Category Theory

maple

2022 年 4 月 4 日

目录

1	Categories, Functors, Natural Transformations		
	1.1	Categories	2
	1.2	Duality	5
	1.3	Functoriality	Ĉ
	1.4	Naturality	18
	1.5	Equivalence of categories	20
	1.6	The art of the diagram chase	23
2	Universal Properties, Respresentability, and the Yoneda Lemma		
	2.1	Representable functors	25
	2.2	Yoneda lemma	26

Categories, Functors, Natural Transformations

Categories

Definition 1.1. 一个范畴 (category) C 由

- a collection of objects (如果把 collection 翻译成集族,我觉得在这里不对,感觉 collection 就是表示一堆元素 (vague word),为了避免可能出现 paradox of "the set that includes all set",因此在这里淡化用集合表示的概念)
- a collection of morphisms

组成. 它们满足一些基本公理

- 每一个 morphism 都有一个 domain object 和 codomain object, 一般表示为 $f: X \rightarrow Y$
- 每个 object 有一个 identity morphism $1_X: X \rightarrow X$.
- 给定两个 morphism $f: X \to Y, g: Y \to Z$, 那么 morphism $g \circ f: X \to Z$ 也是存在的,这个特殊的 morphism $g \circ f$ 我们称之为 composite morphism. 也就是说 morphism 在复合作用下也是存在的,因此可以推广至任意可复合的 morphism 上.
- 对任意的 morphism $f: X \to Y$, 满足

$$f \circ 1_X = f, 1_Y \circ f = f.$$

• morphisms 之间的复合满足结合律, 给定 morphisms $f: X \to Y, g: Y \to Z, h: Z \to W$, 那么

$$h \circ (g \circ f) = (h \circ g) \circ f,$$

Annotation 1.2. 关于集合论对范畴论的影响 For that reason, common practice among category theorists is to work in an extension of the usual Zermelo-Fraenkel axioms of set theory, with new axioms allowing one to distinguish between "small" and "large" sets, or between sets and classes. The search for the most useful set-theoretical foundations for category theory is a fascinating topic that unfortunately would require too long of a digression to explore.

Definition 1.3. 一个不太准确但是形象的 concrete category 的定义 如果一个范畴的 object 都有一个 underlying set (去瞅瞅 universal algebra),每一个 morphism 都是两个 underlying set 之间映射定义的 function,特别地这些 function 都有 structure-preserving 的性质,那么我们则称这个范畴是一个 concrete category. 实际上就是有一个 faithful forgetful functor $U: \mathsf{C} \to \mathsf{Set}$.

Definition 1.4. A category is discrete if every morphism is an identity.

Definition 1.5. A small set is one in a fixed universe of sets. Strictly speaking, in this case one could just say "set".

Definition 1.6. A category is small if it has a small set (not proper class) of objects and a small set of morphisms.

Definition 1.7. A category is locally small if between any pair of objects there is only a small set of morphisms.

Definition 1.8. An isomorphism in a category is a morphism $f: X \to Y$ for which there exists a morphism $g: Y \to X$ so that $gf = 1_X$ and $fg = 1_Y$. The objects X and Y are isomorphic whenever there exists an isomorphism between X and Y, in which case one writes $X \cong Y$.

Definition 1.9. An endomorphism is a morphism whose domain equals its codomain, that is an isomorphism is called an automorphism.

Definition 1.10. A monoid is a category with a single object. Given monoid M, we write C_M for the corresponding category with single object \bullet and with M as its hom-set.

Annotation 1.11. 这个 C_M 里面就 \bullet 一个 object, 它的 identity function 就是 M 里面的 identity e, 而 $\mathsf{Hom}_{\mathsf{C}_M}(\bullet, \bullet) = M$, 即每一个 morphism 都是 M 中的一个 element, M 里面定义的 binary operator 就天然满足了我们需要的 composition.

Definition 1.12. A groupid is a category in which every morphism is an isomorphism.

Example 1.13. A group is a groupoid with one object.

如果给定一个 group G,与之对应的范畴我们记为 C_G , C_G 里面只有一个 object,我们记为 \bullet ,G 上每一个元素 a 对应 isomorphism $f\colon \bullet\to \bullet$,此时你再考虑 G 上的二元运算对应 C_G 里面的 morphism 复合.

反过来给定只含一个元素 • 的 groupoid C, 那么 C 对应的 group 为 $C_G = mor(\bullet, \bullet)$.

Definition 1.14. A subcategory D of a category C is defined by restricting to a subcollection of objects and subcollection of morphisms subject to the requirements that the subcategory D contains the domain and codomain of any morphism in D, the identity morphism of any object in D, and the composite of any composable pair of morphisms in D.

Annotation 1.15. 子范畴换句话就是你拿了一个 subcollection D, 那么你要把所有 pairs of objects in D 之间的 morphisms 也拿出来, identity morphisms 当然也不能少.

Lemma 1.16. Any category C contains a maximal groupoid the subcategory containing all of the objects and only those morphisms that are isomorphisms.

Definition 1.17. For C any category, its arrow category C^{\rightarrow} is the category such that

- 1. an object a of C^{\rightarrow} is morphism $a: X \rightarrow Y$ of C;
- 2. a morphism $f: a \to b$ of C^{\to} is commutative square

$$X_1 \xrightarrow{f_1} X_2$$

$$\downarrow a \qquad \qquad \downarrow b$$

$$Y_1 \xrightarrow{f_2} Y_2$$

3. a composition

Annotation 1.18. 我觉得要证上面的这个 composition 的两条路径 $f_1\cdot g_1\cdot c$ 和 $a\cdot f_2\cdot g_2$ 相同,得从它们分别都和 $f_1\cdot b\cdot g_2$ 相同来证.

按照 arrow category 的定义,我们可以迭代定义构造更复杂的交换图

两个侧面就是原来一阶 arrow category 中的 commutative square, 现在整体是一个立方体了.

Duality

Definition 1.19. 给定一个范畴 C. 对应的opposite category C^{op} 定义为

- 1. 和 C 具有相同的 objects.
- 2. 对任意一个 morphism $f \in C$ 当且仅当 $f^{op} \in C^{op}$,其中 f^{op} 表示交换 f 两端的 domain 和 codomain 而 得到的 morphism.
- 3. 对任意 object X, 用 $\mathbf{1}_X^{\mathrm{op}}$ 表示它在 \mathbf{C}^{op} 中的 identity.
- 4. 对任意一对 morphisms $f^{op}, g^{op} \in C^{op}$ 可复合当且仅当 $g, f \in C$ 可复合.

Annotation 1.20. 初始对偶范畴很有可能理解不了,因为它通常被描述将箭头反向,但是箭头是什么你根本不知道. 这里我们的目光不要总是局限在箭头上,而是箭头反向之后 morphism 依然保持的的对应关系,对偶范畴描述只是一种对应形式,更重要是理解两个范畴上蕴含的信息是等价的.

Theorem 1.21. duality the statement σ is true for C if and only if $\sigma^o p$ is true for C^{op}.

