

SEQUENCE LISTING

<110> Klein, Robert D.
 Brennan, Thomas J.

<120> METHODS OF CREATING CONSTRUCTS USEFUL FOR INTRODUCING
 SEQUENCES INTO EMBRYONIC STEM CELLS

<130> 376472000200

<140> Unassigned
 <141> 1998-11-17

<150> 60/084,949
 <151> 1998-05-11

<160> 44

<170> FastSEQ for Windows Version 3.0

<210> 1
 <211> 4768
 <212> DNA
 <213> Plasmid vector

<400> 1

gttaactacg tcaggtggca cttttcgggg aaatgtgcgc ggaaccctta tttgtttatt	60
tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca	120
ataatattga aaaaggaaga gtatgaggat tcaacatttc cgtgtcgccc ttattccott	180
ttttcggca ttttgccctc ctgttttgc tcaccccagaa acgctggta aagtaaaaaga	240
tgcgtgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca acagcggtaa	300
gatcctttag agttttcgcc ccgaagaacg ttctccaatg atgagactt taaaagttct	360
gttatgtggc gcggatttat cccgttgta cgccgggcaa gagcaactcg gtgcggcat	420
acactattct cagaatgact tggtttagta ctcaccagtc acagaaaagc atcttacgga	480
tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata acactgcggc	540
caacttactt ctgacaacga tggaggacc gaaggagcta accgccttt tgacacaacat	600
gggggatcat gtaactcgcc ttgatcggtt ggaaccggag ctgaatgaag ccataccaaa	660
cgacgacgt gacaccacga tgcctgttagc aatggcaaca acgttgcgc aactattaac	720
tggcgaacta cttaactctag ctccccggca acaattaata gactggatgg aggcggataa	780
agttgcagga ccacttctgc gctcgccct tccggctggc tggtttattt ctgataaato	840
tggagccggt gagcgtgggt ctcgcgttat cattgcagca ctggggccag atgtaagcc	900
ctcccgatc gtagttatct acacgcacggg gagtcaggca actatggatg aacgaaatag	960
acagatcgct gagataggtg ctcactgtat taagcattgg taactgtcag accaagttt	1020
ctcatatata cttagattt atttaccccg gttgataatc agaaaagccc caaaaacagg	1080
aagattgtat aagcaaatat ttaaatgtt aacgttaata ttttgttaaa attcgcgtta	1140
aattttgtt aaatcagctc atttttaac caataggccg aaatcgccaa aatcccttat	1200
aaatcaaag aatagcccga gatagggtt agtgttgtc cagtttggaa caagagtcca	1260
ctattaaaga acgtggactc caacgtaaaa gggcggaaaa ccgtctatca gggcgatggc	1320
ccactacgtg aaccatcacc caaatcaagt tttttgggtt cgaggtgccc taaagcacta	1380
aatcggaaacc ctaaaggggag ccccccattt agacttgac ggggaaagcg aacgtggcga	1440
gaaagggagg gaagaaaagcg aaaggagcgg ggcctaggcc gctggcaagt gtagcggtca	1500
cgctgcgcgt aaccaccaca cccggccgc ttaatgcgcc gctacaggcc gcgtaaaaagg	1560
atctaggtga agatectttt tgataatctc atgaccaaaa tcccttaacg tgagtttcg	1620
tttcaatgtt cgtatggat cttcttgaga tccctttttttt	1680
ctgcgcgtaa tctgctgtt gcaaaaaaa aaaccaccgc taccagcggt ggtttgggtt	1740
ccggatcaag agctaccaac tcttttccg aaggtaactg gttcagcag agcgcagata	1800
ccaaataactg ttcttcttagt gtagccgtat ttaggccacc acttcaagaa ctctgttagca	1860

