SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech I Semester (SVEC-19) Regular Examinations February – 2021

SIGNALS AND NETWORKS

[Electrical and Electronics Engineering]

Time: 3 hours

Max. Marks: 60

Answer One Question from each Unit All questions carry equal marks

UNIT-I

- 1. a) Illustrate whether the following signals are periodic or aperiodic. 6 Marks L3 CO1 PO2 If the signal is periodic find its fundamental period.
 - i) $x(n) = 3\cos(10n + \pi/6)$
 - ii) $x(n) = e^{(j\pi n/2)}$
 - b) Consider the following signal and sketch for the given x(-2t+1). 6 Marks L3 CO1 PO2

(OR)

2. a) Distinguish between Energy and Power signals.

4 Marks L2 CO1 PO1

b) Determine and sketch y(t) = x(t) + x(2 - t) where 8 Marks L3 CO1 PO2 x(t) = u(t + 2) - u(t - 1). Express y(t) in terms of step functions.

UNIT-II

3. a) State any four properties of fourier series .

4 Marks L1

L1 CO2 PO1

b) Find the fourier series expansion for the waveform shown in 8 Marks L3 CO2 PO2 figure.

The waveform is $x(t) = \begin{cases} -\frac{At}{\pi} & for -\pi \le t \le 0 \\ \frac{At}{\pi} & for \ 0 \le t \le \pi \end{cases}$

(OR)

- 4. a) Check the following signals $\cos n\omega_0 t$ and $\cos m\omega_0 t$ are 4 Marks L2 CO2 PO2 Orthogonal or not.
 - b) The given rectangular pulse is $x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| < T_1 \end{cases}$. Find the fourier transform.

UNIT-III

- 5. a) Find the Laplace transform and ROC of the signal $-e^{-at}u(-t)$. 6 Marks L3 CO2 PO5
 - b) Find the inverse Laplace transform of the 6 Marks L3 CO2 PO5 $X(s) = \frac{2s+1}{(s+1)(s^2+2s+2)}.$
- (OR)
 6. a) Find the z- transform of $x[n] = (2)^n u[n] + \left(\frac{1}{3}\right)^{-n} u[-n]$.
 6 Marks L3 CO2 PO5
 - b) Determine the Inverse ZT, for the following ZT 6 Marks L3 CO2 PO2 $X[z] = \frac{2 \frac{3}{2}z^{-1}}{1 \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} \quad for \; ROC \; |z| > 1.$

UNIT-IV

7. a) An electrical circuit shown below has 6 Marks L3 CO3 PO2 $R = 1K\Omega$, $L = 1\mu H$, $C = 1\mu F$.

- i) Find the system equation (ODE) which relates $v_i(t)$ with $v_0(t)$.
- ii) Determine transfer function H(s).
- iii) Draw magnitude response $||H(j\omega)||$.
- b) A signal $v_i(t) = 10\cos(1000\pi t)$ Volts is applied to the circuit 6 Marks L3 CO3 PO5 shown in 7(a). Comment whether the signal is passed or stopped by the circuit.

(OR)

- 8. a) Differentiate RL and RC circuits
 4 Marks L2 CO3 PO1

 Earths electrical network shows helevy prevent the following Section 12 CO3 PO2
 - b) For the electrical network shown below, answer the following 8 Marks L3 CO3 PO2

- i) Find the impulse response function for this network.
- ii) Determine the frequency response function.
- iii) Sketch the magnitude and the phase response.

Assume that the output is taken across the 100ohm resistor.

UNIT-V

9. a) For the given 2-port network, find the value of transfer 6 Marks L3 CO4 PO2 impedance z_{21} in ohms

- Write short notes on Z,Y,T and h parameters. b) 6 Marks L2 CO4 PO1 (OR) Write short notes on Transfer function and Driving point 10 6 Marks L3 a) CO4 PO2 function. Explain transmission (ABCD) parameters in detail. 6 Marks L1 CO4 PO₁ b)
 - (유)