ANÁLISE DOS DADOS COM R

Ferramentas de Machine Learning

James R. Hunter, PhD Retrovirologia, EPM, UNIFESP

2023-10-17

REGRESSÃO LOGÍSTICA

- Usado freqüentemente em bioestatística
- Extensão do conceito básico da regressão linear
- Variável dependente (Y) agora é binomial
 - Tem 2 estados:
 - TRUE: FALSE
 - 0
 - o "R5"; "X4"
 - o "infetado"; "não infetado"
- As variáveis independentes podem ser numéricas ou categóricas

FUNÇÃO logit

- log-odds
- odds de um evento = p/(1-p)
 - probabilidade do evento dividido pela probabilidade que não acontecerá
- logit é o logaritmo natural dos odds

$$logit(p) = \frac{p}{1 - p}$$

FUNÇÃO LOGÍSTICA

- Aplicamos função para as variáveis independentes (X)
 - Resultado: Variável dependente fica no intervalo entre 0 e 1
 - o intervalo de probabilidades
- Função Logística
 - Inverso de logit
 - Aplicável a qualquer número

$$logit^{-1}(x) = \frac{1}{1 + e^{-x}}$$

COMPARAR RSL COM REGRESSÃO LOGÍSTICA

Regressão Linear (usando notação de matrizes)

$$y = X\beta + \epsilon_i$$

Regressão Logística

$$p(y_i = 1) = logit^{-1}(X_i\beta) + \epsilon_i$$

MODELOS LINEARES GERAIS (GENERAL LINEAR MODELS)

- Regressão logística faz parte de uma classe dos modelos:
 GLM
- Eles manipulam os matrizes diferente do modelo linear simples
 - Que é um caso especial dos GLM
- Outros modelos GLM: poisson (dados de contagem)
- Output seria semelhante com o output do regressão simples

EXEMPLO SIMPLES

- Estudo de 100 pacientes que têm ou não têm doença cardíaca coronária (CHD)
- Estudo interessado na relação entre a idade do paciente e a CHD
- Dados vêm de Hosmer & Lemeshow, *Applied Logistic Regression* (2a Ed.)
 - No arquivo chdage csv

CARREGAR OS DADOS

ANALISE BÁSICA EXPLORATÓRIA

Descriptive Statistics chdage\$idade
N: 100

Mean Std.Dev Min Q1 Median Q3 Max IQR CV
-----idade 44.38 11.72 20.00 34.50 44.00 55.00 69.00 20.25 0.26

```
1 chdage %>%
2 select(chd) %>%
3 freq()
```

Frequencies chdage\$chd
Type: Factor

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
negativo	57	57.00	57.00	57.00	57.00
positivo	43	43.00	100.00	43.00	100.00
<na></na>	0			0.00	100.00
Total	100	100.00	100.00	100.00	100.00

SCATTERPLOT DE CHD E IDADE

- 1 chdscat <- ggplot(data = chdage, aes(y = chd, x = idade)) + geom_point()</pre>
- 2 chdscat

BOXPLOT DA IDADE

```
1 chdbox <- ggplot(data = chdage, aes(x = chd, y = idade, group = chd))
2 chdbox <- chdbox + geom_boxplot()
3 chdbox</pre>
```


GRÁFICO DE DENSIDADE CONDICIONAL

- Também útil para entender como idade muda nas 2 categorias de CHD
- Mostra o número daqueles com a doença (chd = 1) para todos as idades
 - Numa forma continua

MODELO

- Como o pacote lm, glm usa o formato de formula para especificar o modelo
 - variável dependente ~ variáveis independentes
 - variáveis independentes separados com +
- Fonte dos dados (data =)
- Family dos modelos (neste caso, binomial)
- Função link (neste caso, logit)

RESULTADOS

- Obter os resultados como no lm, com summary
- Também podemos olhar nos coeficientes com um gráfico chamada coefplot
- Vem de pacote de mesmo nome

COEFICIENTES DO MODELO

1 summary(chdfit1)

PLOTAGEM DOS COEFICIENTES

1 coefplot::coefplot(chdfit1)

ENTENDER OS COEFICIENTES

- Parecido com o que nós conhecemos da regressão linear
- Os coeficientes em si representam os log odds que o resultado Y = 1.
- Pode ver no gráfico quais são positivos e quais negativos
- Gráfico indica também o tamanho do erro padrão para cada variável independente
- Para entender os coeficientes melhor, precisa calcular o logit inverso
- Este põe os coeficientes no intervalo entre 0 e 1
 - ou seja, probabilidade

LOGIT INVERSO

```
1 invlogit <- function(x) {
2   1/(1 + exp(-x))
3  }
4 invlogit(chdfit1$coefficients[2])
  idade
0.5277019</pre>
```

- Assim, podemos interpretar os resultados como probabilidades
- Com uma probabilidade acima de 50%, podemos dizer que idade tem uma relação positiva com a ocorrência de CHD

