(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 November 2002 (14.11.2002)

PCT

(10) International Publication Number WO 02/089733 A2

(51) International Patent Classification?:

A61K

PCT/US02/14100 (21) International Application Number:

2 May 2002 (02.05.2002) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/289,220

7 May 2001 (07.05.2001) US

(71) Applicant (for all designated States except US): THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DE-PARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MENG, Xiang-Jin [CN/US]; 401 Craig Drive, Blacksburg, VA 24060 (US). PURCELL, Robert, H. [US/US]; 17517 White Grounds Road, Boyds, MD 20814 (US). EMERSON, Suzanne, U. [US/US]; 4517 Everett Street, Kensington, MD 20895 (US).

(74) Agent: FEILER, William, S.; Morgan & Finnegan, L.L.P., 345 Park Avenue, New York, NY 10154 (US).

(81) Designated States (national): AE. AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE (utility model), DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD. MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, Fl. FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/089733 A2

(54) Title: RECOMBINANT ORF2 PROTEINS OF THE SWINE HEPATITIS E VIRUS AND THEIR USE AS A VACCINE AND AS A DIAGNOSTIC REAGENT FOR MEDICAL AND VETERINARY APPLICATIONS

(57) Abstract: The invention relates to open reading frame 2 (ORF-2) proteins of a swine hepatitis E virus and the use of these proteins as an antigen in diagnostic immunoassays and/or as immunogen or vaccine to protect against infection by hepatitis E.

TITLE OF INVENTION

Recombinant ORF2 proteins of the swine hepatitis E virus and their use as a vaccine and as a diagnostic reagent for medical and veterinary applications.

FIELD OF INVENTION

The invention is in the field of hepatitis virology. More specifically, this invention relates to recombinant ORF2 proteins derived from a swine hepatitis E virus and to diagnostic methods and vaccine applications which employ these proteins.

BACKGROUND OF INVENTION

Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important public health problem in developing countries. Most global public health organizations consider hepatitis E to be the major cause of acute viral hepatitis in young adults in regions where sanitation conditions are poor. The mortality rate of HEV infection is generally low, but was reportedly up to 20% in patients infected during pregnancy. In the United States, two cases of acute hepatitis E not associated with travel to present regions have been recently reported, and hepatitis E is now considered to be endemic in the United States. A vaccine for hepatitis E is not available yet. The first animal strain of HEV, swine hepatitis E virus (swine HEV), was recently identified and found to be ubiquitous in the general pig population in the United States and other countries, and to experimentally infect non-human primates, the surrogates of humans. The complete genome of swine HEV, including the putative capsid gene (ORF2), has been sequenced.

The possibility that swine HEV may infect humans raises a potential public health concern for zoonosis or xenozoonosis in the United States and perhaps other countries. Therefore, diagnostic reagents based on recombinant proteins of swine HEV will be very useful in screening donor pigs used in xenotransplantation and in detecting swine HEV or similar virus infection in humans. The diagnostic reagents may also be useful for veterinary studies and monitoring pig herds in general. A vaccine based on the recombinant capsid protein of swine HEV might also

be useful in protecting humans against zoonotic and other HEV infections and pigs against infection with the swine HEV.

SUMMARY OF INVENTION

The invention relates to isolated and substantially purified open reading frame 2 proteins encoded by the swine HEV genome and in particular to a recombinantly produced ORF2 protein consisting of amino acids 112-602 of the swine ORF2.

It is therefore an object of this invention to provide synthetic nucleic acid sequences capable of directing production of these recombinant HEV proteins, as well as equivalent natural nucleic acid sequences. Such natural nucleic acid sequences may be isolated from a cDNA or genomic library from which the gene capable of directing synthesis of the HEV proteins may be identified and isolated. For purposes of this application, nucleic acid sequence refers to RNA, DNA, cDNA or any synthetic variant thereof.

The invention also relates to methods of preparing the HEV proteins by expressing the recombinant protein in a host cell.

The invention also relates to the use of the resultant recombinant HEV proteins as diagnostic agents and as vaccines.

The present invention also encompasses methods of detecting antibodies specific for swine hepatitis E virus in biological samples. Such methods are useful in diagnosis of infection and disease caused by swine HEV, and for monitoring the progression of such disease. Such methods are also useful for monitoring the efficacy of therapeutic agents during the course of treatment of HEV infection and disease in a mammal.

DETAILED DESCRIPTION OF THE FIGURES

Figures 1A and 1B show amino acid (SEQ. ID NO:1, Figure 1A) and nucleotide (SEQ. ID NO:2, Figure 1B) sequences respectively of open reading frame 2 of the swine HEV of Meng et al. [Proc Natl Acad. Sci. USA (1997) 98:9860-9865]

Figures 2A-2O show the results of EIAs, using as the antigen, either the swine ORF2 protein consisting of amino acids 112-602 of swine ORF2 (designated "swORF2" in the Figures) or the human HEV ORF2 antigen consisting of amino acids 112-607 of the ORF2 of the Pakistani SAR-55 strain of HEV (designated "humSAR55" in the Figures). Anti-HEV antibody levels were measured in serum from swine obtained from the United States (lowa), China, Thailand, Canada and Korea (Figures 2A-2N) and the results of the EIAs with the swORF2 and humSAR55 antigens are summarized in Figure 2O. In Figures 2A-2N a sample was considered positive if the ratio (see column headed "sample/coff") of the optical density measured for the human SAR55 ("humSAR55" column) or swine antigens ("swORF2" column) to the cutoff value (see columns headed "cutoff") for the humSAR55 or swORF2 antigens was greater than 1.0.

Figures 3A-3R show the results of EIAs using as the antigen, either the swine ORF2 protein consisting of amino acids 112-602 of swine ORF2 (designated "swORF2" in the Figures) or the human HEV ORF2 antigen consisting of amino acids 112-607 of the ORF2 of the Pakistani SAR-55 strain of HEV. (designated "humSARCOO" in the Figures). Anti-HEV antibody levels were measured in human serum samples. In the Figures the designation "Thai PH" refers to samples from Thai pig handlers, the designation "Chi PH" refers to samples from Chinese pig handlers, the designation "Chin BD" refers to samples from Chinese blood donors, the designation "Lcl BD" refers to samples from US blood donors and the designation "XJPH" refers to samples from US pig handlers. In Figures 3A-3Q, a sample was considered positive if the ratio (see column headed "sample/coff") of the optical density measured for the human SAR55 ("humSAR55" column) or swine antigens ("swORF2" column) to the cutoff value (see columns headed "coff") for the humSAR55 or swORF2 antigens was greater than 1.0.

Figure 4 shows an anti-HEV IgG response time course of two chimpanzees experimentally infected with the Sar-55 strain as determined by EIAs using capsid antigens generated from the human and swine HEV strains. The values are expressed as Sample over Cut-off ratios and 1.0 is the positive baseline.

Figure 5 shows an anti-HEV IgG response time course of two rhesus monkeys experimentally infected with the genotype 2 Mexican strain as determined by EIAs using capsid antigens generated from the Sar-55 and Meng HEV strains.

DETAILED DESCRIPTION OF INVENTION

The swine hepatitis E virus open reading frame 2 (sHEV ORF2) capsid antigen is structurally very similar to the human HEV ORF2 gene product. Of course, it is not clear whether swine HEV evolved into human HEV, or vice versa, or whether they diverged from a common ancestor. Regardless of lineage, the possibility that swine HEV could infect humans raises a potential public health concern for zoonosis or xenozoonosis, especially since xenotransplantation of pig organs has been suggested as a solution to the solid organ donor shortage for transplantations. Thus, xenozoonoses, the inadvertent transmission of pathogens from animal organs to human recipients, is of major concern. Viruses pathogenic for pigs might pose a risk to humans. However, nonpathogenic pig viruses may also become pathogenic for humans after xenotransplantation, as a result of species-jumping, recombination or adaptation in immunocompromised xenotransplantation recipients. Furthermore, pigs recovered from swine HEV infection might have a damaged liver (or other organ) which would limit usefulness for xenotransplantation.

Because of these and other potential public health concerns, it would be highly advantageous to have a swine HEV ORF2 antigen that is sufficiently closely related to human HEV to allow evaluation as a potential source of infection in humans.

The full-length sHEV ORF2 protein product is predicted to contain 660 amino acids and to weigh 71,000 daltons. Example 3 discloses that expression of the sHEV ORF2 capsid gene from recombinant baculoviruses in insect cells produces multiple HEV capsid polypeptides, including a set of major proteins with molecular weights of 71, 63, and 55 kD. The present invention relates to these proteins and in particular, to the most abundant of these proteins, the 55 kD protein, which is present primarily within the cell by 24 hr. post-infection though a minor fraction of the 55 kD protein is secreted. Amino acid 112 of the full-length sHEV ORF2 is located at the amino terminus of the 55 kD protein as determined by N-terminal sequence analysis.

Amino acid 602 of the full-length sHEV ORF2 is located at the carboxy terminus of the 55 kD protein as determined by C-terminal sequence analysis. The present invention therefore relates to nucleic acid molecules which encode this 55 kilodalton swine HEV ORF2 protein. Such nucleic acid molecules can be selected from sequences which encode the swine HEV ORF2 protein sequence shown in Figure 1A as SEQ. ID NO:1. Preferred nucleic acid sequences are those obtained from the nucleotide sequence of the swine HEV ORF2 shown in Figure 1B as SEQ. ID NO:2. In one embodiment, the nucleic acid molecule encodes the full-length 660 amino acid ORF2 protein as described in Example 2. Alternatively, the nucleic acid molecule may consist of nucleotides which encode amino acids 112-602 of ORF2 (i.e., nucleotides 334 to 1806 of SEQ. ID NO:2).

Such nucleic acid molecules may be inserted into any vector suitable for expression in prokaryotic or eukaryotic cells. Such vectors include any vectors into which a nucleic acid sequence as described above can be inserted, along with any preferred or required operational elements, and which vector can then be subsequently transferred into a host organism and replicated in such organism. Preferred vectors are those whose restriction sites have been well documented and which contain the operational elements preferred or required for transcription of the nucleic acid sequence.

The "operational elements" as discussed herein include at least one promoter, at least one operator, at least one leader sequence, at least one terminator codon, and any other DNA sequences necessary or preferred for appropriate transcription and subsequent translation of the vector nucleic acid. In particular, it is contemplated that such vectors will contain at least one origin of replication recognized by the host organism along with at least one selectable marker and at least one promoter sequence capable of initiating transcription of the nucleic acid sequence.

In construction of the vector of the present invention, it should additionally be noted that multiple copies of the nucleic acid sequence and its attendant operational elements may be inserted into each vector. In such an embodiment, the host organism would produce greater amounts per vector of the desired HEV protein. The number of multiple copies of the DNA sequence which may

be inserted into the vector is limited only by the ability of the resultant vector due to its size, to be transferred into and replicated and transcribed in an appropriate host microorganism.

