주택 담보 대출 데이터 분석을 통한 대출 상환 여부 분류

이제승, 진영봉 Seoul National University FRE LAB

CONTENTS

1 Introduction 배경 설명

02 데이터 설명 및 EDA

03 모델

 적용한 방법론에 따른 결과 분석

04 결론 요약 및 결론

Introduction 배경 설명

Problem Definition

- 신용평가 모델은 대출자(금융기관)이 금융 채무 상환능력에 대한 모델을 바탕으로 대출 신청 수용 여부를 결정하는 데 도움 주는 모델
- 많은 ML과 Al 기술들이 대출 수용 여부를 예측하는데 좋은 성능을 보이지만, Black-box 이기에 예측에 대한 근거를 설명하지 않고 대출자와 신청자로 하여금 결과에 대한 해석 제공하지 않음
- 금융 전문가들이 정당성이 없는 모델의 예측을 신뢰하지 않을 가능성

Aims and Objectives

- ML 모델을 사용하여 2년의 기간동안 90일이상의 연체기록에 해당하는 위험을 분류하고, 원인을 분석하고자 함
- XAI 기법을 통해 예측 결과를 해석할 수 있는 데이터 분석 실행
- White-box vs Black-box 모델 비교

Home Equity Line Of Credit (HELOC)

- 주택지분(Home Equity) = 현재시점 주택가격 주택담보대출잔액
- 위의 자본을 담보로 하여 한번에 대출금 전부를 받는 **고정금리*** 대출상품 → Home Equity Loan
- 필요 시마다 한도 내에서 인출 받을 수 있는 변동금리*
 대출상품 → Home Equity Line Of Credit
- 자금 용도에 구애 받지 않으며 일반적으로 초기 10년까지 한도 내에서 신용카드처럼 이용

		2019년		2020년	
		잔액(십억 달러)	비중(%)	잔액(십억 달러)	비중(%)
주택 관련대출	HELOC	420	72,1	374	72,6
	Home equity	124		120	
	Mortgage	9,610		10,310	
	Auto loan&lease	1,300	27.9	1,350	27.4
7IEI	Personal loan	305		324	
대출	Student loan	1,400		1,570	
신용대출 등)	Credit card	829		756	
	Retail credit card	90		80	
합계		14,078	100,0	14,884	100,0

<u>19/20년 소비자 대출 잔액</u>

- Data Descriptions (Feature Select한 컬럼)
- : Data Set의 고객은 \$5,000 \$15,000 범위의 HELOC 대출을 요청
- -> 그에 따라 금융기관은 신청자의 신용 보고서를 활용
- -> 2년 동안 90일이내 상환 (Good) / 90일이후 상환 (Bad) 분류
- RiskPerformance (Target): 대출 위험에 따라 "Good"/"Bad"로 분류
- ExternalRiskEstimate: FICO에서 부여한 스코어 값으로, 높을수록 대출위험이 적음
- NumSatisfactoryTrades: 만족스러운 거래 수
- PercentTradesNeverDelg: 연체하지 않는 거래 비율
- PercentInstallTrades: 할부 거래 비율
- NumlngLast6M: 6개월간 신용점수 조회 횟수
- MaxDelq2PublicRecLast12M: 12개월 동안의 최대 연체 기록
- NetFractionRevolvingBurden: 회전 잔액을 신용한도로 나눈 값
- NumRevolvingTradesWBalance: 잔액이 있는 회전 거래 수

	RangeIndex: 10459 entries, 0 to 10458 Data columns (total 24 columns):					
	#	Column	Non-Null Count	Dtype		
	0	RiskPerformance	10459 non-null	object		
	1	ExternalRiskEstimate	10459 non-null	int64		
	2	MSinceOldestTradeOpen	10459 non-null	int64		
2	3	MSinceMostRecentTradeOpen	10459 non-null	int64		
	4	AverageMInFile	10459 non-null	int64		
	5	NumSatisfactoryTrades	10459 non-null	int64		
	6	NumTrades60Ever2DerogPubRec	10459 non-null	int64		
	7	NumTrades90Ever2DerogPubRec	10459 non-null	int64		
3	8	PercentTradesNeverDelq	10459 non-null	int64		
	9	MSinceMostRecentDelq	10459 non-null	int64		
	10	MaxDelq2PublicRecLast12M	10459 non-null	int64		
	11	MaxDelqEver	10459 non-null	int64		
	12	NumTotalTrades	10459 non-null	int64		
	13	NumTradesOpeninLast12M	10459 non-null	int64		
	14	PercentInstallTrades	10459 non-null	int64		
	15	MSinceMostRecentInqexcI7days	10459 non-null	int64		
	16	NumInqLast6M	10459 non-null	int64		
	17	NumInqLast6MexcI7days	10459 non-null	int64		
	18	NetFractionRevolvingBurden	10459 non-null	int64		
	19	NetFractionInstallBurden	10459 non-null	int64		
	20	NumRevolvingTradesWBalance	10459 non-null	int64		
	21	NumInstallTradesWBalance	10459 non-null	int64		
	22	NumBank2NatITradesWHighUtilization		int64		
	23	PercentTradesWBalance	10459 non-null	int64		

