

Connections between Suffix Trees and Arrays

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Previous Lectures

- Suffix trees and suffix arrays
- Enhancing suffix arrays with Longest Common Prefix (LCP) arrays
- Applications of suffix trees
- Applications of enhanced suffix arrays
- Linear time construction algorithms

Today's Lecture

Relationship of suffix trees and suffix arrays

- Can enhanced suffix arrays be used as "virtual" suffix trees?
- How to do top-down traversals using enhanced suffix arrays?
 - Characterizing child intervals
 - Range Minimum Queries (RMQs)
- Application: pattern search

Correspondence between Suffix Tree Nodes and Suffix Array Intervals

Suffix Trees vs. Suffix Arrays

Observation I

Every suffix tree node corresponds to suffix array interval.

Observation II

The opposite is not true, i.e. some suffix array intervals (there are $O(n^2)$) do not correspond to suffix tree nodes (there are O(n)).

Question

How to characterize SA intervals that do correspond to a ST node?

Example: Suffix Array Intervals

r	lcp[r]	T[pos[r]]
0	-1	\$
1	0	a\$
2	1	ana\$
3	3	anana\$
4	0	banana\$
5	0	na\$
6	2	nana\$
7	-1	

Let pos and 1cp be the suffix array and 1cp array of a text $T \in \Sigma^n$, respectively. An interval [L, R] is called *d*-interval if

- ightharpoonup $1 \operatorname{cp}[L] < d$,
- lcp[R+1] < d,
- $lcp[r] \ge d$ for $L < r \le R$, and
- $\min\{ \operatorname{lcp}[r] \mid L < r \le R \} = d.$

Let pos and 1cp be the suffix array and 1cp array of a text $T \in \Sigma^n$, respectively. An interval [L, R] is called *d*-interval if

- lcp[L] < d,
- lcp[R+1] < d,
- $lcp[r] \ge d$ for $L < r \le R$, and
- $\min\{ lcp[r] \mid L < r \le R \} = d.$

r	lcp[r]	T[pos[r]]
0	-1	\$
1	0	a\$
2	1	ana\$
3	3	anana\$
4	0	banana\$
5	0	na\$
6	2	nana\$
7	-1	

Let pos and 1cp be the suffix array and 1cp array of a text $T \in \Sigma^n$, respectively. An interval [L, R] is called *d*-interval if

- \blacksquare lcp[L] < d,
- lcp[R+1] < d,
- $lcp[r] \ge d$ for $L < r \le R$, and
- $\min\{ \operatorname{lcp}[r] \mid L < r \le R \} = d.$

3 [3								r	lcp[r]	T[pos[r]]
lcp[r]							_	0	-1	\$
3†				l			3-interval	1	0	a\$
2+					_		1 2-interval	2	1	ana\$
1+				١			1-interval	3	3	anana\$
0+				_	_		1 0-interval	4	0	banana\$
11'_							-	5	0	na\$
-1 —	-		-	-	-	4	r r	6	2	nana\$
0	1	2	3	4	5	6	7	7	-1	

Mapping Intervals to Nodes

Observation

Let [L, R] be a *d*-interval and [L', R'] be a *d'*-interval. Then either

- \blacksquare [L, R] and [L', R'] are disjoint, or
- [L, R] is included in [L', R'] or vice versa.

By this property, the "included in" relationship between intervals induces a tree, called the LCP interval tree.

Lemma

The LCP interval tree is **isomorphic** to the suffix tree (w/o leafs).

Traversing the LCP interval tree

Idea

- Sweep from left to right
- Keep active intervals in stack
- Current lcp value higher than top of stack: create interval
- Current lcp value lower than top of stack: end/output interval

Code: Bottom-Up Traversal

```
def bottom_up_traversal(pos, lcp):
    # store pairs: (lcp value, left boundary)
    node_stack = stack()
    node_stack.push((0,0))
    for k in range(1,len(pos)+1):
      next_start = k - 1
      while (not node_stack.empty()) and
            (lcp[k] < node_stack.peek()[0]):
        lcp_value, start = node_stack.pop()
        yield lcp_value, start, k
10
        next_start = start
11
      if (not node_stack.empty()) and
12
         (lcp[k] > node_stack.peek()[0]):
13
        node_stack.push([lcp[k], next_start])
14
```


Getting from Parent to Child Interval

Let pos and 1cp be suffix array and LCP array of a text $T \in \Sigma^n$, respectively. An interval [L, R] is called *d*-interval if

- \blacksquare lcp[L] < d,
- lcp[R+1] < d,
- $lcp[r] \ge d$ for $L < r \le R$, and
- $\min\{ \operatorname{lcp}[r] \mid L < r \le R \} = d.$

Characterizing Child Intervals

Lemma

Let [L,R] be a d-interval, and let i_1,\ldots,i_M be all positions such that $L < i_1 < \ldots < i_M \le R$ and $lcp[i_k] = d$ for all k. These positions are called d-indices. Then the **child intervals** of [L,R] are now given by $[L,i_1-1],[i_1,i_2-1],\ldots,[i_M,R]$.

