2 LECTURE 2 HG101

$\mathbf{2}$ Lecture 2

The Hyperbolic Metric 2.1

The Hyperbolic Metric on \mathbb{H} is $ds_{hyp}^2 = \frac{dx^2 + dy^2}{y^2}$. We interpret this as an inner product at each tangent space.

Let $p = (x_0, y_0) \in \mathbb{H}$. the Tangent Space at this point is $T_p \mathbb{H} = \mathbb{R}^2$. Thus to specify an inner product on it we only need to give the inner product on the basis $\{e_1, e_2\}.$

Now (x,y) are coordinate for $\mathbb H$ (it is covered by a single chart). If the metric is given to be $\frac{dx^2+dy^2}{y^2}$ at the point p, the inner product on $T_p\mathbb{H}$ is defined by: $\langle e_1,e_1\rangle=\mathrm{coeff}$ of $dx^2=\frac{1}{y_0^2}$ $\langle e_2,e_2\rangle=\mathrm{coeff}$ of $dy^2=\frac{1}{y_0^2}$ $\langle e_1,e_2\rangle=\frac{1}{2}$ coeff of dxdy=0

$$\langle e_1, e_1 \rangle = \text{coeff of } dx^2 = \frac{1}{y_0^2}$$

$$\langle e_2, e_2 \rangle = \text{coeff of } dy^2 = \frac{1}{y_0^2}$$

$$\langle e_1, e_2 \rangle = \frac{1}{2} \text{ coeff of } dxdy = 0$$

2.2 The Riemann Sphere \mathbb{C}_{∞}

The Riemann Sphere is defined to be $\mathbb{C}_{\infty} := \mathbb{C} \bigcup \{\infty\}$ We give a topology on it by declaring the following sets as open in \mathbb{C}_{∞} :

- 1. $U \subset \mathbb{C}$ open in \mathbb{C}
- 2. $(\mathbb{C} \setminus K) \cup \{\infty\}$ where K is compact in \mathbb{C} .

2.3 Stereographic Projection

For S^1 :

$$S^1 \setminus \{i\} \cong \mathbb{R} \text{ and } \mathbb{R} \cup \{\infty\} \cong S^1$$

HG101 2 LECTURE 2

For S^2 :

$$S^2 \setminus \{n\} \cong \mathbb{R}^2 \text{ and } \mathbb{R}^2 \cup \{\infty\} \cong S^2$$

Hence we have $\mathbb{C}_{\infty} \cong S^2$

2.4 Continuous functions on \mathbb{C}_{∞}

- $\begin{array}{ll} \bullet \ h: \mathbb{C}_{\infty} \longrightarrow \mathbb{C}_{\infty} \\ z \longmapsto az + b \ \text{ when } z \in \mathbb{C} \text{ where } a, b \in \mathbb{C} \\ \infty \longmapsto \infty \end{array}$

2.5 Circles in \mathbb{C}_{∞}

We call the following as circles in \mathbb{C}_{∞}

- 1. All circles in \mathbb{C}_{∞}
- 2. {All lines in \mathbb{C} } $\cup \infty$

Now all circles in \mathbb{C}_{∞} are homeomorphic to S^1 .

Consider $\mathbb{R} \cup \{\infty\}$ a circle. It is S^1 . By Jordan Brouwer Theorem $\mathbb{R} \cup \{\infty\}$ splits \mathbb{C}_{∞} into two disks. namely the upper and lower half plane. So \mathbb{H} is homeomorphic to a disk and $\bar{\mathbb{H}} = \mathbb{H} \cup \mathbb{R} \cup \{\infty\}$ is a closed disk.

HG101 2 LECTURE 2

2.6 Equation of Circles

The equation of an Euclidean Circle is $(x-x_0)^2+(y-y_0)^2=r^2$. Substitute $x=\frac{z+\bar{z}}{2}$ and $y=\frac{z-\bar{z}}{2i}$ and by rearranging we get $\alpha z\bar{z}+\beta z+\bar{\beta}\bar{z}+\gamma=0$ where $\alpha,\gamma\in\mathbb{R}$ and $\beta\in\mathbb{C}$. Similarly the equation of an Euclidean line is $\beta z+\bar{\beta}\bar{z}+\gamma=0$ where $\gamma\in\mathbb{R}$ and $\beta\in\mathbb{C}$.

