РЕФЕРАТ

Выпускная квалификационная работа бакалавра 86 с., 77 рис., 3 источн., 45 табл.

РАСЧЕТ ЛЕТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК, СИСТЕМА АВТОМАТИЧЕСКОЙ СТАБИЛИЗАЦИИ ВЫСОТЫ, АНАЛИЗ ЭШЕЛО-НИРОВАННОГО ПОЛЕТА

Предмет исследования — прототип транспортного самолета Ил-76.

Работа состоит из трех частей: общая часть, синтез системы автоматического управления и специальная часть.

В общей части был проведен расчет основных летно-технических характеристик самолета-прототипа.

В разделе синтеза системы автоматического управления была синтезирована система автоматической стабилизации высоты.

В специальной части был проведен анализ характеристик самолета-прототипа при выполнении эшелонирования.

Цель работы — провести анализ расхода топлива при различных вариантах эшелонирования.

содержание

1.	Об	щая ча	асть	5
	1.1.	Исходн	ные данные	7
	1.2.	Расчет	лётно – технических характеристик самолета	10
	1.3.	Расчет	траектории полета	32
		1.3.1.	Расчет характеристик набора высоты	32
		1.3.2.	Расчет характеристик крейсерского полета	36
		1.3.3.	Расчет характеристик участка снижения	37
	1.4.	Расчет	диаграммы транспортных возможностей	42
	1.5.	Расчет	взлетно-посадочных характеристик самолета	43
	1.6.	Расчет	характеристик маневренности самолета	45
	1.7.	Расчет	характеристик продольной статической устойчивости и	
		управл	іяемости	47
2.	Си	нтез си	истемы автоматического управления	55
	2.1.	Описал	ние объекта управления	55
		2.1.1.	Построение области высот и скоростей	56
		2.1.2.	Выбор параметров привода	57
		2.1.3.	Вывод	58
	2.2.	Синтез	в контуров автоматического управления	58
		2.2.1.	Расчет ядра системы	59
		2.2.2.	Расчет внешнего контура	61
		2.2.3.	Вывод	64
	2.3.	Частот	гный анализ	64
		2.3.1.	Анализ контура демпфирования	64

		2.3.2.	Анализ ядра системы	66
		2.3.3.	Анализ внешнего контура	69
		2.3.4.	Вывод	72
	2.4.	Нелин	ейное моделирование САУ	72
		2.4.1.	Сравнение для разных максимальных скоростей откло-	
			нения руля высоты	73
		2.4.2.	Сравнение линейной и нелинейной модели	75
		2.4.3.	Вывод	76
	2.5.	Вывод	по разделу	77
3.	Сп	ециаль	ная часть	78
	3.1.	Исслед	цование характеристик транспортного самолета при вы-	
		полнен	иии эшелонирования	78
		3.1.1.	Постановка задачи	78
		3.1.2.	Расчетные формулы	78
	3.2.	Исходн	ные данные для расчетов	78
		3.2.1.	Задачи	79
	3.3.	Резуль	таты	79
		3.3.1.	Результаты расчета при постоянный высоте и оптималь-	
			ной скорости полета	79
		3.3.2.	Результаты расчета при оптимальном изменении высо-	
			ты и скорости полета	80
		3.3.3.	Эшелонированный полет, высота меняется ступенчато	
			с шагом 300 м	81
		3.3.4.	Анализ результатов	83
	3.4.	Вывод		83
7,	эк шмі	пение		8.5

Список литературы														•									٠									8	36
-------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	----

1. Общая часть

В 1966 г. в ВВС было сформулировано техническое задание на военнотранспортный самолет нового типа, который должен был заменить Ан-12. Требовалась машина, способная транспортировать до 40 тонн груза на расстояние порядка 5000 км. без ухудшения ВПХ.

Работы по созданию Ил-76 начались в 1967 г. в условиях конкуренции с ОКБ Антонова, которое предлагало глубокую модернизацию Ан-12.

Руководство созданием Ил-76 впервые осуществлял не сам С.В Илью-шин, а его заместитель — Г.В. Новожилов. Главным конструктором Ил-76 и последующих его модификаций стал Р.П Папковский.

Ил-76 представляет собой свободнонесущий высокоплан нормальной аэродинамической схемы со стреловидным крылом, стабилизатором и рулем высоты, однокилевым Т-образным вертикальным оперением, пятиопорным шасси и турбореактивной силовой установкой Д-30КП оснащенной реверсивным устройством (Рисунок. 1.1).

Рисунок 1.1 — Общий вид самолета Ил-76

1.1. Исходные данные

0.80

< 650

140000

0.25

0.44

Основные параметры самолета необходимые для расчета представлены в таблице 1.1.

 $n_{\rm дв}$ $\bar{L}_{\scriptscriptstyle \Gamma \scriptscriptstyle O}$ V_i S $M_{\rm доп}$ $ar{m}_{\scriptscriptstyle \mathrm{I\!I}\mathrm{H}}$ P_0 Ce_0 P_s b_a m_0 $\bar{m}_{\scriptscriptstyle \mathrm{T}}$ $\bar{m}_{
m cH}$ $\frac{\mathrm{KM}}{\mathrm{Y}}$ $\frac{\mathrm{дан}}{\mathrm{M}^2}$ 2 ΚГ Μ дан*ч

0.276

0.048

4/2

457

6.436

3.10

300

0.45

Таблица 1.1 — Исходные данные для самолета Ил-76

Зависимости аэродинамических характеристик представлены на рисунке 1.2. Зависимости $C_y(C_x)$, $C_y(\alpha)$ для различных конфигурация представлены на рисунке 1.3. Аэродинамические характеристики для отдельных компоновочных групп приведены на рисунке 1.4. Основные параметры двигателя приведены на рисунках 1.5, 1.6.

Рисунок 1.2 — Аэродинамические характеристики самолета

Рисунок 1.3 — Аэродинамические характеристики самолета на взлётно-посадочных режимах

 $C_x \times 10^2$, α [град]

10

15

25

Рисунок 1.4 — Аэродинамические характеристики для отдельных компоновочных групп самолета

Рисунок 1.5 — Высотно-скоростные характеристики ТРДД на режиме «номинал»

Рисунок 1.6 — Относительный удельный часовой расход топлива для $\mathrm{TP} \Box \Box$ на режиме «номинал»

1.2. Расчет лётно – технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 1.2 1.8:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- ullet числа M полета, соответствующего минимальной потребной тяги,
- ullet числа M полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива.
- 3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]$$

$$V = Ma_H, (1.1)$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{1.2}$$

где ho_H — плотность воздуха на высоте H.

Коэффициент подъемной силы для крейсерского полета:

$$C_{y_n} = \frac{\bar{m}P_s 10}{q},\tag{1.3}$$

где $\bar{m}=0.95$ — относительная масса самолета, P_s — удельная нагрузка на крыло.

Коэффициент лобового сопротивления при $C_y = C_{y_n}$:

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2, \tag{1.4}$$

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}$, C_{x_m} — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{x_n}},\tag{1.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n},\tag{1.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M), \qquad (1.7)$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 g},\tag{1.8}$$

$$V_y^* = \Delta \bar{P}V, \tag{1.9}$$

$$\bar{R} = \frac{P_n}{P_n},\tag{1.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{p}}(R)P_n, \qquad (1.11)$$

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6V},$$
 (1.12)

где K_n — аэродинамические качество, P_n — потребная тяга двигателя, P_p — располагаемая тяга двигателя, n_x — тангенциальная перегрузка, V_y^* — энергетическая скороподъемность, \bar{R} — потребное значение коэффициента дросселирования двигателя при крейсерском полете, $q_{\rm q}$ — часовой расход топлива, $q_{\rm km}$ — километровый расход топлива.

Результаты для высот от 0 до $H_{\rm np}$ с шагом в 2 км. приведены в таблицах 1.2 - 1.8. Также графической представление результатов на рисунках 1.7 - 1.34.

Таблица 1.2 — Результаты расчета для высоты H=0 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ ar{R}_{ m KP} $	$q_{^{ m H}}$	$q_{\scriptscriptstyle m KM}$
	C	KM	$\frac{H}{\mathrm{M}^2}$	I	1	H	H	I	C M	I	KI 4	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
0.10	34	123	602	6.454	2.67	4.887	3.531	-0.099	-3.4	1.38	25512	208.25
0.20	89	245	2837	1.614	10.18	1.282	3.282	0.146	9.6	0.39	8654	35.32
0.30	102	368	6383	0.717	14.65	0.890	3.062	0.158	16.1	0.29	6851	18.64
0.40	136	490	11348	0.403	12.19	1.071	2.856	0.130	17.7	0.37	8500	17.35
0.50	170	613	17732	0.258	8.50	1.535	2.679	0.083	14.2	0.57	12368	20.19
09.0	204	735	25534	0.179	5.84	2.234	2.510	0.020	4.1	0.89	18083	24.60
0.70	238	828	34754	0.132	4.00	3.259	2.342	-0.067	-15.9	1.39	26431	30.82
0.80	272	086	45394	0.101	2.40	5.435	2.173	-0.237	-64.6	2.50	40404	41.23
0.90	306	1103	57451	0.080	1.45	9.013	2.005	-0.510	-156.3	4.50	50959	46.22
0.95	323	1164	64012	0.072	1.19	10.980	1.920	-0.660	-213.3	5.72	48567	41.73

Cy 0.6+

0.8

0.4

 $M_{min_{AOH}} = 0.24$

1.2

1.0

Рисунок 1.7 — График располагаемой и потребной

=17.789

Рисунок 1.8 — График $C_{y_{\text{доп}}}, C_{y_n}$

0.8

0.0

0.4

0.0

+ 0.0

 $- C_y(H = 0.000 \text{ [kM]})$ 0.2

M

Рисунок 1.9 — График $V_y^*(M, H)$

0.0

 $V_y^*(H=0.000[\text{km}])$

2.5

5.0

0.5

 $V[{
m M/c^2}]$

Рисунок 1.10 — График $q_{\text{км}}, q_{\text{ч}}$

20.0

17.5 -

12.5 ν* [м/c]

15.0 -

7.5

ИЛВТ

Таблица 1.3 — Результаты расчета для высоты H=2 км

M	1	7	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{KP}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C M	$\frac{\mathrm{KM}}{^{4}}$	$\frac{H}{\mathrm{M}^2}$	I	ı	H	H	I	Z K	l	KT	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
0.10	33	120	557	8.226	2.08	6.261	3.153	-0.226	-7.5	1.99	29631	247.52
0.20	29	239	2226	2.057	8.28	1.576	2.983	0.103	8.9	0.53	9898	41.34
0.30	100	359	5009	0.914	14.11	0.925	2.814	0.138	13.7	0.33	6645	18.50
0.40	133	479	8904	0.514	13.79	0.946	2.650	0.124	16.5	0:36	7216	15.07
0.50	166	599	13913	0.329	10.40	1.255	2.501	0.091	15.1	0.50	9855	16.47
09.0	200	718	20034	0.229	7.35	1.776	2.376	0.044	8.7	0.75	13975	19.46
0.70	233	838	27269	0.168	5.09	2.566	2.245	-0.023	-5.4	1.14	20447	24.40
0.80	266	958	35617	0.129	3.06	4.271	2.095	-0.158	-42.1	2.04	32241	33.67
0.90	299	1077	45077	0.102	1.84	7.096	1.945	-0.375	-112.3	3.65	44571	41.37
0.95	316	1137	50225	0.091	1.51	8.660	1.870	-0.494	-156.2	4.63	46660	41.03

 $V_y^*(H=2.000 [{\rm km}])$

0.5

 $V[{
m M/c^2}]$

Рисунок 1.11 — График располагаемой и потреб-

Рисунок 1.12 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.14 — График $q_{\text{км}}, q_{\text{ч}}$

ной тяги

 $V_{4max}^* = 16.561$

17.5 -

15.0 -

12.5 -

ν, [м/c]

