## Macroeconomía Internacional

Francisco Roldán IMF

November 2021

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

### Consistencia temporal

#### **Problema**

• Elegir acciones  $\{a_t\}_t$  para maximizar algún objetivo

$$\mathbf{v}_0 = \mathbb{E}_0 \left[ \sum_{t=0}^{\infty} \beta^t \mathsf{U}(\mathsf{x}_t, a_t) \right]$$

- · Evolución del estado  $F(x_{t+1} \mid x_t)$  se puede afectar con  $a_t$
- · Qué pasa si la evolución del estado también depende de  $\mathbb{E}_t$  [ $a_{t+1}$ ]?

## Consistencia temporal

#### **Problema**

• Elegir acciones  $\{a_t\}_t$  para maximizar algún objetivo

$$\mathbf{v}_0 = \mathbb{E}_0 \left[ \sum_{t=0}^{\infty} \beta^t \mathsf{U}(\mathsf{x}_t, a_t) \right]$$

- · Evolución del estado  $F(x_{t+1} \mid x_t)$  se puede afectar con  $a_t$
- · Programación dinámica:  $v(x) = \max_a U(x,a) + \beta \mathbb{E}\left[v(x')|x,a\right]$   $\checkmark$
- $\cdot$  Qué pasa si la evolución del estado también depende de  $\mathbb{E}_t\left[a_{t+1}
  ight]$ ?

### Consistencia temporal

#### **Problema**

• Elegir acciones  $\{a_t\}_t$  para maximizar algún objetivo

$$\mathbf{v}_0 = \mathbb{E}_0 \left[ \sum_{t=0}^{\infty} \beta^t \mathsf{U}(\mathsf{x}_t, a_t) \right]$$

- · Evolución del estado  $F(x_{t+1} \mid x_t)$  se puede afectar con  $a_t$
- Programación dinámica:  $v(x) = \max_a U(x,a) + \beta \mathbb{E}\left[v(x')|x,a\right]$
- · Qué pasa si la evolución del estado también depende de  $\mathbb{E}_t[a_{t+1}]$ ?

1

### Un ejemplo

Un planificador quiere elegir inflación  $\pi$  y producto y para

$$\min_{\{\mathbf{y}_t, \pi_t\}_t} eta^t \left( (\mathbf{y}_t - \mathbf{y}^\star)^2 + \gamma \pi_t^2 
ight)$$
sujeto a  $\pi_t = \kappa \mathbf{y}_t + eta \pi_{t+1}$ 

#### dado el nivel deseado y\*

- $\cdot$  Multiplicador de Lagrange 2 $eta^t \lambda_t$  a la restricción en t
- · CPOs:

$$\pi_t = \kappa \mathbf{y}_t + \beta \pi_{t+1} \tag{(\lambda_t)}$$

$$\beta^{t}(y_{t} - y^{*}) = \kappa 2\beta^{t} \lambda_{t} \tag{y_{t}}$$

$$eta^t \gamma \pi_t = -2eta^t \lambda_t + 2eta^t \lambda_t$$

### Un ejemplo

Un planificador quiere elegir inflación  $\pi$  y producto y para

$$\begin{aligned} & \min_{\{\mathbf{y}_t, \pi_t\}_t} \, \beta^t \left( (\mathbf{y}_t - \mathbf{y}^\star)^2 + \gamma \pi_t^2 \right) \\ & \text{sujeto a} \; \; \pi_t = \kappa \mathbf{y}_t + \beta \pi_{t+1} \end{aligned}$$

dado el nivel deseado y\*

- · Multiplicador de Lagrange  $2\beta^t\lambda_t$  a la restricción en t
- · CPOs:

$$\pi_{t} = \kappa \mathbf{y}_{t} + \beta \pi_{t+1} \tag{(\lambda_{t})}$$

$$2\beta^{t}(\mathbf{y}_{t} - \mathbf{y}^{\star}) = \kappa 2\beta^{t}\lambda_{t} \tag{y_{t}}$$

$$2\beta^{t}\gamma\pi_{t} = -2\beta^{t}\lambda_{t} + 2\beta^{t-1}\lambda_{t-1}\beta \tag{\pi_{t}}$$