2.7 Mobius Transformations

A Mobius transformation is a map of the form $m(z)=\frac{az+b}{cz+d}$ with $a,b,c,d\in\mathbb{C}$ and $ad-bc\neq 0$

It can so happen that the denominator is zero for some point $z = \frac{-d}{c}$. In such a case the numerator is non zero (hint:ad – bc \neq 0). So we define $m(\frac{-d}{c}) = \infty$ Remark. Algebra with ∞

- \bullet $\frac{1}{0} = \infty$
- $\bullet \ \frac{1}{\infty} = 0$

Definition 2.7.1 (Mobius Transformation). Let $m: \mathbb{C}_{\infty} \longrightarrow \mathbb{C}_{\infty}$ be a function defined by:

defined by:
$$z \longmapsto \frac{az+b}{cz+d} \text{ when } z \in \mathbb{C}$$

$$\infty \longmapsto \frac{a}{c}$$

where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$. Then m is called a Mobius Transformation

Proposition 2.7.1. m(z) is a homeomorphism.

Proof. Composition rule:

Let $m_1(z)=\frac{a_1z+a_2}{a_3z+a_4},\ m_2(z)=\frac{b_1z+b_2}{b_3z+b_4}$ be Mobius Transformations.

$$m_1 \circ m_2(z) = \frac{a_1 \frac{b_1 z + b_2}{b_3 z + b_4} + a_2}{a_3 \frac{b_1 z + b_2}{b_3 z + b_4} + a_4}$$

$$= \frac{a_1 b_1 z + a_1 b_2 + a_2 b_3 z + a_2 b_4}{a_3 b_1 z + a_3 b_2 + a_4 b_3 z + a_4 b_4}$$

$$= \frac{(a_1 b_1 + a_4 b_3) z + (a_1 b_2 + a_2 b_4)}{(a_3 b_1 + a_4 b_3) z + (a_3 b_2 + a_4 b_4)}$$

Consider the matrices

$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}, B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} AB = \begin{pmatrix} a_1b_1 + a_2b_3 & a_3b_1 + a_4b_2 \\ a_3b_1 + a_4b_3 & a_3b_2 + a_4b_4 \end{pmatrix}$$

Notice that the terms of $m_1 \circ m_2(z)$ and AB match. So the composition of Mobius Transformation can be thought of as matrix multiplication.

Now since $ad-bc\neq 0$, m becomes invertible and the inverse is also a Mobius Transformation. Hence $m:\mathbb{C}_{\infty}\longrightarrow\mathbb{C}_{\infty}$ is a homeomorphism.

HG101 2 LECTURE 2

2.8 Generators of Mobius Transformations

Definition 2.8.1. Mob^+ is the set of all Mobius Transformations.

Proposition 2.8.1. f, g, J generate Mob^+

Proof. Using $f(z)=z+a,\ g(z)=bz,\ a,b\in\mathbb{C}$ we can generate the elements of the form az+b.

Using az + b and $J(z) = \frac{1}{z}$ we can generate any element of Mob^+

Equations of circles are of the form $\alpha z\bar{z} + \beta z + \bar{\beta}\bar{z} + \gamma = 0$

1. Circles are invariant under f:

$$\begin{array}{l} \alpha(z+a)(z\stackrel{-}{+}a)+\beta(z+a)+\bar{\beta}(z\stackrel{-}{+}a)+\gamma=0\\ \alpha z\bar{z}+\alpha a\bar{a}+\alpha z\bar{a}+\alpha\bar{z}a+\beta z+\bar{\beta}\bar{z}+\beta a+\bar{\beta}\bar{a}+\gamma=0\\ \alpha z\bar{z}+(\beta\alpha\bar{a})z+(\bar{\beta}+\bar{\alpha}\bar{z}+\alpha|a|^2+\gamma=0 \end{array}$$

2. Circles are invariant under g:

$$\begin{array}{l} \alpha(bz)((\bar{bz})+\beta(bz)+\bar{\beta}(\bar{bz})+\gamma=0\\ \alpha b\bar{b}z\bar{z}+\beta bz+\bar{\beta}\bar{b}\bar{z}+\gamma=0 \end{array}$$

3. Circles are invariant under J:

$$\begin{split} \frac{\alpha}{z(\bar{z}} + \frac{\beta}{z} + \frac{\bar{\beta}}{\bar{z}} + \gamma &= 0 \\ \gamma z \bar{z} + \bar{\beta} z + \beta \bar{z} + \alpha &= 0 \end{split}$$

And these three map generates Mob^+ . We proved:

Proposition 2.8.2. Circles in \mathbb{C}_{∞} are invariant under Mob^+