## MUSTERERKENNUNG

Vorlesung im Sommersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 6. März 2017

Teil III

Filterung

Aufgabe LSI-Systeme FIR/AR/ARMA DFT/FFT 2D-Filter Binärfilter

# Aufgabenstellung





### Ziele

- Reduktion störender Anteile
- Hervorhebung informativer & diskriminativer Anteile
- Restauration des idealen Musters

# Transformation

Lineare/nichtlineare Filter Glättung/Kantenverstärkung Schnelle Algorithmen

# Reproduktion?

Exakte Reproduktion Perzeptuelle Äquivalenz Semantische Äquivalenz Aufgabe LSI-Systeme FIR/AR/ARMA Aufgabe

# Typische Störquellen

Der gefahrvolle Transport eines Musters in den Zielrechner

## Produktion

Vokaltrakteigenschaften, Psychomotorik

# Umgebung

Fremdstimmen, Fremdkörper, Beleuchtung

## Aufnahme

Linsenfehler, Verstärkerrrauschen, Aliasing

# Übertragung

atmosphärische Störungen, Magnetfelder

# Speicherung

Aufgabe

Magnetband, Filmmaterial

LSI-Systeme FIR/AR/ARMA DFT/FFT

## Lineare verschiebungsinvariante Systeme

# Rauschunterdrückung & Kantenhervorhebung

FIR/AR/ARMA

Beispiele zur Filterung zweidimensionaler Muster

# Glättung

Störende Artefakte in Objekt und Hintergrund werden entfernt oder wenigstens abgeschwächt.





# Verstärkung

Struktur- und analyserelevante Musterdetails werden hervorgehoben.







Originalbild

Konturlinie

Objektmarkierung

Aufgabe

Binärfilter

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Binärfilter

# Lineare Systeme

Mathematisch handhabbar · algorithmisch effizient · praktisch ausreichend



### Definition

Eine Transformation  $\mathfrak{T}: \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$  heißt **lineares System**, wenn für alle Folgen  $f, g : \mathbb{Z} \to \mathbb{R}$  und alle Skalare  $a, b \in \mathbb{R}$  gilt:

$$\mathfrak{T}\{a \cdot f + b \cdot g\} = a \cdot \mathfrak{T}\{f\} + b \cdot \mathfrak{T}\{g\}$$

### Definition

Sei  $\mu \in \mathbb{Z}$ . Die Folge  $\delta^{\mu} : \mathbb{Z} \to \mathrm{I\!R}$  mit

$$\delta^{\mu}(j) \stackrel{\mathsf{def}}{=} \left\{ egin{array}{ll} 1 & j=j \\ 0 & \mathsf{sons} \end{array} \right.$$

heißt (um  $\mu$  verschobener) **Einheitsimpuls**.

LSI-Systeme

FIR/AR/ARMA

# Lineare Systeme

... sind vollständig durch die Familie ihrer Impulsantworten charakterisiert

## Definition

Die Folgenfamilie  $\{g^{\mu}\}$  mit

$$\mathbf{g}^{\mu} = \mathfrak{T}\{\boldsymbol{\delta}^{\mu}\} \quad (\forall \mu \in \mathbb{Z})$$

heißt Impulsantwort (genauer: Familie der Impulsantworten) des linearen Systems T.

#### Lemma

Ist  $\mathfrak T$  ein lineares System  $\mathfrak T$  mit Impulsantwort  $\{{\bf g}^\mu\}$  und  ${\bf h}=\mathfrak T\{{\bf f}\}$ , so gilt für alle  $n \in \mathbb{Z}$ :

$$h_n = \sum_{\nu \in \mathbb{Z}} f_{\nu} \cdot \boldsymbol{g}^{\nu}(n)$$

#### Bemerkung

Lineare Systeme sind durch eine unendliche Menge unendlicher Zahlenfolgen charakterisiert.

Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Binärfilter

# Lineare verschiebungsinvariante Systeme

... sind vollständig durch die Antwort auf den Einheitsimpuls charakterisiert

### Definition

Das lineare System  $\mathfrak T$  mit Impulsantwort  $\{g^{\mu}\}$  heißt **verschiebungsinvariant**, wenn für alle  $n, \mu \in \mathbb{Z}$  gilt:

$$\mathbf{g}^{\mu}(n) = \mathbf{g}^{0}(n-\mu)$$

Die Funktion  $\mathbf{g} = \mathbf{g}^0 = \mathfrak{T}\{\boldsymbol{\delta}^0\}$  heißt dann **Impulsantwort** von  $\mathfrak{T}$ .

# Lemma (Filtern ist Falten)

Für ein LSI-System T mit Impulsantwort **g** gilt:

$$\mathfrak{T}\{m{f}\} = m{f} \star m{g}$$
 für alle  $m{f}: \mathbb{Z} \to \mathbb{R}$ 

#### Bemerkung

- · LSI-Systeme ('linear shift-invariant') arbeiten unabhängig vom Absolutzeitpunkt.
- · LSI-Systeme sind durch eine unendliche Zahlenfolge charakterisiert.

#### Beweis.

Wir können den Filtereingang f als unendliche Linearkombination von Einheitsimpulsen darstellen:

$$f = \sum_{\nu \in \mathbb{Z}} f_{\nu} \cdot \delta^{\nu}$$

Zur Berechnung des Filterausgangs h verwenden wir die Linearitätseigenschaften:

$$m{h} = \mathfrak{T}\{m{f}\} = \mathfrak{T}\left\{\sum_{
u \in \mathbb{Z}} f_{
u} \cdot m{\delta}^{
u}
ight\} = \sum_{
u \in \mathbb{Z}} f_{
u} \cdot \mathfrak{T}\left\{m{\delta}^{
u}
ight\} = \sum_{
u \in \mathbb{Z}} f_{
u} \cdot m{g}^{
u}$$

Diese Folge werten wir an der Stelle  $n \in \mathbb{Z}$  aus:

$$h_{\mathbf{n}} = (\sum_{\nu \in \mathbb{Z}} f_{\nu} \cdot \mathbf{g}^{\nu})_{\mathbf{n}} = \sum_{\nu \in \mathbb{Z}} f_{\nu} \cdot \mathbf{g}^{\nu}(\mathbf{n})$$

Bemerkung

In verschiebungsinvarianten Systemen vereinfacht sich die letzte Gleichung zu

$$h_{\mathbf{n}} = \sum_{\nu \in \mathbb{Z}} f_{\nu} \cdot g_{\mathbf{n}-\nu} = (f \star g)_{\mathbf{n}}.$$

Aufgabe

LSI-Systeme

FIR/AR/ARMA

Binärfilter

Kausale LSI-Systeme

Der Filtervorgang kann nicht in die Zukunft schauen

#### Definition

Das LSI-System  $\mathfrak{T}$  heißt **kausal**, wenn für seine Impulsantwort  $\mathbf{g}$  gilt:

$$n < 0 \Rightarrow g(n) = 0$$

#### Bemerkung

Der Faltungsoperator ' $\star$ ' ist kommutativ. Deshalb hängt der Ausgabewert  $h_n$  eines kausalen Systems nur noch von Eingabewerten  $f_{\nu}$  mit  $\nu \leq n$  ab:

$$h_{n} = (\mathbf{f} \star \mathbf{g})_{n} = \sum_{\nu \in \mathbb{Z}} f_{\nu} g_{n-\nu} = \sum_{\nu \in \mathbb{Z}} g_{\nu} f_{n-\nu} = \sum_{\nu \in \mathbb{N}} g_{\nu} f_{n-\nu}$$

# Stabile LSI-Systeme

Der Filtervorgang mündet niemals in eine Resonanzkatastrophe

## Definition

LSI-Systeme

Das LSI-System  $\mathfrak{T}$  heißt **stabil**, wenn für beliebige Folgen  $f: \mathbb{Z} \to \mathbb{R}$  gilt:

f beschränkt  $\Rightarrow \mathfrak{I}\{f\}$  beschränkt

#### Lemma

Gilt für die Impulsantwort g eines LSI-Systems  $\mathfrak T$  die absolute Summierbarkeitseigenschaft

$$\sum_{\nu\in\mathbb{Z}}|g_{\nu}|\ <\ \infty\ ,$$

so ist T stabil.

