Student ID:

Question 1 (10 marks)

The following figure shows (a) a 3-bit image of size 5-by-5 image in the square, with x and y coordinates specified, (b) a Laplacian filter.

Compute the following:

- (a) The output of a 3×3 mean filter at (3,3).
- (b) The output of a 3×3 median filter at (2,3).
- (c) The output of the 3×3 Laplacian filter shown above at (1,3).
- (d) Obtain the histogram of the image.
- (e) Apply histogram equalization on the above image and calculate the histogram equalized image, and the new histograms.

Solution:

- (a) 1/9*(2+5+4+6+2+1+5+1+2)
- (b) 5 [0,1,2,2,5,5,6,7,7]
- (c)-4*0+7+3+6+7=23

(d)

Frequency	2	4	5	2	3	3	3	3
Intensity	0	1	2	3	4	5	6	7

(e)

Histogram equalization

r_k	n _r	$p_r(r_k)=n_r/MN$	$T_r=(L-1)P_r(r_k)$
0	2	2/25	7*3/25 =0.84 ->1
1	4	4/25	7*(2+4)/25 =1.68 ->2
2	5	5/25	7*(2+4+5)/25 =3.08 ->3
3	2	2/25	7*13/25 =3.64 ->4
4	3	3/25	7*16/25 =4.48 ->4
5	3	3/25	7*19/25 =5.52 ->5
6	3	3/25	7*22/25 =6.16 ->6
7	3	3/25	7*25/25 =7 ->7

The new image:

4	7	6	3	1
3	4	6	2	2
4	7	3	5	4
4	1	6	3	2
5	7	5	2	3

New histogram:

Frequency	0	2	4	5	5	3	3	3
Intensity	0	1	2	3	4	5	6	7

Question 2 (10 marks)

Consider the following images,

The modulus of the 2D DFT (followed by fftshift) of these images is shown below. Which image corresponds to which Fourier spectrum? Explain the reasons.

Solution:

image a) -> spectrum 2): a slowly varying image has essentially low frequency contents.

image b) -> spectrum 4): strong directional features result in orthogonal lines in Fourier.

image c) -> spectrum 1): a periodic pattern results in isolated points in Fourier.

image d) -> spectrum 3): a fastly varying image has higher frequency contents, with limited low-frequency contents.

Question 3 (10 marks)

Suppose that you form a lowpass spatial filter that average the four immediate neighbors of a point (x,y), but excludes the point itself.

- (a) Find the equivalent filter H(u,v) in the frequency domain.
- (b) Show that your result is a lowpass filter.

Solution:

(a) The spatial average is

$$\begin{split} g(x,y) &= \frac{1}{4} \left[f(x,y+1) + f(x+1,y) + f(x-1,y) + f(x,y-1) \right] \\ G(u,v) &= \frac{1}{4} \left[e^{j2\pi v/N} + e^{j2\pi u/M} + e^{-j2\pi u/M} + e^{-j2\pi v/N} \right] F(u,v) \\ &= H(u,v) F(u,v), \end{split}$$

Therefore

$$H(u,v) = \frac{1}{2} \left[\cos(2\pi u/M) + \cos(2\pi v/N) \right]$$

(b) To see that this is a lowpass filter, it helps to express the preceding equation in the form of our familiar centered functions:

$$H(u,v) = \frac{1}{2} \left[\cos(2\pi [u - M/2)/M) + \cos(2\pi [v - N/2]/N) \right].$$

Consider one variable for convenience. As u ranges from 0 to M, the value of $\cos(2\pi[u-M/2)/M)$ starts at -1, peaks at 1 when u=M/2 (the center of the filter) and then decreases to -1 again when u=M. Thus, we see that the amplitude of the filter decreases as a function of distance from the origin of the centered filter, which is the characteristic of a lowpass filter. A similar argument is easily carried out when considering both variables simultaneously.

Question 4 (10 marks)

Please refer the page 42-45 of lecture notes EE 4211_2B_2020, utilize spatial enhancement methods to enhance the images (in the attachment), and write codes for the task.

Question 5 (10 marks)

Please refer the page 46-48 of lecture notes EE 4211_3B_2020, utilize image enhancement methods in frequency domain to enhance the images (in the attachment), and write codes for the task.