Ocuafuebaenesei namens

(19) <u>RU</u> (11) <u>2068718</u> (13) <u>C1</u>

(51) 6 A 62 D 1/00

Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

1

(21) 4895510/26

(22) 09.08.90

(31) 396841, 439738

(32) 21.08.89, 21.11.89

(33) US, US

(46) 10.11.96

(71) Грейт Лейкс Кемикал Корпорейшн (US)

(72) Юити Иикубо[JP], Марк Лестер Робин[US]

(73) Грейт Лейкс Кемикал Корпорейшн (US)

(86) US 90/04467 (09.08.90)

(56) Патент США N 4459213, кл. А 62 D 1/00, 1984.

(54) СПОСОБ ТУШЕНИЯ ПОЖАРА

(57) Использование: тушение пожаров. Сущность способа: в огонь подают огнетушащее соединение. Поддерживают его концентрацию до момента

2

тушения пожара. В качестве огнетушащего соединения используют одно или более фторуглеводородных соединений, выбранных из ряда: пентафторэтан, 1,1,1,3,3,3-гексафторпропан; 1,1,1,2,3,3-гексафторпропан, гектафторпропан или смесь одного или более вышеуказанных фторуглеводородных соединений и одного или более хлор и/или бромуглеводородных соединений, выб-ранных из ряда: CF_BrCI; CF_BrCI;

 $\mathsf{CF}_2\mathsf{BrCF}_2\mathsf{Br}, \; \mathsf{CF}_2\mathsf{HBr}, \; \mathsf{CF}_3\mathsf{CHFBr} \; \mathsf{c} \; \mathsf{концентрацией}$ одного или более фторуглеводородных соединений до 10% от веса смеси. 2 с. и 6 з. п. ф-лы, 10 табл.

Данное изобретение относится к способу тушения пожаров и смесям, использующим высшие фторированные C_2 и C_3 насыщенные фтороуглеводороды.

Известны способы тушения пожара путем подачи в огонь огнетушащего состава, содержащего галоидоуглеводородное соединение.

Однако, кроме галоидоуглеводородного соединения, эти составы содержат протеин и/или продукты его распада и жидкие полигидроксисоединения [1] или терпены и ненасыщенные масла (2)

масла [2]

у Соба тушения пожаров, при котором пламя гаситс

обратущения пожаров, при котором пламя гаситс соба тушения пожаров, при котором пламя гасится также быстро и эффективно, как и по используемой в настоящее время технологии с галоидоуглеводородными соединениями, которыи, однако, не разрушает озоновый слой земли, не создает парниковый эффект.

Суть изобретения.

объем на объем.

Поставленную задачу можно реализовать при использовании насыщенных высших фторированных фтороуглеводородов и их смесей в качестве огнетушителей для использования в способах и устройствах для тушения пожаров. Способ изобретения включает введение в огонь насыщенного С или С высшего фторированного фтороуглеводорода в огнетушащей концентрации и поддержание такой концентрации до погашения огня. Насыщенные высшие фторированные фтороуглеводороды этого изобретения включают соединения по формуле С $_{\mathbf{x}}$ $_{\mathbf{y}}$ $_{\mathbf{z}}^{\mathbf{F}}$, где х 2 или 3, у 1 или 2. и z 5, 6 или 7; где у $\bar{1}$ и z $\bar{5}$, если x 2, и где z 6 или 7, если х 3. Специфические фтороуглеводороды, полезные для этого изобретения, включают гептафторпропан (CF₃ CHFCF₃), 1,1,1,3,3,3гексафторпропан (СF₃ CH₂ CF₃), 1,1,1,2,3,3гексафторпропан ($\operatorname{CF_3}$ СНҒСН $\operatorname{F_2}$) и пентафторэтан (СГ₃ СНГ₂). Эти фтороуглеводороды можно использовать отдельно, в смеси друг с другом или как

 к такие фтороуглеводороды не содержат брома или хлора, их потенциал разрушения озона нулевой. Кроме того, поскольку соединения содержат атомы водорода, они подвержены распаду в нижней атмосфере, и, следовательно, не представляют собой угрозы, как газы парникового эффекта.

