Conducting Experiments to Build Models using Multiple Algorithms.

Part 1: Clustering

Introduction to the dataset and its meta data.

ไฟล์ที่นำมาใช้จัดกลุ่มข้อมูล ชื่อว่า "clusterDataset" เป็นนามสกุลไฟล์ .csv ข้อมูลที่ได้เป็นข้อมูลที่ใช้เพื่อทดสอบจากโปรแกรม RapidMiner Studio จาก 'Generate Data' Operator โดยใน Dataset มีทั้งหมด 4 Attributes และมี จำนวนแถวทั้งหมด 500 แถว

Clustering algorithms used

การสร้างโมเคลใช้ Algorithms 2 รูปแบบคือ k-Means กับ DBSCAN

Process (k-Means)

ประมวลผลโดย k-Means Operator วัดค่า Davies Bouldin จาก Cluster Distance Performance รวมถึงทำการลดขนาดมิติข้อมูลด้วย SVD Operator

รูปภาพที่ 1 : แสดง Process ในโปรแกรม RapidMiner Studio

Subjective measures (k-Means)

ผลลัพธ์ที่ใค้จากการ Plot Graph แบบ Scatter Plot 3D โดยการเปลี่ยน Parameter ใค้แก่ค่า k และรูปแบบวิธีการวัดระยะห่างแบบ Euclidian Distance และแบบ Manhattan Distance

รูปภาพที่ 2 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า $\mathbf{k}=2$ โดยใช้วิธีการวัดระยะห่างแบบ Euclidian Distance

รูปภาพที่ 3 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า k=2โดยใช้วิธีการวัดระยะห่างแบบ Manhattan Distance

รูปภาพที่ 4 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า k=3 โดยใช้วิธีการวัดระยะห่างแบบ Euclidian Distance

รูปภาพที่ 5 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า k=3 โดยใช้วิธีการวัดระยะห่างแบบ Manhattan Distance

รูปภาพที่ 6 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า k=5 โดยใช้วิธีการวัดระยะห่างแบบ Euclidian Distance

รูปภาพที่ 7 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า k=5 โดยใช้วิธีการวัดระยะห่างแบบ Manhattan Distance

ผลจากการวิเคราะห์แบบ Subjective Measure พบว่า ค่า k = 2 มีการจัด กลุ่มที่ชัดเจนมากที่สุด ดูจากระยะห่างระหว่างกลุ่มค่อนข้างแยกกันชัดเจน และ วิธีการวัดระยะห่างทั้ง 2 รูปแบบมีผลลัพธ์ในการจัดกลุ่มที่ดีทั้งคู่

Objective measures (k-Means)

ผลลัพธ์ที่ใด้จากการประมวลผลโมเดล โดยใช้วิธีการคำนวณค่า Davies Bouldin และ ได้เปลี่ยน Parameter ค่า k เพื่อกำหนดค่า k และเลือกใช้วิธีการวัด ระยะห่างแบบ Euclidian Distance

ค่า k	ค่า Davies Bouldin
2	-1.519
3	-1.102
4	-0.987
5	-0.952
6	-0.908
8	-0.819
10	-0.703

รูปภาพที่ 8 : แสดงตารางเปรียบเทียบค่า Davies Bouldin กับค่า k ที่เปลี่ยนไป

ผลจากการวิเคราะห์แบบ Objective Measure พบว่า ค่า Davies Bouldin ยิ่งค่า k สูงขึ้น ค่า Davies Bouldin ยิ่งน้อยลง และแต่ละค่า k ค่อนข้างมี เอกลักษณ์การจัดกลุ่มที่ชัดเจน เมื่อใช้ Subjective measures ในการวิเคราะห์ ร่วมด้วย

Process (DBSCAN)

ประมวลผลโดย DBSCAN Operator ทำการลดขนาดมิติข้อมูลด้วย SVD Operator

รูปภาพที่ 9 : แสดง Process ในโปรแกรม RapidMiner Studio

Subjective measures (DBSCAN)

ผลลัพธ์ที่ใค้จากการ Plot Graph แบบ Scatter Plot 3D โดยการเปลี่ยน Parameter ใค้แก่ค่า epsilon และค่า min pts.

