5 1. A compound of Formula (I):

 $Q \xrightarrow{Q \xrightarrow{R^5 R^{5a} R^6}} A \xrightarrow{B \xrightarrow{X}} Z$

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

A is O or S;

15 Q is $-NR^1R^2$;

 R^1 , at each occurrence, is independently selected from:

Η;

 C_1-C_6 alkyl substituted with 0-3 R^{1a} ;

 C_3-C_{10} carbocycle substituted with 0-3 R^{1b};

C₆-C₁₀ aryl substituted with 0-3 R^{1b}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-8 R1b;

 R^{1a} , at each occurrence, is independently selected from H, C_1-C_6 alkyl Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF_3 ; C_3-C_{10} carbocycle substituted with 0-3 R^{1b} ;

 C_6-C_{10} aryl substituted with 0-8 R^{1b} ; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{1b};

35

25

at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , C_1 - C_6 alkyl, C_1-C_4 alkoxy, C_1-C_6 haloalkyl, and C_1-C_4 haloalkoxy; R² is independently selected from H, C₁-C₆ alkyl, C₃-C₁₀ carbocycle, C₆-C₁₀ aryl, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from\nitrogen, oxygen, and sulphur; R^3 is $-(CR^7R^{7a})_n-R^4$, $-(CR^7R^{7a})_{n}-S-(CR^7R^{7a})_{m}-R^4$, $-(CR^{7}R^{7a})_{n}-0-(CR^{7}R^{7a})_{m}-R^{4}$, $-(CR^7R^{7a})_{m}-N(R^{7b})-(CR^7R^{7a})_{m}-R^4$, $-(CR^7R^{7a})_n - (CR^7R^{7a})_m - R^4$ $-(CR^{7}R^{7a})_{n}-\dot{S}(=0)_{2}-(CR^{7}R^{7a})_{m}-R^{4}$ 15 $-(CR^{7}R^{7a})_{n}-C(=0)-(CR^{7}R^{7a})_{m}-R^{4}$, $-(CR^{7}R^{7a})_{n}-N(R^{\nabla b})C(=0)-(CR^{7}R^{7a})_{m}-R^{4}$ $-(CR^{7}R^{7a})_{n}-C(=ON(R^{7b})-(CR^{7}R^{7a})_{m}-R^{4}$ $-(CR^7R^{7a})_n-N(R^{7b})$ \$ (=0)₂- $(CR^7R^{7a})_m-R^4$, or $-(CR^{7}R^{7a})_{n}-S(=0)_{2}N(R^{7b})-(CR^{7}R^{7a})_{m}-R^{4};$ 20 n is 0, 1, 2, or 3; m is 0, 1, 2, or 3; 25 R^{3a} is H, OH, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkenyl or C_2-C_4 alkenyloxy; R^4 is H, OH, OR^{14a} , C_1 - C_6 alkyl substituted with $\setminus 0$ -3 R^{4a} , 30 C_2-C_6 alkenyl substituted with 0-3 R^{4a} , C_2-C_6 alkynyl substituted with 0-3 R^{4a}, C_3-C_{10} carbocycle substituted with 0-3 R^{4b} , C_6-C_{10} aryl substituted with $0-3\R^{4b}$, or 35 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and

 λ s substituted with 0-3 R 4b ; R4a, at each occurrence, is independently selected from is $H, F, Cl, Br, I, CF_3,$ C_3-C_{10} \carbocycle substituted with 0-3 R^{4b} , C_6-C_{10} aryl substituted with 0-3 R^{4b} , or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R4b; R4b, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO2, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , 15 $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, $C_1 \leftarrow C_4$ alkoxy, C_1-C_4 haloalkyl, C_1-C_4 haloalkoxy, and C_1-C_4 halothioalkyl-S-; R^5 is H, OR^{14} ; C_1-C_6 alkyl substituted with 0-3 R^{5b} ; 20 C_1-C_6 alkoxy substituted with 0-3 R^{5b} ; C2-C6 alkenyl substituted with 0-3 R5b; C_2-C_6 alkynyl substituted with 0-3 R^{5b} ; C_3-C_{10} carbocycle substituted with 0-3 R^{5c} ; 25 C_6-C_{10} aryl substituted with 0-3 R^{5c} ; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said \$ to 10 membered heterocycle is substituted with $0-3\R^{5c}$; 30 R^{5a} is H, OH, C_1-C_4 alkyl, C_1-C_4 alkenyl, or C₂-C₄ alkenyloxy; R5b, at each occurrence, is independently selected from: 35 NR15R16. C_3-C_{10} carbocycle substituted with 0-3 R^{5c} ;

sulphur, wherein said 5 to 10 membered heterocycle

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is\substituted with 0-3 R^{5c} ; R^{5c}, at each occurrence, is independently selected from H, OH, Cl, \backslash F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, $S(=0)CH_3 \setminus S(=0)_2CH_3$, C_1-C_6 alk χ l, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, 10 C_1-C_4 haloalkoxy, and C_1-C_4 halothioalkyl-S-; R6 is H: C_1-C_6 alkyl substituted with 0-3 R^{6a} ; 15 C₃-C₁₀ carbocycle substituted with 0-3 R^{6b}; or ÇĢ C_6-C_{10} aryl substituted with 0-3 R^{6b} ; CO O R^{6a}, at each occurrence\ is independently selected from H, ٢IJ C_1-C_6 alkyl, OR^{14} , C_1 , C_1 , C_2 , C_1 , C_2 , C_1 , C_2 , C_2 , C_1 , C_2 , C_2 , C_1 , C_2 , C_2 , C_2 , C_2 , C_3 , C_4 , C_2 , C_1 , C_2 , C_2 , C_3 , C_4 , C_5 , C_5 , C_7 , C_8 , ᅰ 20 aryl or CF3; R6b, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , C_1 - C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy; 25 R7, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF_3 , phenyl and C₁-C₄ alkyl; R^{7a}, at each occurrence, is independently selected from H,

30

35

 C_{6} - C_{10} aryl substituted with 0-3 R^{5c} ; or

OH, Cl, F, Br, I, CN, NO₂, CF₃\and C₁-C₄ alkyl;

wherein the lactam or thiolactam is saturated,

 R^{7b} is independently selected from H and C_1 - C_4 alkyl;

partially saturated or unsaturated;

Ring B is a 7 membered lactam or thiolactam,

wherein each additional lactam carbon or thiolactam carbon is substituted with 0-2 R^{11} ; and, optionally, the lactam or thiolactam contains a heteroatom selected from -0-, -S-, -S(=0)-, $-S(=0)_2-$ -N=, -NH-, and $-N(R^{10})-$;

additionally, two R^{11} substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R13;

additionally, two R^{11} substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical \is substituted with 0-3 R^{13} ;

additionally, two R^{11} substituents on the same or adjacent carbon atoms may\be combined to form a C_3-C_6 carbocycle substituted with 0-3 R13;

 R^{10} is H, C(=0) R^{17} , C(=0) QR^{17} , C(=0) $NR^{18}R^{19}$, $S(=0)_2NR^{18}R^{19}$, $S(=0)_2R^{17}$; C_1-C_6 alkyl optionally substituted with 0-3 R^{10a} ; C_6-C_{10} aryl substituted with 0-4 R^{10b} ; C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5\to 10 membered heterocycle is substituted with $0-3 \ R^{10b}$;

R^{10a}, at each occurrence, is independently selected from H, C_1-C_6 alkyl, OR^{14} , Cl, F, Br, χ , =0, CN, NO_2 , $NR^{15}R^{16}$, CF₃, or aryl substituted with $0\4$ R^{10b};

R^{10b}, at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, R, R, I, CN, NO_2 ,

C ۲ij

20

25

15

30

```
AND REAL PROPERTY OF THE PERSON OF THE PERSO
```

alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, and C1-C4 haloalkyl-S-; R¹¹, at each occurrence, is independently selected from H, $C_1 \setminus C_4$ alkoxy, Cl, F, Br, I, =0, CN, NO_2 , $NR^{18}R^{19}$, $C(=0)R^{17}$, $C(=0)OR^{17}$, $C(=0)NR^{18}R^{19}$, $S(=0)_2NR^{18}R^{19}$, CF_3 ; C₁-C₆ alkyl optionally substituted with 0-3 R^{11a}; C_6-C_{10} atyl substituted with 0-3 R^{11b} ; C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or 10 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur,\wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b}; 15 R^{11a}, at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , I I $NR^{15}R^{16}$, CF_3 ; phenyl substituted with 0-3 R11b; 1, 11 11 11 C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and 20 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with $0-\$ \mathbb{R}^{11b} ; 25 R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO $\frac{1}{2}$, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, c_1-C_4 haloalkyl, C_1-C_4 haloalkoxy, and C_1-C_4 halothioalkyl-S-; 30 Z is H; C_1-C_8 alkyl substituted with 1 + 3 R^{12} ; C_2-C_4 alkenyl substituted with 1-3 R^{12} ; C_2 - C_4 alkynyl substituted with 1 - 3 R^{12} ; 35 C_1-C_8 alkyl substituted with 0-3 \Re^{12a} ; C_2-C_4 alkenyl substituted with $0-3\ R^{12a}$;

 $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6

20

C₂-C₄ alkynyl substituted with 0-3 R^{12a};
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

 R^{12} , at each occurrence, is independently selected from C_6 - C_{10} aryl substituted with 0-4 R^{12b} ; C_3 - C_{10} carbocycle substituted with 0-4 R^{12b} ; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b} ;

 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, -C(=0) $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , S(=0) CH_3 , S(=0) $_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, C_1-C_4 haloalkoxy, or C_1-C_4 haloalkyl-S-;

 R^{12b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, and C_1-C_4 haloalkyl-S-;

 R^{13} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;

 R^{14} is H, phenyl, benzyl, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, or C_3 - C_6 cycloalkyl;

 R^{14a} is H, phenyl, benzyl, or C_1 - C_4 alkyl;

```
A CONTRACTOR AND A
```

٣...

10

15

20

25

30

```
at each occurrence, is independently selected from H,
      C_1-C_6 alkyl, benzyl, phenethyl, (C_1-C_6 alkyl)-C(=0)-,
      and (C_1-C_6 \text{ alkyl})-S(=0)_2-;
R16, at each occurrence, is independently selected from
      H, OH, C_1-C_6 alkyl, benzyl, phenethyl,
       (C_1 + C_6 \text{ alkyl}) - C(=0) -, and (C_1 - C_6 \text{ alkyl}) - S(=0)_2 -;
R^{17} is H, \alpha_1-C<sub>6</sub> alkyl, C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl,
      aryl substituted by 0-4 R<sup>17a</sup>, or
      -CH<sub>2</sub>-ar\1 substituted by 0-4 R<sup>17a</sup>;
R<sup>17a</sup> is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy,
      propoxy, butoxy, -OH, F, Cl, Br, I, CF<sub>3</sub>, OCF<sub>3</sub>, SCH<sub>3</sub>,
      S(O)CH_3, SO_2CH_3, -NH_2, -N(CH_3)_2, or C_1-C_4 haloalkyl;
R<sup>18</sup>, at each occurrence, is independently selected from
      H, C_1-C_6 alkyl\lambda phenyl, benzyl, phenethyl,
      (C_1-C_6 \text{ alkyl})-C = 0, and (C_1-C_6 \text{ alkyl})-S = 0; and
R<sup>19</sup>, at each occurrence\ is independently selected from
      H, OH, C_1-C_6 alkyl, phenyl, benzyl, phenethyl,
       (C_1-C_6 \text{ alkyl})-C(=0)-\lambda \text{ and } (C_1-C_6 \text{ alkyl})-S(=0)_2-;
provided, when R^{13} is H,
then Z is H;
      C_4-C_8 alkyl substituted with 1-3 R^{12};
      C_2-C_4 alkenyl substituted with 1-3 R^{12};
      C_2-C_4 alkynyl substituted with 1-3 R^{12};
      C_1-C_8 alkyl substituted with \sqrt{0-3} R<sup>12a</sup>;
      C_2-C_4 alkenyl substituted with 0-3 R^{12a}; or
      C_2-C_4 alkynyl substituted with \sqrt{0-3} R<sup>12a</sup>; and
provided, when ring B is a 1,3,4,5-tet rahydro-1-(Z)-5-
(R^{10}) - 6, 6, 7, 7 - \text{tetra}(R^{11}) - 2, 4 - \text{dioxo} - 2H - 1 \ - \text{diazepin} - 3 - \text{yl}
core, and R^{13} is H;
                           then
```

- R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹, $S(=0)_{2}NR^{18}R^{19}, S(=0)_{2}R^{17}; \text{ or }$ C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};
- 5 R^{10a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 .
 - 2. A compound, according to Claim 1, of Formula (Ia):

- or a pharmaceutically acceptable salt or prodrug thereof, wherein:
- Z is H; C_1 - C_8 alkyl substituted with 0-3 R^{12a} ; C_2 - C_4 alkenyl substituted with 0-3 R^{12a} ; or C_2 - C_4 alkynyl substituted with 0-3 R^{12a} .
- المُنْ الله الله الله
- Book 2

