Lecture 17: Spectral Independence from Zero-Freeness

November 9, 2023

In this lecture, we return to (multivariate) zero-freeness of the partition function. We show that it implies spectral independence and hence, fast mixing of Glauber dynamics.

1 The Generating Polynomial and its Zero-Freeness

Let μ be a probability distribution over $2^{[n]}$ (which of course can be identified with $\{\pm 1\}^n$). Define its generating polynomial as

$$g_{\mu}(\mathbf{z}) \stackrel{\mathsf{def}}{=} \sum_{S \subset [n]} \mu(S) \cdot \mathbf{z}^{S}, \tag{1}$$

where we use the shorthand $\mathbf{z}^S \stackrel{\text{def}}{=} \prod_{i \in S} z_i$. This is a *multiaffine* polynomial of degree (at most) n. Its logarithm is essentially the cumulant generating function \mathcal{L}_{μ} of μ we previously saw, except with a change of variables to obtain a polynomial. One of the central ideas in the study of the geometry of polynomials is the following.

Theme 1.1. It is fruitful to relate the analytic/algebraic properties of g_{μ} to the probabilistic/combinatorial properties of μ itself.

For instance, a consequence of Barvinok's algorithm is that whenever g_{μ} admits a large zero-free region, then we have efficient algorithms for estimating g_{μ} .¹ In this lecture, we will be interested in deducing correlation bounds given zero-freeness of g_{μ} . The following beautiful theorem, which we will not prove, is an example of such a result.

Theorem 1.2 ([BBL09]). Suppose g_{μ} is real stable, i.e. that $g_{\mu} \neq 0$ whenever $\text{Im } z_i > 0$ for all $i \in [n]$. Then μ is negatively correlated in the sense that

$$\Pr_{S \sim \mu}[j \in S \mid i \in S] \le \Pr_{S \sim \mu}[j \in S \mid i \notin S], \qquad \forall i \neq j.$$

Real stability of the generating polynomial of μ is sometimes referred to as the *strongly Rayleigh* property. It turns out to be an extremely robust notion of negative correlation, one which has found many applications; see e.g. [Pem12] and references therein. We also previously saw that negatively correlated distributions on (homogeneous) set systems are 1-spectrally independent. The main result of this lecture is to establish a more direct connection between zero-freeness and spectral independence, one which does not require zero-freeness w.r.t. an entire half-plane.

Recall the following notion of multivariate zero-freeness we used previously.

Definition 1 (Stability). Let $\Gamma_1, \ldots, \Gamma_n \subseteq \mathbb{C}$ be subsets of the complex plane. We say a multivariate polynomial $p(z_1, \ldots, z_n)$ is $\Gamma_1 \times \cdots \times \Gamma_n$ -stable if $p(z) \neq 0$ whenever $z_i \in \Gamma_i$ for all $i = 1, \ldots, n$. If $\Gamma_1 = \cdots = \Gamma_n = \Gamma$ for some $\Gamma \subseteq \mathbb{C}$, then we simply say p is Γ -stable.

Theorem 1.3 ([CLV21]; building on [Ali+21]). Suppose there exists a constant $\delta > 0$ such that g_{μ} is stable w.r.t. the open radius- δ disk $\mathbb{D}(1,\delta)$ around 1. If in addition the marginals of μ are bounded in the sense that there is a constant $0 < \mathcal{B} \leq 1/2$ such that $\Pr_{S \sim \mu}[i \in S], \Pr_{S \sim \mu}[i \notin S] \geq \mathcal{B}$ for all $i \in [n]$, then

$$\sum_{i=1}^{n} |\Psi_{\mu}(i \to j)| \le \frac{4}{\mathscr{B}(1 - \mathscr{B})\delta^{2}}, \qquad \forall i \in [n].$$

In particular, μ is $O(1/\mathcal{B}\delta^2)$ -spectrally independent.

¹This is not entirely true, since Barvinok's algorithm also requires that that zero-free region contains a point at which computing g_{μ} is easy. For instance, we do not have FPTAS for estimating arbitrary real stable polynomials.

Remark 1. The point 1 for zero-freeness isn't special. One could look at stability w.r.t. an open radius- δ disk around any other point $\lambda \in \mathbb{R}^n_{\geq 0}$, in which case we'd get spectral independence for the tilted distribution $\mu_{\lambda}(S) \propto \mu(S) \cdot \lambda^S$.

