1 References

 See Chapter 2: Discrete random variables, Bertsekas and Tsitsiklis, for a review of discrete random variables.

2 Solved Problems

1. Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. A function $X : \Omega \to \mathbb{R}$ is a real random variable on the probability space if, for all $x \in \mathbb{R}$,

$$\{\omega: X(\omega) \in (-\infty, x]\} \in \mathcal{F}$$

(i.e., it is sufficient to validate the definition for a generating set instead of all subsets in $\mathcal{B}(\mathbb{R})$.)

We know that $\{(-\infty, x] : x \in \mathbb{R}\}$ is a generating set for the Borel sigmaalgebra of \mathbb{R} , i.e., any $B \in \mathcal{B}(\mathbb{R})$ is present in the sigma-algebra generated by $\{(-\infty, x] : x \in \mathbb{R}\}$.

Suppose that, for all $x \in \mathbb{R}$,

$$A_x = \{\omega : X(\omega) \in (-\infty, x]\} \in \mathcal{F}$$

Then,

$$\{\omega : X(\omega) \in (-\infty, x]^c\} = A_x^c \in \mathcal{F}$$

as well. Further, if x_1, x_2, \cdots are real numbers, then

$$\left\{\omega: X(\omega) \in \bigcup_{i=1}^{\infty} (-\infty, x_i]\right\} = \bigcup_{i=1}^{\infty} \left\{\omega: X(\omega) \in (-\infty, x_i]\right\} \in \mathcal{F}$$

We can now extend the argument to other subsets to prove our result. \square

2. Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Let $X : \Omega \to \mathbb{R}$ be a real random variable. Then, the inverse images of X inspires a sub sigma-algebra of \mathcal{F} .

Define $\mathcal{A} = \{A : A = \{\omega : X(\omega) \in B\} \text{ for some } B \in \mathcal{B}(\mathbb{R})\}$. \mathcal{A} is the set of all inverse images of $B \in \mathcal{B}(\mathbb{R})$. We claim that \mathcal{A} is a sub sigma-algebra of \mathcal{F} .

Given X is a real random variable on $(\Omega, \mathcal{F}, \mathsf{P})$. Hence, $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}(\mathbb{R})$. So, $A \subset \mathcal{F}$.

We know that $X^{-1}(\mathbb{R}) = \{\omega : X(\omega) \in \mathbb{R}\} = \Omega$. Hence, $\Omega \in \mathcal{A}$, or \mathcal{A} is non-empty.

Let $A \in \mathcal{A}$. Then, $A = \{\omega : X(\omega) \in B\}$ for some $B \in \mathcal{B}(\mathbb{R})$. Now, $A^c = \{\omega : X(\omega) \notin B\} = \{\omega : X(\omega) \in B^c\}$. But $B^c \in \mathcal{B}(\mathbb{R})$ whenever $B \in \mathcal{B}(\mathbb{R})$. Hence, $A^c \in \mathcal{A}$ as well.

Let A_1, A_2, \dots , be in \mathcal{A} . Then, there exists B_1, B_2, \dots , events in $\mathcal{B}(\mathbb{R})$ such that $A_i = \{\omega : X(\omega) \in B_i\}$ for all i. Now,

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \{\omega : X(\omega) \in B_i\} = \{\omega : X(\omega) \in \bigcup_{i=1}^{\infty} B_i\}$$

But, $\bigcup_{i=1}^{\infty} B_i \in \mathcal{B}(\mathbb{R})$ (since $\mathcal{B}(\mathbb{R})$ is a sigma-algebra). Hence, $\bigcup_{i=1}^{\infty} A_i$, which is the corresponding inverse image of a Borel set, is in \mathcal{A} .

Thus, \mathcal{A} is non-empty and closed under complement and countable union. Hence, \mathcal{A} is a sub sigma-algebra of \mathcal{F} .

3. Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Let $X : \Omega \to \mathbb{R}$ be a real random variable. Define, for $B \in \mathcal{B}(\mathbb{R})$,

$$P_X(B) = P(X \in B)$$

Then, $(\Omega_X = \mathbb{R}, \mathcal{F}_X = \mathcal{B}(\mathbb{R}), \mathsf{P}_X)$ is a valid probability space.

Clearly, $(\Omega_X, \mathcal{F}_X)$ is a valid measurable space. We only need to show that P_X is a valid probability measure on $(\Omega_X, \mathcal{F}_X)$.

 $\mathsf{P}_X(B) = \mathsf{P}(X \in B)$ is defined for all $B \in \mathcal{B}(\mathbb{R})$. Hence, P_X is a function from \mathcal{F}_X to [0,1].

Clearly, P_X is non-negative (by definition).

 $\mathsf{P}_X(\mathbb{R}) = \mathsf{P}(X \in \mathbb{R}) = 1$. Hence, P_X is normalized.

