noiref

ngmh

December 2019

Contents

1	Dat	a Structures	3
	1.1	Prefix Sums	3
		1.1.1 1D	3
		1.1.2 2D	3
	1.2	Sparse Table	3
		1.2.1 1D	3
		1.2.2 2D	4
	1.3		4
			4
			4
			4
	1.4		5
			5
			5
		v 1 0 0	6
			6
			7
			7
			' 7
		1.4.7 2D	•
2	Gra	ph Theory	8
	2.1	- v	8
	2.2	•	8
	2.3		8
	2.4	V	9
	2.5	J.	9
	2.6		9
	2.7	Minimum Spanning Tree	
	2.1	2.7.1 Kruskal	
		2.7.2 Prim's	
	2.8	Bipartite Matching	
	2.9	Articulation Points	
	-	Bridges	
		Strongly Connected Components	
		Trees	
	2.12	2.12.1 Diameter	
		2.12.1 Diameter $2.12.2 \ 2^K$ Decomposition	
		2.12.3 Lowest Common Ancestor	
		2.12.4 All Pairs Shortest Path	
		2.12.5 Preorder	
		2.12.6 Postorder	
		2.12.7 Subtree to Range	
		2.12.8 Leaf Pruning	
		2.12.9 Weighted Maximum Independent Set	
		2.12.10 Heavy-Light Decomposition	5

		2.12.11 Centroid Decomoposition
3	Dyr	namic Programming 16
	3.1	Coin Change
	3.2	Coin Combinations
	3.3	Knapsack
		3.3.1 0-1
		3.3.2 0-K
	3.4	Longest Increasing Subsequence
		$3.4.1 N^2 \dots \dots$
		$3.4.2 NlogN \dots 17$
		3.4.3 Optimal
	3.5	Longest Common Subsequence
	0.0	$3.5.1 N^2 $
		3.5.2 Longest Increasing Subsequence
	3.6	Digits
	3.7	Convex Hull Speedup
	3.8	Divide and Conquer
	5.0	Divide and Conquer
4	Mat	h
	4.1	Greatest Common Divisor
	4.2	Lowest Common Multiple
	4.3	Modular Functions
		4.3.1 Multiplication
		4.3.2 Exponentiation
	4.4	Primes
		4.4.1 Sieve of Eratosthenes
		4.4.2 Prime Factorisation
	4.5	Fibonacci
	4.6	nC_k
	4.0	\mathcal{O}_k
5	Alg	orithms 21
	5.1	Discretisation
	5.2	Binary Search
	5.3	Mo's Algorithm
6	Mis	scellaneous 23
	6.1	Macros + Functions + Variables
	6.2	Compile Commands
		6.2.1 Compile
		6.2.2 Build
		6.2.3 Command Line
		6.2.4 Simple Script
	6.3	Input/Output
		6.3.1 Fast
		6.3.2 Faster
	6.4	Pruning
	6.5	Optimise
	0.0	Opumbe

1 Data Structures

Data Structure	Precomputation / Update	Query	Memory	Notes
Prefix Sum	O(N) / X	O(1)	O(N)	Associative Functions (+, XOR)
Sparse Table	O(N log N) / X	O(1)	O(N log N)	Non-Associative Functions (max, gcd)
Fenwick Tree	X / O(log N)	O(log N)	O(N)	Prefix Sum with Updates
Segment Tree	X / O(log N)	O(log N)	O(4N)	Allows more Information

Table 1:

1.1 Prefix Sums

Prefix Sums rely on the Principle of Inclusion and Exclusion. By adding and subtracting the correct prefixes, we can determine the answer for any subarray.

This idea can be extended to multiple dimensions as well, but beyond 2 it gets slightly cancerous.

Query: O(1) Update: X

1.1.1 1D

```
1 //Query - 1-Indexed
2 int query(int s, int e){
3    return ps[e]-ps[s-1];
4 }
5
6 //Precomputation
7 for(int i = 1; i <= n; i++) ps[i] = ps[i-1]+a[i];</pre>
```

1.1.2 2D

```
//Query - 1-Indexed
   int query(int x1, int y1, int x2, int y2){
3
        return ps[x2][y2]-ps[x1-1][y2]-ps[x2][y1-1]+ps[x1-1][y1-1];
   }
4
5
6
   //Precomputation
7
   for(int i = 1; i <= r; i++){</pre>
       for(int j = 1; j <= c; j++){</pre>
8
9
            ps[i][j] = ps[i-1][j]+ps[i][j-1]-ps[i-1][j-1]+a[i][j];
10
       }
11
   }
```

1.2 Sparse Table

Sparse Tables to me, are Prefix Sums on steroids. Instead of using prefixes, we use subarrays with sizes which are powers of 2. Then, any query will need at most 2 of the calculated subarrays.

