Baze podataka Katedra za računarstvo Elektronski fakultet u Nišu

Relacioni model podataka

Prof.dr Leonid Stoimenov

Pregled predavanja

- Istorijat relacionog modela podataka
- Strukturna komponenta
- Integritetna komponenta
- SQL podjezik za definisanje podataka

Istorijat relacionog modela podataka

- 1970 E. Codd je predložio relacioni model
- [E. Codd, "A Relational Model for Large Shared Data Banks", CACM, vol. 13, No.6, June 1970]
- ▶ 1980 prve komercijalne implementacije
 - ORACLE RDBMS
 - SQL/DS system na IBM-ovom operativnom sistemu MVS
- Primeri komercijalnih RDBMS-ova
 - ▶ IBM-ova DB2 familija
 - Informix
 - Oracle
 - Sybase
 - Microsoft-ov Access i SQL Server
 - Foxbase
 - Paradox

Neke karakteristike relacionog modela podataka

- Jednostavan i elegantan
 - Baza podataka je kolekcija više relacija
 - Svaka relacija je **tabela** sa vrstama i kolonama

- Tabelarna reprezentacija
 - omogućava da se lako razume sadržaj baze podataka, i
 - da se za manipulaciju podacima koristi jednostavan jezik visokog nivoa SQL
- SQL obuhvata DDL, DML, SDL

Koncepti relacionog modela podataka

- Koncepti na nivou intenzije
 - Atribut
 - Šema relacije
 - Šema baze podataka
- Koncepti na nivou ekstenzije:
 - Domen atributa
 - Torka
 - Pojava relacije
 - Pojava baze podataka
- Svi ostali koncepti se izvode iz osnovnih primenom određenih formalnih – matematičkih pravila

Relacioni model - neformalni pogled

- U relacionom modelu podataka baza podataka se predstavlja kao kolekcija relacija
- Relacija je tabela vrednosti, koja sadrži vrste i kolone
- U terminologiji relacionog modela podataka:
 - vrste se nazivaju torke,
 - kolone su atributi,
 - tabela se naziva relacija

Ime		Prezime	Indeks	MBR	
Petai	•	Petrović	Ш	123456	
Milar	1	Milanović	2222	654321	
Jovar	1	Jovanović	3333	345612	

Relacioni model - neformalni pogled

- Svaka vrsta tabele predstavlja kolekciju vrednosti podataka koje su u nekom odnosu
 - ER model: vrsta tabele odgovara nekoj pojavi entiteta iz realnog sveta ili nekoj pojavi poveznika
- Svaka kolona tabele predstavlja kolekciju vrednosti podataka koja opisuje neku odabranu osobinu realnog sistema
 - ER model: kolona tabele odgovara nekom atributu tipa entiteta ili atributu tipa poveznika ili tipu poveznika
- Sve vrednosti u jednoj koloni pripadaju istom tipu podataka

Definicija relacije

Neka je

$$A = \{A_1, A_2, ..., A_n\}$$

skup atributa realnog sistema,

i neka je svakom atributu A, pridružen domen D,

- Domeni ne moraju biti različiti
- Definicija relacije:

Relacija R na skupovima $D_1, D_2,..., D_n$ je skup **n-torki** (torki) od kojih svaka sadrži prvi element iz D_1 , drugi iz $D_2,..., n$ -ti iz D_n

- Domen D se odnosi na skup atomičnih vrednosti
 - Domeni se specificiraju preko tipa podataka
 - Korisno je da svaki domen ima naziv

Domen (podsetnik)

- Logička definicija domena:
 - Lokalni_telefonski_broj: skup 6-cifrenih telefonskih brojeva koji su validni na području lokalne mrežne grupe
 - Ocena_studenta: celi broj između 6 i 10
 - Kod_obrazovnog_profila: skup oznaka profila Elektronskog fakulteta: E,EEN,EMK,MIM,RI,T,US
- ▶ Tip podataka ili format domena:
 - Lokalni_telefonski_broj: CHARACTER string oblika cccccc
 - Prelazna_ocena_studenta: INTEGER broj iz opsega 6-10
 - Kod_obrazovnog_profila: CHARACTER string iz skupa {E,EEN,EMK,MIM,RI,T,US}