### Un ejemplo

Un planificador quiere elegir inflación  $\pi$  y producto y para

$$\begin{aligned} & \min_{\{\mathbf{y}_t, \pi_t\}_t} \, \beta^t \left( (\mathbf{y}_t - \mathbf{y}^\star)^2 + \gamma \pi_t^2 \right) \\ & \text{sujeto a} \ \, \pi_t = \kappa \mathbf{y}_t + \beta \pi_{t+1} \end{aligned}$$

dado el nivel deseado y\*

- · Multiplicador de Lagrange  $2\beta^t\lambda_t$  a la restricción en t
- · CPOs:

$$\pi_t = \kappa \mathbf{y}_t + \beta \pi_{t+1} \tag{(\lambda_t)}$$

$$2\beta^{t}(\mathbf{y}_{t} - \mathbf{y}^{\star}) = \kappa 2\beta^{t}\lambda_{t} \tag{y_{t}}$$

$$2\beta^{t}\gamma\pi_{t} = -2\beta^{t}\lambda_{t} + 2\beta^{t-1}\lambda_{t-1}\beta \tag{\pi_{t}}$$

## Un ejemplo bellmanizado

Qué pasa si Bellmanizamos sin pensar?

$$\mathcal{L} = \min_{\pi, \mathbf{y}} (\mathbf{y} - \mathbf{y}^\star)^2 + \gamma \pi^2 + \beta \mathcal{L}$$
 sujeto a  $\pi = \kappa \mathbf{y} + \beta \pi'$ 

donde  $\pi'$  es la inflación que esperamos que sea decidida mañana

· CPOs:

$$r = \kappa \mathbf{y} + \beta \pi'$$
 ( $\lambda$ )

$$\mathbf{y}^{\star} = \kappa \lambda \tag{y}$$

$$=-\lambda$$
  $(\pi)$ 

## Un ejemplo bellmanizado

· Qué pasa si Bellmanizamos sin pensar?

$$\mathcal{L} = \min_{\pi, \mathbf{y}} (\mathbf{y} - \mathbf{y}^\star)^2 + \gamma \pi^2 + \beta \mathcal{L}$$
 sujeto a  $\pi = \kappa \mathbf{y} + \beta \pi'$ 

donde  $\pi'$  es la inflación que esperamos que sea decidida mañana

· CPOs:

$$\pi = \kappa \mathbf{y} + \beta \pi' \tag{\lambda}$$

$$y - y^* = \kappa \lambda \tag{y}$$

$$\gamma \pi = -\lambda \tag{\pi}$$

### 7 diferencias

#### CPOs del problema original

$$\pi_t = \kappa y_t + \beta \pi_{t+1}$$

$$y_t - y^* = \kappa \lambda_t$$

$$\gamma \pi_t = -\lambda_t + \lambda_{t-1}$$

#### CPOs del problema recursivo

$$\pi = \kappa \mathbf{y} + eta \pi'$$
  $\mathbf{y} - \mathbf{y}^\star = \kappa \lambda$   $\gamma \pi = -\lambda$ 

De dónde sale ese  $\lambda_{t-1}$ ?

### 7 diferencias

#### CPOs del problema original

$$\pi_t = \kappa y_t + \beta \pi_{t+1}$$
  $y_t - y^* = \kappa \lambda_t$   $\gamma \pi_t = -\lambda_t + \lambda_{t-1}$ 

#### CPOs del problema recursivo

$$\pi = \kappa \mathbf{y} + eta \pi'$$
  $\mathbf{y} - \mathbf{y}^\star = \kappa \lambda$   $\gamma \pi = -\lambda$ 

De dónde sale ese  $\lambda_{t-1}$ ?

### 7 diferencias

### CPOs del problema original

$$\pi_{t} = \kappa y_{t} + \beta \pi_{t+1}$$

$$y_{t} - y^{*} = \kappa \lambda_{t}$$

$$\gamma \pi_{t} = -\lambda_{t} + \lambda_{t-1}$$

### CPOs del problema recursivo

$$\pi = \kappa \mathbf{y} + \beta \pi'$$
  $\mathbf{y} - \mathbf{y}^{\star} = \kappa \lambda$   $\gamma \pi = -\lambda$ 

De dónde sale ese  $\lambda_{t-1}$ ?