Query: O(1) Update: X

1.2.1 1D

```
1  //Query
2  int query(int 1, int r){
3    r++;
4    int p = 31-__builtin_clz(r-1);
5    return __gcd(sp[p][1], sp[p][r-(1<<p)]);</pre>
```

```
6
   }
7
8
   //Precomputation
9 h = floor(log2(n));
   for(int i = 0; i < n; i++) sp[0][i] = a[i];</pre>
   for(int i = 1; i <= h; i++){</pre>
11
        for(int j = 0; j+(1 << i) <= n; j++){}
12
13
            sp[i][j] = \__gcd(sp[i-1][j], sp[i-1][j+(1<<(i-1))]);
14
        }
15
   }
```

1.2.2 2D

1 Not Implemented Yet!

1.3 Fenwick Trees

Fenwick Trees essentially act the same as prefix sums, except that they can perform updates. However, the complexity of code varies depending on what kind of queries and updates are needed. One cool use case is for range maximum, but only works when updates are strictly non-decreasing.

Query: O(log N) Update: O(log N)

1.3.1 Point Update, Range Query

```
int ls(int x) \{ return (x) & (-x); \}
1
2
3
   void pu(int i, int v){
4
       for(; i <= n; i += ls(i)) fw[i] += v;</pre>
5
   }
6
   int pq(int i){
7
        int t = 0;
8
        for(; i; i -= ls(i)) t += fw[i];
9
        return t;
   }
10
   int rq(int s, int e){
11
12
        return pq(e)-pq(s-1);
13
   }
```

1.3.2 Range Update, Point Query

```
int ls(int x){ return (x)&(-x); }

//PURQ Code (PU, PQ)

void ru(int s, int e, int v){
 pu(s, v);
 pu(e+1, -v);
}
```

1.3.3 Range Update, Range Query

```
int ls(int x) \{ return (x) & (-x); \}
1
2
3
   //PURQ Code (PU, PQ)
   //Modify functions:
4
5
   //int pu(*tree...
6
7
   void ru(int s, int e, int v){
8
       pu(fw1, s, v);
       pu(fw1, e+1, -v);
9
10
       pu(fw2, s, -v*(s-1));
       pu(fw2, e+1, v*e);
11
12
13
   int ps(int i){
       return pq(fw1, i)*i+pq(fw2, i);
14
15
  }
16
   int rq(int s, int e){
17
        return ps(e)-ps(s-1);
18
   }
```

1.4 Segment Trees

Segment Trees need more memory and code to implement, but are much more powerful, since more information can be stored in each node. They can be used for anything really, e.g. finding the Kth largest element, and Maxsum.

Query: $O(\log N)$ Update: $O(\log N)$

1.4.1 1D

```
1
   struct node {
2
        int s, e, m, v;
3
        node *1, *r;
        node(int _s, int _e){
4
5
            s = _s; e = _e; m = (s+e)/2; v = 0;
            if(s != e){
6
7
                1 = new node(s, m);
8
                r = new node(m+1, e);
9
            }
10
        }
11
        void pu(int x, int y){
            if(s == e){ v = y; return; }
12
13
            if(x \le m) 1 -> pu(x, y);
14
            if(x > m) r -> pu(x, y);
15
            v = min(1->v, r->v);
16
        }
17
        int rq(int x, int y){
            if(s == x && e == y) return v;
18
            if(y <= m) return l->rq(x, y);
19
20
            if(x > m) return r->rq(x, y);
21
            return min(l->rq(x, m), r->rq(m+1, y));
22
        }
23
   } *root;
```

1.4.2 Lazy Propagation - Range Add

```
1
   int pu(){
2
        if(s == e){ v += lazy; lazy = 0; return v; }
        v += lazy;
3
        1->lazy += lazy; r->lazy += lazy;
4
5
        lazy = 0;
6
        return v;
7
   }
8
9
   void ru(int x, int y, int z){
        if(s == x && e == y){ lazy += z; return; }
10
        if(y <= m) l->ru(x, y, z);
11
        else if(x > m) r->ru(x, y, z);
12
13
        else l->ru(x, m, z), r->ru(m+1, y, z);
14
        v = max(1->pu(), r->pu());
15 }
16
17
   int rq(int x, int y){
18
        pu();
        if(s == x && e == y) return pu();
19
20
        if(y <= m) return 1->rq(x, y);
21
        if (x > m) return r \rightarrow rq(x, y);
22
        return max(1->rq(x, m), r->rq(m+1, y));
23 }
```

1.4.3 Lazy Propagation - Range Add + Set

1 Not Implemented Yet!

1.4.4 Maxsum Tree

```
struct node {
2
       ll s, e, m, ps, ss, ms, ts;
3
       node *1, *r;
       node(ll _s, ll _e){
4
5
            s = _s; e = _e; m = (s+e)/2; ps = ss = ms = ts = 0;
            if(s != e){
6
7
                1 = new node(s, m);
8
                r = new node(m+1, e);
9
            }
       }
10
11
        void pu(ll x, ll y){
12
            if(s == e){ ps = ss = ms = ts = y; return; }
13
            if(x \le m) 1 -> pu(x, y);
14
            if(x > m) r \rightarrow pu(x, y);
15
            //New Prefix Max - Left Prefix, Left + Right Prefix
16
            ps = max(1->ps, 1->ts+r->ps);
17
            //New Suffix Max - Right Suffix, Left Suffix + Right
18
            ss = max(r->ss, r->ts+l->ss);
19
            //Total Sum - Left + Right
20
            ts = 1->ts+r->ts;
            //Maxsum - Left Suffix + Right Prefix, Left, Right,
21
22
                       Total, Left Maxsum, Right Maxsum
23
            ms = max(\{1->ss+r->ps, ps, ss, ts, 1->ms, r->ms\});
24
       }
25
       ll ans(){
26
            return ms;
```

```
27 }
28 } *root;
```