Preferred expression vectors are those that function in a eukaryotic cell. Examples of such vectors include but are not limited to baculovirus transfer vectors.

The selected recombinant expression vector may then be transfected into a suitable eukaryotic cell system for purposes of expressing the recombinant protein. Preferred cell systems for expression are eukaryotic cells. Such eukaryotic cell systems include, but are not limited to, yeast, insect cells and cell lines such as HeLa, MRC5 or Cv1.

The expressed recombinant protein may be detected by methods known in the art which include SDS-PAGE and Western blotting using sera containing anti-HEV antibody as described in Example 3.

The recombinant protein expressed by the SF9 cells can be obtained as a crude lysate or it can be purified by standard protein purification procedures known in the art which may include differential precipitation, molecular sieve chromatography, ion-exchange chromatography, isoelectric focusing, gel electrophoresis, affinity, and immunoaffinity chromatography and the like. In the case of immunoaffinity chromatography, the recombinant protein may be purified by passage through a column containing a resin which has bound thereto antibodies specific for the ORF protein. An example of a protocol for the purification of the recombinantly expressed 55 kilodalton swine HEV ORF protein is provided in Example 4.

In another embodiment, the expressed recombinant proteins of this invention can be used in immunoassays for the diagnosis or prognosis of hepatitis E in a mammal including, but not limited to, swine and humans. Such assays could be used for detection of swine HEV or similar virus infection in humans, for monitoring pig herds in general, and for risk assessment of swine HEV infection in xenotransplantation using pig organs. In a preferre tembodiment, the immunoassay is useful in diagnosing infection of humans and swine with swine hepatitis E. Immunoassays using the swine HEV proteins of the invention therefore provide a highly specific reproducible method for diagnosing swine HEV infections.

Immunoassays of the present invention may be a radioimmunoassay, Western blot assay, immunofluorescent assay, enzyme immunoassay. chemiluminescent assay, immunohistochemical assay and the like. Standard techniques known in the art for EIA are described in Methods in Immunodiagnosis, 2nd Edition, Rose and Bigazzi, eds., John Wiley and Sons, 1980 and Campbell et al., Methods of Immunology, W.A. Benjamin, Inc., 1964, both of which are incorporated herein by reference. Such assays may be a direct, indirect, competitive, or noncompetitive immunoassay as described in the art. (Oellerich, M. 1984. J.Clin. Chem. Clin. BioChem. 22: 895904) Biological samples appropriate for such detection assays include, but are not limited to, tissue biopsy extracts, whole blood, plasma, serum, cerebrospinal fluid, pleural fluid, urine and the like.

In one embodiment, test serum is reacted with a solid phase reagent having surface-bound recombinant swine HEV ORF2 protein as an antigen, preferably, the HEV protein is the swine ORF2 protein consisting of amino acids 112-602 of SEQ. ID NO:1. The solid surface reagent can be prepared by known techniques for attaching protein to solid support material. These attachment methods include nonspecific adsorption of the protein to the support or covalent attachment of the protein to a reactive group on the support. After reaction of the antigen with anti-HEV antibody, unbound serum components are removed by washing and the antigen-antibody complex is reacted with a secondary antibody such as labelled antihuman antibody. The label may be an enzyme which is detected by incubating the solid support in the presence of a suitable fluorimetric or colorimetric reagent. Other detectable labels may also be used, such as radiolabels or colloidal gold, and the like.

In one embodiment, protein expressed by a recombinant baculovirus vector containing the entire ORF2 sequence of swine HEV is used as a specific binding agent to detect anti-HEV antibodies, preferably IgG or IgM antibodies. Figures 2 and 3 show the results of EIAs in which the solid phase reagent has the recombinant swine ORF2 protein consisting of amino acids 112-602 as the surface antigen.

The HEV protein and analogs may be prepared in the form of a kit, alone, or in combinations with other reagents such as secondary antibodies, for use in immunoassays.

WO 02/089733 PCT/US02/14100

The recombinant HEV proteins can be used as a vaccine to protect mammals against challenge with hepatitis E derived from human, swine or other species. The vaccine, which acts as an immunogen, may be a cell, cell lysate from cells transfected with a recombinant expression vector or a culture supernatant containing the expressed protein. Alternatively, the immunogen is a partially or substantially purified recombinant protein. While it is possible for the immunogen to be administered in a pure or substantially pure form, it is preferable to present it as a pharmaceutical composition, formulation or preparation.

The formulations of the present invention, both for veterinary and for human use, comprise an immunogen as described above, together with one or more pharmaceutically acceptable carriers and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The formulations may conveniently be presented in unit dosage form and may be prepared by any method well-known in the pharmaceutical art.

All methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or unely divided solid carriers or both, and then, if necessary, shaping the product into the desired formulation.

Formulations suitable for intravenous intramuscular, subcutaneous, or intraperitoneal administration conveniently comprise sterile aqueous solutions of the active ingredient with solutions which are preferably isotonic with the blood of the recipient. Such formulations may be conveniently prepared by dissolving solid active ingredient in water containing physiologically compatible substances such as sodium chloride (e.g. 0.1-2.0M), glycine, and the like, and having a buffered pH compatible with physiological conditions to produce an aqueous solution, and rendering said solution sterile. These may be present in unit or multidose containers, for example, sealed ampoules or vials.

The formulations of the present invention may incorporate a stabilizer. Illustrative stabilizers are polyethylene glycol, proteins, saccharides, amino acids, inorganic acids, and organic acids which may be used either on their own or as

admixtures. These stabilizers are preferably incorporated in an amount of 0.1 to 1:10,000 parts by weight per part by weight of immunogen. If two or more stabilizers are to be used, their total amount is preferably within the range specified above. These stabilizers are used in aqueous solutions at the appropriate concentration and pH. The specific osmotic pressure of such aqueous solutions is generally in the range of 0.1-3.0 osmoles, preferably in the range of 0.8-1.2. The pH of the aqueous solution is adjusted to be within the range of 5.0-9.0, preferably within the range of 6-8. In formulating the immunogen of the present invention, an anti-adsorption agent may be used.

Additional pharmaceutical methods may be employed to control the duration of action. Controlled release preparations may be achieved through the use of polymer to complex or absorb the proteins or their derivatives. The controlled delivery may be exercised by selecting appropriate macromolecules (for example polvester. polyamino acids. polyvinyl, pyrrolidone. ethylenevinylacetate. methylcellulose, carboxymethylcellulose, or protamine sulfate) and the concentration of macromolecules as well as the methods of incorporation in order to control release. Another possible method to control the duration of action by controlled release preparations is to incorporate the proteins, protein analogs or their functional derivatives, into particles of a polymeric material such as solyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization. for example, hydroxymethylcellulose microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions.

When oral preparations are desired, the compositions may be combined with typical carriers, such as lactose, sucrose, starch, talc magnesium stearate, crystalline cellulose, methyl cellulose, carboxymethyl cellulose, glycerin, sodium alginate or gum arabic among others.

The proteins of the present invention may be supplied in the form of a kit, alone, or in the form of a pharmaceutical composition as described above.

Vaccination can be conducted by conventional methods. For example, the immunogen can be used in a suitable diluent such as saline or water, or complete or incomplete adjuvants. Further, the immunogen may or may not be bound to a carrier to make the protein immunogenic. Examples of such carrier molecules include but are not limited to bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), tetanus toxoid, and the like. The immunogen can be administered by any route appropriate for antibody production such as intravenous, intraperitoneal, intramuscular, subcutaneous, and the like. The immunogen may be administered once or at periodic intervals until a significant titer of anti-HEV antibody is produced. The antibody may be detected in the serum using an immunoassay.

In yet another embodiment, the immunogen may be nucleic acid sequence capable of directing host organism synthesis of an HEV ORF protein. Such nucleic acid sequence may be inserted into a suitable expression vector by methods known to those skilled in the art. Expression vectors suitable for producing high efficiency gene transfer in vivo include, but are not limited to, retroviral, adenoviral and vaccinia viral vectors. Operational elements of such expression vectors are disclosed previously in the present specification and are known to one skilled in the art. Such expression vectors can be administered intravenously, intramuscularly, subcutaneously, intraperitoneally or orally.

In an alternative embodiment, direct gene transfer may be accomplished via intramuscular injection of, for example, plasmid-based eukaryotic expression vectors containing a nucleic acid sequence capable of directing host organism synthesis of HEV ORF protein(s). Such an approach has previously been utilized to produce the hepatitis B surface antigen in vivo and resulted in an antibody response to the surface antigen (Davis, H.L. et al. (1993) <u>Human Molecular Genetics</u>, 2:1847-1851; see also Davis et al. (1993) <u>Human Gene Therapy</u>, 4:151-159 and 733-740).

When the immunogen is a partially or substantially purified recombinant swine HEV ORF2 protein, dosages effective to elicit a protective antibody response against HEV range from about 0.5μg to about 50μg. A more preferred range is from about 1μg to about 30μg and a most preferred range is from about 5μg to about 20μg.

Dosages of swine HEV ORF2 protein-encoding nucleic acid sequence effective to elicit a protective antibody response against HEV range from about 1 to about 5000 μ g; a more preferred range being about 300 to about 1000 μ g.

The expression vectors containing a nucleic acid sequence capable of directing host organism synthesis of a swine HEV ORF2 protein(s) may be supplied in the form of a kit, alone, or in the form of a pharmaceutical composition as described above.

The administration of the immunogen of the present invention may be for either a prophylactic or therapeutic purpose. When provided prophylactically, the immunogen is provided in advance of any exposure to HEV or in advance of any symptom due to HEV infection. The prophylactic administration of the immunogen serves to prevent or attenuate any subsequent infection of HEV in a mammal. When provided therapeutically, the immunogen is provided at (or shortly after) the onset of the infection or at the onset of any symptom of infection or disease caused by HEV. The therapeutic administration of the immunogen serves to attenuate the infection or disease.

A preferred embodiment is a vaccine prepared using the recombinant swine ORF2 protein expressed by the ORF2 sequence of swine HEV encoding amino acids 1-660 of ORF2. Since the recombinant swine ORF2 protein (112-602) has already been demonstrated to be reactive with a variety of HEV-positive sera from swine and humans (Figures 2 and 3), its utility in protecting against HEV strains is indicated.

In addition to use as a vaccine, the compositions can be used to prepare antibodies. The antibodies can be used directly as antiviral agents. To prepare antibodies, a host animal is immunized using the virus particles or, as appropriate, nonparticle antigens native to the virus particle can be administered in conjunction with an adjuvant as described above for vaccines. The host serum or plasma is collected following an appropriate time interval to provide a composition comprising antibodies reactive with the virus particle. The gamma globulin fraction or the IgG antibodies can be obtained, for example, by use of saturated ammonium sulfate or DEAE Sephadex, or other techniques known to those skilled in the art. The

antibodies are substantially free of many of the adverse side effects which may be associated with other antiviral agents such as drugs.

