УДК 519

© 2013 г. О.С. Амосов, д-р техн. наук, Е.А. Малашевская, С.Г. Баена

(Комсомольский-на-Амуре государственный технический университет)

СУБОПТИМАЛЬНОЕ ОЦЕНИВАНИЕ СЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ С ИСПОЛЬЗОВАНИЕМ ИЕРАРХИЧЕСКИХ НЕЧЕТКИХ СИСТЕМ

Излагается реализация субоптимального нелинейного оценивания случайных последовательностей на основе нечетких систем с использованием принципа их декомпозиции для повышения быстродействия настройки алгоритмов оценивания.

Ключевые слова: субоптимальное нелинейное оценивание, случайная последовательность, иерархическая нечеткая система, декомпозиция, алгоритм Сугено, среда MatLab.

Введение

В настоящее время эффективным инструментом для решения практических задач из различных областей являются нечеткие системы [1].

Сравнительный анализ алгоритмов оценивания на основе нечеткой логики с оптимальными в среднеквадратическом смысле традиционными алгоритмами [2, 3] показывает возможность их успешного применения при решении ряда сложных в вычислительном отношении задач оценивания, решаемых в рамках байесовской постановки [4 – 6]. Однако для алгоритмов создания и обучения нечетких систем при решении задачи нерекуррентного оценивания возникают вычислительные трудности при использовании больших массивов данных [1], когда количество входов нечеткой системы превышает значение 5-6. Решение данной проблемы с использованием алгоритмов кластеризации представлено в работе [7]. В качестве альтернативы для решения обозначенной вычислительной проблемы нерекуррентного оценивания предлагается применение основных принципов системного подхода при построении нечетких оценивающих систем, в частности иерархичности их строения.

Целью данной работы является реализация субоптимального нелинейного оценивания случайных последовательностей с построением иерархических нечетких систем на основе принципа декомпозиции. Постановка задачи нерекуррентного оценивания случайной последовательности и ее байесовское решение для ли-

нейного случая приводятся ниже практически в том же виде, что и при использовании нейросетевого подхода для оценивания в работах [8, 9].

Постановка задачи нерекуррентного оценивания

Необходимо оценить недоступную непосредственному наблюдению n-мерную случайную последовательность $\mathbf{x}_i = (x_{1i},...,x_{ni})^{\mathrm{T}}, i = 0,1,...$, располагая статистически связанными с \mathbf{x}_i значениями m-мерной случайной последовательности измерений $\mathbf{y}_j = (y_{1j},...,y_{mj})^{\mathrm{T}}, j = \overline{1.k}$. Оптимальная в среднеквадратическом смысле оценка $\widetilde{\mathbf{x}}_{i/k}$ минимизирует критерий вида [2,3,8,9]:

$$J_{i/k} = M[(\mathbf{x}_i - \widetilde{\mathbf{x}}_{i/k})^{\mathrm{T}} (\mathbf{x}_i - \widetilde{\mathbf{x}}_{i/k})], \tag{1}$$

где M определяет операцию взятия математического ожидания.

Если ввести составной вектор измерений $\mathbf{Y}_k = [\mathbf{y}_1^{\mathrm{T}}, ..., \mathbf{y}_{k-1}^{\mathrm{T}}, \mathbf{y}_k^{\mathrm{T}}]^{\mathrm{T}}$ размерности $p = k \cdot m$ и определить оценку $\widetilde{\mathbf{x}}_{i/k}$ как n-мерную вектор-функцию измерений:

$$\widetilde{\mathbf{X}}_{i/k} = \mathbf{h}_i(\mathbf{Y}_k), \tag{2}$$

то суть рассматриваемой задачи оценивания будет заключаться в нахождении некоторым обоснованным способом n-мерной векторной функции измерений $\mathbf{h}_i(\mathbf{Y}_k)$, исходя из условия минимизации критерия (1).