Theorem 1.4 ([Ali+21]). Suppose there exists a constant $\alpha > 0$ such that g_{μ} is stable w.r.t. the sector

$$S_{\alpha} \stackrel{\text{def}}{=} \left\{ re^{i\theta} : |\theta| < \alpha\pi/2, r > 0 \right\}. \tag{2}$$

around the nonnegative real axis with aperture $\alpha\pi$. Then

$$\sum_{i=1}^{n} \left| \Pr_{S \sim \mu} [j \in S \mid i \in S] - \Pr_{S \sim \mu} [j \in S \mid i \notin S] \right| \le \frac{2}{\alpha}, \quad \forall i \in [n],$$

and μ is $(\frac{2}{\alpha}-1)$ -spectrally independent. Furthermore, the same inequality holds for all exponential tilts of μ , i.e. distributions of the form $\mu_{\lambda}(S) \propto \mu(S) \cdot \lambda^{S}$ for some $\lambda \in \mathbb{R}^{n}_{>0}$.

Remark 2. In the special case $\alpha=1,\ S_{\alpha}$ becomes the open right half-plane $\{z\in\mathbb{C}: \operatorname{Re} z>0\}$. Polynomials which are stable w.r.t. S_1 are often called Hurwitz stable.

The rough intuition behind these statements is the following: Since the correlations of μ are given by second-order derivatives of $\log g_{\mu}$ at 1, these correlations are small if $\log g_{\mu}(1)$ is "smooth" in some sense. This is only the case if 1 is far away from the zeros of g_{μ} . For more results accommodating more general zero-free regions, see [Ali+21; CLV21].

1.1 Applications

Before we prove Theorems 1.3 and 1.4, let us mention a few applications.

Example 1 (Hardcore Model in Tree Uniqueness). We previously mentioned that Peters–Regts [PR19] established stability of the multivariate independence polynomial $Z_G(\lambda)$ of a graph of maximum degree Δ in a neighborhood of the interval $[0, \lambda_c(\Delta))$, where $\lambda_c(\Delta)$ is again the uniqueness threshold w.r.t. the infinite Δ -regular tree. In this regime, Barvinok's algorithm furnishes an FPTAS. Combining this zero-freeness result with Theorem 1.3 yields an alternative proof of O(1)-spectral independence of the hardcore Gibbs measure in the uniqueness regime, albeit with worse quantitative bounds.

Example 2 (Monomer-Dimer Model). Recall we previously showed that the univariate matching polynomial $\mathcal{M}_G(z) = \sum_{M\subseteq E \text{ matching }} z^{|M|}$ real-rooted. This is the Heilmann–Lieb Theorem [HL72], and more in depth analysis reveals that for every nonnegative vector of edge weights $\lambda \in \mathbb{R}^E_{>0}$, the multivariate (vertex) matching polynomial

$$\mathcal{M}_G(\boldsymbol{z}) \stackrel{\text{def}}{=} \sum_{\substack{M \subseteq E \\ \text{matching}}} \prod_{e \in M} \lambda_e \prod_{v \text{ unmatched}} z_v,$$

is *Hurwitz stable*; see e.g. [BB09]. This in particular implies that for any graph G = (V, E), the monomer-dimer Gibbs distribution satisfies the correlation bounds

$$\sum_{v \in V} \left| \Pr_{M}[v \text{ matched} \mid u \text{ matched}] - \Pr_{M}[v \text{ matched} \mid u \text{ unmatched}] \right| \leq 2.$$

Note that no assumptions on the degree were made.

There are also additional applications to determinantal point processes, even subgraphs, edge covers, antiferromagnetic spin systems on line graphs, etc. [Ali+21; CLV21].

2 A Little Complex Analysis

To formalize the above intuition, we will leverage the following standard fact from complex analysis, which captures the "rigidity" of smooth complex functions.

Lemma 2.1 (Schwarz-Pick). Let $f : \mathbb{D}(0,1) \to \mathbb{D}(0,1)$ is a univariate holomorphic function. Then $|f'(0)| \le 1 - |f(0)|^2 \le 1$.

In light of the Schwarz–Pick lemma, our strategy will be to construct such a univariate holomorphic function f such that f maps $\mathbb{D}(0,1)$ into itself, and $|f'(0)| \approx \sum_{j=1}^{n} |\Psi_{\mu}(i \to j)|$, perhaps up to constants depending on \mathcal{B}, δ .