- 3. A compound according to Claim 2 of Formula (Ia) wherein:
- R^{3} is $-(CR^{7}R^{7a})_{n}R^{4}$, $-(CR^{7}R^{7a})_{n}-S(CR^{7}R^{7a})_{m}-R^{4}$, $-(CR^{7}R^{7a})_{n}-O-(CR^{7}R^{7a})_{m}-R^{4}$, or $-(CR^{7}R^{7a})_{n}-N(R^{7b})$, $(CR^{7}R^{7a})_{m}-R^{4}$;
- 30 n is 0, 1, or 2;

m is 0, 1, or 2;

R^{3a} is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, allyl or 3-buten-1-yl;

 R^{4} is H, OH, OR^{14a} , C_1-C_6 alkyl substituted with 0-3 R^{4a} , C_2-C_6 alkenyl substituted with 0-3 R^{4a} , C_{λ}^{λ} -C₆ alkynyl substituted with 0-3 R^{4a}, C_3-C_{10} carbocycle substituted with 0-3 R^{4b} , C_6-C_{M} aryl substituted with 0-3 R^{4b} , or 5 to 10 membered heterocycle containing 1 to 4 hetekoatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle 10 is substituted with 0-3 R4b; R^{4a} , at each occurrence, is independently selected from is H, F, Cl, Br, I, CF₃, C_3-C_{10} carbocycle substituted with 0-3 R^{4b} , 15 C_6-C_{10} aryl substituted with 0-3 R^{4b} , or 5 to 10 membered Aeterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b}; 20 R4b, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, $NO_2 \setminus NR^{15}R^{16}$, CF₃, acetyl, SCH₃, $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 25 haloalkyl, and C_1-C_4 haloalk αxy ; R^5 is H, OR^{14} ; C_1-C_6 alkyl substituted with $0-3\R^{5b}$; C_1-C_6 alkoxy substituted with 0-3 \mathbb{R}^{5b} ; C_2 - C_6 alkenyl substituted with 0-3 \mathbb{R}^{5b} ; 30 C_2-C_6 alkynyl substituted with 0-3 R^{5b} ; C_3-C_{10} carbocycle substituted with $0-3\ R^{5c}$; C_6-C_{10} aryl substituted with 0-3 R^{5c} ; or 5 to 10 membered heterocycle containing 1 to 4 35 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered haterocycle

is substituted with 0-3 R^{5c};

 R^{5a} is H or C_1 - C_4 alkyl;

Bont

R^{5b}) at each occurrence, is independently selected from: H, C_1 - C_6 alkyl, CF_3 , OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$;

 C_3 - C_{10} carbocycle substituted with -0-3 R^{5c}; C_6 - C_{10} aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, and C_1-C_4 haloalkoxy;

R⁶ is H, methyl, or ethyl;

20

10

- R^7 , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 CF₃, phenyl and C_1 - C_4 alkyl;
- R^{7a} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF₃, and C₁-C₄ alkyl;
 - R^{7b} is independently selected from H, methyl, ethyl, propyl, and butyl;
- 30 Ring B is a 7 membered lactam or thiolactam,
 wherein the lactam or thiolactam is saturated,
 partially saturated or unsaturated;
 wherein each additional lactam carbon or thiolactam
 - carbon is substituted with 0-2 R¹¹; and
- optionally, the lactam or thiolactam contains a heteroatom selected from, -O-, -S-, -S(=O)-, $-S(=O)_2-$, -N=, -NH-, and $-N(R^{10})-$;

 B_{cont}^{l}

10

15

20

25

30

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-3 R¹³;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;

additionally, two R^{11} substituents on the same or adjacent carbon atoms may be combined to form a C_3 - C_6 carbocycle substituted with 0-3 R^{13} ;

R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹, S(=0)₂NR¹⁸R¹⁹, S(=0)₂R¹⁷;

C₁-C₆ alkyl optionally substituted with 0-2 R^{10a};

C₆-C₁₀ aryl substituted with 0-4 R^{10b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};

 R^{10a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN NO_2 , $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-4 R^{10b} .

 R^{10b} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, or CF_3 ;

35 R^{11} , at each occurrence, is independently selected from H, C_1 - C_4 alkoxy, Cl, F, Br, I, =0, CN, NO_2 , $NR^{18}R^{19}$, $C(=0)R^{17}$, $C(=0)OR^{17}$, $C(=0)NR^{18}R^{19}$, $S(=0)_2NR^{18}R^{19}$, CF_3

Bont 5

10

15

20

C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};
C₆-C₁₀ aryl substituted with 0-3 R^{11b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or
5 to 10 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 10 membered heterocycle
is substituted with 0-3 R^{11b};

 R^{11a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;

 R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, and C_4-C_4 haloalkoxy;

Z is H; $C_1-C_6 \text{ alkyl substituted with } 0-3 \text{ R}^{12a};$ $C_2-C_4 \text{ alkenyl substituted with } 0-3 \text{ R}^{12a}; \text{ or }$ $C_2-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{12a};$

 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;

 R^{13} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;

 R^{14} is H, phenyl, benzyl, C_1 - C_6 alkyl, or C_2 - C_6 alkoxyalkyl;

R^{14a} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

35

þغ

G

15

20

25

- R15, at each occurrence, is independently selected from H, C_1-C_6 alkyl, benzyl, phenethyl, $(C_1-C_6$ alkyl)-C(=0)-, and $(C_1-C_6$ alkyl)- $S(=0)_2$ -;
- 5 R^{16} , at each occurrence, is independently selected from H, OH, C_1 C_6 alkyl, benzyl, phenethyl, $(C_1-C_6$ alkyl,-C(=0)-, and $(C_1-C_6$ alkyl)- $S(=0)_2$ -;
- R^{17} is H, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, 10 aryl substituted by 0-4 R^{17a} , or $-CH_2$ -aryl substituted by 0-4 R^{17a} ;
 - R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂ or C₁-C₄ haloalkyl;
 - R¹⁸, at each occurrence, is independently selected from H, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1-C_6 \text{ alkyl})-C(=0)-, \text{ and } (C_1-C_6 \text{ alkyl})-S(=0)_2-; \text{ and }$
 - R^{19} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-.

4. A compound according to Claim 3 of Formula (Ia) wherein:

 R^3 is $-(CHR^7)_n-R^4$

n is 0 or 1;

R^{3a} is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, allyl, or 3-buten-1-yl;

 R^4 is H, OH, OR^{14a} , C_1-C_4 alkyl substituted with 0-2 R^{4a} ,

 C_{λ} - C_4 alkenyl substituted with 0-2 R^{4a} , $C_2 - C_4$ alkynyl substituted with 0-1 R^{4a} , C_3-C_0 carbocycle substituted with 0-3 R^{4b} , C_6-C_{10} aryl substituted with 0-3 R^{4b} , or 5 to 6 membered heterocycle containing 1 to 4 5 heteroatoms selected from nitrogen, oxygen, and sulphur\ wherein said 5 to 6 membered heterocycle is substituted with 0-3 R4b; R4a, at each occurrence, is independently selected from is H, F, Cl, Br, $\backslash I$, CF₃, C₃-C₆ carbocycl substituted with 0-3 R^{4b}, phenyl substituted with 0-3 R4b, or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and 15 sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; R4b, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, $NO_2 \setminus NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , 20 $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_4 alkyl, C_1-C_3 alkoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalk ϕxy ; R^5 is H, OR^{14} ; C_1-C_4 alkyl substituted with $0-3\ R^{5b}$; 25 C_2-C_4 alkenyl substituted with $0-\Re R^{5b}$; C_2-C_4 alkynyl substituted with 0-3\R^{5b}; R^{5a} is H, methyl, ethyl, propyl, or butyl; 30 R5b, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, CF_3 , OR^{4} , Cl, F, Br, I, =0; C_3-C_6 carbocycle substituted with 0-3 R^{5c} ; 35 phenyl substituted with 0-3 R5c; or 5 to 6 membered heterocycle containing 1 to f 4heteroatoms selected from nitrogen, oxygen,

10 וויים ליינו וליינו וויים איניים וויים וויים וויים אונים וויים אונים וויים אונים וויים אונים אונים אונים אונים מיום מיום אונים 15

5

sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c} at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $\S(=0)$ CH₃, S(=0)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C_1-C_2 haloalkoxy;

R6 is H;

R⁷, at each occurrence, is independently selected from H, F, CF₃, methyl, and ethyl;

Ring B is a 7 membered lactam or thiolactam, wherein the \lactam or thiolactam is saturated, partially aturated or unsaturated; wherein each additional lactam carbon or thiolactam carbon is substituted with 0-2 R^{11} ; and, optionally, the lactam or thiolactam contains a heteroatom selected from -N=, -NH-, and $-N(R^{10})-$;

additionally, two R11 substituents on adjacent atoms may be combined to form a ben'xo fused radical; wherein said benzo fused radical is substituted with 0-2 R13;

additionally, two R11 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-2 R¹³;

additionally, two R11 substituents on the same or adjacent carbon atoms may be combined to form $a C_3-C_6$ carbocycle substituted with 0-2 R¹³;

 R^{10} is H, C(=0) R^{17} , C(=0) OR^{17} ;

35

20

25

 C_1-C_4 alkyl optionally substituted with 0-1 R^{10a} ; phenyl substituted with 0-4 R10b; C_3-C_6 carbocycle substituted with 0-3 R^{10b} ; or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{10b};

20

25

30

 R^{10a} , at each occurrence, is independently selected from H, C_1-C_4 alkyl \setminus OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF₃, or phenal substituted with 0-4 R^{10b} ;

R^{10b}, at each occurrence, is independently selected from H, OH, C_1 - C_4 alkyl λ C_1 - C_3 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, or CF_3 ;

 R^{11} , at each occurrence is independently selected from H, C_1-C_4 alkoxy, $C_1 \setminus F$, =0, $NR^{18}R^{19}$, $C_1 \in O_1$, $C(=0)OR^{17}, CF_3;$

 C_1-C_6 alkyl optionally\substituted with 0-3 R^{11a} ; C_6-C_{10} aryl substituted with 0-3 R^{11b} ; C_3 -6 carbocycle substituted with 0-3 R^{11b} ; or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to\6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from H, C_1-C_4 alkyl, OR^{14} , F, =0, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , C_1 - C_4 alkyl, Q_1 - C_3 alkoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

35

Z is H; C_1-C_4 alkyl substituted with 0-3 R^{12a} ;

 C_2-C_4 alkenyl substituted with 0-3 R^{12a} ; or C_2-C_4 alkynyl substituted with 0-3 R^{12a} ;

 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_4 alkyl, C_1-C_3 alkoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^{13} , at each occurrence, is independently selected from H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;

 R^{14} is H, phenyl\ benzyl, C_1-C_4 alkyl, or C_2-C_4 alkoxyalkyl;

- 15 R^{15} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, benzyl, phenethyl, $(C_1-C_4$ alkyl)-C(=0)-, and $(C_1-C_4$ alkyl)- $S(=0)_2$ -;
- R¹⁶, at each occurrence, is independently selected from H, OH, C_1 - C_4 alkyl benzyl, phenethyl, $(C_1$ - C_4 alkyl)-C(=0), and $(C_1$ - C_4 alkyl)-S(=0)₂-;
 - R¹⁷ is H, methyl, ethyl, propyl, butyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, phenyl substituted by 0-3 R^{17a}, or -CH₂-phenyl substituted by 0-3 R^{17a};
 - R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF_3 , or OCF_3 ;
- 30 R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;
- R¹⁹, at each occurrence, is independently selected from H, methyl, and ethyl.

$$H_2N$$
 R^5
 H
 N
 B
 N
 Z
 (Ib)

or a pharmaceutically acceptable salt or prodrug thereof wherein:

10 Ring B is selected from:

6. A compound according to Claim 3 of Formula (Ic):

20

$$H_2N$$
 R^5
 H
 N
 Z
 R^1
 R^{13}
 R^{13}
 R^{15}

or a pharmaceutically acceptable salt or prodrug thereof wherein

 R^3 is R^4 ,

 R^4 is C_1 - C_4 alkyl substituted with 0-1 R^{4a} , C_2 - C_4 alkenyl substituted with 0-1 R^{4a} , or C_2 - C_4 alkynyl substituted with 0-1 R^{4a} ;

 \mathbb{R}^{4a} , at each occurrence, is independently selected from H, F, \mathbb{CF}_3 ,

 C_3-C_6 carbocycle substituted with 0-3 R^{4b} ,

phenyl substituted with 0-3 R4b, or

- 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R4b; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- 25 R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
- 30 R⁵ is C₁-C₄ alkyl substituted with 0-1 R⁵b; C₂-C₄ alkenyl substituted with 0-1 R⁵b; C₂-C₄ alkynyl substituted with 0-1 R⁵b;

5

R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =0;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{5c}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxyl C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^{11} , at each occurrence is independently selected from $H, = 0, NR^{18}R^{19}, CF_3;$ 20 C_1-C_4 alkyl optionally substituted with 0-1 R^{11a} ; phenyl substituted with 0-3 R11b; C₃-C₆ carbocycle substituted with 0-3 R^{11b}; and 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and 25 sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b} ; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, 30 pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{11a} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, OR^{14} , F, Cl, =0, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;

co co

 $\mathbb{R}^{11\mathrm{b}}$, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;

Z is H;

 $C_1 - \dot{C}_4$ alkyl substituted with 0-3 R^{12a}; C_2-C_4 \alkenyl substituted with 0-3 R^{12a} ; or C_2-C_4 alkynyl substituted with 0-3 R^{12a} ;

10

5

R^{12a}, at each occurrence, is independently selected from H, OH, Cl, \F , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, S(=0)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

15

R13, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{1/5}R^{1/6}$, and CF_3 ;

- R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; 20
 - R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;
- 25 R16, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl butyl, benzyl, phenethyl, methyl-C(=0)-, eth χ l-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0) $\sqrt{-}$;
- R18, at each occurrence, is independently selected from 30 H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- R¹⁹, at each occurrence, is independently selected from 35 H, methyl, and ethyl.

