Software Packaage Opgradeability Problem

- * Det of packages to install & Pi, B, P3, P43
- * Each package Pi has a set of dependencies!

 -> packages that must be installed for pi

 to be installed.
- * Each package Pi has set of conflicts:

 -> package that cannot the installed for
 Pi to be installed.

Package	Dependencies	Conflicts
Pr	2 P2 V P3 3	2 Py 3
P2 P2	5 P3 3 5 P2 3	£ 3 2 P4 3
Py	2 P2 N P3 3	<u> </u>

Encode Software Packaage Opgraderbility Problem as SAT!

Encoding dependencies

Encoding conflicts

Encoding installing all packages

Pi A B A B A Ry

Formula F: dependencies 7PIVP2VP3 7P2VP3 7P3 7P3 VP3 Conflicts 7 Py VP2 7 Py VP3 7 P, V7 Py Packages P1 P2 P3 P4 Is F SAT?

Formula F: dependencies 7PIVBVP3 7P2 VP3 7P3 VB Conflicts 7 Py VP2 7Py VP3 7P, V7Py 7P3 V7 Py Packages P1 P2 P3 P4 Formula F is UNSAT. So, we can't install all packages.

How many packages can we install?

What is Maximum Satisfiability? -> Maximum Satisfiability (Max SAT)! - Hard clauses? Must be sotisfied. (e.g. conflicts, dependenuses) me 7x60 -> Soft clauses: DESIRABLE to be sotisfied. Ceigi package Installation) Goal: Maximize number of satisfied soft clauses.

	Formula F	•				
,	C dela ca desa cara	7 D. 11 P.	1/P	7P 1/P-	70 V P	
Hand	agreniamaes	111112	<u> </u>	12 7 13	1/3 1/2	
C WOS «S	Conflicts	7 Py V P2	7 Py V P3	7P, V 7P4	7P3 V7 Py	
	¿ Packages					
clauses	t · · ·					
G	oal: Maximiz	se the r	romboz :	of installed	d packages.	

Running Exa	am ple:>			
	7 22 V 72,	χ_{2}	V 7 223	
· •				
	X1 22	3 ~2 \ 7 \ 2 \	723 V 21	
F =	FH N FS			
,	Fis UNS			
tell us	an algerithm	n do solve	MaxsAT	
76000	la Fj			

FH: 722 V721 22 V723 Fs: XIV81 X3V82 X2 V721V83 7X3VX1Y84 -> Relax all soft clauses. -> Relaxation variables: 2 11, 2, 03, 843 Hint: il a sept clauses sci is unsatisfied then if a Doft clauses sci is satisfied. Then r; = 1

 $\gamma^{\circ} = 0$.

FH: 722 V721 22 V723 FS: XIV81 X3V82 X2 V721V83 7X3VX1Y84 -> Relax all soft clauses. -> Relaxation variables: 2 11, 82, 83, 843 Hint: il a sept clauses sci is unsatisfied then if a soft clauses sci is satisfied. Then $\gamma^{\circ} = 0$. Goal: Minimize number of relaxation variables origned to 1. F = FH N F's

L, with relaxation variables.

F is SAT.

 $\begin{cases} d & = 1 = F, & \sigma = \begin{cases} x_1 - 1, & x_2 + 0, & x_3 + 0, \\ y_1 + 0, & x_2 + 1, & x_3 + 1, & x_4 + 0 \end{cases}$

Minimize number of "R" variables assigned to 1.

F = FH N F's

L, with relaxation variables.

 $\begin{cases} \{d = 1 = F, \sigma = \sum_{i=1}^{N} x_i - 1, x_2 + 0, x_3 + 0, \\ x_1 + 0, x_2 + 1, x_3 + 1, x_4 + 0 \end{cases}$

Minimize number of "R" variables of anigned to 1.

* Add cardinality constraint that excludes solutions that unsatisfied 2 or More soft constraints.

Add in the -> 81+82+83+84 & 1 Hard constraints.

FH: 722 V721 22 V723 81+82+83+84 51

Fs: XIV81 X3V82 X2 V721V83 7X3VX1Y84

- -> F= F'HAF'S IS UNSAT.
- > There are no solutions that unsatisfy 1 or less soft clauses.
- + optimal solution: LX, H1, 12 H0, X2 H0>

Problem with Linear Search Algorithm:
-> Based on upper bound or lover bound
MarsAT solving.
1. # of relaxation variables-
2. Size of cardinality constraints
-> Me selax all soft clauses: then inpose cardinality constraint:
r can ble do better?

