

SEQUENCE LISTING

<110> LEVINE, et al.

<120> VARIANTS OF PROTEIN KINASES

<130> 802620-2005.1

<150> 09/724,676

<151> 2000-11-28

<150> 136776

<151> 2000-06-15

<150> 135619

<151> 2000-04-12

<160> 182

<170> PatentIn version 3.0

<210> 1

<211> 1573

<212> DNA

<213> Homo sapiens

<400> 1
ccggctcgac ggctcggtca cgcgcgcgtc gtcgtcgccg cgccccggc cgtccctctgt 60
ccgttaccgccc cccggagcca gggccgagtc ctcgcgcgtc cggcccgccg gctgctgctg 120
ctgctgacgc tgctgctgcc cggcctcgaa atttttggaa gtaccagcac agtgcacgctt 180
cctgaaaacct tgggtttgt gtcaacgcgtg gatggaaattt tgcatgctgt cagcaagagg 240
acagggtcaa tcaaattggac tttaaaagaa gatccagtc tgcaggtccc aacacatgtg 300
gaagagcctg cctttctccc agatcctaattt gatggcagcc tgtatacgct tggaagcaag 360
aataatgaag gcctgacgaa acttcctttt accatcccag aattggtgca ggcattcccc 420
tgccgaagtt cagatggaaat cctctacatg ggtaaaaagc aggacatctg gtatgttatt 480
gacccctctga ccggagagaa gcagcagact ttgtcatcggtt cctttgcaga tagtctctgc 540
ccatcaaacct ctcttctgtt tcttggcgaa acagaataca ccatcaccat gtacgacacc 600
aaaacccgag agctccggtg gaatgccacc tactttgact atgcggcctc actgcctgag 660
gacgaagggg actacaagat gtcccactttt gtgtccatg gtatgggtt ggtgggtact 720
gtggacagtg aatctgggaa cgtcctgtgg atccaaaact acgcctcccc tgggtggcc 780
ttttatgtct ggcagcggga gggcttgagg aaggtgtatgc acatcaatgt cgctgtggag 840
accctgcgtt atctgacctt catgtctggg gaggtggggc gcatcacaaa gtggaaagtac 900

ccgttccccaggagacaga gccaagagc aagctgacgc ccactctgta tgttggaaa 960
tactctacca gcctctatgc ctctccctca atggcacacg agggggttgc tgtcgtgcc 1020
cgccggcagca cacttcctt gctggaaggg cccagactg atggcgtcac catcggggac 1080
aagggggagt gtgtgatcac gcccagcacg gacgtcaagt ttgatcccg actcaaaagc 1140
aagaacaagc tcaactactt gaggaattac tggcttctga taggacacca tgaaacccc 1200
ctgtctgcgt ctaccaagat gctggagaga tttcccaaca atctacccaa acatcggaa 1260
aatgtgattc ctgctgattc agagaaaaag agctttgagg aaactttgtt acagatgact 1320
tcagtgtttt cctggatact gaacctacca tcaaaggagg aagtgtttgc cttttgagg 1380
attttgaaa aaaatatgtt gggctgttgaag acacctgcca aaagtattgc tccaaaaact 1440
attttgaaat aatgataacc tcactgcaaa gatgcatggc ctctcaaagc aattgcttg 1500
aaagaggcaa cagttatctg gctacatgtat ctttggtag cttaaaacaa ataaaacccc 1560
ctgcagtaca gtc 1573

<210> 2
<211> 1669
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(1669)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 2
acctagtttacccagata tttcatattt ataggctcaa tctctagaac catcctgcca 60
tgttagtaat tgtaggattt cgaggatgaa gctctgagac actgagagaa ggttaaccaat 120
taatatgagc caggattcaa agtctgttgt tnctaaagtt atttcccggtt ctacactgtc 180
tttccttca gttatatgtt atattctcaa ctctttat tttcttcca tgtatTTgt 240
acaaacatataaaatgtt agattgtatt ttacttctat aatttctaa tcatctccag 300
ttaaaagtgtatataattta tgtattcatt acagttacag agtgtttcaa gtgccattca 360
cctatgtgac aagaagaaaa tggattatc tctgaacata cctgtaaatc atggccaca 420
agaggaatca tgtggatcct ctcagctcca tgaaaatagt ggttctcctg aaacttcaag 480
gtccctgcca gtcctcaag acaatgattt tttatctaga aaagctcaag actgttattt 540
tatgaagctg catcactgtc ctggaaatca cagttggat agcaccattt ctggatctca 600

aagggctgca ttctgtgatc acaagaccac tccatgtct tcagcaataa taaatccact 660
ctcaactgca ggaaactcag aacgtctgca gcctggata gcccagcagt ggatccagag 720
caaaaggaa gacattgtga accaaatgac agaaggctgc cttaaccagt cgctagatgc 780
ccttctgtcc agggacttga tcatgaaaga ggactatgaa cttgttagta ccaaggctac 840
aaggacctca aaagtccagac aattactaga cactactgac atccaaggag aagaatttgc 900
caaagttata gtacaaaaat tgaaagataa caaacaatg ggtcttcagc cttacccgga 960
aatacttgat gtttcttagat caccatctt aaatttactt caaaataaaa gcatgtaagt 1020
gactgtttt caagaagaaa tgtgtttcat aaaaggatat ttatatctct gttgctttga 1080
cttttttat ataaaatccg tgagtattaa agctttattt aaggttctt gggtaaatat 1140
tagtctccct ccatgacact gcagtattt ttttaattaa tacaagtaaa aagtttgaat 1200
tttgctacat agtcaattt ttatgtctct tttgttaaca gaaaccactt ttaaaggata 1260
gtaattatttgc ttgtttataa cagtgccctt aggtatgatg tatttctgtat ggaagccatt 1320
ttcacattca tggtttcat ggattatttgc ttacttgcgtt aagatgcaat ttgattttat 1380
gaagtatata cccttaccc accagagaca gtacagaatc cctgcccata aatcccaggc 1440
ttaattgccc tacaaagggt tattaatttgc aaactccatt attaggatta cattttaaag 1500
ttttattttat gaattccctt taaaaatgtat atttcaaagg taaaacaata caatataaag 1560
aaaaaaaaataa atatattaaat accggcttcc tgtccccatt tttaacctca gcctccctt 1620
ctgtcaccaa caaccaagct aaataaagtc aacagcctga tgtgtaaaa 1669

<210> 3
<211> 1101
<212> DNA
<213> Homo sapiens

<400> 3
gctcggcctc gggcgccggcc gagcgcccgcg cgagcaggag cggcggcggc ggcggcggcg 60
gcggggaggag gcagcgccgs cccaagatgg cggacctgga ggcggtgctg gccgacgtga 120
gctacctgat ggcattggag aagagcaagg ccacgcccggc cgccgcgcgc agcaagaaga 180
tactgctgcc cgagcccagc atccgcgttgc tcatgcagaa gtacctggag gaccggggcg 240
aggtgacctt tgagaagatc ttttcccaga agctggggta cctgctttc cgagacttct 300
gcctgaaccca cctggaggag gccaggccct tgggtggatt ctatgaggag atcaagaagt 360
acgagaagct ggagacggag gaggagcgtg tggcccgag ccgggagatc ttcgactcat 420

acatcatgaa ggagctgctg gcctgctgc atcccttctc gaagagtgc actgagcatg 480
tccaaggcca cctgggaaag aagcaggtgc ctccggatct cttccagcca tacatcgaag 540
agatttgtca aaacctccga ggggacgtgt tccagaaatt cattgagaga gtggcattgg 600
cagcaggtgc tgctaccctc cctgctgtcc cctttgccc caaccccaag caccgggct 660
cagggaccac agcaaggcac ctgcaggttg ggccatactg gcctgcctg gcctgaggc 720
tcgctgatgc tgggctgggt gcgacccat ctgcccagga cggggccggc caggtggc 780
ggcagcacag caaggaggct ggctggggcc tatcagtgtg ccccccattcc tggcccatca 840
gtgtacccccc gcccaggctg gccagccca cagccacgt cctgtcagtg ccgcgcctc 900
gcccacccgca tgccccctcg tgccagtcgc gctgcctgtg tgggtcgcg ctttctcccc 960
cccggggctg ggttggcgca ccctccctc ccgtctactc attccccggg gctttcttt 1020
gccgattttt gaatgtgatt taaagagtg aaaaatgaga ctatgcgttt ttataaaaaaa 1080
tggtgccctga aaaatcataa a 1101

<210> 4
<211> 2451
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(2451)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 4
ctgcccctggt gcacacagat ggcacatggc agagcccaag ccctctccat gagatctgca 60
gcgtttgtcc acacggcagg gcaaattacc ttgttagagtc agcatggagg tttgcaactc 120
tgccggactt ggtgcagaaa aaataccagc cgtgctgtta aacccaaacc ccaggagaaa 180
actttctggt gacagaaggg cattgtgacc cacgttgccc agggccaggg acagggcagc 240
tgctcatggt ctttcctcac gagtttcct ggagcagagg gatacccca aacccaggga 300
gcccacagga gcttcagaag ggctcggctg gagcgggccc ctgttgcaact tgctcaactgg 360
gnactgggga ggctatgatc gcagaccggg ggtgctgcya cctctgtctg ctggccggcag 420
aaagccacaa gccatgaaaa ctgattgaga tgagaagaat tcatctggta ctggcttttg 480
ctttaggatg gtgttggaaag ttgctcggtg tcgctaggag cctgctccac tgtaagggtg 540
tcgggatctg aagagctatg gtgaaacacc actgaagcat tgccaaggat gggctggta 600

agtagcaaaa agccggacaa ggaaaagccg atcaaagaga aggacaaggg ccaatggagc 660
ccccctgaagg tcagcgccca agacaaggac gccccgccac tgccgcccct ggttgttattc 720
aaccacacctt aaccctccacc gcccgtatgaa cacctggatg aagacaagca tttcgtggtg 780
gctctgtatg actacaccgc tatgaatgtat cgggacctgc agatgctgaa gggggagaag 840
ctacaggtcc tgaaggaaac tggagactgg tggctggcca ggtcactcgt cacaggaaga 900
gaaggctatg tgcccagyaa ctttgtggcc cgagtggaga gcctggaaat ggaaagggtgg 960
ttcttttagat cacagggtcg gaaggaggct gagaggcagc ttcttgctcc aatcaacaag 1020
gccggctcct ttcttatcag agagagtgaa accaacaaag gtgccttctc cctgtctgt 1080
aaggatgtca ccaccacaggg ggagctgatc aagcactata agatccgctg cctggatgaa 1140
gggggctact acatctcccc ccggatcacc ttcccctcgc tccaggccct ggtgcagcac 1200
tattctagtt actacaaaaaa caacatgaag gtggccatta agacgctgaa ggagggaaacc 1260
atgtctccag aagccttcct gggtgaggcc aacgtgatga aggctctgca gcacgagcgg 1320
ctgggtccgac tctacgcagt ggtcaccaag gagcccatct acattgtcac cgagtacatg 1380
gccagaggat gcctgctgga tttcctgaag acagatgaag ggagcagatt gtcactccca 1440
aggctgattt acatgtcggc gcagattgtt gaagggatgg catacattga gcgcattgaat 1500
tccatccacc gcgacctgac ggcggccaac atcctggtgt ctgaggccct gtgctgcaaa 1560
attgctgatt ttggcttggc tcgaatcatc gacagtgaat acacggccca agagggggcc 1620
aagttccccca tcaagtggac agccccggaa gccatccact tcggggtctt caccatcaaa 1680
gcagacgtgt ggtcggttgg agtcctcctg atggaagttt tcacttatgg gcgggtgcca 1740
tacccaggga tgagcaaccc cgaggtcatc cgcaacctgg agcgcggcta ccgcattgcgg 1800
cgccccgaca cctgccccgcc cgagctgtac cgccgcgtca tcgcccagtg ctggcgac 1860
cgccccgagg agcggcccac ctgcgagttc ctgcagtcgg tgctggagga cttctacacg 1920
gccaccggagc ggcagttacga gctgcagccc tagccggccg cgcccgctg cgccccgtgc 1980
ccacctctgc gcggacgacc cggacttcgg tgccatccca gacggggccgc gaaggcgggg 2040
tgtcgctgt gccccttct cagacccggaa atccagtggg cagaggcagc ttgcaggggg 2100
gtccccggac ggactccttc accgactgya cccccggccg agttacgcgg cctctctgt 2160
ccgcttcatt tgttagagggc tgtaacagt acctcgcacg gtcatccgga gtactaagcc 2220
ccagtaagggt gttcaggact ggtaagcgac tgtcatcaag taaggcccc gtgctggca 2280
ccccccgtgc tggccgcgtc cccgcctctg cgccctgcgt ggaccccgcc ctgccccgtc 2340

acagaagcca gactgggtcc cgccggacgcc agcaggggca gccccagcct aggctgcgtc 2400
ccagcactgc ggggctttc tgcaataaaag tcacgagcgt tcgagctgtc a 2451

<210> 5
<211> 692
<212> DNA
<213> Homo sapiens

<400> 5
ggaggcggca acattgtttc aagttggcca aattgacaag agcgagaggt atactgcgtt 60
ccatcccgac ccggggccac ggtactggc cctgttccc ctcctcgcc ccccgagagc 120
cagggtccgc cttctgcagg gttcccaggc ccccgctcca gggccgggct gaccgcactc 180
gctggcgctt catggagaac ttccaaaagg tggaaaagat cggagaggc acgtacggag 240
ttgtgtacaa agccagaaac aagttgacgg gagaggtggt ggccgttaag aaaatccgccc 300
tggacactga gactgagggt gtgcccagta ctgccatccg agagatctct ctgcttaagg 360
agcttaacca tcctaattatt gtcaagctgc tggatgtcat tcacacagaa aataaaaata 420
tttcttaaaa agaaggatga acaattatattat ttatatttca ggttatatcc aatagtagag 480
ttggcttttt ttttttttt ttggcatag tgggtggatt tggccatg tgcacccctgg 540
ggttttgtaa tgacagtgtc aaaaaaaaaa aagcattttt ttttatgtat ttgtctctgt 600
cacccttgc cttgagtgct cttgcttattt acgttatttta taattttagtt tgttagctcat 660
aaaaaaaaatg tgccttagttt tatagttcaa aa 692

<210> 6
<211> 842
<212> DNA
<213> Homo sapiens

<400> 6
cccaaaaacaa cagcagatga tatcttccaa gtgtctgctc gggacacggc ttcagccctc 60
tgtggtcccc tctccccggg gggctttggg attcttgcata agtccttca agagcctgca 120
agcacttaac cagccaccca gagttccctc actgaagatc tgagcatgac ccgggacgag 180
gcactgccgg actctcattc tgcacaggac ttctatgaga attatgagcc caaagagatc 240
ctgggcaggg gcgttagcag tgtggtcagg cgatgcattc acaagccac gagccaggag 300
tacgcccgtga aggtcatcga cgtcaccgtt ggaggcagct tcagccggaa ggaggtgcgg 360
gagctgcgag aagccacgct gaaggaggtg gacatcctgc gcaaggcttc agggcaccac 420

aacatcgta tacagctgaa ggacacttat gagaccaaca ctttcttctt cttgggttt 480
gacctgatga agagagggga gctcttgcac ttacctcaact gagaaggtaa ccttgagtga 540
gaaggaaacc agaaaagatca tgcgagctct gctggaggta atctgcaccc tgcacaaact 600
caacatcgta caccgggacc tgaagcccgaa acatttc ttggatgaca acatgaacat 660
caagctcaca gactttggct tttcctgcca gctggagccg ggagagaggc tgcgaggct 720
ggtaacatgc cttggccac gtccaggcct cgggtgctca atcaaccatc tgcagaatag 780
agatggtctg gtttctccc ctaacttaat tgccctgg aataaaaatt ccaccatttc 840
aa 842

<210> 7
<211> 676
<212> DNA
<213> Homo sapiens

<400> 7
gtgagccacc gccccagcc tggcctggca tttcttttag ttcaggaatgtgacaagga 60
tttggacacc cagaaataag cgwgtcgmgm wgmgrcaag sagmrgrkcc agcgctcgcc 120
atggcggagc cagatctgga gtgcgagcag atccgtctga agtgtattcc tggacgatg 180
ccggagtgtg aaggagtttgaagactgaa ccgcattgga gagggtaccc acggcattgt 240
gtatcgggcc cgggacaccc agacagatga gatttcgca ctgaagaagg tgcggatgga 300
caaggagaag gatggcatcc ccatcagcag cttgcggag atcacgctgc tgctccgcct 360
gcgtcatccg aacatcgta agctgaaggaa ggtgggtgtg gggaaaccacc tggagagcat 420
cttccctggtg atgggttact gtgagcagga cctggccagc ctcctggaga atatgccaac 480
acccttctcg gagggtcagg tcaagtgcac cgtgctgcag gtgctccggg gcctccagta 540
tctgcacagg aacttcattt tccacaggaa cctgaaggaa tccaaacttgc tcatgaccga 600
caagggttgt gtgaagacag gtgggtgcaa cttggccag gcctggtccc tagatggcac 660
ttggtgacac acactc 676

<210> 8
<211> 1019
<212> DNA
<213> Homo sapiens

<400> 8
cgtctgttcc tcggctggcg gggtcagcag acgtctggcc gcagtgggtt ccactgttct 60
ctgcagggtgtggctgtca tactggccga gctgctggcg cacaggcctc ttctccccgg 120

cacttccgag atccaccaga tgcacttgat cgtgcagctg ctgggcacgc ccagtggaaa 180
catctggccg ggctttcca agctgccact ggtcgccag tacagcctcc ggaagcagcc 240
ctacaacaac ctgaagcaca agttcccatg gctgtcgag gcccggctgc gctgctgcac 300
ttcctgttca tgtacgaccc taagaaaagg gcgacggccg gggactgcct ggagagctcc 360
tatttcaagg agaagccct acgtttccg atcagtggtg tctgtgaagg gtgcgcgcgag 420
ccaggctgac caggcgcccg ggatccagct catcccttg gctggaaaca tcctccactg 480
acttcctccc actgtctgcc ctgaacccac tgctgcccc agaaaaaggc cgggtgacac 540
cggggggctc ccagccgtg caccctggaa gggcaggtct ggcggctcca tccgtggctg 600
caggggtctc atgtggctt cctcgctatg ttggaaatgt gcaaccactg cttttggaa 660
ggagtggtgg gtgcagtccc cccgctgtct ttgagttgtg gtggacgctg gcctggatg 720
agagggccca gaagacccatc gtatccctc tcagtcgccc gggctgtcc cgtgcattgg 780
ttggctgtgg ggacccagg tggcctggc aggactccag atgaggacaa gagggacaag 840
gtatgggtg ggagccacaa ttgaggatac cccgagacta ccaggagagc cctggctgg 900
aggctgagct gcatccctgc tccccacatg gaggacccaa caggaggccg tggctctgat 960
gctgagcgaa gctataggct cttgttggat aaaagctttt ttaacagaca tggtaaaaa 1019

<210> 9
<211> 848
<212> DNA
<213> Homo sapiens

<400> 9
gtgagccacc gccccagcc tggcctggca tttcttgag ttcaggaatgt gtgacaaggaa 60
tttggacacc cagaaataag cgwgtcgmgm wgmgrcaag sagmrgrkcc agcgctcgcc 120
atggcggagc cagatctgga gtgcgagcag atccgtctga agtgtattcc tggacgatg 180
ccggagtgtg aaggagtttgg agaagctgaa ccgcattggaa gagggtaccc acggcattgt 240
gtatcgggcc cgggacaccc agacagatga gattgtcgca ctgaagaagg tgcggatgga 300
caaggagaag gatggcatcc ccatcagcag cttgcggag atcacgctgc tgctccgcct 360
gcgtcatccg aacatccctcc cagccgtgc accctggaaag ggcaggtctg gcggctccat 420
ccgtggctgc aggggtctca tgtggcttc ctcgctatgt tggaaatgtg caaccactgc 480
ttcttggag gagtggtggg tgcagtcccc ccgcgtgttt tgagttgtgg tggacgctgg 540
cctggatga gagggcccaag aagacccatc tatccctct cagtcgcccc gggctgtccc 600

gtgcatgggt tggctgtggg gacccaggt gggcctggca ggactccaga tgaggacaag	660
agggacaagg tatgggtgg gagccacaat tgaggatacc ccgagactac caggagagcc	720
ctgggctgga ggctgagctg catccctgct ccccacatgg aggacccaac aggaggccgt	780
ggctctgatg ctgagcgaag ctataggctc ttgttggata aaagctttt taacagacat	840
ggtaaaaa	848

```
<210> 10
<211> 2418
<212> DNA
<213> Homo sapiens
```

<400> 10
cctgtaccta agttcccgct gtaggtggta ccttcgcaga cggtgcgatg ggggaaggcag 60
agaagttca ctacatctat agtttgacc tggatatcaa cgtccagctt aagataggaa 120
gcttggaaagg gaagagagaa caaaagagtt ataaagctgt cctggaagac ccaatgttga 180
agttctcagg actatatcaa gagacatgct ctgatctta tgttacttgt caagttttg 240
cagaaggaa gccttggcc ttgccagtga gaacatccta caaagcattt agtacaagat 300
ggaactggaa tgaatggctg aaactaccag taaaataccc tgacctgccc aggaatgccc 360
aagtggccct caccatatgg gatgtgtatg gtcccgaaa agcagtgcct gtaggaggaa 420
caacggtttc gctcttggaa aaatacggca tgtttcgcca agggatgcat gacttgaaag 480
tctggcctaa tgtagaagca gatggatcag aacccacaaa aactcctggc agaacaagta 540
gcactctctc agaagatcag atgagccgtc ttgccaagct caccaaagct catcgacaag 600
gacacatggt gaaagtagat tggctggata gattgacatt tagagaaata gaaatgataa 660
atgagagtgt gaaacgaagt tctaattca tgtacctgat gggtggattt cgatgtgtca 720
agtgtgatga taaggaatat ggtattgttt attatgaaaa ggacggtgat gaatcatctc 780
caattttAAC aagtttgaa ttagtgaaag ttccctgaccc ccagatgtcc ctggagaatt 840
tagttgagag caaacaccac aacccccc ggagtttaag aagtggacct tctgaccacg 900
atctgaaacc ctatccttcc ccgagagatc agttaaaaaa tattgtgagt tattctccat 960
ccaagccacc cacatatgaa gaacaagatc ttgtttggaa gtttagatata tattttacga 1020
atcaagataa agccttgacc aaaatcctga catctgttat ttggatctt cctcagggggg 1080
ccaaacaggc ctggcactt ctggggaaat ggaacccgat ggatgttagag gactccttgg 1140
agctgatatac ctctcattac accaaccCAA ctgtgaggcg ttatgtgtt gcccgggttgc 1200

gacaggccga	tgatgaggat	ttgttgatgt	acctattaca	attggtccag	gctctcaa	at	1260		
atgaaaattt	tgatgatata	aagaatggat	tggAACCTAC	caagaaggat	agtcagagtt		1320		
cagtgtcaga	aaatgtgtca	aattctggaa	taaattctgc	agaaatagat	agctccaaa		1380		
ttataaccag	cccccttcct	tcagtctctt	cacccctcc	tgc	catcaaaa	aca	1440		
ttccagatgg	cggaaatctg	gaacaagatc	tctgtacctt	cttgat	atcg	agagcctgca	1500		
aaaactcaac	actggcta	at	tattatact	ggtatgtgat	agtggaa	atgt	gaagatcaag	1560	
atactcagca	gagagatcca	aagacccatg	agatgtactt	gaacgtaatg	aga	agattca		1620	
gccaagcatt	gttgaagggt	gataagtctg	tcagagttat	gcgttcttgc	ctggctgcac		1680		
aacagacatt	tgttagatcgg	ttggtgcatc	taatgaaggc	agtacaacgc	gaa	agtggaa		1740	
atcgtaagaa	aaagaatgag	agactacagg	cattgcttgg	agataatgaa	aagatgaatt		1800		
tgtcagatgt	ggaacttatac	ccgttgcctt	tagaacccca	agtggaa	at	agaggaataa		1860	
ttccggaaac	agctacactg	ttt	aaaagtgc	cccttatg	cc	tgc	agatgg	1920	
cggaagatgg	aggcaaatat	ccagttat	ttaagcatgg	agatgattt	cgt	caagatc		1980	
aacttattct	tcaa	attcatt	tcactcatgg	acaagctgtt	acggaa	agaa	aatctggact	2040	
tgaaattgac	accttataa	ag	gtgttagcca	ccag	tacaaa	acatggcttc	atgc	agtttta	2100
tccagtcagt	tcctgtggct	gaagttcttgc	atacagaggg	aagcattc	ag	actttttt		2160	
gaaaatatgc	accaagtgag	aatggccaa	atgggattag	tgctgagg	tc	atggacactt		2220	
acgttaaaag	ctgtgctgga	tattgcgt	tcac	ctat	acttgg	ggagacaggc		2280	
acctggataa	cctttgcta	acaaaaacag	gagg	ctgagg	cagg	agaatc	gcttgaaccc	2340	
gggaggcgg	ggttgcagt	agccgagatt	gcaccattgc	actgc	agact	aggcaaca	ag	2400	
atcaaaaacgc	catcttag							2418	

<210> 11
 <211> 1894
 <212> DNA
 <213> Homo sapiens

<400> 11	cctgtaccta	agttcccgct	gttaggtggta	ccttgcaga	cggtgcgt	ggggaa	aggcag	60
	agaagtttca	ctacatctat	agttgtgacc	tggat	atcaa	agctgt	cctggaa	120
	gcttggaaagg	gaagagagaa	caaaagagg	tttataa	agctgt	cctggaa	agac	180
	agttctcagg	actatatcaa	gagacatgct	ctgat	tttta	tgta	cttgt	240

cagaaggaa gccttggcc ttgccagtga gaacatccta caaagcatt agtacaagat 300
ggaactggaa tgaatggctg aaactaccag taaaataccc tgacctgccc aggaatgccc 360
aagtggccct caccatatgg gatgtgtatg gtcccgaaaa agcagtgcct gtaggaggaa 420
caacggtttc gcttttggaa aaatacggca tgttcgcca agggatgcat gacttgaaag 480
tctggcctaa tgtagaagca gatggatcag aaccacaaaa aactcctggc agaacaagta 540
gcactctctc agaagatcag atgagccgtc ttgccaagct caccaaagct catcgacaag 600
gacacatggt gaaagtagat tggctggata gattgacatt tagagaaata gaaatgataa 660
atgagagtgt gaaacgaagt tctaattca tgtacctgat gggtggattt cgatgtgtca 720
agtgtgatga taaggaatat ggtattgttt attatgaaaa ggacggtgat gaatcatctc 780
caatttaac aagtttgaa ttagtggaaag ttccctgaccc ccagatgtcc ctggagaatt 840
tagttgagag caaacaccac aacccccc ggagtttaag aagtggacct tctgaccacg 900
atctgaaacc ctatccttcc ccgagagatc agttaaaaaa tattgtgagt tattctccat 960
ccaagccacc cacatatgaa gaacaagatc ttgtttggaa gtttagatat tatcttacga 1020
atcaagataa agccttgacc aaaatcctga catctgttat ttggatcta cctcaggggg 1080
ccaaacaggc cttggcactt ctggggaaat ggaacccgat ggatgttagag gactccttgg 1140
agctgatatac ctctcattac accaacccaa ctgtgaggcg ttatgctgtt gcccggttgc 1200
gacaggccga ttagtggat ttgttgcattt acctattaca attggccat gctctcaaatt 1260
atgaaaattt ttagtgcata aagaatggat tggacccat caagaaggat agtcagagtt 1320
cagtgtcaga aaatgtgtca aattctggaa taaattctgc agaaatagat agctccaaa 1380
ttataaccag cccccccttcc tcaatcttcc caccccttcc tgcataaaaa acaaaagaag 1440
ttccagatgg cgaaaatctg gaacaagatc tctgtaccc ttgtatatcg agagcctgca 1500
aaaactcaac actggctaat tatttataact ggtatgtaaa aataattttc tgtttatttt 1560
cttattaccc ttaagaatta tttttctca tgctataaac acaaagatga tttaaaaataa 1620
gatatgagca atcatcaaaa gtctagatat agtattata tctaactgta ttccctgaca 1680
gctgggttca tggaaatgct tggtggcatc aacatttctc tcccttcac taaggatata 1740
actttccagg agcttaggata taactgggaa gggtaatggg tactttcagt ttaatatctg 1800
tttggcatgt aaagtagttg agtattgtat ttccacagttc ttccaggagta tatattttca 1860
cattatttac taaaacattg gaatcattta aaaa 1894

<210> 12
<211> 750
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(750)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 12
cagtgnngctc cgggccccgg gcccggccca gcacccggccg cgccgcagct ccgggaccgg 60
ccccggccgc cggccggcccg atgggcaacg cggccggccgc caagaagggc agcgagcagg 120
agagcgtgaa agaattctta gccaaggcca aagaagattt tcttaaaaaa tggaaagtc 180
ccgctcagaa cacagccac ttggatcagt ttgaacgaat caagaccctc ggcacgggct 240
ccttcgggcg ggtgatgctg gtgaaacaca aggagaccgg gaaccactat gccatgaaga 300
tcctcgacaa acagaagggtg gtgaaactga aacagatcga acacaccctg aatgaaaagc 360
gcattcctgca agctgtcaac tttccgttcc tctgtcaact cgagttctcc ttcaaggaca 420
actcaaactt atacatggtc atggagtacg tgcccgccgg ggagatgttc tcacacctac 480
ggcggatcgg aaggttcagg taagcgggccc acccccccac acatcaggtt gtcagggtgt 540
ccacaggtgg cagtgcacga ccaagcccc tggaatgca gaggagtcca gcatacttca 600
acatgcaggt ggtctccctt accctgtggg tttctgttcc ccctctgctg aggaatatgt 660
gatatttcaa ccaccacaaa ncaaaacaga gcaaacaggg caacttaggt gtccaaactg 720
aagttgctgc caggcgccgt gttctcacc 750

<210> 13
<211> 794
<212> DNA
<213> Homo sapiens

<400> 13
ctccccggcc cggccatggt agtgttcaat ggcccttctta agatcaaaat ctgcggaggcc 60
gtgagcttga agcccacagc ctggtcgtcg cgccatgcgg tgggaccggc gcccagact 120
ttcccttctcg acccctacat tgccctcaat gtggacgact cgccatcgg ccaaacggcc 180
accaaggcaga agaccaacag cccggcctgg cacgacgagt tcgtcaccga tgtgtgcaac 240
ggacgcaaga tcgagctggc tgtctttcac gatccccca taggctacga cgacttcgtg 300
gccaactgca ccatccagtt tgaggagctg ctgcagaacg ggagccggca cttcgaggac 360

tggattgatc tggagccaga aggaagagtg tatgtgatca tcgatctctc	420
agggtcgctcg ggtgaagtga aaatacctaa ctctgcattc tgtgaaaggg agagagttga aatgaggcac	480
agctgaagtt tcaccactcc attattctgc catcaagcat cccttcagct cccatctctc	540
aaatgctgca gccccatcaa tggaaaaaaaa tacattcatg ggaattgcac aaagtttaca	600
acacatgcaa attccaaagga gctcagagag aggtgtgggg gtgagatggt gtgactacac	660
cccttcttc taggatgcgc cgaaggattc ttttcttgc tcatatgctg ttagaaagcc	720
tggcgttta cgtctgctgg agctggagct aatgtgattt ctaactgtct aataaaattc	780
cactgcttgc aaaa	794

<210> 14
 <211> 2083
 <212> DNA
 <213> Homo sapiens

<400> 14	
catcttgcac cagcctgtgg atgtatgcct accaccgggc tccttcacca gcaaagtggaa	60
aaaagaagcg tttcacaaca aattcttctt tttgggttgg ggaaacgcag tggattatag	120
ctctgttttc ttctttccaa aactgtgcac ccctggatga aacctccatc aaggagacc	180
tacaagttgc ctggggttca gtgctctaga aagttccaag gtttggct tgaattattc	240
taaagaagct gaaataattg aagagaagca gaggccagct gttttgagg atcctgctcc	300
acagagaatg ctctgcaccc gttgatactc cagttccaac accatcttct gagatgatcc	360
tgattcccag aatgctcttg gtgctgttcc tgctgctgcc tatcttgagt tctgcaaaag	420
ctcaggtaa tccagctata tgccgctatc ctctggcat gtcaggaggc cagattccag	480
atgaggacat cacagcttcc agtcagtggt cagagtccac agctgccaaa tatggaaggc	540
tggactcaga agaagggat ggagcctggt gccctgagat tccagtggaa cctgatgacc	600
tgaaggagtt tctgcagatt gacttgcaca ccctccattt tatcactctg gtggggaccc	660
aggggcgcca tgcaggaggt catggcatcg agtttgcggc catgtacaag atcaattaca	720
gtcgggatgg cactcgctgg atctcttggc ggaaccgtca tggaaacag gtgctggatg	780
gaaatagtaa cccctatgac attttcttaa aggacttgga gcccgcatt gtagccagat	840
ttgtccgggtt cattccagtc accgaccact ccatgaatgt gtgtatgaga gtggagctt	900
acggctgtgt ctggctagat ggcttgggtgt cttacaatgc tccagctggg cagcagtttgc	960
tactccctgg aggttccatc atttatctga atgattctgt ctatgatgga gctgttggat	1020

acagcatgac	agaagggcta	ggccaattga	ccgatggtgt	gtctggcctg	gacgattca	1080
cccagaccca	tgaataccac	gtgtggcccg	gctatgacta	tgtgggctgg	cggaacgaga	1140
gtgccaccaa	tggctacatt	gagatcatgt	ttgaatttga	cogcatcagg	aatttcacta	1200
ccatgaaggt	ccactgcaac	aacatgtttg	ctaaaggtgt	gaagatctt	aaggaggtac	1260
agtgcactt	ccgctctgaa	gccagtgagt	gggaacctaa	tgccatttcc	ttcccccttg	1320
tcctggatga	cgtcaacccc	agtgcctgg	ttgtcacgg	gcctctccac	caccgaatgg	1380
ccagtgccat	caagtgtcaa	taccatttt	cagatacctg	gatgatgttc	agtgagatca	1440
ccttccaatc	agatgctgca	atgtacaaca	actctgaagc	cctgcccacc	tctcctatgg	1500
cacccacaac	ctatgatcca	atgcttaaag	ttgatgacag	caacactogg	atcctgattt	1560
gctgcttgg	ggccatcatc	tttacccctcc	tggccatcat	tgtcatcatc	ctctggaggc	1620
agttctggca	gaaaatgctg	gagaaggctt	ctcgaggat	gctggatgtat	gaaatgacag	1680
tcagccccc	cctgccaagt	gattctagca	tgttcaacaa	taaccgctcc	tcatcaccta	1740
gtgaacaagg	gtccaaactcg	acttacgatc	gcatcttcc	cttcgccct	gactaccagg	1800
agccatccag	gctgatacga	aaactccag	aatttgcctc	aggggaggag	gagtcagggt	1860
aggatgatgt	ggtggcagg	gcgtcaaggg	agaaacctca	gcaagcatca	ggttaggtatg	1920
acacgcctgc	tcccaagttca	ttgcacatctat	tttttagtctc	tgctaaccctc	ctgagaagtc	1980
cacattctct	ttcttagattt	ggtctgccgc	tgctcctggc	ctaatttgag	caactctcct	2040
ttgctactga	atataagatg	tgtggaggga	cccacatacc	aaa		2083

<210> 15
 <211> 1215
 <212> DNA
 <213> Homo sapiens

<400> 15	gcgaaatcct	aaaccagccc	aatttacatc	cattcatgaa	tctgtgacgt	cagcaagcct	60
	ttgggctcct	ttgcgtgtgg	ctggaggatt	gtgtgggtgg	aatccccctc	ccctttat	120
	ttccaattct	gcaaggcttt	taaaattcac	cttacatctt	ttcaaagcaa	gaaaatggaa	180
	cagcatgtgt	aggaattctt	cgttgttgg	ttggagccct	ctcttaagtc	agaactctgt	240
	cccaaaaatc	ttctgagtgt	catctcagga	ctttggttat	actcatggca	cgatggccaa	300
	cttcaggag	cacctgagct	gctcctcttc	tccacactta	cccttcagtg	aaagcaaaac	360
	cttcaatgg	ctacaagatg	agctcacagc	tatgggaac	cacccttctc	ccaagctgct	420

cgaggaccag caggaaaagg ggatggtacg aacagagcta atcgagagcg tgcacagccc 480
cgtcaccaca acagtgtta cgagcgtaag tgaggattcc agggaccagt ttgagaacag 540
cgttcttcag ctaaggaaac acgatgaatc agagacggcg gtgtctcagg ggaacagcaa 600
cacggtggac ggagagagca caagcggAAC tgaagacata aagattcagt tcagcaggTC 660
aggcagtggc agtgggtgggt ttcttgaagg actatttggA tgcttaaggc ctgtatggaa 720
tatcattggg aaggcatatt ccactgatta caaattgcag cagcaagata cttggaaagt 780
gccatttgag gagatctcag agctgcagtG gctgggtagt ggagcccaag gagcggTtT 840
cttgggcaag ttccgggcgg aagaggtggc catcaagaaa gtgagagaac agaatgagac 900
ggatatcaag catttgagga agttgaagca ccctaacatc atgcattca agggtgTTT 960
tactcaggcc ccatgttatt gtattatcat ggaatactgt gcccatggac aactctacga 1020
ggtcttacga gctggcagga agatcacacc tcgattgcta gtagactggT ccacaggaat 1080
tgcaagtggA atgaattatt tgcacctcca taaaattatt catcgtgatc tcaaatcacc 1140
taagtgagtt ctggggctaa tgtttcagct atttggTTT gttgtttga aatacagaat 1200
tttatcaac ctcaa 1215

<210> 16
<211> 1327
<212> DNA
<213> Homo sapiens

<400> 16
gggattgtgc tatccaccat aaaaagcata gcatactgtg tgtatgtaag tcctcccagg 60
gcTTcattct tgtataatAT agaatatgtA actatatacA tatgatTTT ttaactcAGT 120
cactgtaatg gttcgTTTA atTTTcatt ttggatTTT tttaatttc ctTtgctact 180
tagatttagaa agaacattga tctttcaaAC atagatctga atatgaaAGA gaaaAGAAAC 240
acttccatAT ttggTTtagaa gtctatgtgt ggacagagat ggatacataa tttcacatgc 300
ttggcattcc ttTTcacAC ttAAAatca ggtaataAGT cagtccatct gagggAAAGCC 360
agttcaccaa atcttcataG acgacagtgg gagaaaaATG tacccaaatac agctttaca 420
gctttggAAA atgcatccat actcacCTCC agtttaACAG cagaggacga tagaggtggT 480
tctgtataAA agtacagcaa aaatactact cgtaAGcagt ggctcaaAGA gaccCCTgac 540
actttgttga acatccttaa gaatgctgat ctcagcttgg ctTTTcaaAC atacacaata 600
tatagaccag gttcagaagg gttcttgAAA ggccccCTGT ctgaagAAAC agaAGcatcg 660

gacagtgtt atggaggtca cgattctgtc attttggatc cagagcgact tgagcctggg 720
ctagatgagg aggacacgga ctttggaggag gaagatgaca acccccactg ggtgtcagag 780
ctgaagaagc gagctggatg gcaaggcctg tgcgacagat aatgcctgag gaaatgttcc 840
tgagtcacgc tgaggagagc cttcaactcg gagttcatgc tgagatgatc atgagttcat 900
gcgacgtata tttcccttg gaaacagaat gaagcagagg aaactcttaa tacttaaaat 960
cgttcttgat tagtacgtg agtttggaaaa gtctagaact cctgtaagtt tttgaactca 1020
agggagaagg tatagtggaa tgagtgtgag catcgggctt tgcagtccta tagaacagaa 1080
atgggatgct agcgtgccac tacctacttg tgtgattgtg ggaaattact taacctttc 1140
aagccccaat ttccctcaacc ataaaatgaa gataataatg cctacccatg agggatgctg 1200
accacagacc ttatagcag cccgtatgtatatttcaca ttatgatatg tgtttattat 1260
tatgtgactc ttttacatt tcctaaaggt ttgagaatta aatatattta attatgaakw 1320
aaaaaaaa 1327

```
<210> 17
<211> 364
<212> DNA
<213> Homo sapiens

<400> 17
aattcggcac gaggtggac tttcctctcg ctgcctcccg gctctgcccggcccttcgaaa 60
gtccagggtc cctgcccgtc aggcaagttg cactcatggc acctccaagt gaagagacgc 120
ccctgatccc tcagcggtca tgcagcctct tgtccacgga ggctggtgcc ctgcattgtgc 180
tgctgcccgc tcggggccccc gggccccccc agcgccatatac tttctccctt ggggtccctg 240
tccgacctgt gggcgccaaat ggcctccccc tgacctcagg gttccttggggctgg 300
aggcctcagt acagaggggg ctctggaaat gtttgttgac tgaataaagg aattcagtgg 360
aaac 364
```

```
<210> 18
<211> 923
<212> DNA
<213> Homo sapiens

<400> 18
cgctgctggg ctgcggcggc ggcggcggcg gtggttacta tggcggagtc ggccggagcc 60
tcctccttct tcccccttct tttcccttccttq ctcqccqqca qcqqcggggtc cggggccccgg 120
```

ggggtccagg ctctgctgtg tgcgtgcacc agctgcctcc aggccaaacta cacgtgtgag 180
acagatgggg cctgcatggt ttccwtttc aatctggatg ggatggagca ccatgtgcgc 240
acctgcattcc ccaaagtgga gctggccct gccggaaagc cttctactg cctgagctcg 300
gaggacctgc gcaacaccca ctgctgctac actgactact gcaacaggat cgacttgagg 360
gtgcccagtg gtcacctcaa ggagcctgag caccgtcca tgtggggccc ggtggagctg 420
taggcattca tcgccccccc ggtgttcctc ctgttctca tcatcatcat tgtttcctt 480
gtcatttaact atcatcagcg tgtctatcac aaccgccaga gactggacat ggaagatccc 540
tcatgtgaga tgtgtctctc caaagacaag acgctccagg atcttgccta cgatctctcc 600
acctcagggt ctggctcagg taccaagttc ttcagggcat catgtctgtg gttggcttc 660
atcagttcc cagcaggata gagtgcttgc agagaaggct ggaggccctg catttgcattc 720
taccagcatt gagtcatttgc gtttcctagt tcccttcatt ttggagtctg acgtgtaata 780
agataagata atgggttcac agaaaatctc tcattccgtg ggattcccaa ggtctagttac 840
acaattatcc actacagaag tcctgcctct ctaagctttgc caactgtacg tacatctatt 900
aaaattcagc tggccccccc tga 923

<210> 19

<211> 1739

<212> DNA

<213> Homo sapiens

<220>

<221> -

<222> (1)..(1739)

<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 19

ccggccggccggc ggccccccggc atgcagcccc ggctgcggag gtgacactca cggaccttag 60
ccaccggccgc cgccatcgcc accatggacg aacaggaggc attgaactca atcatgaacg 120
atctgggtggc cctccagatg aaccgacgtc accggatgcc tggatatgag accatgaaga 180
acaaagacac aggtcactca aataggcaga gtgacgtcag aatcaagttc gagcacaacg 240
gggagaggcg aattatagcg ttcagccggc ctgtgaaata tgaagatgtg gagcacaagg 300
tgacaacagt atttggacaa cctcttgatc tacattacat gaacaatgag ctctccatcc 360
tgctgaaaaaa ccaagatgat cttgataaaag caattgacat ttttagataga agctcaagca 420
tgaaaaggct taggatattg ctgttgcctt aggacagaaa ccataacagt tcctctcccc 480

actctgaggt	540
gtccagacag	
gtgcggatca	
aggctccca	
gtccgcaggg	
gatataaata	
ctatctacca	600
gccccccgag	
cccagaagca	
ggcaccttc	
tgtcagctcc	
cagaaccctg	
gccgaagctc	660
acctccccct	
ggctatgttc	
ctgagcggca	
gcagcacatt	
gcccggcagg	
ggtcctacac	720
cagcatcaac	
agtgaggggg	
agttcatccc	
agagaccagc	
gagcagtgca	
tgctggatcc	780
cctgagcagt	
gcagaaaatt	
ccttgtctgg	
aagctgccaa	
tccttgacaa	
ggtcagcaga	840
cagcccatcc	
ttccggaaat	
cacgaatgtc	
ccgtgcccag	
agctccctg	
acaacagaca	900
ggaataactca	
gatcggaaa	
ctcagcttta	
tgacaaaaggg	
gtcaaagggt	
gaacacctacc	960
ccggcgctac	
cacgtgtctg	
tgcaccacaa	
ggactacagt	
gatggcagaa	
gaacatttcc	1020
ccgaatacgg	
cgtcatcaag	
gcaacttgtt	
caccctggtg	
ccctccagcc	
gctccctgag	1080
cacaaatggc	
gagaacatgg	
gtctggctgt	
gcaataacctg	
gaccggcgtg	
ggcgccctgcg	1140
gagtgcggac	
agcgagaatg	
ccctctctgt	
gcaggagagg	
aatgtgccaa	
ccaagtgtga	1200
ggagctgtcc	
ctggcttagga	
ggagactgcc	
caggtggtct	
cagacaagct	
acgggggcaa	1260
acagctgggc	
ccctgggacc	
cttaggctca	
gcaggtggtg	
gctttggccc	
aaatgcacca	1320
catggataa	
gccttggagt	
gtctgaagcc	
tggctccact	
attgtgtgac	
aagcctcttc	1380
tcctctctga	
atcttagtt	
tttccatgtt	
taaactaggg	
aaagaagcac	
acccttcata	1440
cctgccatat	
taagatattt	
agggggcttt	
ggaagggaaa	
tgcatttgaa	
tcaatgcang	1500
aagaagcatt	
taaccaatga	
ncttcagcca	
atcctctgnc	
ttcttaggac	
tctgacttca	1560
ggtccgnagt	
gactaggggc	
actggggctt	
gctccagatt	
gtggtggag	
aatgctctac	1620
taagagattg	
atggggtgct	
ggggtggagg	
gggggaagcc	
tgnagccaa	
gagaccctgt	1680
tcctggnaga	
atgaatgggg	
aatattcata	
aataatgtac	
acaaagtaac	
tcttccttc	1739
tgctctccct	
gttagctccc	
aagtgcaccc	
catcaaacct	
ggcgccccc	

<210> 20
 <211> 1832
 <212> DNA
 <213> Homo sapiens

<220>
 <221> -
 <222> (1)..(1832)
 <223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 20
 ccggccgcccc ggccccccggc atgcagcccc ggctgcggag gtgacactca cggacacctag 60

ccaccgcccgc cgccatcgcc accatggacg aacaggaggc attgaactca atcatgaacg 120
atctggtggc cctccagatg aaccgacgtc accggatgcc tggatatgag accatgaaga 180
acaaagacac aggtcactca aataggcaga aaaaacacaa cagcagcagc tcagcccttc 240
tgaacagccc cacagtaaca acaagctcat gtgcaggggc cagtgagaaa aagaaatttt 300
tgagtgacgt cagaatcaag ttgcagcaca acggggagag gcgaattata gcgttcagcc 360
ggcctgtgaa atatgaagat gtggagcaca aggtgacaac agtatttgaa caaccttttg 420
atctacatta catgaacaat gagctctcca tcctgctgaa aaaccaagat gatcttgata 480
aagcaattga cattttagat agaagctcaa gcatgaaaag ccttaggata ttgctgttgt 540
cccaggacag aaaccataac agttcctctc cccactctga ggtgtccaga caggtgcgg 600
tcaaggcttc ccagtcgca gggatataa atactatcta ccagcccccc gagcccagaa 660
gcaggcacct ctctgtcagc tcccagaacc ctggccgaag ctcacctccc cctggctatg 720
ttcctgagcg gcagcagcac attgcccggc aggggtccta caccagcatc aacagtgagg 780
ggaggttcat cccagagacc agcgagcagt gcatgctgga tcccctgagc agtgcagaaa 840
attccttgc tggaaagctgc caatccttgg acaggtcagc agacagccca tcctccgg 900
aatcacgaat gtcccgtgcc cagagcttcc ctgacaacag acaggaatac tcagatcggg 960
aaactcagct ttatgacaaa ggggtcaaaag gtggAACCTA cccccggcgc taccacgtgt 1020
ctgtgcacca caaggactac agtgtatggca gaagaacatt tccccgaata cggcgtcatc 1080
aaggcaactt gttcacccctg gtgccttcca gccgctccct gagcacaat ggcgagaaca 1140
tgggtctggc tgtcaatac ctggacccccc gtggcgccct gcggagtgcg gacagcgaga 1200
atgcctctc tgtcaggag aggaatgtgc caaccaagtg tgaggagctg tccctggcta 1260
ggaggagact gcccagggtgg tctcagacaa gctacggggg caaacagctg ggcccttgg 1320
acccttaggc tcagcaggtg gtggctttgg cccaaatgca ccacatggga taagccttgg 1380
agtgtctgaa gcctggctcc actattgtgt gacaagcctc ttctcctctc tgaatcttta 1440
gtttttccat gtttaacta gggaaagaag cacacccttc atccctgccca tattaagata 1500
tttagggggc tttggaaaggg aaatgcattt gaatcaatgc angaagaagc atttaaccaa 1560
tgancttcag ccaatccct gncttcttag gactctgact tcaggtccgn agtgactagg 1620
ggcactgggg cttgctccag attgtggtgg gagaatgctc tactaagaga ttgatgggt 1680
gctgggtgg agggggggaa gcctgnagcc caagagaccc ttttcctgggn agaatgaatg 1740
ggaatattc ataaataatg tacacaaagt aactcttcc ttctgctctc cctgttagct 1800

cccaagtgcc ccccatcaaa cctgggggcc cg

1832

<210> 21
<211> 1269
<212> DNA
<213> Homo sapiens

<400> 21
agcggccgcg gaggggcctg gagtgccgcg gcggccggac ccggagcagg agcggccgca 60
gcagcgactg ggggcggcgg cggcgcttg gaggcccca tggcaaagca gtacgactcg 120
gtggagtgcc cttttgtga tgaagttcc aaatacgaga agctcgccaa gatcgccaa 180
ggcaccttcg gggagggttt caaggccagg caccgcaaga ccggccagaa ggtggctctg 240
aagaaggtgc tcatggaaaa cgagaaggag ggttcccca ttacagcctt gcgggagatc 300
aagatccttc agttctaaa acacgagaat gtggtaact tgattgagat ttgtcgaacc 360
aaagcttccc cctataaccg ctgcaagggt agtatatacc tgggtttcga cttctgcgag 420
catgacccctg ctggctgtt gagcaatgtt ttggtaagt tcacgctgtc tgagatcaag 480
agggtgatgc agatgctgct taacggcctc tactacaacc acgacttctt ctggccgac 540
cccatgcctt ccgacctcaa gggcatgctc tccacccacc tgacgtccat gttcgagttac 600
ttggcaccac cgccggaa gggcagccag atcaccaccg agtccaccaa ccagagtcgc 660
aatcccgcca ccaccaacca gacggagttt gagcgcgtct tctgagggcc ggcgtttgcc 720
actaggcctc ttgtgtttt tttcttctgc tatgtgactt gcatcgtgga gacagggcat 780
ttgagtttat atctctcatg catatttat ttaatccca ccctggctc tggagcagc 840
ccgctgagtg gactggagtg gagcattggc tgagagacca ggagggcact ggagctgtct 900
tgtccttgct gttttctgg atggttccca gagggttcc atgggttagg aggatggct 960
cgccccaccag tgacttttc taagagctcc cggcgtggc gaagagggga caggccctc 1020
acccacccac aatcctattc tcgggctgag aaccctgcgt ggggacaggg ctcgcctcag 1080
gaatggctg ttttggcct aaccctcaga aacactgggg ctggcacaaa ctcttggttt 1140
cttcaacagg agaattttac tgtgtttctt ttgggtccat tgggtggaga cattcctggg 1200
cacagtttgg tccgttagaa taaaagttt aattttttt tttttttttt tttttttttt 1260
ycccccaaa 1269

<210> 22

<211> 623

<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(623)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 22
agccctccca gtttccgcgc gcgtctttgg cagctggtca catggtgagg gtgggggtga 60
gggggcctct ctagcttgcg gcctgtgtct atggtcgggc cctctgcgtc cagctgctcc 120
ggaccgagct cgggtgtatg gggccgtagg aaccggctcc ggggccccga taacggccg 180
cccccacagc accccgggct ggcgtgaggg tctcccttga tctgagaatg gctacctctc 240
gatatgagcc agtggctgaa attgggtgtcg gtgcctatgg gacagtgtac aaggcccgtg 300
atccccacag tggccacttt gtgcctcaa gagtgtgaga gtccccaatg gaggaggagg 360
tggaggaggc cttcccatca gcacagttcg tgaggtggct ttactgaggc gactggaggc 420
ttttgagcat cccaatgttg tccggctgat ggacgtctgt gccacatccc gaactgaccg 480
ggagatcaag gtaaccctgg tgtttgagca tgtagaccag gacctaagga catatctgga 540
caaggcacccc ccaccaggct tgccagccga aacgatcaag gtgagtgggg ttggtaggca 600
ttganaggtg gattgggacc ttt 623

<210> 23
<211> 502
<212> DNA
<213> Homo sapiens

<400> 23
agccctccca gtttccgcgc gcgtctttgg cagctggtca catggtgagg gtgggggtga 60
gggggcctct ctagcttgcg gcctgtgtct atggtcgggc cctctgcgtc cagctgctcc 120
ggaccgagct cgggtgtatg gggccgtagg aaccggctcc ggggccccga taacggccg 180
cccccacagc accccgggct ggcgtgaggg tctcccttga tctgagaatg gctacctctc 240
gatatgagcc agtggctgaa attgggtgtcg gtgcctatgg gacagtgtac aaggcccgtg 300
atccccacag tggccacttt gtgcctcaa gagtgtgaga gtccccaaccc acctctcctt 360
ttgaggcttc tccttctcct tcccatattct ctacactaag gggtatgttc cctcttgc 420
ctttccctac ctttatattt ggggtccctt tttatacagg aaaaacaaaa caaagaaata 480
aagtgcacgc ggccgcgaat tc 502

<210> 24
 <211> 1148
 <212> DNA
 <213> Homo sapiens

<220>
 <221> -
 <222> (1)..(1148)
 <223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 24	60
catcatatga ggtggacagg aagccagcc aagccatggg ggccgaccgg tcccntggat	60
tcacttgcnt ttgagccaca caccctccag ccactaccca tagcagttat ggggtgtgt	120
cctggaaaga ctccttctg ctccccaaaa ccccaaggcc tggctgggg ccactggagc	180
cgcaggcggg acatatgtgt gaccggccct ctgcccctgg cagccccgct ctgtgtactg	240
taaggacgtg ctggacatcg agcagttctc cactgtgaag ggcgtcaatc tggaccacac	300
agacgacgac ttctactcca agttctccac gggctctgtg tccatccat ggcaaaacga	360
gatgatagaa acagaatgct ttaaggagct gaacgtgttt ggacctaattt gtaccctccc	420
gccagatctg aacagaaaacc accctccgga accggccaaag aaagggctgc tccagagact	480
cttcaagcgg cagcatcaga acaattccaa gagttcgccc agctccaaga ccagttttaa	540
ccaccacata aactcaaacc atgtcagctc gaactccacc ggaaggcagct agttcggct	600
ctggcctcca agtccacagt ggaaccagcc cagacccttc tccttagaaag tggaagttagt	660
ggagccccctg ctctgggtgg gctgccaggg gagacccgg gagccgggg aggaggccgt	720
ccatccccgtc gacgtagaac ctcgagggtt ctcaaagaaa ttccactca ggtctgtttt	780
ccgaggcggc cccggccggg gtggatttgg tttgtctttt gtgaacattt caatagaaat	840
ccaaattggat acgacaactt gcacgtattt taatagcgtc ataactagaa ctgaattttt	900
tctttatgt tttaaaagaa aagttttgtt aatttctcta ctgtctcagt ttacattttt	960
tatatttggta tttaaatgaa agtgagactt tgaggggtgtt tattttctgt gcagccactg	1020
ttaagccatg tgttccaagg catttttagcg gggagggggt tatcaaaaaaa aaaaaaatgt	1080
gactcaagac ttccagagcc tcaaattgaga aaatgtcttt attaaatgtt gaaagtgtatc	1140
cataacttc	1148

<210> 25
 <211> 1679
 <212> DNA

<213> Homo sapiens

<220>

<221> -

<222> (1)..(1679)

<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 25

ccaagattct	ctgacccctag	cgttccagga	gcnccattca	gcctttgact	aggcaggtcg	60
gtcaacgtcc	agccgggtcc	aggcatccta	ttgcacatcta	tgttccactc	ctgaagagtg	120
ggcattttcc	tgtgtccctcc	cacacctgca	ctctcccaag	gctcttgtgg	tcactctgag	180
atggcagatt	ggggtccctg	ttgtccctgg	acagatgaga	atgcccagag	ctcgatgcc	240
tnggccaagg	gcacacagca	aggccgggtg	cccatgcggc	tgtcccaggg	acccactgac	300
cctgctgtcc	ccctcaggcc	acattaggat	ctcagacctg	ggcttggctg	tgaagatccc	360
cgagggagac	ctgatccgcg	gccgggtggg	cactgttggc	tacatggctc	cagaggtcct	420
gaacaaccag	aggtacggcc	tgagccccga	ctactggggc	cttggctgcc	tcatctatga	480
gatgatcgag	ggccagtcgc	cgttccgcgg	ccgcaaggag	aaggtgaagc	gggaggaggt	540
ggaccgcgg	gtcttggaga	cgaggagggt	gtactcccac	aagttctccg	aggaggccaa	600
gtccatctgc	aagatgctgc	tcacgaaaga	tgcgaagcag	aggctggct	gccaggagga	660
ggggggctgca	gaggtcaaga	gacacccctt	cttcaggaac	atgaacttca	agcgcttaga	720
agccgggatg	ttggaccctc	cttcggttcc	agaccccccgc	gctgtgtact	gtaaggacgt	780
gctggacatc	gagcagttct	ccactgtgaa	gggcgtcaat	ctggaccaca	cagacgacga	840
cttctactcc	aagttctcca	cgggctctgt	gtccatccca	tggcaaaacg	agatgataga	900
aacagaatgc	tttaaggagc	tgaacgtgtt	tggaccta	ggtaccctcc	cgccagatct	960
gaacagaaac	caccctccgg	aaccgcggaa	gaaagggtcg	ctccagagac	tcttcaagcg	1020
gcagcatcag	aacaattcca	agagttcgcc	cagctccaag	accagttta	accaccacat	1080
aaactcaaac	catgtcagct	cgaactccac	cggaagcagc	tagttcggc	tctggcctcc	1140
aagtccacag	tggaaccagc	ccagaccctt	ctccttagaa	gtggaagtag	tggagccct	1200
gctctggtgg	ggctgccagg	ggagaccccg	ggagccgggg	aaggaggccg	tccatcccgt	1260
cgacgtagaa	cctcgagggt	tctcaaagaa	atttccactc	aggctgttt	tccgaggcgg	1320
ccccggccgg	ggtgaggattgg	atttgccttt	ggtgaacatt	gcaatagaaa	tccaatttgg	1380
tacgacaact	tgcacgtatt	ttaatagcgt	cataactaga	actgaattt	gtctttatga	1440

tttttaaaga aaagtttgt aaatttctct actgtctcag tttacattt gtatatttgt 1500
attnaaatga aagtgagact ttgagggtgt atatttctg tgcagccact gttaagccat 1560
gtgttccaag gcattttagc ggggaggggg ttatcaaaaa aaaaaaaatg tgactcaaga 1620
cttccagagc ctcaaatgag aaaatgtctt tattaaatgt agaaagtgtat ccatacttc 1679

<210> 26
<211> 897
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(897)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 26
ccaagattct ctgacccatcg cgttccagga gcncattca gcctttgact aggccaggctcg 60
gtcaacgtcc agccgggtcc aggcattccta ttgcatttta tggccactc ctgaagagtg 120
ggcattttcc tgggtccctcc cacacctgca ctctcccaag gctttgtgg tcactctgag 180
atggcagatt ggggtccctg ttgtccttgg acagatgaga atgcccagag ctcgtatgcc 240
tnggccaagg gcacacagca aggccgggtg cccatgcggc tggccaggg acccaactgac 300
cctgctgtcc ccctcaggcc acattaggat ctcagacctg ggcttggctg tgaagatccc 360
cgagggagac ctgatcccgcc gcccgggtgg cactgttggc tacatggctc cagaggtcct 420
gaacaaccag aggtacggcc tgagccccga ctactggggc cttggctgcc tcacatctatga 480
gatgatcgag ggccagtcgc cggtccgggg ccgcaaggag aaggtgaagc gggaggaggt 540
ggaccggccgg gtcctggaga cggaggaggt gtactccac aagttctccg aggaggccaa 600
gtccatctgc aagatggtga gtcctgggtg gccagatgcc accctcaagc tggggctcc 660
cctccctggg cttggcccca gtctgtcccc agaacagcaa acaggctgaa gggacaggggg 720
tctgagcatg ggggtggggg ttgcagccca ccaagctaga gttgagggca ctccttgctg 780
aggactgggg tggtcagccgg agacttccag gagaaagcct ggggtggggca gggacacccca 840
gtaaccaagg gaagaggggt gaggggaaca gtgttggaaaca ccctcacatc cagcctg 897

