

Master Chimie Paris Centre Chimie Analytique Physique et Théorique

Implémentation et test de fonctions d'onde Valence Bond pour des calculs Monte-Carlo Quantique

Soutenance de stage NC900

Bastien Mussard

Encadrants:

Benoit Braida et Julien Toulouse Laboratoire de Chimie Théorique, Université Pierre et Marie Curie

Le Valence Bond et le Quantum Monte Carlo

Une théorie d'orbitales localisées

orbitales moléculaires
$$\Psi_{HF}=|\sigmaar{\sigma}|=\left(\left|aar{b}
ight|-\left|ar{a}b
ight|
ight)+\left|aar{a}
ight|+\left|bar{b}
ight|$$

orbitales localisées

$$\Psi_{HL} = \left| a\bar{b} \right| - \left| \bar{a}b \right|$$

+ structures de Lewis

$$\begin{array}{c|c} \mathbf{C_{cov}} \left(\left| \mathbf{a} \mathbf{\bar{b}} \right| - \left| \mathbf{\bar{a}b} \right| \right) + \mathbf{C_{ion_1}} \left| \mathbf{a} \mathbf{\bar{a}} \right| + \mathbf{C_{ion_2}} \left| \mathbf{b} \mathbf{\bar{b}} \right| \\ \hline & \odot & \bigcirc & \bigcirc & \odot \end{array}$$

Intérêt

- Bonne énergie de dissociation
- Outils interprétatifs
 - → énergies de résonan 🖵
 - → diagramme VB (réactivité)

Une méthode de calcul stochastique

énergie estimée par échantillonnage Métropolis

$$E = \int dR \Psi(R) \hat{H}(R) \Psi(R) = \int dR \Psi^{2}(R) \frac{\hat{H}(R) \Psi(R)}{\Psi(R)}$$

On échantillonne des points R de l'espace avec une densité de probabilité Ψ².

$$\mathbf{E_{M}} = rac{1}{M} \sum_{\mathbf{k}}^{\mathbf{M}} \mathbf{E_{L}}(\mathbf{R_{k}})$$

Intérêt

- Flexibilité de Ψ (meilleure précision)
- Parallélisation facile
- Confronter précision expérimentale
- Référence ab-initio

Introduire la corrélation dynamique

En Valence Bond

$$\left[VBSCF: \Psi = \bullet \bullet + \bullet \bullet \bullet \right]$$

L- BOVB

effet 'breathing orbitals'

$$\begin{aligned} \mathbf{C_{cov}} \left(\left| \mathbf{a} \bar{\mathbf{b}} \right| - \left| \bar{\mathbf{a}} \mathbf{b} \right| \right) + \mathbf{C_{ion_1}} \left| \mathbf{a'} \bar{\mathbf{a'}} \right| + \mathbf{C_{ion_2}} \left| \mathbf{b'} \bar{\mathbf{b'}} \right| \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\$$

S-BOVB

rajoute une corrélation radiale entre les deux électrons d'une paire

délocalise les orbitales inactives

Chaque structure corrélée dédouble le nombre d'orbitales à optimiser !

En Quantum Monte Carlo

<u>Jastrow</u>

factorisé devant la fonction d'onde introduit explicitement certaines corrélations

$$oxed{\Psi = \mathrm{e}^{\mathrm{J}} \left(\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \ket{\Phi_{\mathrm{i}}}
ight)}$$

L'idée : remplacer une fonction d'onde mono-électronique par une fonction multi-corps.

J contient des termes e-e, e-n, e-e-n:

$$J = f_{en}(r_{i\alpha}) + f_{ee}(r_{ij}) + f_{een}(r_{ij}, r_{i\alpha}, r_{j\alpha})$$

améliore améliore corrélation cusp cusp radiale e-n e-e

Le nombre de paramètres ne dépend que du nombre de type d'atomes!

L'espoir : VB-QMC

Mixer deux méthodes couteuses ?

<u>L'idée :</u>

utiliser une fonction d'onde VB-SCF... ... dans un calcul QMC

$$\Psi = e^{J} \left(\circ \circ + \circ \circ \right)$$

Corrélation statique : introduite à peu de frais par la fonction d'onde VB

Efficacité :

problème de non-orthogonalité disparaît

grandes bases ne sont plus nécessaires pour une bonne précision

STAGE M2S2

Problématique : conserver les outils interprétatifs Valence Bond

<u>Implémenter des calculs de poids :</u>

évaluer la nature physique d'une liaison (covalente, ionique,

«,charge-shift »)

Étude de structures séparées

comprendre précisément les liaisons chimiques

à terme : diagramme VB (un outil VB puissant)