7.5 -

5.0

2.5

Таблица 1.4 — Результаты расчета для высоты $H=4~\mathrm{km}$

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	V_y^*	$ar{R}_{ ext{KP}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
1	C IM	KM	$\frac{H}{{ m M}^2}$	I	I	Н	Н	I	⊠ C	I	KT 4	KT
0.10	32	117	432	10.606	1.61	8.113	2.461	-0.412	-13.4	3.30	32076	274.50
0.20	65	234	1726	2.652	6.53	1.998	2.397	0.029	1.9	0.83	11735	50.21
0.30	97	351	3885	1.178	12.62	1.034	2.333	0.095	9.2	0.44	7094	20.24
0.40	130	467	9069	0.663	14.67	0.890	2.268	0.100	13.0	0.39	6573	14.06
0.50	162	584	10791	0.424	12.37	1.055	2.177	0.082	13.3	0.48	8044	13.77
0.60	195	701	15538	0.295	9.16	1.425	2.083	0.048	9.3	0.68	10954	15.62
0.70	227	818	21150	0.216	6.46	2.020	2.010	-0.001	-0.2	1.00	15762	19.27
0.80	260	935	27624	0.166	3.91	3.339	1.965	-0.100	-26.0	1.70	25239	27.00
0.90	292	1052	34961	0.131	2.35	5.552	1.926	-0.264	-77.1	2.88	37573	35.73
0.95	308	1110	38954	0.118	1.92	6.788	1.906	-0.355	-109.6	3.56	42354	38.15

 $-V_y^*(H=4.000[\text{km}])$

 $V_*^{\mathrm{g}}[M/c]$

0.2

 $V[{
m M/c^2}]$

Рисунок 1.15 — График располагаемой и потреб-

=13.578

14 -

12 -

10

Рисунок 1.16 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.18 — График $q_{\text{км}}, q_{\text{ч}}$

Таблица 1.5 — Результаты расчета для высоты H=6 км

M	Λ	7	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{KP}}$	ъђ	$q_{\scriptscriptstyle m KM}$
I	C	$\frac{KM}{4}$	$\frac{H}{{ m M}^2}$	I	I	H	Н	I	C	I	KT	KT KM
0.10	32	114	331	13.851	1.23	10.644	2.053	-0.626	-19.8	5.19	28345	248.81
0.20	63	228	1322	3.463	5.02	2.598	2.018	-0.042	-2.7	1.29	13930	61.14
0.30	95	342	2975	1.539	10.55	1.237	1.984	0.054	5.2	0.62	7765	22.72
0.40	127	456	5288	0.866	14.37	0.908	1.950	0.076	9.6	0.47	0989	13.96
0.50	158	570	8263	0.554	13.97	0.934	1.909	0.071	11.2	0.49	6887	12.09
09.0	190	684	11899	0.385	11.13	1.172	1.858	0.050	9.5	0.63	8771	12.83
0.70	222	797	16196	0.283	8.12	1.607	1.808	0.015	3.2	0.89	12198	15.30
0.80	253	911	21153	0.216	4.99	2.614	1.771	-0.061	-15.5	1.48	19496	21.39
0.90	285	1025	26772	0.171	3.01	4.334	1.755	-0.188	-53.5	2.47	29782	29.05
0.95	301	1082	29830	0.153	2.46	5.309	1.748	-0.259	-78.0	3.04	34381	31.77

 $V_y^*(H=6.000[\text{km}])$

0.2

 $V[{\rm M/c^2}]$

Рисунок 1.19 — График располагаемой и потреб-

=11.233

12 -

10 -

φ [v/k] ^v [w/c]

Рисунок 1.20 — График $C_{y_{\rm nou}}, C_{y_n}$

Таблица 1.6 — Результаты расчета для высоты H=8 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	V_y^*	$ar{R}_{ m KP}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C M	KM 4	$\frac{H}{{ m M}^2}$	I	I	Н	Н	I	M C	I	KI.	KT KM
0.10	31	111	250	18.344	0.92	14.155	1.626	-0.912	-28.1	8.71	7548	68.05
0.20	62	222	968	4.586	3.78	3.449	1.618	-0.133	-8.2	2.13	15946	71.88
0.30	92	333	2246	2.038	8.34	1.564	1.611	0.003	0.3	0.97	8954	26.91
0.40	123	444	3993	1.147	12.84	1.016	1.603	0.043	5.3	0.63	6535	14.73
0.50	154	555	6239	0.734	14.55	0.897	1.596	0.051	7.8	0.56	6268	11.30
09.0	185	999	8984	0.510	12.84	1.016	1.592	0.042	7.8	0.64	7340	11.03
0.70	216	922	12228	0.374	9.90	1.318	1.576	0.019	4.1	0.84	8696	12.49
0.80	246	887	15972	0.287	6.29	2.075	1.571	-0.037	-9.0	1.32	15169	17.10
0.90	277	866	20214	0.226	3.83	3.405	1.561	-0.134	-37.2	2.18	23359	23.40
0.95	293	1054	22523	0.203	3.12	4.176	1.556	-0.191	-55.8	2.68	27261	25.87

Рисунок 1.23 — График располагаемой и потреб-

=8.098

Рисунок 1.24 — График $C_{y_{\mathrm{nou}}}, C_{y_n}$

0.8

0.6

 $V_y^*(H=8.000[\text{km}])$

 $V_y^*[M/c]$

0.5

48

 $V[{
m M/c^2}]$

Таблица 1.7 — Результаты расчета для высоты $H=10~\mathrm{km}$

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	V_y^*	$ar{R}_{ ext{Kp}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
	C IM	KM 4	$\frac{H}{\mathrm{M}^2}$	I	I	Н	Н	I	C	ı	KT	KT
0.10	30	108	185	24.679	0.68	19.109	1.266	-1.299	-38.9	15.09	-60549	-561.51
0.20	09	216	742	6.170	2.80	4.667	1.270	-0.247	-14.8	3.68	17187	79.70
0:30	06	323	1669	2.742	6.32	2.065	1.273	-0.058	-5.2	1.62	10829	33.48
0.40	120	431	2968	1.542	10.55	1.237	1.277	0.003	0.3	76.0	7409	17.18
0.50	150	539	4637	0.987	13.67	0.954	1.281	0.024	3.6	0.75	6189	11.48
09.0	180	647	8299	0.686	13.59	0.960	1.289	0.024	4.3	0.74	6540	10.11
0.70	210	755	9089	0.504	11.33	1.151	1.305	0.011	2.3	0.88	8078	10.70
0.80	240	863	11872	0.386	7.64	1.708	1.321	-0.028	-6.8	1.29	11992	13.90
0.90	270	970	15025	0.305	4.77	2.738	1.341	-0.102	-27.4	2.04	18333	18.89
0.95	285	1024	16741	0.273	3.89	3.357	1.350	-0.146	-41.6	2.49	21642	21.13

Рисунок 1.27 — График располагаемой и потреб-

=4.328

3

 $V^*_*[\mathrm{M/c}]$

Рисунок 1.28 — График $C_{y_{\text{доп}}}$, C_{y_n}

Рисунок 1.29 — График $V_y^*(M, H)$

0.8

0.0

 $V_y^*(H=10.000\,[{
m km}])$

0.5

 $V[{
m M/c}^2]$

Рисунок 1.30 — График $q_{\text{км}}, q_{\text{ч}}$

Таблица 1.8 — Результаты расчета для высоты H=11.880 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	V_y^*	$ar{R}_{ m Kp}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C	KM 4	$\frac{H}{\mathrm{M}^2}$	I	I	Н	Н	I	C K	I	TKT 4	KT KM
0.10	30	106	138	33.082	0.51	25.683	0.968	-1.800	-53.1	26.52	-247989	-2334.57
0.20	59	212	554	8.271	2.07	6.295	0.984	-0.387	-22.8	6.40	12295	57.87
0.30	89	319	1245	3.676	4.73	2.759	1.000	-0.128	-11.3	2.76	11989	37.62
0.40 118	118	425	2214	2.068	8.24	1.583	1.016	-0.041	-4.9	1.56	8458	19.91
0.50 148	148	531	3460	1.323	11.71	1.114	1.032	-0.006	-0.9	1.08	6586	12.40
09.0	0.60 177	637	4982	0.919	12.92	1.010	1.048	0.003	0.5	96.0	6408	10.05
0.70	$0.70 \mid 207$	744	6781	0.675	11.74	1.111	1.075	-0.003	-0.5	1.03	7308	9.83
0.80 236	236	850	8856	0.517	8.58	1.521	1.102	-0.031	-7.2	1.38	9899	11.65
0.90	$0.90 \mid 266 \mid$	956	11209	0.408	5.58	2.339	1.132	-0.088	-23.3	2.07	14621	15.29
0.95	0.95 280	1009	12489	0.367	4.57	2.857	1.147	-0.125	-34.9	2.49	17261	17.11

0.6

 $V_y^*(H=11.880 \, [\text{km}])$

0.2

 $V[{
m M/c^2}]$

Рисунок 1.31 — График располагаемой и потреб-

 $y_{max}^* = 0.5$

0.5

0.4

0.2

0.1

[5/M] *V

Рисунок 1.32 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.34 — График $q_{\text{км}}, q_{\text{ч}}$

Для построение таблицы 1.9 для узловых высот:

$$H = 0, 2, 4, 6, 8, 10, 11.56 \,\mathrm{KM},$$

где значение 11.56 км соответствует практическому потолку $H_{\rm np}$.

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M,H_i)$ и $P_p(M,H_i)$ (рисунки 1.7, 1.11, 1.15,1.19,1.23,1.27,1.31).
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M,H_i)$ и $C_{y_{\text{доп}}}(M)$ (рисунки ,1.8, 1.12, 1.16, 1.24, 1.28, 1.32).
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{\text{max}_{\text{доп}}} = \min \left\{ M_{\text{пред}}, M(V_{i_{\text{max}}}) \right\},$$

где $M(V_{i_{\max}}) = \frac{V_{i_{\max}}\sqrt{\Delta^{-1}}}{3.6a_H},\ \sqrt{\Delta^{-1}} = \sqrt{\frac{\rho_0}{\rho_H}},\ V_{i_{\max}} = 650\,\frac{\text{км}}{\text{ч}} - \text{максимальная}$ допустимая индикаторная скорость.

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{\text{доп}}}, M_{\min_P} \right\},$$

$$M_{\max} = \min \left\{ M_{\max_{\text{доп}}}, M_{\max_P}, M_{\text{пред}} \right\}.$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M).$$

6. Число M_2 полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i).$$

7. Минимальные значения часового $q_{\mathbf{q}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{M}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на рисунках 1.10, 1.14, 1.18, 1.22, 1.26, 1.30, 1.34 или как:

$$\begin{split} q_{\mathbf{q}_{min}} &= \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i); \\ q_{\mathbf{k}\mathbf{m}_{min}} &= \min_{V} q_{\mathbf{k}\mathbf{m}}(V, H_i), \ V_4 = V(q_{\mathbf{k}\mathbf{m}_{min}}) = \arg\min_{V} q_{\mathbf{k}\mathbf{m}}(V, H_i). \end{split}$$

Результаты расчетов приведены в таблице 1.9, также графически представлены на рисунках 1.35, 1.37.

Статические и практический потолок определен на рисунке 1.36, как:

$$H_{\rm ct} = H_i(V_{y_{max}}^* = 0),$$

$$H_{\text{пр}} = H_i(V_{y_{max}}^* = V_{y_{\text{доп}}}^*).$$

где значение $V_{y_{\text{доп}}}^* = 0.5 \, \frac{\text{м}}{\text{c}}$ — минимально-допустимая энергетическая скороподъемность для неменевренного самолета.

