Trigonometric Integrals

Trigonometric Integrals Let us start with an integral that we know how to do, J cos(x) sin ⁵ (x) dx u=sin(x) du=cos(x) dx = \int_{0} u^{6} + c = \int_{0} (\sin(x))^{1/6} + c This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, S sin ⁵ (x) dx Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, J sin ⁵ (x) dx = \int_{0} \sin^{6}(x) \dx =
$J_{\cos(x)} \cdot \sin^{5}(x) dx$ $u = \sin(x)$ $du = \cos(x) dx$ $= \int u^{5} du$ $= \overline{u} u^{7} + c$ $= \overline{u} (\sin(x))^{1/2} + c$ This integral is easy to do with a substitution because the presence of the cosine let us consider it without, $J_{\sin^{5}(x)} dx$ Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $J_{\sin^{5}(x)} dx$ $= J_{\sin^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \cos(x) dx$ $= J_{\cos^{6}($
$J_{\cos(x)} \cdot \sin^{5}(x) dx$ $u = \sin(x)$ $du = \cos(x) dx$ $= \int u^{5} du$ $= \overline{u} u^{7} + c$ $= \overline{u} (\sin(x))^{1/2} + c$ This integral is easy to do with a substitution because the presence of the cosine let us consider it without, $J_{\sin^{5}(x)} dx$ Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $J_{\sin^{5}(x)} dx$ $= J_{\sin^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \sin(x) dx$ $= J_{\cos^{6}(x)} \cos(x) dx$ $= J_{\cos^{6}($
$\begin{array}{l} u = \sin(x) \\ du = \cos(x) dx \\ = \int u^5 du \\ = \overline{u} u^6 + c \\ = \overline{u} \left(\sin(x) \right)^6 + c \\ \end{array}$ This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, $\int \sin^5(x) dx$ Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $\int \sin^5(x) dx$ $= \int \sin^6(x) \sin(x) dx$ $= \int (\sin^2(x))^2 \cdot \sin(x) dx$ $= \int (\sin^2(x))^2 \cdot \sin(x) dx$ $= \int (1-\cos^2(x))^2 \cdot \sin(x) dx$ $= \int (1-\cos^2(x))^2 \cdot \sin(x) dx$
du=cos(x) dx = $\int u^5 du$ This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, $\int \sin^5(x) dx$ Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $\int \sin^5(x) dx$ = $\int \sin^6(x) \sin(x) dx$ = $\int \sin^6(x) \sin(x) dx$ = $\int (\sin^2(x))^2 \cdot \sin(x) dx$ utilize $\sin^6(x) + \cos^2(x) = (-\infty^2(x))^2 \cdot \sin(x) dx$ = $\int (1-\cos^2(x))^2 \cdot \sin(x) dx$ utilize $\sin^6(x) + \cos^2(x) = (-\infty^2(x))^2 \cdot \sin(x) dx$
= \(\frac{1}{3} \text{ u'} + \cdot \) = \(\text{i'} \text{ (sin(x))'} + \cdot \) This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, \(\text{Ssin}^5(x) \dx \) Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, \(\text{Ssin}^5(x) \dx \) = \(\text{Ssin}^6(x) \dx \) = \(\text{Ssin}^
= to ut t c = to ut t c = to ut t c = to usin(sin(x)) t c This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, Ssin ⁵ (x) dx Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, Ssin ⁵ (x) dx = Ssin ⁶ (x) sin(x) dx = Ssin ⁶ (x) sin(x) dx = Ssin ⁶ (x) sin(x) dx utilize sin ⁶ (x) t cos ² (x) = 1 => sin ² (x) = 1 - cos ² (x) = Ssin ² (x) = 1 - cos ² (x)
This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, Ssin ⁵ (x) dx Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $S \sin^{5}(x) dx$ = $S \sin^{4}(x) \sin(x) dx$
This integral is easy to do with a substitution because the presence of the cosine Let us consider it without, Ssin ⁵ (x) dx Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $\int \sin^5(x) dx$ = $\int \sin^4(x) \sin(x) dx$ = $\int (\sin^2(x))^2 \cdot \sin(x) dx$ = $\int (\sin^2(x))^2 \cdot \sin(x) dx$ = $\int (1-\cos^2(x))^2 \cdot \sin(x) dx$
Let us consider it without, Ssin ⁵ (x) dx Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, Ssin ⁵ (x) dx = Ssin ⁴ (x)·sin(x) dx = S(sin ² (x)) ² ·sin(x) dx utilize sin ² (x) + cos ² (x) = 1 => sin ² (x) = 1-cos ² (x) = S(1-cos ² (x)) ² ·sin(x) dx
Let us consider it without, Ssin ⁵ (x) dx Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, Ssin ⁵ (x) dx = Ssin ⁴ (x)·sin(x) dx = S (sin ² (x)) ² ·sin(x) dx utilize sin ² (x) + cos ² (x) = 1 => sin ² (x) = 1-cos ² (x) = S (1-cos ² (x)) ² ·sin(x) dx
Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $\int \sin^{5}(x) dx$ $= \int \sin^{4}(x) \cdot \sin(x) dx$ $= \int (\sin^{2}(x))^{2} \cdot \sin(x) dx$ $= \int (1-\cos^{2}(x))^{2} \cdot \sin(x) dx$ $= \int (1-\cos^{2}(x))^{2} \cdot \sin(x) dx$
Notice that we are unable to do the u-substitution without the cosine, so we may try to reintroduce it using identities, $\int \sin^5(x) dx$ = $\int \sin^4(x) \cdot \sin(x) dx$ = $\int (\sin^2(x))^2 \cdot \sin(x) dx$ utilize $\sin^2(x) + \cos^2(x) = 1$ = $\int (1-\cos^2(x))^2 \cdot \sin(x) dx$
try to reintroduce it using identities, $\int \sin^{5}(x) dx$ = $\int \sin^{4}(x) \cdot \sin(x) dx$ = $\int (\sin^{2}(x))^{2} \cdot \sin(x) dx$ utilize $\sin^{2}(x) + \cos^{2}(x) = 1$ = $\int (1-\cos^{2}(x))^{2} \cdot \sin(x) dx$
try to reintroduce it using identities, $\int \sin^{5}(x) dx$ = $\int \sin^{4}(x) \cdot \sin(x) dx$ = $\int (\sin^{2}(x))^{2} \cdot \sin(x) dx$ utilize $\sin^{2}(x) + \cos^{2}(x) = 1$ = $\int (1-\cos^{2}(x))^{2} \cdot \sin(x) dx$
= $\int \sin^4(x) \cdot \sin(x) dx$ = $\int (\sin^2(x))^2 \cdot \sin(x) dx$ utilize $\sin^2(x) + \cos^2(x) = 1$ => $\sin^2(x) = 1 - \cos^2(x)$ = $\int (1 - \cos^2(x))^2 \cdot \sin(x) dx$
$= \int (\sin^2(x))^2 \cdot \sin(x) dx \qquad \text{utilize } \sin^2(x) + \cos^2(x) = 1 \implies \sin^2(x) = 1 - \cos^2(x)$ $= \int (1 - \cos^2(x))^2 \cdot \sin(x) dx$
$= \int (1-\cos^2(x))^2 \cdot \sin(x) dx$
Now that we have both sine and cosine we can reintroduce the u-substition
Now that we have both sine and cosine use can reintroduce the usubstition
THE MENDERLINE AND THE MENDERLINE MENDERLINE MENDERLINE
$\int (1-\cos^2(x))^2 \cdot \sin(x) dx$
U= Cos(×)
du=-sin(x) dx
$=-\int_{0}^{\infty} (1-u^{2})^{2} du$
$=-\int 1-2u^2+u^4du$
$= -\left[u - \frac{2}{3}u^{3} + \frac{1}{5}u^{5}\right] + c$
$=-\cos(x)+\frac{2}{3}(\cos(x))^{3}-\frac{1}{5}(\cos(x))^{5}+c$
Notice that this rewriting and substitution worked because the exponent was or
one sine stays and the rest get changed. It is often good practice to separate t
odd function so that we have one sine (or cosine) and the rest cosine (or sine).
Recap: Sinn(x) cosm(x) dx
if n is odd: remove 1 sine, substitute the rest to cosine using sin (x) = 1-cos (x), use
substitution u=cos(x)
if m is odd: remove 1 cosine, substitute the rest to sine using cos (x) = 1 sin (x), use
substitution u=sin(x)
if n and m are odd: choose the one with the smallest exponent and follow that patt