DESVIO E AIC

- 2a parte dos resultados são os equivalentes de \mathbb{R}^2 , medidas de qualidade do modelo
- Invés da variância, com glm falamos de desvio
- Queremos minimizar o desvio residual
- AIC = Akaike's Information Criterion (aqui = 111.3530927)
- AIC útil para comparar modelos
 - Nota menor melhor

ESTE MODELO

- Desvio Residual = 107.3530927
- AIC = 111.3530927

SEGUNDO MODELO PARA COMPARAÇÃO

- Modelo com Idade categórica grupos de idade
- Esperança que podemos entender melhor as probabilidades relacionados aos grupos de idade mais específicos
 - Idosos mais propensos a CHD?
- Vamos usar recode do pacote car
 - Mais flexível que recode de dplyr

GRUPOS DE IDADE

```
1 chdage$idgrp <- car::Recode(chdage$idade, "20:29 = '20-29'; 30:34 = '30-34'

2 35:39 = '35-39'; 40:44 = '40-44'; 45:49 = '45-49';

3 50:54 = '50-54'; 55:59 = '55-59'; 60:69 = '60-69'",

4 as.factor = TRUE)
```

MODELO DE GRUPOS

RESULTADOS

1 summary(chdfit2)

GRÁFICO DOS COEFICIENTES DO MODELO

IDOSOS TÊM ALTA PROBABILIDADE DE CHD

1 invlogit(coef(chdfit2)[5:8])

idgrp45-49 idgrp50-54 idgrp55-59 idgrp60-69 0.8852459 0.9375000 0.9669421 0.9729730

QUAL MODELO PARECE MELHOR?

- Modelo 1 Idade Numérica
 - Desvio Residual = 107.3530927
 - AIC = 111.3530927
- Modelo 2 Idade Categórica
 - Desvio Residual = 107.9614654
 - AIC = 123.9614654
- AIC melhor no modelo numérico
- Mas, modelo categórico oferece mais informação sobre grupos de idade de interesse

EXEMPLO COM MÚLTIPLAS VARIÁVEIS INDEPENDENTES

OUTRO ESTUDO SOBRE CHD

- Pesquisadores querem identificar fatores causativos para CHD
- Covariados independentes
 - id (Número de identificação do caso)
 - idade (em anos)
 - bmi (índice de massa corporal em kg/m^2)
 - genero (0 = masculino, 1 = feminino)
- 65 casos
- Dados-riscochd.RData

ANÁLISE EXPLORATÓRIO

Descriptive Statistics riscochd N: 65

	Mean	Std.Dev	Min	Q1	Median	Q3	Max	IQR	CV
bmi	28.42	5.36	16.78	25.18	28.06	31.47	44.94	6.30	0.19
idade	71.38	17.67	33.00	56.00	74.00	84.00	99.00	28.00	0.25

- 1 riscochd %>%
- 2 select(genero) %>%
- 3 freq()

Frequencies riscochd\$genero Type: Factor

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
masculino	41	63.08	63.08	63.08	63.08
feminino	24	36.92	100.00	36.92	100.00
<na></na>	0			0.00	100.00
Total	65	100.00	100.00	100.00	100.00

1 riscochd %>%

- 2 select(chd) %>%
- 3 freq()

Frequencies riscochd\$chd
Type: Factor

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
negativo	33	50.77	50.77	50.77	50.77
positivo	32	49.23	100.00	49.23	100.00
<na></na>	0			0.00	100.00
Total	65	100.00	100.00	100.00	100.00

BOXPLOT DA IDADE

BOXPLOT DE IMC

MODELO 1 - TODAS AS VARIÁVEIS INDEPENDENTES

MODELO 2 - USANDO SOMENTE A VARIÁVEL idade

SEGUNDO MODELO COMPARADO AO PRIMEIRO

- AIC aumentou com só idade
- Modelo piorou em qualidade

MODELO 3 - USANDO AS VARIÁVEIS idade E bmi

DESEMPENHO DO NOVO MODELO

- De todos os três, tem o melhor AIC (50.2246163)
- Desvio residual fica muito perto (um pouco mais alto) do desvio do primeiro

GRÁFICO DE COEFICIENTES DO MODELO FINAL

RESULTADOS TRADUZIDOS EM PROBABILIDADE E ODDS

```
1 paste("Relação de Odds:", exp(coef(chdfit5))) # Calculate the odds
[1] "Relação de Odds: 8.82049684688823e-10"
[2] "Relação de Odds: 1.16450293285125"
[3] "Relação de Odds: 1.4193517190987"
 1 exp(confint(chdfit5))
(Intercept) 6.449713e-15 0.000004578083
         1.092511e+00 1.272408489774
idade
bmi
           1.192024e+00 1.794849303037
 1 paste("Probabilidade de Ocorrência:", invlogit(chdfit5$coefficients))
```

- [1] "Probabilidade de Ocorrência: 8.82049683910812e-10"
- [2] "Probabilidade de Ocorrência: 0.538000163999444"
- [3] "Probabilidade de Ocorrência: 0.586666133697776"

