CSC236 Week 04: Well-Ordering, Induction Pitfalls

Hisbaan Noorani

September 30 – October 6, 2021

Contents

1 Principle of well-ordering

Every non-empty subset of \mathbb{N} has a smallest element

- How would you prove this for some $S \subseteq \mathbb{N}$? Since \mathbb{N} is bounded below by 0 and $0 \in \mathbb{N}$, we know that any subset S of \mathbb{N} is also bounded below by 0. Since it is bounded below, we can say that there is a smallest element.
- Is there something similar for \mathbb{Q} or \mathbb{R} ? No. For example, $(0,1) \subseteq \mathbb{Q}$, $\left\{\frac{1}{n} : n \in \mathbb{N}^+\right\}$.
- Here is the main part of proving the existence of a unique quotient and remainder

$$\forall m \in \mathbb{N}, \forall n \in \mathbb{N}^+, \exists q, r \in \mathbb{N} \text{ s.t. } m = qn + r \land 0 \le r < n$$

The course notes use Mathematical Induction. Well-ordering seems shorter and clearer.

2 Well-ordering example

 $\forall m \in \mathbb{N}, \forall n \in \mathbb{N}^i, let R(m,n) = \{r \in \mathbb{N} : \exists q \in \mathbb{N} \text{ s.t. } m = qn + r\} \text{ has a smallest element}$ For a given pair natural numbers $m, n \neq 0$ does the set R(m,n) staisfy the conditions for well-ordering?

$$R(m,n) = \{r \in \mathbb{N} : \exists q \in \mathbb{N} \text{ s.t. } m = qn + r\}$$

If so, we still need to be sure that the smallest element, r' has

- 1. $0 \le r' < n$
- 2. That q' and r' are unique no other pari of natural numbers would work

... in order to have

$$\forall m \in \mathbb{N}, \forall n \in \mathbb{N}^+, \exists !q', r' \text{ s.t. } m = q'n + r' \land 0 \le r < n$$

Proof. Let $m \in \mathbb{N}, n \in \mathbb{N}^+$. The R(m, n) is a non-empty set of natural numbers. Then there is a smallest element of R(m, n), let it be r', with corresponding q' such that m = q'n + r'.

- Case r' < n: This automatically satisfies our requirements.
- Case $r' \ge n$: Then we can show that there is another r'' such that r'' < r' and r' is not the smallest element of the set.

$$m = q'n + r'$$
 (by choice of r')
= $(q' + 1) n + (r' - n)$

Let r'' = r' - n, q'' = q' - 1. Then $r'' \in R(m, n)$, since m = q''n + r''

Then r'' < r' which is a contradiction, and thus the inital assumption that $r' \ge n$ is false.

So we have a pair of natural number (r', q') such that m = q'n + r' and $0 \le r' < n$.

3 P(n): Every round-robin tornament with n players with a cycle has a 3-cycle.

Use: every non-empty subset of \mathbb{N} has a smallest leement

Think of a round-robin as a complete oriented graph G = (V, E), where $V = \{p_1, \dots, p_n\}$ and every pair of distinct vertices has a unieuply directed edge between them. Claim: $\forall n \in \mathbb{N}^{\geq 3}, P(n)$

If there is a cycle $p_1 \to p_2 \to p_3 \to \cdots \to p_n \to p_1$, can you find a shorter one? Can you add another directed edge without creating a 3-cycle? No, you can't.

Let T be a tournament with $n \ge 3$ contestants. Assume T has at least one cycle. Since there are no 1-cycles or 2-cycles (why?), T has a cycle of length at least 3. Let $C = \{c \ in\mathbb{N}^{\ge 3} : c \text{ is the length of a cycle in } T\}$. So C is a non-empty set of natural numbers, so it must have a smallest element c'.