cgcctacat	acctcgctct	gctaattcctg	ttaccaggtag	ctgctgccag	tggcgataag	1920
tcgtgtctta	ccgggttgg	ctcaagacga	tagttacccgg	ataaggcgca	gcggtcgccc	1980
tgaacggggg	gttcgtgcac	acagccccgc	ttggagcgaa	cgacctacac	cgactgaga	2040
tacctacagc	gtgagctatg	agaaaaggcgc	acgcttcccg	aaggggagaaa	ggccggacagg	2100
tatccggtaa	gcggcagggt	cggaacagga	gagcgcacga	gggagctcc	agggggaaac	2160
gcctggatc	tttatagtcc	tgtcgggtt	cggcacctct	gacttgagcg	tcgattttg	2220
tgatgctcg	cagggggg	gagcctatgg	aaaaacgc	gcaacgcggc	cttttacgg	2280
ttcctggcct	tttgctggcc	tttgctcac	atgtatgt	agttagctca	ctcattaggc	2340
accccaggct	ttacacttta	tgcttccggc	tcgtatgtt	tgtgaattt	tgagcggata	2400
acaatttcac	acaggaaaca	gctatgacca	tgattacg	aagctacgt	atacgactca	2460
ctaggcggcc	gcgtttaaac	aatgtgctcc	tcttggctt	gcttccgcgg	gc当地gc当地	2520
acaagaacca	gttgcgtca	agcttcccg	gacgcgtgt	agcggcgcgc	cgaaattcc	2580
caggattcga	ggggccctgc	aggtcaattc	taccgggt	gggaggcgct	tttccaagg	2640
cagtctggag	catgcgttt	agcagccccg	ctggcactt	gctacaca	agttgcctct	2700
ggcctcgac	acattccaca	tccacggta	gc当地caacc	gctcgttct	ttgtggccc	2760
cttcgcgcca	ccttctactc	ctccccctag	caggaagt	ccccccgc	cgcagctcg	2820
gtcgtgcagg	acgtgacaaa	tggaagt	acgtctact	agtctcg	agatggacag	2880
caccgctgag	caatggaa	gggtaggc	ttggggc	ggccaatagc	agcttgc	2940
cttcgtt	tgggtcaga	ggctggaa	gggtgggt	gggggcggc	tc当地ggc	3000
gctcaggggc	ggggcgggc	c当地aggc	cccaggccc	gc当地tctcg	cacgc当地ca	3060
aagcgcacgt	ctggcgcgt	gttctct	tcctcatctc	cgggccttc	gacgc当地	3120
caatatgg	tccggcattt	aacaagat	attgcacgc	ggttctcc	ccgcttgggt	3180
ggagaggct	ttcggctat	actggcaca	acagacaatc	ggctgc	atggcgc当地	3240
gttccggct	tcagcgcagg	ggcgc当地	tctttt	aagaccgacc	tgtccgg	3300
cctgaatgaa	ctgcaggacg	aggcagcgc	gctatgt	ctggccacga	cgggcgtt	3360
ttgcgcagct	gtgctcgac	ttgtca	agcgggaa	gactgg	ctgc	3420
agtgcgggg	caggatctc	tgtcatctc	ccttgc	gccc当地	tatccatcat	3480
ggctgtatgca	atgcggcggc	tgcatac	tgatccgg	ac	tc当地acc	3540
agcgaacat	cgc当地	gagcac	tccgatgg	ccgg	tctg	3600
tgtatctggac	gaagagcatc	aggggc	gc当地ccgaa	ctgttgc	ggctcaaggc	3660
gc当地atgccc	gacggcgat	atctcg	gacccat	gatgc	ctgc当地at	3720
catggtgaa	aatggccg	tttctg	catcgact	ggccgg	tggtggc	3780
ccgctatcag	gacatagcgt	tggctaccc	tgatatt	gaagag	gtgc当地at	3840
ggctgaccgc	ttcctcg	tttacg	cgccgc	gatc	gc当地cctt	3900
ctatgcctt	cttgcacg	tcttctg	ggatcgat	gtc	ctgc当地aa	3960
ttgtatgt	attaaacaat	aaagatgt	actaaaat	tttcc	tgtcata	4020
tgttaagaag	ggtgagaaca	gagta	actt	tttgc	atgttgc当地	4080
gtgggggtgg	ggtgggatta	ataatg	tttgc	tttgc	ttactatt	4140
tttatgataa	tgttcatag	ttggat	taattt	aaag	tttgc当地	4200
ccagctcatt	cctcccact	atgatct	atgat	aaaa	aaattaagg	4260
tttctcttga	ttcccactt	gtgg	ttctat	aaaa	aaattaagg	4320
tagcctgaag	aacgagatc	gcag	ttcc	aaaa	aaattaagg	4380
ttgccaagtt	ctaattccat	caga	ccat	aaaa	aaattaagg	4440
tcgacctcga	gtgatcagg	acca	acat	aaaa	aaattaagg	4500
aggacacgca	aattaattaa	ggcc	ccat	aaaa	aaattaagg	4560
tattacggac	tggccgtcg	tttaca	acgt	aaaa	aaattaagg	4620
cttaatcgcc	ttgcagcaca	tccccc	cg	aaaa	aaattaagg	4680
accgatcgcc	cttcccaaca	gttgc	ctga	aaaa	aaattaagg	4740
taaagcccgc	ttcggcgggc	ttttt	tttgc	aaaa	aaattaagg	4768