CONCLUSÃO SOBRE CONJUNTO DE riscochd

- Os 2 fatores no último modelo tem mais de 50% probabilidade de ser riscos para doenças cardíacas
- Modelos de regressão logística são difíceis de interpretar.
 - Log Odds, Odds ratios, AIC, etc.
- Modelo ainda muito importante e vai ser visto bastante

MODELO DE DIAGNOSE DE CÂNCER DE MAMA

- Dados vêm de Wisconsin dados sobre câncer de mama
- Características dos tumores de mama
- Variável dependente: diagnose (diag)

COIVARIÁVEIS - CARACTERÍSTICAS DOS TUMORES

- Vem de analise de imagens baseado na aspiração com agulha fina
- Características
 - Sample ID (code number)
 - Clump thickness
 - Uniformity of cell size
 - Uniformity of cell shape
 - Marginal adhesion
 - Single epithelial cell size
 - Number of bare nuclei
 - Bland chromatin
 - Number of normal nuclei
 - Mitosis

CARREGAR DADOS

```
1 bc data <- read.table(here::here("../breast-cancer-wisconsin-data.txt"),</pre>
                           header = FALSE,
 2
                           sep = ",",
 4
                           na.strings = "?")
 5 colnames(bc data) <- c("sample code number",</pre>
                            "clump thickness",
 7
                            "uniformity of cell size",
                            "uniformity of cell shape",
9
                            "marginal adhesion",
                            "single epithelial cell size",
10
                            "bare nuclei",
11
                            "bland chromatin",
12
13
                            "normal nucleoli",
                            "mitosis",
14
15
                            "diag")
16
17
18 bc_data$diag <- ifelse(bc_data$diag == "2", "benign",</pre>
                               ifelse(bc data$diag == "4". "malignant". NA))
```

DADOS

1 glimpse(bc_data)

ANALISE DE NAS - DECISÃO SOBRE O QUE FAZER COM ELES

Quantas NAs estão nos dados?

```
1 sum(is.na(bc_data))
```

[1] 16

• São todos na variável bare_nuclei

QUANTAS AMOSTRAS PERDEMOS SE RETIRAR OS NAS?

```
1 glue::glue("Número de casos perdidos: ", nrow(bc_data[is.na(bc_data), ]))
Número de casos perdidos: 16

1 glue::glue("Tamanho da base final: ", dim(drop_na(bc_data))[1])
Tamanho da base final: 683
```

OPÇÕES PARA RESOLVER NAS

- Eliminar casos com NA tidyr::drop_NA()
- Preencher NAs com valores vizinhos tidyr::fill()
 - Como feito com casos de tuberculose em Rússia
- Preencher com um outro valor tidyr::replace_na()
 - Valor que você decide
 - Ex.0(x <- x %>% mutate_all(replace_na,
 0))
- Imputar valores com pacote mice

IMPUTAR VALORES COM mice

- Pacote e função mice
 - Multivariate Imputation by Chained Equations
- Cria dados imputados para dados incompletos multivariados
 - Gibbs Sampling (técnica bayesiana)
 - Gera valores plausíveis sintéticos dado as outras colunas no dataset
- Imputação introduza mais incerteza no modelo

```
descr(bc_data$bare_nuclei, transpose = TRUE, # todos NA vem de bare_nuclei
stats = c("mean", "sd", "med", "min", "max", "n.valid"))
```

Descriptive Statistics bc_data\$bare_nuclei N: 699

Mean Std.Dev Median Min Max N.Valid
------bare_nuclei 3.54 3.64 1.00 1.00 10.00 683.00

```
1 a_numero <- function(x) as.numeric(as.character(x))
2 mod_cols <- colnames(bc_data[2:10])
3 bc_data <- bc_data %>%
4    mutate_at(mod_cols, ~a_numero(.), na.rm = TRUE)
5 dataset_impute <- mice::mice(bc_data[, 2:10], print = FALSE)
6 bc_data <- cbind(diag = bc_data$diag, mice::complete(dataset_impute, 1))
7 descr(bc_data$bare_nuclei, transpose = TRUE, # todos NA vem de bare_nuclei
8    stats = c("mean", "sd", "med", "min", "max", "n.valid"))</pre>
```

Descriptive Statistics bc_data\$bare_nuclei
N: 699

	Mean	Std.Dev	Median	Min	Max	N.Valid
bare nuclei	3.52	3.62	1.00	1.00	10.00	699.00

RESUMO DAS DIAGNOSES

- Converter diag para um factor
- Quantos casos de benign e malignant têm?
 - bc_data\$diag <- as.factor(bc_data\$diag)
 summary(bc_data\$diag)</pre>

```
benign malignant 458 241
```

GRÁFICO DAS DIAGNOSES

```
1 brgr1 <- ggplot(bc_data, aes(x = diag, fill = diag)) + geom_bar(fill = new_
2 brgr1</pre>
```


CLASSES DE diag DESEQUILIBRADAS

- Normalmente precisa um ajuste para tratar dessa desequilíbrio
- Não vamos fazer isso aqui

