

Korpusannotation: Wortebene

- Jedem (laufenden) Wort wird eine Kategorie zugeordnet
 - → sog. Tagging (= Etikettierung)
 - Voraussetzung: Text muss in Wörter zerlegt sein
- Tokenisierung
 - Token = Wort, Zahl, Symbol (), Satzzeichen, ...
 - im Gegensatz zu Typen = verschiedene Wörter
- Kann schwieriger sein, als man vermuten würde ...

```
@Mia1234 #semibk [1] Das schließt direkt an die vorige Frage von @DieMaJa22 an. In jedem Fall gibt es (wie auch in der Sitzung ... @Mia1234 #semibk [2]am BspChats gezeigt) starkeHinweise darauf, dass(wie auch imRealLife) diverseFaktoren die sprVariation beeinflussen: http://tinyurl.com/3umxkuh
```

https://sites.google.com/site/empirist2015/ (Beißwenger et al. 2016)

Annotation auf Wortebene

- Zentral: Wortartenannotierung = POS-Tagging
 - Substantiv (noun), Adjektiv, Verb, Adverb, Pronomen, Präposition, Konjunktion,
 Zahl, Satzzeichen, ...
 - engl. POS = part of speech
- Tagset = Kategorienschema
 - meist feinere Unterschiede: Sg/Pl, inf./fin./imp., ...

• auch: Lemmatisierung (hier kein Tagset!), semantische Kategorien, emotionale Valenz, Schwierigkeitsgrad (CEFR), ...

Deutsch: STTS-Tagset

ADJA	attributives Adjektiv
ADJD	adverbiales / prädikatives Adjektiv
ADV	Adverb schon, bald, doch
APPR	Präposition / Zirkumposition links
APPRART	Präposition mit Artikel fusioniert zum
APPO	Postposition zufolge, wegen
APZR	Zirkumposition rechts von an
ART	bestimmter oder unbestimmter Artikel
CARD	Kardinalzahlen (Ordinalzahl = ADJA)
FM	Fremdsprachliches Material
ITJ	Interjektion mhm, ach, tja
KOUI	unterordnende Konj. mit zu + Inf
KOUS	unterordnende Konjunktion mit Satz
KON	nebenordnende Konjunktion und, oder
KOKOM	Vergleichskonjunktion als, wie
NN	normales Nomen
NE	Eigenname
PDS	substituierendes Demonstrativpron.
PDAT	attribuierendes Demonstrativpron.
PIS	substituierendes Indefinitpron.
PIAT	attrib. Indefinitpron. ohne Determiner
PIDAT	attrib. Indefinitpron. mit Determiner
PPER	Personalpronomen (nicht reflexiv)
PPOSS	substituierendes Possessivpronomen
PPOSAT	attribuierendes Possessivpronomen
PRELS	substituierendes Relativpronomen
PRELAT	attribuierendes Relativpronomen

PRF	reflexives Personalpronomen		
PWS	substituierendes Interrogativpron.		
PWAT	attribuierendes Interrogativpronomen		
PWAV	adverbiales Interrogativ-/Relativpron.		
PAV	Pronominaladverb dafür, deswegen		
PTKZU	zu vor Infinitiv		
PTKNEG	Negationspartikel nicht		
PTKVZ	abgetrennter Verbzusatz kommt an		
PTKANT	Antwortpartikel ja, nein, danke		
PTKA	Partikel bei Adjektiv/Adverb am, zu		
TRUNC	Kompositions-Erstglied Unter- und		
VVFIN	finites Verb, voll (= lexikalisch)		
VVIMP	Imperativ, voll		
VVINF	Infinitiv, voll		
VVIZU	Infinitiv mit zu, voll		
VVPP	Partizip Perfekt, voll		
VAFIN	finites Hilfsverb		
VAIMP	Imperativ, Hilfsverb		
VAINF	Infinitiv, Hilfsverb		
VAPP	Partizip Perfekt, Hilfsverb		
VMFIN	Finites Modalverb		
VMINF	Infinitiv, Modalverb		
VMPP	Partizip Perfekt, Modalverb		
XY	Nichtwort mit Sonderzeichen 3:7, H2O		
\$, \$.	Komma ,		
\$.	Satzbeendende Interpunktion . ? ! ; :		
\$(sonstige Satzzeichen (intern) -[]()		