รูปภาพที่ 10 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า epsilon = 2 และค่า min pts. = 10

รูปภาพที่ 11 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า epsilon = 3 และค่า min pts. = 10

รูปภาพที่ 12 : แสดงกราฟแบบ Scatter Plot 3D ที่ก่า epsilon = 4 และค่า min pts. = 10

รูปภาพที่ 13 : แสดงกราฟแบบ Scatter Plot 3D ที่ก่า epsilon = 5 และค่า min pts. = 10

รูปภาพที่ 14 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า epsilon = 5 และค่า min pts. = 3

0.075

รูปภาพที่ 15 : แสดงกราฟแบบ Scatter Plot 3D ที่ค่า epsilon = 5 และค่า min pts. = 20

ผลจากการวิเคราะห์แบบ Subjective Measure พบว่า จำนวน Cluster = 2 มีการจัดกลุ่มที่ชัดเจนมากที่สุด ดูจากระยะห่างระหว่างกลุ่มค่อนข้างแยกกัน ชัดเจน โดยค่า Parameter ที่เลือกคือค่า epsilon = 5 และค่า min pts. = 3

สาเหตุของการเลือกค่า epsilon = 5 และค่า min pts. = 3 เพราะว่าการ เลือก epsilon 5 ทำให้ได้จำนวน Cluster = 2 และมีระยะห่างระหว่างกลุ่มชัดเจน และสาเหตุที่เลือก min pts. = 3 เพราะว่า Noise ที่เกิดขึ้นใน min pts. อื่นๆ ระยะห่างระหว่างข้อมูลอื่นไม่ชัดเจน เลยเลือก min pts. = 3 เพื่อรวม Noise ให้ อยู่ใน Cluster ด้วย

นอกจากนั้น พบว่าค่า Parameter ทั้งสอง ส่งผลต่อการเปลี่ยนแปลงของ จำนวน Cluster และยังส่งผลต่อการ Detect Noise ด้วย ในทิศทางตรงกันข้าม กัน โดยหากยิ่งเพิ่มค่า epsilon มากขึ้น แสดงว่าจะมีโอกาสที่ Point จะจับคู่กัน และเกิดเป็น Cluster ได้มากขึ้น (จากการเพิ่มระยะห่างที่ Core Point สามารถจับ กับ Boarder Point ได้) แต่หากเพิ่มค่า Minimal Points มากขึ้น แสดงว่าจะมี โอกาสที่ Point จะจับคู่กันและเกิดเป็น Cluster ได้น้อยลง (จากการต้องเพิ่ม จำนวน Boarder Point ที่ Core Point ต้องจับด้วย)

Objective measures (DBSCAN)

ใม่สามารถทำในโปรแกรม RapidMiner Studio ใค้ เนื่องจากการเปลี่ยน Output ของ DBSCAN Operator ทำให้ (clu) หรือ clustering หายไปและไม่ สามารถเชื่อมกับ Cluster Density Performance Operator ใค้

Conclusion

จากการสร้างโมเดล Clustering โดยใช้ Algorithms k-Means และ
DBSCAN โดยทำการทดลองเปลี่ยนค่า Parameter ต่างๆ เพื่อให้ได้ผลลัพธ์การ
จัดกลุ่มที่ชัดที่สุด พบว่าการจัดกลุ่มที่มีจำนวนกลุ่มเท่ากับ 2 ให้ผลลัพธ์การแยก
กลุ่มออกจากกันได้ชัดเจนที่สุด

Part 2: ANN

Introduction to the dataset and its meta data.

ใฟล์ที่นำมาใช้แบ่งกลุ่มข้อมูล ชื่อว่า "adult_numeric" เป็นนามสกุล ไฟล์ .csv ข้อมูลผ่านการ Normalize มาแล้ว แบ่งกลุ่มข้อมูลตาม Label Class ตาม Income หรือรายได้ มี Attributes ทั้งหมด 6 Attributes มีข้อมูลทั้งหมด 1,000 แถว Attributes ได้แก่ age, fnlwgt, education_num, capital_gain, capital_loss, hours_per_week โดยมองว่ามี Attribute ที่ไม่เกี่ยวข้องอยู่คือ "fnlwgt" ต้องการ นำออก เนื่องจากตัวแทนจำนวนประชากรไม่น่าเกี่ยวข้องโดยตรงกับรายได้

Process

ประมวลผลโดย Neural Net Operator นำ Attribute ที่ไม่เกี่ยวข้องออก ด้วย Select Attributes แบ่ง Training Data กับ Test Data ด้วย Cross Validation วัดค่า Accuracy ด้วย Performance Operator

รูปภาพที่ 16 : แสดง Process ในโปรแกรม RapidMiner Studio

Results of training using default parameters.

