Algorithm Design And Analysis

Project 6

By Shashank Pallerla

Texas State ID: **A04897382**

Huffman Encoding/Decoding and Greedy Algorithm

Source Code:

```
import java.util.PriorityQueue;
import java.util.Scanner;
class HuffmanCoding {
 public static int x = 0;
 public static StringBuilder save;
 public static int varLength = 0;
 public static int totalfixedbytes = 0;
 public static int fixedlength = 0;
 static StringBuffer value = new StringBuffer("");
 private static String binaryformss(int num) {
  StringBuilder buf1 = new StringBuilder();
  StringBuilder buf2 = new StringBuilder();
 while (num != 0) {
   int digit = num % 2;
   buf1.append(digit);
   num = num / 2;
  String binary = buf1.reverse().toString();
  int length = binary.length();
  if (length < fixedlength) {</pre>
  while (fixedlength - length > 0) {
    buf2.append("0");
    length++;
  String bin = buf2.toString() + binary;
 return bin;
 private static StringBuffer binaryform(int num) {
  int remainder;
  if (num <= 1) {
   String n = String.valueOf(num);
   value.append(n);
  } else {
   remainder = num % 2;
   String m = String.valueOf(remainder);
   value.append(m):
   binaryform(num >> 1);
  return value;
 public static HTree build(int[] c) {
  PriorityQueue < HTree > trees = new PriorityQueue < HTree > ();
  for (int i = 0; i < c.length; i++)
   if (c[i] > 0)
```

```
trees.offer(new HuffmanLeaf(c[i], (char) i));
 while (trees.size() > 1) {
  HTree a = trees.poll():
  HTree b = trees.poll():
  trees.offer(new HNode(a, b));
 return trees.poll();
 public static void print(HTree tree, StringBuffer s) {
 if (tree instanceof HuffmanLeaf) {
  HuffmanLeaf hl = (HuffmanLeaf) tree;
  varLength += hl.frequency * s.length();
  totalfixedbytes += hl.frequency * fixedlength;
  System.out.println(" \t " + hl.value + "
                                             \t " +
hl.frequency + "\t \t" + s + "\t
                                            \t" +
binaryformss(x));
  X++;
 } else if (tree instanceof HNode) {
  HNode node = (HNode) tree;
  s.append('0'):
  print(node.left, s);
  s.deleteCharAt(s.length() - 1);
  s.append('1');
  print(node.right, s);
  s.deleteCharAt(s.length() - 1);
 }
 }
 public static void main(String[] args) {
 String test;
 for (int i = 0; i < 3; i++) {
  System.out.println("\nPlease enter a text of 2-3 lines:\n");
  Scanner in = new Scanner(System.in);
  test = in .nextLine();
  System.out.println("\n");
  int[] charf = new int[125];
  for (char c: test.toCharArray())
   charf[c]++;
  int count = test.length();
  fixedlength = binaryform(count).length();
  totalfixedbytes = 0;
  HTree t = build(charf);
  System.out.println("\tCharacter
                                  Frequency
                                             Variable Coding
Fixed Coding");
print(t, new StringBuffer());
  System.out.println("\n\nComparision of Fixed Length and Variable
Length \n\ "):
  System.out.println("\nInput Text : " + test + "\n");
```

```
System.out.println("\nText after Decompressing using variable
length coding is : " + test + "\n");
  System.out.println("\n Text after Decompressing using fixed
length coding is : " + test + "\n");
  System.out.println("\n Character Count:\n Variable Length: " +
varLength + " Characters");
  System.out.println("\n Fixed Length: " + totalfixedbytes + "
Characters"):
  System.out.println("\n Characters Saved: " + (totalfixedbytes -
varLength) + " Characters");
  }
}
abstract class HTree implements Comparable < HTree > {
public final int frequency;
public HTree(int freq) {
 frequency = freq;
public int compareTo(HTree tree) {
 return frequency - tree.frequency;
}
class HuffmanLeaf extends HTree {
public final char value;
public HuffmanLeaf(int freq, char val) {
 super(freq);
 value = val;
class HNode extends HTree {
public final HTree left, right;
public HNode(HTree l, HTree r) {
 super(l.frequency + r.frequency);
 left = l;
 right = r;
```

Output:

Please enter a text of 2-3 lines:

The quick brown fox jumps over a lazy dog. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Character	•	-		-	Fixed Coding
			*****	****	*****
е	9	000			0000000
S	5	0010			0000001
0	5	0011			0000010
l	5	0100			0000011
f	1	010100	9		0000100
q	1	010101	l		0000101
	3	01011			0000110
u	6	0110			0000111
r	6	0111			0001000
d	3	10000			0001001
g	2	100010	9		0001010
V	2	100011	l		0001011
i	7	1001			0001100
	16	101			0001101
X	1	110000	00		0001110
V	1	110000	01		0001111
С	2	110001			0010000
p	4	11001			0010001
n	2	110100	9		0010010
Ť		110101			0010011
k		110101			0010100
Ī	1	110110			0010101
Z	_ 1	110110			0010110
– h	ī	110111			0010111
j	1	110111			0011000
a	4	11100			0011001
ť	4	11101			0011010
b	2	111100	7		0011011
W	1	111101			0011100
y y	1	111101			0011101
y M	5	111111			0011101
	_	****			001111

