Are All Firewall Systems Equally Powerful?

Lorenzo Ceragioli, Pierpaolo Degano

Dipartimento di Informatica — Università di Pisa

Letterio Galletta

IMT School for Advanced Studies, Lucca

Firewall - Network Access Control

Prevent illegit network traffic

For each packet

- accepts or drops it
- possibly modifies its source or destination (NAT)

Firewall — example

Packets flow

- freely among local nodes, e.g. between 192.168.0.3 and 192.168.0.23
- from local to external nodes, e.g. from 192.168.0.3 to 8.8.8.8, provided its source address is modified in the external one of the firewall 151.15.185.183 (SNAT)


```
(The firewall has Self Addresses S = \{192.168.0.1, 151.15.185.183, 127.0.0.1\} for local, external and self reference)
```

Firewall Configuration Example (IPTABLES)

```
: PREBOUTING ACCEPT [0:0]
: INPUT ACCEPT [0:0]
: DUTPUT ACCEPT [0:0]
: POSTROUTING ACCEPT [0:0]
-A PREROUTING -p udp --dport 123 -j DNAT --to 193.204.114.232
-A OUTPUT -p udp --dport 123 -j DNAT --to 193.204.114.232
-A PREROUTING -p tcp -d 151.15.185.183 --dport 80 -j DNAT --to 10.0.0.8
-A OUTPUT -p tcp -d 151.15.185.183 --dport 80 -j DNAT --to 10.0.0.8
-A POSTROUTING -d 192.168.0.0/16 -j ACCEPT
-A INPUT -d 192.168.0.0/16 -i ACCEPT
-A POSTROUTING -d 10.0.0.0/8 -i ACCEPT
-A INPUT -d 10.0.0.0/8 -j ACCEPT
-A POSTROUTING -i SNAT --to 151.15.185.183
-A INPUT - | SNAT --to 151.15.185.183
COMMIT
*filter
: INPUT DROP [0:0]
:FORWARD DROP [0:0]
: OUTPUT DROP [0:0]
-A INPUT -m state --state ESTABLISHED -i ACCEPT
-A INPUT -p tcp -d 10.0.0.8 --dport 80 -i ACCEPT
-A INPUT -s 10.0.0.0/8 -d 10.0.0.0/8 -j ACCEPT
-A INPUT -s 192.168.0.0/16 ! -d 10.0.0.0/8 -i ACCEPT
-A INPUT -p udp -d 193.204.114.232 --dport 123 -j ACCEPT
-A FORWARD -m state --state ESTABLISHED -i ACCEPT
-A FORWARD -p tcp -d 10.0.0.8 --dport 80 -j ACCEPT
-A FORWARD -s 10.0.0.0/8 -d 10.0.0.0/8 -i ACCEPT
-A FORWARD -s 192.168.0.0/16 ! -d 10.0.0.0/8 -i ACCEPT
-A FORWARD -p udp -d 193.204.114.232 --dport 123 -j ACCEPT
-A OUTPUT -m state --state ESTABLISHED -j ACCEPT
-A OUTPUT -p tcp -d 10.0.0.8 --dport 80 -j ACCEPT
-A DUTPUT -s 10.0.0.0/8 -d 10.0.0.0/8 -i ACCEPT
-A DUTPUT -s 192.168.0.0/16 ! -d 10.0.0.0/8 -j ACCEPT
-A OUTPUT -p udp -d 193,204,114,232 --dport 123 -i ACCEPT
```

COMMIT

Firewall Configurations – a Mess

Decision of the firewall \rightarrow based on the **configuration** (list of rules)

Difficult to read

- No semantics just manuals
- Intricate evaluation order
- Interaction among rules (Shadowing)
- Goto's (and call-return)
- OS dependent
- Other low level details
- $\bullet \ \, \textbf{Nonsense} \ \, \mathsf{like} \ \, \neg (p \lor q) \ \, \mathsf{meaning} \ \, \neg p \lor \neg q \\$

Difficult to manage

- Configuration
- Cross-system porting
- Test
- Verification

are error-prone tasks

Formalizing Firewall Configurations [EuroS&P, POST]

 $\label{eq:Firewall} \textbf{Firewall} = \textbf{evaluating procedure of the language} + \textbf{set of rules}$

Control Diagram

Accept a packet if it flows from q_i to q_f visiting each node at most once

S are the addresses of the firewall

Formalizing Firewall Configurations [EuroS&P, POST]

Firewall = evaluating procedure of the language + set of rules

Control Diagram

Accept a packet if it flows from q_i to q_f visiting each node at most once

S are the addresses of the firewall

Configuration

Assigns a ruleset R to each node

Ruleset: list of rules $r = (\phi, a)$

- $\phi(p)$: **condition** e.g. dport = 80 (HTTP)
- \bullet a: action
 - ACCEPT
 - DROP
 - NAT (d_n, s_n)
 - GOTO(R)
 - CALL(R)
 - RETURN

With that in mind ...

