mas441 homework

20208209 Jaemin Oh

2020년 9월 27일

Problem (6.5).

- (a) Let $\varepsilon > 0$ be given. There is open set O containing E such that $m(O \setminus E) < \varepsilon$. Since E is compact set contained in open set O, there is r > 0 such that r neighborhood of E is contained in O. For nr > 1, $O_n \subset O$. Therefore $m(O_n \setminus E) \le m(O \setminus E) < \varepsilon$. Therefore $\lim_{n \to \infty} m(O_n) = m(E)$.
- (b) For closed and unbounded set which does not satisfy above, consider $E = \{\sum_{k=1}^{n} : n \in \mathbb{N}\}$. m(E) = 0 because of countability and $m(O_n) = \infty$ since each O_n contains (x, ∞) for some x > 0.

For open and bounded set which does not satisfy (a), consider $E = \bigcup_{i=1}^{\infty} \left(q_i - \frac{\varepsilon}{2^{i+1}}, q_i + \frac{\varepsilon}{2^{i+1}}\right)$ where q_i is enveration of rational numbers between 0 and 1. Then by countable additivity, $m(E) \leq \varepsilon$ and $O_n \supset [0,1]$. Since ε is arbitrary positive number, we can see that E does not satisfy (a).

Problem (6.7).

It will be shown in problem #8 that δE is measurable when E is measurable since δE is image of E under n by n matrix whose i-th diagonal entry is δ_i .

Consider $R = \prod_{i=1}^d [a_i, b_i]$. Then $\delta R = \prod_{i=1}^d [\delta_i a_i, \delta_i b_i]$. It is rectangle, so $|\delta R| = \prod_{i=1}^d |R|$ for all rectangle R.

Now suppose $\delta E \subset \bigcup_{j=1}^{\infty} Q_j$ where Q_j is a cube. Then $E \subset \bigcup_{j=1}^{\infty} \frac{1}{\delta} Q_j$. It leads $m_*(E) \leq \sum_{j=1}^{\infty} \prod_{i=1}^{d} \frac{1}{\delta_i} |Q_j|$. Therefore $\prod_{i=1}^{d} \delta_i m_*(E) \leq \sum_{j=1}^{\infty} |Q_j|$. Since $\bigcup_{j=1}^{\infty} Q_j$ is arbitrary, $\prod_{i=1}^{d} m_*(E) \leq m_*(\delta E)$.

On the contrary, suppose $E \subset \bigcup_{j=1}^{\infty} Q'_j$. Then $\delta E \subset \bigcup_{j=1}^{\infty} \delta Q'_j$. It leads $m_*(\delta E) \leq \sum_{j=1}^{\infty} \prod_{i=1}^d |Q'_j| = \prod_{i=1}^d \delta_i \sum_{j=1}^{\infty} |Q'_j|$. Since $\bigcup_{j=1}^{\infty} Q'_j$ is arbitrary, $m_*(\delta E) \leq \prod_{i=1}^d \delta_i m_*(E)$.

Problem (6.8).

(a) Note that $|Lx - Lx'| \leq ||L|||x - x'||$ where $||L|| = \sup_{|x|=1} |Lx|$. It is well known that $||L|| < \infty$ for linear operator on d Euclidean space. Therefore L is continuous, which leads compactness of L(E) when E is compact. Also, $\bigcup_{\alpha} L(A_{\alpha}) = L(\bigcup_{\alpha} A_{\alpha})$. It means L preserves F_{σ} . Because we can represent any F_{σ} set as countable union of compact set by considering k-disc centered at origin. (k is positive integer)

(b) Assume E is measurable. Let $\varepsilon > 0$ be given. There is $F_{\sigma} \subset E$ such that $m(E \setminus F_{\sigma}) < \varepsilon$. By definition of Lebesgue measure, there is covering of $E \setminus F_{\sigma}$ by cubes, $\sum |Q_j| < \varepsilon$.