Lemma 1.22. charaterization of isomorphism 下述条件等价:

- 1. $f: x \rightarrow y \in C$ 是一个 isomorphism.
- 2. 对于任意的 $c \in C$, post-composition with f 都会诱导出一个双射

$$f_* : mor(c, x) \rightarrow mor(c, y),$$

即若给定 $h: c \rightarrow x$, $f_*(h) = f \circ h$.

3. 对于任意的 $c \in C$, pre-composition with f 都会诱导处一个双射

$$f^* \colon \operatorname{mor}(x, c) {
ightarrow} \operatorname{mor}(y, c),$$

即若给定 $h: x \rightarrow c$, $f^*(h) = h \circ f$.

证明. (1) => (2). 假设 f 是一个 isomorphism, 设 f 的逆为 g. 利用 g 同样可以构造一个函数

$$g_* \colon \mathrm{mor}(c,y) {\rightarrow} \mathrm{mor}(c,x).$$

设 $h: c \rightarrow x, k: c \rightarrow y$, 于是

$$f_*\circ g_*(k)=f\circ g\circ k=1_y\circ k=k$$

$$g_* \circ f_*(h) = g \circ f \circ h = 1_r \circ k = h$$

其中仅利用了 associativity 和 identity. 若 $f_*(a) = f_*(b)$,那么通过第二个等式可以得到 a = b,因此 f_* 是单射的; 对任意 $k \in \text{mor}(c,y)$,那么通过第一个等式,可以找到它在 f 下的一个 preimage $g_*(k)$,因此 f_* 是满射. 综上 f_* 是双射.

(2) => (1). 假设 f_* 是一个双射. 当 c=y 时,此时 f_* : $mor(y,x) \rightarrow mor(y,y)$,那么 1_y 肯定存在一个 preimage,设这个 preimage 为 g,于是 $f \circ g = 1_y$. 当 c=x 时,此时 f_* : $mor(x,x) \rightarrow mor(x,y)$,我们考虑 1_x 和 $g \circ f$ 的 image

$$f_*(1_x) = f \circ 1_x = f$$

$$f_*(g \circ f) = f \circ g \circ f = (f \circ g) \circ f = f$$

因此 f 是单射的情况下, $1_x = g \circ f$. 综上 f 是一个 isomorphism.

(2) => (3). 假设 f_* 是一个双射. 这里我们将会利用 duality 的性质来证明. 我们已经证明了 (1) <=> (2),它们是对任意范畴而言的,现在我们把它放到 \mathbf{C}^{op} 上,我们将会得到这样一个已经被证明的命题: $f^{\mathrm{op}}: y \to x$ 是一个 isomorphism 当且仅当

$$f_*^{\text{op}} : \text{mor}^{\text{op}}(c, y) \rightarrow \text{mor}^{\text{op}}(c, x)$$
 是一个双射.

在这里我们用一下 duality 的性质, 上面命题等价于: $f: x \rightarrow y$ 是一个 isomorphism 当且仅当

$$f^* : mor(y, c) \rightarrow mor(x, c)$$
 是一个双射.

这里我们就直接完成了对(3)的证明.

Definition 1.23. A morphism $f: X \to Y$ in some category is called a monomorphism (sometimes abbrieviated to mono, or described as being monic), if for every object Z and every pair of parallel morphisms $g_1, g_2: Z \to X$ then

$$(f\circ g_1=f\circ g_2) \ \Rightarrow \ g_1=g_2.$$

Annotation 1.24. monomorphism 是集合上 injective map 的一般化,即 $f(a) = f(b) \Rightarrow a = b$.

Definition 1.25. A morphism $f: X \to Y$ in some category is called a epimorphism (sometimes abbrieviated to epi, or described as being epic), if for every object Z and every pair of parallel morphisms $g_1, g_2: Y \to Z$ then

$$(g_1\circ f=g_2\circ f) \ \Rightarrow \ g_1=g_2.$$

Annotation 1.26. epimorphism 是集合上 subjective map 的一般化,这个要思考一下,考虑两个两个函数相同,那么就要求在任意相同的自变量下函数值相等。例如要证明 $g,h\colon Y\to Z$ 相同,即要证明 $\forall y\in Y$ 都有 g(y)=h(y),此时若 f(x) 是一个满射,那么就任意的 y 都存在一个 x 使得 y=f(x),因此对等式 g(f(x))=h(f(x)) 取遍 x 等价于前述命题.

Lemma 1.27. $f: x \to y$ 是一个 monomorphism 当且仅当对任意的 $c \in C$, post-composition with f 都会诱导出一个单射

$$f_* \colon \operatorname{mor}(c, x) \to \operatorname{mor}(c, y).$$

证明. 如果 f 是一个 monomorphism,那么有 $f\circ g_1=f\circ g_2\Rightarrow g_1=g_2$,即 f_* 对应下面交换图唯一得到 $f_*(g)=h\in \mathrm{mor}(c,y).$

Lemma 1.28. $f: x \to y$ 是一个 epimorphism 当且仅当对任意的 $c \in C$, pre-composition with f 都会诱导出一个满射

$$f_* : mor(y, c) \rightarrow mor(x, c).$$

Example 1.29. If we take the subcategory of a slice category C/c containing just the monomorphisms then we get a preorder: give two monomorphisms m, n, we way $m \le n$ just in case there is an commutative diagram

$$X \xrightarrow{f} Y$$

$$C$$

if f exists, is unique.

假设 f 不唯一,那么存在 $m=n\circ f_1$ 和 $m=n\circ f_2$,于是 $n=\circ f_1=n\circ f_2$,但是 n 是 monic,那么必有 $f_1=f_2$,这就矛盾了.

Definition 1.30. Suppose that $x \xrightarrow{s} y \xrightarrow{r} x$ are morphism so that $rs = 1_x$. The map s is section or right inverse to r, while the map r defines a retraction or left inverse to s. The map s and r express the object x as a retract of the object y.

Lemma 1.31. If a morphism has both a section and retraction then the section and the retraction are identical. 证明. 假设给定 morphism $f: X \to Y$ 的 section s 和 retraction r, 则有

Lemma 1.32. In above case, s is always a monomorphism and dually, r is always an epimorphism. we call such s is a split monomorphism and r split epimorphism (用于强调它们有某侧逆的存在).

Example 1.33. 在选择公理的支持下, Set 下的 epimorphism 总是 split epimorphism.

Lemma 1.34. If $f: x \rightarrow y$ and $g: y \rightarrow z$ are monomorphisms, then so is $gf: x \rightarrow z$. Dually, $f: x \rightarrow y$ and $g: y \rightarrow z$ are epimorphism so is $gf: x \rightarrow z$.

Lemma 1.35. If $f: x \to y$ and $g: y \to z$ are morphisms so that gf is monic, then f is monic. Dually, If $f: x \to y$ and $g: y \to z$ are morphisms so that gf is epic, then g is epic.