Таблица 1.9 — Результаты для построение графика высот и скоростей

Н	V^*_{ymax}	M[V] min доп	M[V] тах доп	M[V]	$M[V] \ _{ m max}$	$M_1[V_1] \ (P_{\mathrm{n}} min)$	$M_2[V_2] \ (V_{y_{max}}^*)$	$V_3 \over (q_{ m q_{min}})$	$V_4 \over (q_{ m KM_{min}})$	M_4	$q_{ m H_{min}}$	$q_{ m KM_{min}}$
KM	Z IX	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$\frac{KM}{4}$	KM	I	KI 4	KT
0.0	17.79	0.240[293]	0.612[750]	$17.79 \left \ 0.240 \left[293 \right] \right \ 0.612 \left[750 \right] \left \ 0.240 \left[293 \right] \right \ 0.612 \left[750 \right] \left \ 0.300 \left[368 \right] \right \ 0.380 \left[466 \right]$	0.612[750]	0.300[368]	0.380[466]	355	453	0.370	6822.21	17.02
2.0	16.56	0.270[324]	0.675[808]	$16.56 \left \ 0.270 \left[324 \right] \right \left \ 0.675 \left[808 \right] \right \left \ 0.270 \left[324 \right] \right \left \ 0.671 \left[803 \right] \right \left \ 0.340 \left[407 \right] \right \left \ 0.420 \left[503 \right] \right $	0.671[803]	0.340[407]	0.420[503]	395	479	0.400	6561.6	15.07
4.0	13.58	0.307[359]	0.748 [874]	$13.58 \left \ 0.307 \left[359 \right] \right \ 0.748 \left[874 \right] \left \ 0.307 \left[359 \right] \right \ 0.699 \left[817 \right] \right \ 0.380 \left[444 \right] \left \ 0.460 \left[538 \right] \right $	0.699[817]	0.380[444]	0.460[538]	432	538	0.460	0.460 6464.88	13.56
6.0	11.23	0.352[401]	0.800[911]	$11.23 \left \ 0.352 \left[401 \right] \right \left \ 0.800 \left[911 \right] \right \left \ 0.352 \left[401 \right] \right \left \ 0.726 \left[827 \right] \right \left \ 0.440 \left[501 \right] \right \left \ 0.500 \left[570 \right] \right $	0.726 [827]	0.440[501]	0.500[570]	467	581	0.510	$0.510 \mid 6342.81$	12.08
8.0	8.1		0.800 [887]	$0.406\left[451\right] \left \ 0.800\left[887\right] \right \left \ 0.406\left[451\right] \right \left \ 0.744\left[825\right] \right \left \ 0.500\left[555\right] \right \left \ 0.540\left[599\right] \right $	0.744[825]	0.500[555]	0.540[599]	521	632	0.570	0.570 6212.43	10.95
10.0		0.475[513]	0.800[863]	$4.33 \left \ 0.475 \left[513 \right] \ \left \ 0.800 \left[863 \right] \ \right \ 0.475 \left[513 \right] \ \left \ 0.739 \left[796 \right] \ \left \ 0.540 \left[582 \right] \ \right \ 0.590 \left[636 \right] $	0.739 [796]	0.540[582]	0.590[636]	561	658	0.610	0.610 6161.04	10.09
11.0		1.98 0.518 [550] 0.800 [850] 0.518	0.800[850]	0.518[550]	$[550] \ 0.717 [762] \ 0.580 [616] \ 0.600 [638]$	0.580[616]	0.600 [638]	584	699	0.630	6304.93	9.97
11.74	0.0	0.554[588]	0.800 [850]	11.74 0.0 0.554 [588] 0.800 [850] 0.600 [637] 0.609 [647]	0.609 [647]	I	ı	ı	ı	I	1	ı

Рисунок 1.35 — График области высот и скоростей установившегося горизонтального полета

Рисунок 1.36 — График $V^*_{y_{max}}(H)$

Рисунок 1.37 — График $q_{\mathbf{q}_{min}}(H), q_{\mathbf{KM}_{min}}(H)$

1.3. Расчет траектории полета

1.3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\text{доп}}}, V_0 = 1.2 V_{min_{\text{доп}}}.$$

Конечные условия:

$$(H_{\mathsf{K}}, M_{\mathsf{K}}) = \arg\min_{H, M} q_{\mathsf{KM}}(M, H).$$

Конечная высота принимается равная $H_{\rm K}=10\,{\rm km}$ из условия минимума $q_{\rm km}$ без учета значения $H_{\rm np}.$

При расчете угла наклона траектории $\theta_{\text{наб}}$ и вертикальной скорости $V_{y_{\text{наб}}}$ производная вычисляется по приближенной формуле:

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{1.13}$$

где i — индекс узловой точки.

Основные характеристики в наборе определяются по формулам:

$$\theta_{\text{Ha6}} = 57.3 n_x \kappa,$$
 [град] (1.14)

$$V_{y_{\text{Ha}6}} = V_{y_{max}}^* \kappa,$$
 $\left[\frac{M}{c}\right]$ (1.15)

$$L_{\text{Ha6}} = \int_0^{H_{\text{K}}} \frac{1}{1000n_x(M, H)} dH_{\text{9}}$$
 [KM] (1.16)

$$t_{\text{наб}} = \int_0^{H_{\text{K}}} \frac{1}{60V_u^*(M, H)} dH_{\text{9}}$$
 [мин] (1.17)

$$m_{T_{\text{Ha6}}} = \int_0^{H_{\text{K}}} \frac{Ce(M, H)P_{\text{p}}(M, H)}{3600n_x(M, H)} dH_{\text{9}}$$
 [KI] (1.18)

где
$$\kappa = \frac{1}{1 + \frac{V}{q} \frac{dV}{dH}}$$
.

Вычисление интегралов 1.16 - 1.18 производится методом трапеций, тогда уравнения 1.16 - 1.18 будут иметь вид:

$$L_{\text{Ha6}} = \sum \left(\frac{1}{n_x}\right)_{\text{CD}} \frac{\Delta H_{\text{B}}}{1000}, \qquad [\text{KM}] \quad (1.19)$$

$$t_{\text{наб}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_9}{60},$$
 [мин] (1.20)

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{CD}} \frac{\Delta H_{\text{9}}}{3600}, \qquad [\text{K}\Gamma] \quad (1.21)$$

где $\Delta H_{\mathfrak{I}} = H_{\mathfrak{I}}^{i+1}(V_{\text{наб}}^{i+1}, H^{i+1}) - H_{\mathfrak{I}}^{i}(V_{\text{наб}}^{i}, H^{i}), H_{\mathfrak{I}}^{i} = H^{i} + \frac{(V^{i})^{2}}{2g}$ — энергетическая высота в узловой точке, V^{i} — скорость соответствующая $V_{y_{max}}^{*}(H^{i})$ при наборе высоты.

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_9^i)} + \frac{1}{n_x(H_9^{i+1})}\right],$$
(1.22)

$$\left(\frac{1}{V_y^*}\right)_{\text{cp}} = 0.5 \left[\frac{1}{V_y^*(H_{\vartheta}^i)} + \frac{1}{V_y^*(H_{\vartheta}^{i+1})}\right],$$
(1.23)

$$\left(\frac{CeP}{V_y^*}\right)_{\text{cp}} = 0.5 \left[\frac{CeP}{V_y^*(H_9^i)} + \frac{CeP}{V_y^*(H_9^{i+1})}\right].$$
(1.24)

Результаты расчетов приведены в таблице 1.11. Основные параметры наборы представлены в таблице 1.10. Также результаты сведены в графики на рисунках 1.38 - 1.40.

Таблица 1.10 — Основные параметры в наборе высоты

$m_{T_{ m ha6}}$	$L_{ m ha6}$	$t_{ m Ha6}$
ΚΓ	KM	мин
4702.5	252.9	25.1

Таблица 1.11 — Результаты расчета набора высоты

H	$M_{ m Ha6}$	Λ	$V_{\scriptscriptstyle m KM}$	$\frac{\Delta V}{\Delta H}$	n_x	V_y^*	θ	$ heta$ $V_{y_{ m HaG}}$	$H_{}$	$\Delta H_{ m e}$	$n_{x_{ m cp}}$	$\frac{\Delta H_{\rm s}}{1000n_x}$
M	I	C M	KM 4	1 C	ı	C	град.	C M	M	M	ı	KM
0.0	0.29	8.78	352.1	352.1 0.021		17.8	0.16 17.8 7.6	14.7	488.0	2507.0	2507.0 0.136	15.69
2.0	0.42	139.7		502.8 0.005 0.119 16.6 6.4	0.119	16.6	6.4	15.5	2994.0	2142.0	2142.0 0.103	18.07
4.0	0.46	4.0 0.46 149.3	537.5	537.5 0.004 0.091 13.6 4.9	0.091	13.6	4.9	12.7	5136.0	2140.0 0.08	0.08	23.53
0.9	0.5	158.2		569.6 0.004 0.071 11.2	0.071	11.2	3.8	10.5	7276.0	2135.0	0.058	30.07
8.0	8.0 0.54	166.4	599.0	599.0 0.005	0.049 8.1	8.1	2.6	7.4	9411.0		2181.0 0.033	44.81
10.0	$10.0 \mid 0.59 \mid$	176.7	636.2	$636.2 \left 0.009 \left 0.024 \right 4.3 \right $	0.024	4.3	1.2	3.7	11592.0 1170.0 0.014	1170.0	0.014	47.79
11.0	0.63	11.0 0.63 185.9	669.4	$669.4 \qquad 0.0 \qquad 0.01 \qquad 2.0 \qquad 0.6$	0.01	2.0	9.0	2.0	2.0 12762.0	I	I	I

Таблица 1.11 — (Продолжение) Результаты расчета набора высоты

P	$rac{CeP}{V_y^*}$	$(rac{CeP}{V_y^*})_{ m cp}$	$rac{\Delta H_{2}}{3600} (rac{CeP}{V_{y}^{*}})_{\mathrm{CP}} \mid L_{\mathrm{Haf6}} \mid V_{\mathrm{ycp}}^{*} \mid$	$L_{ m {\scriptscriptstyle Ha6}}$	$V_{y_{\rm cp}}^*$	$t_{ m Ha6}$	Ce
H	-	-	ΚΓ	$_{ m KM}$	$rac{ ext{M}}{ ext{C}}$	МИН	$rac{ ext{K}\Gamma}{H_{ ext{H}}}$
$308927.0 \mid 1339.9$	1339.9	1087.7	757.4	18.4	0.1	18.4 0.1 2.44	0.064
261897.0 1140.2	1140.2	1082.3	644.0	20.8	0.1	20.8 0.1 2.39	0.067
221372.0 1172.1	1172.1	1116.1	663.4	26.8	$26.8 \mid 0.1$	2.9	0.067
190906.0 1209.1	1209.1	1218.9	722.9	37.0	0.1	37.0 0.1 3.78	0.067
159439.0 1417.7	1417.7	1627.2	985.7	6.99	0.2	66.9 0.2 6.44	990:0
128800.0 2275.1	2275.1	2858.0	929.2	83.0	0.4	83.0 0.4 7.17	0.066
113650.0 3765.1	3765.1	I	1	ı	ı	I	0.066

Рисунок 1.38 — График зависимости $H(t), \, \theta(t), \, V_y^*(t), \, V(t)$ в наборе высоты

Рисунок 1.39 — График зависимости $L(t), m_T(t)$ в наборе высоты

Рисунок 1.40 — Программа набора высоты

1.3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\rm kp}$ и дальности $L_{\rm kp}$ крейсерского полета:

$$T_{\text{kp}} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha}6}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{np}}}}, \qquad [\text{MИН}] \quad (1.25)$$

$$L_{\rm kp} = \frac{36V K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm ha6}} - \bar{m}_{T_{\rm np}}}{1 - \bar{m}_{T_{\rm kp}} - \bar{m}_{T_{\rm np}}}, \qquad [\text{km}] \quad (1.26)$$

где $\bar{m}_{T_{\text{кр}}} = 1 - \bar{m}_{\text{сн}} - \bar{m}_{\text{цн}} - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{снп}}} - \bar{m}_{T_{\text{анз}}} - \bar{m}_{T_{\text{пр}}} = 0.1788$ — относительная масса топлива расходуемая в крейсерском полете, $K_{\Gamma\Pi} = 13.51$, $V = 183 \, \frac{\text{м}}{\text{c}^2}$, $Ce = 0.063 \, \frac{\text{Kr}}{\text{H*q}}$ — удельный расход топлива на высоте крейсерского полета. Параметры $K_{\Gamma\Pi}$, V, Ce определены для режима полета соответствующего минимуму километрового расхода в начале крейсерского полета.

Принимаем:

• $\bar{m}_{\rm ch} = 0.45263$ – относительная масса пустого снаряженного самолета;

- $\bar{m}_{\text{цн}} = 0.24736$ относительная масса целевой нагрузки;
- $\bar{m}_{T_{\text{наб}}} = \frac{m_{T_{\text{наб}}}}{m_{max}} = \frac{4505.4\,\text{кг}}{190000\,\text{кг}} = 0.02371$ относительная масса топлива, расходуемая при наборе высоты;
- $\bar{m}_{T_{\text{снп}}} = 0.015$ относительная масса топлива, расходуемая при снижении и посадке;
- $\bar{m}_{\mathrm{T}_{\mathrm{ah}3}} = 0.05$ аэронавигационный запас топлива;
- $\bar{m}_{\mathrm{T}_{\mathrm{пp}}} = 0.01$ запас топлива для маневрирования по аэродрому, опробования двигателей, взлета.