#### Bemerkung

Die absolute Summierbarkeit ist notwendig und hinreichend für Stabilität.

LSI-Systeme

FIR/AR/ARMA

Binärfilter

FIR/AR/ARMA

Binärfilter

#### Aufgabe

# LSI-Filter mit idealem Frequenzgang

Filter mit senkrechten Flanken lassen sich praktisch leider nicht realisieren







### Bandpassfilter

$$|G_{\mathfrak{T}}(e^{i\omega})| = \left\{ egin{array}{ll} 1 & \omega_0 \leq \omega \leq \omega_1 \ 0 & {
m sonst} \end{array} 
ight.$$

Tiefpassfilter

$$|G_{\mathfrak{T}}(e^{i\omega})| = \left\{ egin{array}{ll} 1 & \omega \leq \omega_0 \ 0 & \omega > \omega_0 \end{array} 
ight.$$

Hochpassfilter

$$|G_{\mathfrak{T}}(e^{i\omega})| \ = \ \left\{ egin{array}{ll} 0 & \quad \omega < \omega_1 \ 1 & \quad \omega \geq \omega_1 \end{array} 
ight.$$

Kerbfilter

$$|G_{\mathfrak{T}}(e^{i\omega})| = \left\{egin{array}{ll} 0 & \omega_0 \leq \omega \leq \omega_1 \ 1 & {
m sonst} \end{array}
ight.$$

Alle Frequenzgangangaben verstehen sich im Bereich  $\omega \in [0, \pi]$ .

# Filterung im Frequenzbereich

Verstärkung oder Unterdrückung von Spektralkomponenten

#### Definition

LSI-Systeme

Sei  $\mathfrak{T}$  ein LSI-System und  $[g_i]$  seine Impulsantwort. Die z-Transformierte G(z) von  $[g_i]$  heißt Frequenzantwort oder Übertragungsfunktion von

# Folgerung

Bezeichnen wir mit F(z) und H(z) die z-Transformierten der Systemeingabe bzw. -ausgabe, so folgt aus dem Faltungssatz:

$$h = \mathfrak{T}\{f\} \Rightarrow H(z) = F(z) \cdot G_{\mathfrak{T}}(z)$$

- · Spektralkoeffizienten aus dem Einheitskreis:  $H(e^{i\omega}) = F(e^{i\omega}) \cdot G(e^{i\omega})$
- · Betragsspektrum:  $|H_{\omega}| = |F_{\omega}| \cdot |G_{\omega}|$

Aufgabe

LSI-Systeme

DFT/FFT

# Störung = Rauschen + Verzerrung

Klassisches Störungsmodell der DSV & lineare Restaurierung von Mustern

$$f = s \star v + n$$

$$\begin{cases} s & \text{Original (,,ideales'' Muster)} \\ v & \text{Verzerrung (lineares System)} \\ n & \text{additive St\"{o}rung (,,Rauschen'')} \\ f & \text{das aufgezeichnete Muster} \end{cases}$$

## Restaurierung durch (lineare) Filterung

Konstruiere ein LSI-Filter  $\mathfrak{T}=\mathfrak{T}_{\boldsymbol{\varrho}}$  mit

$$f \star g =: \hat{s} \approx s$$

#### **Problem**

Trifft dieses simple Störungsmodell (s.o.) überhaupt zu? Sind Verzerrung v und Rauschen n näherungsweise bekannt? Läßt sich die Modellformel nach s "auflösen"? Stellt die (korrekte) Restaurierung ein LSI-System dar? Wie konstruieren wir ein System  $\mathfrak{T}$  mit vorgegebenem Frequenzgang  $G_{\mathfrak{T}}(e^{i\omega})$ ?

#### LSI-Systeme FIR/AR/ARMA

# Rauschunterdrückung & Inverse Filterung

# Reduktion additiver Störungen

$$\hat{S}(z) = S(z) \cdot G(z) = S(z) \cdot G(z) + N(z) \cdot G(z)$$







# Dekonvolution linearer Verzerrungen

$$\hat{S}(z) = S \star V$$

$$\hat{S}(z) = F(z) \cdot G(z) = (S(z) \cdot V(z)) \cdot \frac{1}{V(z)}$$

Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

-Filter E

Binärfilter

#### £

# LSI-Systeme und Differenzengleichungen

#### Satz

Läßt sich die Operation  $\mathbf{h}=\mathfrak{T}\{\mathbf{f}\}$  eines LSI-Systems durch eine Differenzengleichung

$$\sum_{\nu=0}^{N} a_{\nu} \cdot h_{j-\nu} = \sum_{\mu=0}^{M} b_{\mu} \cdot f_{j-\mu}$$

beschreiben, so besitzt die Frequenzantwort des Systems die folgende Darstellung ( $a_{\nu}, b_{\mu} \in \mathbb{R}$ ):

$$G(z) = rac{B(z^{-1})}{A(z^{-1})} = rac{\displaystyle\sum_{\mu=0}^{M} b_{\mu} \cdot z^{-\mu}}{\displaystyle\sum_{\nu=0}^{N} a_{\nu} \cdot z^{-\nu}}$$

## Aufgabenstellung

Lineare verschiebungsinvariante Systeme

## Filter mit (un)endlicher Impulsantwort

Diskrete und schnelle Fouriertransformation

Filter für Grauwertbilder

Morphologische Operatorer

Mathematische Hilfsmittel

#### Beweis.

Ist  $h=\mathfrak{T}\{f\}$ , so gilt für die Impulsantwort g des Systems  $h=f\star g$  und für die Frequenzantwort G(z) folglich

$$H(z) = F(z) \cdot G(z)$$
 und  $G(z) = H(z)/F(z)$ 

Aus der vorausgesetzten Differenzengleichung folgt wegen der Linearität der z-Transformation und dem Verschiebungssatz

$$\sum_{\nu=0}^{N} a_{\nu} \cdot h_{j-\nu} = \sum_{\mu=0}^{M} b_{\mu} \cdot f_{j-\mu}$$

$$\sum_{\nu=0}^{N} a_{\nu} \cdot \mathcal{Z} \left\{ h_{j-\nu} \right\} = \sum_{\mu=0}^{M} b_{\mu} \cdot \mathcal{Z} \left\{ f_{j-\mu} \right\}$$

$$\sum_{\nu=0}^{N} a_{\nu} \cdot z^{-\nu} \cdot H(z) = \sum_{\mu=0}^{M} b_{\mu} \cdot z^{-\mu} \cdot F(z)$$

$$\underbrace{\sum_{\nu=0}^{M} a_{\nu} \cdot z^{-\nu} \cdot H(z)}_{B(z-1)} = \underbrace{\sum_{\mu=0}^{M} b_{\mu} \cdot z^{-\mu}}_{B(z-1)} \cdot F(z)$$

Daraus folgt bereits das Resultat

$$G(z) = \frac{H(z)}{F(z)} = \frac{B(z^{-1})}{A(z^{-1})}$$

Bemerkun

Es folgen selbstverständlich in keiner Weise die Aussagen  $H(z) = B(z^{-1})$  oder  $F(z) = A(z^{-1})$ .

# LSI-Systeme und Differenzengleichungen

Endliche Repräsentation & endlicher Berechnungsaufwand

- 1. Besitzt umgekehrt die Frequenzantwort eines Systems eine Darstellung  $B(\frac{1}{z})/A(\frac{1}{z})$  als Quotient zweier Polynome in  $z^{-1}$  (mit reellen Koeffizienten), so gilt für Eingangs- und Ausgangssignal auch die entsprechende Differenzengleichung.
- 2. Das angestrebte Übertragungsverhalten  $G_{\mathcal{T}}$  eines LSI-Systems läßt sich in guter Näherung durch ein gebrochenes Polynom approximieren, im Zeitbereich ist I dann durch eine Differenzengleichung repräsentiert.
- 3. Ist  $a_0 \neq 0$ , so ist o.B.d.A.  $a_0 = 1$ , und die DG ist nach  $h_n$  auflösbar:

$$h_n = \sum_{\mu=0}^{M} b_{\mu} \cdot f_{n-\mu} - \sum_{\nu=1}^{N} a_{\nu} \cdot h_{n-\nu}$$

4. Differenzengleichungssysteme sind offenbar immer kausal.

#### LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Binärfilter

#### Aufgabe

DFT/FFT

Binärfilter

#### Aufgabe

# Systeme mit endlicher Impulsantwort

FIR-Systeme — 'finite impulse response'

### Definition

Das LSI-System  $\mathfrak T$  heißt FIR-System, wenn seine Impulsantwort **g** außerhalb eines kompakten Intervalls  $[m_0, m_1]$ verschwindet: andernfalls heißt T IIR-System.

