## 算法设计与分析实验报告

|          |                                                       |    | ノントンヘンユング | ·  | _ |  |  |  |  |
|----------|-------------------------------------------------------|----|-----------|----|---|--|--|--|--|
| 班级       |                                                       | 学号 |           | 姓名 |   |  |  |  |  |
| 实验名称     | 算法复杂性分析                                               | 日期 | 2023.9.18 | 成绩 |   |  |  |  |  |
| 实验目的 和要求 | 1. 文件数据读取;<br>2. 时间复杂性测试;<br>3. 简单程序编写, 理解顺序、分支和循环结构. |    |           |    |   |  |  |  |  |
| 实验准备     | 熟悉编程环境; 复习 C/C++语法;                                   |    |           |    |   |  |  |  |  |
| 实、果析内验分  | 2. 时间复杂性测试;<br>3. 简单程序编写, 理解顺序、分支和循环结构.               |    |           |    |   |  |  |  |  |

### 运行结果:

最大连续上涨不小于 0.5%的天数: 6

问题 2: 把如下 3 个程序补充完整并测试,分别写出 N=500, 1000, 1500, 2000, 2500, 3000 的运行结果和运行时间,用 Excel 画出 3 条折线图(同一坐标系下)

```
程序 1,
{ int i, N=500;
Long J=1;
Double S=1;
For(i=0;i<N;i++) {
    J=J+1;
    S=S + 1.0/J;
}
Printf("S=%1f",S);
}
程序 2,
{ int i1, i2, N=500;
Long J=1;
```

```
Double S=1;
    For (i2=0; i2 \le N; i2++) {
      For (i1=0;i1<N;i1++) {
       J=J+1;
      S=S + 1.0/J;
    Printf("S=%1f", S);
程序 3,
{ int i1, i2, i3, N=500;
    Long J=1;
    Double S=1;
    For (i3=0; i3 < N; i3++) {
      For (i2=0; i2 \le N; i2++) {
       For (i1=0;i1<N;i1++) {
         J=J+1;
        S=S + 1.0/J;
    Printf("S=%1f", S);
实验结果与分析:
程序 1:
#include <stdio.h>
#include <time.h>
int main(void){
    clock_t start, end;
   double time_used;
    start = clock(); //记录程序开始时间
    int i, N = 500;
    long J = 1;
    double S = 1;
    for(i = 0; i < N; i++) {
       J = J + 1;
       S = S + 1.0 / J;
    printf("S=%lf\n", S);
```

```
end = clock(); //记录程序结束时间
time_used = (double)(end - start) / CLOCKS_PER_SEC;
printf("程序运行时间: %1f 秒 \n", time_used);
return 0;
}
```

#### 程序 2:

```
#include <stdio.h>
#include <time.h>
int main(void){
   clock_t start, end;
   double time_used;
   start = clock(); //记录程序开始时间
   int i1, i2, N = 500;
   long J = 1;
   double S = 1;
   for (i2 = 0; i2 < N; i2++) {
       for (i1 = 0; i1 < N; i1++) {
          J = J + 1;
          S = S + 1.0 / J;
   printf("S=%lf\n", S);
   end = clock(); //记录程序结束时间
   time_used = (double)(end - start) / CLOCKS_PER_SEC;
   printf("程序运行时间: %.6f 秒 \n", time_used);
   return 0;
```

#### 程序 3:

```
#include <stdio.h>
#include <time.h>
int main(void){
```

```
clock_t start, end;
double time_used;
start = clock(); //记录程序开始时间
int i1, i2, i3, N = 500;
long J = 1;
double S = 1;
for (i3 = 0; i3 < N; i3++) {
   for (i2 = 0; i2 < N; i2++) {
       for (i1 = 0; i1 < N; i1++) {
          J = J + 1;
          S = S + 1.0 / J;
printf("S=%lf\n", S);
               //记录程序结束时间
end = clock();
time_used = (double)(end - start) / CLOCKS_PER_SEC;
printf("程序运行时间: %.6f 秒 \n", time_used);
return 0;
```





|      | 500      | 1000     | 1500     | 2000      | 2500      | 3000      |
|------|----------|----------|----------|-----------|-----------|-----------|
| 程序1  | 0        | 0        | 0        | 0         | 0         | 0         |
| 1结果  | 6.794819 | 7.48647  | 7.891436 | 8.178868  | 8.401862  | 8.584083  |
| 程序2  | 0        | 0.002    | 0.006    | 0.01      | 0.016     | 0.023     |
| 2 结果 | 13.00644 | 14.39273 | 15.20366 | 15.779021 | 16.225308 | 16.589951 |
| 程序3  | 0.322    | 2.576    | 8.686    | 20.622    | 40.27     | 69.538    |
| 3 结果 | 19.22104 | 21.30048 | 21.21706 | 9.00E+307 | 9.00E+307 | 9.00E+307 |

# 问题 3. 输入正整数 n; 把从 1 至 n 的 n 个整数中排在第奇数序号的数去掉,对于剩余的数重复这个操作,直到剩下一个数,输出这个数. 填表

| n   | 34 | 145 | 256 | 367 | 478 | 589 |
|-----|----|-----|-----|-----|-----|-----|
| 剩余数 | 32 | 128 | 256 | 256 | 256 | 512 |
| Nc  | 5  | 7   | 8   | 8   | 8   | 9   |

```
int findNumber(int n) {
    if (n == 1) {
        return 1; // 如果 n 为 1, 直接返回 1
    } else {
        // 递归调用, 去掉奇数序号的数
        return 2 * findNumber(n / 2);
    }
}
```

总结与 讨论

注: 完成作业后, 把电子版提交至 课堂派; 引用他人的程序注明来源;

作业名称: 学号姓名实验 01 时间复杂性