Fonctions d'onde complètes

Énergies totales

Effet de BO

Effet du Jastrow

Puits

Effet de délocalisation

Effet de l'optimisation des orbitales

Molécules	Li_2	F_2	LiH	HF	
	ab- $initio$				
$_{ m HF}$	-14,8711	-198,7552	-7,9866	-100,0616	
VBSCF	-14,8928	-198,8194	-8,0108	-100,0735	
L-BOVB	-14,8933	-198,8524	-8.0133	-100.0900	
S-BOVB	-14,8980	-198,8561	-8,0180	-100,0957	
SD-BOVB	-14,8980	-198,8607	-8,0180	-100,1079	
		OM	C		
VBSCF	-14,893(1)	-198,827(6)	-8,012(1)	-100,065(5)	
J-VBSCF (jc)	-14,9849(2)	-199,4126(4)	-8,0639(2)	-100,4160(4)	
J-VBSCF (jco)	-14,9888(4)	-199,4299(5)	-8,0679(2)	-100,4223(5)	
exact	-14,9950	-199,5304	-8,0673	-100,4588	

Table : énergies (en Ha) pour des calculs VB et VB-QMC

Fonctions d'onde complètes

Énergies totales

Puits

SD-BOVB : bon

QMC : presque exacts

<u>F</u>₂ :répulsif

ajout de BO suffit : liaison particulière

QMC assez loin de valeur exp

→ amélioration à l'étude

Puits	Li_2	F_2	${ m LiH}$	HF
		ab-ii	nitio	
$_{ m HF}$	3,7	-41,6	33,9	94,6
VBSCF	17,3	-1,4	49,1	102,1
L-BOVB	17,6	19,4	50,6	112,5
S-BOVB	20,5	21,6	53,6	116,0
SD-BOVB	20,5	24,5	53,6	123,7
		QN	IC	
VBSCF	17,4(7)	3(4)	49,8(7)	97(3)
J-VBSCF (jc)	19,2(2)	11,2(7)	54,4(1)	137,2(4)
J-VBSCF (jco)	20,7(3)	19,5(7)	56,5(1)	139,9(4)
exact	24,4	39,3	56,0	141,1

Table : puits (en kcal/mol) pour des calculs VB et VB-QMC

Poids des structures

L'implémentation	Structures	ab-initio VBSCF	$_{ m VBSCF}$
Lire, comprendre, écrire dans le code CHAMP (logiciel de calcul QMC d'Umrigar)		Li_2	Li_2
Formules de Chirgwin-Coulson et de Löwdin,	$\frac{1}{2}$	0,905880 $0,015520$	0,9047(2) 0,01551(1)
adaptées pour un calcul QMC $\sum_{j} c_i c_j S_{ij}$	3 4 5	0,015520 0,014620 0,008460	0.01550(1) 0.01500(8)
$w_i = \frac{\sum_j c_i c_j S_{ij}}{\sum_i \sum_j c_i c_j S_{ij}}$	6 7	0,008460 $0,008460$ $0,014620$	0,00871(6) 0,00861(6) 0,01484(7)
Premiers tests : vérification de l'estimation de l'incertitude, etc → CONCLUANTS!	8 9	0,008460 0,008460	0,00861(5) 0,00854(5)
Test numérique		F_2	F_2
Fonction d'onde VBSCF, en VB et en QMC	$\frac{1}{2}$	0,778560 $0,110720$	0,7783(6) $0,1108(6)$
(faibles écarts dus aux bases)	3	0,110720	0,1110(6)

Poids des structures

Evolution des poids

Li2 F2

covalente ultra-majoritaire

ioniques augmentent trop en fait les structures se mélangent

Cturaturas	ab-	initio	QMC	
Structures	VBSCF	SD-BOVB	J-VBSCF(jco)	
1	0,905880	0,726630	0.8490(7)	
2	0,015520	0,108770	0.0492(1)	
3	0,015520	0,109100	0,0449(1)	
4	0,014620	0,013890	0,0119(3)	
5	0,008460	0,006930	0,0091(2)	
6	0,008460	0,006930	0,0076(2)	
7	0,014620	$0,\!013930$	0,0120(3)	
8	0,008460	0,006890	0,0085(2)	
9	0,008460	0,006930	0,0078(2)	

Table : comparaison de l'évolution des poids entre différents niveaux de corrélation en VB et un calcul VB-QMC totalement optimisé

Poids des structures

Evolution des poids

F2

ioniques augmentent
 même corrélation traitée par Jastrow
 pas de mélange des structures

Structures	ab-	initio	QMC
Structures	VBSCF	SD-BOVB	J-VBSCF(jco)
1	0,778560	0,699900	0,6924(2)
2	0,110720	0,150050	0,1546(2)
3	0,110720	0,150050	0,1530(2)

Table : comparaison de l'évolution des poids entre différents niveaux de corrélation en VB et un calcul VB-QMC totalement optimisé

