Analysis II - 2014.03.27

Seien $g_1..g_r: U \to \mathbb{R}$ diffbar, $U \subset \mathbb{R}^n$ offen, $B := \{x \in U \mid g_1(x) = ... = g_r(x) = 0\}.$

Beispiel: g_i linear $\Rightarrow B$ linearer Teilraum.

$$\forall \xi \in B \Rightarrow \text{ für } x \to \xi \text{ mit } x \in B : \underbrace{g_i(x)}_{=0} = \underbrace{g_i(\xi)}_{=0} + \langle \nabla g_i(\xi), \ x - \xi \rangle + o(|x - \xi|)$$
$$\Rightarrow \langle \nabla g_i(\xi), \ \frac{x - \xi}{|x - \xi|} \rangle \to 0$$

Definition: Ein Punkt $\xi \in B$, für den $\nabla g_1(\xi)...\nabla g_r(\xi)$ linear unabhängig sind, heisst regulärer Punkt von B.

Definition/Satz: Der Tangentialraum von B in einem regulären Punkt $\xi \in B$ ist der (n-r) dimensionale affin-lineare Unterraum $\{x \in \mathbb{R}^n \mid \forall i=1..r: \langle \nabla g_i(\xi), x-\xi \rangle = 0\}.$

Beispiel:
$$g(x,y) = x^2 - y^2 - x^4$$
 $\nabla g = (2x - 4x^3, -2y)$

Figure 1: Singularität in (0,0)

Tangential raum = Tangente in (ξ, η) : $(\xi - 4\xi^3)(x - \xi) - 2\eta(y - \eta) = 0$

Beispiel:
$$S^2 := \{(x, y, z) \in \mathbb{R}^3 \mid \underbrace{x^2 + y^2 + z^2 - 1}_{g(x, y, z)} = 0\}$$

 $\Rightarrow \nabla g = (2x, 2y, 2z) \Rightarrow S^2$ überall regulär.

Tangentialebene in $(\xi, \eta, \zeta) \in S^2$: $2\xi(x - \xi) + 2\eta(y - \eta) + 2\zeta(z - \zeta) = 0$

Beispiel: F gegeben durch $g(x, y, z) := x^2 + y^2 - z^2 = 0$ $\nabla g = (2x, 2y, -2z)$

Figure 2: Singularität in (0,0,0)

Beispiel: $g_1(x, y, z) := x^2 + y^2 + z^2 - 1 \Rightarrow \nabla g_1 = (2x, 2y, 2z)$ $g_2(x, y, z) := x^3 + y^3 + z^3 \Rightarrow \nabla g_2(x, y, z) = (3x^2, 3y^2, 3z^2)$

Regulärer Punkt $\iff g_1 = g_2 = 0$ und $\nabla g_1, \nabla g_2$ lin. unabhängig. Wenn $\nabla g_1, \nabla g_2$ lin. abhängig, so sind $x = y = z \Rightarrow 3x^2 = 1 \Rightarrow x = \frac{1}{\sqrt{3}} \Rightarrow g_2 = \frac{3}{\sqrt[3]{3}} \neq 0$. \Rightarrow gemeinsame Nullstellenmenge überall regulär.

Beispiel: $g(x,y) := (1+x+y)e^{x^2+y^2} - 1 = 0$ lässt sich nach keiner Variablen elementar auflösen.

Fakt: $\frac{\partial g}{\partial x}\frac{\partial g}{\partial y}>0$ überall auf $K:=\{(x,y)\in\mathbb{R}^2\mid g(x,y)=0\}\Rightarrow K$ überall lokal Graph einer beliebig oft diff'baren Funktion φ mit $\varphi'<0$.

Fakt: K = Graph einer bijektiven Funktion.

Extrema mit Nebenbedingungen

Sei $u \subset \mathbb{R}^n$ offen, seien $f, g_1...g_r : U \to \mathbb{R}$ diffbar, $B := \{x \in U \mid g_1(x) = ... = g_r(x) = 0\}$. Gesucht sind lokale Extrema von $f \mid B$.

