Image Classification With CNN

Group - 5

Ahmad - Georg - Matheus - Sofia

Methods (preprocessing) 🗱

- Dataset Used: CIFAR-10
- Reviewed all dataset classes and organized them into training vectors.
- Converted class labels into one-hot encoding for model compatibility.
- Filtered the dataset to include only animal classes
- Remapped class indexes accordingly
- Model Evaluation: Training on animal classes showed no significant overfitting in our experiments.

Sample of the selected classes

Model Evaluation

- Trained models on the animal subset.
- Observed no significant overfitting in experiments
- Evaluated multiple architectures to find best performance

Experiments Overview

We tested multiple CNN-based approaches:

- Simple CNN
- MobileNetV2 (Transfer Learning)
- CNN with Data Augmentation
- ResNet

Each experiment aimed to improve model accuracy and reduce loss.

Image Classification - Simple CNN

Configuration: 10 epochs, batch size 64, Adam optimizer, ReLU & Softmax activation, 4 neuron layers.

Results:

- □ Training Accuracy: 0.6849 | Loss: 8.905□ Validation Accuracy: 0.6835 | Loss: 9.255
- **Observation:** Basic CNN performed reasonably but showed high loss, suggesting room for improvement (possible main causes: underfitting or lack of model depth)

Metrics - Parameters Example:

Hardware / Runtime		Colab GPU (T4)	CPU (TensorFlow oneDNN optimizations, ~8–10 s per epoch → ~4–5 min total)	Colab GPU T4
Activation functions		ReLU / Softmax	ReLU (hidden layers), Softmax (output layer)	Adam
Optimizer	Defined during model compilation (model.compile)	Adam	Adam	adam_opt
Dataset	Defined at data loading (cifar10.load_data())	CIFAR-10	CIFAR-10 (10 classes, 32×32 color images)	
Learning Rate (LR)	Inside optimizer setup (Adam(learning_rate=0.001))	1	1	default 0,001
Epochs	Training configuration (model.fit())	10	30	10
Batch Size	Training configuration (model.fit())	64	64	128
Training Time (min)		around 10 min	4-5 minutes total	30
Loss Function	Defined in model.compile(loss=)	categorical_crossentropy	Categorical Crossentropy	categorical_crossentropy
Final Loss	Last epoch in training log	8.905	~0.64 (train), ~0.87 (val/test)	0,9642
Final Accuracy (Train)	Last epoch in training log	0.6849 (≈68%)	~0.76	0,6431
Validation Loss	Last epoch in training log	9.255	0.87	1.0023
Validation Accuracy	Last epoch in training log	0.6835 (≈68%)	0.71	0,6225
Notes / Comments		Try more epochs (20–25)	Good baseline CNN. Improving with data augmentation, dropout tuning, or learning rate scheduling may raise accuracy above 75%	I used the simple model so I can understand how is done

Image Classification - VGG-Style CNN

Configuration:

45 epochs, batch size 512, Adam optimizer (learning rate = 0.001), ReLU & Softmax activation, 11 convolutional + dense layers

Results:

☐ Training Accuracy: 0.733 | Loss: 1.672

Observation:

The VGG-style CNN showed improved accuracy compared to the simple CNN.

Training was more stable due to batch normalization, but the model still displayed moderate loss — indicating potential for further optimization or regularization.

Image Classification - CNN with Data Augmentation - Early Stopping

Configuration:

50 epochs, batch size 128, Adam optimizer (learning rate = 0.001), ReLU & Softmax activation, 4 convolutional + dense layers

Results:

- ☐ Training Accuracy: 0.8505 (~85%) | Loss: 0.3791 (38%)
- □ Validation Accuracy: 0.6892 (~69%) | Loss: 1.1196

Observation:

Data augmentation helped slightly improve validation performance, and early stopping prevented overfitting.

Image Classification with Resnet

Core Concept

- Addressing Vanishing Gradient: Allows models to learn identity functions.
- Forward Original Inputs: Enables unchanged re-passing of inputs.

Benefits

- **Simplified Learning**: Easier adjustments when function complexity is unnecessary.
- **Stable Gradient**: Enhances training efficiency in deeper networks.
- High Efficiency and Accuracy: Facilitates effective model construction

- Optimizer: Adam optimizer is used with the default learning rate of 0.001.
- Loss Function: The model uses categorical **crossentropy** to compute the loss.
- Learning Rate Scheduler: The learning rate is reduced by a factor of 0.4 if validation loss does not improve over 5 epochs.

Image Classification with Transfer Learning

Configuration:

10 epochs, batch size 128, Adam optimizer (learning rate = 0.001), ReLU & Softmax activation, 4 convolutional + dense layers

Results:

- Training Accuracy: 0.6431 | Loss: 0.9642
- ☐ Validation Accuracy: 0.6225 | Loss: 1.0023

Observation:

Using transfer learning allowed the model to leverage pre-trained features, which improved performance and reduced training time. This approach is particularly useful when working with limited data, and it showed good validation accuracy while learning efficiently.

Winning Model T

Best Model: ResNet

Accuracy: 0.8425 | **Loss:** 0.6126

Quick recap of alternatives:

- Simple CNN
- MobileNetV2 (Transfer Learning)
- CNN with Data Augmentation

Key Observations:

- ResNet outperformed all other models in both accuracy and stability.
- Adding **batch normalization** in simpler CNNs improved training stability and reduced loss, highlighting the importance of normalization in deep learning.

- Residual connections in ResNet improve learning for deeper networks.
- Outperformed simple CNN and augmented CNN.

Recap / Conclusions

- ResNet is the most effective model for CIFAR-10 classification.
- Data augmentation improves generalization but alone is insufficient.
- Batch normalization in simple CNN boosts performance.
- Transfer learning: no good results on the dataset

Challenges

- Overfitting when training on limited subsets of data.
- High loss with simple CNN, even with small architectures.
- Choosing optimal hyperparameters (batch size, learning rate, epochs).

Key Learnings

- Preprocessing (one-hot encoding, normalization) is crucial for CNNs.
- Data augmentation mitigates overfitting but doesn't fully replace model complexity.
- Deep architectures like ResNet handle vanishing gradient and outperform shallow networks.
- Combining batch normalization and advanced architectures yields the best results.

Closing Remarks 羔

Our image classification project demonstrated the **power of deep learning** and the impact of architectural choices on model performance.

Through multiple experiments — from a simple CNN to data augmentation and ResNet — we observed clear improvements in accuracy, stability, and generalization.

The journey showed that:

- Small adjustments like batch normalization and augmentation can make a significant difference.
- ResNet's residual learning architecture remains one of the most reliable methods for image classification.
- Continuous experimentation and fine-tuning are key to achieving high performance in real-world applications.

Final Thoughts

"In deep learning, progress comes not only from deeper models — but from deeper understanding."