Functoriality

Definition 1.36. 一个函子 $F: C \to D$ 由两个映射组成

- 每一个对象 $c \in \mathbb{C}$, 对应一个对象 $Fc \in \mathbb{D}$.
- 每一个态射 $f: c \to c' \in \mathbb{C}$, 对应一个态射 $Ff: Fc \to Fc' \in \mathbb{D}$, 所有 Ff 的 domain 和 codomian 分别对应 f 的 domain 和 codomain。

同时还满足两个公理 (functoriality aximos)

- 对任意的 composable morphisms $f, g \in C$, 则 $Fg \circ Ff = F(g \circ f)$
- 对任意的 identity morphism $1_c \in C$,则 $F(1_c) = 1_{Fc}$

通俗一点来说,函子由两个范畴之间对象的映射和态射的映射组成,这个映射同时保留了范畴上的结构,包括domains, codomain, 复合律, identity。

Lemma 1.37. 函子保留同构关系.

证明. 定义态射 $f: x \rightarrow y$ 和 $g: y \rightarrow x$,且 $f \circ g = 1_x, g \circ f = 1_y$. 于是

$$F(f \circ g) = F(f) \circ F(g) = 1_{F(x)}$$

$$F(g \circ f) = F(g) \circ F(f) = 1_{F(y)}$$

但是反过来并不一定成立,即如果 F(f) 是一个 isomorphism,但是 f 不一定是一个 isomorphism,举个很简单的例子 $F\colon 2\to 1$,其中 1 表示只含一个 object 的 groupoid,但是 2 可以不是一个 groupoid.

Example 1.38. 几种特殊的函子

• 对任意范畴 C, 存在一个单位函子 (identity functor) $1_C: C \to C$ 定义为

$$1_{\mathsf{C}}(\; c \xrightarrow{\; f \;} c' \;) = \; c \xrightarrow{\; f \;} c'$$

• 对于任意的范畴 C 和 D, 和 D 中某个固定的对象 d,存在一个常量函子(constant functor) $C_d\colon\mathsf{C}\to\mathsf{D}$ 定义为

$$C_d(c \xrightarrow{f} c') = d \xrightarrow{1_d} d$$

- 遗忘函子 (forgetful functor) $U: C \rightarrow Set$.
- covariant hom-functor 和 contravariant hom-functor 后面有完整的介绍和证明。

Example 1.39. 如果把群(Group)看做一个对象的范畴,那么群范畴和群范畴的函子是什么?

首先回忆一下,群范畴只有单个对象 x,群里面的元素对应群范畴里面的态射,其 domain 和 codomain 都是对象 x,群里面的单位元对应群范畴里面的 1_x 单位态射,群元素之间的乘法运算对应态射之前的映射。

定义两个群范畴 C 和 D,他们的对象分别是 x_1 和 x_2 ,他们之前存在的函子定义为 F,很自然地 F 对对象的作用只能是 $F(x_1)=x_2$,所以我们主要关注问题是 F 对态射的作用,首先对 1_x ,我们有 $F(1_x)=1_{F(x)}$,即 1_{x_1} 对应 1_{x_2} 。另外还必须要求对任意态射 $f\in F$ 有 F(dom(f))=dom(F(f)) 和 F(cod(f))=cod(F(f)),根据前面的群范畴的定义,我们知道态射 f 的 domain 和 codomain 是相等的,所以我们有 $F(dom(f))=dom(F(f))=cod(F(f))=F(cod(f))=x_2$,这个要求是比较 trivial 的,最后我们要求如果态射 f 和 g 在 G 里面如果可以复合,则 G 是

Example 1.40. 函子 $F: C \to D$ 并不一定会诱导出 D 的子范畴.

定义一个顺序范畴 C = 2, 除了 identity morphism 之外只有一个 morphism:

$$0 \xrightarrow{f} 1.$$

所以范畴 C 里面有三个态射 $1_0,1_1,f$,然后我们再构造一个只含一个 object 的范畴 D, 里面存在一个 endomorphism g:

$$x \xrightarrow{g} x$$
.

且 gg 不等于 1_x 和 g, 这很容易办到,例如 $x=\{1,2,3\}$ 在 Set 中,g 表示函数 $1\to 2,2\to 3,3\to 1$, 那么 gg 表示 $1\to 3,2\to 1,3\to 2$, 很显然 gg 不等于 1_x 和 g, 但是还是一个 endomorphism,这也说明 endomorphism 的复合还是 endomorphism.

接着我们来开始构造一个函子 F, 使得 F(0) = F(1) = x, 且

$$F(0_1) = 1_x$$

$$F(1_1) = 1_x$$

$$F(f) = g$$

C 中三个态射有四种复合方式,为了说明 F 是一个函子,还需要证明 F 保留了这四个复合结构

$$F(1_1 \circ 1_1) = 1_x$$

$$F(0_1 \circ 0_1) = 1_x$$

$$F(f \circ 0_1) = g$$

$$F(1_1 \circ f) = g$$

很显然这是 F 的确保持了复合结构,F 的像里面只有 $1_x, g$, gg 是可以复合的,但是 $gg \notin \operatorname{img}_F$,所以函子 F 并没有定义一个子范畴.

Definition 1.41. 前面定义的函子也叫<mark>同变函子</mark>(covariant),那么对应的一个<u>逆变函子</u>(contravariant) 从 C 到 D 为 $F: C^{op} \to D$, 也是由两个映射组成

- 每一个对象 $c \in C$, 对应一个对象 $F_c \in D$.
- 每一个态射 $f: c \to c' \in \mathbb{C}$,对应一个态射 $Ff: Fc' \to Fc \in \mathbb{D}$,所有 Ff 的 domain 和 codomian 分别对应 f 的 codomain 和 domain.

同时也满足两个公理 (functoriality aximos)

- 对任意的 composable morphism $f, g \in C$,则 $Ff \circ Fg = F(g \circ f)$.
- 对任意的 identity morphism $1_c \in C$,则 $F(1_c) = 1_F$.

相对于同变函子来说,f 对应的像 Ff 的箭头反过来了,下面这个图可以很形象的描述。

$$\begin{array}{ccc}
\mathsf{C}^{\mathrm{op}} & \xrightarrow{F} & \mathsf{D} \\
c & \longmapsto & F_c \\
\downarrow^f & & ff \\
c' & \longmapsto & F_{c'}
\end{array}$$

Lemma 1.42. represented functor 如果范畴 C 是 locally small 的,可以用任意一个对象 $c \in C$ 来构造一对 $C \to Set$ 的同变函子和逆变函子:

证明. 首先需要给函子 C(c,-) 和 C(-,c) 的定义,函子 C(c,-) 表示把 $x \in C$ 映射到 $mor(c,x) \in Set$,对偶地,函子 C(-,c) 表示把 $x \in C$ 映射到 $mor(x,c) \in Set$. 对于态射而言,C(c,-) 把态射 $f\colon x\to y$ 映射到 $f_*\colon C(c,x)\to C(c,y)$,对偶形式这里就不累述了,现在要证明他们确实是一个函子.

我们来检验他们是否满足函子的公理,从两个方面出发是否保留了复合结构和单位态射:

定义 C 中两个可复合的态射 $f\colon x\to y, g\colon w\to x$, 我们需要证明 $\mathsf{C}(c,-)(f\circ g)=\mathsf{C}(c,-)(f)\circ \mathsf{C}(c,-)(g)$. 因为 $f\circ g\colon w\to y$, 所以

$$C(c, -)(fg): C(c, -)(w) \rightarrow C(c, -)(y),$$

而 dom $C(c, -)(f) = \operatorname{cod} C(c, -)(g) = C(c, x)$, 所以

$$\mathsf{C}(c,-)(f)\mathsf{C}(c,-)(g)\colon \mathsf{C}(c,-)(w){\rightarrow}\mathsf{C}(c,-)(y),$$

完成我们的证明目标.

