```
import numpy as np
import pandas as pd
import sklearn
from sklearn.datasets import load_boston
df = load_boston ()
df.keys()
     dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
print(df.DESCR)
     .. _boston_dataset:
     Boston house prices dataset
     **Data Set Characteristics:**
         :Number of Instances: 506
         :Number of Attributes: 13 numeric/categorical predictive. Median Value (att
         :Attribute Information (in order):
             - CRIM
                        per capita crime rate by town
             - ZN
                        proportion of residential land zoned for lots over 25,000 sq
             - INDUS
                        proportion of non-retail business acres per town
             - CHAS
                        Charles River dummy variable (= 1 if tract bounds river; 0 o
             - NOX
                        nitric oxides concentration (parts per 10 million)
                        average number of rooms per dwelling
             - RM
                        proportion of owner-occupied units built prior to 1940
             - AGE
                        weighted distances to five Boston employment centres
             - DIS
             - RAD
                        index of accessibility to radial highways
             - TAX
                        full-value property-tax rate per $10,000
             - PTRATIO pupil-teacher ratio by town
                        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by to
             - B
                        % lower status of the population
             - LSTAT
             - MEDV
                        Median value of owner-occupied homes in $1000's
         :Missing Attribute Values: None
         :Creator: Harrison, D. and Rubinfeld, D.L.
     This is a copy of UCI ML housing dataset.
     https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
```

This dataset was taken from the StatLib library which is maintained at Carnegie

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics

 \dots ', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that problems.

- .. topic:: References
 - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Da
 - Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In P

boston = pd.DataFrame(df.data, columns=df.feature_names)
boston.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90

boston['MEDV']= df.target
boston.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	

boston.isnull()

	CRIM	∠N	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	IAX	PIRAIIO	В	L
0	False	False											
1	False	False											
2	False	False											
3	False	False											
4	False	False											
•••			•••	•••	•••	•••	•••	•••	•••	•••		•••	
501	False	False											
502	False	False											
503	False	False											

boston.isnull().sum()

```
CRIM
             0
ΖN
             0
INDUS
             0
CHAS
             0
NOX
             0
RM
             0
AGE
             0
DIS
RAD
             0
TAX
             0
PTRATIO
             0
             0
LSTAT
             0
MEDV
dtype: int64
```

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

```
## FITTING MODEL ON THE TRAINING DATASET
lin_model = LinearRegression ()
lin_model.fit(X_train, Y_train)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
y_train_predict = lin_model.predict(X_train)
rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))
print(" The model performance for training set")
print('RMSE is {}'.format(rmse))
print("\n")
# on testing set
y_test_predict = lin_model.predict(X_test)
rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))
print(" The model performance for testing set")
print('RMSE is {}'.format(rmse))
      The model performance for training set
     RMSE is 4.710901797319796
      The model performance for testing set
```

RMSE is 4.687543527902972