### FIR-Filter

$$G(z) = B(z^{-1}) = \sum_{\mu=0}^{M} b_{\mu} \cdot z^{-\mu}$$

$$h_{j} = \sum_{\mu=0}^{M} b_{\mu} \cdot f_{j-\mu}$$



## Resonanzen und Antiresonanzen

FIR/AR/ARMA

Eine spektrale Bergwanderung um den (halben) Einheitskreis

### Definition

Aufgabe

Sei  ${\mathfrak T}$  ein LSI-System mit gebrochen polynomialer Frequenzantwort

$$G_{\mathfrak{T}}(z) = \frac{B(\frac{1}{z})}{A(\frac{1}{z})}.$$

Die Nullstellen des Nennerpolynoms heißen Resonanzen, die des Zählerpolynoms **Antiresonanzen** von  $\mathfrak{T}$ .



# Resonanzfrequenzen

N/2 Paare konjugiert komplexer Polstellen von G(z)

### Stabilität

Ein kausales System  $\mathfrak{T}_G$  ist stabil genau dann, wenn alle Polstellen von G(z)innerhalb des Einheitskreises liegen.

FIR/AR/ARMA

# Systeme mit unendlicher Impulsantwort

IIR-Systeme — 'infinite impulse response'

## AR-Filter ('autoregressive')

$$G(z) = \frac{\sigma}{A(z^{-1})} = \sigma / \sum_{\nu=0}^{N} a_{\nu} \cdot z^{-\nu}$$

$$h_{j} = \sigma \cdot f_{j} - \sum_{\nu=1}^{N} a_{\nu} \cdot h_{j-\nu}$$

# ARMA-Filter ('autoregressive moving-average')

$$G(z) = \frac{B(z^{-1})}{A(z^{-1})} = \sum_{\mu=0}^{M} b_{\mu} \cdot z^{-\mu} / \sum_{\nu=0}^{N} a_{\nu} \cdot z^{-\nu}$$

$$h_{j} = \sum_{\mu=0}^{M} b_{\mu} \cdot f_{j-\mu} - \sum_{\nu=1}^{N} a_{\nu} \cdot h_{j-\nu}$$

Aufgabe

FIR/AR/ARMA

# FIR-Mittelwertfilter der Länge 3

## Beispiel

Ein kausales FIR-System zur Glättung:

$$h_j = \frac{1}{3}f_j + \frac{1}{3}f_{j-1} + \frac{1}{3}f_{j-2}$$
  $G(z) = \frac{1}{3} + \frac{1}{3z} + \frac{1}{3z^2}$ 

$$G(z) = \frac{1}{3} + \frac{1}{3z} + \frac{1}{3z^2}$$

Die Nullstellen (Antiresonanzen) liegen bei

$$\zeta = -\frac{1}{2} \pm \sqrt{\frac{1}{4} - 1} = -\frac{1}{2} \pm \frac{i}{2}\sqrt{3}$$

Insbesondere gilt  $\|\zeta\| = 1$ .

Folglich werden mittlere und hohe Frequenzen "verschluckt".

#### Bemerkung

Die Gewichte  $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$  hingegen führen auf die zweifache reelle Nullstelle  $\zeta = -1$ .

Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Binärfilter

## Aufgabe

FIR/AR/ARMA

DFT/FFT

Binärfilter

# FIR-Mittelwertfilter der Länge M

## Beispiel

Ein einfaches, aber u.U. langes Glättungsfilter ( $M \in \mathbb{N}$ ) ist das Mittelwertfilter

$$h_j = \frac{1}{M} \sum_{i=0}^{M-1} f_{j-\nu}$$

$$h_j = \frac{1}{M} \sum_{\nu=0}^{M-1} f_{j-\nu}$$
  $G(z) = \frac{1}{M} \sum_{\nu=0}^{M-1} z^{-\nu}$ 

Nach Anwendung der Formel für die geometrische Reihe

$$G(z) = \frac{1}{M} \sum_{\nu=0}^{M-1} z^{-\nu} = \frac{1}{M} \cdot \frac{z^{-M}-1}{z^{-1}-1} = \frac{1}{M} \cdot \frac{1-z^{-M}}{1-z^{-1}}$$

können wir das Mittelwertfilter in die effiziente autoregressive Form bringen:

$$h_j = \frac{f_j}{M} - \frac{f_{j-M}}{M} + h_{j-1}$$

# FIR-Mittelwertfilter unterschiedlichen Grades



# IIR-Exponential filter (Länge $\infty$ )

# Beispiel

Eine Glättung mit sehr langen Gedächtnis, aber geringem Rechenaufwand bewirkt das Exponentialfilter

$$h_j = (1 - \lambda) \cdot f_j + \lambda \cdot h_{j-1}$$
 $G(z) = \frac{1 - \lambda}{1 - \lambda/z}$ 

mit der Abklingkonstanten  $0 < \lambda < 1$ und der reellen Polstelle  $z = \lambda$ .

Für  $\lambda \approx 1$  verhält sich das Exponentialfilter fast wie ein sehr langes Mittelwertfilter. Die Polstelle nahe z = 1 bewirkt eine extreme Tiefpaßfilterung.





# FIR-Kantenverstärker (1./2. Ableitung)

# **Beispiel**

Filter für die erste Ableitung

$$h_j = f_j - f_{j-1}$$
  
 $G(z) = 1 - z^{-1}$   
 $= z^{-1}(z-1)$ 

Filter für die zweite Ableitung

$$h_{j} = f_{j} - 2f_{j-1} + f_{j-2}$$

$$G(z) = 1 - 2z^{-1} + z^{-2}$$

$$= z^{-2}(z-1)^{2}$$

Beide bewirken wegen der Antiresonanz bei z = 1 eine Hochpaßfilterung.





FIR/AR/ARMA

Binärfilter

#### Aufgabe

DFT/FFT

Binärfilter

#### Aufgabe

DFT/FFT

# Diskrete Fouriertransformation (DFT)

Endliche Spektraldarstellung für periodische bandbegrenzte Funktionen

| Zeitbereich                                               |                              | Frequenzbereich              |                                                                                    |
|-----------------------------------------------------------|------------------------------|------------------------------|------------------------------------------------------------------------------------|
| allgem. Funktion                                          | $\int_{-\infty}^{+\infty}$   | $\int_{-\infty}^{+\infty}$   | allgem. Funktion                                                                   |
| T-periodisch                                              | $\int_0^T$                   | $\sum_{n=-\infty}^{+\infty}$ | diskretes Spektrum<br>Auflösung $1/T$ Hz                                           |
| 2B Abtastfrequenz                                         | $\sum_{n=-\infty}^{+\infty}$ | $\int_{-\pi}^{+\pi}$         | Frequenzbereich [0, 2B)                                                            |
| $\frac{2B}{2B}$ Abtastfrequenz $\frac{N}{2B}$ -periodisch | $\sum_{n=0}^{N-1}$           | $\sum_{ u=0}^{N-1}$          | diskretes Spektrum<br>Frequenzbereich [0,2 <i>B</i> )<br>Auflösung 2 <i>B/N</i> Hz |

FIR/AR/ARMA

### Diskrete und schnelle Fouriertransformation

LSI-Systeme

FIR/AR/ARMA

## Diskrete Fouriertransformation

Die bijektive Abbildung DFT :  $\mathbb{R}^N \to \mathbb{R}^N$  und ihre Umkehrung

## Definition (DFT)

Sei  $[f_n]$  eine N-periodische Abtastfolge. Die Folge  $[F_{\nu}]$  mit

$$F_{\nu} = \frac{1}{N} \cdot \sum_{n=0}^{N-1} f_n \cdot e^{-2\pi i \frac{\nu n}{N}}$$

heißt diskrete Fouriertransformierte von  $[f_n]$  der Ordnung N (kurz:  $[F_{\nu}] = \mathrm{DFT}\{[f_n]\}.$ 