对于单位态射而言,我们证明目标是 $C(c,-)(1_x)=1_{C(c,-)(x)}$, 首先对任意的对象 $x\in C,1_x\colon x\to x$, 有

$$\mathsf{C}(c,-)(1_x)\colon \mathsf{C}(c,-)(x){\rightarrow} \mathsf{C}(c,-)(x),$$

对应 1_x^* : $C(c,x) \to C(c,x)$ 表示 post-composition with 1_x , 对任意 $a \in (c,x)$, 1_x^* 把 $a \mapsto 1_x a$, 即 $a \mapsto a$, 所以 $1_{C(c,-)(x)} = 1_{C(c,x)}$, 因为 $1_{C(c,x)}$ 就是把 $a \mapsto a$, 证明目标完成,

最后还需要证明 C(-,c) 是一个逆变函子,利用对偶性质, $C^{op}(c,-)$: $C^{op}\to Set$ 也是一个函子,同时它也是一个逆变函子,自然地 $C^{op}(c,-)=C(-,c)$,证闭.

Definition 1.43. If C is locally small, then there is a two-sided represented functor

$$C(-,-): C^{\mathrm{op}} \times C \to Set.$$

Example 1.44. 函子 $C^{op} \to D$ 和函子 $C \to D^{op}$ 有什么区别? 函子 $C \to D$ 和函子 $C^{op} \to D^{op}$ 又有什么区别?

先给结论都是没有区别的,先证函子 C → D 和函子 C^{op} → D^{op} 没有区别,定义 F 为 C → D 的函子,即 F 满足对 $f\colon x\to y$ 和 $g\colon w\to x$ 有 $F(f\circ g)=F(f)\circ F(g)$,C^{op} 和 C 里面的对象是相同的,态射的箭头转向,即 $f\colon y\to x$ 和 $g\colon x\to w$,把 F 作用在它们上 $F(g\circ f)=F(g)\circ F(f)$ 也是成立的,其中 $F(g)\in \mathsf{D}^{\mathrm{op}}$,所以两个函子没有区别。

下面再用一个小 trick $(C^{op})^{op}=C$,再用一下上面已经证明的结论 $C^{op}\to D$ 等价为 $(C^{op})^{op}\to D^{op}$,即 $C\to D^{op}$ 。

设 $F: A \to B, G: B \to C$ 是函子, 定义 $GF: A \to C$ 使得对 A 中的任意一个对象 A,

$$A \mapsto G(F(A))$$

对 A 中的任意一个态射 $f: A \to B$,

$$(f\colon A\to B)\mapsto (G(F(f))\colon G(F(A))\to G(F(b)))$$

则 GF 是一个函子。

很自然地,因为函子可以进行复合运算,那么是否存在一个以所有范畴为对象,函子为态射的范畴?但是遗憾的是两个范畴之间的函子的全体未必是一个集合。但是我们把目光限制在所有小范畴上时,我们的确可以得到一个以所有小范畴为对象,以小范畴之间函子为态射的范畴(Cat)

Definition 1.45. 设 $F: C \to D$ 是一个函子,如果存在函子 $G: D \to C$ 使得 $GF = 1_C$,则称 F 是范畴 C 到范畴 D 的一个同构 (isomorphism).

Annotation 1.46. isomorphism of categories 实际就是在说明两个 categories 之间的 objects 和 morphisms 都是一一对应的.

Definition 1.47. 对任意的两个范畴 C 和 D, 他们的<mark>积</mark>(product) 是一个新范畴 C × D:

- 对象是有序对 (c,d), 其中 $c \in C$ 中的一个对象, d 是是 D 的一个对象.
- 态射也是有序对 $(f,g):(c,d)\to(c',d')$, 其中 $f:c\to c'\in C,g:d\to d'\in D$.

Definition 1.48. 给定范畴 C₁, C₂, D, 一个bifunctor表示为:

$$F \colon \mathsf{C}_1 \times \mathsf{C}_2 \to \mathsf{D}$$

这个函子的 domain 是两个范畴的积.

Definition 1.49. 射影函子是一个特殊的 bifunctor, 其定义为

$$P_{\mathsf{C}} \colon \mathsf{C} \times \mathsf{D} \to \mathsf{C}, (A, B) \mapsto A, (f, g) \mapsto f$$

 $P_{\mathsf{D}} \colon \mathsf{C} \times \mathsf{D} \to \mathsf{D}, (A, B) \mapsto B, (f, g) \mapsto g$

Lemma 1.50. 射影函子的万有性质 对任意的范畴 ε 及函子 $R: \varepsilon \to \mathsf{C}$ 和 $T: \varepsilon \to \mathsf{D}$,存在唯一的函子 $F: \varepsilon \to \mathsf{C} \times \mathsf{D}$ 使得 $P_\mathsf{C}F = R, P_\mathsf{D}F = T$,即下面交换图表示

$$\begin{array}{ccc}
C \times D & \xrightarrow{P_C} & C \\
\downarrow^{P_D} & & & R \\
D & & & \varepsilon
\end{array}$$

Example 1.51. 给定两个函子 $F: D \rightarrow C$ 和 $G: E \rightarrow C$, 可以构造一个逗号范畴 (comma category) $F \downarrow G$:

- 1. objects are triples (d, e, α) where $d \in D$, $e \in E$, and $\alpha : F(d) \to F(e)$ is a morphism in C, and and whose
- 2. morphisms from (d_1,e_1,α_1) to (d_2,e_2,α_2) are pairs (β,γ) , where $\beta:d_1\to d_2$ and $\gamma:e_1\to e_2$ are morphisms in D and E, repsectively, such that $\alpha_2\circ F(\beta)=$

$$\begin{array}{ccc} F(d_1) & \xrightarrow{\alpha_1} G(e_1) \\ F(\beta) & & \downarrow G(\gamma) \\ F(d_2) & \xrightarrow{\alpha_2} G(e_2) \end{array}$$

$$f'F(h) = G(k)f$$

同时定义了一对射影函子

- 1. there is a bifunctor $H_D: F \downarrow G \to D$ which sends each object (d, e, α) to d, and each pair (β, γ) to β ;
- 2. there is a bifunctor $H_E: F \downarrow G \to E$ which sends each object (d, e, α) to e, and each pair (β, γ) to γ .

