Note 06-Modeling

Metaverse

Modeling by polygon

- Polygonal geometry
 - Most common type of geometry

Creation

- All CG and CAD applications come equipped with a basic set of very similar tools
 - has their own special tools
- Follow three things:
 - Add detail
 - Remove detail
 - Modify detail

Creation

- Detail
 - vertices, edges, faces, or full objects
 - various ways to control how vertices, edges, and faces are added, deleted, or moved
- Move your vertices manually... --> impractical times ==> tricky modeling

Geometric Primitives

- Pre-defined common shapes
 - cones, cubes, cylinders, planes, spheres, and etc.
- box modeling (coarse to fine)

Fig. 6.1 A container of floss modeled using the box modeling technique

Direct input

Spline controls

 Spline: special type of curve that allows adjustment by manipulating tangent and control points

Spline controls

 A curve defined and then used as the basis for the shape of some polygonal geometry

Spline controls

Problem:

- to build a complex assembly of curved parts out of splines can be time-consuming
- But.. powerful for modeling of curved shape

NURBS

- Non-Uniform Rational B-spline curved Surface
- we will discuss it!

Conversion and Import

- Conversion
 - sub-division surface --> polygon
 - NURBS --> polygon
- Import
 - import the geometry which was made in another applications

Modification

- modify an existing object by...
 - adding to it
 - moving its elements
 - deleting parts of it

Adding Vertices

- Subdivision
 - draw new edges on every selected face or every face.
 - diamond pattern, squared pattern and etc.

Adding Vertices

- Extrusion
 - detaches the selected face or faces from its neighboring faces, then connects the two groups with new faces
 - edge extrusion
 - vertex extrusion
 - Face extrude around edge

Adding Vertices

- Face cutting
 - crete new edges and vertices by cutting across faces
 - several tools
 - controlled cuts
 - Place cuts
 - subdivision

Spline Creation

Loft and revolve

Deleting Vertices

- Delete points
 - Delete
 - Collapse
 - Cut
 - bevel

Fig. 6.6 Four tools that delete points: (1) delete, (2) collapse, (3) cut, (4) bevel

Booleans

 Evaluate two or more objects for intersection, and then a new polyset is created

Fig. 6.7 Three types of Boolean operation: (1) subtract first selected, (2) intersect, (3) subtract second selected

Part Modeling

Create model with many separate parts

Fig. 6.8 On *right*, a box-modeled section of stairs is all one piece. On *left*, different parts of the stairs are modeled as separate objects. When built as one piece, each part is incised into any part it contacts. This increases the poly count without providing structural information

NURBS

- NURBS geometry is used to create mathematically accurate curved surface
 - such as in automobiles and airplanes
 - for cinematic sequence : high resolution geomety

NURBS:Introduction

- Advantage of NURBS surface in film
 - render well and more easily controlled for animation than dense polygonal mesh
- In video game
 - rarely used,
 - used as intermediate object of polygonal model

NURBS define

Non-uniform rational Bezier spline

Fig. 14.2 Knot numbering is based on position within a curve, not ordinal value. If three knots are in the same location, they have the same value

Limitations

NURBS surface are always four-sided

Genus

 The genus of a surface describes its topological complexity based on the number of enclosed loop in the object

Fig. 14.4 Each of these columns of shapes are genus 0, 1, 2, and 3, respectively. The genus of any object is the number of completely enclosed holes

high genus models are more complicated to make with NURBS patches.

Surfaces and Curves

- Curves
 - always smoother!

- Control Vertices (CVs)
 - used to influence the shape of a curve
 - not embedded in a curve

- Degree
 - One-degree curve : perfectly straight line
 - Two-degree curve: third point is inserted between it's start and end points

• ...

- Tangency
 - is a line that touches but does not intersect a curve or surface

Fig. 14.7 Sections of a NURBS curve are built from tangent arcs

- Tangency in a NURBS
 - curve's out tangent is equal to another curve's in tangent at a common point

Fig. 14.8 Curves *A* and *B* are tangent to each other because their tangents are equal at their endpoints

Continuity?

- Isoparms
 - is a coordinate in the local space of the curve

- Curve on Surface
 - curve that has been projected onto a surface

Fig. 14.9 A curve is first projected to create a curve on surface. Then, the curve on surface is used to define a section of the surface to be trimmed away

Curve Intersection

•

Curve based modeling

Fig. 14.17 The surface on *left* was made by revolving curve 1. The surface on the *right* was built out of curves1-4. Other surfaces could be made from any one or combination of the four curves shown here, depending on the tool used

Surface

- NURBS surface is a parameter-baseed object
 - it may be edited by modifying parameters
 - Edit point position
 - Control vertex position
 - Control vertex weight
 - Number of Knots
 - Tangent length, direction
 - continuity... etc

NURBS Normals

 NURBS objects have more normals than polygonal object --> smoother render. why?

Fig. 14.21 A polygonal object has one normal per face (*left*), but a NURBS surface has potentially an infinite number, depending on its tessellation settings

NURBS Modeling

- with primitives
 - work best for shapes that have no significant insets of extrusion!

Fig. 14.20 A quick object layout can be made with a single NURBS patch, but it is not suitable if a high level of detail is needed

NURBS Modeling

• from curves

Fig. 14.22 To build this bicycle quick release lever, the surfaces have to be built in a specific order, as shown

NURBS Modeling

• from curves: Curve direction!