Englisch: Penn-Tagset (modifiziert) Friedrich-Alexander-Universität Philosophische Fakultät und Fachbereich Theologie

CC	Coordinating conjunction
CD	Cardinal number
DT	Determiner
EX	Existential there
FW	Foreign word
IN	Preposition / subordinating conjuction
IN/that	Subordinating conjunction that
JJ	Adjective (positive)
JJR	Adjective (comparative)
JJS	Adjective (superlative)
LS	List item marker
MD	M odal verb
NN	Noun, singular or mass
NNS	Noun, plural
NP	Proper noun, singular
NPS	Proper noun, plural
PDT	Predeterminer
POS	Possessive ending ('s)
PP	Personal pronoun
PP\$	Possessive pronoun
RB	Adverb
RP	Particle
SYM	Symbol (mathemathical/scientific)
TO	to (any usage) fly to Paris, ready to go,
UH	Interjection
#	Pound sign \pounds
\$	Dollar sign \$

VB	Verb be, base form		
VBD	Verb be, past tense		
VBG	Verb be, gerund/progressive		
VBN	Verb be, past participle		
VBP	Verb be, non-3rd pers. sg. pr	esent	
VBZ	Verb be, 3rd pers. sg. present	tense	
VH	Verb <i>have</i> , base form		
VHD	Verb <i>have</i> , past tense		
VHG	Verb <i>hav</i> e, gerund/progressi	ve	
VHN	Verb <i>hav</i> e, past participle		
VHP	Verb <i>have</i> , non-3rd pers. sg.	present	
VHZ	Verb <i>have</i> , 3rd pers. sg. pres	ent tense	
VV	Lexical verb, base form		
VVD	Lexical verb, past tense		
VVG	Lexical verb, gerund/progres	Lexical verb, gerund/progressive	
VVN	Lexical verb, past participle		
VVP	Lexical verb, non-3rd pers. s	g. present	
VVZ	Lexical verb, 3rd pers. sg. pre	esent tense	
WDT	Wh-determiner		
WP	Wh-pronoun		
WP\$	Possessive wh-pronoun		
WRB	W h-adver b		
SENT	Sentence-final punctuation	.1?	
,	Comma	,	
:	Colon, semi-colon	· ;	
(AA)	Comma	([])	
``A''	Comma	" " ' " "	

Universal-Dependencies-Tags (sprachübergreifend)

Open class words	Closed class words	Other
ADJ	<u>ADP</u>	<u>PUNCT</u>
ADV	<u>AUX</u>	<u>SYM</u>
<u>INTJ</u>	<u>CCONJ</u>	<u>X</u>
<u>NOUN</u>	<u>DET</u>	
<u>PROPN</u>	<u>NUM</u>	
<u>VERB</u>	<u>PART</u>	
	<u>PRON</u>	
	<u>SCONJ</u>	

- ADJ: adjective
- ADP: adposition
- ADV: adverb
- **AUX**: auxiliary
- **CCONJ**: coordinating conjunction
- DET: determiner
- <u>INTJ</u>: interjection
- NOUN: noun
- NUM: numeral
- PART: particle
- PRON: pronoun
- <u>PROPN</u>: proper noun
- **PUNCT**: punctuation
- **SCONJ**: subordinating conjunction
- <u>SYM</u>: symbol
- <u>VERB</u>: verb
- X: other

Segmente und Strukturen

- Erkennung von speziellen Wortfolgen (Segmenten bzw. spans) und ihre Kategorisierung
- z.B. Eigennamen (NER = named entity recognition)

Person

Organization

Mr. Arthur Dent never liked the Sirius Cybernetics Corp.

