

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

AIP67: MINI PROJECT TERM: MARCH 2025 – JUNE 2025

Project Synopsis

Neurofeedback System for Seizure Prevention and Treatment Using Early Detection and Brainwave Redirection

Under the guidance of

Dr. Meeradevi

PROJECT TEAM MEMBERS

Sl. No	USN	Name
1.	1MS22AI039	Neelam Bind
2.	1MS22AI041	Nihal Kumar
3.	1MS22AI063	Swara Sameer Pawanekar

M.S. RAMAIAH INSTITUTE OF TECHNOLOGY

(Autonomous Institute, Affiliated to VTU)

1. Project Stream & Type:

• Stream: Healthcare & AI

• Type: Machine Learning & Signal Processing Application

2. Title of the Project:

Neurofeedback System for Seizure Prevention and Treatment Using Early Detection and Brainwave Redirection

3. Problem Statement:

Epilepsy affects over 50 million people worldwide, causing unpredictable seizures that disrupt daily life and well-being. Despite advancements, current treatments remain inadequate for many. Anti-epileptic drugs fail in 30% of cases, leading to drug-resistant epilepsy, while alternative options like surgery and vagus nerve stimulation are invasive and costly, often exceeding \$20,000. Medication expenses also create financial barriers, particularly in low-income regions where 80% of epilepsy cases occur. Existing wearable devices focus on post-seizure detection rather than prevention, leaving patients vulnerable. A non-invasive, AI-driven solution is needed to provide real-time seizure prediction, enhancing safety and accessibility.

4. Project Management Methodology: Prototype Model

For the Neurofeedback System for Seizure Prevention and Treatment, we will adopt the Prototype Model as our project management methodology. This approach is well-suited for projects that require continuous testing, refinement, and feedback to ensure the final system is both functional and effective.

4.1. Motivation:

- 1. **Prevalence** Epilepsy affects **50M+ people worldwide**, yet many remain undiagnosed or mismanaged. Unpredictable seizures lead to **injuries**, **disability**, **and sudden death (SUDEP)**.
- 2. **Ineffectiveness of Current Solutions** 30-40% of patients have **drug-resistant epilepsy**. Medications only **manage** seizures, often causing **side effects** like memory loss, drowsiness, and mood disorders.
- 3. **Invasive & Harmful Treatments** Surgery and implantable devices (DBS, VNS) are **high-risk**, **irreversible**, **and not suitable for all**. Even non-surgical alternatives require **body implants**, causing **complications**.
- 4. Expensive & Inaccessible 80% of epilepsy cases occur in low-income countries, where treatment is too costly or unavailable. Surgery and implants remain out of reach for most.

4.2. Methodology Implementation Stages:

- Requirement Analysis: Define datasets, EEG hardware compatibility, and model constraints.
- Quick Prototype Development: Build basic seizure detection models using a subset of
- User Feedback & Testing: Validate model performance with simulated data and refine parameters.
- Refinement & Enhancement: Improve accuracy, optimize latency, and fine-tune neurofeedback.
- Final Deployment & Maintenance: Integrate models, finalize the interface, and ensure real-time usability.

The Prototype Model ensures that our neurofeedback system evolves continuously, improving prediction accuracy and real-time intervention, ultimately making it more reliable for seizure management.

Fig.1. Prototype Model for Neurofeedback system

5. Objective & Scope of the Proposed Project

5.1. Objective:

The project aims to design and develop a real-time AI-powered seizure prediction and neurofeedback intervention system that enhances seizure management by:

- Predicting seizures in advance using EEG signal processing and AI models.
- Delivering neurofeedback interventions to stabilize brainwave activity and prevent seizures
- Providing a wearable, non-invasive solution that is both affordable and accessible.

5.2. Scope:

- 1. AI-Based Seizure Prediction
- 2. Real-Time Neurofeedback Intervention
- 3. Wearable Integration & Usability
- 4. Cost-Effective & Scalable Solution

By addressing these objectives, this project will provide a groundbreaking shift in seizure management, offering a predictive, preventive, and accessible solution for patients worldwide.

