Supplementary material for the manuscript: Marginalization in nonlinear mixed-effects models - a practical approach

Vinclozolin study

Table 1: Parameter estimates for the Vinclozolin case study.

Parameter	Coefficient	Random effect s.d.	Correlation structure			
Steepness (β_1)	0.538	0.538	1	-0.893	0.859	
Upper asymptote (β_2)	1987.3	758.9	-0.893	1	-0.537	
$ED50 (\beta_4)$	0.101	0.070	0.859	-0.537	1	
Residuals (ϵ_{ij})		100.091				

Spinach data

Table 2: Parameter estimates for the Spinach case study.

Coefficients								
Parameter	Bentazon	Diuron	Random effect s.d.					
Steepness (β_1)	0.604	1.751	0.000					
Lower asymptote (β_2)	0.086	0.036	0.007					
Upper asymptote (β_3)	1.303	1.980	0.337					
$ED50 (\beta_4)$	1.433	0.203	0.000					
Residuals (ϵ_{ij})			0.071					

CellTiter - Blue Cell Viability Assay Data

Table 3: Random effect parameter estimates for the Blue Cell Viability Assay case study. Estimates for the fixed effects are: $\beta_1 = 1.875$, $\beta_2 = 1960.9$, $\beta_4 = 2.877$, and $\beta_5 = 0.542$.

Random effect	Parameter	Random effect s.d.	Random effect correlation			
Day	Steepness (β_1)	0.114	1	0.800	0.878	-0.030
	Upper asymptote (β_2)	792.43	0.800	1	0.989	0.576
	$ED50 (\beta_4)$	0.451	0.878	0.989	1	0.452
	Asymmetry (β_5)	0.074	-0.030	0.576	0.452	1
Plate	Steepness (β_1)	0.131	1	0.689	-0.707	-0.937
(within Day)	Upper asymptote (β_2)	192.54	0.689	1	-1.000	-0.898
	$ED50 (\beta_4)$	0.280	-0.707	-1.000	1	0.909
	Asymmetry (β_5)	0.078	-0.937	-0.898	0.909	1
Residuals	(ϵ_{ij})	187.958				