



**Yuming Chen** 

**Bo Feng** 





# Project Overview



- Serious Health Problem
- Rapid & Intensive Treatment
- Complicated Process



- Detection Subtypes(5)
- Multi-class Classification
- InceptionNetV3 & Spark



# Data Information



# **Data Origin**





kaggle www.kaggle.com

**KSNA**° www.rsna.org



19877



|   | id             | label            |
|---|----------------|------------------|
|   | ID_52c205043   | epidural         |
|   | ID_15e6dc40a   | intraventricular |
|   | ID_01a97add4   | intraparenchymal |
|   | ID_9fed7e3db   | subdural         |
|   | ID_903d2ef48   | subdural         |
|   | ID_e0942808d   | epidural         |
|   | ID_d4d31f695   | subdural         |
|   |                | •••••            |
|   | ID_c64f8db24   | subarachnoid     |
|   | $ID_d202babf2$ | subarachnoid     |
| - | ID_9ffd25faa   | subdural         |

# **DICOM**



**0.53MB 512X512** 

| / | Datase | t.file | _meta                              | _   |                                         |
|---|--------|--------|------------------------------------|-----|-----------------------------------------|
|   | (0002, | 0000)  | File Meta Information Group Length | UL: | 176                                     |
|   | (0002, | 0001)  | File Meta Information Version      | OB: | b'\x00\x01'                             |
|   | (0002, | 0002)  | Media Storage SOP Class UID        | UI: | CT Image Storage                        |
|   | (0002, | 0003)  | Media Storage SOP Instance UID     | UI: | 9999.1345638575715201386455629118010580 |
|   | 23921  |        |                                    |     |                                         |
|   |        |        | Transfer Syntax UID                | UI: | Explicit VR Little Endian               |
|   |        |        | Implementation Class UID           |     | 1. 2. 40. 0. 13. 1. 1. 1                |
|   | (0002, | 0013)  | Implementation Version Name        | SH: | 'dcm4che-1.4.38'                        |
|   | (0008, | 0018)  | SOP Instance UID                   | UI: | ID_7ce5ae372                            |
|   | (0008, | 0060)  | Modality                           | CS: | 'CT'                                    |
|   |        |        | Patient ID                         | LO: | 'ID_314d3781'                           |
|   | (0020, | 000d)  | Study Instance UID                 | UI: | ID_af0d670f5a                           |
|   | (0020, | 000e)  | Series Instance UID                |     | ID_4195a174b7                           |
|   | (0020, | 0010)  | Study ID                           | SH: | ,,                                      |
|   |        |        | Image Position (Patient)           |     | [-126.408875, -126.408875, -244.165497] |
|   |        |        | Image Orientation (Patient)        | DS: | [1.000000, 0.000000, 0.000000, 0.00000  |
|   |        |        | 0.000000]                          |     |                                         |
|   |        |        | Samples per Pixel                  | US: |                                         |
|   |        |        | Photometric Interpretation         | CS: | 'MONOCHROME2'                           |
|   | (0028, |        |                                    | US: | 512                                     |
|   |        |        | Columns                            |     | 512                                     |
|   |        |        | Pixel Spacing                      |     | [0.494750976563, 0.494750976563]        |
|   |        |        | Bits Allocated                     | US: | <del></del>                             |
|   | (0028, | 0101)  | Bits Stored                        | US: | ==                                      |
|   |        |        | High Bit                           | US: | ==                                      |
|   |        |        | Pixel Representation               | US: |                                         |
|   |        |        | Window Center                      |     | ″35.0″                                  |
|   |        |        | Window Width                       |     | ″135.0″                                 |
|   |        |        | Rescale Intercept                  |     | ″-1024.0″                               |
|   |        |        | Rescale Slope                      |     | ~1.0~                                   |
| / | (7fe0, | 0010)  | Pixel Data                         | OW: | Array of 524288 elements                |

10434.73MB





#### Data Format DICOM



### Pydicom

#### Pydicom

Information>

Software >

Datasets > Containers> Dicom (Digital Imaging in Medicine) is the bread and butter of medical image datasets, storage and transfer. This is the future home of the Pydicom documentation. If you are a Python developer looking to get started with Dicom and Python, this will be the place to learn and contribute! For now, here are some helpful links, and general plan for some of the code bases in the organization. If you want to come and chat, find our community on Gitter, or post an issue on one of our repos.

#### Modules

#### **Pydicom**

If you want to work with dicom datasets, you should use pydicom . We have started a base of docs here, and see the documentation I for you to get started.





