

Sequence Generation with Recurrent Neural Networks

Arne Nix

arne.nix@rwth-aachen.de

Selected Topics in Human Language Technology and Pattern Recognition WS 2015/2016 – 19.01.2016

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Literature

A. Graves [Graves 13]:

Generating sequences with recurrent neural networks. August 2013.

- Basic concept of generating sequences
- Application to text prediction and handwriting prediction
- I. Sutskever, O. Vinyals, Q. Le [Sutskever & Vinyals⁺ 14]: Sequence to sequence learning with neural networks. *NIPS December 2014*.
 - ► Generating sequences from sequences using recurrent neural networks.
 - Introducing the encoder-decoder model
 - Application to machine translation
- O. Vinyals, Q. Le [Vinyals & Le 15]:

A neural conversational model. ICML July 2015.

▶ Using the RNN encoder-decoder model to model conversations

Outline

- 1. Literature
- 2. Introduction
- 3. Recap: Recurrent Neural Networks
- 4. Generating Sequences
- 5. Conversation Modelling
 - (a) Sequence to Sequence Approach
 - (b) Alternative Approaches
 - (c) Evaluation
- 6. Conclusion

Introduction

We want to solve the problem of sequence to sequence generation

- ► Training set:
 - ho Source sequences $\overline{x}=(x(1),\ldots,x(T))\in(\mathbb{R}^n imes\ldots imes\mathbb{R}^n)$
 - riangleright Target sequences $\overline{y}=(y(1),\ldots,y(T'))\in (\mathbb{R}^n imes\ldots imes\mathbb{R}^n)$
- ► Goal:
 - ightharpoonup Generate output sequence \overline{y}^* for unseen test sequence \overline{x}^*
 - ightharpoonup Maximize $\Pr(\overline{y}^*|\overline{x}^*)$

Motivation

Possible motivations:

- Simulate future situations
- Achieve a better representation of the data
- Practical applications:
 - > Speech synthesis
 - ▶ Machine translation
 - > Response generation
 - > Handwriting generation
 - Conversation modelling

Google Inbox

Neural Networks

► Activation of neuron *i*:

$$y_i = f_i(\sum_{j=1}^J w_{ij} \cdot x_j + b_i)$$
 (1)

► Activation vector for layer *l*:

$$y^{(l)} = f^{(l)}(W_{\mathsf{in}}^{(l)}y^{(l-1)} + b^{(l)})$$
 (2)

▶ Common activation functions:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{3}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$
(3)

Feed forward neural network

Recurrent Neural Networks

► Activation of layer *l* for timestep *t*:

$$y^{(l)}(t) = f^{(l)}(W_{\mathsf{in}}^{(l)}y^{(l-1)}(t) + W_{\mathsf{re}}^{(l)}y^{(l)}(t-1) + b^{(l)})$$
 (5)

RNN with its equivalent unfolded in time for three time steps.

7 / 24

ightharpoonup Small step of fixed size α in the direction of the negative error gradient

$$\Delta w_{ji}^{(l),n} = -\alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}} \tag{6}$$

where $\Delta w_{ji}^{(l),n}$ is the update of $w_{ji}^{(l)}$ for the $n^{ ext{th}}$ iteration and loss function ${\cal L}$

lacktriangle Momentum parameter $m \in [0,1]$ for faster convergence

$$\Delta w_{ji}^{(l),n} = m\Delta w_{ji}^{(l),n-1} - \alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}}$$
(7)

ightharpoonup Small step of fixed size α in the direction of the negative error gradient

$$\Delta w_{ji}^{(l),n} = -\alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}} \tag{6}$$

where $\Delta w_{ji}^{(l),n}$ is the update of $w_{ji}^{(l)}$ for the n^{th} iteration and loss function $\mathcal L$

lacktriangle Momentum parameter $m \in [0,1]$ for faster convergence

$$\Delta w_{ji}^{(l),n} = m \Delta w_{ji}^{(l),n-1} - \alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}}$$
(7)

ightharpoonup Small step of fixed size α in the direction of the negative error gradient

$$\Delta w_{ji}^{(l),n} = -\alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}} \tag{6}$$

where $\Delta w_{ji}^{(l),n}$ is the update of $w_{ji}^{(l)}$ for the $n^{ ext{th}}$ iteration and loss function ${\cal L}$

