PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2283 - Diseño y Análisis de Algoritmos

Profesor: Nicolás Van Sint Jan

Ayudante: Dante Pinto

Ayudantía 11 Teoría de números

Problema 1: Teorema de Lagrange

Demuestre que si (G, \circ) es un grupo finito y (H, \circ) , es un subgrupo de (G, \circ) , entonces |H| divide a |G|. Solución: Esta demostración se encuentra en la clase 21.

Problema 2: Teorema Chino de los Restos

1. Sean m, n tales que gcd(m, n) = 1. Demuestre que para todo a, b existe c tal que:

$$c \equiv a \mod m$$

 $c \equiv b \mod n$

Solución: Sean $d \equiv n^{-1} \mod m$ y $e = m^{-1} \mod n$. Definimos $c = a \cdot n \cdot d + b \cdot m \cdot e$, podemos ver

$$c \equiv a \cdot n \cdot d + b \cdot m \cdot e \mod m$$
$$\equiv a \cdot n \cdot d \mod m$$
$$\equiv a \cdot n \cdot n^{-1} \mod m$$
$$\equiv a \mod m$$

Además, de forma análoga, podemos demostrar que $c \equiv b \mod n$.

2. Demuestre que la solución anterior es única bajo $\equiv \text{mod}(m \cdot n)$.

Solución: Sean x,y tales que $x\equiv y\equiv a\mod m,\, x\equiv y\equiv b\mod n.$ Es claro que:

$$m|(x-y) \wedge n|(x-y)$$

 $\Rightarrow m \cdot n|(x-y)$
 $\Rightarrow x \equiv y \mod(m \cdot n)$

3. Demuestre que a es primo relativo con m y b es primo relativo con n ssi c es primo relativo con $m \cdot n$.

Solución: Sup. que gcd(a, m) = 1 y gcd(b, n) = 1

$$\Rightarrow gcd(c,m) = 1 \ \land \ gcd(b,n) = 1$$

$$\Rightarrow \exists s,t,u,v.\ sc + tm = 1 \ \land \ uc + vn = 1$$

$$\Rightarrow 1 = (sc + tm) \cdot (uc + vn)$$

$$= suc^{2} + tmuc + scvn + tmvn$$

$$= c(suc + tmu + svn) + mn(tv)$$

$$\Rightarrow qcd(c, mn) = 1$$

Por otra parte, sup. que gcd(c, mn) = 1, esto significa necesariamente que gcd(c, m) = 1 y gcd(c, n) = 1, lo que a su vez implica que gcd(a, m) = 1 y gcd(b, n) = 1.

4. Utilice lo anterior para demostrar que si gdc(m,n)=1, entonces $\phi(m\cdot n)=\phi(m)\cdot\phi(n)$, donde $\phi(n)=|\mathbb{Z}_n^*|$.

Solución: Podemos definir las siguientes funciones entre $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$ y \mathbb{Z}_{mn}^* :

$$f((a,b)) = and + bme$$
$$f^{-1}(c) = (c \mod m, c \mod n)$$

con $d=n^{-1} \mod m$ y $e=m^{-1} \mod n$. Luego, es fácil ver que ambas funciones son biyecciones, por tanto:

$$|\mathbb{Z}_m^* \times \mathbb{Z}_n^*| = |\mathbb{Z}_{mn}^*|$$

$$\Rightarrow \phi(m) \cdot \phi(n) = \phi(m \cdot n)$$

5. Demuestre que si p es primo, entonces $\phi(p^k) = p^{k-1}(p-1)$

Solución: Sea $q \neq p$ un número tal que $gcd(q, p^k) \neq 1$. Para que lo anterior se cumpla, q debe ser múltiplo de p, pues los únicos divisores de p son 1 y p.

Luego, los números de \mathbb{Z}_{p^k} que son coprimos a p^k son:

$$0 \cdot p, 1 \cdot p, 2 \cdot p, ..., (p^{k-1} - 1) \cdot p$$

Lo que significa que exactamente p^{k-1} números no coprimos a p^k en \mathbb{Z}_{p^k} :

$$\Rightarrow \phi(p^k) = |Z_{p^k}^*| = |Z_{p^k}| - p^{k-1} = p^k - p^{k-1} = p^{k-1}(p-1)$$

6. Demuestre que si $n = p^{e_1} \cdot p^{e_2} \cdot \dots \cdot p^{e_q}$, donde $i \neq j \Rightarrow p_i \neq p_j$, todo p_i es primo y $e_i > 0$, entonces:

$$\phi(n) = n \prod_{i=1}^{q} \left(1 - \frac{1}{p_i} \right)$$

Solución:

$$\begin{split} \phi(n) &= \phi(p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_q^{e_q}) \\ &= \phi(p_1^{e_1}) \cdot \phi(p_2^{e_2}) \cdot \ldots \cdot \phi(p_q^{e_q}) \\ &= p_1^{e_1 - 1}(p_1 - 1) \cdot \ldots \cdot p_q^{e_q - 1}(p_q - 1) \\ &= p_1^{e_1} \left(1 - \frac{1}{p_1}\right) \cdot \ldots \cdot p_q^{e_q} \left(1 - \frac{1}{p_q}\right) \\ &= \prod_{i = 1}^q p_i^{e_i} \cdot \prod_{i = 1}^q \left(1 - \frac{1}{p_q}\right) \\ &= n \cdot \prod_{i = 1}^q \left(1 - \frac{1}{p_i}\right) \end{split}$$

