Keyboard remote control

Note: The virtual machine needs to be in the same LAN as the car, and the ROS_DOMAIN_ID needs to be consistent. You can check [Must Read Before Use] to set the IP and ROS_DOMAIN_ID on the board.

1. Start and connect the agent

Take the supporting virtual machine as an example, enter the following command to start the agent,

```
sudo docker run -it --rm -v /dev:/dev -v /dev/shm:/dev/shm --privileged --
net=host microros/micro-ros-agent:humble udp4 --port 8899 -v4
```

Then, turn on the car switch and wait for the car to connect to the agent. The connection is successful as shown in the figure below,

```
| set_verbose_level
| create_client
                                                                                                      client_key: 0x0E5C3397, sess
                                                 | establish session
                                                                                                     | client_key: 0x0E5C3397, addr
ss: 192.168.2.102:49954
                                                                                                     | client_key: 0x0E5C3397, part
                                                 | create_participant
icipant id: 0x000(1)
_id: 0x000(2), participant_id: 0x000(1)
1735179326, 1592971, tofa
                                                 | create topic
                                                                                                     | client_key: 0x0E5C3397, topi
                                                 | create_publisher
                                                                                                     | client_key: 0x0E5C3397, publ
sher_id: 0x000(3), participant_id: 0x000(1)
                                                                            | datawriter created | client_key: 0x0E5C3397, data
                                                 | create datawriter
riter_id: 0x000(5), publisher_id: 0x000(3)
                                                 create_topic
                                                                                                     | client key: 0x0E5C3397, topi
_id: 0x001(2), participant_id: 0x000(1)
                                                 | create_publisher
                                                                                                     | client_key: 0x0E5C3397, publ
sher_id: 0x001(3), participant_id: 0x000(1)
                                                 | create_datawriter
                                                                                                     | client_key: 0x0E5C3397, data
riter_id: 0x001(5), publisher_id: 0x001(3)
                                                                                                     | client_key: 0x0E5C3397, topi
                                                 create_topic
_id: 0x002(2), participant_id: 0x000(1)
                                                 | create publisher
                                                                                                     | client key: 0x0E5C3397, publ
sher_id: 0x002(3), participant_id: 0x000(1)
                                                 | create_datawriter
                                                                            | datawriter created | client_key: 0x0E5C3397, data
riter_id: 0x002(5), publisher_id: 0x002(3)
                                                                                                      | client_key: 0x0E5C3397, topi
                                                 | create topic
_id: 0x003(2), participant_id: 0x000(1)
                                                 | create_publisher
                                                                                                     | client_key: 0x0E5C3397, publ
sher_id: 0x003(3), participant_id: 0x000(1)
                                                 L_create_datawriter
                                                                                                     | client key: 0x0E5C3397, data
riter_id: 0x003(5), publisher_id: 0x003(3)
                                                 | create_topic
                                                                                                     | client_key: 0x0E5C3397, topi
_id: 0x004(2), participant_id: 0x000(1)
                                                 | create_subscriber
                                                                                                     | client_key: 0x0E5C3397, subs
riber_id: 0x000(4), participant_id: 0x000(1)
                                                                                                      | client_key: 0x0E5C3397, data
                                                 | create_datareader
eader_id: 0x000(6), subscriber_id: 0x000(4)
```

2. Start the keyboard control program

2.1 Code path

Virtual machine code path:

2.2 Run command

Take the matching virtual machine as an example, you can directly enter it in the terminal,

```
ros2 run yahboomcar_ctrl yahboom_keyboard
```

```
yahboom@yahboom-VM:~$ ros2 run yahboomcar_ctrl yahboom_keyboard
Control Your SLAM-Bot!
Moving around:
       i
  j
       k
            ι
  m
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
t/T: x and y speed switch
s/S : stop keyboard control
space key, k : force stop
anything else : stop smoothly
CTRL-C to quit
currently: speed 20.0 turn 300.0
```

Then, according to the instructions below, press the corresponding button to control the movement of the car,

2.3 Direction control

Button	Linear angular velocity	Direction	Button	Linear angular velocity	Direction
[i] or [i]	【linear, 0】	Go forward	(u) or (U)	【linear, angular】	Turn left
[,]	【-linear, 0】	Go backward	(o) or (O)	【linear, - angular】	Turn right
[j] or [J]	[0, angular]	Rotate left	[m] or [M]	【-linear, - angular】	Reverse left
[l] or [L]	【0, - angular】	Rotate right	[.]	【-linear, angular】	Reverse right

2.4 Speed control

Button	Speed change	Button	Speed change
[q]	Increase both linear and angular velocities by 10%	[z]	Decrease both linear and angular velocities by 10%
[w]	Increase only linear velocity by 10%	[x]	Decrease only linear velocity by 10%
[e]	Increase only angular velocity by 10%	[c]	Decrease only angular velocity by 10%
[t]	Switch between linear velocity X-axis and Y-axis	[s]	Stop keyboard control

Note: Since the car is a two-wheeled balancing structure and cannot move sideways, the $\[t\]$ key is meaningless.