Байесовское решение задачи нерекуррентного оценивания с использованием нечеткой системы

При использовании критерия (1) оптимальная оценка (2) представляет собой условное математическое ожидание [2]

$$\widetilde{\mathbf{x}}_{i/k} = M[\mathbf{x}_i / \mathbf{Y}_k] = \mathbf{h}_i(\mathbf{Y}_k), \tag{3}$$

где для произвольных случайных последовательностей \mathbf{x}_i , i = 0,1,... и \mathbf{y}_j , $j = \overline{1.k}$ \mathbf{h}_i является в общем случае нелинейной функцией относительно измерений.

В дальнейшем будем рассматривать задачу фильтрации, для которой i = k.

При решении задачи оценивания в рамках байесовского подхода предполагается, что априорная информация задана в виде совместной функции плотности распределения вероятностей $w(\mathbf{x}_i, \mathbf{Y}_k)$ для последовательностей \mathbf{x}_i и \mathbf{Y}_k [3]. Использование нечеткой системы для решения задачи оценивания в рамках байесовской постановки предполагает, как и в случае нейросетевого подхода [10, 11], наличие набора данных (обучающей выборки)

$$\{(\mathbf{Y}_i^{(j)}, \mathbf{x}_i^{(j)})\}, \ j = \overline{1.L}, \tag{4}$$

в котором пары $\mathbf{Y}_i^{(j)}$, $\mathbf{x}_i^{(j)}$, $j = \overline{1.L}$ согласованы в том смысле, что они представляют независимые между собой реализации случайного составного вектора $\mathbf{z} = [\mathbf{x}_i^{\mathrm{T}} \ \mathbf{Y}_i^{\mathrm{T}}]^{\mathrm{T}}$ с функцией плотности распределения вероятностей $w(\mathbf{x}_i, \mathbf{Y}_i)[10, 11]$.

Для нечеткого оценивания аналогично нейросетевому подходу [9, 10] можно

выделить *два основных режима работы*. Первый из них – режим создания (построения) нечеткой системы для решения задачи оценивания – можно назвать режимом синтеза, второй – это штатный режим оценивания в реальном времени.

Рассмотрим синтез нечеткой системы. Если априорная информация задана в виде (4), то, располагая таким набором данных и измерением \mathbf{Y}_i , оценку (3) можно найти с использованием нечеткой системы как оценку $\widetilde{\mathbf{x}}_i^{FS}(\mathbf{Y}_i)$, минимизирующую критерий вида

$$\widetilde{J}_{i} = \frac{1}{L} \sum_{i=1}^{L} \left\| \mathbf{x}_{i}^{(j)} - \widetilde{\mathbf{x}}_{i}^{FS} (\mathbf{Y}_{i}^{(j)}) \right\|^{2},$$

$$(5)$$

где

$$\widetilde{\mathbf{x}}_{i}^{FS}(\mathbf{Y}_{i}) = \mathbf{K}_{i}^{FS}(\mathbf{Y}_{i}, \widetilde{\mathbf{W}}_{i}), \tag{6}$$

 $\mathbf{K}_{i}^{FS}(\mathbf{Y}_{i},\widetilde{\mathbf{W}}_{i})$ — нечеткая система; $\widetilde{\mathbf{W}}_{i}$ — матрица, определяющая набор свободных параметров (параметры функций принадлежности и весовые коэффициенты правил); \mathbf{Y}_{i} — вход нечеткой системы.

Таким образом, в **режиме синтеза**, с использованием обучающего множества (4), отыскивается зависимость вида $\widetilde{\mathbf{x}}_i^{FS(j)}(\mathbf{Y}_i^{(j)},\widetilde{\mathbf{W}}_i)$ в соответствии с заданным критерием (5), т.е. отыскиваются оптимальные параметры $\widetilde{\mathbf{W}}_i$ нечеткой системы. В *штатном режиме* с использованием найденных на предыдущем режиме параметров $\widetilde{\mathbf{W}}_i$ отыскивается оценка по вектору измерений \mathbf{Y}_i .