смеси с другими огнетушащими агентами. Обычно

огнетушащие агенты используются в концентрациях

в пределах от 3 до 15% предпочтительно 5=10%

Эти соединения могут использоваться отдельно или в смеси друг с другом или в смесях с другими огнетушащими агентами.

Среди других агентов, с которыми можно соединить фтороуглеводороды этого изобретения, хлор- и/или бромсодержащие соединения, такие, как $\operatorname{CF_3Br}$, $\operatorname{CF_2BrCF_2Br}$, $\operatorname{CF_3CF_2Cl}$, $\operatorname{CF_2BrCl}$ и СF₃ CHFBr. Смеси гептафторпропана и CF₃ HBr особенно предпочтительны, поскольку соединения имеют одинаковые давления пара в большом диапазоне температур, и поэтому композиция смеси остается относительно постоянной во время выхода или другого применения.

Если фтороуглеводороды используются в смесях, то они составляют по меньшей мере около 10 вес. от смеси. В таких смесях желательно использовать углеводороды в большем количестве, чтобы свести к минимуму влияние хлор- и бромсодержащих агентов на окружающую среду.

Насыщенные высшие фторированные ${\rm C_2}$ и ${\rm C_3}$ фтороуглеводороды можно эффективно использовать в любых минимальных концентрациях, при которых тушится огонь, точный минимальный уровень зависит от определенного материала сгорания. конкретного фтороуглерода и условий горения. Однако, лучшие результаты достигаются, если фтороуглеводороды или их смеси используются на уровне по меньшей мере около 3% (об. /об.). При использовании только фтороуглеводородов наилучшие результаты достигаются при содержании агентов по меньшей мере около 5% (об. /об.). Таким же образом, максимальное используемое количество будет регулироваться соображениями экономичности и потенциальной токсичности для живых организмов. Около 15% (об. /об.) обеспечивает подходящую максимальную концентрацию для использования фтороуглеводородов и их смесей в населенных районах. Концентрации выше 15% (об. /об.) могут использоваться в ненаселенных районах, причем тонкая концентрация определяется конкретным материалом горения, выбранным фтороуглеводородом (или смесью) и условиями горения. Предпочтительной концентрацией агентов фтороуглеводорода, их смесей и смесей с другими агентами в соответствии с этим изобретением является концентрация порядка 5-10% (об. /об.).

Фтороуглеводороды могут применяться с ис- 11 пользованием обычной техники применения и способов.

Таким образом, эти составы можно использовать в общей системе тушения пожаров струйным выбрасыванием, в которой агент вводится в закрытое пространство (например, комнату или другое помещение) и направлением на пламя в концентрации достаточной для тушения огня. Согласно общей системе тушения, устройство, оборудование или даже комнаты и помещения могут быть снабжены источником огнетушащего агента и соответствующими шлангами, вентилями и контрольными устройствами, которые позволяют автоматически и/или вручную оперировать ими в соответствующих концентрациях в случае возникновения пожара. Известно, что огнетущащие составы можно подвергать сжатию азотом или другим

инертным газом до 600 атм при окружающих условиях

Фтороуглеводородные агенты можно использовать посредством обычных портативных огнетушителей. В них давление увеличивается азотом или другими инертными газами с тем, чтобы агент полностью выпускался из огнетушителя. Системы, содержащие фторуглеводород, можно сжимать до любого нужного давления до 600 атм при условиях окружающей среды.

В практике настоящее изобретение иллюстрируется следующими примерами.

Пример 1.

Для испытаний тушения статического пламени был сконструирован бокс объемом 28,3 куб. л (тушение поливом). Бокс был снабжен плексиглазовым смотровым окошком и входным отверстием в верхней части для введения агента, кроме того, входом для воздуха в нижней части. С целью испытания агента в центр бокса помещалось блюдо (стеклянное) размером 90 х 50 мм и заполнялось 10 г жидкости, используемой в зажигалках. Жидкость воспламенялась и горела в течение 15 секунд до введения агента. Во время горения в бокс через нижнее отверстие вводился воздух. После 15 секунд впускное отверстие воздуха закрывалось и в бокс вводился огнетушащий агент. Он подавался в количестве, достаточном для обеспечения концентрации агента 6,6% об. /об. Измерялось время тушения, т. е. время после подачи агента и до гашения пламени. Среднее время гашения для агента с концентрацией 6,6% об. /об. дано в таблице 1.