- Was könnten weitere interessante Segmente sein?
- Kann auch als Tagging operationalisiert werden

O B-PERS I-PERS O O B-ORG I-ORG I-ORG
Mr. Arthur Dent never liked the Sirius Cybern. Corp.

Strukturen: Parsing

- alternativ: "minimale" Phrasen als flache Segmente → Chunk-Parsing
- Dependenz-Parsing findet direkte Abhängigkeiten zwischen Wörtern

Beispiel: Syntaktische Analyse

Zum Ausprobieren:

- http://corenlp.run/
- https://explosion.ai/demos/displacy
- http://nlp.uoregon.edu/trankit

Manuelle Annotation

- Kleine Korpora werden oft manuell annotiert
 - z.B. digitale Editionen, Reden eines Präsidenten, ...
- Annotationsschema und -kategorien (Tagset)
- Richtlinien (Guidelines)
 - detaillierte Beschreibung und Abgrenzung der Zielkategorien (z.B. für <u>STTS</u>)
 - zusätzlich: Beispielsammlung für schwierige Einzelfälle
- Annotationswerkzeuge (meist Web-basiert)
 - z.B. INCEpTION (https://prodi.gy)
- Inter-Annotator Agreement (IAA)
 - wichtig! überprüft Reliabilität und Validität der Annotation
 - Flüchtigkeitsfehler vs. systematische Differenzen
 - Adjudikation f
 ür Endfassung der Annotation

Automatische Annotation

- Für größere Korpora ist eine manuelle Annotation zu teuer und zeitaufwendig
- Auch in den Digital Humanities ...
 - Romane von Charles Dickens
 - Deutsches Gutenberg-Archiv
 - Early English Books (EEBO)
 - Times Online 1780–1900

ca. 4 Mio. Wörter

> 100 Mio. Wörter

> 500 Mio. Wörter

ca. 4.000 Mio. Wörter

Automatische Annotation

- Erfolgreichster Ansatz: maschinelle Lernverfahren
 - ab ca. 1990 Einsatz von statistischen Modellen ("statistical revolution")
 - aktuell große Fortschritte mit Deep Learning
- Trainingskorpus (manuell annotiert)
 - wichtig: Konsistenz der Annotationen (→ IAA)
 - Flüchtigkeitsfehler scheinen weniger problematisch
- Evaluation auf separatem Testkorpus
 - Gefahr der Überanpassung an das Trainingskorpus
 - zusätzliches development set für Optimierung der Lernverfahren (tuning)
 - Kreuzvalidierung (cross-validation) nutzt alle Daten für Training & Evaluation
- Weiterführend: https://web.stanford.edu/~jurafsky/slp3/

Repräsentationsformat: XML

```
<?xml version="1.0" encoding="UTF-8"?>
<corpus>
 <story title="The Garden">
   >
     <S>
       <token pos="PP" lemma="it">It</token>
       <token pos="VBD" lemma="seem">seemed</token>
       <token pos="DT" lemma="a">a</token>
       <token pos="NN"
                       lemma="day">day</token>
       <token pos="RB"
                       lemma="much">much</token>
       <token pos="IN"
                       lemma="as">as</token>
       <token pos="DT"
                        lemma="any">any</token>
       <token pos="JJ"
                       lemma="other">other</token>
       <token pos="IN" lemma="until">until</token>
       <token pos="PP" lemma="I">I</token>
     </s>
   </story>
</corpus>
```

Repräsentationsformat: Vertical text (.vrt)

```
<corpus>
<text title="The Garden" author="Stefan Evert" author_sex="male"</pre>
     date="1991-08-05">
<S>
It
    PP
           it
seemed VBD
           seem
        DT
a
day
        NN
            day
much
        RB
             much
        IN
as
             as
        DT
any
           any
other
          other
        JJ
until
        IN
           until
Ι
        PP
             Т
</s>
</text>
</corpus>
```