首先我们要证明逗号范畴它确实是一个范畴,但这个范畴的出现就看起来非常突兀,逗号范畴提供观察 morphism 的另外一种视角. 逗号范畴里面的态射统一用 $(h: d \rightarrow d', k: e \rightarrow e')$ (f, f') 表示,后面的括号内容特殊标识态射的 domain 和 codomain。

要说明它是一个范畴,首先我们定义它每个对象的单位态射和态射复合:对于任意一个对象 (d, e, f) 简写为 c,那对应的单位态射,我们定义为

$$\mathbf{1}_{c}=\left(\mathbf{1}_{d},\mathbf{1}_{e}\right)\left(f,f\right)$$

其中 $\mathbf{1}_d$ 和 $\mathbf{1}_e$ 分别为 d 和 e 的单位态射,很自然的下面正方形交换

$$\begin{array}{c|c} Fd & \xrightarrow{f} Ge \\ F1_d & & \downarrow G1_e \\ Fd & \xrightarrow{f} Ge \end{array}$$

 1_c 的 domain 和 codomain 都是 (d, e, f)

再定义态射复合,对于两个形如

$$(h: d \rightarrow d_1, k: e \rightarrow e_1) (f, f_1)$$
 and $(h: d_1 \rightarrow d_2, k: e_1 \rightarrow e_2) (f_1, f_2)$

表示为

$$\alpha \colon (d,e,f) {\to} (d_1,e_1,f_1) \text{ and } \beta \colon (d_1,e_1,f_1) {\to} (d_2,e_2,f_2).$$

 α 和 β 的复合表示为

$$\beta \alpha = (h'h: d \rightarrow d_2, k'k: e \rightarrow e_2) (f, f_2)$$

用交换图表示为

$$\begin{array}{c|c} Fd \overset{f}{\longrightarrow} Ge \\ \downarrow^{Fh} & \downarrow^{Gk} \\ Fd_1 \overset{f_1}{\longrightarrow} Ge_1 \\ \downarrow^{Fh'} & \downarrow^{Gk'} \\ Fd_2 \overset{f_2}{\longrightarrow} Ge_2 \end{array}$$

两个正方形交换图拼成了一个长方形交换图,也可以简化为一个正方形

$$\begin{array}{c|c} Fd \overset{f}{\longrightarrow} Ge \\ \downarrow Fh'Fh & \downarrow Gk'Gk \\ Fd_2 \overset{f_2}{\longrightarrow} Ge_2 \end{array}$$

完成了单位态射和态射复合的定义,现在需要证明单位态射左右消去律(其实就是证明我们构造的单位态射确实是单位态射)和态射复合的结合性。

用 α 表示态射 $(h: d \rightarrow d', k: e \rightarrow e')$ (f, f') 其中的 domain 和 codomain 分别表示 c 和 c', 先证明 $\alpha 1_x$:

$$\begin{split} \alpha \mathbf{1}_{c} &= \left(h \mathbf{1}_{d}, k \mathbf{1}_{e}\right) \left(f, f'\right) \\ &= \left(h, k\right) \left(f, f'\right) \\ &= \alpha. \end{split}$$

接着证明 $1_{c'}\alpha$:

$$\begin{split} \mathbf{1}_{c'}\alpha &= \left(\mathbf{1}_{d'}h,\mathbf{1}_{e'}k\right)(f,f') \\ &= \left(h,k\right)(f,f') \\ &= \alpha. \end{split}$$

最后证明态射的结合性,这里定义三个态射 α,β 和 γ 分别表示 $(h:d\to d_1,k:e\to e_1)$, $(h_1:d_1\to d_2,k_1:e_1\to e_2)$ 和 $(h_2:d_2\to d_3,k_2:e_2\to e_3)$:

$$\begin{split} (\gamma\beta)\alpha &= ((h_2h_1),(k_2k_1))(f_1,f_3)\alpha \\ &= ((h_2h_1)h,(k_2k_1)k)(f,f_3) \\ &= (h_2(h_1h),k_2(k_1k))(f,f_3) \\ &= \gamma((h_1h),(k_1k))(f,f_2) \\ &= \gamma(\beta\alpha). \end{split}$$

我们已经证明了逗号范畴确实是一个范畴,接下来我们定义两个函子 dom: $F \downarrow G \to D$ 和 cod: $F \downarrow G \to E$, 还是从 $F \downarrow G$ 中的对象和态射出发:

$$\begin{split} \operatorname{dom}\left(d,e,f\right) &= d,\operatorname{dom}\left(h,k\right)\left(f,f'\right) &= h \\ \operatorname{cod}\left(d,e,f\right) &= e,\operatorname{cod}\left(h,k\right)\left(f,f'\right) &= k. \end{split}$$

有了定义之后还是和上面一样证明这两个函子确实是函子,这里我就不累述了,直接给出单位态射和态射 复合结构的保持:

$$\mathrm{dom}\,(1_d,1_e)\,(f,f) = 1_d, \mathrm{cod}\,(1_d,1_e)\,(f,f) = 1_e$$

和

$$\operatorname{dom}(\beta\alpha) = \operatorname{dom}(h'h, k'k) (f, f_2) = h'h = \operatorname{dom}\beta\operatorname{dom}\alpha$$
$$\operatorname{cod}(\beta\alpha) = \operatorname{cod}(h'h, k'k) (f, f_2) = k'k = \operatorname{cod}\beta\operatorname{cod}\alpha.$$

Example 1.52. 我们来看 comma category 的一个特殊例子切片范畴 (slice category) c/C 和 C/c, 其中 c is object of C. 以 c/C 为例.

- 1. objects are morphisms f of C such that dom(f) = c;
- 2. morphisms from $f: x \to c$ to $g: y \to c$ are diagram

which $h: x \to y$ is morphism of C.

上面同时列出了 comma category 的交换图,用于解释 slice category 为什么是一个特殊的 comma category $F \downarrow G$. 因此需要将 comma category 交换图里面四个箭头变成三个箭头并且固定 c. 首先我们想办法去掉箭头F(h),限制 D 是一个 trivial category(only with \bullet and 1_{\bullet}),同时 $F(\bullet)=c$,则

$$c \xrightarrow{f} G(e)$$

$$\downarrow c \xrightarrow{f'} G(e)'$$

显然这里 $f' \circ 1_c = f'$, 我们将它变成一条对角线

$$\begin{array}{c}
c \xrightarrow{f} x \\
\downarrow^{1_c} \downarrow & \downarrow^{f'1_c} \downarrow^{k} \\
c \xrightarrow{f'} y
\end{array}$$

即马上得到我们希望的 slice category c/C.

Example 1.53. Conj: Group→Set 是一个函子, Conj 作用在单个群上表示群共轭等价类的集合, 在群里面两个元素如果是共轭的,表示为存在一个 n 使得 $a=nbn^{-1}$ 成立,则称 a 和 b 共轭,很容易证明这个共轭关系是一个等价关系。当把 Conj 作用在 the category of groups 上时:

- 对任意的群 s,Conj $s = \hat{s}$
- 对任意的群同态 $f: s \to t$, Conj $f: \hat{s} \to \hat{t}$ 对任意的 $[x] \in \hat{s}$, Conj f([x]) = [f(x)]

为了证明 Conj 确实可以扩展到一个函子,得说明几个东西,如果存在一个群同态 $f: s \to t, a, b \in s$,且 a 和 b 共轭,那么存在一个 n,使得 $a = nbn^{-1}$

$$f(a) = f(nbn^{-1}) = f(n)f(b)f(n^{-1}) = f(n)f(b)f(n)^{-1}$$

所以群同态是保留元素共轭结构的,这说明如果 [a] = [b],则 [f(a)] = [f(b)],上面 Conj f 是 well-defined。 还是老步骤,需要说明 indentity 和 composition 的保留

• 对应单位态射对任意的群 s, 对象 $x \in s$

$$\operatorname{Conj} 1_s([x]) = [1_s(x)] = [x] = 1_{\hat{s}}([x]) = 1_{\operatorname{Conj} s}([x]).$$

这个证明感觉很迷,感觉还是要从消去律出发,但是取的是任意的x似乎也能说明问题 $Conj 1_s = 1_{Conj s}$.

