Vertex of the Quadratic

Given a quadratic f(m)=am² + bm + c compute its value at $m_1 = -\frac{b}{2a}$ namely $f(m_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathtt{m}_{1^+}\mathtt{h}$, namely

 $f(m_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = f(m_1 + h) - f(m_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$f(m) = 4 m^2 + 8 m - 70$

Example 2.

$f(m) = -2 m^2 - 12 m + 43$