Высоту $H_{\rm kp}$ в конце крейсерского полета можно определить по величине $\rho_{H\,{\rm kp}}$, которая определяется по формуле (1.27), сопоставив со значением стандартной атмосферы.

$$\rho_{H \text{ KP}} = \frac{2\bar{m}_{\text{K KP}} P s 10}{C_{y_{\text{FII}}} V_{\text{K}}^2}, \tag{1.27}$$

где $\bar{m}_{{\scriptscriptstyle K}\,{\scriptscriptstyle K}{\scriptscriptstyle P}} = 1 - \bar{m}_{T_{{\scriptscriptstyle Ha6}}} - \bar{m}_{T_{{\scriptscriptstyle \Pip}}} - \bar{m}_{T_{{\scriptscriptstyle Kp}}}.$

Результаты расчетов приведены в таблице 1.12.

Таблица 1.12 — Результаты расчета участка крейсерского полета

$T_{ m kp}$	$L_{ m kp}$	$ ho_{H\mathrm{Kp}}$	$H_{0\mathrm{Kp}}$	$H_{ ext{ iny KP}}$
МИН	KM	$\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	KM	KM
297.78	3059.0	0.2786	11	12.7

1.3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты (раздел 1.3.1), только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги $M_1(P_{n \text{ min}})$, высота соответствует $H_{\kappa \, \kappa p}$

$$M_0 = 0.580; H_0 = 11$$
 км

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при $\mathbf{H}=\mathbf{0}.$

$$M_{\rm K} = 0.370; H_{\rm K} = 0.$$

Результаты расчетов приведены в таблице 1.14, по этим данным построили зависимости H(t), $\theta(t)$, $V_y^*(t)$, V(t), L(t), $m_T(t)$ на рисунках 1.41, 1.42, 1.43. Основные параметры на снижении представлены на рисунке 1.13. Программа снижения представлена на рисунке 1.44.

По результатам программ набора, крейсерского полета и снижения был получен график H(L) на рисунке 1.44 для всего полета.

Таблица 1.13 — Основные параметры при снижении высоты

$m_{T_{ m ch}}$	$L_{ m ch}$	$t_{ m cH}$
ΚΓ	KM	МИН
531.2	210.9	27.1

Таблица 1.14 — Результаты расчета снижения высоты

H	M	Λ	$V_{\scriptscriptstyle m KM}$	$\frac{H\nabla}{A\nabla}$	n_x	V_y^*	V_y^* θ	$V_{y_{ m cH}}$	H_{9}	$\Delta H_{\scriptscriptstyle 9}$	$n_{x_{ m cp}}$	$\frac{\Delta H_{\rm s}}{1000n_x}$
M	I	C	$\frac{\mathrm{KM}}{\mathrm{T}}$	1 C	ı	C IM	град.	C	M	M	ı	KM
1.0	11.0 0.6	177.1	177.1 637.5	0.015	-0.066 -0.7 -3.0	-0.7	-3.0	-1.5	-1.5 12598.0 -1265.0	-1265.0	-0.068	19.18
0.0	0.54	161.7	10.0 0.54 161.7 582.3 0.004	0.004	-0.063 2.0	2.0	-3.4	-3.8	-3.8 11333.0 -2124.0	-2124.0	-0.063	33.96
8.0	0.5	154.1	554.6	0.007	0.5 154.1 554.6 0.007 -0.058 6.3	6.3	-3.0	6.9-		9210.0 -2221.0	-0.058	38.09
3.0	0.44	6.0 0.44 139.2	501.3	0.008	501.3 0.008 -0.056 11.2 -2.9	11.2	-2.9	-9.3	6988.0	-2213.0	-0.055	39.2
F.0	0.38	4.0 0.38 123.3	444.0	0.005	444.0 0.005 -0.055 13.6 -2.9 -11.5	13.6	-2.9	-11.5	4775.0	-2124.0	-0.054	38.92
0.2	0.34	2.0 0.34 113.1	407.0	0.005	407.0 0.005 -0.052 16.6 -2.8 -14.1	16.6	-2.8	-14.1	2652.0	-2120.0	-0.052	40.41
0.0	0.3	102.1	0.0 0.3 102.1 367.5	0.0	0.0 -0.051 17.8 -2.9 -15.7	17.8	-2.9	-15.7	531.0	ı	I	ı

Таблица 1.14 — (Продолжение) Результаты расчета снижения высоты

P	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{CP}}$	$rac{\Delta H_3}{3600} \Big(rac{CeP}{V_y^*}\Big)_{ m CP}$	$L_{ m cH}$ $V_{ m ycp}^{*}$ $t_{ m CH}$	$V_{y_{ m cp}}^*$	$t_{ m cH}$	Ce
Н	I	ı	ΚΓ	KM	C IM	МИН	$\frac{\mathrm{K}\Gamma}{H^{\mathrm{q}}}$
5780.0	-464.1	-283.4	9.66	18.6	-0.4	7.99	18.6 -0.4 7.99 0.124
6705.0	-216.2	-170.3	100.4	33.7	-0.2	6.73	33.7 -0.2 6.73 0.121
8629.0	-153.2	-137.5	84.8	38.2	-0.1	4.19	38.2 -0.1 4.19 0.122
11614.0	11614.0 -153.3	-137.6	84.6	39.9	-0.1	39.9 -0.1 3.28	0.123
13687.0	13687.0 -146.3	-135.6	80.0	39.7	-0.1	2.63	39.7 -0.1 2.63 0.123
16476.0	16476.0 -142.2	-138.7	81.7	40.8	-0.1	2.3	40.8 -0.1 2.3 0.122
18370.0 -143.7	-143.7	I	I	I	ı	ı	0.123

Рисунок 1.41 — График зависимости L(t), $m_T(t)$

Рисунок 1.42 — График зависимости L(t), $m_T(t)$

Рисунок 1.43 — Программа снижения

Рисунок 1.44 — Совмещенный график H(L) для участков набора высоты, крейсерского полета и снижения

1.4. Расчет диаграммы транспортных возможностей

Определим зависимость дальности полета от целевой нагрузки самолета $m_{\text{ин}}(L)$ (Рисунок 1.45). Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\rm цн}=0$) с максимальным запасом топлива.

Режим 1:

Для данного режима определили в разделах 1.3.1, 1.3.2, 1.3.3.

$$ar{m}_{ ext{\tiny IJH}} = rac{m_{ ext{\tiny IJH}}}{m_{max}}$$

Режим 2:

$$L = L_{\text{Ha6}} + L_{\text{Kp}} + L_{\text{ch}}$$

Для упрощения дальность полета, расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

Тогда дальность полета вычисляется как:

$$L_{\rm Kp} = \frac{36VK}{gCe} \ln \frac{\bar{m}_{\rm B3JI} - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm Hp}}}{\bar{m}_{\rm B3JI} - \bar{m}_{T_{\rm KD}} - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm Hp}}},\tag{1.28}$$

где $\bar{m}_{\text{взл}} = 1$, $\bar{m}_{T_{\text{кр}}} = \bar{m}_{T_{\text{max}}} - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{пр}}}$, $\bar{m}_{T_{\text{max}}} = 0.4421$, $\bar{m}_{\text{цн}} = 1 - \bar{m}_{\text{сн}} - \bar{m}_{T_{\text{max}}}$.

Режим 3:

$$ar{m}_{ ext{\tiny B3JI}} = ar{m}_{ ext{\tiny IIYCT}} + ar{m}_{T_{max}}$$

Результаты расчетов сведены в таблицу 1.15.

Таблица 1.15 — Результаты расчета

Режим	L	$m_{\scriptscriptstyle ext{IJH}}$
$\mathcal{N}_{\overline{0}}$	KM	КГ
1	3522.0	46998.0
2	6486.0	20001.0
3	7455.0	0.0

Рисунок 1.45 — График зависимости $m_{\text{цн}}(L)$

1.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\rm отр}$, длины разбега $L_{\rm p}$, взлетной дистанции $L_{\rm вд}$, скорости касания ВПП при посадке $V_{\rm кас}$, длины пробега $L_{\rm пр}$, посадочной дистанции $L_{\rm пд}$, предполагается, что:

1. Угол атаки при разбеге и пробеге $\alpha_{\rm p}=\alpha_{\rm n}=2^{\circ}.$

- 2. Угол атаки при отрыве и касании ВПП $\alpha_{\rm orp} = \alpha_{\rm kac} = 6^{\circ}$.
- 3. Безопасная высота пролета препятствий $H_{\scriptscriptstyle \mathrm{B3Л}}=10.7\,\mathrm{M}$ и $H_{\scriptscriptstyle \mathrm{Hoc}}=15\,\mathrm{M}.$
- 4. Тяга двигателей $P_{\text{взл}}=(1.2...1.3)P,\,Ce_{\text{взл}}=(1.03...1.05)Ce_0.$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

Скорость отрыва при взлете:

$$V_{\text{opp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{opp}})}{\rho_0 C_{y_{\text{opp}}}}} \rho_0 C_{y_{\text{opp}}}$$
(1.29)

Длина разбега:

$$L_{\rm p} = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\rm opp}^2},\tag{1.30}$$

где $b_p = (C_{x_p} - f_p C_{y_p}) \frac{\rho_0}{2P_s 10}$, $C_p = 0.9 \bar{P}_{\text{взл}} - f_p$, $f_p = 0.02$.

Воздушный участок взлета:

$$L_{\text{ByB}} = \frac{1}{\hat{n}_{x_{\text{cp}}}} \left(\frac{V_2^2 - V_{\text{отр}}^2}{2g} + H_{\text{взл}} \right), \tag{1.31}$$

где $\hat{n}_{x_{\rm cp}}=\bar{P}_{\rm взл}-\frac{C_{x_{\rm отр}}\rho_0\hat{V}_{\rm cp}^2}{P_s20}$ — тангенциальная перегрузка для среднеквадратического значения скорости $\hat{V}_{\rm cp}=\sqrt{\frac{V_2^2+V_{\rm отр}^2}{2}},~V_2=1.1V_{\rm отр}$ — безопасная скорость взлета.

Взлетная дистанция:

$$L_{\text{BJ}} = L_{\text{D}} + L_{\text{BVB}}.$$
 (1.32)

Скорость касания ВПП на посадке:

$$V_{\text{Kac}} = \sqrt{\frac{2\bar{m}_{\text{IIOC}}P_s10}{C_{y_{\text{Kac}}}\rho_0}},$$
 (1.33)

где $\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}}$ — относительная масса самолета при посадке.

Длина пробега:

$$L_{\text{проб}} = \frac{1}{2gb_n} \ln \frac{a_n - b_n V_{\text{Kac}}^2}{a_n},\tag{1.34}$$

где
$$a_n=-\bar{P}_{\text{peb}}-f_n,\ b_n=rac{
ho_0}{\bar{m}_{\text{пос}}P_{\text{s}}20}(C_{x_{\text{проб}}}-f_nC_{y_{\text{проб}}}),\ \bar{P}_{\text{peb}}=rac{P_{\text{peb}}}{m_{\text{пос}}g}.$$

Длина воздушного участка:

$$L_{\text{вуп}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2g} \right),$$
 (1.35)

где
$$K_{\text{пос}} = \frac{C_{y_{\text{пос}}}}{C_{x_{\text{пос}}}}, \ C_{y_{\text{пос}}} = 0.7 C_{y_{\text{кас}}}(\alpha_{\text{кас}}), \ V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_s10}{C_{y_{\text{пос}}}\rho_0}}.$$

Посадочная дистанция:

$$L_{\text{пд}} = L_{\text{проб}} + L_{\text{вуп}}.$$
 (1.36)

Результаты расчетов приведены в таблице 1.16.