В работе [6] показана возможность получения оценки измеряемой величины \mathbf{x}_i , близкой к оптимальной нелинейной оценке с использованием систем нечеткого логического вывода типа Сугено с p входами и 2^p правилами:

$$\widetilde{\mathbf{x}}_{i}^{FS(j)} = \sum_{\lambda=1}^{2^{p}} \alpha_{\lambda i}^{(j)} \mathbf{K}_{\lambda i}^{FS} (\mathbf{Y}_{i}^{(j)}, \widetilde{\mathbf{W}}_{\lambda i}) / \sum_{\lambda=1}^{2^{p}} \alpha_{\lambda i}^{(j)},$$

где $\alpha_{\lambda i}^{(j)} = f_{\&}(\mu_{li}(\mathbf{a}_{li}, y_{li}^{(j)}), \mu_{2i}(\mathbf{a}_{2i}, y_{2i}^{(j)}), ..., \mu_{pi}(\mathbf{a}_{pi}, y_{pi}^{(j)})); f_{\&}(a,b) = \min(a,b)$ или $f_{\&}(a,b) = a \cdot b \; ; \; \mu_{ki}(\mathbf{a}_{ki}, y_{ki}^{(j)}) -$ функция принадлежности k-го входа; $k = \overline{1,p} \; ; \; \mathbf{a}_{ki} -$ вектор параметров для $\mu_{ki}(\mathbf{a}_{ki}, y_{ki}^{(j)}) \; ; \; \mathbf{K}_{\lambda i}^{FS}(\mathbf{Y}_{i}^{(j)}, \widetilde{\mathbf{W}}_{\lambda i}) -$ нечеткая система.

База знаний нечеткой системы это набор правил следующего типа:

$$R_{\lambda i}$$
: ЕСЛИ \mathbf{Y}_i есть $\mathbf{Y}_i^{(j)}$, ТО $\widetilde{\mathbf{x}}_i^{FS} = \mathbf{w}_{0i} + \mathbf{W}_i \mathbf{Y}_i$, $\lambda = 1, 2^p$. (7)

В (7) $\widetilde{\mathbf{W}}_i = [\mathbf{w}_{0i} \mid \mathbf{W}_i]$ — матрица параметров нечеткой системы размерности $n \times (p+1)$; \mathbf{w}_{0i} — n-мерный вектор смещений; \mathbf{W}_i — матрица весовых коэффициентов размерности $n \times p$.

Таким образом, для получения нечеткой оценки, близкой к оптимальной нелинейной оценке, необходимо для заданного количества измерений создать и обучить нечеткую систему $\mathbf{K}_i^{FS}(\mathbf{Y}_i,\widetilde{\mathbf{W}}_i)$ в соответствии с критерием (5), определив тем самым оптимальные параметры $\widetilde{\mathbf{W}}_i$.

Решение задачи оценивания с использованием иерархических нечетких систем

Рассмотрим построение иерархических систем на основе принципа декомпозиции. Определим систему S как теоретико-множественное отношение [12] $S \subset X \times Y$,

где × - символ декартова произведения.

Будем рассматривать систему с двумя объектами: входным объектом X и выходным объектом Y.

В общей теории систем доказано, что большинство систем может быть декомпозировано с использованием трех базовых представлений подсистем [12]. К ним относят: каскадное, параллельное соединение элементов, а также соединение замыканием обратной связи (рис. 1).

Для системы S справедливы следующие отношения [12].

<u>Каскадное соединение.</u> Каждая система $S \subset (X_1 \times X_2) \times (Y_1 \times Y_2)$ допускает декомпозицию в соединенные каскадно элементы, как показано на рис. 1, б.

