Vorlesung Kognition 1: 3: Wahrnehmung II

Klaus Oberauer

Aktualisierter Überblick

- 1) Heute: Repräsentation und Informationsverarbeitung
- 2) (ausgefallen)
- 3) Wahrnehmung I (Podcast)
- Wahrnehmung II
- 5) Wahrnehmung III
- 6) Lernen
- 7) Gedächtnis: Einführung
- Episodisches Gedächtnis I
- 9) Episodisches Gedächtnis II
- 10) [Osterferien; 1. Mai]
- 11) Implizites Gedächtnis und Expertise
- 12) Arbeitsgedächtnis I
- 13) Arbeitsgedächtnis II
- 14) Repetitorium

Lernziele

- Prinzipien und Methoden der Psychophysik kennenlernen
- Die Signal-Entdeckungstheorie verstehen
- Verstehen, wie das visuelle System räumliche Tiefe erschliesst

G. T. Fechner

Psychophysik

- Zusammenhang zwischen
 - physikalischer Messung eines Stimulus und
 - psychologischer Messung seiner Wahrnehmung
- Z.B: Schallwellen:
 - Verdoppelung der Frequenz → wahrgenommene Tonhöhe?

Wahrnehmungsschwellen

Absolutschwelle:

 Minimale physikalische Intensität eines Stimulus, die gerade noch wahrgenommen wird

Unterschiedsschwelle

- Minimaler Unterschied zweier Stimuli, so dass sie gerade noch unterscheidbar sind
- "just noticeable difference" (JND)

Messung einer Schwelle

- Reize unterschiedlicher Intensität → war da was?

Psychometrische Funktion

Differenzschwelle: Webers Gesetz

DL = Differenz-Limen = Differenzschwelle = JND

$$\sum_{S}^{S} = K \text{ (konstant)}$$

K für Stimulusdimensionen:

-	Lichtintensität:	0.08
-	Schallintensität:	0.04
-	Gewicht:	0.02
_	Elektrischer Schock:	0.01

Physikalische und Psychologische Intensität

- Problem: Skala für psychologische Intensität
- Fechner:
 - Nullpunkt = Absolutschwelle
 - Einheit = Differenzschwelle (JND)

Nullpunkt =
$$S_0$$

 $S_1 = S_0 + JND$
 $S_2 = S_0 + 2 JND$

JND hängt ab von S! JND/S = K JND = K*S

$$E = C + c*In(S)$$

Stevens' Gesetz

- Direktes Verfahren:
 - Standardreiz $S_1 = 100$
 - Vergleichsreiz $S_2 = ?$
 - Person gibt Empfindungsstärke auf numerischer Skala an
 - z.B. S₂ = 50, wenn S₂ als halb so stark wie S₁
 empfunden wird
- Stevens' Potenzgesetz: E = a*S^b

Stevens' Gesetz

(Stevens, 1957)

Absolutschwelle: Ein Problem

Experiment:

- Zufällige Abfolge von (schwachem) Licht und dunklem Bildschirm (kein Licht)
- War Licht zu sehen?

Frage:

- Hat Julie eine grössere Lichtempfindlichkeit?
- Gibt es eine alternative
 Erklärung für die
 Ergebnisse?

Signal-Entdeckungs-Theorie

(Green & Swets, 1966)

4 mögliche Beobachtungen

	"Ja"	"Nein"
Licht	Treffer	Verpasser
kein Licht	falsche Alarme	korrekte Ablehnungen

Julie

	"Ja"	"Nein"	
Licht	90	10	
kein Licht	50	50	

Regina

	"Ja"	"Nein"
Licht	70	30
kein Licht	30	70

Signal-Entdeckungs-Theorie: Annahmen

Empfindungsstärke =
 Stimulus (oder keiner) + Rauschen

Signal-Entdeckungs-Theorie: Annahmen

Empfindungsstärke =
 Stimulus (oder keiner) + Rauschen

Signal-Entdeckungs-Theorie: Parameter

- Verhalten wird durch 2 Parameter determiniert
- 1) Sensitivität (Diskriminierbarkeit) d':
- 2) Kriterium, bzw. bias
- Signal-Entdeckungs-Theorie ermöglicht die Unterscheidung der beiden Parameter

Zur Erinnerung: Normalverteilung und z-Werte

Z-Werte sind standardisierte normalverteilte Werte

$$z = \frac{(x - \overline{x})}{\sigma}$$

Standardnormalverteilung:

$$M = 0$$

$$SD = 1$$

Zur Erinnerung: Normalverteilung und z-Werte

Sensitivität

- Wie gut Signal- und Rauschen-Verteilung unterschieden werden können
- Bei gleicher SD ist d' einfach ein z-Wert:

$$d' = \frac{(\overline{x}_{signal} - \overline{x}_{noise})}{\sigma}$$

Sensitivität

Kriterium

 Bias – Präferenz für eine der beiden Antworten

- Hohe Treffer-Rate
- Hohe FA-Rate

- hohe Verpasser-Rate
- hohe Korrekt-Zurückweisungs-Rate

Optimales Kriterium

- Geringster Anteil an Fehlentscheidungen (Verpasser + FA)
- Optimales Kriterium am Kreuzungspunkt der Verteilungen = 0.5 d'

Kriterium und Bias

Schätzung von Sensitivität und Bias

$$d' = z(H) - z(FA)$$

$$C = -.5*[z(FA) + z(H)]$$

H = "hit rate" (Trefferrate)

FA = "false alarm rate"

Frage: Was ist mit Verpassern und Korrekten Zurückweisungen?