Let B_1, B_2, \cdots be disjoint events in \mathcal{F}_X . Then, $X^{-1}(B_1), X^{-1}(B_2), \cdots$ are disjoint events in \mathcal{F} as well. Now,

$$\mathsf{P}_X\left(\bigcup_{i=1}^\infty B_i\right) = \mathsf{P}\left(X \in \bigcup_{i=1}^\infty B_i\right) = \mathsf{P}\left(\bigcup_{i=1}^\infty \{X \in B_i\}\right) = \sum_{i=1}^\infty \mathsf{P}(X \in B_i) = \sum_{i=1}^\infty \mathsf{P}_X(B_i)$$

Hence, P_X is countably additive as well.

Thus, P_X is a valid probability measure on $(\Omega_X, \mathcal{F}_X)$.

- 4. Let X be a discrete random variable on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Suppose $\mathsf{P}(X \in \{x_1, x_2, \dots\}) = 1$, and let the probability mass function (p.m.f.) of X be $\{p_X(x_i)\}$. Then,
 - (a) $p_X(x_i) \ge 0$
 - (b) $\sum_{i=1}^{\infty} p_X(x_i) = 1$

(c) for
$$B \in \mathcal{B}(\mathbb{R}), \mathsf{P}_X(B) = \sum_{\{i:x_i \in B\}} p_X(x_i)$$

 $p_X(x_i) = \mathsf{P}_X(\{x_i\}) = \mathsf{P}(X = x_i) = \mathsf{P}(\{\omega : X(\omega) = x_i\}) \ge 0$, since probabilities are non-negative.

We know that $P(X \in \{x_1, x_2, \dots\}) = 1$. Further,

$$\{\omega: X(\omega) \in \{x_1, x_2, \cdots\}\} = \bigcup_{i=1}^{\infty} \{\omega: X(\omega) = x_i\}$$

So,

$$1 = \mathsf{P}(X \in \{x_1, x_2, \cdots\}) = \mathsf{P}\left(\bigcup_{i=1}^{\infty} \left\{\omega : X(\omega) = x_i\right\}\right) = \sum_{i=1}^{\infty} \mathsf{P}(X = x_i) = \sum_{i=1}^{\infty} p_X(x_i)$$

as the events are disjoint.

For any $B \in \mathcal{B}(\mathbb{R})$,

$$\mathsf{P}_X(B) = \mathsf{P}_X(B\{x_1, x_2, \cdots\}) + \mathsf{P}_X(B\{x_1, x_2, \cdots\}^c)$$

from total probability theorem and as P_X is a probability measure. Now,

$$\mathsf{P}_X(B\{x_1, x_2, \cdots\}^c) \le \mathsf{P}_X(\{x_1, x_2, \cdots\}^c) = 1 - \mathsf{P}_X(\{x_1, x_2, \cdots\}) = 0$$

Then

$$\mathsf{P}_X(B) = \mathsf{P}_X(B\{x_1, x_2, \cdots\}) = \sum_{\{i: x_i \in B\}} \mathsf{P}_X(\{x_i\}) = \sum_{\{i: x_i \in B\}} p_X(x_i)$$

5. Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Let $A \in \mathcal{F}$ such that $\mathsf{P}(A) > 0$. Then, the conditional p.m.f. of X given A, $\{p_{X|A}(\cdot)\}$ is a valid p.m.f.

The conditional p.m.f. of X given A, $\{p_{X|A}(x_i)\}\$, is defined as

$$p_{X|A}(x_i) = \frac{\mathsf{P}(\{\omega : X(\omega) = x_i\} \cap A)}{\mathsf{P}(A)}$$

Clearly, $p_{X|A}(x_i) \geq 0$.

Now,

$$\sum_{i=1}^{\infty} p_{X|A}(x_i) = \sum_{i=1}^{\infty} \frac{\mathsf{P}(\{\omega: X(\omega) = x_i\} \cap A)}{\mathsf{P}(A)} = \frac{\sum_{i=1}^{\infty} \mathsf{P}(\{\omega: X(\omega) = x_i\} \cap A)}{\mathsf{P}(A)}$$

Now,

$$\mathsf{P}(A) = \mathsf{P}\left(A \cap \bigcup_{i=1}^{\infty} \{\omega : X(\omega) = x_i\}\right) + \mathsf{P}\left(A \cap \left(\bigcup_{i=1}^{\infty} \{\omega : X(\omega) = x_i\}\right)^c\right)$$

Using countable additivity, we have,

$$\mathsf{P}\left(A\cap\bigcup_{i=1}^{\infty}\{\omega:X(\omega)=x_i\}\right)=\sum_{i=1}^{\infty}\mathsf{P}(A\cap\{\omega:X(\omega)=x_i\})$$

Also,

$$\mathsf{P}\left(A\cap\left(\bigcup_{i=1}^{\infty}\{\omega:X(\omega)=x_i\}\right)^c\right)\leq \mathsf{P}\left(\left(\bigcup_{i=1}^{\infty}\{\omega:X(\omega)=x_i\}\right)^c\right)=0$$