<210> 27
<211> 1224
<212> DNA
<213> Homo sapiens

<400> 27
 tgccgcgcg acccttggcg cctgcccctg caacgggagc cccactgcag gccccaccat 60
 ggccgcgttc ctgcgcatcg cttcaactc ctatgagctg ggctccctgc aggccgagga 120
 cgaggcgaac cagcccttct gtgccgtgaa gatgaaggag ggcgtcagca cagagcgtgg 180
 gaaaacactg gtgcagaaga agccgaccat gtatcctgag tggaaagtgcg cgttcgtgc 240
 ccacatctat gaggggcgcg tcatccagat tgtgctaattg cgggcagcag aggagccagt 300
 gtctgagggtg accgtgggtg tgcgggtgct ggccgagcgc tgcaagaaga acaatggcaa 360
 ggctgagttc tggctggacc tgcagcctca ggccaagggtg ttgatgtctg ttcatgtattt 420
 cctggaggac gtggattgca aacagtctat gcgcagttag gacgaggcca agttcccaac 480
 gatgaaccgc cgccggagcca tcaaacaggc caaaatccac tacatcaaga accatgagtt 540
 tatcgccacc ttatgtggc aaccacacctt ctgttctgtg tgcaaaagact ttgtctgggg 600
 cctcaacaag caaggctaca aatgcaggca atgtaacgct gccatccaca agaaatgcac 660
 cgacaagatc atcggcagat gcactggcac cgccggcaac agccgggaca ctatattcca 720
 gaaagaacgc ttcaacatcg acatgccgca ccgttcaag gttcacaact acatgagccc 780
 caccttctgt gaccactgctg gcagcctgct cctggccgct cccacgata agcaccagtg 840
 ggactgtggt gacttctgct gctggcccg cccctgcccc cagagcgtcc ttggctgccc 900
 tctggccggg ctctcatggt acttcctctg tgaactgtgt gtgaatctgc ttttcctctg 960
 ctttcggagg gaaattgtaa atcctgtgtt tcattacttg aatgttagtta tctattgaaa 1020
 atatatatta tatacataga catatatata tatataatag gctgtatata ttgctcagta 1080
 gagaaaaaacc atgggggact ggtgatatgt tgatctttt caaaaaaata tatatatgac 1140
 aaaaaaaaaa aaaaaaggag cacaagctgt ttgaaccacc aggtttattt gtgtgtctaa 1200
 ataaacacca aatagtagtacca aaaa 1224

<210> 28
 <211> 1424
 <212> DNA
 <213> Homo sapiens

<400> 28
 tttttgcgt atgtattatg atgtatgtaa aaatacataa tctttccata tgcattatga 60
 tataatataaa actaaggtaa caagttgtga ggagtggta gggtggctt gatagtgggt 120
 aggttagggtt ggaggaggca aatgatatgg tggaaacaagg accttggaaat caatccaaa 180
 cccaggtttt ccttaggaagg ccacccggaa cccatggtaa gccaactgtt gcgcaggat 240

agtgcctcg caggagactt ggcagaaggc agacagaagg aagatggaa cactggtagt 300
cctggcagcg ttgaggaggc tccagcagag atccagtgt aagggcccta gaggggctgg 360
tggcatcccc tcaatcttgg tcctctctcc ccagagttgt gtgggacccc agggtatcta 420
gcccgcagaga tccttaaatg ctccatggat gaaacccacc caggctatgg caaggaggtc 480
gacctgtgag ttccctggtct cccccccct cccgtgcttg ctgtccttg ctgggtctgc 540
ccgtcaccta gtcccgctg actccaatct ctttccaag ctctggcct gtgggggtat 600
cttggttcaca ctccctggctg gctcgocacc cttctggcac cggcggcaga tcctgatgtt 660
acgcatgatc atggagggcc agtaccagtt cagttcccc gagtgggatg accgttccag 720
cactgtcaaa gacctgatct ccaggctgct gcaggtggat cctgaggcac gcctgacagc 780
tgagcaggcc ctacagcacc cttctttga gcgttgtgaa ggcagccaac cctggAACCT 840
cacccccccgc cagcggttcc gggtggcagt gtggacagtg ctggctgctg gacgagtggc 900
cctaagcacc catcggttac ggccactgac caagaatgca ctgttgggg acccttatgc 960
gctgcggtca gtgcggcacc tcatcgacaa ctgtgccttc cggctctacg ggcactgggt 1020
aaagaaaaggg gagcagcaga accggggcggc tctctttcag caccggcccc ctgggccttt 1080
tccccatcatg ggcctgaag aggagggaga ctctgctgct ataactgagg atgaggccgt 1140
gcttggctg ggcttaggacc tcaacccag ggattccag gaagcagaac tctccagaag 1200
aagggtttg atcattccag ctccctctgg ctctggcctc aggccacta atgatcctgc 1260
taccctcttgc aagaccagcc cggtacctct ctccccactg gccaggactc tgagatcaga 1320
gctgggggtgg aagggagcca ttctgaacgc cacgcctggc cccgtcagtg ctgcacatgcac 1380
tgcataatqaa ataaaatctq ctacacqcca qqqaaaatqaa qqta 1424

```
<210> 29
<211> 2027
<212> DNA
<213> Homo sapiens
```

<400> 29
gcggccgcgg agtatacctgg agctgcagac agtgcgggccc tgcgcccaagt cccggctgtc 60
ctcgccgcga ccccttcctca gccctgggcg cgcgcacgct ggggccccgc ggggctggcc 120
gcctagcgag cctgccggtc gaccccagcc agcgcagcga cggggcgctg cctggcccaag 180
gcgcacacgg aagtgcgcatt ctctgaagta gctttggaaa gtagagaaga aaatccagtt 240
tgcttcttgg agaacactgg acagctgaat aaatgcagta tctaaatata aaagaggact 300

gcaatgccat ggctttctgt gctaaaatga ggagactccaa gaagactgag gtgaacctgg 360
aggccccctga gccaggggtg gaagtgatct tctatctgtc ggacagggag cccctccggc 420
tggcagtgg agagtacaca gcagaggaac tgtgcacatcg ggctgcacag gcatgccgt 480
tctctctctt ttgtcacaac ctctttgccc tgtatgacga gaacaccaag ctctggtatg 540
ctccaaatcg caccatcacc gttgatgaca agatgtccct ccggctccac taccggatga 600
ggttctattt caccaattgg catgaaacca acgacaatga gcagtcagtg tggcgtcatt 660
ctccaaagaa gcagaaaaat ggctacgaga aaaaaaaagat tccagatgca acccctctcc 720
ttgatgccag ctcactggag tatctgtttt ctcagggaca gtatgatttg gtgaaatgcc 780
tggctcctat tcgagacccc aagaccgagc aggatggaca tgatatttag aacgagtgtc 840
tagggatggc tgtcctggcc atctcacact atgccatgtat gaagaagatg cagttgccag 900
aactgccccaa ggacatcagc tacaagcgat atattccaga aacattgaat aagtccatca 960
gacagaggaa ccttctcacc aggatgcgga taaataatgt tttcaaggat ttcctaaagg 1020
aatttaacaa caagaccatt tgtgacagca gcgtgtccac gcatgacctg aaggtgaaat 1080
acttggctac cttggaaact ttgacaaaac attacgggtc tgaaatattt gagacttcca 1140
tgttactgat ttcatcagaa aatgagatga attggttca ttcgaatgac ggtggaaacg 1200
ttctctacta cgaagtgtatg gtgactggga atcttggaaat ccagtggagg cataaacc 1260
atgttggttc tggtgaaaag gaaaaaaata aactgaagcg gaaaaaactg gaaaataaaag 1320
acaagaagga tgaggagaaa aacaagatcc gggaaagagtg gaacaatttt tcattttcc 1380
ctgaaatcac tcacattgtat ataaaggagt ctgtggtcag cattaacaag caggacaaca 1440
agaaaaatgga actgaagctc tcttcccacg aggaggcatt gtcctttgtg tccctggtag 1500
atggctactt ccggctcaca gcagatgccc atcattacct ctgcaccgac gtggccccc 1560
cgttgatcgt ccacaacata cagaatggct gtcgttgtcc aatctgtaca gaatacgcca 1620
tcaataaatt gcggcaagaa ggaagcgagg aggggatgtt cgtgctgagg tggagctgca 1680
ccgactttga caacatcctc atgaccgtca cctgcttga gaagtctgag caggtgcagg 1740
gtgcccagaa gcagttcaag aactttcaga tcgaggtgca gaagggccgc tacagtctgc 1800
acggttcgga ccgcagcttc cccagcttgg gagacctcat gagccaccc aagaagcaga 1860
tcctgcgcac ggataaacatc agcttcatgc taaaacgctg ctgccagccc aagccccgag 1920
gttcgtctcc ctgtgccaga gccaggctgt atcccatcag taatgtgctg agacccagat 1980

cgaccaaaac acgctgactg acttaaaca a agtggaccct cccccca

2027

<210> 30
<211> 1609
<212> DNA
<213> Homo sapiens

<400> 30
gcccgcgtgg tggcggcggc gcgtcgttgc agttgcgcca tctgtcagga gcggagccgg 60
cgaggagggg gctgcccgcgg gcgaggagga ggggtcgccg cgagccgaag gccttcgaga 120
cccgcccccc gccccggcggc gagagttagag gcgaggttgt tgcgcgagcg gcgcttcctc 180
tcccgccccgg gcgccgcgcg cttctcccaag cgcaccgagg accgcccggg cgacacacaaa 240
gcccgcgcgc gcgccgcacc gcccgcggcc gccgcggcgg ccagggaggg attcggccgc 300
cgggccgggg acaccccggc gccgcggccct cggtgcttc ggaaggccca ccggctcccg 360
ggccgcggcc ggaccccccgg gagccgcctc ggccgcgcgg gaggagggcg gggagaggac 420
catgtgagtg ggctccggag cctcagcgcc gcgagtttt tttgaagaag caggatgtg 480
atctaaacgt ggaaaaagac cagtcctgcc tctgtttag aagacatgtg gtgtatataa 540
agtttgtat cgttggcgga aattttggaa tttagataat gggctgtgtg caatgttaagg 600
ataaagaagc aacaaaactg acggaggaga gggacggcag cctgaaccag agctctgggt 660
accgcgtatgg cacagacccc acccctcagc actaccccaag cttcggtgtg acctccatcc 720
ccaactacaa caactccac gcagccgggg gccaaggact caccgtctt ggaggtgtga 780
actcttcgtc tcatacgggg accttgcgtt cggaggagg aacaggatgtg acactctttg 840
tggcccttta tgactatgaa gcacggacag aagatgacct gagtttcac aaaggagaaa 900
aatttcaaat attgaacagc tcggaaggag attggggaa agcccgctcc ttgacaactg 960
gagagacagg ttacattccc agcaattatg tggctccagt tgactctatc caggcagaag 1020
agtggactt tggaaaactt ggccgaaaag atgctgagcg acagctatttgc tcctttggaa 1080
acccaagagg tacctttctt atccgcgaga gtgaaaccac caaagggtgcc tattcacttt 1140
ctatccgtga ttggatgtat atgaaaggag accatgtcaa acattataaa attcgcaaac 1200
ttgacaatgg tggataactac attaccaccc gggcccagtt tgaaacactt cagcagcttg 1260
tacaacatta ctcagagaga gctgcaggc tctgctgccg cctagtagtt ccctgtcaca 1320
aaggatgcc aagggttacc gatctgtctg tcaaaaccaa agatgtctgg gaaatccctc 1380
gagaatccct gcagttgatc aagagactgg gaaatggca gtttggggaa gtatggatgg 1440

gtatgctgag actcaattac tctcttatta gttccccgt ttggaagatc ccaaacacca 1500
aagatggaag gtgaaaataa agactgcgtg accggaaaga aagtttgaat tactaatagt 1560
gggaataat aatttcagtt ttggtttaa cattctggaa ttcctaaaa 1609

<210> 31
<211> 1995
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(1995)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 31
gcccgcgtgg tggcgccggc gcgtcggtgc agttgcgcga tctgtcagga gcggagccgg 60
cgaggagggg gctgcccggc gcgaggagga ggggtcgccg cgagccgaag gccttcgaga 120
cccgcccccc gccccggccggc gagagttagag gcgaggttgt tgcgcgagcg gcgcgtcctc 180
tcccgccccgg ggcgcggccggc cttctcccg cgcaccggagg accgccccggg cgacacacaaa 240
gcccgcgcacc gcccggggcc gccgcggccggc ccagggaggg attcggccgc 300
cggggccggggg acaccccgcc gccgcggccct cgggtgcgtc ggaaggccca cgggtcccg 360
ggcccgccgg gggaccccccgg gggccgcctc ggcgcggccg gaggagggcg gggagaggac 420
catgtgagtg ggctccggag ctcagcgcc gcgcagttt tttgaagaag caggatgctg 480
atctaaacgt ggaaaaagac cagtcctgcc tctgtttag aagacatgtg gtgtatataa 540
agtttgtgat cgttggcgga aattttgaca gggtctcaact ctgtcacccca ggctgacacg 600
atcatggctc actacaatct ctgccttcct gcctcaaggg ttcttccttgc agcacctcag 660
cctcccaagt agctggacc acaggaattt agataatggg ctgtgtgcaa tgtaaggata 720
aagaagcaac aaaactgacg gaggagaggg acggcagcct gaaccagagc tctgggtacc 780
gctatggcac agacccacc cctcagcact accccagctt cgggtgtgacc tccatcccc 840
actacaacaa cttccacgca gcccggggcc aaggactcac cgtcttgaa ggtgtgaact 900
cttcgtctca tacggggacc ttgcgtacga gaggaggaac aggagtgaca ctctttgtgg 960
ccctttatga ctatgaagca cggacagaag atgacctgag ttttcacaaa ggagaaaaat 1020
ttcaaatatt gaacagctcg gaaggagatt ggtggaaagc cgcgtccttgc acaactggag 1080
agacaggtta cattccacgc aattatgtgg ctccagttga ctctatccag gcagaagagt 1140

ggtaactttgg aaaacttggc cgaaaagatg ctgagcgaca gctattgtcc tttggaaacc 1200
caagaggtac ctttcttatac cgcgagagtg aaaccaccaa aggtgcctat tcactttcta 1260
tccgtgattg ggatgatatg aaaggagacc atgtcaaaca ttataaaatt cgcaaacttg 1320
acaatggtgg atactacatt accacccggg cccagttga aacacttcag cagcttgtac 1380
aacattactc agagagagct gcaggtctct gctgcccgcct agtagttccc tgtcacaaag 1440
ggatgccaag gcttaccgat ctgtctgtca aaaccaaaga tgtctggaa atccctcgag 1500
aatccctgca gttgatcaag agactggaa atggcagtt tggggaaagta tggatggta 1560
cctggaatgg aaacacaaaa gtagccataa agactcttaa accaggcaca atgtcccccg 1620
aatcattcct tgaggaagcg cagatcatga agaagctgaa gcacgacaag ctggtccagc 1680
tctatgcagt ggtgtctgag gagcccatct acatcgtcac cgagtatatg aacaaaggaa 1740
ggcaacacc tctcctgtct ccagctcaca gtgccttaag gggttgtta ggggagagaa 1800
atggaagttt cctacttgct acttttctag tttctgcctg ggtcaagtat tcccattagg 1860
aaccaccagt tatgtgctcg ttaatgaaaa catttttaa aacagactaa cttgcgttt 1920
accccacccc aaatccttat gaaatgccaa atactttta catgttatgt gtgtcagaaaa 1980
ttcatncttc tntcc 1995

<210> 32
<211> 2590
<212> DNA
<213> Homo sapiens

<400> 32
gcacgagact ggaactgcct gcggggcatt gggagcgccc agacctggag ctgctggaaa 60
gagtacccag caagggagag cctggactt ggagctgcta gagaagggtg ctggagcct 120
cccgcttacg tatggaaagt gtcttgcct ctcctggagc tgcacaagag gagaaagcc 180
ctgactgagc ctgaggcccg atactaccta cggcaaattg tgctggctg ccagtacctg 240
caccgaaacc gagttattca tcgagacctc aagctggca acctttctt gaatgaagat 300
ctggaggtga aaatagggga ttttgactg gcaaccaaag tcgaatatga cggggagagg 360
aagaagaccc tgtgtggac tcctaattac atagctcccg aggtgctgag caagaaaggg 420
cacagttcg aggtggatgt gtggccatt ggggtatca tgtatacctt gttagtggc 480
aaaccacctt ttgagacttc ttgcctaaaa gagacctacc tccggatcaa gaagaatgaa 540
tacagtattc ccaagcacat caacccctgt gcccctccc tcattccagaa gatgttcag 600

acagatcccc ctgcccggcc aaccattaac gagctgctta atgacgagtt ctttacttct 660
ggctatatcc ctgcccgtct ccccatcacc tgcctgacca ttccaccaag gtttcgatt 720
gctcccagca gcctggaccc cagcaaccgg aagcccctca cagtcctcaa taaaggcttg 780
gagaaccccc tgcctgagcg tccccggaa aaagaagaac cagtggttcg agagacaggt 840
gaggtggtcg actgccacact cagtgacatg ctgcagcagc tgcacagtgt caatgcctcc 900
aagccctcg agcgtgggct ggtcaggcaa gaggaggctg aggatcctgc ctgcatcccc 960
atcttctggg tcagcaagtg ggtggactat tcggacaagt acggccttgg gtatcagctc 1020
tgtgataaca gcgtgggggt gtcattcaat gactcaacac gcctcatcct ctacaatgat 1080
ggtgacagcc tgcagtacat agagcgtgac ggcactgagt cctacctcac cgtgagttcc 1140
catcccaact ccttgcataaa gaagatcacc ctccttaaat atttccgcaa ttacatgagc 1200
gagcaattgc tgaaggcagg tgccaaacatc acgcccgcgc aaggtgatga gtcgcccgg 1260
ctgcccattacc tacggacactg gttccgcacc cgcagcgcac tcatcctgca cctcagcaac 1320
ggcagcgtgc agatcaactt cttccaggat cacaccaagc tcatcttgc cccactgtg 1380
gcagccgtga cctacatcga cgagaagcgg gacttccgca cataccgcct gagtctcctg 1440
gaggagtagc gtcgtgcaaa ggagctggcc agccggctcc gtcacgcccgg cactatggtg 1500
gacaagctgc ttagctcaag ctggccagc aaccgtctca aggccctcta atagctgccc 1560
tccccctccgg actgggtgccc tcctcaactcc cacctgcatt tggggcccat actgggttggc 1620
tcccgcggtg ccatgtctgc agtgtgcccc ccagccccgg tggctggca gagctgcattc 1680
atccttgcag gtgggggttg ctgtataagt tattttgtt catgttgcgg tgggttct 1740
acagccttgt cccccctcccc ctcaaccccc ccatatgaat tgtacagaat atttctattg 1800
aattcggAAC tgcctttcc ttggctttat gcacattaaa cagatgtgaa tattctttt 1860
cttgtatttc ctgaggggtg ccagggcctg ggatccagcg aacatctctg cttcatcagc 1920
cccaggctgc ccagcctctg ccagtcttgt gggggaaagg ggggtgacagt gtctcttgt 1980
ggaccaggct ggagtgcagt ggcatgatcc tggctcaactg cagcctcgaa ctcctgggt 2040
caagtgattc tcccacactca gcctcccaag cagctggac tacaggcgtg cgccaccatg 2100
cctggctaat ttacaaatt tttttagaa atgggtgtt gccatgttgg ccaggctgg 2160
ctcgaactcc tgagctcaag tgatcctctc actcagcctc ccaaaatgct gggattacag 2220
gtgtgagcca ctgcacccag cctgattctg aggccagcca caggctcagc tcttcagtga 2280
gccagcacgg agaccatctg tggcatcc agcccaccc acctccctgt ggccccaggg 2340

satggctact ggcctctgag tctggcggtt agtagggcag gaagaggcgc tcagaggcgc 2400
agctcctcat ggctcggtgc gtgtggagga gcagccgtgg ggagcggttt gtgagtactg 2460
gacgaagcca tcaggacttg gcgagtgcct gtcgcaccc aactgggagc ttcttgatg 2520
gtgccttttgc tctcacagca cggagcaggt ctcgcactga tgtcccctta tagggaccgg 2580
actttctcag 2590

<210> 33
<211> 1096
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(1096)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 33
ggctccttggatccggctacc tggcagaggc tcctggccac tggtcgagg tcttcccttg 60
ctctgaaagc agcagaggct ctgctcacgg gcaggctagg ctttcatcac ggttaggatag 120
ggaaggccat ggctctgttg ctccttttc ttgcctctca cagattggaa gtatctaggg 180
acagtgggtg gctaggacag tgctggctgc agggggcttg ggagcgtkgg ctcacagtg 240
gccttctcta tcctctgcaa caccctccag ccgaattctc aacatacctc aacttctgcc 300
gctccctgcg gtttgcac aagcccgact actcttacct acgtcagctc ttccgcaacc 360
tcttccaccg gcagggcttc tcctatgact acgtcttgc ctgaaacatg ctgaaattcg 420
gggcttcctc gagccaggct cagccccgtg acagcccat gacagcgaag ggacctttct 480
gtccccggcc ctgtccctgt gctggggcca cgtactcacc cacgtactgg tgcccggtc 540
ccctggcac ccagagcccc ccagataggc cgggtggagga ggtggaggag ctgtcccccc 600
aaaactactg gcctgtggtc tggactccag ggccccattt ctgatgtcgc caggtgtgcc 660
tgagccatc gggccaggc ctgaggaagt gtttcttggg aggatggat gacccctgt 720
tcccaagaga tggcagcaca gtggaggcca tggtgaaaa ggccctgcca tgggtcctt 780
gagggccagg acagcctgag ggagggatgg tggccactgc ccacaagggg cctgggtgg 840
acgggtccca ggacagactc atagctagac cccgttggcg gcctctgtgt tgaaccagaa 900
ctcattaaac acctccctt gcttcaaaaw rgtgtgcctc tttcatggca gggccctcag 960
ccaccctgct agatggtag gaccaaggct ctgttctctt ggaagccaag gtccggcacat 1020

tggctttggg cttctttct ctctgggtt cttgttcaact aaggagtaac acagaggtca 1080
ggcagagaat gggggg 1096

<210> 34
<211> 940
<212> DNA
<213> Homo sapiens

<400> 34
ggctcctggta cccggctacc tggcagaggc tcctggccac tggtcgagg tcttcccttg 60
ctctgaaagc agcagaggct ctgctcacgg gcaggctagg ctttcatcac ggtaggatag 120
ggaaggccat ggctctgttg cctccttttc ttgcctctca cagattggaa gtatctaggg 180
acagtgggtg gctaggacag tgctggctgc agggggcttg ggagcgtkgg cctcacagtg 240
gccttctcta tcctctgcaa caccctccag ccgaattctc aacatacctc aacttctgcc 300
gctccctgctg gtttgcacgac aagcccgact actcttacct acgtcagctc ttccgcaacc 360
tcttccacccg gcagggcttc tcctatgact acgtcttga ctggaacatg ctgaaattcg 420
gggcttcctc gagccaggct cagccccgtg acagccccat gacagcgaag ggacctttct 480
gtccccgccc ctgtccctgt gctggccca cgtactcacc cacgtactgg taaggatcct 540
ctgaggtctg gctttccaa aatttgcac ttgaccagtg agcgcaggag gccatggtgg 600
aaaaggccct gccatggggt cttgagggc caggacagcc tgagggaggg atggtggcca 660
ctgccccacaa ggggcctggt gggAACGGGT cccaggacag actcatagct agaccccggt 720
ggcggcctct gtgttgaacc agaactcatt aaacacctcc tcttgcttca aaawrgtgtg 780
cctctttcat ggcaggggccc tcagccaccc tgctagatgg ttaggaccaa ggctctgttc 840
tcctggaagc caaggtcggc acattggtct tgggcttctc ttctctctgg gtttcttgg 900
cactaaggag taacacagag gtcaggcaga gaatgggggg 940

<210> 35
<211> 951
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(951)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 35

ggctcctgga tccggctacc tggcagaggc tcctggccac tgttcgcagg tcttcccttg 60
ctctgaaagc agcagaggct ctgctcacgg gcaggctagg ctttcatcac ggtaggatag 120
ggaaggccat ggctctgttgc ctccttttc ttgcctctca cagattggaa gtatctaggg 180
acagtgggtg gctaggacag tgctggctgc agggggcttg ggagcgtkgg ctcacagtg 240
gccttctcta tcctctgcaa caccctccag ccgaattctc aacataacctc aacttctgcc 300
gctccctgcg gtttgacgac aagcccgact actcttacct acgtcagctc ttccgcaacc 360
tcttccacccg gcagggcttc tcctatgact acgtcttga ctggaacatg ctgaaattcg 420
gcggccccct tcctgccagc cccctgcct tcctgttga cggccccagg atgaacttagg 480
gtgcagcccg gaatcccgag gatgtggacc gggagcggcg agaacacgaa cgcgaggaga 540
ggatggggca gctacggggg tccgcgaccc gagccctgcc ccctggccca cccacggggg 600
ccactgccaa cccgcgtccgc agtgcgcgcg agccctgtgc ttccacgcga gcctcccgca 660
tccagccggc tggcaatact tctcccgagag cgatctcgcg ggtcgaccgg gagaggaagg 720
tgagtatgag gctgcacagg ggtgcgcggc ccaacgtctc ctcctcagac ctcactggc 780
ggcaagaggt ctcccgatc ccagcctcac agacaagtgt gccatttgac catctcgaa 840
agtgaggaga gccccatttgc gaccagtgtt tgcttagtgt cttcaactgtttaa 900
aaamaaaaam aaaaawaaaam srcmaaaakw acmacwmaaa aacccagcac a 951

<210> 36
<211> 2063
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(2063)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 36
gcggccgcgcg gaaaagcgct tcggccacat ccagcagcag tagcagccgc aaggaccggg 60
actcgaaggc ccaccgcagc cggactaagt cgtccaagga gccgccttcg gcctacaagg 120
aaccgcggaa ggcctaccgg gaggacaaga ccgagcctaa ggcctacagg cggccggcgg 180
ccctcagccc actggggaggc cgggacgaca gcccggtgtc ccacagggcc tctcagagcc 240
tgaggagccg caagtcccc agcccgccag gaggtggcag cagcccttat tctcggccggc 300
tgccgcgcgc cccgagcccc tacagtcgccc gccgctcccc cagctacagc cgccacagct 360

cctacgagcg gggcggcgac gtgtccccta gtccctacag cagcagcgc tggcgccgct 420
ctcgcagtcc ctacagccct gtgctcagac ggtctggaaa atcccgaagc agaagccgt 480
attcatctag gcattcaaga tctcgtagca ggcacagatt gtctagatcc agaagtcgtc 540
attctagtagt ttctccctagc acactaactc tgaagagtag cctggcagct gaattgaaca 600
agaataaaaaa agcacgagca gcagagggcag caagagccgc agaagcagcg aaagctgcag 660
aagcaactaa ggctgctgag gctgctgcca aggctgcaaa agcttcaaacc acyttctacac 720
ctaccaaggg gaacacggaa actagtgccca gtgcattcaca aacaaaccat gtgaaggatg 780
tgaagaaaaat taaaattgaa catgcacctt ctccctcaag tggtggaact ttaaaaaatg 840
acaaagcaaa aacaaagcca cctcttcagg taacgaaggt ggaaaataat ttgattgtag 900
ataaagccac caagaaagca gtcatagttg gaaaggagag taaatctgct gctacaaagg 960
aggaatcagt atctctaaa gagaaaaacca aaccacttac accaagcata ggagccaaagg 1020
agaaggagca acatgttagct ttagtcaccc ctacattacc accgttaccc ttgcctccca 1080
tgctgcctga agataaaagaa gctgatagct tacgaggaaa tatttcagta aaagcagttt 1140
aaaaagaagt agaaaagaaa ctccgatgtc ttcttgctga tttaccgctg cccctgagc 1200
taccaggagg agatgatctt tcaaagagtc cagaggaaaa gaaaacagca acacagttac 1260
atagtaaaag gaggcctaag tatgtgcttg ctttctaccc gctcttaat tgaccagcag 1320
tgattctggg tcatcagaag ttcataaaac actaaattaa ggttttaaaat aaaaaatgta 1380
cttattcttt caacttaat atatgaattc tattagagtt ttgaaaaaaaaa tcataattgc 1440
ttgcattccct attcacaatg actaataaaaa ccaaatttaa tttcwctcg taatttgtaa 1500
tgtattaatt tcctggggta ttgtatatgt taaagatact ttctgttatt aagagattga 1560
aataacacaa acactgaaat tgggcagagt agaagtcagc atttagtgag accaaataaa 1620
atttagtaatg ggcaagctgc tgtttcctt gcttttagct ccattttctc ccataaaacaa 1680
atatattctt cactttgcaa gagatggagt agaagaagtt ttgaaatttg tatttcattaaat 1740
tagcttcaag taagtgccta aagagaccc tcattccctaa aacctgttaa tcagttaaag 1800
gcggggaaaca ctgggtgcctt tttttttttt ttttttaac ttcttaacca agggacagtg 1860
aagactttaa gtttagatctg atttttagaat tgcagttgag gtatgtgccta gtgtgtgaat 1920
ttgaggtcat ttcttaact ggccgggcac agtggctcat gcctgtatcc ccagcacttt 1980
gggaggccca ggtggggagaa tcacttgagt ccaggagttt gataccagcc tgagcaacac 2040
agggaaacccc atctctacca aaa 2063

<210> 37
<211> 1393
<212> DNA
<213> Homo sapiens

<400> 37
ggccgggctt ggcgcagcgct aggctccctcg ccgctccctag tctgcggcgg cggccggcggg 60
gagggcgcgg ccgcgggctgg ggctgagggc ggccggggcgg ggccgcggcga gctgggaggg 120
cggcggcgcgc gaggggagga gagcggccca tggaccccgcg gggccggcgc cccagactc 180
tgcgccgtcg ggacggagcc caagatgtcg gcctaggccg gggcgacg acgcggacgg 240
ggcggcgagg aggcggccgt gctgccgggg ctcgcagccg ccgagccccc gagggcgcgc 300
cctgacggac tggccgagcc ggcggtgaga ggccggcgcg tcgggagcgg gccgcgcggc 360
accatgtcgg ccaagggtcg gctcaagaag ctggagcagc tgctcctgga cggccctgg 420
cgcaacgaga ggcgcctgag cgtggaaacg ctgctcgacg tgctcgtctg cctgtacacc 480
gagtgcagcc actcggccct ggcgcgcac aagtacgtgg ccgagttcct cgagtggct 540
aaaccattt cacagctggt gaaagaaatg cagttcatac gagaagactt taaaataatt 600
aaagtaattt gaagaggtgc ttttggtgag gttgctgttgc tcaaaatgaa gaataactgaa 660
cgaattttatg caatgaaaat cctcaacaag tggagatgc tggaaagagc agagaccgcg 720
tgcttccgag aggagcgcga tgtgctggtg aacggcgact gccagtggat caccgcgcgt 780
caactacgcct ttcaggacga gaaccacctg tacttagtca tggattacta tgtgggtgg 840
gatttactga ccctgctcag caaatttggaa gacaagcttc cggaagatat ggcgaggttc 900
tacattggtg aaatggtgct ggccattgac tccatccatc agcttcattt cgtgcacaga 960
gacattaaac ctgacaatgt cttttggac gtgaatggtc atatccgcct ggctgacttt 1020
ggatcatgtt tgaagatgaa tggatgtggc actgtgcagt cctccgtggc cgtgggcaca 1080
cctgactaca tctcgccgga gatcctgcag gcatggagg acggcatggg caaatacggg 1140
cctgagtgtg actgggtggc tctgggtgtc tgcgtatg agatgtctt tggagaaacg 1200
ccgttttatg cggagtcact cgtggagacc tatggaaaga tcatgaacca tgaagagcga 1260
ttccagttcc catccatgtt cacggatgtt tctgaagaag cgaaggacccatccagaga 1320
ctgagttgca tccaaagaac accataccta cagtgaagca tgggggaaac atcatgcttt 1380
ggggctgttt ttc 1393

<210> 38
 <211> 1244
 <212> DNA
 <213> Homo sapiens

<400> 38

ggccgggctt ggcgcagcgct aggctcctcg ccgctccctag tctgcggcgg cggccggcggg	60
gagggggcgccgg ccgcggggcg ggctgagggc ggccggggcg ggccgcggccga gctgggaggg	120
cggcggcgcc gaggggagga gagcggccca tggaccccg cg gggccggcg cccagactc	180
tgcgcgtcg ggacggagcc caagatgtcg gcctaggccg gggcgcgacg acggcgacgg	240
ggcggcgagg aggcggcgct gctgcccggg ctcgcagccg ccgagccccc gagggcgcgc	300
cctgacggac tggccgagcc ggcggtgaga ggccggcg cg tcgggagcg ggccggcgcc	360
accatgtcgg ccaaggtgcg gctcaagaag ctggagcagc tgctcctgga cgggcccctgg	420
cgcaacgaga ggcgcctgag cgtggaaacg ctgctcgacg tgctcgtctg cctgtacacc	480
gagtgcagcc actcggccct ggcggcgac aagtacgtgg ccgagttcct cgagtggc	540
aaaccattta cacagctggt gaaagaaaatg cagtttcattc gagaagactt tgaaataatt	600
aaagtaatttga agagaggtgc ttttggtgag gttgctgttg tcaaaatgaa gaataactgaa	660
cgaattttatg caatgaaaat cctcaacaag tggagatgc tgaaaagagc agagaccgcg	720
tgcttccgag aggagcgcga tgtgctggtg aacggcgact gccagtggat caccgcgtg	780
cactacgcct ttcaggacga gaaccacctg tacttagtca tggattacta tgtgggtgg	840
gattttactga ccctgctcag caaatttggaa gacaagttc cgaaagatat ggccgggttc	900
tacattggtg aatggtgct ggccattgac tccatccatc agcttcattt cgtgcacaga	960
gacattaaac ctgacaatgt cttttggac gtgaatggtc atatccgcct ggctgacttt	1020
ggatcatgtt tgaagatgaa tggatgtggc actgttaggtt ttttggatgg agatttcca	1080
tttggttttg gttttggcat atagtcagaa gggaaatgggg caatttggagg tacaattaag	1140
aaaccaagta tattaattca gaaaatgaaat ccattttggaa gatagttgaa attttctgtt	1200
tggggagttt tgtttcccaa ataaaaatata agttggaaag caaa	1244

<210> 39
 <211> 3171
 <212> DNA
 <213> Homo sapiens

<400> 39

gaattccct gtgttagacg gtacaggtgg aagaagactg ctgtgtcag gaggaaatttg	60
--	----

cagttagact tcaaggaaga gaataagctc gccacataaa gaggaaacaa agagcaaccc 120
agagttcaga cccaggaagc ggccgggagg gcaggagcga atcgggcccgc cgccgccatg 180
gagctgagag tcgggaacag gtaccggctg ggccggaaga tcggcagcgg ctccttcgga 240
gacatctatc tcgtggcat ccccaccatc agatggtgcg gggcagaggg ggactacaac 300
gtcatggtga tggagctgct ggggccaagc ctggaggacc tcttcaactt ctgctccagg 360
aaattcagcc tcaaaaaccgt cctgctgctt gctgacaaa tgatcagtcg catcgaatac 420
attcattcaa agaacttcat ccaccggat gtgaagccag acaacttct catggcctg 480
gggaagaagg gcaaccctggt gtacatcatc gacttcggc tggccaagaa gtaccggat 540
gcacgcaccc accagcacat cccctatgt gagaacaaga acctcacggg gacggcgcgg 600
tacgcctcca tcaacacgca ctttggattt gaacaatccc gaagagatga cttggagtct 660
ctgggctacg tgctaattgtt cttcaacctg ggctctctcc cctggcaggg gctgaaggct 720
gccaccaaga gacagaaata cgaaaggatt agcgagaaga aaatgtccac ccccatcgaa 780
gtgttgtgtt aaggctaccc ttccgaattt gccacatacc tgaatttctg ccgttccctg 840
cgaaaaacacg acaaggctga ctactcgatc ctgcggcagc tttccggaa tctgttccat 900
cgccagggtcttccttatga ctacgtgttc gacttggaaaca tgctcaaatt tggtgccagc 960
cgcccgcccg atgacgcccga gcgggacgca agggaccgag aggagcggct gagacactcg 1020
cggaacccgg ctaccgcgg cttcccttcc acagcctccg gccgcctgcg ggggacgcag 1080
gaaaagtggct ccccccacac ccctcacccc tacctcacac acggctaaca cttccccccg 1140
gccccgtctcc ggcattggaga gagagcggaa agttagttagt cggctgcacc gcggggccccc 1200
cgtaacatc ttctcgatcc acctcacagg ccgacaagat acctctcgca tggccaccc 1260
acagattcct ggtcggttgg cttccagttt ttttcgttct gtcgtgcacc gatgagaact 1320
ctccatttattt ctgtgaaggg cagacaatgc atggctgatc tactctgttta ccaatggctt 1380
tactagtgtac acgtcccccg gtcttaggatc gaaatgttaa caccgggagc tctccaggcc 1440
actcacccag cgacgctcggtt gggggaaaca tactaaacgg acagactcca agagctgcac 1500
ccgctggggc tgcactgcgg ccccccacgt gaactcggtt gtaacggggc tggaaagaaa 1560
agcagagaga gaattgcaga gaatcagact cttttccag ggcctcagct ccctccagtg 1620
gtggccgccc tggcccttgc gacgattcca ctgtaactac caatcttcta cttgggttaag 1680
acagttttgtt atcattttgc taaaaattat tggcttaat ctgtgtaaag aaaatctgtc 1740
tttttattgtt ttcttgcgtt ttttgcgtt cttacaaaaaa aaatgttgcac taaggaattc 1800

tgagacaggg tggcttggag tttagtgtatg aggtggagtc gggcagggag aagggtgcagg 1860
 tggatctcaa gggtgtgtgc tgtgtttgtt ttgcagtgtt ttattgtccg ctttggagag 1920
 gagatttctc atcaaaaagtc cgtggtgtgt gtgtgtgccc gtgtgtggg ggacctcttc 1980
 aacctgattt tggcgctctca ccctccctcc tcccgtaatt gacatgcctg ctgtcaggaa 2040
 ctcttgaggc cctcgaggag cagttaggga ccgcagctgc cgcgcccccaag gggtgcagtg 2100
 ggtgttacca gggcaaagca ctgcgcgctt cttcccccagg gaggtgggca ggcagctgag 2160
 agcttggaaag cagaggcttt gagaccctag caggacaatt gggagtcaca ggattcaagg 2220
 tggaaagatgc gtttctggtc cttgggaga ggactgtgaa ccgagagtg 2280
 gtttggcc ttgctgcctt tgcactcagt ccattttctc agcactcaat gctcctgtgc 2340
 ggattggcac tccgtctgtt tgaatgcctg tgcttaaaac caggagcggg gctgtccttg 2400
 ccacgtgcca agactagctc agaaaagccg gcaggmsrra aggacccacc ctgaggtgcc 2460
 aaggagcagg tgactctccc aaccggaccc agaacctca cggccagaaa gtagagtctg 2520
 cgctgtgacc ttctgttggg cgcgtgtctg ttggtcagaa gtgaagcagc gtgcgtgggg 2580
 gccgagtcacc accagaaggc aggtggccctc cgtgagctgg tgctgccccca ggctccatgc 2640
 tgctgtgccc tgaggttccc agatgcctt ctcgcctctc actccgcagc acttggggcgg 2700
 tagcagtggc catgtgctcc caaccccaat ggcgcaggca gtctgtgttc gtgggcactt 2760
 cggctggacc ccatcacgat ggacgatgtt cccttggac tctaggcctt cgaaggtgtg 2820
 caccttggtt ctcccttctc ctccccagag ttccccggat gccataactg gctggcgtcc 2880
 cagaacacag ttgttcaccc cccaccagc tggctggccg tctgcctgag cccatggatg 2940
 ctttctcaat cctaggctgg ttactgtgtt agcgtttgg agtacggggc cttgagcggg 3000
 tgggagctgt gtgttgaagt acagagggag gttgggggtgg gtcagagccg agttaagaga 3060
 ttttctttgt tgctggaccc cttcttgaag gtagacgtcc cccacccgga gagacgtckm 3120
 scttswrgaa rgkgscgcaa gtttgctttt gtaaatatct gtggcccga t 3171

<210> 40
 <211> 3743
 <212> DNA
 <213> Homo sapiens

<400> 40
 cggggatgtg tggagtggtg gtcagctcta acgtgtccct tgcagacttt cgcagctcca 60
 tcattcgatg acaagattct ggaggtggc ggcgtgttcg gcagcatgca gatggccgtc 120

tctcgagtca tcagggctaca gcatcatcggtatcgccca gtcgcacggtaaagatctcc 180
atccttgggg atgagggcgt gcctgtgcag gtggacggag aggctgggt ccagccgcca 240
gggtacattc ggattgtcca caagaaccgg gcacagacac tgaccagaga cagggcattt 300
gagagcaccc tgaagtccctg ggaagacaag cagaagtgcg agctgccccg ccctccatcc 360
tgttccctgc acccggagat gctgtccgag gaggaggcca cccagatgga ccagtttggg 420
caggcagcag gggtcctcat tcacagtatc cgagaaatag ctcagtctca ccggacatg 480
gagcaggaac tggcccacgc cgtcaatgcc agctccaagt ccatggaccg tgttatggc 540
aagcccagaa ccacagaggg gctcaactgc agcttcgtcc tggaaatggt gaataacttc 600
agagctctgc gcagtgagac ggagctgctg ctgtctggaa agatggccct gcagctggat 660
ccgcctcaga aggagcagct ggggagtgct cttgcccaga tggaccgaca gctcaggagg 720
ctggcagaca ccccgtggct ctgccagtcc gcagagcccg gcgacgaaga gagtgtgtatg 780
ctggatcttg ccaagcgcag tcgcagtggtaaattccgccc tcgtgacccaa gttaaaaaag 840
gagaaaaaaca acaagaacaa agaagctcac agtagcctgg gagccccgt tcacctctgg 900
gggacagagg aggttgctgc ctggctggag cacctcagtc tctgtgagta taaggacatc 960
ttcacacggc acgacatccg gggctctgag ctccctgcacc tggagcggag ggacctcaag 1020
gacctggcg tgaccaaggt gggccacatg aagaggatcc tgtgtggcat caaggagctg 1080
agccgcagcg ccccccgcgt cgaggcctag cctctgtcct ctcagcctgt ggcctccaca 1140
tccccgcgc cgaggcctag cctccgcct ctcagcctgt ggcctctgcg cctcctgcac 1200
ctgaggccct gggcagatgc tgcagccgc ccccttctca tggtgctact tcctctgtca 1260
gctacagaaa gcctccgtga caccgtccac cagagctctg gggtctcgaa cataacaaca 1320
cagctacctt tgaaacaaca ctttctccag ctcagagtca cctggggcac atgtgtcacf 1380
gccactcagc tctcgcccgc ctgtgctgtg ggccaggaa tccagcggcg tctggcctcc 1440
tgggcactgc ttgcctggcc tcgtgcttgg attgtcccg gggctctct ccgtgtgtcc 1500
ttctgtggcc gcaccgtgtg gctccgcctc ctggcccccacccagttctc agaaacgtgg 1560
ctggggccca gcacagcagc ctgcaagggc ccctgtttgt tgatgcagct tttgttgaac 1620
aaaaatcgtg ctcttcctg gtttgaagttt agcatggatg tttccagttct tggttattgt 1680
aatttgcgtt gaagagaaaaaaaattcct cctgcgtgag ccaaggcagc ggggtgtgtt 1740
tcccaggcag ggagcccttc cctgggtgtc acagggcctg tgctcctcccc tcctccatcc 1800

tctctcctcc cgctcctccc tccccccact gtgggctggg gacgcctgcc cttctgtctc 1860
cggacgctct aggcgagttc agcttgggt gtgagtgaga cagctcgcca gctgcattcc 1920
tgcagacaga gcatgtgtgt ccacatgagt gtttctgtgt gggaaatgct tcctggctct 1980
gggaaacttt ttctgcccatt tctgtggttc ccagggagcg tggccctggg ggcaggggtg 2040
gtttgacctc ttcaagccgt ccggtggccct ggaggcggag gctctcctga gtgtctgccc 2100
ctgcagtggc ttcttgcgc ctgctgctgg gcgtgatgtc gctggagggtg ctggcaggga 2160
ctctgattt gttggcccgcg ctgcccctgc cctgcctctg tcctggctct gaactagtag 2220
atgatggtgc cagagggcag ggagctcgcc tggggagagg gctgtgcccc gttagggacag 2280
tgcccaggtg aaggatgccc ctggcctcc agggcactga ctttgcctt tttcccggt 2340
gatagtcatg gtcagaggt gcttgtaaat gtcttggaa gaggtttctg taaccctgc 2400
cctggtgtga ggagggaaatg gctctggccct ggctgcctgg ccgtggcttc tcttggctc 2460
ccaaagagaa ggacagtgtt gggagtatct gccgtggctt ctcttggct cccaaagaga 2520
aggacagtgt tgggaggtatc tgccggcgct gtccaggtcc tttagtcage gtcactccat 2580
ctgatgtgca gaagctggc tgcacctgcg ggggtggca tagaccgggc tgggtctgca 2640
gcagccccctg gtcctgagca ggcggcagtg aacagcactg gcccacctcc cactcacagc 2700
ccctctgtcc cctctgcagt gcacccaggt gggccctct gctgcctt ggtgtctccc 2760
ctctcggtt cgttctggcc cgaggccctt agatgtgga ggctgagcca ggccttgggt 2820
ttccccagca cagcctcctg tcgctgcattg cactgtttgg gatttttgga tgaaagactc 2880
tcccacgctc tgggtggtaa cttagctgcc tcactggaag tgatgtgggt ggaagggtgg 2940
tgtatgttac ctccccacc tctcattgtt ttccccagaa cattgttagat ggggttggc 3000
agagggagaa ataagccagc cacggcagtc gcttggttc ccaggtggaa tgggctaaca 3060
caggagatga tgggAACCTG tcccgcagtc cctgcattgac cattggccct gctggcctgg 3120
cgatgtggc atcctgggt tcttagggtc ccagaacaag ccccaggca gctgaaactt 3180
gggtggggag gggacatgag gaggataaac agctgactgt ggcttcaagg acatcaggc 3240
caccggcaagt cctcagtgta ctactcctgg caaggagttt ggtttggatc aaaagtgttt 3300
aaaattaata tgggtgtcagt gattagaaca acactgtttt cataaaaacc atttttctaa 3360
ttctaacaag tttagaatgtg aggaaggaat gaacatgagt gtttaggaac ctgcctttg 3420
gtgctgggtt ggctcccgcc actgggggtgt cctgcgtgtc tgggggtgtc tctgcgtccc 3480
cgccccaggt ccccttgcgg tgggtggcaga cgggcctcat ggtgtgtgt gcagagagag 3540

gcaggaagga tccctgaaga gtcttgaga aaaggttctg tgccctcagg tggggcttac 3600
ccctcgat ttataatctt aatttatata gtgaccaccc tggaaacaaa cgcctctgt 3660
attgtcatgt acatagtcca tacctgagtg ctgtacataa gttgttctgt gtataaataa 3720
aacaaggctg ttttgatct tca 3743

<210> 41
<211> 1830
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(1830)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 41
ctctttgtct ccagcgccca gcactggncg ggcaaaacct gagacgcccc gtacatgtt 60
gccaatgaa tgaaccagat tcagaccggc agggcgctgt ggtttaggag gggcctgggg 120
tttctccag gaggttttg ggcttgcgt ggagggtctt ggactcccgt ttgcgccagt 180
ggcctgcatac ctggtcctgt cttcctcatg tttgaatttc tttgctttcc tagtctgggg 240
agcagggagg agccctgtgc cctgtccag gatccatggg taggaacacc atggacaggg 300
agagcaaacg gggccatctg tcaccagggg cttagggaaag gccgagccag cctgggtcaa 360
agaagtcaaa ggggctgcct ggaggaggca gcctgtcagc tgggtgcata gaggctgtgg 420
ccaggccagc tgggctcggg gagcgccagc ctgagaggag cgcgtgagcg tcgcgggagc 480
ctcgggcacc atgagcgacg tggctattgt gaaggagggt tggctgcaca aacgagggga 540
gtacatcaag acctggcgcc cacgctactt cctcctcaag aatgatggca ctttcattgg 600
ctacaaggag cggccgcagg atgtggacca acgtgaggct cccctcaaca acttctctgt 660
ggcgcagtgc cagctgatga agacggagcg gccccggccc aacaccttca tcatccgctg 720
cctgcagtgg accactgtca tggaaacgcac cttccatgtg gagactcctg aggagcggga 780
ggagtggaca accgccccatcc agactgtggc tgacggcctc aagaagcagg aggaggagga 840
gatggacttc cggtcgggct cacccagtga caactcagg gctgaagaga tggaggtgtc 900
cctggccaag cccaaagcacc gcgtggcatt gggggggccgg gcaggtcctg cccatgtgtc 960
ccctcactct gtcagccagc cggccctggc tgcgtgcac cagctatctg tcatctctct 1020
ggggccctgg gcctcagttc aacctggtgg caccagatgc aacctcacta tggatgtcg 1080

gccagcaccc tctcctgggg gtggcaggca cacagcagcc ccccagcact aaggccgtgt	1140
ctctgaggac gtcatcgag gctggggccc tggatggg ccagggatgg gggatgggcc	1200
agggtttacc cagtggaca gaggagcaag gttaaattt gttattgtgt attatgttg	1260
tcaaatgcat tttgggggtt ttaatctt gtgacaggaa agccctcccc cttcccttc	1320
tgtgtcacag ttcttggta ctgtccacc gggagcctcc ccctcagatg atctctccac	1380
ggtagcaattt gacccatcg acgcttaacc ttcccgctgt cgccccaggc cttccctgac	1440
tccctgtggg ggtggccatc cctggggccc tccacgcctc ctggccagac gctgccgctg	1500
ccgctgcacc acggcgaaaa tttacaacat tcaacttttag tattttact attataaat	1560
aatatggaac ctccctcca aattcttcaa taaaagttgc tttcaaaww tttggctcac	1620
tttgcgggt ggaagagtgg gtggccaggg agggagtggt gagtctggg agggaaagcag	1680
catcctcaga gcagctggtc ctccccagct cttctgggt ggcaccgcac cccaacagg	1740
ttggggacag gctgtgtggt gggccgaggc gggagtatac aggcctgttc ccagggcag	1800
cctcccatgg aaggtgttcc acccccatct	1830

```
<210> 42
<211> 3517
<212> DNA
<213> Homo sapiens
```

<400> 42 gagagtattc tctcagagcc tgcttccac tgggacctag ttgttcctgg actattccgt 60
gaccatgacacttacta tgtagttctc gtggattcag cagcaggtcg cttgtgtt 120
cccccttctct tcgttggtgt gtgcataatgt cagtgcattcc cccagcaccc cagcgtgtac 180
tttattttt cctttgatt tgaggatata tgatccaggg gaaatttcag ttgggtataa 240
ctacttaat tagccataat tattcattct aagttttgc tcagaaacaa atggcactgg 300
aaagaaaattc tttgttaaag ggagaaaagct aagcagttgc tttttggag gaggctttat 360
atcggttagcc tcatctcatg ttttgattt gagaaggcga aaagcctaaa caggatctcc 420
ttgactccag agattaaggc cttcacgtc tggattttt ctccataggt catctctgaa 480
tttgagcaat ggtgaaacgg aatctgtgaa aaccatgatt gtccatgatg atgtagaaag 540
tgagccggcc atgacccat ccaaggaggg cactctaatac gtccggcaga ctcagtcgc 600
tagtagcaca ctccagaaac acaaataatcc ctccatcctt acacctttta tagaccccaag 660
attactacag atttctccat ctagcggAAC aacagtgaca tctgtgggtgg gatTTTcctg 720

tgatggatg agaccagaag ccataaggca agatcctacc cgaaaaggct cagtggtaa 780
tgtgaatcct accaacacta ggccacagag tgacaccccg gagattcgta aatacaagaa 840
gaggttaac tctgagattc tgtgtgctgc cttatggga gtgaatttgc tagtgggtac 900
agagagtggc ctgatgctgc tggacagaag tggccaagg aaggtctatc ctcttatcaa 960
ccgaagacga tttcaacaaa tggacgtact tgagggcttg aatgtcttgg tgacaatatc 1020
tggcaaaaag gataagttac gtgtctacta tttgtcctgg ttaagaaata aaatacttca 1080
caatgatcca gaagttgaga agaagcaggg atggacaacc gttagggatt tggaaggatg 1140
tgtacattat aaagttgtaa aatatgaaag aatcaaattt ctggtgattt ctttgaagag 1200
ttctgtggaa gtctatgcgt gggcaccaaa gccatatac acatggatgttgg ctttaagtc 1260
atttggagaa ttggcacata agccattact ggtggatctc actgttgagg aaggccagag 1320
gttggaaagtg atctatggat cctgtgctgg attccatgct gttgatgtgg attcaggatc 1380
agtctatgac atttatctac caacacatata ccagtgtac atcaaaccct atgaatcat 1440
catcctcccc aatacagatg gaatggagct tctgggtgc tatgaagatg agggggttta 1500
tgtaaacaca tatggaagga tcaccaagga tgttagttcta cagtggggag agatgcctac 1560
atcagtagca tatattcgat ccaatcagac aatgggctgg ggagagaagg ccatacagat 1620
ccgatctgtg gaaactggc acttggatgg tggatgttgc cacaagg ctcaaagact 1680
aaaattcttg tgtgaacgca atgacaagg gttcttgc tctgttcgtt ctggggcag 1740
cagtcaggat tatttcatga ccttaggcag gacttcttt ctgagctgtt agaagcagtg 1800
tgatccaggg attactggcc tccagagtct tcaagatcct gagaacttgg aattccttgc 1860
aactggagct cggagctgca ccgagggcaa ccaggacagc tgtgtgtgc gacccatgt 1920
gttgggttct ctcccttcct tcctgttctt cttatatacc agtttatccc cattttttt 1980
ttttttctta ctccaaaata aatcaaggct gcaatgcagc tggatgttgc cagattctac 2040
catcaggtgc tataagtgtt tgggatttag catcatactg gaaagcaaac acctttcctc 2100
cagctccaga attccctgtc tctgaatgac tctgtttgtt gggtgtctga cagtgccgac 2160
gatgaacatg ccgttggttt tattggcagt gggcacaagg aggtgagaag tgggtggtaaa 2220
aggagcggag tgctgaagca gagagcagat ttaatatagt aacattaaca gtgtatcaa 2280
ttgacatttc tttttgtaa tgtgacgata tgtggacaaa gaagaagatg caggtttaag 2340
aagttaatat ttataaaatg tgaaagacac agttaacttgc tttttttt tttttttttt 2400

gcttgggaga	tggggtgggg	tgggttaagg	ggtcccattt	tgtttcttg	gatttggggt	2460
gggggtcctg	gccagaact	cagtcatttt	tctgtgtacc	aggttgccta	aatcatgtgc	2520
agatggttct	aaaaaaaaaa	aaaaaaaaaa	aaaaaggaaa	aaaaaaaaga	aaaagaaaac	2580
gtgtgcattt	tgtataatgg	ccagaacttt	gtcgtgtgac	agtattagca	ctgcctcagt	2640
taaaggttta	atttttgttt	aaacctagac	gtgcaacaaa	agttttacca	cagtctgcac	2700
ttgcagaaga	aagaaaaaaaaa	ttcaaaccac	atgtttatTT	ttttttgcc	tacctcattg	2760
ttcttaatgc	attgagaggt	gatTTtagTT	atatgtttt	ggaagaaacc	attaatgttt	2820
aatttaatct	taataccaaa	acgaccagat	tgaagttga	cttttattgt	cacaaatcag	2880
caggcacaag	aactgtccat	gaagatggga	aatagcctta	aggctgatgc	agtttactta	2940
caagtttaga	aaccagaatg	cttggTTTT	accagattca	ccattagagg	ttgatgggc	3000
aactgcagcc	catgacacaa	gatctcattg	ttctcgatgt	agaggggTT	gtacgagaca	3060
ggtggttaca	ttagaatagt	cacacaaact	gttcagtgtt	gcaggaacct	tttcttgggg	3120
gtgggggagt	ttccctttc	taaaaatgca	atgcactaaa	actatTTaa	aatgttagtt	3180
aattctgctt	attcataaag	tggcatttt	ctgtgtttt	ggtgtaatat	cgaagtccctg	3240
gttttctcg	ttttctcact	tgctctctg	ttctctgttt	ttttaaacc	atTTTacttt	3300
atgaatata	tcatgacatt	tgtataataat	gtcttgagaa	agaatttgtt	tcatggctca	3360
tggtcatcac	tcaagctccc	gtaaggatat	taccgtctca	ggaaaggatc	aggactccat	3420
gtcacagtcc	tgccatctta	cttcctctt	gtcgagttc	tggagtggga	aataactggc	3480
attatgggcc	gcttaaccc	aggcattcaa	aagaaac			3517

<210> 43
 <211> 3507
 <212> DNA
 <213> Homo sapiens

<400> 43						
cttaaactca	ctgggtgcct	accttctgct	ttttggtacc	tggggtgata	gttgtgactg	60
cttctcaccc	ttctctttta	atccctctga	tgttacctga	ccatgttaatt	gtgcacgctt	120
tgtggaattt	taagcctgtc	agagtttca	tttcctgctt	gaactgattt	ctgtacttct	180
ccctctcccc	ttctttctcc	cgcgcTTcct	tgtactgtgc	attcctcatc	aacgatggct	240
tctcgactc	cacgaaaactg	cgctgtactg	aaggcgaag	tggatctgac	cgcactggcc	300
aaagagcttc	gagcagtgga	agatgtacgg	ccacccatcaca	aagtaacgga	ctactcctca	360

tccagtgagg agtcggggac gacggatgag gaggacgacg atgtggagca ggaaggggct 420
gacgagtcca cctcaggacc agaggacacc agagcagcgt catctctgaa tttgagcaat 480
ggtaaaacgg aatctgtgaa aaccatgatt gtccatgatg atgtagaaag tgagccggcc 540
atgaccccat ccaaggaggg cactctaatac gtccgccaga ctcagtcgc tagtagcaca 600
ctccagaaac acaaattcttc ctcctccctt acacctttta tagaccccaag attactacag 660
atttctccat ctagcggAAC aacagtgaca tctgtggtgg gatTTTcctg tcatggatg 720
agaccagaag ccataaggca agatcctacc cggaaaggct cagtggtaa tgtgaatcct 780
accaacacta ggccacagag tgacaccccg gagattcgta aatacaagaa gaggtttaac 840
tctgagattc tgtgtgctgc cttatggggta gtgaatttgc tagtgggtac agagagtggc 900
ctgatgctgc tggacagaag tggccaagg aaggtctatc ctcttatcaa ccgaagacga 960
tttcaacaaa tggacgtact tgagggcttg aatgtcttgg tgacaatatac tggcaaaaag 1020
gataagttac gtgtctacta tttgtcctgg ttaagaaata aaatacttca caatgatcca 1080
gaagttgaga agaagcaggg atggacaacc gtaggggatt tggaggatg tgtacattat 1140
aaagttgtaa aatatgaaag aatcaaattt ctggtgattt ctttgaagag ttctgtggaa 1200
gtctatgcgt gggcacaaaa gccatatac acatttatgg ccttaagtc atttggagaa 1260
ttggtagata agccattact ggtggatctc actgttgagg aaggccagag gttgaaagtg 1320
atctatggat cctgtgctgg attccatgtc gttgatgtgg attcaggatc agtctatgac 1380
atttatctac caacacatatac cagtgtagc atcaaaccac atgcaatcat catcctcccc 1440
aatacagatg gaatggagct tctgggtgtc tatgaagatg agggggttta tgtaaacaca 1500
tatggaagga tcaccaagga tgttagttcta cagtggggag agatgcctac atcagtagca 1560
tatattcgat ccaatcagac aatgggctgg ggagagaagg ccatagagat ccgatctgt 1620
gaaaactggtc acttggatgg tgtgttcatg cacaaaaggg ctcaaagact aaaattctt 1680
tgtgaacgca atgacaagggt gttcttgc tctgttcgtt ctgggtggcag cagtcagggtt 1740
tatttcatga ccttaggcag gacttctttt ctgagctggt agaagcagtg tgatccaggg 1800
attactggcc tccagagtct tcaagatcct gagaacttgg aattccttgc aactggagct 1860
cggagctgca ccgagggcaa ccaggacagc tgtgtgtc gacctcatgt gttgggtct 1920
ctcccccttcc tcctgttccct cttatatacc agtttatccc cattttttt ttttttctta 1980
ctccaaaata aatcaaggct gcaatgcagc tgggtgtt cagattctac catcaggtgc 2040
tataagtgtt tgggattttag catcatactg gaaagcaaac acctttcctc cagctccaga 2100

atcccttgtc tctgaatgac tctgtcttgt ggggtgtctga cagtggcgac gatgaacatg	2160
ccgttggttt tattggcagt gggcacaagg aggtgagaag tgggtggtaaa aggagcggag	2220
tgctgaagca gagagcagat ttaatatagt aacattaaca gtgtattaa ttgacatttc	2280
ttttttgtaa tgtgacgata tgtggacaaa gaagaagatg caggtttaag aagttaatat	2340
ttataaaaatg tgaaagacac agttactagg ataactttt tgtgggtggg gcttgggaga	2400
tggggtgggg tgggttaagg ggtcccattt tgtttcttg gatttggggt gggggtcctg	2460
gccaagaact cagtcatttt tctgtgtacc aggttgccta aatcatgtgc agatggttct	2520
aaaaaaaaaa aaaaaaaaaa aaaaaggaaa aaaaaaaaaa aaaaagaaaac gtgtgcattt	2580
tgtataatgg ccagaacttt gtcgtgtac agtattagca ctgcctcagt taaaggttta	2640
atttttgttt aaacctagac gtgcaacaaa agtttacca cagtctgcac ttgcagaaga	2700
aagaaaaaaaaa ttcaaaccac atgtttattt ttttttgcc tacctcattt taccttaatgc	2760
attgagaggt gat tagttt atatgtttt ggaagaaaacc attaatgtt aatttaatct	2820
taataccaaa acgaccagat tgaagttga cttttattgt cacaatcag caggcacaag	2880
aactgtccat gaagatggga aatagccta aggctgatgc agtttactta caagttttaga	2940
aaccagaatg ctttggggg accagattca ccattagagg ttgatggggc aactgcagcc	3000
catgacacaa gatctcattt ttctcgatgt agaggggtt gtagcagaca ggtggttaca	3060
ttagaatagt cacacaaaact gttcagtgtt gcaggaacct tttcttgggg gtgggggagt	3120
ttcccttttc taaaaatgca atgcactaaa actatttaa gaatgttagtt aattctgctt	3180
attcataaaag tgggcatctt ctgtgtttt ggtgtaatat cgaagtcctg gctttctcg	3240
ttttctcaact tgctctctt ttctctgtt ttttaaaccat attttacttt atgaatataat	3300
tcatgacatt tgtaataaaat gtcttgagaa agaatttggtt tcatggctca tggtcatcac	3360
tcaagctccc gtaaggatataccgtctca ggaaaggatc aggactccat gtcacagtcc	3420
tgccatctta ctttccctttt gtcggagttc tggagtggga aataactggc attatgggcc	3480
gcttaaccc aggcattcaa aagaaac	3507

