4.1 Distances	4.5 Priority queue Implementation
distance blow two nodes): shortest puth blow two	
Breadth-first Search Depth-first search	@ Binary heap
Figure 4.3 Breadth-dirst search. Figure 3.5 Depth-dirst search.	(: Binary tree)
for all $u \in V$: $\operatorname{dist}(v) = \infty$	the key value of any node of the tree is
<pre>while Q is not empty:</pre>	less than ar equal to that of its children
가장 가까이도 2 3 2	+) d-ary heap: d children Bubble up -Insert: bottom 이 되 (출라면서 비교) Llog. N
obep inclusions in g	-decreasekey: 21m + Bubble up
queue in place of stack take long & compluted route	-deletemin: not am + last node \(\) noot3, \(\)301
	단경) not work if there are negative nodes
4.3 Dijkstra's Algorithm O((IVI+IED/ogIV	194.6 Shortest Paths In the presence of megative eq
Using priority queue (heap)	4 Bellman-Ford Algorithm O(1VI-1E1)
/ Insert 웹기팅기	Figure 4.13 The Bellman-Ford algorithm for single-source shortest paths in general graph procedure shortest-paths (G, l, s)
Decrease-key faltional (certain key)	Input: Directed graph $G=(V,E)$; edge lengths $\{l_e:e\in E\}$ with no negative cycles; vertex $s\in V$
Delete-min 1/2/22 key 2017	Output: For all vertices u reachable from s , $\operatorname{dist}(u)$ is set to the distance from s to u .
Maka ayeye o a effect	for all $u \in V$: $\mathtt{dist}(u) = \infty$ $\mathtt{prev}(u) = \mathtt{nil}$
igure 4.8 Dijkstra's shortest-path algorithm.	dist(s) = 0 repeat $ V - 1$ times: $dist(v) = min f dist(v),$ $dist(v) = min f dist(v),$ $dist(v) + f(u, v)$
positive edge lengths $\{l_e: e \in E\}$; vertex $s \in V$	for all $e \in E$: update(e)
the put in the distance from s , dist (u) is set to the distance from s to u .	72464th) Algorithm Conta
$egin{array}{ll} \operatorname{dist}(u) = \infty & \\ \operatorname{prev}(u) = \operatorname{nil} & \\ \operatorname{st}(s) = 0 & \end{array}$	1214+1) Negative Cycles
= makequeue(V) (using dist-values as keys) mile H is not empty: u = deletemin(H)	idistat द्वेणार्ट्य updatenka श्राट
for all edges $(u,v) \in E$: if $\operatorname{dist}(v) > \operatorname{dist}(u) + l(u,v)$: $\operatorname{dist}(v) = \operatorname{dist}(u) + l(u,v)$	
$\begin{split} & prev(v) = u \\ & decreasekey(H, v) \end{split}$	4.7 Shortest paths in dog.
	Figure 4.15 A single-source shortest-path algorithm for directed acyclic graphs.
P. 971 \$ (CUTIF2):	$\begin{array}{ll} \textbf{procedure dag-shortest-paths}(G,l,s)\\ \textbf{Input:} & \textbf{Dag } G = (V,E);\\ & \textbf{edge lengths } \{l_e:e\in E\}; \ \textbf{vertex } s\in V \end{array}$
_	Output: For all vertices u reachable from s , dist (u) is set to the distance from s to u .
priority queue oil <u>key (421) 7/ 42 ETH3</u> 5 Mallest dist 11141, rode 42, key 4193	for all $u \in V$: $\operatorname{dist}(u) = \infty$ $\operatorname{prov}(u) = \operatorname{pil}(u)$
771 LANI, node CE, key and 3	$ extstyle{prev}(u) = extstyle{nil}$ $ extstyle{dist}(s) = 0$
edae	Linearize G for each $u \in V$, in linearized order: for all edges $(u,v) \in E$:
edge assumptions: all lengths are positive	$\operatorname{update}(u,v)$
ı V	