The antibody compositions can be made even more compatible with the host system by minimizing potential adverse immune system responses. This is accomplished by removing all or a portion of the Fc portion of a foreign species antibody or using an antibody of the same species as the host animal, for example, the use of antibodies from human/human hybridomas. Humanized antibodies (i.e., non-immunogenic in a human) may be produced, for example, by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (i.e., chimeric antibodies). Such chimeric antibodies may contain the reactive or antigen binding portion of an antibody from one species and the Fc portion of an antibody (non-immunogenic) from a different species. Examples of chimeric antibodies, include but are not limited to, non-human mammal-human chimeras, rodent-human chimeras, murine-human and rat-human chimeras (Robinson et al., International Patent Application 184,187; Taniguchi M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., PCT Application WO 86/01533; Cabilly et al., (1987) Proc. Natl. Acad. Sci. USA 84:3439; Nishimura et al., (1987) Canc. Res. 47:999; Wood et al., (1985) Nature 314:446; Shaw et al., (1988) J. Natl. Cancer Inst. 80: 15553, all incorporated herein by reference).

General reviews of "humanized" chimeric antibodies are provided by Morrison S., (1985) Science 229:1202 and by Oi et al., (1986) BioTechniques 4:214.

Suitable "humanized" antibodies can be alternatively produced by CDR or CEA substitution (Jones et al., (1986) <u>Nature</u> 321:552; Verhoeyan et al., (1988) <u>Science</u> 239:1534; Biedleret al. (1988) <u>J. Immunol</u>. 141:4053, all incorporated herein by reference).

The antibodies or antigen binding fragments may also be produced by genetic engineering. The technology for expression of both heavy and light chain genes in <u>E. coli</u> is the subject the PCT patent applications; publication number WO 901443, WO901443, and WO 9014424 and in Huse et al., (1989) <u>Science</u> 246:12751281.

The antibodies can also be used as a means of enhancing the immune response. The antibodies can be administered in amounts similar to those used for other therapeutic administrations of antibody. For example, pooled gamma globulin is administered at 0.02-0.1 ml/lb body weight during the early incubation period of other viral diseases such as rabies, measles and hepatitis B to interfere with viral entry into cells. Thus, antibodies reactive with the HEV virus particle can be passively administered alone or in conjunction with another antiviral agent to a host infected with an HEV to enhance the effectiveness of an antiviral drug.

Alternatively, anti-HEV antibodies can be induced by administering antiidiotype antibodies as immunogens. Conveniently, a purified anti-HEV antibody preparation prepared as described above is used to induce anti-idiotype antibody in a host animal. The composition is administered to the host animal in a suitable diluent. Following administration, usually repeated administration, the host produces antiidiotype antibody. To eliminate an immunogenic response to the Fc region, antibodies produced by the same species as the host animal can be used or the FC region of the administered antibodies can be removed. Following induction of antiidiotype antibody in the host animal, serum or plasma is removed to provide an antibody composition. The composition can be purified as described above for anti-HEV antibodies, or by affinity chromatography using anti-HEV antibodies bound to the affinity matrix. The anti-idiotype antibodies produced are similar in conformation to the authentic HEV antigen and may be used to prepare an HEV vaccine rather than using an HEV particle antigen.

When used as a means of inducing anti-HEV virus antibodies in an animal, the manner of injecting the antibody is the same as for vaccination purposes, namely intramuscularly, intraperitoneally, subcutaneously or the like in an effective concentration in a physiologically suitable diluent with or without adjuvant. One or more booster injections may be desirable.

The HEV-derived proteins of the invention are also intended for use in producing antiserum designed for pre or post-exposure prophylaxis. Here an HEV protein, or mixture of proteins is formulated with a suitable adjuvant and administered by injection to human volunteers, according to known methods for producing human antisera. Antibody response to the injected proteins is monitored, during a several-

WO 02/089733 PCT/US02/14100

week period following immunization, by periodic serum sampling to detect the presence of anti-HEV serum antibodies, using an immunoassay as described herein.

The antiserum from immunized individuals may be administered as a pre-exposure prophylactic measure for individuals who are at risk of contracting infection. The antiserum is also useful in treating an individual post-exposure, analogous to the use of high titer antiserum against hepatitis B virus for post-exposure prophylaxis. Of course, those of skill in the art would readily understand that immune globulin (HEV immune globulin) purified from the antiserum of immunized individuals using standard techniques may be used as a pre-exposure prophylactic measure or in treating individuals post-exposure.

For both in vivo use of antibodies to HEV virus-like particles and proteins and anti-idiotype antibodies and diagnostic use, it may be preferable to use Monoclonal anti-virus particle antibodies or anti-idiotype monoclonal antibodies. antibodies can be produced as follows. The spleen or lymphocytes from an immunized animal are removed and immortalized or used to prepare hybridomas by methods known to those skilled in the art. (Goding, J.W. 1983. Monoclonal Antibodies: Principles and Practice, Pladermic Press, Inc., NY, NY, pp. 5697). To produce a human-human hybridoma, a human lymphocyte donor is selected. A donor known to be infected with HEV (where infection has been shown for example by the presence of anti-virus antibodies in the blood or by virus culture) may serve as a suitable lymphocyte donor. Lymphocytes can be isolated from a peripheral blood sample or spleen cells may be used if the donor is subject to splenectomy. EpsteinBarr virus (EBV) can be used to immortalize human lymphocytes or a human fusion partner can be used to produce humanhuman hybridomas. Primary in vitro immunization with peptides can also be used in the generation of human monoclonal antibodies.

Antibodies secreted by the immortalized cells are screened to determine the clones that secrete antibodies of the desired specificity. For monoclonal anti-virus particle antibodies, the antibodies must bind to HEV virus particles. For monoclonal anti-idiotype antibodies, the antibodies must bind to anti-virus particle antibodies. Cells producing antibodies of the desired specificity are selected.

In another embodiment, antibody phage display libraries can be constructed from variable heavy and light chain antibody genes using a phage display vector specifically designed for the expression of antibody fragments to an antigen (Winter et al., (1994) An ... Rev. Immunol. 12:433-55; de Kruif et al., (1996) Immunol. Today 17: 453-5; Burton et al., (1994) Science 266:1024-7). From such libraries, large numbers of monoclonal antibodies to an antigen of choice can be cloned and isolated. The technique produces high affinity monoclonal antibodies for use in passive immunoprophylaxis.

The above described antibodies and antigen binding fragments thereof may be supplied in kit form alone, or as a pharmaceutical composition for <u>in vivo</u> use. The antibodies may be used for therapeutic uses, diagnostic use in immunoassays or as an immunoaffinity agent to purify ORF 2 proteins as described herein.

EXAMPLES

EXAMPLE 1

Beculovirus Cloning of Swine HEV ORF2 Gene

A PCR DNA fragment containing a full-length copy of sHEV ORF2 cDNA was digested with the restriction endonucleases Bam HI and Xho 1. The digestion products were purified on a QIA quick column and ligated into the respective sites of the bacterial TA-cloning vector pCR2. 1. The ligation products were used to transform competent E. coli DH5 α cells, and bacterial clones containing plasmids with the sHEV ORF2 gene insert were selected by DNA gel analysis of miniprep plasmid DNA. Plasmid DNA of bacterial clone pCRsHEV-9 was digested with Bam HI and Xho I. A 1992 bp DNA fragment was isolated from the restricted DNA and ligated into the bacmid transfer vector pFASTBAC-1 at the Bam HI and Xho I sites located downstream of the baculovirus polyhedrin promoter. The ligation products were used to transform competent $E.\ coli\ DH5<math>\alpha$ cells, and bacterial clones containing plasmids with the sHEV ORF2 gene were selected by DNA gel analysis of miniprep plasmid DNA. Digestion of plasmid DNA from the bacterial clone designated pFBsHEV ORF2 (6,681 bp) with Bam HI and Xho I released a 1992 bp DNA fragment as expected for the sHEV ORF2 DNA insert.

pFBsHEV ORF2 DNA was transformed into competent *E. coli* DHIOBac cells containing parental bacmid DNA to facilitate site-specific recombination of the sHEV ORF2 gene into the baculovirus genome within the *polh* locus. Recombinant bacmid DNA was isolated from amplified bacterial cultures derived from white antibiotic resistant colonies. Bacmid DNA containing sHEV ORF2 DNA was transfected into Sf-9 cells using the cationic lipid CELLFECTIN. Transfected cells were harvested after three days and assayed for expression of sHEV ORF2 capsid proteins by SDS-PAGE and Western blot analysis using antisera to human HEV. A single protein band with a molecular weight of 55,000 daltons was detect d in the transfected cells by immunoblotting with the anti-HEV sera. Recombinant baculoviruses in culture media from transfected cells harvested at 72 hours post-transfection was used to infect Sf-9 insect cells in agarose plaque assays. Virus from plaques was isolated and amplified further in Sf-9 insect cells. The resulting recombinant baculovirus expressed sHEV ORF2 proteins in Sf-9 insect cells.

EXAMPLE 2

Establishment of Master Virus Seed Bank.

A virus stock designated bsHEV ORF2 (R257) was prepared in Sf-9 cells following three serial plaque purifications. No wild type baculovirus was present in the virus stock as demonstrated by the absence of wild-type plaque morphology and β-galactosidase expression in agarose plaque assays. Baculovirus genomic DNA was isolated from recombinant virus in the virus stock and subjected to nucleotide sequence analysis using the cycle sequencing technique. The location of the swine HEV ORF2 DNA insert (1992 bp) was confirmed to be in-frame and downstream of the polyhedrin promoter in the *polh* locus as expected. The observed nucleotide sequence shared 100% homology with the nucleotide sequence of the swine HEV ORF2 shown in Figure 1. This bsHEV ORF2 baculovirus stock was tested for microbial sterility, mycoplasma and spiroplasma contamination, and the presence of endotoxins. No microbial contaminants were detected by these tests, and an endotoxin level of 0.1 EU/ml was observed, bsHEV ORF2 (R257) was designated as the master virus seed bank and stored in 10 ml aliquots at 2°C, – 8°C, and –70°C.

The virus titer of R257 was 2.9×10^7 pfu/ml as determined by agarose plaque assay using Sf-9 cells.

EXAMPLE 3

Expression of Recombinant Swine HEV ORF2 Proteins in Insect Cells

Temporal expression of the swine HEV ORF2 gene in baculovirus-infected cells was investigated. Sf-9 insect cells cultivated as shaker suspension cultures in serum-free medium were infected with recombinant baculoviruses encoding the full-length swine hepatitis E virus ORF2 gene. Cell lysates and media were harvested from virus infections daily for four consecutive days and analyzed by SDS-PAGE and immunoblotting methods.