Then
$$m(L(E) - L(F_{\sigma})) \leq m(L(E \setminus F_{\sigma})) \leq \sum m_*(L(Q_i)) \leq (2\sqrt{d}M)^d \sum m_*(Q_i)$$
.

Notice that last term can be arbitrarily small and $L(F_{\sigma})$ is countable union of closed sets. By corollary 3.5, L(E) is measurable.

Problem (6.13).

- (a) Every open set is countable union of almost disjoint cubes. Therefore open set is F_{σ} . By considering complement, every closed set is countable intersection of open sets.
- (b) \mathbb{Q} is F_{σ} set because $\mathbb{Q} = \bigcup_{i=1}^{\infty} \{q_i\}$, where one-point set is closed. Assume $\mathbb{Q} = \bigcap_{i=1}^{\infty} G_i$ where G_i is an open set. Since \mathbb{Q} is dense in \mathbb{R} , each G_i is open dense subset of \mathbb{R} . Consider $G_i \setminus \{q_i\} = G'_i$. It is also dense in \mathbb{R} and open. By Baire's theorem, $\bigcap_{i=1}^{\infty} G'_i$ must be nonempty. But actually $\bigcap_{I=1}^{\infty} G'_i$ is empty. It is contradiction. Therefore \mathbb{Q} is not G_{δ} set.
- (c) Consider $\mathbb{Q}_{>0} \cup \mathbb{I}_{\leq 0}$ where \mathbb{I} is set of irrational number. It is disjoint union of F_{σ} set and G_{δ} set. If that set is G_{δ} set, by intersection(-ing) with positive real numbers, we get $\mathbb{Q}_{>0} = G_{\delta}$ which is contradiction. If that set is F_{σ} , its complement is G_{δ} , and it leads $\mathbb{Q}_{\leq 0}$ is G_{δ} set by intersection with nonpositive real numbers. It also contradicts with (b). # positive rationals and nonpositive rationals are not G_{δ} set by same reasoning in (b).

Problem (6.14).

- (a) $J_*(E) \leq J_*(\bar{E})$ is trivial. Let $E \subset \bigcup_{j=1}^N I_j$. Then $\bar{E} \subset \bigcup_{j=1}^N \bar{I}_j = \bigcup_{j=1}^N I_j$. But $\sum |I_j| = \sum |\bar{I}_j|$. Therefore $J_*(\bar{E}) \leq \sum_{j=1}^N |\bar{I}_j| = \sum_{j=1}^N |I_j|$. By taking infimum over all $\bigcup_{j=1}^N \supset E$, $J_*(\bar{E}) \leq J_*(E)$.
- (b) $E = \mathbb{Q} \cap [0,1]$. Then m(E) = 0 but covering of E by finitely many intervals must contain [0,1]. So $J_*(E) = 1$.

Problem (6.15).

 $m_*^{\mathcal{R}}(E) \leq m_*(E)$ since class of rectangles contains class of cubes.

Assume $m_*^{\mathcal{R}}(E) < m_*(E)$. Then there is $\bigcup_{j=1}^{\infty} R_j$ containing E such that $m_*(E) > \sum |R_j|$ by definition of $m_*^{\mathcal{R}}$. This is impossible since $m_*(E) \le m_*(\bigcup_{i=1}^{\infty} R_j) \le \sum m_*(R_j) = \sum |R_j|$ by countable additivity of m_* . Therefore $m_*^{\mathcal{R}}(E) = m_*(E)$.

Problem (6.16).

(a) $x \in E$ iff for any n, there is $k \ge n$ such that $x \in E_k$ iff $x \in \bigcup_{k \ge n} E_k$ for any n iff $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$.

Therefore, E is measurable.