<210> 44
 <211> 3138
 <212> DNA
 <213> Homo sapiens

<400> 44
 ctctaatttgttccgcccaggatc acagttgacc aaaagcgtgc cagccatcat gagagcaatg

gctttgcggt tcgcattcac ctcttgccag atctcttaca gcaaagccat tcctcctcca 120
cttcctccac ctccctcctcc ccatcctcca gccagccgac acccaccatg tccccacaga 180
caccccaggg acaagctcac tgctaatgag actcagtcg ctagtagcac actccagaaa 240
cacaatctt ctcctcctt tacaccttt atagacccca gattactaca gatttctcca 300
tctagcggaa caacagtgcac atctgtggtg ggattttcct gtgatggat gagaccagaa 360
gccataaggc aagatcctac ccggaaaggc tcagtggta atgtaatcc taccaacact 420
aggccacaga gtgacacccc ggagattcgt aaatacaaga agaggttaa ctctgagatt 480
ctgtgtgctg ctttatgggg agtgaatttg cttagtggta cagagagtgg cctgatgctg 540
ctggacagaa gtggccaagg gaaggtctat cctcttatca accgaagacg atttcaacaa 600
atggacgtac ttgagggctt gaatgtctt gtaataat ctggcaaaaa ggataagtt 660
cgtgtctact atttgcctg gtaagaat aaaatacttc acaatgatcc agaagttgag 720
aagaagcagg gatggacaac cgtagggat ttggaaggat gtgtacatta taaagttgt 780
aaatatgaaa gaatcaaatt tctggtgatt gcttgaaga gttctgtgga agtctatgcg 840
tggcaccaa agccatatca caaattttagt gccttaagt cattggaga attggtacat 900
aagccattac tggatct cactgtttagt gaaggccaga gttgaaagt gatctatgg 960
tcctgtgctg gattccatgc tttgtatgtg gattcaggat cagtctatga catttatcta 1020
ccaacacata tccagtgttag catcaaacc catgaatca tcatcctccc caatacagat 1080
ggaatggagc ttctggatgt ctatgaagat gagggggttt atgtaaacac atatggagg 1140
atcaccaagg atgttagttct acagtggggta gagatgccta catcagtagc atatattcga 1200
tccaaatcaga caatggctg gggagagaag gccatagaga tccgatctgt ggaaactgg 1260
cacttggatg gtgtgttcat gcacaaaagg gctcaaagac taaaattctt gtgtaacgc 1320
aatgacaagg tttctttgc ctctgttcgg tctggggca gcagtcaggt ttatttcatg 1380
accttaggca ggacttcttct tctgagctgg tagaagcagt gtgatccagg gattactggc 1440
ctccagagtc ttcaagatcc tgagaacttg gaattccttg taactggagc tcggagctgc 1500
accgagggca accaggacag ctgtgtgtc agacccatg tgggggttc tctccctcc 1560
ttccctgttcc tcttatatac cagtttatcc ccattcttt ttttttctt actccaaaat 1620
aaatcaaggc tgcaatgcag ctggtgctgt tcagattcta ccatcaggtg ctataagtgt 1680
ttgggattga gcatcataact ggaaagcaaa caccttcct ccagctccag aattccttgt 1740

ctctgaatga ctctgtcttg tgggtgtctg acagtggcga ccatgaaacat gccgttggtt	1800
ttattggcag tgggcacaag gaggtgagaa gtgggtggtaa aaggagcggg gtgctgaagc	1860
agagagcaga tttaatatag taacattaac agtgtattta attgacattt ctttttgta	1920
atgtgacgat atgtggacaa agaagaagat gcagggttaaa gaagttataa tttataaaat	1980
gtgaaagaca cagttactag gataacttt ttgtgggtgg ggcttgggag atgggggtggg	2040
gtgggttaag gggtcccatt ttgtttcttt ggatttgggg tgggggtcct ggccaagaac	2100
tcagtcattt ttctgtgtac caggttgcct aaatcatgtg cagatggtc taaaaaaaaaa	2160
aaaaaaaaaaa aaaaaaggaa aaaaaaaaaag aaaaagaaaa cgtgtgcatt ttgtataatg	2220
gcagaaactt tgtcgtgtga cagtattagc actgcctcag ttaaagggtt aattttgtt	2280
taaacctaga cgtcaacaa aagtttacc acagtctgca cttgcagaag aaagaaaaaa	2340
attcaaacca catgtttatt tttttttgc ctacccattt gttcttaatg cattgagagg	2400
tgatttagtt tatatgtttt tggaaagaaac cattaatgtt taatttaatc ttaataccaa	2460
aacgaccaga ttgaagtttgc acttttattt tcacaaatca gcaggcacaa gaactgtcca	2520
tgaagatggg aaatagcatt aaggctgatg cagtttactt acaagtttag aaaccagaat	2580
gtttgtttt taccagattt accatttagag gttgatgggg caactgcagc ccatgacaca	2640
agatctcattt gttctcgatg tagaggggtt ggttagcagac aggtggttac attagaatag	2700
tcacacaaac ttttcagtgt tgcaggaacc ttttcttggg ggtggggag tttccctttt	2760
ctaaaaatgc aatgcactaa aactattttta agaatgttagt taattctgct tattcataaa	2820
gtgggcatct tctgtgtttt aggtgtataa tcgaagtccct ggctttctc gttttctcac	2880
ttgctctctt gttctctgtt tttttaaacc aattttactt tatgaatata ttcatgacat	2940
ttgtataaaa tgtcttgaga aagaatttgtt ttcatggctc atggtcatca ctcaagctcc	3000
cgttaaggata ttaccgtctc aggaaaggat caggactcca tgtcacagtc ctgccatctt	3060
actttcctct tgcggagtt ctggagtggg aaataactgg cattatggc cgctttaacc	3120
caggcattca aaagaaaac	3138

```

<210> 45
<211> 2100
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(2100)

```

<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

ccaaatccga gcccgaacag ccgctggata tgggacgaac agccgcaagt ttgagttga 1680
aactagtcca gactcttctt ccatctctgg tgaaagtagc caagtggtca tgatgccat 1740
ttcagcggca gtagcaatta ttctcctcac tttgtcatc tatgtttga ttggaggtt 1800
ctgtggctat aagtcaaaac atggggcaga tgaaaaaaga cttcatttg gcaatggca 1860
ttaaaactt ccaggtctca ggacttatgt tgaccacat acatatgaag accctaccca 1920
agctgttcat gagttgcca aggaattgga tgccaccaac atatccattg ataaagttgt 1980
tggagcagtc ctgacttctg aacagctcca tcatgcagaa ngttttagtc tggctggtt 2040
taatgtttcc tcacaaggag tgcactttc tccagcacgg agcctgccgg tagcaaatgc 2100

<210> 46

<211> 1479

<212> DNA

<213> Homo sapiens

<220>

<221> -

<222> (1)..(1479)

<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 46

gtgagtgagt ggccgttattg ttctnnnttc atttcgcatt tcttgatagc gcctacattt 60
gaacacattt tcataatcacc tcacatcact tagatatcct tnccatgaag tacacatttt 120
ggggttgggt tgctgttagta aaactaaaaa atgcagataa agtgttgcc ataaaaatat 180
tgaataaatg ggaaatgctg aaaagagctg agacagcatg tttcgtgaa gaaagggatg 240
tattagtgaa tggagacaat aaatggatta caaccttgca ctatgcttcc caggatgaca 300
ataactata cctggttatg gattattatg ttgggggaa tttgcttact ctactcagca 360
aatttgaaga tagattgcct gaagatatgg ctatgtttta ctggctgag atggtgatag 420
caattgactc agttcatcag ctacattatg tacacagaga cattaaacct gacaatatac 480
tgatggatat gaatggacat attcggttag cagattttgg ttcttgctg aagctgatgg 540
aagatggaac gttcagtcc tcagtggctg taggaactcc agattatatc tctcctgaaa 600
tccttcaagc catggaagat gaaaaaggaa gatatggacc tgaatgtgac tgggtgttt 660
tgggggtctg tatgtatgaa atgctttacg gagaaacacc attttatgca gaatcgctgg 720
tggagacata cgaaaaatc atgaaccaca aagagaggaa tcagttcca gcccaagtga 780
ctgatgtgtc tgaaaatgct aaggatctta ttcaaggct catttgcgtc agagaacatc 840

gacttggtaa aaatggaata gaagacttta agaaacaccc attttcagt ggaattgatt 900
gggataatat tcggaactgt gaagcacctt atattccaga agttagtagc ccaacagata 960
catcgaattt tgatgttagat gatgattgtt taaaaattc tgaaacgatg ccccaccaa 1020
cacatactgc attttctggc caccatctgc catttgttgg ttttacatat actagtagct 1080
gtgtactttc tgatcgagc tgatcgagtttacggctgg tcccacctca ctggatcttg 1140
atgttaatgt tcagaggact ctagacaaca acttagcaac tgaagctt gaaagaagaa 1200
ttaagcgccct tgagcaagaa aaacttgaac tcagtagaaa acttcaagag tcaacacaga 1260
ctgtccaagc tctgcagtat tcaactgttg atggtccact aacagcaagc aaagatttag 1320
aaataaaaaaa cttaaaaagaa gaaattgaaa aactaagaaa acaagtaaca gaatcaagtc 1380
atttggaaaca gcaacttgaa gaagctaatg ctgtgaggca agaacttagat gatgtttt 1440
gacaaatcaa ggcttatgaa aaacaaatca aaacgttac 1479

<210> 47
<211> 1223
<212> DNA
<213> Homo sapiens

<400> 47
cccagggtcc ccgaggacga agttgaccct gaccggccg tctccagtt ctgaggcccg 60
ggtcccactg gaactcgctt ctgagccacc gtccggacc cccggtgccc gccggccgc 120
agaccctgca cccggcttgg actcgccagcc gggactgacg tgtagaacaa tctttctgt 180
tggagaagg gttttccct tcctttggg gttttgttg ctttttttt ttctttttc 240
tttgtaaaat ttggagaag ggaagtcgga acacaaggaa ggaccgctca cccgcggact 300
cagggtggc ggcggactc caggaccctg ggtccagcat ggaggtggc gaccgcgc 360
agctggccat gttcacggag ggccgagctga tgcgggtggg tatggacacg ttcatccacc 420
gcacgcactc caccgaggc atctaccagc cgcgcgcac gcgcccaag ctcatggca 480
agtacctgat ggggacctg ctgggggaag gtcctacgg caaggtgaag gaggtgctgg 540
actcgagac gctgtgcagg agggccgtca agatcctcaa gaagaagaag ttgcgaagga 600
tccccaaacgg ggaggccaaac gtgaagaagg aaattcaact actgaggagg ttacggcaca 660
aaaatgtcat ccagctggtg gatgtttat acaacgaaga gaagcagaaa atgtatatgg 720
tgatggagta ctgcgtgtgt ggcacgtcagg aaatgctgga cagcgtcccg gagaagcg 780
tcccagtgtg ccaggccac gggtcgcct cccggagagg tggccgcac gcttctgtgc 840

cgaccacgcc ccaggacctc cggagcgccc tgcagggccg ggcaggggga cagcagggac 900
cgggcgcagc cctccccct cggccgcccgc gcagtgcacg cggcttgttgc acttcgcagc 960
cccgccgcca gccttccgg gcgggcgtgg gaggaggag gcggcctcca tgcactttat 1020
gtggagacta ctggccccgc cctgtggcctc gtgctccgca gggcgcccaag cggcgccgg 1080
cgccccgccc gcagaccagc tggcggtgt ggagaccagg ctccctgaccc cgccatgcat 1140
gcagcgccac ctggaagccg cgcggccgct ttgggtttt gtttggttgg ttccattttc 1200
ttttttctt tttttttta aga 1223

<210> 48
<211> 1154
<212> DNA
<213> Homo sapiens

<400> 48
cccgagggtcc ccgaggacga agttgaccct gaccgggccc tctccagtt ctgaggcccg 60
ggtcccactg gaactcggt ctgagccacc gtcccgacc cccgggtcccc gccgggtccgc 120
agaccctgca cccggcttgg actcgcagcc gggactgacg tgtagaacaa tcgtttctgt 180
tggaaagaagg gttttccct tccttttggg gttttgttg cttttttttt ttcttttttc 240
tttgtaaaat tttggagaag ggaagtcgga acacaaggaa ggaccgctca ccccgccgact 300
cagggctggc ggcgggactc caggaccctg ggtccagcat ggaggtggtg gaccggcagc 360
agctgggcat gttcacggag ggcgagctga tgcgttggg tatggacacg ttcatccacc 420
gcacgcactc caccgaggc atctaccagc cgcggccaa gcgggccaag ctcatcgca 480
agtacctgat gggggacctg ctgggggaag gcttttacgg caaggtgaag gaggtgctgg 540
actcggagac gctgtgcagg agggccgtca agatcctcaa gaagaagaag ttgcgaagga 600
tccccaaacgg ggaggccaaac gtgaagaagg aaattcaact actgaggagg ttacggcaca 660
aaaatgtcat ccagctggtg gatgtgttat acaacgaaga gaagcagaaa atgtatatgg 720
tgatggagta ctgcgtgtgt ggcacgtcagg aaatgcttgg cagcgtggccg gagaagcggt 780
tcccagtgtg ccaggcccac gggtaacttct gtcagctgat tgacggccctg gagtacctgc 840
atagccaggg cattgtgcac aaggacatca agccgggaa cctgctgctc accaccggtg 900
gcaccctcaa aatctccgac ctggcggtgg ccgaggtagg cacgtgcttag gggggccct 960
ggggcgcccc ctcccgccca ctccctgagg gctgcacggc accggccacag gcactgcacc 1020
cgcagaccag ctggcggtgt tggagaccag gtcctgacc ccgcctatgca tgcagcgcca 1080

ccttggaaagcc gcgcggccgc tttggtttt tgtttggttg gttccatttt ctttttttct 1140
ttttttttt aaga 1154

<210> 49
<211> 930
<212> DNA
<213> Homo sapiens

<400> 49
accggtcccc agcccacccc tgagttccca gacaacagat tatggaccga gagactactc 60
ccttgggttt actctggctc atccaagtca tacccagcaa actcctccca tccctgcagg 120
taaaggatt cctgtctcag ctcaggagca gcaataggag attttctatc ccagagtcag 180
gccaaggagg gacagaaaatg gatggctta ggagaaccat agaaaaccag cactctcgta 240
atgatgtcat ggtttctgag tggctaaaca aactgaatct agaggagcct cccagctctg 300
ttcctaaaaaa atgcccggc cttaccaaga ggagcagggc acaagaggag caggttccac 360
aagcctggac agcaggcaca tcttcagatt cgatggccca acctccccag actccagaga 420
cctcaacttt cagaaaccag atgcccagcc ctacctaacc tggaacacca agtcctggac 480
cccgagggaa tcagggggct gagagacaag gcatgaactg gtcctgcagg accccggagc 540
caaatccagt aacagggcga ccgctcgta acatatacaa ctgctctggg gtgcaagttg 600
gagacaacaa ctacttgact atgcaacaga caactgcctt gcccacatgg ggcttggcac 660
cttcgggcaa ggggaggggc ttgcagcacc ccccaccagt aggttcgcaa gaaggcccta 720
aagatcctga agcctggagc aggccacagg gttggtataa tcatacgccc aaataaagca 780
ccttccaagc ttgcctccaa gagttacgag ttaaggaaga gtgccacccc ttgaggcccc 840
tgacttcctt ctagggcagt ctggcctgcc cacaactga ctttgcacc tgtcccccag 900
gagtcaataa acatgatgga atgctaaaaaa 930

<210> 50
<211> 2616
<212> DNA
<213> Homo sapiens

<400> 50
taagagacag ggtcttgccc tggccaaat gctggagtgc agtggcacaa tcatagctca 60
ctgcagcctc gacctccccag gcttatgcag tcctccatc tcagcctccc aagtaaccgg 120
gactgcaggc gcatgccacc atggtcagct aattaaaaaa aaaaatgttt ttggctgggc 180

aaagtggatc acatctgtaa tcccagcacc tagggatgcc aaggcaagaa gattgcttgt 240
gagcccagaa gttcgagacc agcctggca acatggtaaa actctacctc taccaaaaaa 300
atgtaaaaat tagccatatt tgacctcaag tctagacaga acttctttgt atatttaga 360
gaggagcaag caagggagct gtacaggaga ctaaggaaa aacctcgaga ccagcgaact 420
gagggtgaca gtcagggaaat ggtacggctg ctgcttcagg caattcagag ctgcgagaag 480
aaagtgcgag tgcgtataac gcagctcagt aaaactgtgg tttgcaagca gaaggcgctg 540
gaactgttgc ccaaggtgga agaggtggta agcttaatga atgaggatga gaagactgtt 600
gtccggctgc aggagaagcg gcagaaggag ctctggaaatc tcctgaagat tgcttgtagc 660
aaggtccgtg gtccgtcag tggaaagcccg gatagcatga atgcctctcg acttagccag 720
cctggcagc tgcgtctca gcccctccacg gcctccaaca gcttacctga gccagccaag 780
aagagtgaag aactggtggc tgaagcacat aacctctgca ccctgctaga aaatgccata 840
caggacactg tgagggaaaca agaccagagt ttcacggccc tagactggag ctggttacag 900
acggaagaag aagagcacag ctgcctggag caggcctcat gatgtggggg gactcgaccc 960
cctgacatgg ggcagcccat agcaggcctt gtgcagtggg gggactcgac cccctgacat 1020
ggggctgcct ggagcaggcc gctgtacgtg gggctgcctg gccgcccgc tcacatggta 1080
gttcctgctg cactgatggc ccaggggtct ctggtatcca gatggagctc tcgcttcctc 1140
agcagctgtg actttcaccc aggacccagg acgcagccct ccgtggcac tgccggcgcc 1200
ttgtctgcac actggaggcct ctccattaca gaggcccagc gcacatcgct ggccccacaa 1260
acgttcaggc gtacagccat ggcagctcct tcctctgcg tgagaaaaagt gcttggagta 1320
cggtttgcca cacacgtgac tggacagtgt ccaattcaaa tctttcaggc cagagtccga 1380
gcagcgctt gtgacagccct gtccttcct gctctccaa ggcctgctc cctgtccctc 1440
ctcactttac agcttggat tcttcggat tcagcttcctc ctaaacagac agtttaattta 1500
tagttgcggc ctggccccat ctcacttcc tcttttatt tcactgctgc taaaatttgt 1560
tttttaccta ctactttggt ggttgcctc ttttcggcaa agttggagcg agtgccaaagc 1620
tctccatctg tggcctttc tgccaaagagc gactcatgt aaccaggatg ggagagcagc 1680
tgccttattc tgaatccaa aaattacttg ggggtgattg tcacagagga gggacagaaaa 1740
gggtatctgc tgaccaccag cctgcctacc catgcccattg tctccattcc tgctcaagcg 1800
tgtgtgctgg gcccggagct ccctgtctct cacagcatct agcagtattta taaaatggat 1860
tcattttaaa aatagctccct atattttgtaa acatgtctca aacactcata ctgggttcca 1920

caatccactg ttagaatacc tatggtagg gcttctgaac taaaataatg gaaaattttt	1980
acaatttgc tagtgcctgg atcattacta gtgccataac cctgcttctt caacatttca	2040
cagaacttct cttttatata aaggcaagag cacaatgtga gttcagatga tcacaaacag	2100
gtgagtttg ttggagaaga aagttggagt aggagacttt cacaagtggc ttccatggag	2160
atagaatgaa gcattctgtg gtcaagtaag ttttagggagc tattcatgtt tcacttgctt	2220
tgtggagatt cacactatgc actggaaag tatctgaaaa gtcttataat aaagaaacag	2280
gcttaacttt gtgtaagaac actgtttatc aatgtcattt ggctatagaa acattttctc	2340
ctgctgattt tgggtgtgaa acatgttata acattccaaat gaacttagcat ttaataaaagc	2400
acaattttgg aaaccctggt aaatgacagt gggaaataac acccgaaagg caaggacggg	2460
cagattgggg agggaaagga tggggctta agggctgtga gcttatgtta caggcaactg	2520
agccactgaa gaattttgac gaagaaaatg ccaacccaaag cagtcatttt aaaagtttat	2580
qqctgttcaq ttacaggaca agttgtgaaa agaaaq	2616

```
<210> 51
<211> 1323
<212> DNA
<213> Homo sapiens
```

<400> 51
gccccggagcc gtttccccg ccgggtgtccg agaggcgccc cggggccggc cgccccccagc 60
ccccagccccg cccggggccccc ccccccgtcg agtgcgtgag gttgacgcta ctttggca 120
cctggaggga agaacgtatg ggagaggaag gaagcgagtt gcccgtgtgt gcaagctgcg 180
gccagaggat ctatgtatggc cagtacctcc aggccctgaa cgcggactgg cacgcagact 240
gcttcaggtg ttgtgactgc agtgcctccc tgcgtcacca gtactatgag aaggatggc 300
agctcttctg caagaaggac tactgggccc gctatggcga gtcctgccc gggtgctctg 360
agcaaatcac caagggactg gttatggtgg ctggggagct gaagtaccac cccgagtggtt 420
tcatctgcct cacgtgtggg acctttatcg gtgacgggaa cacctacacg ctgggtggagc 480
actccaaagct gtactgcggg cactgctact accagactgt ggtgacccccc gtcatcgagc 540
agatcctgccc tgactccct ggctccacc tgccccacac cgtcaccctg gtgtccatcc 600
cagcctcatc tcatggcaag cgtggacttt cagtctccat tgaccccccg cacggcccac 660
cgggctgtgg caccgagcac tcacacacccg tccgcgtcca gggagtgat cccggctgca 720
tgagccccaga tgtgaagaat tccatccacg tcggagacccg gatcttgaa atcaatggca 780

cggccatccg	aaatgtgccc	ctggacgaga	ttgacactgt	gattcaggaa	accagccgcc	840
tgctccagct	gaccctcgag	catgaccctc	acgatacact	gggccacggg	ctggggcctg	900
agaccagccc	cctgagctct	ccggcttata	ctcccagcgg	ggaggcgggc	agctctgcc	960
ggcagaaacc	tgtcttgagg	agctgcagca	tcgacaggta	tccgggcgt	ggctcaactgg	1020
gctccccggc	ctcccagcgc	aaggacctgg	gtcgctctga	gtccctccgc	gtatgtgcc	1080
ggccacaccc	catcttccgg	ccgtcggacc	tcatccacgg	ggaggtgctg	ggcaagggt	1140
gcttcggcca	ggctatcaag	gtacagagca	tgccagggtc	tcaaggac	agtctgggt	1200
ggaccctcc	atcctccttc	cttcccagtc	tatgaaaca	cagtggaaagg	ggtatctggc	1260
tttcagactc	cctggccagt	gccctctcct	cccttggcct	cctggagcta	attaggaaca	1320
ggg						1323

<210>	52					
<211>	1262					
<212>	DNA					
<213>	Homo sapiens					
<400>	52					
gcggcgagcc	ggtttccccg	ccgggtgtccg	agaggcgccc	ccggcccccggc	cgccccccagc	60
cccagccccg	ccggggccccg	ccccccgtcg	agtgcattgag	gttgcacgcta	ctttgttgca	120
cctggagggg	agaacgtatg	ggagaggaag	gaagcgagtt	gcccgtgtgt	gcaagctgcg	180
gccagaggat	ctatgtggc	cagtacctcc	aggccctgaa	cgcggactgg	cacgcagact	240
gcttcaggtg	ttgtgactgc	agtgcctccc	tgtgcacca	gtactatgag	aaggatgggc	300
agctttctg	caagaaggac	tactggccccc	gtatggcga	gtcctgcacat	gggtgctctg	360
agcaaattcac	caaggactg	gttatggtgg	ctggggagct	gaagtaccac	cccgagtgtt	420
tcatctgcct	cacgtgtggg	acctttatcg	gtgacgggg	cacctacacg	ctggtgagc	480
actccaagct	gtactgcggg	cactgctact	accagactgt	ggtgacccccc	gtcatcgagc	540
agatcctgccc	tgactcccc	ggctcccacc	tgccccacac	cgtcaccctg	gtgtccatcc	600
cagcctcattc	tcatggcaag	cgtggacttt	cagtctccat	tgaccccccgg	cacggcccac	660
cgggctgtgg	caccgagcac	tcacacacccg	tccgcgtcca	gggagtggat	ccgggctgca	720
tgagcccaga	tgtgaagaat	tccatccacg	tcggagaccg	gatcttgaa	atcaatggca	780
cgcccatccg	aaatgtgccc	ctggacgaga	ttgacactgt	gattcaggaa	accagccgcc	840
tgctccagct	gaccctcgag	catgaccctc	acgatacact	gggccacggg	ctggggcctg	900

agaccagccc cctgagctct ccggcttata ctcccagcgg ggaggcgggc agctctgccc 960
ggcagaaacc tgtcttcgca aggacctggg tcgctctgag tccctccgctg tagtctgccc 1020
gccacaccgc atcttccggc cgtcggaccc catccacggg gaggtgctgg gcaagggtcg 1080
cttcggccag gctatcaagg tacagagcat gccagggctt cagttggaca gtctgggtgg 1140
gaccctcca tcctccttcc ttcccagtct atggaaacac agtggaaagggtatctggct 1200
ttcagactcc ctggccagtg cccttcctc cttggcctc ctggagctaa ttaggaacag 1260
gg 1262

<210> 53
<211> 2518
<212> DNA
<213> Homo sapiens

<400> 53
ttagtaaatac gatacatcat acgcgcgcgc ctctggccgc ccctccctcc gacgatcg 60
gaccctggcg ggcggcagga ggacatggcc agcgacgcgg tgcaaggtga gcctcgacgc 120
tggccctgc tagagcagct gggctggcc gggcagacc tggcggcccc cgggtacag 180
cagcagctgg agctggagcg ggagcggctg cggcggaaa tccgcaagga gctgaagctg 240
aaggagggtg ctgagaacct gcggcggggcc accactgacc tggccgcag cctggggcccc 300
gtagagctgc tgctcgaaaa ctccctcgac cgcctcgacc tgctgcacca gcagctgc 360
gagctgcacg cccacgtggt gcttccgcac cggcggccca cccacgtgg cccccagtc 420
cctgggtgcgg gtggcccccac ctgctcgcc accaacctga gccgcgtggc gggcctggag 480
aagcagttgg ccattgagct gaaggtgaag cagggggcg agaacatgtat ccagacctac 540
agcaatggca gcaccaagga cggaaagctg ctgctgacag cccagcagat gttgcaggac 600
agtaagacca agattgacat catccgcatg caactccgccc gggcgtgca ggccgaccag 660
ctggagaacc aggcagcccc ggatgacacc caagggagtc ctgacctggg ggctgtggag 720
ctgcgcacatcg aagagctgcg gcaccacttc cgagtggagc acgcgggtggc cgaggggtgcc 780
aagaacgtac tgccgcctgct cagcgctgcc aaggccccgg accgcaaggc agtcagcgag 840
gcccaggaga aattgacaga atccaaccag aagctggggc tgctcgaaaa ggctctggag 900
cgagacttg gggagctgcc cgccgaccac cccaaaggggc ggctgtgcg agaagagctc 960
gctgcggccct cctccgcgtgc ctgcagcacc cgcctggccg ggcctttcc cgccacgcac 1020
tacagcaccc tgtgcaagcc cgcgcgcgc acagggaccc tggaggtacg agtgggtggc 1080

tgcaagagacc tcccagagac catccgtgg aaccctaccc cctcaatggg gggacctggg 1140
accccagaca gccgcacccccc cttcctgagc cgcccagccc ggggcctta cagccgaagc 1200
ggaaggcctca gtggccggag cagcctcaaa gcagaagccg agaacaccag tgaagtcagc 1260
actgtgctta agctggataa cacagtggtg gggcagacgt ctttggaaagcc atgtggcccc 1320
aatgcctggg accagagctt cactctggag ctggaaaggg cacgggaact ggagttggct 1380
gtgttctggc gggaccagcg gggcctgtgt gccctcaaat tcctgaagtt ggaggatttc 1440
ttggacaatg agaggcatga ggtgcagctg gacatggAAC cccagggtcg cctgggtcg 1500
gaggtcacct tccgcaaccc tgcattgag aggattcctc ggctccgacg gcagaagaaa 1560
attttctcca agcagcaagg gaaggcgttc cagcgtgcta ggcagatgaa catcgatgtc 1620
gccacgtggg tgcggctgct ccggaggctc atccccatg ccacgggac acggcacctt 1680
agccctgggg cttctccagg atccgaggcc cggaccacgg gtgacatatac ggtggagaag 1740
ctgaacctcg gcactgactc ggacagctca cctcagaaga gtcgcggga tcctccttcc 1800
agcccatcga gcctgagctc cccatccag gaatccactg ctcccgagct gccttcggag 1860
acccaggaga ccccaaggccc cgcctgtgc agccctctga ggaagtcacc tctgaccctc 1920
gaagatttca agttcctggc ggtgcgtggc cggggtcatt ttgggaaggt gctactctcc 1980
gaattccggc ccagtggggg gctgttcgcc atcaaggctc tgaagaaaagg ggacattgtg 2040
gccccgagacg aggtggagag cctgatgtgt gagaagcgga tattggcgac agtgaccagt 2100
gogggacacc cttcctgggt gaacctcttc ggctgtttcc agacaccgga gcacgtgtgc 2160
ttcgtgatgg agtactcggc cggtggggac ctgatgctgc acatccacag cgacgtgttc 2220
tctgagcccc gtgccatctt ttattccgcc tgccgcctgc caccgcctt tgtgcccacg 2280
ctgtccggcc gcaccgacgt cagcaacttc gacgaggagt tcaccggggg ggcacccaca 2340
ctgagcccgcc cccgcgacgc gcggccccc acagccgcgg agcaggcagc cttcctggac 2400
ttcgacttgc tggccggggg ctgctagccc cctccctgc ccctgcaccc gcccctgccc 2460
gagagctctt agttttaaa aaggccttg ggatttgcgg gatccttgca tcctcaaa 2518

<210> 54
<211> 1464
<212> DNA
<213> Homo sapiens

<220>
<221> -

<222> (1)..(1464)

<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 54

tgagtaaatc gatacatcat acgcgcgctc ctctggccgc ccctccctcc gacgatcgaa	60
gaccctggcg ggcggcagga ggacatggcc agcgacgccc tgcagagtga gcctcgccagc	120
tggccctgc tagagcagct gggcctggcc gggccagacc tggccggcccc cggggtaacag	180
cagcagctgg agctggagcg ggagcggctg cggcggaaa tccgcaagga gctgaagctg	240
aaggagggtg ctgagaacct gcggcgggcc accactgacc tggcccgccag cctggccccc	300
gtagagctgc tgctgcgggg ctccctcgcc cgcctcgacc tgctgcacca gcagctgcag	360
gagctgcacg cccacgtggt gcttcccgac cggcggcca cccacgatgg ccccccagtcc	420
cctgggtgcgg gtggcccccac ctgctcgcc accaacctga gcccgtggc gggcctggag	480
aagcagttgg ccattgagct gaaggtgaag cagggggcgg agaacatgat ccagacctac	540
agcaatggca gcaccaagga ccggaagctg ctgctgacag cccagcagat gttgcaggac	600
agtaagacca agattgacat catccgcattg caactccgcc gggcgctgca gggcaccag	660
ctggagaacc aggcaaaaaa ggatgacacc caagggagtc ctgacactggg ggctgtggag	720
ctgcgcacatcg aagagctgcg gcaccacttc cgagtgagc acgcgggtggc cgagggtgcc	780
aagaacgtac tgcgctgct cagcgctgcc aaggccccgg accgcaaggc agtcaagcgag	840
gcccaggaga aattgacaga atccaaccag aagctggggc tgctgcggga ggctctggag	900
cggagacttg gggagctgcc cgccgaccac cccaaggggc ggctgctgca agaagagctc	960
gctgcggccct cctccgctgc cttagcacc cgcctggccg ggccctttcc cgccacgcac	1020
tacagcaccc tgtgcaagcc cgccgcgctc acagggaccc tggaggtacg agtgggtggc	1080
tgcagagacc tcccagagac catcccgatgg aaccctaccc cctcaatggg gggacactggg	1140
acccccagaca gcccggggcc cttccctgagc cgcccgccccc ggggcctta cagccgaagc	1200
ggaaggcctca gtggccggag cagcctcaaa gcagaagccg agaacaccag tgaagtcagc	1260
actgtgctta agctggataa cacacactga gcccggcccg cgacgcgcgg cccctcacag	1320
ccgcggagca ggcaggccctc ctggacttcg acttcgtggc cgggggctgc tagccccctc	1380
ccctgccccct gcccctgccc ctgccccgaga gctcttagtt tttaaaaagg cctttgggat	1440
ttggccggatc cttgcacatcc caaa	1464

<210> 55

<211> 1080
 <212> DNA
 <213> Homo sapiens

<220>
 <221> -
 <222> (1)..(1080)
 <223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 55

ttggggactc attcctttat tccattagca agtattttct gcacatctgg cacatgcagg	60
gattgtcctg ggccctgcac agatggtaaa caatcagtcc tacctcccg gggcactcct	120
ggtgtgtgagg tagctccagg tccaaaaggt cacaagaggt catgttctcc agctgtggaa	180
gccccaggag agagggcaagg cgnncattgg ggtcaagcaa agcttctgg tggagggcag	240
gtttaagcat gagatgtttg agaaggtgtt cgctgaagag agaaatggtg ggcagaggct	300
tctgtgtgct actgacgtac ccatcaggac agtgagctct gctgccagtc aaggcctgca	360
tatgcagaat gacgatgcct gccttggtgc tgcttccccg agtgcgtgcct cctggtcaag	420
gagaagtgcgca gagagtaagg tgcctttagt ttggaaactc aagtggaaagg aagatttgg	480
ttggttttat tctcagagcc attaaacact agttcagttt gtgagatata gattctaaaa	540
acctcaggtg gctctgcctt atgtctgttc ctccatttctctcaagg gaaatggcta	600
aggtggcatt gtctcatggc tctcggtttt ggggtcatgg ggagggttagc accaggcata	660
gccacttttgc ccctgaggga ctccgtgtg cttcacatca ctgagcactc atttagaagt	720
gagggagaca gaagtctagg cccagggatg gctccagttg gggatccagc aggagaccct	780
ctgcacatga ggctggttta ccaacatcta ctccctcagg atgagcgtga gccagaagca	840
gctgtgtatt taaggaaaca agcgttcctg gaattaattt ataaattttaa taaatccaa	900
tataatccca gctagtgcatt tttccttatt ataatttgat aaggtgatta taaaagatac	960
atggaaggaa gtggaaccag atgcagaaga ggaaatgatg gaaggactta tggtatcaga	1020
taccaatatt taaaagtttgc tataataata aagagtatga ttgtggttca aggataaaaa	1080

<210> 56
 <211> 1665
 <212> DNA
 <213> Homo sapiens

<400> 56

tcgggctctg cgtctgcaca gatacttcga gtctccaagg agacttctgc ctgttcattt	60
ctgctgctgt cagtggcggtt gtgggggggt ggattttgaa tgcctctgg gtgggtctg	120

ggatcggtgc	aggaagggttc	taagggctca	ggagtgtag	tggcccaggc	acctgcccgtc	180
agcctgtctt	ctgtcggtccg	cctgtcggtgg	gcagccggag	aggcgccgagg	ccgtgggtggg	240
agccccaggac	cccactgagc	ccccacgcct	gtctcgccagc	ctgagcggtg	catccccgtt	300
cctggggcgag	accaagcagg	agacgctcac	caacatctca	gccgtgaact	acgacttca	360
cgaggaggat	ttcagcaaca	ccagcgagct	ggccaaggac	ttcattcgcc	ggctgctcg	420
caaagatccc	aagcggagaa	tgaccattgc	ccagagcctg	gaacattcct	ggattaaggc	480
gatccggcgg	cggaacgtgc	gtggtaggaa	cagcggccgc	aagcccggagc	ggcggcgcct	540
gaagaccacg	cgtctgaagg	agtacaccat	caagtcgcac	tccagcttgc	cgcccaacaa	600
cagctacgccc	gacttcgagc	gcttctccaa	ggtgctggag	gaggcggcgg	ccgcccggagga	660
gggcctgcgc	gagctgcagc	gcagccggcg	gctctgccac	gaggacgtgg	aggcgctggc	720
cgcacatctac	gaggagaagg	aggcctggta	ccgcgaggag	agcgacagcc	tgggccagga	780
cctgcggagg	ctacggcagg	agctgctcaa	gaccgaggcg	ctcaagcggc	aggcgccagga	840
ggaggccaag	ggcgcgctgc	tggggaccag	cggcctcaag	cggcgtttca	gccgcctgg	900
gaaccgctac	gaggcgctgg	ccaagcaagt	agcctccgag	atgcgcttcg	tgcaggaccc	960
cgtgcgcgccc	ctggagcagg	agaagctgca	gggcgtggag	tgcgggctgc	gctaggcgca	1020
gtgggggtggg	ccagggccca	ggacagccgg	agctcggcct	gcgggtgggg	cgcttcctgt	1080
ggacgctgcg	cctcccatcg	ccgggtgcc	tgtccttgcc	cagcgcacc	aggctggagg	1140
cggagtgaaa	ggagctggag	ccaggccgt	aagttcgag	gcaggggtgg	gtgtggacg	1200
gggctgcttc	tctacacagc	ctctacgctg	gccttcaccc	tcacccctgc	atcgctgggt	1260
accctgggac	cctccaggca	gcgtggcctg	tggcaccgtg	agggttggga	cccaccgagg	1320
cgcagaggcg	ccccgaatgc	agccctgggt	caggccgga	ggagggtttg	cgggttagttg	1380
cacggacaat	tcggcggggt	gctgcctgtt	gctgccatta	gcccaggagg	aggtcggtgg	1440
acggggaggg	tgggatggac	ggcggacagg	cagtccccac	gctgctgggt	ggcgccgggc	1500
ttgggtgggt	cttccactgt	gtgccttct	cgccgaggcc	ggtccccccgg	gtgtgggtg	1560
ccctgctgcg	gactcctccg	cgagccccat	cgtcgccct	gtggacgcct	aggcaagagc	1620
ggccctctgc	agccaagaga	aataaaatac	tggcttccag	ataaa		1665

<210> 57

<211> 2081

<212> DNA

<213> Homo sapiens

<400> 57
cctaaatcaa atagtagtag cttttaaaaa aattactaaa cttaatcaac actatttggaa 60
aagggggcta gagtcagata ttatgatca gatggcta gtcaggaa ttttagaaa 120
tccccttccc tacctccccca gaatgtaccc tacagccaaa gtctcagcag cctacaggaa 180
aggaggctga ggagcaccct acatcagctc ccctcaccctt ttccctgctg cctccaaccc 240
ctttatgggt ggtttccat ttcatctttt atttaggggt gagactgcac tgcacaaggc 300
tgccctgccag cggaaccggg ctgtgtgcca gcttctgggt gatgcaggag catctctgag 360
aaagacggac tccaagggtta agacacctca agaaagagca cagcaggctg gggacccaga 420
cttggctgct tacctagaaa gccgtcagaa ctataaggc attggccatg aggacctggaa 480
aactgctgtt tgaccctggat attcgggcaa agaggacatg agcaagcgta tcacatctgc 540
cctccctgca attgggcagc tcccctggaa gaagctgatg gaattcatat atctgtctct 600
ctccctgcaag attctacctg agaccatgcc actagctttt aagggttacc aagatgtaca 660
acagaacatg atagcccatt gagaaggagg caggataacctt ggagattgtt ggaatacagt 720
acgagttcca caaaatttga tccttattgc ttccagcaag tagcatgaac ttctgtgttc 780
acctgtataa tttatttaa agattcaaag gatgttcgta taaatggcac tgctccatcc 840
tccccctatg cattggtttt tttccctgtta ccatacaatt ctactgtAAC tacccatcaa 900
cttaaagaaa aatattatct cttcttttta cattcagtct tggaagacca caagattgtc 960
tgaaggcattt ctaaaacctt ctgaatgtcc tgcagaaata taactgtaaa accacttcca 1020
tttctaaagac taaatatac aagactatTTT agtgcacttc tctgcattgtc cccctcaccc 1080
gccaaccctc cgtttcatta tataggagctt gggaaatgtcc acatggataa tgtcaacttg 1140
tgtgtatctt ctctgaggaa tggtgagggtt gcatggaga tgtctgtgtt tggaggtacc 1200
tcagagaggtt aacccagggg tcagcccagg ctgctgggtt gtagccaata gccatgcagg 1260
actgggttcag ctggggctgtt ctgtacagctt ccgtactgcc tatgtgttagc catcttgc 1320
ttttgctgca atagaagatg agcaaaggat taaacagagg cccacagctt gtttgcagaa 1380
ccactcaattt ttaagtgtgtt tttaaattgtt agagcaaaata atcctgtgtt ggaactgtgg 1440
ttacaggaaa tggagcactc taacaatgtt tacttctaaa ctttgttggaa tgataataga 1500
aagcacccta attgacttgg aaaaaaaaaa cagcaaaagc aaaagtagca acatatgtca 1560
acatatgtca ctgaaatagg aaacagtcattt tggaatgttgc cacagaggctt aatagctatg 1620

gactgttgg	tacaggatac	agtggtgaga	ggagccccat	tttaggtctt	tcttttaggt	1680
ttttggttt	cattactcca	agtagccctt	gacccaagaa	caaaggctg	ttgtatgagt	1740
tccactgcc	gatttatggg	atgcctggat	cattcagaag	gatgcttcaa	ctattatttg	1800
tcaggtccaa	aggtcgtact	tgataacccc	attttctatg	tatgggtag	tctaataat	1860
tattttatct	actttatttt	tccctttca	gaaagtccctt	agtgc当地acc	accattggaa	1920
tctagtcaga	aatgtctgtc	agatagttag	aattgtaaaca	tctaaacctg	ccacggatcg	1980
aatggtactt	acaggtacct	ctcttaggga	ctctgtgatc	cctaaaat	cagaagaaaa	2040
tgtctgtctt	tctgtccaaa	tatctacttg	acttgggggt	a		2081

<210> 58
 <211> 1097
 <212> DNA
 <213> Homo sapiens

<400> 58	gcagccgc	atctacggc	aggcgc	tcggggctgt	gagcggctcg	gggc当地gggg	60
tgccggcgg	tgccggcggc	ggccgacgct	cctcttcggc	ggccggcggc	gcggccatgc		120
gtggggcgg	gcccgtggg	ccggccggcc	ggagttgcct	cccgccggcc	gcgtgagg		180
ccccggcgc	gcccggcgt	ctgcttcgc	ttgcgtgtt	gccgctgctg	cccgccgc		240
gcgtgcgc	cgccccggcc	ccgcggcccc	cgagactgca	gtcggcttcc	gcggggccca		300
gcgtgagtct	ctacctgagc	gaggacgagg	tgccggcgt	gatcggtctt	gatgcagaac		360
tttattatgt	gagaaatgac	cttattatgc	actacgctct	atcctttagt	ctgttagtac		420
ccagtgagac	aaatttcctg	cacttcac	ggcatgcgaa	gtccaagg	aatataagc		480
tgggattcca	agtggacaat	gttttggcaa	tggatatgcc	ccaggtcaac	atttctgttc		540
agggggaa	tccacgcact	ttatcagtgt	ttcgggtaga	gcttcctgt	actggcaaag		600
tagattctga	agttatgata	ctaattgc	tcaacttgac	agtaaattct	tcaaaaaatt		660
ttaccgtctt	aaattttaaa	cgaaggaaaa	tgtgctacaa	aaaacttgaa	gaagtaaaaa		720
cttcagcctt	ggacaaaaac	actagcagaa	ctatttatga	tcctgtacat	gcagctccaa		780
ccacttctac	gcgtgtgtt	tatattatgt	tagggttt	ttgtgcagta	atatttctcg		840
tagcaataat	attagctgtt	ttgcaccc	atagtatgaa	aaggattgaa	ctggatgaca		900
ggtattgtac	atatttggg	aaagaaaaaa	aatgaaagca	gttatttga	tatatgtggg		960
agcccataca	catctgatga	cagtggtgca	gggaaaggag	ggaggatgat	taagccccag		1020

ccaaaggaaa aataagatga cctaatcaact gtctctgggt tctctgaact tatttttatt	1080
ttttaaaaat taaggtc	1097
<210> 59	
<211> 3382	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> -	
<222> (1)..(3382)	
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'	
<400> 59	
gcagccgcat ctacggcagc cgcccccggc tcggggctgt gagcggctcg gggccgggggg	60
tgggcggcgg tgccgcggc ggccgacgct cctattcggc ggcggcggcg gcccgcatgc	120
gtggggcggc gcccgtgggg cggccggggcc ggagttgcct cccggggccc gcgctgaggg	180
ccccgcgcg gcccgcgcgctg ctgcttctgc ttgcgtgtt gcccgtgtg cccgcgcctg	240
gcccgtgcgc cggccggcc cccgcgcgcggc cggagctgca gtcggcttcc gggggggccca	300
gcccgtgcgc cggccggcc cccgcgcgcggc cggagctgca gtcggcttcc gggggggccca	360
tttattatgt gaaaaatgac cttattatgc actacgctct atccttttagt ctgttagtac	420
ccagtgagac aaatttcctg cacttcacct ggcatgcgaa gtccaaagggtt gaatataagc	480
tgggattcca agtggacaat gtttggcaa tggatatgcc ccaggtcaac atttctgttc	540
agggggaaatg tccacgcact ttatcagtgt ttccggtaga gctttcctgt actggcaaag	600
tagattctga agttatgata ctaatgcagc tcaacttgac agtaaattct tcaaaaaatt	660
ttaccgtctt aaattttaaa cgaaggaaaa tgtgtacaa aaaacttgaa gaagtaaaaa	720
cttcagccctt ggacaaaaac actagcagaa ctatttatga tcctgtacat gcagctccaa	780
ccacttctac gcgtgtgttt tatattatgt taggggtttg ttgtgcagta atatttctcg	840
tagcaataat attagctgtt ttgcacccctc atagttatgaa aaggattgaa ctggatgaca	900
gcatttagtgc cagcagtagt tcccaagggc tgtctcagcc atccacccag acgactcagt	960
atctgagagc agacacgcac aacaatgca ctcctatcac cagctcctag ttatcctacc	1020
ttgcggatag agaagaacga cttgagaagt gtcactctt tggaggccaa aggcaaggtg	1080
aaggatatacg caatatccag agagaggata actctaaaag atgtactcca agaaggtact	1140
tttggcgtt tttccatgg gatttaata gataaaaag atccaaataa agaaaaacaa	1200

gcatttgtca aaacagttaa agatcaagct tctgaaattc aggtgacaat gatgctact 1260
gaaagttgta agctgcgagg tcttcatcac agaaatcttc ttccttattac tcatgtgtgt 1320
atagaagaag gagaaaagcc catggtgata ttgcottaca tgaattgggg gaatctaaa 1380
ttgttttac gacagtgcaa gttagtagag gccaataatc cacaggcaat ttctcagcaa 1440
gacctggta acatggctat tcagattgcc tgtggaatga gctacctggc cagaaggaa 1500
gtcatccaca aagacctggc tgccaggaac tgtgttggc ctttggagtg acgctgtgg 1560
aactcatgac tctgggccag actccctacg tggacattga ccccttcgag atggccgcat 1620
acctgaaaga tggttaccga atagcccagc caatcaactg tcctgatgaa ttatttgctg 1680
tcatggccctg ttgctggcc tttagatccag aggagaggcc caagttttag cagctggta 1740
agtgcctaac agagtttcat gcagccctgg gggctacgt ctgactcctc tccaatccca 1800
caccatcagg aagaaggtgc ctgtcggggc tcacttgaag cctgtcaggg atgctttgt 1860
tctaacacaa cgccaaacaga agcacatttgc tcttccagaa caccgtgcct tagaaatgct 1920
ttagaatctg aactttttaa gacagactta ataatgtggc atatttctt gatattcattt 1980
ttatttagttt gaaactgaaag ggttttgtt aatttttgg cccaaatttt ttaaaacata 2040
cttactttgg actagggta cattcttaca aaataaataa acagttttta aaattgttt 2100
gacacagata tttggaaatta gctatcttag ggccaactgc tttttatttt tttacttcat 2160
caaggtgatg taagtgactt tgtagtgcata cagatatttgc gaatttagctt tcttagtgcc 2220
aactgctttt tattttttta cttcatcaag gtgatgttgc tgactcacct ttaaagtttt 2280
tttagtgttta ttttttatca ctactctggg aaatggtttgc tcttcaagat gcaataacttt 2340
tcttagtaaa ggaaaaaacag cataaaaaaga tacctggctc gccttgcata agaaaaggca 2400
atatttagagg aagaaaaattt aaagaaaaagc tagaggaaaa aaaaattttt ttaaaaatac 2460
ttatttagaag caaactgccc ttgcatggaa aactgtttat tttttcagt gaaaaggaaat 2520
tctgcttcg tgttttggg aaagcaggaa ctgagttcat tacatcttta atttggcaga 2580
aatttagcctt tctgtgaacc agatgtggc ttgggcagat ctgttagtaaa caatgggtat 2640
tttattttattt tttactctct gaaaaaggag ataatacaat tccagaaagt gaactcatat 2700
ttctcaagggtt aagattccct tttattgcac ctggaaatgt gctatgcaca gagcgggtgc 2760
tttagtgtt gtcgtttttt gtttgggg taaatgtaaa ctggtaaattt ttgtgcttat 2820
cttcaaggct ggcttaagta taaaattttt ttttaaacac ttgaaaaattt aaaggatttg 2880
ttttatatttta tgacagtattt gaaattttt ttcataatga atgattggtt attgtgtctg 2940

gtaagtcttt gaacattcaa cagccagaca tttgtgtttt atttcatgtat gttccagtca 3000
agttccaaag ccctaacaca gttaagctgg ctcagactcc aggttctagt aaaaagttgg 3060
aattaatgtt ataaggaagt attaaaacac tgaaacattt ctccagaacc agcaagtaag 3120
ggatatgtat gtatttatgc tcagtttag ttggcctaaa gcagagttga atgggctttc 3180
taaatagcta ggcctgcagg tacctgccac tactcccattc ttcagaggta tataagggag 3240
aatgtgttagc agtngagggc ttttgctgtt tttaaaaaag ccttatgaat cagcagcaca 3300
tcgggaaaaaa taggctcaca tagtacctgg gttttccaa gtaagccaag ggcattgattt 3360
ctgtggtaca ttttatttaa ca 3382

<210> 60
<211> 2195
<212> DNA
<213> Homo sapiens

<400> 60
ckwkkttaact tcagacatgg gacggctctt gtagttacag tggggcatta agtaagggtg 60
tgtgtgttgc tggggatctg agaagtcgtat cttttagctg agcgctggtg aaggagaaac 120
aagccatggaa aggaaagggtg ccaagtggc aggcgagagc ctccagggca aaggcattgg 180
gcaggtggaa atcctgattt gttcctgaaa ggttagttgg ctgaatcatt cctgagaagg 240
ctggagaggc cagcaggaaa caaaacccag caaggcattt tgtcgtgagg gcattaggga 300
gctggaggaa tttttagcag cagagggaca tagttgtgt tagtgtttga gcaccagccc 360
tctggcccc tttttagatt tagaggacca gactcaggaa tggggcttga gggaggtag 420
graaggaagg gggcttggaa tcattgcagg agctatgggg attccagaaa tttttagggaa 480
acggaggagt agggggtaaa caaggattcc tagcctggaa ccagtgcaca agtccctgagt 540
cttccaggac cacaggcagc cttaaagcctg gtcccccatac acaggctgaa gtggcagttc 600
cagcggctgt ccctgcggca gaggctgagg ccgaggtgac gctgcggag ctccagggaa 660
ccctggaggaa ggaggtgctc accccggcaga gcctgagccg ggagatggag gcatccgca 720
cggacaacca gaacttcgcc agtcaactac gcgaggcaga ggctcgaaac cggacactag 780
aggcacacgt ccggcagttt caggagcggaa tggagttgtc gcagggcagag ggagccacag 840
ctgtcacggg ggtccccagt ccccgccca cggatccacc ttcccatcta gatggcccc 900
cggccgtggc tttggggccag tgcccgctgg tggggccagg ccccatgcac cgccgcccacc 960
tgctgctccc tgccagggtc cctaggcctg gcctatcgaa ggctgtttcc ctgtcctgt 1020

tcggcggtt tctgtctcggt gcccggccccc tgggctgcatt tgggttgggt gcccacgccc 1080
 gccaactcac cgcaagtctgg cgccgcccag gagccgcccag cgctccctga accctagaac 1140
 tgtcttcgac tccggggccc cgtttggaaaga ctgagtgcggg ggggcacggc acagaagccg 1200
 cgcccaccgc ctgccagttc acaaccgctc cgagcgtggg tctccgccc gctccagtc 1260
 tgtgatccgg gcccggccccc tagcggccgg ggagggaggg gcccgggtccg cggccggcga 1320
 acggggctcg aagggtcattt gtagccggaa atgctgctgc tgctgctgt gctgctgctg 1380
 ctgctgggg gatcacagac catttctttc tttcgccag gctgaggccc tgacgtggat 1440
 gggcaaaactg caggcctggg aaggcagcaa gcccggccgt ccgtgttcca tcctccacgc 1500
 accccccacccat atcggtggtt cgcaaagtgc aaagcttct tggcatgac gcccgtct 1560
 ggggagcgtc tggcgatc tctgcctgt tactcggaa atttgcttt gccaaacccg 1620
 cttttcggg gatcccgccgc ccccttcctc acttgcgtc ctctcgagc cccagccggc 1680
 tcggcccgct tcggccggttt ggatatttat tgacctcgatc ctccgactcg ctgacaggct 1740
 acaggacccc caacaacccc aatccacgtt ttggatgcac tgagaccccg acattcctcg 1800
 gtattttattt tctgtccccca cctaggaccc ccaccccgaa ccctcgcgaa taaaaggccc 1860
 tccatctgcc caaagctytg gactccacag tggcccggtt ttgcgttgcgg 1920
 tccgcagcgg gccaatccgg aggagtgtgg aggccggccga aggtctggaa ggagctagcg 1980
 ggatgcgaag cggccgaatc agggttgggg gagaaaaagc cacggggcgg ggcttggcg 2040
 tccggccaat aggagggcga gcggggccacc cggaggcacc gccccccccc agctgtggcc 2100
 cagctgtgcc accgagcgatc gagaagaggg ggctgggtcg gcagcgcgcg cggccatcct 2160
 cttccactg cgcctgcgca cgccacgcgcg atcccg 2195

<210> 61
 <211> 1662
 <212> DNA
 <213> Homo sapiens

<400> 61
 ckwkttact tcagacatgg gacggtctct gtagttacag tggggcatta agtaagggtg 60
 tgtgtgtgc tggggatctg agaagtcgtat ctttggatctg agcgctgggtg aaggagaaac 120
 aagccatggaa aggaaagggtg ccaagtggtc aggccagagc ctccaggggca aaggcattgg 180
 gcaggtggaa atcctgattt gttcctcagt caactacgcg aggcagaggg tcggaaaccgg 240
 gaccttagagg cacacgtccg gcagttgcag gagcggatgg agttgctgca ggcagaggga 300

gccacagctg	tcacgggggt	ccccagtccc	cgggccacgg	atccacccccc	ccatctagat	360
ggccccccgg	ccgtggctgt	gggccagtgc	ccgatggtgg	ggccaggccc	catgcaccgc	420
cgcacactgc	tgctccctgc	cagggccct	aggcctggcc	tatcgagggc	gcttccctg	480
ctccctgttcg	ccgttggct	gtctcgtgcc	gccgcctgg	gctgcattgg	gttggtgccc	540
cacgcccggcc	aactcaccgc	agtatggcgc	cgcccaggag	ccgccccgcgc	tccctgaacc	600
ctagaactgt	cttcgactcc	ggggcccccgt	tggaagactg	agtgcggcgg	gcacggcaca	660
gaagccgcgc	ccaccgcctg	ccagttcaca	accgctccga	gcgtgggtct	ccgcccagct	720
ccagtcctgt	gatccgggccc	cgccccctag	cggccgggg	gggagggggc	gggtccgcgg	780
ccggcgaacg	gggctcgaag	ggtccttgta	gccgggaatg	ctgctgctgc	tgctgctgct	840
gctgctgctg	ctggggggat	cacagaccat	ttctttcttt	cggccaggct	gaggccctga	900
cgtggatggg	caaactgcag	gcctgggaag	gcagcaagcc	ggggcggtccg	tgttccatcc	960
tccacgcacc	cccacctatac	gttggttcgc	aaagtgcaaa	gctttcttgt	gcatgacgcc	1020
ctgctctggg	gagcgtctgg	cgcgcgtct	gcctgcttac	tcgggaaatt	tgctttgcc	1080
aaacccgctt	tttcggggat	cccgccccc	cctcctca	tgcgctgctc	tcggagcccc	1140
agccggctcc	gcccgcctcg	gcgggtttgga	tatttattga	cctcgtcctc	cgactcgctg	1200
acaggctaca	ggaccccaa	caacccaaat	ccacgtttt	gatgcactga	gaccccgaca	1260
ttcctcggt	tttattgtct	gtccccac	aggacccca	ccccgaccc	tcgcaataa	1320
aaggccctcc	atctgcccaa	agctytggac	tccacagtgt	ccgcggttt	cggtgtgggc	1380
cggaggctcc	gcagcgggccc	aatccggagg	cgtgtggagg	cggccgaagg	tctgggagga	1440
gctagcggga	tgcgaagcgg	ccgaatcagg	gttggggag	gaaaagccac	ggggcggggc	1500
tttggcgtcc	ggccaatagg	agggcgagcg	ggccacccgg	aggcaccgc	cccgcccagc	1560
tgtggccca	ctgtgccacc	gagcgtcgag	aagagggggc	tgggctggca	gcgcgcgcgg	1620
ccatcctcct	tccactgcgc	ctgcgcacgc	cacgcgcac	cg		1662

<210> 62
 <211> 1149
 <212> DNA
 <213> Homo sapiens

<400> 62	gggcattccgt	acttaatga	ctatgtata	tgcactcag	gactatactg	taacttattt	60
	aggatcttc	ggcctttagg	ttatttatag	tatggctg	ttgtaaaatg	actttcatat	120

agctgtctta ggcataatat ttgtctgct ctaattattt ccttctaggt ttgtacaagt 180
gtgattatta gttaaaaacat acttggcata cctccagaag ccagggcaact tggtagttta 240
tgattgcacc aggtttcag gttaagtcta taaataatga agagaggaag gaacatagaa 300
ctgccaacta gaagtaaaca ggctcgtgat ctggtgacct gagcgactct gaatgcttgc 360
tgagtcctag ttggcatcta ggttggttcc catgttgag agacgaggat ggtgaattta 420
agccatgaag actttgaatt tatttcagga acacgaatgc gcaaacttgc tcgagaaggc 480
cagaaaccac ctgaaggttt catggctccc aaggcttgg a cctgctgac agaataactac 540
aaatccttgg agaaagctta ggctgttaac ccagtcactc caccttgac acattactag 600
taacaagagg ggaccacata gtctctgtg gcatttctt gtgggtctg tctggacatg 660
cttcctaaaa acagaccatt ttccttaact tgcatcagtt ttgggtctgcc ttatgagttc 720
tgtttgaac aagtgtaca cactgatggt tttaatgtat cttttccact tattatagtt 780
atattcctac aatacaattt taaaattgtc tttttatatt atattatgc ttctgtgtca 840
tgatttttc aagctgttat attagttgta accagtagta ttcacatcaa atcttgcttt 900
ttttccctt aaaaaaaagaa aaaaattacc aaacaataaa cttggctaga ccttgggg 960
aggattttac aagacctttg tagcgattag atttttttc tacattgaaa atagaaactg 1020
cttcctttct tctttccagt cagctattgg tcttccagc tggtataatc taaagtattc 1080
ttatgatctg tgtaagctct gaatgaactt cttaactcaa taaaattaat ttttggctt 1140
cttaaaaata 1149

<210> 63
<211> 1461
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(1461)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 63
ccgcttcggg gaggaggacg ctgaggaggc gccgagccgc gcagcgctgc gggggaggcg 60
cccgcgccga cgccccccccc atggccagga ccaccagcca gctgtatgac gccgtgccca 120
tccagtcag cgtgggttta tggttcctgcc catccccatc aatggtgagg acccagactg 180
agtccagcac gccccctggc attcctggtg gcagcaggca gggccccgcc atggacggca 240

ctgcagccga gcctcgcccc ggccggcgtt ccctgcagca tgcccagcct ccgcgcagc 300
 ctcggaagaa gcggcctgag gacttcaagt ttggaaaat cttggggaa ggctttttt 360
 ccacggttgt cttggctcga gaactggcaa cctccagaga atatgcgatt aaaattctgg 420
 agaagcgaca tatcataaaa gagaacaagg tccctatgt aaccagagag cgggatgtca 480
 tgtcgccct ggatcacccc ttctttgtta agctttactt cacatttcag gacgacgaga 540
 agctgtattt cggcccttagt tatgccaaaa atggagaact acttaaatat attcgcaaaa 600
 tcggttcatt cgatgagacc tgtacccgat tttacacggc tgagatttg tctgctttag 660
 agtacttgca cggcaagggc atcattcaca gggaccttaa accggaaaac attttgtaa 720
 atgaagatat gcacatccag atcacagatt ttggaacagc aaaagtctta tccccagaga 780
 gcaaacaagt ttgttgaaga aacaagtcat ttgcattctgt gtggcggtt tgaacatgg 840
 cctcttcctt ggccactaca tcacatttcag agttgattct cccctccctg ttcagagact 900
 ggtgggtgggt gttctttatc cggcatctct ctgtgacagc agcagcattt gtggccataa 960
 ttggcctaaa ttcatgaact cattagagag tgcagaaagg tcacagcctg atacattcat 1020
 gagatgcaat tcattaaaga gcaacttctc cccagcaact tttgggtttg actcgtggta 1080
 tcatttcctt ccgcgagggtc tttgttaatc accagcttgc cgtgtctcag gtagttcagc 1140
 acaggcccaa agtaggtggg gtctctgtcg attaaatagg cgcctgttcc atcctgccc 1200
 aggagggaaa gatccccag cncgccatgc ctctaagatg ggtgaggaga ggtggccagg 1260
 aagccagcgg gatgctgcgg gccgggcgtg ggggtgctct tcttcctgcg ggccggcgt 1320
 gagggtgctc ttcttccac gggcgaaaaag tggggttgct cttttcactg cgggtggggt 1380
 gtgggggtgc tcttccttctt cttccctggct ttcccgtgtg tcccacggct tacacaacca 1440
 gcacagntgc gtcgattct c 1461