pydicom.github.io





## **Classes**

|              | Intraparenchymal                                                          | Intraventricular                                                                   | Subarachnoid                                                           | Subdural                              | Epidural                                         |
|--------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|
| Location     | Inside of the brain                                                       | Inside of the ventricle                                                            | Between the arachnoid and the pia mater                                | Between the Dura and the arachnoid    | Between the dura and<br>the skull                |
| Imaging      |                                                                           |                                                                                    |                                                                        |                                       |                                                  |
| Mechanism    | High blood pressure,<br>trauma, arteriovenous<br>malformation, tumor, etc | Can be associated with<br>both intraparenchymal<br>and subarachnoid<br>hemorrhages | Rupture of aneurysms<br>or arteriovenous<br>malformations or<br>trauma | nous Trauma or after surg             |                                                  |
| Source       | Arterial or venous                                                        | Arterial or venous                                                                 | Predominantly arterial                                                 | Venous (bridging veins)               | Arterial                                         |
| Shape        | Typically rounded                                                         | Conforms to ventricular shape                                                      | Tracks along the sulci and fissures                                    | Crescent                              | Lentiform                                        |
| Presentation | Acute (sudden onset of headache, nausea, vomiting)                        | Acute (sudden onset of headache, nausea, vomiting)                                 | Acute (worst headache of life)                                         | May be insidious (worsening headache) | Acute (skull fracture and altered mental status) |



# **Exploratory Data Analysis**



# Classes

| label            | count |
|------------------|-------|
| subarachnoid     | 4177  |
| epidural         | 3145  |
| subdural         | 4132  |
| intraventricular | 4072  |
| intraparenchymal | 4351  |







### **Visualization for Different Windows**



Window:also known as ~grey-level mapping , contrast stretching , histogram modification or contrast enhancement` is the process in which the CT image greyscale component of an image is manipulated via the CT numbers; doing this will change the appearance of the picture to highlight particular structures. The brightness of the image is, adjusted via the window level. The contrast is adjusted via the window width.





### **Visualization for Different Windows**

#### **No Windows**



#### **Brain Windows**



#### **Three Channels Windows**



#### **Brain + Subdural + Bone Windows**





### **Visualization for Different Classes**

Instances with Intraparenchymal Hemorrhage



























Instances with Epidural Hemorrhage











Instances with Intraventricular Hemorrhage

























































# Data Preprocess





### **Data Preprocess**









### **Tools**









Spork o PyTorch github.com/dmmiller612/sparktorch





class InceptionNet3(nn.Module):
 def \_\_init\_\_(self, num\_classes=5):
 super(InceptionNet3, self).\_\_init\_\_()

self.Conv2d\_1a\_3x3 = BasicConv2d(3, 32, kernel\_size=





```
self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size
=3)
        self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size
=3, padding=1)
        self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size
                                                                def forward(self, x):
=1)
                                                                    x.view(-1, 3, INPUT_SIZE[0], INPUT_SIZE[1])
        self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_siz
                                                                    x = self. Conv2d_1a_3x3(x)
e=3)
                                                                    x = self. Conv2d_2a_3x3(x)
        self.Mixed_5b = InceptionA(192, pool_features=32)
                                                                    x = self. Conv2d_2b_3x3(x)
        self.Mixed_5c = InceptionA(256, pool_features=64)
                                                                    x = F.max_pool2d(x, kernel_size=3, stride=2)
        self.Mixed_5d = InceptionA(288, pool_features=64)
                                                                    x = self. Conv2d_3b_1x1(x)
        self.Mixed_6a = InceptionB(288)
                                                                    x = self. Conv2d_4a_3x3(x)
        self.Mixed_6b = InceptionC(768, channels_7x7=128)
                                                                    x = F.max_poo12d(x, kernel_size=3, stride=2)
        self.Mixed_6c = InceptionC(768, channels_7x7=160)
                                                                    x = self. Mixed_5b(x)
        self.Mixed_6d = InceptionC(768, channels_7x7=160)
                                                                    x = self. Mixed_5c(x)
        self.Mixed_6e = InceptionC(768, channels_7x7=192)
                                                                    x = self. Mixed_5d(x)
       self.Mixed_7a = InceptionD(768)
                                                                    x = self. Mixed_6a(x)
       self.Mixed_7b = InceptionE(1280)
                                                                    x = self. Mixed_6b(x)
        self.Mixed_7c = InceptionE(2048)
                                                                    x = self. Mixed_6c(x)
        self.fc = nn.Linear(2048, num_classes)
                                                                    x = self.Mixed_6d(x)
        for m in self.modules():
                                                                    x = self. Mixed 6e(x)
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.
                                                                    x = self. Mixed 7a(x)
Linear):
                                                                    x = self. Mixed_7b(x)
                import scipy. stats as stats
                                                                    x = self. Mixed_7c(x)
                stddev = m. stddev if hasattr(m, 'stddev') e
                                                                    x = F. avg_poo12d(x, kernel_size=8)
1se 0.1 #if else
                                                                    x = F. dropout(x, training=self.training)
               X = stats.truncnorm(-2, 2, scale=stddev)
                                                                    x = x. view(x. size(0), -1)
                values = torch. Tensor (X. rvs (m. weight. data. nu
                                                                    x = self. fc(x)
me1()))
                                                                    return x
                values = values.view(m.weight.data.size())
                m. weight. data. copy_(values)
            elif isinstance(m, nn.BatchNorm2d):
                m. weight. data. fill (1)
                m. bias. data. zero_()
```

**Model Structure** 

**Model Code** 





# **Training**





OSS

#### **Databricks**



# Evaluation





# **Evaluation**





**Metrics** 

# **Confusion Matrix**





## **Evaluation**





**ROC Curve** 

**PR Curve** 

# Thank for Listening!