UNIDAD Nº 1

Bicondicional

Dadas dos proposiciones \mathbf{p} y \mathbf{q} , en ese orden , puede definirse una nueva proposición al unir ambas con las palabras

"Si y solo si" queda definida una nueva proposición que recibe el nombre de bicondicional.

El bicondicional se simboliza $\ p \Longleftrightarrow q$.

La tabla de valores de verdad del bicondicional es

p	q	p⇔q
1	1	1
1	0	0
0	1	0
0	0	1

El diagrama de Venn del bicondicional es toda la zona rayada.

Tautología

Una proposición compleja o compuesta es una **Tautología**, si y solo si, cualesquiera sean los valores de verdad de las proposiciones elementales que la componen, **la proposición es siempre verdadera**.

Contradicción

Una proposición compleja o compuesta es una **Contradicción**, si y solo si, cualesquiera sean los valores de verdad de las proposiciones elementales que la componen, **la proposición es siempre falsa**.

Contingencia

Una proposición compleja o compuesta es una Contingencia, si y solo si, no es una Tautología y no es una Contradicción.

Formas Proposicionales

Consideremos la sig. proposición

p = "Chile es un país sudamericano"

En la estructura de una proposición o de una oración , puede establecerse un objeto o un sujeto , sobre el que , en la proposición se dice algo.

En este caso esta oración tiene un sujeto que es Chile y un predicado que es, es un país sudamericano.

En este caso sobre el objeto o sujeto , Chile , se está diciendo algo , que es un país sudamericano.

Si en la proposición p anterior reemplazamos Chile por Egipto también queda definida una nueva proposición , sin importar el valor de verdad de la misma.

q= "Egipto es un país sudamericano"

Si reemplazaramos Chile por la palabra camisa, la oración "camisa es un país sudamericano" no es una proposición.

Podríamos reemplazar el objeto o sujeto considerado por un símbolo indeterminado, por ejemplo la letra "x" y quedaría la expresión

"x es un país sudamericano"

Dado que podemos asignar a x un objeto cualquiera, la llamaremos variable.

En base a todo lo anteriormente enunciado definiremos como forma proposicional a la expresión que se obtiene al tomar una variable como un objeto o sujeto, al que se le atribuye un predicado.

Una forma proposicional no es una proposición , pero dá lugar a una proposición si reemplazamos la variable por un objeto conveniente.

Las formas proposicionales se indican con la notación : $p_{(x)}$, $q_{(x)}$, $r_{(x)}$.

El conjunto de los elementos que transforman una forma proposicional en una proposición recibe el nombre de Dominio (D). Aquellos elementos del Dominio que transforman una forma proposicional en una proposición verdadera definen lo que se denomina Conjunto de verdad (Cv).

En el ejemplo que estamos analizando el Dominio podría ser

D = { Son todos los países del mundo } o

D = { Países de América }

Volvamos al ejemplo : p(x) =" x es un país sudamericano "

Si tomamos como Dominio al conjunto $D = \{$ Son todos los países del mundo $\}$ y modificamos la expresión correspondiente a p(x) anteponiendo la frase : " para todo x " resulta

" para todo x , x es un país sudamericano "

Esta afirmación equivale a decir , todos los países del mundo son sudamericanos , lo cuál de manera evidente resulta una proposición y además falsa.

La frase "para todo x " designa a lo que se llama cuantificador universal y se simboliza " \forall x " .

O sea la frase anterior puede escribirse " $\forall x$, x es un país sudamericano" o bien " $\forall x$: p(x)"

De manera similar , si anteponemos a p(x) la frase , " existe x tal que " queda " Existe x , tal que x es un país sudamericano " Esta afirmación equivale a decir , que existe algún país en el mundo que es sudamericano , lo que evidentemente resulta una proposición y en este caso verdadera.

La frase " existe x " designa a lo que se llama el cuantificador existencial y se simboliza " \exists x " .

En este caso la proposición obtenida se escribe " $\exists x / x$ es un país sudamericano" o bien " $\exists x / p(x)$ ".

Una forma proposicional p(x) se transforma en una proposición si

- a) Reemplazamos la variable x de una forma proposicional por un elemento cualquiera del Dominio.
- b) Si anteponemos a la forma proposicional un cuantificador universal.
- c) Si anteponemos a la forma proposicional un cuantificador existencial.

Tanto " $\forall x : p(x)$ " como " $\exists x / p(x)$ " son proposiciones , por lo tanto tienen asociado un valor de verdad , es decir , pueden ser verdaderas o falsas.

Diremos que la proposición " $\forall x : p(x)$ " es verdadera , si y solo si , el conjunto de verdad de p(x) es el conjunto Universal o Dominio.

Diremos que la proposición " $\forall x : p(x)$ " es falsa , si y solo si , el conjunto de verdad de p(x) no es el conjunto Universal o Dominio.

Diremos que la proposición " $\exists x / p(x)$ " es verdadera , si y solo si , el conjunto de verdad de p(x) tiene al menos un elemento , es decir no es el conjunto vacío.

Diremos que la proposición " $\exists x / p(x)$ " es falsa , si y solo si , el conjunto de verdad de p(x) no tiene elementos , es decir es el conjunto vacío.

Ejemplo

Expresar en lenguaje lógico las sig. proposiciones.

- a) Hay científicos y además hay buenas personas.
- b) Hay científicos y además ellos son buenas personas.
- c) Todos los científicos son buenas personas.
- d) Todos son científicos y buenas personas.
- e) No todos los científicos son buenas personas.

Resolución

En todas las proposiciones se distinguen dos clases de personas

 $p = \{ x / x \text{ es un científico } \}$ $q = \{ x / x \text{ es una buena persona } \}$

Ambas contenidas en el conjunto Universal $U = \{x \mid x \text{ es un ser humano }\}$

a) Hay científicos y además hay buenas personas. Rta: $[\exists x : p(x)] \land [\exists x : q(x)]$

b) Hay científicos y además ellos son buenas personas. Rta : $\exists \ {f x} : \ \left[p(x) \land q(x) \right]$

c) Todos los científicos son buenas personas. Rta : $\forall \ x: [p(x) \Rightarrow q(x)]$

d) Todos son científicos y buenas personas. Rta : $\forall \mathbf{x} : \left[p(\mathbf{x}) \land q(\mathbf{x}) \right]$

e) No todos los científicos son buenas personas. Rta : $-\{ \ \forall \ \mathbf{x} \colon \left[p(x) \Longrightarrow q(x) \right] \}$