## Satz (Inverse DFT)

Ist die Abtastfolge  $[f_n]$  N-periodisch und ist  $[F_{\nu}]$  ihre DFT der Ordnung N, so ist auch  $[F_{\nu}]$  N-periodisch und es gelten die Rekonstruktionsgleichungen

$$f_n = \sum_{\nu=0}^{N-1} F_{\nu} \cdot e^{2\pi i \frac{n\nu}{N}}$$

## Beweis.

 $F_{\nu}$  ist N-periodisch:

$$F_{\nu+N} = \frac{1}{N} \cdot \sum_{n=0}^{N-1} f_n \cdot e^{-2\pi i (\nu+N)n/N} = \frac{1}{N} \cdot \sum_{n=0}^{N-1} f_n \cdot e^{-2\pi i \nu n/N} \cdot \underbrace{e^{-2\pi i n}}_{1}$$

Zum Beweis der Umkehrtransformation verwenden wir die Abkürzung  $W=W_{N}=\mathrm{e}^{-2\pi i/N}$  für die sogenannte N-te Einheitswurzel. Diese verdankt ihre Bezeichnung offensichtlich der Eigenschaft  $W_N^N=1$ . Alle ganzzahligen Potenzen von  $W_N$  liegen auf dem Einheitskreis. Anschaulicher:  $W_{12}$  markiert ein Ziffernblatt mit Stunden,  $W_{60}$  markiert ein Ziffernblatt mit Minuten.

Wir setzen die DFT-Koeffizienten in die  $DFT^{-1}$  ein:

Für 
$$n \neq j$$
 finden wir

$$\hat{f}_{j} = \sum_{\nu=0}^{N-1} F_{\nu} \cdot W^{-j\nu} 
= \sum_{\nu=0}^{N-1} \left( \frac{1}{N} \cdot \sum_{n=0}^{N-1} f_{n} W^{\nu n} \right) \cdot W^{-j\nu} 
= \sum_{n=0}^{N-1} f_{n} \cdot \frac{1}{N} \sum_{\nu=0}^{N-1} W^{\nu(n-j)} 
= \sum_{n=0}^{N-1} f_{n} \cdot \frac{1}{N} \sum_{\nu=0}^{N-1} W^{\nu(n-j)} 
= \sum_{n=0}^{N-1} f_{n} \cdot \frac{1}{N} \sum_{\nu=0}^{N-1} W^{\nu(n-j)}$$

Es gilt offensichtlich  $S_i = 1$  für j = n. Und sonst?

Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Binärfilter

# Zyklische Faltung

#### Definition

Es seien  $[f_n]$  und  $[g_n]$  zwei N-periodische Abtastwertfolgen. Die Folge

$$h_n = \sum_{\nu=0}^{N-1} f_{\nu} \cdot g_{n-\nu}$$

heißt zyklische Faltung von  $[f_n]$  und  $[g_n]$  (kurz:  $\mathbf{h} = \mathbf{f} \tilde{\star} \mathbf{g}$ ).

Bemerkung

Mit f und g ist auch die Folge  $\mathbf{f} \tilde{\star} \mathbf{g}$  wieder N-periodisch.



# Lemma (Faltungssatz)

Es seien  $\mathbf{f}$  und  $\mathbf{g}$  zwei N-periodische Abtastwertfolgen und  $\mathbf{h} = \mathbf{f} \, \tilde{\star} \, \mathbf{g}$ . Dann gilt für ihre diskreten Fouriertransformierten:

$$H_{\nu} = F_{\nu} \cdot G_{\nu}$$
 für alle  $\nu \in \mathbb{Z}$ 

Aufgabe

FIR/AR/ARMA

# Eigenschaften der DFT

- Die F<sub>v</sub> sind N-periodisch.
- $[f_n]$  reell  $\Rightarrow$   $F_{-\nu} = F_{\nu}^*$  $[f_n]$  reell  $\Rightarrow$  **Betragsspektrum**  $|F_{\nu}|$  gerade
- Die  $|F_0|^2, \ldots, |F_{N/2}|^2$  beschreiben die Spektralenergien im Band [0, B]mit einer Frequenzauflösung von 2B/N Hz.
- Aliasing = Überlagerung von Spektralenergien  $F(e^{i\omega})$ Kammeffekt = keine Periode, kein Linienspektrum



#### Problem

Welche Funktion ist schon gleichzeitig bandbegrenzt (Aliasing!) und periodisch (Linienspektrum!) ?!

Aufgabe

FIR/AR/ARMA

DFT/FFT

Binärfilter

# FIR-Filterung im Frequenzbereich

$$\begin{array}{rcl} \tilde{\boldsymbol{h}} & = & \tilde{\boldsymbol{f}} \; \tilde{\boldsymbol{x}} \; \tilde{\boldsymbol{g}} \\ \mathrm{DFT} \left\{ \tilde{\boldsymbol{h}} \right\} & = & \mathrm{DFT} \left\{ \tilde{\boldsymbol{f}} \right\} \cdot \mathrm{DFT} \left\{ \tilde{\boldsymbol{g}} \right\} \\ \tilde{\boldsymbol{h}} & = & \mathrm{DFT}^{-1} \left\{ \mathrm{DFT} \left\{ \tilde{\boldsymbol{f}} \right\} \cdot \mathrm{DFT} \left\{ \tilde{\boldsymbol{g}} \right\} \right\} \end{array}$$

- O Setze das endliche Eingangssignal  $[f_n]$  (in Gedanken) periodisch fort.
- Berechne die Transformierte  $[F_{\nu}] = DFT \{ [f_n] \}.$
- Führe die Filterung im Frequenzbereich durch:

$$[H_{\nu}] = [F_{\nu}] \cdot [G_{\nu}]$$

Verwende dazu die vorgehaltene Frequenzantwort  $[G_{\nu}]$ .

3 Gewinne  $[h_i]$  aus der Rücktransformation DFT<sup>-1</sup>  $\{[H_{\nu}]\}$ .

Aufgabe

FIR/AR/ARMA

# FIR-Filterung im Frequenzbereich

## Vorteil

Intuitiv befriedigender Filterentwurf direkt im Frequenzbereich (z.B. ideales Bandpassfilter)

### Nachteil

Jede (inverse) DFT verschlingt N<sup>2</sup> Multiplikationen! Rechenaufwand:  $O(N^2 + N + N^2) = O(N^2)$ 

## Lösung

Die "schnelle DFT" (FFT) benötigt nur  $N \log_2 N$  Multiplikationen. Einschränkung: N = Zweierpotenz

#### Beweis.

Für gerade Indizes gilt:

$$F_{2\nu} = \sum_{n=0}^{N-1} f_n \cdot W_N^{2\nu n}$$

$$= \sum_{n=0}^{N'-1} \left( f_n + f_{n+N'} \right) \cdot W_N^{2\nu n}$$

$$= \sum_{n=0}^{N'-1} g_n \cdot W_{N'}^{\nu n}$$

Für ungerade Indizes gilt:

$$F_{2\nu+1} = \sum_{n=0}^{N-1} f_n \cdot W_N^{(2\nu+1)n}$$

$$= \sum_{n=0}^{N'-1} \left( \left( f_n - f_{n+N'} \right) \cdot W_N^n \right) \cdot W_N^{2\nu n}$$

$$= \sum_{n=0}^{N'-1} g_{n+N'} \cdot W_{N'}^{\nu n}$$

# FFT — die schnelle Fouriertransformation

Divide-and-Conquer Algorithmus zur DFT-Berechnung

# Satz (Cooley & Tukey 1965)

Eine DFT  $[F_{\nu}] = DFT \{ [f_n] \}$  von N-ter Ordnung läßt sich auf zwei DFTs der Ordnung N' = N/2 zurückführen:

$$F_{2\nu} = \sum_{n=0}^{N'-1} g_n \cdot W_{N'}^{n\nu}$$

$$F_{2\nu+1} = \sum_{n=0}^{N'-1} g_{n+N'} \cdot W_{N'}^{n\nu}$$

Dabei entsteht  $[g_n]$  durch die Umrechnung

$$\begin{cases} g_n & (f_n + f_{n+N'}) \\ g_{n+N'} & (f_n - f_{n+N'}) \cdot W_N^n \end{cases}$$
 für alle  $\nu$  mit  $0 \le \nu < N'$ .

