CIRCUITOS DIGITAIS

MÁQUINAS DE ESTADO

Prof. Marcelo Grandi Mandelli

mgmandelli@unb.br

□ EM INGLÊS: FINITE STATE-MACHINE (FSM)

PROJETO DE CIRCUITOS SEQUENCIAIS

ESTADO:

CADA "PASSO" DA SEQUENCIA DO CIRCUITO

ARMAZENA UMA "LEMBRANÇA" DO PASSADO DO CIRCUITO.

POSSUI UM NÚMERO FINITO DE ESTADOS

■ A MÁQUINA ESTÁ EM APENAS UM ESTADO POR VEZ, ESTE ESTADO É CHAMADO DE ESTADO ATUAL

- □UTILIZA MEMÓRIA → FLIP-FLOPS
 - A SAÍDA DOS FLIP-FLOPS ARMAZENA O ESTADO ATUAL DO CIRCUITO

□ UM CIRCUITO COMBINACIONAL É CONECTADO NA ENTRADA DE CADA FLIP-FLOP PARA DEFINIR O PRÓXIMO ESTADO

□UM CIRCUITO COMBINACIONAL PODE SER UTILIZADO PARA DETERMINAR A(S) SAÍDA(S) DO CIRCUITO

- □ PROJETO DE CIRCUITOS SEQUENCIAIS SÍNCRONOS
 - TODOS OS FLIP-FLOPS UTILIZAM O MESMO SINAL DE CLOCK
 - A MÁQUINA MUDA DE ESTADO NA BORDA DO CLOCK

□ EXISTE PROJETO DE CIRCUITOS SEQUENCIAIS ASSÍNCRONOS, PORÉM É MAIS COMPLEXO

Exemplo de Circuito de uma Máquina de Estados com dois FF D

Existem dois tipos de Máquinas de Estados:

MÁQUINA DE MOORE

MÁQUINA DE MEALY

MÁQUINA DE MOORE

MÁQUINA DE MEALY

DIAGRAMA DE ESTADOS

- É uma representação gráfica de uma máquina de estados finitos
- Também pode ser chamado de diagrama de transição de estados

□DIAGRAMA DE ESTADOS

■ Exemplo: Contador Síncrono crescente de 2 bits

□DIAGRAMA DE ESTADOS

O diagrama de estados tem formatos diferentes para cada um dos tipos de máquina de estados:

□ MÁQUINA DE MOORE

MÁQUINA DE MEALY

MÁQUINA DE MOORE

Exemplo Circuito - Máquina de Moore

MÁQUINA DE MOORE (Exemplo com 2 FFs D)

- A saída depende exclusivamente do estado atual
- A entrada só interfere no próximo estado

- A saída depende exclusivamente do estado atual
- A entrada só interfere no próximo estado

Exemplo: Contador síncrono crescente de 2 bits com ENABLE

Quando ENABLE = $0 \rightarrow$ para de contar

Quando ENABLE = 1 → conta normalmente

COMO FICA O DIAGRAMA DE ESTADOS?

Exemplo: Contador síncrono crescente de 2 bits

COMO FICA O DIAGRAMA DE ESTADOS?

O circuito não tem entrada, então as transições acontecem independentes → X (don`t care)

Exemplo - Máquina de Moore

Projete uma máquina de estados de Moore com uma entrada E e uma saída S, onde S será 1 somente se a entrada E for igual a 1 nas últimas duas bordas de clock.

ESTADO A

SE E = $0 \rightarrow$ CONTINUA EM A SE E = $1 \rightarrow$ VAI PARA O PRÓXIMO ESTADO

NESTE ESTADO S = 0

ESTE É O ESTADO INICIAL DA MÁQUINA DE ESTADOS.

ESTE ESTADO IDENTIFICA QUE A ENTRADA E NUNCA ESTEVE EM 1 DURANTE UMA BORDA DE CLOCK OU QUANDO E = 0.

ESTADO B

SE E = 0 → VAI PARA A SE E = 1 → VAI PARA O PRÓXIMO ESTADO

NESTE ESTADO S = 0

ESTE ESTADO IDENTIFICA QUE A ENTRADA E ESTEVE EM 1 DURANTE 1 VEZ NAS DUAS ÚLTIMAS BORDAS DE CLOCK.

Diagrama de Estados

ESTADO C

SE E = $0 \rightarrow VAI PARA A$ SE E = $1 \rightarrow CONTINUA EM C$

NESTE ESTADO S = 1

ESTE ESTADO IDENTIFICA QUE A ENTRADA E ESTEVE EM 1 NAS DUAS ÚLTIMAS BORDAS DE CLOCK.

