Les TP réseaux

- Netkit
- tcpdump

netkit

- Émule des réseaux d'ordinateurs
 - Contrairement à la simulation, l'émulation ne reproduit que les fonctionnalités mais pas la performance d'un vrai réseau.
- Logiciels open source (licence GPL)
- Utilise des logiciels libres
- Basé sur UML (User Mode Linux)

Emulation d'un réseau

- Fonctionne avec des machines virtuelles (VM)
- Chaque nœud du réseau émulé est une VM
- Les VMs sont basées sur User Mode Linux
- Plusieurs VMs peuvent être exécutées à un instant 't'
- Les VMs peuvent communiquer entre-elle via des réseaux (domaine de collision).
 - Attention : par défaut les réseaux sont de « l'ethernet partagé » et non de « l'ethernet commuté ».

Les commandes

- Netkit dispose de 2 types de commandes :
- Les « vcommandes » qui commencent par « v » pour agir sur une seule VM
- Les « lcommandes » qui commencent par « l » pour un groupe de VM … Lab

Les vcommandes

 vstart : Pour démarrer une machine virtuelle équipée d'un certain nombre de cartes réseau reliées à des domaines de diffusion.

Vstart --eth0=<domaine> <nom_machine>

- vlist: Pour prendre connaissance des machines virtuelles actuellement actives.
- vhalt : Pour arrêter proprement une machine virtuelle (sauvegarde du filsystem dans le fichier .disk).
- vcrash : Pour arrêter brutalement une machine virtuelle.
- vclean : commande "sous panique", pour supprimer tous les processus Netkit ainsi que les fichiers de la machine virtuelle.
- vconfig :Pour ajouter à la volée une carte réseau à une machine virtuelle.

Les Icommandes

- Istart : démarrage du Lab du répertoire courant.
- Ihalt : arrêt ordonné des machines du Lab en cours d'exécution.
- Icrash : arrêt brutal de toutes les machines du Lab en cours d'exécution.
- **linfo** : présente le Lab du répertoire courant sans démarrer le Lab.
- **Iclean** : supprime tous les fichiers temporaires crées par le Lab.

Exemple simple 1

- Création du dossier de travail : mkdir /tmp/lab1; cd /tmp/lab1
- Création des deux VM vstart --eth0=dom1 PC1

vstart --eth0=dom1 PC2

 Vérification vlist

Exemple simple ...2

- Configuration de la première VM
 - Si on fait ifconfig → pas d'interface
 - (ip link pour valider la présence d'eth0 non configurée)
 - Sur PC1: ifconfig eth0 192.168.10.1 netmask 255.255.255.0
 - Sur PC2: ifconfig eth0 192.168.10.2 netmask 255.255.255.0
 - Le test : depuis PC1 : ping 192.168.10.2

Tcpdump: capture de trafic

La commande tcpdump est un outil de capture de paquets très puissant.

- Pour diminuer le "bruit", Tcpdump utilise des expressions pour filtrer (conserver) les paquets :
- dst adresse IP destination, src adresse IP source, host IP source ou destination
- tcp pour capturer seulement les trames TCP et udp pour les trames UDP
- Enfin, la commande tcpdump comporte des options pouvant s'avérer utiles pour afficher plus d'informations, citons :
- -XX pour l'affichage du contenu de la trame
- -i pour indiquer l'interface où doit se faire l'écoute
- -n affichage des adresses (à la place du nom)
- -A pour l'affichage du contenu des paquets (en ASCII)
- -e pour l'affichage des adresses MAC de la trame
- -t sans l'affichage de l'horodatage des traces
- -vv pour une interprétation détaillée des champs des en-têtes.

Tcpdump: exemples

 Par exemple, la capture des paquets vers le port 80 et la machine 10.10.10.1

tcpdump -i eth0 -n -t dst 10.10.10.1 and port http

- Capture avec information niveau Ethernet
 - tcpdump -i eth0 -e -t -q
 - -e info niveau trame
 - -t sans timestamp
 - -q « version courte »

Pour en savoir plus, consulter le manuel en ligne de tcpdump et de nombreux tutos.

Exercice 2

lab.conf

r1[0]="A" r1[1]="B"

r2[0]="C"

r2[1]="B"

pc1[0]="A"

pc2[0]="C"

pc3[0]="C"

pc1.startup

ifconfig eth0 195.11.14.5 up route add default gw 195.11.14.1

pc2.startup

ifconfig eth0 200.1.1.7 up route add default gw 200.1.1.1

pc3.startup

ifconfig eth0 200.1.1.3 up route add default gw 200.1.1.1

r1.startup

ifconfig eth0 195.11.14.1 up

ifconfig eth1 100.0.0.9 netmask 255.255.255.252 broadcast 100.0.0.11 up route add -net 200.1.1.0 netmask 255.255.255.0 gw 100.0.0.10 dev eth1

r2.startup

ifconfig eth0 200.1.1.1 up

ifconfig eth1 100.0.0.10 netmask 255.255.255.252 broadcast 100.0.0.11 up route add -net 195.11.14.0 netmask 255.255.255.0 gw 100.0.0.9 dev eth1

Exercice 2

Exercice 2

