Test-3(B.Tech PR) (Mixed Mode)

Duration: 1.5h	Hrs Marks:10
Q.No.1 Ans: unimoda	limitation of the Gaussian distribution is that it is intrinsically
	An important property of the multivariate Gaussian distribution is that if two sets of jointly Gaussian, then the conditional distribution of one set conditioned on the other.
Q.No.3 Ans: <i>von Mis</i> e	A periodic generalisation of the Gaussian called the es distribution.
Q.No.4 little influence Ans: posterion	A-prior distribution, called a <i>non-informative prior</i> , which is intended to have as an on the r distribution as possible
Q.No.5 computed, the Ans: the data	The histogram method has the property that, once the histogram has been e data set itself can be discarded, which can be advantageous if, set is large
	Evaluate the Kullback-Leibler divergence (1.113) between two Gaussians $p(x) = N(x) = N(x m, L)$ (Refer Bishop for equation)
Use the result considering the	Consider two multidimensional random vectors x and z having Gaussian $p(x) = N(x \mu_x, \Sigma_x)$ and $p(z) = N(z \mu_z, \Sigma_z)$ respectively, together with their sum $y = x+z$. is (2.109) and (2.110) to find an expression for the marginal distribution $p(y)$ by the linear-Gaussian model comprising the product of the marginal distribution $p(x)$ itional distribution $p(y x)$. (Refer to Bishop for equations)
Q.No.8	Evaluate the mean, variance, and mode of the gamma distribution
Q.No.9 additive Gaus	Assume that the target variable t is given by a deterministic function $y(x, w)$ with sian noise with zero mean . Compute W_{ml} estimate for this regression problem.
Q.No.10	The difference between the Batch and Sequential Learning techniques is