lacktriangle Momentum parameter $m \in [0,1]$ for faster convergence

$$\Delta w_{ji}^{(l),n} = m \Delta w_{ji}^{(l),n-1} - \alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}}$$
 (7)

ightharpoonup Small step of fixed size α in the direction of the negative error gradient

$$\Delta w_{ji}^{(l),n} = -\alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}} \tag{6}$$

where $\Delta w_{ji}^{(l),n}$ is the update of $w_{ji}^{(l)}$ for the $n^{ ext{th}}$ iteration and loss function ${\cal L}$

lacktriangle Momentum parameter $m \in [0,1]$ for faster convergence

$$\Delta w_{ji}^{(l),n} = m \Delta w_{ji}^{(l),n-1} - \alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}}$$
 (7)

ightharpoonup Small step of fixed size α in the direction of the negative error gradient

$$\Delta w_{ji}^{(l),n} = -\alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}} \tag{6}$$

where $\Delta w_{ji}^{(l),n}$ is the update of $w_{ji}^{(l)}$ for the $n^{ ext{th}}$ iteration and loss function ${\cal L}$

lacktriangle Momentum parameter $m \in [0,1]$ for faster convergence

$$\Delta w_{ji}^{(l),n} = m\Delta w_{ji}^{(l),n-1} - \alpha \frac{\partial \mathcal{L}}{\partial w_{ji}^{(l),n}}$$
(7)

Problem: vanishing gradient

- ▶ Multiplying gradients in the range of (0,1] or (0,0.25]
- ▶ For timesteps lying further in the past: $\frac{\partial \mathcal{L}}{\partial w_{ji}^{(l)}} o 0$
- lacktriangle Also exploding gradient possible: $rac{\partial \mathcal{L}}{\partial w_{ii}^{(l)}}
 ightarrow \pm \infty$
- ► Consequences: Standard RNNs do not provide long range contextual information
- ➤ Solution:

 Long Short Term Memory [Hochreiter & Schmidhuber 97] and variations

9 / 24

Updated state:

$$c(t) = f(t) \cdot c(t-1) + i(t) \cdot \tilde{c}(t) \tag{8}$$

Update candidate

$$\tilde{c}(t) = g(W_{xc}x(t) + W_{yc}y(t-1) + b_c)$$
 (9)

Input gate:

$$i(t) = \sigma(W_{xi}x(t) + W_{yi}y(t-1) + W_{ci}c(t-1) + b_i)$$
 (10)

Forget gate:

$$f(t) = \sigma(W_{xf}x(t) + W_{yf}y(t-1) + W_{cf}c(t-1) + b_f)$$
 (11)

Updated state:

$$c(t) = f(t) \cdot c(t-1) + i(t) \cdot \tilde{c}(t) \tag{12}$$

Output gate:

$$o(t) = \sigma(W_{xo}x(t) + W_{yo}y(t-1) + W_{co}c(t) + b_o)$$
 (13)

Output:

$$y(t) = o(t) \cdot h(c(t))$$
 (14)

Output:

$$y(t) = (1 - z(t)) \cdot h(t - 1) + \tilde{y}(t) \cdot z(t)$$
 (15)

Reset gate:

$$r(t) = \sigma(W_{xr}x(t) + W_{yr}y(t-1) + b_r)$$
 (16)

Update gate:

$$z(t) = \sigma(W_{xz}x(t) + W_{yz}y(t-1) + b_z)$$
 (17)

Output candidate:

$$\tilde{y}(t) = tanh(W_{xy}x(t) + W_{yy}(y(t-1) \cdot r(t)) + b_y)$$
 (18)

Output:

$$y(t) = (1 - z(t)) \cdot h(t - 1) + \tilde{y}(t) \cdot z(t)$$
 (19)

Sequence Generation [Graves 13]

lacktriangle Output y(t) used to predict a probability distribution of the next input x(t+1)

$$\Pr(\overline{x}) = \prod_{t=1}^{T} \Pr(x(t+1)|y(t))$$
 (20)

▶ Corresponding loss function:

$$\mathcal{L}(\overline{x}) = -\sum_{t=1}^{T} \log \Pr(x(t+1)|y(t))$$
 (21)