Why are Child Intervals d'-Intervals for some $d' \geq d$?

Let [L,R] be a d-interval, and let i_1,\ldots,i_M be all positions such that $L < i_1 < \ldots < i_M \le R$ and $lcp[i_k] = d$ for all k. These positions are called d-indices. Then the **child intervals** of [L,R] are now given by $[L,i_1-1],[i_1,i_2-1],\ldots,[i_M,R]$.

Let pos and 1cp be suffix array and LCP array of a text $T \in \Sigma^n$, respectively. An interval [L, R] is called d'-interval if

- lcp[L] < d', lcp[R+1] < d',

Why are Child Intervals d'-Intervals for some $d' \geq d$?

Let [L, R] be a d-interval, and let i_1, \ldots, i_M be all positions such that $L < i_1 < \ldots < i_M \le R$ and $lcp[i_k] = d$ for all k. These positions are called d-indices. Then the child intervals of [L, R] are now given by $[L, i_1 - 1], [i_1, i_2 - 1], \ldots, [i_M, R]$.

Let pos and 1cp be suffix array and LCP array of a text $T \in \Sigma^n$, respectively. An interval [L, R] is called d'-interval if

- lcp[L] < d', lcp[R+1] < d',

Answer for $[i_1, i_2 - 1]$

We have $lcp[j] \ge d+1$ for all $j \in \{L+1,\ldots,R\} \setminus \{i_1,\ldots,i_M\}$.

Let $d' := \min\{ \text{lcp}[j] : i_1 < j \le i_2 - 1 \} > d$.

Then also $lcp[i_1] = d < d'$, $lcp[i_2] = d < d'$, $lcp[r] \ge d'$ for $i_1 < r \le i_2 - 1$.

Summary: Finding Child Intervals

Let [L,R] be a d-interval, and let i_1,\ldots,i_M be all positions such that $L < i_1 < \ldots < i_M \le R$ and $lcp[i_k] = d$ for all k. These positions are called d-indices. Then the **child intervals** of [L,R] are now given by $[L,i_1-1],[i_1,i_2-1],\ldots,[i_M,R]$.

In other words

To find child intervals, we need to find the positions in the interval, where the lcp value is minimal.

Solution: Range Minimum Queries

- Given: Array A
- **Query:** For interval [i,j], what is the smallest position $i' \in [i,j]$ such that $A[i'] = \min\{A[i], \dots, A[j]\}$?

Application: Top-Down Pattern Search (issi)

r	pos[r]	lcp[r]	T[pos[r]:]
0	13	-1	\$
1	12	0	i\$
2	11	1	ii\$
3	1	2	iississippii\$
4	8	1	ippii\$
5	5	1	issippii\$
6	2	4	ississippii\$
7	0	0	miississippii\$
8	10	0	pii\$
9	9	1	ppii\$
10	7	0	sippii\$
11	4	2	sissippii\$
12	6	1	ssippii\$
13	3	3	ssissippii\$
14		-1	

Range Minimum Queries

Naive Algorithms

Scan

Search whole query interval: O(n) time for every query

```
def rmq_naive(A, i, j):
    best = None
    for k in range(i,j+1):
        if (best is None) or (A[k] < A[best]):
            best = k
    return best</pre>
```


Naive Algorithms

Scan

Search whole query interval: O(n) time for every query

```
def rmq_naive(A, i, j):
    best = None
    for k in range(i,j+1):
        if (best is None) or (A[k] < A[best]):
            best = k
    return best</pre>
```

Table lookup

- Preprocessing: Create table with all intervals in $O(n^2)$ space and time once
- **Query:** Table lookup in O(1) time for every query

Sparse Table Approach

Preprocessing: create table with length- 2^{ℓ} intervals in $O(n \log n)$ time

Sparse Table Approach

Querying: look up one or two (overlapping) 2^{ℓ} -intervals with $2^{\ell} \leq (j-i+1)$

Sparse Table Approach

Querying: look up one or two (overlapping) 2^{ℓ} -intervals with $2^{\ell} \leq (j-i+1)$

Analysis of Sparse RMQ Tables

- Preprocessing: $O(n \log_2 n)$ time and space: Compute minima locations for length $2^{\ell+1}$ from those of length 2^{ℓ} ; don't scan long intervals again!
- **Querying:** O(1) time (minimum over at most two lookups)

Constant time RMQs with linear time preprocessing

Bender and Farach-Colton. "The LCA Problem Revisited", Proceedings of LATIN, 2000.

Cartesian Trees

Definition

For a given array A, the Cartesian tree is a binary tree with exactly one node per entry (i.e. nodes are labeled by array index), such that

- \blacksquare the root corresponds to the index *i* of the (leftmost) minimum entry in A,
- the left child of the root is a Cartesian tree of A[0...(i-1)],
- the right child of the root is a Cartesian tree of A[(i+1)...(|A|-1)],

Example: Cartesian Trees

```
0 1 2 3 4 5 6 7 8 9
           9 2 1 8 5 9 3 7 2 6
depth 0:
      1:
      2:
      3:
      4:
                       9
```

Lowest Common Ancestor (LCA) Problem

Definitions

- A node u is called an ancestor of node v, if u lies on the (unique) path from the root to v.
- For a given rooted tree and two given nodes v_1 and v_2 , the lowest common ancestor (LCA) is the node that is an ancestor of both v_1 and v_2 and has maximum distance from the root.