<210> 64
 <211> 765
 <212> DNA
 <213> Homo sapiens

<400> 64
 ctcaaataca catcacaaaa caaattttctt ctattatttg ggctgagtca tcactagaga 60
 gtgggaaggg cagcagcagc agagaatcca aaccctaaag ctgatatac aaagtaccat 120
 ttctccaagt tggggctca gaggggagtc atcatgagcg atgttaccat tgtgaaagaa 180
 ggttgggttc agaagagggg agaatatata aaaaactgga ggccaaagata cttcctttg 240

aagacagatg gtcattcat aggatataaa gagaaacctc aagatgtgga tttaccttat 300
cccccaaca actttcagt ggcaagtagt gttatgttca gatatttgcga aatttaacc 360
ttaaaccagg tttagaattt ggaatggaga aaaccttgc aaaaattatt ttaaaatgag 420
atcattttta agaaaactat aatgtaaacaa tgcacatat ttccttctc aggctccat 480
tcaaatcata ctccaatttgc aaaaagaacaa aaattccaca aaacgttcat tcttcctac 540
ttttcctta cgttgcacaa caaatgtgga aagaaaaaaa aaacagaaaa agtgtatccc 600
atcttaatga aaatgactgc ggcagtcaag agttcaaat ccagctgcca ggggtgaaag 660
caaccctctg catctctgaa agatttcatc agtgttatct cctttataat cataactttt 720
catgtgtatc atctgagttt cttattaaat aatctcacta taaaa 765

<210> 65
<211> 968
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(968)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 65
ctcaaataca catcaccaaa caaattttct ctattatttgc ggctgagtca tcactagaga 60
gtgggaaggg cagcagcagc agagaatcca aaccctaaag ctgatatcac aaagtaccat 120
ttctccaagt tgggggctca gaggggagtc atcatgagcg atgttaccat tgtgaaagaa 180
ggttgggttc agaagagggg agaataatata aaaaactgga ggccaagata cttcctttgc 240
aagacagatg gtcattcat aggatataaa gagaaacctc aagatgtgga tttaccttat 300
cccccaaca actttcagt ggcaaaatgc cagttaatga aaacagaacg accaaagcca 360
aacacatttta taatcagatg tctccagtttgc actactgtta tagagagaac atttcatgtat 420
gatactccag aggaaaggaa agaatggaca gaagctatcc aggctgtgc agacagactg 480
cagaggcaag aagaggagag aatgaattgt agtccaaactt cacaaatttgc taatataggaa 540
gaggaagaga tggatgcctc tacaacccat cataaaagaa agacaatgaa tgattttgac 600
tatttgcacaa tacttaggtaa aggcactttt gggaaagtta ttttgggtcg agagaaggca 660
agtggaaaat actatgctat gaagattctg aagaaagaag tcattattgc aaaggtaact 720
gatttattaa agttgattac taaattttgc tttgcagtgt gcatgtgtt gtgggctcat 780

gaatttacat gctaattgtat gcaaattcca ttaaacaacc naaatatggt tgnagactac 840
tgctacagta attttgtgt attaatattt gtaatttttta aagtttcag acattcataa 900
tatttgtata ttatatacta aagctattct cttaaaggaaa tagaaatgtt tatgtttgca 960
tgtttggg 968

<210> 66
<211> 2410
<212> DNA
<213> Homo sapiens

<400> 66
tgggggggaa acctgcaaat cggatgatgc catacccttt tccttctggt actggaaggt 60
taaatgggta gcaaggcagaa atgccttaaa ccaaggattg gtatattgtat taaaacgctg 120
attnaacagc tcgcagttc cccttggaaa cctggaaaag ataagccagc tgctgtctaa 180
gagtgctcag tgtccactga gactacacta tctatcatca caatatggtg atgagaggtg 240
tttatgttt gtgttaattt cccccactaa atcagtaatt attacaatcc tgtccctgct 300
gtttaccctg cagctgtttt tccatttgc gagagagcgg gtgttctctg aggaccgcac 360
acgtttctat ggtgcagaaa ttgtctctgc cttggactat ctacattccg gaaagattgt 420
gtaccgtgat ctcaagttgg agaatctaatt gctggacaaa gatggccaca taaaattac 480
agattttgga ctttgc当地 aagggatcac agatgcagcc accatgaaga cattctgtgg 540
cactccagaa tatctggcac cagaggtttt agaagataat gactatggcc gagcagtaga 600
ctggggggc ctaggggttg tcatgtatga aatgatgtgt gggaggtac ctttctacaa 660
ccaggaccat gagaaacttt ttgaattaaat attaatggaa gacattaaat ttcctcgaac 720
actctcttca gatgcaaaat cattgcttc agggctcttgc ataaaggatc caaataaaacg 780
ccttgggtggaa ggaccagatg atgcaaaaga aattatgaga cacagttct tctctggagt 840
aaactggcaa gatgtatatg ataaaaagct tgtacctcct tttaaacctc aagtaacatc 900
tgagacagat actagatatt ttgatgaaga atttacagct cagactatta caataacacc 960
acctgaaaaaa tatgatgagg atggatggaa ctgcattggac aatgagagggc ggccgcattt 1020
ccctcaattt tcctactctg caagtggacg agaataagtc tctttcatttgc tgctacttca 1080
ctgtcatctt caatttatta ctgaaaatga ttccctggaca tcaccaggcc tagctttac 1140
acatagcagg ggcacccctcc gacatcccag accagccaaag ggtcctcacc cctcgccacc 1200
tttcaccctc atgaaaacac acatacacgc aaatacactc cagttttgtt ttttgcattga 1260

aattgtatct cagtctaagg tctcatgctg ttgctgctac tgtcttacta ttatagcaac 1320
tttaagaagt aattttccaa cctttggaag tcatgagccc accattgttc atttgcac 1380
caattatcat ctittgatct ttagtttt ccctcagtga aggctaaatg agatacactg 1440
attctaggta catttttaa ctttctagaa gagaaaaact aactagacta agaagattt 1500
gtttataaat tcagaacaag caattgtgga agggtgtgg cgtgcataatg taaagcacat 1560
cagatccgtg cgtgaagtag gcatatatca ctaagctgtg gctggaattt attaggaagc 1620
atttggtaga aggactgaac aactgttggg atatatatat atatatataa ttttttttt 1680
ttaaattcct ggtggatact gtagaagcag cccatatcac atgtggatgt cgagacttca 1740
cgggcaatca tgagcaagtg aacactgttc taccaagaac tgaaggcata tgcacagtca 1800
aggtcactta aagggtctta tgaaacaatt tgagccagag agcatcttc ccctgtgctt 1860
ggaaaccttt tttccttctt gacatttatac acctctgatg gctgaagaat gtagacaggt 1920
ataatgatac tgctttcac caaaatttct acaccaaggt aaacaggtgt ttgccttatt 1980
taattttta ctttcagttc tacgtgaatt agcttttct cagatgttga aactttgaat 2040
gtcctttat gatttggttt atattgcagt agtatttatt ttttagtgtat gagaattgt 2100
tgtcatgtta gcaaacgcag ctccaactta tataaaatag acttactgca gttactttg 2160
acccatgtgc aaggattgta cacgctgatg agaatcatgc actttttctc ctctgttaaa 2220
aaaaatgata aggctctgaa atggaatata ttggtagaa tttggctttg ggagaagaga 2280
tgctgccatt taacccttg gtactgaaaa tgagaaaatc cccaaactatg catgccaagg 2340
ggtaatgaa acaaatacgatc gttgacgttt gtcatttaa gaatttggaa cgttatgtat 2400
acctggcaac 2410

<210> 67
<211> 798
<212> DNA
<213> Homo sapiens

<400> 67
gcgcgcggct ccgatggaa gcatgaccgg ggtggcggga caagacttgc ttccggcca 60
cgcgcgctcg gccggccgtg gggcgggca taggcgtgac gtgggtgcgtc gtatcgagtc 120
tccgccccct tcccgctcc ccgtatataa gacttcgccc agcactctca ctgcacaag 180
tggaccgggg tgttgggtgc tagtcggcac cagaggcaag ggtgcgagga ccacggccgg 240
ctcggacgtg tgaccggcgc tagggggtgg cagcggcag tgcggggcgg caaggcgacc 300

atggagctt tgcggactat cacctaccag ccagccgcca gcacaaaaat gtgcgagcag 360
gcgctggca agggttgcgg agggaaactcg aagaagaagc ggccgcccga gccccccgag 420
gaatgcgcgc cacctcagtc ccaggcgcaa gtgcccccg cgccccctca ccaccatcac 480
caccattcgc actcggggcc ggagatctcg cggattatcg tcgacccac gactggaaag 540
cgctactgccc gggcaaagt gctggaaag ggtggcttg caaatgtta cgagatgaca 600
gatttgcacaa ataacaaagt ctacgcccga aaaattattc ctcacagcag agtagctaaa 660
cctcatcaaa gggaaaaggt gtgtatgact cttgagtaaa gtattttctt tgttgcaag 720
gatggccctt ccctgttagg aaaatgtctt ctgcatgtgt aatcaactggc tttccgagg 780
tgactggaag ctaataag 798

<210> 68
<211> 877
<212> DNA
<213> Homo sapiens

<400> 68
gogcgccgct ccgatggaa gcatgaccccg ggtggccggca caagacttgc ttccggcca 60
cgcgcgctcg ccggccgtg gggcgccccca taggcgtgac gtgggtgcgtc gtatcgagtc 120
tccggccccat tccggccctcc ccgtatataa gacttcgcgg agcactctca ctgcacaag 180
tggaccgggg tggatgggtgc tagtcggcac cagaggcaag ggtgcgagga ccacggccgg 240
ctcggacgtg tgaccggcc taggggggtgg cagcggcag tgccggccgg caaggcgacc 300
atggagctt tgcggactat cacctaccag ccagccgcca gcacaaaaat gtgcgagcag 360
gogcgccgca agggttgcgg agggaaactcg aagaagaagc ggccgcccga gccccccgag 420
gaatgcgcgc cacctcagtc ccaggcgcaa gtgcccccg cgccccctca ccaccatcac 480
caccattcgc actcggggcc ggagatctcg cggattatcg tcgacccac gactggaaag 540
cgctactgccc gggcaaagt gctggaaag ggtggcttg caaatgtta cgagatgaca 600
gatttgcacaa ataacaaagt ctacgcccga aaaattattc ctcacagcag agtagctaaa 660
cctcatcaaa gggaaaagat tgacaaagaa atagagcttc acagaattct tcatacataag 720
catgtatgc agtttacca ctacttcgag gacaaagaaa acatttacat tctttggaa 780
tactgcagta gaagggttaag tgtcaactcc tatttgagaa catttgctta ccccgaaat 840
acatggatt caaagagtat tttatctggg attaccc 877

<210> 69
<211> 1349
<212> DNA
<213> Homo sapiens

<400> 69
gccccggcgt ccgatggaa gcatgacccg ggtggcgaa caagacttgc ttcccgccca 60
cgccgcgtcg gccggccgtg gggcgggca taggcgtgac gtgggtgcgtc gtatcgagtc 120
tccggccccc tccccctcc ccgtatataa gacttcgccc agcactctca ctcgcacaag 180
tgaccgggg tggtgggtgc tagtcggcac cagaggcaag ggtgcgagga ccacggccgg 240
ctcggacgtg tgaccgcgcc tagggggtgg cagcgccag tgcggggcgg caaggcgacc 300
atggagctt tgcggactat cacctaccag ccagccgcca gcacccaaat gtgcgagcag 360
gcgcgtggca agggttgcgg agggaaactcg aagaagaagc ggccgcccga gccccccgag 420
gaatcgccgc caccctagtc ccaggcgcaa gtgcggccgg cggccctca ccaccatcac 480
caccattcgc actcggggcc ggagatctcg cggattatcg tcgacccac gactggaaag 540
cgctactgccc gggcaaaagt gctggaaag ggtggcttg caaatgtta cgagatgaca 600
gatttacaaa ataacaaagt ctacgcccga aaaattatttc ctcacagcag agtagctaaa 660
cctcatcaaa gggaaaagat tgacaaaagaa atagagcttc acagaattct tcatacataag 720
catgttagtgc agtttacca ctacttcgag gacaaagaaa acatttacat tctcttgaa 780
tactgcagta gaaggctaca gggaaagccaa aagaatgtc tagagtatgt tgaagaagat 840
ggacatgtgg tggtacgaaa acaattcccc tgtggcctgc tggactgggt ggaaccagaa 900
caggctaagg catacagtcc ttgactttgg acaatccaag agtgaaccag aatgcagttt 960
tccttgagat acctgtttta aaagggtttt cagacaattt tgcagaaagg tgcattgatt 1020
cttaaattct ctctgttgag agcatttcag ccagaggact ttgaaactgt gaatatactt 1080
cctgaagggg agggagaagg gaggaagctc ccatgttggtaaaaggctgt aattggagca 1140
gctttggct gcgttaactgt gaactatggc catatataat ttttttcat taatttttga 1200
agataacttgt ggctggaaaa gtgcattcct tgttaataaa ctttttattt attacagccc 1260
aaagagcagt atttattatc aaaatgtctt ttttttatg ttgaccattt taaaccgttg 1320
gcaataaaga gtatgaaaac gcagaaaaaa 1349

<210> 70
<211> 538
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(538)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 70
ggtcgggtggc gtttctctctt ggcccgagcc agcatgatcc gctggggccc cagcgcatct 60
ccttggaaagag cccactcacc ctggacgagc tttcggttag cctcagacccg tccttgaaga 120
ggatgactga gacattatgg gccacgcgt gtgtgtctgc tctggggaa ctgtcatcat 180
tgacaataag cgctacccctt tcattccagaa actgggggag ggtgggttca gctatgtgga 240
cctagtggaa gggttacatg atggacactt ctacgcctg aagcgaatcc tgtgtcacga 300
gcagcaggac cgggaggagg cccagcgaga agccgacatg catgcctctt tcaatcaccc 360
caacatcctt cgcctcgtgg cttaactgtctt gaggaaacgg ggtgctaagc atgaggcctg 420
gctgctgcta ccattttca aggtcagaaa gactcctgtt tatggagggg gttgcagcag 480
agccacccatc tcaagggttg tgtgagcagt ccagcatgtt aggaagcagg gaccatgt 538

<210> 71
<211> 3308
<212> DNA
<213> Homo sapiens

<400> 71
gcagaggccg ggctgagacg tggccagggg aacacggctg gctgtccagg ccgtcgggc 60
ggcagtaggg tccctagcac gtccttgctt tttgggagc tccaagcgcc gggagaggca 120
ggcgtagtg gctgcgcctc catgcctgctg cggggggcgg gacgctgatg gagcgccca 180
tcagcccccggg gctgctggta cggcgctgc tgctgctgtt gctgctgggg ctcgcggcaa 240
ggacgggtggc cgccggggcgc gcccgtggcc tcccagcgcc gacggcggag gcccgttgc 300
gcctcggggc ggccgctgtt cccacccatcg cgacgcgagt accggcggcgg ggcgcgttgc 360
ctgcggccga ggtgactgtg gaggacgctg aggcgcgttgc ggcagccgcg ggagagcagg 420
agcctcgggg tccggaaacca gacgatgaga cagagttgcg accgcgcggc aggtcattag 480
taattatcag cacttttagat gggagaatttgc ctgccttgaa tcctgaaaaat catggtaaaa 540
agcagtggga tttggatgtg ggatccgggtt cttgggtgtc atccagcctt agcaaaccag 600
aggtatgggaaataagatg atcattccctt ccctggatgg agcccttcc cagtggacc 660
gagaccgtga aagcatggaa acagttccctt tcacagttga atcacttctt gaatcttctt 720

ataaatttgg agatgatgtt gtttggttg gagaaaaatc tctgactaca tatggactca 780
gtgcataatag tggaaagggtg aggtatatct gttcagctct gggttgtcgc caatggata 840
gtgacgaaat ggaacaagag gaagacatcc tgcttctaca gcgtacccaa aaaactgtta 900
gagctgtcgg acctcgcagt ggcaatgaga agtggaaattt cagtgttggc cacttgaac 960
ttcggtatat tccagacatg gaaacgagag ccggatttat taaaagcacc tttaagccca 1020
atgagaacac agaagagtct aaaatttattt cagatgtgga agaacaggaa gctgccataa 1080
tggacatagt gataaagggtt tcggttgctg actggaaagt tatggcattc agtaagaagg 1140
gaggacatct ggaatggag taccagttt gtactccat tgcattcgcc tggttactta 1200
aggatggaa agtcattccc atcagtctt ttgatgatac aagttataca tctaattgt 1260
atgttttaga agatgaagaa gacattgtag aagctgccag aggagccaca gaaaacagtg 1320
tttacttggg aatgtataga ggccagctgt atctgcagtc atcagtcaga atttcagaaa 1380
agtttccttc aagtcccaag gctttggaaat ctgtcactaa tggaaacgcatttatttcattt 1440
taccaacaat caaatggaaa cccttaattt atttccttc cagaactcct gtcttggtag 1500
gatctgatga atttgacaaa tgtctcagta atgataagtt ttctcatgaa gaatatagt 1560
atgggtcact ttcaatcttg cagtatccat atgataatgg ttattatcta ccatactaca 1620
agagggagag gaacaaacga agcacacaga ttacagtcag attcctcgac aaccacatt 1680
acaacaagaa tatccgcaaa aaggatcctg ttcttctttt acactggtagg aaagaaaatag 1740
ttgcaacgat tttgtttgt atcatagcaa caacgtttat tgtgcgcagg ctttccatc 1800
ctcatcctca caggcaaagg aaggagtctg aaactcagtg tcaaactgaa aataaatatg 1860
attctgtaaatggtaagcc aatgacagta gctgaaatga cataaaaaac tctggatata 1920
tatcacgata tctaactgat tttgagccaa ttcatgtgcct gggacgtgg ggctttggag 1980
ttgtttttga agctaaaaac aaagtagatg actgcaatta tgctatcaag aggatccgtc 2040
tccccaaatag ggaattggct cgggaaaagg taatgcgaga agttaaagcc ttagccaaagg 2100
ttgaacaccc gggcattgtt agatatttca atgcctggct cgaagcacca ccagagaagt 2160
ggcaagaaaa gatggatgaa atttggctga aagatgaaag cacagactgg ccactcagct 2220
ctccttagccc aatggatgca ccatcagtttta aaatacgcag aatggatcct ttctctacaa 2280
aagaacatata taaaatcata gtccttcac cacaagaag caggtctttt tcagtagggaa 2340
tttcctgtga ccagacaagt tcatctgaga gccagttctc accactggaa ttctcaggaa 2400
tggaccatga ggacatcagt gagtcagtggtt atgcagcata caacctccag gacagttgcc 2460

ttacagactg tgatgtggaa gatgggacta tggatggcaa tgatgagggg cactccttg 2520
aactttgtcc ttctgaagct tctccttatg taaggtcaag ggagagaacc tccttcaa 2580
tagtatttga agattctggc tgtgataatg cttccagtaa agaagagccg aaaactaatc 2640
gattgcata tggcaaccat tgtgctaata aactaactgt aactgtattg ttctagaaat 2700
atgctttcta gagatatgat gatttgaaa ctgatttcta gaaaaagctg actccatttt 2760
tgtccctggc gggtaaatta ggaatctgca ctatttgaa ggacaagtag cacaaactgt 2820
ataacggttt atgtccgtag ttttatagtc ctattttag cattcaatag ctttattcct 2880
tagatggttc tagggtgggt ttacagctt ttgtactttt acctccaata aaggaaaaat 2940
gaagctttt atgtaaattt gttgaaaggct ctagtttgg gaggaaaaaa gccgtagtaa 3000
gaaatggatc atatatatta caactaactt cttcaactat ggactttta agcctaata 3060
aatcttaagt gtcttatatg taatcctgta ggttggtaact tcccccaaac tgattatagg 3120
taacagtttta atcatctcac ttgctaacat gtttttattt ttcactgtaa atatgtttat 3180
gttttatttta taaaaattct gaaatcaatc catttgggtt ggtgggtac agaacacact 3240
taagtgtgtt aacttgtgac ttcttcaag tctaaatgat ttaataaaaac tttttttaaa 3300
ttaaaaaaa 3308

<210> 72
<211> 3503
<212> DNA
<213> Homo sapiens

<400> 72
gaattccggg agcccgccga ggctgctgca gcagcccgaa ccggcgtccg agtccgggga 60
aggccccccgc gagcgcaggg aggggcccga aagttccggc gaactggggg agcggcagtg 120
ggagagcgtc gggcgggagg cggtggtctt gggagcggcc ccggcgcggc aagccgcccc 180
gagctggtgg ggagggtccc ggccgggtggg gccgggctgg cgggggaggg ggcctgggg 240
gtgcaagagg cgaattggct gcccgggtg caggagggac aggtggtgcg ggctgtcagg 300
aaacctacctt gaacgggaag gagccccagg agggagaggg acccggcgag ggctcaggac 360
ccggaggcgc cggcggagga ggaggtggtg actggcaggc ccggggccca cggtaacctcc 420
ggggctgaag gggacgcagg atgtaggggc atggggagtc gggcgcagaa gagtgccgggg 480
aacgctgagc tctgggagcc actgcctgag ggcaggccgc ggccggcggg aacctttct 540
gccgtctcag cctgggcgtc gctgaagctg tgtctgcggg gaggcagcgg aaggcggcag 600

aggctgggag gcggcagaat gcagccagag gaggggcaca ggctggctgc tggagctgct 660
gtccgaggtg cagctgcaac agtacttctg cggctccgag atgacctcaa cgtcaccgc 720
ctgtcccact ttgagtatgt caagaatgag gacctggaga agatcggcat gggtcggcct 780
ggccagcggc ggctgtgggaa ggctgtgaag aggaggaagg ctttgtaaa acgcaagtcg 840
tggatgagta aggtgttcag tggaaagcga ctggaggctg agttcccacc tcatactct 900
cagagcacct tccggaagac ctcgcccggc cctgggggccc cagcaggggaa gggggccctg 960
cagagcctca cctgcctcat tggggagaag gacctgcgcc tcctggagaa gctgggtgat 1020
ggttcccttg gcgtggtgcg cagggcgcag tgggacgcgc ctcagggaa gacggtgagc 1080
ccacctcagc ctgcyytttt cactcagaaa ccaacctatg accctgtgag cgaggaccaa 1140
gacccttgc ccagcgactt caagaggctg ggcctgcgga agccaggcct gccccgaggg 1200
ctgtggctgg cgaaggccctc ggccgggtg ccgggacca aggccagccg aggccagcggg 1260
gctgaggtca cgctcatcga ctccggtgag gagccctgtgg tcccgccct acggccctgc 1320
gcgcctccccc tggcgagct ggcattggac gcctgctccc tgctggacga gaccccgccct 1380
cagagccccca cgccggcact gccccggccc ctgcacccca cgcctgtggt ggactgggac 1440
gcacgcccgc tgcccccccccc gcccgcctat gacgacgtgg cccaggatga ggatgacttt 1500
gagatctgct ccatcaacag caccctcggt ggcgcggggg tccctgcggg gcccagccag 1560
ggccagacca actacgcctt tgtgcctgag caggcgccgc cgcccccctcc cctggaggac 1620
aacctgttcc tcccgccccca gggtgggggc aagccgccta gtcggcaca gaccgcagag 1680
atcttccagg cgctacagca ggagtgcattt aggcaactgc aggctccggc cggctcccg 1740
gcccccttc ccagcccggg gggtgacgac aagccccagg tgccctctcg ggtacccatc 1800
ccccctcggt ccacgcgcac acacgtccag ctgtctccag cccccccggg cgaggaggag 1860
accagccagt ggcctggacc tgcttccct ccccggtgc ctccgcggga gcccctgtcc 1920
cctcaaggct cgaggacacc cagccccctg gtaccacctg gcagctccccc gctgccaccc 1980
cggtctcaa gtcacactgg gaagaccatg cccaccaccc agagcttgc ctcagacccc 2040
aagtacgcca ccccccaaggatgttccaggc cctggccgc gggctggtcc ctgcacccctg 2100
cccatcgtcc gggatggcaa gaaggtcagc agcaccactt attacttgc gcccggcga 2160
ccatcctacc tggagcgcta ccagcgcttc ctgcgtgagg cccagagccc cgaggaggct 2220
accccccctgc ctgtgcctct gtcgtgcggcc ccacccagca ccccccccccc cgccgcggcc 2280

acggccaccc tgccggccat gccccaggat gccttggacc ccaaggccaa cttctccacc 2340
 aacaacagca acccaggggc ccggccacca ccccccggagg ccactgctcg gctgccacag 2400
 aggggctgcc ctggcgatgg gccagaggcg ggccggccag cagacaagat ccagatggcc 2460
 atggtgcacatg ggggtgaccac agaggagtgc caggcggccc tgcagtgcac cggctggagc 2520
 gtgcagaggg cctgcccagt atctgaaggt ggagcagctc ttccggctgg gtctgcggcc 2580
 cagagggagt gccacaaaagt gctggagatg ttccactggaa acctggagca ggccggctgc 2640
 caccttctgg gctccctgggg ccctgcccac cacaagcgct gagatgcgtc tggagagcca 2700
 gagggcctgc ctgaaggaat cacctgagcc tgtccgtcca ccaggagtgg ggagatgccc 2760
 ccatccagtc ctggaggacc cgctgctcct gctgctcccg gggatggagc aaggccaagg 2820
 ctgcgggagg ctgggagccc tgccctgccc atccctcccg caccagtgtc gtccctgcac 2880
 actttggttc agtcccggtc cccctgccaa gatgtggaaag gggccgggtg aagacaggct 2940
 tgagggccgc cccagcaggc tctgggtatg acctgcctct ggccctggc ctggcgggg 3000
 cctgtgggtg gagtagtacc cccaggccct gcccctgggtg acagactggg aggaaaccag 3060
 gctggacctg ggcaggcggg atgtgttggc cacagggaga ggcggaccgg caccgggtgg 3120
 gacctccttag gactggccct tcttccaggg ggccctggc acagactggg gtgtcgggca 3180
 gaatgtgact tgtggcctta ccatggactt gaatggact tggctggact caggatctt 3240
 tgcctggaaa tagcctgagg tggctcagga agcggagaaa gggtgccaga ccattctctg 3300
 gcggggacca gggcccaagg ccccagggt ggaaggagac caagggccag ccgcctgg 3360
 gggacatcag tgcttcctct tccacccaaat tccccacgc gttccatgt tttccacca 3420
 gcctgttggc gaagttgctg ctccggcatt cagtagctgc ttcttccaga gaaataaaagt 3480
 tagtttctat tttatgttaa aaa 3503

<210> 73
 <211> 2544
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> -
 <222> (1)..(2544)
 <223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 73
 gccaaatggt gcgacaggag gngctgcagc cgccggccgca gcgcccgac ggagaggctt 60

gaggcggctc ctggcgctgc ccagagggag cgactagacg aacagtccgg tgagggcggc 120
gagaggaagc ccgctacgag tgccctagct ccccgccgt ctcgatgaac cggacggaat 180
aagccgcgcc tccagcaggg gctgcgcctc catgaatccc tagttgttt ttttttttc 240
tttctctccc ctctcctcac ccccaccccg agccccgtcc cgccttctcc cttegccaga 300
ggggccgcgt ccaggtgcgg agtccatacc ggagcgcaat ggcttccaaac cccgaacggg 360
gggagattct gctcacggaa ctgcaggggg attcccgaaag tcttccgttt tctgagaatg 420
tgagtgtgt tcaaaaatta gactttcag atacaatggt gcagcagaaa ttggatgata 480
tcaaggatcg aattaagaga gaaataagga aagaactgaa aatcaaagaa ggagctgaaa 540
atctgagggaa agtcacaaca gataaaaaaa gtttggctta ttagacaac attttgaaaa 600
aatcaaataa aaaatttagaa gaactacatc acaagctgca ggaattaaat gcacatattg 660
ttgtatcaga tccagaagat attacagatt gcccaaggac tccagatact ccaataatg 720
accctcggtt ttctactagc aacaatagat tgaaggccct acaaaaacaa ttggatata 780
aacttaaagt aaaacaaggt gcagagaata tgatacagat gtattcaaat ggatctcaa 840
aggatcgaa actccatggt acagctcagc aactgctcca ggacagcaag acaaaaatag 900
aagtcatcag aatgcagatt ctccaggcag tccagactaa tgaattggct tttgataatg 960
caaaacctgt gataagtctt cttaacttc ggatggaaga attaaggcat catttttagga 1020
tagagtttgc agtagcagaa ggtgcaaaga atgtaatgaa attacttggc tcaggaaaag 1080
taacagacag aaaagcactt tcagaagctc aagcaagatt taatgaatca agtcagaagt 1140
tggacctttt aaagtattca ttagagcaa gattaaacga agtccccaaag aatcatccca 1200
aaagcaggat tattattgaa gaactttcac ttgttgctgc atcaccaaca ctaagtccac 1260
gtcaaagtat gatatctacg caaaatcaat atagtagact atccaaacca gcagcactaa 1320
caggtacttt ggaagttcgt cttatggct gccaagatat cctagagaat gtcctggac 1380
ggtcaaaagc aacatcagtt gcactgcctg gttggagtcc aagtgaaacc agatcatctt 1440
tcatgagcag aacgagtaaa agtaaaagcg gaagtagtgc aaatcttcta aaaaccgatg 1500
acttgcctaa tgatgtctgt gctgtttga agctcgataa tactgtggtt ggccaaacta 1560
gctggaaacc catttccat cagtcattggg accagaagtt tacactggaa ctggacaggt 1620
cacgtgaact gaaatttca gtttattggc gtgattggcg gtctctgtgt gctgtaaaat 1680
ttctgaggtt agaagatttt ttagacaacc aacggcatgg catgtgtctc tatttggAAC 1740
cacagggtaC tttatttgca gaggttacct ttttaatcc agttattgaa agaagaccaa 1800

aacttcaaag acaaaaagaaaa attttttcaa agcaacaagg caaaaacattt ctcagagctc 1860
ctcaaatgaa tattaatatt gccacttggg gaaggctagt aagaagagct attctacag 1920
taaatcattc tggcaccttc agccctcaag ctcctgtgcc tactacagt ccagtggtg 1980
atgtacgcat ccctcaacta gcacccctcag ctaggtatgt gtctgagatt ttaagcatct 2040
cttatacaa gttattggga cattcttacg tactgattat agcaggtgta ctgagtcctg 2100
ctttttccc aagtagtatt ttgaaagtag tgttctgttt acttaaaaag taaattgttt 2160
gctttaattt taaagctgtt taaaatacag actttctatt actgttttg tgagttactt 2220
tatcttctat aagctgattc tacagtaacc aaattggact ttgatcttga gcctgaacct 2280
cctccagccc caccacgagc ttcttcttgg gtagaaatag atgaatcttc tgaattaaga 2340
gttttggata taccaggaca ggcaagccat tttaaacctt gcataattcc tcttcactga 2400
atgaattagc aataaaaagca tcatagtgaa taaggcgtgt ctccatattt aaaattgcca 2460
ctgaactgtg aatttatggt tttttgtttt tttttgtttt ttgtttttgt tttttgagac 2520
ggagtctcgc tttgtcgccc agac 2544

<210> 74
<211> 2324
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(2324)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 74
gccaaatggc gcgacaggag gngctgcagc cgcggccgca ggcggccgac ggagaggctt 60
gaggcggctc ctggcgctgc ccagagggag cgactagacg aacagtccgg tgagggcggc 120
gagaggaagc ccgctacgag tgccctagct ccccgccgct ctcgatgaac cggacggaat 180
aagccgcgc tccagcaggg gctgcgcctc catgaatccc tagttgtttt ttttttttc 240
tttctctccc ctctcctcac ccccaccccg agcccccgtcc cgccttctcc cttcgccaga 300
ggggccgcgt ccaggtgcgg agtccatacc ggagcgcaat ggcgtccaac cccgaacggg 360
gggagattct gtcacggaa ctgcaggggg attcccgaag tcttccgttt tctgagaatg 420
tgagtgcgt tcaaaaatta gactttcag atacaatggt gcagcagaaa ttggatgata 480
tcaaggatcg aatthaagaga gaaataagga aagaactgaa aatcaaagaa ggagctgaaa 540

atctgaggaa agtcacaaca gataaaaaaa gtttggctta tgtagacaac attttgaaaa 600
aatcaaataa aaaatttagaa gaactacatc acaagctgca ggaatttaat gcacatattg 660
ttgtatcaga tccagaagat attacagatt gcccaaggac tccagatact ccaaataatg 720
accctcggtt ttctactagc aacaatagat tgaaggccct acaaaaacaa ttggatata 780
aacttaaagt aaaacaaggt gcagagaata tgatacagat gtattcaa 940 ggatcttcaa
aggatcgaa actccatggt acagctcagc aactgctcca ggacagcaag acaaaaatag 900
aagtcatcag aatgcagatt ctccaggcag tccagactaa tgaattggct tttgataatg 960
caaaacctgt gataagtccct cttaacttc ggatggaaga attaaggcat catttttagga 1020
tagagtttgc agtagcagaa ggtgcaaaga atgtaatgaa attacttggc tcaggaaaag 1080
taacagacag aaaagcactt tcagaagctc aagcaagatt taatgaatca agtcagaagt 1140
tggacctttt aaagtattca ttagagcaaa gattaaacga agtccccaaag aatcatcccc 1200
aaagcaggat tattattgaa gaactttcac ttgttgctgc atcaccaaca ctaagtccac 1260
gtcaaagtat gatatctacg caaaatcaat atagtacact atccaaacca gcagcactaa 1320
caggtacttt ggaagttcgt ttatgggct gccaagatat cctagagaat gtcctggac 1380
ggtcaaaagc aacatcagtt gcactgcctg gttggagtcc aagtgaaacc agatcatctt 1440
tcatgagcag aacgagtaaa agtaaaagcg gaagtagtgc aaatcttcta aaaaccgatg 1500
acttgcctaa tgatgtctgt gctgtttga agctcgataa tactgtggtt ggccaaacta 1560
gctggaaacc catttcaat cagtcattgg accagaagtt tacactggaa ctggacaggt 1620
cacgtgaact ggaaatttca gtttattggc gtgattggcg gtctctgtgt gctgtaaaat 1680
ttctgaggtt agaagatttt ttagacaacc aacggcatgg catgtgtctc tatttggAAC 1740
cacagggtac ttatggca gaggttacct ttttaatcc agttattgaa agaagaccaa 1800
aacttcaaag acaaaaagaaa atttttcaa agcaacaagg caaaacattt ctcagagctc 1860
ctcaaatgaa tattatatt gccacttggg gaaggctagt aagaagagct attcctacag 1920
taaatcattc tggcaccttc agccctcaag ctccctgtcc tactacagt ccagtggtt 1980
atgtacgcat ccctcaacta gcacctccag ctatgttac tacagtaacc aaattggact 2040
ttgatcttga gcctgaacct cctccagccc caccacgagc ttcttctttt ggagaaatag 2100
atgaatcttc tgaattaaga gttttggata taccaggaca ggcaagccat tttaaacctt 2160
gcataattcc tcttactga atgaatttagc aataaaagca tcatagtgaa taaggcgtgt 2220

cttccattt aaaattgcca ctgaactgtg aatttatggt ttttgttt tttttgttt 2280
ttgttttgtt ttttgagac ggagtctcg tttgtcgccc agac 2324

<210> 75
<211> 1396
<212> DNA
<213> Homo sapiens

<400> 75
gcgatctgca ggtagggtg cgcgacccg ctccccggcg ggagccagcg aaggttcca 60
tgtcagaggc cgatggagaa ctgaagattt ccacccatgc acaaaggcca ttgagacact 120
tcgtgttagct ggaagacacc aacttcctga caggagctt atttcatttggatttcaag 180
tttacagatg gtatcttctc aaaagttgga aaaacctata gagatggca gtagcgaacc 240
ccttcccatc gcagatggtg acaggaggag gaagaagaag cggaggggccc gggccactga 300
ctcccttgcga ggaaagttt aagatatgtt caagctgacc tctgaatttgc ttggagaggg 360
agcctatgcc aaagttcaag gtgcgtgag cctacagaat ggcaaaagagt atgcgttcaa 420
aatcatcgag aaacaaggcag ggcacagtcg gagtagggtg tttcgagagg tggagacgct 480
gtatcgtgtt cagggaaaca agaacattttt ggagctgatt gagttttt aagatgacac 540
aaggttttac ttggctttt agaaatttca aggggtact taccgtttag tatgtgttg 600
gacttctgtat taagacccag ggtggtgatc atccatcatg aatcccagag acttccaaaa 660
cgagtcaagc taataaaaag gatgaaggac ttaaaaactg cccttgcattt gggagaaggg 720
aggccggagg gaaggatgat aatttgattt ttgcagagct tagaatgtca cctgtgtggg 780
tattttataa atgccttttc attataatag gagtcataata tagatacatt tagtcatcga 840
tttatcaatc ccgtttgac atgttcaactg tttaactaca ttaattatgg ggtggaaagct 900
ctcaaataca ttgcgaagtc tagaaaggct aaaacagagg agaggaggctt cctattgttt 960
gggacacaga cccaggataa agggaaagcc tgagaatgtg ccattttca gatggaaaga 1020
tgccatcacc cacacacata atcaactgggg tgtatactta agttgtttt ctgacataat 1080
gaggtggggt agagaaaccc ttcccttcc catcaactccc ccaggtcttgc tgggggtggc 1140
acagatctgg gcagtttagat agtgcgttgtt gcctaagggtt aagccacact aggggtgaagc 1200
ctcaacttccc tggtttagca atgcgttgc tgctgttgtt gtgcgttgc gtagccat 1260
tcagataagt ggaacttattt agttacataa agaaaaataga tttgttgcatttgc tcaggcagac 1320
gtttatacaa caccacgggtt ctttataca ttgtgtttt tttataaaaa ctgaaattct 1380

atgtgtggcc taaaaa

1396

<210> 76
<211> 513
<212> DNA
<213> Homo sapiens

<400> 76
gcatctgca ggtagggtg cgcgacccg ctccccggcg ggagccagcg aaggttcca 60
tgtcagaggc cgatggagaa ctgaagattt ccacccatgc acaaaggcca ttgagacact 120
tcgtgttagct ggaagacacc aacttcctga caggagctt atttcatttgggatttcaag 180
tttacagatg gtatcttctc aaaagttgga aaaacctata gagatgggca gtagcgaacc 240
ccttcccatc gcagatggtg acaggaggag gaagaagaag cggaggggccc gggccactga 300
ctccttgcca ggaaagtttgg aagatatgtt caagctgacc tctgaatttgc ttggagaggg 360
agcctatgcc aaagttcaag gtgcgttag cctacagaat ggcaaaagagt atgcgtcaa 420
agtgagtgtc tcagctgaat gccaggctt actttgcaaa tagtcattcc tagtcatct 480
tgaacccaaat aaatgttata ttccataaga aaa 513

<210> 77
<211> 2044
<212> DNA
<213> Homo sapiens

<400> 77
tgtgtgaatc tccagaaaag gtactttggg cctgatttgg aatgttataat tttataactta 60
ccgaggaagc cacccttgct ttcaggatgg attgttagca gttccgttgg cctcagacac 120
caacttgaac tgatcgtctt ggacatgtgt ctccagtgaa aatctgtgac tttgacttgg 180
gcagtggat gaaactgaac aactcctgta cccccataac cacaccagag ctgaccaccc 240
catgtggctc tgcagaatac atggcccttg aggttagtggg ggtttcacg gaccaggcca 300
cattctacga caagcgctgt gacctgtggc gcctggcggt ggtcctctac atcatgctga 360
gtggctaccc acccttcgtg ggtcaactgca gggccgactg tggctggac cggggcgagg 420
tctgcagggt gtgccagaac aagctgttg aaagcatcca ggaaggcaag tatgagttc 480
ctgacaaggaa ctgggcacac atctccagtg aagccaaaga cctcatctcc aagctcctgg 540
tgcgagatgc aaagcagaga cttagcgccg cccaaaggcttgc gacccacca tgggtgcagg 600
ggcaagctcc agaaaaggga ctccccacgc cgcaagtcct ccagaggaac agcagcacaa 660
tggacctgac gctcttcgca gctgaggcca tcgcccattaa ccggccagcta tctcagcaccg 720

aagagaacga	actagcagag	gagccagagg	caactagctga	tggcctctgc	tccatgaagc	780
tttccccctcc	ctgcaagtca	cgcctggccc	ggagacgggc	cctggcccag	gcaggccgtg	840
gtgaagacag	gagcccgccc	acagcactct	gaaatgctcc	agtcacacacct	tataggccct	900
aggcctggcc	aggcattgtc	ccctggaaac	ctgtgtggct	aaagtctgct	gagcaggcag	960
cagcctctgc	tctgtggctc	cattcaggct	ttttcatcta	cgaaggccct	gaggttccca	1020
tcaaccccca	tttccctagg	gtcctggagg	aaaaagctt	ttccaaaggg	gttgtcttg	1080
aaaaggaaag	caatcacttc	tcactttgca	taattgcctg	cagcaggaac	atctcttcac	1140
tgggctccac	ctgctcaccc	gcctgcagat	ctgggatcca	gcctgctctc	accgctgtag	1200
ctgtggcggc	tggggctgca	gcctgcaggg	agaagcaaga	agcatcagtt	gacagaggct	1260
gccgacacgt	gccttttccc	tctttctct	gtcaccctcc	tctggcggtc	cttccacctt	1320
cctctgtcct	ccggatgtcc	tctttgcctg	tcttctccct	tggctgagca	aagccatccc	1380
ctcaattcag	ggaaggcCAA	ggagccttcc	tcattcagga	aatcaaatca	gtcttccgggt	1440
ctgcagcacg	gaaaagcaca	taatcttct	ttgctgtgac	tgaaatgtat	ccctcggtta	1500
tcatccccctt	tgtttgtgat	tgctgctaaa	gtcagtagta	tctttttttt	aaaaaaaaaaag	1560
tttggtgttt	ttaaccatgc	tgttccagca	aagatgatac	cttaaaactcc	cactgcaagc	1620
ccatgaactt	cccagagagt	ggaacggctt	gctttttttt	ctagaatgtc	catgcacttg	1680
ggttttaatc	agcagttccc	tattattctg	attttaagct	gttcctgtga	tgaacttaga	1740
gacagcatcg	gtgtctgctg	ctgtgtcccc	aggtcttgtg	tgggtggcac	agatctgggc	1800
agtttagatag	tgctctgtgc	ctaaggtaa	gccacactag	ggtgaaggct	cacttccctg	1860
tttggcaat	gcagtgcctg	ctgcccgtgt	gcatgaaggt	acagccattc	agataagtgg	1920
aactatttag	ttacataaaag	aaaatagatt	tgcatttgtc	aggcagacgt	ttataacaaca	1980
ccacggtgct	tttatacatt	gtgcttattt	taataaaact	gaaattctat	gtgtggccta	2040
aaaa						2044

<210> 78
<211> 934
<212> DNA
<213> Homo sapiens

<400> 78	acggccatta	ccaatcgcgaa	aaccaaagga	ctgaagttat	aaaagagaaaa	agagaagttt	60
	gctgctaaaa	tgaatctgag	caatatggaa	tatTTGTGc	cacacacaaa	aaggtaactga	120

agatttaccc cccaaaaaaaaa attgtcaatg agaaataaaag ctaactgata tcaaaaagca 180
gagcctgctc tactggccat catgcgtaaa ggggtgctga aggacccaga gattgccat 240
ctattctaca aagatgatcc tgaggaactt tttattgggt tgcatgaaat tggacatgga 300
agttttggag cagtttattt tgctacaaat gctcacacca gtgaggtggt ggcaattaag 360
aagatgtcct atagtggaa gcagacccat gagaaatggc aagatattct taaggaagtt 420
aaattttac gacaattgaa gcacccat actattgagt acaaaggctg ttacttgaaa 480
gaacacactg cttgggtggt gatggaatat tgcttaggct cagcctctga tttatttagaa 540
gttcataaaaa aaccacttca ggaagtggag atcgctgcca ttactcatgg agccttgcatt 600
ggacttagcct acctacattc tcatgcattt attcataggt aagatttagag accagttatg 660
tttctttca gttgcaggac tgtctattcc aggaaccttg aaaatttagt catgctccaa 720
tttttaggtt gcctaagcat tcatggaaag caaatagatt gctgcttctg gatataaagg 780
ataaaagttgc cagaatttag cttctatctc ttattctctc ctacgtatcc acaattataat 840
catcttggtt cagtaggtaa ctgttctcca ggctaaatgt tgcagggaaa tttgaaaaaag 900
qqcccaccaa tcttttagata ctgtgtcatg aaga 934

```
<210> 79
<211> 1032
<212> DNA
<213> Homo sapiens
```

<400> 79 gcggccgccc gggcccgggc ccgcgtcggg cgccctggctc tgtacgcgag cccggggatc 60
tgcggccttc gtgeeeeeeee tcccgggagg agcgtggagc ggccggccgc gcggccggcag 120
cagaaatgat ggaagaattg catagcctgg acccacgacg gcaggaatta ttggaggcca 180
ggtttactgg agtaggtgtt agtaagggac cacttaatag tgagtttcc aaccagagct 240
tgtgcagcgt cggatccttg agtgataaaag aagttagagac tcccggaaaa aaggcagaatg 300
accagcgaaa tcggaaaaga aaagctgaac catatgaaac tagccaaggg aaaggcactc 360
ctaggggaca taaaattagt gattactttg agacagcccc tctatggttt agatggcagt 420
gctgcaaagg aggcaacaga ggagcagtc gctctgccaa tcctcacgtc agtgatgcta 480
gcaaaacctc ggcttgacac agagcagctg gcttaaagga gagctggct ctgcttcact 540
tttggtttcag ctcagcaaaa cagtcctca tctacggat ctggcaacac agagcattcc 600
tgcagctccc aaaaacagat ctccatccag cacagacaga cccagtccaa cctcacaata 660

gaaaaaatat ctgcaactaga aaacagtaag aattctgact tagagaagaa ggagggaaga 720
atagatgatt tattaagagc caactgtgat ttgagacggc agattgtga acagcaaaag 780
atgcttagaga aatacaagga acgattaaat agatgtgtga caatgagcaa gaaactcctt 840
atagaaaagg ttagtgaata atgttggtct aaactctgta tcccaagata ctcaatgtgt 900
gtcattgtgt ggcttcttat tccttacttg agatgaaaat atttaaaagt agagctttt 960
aggaacatga tttgacaatt agaattttt ctttacatgg acaccagacc aaccatccag 1020
agtgttaatt tg 1032

<210> 80
<211> 2234
<212> DNA
<213> Homo sapiens

<400> 80
ggccacctgg tagccatact gacagtattt atcccacaga aagacctggt ggaagaggag 60
gctgaggagg ctggagtggc tttgagaagc acccagagca cactgcaagc aggtctggct 120
gcagatgcct gggctgctcc catgccatg cagatctaca agaagcacct ggaccccagg 180
cccgccgcct gccacctgag ctgggcctgg gcctggccca gctggcctgc tgctgcctgc 240
accggccgggc caaaaggagg ctcctatga cccaggtgtt ctagaggctt gagaagctgc 300
aggcagtggg ggcgggggtg cccggcatt tggaggccgc cagctgcatt ccccttccc 360
cgcaggagaa ctctacgtt tccagcactg gcagagccca cagtggggct gctccatggc 420
agccctggc agcgccatca ggagccagt cccaggcagc agagcagctg cagagaggcc 480
ccaaaccagcc cgtggagagt gacgagagcc tagggggctt ctctgctgcc ctgcgcct 540
ggcacttgac tccaagctgc cctctggacc cagcacccct cagggaggcc ggctgtcctc 600
agggggacac ggcaggagaa tcgagctgg ggagtggccc agatcccg cccacagccg 660
tggaggact ggcccttggc agctctgcat catcgctgatc agagccacccg cagattatca 720
tcaaccctgc cgcacagaag atggtccaga agctggccct gtacgaggat gggccctgg 780
acagcctgca gctgtgtcg tccagctccc tcccaggctt gggcctggaa caggacaggc 840
aggggcccga agaaagtgtt gaatttcaga gctgtgtgt tcacctggc agatccccca 900
aatccggaaag tcaaagttct catggtcaga agttctcatg gtgcacgagt cctcagcact 960
ctgcccggcag tgggggtggg ggcccatgcc cgcggggag agaaggaggt ggccctgctg 1020
ttcttaggctc tggggcata ggcaggcaga gtggaaacctt gcctccatgc cagcatctgg 1080

ggccaaggaa ggctggcattt atccagttag gaggctggcg catgttggga ggctgctggc 1140
 tgcacagacc cgtgagttga ggagaggggc tgctgtgcag ggtgtggagt aggagctggc 1200
 tccccctgaga gccatgcagg gctgtgcag cccaggcctc tggcagcaga tcttgcacca 1260
 tctctttgga cagtggccac cctgcacaat ggggcccacg aggccctaggg ccctccctacc 1320
 tgcttacaat ttggaaaagt gtggccgggt gcgggtggctc acgcctgtaa tcccagcact 1380
 ttgggaggcc aaggcaggag gatcgctgga gcccagtagg tcaagaccag ccaggcaac 1440
 atgatgagac cctgtctctg ccaaaaaatt ttttaaacta ttagcctggc gtggtagcga 1500
 cgcttgtggt cccagctgct ggggaggctg aagtaggagg atcatttatg cttgggaggt 1560
 cgaggctgca gtgagtcattt attgtatgac tgcactccag cctgggtgac agagcaagac 1620
 cctgtttcaa aaagaaaaac cctggaaaaa gtgaagtatg gctgttaagt tcattgttca 1680
 gtcctagcaa gaagcgagaa ttctgagatc ctccagaaag tcgagcagca cccacctcca 1740
 acctcgccggcc agtgtcttca gccttactg gggacctgcg agctggccca atgtgggtggc 1800
 ctgcaagcca ggcacatccct gggcgccaca gacgagctcc gagccaggcaggcaggatc 1860
 ggcacacaac tcagcctcag gcccaggcac tgattgtggc agagggccca ctacccaagg 1920
 tctagctagg cccaaagacccat agttacccag acagttagaa gcccctggaa ggcagaaaaag 1980
 ttgggagcat ggcagacagg gaagggaaaac attttcaggg aaaagacatg tatcacatgt 2040
 cttcagaagc aagtcaaggat ttcatgttaacc gagtgcctc ttgcgtgtcc aaaagtagcc 2100
 cagggctgtta gcacaggcattt cacagtgtttt ccgtgagtc cactacatgc 2160
 ccccgtaag ctgggcattt gtgacgttcca ggttgcctt gagtaataaa aacgtatgtt 2220
 gcaatctcggtt gaaa 2234

<210> 81
 <211> 2608
 <212> DNA
 <213> Homo sapiens

<400> 81
 tagaaggatg gttgggatca aggaacggcc atccagcaac ctccccctgtc cccctttgcc 60
 acccccagacc caggcctgcc cacctctctc ctggcctcag cgactggaca tccttctggg 120
 tacagcccg gcaattcagt ttctacatca ggacagcccc agcctcatcc atggagacat 180
 caagagttcc aacgtcatttc tggatgagag gctgacacccc aagctgggag actttggcct 240
 ggccccgttc agccgcttttgc ccgggtccag cccagccag agcagcatgg tggcccgac 300

acagacagtgcggggcaccc tggectacccgt gcccggaggatcacatcaaga cgggaaggct 360
ggctgtggac acggacaccttcagctttgg ggtggtagtg ctagagaccttggctggtca 420
gagggctgtg aagacgcacg gtgccaggac caagtatctg aaagacctgg tggaaagagga 480
ggctgaggag gctggagtgg ctttgagaag caccagagc acactgcaag caggtctggc 540
tgcagatgcc tgggctgctccatcgccat gcagatctac aagaagcacc tggaccccg 600
gcccggggccc tgccacactga gctgggcctg ggcctgggc agctggcctg ctgctgcctg 660
caccggccggg cccaaaggag gcctcctatg acccaggtgt acgagaggct agagaagctg 720
caggcagtgg tggcgggggt gcccggcat ttggaggccg ccagctgcattcccccttcc 780
ccgcaggaga actcctacgt gtccagcact ggcagagccc acagtggggc tgctccatgg 840
cagccccctgg cagcgcattc aggagccagt gcccaggcag cagagcagct gcagagaggc 900
cccaaccagc ccgtggagag tgacgagagc ctagggggcc tctctgctgc cctgcgtcc 960
tggcacttga ctccaaagctg ccctctggac ccagcacccc tcagggagggc cggctgtcct 1020
cagggggaca cggcaggaga atcgagctgg gggagtgcc cagatcccc gcccacagcc 1080
gtggaaaggac tggcccttgg cagctctgca tcatacgctgt cagagccacc gcagattatc 1140
atcaaccctg cccgacagaa gatggtccag aagctggccc tgtacgagga tggggccctg 1200
gacagcctgc agctgctgtc gtccagctcc ctcccaggct tgggcctgga acaggacagg 1260
cagggggcccg aagaaaagtga tgaatttcag agctgatgtg ttcacctggg cagatcccc 1320
aaatccggaa gtcaaagttc tcatggtcag aagttctcat ggtgcacgag tcctcagcac 1380
tctgcccggca gtgggggtgg gggcccatgc ccgcggggga gagaaggagg tggccctgct 1440
gttctaggct ctgtggcat aggcaggcag agtggAACcc tgcctccatg ccagcatctg 1500
ggggcaagga aggctggcat catccagtga ggaggctggc gcatgttggg aggctgctgg 1560
ctgcacagac ccgtgagttg aggagagggg ctgctgtgca ggggtgtggag taggagctgg 1620
ctcccctgag agccatgcag ggcgtctgca gcccaggcct ctggcagcag ctcttgcac 1680
atctctttgg acagtggcca ccctgcacaa tggggccgac gaggcctagg gccctcctac 1740
ctgcttacaa ttggaaaaag tgtggccggg tgcggtagt caccgcctgta atcccagcac 1800
tttggggaggc caaggcagga ggatcgctgg agcccagtag gtcaagacca gccaggccaa 1860
catgatgaga ccctgtctct gccaaaaaat tttttaact attagcctgg cgtggtagcg 1920
acgcttgg tcccaagctgc tggggaggct gaagtagggag gatcattttat gcttgggagg 1980

tcgaggctgc agtgagtcat gattgtatga ctgcactcca gcctgggtga cagagcaaga 2040
ccctgtttca aaaagaaaaa ccctggaaa agtgaagtat ggctgttaagt ctcatggttc 2100
agtccctagca agaagcgaga attctgagat cctccagaaa gtcgagcagc acccacctcc 2160
aacctcgggc cagtgtcttc aggcttact ggggacctgc gagctggcct aatgtggtgg 2220
cctgcaagcc aggccatccc tgggcgccac agacgagctc cgagccaggt caggcttcgg 2280
aggccacaag ctcagcctca ggcccaggca ctgattgtgg cagaggggcc actacccaag 2340
gtctagctag gcccaagacc tagttacaga cagggaaaggg aaacattttc agggaaaaga 2400
catgtatcac atgtttcag aagcaagtca ggtttcatgt aaccgagtgt cctcttgcgt 2460
gtccaaaagt agcccaggc ttagcacag gttcacagt gatttgtgt tcagccgtga 2520
gtcacactac atgccccgt gaagctggc attggtgacg tccaggttgt ctttagttaa 2580
taaaaacgta tggtaatc tcggaaa 2608

<210> 82
<211> 1237
<212> DNA
<213> Homo sapiens

<400> 82
cgcgcccccgg gcccggcccg gcccgcgcgg gcccggggcc tgagaggccc cggcagggtcc 60
cggcccccggcg gggcagcca tggccgggggg gcccggggcccg ggggagcccg cagccccccgg 120
cgcccagcac ttcttgcacg aggtgcgcgg ctgggtcatg tgccgcttct acaaagtgtat 180
ggacgcctg gagcccgcccg actggtgcca gttcgccgccc ctgatcgtgc gcgaccagac 240
cgagctgcgg ctgtgcgagc gtcggggca gcgcacggcc agcgtcctgt ggcctggat 300
caaccgcaac gcccgtgtgg cgcacccgt gcacatcctc acgcacctgc agctgctccg 360
tgcgccggac atcatcacag cctggcaccc tcccgccccg cttccgtccc caggcaccac 420
tgccccggagg cccagcagca tccctgcacc cggcaggccc gaggcctggaa gccccggaa 480
gttgcctatcc tcagccatcca ctttcctctc cccagctttt ccaggctccc agacccatcc 540
aggccctgag ctcggcctgg ttccaagccc tgctccctg tggcctccac cgcacatctcc 600
agcccccttc tctaccaagc caggcccaga gagctcagtg tccctcctgc agggagcccg 660
cccccctccg ttttgcgtggc ccctctgtga gattccccgg ggcacccaca acttctcgga 720
ggagctcaag atcgccccgggttgg gtgcgtgtac cgggcgggtga tgaggaacac 780
ggtgtatgct gtgaagaggc tgaaggagaa cgctgacccgt gaggactg cagtgaagca 840

gagcttcctg accgaggtgg agcagctgtc caggtttcgta cacccaaaca ttgtggactt	900
tgctggctac tgtgctcaga acggcttcta ctgcctggtg tacggcttcc tgcccaacgg	960
ctccctggag gaccgtctcc actgccagac ccaggcctgc ccacctctct cctggcctca	1020
gcgactggac atccttctgg gtacagccccg agcaagtcag gtttcatgtta accgagtgtc	1080
ctcttgcgtg tccaaaagta gcccagggct gtagcacagg cttcacagtg attttgcgtt	1140
cagccgtgag tcacactaca tgccccgtg aagctggca ttggtgacgt ccaggttgc	1200
cttgagtaat aaaaacgtat gttgcaatct cgggaaaa	1237

```
<210> 83
<211> 1286
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> -
<222> (1)..(1286)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'
```

<400> 83
gaggggacct taaaaattac cggccacaaa aagaaaataa atttaggaaa aattattggt 60
ttatTTtagg gtgatgttca cagaagaaga tgtcaaattc tacttggtg aacttgact 120
tgcttagac catctacata gcctggaaat aatttataga gactaaaac cagaaaatat 180
acttcttgat gaagaaggtc acatcaagtt aacagattc ggcctaagta aagagtctat 240
tgaccatgaa aagaaggcat attcttttg tggaaactgtg gagtatatgg ctccagaagt 300
agttaatcgt cgaggtcata ctcagagtgc tgactgggtg tctttgggtg tgttaatgtt 360
tgaatgctt actggcacac tccctttcca aggaaaagat cgaaaagaaa caatgactat 420
gattcttaaa gccaaacttg gaatgccaca gttttgagt cctgaagcgc agagtcttt 480
acgaatgctt ttcaagcgaa atcctgcaaa cagattaggt gcaggaccag atggagttga 540
agaaataaaa agacattcat ttttctcaac gatagactgg aataaaactgt atagaagaga 600
aattcatccg ccatttaaac ctgcaacggg caggcctgaa gatacattct atttgatcc 660
tgagtttact gcaaaaactc ccaaagattc acctggcatt ccacccatgtg ctaatgcaca 720
tcagctttt cgggggttta gtttgttgc tattacctca gatgatgaaa gccaagctat 780
gcagacagtt ggtgtacatt caattgttca gcagttacac aggaacagta ttcagttac 840
tgatggatat gaagtaaaag aagatattgg agttggctcc tactctgttt gcaagagatg 900

tatacataaa gctacaaaaca tggagttgc agtgaaggta aattttttt attaaaaatg 960
caattcatac agttcttggc catgcgtgc agtaccagtt aaaaattaca ctccccttgt 1020
tgttaaaagt gcctttgtt ataaaaaaagt taaatatctg gctagtgtac ttcagagatc 1080
ttaatctaga accctgtgag ctaaaggtaa ggtggttata tatctagtt tcccagagca 1140
gtagcagttt acacctaag tgattttttt tctttttta cctcaagtga tttttaaagt 1200
atcttttac tctgagaagt ccccattttt tgctcanggt gtcagcaaat tcctcaaaat 1260
tgtgtgcaaa atttgtatg tttaca 1286

<210> 84
<211> 752
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(752)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 84
atgccgctgg cgcagctggc ggaccctgtgg cagaagatgg ctgtggagag cccgtccgac 60
agcgctgaga atggacagca aattatggat gaacctatgg gagaggagga gattaaccca 120
caaactgaag aagtcatgtat caaagaaatt gcaatcacac atcatgtaaa ggaaggacat 180
gaaaaggcag atccttccca gtttgaactt ttaaaagtat tagggcaggg atcatttgaa 240
aaggttttct tagttaaaaa aatctcaggc tctgatgcta ggcagcttta tgccatgaag 300
gtattgaaga aggccacact gaaagttcga gaccgagttc ggacaaaaat ggaacgtgat 360
atcttggtag aggttaatca tcctttatt gtcaagttgc attatgctt tcaaactgaa 420
ggaaagttgt atcttatttt ggattttctc agggaggag atttgtttac acgcttatcc 480
aaagaggtga tgttcacaga agaagatgtc aaattctact tggctgaact tgcacttgct 540
tttagaccatc tacatagcct gggataatt tatagagact taaaaccaga aaagtaagga 600
atcatgctac taagttgaat acaatgtaat atgattgttt aggagattat aaaaaatcaa 660
gtggcttcat gaaactccca cagtaatgtn tagcgtgcct gtgcttcaca tctctgctaa 720
cactgttagtt tcatacttta aatnactcag tt 752

