PushDown Automaton

Nicolò Felicioni¹

Dipartimento di Elettronica e Informazione Politecnico di Milano

nicolo . felicioni @ polimi . it

March 10, 2021

¹Mostly based on Nicholas Mainardi's material, enriched by few additional examples.

An extended computation model

Pushdown Automata

- Finite state automata are a handy model, but are not able to count an arbitrary number of items
- Idea: add a simple memory to the computation model: a stack
- The stack is a Last-In-First-Out memory (LIFO)
- The read operation on the memory erases the value (pop operation)
- The resulting automaton is known as a PushDown Automaton (PDA)
- For this computation model the non-determinism enhances the computation capability

Formalization

Definition

- A recognizer PDA is formally defined as a 7-tuple $(\mathbf{Q}, \mathbf{I}, \Gamma, \delta, q_0, \mathbf{F}, Z_0)$, where:
 - Q is the set of states of the automata
 - I is the alphabet of the input string which will be checked
 - \bullet Γ is the alphabet of the symbols on the stack
 - $\delta: \mathbf{Q} \times (\mathbf{I} \cup \epsilon) \times \Gamma \mapsto \mathbf{Q} \times \Gamma^*$ the transition function
 - $q_0 \in \mathbf{Q}$ the (unique) initial state from where the automaton starts
 - ullet ${f F}\subseteq {f Q}$ the set of final accepting states of the automaton
 - \bullet Z_0 is the symbol which indicates the bottom of the stack

Structure

Advantages

- The main advantage of a PDA is that it is able to count letters
- The transition function relies on reading both a symbol from the input and a symbol from the stack to perform a transition
- Nondeterminism takes place when two transitions have both the same input and the same stack symbol as a trigger (from the same state)...
- ... or with ϵ -transitions, as always

A first attempt

$L = a^n b^{2n}, n \ge 1$

• To obtain a synthetic notation, the convention is to denote on an arc <input><stack> | <stack> ··· <stack>

PDA Exercises

•0000000000

A first attempt

A first attempt

$L=a^nb^{2n}, n\geq 1$

- Eliminating ϵ -transitions with an extra symbol
- q_1 and q_3 can be merged in a single state ...

Three Classic Languages Recognized By PDA

Well-parenthesized empty expressions

Examples: $((()))(), ()(), (()()) \in L. ((), (,)(, \epsilon \notin L.$

Three Classic Languages Recognized By PDA

Three Classic Languages Recognized By PDA

Stack symbols E, F are used to show how to avoid ϵ -transitions to go from q_1 to q_f , but they are not strictly necessary

PDA Based Transducers

Is It Always Possible To Remove ϵ -transitions?

$L = a^n b^m a^n, n, m \ge 0$

Naive idea: for each *a*, push *A* on the stack, ignore the *b*s, match the last *a*s with the *A*s on the stack.

$$L = a^n b^m a^n, n, m \ge 0$$

We notice how this language includes the following cases:

- ϵ (i.e. n = m = 0)
- b^+ (i.e. $n = 0, m \neq 0$)
- a^{2n} (i.e. $n \neq 0, m = 0$)
- $L_1 = a^n b^m a^n, n, m > 0$ (i.e. $n \neq 0, m \neq 0$)

We have to check for all of them at the same time.

Strategy (same of FSA): complete the δ function introducing error states, then swap final and non final states

Complementing PDA

Difficulties Due to ϵ -transitions

- **1** What if there is a loop with ϵ -transitions which pile characters in the stack? \rightarrow The automaton may not stop!
 - → it is always possible to make the PDA acyclic, that is no infinite cycles of ϵ -transitions
- **2** What if from a final state q_f there is an ϵ -transition to a state $q_i \notin F$ (or vice versa)? \rightarrow Suppose the PDA stops in q_f when a string s is accepted. When we perform the complement, $q_f \notin F$ while $q_i \in F$, thus s is accepted by the complement PDA too by performing an additional ϵ -transitions to q_i
 - → Luckily, removing these kind of sequences is always possible
- Beware of introducing non-determinism while completing the δ function...

Removing troublesome ϵ -moves

 ϵ -moves to q_f must be removed before applying the complement

Formalization

Definition

- A transducer PDA is formally defined as a 9-tuple $(\mathbf{Q}, \mathbf{I}, \Gamma, \delta, q_0, \mathbf{F}, Z_0, \mathbf{O}, \eta)$, where:
 - Q is the set of states of the automata
 - I is the alphabet of the input string which will be checked
 - ullet Γ is the alphabet of the symbols on the stack
 - $\delta : \mathbf{Q} \times (\mathbf{I} \cup \epsilon) \times \Gamma \mapsto \mathbf{Q} \times \Gamma^*$ the transition function
 - $q_0 \in \mathbf{Q}$ the (unique) initial state from where the automaton starts
 - ullet ${f F}\subseteq {f Q}$ the set of final accepting states of the automaton
 - \bullet Z_0 is the symbol which indicates the bottom of the stack
 - O the output alphabet (may coincide with I)
 - $\eta: \mathbf{Q} \times (\mathbf{I} \cup \epsilon) \times \Gamma \mapsto \mathbf{O}^*$ the transduction function

A simple transducer

$au(a^kb^hc^h)=d^{3h}e^k, h, k\geq 1$

- Hint: "one b is worth two d" is a nice strategy
- Notation convention:<input><stack> | <stack> <stack>,< output >

Suppose we want to encode/decode Jovanotti's words, with dash used as words separator:

- Encoding: replace each s with a f (e.g., sasso \rightarrow faffo).
- However, with such a replacement, during decoding we cannot know if an f corresponds to an s or an f.
- Instead, consider this encoding: $f^n \mapsto f^{2n}$ and $s^n \mapsto f^{2n+1}$. In this way, an even number of f denotes a sequence of f, while an odd number denotes a sequence of s
- Note that the pair fs cannot appear, as well as ss^+f and sff^+ (at least in Italian words).
- There is still to deal with the sequence sf: we can just replace it with a single f
- The language is thus $L = \{(x.-)^+ \mid \neg \exists y, z(x = y.fs.z \lor y = y.ss^+f.z \lor x = y.sff^+.z)\}$

Encoder

- Symbol σ denotes an arbitrary letter, except for s and f.
- A final state to recognize at the end of a word is missing to avoid a lot of crossing edges. This state has:
 - same outgoing transitions as q₀
 - same ingoing transitions as q_0 , with σ being replaced by –

Jovanotti's Words

Decoder

Determining the translation of a sequence of f into a sequence of s or a sequence of f is equivalent to determine the parity of the length of the sequence of f in the encoded message

While determining the parity can be done with a FSA, we need to store the number of f or s characters to be written once the parity has been determined

We need a PDA based transducer!

We use additional states q_{4_b}, q_{4_c}, \ldots (resp. q_{5_b}, q_{5_c}, \ldots), not depicted, to store the character to be written after sequence of f (resp. s).