6. Hardware & Software to be Used:

Hardware:

- Brain-Computer Interface (BCI): BrainSense One, OpenBCI Cyton, Muse 2.
- Processing Unit: High-performance GPU (NVIDIA RTX 3050)
- Storage & Connectivity: Cloud storage (AWS, Google Cloud), Bluetooth/Wi-Fi for real-time data transfer.

Software:

- EEG Signal Processing: MNE-Python, PyEDFlib.
- Machine Learning: TensorFlow, PyTorch, Scikit-Learn.
- Database & Cloud: PostgreSQL, Firebase, AWS S3, Google Cloud Storage.

7. Expected Outcome of the Proposed Project:

- Real-Time Seizure Prediction: AI-driven models will analyze EEG signals to detect seizure patterns before they occur, providing timely alerts.
- Non-Invasive Neurofeedback Interventions: The system will use brainwave modulation techniques to reduce seizure likelihood without requiring surgery or medication.
- User-Friendly Dashboard: A web and mobile interface will allow patients and caregivers to monitor real-time EEG data, receive alerts, and track historical trends.
- Cost-Effective Solution: Compared to expensive surgical procedures and long-term medication, this system will offer an affordable, accessible alternative for seizure management.

8. Contribution to Society

- Comprehensive Solution for All: Designed to cater to a wide range of epilepsy patients, including those who do not respond to medication, this system ensures that no patient is left without a viable management option.
- Enhanced Quality of Life: By providing early seizure warnings and neurofeedback-based interventions, the system helps epilepsy patients regain independence and reduce anxiety related to unpredictable seizures.
- Affordable & Accessible Solution: Unlike costly surgeries and lifelong medication, this system offers a budget-friendly alternative, making advanced seizure management accessible to low-income communities.
- Reduced Dependence on Invasive Treatments: Many existing solutions, such as brain surgeries and vagus nerve stimulation, are invasive and come with risks. **This** non-invasive approach minimizes medical complications while ensuring effective seizure control.
- Advancing AI-Driven Healthcare: By integrating EEG analysis, machine learning, and neurofeedback, the project contributes to the growing field of AI-based medical technologies, paving the way for more intelligent, real-time healthcare solutions.

9. REFERENCES

- [1] Turner, R. (2022). Evidence-based biofeedback and neurofeedback for people with epilepsy and seizures. Policy Insights from the Behavioral and Brain Sciences, 9, 237273222211085. https://doi.org/10.1177/23727322221108508
- [2] Walker, J. E., & Kozlowski, G. P. (2004). Neurofeedback treatment of epilepsy. Clinical Neurophysiology, 115(11), 2425-2432. https://doi.org/10.1016/j.chc.2004.07.009
- [3] Vieira, J. C., Guedes, L. A., Santos, M. R., & Sanchez-Gendriz, I. (2023). Using explainable artificial intelligence to obtain efficient seizure-detection models based on electroencephalography signals. Sensors, 23(24), 9871. https://doi.org/10.3390/s23249871
- [4] Catchpool, M., Dalziel, K., Mahardya, R. T. K., & Harvey, A. S. (2019). Cost-effectiveness of epileptic surgery compared with medical treatment in children with drug-resistant epilepsy. Epilepsy & Behavior, 99, 106536. https://doi.org/10.1016/j.yebeh.2019.04.004
- [5] Santhosh, N. S., Sinha, S., & Satishchandra, P. (2014). Epilepsy: Indian perspective. Journal of Clinical Neuroscience, 21(7), 1042-1050. https://doi.org/10.1016/j.jocn.2013.12.039
- [6] Liu, X., Li, C., Lou, X., Kong, H., Li, X., Li, Z., & Zhong, L. (2024). Epileptic seizure prediction based on EEG using pseudo-three-dimensional CNN. Frontiers in Neuroscience, 18. https://doi.org/10.3389/fninf.2024.1354436