Таблица 1.16 — Результаты расчета

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle m BД}$	$V_{ m kac}$	$L_{ m npo6}$	$L_{\scriptscriptstyle \Pi\!\!,\!$
<u>M</u> C	M	M	<u>M</u> C	M	M
90.0	1830.0	2289.0	64.0	790.0	1384.0

1.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража. Расчеты ведутся для высоты $H=6\,\mathrm{km}$. Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета $\bar{m}_\mathrm{c}=1-0.5\bar{m}_T$.

Для расчета таблицы 1.17:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\mathtt{доп}}} = \min\left\{n_{y_{\mathtt{9}}}, \, n_{y}(C_{y_{\mathtt{доп}}})\right\},$$

где
$$n_{y_9}=3$$
 — эксплуатационная перегрузка, $n_y(C_{y_{\text{доп}}})=\frac{C_{y_{\text{доп}}}}{C_{y_{\Gamma\Pi}}},~C_{y_{\Gamma\Pi}}=\frac{\bar{m}_{\text{c}}P_s10}{q}$

2. Нормальная перегрузка предельного правильного виража

$$n_{y_{ exttt{вир}}}=\min\left\{n_{y_{ exttt{доп}}},\,n_{y_P}
ight\},$$
 где $n_{y_P}=rac{1}{C_{y_a}\Gamma\Pi}\left(C_{y_m}+\sqrt{rac{ar{P}C_{y_a}\Gamma\Pi-C_{x_{ exttt{M}}}}{A}}
ight),\,ar{P}=rac{P_p}{mg}$

3. Кинематические параметры виража:

$$\begin{split} \omega_{\text{вир}} &= \frac{g}{V} \sqrt{n_{y\,\text{вир}}^2 - 1}, \\ r_{\text{вир}} &= \frac{V}{\omega_{\text{вир}}}, \\ t_{\text{вир}} &= \frac{2\pi r_{\text{вир}}}{V}. \end{split}$$

4. Узловые точки для расчета:

$$M = [0.4, 0.5, 0.6, 0.7].$$

Таблица 1.17 — Расчет виража

M	V	V	q	$C_{y_{\Gamma\Pi}}$	$C_{y_{ m don}}$	$n_{y_{ m дon}}$	$K_{\Gamma\Pi}$	$P_n * 10^{-5}$	$P_p * 10^{-5}$
-	$\frac{M}{C}$	<u>КМ</u> Ч	$\frac{H}{\mathrm{M}^2}$	_	-	-	_	Н	Н
0.4	127.0	456.	5287.0	0.866	1.112	1.284	14.36	5.801	15.186
0.5	158.0	570.	8262.0	0.554	1.083	1.954	13.97	5.965	14.871
0.6	190.0	684.	11897.0	0.385	1.033	2.684	11.13	7.487	14.471
0.7	222.0	797.	16193.0	0.283	0.977	3.0	8.12	10.262	14.084

Таблица 1.17 — (Продолжение) Расчет виража

\bar{P}	n_{y_p}	$n_{y_{\mathtt{вир}}}$	$\omega_{ ext{вир}}$	$r_{\scriptscriptstyle \mathrm{BUP}}$	$t_{\scriptscriptstyle \mathrm{BUP}}$
_	-	-	$\frac{1}{c}$	M	c
0.142	1.612	1.284	0.062	2026.7	100.6
0.139	1.865	1.865	0.098	1620.9	64.4
0.135	1.838	1.838	0.08	2383.8	78.9
0.132	1.27	1.27	0.035	6393.1	181.3

Рисунок 1.46 — График зависимости $n_{y_{\text{вир}}}(M), \, \omega_{\text{вир}}(M), \, r_{\text{вир}}(M), \, t_{\text{вир}}(M)$

1.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma O}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma O}$ рассчитываются предельно передняя $\bar{x}_{\Pi\Pi}$ для режима посадки ($H=0,\,M=0.2$) и предельно задняя $\bar{x}_{\Pi\Pi}$ центровки:

$$\bar{x}_{\text{ТПП}} = \frac{-m_{Z_0 \text{ БГО}} + \bar{x}_{F \text{ БГО}} C_{y \text{ БГО}} + C_{y \text{ ГО}} \bar{S}_{\text{ГО}} K_{\text{ГО}} \bar{L}_{\text{ГО}}}{C_{y \text{ БГО}}}, \qquad (1.37)$$

где $C_{y\,\mathrm{BFO}} = C_{y_0\,\mathrm{BFO}} + C_{y\,\mathrm{BFO}}^{\alpha} \alpha$, $C_{y\,\mathrm{FO}} = C_{y\,\mathrm{FO}}^{\alpha_{\mathrm{FO}}} \left[\alpha (1 - \varepsilon^{\alpha}) + \delta_{\mathrm{s} \Phi} \right] < 0$, $\delta_{\mathrm{s} \Phi} = \delta_{\mathrm{ycr}} + n_{\mathrm{B}} \delta_{max}$, $\delta_{\mathrm{max}} = -25^{\circ}$, $\delta_{\mathrm{ycr}} = -4^{\circ}$.

$$\bar{x}_{\text{TII3}} = \bar{x}_H + \sigma_{n \text{ min}} \tag{1.38}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \ \mu = \frac{2P_s 10}{\rho g b_a}, \ m_z^{\bar{\omega}_z} = m_z^{\bar{\omega}_z}_{\rm BFO} + m_z^{\bar{\omega}_z}_{\rm TO}, \ m_z^{\bar{\omega}_z} = -C_{y \Gamma O}^{\alpha_{\Gamma O}} \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} \sqrt{K_{\Gamma O}}$$

$$\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F_{\Gamma O}} \tag{1.39}$$

$$\Delta \bar{x}_{F_{\Gamma O}} \approx \frac{C_{y\Gamma O}^{\alpha_{\Gamma O}}}{C_y^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O}, \, \sigma_{n \text{ min}} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma O}=(0.01,\ 0.2)$ рассчитываются значения $\bar{x}_{\Pi\Pi},\ \bar{x}_{\Pi\Pi 3},$ результаты представлены в таблице 1.18.

Затем графически определяется потребная площадь ГО (рисунок 1.47) из условия:

$$\bar{x}_{\text{TII3}}(\bar{S}_{\Gamma \text{O}}) - \bar{x}_{\text{TIII}}(\bar{S}_{\Gamma \text{O}}) = 1.2\Delta \bar{x}_{\text{s}},$$

где для маломаневренного самолета $\Delta \bar{x}_{\circ} \approx 0.15$.

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{T}\Pi 3} (\bar{S}_{\Gamma \text{O}}^*) + \bar{x}_{\text{T}\Pi \Pi} (\bar{S}_{\Gamma \text{O}}^*) \right]$$

Значения величин \bar{x}_F , \bar{x}_H , $\bar{x}_{T\Pi 3}$, σ_n определяются в узловых точках по M на высоте H=0 результаты которого сведены в таблицу 1.19.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\bar{\omega}_z}}{\mu}$$

По результатам получены графики зависимости \bar{x}_F , \bar{x}_H , $\bar{x}_{\text{ТПЗ}}$ от числа M на рисунке 1.48.

Зависимости $\delta_{6 {\rm an}}(M), \; \delta^n(M), \; n_{y_{\rm p}}(M)$ для трех значений высот: $H=(0\,{\rm кm},\,6\,{\rm кm},\,H_{\rm kp})$ рассчитываются по формулам:

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F,$$

где $\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F\Gamma O}, \ m_z^{\delta_{\rm B}} = -C_{y\Gamma O}^{\alpha_{\Gamma O}} \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O} n_{\rm B}, \ C_{y\Gamma O} = \frac{10 P_s \bar{m}}{q}, \ \bar{m} = 1 - 0.5 \bar{m}_T.$

$$\begin{split} m_{Z_0} &= m_{Z_0\,\mathrm{BFO}} - (1-\varepsilon^\alpha) \bar{S}_{\mathrm{FO}} \bar{L}_{\mathrm{FO}} K_{\mathrm{FO}} C_{y\,\mathrm{FO}}^{\alpha_{\mathrm{FO}}} \alpha_0, \\ \delta_{\mathrm{6a}} &= -\frac{m_{z_0} m_z^{C_y} C_{y\,\mathrm{FH}}}{m_z^{\delta_{\mathrm{B}}} \left(1 + \frac{m_z^{C_y}}{\bar{L}_{\mathrm{ro}}}\right)} + \frac{\delta_{\mathrm{yc}}}{n_{\mathrm{B}}}, \\ \delta^n &= -57.3 \frac{C_{y\,\mathrm{FH}} \sigma_n}{m_z^{\delta_{\mathrm{B}}}}, \\ n_{y_{\mathrm{p}}} &= 1 + \frac{\delta_{\mathrm{max}} + \delta_{\mathrm{yc}} - \delta_{\mathrm{6a}}}{\delta^n}. \end{split}$$

Результаты расчетов сведены в таблицы 1.20 - 1.22. Графические зависимости $\delta_{\text{бал}}(M)$, $\delta^n(M)$, $n_{y_p}(M)$ представлены на рисунках 1.49, 1.50, 1.51 соответственно.

Таблица 1.18 — Значения для построения графика на рисунке 1.47

$ar{S}_{ ext{ro}}$	$\bar{x}_{\mathrm{T}\Pi\Pi}$	$\bar{x}_{\mathrm{T\Pi3}}$
0.01	0.2629	0.198
0.2	0.0543	0.4849

Рисунок 1.47 — График зависимости $\bar{x}_{\text{ТПП}}(\bar{S}_{\text{го}})$

Таблица 1.19 — Результаты расчетов

M	\bar{x}_F	\bar{x}_H	$\bar{x}_{\mathrm{T\Pi3}}$	σ_n
0.24	0.4026	0.4398	0.3398	-0.19
0.31	0.4028	0.44	0.34	-0.1902
0.41	0.4095	0.447	0.347	-0.1972
0.51	0.4168	0.4546	0.3546	-0.2048

Рисунок 1.48 — График зависимости $\bar{x}_F(M), \bar{x}_H(M), \bar{x}_{T\Pi 3}(M), \sigma_n(M)$

Таблица 1.20 — Результаты расчетов для балансировочных зависимостей для высоты $H=0\ \mathrm{km}$

M	V	$\delta_{ m бал}$	δ^{n_y}	n_{y_p}
_	$\frac{M}{C}$	град	<u>град</u> ед.перег.	-
0.24	82.0	-1.36	-40.14	1.689
0.31	105.0	-1.12	-24.06	2.159
0.41	139.0	-0.97	-13.79	3.033
0.51	173.0	-0.9	-8.96	4.136

Таблица 1.21 — Результаты расчетов для балансировочных зависимостей для высоты $H=6\ \mathrm{km}$

M	V	$\delta_{ m бал}$	δ^{n_y}	n_{y_p}
_	<u>М</u> С	град	<u>град</u> ед.перег.	-
0.35	111.0	-1.36	-36.43	1.759
0.4	127.0	-1.22	-28.03	1.991
0.5	159.0	-1.06	-18.13	2.541
0.6	190.0	-0.99	-13.01	3.153
0.7	222.0	-0.97	-10.09	3.778

Таблица 1.22 — Результаты расчетов для балансировочных зависимостей для высоты $H=11\ \mathrm{km}$

M	V	$\delta_{ m бал}$	δ^{n_y}	n_{y_p}
_	$\frac{\mathrm{M}}{\mathrm{c}}$	град	<u>град</u> ед.перег.	-
0.52	153.0	-1.35	-33.76	1.819
0.61	179.0	-1.22	-25.33	2.097
0.71	209.0	-1.16	-19.87	2.402

Рисунок 1.49 — График зависимости $\delta_{\text{бал}}(M,\,H=0,6,11\,\text{км})$

Рисунок 1.50 — График зависимости $\delta^n(M,\,H=0,6,11\,{\rm km})$

Рисунок 1.51 — График зависимости $n_{y_p}(M,\,H=0,6,11\,{\rm кm})$

2. Синтез системы автоматического управления

2.1. Описание объекта управления

Один из разрабатываемых режимов для САУ – это система автоматической стабилизации высоты, применяемая в системе автоматического пилотирования. Дополнительные данные необходимые для расчетов приведены в таблицах 2.1, 2.2.

Управление самолетом в полете осуществляется отклонением руля высоты, стабилизатора, руля направления, элеронов и спойлеров. Система ручного управления необратимая бустерная, с возможностью перехода на ручное управление.