Transcompilation pipeline between firewall languages

- ullet Decompile a configuration c from the source language to **Intermediate** Firewall Configuration Language (IFCL)
- **2** Extract the meaning of the policy as a function f describing how the accepted packets are translated \leftarrow SEMANTICS ()
- **Ompile** the function f = (c) into the target language

Supports iptables, pf, ipfw and (partially) CISCO-ios

Helps

- porting configurations from a system to another
- verifying properties
- updating configurations
- refactoring configurations

IFCL source configuration

```
R(q_0) = R(q_1):
  (dstIP = 8.8.8.8, DROP);
  (srcIP != 192.168.0.0/24 and dstIP = 151.15.185.183 and dstPort = 22, NAT(192.168.0.8, *));
  (srcIP = 192.168.0.0/24 and dstIP != 192.168.0.0/24 and dstPort = 80, NAT(*, 151.15.185.183));
  (srcIP = 151.15.185.183 and dstIP != 192.168.0.0/24 and dstPort = 80, ACCEPT);
  (dstIP = 192.168.0.8 and dstPort = 22, ACCEPT);
  (srcIP = 192.168.0.8 and dstPort = 22, ACCEPT);
  (srcIP = 192.168.0.8 and dstPort = 192.168.0.1 and dstPort = 22, ACCEPT);
  (true, DROP);
```


Table representing the accepted packets and their transformations

	Receive	d packets		Accepted packets								
sIP	sPort	dIP	dPort	sIP	sPort	dIP	dPort					
192.168.0.8	*	192.168.0.1	22	-	-	-	-					
*	*	192.168.0.8	22	-	-	-	-					
151.15.185.183	*	* \{ 8.8.8.8 192.168.0.0/24 }	80	-	-	-	-					
192.168.0.0/24	*	* \{ 8.8.8.8 192.168.0.0/24 }	80	151.15.185.183	-	-	-					
* \{ 192.168.0.0/24 }	*	151.15.185.183	22	-	-	192.168.0.8	-					

translation

IFCL target configuration

```
R(q_0):
    (srcIP = 192.168.0.0/24 and dstIP != 192.168.0.0/24 and
        dstPort = 80, NAT(*, 151,15,185,183));
    (true, ACCEPT);
R(q_2):
    (srcIP != 192.168.0.0/24 and dstIP = 151.15.185.183 and
        dstPort = 22, NAT(192.168.0.8, *));
    (true, ACCEPT);
R(q_1) = R(q_3):
    (dstIP = 8.8.8.8, DROP);
    (srcIP = 151.15.185.183 and dstIP != 192.168.0.0/24 and
        dstPort = 80, ACCEPT);
    (dstIP = 192.168.0.8 and dstPort = 22. ACCEPT):
    (srcIP = 192.168.0.8 and dstIP = 192.168.0.1 and
        dstPort = 22. ACCEPT):
    (true, DROP);
```


Checking expressivity of firewall languages

A general approach that

- works for any firewall language
- detects corner cases and idiosyncrasies
- helps in designing automatic tools for generating configurations

Pair Expressivity of firewall language $\mathcal L$

- \mathbb{P} set of **packets** $p = (dstIP : dstPort, \ srcIP : srcPort)$
- $\mathcal{T}_{\mathbb{P}}$ set of **transformations** t

```
p_1 = (192.168.0.1:1, 192.168.0.1:1)
t_1 = (\lambda_{1.1.1.1}:id, id:id)
t_1(p_1) = (1.1.1.1:1, 192.168.0.1:1)
```

Pair Expressivity

Given a packet p and a transformation t does it exist a configuration in \mathcal{L} that associates p with t?

Key observation

Only IFCL configurations obtainable from a source configuration, ... computed directly on the control diagram!

Legal IFCL configurations

Not every ruleset can be assigned to each node!