The result owed that in addition to the full-length ORF2 product of 71 kD, multiple sHEV related proteins appeared in infected cells and in the media. The most abundant of these proteins had a molecular weight of 55 kD. The HEV 71 kD was detected as early as one day post-infection in infected cell lysates and media and accumulated for several more days in disappeared in media by four days post-infection. Another sHEV protein (~ 63 kD) appeared in infected cells and media by one day post-infection and accumulated over the next two days. At four days post-infection, the level of 63 kD protein in cells and media decreased. A shEV 55 kD protein appeared in cells and in media by two days post-infection. The sHEV 55 kD protein accumulated intracellularly at days three and four post-infection. Additionally, sHEV proteins with other molecular weights, but in smaller amounts, were observed intracellularly and extracellularly.

EXAMPLE 4

Recombinant sHEV ORF2 protein purification.

Recombinant sHEV ORF2 proteins were purified from Sf-9 insect cell cultures infected with recombinant baculoviruses expressing the full-length sHEV ORF2 gene using a purification scheme that included anion exchange and size exclusion chromatography. Recombinant swine HEV ORF2 proteins were purified from clarified baculovirus-infected cell lysates. Cell lysates were prepared at 4°C for

WO 02/089733 PCT/US02/14100

- 18 -

30 minutes by differential lysis of infected cells harvested at five days post-infection with the nonionic detergent, Nonidet P-40, at a final concentration of 0.5%. Following cell lysis and removal of infected cell nuclei by centrifugation, cell lysates were diluted 1:10 with Q loading buffer (50 mM Tris-HCl, pH 8.0, 10 mM NaCl) to reduce the ionic strength. In contrast, media harvested from virus infections were clarified by centrifugation, concentrated 10 fold by tangential flow ultrafiltration using hollow fiber filters comprised of polysulfone, and subjected to diafiltration against Q loading buffer to reduce the ionic strength.

Recombinant sHEV ORF2 proteins in cell lysates and media were captured by anion exchange chromatography. Diluted crude lysate (1.5 bed vol.) was loaded onto a Q Sepharose Fast Flow strong anion exchange column (XK50 column, 5.0 x 7.5 cm, 150 ml; Pharmacia, Piscataway, NJ) at a flow rate of 10.0 ml/min. The column was washed first with 1.0 bed volume of loading buffer at a flow rate of 10 ml/min. followed by a second wash with 1.0 bed volume of loading buffer at a flow rate of 20 ml/min. Proteins were eluted with 7.5 bed volumes of a continuous linear NaCl gradient (10 - 300 mM) in loading buffer at a flow rate of 20 ml/min. Recombinant sHEV ORF2 proteins bound to Q Sepharose Fast Flow resin, a strong anion exchange chromatographic matrix, and selectively eluted at a NaCl concentration of 140 mM as determined by SDS-PAGE and immunoblot analyses of unbound and bound column fractions. Fractions containing sHEV ORF2 55 kD proteins were pooled and desalted by gel filtration through a Sephacryl G-25 column (Pharmacia) with Q loading buffer.

The peak protein fraction from the Sephacryl G-25 column was collected and loaded onto a Source 15 Q High Performance (Pharmacia) strong anion exchange column to resolve and concentrate sHEV ORF2 polypeptides. The Source 15 Q HP column was washed and eluted as described above for anion exchange chromatography using Q Sepharose. Recombinant sHEV ORF2 55 kD proteins bound to the matrix and eluted again at 140 mM NaCl. Peak fractions containing sHEV ORF2 proteins were pooled and fractionated further by size exclusion chromatography using a Superdex G-75 column. Size exclusion chromatography using phosphate-buffered saline (pH 7.2) as a final purification step resolved the recombinant sHEV ORF2 55 kD protein from other protein contaminants as

determined by SDS-PAGE and Western blot analyses. The purity of the final bulk product by size exclusion chromatography was > 98% as determined by laser scanning densitometry of Coomassie Blue stained gels.

EXAMPLE 5

Amino terminal sequence analysis of sHEV 55kD protein.

The amino terminus of the recombinant sHEV ORF2 55 kD protein was determined by automated micro Edman degradation. 11 cycles of direct Edman degradation were performed on the recombinant sHEV ORF2 55 kD proteins. The amino acid sequence corresponded to residues 112 through 122 (AVSPAPDTAPV) of the full-length recombinant sHEV ORF2 gene product. The carboxy terminus of the recombinant sHEV ORF2 55 kD protein was determined by automated chemical cleavage. Three rounds of chemical lysis were performed on recombinant sHEV ORF2 55 kD protein. The amino acid sequence corresponded to residues 600 through 602 (VLA) of the full-length recombinant sHEV ORF2 gene product.

The recombinant swine and human HEV ORF2 proteins produced in baculovirus-infected insect cells share 91.4% protein sequence homology. Both swine and human HEV ORF2 gene products undergo proteolytic cleavage to produce final intracellular products of 55 and 56 kD respectively. The amino termini of these two proteins are similar, as N-terminal cleavages occur between amino acids 111 and 112 of both proteins to produce the final protein products. The C-termini of these proteins differ slightly following C-terminal proteolysis, as the swine HEV ORF2 protein ends at amino acid 602 whereas the human HEV ORF2 protein terminates at amino acid 607.

EXAMPLE 6

Detection by EIA of anti-HEV Antibodies In Sera From Swine

To determine if the insect cell-derived swine HEV ORF2 antigen 112-602 could detect anti-HEV antibody in sera from swine and humans, EIAs were carried out as follows on sera collected from swine and humans using either the 55 kilodalton swine ORF2 protein (amino acids 112-602) or the 56 kilodalton protein of the SAR55 strain of HEV (amino acids 112-607).

Capture Plate Preparation

The antigen preparation was diluted to approximate by 0.5 μg/ml in carbonate buffer (Carbonate-Bicarbonate capsules, Sigma #C-3041, final 0.05M, pH9.6) and 100μl of the diluted antigen preparation was added to each of 96 wells of a microtiter plate (Linbro/Titertek, ICN#76-381-04). The plates were then incubated for 18 hours at room temperature, washed twice with 0.02% Tween-20 (KPL #50-63-00) solution, and 120μl of blocking solution was then added and incubated 1 hour at 37°C, followed by washing five times with 0.02% Tween-20 (K&P #50-63-00) solution.

The plates were now ready for use.

Sample Preparation

In a separate microtiter plate, 10-fold dilutions (10¹ 10², 10³, 10⁴, 10⁵, 10⁶) of the starting sample were made in blocking buffer.

 $100\mu l$ of dilutions to be tested, starting with the 10^2 dilution, were added into wells of the capture plate. The plate was incubated at $37^{\circ}C$ for 30 minutes and then washed five times with 0.02% Tween-20 solution.

100µl of secondary antibody (anti-human-lgG-HRPO, KPL# 74-1006 prepared to manufacturer's recommendations using the blocking reagent as diluent) was added to each well, incubated 30 minutes at 37°C, and then washed five times with 0.02% Tween-20 solution.

100 μ l of ABTS substrate (ABTS-citric acid-H₂O₂, KPL # 50-66-01) was t added to each well, then kept covered for 30 minutes. After 30 minutes had elapsed, 100 μ l of stop solution (KPL# 50-85-02) were added to each well and optical density was read at 405nm.

Four five-fold dilutions of a WHO anti-HEV standard preparation (95/584, calibrated to 100 Units/ml) obtained from the National Institute for Biological Standards and Control, Hertfordshire, England, starting at 1:400 (0.25 WHO units), was included in each test plate to establish a sensitivity range and develop a standard line from which relative quantity values were extrapolated.

Commercial reagents

Washing solution, ready-to-use ABTS, HRPO labeled antibodies and BSA were obtained from Kirkegaard & Perry, 2 Cesna Ct, Gaithersburg, MD 20879. Other reagents are available from Sigma.

EIA Results

The results for the swine sera are shown in Figures 2A-2N and for the human sera in Figures 3A-3Q and the data are summarized in Figures 2O and 3R respectively.

EXAMPLE 7

Use of the Swine 55 Kilodalton ORF2 Protein as a Vaccine

As described above in Example 6, the swine ORF-2 protein is immunoreactive as it has been shown to react with a variety of sera taken from swine and humans infected with HEV. This provides support for the use of this recombinant protein as a vaccine to protect against HEV strains. Mammals, preferably rhesus monkeys or chimpanzees, are immunized by intramuscular injection with purified or partially purified recombinant swine ORF-2 protein (112-602) in an amount sufficient (0.1 to 100µg) to stimulate the production of protective antibodies. The immunized mammals are then challenged with a wild-type strain of HEV and protection from challenge may be measured by a variety of assays including, but not limited to, assaying sera of immunized mammals for levels of alanine aminotransferase, (ALT), anti-HEV antibodies or HEV RNA by RT-PCR.

EXAMPLE 8

Hepatitis E Virus (HEV) Capsid Antigen Derived From Virus of Human or Swine is Equally Efficient for Detecting Anti-HEV by Enzyme Immunoassay

The goal of this study was to evaluate and compare a pair of enzyme immunoassays for the detection of antibodies to HEV in human and swine sera. Though we tested only swine and human sera, these results likely apply to other species since it is reported that the ORF2 epitopes are broadly reactive across

species and strains (Anderson, D. A. et al., (1999) <u>J Virol Methods</u> 81:131-42; Khudyakov, Y. E. et al., (1999) <u>J Clin Microbiol</u> 372863-71; Meng, J. et al., (2001) <u>Virology</u> 288:203-11). The assays we describe here are virtually the same but for the capture antigen each employs, namely a truncated portion of the ORF2 gene product from a swine strain of HEV and from a human strain of HEV. The human strain is the Pakistani Sar-55 strain (Bryan, J.P. et al., (1994) <u>J Infect Dis</u> 170:517-21, and the swine strain is the US Meng strain (Meng, X. J. et al., (1997) <u>J Clin Microbiol</u> 40:117-22).

Serum samples

Serial weekly serum samples from two chimpanzees and two rhesus monkeys experimentally infected with HEV were compared with both assays. The chimpanzees were infected with the Pakistani strain (Sar-55) representing genotype 1 and the rhesus monkeys were infected with the Mexican strain of HEV, representing genotype 2.

Another sample set consisted of 792 pig sera (360 samples from US, 152 from Canada, 30 from China, 190 from Korea and 60 from Thailand) and 882 human sera (230 samples from US volunteer blood donors, 603 US pig handlers, 18 Thai animal handlers and 31 blood bank volunteers from China) (Meng, S. J. et al., (1999) <u>J Med Virol</u> 59:297-302). Overall, specimens were obtained in areas where HEV genotypes 1, 3 and possibly 4 predominate (Schlauder, G. G. et al., (2001) <u>J Med Virol</u> 65:282-92). All samples were unlinked from the identity of their donors.

