Car Price Prediction - Model Training and Evaluation Report

Author: Jonathan Ndayisenga

Date: April 2025

Toolkits: Python, Scikit-learn, Pandas, Seaborn, Matplotlib

Modeling Techniques: Linear Regression, Random Forest Regression

1. Dataset Overview

• **Source**: car data.csv (301 rows, 9 columns) from kaggle https://www.kaggle.com/datasets/vijayaadithyanvg/car-price-predictionused-cars

• Objective: Predict the Selling Price of used cars based on several attributes.

Key Features:

Feature	Description
Car_Name	Name of the car (used to extract brand)
Year	Year of manufacture
Present_Pric e	Current ex-showroom price (in lakhs)
Driven_kms	Distance driven (in kilometers)
Fuel_Type	Type of fuel (Petrol/Diesel/CNG)

Selling_type Individual or Dealer

Transmission Manual or Automatic

Owner Number of previous owners

2. Data Preprocessing

- Dropped Car_Name after extracting the brand.
- Removed null values (dataset had none).
- Converted categorical features to numeric using one-hot encoding (pd.get_dummies()).
- Split dataset into **training (80%)** and **testing (20%)** subsets using train_test_split.

3. Exploratory Data Analysis (EDA)

- Pairplot to visualize relationships among numeric features.
- **Heatmap** of correlations:
 - Present_Price and Selling_Price: Strong positive correlation.
 - Year and Selling_Price: Mild positive correlation.
- Feature distributions were explored to understand the spread and potential outliers.

Notable insights:

1. Present_Price vs Selling_Price:

 Clear positive linear relationship — cars that cost more originally tend to sell for more.

2. Year vs Selling_Price:

Newer cars tend to sell for higher prices.

3. Driven_Kms vs Selling_Price:

 Slight negative correlation — cars driven more tend to have a slightly lower selling price.

4. Owner vs Selling_Price:

• Higher number of owners may negatively impact selling price, though the pattern is sparse.

4. Model Training & Evaluation

A. Linear Regression (Baseline Model)

Metric	Value
MAE	1.221
MSE	3.459
RMSE	1.860
R² Score	0.850

Interpretation: The model explains $\sim\!85\%$ of the variance in selling prices. Decent, but might underfit in complex scenarios.

B. Random Forest Regression (Main Model)

Metric	Value
MAE	0.679
MSE	1.007
RMSE	1.003
R² Score	0.962

Interpretation: The Random Forest model significantly outperforms Linear Regression, explaining over **96%** of the variance. It captures non-linear relationships effectively.

5. Feature Importance (Random Forest)

Top features contributing to price prediction:

- 1. Present_Price
- 2. Year
- 3. Driven_kms
- 4. Fuel_Type_Diesel
- 5. Transmission_Manual

Visualized using a Seaborn bar plot of feature importances from the trained Random Forest model.

6. Actual vs Predicted Plot

A scatter plot comparing true vs predicted values for the test set shows strong alignment around the diagonal, indicating accurate predictions.

Blue dots: each one represents a car from your test set (actual vs predicted).

Red dashed line: ideal prediction line (where predicted = actual).

7. Conclusion

- Best Model: Random Forest Regressor
- Accuracy: ~96% R² on test data
- Next Steps:
 - Save the trained model using pickle for deployment.
 - Deploy a Streamlit web app for interactive predictions.
 - o Host code and model on GitHub for collaboration and deployment.