Diagrama de Estados

COMO
TRANSFORMAR
ESSE DIAGRAMA
DE ESTADOS EM
CIRCUITO?

Projeto de Máquinas de Estados Finitos

Passos para o Projeto de Máquinas de Estados:

- 1. Obter a tabela de transição de estados (pode-se obter através de um diagrama de estados)
- 2. Codificar os estados → modificar tabela de transição de estados
- 3. Escolher um flip-flop para o circuito
- 4. Obter a(s) equaçõe(s) de entrada para o FF escolhido e a(s) equações da(s) saída(s) → simplificar, se necessário
- 5. Desenhar circuito lógico com FFs e portas lógicas de acordo com as equações booleanas

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)

NA MÁQUINA DE MOORE, A SAÍDA DEPENDE SÓ DO ESTADO ATUAL!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0

ESTADO ATUAL É A, ENTÃO SAÍDA É 0!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	Α	0
Α	1	В	0

ESTADO ATUAL É A, ENTÃO SAÍDA É 0!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0
Α	1	В	0
В	0	Α	0

ESTADO ATUAL É B, ENTÃO SAÍDA É 0!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	Α	0
Α	1	В	0
В	0	Α	0
В	1	С	0

ESTADO ATUAL É B, ENTÃO SAÍDA É 0!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0
Α	1	В	0
В	0	Α	0
В	1	С	0
С	0	A	1

ESTADO ATUAL É C, ENTÃO SAÍDA É 1!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0
Α	1	В	0
В	0	A	0
В	1	С	0
С	0	Α	1
С	1	С	1

ESTADO ATUAL É C, ENTÃO SAÍDA É 1!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0
Α	1	В	0
В	0	Α	0
В	1	С	0
С	0	Α	1
С	1	С	1

NESSA TABELA, CADA DUAS LINHAS REPRESENTAM UM ESTADO DA MÁQUINA DE MOORE!

Passo 2 – Codificação dos Estados

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	Α	0
Α	1	В	0
В	0	Α	0
В	1	С	0
С	0	Α	1
С	1	С	1

DEVEMOS DEFINIR UM CÓDIGO EM BINÁRIO PARA CADA UM DOS ESTADOS.

Passo 2 – Codificação dos Estados

- A codificação dos estados definirá o número de FF utilizados no circuito
- Dependendo da codificação podemos alterar a complexidade das equações de entrada do circuito, assim como o consumo de energia
- Exemplos de codificação:
 - Código de contagem binária
 - Código de Gray
 - Codificação One Hot

Código de contagem binária

n flip-flops → até 2ⁿ estados

No exemplo: 3 estados \rightarrow precisamos de **2** FF: $2^2 = 4$

Codificação binária

Vantagens

- Mais simples e direta, visto que segue a numeração binária padrão
- Número de FF também é menor, quando comparado a outros métodos tais como one-hot
 - Custo de área menor

Desvantagens

- Mais de um bit (vários, até!) pode mudar de uma transição para outra
 - Mais potência (mais mudanças nos FFs)
- Lógica mais complexa para achar o estado atual

Código de Gray

- Código de Gray de 2 bits
 - **00, 01, 11, 10**

Vantagens

- Mesmo número de FFs que a codificação binária
- Apenas um bit muda para estados adjacentes
 - Menos consumo de energia (menos variação nos FFs)

Desvantagem

Decodificação mais complexa

Codificação One Hot

- □ Cada estado possui seu próprio FF setado em 1, enquanto os demais ficam em 0 → número de FF depende do número de estados
 - Exemplo → 3 estados
 □ 001, 010, 100

Vantagem

Decodificação mais simples

Desvantagem

■ Maior número de FF → maior consumo de energia

Passo 2 – Codificação dos Estados

Estado Atual		Entrada	Próximo Estado		Saída
Q_1	Q_0	E	Q_1	\mathbf{Q}_0	S
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	0	1

CÓDIGO DE CONTAGEM BINÁRIA

Estado	Estado do FF (Q ₁ Q ₀)
Α	00
В	01
С	10

Passo 3 – Escolha do Flip-Flop

Flip-flop JK:

- equações de entrada mais simplificadas que outros FF
- possui duas conexões de entrada, dificultando o projeto de Cls

Flip-flop D:

- possui apenas uma conexão de entrada
- projeto mais simples
- equações de entrada mais complexas

Flip-flop T:

- possui apenas uma conexão de entrada
- equações de entrada mais complexas que o JK, mas mais simples que D

