RoundTripRank: Graph-based Proximity with Importance and Specificity

Yuan Fang ^{1,2}

Kevin C.-C. Chang ^{1,2}

Hady W. Lauw ³

- ¹ University of Illinois at Urbana-Champaign, USA
- ² Advanced Digital Sciences Center, Singapore
- ³ Singapore Management University, Singapore

Problem: Proximity Ranking on the Graph

Social network

Example Applications

- Find expert reviewers for a paper
- Find matching venues for some keywords
- Find relevant pages for a search phrase
- Find similar search phrases of a given phrase

Observations: Importance & Specificity and Their Flexible Trade-offs

Observation 1:

Most tasks require both importance and specificity.

Observation 2:

The desirable trade-off varies from task to task.

Challenge 1: How to unify importance & specificity?

Citation analogy for importance/specificity

Walk backward in some L' steps

RoundTripRank

Finding 1: Both importance &

Challenge 2: How to customize their trade-offs?

Hybrid surfers Ω

Customization

RoundTripRank+ $r_{\Omega}(q, v) \triangleq$

 $r(q,v) \triangleq p(W_L = v | W_0 = W_{L+L'}, W_0 = q) \quad p(x = v | \forall \omega \in \Omega: W_0^{\omega} = W_{L+L'}^{\omega} = q, W_L^{\omega} = x)$

Finding 2: Customizable tradeoffs are needed.

RoundTripRank+ vs. dual-sensed proximity 0.60 ■ RoundTripRank+ 0.55 **■** TCommute 0.50 ObjSqrtInv 0.45 Harmonic Arithmetic 0.40 NDCG@5 NDCG@10 NDCG@20

Challenge 3: How to compute the proximity efficiently?

Divide and conquer

 $r(q, v) \propto p(W_L = v | W_0 = q) \times p(W_{L'} = q | W_0 = v)$ F-Rank: f(q, v)T-Rank: t(q, v)(reachability **f**rom q) (reachability to q)

RoundTripRank: $r(q, v) \propto f(q, v)t(q, v)$

RoundTripRank+: $r_{\Omega}(q, v) \propto f(q, v)^{1-\beta} t(q, v)^{\beta}$ Specificity bias: $\beta = \frac{|\Omega_1| + |\Omega_3|}{2|\Omega_1| + |\Omega_2| + |\Omega_2|} \in [0,1]$

Finding 3: Our computational model enables efficient ranking.

specificity are needed.

