Chapitre 1 Ensembles

Table 1.1 – Objectifs. À fin de ce chapitre 1...

	Pou	r m'entraîne	r <u>/</u>
Je dois connaître/savoir faire	۵	•	Ŏ
Vocabulaire des ensembles			
définir un ensemble par extension, par compréhension	1.1,		
utiliser les symboles \in , \ni , $\notin \not\ni$ et \subset et \supset	1.2, 1.3		
intersection \cap , union \cup , et complémentaire	1.4,	1.5, 1.12, 1.13	
exploiter et produire des diagrammes de Venn	1.6, 1.7, 1.8	1.9, 1.10, 1.11	1.14
Ensembles de nombres réels			
justifier qu'un nombre est dans $\mathbb D$	1.17		
justifier qu'un nombre est dans $\mathbb Q$	1.15,	1.18	1.19
classification des réels et généralités	1.16	1.21, 1.22	
Valeur absolue			
définition, valeur absolue comme écart	1.23, 1.24	1.25	
Club de maths : puzzles de logique			

2 1 Ensembles

1.1 Vocabulaire des ensembles

■ Exemple 1.1 Les ensembles de la figure 1.1 s'écrivent : $A = \{43, 0, 7, 188\}$, $B = \{7, 4, 82\}$.

L'ordre d'écriture des éléments entre accolades n'est pas important : $\{43; 0; 7; 188\} = \{7; 43; 188; 0\}$.

7 est un élément, {7} est un ensemble.

43; 0; 7 et 188 sont les éléments de l'ensemble A.

 $43 \in A$ se lit « 43 appartient à A ».

 $82 \notin A$ se lit « 82 n'appartient pas à A ».

Tout élément de l'ensemble $D = \{188; 0; 43\}$ appartient à A.

On dira que $D \subset A$ (inclus) ou $A \supset D$ (contient).

 $B \not\subset A$. B n'est pas un sous-ensemble de A.

Figure 1.1 – Diagramme des ensembles A et B

Les éléments d'un ensemble sont distincts deux-à-deux. Il n'est pas correct d'écrire $\{0; 5; 0\}$.

1.2 Ensembles particuliers

Définition 1.1 — \mathbb{N} ensemble des entiers naturels. $\mathbb{N} = \{0; 1; 2; 3; 4; \dots\}$. $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1; 2; 3; 4; \dots\}$.

Définition 1.2 — \mathbb{Z} ensemble des entiers relatifs . $\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; 3; \ldots\}$ et $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

 $\mathbb Z$ est composé des nombres entiers naturels et de leurs opposés : $\mathbb N\subset\mathbb Z$

Définition 1.3 — nombres décimaux. L'ensemble des nombres qui peuvent s'écrire sous forme du produit d'une puissance de 10 par un entier non divisible par 10 sont dit décimaux.

$$\mathbb{D} = \left\{ b \times 10^n \quad \middle| \quad b \in \mathbb{Z} \quad \text{non divisible par 10 et } n \in \mathbb{Z} \right\}$$

- Exemple 1.2 Tout nombre décimal admet :
- une écriture scientifique $\pm a \times 10^n$, où $n \in \mathbb{Z}$ et la mantisse $a \in \mathbb{D}$ vérifie $1 \leqslant a < 10$.
- un ordre de grandeur égal au produit de l'entier le plus proche de a par 10^n .
- une écriture décimale finie

x	justification $x\in\mathbb{D}$ au sens de la définition 1.3	écriture scientifique	ordre de grandeur
26 500	265×10^2	$2,65 \times 10^4$	3×10^4
42,5	425×10^{-1}	$4,25 \times 10^{1}$	4×10^1
0,001 65			
$\frac{3}{5} = 0.6$			

Il est imprécis de caractériser les nombres décimaux comme « les nombres à virgule ». 1 et $\frac{2}{5} \in \mathbb{D}$ mais il n'y a pas de virgule dans 1 ni $\frac{2}{5}$. De plus il ne faut pas confondre écriture décimale et nombre décimal.

