Ex. 4.2. No baú da figura ao lado atuam as três forças indicadas, cujos módulos são respetivamente $F_1 = 5$ N, $F_2 = 9$ N e $F_3 = 3$ N. O ângulo de F_2 com a horizontal é de 60° . O baú desloca-se 3 m para a esquerda sob a ação destas forças. Calcule o trabalho total realizado sobre o baú pelas três forças e diga se a energia cinética deste aumentou ou diminuiu.

$$W_{total} = W_{F1} + W_{F2} + W_{F3} = \Delta Ec$$

$$W = F \cdot d \cdot \cos(F, d)$$

$$W_{total} = F_1 * d * cos 0^o + F_2 * d * cos 120^o + F_3 * d * cos 90^o$$

$$W_{total} = 5*3 + 9*3*cos120^{o} + 0 = 1,5 J$$

Ex. 4.3. Um bloco de 7 kg é lançado por um plano inclinado acima, com velocidade inicial 8 m/s. O bloco pára após ter percorrido 5 m. O plano tem uma inclinação de 30° em relação à horizontal.

- a) Qual é o coeficiente de atrito cinético entre a superfície do bloco e a do plano?
- b) Qual o intervalo de valores do coeficiente de atrito estático que ainda permite que o bloco volte a descer?
- c) Supondo que o bloco volta a descer, qual é a velocidade com que vai passar pelo ponto de partida?

Durante o trajeto atuam 3 forças: a força de atrito, a força gravítica e a reação normal.

$$W_{total} = W_{Fg} + W_{Fa} + W_{RN} = \Delta Ec$$

 $W = F \cdot d \cdot \cos(F, d)$

 $Fa = \mu R_N = \mu mg \cos 30^{\circ}$

 $mgsen30^{o}*d*cos180^{o} + Fa*d*cos180^{o} + R_{N}*d*cos90^{o} = Ecf - Eci$

$$-7*9.8*sen30°*5 - \mu*7*9.8*cos30°*5 + 0 = 0 - (1/2)*7*82$$

$$\mu = 0.177$$

Quando desce, a força de atrito é para cima, e descerá para Px > Fa

mgsen30° >
$$\mu$$
mg*cos30° \longleftrightarrow μ < tg30° μ < **0,577**

c)
$$W_{total} = W_{Fg} + W_{Fa} + W_{RN} = \Delta Ec$$

 $mg.sen30^{\circ}*d*cos0^{\circ} + Fa*d*cos180^{\circ} + R_N*d*cos90^{\circ} = Ecf - Eci$

$$7*9.8*sen30°*5 - \mu*7*9.8*cos30°*5 + 0 = (1/2)*7*v^2 - 0$$
 \longrightarrow $v = 5.8$ m/s

Ex. 4.6. A figura representa um bloco de massa m = 1.0 kg apoiado sobre um plano inclinado no ponto A. A mola tem constante elástica k = 10 N/m e está presa ao bloco. O bloco é solto da altura h = 40 cm, com a mola na vertical, sem deformação, desce o plano inclinado e passa pelo ponto B. Determine: a) o trabalho realizado pela força elástica entre A e B.

$$W_{Fel} = -\Delta E p_e = -(E p_{eB} - E p_{eA})$$

$$\boldsymbol{E}_{\boldsymbol{pe}} = \frac{1}{2}\boldsymbol{k}\boldsymbol{x}^2$$

Se a mola sem deformação tem um comprimento L_0 e quando deformada tem um comprimento L_1 então a deformação x será $x = L - L_0$:

em A
$$L = L_0$$
, $\log x_A = 0$

em B
$$L^2 = (h+h)^2 + \ell^2 = 0.8^2 + 0.6^2 = 1.0 \text{ m}$$
; $\log_B x_B = L - L_0 = 1.0 - 0.4 = 0.6 \text{ m}$

$$logo x_B = L - L_0 = 1.0 - 0.4 = 0.6 \text{ m}$$

$$W_{\text{Fel}} = -(Ep_{\text{eB}} - Ep_{\text{eA}}) = -Ep_{\text{eB}} + Ep_{\text{eA}} = -(1/2)kx_B^2 = -0.5*10*0.6^2$$

$$W_{Fel} = -1.8 J$$

$$W_{A\to B}^{\text{total}} = E_B^{\text{cinética}} - E_A^{\text{cinética}} = \Delta E_C$$

Não há atrito, pelo que só estão envolvidas a força gravítica e a força elástica, que são forças conservativas:

$$W_{total} = W_{Fg} + W_{Fel} = \Delta Ec$$
 onde $W_{Fg} = -(Ep_{gB} - Ep_{gA})$
- $(Ep_{gB} - Ep_{gA}) - 1,8 = Ec_{B} - Ec_{A}$ \longleftrightarrow - $(0 - mgh_{A}) - 1,8 = (\frac{1}{2})mv_{B}^{2} - 0$

$$v_B = 2,06 \text{ m/s}$$

Ex. 4.7. Um colar com 1,5 kg está preso a uma mola e desliza sem atrito ao longo da barra circular que se mostra na figura e que se encontra num plano horizontal. A mola, cuja constante elástica é de 400 N/m, tem deformação nula quando o colar está em C. Se o colar for libertado do repouso em B determine a sua velocidade quando passar pelo ponto C.