Aufgabe

FIR/AR/ARMA

Binärfilter

## Schnelle Fouriertransformation

Mit rekursiven Funktionsaufrufen nicht ganz so schnell wie ihr Name ...

1 Erzeuge die erste Hälfte der Koeffizientenfolge  $[g_n]$  mittels

$$g_n = (f_n + f_{n+N/2}) \quad (0 \le n < N/2)$$

und berechne

$$FFT(\langle g_0,\ldots,g_{N/2-1}\rangle,N/2,\langle G_0,\ldots,G_{N/2-1}\rangle)$$

 $\bigcirc$  Erzeuge die zweite Hälfte der Koeffizientenfolge  $[g_n]$  mittels

$$g_{n+N/2} = (f_n - f_{n+N/2}) \cdot W_N^n \quad (0 \le n < N/2)$$

und berechne

$$FFT(\langle g_{N/2},\ldots,g_{N-1}\rangle,N/2,\langle G_{N/2},\ldots,G_{N-1}\rangle)$$

 $\odot$  Für alle  $0 \le \nu < N/2$  setze

$$F_{2\nu} = G_{\nu} \text{ und } F_{2\nu+1} = G_{\nu+N/2}$$

Aufgabe

# Datenflußdiagramm

## Warum die FFT auch Butterfly-Algorithmus heißt



#### Bemerkung

Umordnung der Zielkoeffizienten durch 'bit-reversal':

(0,4,2,6,1,5,3,7) $\langle 000, 100, 010, 110, 001, 101, 011, 111 \rangle$ 

Aufgabe

FIR/AR/ARMA

DFT/FFT

2D-Filter

Binärfilter

Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

2D-Filter

Binärfilter

# Zweidimensionale (zyklische) Faltung

Grauwertbilder  $\hat{=}$  elementare Mosaiksteine des  $\mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ 

## Definition

Es seien  $[f_{nm}]$ ,  $[g_{nm}]$  zweidimensionale Abtastwertfelder. Dann bezeichne  $h = f \star g$  mit

$$h_{nm} = \sum_{\nu=-\infty}^{+\infty} \sum_{\mu=-\infty}^{+\infty} f_{\nu\mu} \cdot g_{n-\nu,m-\mu}$$

die zweidimensionale Faltung.

#### Definition

Sind f, g beide (N, M)-periodisch, so bezeichne  $\tilde{\boldsymbol{h}} = \boldsymbol{f} \ \tilde{\star} \ \boldsymbol{g}$  mit

$$\tilde{h}_{nm} = \sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} f_{\nu\mu} \cdot g_{n-\nu,m-\mu}$$

die zyklische 2D-Faltung.



## Definition

Ein zweidimensionales Abtastwertfeld  $[f_{nm}]$  heißt (N, M)-periodisch, falls für alle Gitterpunkte  $(i,j) \in \mathbb{Z} \times \mathbb{Z}$  gilt:

$$f_{i,j} = f_{i+N,j+M}$$

#### Filter für Grauwertbilder

# Separierbare Impulsantworten

### Definition

Die Impulsantwort  $[g_{nm}]$  eines zweidimensionalen LSI-Systems heißt **separierbar**, wenn für zwei geeignete Abtastfolgen  $[g_n^X]$ ,  $[g_n^Y]$  gilt:

$$g_{nm} = g_n^X \cdot g_m^Y$$

$$\begin{pmatrix} 0 & 1/8 & 0 \\ 1/8 & 1/2 & 1/8 \\ 0 & 1/8 & 0 \end{pmatrix} \quad \text{ist nicht separierbar, aber:} \quad \begin{pmatrix} 1/16 & 1/8 & 1/16 \\ 1/8 & 1/4 & 1/8 \\ 1/16 & 1/8 & 1/16 \end{pmatrix}$$

#### Lemma

Ist die Impulsantwort  $[g_{nm}]$  eines 2D LSI-Systems  $\mathfrak T$  separierbar, so gilt für die Systemausgabe  $\mathbf{h} = \mathfrak{T}\{\mathbf{f}\}\$ die Darstellung

$$h_{nm} = \sum_{
u=-\infty}^{+\infty} \left\{ \sum_{\mu=-\infty}^{+\infty} f_{
u\mu} \cdot g_{m-\mu}^{Y} 
ight\} \cdot g_{n-
u}^{X}$$

2D-Filterung \(\hat{=}\) zeilenweise 1D-Filterungen & spaltenweise 1D-Filterungen

Aufgabe LSI-Systeme

FIR/AR/ARMA

# Definition

Es sei  $[f_{nm}]$  ein (N, M)-periodisches Abtastwertfeld. Die Transformation

Zweidimensionale DFT

$$F_{\nu\mu} = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f_{nm} \cdot e^{-2\pi i \cdot ({}^{n\nu}\!/_{\!N} + {}^{m\mu}\!/_{\!M})}$$

$$f_{nm} = \sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} F_{\nu\mu} \cdot e^{2\pi i \cdot ({}^{n\nu}\!/{}_{N} + {}^{m\mu}\!/{}_{M})}$$

heißt zweidimensionale (inverse) DFT.

#### Lemma

Aufgabe

Die zweidimensionale DFT ist mittels

$$F_{\nu\mu} = \frac{1}{N} \sum_{n=0}^{N-1} \left\{ \frac{1}{M} \sum_{m=0}^{M-1} f_{nm} \cdot e^{-2\pi i \cdot (m\mu/M)} \right\} \cdot e^{-2\pi i \cdot (n\nu/N)}$$

auf die eindimensionale DFT rückführbar.

FIR/AR/ARMA

# Rechenaufwand einer 2D-Filterung

 $(N \times N)$ -Muster  $\cdot$   $(n \times n)$ -FIR-Impulsantwort  $\cdot$  # Multiplikationen ( $\mathbb{C}$ )

Zweidimensionale Faltung

LSI-Systeme

$$N^2\cdot n^2$$

Filterung mit zweidimensionaler DFT

$$2N^3 + N^2 + 2N^3 = 4N^3 + N^2$$

Filterung mit zweidimensionaler FFT

$$\ldots + N^2 + \ldots = N^2 \cdot (6 \log N + 1)$$

Separierbare Faltung

$$2 \cdot N \cdot Nn = 2 \cdot N^2n$$

Bei der Faltung mittels DFT und FFT führt die Separierbarkeit zu keiner Vereinfachung.

1D - DFT

2D-Filter

Binärfilter

1D - FFT  $\frac{3}{2}$  ·  $N \log N$ 

2D - DFT  $2 \cdot N \cdot N^2 = 2 \cdot N^3$ 

2D - FFT

 $3 \cdot N^2 \log N$ 

# Endliche Impulsantwort und Filtermaske



Aufgabe





FIR-Impulsantwort

FIR/AR/ARMA

Filterantwort

$$h_{ij} = (\mathbf{f} \star \mathbf{g})_{ij} = (\mathbf{g} \star \mathbf{f})_{ij} = \sum_{\nu=0}^{N-1} \sum_{\mu=0}^{M-1} f_{i-\nu,j-\mu} \cdot g_{\nu\mu}$$

$$= \sum_{\nu=-n}^{+n} \sum_{\mu=-m}^{+m} f_{i-\nu,j-\mu} \cdot g_{\nu\mu} = \sum_{\nu=-n}^{+n} \sum_{\mu=-m}^{+m} f_{i+\nu,j+\mu} \cdot \tilde{g}_{\nu\mu}$$







Impulsantwortträgerbereich punktsymmetrisch um den Ursprung (0,0)

LSI-Systeme Aufgabe

FIR/AR/ARMA

2D-Filter

Binärfilter

Rechenaufwand einer 2D-Filterung

# Multiplikationen in Abhängigkeit von Muster- und Maskengröße



Aufgabe LSI-Systeme FIR/AR/ARMA 2D-Filter

# Lineare Glättungsfilter

Mittelwertfilter

# Rechteckige Filtermaske

⊕ separierbar ⊕ ARMA-realisierbar ⊖ isotrop ⊖ abklingend

# Beispiel

Aufgabe

 $(48 \times 65)$ -Grauwertbild mit handgeschriebenem 'a'.

