Econ 703 - Day One - Solutions

TA: Alexander Clark (Zander)

Current Office: SS 6473 (will change soon)

Contact: atclark@wisc.edu

 $Website: \verb|sites.google.com/site/alexanderthclark||$

If you need help: TA, Wikipedia, Math Stack Exchange, textbooks, peers, etc

I. Negations

Negate, "For every $\epsilon > 0$, there exists $\delta > 0$ such that for all ρ' satisfying $||\rho - \rho'|| < \delta$ there exists $p' \in E(\rho')$ such that $||p - p'|| < \epsilon$." Be careful; a negation is not the same as contradiction.

Solution: You might try gradually reducing the negation:

First, define $P \equiv \{\text{there exists } \delta > 0 \text{ such that for all } \rho' \text{ satisfying } ||\rho - \rho'|| < \delta \text{ there exists } p' \in E(\rho') \text{ such that } ||p - p'|| < \epsilon. \}.$

The original statement reads, $\forall \epsilon > 0$, P is true. So our first step in writing the negation is

• $\exists \epsilon > 0$ such that P is not true.

Now, let's break down what "P is not true" means.

Define $Q \equiv \{ \forall \rho' \text{ satisfying } ||\rho - \rho'|| < \delta \text{ there exists } p' \in E(\rho') \text{ such that } ||p - p'|| < \epsilon. \}.$ Then, $\neg P \iff \forall \delta > 0, \neg Q$.

- $\exists \epsilon > 0$ such that for all $\delta > 0$, there exists a $\rho' \in N_{\delta}(\rho)$ such that for all $p' \in E(\rho')$, $||p p'|| \ge \epsilon$.
- $\exists \epsilon > 0 \text{ s.t. } \forall \delta > 0, \ \exists \rho' \in N_{\delta}(\rho) \text{ where } \forall p' \in E(\rho'), \ p' \notin N_{\epsilon}(p).$

At this point, the statement has been fully reduced.

II. Implications

Let $p \equiv \{\text{student } A \text{ is a math major}\}, q \equiv \{\text{student } A \text{ enjoys math}\}, \text{ and } r \equiv \{\text{student } A \text{ has taken calculus}\}.$

a.) Write the statement $s \equiv \{\text{For student } A \text{ to be a math major, it is sufficient that student } A \text{ enjoy mathematics} \}$ as an implication.

Solution: $q \implies p$

b.) Write the statement $t \equiv \{\text{For student } A \text{ to have taken calculus, it is necessary that student } A \text{ enjoy mathematics or be a math major} \}$ as an implication.

Solution: $r \implies (q \lor p)$

c.) Write the following as an implication and evaluate the truth of the *implication*. "If people who never marry are unhappy, then people who marry several times are ecstatic."

Solution: The sentence makes a claim that "people who never marry are unhappy" implies "people who marry several times are ecstatic." Thus, the sentence is equivalent to

 $\{\text{people who never marry are unhappy}\} \Longrightarrow \{\text{people who marry several times are ecstatic}\}.$

Of course, the implication is unfounded as it is using a property of people who belong to one set to make a claim about people who belong to another set.

III. Sets

Russell's Paradox: Is the set of all sets which are not members of themselves, call it R, itself a set?

Solution: No. This will demonstrate that not anything is a set. This is worth knowing, but the precise axioms of set theory would be a bit tangential. The argument for why the described collection is not a set is as follows:

By definition, $R = \{x : x \notin x\}$. Then, there are two cases.

Case 1: $R \notin R$. Then, R satisfies the noninclusion property which guarantees inclusion in R, so $R \in R$. This is a contradiction, so we cannot have $R \notin R$.

Case 2: $R \in \mathbb{R}$. Then, if R is in R, it should be that $R \notin \mathbb{R}$. Again, this is a contradiction.

So, it seems R cannot be a set. Thus, naive set theory was broken.

Are the sets $A = \{a, b, c\}$ and $B = \{c, b, a, a\}$ equivalent?

Solution: Yes, sets are unordered and duplicate elements do not change the set.

IV. Prove something

Prove that for any set A, there does not exist a function $f: A \to \mathcal{P}(A)$ that is onto.

Solution: This proof might be a little harder to invent on your own.

Proof: By way of contradiction, suppose f is a function mapping A onto the power set of A. Construct a set $B = \{a : a \in A, a \notin f(a)\}.$

First, suppose $B = \emptyset$. This implies that for all $a \in A$, $a \in f(a)$. We conclude that there does not exist an a such that $f(a) = \emptyset$. Then f cannot be onto. So, $B \neq \emptyset$.

Now, we assume B is nonempty. Then, for some a', f(a') = B. If $a' \in B$, then a' satisfies $a' \notin f(a') = B$, a contradiction. If $a' \notin B$, then a' satisfies the condition for inclusion in B, another contradiction. Thus, there can be no onto function.