Passo 3 – Escolha do Flip-Flop

NESTE EXEMPLO VAMOS UTILIZAR O FLIP-FLOP D

Esta Atı		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF D)
Q_1	Q_0	E	\mathbf{Q}_1	\mathbf{Q}_0	S	D_1	D_0
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	1	0	1		

	tado tual	Entrada	Próximo Estado		Saída	Equaç Entrada	
Q_1	Q_0	E	\mathbf{Q}_{1}	\mathbf{Q}_0	S	D_1	D_0
q	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	0		
0	1	1 /	1	0	0		
1	0	0	0	0	1		
1	0	1 /	1	0	1		
	<i></i>						

O valor de Q₁ deve se manter em 0 no próximo estado.

Qual o valor de D para que isso aconteça?

Estado Atual		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF D)
Q_1	\mathbf{Q}_0	E	\mathbf{Q}_1	\mathbf{Q}_0	S	D_1	D_0
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	1	0	1		

CLK	D	Q _{t+1}
≠↑	X	Qt
↑	0	0
↑	1	1

Esta Atı		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF D)
Q_1	\mathbf{Q}_0	E	\mathbf{Q}_{1}	\mathbf{Q}_0	S	D_1	D_0
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	
0	/1	0	0	0	0		
0	1	1	1/	0	0		
1	0	0	0	0	1		
1	0	1 /	1	0	1		

O valor de Q₀ deve mudar de 0 para 1 no próx. estado.

Qual o valor de D para que isso aconteça?

Estado Atual		Entrada	Próximo Estado		Saída	Equaç Entrada	ões de a (FF D)
Q_1	\mathbf{Q}_0	E	Q_1	\mathbf{Q}_0	S	D_1	D_0
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	1		
1	0	1	1	0	1		

CLK	D	Q _{t+1}
≠↑	Х	Qt
↑	0	0
↑	1	1

Esta Atı		Entrada	Próximo Estado		Saída	Equaç Entrada	Equações de Entrada (FF D)	
Q_1	\mathbf{Q}_0	E	\mathbf{Q}_1	\mathbf{Q}_0	S	D_1	D_0	
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	1	
0	1	0	0	0	0	0	0	
0	1	1	1	0	0	1	0	
1	0	0	0	0	1	0	0	
1	0	1	1	0	1	1	0	

Para o FF tipo D, a tabela das equações de entrada é igual a tabela do próximo estado!

	Estado Atual Entrada óxim		Saída	Equaç Entrada	ões de a (FF D)	
Q_1	Q_0	E		S	D_1	D_0
0	0	0	0	0	0	0
0	0	1	0 1	0	0	1
0	1	0	9	0	0	0
0	1	1		0	1	0
1	0	0		1	0	0
1	0	1		1	1	0

DEPOIS DE PREENCHER A PARTE DA TABELA DE EQUAÇÕES DE ENTRADA, VOCÊ PODE DESCARTAR A PARTE DE PRÓXIMO ESTADO

Estado Atual		Entrada			ões de a (FF D)
Q_1	Q_0	Е	S	D_1	D_0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	0

Equações de Entrada para o FF tipo D :

$$D_{1} = \overline{Q_{1}}Q_{0}E + Q_{1}\overline{Q_{0}}E = (Q_{1} \oplus Q_{0})E$$

$$D_{0} = \overline{Q_{1}}\overline{Q_{0}}E$$

Passo 4 – Equações da(s) Saída(s)

Estado Atual		Entrada	Saída		ões de a (FF D)
Q_1	Q_0	E	S	D_1	D_0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	0

Equações de Saída:

$$S = Q_1 \overline{Q_0}$$

MÁQUINA DE MOORE → SAÍDA DEPENDE SÓ DO ESTADO ATUAL

Passo 5 - Circuito

Passo 5 - Circuito → RESET

RESET

Define o estado inicial da máquina de estados

Passo 5 - Circuito → RESET

RESET assíncrono

Vantagem

■ Mais rápido → não precisa esperar a borda do clock pra resetar o circuito

Desvantagem

- Sinal de RESET é sensível a ruído
- Pode causar metaestabilidade nos flip-flops

SINAL DE RESET ATIVADO

	Estado Entrada Próximo Estado		Saída		
Q_1	Q_0	E	\mathbf{Q}_{1}	\mathbf{Q}_{0}	S
0	0	X	?	?	0

A MÁQUINA PERMANECE NESSE ESTADO ATÉ A PRÓXIMA BORDA DE CLOCK!