Assign *cap-labels* to nodes

- DROP: can discard the packet
- SNAT : can change the source address
- DNAT : can change the destination address

We restrict to cap-labels **compliant** configurations

The case of pf

 ${\cal S}$ are the addresses of the firewall

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y – $Y = \Lambda \times \Lambda \mbox{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y – $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. $p = \begin{pmatrix} 192.168.0.1 : 1, & 192.168.0.1 : 1 \end{pmatrix}$ $t = (\lambda_{1.1.1.1} : id, \lambda_{151.15.185.183} : id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y – $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y – $Y = \Lambda \times \Lambda \mbox{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y – $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y $Y = \Lambda \times \Lambda$ (change source and destination)
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

- Take two subsets of arcs predicates $X_1, X_2 X_1 = \{ d(p) \in \mathcal{S}, s(p) \in \mathcal{S} \}$ $X_2 = \{ d(p) \notin \mathcal{S}, s(p) \in \mathcal{S} \}$
- Take a subset of transformations Y – $Y = \Lambda \times \Lambda \text{ (change source and destination)}$
- Take a pair (p,t) such that p satisfy X_1 self source and destination t is inside Y SNAT and DNAT t(p) satisfy X_2 not self destination E.g. p = (192.168.0.1:1, 192.168.0.1:1) $t = (\lambda_{1.1.1.1}:id, \lambda_{151.15.185.183}:id)$
- Check if (p,t) is expressible No! Then every pair for X_1 , Y, X_2 is not

 \mathcal{S} are the addresses of the firewall {192.168.0.1, 151.15.185.183, 127.0.0.1}

							_
λ	1	Y	λ	2	(p,t)		$\Xi_{\mathcal{L}}$
d(p)	s(p)		d(t(p))	s(t(p))	((d(p), s(p)), t)	pf/ipfw	iptables
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\varepsilon(\mathtt{DNAT})$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_a:\lambda_r,id:id))$	X	/
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\varepsilon(\mathtt{DNAT})$	$\notin \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_b:\lambda_r,id:id))$	X	/
$\in \mathcal{S}$	∉ S	$\varepsilon(\mathtt{SNAT})$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((a:r,b:r),(id:id,\lambda_a:\lambda_r))$	X	✓
$\in \mathcal{S}$	∉ S	$\varepsilon(\mathtt{SNAT})$	$\in \mathcal{S}$	$ otin \mathcal{S} $	$((a:r,b:r),(id:id,\lambda_b:\lambda_r))$	X	/
$\in \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$ otin \mathcal{S} $	$\in \mathcal{S}$	$((a:r,a:r),(\lambda_b:\lambda_r,\lambda_a:\lambda_r))$	Х	✓
$\in \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\notin \mathcal{S}$	$((a:r,a:r),(\lambda_b:\lambda_r,\lambda_b:\lambda_r))$	X	/
$\in \mathcal{S}$	∉ δ	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((a:r,b:r),(\lambda_a:\lambda_r,\lambda_a:\lambda_r))$	X	✓
$\in \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\notin \mathcal{S}$	$ ((a:r,b:r),(\lambda_a:\lambda_r,\lambda_b:\lambda_r)) $	X	/
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_a:\lambda_r,\lambda_a:\lambda_r))$	Х	/
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\notin \mathcal{S}$	$((b:r,a:r),(\lambda_a:\lambda_r,\lambda_b:\lambda_r))$	X	/
$\notin S$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_b:\lambda_r,\lambda_a:\lambda_r))$	X	✓
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\notin \mathcal{S}$	$((b:r,a:r),(\lambda_b:\lambda_r,\lambda_b:\lambda_r))$	X	/
$\notin \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\in \mathcal{S}$	$ ((b:r,b:r),(\lambda_a:\lambda_r,\lambda_a:\lambda_r)) $	X	/
$\notin \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$ otin \mathcal{S} $	$((b:r,b:r),(\lambda_a:\lambda_r,\lambda_b:\lambda_r))$	X	✓
		Otherw	ise			✓	✓

