• Solution :
$$x = e^{-2}$$
.
• Solution : $x = -1 + e^{3}$.

• On doit avoir
$$x > -2$$
 et $x > -\frac{1}{2}$

 $\frac{5}{2}$; $\frac{5}{3}$; 0.

soit $x > -\frac{1}{2}$. On obtient : x + 2 = 2x + 1. D'où la solution : x = 1.

• On doit avoir
$$x > 0$$
.
On obtient : $2 \ln x = -\ln 3$; $\ln x = -\frac{1}{2} \ln 3 = \ln \frac{1}{\sqrt{3}}$.

D'où la solution :
$$x = \frac{1}{\sqrt{3}}$$
.

6 •
$$\frac{1}{2} \ln 3$$
.

• On écrit successivement : $e^{4x} = 2e^{3x}$; $\frac{e^{4x}}{e^{3x}} = 2$; $e^x = 2$.

D'où la solution :
$$x = \ln 2$$
.

• On écrit successivement :

$$e^{4x} = 2e^{3x}$$

solution : $x = \ln 2$
it successivement

D'où la solution : $x = \frac{1}{0.4} \ln 2$.

• On écrit successivement :
$$\frac{e^{0.2x}}{e^{0.2x}} = 2 \; ; \; e^{0.4x}$$

$$\frac{e^{0.2x}}{e^{-0.2x}} = 2 \; ; \; e^{0.4x} = 2 \; ; \; 0.4x = \ln 2.$$

• On doit avoir x > -1. On obtient : x + 1 < 1 soit x < 0Ensemble des solutions :]-1;0[.

Ensemble des solutions : $]-\infty;-1[$.

ir
$$x > -1$$
.
 $< 1 \text{ soit } x < 0$
ons : $]-1$; **0**[.

• On doit avoir x < 2.

$$t x < 0$$

-1;0[.

On obtient:
$$x + 1 < 1$$
 soit $x < 0$
Ensemble des solutions: $]-1$; $0[$.
• On doit avoir $x < 2$.
On obtient: $2 - x > 3$ soit $x < -1$.