Antigen preparation and purification

The putative HEV capsid protein (ORF2) was expressed in insect cells (SF9) from a recombinant baculovirus (Robinson, R. A. et al., (1998) Protein Expr Purif 12:75084; Tsarev, S. A. et al., (1993) J Infect Dis 168:369-78). The 72kD full-length product was processed in the cells to yield a 63-kD peptide, a 55 or 56-kD peptide, and a 53-kD peptide. The 55 or 56-kD antigen was used in the EIA and was purified by anion-exchange and gel filtration chromatography (Robinson, R. A. et al., (1998) Protein Expr Purif 12:75-84). The products of the human and swine strains contained amino acids 112 to 607 (496 amino acids) and 112 to 602 (491 amino acids), respectively.

EIA for the detection of anti-HEV IgG in swine and humans.

We used a modification of the EIA described by Tsarev (Tsarev, S. A., (1993) <u>J Infect Dis</u> 168:369-78). Polystyrene microwell plates (ICN 76-381-04, Costa Mesa, CA) were incubated with ORF2 antigen diluted in a carbonate-bicarbonate (pH 9.6) buffer for 18 hours at room temperature. The antigen concentration was 0.05 μg/well for the human strain and 0.029 μg/well for the swine strain. The optimal concentrations of capture antigen were established by block titration using a known anti-HEV positive chimpanzee serum and a hyperimmune swine anti-HEV positive serum. The wells were washed twice in an automated plate washer with a commercially available wash solution (Kirkegaard & Perry, Gaithersburg, MD) containing 0.02% Tween 20 in 0.002M imidazole-buffered saline. The wells were blocked with BSA/gelatin for 1 hour at 37°C prior to freezing at –20°C in plastic bags. Immediately before use the blocking buffer was removed and the plates were washed twice.

Ter. microliters of each teet of control sample were diluted 1:10. The sample was further canuted 1:10 into the antigen-coated test plate (1:100 final test dilution) and incubated for 30 minutes at 37°C. Wells were washed 5 times and 100 μl of horseradish peroxidase (HRPO)-labeled anti-lgG (Kirkegaard & Perry, Gaithersburg, MD) was added to each well. The HRPO-labeled secondary antibodies were species-specific anti-lgG (heavy and light chain) and were used at a net 1.0 μg/ml. Following a 30 minute incubation at 37°C, unbound conjugate was removed by washing 5 times as described above. Azino-diethylbenzotyazol-sulfonate (ABTS) substrate was added for color development and absorbance (405nm) was read after 30 minutes.

The cutoff for the EIA using swine antigen was established for each test from internal controls and throughout this study ranged bet in 0.300 and 0.383 with a median of 0.330 (Meng, X. J. et al., (1997) Proc Natl Acac oci USA 94:9860-5). The positive cut-off for the EIA using the human Sar-55 antigen was similarly established (Tsarev, S. A., (1993) J Infect Dis 168:369-78) and ranged between 0.300 and 0.342 in this study. Previously tested negative blood bank samples, dilution buffer and pre-inoculation swine sera served as negative controls.

WO 02/089733 PCT/US02/14100

- 24 --

Statistical Analysis.

Calculations to determine concordance and prevalence were carried out using the PC version of S-Plus software as an add-on to Microsoft Excel.

Results

Development of anti-HEV in non-human primates following injection, as measured by both assays.

Serial samples from two chimpanzees experimentally infected with the Sar-55 (genotype 1) HEV strain (Figure 4) and two rhesus monkeys experimentally infected with the Mexican (genotype 2) HEV strain (Figure 5) were tested with both EIAs. Very similar values were obtained regardless of whether the capture antigen in the EIA was from Sar-55 (genotype 1) or Meng (genotype 3) strain. The agreement for these two sets of data was 98% (Kappa value =0.952, Cl_{95%} 79-106%). In all four cases, seroconversion was detected at the appropriate time and the patterns of antibody positivity were as expected for a normal infection thus validating each assay.

Seroprevalence of HEV in human serum or plasma samples as determined by both assays.

Human sera from HEV endemic and non-endemic areas were tested with both EIAs. The overall prevalence of anti-HEV in the human sera was virtually the same regardless of the capture antigen. Prevalence was 13% when evaluated with the human capture antigen versus 12% with the swine capture antigen (Table 1). Furthermore, the prevalence values for each of the sub-groups were practically equal.

Table 1. Anti-HEV prevalence in human sera as determined by human or swine antigen capture EIAs.

Source	No. (%) positive for antibody reactive with indicated antigen	
	Sar-55 (Human strain)	Meng (Swine strain)
Foreign Pig Handlers	12 (67)	12 (67)
US Pig Handlers	63 (10)	58 (10)
Foreign Blood Donors	5 (16)	5 (16)
US Blood Bank Volunteers	31 (13)	35 (15)
Total	111 (13)	110 (12)

There was a 99% concordance (Kappa value =0.938, $Cl_{95\%}$ 97-99) when data from human sera tested with the human and swine ORF2-coated capture plates were compared (Table 2).

Table 2. Contingency table comparing results of testing human serum with the Sar-55 ORF2 and the Meng ORF2 capture antigens.

Sar-55 ORF2

Meng ORF2

	Negative	Positive	Total
Negative	765	7	77.2
Positive	6	104	110
Total	771	111	882

Concordance = 99%, calculated by dividing the sum of concordant values by the sum total. Kappa value = 0.938, $Cl_{95\%}$ = 97% - 99%

Comparisons between data obtained from the two EIAs for foreign pig handlers and blood donors each showed 100% agreement and comparisons of results for US volunteer blood donors and pig handlers yielded concordance values of 97% (Kappa value =0.894, Cl_{95%} 95-99%) and 99% (Kappa value =0.936, Cl_{95%} 98-100%) respectively. Therefore, both antigens reacted equally with anti-HEV in human sera.

Seroprevalence of HEV in swine as determined by both assays.

Anti-HEV prevalence in swine sera was also measured by EIAs containing each of the capture antigens. Once again, the results with the two capture antigens agreed. The human and swine ORF2 EIAs yielded 37% and 35% prevalence respectively (Table 3).

Table 3. Anti-HEV prevalence (%) in swine sera as determined by human or swine antigen capture EIAs.

Total	292 (37)	281 (35)
Thailand	29 (48)	34 (57)
Korea	97 (51)	89 (47)
China	5 (17)	3 (10)
Canada	95 (63)	86 (57)
USA	66 (18)	69 (19)
	Sar-55 (Human strain)	Meng (Swine strain)
Source	No. (%) positive for antiboo	dy reactive with indicated antigen

As seen in Table 4, comparison of test results for swine sera vielded a concordance value of 93% (Kappa value =0.839, Cl_{95%} 86-92%). Independently, the subgroups that made up the swine serum set yielded concordance values of 96% (Kappa value =0.882, Cl_{95%} 93-98%) for the USA, 86% (Kappa value =0.714, Cl_{95%} 60-81%) for Canada, 91% (Kappa value =0.811, Cl_{95%} 76-90%) for Korea, 92% (Kappa value =0.8⁻¹, Cl_{95%} 71-97%) for Thailand and 93% (Kappa value =0.714, Cl_{95%} 83-102%) for China.

Table 4. Contingency table comparing results of testing swine serum with the Sar-55 ORF2 and the Meng ORF2 capture antigens.

Sar-55 ORF2 Total Negative Positive 35 511 476 Negative Meng ORF2 **Positive** 24 257 281 292 792 Total 500

Concordance = 93%. Kappa value = 0.839, $Cl_{95\%} = 86\% - 92\%$

These data demonstrate the comparable ability of each of the capture antigens to identify anti-HEV in swine serum.

The contents of all citations, <u>i.e.</u>, journal articles, patents and the like, are incorporated herein by reference.

It is understood that the examples and embodiments described herein are for illustrative purposes and that various modifications and changes in light

thereof to persons skilled in the art are included within the spirit and purview of this application and scope of the appended claims.

ISDOCID: <WO____02089733A2_I_>

<u>Claims</u>

- 1. A swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.
- 2. A swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602 of SEQ ID NO: 1.
- A pharmaceutical composition comprising the protein of claim 1 and a suitable excipient, diluent or carrier.
- 4. A pharmaceutical composition comprising the protein of claim 2 and a suitable excipient, diluent or carrier.
- 5. A method of preventing hepatitis E, comprising administering the pharmaceutical composition of claim 3 to a mammal in an amount sufficient to stimulate the production of protective antibodies.
- 6. A method of preventing hepatitis E, comprising administering the pharmaceutical composition of claim 4 to a mammal in an amount sufficient to stimulate the production of protective antibodies.
- 7. A vaccine for immunizing a mammal against hepatitis E, said vaccine comprising a protein according to claim 1 in a pharmaceutically acceptable carrier.
- 8. A vaccine for immunizing a mammal against hepatitis E, said vaccine comprising a protein according to claim 2 in a pharmaceutically acceptable carrier.
- A kit for preventing hepatitis E in a mammal, said kit comprising a protein according to claim 1.

- 10. A kit for preventing hepatitis E in a mammal, said kit comprising a protein according to claim 2.
- 11. A DNA molecule having a sequence consisting of nucleotides which encode amino acids 112 to 602 of a swine hepatitis E virus open reading frame 2 protein.
- 12. The DNA molecule of claim 11, wherein the molecule encodes amino acids 112 to 602 of SEQ ID NO:1.
- 13. A recombinant expression vector comprising a DNA molecule according to claims 11 or 12.
 - 14. A host cell containing an expression vector according to claim 13.
- 15. A method of producing a recombinant hepatitis E virus open reading frame 2 protein, said method comprising:
 - (a) culturing a host cell of claim 14 under conditions appropriate to cause expression of said protein; and
 - (b) obtaining said expressed protein from the host cell.
- 16. A method of detecting antibodies to hepatitis E virus in a biological sample, said method comprising:
 - (a) contacting said sample with a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602; and
 - (b) detecting immune complexes formed between said protein and said antibodies, wherein detection of said complexes indicates the presence of antibodies to hepatitis E virus in said sample.
- 17. The method of claim 16, wherein the protein consists of amino acids 112-602 of SEQ ID NO:1.

- 18. A kit for use in a method of detecting antibodies to hepatitis E virus in a biological sample, said kit comprising a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.
- 19. The kit of claim 18, wherein the protein consists of amino acids 112-602 of SEQ ID NO:1.
- 20. Antibodies having specific binding affinity for a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.
- 21. The antibodies of claim 16, wherein said antibodies have specific binding affinity for a protein consisting of amino acids 112-602 of SEQ ID NO:1.
- 22. A method for detecting hepatitis E virus in a biological sample, said method comprising;
 - (a) contacting said sample with the antibodies of claim 20 to form an immune complex with said hepatitis E virus; and
 - (b) detecting the presence of said complex, wherein detection of said complex indicates the presence of hepatitis E virus in said sample.
- A method for detecting hepatitis E virus in a biological sample, said method comprising;
 - (a) contacting said sample with the antibodies of claim 21 to form an immune complex with said hepatitis E virus; and
 - (b) detecting the presence of said complex, wherein detection of said complex indicates the presence of hepatitis E virus in said sample.
- 24. A method for producing the antibodies of claim 20, said method comprising immunizing a mammal with a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112 to 602.