	-			-			
λ	1	Y	X	2	(p,t)		$\Xi_{\mathcal{L}}$
d(p)	s(p)		d(t(p))	s(t(p))	((d(p),s(p)),t)	pf/ipfw	iptables
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\varepsilon(\mathtt{DNAT})$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_a:\lambda_r,id:id))$	X	/
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\varepsilon(\mathtt{DNAT})$	$\notin \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_b:\lambda_r,id:id))$	X	/
$\in \mathcal{S}$	∉ S	$\varepsilon(\mathtt{SNAT})$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((a:r,b:r),(id:id,\lambda_a:\lambda_r))$	X	/
$\in \mathcal{S}$	$\notin S$	$\varepsilon(\mathtt{SNAT})$	$\in \mathcal{S}$	$\notin \mathcal{S}$	$((a:r,b:r),(id:id,\lambda_b:\lambda_r))$	X	/
$\in \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\in \mathcal{S}$	$((a:r,a:r),(\lambda_b:\lambda_r,\lambda_a:\lambda_r))$	Х	✓
$\in \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\notin \mathcal{S}$	$((a:r,a:r),(\lambda_b:\lambda_r,\lambda_b:\lambda_r))$	X	/
$\in \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((a:r,b:r),(\lambda_a:\lambda_r,\lambda_a:\lambda_r))$	X	✓
$\in \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\notin \mathcal{S}$	$((a:r,b:r),(\lambda_a:\lambda_r,\lambda_b:\lambda_r))$	X	/
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_a:\lambda_r,\lambda_a:\lambda_r))$	Х	/
$\notin \mathcal{S}$	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\notin \mathcal{S}$	$((b:r,a:r),(\lambda_a:\lambda_r,\lambda_b:\lambda_r))$	X	/
∉ S	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\in \mathcal{S}$	$((b:r,a:r),(\lambda_b:\lambda_r,\lambda_a:\lambda_r))$	X	✓
∉ S	$\in \mathcal{S}$	$\Lambda \times \Lambda$	$\notin \mathcal{S}$	$\notin \mathcal{S}$	$((b:r,a:r),(\lambda_b:\lambda_r,\lambda_b:\lambda_r))$	X	✓
$\notin \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$\in \mathcal{S}$	$ ((b:r,b:r),(\lambda_a:\lambda_r,\lambda_a:\lambda_r)) $	X	/
$\notin \mathcal{S}$	∉ S	$\Lambda \times \Lambda$	$\in \mathcal{S}$	$ otin \mathcal{S} $	$((b:r,b:r),(\lambda_a:\lambda_r,\lambda_b:\lambda_r))$	X	✓
		Otherw	ise			✓	1

In practice

iptables universal, ipfw and pf not universal and equally expressive

- ullet The semantics of a firewall is a **function** $f\colon \mathbb{P} o \mathcal{T}_{\mathbb{P}}$
- Is function expressivity the same of pairs expressivity?

- ullet The semantics of a firewall is a **function** $f\colon \mathbb{P} o \mathcal{T}_{\mathbb{P}}$
- Is function expressivity the same of pairs expressivity? NO!
- The management of different pairs may interfere one with the others

```
\begin{array}{l} (p_1,t_1) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 151.15.185.183:1}),\; \bot) \\ (p_2,t_2) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 192.168.0.1:1}),\; (\lambda_{151.15.185.183}:id,\; id:id)) \\ t_2(p_2) = p_1 \end{array}
```


Function Expressivity

- ullet The semantics of a firewall is a **function** $f\colon \mathbb{P} o \mathcal{T}_{\mathbb{P}}$
- Is function expressivity the same of pairs expressivity? NO!
- The management of different pairs may interfere one with the others

```
\begin{array}{l} (p_1,t_1) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 151.15.185.183:1}),\; \bot) \\ (p_2,t_2) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 192.168.0.1:1}),\; (\lambda_{151.15.185.183}:id,\; id:id)) \\ t_2(p_2) = p_1 \end{array}
```


Function Expressivity

- ullet The semantics of a firewall is a **function** $f\colon \mathbb{P} o \mathcal{T}_{\mathbb{P}}$
- Is function expressivity the same of pairs expressivity? NO!
- The management of different pairs may interfere one with the others

```
\begin{array}{l} (p_1,t_1) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 151.15.185.183:1}),\; \bot) \\ (p_2,t_2) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 192.168.0.1:1}),\; (\lambda_{151.15.185.183}:id,\; id:id)) \\ t_2(p_2) = p_1 \end{array}
```


Function Expressivity

- ullet The semantics of a firewall is a **function** $f\colon \mathbb{P} o \mathcal{T}_{\mathbb{P}}$
- Is function expressivity the same of pairs expressivity? NO!
- The management of different pairs may interfere one with the others

```
\begin{array}{l} (p_1,t_1) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 151.15.185.183:1}),\; \bot) \\ (p_2,t_2) = (({\scriptstyle 1.1.1.1:1},\; {\scriptstyle 192.168.0.1:1}),\; (\lambda_{151.15.185.183}:id,\; id:id)) \\ t_2(p_2) = p_1 \end{array}
```


