The matrices of PCA

- **CV** = **PV**
- C: covariance matrix
 - C_{kl} is the covariance between dimensions k and l.
 - Usually empirically estimated from data.
- V: matrix of column *eigenvectors*
 - V_{kI} is the
 - importance of the original coordinate k
 - in the transformed coordinate I.

- known as the principal components
- the columns are orthonormal vectors
- P: diagonal matrix of eigenvalues
 - $P_{kl} = \lambda_{kl}$ if k = 1
 - $P_{kl} = 0$ otherwise
 - variances in transformed coordinate system
 - scaling of the eigenvectors
- All three matrices have the same size

PCA analysis of molecular simulation

- In a molecular simulation, it could be helpful to visualize
 - the principal components themselves
 - the variance and cumulated variance
 - the projections onto the principal components in one or more dimensions
 - time series
 - histograms
- See <u>PCA.ipynb</u>, which shows PCA analysis for a simulation of ubiquitin