EXPLORAÇÃO DE ALGUMAS DAS COVARIÁVEIS

Descriptive Statistics bc_data N: 699

	Mean	Std.Dev	Min	Q1	Median	Q3	Max	IQR	CV
bare_nuclei	3.52	3.62	1.00	1.00	1.00	6.00	10.00	4.50	1.03
bland_chromatin	3.44	2.44	1.00	2.00	3.00	5.00	10.00	3.00	0.71
clump_thickness	4.42	2.82	1.00	2.00	4.00	6.00	10.00	4.00	0.64
marginal_adhesion	2.81	2.86	1.00	1.00	1.00	4.00	10.00	3.00	1.02
mitosis	1.59	1.72	1.00	1.00	1.00	1.00	10.00	0.00	1.08
normal_nucleoli	2.87	3.05	1.00	1.00	1.00	4.00	10.00	3.00	1.07
single_epithelial_cell_size	3.22	2.21	1.00	2.00	2.00	4.00	10.00	2.00	0.69
uniformity_of_cell_shape	3.21	2.97	1.00	1.00	1.00	5.00	10.00	4.00	0.93
uniformity_of_cell_size	3.13	3.05	1.00	1.00	1.00	5.00	10.00	4.00	0.97

GRÁFICO DAS COVARIÁVEIS COM A DIAGNOSE

```
1 gr_covars <- gather(bc_data, x, y, clump_thickness:mitosis) %>%
2 ggplot(aes(x = y, color = diag, fill = diag)) +
3 geom_density(alpha = 0.3) +
4 facet_wrap( ~ x, scales = "free", ncol = 3)
```

1 gr_covars

ANÁLISE DE COMPONENTES PRINCIPAIS (PCA)

- PCA técnica para agrupar variáveis
- Neste caso
 - Mostra que os níveis de diagnose formam espaços coerentes
- Usa pacote pcaGoPromoter de Bioconductor
 - Pacote faz PCA e tem funções para ajudar na interpretação

GRÁFICO DE CORRELAÇÃO

- Existem fortes ou fracas associações entre as covariáveis?
- Uso do pacote corrr

```
1 corrdf |>
2
     gt() |>
    fmt_number(decimals = 3) |>
3
     cols_width(clump_thickness:mitosis ~ px(75)) |>
4
     cols_label(clump_thickness = "clump",
5
6
                uniformity of cell size = "unif size",
7
                uniformity of cell shape = "unif shape",
                marginal_adhesion = "marg_ad",
8
                single_epithelial_cell_size = "single",
9
                bare_nuclei = "bare_nuc",
10
                bland chromatin = "bland",
11
                normal nucleoli = "normal",
12
13
                mitosis = "mitosis")
```

term	clump	unif_size	unif_shape	marg_ad	single	bare_nuc	bland	normal	mitosis
clump_thickness	NA	0.645	0.655	0.486	0.522	0.595	0.558	0.536	0.350
uniformity_of_cell_size	0.645	NA	0.907	0.706	0.752	0.694	0.756	0.723	0.459
uniformity_of_cell_shape	0.655	0.907	NA	0.683	0.720	0.715	0.736	0.719	0.439
marginal_adhesion	0.486	0.706	0.683	NA	0.600	0.668	0.667	0.603	0.418
single_epithelial_cell_size	0.522	0.752	0.720	0.600	NA	0.585	0.616	0.629	0.479
bare_nuclei	0.595	0.694	0.715	0.668	0.585	NA	0.680	0.587	0.339
bland_chromatin	0.558	0.756	0.736	0.667	0.616	0.680	NA	0.666	0.344
normal_nucleoli	0.536	0.723	0.719	0.603	0.629	0.587	0.666	NA	0.428
mitosis	0.350	0.459	0.439	0.418	0.479	0.339	0.344	0.428	NA

TREINAMENTO E TESTE - DADOS SEPARADOS

PACOTE caret

- Funções para apoiar machine learning
- Pode conduzir todo a análise dentro de caret
- No grupos dos pacotes iniciais

SEPARAR TREINAMENTO E TESTES

- Utilizar função caret::createDataPartition()
 para criar bases separadas
 - 1 para treinamento do modelo
 - 1 para testes
- Especificar (p) porcentagem de dados colocado na base de treinamento
- createDataPartition() estratifica os dados baseada nas proporções da variável y

CRIAR AS BASES TREINAMENTO E TESTES

```
1 set.seed(42)
2 indice <- caret::createDataPartition(bc_data$diag, p = 0.7, list = FALSE)
3 train_data <- bc_data[indice, ] # use os índices para o treinamento
4 test_data <- bc_data[-indice, ] # use os outros para testes</pre>
```

AS BASES REFLETEM OS MESMOS DADOS?