• 让 f 和 g 表示两个可复合的态射 $fg,[x] \in dom(f)$

$$\operatorname{Conj} g \operatorname{Conj} f([x]) = \operatorname{Conj} g([f(x)]) = [g(f(x))] = [gf(x)] = \operatorname{Conj} (gf([x])).$$

Naturality

Definition 1.54. 设 C 与 D 是两个范畴,给定两个 functor $F: C \to D$ 与 $G: C \to D$,一个自然变换(natural transformation) $\alpha: F \Rightarrow G$ 由满足下述条件的 morphisms 组成:

- For every object X in C, there is a morphism $\alpha_X : F(X) \to G(X)$ between objects of D. The morphism α_X is called the component of α at X.
- Components must be such that for every morphism $f: X \to Y$ in C, we have bleow commutative diagram

$$F(X) \xrightarrow{\alpha_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\alpha_Y} G(Y)$$

注意交換图里面的所有态射都属于 D, 如果自然变换 $\alpha: F \to G$ 满足对任意的 $c \in \text{ob C}$ 对应的 $\alpha_c: F(c) \to G(c)$ 都是一个 isomorphism,则称 α 是一个自然同构(natural isomorphism).

Annotation 1.55. 这个自然变换的定义看起来还是有一些抽象,注意这些 component arrows 都是目标范畴的态射,所以自然变换可以形象的表示为

$$\alpha \colon \operatorname{ob} \mathsf{C} \to \operatorname{mor} \mathsf{D}.$$

一个自然变换可以理解为两个函子之间 morphism, 最重要是理解上述交换图是如何定义这个 morphism.

Lemma 1.56. natrual transform composition 设 $F, G, H: \mathsf{C} \to \mathsf{D}$ 和 $T: \mathsf{D} \to \mathsf{C}$ 是函子, $\alpha: F \to G, \beta: G \to H$ 是自然变换,则

• $\beta\alpha \colon F \to H \colon c \mapsto (F(c) \xrightarrow{\beta_c \alpha_c} H(c))$ 是一个自然变换

$$F_{c} \xrightarrow{\alpha_{c}} G_{c} \xrightarrow{\beta_{c}} H_{c}$$

$$\downarrow^{Ff} \qquad \downarrow^{Gf} \qquad \downarrow^{Hf}$$

$$F_{c'} \xrightarrow{\alpha_{c'}} G_{c'} \xrightarrow{\beta_{c'}} H_{c'}$$

- $\alpha T \colon FT \to GT \colon c' \mapsto (FT(c') \xrightarrow{\alpha_{T(c')}} GT(c'))$ 是一个自然变换
- $T\alpha\colon TF\to TG\colon c\mapsto (TF(c)\xrightarrow{T(\alpha_c)}TG(c))$ 是一个自然变换

上面这个第一个结论是一个很显然的结论,两个交换图拼在一起还是一张交换图,所以自然变换之间是可以进行复合运算的,特殊地,每个函子 F 都存在一个自身到自身单位自然变换 $1_F\colon F\to F$,其实除了上面第一个结论之外还有两个 αT 和 $T\alpha$ 函子和自然变换的复合我没有看懂,似乎 domain 和 codamin 都是函子复合。

如果 C 和 D 都是小范畴,则以范畴 C 到范畴 D 的所有函子为对象,以自然变换为态射可以形成一个范畴 [C,D], 称为函子范畴.

Example 1.57. 设 $P: \mathsf{Set} \to \mathsf{Set}$ 是幂集函子,定义为

- 1. 对任意的 object $A \in \mathsf{Set}$,有 $FA = \mathcal{P}(A)$.
- 2. 对任意的 morphism $f: A \rightarrow B$, 有 $Ff: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$.

它和单位函子 1_{Set} 构成一个自然变换, 其对应的交换图为

$$\begin{array}{c|c} A & \xrightarrow{\beta_A} & \mathcal{P}(A) \\ \downarrow & & \downarrow \\ B & \xrightarrow{\beta_B} & \mathcal{P}(B) \end{array}$$

其中 β_A 表示一个 morphism,即集合上的一个映射: $x \in A$ 有 $x \mapsto \{x\}.$

Equivalence of categories

Definition 1.58. 设 $F: C \to D$ 是一个函子,如果存在函子 $G: D \to C$ 及自然同构 $\alpha: 1_C \to GF$ 和 $\beta: 1_D \to FG$,则 称函子 F 是一个等价(equivalence)

$$\begin{array}{cccc} c & \xrightarrow{\alpha_c} & GF(c) & & d & \xrightarrow{\beta_d} & FG(d) \\ f \downarrow & & \downarrow_{GF(f)} & & g \downarrow & & \downarrow_{FG(g)} \\ c' & \xrightarrow{\alpha_{c'}} & GF(c') & & d' & \xrightarrow{\beta_{d'}} & FG(d) \end{array}$$

如果存在等价函子 $F: C \to D$, 则称范畴 C 与范畴 D 是等价的范畴 (equivalent categories)。 如果范畴 C 和范畴 D^{op} 等价,则称 C 与 D 是对偶等价的范畴 (dual equivalent categories)。

由于函子保持对象的同构,很容易证明范畴的等价构成了范畴之间的一个等价关系。回忆两个范畴同构的概念是指两个范畴具有完全相同的结构,但是实际应用中我们并不需要如此强的条件,等价范畴是利用自然变换给出范畴之间一种较弱的相同性。

Definition 1.59. 定义一个函子 $F: C \rightarrow D$

- 如果对任意的 $x,y \in C$, 给定的 $C(x,y) \to D(F(x),F(y))$ 映射是一个满射,则这个函子是**局部满**, **完全的**, **完满的** (full)
- 如果对任意的 $x,y \in C$, 给定的 $C(x,y) \to D(F(x),F(y))$ 映射是一个单射,则这个函子是**局部单,忠实的** (faithful)
- 如果对任意的对象 $d \in D$, 都有一个对象 $c \in C$, 使得 F(c) 与 d 同构,则这个函子是**稠密的** (essentially surjective on objects)

注意 full 和 faithful 是相对于两个 parallel morphism $f,g:X \rightrightarrows Y$ 在 functor 下作用而言的,所以它们都是局部条件(local condition)。在局部条件上再增强一下,如果一个函子是**嵌入**(embedding)是指如果一个faithful funtor 函子,且对对象的作用也是单射,这种情况下,函子的 domain 范畴其实就是 codomain 范畴的一个子范畴,就把局部条件上升为了全局条件作用在所有箭头上。

Theorem 1.60. 如果一个函子是等价的,当且仅当这个函子是 faithful, full, essentially surjective on objects(dense)。

