# Mini-Circuits®

# **Programming Manual** For the

**USB Smart Power Sensor PWR Series** 



# Contents

| Item | Description                                           | Page   |
|------|-------------------------------------------------------|--------|
| 1    | Overview                                              | 3      |
| 2    | Operating in a Windows® Environment                   | 4 - 8  |
| 2.1  | Software supported by ActiveX® and .NET Class Library | 5 - 6  |
| 2.2  | DLL Structure (Functions & Properties)                | 7 - 8  |
| 2.3  | Sample code                                           | 8      |
| 3    | Operating in a Linux <sup>®</sup> Environment         | 9 - 14 |
| 3.1  | Sample code                                           | 14     |



#### 1- Overview

This programming Manual is intended for customers wishing to create their own interface for Mini-Circuits' USB Portable Test Equipment (PTE).

Mini-Circuits offers support of the USB PTE for Windows® and Linux® Operating Systems, as well as for variety of programming environments including third-party applications such as LabVIEW® and MATLAB® through .NET assembly and ActiveX® Controls to write your own customized measurement applications.

Mini-Circuits' CD package Includes: GUI program installation, DLL Objects 32/64 bit, Linux Support, project examples for 3<sup>RD</sup> party software and Documents. The latest CD version is available for download at http://www.minicircuits.com/support/software\_download.html , see Figure 1.

#### Mini-Circuits - Software Downloads

| Product Name        | Version       | Download | Description / Instructions                                                                                                                                                                       | Models Supported                                                                |
|---------------------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Power Meter - Setup | B14           | Download | Smart Power Meter GUI program for Windows 32/64 bit - Latest Version - Setup.                                                                                                                    |                                                                                 |
| Power Meter - CD    | B14           | Download | Latest Version of the entire CD content. Include: GUI program, DLL COM Objects 32/64 bit, Linux Support, drivers and Documents. When extracting the files after download: keep the folder names. |                                                                                 |
| mcl_pm_dll          | Jan 19, 2012  | Download | mcl_pm.dll - ActiveX com object file.<br>Registering to Windows is required.<br>Recommended for 32 bit programming.                                                                              |                                                                                 |
| mcl_pm64.dll        | Jan 19, 2012  | Download | mcl_pm64.dllNET Class Library.<br>Recommended for 64/32 bit programming.                                                                                                                         |                                                                                 |
| Programming Manual  | Jan, 23, 2012 | Download | PDF File: Detailed Guide for Programmers.                                                                                                                                                        | PWR-6G (+)<br>PWR-6GHS (+)                                                      |
| Examples Projects   | Jan, 23, 2012 | Download | Projects Examples for several Programming environments such as: VB6, VB.NET, C#, C++, Delphi, LabView, Matlab, LINUX. When extracting the files after download: keep the folder names.           | PWR-8GHS (+)<br>PWR-4GHS<br>PWR-8FS<br>PWR-4RMS<br>PWR-2GHS-75<br>PWR-2.5GHS-75 |

Figure 1 – Download Screen



# 2 - Operating in a Windows® Environment 32/64Bits OS with USB HID Support

The DLL Object (Dynamic Link Library) - Concept:

Dynamic Link Library is Microsoft's implementation of the shared library concept in the Microsoft Windows® environment.

DLLs provide a mechanism for shared code and data, allowing a developer of shared code/data to upgrade functionality without requiring applications to be re-linked or recompiled.

Mini-Circuits' CD package provides DLL Objects in order to allow your own Software Application to interface with the functions of the Mini-Circuits' USB Portable Test Equipment Hardware, see Figure 2.



