STATISTICS: Basics

What is statistics:

It is a science of Collection, organization, Presentation,
 Analysis, and Interpretation of data

Collection of Data:

- 1. Primary data
- 2. Secondary data

Analysis of data:

- Measurement of Central Tendency
- 2. Dispersion
- 3. Regression

Organization of data

Presentation of Data:

- 1. Tabular Form
- 2. Graphical

Interpretation:

1. Conclusion

Descriptive statistics-

- ➤ It is a method of collection, organizing, summarizing and presenting data in an informative way
- It explains already known data
- Final result represent by charts, graphs and table
- Mean, mode, median standard deviation and frequency distribution
- Students report card

Inferential statistics-

- ❖ To explain the chances of occurrence of an event
- It attempts to reach the conclusion to learn about the population
- Final result based on probability
- It predicting the relationship between death & smoking habit
- It predicting effectiveness of a drug

Data or variable

Qualitative

Which cannot be expressed numerically

Example- fishes in market, intelligence of student, degree in university, colors of flowers

Quantitative

Example-height of students, weight of students, age of students

Series

Individual

(Only values)

Marks

2

1

Ţ

0

9

Discrete

(values + frequency)

Marks No. of students

.

10

.5 5

20 8

25 3

Continuous (values

+ frequency)

Marks No. of students

5 - 10

10 - 15

15 – 20 5

20 - 25 8

25 - 30 3

Types of Class Intervals

Exclusive

Inclusive

Less than

More than

Mid value

Importance of statistics

Government--

- To formulate policy
- Functions of the ministry
- To analyze basic economics problems like poverty, unemployment

Economics--

- Study of consumption, cost
- Economic planning of the best use of natural resources

Business--

 Import, export, transport, banking, advertize, insurance and packing etc

Limitations of statistics

- 1. Only use in homogeneous data
- 2. Only use in numerical facts
- 3. Does not study individuals
- 4. It can use by experts
- 5. Statistics law are not exact(predictable)
- 6. Statistics are not universally applicable
- 7. It can be misused

Central Tendency

Meaning:

The numerical value of an observation is called central value. This central values of other observations in the group or cluster is called **central tendency**

Example-the production manager of a manufacturing firms finds that

the daily production of items produced by some workers is

then the average units produced by each worker is ----

Characteristic of good average

- 1. Easy to understand
- 2. Simple to compute
- 3. Based all observations
- 4. It should be uniquely defined
- 5. It should be mathematically expressed
- 6. It should not be affected by extremes values

Measures of central tendency

- Arithmetic mean
- Geometric mean
- Harmonic Mean
- Median
- Mode

AIRTHMATIC MEAN

(Average)

Average is the sum of a list of numbers divided by the no. of numbers in the list.

What is the average of 3,4,5

Average =
$$3+4+5/3 = 12/3 = 4$$

sum of observation

Average =

total no. of observation

UNGROUPED DATA:-there are two methods for calculating arithmetic mean of ungrouped data

- 1. Direct method
- 2. Indirect or shortcut method

GROUPED DATA:-In grouped data we are using short cut method OR

Assume mean method OR Step deviation method

13

MEAN

FORMULA:-direct method

$$1. X = \frac{\sum X}{N}$$

2.
$$\overline{X} = \frac{\sum f x}{N}$$
 OR $\overline{X} = \frac{\sum f x}{\sum f}$

DIRECT METHOD

Example; The number of new orders received by a company over the last 25 working days Were recorded as follows;

Calculate Arithmetic mean Solution;---applying formula,

A.M.=
$$\frac{\sum X}{N}$$
= 3+0+1+4+4+4+2+5+3+6+4+5+1+4+2+3+0+2+0+5+4+2+3+3+1
$$= \frac{71}{25} = 2.84$$

EXAMPLE: Find A.M. of the following frequency distribution:

X: 1 2 3 4 5 6 7 8 9

f: 7 11 16 17 26 31 11 1

X	f	fx
1	7	7
2	11	22
3	16	48
4	17	68
5	26	130
6	31	186
7	11	77
8	1	8
9	1	9
	∑ f=121	∑f x=555

A.M.=
$$\overline{X} = \frac{\sum f x}{\sum f}$$

$$= \frac{555}{121}$$

Example:- Determine **mean**

daily wages(in Rs) : 0-10 10-20 20-30 30-40 40-50 50-60 60-70

No. of workers : 6 5 8 15 7 6 3

Solution:

wages	Mid value(x)	No. of workers(f)	fx
0-10	5	6	30
10-20	15	5	75
20-30	25	8	200
30-40	35	15	525
40-50	45	7	315
50-60	55	6	330
60-70	65	3	195
		∑f=50	∑f x=1670