Šema relacije

- Šema relacije je imenovana dvojka, u oznaci N(R,C), gde je:
 - N naziv šeme relacije,
 - ▶ R⊆U skup atributa relacije, a
 - C skup ograničenja integriteta relacije
- N je neformalna komponenta definicije koja opisuje njenu semantiku u prirodnom jeziku (naziv šeme relacije)
- Skup ograničenja integriteta C opisuje odnose između elemenata domena atributa iz R
 - Ograničava koje će se torke pojaviti u instanci ove relacije

Primer šeme relacije

- Posmatraćemo tip entiteta STUDENT sa atributima {IND, IME, PREZIME, BPI}
- Pri čemu je uočeno da važe ograničenja
 (γ1) svaki student ima broj indeksa i ne postoje dva studenta sa istim brojem indeksa
 (γ2) broj položenih ispita (BPI) je veći od nule i manji od 50
- **Šema relacije** koja predstavlja model ove klase entiteta bi imala oblik:

STUDENT($\{IND,IME,PREZIME,BPI\},\{\gamma I,\gamma 2\}$)

Obeležavanje šeme relacije

Uobičajeno je da se šema relacije obeležava sa

$$R(\underline{A}_1, A_2, ..., A_n)$$

$$R(\underline{A}_1: D_1, A_2: D_2, ..., A_n: D_n)$$

- R naziv (ime) relacije
- $A_1, A_2, ..., A_n$ lista atributa relacije
- $D_1, D_2, ..., D_n$ lista domena atributa relacije
- A_I ograničenje tipa "primarni ključ relacije"

Primer:

RADNIK2 (MBR, LIME, LD, SBR)

RADNIK1 (MBR:integer, LIME:char(15),LD:real, SBR:integer)

Pojava (instanca) relacije

- Pojava relacije \mathbf{r} nad šemom relacije (\mathbf{R}, \mathbf{C}) , u oznaci $\mathbf{r}(\mathbf{R})$, je skup n-torki $\mathbf{t} = \{t_1, t_2, ..., t_k\}$ koje zadovoljavaju ograničenja \mathbf{C}
 - Svaka n-torka predstavlja uređenu listu od nvrednosti, $t=\langle v_1, v_2, ... v_n \rangle$, gde $v_i \in D_i$ ili $v_i=null$
 - i-ta vrednost torke t, koja odgovara atributu A_i , se obeležava sa $t[A_i]$
- Primer: Jedna pojava relacije radnik nad šemom relacije RADNIK (MBR, LIME, LD, SBR) je:
 - <2203,MIRA,50000,10>
 - <2817,PERA,40000,20>
 - <2932,MIRA,35000,10>
- <2995,GOCA,18000,30>

Tabelarno predstavljanje relacije

- Relacija r nad šemom relacije R(A₁, A₂, ..., A_n) se predstavlja tabelom čije kolone odgovaraju atributima, a vrste pojedinim n-torkama vrednosti ovih atributa
 - Sve vrste moraju biti različite
- Primer:Relacija radnik definisana nad šemom relacije RADNIK(MBR, LIME, LD,SBR) se predstavlja tabelom radnik

<u>MBR</u>	LIME	LD	SBR
2203	MIRA	50000	10
2817	PERA	40000	20
2932	MIRA	35000	10
2995	GOCA	18000	30

Svojstva relacije

- Šema relacije ne sadrži dva jednaka naziva atributa
- Redosled naziva atributa u relaciji nije bitan
- Relacija ne sadrži dve jednake torke
- Redosled torki u relaciji nije bitan

Razlog:

- Prva dva svojstva proizilaze iz definicije šeme relacije (skup naziva atributa, po definiciji skup ne može sadržati dva međusobno jednaka elementa)
- Druga dva svojstva proizilaze iz definicije relacije (skup torki). Posledica promene redosleda atributa i torki u relaciji neće biti gubitak informacije sadržane u relaciji.