ผลลัพธ์ที่ได้จากการกำหนดค่า Parameter เป็น Default และกำหนด 1 Hidden Layer และ 2 Node

รูปภาพที่ 17 : แสดงกระบวนการ ANN โดยกำหนด 1 Hidden Layer 2 Node

accuracy: 72.20% +/- 3.12% (micro average: 72.20%)

	true >50K	true <=50K	class precision
pred. >50K	363	142	71.88%
pred. <=50K	136	359	72.53%
class recall	72.75%	71.66%	

รูปภาพที่ 18 : แสดงผลลัพธ์ค่า Accuracy และตาราง Confusion Matrix

ผลการวิเคราะห์ พบว่าค่า Accuracy อยู่ในเกณฑ์ที่พอรับได้ แต่สามารถ เพิ่มค่า Accuracy ได้มากกว่านี้จากการปรับเปลี่ยนค่า Parameter และเพิ่ม จำนวน Hidden Layer กับจำนวน Node เพื่อเพิ่มความซับซ้อนให้กับโมเดล Results when training using modified parameter settings.

ผลลัพธ์จากการปรับแต่ง Parameter เพื่อเพิ่มค่า Accuracy ได้แก่
Learning Rate มีการปรับเพิ่มขึ้นเนื่องจากต้องการให้การ Adjust ค่า Weight
ใหม่มีความเร็วมากขึ้น นอกจากนั้นมีการปรับค่า Momentum ให้ลดลง เพื่อลด
อัตราการเร่งของ Learning Rate ให้ช้าลง และการเปลี่ยนเพิ่มจำนวน Hidden
Layer และจำนวน Node ให้มากขึ้น เพื่อเพิ่มความซับซ้อนของโมเดล

training cycles	200	200		
learning rate	0.05	0.05		
momentum	0.5		1	
Edit Parameter List: hidden layers				
• Ec	dit Parameter L	ist: hidden layers		
Edit	Parameter List: h		den layers.	
Edit	Parameter List: h ribes the name a	nidden layers	•	
Edit Desc	Parameter List: h ribes the name a	nidden layers and the size of all hidd		

accuracy: 73.10% +/- 2.56% (micro average: 73.10%)			
	true >50K	true <=50K	class precision
pred. >50K	377	147	71.95%
pred. <=50K	122	354	74.37%
class recall	75.55%	70.66%	

รูปภาพที่ 19 : แสดงการปรับเปลี่ยนค่า Parameter และผลลัพธ์ค่า Accuracy และตาราง Confusion Matrix

training cycles	200	200		
learning rate	0.1			⑤ ■
momentum	0.5			1
• • • E	Edit Parameter List: hidden layers			
Edit Parameter List: hidden layers Describes the name and the size of all hidden layers.				
hidden layer name hidden layer sizes				
1		6		
Add Entry Remove Entry Apply Cancel				

accuracy: 75.00% +/- 2.87% (micro average: 75.00%)

	true >50K	true <=50K	class precision
pred. >50K	394	true <=50K	73.10%
pred. <=50K	105	356	77.22%
class recall	78.96%	71.06%	

รูปภาพที่ 20 : แสดงการปรับเปลี่ยนค่า Parameter และผลลัพธ์ค่า Accuracy และตาราง Confusion Matrix

accuracy: 71.30% +/- 3.20% (micro average: 71.30%)

	true >50K	true <=50K	class precision
pred. >50K	365	153	70.46%
pred. <=50K	134	348	72.20%
class recall	73.15%	69.46%	

รูปภาพที่ 21 : แสดงการปรับเปลี่ยนค่า Parameter และผลลัพธ์ค่า Accuracy และตาราง Confusion Matrix

ผลการวิเคราะห์ จากการเปลี่ยน Parameter ต่างๆนั้น ค่า Accuracy สูงสุด คือ 75% โดยการปรับ Parameter ได้แก่ Learning Rate = 0.1, Momentum = 0.05, Training Cycle = 200 และจำนวน 1 Hidden Layer กับ 6 Node

Training Cycle ไม่ได้มีการปรับเนื่องจากมองว่าจำนวนเท่านี้เหมาะสม แล้ว เพราะหากมากกว่านี้จะเกิด Overfitting ได้ และหากน้อยกว่านี้จะเกิด Underfitting ได้

การเพิ่มจำนวน Hidden Layer อาจจะ ไม่ตอบ โจทย์ใน Dataset นี้ เนื่องจากมิติข้อมูลไม่ได้เยอะ และไม่จำเป็นต้องเพิ่มความซับซ้อนของโมเคล

