# SPRAWOZDANIE - LABORATORIUM NR 1

#### Rozwiązywanie UARL metodami bezpośrednimi

Anna Szumilas 2.03.2021

### I. Wstęp teoretyczny

Tematem piewszych laboratoriów było rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi. Układy te można zapisać w postaci macierzowej i skorzystać z metody Gaussa-Jordana. Zgodnie z tą metodą macierz odwzorowującą układ równań należy przekształcić za pomącą elementarnych działań matematycznych by sprowadzić ją do macierzy jednostkowej.

### 2. Zadanie do wykonania

#### 2.1. Opis problemu

Jednym ze źródeł UARL mogą być równania różniczkowe. Dla prostego oscylatora harmonicznego z drugiej zasady dynamiki Newtona mamy:

$$\frac{d^2x(t)}{dt^2} = -\frac{k}{m}x(t) = -\omega^2x(t).$$

Przybliżając drugą pochodną położenia x występującą po lewej stronie równania powyżej ilorazem różnicowym otrzymujemy:

$$\frac{d^2x(t)}{dt^2} pprox \frac{x(t+\Delta t) - 2x(t) + x(t-\Delta t)}{(\Delta t)^2}$$

Do rozwiązania równania potrzebujemy jeszcze wartości  $x_0$  i  $x_1$  jsd. Definiujemy je korzystając z warunków początkowych:  $x_0$  = A to początkowe wychylenie z położenia równowagi, a  $(x_1 - x_0)/h = V_0$  to początkowa wartość prędokści ciała.

Po dodaniu warunków początkowych powyższe równanie da się zapisać w postaci macierzowej dla pierwszych 7 kroków czasowych jako:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & (\omega^2 h^2 - 2) & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & (\omega^2 h^2 - 2) & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & (\omega^2 h^2 - 2) & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & (\omega^2 h^2 - 2) & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & (\omega^2 h^2 - 2) & 1 \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} A \\ v_0 h \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Naszym zadaniem było rozwiązanie powyższego układu dla macierzy o wielkości 200 metodą Gaussa-Jordana oraz narysować zależność wychylenia z położenia równowagi.

Przyjęliśmy następujące warunki początkowe:  $V_0 = 0$ , A = 1, h = 0.1

#### 2.2. Wyniki

Korzystając z funkcji gaussj.c rozwiązującej równania liniowe metodą Gaussa-Jordana, zadeklarowaliśmy odpowiednio dużą macierz, uzupełniliśmy ją danymi z zadania a w wyniku otrzymaliśmy zależność wychylenia od czasu dla kroku czasowego 0.1s.



## 3. Wnioski

Powyższy wykres pokrywa się z wykresem funkcji cos(t), co pokazuje że korzystając z funkcji gaussj.c oraz metody Gaussa-Jordana możemy rozwiązać układ równań liniowych z dużą dokładnością. Jako że jest to metoda macierzowa to można rozwiązywać UARL dla bardzo dużych zbiorów danych.