Solving RMQ using LCA

Idea

- Build Cartesian tree T of input array A
- Preprocess tree T for LCA gueries
- 3 Each RMQ query on A now can be answered via an LCA query on T

Observation

Prove that $LCA_{\mathbb{T}}(i,j) = RMQ_{\mathbb{A}}(i,j)$ for all i,j.

Example: Solving RMQ using LCA: RMQ(3,7)

```
0 1 2 3 4 5 6 7 8 9
            9 2 1 8 5 9 3 7 2 6
depth 0:
      1:
      2:
      3:
      4:
                       5
                       9
```

Solving LCA using ± 1 RMQ

Conversely, we can solve an LCA query on a tree using an RMQ query on an array. The array has a special property: Consecutive entries differ by ± 1 .

Idea

- Transform tree into array through an Eulerian tour (depth first search, DFS)
- For each visited node, keep track of its **depth** (distance from root)
- Now an RMQ on this depth array will solve LCA

Definition

An RMQ on an array A with $A[i+1] - A[i] \in \{-1,1\}$ for all indices i is called ± 1 RMQ.

Example: Solving LCA using ± 1 RMQ

```
i: 0 1 2 3 4 5 6 7 8 9
A: 9 2 1 8 5 9 3 7 2 6
```

```
depth 0: 2
1: 1 8
2: 0 6 9
3: 4 7
4: 3 5
```

DFS visits of i: 2 1 0 1 2 8 6 4 3 4 5 4 6 7 6 8 9 8 2 DFS depth array: 0 1 2 1 0 1 2 3 4 3 4 3 2 3 2 1 2 1 0

Idea: Constant-Time RMQ with Linear Preprocessing Time

Part I: Solve ±1RMQ

- Partition input array into blocks of size $k = \lceil \frac{\log(n)}{2} \rceil$
- Key insights:
 - Normalizing a block by subtracting an offset does not change answers to an RMQ Example: [10,11,12,11,12] gives the same answers as [0,1,2,1,2].
 - After normalization, there are "only" 2^{k-1} different arrays in the \pm setting. \rightarrow opportunity to pre-compute all of them

Part II: Solve RMQ

 $\mathsf{RMQ} \to \mathsf{LCA} \to \pm 1 \mathsf{RMQ}$

Solving ±1RMQ

Index 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Array A 987676543454545678787654321232

Index 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Array A 987676543454545678787654321232

Blocks

Index 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 7 9 11 13 15 17 19 21 23 25 27 29

Array A 987676543454545678787654321232

Blocks

Solving $\pm 1 RMQ$

Index 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Array A 987676543454545678787654321232

Blocks

Preprocessing Time for ± 1 RMQ

• We have $O(\frac{n}{\log n})$ blocks of size $s = \lceil \frac{\log n}{2} \rceil$.

Preprocessing Time for ± 1 RMQ

- We have $O(\frac{n}{\log n})$ blocks of size $s = \lceil \frac{\log n}{2} \rceil$.
- We need $O(n' \log n')$ time to build a sparse table for A', where n' is $O(\frac{n}{\log n})$, therefore O(n) time.

Preprocessing Time for ± 1 RMQ

- We have $O(\frac{n}{\log n})$ blocks of size $s = \lceil \frac{\log n}{2} \rceil$.
- We need $O(n' \log n')$ time to build a sparse table for A', where n' is $O(\frac{n}{\log n})$, therefore O(n) time.
- We build 2^{s-1} small full tables (all pairs), for $O(2^{s-1} \cdot s^2)$ time, which is O(n) for $s = \lceil \frac{\log n}{2} \rceil$.

Summary

- Relationship between suffix trees and suffix arrays
 - suffix tree nodes ⇔ suffix array d-intervals
- Bottom-up traversals
- Top-down traversals: Range Minimum Queries (RMQs)
 - $lue{}$ RMQ ightarrow LCA on Cartesian tree ightarrow ± 1 RMQ
 - Linear-time construction of Cartesian tree from array (details not shown)
 - Linear-time construction of depth array from (details not shown)
 - $lue{}$ Preprocessing in linear time and space for $\pm 1 \text{RMQ}$
- Application: forward pattern search
- Bottom line: Enhanced suffix arrays can be used as "virtual" suffix trees.

Possible Exam Questions

- How are suffix tree leafs related to suffix arrays?
- Which suffix tree operations can be simulated using suffix array plus LCP array?
- What is a range minimum query (RMQ)?
- How can RMQs be answered in constant time after at most $O(n \log n)$ preprocessing?
- Why are RMQs on the LCP useful?
- What is needed to do O(|P|) time pattern matching with a suffix array?
- Explain how to achieve linear time/space preprocessing for constant time RMQs.
- What is the lowest common ancestor (LCA) problem?
- How is LCA connected to RMQ?
- What is a ±1RMQ?