Rate der Verpasser = 1 - H

Rate der korrekten Zurückweisungen = 1 – FA

Zusammenfassung: Signal-Entdeckungs-Theorie

- Verhalten wird durch 2 Parameter determiniert:
- 1) Sensitivität (Diskriminierbarkeit) d':
 - Abstand zwischen den Verteilungen in SD-Einheiten
- 2) Kriterium, bzw. bias
 - λ = Position des Kriteriums relativ zu M("Rauschen")
 - C = Bias = Position des Kriteriums relativ zu neutralem Kriterium
- Signal-Entdeckungs-Theorie ermöglicht die Unterscheidung der beiden Parameter

Die Tiefe des Raums

- Problem: Das Abbild der Umwelt auf der Retina ist 2-dimensional
- Wie kann das Gehirn räumliche Tiefe (und Grösse von Objekten) ermitteln?

Die Tiefe des Raums

- Lösung: Das visuelle System "erschliesst"
 Tiefe aus Hinweisen
- Hermann von Helmholtz: Theorie unbewusster Schlüsse
 - Das kognitive System verwendet perzeptuelle Information, um Eigenschaften der Welt zu erschliessen / errechnen

Tiefenhinweise

Okulomotorische Hinweise

Akkomodation

 Anpassung der Linse zum scharfen Sehen eines Objekts

Konvergenz

Verdeckung

Relative Grösse

Relative Höhe im Blickfeld (Nähe zum Horizont)

Luftperspektive

Unscharfe, bläuliche
 Objekte erscheinen fern

- Lineare Perspektive
 - Konvergierende Linien
- Texturgradient
 - Verdichtung von Texturelementen

- Bewegungsparallaxe
 - Weiter entfernte
 Objekte
 verschieben sich
 weniger weit auf der
 Retina
 - z.B. Zugfahrt

Binokulare Hinweise

Selbstversuch:

- Schliessen Sie das rechte Auge,
- Halten Sie den Zeigefinger vor das linke Auge,
- so dass er ein Objekt in der Ferne verdeckt.
- Blicken Sie abwechselnd mit einem und dem anderen Auge auf den Zeigefinger
- Was passiert mit dem Objekt in der Ferne?

Binokulare Hinweise: Querdisparation

Rechtes Auge geschlossen: Zeigefinger und Objekt fallen auf gleichen Ort der Netzhaut

Linkes Auge geschlossen: Objekt fällt auf anderen Ort der Netzhaut

Korrespondierende Netzhautpunkte

Querdisparation

Tiefenhinweise sind unterschiedlich nützlich für verschiedene Distanzen

Hinweis	0 – 2 m	2 – 30 m	über 30 m
Akkomodation und Konvergenz	Х		
Verdeckung	Х	Х	Х
Relative Grösse	Х	Х	x
relative Höhe im Gesichtsfeld		Х	Х
Atmosphärische Perspektive			x
Bewegungsprallaxe	Х	Х	
Querdisparation	Х	Х	

Tiefensehen und die Grösse von Objekten

 Grösse des Objekts (G) kann aus Grösse des retinalen Abbilds (R) und Distanz (D) berechnet werden

• $G = K(R \times D)$

Denksport

Welche der horizontalen Linien ist länger?

Warum sieht das so aus?

Ponzo-Illusion

Mond-Illusion

- Der Mond sieht über dem Horizont grösser aus als hoch am Himmel
- Mehrere Faktoren spielen eine Rolle einer davon ist die wahrgenommene Distanz

Fazit: Tiefenwahrnehmung

- Wahrnehmung der Entfernung beruht auf einer Vielzahl von Tiefenhinweisen
- Einschätzung der Tiefe ist wichtig für Wahrnehmung der Grösse von Objekten

Literatur

- Empfohlen zur Vertiefung:
 - Wendt, M. (2014). Allgemeine Psychologie:
 Wahrnehmung, Kapitel 2 + 6
 - Goldstein, B. E. (2015). Wahrnehmung. Berlin:
 Springer (Kapitel 2, 3, 4).

Bonus: Ableitung von Fechners Gesetz aus Webers Gesetz

- Fechner:
 - Nullpunkt = Absolutschwelle
 - Einheit = Differenzschwelle (JND)

Nullpunkt =
$$S_0$$
 $S_1 = S_0 + JND$
 $S_1 = S_0 + 2 JND$
 $JND/S = K$
 $JND/S = K$
 $S_1 = S_0 + K^*S_0 = S_0(1+K)$
 $S_2 = S_0 + 2 JND$
 $S_2 = S_0 + 2 JND$
 $S_3 = S_1 + K^*S_1 = S_1(1+K)$
 $S_4 = S_0(1+K)(1+K)$
 $S_5 = S_0(1+K)^2$
 $S_6 = S_0(1+K)^2$

Fechners psychophysische Funktion

Ableitung von Fechners logarithmischer Funktion (s. Wendt, 2014)

$$\begin{split} S_E &= S_0(1+K)^E \\ &\log(S_E) = \log(S_0) + E^* \log(1+K) \\ E &= [\log(S_E) - \log(S_0)] * 1/\log(1+K) \\ \text{setzen wir } 1/\log(1+K) = c \\ E &= \log(S_E) * c + \log(S_0) * c \\ \text{setzen wir } \log(S_0) * c = C \\ E &= \log(S_E) * c + C \\ S &= \text{physikalische Grösse (in physikalischen Einheiten, z.B. Gramm)} \\ E &= \text{Empfindungsstärke (in JND Einheiten)} \end{split}$$