Figure 2 - DLL Interface

#### Mini-Circuits' provides two DLLs files:

- 1. ActiveX com object mcl pm.dll → Click to Download http://yoni.minicircuits.com/downloads/mcl\_pm\_dll.zip ActiveX<sup>®</sup> com object can be used in any programming environment that supports ActiveX<sup>®</sup> objects - third party COM (Component Object Model) compliant application. The ActiveX® DLL should be registered using RegSvr32 (see pages 5 and 6 - Register an ActiveX DLL).
- .NET Class Library mcl\_pm64.dll → Click to Download <a href="http://yoni.minicircuits.com/downloads/mcl\_pm64\_DLL.zip">http://yoni.minicircuits.com/downloads/mcl\_pm64\_DLL.zip</a> .NET object – a logical unit of functionality that runs under the control of the .NET

# 2.1 - Software supported by ActiveX® and .NET Class Library

| mcl_pm.dll - ActiveX <sup>®</sup> com object                                                                   | mcl_pm64.dllNET Class Library                                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u>Instructions</u>                                                                                            | Instructions                                                                                                                                                              |  |  |
| <ul> <li>Register the DLL, see instructions below</li> </ul>                                                   | <ul> <li>DLL Registry is not required</li> </ul>                                                                                                                          |  |  |
| <ul> <li>For 32bit Windows OS, Copy mcl_pm.dll<br/>to windows\system32 folder</li> </ul>                       | <ul> <li>For 32bit Windows OS Copy mcl_pm64.dll to<br/>windows\system32 folder</li> </ul>                                                                                 |  |  |
| <ul> <li>For 64bit Windows OS, Copy mcl_pm.dll<br/>to windows\SysWOW64 folder</li> </ul>                       | <ul> <li>For 64bit Windows OS Copy mcl_pm64.dll to<br/>windows\SysWOW64 folder</li> </ul>                                                                                 |  |  |
| Visual Studio 6 (VC++,VB®) NI LabVIEW® 8.0 or newer MATLAB® 7 or newer Delphi® Borland C++ Agilent VEE® Python | NI CVI<br>NET (VC++, VB.net, C# 2003,2005,2008,2010)<br>NI LabVIEW <sup>®</sup> _2009 or newer<br>MATLAB <sup>®</sup> 2008 or newer<br>Delphi <sup>®</sup><br>Borland C++ |  |  |

<sup>\*</sup> Additional 3<sup>rd</sup> party software are supported, contact Mini-Circuits for details.

#### How to register mcl\_pm.dll, 32-bit DLL, on a 32-bit Windows operating system?

Open the Run Command from the Start Menu and type regsvr32 c:\windows\system32\mcl\_pm.dll





Figure 3 - Run Command



#### How to register mcl\_pm.dll, 32-bit DLL on a 64-bit Windows operating system?

Run the command Prompt as Administrator, see figure 4



Figure 4 - Command Prompt

Type regsvr32 c:\windows\syswow64\ mcl\_pm.dll, see figure 5



Figure 5 – Type command

Click Enter, see figure 6.



Figure 6 - Registration was succeeded

#### 2.2 - DLL Structure (both mcl\_pm.dll and mcl\_pm64.dll)

#### DLLs Functions mcl\_pm.dll / mcl\_pm64.dll

- 1. Long Open\_Sensor(Optional \*string SN)
- 2. Long Open\_AnySensor()
- 3. Float ReadPower()
- 4. Int GetStatus()

- Void Close\_Sensor()
   String GetSensorSN()
   String GetSensorModelName()
   Void SetFasterMode(Short)
   Float GetDeviceTemperature(Optional TemeratureFormat As String)
- 10. Long Get\_Avaliable\_SN\_List(\*string SN\_List)

#### DLLs Properties mcl\_pm.dll / mcl\_pm64.dll

- 1. Freq
- 2. AVG
- 3. AvgCount
- 4. Format\_mW

#### **Functions Description:**

Long Open\_Sensor(Optional \*string SN)

SN parameter is needed when more than one Power Sensor is connected to the computer. SN is the Serial Number of the Power Sensor.