25

30

7. A compound according to Claim 5 of Formula (Id):

(Id)

5 or a pharmaceutically acceptable salt or prodrug thereof wherein:

 R^3 is R^4 ,

10 R^4 is C_1-C_4 alkyl substituted with 0-1 R^{4a} , C_2-C_4 alkenyl substituted with 0-1 R^{4a} , or C_2-C_4 alkynyl substituted with 0-1 R^{4a} ;

R^{4a}, at each occurrence, is independently selected from H, F, CF₃,

C₃-C₆ carbocycle substituted with 0-3 R^{4b},

- phenyl substituted with 0-3 R^{4b}, or

 5 to 6 membered heterocycle containing 1 to 4
 heteroatoms selected from nitrogen, oxygen, and
 sulphur, wherein said 5 to 6 membered heterocycle is
 substituted with 0-3 R^{4b}; wherein said 5 to 6
 membered heterocycle is selected from pyridinyl,
 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
 pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
 imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^5 is C_1-C_4 alkyl substituted with 0-1 R^{5b} ; C_2-C_4 alkenyl substituted with 0-1 R^{5b} ;

10

15

20

25

30

 C_2-C_4 alkynyl substituted with 0-1 R^{5b} ;

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =0;

C₃-C₆ carbocycle substituted with 0-2 R^{5c};

phenyl substituted with 0-3 R^{5c}; or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is

substituted with 0-3 R^{5c}; wherein said 5 to 6

membered heterocycle is selected from pyridinyl,

pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 $\rm R^{11},$ at each occurrence, is independently selected from H, =0, $\rm NR^{18}R^{19},$ $\rm CF_3;$ $\rm C_{1}\text{-}C_{4}$ alkyl optionally substituted with 0-1 $\rm R^{11a};$

phenyl substituted with 0-3 R^{11b} ; C_3-C_6 carbocycle substituted with 0-3 R^{11b} ; or

- 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said to 6 membered heterocycle is selected from pyridiayl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- 35 R^{11a} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, OR^{14} , F, Cl, =0, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;

10

15

20

25

30

R \ 1b,	at	each	oc	curre NR ¹⁵ R	nce,	is	inde	epend	dently	se.	lect	ted	from	ιH,
	OH,	Cl,	F,	NR ¹⁵ R	16,	CF ₃ ,	met	hyl,	ethy	1, p	rop	yl,	but	yl,
	met	hoxy,	et	hoxy,	pr	xoqo	y, C	1-C2	haloa	alky	1, a	and	C_1-C	:2
	hal	oalko	ху;	;										

Z is H; $C_1-C_4 \text{ alkyl substituted with 0-3 R}^{12a};$ $C_2-C_4 \text{ alkenyl substituted with 0-3 R}^{12a}; \text{ or }$ $C_2-C_4 \text{ alkynyl substituted with 0-3 R}^{12a};$

 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^{13} , at each occurrence, is independently selected from H, OH, methyl, ethyl propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{15}R^{10}$ and CF_3 ;

R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

 R^{15} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

 R^{16} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=0)-, ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂-

R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

35 R¹⁹, at each occurrence, is independently selected from H, methyl, and ethyl.

8. A compound according to Claim 5 of Formula (Ie):

$$H_2N$$
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^7
 R^{13}
 R^{13}

or a pharmaceutically acceptable salt or prodrug thereof

 R^3 is R^4 ,

wherein:

5

30

10 R^4 is C_1 - C_4 alkyl substituted with 0-1 R^{4a} , C_2 - C_4 alkenyl substituted with 0-1 R^{4a} , or C_2 - C_4 alkynyl substituted with 0-1 R^{4a} ;

R^{4a}, at each occurrence, is independently selected from
H, F, CF₃,

C₃-C₆ carbocycle substituted with 0-3 R^{4b},
phenyl substituted with 0-3 R^{4b}, or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{4b}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^5 is C_1 - C_4 alkyl substituted with 0-1 R^{5b} ; C_2 - C_4 alkenyl substituted with 0-1 R^{5b} ;

10

15

20

 C_2 - C_4 alkynyl substituted with 0-1 R^{5b} ;

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =O;

C₃-C₆ carbocycle substituted with 0-2 R^{5c};

phenyl substituted with 0-3 R^{5c}; or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is

substituted with 0-3 R^{5c}; wherein said 5 to 6

membered heterocycle is selected from pyridinyl,

pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF3, acetyl, SCH3, S(=0)CH3, S(=0)2CH3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy;

C1-C4 alkyl optionally substituted with 0-1 R^{10a};

phenyl substituted with 0-4 R^{0b};

C3-C6 carbocycle substituted with 0-3 R^{10b}; or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is

substituted with 0-3 R^{10b}; wherein said 5 to 6

membered heterocycle is selected from pyridinyl,

pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

 R^{10} is H, C(=0) R^{17} , C(=0) OR^{17} ;

 R^{10a} , at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, OR^{14} , Cl, F, O, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-4 R^{10b} ;

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

13

20

35

 R^{10b} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, Cl, F, $NR^{15}R^{16}$, and CF_3 ;

5 Z is H; C_1-C_4 alkyl substituted with 0-3 R^{12a}; C_2-C_4 alkenyl substituted with 0-3 R^{12a}; or C_2-C_4 alkynyl substituted with 0-3 R^{12a};

- 10 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$ methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
- 15 R¹³, at each occurrence, is independently selected from H, OH, methyl ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;
 - R^{14} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;
 - R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;
- R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=0)-, ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂-;
- R¹⁷ is H, methyl, ethyl, propyl, butyl, methoxymethyl, 30 ethoxymethyl, methoxyethyl, ethoxyethyl, phenyl substituted by 0-3 R^{17a}, or -CH₂-phenyl substituted by 0-3 R^{17a};
 - R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF_3 , or OCF₃;
 - R18, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

 \mathbb{R}^{19} , at each occurrence is independently selected from H, methyl, and ethyl.

9. A compound according to Claim 5 of Formula (If):

10

ij

1,1

5

or a pharmaceutically acceptable salt or prodrug thereof wherein:

 R^3 is R^4 ,

15

 R^4 is C_1-C_4 alkyl substituted with 0-1 R^{4a} , C_2-C_4 alkenyl substituted with 0-1 R^{4a} , or C_2-C_4 alkynyl substituted with 0-1 R^{4a} ;

20 R^{4a} , at each occurrence, is independently selected from H, F, CF_3 ,

 C_3 - C_6 carbocycle substituted with 0-3 R^{4b} , phenyl substituted with 0-3 R^{4b} , or

- 5 to 6 membered heterocycle containing 1 to 4

 25 heteroatoms selected from nitrogen oxygen, and

 sulphur, wherein said 5 to 6 membered beterocycle is

 substituted with 0-3 R4b; wherein said 5 to 6

 membered heterocycle is selected from pyridinyl,

 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
- pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

30

5

R^{4b} ,	at each occurrence, is independently selected from H,
* .	OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$,
<u> </u>	OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy,
	'ethoxy, propoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy

 R^5 is C_1 C_4 alkyl substituted with 0-1 R^{5b} ; C_2 - C_4 alkenyl substituted with 0-1 R^{5b} ; C_2 - C_4 alkynyl substituted with 0-1 R^{5b} ;

10 R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =0;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

Z is H; $C_1-C_4 \text{ alkyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_2-C_4 \text{ alkenyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_2-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_2-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ R}^{1/3} \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ or } C_3-C_4 \text{ alkynyl substituted with } 0-3 \text{ or } C_3-C_4 \text{ or }$

 R^{12a} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

- R^{13} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;
- 5 R^{14} is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;
 - R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;
- 10 R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-G(=0) ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂-;
- 15 R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- R¹⁹, at each occurrence, is independently selected from 20 H, methyl, and ethyl.
 - 10. A compound, according to one of Claims 6, 7, 8, or 9, wherein:
- 9

1

iā iā

١٠...

- R^3 is $-CH_3$, $-CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH_2CH_2CH_3$, $-CH_2(CH_3)_2$, $-CH_2(CH_3)_2$, $-CH_2CH_3$, $-CH_2CH_3$, $-CH_2CH_3$, $-CH_3$,
 - -CH=CH₂, -CH₂CH=CH₂, -CH₂C(CH₃)=CH₂, -CH₂CH=C(CH₃)₂,
- - cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-,
- 35 cyclohexyl-CH₂-, cyclopropyl-CH₂CH₂-, cyclobutyl-CH₂CH₂-, cyclopentyl-CH₂CH₂-, cyclohexyl-CH₂CH₂-, phenyl-CH₂-,

```
(2-F-phenyl)CH<sub>2</sub>-, (3-F-phenyl)CH<sub>2</sub>-, (4-F-phenyl)CH<sub>2</sub>-,
                    (2-C1-pheny1)CH_2-, (3-C1-pheny1)CH_2-, (4-C1-pheny1)CH_2-,
                    (2\sqrt{3}-diF-phenyl)CH_2-, (2,4-diF-phenyl)CH_2-,
                    (2,5)diF-phenyl)CH<sub>2</sub>-, (2,6-diF-phenyl)CH<sub>2</sub>-,
                    (3,4-diF-phenyl)CH<sub>2</sub>-, (3,5-diF-phenyl)CH<sub>2</sub>-,
                    (2,3-diCl-phenyl)CH<sub>2</sub>-, (2,4-diCl-phenyl)CH<sub>2</sub>-,
                    (2,5-diC_1-phenyl)CH_2-, (2,6-diCl-phenyl)CH_2-,
                    (3,4-diCl\phenyl)CH_2-, (3,5-diCl-phenyl)CH_2-,
                    (3-F-4-Cl-henyl)CH<sub>2</sub>-, (3-F-5-Cl-phenyl)CH<sub>2</sub>-,
                    (3-C1-4-F-phenyl)CH_2-, phenyl-CH<sub>2</sub>CH<sub>2</sub>-,
        10
                    (2-F-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (3-F-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                    (4-F-phenyl)CH_2CH_2-, (2-Cl-phenyl)CH_2CH_2-,
                    (3-C1-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (4-C1-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                    (2,3-diF-phenyl)CH_2CH_2-, (2,4-diF-phenyl)CH_2CH_2-,
                    (2,5-diF-phenyl)CH_2CH_2-, (2,6-diF-phenyl)CH_2CH_2-,
        15
1...
.j
.j
                    (3,4-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (3,5-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                    (2.3-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2.4-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
(2,5-dicl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,6-dicl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                    (3,4-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>\, (3,5-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
Ľij.
                    (3-F-4-Cl-phenyl)CH_2CH_2-\lambda or (3-F-5-Cl-phenyl)CH_2CH_2-,
20
13
               R^5 is -CH_3, -CH_2CH_3, -CH_2CH_2CH_3, -CH(CH_3)_2, -CH_2CH_2CH_2CH_3,
ŗŲ
                    -CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>\downarrow-CH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>,
-4
١, ١
                    -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)CH<sub>2</sub>CN<sub>2</sub>CH<sub>3</sub>, -CH<sub>2</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>,
                    -CH_2CH_2CH(CH_3)_2, -CH(CH_2CH_3)_2, \CF_3, -CH_2CF_3, -CH_2CH_2CF_3,
        25
                    -CH_2CH_2CH_2CF_3, -CH_2CH_2CH_2CF_3, CH=CH_2, -CH_2CH=CH_2,
 L
                    -CH=CHCH<sub>3</sub>, cis-CH<sub>2</sub>CH=CH(CH<sub>3</sub>), tra\hbars-CH<sub>2</sub>CH=CH(CH<sub>3</sub>),
                    trans-CH<sub>2</sub>CH=CH(C<sub>6</sub>H<sub>5</sub>), -CH<sub>2</sub>CH=C(CH<sub>3</sub>), cis-CH<sub>2</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>,
                    trans-CH<sub>2</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>, cis-CH<sub>2</sub>CH<sub>2</sub>CH=CN(CH<sub>3</sub>),
                    trans-CH_2CH_2CH=CH(CH_3), trans-CH_2CH=CNCH_2(C_6H_5),
        30
                    -C \equiv CH, -CH_2C \equiv CH, -CH_2C \equiv C(CH_3), -CH_2C \equiv C(C_6H_5)
                    -CH_2CH_2C\equiv CH, -CH_2CH_2C\equiv C(CH_3), -CH_2CH_2C\equiv C(C_6H_5)
                    -CH_2CH_2CH_2C\equiv CH, -CH_2CH_2CH_2C\equiv C(CH_3), -CH_2CH_2C\equiv C(C_6H_5)
                    cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-,
                    cyclohexyl-CH<sub>2</sub>-, (2-CH<sub>3</sub>-cyclopropyl)CH<sub>2</sub>-,
        35
                    (3-CH_3-cyclobutyl)CH_2-
                    cyclopropyl-CH<sub>2</sub>CH<sub>2</sub>-, cyclobutyl-CH<sub>2</sub>CH<sub>2</sub>-,
```

```
cyclopentyl-CH_2CH_2-, cyclohexyl-CH_2CH_2-,
               (2-CH_3-cyclopropyl)CH_2CH_2-, (3-CH_3-cyclobutyl)CH_2CH_2-,
               phenyl-CH<sub>2</sub>-, (2-F-phenyl) CH<sub>2</sub>-, (3-F-phenyl) CH<sub>2</sub>-,
               (4-F-phenyl)CH<sub>2</sub>-, furanyl-CH<sub>2</sub>-, thienyl-CH<sub>2</sub>-,
               pyridyl-CH<sub>2</sub>-, 1-imidazolyl-CH<sub>2</sub>-, oxazolyl-CH<sub>2</sub>-,
       5
               isoxazoly1\CH_2-,
               phenyl-CH_2CH_2-, (2-F-phenyl)CH_2CH_2-, (3-F-phenyl)CH_2CH_2-,
               (4-F-phenyl)CH_2CH_2-, furanyl-CH_2CH_2-, thienyl-CH_2CH_2-,
               pyridyl-CH<sub>2</sub>CH<sub>2</sub>-\ 1-imidazolyl-CH<sub>2</sub>CH<sub>2</sub>-, oxazolyl-CH<sub>2</sub>CH<sub>2</sub>-,
               isoxazolyl-CH2CH2
            Z is methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl,
                  s-butyl, t-butyl, or allyl;
           R<sup>10</sup> is H, methyl, ethyl, phenyl, benzyl, phenethyl,
CJ i
      15
4-F-phenyl, (4-F-phenyl)CH_2-, (4-F-phenyl)CH_2CH_2-,
               4-Cl-phenyl, (4-Cl-phenyl)CH_2- (4-Cl-phenyl)CH_2CH_2-,
4-CH_3-phenyl, (4-CH_3-phenyl)CH_2-, (4-CH_3-phenyl)CH_2CH_2-,
1:
               4-CF_3-phenyl, (4-CF_3-phenyl)CH<sub>2</sub>-, \delta r
20
               (4-CF_3-phenyl)CH_2CH_2-;
ы
R<sup>11</sup>, at each occurrence, is independently\selected from
H
               H, =0, methyl, ethyl, phenyl, benzyl, phenethyl,
.
               4-F-phenyl, (4-F-phenyl)CH<sub>2</sub>-, <math>(4-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
               3-F-phenyl, (3-F-phenyl)CH_2-, (3-F-phenyl)CH_2-,
      25
               2-F-phenyl, (2-F-phenyl)CH<sub>2</sub>-, <math>(2-F-phenyl)CH<sub>2</sub>-,
               4-Cl-phenyl, (4-Cl-phenyl)CH<sub>2</sub>-, <math>(4-Cl-phenyl)QH<sub>2</sub>CH<sub>2</sub>-,
               3-C1-phenyl, (3-C1-phenyl)CH_2-, (3-C1-phenyl)CH_2CH_2-,
               4-CH_3-phenyl, (4-CH_3-phenyl)CH_2-, (4-CH_3-phenyl)\dot{Q}H_2CH_2-,
               3-CH_3-phenyl, (3-CH_3-phenyl)CH_2-, (3-CH_3-phenyl)CH_2CH_2-,
      30
               4-CF_3-phenyl, (4-CF_3-phenyl)CH_2-, (4-CF_3-phenyl)CH_2\bigcirc H_2-,
               pyrid-2-yl, pyrid-3-yl, or pyrid-4-yl, and
            R<sup>13</sup>, at each occurrence, is independently selected from
      35
               H, F, C1, OH, -CH_3, -CH_2CH_3, -OCH_3, or -CF_3.
```