Un satisfiability - Based Algorithm:
FH: 722 V721 22 V723
F_{S} : χ_{1} χ_{3} $\chi_{2} \vee \tau \chi_{1}$ $\tau \chi_{3} \vee \chi_{1}$
F = FHNFs is UNSAT.
→ Identify an UNSAT CORE. XI N X3 N (7x2V7x1) N (X2 V7X8)
> Relax "non-relaxed" soft constraint in UNSAT CORE.
Fig. 722 V72, 22 V723
f_s : $\chi_1 V_{\delta_1} \chi_3 V_{\delta_2} \chi_2 V_7 \chi_1 \qquad 7\chi_3 V_{\chi_1}$
> 81 + 82 & 1. (add this to FH)
-> Relaxation on demand.

FH: 722 V721 22 V723 81+82 51 F_S : $\chi_1 \sqrt{\gamma_1} \chi_3 \sqrt{\gamma_2} \chi_2 \sqrt{\gamma_2}$, $\gamma \chi_3 \sqrt{\chi_1}$ * F = FH N Fs is UNSAT * Again identify the unsat core: . . 1 Fs: 21 V81 23 V82 22 V721 723 V 21 -2 Relax non-relaxed sqt clauses in UNSAT CORE. Fs: x1V81 x3V82 x2 V7 x1 V83 7 x3 V x1 V84 Add cardinality constraint that excludes solutions that unsatisfies 3 or more soft clauses.

Proble	em with	19n, safis	fiability-	Based	Algerithm	;
Hors	t case!					
	1.	# of relo	ixation varia	ibles-		
	2,	جنار کي	exation various cardina lity	Constr	aint	
		J (V			
Ca	in we do	beffer	7			

Advanced Unisatisfiability-Based Algorithm:
FH: 722 V 721 22 V 723
F_{S} : χ_{1} χ_{3} $\chi_{2} \vee 7 \chi_{1}$ $7 \chi_{3} \vee \chi_{1}$
F = FH N Fs is UNSAT.
→ Identify an UNSAT CORE. XI N X3 N (7X2V7X1) N (X2 V7X3)
Relax "non-relaxed" soft constraint in UNSAT CORE.
F_{H} : $7 \times 2 \vee 7 \times 1$ $\times_{2} \vee 7 \times 3$ $\times_{3} \vee 7 \times 3$ $\times_{4} \vee 7 \times 3 \vee 7 \times 1$ $7 \times_{3} \vee 7 \times 1$
→ 81 + 82 ≤ 1 add atmost 1 constraint.

FH: 722 V721 22 V723 81+82 51 F_{S} : $\chi_{1} \sqrt{\gamma_{1}} \chi_{3} \sqrt{\gamma_{2}} \chi_{2} \sqrt{\gamma_{2}}$ $\chi_{2} \sqrt{\gamma_{2}}$ χ_{1} * F = FH N Fs is UNSAT * Again identify the unsat core: ~ · \ FH: 722 V721 22 V723 01+82 51 Fs: 21V81 23 V82 22 V7 X1 723 V X1 Relax unsatisfiable soft clause.

Fit: 7x2 V7x1 x2 V7x3 x1+x2 51 23+x4+25+265) Fs: XIV81 V83 K2 V84 V84 X2 V T& V85 T&3 VXI V86 - Add relax cetion variable -> Add Atmost 1 constraints.

Can you suggest another approach for Max SAT 7 Recall - Hitting set, MUS, MCS

Hitting Set and MaxSAT based MaxSAT Solving

- -> Find an (implicit) hitting set HS of the consat cores of F.
- -> find a solution to F/HS.

Weighted MaxSAT;

- -> there will be a non-negative verignt associated with each clauses.
- I find a touth assignment that maximize the combined weight of the satisfied clauses.
- Hard clauses = so veight. problem we soft clauses = 1 veight. discussed so far.
- > Can we extend algorithms to handle weighted Max SAT ??

MaxSAT Formula format Represents b (called top)

Represents b (called top)

has to be greater

than total weights

Constraint (15 -1 -2 3 0)

Soft (2 -2 -4 0)

Constraint (15 -3 2 0)

Constraint (15 -3 2 0)

Constraint (15 -3 2 0) LIDIMACS format

▶ In 2020: 81% more instances solved than in 2010!

▶ On same computer, same set of benchmarks