- · En el problema original elijo toda la sucesión de inflaciones
- En la restricción

$$\pi_t = \kappa y_t + \beta \pi_{t+1}$$

puedo controlar las tres cosas

- Así que a tiempo t puedo elegir las expectativas de inflación
- Nash: si quiero expectativas x en t más vale que en t+1 ponga  $\pi=x$
- En el problema recursivo, los tradeoffs en t sólo reflejan el futuro
   Perfecto en subjuegos: no puedo hacerte esperar cosas que no voy a tener ganas de hacer

- · En el problema original elijo toda la sucesión de inflaciones
- En la restricción

$$\pi_t = \kappa \mathbf{y}_t + \beta \pi_{t+1}$$

puedo controlar las tres cosas

- · Así que a tiempo t puedo elegir las expectativas de inflación
- · Nash: si quiero expectativas x en t más vale que en t+1 ponga  $\pi=x$

En el problema recursivo, los tradeoffs en t sólo reflejan el futuro

Perfecto en subjuegos: no puedo hacerte esperar cosas que no voy a tener ganas de hacer

- · En el problema original elijo toda la sucesión de inflaciones
- En la restricción

$$\pi_t = \kappa y_t + \beta \pi_{t+1}$$

puedo controlar las tres cosas

- · Así que a tiempo t puedo elegir las expectativas de inflación
- · Nash: si quiero expectativas x en t más vale que en t+1 ponga  $\pi=x$
- En el problema recursivo, los tradeoffs en t sólo reflejan el futuro

Perfecto en subjuegos: no puedo hacerte esperar cosas que no voy a tener ganas de hacer

- · En el problema original elijo toda la sucesión de inflaciones
- En la restricción

$$\pi_t = \kappa y_t + \beta \pi_{t+1}$$

puedo controlar las tres cosas

- · Así que a tiempo t puedo elegir las expectativas de inflación
- · Nash: si quiero expectativas x en t más vale que en t+1 ponga  $\pi=x$
- · En el problema recursivo, los tradeoffs en t sólo reflejan el futuro
  - · Perfecto en subjuegos: no puedo hacerte esperar cosas que no voy a tener ganas de hacer

## $\lambda_{t-1}$ es la marca de la inconsistencia temporal

- · Si  $\lambda_{t-1} = 0$ 
  - commitment = discreción
  - · (claro que en este caso  $\lambda_{t-1}=0$  es raro)
- A cosas más prácticas:
  - qué pasa si quiero calcular la solución con commitment?
  - Puedo usar métodos recursivos?
  - · Sí

## $\lambda_{t-1}$ es la marca de la inconsistencia temporal

- Si  $\lambda_{t-1} = 0$ 
  - commitment = discreción
  - · (claro que en este caso  $\lambda_{t-1}=0$  es raro)
- · A cosas más prácticas:
  - qué pasa si quiero calcular la solución con commitment?
  - · Puedo usar métodos recursivos?



## $\lambda_{t-1}$ es la marca de la inconsistencia temporal

- · Si  $\lambda_{t-1} = 0$ 
  - commitment = discreción
  - · (claro que en este caso  $\lambda_{t-1}=0$  es raro)
- · A cosas más prácticas:
  - qué pasa si quiero calcular la solución con commitment?
  - · Puedo usar métodos recursivos?
  - · Sí

- 'Commitment  $\neq$  discreción' porque
  - · Acciones en t = expectativas en t 1 sobre acciones en t (Nash / rational expectations)
  - Beneficio de actuar sobre  $\mathbb{E}_{t-1}[a_t]$  ( $\lambda_{t-1}$  sobre  $\pi_t$ )
  - · Para lograr ese beneficio, hay que 'cumplir una promesa' (por eso se llama commitment)

Solución: meter la promesa por la ventana

- 'Commitment ≠ discreción' porque
  - · Acciones en t = expectativas en t 1 sobre acciones en t (Nash / rational expectations)
  - Beneficio de actuar sobre  $\mathbb{E}_{t-1}[a_t]$   $(\lambda_{t-1} \text{ sobre } \pi_t)$
  - Para lograr ese beneficio, hay que 'cumplir una promesa' (por eso se llama commitment)
- · Solución: meter la promesa por la ventana

- $\cdot$  Agreguemos una variable de estado  $\mathit{artificial}\ heta_{\mathsf{t}}$ 
  - ... que mida la intensidad de la ganancia por disminuir las expectativas de inflación
  - ... que nos permita reintroducir un término  $\lambda_{t-1}$
- Marcet y Marimon (2019) muestran un método general (primera versión: 1998
- · Vamos a hacerlo de forma artesana

- $\cdot$  Agreguemos una variable de estado  $\mathit{artificial}\ heta_{\mathsf{t}}$ 
  - ... que mida la intensidad de la ganancia por disminuir las expectativas de inflación
  - ... que nos permita reintroducir un término  $\lambda_{t-1}$
- · Marcet y Marimon (2019) muestran un método general (primera versión: 1998)
- Vamos a hacerlo de forma artesana