The function returns a Value as follows:

0=Failed to open Sensor

1=Success

2=Object is already open

3=SN is not Available

2. Long Open\_AnySensor() function can be used when only one Power Sensor is connected to the computer.

The function returns a value as follows:

0=Failed to open sensor

1=Success

2=Object is already open

3=SN is not available

- Float ReadPower()
  - Returns the power Value
- 4. Int GetStatus()

The Function returns a value as follows:

1=Sensor is connected

0=Sensor is disconnected

- 5. Void Close Sensor()
  - Close connection to the sensor
- 6. String GetSensorSN()
  - Returns the Sensor's Serial Numbers

- 7. String GetSensorModelName()
  - Returns the Sensor's Model Name
- 8. Void SetFasterMode(Short Mode)

Mode=0, Low Noise Mode

Mode=1, Faster Mode (Not available for the PWR-6G)

Mode=2, Fastest Mode (Available only for the PWR-8FS)

- 9. Float GetDeviceTemperature(Optional TemeratureFormat As String)
  - TemperatureFormat optional parameter: "F" for Fahrenheit "C" (Default) for Celsius
- 10. Long Get\_Avaliable\_SN\_List(\*string SN\_List)
  - SN List returns a List of all available Serial Numbers (separated by a single space character): [SN1] [SN2] [SN3] [SN4]...

#### **Properties Description:**

- 1. Freq: the CAL Freq in MHz
- 2. AVG: 1=ON 0=OFF
- 3. AvgCount: the No of Avg Count
- 4. Format\_mW: if true, the ReadPower result will be in mW

# 2.3 - Sample code

The CD package also includes a number of sample programs developed to show you how to write your own programs. The sample programs were developed in Visual C++, Visual Basic®, C#, Visual C++ and LabVIEW<sup>®</sup>. The sample programs provide an excellent starting point to write your own applications.

The complete project examples are available for download at: http://yoni.minicircuits.com/downloads/mcl\_pm\_Examples.zip



# 3 - Operating in a Linux® Environment 32/64Bits OS with USB HID Support

To open a connection to the power sensor, Vendor ID and Product ID are required:

Mini-Circuits Vendor ID is: 0x20CE

Power Sensor Product ID is: 0x11

The communication with the sensor is done by USB Interrupt.

The Transmit and receive buffer size is 64 Bytes.

Transmit Array should be 64 bytes Receive Array contains 64 bytes

[Byte 0][Byte1][Byte2]......[Byte 63] [Byte 0][Byte1][Byte2]......[Byte 63]

#### Commands List:

| # | Description                                                      | Command Code –<br>Byte[0] | Additional Transmitted Bytes                         |
|---|------------------------------------------------------------------|---------------------------|------------------------------------------------------|
| 1 | Get the Sensor power value                                       | 102                       | Byte[1] - Freq MHz (MSB)<br>Byte 2] - Freq MHz (LSB) |
| 2 | Set the Sensor to Low Noise Mode                                 | 15                        | Byte[1] - 0                                          |
| 3 | Set the Sensor to Faster Mode NOT Available for the PWR-6G       | 15                        | Byte[1] - 1                                          |
| 4 | Set the Sensor to Fastest Mode<br>Available ONLY for the PWR-8FS | 15                        | Byte[1] - 2                                          |
| 5 | Get the Sensor Model Name                                        | 104                       |                                                      |
| 6 | Get the Sensor Serial Number                                     | 105                       |                                                      |
| 7 | Get the Sensor Temperature                                       | 103                       |                                                      |

<sup>\*</sup> See detailed description on pages 10 - 13

#### 1. Read Power Value:

To get the power value from the sensor, send to the sensor code number 102 and also the Frequency value for the correction cal factors.

The Frequency is in MHz and should be Integer Value split into 2 Bytes (MSB and LSB)

- Byte[0] =102
- Byte[1] = Frequency MSB
- Byte[2] = Frequency LSB

| Byte | Byte            | Byte            | Byte |
|------|-----------------|-----------------|------|
| [0]  | [1]             | [2]             | [63] |
| 102  | Frequency - MSB | Frequency – LSB |      |

Example: to read power at frequency of 3000 MHz, then send

- Byte[0] =102
- Byte[1] =11
- Byte[2] =184
- Bytes[3] through [63] are NC Not Care

(3000=11\*256+184)

#### **Transmit Array**

| Byte | Byte   | Byte | Byte |
|------|--------|------|------|
| [0]  | [1]    | [2]  | [63] |
| 102  | 11*256 | 184  |      |

The Power will be returned in 8 Bytes array in this way:

