Programowanie dynamiczne – Wyznaczanie optymalnej wielkości partii produkcyjnej

Zagadnienie:

Fabryka ma dostarczyć przez n=4 miesiące zadaną ilość q_i [szt] produktu (patrz tab. 3).

- Koszt produkcji zadany jest funkcją g(x) [zł] (tab. 1).
- Koszt składowania zadany funkcją h(y) [zł] wyznaczaną po rozpatrywanym okresie (tab. 2).
- Pojemność magazynu maksymalna Y_{max}=5, minimalna Y_{min}=2
- Stan magazynu na początku y_0 =4, a na końcu y_4 =3.

Wyznacz optymalną wielkość produkcji w każdym miesiącu, minimalizującą sumaryczne koszty.

x_i	$g(x_i)$ [z i]
0	2
1	8
2	12
3	15
4	17
5	20
tab. 1	

y_i	$h(y_i)$ [z l]	
2	1	
3	2	
4	2	
5	4	
tab. 2		

i	$q_{i}[szt]$	
1	4	
2	2	
3	6	
4	5	
tah 3		

Zadanie 1

Rozwiąż metodą PD zagadnienie wyznaczania optymalnej wielkości partii produkcyjnej :

"ręczne" – 3pkt implementacja – 5pkt

- Zadanie obliczeniowe określ (dane własne indywidualne): pojemność magazynu (minimalna, maksymalna), zapotrzebowanie miesięczne, zdolność produkcyjna, koszty produkcji i magazynowania (nieliniowe) - dla n=4 ("ręczne")/6/12 mcy
- Zamieść plik źródłowy (z komentarzami)

Zadanie 2

- Wykonaj obliczenia dla zdefiniowanego zadania pokaż macierz decyzji optymalnych i wartości funkcji dla każdego etapu i rozważanego stanu
- Wyznacz rozwiązanie (strategię optymalna) oraz podaj wartość uzyskanej funkcji celu

Zadanie 3

- Jakie modyfikacje zagadnienia można dodać, aby rozszerzyć i bardziej dostosować model problemu do rzeczywistych uwarunkowań produkcyjnych
- Jaka jest złożoność obliczeniowa algorytmu?

Uwagi:

- Materiały odnośnie sposobu rozwiazywania problemu (wzory) zawiera udostępniony wykład – dla problemu, gdzie jest stałe zapotrzebowanie miesięczne, liniowy koszt magazynowania oraz nie określono minimalnej pojemności magazynu tzn. Y_{min}=0
- Zadanie może też być realizowane w arkuszu kalkulacyjnym
- Jako sprawozdanie wstępne umieścić na UPEL efekt działań z zajęć.
- Sprawozdanie (końcowe) przed terminem kolejnych zajęć