Šema i pojava relacione baze podatka

- Šema relacione baze podataka predstavlja konačan skup šema relacija baze podataka R_i (i=1, 2,..., m) i skup međurelacionih ograničenja IC
 - ightharpoonup Označava se sa $S(R_1, R_2, ..., R_m; IC)$
- Pojava (instanca) baze podataka nad šemom $S(R_1,R_2,...,R_m;IC)$, je skup pojava r_i šema relacija R_i (i=1, 2,..., m), pri čemu svako r_i zadovoljava ograničenja integriteta IC
 - Označava se sa s

Primer: Šema relacione baze podataka PREDUZEĆE

PREDUZEĆE ({RADNIK, SEKTOR, PROJEKAT};IC)
RADNIK(MBR, LIME, LD, SBR)
SEKTOR(SBR, SNAZIV, SLOK)
PROJEKAT(PBR, PNAZIV, SBR, PRUK)

 Svaka šema relacije sadrži specifikaciju primarnog ključa (<u>podvučen</u>i atribut u šemi relacije) i specifikaciju stranih ključeva (*italic* u šemi relacije)

Pojava baze podataka PREDUZEĆE

radnik

<u>MBR</u>	LIME	LD	SBR
2203	MIRA	50 000	10
2817	PERA	40 000	20
2932	MIRA	35 000	10
2995	GOCA	18 000	30
3305	LAZA	60 000	40
3515	JOVAN	20 000	20
3819	VLADA	65 000	30

sektor

<u>SBR</u>	SNAZIV	SLOK
10 20	PROIZVODNJA PROIZVODNJA	NIŠ BEOGRAD
30	INŽINJERING	NIŠ
40	RAZVOJ	NIŠ

projekat

<u>PBR</u>	PNAZIV	SBR	PRUK
100	PC	10	2203
200	HOST	20	3305
300	LAN	30	3819
400	VIPX	40	2817

Ključ relacije (1)

Definicija ključa:

Skup atributa $X \subseteq R$ predstavlja ključ šeme relacije (R,C), ako za svako r važe sledeća dva uslova:

$$U1: (\forall u, v \in r)(u[X]=v[X] \Rightarrow u=v)$$

 $U2: (\forall Y \subset X)(\neg U1)$

U1: definiše jedinstvenost vrednosti kjuča

U2: definiše minimalnost skupa atributa ključa

- Jedna šema relacije može imati više ključeva
 - To su ekvivalentni ključevi ili ključevi kandidati
- Jedan od ekvivalentnih ključeva se bira za primarni ključ

Ključ relacije – dodatni pojmovi

- Super ključ (važi uslov U1)
 - Atribut ili skup atributa koji na jedinstven način identifikuje torku u relaciji
- Kandidat ključ (važe uslovi U1 i U2)
 - Super ključ čiji nijedan pravi podskup nema svojstvo super ključa u toj relaciji

Ključ relacije – dodatni pojmovi

- Primarni ključ (važe uslovi U1 i U2)
 - Kandidat ključ izabran od strane projektanta baze podataka da na jedinstven način identifikuje torke relacije
 - Preko ovog ključa se najčešće vrši traženje u relaciji
 - On se koristi kao strani ključ u drugim šemama relacija
- Strani ključ
 - Atribut ili skup atributa jedne relacije koji se uparuje sa ključem kandidatom druge ili iste relacije

Strani (spoljnji) ključ relacije

- Skup atributa SK relacije r je strani ključ relacije r ako zadovoljava sledeća dva uslova:
 - Ako se relacija r referencira na relaciju q, tada atributi iz SK relacije r moraju imati isti domen kao atributi primarnog ključa PK relacije q
 - 2. Ako se torka tl relacije r referencira na torku t2 relacije q, tada vrednost stranog ključa SK u torki tl relacije r mora biti jednaka vrednosti primarnog ključa PK u torki t2 relacije q ili može imati nedefinisanu (NULL) vrednost

Strani (spoljnji) ključ relacije

Integritetna komponenta

- Koriste se pri formiranju i ažuriranju baze podataka u cilju održavanja sadržaja baze podataka u saglasnosti sa uočenim odnosima između atributa realnog sistema
 - Ograničenja torki proveravaju se za svaku torku relacije
 - Relaciona ograničenja proveravaju se međusobni odnosi više torki jedne relacije
 - Ovim se reguliše lokalna konzistentnost usaglašenost pojave relacije sa definicijom šeme relacije
 - Međurelaciona ograničenja
 - Reguliše se globalna konzistentnost baze podataka usaglašenost pojave baze podataka sa definicijom šeme baze podataka

Integritet ključeva

- Vrednosti ključeva kandidata moraju biti jedinstvene u pojavi šeme relacije
 - Ovim se definiše ograničenje jedinstvenosti

