

## SCS 43XX - Quantum.....

## **Tutorial 02**

We can represent a complex number a+ib as  $r(\cos(\theta)+i\sin(\theta))=rei\theta$  where r is the distance from the origin of the complex number and  $\theta$  is the angle it makes with the positive x-axis.

- 1. Plot each of these complex numbers on the complex plane
- (a) 2 + 3i
- (b)  $2(\cos(\pi/4) + i*\sin(\pi/4))$
- (c)  $3e^{5\pi^*i/4}$
- 2. Plot each of these complex numbers on the complex plane. What happens to the angle they make with the positive x-axis when multiplied together?
- (a)  $e^{7\pi i/8}$
- (b)  $e^{\pi i/4}$
- (c)  $e^{7\pi i/8}$
- (d)  $e^{\pi i/4}$
- 3. Represent each of these numbers in polar and exponential form
- (a) 1 + i
- (b) i
- (c) -1
- 4. Plot 1 + i on the complex plane then plot i(1 + i) = -1 + i on the complex plane. In

Credits: freecodecamp, mathforquantum.quantumtinkerer.tudelft.nl



Question 3 we found  $i = e^{i\pi/2}$ , so what happens when we multiply a complex number by i?

Maths for quantum computing 1.6. Problems

- 5. Given a=1+2i and b=-3+4i, calculate and draw in the complex plane the numbers:
  - a. a+b,
  - b. ab,
  - c. b/a.
- 6. Evaluate:

a. 
$$i^{1/4}$$
,

b. 
$$(1+i\sqrt{3})^{1/2}$$
,

7. Find the three 3rd roots of 1 and i.

(i.e. all possible solutions to the equations  $\mathbf{X}^3 = \mathbf{1}$  and  $\mathbf{X}^3 = \mathbf{i}$  respectively).

- 8. Quotients
  - a. Find the real and imaginary part of (1+i)/(2+3i)
  - b. Evaluate for real a and b:(a+bi)/(a-bi).
- 9. For any given complex number z, we can take the inverse 1/z.
  - a. Visualize taking the inverse in the complex plane.
  - b. What geometric operation does taking the inverse correspond to? (Hint: first consider what geometric operation 1/z\* corresponds to.)

Credits: freecodecamp, mathforquantum.quantumtinkerer.tudelft.nl