<210> 85
<211> 1826
<212> DNA

<213> Homo sapiens

<400> 85
cgagcgcggc gcccttgagc tgcaccgcgg cgccaggttt cgagccgact tgtcagccgg 60
ccaagaaaag gaagctccgt cccttccgc tcaccggct tcccccaccc ttgtactcta 120
aactctgcas agggcgagcg yggggccack gakgcgccga ggaggagcga ggcgcgcgg 180
gcagcggcgt gccctcgaaa gagagggcgc cggakargag cggcggcgcg gggcgakgg 240
cgccggcgcgc gatggcagct gcttagcccg gcgggcgcgg agcagcccg agctgtggct 300
ggccaggcgg tgcggctggg cgggggacgc cgccgcgtt gctgcccggc cggagagat 360
gagcacggag gcggacgarg gcatcacttt ctctgtgcca cccttcgcgg cctcggcgtt 420
ctgcaccatc cccgagggcg gcatctgcag gaggggagga gcggcggcgg tggcgaggg 480
cgaggagcac cagctgccac cgccgcgcgg gggcagttc tggAACgtgg agagcgcgc 540
tgccctggc atcggttgc cggcgccac ctcctcgagc agtgcaccc gaggccgggg 600
cagctctgtt ggcggggca gccgacggac cacggtggca tatgtgatca acgaagcgag 660
ccaaggcaca ctgggtggc ccgagagcga ggccctgcag agctgcggg aggctgcga 720
gacagtggc gccaccctgg aaaccctgca ttttggaaa ctcgactttg gagaaaccac 780
cgtgctggac cgctttaca atgcagatat tgcgggttg gagatgagcg atgccttcg 840
gcagccgtcc ttgtttacc accttgggtt gagagaaagt ttcagcatgg ccaacaacat 900
catcctctac tgygatacta actcgactc tctgcagtca ctgaaggaaa tmatttgcca 960
gaagaatact atgtcactg ggaactacac cttgttcct tacatgataa ctccacataa 1020
caaagtctac tgctgtgaca gcagcttcat gaaggggtt acagagctca tgcaaccgaa 1080
cttcgagctg cttctggac ccatctgctt accttgcgt gatcgtttta ttcaacttt 1140
gaaggtggca caagcaagtt ctggccagta cttccggaa tctatactca atgacatcag 1200
gaaagctcgt aatttataca ctggtaaaga attggcagct gagttggcaa gaattcggca 1260
gcgagtagat aatatcgaag tcttgacagc agatattgtc ataaatctgt tactttccta 1320
cagagatatc caggactatg attctattgt gaagctggta gagactttt aaaaactgcc 1380
aacctttgat ttggcctccc atcaccatgt gaagtttcat tatgcattt cactgaatag 1440
gagaaatctc cctggtgaca gagcaaaagc tcttgatatt atgattccca tggtgcaaag 1500
cgaaggacaa gttgottcag atatgtattt cctagttggt cgaatctaca aagatatgtt 1560
tttggactct aatttcacgg acactgaaag cagagaccat ggagcttctt ggttcaaaaa 1620

ggcatttgaa tctgagccaa cactacagtc aggaattaat tatgcggtcc tcctcctggc 1680
agctggacac cagtttgaat ctcccttga gctccggaaa gttggtaatt acaacttgat 1740
atttctacat ggaaatcaag aaactcgac ccaacttggt gcaaagacgg atctccgccc 1800
attctgacgg ctctccaggt tttgtc 1826

<210> 86
<211> 476
<212> DNA
<213> Homo sapiens

<400> 86
gccggcggtg ggcggcgga gaccggctg gtataacaag aggattgcct gatccagcca 60
agatgcagag cacttctaat catctgtggc ttttatctga tatttttaggc caaggagcta 120
ctgcaaatgt ctttcgtgga agacataagt ggatgttcaa atgagagaat ttgaagtgtt 180
gaaaaaaactc aatcacaaaa atattgtcaa attatttgct attgaagagg agacaacaac 240
aagacataaa gtacttatta tggattttg tccatgtggg agtttataca ctgttttaga 300
agaaccttct aatgcctatg gactaccaga atctgaattc ttaattgtt tgcgagatgt 360
ggtgggtgga atgaatcatc tacgagagaa tggtatagtg caccgtgata tcaagccagg 420
aaatatcatg cgtgcactat accattctct cgtagatgtat tcattccacc caccac 476

<210> 87
<211> 2131
<212> DNA
<213> Homo sapiens

<220>
<221> -
<222> (1)..(2131)
<223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

<400> 87
gaattattgc tttggaagaa aancttacat ctccacaaga ctttgcttcc caaataagac 60
atgtcagaag atgctgataa tcctcacttc tgcattacaa atcgctcata ggtgcacatcg 120
caggatctta cttggatcca gagtgcttagc tgcaaaagct tctggaaatt gtacacttaa 180
ctctgaagtt ttatcttaa tataggaagt gccgcgtatg atgctgtcct tgacagaaat 240
gtggccatta agaagctcag cagaccctt cagaaccaa cacatgcca gagagcgtac 300
cgggagctgg tcctcatgaa gtgtgtgaac cataaaaaca ttatttagttt attaaatgtc 360
ttcacaccccc agaaaacgct ggaggagttc caagatgttt acttagtaat ggaactgtg 420

gatgccaaact tatgtcaagt gattcagatg gaatttagacc atgagcgaat gtcttacctg 480
ctgtaccaaa tgggtgtgg cattaagcac ctccattctg ctggattat tcacagggat 540
ttaaaaccaa gtaacattgt agtcaagtct gattgcacat taaaatcct ggactttgga 600
ctggccagga cagcaggcac aagcttcatg atgactccat atgtggtgac acgttattac 660
agagcccctg aggtcatcct gggatgggc tacaaggaga acgtggatat atggctgtg 720
ggatgcatta tgggagaaat gggtcgccac aaaatcctct ttccaggaag ggactatatt 780
gaccagtgga ataaggtaat tgaacaacta ggaacaccat gtccagaatt catgaagaaa 840
ttgcaaccca cagtaagaaa ctatgtggag aatcgccca agtatgcggg actcaccttc 900
cccaaactct tcccagattc cctttccca gcggactccg agcacaataa actcaaagcc 960
agccaagcca gggacttggtt gtcaaagatg ctatgtgattt acccagcaaa aagaatatca 1020
gtggacgacg ctttacagca tccctacatc aacgtctgggt atgacccagc cgaagtggag 1080
gcgcctccac ctcagatata tgacaagcac ttggatgaaa gagaacacac aattgaagaa 1140
tggaaagaac ttatctacaa ggaagtaatg aattcagaag aaaagactaa aaatggtgta 1200
gtaaaaggac agccttctcc ttcagcacag gtgcagcagt gaacagcagt gagagtctcc 1260
ctccatcctc gtctgtcaat gacatctcct ccatgtccac cgaccagacc ctggcatctg 1320
acactgacag cagcctggaa gcctcggcag gaccctggg ttgttgcagg tgactagccg 1380
cctgcctgcg aaaccagcg ttcttcagga gatgtatgtga tggaaacacac acacacgcag 1440
acacacacac acacacaaat gcagacacac aacatcaaga aaacagcaag ggagagaatc 1500
caaggctaaa attaaataaa tcttcagcc tgcttctcc ccagggttct gtattgcagc 1560
taagctcaa tgtatattta acttcttagtt gctcttgctt tggcttctt ccaatgatgc 1620
ttactacaga aagcaaatca gacacaatta gagaagcctt ttccataaaag tgtaatttt 1680
atggctgcaa aaccggcaac ctgttaactgc cttttaaat ggcatacataa ggtgtgcagt 1740
ggcccccattcc agcatgtgtg tgtctctatc ttgcatacatac ctgctccttgcgc 1800
atggatgttag atacagatcc gcatgtgtct gtattcatac agcactactt acttagagat 1860
gctactgtca gtgtctcag ggctctacca agacataatg cactgggta ccacatggtc 1920
catttcatgt gatctattac tctgacataa acccatctgt aatataattgc cagtatataa 1980
gctgttttagt ttgttaattt attaaactgt atgtcttata agaaaacatg taaaggggaa 2040
atataatgggg ggagttagtgc ctctcagacc cttgaagatg tagcttccaa atttgaatgg 2100

ataaaatggc acctgtatac caattttag a

2131

<210> 88
<211> 989
<212> DNA
<213> Homo sapiens

<400> 88
gagaaatggc gtggcagggg acccagcgag cccagagggg ttttgcgcgt gtttcctcta 60
ccccctgtatt tcacgcagct ctctaaattt actcagctcc aggctagtgt gagaaacacc 120
aacagcagggc ccatctcaga tcttcactat ggcaacttat gcaagaaact gttgaattag 180
accgcgttcc tatacatgag aaaccataca agctgtggta tttatgagcc tccatttctt 240
atactactgc agtgaaccaa cattggatgt gaaaattgcc ttttgcagg gattcgataaa 300
acaagtggat gtgtcatata ttgccaaaca ttacaacatg agcaaaagca aagttgacaa 360
ccagttctac agtgtggaaag tgggagactc aaccttcaca gttctcaagc gctaccagaa 420
tctaaagcct attggctctg gggctcaggg catagttgt gcccgcgtatg atgctgtcct 480
tgacagaaaat gtggccatta agaagctcag cagaccctt cagaacccaa cacatgccaa 540
gagagcgtac cgggagctgg tcctcatgaa gtgtgtgaac cataaaaacg tgagtttgc 600
tattttaaa cttctggcag tgggagttttaa taagattggaa aaaagaaaat gtgtctgtac 660
tttagttaaga aaggcttctt ttgctttgca attcctgcctt cttaagatttgc tttatcctgc 720
caatatgcta cattcgattt cattgtcctc atggtagctt tctgcttaaa aatcacctaa 780
aaaccatatg atgtggaaagt gatgaattttt ataaatattt ccctagtttag aaaaatttacc 840
atatttggtt atcttgctcc aaattgagag cttcaagaaa gaaacaagac aaacaaagcc 900
caaagccaga aaaaaaaaaaa aacctacaaa gcaccatgct acatttctt ataattttaga 960
tttaatttag aatttattaa tttaaaaatt 989

```
<210> 89
<211> 1818
<212> DNA
<213> Homo sapiens

<400> 89
gaattccggg ccaggcatgg tagcgcatcg ctgtaatccc agctactcg 60
gaaactgagg

tgggagaatc gattgaacct ggaagtggag gttgcggta gccaagatca 120
tcctgtcgca

ctccagcctg ggcaacaaga gcgaaactcc atctcaaaaa gaaaaaaaaa 180
gatatatatg

tgtgacttac aggtacaggt aaagttgtttct ctgggtttctt ggttggca 240
tggtaattcc
```

tatgcagcca caggtcttta ttttcttact taagtgcctc caacttccca taacacaaat	300
taaggcatga tgaacatcct ctctgtgctg aacatcctgt gtatgtcact tcagaaggct	360
gtgtgacggt ttcttagtc ttatcaccta ggggtggat ttctgggtca taggacagta	420
atttatattt atttcactaa gtattcttct tctctggctt ttgttacata ttacctgttt	480
gtcctccaga aaacttgcac caatttacat tcctaccaat agggtaggag agtgcacaat	540
gggtggattc taactccaaa tctaaccacct cttctttct ttgttcttag cagccatggc	600
aatgacaggc tcaacacacctt gctcatccat gagtaaccac acaaaggaaa gggtgacaat	660
gaccaaagtg acactggaga atttttatag caaccttatac gctcaacatg aagaacgaga	720
aatgagacaa aagaagttag aaaaggtgat ggaagaagaa ggcctaaaag atgaggagaa	780
acgactccgg agatcagcac atgctcgaa gcaaaccagag tttcttcgtt tgaagagaac	840
aagacttgga ttggaagatt ttgagtcctt aaaagtaata ggcagaggag catttggtga	900
ggtaacggctt gttcagaaga aagatacggg acatgtgtat gcaatgaaaa tactccgtaa	960
agcagatatg cttgaaaaag agcagggtgg ccacattcgt gcgagcgtg acattctagt	1020
ggaggcagac agtttgtgg ttgtgaaaat gttctatagt tttcaggata agctaaacct	1080
ctacctaatac atggagttcy tgcctggagg ggacatgatg accttggta tgaaaaaaga	1140
cactctgacg aagaggagac tcagtttat atagcagaaa cagtattagc catagactct	1200
attcaccaac ttggattcat ccacagagac atcaaaccag acaaccctct tttggacagc	1260
aagggccatg tgaaaacttgc tgactttgtt cttgcacag gactgaaaaa agcacatagg	1320
acagaatttt ataggaatct gaaccacagc ctccccagtg atttcacttt ccagaacatg	1380
aattccaaaa ggaaagcaga aacctggaaa agaaatagac gtcagctagc cttctccaca	1440
gtaggcactc ctgactacat tgctcctgag gtgtcatgc agaccggta caacaagctc	1500
tgtgattgg ggtcgcttgg ggtgatcatg tatgagatgc tcacggtaa gttgcatgg	1560
ttcagaggac ttttctgtg catccatgac agactttac attgatacca gcctctgttt	1620
caattggcag tgatctaagt gattcccta cttgtcttc aaagtgaatt gtttagaca	1680
gatgacacacctt cttcagtaa gatgtatccc actccattct tgggcttact ggcacccatgc	1740
aattgctttg ctgatcattt tttatgtttt tctttctt ataccttcat cttctccatc	1800
tagaagctct tttagtca	1818

<211> 2732
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> -
 <222> (1)..(2732)
 <223> "n" can be any nucleotide 'a', 'c' , 'g' or 't'

 <400> 90

ggcacgancg	gcacgagtcg	gcacgagcgg	cacgagtaag	tggaggttca	atgttggata	60
tcataaaata	cattgtcaac	cgaggagaac	acaagaatgg	agttctggaa	gaggaataa	120
tagcaacaat	tcttaaagag	gttttggaaag	gcttagacta	tctacacaga	aacggtcaga	180
ttcacaggga	tttggaaagct	ggtaatattc	ttctgggtga	ggatggttca	gtacaaatag	240
cagattttgg	ggtaagtgcg	ttcctagcaa	cagggggtga	tgttacccga	aataaagtaa	300
gaaaaacatt	cgttggcacc	ccatgttgg	tggctcctga	agtcatggaa	caggtgagag	360
gctatgactt	caaggctgac	atgtggagtt	ttggaaataac	tgccattgaa	ttagcaacag	420
gagcagcgcc	ttatcacaaa	tatcctccca	tgaaagtgtt	aatgttgact	ttgcaaaatg	480
atccacccac	tttggaaaca	ggggtagagg	ataaagaaaat	gataaaaaaag	tacggcaagt	540
ccttttagaaa	attactttca	ctgtgtcttc	agaaagatcc	ttccaaaagg	cccacagcag	600
cagaactttt	aaaatgcaaa	ttcttccaga	aagccaagaa	cagagagtac	ctgattgaga	660
agctgcttac	aagaacacca	gacatagccc	aaagagccaa	aaaggtaaga	agagttcctg	720
ggtaagtgg	tcaccttcat	aaaaccgaag	acggggactg	ggagtggagt	gacgacgaga	780
tggatgagaa	gagcgaagaa	gggaaagcag	ctttttctca	ggaaaagtca	cgaagagtaa	840
aagaagaaaa	tccagagatt	gcagtgagtg	ccagcaccat	ccccgaacaa	atacagtccc	900
tctctgtgca	cgactctcag	ggcccaccca	atgctaattga	agactacaga	gaagcttctt	960
cttgcgcgt	gaacctcggt	ttgagattaa	gaaactccag	aaaggaactt	aatgacatac	1020
gatttgagtt	tactccagga	agagatacag	cagatggtgt	atctcaggag	ctcttctctg	1080
ctggcttgggt	ggatggtcac	gatgttagta	tagtgctgc	taatttacag	aagattgttag	1140
atgatcccaa	agctttaaaa	acattgacat	ttaagttggc	ttctggctgt	gatgggtcgg	1200
agattcctga	tgaagtgaag	ctgattgggt	ttgctcagtt	gagtgtcagc	tgatgtatgt	1260
cccttgcgt	caccctgatc	tgtcatgccc	cacggccacc	cctactccct	tcaaccctcc	1320
ctctttctgc	ccatttcctc	ccacccctc	actcccattt	cctagcaaaa	tcagaagatt	1380

gtgaagaggc cggcttcaac aaaatggat aaaaaaataa tttttaaaaa cttacaacac 1440
tccgagttct gctttattct ctagcaatcc acagtacaag aacaagcaaa tgccacagct 1500
gcacgactgt tgctcatttt tccaaaagct attaatatt cttagcaatc aatttggata 1560
tcccttaagt gaaaagaatc taaaatacac tcaggtggtc ttatttattt gcaacaaaag 1620
gaattttcta tccagaagcc tatttctcct ttcattgttg ttatttctgt tataatactt 1680
taattgtaca tctgacaata ctgcctctt tatgttgtat ttagaaattha atataactt 1740
aaaattaaga tttatttagcc aaacttgaat tctagttta aaactgactg tgaattttat 1800
tttcatata tttatgcatt acacacctt gctataagaa aaaaagggtt ttgattat 1860
gcttcttgca gttaatctcg ttattnaac aaaaagttt gggtctgtct ttggagtatt 1920
tgtaacttct aaattttgaa atgactgaat taggaattt gatgcttatt cttnagtc 1980
gtttgcctaa aaaccaattt acaatctgac tgtctcttg gagagggagg tgccttgcaa 2040
actttcacat taagaatgtg cctgaggctg cttaactctg gaatagtctc agatctaaaa 2100
ttccctctat ataaggtggc atatgttaag tttgcttca ttggaccgtt tagaatgcta 2160
tgtaaaatgt tgccattctg ttagattgct aactatatac ccatctctga tttggctctc 2220
cttaagtgat aggatttggatttctaaagg tgataaaactt gaaaatatca gaatctgagt 2280
tttacttgaa atttgcaga atacccaggt ggagtgaaaa ttggaagggt tttgtgcaat 2340
gactaaaagg taaaacgctg ttaaggttca agaatcaata cttaacccc aagtagccct 2400
ctgcttgact gtatattatg gaactagtaa accttaggt tttgaaaatt ggagtctaat 2460
cttaagga ggtgggctcc caggtggta ccattgctt ttcctagcta accctagata 2520
tggcagctt ttaatgtact tcaaaaagca aatatatatt actaaggaaa aaaagttatt 2580
tataattgcc ttgtcataat tgttaagggt ttctagagcc atttgcatac aatttaatgt 2640
aatttcattt cattttattt tttacacaac gattactcga agatgactgc aaaggtaaaa 2700
gaaaaataaa agtgtattgc acaatgaaaa aa 2732

<210> 91
<211> 1416
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1416)
<223> "n" may be any nucleotide 'a', 'c', 'g' or 't'

<400> 91
ggcacgancg gcacgagtcg gcacgagcgg cacgagtaag tggaggttca atgttggata 60
tcataaaata cattgtcaac cgaggagaac acaagaatgg agttctggaa gaggcaataa 120
tagcaacaat tcttaaagag gttttggaag gcttagacta tctacacaga aacggtcaga 180
ttcacagggta tttgaaagct ggtaatattc ttctgggtga ggatggttca gtacaaatag 240
cagattttgg ggtaagtgcg ttccctgca cagggggta tgttaccgaa aataaagtaa 300
gaaaaacatt cgttggcacc ccatgttggta tggctcctga agtcatggaa caggtgagag 360
gctatgactt caaggctgac atgtggagtt ttggaataac tgccattgaa ttagcaacag 420
gagcagcgcc ttatcacaaa tttccccc taaaatgttt aatgttact ttgcaaaaatg 480
atccacccac tttggaaaca gggtagagg ataaagaaat gatgaaaaag tacggcaagt 540
cctttagaaa attacttca ctgtgtttc agaaagatcc ttccaaaagg cccacagcag 600
cagaactttt aaaatgcaaa ttctccaga aagccaagaa cagagactac ctgattgaga 660
agctgcttac aagaacacca gacatagccc aaagagccaa aaaggtaaga agagttcctg 720
ggtaagtgg tcacccat aaaaccgaag acggggactg ggagtggagt gacgacgaga 780
tggatgagaa gagcgaagaa gggaaagcag cttttctca gaaaaagtca cgaagagtaa 840
aagaagaaaa tccagagatt gcagtggatg ccagcaccat cccgaacaa atacagtccc 900
tctctgtgca cgactctcag ggcccacca atgctaattga agactacaga gaagcttctt 960
cttgcgcgt gaacctcggt ttgagattaa gaaactccag aaaggaactt aatgacatac 1020
gatttggatg tactccagga agagatacag cagatggtgt atctcaggag ctcttctctg 1080
ctggcttggg ggatggtcac gatgttagtta tagtggctgc taatttacag aagattgttag 1140
atgatcccaa agcttaaaa acattgacat ttaagttgaa tcaatttttgc catttggaaag 1200
catttgcattc tgcagcgtta gggAACGTT tctgattgtg actggaaatgt tccttctcta 1260
tgagcatagc ttttcttat cgtcacaccc ttgactaaga gcggccatata aagaatctg 1320
aaggcttagat catttgctt gcagttgtt ttgcaacttg accataaaga caaaattaca 1380
ctgaattcaa agcaacactc ttaataaaagc tttcct 1416

<210> 92
<211> 434
<212> PRT
<213> Homosapiens

<400> 92

Met Pro Ala Arg Arg Leu Leu Leu Leu Thr Leu Leu Leu Pro Gly
1 5 10 15

Leu Gly Ile Phe Gly Ser Thr Ser Thr Val Thr Leu Pro Glu Thr Leu
20 25 30

Leu Phe Val Ser Thr Leu Asp Gly Ser Leu His Ala Val Ser Lys Arg
35 40 45

Thr Gly Ser Ile Lys Trp Thr Leu Lys Glu Asp Pro Val Leu Gln Val
50 55 60

Pro Thr His Val Glu Glu Pro Ala Phe Leu Pro Asp Pro Asn Asp Gly
65 70 75 80

Ser Leu Tyr Thr Leu Gly Ser Lys Asn Asn Glu Gly Leu Thr Lys Leu
85 90 95

Pro Phe Thr Ile Pro Glu Leu Val Gln Ala Ser Pro Cys Arg Ser Ser
100 105 110

Asp Gly Ile Leu Tyr Met Gly Lys Lys Gln Asp Ile Trp Tyr Val Ile
115 120 125

Asp Leu Leu Thr Gly Glu Lys Gln Gln Thr Leu Ser Ser Ala Phe Ala
130 135 140

Asp Ser Leu Cys Pro Ser Thr Ser Leu Leu Tyr Leu Gly Arg Thr Glu
145 150 155 160

Tyr Thr Ile Thr Met Tyr Asp Thr Lys Thr Arg Glu Leu Arg Trp Asn
165 170 175

Ala Thr Tyr Phe Asp Tyr Ala Ala Ser Leu Pro Glu Asp Glu Gly Asp
180 185 190

Tyr Lys Met Ser His Phe Val Ser Asn Gly Asp Gly Leu Val Val Thr
195 200 205

Val Asp Ser Glu Ser Gly Asp Val Leu Trp Ile Gln Asn Tyr Ala Ser
210 215 220

Pro Val Val Ala Phe Tyr Val Trp Gln Arg Glu Gly Leu Arg Lys Val
225 230 235 240

Met His Ile Asn Val Ala Val Glu Thr Leu Arg Tyr Leu Thr Phe Met
245 250 255

Ser Gly Glu Val Gly Arg Ile Thr Lys Trp Lys Tyr Pro Phe Pro Lys
260 265 270

Glu Thr Glu Ala Lys Ser Lys Leu Thr Pro Thr Leu Tyr Val Gly Lys
275 280 285

Tyr Ser Thr Ser Leu Tyr Ala Ser Pro Ser Met Val His Glu Gly Val
290 295 300

Ala Val Val Pro Arg Gly Ser Thr Leu Pro Leu Leu Glu Gly Pro Gln
305 310 315 320

Thr Asp Gly Val Thr Ile Gly Asp Lys Gly Glu Cys Val Ile Thr Pro
325 330 335

Ser Thr Asp Val Lys Phe Asp Pro Gly Leu Lys Ser Lys Asn Lys Leu
340 345 350

Asn Tyr Leu Arg Asn Tyr Trp Leu Leu Ile Gly His His Glu Thr Pro
355 360 365

Leu Ser Ala Ser Thr Lys Met Leu Glu Arg Phe Pro Asn Asn Leu Pro
370 375 380

Lys His Arg Glu Asn Val Ile Pro Ala Asp Ser Glu Lys Lys Ser Phe
385 390 395 400

Glu Glu Thr Leu Leu Gln Met Thr Ser Val Phe Ser Trp Ile Leu Asn
405 410 415

Leu Pro Ser Lys Glu Glu Val Phe Ala Phe Leu Arg Ile Phe Glu Lys
420 425 430

Asn Met

<210> 93
<211> 232
<212> PRT
<213> Homo sapiens

<400> 93

Met Tyr Ser Leu Gln Leu Gln Ser Val Ser Ser Ala Ile His Leu Cys
1 5 10 15

Asp Lys Lys Lys Met Glu Leu Ser Leu Asn Ile Pro Val Asn His Gly
20 25 30

Pro Gln Glu Glu Ser Cys Gly Ser Ser Gln Leu His Glu Asn Ser Gly
35 40 45

Ser Pro Glu Thr Ser Arg Ser Leu Pro Ala Pro Gln Asp Asn Asp Phe
50 55 60

Leu Ser Arg Lys Ala Gln Asp Cys Tyr Phe Met Lys Leu His His Cys
65 70 75 80

Pro Gly Asn His Ser Trp Asp Ser Thr Ile Ser Gly Ser Gln Arg Ala
85 90 95

Ala Phe Cys Asp His Lys Thr Thr Pro Cys Ser Ser Ala Ile Ile Asn
100 105 110

Pro Leu Ser Thr Ala Gly Asn Ser Glu Arg Leu Gln Pro Gly Ile Ala

115 120 125

Gln Gln Trp Ile Gln Ser Lys Arg Glu Asp Ile Val Asn Gln Met Thr
130 135 140

Glu Ala Cys Leu Asn Gln Ser Leu Asp Ala Leu Leu Ser Arg Asp Leu
145 150 155 160

Ile Met Lys Glu Asp Tyr Glu Leu Val Ser Thr Lys Pro Thr Arg Thr
165 170 175

Ser Lys Val Arg Gln Leu Leu Asp Thr Thr Asp Ile Gln Gly Glu Glu
180 185 190

Phe Ala Lys Val Ile Val Gln Lys Leu Lys Asp Asn Lys Gln Met Gly
195 200 205

Leu Gln Pro Tyr Pro Glu Ile Leu Val Val Ser Arg Ser Pro Ser Leu
210 215 220

Asn Leu Leu Gln Asn Lys Ser Met
225 230

<210> 94
<211> 209
<212> PRT
<213> Homo spaiens

<400> 94

Met Ala Asp Leu Glu Ala Val Leu Ala Asp Val Ser Tyr Leu Met Ala
1 5 10 15

Met Glu Lys Ser Lys Ala Thr Pro Ala Ala Arg Ala Ser Lys Lys Ile
20 25 30

Leu Leu Pro Glu Pro Ser Ile Arg Ser Val Met Gln Lys Tyr Leu Glu
35 40 45

Asp Arg Gly Glu Val Thr Phe Glu Lys Ile Phe Ser Gln Lys Leu Gly
50 55 60

Tyr Leu Leu Phe Arg Asp Phe Cys Leu Asn His Leu Glu Glu Ala Arg
65 70 75 80

Pro Leu Val Glu Phe Tyr Glu Glu Ile Lys Lys Tyr Glu Lys Leu Glu
85 90 95

Thr Glu Glu Glu Arg Val Ala Arg Ser Arg Glu Ile Phe Asp Ser Tyr
100 105 110

Ile Met Lys Glu Leu Leu Ala Cys Ser His Pro Phe Ser Lys Ser Ala
115 120 125

Thr Glu His Val Gln Gly His Leu Gly Lys Lys Gln Val Pro Pro Asp
130 135 140

Leu Phe Gln Pro Tyr Ile Glu Glu Ile Cys Gln Asn Leu Arg Gly Asp
145 150 155 160

Val Phe Gln Lys Phe Ile Glu Arg Val Ala Leu Ala Ala Gly Ala Ala
165 170 175

Thr Leu Pro Ala Val Pro Ser Cys Pro Asn Pro Gln His Pro Gly Ser
180 185 190

Gly Thr Thr Ala Arg His Leu Gln Val Gly Pro Tyr Trp Pro Arg Leu
195 200 205

Ala

<210> 95

<211> 454

<212> PRT

<213> Homo sapiens

<400> 95

Met Gly Leu Val Ser Ser Lys Lys Pro Asp Lys Glu Lys Pro Ile Lys
1 5 10 15

Glu Lys Asp Lys Gly Gln Trp Ser Pro Leu Lys Val Ser Ala Gln Asp
20 25 30

Lys Asp Ala Pro Pro Leu Pro Pro Leu Val Val Phe Asn His Leu Thr
35 40 45

Pro Pro Pro Pro Asp Glu His Leu Asp Glu Asp Lys His Phe Val Val
50 55 60

Ala Leu Tyr Asp Tyr Thr Ala Met Asn Asp Arg Asp Leu Gln Met Leu
65 70 75 80

Lys Gly Glu Lys Leu Gln Val Leu Lys Gly Thr Gly Asp Trp Trp Leu
85 90 95

Ala Arg Ser Leu Val Thr Gly Arg Glu Gly Tyr Val Pro Ser Asn Phe
100 105 110

Val Ala Arg Val Glu Ser Leu Glu Met Glu Arg Trp Phe Phe Arg Ser
115 120 125

Gln Gly Arg Lys Glu Ala Glu Arg Gln Leu Leu Ala Pro Ile Asn Lys
130 135 140

Ala Gly Ser Phe Leu Ile Arg Glu Ser Glu Thr Asn Lys Gly Ala Phe
145 150 155 160

Ser Leu Ser Val Lys Asp Val Thr Thr Gln Gly Glu Leu Ile Lys His
165 170 175

Tyr Lys Ile Arg Cys Leu Asp Glu Gly Gly Tyr Tyr Ile Ser Pro Arg
180 185 190

Ile Thr Phe Pro Ser Leu Gln Ala Leu Val Gln His Tyr Ser Ser Tyr
195 200 205

Tyr Lys Asn Asn Met Lys Val Ala Ile Lys Thr Leu Lys Glu Gly Thr
210 215 220

Met Ser Pro Glu Ala Phe Leu Gly Glu Ala Asn Val Met Lys Ala Leu
225 230 235 240

Gln His Glu Arg Leu Val Arg Leu Tyr Ala Val Val Thr Lys Glu Pro
245 250 255

Ile Tyr Ile Val Thr Glu Tyr Met Ala Arg Gly Cys Leu Leu Asp Phe
260 265 270

Leu Lys Thr Asp Glu Gly Ser Arg Leu Ser Leu Pro Arg Leu Ile Asp
275 280 285

Met Ser Ala Gln Ile Ala Glu Gly Met Ala Tyr Ile Glu Arg Met Asn
290 295 300

Ser Ile His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Ser Glu Ala
305 310 315 320

Leu Cys Cys Lys Ile Ala Asp Phe Gly Leu Ala Arg Ile Ile Asp Ser
325 330 335

Glu Tyr Thr Ala Gln Glu Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala
340 345 350

Pro Glu Ala Ile His Phe Gly Val Phe Thr Ile Lys Ala Asp Val Trp
355 360 365

Ser Phe Gly Val Leu Leu Met Glu Val Val Thr Tyr Gly Arg Val Pro
370 375 380

Tyr Pro Gly Met Ser Asn Pro Glu Val Ile Arg Asn Leu Glu Arg Gly
385 390 395 400

Tyr Arg Met Pro Arg Pro Asp Thr Cys Pro Pro Glu Leu Tyr Arg Gly
405 410 415

Val Ile Ala Glu Cys Trp Arg Ser Arg Pro Glu Glu Arg Pro Thr Phe
420 425 430

Glu Phe Leu Gln Ser Val Leu Glu Asp Phe Tyr Thr Ala Thr Glu Arg
435 440 445

Gln Tyr Glu Leu Gln Pro
450

<210> 96
<211> 82
<212> PRT
<213> Homo sapiens

<400> 96

Met Glu Asn Phe Gln Lys Val Glu Lys Ile Gly Glu Gly Thr Tyr Gly
1 5 10 15

Val Val Tyr Lys Ala Arg Asn Lys Leu Thr Gly Glu Val Val Ala Leu
20 25 30

Lys Lys Ile Arg Leu Asp Thr Glu Thr Glu Gly Val Pro Ser Thr Ala
35 40 45

Ile Arg Glu Ile Ser Leu Leu Lys Glu Leu Asn His Pro Asn Ile Val
50 55 60

Lys Leu Leu Asp Val Ile His Thr Glu Asn Lys Asn Ile Ser Leu Lys
65 70 75 80

Glu Gly

<210> 97

<211> 118

<212> PRT

<213> Homo sapiens

<400> 97

Met Thr Arg Asp Glu Ala Leu Pro Asp Ser His Ser Ala Gln Asp Phe
1 5 10 15

Tyr Glu Asn Tyr Glu Pro Lys Glu Ile Leu Gly Arg Gly Val Ser Ser
20 25 30

Val Val Arg Arg Cys Ile His Lys Pro Thr Ser Gln Glu Tyr Ala Val
35 40 45

Lys Val Ile Asp Val Thr Gly Gly Ser Phe Ser Pro Glu Glu Val
50 55 60

Arg Glu Leu Arg Glu Ala Thr Leu Lys Glu Val Asp Ile Leu Arg Lys
65 70 75 80

Val Ser Gly His Pro Asn Ile Ser Ile Gln Leu Lys Asp Thr Tyr Glu
85 90 95

Thr Asn Thr Phe Phe Leu Val Phe Asp Leu Met Lys Arg Gly Glu
100 105 110

Leu Phe Asp Leu Pro His
115

<210> 98

<211> 167

<212> PRT

<213> Homo sapiens

<400> 98

Val Phe Leu Gly Arg Cys Arg Ser Val Lys Glu Phe Glu Lys Leu Asn
1 5 10 15

Arg Ile Gly Glu Gly Thr Tyr Gly Ile Val Tyr Arg Ala Arg Asp Thr
20 25 30

Gln Thr Asp Glu Ile Val Ala Leu Lys Lys Val Arg Met Asp Lys Glu
35 40 45

Lys Asp Gly Ile Pro Ile Ser Ser Leu Arg Glu Ile Thr Leu Leu Leu
50 55 60

Arg Leu Arg His Pro Asn Ile Val Glu Leu Lys Glu Val Val Val Gly
65 70 75 80

Asn His Leu Glu Ser Ile Phe Leu Val Met Gly Tyr Cys Glu Gln Asp
85 90 95

Leu Ala Ser Leu Leu Glu Asn Met Pro Thr Pro Phe Ser Glu Ala Gln
100 105 110

Val Lys Cys Ile Val Leu Gln Val Leu Arg Gly Leu Gln Tyr Leu His
115 120 125

Arg Asn Phe Ile Ile His Arg Asp Leu Lys Val Ser Asn Leu Leu Met
130 135 140

Thr Asp Lys Gly Cys Val Lys Thr Gly Gly Cys Asn Leu Gly Gln Ala
145 150 155 160

Trp Ser Leu Asp Gly Thr Trp
165

<210> 99

<211> 141

<212> PRT

<213> Homo sapiens

<400> 99

Met Ser Ser Ala Gly Gly Val Ser Arg Arg Leu Ala Ala Val Arg Ser
1 5 10 15

Thr Val Leu Cys Arg Ala Val Gly Cys Ile Leu Ala Glu Leu Leu Ala
20 25 30

His Arg Pro Leu Leu Pro Gly Thr Ser Glu Ile His Gln Ile Asp Leu
35 40 45

Ile Val Gln Leu Leu Gly Thr Pro Ser Glu Asn Ile Trp Pro Gly Phe
50 55 60

Ser Lys Leu Pro Leu Val Gly Gln Tyr Ser Leu Arg Lys Gln Pro Tyr
65 70 75 80

Asn Asn Leu Lys His Lys Phe Pro Trp Leu Ser Glu Ala Gly Leu Arg

85

90

95

Leu Leu His Phe Leu Phe Met Tyr Asp Pro Lys Lys Arg Ala Thr Ala
100 105 110

Gly Asp Cys Leu Glu Ser Ser Tyr Phe Lys Glu Lys Pro Leu Arg Leu
115 120 125

Pro Ile Ser Gly Val Cys Glu Gly Cys Arg Glu Pro Gly
130 135 140

<210> 100

<211> 119

<212> PRT

<213> Homo sapiens

<400> 100

Val Phe Leu Gly Arg Cys Arg Ser Val Lys Glu Phe Glu Lys Leu Asn
1 5 10 15

Arg Ile Gly Glu Gly Thr Tyr Gly Ile Val Tyr Arg Ala Arg Asp Thr
20 25 30

Gln Thr Asp Glu Ile Val Ala Leu Lys Lys Val Arg Met Asp Lys Glu
35 40 45

Lys Asp Gly Ile Pro Ile Ser Ser Leu Arg Glu Ile Thr Leu Leu Leu
50 55 60

Arg Leu Arg His Pro Asn Ile Leu Pro Ala Arg Ala Pro Trp Lys Gly
65 70 75 80

Arg Ser Gly Gly Ser Ile Arg Gly Cys Arg Gly Leu Met Trp Ser Ser
85 90 95

Ser Leu Cys Trp Lys Cys Ala Thr Thr Ala Ser Trp Glu Trp Trp
100 105 110

Val Gln Ser Pro Arg Cys Leu
115

<210> 101

<211> 756

<212> PRT

<213> Homo sapiens

<400> 101

Met Gly Glu Ala Glu Lys Phe His Tyr Ile Tyr Ser Cys Asp Leu Asp
1 5 10 15

Ile Asn Val Gln Leu Lys Ile Gly Ser Leu Glu Gly Lys Arg Glu Gln
20 25 30

Lys Ser Tyr Lys Ala Val Leu Glu Asp Pro Met Leu Lys Phe Ser Gly
35 40 45

Leu Tyr Gln Glu Thr Cys Ser Asp Leu Tyr Val Thr Cys Gln Val Phe
50 55 60

Ala Glu Gly Lys Pro Leu Ala Leu Pro Val Arg Thr Ser Tyr Lys Ala
65 70 75 80

Phe Ser Thr Arg Trp Asn Trp Asn Glu Trp Leu Lys Leu Pro Val Lys
85 90 95

Tyr Pro Asp Leu Pro Arg Asn Ala Gln Val Ala Leu Thr Ile Trp Asp
100 105 110

Val Tyr Gly Pro Gly Lys Ala Val Pro Val Gly Gly Thr Thr Val Ser
115 120 125

Leu Phe Gly Lys Tyr Gly Met Phe Arg Gln Gly Met His Asp Leu Lys
130 135 140

Val Trp Pro Asn Val Glu Ala Asp Gly Ser Glu Pro Thr Lys Thr Pro
145 150 155 160

Gly Arg Thr Ser Ser Thr Leu Ser Glu Asp Gln Met Ser Arg Leu Ala
165 170 175

Lys Leu Thr Lys Ala His Arg Gln Gly His Met Val Lys Val Asp Trp
180 185 190

Leu Asp Arg Leu Thr Phe Arg Glu Ile Glu Met Ile Asn Glu Ser Val
195 200 205

Lys Arg Ser Ser Asn Phe Met Tyr Leu Met Gly Gly Phe Arg Cys Val
210 215 220

Lys Cys Asp Asp Lys Glu Tyr Gly Ile Val Tyr Tyr Glu Lys Asp Gly
225 230 235 240

Asp Glu Ser Ser Pro Ile Leu Thr Ser Phe Glu Leu Val Lys Val Pro
245 250 255

Asp Pro Gln Met Ser Leu Glu Asn Leu Val Glu Ser Lys His His Asn
260 265 270

Leu Pro Arg Ser Leu Arg Ser Gly Pro Ser Asp His Asp Leu Lys Pro
275 280 285

Tyr Pro Ser Pro Arg Asp Gln Leu Lys Asn Ile Val Ser Tyr Pro Pro
290 295 300

Ser Lys Pro Pro Thr Tyr Glu Glu Gln Asp Leu Val Trp Glu Phe Arg
305 310 315 320

Tyr Tyr Leu Thr Asn Gln Asp Lys Ala Leu Thr Lys Ile Leu Thr Ser
325 330 335

Val Ile Trp Asp Leu Pro Gln Glu Ala Lys Gln Ala Leu Ala Leu
340 345 350

Gly Lys Trp Asn Pro Met Asp Val Glu Asp Ser Leu Glu Leu Ile Ser
355 360 365

Ser His Tyr Thr Asn Pro Thr Val Arg Arg Tyr Ala Val Ala Arg Leu
370 375 380 385 390 395 400

Arg Gln Ala Asp Asp Glu Asp Leu Leu Met Tyr Leu Leu Gln Leu Val
405 410 415

Pro Thr Lys Lys Asp Ser Gln Ser Ser Val Ser Glu Asn Val Ser Asn
420 425 430

Ser Gly Ile Asn Ser Ala Glu Ile Asp Ser Ser Gln Ile Ile Thr Ser
435 440 445

Pro Leu Pro Ser Val Ser Ser Pro Pro Pro Ala Ser Lys Thr Lys Glu
450 455 460

Val Pro Asp Gly Glu Asn Leu Glu Gln Asp Leu Cys Thr Phe Leu Ile
465 470 475 480

Ser Arg Ala Cys Lys Asn Ser Thr Leu Ala Asn Tyr Leu Tyr Trp Tyr
485 490 495

Val Ile Val Glu Cys Glu Asp Gln Asp Thr Gln Gln Arg Asp Pro Lys
500 505 510

Thr His Glu Met Tyr Leu Asn Val Met Arg Arg Phe Ser Gln Ala Leu
515 520 525

Leu Lys Gly Asp Lys Ser Val Arg Val Met Arg Ser Leu Leu Ala Ala
530 535 540

Gln Gln Thr Phe Val Asp Arg Leu Val His Leu Met Lys Ala Val Gln
545 550 555 560

Arg Glu Ser Gly Asn Arg Lys Lys Asn Glu Arg Leu Gln Ala Leu
565 570 575

Leu Gly Asp Asn Glu Lys Met Asn Leu Ser Asp Val Glu Leu Ile Pro
580 585 590

Leu Pro Leu Glu Pro Gln Val Lys Ile Arg Gly Ile Ile Pro Glu Thr
595 600 605

Ala Thr Leu Phe Lys Ser Ala Leu Met Pro Ala Gln Leu Phe Phe Lys
610 615 620

Thr Glu Asp Gly Gly Lys Tyr Pro Val Ile Phe Lys His Gly Asp Asp
625 630 635 640

Leu Arg Gln Asp Gln Leu Ile Leu Gln Ile Ile Ser Leu Met Asp Lys
645 650 655

Leu Leu Arg Lys Glu Asn Leu Asp Leu Lys Leu Thr Pro Tyr Lys Val
660 665 670

Leu Ala Thr Ser Thr Lys His Gly Phe Met Gln Phe Ile Gln Ser Val
675 680 685

Pro Val Ala Glu Val Leu Asp Thr Glu Gly Ser Ile Gln Asn Phe Phe
690 695 700

Arg Lys Tyr Ala Pro Ser Glu Asn Gly Pro Asn Gly Ile Ser Ala Glu
705 710 720

Val Met Asp Thr Tyr Val Lys Ser Cys Ala Gly Tyr Cys Val Ile Thr
725 730 735

Tyr Ile Leu Gly Val Gly Asp Arg His Leu Asp Asn Leu Leu Thr
740 745 750

Lys Thr Gly Gly
755

<210> 102

<211> 508

<212> PRT

<213> Homo sapiens

<400> 102

Met Gly Glu Ala Glu Lys Phe His Tyr Ile Tyr Ser Cys Asp Leu Asp
1 5 10 15

Ile Asn Val Gln Leu Lys Ile Gly Ser Leu Glu Gly Lys Arg Glu Gln
20 25 30

Lys Ser Tyr Lys Ala Val Leu Glu Asp Pro Met Leu Lys Phe Ser Gly
35 40 45

Leu Tyr Gln Glu Thr Cys Ser Asp Leu Tyr Val Thr Cys Gln Val Phe
50 55 60

Ala Glu Gly Lys Pro Leu Ala Leu Pro Val Arg Thr Ser Tyr Lys Ala
65 70 75 80

Phe Ser Thr Arg Trp Asn Trp Asn Glu Trp Leu Lys Leu Pro Val Lys
85 90 95

Tyr Pro Asp Leu Pro Arg Asn Ala Gln Val Ala Leu Thr Ile Trp Asp
100 105 110

Val Tyr Gly Pro Gly Lys Ala Val Pro Val Gly Gly Thr Thr Val Ser
115 120 125

Leu Phe Gly Lys Tyr Gly Met Phe Arg Gln Gly Met His Asp Leu Lys
130 135 140

Val Trp Pro Asn Val Glu Ala Asp Gly Ser Glu Pro Thr Lys Thr Pro

145 150 155 160
Gly Arg Thr Ser Ser Thr Leu Ser Glu Asp Gln Met Ser Arg Leu Ala
165 170 175
Lys Leu Thr Lys Ala His Arg Gln Gly His Met Val Lys Val Asp Trp
180 185 190
Leu Asp Arg Leu Thr Phe Arg Glu Ile Glu Met Ile Asn Glu Ser Val
195 200 205
Lys Arg Ser Ser Asn Phe Met Tyr Leu Met Gly Gly Phe Arg Cys Val
210 215 220
Lys Cys Asp Asp Lys Glu Tyr Gly Ile Val Tyr Tyr Glu Lys Asp Gly
225 230 235 240
Asp Glu Ser Ser Pro Ile Leu Thr Ser Phe Glu Leu Val Lys Val Pro
245 250 255
Asp Pro Gln Met Ser Leu Glu Asn Leu Val Glu Ser Lys His His Asn
260 265 270
Leu Pro Arg Ser Leu Arg Ser Gly Pro Ser Asp His Asp Leu Lys Pro
275 280 285
Tyr Pro Ser Pro Arg Asp Gln Leu Lys Asn Ile Val Ser Tyr Pro Pro
290 295 300
Ser Lys Pro Pro Thr Tyr Glu Glu Gln Asp Leu Val Trp Glu Phe Arg
305 310 315 320
Tyr Tyr Leu Thr Asn Gln Asp Lys Ala Leu Thr Lys Ile Leu Thr Ser
325 330 335
Val Ile Trp Asp Leu Pro Gln Glu Ala Lys Gln Ala Leu Ala Leu Leu
340 345 350
Gly Lys Trp Asn Pro Met Asp Val Glu Asp Ser Leu Glu Leu Ile Ser
355 360 365
Ser His Tyr Thr Asn Pro Thr Val Arg Arg Tyr Ala Val Ala Arg Leu
370 375 380
Arg Gln Ala Asp Asp Glu Asp Leu Leu Met Tyr Leu Leu Gln Leu Val
385 390 395 400
Gln Ala Leu Lys Tyr Glu Asn Phe Asp Asp Ile Lys Asn Gly Leu Glu
405 410 415
Pro Thr Lys Lys Asp Ser Gln Ser Ser Val Ser Glu Asn Val Ser Asn
420 425 430
Ser Gly Ile Asn Ser Ala Glu Ile Asp Ser Ser Gln Ile Ile Thr Ser
435 440 445
Pro Leu Pro Ser Val Ser Ser Pro Pro Pro Ala Ser Lys Thr Lys Glu

450

455

460

Val Pro Asp Gly Glu Asn Leu Glu Gln Asp Leu Cys Thr Phe Leu Ile
465 470 475 480

Ser Arg Ala Cys Lys Asn Ser Thr Leu Ala Asn Tyr Leu Tyr Trp Tyr
485 490 495

Val Lys Ile Ile Phe Cys Leu Phe Ser Tyr Tyr Pro
500 505

<210> 103

<211> 140

<212> PRT

<213> Homo sapiens

<400> 103

Met Gly Asn Ala Ala Ala Lys Lys Gly Ser Glu Gln Glu Ser Val
1 5 10 15

Lys Glu Phe Leu Ala Lys Ala Lys Glu Asp Phe Leu Lys Lys Trp Glu
20 25 30

Ser Pro Ala Gln Asn Thr Ala His Leu Asp Gln Phe Glu Arg Ile Lys
35 40 45

Thr Leu Gly Thr Gly Ser Phe Gly Arg Val Met Leu Val Lys His Lys
50 55 60

Glu Thr Gly Asn His Tyr Ala Met Lys Ile Leu Asp Lys Gln Lys Val
65 70 75 80

Val Lys Leu Lys Gln Ile Glu His Thr Leu Asn Glu Lys Arg Ile Leu
85 90 95

Gln Ala Val Asn Phe Pro Phe Leu Val Lys Leu Glu Phe Ser Phe Lys
100 105 110

Asp Asn Ser Asn Leu Tyr Met Val Met Glu Tyr Val Pro Gly Gly Glu
115 120 125

Met Phe Ser His Leu Arg Arg Ile Gly Arg Phe Arg
130 135 140

<210> 104

<211> 156

<212> PRT

<213> Homo sapiens

<400> 104

Met Val Val Phe Asn Gly Leu Leu Lys Ile Lys Ile Cys Glu Ala Val
1 5 10 15

Ser Leu Lys Pro Thr Ala Trp Ser Leu Arg His Ala Val Gly Pro Arg
20 25 30

Pro Gln Thr Phe Leu Leu Asp Pro Tyr Ile Ala Leu Asn Val Asp Asp
35 40 45

Ser Arg Ile Gly Gln Thr Ala Thr Lys Gln Lys Thr Asn Ser Pro Ala
50 55 60

Trp His Asp Glu Phe Val Thr Asp Val Cys Asn Gly Arg Lys Ile Glu
65 70 75 80

Leu Ala Val Phe His Asp Ala Pro Ile Gly Tyr Asp Asp Phe Val Ala
85 90 95

Asn Cys Thr Ile Gln Phe Glu Glu Leu Leu Gln Asn Gly Ser Arg His
100 105 110

Phe Glu Asp Trp Ile Asp Leu Glu Pro Glu Gly Arg Val Tyr Val Ile
115 120 125

Ile Asp Leu Ser Gly Ser Ser Gly Glu Val Lys Ile Pro Asn Ser Ala
130 135 140

Phe Cys Glu Arg Glu Arg Val Glu Met Arg His Ser
145 150 155

<210> 105
<211> 520
<212> PRT
<213> Homo sapiens

<400> 105

Met Ile Leu Ile Pro Arg Met Leu Leu Val Leu Phe Leu Leu Pro
1 5 10 15

Ile Leu Ser Ser Ala Lys Ala Gln Val Asn Pro Ala Ile Cys Arg Tyr
20 25 30

Pro Leu Gly Met Ser Gly Gly Gln Ile Pro Asp Glu Asp Ile Thr Ala
35 40 45

Ser Ser Gln Trp Ser Glu Ser Thr Ala Ala Lys Tyr Gly Arg Leu Asp
50 55 60

Ser Glu Glu Gly Asp Gly Ala Trp Cys Pro Glu Ile Pro Val Glu Pro
65 70 75 80

Asp Asp Leu Lys Glu Phe Leu Gln Ile Asp Leu His Thr Leu His Phe
85 90 95

Ile Thr Leu Val Gly Thr Gln Gly Arg His Ala Gly Gly His Gly Ile
100 105 110

Glu Phe Ala Pro Met Tyr Lys Ile Asn Tyr Ser Arg Asp Gly Thr Arg
115 120 125

Trp Ile Ser Trp Arg Asn Arg His Gly Lys Gln Val Leu Asp Gly Asn

130 135 140
Ser Asn Pro Tyr Asp Ile Phe Leu Lys Asp Leu Glu Pro Pro Ile Val
145 150 155 160
Ala Arg Phe Val Arg Phe Ile Pro Val Thr Asp His Ser Met Asn Val
165 170 175
Cys Met Arg Val Glu Leu Tyr Gly Cys Val Trp Leu Asp Gly Leu Val
180 185 190
Ser Tyr Asn Ala Pro Ala Gly Gln Gln Phe Val Leu Pro Gly Gly Ser
195 200 205
Ile Ile Tyr Leu Asn Asp Ser Val Tyr Asp Gly Ala Val Gly Tyr Ser
210 215 220
Met Thr Glu Gly Leu Gly Gln Leu Thr Asp Gly Val Ser Gly Leu Asp
225 230 235 240
Asp Phe Thr Gln Thr His Glu Tyr His Val Trp Pro Gly Tyr Asp Tyr
245 250 255
Val Gly Trp Arg Asn Glu Ser Ala Thr Asn Gly Tyr Ile Glu Ile Met
260 265 270
Phe Glu Phe Asp Arg Ile Arg Asn Phe Thr Thr Met Lys Val His Cys
275 280 285
Asn Asn Met Phe Ala Lys Gly Val Lys Ile Phe Lys Glu Val Gln Cys
290 295 300
Tyr Phe Arg Ser Glu Ala Ser Glu Trp Glu Pro Asn Ala Ile Ser Phe
305 310 315 320
Pro Leu Val Leu Asp Asp Val Asn Pro Ser Ala Arg Phe Val Thr Val
325 330 335
Pro Leu His His Arg Met Ala Ser Ala Ile Lys Cys Gln Tyr His Phe
340 345 350
Ala Asp Thr Trp Met Met Phe Ser Glu Ile Thr Phe Gln Ser Asp Ala
355 360 365
Ala Met Tyr Asn Asn Ser Glu Ala Leu Pro Thr Ser Pro Met Ala Pro
370 375 380
Thr Thr Tyr Asp Pro Met Leu Lys Val Asp Asp Ser Asn Thr Arg Ile
385 390 395 400
Leu Ile Gly Cys Leu Val Ala Ile Ile Phe Ile Leu Leu Ala Ile Ile
405 410 415
Val Ile Ile Leu Trp Arg Gln Phe Trp Gln Lys Met Leu Glu Lys Ala
420 425 430
Ser Arg Arg Met Leu Asp Asp Glu Met Thr Val Ser Leu Ser Leu Pro

435

440

445

Ser Asp Ser Ser Met Phe Asn Asn Asn Arg Ser Ser Ser Pro Ser Glu
450 455 460

Gln Gly Ser Asn Ser Thr Tyr Asp Arg Ile Phe Pro Leu Arg Pro Asp
465 470 475 480

Tyr Gln Glu Pro Ser Arg Leu Ile Arg Lys Leu Pro Glu Phe Ala Pro
485 490 495

Gly Glu Glu Glu Ser Gly Glu Asp Asp Val Val Glu Gln Gly Val Lys
500 505 510

Gly Glu Thr Ser Ala Ser Ile Arg
515 520

<210> 106

<211> 284

<212> PRT

<213> Homo sapiens

<400> 106

Met Ala Asn Phe Gln Glu His Leu Ser Cys Ser Ser Ser Pro His Leu
1 5 10 15

Pro Phe Ser Glu Ser Lys Thr Phe Asn Gly Leu Gln Asp Glu Leu Thr
20 25 30

Ala Met Gly Asn His Pro Ser Pro Lys Leu Leu Glu Asp Gln Gln Glu
35 40 45

Lys Gly Met Val Arg Thr Glu Leu Ile Glu Ser Val His Ser Pro Val
50 55 60

Thr Thr Thr Val Leu Thr Ser Val Ser Glu Asp Ser Arg Asp Gln Phe
65 70 75 80

Glu Asn Ser Val Leu Gln Leu Arg Glu His Asp Glu Ser Glu Thr Ala
85 90 95

Val Ser Gln Gly Asn Ser Asn Thr Val Asp Gly Glu Ser Thr Ser Gly
100 105 110

Thr Glu Asp Ile Lys Ile Gln Phe Ser Arg Ser Gly Ser Gly Ser Gly
115 120 125

Gly Phe Leu Glu Gly Leu Phe Gly Cys Leu Arg Pro Val Trp Asn Ile
130 135 140

Ile Gly Lys Ala Tyr Ser Thr Asp Tyr Lys Phe Met Gln Gln Asp Thr
145 150 155 160

Trp Glu Val Pro Phe Glu Glu Ile Ser Glu Leu Gln Trp Leu Gly Ser
165 170 175

Gly Ala Gln Gly Ala Val Phe Leu Gly Lys Phe Arg Ala Glu Glu Val
180 185 190

Ala Ile Lys Lys Val Arg Glu Gln Asn Glu Thr Asp Ile Lys His Leu
195 200 205

Arg Lys Leu Lys His Pro Asn Ile Ile Ala Phe Lys Gly Val Cys Thr
210 215 220

Gln Ala Pro Cys Tyr Cys Ile Ile Met Glu Tyr Cys Ala His Gly Gln
225 230 235 240

Leu Tyr Glu Val Leu Arg Ala Gly Arg Lys Ile Thr Pro Arg Leu Leu
245 250 255

Val Asp Trp Ser Thr Gly Ile Ala Ser Gly Met Asn Tyr Leu His Leu
260 265 270

His Lys Ile Ile His Arg Asp Leu Lys Ser Pro Lys
275 280

<210> 107

<211> 185

<212> PRT

<213> Homo sapiens

<400> 107

Met Cys Gly Gln Arg Trp Ile His Asn Phe Thr Cys Leu Ala Phe Leu
1 5 10 15

Phe His Thr Leu Lys Ser Gly Asn Lys Ser Val His Leu Arg Lys Ala
20 25 30

Ser Ser Pro Asn Leu His Arg Arg Gln Trp Glu Lys Asn Val Pro Asn
35 40 45

Thr Ala Leu Thr Ala Leu Glu Asn Ala Ser Ile Leu Thr Ser Ser Leu
50 55 60

Thr Ala Glu Asp Asp Arg Gly Gly Ser Val Ile Lys Tyr Ser Lys Asn
65 70 75 80

Thr Thr Arg Lys Gln Trp Leu Lys Glu Thr Pro Asp Thr Leu Leu Asn
85 90 95

Ile Leu Lys Asn Ala Asp Leu Ser Leu Ala Phe Gln Thr Tyr Thr Ile
100 105 110

Tyr Arg Pro Gly Ser Glu Gly Phe Leu Lys Gly Pro Leu Ser Glu Glu
115 120 125

Thr Glu Ala Ser Asp Ser Val Asp Gly Gly His Asp Ser Val Ile Leu
130 135 140

Asp Pro Glu Arg Leu Glu Pro Gly Leu Asp Glu Glu Asp Thr Asp Phe
145 150 155 160

Glu Glu Glu Asp Asp Asn Pro Asp Trp Val Ser Glu Leu Lys Lys Arg
165 170 175

Ala Gly Trp Gln Gly Leu Cys Asp Arg
180 185

<210> 108

<211> 83

<212> PRT

<213> Homo sapiens

<400> 108

Met Ala Pro Pro Ser Glu Glu Thr Pro Leu Ile Pro Gln Arg Ser Cys
1 5 10 15

Ser Leu Leu Ser Thr Glu Ala Gly Ala Leu His Val Leu Leu Pro Ala
20 25 30

Arg Gly Pro Gly Pro Pro Gln Arg Leu Ser Phe Ser Phe Gly Val Pro
35 40 45

Val Arg Pro Val Gly Ala Asn Gly Pro Pro Leu Thr Ser Gly Phe Leu
50 55 60

Gly Gly Trp Ala Glu Ala Ser Val Gln Arg Gly Leu Trp Lys Cys Leu
65 70 75 80

Leu Thr Glu

<210> 109

<211> 213

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Glu Ser Ala Gly Ala Ser Ser Phe Phe Pro Leu Val Val Leu
1 5 10 15