EXEMPLOS DOS TIPOS DE MODELOS

- Regressão Logística
 - Ex: GLM
- Classificação com Arvores
 - Árvores recursivas de particionamento e regressão (pacote rpart)
 - Florestas Aleatórias ("Random Forests")
- Todos com caret

CONTROLE DE TREINAMENTO

- Antes de iniciar o passo de treinar o modelos, precisamos decidir qual tipo de validação queremos usar
 - bootstrap, k-fold cross validation
- Especificar através da função caret::trainControl()
- Queremos usar 10-fold cross validation
- Se pudermos repetir o processo de cross validation, faz a seleção do modelo ainda mais forte
 - Repetiremos 10 vezes

trainControl()

VARIÁVEL DEPENDENTE: diag (BENIGN OU MALIGNANT)

- Qual tipo de análise mais relacionado?
- Regressão logística

TREINAMENTO DO MODELO - REGRESSÃO LOGÍSTICA

MODELO

1 model glm

```
Generalized Linear Model

490 samples
9 predictor
2 classes: 'benign', 'malignant'

Pre-processing: scaled (9), centered (9)
Resampling: Cross-Validated (10 fold, repeated 10 times)
Summary of sample sizes: 441, 441, 441, 441, 441, 441, ...
Resampling results:

Accuracy Kappa
0.9555192 0.9012518
```

RESUMO DOS RESULTADOS DO MODELO

Call: MIIT.T.

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

```
Null deviance: 631.346 on 489 degrees of freedom
```

O MODELO PODE PREDIZER OS RESULTADOS DE TREINAMENTO E DE TESTE?

- Função predict()
 - com modelo e valores para ser usados para previsão
- Aplicado a base de train como exemplo
- Mais interessante base de test
 - Modelo nunca viu esses dados antes
- Teste ácido

PREVISÕES

```
1 predtr <- predict(model_glm, train_data)
2 predtest <- predict(model_glm, test_data)
3 tabyl(predtest) %>% adorn_pct_formatting()

predtest n percent
  benign 138 66.0%
malignant 71 34.0%
```

```
predtr n percent
benign 321 65.5%
malignant 169 34.5%
```

1 tabyl(predtr) %>% adorn_pct_formatting()

QUAIS VARIÁVEIS TÊM IMPORTÂNCIA PARA O MODELO

1 plot(caret::varImp(model glm))

MATRIZ DE CONFUSÃO - UMA TABELA DE VERDADE

		True condition			
	Total population	Condition positive	Condition negative		
Predicted	Predicted condition positive	True positive	False positive, Type I error		
condition	Predicted condition negative	False negative, Type II error	True negative		

- Maneira de comparar as previsões com a verdade
- Se as previsões não são corretas, tem ou Erro de Tipo I ou Tipo II
 - Tipo I Falso positivo
 - Tino II Falco nogativo

CÁLCULOS POSSÍVEIS COM A MATRIZ DE CONFUSÃO

		True condition						
	Total population	Condition positive	Condition negative		Σ True posi	uracy (ACC) = tive + Σ True negative otal population		
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive			
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative			
(True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm Σ False positive Σ Condition negative	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	F ₁ score =		
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$Specificity (SPC), Selectivity, \\ True negative rate (TNR) \\ = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	Precision + Recall		

PREVISÕES COM OS DADOS DE TESTE - MATRIZ DE **CONFUSÃO**

```
1 confusionMatrix(predtest, test data$diag, positive = "malignant")
```

Confusion Matrix and Statistics

Reference

Prediction benign malignant penign 135 3 malignant 2 benign

Accuracy: 0.9761

95% CI: (0.9451, 0.9922) No Information Rate: 0.6555 P-Value [Acc > NIR] : <2e-16

Kappa : 0.9469

Mcnemar's Test P-Value : 1

Sensitivity: 0.9583 Specificity: 0.9854 Pos Pred Value: 0.9718 Neg Pred Value: 0.9783 Prevalence: 0.3445 Detection Rate: 0.3301

PREVISÕES COM OS DADOS DE TREINAMENTO - MATRIZ DE CONFUSÃO

1 confusionMatrix(predtr, train data\$diag, positive = "malignant")

Confusion Matrix and Statistics

Reference

Prediction benign malignant benign 311 10 malignant 10 159

Accuracy: 0.9592

95% CI: (0.9377, 0.9749)

No Information Rate : 0.6551 P-Value [Acc > NIR] : <2e-16

Kappa : 0.9097

Mcnemar's Test P-Value : 1

"RECEIVER OPERATING CHARACTERISTIC" (ROC) VALIDAÇÃO DO MODELO

- Desenvolvido ao início da WWII para discriminar o que foi o sinal recebido pela nova tecnologia, *radar*
 - Avião ou pássaro
- Mede sensibilidade vs. especificidade de um modelo
- Sensibilidade = % do resultado positivo correto
 - Teste mede % dos resultados positivos das pessoas com uma doença
 - Taxa de previsões positivas certas ("True positive rate", TPR)
- Especificidade = % do resultado negativo correto
 - Teste mede % dos resultados negativos das pessoas sem uma doença

AUC (ÁREA ABAIXO DA CURVA)

- AUC mede quanto porcentagem da área do gráfico a curva do modelo ROC cobre
- 100% quer dizer que o modelo é perfeitamente sensível e especifico
- 50% quer dizer que o resultado é puramente aleatório
- Modelos com AUC maiores prevem melhor que eles com AUC menores
- Pergunta:
 - Como calcular área abaixo de uma curva qualquer em matemática?

