Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Breadth-First Search

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- □ BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm **BFS**(**G**)

Input graph G

Output labeling of the edges and partition of the vertices of *G*

for all $u \in G.vertices()$

setLabel(u, UNEXPLORED)

for all $e \in G.edges()$

setLabel(e, UNEXPLORED)

for all $v \in G.vertices()$

if getLabel(v) = UNEXPLOREDBFS(G, v)

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.addLast(s)
  setLabel(s, VISITED)
  i \leftarrow 0
  while \neg L_r is Empty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_r elements()
       for all e \in G.incidentEdges(v)
          if getLabel(e) = UNEXPLORED
             w \leftarrow opposite(v,e)
             if getLabel(w) = UNEXPLORED
                setLabel(e, DISCOVERY)
                setLabel(w, VISITED)
                L_{i+1}.addLast(w)
             else
                setLabel(e, CROSS)
     i \leftarrow i + 1
```

Java Implementation

```
/** Performs breadth-first search of Graph g starting at Vertex u. */
    public static <V,E> void BFS(Graph<V,E> g, Vertex<V> s,
                      Set<Vertex<V>> known, Map<Vertex<V>,Edge<E>> forest) {
      PositionalList<Vertex<V>> level = new LinkedPositionalList<>();
 5
      known.add(s);
      level.addLast(s);
                                            // first level includes only s
      while (!level.isEmpty()) {
        PositionalList<Vertex<V>> nextLevel = new LinkedPositionalList<>();
9
        for (Vertex<V> u : level)
10
          for (Edge<E> e : g.outgoingEdges(u)) {
            Vertex < V > v = g.opposite(u, e);
11
            if (!known.contains(v)) {
12
              known.add(v);
13
              forest.put(v, e);
                                          // e is the tree edge that discovered v
14
              nextLevel.addLast(v);
                                            // v will be further considered in next pass
15
16
17
18
        level = nextLevel:
                                            // relabel 'next' level to become the current
19
20
```

Example

Example (cont.)

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \square Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \Box Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- □ BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- □ Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in *G*, or report that *G* is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	V	√
Shortest paths		V
Biconnected components	√	

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v,w)

w is in the same level asv or in the next level