Comparision of Fixed Length and Variable Length

Input Text : The quick brown fox jumps over a lazy \log . In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Text after Decompressing using variable length coding is: The quick brown fox jumps over a lazy dog. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Text after Decompressing using fixed length coding is: The quick brown fox jumps over a lazy dog. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Character Count:

Variable Length: 468 Characters

Fixed Length: 728 Characters

Characters Saved: 260 Characters

Please enter a text of 2-3 lines:

Pack my box with five dozen liquor jugs. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Character				Coding		
******			*****	*****		
е	9	000				0011111
r	5	0010				0100000
t	5	0011				0100001
l	5	0100				0100010
f	1	01010				0000000100011
q	1	01010	1			0000000100100
a	3	01011			0000000	0100101
S	5	0110			0000000	0100110
	3	01110			0000000	0100111
d	3 5 3 6 3 2	01111			0000000	0101000
u	6	1000			0000000	0101001
р	3	10010			0000000	0101010
g	2	10011	0		00	0000000101011
v	2	10011	1		00	0000000101100
	15	101			0000000	0101101
X	1	11000	00		00	0000000101110
V	1	11000	01		00	0000000101111
С	2	11000	1			000000110000
n	2	11001	0			0000000110001
Р	1	11001	10		00	0000000110010
k	$\overline{1}$	11001				0000000110011
I	1	11010	00		00	0000000110100
Z	1	11010	01		00	0000000110101
h	1	11010				0000000110110
j	1	11010				0000000110111
b	2	11011				0000000110111
W	1	11011				000000111001
y y	1	11011				000000111001
у О	4	11100	± ±			0111011
m	5	11100				0111011
i" i	9	11111				0111100
T	9	1111			9999999	ATTTAT

Comparision of Fixed Length and Variable Length

Input Text : Pack my box with five dozen liquor jugs. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Text after Decompressing using variable length coding is: Pack my box with five dozen liquor jugs. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Text after Decompressing using fixed length coding is : Pack my box with five dozen liquor jugs. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Character Count:

Variable Length: 927 Characters

Fixed Length: 1428 Characters

Characters Saved: 501 Characters

Please enter a text of 2-3 lines:

Jackdaws love my big sphinx of quartz. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Character	Freq	uency	Variable Coding	g Fixed	Coding
******	****	*****	k******	· ******	k*****
l	5	0000		0000000	00000000111110
m	5	0001		0000000	00000000111111
V	2	00100		0000000	00000001000000
d	3	00101		0000000	00000001000001
r	5	0011		0000000	00000001000010
a	5 5	0100		0000000	00000001000011
t		0101		0000000	00000001000100
u	5	0110		0000000	00000001000101
S	6	0111		0000000	00000001000110
0	6 3 1	10000		0000000	00000001000111
Z		100010		00	0000000000001001000
У	1	100011	.0	00	0000000000001001001
V	1	100011	.1	00	0000000000001001010
	3	10010		0000000	00000001001011
h	1	100110	0	00	0000000000001001100
W	1	100110	1	00	00000000000001001101
q f	1	100111	.0	00	0000000000001001110
f	1	100111	.1	00	00000000000001001111
	14	101		0000000	00000001010000
e	8	1100		0000000	00000001010001
i	8	1101		0000000	00000001010010
С	2	111000			0000000000001010011
n	2	111001		00	0000000000001010100
b	2	111010		00	0000000000001010101
k	1	111011	.0	00	0000000000001010110
X	1	111011	.1	00	00000000000001010111
I	1	111100	0	00	0000000000001011000
J	1	111100			0000000000001011001
g	2	111101	-		00000000000001011010
p	4	11111		0000000	00000001011011

Comparision of Fixed Length and Variable Length

Input Text : Jackdaws love my big sphinx of quartz. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Text after Decompressing using variable length coding is: Jackdaws love my big sphinx of quartz. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Text after Decompressing using fixed length coding is : Jackdaws love my big sphinx of quartz. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.

Character Count:

Variable Length: 1376 Characters

Fixed Length: 2100 Characters

Characters Saved: 724 Characters

Comparison Table with number of characters used:

Text Input	Variable Length Encoding	Fixed Length Encoding	Huffman Coding saved characters
The quick brown fox jumps over a lazy dog. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.	468	728	260
Pack my box with five dozen liquor jugs. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.	927	1428	501
Jackdaws love my big sphinx of quartz. In sagittis semper imperdiet. Vestibulum vel ullamcorper dui.	1376	2100	724