By

11. A compound according to Claim & selected from:

Y2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

S⁴ cont

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-propyl-butanediamide;

- 10 (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
- (2R,3S) N1-[(3R)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl] 2-(2-methylpropyl)-3-allylbutanediamide;
 - (2R,3S) N1-[(3R)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-propyl-
- 20 butanediamide;
 - (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-propyl-butanediamide;

- (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo\5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-methyl-3-allyl-butanediamide;
- (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxd-5-phenyl-2H-30 1,4-benzodiazepin-3-yl]-2-methyl-3-allyl-butanediamide;
 - (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-methyl-3-propyl-butanediamide;
- 35 (2R) N1-[1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-methyl-butanediamide;

(2R,3S) N1-[1,3-dihydro-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

B4 cont

15

20

25

35

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-phenyl-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-7-10 chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3allyl-butanediamide;

(2R,3S) N1-[(3R)-1,3 dihydro-1-methyl-2-oxo-5-phenyl-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(2-fluorophenyl)-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-(2-fluorophenyl)-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3R)-1,3-dihydro-1-methyl-2-oxo-5-(2-fluorophenyl)-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2S,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-30 benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-propyl-butanediamide;

20

25

B4 conts

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-(2-fluorophenyl)-7-chloro-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-propyl-butanediamide;

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(4-fluorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-(4-10 fluorophenyl)-2H-1 4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3R)-1,3-dihydro-1-methyl-2-oxo-5-(4-fluorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(pyrid-2-yl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(N-morpholino)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-dimethylamino)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

- 30 (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(N-methyl-N-phenylamino)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
- (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(N-piperidinyl)-35 2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

```
(2R, 3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(N-
    homopiperidinyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-
    methylpropyl)-3-allyl-butanediamide;
    (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(3-methoxyphenyl)-
    2H-1,4-benzodiazepin-3-y1]-2-(2-methylpropyl)-3-allyl-
    butanediamide;
    (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(pyrid-4-yl)-2H-
    1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-
10
    butanediamide:
    (2R,3S) N1-[1,3-dihyd\chio-1-methyl-2-oxo-5-phenyl-7-methoxy-
    2H-1, 4-benzodiazepin-3-y1]-2-(2-methylpropyl)-3-allyl-
15
    butanediamide;
    (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(pyrid-3-yl)-2H-
    1,4-benzodiazepin-3-yl]-2-(2-hethylpropyl)-3-allyl-
    butanediamide:
20
    (2R,3S) N1-[1,3-dihydro-1-methyl-2\leftarrowoxo-5-phenyl-2H-1,4-
    benzodiazepin-3-yl]-2-(2-methylpropx1)-3-
    (cyclopropylmethyl) -butanediamide;
    (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-3-(3-fluorophenyl)-
25
```

- 25 (2R,3S) N1-[1,3-dihydro-1-methy1-2-oxo-5-(3-fluoropheny1)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
- (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5+(3-30 fluorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
 - (2R,3S) N1-[(3R)-1,3-dihydro-1-methyl-2-oxo-5-(3-fluorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

```
(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-
                       1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-
                       3-\3-buten-1-yl)-butanediamide;
                        (2R, 3\dot{S}) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-
                        1,4-ben odiazepin-3-yl]-2-(2-methylpropyl)-3-
                        (cyclopentylethyl) -butanediamide;
                        (2R, 3S) N1-[NS]-1,3-dihydro-1-methyl-2-oxo-5-(4-
                       trifluoromethy\phenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-
            10
                       methylpropyl) -3-\sqrt{3-buten-1-yl} -butanediamide;
                        (2R, 3S) N1-[(3R)-1, 3-dihydro-1-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-oxo-5-(4-methyl-2-ox
                        trifluoromethylphenyl\( -2H-1, 4-benzodiazepin-3-yl] -2-(2-
                       methylpropyl) -3-(3-buten-1-yl)-butanediamide;
            15
                        (2R, 3S) N1-[1,3-dihydro-1\methyl-2-oxo-5-(4-
                        trifluoromethylphenyl)-2H-1\sqrt{4-\text{benzodiazepin-3-yl}}-2-(2-
                       methylpropyl) -3-allyl-butanediamide;
            20
                        (2R, 3S) N1-[(3S)-1, 3-dihydro-1-nethyl-2-oxo-5-(4-
trifluoromethylphenyl)-2H-1,4-beAzodiazepin-3-yl]-2-(2-
                        methylpropyl)-3-allyl-butanediamide;
            25
                        (2R,3S) N1-[(3R)-1,3-dihydro-1-methy\(\)\(\)\(\)\(\)\(\)
                        trifluoromethylphenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-
                        methylpropyl)-3-allyl-butanediamide;
                        (2R, 3S) N1-[(3S)-1, 3-dihydro-1-methyl-2-oxo-5-(4-
                        trifluoromethylphenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-
            30
                        methylpropyl)-3-n-butyl-butanediamide;
                         (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-<math>\sqrt{4}-
                        trifluoromethylphenyl)-2H-1,4-benzodiazepin-3-y1]-2-(2-
            35
                        methylpropyl)-3-propyl-butanediamide;
```

```
84 cont
```

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-(4-chlorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-(3-buten-1-yl)-butanediamide;

- 5 (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-(4-chlorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-n-butyl-butanediamide;
- (2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-N4-[benzyl]-butanediamide;
 - (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-methyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-
- 15 butanediamide;
 - (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-n-butyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
 - (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(2-methylpropyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
- 25 (2R,3S) N1-[1,3-dihydro-1-methyl-2-oxo-5-(4-chlorophenyl)-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;
- (2R,3S) N1-[1,3-dihydro-1-ethyl-2-oxo-5-phenyl-2H-1,4-30 benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-
 - (2R,3S) N1-[1,3-dihydro-1-propyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-
- 35 butanediamide;

butanediamide;

B4 cont

(2R,3S) N1-[1,3-dihydro-1-(isopropyl)-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide;

(2R,3S) N1-[(3S)-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl]-2-(2-methylpropyl)-3,3-diallyl-butanediamide;

(2R,3S) N1-[6,7-dihydro-5-methyl-6-oxo-5H-10 dibenz[b,d]azepin-7-yl]-2-(2-methylpropyl)-3-allylbutanediamide; and

(2R,3S) N1-[1,3,4,5-tetrahydro-1,5-dimethyl-2,4-dioxo-2H-1,5-benzodiazepin-3-yl]-2-(2-methylpropyl)-3-allyl-butanediamide.

12. A compound, according to Claim 1, of Formula (Ia):

Subto

20

15

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

25

Z is C_1 - C_8 alkyl substituted with 1-3 R^{12} ; C_2 - C_4 alkenyl substituted with 1-3 R^{12} ; C_2 - C_4 alkynyl substituted with 1-3 R^{12} ; C_6 - C_{10} aryl substituted with 0-4 R^{12b} ;

30

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

5 UN 5

provided, when R^{13} is H, then Z is C_4 - C_8 alkyl substituted with 1-3 R^{12} ; C_2 - C_4 alkenyl substituted with 1-3 R^{12} ; or C_2 - C_4 alkynyl substituted with 1-3 R^{12} ; and

provided, when ring B is a 1,3,4,5-tetrahydro-1-(Z)-5-(R¹⁰)-6,6,7,7-tetra(R¹¹)-2,4-dioxo-2H-1,5-diazepin-3-yl core, and R^{13} is H; then

10 R^{10} is H, $C(=0)R^{17}$, $C(=0)OR^{17}$, $C(=0)NR^{18}R^{19}$, $S(=0)_2NR^{18}R^{19}$, $S(=0)_2R^{17}$; or C_1-C_6 alkyl optionally substituted with 0-3 R^{10a} ;

 R^{10a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 .