<u>Параллельное соединение.</u> Пусть система $S \subset (X_1 \times X_2) \times (Y_1 \times Y_2)$ и пусть $S(x) = \{y : (x,y) \subset S\}$, где $X = X_1 \times X_2$, а $Y = Y_1 \times Y_2$. Система S допускает декомпозицию на подсистемы S_1 и S_2 , (как это показано на рис. 1в) тогда и только тогда, когда для любых $x \in D(S)$ справедливо равенство $S(x) = \Pi_1(S(x)) \times \Pi_2(S(x))$ и операторы проектирования $\Pi_1 : (X_1 \times X_2) \times (Y_1 \times Y_2) \to (X_1 \times Y_1)$ и $\Pi_2 : (X_1 \times X_2) \times (Y_1 \times Y_2) \to (X_2 \times Y_2)$ такие, что $\Pi_1(x_1, x_2, y_1, y_2) = (x_1, y_1)$ и $\Pi_2(x_1, x_2, y_1, y_2) = (x_2, y_2)$.

Замыкание обратной связью. Любая система $S \subset (X_1 \times X_2) \times (Y_1 \times Y_2)$ допускает декомпозицию $S = F(S_1 \circ S_2)$ в соединенные каскадно и охваченные обратной связью элементы, где $S_1 \subset (X_1 \times Z_1) \times (Y_1 \times Z_2)$, $S_2 \subset (X_2 \times Z_2) \times (Y_2 \times Z_1)$, а Z_1 и Z_2 – вспомогательные множества (рис. 1г).

 $Puc.\ 1.$ Базовые представления подсистем: а — исходное соединение; б — каскадное соединение; в — параллельное соединение; г — соединение с замыканием обратной связью.

С использованием приведенных базовых принципов могут быть построены субоптимальные системы оценивания с различной степенью сложности.

Прежде всего с использованием принципа параллельного соединения (рис. 1в) система оценивания типа MIMO (many inputs – many outputs) может быть представлена совокупностью систем типа MISO (many inputs – single output).

Поэтому вычислительные трудности обучения нечетких систем типа МІМО частично преодолеваются переходом от нечеткой системы МІМО к совокупности нечетких систем типа МІЅО (рис. 2). При этом все нечеткие системы совокупности имеют одинаковые входы (как у исходной нечеткой системы), но каждая из нечетких систем совокупности в соответствии с (6) оценивает только одну компоненту искомого вектора параметров

$$\widetilde{x}_{si}^{FS}(\mathbf{Y}_i) = \mathbf{K}_{si}^{FS}(\mathbf{Y}_i, \widetilde{\mathbf{W}}_{si}), \tag{8}$$

где $\mathbf{K}_{si}^{FS}(\mathbf{Y}_i, \widetilde{\mathbf{W}}_{si})$ – нечеткая система, оценивающая s компонент вектора \mathbf{x}_i ; $\widetilde{\mathbf{W}}_{si}$ – матрица, определяющая набор свободных параметров нечеткой системы \mathbf{K}_{si}^{FS} ; \mathbf{Y}_i – вход нечеткой системы; s=1,2,...,n. Для упрощения схем индекс времени i на рисунках данного раздела опустим.

Puc. 2. Декомпозиция системы MIMO на системы MISO: a – нечеткая система MIMO; б – совокупность нечетких систем MISO.

Для решения обозначенной в работе проблемы сокращения количества входов системы продолжаем декомпозицию систем MISO. На рис. 3, 4 приведены примеры таких иерархических субоптимальных систем оценивания:

схема на рис. 3 иллюстрирует систему оценивания, построенную с использованием базового принципа каскадного соединения (рис. 1б). Здесь на входы каждого узла (кроме первого) первого слоя подаются не только соответствующие результаты измерений, но и оценка, полученная предыдущим узлом;

система оценивания, представленная на рис. 4, использует два принципа – каскадное и параллельное соединение (рис. 1б,в). В этой нечеткой системе каждый из узлов (кроме первого) использует для оценивания как соответствующий набор измерений, так и оценку, полученную на предыдущем шаге вычислений.

Декомпозиция, как процесс расчленения, позволяет рассматривать исследуемую систему как сложную, состоящую из отдельных взаимосвязанных более простых подсистем, обучение или настройка которых не вызывает сложности.

Puc. 3. Иерархическая q-уровневая нечеткая система с дополнительными входами у узлов первого слоя.

Рис. 4. Иерархическая р-уровневая нечеткая система.