- $\cdot$  Agreguemos una variable de estado  $\mathit{artificial}\ heta_{\mathsf{t}}$ 
  - ... que mida la intensidad de la ganancia por disminuir las expectativas de inflación
  - ... que nos permita reintroducir un término  $\lambda_{t-1}$
- · Marcet y Marimon (2019) muestran un método general (primera versión: 1998)
- · Vamos a hacerlo de forma artesanal

### Problema bellmanizado con un $\theta$ misterioso

· Agreguémosle una variable nueva al problema que le dé un costo extra al planificador

$$\begin{aligned} & \textit{L}(\theta) = \max_{\theta'} \min_{\pi, \mathbf{y}} (\mathbf{y} - \mathbf{y}^{\star})^2 + \gamma \pi^2 + \theta \pi + \beta \textit{L}(\theta') \\ \text{sujeto a } & \pi = \kappa \mathbf{y} + \beta \pi' \end{aligned}$$

· CPOs:

$$\pi = \kappa \mathbf{y} + \beta \pi'$$
 $\mathbf{y} - \mathbf{y}^* = \kappa \lambda$ 
 $\gamma \pi = -\lambda + \theta$ 
 $\beta \mathsf{L}'(\theta') = \mathbf{0}$ 

Cómo nos aseguramos de que  $\theta' = \lambda$ ?

## Cómo hacer que $\theta' = \lambda$ ?

- Usemos la restricción para asegurarnos de que  $\theta$  mida el costo de la inflación

$$\mathcal{L}(\theta) = \max_{\theta'} \min_{\pi, y} (\mathbf{y} - \mathbf{y}^{\star})^2 + \gamma \pi^2 + \theta'(\pi - \kappa \mathbf{y}) - \theta \pi + \beta \mathcal{L}(\theta')$$

· CPOs:

$$\mathbf{y} - \mathbf{y}^* = \theta' \kappa$$
$$\gamma \pi = -\theta'$$
$$\pi - \kappa \mathbf{y} + \beta \mathcal{L}'(\theta') = \mathbf{0}$$

 $\cdot$  Restricción de y,  $\pi$  🗸

Restricción de  $heta'\colon \mathcal{L}'( heta)$ 

## Cómo hacer que $\theta' = \lambda$ ?

 $\cdot$  Usemos la restricción para asegurarnos de que heta mida el costo de la inflación

$$\mathcal{L}(\theta) = \max_{\theta'} \min_{\pi, \mathbf{y}} (\mathbf{y} - \mathbf{y}^{\star})^2 + \gamma \pi^2 + \theta'(\pi - \kappa \mathbf{y}) - \theta \pi + \beta \mathcal{L}(\theta')$$

· CPOs:

$$\mathbf{y} - \mathbf{y}^* = \theta' \kappa$$
$$\gamma \pi = -\theta'$$
$$\pi - \kappa \mathbf{y} + \beta \mathcal{L}'(\theta') = \mathbf{0}$$

· Restricción de  $y, \pi$ 

Restricción de  $\theta'$ :  $\mathcal{L}'(\theta) = -\theta\pi$ 

## Cómo hacer que $\theta' = \lambda$ ?

 $\cdot$  Usemos la restricción para asegurarnos de que  $\theta$  mida el costo de la inflación

$$\mathcal{L}(\theta) = \max_{\theta'} \min_{\pi, \mathbf{y}} (\mathbf{y} - \mathbf{y}^{\star})^2 + \gamma \pi^2 + \theta'(\pi - \kappa \mathbf{y}) - \theta \pi + \beta \mathcal{L}(\theta')$$

· CPOs:

$$\mathbf{y} - \mathbf{y}^* = \theta' \kappa$$
$$\gamma \pi = -\theta'$$
$$\pi - \kappa \mathbf{y} + \beta \mathcal{L}'(\theta') = \mathbf{0}$$

- · Restricción de  $y, \pi$  🗸
- · Restricción de  $\theta'$ :  $\mathcal{L}'(\theta) = -\theta\pi$  🗸

# Es fácil de implementar esto?

rec\_infla.jl

rec\_infla.jl

# Cierre

#### Cierre

- · Por qué es tan volátil el consumo?
  - · en economías emergentes?
- Tres mecanismos:
  - afectan la ecuación de Euler vía
    - 1. Tasas de interés y riesgo de default
    - 2. Externalidades de demanda agregada
    - 3. Movimientos (bruscos) de capital

- Aplicaciones cuantitativas
  - Julia
- Métodos de frontera
  - Los códigos que usamos resuelven modelos de papers modernos
  - Flexibilidad para pensar en otros mecanismos