Definition: Ein regulärer Punkt $\xi \in B$, bei dem $\nabla f(\xi)$ eine Linearkombination von $\nabla g_1(\xi)...\nabla g_r(\xi)$ ist, heisst ein bedingt kritischer Punkt von f auf B. Kritischer Punkt \Longrightarrow bedingt krit. Punkt.

Satz: Jede lokale Extremalstelle von $f \mid B$ ist ein bedingt kritischer Punkt.

Beweisidee: Wenn nicht, dann ist $\nabla f(\xi)$ auf dem Tangentialraum $\{x \in \mathbb{R}^n \mid \langle \nabla g_1(\xi), x - \xi \rangle = 0 \text{ für alle } 1 \leq i \leq r\}$ nicht konstant. Also existiert ein Richtungsvektor $e \in \mathbb{R}^n, |e| = 1$ mit $\langle \nabla f(\xi), e \rangle = c \neq 0$ und $\forall i \langle \nabla g_i(\xi), e \rangle = 0$. Wenn $x \in B$ gegen ξ geht mit $\frac{x-\xi}{|x-\xi|} \to e$, dann $f(x) = f(\xi) + \underbrace{\langle \nabla f(\xi), x - \xi \rangle}_{=|x-\xi|(c+o(1))} + o(|x-\xi|)$

Satz: Ein regulärer Punkt $\xi \in B$ ist ein bedingt kritischer Punkt von f auf B mit $\nabla f(\xi) =$ $\lambda_1 \nabla g_1(\xi) + ... + \lambda_r \nabla g_r(\xi)$ für $\lambda_1 ... \lambda_r \in \mathbb{R}$ genau dann wenn $(\xi, \lambda_1 ... \lambda_r)$ ein kritischer Punkt der Funktion $F(x, \lambda_1..\lambda_r) := f(x) - \lambda_1 g_1(x) - ... - \lambda_r g_r(x)$ ist. Dies ist die Lagrange-sche Hilfsfunktion.

$$\begin{array}{ll} \textit{Das heisst} \colon \text{Wenn gilt: } \forall 1 \leq i \leq n : \frac{\partial F}{\partial x_i}(\xi) = \frac{\partial f}{\partial x_i}(\xi) - \lambda_1 \frac{\partial g_1}{\partial x_i}(\xi) - \ldots - \lambda_r \frac{\partial g_r}{\partial x_i}(\xi) = 0 \text{ und} \\ \forall 1 \leq i \leq r : \frac{\partial F}{\partial \lambda_i}(\xi) = -g_i(x)(\xi) = 0 \iff \nabla f(\xi) - \lambda_1 \nabla g_1(\xi) - \ldots = 0 \end{array}$$

Beispiel: Extrema von $f(x, y, z) := -\sqrt{3}x + 3y + 2z$ auf $\underbrace{S^2}_{\text{regulär}} = \{g(x, y, z) = x^2 + y^2 + z^2 - 1 = 0\}.$

Jede globale Extremalstelle von $f \mid S^2$ ist ein bedingt kritischer Punkt.

Jede globale Extremalstelle von
$$f \mid S^2$$
 ist ein bedingt kritischer Punkt.
$$\begin{cases} \frac{\partial F}{\partial x} = -\sqrt{3} - \lambda 2x & = 0 \iff x = -\frac{\sqrt{3}}{2\lambda} \\ \frac{\partial F}{\partial y} = 3 - \lambda 2y & = 0 \iff y = \frac{3}{2\lambda} \end{cases}$$
 $F(x,y,z,\lambda) = f - \lambda g \Rightarrow \begin{cases} \frac{\partial F}{\partial z} = 2 - \lambda 2z & = 0 \iff z = \frac{1}{\lambda} \\ \frac{\partial F}{\partial \lambda} = -(x^2 + y^2 + z^2 - 1) = 0 \end{cases}$ Einsetzen
$$\frac{16}{4\lambda^2} = 1 \iff \lambda = \pm 2 \xrightarrow{\text{Extremalstellen}} \pm \left(\frac{-\sqrt{3}}{4}, \frac{3}{4}, \frac{1}{2}\right)$$