Применим сказанное к нечетким системам, так как для алгоритмов их обучения возникают вычислительные трудности при использовании обучающих выборок большого объема [1, 7], когда количество входов нечеткой системы превышает значение 5-6. Например, при настройке нечеткой системы типа Сугено с p входами и 1 линейным выходом с двумя термами для оценки каждой входной переменной с гауссовыми функциями принадлежности необходимо настроить 4p параметров функций принадлежности (по 2 параметра для каждого из термов входных переменных), $(p+1)2^p$ параметра в заключениях правил. При p=2 это составит 20 параметров, при p=3-44, при p=4-96, при p=5-212, а при p=10-11304.

Так, декомпозиция системы, представленной на рис. 3 (при отсутствии дополнительного входов для первого слоя) при $\eta=2$, позволяет заменить нечеткую систему с 4 входами и 1 выходом (настраивается 96 параметров) на 3 нечеткие системы с 2 входами и 1 выходом (всего настраивается 60 параметров). А систему с 10 входами и 1 выходом (настраивается 11304 параметров) — на 9 нечетких систем с 2 входами и 1 выходом (всего настраивается 180 параметров).

Оценка (8), полученная с использованием системы, представленной на

рис. 3, определяется выражением

$$\widetilde{x}_{si}^{FS}(\mathbf{Y}_i) = \mathbf{K}_{q,1,i}^{FS}(\mathbf{z}_{q,1,i}, \widetilde{\mathbf{W}}_{q,1,i}),$$

где $\mathbf{K}_{q,1,i}^{FS}$ — нечеткая система MISO — единственный узел последнего слоя q иерархической нечеткой системы; $K_{\alpha,\gamma}^{FS}$ — нечеткая система MISO — узел γ слоя α иерархической нечеткой системы; $\alpha=1,\,2...q,\,q$ — количество слоев иерархической нечеткой системы; γ — порядковый номер узла в слое; $\boldsymbol{\beta}=[\beta_1\,\beta_2\,...\,\beta_q]$; β_α — количество узлов в слое α . Для удобства изложения индекс s (как и индекс s) в обозначениях переменных схемы рис. 3 (кроме выходной переменной \widetilde{x}_s^{FS}) опущены.

$$\mathbf{z}_{q,1} = \begin{bmatrix} z_{q-1,1} \\ z_{q-1,2} \\ \vdots \\ z_{q-1,\eta} \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{q-1,1}^{FS}(\mathbf{z}_{q-1,1}, \widetilde{\mathbf{W}}_{q-1,1}) \\ \mathbf{K}_{q-1,2}^{FS}(\mathbf{z}_{q-1,2}, \widetilde{\mathbf{W}}_{q-1,2}) \\ \vdots \\ \mathbf{K}_{q-1,\eta}^{FS}(\mathbf{z}_{q-1,\eta}, \widetilde{\mathbf{W}}_{q-1,\eta}) \end{bmatrix} - \eta$$
-мерный вектор входов единственного

узла слоя
$$q$$
; $\mathbf{z}_{q-1,1} = \begin{bmatrix} z_{q-2,1} \\ z_{q-2,2} \\ \vdots \\ z_{q-2,\eta} \end{bmatrix} = \begin{bmatrix} \mathbf{K}_{q-2,1}^{FS}(\mathbf{z}_{q-2,1}, \widetilde{\mathbf{W}}_{q-2,1}) \\ \mathbf{K}_{q-2,2}^{FS}(\mathbf{z}_{q-2,2}, \widetilde{\mathbf{W}}_{q-2,2}) \\ \vdots \\ \mathbf{K}_{q-2,\eta}^{FS}(\mathbf{z}_{q-2,\eta}, \widetilde{\mathbf{W}}_{q-2,\eta}) \end{bmatrix}$, ... , $\mathbf{z}_{1,1} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\eta} \end{bmatrix}$,