Combining the above results, we have,

$$\sum_{i=1}^{\infty} p_{X|A}(x_i) = \frac{\sum_{i=1}^{\infty} \mathsf{P}(\{\omega : X(\omega) = x_i\} \cap A)}{\mathsf{P}(A)} = 1$$

2.1 Examples of Important Discrete Random Variables

1. **Bernoulli** $(p: 0 \le p \le 1)$: $(\{0,1\}, 2^{\Omega_X}, P_X)$ where

$$p_X(0) = 1 - p$$
, and $p_X(1) = p$

2. Uniform $(N: N \in \mathbb{N})$: $(\{1, 2, \dots, N\}, 2^{\Omega_X}, P_X)$ where

$$p_X(i) = \frac{1}{N} \text{ for all } i = 1, 2, \dots, N$$

3. Geometric $(p: 0 : <math>(\mathbb{N}, 2^{\Omega_X}, \mathsf{P}_X)$ where

$$p_X(i) = (1-p)^{i-1}p$$
 for all $i \in \mathbb{N}$

4. **Binomial** $(N, p : N \in \mathbb{N}, 0 \le p \le 1)$: $(\{0, 1, 2, \dots, N\}, 2^{\Omega_X}, P_X)$ where

$$p_X(k) = \binom{N}{k} p^k (1-p)^{N-k} \text{ for all } k \in \{0, 1, 2, \dots, N\}$$

5. **Poisson** $(\lambda : \lambda > 0)$: $(\{0, 1, 2, \dots\}, 2^{\Omega_X}, P_X)$ where

$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
 for all $k \in \{0, 1, 2, \dots\}$

3 Practice Problems

- 1. Consider a discrete probability space $(\Omega, \mathcal{F}, \mathsf{P})$ where \mathcal{F} is the power set of Ω . Show that any $X:\Omega\to\mathbb{R}$ is a real, discrete, random variable. (Consider $(\Omega_X, \mathcal{F}_X, \mathsf{P}_X)$). Then, any function $f:\Omega_X\to\mathbb{R}$ induces a real, discrete, random variable $Y:\Omega\to\mathbb{R}$ if $Y=f(X)=f(X(\omega))$.)
- 2. Find conditions on $K, \epsilon \in \mathbb{R}$ such that $\{\frac{K}{n^{1+\epsilon}} : n = 1, 2, \cdots\}$ corresponds to a valid probability mass function of some discrete random variable with $\Omega_X = \mathbb{N}$.
- 3. Consider the uniform probability measure on [0,1]. Find a function X: $[0,1] \to \mathbb{R}$ such that X is a binomial random variable with parameters $(n=2,p=\frac{1}{2})$.
- 4. Describe the distribution of a Poisson random variable and show that the p.m.f. sums up to one.
- 5. (Gray and Davisson) Use the properties of probability measures to prove the following facts about cumulative distribution functions, $F_X(x) = P_X((-\infty, x])$ of a random variable X.
 - (a) $F_X(-\infty) = 0, F_X(\infty) = 1$
 - (b) $F_X(\cdot)$ is monotone non-decreasing, i.e., if $x_1 \leq x_2$, then $F_X(x_1) \leq F_X(x_2)$
 - (c) $F_X(\cdot)$ is right-continuous, i.e., $\lim_{n\to\infty} F_X(x+\frac{1}{n}) = F_X(x)$ for all $x\in\mathbb{R}$.
- 6. (Grimmett and Stirzaker) Let X be a random variable on a given probability space, and let $a \in \mathbb{R}$. Show that aX is a real random variable.
- 7. Let $\{p_i : i \in \mathbb{N}\}$ and $\{q_i : i \in \mathbb{N}\}$ denote two valid p.m.f.s. Identify conditions on $\alpha \in \mathbb{R}$ such that $\{\alpha p_i + (1 \alpha)q_i : i \in \mathbb{N}\}$ is a valid p.m.f.
- 8. (Poisson approximation) Consider the p.m.f. of a binomial random variable with parameters n and p. Show that asymptotically, as $n \to \infty, p \to 0$, while np is fixed at a given value λ , this p.m.f. approaches the p.m.f. of a Poisson random variable with parameter λ .

3.1 Associated Problems

- 1. Consider a valid probability space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathsf{P})$. Then, show that any monotone $X : \mathbb{R} \to \mathbb{R}$ is a real random variable.
- 2. Consider a valid probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Let $A \in \mathcal{F}$ and 1_A denote the indicator random variable corresponding to the event A. Find the sub sigma-algebra of \mathcal{F} corresponding to the inverse images of the random variable 1_A .

- 3. Show that the Geometric random variable is the only discrete random variable with the memoryless property, i.e., $\mathsf{P}(X>k+l|X>k)=\mathsf{P}(X>l)$ for $k,l\in\mathbb{N}$.
- 4. Write a Python program to generate a discrete random variable with known p.m.f. using a uniform random variable between [0,1].