1.4.5 Order Statistic Tree - More than K

1 Not Implemented Yet!

1.4.6 Order Statistic Tree - More than K + Updates

1 Not Implemented Yet!

1.4.7 2D

```
1
   struct node2D {
2
       int s, e, m;
3
       node1D *maxi;
4
       node2D *1, *r;
5
       node2D(int a, int b, int c, int d){
            s = a; e = b; m = (s+e)/2;
6
7
            maxi = new node1D(c, d);
8
            if(s != e){
                1 = new node2D(s, m, c, d);
9
10
                r = new node2D(m+1, e, c, d);
            }
11
12
       }
13
       void pu(int a, int b, int v){
14
            if(s == e){ maxi->pu(b, v); return; }
15
            if(a <= m) 1->pu(a, b, v);
16
            else r \rightarrow pu(a, b, v);
17
            maxi->pu(b, max(1->maxi->rq(b, b), r->maxi->rq(b, b)));
18
       }
        int rq(int a, int b, int c, int d){
19
20
            if(s == a && e == b) return maxi->rq(c, d);
21
            if(b <= m) return 1->rq(a, b, c, d);
22
            if (a > m) return r \rightarrow rq(a, b, c, d);
23
            return max(1->rq(a, m, c, d), r->rq(m+1, b, c, d));
24
       }
25 } *root;
```

2 Graph Theory

Graph Algorithm	Complexity	Notes
DFS	O(N)	Connectedness
BFS	O(N)	Unweighted Shortest Path
Floyd-Warshall	O(N^3)	All Pairs Shortest Path
Dijkstra	O(E log E)	Single Source Shortest Path
TSP	O(2^N)	Visiting All Nodes
UFDS	O(1)	Amortized
MST - Kruskal	O(E)	Greedy
MST - Prim's	O(E log E)	Dijkstra
Bipartite Matching	?	2 Sets of Nodes
Articulation Points	?	Node Splits Graph
Bridges	?	Edge Splits Graph
SCC	?	Cycles

Table 2: Quick Summary of General Graph Algorithms

2.1 Depth First Search

```
void dfs(int x, int p){
1
       for(auto it : adj[x]){
2
3
            if(it != p){
                par[it] = x;
4
                dep[it] = dep[x]+1;
6
                dist[it] = dist[x]+1;
                dfs(it, x);
8
            }
       }
9
10
   }
```

2.2 Breadth First Search

```
d[nx][ny] = 0;
1
   q.push(pi(sx, sy));
   while(!q.empty()){
       pi f = q.front(); q.pop();
4
       for(int i = 0; i < 4; i++){</pre>
5
            nx = f.first+dx[i];
6
           ny = f.second+dy[i];
7
            if(nx < 0 || ny < 0 || nx >= h || ny >= w) continue;
8
9
            if(d[nx][ny] != -1) continue;
            d[nx][ny] = d[f.first][f.second]+1;
10
11
            q.push(pi(nx, ny));
12
       }
13
   }
```

2.3 Floyd-Warshall

```
1 for(int i = 0; i < n; i++){
2    for(int j = 0; j < n; j++){
3         if(i == j) adj[i][j] = 0;
4         else adj[i][j] = INT_MAX;
5    }</pre>
```

```
6 }
7 for(int k = 0; k < n; k++){
8    for(int i = 0; i < n; i++){
9        for(int j = 0; j < n; j++){
10            adj[i][j] = min(adj[i][j], adj[i][k]+adj[k][j]);
11        }
12    }
13 }</pre>
```

2.4 Dijkstra

```
1
   priority_queue<pi, vector<pi>, greater<pi> > pq;
2 \text{ dist[s]} = 0;
   pq.push(pi(0, s));
   while(!pq.empty()){
       pi f = pq.top(); pq.pop();
5
6
       for(auto it:adj[f.second]){
7
            if(dist[it.first] == -1 || dist[it.first] > f.first+it.second){
                dist[it.first] = f.first+it.second;
8
9
                pq.push(pi(dist[it.first], it.first));
            }
10
11
       }
12
   }
```

2.5 Travelling Salesman Problem

```
long long adj[14][14], dp[8200][14];
2
3
  //start with 1, 0
   //mask is 0 visited, at node 0
   long long tsp(long long mask, long long pos){
5
6
        if(mask == visited) return adj[pos][0];
7
       if(dp[mask][pos] != -1) return dp[mask][pos];
8
       long long ans = LLONG_MAX;
9
        for(int i = 0; i < m; i++){</pre>
10
            if((mask&(1<<i)) == 0){
11
                long long newans = adj[pos][i]+tsp(mask|(1<<i), i);</pre>
12
                ans = min(ans, newans);
13
            }
14
       }
15
        return dp[mask][pos] = ans;
16
   }
17
18
19 visited = (1 << m)-1;
20
   res = tsp(1, 0);
   if(res < 0) cout << "-1";</pre>
21
22 else cout << res;
```