NA BORDA DE CLOCK, A MÁQUINA OBSERVA O ESTADO ATUAL E A(S) ENTRADA(S) PARA DECIDIR O PRÓXIMO ESTADO

Estado Atual		Entrada	Próximo Estado		Saída
Q ₁	Q_0	E	Q_1	\mathbf{Q}_0	S
0	0	0	0	0	0

APÓS UM ATRASO A MÁQUINA MUDA DE ESTADO E PERMANECE NESSE ESTADO ATÉ A PRÓXIMA BORDA DE CLOCK

	Estado Entrada Próximo Estado			Saída	
Q ₁	Q_0	E	Q_1	\mathbf{Q}_0	S
0	0	Х	?	?	0

NA BORDA DE CLOCK, A MÁQUINA OBSERVA O ESTADO ATUAL E A(S) ENTRADA(S) PARA DECIDIR O PRÓXIMO ESTADO

	Estado Entrada Próximo Estado		Saída		
Q_1	Q_0	E	Q_1	\mathbf{Q}_0	S
0	0	1	0	1	0

APÓS UM ATRASO A MÁQUINA MUDA DE ESTADO E PERMANECE NESSE ESTADO ATÉ A PRÓXIMA BORDA DE CLOCK

Estado Atual		Entrada	Próximo Estado		Saída
Q ₁	Q_0	E	Q_1	\mathbf{Q}_0	S
0	1	Х	?	?	0

NA BORDA DE CLOCK, A MÁQUINA OBSERVA O ESTADO ATUAL E A(S) ENTRADA(S) PARA DECIDIR O PRÓXIMO ESTADO

Estado Atual		Entrada	Próximo Estado		Saída
Q_1	Q_0	E	Q_1	\mathbf{Q}_0	S
0	1	1	1	0	0

APÓS UM ATRASO A MÁQUINA MUDA DE ESTADO E PERMANECE NESSE ESTADO ATÉ A PRÓXIMA BORDA DE CLOCK

Esta Atı		Entrada	Próximo Estado		Saída
Q_1	Q_0	E	\mathbf{Q}_{1}	\mathbf{Q}_0	S
1	0	Х	?	?	1

Máquinas de Estados Finitos

MÁQUINA DE MEALY

Máquinas de Estados Finitos

MÁQUINA DE MEALY (Exemplo com 2 FFs D)

- A saída depende do estado atual e da entrada
- A entrada só interfere no próximo estado

- A saída depende do estado atual e da entrada
- A entrada só interfere no próximo estado

Exemplo: Contador síncrono crescente de 2 bits com ENABLE

Quando ENABLE = $0 \rightarrow$ para de contar

Quando ENABLE = 1 → conta normalmente

COMO FICA O DIAGRAMA DE ESTADOS?

Exemplo: Contador síncrono crescente de 2 bits

COMO FICA O DIAGRAMA DE ESTADOS?

O circuito não tem entrada, então as transições acontecem independentes → X (don`t care)

Exemplo - Máquina de Mealy

Projete uma máquina de estados de Mealy com uma entrada E e uma saída S, onde S será 1 somente se a entrada E for igual a 1 nas últimas duas bordas de clock.

Diagrama de Estados - Mealy

ESTADO A

SE E = $0 \rightarrow$ CONTINUA EM A E S = 0

SE E = 1 → VAI PARA O PRÓXIMO ESTADO E S = 0

ESTE É O ESTADO INICIAL DA MÁQUINA DE ESTADOS.

ESTE ESTADO IDENTIFICA QUE A ENTRADA E NUNCA ESTEVE EM 1 DURANTE UMA BORDA DE CLOCK OU QUANDO E=0.

Diagrama de Estados - Mealy

ESTADO B

SE E = $0 \rightarrow VAI PARA O ESTADO A E S = 0$ SE E = $1 \rightarrow CONTINUA NO ESTADO B E S = 1$

ESTE ESTADO IDENTIFICA QUE A ENTRADA E ESTEVE EM 1 DURANTE 1 OU MAIS VEZES NAS DUAS ÚLTIMAS BORDAS DE CLOCK.

A TRANSIÇÃO 1/1 IDENTIFICA QUE A ENTRADA E ESTEVE EM 1 NAS DUAS ÚLTIMAS BORDAS DE CLOCK.

Diagrama de Estados - Mealy

COMO
TRANSFORMAR
ESSE DIAGRAMA
DE ESTADOS EM
CIRCUITO?

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)

NA MÁQUINA DE MEALY CADA LINHA DA TABELA DE ESTADOS REPRESENTA UMA FLECHA DO DIAGRAMA DE ESTADOS!