Razlog:

Jedinstvenost vrednosti ključeva kandidata je posledica činjenice da relacija predstavlja skup torki, te stoga u relaciji ne mogu postojati dve iste torke

Integritet entiteta

 Niti vrednost primarnog ključa, niti bilo koje njegove komponente, ne sme imati nepoznatu (NULL) vrednost u pojavi relacije

Razlog:

Pošto primarni ključ služi za identifikaciju pojedinih torki relacije, to nepoznata vrednost primarnog ključa bi onemogućila da se neke torke relacije identifikuju

Referencijalni integritet

- To je zahtev da referencirana torka mora postojati (kada semantika podataka to zahteva)
- Važan tip referencijalnog integriteta je ograničenje stranog ključa
 - Ako u relaciji postoji strani ključ, tada vrednost stranog ključa mora biti jednaka vrednosti ključa kandidata neke torke referencirane relacije ili imati null vrednost
- To je ograničenje koje se definiše između dve relacije u cilju održavanja konzistentnosti među torkama ovih relacija

Razlog:

 Referencijalni integritet obezbeđuje da se svaka torka iz jedne relacije referencira samo na postojeću torku u drugoj ili istoj relaciji

"Semantički" integritet -Opšta ograničenja

Dodatna pravila koja specificira korisnik ili DBA, a koja definišu ili ograničavaju neke aspekte realnog sistema

Primer

- Broj zaposlenih u svakom sektoru preduzeća ne sme biti veći od 20
- Plata rukovodioca mora biti veća od plata njegovih radnika
- Ako korisnik postavi takvo ograničenje, onda on očekuje da ga DBMS proverava i da neće dozvoliti da se u relaciju sektor unese 21-vi radnik, odnosno u relaciju radnik LD radnika koji je veći od LD-a njegovog rukovodioca

Specifikacija ograničenja

- U relacijama baze podataka i između relacija baze podataka postoji veliki broj ograničenja integriteta
- Ova ograničenja treba eksplicitno uneti u šemu baze podataka
- U šemi relacije se eksplicitno specificiraju
 - Domeni atributa
 - Primarni ključ
 - Strani ključevi i referenca na primarni ključ
 - Da li atribut može imati NULL vrednost
 - Da li atribut mora imati jedinstvenu vrednost
 - Da li atribut ima podrazumevanu vrednost
 - Ostala semantička ograničenja (koristi se mehanizam trigera)

Ograničenja integriteta i DBMS

- Ograničenja integriteta se specificiraju u šemi baze podataka i eksplicitno specificiraju korišćenjem DDLa, tako da ih DBMS može automatski nadzirati
- Semantička ograničenja se mogu specificirati i kontrolisati unutar aplikacionih programa za ažuriranje baze podataka ili se mogu specificirati u šemi baze podataka korišćenjem jezika za specificiranje ograničenja
- Većina komercijalnih DBMS-a podržava integritet ključa i entiteta, dok manji broj podržava referencijalni i semantički integritet

SQL - definisanje podataka Specificiranje tipa relacije

```
STUDENT (Ind:INTEGER, Ime:STRING, Adresa:STRING, Status:STRING), Ključ: {Ind}
```

CREATE TABLE STUDENT (

Ind INTEGER,

Ime CHAR(20),

Adresa CHAR(50),

Status CHAR(10))

SQL- definisanje podataka Specificiranje ograničenja ključa (1)

```
STUDENT (Ind:INTEGER, Ime:STRING, Adresa:STRING, Status:STRING), Ključ: {Ind}
```

CREATE TABLE STUDENT (

Ind INTEGER,

Ime CHAR(20),

Adresa CHAR(50),

Status CHAR(10),

PRIMARY KEY (Ind))

SQL - definisanje podataka Specificiranje ograničenja ključa (2)

```
PREDMET(Katld:STRING,
 PrKod:STRING, PrNaziv:STRING, Opis:STRING),
 Ključevi: {PrKod}, {Katld, PrNaziv}
CREATE TABLE PREDMET (
 Katld CHAR(6),
 PrKod CHAR(4),
 PrNaziv CHAR(20),
 Opis CHAR(100),
 PRIMARY KEY (PrKod),
 UNIQUE (Katld, PrNaziv))
```