- 25. A method for producing the antibodies of claim 21, said method comprising immunizing a mammal with a protein consisting of amino acids 112-602 of SEQ ID NO:1.
- 26. A DNA molecule having a sequence consisting of nucleotides which encode amino acids 112-660 of a swine hepatitis E virus open reading frame 2 protein.
- 27. The DNA molecule of claim 26, wherein the molecule encodes amino acids 112-660 of SEQ ID, NO. 1.
- 28. A recombinant expression vector comprising a DNA molecule according to claims 26 and 27.
 - 29. A host cell containing an expression vector according to claim 28.
- 30. A method of producing a recombinant hepatitis E virus open reading frame 2 protein, said method comprising:
- (a) culturing a host cell according to claim 29 under conditions appropriate to course expression of said protein; and
 - (b) obtaining said expressed protein form the host cell.
- 31. A kit for use in a method of detecting antibodies to hepatitis E virus in a biological sample, said kit comprising a swine hepatitis E virus open-reading frame 2 protein consisting of amino acids 112-660.
- 32. The kit of claim 32, where the protein consists of amino acids 112-660 of SEQ ID NO:1.

WO 02/089733 PCT/US02/14100

FIG. 1A (Seq. ID NO:1)

Met Arg Pro Arg Ala Val Leu Leu Leu Leu Phe Val Leu Leu Pro Met Leu Pro Ala Pro Pro Ala Gly Gln Pro Ser Gly Arg Arg Cys Gly Arg 25 Arg Asn Gly Gly Ala Gly Gly Gly Phe Trp Gly Asp Arg Val Asp Ser 40 Gln Pro Phe Ala Leu Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Ala Asp Val Val Ser Gln Pro Gly Ala Gly Val Arg Pro Arg Gln Pro Pro 75 70 Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ser Gln Arg Pro Ser Thr Ala Pro Arg Arg Ser Ala Pro Ala Gly Ala Ala Pro Leu Thr Ala / 105 Val Ser Pro Ala Pro Asp Thr Ala Pro Val Pro Asp Val Asp Ser Arg 120 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr 140 135 Ser Ser Val Ala Ala Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu 155 150 Asn Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala 170 165 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Val Arg Ala Thr Ile 185 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser 200 Ile Ser Phe Trp Pro Gln Thr Thr Thr Thr Pro Thr Ser Val Asp Met 215 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 235 230 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 250 245 Gly Trp Arg Ser Val Glu Thr Thr Gly Val Ala Glu Glu Glu Ala Thr 265 260 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Pro Val Asn Ser Tyr 285 280 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 300 295 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val 315 310 Ser Arg Tyr Thr Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp 330 325 Gly Thr Ala Glu Leu Thr Thr Ala Ala Thr Arg Phe Met Lys Asp 345 340

FIG. 1A (Seq. ID NO:1)

Leu His Phe Thr Gly Thr Asn Gly Val Gly Glu Val Gly Arg Gly Ile 360 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro 375 380 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro 390 395 Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val 410 Glu Asn Ala Gln Gln Asp Lys Gly Ile Thr Ile Pro His Asp Ile Asp 420 425 Leu Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu 435 440 445 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val 455 460 Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr 470 475 Asp Gln Thr Thr Tyr Gly Ser Ser Thr Asn Pro Met Tyr Val Ser Asp 485 490 Thr Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 500 505 Ser Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro Leu Thr Thr 520 525 Ile Gln Gln Tyr Ser Lys Thr Phe Tyr Val Leu Pro Leu Arg Gly Lys 535 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 550 555 Tyr Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Glu Asn Ala Ala Gly 565 570 His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly Ala Gly Pro 585 Thr Ser Ile Ser Ala Val Gly Val Leu Ala Pro His Ser Ala Leu Ala 595 600 605 Val Leu Glu Asp Thr Val Asp Tyr Pro Ala Arg Ala His Thr Phe Asp 615 Asp Phe Cys Pro Glu Cys Arg Thr Leu Gly Leu Gln Gly Cys Ala Phe 630 635 Gln Ser Thr Ile Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys 650 655 Thr Arg Glu Ser 660

2/38

FIG. 1B (Seq. ID NO:2)

ATGCGCCCTA	GGGCTGTTCT	GTTGTTGCTC	TTCGTGCTTC	TGCCTATGCT	50
	CCGGCCGGCC		CCGCCGTTGT	GGGCGGCGCA	100
ACGGCGGTGC	CGGCGGTGGT		ACAGGGTTGA	TTCTCAGCCC	150
TTCGCCCTCC	CCTATATTCA	TCCAACCAAC	CCCTTCGCTG	CCGATGTCGT	200
TTCACAACCC	GGGGCTGGAG	TTCGCCCTCG	ACAGCCGCCC	CGCCCCCTTG	250
GCTCCGCTTG	GCGTGACCAG	TCCCAGCGCC	CCTCCACTGC	CCCCCGTCGT	300
CGATCTGCCC	CAGCTGGGGC	TGCGCCGCTG	ACTGCTGTAT	CACCGGCCCC	350
CGACACAGCT	CCTGTACCTG	ATGTTGACTC	ACGTGGTGCT	ATCCTGCGCC	400
GGCAGTACAA	TCTGTCTACG	TCCCCGCTCA	CGTCATCTGT	CGCTGCTGGT	450
ACCAACCTGG	TTCTCTATGC	CGCCCCGCTG	AATCCTCTCT	TGCCCCTCCA	500
GGATGGCACC	AACACTCATA	TTATGGCTAC	TGAGGCGTCC	AATTATGCTC	550
AGTATCGGGT	TGTTCGAGCT	ACGATCCGTT	ATCGCCCGCT	GGTGCCAAAT	600
GCTGTTGGTG	GCTATGCTAT	CTCTATTTCT	TTCTGGCCTC	AAACTACAAC	650
CACCCCTACT	TCAGTTGACA	TGAACTCTAT	TACCTCCACT	GATGTCAGGA	700
TTTTGGTTCA	GCCCGGTATT	GCCTCCGAGT	TAGTCATCCC	TAGTGAGCGC	750
CTTCATTACC		CTGGCGCTCT	GTAGAGACCA	CGGGCGTGGC	800
CGAGGAGGAA	GCTACCTCCG	GTCTGGTAAT	GCTTTGCATT	CACGGTTCTC	850
CTGTTAACTC	•	ACACCTTACA	CTGGTGCATT	GGGGCTCCTT	900
GATTTTGCAT	TAGAGCTTGA	ATTCAGAAAT	TTGACACCCG		950
CACCCGTGTT	TCCCGGTACA	CCAGCACAGC	CCGCCATCGG		1000
GTGCTGATGG		CTTACCACCA	CAGCAGCCAC	ACGTTTCATG	1050
•	ATTTCACCGG		GTTGGTGAGG	TGGGTCGCGG	1100
	ACACTGTTTA		TACGCTTCTT	GGTGGTTTAC	1150
CGACAGAATT	GATTTCGTCG			CTCCCGCCCT	1200
GTCGTCTCGG		GCCGACGGTT		CATCTGTTGA	1250
GAATGCGCAG	CAGGACAAGG	GCATTACCAT		ATAGATCTGG	1300
GTGATTCCCG	TGTGGTTATT				1350
CGACCTACTC	CGTCACCAGC		CCTTTCTCAG		1400
CAATGATGTT	·				1450
	GTCCACCAAC				1500
GTTAATGTGG	CCACTGGTGC				1550
TAAAGTCACT	CTGGATGGCC			•	1600
AGACATTCTA		= :			1650
	AGGCCGGCTA				1700
TÇAAATTTT	ATTGAGAACG				1750
ATACCACTAC	·				1800
CTAGCCCCAC				_ :	1850
TGCTCGTGCT	•				1900
GTTTGCAGGC		-		TCAGCGTCTT	1950
AAAATGAAGO	TAGGTAAAAC	CCGGGAGTCT	•		1980