Example: Text Generation

- ▶ Text represented using "one hot" encoding
 - $\triangleright K$ text classes
 - ▶ For class k: only entry k set to one and the rest to 0
- ightharpoonup Multinomial distribution of K classes obtained by softmax layer

$$\Pr(x(t+1) = k|y(t)) = y_k(t) = \frac{\exp(\hat{y}_k(t))}{\sum_{k'=1}^K \exp(\hat{y}_{k'}(t))}$$
(22)

===The various disputes between Basic Mass and Council Conditioners - " Titanist " class streams and anarchism===

Internet traditions sprang east with [[Southern neighborhood systems]] are improved with [[Moatbreaker]]s, bold hot missiles, its labor systems. [[KCD]] numbered former ISBN/MAS/speaker attacks " M3 5", which are saved as the ballistic misely known and most functional factories.

RNN-Encoder and Decoder Model

- ► General model for sequence to sequence learning [Sutskever & Vinyals⁺ 14]
- ► Two separate RNNs:
 - hd Encoder: encodes input $\overline{x}=(x(1),\ldots,x(T))$ into "thought vector" v
 - riangleright Decoder: generates output $\overline{y} = (y(1), \ldots, y(T'))$ from "thought vector" v

$$\Pr(y(1), \dots, y(T') | x(1), \dots, x(T)) = \prod_{t=1}^{T'} \Pr(y(t) | v, y(1), \dots, y(t-1))$$
 (23)

lacktriangle Thought vector v: fixed size representation given by h(T) of encoder at T

14 / 24

RNN-Encoder and Decoder Model

▶ Loss function:

$$\mathcal{L}(\overline{x}, \overline{y}) = -\log \Pr(\overline{y}|\overline{x}) = -\sum_{t=1}^{T'} \log \Pr(y(t)|v, y(1), \dots, y(t-1))$$
 (24)

- Encoder and decoder are LSTMs which do not share any parameters
- ▶ Input: word vectors
- Output: softmax function over all words in the vocabulary
- Reversed order of the input sequence leads to better performance

Conversation Modelling

- ► Turn-based conversation of two parties *A* and *B*
- ► Task: predict the utterances of participant *B*

Objective:

▶ Predict the most probable utterance \overline{y}_u to follow after u utterances $\overline{x}_1, \ldots, \overline{x}_u$ of participant A and u-1 utterances $\overline{y}_1, \ldots, \overline{y}_{u-1}$ of participant B

$$\underset{y_u}{\operatorname{argmax}} \operatorname{Pr}(\overline{y}_u | \overline{x}_1, \overline{y}_1, \dots, \overline{x}_{u-1}, \overline{y}_{u-1}, \overline{x}_u) \tag{25}$$

Applying the encoder-decoder framework

► Concatenate what was conversed up to point *u*

$$\overline{x}_{u}^{*} = \overline{x}_{1}\overline{y}_{1}\dots\overline{x}_{u-1}\overline{y}_{u-1}\overline{x}_{u} \tag{26}$$

lacksquare Use \overline{x}_u^* as input, encode it to v_u^* and generate y_u from that

$$\Pr(\overline{y}_{u}|\overline{x}_{1},\overline{y}_{1},\ldots,\overline{y}_{u-1},\overline{x}_{u}) = \Pr(\overline{y}_{u}|\overline{x}_{u}^{*})$$

$$= \prod_{t=1}^{T'} \Pr(y_{u}(t)|v_{u}^{*},y_{u}(1),\ldots,y_{u}(t-1)) \tag{27}$$

Conversation Modelling - Experiments [Vinyals & Le 15]

Closed-domain dataset:

- ► From IT helpdesk troubleshooting chats
- ▶ 30 million tokens
- ► Single layer LSTM with 1024 memory cells

Open-domain dataset:

- Sentences uttered by movie characters out of the OpenSubtitles dataset
- ▶ 923 million tokens (60 million sentences)
- ► Two-layered LSTM with 4096 memory cells in each layer

Evaluation:

- Comparison with rule-based chatbot (CleverBot)
- ► Human evaluations on a set of 200 questions

Conversation Modelling - Experiment Results

Human: what do you think about tesla?