$$\mathbf{z}_{1,2} = egin{bmatrix} \mathbf{K}_{1,1}^{FS}(\mathbf{z}_{1,1}, \widetilde{\mathbf{W}}_{1,1}) \\ y_{\eta+1} \\ \vdots \\ y_{2\eta} \end{bmatrix}, \ \dots, \mathbf{z}_{1,eta_{1}} = egin{bmatrix} \mathbf{K}_{1,eta_{1}-1}^{FS}(\mathbf{z}_{1,eta_{1}-1}, \widetilde{\mathbf{W}}_{1,eta_{1}-1}) \\ y_{p-\eta+1} \\ y_{p-\eta+2} \\ \vdots \\ y_{p} \end{bmatrix}, \ \text{где} \ \widetilde{\mathbf{W}}_{lpha,\gamma} \ - \ \text{матрица}, \end{cases}$$

определяющая набор свободных параметров (параметры функций принадлежности и весовые коэффициенты правил) нечеткой системы $\mathbf{K}_{\alpha,\gamma}^{FS}$.

Проверим справедливость декомпозиции для систем оценивания с помощью компьютерного моделирования.

Среда моделирования

При создании иерархической нечеткой системы были использованы функции пакета Fuzzy Logic Toolbox среды Matlab, автоматизирующие синтез структуры нечеткой системы и настройку ее параметров. Для синтеза нечеткой системы узла применяется функция genfis1. Для настройки параметров нечеткой системы узла была применена адаптивная нейронечеткая система вывода ANFIS – Adaptive Network Based Fuzzy Inference System. В системе Matlab создано программное обеспечение, позволяющее создавать и обучать иерархическую нечеткую систему, узлами которой являются нечеткие системы типа Сугено с определяемым пользователем количеством входов, двумя термами-гауссианами на каждую входную переменную и одним линейным выходом.

Пример решения задачи оценивания

Рассмотрим оценивание с использованием иерархических нечетких систем на примере, взятом из работы [11].

Пусть известны результаты измерений $y_i = x + v_i$, i = 1, 2, ..., k, где k – общее количество измерений; x – измеряемая величина, равномерно распределенная на отрезке [0;b]; $\mathbf{v}_i = [v_1, v_2, ..., v_i]^T$ – вектор ошибок измерения, независимых друг от друга и от величины x, причем v_i – случайные величины с нулевым математическим ожиданием, равномерно распределенные на [-a/2; +a/2]; a, b – константы. Примем a = 1; b = 1.

Необходимо оценить x по результатам $i = \overline{1,k}$ измерений $\mathbf{y} = \mathbf{y}_i = [y_1, y_2, ..., y_i]^T$.

Для моделирования в среде MatLab генерировался обучающий массив данных $\{(\mathbf{y}^{(j)}, x^{(j)})\}, j = \overline{1, L}$ и тестовый массив данных $\{(\widetilde{\mathbf{y}}^{(j^*)}, \widetilde{x}^{(j^*)})\}, j^* = \overline{1, L^*}, L = 10000, L^* = 1000,$ количество измерений k = 7.

Проведено исследование шести иерархических нечетких систем:

FS1 — одноуровневая нечеткая система MISO типа Сугено с k входами, двумя термами-гауссианами на каждую входную переменную и одним линейным выходом (рис. 2);

FS2 — иерархическая q-уровневая нечеткая система при отсутствии дополнительного входа для первого слоя, с k входами, узлами которой являются нечеткие системы типа Сугено с 2 входами, 2 термами-гауссианами на каждый вход и 1 линейным выходом (схема аналогична представленной на рис. 3, без дополнительного входа для первого слоя);

FS3 — иерархическая q-уровневая нечеткая система с дополнительными входами у узлов первого слоя для использования оценки, полученной предыдущим узлом (рис. 3);

FS4 — иерархическая нечеткая система с k входами, узлами которой являются нечеткие системы типа Сугено с 2 входами, 2 термами-гауссианами на каждый вход и 1 линейным выходом. Одним из входов нечеткой системы является измерение, соответствующее номеру блока, а вторым — оценка с предыдущего блока (схема аналогична представленной на рис. 4, но только с одним измерением и оценкой на входе);