데이터 컬럼 정보

02 데이터 데이터 설명 및 EDA

• EDA

- * special values -9: No Bureau Record or No Investigation
 - -8: No Usable/Valid Accounts Trade of Inquiries
 - -7: Condition not Met (e.g. No Inquiries, No Delinquencies)
- special values를 missing value로 처리한 후, 그 비율을 살펴 봄
- ("MSinceMostRecentDelq", "MSinceMostRecentInqexcl7days", "NetFractionInstallBurden")에서 각각 (49%, 23.6%, 34.6%) 의 missing value비율을 보임
- 총 8개의 컬럼에서 missing value 존재
- -> 이외의 컬럼들에 대해서는 <u>분포를 확인 후 imputation 실행</u>

=> 모두 Missing value로 처리 (Nan)

• 데이터 EDA – 각 feature의 분포 확인 및 imputation

- Missing value가 과도하게 높게 되면 편향되거나 잘못된 결과를 유도할 가능성이 높음 -> 매우 큰 비율을 갖는 칼럼 제거
- Missing value가 존재하는 컬럼들의 y값에 따른 데이터 분포 확인하고 다른 기준을 이용하여 data cleaning, imputation 수행
- 일부 features에 대해 skewness가 큰 경우가 있음 -> 이러한 경우 imputation을 평균이 아닌 중앙값을 사용하고자 함

02 데이터 데이터 설명 및 EDA

• 데이터 EDA - 각 label에 따른 데이터 분포 확인

- 우리의 target label에 따른 컬럼별 boxpolt으로 데이터 분포 및 이상치를 탐색함
- "ExternalRiskEstimate"와 같은 경우 label에 따른 분포가 차이가 있어 target을 예측하는데 주요하게 작용할 것으로 예상
- 반면, MSinceMostRecentTradeOpen"과 같은 데이터는 분포의 차이도 없을 뿐더러 수많은 이상치로 구성되어있어 모델 예측에 크게 도움되지 않을 것으로 예상됨 -〉 Feature Selection을 통해 불필요한 컬럼 filtering 필요성

• 데이터 EDA - Multicolinearity

- Meaningful & independent features를 선택하기 위해 각 feature간의 correlation을 확인함

- * High correlation features
- AverageMinFile MSinceOldestTradeOpen (0.69)
- NumTotalTrades NumSatisfactoryTrades (0.85)
- NumTrades60Ever2DerogPubRec NumTrades90Ever2DerogPubRec (0.99)
- NumIngLast6Mexcl7days NumIngLast6M (0.99)

Feature selection

- Model based method (Lasso, Elastic Net)
- 매개변수 λ에 따라서 feature에 해당하는 계수를 조절하여 어떤 feature를 선택할지 결정할 수 있음
- 이외에도, XGBoost의 permutation importance를 사용하는 방법등을 고려함
- ✓ feature selection을 수행하기 위해, lasso 방법과 XGBoost를 이용한 방법을 선택함

03 모델 적용한 방법론에 따른 결과분석

Model – Regression based

$$logit(p) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p \quad logit(p) = \beta_0 + f_1(x_1) + \dots + f_p(x_p)$$

- Logistic regression
- ✓ 모든 features 사용
- Accuracy : 0.717
- **F1** score : 0.717
- ✓ Lasso feature selection
- **Accuracy** : 0.717
- **F1** score : 0.717

- Logistic GAM
- ✓ linear splines (Lasso)
- Accuracy 0.728
- F1 score : 0.727

데 뭐느이 조기 아이

✓ Logistic regression에서 모든 features를 사용하는 경우 모

- 델 성능이 좋지 않음
- Regression 학습을 방해하는 feature가 있을 것으로 생각됨
- e selection ✓ B-spline with degree 3 (Lasso)
 - **Accuracy** : 0.725
 - **F1** score : 0.725

- ✓ 단순 logistic regression 보다 GAM에서 outperform
- Feature간 비선형성을 더욱 잘 반영한 것으로 보임

모델 적용한 방법론에 따른 결과분석

Model – Tree based

Decision tree

✓ 모든 features 사용

- **Accuracy** : 0.706

- **F1** score : 0.705

✓ XGBoost feature selection

- **Accuracy** : 0.705

- **F1** score : 0.705

Random Forest

✓ 모든 features 사용

- Accuracy : 0.718

- F1 score : 0.717

✓ XGBoost feature selection

- **Accuracy** : 0.713

- **F1** score : 0.712

✓ Tree 기반의 방법은 regression 방법과 다른 결과

- 모든 feature를 사용했을 때, 더 좋은 결과를 보여줌

✓ DT에서 CV를 수행한 결과보다 RF의 결과가 outperform

- 앙상블기반의 방법이 단일 모델보다 우위

모델 적용한 방법론에 따른 결과분석

Model – XGBoost

✓ 모든 features 사용

- Accuracy : 0.728

- F1 score : 0.727

- ✓ XGBoost feature selection
- **Accuracy**: 0.719
- F1 score : 0.719

- ✔ XGBoost방법 또한 여러 개의 DecistionTree를 조합하기 때문에 모든 feature를 사용했을 때, 더 좋은 결과를 보여주는 것으로 생각됨
- 모델의 오류를 순차적으로 보완해가며 학습하는 방식이기 때문에 기본적인 모델보다 성능이 좋은 것으로 생각됨
- ✓ 현재까지 결과에서 가장 좋은 성능을 보여준 모델은 Logistic GAM(linear spline/lasso features; acc 0.730)방법과 XGBoost(all feautures; acc 0.732) 임
- Logistic GAM은 이미 튜닝된 결과임
- XGBoost에 대해 하이퍼 파라미터 튜닝 수행