Самолет оснащен системой автоматического управления САУ-1Т-2Б, которая является частью пилотажно-навигационного коплекса ПК-76. САУ-1Т-2Б обеспечивает: автоматическое и директорное пилотирование по заданному маршруту в диапазонах высот от 400 м до максимальной высоты полета в режимах набора высота, горизонтального полета и снижения, заход на посадку до высоты 60 м в автоматическом и директором режимах.

Таблица 2.1 — Исходные данные самолета Ил-76

Параметр	Значение
b_a	6.436 м
$\delta_{ ext{ iny B}}$	$15^{\circ} 21^{\circ}$
φ	$+2^{\circ}8^{\circ}$
$ar{x}_{ ext{ iny T}}$	0.45
I_z	$19 \cdot 10^6$ кг м 2

Таблица 2.2 — Значения производных коэффициентов аэродинамических сил и моментов для разных чисел Маха

M	C_y^{α}	\bar{x}_F	$m_z^{ar{\omega}_z}$	$m_z^{ar{\dot{lpha}}}$	$m_z^{\delta_{\scriptscriptstyle \mathrm{B}}}$
0.3	5.160	0.695	-11.09	-7.75	-2.7215
0.4	5.160	0.690	-11.09	-7.75	-2.7215
0.5	5.160	0.695	-11.09	-7.75	-2.7215
0.6	5.160	0.710	-11.09	-7.75	-2.7215
0.7	5.350	0.728	-11.09	-7.75	-2.7215
0.8	6.150	0.764	-11.09	-7.75	-2.7215

2.1.1. Построение области высот и скоростей

Аналогичный расчет был проведен в разделе 1.2. Исходя из области высот и скоростей (рисунок 1.35), найдем узловые точки для расчета коэффициентов обратных связей которые представлены в таблице 2.3.

Таблица 2.3 — Узловые точки для расчета

Н, м	M					
0	0.240	0.302	0.364	0.426	0.488	0.612
2000	0.270	0.337	0.404	0.471	0.537	0.671
4000	0.307	0.372	0.438	0.503	0.568	0.699
6000	0.352	0.414	0.477	0.539	0.601	0.726
8000	0.406	0.463	0.519	0.575	0.631	0.744
10000	0.475	0.519	0.563	0.607	0.651	0.739
11558	0.544	0.564	0.584	0.604	0.624	0.664

2.1.2. Выбор параметров привода

Приближенно привод можно представить как:

$$W_{\rm np} = \frac{1}{T_{\rm np}^2 p^2 + 2\xi_{\rm np} T_{\rm np} + 1},$$

где $\xi_{\rm np}=0.7$. Для нахождения $T_{\rm np}$ найдем собственные частоты для самолета

$$\omega_{\rm c} = \sqrt{-\bar{M}_z^{\alpha} - \bar{M}_z^{\omega_z} \bar{Y}^{\alpha}},$$

во всех узловых точках. Выберем ω_{max} — максимальное значение $\omega_{\rm c}$ из всей рассчитанной области. Найдем $T_{{\rm пp}_{\rm reop}}=\frac{1}{10\omega_{max}}$. Из ряда:

$$T_{\rm np}^* = [0.02\ 0.025\ 0.003\ 0.035\ 0.04\ 0.045\ 0.05]$$

выберем ближайшее значение к $T_{\mathrm{пр}_{\mathrm{reop}}}$ которое будет $T_{\mathrm{пр}}.$

Расчеты по нахождению $\omega_{\rm c}$ сведены в таблицу 2.4, откуда:

$$\omega_{max} = 2.2517, \ T_{\pi p} = 0.045.$$

Таблица 2.4 — Результаты расчета ω_{c}

H, M		Значені	ия $\omega_{ m c}$ для	узловых	точек	
0	0.85414	1.07530	1.29070	1.51050	1.74080	2.2517
2000	0.83279	1.03530	1.23460	1.44800	1.67410	2.1879
4000	0.81355	0.98132	1.15520	1.33700	1.53730	1.9895
6000	0.79583	0.93461	1.08250	1.24080	1.40870	1.8298
8000	0.78184	0.89540	1.01380	1.14180	1.28030	1.6339
10000	0.78185	0.86125	0.94614	1.03410	1.13170	1.3725
11558	0.79699	0.83101	0.86535	0.90071	0.93916	1.0177

2.1.3. Вывод

В данном разделе были получены узловые точки для расчетов из области высот и скоростей. Также были определены параметры привода, которые равны:

$$\xi_{\text{пр}} = 0.7, \ T_{\text{пр}} = 0.045.$$

2.2. Синтез контуров автоматического управления

Структурная схема регулирования высоты в тангажном варианте представлена на рисунке 2.1

Рисунок 2.1 — Структурная схема стабилизации высоты

Передаточная функция угловой скорости по отклонению руля высоты имеет вид:

$$\left\{\frac{\Delta\omega_z}{\Delta\delta_{\rm B}}\right\} = \frac{\bar{M}_z^{\delta_{\rm B}}(p+\bar{Y}^{\alpha})}{p^2 + 2hp + \omega_{\rm c}^2},\tag{2.1}$$

где $\omega_{\rm c}^2=-\bar{M}_z^\alpha-\bar{M}_z^{\omega_z}\bar{M}_z^{\omega_z},\ 2h=2\xi_{\rm K}\omega_{\rm c}=\bar{Y}^\alpha-\bar{M}_z^{\omega_z}-\bar{M}_z^{\dot{\alpha}}.$ Подробный вывод в [1, с.498].

Передаточная функция изменения высоты по изменению угла тангажа имеет вид :

$$\left\{\frac{\Delta H}{\Delta \vartheta}\right\} = \frac{K_{\rm H}}{p(T_{1c}p+1)},\tag{2.2}$$

где $T_{1c} = \frac{1}{Y^{\alpha}}$. Подробный вывод в [2, с.61]

2.2.1. Расчет ядра системы

Определим коэффициенты обратных связей $K_{\vartheta},~K_{\omega_z}$ для системы на рисунке 2.2.

Рисунок 2.2 — Структурная схема стабилизации тангажа

Передаточная функция замкнутой системы имеет вид (при $W_{\pi}=1$):

$$\left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{зад}}} \right\} = \frac{-K_{\vartheta} \bar{M}_z^{\delta_{\text{B}}} (\bar{Y}^{\alpha} + p)}{p^3 + \Delta_1 p^2 + \Delta_2 p + \Delta_3},$$
(2.3)

где $\Delta_1 = 2h + K_{\omega_z} \bar{M}_z^{\delta_{\mathrm{B}}}, \ \Delta_2 = \omega_{\mathrm{c}}^2 - K_{\vartheta} \bar{M}_z^{\delta_{\mathrm{B}}} + K_{\omega_z} \bar{M}_z^{\delta_{\mathrm{B}}} \bar{Y}^{\alpha}, \ \Delta_3 = -K_{\vartheta} \bar{M}_z^{\delta_{\mathrm{B}}} \bar{Y}^{\alpha}.$

$$K_{\omega_z} = \varepsilon K_{\omega_{zrp}}, \ K_{\omega_{zrp}} = \frac{1}{|\bar{M}_z^{\delta_{\mathrm{B}}}|T_n},$$

$$K_{\vartheta} = \nu K_{\omega_z}$$

В первом приближении $\varepsilon = 0.25, \nu = \omega_{0_{max}} = 2.2517.$

Результаты расчетов коэффициентов K_{ω_z} , K_{ϑ} приведены в таблице 2.5, для дальнейшего синтеза внешнего контура выберем коэффициенты K_{ω_z} , K_{ϑ} как показано на рисунках 2.3, 2.4.

Рисунок 2.3 — Значения K_{ω_z} для всех расчетных точек

Рисунок 2.4 — Значения K_{ϑ} для всех расчетных точек

2.2.2. Расчет внешнего контура

Определим коэффициент K_H и регулятор $R_H(p)$, как показано в [2, c.220], внешнего контура (рисунок 2.1):

$$K_H = V$$

$$R_H(p) = i_H = 0.8 \frac{1}{T_{1c}V}$$

Результаты расчетов приведены в таблице 2.5, также графическое представление на рисунке 2.5, 2.6.

Рисунок 2.5-3начения K_H для всех расчетных точек

Рисунок 2.6 — Значения i_H для всех расчетных точек

Таблица 2.5 — Значения коэффициентов передачи

Н, м							
0	M	0.240	0.302	0.364	0.426	0.488	0.612
	K_{ϑ}	7.78	4.91	3.38	2.46	1.88	1.19
	K_{ω_z}	3.46	2.18	1.50	1.09	0.83	0.53
	K_H	82	103	124	145	166	208
	i_H	0.005470	0.005470	0.005470	0.005476	0.005489	0.005544
2000	M	0.270	0.337	0.404	0.471	0.537	0.671
	K_{ϑ}	7.78	5.01	3.49	2.57	1.97	1.26
	K_{ω_z}	3.46	2.22	1.55	1.14	0.88	0.56
	K_H	90	112	134	156	179	223
	i_H	0.004495	0.004495	0.004495	0.004507	0.004522	0.004642
4000	M	0.307	0.372	0.438	0.503	0.568	0.699
	K_{ϑ}	7.78	5.29	3.83	2.90	2.27	1.50
	K_{ω_z}	3.46	2.35	1.70	1.29	1.01	0.67
	K_H	100	121	142	163	184	227
	i_H	0.003658	0.003658	0.003663	0.003673	0.003686	0.003811
6000	M	0.352	0.414	0.477	0.539	0.601	0.726
	K_{ϑ}	7.75	5.59	4.22	3.30	2.65	1.82
	K_{ω_z}	3.44	2.48	1.87	1.47	1.18	0.81
	K_H	111	131	151	171	190	230
	i_H	0.002946	0.002948	0.002955	0.002964	0.002976	0.003165
8000	M	0.406	0.463	0.519	0.575	0.631	0.744
	K_{ϑ}	7.69	5.94	4.72	3.84	3.19	2.30
	K_{ω_z}	3.42	2.64	2.10	1.71	1.42	1.02
	K_H	125	143	160	177	194	229
	i_H	0.002346	0.002351	0.002357	0.002364	0.002392	0.002570
10000	M	0.475	0.519	0.563	0.607	0.651	0.739
	K_{ϑ}	7.57	6.35	5.40	4.64	4.04	3.14
	K_{ω_z}	3.36	2.82	2.40	2.06	1.79	1.39
	K_H	142	155	169	182	195	221
	i_H	0.001848	0.001852	0.001857	0.001865	0.001891	0.002008
11558	M	0.544	0.564	0.584	0.604	0.624	0.664
	K_{ϑ}	7.36	6.85	6.39	5.98	5.60	4.95
	K_{ω_z}	3.27	3.04	2.84	2.66	2.49	2.20
	K_H	161	167	172	178	184	196
	i_H	0.001498	0.001499	0.001501	0.001505	0.001514	0.001533

2.2.3. Вывод

В данном разделе были определены все коэффициенты обратных связей для всех контуров, обеспечивающие устойчивость системы.

2.3. Частотный анализ

Частотный анализ будет проводится для трех режимов:

- 1. Минимального скоростного напора $q_{min}=4069 \frac{\mathrm{K}\Gamma}{\mathrm{M} \ \mathrm{c}^2}$ соответствующий $H=4000 \,\mathrm{M}$ и M=0.307;
- 2. Максимального скоростного напора $q_{max} = 26558 \frac{\mathrm{K}\Gamma}{\mathrm{M} \ \mathrm{c}^2}$ соответствующий $H = 0 \ \mathrm{M} \ \mathrm{M} = 0.612;$
- 3. Крейсерский режим соответствующий $q_{\rm kp}=6886 \, {{\rm Kr} \over {\rm M} \, {\rm c}^2}$ соответствующий $H=10000\, {\rm M}$ и M=0.610;

Также данные значения приведены в таблице 2.6.