在证明这个定理之前,需要提出一个小 lemma

Lemma 1.61. 对于态射 $f: a \rightarrow b$ 和同构 $a \cong a', b \cong b'$, 可以唯一确定态射 $f': a' \rightarrow b'$, 等价地下面四个交换图

从这几个交换图上我们已经很容易构造出 f' 了,简单描述一下,定义 α : $a \rightarrow a'$ 和 β : $b \rightarrow b'$,反之它们的逆用 α^{-1} 和 β^{-1} 表示。第一个最为直观 $f' = \beta f \alpha^{-1}$

开始证明定理 3.3。(\Longrightarrow) 给定 $F: \mathsf{C} \to \mathsf{D}$, $G: \mathsf{D} \to \mathsf{C}$, $\eta: 1_{\mathsf{C}} \cong GF$, $\mu: 1_{\mathsf{D}} \cong FG$ 定义了一个范畴间的等价关系。对于任意的 $d \in D$,有 $\mu_d: FG(d) \cong d$,取 c = G(d),显然 F 是稠密的。再考虑两个并行的态射 $f,g: c \rightrightarrows c'$,如果 F(f) = F(g),则 f 和 g 同时满足下面交换图

$$c \xrightarrow{\qquad \gamma_c \qquad} GF(c) \\ f \ or \ g \downarrow \qquad \qquad \downarrow GF(f) = GF(g) \\ c' \xrightarrow{\qquad \cong \qquad} GF(c')$$

根据 lemma3.4, $c \to c'$ 是唯一确定的,所有 f = g, 因此 F 是一个单射. 对称地,考虑 $f \colon d \to d$ 和同构 μ_d , $\mu_{d'}$, 可以唯一确定 $k \colon G(d) \to G(d') \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$

$$d \xrightarrow{\stackrel{\mu_d}{\cong}} FG(d)$$

$$f \downarrow \qquad \qquad \downarrow^{Fk}$$

$$d' \xrightarrow{\stackrel{\cong}{\mu_{d'}}} FG(d')$$

, 所以 F 是满射。

(⇐) 这个方向证明,我在怎么用 dense 这个性质的时候想了很久,最后突然发现一句"由选择公理"就完了,就完了,是的,你没有听错...

任取 $d \in D$,由 dense 性质和选择公理,是可以构造一个 $\mu_d \colon FG(d) \cong d$,在 dense 下选一个 c,让 G(d) = c. 对象映射处理好了,就可以来构造一个交换图了

$$FG(d) \xrightarrow{\mu_d} d$$

$$FG(g) \downarrow \qquad \qquad \downarrow^g$$

$$FG(d') \xrightarrow{\mu_{d'}} d'$$

任取范畴 D 中一个态射 $g: d \rightarrow d', \mu_d$ 和 μ'_d 都是同构,所以可以上面的 lemma 可以唯一确定一个 FGg。因为 F 是 faithful,所以换个角度看 $G(d) \rightarrow G(d')$ 也是唯一的,现在 $\mu: FG \Rightarrow 1_D$ 里面所有的 component 都是可以确定一个交换图的,且都是同构的,但是这里有一个问题,我们用选择公理弄了上面这样一个 G 出来,我们并没有证明它确实是一个函子,还少一步验证它对态射作用,首先是单位态射,我们有下面这个交换图

还是由前面的 lemma 和 F 上对态射的单射性质,这里有 $G(1_d)=1_{G(d)}$,相似地,再给一个态射 $f':d'\to d''$,我们有下面的交换图

这里有 $G(g'g) = G(g') \cdot G(g)$.

现在已经完成了前一半的证明,接下来想一下如何构造 $\eta\colon GF\Rightarrow 1_c$. 并不能直接来构造,尝试构造下面的交换图

$$F(c) \xrightarrow{F\eta_c} FGF(c) \xrightarrow{\mu_{F(c)}} F(c)$$

$$\downarrow^{Ff} \qquad \qquad \downarrow^{Ff}$$

$$F(c') \xrightarrow{F\eta_{c'}} FGF(c') \xrightarrow{\mu_{F(c')}} F(c')$$

声明一下其中的几个定义,态射 $f\colon c\to c'$,两个 component $\eta_c\colon c\to GF(c)$, $\eta_c'\colon GF(c)\to c$,把 $F\eta_c$ 定义为 $\mu_{F(c)}^{-1}$,这样做的目的是使得 $F\eta_c\cdot F\eta_c'=F(\eta_c\eta_c')=\mu_{F(c)}\mu_{F(c)}^{-1}=1_{F(c)}=F(1_c)$,再反过来做一次就得到了同构 u.

再看这个大长方形和两个小正方形的交换性,大长方形由上述定义交换,右边这个小正方形因为 μ 是个自然同构,所以也是交换的,言下之意左边这个小正方形也是交换的。这两个小正方形带来的作用是什么?左边这个交换可以得到

$$FGFf \cdot F\eta_c = F(GFf \cdot \eta_c) = F(\eta_{c'} \cdot f) = F\eta_{c'} \cdot Ff$$

再由 F 的 faithful 性质,即有 $GFf \cdot \eta_C = \eta_{c'} \cdot f$, 这个等式就表示下面的图交换

$$c \xrightarrow{\eta_c} GF(c)$$

$$\downarrow f \qquad \qquad \downarrow GFf$$

$$c' \xrightarrow{\eta'_c} GF(c')$$

将近拖了半个月的证明,终于证完了,选择公理的应用和间接构造自然同构,还是得在细细想想...

The art of the diagram chase

Definition 1.62. (一个不那么 offical 的定义) A diagram is typically presented informally as a directed graph of morphism in a category. In this informal presentation, the diagram commutes if any two paths of composable arrows in the directed graph with common source and target have the same composite.

Definition 1.63. A diagram in a category C is a functor $F : J \to C$ whose domain, the indexing category, is a small category.

Annotation 1.64. 为什么 diagram 是一个 functor 呢? 如果我们抹去一个常见 diagram 上面的关于 objects 和 morphism 注解它会变 directed graph

然后我们把它和正常的 diagram 放在一起

然后我们将第一个 directed graph 视为 shape of that diagram,同样也其. 特别地如果将 J 看做一个 finite preoder,我们给其中三个点加上表示一个 preorder 必要的信息

注意里面 1 这里有一个环表示 $1 \le 1$,其它两个点也有,只是省略了. 这里的关系就很天然了,其中 $1 \le 1$ 可以对应上 identity $1_X: X \to X$,而 $1 \le 2, 2 \le 3 \Rightarrow 1 \le 3$ 对应上 $g: X \to Z, h: Z \to Y \Rightarrow f: X \to Y$,完全可以让我们建立起一个 functor,左图关于 functor 的 image 不多不少就是 diagram,同时还是 commutative 的.

同时 functor 建立的关系能让 directed graph 上的 composition 同时保持在我们当且探讨的 category 上. 这样我们在 diagram 上直接操作来描述一些东西,这样方法我们称为 diagram chasing.

Definition 1.65. An object $I \in C$ is initial if for every $X \in C$ there is unique morphism $I \in X$. Dually, an object $T \in C$ is terminal if for every $X \in C$ there is a unique morphism $X \to T$.