Conf

15

25

30

13. A compound according to Claim 12 of Formula (Ia) wherein:

 $\begin{array}{c} {\rm R}^3 \ \ {\rm is} \ -({\rm CR}^7{\rm R}^{7a})_n - {\rm R}^4, \\ \\ -({\rm CR}^7{\rm R}^{7a})_n - {\rm S} -({\rm CR}^7{\rm R}^{7a})_m - {\rm R}^4, \\ \\ -({\rm CR}^7{\rm R}^{7a})_n - {\rm O} -({\rm CR}^7{\rm R}^{7a})_m - {\rm R}^4, \ \ {\rm or} \\ \\ -({\rm CR}^7{\rm R}^{7a})_n - {\rm N} \left({\rm R}^{7b}\right) - ({\rm CR}^7{\rm R}^{7a})_m - {\rm R}^4; \end{array}$

n is 0, 1, or 2;

m is 0, 1, or 2;

R^{3a} is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, allyl, or 3-buten-1-yl;

R⁴ is H, OH, OR^{14a}, $C_1-C_6 \text{ alkyl substituted with } 0-3 \text{ R}^{4a},$ $C_2-C_6 \text{ alkenyl substituted with } 0-3 \text{ R}^{4a},$ $C_2-C_6 \text{ alkynyl substituted with } 0-3 \text{ R}^{4a},$

20

25

30

By J

 C_3-C_{10} carbocycle substituted with 0-3 R^{4b} , C_6-C_{10} aryl substituted with 0-3 R^{4b} , or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R4b;
- R^{4a} , at each occurrence, is independently selected from is H, F, Cl, Br, I, CF_3 ,
- 10 C_3-C_{10} carbocycle substituted with 0-3 R^{4b} , C_6-C_{10} aryl substituted with 0-3 R^{4b} , or
 - 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R4b;
 - R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO, $NR^{15}R^{16}$, CF₃, acetyl, SCH₃, $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl, and C_1-C_4 haloalkoxy;

 R^5 is H, OR^{14} ;

 C_1-C_6 alkyl substituted with 0-8 R^{5b} ;

 C_1-C_6 alkoxy substituted with 0-3 R^{5b} ;

 C_2-C_6 alkenyl substituted with 0-3 R^{5b} ;

 C_2 - C_6 alkynyl substituted with 0-3 \mathbb{R}^{5b} ;

 C_3-C_{10} carbocycle substituted with $0 \downarrow 3$ R^{5c} ;

 C_6-C_{10} aryl substituted with 0-3 R^{5c} ; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

 R^{5a} is H or C_1-C_4 alkyl;

35

R^{5b}, at each occurrence, is independently selected from:

25

B4 cont

H, C_1-C_6 alkyl, CF_3 , OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$:

 \mathbb{C}_3 - \mathbb{C}_{10} carbocycle substituted with 0-3 \mathbb{R}^{5c} ;

 C_{6} C₁₀ aryl substituted with 0-3 R^{5c}; or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};
- 10 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;
- 15 R⁶ is H, methyl, or ethyl;
 - R^7 , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF₃, phenyl, and C₁-C₄ alkyl;

 R^{7a} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , CF3, and C_1 - C_4 alkyl;

R^{7b} is independently selected from H, methyl, ethyl, propyl, and butyl;

Ring B is a 7 membered lactam,

wherein the lactam is saturated, partially saturated or unsaturated;

- 30 wherein each additional lactam carbon is substituted with 0-2 R^{11} ; and,
 - optionally, the lactam contains a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, -N=, -NH-, and $N(R^{10})$ -;

 B_{conf}^{4}

10

15

20

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-3 R¹³;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;

additionally, two R^{11} substituents on the same or adjacent carbon atoms may be combined to form a C_3 - C_6 carbocycle substituted with 0-3 R^{13} ;

 R^{10} is H, $C(=0)R^{17}$, C_{1} $S(=0)_{2}NR^{18}R^{19}$, $S(=0)_{2}NR^{18}R^{19}$, S(=0

 R^{10} is H, $C(=0)R^{17}$, $C(=0)OR^{17}$, $C(=0)NR^{18}R^{19}$, $S(=0)_2NR^{18}R^{19}$, $S(=0)_2R^{17}$;

 C_1-C_6 alkyl optionally substituted with 0-2 R^{10a} ; C_6-C_{10} aryl substituted with 0-4 R^{10b} ;

C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R¹⁰¢;

25

 R^{10a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-4 R^{10b} ;

- 30 R^{10b} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO₂, $NR^{15}R^{16}$, or CF_3 ;
- R¹¹, at each occurrence, is independently selected from H, C₁-C₄ alkoxy, Cl, F, Br, I, =0, CN, NO₂, NR¹⁸R¹⁹, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹, S(=0)₂NR¹⁸R¹⁹, CF₃; C₁-C₆ alkyl optionally substituted with 0-3 R¹¹a;

B4 cont

10

15

20

25

30

 C_6-C_{10} aryl substituted with 0-3 R^{11b} ; C_3-C_{10} carbocycle substituted with 0-3 R^{11b} ; or

- 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is `substituted with 0-3 R^{11b};
- R^{11a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;
 - R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃ C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;
 - Z is C₁-C₆ alkyl substituted with 1-3 R¹²;

 C₂-C₄ alkenyl substituted with 1-3 R¹²;

 C₂-C₄ alkynyl substituted with 1-3 R¹²;

 C₆-C₁₀ aryl substituted with 0-4 R^{12b};

 C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

 5 to 10 membered heterocycle containing 1 to 4

 heteroatoms selected from nitrogen, oxygen, and

 sulphur, wherein said 5 to 10 membered heterocycle
 is substituted with 0-3 R^{12b};
 - R¹², at each occurrence, is independently selected from C₆-C₁₀ aryl substituted with 0-4 R^{12b};
 C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};
- 35 R^{12b} , at each occurrence, is independently selected from

15

20

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C_{17} C₄ haloalkyl, and C_{17} C₄ haloalkoxy;

- R^{13} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;
 - R^{14} is H, phenyl benzyl, C_1 - C_6 alkyl, or C_2 - C_6 alkoxyalkyl;
 - R14a is H, phenyl, henzyl, methyl, ethyl, propyl, or butyl;
 - R^{15} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-;
 - R^{16} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0) $_2$ -;
 - R^{17} is H, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, aryl substituted by 0-4 R^{17a} , or -CH₂-aryl substituted by 0-4 R^{17a} ;
- 25 R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, L, CF₃, OCF₃, SCH₃, S(0)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;
- R¹⁸, at each occurrence, is independently selected from H, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-; and
- R^{19} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)2-;
 - provided, when R^{13} is H,

then Z is C_4 - C_6 alkyl substituted with 1-3 R^{12} ; C_2 - C_4 alkenyl substituted with 1-3 R^{12} ; or C_2 - C_4 alkynyl substituted with 1-3 R^{12} .

5 14. A compound according to Claim 13 of Formula (Ia) wherein:

 R^3 is $-(CHR^{7})_{n}-R^4$,

10 n is 0 or 1;

R^{3a} is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, allyl, or 3-buten-1-yl;

15 R^4 is H, OH, OR^{14a} , $C_1-C_4 \text{ alkyl substituted with } 0-2 \ R^{4a},$ $C_2-C_4 \text{ alkenyl substituted with } 0-2 \ R^{4a},$ $C_2-C_4 \text{ alkynyl substituted with } 0-1 \ R^{4a},$

C₃-C₆ carbocycle substituted with 0-3 R^{4b},

 C_6-C_{10} aryl substituted with 0-3 R^{4b}, or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b};

25

 R^{4a} , at each occurrence, is independently selected from is H, F, Cl, Br, I, CF_3 ,

 C_3-C_6 carbocycle substituted with 0-3 R^{4b} , phenyl substituted with 0-3 R^{4b} , or

5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R4b;

35 R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 ,

 $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_4 alkyl, C_1-C_3 alkoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 B^{4} 5

 R^5 is H, OR^{14} ; C_1-C_4 alkyl substituted with 0-3 R^{5b} ; C_2-C_4 alkenyl substituted with 0-3 R^{5b} ; C_2-C_4 alkynyl substituted with 0-3 R^{5b} ;

 R^{5a} is H, methy, ethyl, propyl, or butyl;

10

 R^{5b} , at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, CF_3 , OR^{14} , Cl, F, Br, I, =0;

C₃-C₆ carbocycle substituted with 0-3 R^{5c};

phenyl substituted with 0-3 R5c; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{6c};

20

15

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

25

R⁶ is H;

 \mathbb{R}^7 , at each occurrence, is independently selected from H, F, \mathbb{CF}_3 , methyl, and ethyl;

30

35

Ring B is a 7 membered lactam,
wherein the lactam is saturated, partially saturated
or unsaturated;

wherein each additional lactam carbon is substituted with 0-2 R¹¹; and,

optionally, the lactam contains a heteroatom selected from -N=, -NH-, and $-N(R^{10})-$;

B4 cont

10

15

20

25

additionally, two R^{11} substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-2 R^{13} ;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-2 R¹³;

additionally, two R^{14} substituents on the same or adjacent carbon atoms may be combined to form a C_3 - C_6 carbocycle substituted with 0-2 R^{13} ;

R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁷;

C₁-C₄ alkyl optionally substituted with 0-1 R^{10a};

phenyl substituted with 0-4 R^{10b};

C₃-C₆ carbocycle substituted with 0-3 R^{10b}; or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is

substituted with 0-3 R^{10b};

 $\rm R^{10a},$ at each occurrence, is independently selected from H, $\rm C_{1}\text{-}C_{4}$ alkyl, $\rm OR^{14},$ Cl, F, Br, I, =0, CN, NO₂, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-4 R^{10b},

30 R^{10b} , at each occurrence, is independently selected from H, OH, C_1 - C_4 alkyl, C_1 - C_3 alkoxy, Cl, F, Br, I, CN, NO₂, $NR^{15}R^{16}$, or CF_3 ;

 R^{11} , at each occurrence, is independently selected from H, C_1 - C_4 alkoxy, Cl, F, =0, $NR^{18}R^{19}$, C (=0) R^{17} , C (=0) R^{17} , CF_3 ; C_1 - C_6 alkyl optionally substituted with 0-3 R^{11a} ;

B4 conts

10

15

20

25

30

C₆-C₁₀ aryl substituted with 0-3 R^{11b};
C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

- R^{11a} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, OR^{14} , F, =0, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;
- R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , C_1 - C_4 alkyl, C_1 - C_3 alkoxy, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy;
- Z is C₁-C₄ alkyl substituted with 1-3 R¹²;

 C₂-C₄ alkenyl substituted with 1-3 R¹²;

 C₂-C₄ alkynyl substituted with 1-3 R¹²;

 C₆-C₁₀ aryl substituted with 0-4 R^{12b};

 C₃-C₆ carbocycle substituted with 0-4 R^{12b}; or

 5 to 10 membered heterocycle containing 1 to 4

 heteroatoms selected from nitrogen, oxygen, and

 sulphur, wherein said 5 to 6 membered heterocycle is

 substituted with 0-3 R^{12b};
- R¹², at each occurrence, is independently selected from C₆-C₁₀ aryl substituted with 0-4 R^{12b}; C₃-C₆ carbocycle substituted with 0-4 R^{12b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};
- R^{12b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1-C_4 alkyl, C_1-C_3 alkoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

```
10
       15
,,
,,0
       20
25
```

 R^{13} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;

R14 is H, phenyl, benzyl, C1-C4 alkyl, or C2-C4 alkoxyalkyl;

- R^{15} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, benzyl, phenethyl, $(C_1-C_4$ alkyl)-C(=0)-, and $(C_1-C_4$ alkyl)-S(=0)₂-;
- R^{16} , at each occurrence, is independently selected from H, OH, C_1 - C_4 alkyl, benzyl, phenethyl, $(C_1$ - C_4 alkyl)-C(=0)-, and $(C_1$ - C_4 alkyl)-S(=0)₂-;
- R¹⁷ is H, methyl, ethyl, propyl, butyl, methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl, phenyl substituted by 0-3 R^{17a}, or -CH₂-phenyl substituted by 0-3 R^{17a};
- R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF₃, or OCF₃;
- R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- R¹⁹, at each occurrence, is independently selected from H, methyl, and ethyl;
- 30 provided, when R^{13} is H, then Z is butyl substituted with 1-3 R^{12} ; C_2-C_4 alkenyl substituted with 1-3 R^{12} ; or C_2-C_4 alkynyl substituted with 1-3 R^{12} .
- 35 **15.** A compound of \bigcirc laim 14 of Formula (Ib):

50b 335

or a pharmaceutically acceptable salt or prodrug thereof wherein:

Ring B is selected from:

10

$$R^{11}$$
 R^{13}
 R^{13}
 R^{11}
 R^{13}
 R^{11}

$$R^{13}$$
 R^{13}
 R^{13}

$$R^{10}$$
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}

15 16. A compound according to Claim 15 of Formula (Ic):

$$H_2N$$
 R^5
 H_2N
 R^5
 H_3
 R^{13}
 R^{13}
 R^{13}
 R^{13}

or a pharmaceutically acceptable salt or prodrug

thereof

wherein \mathbb{R}^3 1s R^4 . R^4 is C_1-C_4 alkyl substituted with 0-1 R^{4a} , C_{λ}^{-} - C_4 alkenyl substituted with 0-1 R^{4a} , or $C_2 - C_4$ alkynyl substituted with 0-1 R^{4a}; R4a, at each occurrence, is independently selected from H, F, CF3, C_3-C_6 carbocycle substituted with 0-3 R^{4b} , phenyl substituted with 0-3 R4b, or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is 15 substituted with 0-3 R^{4b} ; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, 20 imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl; R4b, at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 \ acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl\ propyl, butyl, methoxy, 25 ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy; R^5 is C_1-C_4 alkyl substituted with 0-1 R^{5b} ; C_2-C_4 alkenyl substituted with 0-1 R^{5b}; C_2-C_4 alkynyl substituted with 0-1 R^{5b}; 30 R5b, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, CR_3 , OR^{14} , =0; C_3-C_6 carbocycle substituted with $0-\sqrt{2}$ R^{5c} ; phenyl substituted with 0-3 R^{5c} ; or 5 to 6 membered heterocycle containing $\backslash 1$ to 4 35 heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is

15

20

25

substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

5.19 11.4.14 10.110

- R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$ methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
- R¹¹, at each occurrence, is independently selected from H, =0, NR¹⁸R¹⁹ CF₃;

