LIF O65 - Anal yse de données TD1

Exercise 1:

Soit un ensemble E de 8 clients définis dans R^2 (2 produits). Les clients possèdent tous la même importance égale à 1. Ils sont séparés en 2 profils A_1 et A_2 .

Clienti	Produit 1	Produit 2	Groupe
C_1	3	0	1
C ₂	0	1	1
C ₃	1	1	1
C ₄	0	2	1
C ₅	4	2	2
C ₆	2	3	2
C ₇	4	3	2
C ₈	2	4	2

- 1. Calculer le centre de gravité de E et la matrice G des centres de gravité de A₁ et A₂.
- 2. Calculer la matrice centrée \hat{X} et les matrices centrées $(\hat{Y}$ et $\hat{Z})$ des groupes A_1 et A_2 .
- 3. Calculer la matrice d'inertie totale T.
- 4. Calculer la matrice d'inertie intra-groupes W et la matrice inter-groupe B.
- 5. Calculer l'inertie totale supportée par la direction de coordonnées (1, 1).
- 6. Calculer le pouvoir discriminant de cette direction.
- 7. Calculer l'inertie de E par rapport au client c de coordonnées (1, -1).

Exercise 2:

Soient les 6 vecteurs lignes représentant 6 clients $\{x_i\}_{i=1}^6$ dans R^3 (3 produits) muni de la métrique euclidienne usuelle et $m_i = \frac{1}{6}$ i = 1, ..., 6. Dans la matrice des données : 1 : positif ; 0 : Indifférent et -1 : négatif

- 1. Calculer la matrice $V = P_{i=1}^{0} m_i x_i^t x_i$
- 2. Calculer l'inertie I₀ du nuage des points par rapport à l'origine.
- 3. Calculer les valeurs propres de V.
- 4. Trouver le vecteur propre associé à la valeur propre $\lambda = 0$.
- 5. Trouver les vecteurs propres orthonormés de V associés aux valeurs propres non nulles de V.
- 6. Représenter graphiquement le nuage des points dans le sous-espace engendré par ces 2 vecteurs.