FIR/AR/ARMA



# Lineare Glättungsfilter

2D-Filter

Binärfilter

Gaußfilter 

Kaskade von Mittelwertfiltern

# Satz (Wells 1986)

LSI-Systeme

Die vierfache Wiederholung eines  $(2r + 1) \times (2r + 1)$ -Mittelwertfilters approximiert ein 2D-Gaußfilter mit

$$\sigma^2 = \frac{4}{3} \cdot (r^2 + r)$$

#### Bemerkung

- 1. Die Hintereinanderausführung zweier FIR-Filter bleibt ein FIR-Filter.
- 2. Die Maskenbreiten addieren sich.
- 3. Die Separierbarkeit bleibt erhalten.
- 4. Das Mittelwertfilter besitzt die Standardabweichung  $\sigma = r/\sqrt{3}$ .

## Beispiel



FIR/AR/ARMA

# Lineare Glättungsfilter

2D-Filter

2D-Filter

Binärfilter

## Gaußfilter

### Quadratische Filtermaske

Aufgabe

Aufgabe

Für Gitterpunkte mit  $n, m = -3\sigma, \ldots, +3\sigma$ :

$$g_{nm} = \frac{1}{2\pi\sigma^2} \cdot e^{-\frac{1}{2} \cdot \frac{n^2 + m^2}{\sigma^2}} \approx \frac{1}{1000} \cdot \begin{pmatrix} 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 3 & 13 & 22 & 13 & 3 & 0 \\ 1 & 13 & 59 & 97 & 59 & 13 & 1 \\ 2 & 22 & 97 & 159 & 97 & 22 & 2 \\ 1 & 13 & 59 & 97 & 59 & 13 & 1 \\ 0 & 3 & 13 & 22 & 13 & 3 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 \end{pmatrix} \quad \text{hier: } \sigma^2 = 1$$

⊕ separierbar ⊕ isotrop ⊕ abklingend



Gaußsche Masken mit  $\sigma=1,\ldots,5$  (entsprechend  $\varnothing=7,13,19,25$  und 31)

Das Bias-Variance-Problem linearer Filter

FIR/AR/ARMA

Lineare Glättung versus nichtlineare Glättung



## kleiner Maskenradius

Störungen und Artefakte des Musters werden nicht vollständig eliminiert.

## großer Maskenradius

Kanten und andere relevante Strukturen werden bis zur Unkenntlichkeit verschmiert.

# Nichtlineare Glättungsfilter

Medianfilter

## Definition

Der Maskenoperator mit der Berechnungsvorschrift

$$h_{nm} = \text{median} \{f_{n+\nu,m+\mu} \mid \nu, \mu = -\rho, \dots, +\rho\}$$

heißt **Medianfilter** mit Radius  $\rho \in \mathbb{N}$ .

## Beispiel

| 145 | 55 | 45 |
|-----|----|----|
| 140 | 62 | 47 |
| 143 | 60 | 49 |

145 143 140 62 60 55 49 47 45

Inkrementelle Berechnung mit gleitendem Grauwerthistogramm

 $\Diamond$  Aufwand  $O(\rho^2)$  je Rasterpunkt (Median schneller als Sortieren!)



Aufgabe

LSI-Systeme

FIR/AR/ARMA

2D-Filter

Binärfilter

#### Aufgabe

LSI-Systeme

FIR/AR/ARMA

2D-Filter

# Nichtlineare Glättungsfilter

Grauwertstatistiken zweiter Ordnung

## Lee's Filter

Bei bekannter Rauschenergie  $\sigma^2$ , dem Grauwertmittel  $\mu_{nm}$  und der Grauwertvarianz  $\sigma_{nm}^2$  im  $f_{nm}$ -Fenster:

$$h_{nm} = \left(1 - \frac{\sigma_{nm}^2 - \sigma^2}{\sigma_{nm}^2}\right) \cdot \mu_{nm} + \left(\frac{\sigma_{nm}^2 - \sigma^2}{\sigma_{nm}^2}\right) \cdot f_{nm}$$

### Minimum-Varianz-Filter

Berechne Grauwertmittel  $\mu_i$  und Varianzen  $\sigma_i^2$ einiger (4) Teilfenster und wähle

$$h_{nm} = \mu_j \quad \text{mit} \quad \sigma_j^2 = \min_i \sigma_i^2$$



# Nichtlineare Glättungsfilter

Getrimmte Mittelwerte

### k-zentriertes Mittel

Durchschnitt der k mittleren Grauwerte des Fensters

## k-nächste-Nachbarn-Filter

Median der k  $f_{nm}$ -nächsten Grauwerte im Fenster

# $\delta$ -Nachbarschafts-Filter

Mittelwert aller  $f_{\nu\mu}$  mit  $|f_{nm} - f_{\nu\mu}| \leq \delta$ 

## Beispiel

145

140

143

|                          | 45 | 55 |
|--------------------------|----|----|
| 145 143 <mark>140</mark> | 47 | 62 |
|                          | 49 | 60 |
|                          |    |    |

· Empfindlichkeit gegenüber Ausreißern liegt zwischen Durchschnitt und Median · Rechenaufwand (bei geschickter Implementierung) deutlich unterhalb Median

Lineare Filter zur Kantenhervorhebung 

# Prewitt-Filter (1. Ableitung)

$$\frac{1}{6} \cdot \begin{pmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{pmatrix}$$

$$\frac{1}{6} \cdot \begin{pmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{pmatrix} \qquad \qquad \frac{1}{6} \cdot \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{pmatrix}$$

- richtungsabhängige Kantenhervorhebung
- unerwünschte Rauschverstärkung

$$rac{1}{2}\cdot \left( egin{array}{cccc} -1 & 0 & +1 \end{array} 
ight) \qquad \qquad rac{1}{2}\cdot \left( egin{array}{c} -1 & 0 \ +1 \end{array} 
ight)$$

 $(1 \times 3)$ - oder  $(3 \times 1)$ -Filter nach *Vorabglättung* mit Gaußfilter











 $horizontal_{\delta=1}$ 

Aufgabe FIR/AR/ARMA Aufgabe FIR/AR/ARMA

# Lineare Filter zur Kantenhervorhebung

Grauwertkanten 

Nullstellen bzw. Nulldurchgänge



# Laplace-Filter (2. Ableitung)

$$\frac{1}{3} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 3 \cdot (\boldsymbol{\mu}_{3 \times 3} - i\boldsymbol{d}_{3 \times 3}) \quad \text{bzw.} \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

### ☆ richtungsunabhängig

# Beispiel

Schriftzeichen & Kaschmirziegenfell (vorher  $\mu_{7\times7}$ ; nachher Grauwert-Egalisierung)













Aufgabe

FIR/AR/ARMA

2D-Filter

FIR/AR/ARMA

# Lineare Filter zur Kantenhervorhebung

Überlagerte Glättung / Kantenverstärkung

# Unscharfe Maskierung

$$\frac{1}{9} \cdot \begin{pmatrix} -1 & -1 & -1 \\ -1 & 17 & -1 \\ -1 & -1 & -1 \end{pmatrix} = \mathbf{id}_{3\times3} - \frac{1}{3} \mathsf{Laplace} = 2 \cdot \mathbf{id}_{3\times3} - \mu_{3\times3}$$

Verstärkung der Bildkanten, sonst 'konservativ' ("Filzstiftoperator")

### Beispiel







Der Schönling im Original Laplace-Operator

# Lineare Filter zur Kantenhervorhebung

Kombinierte Glättung / Kantenverstärkung

# Satz (Marr & Hildreth 1980)

Die Hintereinanderausführung eines  $\sigma^2$ -Gaußfilters und des Laplacefilters entspricht der (ersten) Varianzableitung

$$2 \cdot \frac{\partial \mathcal{N}(0, \sigma^2)}{\partial \sigma^2}$$

der zweidimensionalen Gaußdichte.



Diskrete Näherung: Differenz zweier Gaußfilter unterschiedlicher Varianzen  $\sigma^2$ ,  $\sigma'^2$ 

Aufgabe

2D-Filter

# Nichtlineare Filter zur Kantenhervorhebung

#### Varianzfilter

$$h_{nm} = \sigma_{nm}^2 = \frac{1}{(2M+1)^2} \sum_{\nu,\mu=-M}^{+M} (f_{n+\nu,m+\mu} - \overline{f_{nm}})^2$$

Gleitende Varianz mit dem gleitenden Grauwertmittel  $\overline{f_{nm}}$ .