A mola sem deformação tem um comprimento $L_0 = 0.175 \text{ m}$

em C
$$L = L_0$$
, $\log_0 x_C = 0$
em B $L^2 = (0.175 + 0.125)^2 + 0.125^2$ $L = 0.325$ m $\log_0 x_B = L - L_0 = 0.325 - 0.175 = 0.15$ m

O colar está no plano horizontal, pelo que o trabalho da força gravítica é nulo e só temos de considerar a força elástica.

$$W_{total} = W_{Fel} = \Delta Ec$$
 e $W_{Fel} = -\Delta Ep_e = -(Ep_{eC} - Ep_{eB})$ $-(Ep_{eC} - Ep_{eB}) = Ecf - Eci$ $-(0 - (\frac{1}{2})kx_B^2) = (\frac{1}{2})mv_C^2 - 0$ $v_C = 2,45 \text{ m/s}$

Ex. 4.10. Um bloco de 2 kg está em repouso sobre a mola de constante elástica 400 N/m. Um outro bloco de 4 kg é colocado em cima do bloco de 2 kg de modo a tocar na sua superfície e é libertado. Determine:

- a) a velocidade máxima atingida pelos blocos.
- b) a força máxima exercida sobre os blocos.

Ex. 4.11. O cabo de um elevador de 3000 kg quebra-se quando ele está parado no segundo andar, de modo que o piso do elevador se encontra a uma distância d=7,5 m acima do nível superior da mola ($k=2\times10^6$ N/m) representada na figura. Um dispositivo de segurança aperta os trilhos que servem de guia ao elevador, de modo que surge uma força de atrito de 6×10^3 N que se opõe ao movimento do elevador.

- a) Ache a compressão máxima da mola.
- b) Calcule a velocidade do elevador quando a mola retoma a sua posição de equilíbrio.

a)
$$W_{total} = W_{Fg} + W_{Fa} + W_{Fe} = \Delta Ec$$
 $mg^*(d+x)^*cos0^\circ + Fa^*(d+x)^*cos180^\circ - (Ep_{e1} - Ep_{e0}) = Ec1 - Ec0$
 $mg^*(d+x) - Fa^*(d+x) - [(1/2)kx^2 - 0] = (1/2)mv_1^2 - (1/2)mv_0^2$
 $3000^*9, 8^*(7,5+x) - 6000^*(7,5+x) - 1 \times 10^6 x^2 = 0 - 0$
 $x = 0, 43 \text{ m}$

(1) $W_{total} = W_{Fg} + W_{Fa} + W_{Fc} = \Delta Ec$
 $mg^*x^*cos180^\circ + Fa^*x^*cos180^\circ - (Ep_{e2} - Ep_{e1}) = Ec2 - Ec1$
 $-mg^*x - Fa^*x - [0 - (1/2)kx^2] = Ec2 - Ec1$
 $-3000^*9, 8^*0, 43 - 6000^*0, 43 + 1 \times 10^6 x^2 = 1500v_2^2 - 0$
 $v_2 = 10, 6 \text{ m/s}$

Ex. 4.13. A figura representa o perfil de uma superfície lisa, em que AB é um troço retilíneo horizontal e BC é uma semi-circunferência vertical de raio 0,5 m. Um corpo de massa m = 0,1 kg é posto a deslizar, sem atrito, sobre o perfil indicado, impulsionado inicialmente pela mola de constante elástica 600 N/m. Determine a deformação mínima da mola que é necessária para que o corpo atinja o ponto C.

O corpo atinge o ponto C se a força gravítica for totalmente utilizada como força normal quando o corpo atinge o topo da circunferência. Para a velocidade mínima que isso ocorre $R_N=0$.

$$\sum F_n = ma_n$$
 \longrightarrow $Fg = ma_n$ $a_n = \frac{v^2}{R}$

Assim, a menor velocidade para que o corpo atinja o ponto C será:

$$\begin{split} mg &= m \; v^2/R \qquad v^2 = g.R = 9,8 \; x \; 0,5 \qquad v_C \geq 2,21 \; m/s \\ E_{mecA} &= E_{mecC} \\ E_{cA} + E_{pgA} + E_{peA} = E_{cC} + E_{pgC} + E_{peC} \\ 0 + 0 + (1/2)kx^2 &= (1/2)Mv_C^2 + Mg*2R + 0 \\ 300x^2 &= (0,1/2)*2,21^2 + 0,1*9,8*2*0,5 \\ x_{min} &= 0,064 \; m \end{split}$$

Ex. 4.20. Um skater, com uma massa de 80 kg parte do repouso para uma pista com raio de curvatura constante (R = 5 m) – ver figura. Considerando o atrito desprezável e $\theta_1 = \theta_2 = 30^{\circ}$, calcule:

- a) O módulo da velocidade do skater quando está na posição B.
- b) O módulo da força exercida pela pista sobre o skater em B.
- c) O módulo da velocidade do skater quando está na posição A.
- d) O módulo da força exercida pela pista sobre o skater em A.

a)
$$E_{meci} = E_{mecB}$$

$$E_{ci} + E_{pgi} = E_{cB} + E_{pgB}$$

$$0 + MgR = (1/2)Mv_B^2 + 0$$

$$v_B = 9.9 \text{ m/s}$$

b)

$$\sum F_n = ma_n \implies R_N - Fg = ma_n$$

 $a_n = \frac{v^2}{R}$
 $R_N = mg + m v_B^2/R$
 $R_N = 80*9.8 + 80*9.9^2/5 = 2352 \text{ N}$

c)

$$E_{meci} = E_{mecA}$$

 $E_{ci} + E_{pgi} = E_{cA} + E_{pgA}$
 $0 + MgRcos30^{\circ} = (1/2)Mv_{A}^{2} + 0$ N.R.
 $v_{A} = 9,2 \text{ m/s}$

1)

$$\Sigma F_n = ma_n \implies R_N - Fgn = ma_n$$

 $R_N = mgcos30^o + m v_A^2/R$
 $R_N = 80*9,8cos30^o + 80*9,2^2/5$
 $R_N = 2036,9 N$