Conclusion

การเลือก Attributes ที่เกี่ยวข้องมีผลอย่างมากต่อผลลัพธ์ที่ได้ เนื่องจาก หากใส่ Attributes ที่ไม่เกี่ยวข้อง ส่งผลทำให้ความแม่นยำในการประมวลผล นั้นต่ำลง

การปรับเปลี่ยน Parameter ต่างๆช่วยให้ค่า Accuracy นั้นสูงขึ้นจากเดิม และอยู่ในเกณฑ์ที่ดี และสามารถนำโมเคลไปใช้ทำนายผล Income ได้

Part3: Association Rules

Introduction to the dataset and its meta data.

ไฟล์ที่นำมาใช้แบ่งกลุ่มข้อมูล ชื่อว่า "adult_mixed" เป็นนามสกุลไฟล์
.csv แบ่งกลุ่มข้อมูลตาม Label Class ตาม Income หรือรายได้ มี Attributes
ทั้งหมด 14 Attributes มีข้อมูลทั้งหมด 1,000 แถว Attributes การเลือก
Attribute ที่นำมาใช้ประมวล จากการวิเคราะห์มองว่ามี Attribute ที่ไม่เหมาะต่อ
การทำโมเดลได้แก่ fnlwgt, capital gain และ capital_loss ออก เนื่องจาก Values
มีการกระจายตัวมากเกินไป และมีค่า 0 เยอะ

Process

ประมวลผลโดย FP-Growth Operator และสร้างกฎความสัมพันธ์ด้วย Create Association Rule Operator นอกจากนั้น ได้นำ Attributes ที่ไม่เหมาะสม ออกด้วย Select Attributes Operator ทำการแปลงข้อมูลที่เป็น Numeric ให้อยู่ ในลักษณะของช่วงข้อมูล ด้วย Discretize Operator และแปลงข้อมูลทั้งหมด เป็น Binomial ด้วย Nominal to Binomial Operator (เนื่องจากแปลงแต่แรก ไม่ได้เพราะโปรแกรมจะแปลงบาง Value ให้เป็น Missing Value เพื่อให้เหลือ แค่ 2 ข้อมูลต่อ 1 Attribute)

รูปภาพที่ 22 : แสดง Process ในโปรแกรม RapidMiner Studio

Frequent Itemset Discussion

ผลจากการวิเคราะห์ พบว่ามี Frequent Itemset ที่มีความสำคัญต่อ Income อยู่ 8 Frequent Itemset โดยจะประกอบด้วย Itemset ที่น่าสนใจ ดังนี้ Native_Country ที่มี Value เป็น United=States มีค่า Support สูงสุด, Race ที่มี Value เป็น White, Workclass ที่มี Value เป็น Private และ Martiral_Status ที่มี Value เป็น Never-married ซึ่งหมายถึง Attributes ดังที่กล่าวมา มีความสำคัญ กับ Income

จำนวน Itemset	ค่า Support	Itemset ตัวที่ 1	Itemset ตัวที่ 2	Itemset ตัวที่ 3	Itemset ตัวที่ 4
2	0.439	native_country = United-States	label		
2	0.428	race = White	label		
2	0.380	workclass = Private	label		
2	0.220	label	marital_status = Never-married		
3	0.385	native_country = United-States	race = White	label	
3	0.329	native_country = United-States	workclass = Private	label	
3	0.328	race = White	workclass = Private	label	
4	0.291	native_country = United-States	race = White	workclass = Private	label

รูปภาพที่ 23 : แสดงตาราง Frequent Itemset ร่วมกับค่า Support โดยกำหนดให้ Label = "Income" Attribute

Rules Discussion

ผลจากการวิเคราะห์ เมื่อแสดงค่า Support, Confidence, Lift และ Conviction พบว่า Strong Association Rule มีเพียง 1 กฎคือ Martiral_Status ที่มี Value เป็น Never-married มีความสัมพันธ์มากๆกับ Income เนื่องจากค่า Confidence ใกล้เคียงกับ 1 รวมถึงค่า Lift กับ Conviction มีค่ามากกว่า 1 มาก