WO 02/089733

Figure 2A

		•	Figure 2A			
Result	/Coff	Sample humSAR55		humSAR55 Cutoff 1	SampleDate	Name
		D.16	0.094 0.383	0.054 0.332	lowa	15 Sow 1
Neg	0.25	0.18	0.065 0.383	0.059 0.332	lowa	16 Sow 2
Neg	0.17 5.13	5.12	1.966 0.383	1.699 0.332	lowa	17 Sow 3
Bom -	0.26	0.22	0.098 0.383	0.073 0.332	lowa	18 Sow 4
Neg	5.81	- 6.02	2.226 0.383	1.999 0.332	lowa	19 Sow 5
Both +	4.42	3.44	1.694 0.383	1.143 0.332	lowa	20 Sow 6
Both +	0.23	0.19	0.090 0.383	0.064 0.332	swol	21 Sow 7
Neg	5.66	5.16	2.167 0.383	1.713 0.332	lowa	22 Sow 8
Both +	0.20	0.18	0.076 0.383	0.061 0.332	lowa	23 Sow 9
Neg.	0.50	0.42	0.192 0.383	0.138 0.332	lowa	24 Sow 10
Neg	2.89	2.11	1.105 0.383	0.701 0.332	lowa	25 Sow 11
Both •	5.61	5.40	2.149 0.383	1.793 0.332	lowa	26 Sow 12
Both +	5.28	5.46	2.023 0.383	1.812 0.332	lowa	27 Sow 13
Both +	4.53	4 10	1 735 0.383	1.360 0.332	lowa	28 Sow 14
Both •	0.26	0.21	0.101 0.383	0.070 0.332	lowa	29 Sow 15
Neg	5.19	5.35	1.989 0.383	1.775 0.332	lowa	30 Sow 16
Both +	1.55	1.24	0.595 0.383	0.411 0.332	łowa	31 Sow 17
Both +	0.20	0.15	0.075 0.383	0.050 0.332	lowa	32 Sow 18
Neg	4.22	3.51	1.618 0.383	1.164 0.332	6wol	33 Sow 19
Both +	0.19	0.21	0.072 0.383	0.069 0.332	lowa	34 Sow 20
Neg	1.17	0.85	0.447 0.383	0.281 0.332	lowa	35 Sow 21
swORF2 +	5.00	3.65	1.916 0.383	1.212 0.332	lowa	36 Sow 22
Both +	5.08	5.02	1.947 D.383	1.667 0.332	lowa	37 Sow 23
Both +	2.37	2.07	0.907 0.383	0 586 0.332	lowa	38 Sow 24
Bath +	1.91	1.70	0.730 u.383	0.564 0.332	lowa	39 Sow 25
Both +		2.00	0.951 0.383	0.664 0.332	lowa	40 Sow 26
Both +	2.48 1.54	1.26	0.589 0.383	0 418 0.332	lowa	41 Sow 27
Both +	1.72	1.35	0.560 0.383	0.449 0.332	lowa	42 Sow 28
Both +	0.25	0.15	0.094 0.383	0.049 0.332	lówa	43 Sow 29
Neg Neg	0.43	0.15	0.164 0.383	0.050 0.332	lowa	44 Sow 30
Neg	0.18	0.17	0.068 0.383	0.057 0.332	lowa	45 Sow 31
	0.17	0.15	0 065 0.383	0.051 0.332	lowa	46 Sow 32
Neg Both +	3.01	2.92	1.154 0.383	0.968 0.332	lowa	47 Sow 33
Both +	2.86	2.23	1.097 0.383	0.740 0.332	lowa	48 Sow 34
Both +	4.10	4.40	1.572 0.383	1.461 0.332	lowa	49 Sow 35
Both +	2.25	2.01	0.863 0.383	0.668 0.332	lowa	50 Sow 36
Neg	0.24	0.20	0.091 0.383	0.066 0.332	lowa	51 Sow 37
Both +	3.48	3.78	1.332 0.383	1.256 0.332	lowa	52 Sow 38
Neg	0.21	0.16	0.081 0.383	0.054 0.332	swol	53 Sow 39
	0.25	0.22	0.096 0.383	0.072 0.332	lowa .	54 Sow 40
Neg Neg	0.88	0.67	0.337 0.383	0.223 0.332	lowa	55 Sow 41
	2.54	2.33	0.972 0.383	0.775 0.332	lowa .	56 Sow 42
Both +	3.38	3.37	1.296 0.383	1.119 0.332	swol	57 Sow 43
Both +	2.24	1.61	0.858 0.383	0.534 0.332	lowa	58 Sow 44
	0.22	0.16	0.084 0.383	0.053 0.332	lowa	59 Sow 45
Neg	3.16	2.83	1.219 0.383	0.941 0.332	lowa	60 Sow 46
Both +		0.76	0.389 0.383	0.251 0.332	lowa	61 Sow 47
swORF2 +	0.15	0.16	0.056 0.383	0.053 D.332	swoi	62 Sow 48
Neg	2.88	2.30	1.103 0.383	0.765 0.332	lowa	63 Sow 49
Both +	0.23	0.16	0.088 0.383	0.052 0.332	lowa	54 . Sow 50
Neg	. 0.59	0.60	0.225 0 383	0 198 0.332	lowa	65 Sow 51
Neg		2.83	1.197 0.383	0.938 0.332	lowa	66:Sow 52
Both +	3.13 2.71	2.24	1.039 0.383	0.743 0.332	łowa	67 Sow 53
Both +	1.23	1.20	0.472 0.383	0.397 0.332	lowa	68 Sow 54
Both +	1.15	1.11	0.440 0.383	0.370 0.332	lowa	69 Sow 55
Both + Neg	0.90	0.72	0.345 0.383	0.238 0.332	lowa	70 Sow 56

Figure 2B

	rigure 2B							
Resu		Sample			OD			
	swORF2	humSAR55	Cutoff 21	DRFZ	Cutoff 1 sv	humSAR55 (SampleDate	Name
Ne	0.84	0.71	0.383	0.323	0.332	0.235	iowa	71 Sow 57
Ne	0.67	0.58	0.383	0.333	0.332	0.194	lowa	72 Sow 58
Ne	0.19	0.15	0.383	0.073	0.332	0.050	lowa	73 Sow 59
Ne	0.17	0.17	0.383	0.067	0.332	0.057	lowa	74 Sow 60
Ne	0.20	0.43	0.383	0.076	0.332	0.143	lowa	75 Sow 61
Ne	0.18	0.17	0.383	0.068	0.332	0.058	lowa	76 Sow 62
Both	1.48	1.44	0.383	0.567	0.332	0.479	i swoi	77 Sow 63
Both	1.21	1.24	0.383	0.463	0.332	0.411	lowa	78 Sow 64
Both	1.05	1.16	0.383	0.404	0.332	0.386	lowa	79 Sow 65
Ne	0.68	0.60	0.383	0.262	0.332	0.198	lowa	80 Sow 65
Ne	0.22	0.21	0.383	0.084	0.332	. 0.071	lowa	81 Sow 67
Both	1.32	1.26	0.383	0.504	0.332	0.419	lowa	82 Sow 68
Ne	0.23	0.18	0.383	0.090	0.332	0.059	swol	83 Sow 69
Ne	0.31	0.20	0.383	0.119	0.332	0.066	lowa	84 Sow 70
Ne	0.47	0.42	0.383	0.181	0.332	0.139	lowa	85 Sow 71
Both	2.11	2.54	0.383	0.808	0.332	0.844	lowa	86 Sow 72
Both	2.27	2.76	0.383	0.871	0.332	0.916	lowa	87 Sow 73
Both	1.15	1.16	0.383	0.439	0.332	0.384	Iowa	88 Sow 74
Ne	0.19	0.17	0.383	0.071	0.332	0.055	lowa	89 Sow 75
Both	1.82	2.14	0.383	0.696	0.332	0.710	lowa	90 Sow 76
Ne	0.36	0.39	0.383	0.136	0.332	0.129	lowa	91.Sow 77
Ne	0.19	0.19	0.383	0.071	0.332	0.063	lowa	92 Sow 78
Both	1.35	1.14	0.383	0.516	0.332	0.379	swol	93 Sow 79
Ne	0.23	0.21	0.383	0.090	0.332	0.070	lowa	94 Sow 80
Ne	0.28	0.26	0.335	0.095	0.338	0.088	lowa	95 Sow 81
swORF2	1.66	0.83	0.335	0.556	0.338	0.280	lowa	95 Sow 82
5₩ORF2	1.53	0.66	0.335	0.511	0.338	0.223	lowa	97 Sow 83
Ne	0.57	0.32	0.335	0.191	0.338	0.107	lowa	98 Sow 84
Ne	0.70	0.42	0.335	0.235	0.338	0.142	towa	99 Sow 85
Ne	0.75	0.31	0.335	0.251	0.338	0.105	lowa	100 Sow 86
Ne	0.47	0.35	0.335	0.159	0.338	0.118	lowa	101'Sow 87
Ne	0.47	0.25	0.335	0.156	0.338	0.086	lowa	102 Sow 88
Ne	0.16	0.18	0.335	0.052	0.338	0.060	1owa	103 Sow 89
Ne	0.23	0.16	0.335	0.076	0.338	0.053	lowa	104 Sow 90
Ne	0.22	0.36	0.335	0.074	0.338	0.122	lowa	105 Sow 91
Ne	0.22	0.23	0.335	0.073	0.338	0.079	lowa	106 Sow 92
Ne	0.52	0.45	0.335	0 173	0.338	0.152	lowa	107 Sow 93
Ne	0.67	0.49	0.335	0.226	0.338	0 165	lowa	108 Sow 94
Ne	0.67	0.43	0.335	0.226	0.338	0.147	lowa	109 Sow 95
Ne	0.40		0.335	0.133	0.338	0.078	lowa	110 Sow 96
Ne	0.34		0.335	0.115	0.338	0.058	lowa	111 Sow 97
Ne	0.90	0.48	0.335	0.303	0.338	0.161	towa	112 Sow 98
Ne	0.21		0.335	0.069	0.338	0.058	lowa	113 Sow 99
No	0.26		0.335	0.086	0.338	0.059	lowa	114 Sow 100
No	0.44		0.335	0 149	0.338	0.066	lowa	115 Sow 101
swORF2	1.33		0.335	0.447	0.338	0.248	lowa	116 Sow 102
swORF2	1.14		0.335	0.383	0.338	0.267	lowa	117 Sow 103
Ne	0.80		0.335	0.267	0.338	0.250	lowa	118 Sow 104
No	0.14		0.335	0.048	0.338	0.066	lowa	119 Sow 105
No.	0.90		0.335	0.303	0.338	0.331	lowa	120/Sow 105
No	0.24		0.335	0.079	0.338	0.087	lowa	121 Sow 107
No.	0.16		0.335	0.079	0.338	0.067		121 Sow 107
	0.16						lowa	
No.			0.335	0.275	0.338	0.146	lowa	123 Sow 109
No.	0.21		0.335	0.072	0.338	0.058	lowa	124.Sow 110
No.	D.31		0.335	0.104	0.338	0.083	lowa	125 Sow 111
Ne	0.84		0.335	0.282	0.338	0.157 0.118	lowa	126 Sow 112

