Assignment # 2

(Problem Based Learning)

 $(CLO4 \rightarrow PLO5)$

Digital Image Processing

White Blood Cell Analysis and Classification

Submission Deadline: 13 April 2025

Note: Students should score 50% in OBE specific questions to ensure their accumulated scores towards respective PLOs are above 50%

Introduction

Blood, fluid that transports oxygen and nutrients to cells and carries away carbon dioxide and other waste products. It consists of different types of cells suspended in plasma. These cells play crucial roles in oxygen transport, immune defense, and clotting. Blood is primarily composed of:

- 1. **Red Blood Cells (RBCs)** Responsible for carrying oxygen.
- 2. White Blood Cells (WBCs) Involved in immune response and defense against infections.
- 3. **Platelets** Assist in blood clotting.

Types of White Blood Cells (WBCs)

WBCs are categorized into **granulocytes** and **agranulocytes** based on the presence of granules in their cytoplasm:

- **Granulocytes**: These have visible granules and include Neutrophils, Eosinophils, and Basophils.
- **Agranulocytes**: These have a clear cytoplasm and include Lymphocytes and Monocytes.

In this problem based learning assignment, we focus on classification of **Neutrophils**, **Lymphocytes**, **and Monocytes**, which are identified based on their nucleus shape, size, and cytoplasm characteristics.

Dataset Structure

The dataset consists of two main folders:

- 1. Train Folder
 - Contains five subfolders:

- Neutrophil
- Monocyte
- Lymphocyte
- Eosinophil
- Basophil
- Each subfolder has 100 images captured at 100x magnification.

2. Test Folder

- Contains the same five subfolders (50 images each).
- Used for evaluating model performance.

The data is available at following link

https://drive.google.com/file/d/1ngIbP2j5nDbao81IH2VRa-iQGKIDgneM/view?usp=sharing

Rules for White Blood Cell Classification

Feature	Monocyte	Lymphocyte	Neutrophil	Basophil	Eosinophil
Shape of	Irregular /	Round or slightly	Segmented	Bilobed or S-	Bilobed
Nucleus	Kidney /	oval	Neutrophil: Multi-	shaped	
	horseshoe-		lobed (3-5 lobes)		
	shaped		Band Neutrophil:		
			U-shaped or		
			curved band-like		
			nucleus		
Size of	Large, leaves	Very large,	Moderate-sized, does	Small to	Medium-sized,
Nucleus	space for	occupies most of	not occupy whole cell	medium	not as large as a monocyte
	cytoplasm	the cell			monocyte
Structure	Loosely	Dense, compact	Segmented,	Less condensed	Condensed,
of Nucleus	condensed	chromatin	lobulated with thin	but often	lobulated
	chromatin, less		chromatin strands	obscured by	
	dense			granules	
Cytoplasm	Abundant,	Thin rim of clear	Pale, pinkish		Granulated, bright
	grayish-blue,	or slightly blue	cytoplasm with small	Granulated,	red-orange
	may have	cytoplasm	granules	dense granules covering	granules
	vacuoles			nucleus	
Color of	Light to	Dark purple,	Light purple with	Dark purple	Dark purple
Nucleus	medium purple	well-defined	segmented lobes		
Color of	Light bluish-	Very light blue or	Light pink with fine	Deep blue to	Pink to reddish-
Cytoplasm	gray	nearly invisible	purple granules	purple with	orange due to large granules
				granules	g. s
Example					

Use your knowledge about images and design a solution for this problem. You may consider following:

- Preprocessing Step (To enhance cell appearances)
- Feature Extraction (Extract suitable features from images which may be based on color, texture, gradients etc
- Visualize features (use scatter/box plots to visualize features and see if they have any discriminating power)
- Classification (Apply some conditions/thresholds on features to separate them from one another)

Submission Requirements

You need to submit a report (Word or PDF) against this assignment containing:

- 1. Detailed flow diagram of your solution
- 2. Feature visualizations
- 3. 5 class Confusion matrix
- 4. Tabular results mentioning average per class accuracy

In order to have discussions, we can meet during office hours or feel free to contact through email at usman.akram@ceme.nust.edu.pk