Exami	ple:
1 ($in^{\nu}(x) \cos^3(x) dx$
	sin ^b (x)·cos²(x)·cos(x) dx save one & replace the rest
	sin ^b (x)·(1-sin ² (x))·cos(x) dx
	Uz sin(x)
- 6	du= cos(x) dx
= 1	$u^{\prime}(1-u^2)\cdot du$
= 1	u ^u - u ⁸ du
	$u^{7} - q^{1}u^{9} + c$
= 7	$\left(\sin(x)\right)^{7} - \ddot{q} \left(\sin(x)\right)^{9} + c$
Now u	be ask ourselves, what if m and n are even?
2. Ss	$in^2(x) \cdot cos^2(x) dx$
	$\left[\frac{1}{2}\left(1-\cos(2x)\right)\right] \cdot \left[\frac{1}{2}\cdot\left(1+\cos(2x)\right)\right] dx \qquad \text{half-angle} \qquad \sin^2\theta = \frac{1-\cos(2\theta)}{2}$
= 4	\\\-\cas(12\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
= 4	$\int_{0}^{\pi} \left[-\left(\frac{1}{2} \left(1 + \cos \left(\frac{4\pi}{2} \right) \right) \right] dx \qquad \text{half angle } \cos^{2} \Theta = \frac{1 + \cos \left(\frac{2\theta}{2} \right)}{2}$
= <u> </u>	$\int 1 - \frac{1}{2} - \frac{1}{2} \cos(4x) dx$
= 4	\\ \frac{1}{2} - \frac{1}{2} \cos (4x) dx
= 4	[2x - 8 sin (4x)] +c
= 8	x - 32 sin (4x) + c
alterr	natively. $\int \sin^2(x) \cdot \cos^2(x) dx$
	$= \int (\sin(x) \cdot \cos(x))^2 dx \qquad double angle \sin \theta \cos \theta = 2 \sin (2\theta)$
	$= \int \left(\frac{1}{2}\sin(2x)\right)^2 dx$
	$= \frac{1}{4} \int \sin^2(2x) dx$
	$= \frac{1}{4} \int \frac{1}{2} (1 - \cos(4x)) dx \qquad \text{half angle} \qquad \sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$
	=8 S1-cos(4x) dx
	= g [x - \frac{1}{2} sin(4x)] +c
	= 8 x - 32 Sin (4x) + c
In h	oth of these examples we have sine and cosine of the same angle,
	shat if they are different?
3. Sc.	os (15x) cos (4x) dx
	2[cos (15x-4x) + cos (15x+4x)] dx cos A cos B = 2[cos(A+B)+ cos(A-B)]
	$S \cos(11x) + \cos(19x) dx$
	$[\pi \sin(\pi x) + \pi \sin(\pi x)] + c$

