```
Computer Architectures
02LSEOV

Delivery date:
October 22<sup>nd</sup> 2024, 11.59 PM

Expected delivery of lab_03.zip must include:
- program_1_a.s,program_1_b.s, and program_1_c.s
- This file, filled with information and possibly compiled in a pdf format.
```

This labwillexplore some of the concepts seen during the lessons, such as hazards, rescheduling, and loop unrolling. The first thing to do is to configure the WinMIPS64 simulator with the *Initial Configuration* provided below:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Code address bus: 12
- Data address bus: 12
- FP arithmetic unit: pipelined, 4 clock cycles
- FP multiplier unit: pipelined, 6 clock cycles
- FP divider unit: not pipelined, 30 clock cycles
- Forwarding is enabled
- Branch prediction is disabled
- Branch delay slot is disabled
- 1) Enhance the assembly programyou created in the previous lab called **program 1.s**:

a. Manually detect the different data, structural, and control hazards that cause a pipeline stall.

Hazards:

- 1. Structural hazard between mtc1 r8, f8 and cvt.d.l f8, f8
- 2. RAW/WAW with ddiv r7,r2,r6 and dmul r7,r7,r6
- 3. RAW with both ddiv r7,r6,r6,dmul r7,r7,r6 and beq r7,r2,multiple_3
- 4. RAW between dmul r4, r3, r2 and mtc1 r4, f4
- 5. Structural hazard between dmul r4, r3, r2 and mtc1 r4, f4
- 6. RAW between mul.d f5, f2, f4 and cvt.l.d f6, f5

- 7. Structural hazard between mul.d f5, f2, f4 and cvt.l.d f6, f5
- 8. RAW/WAW between sub.d f6, f6, f2 and mul.d f6, f5, f1
- 9. RAW between s.d f6, v4(r1) and sub.d f6, f6, f2
- 10. RAW between div.d f7, f6, f3 and sub.d f6, f6, f2
- 11. RAW between sub.d f7, f7, f8 and s.d f7, v5(r1)
- 12. RAW/WAW between sub.d f7, f7, f8 and div.d f7, f6, f3
- 13. RAW between s.d f7, v5(r1) and sub.d f7, f7, f8
- 14. Structural hazard between sub.d f7, f7, f8 and s.d f7, v5(r1)
- 15. RAW between mul.d f9, f9, f1 and s.d f9, v6(r1)
- 16. Structural hazard between mul.d f9, f9, f1 and s.d f9, v6(r1)
- 17. RAW between slt r10, r2, 0 and beq r10, 0, cycle
- 18. RAW between div.d f5, f1, f4 and cvt.l.d f6, f5
- 19. Structural hazard between div.d f5, f1, f4 and cvt.l.d f6, f5
- 20. RAW between dmul r4, r3, r2 and r4, f4
- 21. Structural hazard between dmul r4, r3, r2 and r4, f4
- 22. RAW between mul.d f5, f2, f4 and cvt.l.d f6, f5
- 23. Structural hazard between mul.d f5, f2, f4 and cvt.l.d f6, f5
- b. Optimize the program by re-scheduling the program instructions to eliminate as many hazards as possible. Manually calculate the number of clock cycles for the new program (program_1_a.s) to execute and compare the results with those obtained by the simulator.
- c. Starting from program_1_a.s, enable the branch delay slot and reschedule some instructions to improve the previous program execution time. Manually calculate the number of clock cycles needed by the new program (program_1_b.s) to execute and compare the results obtained with those obtained by the simulator.
- d. Unroll the program (**program_1_b.s**) 3 times; if necessary, re-schedule some instructions and increase the number of registers used. Manually calculate the number of clock cycles to execute the new program (**program_1_c.s**) and compare the results obtained with those obtained by the simulator.

Complete the following table with the obtained results:

Program	program_1.s	program_1_a.s	program_1_b.s	program_1_c.s
Clock cycle				
computation				
By hand	<u>3043</u>	<u>2953</u>	<u>2930</u>	<u>2827</u>
By simulation	2922	2730	<u>2677</u>	2497

Computation by hand:

Program 1.s:

Fixed part outside the cycle:

daddui r1, r0, 8	F	D	Е	M	W																	
daddui r2, r0,31		F	D	Е	M	W																
daddui r14, r0,3			F	D	Е	M	W															
dmul r1, r1, r2				F	D	E_{M}	E_{M}	E _M	E_{M}	E_{M}	E_{M}	M	W									
ld r3, m(r0)					F	D	Е	M	W													
daddui r8, r0, 1						F	D	Е	M	W												
mtc1 r8, f8							F	D	Е	M	W											
daddui r7, r0, 2								F	D	Е	M	W										
cvt.d.1 f8, f8									F	D	D	Е	M	W								

Total CC _{fixed} = 14

First part in cycle (before the if):

1.d f1, v1(r1)) F	Γ) E	E M	W														
1.d f2, v2(r1))	F	7 F	$F \mid \Gamma$	E	M	W													
1.d f3, v3(r1))			F	D	E	M	W												
beq r7, r0, multiple_3					F	D	Е	M	W											