A SAÍDA SERÁ O VALOR CONTIDO NA FLECHA!

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	Α	0
Α	1	В	0

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	Α	0
Α	1	В	0
В	0	Α	0

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
Α	0	A	0
Α	1	В	0
В	0	Α	0
В	1	В	1

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
A	0	A	0
A	1	В	0
В	0	A	0
В	1	В	1

NA MÁQUINA DE MEALY CADA LINHA DA TABELA DE ESTADOS REPRESENTA UMA FLECHA DO DIAGRAMA DE ESTADOS!

Passo 2 – Codificação dos Estados

Estado Atual	Entrada (E)	Próximo Estado	Saída (S)
0	0	0	0
0	1	1	0
1	0	0	0
1	1	1	1

CÓDIGO DE CONTAGEM BINÁRIA

Estado	Estado do FF (Q ₀)	
Α	0	
В	1	

Passo 3 – Escolha do Flip-Flop

NESTE EXEMPLO VAMOS UTILIZAR O FLIP-FLOP D

Passo 4 – Equações de Entrada dos FFs

Estado Atual	Entrada	Próximo Estado	Saída	Equação de Entrada (FF D)
Q_0	Е	Q_0	S	D_0
0	0	0	0	0
0	1	1	0	1
1	0	0	0	0
1	1	1	1	1

Para o FF tipo D, a tabela das equações de entrada é igual a tabela do próximo estado!

Passo 4 – Equações de Entrada dos FFs

Estado Atual	Entrada	xiv		Saída	Equação de Entrada (FF D)
Q_0	Е			S	D_0
0	0			0	0
0	1		_	0	1
1	0	Ó		0	0
1	1	1		1	1

DEPOIS DE PREENCHER A PARTE DA TABELA DE EQUAÇÕES DE ENTRADA, VOCÊ PODE DESCARTAR A PARTE DE PRÓXIMO ESTADO

Passo 4 – Equações de Entrada dos FFs

Estado Atual	Entrada	Saída	Equação de Entrada (FF D)
Q_0	Е	S	D_0
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	1

Equações de Entrada para o FF tipo D:

$$D_0 = \overline{Q_0}E + Q_0 E = E(\overline{Q_0} + Q_0) = E$$

Passo 4 – Equações da(s) Saída(s)

Estado Atual	Entrada	Saída	Equação de Entrada (FF D)
Q_0	Е	S	D_0
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	1

Equações de Saída:

$$S = Q_0 E$$

MÁQUINA DE MEALY → SAÍDA DEPENDE DO ESTADO ATUAL E DA(S) ENTRADA(S)

Passo 5 - Circuito

$$D_0 = E$$

$$S = Q_0 E$$

Passo 5 - Circuito → RESET

RESET

Define o estado inicial da máquina de estados

Passo 5 - Circuito → RESET

RESET assíncrono!

E FICOU 0 VEZES EM 1 NA BORDA DE CLOCK → SAÍDA = 0

E FICOU 1 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 1 ???

VARIAÇÕES DA ENTRADA SÃO SENTIDAS NA SAÍDA

Máquina de Mealy Síncrona

- Na máquina de Mealy tradicional, como a saída depende da entrada, valores incorretos na entrada durante o ciclo de clock podem afetar a saída
- Uma solução para evitar valores incorretos na saída é torná-la síncrona:
 - adiciona-se um flip-flop tipo D na saída do circuito
 - este flip-flop terá o mesmo clock dos demais flip-flops do circuito
 - a nova saída do circuito será a saída Q deste flip-flop

E FICOU 0 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 0

E FICOU 1 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 0

E FICOU 2 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 1

E FICOU 1 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 0

E FICOU 1 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 0

E FICOU 2 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 1

E FICOU 1 VEZES EM 1 NAS 2 ULT. BORDAS → SAÍDA = 0

Moore ou Mealy?

- Em geral, uma máquina de Mealy de um circuito será mais econômica em componentes físicos (hardware) do que a versão Moore
- Na máquina de Mealy, como a saída depende da entrada, valores incorretos na entrada durante o ciclo de clock podem afetar a saída
- Isso pode não ocorrer na versão Moore, pois alterações na saída e no estado só ocorrem na transição do clock (melhor sincronismo)

Máquinas de Estados Síncronas

Em geral, máquinas de estados síncronas são muito mais fáceis de implementar e debugar que máquinas de estados assíncronas
 Máquinas de Moore

□ Você deve usar máquinas Mealy assíncronas somente após uma análise muito cuidadosa do comportamento de temporização de entrada/saída da máquina de estados finitos