Différentes structures séparées

Covalente, ioniques, tout ioniques

État quasi-classique :

liaison covalente : deux déterminants

état quasi-classique : un seul de ces deux là

Premier tests : écarts d'énergies

<u>VB :</u>

- ioniques : hautes pour F₂
- proches de la covalente pour Li₂ et se mélangent

à nouveau : cas limite

<u>QMC</u>:

structures de F₂ gardent le même ordonnement

- écart (jc) comparable à SD-BOVB pas d'effondrement en (jco)
 - Li₂: plus marquant encore
- covalente décrit encore mieux le système à elle seule pas inquiétant

energies (mHa)	ab-initio		
	Li_2	F_2	
		BOVB	
quasi-classique	24	208	
ionique	28	517	
tout ionique	8	364	
covalente	9	117	
. (11)	QMC		
energies (mHa)	Li_2	F_2	
	J-VBSCF(jc)		
		(0)	
quasi-classique	16,5(4)	200,1(7)	
ionique	19,3(4)	513,0(7)	
tout ionique	7.7(4)	377,1(7)	
covalente	2,3(3)	113,0(7)	
	J-VBSCF(jco)		
quasi-classique	12,0(7)	155,6(8)	
ionique	13,0(7)	365,9(8)	
tout ionique	4,6(6)	191,7(8)	
covalente	1,9(6)	52,2(8)	

Table : écarts d'énergie entre les structures séparées et la fonction d'onde complète.

Différentes structures séparées	
Covalente, ioniques, tout ioniques État quasi-classique :	$\left a\bar{b}\right - \left \bar{a}b\right $
liaison covalente : deux déterminants état quasi-classique : un seul de ces deu	x là
Premier tests : écarts d'énergies	7 ① ①

	ab- $initio$		
energies (mHa)	LiH	$_{ m HF}$	
	SD-F	ROVB	
quasi-classique ionique tout ionique covalente	80 27 17 19	366 163 85 124	

QMC

J-VBSCF(jco)

HF

148,9(7)

212.1(7)

14,5(7)

25,3(7)

Molécules type A-H

- Structures tiennent au niveau (jc)
- Optimisation des orbitales cause un effondrement

<u>Idées</u>

bases plus compactes (Gaussienne double-zéta)

Jastrow adapté au VB (i.e. localisé strictement)

		J-VBSCF(jc)		
quasi-classique		70,4(4)	375,2(7)	
ionique		16,0(4)	168,8(7)	
tout ionique		11,5(4)	45,5(7)	
covalente		5,9(3)	142,7(7)	

LiH

22,8(5)

8,8(3)

4.6(3)

1.6(4)

energies (mHa)

quasi-classique

ionique

tout ionique

covalente

Table : écarts d'énergie entre les structures séparées et la fonction d'onde complète.

Grandeurs d'intérêt

Grandeurs d'intérêt

<u>VB :</u>

Li₂, LiH: E_{qc} attractif

F₂ et HF : répulsion de paires

E_{cs} augmente pour F₂ tout le reste inchangé : liaison spéciale

<u>QMC:</u>

Li₂: E_{qc} augmente trop : cas limite

	ab- $initio$				
energies (kcal/mol)	Li_2	F_2	LiH	$_{ m HF}$	
		0.000	V-1000		
	VBSCF				
E_{qc}	5,1849	-108,2765	3,8250	-108,8722	
$D_{ m E\ covalente}$	9,4961	56 5781	37,5319	150,9291	
$E_{ m RES~cs}$	2,6343	50,3143	7,7428	60,0382	
$E_{liaison}$	17,3152	-1,3841	49,0998	102,0950	
	275 200 200 200	SD-E	BOVB		
E_{qc}	5,1849	-105,8449	3,2233	-106,0679	
$D_{ m E\ covalente}$	9,4961	56,6735	38,1331	152.1345	
$E_{ m RES~cs}$	5,8634	73,7141	12,2258	77,7251	
$E_{liaison}$	20,5444	24,5426	53,5821	123,7918	
: (1 1/ 1)	QMC				
energies (kcal/mol)	Li_2	F_2	LiH	$_{ m HF}$	
			Maria (Maria)		
	J-VBSCF(jc)				
E_{qc}	8,8(3)	-114,4(5)	10,3(3)	-98,2(5)	
$D_{ m E\ covalente}$	8,9(2)	54,7(4)	40,5(3)	145,9(4)	
$E_{ m RES~cs}$	1,4(2)	70,9(4)	3,7(2)	89,6(4)	
$E_{liaison}$	19,2(2)	11,2(4)	54,0(2)	137,2(4)	

LiH: E_{qc} augmente: quasi-classique s'effondre

 E_{cs} diminue : la covalente suffit

Conclusion

Poids

succès de l'implémentation

résultats en concordance avec le VB : un outil de plus pour le VB-QMC

Structures séparées

.

en bonne voie pour F₂ (pour l'éthane également) encore du travail à réaliser, d'autres questions à se poser

Liaisons A-H

apparemment : marche mal pour les liaisons type A-H c'était le but de ces tests : se poser de nouvelles questions

plusieurs idées déjà : Jastrow adapté au VB (i.e. localisé strictement)

bases plus compactes (Gaussienne

Pour continuer

-dauble-rátedns

-calcul d'énergies de résonnance

$$(+,\bullet,\cdot) \qquad (+,\bullet,\cdot) \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

- construction d'un diagramme VB solvaté