Les nombres dont l'écriture décimale est infinie ne seront pas dans \mathbb{D} , en particulier :

Proposition 1.1 — admis provisoirement. $\frac{1}{3}=0.333\ 333\ 3\dots$ n'est pas un nombre décimal $\frac{1}{3}\notin\mathbb{D}$.

Définition 1.4 — nombres rationnels. L'ensemble des nombres qui peuvent s'écrire comme une fraction irréductible d'entiers sont dit rationnels.

$$\mathbb{Q} = \left\{ \frac{a}{b} \quad \middle| \quad a \in \mathbb{Z}, \ b \in \mathbb{N}^*, \quad \text{sans diviseurs communs} \right\}$$

- Exemple 1.3 Parmi les nombres rationnels on compte
- 1. les nombres décimaux $\mathbb{D} \subset \mathbb{Q}$ ayant une écriture décimale finie

2. les rationnels non décimaux $\mathbb{Q} \cap \overline{\mathbb{D}}$ ayant une écriture décimale infinie et *périodique*.

x	justification de $x\in\mathbb{Q}$	écriture décimale	classification
-13	$-13 = \frac{-13}{1}$ irréductible.	-13 (finie)	$\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}$
9,75	$9,75 = \frac{975}{100} =$	9,75 (finie)	$\mathbb{D}\subset\mathbb{Q}$
$\frac{251}{25}$		$251 \div 25 = 10,04$ (finie)	$\mathbb{D}\subset\mathbb{Q}$
$\frac{150}{7}$		$150 \div 7 = 21,428571$ (périodique)	$\mathbb{Q}\cap\overline{\mathbb{D}}$

La période d'un nombre rationel non décimal $\mathbb{Q} \cap \overline{\mathbb{D}}$ peut ne pas être constatée sur la valeur approchée donnée par la calculatrice :

$$\frac{1}{19} = 1 \div 19 = 0,052631578947368421...$$
 période = 18

$$\frac{1}{47} = 1 \div 47 = 0,0212765957446808510638297872340425531914893617...$$
 période = 46

La constante de Champernowne est le nombre dont l'écriture décimale après la virgule énumère la suite croissante des entiers naturels :

$$C_{10} = 0,123456789101112131415161718...$$

Il n'est pas rationnel : son écriture décimale est infinie et non périodique.

Définition $1.5 - \mathbb{R}$ ensemble des nombres réels. est l'ensemble des nombres que nous connaissons.

Définition 1.6 Les nombres réels mais pas rationnels $\mathbb{R} \cap \overline{\mathbb{Q}}$ sont dit *irrationnels*.

Proposition 1.2 — admis provisoirement. $\sqrt{2}$ est irrationnel : $\sqrt{2} \notin \mathbb{Q}$.

Exemple 1.4 Il n'est pas trivial de justifier que des nombres réels comme π ou $\sqrt{5}$ sont

4 1 Ensembles

irrationnels. Néanmoins, on peut *supposer* qu'un nombre est irrationnel lorsque son écriture décimale *semble infinie et non périodique* (explorer l'écriture décimale de π).

- \mathbb{N} nombres entiers positifs
- Z nombres entiers positifs ou négatifs
- D nombre décimaux, s'écrivent comme fraction décimale, écriture décimale finie.
- $\mathbb{D} \cap \overline{\mathbb{Z}}$ nombres décimaux non entiers.
- $\mathbb{Q} \cap \overline{\mathbb{D}}$ rationnels et non décimaux : s'écrivent comme fraction d'entiers, leur écriture décimale est infinie et périodique.
- $\mathbb{R} \cap \overline{\mathbb{Q}}$ des nomres irrationnels.

Figure 1.2 – $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Exemple 1.5 \mathbb{R} être représenté par une droite graduée (figure 1.3).

Figure 1.3 – Chaque nombre réel $x \in \mathbb{R}$ correspond à un unique point M(x) de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé *abscisse* de ce point.

Comme pour \mathbb{N}^* et \mathbb{Z}^* , on pose $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$. De manière générale, on peut écrire $\mathbb{R} \setminus \{-2; 4; 5\}$ pour désigner l'ensemble des nombres réels autre que -2, 4 et 5.