Leu Leu Ala Gly Ser Gly Ser Gly Pro Arg Gly Val Gln Ala Leu
20 25 30

Leu Cys Ala Cys Thr Ser Cys Leu Gln Ala Asn Tyr Thr Cys Glu Thr
35 40 45

Asp Gly Ala Cys Met Val Ser Ile Phe Asn Leu Asp Gly Met Glu His
50 55 60

His Val Arg Thr Cys Ile Pro Lys Val Glu Leu Val Pro Ala Gly Lys
65 70 75 80

Pro Phe Tyr Cys Leu Ser Ser Glu Asp Leu Arg Asn Thr His Cys Cys
85 90 95

Tyr Thr Asp Tyr Cys Asn Arg Ile Asp Leu Arg Val Pro Ser Gly His
100 105 110

Leu Lys Glu Pro Glu His Pro Ser Met Trp Gly Pro Val Glu Leu Val
115 120 125

Gly Ile Ile Ala Gly Pro Val Phe Leu Leu Phe Leu Ile Ile Ile Ile
130 135 140

Val Phe Leu Val Ile Asn Tyr His Gln Arg Val Tyr His Asn Arg Gln
145 150 155 160

Arg Leu Asp Met Glu Asp Pro Ser Cys Glu Met Cys Leu Ser Lys Asp
165 170 175

Lys Thr Leu Gln Asp Leu Val Tyr Asp Leu Ser Thr Ser Gly Ser Gly
180 185 190

Ser Gly Thr Lys Phe Phe Arg Ala Ser Cys Leu Trp Leu Ala Phe Ile
195 200 205

Ser Phe Pro Ala Gly
210

<210> 110

<211> 383

<212> PRT

<213> Homo sapiens

<400> 110

Met Asp Glu Gln Glu Ala Leu Asn Ser Ile Met Asn Asp Leu Val Ala
1 5 10 15

Leu Gln Met Asn Arg Arg His Arg Met Pro Gly Tyr Glu Thr Met Lys
20 25 30

Asn Lys Asp Thr Gly His Ser Asn Arg Gln Ser Asp Val Arg Ile Lys
35 40 45

Phe Glu His Asn Gly Glu Arg Arg Ile Ile Ala Phe Ser Arg Pro Val
50 55 60

Lys Tyr Glu Asp Val Glu His Lys Val Thr Thr Val Phe Gly Gln Pro
65 70 75 80

Leu Asp Leu His Tyr Met Asn Asn Glu Leu Ser Ile Leu Leu Lys Asn
85 90 95

Gln Asp Asp Leu Asp Lys Ala Ile Asp Ile Leu Asp Arg Ser Ser Ser
100 105 110

Met Lys Ser Leu Arg Ile Leu Leu Ser Gln Asp Arg Asn His Asn
115 120 125

Ser Ser Ser Pro His Ser Glu Val Ser Arg Gln Val Arg Ile Lys Ala
130 135 140

Ser Gln Ser Ala Gly Asp Ile Asn Thr Ile Tyr Gln Pro Pro Glu Pro
145 150 155 160

Arg Ser Arg His Leu Ser Val Ser Ser Gln Asn Pro Gly Arg Ser Ser
165 170 175

Pro Pro Pro Gly Tyr Val Pro Glu Arg Gln Gln His Ile Ala Arg Gln
180 185 190

Gly Ser Tyr Thr Ser Ile Asn Ser Glu Gly Glu Phe Ile Pro Glu Thr
195 200 205

Ser Glu Gln Cys Met Leu Asp Pro Leu Ser Ser Ala Glu Asn Ser Leu
210 215 220

Ser Gly Ser Cys Gln Ser Leu Asp Arg Ser Ala Asp Ser Pro Ser Phe
225 230 235 240

Arg Lys Ser Arg Met Ser Arg Ala Gln Ser Phe Pro Asp Asn Arg Gln
245 250 255

Glu Tyr Ser Asp Arg Glu Thr Gln Leu Tyr Asp Lys Gly Val Lys Gly
260 265 270

Gly Thr Tyr Pro Arg Arg Tyr His Val Ser Val His His Lys Asp Tyr
275 280 285

Ser Asp Gly Arg Arg Thr Phe Pro Arg Ile Arg Arg His Gln Gly Asn
290 295 300

Leu Phe Thr Leu Val Pro Ser Ser Arg Ser Leu Ser Thr Asn Gly Glu
305 310 315 320

Asn Met Gly Leu Ala Val Gln Tyr Leu Asp Pro Arg Gly Arg Leu Arg
325 330 335

Ser Ala Asp Ser Glu Asn Ala Leu Ser Val Gln Glu Arg Asn Val Pro
340 345 350

Thr Lys Cys Glu Glu Leu Ser Leu Ala Arg Arg Arg Leu Pro Arg Trp
355 360 365

Ser Gln Thr Ser Tyr Gly Gly Lys Gln Leu Gly Pro Trp Asp Pro
370 375 380

<210> 111
<211> 414
<212> PRT
<213> Homo sapiens

<400> 111

Met Asp Glu Gln Glu Ala Leu Asn Ser Ile Met Asn Asp Leu Val Ala
1 5 10 15

Leu Gln Met Asn Arg Arg His Arg Met Pro Gly Tyr Glu Thr Met Lys

20 25 30

Asn Lys Asp Thr Gly His Ser Asn Arg Gln Lys Lys His Asn Ser Ser
35 40 45

Ser Ser Ala Leu Leu Asn Ser Pro Thr Val Thr Thr Ser Ser Cys Ala
50 55 60

Gly Ala Ser Glu Lys Lys Phe Leu Ser Asp Val Arg Ile Lys Phe
65 70 75 80

Glu His Asn Gly Glu Arg Arg Ile Ile Ala Phe Ser Arg Pro Val Lys
85 90 95

Tyr Glu Asp Val Glu His Lys Val Thr Thr Val Phe Gly Gln Pro Leu
100 105 110

Asp Leu His Tyr Met Asn Asn Glu Leu Ser Ile Leu Leu Lys Asn Gln
115 120 125

Asp Asp Leu Asp Lys Ala Ile Asp Ile Leu Asp Arg Ser Ser Ser Met
130 135 140

Lys Ser Leu Arg Ile Leu Leu Ser Gln Asp Arg Asn His Asn Ser
145 150 155 160

Ser Ser Pro His Ser Glu Val Ser Arg Gln Val Arg Ile Lys Ala Ser
165 170 175

Gln Ser Ala Gly Asp Ile Asn Thr Ile Tyr Gln Pro Pro Glu Pro Arg
180 185 190

Ser Arg His Leu Ser Val Ser Ser Gln Asn Pro Gly Arg Ser Ser Pro
195 200 205

Pro Pro Gly Tyr Val Pro Glu Arg Gln Gln His Ile Ala Arg Gln Gly
210 215 220

Ser Tyr Thr Ser Ile Asn Ser Glu Gly Glu Phe Ile Pro Glu Thr Ser
225 230 235 240

Glu Gln Cys Met Leu Asp Pro Leu Ser Ser Ala Glu Asn Ser Leu Ser
245 250 255

Gly Ser Cys Gln Ser Leu Asp Arg Ser Ala Asp Ser Pro Ser Phe Arg
260 265 270

Lys Ser Arg Met Ser Arg Ala Gln Ser Phe Pro Asp Asn Arg Gln Glu
275 280 285

Tyr Ser Asp Arg Glu Thr Gln Leu Tyr Asp Lys Gly Val Lys Gly Gly
290 295 300

Thr Tyr Pro Arg Arg Tyr His Val Ser Val His His Lys Asp Tyr Ser
305 310 315 320

Asp Gly Arg Arg Thr Phe Pro Arg Ile Arg Arg His Gln Gly Asn Leu

325

330

335

Phe Thr Leu Val Pro Ser Ser Arg Ser Leu Ser Thr Asn Gly Glu Asn
 340 345 350

Met Gly Leu Ala Val Gln Tyr Leu Asp Pro Arg Gly Arg Leu Arg Ser
 355 360 365

Ala Asp Ser Glu Asn Ala Leu Ser Val Gln Glu Arg Asn Val Pro Thr
 370 375 380

Lys Cys Glu Glu Leu Ser Leu Ala Arg Arg Arg Leu Pro Arg Trp Ser
 385 390 395 400

Gln Thr Ser Tyr Gly Gly Lys Gln Leu Gly Pro Trp Asp Pro
 405 410

<210> 112

<211> 201

<212> PRT

<213> Homo sapiens

<400> 112

Met Ala Lys Gln Tyr Asp Ser Val Glu Cys Pro Phe Cys Asp Glu Val
 1 5 10 15

Ser Lys Tyr Glu Lys Leu Ala Lys Ile Gly Gln Gly Thr Phe Gly Glu
 20 25 30

Val Phe Lys Ala Arg His Arg Lys Thr Gly Gln Lys Val Ala Leu Lys
 35 40 45

Lys Val Leu Met Glu Asn Glu Lys Glu Gly Phe Pro Ile Thr Ala Leu
 50 55 60

Arg Glu Ile Lys Ile Leu Gln Leu Leu Lys His Glu Asn Val Val Asn
 65 70 75 80

Leu Ile Glu Ile Cys Arg Thr Lys Ala Ser Pro Tyr Asn Arg Cys Lys
 85 90 95

Gly Ser Ile Tyr Leu Val Phe Asp Phe Cys Glu His Asp Leu Ala Gly
 100 105 110

Leu Leu Ser Asn Val Leu Val Lys Phe Thr Leu Ser Glu Ile Lys Arg
 115 120 125

Val Met Gln Met Leu Leu Asn Gly Leu Tyr Tyr Asn His Asp Phe Phe
 130 135 140

Trp Ser Asp Pro Met Pro Ser Asp Leu Lys Gly Met Leu Ser Thr His
 145 150 155 160

Leu Thr Ser Met Phe Glu Tyr Leu Ala Pro Pro Arg Arg Lys Gly Ser
 165 170 175

Gln Ile Thr Gln Gln Ser Thr Asn Gln Ser Arg Asn Pro Ala Thr Thr
180 185 190

Asn Gln Thr Glu Phe Glu Arg Val Phe
195 200

<210> 113

<211> 125

<212> PRT

<213> Homo sapiens

<400> 113

Met Ala Thr Ser Arg Tyr Glu Pro Val Ala Glu Ile Gly Val Gly Ala
1 5 10 15

Tyr Gly Thr Val Tyr Lys Ala Arg Asp Pro His Ser Gly His Phe Cys
20 25 30

Ala Leu Lys Ser Val Arg Val Pro Asn Gly Gly Gly Gly Gly Gly
35 40 45

Leu Pro Ile Ser Thr Val Arg Glu Val Ala Leu Leu Arg Arg Leu Glu
50 55 60

Ala Phe Glu His Pro Asn Val Val Arg Leu Met Asp Val Cys Ala Thr
65 70 75 80

Ser Arg Thr Asp Arg Glu Ile Lys Val Thr Leu Val Phe Glu His Val
85 90 95

Asp Gln Asp Leu Arg Thr Tyr Leu Asp Lys Ala Pro Pro Pro Gly Leu
100 105 110

Pro Ala Glu Thr Ile Lys Val Ser Gly Val Gly Arg His
115 120 125

<210> 114

<211> 45

<212> PRT

<213> Homo sapiens

<400> 114

Met Ala Thr Ser Arg Tyr Glu Pro Val Ala Glu Ile Gly Val Gly Ala
1 5 10 15

Tyr Gly Thr Val Tyr Lys Ala Arg Asp Pro His Ser Gly His Phe Cys
20 25 30

Ala Leu Lys Ser Val Arg Val Pro Thr His Leu Ser Phe
35 40 45

<210> 115

<211> 160

<212> PRT

<213> Homo sapiens

<400> 115

Met Gly Val Cys Pro Gly Lys Thr Pro Phe Cys Ser Pro Lys Pro Gln
1 5 10 15

Gly Leu Ala Arg Gly His Trp Ser Arg Arg Asp Ile Cys Val Thr
20 25 30

Gly Pro Leu Pro Leu Glu Pro Arg Ala Val Tyr Cys Lys Asp Val Leu
35 40 45

Asp Ile Glu Gln Phe Ser Thr Val Lys Gly Val Asn Leu Asp His Thr
50 55 60

Asp Asp Asp Phe Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro
65 70 75 80

Trp Gln Asn Glu Met Ile Glu Thr Glu Cys Phe Lys Glu Leu Asn Val
85 90 95

Phe Gly Pro Asn Gly Thr Leu Pro Pro Asp Leu Asn Arg Asn His Pro
100 105 110

Pro Glu Pro Pro Lys Lys Gly Leu Leu Gln Arg Leu Phe Lys Arg Gln
115 120 125

His Gln Asn Asn Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn
130 135 140

His His Ile Asn Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser
145 150 155 160

<210> 116

<211> 300

<212> PRT

<213> Homo sapiens

<220>

<221> -

<222> (1)..(300)

<223> "XAA" can be any amino acid

<400> 116

Met Pro Arg Ala Arg Met Pro Xaa Pro Arg Ala His Ser Lys Ala Gly
1 5 10 15

Cys Pro Cys Gly Cys Pro Arg Asp Pro Leu Thr Leu Leu Ser Pro Ser
20 25 30

Gly His Ile Arg Ile Ser Asp Leu Gly Leu Ala Val Lys Ile Pro Glu
35 40 45

Gly Asp Leu Ile Arg Gly Arg Val Gly Thr Val Gly Tyr Met Ala Pro
50 55 60

Glu Val Leu Asn Asn Gln Arg Tyr Gly Leu Ser Pro Asp Tyr Trp Gly
65 70 75 80

Leu Gly Cys Leu Ile Tyr Glu Met Ile Glu Gly Gln Ser Pro Phe Arg
85 90 95

Gly Arg Lys Glu Lys Val Lys Arg Glu Glu Val Asp Arg Arg Val Leu
100 105 110

Glu Thr Glu Glu Val Tyr Ser His Lys Phe Ser Glu Glu Ala Lys Ser
115 120 125

Ile Cys Lys Met Leu Leu Thr Lys Asp Ala Lys Gln Arg Leu Gly Cys
130 135 140

Gln Glu Glu Gly Ala Ala Glu Val Lys Arg His Pro Phe Phe Arg Asn
145 150 155 160

Met Asn Phe Lys Arg Leu Glu Ala Gly Met Leu Asp Pro Pro Phe Val
165 170 175

Pro Asp Pro Arg Ala Val Tyr Cys Lys Asp Val Leu Asp Ile Glu Gln
180 185 190

Phe Ser Thr Val Lys Gly Val Asn Leu Asp His Thr Asp Asp Asp Phe
195 200 205

Tyr Ser Lys Phe Ser Thr Gly Ser Val Ser Ile Pro Trp Gln Asn Glu
210 215 220

Met Ile Glu Thr Glu Cys Phe Lys Glu Leu Asn Val Phe Gly Pro Asn
225 230 235 240

Gly Thr Leu Pro Pro Asp Leu Asn Arg Asn His Pro Pro Glu Pro Pro
245 250 255

Lys Lys Gly Leu Leu Gln Arg Leu Phe Lys Arg Gln His Gln Asn Asn
260 265 270

Ser Lys Ser Ser Pro Ser Ser Lys Thr Ser Phe Asn His His Ile Asn
275 280 285

Ser Asn His Val Ser Ser Asn Ser Thr Gly Ser Ser
290 295 300

<210> 117
<211> 169
<212> PRT
<213> Homo sapiens

<220>
<221> -
<222> (1)..(169)
<223> "XAA" can be any amino acid

<400> 117

Met Arg Met Pro Arg Ala Arg Met Pro Xaa Pro Arg Ala His Ser Lys
1 5 10 15

Ala Gly Cys Pro Cys Gly Cys Pro Arg Asp Pro Leu Thr Leu Leu Ser
20 25 30

Pro Ser Gly His Ile Arg Ile Ser Asp Leu Gly Leu Ala Val Lys Ile
35 40 45

Pro Glu Gly Asp Leu Ile Arg Gly Arg Val Gly Thr Val Gly Tyr Met
50 55 60

Ala Pro Glu Val Leu Asn Asn Gln Arg Tyr Gly Leu Ser Pro Asp Tyr
65 70 75 80

Trp Gly Leu Gly Cys Leu Ile Tyr Glu Met Ile Glu Gly Gln Ser Pro
85 90 95

Phe Arg Gly Arg Lys Glu Lys Val Lys Arg Glu Glu Val Asp Arg Arg
100 105 110

Val Leu Glu Thr Glu Glu Val Tyr Ser His Lys Phe Ser Glu Glu Ala
115 120 125

Lys Ser Ile Cys Lys Met Val Ser Ser Trp Trp Pro Asp Ala Thr Leu
130 135 140

Lys Leu Val Ala Pro Ser Leu Gly Leu Ala Pro Val Cys Pro Gln Asn
145 150 155 160

Ser Lys Gln Ala Glu Gly Thr Gly Val
165

<210> 118

<211> 319

<212> PRT

<213> Homo sapiens

<400> 118

Met Ala Pro Phe Leu Arg Ile Ala Phe Asn Ser Tyr Glu Leu Gly Ser
1 5 10 15

Leu Gln Ala Glu Asp Glu Ala Asn Gln Pro Phe Cys Ala Val Lys Met
20 25 30

Lys Glu Ala Leu Ser Thr Glu Arg Gly Lys Thr Leu Val Gln Lys Lys
35 40 45

Pro Thr Met Tyr Pro Glu Trp Lys Ser Thr Phe Asp Ala His Ile Tyr
50 55 60

Glu Gly Arg Val Ile Gln Ile Val Leu Met Arg Ala Ala Glu Glu Pro
65 70 75 80

Val Ser Glu Val Thr Val Gly Val Ser Val Leu Ala Glu Arg Cys Lys
85 90 95

Lys Asn Asn Gly Lys Ala Glu Phe Trp Leu Asp Leu Gln Pro Gln Ala
100 105 110

Lys Val Leu Met Ser Val Gln Tyr Phe Leu Glu Asp Val Asp Cys Lys
115 120 125

Gln Ser Met Arg Ser Glu Asp Glu Ala Lys Phe Pro Thr Met Asn Arg
130 135 140

Arg Gly Ala Ile Lys Gln Ala Lys Ile His Tyr Ile Lys Asn His Glu
145 150 155 160

Phe Ile Ala Thr Phe Phe Gly Gln Pro Thr Phe Cys Ser Val Cys Lys
165 170 175

Asp Phe Val Trp Gly Leu Asn Lys Gln Gly Tyr Lys Cys Arg Gln Cys
180 185 190

Asn Ala Ala Ile His Lys Lys Cys Ile Asp Lys Ile Ile Gly Arg Cys
195 200 205

Thr Gly Thr Ala Ala Asn Ser Arg Asp Thr Ile Phe Gln Lys Glu Arg
210 215 220

Phe Asn Ile Asp Met Pro His Arg Phe Lys Val His Asn Tyr Met Ser
225 230 235 240

Pro Thr Phe Cys Asp His Cys Gly Ser Leu Leu Leu Pro Ala Pro His
245 250 255

Asp Lys His Gln Trp Asp Cys Gly Asp Phe Cys Cys Trp Pro Arg Pro
260 265 270

Cys Pro Gln Ser Val Leu Gly Cys Arg Leu Ala Gly Leu Ser Trp Tyr
275 280 285

Phe Leu Cys Glu Leu Cys Val Asn Leu Leu Phe Leu Cys Leu Arg Arg
290 295 300

Glu Ile Val Asn Pro Val Phe His Tyr Leu Asn Val Val Ile Tyr
305 310 315

<210> 119

<211> 236

<212> PRT

<213> Homo sapiens

<400> 119

Met Asp Glu Thr His Pro Gly Tyr Gly Lys Glu Val Asp Leu Glu Phe
1 5 10 15

Leu Val Ser Pro Ser Leu Pro Cys Leu Leu Ser Phe Ala Gly Ser Ala
20 25 30

Arg His Leu Val Pro Pro Asp Ser Asn Leu Phe Ser Lys Leu Trp Ala
35 40 45

Cys Gly Val Ile Leu Phe Thr Leu Leu Ala Gly Ser Pro Pro Phe Trp
50 55 60

His Arg Arg Gln Ile Leu Met Leu Arg Met Ile Met Glu Gly Gln Tyr
65 70 75 80

Gln Phe Ser Ser Pro Glu Trp Asp Asp Arg Ser Ser Thr Val Lys Asp
85 90 95

Leu Ile Ser Arg Leu Leu Gln Val Asp Pro Glu Ala Arg Leu Thr Ala
100 105 110

Glu Gln Ala Leu Gln His Pro Phe Phe Glu Arg Cys Glu Gly Ser Gln
115 120 125

Pro Trp Asn Leu Thr Pro Arg Gln Arg Phe Arg Val Ala Val Trp Thr
130 135 140

Val Leu Ala Ala Gly Arg Val Ala Leu Ser Thr His Arg Val Arg Pro
145 150 155 160

Leu Thr Lys Asn Ala Leu Leu Arg Asp Pro Tyr Ala Leu Arg Ser Val
165 170 175

Arg His Leu Ile Asp Asn Cys Ala Phe Arg Leu Tyr Gly His Trp Val
180 185 190

Lys Lys Gly Glu Gln Gln Asn Arg Ala Ala Leu Phe Gln His Arg Pro
195 200 205

Pro Gly Pro Phe Pro Ile Met Gly Pro Glu Glu Gly Asp Ser Ala
210 215 220

Ala Ile Thr Glu Asp Glu Ala Val Leu Val Leu Gly
225 230 235

<210> 120

<211> 572

<212> PRT

<213> Homo sapiens

<400> 120

Met Ala Phe Cys Ala Lys Met Arg Ser Ser Lys Lys Thr Glu Val Asn
1 5 10 15

Leu Glu Ala Pro Glu Pro Gly Val Glu Val Ile Phe Tyr Leu Ser Asp
20 25 30

Arg Glu Pro Leu Arg Leu Gly Ser Gly Glu Tyr Thr Ala Glu Glu Leu
35 40 45

Cys Ile Arg Ala Ala Gln Ala Cys Arg Ile Ser Pro Leu Cys His Asn

50

55

60

Leu Phe Ala Leu Tyr Asp Glu Asn Thr Lys Leu Trp Tyr Ala Pro Asn
65 70 75 80

Arg Thr Ile Thr Val Asp Asp Lys Met Ser Leu Arg Leu His Tyr Arg
85 90 95

Met Arg Phe Tyr Phe Thr Asn Trp His Gly Thr Asn Asp Asn Glu Gln
100 105 110

Ser Val Trp Arg His Ser Pro Lys Lys Gln Lys Asn Gly Tyr Glu Lys
115 120 125

Lys Lys Ile Pro Asp Ala Thr Pro Leu Leu Asp Ala Ser Ser Leu Glu
130 135 140

Tyr Leu Phe Ala Gln Gly Gln Tyr Asp Leu Val Lys Cys Leu Ala Pro
145 150 155 160

Ile Arg Asp Pro Lys Thr Glu Gln Asp Gly His Asp Ile Glu Asn Glu
165 170 175

Cys Leu Gly Met Ala Val Leu Ala Ile Ser His Tyr Ala Met Met Lys
180 185 190

Lys Met Gln Leu Pro Glu Leu Pro Lys Asp Ile Ser Tyr Lys Arg Tyr
195 200 205

Ile Pro Glu Thr Leu Asn Lys Ser Ile Arg Gln Arg Asn Leu Leu Thr
210 215 220

Arg Met Arg Ile Asn Asn Val Phe Lys Asp Phe Leu Lys Glu Phe Asn
225 230 235 240

Asn Lys Thr Ile Cys Asp Ser Ser Val Ser Thr His Asp Leu Lys Val
245 250 255

Lys Tyr Leu Ala Thr Leu Glu Thr Leu Thr Lys His Tyr Gly Ala Glu
260 265 270

Ile Phe Glu Thr Ser Met Leu Leu Ile Ser Ser Glu Asn Glu Met Asn
275 280 285

Trp Phe His Ser Asn Asp Gly Gly Asn Val Leu Tyr Tyr Glu Val Met
290 295 300

Val Thr Gly Asn Leu Gly Ile Gln Trp Arg His Lys Pro Asn Val Val
305 310 315 320

Ser Val Glu Lys Glu Lys Asn Lys Leu Lys Arg Lys Lys Leu Glu Asn
325 330 335

Lys Asp Lys Lys Asp Glu Glu Lys Asn Lys Ile Arg Glu Glu Trp Asn
340 345 350

Asn Phe Ser Phe Phe Pro Glu Ile Thr His Ile Val Ile Lys Glu Ser

355

360

365

Val Val Ser Ile Asn Lys Gln Asp Asn Lys Lys Met Glu Leu Lys Leu
370 375 380

Ser Ser His Glu Glu Ala Leu Ser Phe Val Ser Leu Val Asp Gly Tyr
385 390 395 400

Phe Arg Leu Thr Ala Asp Ala His His Tyr Leu Cys Thr Asp Val Ala
405 410 415

Pro Pro Leu Ile Val His Asn Ile Gln Asn Gly Cys His Gly Pro Ile
420 425 430

Cys Thr Glu Tyr Ala Ile Asn Lys Leu Arg Gln Glu Gly Ser Glu Glu
435 440 445

Gly Met Tyr Val Leu Arg Trp Ser Cys Thr Asp Phe Asp Asn Ile Leu
450 455 460

Met Thr Val Thr Cys Phe Glu Lys Ser Glu Gln Val Gln Gly Ala Gln
465 470 475 480

Lys Gln Phe Lys Asn Phe Gln Ile Glu Val Gln Lys Gly Arg Tyr Ser
485 490 495

Leu His Gly Ser Asp Arg Ser Phe Pro Ser Leu Gly Asp Leu Met Ser
500 505 510

His Leu Lys Lys Gln Ile Leu Arg Thr Asp Asn Ile Ser Phe Met Leu
515 520 525

Lys Arg Cys Cys Gln Pro Lys Pro Arg Gly Ser Leu Pro Val Pro Glu
530 535 540

Pro Gly Cys Ile Pro Ser Val Ile Ala Glu Thr Gln Ile Asp Gln Asn
545 550 555 560

Thr Leu Thr Asp Leu Asn Lys Val Asp Pro Pro Pro
565 570

<210> 121

<211> 311

<212> PRT

<213> Homo sapiens

<400> 121

Met Gly Cys Val Gln Cys Lys Asp Lys Glu Ala Thr Lys Leu Thr Glu
1 5 10 15

Glu Arg Asp Gly Ser Leu Asn Gln Ser Ser Gly Tyr Arg Tyr Gly Thr
20 25 30

Asp Pro Thr Pro Gln His Tyr Pro Ser Phe Gly Val Thr Ser Ile Pro
35 40 45

Asn Tyr Asn Asn Phe His Ala Ala Gly Gly Gln Gly Leu Thr Val Phe
50 55 60

Gly Gly Val Asn Ser Ser Ser His Thr Gly Thr Leu Arg Thr Arg Gly
65 70 75 80

Gly Thr Gly Val Thr Leu Phe Val Ala Leu Tyr Asp Tyr Glu Ala Arg
85 90 95

Thr Glu Asp Asp Leu Ser Phe His Lys Gly Glu Lys Phe Gln Ile Leu
100 105 110

Asn Ser Ser Glu Gly Asp Trp Trp Glu Ala Arg Ser Leu Thr Thr Gly
115 120 125

Glu Thr Gly Tyr Ile Pro Ser Asn Tyr Val Ala Pro Val Asp Ser Ile
130 135 140

Gln Ala Glu Glu Trp Tyr Phe Gly Lys Leu Gly Arg Lys Asp Ala Glu
145 150 155 160

Arg Gln Leu Leu Ser Phe Gly Asn Pro Arg Gly Thr Phe Leu Ile Arg
165 170 175

Glu Ser Glu Thr Thr Lys Gly Ala Tyr Ser Leu Ser Ile Arg Asp Trp
180 185 190

Asp Asp Met Lys Gly Asp His Val Lys His Tyr Lys Ile Arg Lys Leu
195 200 205

Asp Asn Gly Gly Tyr Tyr Ile Thr Thr Arg Ala Gln Phe Glu Thr Leu
210 215 220

Gln Gln Leu Val Gln His Tyr Ser Glu Arg Ala Ala Gly Leu Cys Cys
225 230 235 240

Arg Leu Val Val Pro Cys His Lys Gly Met Pro Arg Leu Thr Asp Leu
245 250 255

Ser Val Lys Thr Lys Asp Val Trp Glu Ile Pro Arg Glu Ser Leu Gln
260 265 270

Leu Ile Lys Arg Leu Gly Asn Gly Gln Phe Gly Glu Val Trp Met Gly
275 280 285

Met Leu Arg Leu Asn Tyr Ser Leu Ile Ser Phe Pro Val Trp Lys Ile
290 295 300

Pro Asn Thr Lys Asp Gly Arg
305 310

<210> 122
<211> 387
<212> PRT
<213> Homo sapiens

<400> 122

Met Gly Cys Val Gln Cys Lys Asp Lys Glu Ala Thr Lys Leu Thr Glu
1 5 10 15

Glu Arg Asp Gly Ser Leu Asn Gln Ser Ser Gly Tyr Arg Tyr Gly Thr
20 25 30

Asp Pro Thr Pro Gln His Tyr Pro Ser Phe Gly Val Thr Ser Ile Pro
35 40 45

Asn Tyr Asn Asn Phe His Ala Ala Gly Gly Gln Gly Leu Thr Val Phe
50 55 60

Gly Gly Val Asn Ser Ser His Thr Gly Thr Leu Arg Thr Arg Gly
65 70 75 80

Gly Thr Gly Val Thr Leu Phe Val Ala Leu Tyr Asp Tyr Glu Ala Arg
85 90 95

Thr Glu Asp Asp Leu Ser Phe His Lys Gly Glu Lys Phe Gln Ile Leu
100 105 110

Asn Ser Ser Glu Gly Asp Trp Trp Glu Ala Arg Ser Leu Thr Thr Gly
115 120 125

Glu Thr Gly Tyr Ile Pro Ser Asn Tyr Val Ala Pro Val Asp Ser Ile
130 135 140

Gln Ala Glu Glu Trp Tyr Phe Gly Lys Leu Gly Arg Lys Asp Ala Glu
145 150 155 160

Arg Gln Leu Leu Ser Phe Gly Asn Pro Arg Gly Thr Phe Leu Ile Arg
165 170 175

Glu Ser Glu Thr Thr Lys Gly Ala Tyr Ser Leu Ser Ile Arg Asp Trp
180 185 190

Asp Asp Met Lys Gly Asp His Val Lys His Tyr Lys Ile Arg Lys Leu
195 200 205

Asp Asn Gly Gly Tyr Tyr Ile Thr Thr Arg Ala Gln Phe Glu Thr Leu
210 215 220

Gln Gln Leu Val Gln His Tyr Ser Glu Arg Ala Ala Gly Leu Cys Cys
225 230 235 240

Arg Leu Val Val Pro Cys His Lys Gly Met Pro Arg Leu Thr Asp Leu
245 250 255

Ser Val Lys Thr Lys Asp Val Trp Glu Ile Pro Arg Glu Ser Leu Gln
260 265 270

Leu Ile Lys Arg Leu Gly Asn Gly Gln Phe Gly Glu Val Trp Met Gly
275 280 285

Thr Trp Asn Gly Asn Thr Lys Val Ala Ile Lys Thr Leu Lys Pro Gly
290 295 300

Thr Met Ser Pro Glu Ser Phe Leu Glu Glu Ala Gln Ile Met Lys Lys
305 310 315 320

Leu Lys His Asp Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu
325 330 335

Pro Ile Tyr Ile Val Thr Glu Tyr Met Asn Lys Gly Trp Ala Thr Pro
340 345 350

Leu Leu Ser Pro Ala His Ser Ala Leu Arg Gly Cys Leu Gly Glu Arg
355 360 365

Asn Gly Ser Phe Leu Leu Ala Thr Phe Leu Val Ser Ala Trp Val Lys
370 375 380

Tyr Ser His
385

<210> 123
<211> 516
<212> PRT
<213> Homo sapiens

<400> 123

Met Arg Leu Glu Leu Pro Ala Gly His Trp Glu Arg Pro Asp Leu Glu
1 5 10 15

Leu Leu Glu Lys Ser Thr Gln Gln Gly Arg Ala Trp Asp Leu Glu Leu
20 25 30

Leu Glu Lys Gly Ala Gly Ser Leu Pro Leu Tyr Val Trp Lys Val Ser
35 40 45

Leu Ser Leu Leu Glu Leu His Lys Arg Arg Lys Ala Leu Thr Glu Pro
50 55 60

Glu Ala Arg Tyr Tyr Leu Arg Gln Ile Val Leu Gly Cys Gln Tyr Leu
65 70 75 80

His Arg Asn Arg Val Ile His Arg Asp Leu Lys Leu Gly Asn Leu Phe
85 90 95

Leu Asn Glu Asp Leu Glu Val Lys Ile Gly Asp Phe Gly Leu Ala Thr
100 105 110

Lys Val Glu Tyr Asp Gly Glu Arg Lys Lys Thr Leu Cys Gly Thr Pro
115 120 125

Asn Tyr Ile Ala Pro Glu Val Leu Ser Lys Lys Gly His Ser Phe Glu
130 135 140

Val Asp Val Trp Ser Ile Gly Cys Ile Met Tyr Thr Leu Leu Val Gly
145 150 155 160

Lys Pro Pro Phe Glu Thr Ser Cys Leu Lys Glu Thr Tyr Leu Arg Ile

165 170 175

Lys Lys Asn Glu Tyr Ser Ile Pro Lys His Ile Asn Pro Val Ala Ala
180 185 190

Ser Leu Ile Gln Lys Met Leu Gln Thr Asp Pro Thr Ala Arg Pro Thr
195 200 205

Ile Asn Glu Leu Leu Asn Asp Glu Phe Phe Thr Ser Gly Tyr Ile Pro
210 215 220

Ala Arg Leu Pro Ile Thr Cys Leu Thr Ile Pro Pro Arg Phe Ser Ile
225 230 235 240

Ala Pro Ser Ser Leu Asp Pro Ser Asn Arg Lys Pro Leu Thr Val Leu
245 250 255

Asn Lys Gly Leu Glu Asn Pro Leu Pro Glu Arg Pro Arg Glu Lys Glu
260 265 270

Glu Pro Val Val Arg Glu Thr Gly Glu Val Val Asp Cys His Leu Ser
275 280 285

Asp Met Leu Gln Gln Leu His Ser Val Asn Ala Ser Lys Pro Ser Glu
290 295 300

Arg Gly Leu Val Arg Gln Glu Glu Ala Glu Asp Pro Ala Cys Ile Pro
305 310 315 320

Ile Phe Trp Val Ser Lys Trp Val Asp Tyr Ser Asp Lys Tyr Gly Leu
325 330 335

Gly Tyr Gln Leu Cys Asp Asn Ser Val Gly Val Leu Phe Asn Asp Ser
340 345 350

Thr Arg Leu Ile Leu Tyr Asn Asp Gly Asp Ser Leu Gln Tyr Ile Glu
355 360 365

Arg Asp Gly Thr Glu Ser Tyr Leu Thr Val Ser Ser His Pro Asn Ser
370 375 380

Leu Met Lys Lys Ile Thr Leu Leu Lys Tyr Phe Arg Asn Tyr Met Ser
385 390 395 400

Glu His Leu Leu Lys Ala Gly Ala Asn Ile Thr Pro Arg Glu Gly Asp
405 410 415

Glu Leu Ala Arg Leu Pro Tyr Leu Arg Thr Trp Phe Arg Thr Arg Ser
420 425 430

Ala Ile Ile Leu His Leu Ser Asn Gly Ser Val Gln Ile Asn Phe Phe
435 440 445

Gln Asp His Thr Lys Leu Ile Leu Cys Pro Leu Met Ala Ala Val Thr
450 455 460

Tyr Ile Asp Glu Lys Arg Asp Phe Arg Thr Tyr Arg Leu Ser Leu Leu

465 470 475 480

Glu Glu Tyr Gly Cys Cys Lys Glu Leu Ala Ser Arg Leu Arg Tyr Ala
485 490 495

Arg Thr Met Val Asp Lys Leu Leu Ser Ser Arg Ser Ala Ser Asn Arg
500 505 510

Leu Lys Ala Ser
515

<210> 124

<211> 171

<212> PRT

<213> Homo sapiens

<220>

<221> -

<222> (1)..(171)

<223> "XAA" can be any amino acid

<400> 124

Met Ala Leu Leu Pro Pro Phe Leu Ala Ser His Arg Leu Glu Val Ser
1 5 10 15

Arg Asp Ser Gly Trp Leu Gly Gln Cys Trp Leu Gln Gly Val Trp Glu
20 25 30

Arg Xaa Pro His Ser Gly Leu Leu Tyr Pro Leu Gln His Pro Pro Ala
35 40 45

Glu Phe Ser Thr Tyr Leu Asn Phe Cys Arg Ser Leu Arg Phe Asp Asp
50 55 60

Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu Phe Arg Asn Leu Phe His
65 70 75 80

Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe Asp Trp Asn Met Leu Lys
85 90 95

Phe Gly Ala Ser Ser Gln Ala Gln Pro Arg Asp Ser Pro Met Thr
100 105 110

Ala Lys Gly Pro Phe Cys Pro Arg Pro Cys Pro Cys Ala Gly Pro Thr
115 120 125

Tyr Ser Pro Thr Tyr Trp Cys Pro Ala Pro Leu Gly Thr Gln Ser Pro
130 135 140

Pro Asp Arg Pro Val Glu Glu Val Glu Leu Ser Pro Gln Asn Tyr
145 150 155 160

Trp Pro Val Val Trp Thr Pro Gly Pro His Phe
165 170

<210> 125
<211> 134
<212> PRT
<213> Homo sapiens

<400> 125

Met Ala Leu Leu Pro Pro Phe Leu Ala Ser His Arg Leu Glu Val Ser
1 5 10 15

Arg Asp Ser Gly Trp Leu Gly Gln Cys Trp Leu Gln Gly Val Trp Glu
20 25 30

Arg Gly Leu Thr Val Ala Phe Ser Ile Leu Cys Asn Thr Leu Gln Pro
35 40 45

Glu Phe Ser Thr Tyr Leu Asn Phe Cys Arg Ser Leu Arg Phe Asp Asp
50 55 60

Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu Phe Arg Asn Leu Phe His
65 70 75 80

Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe Asp Trp Asn Met Leu Lys
85 90 95

Phe Gly Ala Ser Ser Ser Gln Ala Gln Pro Arg Asp Ser Pro Met Thr
100 105 110

Ala Lys Gly Pro Phe Cys Pro Arg Pro Cys Pro Cys Ala Gly Pro Thr
115 120 125

Tyr Ser Pro Thr Tyr Trp
130

<210> 126
<211> 233
<212> PRT
<213> Homo sapiens

<400> 126

Met Ala Leu Leu Pro Pro Phe Leu Ala Ser His Arg Leu Glu Val Ser
1 5 10 15

Arg Asp Ser Gly Trp Leu Gly Gln Cys Trp Leu Gln Gly Val Trp Glu
20 25 30

Arg Gly Leu Thr Val Ala Phe Ser Ile Leu Cys Asn Thr Leu Gln Pro
35 40 45

Glu Phe Ser Thr Tyr Leu Asn Phe Cys Arg Ser Leu Arg Phe Asp Asp
50 55 60

Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu Phe Arg Asn Leu Phe His
65 70 75 80

Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe Asp Trp Asn Met Leu Lys

85 90 95

Phe Gly Gly Pro Leu Ser Cys Gln Pro Pro Ala Leu Pro Cys Gly Arg
100 105 110

Pro Gln Asp Glu Leu Gly Cys Ser Pro Glu Ser Arg Gly Cys Gly Pro
115 120 125

Gly Ala Ala Arg Thr Arg Thr Arg Gly Glu Asp Gly Ala Ala Thr Gly
130 135 140

Val Arg Asp Pro Ser Pro Ala Pro Trp Pro Thr His Gly Gly His Cys
145 150 155 160

Gln Pro Ala Pro Gln Cys Arg Arg Ala Arg Gly Phe His Ala Ser Leu
165 170 175

Pro His Pro Ala Gly Trp Gln Tyr Phe Ser Gln Ser Asp Leu Ala Gly
180 185 190

Arg Pro Gly Glu Glu Gly Glu Tyr Glu Ala Ala Gln Gly Cys Ala Arg
195 200 205

Gln Arg Leu Leu Leu Arg Pro His Trp Ala Ala Arg Gly Leu Pro Asp
210 215 220

Pro Ser Leu Thr Asp Lys Cys Ala Ile
225 230

<210> 127
<211> 243
<212> PRT
<213> Homo sapiens

<400> 127

Met Ala Ala Glu Leu Asn Lys Asn Lys Lys Ala Arg Ala Ala Glu Ala
1 5 10 15

Ala Arg Ala Ala Glu Ala Ala Lys Ala Ala Glu Ala Thr Lys Ala Ala
20 25 30

Glu Ala Ala Ala Lys Ala Ala Lys Ala Ser Asn Thr Ser Thr Pro Thr
35 40 45

Lys Gly Asn Thr Glu Thr Ser Ala Ser Ala Ser Gln Thr Asn His Val
50 55 60

Lys Asp Val Lys Lys Ile Lys Ile Glu His Ala Pro Ser Pro Ser Ser
65 70 75 80

Gly Gly Thr Leu Lys Asn Asp Lys Ala Lys Thr Lys Pro Pro Leu Gln
85 90 95

Val Thr Lys Val Glu Asn Asn Leu Ile Val Asp Lys Ala Thr Lys Lys
100 105 110

Ala Val Ile Val Gly Lys Glu Ser Lys Ser Ala Ala Thr Lys Glu Glu
115 120 125

Ser Val Ser Leu Lys Glu Lys Thr Lys Pro Leu Thr Pro Ser Ile Gly
130 135 140

Ala Lys Glu Lys Glu Gln His Val Ala Leu Val Thr Ser Thr Leu Pro
145 150 155 160

Pro Leu Pro Leu Pro Pro Met Leu Pro Glu Asp Lys Glu Ala Asp Ser
165 170 175

Leu Arg Gly Asn Ile Ser Val Lys Ala Val Lys Lys Glu Val Glu Lys
180 185 190

Lys Leu Arg Cys Leu Leu Ala Asp Leu Pro Leu Pro Pro Glu Leu Pro
195 200 205

Gly Gly Asp Asp Leu Ser Lys Ser Pro Glu Glu Lys Lys Thr Ala Thr
210 215 220

Gln Leu His Ser Lys Arg Arg Pro Lys Tyr Val Leu Ala Phe Tyr Leu
225 230 235 240

Leu Leu Asn

<210> 128

<211> 330

<212> PRT

<213> Homo sapiens

<400> 128

Met Ser Ala Lys Val Arg Leu Lys Lys Leu Glu Gln Leu Leu Asp
1 5 10 15

Gly Pro Trp Arg Asn Glu Ser Ala Leu Ser Val Glu Thr Leu Leu Asp
20 25 30

Val Leu Val Cys Leu Tyr Thr Glu Cys Ser His Ser Ala Leu Arg Arg
35 40 45

Asp Lys Tyr Val Ala Glu Phe Leu Glu Trp Ala Lys Pro Phe Thr Gln
50 55 60

Leu Val Lys Glu Met Gln Leu His Arg Glu Asp Phe Glu Ile Ile Lys
65 70 75 80

Val Ile Gly Arg Gly Ala Phe Gly Glu Val Ala Val Val Lys Met Lys
85 90 95

Asn Thr Glu Arg Ile Tyr Ala Met Lys Ile Leu Asn Lys Trp Glu Met
100 105 110

Leu Lys Arg Ala Glu Thr Ala Cys Phe Arg Glu Glu Arg Asp Val Leu
115 120 125

Val Asn Gly Asp Cys Gln Trp Ile Thr Ala Leu His Tyr Ala Phe Gln
130 135 140

Asp Glu Asn His Leu Tyr Leu Val Met Asp Tyr Tyr Val Gly Gly Asp
145 150 155 160

Leu Leu Thr Leu Leu Ser Lys Phe Glu Asp Lys Leu Pro Glu Asp Met
165 170 175

Ala Arg Phe Tyr Ile Gly Glu Met Val Leu Ala Ile Asp Ser Ile His
180 185 190

Gln Leu His Tyr Val His Arg Asp Ile Lys Pro Asp Asn Val Leu Leu
195 200 205

Asp Val Asn Gly His Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Lys
210 215 220

Met Asn Asp Asp Gly Thr Val Gln Ser Ser Val Ala Val Gly Thr Pro
225 230 235 240

Asp Tyr Ile Ser Pro Glu Ile Leu Gln Ala Met Glu Asp Gly Met Gly
245 250 255

Lys Tyr Gly Pro Glu Cys Asp Trp Trp Ser Leu Gly Val Cys Met Tyr
260 265 270

Glu Met Leu Tyr Gly Glu Thr Pro Phe Tyr Ala Glu Ser Leu Val Glu
275 280 285

Thr Tyr Gly Lys Ile Met Asn His Glu Glu Arg Phe Gln Phe Pro Ser
290 295 300

His Val Thr Asp Val Ser Glu Glu Ala Lys Asp Leu Ile Gln Arg Leu
305 310 315 320

Ser Cys Ile Gln Arg Thr Pro Tyr Leu Gln
325 330

<210> 129
<211> 246
<212> PRT
<213> Homo sapiens

<400> 129

Met Ser Ala Lys Val Arg Leu Lys Lys Leu Glu Gln Leu Leu Asp
1 5 10 15

Gly Pro Trp Arg Asn Glu Ser Ala Leu Ser Val Glu Thr Leu Leu Asp
20 25 30

Val Leu Val Cys Leu Tyr Thr Glu Cys Ser His Ser Ala Leu Arg Arg
35 40 45

Asp Lys Tyr Val Ala Glu Phe Leu Glu Trp Ala Lys Pro Phe Thr Gln

50

55

60

Leu Val Lys Glu Met Gln Leu His Arg Glu Asp Phe Glu Ile Ile Lys
65 70 75 80

Val Ile Gly Arg Gly Ala Phe Gly Glu Val Ala Val Val Lys Met Lys
85 90 95

Asn Thr Glu Arg Ile Tyr Ala Met Lys Ile Leu Asn Lys Trp Glu Met
100 105 110

Leu Lys Arg Ala Glu Thr Ala Cys Phe Arg Glu Glu Arg Asp Val Leu
115 120 125

Val Asn Gly Asp Cys Gln Trp Ile Thr Ala Leu His Tyr Ala Phe Gln
130 135 140

Asp Glu Asn His Leu Tyr Leu Val Met Asp Tyr Tyr Val Gly Gly Asp
145 150 155 160

Leu Leu Thr Leu Leu Ser Lys Phe Glu Asp Lys Leu Pro Glu Asp Met
165 170 175

Ala Arg Phe Tyr Ile Gly Glu Met Val Leu Ala Ile Asp Ser Ile His
180 185 190

Gln Leu His Tyr Val His Arg Asp Ile Lys Pro Asp Asn Val Leu Leu
195 200 205

Asp Val Asn Gly His Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Lys
210 215 220

Met Asn Asp Asp Gly Thr Val Gly Ile Phe Val Gly Asp Phe Pro Phe
225 230 235 240

Gly Phe Gly Phe Gly Ile
245

<210> 130

<211> 378

<212> PRT

<213> Homo sapiens

<400> 130

Met Glu Leu Arg Val Gly Asn Arg Tyr Arg Leu Gly Arg Lys Ile Gly
1 5 10 15

Ser Gly Ser Phe Gly Asp Ile Tyr Leu Val Gly Ile Pro Thr Ile Arg
20 25 30

Trp Cys Gly Ala Glu Gly Asp Tyr Asn Val Met Val Met Glu Leu Leu
35 40 45

Gly Pro Ser Leu Glu Asp Leu Phe Asn Phe Cys Ser Arg Lys Phe Ser
50 55 60

Leu Lys Thr Val Leu Leu Ala Asp Gln Met Ile Ser Arg Ile Glu
65 70 75 80

Tyr Ile His Ser Lys Asn Phe Ile His Arg Asp Val Lys Pro Asp Asn
85 90 95

Phe Leu Met Gly Leu Gly Lys Gly Asn Leu Val Tyr Ile Ile Asp
100 105 110

Phe Gly Leu Ala Lys Lys Tyr Arg Asp Ala Arg Thr His Gln His Ile
115 120 125

Pro Tyr Arg Glu Asn Lys Asn Leu Thr Gly Thr Ala Arg Tyr Ala Ser
130 135 140

Ile Asn Thr His Leu Gly Ile Glu Gln Ser Arg Arg Asp Asp Leu Glu
145 150 155 160

Ser Leu Gly Tyr Val Leu Met Tyr Phe Asn Leu Gly Ser Leu Pro Trp
165 170 175

Gln Gly Leu Lys Ala Ala Thr Lys Arg Gln Lys Tyr Glu Arg Ile Ser
180 185 190

Glu Lys Lys Met Ser Thr Pro Ile Glu Val Leu Cys Lys Gly Tyr Pro
195 200 205

Ser Glu Phe Ala Thr Tyr Leu Asn Phe Cys Arg Ser Leu Arg Phe Asp
210 215 220

Asp Lys Pro Asp Tyr Ser Tyr Leu Arg Gln Leu Phe Arg Asn Leu Phe
225 230 235 240

His Arg Gln Gly Phe Ser Tyr Asp Tyr Val Phe Asp Trp Asn Met Leu
245 250 255

Lys Phe Gly Ala Ser Arg Ala Ala Asp Asp Ala Glu Arg Asp Ala Gly
260 265 270

Asp Arg Glu Glu Arg Leu Arg His Ser Arg Asn Pro Ala Thr Arg Gly
275 280 285

Leu Pro Ser Thr Ala Ser Gly Arg Leu Arg Gly Arg Arg Lys Val Ala
290 295 300

Pro Pro Thr Pro Leu Thr Pro Thr Ser His Thr Ala Asn Thr Ser Pro
305 310 315 320

Arg Pro Val Ser Gly Met Glu Arg Glu Arg Lys Val Ser Met Arg Leu
325 330 335

His Arg Gly Ala Pro Val Asn Ile Ser Ser Ser Asp Leu Thr Gly Arg
340 345 350

Gln Asp Thr Ser Arg Met Ser Thr Ser Gln Ile Pro Gly Arg Val Ala
355 360 365

Ser Ser Gly Leu Gln Ser Val Val His Arg
370 375

<210> 131
<211> 561
<212> PRT
<213> Homo sapiens

<400> 131

Met Val Glu Trp Trp Ser Ala Leu Thr Cys Pro Leu Gln Thr Phe Ala
1 5 10 15

Ala Pro Ser Phe Asp Asp Lys Ile Leu Glu Val Val Ala Val Phe Gly
20 25 30

Ser Met Gln Met Ala Val Ser Arg Val Ile Arg Leu Gln His His Arg
35 40 45

Ile Ala Gln Cys Arg Thr Val Lys Ile Ser Ile Leu Gly Asp Glu Gly
50 55 60

Val Pro Val Gln Val Asp Gly Glu Ala Trp Val Gln Pro Pro Gly Tyr
65 70 75 80

Ile Arg Ile Val His Lys Asn Arg Ala Gln Thr Leu Thr Arg Asp Arg
85 90 95

Ala Phe Glu Ser Thr Leu Lys Ser Trp Glu Asp Lys Gln Lys Cys Glu
100 105 110

Leu Pro Arg Pro Pro Ser Cys Ser Leu His Pro Glu Met Leu Ser Glu
115 120 125

Glu Glu Ala Thr Gln Met Asp Gln Phe Gly Gln Ala Ala Gly Val Leu
130 135 140

Ile His Ser Ile Arg Glu Ile Ala Gln Ser His Arg Asp Met Glu Gln
145 150 155 160

Glu Leu Ala His Ala Val Asn Ala Ser Ser Lys Ser Met Asp Arg Val
165 170 175

Tyr Gly Lys Pro Arg Thr Thr Glu Gly Leu Asn Cys Ser Phe Val Leu
180 185 190

Glu Met Val Asn Asn Phe Arg Ala Leu Arg Ser Glu Thr Glu Leu Leu
195 200 205

Leu Ser Gly Lys Met Ala Leu Gln Leu Asp Pro Pro Gln Lys Glu Gln
210 215 220

Leu Gly Ser Ala Leu Ala Glu Met Asp Arg Gln Leu Arg Arg Leu Ala
225 230 235 240

Asp Thr Pro Trp Leu Cys Gln Ser Ala Glu Pro Gly Asp Glu Glu Ser
245 250 255

Val Met Leu Asp Leu Ala Lys Arg Ser Arg Ser Gly Lys Phe Arg Leu
260 265 270

Val Thr Lys Phe Lys Lys Glu Lys Asn Asn Lys Asn Lys Glu Ala His
275 280 285

Ser Ser Leu Gly Ala Pro Val His Leu Trp Gly Thr Glu Glu Val Ala
290 295 300

Ala Trp Leu Glu His Leu Ser Leu Cys Glu Tyr Lys Asp Ile Phe Thr
305 310 315 320

Arg His Asp Ile Arg Gly Ser Glu Leu Leu His Leu Glu Arg Arg Asp
325 330 335

Leu Lys Asp Leu Gly Val Thr Lys Val Gly His Met Lys Arg Ile Leu
340 345 350

Cys Gly Ile Lys Glu Leu Ser Arg Ser Ala Pro Ala Val Glu Ala Gln
355 360 365

Pro Leu Ser Ser Gln Pro Val Ala Ser Thr Ser Pro Pro Pro Arg Pro
370 375 380

Ser Leu Arg Pro Leu Ser Leu Trp Pro Leu Arg Leu Leu Pro Leu Arg
385 390 395 400

Pro Trp Ala Asp Ala Ala Arg Pro Leu Leu Met Val Leu Leu Pro
405 410 415

Leu Ser Ala Thr Glu Ser Leu Arg Asp Thr Val His Gln Ser Ser Gly
420 425 430

Val Ser Asn Ile Thr Thr Gln Leu Pro Leu Lys Gln His Phe Leu Gln
435 440 445

Leu Arg Val Thr Trp Gly Thr Cys Val Thr Ala Thr Gln Leu Ser Pro
450 455 460

Ala Cys Ala Val Gly Gln Gly Ile Gln Arg Arg Leu Ala Ser Trp Ala
465 470 475 480

Leu Leu Ala Trp Pro Arg Ala Trp Ile Val Pro Gly Ala Pro Leu Arg
485 490 495

Val Ser Phe Cys Gly Arg Thr Val Trp Leu Arg Leu Leu Ala Pro Ser
500 505 510

Gln Phe Ser Glu Thr Trp Leu Gly Pro Ser Thr Ala Ala Cys Lys Gly
515 520 525

Pro Cys Leu Leu Met Gln Leu Leu Asn Lys Asn Arg Ala Leu Ser
530 535 540

Trp Phe Glu Ser Ser Met Asp Val Ser Ser Leu Val Asp Cys Asn Leu
545 550 555 560

Thr

<210> 132
<211> 213
<212> PRT
<213> Homo sapiens

<400> 132

Met Ser Asp Val Ala Ile Val Lys Glu Gly Trp Leu His Lys Arg Gly
1 5 10 15

Glu Tyr Ile Lys Thr Trp Arg Pro Arg Tyr Phe Leu Leu Lys Asn Asp
20 25 30

Gly Thr Phe Ile Gly Tyr Lys Glu Arg Pro Gln Asp Val Asp Gln Arg
35 40 45

Glu Ala Pro Leu Asn Asn Phe Ser Val Ala Gln Cys Gln Leu Met Lys
50 55 60

Thr Glu Arg Pro Arg Pro Asn Thr Phe Ile Ile Arg Cys Leu Gln Trp
65 70 75 80

Thr Thr Val Ile Glu Arg Thr Phe His Val Glu Thr Pro Glu Glu Arg
85 90 95

Glu Glu Trp Thr Thr Ala Ile Gln Thr Val Ala Asp Gly Leu Lys Lys
100 105 110

Gln Glu Glu Glu Met Asp Phe Arg Ser Gly Ser Pro Ser Asp Asn
115 120 125

Ser Gly Ala Glu Glu Met Glu Val Ser Leu Ala Lys Pro Lys His Arg
130 135 140

Val Ala Leu Gly Gly Arg Ala Gly Pro Ala His Val Ser Pro His Ser
145 150 155 160

Val Ser Gln Pro Pro Trp Ala Val Cys His Gln Leu Ser Val Ile Ser
165 170 175

Leu Gly Pro Trp Ala Ser Val Gln Pro Gly Gly Thr Arg Cys Asn Leu
180 185 190

Thr Met Val Cys Trp Pro Ala Pro Ser Pro Gly Gly Arg His Thr
195 200 205

Ala Ala Pro Gln His
210

<210> 133
<211> 425
<212> PRT
<213> Homo sapiens

<400> 133

Met Ile Val His Asp Asp Val Glu Ser Glu Pro Ala Met Thr Pro Ser
1 5 10 15

Lys Glu Gly Thr Leu Ile Val Arg Gln Thr Gln Ser Ala Ser Ser Thr
20 25 30

Leu Gln Lys His Lys Ser Ser Ser Phe Thr Pro Phe Ile Asp Pro
35 40 45

Arg Leu Leu Gln Ile Ser Pro Ser Ser Gly Thr Thr Val Thr Ser Val
50 55 60

Val Gly Phe Ser Cys Asp Gly Met Arg Pro Glu Ala Ile Arg Gln Asp
65 70 75 80

Pro Thr Arg Lys Gly Ser Val Val Asn Val Asn Pro Thr Asn Thr Arg
85 90 95

Pro Gln Ser Asp Thr Pro Glu Ile Arg Lys Tyr Lys Lys Arg Phe Asn
100 105 110

Ser Glu Ile Leu Cys Ala Ala Leu Trp Gly Val Asn Leu Leu Val Gly
115 120 125

Thr Glu Ser Gly Leu Met Leu Leu Asp Arg Ser Gly Gln Gly Lys Val
130 135 140

Tyr Pro Leu Ile Asn Arg Arg Phe Gln Gln Met Asp Val Leu Glu
145 150 155 160

Gly Leu Asn Val Leu Val Thr Ile Ser Gly Lys Lys Asp Lys Leu Arg
165 170 175

Val Tyr Tyr Leu Ser Trp Leu Arg Asn Lys Ile Leu His Asn Asp Pro
180 185 190

Glu Val Glu Lys Lys Gln Gly Trp Thr Val Gly Asp Leu Glu Gly
195 200 205

Cys Val His Tyr Lys Val Val Lys Tyr Glu Arg Ile Lys Phe Leu Val
210 215 220

Ile Ala Leu Lys Ser Ser Val Glu Val Tyr Ala Trp Ala Pro Lys Pro
225 230 235 240

Tyr His Lys Phe Met Ala Phe Lys Ser Phe Gly Glu Leu Val His Lys
245 250 255

Pro Leu Leu Val Asp Leu Thr Val Glu Glu Gly Gln Arg Leu Lys Val
260 265 270

Ile Tyr Gly Ser Cys Ala Gly Phe His Ala Val Asp Val Asp Ser Gly
275 280 285

Ser Val Tyr Asp Ile Tyr Leu Pro Thr His Ile Gln Cys Ser Ile Lys
290 295 300

Pro His Ala Ile Ile Ile Leu Pro Asn Thr Asp Gly Met Glu Leu Leu
305 310 315 320

Val Cys Tyr Glu Asp Glu Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile
325 330 335

Thr Lys Asp Val Val Leu Gln Trp Gly Glu Met Pro Thr Ser Val Ala
340 345 350

Tyr Ile Arg Ser Asn Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu
355 360 365

Ile Arg Ser Val Glu Thr Gly His Leu Asp Gly Val Phe Met His Lys
370 375 380

Arg Ala Gln Arg Leu Lys Phe Leu Cys Glu Arg Asn Asp Lys Val Phe
385 390 395 400

Phe Ala Ser Val Arg Ser Gly Gly Ser Ser Gln Val Tyr Phe Met Thr
405 410 415

Leu Gly Arg Thr Ser Leu Leu Ser Trp
420 425

<210> 134
<211> 515
<212> PRT
<213> Homo sapiens

<400> 134

Met Ala Ser Arg Thr Pro Arg Asn Cys Ala Val Leu Lys Gly Glu Val
1 5 10 15

Asp Leu Thr Ala Leu Ala Lys Glu Leu Arg Ala Val Glu Asp Val Arg
20 25 30

Pro Pro His Lys Val Thr Asp Tyr Ser Ser Ser Ser Glu Glu Ser Gly
35 40 45

Thr Thr Asp Glu Glu Asp Asp Val Glu Gln Glu Gly Ala Asp Glu
50 55 60

Ser Thr Ser Gly Pro Glu Asp Thr Arg Ala Ala Ser Ser Leu Asn Leu
65 70 75 80

Ser Asn Gly Glu Thr Glu Ser Val Lys Thr Met Ile Val His Asp Asp
85 90 95

Val Glu Ser Glu Pro Ala Met Thr Pro Ser Lys Glu Gly Thr Leu Ile
100 105 110

Val Arg Gln Thr Gln Ser Ala Ser Ser Thr Leu Gln Lys His Lys Ser
115 120 125

Ser Ser Ser Phe Thr Pro Phe Ile Asp Pro Arg Leu Leu Gln Ile Ser
130 135 140

Pro Ser Ser Gly Thr Thr Val Thr Ser Val Val Gly Phe Ser Cys Asp
145 150 155 160

Gly Met Arg Pro Glu Ala Ile Arg Gln Asp Pro Thr Arg Lys Gly Ser
165 170 175

Val Val Asn Val Asn Pro Thr Asn Thr Arg Pro Gln Ser Asp Thr Pro
180 185 190

Glu Ile Arg Lys Tyr Lys Lys Arg Phe Asn Ser Glu Ile Leu Cys Ala
195 200 205

Ala Leu Trp Gly Val Asn Leu Leu Val Gly Thr Glu Ser Gly Leu Met
210 215 220

Leu Leu Asp Arg Ser Gly Gln Gly Lys Val Tyr Pro Leu Ile Asn Arg
225 230 235 240

Arg Arg Phe Gln Gln Met Asp Val Leu Glu Gly Leu Asn Val Leu Val
245 250 255

Thr Ile Ser Gly Lys Lys Asp Lys Leu Arg Val Tyr Tyr Leu Ser Trp
260 265 270

Leu Arg Asn Lys Ile Leu His Asn Asp Pro Glu Val Glu Lys Lys Gln
275 280 285

Gly Trp Thr Thr Val Gly Asp Leu Glu Gly Cys Val His Tyr Lys Val
290 295 300

Val Lys Tyr Glu Arg Ile Lys Phe Leu Val Ile Ala Leu Lys Ser Ser
305 310 315 320

Val Glu Val Tyr Ala Trp Ala Pro Lys Pro Tyr His Lys Phe Met Ala
325 330 335

Phe Lys Ser Phe Gly Glu Leu Val His Lys Pro Leu Leu Val Asp Leu
340 345 350

Thr Val Glu Glu Gly Gln Arg Leu Lys Val Ile Tyr Gly Ser Cys Ala
355 360 365

Gly Phe His Ala Val Asp Val Asp Ser Gly Ser Val Tyr Asp Ile Tyr
370 375 380

Leu Pro Thr His Ile Gln Cys Ser Ile Lys Pro His Ala Ile Ile Ile
385 390 395 400

Leu Pro Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr Glu Asp Glu
405 410 415

Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val Val Leu
420 425 430

Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg Ser Asn Gln
435 440 445

Thr Met Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg Ser Val Glu Thr
450 455 460