Problema 3

1. Dados enteros $\{d_1, ..., d_n\}$, se define $gcd(d_1, ..., d_n)$ como el menor entero positivo que divide a todos los d_i . Demuestre que existen enteros $\{x_1, ..., x_n\}$ tales que:

$$gcd(d_1, ..., d_n) = d_1 \cdot x_1 + ... + d_n \cdot x_n$$

Solución: Para demostrar esto, necesitamos demostrar que $gcd(d_1, ..., d_n) = gcd(d_1, gcd(d_2, ..., d_n))$. Sean $g = gcd(d_1, ..., d_n)$ y $h = gcd(d_1, gcd(d_2, ..., d_n))$. Tenemos:

$$g|d_1, ..., d_n$$

$$\Rightarrow g|d_1 \land g|gcd(d_2..., d_n)$$

$$\Rightarrow g|gcd(d_1, gcd(d_2..., d_n))$$

$$\Rightarrow g|h$$

Similarmente:

$$h|d_1 \wedge h|gcd(d_2, ..., d_n)$$

$$\Rightarrow h|d_1, ..., d_n$$

$$\Rightarrow h|gcd(d_1, ..., d_n)$$

$$\Rightarrow h|g$$

Por tanto, se debe cumplir que g=h. Utilizando esto, podemos usar inducción para demostrar lo que queremos, donde los casos base son n=1 y n=2 (que se cumplen trivialmente) y el paso inductivo es:

$$\begin{split} gcd(d_1,...,d_n) &= gcd(d_1,gcd(d_2,...,d_n)) \\ &= x_1 \cdot d_1 + x_2' \cdot gcd(d_2,...,d_n)) \\ &= x_1 \cdot d_1 + x_2' \cdot (y_2 \cdot d_2 + ... + y_n \cdot d_n) \\ &= x_1 \cdot d_1 + x_2 \cdot d_2 + ... + x_n \cdot d_n \end{split}$$

2. Sea $J \subseteq \mathbb{Z}$, con $J \neq \emptyset$, tal que para todo $x \in J$ y para todo $z \in \mathbb{Z}$ se cumple que $xz \in J$. Además si $a, b \in J$, entonces $a + b \in J$. Demuestre que existe $z \in \mathbb{Z}$ tal que:

$$J = \{ zt \mid t \in \mathbb{Z} \}$$

Solución: Sea $a \in J$ tal que $a \neq 0$ (si J solamente contiene al 0, la proposición se cumple trivialmente). Por definición de J, es claro que $-a \in J$, por lo que podemos definir el conjunto:

$$J^+ = \{ b \in J \mid b > 0 \}$$

Sea $d = min(J^+)$ y $c \in J$ un elemento cualquiera de J. Sabemos que existe t entero y $0 \le r < d$ tales que:

$$c = t \cdot d + r$$

$$\Rightarrow r = c - t \cdot d$$

Como $c \in J$ y $d \in J$, entonces $td \in J$ y $r \in J$. Sin embargo, sabemos que $0 \le r < d$, por tanto r = 0 y como esto se cumple para cualquier $c \in J$:

$$J \subseteq \{dt | t \in \mathbb{Z}\}$$

Además, por la definición de J, se cumple que $\{dt|t\in\mathbb{Z}\}\subseteq J$, por lo tanto $J=\{dt|t\in\mathbb{Z}\}$, es decir, existe $z\in\mathbb{Z}$ tal que:

$$J = \{ zt \mid t \in \mathbb{Z} \}$$

3. Dados enteros positivos $\{d_1,...,d_n\}$ se define el conjunto S como:

$$S(d_1, ..., d_n) = \{d_1 \cdot x_1 + ... + d_n x_n \mid x_1, ..., x_n \in \mathbb{Z}\}\$$

Desarrolle y analice un algoritmo que dado un entero X y enteros $d_1, ..., d_n$ determine si X pertenece o no a $S(d_1, ..., d_n)$.

Solución: Por la parte 1, $g = gcd(d_1, ..., d_n) \in S(d_1, ..., d_n)$ y además g será el menor entero positivo en S.

Por otra parte, podemos ver que $S(d_1,...,d_n)$ cumple las propiedades que pedimos para J, lo que significa que:

$$S(d_1, ..., d_n) = \{gt \mid t \in \mathbb{Z}\}\$$

Luego, dados $X, d_1, ..., d_n$, el algoritmo deberá calcular $g = gcd(d_1, ..., d_n)$, y responder True ssi g|X.