2.6 Union Find Disjoint Subset

```
int root(int x){
    if(p[x] == -1) return x;
    return p[x] = root(p[x]);
4 }
```

```
5 void connect(int x, int y){
6    p[root(x)] = root(y);
7 }
```

2.7 Minimum Spanning Tree

2.7.1 Kruskal

```
sort(edgs.begin(), edgs.end());
for(auto it:edgs){
    if(root(it.second.first) != root(it.second.second)){
        connect(it.second.first, it.second.second);
        cost += it.first;
}
```

2.7.2 Prim's

```
priority_queue < pi, vector < pi >, greater < pi > pq;
2 \text{ dist[s]} = 0;
   pq.push(pi(0, s));
   while(!pq.empty()){
4
       pi f = pq.top(); pq.pop();
5
6
       for(auto it:adj[f.second]){
            if(dist[it.first] == -1 || dist[it.first] > max(f.first,it.second)){
7
8
                dist[it.first] = max(f.first, it.second);
9
                pq.push(pi(dist[it.first], it.first));
10
            }
       }
11
12
   }
```

2.8 Bipartite Matching

```
bool dfs(int u){
2
        if(v[u]) return 0;
        v[u] = 1;
3
4
        for(auto v:adj[u]){
5
            if (match[v] == -1 || dfs(match[v])){
                match[v] = u;
6
7
                match[u] = v;
8
                return 1;
9
            }
10
        }
11
        return 0;
12
   }
   memset(match, -1, sizeof(match));
14
   for(auto lit:ho){
15
        for(auto rit:adj[lit]){
16
            if(match[rit] == -1){
17
                match[rit] = lit;
18
                match[lit] = rit;
19
                mcbm++;
20
                break;
21
            }
22
        }
```

```
23  }
24  for(auto lit:ho){
25    if(match[lit] == -1){
26        memset(v, 0, sizeof(v));
27        mcbm += dfs(lit);
28    }
29  }
30  mis = n-mcbm;
```

2.9 Articulation Points

```
void atp(int node, int depth){
1
2
       vi[node] = 1;
       dep[node] = depth;
3
4
       low[node] = depth;
       for(auto it:adj[node]){
5
6
            if(!vi[it]){
                par[it] = node;
                atp(it, depth+1);
9
                chi[node]++;
10
                if(low[it] >= dep[node]) atps[node]++;
                low[node] = min(low[node], low[it]);
11
12
           } else if(it != par[node]){
13
                low[node] = min(low[node], dep[it]);
14
           }
       }
15
16 }
  atp(0, 0);
17
18 // root -> chi[i]
19 // other -> atps[i]+1
```

2.10 Bridges

```
1
   void bridges(int x, int par){
2
       if (dep[x] != -1) return;
       dep[x] = low[x] = co++;
3
       int t = 0;
4
5
        for(auto it:adj[x]){
6
            if(it == par && t == 0){ t++; continue; }
7
            if (dep[it] != -1){
8
                if(low[it] > dep[x]) bgs.push_back(pi(x, it));
9
                low[x] = min(low[x], low[it]);
10
                continue;
            }
11
12
            bridges(it, x);
13
            if(low[it] > dep[x]) bgs.push_back(pi(x, it));
14
            low[x] = min(low[x], low[it]);
15
       }
16
   for(int i = 1; i <= n; i++) bridges(i, 0);</pre>
```

2.11 Strongly Connected Components

```
1 stack<int> s;
2 vector<int> cur, adj[100001];
```

```
3 set < int > adjscc [100001];
4 vector<vector<int> > comps;
   void scc(int v){
5
6
        idxs[v] = idx;
7
        lowlink[v] = idx;
8
        idx++;
9
        s.push(v);
10
        ins[v] = 1;
11
        for(auto w:adj[v]){
12
            if(idxs[w] == -1){
13
                scc(w);
14
                lowlink[v] = min(lowlink[v], lowlink[w]);
15
            } else if(ins[w]){
16
                lowlink[v] = min(lowlink[v], idxs[w]);
17
18
        }
19
        if(lowlink[v] == idxs[v]){
            cur.clear();
20
21
            w = 0;
            while(w != v){
22
23
                w = s.top(); s.pop();
24
                ins[w] = 0;
25
                cur.push_back(w);
26
27
            comps.push_back(cur);
28
        }
29 }
30 \text{ idx} = 1:
   memset(idxs, -1, sizeof(idxs));
   for(int i = 1; i <= n; i++){</pre>
32
        if(idxs[i] == -1) scc(i);
33
34 }
35 memset(com, -1, sizeof(com));
   for(int i = 0; i < comps.size(); i++){</pre>
        for(auto it:comps[i]) com[it] = i;
38 }
   for(int i = 1; i <= n; i++){</pre>
39
        for(auto it:adj[i]){
40
            if(com[i] != com[it]) adjscc[com[i]].insert(com[it]);
41
42
        }
43
   }
```

2.12 Trees

2.12.1 Diameter

```
pi dfs(int node, int par, int dist){
1
2
       pi b = pi(node, dist);
3
       for(auto it:adj[node]){
4
           if(it.first != par){
               pi c = dfs(it.first, node,dist+it.second);
5
               if(c.second > b.second) b = c;
6
           }
8
       }
9
       return b;
10 }
11 f = dfs(0, -1, 0);
12 = dfs(f.first, -1, 0);
```