Example 1.66. The empty set is an initial object in Set and nay singleton set is terminal.

Lemma 1.67. If $U: C \to D$ is faithful, then any diagram in C whose image commutes in D also commutes in C.

证明. 如果给定 C 上的某个 diagram, 和它关于 U 的 image diagram

assuming $U(f) = U(h) \circ U(g)$, according functor preserve composition relation we have $U(f) = U(h \circ g)$, and U is faithful, finally we can got $f = h \circ g$.

Universal Properties, Respresentability, and the Yoneda Lemma

Representable functors

Definition 2.1. An object I in a category C is initial if and only if the functor $C(I, -) : C \to Set$ is naturally isomorphic to the constant functor $*: C \to Set$ that sends every object to the singleton set.

Definition 2.2. An object T in a category C is terminal if and only if the functor $C(-,T):C^{op}\to Set$ is naturally isomorphic to the constant functor $*:C^{op}\to Set$ that sends every object to the singleton set.

Annotation 2.3. 如果 I 是 C 的 initial object,那么显然对于任意的 $X \in C$,C(I,X) 都是一个 singleton. 对偶地,如果 T 是 C 的 terminal object,那么显然对于任意 X,C(X,T) 都是一个 singleton. 就2.1来简单说明一下.

其中 • 表示 constant functor 中 fixed singleton. 很显然 α_X 和 α_Y 都是 isomorphism.

Definition 2.4. A covariant or contravariant functor F from a locally small category C to Set is representable if there is an object $X \in X$ and a natural isomorphism between F and the functor of appropricate variance represented by X, in which case one says that the functor F is represented by object X.

Definition 2.5. A representation for a functor F is a choice of object $X \in C$ together with a specified natural isomorphism $C(X, -) \cong F$, if F is covariant, or $-, c \cong F$, if F is contravarint.

Yoneda lemma

Lemma 2.6. For any functor $F: C \to Set$, whose domain C is locally small and any object $A \in C$, there is a bijection

$$\operatorname{Hom}(\mathsf{C}(A,-),F) \cong F(A)$$

证明. 注意 $\operatorname{Hom}(\mathsf{C}(A,-),F)$ 表示是 $\mathsf{C}(A,-)$ 和 F 之间所有 natural transformations. 对任一 natural transformation $\alpha:\mathsf{C}(A,-)\to F$ 考虑一个特殊情况

$$C(A,A) \xrightarrow{\alpha_A} F(A)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{F(f)}$$

$$C(A,X) \xrightarrow{\alpha_X} F(X)$$

显然有 $\alpha_A(1_A) \in F(A)$. 因此我们构造一个 map

$$\Phi : \operatorname{Hom}(\mathsf{C}(A, -), F) \to F(A) \quad \Phi(\alpha) = \alpha_A(1_A).$$

下面来说明它是 bijiection,为此我们要构造一个关于 Φ 的 inverse $\Psi: F(A) \to \operatorname{Hom}(\mathsf{C}(A,-),F)$,即我们对每一个 $a \in F(A)$ 都需要构造一个 natrual transformation $\Psi(a): \mathsf{C}(A,-) \to F$. 我们还是先用类似于上面交换图,此时的 component $\Phi(a)_A$ 和 C 上的 $f: A \to X$

$$C(A,A) \xrightarrow{\Psi(a)_A} F(A)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{F(f)}$$

$$C(A,X) \xrightarrow{\Psi(a)_X} F(X)$$

因为 Φ 和 Ψ 互为 inverse,那么根据 $\Phi(\alpha)=\alpha_A(1_A)$,将其中 α_A 换成 $\Psi(x)_A$,则有 $\Psi(x)_A(1_A)=x$. 同时 1_A 上面交换图流动则有

$$[\Psi(a)_X](f) = [F(f)](a)$$

很显然上面这个等式就完全地定义了 component $\Phi(a)_X$,因为 f 是任意的. 定义了所有 component,那么构造 natural transformation $\Psi(a)$ 也就确定了.

还需要将 f 推广至 $g:X\to Y$,用于证明 $\Phi(a)$ 确实是一个 natural transformation. 即要证明下图交换

$$C(A,X) \xrightarrow{\Psi(a)_X} F(X)$$

$$\downarrow^{g_*} \qquad \qquad \downarrow^{F(g)}$$

$$C(A,Y) \xrightarrow{\Psi(a)_Y} F(Y)$$

取 $f \in C(A, X)$, 那么左下路径为

$$[\Psi(a)_Y](g\circ f)=[F(g\circ f)](a).$$

右上路径为

$$[F(g)]([\Psi(a)_X](f)) = [F(g)]([F(f)](a)).$$

这里根据 functor 的定义有 $F(g \circ f) = F(g) \circ F(f)$,因此上图是交换的.

最后我们来验证一下 Φ 和 Ψ 确实互为 inverse. 前面我们已经有了 $\Phi\Psi(a)=a$. 下一步还需要证明 $\Psi\Phi(\alpha)=\alpha$, 即 $\Psi(\alpha_A(1_A))=\alpha$, 要证明两个 natural transformation 相同,那么就是要证明所有 component 都是相同的,即

$$[\Psi(\alpha_A(1_A))_X](f) = \alpha_X(f)$$

等号左边有

$$[\Psi(\alpha_A(1_A))_X](f) = [F(f)](\alpha_A(1_A))$$

直接看我们引出的一个交换图,很显然对应上了两条路径

$$[F(f)]((\alpha_A)(1_A)) = \alpha_X(f). \tag{1}$$

最终我们证明了 Φ 和 Ψ 互为 inverse.

Corollary 2.7. Under the definition of Φ in Yoneda lemma, given a natural transformation $\beta: F \to G$ and a morphism $f: A \to B$ in C, we have two commutative diagram

its called naturality in both functor and object.

证明. 首先做一些必要的解释, 给定 $\alpha \in \text{Hom}(C(A, -), F)$

- β_* 是指 α post-composition with β , 即 $\beta \circ \alpha$.
- $(f^*)^*$ 是指 α 的每个 component pre-composition with f^* , 设 $g: X \to Y$ in C, 即

这样我们就可以构造从 α 到关于 C(B,-) 和 F natural transformation.

先证第一个 naturality in functor, 左下路径根据 Φ 的定义 $\Phi_G(\beta \circ \alpha) = (\beta \circ \alpha)_A(1_A)$. 右上路径有 $\beta_A(\Phi_F(\alpha)) = \beta_A(\alpha_A(1_A))$,因此是交换的.

再证第二个 naturality in object, 左下路径为 $\Phi_B(\alpha\circ f^*)=(\alpha\circ f^*)_B(1_B)$, 右上路径为 $[F(f)]((\alpha_A)(1_A))$. 这 里需要看一下 component $(\alpha\circ f^*)_B$ 内部是啥,即

$$C(B,B) \xrightarrow{f^*} C(A,B) \xrightarrow{\alpha_B} F(B)$$

因此 $(\alpha \circ f^*)_B(1_B) = \alpha_B(f)$,使用一下结论1即有 $[F(f)]((\alpha_A)(1_A))$,因为这里的 X 是任意的.