ROC EM R

- 2 Pacotes
 - pR0C
 - ROCR
- Iguais (basicamente)
- Faremos aqui pR0C
 - Comando principal roc

pROC::roc()

- Compara as previsões contra as observações
- Previsões precisam ser numéricas (não factor)
- Use as opções seguintes:
 - plot = TRUE, percent = TRUE, ci = TRUE, grid = TRUE
- Produz um gráfico e dados sobre o AUC

CHAMADA E ESTATÍSTICAS

(test_data\$diag malignant).
Area under the curve: 97.19%
95% CI: 94.65%-99.72% (DeLong)

Data: predtestroc in 137 controls (test data\$diag benign) < 72 cases

GRÁFICO

OUTRA CURVA ROC COM DADOS MAIS VARIÁVEIS

Curva ROC

LIMITES DA DECISÃO SOBRE diag

- Onde no gráfico fica a troca ótima?
 - No ponto mais para cima e para esquerda
- pROC::coords() pode calcular este ponto
- Precisa dar as seguintes informações a função:
 - nome de objeto de ROC
 - Palavra "best"
 - Coordenados para retornar a você ("threshold")

LIMITES DE NOSSO MODELO

```
proc::coords(rocteste, "best", ret = "threshold")
```

```
threshold 1 0.5
```

ARVORES DE DECISÃO

NOVO MODELO - MODELOS DE ARVORE - rpart

- Modelos que constroem arvores de decisão
- Excelentes para problemas de classificação
- Pacote rpart
- Gráficos mostra como escolha das classes está sendo feita
 - Gráfico vem do pacote rpart.plot

COMO FUNCIONA UMA ARVORE

- Cf. Kuhn & Johnson, Applied Predictive Modeling (2013)
- Feita de nodos e ramos
- Ramos conectam nodos até que chegar num nodo terminal
- Algoritmo cria uma serie de partilhas (divisões) baseado em testes lógicos aninhados
- Os testes lógicos definem a previsão que o modelo faria com novos dados

EXEMPLO DE UMA REGRA DE UMA ARVORE

```
if Predictor A >= 1.7 then
| if Predictor B >= 202.1 then Outcome = 1.3
| else Outcome = 5.6
else Outcome 2.5
```

ARVORES SÃO UMA TÉCNICA DE MACHINE LEARNING POPULAR

- Interpretação fácil
- Podem lidar com muitas covariáveis de vários tipos
- Não precisa descrever exatamente a relação entre
 - Variável dependente
 - Variáveis independentes
- NA's não criam problemas
- Mas, tem desvantagens também
 - São instáveis (pequena mudança numa variável pode cause grande mudança no resultado)
 - Exatidão de previsões não tão boa que outros tipos de modelos

FUNCIONAMENTO DO MODELO DE ARVORE

- Algoritmo divide os dados em grupos menores que são mais homogêneos com a dependente
- 3 Critérios para divisão
 - Qual variável de previsão para usar para o "split"
 - Profundidade da arvore
 - A equação de previsão nos nodos terminais
- Metodologia de rpart vem de Breiman et. al (1984)
 - Classification and regression tree (CART)

PARÂMETROS CHAVES PARA rpart

- method
 - Para classificação: "class"
 - Para regressão: "anova"
- control
 - Vai chamar rpart.control explicito
 - xval: número de cross-validations
 - minbucket: número mínimo de observações em um nodo terminal
- parms parâmetros para dividindo os casos
 - Só usado para classificação
 - information

rpart MODELO DE CÂNCER DE MAMA

ARVORE

1 rpart.plot(fitree1, extra = 100)

RESUMO DO MODELO DE rpart

```
1 summary(fitree1, cp = 1)
rpart::rpart(formula = diag ~ ., data = train_data, method = "class",
    parms = list(split = "information"), control = rpart.control(xval = 10,
      minbucket = 2, cp = 0))
 n = 490
           CP nsplit rel error
                                  xerror
                   0 1.00000000 1.0000000 0.06226029
1 0.757396450
2 0.038461538
                   1 0.24260355 0.3017751 0.03999748
                  3 0.16568047 0.2130178 0.03417389
3 0.020710059
4 0.008875740
                  5 0.12426036 0.1893491 0.03236108
5 0.005917160
                  8 0.09467456 0.1952663 0.03282693
6 0.004437870
                 11 0.07692308 0.1952663 0.03282693
              15 0.05917160 0.2011834 0.03328412
18 0.05325444 0.2071006 0.03373300
7 0.001972387
8 0.000000000
```

PREVISÕES COM A ARVORE

- predtest <- predict(fitree1, newdata = test_data, type = "class")</pre>
- 2 prop.table(table(predtest))

predtest
 benign malignant
0.6698565 0.3301435

CONFUSION MATRIX - ARVORE

1 confusionMatrix(predtest, test data\$diag, positive = "malignant")