1.3 Valeur absolue et écart entre réels

Définition 1.7 Pour tout nombre $a \in \mathbb{R}$, la valeur absolue de a est la distance qui sépare le point d'abscisse a de l'origine d'abscisse 0 sur la droite graduée. On la note |a|:

$$|a| = \begin{cases} a & \text{si } a \geqslant 0 \\ -a & \text{si } a < 0 \end{cases}$$

Utilisation: L'écart entre deux réels a et $b \in \mathbb{R}$ est donnée par |a-b| = |b-a|.

■ Exemple 1.6

1.
$$|-5| = \dots |2-5| = \dots |2-5| = \dots$$

2.
$$|-10^2| = \dots |10^2| = \dots |10^{-2}| = \dots |10^{-2}| = \dots$$

■ Exemple 1.7

1. Deux nombres opposés sont à égales distances de 0, ils ont la même valeur absolue : |a| = |-a|.

Figure 1.4 – |-3| = |3| = 3

2. L'écart entre 5 et 2 est
$$|5-2| = |2-5| = 3$$
.

3. L'écart entre 4 et
$$-2$$
 est $|4 - (-2)| = |4 + 2| = |6| = 6$.

4. |x-5|=1 signifie « l'écart entre x et 5 est 1 ». On a x = 6 ou x = 4.

Figure 1.5 – L'écart entre 4 et -2.

5. |x-1| < 0.1 signifie « l'écart entre x et 1 est inférieur à 0,1 ». On peut dire que 0.9 < x < 1.1.

6. Vrai ou Faux?
$$\left| \pi - \frac{22}{7} \right| \le 2 \times 10^{-3}$$
.

■ Exemple 1.8 — **○** Point Python.

Tester une égalité entre nombres flottants produit des résultats suprenants :

Nous constatons que le résultat de l'opération 3.0-2.7 n'est pas exactement 0.3. En effet certaines valeurs de type float ne peuvent être qu'approchées :

Il est préférable de vérifier que l'écart entre deux nombres flottants est suffisamment petite :

6 1 Ensembles

1.4 Exercices

1.4.1 Exercices : diagrammes de Venn et opérations sur les ensembles

- **■** Exemple 1.9
- L'ensemble des diviseurs de 6 s'écrit {1; 2; 3; 6}.
- L'ensemble des entiers pairs positifs inférieurs ou égal à 10 s'écrit {2; 4; 6; 8; 10}

Exercice 1.1

Écrire les ensembles décrits :

- 1. Les entiers positifs impairs inférieurs ou égaux à 10.....
- 2. Les nombres premiers inférieurs ou égaux à 10......
- 3. Les solutions de l'équation (x-1)(x+2)=0......
- \blacksquare Exemple 1.10 définition par compréhension sous la forme $\{$ éléments | condition $\}.$
- $\{x|x>0\}$ est l'ensemble des nombres strictement positifs. On peut dire que $5 \in \{x|x>0\}$.
- $\{x|x^2=4\}=\{-2;\ 2\}$. On peut dire que $-2\in\{x|x^2=4\}$
- $\{2n|0 \le n \le 3\} = \{0; 2; 4; 6\}$

Les symboles \in et \notin précisent si un élément appartient ou n'appartient pas à un ensemble.

Exercice 1.2

Compléter par $\in \notin$. Si $A = \{x | x \text{ diviseur de } 12\}$ et $B = \{x | x \text{ impair positif}\}$ alors :

1. 5...*A*

3. 4 . . . *A*

5. −1...*B*

2. 6...*A*

4 5 F

6. 6...*B*

On écrit $A \subset B$ ou $B \supset A$ lorsque « pour tout $x \in A$ on a $x \in B$ ».

■ Exemple 1.11

- $\{4; 1\} \subset \{1; 2; 4\}$
- $\{x|x \text{ multiple de } 3\} \supset \{x|x \text{ multiple de } 6\}$
- L'ensemble vide \varnothing est inclus dans tout ensemble

Exercice 1.3

Quels ensembles sont inclus dans $\{1; 2; 3; 6\}$?