Пример 2.

Эксперимент проводили, как в примере 1 с использованием в качестве горючего гептана. Среднее время тушения для концентрации 6,6% об. /об. тех же агентов также даются в таблице 1.

В таблице 1 показано время тушения пламени, необходимое для различных горючих веществ при использовании агента с концентрацией 6,6% об. /об. При этой концентрации гептафторпропан также эффективен в тушении пламени н-гептана, как бромсодержащие агенты, и почти также эффективны, как другие агенты в тушении пламени от жидкости для зажигалок

В соответствии с изобретением для общего применения чистых фтороуглеводородов предпочитаются концентрации около 5 10% Использование небольшого объема агента может не достичь цели и привести к образованию дыма и высвобождению НЕ из-за сгорания агента. Использование избыточных количеств неэкономично и может привести к разбавлению уровня кислорода в воздухе до концентраций вредных для живых организмов.

Пример 3.

Был повторен пример 1 с двумя белыми мышками, находящимися в боксе. После тушения пламени мыши оставались в боксе еще 10 минут и подвергались действию продуктов сгорания. После этой процедуры мыши не высказывали симптомов

недомогания и поведение их было нормальным после удаления из бокса.

Пример 4.

Данные испытания динамического горения для гептафторпропана и 1,1,1,2,3,3-гексафторпропана были получены с использованием испытательной процедуры, в которой воздух и н-бутан непрерывно подавались к пламени в стеклянной чашеобразной горелке. Пар испытуемого агента смешивался с воздухом и подавался к пламени, причем концентрация агента постепенно возрастала до уровня, необходимого для тушения пламени. Данные были получены для гептафторпропана и 1,1,1,2,3,3гексафторпропана и, с целью сравнения для других следующих галоновых агентов: $\operatorname{CF_3Br}$, $\operatorname{CF_2BrCl}$, $\mathrm{CF_3CF_2CI}$, $\mathrm{CF_3CF_2H}$ и $\mathrm{CF_4}$. Процент каждого вещества в воздухе (об. /об.), требуемый для тушения пламени, дается в таблице 2.

Пример 6.

Гептафторпропан и CF₃ Br, CF₂ BrCl и CF₂ CF₂ Cl использовались для тушения н-гептанового диффузного пламени аналогично примеру 4. Данные испытания указаны в таблице 3.

Данные испытания динамического горения, указанные в таблицах 2 и 3, демонстрируют, что использование гептафторпропана и пентафторэтана значительно более эффективно, чем использование других известных небром- или хлорсодержащих составов. Более того, гептафторпропан можно сравнить по эффективности с $\operatorname{CF_3CF_2CI}$, хлорсодержащим хлорфтороуглеводородом. Их сравнение показано по отношению к н-гептану, а также нбутану. Хотя бром- и хлорсодержащие агенты, такие, как CF₃Br и CF₂BrCl несколько более эффективны, чем фтороуглеводородные агенты в тесте с чашеобразной горелкой, использование данных агентов является достаточно эффективным и не имеет ограничений, связанных с отношением к окружающей среде.

Пример 6.

Данные тушения статического пламени в боксе были получены для 1,1,1,3,3,3-гексафторпропана при объеме испытуемого бокса в 35,2 куб. л. в соответствии с примером 1. Кроме 1,1,1,3,3,3гексафторпропана с целями сравнения испытывались также $\operatorname{CF_3}$ Br, $\operatorname{CF_2}$ BrCl и $\operatorname{CF_3}$ CF $_2$ Cl. Все испытуемые агенты подавались в концентрации 5.5% (of. /of.).