Confusion Matrix and Statistics

Reference

Prediction benign malignant benign 135 5 malignant 2 67

Accuracy: 0.9665

95% CI: (0.9322, 0.9864)

No Information Rate : 0.6555 P-Value [Acc > NIR] : <2e-16

Kappa : 0.9251

Mcnemar's Test P-Value: 0.4497

ROC DADOS

```
1 ## colocar predtest na faixa de 0:1 (atualmente 1:2)
 2 predtestroc <- as.numeric(predtest) -1</pre>
 3 rocteste <- pROC::roc(response = test data$diag,</pre>
 4
                    predictor = predtestroc,
                    levels = c("benign", "malignant"),
 5
 6
                    plot = FALSE, percent = TRUE,
 7
                    ci = TRUE, grid = TRUE)
 8 rocteste
Call:
roc.default(response = test data$diag, predictor = predtestroc, levels =
c("benign", "malignant"), percent = TRUE, ci = TRUE, plot = FALSE, grid =
TRUE)
Data: predtestroc in 137 controls (test data$diag benign) < 72 cases
(test data$diag malignant).
Area under the curve: 95.8%
95% CI: 92.67%-98.92% (DeLong)
 1 pROC::coords(rocteste, "best", ret = "threshold")
threshold
1
    0.5
```

GRÁFICO

ARVORES MAIS ROBUSTAS - RANDOM FORESTS

- Random Forests elaborado como algoritmo por Breiman em 2000
- Ideia básica: Combinando resultados de muitas arvores vai produzir uma arvore final melhor

Grow many deep regression trees to randomized versions of the training data, and average them. *Efron & Hastie*, 2016

 "Randomized versions" – pode ser bootstrapping ou outras técnicas de re-amostragem

ALGORITMO DE RANDOM FORESTS

```
1 Select the number of models to build, m
 2 for i = 1 to m do
      Generate a bootstrap sample of the original data
      Train a tree model on this sample
 4
      for each split do
 5
          Randomly select k \ (< P) of the original predictors
          Select the best predictor among the k predictors and
 7
          partition the data
      end
 8
      Use typical tree model stopping criteria to determine when a
      tree is complete (but do not prune)
10 end
```

Algorithm 8.2: Basic Random Forests

Kuhn & Johnson (2013)

RANDOM FORESTS EM R

- Pacote randomForest
- Formato:

- y deve ser expressa como factor para classificação
- Argumentos chaves:
 - ntrees: número de arvores para a calcular; deve ser muito maior que o número das covariáveis
 - importance = TRUE: para calcular os valores para importância dos variáveis

RANDOM FORESTS APLICADO AO CÂNCER DE MAMA

```
1 \text{ arvores} = 100
 2 rffit <- randomForest::randomForest(as.factor(diag) ~ ., data = train data,</pre>
                      ntree = arvores, importance = TRUE, proximity = TRUE)
 4 rffit
Call:
arvores, importance = TRUE, proximity = TRUE)
            Type of random forest: classification
                 Number of trees: 100
No. of variables tried at each split: 3
       OOB estimate of error rate: 4.08%
Confusion matrix:
       benign malignant class.error
benign 310 11 0.03426791
                   160 0.05325444
malignant
```

N.B. Confusion Matrix aqui é dos dados de treinamento

OOB ERROR????

- "Out of Bag"
 - Para todos as arvores, os erros associados com os valores não utilizados no treinamento do modelo
 - Os valores excluídos durante validação cruzada

PREVISÕES COM A RANDOM FOREST

- 1 predtest <- predict(rffit, newdata = test_data, type = "class")</pre>
- 2 prop.table(table(predtest))

predtest

benign malignant

0.6555024 0.3444976

DESEMPENHO DE RANDOM FOREST

1 confusionMatrix(predtest, test_data\$diag)

Confusion Matrix and Statistics

Reference

Prediction benign malignant benign 135 2 malignant 2 70

Accuracy: 0.9809

95% CI: (0.9517, 0.9948)

No Information Rate : 0.6555 P-Value [Acc > NIR] : <2e-16

Kappa: 0.9576

Mcnemar's Test P-Value : 1

IMPORTÂNCIA DAS VARIÁVEIS

1 randomForest::varImpPlot(rffit, type = 1) ## NB, função dentro de randomFo

O QUE QUER DIZER "MEAN DECREASE ACCURACY"

- Através de todos as arvores A variável causa uma perda de precisão no modelo
- Variáveis que podem causar perda de precisão são mais importantes
- Exemplos:
 - "bare nuclei" é a mais importante porque pode causar mais perda
 - "mitosis" é o menos importante, porque qualquer valor que assuma não vai afetar o resultado do modelo, diag

CONTROLE DE ERROS

 Gráfico de redução de MSE com o número de arvores calculadas

1 plot(rffit, log = 'y')

