GRPO_KKLogic

Project Introduction

This project explores the training of a 3B-parameter model on 3,000 logic puzzles from the Knights and Knaves dataset. The training process is divided into two stages:

Stage 1: Format Compliance

In this stage, the model is trained to adhere to the required output format. A reward function emphasizing format correctness ensures that the model produces structured and consistent responses.

Stage 2: Logical Reasoning Enhancement

Building on the structured outputs from Stage 1, the model is further trained to improve its logical reasoning capabilities. A refined reward function prioritizes accurate reasoning and correct answers while maintaining format consistency.

Through this staged approach, the 3B-parameter model achieves performance surpassing GPT-40 on the Knights and Knaves logic puzzles. This project is inspired by the RL_Logic project but introduces a novel reward function tailored to enhance both format adherence and reasoning accuracy.

Stay tuned for our detailed technical report!

See project explanation for more details.

Wandb project: GRPO_KKLogic Report

Results Preview

Reward Plot

Average Output Length Plot

Before

The initial output demonstrates the model's raw attempt at solving the puzzle, with minimal adherence to logical reasoning or format consistency.

<think> First, let's analyze the statements made by Ethan, Mia, and
Emily. Ethan claims that Emily is a knight and Mia is a knight. Mia
claims that Emily is not a knave. Emily claims that Mia is a knave if
and only if Emily is a knight.

 (2) Mia is a knave (3) Emily is a knight

After

After training, the model produces structured and logically consistent responses, as shown below.

```
<think>First, let's analyze each statement based on whether the
speaker is a knight (truth-teller) or a knave (liar):
1. Zoey says: "If Ava is a knight then Scarlett is a knight."
    - This can be written as P \rightarrow Q where P represents "Ava is a
knight" and Q represents "Scarlett is a knight".
    - A knight would say this if both P and Q were true, while a knave
would say this if P were true and Q were false (or both false).
2. Matthew says: "If Michael is a knave then Scarlett is a knight."
    - This can be written as ~P → Q where ~P represents "Michael is a
knave" and Q represents "Scarlett is a knight".
    - A knight would say this if either P were true and Q were false, or
both false. A knave would say this if P were false and Q were true.
3. Ava says: "Michael is a knight and Zoey is a knight."
    - This means both P (Michael is a knight) and Q (Zoey is a knight)
must be true for Ava to be telling the truth.
 4. Michael says: "Scarlett is a knave or Matthew is a knight."
    - This can be written as ~Q v R where ~Q represents "Scarlett is a
knave" and R represents "Matthew is a knight".
    - A knight would say this if either ~Q were true (Scarlett is a
knave) or R were true (Matthew is a knight). A knave would say
this if both ~Q and R were false.
5. Scarlett says: "Scarlett is a knight."
    - For Scarlett to be telling the truth, she must indeed be a knight.
Now, let's consider the implications of each possibility:
 - If Zoey is a knight, then her statement "If Ava is a knight then
Scarlett is a knight" must be true. Since Ava claims
both Michael and Zoey are knights, if Zoey is a knight,
then Scarlett must also be a knight.
- If Matthew is a knight, then his statement "If Michael is a knave
then Scarlett is a knight" must be true. Since Michael claims
either Scarlett is a knave or Matthew is a knight, if Matthew is a
knight, then Scarlett must be a knight.
- If Ava is a knight, then both Michael and Zoey are
knights. From Zoey's statement, since Scarlett is a knight, her part of
the implication is satisfied.
- If Michael is a knight, then either Scarlett is a knave
or Matthew is a knight. Since Matthew is a knight, this
condition is met.
 - If Scarlett is a knight, her statement is true.
 By combining these conditions, we find that if Zoey, Matthew,
```

and Scarlett are knights, then Ava must also be a knight to satisfy her own claim. Finally, Michael being a knight ensures that his original statement holds true. Therefore, all five individuals are knights.

<answer> (1) Zoey is a knight

- (2) Matthew is a knight
- (3) Ava is a knight
- (4) Michael is a knight
- (5) Scarlett is a knight </answer>

% Installation

```
conda create -n logic python=3.9
pip install torch==2.4.0 --index-url
https://download.pytorch.org/whl/cu121
pip3 install vllm==0.6.3 ray
pip3 install flash-attn --no-build-isolation
pip install -e . # For verl integration
pip install wandb IPython matplotlib
```

Data Preparation

```
python ./data_gen.py
```

Update args

Update your information in train.shfirst.

Model Trainning

PROFESSEUR: M.DA ROS

bash train.sh