Данные таблицы 4 демонстрируют, что 1,1,1,3,3,3-гексафторпропан является высокоэффективным огнетушителем. Он почти также эффективен, как $\operatorname{CF_3CF_2Cl}$, хлорфтороуглеводород, и достаточно эффективен по сравнению с бромсодержащими галонами, такими, как CF₂ Br и CF₂ BrCl и предпочтителен по причине отсутствия свойств разрушать озон и других вредных воздействий.

которыми обладают хлор- и бромсодержащие

Кроме свойства высокоэффективного агента для тушения пожаров 1,1,1,2,3,3—гексафторпропан является токсикологически безопасным.

Следующие примеры демонстрируют эффективное использование фтороуглеводородных агентов в смесях или составах, включающих бромсодержащие галоновые огнетушители.

Пример 7.

Данные испытания в динамике с использованием процедуры с чашеобразной горелкой по примеру 4 были получены для различных смесей гептаф—торпропана и СГ₂ НВг. Воздух и смесь агентов непрерывно подавались к н—гептановому диффузному пламени в чашеобразной горелке. Для данного потока гептафторпропана поток СГ₂ НВг медленно увеличивался до тех пор, пока пламя не погасло. Эксперимент повторялся при различных скоростях потока гептафторпропана и результаты показаны в Таблице 6.

В таблице 6 указано фактический процент объема воздуха. Там показан также рассчитанный вес. гептафторпропана в смеси. Кроме того, таблица 6 указывает потенциал разрушения озона для каждого агента ("ПРО"). Данные ПРО рассчитывались следующим образом: ПРО для чистых соединений рассчитывались по следующей формуле:

ПРО $A E P [/# CI/^B + C/# Br/ \cdot D^{(#C-1)}]$ В этом выражении P фактор фотолиза. P I, O, D

В этом выражении Р фактор фотолиза. Р 1,0, если нет особых структурных признаков, которые делают молекулу подверженной тропосферичес-кому фотолизу. В других случаях, Р F, G или H, как указано в Таблице констант (Таблица 5).

ПРО для смесей были получены умножением вес, агента на ПРО чистого агента.

Эти данные демонстрируют, что эффективного тушения пламени можно достичь смесями геп-тафторпропана и СF₂ HBr и что ПРО СF₂ HBr можно существенно снизить добавлением к нему геп-

тафторпропана.

Примеры 8 11.

В таблицах 7, 8, 9 и 10 показаны данные тушения диффузного пламени, полученные по Примеру 7 для следующих смесей агентов:

Таблица 7 гептафторпропан и СF₂ BrCl

Таблица 8 гептафторпролан и CF₃ Br

Таблица 9 пентафторэтан и CF₂ HBr

Таблица 10 1,1,1,2,3,3—гексафторпропан и CF_2 HBr

Эти таблицы содержат также данные ПРО для чистых $\mathrm{CF_2}$ BrCl и $\mathrm{CF_3}$ Br (литературные данные) и ПРО для $\mathrm{CF_2}$ HBr (рассчитанные). ПРО для смесей были получены умножением вес. агента на ПРО чистого агента.

Данные таблиц 7 10 демонстрируют, что различные смеси фтороуглеводородов в соответствии с этим изобретением с хлор- и бромсодержащими веществами являются эффективными огнетушительными агентами, и что, в соответствии с данным изобретением, можно достичь существенного снижения ПРО хлор- и бромсодержащих материалов их смесью с фтороуглеводородами. Насыщенные высшие фторированные C_2 и C_3 фтороуглеводороды, такие как гептафторпропан, 1,1,1,2,3,3-гексафторпропан, 1,1,1,3,3,3гексафторпропан и пентафторэтан, как используемые в настоящее время хлор- и бромсодержащие вещества, не являются разрушительными агентами, и особенно полезны, там, где очистка среды представляет проблему. Другие применения фтороуглеводородов этого изобретения тушение пожаров, вызванных воспламенением жидких и газообразных горючих веществ, дерева, бумаги, текстиля, твердых горючих веществ, защита электрооборудования, ЭВМ, устройств обработки данных и диспетчерских помещений. ТТТ1 ТТТ2 TTT3 TTT4