<210> 2

<211> 6355

<212> DNA

<213> Plasmid vector

<400> 2

gtttaatagt aatcaattac ggggtcatta gttcatagcc catatatgga gttccgcgtt

60

acataactta	cggtaaatgg	ccgcctggc	tgaccgccc	acgaccccc	cccattgacg	120
tcaataatga	cgtatgttcc	catacta	acg	tttccat	acgtcaatgg	180
gtggagtatt	tacggtaaac	tgcccactt	gcag	tatc	aatgttatca	240
acgcccccta	ttgacgtcaa	tgacggtaaa	tggccc	g	gcattatgc	300
accttatggg	acttictac	ttggcag	atctac	gt	catcgc	360
gtgatcggt	tttggcag	catcaatgg	cgtggat	g	tttgactc	420
ccaagtctcc	acccattga	cgtcaatgg	agttt	ttt	ggcacaaa	480
tttccaaaat	gtcgtacaa	ctccgccc	ttgacgcaaa	tggcggt	tg	540
tgggagg	atataagcag	agctgg	ttt	gt	gacgtacgg	600
tcgcccac	ggtgagcaag	ggcgagg	tg	ttcacc	gg	660
agctggacgg	cgtac	ggccaca	gt	cg	tttgc	720
ccac	caagctgacc	ctgaa	gttca	tctg	cacc	780
ggcccac	cgtgacc	ctgac	ta	cttca	gccc	840
acatgaagca	gcacgactt	ttcaag	tcc	ccat	gccc	900
ccat	tttctt	caaggac	ggca	acta	agac	960
acacc	ctt	gaacc	gag	ct	gact	1020
tggggcaca	gctgg	gag	aact	aca	acgt	1080
agaagaacgg	catcaag	taact	caaga	tcc	gccc	1140
agctcgccg	ccactacc	caga	acac	ccat	cg	1200
acaacc	cctgag	cag	tcc	tgag	caaaga	1260
acatgg	ttt	gctt	gtgac	ccgg	gat	1320
acaagt	tc	actc	accg	gat	ta	1380
ttt	tagag	ttt	actt	ttt	cc	1440
aaat	gaat	ttt	ttt	ttt	ttt	1500
gcaat	at	ttt	ttt	ttt	ttt	1560
tgtcc	aaact	cat	taat	ttt	ttt	1620
tgtgc	cgga	acc	ctt	ttt	ttt	1680
gagaca	ataa	cc	ttt	ttt	ttt	1740
acattt	ccgt	gtc	ttt	ttt	ttt	1800
cccag	aaacg	ctg	ttt	ttt	ttt	1860
catcg	act	gtt	ttt	ttt	ttt	1920
tccaa	at	ttt	ttt	ttt	ttt	1980
cg	actt	ttt	ttt	ttt	ttt	2040
acc	tc	ttt	ttt	ttt	ttt	2100
cataacc	at	ttt	ttt	ttt	ttt	2160
ggag	cta	ttt	ttt	ttt	ttt	2220
accgg	at	ttt	ttt	ttt	ttt	2280
ggca	acaac	ttt	ttt	ttt	ttt	2340
attaat	agac	ttt	ttt	ttt	ttt	2400
ggct	ttt	ttt	ttt	ttt	ttt	2460
tgca	gact	ttt	ttt	ttt	ttt	2520
tcagg	act	ttt	ttt	ttt	ttt	2580
gcatt	ttt	ttt	ttt	ttt	ttt	2640
gataat	caga	ttt	ttt	ttt	ttt	2700
gttataat	ttt	ttt	ttt	ttt	ttt	2760
tagg	ccaa	ttt	ttt	ttt	ttt	2820
gtt	ttt	ttt	ttt	ttt	ttt	2880
cgaaaa	acc	ttt	ttt	ttt	ttt	2940
ttt	gggt	ttt	ttt	ttt	ttt	3000
gtt	ggc	ttt	ttt	ttt	ttt	3060
ctaggg	cg	ttt	ttt	ttt	ttt	3120
atgc	ccg	ttt	ttt	ttt	ttt	3180
acaaa	atcc	ttt	ttt	ttt	ttt	3240
aaagg	atctt	ttt	ttt	ttt	ttt	3300
ccacc	cg	ttt	ttt	ttt	ttt	3360
gt	acttgg	ttt	ttt	ttt	ttt	3420
gcccac	actc	ttt	ttt	ttt	ttt	3480