 C₁-C₄ alkyl optionally substituted with 0-1 R^{11a};

 phenyl substituted with 0-3 R^{11b};

 C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or

 5 to 6 membered heterocycle containing 1 to 4

 heteroatoms selected from nitrogen, oxygen, and

 sulphur, wherein said 5 to 6 membered heterocycle is

 substituted with 0-3 R^{11b}; wherein said 5 to 6

 membered heterocycle is selected from pyridinyl,

 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

 pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

 imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- R^{11a} , at each occurrence, is independently selected from H, C_1-C_4 alkyl, OR^{14} , F, Cl, =0 $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;
- 30 R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy;
- Z is C_1-C_3 alkyl substituted with 1-3 R^{12} ; C_2-C_3 alkenyl substituted with 1-3 R^{12} ; C_2-C_3 alkynyl substituted with 1-3 R^{12} ;

 $C_{6}-C_{10}$ aryl substituted with 0-4 R^{12b}; $C_3 \rightarrow C_6$ carbocycle substituted with 0-3 R^{12b}; or 5 to 6 membered heterocycle containing 1 to 4

5

15

20

heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{12b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl\ piperazinyl, piperidinyl, pyrazolyl, imidazoly, oxazoly, isoxazoly, and tetrazoly;

R¹², at each occurrence, is independently selected from C_6-C_{10} aryl substituted with 0-4 R^{12b} ; C_3-C_6 carbocycle\substituted with 0-3 R^{12b} ; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0 + 3 R^{12b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, i soxazolyl, and tetrazolyl;

R12b, at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, 25 $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl \setminus and C_1-C_2 haloalkoxy;

R13, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, 30 Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;

R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

R¹⁵, at each occurrence, is independently selected from H, 35 methyl, ethyl, propyl, and butyl;

GONX CONX

.j .,1 15

R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=0)-, ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂-;

- R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
- 10 R^{19} , at each occurrence, is independently selected from H, methyl, and ethyl.

provided, when R^{13} is H, then Z is C_2-C_3 alkenyl substituted with 1-3 R^{12} ; or C_2-C_3 alkynyl substituted with 1-3 R^{12} .

17. A compound according to Claim 15 of Formula (Id):

$$H_{2}N$$
 H_{3}
 H_{3}

or a pharmaceutically acceptable salt or prodrug thereof wherein:

 R^3 is R^4 ,

R⁴ is C_1 - C_4 alkyl substituted with C_2 - C_4 alkenyl substituted with C_1 C_2 - C_4 alkynyl substituted with C_1 C_2 - C_4 alkynyl substituted with C_1 C_2

30 R^{4a} , at each occurrence, is independently selected from H, F, CF₃, C_3 -C₆ carbocycle substituted with 0-3 R^{4b} , phenyl substituted with 0-3 R^{4b} , or

- 5 to 6 membered heterocycle containing 1 to 4
 heteroatoms selected from nitrogen, oxygen, and
 sulphur, wherein said 5 to 6 membered heterocycle is
 substituted with 0-3 R4b; wherein said 5 to 6
 membered heterocycle is selected from pyridinyl,
 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
 pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
 imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- 10 R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
- 15 R⁵ is C₁-C₄ alkyl substituted with 0-1 R^{5b}; C_2 -C₄ alkenyl substituted with 0-1 R^{5b}; C_2 -C₄ alkynyl substituted with 0-1 R^{5b};
- R5b, at each occurrence, is independently selected from:

 H, methyl, ethyl, propyl, butyl, CF3, OR14, =0;

 C3-C6 carbocycle substituted with 0-2 R5c;

 phenyl substituted with 0-3 R5c; or

 5 to 6 membered heterocycle containing 1 to 4

 heteroatoms selected from nitrogen, oxygen, and

 sulphur, wherein said 5 to 6 membered heterocycle is

 substituted with 0-3 R5c; wherein said 5 to 6

 membered heterocycle is selected from pyridinyl,

 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

 pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

 imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
 - R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , S(=0) CH_3 , $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl mathoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
 - R11, at each occurrence, is independently selected from

20

25

30

35

H, =0, NR¹⁸R¹⁹, CF₃;

C₁-C₄ alkyl optionally substituted with 0-1 R^{11a};

phenyl substituted with 0-3 R^{11b};

C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is

substituted with 0-3 R^{11b}; wherein said 5 to 6

membered heterocycle is selected from pyridinyl,

pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{11a} , at each occurrence, is independently selected from H, C_1 - C_4 alkyl, OR^{14} , F, Cl, =0, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;

 R^{11b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1 - C_2 haloalkyl, and C_1 - C_2 haloalkoxy;

Z is C₁-C₃ alkyl substituted with 1-3 R¹²;
C₂-C₃ alkenyl substituted with 1-3 R¹²;
C₂-C₃ alkynyl substituted with 1-3 R¹²;
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₆ carbocycle substituted with 0-3 R^{12b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{12b}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thianyl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrażolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R12, at each occurrence, is independently selected from

10

15

20

25

30

C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₆ carbocycle substituted with 0-3 R^{12b}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{12b}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{12b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^{13} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, $NR^{15}R^{16}$, and CF_3 ;

R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=0)-, ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂-;

R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

35 R¹⁹, at each occurrence, is independently selected from H, methyl, and ethyl.

A compound according to Claim 15 of Formula (Ie): 18.

:0

13

20

25

$$H_2N$$
 R^3
 O
 R^5
 N
 N
 Z
 R^{13}
 R^{13}
 R^{13}
 R^{13}

or a pharmaceutically acceptable salt or prodrug thereof 10 wherein:

 R^3 is R^4 ,

 R^4 is C_1-C_4 alkyl substituted with 0-1 R^{4a} , 15 C2-C4 alkenyl substituted with 0-1 R4a, or C2-C4 alkynyl substituted with 0-1 R4a;

R4a, at each occurrence, is independently selected from H, F, CF₃, C_3-C_6 carbocycle substituted with 0-3 R^{4b} , phenyl substituted with $0-3\R^{4b}$, or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and

sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R4b; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl pyrazolyl,

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl; 30

R4b, at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF₃, acetyl, SCH₃, S(=O\CH₃,

ΪIJ

اي. د

ij.

25

30

35

5

 $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^5 is C_1 C_4 alkyl substituted with 0-1 R^{5b} ; C_2 - C_4 alkenyl substituted with 0-1 R^{5b} ; C_2 - C_4 alkynyl substituted with 0-1 R^{5b} ;

R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, OR¹⁴, =O;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{5c}; wherein said 5 to 6
membered heterocycle is selected from pyridinyl,
pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

 R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

 R^{10} is H, $C(=0)R^{17}$, $C(=0)OR^{17}$; C_1-C_4 alkyl optionally substituted with 0-1 R^{10a} ; phenyl substituted with 0-4 R^{10b} ; C_3-C_6 carbocycle substituted with 0-3 R^{10b} ; or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{10b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

30

35

R¹(a, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, OR^{14} , Cl, F, =0, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-4 R^{10b} ;

Silo 5 RBix

 R^{10b} , at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propxy, Cl, F, $NR^{15}R^{16}$, and CF_3 ;

Z is C_1-C_3 alkyl substituted with 1-3 R^{12} ; 10 C2-C3 alkenyl substituted with 1-3 R12; C_2-C_3 alkynyl substituted with 1-3 R^{12} ; C_6-C_{10} aryl\ substituted with 0-4 R^{12b} ; C_3-C_6 carbodycle substituted with 0-3 R^{12b} ; or 5 to 6 membered heterocycle containing 1 to 4 15 heteroatoms\selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{12b} ; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, 20 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R¹², at each occurrence, is independently selected from C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₆ carbocycle substituted with 0-3 R^{12b}; or 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{12b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

5 R¹³, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;

AB Contro

.]

(O

(7) []

15

20

25

35

 R^{14} is H, phenyl benzyl, methyl, ethyl, propyl, or butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;

R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl propyl, butyl, benzyl, phenethyl, methyl-C(=0)-, ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂-;

 R^{17} is H, methyl, ethyl, propyl, butyl, methoxymethyl, ethoxymethyl, ethoxyethyl, phenyl substituted by 0-3 R^{17a} or $-CH_2$ -phenyl substituted by 0-3 R^{17a} ;

 R^{17a} is H, methyl, methoxy, -OH, F, Cl, CF_3 , or OCF₃;

R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

30 R¹⁹, at each occurrence, is independently selected from H, methyl, and ethyl.

provided, when R^{13} is H, then Z is C_2 - C_3 alkenyl substituted with 1-3 R^{12} ; or C_2 - C_3 alkynyl substituted with 1-3 R^{12} .

19. A compound according to Claim 15 of Formula (If):

$$H_2N$$
 R^5
 H
 N
 Z
 R^{13}
 R^{13}
 R^{13}
 R^{13}

or a pharmac utically acceptable salt or prodrug thereof wherein:

 R^3 is R^4 ,

5

15

20

30

 R^4 is C_1 - C_4 alkyl substituted with 0-1 R^{4a} , 10 C_2 - C_4 alkenyl substituted with 0-1 R^{4a} , or C_2 - C_4 alkynyl substituted with 0-1 R^{4a} ;

 R^{4a} , at each occurrence, is independently selected from H, F, CF_3 ,

 C_3 - C_6 carbocycle substituted with 0-3 R^{4b} , phenyl substituted with 0-3 R^{4b} , or

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCR_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;

 R^5 is C_1-C_4 alkyl substituted with 0-1 R^{5b} ; C_2-C_4 alkenyl substituted with 0-1 R^{5b} ; C_2-C_4 alkynyl substituted with 0-1 R^{5b} ;

- 15 R^{5c} , at each occurrence is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
- Z is C₁-C₃ alkyl substituted with 1-3 R¹²;
 C₂-C₃ alkenyl substituted with 1-3 R¹²;
 C₂-C₃ alkynyl substituted with 1-3 R¹²;
 C₆-C₁₀ aryl substituted with 0-4 R^{12b};
 C₃-C₆ carbocycle substituted with 0-3 R^{12b}; or
 5 to 6 membered heterocycle containing 1 to 4
 heteroatoms selected from nitrogen, oxygen, and
 sulphur, wherein said 5 to 6 membered heterocycle is

membered heterocycle is selected from pyridinyl,

pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,

pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,

imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

substituted with 0-3 R^{12b}; wherein said 5 to 6

 R^{12} , at each occurrence, is independently selected from C_6-C_{10} aryl substituted with 0-4 R^{12b} ; C_3-C_6 carbocycle substituted with 0-3 R^{12b} or

- 5 to 10 membered heterocycle containing 1 to 4
 heteroatoms selected from nitrogen, oxygen, and
 sulphur, wherein said 5 to 10 membered heterocycle
 is substituted with 0-3 R^{12b}; wherein said 5 to 6
 membered heterocycle is selected from pyridinyl,
 pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
 pyrrolyl, piperazinyl, piperidinyl, pyrazolyl,
 imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;
- 10 R^{12b} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C_1-C_2 haloalkyl, and C_1-C_2 haloalkoxy;
- 15 R¹³, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;
 - R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;
 - R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl;
- R¹⁶, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=0)-, ethyl-C(=0)-, methyl-S(=0)₂-, and ethyl-S(=0)₂;
- R¹⁸, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and
 - R¹⁹, at each occurrence, is independently selected from H, methyl, and ethyl.
 - provided, when R^{13} is H, then Z is C_2-C_3 alkenyl substituted with 1-3 R^{12} or

```
A compound according to one of Claims 16, 17, 18, 19,
               20.
                       wherein:
         5
              R^3 is -CH_3, -CH_2CH_3, -CH_2CH_2CH_3, -CH_2CH_2CH_3,
                  -CH_2(CH_3)_2, -CH(CH_3)CH_2CH_3, -CH_2CH(CH_3)_2, -CH_2C(CH_3)_3,
                  -CF_3, -CH_2CF_3, -CH_2CH_2CF_3, -CH_2CH_2CH_2CF_3,
                  -CH=CH_2, -CH_2CH=CH_2, -CH_2C(CH_3)=CH_2, -CH_2CH=C(CH_3)_2,
                  -CH_2CH_2CH=CH_2, -CH_2CH_2C (CH_3) =CH_2, -CH_2CH_2CH=C (CH_3) 2,
       10
                  cis-CH<sub>2</sub>CH=CH(CH<sub>3</sub>), cis-CH<sub>2</sub>CH<sub>2</sub>CH=CH(CH<sub>3</sub>),
                  trans-CH<sub>2</sub>CH=CH\(CH<sub>3</sub>), trans-CH<sub>2</sub>CH<sub>2</sub>CH=CH(CH<sub>3</sub>);
                  -C \equiv CH, -CH_2C \equiv CH, -CH_2C \equiv C(CH_3),
                  cyclopropyl-CH_2-, cyclobutyl-CH_2-, cyclopentyl-CH_2-,
       15
                  cyclohexyl-CH2-, cyclopropyl-CH2CH2-,
ij
.]
[]
                  cyclobutyl-CH<sub>2</sub>CH<sub>2</sub>-, dyclopentyl-CH<sub>2</sub>CH<sub>2</sub>-,
                  cyclohexyl-CH2CH2-, phenyl-CH2-,
(2-F-phenyl)CH_2-, (3-F-phenyl)CH_2-, (4-F-phenyl)CH_2-,
ايد
                   (2-C1-phenyl)CH<sub>2</sub>-, (3-Cl\phenyl)CH<sub>2</sub>-, (4-Cl-phenyl)CH<sub>2</sub>-,
Ű
                   (2,3-diF-phenyl)CH<sub>2</sub>-, (2,4-diF-phenyl)CH<sub>2</sub>-,
       20
Ç
                   (2.5-diF-phenyl)CH<sub>2</sub>-, (2.6-diF-phenyl)CH<sub>2</sub>-,
1,3
                   (3,4-diF-phenyl)CH<sub>2</sub>-, (3,5-diF-phenyl)CH<sub>2</sub>-,
(2,3-diCl-phenyl)CH<sub>2</sub>-, (2,4-diCl-phenyl)CH<sub>2</sub>-,
4.4
                   (2,5-diCl-phenyl)CH<sub>2</sub>-, (2,6-diCl-phenyl)CH<sub>2</sub>-,
(3,4-diCl-phenyl)CH<sub>2</sub>-, (3,5-diCl-phenyl)CH<sub>2</sub>-,
        25
                   (3-F-4-C1-pheny1)CH_2-, (3-F-5-C1-pheny1)CH_2-,
                   (3-Cl-4-F-phenyl)CH_2-, phenyl-CH_2CH<sub>2</sub>-,
                   (2-F-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (3-F-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                   (4-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2-Cl-phenyl)CN<sub>2</sub>CH<sub>2</sub>-,
                   (3-C1-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (4-C1-pheny1)CN<sub>2</sub>CH<sub>2</sub>-,
        30
                   (2,3-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,4-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                   (2,5-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,6-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                   (3,4-diF-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (3,5-diF-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                   (2,3-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,4-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                   (2,5-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,6-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
        35
                   (3,4-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (3,5-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
```