(A) {1; 2; 3}

(C) {3}

(E) $\{x | x \text{ diviseur de } 3\}$

(B) {1; 2; 4}

(D) \varnothing

(F) $\{x | x \text{ diviseur de } 6\}$

L'ensemble noté « $A \cap B$ » désigne intersection des ensembles A et B.

C'est l'ensemble des éléments appartenants à A **ET** appartenants à B.

C'est l'ensemble des éléments appartenants à A **OU** appartenants à B.

■ Exemple 1.12

- 1. Si $A = \{x | x \text{ diviseur de } 8\} = \{1; 2; 4; 8\} \text{ et } B = \{x | x \text{ diviseur de } 12\} = \{1; 2; 3; 4; 6; 12\}$ alors: $A \cap B = \{1; 2; 4\}$ et $A \cup B = \{1; 2; 3; 4; 6; 8; 12\}$
- **2.** $\{1; 2; 3; 6\} \cap \{1; 2; 4; 8\} = \{1; 2\}$ et $\{1; 2; 3; 6\} \cup \{1; 2; 4; 8\} = \{1; 2; 3; 4; 6; 8\}$

Exercice 1.4

1. Donner les intersections dans chaque cas :

$$\{1; \ 2; \ 3; \ 4\} \cap \{2; \ 4; \ 6\} = \dots$$

$$\{8; \ 4; \ 2\} \cap \{1; \ 2; \ 4\} = \dots$$

$$\{8; \ 4; \ 2\} \cap \{1; \ 2; \ 4\} = \dots$$

$$\{1; 2; 4; 8\} \cap \{1; 3; 9\} = \dots$$

$$\{1; \ 2; \ 4; \ 8\} \cap \{1; \ 3; \ 9\} = \dots$$
 $\{2; \ 4; \ 6\} \cap \{1; \ 3; \ 5\} = \dots$

$$\{1; \ 2; \ 3; \ 6\} \cap \{2; \ 3\} = \dots$$
 $| \{x|1 < x\} \cap \{x|x \le 2\} = \dots$

$$\{3;\ 2;\ 1\} \cup \{1;\ 2;\ 4;\ 8\} = \dots$$

$$\{1;\ 3;\ 9\} \cup \{1;\ 3;\ 5;\ 7;\ 9\} = \dots$$

$$\{x|0 < x < 2\} \cup \{x|1 < x\} = \dots$$

Exercice 1.5

Compléter à l'aide de \in , \ni , \notin , $\not\ni$, \subset , \supset :

$$\{43; 7; 188\} \dots A \mid \{7\} \dots B$$
 $A \dots A \mid B \dots A$
 $\{7\} \dots B \mid B \dots A$

Les diagrammes de Venn nous permettent de représenter des ensembles ainsi que leurs éléments. L'univers noté Ω est l'ensemble de tous les éléments.

Exercice 1.6

Décomposer en facteurs premiers 585 et 455 puis compléter le diagramme de Venn :

$$A \cap B = \dots$$

$$A \cup B = \dots$$

Facteurs premiers de 585

Facteurs premiers de 455 BA

Exercice 1.7

Placer les éléments 750, 754, 755, 756, 758, 759 et 760 dans le diagramme de Venn et déterminer les ensembles :

$$B = \dots B$$

$$A \cap B = \dots$$

Exercice 1.8

Complète les ensembles suivants à partir du diagramme de Venn.

$$A = \dots$$

$$B = \dots$$

$$A \cap B = \dots$$

$$A \cup B = \dots$$

Exercice 1.9

Placer les nombres dans la bonne partie du diagramme de Venn

$$\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

A = les nombres sont premiers

B =les nombres sont pairs

$A \cap$	B =	 	 $\dots A \cup B =$

Exercice 1.10

Placer les nombres dans la bonne partie du diagramme de Venn

$$\Omega = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}$$

A =les nombres sont des carrés parfaits

B = les nombres sont impairs

Exercice 1.11 — Vrai ou Faux.

