[Homework 4] Martingale (Due: May 8, 2022)

Problem 1 (Doob's martingale inequality)

Let $\{X_t\}_{t\geq 0}$ be a martingale with respect to itself where $X_t\geq 0$ for every t. Prove that for every $n\in\mathbb{N}$,

$$\left. \mathbf{Pr} \left[\max_{0 \leq t \leq n} X_t \geq lpha
ight] \leq rac{\mathbf{E} \left[X_0
ight]}{lpha}.$$

▼ Hint

Consider the stopping time $au=rg\min_{t\leq n}\left\{X_t\geq lpha
ight\}$ or au=n if $X_t<lpha$ for all $0\leq t\leq n$.

Problem 2 (Biased one-dimensional random walk)

We study the biased random walk in this exercise. Let $X_t = \sum_{i=1}^t Z_i$ where each $Z_i \in \{-1,1\}$ is independent, and satisfies $\mathbf{Pr}\left[Z_i = -1\right] = p \in (0,1)$.

- ullet Define $S_t = \sum_{i=1}^t (Z_i + 2p 1).$ Show that $\{S_t\}_{t \geq 0}$ is a martingale.
- ullet Define $P_t = \left(rac{p}{1-p}
 ight)^{X_t}$. Show that $\{P_t\}_{t\geq 0}$ is a martingale.
- ullet Suppose the walk stops either when $X_t=-a$ or $X_t=b$ for some a,b>0. Let au be the stopping time. Compute ${f E}\,[au].$

Problem 3 (Longest common subsequence)

A subsequence of a string s is any string that can be obtained from s by removing a few characters (not necessarily continuous). Consider two uniformly random strings $x, y \in \{0, 1\}^n$. Let X denote the length of their longest common subsequence.

- Show that there exist two constants $\frac{1}{2} < c_1 < c_2 < 1$ such that $c_1 n < \mathbf{E}\left[X\right] < c_2 n$ for sufficiently n.
- ullet Prove that X is well-concentrated around ${f E}\left[X
 ight]$ using tools developed in the class.

▼ Hint

To find c_2 , you can try to estimate the following probabilty: there exist $S,T\subset [n]$ such that (1) |S|=|T| and both two sets are *large*; and (2) $x_S=y_T$ where x_S and y_T are the restrictions of x and y on S and T respectively.

【选做题,联动AI2615】设计一个 $O(n^2)$ 的动态规划算法计算x与y的最长公共子序列