Function Expressivity

Checking expressible functions f [ITASEC19]

Function f represented as sets of $\operatorname{pairs}\ (P,t)$

P is a multi-cube of packets
t is a transformation

Algorithm

Given a control diagram with labels Returns true if f the expressible

- For each pair (P,t) with $t \neq \bot$
 - Find the path
 - ullet For each node q
 - $\bullet \ \mathsf{Preceding} \ \mathsf{nodes} \to \mathbf{P_q}$
 - ullet Labels in $q
 ightarrow {f t_q}$
- ullet Special management for pairs (P,\bot)

The case of pf

 ${\cal S}$ are the addresses of the firewall

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

Pair expressivity not affected, function expressivity may be $\begin{aligned} \textbf{guess} \colon & \text{the two expressivity coincide if tags are considered} & \to & \text{function} \\ & & \text{expressivity express when tags are } & \textbf{really needed} \end{aligned}$

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

Pair expressivity not affected, function expressivity may be $\begin{aligned} \textbf{guess} \colon & \text{the two expressivity coincide if tags are considered} & \to & \text{function} \\ & & \text{expressivity express when tags are } & \textbf{really needed} \end{aligned}$

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

Pair expressivity not affected, function expressivity may be ${f guess}$: the two expressivity coincide if tags are considered ightarrow function expressivity express when tags are ${f really}$ needed

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

Pair expressivity not affected, function expressivity may be ${f guess}$: the two expressivity coincide if tags are considered ightarrow function expressivity express when tags are ${f really}$ needed

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

Pair expressivity not affected, function expressivity may be \mathbf{guess} : the two expressivity coincide if tags are considered \rightarrow function expressivity express when tags are \mathbf{really} \mathbf{needed}

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

Pair expressivity not affected, function expressivity may be ${f guess}$: the two expressivity coincide if tags are considered ightarrow function expressivity express when tags are ${f really}$ needed

iptables not universal and incomparable with others, ipfw more expressive than pf

Tags are not considered

F2F checks expressivity

transcompilation pipeline

language expressivity

Extra – F2F at work

(venv) user@here:"/\$ fwp iptables "/interfaces "/iptables.conf pf

PROBLEM FOUND!

In pf the following rule schema is not expressible!

1	slp	-	dlp	Ш	tr.slp	:	tr_sPort	-	tr_dlp	:	tr_dPort
ī	Self	T	Self	Ш	id		id	ī	DNAT (~Self)		id

Hence the following is impossible to achieve:

Ш	slp	1	sPort	1	dlp	1	dPort	1	prot	П	tr.src	- 1	tr_dst	Ш
TI	127.0.0.1	ī		ī	151.15.185.183	ī	80	ī	tcp	П	-:-	ī	10.0.0.8 :	
- 11	151.15.185.183	П		П		П		П		Ш		- 1		ш
- 11	10.0.0.1	1		П		-		1		Ш		- 1		Ш
- 11	192.168.0.1	1		1		İ		1		П		- 1		Ш

PROBLEM FOUND!

In pf the following rule schema is not expressible!

	slp	d	lp	t	- 5	Ιp		tr_sPort	I	tr_dlp		tr_dPort	1
ī	Self	Se	If	SNAT	(Self)	:	id	I	DNAT (~Self)	:	id	ī

Hence the following is impossible to achieve:

Ш	slp	I	sPort	I	dlp	1	dPort	1	prot	П	tr.src	- 1	tr_dst	- 11
Ī	192.168.0.1	Ī	٠	-	127.0.0.1 151.15.185.183 10.0.0.1 192.168.0.1	1	123	Ī	udp	H	151.15.185.183	 -	193.204.114.232	: -

PROBLEM FOUND!

In pf the following rule schema is not expressible!

-	slp	1	dlp	Ш	tr.slp	:	tr_sPort	- 1	tr_dlp	:	tr_dPort	1
T	Self	1.	Self	Ш	SNAT (Self)		id	ī	DNAT (~Self)		id	ī

Hence the following is impossible to achieve:

П	slp	I	sPort	I	dlp	I	dPort	I	prot	П	tr_src	tr.dst	- 11
	192.168.0.1		٠		0.0.0.0 - 10.0.0.0 10.0.0.2 - 127.0.0.0 127.0.0.2 - 151.15.185.182 151.15.185.184 - 192.168.0.0 192.168.0.2 - 255.255.255.255		123		udp		151.15.185.183 : -	193.204.114.232	: -

(venv) user@here: 7/\$