2.12.2 2^K Decomposition

```
int par(int x, int k){
2
        for(int i = 19; i >= 0; i--){
            if(k >= (1<<i)){</pre>
3
                 if(x == -1) return x;
4
5
                 x = p[x][i];
6
                 k = (1 << i);
7
            }
        }
8
9
        return x;
10
   }
11
   memset(p, -1, sizeof(p));
12
   dfs(0);
   for(int k = 1; k <= 19; k++){</pre>
14
15
        for(int i = 0; i < n; i++){</pre>
            if(p[i][k-1] != -1) p[i][k] = p[p[i][k-1]][k-1];
16
        }
17
18
   }
```

2.12.3 Lowest Common Ancestor

```
int lca(int x, int y){
1
2
       if(dep[x] < dep[y]) swap(x, y);
3
       for(int k = 19; k \ge 0; k--){
            if(p[x][k] != -1 && dep[p[x][k]] >= dep[y]) x = p[x][k];
4
5
6
       if(x == y) return x;
7
       for(int k = 19; k \ge 0; k--){
            if(p[x][k] != p[y][k]){
8
9
                x = p[x][k];
10
                y = p[y][k];
11
            }
12
       }
13
       return p[x][0];
14
   }
```

2.12.4 All Pairs Shortest Path

```
int distance(int x, int y){
    return dist[x]+dist[y]-2*dist[lca(x, y)];
}
```

2.12.5 Preorder

```
// UNTESTED
void dfs(int x, int par){
    c++;
    pre[x] = c;
    for(auto it:adj[x]){
        if(it != par) dfs(adj[it], x);
}
```

```
7 }
8 }
```

2.12.6 Postorder

```
// UNTESTED
void dfs(int x, int par){
    c++;
    for(auto it:adj[x]){
        if(it != par) dfs(adj[it], x);
    }
    post[x] = c;
}
```

2.12.7 Subtree to Range

```
1
  int dfs(int x, int par){
2
       c++;
3
       pre[x] = c;
4
       for(auto it:adj[x]){
5
           if(it != par) rig[pre[x]] = max(rig[pre[x]], dfs(it, x));
6
       if(rig[pre[x]] == 0) rig[pre[x]] = pre[x];
8
       return rig[pre[x]];
9 }
10 // node -> pre[x]
  // children -> pre[x]+1, rig[pre[x]]
```

2.12.8 Leaf Pruning

```
for(int i = 1; i <= n; i++){</pre>
2
       if(adj[i].size() == 1) leafs.push(i);
3
  }
   while(!leafs.empty()){
4
5
       u = leafs.front(); leafs.pop();
6
       t = adj[u][0];
       adj[t].erase(find(adj[t].begin(), adj[t].end(), u));
7
       if(adj[t].size() == 1) leafs.push(t);
8
       adj[u].erase(find(adj[u].begin(), adj[u].end(), t));
9
10
  }
```

2.12.9 Weighted Maximum Independent Set

```
int mis(int v, bool take, int p){
       if(dp[v][take] != -1) return dp[v][take];
2
       int ans = take*c[v];
3
       for(auto it:adj[v]){
4
5
           if(it == p) continue;
6
           int temp = mis(it, 0, v);
           if(!take) temp = max(temp, mis(it, 1, v));
           ans += temp;
8
9
       }
10
       return dp[v][take] = ans;
11 }
```

```
12 void ans(int v, bool take, int p){
       for(auto it:adj[v]){
13
14
            if(it == p) continue;
            int temp0 = dp[it][0], temp1 = (take ? -1 : dp[it][1]);
15
            if(temp0 > temp1) ans(it, 0, v);
16
17
            else { a.push_back(it); ans(it, 1, v); }
       }
18
19
   }
20 mis(0, 0, -1);
21 \text{ mis}(0, 1, -1);
22 if(dp[0][1] > dp[0][0]){ a.push_back(0); ans(0, 1, -1); }
23 else ans (0, 0, -1);
```

2.12.10 Heavy-Light Decomposition

```
int dfs(int node){
1
2
       int size = 1, max_c = 0;
3
       for(auto it:adj[node]){
4
            if(it.s != par[node]){
5
                par[it.s] = node; dep[it.s] = dep[node]+1;
                int c_size = dfs(it.s);
6
 7
                size += c_size;
8
                if(c_size > max_c){ max_c = c_size; heav[node] = it.s; }
9
            }
10
       }
11
       return size;
12
   }
   void decomp(int node, int hea){
13
14
       head[node] = hea; pos[node] = c_pos++;
15
       if(heav[node] != -1) decomp(heav[node], hea);
       for(auto it:adj[node]){
16
            if(it.s == par[node]) continue;
17
18
            if(it.s != heav[node]) decomp(it.s, it.s);
19
            root ->update(pos[it.s], it.f);
20
       }
21
   }
22
   int query(int a, int b){
23
       int res = 0;
24
       for(; head[a] != head[b]; b = par[head[b]]){
25
            if(dep[head[a]] > dep[head[b]]) swap(a, b);
26
            res = max(res, root->query(pos[head[b]], pos[b]));
27
28
       if(dep[a] > dep[b]) swap(a, b);
29
       res = max(res, root->query(pos[a]+1, pos[b]));
       return res;
30
31 }
32 dfs(0);
33 decomp(0, 0);
```