Proof of Theorem 1.3. Fix an arbitrary $i \in [n]$, and define

$$F_i(z) \stackrel{\text{def}}{=} \frac{\partial_{z_i} \log g_{\mu}(z)}{\Pr_{S \sim \mu}[i \in S] \cdot \Pr_{S \sim \mu}[i \notin S]}.$$

Note that $\partial_{z_j} F_i(\mathbf{1}) = \Psi_{\mu}(i \to j)$ for all $j \in [n]$. Our goal is to construct appropriate maps $\psi : \mathbb{C} \to \mathbb{C}$ and $\varphi : \mathbb{C} \to \mathbb{C}^n$ such that the composition $f(z) = \psi(F_i(\varphi_1(z), \dots, \varphi_n(z)))$ is holomorphic and satisfies $f(\mathbb{D}(0,1)) \subseteq \mathbb{D}(0,1)$. If we have such ψ, φ , then by applying the Schwarz–Pick Lemma,

$$\begin{aligned} &1 \geq |f'(0)| & \text{(Lemma 2.1)} \\ &= |\psi'(F_i(\varphi(0)))| \cdot \langle \nabla F_i(\varphi(0)), \varphi'(0) \rangle & \text{(Chain Rule)} \\ &= |\psi'(F_i(\varphi(0)))| \cdot \sum_{j=1}^n \Psi_{\mu}(i \to j) \cdot \varphi'_j(0). \end{aligned}$$

A natural and simple choice is to take ψ, φ to be affine functions.

• To ensure that f is holomorphic, we use φ to map $\mathbb{D}(0,1)$ into the region of stability of g_{μ} , which we assumed is $\mathbb{D}(1,\delta)$. For convenience, let us allow an epsilon of room. Let

$$\varphi_j(z) \stackrel{\mathsf{def}}{=} 1 + \frac{\delta}{2} s_j z,$$

where $s_j = \text{sign}(\Psi_{\mu}(i \to j))$. This ensures that $\varphi_j(\mathbb{D}(0,1)) \subseteq \mathbb{D}(1,\delta/2)$ for all $j \in [n]$,

$$\sum_{j=1}^n \Psi_\mu(i\to j)\cdot \varphi_j'(0) = \frac{\delta}{2}\cdot \sum_{j=1}^n |\Psi_\mu(i\to j)|\,.$$

In particular, this choice for φ alone already implies

$$\sum_{j=1}^{n} |\Psi_{\mu}(i \to j)| \le \frac{2}{\delta \cdot |\psi'(F_i(\mathbf{1}))|}.$$
 (3)

• Now, we design ψ . In order to apply the Schwarz-Pick Lemma, we need ψ to map the image of $\mathbb{D}(0,1)$ under $F_i \circ \varphi$ back into $\mathbb{D}(0,1)$. This is the tricky part, since we must understand the image of F_i . This is also where it is convenient to have an epsilon of room from the definition of φ , since we only need to consider $F_i(\mathbb{D}(1,\delta/2))$ instead of $F_i(\mathbb{D}(1,\delta))$.

Claim 2.2. The image of
$$\mathbb{D}(1,\delta/2)$$
 under F_i is contained in $\mathbb{D}\left(0,\frac{2}{\mathscr{B}(1-\mathscr{B})\delta}\right)$.

Once we have this, an obvious choice for ψ is to scale everything down by a factor of $\frac{\mathscr{B}(1-\mathscr{B})\delta}{2}$. In particular, we let $\psi(z) = \frac{\mathscr{B}(1-\mathscr{B})\delta}{2}z$. Plugging this into Eq. (3) immediately implies the theorem. All that remains is to justify Claim 2.2.

Proof of Claim 2.2. Since we assumed the marginal bound $\Pr_{S \sim \mu}[i \in S] \geq \mathcal{B}$, the claim is equivalent to showing that the image of $\mathbb{D}(1, \delta/2)$ under $z \mapsto \partial_i \log g_{\mu}(z)$ is contained in $\mathbb{D}(0, 2/\delta)$.

We go by contradiction, making crucial use linearity of g_{μ} in each of its variables. Fix $z_1, \ldots, z_n \in \mathbb{D}(1, \delta/2)$, and write $y = \partial_i \log g_{\mu}(z)$. We wish to show that $|y| < 2/\delta$. Since

$$y = \partial_i \log g_\mu(oldsymbol{z}) = rac{\partial_i g_\mu(oldsymbol{z})}{g_\mu(oldsymbol{z})},$$

rearranging yields

$$g_{\mu}(\mathbf{z}) - \frac{1}{y} \cdot \partial_i g_{\mu}(\mathbf{z}) = 0. \tag{4}$$

3

Suppose for contradiction that $|y| \geq \frac{2}{\delta}$. Then $\left|-\frac{1}{y}\right| \leq \frac{\delta}{2}$. We use this and Eq. (4) to construct a new vector $\mathbf{z}' \in \mathbb{D}(1,\delta)^n$ such that $g_{\mu}(\mathbf{z}') = 0$, contradicting $\mathbb{D}(1,\delta)$ -stability of g_{μ} .