Gly His Leu Asp Gly Val Phe Met His Lys Arg Ala Gln Arg Leu Lys
465 470 475 480

Phe Leu Cys Glu Arg Asn Asp Lys Val Phe Phe Ala Ser Val Arg Ser
485 490 495

Gly Gly Ser Ser Gln Val Tyr Phe Met Thr Leu Gly Arg Thr Ser Leu
500 505 510

Leu Ser Trp
515

<210> 135

<211> 468

<212> PRT

<213> Homo sapiens

<400> 135

Met Ser Ala Arg Val Gln Leu Thr Lys Ser Val Pro Ala Ile Met Arg
1 5 10 15

Ala Met Ala Leu Arg Phe Ala Phe Thr Ser Cys Gln Ile Ser Tyr Ser
20 25 30

Lys Ala Ile Pro Pro Pro Leu Pro Pro Pro Pro Pro His Pro Pro
35 40 45

Ala Ser Arg His Pro Pro Cys Pro His Arg His Pro Arg Asp Lys Leu
50 55 60

Thr Ala Asn Glu Thr Gln Ser Ala Ser Ser Thr Leu Gln Lys His Lys
65 70 75 80

Ser Ser Ser Ser Phe Thr Pro Phe Ile Asp Pro Arg Leu Leu Gln Ile
85 90 95

Ser Pro Ser Ser Gly Thr Thr Val Thr Ser Val Val Gly Phe Ser Cys
100 105 110

Asp Gly Met Arg Pro Glu Ala Ile Arg Gln Asp Pro Thr Arg Lys Gly
115 120 125

Ser Val Val Asn Val Asn Pro Thr Asn Thr Arg Pro Gln Ser Asp Thr
130 135 140

Pro Glu Ile Arg Lys Tyr Lys Lys Arg Phe Asn Ser Glu Ile Leu Cys
145 150 155 160

Ala Ala Leu Trp Gly Val Asn Leu Leu Val Gly Thr Glu Ser Gly Leu

165 170 175

Met Leu Leu Asp Arg Ser Gly Gln Gly Lys Val Tyr Pro Leu Ile Asn
180 185 190

Arg Arg Arg Phe Gln Gln Met Asp Val Leu Glu Gly Leu Asn Val Leu
195 200 205

Val Thr Ile Ser Gly Lys Lys Asp Lys Leu Arg Val Tyr Tyr Leu Ser
210 215 220

Trp Leu Arg Asn Lys Ile Leu His Asn Asp Pro Glu Val Glu Lys Lys
225 230 235 240

Gln Gly Trp Thr Thr Val Gly Asp Leu Glu Gly Cys Val His Tyr Lys
245 250 255

Val Val Lys Tyr Glu Arg Ile Lys Phe Leu Val Ile Ala Leu Lys Ser
260 265 270

Ser Val Glu Val Tyr Ala Trp Ala Pro Lys Pro Tyr His Lys Phe Met
275 280 285

Ala Phe Lys Ser Phe Gly Glu Leu Val His Lys Pro Leu Leu Val Asp
290 295 300

Leu Thr Val Glu Glu Gly Gln Arg Leu Lys Val Ile Tyr Gly Ser Cys
305 310 315 320

Ala Gly Phe His Ala Val Asp Val Asp Ser Gly Ser Val Tyr Asp Ile
325 330 335

Tyr Leu Pro Thr His Ile Gln Cys Ser Ile Lys Pro His Ala Ile Ile
340 345 350

Ile Leu Pro Asn Thr Asp Gly Met Glu Leu Leu Val Cys Tyr Glu Asp
355 360 365

Glu Gly Val Tyr Val Asn Thr Tyr Gly Arg Ile Thr Lys Asp Val Val
370 375 380

Leu Gln Trp Gly Glu Met Pro Thr Ser Val Ala Tyr Ile Arg Ser Asn
385 390 395 400

Gln Thr Met Gly Trp Gly Glu Lys Ala Ile Glu Ile Arg Ser Val Glu
405 410 415

Thr Gly His Leu Asp Gly Val Phe Met His Lys Arg Ala Gln Arg Leu
420 425 430

Lys Phe Leu Cys Glu Arg Asn Asp Lys Val Phe Phe Ala Ser Val Arg
435 440 445

Ser Gly Gly Ser Ser Gln Val Tyr Phe Met Thr Leu Gly Arg Thr Ser
450 455 460

Leu Leu Ser Trp

465

<210> 136
<211> 666
<212> PRT
<213> Homo sapiens

<220>
<221> -
<222> (1) .. (666)
<223> "XAA" can be any amino acid

<400> 136

Met Asp Cys Gln Leu Ser Ile Leu Leu Leu Ser Cys Ser Val Leu
1 5 10 15

Asp Ser Phe Gly Glu Leu Ile Pro Gln Pro Ser Asn Glu Val Asn Leu
20 25 30

Leu Asp Ser Lys Thr Ile Gln Gly Glu Leu Gly Trp Ile Ser Tyr Pro
35 40 45

Ser His Gly Trp Glu Glu Ile Ser Gly Val Asp Glu His Tyr Thr Pro
50 55 60

Ile Arg Thr Tyr Gln Val Cys Asn Val Met Asp His Ser Gln Asn Asn
65 70 75 80

Trp Leu Arg Thr Asn Trp Val Pro Arg Asn Ser Ala Gln Lys Ile Tyr
85 90 95

Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Ile Pro Leu Val
100 105 110

Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Met Glu Ser Asp
115 120 125

Asp Asp His Gly Val Lys Phe Arg Glu His Gln Phe Thr Lys Ile Asp
130 135 140

Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Met Asp Leu Gly Asp Arg
145 150 155 160

Ile Leu Lys Leu Asn Thr Glu Ile Arg Glu Val Gly Pro Val Asn Lys
165 170 175

Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Val Ala Leu
180 185 190

Val Ser Val Arg Val Tyr Phe Lys Lys Cys Pro Phe Thr Val Lys Asn
195 200 205

Leu Ala Met Phe Pro Asp Thr Val Pro Met Asp Ser Gln Ser Leu Val
210 215 220

Glu Val Arg Gly Ser Cys Val Asn Asn Ser Lys Glu Glu Asp Pro Pro
225 230 235 240

Arg Met Tyr Cys Ser Thr Glu Gly Glu Trp Leu Val Pro Ile Gly Lys
245 250 255

Cys Ser Cys Asn Ala Gly Tyr Glu Glu Arg Gly Phe Met Cys Gln Ala
260 265 270

Cys Arg Pro Gly Phe Tyr Lys Ala Leu Asp Gly Asn Met Lys Cys Ala
275 280 285

Lys Cys Pro Pro His Ser Ser Thr Gln Glu Asp Gly Ser Met Asn Cys
290 295 300

Arg Cys Glu Asn Asn Tyr Phe Arg Ala Asp Lys Asp Pro Pro Ser Met
305 310 315 320

Ala Cys Thr Arg Pro Pro Ser Ser Pro Arg Asn Val Ile Ser Asn Ile
325 330 335

Asn Glu Thr Ser Val Ile Leu Asp Trp Ser Trp Pro Leu Asp Thr Gly
340 345 350

Gly Arg Lys Asp Val Thr Phe Asn Ile Ile Cys Lys Lys Cys Gly Trp
355 360 365

Asn Ile Lys Gln Cys Glu Pro Cys Ser Pro Asn Val Arg Phe Leu Pro
370 375 380

Arg Gln Phe Gly Leu Thr Asn Thr Thr Val Thr Val Thr Asp Leu Leu
385 390 395 400

Ala His Thr Asn Tyr Thr Phe Glu Ile Asp Ala Val Asn Gly Val Ser
405 410 415

Glu Leu Ser Ser Pro Pro Arg Gln Phe Ala Ala Val Ser Ile Thr Thr
420 425 430

Asn Gln Ala Ala Pro Ser Pro Val Leu Thr Ile Lys Lys Asp Arg Thr
435 440 445

Ser Arg Asn Ser Ile Ser Leu Ser Trp Gln Glu Pro Glu His Pro Asn
450 455 460

Gly Ile Ile Leu Asp Tyr Glu Val Lys Tyr Tyr Glu Lys Gln Glu Gln
465 470 475 480

Glu Thr Ser Tyr Thr Ile Leu Arg Ala Arg Gly Thr Asn Val Thr Ile
485 490 495

Ser Ser Leu Lys Pro Asp Thr Ile Tyr Val Phe Gln Ile Arg Ala Arg
500 505 510

Thr Ala Ala Gly Tyr Gly Thr Asn Ser Arg Lys Phe Glu Phe Glu Thr
515 520 525

Ser Pro Asp Ser Phe Ser Ile Ser Gly Glu Ser Ser Gln Val Val Met
530 535 540

Ile Ala Ile Ser Ala Ala Val Ala Ile Ile Leu Leu Thr Val Val Ile
545 550 555 560

Tyr Val Leu Ile Gly Arg Phe Cys Gly Tyr Lys Ser Lys His Gly Ala
565 570 575

Asp Glu Lys Arg Leu His Phe Gly Asn Gly His Leu Lys Leu Pro Gly
580 585 590

Leu Arg Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Thr Gln Ala
595 600 605

Val His Glu Phe Ala Lys Glu Leu Asp Ala Thr Asn Ile Ser Ile Asp
610 615 620

Lys Val Val Gly Ala Val Leu Thr Ser Glu Gln Leu His Asp Ala Glu
625 630 635 640

Xaa Phe Ser Leu Ala Gly Phe Asn Val Ser Ser Gln Gly Val His Phe
645 650 655

Ser Pro Ala Arg Ser Leu Pro Val Ala Asn
660 665

<210> 137
<211> 458
<212> PRT
<213> Homo sapiens

<400> 137

Met Lys Tyr Thr Phe Trp Gly Trp Val Ala Val Val Lys Leu Lys Asn
1 5 10 15

Ala Asp Lys Val Phe Ala Met Lys Ile Leu Asn Lys Trp Glu Met Leu
20 25 30

Lys Arg Ala Glu Thr Ala Cys Phe Arg Glu Glu Arg Asp Val Leu Val
35 40 45

Asn Gly Asp Asn Lys Trp Ile Thr Thr Leu His Tyr Ala Phe Gln Asp
50 55 60

Asp Asn Asn Leu Tyr Leu Val Met Asp Tyr Tyr Val Gly Gly Asp Leu
65 70 75 80

Leu Thr Leu Leu Ser Lys Phe Glu Asp Arg Leu Pro Glu Asp Met Ala
85 90 95

Arg Phe Tyr Leu Ala Glu Met Val Ile Ala Ile Asp Ser Val His Gln
100 105 110

Leu His Tyr Val His Arg Asp Ile Lys Pro Asp Asn Ile Leu Met Asp
115 120 125

Met Asn Gly His Ile Arg Leu Ala Asp Phe Gly Ser Cys Leu Lys Leu
130 135 140

Met Glu Asp Gly Thr Val Gln Ser Ser Val Ala Val Gly Thr Pro Asp
145 150 155 160

Tyr Ile Ser Pro Glu Ile Leu Gln Ala Met Glu Asp Gly Lys Gly Arg
165 170 175

Tyr Gly Pro Glu Cys Asp Trp Trp Ser Leu Gly Val Cys Met Tyr Glu
180 185 190

Met Leu Tyr Gly Glu Thr Pro Phe Tyr Ala Glu Ser Leu Val Glu Thr
195 200 205

Tyr Gly Lys Ile Met Asn His Lys Glu Arg Phe Gln Phe Pro Ala Gln
210 215 220

Val Thr Asp Val Ser Glu Asn Ala Lys Asp Leu Ile Arg Arg Leu Ile
225 230 235 240

Cys Ser Arg Glu His Arg Leu Gly Gln Asn Gly Ile Glu Asp Phe Lys
245 250 255

Lys His Pro Phe Phe Ser Gly Ile Asp Trp Asp Asn Ile Arg Asn Cys
260 265 270

Glu Ala Pro Tyr Ile Pro Glu Val Ser Ser Pro Thr Asp Thr Ser Asn
275 280 285

Phe Asp Val Asp Asp Asp Cys Leu Lys Asn Ser Glu Thr Met Pro Pro
290 295 300

Pro Thr His Thr Ala Phe Ser Gly His His Leu Pro Phe Val Gly Phe
305 310 315 320

Thr Tyr Thr Ser Ser Cys Val Leu Ser Asp Arg Ser Cys Leu Arg Val
325 330 335

Thr Ala Gly Pro Thr Ser Leu Asp Leu Asp Val Asn Val Gln Arg Thr
340 345 350

Leu Asp Asn Asn Leu Ala Thr Glu Ala Tyr Glu Arg Arg Ile Lys Arg
355 360 365

Leu Glu Gln Glu Lys Leu Glu Leu Ser Arg Lys Leu Gln Glu Ser Thr
370 375 380

Gln Thr Val Gln Ala Leu Gln Tyr Ser Thr Val Asp Gly Pro Leu Thr
385 390 395 400

Ala Ser Lys Asp Leu Glu Ile Lys Asn Leu Lys Glu Glu Ile Glu Lys
405 410 415

Leu Arg Lys Gln Val Thr Glu Ser Ser His Leu Glu Gln Gln Leu Glu
420 425 430

Glu Ala Asn Ala Val Arg Gln Glu Leu Asp Asp Ala Phe Arg Gln Ile
435 440 445

Lys Ala Tyr Glu Lys Gln Ile Lys Thr Leu
450 455

<210> 138

<211> 262

<212> PRT

<213> Homo sapiens

<400> 138

Met Glu Val Val Asp Pro Gln Gln Leu Gly Met Phe Thr Glu Gly Glu
1 5 10 15

Leu Met Ser Val Gly Met Asp Thr Phe Ile His Arg Ile Asp Ser Thr
20 25 30

Glu Val Ile Tyr Gln Pro Arg Arg Lys Arg Ala Lys Leu Ile Gly Lys
35 40 45

Tyr Leu Met Gly Asp Leu Leu Gly Glu Gly Ser Tyr Gly Lys Val Lys
50 55 60

Glu Val Leu Asp Ser Glu Thr Leu Cys Arg Arg Ala Val Lys Ile Leu
65 70 75 80

Lys Lys Lys Leu Arg Arg Ile Pro Asn Gly Glu Ala Asn Val Lys
85 90 95

Lys Glu Ile Gln Leu Leu Arg Arg Leu Arg His Lys Asn Val Ile Gln
100 105 110

Leu Val Asp Val Leu Tyr Asn Glu Glu Lys Gln Lys Met Tyr Met Val
115 120 125

Met Glu Tyr Cys Val Cys Gly Met Gln Glu Met Leu Asp Ser Val Pro
130 135 140

Glu Lys Arg Phe Pro Val Cys Gln Ala His Gly Ser Pro Ser Arg Arg
145 150 155 160

Gly Gly Arg His Ala Ser Val Pro Thr Thr Pro Gln Asp Leu Arg Ser
165 170 175

Ala Leu Gln Gly Arg Ala Gly Gly Gln Gln Gly Pro Gly Ala Ala Leu
180 185 190

Pro Pro Arg Pro Pro Gly Ser Ala Arg Gly Leu Leu Thr Ser Gln Pro
195 200 205

Arg Ala Glu Pro Ser Arg Ala Gly Val Gly Gly Arg Arg Pro Pro
210 215 220

Cys Thr Leu Cys Gly Asp Tyr Trp Pro Arg Pro Trp Pro Arg Ala Pro

225 230 235 240

Gln Gly Ala Gln Arg Arg Pro Ala Ala Pro Pro Gln Thr Ser Trp Arg
245 250 255

Val Trp Arg Pro Gly Ser
260

<210> 139
<211> 203
<212> PRT
<213> Homo sapiens

<400> 139

Met Glu Val Val Asp Pro Gln Gln Leu Gly Met Phe Thr Glu Gly Glu
1 5 10 15

Leu Met Ser Val Gly Met Asp Thr Phe Ile His Arg Ile Asp Ser Thr
20 25 30

Glu Val Ile Tyr Gln Pro Arg Arg Lys Arg Ala Lys Leu Ile Gly Lys
35 40 45

Tyr Leu Met Gly Asp Leu Leu Gly Glu Gly Ser Tyr Gly Lys Val Lys
50 55 60

Glu Val Leu Asp Ser Glu Thr Leu Cys Arg Arg Ala Val Lys Ile Leu
65 70 75 80

Lys Lys Lys Leu Arg Arg Ile Pro Asn Gly Glu Ala Asn Val Lys
85 90 95

Lys Glu Ile Gln Leu Leu Arg Arg Leu Arg His Lys Asn Val Ile Gln
100 105 110

Leu Val Asp Val Leu Tyr Asn Glu Glu Lys Gln Lys Met Tyr Met Val
115 120 125

Met Glu Tyr Cys Val Cys Gly Met Gln Glu Met Leu Asp Ser Val Pro
130 135 140

Glu Lys Arg Phe Pro Val Cys Gln Ala His Gly Tyr Phe Cys Gln Leu
145 150 155 160

Ile Asp Gly Leu Glu Tyr Leu His Ser Gln Gly Ile Val His Lys Asp
165 170 175

Ile Lys Pro Gly Asn Leu Leu Leu Thr Thr Gly Gly Thr Leu Lys Ile
180 185 190

Ser Asp Leu Gly Val Ala Glu Val Gly Thr Cys
195 200

<210> 140
<211> 244
<212> PRT

<213> Homo sapiens

<400> 140

Met Asp Arg Glu Thr Thr Pro Leu Gly Leu Leu Trp Leu Ile Gln Val
1 5 10 15

Ile Pro Ser Lys Leu Leu Pro Ser Leu Gln Val Lys Asp Phe Leu Ser
20 25 30

Gln Leu Arg Ser Ser Asn Arg Arg Phe Ser Ile Pro Glu Ser Gly Gln
35 40 45

Gly Gly Thr Glu Met Asp Gly Phe Arg Arg Thr Ile Glu Asn Gln His
50 55 60

Ser Arg Asn Asp Val Met Val Ser Glu Trp Leu Asn Lys Leu Asn Leu
65 70 75 80

Glu Glu Pro Pro Ser Ser Val Pro Lys Lys Cys Pro Ser Leu Thr Lys
85 90 95

Arg Ser Arg Ala Gln Glu Glu Gln Val Pro Gln Ala Trp Thr Ala Gly
100 105 110

Thr Ser Ser Asp Ser Met Ala Gln Pro Pro Gln Thr Pro Glu Thr Ser
115 120 125

Thr Phe Arg Asn Gln Met Pro Ser Pro Thr Ser Thr Gly Thr Pro Ser
130 135 140

Pro Gly Pro Arg Gly Asn Gln Gly Ala Glu Arg Gln Gly Met Asn Trp
145 150 155 160

Ser Cys Arg Thr Pro Glu Pro Asn Pro Val Thr Gly Arg Pro Leu Val
165 170 175

Asn Ile Tyr Asn Cys Ser Gly Val Gln Val Gly Asp Asn Asn Tyr Leu
180 185 190

Thr Met Gln Gln Thr Thr Ala Leu Pro Thr Trp Gly Leu Ala Pro Ser
195 200 205

Gly Lys Gly Arg Gly Leu Gln His Pro Pro Pro Val Gly Ser Gln Glu
210 215 220

Gly Pro Lys Asp Pro Glu Ala Trp Ser Arg Pro Gln Gly Trp Tyr Asn
225 230 235 240

His Ser Gly Lys

<210> 141

<211> 222

<212> PRT

<213> Homo sapiens

<400> 141

Met Val Lys Leu Tyr Leu Tyr Gln Lys Asn Val Lys Ile Ala Ile Phe
1 5 10 15

Asp Leu Lys Ser Arg Gln Asn Phe Phe Val Tyr Phe Arg Glu Glu Gln
20 25 30

Ala Arg Glu Leu Tyr Arg Arg Leu Arg Glu Lys Pro Arg Asp Gln Arg
35 40 45

Thr Glu Gly Asp Ser Gln Glu Met Val Arg Leu Leu Gln Ala Ile
50 55 60

Gln Ser Phe Glu Lys Lys Val Arg Val Ile Tyr Thr Gln Leu Ser Lys
65 70 75 80

Thr Val Val Cys Lys Gln Lys Ala Leu Glu Leu Leu Pro Lys Val Glu
85 90 95

Glu Val Val Ser Leu Met Asn Glu Asp Glu Lys Thr Val Val Arg Leu
100 105 110

Gln Glu Lys Arg Gln Lys Glu Leu Trp Asn Leu Leu Lys Ile Ala Cys
115 120 125

Ser Lys Val Arg Gly Pro Val Ser Gly Ser Pro Asp Ser Met Asn Ala
130 135 140

Ser Arg Leu Ser Gln Pro Gly Gln Leu Met Ser Gln Pro Ser Thr Ala
145 150 155 160

Ser Asn Ser Leu Pro Glu Pro Ala Lys Lys Ser Glu Glu Leu Val Ala
165 170 175

Glu Ala His Asn Leu Cys Thr Leu Leu Glu Asn Ala Ile Gln Asp Thr
180 185 190

Val Arg Glu Gln Asp Gln Ser Phe Thr Ala Leu Asp Trp Ser Trp Leu
195 200 205

Gln Thr Glu Glu Glu His Ser Cys Leu Glu Gln Ala Ser
210 215 220

<210> 142

<211> 409

<212> PRT

<213> Homo sapiens

<400> 142

Met Arg Leu Thr Leu Leu Cys Cys Thr Trp Arg Glu Glu Arg Met Gly
1 5 10 15

Glu Glu Gly Ser Glu Leu Pro Val Cys Ala Ser Cys Gly Gln Arg Ile
20 25 30

Tyr Asp Gly Gln Tyr Leu Gln Ala Leu Asn Ala Asp Trp His Ala Asp
35 40 45

Cys Phe Arg Cys Cys Asp Cys Ser Ala Ser Leu Ser His Gln Tyr Tyr
50 55 60

Glu Lys Asp Gly Gln Leu Phe Cys Lys Lys Asp Tyr Trp Ala Arg Tyr
65 70 75 80

Gly Glu Ser Cys His Gly Cys Ser Glu Gln Ile Thr Lys Gly Leu Val
85 90 95

Met Val Ala Gly Glu Leu Lys Tyr His Pro Glu Cys Phe Ile Cys Leu
100 105 110

Thr Cys Gly Thr Phe Ile Gly Asp Gly Asp Thr Tyr Thr Leu Val Glu
115 120 125

His Ser Lys Leu Tyr Cys Gly His Cys Tyr Tyr Gln Thr Val Val Thr
130 135 140

Pro Val Ile Glu Gln Ile Leu Pro Asp Ser Pro Gly Ser His Leu Pro
145 150 155 160

His Thr Val Thr Leu Val Ser Ile Pro Ala Ser Ser His Gly Lys Arg
165 170 175

Gly Leu Ser Val Ser Ile Asp Pro Pro His Gly Pro Pro Gly Cys Gly
180 185 190

Thr Glu His Ser His Thr Val Arg Val Gln Gly Val Asp Pro Gly Cys
195 200 205

Met Ser Pro Asp Val Lys Asn Ser Ile His Val Gly Asp Arg Ile Leu
210 215 220

Glu Ile Asn Gly Thr Pro Ile Arg Asn Val Pro Leu Asp Glu Ile Asp
225 230 235 240

Leu Leu Ile Gln Glu Thr Ser Arg Leu Leu Gln Leu Thr Leu Glu His
245 250 255

Asp Pro His Asp Thr Leu Gly His Gly Leu Gly Pro Glu Thr Ser Pro
260 265 270

Leu Ser Ser Pro Ala Tyr Thr Pro Ser Gly Glu Ala Gly Ser Ser Ala
275 280 285

Arg Gln Lys Pro Val Leu Arg Ser Cys Ser Ile Asp Arg Ser Pro Gly
290 295 300

Ala Gly Ser Leu Gly Ser Pro Ala Ser Gln Arg Lys Asp Leu Gly Arg
305 310 315 320

Ser Glu Ser Leu Arg Val Val Cys Arg Pro His Arg Ile Phe Arg Pro
325 330 335

Ser Asp Leu Ile His Gly Glu Val Leu Gly Lys Gly Cys Phe Gly Gln
340 345 350

Ala Ile Lys Val Gln Ser Met Pro Gly Ser Gln Leu Asp Ser Leu Gly
355 360 365

Gly Thr Pro Pro Ser Ser Phe Leu Pro Ser Leu Trp Lys His Ser Gly
370 375 380

Arg Gly Ile Trp Leu Ser Asp Ser Leu Ala Ser Ala Leu Ser Ser Leu
385 390 395 400

Gly Leu Leu Glu Leu Ile Arg Asn Arg
405

<210> 143

<211> 305

<212> PRT

<213> Homo sapiens

<400> 143

Met Arg Leu Thr Leu Leu Cys Cys Thr Trp Arg Glu Glu Arg Met Gly
1 5 10 15

Glu Glu Gly Ser Glu Leu Pro Val Cys Ala Ser Cys Gly Gln Arg Ile
20 25 30

Tyr Asp Gly Gln Tyr Leu Gln Ala Leu Asn Ala Asp Trp His Ala Asp
35 40 45

Cys Phe Arg Cys Cys Asp Cys Ser Ala Ser Leu Ser His Gln Tyr Tyr
50 55 60

Glu Lys Asp Gly Gln Leu Phe Cys Lys Lys Asp Tyr Trp Ala Arg Tyr
65 70 75 80

Gly Glu Ser Cys His Gly Cys Ser Glu Gln Ile Thr Lys Gly Leu Val
85 90 95

Met Val Ala Gly Glu Leu Lys Tyr His Pro Glu Cys Phe Ile Cys Leu
100 105 110

Thr Cys Gly Thr Phe Ile Gly Asp Gly Asp Thr Tyr Thr Leu Val Glu
115 120 125

His Ser Lys Leu Tyr Cys Gly His Cys Tyr Tyr Gln Thr Val Val Thr
130 135 140

Pro Val Ile Glu Gln Ile Leu Pro Asp Ser Pro Gly Ser His Leu Pro
145 150 155 160

His Thr Val Thr Leu Val Ser Ile Pro Ala Ser Ser His Gly Lys Arg
165 170 175

Gly Leu Ser Val Ser Ile Asp Pro Pro His Gly Pro Pro Gly Cys Gly
180 185 190

Thr Glu His Ser His Thr Val Arg Val Gln Gly Val Asp Pro Gly Cys
195 200 205

Met Ser Pro Asp Val Lys Asn Ser Ile His Val Gly Asp Arg Ile Leu
210 215 220

Glu Ile Asn Gly Thr Pro Ile Arg Asn Val Pro Leu Asp Glu Ile Asp
225 230 235 240

Leu Leu Ile Gln Glu Thr Ser Arg Leu Leu Gln Leu Thr Leu Glu His
245 250 255

Asp Pro His Asp Thr Leu Gly His Gly Leu Gly Pro Glu Thr Ser Pro
260 265 270

Leu Ser Ser Pro Ala Tyr Thr Pro Ser Gly Glu Ala Gly Ser Ser Ala
275 280 285

Arg Gln Lys Pro Val Phe Ala Arg Thr Trp Val Ala Leu Ser Pro Ser
290 295 300

Ala
305

<210> 144
<211> 780
<212> PRT
<213> Homo sapiens

<400> 144

Met Ala Ser Asp Ala Val Gln Ser Glu Pro Arg Ser Trp Ser Leu Leu
1 5 10 15

Glu Gln Leu Gly Leu Ala Gly Ala Asp Leu Ala Ala Pro Gly Val Gln
20 25 30

Gln Gln Leu Glu Leu Glu Arg Glu Arg Leu Arg Arg Glu Ile Arg Lys
35 40 45

Glu Leu Lys Leu Lys Glu Gly Ala Glu Asn Leu Arg Arg Ala Thr Thr
50 55 60

Asp Leu Gly Arg Ser Leu Gly Pro Val Glu Leu Leu Leu Arg Gly Ser
65 70 75 80

Ser Arg Arg Leu Asp Leu Leu His Gln Gln Leu Gln Glu Leu His Ala
85 90 95

His Val Val Leu Pro Asp Pro Ala Ala Thr His Asp Gly Pro Gln Ser
100 105 110

Pro Gly Ala Gly Gly Pro Thr Cys Ser Ala Thr Asn Leu Ser Arg Val
115 120 125

Ala Gly Leu Glu Lys Gln Leu Ala Ile Glu Leu Lys Val Lys Gln Gly

130 135 140
Ala Glu Asn Met Ile Gln Thr Tyr Ser Asn Gly Ser Thr Lys Asp Arg
145 150 155 160
Lys Leu Leu Leu Thr Ala Gln Gln Met Leu Gln Asp Ser Lys Thr Lys
165 170 175
Ile Asp Ile Ile Arg Met Gln Leu Arg Arg Ala Leu Gln Ala Asp Gln
180 185 190
Leu Glu Asn Gln Ala Ala Pro Asp Asp Thr Gln Gly Ser Pro Asp Leu
195 200 205
Gly Ala Val Glu Leu Arg Ile Glu Glu Leu Arg His His Phe Arg Val
210 215 220
Glu His Ala Val Ala Glu Gly Ala Lys Asn Val Leu Arg Leu Leu Ser
225 230 235 240
Ala Ala Lys Ala Pro Asp Arg Lys Ala Val Ser Glu Ala Gln Glu Lys
245 250 255
Leu Thr Glu Ser Asn Gln Lys Leu Gly Leu Leu Arg Glu Ala Leu Glu
260 265 270
Arg Arg Leu Gly Glu Leu Pro Ala Asp His Pro Lys Gly Arg Leu Leu
275 280 285
Arg Glu Glu Leu Ala Ala Ser Ser Ala Ala Phe Ser Thr Arg Leu
290 295 300
Ala Gly Pro Phe Pro Ala Thr His Tyr Ser Thr Leu Cys Lys Pro Ala
305 310 315 320
Pro Leu Thr Gly Thr Leu Glu Val Arg Val Val Gly Cys Arg Asp Leu
325 330 335
Pro Glu Thr Ile Pro Trp Asn Pro Thr Pro Ser Met Gly Gly Pro Gly
340 345 350
Thr Pro Asp Ser Arg Pro Pro Phe Leu Ser Arg Pro Ala Arg Gly Leu
355 360 365
Tyr Ser Arg Ser Gly Ser Leu Ser Gly Arg Ser Ser Leu Lys Ala Glu
370 375 380
Ala Glu Asn Thr Ser Glu Val Ser Thr Val Leu Lys Leu Asp Asn Thr
385 390 395 400
Val Val Gly Gln Thr Ser Trp Lys Pro Cys Gly Pro Asn Ala Trp Asp
405 410 415
Gln Ser Phe Thr Leu Glu Leu Glu Arg Ala Arg Glu Leu Glu Leu Ala
420 425 430
Val Phe Trp Arg Asp Gln Arg Gly Leu Cys Ala Leu Lys Phe Leu Lys

435

440

445

Leu Glu Asp Phe Leu Asp Asn Glu Arg His Glu Val Gln Leu Asp Met
 450 455 460

Glu Pro Gln Gly Cys Leu Val Ala Glu Val Thr Phe Arg Asn Pro Val
 465 470 475 480

Ile Glu Arg Ile Pro Arg Leu Arg Arg Gln Lys Lys Ile Phe Ser Lys
 485 490 495

Gln Gln Gly Lys Ala Phe Gln Arg Ala Arg Gln Met Asn Ile Asp Val
 500 505 510

Ala Thr Trp Val Arg Leu Leu Arg Arg Leu Ile Pro Asn Ala Thr Gly
 515 520 525

Thr Gly Thr Phe Ser Pro Gly Ala Ser Pro Gly Ser Glu Ala Arg Thr
 530 535 540

Thr Gly Asp Ile Ser Val Glu Lys Leu Asn Leu Gly Thr Asp Ser Asp
 545 550 555 560

Ser Ser Pro Gln Lys Ser Ser Arg Asp Pro Pro Ser Ser Pro Ser Ser
 565 570 575

Leu Ser Ser Pro Ile Gln Glu Ser Thr Ala Pro Glu Leu Pro Ser Glu
 580 585 590

Thr Gln Glu Thr Pro Gly Pro Ala Leu Cys Ser Pro Leu Arg Lys Ser
 595 600 605

Pro Leu Thr Leu Glu Asp Phe Lys Phe Leu Ala Val Leu Gly Arg Gly
 610 615 620

His Phe Gly Lys Val Leu Leu Ser Glu Phe Arg Pro Ser Gly Glu Leu
 625 630 635 640

Phe Ala Ile Lys Ala Leu Lys Lys Gly Asp Ile Val Ala Arg Asp Glu
 645 650 655

Val Glu Ser Leu Met Cys Glu Lys Arg Ile Leu Ala Ala Val Thr Ser
 660 665 670

Ala Gly His Pro Phe Leu Val Asn Leu Phe Gly Cys Phe Gln Thr Pro
 675 680 685

Glu His Val Cys Phe Val Met Glu Tyr Ser Ala Gly Gly Asp Leu Met
 690 695 700

Leu His Ile His Ser Asp Val Phe Ser Glu Pro Arg Ala Ile Phe Tyr
 705 710 715 720

Ser Ala Cys Arg Leu Pro Pro Phe Val Pro Thr Leu Ser Gly Arg
 725 730 735

Thr Asp Val Ser Asn Phe Asp Glu Glu Phe Thr Gly Glu Ala Pro Thr

740

745

750

Leu Ser Pro Pro Arg Asp Ala Arg Pro Leu Thr Ala Ala Glu Gln Ala
755 760 765

Ala Phe Leu Asp Phe Asp Phe Val Ala Gly Gly Cys
770 775 780

<210> 145

<211> 401

<212> PRT

<213> Homo sapiens

<400> 145

Met Ala Ser Asp Ala Val Gln Ser Glu Pro Arg Ser Trp Ser Leu Leu
1 5 10 15

Glu Gln Leu Gly Leu Ala Gly Ala Asp Leu Ala Ala Pro Gly Val Gln
20 25 30

Gln Gln Leu Glu Leu Glu Arg Glu Arg Leu Arg Arg Glu Ile Arg Lys
35 40 45

Glu Leu Lys Leu Lys Glu Gly Ala Glu Asn Leu Arg Arg Ala Thr Thr
50 55 60

Asp Leu Gly Arg Ser Leu Gly Pro Val Glu Leu Leu Arg Gly Ser
65 70 75 80

Ser Arg Arg Leu Asp Leu Leu His Gln Gln Leu Gln Glu Leu His Ala
85 90 95

His Val Val Leu Pro Asp Pro Ala Ala Thr His Asp Gly Pro Gln Ser
100 105 110

Pro Gly Ala Gly Gly Pro Thr Cys Ser Ala Thr Asn Leu Ser Arg Val
115 120 125

Ala Gly Leu Glu Lys Gln Leu Ala Ile Glu Leu Lys Val Lys Gln Gly
130 135 140

Ala Glu Asn Met Ile Gln Thr Tyr Ser Asn Gly Ser Thr Lys Asp Arg
145 150 155 160

Lys Leu Leu Leu Thr Ala Gln Gln Met Leu Gln Asp Ser Lys Thr Lys
165 170 175

Ile Asp Ile Ile Arg Met Gln Leu Arg Arg Ala Leu Gln Ala Asp Gln
180 185 190

Leu Glu Asn Gln Ala Ala Pro Asp Asp Thr Gln Gly Ser Pro Asp Leu
195 200 205

Gly Ala Val Glu Leu Arg Ile Glu Glu Leu Arg His His Phe Arg Val
210 215 220

Glu His Ala Val Ala Glu Gly Ala Lys Asn Val Leu Arg Leu Leu Ser
225 230 235 240
Ala Ala Lys Ala Pro Asp Arg Lys Ala Val Ser Glu Ala Gln Glu Lys
245 250 255
Leu Thr Glu Ser Asn Gln Lys Leu Gly Leu Leu Arg Glu Ala Leu Glu
260 265 270
Arg Arg Leu Gly Glu Leu Pro Ala Asp His Pro Lys Gly Arg Leu Leu
275 280 285
Arg Glu Glu Leu Ala Ala Ser Ser Ala Ala Phe Ser Thr Arg Leu
290 295 300
Ala Gly Pro Phe Pro Ala Thr His Tyr Ser Thr Leu Cys Lys Pro Ala
305 310 315 320
Pro Leu Thr Gly Thr Leu Glu Val Arg Val Val Gly Cys Arg Asp Leu
325 330 335
Pro Glu Thr Ile Pro Trp Asn Pro Thr Pro Ser Met Gly Gly Pro Gly
340 345 350
Thr Pro Asp Ser Arg Pro Pro Phe Leu Ser Arg Pro Ala Arg Gly Leu
355 360 365
Tyr Ser Arg Ser Gly Ser Leu Ser Gly Arg Ser Ser Leu Lys Ala Glu
370 375 380
Ala Glu Asn Thr Ser Glu Val Ser Thr Val Leu Lys Leu Asp Asn Thr
385 390 395 400
His

<210> 146
<211> 96
<212> PRT
<213> Homo sapiens

<400> 146

Met Gln Ser Phe Leu Val Glu Gly Arg Phe Lys His Glu Met Phe Glu
1 5 10 15

Lys Val Phe Ala Glu Glu Arg Asn Gly Gly Gln Arg Leu Leu Cys Ala
20 25 30

Thr Asp Val Pro Ile Arg Thr Val Ser Ser Ala Ala Ser Gln Gly Leu
35 40 45

His Met Gln Asn Asp Asp Ala Cys Leu Gly Ala Ala Ser Pro Ser Ala
50 55 60

Ala Ser Trp Ser Arg Arg Ser Ala Glu Ser Lys Val Ser Leu Cys Trp
65 70 75 80

Lys Leu Lys Trp Lys Glu Asp Leu Val Trp Phe Tyr Ser Gln Ser His
85 90 95

<210> 147

<211> 333

<212> PRT

<213> Homo sapiens

<400> 147

Met His Arg Tyr Phe Glu Ser Pro Arg Arg Leu Leu Pro Val His Phe
1 5 10 15

Cys Cys Cys Gln Trp Arg Gly Gly Val Asp Phe Glu Cys Leu Leu
20 25 30

Gly Gly Val Trp Asp Arg Cys Arg Lys Val Leu Arg Ala Gln Glu Cys
35 40 45

Glu Trp Pro Arg His Leu Pro Ser Ala Cys Leu Leu Ser Ser Ala Cys
50 55 60

Arg Gly Gln Pro Glu Arg Arg Ala Ala Val Val Gly Ala Gln Asp Pro
65 70 75 80

Thr Glu Pro Pro Arg Leu Ser Arg Ser Leu Ser Gly Ala Ser Pro Phe
85 90 95

Leu Gly Glu Thr Lys Gln Glu Thr Leu Thr Asn Ile Ser Ala Val Asn
100 105 110

Tyr Asp Phe Asp Glu Glu Tyr Phe Ser Asn Thr Ser Gly Leu Ala Lys
115 120 125

Asp Phe Ile Arg Arg Leu Leu Val Lys Asp Pro Lys Arg Arg Met Thr
130 135 140

Ile Ala Gln Ser Leu Glu His Ser Trp Ile Lys Ala Ile Arg Arg Arg
145 150 155 160

Asn Val Arg Gly Glu Asp Ser Gly Arg Lys Pro Glu Arg Arg Arg Leu
165 170 175

Lys Thr Thr Arg Leu Lys Glu Tyr Thr Ile Lys Ser His Ser Ser Leu
180 185 190

Pro Pro Asn Asn Ser Tyr Ala Asp Phe Glu Arg Phe Ser Lys Val Leu
195 200 205

Glu Glu Ala Ala Ala Glu Glu Gly Leu Arg Glu Leu Gln Arg Ser
210 215 220

Arg Arg Leu Cys His Glu Asp Val Glu Ala Leu Ala Ala Ile Tyr Glu
225 230 235 240

Glu Lys Glu Ala Trp Tyr Arg Glu Glu Ser Asp Ser Leu Gly Gln Asp

245

250

255

Leu Arg Arg Leu Arg Gln Glu Leu Leu Lys Thr Glu Ala Leu Lys Arg
260 265 270

Gln Ala Gln Glu Glu Ala Lys Gly Ala Leu Leu Gly Thr Ser Gly Leu
275 280 285

Lys Arg Arg Phe Ser Arg Leu Glu Asn Arg Tyr Glu Ala Leu Ala Lys
290 295 300

Gln Val Ala Ser Glu Met Arg Phe Val Gln Asp Leu Val Arg Ala Leu
305 310 315 320

Glu Gln Glu Lys Leu Gln Gly Val Glu Cys Gly Leu Arg
325 330

<210> 148

<211> 131

<212> PRT

<213> Homo sapiens

<400> 148

Met Leu Lys Glu Phe Leu Glu Ile Pro Phe Pro Thr Ser Pro Glu Cys
1 5 10 15

Thr Leu Gln Pro Lys Ser Gln Gln Pro Thr Gly Lys Glu Ala Glu Glu
20 25 30

His Pro Thr Ser Ala Pro Leu Thr His Ser Leu Leu Pro Pro Thr Pro
35 40 45

Leu Trp Val Val Ser His Phe Ile Phe Asp Phe Arg Gly Glu Thr Ala
50 55 60

Leu His Lys Ala Ala Cys Gln Arg Asn Arg Ala Val Cys Gln Leu Leu
65 70 75 80

Val Asp Ala Gly Ala Ser Leu Arg Lys Thr Asp Ser Lys Gly Lys Thr
85 90 95

Pro Gln Glu Arg Ala Gln Gln Ala Gly Asp Pro Asp Leu Ala Ala Tyr
100 105 110

Leu Glu Ser Arg Gln Asn Tyr Lys Val Ile Gly His Glu Asp Leu Glu
115 120 125

Thr Ala Val

130

<210> 149

<211> 272

<212> PRT

<213> Homo sapiens

<400> 149

Met Arg Gly Ala Ala Arg Leu Gly Arg Pro Gly Arg Ser Cys Leu Pro
1 5 10 15

Gly Pro Ala Leu Arg Ala Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu
20 25 30