	Vrai	Faux
1/ 4 ∈ A		
2/ 5 ∈ B		
3/ $6 \in A \cup B$		

	Vrai	Faux
1/ $A \cap B \supset \{5; 6\}$		
2/ $\{5; 8\} \subset A \cup B$		
3/ $A \cap B = \emptyset$		

1.4 Exercices

 \overline{A} est le complémentaire de A dans Ω . C'est l'ensemble des éléments de Ω qui ne sont pas dans A.

■ Exemple 1.13

« $A \cap \overline{B}$ » est l'ensemble des éléments qui sont dans A et pas dans B.

■ Exemple 1.14

« $A \cup \overline{B}$ » est l'ensemble des éléments qui sont dans A ou ne sont pas dans B.

Exercice 1.12

Complète les ensembles suivants à partir du diagramme de Venn.

```
\overline{A} = \dots
\overline{B} = \{ \dots
A \cap \overline{B} = \dots
\overline{A} \cap B = \dots
\overline{A} \cap \overline{B} = \dots
```


Exercice 1.13

Complète les ensembles suivants à partir du diagramme de Venn.

$\overline{A} = \dots$	• • • • • • • • • • • • • • • • • • • •
$A \cup \overline{B} = \dots$	
$\overline{A} \cup B = \dots$	
$\overline{A} \cup \overline{B} = \dots$	
$\overline{A \cap B} = \{$	

Exercice 1.14 — raisonner.

Complète le diagramme de Venn à l'aide des informations suivantes :

$$\Omega = \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 20\}$$

$$A = \{3; 5; 7; 9\}$$

$$B = \{0; 4; 6\}$$

$$\overline{C} = \{1; 3; 4; 6; 9; 20\}$$

$$A \cap C = \{5; 7\}$$

$$A \cap B = \emptyset$$

10 1 Ensembles

1.4.2 Exercices : réels, classification et opérations

- Exemple 1.15 Organiser un calcul. avec des fractions :
- On simplifie des **facteurs communs** : $\frac{5+3}{5+7} = \frac{8}{12} = \frac{4\times2}{4\times3} = \frac{2}{3}$
- On multiplie deux fractions en multiplicant les numérateurs et les dénominateurs :

$$\frac{9}{4} \times \frac{10}{21} = \frac{9 \times 10}{4 \times 21} = \frac{90}{84} = \frac{30}{28}$$

— On ajoute deux fractions en ramenant au même dénominateur :

$$\frac{3}{4} - \frac{2}{7} = \frac{3 \times 7}{4 \times 7} - \frac{2 \times 4}{7 \times 4} = \frac{21 - 8}{28} = \frac{13}{28}$$

— En l'absence de parenthèses, attention aux priorités :

$$\frac{5}{3} - \frac{2}{3} \times \frac{3}{5} = \frac{5}{3} - \frac{2}{5} = \frac{19}{15}$$

Exercice $1.15 - \blacksquare$.

Simplifier en montrant les étapes chaque expression sous forme d'une fraction irréductible :

1.
$$\frac{91}{21}$$

3.
$$\frac{2}{3} \times \frac{5}{6}$$
4. $\frac{7}{4} + \frac{2}{5}$
5. $\frac{5}{4} + \frac{13}{12}$
6. $5 - \frac{4}{9}$

5.
$$\frac{5}{4} + \frac{13}{12}$$

$$\begin{vmatrix}
7. & \frac{1}{32} - \frac{3}{4} \\
8. & \frac{7}{6} - \frac{1}{6} \times \frac{9}{5}
\end{vmatrix}$$

1.
$$\frac{91}{21}$$
2. $\frac{3}{2} \times 13$

4.
$$\frac{3}{4} + \frac{2}{5}$$

6.
$$5 - \frac{4}{9}$$

8.
$$\frac{7}{6} - \frac{1}{6} \times \frac{9}{5}$$

Exercice 1.16

Compléter par \in , \notin et \ni :

$$|3. \frac{3}{15} \dots N|$$

7.
$$4,3\ldots\mathbb{Q}\cap\mathbb{I}$$

2.
$$-3^2 \dots N$$

4.
$$\frac{15}{3}$$
... \mathbb{Z}

1.
$$245...\mathbb{N}$$
 3. $\frac{3}{15}...\mathbb{N}$
 5. $0...\mathbb{N}^*$
 7. $4,3...\mathbb{Q} \cap \mathbb{D}$