2.12.11 Centroid Decomoposition

```
Decompose Tree into Centroid Tree
where the node is central
Use them to speed queries up
```

3 Dynamic Programming

DP Algorithm	Complexity	Notes
Coin Change	O(NV)	
Coin Combinations	O(NV)	
Knapsack - 0-1	O(NS)	
Knapsack - 0-K	O(log2(K)+NS)	
LIS - Naive	O(N^2)	
LIS - DS / Optimal	O(N log N)	
LCS	O(N^2)	
LCS - LIS	O(N log N)	
Digits	O(10—N—)	
Convex Hull Speedup	O(N)	Amortized
Divide and Conquer	O(N log N)	

Table 3: Quick Summary of General Dynamic Programming Algorithms

3.1 Coin Change

```
1 dp[0] = 0;
2 for(int i = 1; i <= v; i++){
3    dp[i] = INT_MAX;
4    for(int j = 0; j < n; j++){
5        if(i >= c[j]) dp[i] = min(dp[i], dp[i-c[j]]+1);
6    }
7 }
```

3.2 Coin Combinations

```
ways[0] = 1;
for(int i = 0; i < c; i++){
    for(int j = 1; j <= v; j++){
        if(j >= coins[i]) ways[j] += ways[j-coins[i]];
}
```

3.3 Knapsack

3.3.1 0-1

```
for(int i = 0; i < n; i++){
    for(int j = s; j >= w[i]; j--){
        dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
4    }
5 }
```

3.3.2 0-K

```
//further speedup:
//take top s/w most valued items
//for every possible item
//not just multiple copies of one item
for(int i = 0; i < n; i++){</pre>
```

```
7
       cin >> v >> w >> k;
8
       k = min(k, s/w);
9
        c = 1;
10
        while(true){
            if(k < c) break;</pre>
11
12
            items.push_back(pi(v*c, w*c));
13
            k -= c;
14
            c *= 2;
15
        }
16
        if(k != 0) items.push_back(pi(v*k, w*k));
17 }
18
   for(auto it :items){
19
        for(int i = s; i >= it.second; i--){
            dp[i] = max(dp[i], dp[i-it.second]+it.first);
20
21
22
   }
```

3.4 Longest Increasing Subsequence

3.4.1 N^2

```
for(int i = 0; i < n; i++){
    for(int j = 0; j < i; j++){
        if(a[j] < a[i]) lis[i] = max(lis[i], lis[j]);
}
lis[i]++;
ans = max(ans, lis[i]);
}
</pre>
```

$3.4.2 \quad NlogN$

```
for(int i = 0; i < n; i++){
    t = query(a[i]-1)+1;
    update(a[i], t);
    ans = max(ans, t);
}</pre>
```

3.4.3 Optimal

```
for(int i = 0; i < n; i++){
    int p = lower_bound(dp, dp+l, a[i])-dp;
    dp[p] = a[i];
    l = max(p+1, l);
}</pre>
```

3.5 Longest Common Subsequence

3.5.1 N^2

```
int lcs(int al, int bl){
    if(al == 0 || bl == 0) return 0;
    if(dp[al][bl] != -1) return dp[al][bl];
    dp[al][bl] = max(lcs(al-1, bl), lcs(al, bl-1));
    if(a[al-1] == b[bl-1]) dp[al][bl] = max(dp[al][bl], lcs(al-1, bl-1)+1);
    return dp[al][bl];
```

3.5.2 Longest Increasing Subsequence

```
for(int i = 0; i < n; i++){ cin >> a[i].first; a[i].second = i+1; }
for(int i = 0; i < m; i++) cin >> b[i];
sort(a, a+n);
for(int i = 0; i < m; i++){
    p = lower_bound(a, a+n, pi(b[i], 0));
    if(p != a+n) c.push_back(p->second);
}
// Perform LIS on c
```

3.6 Digits

```
long long derp(int idx, int prev, int same, int allzero){
1
       if(idx == num.size()) return dp[idx][prev][same][allzero] = !allzero;
2
3
       if(dp[idx][prev][same][allzero] != -1) return dp[idx][prev][same][allzero];
4
       long long sum = 0, limit;
5
       if((!allzero && same) || (allzero && idx == 0)) limit = num[idx];
6
       else limit = 9;
7
       for(int i = 0; i <= limit; i++){</pre>
            if(i == 4) continue;
8
9
            if(allzero){
10
                if(i == 0) sum += derp(idx+1, 10, 1, 1);
                else sum += derp(idx+1, i, (idx == 0 && i == limit), 0);
11
12
           } else if(!(i == 3 && prev == 1)){
13
                if(same && i == num[idx]) sum += derp(idx+1, i, 1, 0);
14
                else sum += derp(idx+1, i, 0, 0);
            }
15
16
       }
17
       return dp[idx][prev][same][allzero] = sum;
18
   }
   void dcmp(long long x){
19
20
       num.clear();
       while (x > 0) { num.push_back(x%10); x /= 10; }
21
22
       reverse(num.begin(), num.end());
23
   }
   long long solve(long long x){
24
25
       if (memo.count(x) != 0) return memo[x];
26
       memset(dp, -1, sizeof(dp));
27
       dcmp(x);
28
       return memo[x] = derp(0, 10, 1, 1);
29
   }
```

3.7 Convex Hull Speedup

This speeds up any DP which is a quadratic function. A similar idea can also be done for linear functions but just using a set.