## Extremalspannenfilter

$$h_{nm} = \max_{\nu,\mu} f_{n+\nu,m+\mu} - \min_{\nu,\mu} f_{n+\nu,m+\mu}$$

2D-Minimum und 2D-Maximum sind für Rechteckfenster separierbar.

### Roberts-Kreuz

$$h_{nm} = |f_{n,m} - f_{n+1,m+1}| + |f_{n+1,m} - f_{n,m+1}|$$



# Nichtlineare Filter zur Kantenhervorhebung

8 Kantenrichtungen — 8 angepaßte Filtermasken

## Kirsch-Filter

$$h_{nm} = \max_{z=1,...,8} \sum_{\nu=-1}^{+1} \sum_{\mu=-1}^{+1} g_{\nu\mu}^{(z)} \cdot f_{n+\nu,m+\mu}$$

mit Richtungsschablonen für alle 45°-Rotationen:

#### Aufgabe

LSI-Systeme

FIR/AR/ARMA

2D-Filter

Binärfilter

## Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Binärfilter

# Kantenrichtungsbilder

Nichtlineare Filter zur lokalen Kantenwinkelbestimmung

## Winkel des steilsten Anstiegs

$$\phi_{nm} = \arctan\left(\frac{\partial f_{nm}}{\partial y} / \frac{\partial f_{nm}}{\partial x}\right)$$

## Canny-Filter

$$\cos^{2}(\phi_{nm})\frac{\partial^{2} f_{nm}}{\partial x^{2}} + \sin^{2}(\phi_{nm})\frac{\partial^{2} f_{nm}}{\partial y^{2}} + 2\sin(\phi_{nm})\cos(\phi_{nm})\frac{\partial^{2} f_{nm}}{\partial x \partial y}$$

Zweite Ableitung in Richtung des steilsten Gradienten.

## Canny-Operator

$$\mathbf{g} = \frac{1}{6} \cdot \begin{pmatrix} +\frac{1}{2}\sin\phi\cos\phi & \sin^2\phi & -\frac{1}{2}\sin\phi\cos\phi \\ \cos^2\phi & -2 & \cos^2\phi \\ -\frac{1}{2}\sin\phi\cos\phi & \sin^2\phi & +\frac{1}{2}\sin\phi\cos\phi \end{pmatrix}$$

Wegen der Kantenverschmierung verwendet man nur die Nulldurchgänge.

# Gradientenfilter

Nichtlineare Filter zur Kantenhervorhebung

# Gradientensteigung von $f: \mathbb{R}^2 \to \mathbb{R}$ in $(\xi, \eta)$

$$|\nabla_f(\xi,\eta)| = \sqrt{\left(\frac{\partial f}{\partial x}(\xi,\eta)\right)^2 + \left(\frac{\partial f}{\partial y}(\xi,\eta)\right)^2}$$

Betrag von  $\nabla_f(\xi,\eta)$  liefert die maximale Steigung im Bildpunkt  $(\xi,\eta)$ Berechnung von  $h_{nm}$  durch Diskretisierung der partiellen Ableitungen

### Prewitt-Filter

## Sobel-Filter

## Morphologische Operatoren

# Was sind morphologische Operatoren?

Mengenalgebraische Maskenoperatoren auf Binärbildern





# Grundbegriffe

Binärbild f

(Rasterpunktmenge)

$$\mathbf{f} \triangleq \{(n,m) \in \mathcal{D} \mid f_{nm} = 0\}$$

('0'=Hintergrund / '1'=Objekt oder umgekehrt)

- Strukturelement s (Rasterpunktmenge) Wir setzen alle Strukturelemente s als punktsymmetrisch und zentrumstreu  $((0,0) \in s)$  voraus.
- Mengenoperationen zwischen f und s

 $(\mathbb{R},+,\cdot)$  vs.  $(\mathbb{B},\cup,\cap)$ 

Aufgabe

LSI-Systeme

FIR/AR/ARMA

Binärfilter

# Erosion und Dilatation

Ihre Monotonieeigenschaften und ihre Dualität

#### Lemma

Für die morphologischen Operatoren '⊖' und '⊕' gelten die folgenden Aussagen:

- 1.  $f \ominus s \subseteq f$
- 2.  $f \subset f \oplus s$
- 3.  $\mathbf{f} \ominus \mathbf{s} = (\mathbf{f}^{\mathfrak{c}} \oplus \mathbf{s})^{\mathfrak{c}}$
- 4.  $f \oplus s = (f^{\mathfrak{c}} \ominus s)^{\mathfrak{c}}$











## Erosion und Dilatation

Schnittbildung und Vereinigungsbildung mit dem Strukturelement

### Definition

Sei f ein Binärbild und s ein Strukturelement. Wir definieren die **Erosion** (Operator '⊖') durch:

$$egin{array}{lcl} m{h} & = & m{f} \ominus m{s} \ h_{nm} & \stackrel{\mathsf{def}}{=} & \left\{ egin{array}{ll} 1 & & orall (
u, \mu) \in m{s} : f_{n+
u, m+\mu} = 1 \ 0 & \mathsf{sonst} \end{array} 
ight.$$

### Definition

Sei f ein Binärbild und s ein Strukturelement. Wir definieren die **Dilatation** (Operator '⊕') durch:

$$egin{array}{lcl} m{h} & = & m{f} \oplus m{s} \ h_{m{n}m{m}} & \stackrel{\mathsf{def}}{=} & \left\{egin{array}{ll} 1 & & \exists (
u,\mu) \in m{s} : f_{m{n}+
u,m{m}+\mu} = 1 \ 0 & & \mathsf{sonst} \end{array}
ight.$$

Aufgabe

FIR/AR/ARMA

Binärfilter

# Öffnung und Schließung

### Definition

Wir definieren die morphologischen Operatoren '⊘' (Öffnung) und '⊗' (Schließung) durch:

$$f \oslash s \stackrel{\mathsf{def}}{=} (f \ominus s) \oplus s$$
 $f \otimes s \stackrel{\mathsf{def}}{=} (f \oplus s) \ominus s$ 



# Öffnung und Schließung

Ihre Dualität und ihre Hülleneigenschaft

### Lemma

Für die morphologischen Operatoren ' $\oslash$ ' und ' $\otimes$ ' gelten die folgenden Aussagen:

1.  $f^{\mathfrak{c}} \otimes s = (f \otimes s)^{\mathfrak{c}}$ 

(de Morgan Dualität)

2.  $f \oslash s \subseteq f$ 

(⊘ verkleinert)

3.  $\mathbf{f} \subseteq \mathbf{f} \otimes \mathbf{s}$ 

(⊗ vergrößert)

 $4. \ (f \oslash s) \oslash s = f \oslash s$ 

(⊘ involutorisch)

5.  $(\mathbf{f} \otimes \mathbf{s}) \otimes \mathbf{s} = \mathbf{f} \otimes \mathbf{s}$ 

 $(\otimes involutorisch)$ 

#### Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

2D-Filter

Binärfilter

Aufgabe

FIR/AR/ARMA

DFT/FFT

2D-Filter

Binärfilter

#### £

# Morphologische Glättungsoperatoren

Schleifvorgang mit Sandpapier zunehmender Körnung

Kaskadierte Rechteckerosion  $f \ominus s_r^Q = f \ominus \underbrace{s_1^Q \ominus s_1^Q \ominus \ldots \ominus s_1^Q}_{1}$ 



Kaskadierte Scheibenerosion  $\mathbf{f} \ominus \mathbf{s}_r^S \approx \mathbf{f} \ominus \underbrace{\mathbf{s}_2^S \ominus \mathbf{s}_2^S \ominus \ldots \ominus \mathbf{s}_2^S}_{r/2 \text{ mal}}$ 