ccagtggctg ctgccagtg cgataaagtgc tgcgttaccg gggtggactc aagacgatag 3540
 ttaccggata aggccgcagcg gtcgggctga acgggggtt cgtgcacaca gcccagctg 3600
 gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga aagcgcacag 3660
 cttcccgaaag ggagaaaaggc ggacaggtat ccgtaaagcg gcagggtcgg aacaggagag 3720
 cgcacgaggc agcttccagg gggaaacgcc tggtatctt atagtcctgt cgggttcgc 3780
 cacctctgac ttgagcgtcg atttttgtga tgctcgtcag gggggcggag cctatggaaa 3840
 aacgcacca acgcggcctt ttacgggtc ctggccttt gctggcctt tgctcacatg 3900
 taatgtgagt tagtcactc attaggcacc ccaggctta cactttatgc ttccggctcg 3960
 tatgttgtgt ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga 4020
 ttacgccaag ctacgtaata cgactcacta ggccggccgc tttaaacaat gtgcctctc 4080
 ttggcttgct tccgcgggccc aagccagaca agaaccagtt gacgtcaagc ttccgggac 4140
 gcgtgcttagc ggccgcgcga attcctgcag gattcgggccc cccctgcagg tcaattctac 4200
 cgggttagggg aggccgtttt cccaggcag tctggagcat ggcgtttagc agccccgtg 4260
 gcacttggcg ctacacaagt ggcctctggc ctgcacaca ttccacatcc accggtagcg 4320
 ccaaccggct cggcttcttgc gttggccctt cgcgcacact tcacttcctc ccctagtcag 4380
 gaagttcccc cccgcggcgc agctcgcgtc gtgcaggacg tgacaaatgg aagtagcacg 4440
 tctcaacttagt ctctgcaga tggacagcac cgctgagcaa tggaaaggccc taggcctttg 4500
 gggcagcggc caatagcgc tttgctcctt cgctttctgg gtcagaggc tggaaagggg 4560
 tgggtccccc ggcgggctca ggggcgggct cagggggccggc gccggcgcga aggtcctccc 4620
 gaggcccccgc attctcgac gcttcaaaag cgacacgtctg cccgcgtctt ctccctttcc 4680
 tcatctccgg gccttcgcac ctgcagccaa tatggatcg gccattgaac aagatggatt 4740
 gcacgcaggc tctccggccg ctgggggtt gaggctattc ggctatgact gggcacaaca 4800
 gacaatcgcc tgctctgatg cccgcgtt cccgcgtca gccgcaggggc gcccggcttct 4860
 ttttgcgtcaag accgacctgt cccgtgcctt gaatgaactg caggacgagg cagcggcgt 4920
 atcgtggctg gccacgcgg gcgttccctt cgcagctgtc ctgcacgtt tcactgaagc 4980
 gggaaaggac tggctgttat tgggcgaagt gcccggccag gatctcctgt catctcacct 5040
 tgcgttgc gagaaggat ccatcatggc tgcgtcaatg cggcggctgc atacgcttgc 5100
 tccggctacc tgcccatcg accaccaagc gaaacatgc atcgagcggc cacgtactcg 5160
 gatggaaagcc ggtcttgcg atcaggatga tctggaccaa gagcatcagg ggctcggcc 5220
 agccgaactg ttgcgcaggc tcaaggcgcg catgcccgc ggcgtatgatc tcgtcgtgac 5280
 ccatggcgat gctgttgc cgaatatcat gttggaaaat ggcgcctttt ctggattcat 5340
 cgactgtggc cggctgggtg tggcggaccc ctatcaggac atagcgttgg ctaccgtiga 5400
 tattgctgaa gagcttggcg gcgaatgggc tgaccgcctt ctgcgtctt acggatcgc 5460
 cgctcccgat tcgcagcgc tgcgccttcta tgcgccttctt gacgagtct tctgagggga 5520
 tcgatccgtc ctgtaaatgtc gcagaaattt atgatctatt aaacaataaa gatgtccact 5580
 aaaatggaaat ttttctgt catacttgc taagaagggt gagaacagag tacctacatt 5640
 ttgaatggaa ggattggagc tacgggggtg ggggtgggtt gggatttagat aaatgcctgc 5700
 tctttactga aggtccttta ctattgcctt atgataatgt ttcataatgc gatatcataa 5760
 tttaaacaag caaaacccaa ttaaggccca gtcatttcc cccactcatg atctatagat 5820
 ctatagatct ctgcgtggat cattgtttt ctcttgcattt ccactttgtg gttctaagta 5880
 ctgtggtttcaaatgtgtc agtttcatag cctgaagaac gagatcagca gcctctgttc 5940
 cacatacact tcatttcgtc tattgttttgc ccaaggctca attccatcatg aagctgactc 6000
 tagatctggc tccggccagc taggcgtcg acctcgatgc atcaggatacc aaggctctcg 6060
 ctctgtgtcc gttgagctcg acgacacagg acacgcggc taattaaggc cggcccgat 6120
 cctctagtca aggccttaag tgagtcgtat tacggactgg cgcgttgc acaacgtcg 6180
 gactggggaaa accctggcgat taccctaaatcgccttgc cagcacatcc cccttcgc 6240
 agctggcgat atagcgaaga ggccgcacc gatgcgcctt cccaaacagtt ggcgcggctg 6300
 aatggcgat ggcgcgttgc ttggtaataa agcccgcttc ggcgggcttt ttttt 6355

