2.4.1 TEOREMA (esistenza e unicità del punto fisso e convergenza delle iterazioni di punto fisso per una contrazione)

Sia $\phi: I \subseteq \mathbb{R} \to \mathbb{R}$ una funzione derivabile nell'intervallo chiuso $I \subseteq \mathbb{R}$, tale che:

- 1. $\phi(I)\subseteq I$ cio
è l'immagine di I tramite $\phi,\ \phi(I)=\{y:y=\phi(x),\ x\in I\},$
è contenuta in I
- 2. $\exists \theta \in (0,1) : |\phi'(x)| \le \theta \ \forall x \in I$

allora

$$\exists ! \, \xi \in I : \xi = \phi(\xi)$$
 (punto fisso) $\forall x_0 \in I, \ \xi = \lim_{n \to \infty} x_n$

dove
$$x_{n+1} = \phi(x_n), \ n \ge 0$$

Sapendo che per ipotesi:

- L'intervallo è assunto chiuso, ma può non essere limitato
- ϕ è una contrazione (di I in sè stesso), cioè contrae le distanze di un fattore $\theta < 1$
- ϕ è continua in I, infatti per i \forall x, x \in I, per il teorema dei 2 carabinieri: $\phi(x) \rightarrow \phi(^{\sim}x)$, $x \rightarrow x$

Esistenza

Siccome ϕ è continua, tale è

$$f(x) = x - \phi(x)$$

Se $a=\phi(a)$ oppure $b=\phi(b)$ allora a oppure b sono punto fisso. Se invece $a\neq\phi(a)$ e $b\neq\phi(b)$ siccome $a\leq\phi(x)\leq b$ $\forall x\in[a,b]$ si ha $a-\phi(a)<0$ e $b-\phi(b)>0$ cioè f è continua e cambia segno agli estremi

$$\Longrightarrow \exists \, \xi \in (a,b) : f(\xi) = 0$$

cioè

$$\exists \, \xi \in (a,b) : \xi = \phi(\xi)$$

Tuttavia, la continuità non basta a garantire l'unicità del punto fisso.

Unicità

Ma se ϕ è una contrazione, l'unicità è assicurata.

Infatti se $\exists \xi_1, \xi_2 \in I$ con $\xi_1 \neq \xi_2$ tali che $\xi_1 = \phi(\xi_1)$ e $\xi_2 = \phi(\xi_2)$ allora

$$|\xi_1 - \xi_2| = |\phi(\xi_1) - \phi(\xi_2)| \le \theta |\xi_1 - \xi_2|$$

cioè $\theta \geq 1$ contro l'ipotesi che $\theta < 1$.

Resta da dimostrare che $\forall x_0 \in I$, definendo $x_{n+1} = \phi(x_n), \ n \geq 0$ si ha $\lim_{n \to \infty} x_n = \xi$. Ora

$$e_{n+1} = |x_{n+1} - \xi| = |\phi(x_n) - \phi(\xi)| \le \theta |x_n - \xi| = \theta e_n$$

da cui

$$\begin{split} e_1 &\leq \theta e_0, \\ e_2 &\leq \theta e_1 \leq \theta^2 e_0, \\ &\vdots \\ e_n &\leq \theta^n e_0 \to 0, \ n \to \infty \text{ perchè } \theta \in (0,1) \end{split}$$