## Inkrementelle Glättung

$$\Gamma_k(\mathbf{f}) = \mathbf{f} \odot \mathbf{s}_1^X \otimes \mathbf{s}_1^X \odot \mathbf{s}_2^X \otimes \mathbf{s}_2^X \odot \ldots \odot \mathbf{s}_k^X \otimes \mathbf{s}_k^X$$

von Objekt+Hintergrund; Strukturelemente mit wachsendem Radius

$$\Gamma_{l}(\Gamma_{k}(\boldsymbol{f})) = \Gamma_{\max(k,l)}(\boldsymbol{f})$$

# Morphologische Glättungsoperatoren Das Baukastenprinzip der morphologischen Methode

- Schnelle Hardware für wenige elementare Operatoren
- Morphologische Verknüpfung erzeugt "arithmetische Hülle"

#### Lemma

Es bezeichne  $\mathbf{s}_r^Q$  das quadratische Strukturelement mit Radius r. Dann gilt für jedes Binärbild  $\mathbf{f}$ :

$$(f \ominus s_r^Q) \ominus s_p^Q = f \ominus s_{r+p}^Q$$
  
 $(f \ominus s_r^Q) \ominus s_p^Q = f \ominus s_{r+p}^Q$   
 $(f \oslash s_r^Q) \oslash s_p^Q = f \oslash s_{\max(r,p)}^Q$   
 $(f \otimes s_r^Q) \otimes s_p^Q = f \otimes s_{\max(r,p)}^Q$ 

Für sphärische (scheibenförmige) Strukturelemente  $\mathbf{s}_r^S$  gelten die Aussagen nur näherungsweise.

Aufgabenstellung

Lineare verschiebungsinvariante Systeme

Filter mit (un)endlicher Impulsantwort

Diskrete und schnelle Fouriertransformation

Filter für Grauwertbilder

Morphologische Operatoren

Mathematische Hilfsmittel

# z-Transformierte

### Verallgemeinerung der FT diskreter Funktionen auf $\mathbb C$

## Definition

Ist  $f=[f_k]$  eine Abtastwertfolge, so heißt die Potenzreihe  $F:\mathbb{C}\to\mathbb{C}$  (in der Variablen  $z^{-1}$ ) mit

$$F(z) = \sum_{\nu=-\infty}^{+\infty} f_{\nu} \cdot z^{-\nu}$$

#### die z-Transformierte von f.







#### Bemerkung

Auf dem Einheitskreis |z| = 1 ergibt sich:

$$F(z)|_{z=e^{i\omega}} = F(e^{i\omega}) = \sum_{\nu} f_{\nu} \cdot e^{-i\omega\nu} = F_{\omega}$$
 (Fourierkoeffizient von  $f$  bei  $\omega$ )

Aufgabe

LSI-Systeme

FIR/AR/ARMA

DFT/FFT

Filter Binärfilter

£

## z-Transformierte

#### Wichtige Rechenregeln für Zeitbereich und z-Ebene

|                 | $f_n$                        | F(z)                                                                          |
|-----------------|------------------------------|-------------------------------------------------------------------------------|
|                 | •11                          | - (-)                                                                         |
| Einheitsimpuls  | $\delta_{n}$                 | 1                                                                             |
| Einheitsstufe   | $\chi(n \ge 0)$              | $\frac{1}{1-1/z}$                                                             |
| Linearität      | $af_n + bg_n$                | aF(z) + bG(z)                                                                 |
| Faltungssatz    | $[f_n] \star [g_n]$          | $F(z)\cdot G(z)$                                                              |
| Verschiebung I  | $f_{n-\nu}$                  | $z^{- u}\cdot F(z)$                                                           |
| Verschiebung II | $f_{n+ u}$                   | $z^{\nu} \cdot \left\{ F(z) - \sum_{\mu=0}^{\nu-1} f_{\mu} z^{-\mu} \right\}$ |
| Differentiation | $f_n \cdot n$                | $-z \cdot \frac{dF(z)}{dz}$                                                   |
| Integration     | $f_n/n$                      | $\int_{z}^{\infty} \frac{F(\zeta)}{\zeta} d\zeta$                             |
| Partialsumme    | $\sum_{\nu=0}^{n-1} f_{\nu}$ | $\frac{1}{z-1} \cdot F(z)$                                                    |
| Dämpfung        | $\lambda^n f_n$              | $F(z/\lambda)$                                                                |
|                 |                              |                                                                               |

# Diskrete Faltung

#### Faltung und Faltungssatz für unendliche Abtastfolgen

#### Definition

Sind  $f = [f_k]$  und  $g = [g_k]$  Abtastwertfolgen, so heißt  $h = [h_k]$  mit

FIR/AR/ARMA

$$h_k = \sum_{\nu=-\infty}^{+\infty} f_{\nu} \cdot g_{k-\nu}$$

die diskrete Faltung von f und g (kürzer:  $h = f \star g$ ).

#### Bemerkung

Der **Einheitsimpuls** ist das *neutrale Element* der Faltungsoperation. Die Faltung mit  $[\dots,0,1,1,\dots,1,0,\dots]$  berechnet gleitende Teilsummen des Verknüpfungspartners.

# Satz (Faltungssatz)

Für die Faltung  $\mathbf{h} = \mathbf{f} \star \mathbf{g}$  zweier Abtastwertfolgen und ihre Fouriertransformierten gilt:

$$H(e^{i\omega}) = F(e^{i\omega}) \cdot G(e^{i\omega})$$

## Rechenregeln für die z-Transformation

Einheitsimpuls

$$F_{\text{unit}}(z) = \sum_{\nu \in \mathbb{Z}} f_{\nu} \cdot z^{-\nu} = f_{0} \cdot z^{0} = 1$$

Einheitsstufe

$$F_{\text{step}}(z) = \sum_{\nu \in \mathbb{N}} 1 \cdot z^{-\nu} = \sum_{\nu \in \mathbb{N}} (\frac{1}{z})^{\nu} = \frac{1}{1 - \frac{1}{z}}$$

Translation

Substitution  $\tilde{\nu} = \nu - n$ 

$$F^{(n)}(z) = \sum_{\nu \in \mathbb{Z}} f_{\nu-n} \cdot z^{-\nu} = \left( \sum_{\nu \in \mathbb{Z}} f_{\nu-n} \cdot z^{-(\nu-n)} \right) \cdot z^{-n} = F(z) \cdot z^{-n}$$

Faltungssatz

Substitution  $m = \nu - k$ 

$$H(z) = \sum_{\nu \in \mathbb{Z}} h_{\nu} \cdot z^{-\nu} = \sum_{\nu \in \mathbb{Z}} \left( \sum_{k \in \mathbb{Z}} f_{k} g_{\nu-k} \right) \cdot z^{-\nu} = \sum_{k,m \in \mathbb{Z}} f_{k} g_{m} \cdot z^{-k-m}$$

$$= \left( \sum_{k \in \mathbb{Z}} f_{k} \cdot z^{-k} \right) \cdot \left( \sum_{m \in \mathbb{Z}} g_{m} \cdot z^{-m} \right) = F(z) \cdot G(z)$$

LSI-Systeme Aufgabe

#### FIR/AR/ARMA

# Zusammenfassung (3)

- 1. Das Filtern eines Musters dient der Reduktion seiner störenden und der Hervorhebung seiner nützlichen Anteile.
- 2. Lineares Filtern geschieht durch **Falten** mit der **Impulsantwort**  $[g_i]$  eines LSI-Systems.
- 3. Ein System mit geeignetem **Frequenzgang** G(z) ist in der Lage, Rauschanteile und/oder Verzerrungen zu vermindern.
- 4. Tiefpassfilter dienen der Glättung, Hochpassfilter dienen der Kantenhervorhebung.
- 5. Durch autoregressive Filter (AR, ARMA) können auch Systeme mit sehr langer oder unendlicher Impulsantwort effizient realisiert werden.
- 6. Lineares Filtern im Frequenzbereich (Faltungssatz!) läßt sich durch die FFT (schnelle DFT) beschleunigen.
- 7. 2D-Filter lassen sich als gleitende Maskenoperationen beschreiben.
- 8. Lineare zweidimensionale Filter sind dann effizient realisierbar, wenn die Impulsantwort  $[g_{ij}]$  separierbar ist.
- 9. Mit nichtlinearen Filtern lassen sich bessere Resultate erzielen, allerdings bei teilweise drastisch (Medianfilter) erhöhtem Rechenaufwand.
- 10. Die Theorie morphologischer Operatoren beschreibt mengenalgebraische Filtervorgänge für Binärbilder.