What is claimed is:

- 1. A method of treating a subject with arthritis or arthritic disease or preventing arthritis or arthritic disease in a subject, comprising administering to the subject a therapeutically effective amount of an agent that attenuates annexin function.
- 2. The method of claim 1, wherein the attenuated annexin function is a function of an annexin that binds collagen.
 - 3. The method of claim 1, wherein the annexin binds type II collagen.
- 4. The method of claim 3, wherein the annexin that binds type II collagen is annexin V or annexin X.
- 5. The method of claim 1, wherein the treatment or prevention is effected by increasing collagen synthesis or decreasing collagen degradation.
 - 6. The method of claim 1, wherein the agent has the structure I:

$$(R_1)y \xrightarrow{\begin{array}{c} h \\ f \\ Y \\ \hline \end{array}} \begin{array}{c} R_6 \\ R_5 \\ \hline \end{array} \begin{array}{c} R_6 \\ R_4 \\ \hline \end{array} \begin{array}{c} R_6 \\ R_6 \\ \hline \end{array} \begin{array}{c} R_8 \\ R_8 \\ \end{array}$$

wherein y is from 1 to 4, wherein each R₁ is, independently, hydrogen, a branched or straight chain alkyl group, an alkenyl group, an alkynyl group, a branched or straight chain alkoxy group, an aryl group, an aralkyl group, a cycloalkyl group, an ester group, a substituted or unsubstituted amino group, a cyano group, an amide group, a nitro group, a hydroxy group, a halo group, a thio group, or a trihalomethyl group;

 $\rm R_2$ and $\rm R_6$ are, independently, hydrogen, hydroxy, or branched or straight chain alkyl;

R₃ is hydrogen, a branched or straight chain alkyl group, or a substituted or unsubstituted aryl group;

R₄ is hydrogen, a branched or straight chain alkyl group, an acyl group, a cycloalkyl group, oxygen, or a group having the structure II

$$Z$$
 N
 W
 R_7

wherein W is carbon or nitrogen; Z is oxygen or H_2 ; n is 1 or 2; and R_7 is a branched or straight chain alkyl group, a branched or straight chain alkoxy group, an aryl group, an aralkyl group, a cycloalkyl group, or a heteroaryl group;

 R_5 is A- R_{10} or R_{10} , wherein A is a C_{1-4} branched or straight chain alkyl group, a hydroxyalkyl group, an acyl group, an amino group, an amide group, an ester group, a keto group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a sulfonamide group, or a combination thereof; or

 R_5 and R_6 are collectively =C(H) R_{10} ;

wherein R₁₀ is substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

V is hydrogen; an aryl group, a heteroaryl group, an alkoxy group, or an alkenyloxy group;

X is oxygen, sulfur, hydrogen, an aryl group, a heteroaryl group, an alkoxy group, an alkenyloxy group, or NR_8 , wherein R_8 is hydrogen, a branched or straight chain alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group; or

Y is carbon, oxygen, sulfur, a sulfone group, a sulfoxide group, or NR₉, wherein R₉ is hydrogen, a branched or straight chain alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an ester group, an amino group, an amide group, a cyano group, or a trihalomethyl group;

wherein when bond a is a double bond, then R_3 is present and R_2 is not present; or when bond a is a single bond, then R_2 and R_3 are present;

wherein when bond c is a double bond, then R_5 is present and R_6 is not present; or when bond c is a single bond, then R_5 and R_6 are present;

wherein bonds a and c are not simultaneously double bonds;

wherein when bonds b, d, and e are present, then R₃-E-R₄ is a substituted or unsubstituted alkylene group, or a substituted or unsubstituted alkylene group containing at least one heteroatom;

wherein when bond f is a double bond, then bond i and V are not present; or when bond f is a single bond, then bond i is a single bond and V is present;

wherein when bond f is a single bond or a double bond, then bonds g and h are not present; or when bond f is a single bond or a double bond, and bonds g and h are present, then F is a substituted or unsubstituted alkylene group, or a substituted or unsubstituted alkylene group containing at least one heteroatom;

and a pharmaceutically acceptable salt thereof.