Machine: he 's a good conductor.

Human: what do you think about bill gates?

Machine: he 's a good man.

Human: what is the purpose of life?

Machine: to serve the greater good.

Human: what is the purpose of living?

Machine: to live forever.

Human: my name is david. what is my name?

Machine: david.

Human: how many legs does a cat have ?

Machine: four, i think.

Conversation Modelling - Experiment Results

Human: what is your job?

Machine: i 'm a lawyer.

Human: what do you do?

Machine: i 'm a doctor.

- ► Sequence to sequence model preferred in 97 out of 200 questions
- CleverBot picked in 60 out of 200
- ► Tie in 20 questions
- **▶** 23 questions the judges in disagreement

Alternative Approaches

Variants of the encoder-decoder model [Shang & Lu⁺ 15]

► Global scheme: same approach as encoder-decoder framework

► Local scheme: weighted sum over all hidden states as thought vector

20 / 24

► Hybrid scheme: combines global and local scheme

Alternative Approaches

Variants of the encoder-decoder model [Shang & Lu⁺ 15]

- ► Global scheme: same approach as encoder-decoder framework
- ► Local scheme: weighted sum over all hidden states as thought vector
- ► Hybrid scheme: combines global and local scheme
- **Experiments:**
 - ▶ Trained on 4 million conversations from microblogging service Weibo
 - **▶** Implemented using GRUs instead of LSTMs
 - **▶** Human evaluation on 110 posts
 - ▶ Local scheme outperformed global scheme
 - ▶ Hybrid scheme beats both in all cases

Alternative Approaches

Classification approach [Lowe & Pow⁺ 15]

- ► Two RNNs:
 - ightharpoonup One encodes the context \overline{x} into fixed dimensional representation c
 - hd One encodes the response \overline{y} into fixed dimensional representation r
- lacktriangle Calculate the probability that \overline{y} is a valid response to \overline{x}

$$Pr(\mathsf{valid}|c,r) = \sigma(c^T M r + b) \tag{28}$$

- ► Trained model parameters M and b
- ► Can be seen as a generative approach:
 - \triangleright Generate a response r s.t. c'=Mr is as close as possible to c

Evaluation

- ► Bilingual Evaluation Understudy (BLEU) algorithm [Papineni & Roukos+ 02]
 - ightharpoonup Compare candidate response \mathcal{C} against reference responses $\mathcal{R} \in \mathsf{Refs}$

$$p_1 = \frac{\sum_{x \in \mathcal{C}} \max\{count_{\mathcal{C}}(x), \max_{\mathcal{R} \in \mathsf{Refs}}\{count_{\mathcal{R}}(x)\}\}}{\sum_{x \in \mathcal{C}} count_{\mathcal{C}}(x)}$$
(29)

- ▶ Gives very low scores for comparison of conversation utterances
- But for comparison of different architectures:
 Correlates with scores produced by human experts
- ► Perplexity [Brown & Pietra⁺ 92]
 - riangleright Indicates how well a language model predicts a corpus $X=\{x_1,\dots,x_N\}$

$$PP(X) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{\mathsf{Pr}(x_i|x_1, \dots, x_{i-1})}} = 2^{-\frac{1}{N} \sum_{i=1}^{N} \log_2 \mathsf{Pr}(x_i|x_1, \dots, x_{i-1})}$$
 (30)

> Possibly not meaningful for performance in real world applications

Conclusion

- Encoder-decoder model suitable for various tasks of sequence generation
- ► This model adapts well to closed and open-domain datasets
- ► Hybrid and local scheme improve performance of encoder-decoder models
- **►** Evaluation:
 - **BLEU-score correlates with human judgement**
 - > Standard technique: human experts