(3-F-4-Cl-phenyl)CH₂CH₂-, or <math>(3-F-5-Cl-phenxl)CH₂CH₂-,

```
R^{\frac{1}{2}} is -CH_3, -CH_2CH_3, -CH_2CH_2CH_3, -CH(CH_3)_2, -CH_2CH_2CH_2CH_3,
           \CH(CH_3)CH_2CH_3, -CH_2CH(CH_3)_2, -CH_2C(CH_3)_3,
          -C_{H_2CH_2CH_2CH_3}, -C_{H_1CH_3} -C_{H_2CH_2CH_3}, -C_{H_2CH_3}
          -CH_2CH_2CH(CH_3)_2, -CH(CH_2CH_3)_2, -CF_3, -CH_2CF_3, -CH_2CH_2CF_3,
 5
          -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>, -CH=CH<sub>2</sub>, -CH<sub>2</sub>CH=CH<sub>2</sub>,
          -CH=CHCH_3, cis-CH_2CH=CH(CH_3), trans-CH_2CH=CH(CH_3),
          trans-C\dot{H}_2CH=CH(C_6H_5), -CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>, cis-CH<sub>2</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>,
          trans-CH<sub>2</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>, cis-CH<sub>2</sub>CH<sub>2</sub>CH=CH(CH<sub>3</sub>),
10
          trans-CH_2CH_2CH=CH(CH_3), trans-CH_2CH=CHCH_2(C_6H_5),
          -C \equiv CH, -CH_2 \not\subset \equiv CH, -CH_2 C \equiv C(CH_3), -CH_2 C \equiv C(C_6H_5)
          -CH_2CH_2C \equiv CH, CH_2CH_2C \equiv C(CH_3), -CH_2CH_2C \equiv C(C_6H_5)
          -CH_2CH_2CH_2C \equiv CH \setminus -CH_2CH_2CH_2C \equiv C(CH_3), -CH_2CH_2CH_2C \equiv C(C_6H_5)
          cyclopropyl-CH_2\, cyclobutyl-CH_2-, cyclopentyl-CH_2-,
15
          cyclohexyl-CH<sub>2</sub>-, (2-CH<sub>3</sub>-cyclopropyl)CH<sub>2</sub>-,
          (3-CH_3-cyclobutyl)CH_2-
          cyclopropyl-CH_2CH_2-\ cyclobutyl-CH_2CH_2-,
          cyclopentyl-CH<sub>2</sub>CH<sub>2</sub>-,\cyclohexyl-CH<sub>2</sub>CH<sub>2</sub>-,
          (2-CH<sub>3</sub>-cyclopropyl)CH<sub>2</sub>CH<sub>2</sub>-, (3-CH<sub>3</sub>-cyclobutyl)CH<sub>2</sub>CH<sub>2</sub>-,
          phenyl-CH_2-, (2-F-phenyl)CH_2-, (3-F-phenyl)CH_2-,
20
          (4-F-phenyl)CH_2-, furanyl-CH_2-, thienyl-CH_2-,
          pyridyl-CH<sub>2</sub>-, 1-imidazoly\-CH<sub>2</sub>-, oxazolyl-CH<sub>2</sub>-,
          isoxazolyl-CH<sub>2</sub>-,
          phenyl-CH_2CH_2-, (2-F-phenyl)CH_2CH_2-, (3-F-phenyl)CH_2CH_2-,
25
          (4-F-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, furany1-<math>\dot{C}H<sub>2</sub>CH<sub>2</sub>-, thieny1-CH<sub>2</sub>CH<sub>2</sub>-,
          pyridyl-CH<sub>2</sub>CH<sub>2</sub>-, 1-imidazolyl-CH<sub>2</sub>CH<sub>2</sub>-, oxazolyl-CH<sub>2</sub>CH<sub>2</sub>-,
          isoxazolyl-CH<sub>2</sub>CH<sub>2</sub>-,
       Z is phenyl, 2-F-phenyl, 3-F-phenyl, 4-F-phenyl,
          2-Cl-phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2,3-diF-phenyl,
30
          2,4-diF-phenyl, 2,5-diF-phenyl, 2,6-d\f-phenyl,
          3,4-dif-phenyl, 3,5-dif-phenyl, 2,3-dicl-phenyl,
          2,4-diCl-phenyl, 2,5-diCl-phenyl, 2,6-diCl-phenyl,
          3,4-diCl-phenyl, 3,5-diCl-phenyl, 3-F-4-C\[ -phenyl,
          3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl,
35
           3-MeO-phenyl, 4-MeO-phenyl, 2-Me-phenyl, 3-Me-phenyl,
           4-Me-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl,
```

```
2-CF_3O-phenyl, 3-CF_3O-phenyl, 4-CF_3O-phenyl,
                faranyl, thienyl, pyridyl, 2-Me-pyridyl, 3-Me-pyridyl,
                    ¼-Me-pyridyl, 1-imidazolyl, oxazolyl, isoxazolyl,
                    1\benzimidazolyl,
                cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
        5
                       horpholino, N-piperinyl,
                phenyl\CH_2-, (2-F-phenyl)CH_2-, (3-F-phenyl)CH_2-,
                (4-F-phehyl)CH_2-, (2-Cl-phenyl)CH_2-, (3-Cl-phenyl)CH_2-,
                       (4-C)-phenyl)CH<sub>2</sub>-, (2,3-diF-phenyl)CH<sub>2</sub>-,
                (2,4-diF-henyl)CH_2-, (2,5-diF-phenyl)CH_2-,
      10
                 (2,6-diF-phenyl)CH<sub>2</sub>-, (3,4-diF-phenyl)CH<sub>2</sub>-,
                 (3,5-diF-phenyl)CH_2-, (2,3-diCl-phenyl)CH_2-,
                 (2,4-diCl-phenyl)CH_2-, (2,5-diCl-phenyl)CH_2-,
                 (2,6-diCl-phenyl)CH<sub>2</sub>-, (3,4-diCl-phenyl)CH<sub>2</sub>-,
                (3,5-diCl-phen\chi1)CH<sub>2</sub>-, (3-F-4-Cl-pheny1)CH<sub>2</sub>-,
      15
(3-F-5-C1-phenyl)CH<sub>2</sub>-, (3-C1-4-F-phenyl)CH<sub>2</sub>-,
                 (2-MeO-pheny1)CH<sub>2</sub>, (3-MeO-pheny1)CH<sub>2</sub>-,
                 (4-MeO-pheny1)CH<sub>2</sub>-\lambda (2-Me-pheny1)CH<sub>2</sub>-,
                 (3-Me-pheny1)CH_2-, (4-Me-pheny1)CH_2-,
.0
      20
                 (2-MeS-pheny1)CH<sub>2</sub>-, (\S-MeS-pheny1)CH<sub>2</sub>-,
iŧ
                4-\text{MeS-phenyl}) CH<sub>2</sub>-, (2-\text{CF}_3\text{O-phenyl}) CH<sub>2</sub>-,
(3-CF_3O-pheny1)CH_2-, (4-CF_3O-pheny1)CH_2-,
                 (furanyl)CH_2-, (thienyl)CH_2-, (pyridyl)CH_2-,
                 (2-Me-pyridyl)CH<sub>2</sub>-, (3-Me-pyridyl)CH<sub>2</sub>-,
                 (4-Me-pyridyl)CH2-, (1-imidazolyl)CH2-,
       25
                 (oxazolyl)CH_2-, (isoxazolyl)CH_2-,
                 (1-benzimidazolyl)CH2-, (cyclopropyl)CH2-,
                    (cyclobutyl)CH2-, (cyclopentyl)CH2-,
                 (\text{cyclohexyl}) \text{CH}_2-, (\text{morpholino}) \text{CH}_2-, (\text{N-pipridinyl}) \text{CH}_2-,
       30
                phenyl-CH_2CH_2-, (phenyl)<sub>2</sub>CHCH_2-, (\lambda-F-phenyl)CH_2CH_2-,
                 (3-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (4-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                 (2-C1-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (3-C1-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                 (4-C1-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (2,3-diF-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                 (2,4-diF-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (2,5-diF-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
       35
                 (2,6-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (3,4-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                 (3,5-diF-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,3-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
```

```
(2,4-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2,5-diCl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  (2 \land 6-diCl-phenyl)CH_2CH_2-, (3,4-diCl-phenyl)CH_2CH_2-,
                  (3, \dot{\beta}-diCl-phenyl)CH_2CH_2-, (3-F-4-Cl-phenyl)CH_2CH_2-,
                  (3-F-5-C1-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (3-C1-4-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  (2-MeO\phenyl)CH_2CH_2-, (3-MeO-phenyl)CH_2CH_2-,
        5
                  (4-MeO-phenyl)CH<sub>2</sub>CH<sub>2</sub>-, (2-Me-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  (3-Me-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (4-Me-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                  (2-MeS-pheny1)CH<sub>2</sub>CH<sub>2</sub>-, (3-MeS-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                  (4-MeS-phen\chi1)CH<sub>2</sub>CH<sub>2</sub>-, (2-CF<sub>3</sub>O-pheny1)CH<sub>2</sub>CH<sub>2</sub>-,
                  (3-CF_3O-phenyl)CH_2CH_2-, (4-CF_3O-phenyl)CH_2CH_2-,
                      (furanyl)CH2CH2-,(thienyl)CH2CH2-, (pyridyl)CH2CH2-,
                 (2-Me-pyridyl)CH<sub>2</sub>CH<sub>2</sub>-, (3-Me-pyridyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  (4-Me-pyridyl)CH2CH2-, (imidazolyl)CH2CH2-,
                      (oxazolyl)CH<sub>2</sub>CH<sub>2</sub>-, (isoxazolyl)CH<sub>2</sub>CH<sub>2</sub>-,
       15
                      (benzimidazolyl)\alpha_{H_2CH_2-}, (cyclopropyl)CH_2CH_2-,
.j
                      (cyclobutyl)CH_2CH_2, (cyclopentyl)CH_2CH_2-,
                      (\text{cyclohexyl}) CH_2CH_2 - \lambda (\text{morpholino}) CH_2CH_2 - , \text{ or }
(N-pipridinyl)CH<sub>2</sub>CH<sub>2</sub>-;
٠, إ
R<sup>10</sup> is H, methyl, ethyl, phenyl, benzyl, phenethyl,
ÇŌ
       20
                  4-F-phenyl, (4-F-phenyl)CH<sub>2</sub>\, <math>(4-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
4-Cl-phenyl, (4-Cl-phenyl)CH_2-, (4-Cl-phenyl)CH_2CH_2-,
                  4-CH_3-phenyl, (4-CH_3-phenyl)CH_2-, (4-CH_3-phenyl)CH_2CH_2-,
١, ١
                  4-CF_3-phenyl, (4-CF_3-phenyl)CH<sub>2</sub>
       25
                  (4-CF_3-phenyl)CH_2CH_2-;
              R<sup>11</sup>, at each occurrence, is independently selected from
                  H. = 0, methyl, ethyl, phenyl, benzyl phenethyl,
                  4-F-phenyl, (4-F-phenyl)CH<sub>2</sub>-, <math>(4-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  3-F-phenyl, (3-F-phenyl)CH<sub>2</sub>-, <math>(3-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
       30
                  2-F-phenyl, (2-F-phenyl)CH<sub>2</sub>-, <math>(2-F-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  4-Cl-phenyl, (4-Cl-phenyl)CH<sub>2</sub>-, <math>(4-Cl-phenyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  3-Cl-phenyl, (3-Cl-phenyl)CH<sub>2</sub>-, <math>(3-Cl-phehyl)CH<sub>2</sub>CH<sub>2</sub>-,
                  4-CH_3-phenyl, (4-CH_3-phenyl)CH_2-, (4-CH_3-phenyl)CH_2CH_2-,
                  3-CH_3-phenyl, (3-CH_3-phenyl)CH_2-, (3-CH_3-phenyl)CH_2CH_2-,
       35
                  4-CF_3-phenyl, (4-CF_3-phenyl)CH_2-, (4-CF_3-phenyl)CH_2CH_2-,
                  pyrid-2-yl, pyrid-3-yl, or pyrid-4-yl, and
```

 R^{13} , at each occurrence, is independently selected from H, F, Cl, OH, -CH₃, -CH₂CH₃, -OCH₃, or -CF₃.