 2. $-3^2...\mathbb{N}$
 4. $\frac{15}{3}...\mathbb{Z}$
 6. $-5...\mathbb{Z}$
 8. $\frac{-12}{7}...\mathbb{N} \cup \mathbb{Q}$

Exercice 1.17

Pour chaque nombre x, justifier l'appartenance à \mathbb{D} et donner l'écriture scientifique et l'ordre de grandeur.

x	justification $x\in\mathbb{D}$ au sens de la définition 1.3	écriture scientifique	ordre de grandeur
0,042 5			
470,84			
637,8			
97,65			
0,001 52			
10,42			
0,948 7			
$\frac{7}{2,5} = 2,8$			

1.4 Exercices 11

Exercice 1.18 Simplifier les expressions pour justifier l'appartenance à Q. Préciser le plus petit

ensemble auguel chacune appartient

crisciniste auquer chacune appartient				
x	justification de $x\in\mathbb{Q}$	écriture décimale	classification	
$\frac{3\pi}{5\pi} =$	$\frac{3}{5}$ fraction irréductible	$3 \div 5 = 0.6$ (finie)	$\mathbb{D}\subset\mathbb{Q}$	
$\frac{1}{9}$	fraction irréductible	$1 \div 9 = 0,1$ (périodique)	$\mathbb{Q}\cap\overline{\mathbb{D}}$	
10^{-1}				
7^{-1}				
$\frac{5}{4} + \frac{7}{4} =$	$\frac{5+7}{4} =$			
$5 - \frac{4}{9}$				
$\frac{12}{5} \times \frac{1}{9}$				
$\frac{5}{4} + \frac{13}{12} =$	$\boxed{\frac{5\times}{4\times} + \frac{13}{12}} =$			
$\frac{8}{3} - \frac{11}{12}$				
$\boxed{\frac{2}{3} - \frac{7}{3} \times \frac{9}{12}}$				

■ Exemple 1.16 — Exprimer comme fraction irréductible un réel donné par son écriture décimale périodique.

$$a = 0, \underline{7} = 0,777 \dots = \frac{7}{9}$$

$$d = 1, 4\underline{32} = 1,432\ 323\ 2\dots$$

$$b = 0, \underline{32} = 0,323\ 232 \dots = \frac{32}{99}$$

$$= 1, 4 + 0,0323232...$$

$$c = 0, \underline{371} = 0,371\ 371\ 371 \dots = \frac{371}{999}$$

$$=1,4+\frac{1}{10}\times\frac{32}{99}=\frac{709}{495}$$

Exercice 1.19 Exprimer comme fraction irréductible les réels suivants :

1.
$$0,\underline{45}=0,454\ 545\dots$$

3.
$$0, \underline{14} = 0,141 \ 414 \dots$$

5.
$$5, \underline{41} = 5,414 \ 141 \dots$$

2.
$$0,\underline{5}=0,555...$$

3.
$$0, \underline{14} = 0,141 \ 414 \dots$$
5. $5, \underline{41} = 5,414 \ 141 \dots$ 4. $0, \underline{152} = 0,152 \ 152 \ 152 \dots$ 6. $1, \underline{276} = 1,276 \ 767 \ 6 \dots$

6.
$$1,276 = 1,2767676...$$

Définition 1.8 Si $a\leqslant x\leqslant b$ avec a et $b\in\mathbb{D}$ et $b-a=10^{-n}$ alors $a\leqslant x\leqslant b$ est un encadrement décimal à 10^{-n} près du réel x.

■ Exemple 1.17 $\pi \approx 3.1416$; $3,141 \leqslant \pi \leqslant 3,142$ est un encadrement décimal à 3,142-3,141=0,001=0 10^{-3} près.