Now	that we	have	COVE	ered	all	of	the	sine	/cos	ine	co	ses,	we	next	co	nsid	ley	the
	nt/tanger																	
4 (0)) Sec ⁹ (x)	ton5(x)	dv															
1. (0.	= Sec8(x)			x)se	(x) c	xk	4		sal	e.F1	- 1 s	in O	COS	ear	liea	r so	the the	at we
	$=\int \sec^8(x)$																	sec(x)
	u= sec													()tar				
	du= se	custar	n(x)															
	= S u8 (u2	-1)2 du						1	tria	rul	e: 1	++0	an ² lx) = Se	c ² (x			
	$= \int u^{12} - 7$	u ¹⁶ tu ⁸	du															
	= 13 u13 - 1	tu"+ 1	uq +c															
	= 13 (seco	x)) ¹³ - 11	lsec(x))"	+ 4 (5	sec (x)) ⁹ +	-c										
(6)	Stan3(x)	dx							(c)	S	sec(x) dx						
	= Stank)									= [sect	1)·ls	ec(x) f	tanl	<u>x))</u>	dx		
	$= \int tan(x)$									Ţ				tanl				
	$= \int tan(x)$									= \	sec ² (x)+s	ec(x)	tanı	() d	×		
	$= \int tan(x)$	sec ² (x)	dx - S	COS	क्ति ८	4x				J	50	ec(x)	t tan	(x)				
	u= tan			T	05 (X								tan					
	du= sec	² (x)dx	0	du=	-sin	(x) dx	8			0	du=s	ec(x)	·tan	x) + 5	seczl	x)dx	К	
	= Sudu			v d	V						u du							
	$=\frac{1}{2}u^{2}-1$	_									lult							
	= 2 (tan(x)) IW	\sec(x)	C					= v	n Isec	(x)+-	tank	al tc				
List	of Trigo	mone	etric	, I	dev	ıtiti	es											
	$9 + \sin^2 \theta =$																	
	$an^2\theta = sec^2$																	
	+1 = csc																	
	$= \frac{1}{2}(1+\cos(t))$																	
	$= \frac{1}{2} (1 - \cos t)$																	
	$\cos\theta = \frac{1}{2} \sin\theta$																	
	106 R= 51	sin (Ate																
sin A c					L3 /													
sin A c	cos B = 2 [
sin A c																		
sin A c	cos B = 2 [
sin A c	cos B = 2 [

Exit Ticket Integration by Parts

Integration by Parts Let u(x) and v(x) be two differentiable functions. Integration by parts says

$$\int u dv = ux - \int v du$$

Evaluate the following integrals:

1.
$$\int 8xe^{6x} dx$$

$$u = \theta_{x} \quad dv = e^{bx} dy$$

$$du = 8dx \quad v = \frac{1}{b} e^{bx}$$

$$du = 8dx \quad v = \frac{1}{b} e^{bx}$$

$$du = 1 \quad dx \quad dx = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \cos(2-3x) dx$$

$$du = 1 \quad dx \quad v = \sin(2-3x) \cdot \frac{1}{3}$$

$$du = 1 \quad dx \quad v = \sin(2-3x) \cdot \frac{1}{3}$$

$$3. \quad \int (2-x)^{2} \ln(4x) dx$$

$$4. \quad \int \ln(x) dx$$