1 Nadstavba

1.1 Spracovanie všeobecnej triedy pre L^1 a L^{∞} lineárnu regresiu

Vypracovali sme modul \mathtt{Model} pre počítanie L^1 a L^∞ lineárnej regresie pre ľubovoľné číselné dáta, ktorý využíva LP formulácie popísané v sekciách vyššie. Konkrétne $\mathtt{L1Model}$ využíva formuláciu na minimalizovanie L^1 normy a $\mathtt{LInfModel}$ minimalizuje L^∞ normu. Príklad použitia tohto modelu sa nachádza v $\mathtt{model_demonstration.ipynb}$. Následne opíšeme jednotlivé metódy jednotlivých modelov.

```
Model.__init__(dependent_vect, independent_vect)
```

Konštruktor triedy, spoločný pre oba modely, vytvorí inštanciu, ktorá si drží dáta a vie na nich vykonávať operácie popísané nižšie.

Argumenty:

- dependent_vect: np.ndarray vektor závislých premenných
- independent_vect:np.ndarray matica, ktorej riadky sú vektory nezávislých premenných

```
Model.solve()
```

Metóda, ktorá vyrieši lineárnu regresnú LP úlohu na daných dátach. L1Model.solve() rieši minimalizáciou L^1 normy a LInfModel.solve(), rieši minimalizáciou L^∞ normy. Vracia:

• np.ndarray - vektor optimálnych β premenných

Po zavolaní tejto metódy si inštancia uloží vektor optimálnych β premenných do atribútu self._beta, potrebné pre metódy popísané nižšie.

```
Model.r2()
```

Vypočíta R^2 koeficient pre dané dáta a vypočítaný vektor β . Vracia:

• float - výsledný R² koeficient

```
Model.visualize()
```

Ak je počet nezávislých premenných 1 alebo 2, táto metóda vykreslí graf dát spolu s vypočítanou regresnou priamkou, resp. rovinou.

Vracia:

• bool - úspešnosť vizualizácie, kde False označuje, že nezávislých premenných je viac ako 2, čiže nie je možné vykresliť graf

1.2 Porovnanie použitia L^1 a L^∞ lineárnej regresie

Nasledujúce tvrdenia popisujú len naše pozorovania správania sa jednotlivých lineárnych regresií na generovaných dátach

Vyššie v sekcii $\ref{eq:continuous}$ sme ukázali, že implementácie lineárnej regresie pomocou merania vzdialenosti L^1 a L^∞ normou majú optimálne riešenie, pre ľubovoľné vstupné dáta. Snažili sme sa odpozorovať, ako sa jednotlivé prístupy odlišujú pre nejaké konkrétne dáta.

V dátach, v ktorých je výrazná lineárna závislosť, minimalizovanie L^1 normy veľmi dobre zachytáva práve tento lineárny vzťah, aj v prítomnosti odľahlých dát - *outlierov*. Toto správanie vie ale viesť aj k tzv. *overfittingu*. Model príliš tesne zachytáva takéto správanie, čo môže viesť k horším odhadom pre budúce pozorovania.

Na druhej strane minimalizovanie L^∞ normy je veľmi ovplyvňované outliermi. Aj pre "jasne" lineárne dáta s nejakými chybnými pozorovaniami, tieto dátové body výrazne odklonia regresnú priamku/nadrovinu.

1.2.1 Minimalizácia váženého súčtu

Toto správanie L^{∞} lineárnej regresie sa môžeme pokúsiť využiť na zníženie overfittingu L^1 lineárnej regresie. Jeden z možných prístupov môže byť napríklad pomocou minimalizácie váženej sumy $\omega||y-\hat{y}||_1+(1-\omega)||y-\hat{y}||_{\infty},\ \omega\in[0;1]$. Formulovaná LP úloha vyzerá nasledovne (značenie sme prebrali z (??) a (??)):

$$\begin{aligned} & \min \; \left(\begin{array}{c|c} \mathbf{0}_{k+1}^T \mid \omega \mathbf{1}_n^T \mid (1-\omega) \end{array} \right) \left(\frac{\beta}{\frac{t}{\gamma}} \right) \\ & \left(\frac{\mathbf{A}}{-\mathbf{A}} \mid \mathbb{I}_n \mid \mathbf{0}_n \\ \hline \mathbf{A} \mid \mathbf{0}_{n \times n} \mid \mathbf{1}_n \\ \hline -\mathbf{A} \mid \mathbf{0}_{n \times n} \mid \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{\frac{t}{\gamma}} \right) \geq \left(\frac{y}{\frac{y}{-y}} \right) \\ & \beta \in \mathbb{R}^{k+1}, \; t \geq \mathbf{0}_n, \; \gamma \geq 0 \end{aligned}$$

Podobným spôsobom ukážeme, že táto úloha nadobúda optimálne riešenie. Sformulujme duálnu úlohu:

$$\begin{aligned} & \mathsf{Nech} \; \alpha = \left(\frac{\alpha_1}{\alpha_2} \over \frac{\alpha_3}{\alpha_4} \right), \; \alpha_{1,2,3,4} \in \mathbb{R}^n \\ & \mathsf{max} \; \left(\begin{array}{c} y^T \mid -y^T \mid y^T \mid -y^T \end{array} \right) \alpha \\ & \left(\begin{array}{c} \mathbf{A}^T \mid -\mathbf{A}^T \mid \mathbf{A}^T \mid -\mathbf{A}^T \end{array} \right) \alpha = \mathbf{0}_{k+1} \\ & \left(\begin{array}{c} \mathbb{I}_n \mid \mathbb{I}_n \mid \mathbf{0}_{n \times n} \mid \mathbf{0}_{n \times n} \end{array} \right) \alpha \leq \omega \mathbf{1}_n \\ & \left(\begin{array}{c} \mathbf{0}_n^T \mid \mathbf{0}_n^T \mid \mathbf{1}_n^T \mid \mathbf{1}_n^T \end{array} \right) \alpha \leq 1 - \omega \\ & \alpha > \mathbf{0}_{4n} \end{aligned}$$

Vidíme, že primárna úloha je prípustná pre $\beta=\mathbf{0}_{k+1},\ t=|y|,\ \gamma=|\hat{y}|$ (využitím značenia ako v **??** a **??**) a duálna úloha je prípustná pre $\alpha=\mathbf{0}_{4n}$, teda, zo slabej duality, obe riešenia nadobúdajú optimálne riešenie.

1.2.2 Implementácia WeightedL1LInfModel

Takáto lineárna regresia je implementovaná v triede WeightedL1LInfModel. Jej používanie je rovnaké ako pri predchádzajúcich implementáciách. Jediná zmena je pre metódu WeightedL1LInfModel. solve (omega), ktorá očakáva parameter omega: float, pričom akceptuje iba omega $\in [0;1]$.

Porovnanie správania sa jednotlivých lineárnych regresii, prvé tri grafy zobrazujú rovnaké lineárne dáta s jedným outlierom, štvrtý zobrazuje použitie všetkých troch lineárnych regresií na lineárnych dátach s náhodným šumom