Premises	Conclusion	Support	Confidence	Lift	Conviction
native_country = United-States, race = White	label	0.385	0.476485149	0.951068161	0.953172577
race = White	label	0.428	0.486363636	0.970785701	0.971504425
native_country = United-States	label	0.439	0.495485327	0.988992669	0.989069351
$native_country = United\text{-States}, race = White, workclass = Private$	label	0.291	0.508741259	1.015451614	1.015758007
race = White, workclass = Private	label	0.329	0.522222222	1.042359725	1.044418605
native_country = United-States, workclass = Private	label	0.328	0.523125997	1.044163666	1.046397993
workclass = Private	label	0.38	0.530726257	1.059333846	1.063345238
marital_status = Never-married	label	0.22	0.873015873	1.742546653	3.929625

รูปภาพที่ 24 : แสดงตาราง Association Rule ร่วมกับค่าที่ใช้ประเมินต่างๆ โดยกำหนดให้ Label = "Income" Attribute

Part 4: Recommendation Engine

Introduction to the dataset and its meta data.

ใฟล์ที่นำมาใช้แบ่งกลุ่มข้อมูล ชื่อว่า "movies" กับ "ratings" เป็น นามสกุลไฟล์ .csv โดย "ratings" มี Attributes ทั้งหมด 4 Attributes 9,799 Row ส่วน "movies" มี Attributes ทั้งหมด 3 Attributes 9,742 Row มีการเลือก Attribute ที่นำมาใช้ประมวล จากการกำหนด UserID เป็น User Identification, MovieID เป็น Item Identification และ Rating เป็น Label

Recommendation algorithms used

การสร้างโมเคลใช้ Algorithm User-Based Nearest Neighbor

Process

ประมวลผล โดย User k-NN Operator ใน Folder Collaborative
Filtering Item Recommendation มี 2 Dataset ทำการใช้ Join Operator เพื่อ
ผนวก Key Attribute เข้าด้วยกัน และใช้ Set Role Operator ในการเลือก User
Identification กับ Item Identification พร้อมใช้ Split Data เพื่อแยก Training
Data กับ Test Data สุดท้ายใช้ Performance Item Recommendation ในการหาค่า Prec@10

รูปภาพที่ 25 : แสดง Process ในโปรแกรม RapidMiner Studio

Results of training using default parameters.

ผลจากการใช้ Parameter ที่เป็นค่า Default พบว่ามีค่าความแม่นยำต่ำใน การ Recommendation หนัง 10 เรื่อง คิดเป็น Percent เพียง 14.8%

รูปภาพที่ 26 : แสดงค่า prec@10 จากการตั้งค่า Parameter แบบ Default

Results when training using modified parameter settings.

ผลลัพธ์จะใค้ค่า prec@10 ที่เปลี่ยนแปลงไป

รูปภาพที่ 27 : แสดงค่า prec@10 จากการตั้งค่า k=50

รูปภาพที่ 28 : แสดงค่า prec@10 จากการตั้งค่า k=90

รูปภาพที่ 29 : แสดงค่า prec@10 จากการตั้งค่า k=30

รูปภาพที่ 30 : แสดงค่า prec@10 จากการตั้งค่า k=10

ผลจากการวิเคราะห์พบว่าการเปลี่ยน Parameter ค่า k=10 มีค่าความ แม่นยำในการ Recommendation หนัง 10 เรื่อง ให้กับ User มากที่สุดที่ 22.2%

Results 10 Movie Recommendation

ผลลัพธ์จากการใช้ Apply Model Operator เพื่อจัดอันดับ 10 หนังที่จะ Recommend ได้ผลลัพธ์ดังนี้

user_id	item_id	rank ↑
1	924	1
2	4993	1
3	858	1
4	1136	1
5	356	1
6	318	1
7	260	1
8	595	1
9	260	1
10	79132	1

924	2001: A Space Odyssey (1968)
4993	Lord of the Rings: The Fellowship of the Ring,
858	Godfather, The (1972)
1136	Monty Python and the Holy Grail (1975)
356	Forrest Gump (1994)
318	Shawshank Redemption, The (1994)
260	Star Wars: Episode IV - A New Hope (1977)
595	Beauty and the Beast (1991)
260	Star Wars: Episode IV - A New Hope (1977)
79132	Inception (2010)

รูปภาพที่ 31 : แสดงอันดับของหนัง และชื่อหนังในแต่ละอันดับ

Conclusion

จากการใช้ Dataset เพื่อสร้างโมเคล Recommend หนังให้กับ User นั้น โคยใช้ Algorithm User-Based Nearest Neighbor นั้น ผลลัพธ์ที่ได้มีความ แม่นยำเพียง 22.2% ในการแนะนำหนังทั้งหมด 10 เรื่องให้กับ User