Thank you for your attention

Arne Nix

arne.nix@rwth-aachen.de

http://arnenx.github.io/

24 / 24

References

- [Brown & Pietra⁺ 92] P.F. Brown, V.J.D. Pietra, R.L. Mercer, S.A.D. Pietra, J.C. Lai: An estimate of an upper bound for the entropy of English. *Computational Linguistics*, Vol. 18, No. 1, pp. 31–40, March 1992. 22
- [Graves 13] A. Graves: Generating Sequences With Recurrent Neural Networks. *CoRR*, Vol. abs/1308.0850, August 2013. 2, 12
- [Hochreiter & Schmidhuber 97] S. Hochreiter, J. Schmidhuber: Long short-term memory. *Neural computation*, Vol. 9, No. 8, pp. 1735–1780, November 1997. 9
- [Lowe & Pow⁺ 15] R. Lowe, N. Pow, I. Serban, J. Pineau: The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems. In *Proceedings of the SIGDIAL Conference*, pp. 285–294. Association for Computational Linguistics, September 2015. 21, 29
- [Papineni & Roukos⁺ 02] K. Papineni, S. Roukos, T. Ward, W.J. Zhu: BLEU: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting on association for computational linguistics*, pp. 311–318. Association for Computational Linguistics, July 2002. 22

[Shang & Lu⁺ 15] L. Shang, Z. Lu, H. Li: Neural Responding Machine for Short-Text Conversation. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing*, pp. 1577–1586. Association for Computational Linguistics, July 2015. 20

[Sutskever & Vinyals⁺ 14] I. Sutskever, O. Vinyals, Q.V. Le: Sequence to Sequence Learning with Neural Networks. In *Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada*, pp. 3104–3112, 2014. 2, 14

[Vinyals & Le 15] O. Vinyals, Q.V. Le: A Neural Conversational Model. In *Proceedings of the 31st International Conference on Machine Learning*, Vol. 37, July 2015. 2, 17

Appendix: Training Neural Networks

Back Propagation Algorithm

► Recursion equation for the derivative with respect to the output of layer *l*:

27 / 24

$$\delta_i^{(l)} = \frac{\partial \mathcal{L}}{\partial y_i^{(l)}} = \sum_{j=1}^J \frac{\partial \mathcal{L}}{\partial y_j^{(l+1)}} \frac{\partial y_j^{(l+1)}}{\partial y_i^{(l)}} = \sum_{j=1}^J \delta_j^{(l+1)} \frac{\partial y_j^{(l+1)}}{\partial y_i^{(l)}}$$
(31)

▶ Derivative with respect to the weights of layer *l*:

$$\frac{\partial \mathcal{L}}{\partial w_{ji}^{(l)}} = \sum_{j=1}^{J} \frac{\partial \mathcal{L}}{\partial y_{j}^{(l+1)}} \frac{\partial y_{j}^{(l+1)}}{\partial w_{ji}^{(l)}} = \sum_{j=1}^{J} \delta_{j}^{(l+1)} \frac{\partial y_{j}^{(l+1)}}{\partial w_{ji}^{(l)}}$$
(32)

Appendix: Training Recurrent Neural Networks

Back Propagation Through Time

► Recursion equation for the derivative with respect to the output of layer *l*:

28 / 24

$$\delta_i^{(l)}(t) = \sum_{j=1}^J \delta_j^{(l+1)}(t) \frac{\partial y_j^{(l+1)}(t)}{\partial y_i^{(l)}(t)} + \sum_{k=1}^K \delta_k^{(l+1)}(t+1) \frac{\partial y_k^{(l+1)}(t+1)}{\partial y_k^{(l)}(t+1)}$$
(33)

▶ Derivative with respect to the weights of layer *l*:

$$\frac{\partial \mathcal{L}}{\partial w_{ji}^{(l)}} = \sum_{t=1}^{T} \sum_{j=1}^{J} \delta_{j}^{(l+1)}(t) \frac{\partial y_{j}^{(l+1)}(t)}{\partial w_{ji}^{(l)}(t)}$$
(34)

Appendix: Evaluation

- ► Recall@k metric [Lowe & Pow⁺ 15]
 - \triangleright Model names the k most likely responses to given context
 - \triangleright Output is correct if the true response is among these k
 - ▶ Not useful for generative approaches
 - ▶ Used to set a benchmark on the *Ubuntu Dialogue Corpus*
- **▶** Human experts
 - ightharpoonup Ranking of responses from 0 (unsuitable) to +2 (suitable)
 - Performance criteria: grammar and fluency, logic consistency, semantic relevance, scenario dependence and generality
- ▶ In the future
 - ▶ Use a metric to compare generated responses with the true response
 - Dependent on a standardized embedding
 - → possible candidate: *skipped thought vectors*