CURVA ROC E AUC PARA RANDOM FORESTS

```
1 ## colocar predtest na faixa de 0:1 (atualmente 1:2)
 2 predtestroc <- as.numeric(predtest) -1</pre>
 3 rocteste <- pROC::roc(response = test data$diag,</pre>
                    predictor = predtestroc,
                    levels = c("benign", "malignant"),
 5
 6
                    plot = FALSE, percent = TRUE,
 7
                    ci = TRUE, grid = TRUE)
 8 rocteste
Call:
roc.default(response = test data$diag, predictor = predtestroc, levels =
c("benign", "malignant"), percent = TRUE, ci = TRUE, plot = FALSE, grid =
TRUE)
Data: predtestroc in 137 controls (test data$diag benign) < 72 cases
(test data$diag malignant).
Area under the curve: 97.88%
95% CI: 95.72%-100% (DeLong)
 1 pROC::coords(rocteste, "best", ret = "threshold")
 threshold
1
    0.5
```


FAZER RANDOM FORESTS COM caret

- Só precisa mudar o a especificação de train
- method = "rf"
- caret chama randomForest para fazer os cálculos
 - wrapper função
- Aqui vamos fazer set. seed (42) para ser consistente com os outros métodos

CALCULAR OS RANDOM FORESTS

RESULTADOS BÁSICOS - RF - caret

```
Random Forest

490 samples
9 predictor
2 classes: 'benign', 'malignant'

Pre-processing: scaled (9), centered (9)
Resampling: Cross-Validated (10 fold, repeated 10 times)
Summary of sample sizes: 441, 441, 441, 441, 441, 441, ...
Resampling results across tuning parameters:

mtry Accuracy Kappa
2 0.9653034 0.9239380
5 0.9557107 0.9022051
9 0.9516122 0.8929923

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 2.
```

- mtry hiperparâmetro que é o número de variáveis que são candidatos a cada divisão da arvore
 - Sistema calcula o número ótimo baseado na precisão dos resultados

CALCULAR AS VARIÁVEIS IMPORTANTES

- 1 imp <- model rf\$finalModel\$importance # Guarda em unidades originais</pre>
- 2 importance <- varImp(model rf, scale = TRUE) # Scale coloca em escala de 10</pre>

VARIÁVEIS IMPORTANTES - ESCALA ORIGINAL

• % das arvores em que a variável aparece

mitosis 3.293094

VARIÁVEIS IMPORTANTES - ESCALA 100 -> 0

1 importance

rf variable importance

	Overall
uniformity_of_cell_size	100.00
uniformity_of_cell_shape	90.26
bare_nuclei	89.66
bland_chromatin	75.65
<pre>single_epithelial_cell_size</pre>	53.09
normal_nucleoli	52.87
clump_thickness	38.62
marginal_adhesion	24.29
mitosis	0.00

VARIÁVEIS IMPORTANTES - GRÁFICO

1 plot(importance)

PREVISÕES DO MODELO DE RF DE caret

```
predrfx <- predict(model_rf, test_data)
confusionMatrix(predrfx, test_data$diag)</pre>
```

Confusion Matrix and Statistics

Reference Prediction benign malignant benign 134 1 malignant 3 71

Accuracy: 0.9809

Kappa : 0.9579

95% CI: (0.9517, 0.9948)

No Information Rate : 0.6555 P-Value [Acc > NIR] : <2e-16

Mcnemar's Test P-Value : 0.6171

Sensitivity: 0.9781 Specificity: 0.9861 Pos Pred Value: 0.9926 Neg Pred Value: 0.9595 Prevalence: 0.6555

Detection Rate: 0.6411

PREVISÕES NO FORMATO DE PROBABILIDADES

- type = "prob" de `predict() põe os valores em probabilidades
- Deixa você decidir qual seria o limite para diferenciar entre "benign" e "malignant"
 - Até agora, sempre foi 0.5

ACERTAMOS COM O NOVO MODELO?

1 results\$correct <- ifelse(results\$actual == results\$prediction, TRUE, FALSE
2 tabyl(results\$correct) %>% adorn_pct_formatting()

```
results$correct n percent FALSE 4 1.9% TRUE 205 98.1%
```

GRÁFICO DOS RESULTADOS

```
gr_rf <- ggplot(results, aes(x = prediction, y = predict$benign, color = co
geom_jitter(size = 3, alpha = 0.6) +
geom_hline(yintercept = 0.5) +
ylab("Probabilidade de Benign") +
annotate("text", x = 2, y = 0.53, label = "Limite - 'threshold'")</pre>
```


ESTE GRÁFICO MOSTRA

- Erro de "benign"
 - Perto a 0.50
- Erros de "malignant"
 - Mais espalhadas
 - Alguns com probabilidades bem perto a verdadeiro "malignant" (0.0)
- Mais confiança nas previsões de "benign"
- Parece que 0.5 é um bom "threshold" entre determinação de "benign" ou "malignant"
 - Discrimina bem

MUITO MAIS QUE PODEMOS FAZER

- Testar outros limites que 0.5
- Testar outros números das arvores
- ROC/AUC análise