Total CC $_{cycle_first_part} = 4 + 6 * 31 = 190$ (because after the first iteration is terminated, for the others the program will "waste" 2 additional CC)

Not multiple of 3 part in the cycle:

1 (00 111041)	~P~	• •		Pu				,, -																		
j not_multiple_3	F	D	Е	M	W																					
dmul r4, r3, r2			F	D	E_{M}	E_{M}	E_{M}	E_{M}	E_{M}	M	W															
mtc1 r4, f4				F	D	D	D	D	D	Е	M	W														
cvt.d.l f4, f4					F	F	F	F	F	D	Е	M	W													
mul.d f5, f2, f4										F	D	E_{N}	E _M	E _M	Ем	E_{M}	M	W								
cvt.l.d f6, f5											F	D	D	D	D	D	Е	M	W							
mfc1 r3, f6												F	F	F	F	F	D	Е	M	W						

Total CC _{not_multiple} = 2/3 * 32 * (16 + 1 wasted CC) = 362.67 = 363

Multiple of 3 part in the cycle:

Triampie		<u>- ۲</u>		, 111	UII		•10	•																
dsllv r3, r3, r2	F	D	Е	M	W																			
mtc1 r3, f4		F	D	Е	M	W																		
cvt.d.l f4, f4			F	D	Е	M	W																	
div.d f5, f1, f4				F	D		E_{D}	* .	30	tin	ies		M	W										
cvt.l.d f6, f5					F		D	* 3	80 t	im	es		Е	M	W									
mfc1 r3, f6						F]	F *	30	tir	nes	S	D	Е	M	W								
j end													F	D	Е	M	W							

Total CC _{multiple} = 1/3 * 32 * 37 = 394.33 = 395

Last part of the cycle:

mul.d f6, f5, f1	F	D	E_{M}	E_{M}	E_{M}	E_{M}	E_{M}	M	W																						
sub.d f6, f6, f2		F	D	D	D	D	D	D	E _A	E _A	E_{A}	E_{A}	M	W																	
s.d f6, v4(r1)			F	F	F	F	F	F	D	D	D	D	Е	M	W																
div.d f7, f6, f3									F	F	F	F	D	E_{Γ}	*	30	M	W													
sub.d f7, f6, f3													F	D	*	30	E _A	E_{A}	E_{A}	E _A	M	W									
s.d f7, v5(r1)														F	* .	30	D	D	D	D	Е	M	W								
sub.d f9, f6, f1																	F	F	F	F	D	E_{A}	E_{A}	E_{A}	E_{A}	M	W				
mul.d f9, f9, f7																					F	D	D	D	D	E_{M}	E_{M}	E_{M}	E_{M}	M	W
s.d f9, v6(r1)																						F	F	F	F	D	D	D	D	Е	M
s.d f9, v6(r1)	D	D	D	D	Е	M	W																								
daddui r7, r7, 1		F	F	F	D	Е	M	W																							
daddi r1, r1, -8					F	D	Е	M	W																						
daddi r2, r2, -1						F	D	Е	M	W																					
bne r7, r14, end2							F	D	Е	M	W																				
slt r10, r2, r0									F	D	Е	M	W																		
beq r10, r0, cycle										F	D	Е	M	W																	

Total CC _{last part cycle} = 32 * (64 + 1) = 2080 (the 1 is because of end2 if)

Total CC =
$$14 + 190 + 363 + 395 + 2080 + 1 = 3043$$

Program_1_a.s:

Total CC =
$$13 + 190 + 341 + 1824 + 384 + 1 = 2953$$

Program_1_b.s:

Total $CC = \overline{2930}$

Program_1_c.s:

Total CC = 2827

2) Collect the Cycles Per Instruction (CPI) from the simulator for different programs

	program_1.s	program_1_a.s	program_1_b.s	program_1_c.s
CPI	3.423	3.200	3.179	3.608

Compare the results obtained in 1) and provide some explanationifthe results are different.

Eventual explanation:

The clock cycles **improve** enhancement after enhancement and this is a good thing, because it means the changes written in the code are real and effective. I also want to point out that instead of using Barrett Reduction to check the multiple of 3 condition, I used a counter that goes from 0 to 2 and then resets. This technique drastically reduce the clock cycles in every version of the program, by removing a ddiv and a dmul at every iteration of the cycle.

The difference in the computation of clock cycles by hand and then by simulation is because when calculating by hand I estimated that the multiple of 3 condition would have been reached just 1/3 of all the cases, so I used this form:

Total CC $_{\rm by\ hand}$ = CC $_{\rm fixed\ part}$ + 1/3 * CC $_{\rm multiple_3}$ + 2/3 * CC $_{\rm not_multiple_3}$ Also, the computation by hand differs from the simulator result because of the the behavior of WinMIPS, different from what we've seen during the lessons: the simulator, when it can, lets the instructions go through the EX stage before stalling them, instead of stalling them at the D stage (this was already seen in the previous labs).