The important part is knowing how to rearrange the transition to get coefficients. Query: O(1) Update: O(1)

```
 \begin{array}{lll} 1 & // & dp(x) & = & \max(dp(i) + f(p(x) - p(i))) \\ 2 & // & = & \max(dp(i) + a(p(x) - p(i))^2 + b(p(x) - p(i)) + c) \\ 3 & // & = & \max(dp(i) + ap(x)^2 - 2ap(x)p(i) + ap(i)^2 + bp(x) - bp(i)) + c \end{array}
```

```
4 //
           = \max(dp(i)+ap(i)^2-bp(i)-2ap(x)p(i))+ap(x)^2+bp(x)+c
5 //
           = \max(c(i)+m(i)p(x))+v(x)
6 // c(i) = dp(i)+ap(i)^2-bp(i)
7 // m(i) = -2ap(i)
8 // v(x) = ap(x)^2+bp(x)+c
9 long long func(pi line, long long x){
       return line.first*x+line.second;
10
11
12
   long double intersection(long long m1, long long c1, long long m2, long long c2){
13
       return (long double)(c2-c1)/(m1-m2);
14 }
   long double intersect(pi x, pi y){
15
16
       return intersection(x.first, x.second, y.first, y.second);
17
18
   long long query(long long x){
19
       while(hull.size() > 1){
20
            if(func(hull[0], x) < func(hull[1], x)){</pre>
21
                hull.pop_front();
22
            } else break;
23
       }
24
       return func(hull[0], x);
25
   }
26
   void insert(long long m, long long c){
27
       pi line = pi(m, c);
28
       while(hull.size() > 1){
29
            long long s = hull.size();
30
            if(intersect(hull[s-1], line) <= intersect(hull[s-2], line)){</pre>
31
                hull.pop_back();
32
            } else break;
33
       }
34
       hull.push_back(line);
35
   }
36 insert(0, 0);
37
   for(int i = 1; i <= n; i++){</pre>
       dp[i] = query(ps[i])+a*ps[i]*ps[i]+b*ps[i]+c;
39
       insert(-2*a*ps[i], dp[i]+a*ps[i]*ps[i]-b*ps[i]);
40
   }
```

3.8 Divide and Conquer

```
long long cost(int s, int e){
2
       return (ps[e]-ps[s-1])*(e-s+1);
3 }
   void dnc(int s, int e, long long x, int y, int k){
4
5
       if(s > e) return;
6
       int m = (s+e)/2, best = 0;
7
       dp[m][k] = LLONG_MAX/2;
       for(int i = x; (i <= y && i <= m); i++){</pre>
8
9
            if(dp[m][k] > dp[i][!k]+cost(i+1, m)){
                dp[m][k] = dp[i][!k]+cost(i+1, m);
10
11
                best = i;
12
            }
13
14
       if(s < m) dnc(s, m-1, x, best, k);
       if(m < e) dnc(m+1, e, best, y, k);
15
16 }
  for(int i = 1; i <= n; i++) dp[i][0] = LLONG_MAX/2;</pre>
```

```
18 for(int i = 1; i <= g; i++){
19    for(int j = 1; j <= n; j++) dp[j][i%2] = LLONG_MAX/2;
20    dnc(0, n, 0, n, i%2);
21 }
```

4 Math

4.1 Greatest Common Divisor

```
1 // Alternatively, find highest common powers for each factor
2 int gcd(int a, int b){
3    if(b == 0) return a;
4    return gcd(b, a%b);
5 }
```

4.2 Lowest Common Multiple

```
1 // Alternatively, find highest powers for each factor
2 int lcm(int a, int b){
3    return (a*b)/gcd(a, b);
4 }
```

4.3 Modular Functions

4.3.1 Multiplication

```
int mulmod(int a, int b, int m) {
1
2
      int res = 0;
3
       while (b > 0) {
       if(b \% 2 == 1) res = (res+a)\%m;
4
           a = (a*2)\%m;
5
           b /= 2;
6
7
8
       return res % m;
9 }
```

4.3.2 Exponentiation

```
int powmod(int a, int b, int m) {
1
2
      int res = 1;
3
       while (b > 0) {
4
      if(b % 2 == 1) res = mulmod(res, a, m);
5
           a = mulmod(a, a, m);
6
           b /= 2;
7
       }
8
      return res % m;
  }
```

4.4 Primes

4.4.1 Sieve of Eratosthenes

```
1 memset(prime, 1, sizeof(prime));
2 prime[0] = prime[1] = 0;
3 for(int i = 2; i <= 1000000; i++){
4    if(prime[i]){
5       for(int j = 2; i*j <= 1000000; j++){
6          prime[i*j] = 0;
7     }
8  }
9 }</pre>
```

