NumIntro - Uge 1 Mandag

Nick Laursen

Københavns Universitet

31. august 2020

1. Om Mig

2. Opgaver

3. Diskussion

Om Mig

NICK ALEXANDER VILLUM LAURSEN. 5 år.

Tidligere IT Admin hos Syscom.

Ansat hos Telia Data-behandling center.

Instuktor sidste år.

Har haft AlgoDat og QM1.

a). Løs
$$x_{n+1} - nx_n = 0$$
.

For at løse denne opgave skal vi skrive vores differens ligning om til det karakteristiske polynomium $p\left(\lambda\right)$. Vi skriver først vores linær differens operator, hvilket giver os:

$$E^{1}x - nE^{0}x = (E^{1} - nE^{0})x = 0.$$

Herved kan vi nu skrive vores karakteristiske polynomium op:

$$p(\lambda) = \lambda - n.$$

Vi finder nu roden af $p(\lambda)$ og får så $\lambda=n$. Fra **Thm 1, p.31** kan vi nu finde vores basis løsning. Dette giver os

$$x(n) = \left[n, n^2, n^3, \dots\right].$$

4/11

b). Løs $x_{n+1} - x_n = n$.

Vi kan ikke længere bruge **Thm 1, p.31**. Hvorfor? (*Brug 2 minutter selv*).

Vi vil i stedet bruge substitution metoden til at løse ligningen. Vi har

$$x_{n+1} - x_n = n \Leftrightarrow x_{n+1} = n + x_n.$$

Vi laver nu substitution og får

$$x_{n+1} = n + x_n = n + (n-1) + x_{n-1} = \dots = n + (n-1) + \dots + 2 + 1$$

= $\frac{n(n+1)}{2}$

Hvilket er vores løsning.

1.3.13 b) forsat

Er dette så en løsning? (Brug selv 5 minutter) Svaret er ja, da

$$\frac{n(n+1)}{2} - \frac{(n-1)((n-1)+1)}{2} = \frac{(n^2+n) - (n^2-n)}{2} = \frac{2n}{2} = n$$

c). Løs
$$x_{n+1} - x_n = 2$$
.

Vi ser at vi igen ikke kan bruge **Thm 1, p.31**. Så vi laver substitution igen. Vi har $x_{n+1}=2+x_n$. Dette giver os så

$$x_{n+1} = 2 + x_n = 2 + 2 + x_{n-1} = \dots = \sum_{i=1}^{n} 2 = 2n.$$

Herved har vi så vores løsning. (*Tjek selv efter om løsningen er korrekt*)

7/11

Betrag følgende rekurente formel: $x_n = 2(x_{n-1} + x_{n-2})$.

- a) Vis at den generelle løsning er $z_n = \alpha \left(1 + \sqrt{3}\right)^n + \beta \left(1 \sqrt{3}\right)^n$.
- b) Vis at løsningen med start værdier $x_1=1$ og $x_2=1-\sqrt{3}$ svarer til $\alpha=0$ og $\beta=\left(1-\sqrt{3}\right)^{-1}$

a)

Vi løser ved brug af **Thm 1, p.31**. Vi omskriver $x_n=2\left(x_{n-1}+x_{n-2}\right)\Leftrightarrow 0=2x_{n-1}+2x_{n-2}-x_n$. Vi skriver nu det karakteristiske polynomium op:

$$p(\lambda) = -\lambda^2 + 2\lambda + 2.$$

Rødderne for dette polynomium er $1+\sqrt{3}$ og $1-\sqrt{3}$. Vi følger nu idéen fra **Side 30** til at finde generelle løsninger. Ved at indsætte i den beskrevne formel får vi

$$z = \alpha x \left(1 + \sqrt{3} \right) + \beta x \left(1 - \sqrt{3} \right).$$

Herved bliver den generelle løsning så:

$$z_n = \alpha \left(1 + \sqrt{3}\right)^n + \beta \left(1 - \sqrt{3}\right)^n.$$

b) Vis at løsningen med start værdier $x_1=1$ og $x_2=1-\sqrt{3}$ svarer til $\alpha=0$ og $\beta=\left(1-\sqrt{3}\right)^{-1}$ Vi tjekker først x_1 .

$$x_1 = 0 \cdot \left(1 + \sqrt{3}\right)^1 + \left(1 - \sqrt{3}\right)^{-1} \left(1 - \sqrt{3}\right)^1$$
$$= 0 + \frac{\left(1 - \sqrt{3}\right)}{\left(1 - \sqrt{3}\right)} = 1.$$

Herved tjekker vi nu x_2 .

$$x_2 = 0 \cdot \left(1 + \sqrt{3}\right)^2 + \left(1 - \sqrt{3}\right)^{-1} \left(1 - \sqrt{3}\right)^2$$
$$= 0 + \frac{\left(1 - \sqrt{3}\right)^2}{\left(1 - \sqrt{3}\right)} = 1 - \sqrt{3}$$

Diskussion

Programmerings gennemgang. Hjælp til programmering. Optage undervisningstimer. Gennemgang af elever.