21. A method for the treatment of neurological disorders associated with β -amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Formula (I):

 $Q \xrightarrow{R^5 R^{5a} R^6} A \xrightarrow{B} Z$

10

or a pharmaceut cally acceptable salt or prodrug thereof, wherein:

15

A is O or S;

Q is $-NR^1R^2$;

20 R^1 is OR^{14} ;

 R^2 is independently selected from H, C_1 - C_6 alkyl, C_3 - C_{10} carbocycle, C_6 - C_{10} aryl, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur;

 R^3 is $-(CR^7R^{7a})_n - R^4$,

 $-(CR^7R^{7a})_n-S-(CR^7R^{7a})_mR^4$

 $-(CR^{7}R^{7a})_{n}-O-(CR^{7}R^{7a})_{m}$

30 - $(CR^7R^{7a})_n$ - $N(R^{7b})$ - $(CR^7R^{7a})_n$

 $-(CR^7R^{7a})_n-S(=0)-(CR^7R^{7a})_m-R^{7a}$

 $-(CR^{7}R^{7a})_{n}-S(=0)_{2}-(CR^{7}R^{7a})_{m}-R^{4}$

 $-\left({{\rm{CR}}^{7}}{{\rm{R}}^{7a}} \right){_{n}}{\rm{ - C}}\left({{\rm{ = 0}}} \right) - \left({{\rm{CR}}^{7}}{{\rm{R}}^{7a}} \right){_{m}}{\rm{ - R}^{4}}\,,$

 $-(CR^{7}R^{7a})_{n}-N(R^{7b})C(=0)-(CR^{7}R^{7a})_{n}-R^{4}$

35 $-(CR^7R^{7a})_n-C(=0)N(R^{7b})-(CR^7R^{7a})_m R^4$,

```
-(CR^{7}R^{7a})_{n}-N(R^{7b})S(=0)_{2}-(CR^{7}R^{7a})_{m}-R^{4}, or
            (CR^7R^{7a})_n - S(=0)_2N(R^{7b}) - (CR^7R^{7a})_m - R^4;
     n is 0, 1, 2, \text{ or } 3;
 5
     m is 0, 1, 2, or 3;
     R^{3a} is H, OH\ C_1-C_4 alkyl, C_1-C_4 alkoxy, C_2-C_4 alkenyl
            or C_2-C_4\alkenyloxy;
10
     R<sup>4</sup> is H, OH, OR<sup>1</sup>√4a,
           C_1-C_6 alkyl substituted with 0-3 R^{4a},
           C_2-C_6 alkenyl\substituted with 0-3 R<sup>4a</sup>,
           C2-C6 alkynyl substituted with 0-3 R4a,
           C_3-C_{10} carbocycle substituted with 0-3 R^{4b},
15
            C<sub>6</sub>-C<sub>10</sub> aryl substituted with 0-3 R<sup>4b</sup>, or
            5 to 10 membered heterocycle containing 1 to 4
               heteroatoms selected from nitrogen, oxygen, and
               sulphur, wherein said 5 to 10 membered heterocycle
               is substituted with 0-3 R<sup>4b</sup>;
20
     R4a, at each occurrence, is independently selected from is
           H, F, Cl, Br, I, CF<sub>3</sub>,
            C<sub>3</sub>-C<sub>10</sub> carbocycle substituted with 0-3 R<sup>4b</sup>,
           C_6-C_{10} aryl substituted with \sqrt{0-3} R<sup>4b</sup>, or
25
            5 to 10 membered heterocycle containing 1 to 4
               heteroatoms selected from nitrogen, oxygen, and
               sulphur, wherein said 5 to 10\membered heterocycle
               is substituted with 0-3 R^{4b};
30
     R4b, at each occurrence, is independently selected from H,
                                                        acetyl, SCH3,
            OH, Cl, F, Br, I, CN, NO<sub>2</sub>, NR<sup>15</sup>R ()
            S(=0)CH_3, S(=0)_2CH_3,
            C_1-C_6 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkyl,
            C_1-C_4 haloalkoxy, and C_1-C_4 halothicalk\sqrt{1-S-};
35
     R^5 is H, OR^{14};
```

C₁-C₆ alkyl substituted with 0-3 R^{5b}; \mathfrak{C}_{1} - \mathfrak{C}_{6} alkoxy substituted with 0-3 \mathfrak{R}^{5b} ; $C_2 \setminus C_6$ alkenyl substituted with 0-3 R^{5b}; $C_2-\delta_6$ alkynyl substituted with 0-3 R^{5b}; C_3-C_1 carbocycle substituted with 0-3 R^{5c} ; 5 C_6-C_{10} aryl substituted with 0-3 R^{5c} ; or 5 to 10\membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur \ wherein said 5 to 10 membered heterocycle is substituted with 0-3 R5c; 10 R^{5a} is H, OH, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_2-C_4 alkenyl, or C_2-C_4 alkenyloxy; R5b, at each occurrence is independently selected from: 15 H, C_1-C_6 alkyl, $CF_3 \setminus OR^{14}$, Cl, F, Br, I, =0, CN, NO_2 , NR15R16: C_3-C_{10} carbocycle substituted with 0-3 R^{5c} ; C_6-C_{10} aryl substituted with 0-3 R^{5c}; or 5 to 10 membered heterodycle containing 1 to 4 20 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5\to 10 membered heterocycle is substituted with 0-3 R^{5c} ; R5c, at each occurrence, is independently selected from H, 25 OH, Cl, F, Br, I, CN, NO_2 NR^{1} R^{16} , CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₂ haloalkyl, C_1-C_4 haloalkoxy, and C_1-C_4 halothioalkyl-S-; 30 R^6 is H; C_1-C_6 alkyl substituted with 0-3 R^{6a} ? C_3-C_{10} carbocycle substituted with $0-\frac{1}{3}$ R^{6b} ; or C_6-C_{10} aryl substituted with 0-3 R^{6b} ; 35

- $R^{6a'}$, at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, axyl or CF_3 ;
- 5 R^{6b} , at each occurrence, is independently selected from H, OH, Cl F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , C_1 - C_6 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, and C_1 - C_4 haloalkoxy;
- R^7 , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, CF₃, phenyl and C₁-C₄ alkyl;
 - R^{7a} , at each occurrence, is independently selected from H, OH, Cl, F, Br, L, CN, NO₂, CF₃, and C₁-C₄ alkyl;
- 15 R^{7b} is independently selected from H and C_1-C_4 alkyl;
 - Ring B is a 7 membered lactam or thiolactam,
 wherein the lactam or thiolactam is saturated,
 partially saturated or unsaturated;
- wherein each additional lactam carbon or thiolactam carbon is substituted with 0-2 R¹¹; and,
 - optionally, the lactam contains a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, -N=, -NH-, and $N(R^{10})$ -;
 - additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R¹³;
- 30 additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;

additionally, two R^{11} substituents on the same or adjacent carbon atoms may be combined to form a C_3 - C_6 carbocycle substituted with 0-3 R^{13} ;

5 R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹,
 S(=0)₂NR¹⁸R¹⁹, S(=0)₂R¹⁷;
 C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};
 C₆-C₁₀ aryl substituted with 0-4 R^{10b};
 C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or
 5 to 10 membered heterocycle containing 1 to 4
 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};

15 R^{10a} , at each occurrence is independently selected from H, C_1 - C_6 alkyl, OR^{14} , C_1 , F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , or aryl substituted with 0-4 R^{10b} ;

 R^{10b} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, CF_3 , acetyl, SCH_3 , $S(=0)CH_3$, $S(=0)_2CH_3$, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl-S-;

25 R¹¹, at each occurrence, is independently selected from H, C₁-C₄ alkoxy, Cl, F, Br, I, =0, CN, NO₂, NR¹⁸R¹⁹, C(=0)R¹⁷, C(=0)OR¹⁷, C(=0)NR¹⁸R¹⁹, S(=0)₂NR¹⁸R¹⁹, CF₃; C₁-C₆ alkyl optionally substituted with 0-3 R^{11a}; C₆-C₁₀ aryl substituted with 0-3 R^{11b};

30 C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or
5 to 10 membered heterocycle containing 1 to 4
heteroatoms selected from nitrogen, oxygen, and
sulphur, wherein said 5 to 10 membered heterocycle
is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =0, CN, NO₂, NR¹⁵R¹⁶, CF₃;

phenyl substituted with 0-3 R^{11b};

C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 4

heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

10 R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, $S(=0)CH_3, S(=0)_2CH_3,$ $C_1-C_6 \text{ alkyl}, C_1-C_4 \text{ alkoxy}, C_1-C_4 \text{ haloalkyl},$ $C_1-C_4 \text{ haloalkoxy}, \text{ and } C_1-C_4 \text{ halothioalkyl-S-};$

15

20

25

Z is H;

 C_1-C_8 alkyl substituted with 1-3 R^{12} ;

 C_2-C_4 alkenyl substituted with 1-3 R^{12} ;

 C_2-C_4 alkynyl substituted with 1-3 R^{12} ;

 C_1-C_8 alkyl substituted with 0-3 R^{12a} ;

 C_2-C_4 alkenyl substituted with 0-3 R^{12a} ;

 C_2-C_4 alkynyl substituted with 0-3 R^{12a} ;

 C_6-C_{10} aryl substituted with $\sqrt{-4}$ R^{12b};

 C_3-C_{10} carbocycle substituted with 0-4 R^{12b} ; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

30 R¹², at each occurrence, is independently selected from C₆-C₁₀ aryl substituted with 0-4 R^{12b}; or C₃-C₁₀ carbocycle substituted with 0.4 R^{12b}; or 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

15

- R^{12b}, at each occurrence, is independently selected from H, OH, Cl F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=0)CH₃, S(=0)₂CH₃, C₁-C₆ alkyl C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;
- R^{13} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, Cl, F, Br, I, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 ;
- R^{14} is H, phenyl, benzyl C_1 - C_6 alkyl, C_2 - C_6 alkoxyalkyl, or C_3 - C_6 cycloalkyl;
- 20 R^{14a} is H, phenyl, benzyl, or C_1-C_4 alkyl;
 - R^{15} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-;
 - R^{16} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-;
- 30 R^{17} is H, C_1 - C_6 alkyl, C_2 - C_6 alkoxyalvxl aryl substituted by 0-4 R^{17a} , or -CH₂-aryl substituted by 0-4 R^{17a} .
- R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, $S(O)CH_3$, SO_2CH_3 , -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;

25

5 R^{19} , at each occurrence, is independently selected from H, OH, C_1 - C_6 alkyl, phenyl, benzyl, phenethyl, $(C_1$ - C_6 alkyl)-C(=0)-, and $(C_1$ - C_6 alkyl)-S(=0)₂-;

provided, when R^{13} is H,

10 then Z is H;

 C_4-C_8 alkyl substituted with 1-3 R^{12} ;

 C_2-C_4 alkeny1 substituted with 1-3 R^{12} ;

 C_2-C_4 alkynyl substituted with 1-3 R^{12} ;

 C_1-C_8 alkyl substituted with 0-3 R^{12a} ;

15 C_2-C_4 alkenyl substituted with 0-3 R^{12a} ; or

 C_2-C_4 alkynyl substituted with 0-3 R^{12a} ; and

provided, when ring B is a 1,3,4,5-tetrahydro-1-(Z)-5- (R^{10}) -6,6,7,7-tetra (R^{11}) -2 4-dioxo-2H-1,5-diazepin-3-yl core, and R^{13} is H; then

R¹⁰ is H, C(=0)R¹⁷, C(=0)OR¹⁸, C(=0)NR¹⁸R¹⁹, $S(=0)_2NR^{18}R^{19}, S(=0)_2R^{10},$ C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};

 R^{10a} , at each occurrence, is independently selected from H, C_1 - C_6 alkyl, OR^{14} , Cl, F, Br, I, =0, CN, NO_2 , $NR^{15}R^{16}$, and CF_3 .

- 30 22. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 23. A method for the treatment of neurological disorders associated with $\beta\text{--amyloid}$ production comprising
- administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1.

add C12