Practice for Euler Method

Why?

Exercise 1 Consider
$$\frac{dx}{dt} = (2t - x)^2$$
, $x(0) = 2$. Use Euler's method with step size $h = 0.5$ to approximate $x(1)$.

Exercise 2 Consider the differential equation
$$\frac{dy}{dt} = t^2 - 3y + 1$$
 with $y(1) = 4$. Approximate the solution at $t = 3$ using Euler's method with a step size of $h = 1$ and $h = 0.5$. Compare these values with the actual solution at $t = 3$.

Exercise 3 Consider the differential equation
$$\frac{dy}{dt} = 2ty + y^2$$
 with $y(0) = 1$. Approximate the solution at $t = 2$ using Euler's method with a step size of $h = 1$ and $h = 0.5$.

Exercise 4 Consider
$$\frac{dx}{dt} = t - x$$
, $x(0) = 1$.

- a) Use Euler's method with step sizes $h = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ to approximate x(1).
- b) Solve the equation exactly.
- c) Describe what happens to the errors for each h you used. That is, find the factor by which the error changed each time you halved the interval.

Exercise 5 Let $x' = \sin(xt)$, and x(0) = 1. Approximate x(1) using Euler's method with step sizes 1, 0.5, 0.25. Use a calculator and compute up to 4 decimal digits.

Exercise 6 Approximate the value of e by looking at the initial value problem y' = y with y(0) = 1 and approximating y(1) using Euler's method with a step size of 0.2.

Exercise 7 Let x' = 2t, and x(0) = 0.

- a) Approximate x(4) using Euler's method with step sizes 4, 2, and 1.
- b) Solve exactly, and compute the errors.
- c) Compute the factor by which the errors changed.

Exercise 8 Let $x' = xe^{xt+1}$, and x(0) = 0.

- a) Approximate x(4) using Euler's method with step sizes 4, 2, and 1.
- b) Guess an exact solution based on part a) and compute the errors.

Exercise 9 Example of numerical instability: Take y' = -5y, y(0) = 1. We know that the solution should decay to zero as x grows. Using Euler's method, start with h = 1 and compute y_1, y_2, y_3, y_4 to try to approximate y(4). What happened? Now halve the interval. Keep halving the interval and approximating y(4) until the numbers you are getting start to stabilize (that is, until they start going towards zero). Note: You might want to use a calculator.

There is a simple way to improve Euler's method to make it a second order method by doing just one extra step. Consider $\frac{dy}{dx} = f(x,y)$, $y(x_0) = y_0$, and a step size h. What we do is to pretend we compute the next step as in Euler, that is, we start with (x_i, y_i) , we compute a slope $k_1 = f(x_i, y_i)$, and then look at the point $(x_i + h, y_i + k_1 h)$. Instead of letting our new point be $(x_i + h, y_i + k_1 h)$, we compute the slope at that point, call it k_2 , and then take the average of k_1 and k_2 , hoping that the average is going to be closer to the actual slope on the interval from x_i to $x_i + h$. And we are correct, if we halve the step, the error should go down by a factor of $2^2 = 4$. To summarize, the setup is the same as for regular Euler, except the computation of y_{i+1} and x_{i+1} .

$$k_1 = f(x_i, y_i),$$
 $x_{i+1} = x_i + h,$ $k_2 = f(x_i + h, y_i + k_1 h),$ $y_{i+1} = y_i + \frac{k_1 + k_2}{2} h.$

Exercise 10 Consider $\frac{dy}{dx} = x + y$, y(0) = 1.

- a) Use the improved Euler's method (see above) with step sizes h = 1/4 and h = 1/8 to approximate y(1).
- b) Use Euler's method with h = 1/4 and h = 1/8.
- c) Solve exactly, find the exact value of y(1).
- d) Compute the errors, and the factors by which the errors changed.

The simplest method used in practice is the Runge-Kutta method. Consider $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$, and a step size h. Everything is the same as in Euler's method, except the computation of y_{i+1} and x_{i+1} .

$$k_{1} = f(x_{i}, y_{i}),$$

$$k_{2} = f(x_{i} + h/2, y_{i} + k_{1}(h/2)),$$

$$x_{i+1} = x_{i} + h,$$

$$k_{3} = f(x_{i} + h/2, y_{i} + k_{2}(h/2)),$$

$$y_{i+1} = y_{i} + \frac{k_{1} + 2k_{2} + 2k_{3} + k_{4}}{6}h,$$

$$k_{4} = f(x_{i} + h, y_{i} + k_{3}h).$$

Exercise 11 Consider $\frac{dy}{dx} = yx^2$, y(0) = 1.

- a) Use Runge-Kutta (see above) with step sizes h = 1 and h = 1/2 to approximate y(1).
- b) Use Euler's method with h = 1 and h = 1/2.
- c) Solve exactly, find the exact value of y(1), and compare.