FS5 — иерархическая нечеткая система с k входами, узлами которой являются нечеткие системы типа Сугено с 3 входами, 2 термами-гауссианами на каждый вход и 1 линейным выходом. Одним из входов нечеткой системы является измерение, соответствующее номеру блока, вторым и третьим — измерение и оценка с предыдущего блока (схема аналогична представленной на рис. 4, но только с двумя измерениями и оценкой на входе);

FS6 — иерархическая нечеткая система с k входами, узлами которой являются нечеткие системы типа Сугено с 4 входами, 2 термами-гауссианами на каждый вход и 1 линейным выходом. Одним из входов нечеткой системы является измерение, соответствующее номеру блока, вторым и третьим — измерения, соответствующие номерам двух предыдущих блоков, а четвертым — оценка с предыдущего блока (рис. 4).

СКО ошибок нечеткого оценивания вычисляется как [11]:

$$\widetilde{\sigma}_i^{FS} \approx \sqrt{\frac{1}{l} \sum_{j=1}^{l} (e_i^{FS(j)})^2}$$
,

где
$$e_i^{FS(j)} = x^{(j)} - \widetilde{x}^{FS(j)}(\mathbf{y}^{(j)}, \widetilde{\mathbf{W}}), i = \overline{1,k}, l = \{L, L^*\}, FS = \overline{FS1, FS6}.$$

Для сравнения точности оценок, полученных с использованием нечетких систем, с оптимальной линейной оценкой и нелинейной оптимальной (в средне-квадратичном смысле) оценкой воспользуемся результатами работы [11].

СКО ошибок нелинейного оценивания вычисляются как: $\widetilde{\sigma}_i^* \approx \sqrt{\frac{1}{l} \sum_{j=1}^l (e_i^{(j)})^2}$,

где
$$e_i^{(j)} = x^{(j)} - \widetilde{x}^{(j)}(\mathbf{y}^{(j)}), i = \overline{1,k}, l = \{L, L^*\}.$$

На рис. 5а и 6а для обучающих, а на рис. 5б и 6б для тестовых данных представлены: $\widetilde{\sigma}_k^{Lin}$ — расчетное СКО ошибок линейного оценивания; $\widetilde{\sigma}_k^*$ — СКО ошибок нелинейного оценивания; $\widetilde{\sigma}_k^{FS1}$ — $\widetilde{\sigma}_k^{FS6}$ — СКО ошибок оценивания иерархическими нечеткими системами.

Puc. 5. СКО ошибок оценивания: а) на обучающей выборке; б) на тестовой выборке.

Puc. 6. СКО ошибок оценивания: а – на обучающей выборке; б – на тестовой выборке.

Быстродействие представленных алгоритмов оценивания с использованием нечетких систем может характеризоваться временем, затраченным на обучение нечеткой системы, которое для рассматриваемого примера представлено в таблице.

Тип	Время обучения в зависимости от числа измерений k , с						
нечеткой	1	2	3	4	5	6	7
системы	1	2	3	7	3	U	,
1 – FS1	1	2	4	17	82	958	32038
2 – FS2	1	2	5	6	7	9	11
3 – FS3	1	2	5	8	12	23	27
4 – FS4	1	3	5	7	9	11	13
5 – FS5	1	6	11	17	22	27	32
6 – FS6	1	6	23	40	57	74	91

Обучение проводилось на компьютере IntelCeleron 2.0 GHz, 2.5 GB ОЗУ.

Заключение

Реализация оптимальных нелинейных алгоритмов с помощью нечетких систем вызывает на практике значительные вычислительные трудности при обучении нечеткой системы при количестве входов большем чем 5. Для их преодоления были предложены субоптимальные системы оценивания — иерархические нечеткие системы, построенные на основе принципа декомпозиции и эвристик.

Показано, что с помощью иерархических нечетких систем может быть достигнута высокая точность оценивания, близкая к предельно достижимой точности оптимального нелинейного алгоритма.