Таблица 2.6 — Режимы для частотного анализа

H, M	$q, \frac{\mathrm{K}\Gamma}{\mathrm{M} \mathrm{c}^2}$	M
4000	4068.5293	0.3071
0	26557.5546	0.6119
10000	6885.8565	0.6100

2.3.1. Анализ контура демпфирования

Передаточная функция разомкнутого контура демпфирования имеет вид:

$$W_{\rm pas}^{\rm dem} = W_{\rm m} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\rm B}} \right\} \tag{2.4}$$

Таблица 2.7 — Передаточные функции разомкнутого контура демпфирования при различных скоростных напорах

q	Передаточная функция
q_{min}	$-\frac{(1.249p + 0.658)}{0.002p^4 + 0.065p^3 + 1.072p^2 + 1.162p + 0.762}$
q_{max}	$-\frac{(7.345p + 10.403)}{0.002p^4 + 0.069p^3 + 1.198p^2 + 3.301p + 4.976}$
$q_{ m Kp}$	$-\frac{(3.034p+1.829)}{0.002p^4+0.065p^3+1.079p^2+1.328p+2.206}$

Графики ЛАФЧХ представлены на рисунке 2.7. Запасы по фазе ΔL , амплитуде ΔQ , частоты среза $\omega_{\rm cp}$ для различных Махов представлены в таблице 2.8.

Рисунок 2.7 - ЛАФЧХ для разом
кнутого контура демпфирования

Таблица 2.8 — Запасы, частоты среза для разомкнутого контура демпфирования

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.335	29.102	118.600
0.61	0.324	24.503	98.414
0.6119	7.489	13.362	74.939

2.3.2. Анализ ядра системы

Передаточная функция разомкнутой системы ядра (рисунок 2.2) имеет вид:

$$W_{\text{pa3}} = \frac{K_{\vartheta} W_{\text{II}} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\}}{p(1 + K_{\omega_z})}$$
 (2.5)

Таблица 2.9 — Передаточные функции разомкнутой системы ядра при различных скоростных напорах

q	Передаточная функция
<i>a</i> .	2.477 p + 6.576
q_{min}	$0.002 p^5 + 0.065 p^4 + 1.072 p^3 + 6.718 p^2 + 3.691 p$
	12.477 p + 17.672
q_{max}	$0.002 p^5 + 0.069 p^4 + 1.198 p^3 + 8.857 p^2 + 12.845 p$
$q_{ m Kp}$	12.644 p + 7.619
	$0.002 p^5 + 0.065 p^4 + 1.079 p^3 + 6.958 p^2 + 5.599 p$

Графики ЛАФЧХ представлены на рисунке 2.8. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.10

Рисунок 2.8 - ЛАФЧХ для разомкнутой системы ядра

Таблица 2.10 — Запасы, частоты среза для разомкнутого ядра

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.715	24.900	87.115
0.61	0.878	22.855	89.076
0.6119	1.565	17.607	83.986

Передаточная функция замкнутой системы ядра (рисунок 2.2) имеет вид:

$$\left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3\text{ад}}} \right\} = \frac{-K_{\vartheta} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} W_{\Pi}}{p - K_{\vartheta} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} W_{\Pi} + K_{\omega_z} p} \tag{2.6}$$

Виды передаточных функций (2.6) замкнутой системы для ядра пред-

ставлены в таблице 2.11.

Таблица 2.11 — Передаточные функции ядра при различных скоростных напорах

q	Передаточная функция
<i>a</i> .	12.477 p + 6.576
q_{min}	$0.002 p^5 + 0.065 p^4 + 1.072 p^3 + 6.718 p^2 + 16.167 p + 6.576$
	12.477 p + 17.672
q_{max}	$0.002 p^5 + 0.069 p^4 + 1.198 p^3 + 8.857 p^2 + 25.322 p + 17.672$
α	12.644p + 7.619
$q_{ m Kp}$	$0.002 p^5 + 0.065 p^4 + 1.079 p^3 + 6.958 p^2 + 18.243 p + 7.619$

Графики ЛАФЧХ представлены на рисунке 2.9. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.12

Рисунок 2.9 - ЛАФЧХ для ядра системы

Таблица 2.12 — Запасы, частоты среза для ядра системы

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	_	24.383	-
0.61	_	22.200	-
0.6119	_	16.380	-

2.3.3. Анализ внешнего контура

Передаточная функция разомкнутого внешнего контура с замкнутым ядром имеет вид:

$$W_{\text{pas}}^{\text{внеш}} = -R_H(p) \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{зад}}} \right\} \left\{ \frac{\Delta H}{\Delta \vartheta} \right\}$$
 (2.7)

Виды передаточных функций (2.7) разомкнутого внешнего контура представлены в таблице 2.13.

Таблица 2.13 — Передаточные функции разомкнутого внешнего контура при различных скоростных напорах

q	Передаточная функция		
q_{min}	5.261 p + 2.773		
	$\boxed{0.004p^7 + 0.126p^6 + 2.099p^5 + 13.817p^4 + 37.391p^3 + 28.644p^2 + 6.576p}$		
q_{max}	14.138 p + 20.025		
	$\boxed{0.001p^7 + 0.051p^6 + 0.915p^5 + 7.451p^4 + 26.734p^3 + 37.799p^2 + 17.672p}$		
$q_{ m kp}$	6.096p + 3.673		
	$\boxed{0.003p^7 + 0.111p^6 + 1.857p^5 + 12.626p^4 + 37.232p^3 + 30.887p^2 + 7.619p}$		

Графики ЛАФЧХ представлены на рисунке 2.10. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.14

Рисунок 2.10 - ЛАФЧХ для разом
кнутого траекторного контура при различных числах Маха

Таблица 2.14 — Запасы, частоты среза для разомкнутого траекторного контура

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.284	9.813	35.362
0.61	0.267	11.866	39.075
0.6119	0.862	7.198	28.364

Передаточная функция всей системы имеет вид:

$$\left\{ \frac{\Delta H}{\Delta H_{3\text{a,d}}} \right\} = \frac{R_H(p) \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3\text{a,d}}} \right\} \left\{ \frac{\Delta H}{\Delta \vartheta} \right\}}{R_H(p) \left\{ \frac{\Delta H}{\Delta \vartheta} \right\} \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3\text{a,d}}} \right\} - 1}$$
(2.8)

Виды передаточных функций (2.8) замкнутого внешнего контура представлены в таблице 2.15.

Таблица 2.15 — Передаточные функции замкнутого внешнего контура при различных скоростных напорах

q	Передаточная функция		
q_{min}	5.261 p + 2.773		
	$\boxed{0.004p^7 + 0.126p^6 + 2.099p^5 + 13.817p^4 + 37.391p^3 + 28.644p^2 + 11.838p + 2.773}$		
q_{max}	14.138 p + 20.025		
	$0.001p^7 + 0.051p^6 + 0.915p^5 + 7.451p^4 + 26.734p^3 + 37.799p^2 + 31.81p + 20.025$		
$q_{ m kp}$	6.096 p + 3.673		
	$0.003 p^7 + 0.111 p^6 + 1.857 p^5 + 12.626 p^4 + 37.232 p^3 + 30.887 p^2 + 13.715 p + 3.673$		

Графики ЛАФЧХ представлены на рисунке 2.11. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.16

Рисунок 2.11 - ЛАФЧХ для системы автоматической стабилизации высоты

Таблица 2.16 — Запасы, частоты среза системы для автоматической стабилизации высоты

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.433	6.442	28.683
0.61	0.401	9.308	41.570
0.6119	1.328	2.223	9.530

2.3.4. Вывод

По результатам частотного анализа ядра:

Разомкнутая система ядра имеет запас по амплитуде 22.8 дБ для крейсерского режима, 17.6 дБ для режима соответствующего максимальному q_{max} и 24.9 дБ для режим минимального q_{min} , запасы по фазе 89 град., 83 град., 87 град., соответственно. Имея положительные запасы замкнутая система будет устойчива (см. рисунок 2.9).

По результатам частотного анализа контура стабилизации высоты: Разомкнутая система имеет запасы по амплитуде 11.8 дБ, 9.8 дБ, 7.1 дБ для крейсерского, q_{min} , q_{max} режимов соответственно, по фазе 39 град., 35 град., 28 град.. Замыкая контур система стала устойчива (см. рисунок 2.11).

2.4. Нелинейное моделирование САУ

Нелинейное моделирование будет проводится для скоростного режима $M_{\rm kp}$ на крейсерской высоте H=10000 м для двух максимальных скоростей отклонения руля высоты $\dot{\delta}_{\rm B\ max}=15\,\frac{\rm град.}{\rm cek.},\ 60\,\frac{\rm град.}{\rm cek.}$. Также будут введены ограничения на:

• Диапазон отклонения руля высоты $\delta_{\scriptscriptstyle \rm B} = -21^\circ...15^\circ.$

• Диапазон угла тангажа в наборе $\vartheta = -6.5^{\circ}...6.5^{\circ}.$

Схема нелинейной модели из «Simulink» представлена на рисунке 2.12. Блок с названием «i_H» соответствует коэффициенту i_H , «K_theta_int» — K_{ϑ} , «W_p» — W_{Π} , «d_w_d_v» — $\left\{\frac{\Delta \omega_z}{\Delta \delta_{\rm B}}\right\}$, «K_omega_z_int» — K_{ω_z} , «W_H_theta» — $\left\{\frac{\Delta H}{\Delta \vartheta}\right\}$.

Рисунок 2.12 — Схема нелинейной модели

2.4.1. Сравнение для разных максимальных скоростей отклонения руля высоты

Графики изменения ΔH , $\delta_{\rm B}$, ω_z , ϑ для $\dot{\delta}_{\rm B \; max}=15\,\frac{\rm град.}{\rm сек.}$, $60\,\frac{\rm град.}{\rm сек.}$ представлены на рисунках $2.13,\;2.14,\;2.15,\;2.16.$

Рисунок 2.13 — Изменение высоты для различных $\dot{\delta}_{\text{в max}}$

Рисунок 2.14 — Изменение положения руля высоты для различных $\dot{\delta}_{ ext{B max}}$

Рисунок 2.15 — Изменение угловой скорости для различных $\dot{\delta}_{\text{в max}}$

Рисунок 2.16 — Изменение угла тангажа для различных $\dot{\delta}_{\rm B\ max}$

Таблица 2.17 — Сравнение параметров переходного процесса $\Delta H(t)$ при различных $\dot{\delta}_{\scriptscriptstyle \mathrm{B}}$

	Модель при $\dot{\delta}_{\scriptscriptstyle \mathrm{B}_{max}} = 15 \frac{\scriptscriptstyle \mathrm{град.}}{\scriptscriptstyle \mathrm{cek.}}$	Модель при $\dot{\delta}_{{\scriptscriptstyle { m B}}_{max}} = 60 {\scriptstyle { m FP ag.} \over { m cek.}}$
$t_{ m per}, { m c}$	26.70	26.69
σ , %	24.73	24.66

2.4.2. Сравнение линейной и нелинейной модели

Графики изменения ΔH , $\delta_{\rm B}$, ω_z , ϑ для линейной и нелинейной модели представлены на рисунках 2.17, 2.18, 2.19, 2.20. Моделирование нелинейной модели проводилось при $\dot{\delta}_{\rm B\ max}=60\,rac{{
m град.}}{{
m cek.}}$.

Рисунок 2.17 — Изменение высоты для линейной и нелинейной модели

Рисунок 2.18 — Изменение положения руля высоты для линейной и нелинейной модели

Рисунок 2.19 — Изменение угловой скорости для линейной и нелинейной модели

Рисунок 2.20 — Изменение угла тангажа для линейной и нелинейной модели

Таблица 2.18 — Сравнение параметров переходного процесса $\Delta H(t)$

	Линейная модель	Нелинейная модель				
$t_{\rm per}, c$	26.67	26.69				
σ , %	28.00	24.66				

2.4.3. Вывод

При моделировании различных скоростей отклонения руля высоты, переходный процесс практически не изменился (см. рисунок 2.13), время регулирования привода с наибольшей максимальной скоростью отклонения было меньше на ≈ 0.01 с, что незначительно. Максимальное отклонение руля высоты в случае с $\dot{\delta}_{\rm B_{\it max}} = 15 \frac{\rm rpag.}{\rm cek.}$ было меньше на 40% (см. рисунок 2.14). Максимальная угловая скорость тангажа равна ≈ 0.115 рад/с у модели с $\dot{\delta}_{\rm B_{\it max}} = 15 \frac{\rm rpag.}{\rm cek.}$ (см. рисунок 2.15). Характер изменения угла тангажа имеет различие до 5 секунды моделирования (см. рисунок 2.16).