Define z' by $z'_j = z_j$ for all $j \neq i$, and $z'_i = z_i - \frac{1}{y}$. Since $|z_i - 1| < \frac{\delta}{2}$ and $\left| -\frac{1}{y} \right| \le \frac{\delta}{2}$, we have $z' \in \mathbb{D}(1,\delta)^n$. Furthermore, since g_{μ} is linear in each of its variables,

$$g_{\mu}(z') = \underbrace{(g_{\mu}(z) - z_{i} \cdot \partial_{i}g_{\mu}(z))}_{\text{Monomials without } i} + \underbrace{\left(z_{i} - \frac{1}{y}\right) \cdot \partial_{i}g_{\mu}(z)}_{\text{Monomials with } i}$$

$$= g_{\mu}(z) - \frac{1}{y} \cdot \partial_{i}g_{\mu}(z)$$

$$= 0$$
(By Eq. (4))

3 Better Maps for Sectors

If we impose more structure on our zero-free regions, then we can construct much better ψ, φ and prove better bounds. We just need to understand where how the map $y \mapsto -\frac{1}{y}$ changes our zero-free region, and how to map between these regions and the unit disk $\mathbb{D}(0,1)$.

Proof of Theorem 1.4. Since μ and μ_{λ} have the same generating polynomials up to rescaling the variables by nonnegative coefficients, sector stability also holds for $g_{\mu_{\lambda}}$. Hence, without loss of generality, we just prove spectral independence for μ itself.

Fix an arbitrary $i \in [n]$, and define²

$$F_i(z) = \log \left(\frac{\partial_i g_{\mu}(z)}{(1 - z_i \partial_i) g_{\mu}(z)} \right).$$

A direct calculation reveals that $\partial_{z_j} F_i(\mathbf{1}) = \Pr_{S \sim \mu}[j \in S \mid i \in S] - \Pr_{S \sim \mu}[j \in S \mid i \notin S]$ for all $j \in [n]$. We construct appropriate maps $\psi : \mathbb{C} \to \mathbb{C}$ and $\varphi : \mathbb{C} \to \mathbb{C}^n$ such that the composition $f(z) = \psi(F_i(\varphi_1(z), \dots, \varphi_n(z)))$ satisfies the assumptions of the Schwarz–Pick Lemma, since then we'd have

$$1 \ge |f'(0)| = |\psi'(F_i(\varphi(0)))| \cdot \sum_{j \ne i} \Psi_{\mu}(i \to j) \cdot \varphi'_j(0).$$
 (5)

• Since g_{μ} is stable w.r.t. the sector S_{α} , we use Möbius transformations and exponential maps instead of affine functions. More specifically, take

$$\varphi_{j}(z) \stackrel{\text{def}}{=} g(s_{j}z)^{\alpha} = \left(\frac{1+s_{j}z}{1-s_{j}z}\right)^{\alpha}$$
where $g(x) = \frac{1+x}{1-x}$ and $s_{j} = \text{sign}(\Psi_{\mu}(i \to j)), \quad \forall j \in [n].$ (6)

The point is that $\varphi_j(\mathbb{D}(0,1)) \subseteq S_\alpha$ since the inner Möbius function g maps $\mathbb{D}(0,1)$ to the right half-plane S_1 , and then taking the α th power scales down the angle. A quick calculation reveals that $\varphi'_j(z) = 2s_j\alpha \cdot \left(\frac{1+s_jz}{1-s_jz}\right)^{\alpha-1} \cdot \frac{1}{(1-s_jz)^2}$ and so plugging this into Eq. (5) and using $\varphi(0) = \mathbf{1}$ gives

$$\sum_{j \neq i} |\Psi_{\mu}(i \to j)| \le \frac{1}{2\alpha} \cdot \frac{1 - \psi'(F_i(\mathbf{1}))^2}{|\psi'(F_i(\mathbf{1}))|}.$$
 (7)

• Now let us argue about the image of F_i , which will then tell us how to construct ψ .