모델 적용한 방법론에 따른 결과분석

• Model – XGBoost (모든 feature 사용)

✔ 기존 결과

- Accuracy : 0.728

- F1 score : 0.727

- ✓ Bayesian optimization 사용 결과
- Accuracy : 0.729
- F1 score : 0.728

- ✓ 모델 학습에 주요한 영향을 미칠 것으로 생각되는 파라미터를 선정하여, Bayesian optimization을 수행함
- 기존 하이퍼파라미터를 갖는 모델보다 성능이 개선되는 모습을 보여줌
- 추가적으로 어떤 feature가 모델 학습에 주요한 영향을 주었는지 LIME 기법을 통해 확인함

- Model XGBoost LIME & SHAP
- LIME (Local Interpretable Model-Agnostic Explnations)
- ✓ worst case (real: Bad)

Prediction probabilities NumBank2NatlTrade.. 0.36 AverageMInFile < NetFractionRevolvin.. 97.00 < PercentTrad... 6.00 < MaxDelq2Pub.. NumIngLast6M <=... ExternalRiskEstimate ... MSinceOldestTradeO... NumTrades60Ever2... 20.00 < NumSatisfac... MSinceMostRecentTr.. 6.00 < MaxDelgEver ... 50.00 < PercentTrad... 33.00 < PercentInsta... NumRevolvingTrade... 2.00 < NumInstallTra... 21.00 < NumTotalTr.. NumTradesOpeninLa... lumIngLast6Mexcl... NumTrades90Ever2...

✓ best case (real: Bad)

SHAP (Shapley Additive exPlanation)

04 결론 요약 및 결론

• 요약 및 결론

"*대출 신청자의 2년의 기간의 신용 보고서"에 해당하는 기록으로 "RiskPerformance"에 대한 분류를 수행하여 대출 연체 여부 예측* "

EDA

- Missing value에 대하여 각 feature 특징에 따라 다른 방법을 사용하여 imputation을 수행
- Target label에 따른 분포를 확인해보고 feature간 correlation 분석을 통해 feature selection을 진행
 - ✓ Lasso와 XGBoost의 permutation importance를 이용하여 feature selection

■ 성능 비교

Model	Feature Selection	Additional Technique	Acc	F1
XGBoost	All	Bayesian Opt	0.729	0.728
Logistic GAM	Lasso	Linear Spline	0.728	0.727
Random Forest	All		0.718	0.717

04 결론 요약 및 결론

LIME & SHAP

- 추가적으로, 모델이 어떤 feature를 사용하여 학습되었는지 그 중요도를 살펴봄
- 가장 부정확한 sample과 정확한 sample에 대해 LIME 기법을 적용해본 결과, 변수 중요도에 있어 그 차이가 눈에 띔
- 전체 모델에 대한 feature 중요도를 확인해본 결과, "ExternalRiskEstimate"가 가장 높은 영향력을 "NuminstallTradesWBalance"가 가장 낮은 영향력을 보여주었지만 대부분의 feature 의 SHAP값이 ±0.5이하로 나타남

■ 결론

- 다양한 모델을 적용한 결과, 부스팅 기반의 XGBoost가 가장 좋은 성능을 보여주며, logisticGAM 또한 좋은 성능을 보여주었음
- 모델의 정확도 측면에서는 black-box 모델이 XGBoost가 강점을 보였지만, 해석력 측면에서 logisticGAM에 우위를 점하기는 힘들 것으로 예상됨
- 하지만, XGBoost 모델에 LIME, SHAP와 같은 방법론을 적용하여 모델의 작동 원리를 살펴볼 수 있었음
- 추후, robust & reliable ML 모델에 대한 연구를 수행하고자 함

References

- Demajo, Lara Marie, Vince Vella, and Alexiei Dingli. "Explainable ai for interpretable credit scoring." *arXiv preprint arXiv:2012.03749* (2020).
- Torrent, Neus Llop, Giorgio Visani, and Enrico Bagli. "PSD2 Explainable AI Model for Credit Scoring." *arXiv preprint arXiv:2011.10367* (2020).
- Han, Jesun. "주택을 담보로 신용카드처럼 쓴다? 미국의 HELOC 대출을 알아보자!" *주택을 담보로 신용* 카드처럼 쓴다? 미국의 HELOC 대출을 알아보자! : 네이버 포스트, Woori Bank, 24 June 2021, https://post.naver.com/viewer/postView.naver?volumeNo=31831807&memberNo=38946978&vType=VERTICAL.

감사합니다.