Wahrscheinlichkeitstheorie Übung 1

Lennox Heimann, Nikita Emanuel John Fehér November 4, 2024

Matrikelnummer Lennox: 3776050 Matrikelnummer Nikita: 3793479

414

1.

$$P(A \cap B^C) = P(A \cup B) - P(B)$$

= 0.5 - 0.45
= 0.05

•

$$P(A^C \cap B) = P(B) - P(A \cap B)$$
$$= P(A \cup B) - P(A)$$
$$= 0.5 - 0.25$$
$$= 0.25$$

•

$$P((A \cap B^C) \cup (A^C \cap B)) = P(A \cap B^C) + P(A^C \cap B)$$

= 0.05 + 0.25
= 0.3

214

- 2. (a) (a_1) 1. $A \cap B^C \cap C^C$
 - $2.\ A\cap B^C\cap C$
 - 3. $A \cap B \cap C$
 - $4. \ A\cap B\cap C^C$
 - 5. $A^C \cap B \cap C^C$
 - $6. \ A^C \cap B \cap C$
 - 7. $A^C \cap B^C \cap C$

(a_2)	Sylvester:	1	2	3	4	5	6	7
	$\mathbb{P}(A)$	+1	+1	+1	+1			
	$\mathbb{P}(B)$			+1	+1	+1	+1	
	$\mathbb{P}(C)$		+1	+1			+1	+1
	$-\mathbb{P}(A \cup B)$			-1	-1			
	$-\mathbb{P}(A \cup C)$		-1	-1				
	$-\mathbb{P}(B \cup C)$			-1			-1	
	$\mathbb{P}(A \cup B \cup C)$			+1				
	Σ :	1	1	1	1	1	1	1
	$\mathbb{P}(A \cup B \cup C)$	+1	+1	+1	+1	+1	+1	+1

 (a_3) A. Induktionsanfang:

B. Induktionsvoraussetzung: Für $n \in \mathbb{N}$ gilt:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k-1} \cdot \left(\sum_{1 \le i_1 \le \dots \le i_k \le n} \mathbb{P}(A_{i_1} \cup \dots \cup A_{i_k})\right)$$

C. Induktionsbedingung $(n \mapsto n+1)$: Dann soll auch gelten:

$$\mathbb{P}\bigg(\bigcup_{i=1}^{n+1} A_i\bigg) = \sum_{k=1}^{n+1} (-1)^{k-1} \cdot \left(\sum_{1 \leq i_1 < \ldots < i_k \leq n+1} \mathbb{P}(A_{i_1} \cup \ldots \cup A_{i_k})\right)$$

D. Induktionsschritt:

3.2

- 3. (a) $\Omega := \{W, A, H, R, S, C, E, I, N, L, K, T, O\}$
 $$\begin{split} p : \Omega \to [0,1] \\ p := \left\{ (W, \frac{1}{26}), (A, \frac{1}{26}), (H, \frac{4}{26}), (R, \frac{2}{26}), (S, \frac{2}{26}), (C, \frac{2}{26}), (E, \frac{4}{26}), (I, \frac{4}{26}), (N, \frac{1}{26}), (K, \frac{1}{26}), (K, \frac{1}{26}), (C, \frac{2}{26}), (C, \frac{4}{26}), (E, \frac{4}$$
 - (b) Es ist kein Laplacescher Wahrscheinlichkeitsraum, weil die Wahrscheinlichkeitsfunktion p für verschiedene Eingaben verschiedene Werte aus-(c) $A_1 := \{E\}, p(A_1) = \frac{4}{26}$ $A_2 := \{W, H, R, S, C, N, L, K, T\}, p(A_2) = \frac{16}{26}$ $A_3 := \{A, E, I, O\}, p(A_3) = \frac{10}{26}$

4. $\Omega \subseteq A^3, A = \{1, 2, 3\}$

- (I) (a) $\Omega = \{(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1), (1,3,2), (1,3,3), (2,1,1), (2,1,2), (2,1,3), (2,2,1), (2,2,2), (2,2,3), (2,3,1), (2,3,2), (2,3,3), (3,1,1), (3,1,2), (3,1,3), (3,2,1), (3,2,2), (3,2,3), (3,3,1), (3,3,2), (3,3,3)\}$
 - $p(\omega) = \frac{1}{|\Omega|} \forall \omega \in \Omega$ (b) $|\Omega| = |A|^3 = 27$
 - (c) Ja, denn denn allen Elementen von Ω wird die gleiche Wahrscheinlichkeit zugeordnet.
- (II) (a) $\Omega = \{(1,2,3),(2,1,3),(3,1,2),(1,3,2),(2,3,1),(3,2,1)\}$ $p(\omega) = \frac{1}{|\Omega|} \forall \omega \in \Omega$
 - (b) $|\Omega| = |A|! = 6$
 - (c) Ja, denn denn allen Elementen von Ω wird die gleiche Wahrscheinlichkeit zugeordnet.
- (III) (a) $\Omega = \{(1,2,3)\}$ p((1,2,3)) = 1
 - (b) $|\Omega| = 1$
 - (c) Ja, denn denn allen Elementen von Ω wird die gleiche Wahrscheinlichkeit zugeordnet.

- (b) $|\Omega| = {3+3-1 \choose 3} = {5 \choose 3} = {5! \over 3!(5-3)!} = {5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \over 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} = {5 \cdot 4 \over 2} = 10$
- (c) Nein, z.B. $p((1,1,1)) = \frac{1}{27} \neq \frac{6}{27} = p((1,2,3))$.

Index der Kommentare

- 3.1 Schnitt, nicht Vereinigung
- 3.2 verschiedene Ereignisse