Exercice 1.20 À l'aide de la calculatrice, donner un encadrement décimal à la précision demandée:

1 Ensembles 12

- $1. \pi \text{ à } 10^{-5} \text{ près}$

- | 2. $\sqrt{2}$ à 10^{-4} près | 3. $\frac{22}{7}$ à 10^{-2} près | 4. $\cos(35^{\circ})$ à 10^{-3} près

Exercice 1.21 Cochez les cases auxquels chaque nombre appartient :

Exercice 1.21 Cochez les cases auxquels chaque hombre appartient.					
	N	Z	D	Q	R
1/ 2,25					
2/ $\frac{19}{25}$					
$3/-rac{4}{3}$					
4/ $\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$					
4/ $\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$ 5/ $\frac{6 - (-5) + 1}{(-8)/2}$					
6/ $1 + 2\sqrt{3}$					
7/ $\sqrt{25} - 2\sqrt{4}$					
8/ $3 - \sqrt{-4 + 5 \times 8}$					
9/ 2.3×10^{-12}					
10/ $\frac{\sqrt{10}}{100}$					
11/ $\frac{15\sqrt{2}}{3\sqrt{2}}$					
12/ $\left(\sqrt{5}\right)^2$ Exercise 1.22 — Vrai ou Faux?					

Exercice 1.22 — Vrai ou Faux?.

Si faux, donner un contre-exemple à l'aide de l'exercice 1.21.

	Vrai	Faux
1/ Un nombre décimal ne peut jamais être un nombre entier.		
2/ Un nombre décimal est toujours un rationnel.		
3/ Un nombre irrationnel peut être un entier.		
4/ Un nombre entier relatif est toujours un décimal.		
5/ Le produit de deux nombres décimaux est toujours un décimal.		
6/ Le quotient de deux nombres décimaux est toujours un décimal.		
7/ Le quotient de deux nombres décimaux peut être un décimal.		
8/ Le produit de deux nombres rationnels est toujours un rationnel.		
9/ Le produit de deux nombres irrationnels est toujours un irrationnel.		
10/ Le quotient de deux nombres irrationnels peut être un entier.		

1.4 Exercices 13

1.4.3 Exercices: valeur absolue

■ Exemple 1.18 Simplifier les expressions suivantes

$$A = |3 - 10| \qquad B = |3(-6)| \quad C = 3|-1 + \sqrt{2}| \qquad D = 3|-5 + \sqrt{10}|$$

$$= |-7| \qquad = |-18| \qquad = 3|\sqrt{2} - 1| \qquad = 3|\sqrt{10} - 5| \qquad = 3(-1)(\sqrt{10} - 5) \qquad = 3(-1)(\sqrt{10} - 5) \qquad = 3(5 - \sqrt{10})$$

$$= 7 \qquad = 18 \qquad = 3\sqrt{2} - 3 \qquad = 3(5 - \sqrt{10})$$

Exercice 1.23 — \blacksquare , $\grave{\mathsf{A}}$ vous. Simplifier les expressions suivantes :

$ 4-15 = \dots \qquad $	$ 3 + 2 -10 = \dots$
$-3 6-12 = \dots $	$ -2+(-4\times 2) =\dots$
$ (-7)(-4) = \dots \qquad $	$-2 1+4 = \dots$
$ 15 + 26 = \dots$	$ -6 - -4 = \dots$
$7 3(-4) = \dots$	$ \frac{-1}{ -1 } = \dots$
$- 15 - 46 = \dots$	$ -1 - 1 - -1 = \dots$
$ 3(-4) + 2(-18) = \dots$	$\left \begin{array}{c} \left \frac{7-12}{12-7} \right = \dots \end{array} \right $
$-3 26-12 = \dots$	
$ 5-4 - -6 =\dots$	'

Exercice 1.24 — Vrai ou faux?.

