ECE 590D-001, Reinforcement Learning at Scale

Jay Hineman, Ph.D.

Geometric Data Analytics

2020

Sequential decision (intuition)

- MDP: Markov decision process
- ▶ MDPs are a classical formalization of sequential decision making, where actions influence not just immediate rewards, but also subsequent situations, or states, and through those future rewards.

Figure: Agent-environment loop diagramming a Markov decision process.

Recycling robot Example 3.3 [?]

- ► States: {low, high}
- Actions: {wait, search, recharge}
- ► Transitions: ¡¡board!!

Figure: Diagram of MDP for [?] recycling robot example (page 52, Example 3.3).

Pole Balancing (cart-pole) Example 3.4 [?]

▶ States: $\phi \in [0, \pi]$

 Actions: accelerate cart left or right

► Transitions: an ODE

Figure: A *classic* problem in control: cart-pole/pole balancer/broom balancer.

Gridworld Example 3.5 [?]

- States: $\{(x, y) : x = 0, 1, \dots, m, y = 0, 1, \dots, n\}$
- ightharpoonup Actions: $\{N, E, S, W\}$
- ► Transitions: ¡¡board!!

1	
7	
Actions	

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Figure: Actions representation and State-Value function for uniform random policy.

Figure: 5-by-5 gridworld with 2 distinguished states *A* and *B*.

Mathematical details [?]

Following Sutton and Barto [?]

- ▶ t = time/iteration, $s, S_t \in S = \text{states}$, $a, A_t \in A(s) = \text{actions at state}$, $r, R_{t+1} \in \mathbb{R} = \text{rewards}$, $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \ldots = \text{trajectory}$
- ▶ transition function = p(s', r'|s, a) := Prob{ $S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a$ }
- ▶ probability fact: $\sum_{s',r} p(s',r|s,a) = 1$ for all $s \in \mathcal{S}, a \in \mathcal{A}(s)$
- return and discounted return:

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$
 and $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$

((board work)) from [?]

Policy, value, and action value functions

- value and action-value functions: functions of states (or of state-action pairs) that estimate how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state).
- policy: a policy is a mapping from states to probabilities of selecting each possible action.
- ► ((board work)) from [?]

Mathematical specification of value and action-value

$$q_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[\sum_{k=0} \gamma^{k} R_{(t+1)+k}|S_{t} = s, A_{t} = a], s \in \mathcal{S}$$

$$= \text{Value of } s \text{ given the policy } \pi$$

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[\sum_{k=0} \gamma^{k} R_{(t+1)+k}|S_{t} = s]$$

$$= \text{action-value or } q\text{-value of } s, a \text{ given the policy } \pi$$

$$(1)$$

▶ ((board work)) on Bellman equation for v_{π} from [?]

Spinning up's Taxonomy

Figure: Non-exhaustive, but nice starting Taxonomy of (deep) RL methods. See also: citations.