4.4.2 Prime Factorisation

```
while(x % 2 == 0){ cnt[2]++; x /= 2; }
for(int i = 3; i*i <= x+1; i += 2){
    while(x % i == 0){ cnt[i]++; x /= i; }
    if(x == 1) break;
}
if(x > 1) cnt[x]++;
```

4.5 Fibonacci

```
typedef pair < pi, pi > matrix;
1
  matrix multiply(matrix x, matrix y, long long z){
3
       return matrix(
4
               pi((x.f.f*y.f.f+x.f.s*y.s.f)%z,
5
                    (x.f.f*y.f.s+x.f.s*y.s.s)%z),
               pi((x.s.f*y.f.f+x.s.s*y.s.f)%z,
6
                    (x.s.f*y.f.s+x.s.s*y.s.s)%z));
7
8
  }
9
   matrix square(matrix x, long long y){
10
       return multiply(x, x, y);
11
12
   matrix power(matrix x, long long y, long long z){
       if(y == 1) return x;
13
14
       if (y \% 2 == 0) return square (power(x, y/2, z), z);
15
       return multiply(x, square(power(x, y/2, z), z);
16
  }
   long long fibo(long long n, long long m){
17
       matrix x = matrix(pi(1, 1), pi(1, 0));
19
       return power(x, n, m).f.s;
20 }
```

4.6 ${}^{n}C_{k}$

```
if(k > n-k) k = n-k;
for(int i = 0; i < k; i++){
    ans *= (n-i);
    ans /= (i+1);
}</pre>
```

5 Algorithms

5.1 Discretisation

```
1 for(int i = 0; i < n; i++){
2    cin >> a[i];
3    b[i] = a[i];
4 }
5 sort(b, b+n);
6 for(int i = 0; i < n; i++){
7    d = lower_bound(b, b+n, a[i])-b;
8    a[i] = d+1;
9 }</pre>
```

5.2 Binary Search

```
while(mini < maxi){
    medi = mini+(maxi-mini)/2;
    if(can(medi)) maxi = medi;
    else mini = medi+1;
}</pre>
```

5.3 Mo's Algorithm

```
1 //queries : index, left, right
 2 //answers : index, answer
3
   bool cmp(pii x, pii y){
4
       if(x.second.first/blk != y.second.first/blk){
5
6
            return x.second.first/blk < y.second.first/blk;</pre>
 7
        if(x.second.first/blk & 1){
8
9
            return x.second.second < y.second.second;</pre>
10
11
        return x.second.second > y.second.second;
12
   }
13
14 blk = sqrt(n);
15
   sort(qs, qs+q, cmp);
16
   for(int i = 0; i < q; i++){</pre>
17
        1 = qs[i].second.first; r = qs[i].second.second;
18
        while(lft > 1){
19
            //remove a[lft-1]
20
            lft--;
21
22
        while(rgt <= r){</pre>
23
            //add a[rgt]
24
            rgt++;
25
26
        while(lft < 1){</pre>
27
            //add a[lft]
28
            lft++;
29
30
        while(rgt > r+1){
31
            //remove a[rgt-1]
32
            rgt--;
33
34
        ans[i] = pi(qs[i].first, cur);
35 }
```

6 Miscellaneous

6.1 Macros + Functions + Variables

```
#define f first
#define s second
#define pb push_back
#define ins insert
int ls(int x){ return (x)&(-x); }
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
// 4 Directions
int dx[]={0, 0, -1, 1};
int dy[]={-1, 1, 0, 0};
// 8 Directions
int dx[]={0, 0, -1, 1, -1, 1, -1, 1};
int dy[]={-1, 1, -1, 1, 0, 0, 1, -1};
// Knight Moves
int dx[]={-1, -2, 1, 2, 2, 1, -2, 1};
int dy[]={-2, -1, -2, -1, 1, 2, 1, 2};
```

6.2 Compile Commands

6.2.1 Compile

```
1 g++ -c "%f" -std=c++11
```

6.2.2 Build

```
1 g++ -o "%e" "%f" -std=c++11
```

6.2.3 Command Line

```
1 g++ "file.cpp" -o "file" -std=c++11
```

6.2.4 Simple Script

```
int main(int argc, char **argv){
    system(g++ -o (argv[1]) (argv[1]).cpp -std=c++11);
}
```

6.3 Input/Output

6.3.1 Fast

```
ios_base::sync_with_stdio(false);
cin.tie(0);
```

6.3.2 Faster

```
inline int read_int() {
       int x = 0;
2
       char ch = getchar_unlocked();
3
       while (ch < '0' || ch > '9') ch = getchar_unlocked();
4
       while (ch >= '0' && ch <= '9'){</pre>
5
           x = (x << 3) + (x << 1) + ch - '0';
6
           ch = getchar_unlocked();
8
9
       return x;
10 }
```

6.4 Pruning

```
auto start = chrono::high_resolution_clock::now();
auto end = chrono::high_resolution_clock::now();
auto elapse = chrono::duration < double > (end - start);
if(elapse.count() > 2.9) break;
```

6.5 Optimise

```
1 int __attribute__((optimize("Ofast"), target("arch=sandybridge"))) f(){}
```