SQL - definisanje podataka Specificiranje NULL i podrazumevanih vrednosti

```
STUDENT(Ind:INTEGER, Ime:STRING, Adresa:STRING, Status:STRING),
  Ključ: {Ind}
CREATE TABLE STUDENT (
              INTEGER,
  Ind
              CHAR(20) NOT NULL,
  Ime
              CHAR(50),
  Adresa
  Status CHAR(10) DEFAULT 'Brucoš',
  PRIMARY KEY (Ind ) )
CREATE TABLE STUDENT (
              INTEGER PRIMARY KEY,
  Ind
              CHAR(20) NOT NULL,
  Ime
  Adresa
              CHAR(50),
  Status CHAR(10) DEFAULT 'Brucos')
```

SQL - definisanje podataka Specificiranje opštihograničenja

```
ZAPISNIK (Studid: INTEGER, PrKod: STRING, Rok: STRING, Ocena: INTEGER), Ključ: {Studid, PrKod, Rok}
```

```
CREATE TABLE ZAPISNIK (
```

Studid INTEGER,

PrKod CHAR(6),

Rok CHAR(6),

Ocena INTEGER NOT NULL,

PRIMARY KEY (Studld, PrKod, Rok),

CHECK (Ocena IN (5,6,7,8,9,10) AND VALUE IS NOT NULL),

CHECK (StudId >0 AND StudId <7000))

SQL - definisanje podataka Kreiranje korisnički definisanog domena

```
CREATE DOMAIN OCENA INTEGER

CHECK (VALUE IN (5,6,7,8,9,10) AND VALUE IS NOT NULL)

CREATE DOMAIN OCENA INTEGER

CHECK (Ocena >4 AND Ocena <11 AND VALUE IS NOT NULL)
```

CREATE TABLE ZAPISNIK (

Studld INTEGER,

PrKod CHAR(6),

Rok CHAR(6),

Ocena OCENA,

PRIMARY KEY (StudId, PrKod, Rok),

CHECK (StudId >0 AND StudId <7000))

SQL - definisanje podataka

Specificiranje ograničenja stranog ključa

```
STUDENT(Ind, Ime, Adresa, Status)
PROFESOR(Id, Ime, Katld)
PREDMET(Katld, PrKod, PrNaziv, Opis)
ZAPISNIK (StudId, PrKod, Rok, Ocena)
IZBOR(StudId, PrKod, Semestar)
NASTAVA(Profld, PrKod, Semestar)
CREATE TABLE ZAPISNIK (
  Studld
              INTEGER.
  PrKod
              CHAR(6),
  Rok
              CHAR(6),
  Ocena
              OCENA,
  PRIMARY KEY (StudId, PrKod, Rok),
  FOREIGN KEY (Studid) REFERENCES STUDENT(Ind),
  FOREIGN KEY (PrKod) REFERENCES PREDMET )
```

SQL - manipulacija podacima

Unos, brisanje i ažuriranje torki

INSERT

INTO STUDENT(Ind, Ime, Adresa, Status)
VALUES (11708, 'Ana', 'Nišavska 11 Pirot', 'apsolvent')

- Mogu se izostaviti imena atributa (kolona) u klauzuli INTO,
- Vrednosti atributa moraju navesti u redosledu koji je definisan
 - Šemom relacije
 - Redosledom atributa
- Dobar stil je da se imena atributa eksplicitno navedu

SQL - manipulacija podacima

Unos, **brisanje** i **ažuriranje** torki

PROM STUDENT SWHERE S.ime= 'Ana'

Iz tabele STUDENT briše torku koja u koloni Ime ima vrednost Ana

UPDATE STUDENT S SET S.Status='poslediplomac' **WHERE** S.ind= 11708

 U tabeli STUDENT ažurira torku koja u koloni Ind ima vrednost 11708 tako što postavlja novu vrednost poslediplomac u koloni Status

Operacijska komponenta

- Nad relacijama je definisan skup operacija
 - Operacije omogućavaju specificiranje upita nad bazom podataka
 - Rezultat pretraživanja je nova relacija koja može biti formirana od jedne ili više relacija
- Postoje dva tipa operacija nad relacionim modelom podataka:
 - Operacije relacione algebre
 - Operacije relacionog računa
 - ▶ Nad torkama
 - Nad domenima

Relacioni model podataka

Pitanja ???