Формула изобретения

- 1. Способ тушения пожара, включающий подачу в огонь огнетушащего галоидуглеводородного соединения с поддержанием его концентрации до момента тушения пожара, отличающийся тем, что в качестве талоидуглеводородного соединения используют одно или более фторуглеводородных соединений, выбранных из ряда: (пентафторэтан) 1,1,1,3,3,3—гексафторпропан, 1,1,1,2,3,3—гексафторпропан, гептафторпропан
- 2. Способ по п. 1, отличающийся тем, что при тушении поддерживают концентрацию одного или более фторуглеводородных соединений менее 15 об. /об.
- 3. Способ по п. 1, отличающийся тем, что одно или более фторуглеводородных соединений подают

- в огонь в виде сплошного потока.
- 4. Способ по п. 1, отличающийся тем, что одно или более фторуглеродных соединений используют в системе портативного огнетушителя.
- 5. Способ тушения пожара, включающий подачу в огонь огнетушащего галоидуглеводородного соединения с поддержанием его концентрации до момента тушения пожара, отличающийся тем, что в качестве галоидуглеводородного соединения используют смесь, состоящую из одного или более фторуглеводородных соединений, выбранных из ряда: пентафторэтан, 1,1,1,3,3,3—гексафторпропан, 1,1,1,2,3,3—гексафторпропан, гептафторпропан и одного или более хлор и/или бромуглеводородных

соединений, выбранных из ряда: CF₃Br, CF₂BrCl, СF₂ BrCF₂ Br, CF₂ HBr, CF₃ CHFBr с концентрацией одного или более фторуглеводородных соединений до 10% от массы смеси.

6. Способ по п. 5, отличающийся тем, что при

тушении поддерживают концентрацию смеси от 3 до 15 об. /об.

7. Способ по п. 5, отличающийся тем, что смесь подают в огонь в виде сплошного потока.

8. Способ по п. 5, отличающийся тем, что смесь используют в системе портативного огнетушителя.

Таблицы

Таблица 1

Время тушения (секунды) для 6,6 % об./об. состава

Агент	Горючее:		
	Жидкость для зажигалок	н-Гептан	
CF3CHFCF3	1,6	1,6	
CF ₃ Br	0,8	1.4	
CF ₂ BrCl	1,3	1.7	
CF3CHFBr	1,0	1,7	

Таблица 2

Тушение н-бутанового диффузного пламени

Огнетушащий воз- душный агент, %	Поток воздуха, см ³ /мин	Поток огнетушащего агента, см ³ /мин	Количество агента в воздухе, об/об
CF ₃ Br	16,200	396	2,4
CF ₂ BrCl	16,200	437	2,7
CF ₃ CF ₂ CI	16,200	963	5,9
CF ₃ CHFCF ₃	16,200	976	6,0
CF ₃ CHFCHF ₂	16,200	1312	8,1
CF ₃ CF ₂ H	16,200	1409	8,7
CF4	16,200	2291	14,1

Таблица 3

Тушение н-гептанового диффузного пламени

Огнетушащий воз- душный агент, %	Поток воздуха, см ³ /мин	Поток огнетушащего агента, см ³ /мин	Количество агента в воздухе, об/об
CF3Br	16,200	510	3,1
CF ₂ BrCl CF ₃ CF ₂ Cl	16,200 16,200	546 1,006	3,4 6,2
CF3CHFCF3	16,200	1,033	6,4
CF ₃ CF ₂ H	16,200	1,506	9,3

Таблица 4

Время тушения (сек) для агента с концентрацией 5.5 %

Агент	Время тушения (сек)
CF ₃ Br	1,02
CF ₂ BrCl	1,76
CF ₃ CF ₂ Cl	2,15
CF ₃ CH ₂ CF ₃	2,98

RU

Таблица 5

Константа	Наименование	Величина
F	Фактор фотолиза для сдвоенных Br-C-CI	0,180
G	Фактор фотолиза для сдвоенных Br-C-Br	0,015
Н	Фактор фотолиза для соседних BrCCBr	0,370
Α	Нормализующая константа	0,446
В	Экспонент для члена хлора	0,740
С	Множитель для члена брома	32,000
D	Константа для члена углерода	1,120
E	Фактор водорода =1,0 для отсутст- вия Н	. 0625

