微分積分学・同演習 A

演習問題 7

1.	次の関数の第4階導関数を計算せよ.	

(1)
$$\frac{x^3}{1-x}$$
 (2) $\frac{1}{\cos x}$ (3) Arctan x (4) Arcsin x

2[†] 次の関数の n 階導関数を計算せよ.

(1)
$$\frac{x}{x^2 - 1}$$
 (2) $\frac{x^4}{1 - x}$ (3) $x \log x$ (4) $\sin^3 x$ (5) $e^x \sin x$

3. 次の関数の n 階導関数を計算せよ.

(1)
$$x^{n-1}\log x$$
 (2) $x^{n-1}e^{1/x}$ (3) $(1-x^2)^n$

 4^{\dagger} 次の関数の n 階導関数を計算せよ.ただし, $\alpha, \beta \in \mathbb{R}$ は任意の実数で, $a,b,c,d \in \mathbb{R}$ は $ad-bc \neq 0$ をみたす実数とする.

(1)
$$\cos \alpha x \sin \beta x$$
 (2) $x^2 \sin \alpha x$ (3) $\frac{ax+b}{cx+d}$ (4) $\frac{1}{(ax+b)(cx+d)}$

5 $\stackrel{!}{\cdot}$ C^2 級の関数 f が点 x=a で f'(a)=0 を満たすとする.このとき,f''(a)>0 ならば f(a) は極小値,f''(a)<0 ならば f(a) は極大値となることを示せ.

6. 自然数 k に対して $f_k(x)$ を , $f_k(x)=x^{2k}\sin\frac{1}{x}$ $(x\neq 0)$, $f_k(0)=0$ により定義する . (1) $f_2(x)$ は 2 階微分可能であるが , C^2 -級関数でないことを示せ .

 $(2)^*$ $f_k(x)$ は k 階微分可能であるが, C^k -級関数でないことを示せ.

 7^{\dagger} 次の関数の x=0 の近くにおける 3 次の Taylor 多項式を求めよ .

(1)
$$\frac{1}{\cos x}$$
 (2) $\frac{e^x}{\cos x}$ (3) Arctan x (4) $e^x \sin x$ (5) $x \log(1+x)$

8. 一般二項係数 $\binom{lpha}{k}=rac{lpha(lpha-1)\cdots(lpha-k+1)}{k!}$ について,次の等式を示せ.

(1) 自然数
$$n$$
 に対して, $\binom{-n}{k} = (-1)^k \binom{n+k-1}{n-1}$ (2) $\binom{-1}{k} = (-1)^k$ (3) $\binom{-1/2}{k+1} = (-1)^{k+1} \frac{(2k+1)!}{2^{2k+1}(k+1)(k!)^2}$