Ala Leu Leu Pro Leu Leu Pro Ala Pro Gly Ala Ala Ala Ala Pro Ala
35 40 45

Pro Arg Pro Pro Glu Leu Gln Ser Ala Ser Ala Gly Pro Ser Val Ser
50 55 60

Leu Tyr Leu Ser Glu Asp Glu Val Arg Arg Leu Ile Gly Leu Asp Ala
65 70 75 80

Glu Leu Tyr Tyr Val Arg Asn Asp Leu Ile Ser His Tyr Ala Leu Ser
85 90 95

Phe Ser Leu Leu Val Pro Ser Glu Thr Asn Phe Leu His Phe Thr Trp
100 105 110

His Ala Lys Ser Lys Val Glu Tyr Lys Leu Gly Phe Gln Val Asp Asn
115 120 125

Val Leu Ala Met Asp Met Pro Gln Val Asn Ile Ser Val Gln Gly Glu
130 135 140

Val Pro Arg Thr Leu Ser Val Phe Arg Val Glu Leu Ser Cys Thr Gly
145 150 155 160

Lys Val Asp Ser Glu Val Met Ile Leu Met Gln Leu Asn Leu Thr Val
165 170 175

Asn Ser Ser Lys Asn Phe Thr Val Leu Asn Phe Lys Arg Arg Lys Met
180 185 190

Cys Tyr Lys Lys Leu Glu Glu Val Lys Thr Ser Ala Leu Asp Lys Asn
195 200 205

Thr Ser Arg Thr Ile Tyr Asp Pro Val His Ala Ala Pro Thr Thr Ser
210 215 220

Thr Arg Val Phe Tyr Ile Ser Val Gly Val Cys Cys Ala Val Ile Phe
225 230 235 240

Leu Val Ala Ile Ile Leu Ala Val Leu His Leu His Ser Met Lys Arg
245 250 255

Ile Glu Leu Asp Asp Arg Tyr Cys Thr Tyr Phe Gly Lys Glu Lys Lys
260 265 270

<210> 150
<211> 344
<212> PRT
<213> Homo sapiens

<400> 150

Met Pro Gln Val Asn Ile Ser Val Gln Gly Glu Val Pro Arg Thr Leu
1 5 10 15

Ser Val Phe Arg Val Glu Leu Ser Cys Thr Gly Lys Val Asp Ser Glu
20 25 30

Val Met Ile Leu Met Gln Leu Asn Leu Thr Val Asn Ser Ser Lys Asn
35 40 45

Phe Thr Val Leu Asn Phe Lys Arg Arg Lys Met Cys Tyr Lys Lys Leu
50 55 60

Glu Glu Val Lys Thr Ser Ala Leu Asp Lys Asn Thr Ser Arg Thr Ile
65 70 75 80

Tyr Asp Pro Val His Ala Ala Pro Thr Thr Ser Thr Arg Val Phe Tyr
85 90 95

Ile Ser Val Gly Val Cys Cys Ala Val Ile Phe Leu Val Ala Ile Ile
100 105 110

Leu Ala Val Leu His Leu His Ser Met Lys Arg Ile Glu Leu Asp Asp
115 120 125

Ser Ile Ser Ala Ser Ser Ser Gln Gly Leu Ser Gln Pro Ser Thr
130 135 140

Gln Thr Thr Gln Tyr Leu Arg Ala Asp Thr Pro Asn Asn Ala Thr Pro
145 150 155 160

Ile Thr Ser Ser Tyr Tyr Pro Thr Leu Arg Ile Glu Lys Asn Asp Leu
165 170 175

Arg Ser Val Thr Leu Leu Glu Ala Lys Gly Lys Val Lys Asp Ile Ala
180 185 190

Ile Ser Arg Glu Arg Ile Thr Leu Lys Asp Val Leu Gln Glu Gly Thr
195 200 205

Phe Gly Arg Ile Phe His Gly Ile Leu Ile Asp Glu Lys Asp Pro Asn
210 215 220

Lys Glu Lys Gln Ala Phe Val Lys Thr Val Lys Asp Gln Ala Ser Glu
225 230 235 240

Ile Gln Val Thr Met Met Leu Thr Glu Ser Cys Lys Leu Arg Gly Leu
245 250 255

His His Arg Asn Leu Leu Pro Ile Thr His Val Cys Ile Glu Glu Gly
260 265 270

Glu Lys Pro Met Val Ile Leu Pro Tyr Met Asn Trp Gly Asn Leu Lys
275 280 285

Leu Phe Leu Arg Gln Cys Lys Leu Val Glu Ala Asn Asn Pro Gln Ala

290

295

300

Ile Ser Gln Gln Asp Leu Val His Met Ala Ile Gln Ile Ala Cys Gly
305 310 315 320

Met Ser Tyr Leu Ala Arg Arg Glu Val Ile His Lys Asp Leu Ala Ala
325 330 335

Arg Asn Cys Val Gly Pro Leu Glu
340

<210> 151

<211> 141

<212> PRT

<213> Homo sapiens

<400> 151

Met Glu Ala Ile Arg Thr Asp Asn Gln Asn Phe Ala Ser Gln Leu Arg
1 5 10 15

Glu Ala Glu Ala Arg Asn Arg Asp Leu Glu Ala His Val Arg Gln Leu
20 25 30

Gln Glu Arg Met Glu Leu Leu Gln Ala Glu Gly Ala Thr Ala Val Thr
35 40 45

Gly Val Pro Ser Pro Arg Ala Thr Asp Pro Pro Ser His Leu Asp Gly
50 55 60

Pro Pro Ala Val Ala Val Gly Gln Cys Pro Leu Val Gly Pro Gly Pro
65 70 75 80

Met His Arg Arg His Leu Leu Leu Pro Ala Arg Val Pro Arg Pro Gly
85 90 95

Leu Ser Glu Ala Leu Ser Leu Leu Leu Phe Ala Val Val Leu Ser Arg
100 105 110

Ala Ala Ala Leu Gly Cys Ile Gly Leu Val Ala His Ala Gly Gln Leu
115 120 125

Thr Ala Val Trp Arg Arg Pro Gly Ala Ala Arg Ala Pro
130 135 140

<210> 152

<211> 106

<212> PRT

<213> Homo sapiens

<400> 152

Met Glu Leu Leu Gln Ala Glu Gly Ala Thr Ala Val Thr Gly Val Pro
1 5 10 15

Ser Pro Arg Ala Thr Asp Pro Pro Ser His Leu Asp Gly Pro Pro Ala
20 25 30

Val Ala Val Gly Gln Cys Pro Leu Val Gly Pro Gly Pro Met His Arg
35 40 45

Arg His Leu Leu Leu Pro Ala Arg Val Pro Arg Pro Gly Leu Ser Glu
50 55 60

Ala Leu Ser Leu Leu Leu Phe Ala Val Val Leu Ser Arg Ala Ala Ala
65 70 75 80

Leu Gly Cys Ile Gly Leu Val Ala His Ala Gly Gln Leu Thr Ala Val
85 90 95

Trp Arg Arg Pro Gly Ala Ala Arg Ala Pro
100 105

<210> 153

<211> 50

<212> PRT

<213> Homo sapiens

<400> 153

Met Val Asn Leu Ser His Glu Asp Phe Glu Phe Ile Ser Gly Thr Arg
1 5 10 15

Met Arg Lys Leu Ala Arg Glu Gly Gln Lys Pro Pro Glu Gly Phe Met
20 25 30

Ala Pro Lys Ala Trp Thr Val Leu Thr Glu Tyr Tyr Lys Ser Leu Glu
35 40 45

Lys Ala

50

<210> 154

<211> 238

<212> PRT

<213> Homo sapiens

<400> 154

Met Ala Arg Thr Thr Ser Gln Leu Tyr Asp Ala Val Pro Ile Gln Ser
1 5 10 15

Ser Val Val Leu Cys Ser Cys Pro Ser Pro Ser Met Val Arg Thr Gln
20 25 30

Thr Glu Ser Ser Thr Pro Pro Gly Ile Pro Gly Gly Ser Arg Gln Gly
35 40 45

Pro Ala Met Asp Gly Thr Ala Ala Glu Pro Arg Pro Gly Ala Gly Ser
50 55 60

Leu Gln His Ala Gln Pro Pro Pro Gln Pro Arg Lys Lys Arg Pro Glu
65 70 75 80

Asp Phe Lys Phe Gly Lys Ile Leu Gly Glu Gly Ser Phe Ser Thr Val
85 90 95

Val Leu Ala Arg Glu Leu Ala Thr Ser Arg Glu Tyr Ala Ile Lys Ile
100 105 110

Leu Glu Lys Arg His Ile Ile Lys Glu Asn Lys Val Pro Tyr Val Thr
115 120 125

Arg Glu Arg Asp Val Met Ser Arg Leu Asp His Pro Phe Phe Val Lys
130 135 140

Leu Tyr Phe Thr Phe Gln Asp Asp Glu Lys Leu Tyr Phe Gly Leu Ser
145 150 155 160

Tyr Ala Lys Asn Gly Glu Leu Leu Lys Tyr Ile Arg Lys Ile Gly Ser
165 170 175

Phe Asp Glu Thr Cys Thr Arg Phe Tyr Thr Ala Glu Ile Val Ser Ala
180 185 190

Leu Glu Tyr Leu His Gly Lys Gly Ile Ile His Arg Asp Leu Lys Pro
195 200 205

Glu Asn Ile Leu Leu Asn Glu Asp Met His Ile Gln Ile Thr Asp Phe
210 215 220

Gly Thr Ala Lys Val Leu Ser Pro Glu Ser Lys Gln Val Cys
225 230 235

<210> 155
<211> 73
<212> PRT
<213> Homo sapiens

<400> 155

Met Ser Asp Val Thr Ile Val Lys Glu Gly Trp Val Gln Lys Arg Gly
1 5 10 15

Glu Tyr Ile Lys Asn Trp Arg Pro Arg Tyr Phe Leu Leu Lys Thr Asp
20 25 30

Gly Ser Phe Ile Gly Tyr Lys Glu Lys Pro Gln Asp Val Asp Leu Pro
35 40 45

Tyr Pro Leu Asn Asn Phe Ser Val Ala Ser Ser Val Met Phe Arg Tyr
50 55 60

Leu Gln Asn Leu Thr Leu Asn Gln Val
65 70

<210> 156
<211> 213
<212> PRT
<213> Homo sapiens

<400> 156

Met Ser Asp Val Thr Ile Val Lys Glu Gly Trp Val Gln Lys Arg Gly
1 5 10 15

Glu Tyr Ile Lys Asn Trp Arg Pro Arg Tyr Phe Leu Leu Lys Thr Asp
20 25 30

Gly Ser Phe Ile Gly Tyr Lys Glu Lys Pro Gln Asp Val Asp Leu Pro
35 40 45

Tyr Pro Leu Asn Asn Phe Ser Val Ala Lys Cys Gln Leu Met Lys Thr
50 55 60

Glu Arg Pro Lys Pro Asn Thr Phe Ile Ile Arg Cys Leu Gln Trp Thr
65 70 75 80

Thr Val Ile Glu Arg Thr Phe His Val Asp Thr Pro Glu Glu Arg Glu
85 90 95

Glu Trp Thr Glu Ala Ile Gln Ala Val Ala Asp Arg Leu Gln Arg Gln
100 105 110

Glu Glu Glu Arg Met Asn Cys Ser Pro Thr Ser Gln Ile Asp Asn Ile
115 120 125

Gly Glu Glu Glu Met Asp Ala Ser Thr Thr His His Lys Arg Lys Thr
130 135 140

Met Asn Asp Phe Asp Tyr Leu Lys Leu Leu Gly Lys Gly Thr Phe Gly
145 150 155 160

Lys Val Ile Leu Val Arg Glu Lys Ala Ser Gly Lys Tyr Tyr Ala Met
165 170 175

Lys Ile Leu Lys Lys Glu Val Ile Ile Ala Lys Val Thr Asp Leu Leu
180 185 190

Lys Leu Ile Thr Lys Phe Leu Phe Ala Val Cys Met Cys Leu Trp Ala
195 200 205

His Glu Phe Thr Cys
210

<210> 157

<211> 352

<212> PRT

<213> Homo sapiens

<400> 157

Met Gly Gly Lys Pro Ala Asn Arg Met Met Pro Tyr Pro Phe Pro Ser
1 5 10 15

Gly Thr Trp Lys Val Lys Trp Val Ala Ser Arg Asn Ala Phe Lys Pro
20 25 30

Arg Ile Gly Ile Leu Ile Lys Thr Leu Ile Tyr Ser Ser Gln Phe Pro
35 40 45

Leu Gly Asn Leu Glu Lys Ile Ser Gln Leu Leu Ser Lys Ser Ala Gln
50 55 60

Cys Pro Leu Arg Val His Tyr Leu Ser Ser Gln Tyr Gly Asp Glu Arg
65 70 75 80

Cys Phe Met Phe Val Leu Ile Ser Pro Thr Lys Ser Val Ile Ile Thr
85 90 95

Ile Leu Ser Leu Leu Phe Thr Leu Gln Leu Phe Phe His Leu Ser Arg
100 105 110

Glu Arg Val Phe Ser Glu Asp Arg Thr Arg Phe Tyr Gly Ala Glu Ile
115 120 125

Val Ser Ala Leu Asp Tyr Leu His Ser Gly Lys Ile Val Tyr Arg Asp
130 135 140

Leu Lys Leu Glu Asn Leu Met Leu Asp Lys Asp Gly His Ile Lys Ile
145 150 155 160

Thr Asp Phe Gly Leu Cys Lys Glu Gly Ile Thr Asp Ala Ala Thr Met
165 170 175

Lys Thr Phe Cys Gly Thr Pro Glu Tyr Leu Ala Pro Glu Val Leu Glu
180 185 190

Asp Asn Asp Tyr Gly Arg Ala Val Asp Trp Trp Gly Leu Gly Val Val
195 200 205

Met Tyr Glu Met Met Cys Gly Arg Leu Pro Phe Tyr Asn Gln Asp His
210 215 220

Glu Lys Leu Phe Glu Leu Ile Leu Met Glu Asp Ile Lys Phe Pro Arg
225 230 235 240

Thr Leu Ser Ser Asp Ala Lys Ser Leu Leu Ser Gly Leu Leu Ile Lys
245 250 255

Asp Pro Asn Lys Arg Leu Gly Gly Pro Asp Asp Ala Lys Glu Ile
260 265 270

Met Arg His Ser Phe Phe Ser Gly Val Asn Trp Gln Asp Val Tyr Asp
275 280 285

Lys Lys Leu Val Pro Pro Phe Lys Pro Gln Val Thr Ser Glu Thr Asp
290 295 300

Thr Arg Tyr Phe Asp Glu Glu Phe Thr Ala Gln Thr Ile Thr Ile Thr
305 310 315 320

Pro Pro Glu Lys Tyr Asp Glu Asp Gly Met Asp Cys Met Asp Asn Glu
325 330 335

Arg Arg Pro His Phe Pro Gln Phe Ser Tyr Ser Ala Ser Gly Arg Glu
340 345 350

<210> 158

<211> 132

<212> PRT

<213> Homo sapiens

<400> 158

Met Glu Leu Leu Arg Thr Ile Thr Tyr Gln Pro Ala Ala Ser Thr Lys
1 5 10 15

Met Cys Glu Gln Ala Leu Gly Lys Gly Cys Gly Asn Ser Lys Lys
20 25 30

Lys Arg Pro Pro Gln Pro Pro Glu Glu Ser Gln Pro Pro Gln Ser Gln
35 40 45

Ala Gln Val Pro Pro Ala Ala Pro His His His His His Ser His
50 55 60

Ser Gly Pro Glu Ile Ser Arg Ile Ile Val Asp Pro Thr Thr Gly Lys
65 70 75 80

Arg Tyr Cys Arg Gly Lys Val Leu Gly Lys Gly Phe Ala Lys Cys
85 90 95

Tyr Glu Met Thr Asp Leu Thr Asn Asn Lys Val Tyr Ala Ala Lys Ile
100 105 110

Ile Pro His Ser Arg Val Ala Lys Pro His Gln Arg Glu Lys Val Cys
115 120 125

Met Thr Leu Glu

130

<210> 159

<211> 192

<212> PRT

<213> Homo sapiens

<400> 159

Met Glu Leu Leu Arg Thr Ile Thr Tyr Gln Pro Ala Ala Ser Thr Lys
1 5 10 15

Met Cys Glu Gln Ala Leu Gly Lys Gly Cys Gly Asn Ser Lys Lys
20 25 30

Lys Arg Pro Pro Gln Pro Pro Glu Glu Ser Gln Pro Pro Gln Ser Gln
35 40 45

Ala Gln Val Pro Pro Ala Ala Pro His His His His His Ser His
50 55 60

Ser Gly Pro Glu Ile Ser Arg Ile Ile Val Asp Pro Thr Thr Gly Lys

65 70 75 80

Arg Tyr Cys Arg Gly Lys Val Leu Gly Lys Gly Gly Phe Ala Lys Cys
85 90 95

Tyr Glu Met Thr Asp Leu Thr Asn Asn Lys Val Tyr Ala Ala Lys Ile
100 105 110

Ile Pro His Ser Arg Val Ala Lys Pro His Gln Arg Glu Lys Ile Asp
115 120 125

Lys Glu Ile Glu Leu His Arg Ile Leu His His Lys His Val Val Gln
130 135 140

Phe Tyr His Tyr Phe Glu Asp Lys Glu Asn Ile Tyr Ile Leu Leu Glu
145 150 155 160

Tyr Cys Ser Arg Arg Val Ser Val Asn Ser Tyr Leu Arg Thr Phe Ala
165 170 175

Tyr Pro Glu Leu Thr Trp Tyr Ser Lys Ser Ile Leu Ser Gly Ile Thr
180 185 190

<210> 160
<211> 207
<212> PRT
<213> Homo sapiens

<400> 160

Met Glu Leu Leu Arg Thr Ile Thr Tyr Gln Pro Ala Ala Ser Thr Lys
1 5 10 15

Met Cys Glu Gln Ala Leu Gly Lys Gly Cys Gly Gly Asn Ser Lys Lys
20 25 30

Lys Arg Pro Pro Gln Pro Pro Glu Glu Ser Gln Pro Pro Gln Ser Gln
35 40 45

Ala Gln Val Pro Pro Ala Ala Pro His His His His His Ser His
50 55 60

Ser Gly Pro Glu Ile Ser Arg Ile Ile Val Asp Pro Thr Thr Gly Lys
65 70 75 80

Arg Tyr Cys Arg Gly Lys Val Leu Gly Lys Gly Gly Phe Ala Lys Cys
85 90 95

Tyr Glu Met Thr Asp Leu Thr Asn Asn Lys Val Tyr Ala Ala Lys Ile
100 105 110

Ile Pro His Ser Arg Val Ala Lys Pro His Gln Arg Glu Lys Ile Asp
115 120 125

Lys Glu Ile Glu Leu His Arg Ile Leu His His Lys His Val Val Gln
130 135 140

Phe Tyr His Tyr Phe Glu Asp Lys Glu Asn Ile Tyr Ile Leu Leu Glu
145 150 155 160

Tyr Cys Ser Arg Arg Leu Gln Gly Ser Gln Lys Asn Asp Leu Glu Tyr
165 170 175

Val Glu Glu Asp Gly His Val Val Val Arg Lys Gln Phe Pro Cys Gly
180 185 190

Leu Leu Asp Trp Val Glu Pro Glu Gln Ala Lys Ala Tyr Ser Ser
195 200 205

<210> 161
<211> 337
<212> PRT
<213> Homo sapiens

<400> 161

Met Ser Asp Lys Asp Leu Arg Thr Ala Ala Ala Gly Gly His Leu
1 5 10 15

Val Ala Ile Leu Thr Val Phe Ile Pro Gln Lys Asp Leu Val Glu Glu
20 25 30

Glu Ala Glu Glu Ala Gly Val Ala Leu Arg Ser Thr Gln Ser Thr Leu
35 40 45

Gln Ala Gly Leu Ala Ala Asp Ala Trp Ala Ala Pro Ile Ala Met Gln
50 55 60

Ile Tyr Lys Lys His Leu Asp Pro Arg Pro Gly Pro Cys His Leu Ser
65 70 75 80

Trp Ala Trp Ala Trp Ala Ser Trp Pro Ala Ala Cys Thr Ala Gly
85 90 95

Pro Lys Gly Arg Pro Pro Met Thr Gln Val Tyr Glu Arg Leu Glu Lys
100 105 110

Leu Gln Ala Val Val Ala Gly Val Pro Gly His Leu Glu Ala Ala Ser
115 120 125

Cys Ile Pro Phe Pro Gln Glu Asn Ser Tyr Val Ser Ser Thr Gly Arg
130 135 140

Ala Ser Ala Gln Ala Ala Glu Gln Leu Gln Arg Gly Pro Asn Gln Pro
145 150 155 160

Val Glu Ser Asp Glu Ser Leu Gly Gly Leu Ser Ala Ala Leu Arg Ser
165 170 175

Trp His Leu Thr Pro Ser Cys Pro Leu Asp Pro Ala Pro Leu Arg Glu
180 185 190

Ala Gly Cys Pro Gln Gly Asp Thr Ala Gly Glu Ser Ser Trp Gly Ser
195 200 205

Gly Pro Gly Ser Arg Pro Thr Ala Val Glu Gly Leu Ala Leu Gly Ser
210 215 220

Ser Ala Ser Ser Ser Glu Pro Pro Gln Ile Ile Ile Asn Pro Ala
225 230 235 240

Arg Gln Lys Met Val Gln Lys Leu Ala Leu Tyr Glu Asp Gly Ala Leu
245 250 255

Asp Ser Leu Gln Leu Leu Ser Ser Ser Leu Pro Gly Leu Gly Leu
260 265 270

Glu Gln Asp Arg Gln Gly Pro Lys Lys Val Met Asn Phe Arg Ala Asp
275 280 285

Val Phe Thr Trp Ala Asp Pro Pro Asn Pro Glu Val Lys Val Leu Met
290 295 300

Val Arg Ser Ser His Gly Ala Arg Val Leu Ser Thr Leu Pro Ala Val
305 310 315 320

Gly Val Gly Ala His Ala Arg Trp Gly Glu Lys Glu Val Ala Leu Leu
325 330 335

Phe

<210> 162

<211> 122

<212> PRT

<213> Homo sapiens

<400> 162

Met Gly His Ala Leu Cys Val Cys Ser Arg Gly Thr Val Ile Ile Asp
1 5 10 15

Asn Lys Arg Tyr Leu Phe Ile Gln Lys Leu Gly Glu Gly Phe Ser
20 25 30

Tyr Val Asp Leu Val Glu Gly Leu His Asp Gly His Phe Tyr Ala Leu
35 40 45

Lys Arg Ile Leu Cys His Glu Gln Gln Asp Arg Glu Glu Ala Gln Arg
50 55 60

Glu Ala Asp Met His Arg Leu Phe Asn His Pro Asn Ile Leu Arg Leu
65 70 75 80

Val Ala Tyr Cys Leu Arg Glu Arg Gly Ala Lys His Glu Ala Trp Leu
85 90 95

Leu Leu Pro Phe Phe Lys Val Arg Lys Thr Pro Val Tyr Gly Gly Gly
100 105 110

Cys Ser Arg Ala Thr Tyr Ser Arg Ala Val

115

120

<210> 163
<211> 842
<212> PRT
<213> Homo sapiens

<400> 163

Met Glu Arg Ala Ile Ser Pro Gly Leu Leu Val Arg Ala Leu Leu Leu
1 5 10 15

Leu Leu Leu Leu Gly Leu Ala Ala Arg Thr Val Ala Ala Gly Arg Ala
20 25 30

Arg Gly Leu Pro Ala Pro Thr Ala Glu Ala Ala Phe Gly Leu Gly Ala
35 40 45

Ala Ala Ala Pro Thr Ser Ala Thr Arg Val Pro Ala Ala Gly Ala Val
50 55 60

Ala Ala Ala Glu Val Thr Val Glu Asp Ala Glu Ala Leu Pro Ala Ala
65 70 75 80

Ala Gly Glu Gln Glu Pro Arg Gly Pro Glu Pro Asp Asp Glu Thr Glu
85 90 95

Leu Arg Pro Arg Gly Arg Ser Leu Val Ile Ile Ser Thr Leu Asp Gly
100 105 110

Arg Ile Ala Ala Leu Asp Pro Glu Asn His Gly Lys Lys Gln Trp Asp
115 120 125

Leu Asp Val Gly Ser Gly Ser Leu Val Ser Ser Ser Leu Ser Lys Pro
130 135 140

Glu Val Phe Gly Asn Lys Met Ile Ile Pro Ser Leu Asp Gly Ala Leu
145 150 155 160

Phe Gln Trp Asp Arg Asp Arg Glu Ser Met Glu Thr Val Pro Phe Thr
165 170 175

Val Glu Ser Leu Leu Glu Ser Ser Tyr Lys Phe Gly Asp Asp Val Val
180 185 190

Leu Val Gly Gly Lys Ser Leu Thr Thr Tyr Gly Leu Ser Ala Tyr Ser
195 200 205

Gly Lys Val Arg Tyr Ile Cys Ser Ala Leu Gly Cys Arg Gln Trp Asp
210 215 220

Ser Asp Glu Met Glu Gln Glu Glu Asp Ile Leu Leu Leu Gln Arg Thr
225 230 235 240

Gln Lys Thr Val Arg Ala Val Gly Pro Arg Ser Gly Asn Glu Lys Trp
245 250 255

Asn Phe Ser Val Gly His Phe Glu Leu Arg Tyr Ile Pro Asp Met Glu
260 265 270

Thr Arg Ala Gly Phe Ile Glu Ser Thr Phe Lys Pro Asn Glu Asn Thr
275 280 285

Glu Glu Ser Lys Ile Ile Ser Asp Val Glu Glu Gln Glu Ala Ala Ile
290 295 300

Met Asp Ile Val Ile Lys Val Ser Val Ala Asp Trp Lys Val Met Ala
305 310 315 320

Phe Ser Lys Lys Gly Gly His Leu Glu Trp Glu Tyr Gln Phe Cys Thr
325 330 335

Pro Ile Ala Ser Ala Trp Leu Leu Lys Asp Gly Lys Val Ile Pro Ile
340 345 350

Ser Leu Phe Asp Asp Thr Ser Tyr Thr Ser Asn Asp Asp Val Leu Glu
355 360 365

Asp Glu Glu Asp Ile Val Glu Ala Ala Arg Gly Ala Thr Glu Asn Ser
370 375 380

Val Tyr Leu Gly Met Tyr Arg Gly Gln Leu Tyr Leu Gln Ser Ser Val
385 390 395 400

Arg Ile Ser Glu Lys Phe Pro Ser Ser Pro Lys Ala Leu Glu Ser Val
405 410 415

Thr Asn Glu Asn Ala Ile Ile Pro Leu Pro Thr Ile Lys Trp Lys Pro
420 425 430

Leu Ile His Ser Pro Ser Arg Thr Pro Val Leu Val Gly Ser Asp Glu
435 440 445

Phe Asp Lys Cys Leu Ser Asn Asp Lys Phe Ser His Glu Glu Tyr Ser
450 455 460

Asn Gly Ala Leu Ser Ile Leu Gln Tyr Pro Tyr Asp Asn Gly Tyr Tyr
465 470 475 480

Leu Pro Tyr Tyr Lys Arg Glu Arg Asn Lys Arg Ser Thr Gln Ile Thr
485 490 495

Val Arg Phe Leu Asp Asn Pro His Tyr Asn Lys Asn Ile Arg Lys Lys
500 505 510

Asp Pro Val Leu Leu His Trp Trp Lys Glu Ile Val Ala Thr Ile
515 520 525

Leu Phe Cys Ile Ile Ala Thr Thr Phe Ile Val Arg Arg Leu Phe His
530 535 540

Pro His Pro His Arg Gln Arg Lys Glu Ser Glu Thr Gln Cys Gln Thr
545 550 555 560

Glu Asn Lys Tyr Asp Ser Val Ser Gly Glu Ala Asn Asp Ser Ser Trp
565 570 575

Asn Asp Ile Lys Asn Ser Gly Tyr Ile Ser Arg Tyr Leu Thr Asp Phe
580 585 590

Glu Pro Ile Gln Cys Leu Gly Arg Gly Phe Gly Val Val Phe Glu
595 600 605

Ala Lys Asn Lys Val Asp Asp Cys Asn Tyr Ala Ile Lys Arg Ile Arg
610 615 620

Leu Pro Asn Arg Glu Leu Ala Arg Glu Lys Val Met Arg Glu Val Lys
625 630 635 640

Ala Leu Ala Lys Leu Glu His Pro Gly Ile Val Arg Tyr Phe Asn Ala
645 650 655

Trp Leu Glu Ala Pro Pro Glu Lys Trp Gln Glu Lys Met Asp Glu Ile
660 665 670

Trp Leu Lys Asp Glu Ser Thr Asp Trp Pro Leu Ser Ser Pro Ser Pro
675 680 685

Met Asp Ala Pro Ser Val Lys Ile Arg Arg Met Asp Pro Phe Ser Thr
690 695 700

Lys Glu His Ile Glu Ile Ile Ala Pro Ser Pro Gln Arg Ser Arg Ser
705 710 715 720

Phe Ser Val Gly Ile Ser Cys Asp Gln Thr Ser Ser Ser Glu Ser Gln
725 730 735

Phe Ser Pro Leu Glu Phe Ser Gly Met Asp His Glu Asp Ile Ser Glu
740 745 750

Ser Val Asp Ala Ala Tyr Asn Leu Gln Asp Ser Cys Leu Thr Asp Cys
755 760 765

Asp Val Glu Asp Gly Thr Met Asp Gly Asn Asp Glu Gly His Ser Phe
770 775 780

Glu Leu Cys Pro Ser Glu Ala Ser Pro Tyr Val Arg Ser Arg Glu Arg
785 790 795 800

Thr Ser Ser Ser Ile Val Phe Glu Asp Ser Gly Cys Asp Asn Ala Ser
805 810 815

Ser Lys Glu Glu Pro Lys Thr Asn Arg Leu His Ile Gly Asn His Cys
820 825 830

Ala Asn Lys Leu Thr Val Thr Val Leu Phe
835 840

<210> 164
<211> 743
<212> PRT

<213> Homo sapiens

<400> 164

Met Gly Ser Arg Ala Gln Lys Ser Ala Gly Asn Ala Glu Leu Trp Glu
1 5 10 15

Pro Leu Pro Glu Gly Arg Pro Arg Pro Ala Gly Thr Ser Ser Ala Val
20 25 30

Ser Ala Trp Ala Ser Leu Lys Leu Cys Leu Arg Gly Gly Ser Gly Arg
35 40 45

Arg Gln Arg Leu Gly Gly Arg Met Gln Pro Glu Glu Gly His Arg
50 55 60

Leu Ala Ala Gly Ala Ala Val Arg Gly Ala Ala Ala Thr Val Leu Leu
65 70 75 80

Arg Leu Arg Asp Asp Leu Asn Val Thr Arg Leu Ser His Phe Glu Tyr
85 90 95

Val Lys Asn Glu Asp Leu Glu Lys Ile Gly Met Gly Arg Pro Gly Gln
100 105 110

Arg Arg Leu Trp Glu Ala Val Lys Arg Arg Lys Ala Leu Cys Lys Arg
115 120 125

Lys Ser Trp Met Asn Lys Val Phe Ser Gly Lys Arg Leu Glu Ala Glu
130 135 140

Phe Pro Pro His His Ser Gln Ser Thr Phe Arg Lys Thr Ser Pro Ala
145 150 155 160

Pro Gly Gly Pro Ala Gly Glu Gly Pro Leu Gln Ser Leu Thr Cys Leu
165 170 175

Ile Gly Glu Lys Asp Leu Arg Leu Leu Glu Lys Leu Gly Asp Gly Ser
180 185 190

Phe Gly Val Val Arg Arg Gly Glu Trp Asp Ala Pro Ser Gly Lys Thr
195 200 205

Val Ser Pro Pro Gln Pro Ala Phe Phe Thr Gln Lys Pro Thr Tyr Asp
210 215 220

Pro Val Ser Glu Asp Gln Asp Pro Leu Ser Ser Asp Phe Lys Arg Leu
225 230 235 240

Gly Leu Arg Lys Pro Gly Leu Pro Arg Gly Leu Trp Leu Ala Lys Pro
245 250 255

Ser Ala Arg Val Pro Gly Thr Lys Ala Ser Arg Gly Ser Gly Ala Glu
260 265 270

Val Thr Leu Ile Asp Phe Gly Glu Glu Pro Val Val Pro Ala Leu Arg
275 280 285

Pro Cys Ala Pro Ser Leu Ala Gln Leu Ala Met Asp Ala Cys Ser Leu
290 295 300

Leu Asp Glu Thr Pro Pro Gln Ser Pro Thr Arg Ala Leu Pro Arg Pro
305 310 315 320

Leu His Pro Thr Pro Val Val Asp Trp Asp Ala Arg Pro Leu Pro Pro
325 330 335

Pro Pro Ala Tyr Asp Asp Val Ala Gln Asp Glu Asp Asp Phe Glu Ile
340 345 350

Cys Ser Ile Asn Ser Thr Leu Val Gly Ala Gly Val Pro Ala Gly Pro
355 360 365

Ser Gln Gly Gln Thr Asn Tyr Ala Phe Val Pro Glu Gln Ala Arg Pro
370 375 380

Pro Pro Pro Leu Glu Asp Asn Leu Phe Leu Pro Pro Gln Gly Gly
385 390 395 400

Lys Pro Pro Ser Ser Ala Gln Thr Ala Glu Ile Phe Gln Ala Leu Gln
405 410 415

Gln Glu Cys Met Arg Gln Leu Gln Ala Pro Ala Gly Ser Pro Ala Pro
420 425 430

Ser Pro Ser Pro Gly Gly Asp Asp Lys Pro Gln Val Pro Pro Arg Val
435 440 445

Pro Ile Pro Pro Arg Pro Thr Arg Pro His Val Gln Leu Ser Pro Ala
450 455 460

Pro Pro Gly Glu Glu Glu Thr Ser Gln Trp Pro Gly Pro Ala Ser Pro
465 470 475 480

Pro Arg Val Pro Pro Arg Glu Pro Leu Ser Pro Gln Gly Ser Arg Thr
485 490 495

Pro Ser Pro Leu Val Pro Pro Gly Ser Ser Pro Leu Pro Pro Arg Leu
500 505 510

Ser Ser Ser Pro Gly Lys Thr Met Pro Thr Thr Gln Ser Phe Ala Ser
515 520 525

Asp Pro Lys Tyr Ala Thr Pro Gln Val Ile Gln Ala Pro Gly Pro Arg
530 535 540

Ala Gly Pro Cys Ile Leu Pro Ile Val Arg Asp Gly Lys Lys Val Ser
545 550 555 560

Ser Thr His Tyr Tyr Leu Leu Pro Glu Arg Pro Ser Tyr Leu Glu Arg
565 570 575

Tyr Gln Arg Phe Leu Arg Glu Ala Gln Ser Pro Glu Glu Pro Thr Pro
580 585 590

Leu Pro Val Pro Leu Leu Pro Pro Pro Ser Thr Pro Ala Pro Ala
595 600 605

Ala Pro Thr Ala Thr Val Arg Pro Met Pro Gln Ala Ala Leu Asp Pro
610 615 620 640

Lys Ala Asn Phe Ser Thr Asn Asn Ser Asn Pro Gly Ala Arg Pro Pro
625 630 635 640

Pro Pro Arg Ala Thr Ala Arg Leu Pro Gln Arg Gly Cys Pro Gly Asp
645 650 655

Gly Pro Glu Ala Gly Arg Pro Ala Asp Lys Ile Gln Met Ala Met Val
660 665 670

His Gly Val Thr Thr Glu Glu Cys Gln Ala Ala Leu Gln Cys His Gly
675 680 685

Trp Ser Val Gln Arg Ala Cys Pro Val Ser Glu Gly Gly Ala Ala Leu
690 695 700

Arg Ala Gly Ser Ala Ala Gln Arg Glu Cys His Lys Val Leu Glu Met
705 710 715 720

Phe Asp Trp Asn Leu Glu Gln Ala Gly Cys His Leu Leu Gly Ser Trp
725 730 735

Gly Pro Ala His His Lys Arg
740

<210> 165
<211> 604
<212> PRT
<213> Homo sapiens

<400> 165

Met Ala Ser Asn Pro Glu Arg Gly Glu Ile Leu Leu Thr Glu Leu Gln
1 5 10 15

Gly Asp Ser Arg Ser Leu Pro Phe Ser Glu Asn Val Ser Ala Val Gln
20 25 30

Lys Leu Asp Phe Ser Asp Thr Met Val Gln Gln Lys Leu Asp Asp Ile
35 40 45

Lys Asp Arg Ile Lys Arg Glu Ile Arg Lys Glu Leu Lys Ile Lys Glu
50 55 60

Gly Ala Glu Asn Leu Arg Lys Val Thr Thr Asp Lys Lys Ser Leu Ala
65 70 75 80

Tyr Val Asp Asn Ile Leu Lys Lys Ser Asn Lys Lys Leu Glu Glu Leu
85 90 95

His His Lys Leu Gln Glu Leu Asn Ala His Ile Val Val Ser Asp Pro

100 105 110

Glu Asp Ile Thr Asp Cys Pro Arg Thr Pro Asp Thr Pro Asn Asn Asp
115 120 125

Pro Arg Cys Ser Thr Ser Asn Asn Arg Leu Lys Ala Leu Gln Lys Gln
130 135 140

Leu Asp Ile Glu Leu Lys Val Lys Gln Gly Ala Glu Asn Met Ile Gln
145 150 155 160

Met Tyr Ser Asn Gly Ser Ser Lys Asp Arg Lys Leu His Gly Thr Ala
165 170 175

Gln Gln Leu Leu Gln Asp Ser Lys Thr Lys Ile Glu Val Ile Arg Met
180 185 190

Gln Ile Leu Gln Ala Val Gln Thr Asn Glu Leu Ala Phe Asp Asn Ala
195 200 205

Lys Pro Val Ile Ser Pro Leu Glu Leu Arg Met Glu Glu Leu Arg His
210 215 220

His Phe Arg Ile Glu Phe Ala Val Ala Glu Gly Ala Lys Asn Val Met
225 230 235 240

Lys Leu Leu Gly Ser Gly Lys Val Thr Asp Arg Lys Ala Leu Ser Glu
245 250 255

Ala Gln Ala Arg Phe Asn Glu Ser Ser Gln Lys Leu Asp Leu Leu Lys
260 265 270

Tyr Ser Leu Glu Gln Arg Leu Asn Glu Val Pro Lys Asn His Pro Lys
275 280 285

Ser Arg Ile Ile Ile Glu Glu Leu Ser Leu Val Ala Ala Ser Pro Thr
290 295 300

Leu Ser Pro Arg Gln Ser Met Ile Ser Thr Gln Asn Gln Tyr Ser Thr
305 310 315 320

Leu Ser Lys Pro Ala Ala Leu Thr Gly Thr Leu Glu Val Arg Leu Met
325 330 335

Gly Cys Gln Asp Ile Leu Glu Asn Val Pro Gly Arg Ser Lys Ala Thr
340 345 350

Ser Val Ala Leu Pro Gly Trp Ser Pro Ser Glu Thr Arg Ser Ser Phe
355 360 365

Met Ser Arg Thr Ser Lys Ser Lys Ser Gly Ser Ser Arg Asn Leu Leu
370 375 380

Lys Thr Asp Asp Leu Ser Asn Asp Val Cys Ala Val Leu Lys Leu Asp
385 390 395 400

Asn Thr Val Val Gly Gln Thr Ser Trp Lys Pro Ile Ser Asn Gln Ser

405

410

415

Trp Asp Gln Lys Phe Thr Leu Glu Leu Asp Arg Ser Arg Glu Leu Glu
420 425 430

Ile Ser Val Tyr Trp Arg Asp Trp Arg Ser Leu Cys Ala Val Lys Phe
435 440 445

Leu Arg Leu Glu Asp Phe Leu Asp Asn Gln Arg His Gly Met Cys Leu
450 455 460

Tyr Leu Glu Pro Gln Gly Thr Leu Phe Ala Glu Val Thr Phe Phe Asn
465 470 475 480

Pro Val Ile Glu Arg Arg Pro Lys Leu Gln Arg Gln Lys Lys Ile Phe
485 490 495

Ser Lys Gln Gln Gly Lys Thr Phe Leu Arg Ala Pro Gln Met Asn Ile
500 505 510

Asn Ile Ala Thr Trp Gly Arg Leu Val Arg Arg Ala Ile Pro Thr Val
515 520 525

Asn His Ser Gly Thr Phe Ser Pro Gln Ala Pro Val Pro Thr Thr Val
530 535 540

Pro Val Val Asp Val Arg Ile Pro Gln Leu Ala Pro Pro Ala Arg Tyr
545 550 555 560

Val Ser Glu Ile Leu Ser Ile Ser Tyr Thr Lys Leu Leu Gly His Ser
565 570 575

Tyr Val Leu Ile Ile Ala Gly Val Leu Ser Leu Ala Phe Phe Pro Ser
580 585 590

Ser Ile Leu Lys Val Val Phe Cys Leu Leu Lys Lys
595 600

<210> 166

<211> 613

<212> PRT

<213> Homo sapiens

<400> 166

Met Ala Ser Asn Pro Glu Arg Gly Glu Ile Leu Leu Thr Glu Leu Gln
1 5 10 15

Gly Asp Ser Arg Ser Leu Pro Phe Ser Glu Asn Val Ser Ala Val Gln
20 25 30

Lys Leu Asp Phe Ser Asp Thr Met Val Gln Gln Lys Leu Asp Asp Ile
35 40 45

Lys Asp Arg Ile Lys Arg Glu Ile Arg Lys Glu Leu Lys Ile Lys Glu
50 55 60

Gly Ala Glu Asn Leu Arg Lys Val Thr Thr Asp Lys Lys Ser Leu Ala
65 70 75 80

Tyr Val Asp Asn Ile Leu Lys Lys Ser Asn Lys Lys Leu Glu Glu Leu
85 90 95

His His Lys Leu Gln Glu Leu Asn Ala His Ile Val Val Ser Asp Pro
100 105 110

Glu Asp Ile Thr Asp Cys Pro Arg Thr Pro Asp Thr Pro Asn Asn Asp
115 120 125

Pro Arg Cys Ser Thr Ser Asn Asn Arg Leu Lys Ala Leu Gln Lys Gln
130 135 140

Leu Asp Ile Glu Leu Lys Val Lys Gln Gly Ala Glu Asn Met Ile Gln
145 150 155 160

Met Tyr Ser Asn Gly Ser Ser Lys Asp Arg Lys Leu His Gly Thr Ala
165 170 175

Gln Gln Leu Leu Gln Asp Ser Lys Thr Lys Ile Glu Val Ile Arg Met
180 185 190

Gln Ile Leu Gln Ala Val Gln Thr Asn Glu Leu Ala Phe Asp Asn Ala
195 200 205

Lys Pro Val Ile Ser Pro Leu Glu Leu Arg Met Glu Glu Leu Arg His
210 215 220

His Phe Arg Ile Glu Phe Ala Val Ala Glu Gly Ala Lys Asn Val Met
225 230 235 240

Lys Leu Leu Gly Ser Gly Lys Val Thr Asp Arg Lys Ala Leu Ser Glu
245 250 255

Ala Gln Ala Arg Phe Asn Glu Ser Ser Gln Lys Leu Asp Leu Leu Lys
260 265 270

Tyr Ser Leu Glu Gln Arg Leu Asn Glu Val Pro Lys Asn His Pro Lys
275 280 285

Ser Arg Ile Ile Ile Glu Glu Leu Ser Leu Val Ala Ala Ser Pro Thr
290 295 300

Leu Ser Pro Arg Gln Ser Met Ile Ser Thr Gln Asn Gln Tyr Ser Thr
305 310 315 320

Leu Ser Lys Pro Ala Ala Leu Thr Gly Thr Leu Glu Val Arg Leu Met
325 330 335

Gly Cys Gln Asp Ile Leu Glu Asn Val Pro Gly Arg Ser Lys Ala Thr
340 345 350

Ser Val Ala Leu Pro Gly Trp Ser Pro Ser Glu Thr Arg Ser Ser Phe
355 360 365

Met Ser Arg Thr Ser Lys Ser Lys Ser Gly Ser Ser Arg Asn Leu Leu
370 375 380

Lys Thr Asp Asp Leu Ser Asn Asp Val Cys Ala Val Leu Lys Leu Asp
385 390 395 400

Asn Thr Val Val Gly Gln Thr Ser Trp Lys Pro Ile Ser Asn Gln Ser
405 410 415

Trp Asp Gln Lys Phe Thr Leu Glu Leu Asp Arg Ser Arg Glu Leu Glu
420 425 430

Ile Ser Val Tyr Trp Arg Asp Trp Arg Ser Leu Cys Ala Val Lys Phe
435 440 445

Leu Arg Leu Glu Asp Phe Leu Asp Asn Gln Arg His Gly Met Cys Leu
450 455 460

Tyr Leu Glu Pro Gln Gly Thr Leu Phe Ala Glu Val Thr Phe Phe Asn
465 470 475 480

Pro Val Ile Glu Arg Arg Pro Lys Leu Gln Arg Gln Lys Ile Phe
485 490 495

Ser Lys Gln Gln Gly Lys Thr Phe Leu Arg Ala Pro Gln Met Asn Ile
500 505 510

Asn Ile Ala Thr Trp Gly Arg Leu Val Arg Arg Ala Ile Pro Thr Val
515 520 525

Asn His Ser Gly Thr Phe Ser Pro Gln Ala Pro Val Pro Thr Thr Val
530 535 540

Pro Val Val Asp Val Arg Ile Pro Gln Leu Ala Pro Pro Ala Ser Asp
545 550 555 560

Ser Thr Val Thr Lys Leu Asp Phe Asp Leu Glu Pro Glu Pro Pro Pro
565 570 575

Ala Pro Pro Arg Ala Ser Ser Leu Gly Glu Ile Asp Glu Ser Ser Glu
580 585 590

Leu Arg Val Leu Asp Ile Pro Gly Gln Ala Ser His Phe Lys Pro Cys
595 600 605

Ile Ile Pro Leu His
610

<210> 167
<211> 133
<212> PRT
<213> Homo sapiens

<400> 167

Met Val Ser Ser Gln Lys Leu Glu Lys Pro Ile Glu Met Gly Ser Ser
1 5 10 15

Glu Pro Leu Pro Ile Ala Asp Gly Asp Arg Arg Arg Lys Lys Lys Arg
20 25 30

Arg Gly Arg Ala Thr Asp Ser Leu Pro Gly Lys Phe Glu Asp Met Tyr
35 40 45

Lys Leu Thr Ser Glu Leu Leu Gly Glu Gly Ala Tyr Ala Lys Val Gln
50 55 60

Gly Ala Val Ser Leu Gln Asn Gly Lys Glu Tyr Ala Val Lys Ile Ile
65 70 75 80

Glu Lys Gln Ala Gly His Ser Arg Ser Arg Val Phe Arg Glu Val Glu
85 90 95

Thr Leu Tyr Gln Cys Gln Gly Asn Lys Asn Ile Leu Glu Leu Ile Glu
100 105 110

Phe Phe Glu Asp Asp Thr Arg Phe Tyr Leu Val Phe Glu Lys Leu Gln
115 120 125

Gly Gly Thr Tyr Arg
130

<210> 168

<211> 153

<212> PRT

<213> Homo sapiens

<400> 168

Met Leu Gln Val Gly Val Leu Arg Asp Arg Ser Pro Ala Gly Ala Ser
1 5 10 15

Glu Gly Phe His Val Arg Gly Arg Trp Arg Thr Glu Asp Cys His Leu
20 25 30

Arg Thr Lys Ala Ile Glu Thr Leu Arg Val Ala Gly Arg His Gln Leu
35 40 45

Pro Asp Arg Ser Phe Ile Ser Phe Gly Ile Ser Ser Leu Gln Met Val
50 55 60

Ser Ser Gln Lys Leu Glu Lys Pro Ile Glu Met Gly Ser Ser Glu Pro
65 70 75 80

Leu Pro Ile Ala Asp Gly Asp Arg Arg Lys Lys Lys Arg Arg Gly
85 90 95

Arg Ala Thr Asp Ser Leu Pro Gly Lys Phe Glu Asp Met Tyr Lys Leu
100 105 110

Thr Ser Glu Leu Leu Gly Glu Gly Ala Tyr Ala Lys Val Gln Gly Ala
115 120 125

Val Ser Leu Gln Asn Gly Lys Glu Tyr Ala Val Lys Val Ser Val Ser

130

135

140

Ala Glu Cys Gln Ala Leu Leu Cys Lys
145 150

<210> 169

<211> 231

<212> PRT

<213> Homo sapiens

<400> 169

Met Gly Ser Gly Met Lys Leu Asn Asn Ser Cys Thr Pro Ile Thr Thr
1 5 10 15

Pro Glu Leu Thr Thr Pro Cys Gly Ser Ala Glu Tyr Met Ala Pro Glu
20 25 30

Val Val Glu Val Phe Thr Asp Gln Ala Thr Phe Tyr Asp Lys Arg Cys
35 40 45

Asp Leu Trp Ser Leu Gly Val Val Leu Tyr Ile Met Leu Ser Gly Tyr
50 55 60

Pro Pro Phe Val Gly His Cys Gly Ala Asp Cys Gly Trp Asp Arg Gly
65 70 75 80

Glu Val Cys Arg Val Cys Gln Asn Lys Leu Phe Glu Ser Ile Gln Glu
85 90 95

Gly Lys Tyr Glu Phe Pro Asp Lys Asp Trp Ala His Ile Ser Ser Glu
100 105 110

Ala Lys Asp Leu Ile Ser Lys Leu Leu Val Arg Asp Ala Lys Gln Arg
115 120 125

Leu Ser Ala Ala Gln Val Leu Gln His Pro Trp Val Gln Gly Gln Ala
130 135 140

Pro Glu Lys Gly Leu Pro Thr Pro Gln Val Leu Gln Arg Asn Ser Ser
145 150 155 160

Thr Met Asp Leu Thr Leu Phe Ala Ala Glu Ala Ile Ala Leu Asn Arg
165 170 175

Gln Leu Ser Gln His Glu Glu Asn Glu Leu Ala Glu Glu Pro Glu Ala
180 185 190

Leu Ala Asp Gly Leu Cys Ser Met Lys Leu Ser Pro Pro Cys Lys Ser
195 200 205

Arg Leu Ala Arg Arg Ala Leu Ala Gln Ala Gly Arg Gly Glu Asp
210 215 220

Arg Ser Pro Pro Thr Ala Leu
225 230

<210> 170
<211> 146
<212> PRT
<213> Homo sapiens

<400> 170

Met Arg Lys Gly Val Leu Lys Asp Pro Glu Ile Ala Asp Leu Phe Tyr
1 5 10 15

Lys Asp Asp Pro Glu Glu Leu Phe Ile Gly Leu His Glu Ile Gly His
20 25 30

Gly Ser Phe Gly Ala Val Tyr Phe Ala Thr Asn Ala His Thr Ser Glu
35 40 45

Val Val Ala Ile Lys Lys Met Ser Tyr Ser Gly Lys Gln Thr His Glu
50 55 60

Lys Trp Gln Asp Ile Leu Lys Glu Val Lys Phe Leu Arg Gln Leu Lys
65 70 75 80

His Pro Asn Thr Ile Glu Tyr Lys Gly Cys Tyr Leu Lys Glu His Thr
85 90 95

Ala Trp Leu Val Met Glu Tyr Cys Leu Gly Ser Ala Ser Asp Leu Leu
100 105 110

Glu Val His Lys Lys Pro Leu Gln Glu Val Glu Ile Ala Ala Ile Thr
115 120 125

His Gly Ala Leu His Gly Leu Ala Tyr Leu His Ser His Ala Leu Ile
130 135 140

His Arg

145

<210> 171

<211> 123

<212> PRT

<213> Homo sapiens

<400> 171

Met Met Glu Glu Leu His Ser Leu Asp Pro Arg Arg Gln Glu Leu Leu
1 5 10 15

Glu Ala Arg Phe Thr Gly Val Gly Val Ser Lys Gly Pro Leu Asn Ser
20 25 30

Glu Ser Ser Asn Gln Ser Leu Cys Ser Val Gly Ser Leu Ser Asp Lys
35 40 45

Glu Val Glu Thr Pro Glu Lys Lys Gln Asn Asp Gln Arg Asn Arg Lys
50 55 60

Arg Lys Ala Glu Pro Tyr Glu Thr Ser Gln Gly Lys Gly Thr Pro Arg

65 70 75 80

Gly His Lys Ile Ser Asp Tyr Phe Glu Thr Ala Pro Leu Trp Phe Arg
85 90 95

Trp Gln Cys Cys Lys Gly Gly Asn Arg Gly Ala Val Cys Ser Ala Asn
100 105 110

Pro His Val Ser Asp Ala Ser Lys Thr Ser Ala
115 120

<210> 172
<211> 478
<212> PRT
<213> Homo sapiens

<400> 172

Met Val Gly Ile Lys Glu Arg Pro Ser Ser Asn Leu Pro Cys Pro Pro
1 5 10 15

Leu Pro Pro Gln Thr Gln Ala Cys Pro Pro Leu Ser Trp Pro Gln Arg
20 25 30

Leu Asp Ile Leu Leu Gly Thr Ala Arg Ala Ile Gln Phe Leu His Gln
35 40 45

Asp Ser Pro Ser Leu Ile His Gly Asp Ile Lys Ser Ser Asn Val Leu
50 55 60

Leu Asp Glu Arg Leu Thr Pro Lys Leu Gly Asp Phe Gly Leu Ala Arg
65 70 75 80

Phe Ser Arg Phe Ala Gly Ser Ser Pro Ser Gln Ser Ser Met Val Ala
85 90 95

Arg Thr Gln Thr Val Arg Gly Thr Leu Ala Tyr Leu Pro Glu Glu Tyr
100 105 110

Ile Lys Thr Gly Arg Leu Ala Val Asp Thr Asp Thr Phe Ser Phe Gly
115 120 125

Val Val Val Leu Glu Thr Leu Ala Gly Gln Arg Ala Val Lys Thr His
130 135 140

Gly Ala Arg Thr Lys Tyr Leu Lys Asp Leu Val Glu Glu Ala Glu
145 150 155 160

Glu Ala Gly Val Ala Leu Arg Ser Thr Gln Ser Thr Leu Gln Ala Gly
165 170 175

Leu Ala Ala Asp Ala Trp Ala Ala Pro Ile Ala Met Gln Ile Tyr Lys
180 185 190

Lys His Leu Asp Pro Arg Pro Gly Pro Cys His Leu Ser Trp Ala Trp
195 200 205

Ala Trp Ala Ser Trp Pro Ala Ala Ala Cys Thr Ala Gly Pro Lys Gly
210 215 220

Arg Pro Pro Met Thr Gln Val Tyr Glu Arg Leu Glu Lys Leu Gln Ala
225 230 235 240

val Val Ala Gly Val Pro Gly His Leu Glu Ala Ala Ser Cys Ile Pro
245 250 255

Phe Pro Gln Glu Asn Ser Tyr Val Ser Ser Thr Gly Arg Ala His Ser
260 265 270

Gly Ala Ala Pro Trp Gln Pro Leu Ala Ala Pro Ser Gly Ala Ser Ala
275 280 285

Gln Ala Ala Glu Gln Leu Gln Arg Gly Pro Asn Gln Pro Val Glu Ser
290 295 300

Asp Glu Ser Leu Gly Gly Leu Ser Ala Ala Leu Arg Ser Trp His Leu
305 310 315 320

Thr Pro Ser Cys Pro Leu Asp Pro Ala Pro Leu Arg Glu Ala Gly Cys
325 330 335

Pro Gln Gly Asp Thr Ala Gly Glu Ser Ser Trp Gly Ser Gly Pro Gly
340 345 350

Ser Arg Pro Thr Ala Val Glu Gly Leu Ala Leu Gly Ser Ser Ala Ser
355 360 365

Ser Ser Ser Glu Pro Pro Gln Ile Ile Ile Asn Pro Ala Arg Gln Lys
370 375 380

Met Val Gln Lys Leu Ala Leu Tyr Glu Asp Gly Ala Leu Asp Ser Leu
385 390 395 400

Gln Leu Leu Ser Ser Ser Ser Leu Pro Gly Leu Gly Leu Glu Gln Asp
405 410 415

Arg Gln Gly Pro Lys Lys Val Met Asn Phe Arg Ala Asp Val Phe Thr
420 425 430

Trp Ala Asp Pro Pro Asn Pro Glu Val Lys Val Leu Met Val Arg Ser
435 440 445

Ser His Gly Ala Arg Val Leu Ser Thr Leu Pro Ala Val Gly Val Gly
450 455 460

Ala His Ala Arg Trp Gly Glu Lys Glu Val Ala Leu Leu Phe
465 470 475

<210> 173
<211> 344
<212> PRT
<213> Homo sapiens

<400> 173

Met Ala Gly Gly Pro Gly Pro Gly Glu Pro Ala Ala Pro Gly Ala Gln
1 5 10 15

His Phe Leu Tyr Glu Val Pro Pro Trp Val Met Cys Arg Phe Tyr Lys
20 25 30

Val Met Asp Ala Leu Glu Pro Ala Asp Trp Cys Gln Phe Ala Ala Leu
35 40 45

Ile Val Arg Asp Gln Thr Glu Leu Arg Leu Cys Glu Arg Ser Gly Gln
50 55 60

Arg Thr Ala Ser Val Leu Trp Pro Trp Ile Asn Arg Asn Ala Arg Val
65 70 75 80

Ala Asp Leu Val His Ile Leu Thr His Leu Gln Leu Leu Arg Ala Arg
85 90 95

Asp Ile Ile Thr Ala Trp His Pro Pro Ala Pro Leu Pro Ser Pro Gly
100 105 110

Thr Thr Ala Pro Arg Pro Ser Ser Ile Pro Ala Pro Ala Glu Ala Glu
115 120 125

Ala Trp Ser Pro Arg Lys Leu Pro Ser Ser Ala Ser Thr Phe Leu Ser
130 135 140

Pro Ala Phe Pro Gly Ser Gln Thr His Ser Gly Pro Glu Leu Gly Leu
145 150 155 160

Val Pro Ser Pro Ala Ser Leu Trp Pro Pro Pro Ser Pro Ala Pro
165 170 175

Ser Ser Thr Lys Pro Gly Pro Glu Ser Ser Val Ser Leu Leu Gln Gly
180 185 190

Ala Arg Pro Ser Pro Phe Cys Trp Pro Leu Cys Glu Ile Ser Arg Gly
195 200 205

Thr His Asn Phe Ser Glu Glu Leu Lys Ile Gly Glu Gly Gly Phe Gly
210 215 220

Cys Val Tyr Arg Ala Val Met Arg Asn Thr Val Tyr Ala Val Lys Arg
225 230 235 240

Leu Lys Glu Asn Ala Asp Leu Glu Trp Thr Ala Val Lys Gln Ser Phe
245 250 255

Leu Thr Glu Val Glu Gln Leu Ser Arg Phe Arg His Pro Asn Ile Val
260 265 270

Asp Phe Ala Gly Tyr Cys Ala Gln Asn Gly Phe Tyr Cys Leu Val Tyr
275 280 285

Gly Phe Leu Pro Asn Gly Ser Leu Glu Asp Arg Leu His Cys Gln Thr
290 295 300

Gln Ala Cys Pro Pro Leu Ser Trp Pro Gln Arg Leu Asp Ile Leu Leu
305 310 315 320

Gly Thr Ala Arg Ala Ser Gln Val Ser Cys Asn Arg Val Ser Ser Cys
325 330 335

Val Ser Lys Ser Ser Pro Gly Leu
340

<210> 174
<211> 336
<212> PRT
<213> Homo sapiens

<400> 174

Met Phe Thr Glu Glu Asp Val Lys Phe Tyr Leu Ala Glu Leu Ala Leu
1 5 10 15

Ala Leu Asp His Leu His Ser Leu Gly Ile Ile Tyr Arg Asp Leu Lys
20 25 30

Pro Glu Asn Ile Leu Leu Asp Glu Glu Gly His Ile Lys Leu Thr Asp
35 40 45

Phe Gly Leu Ser Lys Glu Ser Ile Asp His Glu Lys Lys Ala Tyr Ser
50 55 60

Phe Cys Gly Thr Val Glu Tyr Met Ala Pro Glu Val Val Asn Arg Arg
65 70 75 80

Gly His Thr Gln Ser Ala Asp Trp Trp Ser Phe Gly Val Leu Met Phe
85 90 95

Glu Met Leu Thr Gly Thr Leu Pro Phe Gln Gly Lys Asp Arg Lys Glu
100 105 110

Thr Met Thr Met Ile Leu Lys Ala Lys Leu Gly Met Pro Gln Phe Leu
115 120 125

Ser Pro Glu Ala Gln Ser Leu Leu Arg Met Leu Phe Lys Arg Asn Pro
130 135 140

Ala Asn Arg Leu Gly Ala Gly Pro Asp Gly Val Glu Glu Ile Lys Arg
145 150 155 160

His Ser Phe Phe Ser Thr Ile Asp Trp Asn Lys Leu Tyr Arg Arg Glu
165 170 175

Ile His Pro Pro Phe Lys Pro Ala Thr Gly Arg Pro Glu Asp Thr Phe
180 185 190

Tyr Phe Asp Pro Glu Phe Thr Ala Lys Thr Pro Lys Asp Ser Pro Gly
195 200 205

Ile Pro Pro Ser Ala Asn Ala His Gln Leu Phe Arg Gly Phe Ser Phe

210

215

220

Val Ala Ile Thr Ser Asp Asp Glu Ser Gln Ala Met Gln Thr Val Gly
225 230 235 240

Val His Ser Ile Val Gln Gln Leu His Arg Asn Ser Ile Gln Phe Thr
245 250 255

Asp Gly Tyr Glu Val Lys Glu Asp Ile Gly Val Gly Ser Tyr Ser Val
260 265 270

Cys Lys Arg Cys Ile His Lys Ala Thr Asn Met Glu Phe Ala Val Lys
275 280 285

Val Asn Phe Phe Tyr Leu Lys Cys Asn Ser Tyr Ser Ser Cys Ser Cys
290 295 300

Met Ser Val Pro Val Lys Asn Tyr Thr Pro Leu Val Val Lys Ser Ala
305 310 315 320

Phe Cys Tyr Lys Lys Val Lys Tyr Leu Ala Ser Asp Leu Gln Arg Ser
325 330 335

<210> 175

<211> 198

<212> PRT

<213> Homo sapiens

<400> 175

Met Pro Leu Ala Gln Leu Ala Asp Pro Trp Gln Lys Met Ala Val Glu
1 5 10 15

Ser Pro Ser Asp Ser Ala Glu Asn Gly Gln Gln Ile Met Asp Glu Pro
20 25 30

Met Gly Glu Glu Glu Ile Asn Pro Gln Thr Glu Glu Val Ser Ile Lys
35 40 45

Glu Ile Ala Ile Thr His His Val Lys Glu Gly His Glu Lys Ala Asp
50 55 60

Pro Ser Gln Phe Glu Leu Leu Lys Val Leu Gly Gln Gly Ser Phe Gly
65 70 75 80

Lys Val Phe Leu Val Lys Lys Ile Ser Gly Ser Asp Ala Arg Gln Leu
85 90 95

Tyr Ala Met Lys Val Leu Lys Lys Ala Thr Leu Lys Val Arg Asp Arg
100 105 110

Val Arg Thr Lys Met Glu Arg Asp Ile Leu Val Glu Val Asn His Pro
115 120 125

Phe Ile Val Lys Leu His Tyr Ala Phe Gln Thr Glu Gly Lys Leu Tyr
130 135 140

Leu Ile Leu Asp Phe Leu Arg Gly Gly Asp Leu Phe Thr Arg Leu Ser
145 150 155 160

Lys Glu Val Met Phe Thr Glu Glu Asp Val Lys Phe Tyr Leu Ala Glu
165 170 175

Leu Ala Leu Ala Leu Asp His Leu His Ser Leu Gly Ile Ile Tyr Arg
180 185 190

Asp Leu Lys Pro Glu Lys
195

<210> 176

<211> 489

<212> PRT

<213> Homo sapiens

<400> 176

Met Ser Thr Glu Ala Asp Glu Gly Ile Thr Phe Ser Val Pro Pro Phe
1 5 10 15

Ala Pro Ser Gly Phe Cys Thr Ile Pro Glu Gly Ile Cys Arg Arg
20 25 30

Gly Gly Ala Ala Ala Val Gly Glu Gly Glu His Gln Leu Pro Pro
35 40 45

Pro Pro Pro Gly Ser Phe Trp Asn Val Glu Ser Ala Ala Ala Pro Gly
50 55 60

Ile Gly Cys Pro Ala Ala Thr Ser Ser Ser Ala Thr Arg Gly Arg
65 70 75 80

Gly Ser Ser Val Gly Gly Ser Arg Arg Thr Thr Val Ala Tyr Val
85 90 95

Ile Asn Glu Ala Ser Gln Gly Gln Leu Val Val Ala Glu Ser Glu Ala
100 105 110

Leu Gln Ser Leu Arg Glu Ala Cys Glu Thr Val Gly Ala Thr Leu Glu
115 120 125

Thr Leu His Phe Gly Lys Leu Asp Phe Gly Glu Thr Thr Val Leu Asp
130 135 140

Arg Phe Tyr Asn Ala Asp Ile Ala Val Val Glu Met Ser Asp Ala Phe
145 150 155 160

Arg Gln Pro Ser Leu Phe Tyr His Leu Gly Val Arg Glu Ser Phe Ser
165 170 175

Met Ala Asn Asn Ile Ile Leu Tyr Cys Asp Thr Asn Ser Asp Ser Leu
180 185 190

Gln Ser Leu Lys Glu Ile Ile Cys Gln Lys Asn Thr Met Cys Thr Gly
195 200 205

Asn Tyr Thr Phe Val Pro Tyr Met Ile Thr Pro His Asn Lys Val Tyr
210 215 220

Cys Cys Asp Ser Ser Phe Met Lys Gly Leu Thr Glu Leu Met Gln Pro
225 230 235 240

Asn Phe Glu Leu Leu Leu Gly Pro Ile Cys Leu Pro Leu Val Asp Arg
245 250 255

Phe Ile Gln Leu Leu Lys Val Ala Gln Ala Ser Ser Ser Gln Tyr Phe
260 265 270

Arg Glu Ser Ile Leu Asn Asp Ile Arg Lys Ala Arg Asn Leu Tyr Thr
275 280 285

Gly Lys Glu Leu Ala Ala Glu Leu Ala Arg Ile Arg Gln Arg Val Asp
290 295 300

Asn Ile Glu Val Leu Thr Ala Asp Ile Val Ile Asn Leu Leu Ser
305 310 315 320

Tyr Arg Asp Ile Gln Asp Tyr Asp Ser Ile Val Lys Leu Val Glu Thr
325 330 335

Leu Glu Lys Leu Pro Thr Phe Asp Leu Ala Ser His His Val Lys
340 345 350

Phe His Tyr Ala Phe Ala Leu Asn Arg Arg Asn Leu Pro Gly Asp Arg
355 360 365

Ala Lys Ala Leu Asp Ile Met Ile Pro Met Val Gln Ser Glu Gly Gln
370 375 380

Val Ala Ser Asp Met Tyr Cys Leu Val Gly Arg Ile Tyr Lys Asp Met
385 390 395 400

Phe Leu Asp Ser Asn Phe Thr Asp Thr Glu Ser Arg Asp His Gly Ala
405 410 415

Ser Trp Phe Lys Lys Ala Phe Glu Ser Glu Pro Thr Leu Gln Ser Gly
420 425 430

Ile Asn Tyr Ala Val Leu Leu Ala Ala Gly His Gln Phe Glu Ser
435 440 445

Ser Phe Glu Leu Arg Lys Val Gly Asn Tyr Asn Leu Asn Phe Tyr Met
450 455 460

Glu Ile Lys Lys Leu Gly Pro Asn Leu Val Gln Arg Arg Ile Ser Ala
465 470 475 480

Asp Ser Asp Gly Ser Pro Gly Phe Val
485

<210> 177

<211> 105

<212> PRT
<213> Homo sapiens

<400> 177

Met Arg Glu Phe Glu Val Leu Lys Lys Leu Asn His Lys Asn Ile Val
1 5 10 15

Lys Leu Phe Ala Ile Glu Glu Glu Thr Thr Arg His Lys Val Leu
20 25 30

Ile Met Glu Phe Cys Pro Cys Gly Ser Leu Tyr Thr Val Leu Glu Glu
35 40 45

Pro Ser Asn Ala Tyr Gly Leu Pro Glu Ser Glu Phe Leu Ile Val Leu
50 55 60

Arg Asp Val Val Gly Gly Met Asn His Leu Arg Glu Asn Gly Ile Val
65 70 75 80

His Arg Asp Ile Lys Pro Gly Asn Ile Met Arg Ala Leu Tyr His Ser
85 90 95

Leu Val Asp Asp Ser Phe His Pro Pro
100 105

<210> 178

<211> 413

<212> PRT

<213> Homo sapiens

<220>

<221> -

<222> (1)...(413)

<223> "XAA" can be any amino acid

<400> 178

Met Tyr Cys Phe Gly Arg Lys Xaa Tyr Ile Ser Thr Arg Pro Cys Phe
1 5 10 15

Pro Asn Lys Thr Cys Gln Lys Met Leu Ile Ile Leu Thr Ser Ala Leu
20 25 30

Gln Ile Ala His Arg Cys Ile Cys Arg Ile Leu Leu Gly Ser Arg Val
35 40 45

Leu Ala Ala Lys Ala Ser Gly Asn Cys Thr Leu Asn Ser Glu Asp Phe
50 55 60

Ile Phe Asn Ile Gly Ser Ala Ala Tyr Asp Ala Val Leu Asp Arg Asn
65 70 75 80

Val Ala Ile Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln Thr His Ala
85 90 95

Lys Arg Ala Tyr Arg Glu Leu Val Leu Met Lys Cys Val Asn His Lys
100 105 110

Asn Ile Ile Ser Leu Leu Asn Val Phe Thr Pro Gln Lys Thr Leu Glu
115 120 125

Glu Phe Gln Asp Val Tyr Leu Val Met Glu Leu Met Asp Ala Asn Leu
130 135 140

Cys Gln Val Ile Gln Met Glu Leu Asp His Glu Arg Met Ser Tyr Leu
145 150 155 160

Leu Tyr Gln Met Leu Cys Gly Ile Lys His Leu His Ser Ala Gly Ile
165 170 175

Ile His Arg Asp Leu Lys Pro Ser Asn Ile Val Val Lys Ser Asp Cys
180 185 190

Thr Leu Lys Ile Leu Asp Phe Gly Leu Ala Arg Thr Ala Gly Thr Ser
195 200 205

Phe Met Met Thr Pro Tyr Val Val Thr Arg Tyr Tyr Arg Ala Pro Glu
210 215 220

Val Ile Leu Gly Met Gly Tyr Lys Glu Asn Val Asp Ile Trp Ser Val
225 230 235 240

Gly Cys Ile Met Gly Glu Met Val Arg His Lys Ile Leu Phe Pro Gly
245 250 255

Arg Asp Tyr Ile Asp Gln Trp Asn Lys Val Ile Glu Gln Leu Gly Thr
260 265 270

Pro Cys Pro Glu Phe Met Lys Lys Leu Gln Pro Thr Val Arg Asn Tyr
275 280 285

Val Glu Asn Arg Pro Lys Tyr Ala Gly Leu Thr Phe Pro Lys Leu Phe
290 295 300

Pro Asp Ser Leu Phe Pro Ala Asp Ser Glu His Asn Lys Leu Lys Ala
305 310 315 320

Ser Gln Ala Arg Asp Leu Leu Ser Lys Met Leu Val Ile Asp Pro Ala
325 330 335

Lys Arg Ile Ser Val Asp Asp Ala Leu Gln His Pro Tyr Ile Asn Val
340 345 350

Trp Tyr Asp Pro Ala Glu Val Glu Ala Pro Pro Pro Gln Ile Tyr Asp
355 360 365

Lys Gln Leu Asp Glu Arg Glu His Thr Ile Glu Glu Trp Lys Glu Leu
370 375 380

Ile Tyr Lys Glu Val Met Asn Ser Glu Glu Lys Thr Lys Asn Gly Val
385 390 395 400

Val Lys Gly Gln Pro Ser Pro Ser Ala Gln Val Gln Gln
405 410

<210> 179

<211> 108

<212> PRT

<213> Homo sapiens

<400> 179

Met Ser Lys Ser Lys Val Asp Asn Gln Phe Tyr Ser Val Glu Val Gly
1 5 10 15

Asp Ser Thr Phe Thr Val Leu Lys Arg Tyr Gln Asn Leu Lys Pro Ile
20 25 30

Gly Ser Gly Ala Gln Gly Ile Val Cys Ala Ala Tyr Asp Ala Val Leu
35 40 45

Asp Arg Asn Val Ala Ile Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln
50 55 60

Thr His Ala Lys Arg Ala Tyr Arg Glu Leu Val Leu Met Lys Cys Val
65 70 75 80

Asn His Lys Asn Val Ser Phe Val Ile Phe Lys Leu Leu Ala Val Gly
85 90 95

Val Cys Lys Ile Gly Lys Arg Lys Cys Val Cys Thr
100 105

<210> 180

<211> 336

<212> PRT

<213> Homo sapiens

<400> 180

Met Ala Met Thr Gly Ser Thr Pro Cys Ser Ser Met Ser Asn His Thr
1 5 10 15

Lys Glu Arg Val Thr Met Thr Lys Val Thr Leu Glu Asn Phe Tyr Ser
20 25 30

Asn Leu Ile Ala Gln His Glu Glu Arg Glu Met Arg Gln Lys Lys Leu
35 40 45

Glu Lys Val Met Glu Glu Glu Gly Leu Lys Asp Glu Glu Lys Arg Leu
50 55 60

Arg Arg Ser Ala His Ala Arg Lys Glu Thr Glu Phe Leu Arg Leu Lys
65 70 75 80

Arg Thr Arg Leu Gly Leu Glu Asp Phe Glu Ser Leu Lys Val Ile Gly
85 90 95

Arg Gly Ala Phe Gly Glu Val Arg Leu Val Gln Lys Lys Asp Thr Gly

100 105 110

His Val Tyr Ala Met Lys Ile Leu Arg Lys Ala Asp Met Leu Glu Lys
115 120 125

Glu Gln Val Gly His Ile Arg Ala Glu Arg Asp Ile Leu Val Glu Ala
130 135 140

Asp Ser Leu Trp Val Val Lys Met Phe Tyr Ser Phe Gln Asp Lys Leu
145 150 155 160

Asn Leu Tyr Leu Ile Met Glu Phe Leu Pro Gly Gly Asp Met Met Thr
165 170 175

Leu Leu Met Lys Lys Asp Thr Leu Thr Glu Glu Glu Thr Gln Phe Tyr
180 185 190

Ile Ala Glu Thr Val Leu Ala Ile Asp Ser Ile His Gln Leu Gly Phe
195 200 205

Ile His Arg Asp Ile Lys Pro Asp Asn Leu Leu Asp Ser Lys Gly
210 215 220

His Val Lys Leu Ser Asp Phe Gly Leu Cys Thr Gly Leu Lys Lys Ala
225 230 235 240

His Arg Thr Glu Phe Tyr Arg Asn Leu Asn His Ser Leu Pro Ser Asp
245 250 255

Phe Thr Phe Gln Asn Met Asn Ser Lys Arg Lys Ala Glu Thr Trp Lys
260 265 270

Arg Asn Arg Arg Gln Leu Ala Phe Ser Thr Val Gly Thr Pro Asp Tyr
275 280 285

Ile Ala Pro Glu Val Phe Met Gln Thr Gly Tyr Asn Lys Leu Cys Asp
290 295 300

Trp Trp Ser Leu Gly Val Ile Met Tyr Glu Met Leu Ile Gly Lys Leu
305 310 315 320

His Gly Phe Arg Gly Leu Phe Leu Cys Ile His Asp Arg Leu Leu His
325 330 335

<210> 181
<211> 415
<212> PRT
<213> Homo sapiens

<220>
<221> -
<222> (1)..(415)
<223> "XAA " can be any amino acid

<400> 181

Xaa Arg His Glu Ser Ala Arg Ala Ala Arg Val Ser Gly Gly Ser Met
1 5 10 15

Leu Asp Ile Ile Lys Tyr Ile Val Asn Arg Gly Glu His Lys Asn Gly
20 25 30

Val Leu Glu Glu Ala Ile Ile Ala Thr Ile Leu Lys Glu Val Leu Glu
35 40 45

Gly Leu Asp Tyr Leu His Arg Asn Gly Gln Ile His Arg Asp Leu Lys
50 55 60

Ala Gly Asn Ile Leu Leu Gly Glu Asp Gly Ser Val Gln Ile Ala Asp
65 70 75 80

Phe Gly Val Ser Ala Phe Leu Ala Thr Gly Gly Asp Val Thr Arg Asn
85 90 95

Lys Val Arg Lys Thr Phe Val Gly Thr Pro Cys Trp Met Ala Pro Glu
100 105 110

Val Met Glu Gln Val Arg Gly Tyr Asp Phe Lys Ala Asp Met Trp Ser
115 120 125

Phe Gly Ile Thr Ala Ile Glu Leu Ala Thr Gly Ala Ala Pro Tyr His
130 135 140

Lys Tyr Pro Pro Met Lys Val Leu Met Leu Thr Leu Gln Asn Asp Pro
145 150 155 160

Pro Thr Leu Glu Thr Gly Val Glu Asp Lys Glu Met Met Lys Lys Tyr
165 170 175

Gly Lys Ser Phe Arg Lys Leu Leu Ser Leu Cys Leu Gln Lys Asp Pro
180 185 190

Ser Lys Arg Pro Thr Ala Ala Glu Leu Leu Lys Cys Lys Phe Phe Gln
195 200 205

Lys Ala Lys Asn Arg Glu Tyr Leu Ile Glu Lys Leu Leu Thr Arg Thr
210 215 220

Pro Asp Ile Ala Gln Arg Ala Lys Lys Val Arg Arg Val Pro Gly Ser
225 230 235 240

Ser Gly His Leu His Lys Thr Glu Asp Gly Asp Trp Glu Trp Ser Asp
245 250 255

Asp Glu Met Asp Glu Lys Ser Glu Glu Gly Lys Ala Ala Phe Ser Gln
260 265 270

Glu Lys Ser Arg Arg Val Lys Glu Glu Asn Pro Glu Ile Ala Val Ser
275 280 285

Ala Ser Thr Ile Pro Glu Gln Ile Gln Ser Leu Ser Val His Asp Ser
290 295 300

Gln Gly Pro Pro Asn Ala Asn Glu Asp Tyr Arg Glu Ala Ser Ser Cys
305 310 315 320

Ala Val Asn Leu Val Leu Arg Leu Arg Asn Ser Arg Lys Glu Leu Asn
325 330 335

Asp Ile Arg Phe Glu Phe Thr Pro Gly Arg Asp Thr Ala Asp Gly Val
340 345 350

Ser Gln Glu Leu Phe Ser Ala Gly Leu Val Asp Gly His Asp Val Val
355 360 365

Ile Val Ala Ala Asn Leu Gln Lys Ile Val Asp Asp Pro Lys Ala Leu
370 375 380

Lys Thr Leu Thr Phe Lys Leu Ala Ser Gly Cys Asp Gly Ser Glu Ile
385 390 395 400

Pro Asp Glu Val Lys Leu Ile Gly Phe Ala Gln Leu Ser Val Ser
405 410 415

<210> 182

<211> 409

<212> PRT

<213> Homo sapiens

<220>

<221> -

<222> (1)..(409)

<223> "Xaa" can be any amino acid

<400> 182

Xaa Arg His Glu Ser Ala Arg Ala Ala Arg Val Ser Gly Gly Ser Met
1 5 10 15

Leu Asp Ile Ile Lys Tyr Ile Val Asn Arg Gly Glu His Lys Asn Gly
20 25 30

Val Leu Glu Glu Ala Ile Ile Ala Thr Ile Leu Lys Glu Val Leu Glu
35 40 45

Gly Leu Asp Tyr Leu His Arg Asn Gly Gln Ile His Arg Asp Leu Lys
50 55 60

Ala Gly Asn Ile Leu Leu Gly Glu Asp Gly Ser Val Gln Ile Ala Asp
65 70 75 80

Phe Gly Val Ser Ala Phe Leu Ala Thr Gly Gly Asp Val Thr Arg Asn
85 90 95

Lys Val Arg Lys Thr Phe Val Gly Thr Pro Cys Trp Met Ala Pro Glu
100 105 110

Val Met Glu Gln Val Arg Gly Tyr Asp Phe Lys Ala Asp Met Trp Ser
115 120 125

Phe Gly Ile Thr Ala Ile Glu Leu Ala Thr Gly Ala Ala Pro Tyr His
130 135 140

Lys Tyr Pro Pro Met Lys Val Leu Met Leu Thr Leu Gln Asn Asp Pro
145 150 155 160

Pro Thr Leu Glu Thr Gly Val Glu Asp Lys Glu Met Met Lys Lys Tyr
165 170 175

Gly Lys Ser Phe Arg Lys Leu Leu Ser Leu Cys Leu Gln Lys Asp Pro
180 185 190

Ser Lys Arg Pro Thr Ala Ala Glu Leu Leu Lys Cys Lys Phe Phe Gln
195 200 205

Lys Ala Lys Asn Arg Glu Tyr Leu Ile Glu Lys Leu Leu Thr Arg Thr
210 215 220

Pro Asp Ile Ala Gln Arg Ala Lys Lys Val Arg Arg Val Pro Gly Ser
225 230 235 240

Ser Gly His Leu His Lys Thr Glu Asp Gly Asp Trp Glu Trp Ser Asp
245 250 255

Asp Glu Met Asp Glu Lys Ser Glu Glu Gly Lys Ala Ala Phe Ser Gln
260 265 270

Glu Lys Ser Arg Arg Val Lys Glu Glu Asn Pro Glu Ile Ala Val Ser
275 280 285

Ala Ser Thr Ile Pro Glu Gln Ile Gln Ser Leu Ser Val His Asp Ser
290 295 300

Gln Gly Pro Pro Asn Ala Asn Glu Asp Tyr Arg Glu Ala Ser Ser Cys
305 310 315 320

Ala Val Asn Leu Val Leu Arg Leu Arg Asn Ser Arg Lys Glu Leu Asn
325 330 335

Asp Ile Arg Phe Glu Phe Thr Pro Gly Arg Asp Thr Ala Asp Gly Val
340 345 350

Ser Gln Glu Leu Phe Ser Ala Gly Leu Val Asp Gly His Asp Val Val
355 360 365

Ile Val Ala Ala Asn Leu Gln Lys Ile Val Asp Asp Pro Lys Ala Leu
370 375 380

Lys Thr Leu Thr Phe Lys Leu Asn Gln Phe Leu His Leu Glu Ala Phe
385 390 395 400

Asp Ser Ala Ala Leu Gly Asn Val Phe
405