Mid value
$$x = \frac{I_1 + I_2}{2}$$

$$\sum f x$$

$$X = Mean = \sum f$$

$$= \frac{1670}{50}$$

SHORT CUT METHOD

QU.- Calculate the average sales per firm from the following data of sales of 100 firms using short cut method

SALES:

NO. OF FIRMS

Solution:-

X	f	d = x-A	f d
10	13	-4	-52
13	19	-1	-19
<u>14</u>	30	0	0
19	16	+5	+80
25	14	+11	+154
28	8	+14	+112
	∑f = 100		∑f d = 275

Assume mean= A= 14

$$X = A + \frac{\sum f d}{\sum f}$$

$$= 14 + \frac{275}{100}$$

$$= 14+2.75$$

Qu.-calculate mean--

GROUPED DATA (SHORT CUT METHOD)

Scores	No. of candidates
0 - 10	8
10 - 20	15
20 - 30	17
30 - 40	28
40 - 50	25
50 - 60	24
60 - 70	18
70 – 80	9
80 – 90	6

Solution: Score	8 15 17 28 25 24 18 9	5 15 25 35 45 55 65 75	$ d = \frac{x - A}{i} -4 -3 -2 -1 0 1 2 3 $	f d -32 -45 -34 -28 0 24 36 27
80 – 90	6 n= 150	85	4	24 ∑f d= -28
$=A + \frac{\Sigma f d'}{n} \times i$		5-45= - <u>40</u> 10	15	5-45=-30/10=-3

$$\overline{\mathbf{x}} = \mathbf{A} + \frac{\sum f \ d}{\sum f} * i$$

$$= 45 + \frac{-28}{150} * ^{10}$$

Assume Mean = A = 45

$$\sum f d = -28$$

$$\sum f = 150 = n$$
 i= 10

Qu. -find A.M. applying step deviation method of the following distribution:-

Marks: 0-1010-20 20-30 30-40 40-50 50-60 60-70 No. of students: 5 3 6 8 15 7 6

Solution:

<u>:</u>	marks	mid value(x)	f	d=x-A/i	f d
	0-10	5	6	-3	-18
	10-20	15	5	-2	-10
	20-30	25	8	-1	-8
	30-40	35	15	0	0
	40-50	45	7	+1	+7
	50-60	55	6	+2	+12
	60-70	65	3	+3	+9
			∑f=50		$\sum f d = -8$

Mid value-

0+10/2=5 10+20=30/2=15 20+30=50/2=25 36+40≈70/2=35...... Assume mean=35

5-35=-30/10=-3 15-35=-20/10=-2 25-35=-10/10=-1

San **35** ta 35 = 0

i=10

45-35=10/10=+1 55-35=20/10=+2 65-35=30/10=+3

Now A.M. =
$$\overline{X}$$
 = A + $\frac{\sum f d_*}{\sum f}$

$$= 35 + \frac{-8}{50} * ^{10}$$

$$= 35 - 1.6$$

Qu:- 1. find mean

marks: 10-15 15-20 20-25 25-30 30-35 35-40

no. of students: 11 20 35 20 8 6 **ANS = 23.1**

Qu.:-2. find A.M.—

Height: 130-134 135-139 140-144 145-149 150-154 155-159 160-164 frequency: 5 15 28 24 17 10 1

ANS = 145.35

Qu:- 3. determine arithmetic mean---

_		
	No. of workers	wages
	2	12.5-17.5
	22	17.5-22.5
	19	22.5-27.5
ANS = 27.46	14	27.5-32.5
	3	32.5-37.5
	4	37.5-42.5
	6	42.5-47.5
	1	47.5-52.5

6/22/2020 Sangeeta 27

Cumulative frequency distribution

Qu:- find the average mean using arithmetic mean method

marks	No. of students
Less than 10	5
Less than 20	17
Less than 30	31
Less than 40	41
less than 50	49

<u>Solution:</u>- first we convert of cumulative frequency distribution to simple(exclusive) frequency distribution-

marks	no. of students
0-10	5
10-20	17-5=12
20-30	31-17=14
30-40	41-31=10
40-50	49-41=8