Repräsentationsformat: CoNLL-Format(e)

```
# story: "The Garden"
  paragraph #1
1
    Ιt
             PP
                  it
2
    seemed VBD
                 seem
             DT
    fine
             JJ fine
5
    day
             NN
                  day
             SENT .
    There
1
             EX
                  there
2
             VBD
    was
                  be
             DT
    an
4
    elephant NN
                elephant
             SENT .
# this is the end of the file
```

aktuell: CoNLL-U (https://universaldependencies.org/format.html)

Übersicht: Tools

Manuelle Annotation: Tools

- WebAnno / INCEpTION (linguistischer Fokus):
 - https://webanno.github.io/webanno/documentation/
 - https://www.youtube.com/user/webanno
 - https://inception-project.github.io
 - https://youtube.com/playlist?list=PL5Hz5pttaj96SIXHGRZf8KzlYvpVHIoL-
- prodigy (linguistischer Fokus):
 - https://prodi.gy
- CATMA (literaturwissenschaftlicher Fokus)
 - z.B. Annotation von wörtlicher und indirekter Rede
 - https://fortext.net/routinen/lerneinheiten/manuelle-annotation-mit-catma

Automatische Annotation: komplette Pipelines (1)

- Stanford CoreNLP (https://stanfordnlp.github.io/CoreNLP/)
 - langlaufendes Projekt, Java
 - Tokenisierung, POS-Tagging, Lemmatisierung, NER, Parsing, Koreferenzauflösung, Sentiment-Analyse, ...
- Stanza (https://stanfordnlp.github.io/stanza/)
 - Python, Deep Learning, Interface zu CoreNLP (z.B. für Koreferenzauflösung relevant)
 - Tokenisierung, POS-Tagging, Lemmatisierung, NER, Dependenzparsing, Sentiment-Analyse
- spaCy "fastest in the world" (https://spacy.io)
 - Python, Deep Learning
 - Tokenisierung, POS-Tagging, Lemmatisierung, NER, Dependenzparsing

Automatische Annotation: komplette Pipelines (2)

- Trankit (https://github.com/nlp-uoregon/trankit)
 - Python, Deep Learning
 - mehrsprachige Annotation möglich
 - Tokenisierung, POS-Tagging, Lemmatisierung, NER, Dependenzparsing
- Apache OpenNLP (https://opennlp.apache.org/)
 - Java
 - Tokenisierung, POS-Tagging, Lemmatisierung, NER, Dependenzparsing, Koreferenzauflösung
- UDPipe (http://ufal.mff.cuni.cz/udpipe)
 - C++/Python, als Bibliothek für diverse C++, C#, Python, Perl und Java verfügbar
 - *UD* steht für *Universal Dependencies*
 - Tokenisierung, POS-Tagging, Lemmatisierung, Dependenzparsing

Automatische Annotation: Tokenisierung und Tagging

- reine Tokenisierer
 - Python: <u>SoMaJo</u> (DE, EN)
 - generischer Tokenisierer: <u>Unitok</u>
 - Tokenisierer von NLTK ist bestenfalls mittelmäßig
 - wichtig: Tokenisierung und weitere Verarbeitung müssen kompatibel sein!
- Part-of-speech-Tagger (oft mit eigenem Tokenisierer)
 - <u>TreeTagger</u> (schnell, einfach, viele Sprachen, inkl. Lemmatisierung)
 - RNNTagger (Deep-Learning-Nachfolger des TreeTaggers, Python, inkl. Lemm.)
 - Python: <u>SoMeWeTa</u> (DE, EN, FR)
 - Twitter data (EN): <u>TweetNLP</u>
 - und viele weitere spezialisierte Tokenisierer und Tagger für diverse Sprachen
- Eigene Pipeline im Webservice erstellen:
 https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Main Page