Разница во времени регулирования между линейной и нелинейной моделью в ≈ 0.03 с (см. таблицу 2.18), но разница во времени срабатывания порядка ≈ 1.8 с. У линейной модели максимальное отклонение руля высоты имеет недопустимое значение $max(\delta_{\rm B}) > -21^{\circ}$ (см. рисунок 2.18). В следствии этого максимальная угловая скорость тангажа ≈ 0.16 рад/с (см. рисунок 2.19). Изменение угла тангажа у нелинейной модели ограничено 0.11 рад, что примерно равно 6.5° (см. рисунок 2.20).

2.5. Вывод по разделу

В ходе работы была составлена модель системы стабилизации высоты в тангажном варианте. Проведен линейный и нелинейный анализ системы, вычислены значения коэффициентов обратных связей, коэффициентов стабилизации (см. таблицу 2.5). При синтезировании данной системы были получены результаты:

1. Параметры привода:

$$\xi_{\text{пр}} = 0.7, \ T_{\text{пр}} = 0.045.$$

- 2. Разомкнутый контур стабилизации высоты имеет удовлетворительные запасы.
- 3. Переходные процессы нелинейной и линейной модели имеют различный характер изменения.

3. Специальная часть

3.1. Исследование характеристик транспортного самолета при выполнении эшелонирования

3.1.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной траектории и скоростного режима.

3.1.2. Расчетные формулы

$$q_{\text{\tiny H}} = P_{\text{\tiny p}} C e, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny H}}}{3.6 V}, \ L_{\text{\tiny KC}} = \int_{m_{\text{\tiny H}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m_{\text{\tiny H}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny H}}},$$
 (3.1)

$$P_{\Pi}(M,H) = \frac{mg}{K} \tag{3.2}$$

$$P_{\rm p}(M,H) = P_{\rm p_{11}} \frac{p_H}{p_{H=11}},$$
 (3.3)

$$P_{\mathbf{p}}(M,H) = \bar{P}_0 m g \tilde{P}(H,M), \qquad (3.4)$$

$$Ce = Ce_0\tilde{C}e(H, M)\hat{C}e_{Ap}(R),$$
 (3.5)

$$L_{\text{\tiny KC}} = \frac{3.6}{\bar{P}_0 C e_0 g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{V}{m \tilde{P}(H, M) \tilde{C} e(H, M) \hat{C} e_{\text{\tiny JD}}(\bar{R})} dm, \tag{3.6}$$

$$T_{\text{KC}} = \frac{1}{g} \int_{m_{\text{K}}}^{m_{\text{H}}} \frac{1}{m\tilde{P}(H, M)\tilde{C}e(H, M)\hat{C}e_{\text{JD}}(\bar{R})} dm$$
 (3.7)

3.2. Исходные данные для расчетов

 $m_{\rm пуст}=86000~{\rm кг},~m_{\rm топл}=60000~{\rm кг},~m_{\rm цн}=34000~{\rm кг}.$ При интегрировании по формулам (3.1) $m_{\rm K}=120000~{\rm kr},~m_{\rm H}=180000~{\rm kr}.$ Остальные параметры были приведены в разделе 1.1. Полет будет осуществляется на дальность $L_{\rm kp}=3000~{\rm m}.$

3.2.1. Задачи

По мере уменьшения массы из-за выгорания топлива в крейсерском полете будет уменьшаться $P_{\rm II}$ из формулы (3.2), что ведет к изменению расхода топлива.

Проведем такие количественные анализы:

- 1. Влияние массы на изменение экономической скорости.
- 2. Оптимальную траекторию с учетом выгорания топлива.
- 3. Найти моменты смены эшелона для перехода на экономически выгодный эшелон.
- 4. Разница в расходах топлива при полете на постоянной высоте и со сменой высоты.

3.3. Результаты

3.3.1. Результаты расчета при постоянный высоте и оптимальной скорости полета

Таблица 3.1 — Полученные параметры

$q_{ ext{km cp}},rac{ ext{kf}}{ ext{km}}$	L, km	$m_{ ext{\tiny M3p}},$ кг	$t_{ m kp},$ мин
10.378	3000	31135.02	278.00

Рисунок 3.1 — График зависимости Рисунок 3.2 — График зависимости $H(L) \ \text{и} \ V(L)$ $q(L) \ \text{и} \ m(L)$

3.3.2. Результаты расчета при оптимальном изменении высоты и скорости полета

Таблица 3.2 — Полученные параметры

$q_{ ext{km cp}},rac{ ext{kf}}{ ext{km}}$	L, km	$m_{ exttt{изp}},$ кг	$t_{ m kp},$ мин
10.305	3000	30915.00	276.80

Рисунок 3.3 — График зависимости Рисунок 3.4 — График зависимости $H(L) \ \text{и} \ V(L)$ $q(L) \ \text{и} \ m(L)$

3.3.3. Эшелонированный полет, высота меняется ступенчато с шагом 300 м.

Таблица 3.3 — Полученные параметры

$q_{ ext{km cp}}, rac{ ext{kf}}{ ext{km}}$	L, km	$m_{ m \scriptscriptstyle H3p},{ m K}$ г	$t_{ m kp}$, мин
10.317	3000	30949.65	276.87

Рисунок 3.5 — График зависимости Рисунок 3.6 — График зависимости H(L) и V(L) q(L) и m(L)

т, т	ОНН	H, M											
		7000	7500	8000	8500	9000	9500	10000	10500	11000	11500	12000	12500
190.0	M	0.583	0.59	0.596	0.602	0.607	=	=	=	=	=	-	=
	q_{km}	12.598	12.448	12.24	12.098	12.146	-	-		-		-	Ξ
	V	182.047	183.132	183.71	184.086	184.564	Ξ	=	=	Ξ	=	-	=
180.0	M	0.578	0.585	0.591	0.597	0.602	0.609	-	-	-	-	-	-
	q_{km}	12.123	11.864	11.617	11.437	11.382	11.509	-	-	-	-	-	-
	V	180.396	181.448	182.111	182.568	183.003	183.598	-	-	-	-	-	-
170.0	M	0.572	0.579	0.586	0.591	0.597	0.603	0.61	-	-	-	-	-
	q_{km}	11.664	11.324	11.035	10.82	10.705	10.714	10.871	-	-	-	-	-
	V	178.694	179.698	180.418	180.96	181.43	181.934	182.577	-	-	-	=	-
160.0	M	0.567	0.573	0.58	0.586	0.592	0.598	0.604	0.61	-	-	-	-
	q_{km}	11.22	10.821	10.493	10.243	10.081	10.017	10.059	10.215	-	-	=	-
	V	176.935	177.858	178.597	179.208	179.745	180.265	180.822	181.47	-	-	=	-
150.0	M	0.56	0.567	0.574	0.58	0.586	0.592	0.598	0.604	0.61	-	-	-
	q_{km}	10.814	10.355	9.985	9.703	9.506	9.39	9.352	9.391	9.501	-	-	-
	V	174.976	175.946	176.746	177.414	177.992	178.518	179.032	179.575	180.185	=	=	=
140.0	M	0.555	0.561	0.567	0.574	0.58	0.586	0.591	0.597	0.603	0.61	=	Ξ
	q_{km}	10.461	9.95	9.537	9.215	8.975	8.808	8.706	8.661	8.663	8.705	=	=
	V	173.032	174.089	174.902	175.54	176.07	176.56	177.079	177.695	178.476	179.491	=	=
130.0	M	0.548	0.555	0.561	0.567	0.573	0.579	0.585	0.591	0.597	0.603	0.61	-
	q_{km}	10.087	9.595	9.166	8.801	8.5	8.263	8.088	7.977	7.93	7.945	8.023	-
	V	170.852	172.198	173.117	173.73	174.161	174.533	174.969	175.592	176.525	177.892	179.815	-
120.0	M	0.54	0.548	0.555	0.561	0.567	0.572	0.578	0.583	0.589	0.596	0.603	0.61
	q_{km}	9.703	9.257	8.835	8.444	8.092	7.787	7.538	7.353	7.241	7.209	7.266	7.42
	V	168.489	170.031	171.068	171.738	172.178	172.523	172.912	173.481	174.366	175.705	177.634	180.29
110.0	M	0.531	0.54	0.547	0.553	0.56	0.565	0.571	0.576	0.582	0.588	0.594	0.602
	q_{km}	9.37	8.933	8.511	8.11	7.737	7.4	7.104	6.856	6.664	6.534	6.473	6.488
	V	165.694	167.441	168.643	169.436	169.962	170.357	170.762	171.316	172.157	173.424	175.257	177.794
100.0	M	0.522	0.53	0.538	0.544	0.551	0.557	0.563	0.568	0.574	0.58	0.586	0.593
	q_{km}	9.1	8.633	8.193	7.781	7.399	7.048	6.73	6.446	6.198	5.987	5.816	5.685
	V	162.887	164.565	165.788	166.669	167.322	167.86	168.397	169.046	169.921	171.135	172.802	175.035

Таблица 3.4 — Оптимальные параметры крейсерского полета

3.3.4. Анализ результатов

Таблица 3.5 — Результаты расчетов

Режим	$m_{ ext{изp}},$ км	T	$q_{ ext{km}_{ ext{cp}}},rac{ ext{kf}}{ ext{km}}$
Полет на $H=9000\mathrm{M}$	31135.02	4 ч. 38 мин.	10.378
Полет по оптимальной траек-	30915	4 ч. 37 мин.	10.305
тории			
Полет эшелонированный полет	30949.65	4 ч. 36 мин.	10.317
$\Delta H = 300\mathrm{M}$			

Результаты расчетов по нахождению $q_{{\scriptscriptstyle \mathrm{KM}}_{min}}$ минимального километрового расхода топлива сведены в таблицу 3.4.

- 1. Исходя из расчетов по мере уменьшения массы скорость уменьшается, а высота для поддержания $q_{{\scriptscriptstyle \mathrm{KM}}_{min}}$ увеличивается.
- 2. Оптимальная траектория набора представлена на рисунке 3.3.
- 3. Моменты смены эшелона выбрали, если между оптимальной высотой и текущей будет разница в 300 м., тогда производим набор высоты на $\Delta H = H_{\text{опт}} H_{\text{кр}} = 300 \, \text{м}.$

3.4. Вывод

В данном разделе была получена траектория эшелонированного полета для обеспечения минимального расхода топлива. Такая траектория с исходными данными самолета прототипа дает разницу в 0.11 % по сравнению с оптимальной траекторией в количестве израсходованного топлива. Что дает разницу в избытке топлива на 10 полетов равной в 346.5 кг. К сравнению при

полете на одной высоте разница составляет 0.71~%, что дает избыток топлива на 10 полетов равный $2200~\mathrm{kr}$.

Отсюда следует, что экономически выгодно выполнять крейсерский полет на эшелоне, который обеспечивает минимум километрового расхода топлива.

Заключение

В ходе выполнения выпускной квалификационной работы были определены:

- 1. Область располагаемых высот и скоростей;
- 2. Практический и статической потолок;
- 3. Определена траектория полета;
- 4. Транспортные возможности самолета;
- 5. Взлетно-посадочные характеристики;
- 6. Параметры правильного виража;
- 7. Характеристики продольной устойчивости и управляемости.

В разделе по расчету летно-технических характеристик.

Также была синтезирована система стабилизации высоты в тангажном варианте. Добились устойчивости системы на всем диапазоне скоростных напоров. И выполнили линейный и нелинейный анализ системы.

Проведено исследование характеристик эшелонированного полета. Были получены результаты расхода топлива на протяжении всего крейсерского полета для различных программ полета с учетом выгорания топлива.

Список литературы

- 1. Динамика полета: Учебник для студентов высших учебных заведений / А.В. Ефремов, В.Ф. Захарченко, В.Н. Овчаренко и др.; под ред. Г.С. Бюшгенса. М.: Машиностроение, 2011. 776с.
- 2. Управление полетом самолета: Учебное пособие для студентов высших технических учебных заведений / Ю.П. Гуськов, Г.И. Загайнов Г.И. М.: Машиностроение, 1991. 272с.
- 3. Самолет Ил-76. Аэродинамика и динамика полета: Учебное пособие / Д.В. Верещиков, С.Н. Салтыков. Иркутск. ИВАИИ, 2002. 102с.