Marks	Mid value(x)	f	d=x-A/i	f*d	
0-10	5	5	-2	-10	22
10-20	15	12	-1	-12	-22
20-30	25 A	14	0	0	
30-40	35	10	+1	+10	26
40-50	45	8	+2	+16	26
		∑f =49		∑fd=4	

Applying formula

Now A.M. =
$$\overline{X}$$
 = A + $\sum f d$ * i
=25+ $\frac{4}{49}$ * $\frac{5}{10}$ = 25+0.81 = 25.81

More than (Ogive) Cumulative frequency distribution

Find mean -

Production yield (in kg)	Number of Firms
More than 50	100
More than 55	98
More than 60	90
More than 65	78
More than 70	54
More than 75	16

<u>Solution:</u>- first we convert of cumulative frequency distribution to simple(exclusive) frequency distribution-

Production Yield	f
50-55	100-98=2
55-60	98-90=8
60-65	90-78=12
65-70	78-54=24
70-75	54-16=38
75-80	16

Solution -

Production Yield	Mid Value x	f	d=x-A/I	f*d	
50-55	52.5	2	-3	-6	
55-60	57.5	18	-2	-36	-54
60-65	62.5	12	-1	-12	
65-70	67.5 A	24	0	0	
70-75	72.5	38	+1	+38	٦
75-80	77.5	16	+2	+32	+70
		∑f=100		∑fd=16	

Now A.M. =
$$X = A + \frac{\sum f d}{\sum f}$$
 * i =67.5+16/100 *5 = 67.5 + 0..81 =68.31

Combined or composite mean

• If there are n_1 values in a distribution whose A.M. is \overline{x}_1 and similarly the A.M.of n_2 values of another distribution is x_2 then combined mean is given by

$$\overline{X} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_{1+} n_2}$$

Example: the average daily wage of 30 female workers in a factory is 65 Rs and the average daily wages of 70 male workers is 75 Rs, find the combined average daily wages of total workers.

```
Solution- let x_1 = the wages of male workers = 75

x_2 = the wages of female workers = 65

n_1 = no. of male workers = 70

n_2 = no. of female workers = 30
```

X =
$$\frac{70x75 + 30 x65}{70+30}$$

= $\frac{5250+1950}{100}$
= $\frac{7200}{100}$
= **72** IS COMBINED MEAN

Qu The average marks obtained by two groups of students in an examination are 75 & 85. if the average marks of all the students is 80, find the ratio of student in the two group.

Solution: let first group's average marks is $x_1 = 75$ & second group's average marks is $x_2 = 85$ total average is $\bar{x} = 80$ number of first group is $= n_1$ number of second group is = n_2 $n_1/n_2 = ?$ $80 = \frac{n_1 (75) + n_2 (85)}{n_1 + n_2}$ now, $80n_1 + 80n_2 = 75n_1 + 85n_2$ $80n_1 - 75n_1 = 85n_2 - 80n_2$ $5n_1 = 5n_2$ $n_1/n_2 = 1/1 = 1:1$

$$x = n_1 x_1 + n_2 x_2$$

 $n_1 + n_2$

Qu:- 1 the mean salary for a group of 40 female workers is 5200 per month and that for a group of 60 male workers is 6800 per month, What is the COMBINED MEAN salary

(ANS = 6160)

Qu:-2 the average marks of 100 students of one group are 60 and that of another group of 50 students are 80, find COMBINED AVERAGE of all 150 students.

(ANS = 66.66)

Qu:- 3 the mean of 35 observation of a group is 28.4 and the mean of 15 observation of another group is 32, if the two groups of observation are combined ,find the mean of the entire group

(ANS = 23.8)

Qu:- 4 the mean weight of 150 students in a class is 60 kg. the mean weight of boy students is 70 kg and that of girl students is 55 kg, find the number of boys and girls

(ANS = 50 & 100)

Qu:- 5 the average salary of employees of a firm is 6800, the average salary of gents and ladies are are 6400 & 7500 respectively .find ratio of gents & ladies .

(ANS = 4:7)

Merits of arithmetic mean:-

- it is very simple to calculate.
- it is very easy to understand.
- it is rigidly defined.
- it is based on all items.
- Algebraic treatment is possible.
- it is least affected by sampling fluctuations.
- no arrangement required.
- Accuracy test can be conducted.

Demerits of arithmetic mean:-

- > it is inconvenient to calculate.
- it is effected of extreme values.
- it cannot be calculated for qualitative data.
- It cannot be calculated open ended continuous series.
- Laughable conclusion .
- Misleading conclusion.
- > It cannot be determined by graphical method.
- more stress on items of higher value.