<210> 3
 <211> 28
 <212> DNA
 <213> Plasmid vector

<400> 3
 aatgtgttcc tctttggctt gcttccgc

<210> 4
<211> 26
<212> DNA
<213> Plasmid vector

<400> 4
ggaagcaagc caaagaggag cacatt 26

<210> 5
<211> 27
<212> DNA
<213> Plasmid vector

<400> 5
aactggttct tgtctggctt ggcccg 27

<210> 6
<211> 25
<212> DNA
<213> Plasmid vector

<400> 6
gggc当地 agacaagaac cagtt 25

<210> 7
<211> 28
<212> DNA
<213> Plasmid vector

<400> 7
aaggtc当地 ctctgtgtcc gttgagct 28

<210> 8
<211> 24
<212> DNA
<213> Plasmid vector

<400> 8
caacggacac agagcgagga cctt 24

<210> 9
<211> 27
<212> DNA
<213> Plasmid vector

<400> 9
aatttgc当地 tcctgtgtcg tcgagct 27

<210> 10
<211> 23
<212> DNA
<213> Plasmid vector

<400> 10
cgacgacaca ggacacgcaa att 23

<210> 11

<211> 26
<212> DNA
<213> Plasmid vector

<400> 11
tgtgctcctc tttggcttgc ttccaa 26

<210> 12
<211> 26
<212> DNA
<213> Plasmid vector

<400> 12
ttggaagcaa gccaaagagg agcaca 26

<210> 13
<211> 25
<212> DNA
<213> Plasmid vector

<400> 13
ctgggttcttg tctggcttgg cccaa 25

<210> 14
<211> 25
<212> DNA
<213> Plasmid vector

<400> 14
ttggggccaag ccagacaaga accag 25

<210> 15
<211> 24
<212> DNA
<213> Plasmid vector

<400> 15
ggtcctcgct ctgtgtccgt tgaa 24

<210> 16
<211> 24
<212> DNA
<213> Plasmid vector

<400> 16
ttcaacgac acagagcgag gacc 24

<210> 17
<211> 23
<212> DNA
<213> Plasmid vector

<400> 17
tttgcgtgttc ctgtgttgtc gaa 23

<210> 18
<211> 23

<212> DNA		
<213> Plasmid vector		
<400> 18		
ttcgacgaca caggacacgc aaa		23
<210> 19		
<211> 25		
<212> DNA		
<213> Plasmid vector		
<400> 19		
atgaccgctc aggaaacctg ttgca		25
<210> 20		
<211> 25		
<212> DNA		
<213> Plasmid vector		
<400> 20		
ataggcatag taggccagct tgagg		25
<210> 21		
<211> 51		
<212> DNA		
<213> Plasmid vector		
<400> 21		
tgtgctcc tc ttggcttc ttccaattaa ccctcactaa agggAACGAA t		51
<210> 22		
<211> 50		
<212> DNA		
<213> Plasmid vector		
<400> 22		
ctggttcttc tctggcttgg cccaatgcaa caggttcct gagcggtcat		50
<210> 23		
<211> 49		
<212> DNA		
<213> Plasmid vector		
<400> 23		
ggtcctcgct ctgtgtccgt tgaacctcaa gctggcctac tatgcctat		49
<210> 24		
<211> 49		
<212> DNA		
<213> Plasmid vector		
<400> 24		
tttgcgtgtc ctgtgtcgta gaacgactaa tacgactcac tataggcg		49
<210> 25		
<211> 25		