- Byte[0]=102 the sensor return the same code number.
- Byte[1] up to Byte[6] the reading power(dBm) in ASCII characters
- Byte[7]= 0
- Bytes[8] through [63] contain random values

#### **Received Array**



#### 2. Set Low Noise Mode: (this is the sensor's default mode)

To set the sensor to Low Noise Mode, code number 15 should be sent and then the second byte should be 0

#### **Transmit Array**

- Byte[0]=15
- Byte[1]=0
- Bytes[2] through 63 are NC Not Care

#### **Received Array**

- Byte[0]=15
- Bytes[1] through [63] contain random values

#### 3. Set Faster Mode: NOT Available for the PWR-6G

To set the sensor to Faster Mode, code number 15 should be sent and the second byte should be 1

#### **Transmit Array**

- Byte[0]=15
- Byte[1]=1
- Bytes[2] through [63] are NC Not Care

#### **Received Array**

- Byte[0]=15
- Bytes[1] through [63] contain random values

#### 4. Set Fastest Mode: Available ONLY for the PWR-8FS

To set the sensor to Fastest Mode, code number 15 should be sent and the second byte should be 1.

#### **Transmit Array**

- Byte[0]=15
- Byte[1]=2
- Bytes[2] through [63] are NC Not Care

#### **Received Array**

- Byte[0]=15
- Bytes[1] through [63] contain random values

#### 5. Get Power Sensor Model Name:

To get the sensor Model Name, code number 104 should be sent

#### **Transmit Array**

- Byte[0]=104
- Bytes[1] through [63] are NC Not Care

#### **Received Array**

The model name will be return in the receive array in ASCII characters ending with 0.

- Byte[0]=104
- Byte[1] to the byte with value=0 = Part Number
- All bytes after the 0 character up to byte [63] contain random values



#### 6. Get Power Sensor Serial Number:

To get the sensor Serial Number, code number 105 should be send

#### **Transmit Array**

- Byte[0]=105
- Bytes[1] through [63] are NC Not Care

#### **Received Array**

The Serial Number will be return in the receive array in ASCII characters ending with 0.

- Byte[0]=105
- Byte[1] to the byte with value=0 = Serial Number
- All bytes after the 0 character up to byte [63] contain random values



#### 7. Read Device Temperature:

To get the sensor Temperature, code number 103 should be send

#### **Transmit Array**

- Byte[0]=103
- Bytes[1] through [63] are NC Not Care

#### **Received Array**

The Temperature will be return in the receive array in ASCII characters ending with 0.

- Byte[0]=103
- Byte[1] to the byte with value=0 = Device Temperature in Celsius
- All bytes after the 0 character up to byte [63] contain random values



#### 3.1 - Sample code

The Linux Folder in the CD package contains the following:



Figure 7 – Linux Folder

- 1. PowerMeter.tar.gz is a tar (gzip) archive which contains:
- MCL\_PM.c an example source code using the libhid & libusb libraries to open the USB HID device.
- MCL PM an executable to be run under LINUX terminal,
- The command line: sudo ./MCL\_PM [frequency in MHz] for example for 10MHz the command is sudo ./MCL\_PM 10 (The frequency must be within the range of the power sensor used).
- 2. PowerMeterUSB LINUX is a GUI sample program under Linux using GTK.
- You will need administrator/Root permissions to run it.
- Command line from terminal: Sudo. /PowerMeterUSB\_LINUX
- After the GUI launch, enter the frequency in the frequency text box.
- It will return the measured Power and Temperature.

Linux Project Examples are also available on the CD package and can be downloaded at: http://yoni.minicircuits.com/downloads/mcl\_pm\_Examples.zip

Windows and Visual Basic are registered trademarks of Microsoft Corporation. LabVIEW is a registered trademark of National Instruments Corp. Delphi is a registered trademark of Codegear LLC. MATLAB is a registered trademark of MathWorks, Inc. Agilent VEE is a registered trademark of Agilent. Neither Mini-Circuits nor the Mini-Circuits Smart Power Sensors are affiliated with or endorsed by the owners of the above referenced trademarks.

Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.