²If the numerator inside the logarithm were multiplied by z_i , and if $z \in \mathbb{R}^n_{\geq 0}$, then we'd exactly have the marginal ratio of i under the tilted measure μ_z .

Claim 3.1. For every $z_1, \ldots, z_n \in S_{\alpha}$, we have that

$$\frac{\partial_i g_{\mu}(\boldsymbol{z})}{(1-z_i\partial_i)g_{\mu}(\boldsymbol{z})} \notin -S_{\alpha}.$$

In particular, the image of S_{α} under F_i is contained within the strip

$$\left\{ z \in \mathbb{C} : |\operatorname{Im} z| < \left(1 - \frac{\alpha}{2}\right)\pi \right\}. \tag{8}$$

Before we prove this claim, let us finish the proof by constructing ψ . Let

$$\psi(z) = g^{-1} \left(\exp\left(\frac{1/2}{1 - \alpha/2} \cdot z\right) \right),$$

where $g^{-1}(z) = \frac{z-1}{z+1}$ is the inverse of the Möbius transformation g we used in the definition of φ above. The point is that the inner exponential maps the strip in Claim 3.1 to the right half-plane S_1 , and then g^{-1} maps this right half-plane to $\mathbb{D}(0,1)$. Another quick calculation reveals that

$$\psi'(z) = \frac{2 \exp\left(\frac{1/2}{1 - \alpha/2} \cdot z\right)}{\left(1 + \exp\left(\frac{1/2}{1 - \alpha/2} \cdot z\right)\right)^2} \cdot \frac{1/2}{1 - \alpha/2} = \frac{1/2}{1 - \alpha/2} \cdot \frac{1}{2} \left(1 - \psi(z)^2\right).$$

Combined with Eq. (7) yields

$$\sum_{j \neq i} |\Psi_{\mu}(i \to j)| \le \frac{2}{\alpha} - 1.$$

Adding back $\Psi_{\mu}(i \to i) = 1$ to both sides concludes the proof.

Proof of Claim 3.1. Since the image of $-S_{\alpha}$ under the exponential map $z \mapsto \exp(z)$ is the strip in Eq. (8), the first claim indeed implies the second. Let $y = \frac{\partial_i g_{\mu}(z)}{(1-z_i\partial_i)g_{\mu}(z)}$ and suppose for contradiction that $y \in S_{-\alpha}$. Then $-\frac{1}{y} \in S_{\alpha}$, whence

$$0 = (1 - z_i \partial_i) g_{\mu}(\mathbf{z}) - \frac{1}{y} \cdot \partial_i g_{\mu}(\mathbf{z})$$
(Rearranging)
$$= g_{\mu} \left(-\frac{1}{y}, \mathbf{z}_{-i} \right).$$
(g_{μ} is multiaffine)

This contradicts S_{α} -stability of g_{μ} .

References

- [Ali+21] Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong. "Fractionally Log-Concave and Sector-Stable Polynomials: Counting Planar Matchings and More". In: *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.* STOC 2021. Virtual, Italy: Association for Computing Machinery, 2021, pp. 433–446 (cit. on pp. 1, 2).
- [BB09] Julius Borcea and Petter Brändén. "The Lee-Yang and Pólya-Schur programs. II. Theory of stable polynomials and applications". In: *Communications on Pure and Applied Mathematics* 62 (12 2009), pp. 1595–1631 (cit. on p. 2).
- [BBL09] Julius Borcea, Petter Brändén, and Thomas M. Liggett. "Negative dependence and the geometry of polynomials". In: *Journal of the American Mathematical Society* 22.2 (2009), pp. 521–567 (cit. on p. 1).
- [CLV21] Zongchen Chen, Kuikui Liu, and Eric Vigoda. "Spectral Independence via Stability and Applications to Holant-Type Problems". In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). FOCS 2021. 2021, pp. 149–160 (cit. on pp. 1, 2).

- [HL72] Ole J. Heilmann and Elliott H. Lieb. "Theory of monomer-dimer systems". In: Communications in Mathematical Physics 25 (1972), pp. 190–232 (cit. on p. 2).
- [Pem12] Robin Pemantle. "Hyperbolicity and stable polynomials in combinatorics and probability". In: $arXiv\ preprint\ arXiv:1210.3231\ (2012)\ (cit.\ on\ p.\ 1).$
- [PR19] Han Peters and Guus Regts. "On a conjecture of Sokal concerning roots of the independence polynomial". In: *The Michigan Mathematical Journal* 68.1 (2019), pp. 33–55 (cit. on p. 2).