- 7. The method of claim 6, wherein Y is NR₉, wherein R₉ is a branched or straight chain alkyl group.
 - 8. The method of claim 6, wherein Y is carbon.
- 9. The method of claim 7, wherein bond f is a double bond; bonds g and h are not present; and X is oxygen.
 - 10. The method of claim 7, wherein R_5 is a group having the structure III wherein R_{13} - R_{15} are, independently, hydrogen, a branched or straight chain

$$R_{13}$$
 $N(R_{14})_2$ (III)

alkyl group, an acyl group, a cycloalkyl group, or an aryl group; and

x is from 1 to 4, wherein each R₁₆ is, independently, hydrogen, a branched or straight chain alkyl group, an alkenyl group, an alkynyl group, a branched or straight chain alkoxy group, an aryl group, an aralkyl group, a cycloalkyl group, an ester group, a substituted or unsubstituted amino group, a cyano group, an amide group, a nitro group, a hydroxy group, a halo group, a thio group, or a trihalomethyl group.

11. The method of claim 7, wherein R_5 has the structure IV

$$\begin{array}{c|c} H & NH_2 \\ \hline N & NH \end{array} \hspace{0.5cm} (IV)$$

- 12. The method of claim 7, wherein bond a is a double bond and bond c is a single bond.
- 13. The method of claim 7, wherein y is 4 and each R₁ is hydrogen, a branched or straight chain alkyl group, an alkenyl group, an alkynyl group, a branched or straight chain alkoxy group, an aryl group, an aralkyl group, a cycloalkyl group, an ester group, a substituted or unsubstituted amino group, a cyano group, an amide group, a nitro group, a hydroxy group, a halo group, a thio group, or a trihalomethyl group.
- 14. The method of claim 7, wherein R₃ comprises a substituted or unsubstituted phenyl group.

- 15. The method of claim 7, wherein R_4 is a branched or straight chain alkyl group or an acyl group.
- 16. The method of claim 6, wherein bonds a and f are double bonds; bond c is a single bond; bonds g and h are not present; X is oxygen; Y is NR_9 ; y is 4; each R_1 is hydrogen; R_3 comprises a substituted or unsubstituted phenyl group; R_4 is a branched or straight chain alkyl group or an acyl group; and R_5 has the structure III

$$R_{13}$$
 $N(R_{14})_2$ (III)

wherein R₁₃-R₁₅ are, independently, hydrogen, a branched or straight chain alkyl group, an acyl group, a cycloalkyl group, or an aryl group;

x is from 1 to 4, wherein each R₁₆ is, independently, hydrogen, a branched or straight chain alkyl group, an alkenyl group, an alkynyl group, a branched or straight chain alkoxy group, an aryl group, an aralkyl group, a cycloalkyl group, an ester group, a substituted or unsubstituted amino group, a cyano group, an amide group, a nitro group, a hydroxy group, a halo group, a thio group, or a trihalomethyl group.

- 17. The method of claim 1, wherein the agent is 3-(R,S)-(L-tryptophanyl)-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepine-2-one.
- 18. The method of claim 6, wherein Y is sulfur.
- 19. The method of claim 18, wherein V and X are hydrogen.

- 20. The method of claim 19, wherein bonds g and h are not present, and bond f is a single bond.
- 21. The method of claim 18, wherein R_4 has the structure II.
- 22. The method of claim 21, wherein in structure II, W is nitrogen; Z is oxygen; n is 2, and R_7 is CH_2Ph .
- 23. The method of claim 18, wherein bonds a and c are single bonds, and bonds d and e are not present.
- 24. The method of claim 18, wherein R_1 is branched or straight chain alkoxy.
- 25. The method of claim 6, wherein bonds a, c, and f are single bonds; bonds d, e, g and h are not present; Y is sulfur; R_1 is branched or straight chain alkoxy; and R_4 has the structure II.
- 26. The method of claim 1, wherein the agent is 4-(3-(1-(4-benzyl)piperidinyl)propionyl)-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine.
- 27. The method of claim 1, wherein the agent is not 1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepine-2-one.
- 28. The method of claim 1, wherein the agent comprises a benzodiazepine compound, a benzothiazepine compound, or a combination thereof.