При этом скорость обучения иерархических нечетких систем значительно выше скорости обучения одноуровневых нечетких систем.

ЛИТЕРАТУРА

- 1. *Круглов В.В., Дли М.И., Голунов Р.Ю.* Нечеткая логика и искусственные нейронные сети. М.: Изд-во физ.-мат. лит-ры, 2001.
- 2. *Медич Дж.* Статистически оптимальные линейные оценки и управление / пер с англ. под ред. А.С. Шаталова. М.: Энергия, 1973.
- 3. *Степанов О.А.* Применение теории нелинейной фильтрации в задачах обработки навигационной информации. СПб.: ГНЦ РФ–ЦНИИ «Электроприбор», 1998.
- 4. *Амосов О.С.* Фильтрация марковских последовательностей на основе байесовского, нейросетевого подходов и систем нечеткой логики при обработке навигационной информации // Известия РАН. Теория и системы управления. 2004. Т. 43. № 4. С.61-69.
- 5. *Амосов О.С.* Системы нечеткой логики для фильтрации марковских последовательностей // Информационные технологии. -2004. -№ 11. C. 16-24.
- 6. *Amosov O.S., Amosova L.N.* Optimal estimation by using fuzzy systems // Proc. of the 17-th World Congress IFAC. Seoul, Korea. 2008. P.6094-6099.
- 7. *Амосов О.С., Магола Д.С., Малашевская Е.А.* Оценивание случайных последовательностей с использованием нечетких систем и кластеризации // Информатика и системы управления. 2012. № 1 (31). С.146—155.

Интеллектуальные системы 2013. №3(37)

- 8. *Степанов О.А., Амосов О.С.* Нерекуррентное линейное оценивание с использованием нейронной сети // Материалы III Всероссийской конф. «Математика, информатика, управление». Иркутск. 2004. С.1-12.
- 9. Stepanov O.A., Amosov O.S. Nonrecurrent linear estimation and neural networks // Proc. of Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP) IFAC and Workshop on Periodic Control Systems (PSYCO) IFAC. Yokohama, Japan. 2004. P.213-218.
- 10. Степанов О.А., Амосов О.С. Байесовское оценивание с использованием нейронной сети // Авиакосмическое приборостроение. -2004. -№ 6. -C.46-55.
- 11. Stepanov O.A., Amosov O.S. Optimal estimation by using neural networks // Proc. of the16-th World Congress IFAC. Prague, Czech Republic, 2005.
- 12. *Месарович М., Такахара Я*. Общая теория систем: Математические основы / пер. с англ. М.: Мир, 1978.

Статья представлена к публикации членом редколлегии А.М. Шпилевым.

E-mail:

Амосов Олег Семенович – osa18@yandex.ru; Малашевская Елена Анатольевна – mea@email.kht.ru; Баена Светлана Геннадьевна – svetlana.baena@yandex.ru.

УДК 004.4:61

© 2013 г. М.Ю. Черняховская, д-р мед. наук, Ф.М. Москаленко, канд. техн. наук, М.В. Петряева, канд. мед. наук (Институт автоматики и процессов управления ДВО РАН, Владивосток)

ФОРМАЛЬНОЕ ОПИСАНИЕ ЗАБОЛЕВАНИЯ «ОСТРЫЙ КОЛИТ»*

В работе на основе проведенного системного анализа знаний о заболевании "острый колит" выполнено формальное описание этого заболевания по структуре модели онтологии медицинской диагностики.

Ключевые слова: база знаний о заболевании, база наблюдений, группа наблюдений, наблюдение, модальность, клиническое проявление, медицинская диагностика.

Введение

Разработка фондов диагностических медицинских знаний, отвечающих сегодняшним представлениям экспертов в этой области, является актуальной задачей, решение которой позволяет расширять функционал современных систем медицинской диагностики, в частности — компьютерного банка знаний [1]. Преимуществами данной

-

 $^{^*}$ Работа выполнена при финансовой поддержке РФФИ (проект 11-07-00460-а) и ДВО РАН (проект 12-III-A-01-016).