<212> DNA		

<213> Plasmid vector

<400> 25
gccaatggac tcttagttt ggaac 25

<210> 26
<211> 25
<212> DNA
<213> Plasmid vector

<400> 26
gttctggcaa acaaattcgg cgcac 25

<210> 27
<211> 51
<212> DNA
<213> Plasmid vector

<400> 27
tgtgctccctc ttggcttgc ttccaattaa ccctcaactaa agggAACGAA t 51

<210> 28
<211> 50
<212> DNA
<213> Plasmid vector

<400> 28
ctgggttcttg tctggcttgg cccaaGTTCC AAAACTAAGA GTCCATTGGC 50

<210> 29
<211> 49
<212> DNA
<213> Plasmid vector

<400> 29
ggtcctcgct ctgtgtccgt tgaagtgcgc cgaatttggc tgccagaac 49

<210> 30
<211> 25
<212> DNA
<213> Plasmid vector

<400> 30
gaaccttggc gtgccaaagt acttc 25

<210> 31
<211> 25
<212> DNA
<213> Plasmid vector

<400> 31
gaacttggc tgaaccctt gttct 25

<210> 32
<211> 52
<212> DNA
<213> Plasmid vector

<400> 32
tgtgctcctc tttggcttgc gttgaacgac taatacgact cactataggg cg 52
<210> 33
<211> 50
<212> DNA
<213> Plasmid vector

<400> 33
ctggttcttg tctggcttgg cccaaagaat aacttggcac accaaggttc 50
<210> 34
<211> 48
<212> DNA
<213> Plasmid vector

<400> 34
ggtcctcgct ctgtgtccgt tgaagaacaa ggggttcagc caaagttc 48
<210> 35
<211> 48
<212> DNA
<213> Plasmid vector

<400> 35
tttgcgtgtc ctgtgtcgta gaattaaccc tcactaaagg gaacgaat 48
<210> 36
<211> 25
<212> DNA
<213> Plasmid vector

<400> 36
atgccggatc tcctactact gggcc 25
<210> 37
<211> 25
<212> DNA
<213> Plasmid vector

<400> 37
tgtcatatgt gacagcgatg gaacg 25
<210> 38
<211> 53
<212> DNA
<213> Plasmid vector

<400> 38
gacaagaacc agttgacgtc aagcttccccg ggacgcgtgc tagcggcgcg ccg 53
<210> 39
~~<211> 50~~
<212> DNA
<213> Plasmid vector

<400> 39
ctggttcttg tctggcttgg cccaaaggccc agtagtagga gatccggcat 50
<210> 40
<211> 49
<212> DNA
<213> Plasmid vector

<400> 40
ggtcctcgct ctgtgtccgt tgaacgttcc atcgctgtct actatgaca 49
<210> 41
<211> 50
<212> DNA
<213> Plasmid vector

<400> 41
ctggttcttg tctggcttgg cccaaaaaagc cgacagccac gctcacaaggc 50
<210> 42
<211> 49
<212> DNA
<213> Plasmid vector

<400> 42
ggtcctcgct ctgtgtccgt tgaagcccaa tgccacagag acagaatgt 49
<210> 43
<211> 51
<212> DNA
<213> Plasmid vector

<400> 43
ctggttcttg tctggcttgg cccaaagggttgg atccctctcca aggccccatc t 51
<210> 44
<211> 50
<212> DNA
<213> Plasmid vector

<400> 44
ggtcctcgct ctgtgtccgt tgaactccag tgccgagtgt gtggggacag 50