Q1. a.
$$R = [-1,3] \times [-1,3] = [-1,3]^2$$

 $G = [0,1] \times [0,1]$
 $G = [\frac{1}{2}, \frac{3}{2}] \times [\frac{1}{2}, \frac{3}{2}]$

$$c. \quad (G \cup B) \setminus (G \cap B) = ([0, \frac{1}{2}] \times [0, 1]) \cup ([\frac{1}{2}, 1] \times [0, \frac{1}{2}])$$

$$\cup ([\frac{1}{2}, 1] \times [1, \frac{3}{2}]) \cup ([1, \frac{3}{2}] \times [\frac{1}{2}, \frac{3}{2}])$$

$$d. \left(\frac{1}{2}, 1\right)^{1} = 6 nB$$

$$e \cdot \left(\left[\frac{1}{2}, \frac{3}{2} \right] \times \left[\frac{1}{2}, \frac{3}{2} \right] \right) \cup \left(\left[1, \frac{3}{2} \right] \times \left[\frac{1}{2}, \frac{3}{2} \right] \right) = B \setminus G$$

Q 2. 3.
$$R = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$

$$G = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y \le 3, x - y > 2\}$$

$$B = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y \le 3, x + y \le 2\}$$

e. BEH, R&H, O&H

Q3. a.
$$abc + \bar{b}bc + abc +$$

Ь.	3 b c	30+30+60	3bc + 3bc + 3bc + 3bc
•	0 10 10	0	0
	01017	6	6
	0 1 7 , 0	0	O
	01111	7	1
	110,0	0	0
	11011	1	1
	1 1 7 1 0	. 1	1
	1 1 1 1	1+7+1=1	7
	match!		

Q 4. twos of attock about
$$\overline{abc}$$
 + \overline{abc} + \overline{abc} + \overline{abc} = \overline{ab} + \overline{ac} + \overline{bc} (using a3. a)

units of attock \overline{abc} + \overline{abc}

Q6. a.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad \text{s.t.} \quad y > x$$

Q7. 3.
$$n = 0 | 1 | z | [3]$$

 $n^2 = 0 | 1 | 1 | [3]$

$$3/n^{2} = 7 \quad h^{2} \equiv 0 \quad [3]$$

$$= 7 \quad n \equiv 0 \quad [3] = 7 \quad 3/n$$

b.
$$n = 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid [5]$$
 $p^2 = 0 \mid 1 \mid 4 \mid 4 \mid 7 \mid [5]$

5/
$$n^2 = 7 + n^2 = 0[5]$$

= 7 $n = 0[5] = 7 + 5/n$

c. let
$$n \in \mathbb{N}$$
, with prime decomposition as Followsi
$$n = \prod_{i=1}^{K} p_i^{d_i} \quad \text{where } p_i \in \mathbb{P}, \ d_i \in \mathbb{N}^+, \ p_i \neq p_i^- \quad \forall i \neq j$$

Now, if
$$p \in \mathbb{R}$$
 st. $p/n^2 = 7$ $p = p$: For some $i \in \mathbb{Z}^2$, $k \in \mathbb{Z}$ but then p/n as well

Q8. 3. 6/n (=> 2/n &3/n;

b. supp.
$$\sqrt{3} = \frac{3}{b}$$
, $3 \in \mathbb{N} \in \mathbb{N}^+$, $gcd(3,b=1)$

$$= 3 \quad 3^{2} = 3^{2}$$

$$= 3 \quad 3^{2} = 3^{2}$$

$$50 313^2 = 7 31a (by Q.7. a.)$$

$$n=1$$
; $2^{1}=2$, $2.1=2$
 56 $2^{1}>2.1$

Q9. 3. Supp.
$$g\circ f(x) = g\circ f(x')$$

=> $f(x) = f(x')$ & as a is inj.
=> $x = x'$ & as f is inj.
Thus, $g\circ f$ is inj.

b.
$$\forall z \in Z$$
, $\exists y \in Y s !$ $g(y) = Z$

$$\forall y \in Y, \exists x \in X s !$$
 $f(x) = Y$

$$\forall hus, fog is swj.$$