(b) $m(E) \leq m\left(\bigcup_{k\geq n} E_k\right) \leq \sum_{k=n}^{\infty} m(E_k)$ for any positive integer n. But, since $\sum_{k=1}^{\infty} m(E_k) < \infty$, for given $\varepsilon > 0$, there is positive integer N such that $n \geq N$ implies $\sum_{k=n}^{\infty} m(E_k) < \varepsilon$. Therefore $m(E) < \varepsilon$ for every positive ε . This means m(E) = 0.

Problem (6.17).

$$\{|f| = \infty\} = \bigcap_{n \ge 1} \{|f| > n\}. \text{ Also } m(\{|f| > 1\} \le m([0, 1]) = 1.$$

Therefore $0 = \lim_{n \to \infty} m(\{|f| > n\})$

Problem (6.22).

Assume $f = 1_{[0,1]}$ a.e. where 1_A denotes characteristic function of A. If $f \neq 1$ for some $x \in (0,1)$, there is $\delta > 0$ such that $(x - \delta, x + \delta) \subset (0,1)$ and $f \neq 1$ on $(x - \delta, x + \delta)$ by continuity. It contradicts with $f = 1_{[0,1]}$ a.e. Therefore f = 1 for $x \in (0,1)$. Similarly, f = 0 for |x| > 1. Then f must be discontinuous at x = 0,1. It leads the fact that there is no such f.

Problem (6.25).

Let E be measurable. Then E^c is also measurable. By definition of measurability, there is open set O containing E^c such that $m_*(O \setminus E^c) = m_*(E \setminus O^c) < \varepsilon$. Therefore E is measurable in new sense.

Assume that E is measurable in new sense. For each $\varepsilon > 0$, there is closed $F \subset E$ such that $m_*(E \setminus F) = m_*(F^c \setminus E^c) < \varepsilon$. It leads measurability of E^c and therefore E is measurable in old sense because class of measurable sets is closed under complement set operation.

Problem (6.26).

 $m_*(E \setminus A) \leq m_*(B \setminus A) = m(B) - m(A) = 0$ since measure of B is finite. Therefore $E \setminus A$ is zero measure set, therefore measurable. $E = E \setminus A \cup A$ which is union of two measurable set. Therefore E is measurable.

Problem (6.28).

Let $\alpha \in (0,1)$. $\frac{1}{\alpha}m_*(E) > m_*(E)$ so there is open set O containing E such that $m_*(E) = m_*(E \cap \bigcup_{j \geq 1} I_j) = m_*(\bigcup_{j \geq 1} E \cap I_j) > \alpha m_*(O) = \alpha \sum_{j \geq 1} m_*(I_j)$ where I_j 's are disjoint interval whose union is O.

If $m_*(E \cap I_j) < \alpha m_*(I_j)$ for all positive integer j, then $m_*(E) \leq \sum_{j \geq 1} m_*(E \cap I_j) \leq \alpha \sum_{j \geq 1} m_*(I_j)$ which contradicts to above.

Therefore there is I_j such that $m_*(E \cap I_j) \ge \alpha m_*(I_j)$.

Problem (6.37).

Consider $f1_{[-n,n]}$. It is uniformly continuous on [-n,n]. Let $\varepsilon > 0$ be arbitrary. choose $\delta > 0$ less than n such that $d(x,y) < \delta$ implies $d(f(x),f(y)) < \varepsilon$ for all $x,y \in [-n,n]$.

For each $x \in [-n,n]$, consider $\left(x-\frac{\delta}{2},x+\frac{\delta}{2}\right)$. Such interval forms open cover of [-n,n]. We can cover [-n,n] by at most $\frac{2n+1}{\delta}$ number of such intervals. Let Γ_n be graph of $f1_{[-n,n]}$. Then $m_*(\Gamma_n) \leq \frac{2n+1}{\delta}\delta 2\varepsilon = 2(2n+1)\varepsilon$ which can be arbitrarily small. Therefore $m_*(\Gamma_n) = 0$ for all n and $m(\Gamma) = \sum_{n=1}^{\infty} m(\Gamma_n) = 0$ where Γ is graph of f.