Exercice 1.24 — Viai ou laux :.		
	Vrai	Faux
1/ -5 =5		
2/ 8 = 8		
3/ $ 3-5 =-2$		
4/ $ -7-5 =2$		
5/ $ 3-5 = 3+5 $		
6/ $ 3-5 = -5-3 $		
7/ 7-5 = 5-7		
8/ $ -7-5 = 7+5 $		
9/ $\left \frac{1}{6} - \frac{1}{2} \right = \frac{1}{3}$		
10/ $\left \frac{-4}{7} \right = \frac{4}{7}$		

	Vrai	Faux
$\left -\sqrt{2} \right = 1,414\ 213$		
2/ $ \pi - 3 = \pi - 3$		
3/ $ \sqrt{3}-1 =-(1-\sqrt{3})$		
4/ $ \sqrt{3}-2 =-(2-\sqrt{3})$		
5/ $ \sqrt{5}-2 =1-\sqrt{5}$		
6/ $\left 10^{5}\right = 10^{5}$		
7/ $ 10^{-3} = 10^3$		
8/ $\left -10^{-3}\right = 10^3$		
$9/\left 10^3 - 10^4\right = 10^3 + 10^4$		
10/ $ 10^3 - 10^{-4} = 10^3 - 10^{-4}$		

14 1 Ensembles

Exercice 1.25 — valeur absolue pour mesurer l'écart.

Entourer les égalités qui correspondent à l'énoncé. Plusieurs réponses sont possibles.

			1
1/ L'écart entre 3 et 2 vaut	2 - 3	3-2	3+2
2/ L'écart entre 3 et −2 vaut	-2-3	3 - 2	3+2
3/ L'écart entre -2 et -5 vaut	-2-5	-2+5	-5+2
4/ L'écart entre x et 5 vaut	-x+5	x-5	x+5
5/ L'écart entre x et -1 vaut	-x-1	x-1	x+1
6/ L'écart entre x et 3 vaut 1	x+3 = 1	x-3 =1	-x+3 =1
7/ L'écart entre x et -2 vaut 1	x+2 = 1	x-2 =1	x+1 = -2

Exercice 1.26

1. Soit le point M d'abscisse x sur la droite graduée d'origine O ci-dessous. Donner l'expression des distances MA et BM à l'aide d'une valeur absolue :

2. Soit le point M d'abscisse x sur la droite graduée d'origine O ci-dessous. Associer les valeurs

absolues aux distances auxquelles elles correspondent :

-	
$MD \qquad ME \qquad CM$	-x-15 $ -x+4 $ $ 8-x $
AM MB MF	-8-x $ -15+x $ $ -4-x $

3. Colorier les points de la droite graduée pour lequels l'abscisse x vérifie $|x-3.5| \le 1$:

Colorier les points de la droite graduée pour lequels l'abscisse x vérifie $|x+2| \ge 1.5$:

1.5 Compléments 15

1.5 Compléments

Axiome 1.3 — Principe des tiroirs. Si n chaussettes sont rangées dans m tiroirs, et si m < n, alors il y a un tiroir qui contient au moins deux chaussettes.

 $oxed{\mathbb{R}}$ Quelques explications de la périodicité de l'écriture décimale de nombres dans $\mathbb{Q}\cap\overline{\mathbb{D}}$

guerques explications de l	a periodicite	ue re	criture decimale de nombres dans $\mathbb{Q} \cap \mathbb{D}$
2.5	7		
4 0	3,5 7 1 4	2 8 5	7 1
5 0			
1 0			
3 0			
2 0			
6 0			Dans l'algorithme de division décimale, les
4 0			restent possibles sont {0; 1; 2; 3; 4; 5; 6}.
5 0			On constate une répétition des décimales
3			avec un retour à 5.
			$\frac{25}{7} = 25 \div 7 = 3,571428$
3 5 3 0 0,6			Dans l'algorithme de division décimale, les
0			Bans raigoritimie de division decimale, les
			restent possibles sont $\{0; 1; 2; 3; 4\}$.
			On constate que l'algorithme s'arrète avec
			un reste qui est nul.
			$\frac{3}{5} = 3 \div 5 = 0.6.$
3			
	3 0 7 6 9	2 3	
4 0			
1 0 0			
9 0			Dans l'algorithme de division dé-
1 2 0			
3 0			cimale, les restent possibles sont
4 0			{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}.
			On constate que l'algorithme se repète avec
			un retour à un reste 2.
			$\frac{3}{13} = 3 \div 13 = 0,230769$

LG Jeanne d'Arc, 2nd Nizar Moussatat Année 2024/2025