Таблица 6

Тушение н-гептанового диффузного пламени смеси $CF_3CHF_1CF_3/CF_2HB_1r$

Объем пото шении, с		% объем. в воздухе		Общий объ- ем,	Bec. % CF ₃ CHFCF ₃	ПРО
CF3CHFCF3	CF ₂ HBr	CF3CHFCF3	CF ₂ HBr	%	Li	
0	1380	0	4,0	4,0	.0	0,89
164	489	1,0	3,0	4,0	30,1	0,62
353	357	2,2	2,2	4,4	56.5	0,39
533	216	3,3	1,3	4,6	76,6	0,21
705	122	4,3	0,8	5,1	87,4	0,11
869	39	5,4	0,2	5,6	97,2	0,02
1042	0	6.4	Ö	6,4	100,0	0.00
I		L			1 1	

Таблица 7
Тушение н-гептанового диффузного пламени CF3CHFCF3/CF2BrCI смеси

	Тоток, обеспечивающий тушение см ³ /мин		Объем% в воздухе		Bec, % CF ₃ CHFCF ₃	ПРО
CF ₃ CHFCF ₃	CF ₂ BrCl	CF3CHFCF3	CF ₂ BrCl			
0	546	0	3,4	3,4	0	2,64
164	437	1,0	2,7	3,7	27,5	1,91
262	378	1,6	2,3	3,9	41,7	1,54
353	328	2,2	2,0	4,2	53,1	1,24
533	210	3,3	1,3	4,6	72,5	0,73
705	109	4,3	0,7	5.0	86,3	0,36
869	44	5,4	0,2	5,6	94,9	0,18
1042	0	6,4	0	6.4	100,0	00,0

Таблица 8
Тушение н-гептанового диффузного пламени смесью CF3CHFCF3/CF3

Поток, обеспе тушен	•	Общий % в воздухе		Общий объ- ем, %	Bec. % CF ₃ CHFCF ₃	ПРО
CF ₃ CHFCF ₃	CF ₃ Br	CF3CHFCF3	CF ₃ Br	·	\	
0	510	0	3,1	3,1	0	14,28
164	422	1,0	2,6	3,6	30,4	9,93
262	334	1,6	2,1	3,7	46,4	7,65
353	317	2,2	1,9	4,1	57,1	6,13
533	246	3,3	1,5	4.8	71,6	4,06
705	98 .	4,3	0,6	4,9	89,2	1,54
869	51	5,4	0,3	5,7	95,4	0,66
943	24	5,8	0,1	6,0	98,5	0,21
1042	0	6,4	0	6,4	100,0	0,00

Таблица 9

Тушение н-гептанового диффузного пламени смесью CF₃CF₂H/CF₂/HBr

	гок, обеспечивающий · Общий % в воздухе О тушение		• Общий % в воздухе		Bec, % CF ₃ CF ₂ H	ПРО
CF ₃ CF ₂ H	CF ₂ HBr	CF ₃ CF ₂ H	CF2HBr			
0	1380	0	4,0	4,0	0	0,89
196	526	1,2	3,2	4,4	25,6	0,66
314	470	1,9	2,9	4,8	37,5	0,56
421	423	2,6	2,6	5,2	47.7	0,46
637	338	3,9	2,1	6,0	63,0	0,33
1039	109	6,4	0,7	7.1	89,4	0,09
1509	O	9,3	0	9,3	100,0	0,00

Таблица 10 Тушение н-гептанового диффузного пламени смесью CF₃CHFCF₂H/CF₂/HBr

Поток, обес щий ту		Общий % в воздухе		Общий объем, %	Bec, % CF₃CHFCF₂H	ПРО
CF3CHFCF2	CF ₂ Br	CF3CHFCF2H	CH ₂ HBr			
0 196 421 637 843	1380 508 423 367 207	0 1,2 2,6 3,9 5,2	4,0 3,1 2,6 2,3 1,3	4,0 4,3 5,2 6,2 6,5	0 30,8 53,7 66,3 82,1	0,89 0,62 0,41 0,30 0,16