Figure 2C

			Figure 20	•		
Name	Canal-Data	00		Sampl	e/Coff	Result
	SampleDate	humSAR55 Cutoff 1 s	wORF2 Cutoff 2	humSAR55	swORF2	
128 Sow 114	lowa	0.093 0.338	0.146 0.335	0.28	0.44	Neg (
129 Sow 115	lowa	0.148 0.338	0.123 0.335	0 44	0.37	Neg (
130 Sow 116	lowa	0.083 0.338	0.140 0.335	0.25	0.42	Neg (
131 Sow 117 132 Sow 118	lowa	0.182 0.338	0.099 0.335	0.54	0.30	Neg (
133 Sow 119	lowa	0.095 0.338	0.120 0.3.15	0.28	0.36	Neg (
134 Sow 120	lowa	0.072 0.338	0.063 0.335	0.21	0.19	Neg (
135.Sow 121	lowa	0.060 0.338	0.064 0.335	0.18	0.19	Neg (
136 Sow 122	lowa	0.058 0.338	0.082 0.335	0.17	0.24	Neg (
137 Sow 123	towa	0.060 0.338	0.073 0.335	0.18	0.22	Neg [
138 Sow 124	lowa	0.091 0.338	0.199 0.335	0.27	0.59	Neg C
139 Sow 125	lowa	0.109 0.338	0.169 0.335	0.32	0.50	Neg C
140 Sow 126	lowa	0.127 0.338	0.190 0.335	0.38	0.57	Neg (
141 Sow 127	lowa	0.083 0.338	0.138 0.335	0.25	0.41	Neg 0
142 Sow 128	lowa	0.070 0.338	0.063 D.335	0.21	0.19	Neg 0
143 Sow 129		0.116 0.338	0.159 0.335	0.34	0.47	Neg 0
144 · Sow 130	swo!	0.055 0.338	0.054 0.335	0.16	0.16	Neg 0
145 Sow 131	lows	0.105 0.338	0.092 0.335	0.31	0.27	Neg 0
146.Sow 132	lows	0.081 0.338 0.139 0.338	0.083 0.335	0.24	0.25	Neg 0
147 Sow 133	lowa	0.139 0.338 0.129 0.338	0.194 0.335	0.41	0.58	Neg 0
148 Sow 134	lowa	0.094 0.338	0.179 0.335	0.38	0.53	Neg 0
149 Sow 135	lowa	0.076 0.338	0.115 0.335	0.28	0.34	N:. 0
150 Sow 136	lowa	0.118 0.338	0.071 0.335	0.22	0.21	Neg 0
151 Sow 137	lowa	0.065 0.338	0.195 0.335 0.087 0.335	0.35	0.58	Neg 0
152 Sow 138	lowa	0.065 0.338	0.087 0.335 0.068 0.335	0.19	0.26	Neg 0
153 Sow 139	lowa	0.123 0.338	0.139 0.335	0.19	0.70	Neg 0
154 Sow 140	lowa	0.067 0.338	0.065 0.335	0.36	0.41	Neg 0
155 Sow 141	lowa	0.067 0.338	0.069 0.335	0.20	0.20	Neg. D
156 Sow 142	towa	0.091 0.338	0.134 0.335	0.27	0.21	Neg 0
157 Sow 143	lowa	0.119 0.338	0.100 0.335	0.35	0.40	Neg 0
158 Sow 144	lowa	0.077 0.338	0.082 0.335	0.23	0.30	Neg 0
159 Sow 145	lowa	0.078 0.338	0.094 0.335	0.23	0.28	Neg: 0
160 Sow 146	lowa	0.095 0.338	0.113 0.335	0.28	0.34	Neg 0
161 Sow 147	fowa	0.069 0.338	0.086 0.335	0.20	0.26	Neg, D
162 Sow 148	lowa	0.067 0.338	0.083 0.335	0.20	0.25	Neg: 0
163 Sow 149	lowa	0.061 0.338	0.062 0.335	0.18	0.19	Neg 0
164 Sow 150	lowa	0.066 0.338	0.072 0.335	0.20	0.21	Neg 0
165 Sow 151	lowa	0.065 0.338	0.082 0.335	0.19	0.24	Neg: 0
165 Sow 152	lowa	0.062 0.338	0.053 0.335	0.18	0.16	Neg 0
167 Sow 153	lowa	0.090 0.338	0.099 0.335	0.27	0.30	Neg 0
168 Sow 154	lowa	0.101 0.338	0.102 0.335	0.30	0.30	Neg 0
169 Sow 155	lowa	0.076 0.338	0.108 0.335	0.22	0.32	Neg 0
170 Sow 156	towa	0.072 0.338	0.092 0.335	0.21	0.27	Neg 0
171 Sow 157	lowa	0.067 0.338	0.076 0.335	0.20	0.23	Neg 0.
172 Sow 158	lowa	0.084 0.338	0.093 0.335	0.25	0.28	Neg 0
173 Sow 159	lowa	0.055 0.338	0.095 0.335	0.16	0.28	Neg 0
174 Sow 160	lowa	0.067 0.338	0.060 0.335	0.20	0.18	Neg 0
175 Sow 161	lowa	0.086 0.338	0.079 0.335	0.25	0.24	Neg. 0
176 Sow 162	lowa	0.176 0.338	0.181 0.335	0.52	0.54	Neg 0
177 Sow 163	·lowa	0.279 D.338	0.280 0.335	0.83	0.84	Neg: 0
178 Sow 164	lowa	0.143 0.338	0.140 0.335	0.42	0.42	Neg 0
179 Sow 165 180.Sow 166	lowa	0.085 0.338	0.082 0.335	0.25	0.24	Neg 0
181 Sow 167	lowa	0.122 0.338	0.145 0.335	0.36	0.43	Neg, 0
182 Sow 168	lowa	0.063 0.338	0.079 0.335	0.19	0.24	Neg 0
183 Sow 169	Iowa	0.062 0.338	0.071 0.335	0.18	0.21	Neg 0
184 Sow 170	Ewo!	0.115 0.338	0.140 0.335	0.34	0.42	Neg 0
90# 1/9	ìowa	0.049 0.338	0.094 0.335	0.14	0.28	Neg 0

Figure 2D

Resu	e/Coff	Sampi		OD		6I-D-1	N
	swQRF2	hum\$AR\$5	RF2 Cutoff 2		humSAR55	SampleDate	Name
Ne	0.27	0.22	0.090 0.335	0.338	0.074	IDWA	185 Sow 171
Ne	0.35	0.35	0.116 0.335	0.338	0.118	lowa	186 Sow 172
Ne	0.27	0.38	0.090 0.335	0.335	0.130	Swol	187 Sow 173
Ne	0.29	0.26	0.098 0.335	0.338	0.088	lowa	188 Sow 174
Ne	0.30	0.25	0.100 0.335	0.338	0.085	Swo!	189 Sow 175
No	0.30	D.21	0.100 0.335	0.338	0.072	lowa	190 Sow 176
Ne	0.37	0.44	0.123 0.335	0.338	0 149	lowa	191 Sow 177
Ne	0.40	0.26	0.135 0.335	0.338	0.088	lowa	192 Sow 178
No	0.18	Q.19	0.060 0.335	0.338	0.065	lowa	193 Sow 179
No	0.39	0.17	0.132 0.335	0.338	0.057	lowa	194 Sow 180
Ne	0.31	0.27	0 103 0.335	0.338	0.091	lowa	195 Sow 181
No	0.24	0.24	0.080 0.335	0.338	0.080	lowa	196 Sow 182
N:	0.32	0.30	0.107 0.335	0.338	0.102	lowa	197 Sow 183
No.	0.28	0.33	0.093 0.335	0.338	0.111	lowa	198 Sow 184
	0.24	0.23	0.080 0.335	0.338	0.079	lowa	199 Sow 185
Ne		0.43	0.096 0.335	0.338	0.146	lowa	200 Sow 186
Ne	0.29		0.058 0.335	0.338	0.060	lowa	201 Sow 187
Ne	0.22	0.18		0.338	0.093	lowa	202 Sow 188
Na Na	0.28	0.28	0.094 0.335		0.079	swa!	203 Sow 189
Ne	0.24	0.23	0.081 0.335	0.338			204 Sow 190
Ne	0.21	0.22	0.069 0.335	0.338	0.073	lowa	205 Sow 191
Ne	0.25	0.28	0.085 0.335	0.338	0.095	lowa	
Ne	0.26	0.28	0.088 0.335	0.338	0.095	lowa	206 Sow 192
Ne	0.39	0.51	0.131 0.335	0.338	0.171	lowa	207 Sow 193
Ne	0.50	0.30	0.166 0.335	0.338	0.101	swol	208 Sow 194
Ne	0.23	0.26	0.076 0.335	0.338	0.089	lowa	209 Sow 195
Ne	0.37	0.33	0.123 0.335	0.338	0.111	lowa	210 Sow 196
Ne	0.23	0.22	0.078 0.335	0.338	0.075	lowa	211 Sow 197
Ne	0.26	0.20	0.086 0.335	0.338	0.057	lowa	212 Sow 198
Ne	0.30	0.30	0.099 0.335	0.338	0.100	lowa	213 Sow 199
Ne	0.19	0 19	0.063 0.335	0.338	0.063	lowa	214 Sow 200
Ne	0.26	0.22	0.087 0.335	0.338	0.073	lowa	215 Sow 201
Ne	0.27	0.28	0.091 0.335	0.338	0.094	lowa	216 Sow 202
Ne	0.33	0.28	0.110 0.335	0.338	0.094	lowa	217 Sow 203
Ne	0.23	0.20	0 076 0.335	0.338	0.069	lowa	218 Sow 204
	0.31	0.22	0.104 0.335	0.338	0.076	lowa	219 Sow 205
Ne	0.31	0.27	0.103 0.335	0.338	0.091	swoi	220 Spw 206
Ne				0.338	0.083	lowa	221 Sow 207
Ne	0.30	0.25	0 102 0.335		0.092		222 Sow 208
Ne	0.25	0.27	0.083 0.335	0.338		lowa	223 CSFP-1
Ne	0.30	0.57	0.089 0.335	0.300	0.171	Chin	
Ne	0.31	0.53	0.093 0.335	0.300	0 158	Chin	224 CSFP-2
Ne	0.36	071	0.114 0.335	0.300	0.212	Chin	225 CSFP-3
Ne	0.29	0.45	0.086 0.335	0.300	0 134	Chin	226 CSFP-4
Ne	0.39	0.70	0.117 0.335	0.300	0.211	Çhin	227 CSFP-5
Ne	0.34	0.55	0.102 0.335	0.300	0.165	Chin	228 CSFP-6
Ne	0.40	0.61	0.120 0.335	0.300	0.183	Chin	229 CSFP-7
Ne	0.55	0.43	0 165 0.335	0.300	0.128	Chin	230 CSFP-8
Ne	0.65	0.87	0.196 0.335	0.300	0.260	Chin	231 CSFP-9
Ne	0.56	0.77	0.168 0.335	0.300	0.232	Chin	232 CSFP-10
Both	2.42	2.80	0.725 0.330	0.300	0.839	Chin	233 1
Ne	0.57	0.80	0.172 0.330	0.300	0.240	Chin	234 2
Both	1.69	2.46	0.507 0.330	0.300	0.739	Chin	235 3
Ne	0.50	0.62	0.150 0.330	0.300	0.187	Chin	236 4
Ne	0.32	0.57	0.097 0.330	0.300	0.170	Chin	237 5
sar55	0.76	1.06	0.228 0.330	0.300	0.319	Chin	238 6
	0.56	0.87	0.169 0.330	0.300	0.261	Chin	239 7
Ne Ne				0.300	0.254	Chin	240-8
NIP	0.54	0.85	0.161 0.330	9.590	0.204	Gian	

WO 02/089733

Figure 2E

		<u> </u>	00				
Name	SampleDate		OD 1swORF2 C	idoff 2	Sample hvmSAR55	WORF2	Result
242 10	Chin	0.210 0.30		0.330	0.70		
243 11	Chin	0.154 0.30		0.330	0.51	0.50	Neg (
244 12	Chin	0.140 0.30		0.330	0.51	0.41	Neg (
245 13	Chin	0.277 0.30		0.330	0.92	0.32	Neg (
245 14	Chin	0.217 0.30		0.330	0.72	0.52	Neg (
247 15	Chin	0.364 0.30		0.330	1.21	0.52	Neg (
248 16	Chin	0.232 0.30		0.330	0.77	0.54	sar55 +
249 17	Chin	0.216 0.30		0.330	0.72	0.46	Neg (
250 18	Chin	0.286 0.30		0.330	0.95	0.73	Neg (
251 19	Chin	0.476 0.30		0.330	1.59	1.20	Neg (
252 20	Chin	0.170 0.30		0.330	0.57	0.40	Both +
253 M1-1	Thai	0.089 0.30		0.330	0.30	0.27	Neg (
254 M1-2	Thai	0.055 0.30		0.330	0.22	0.19	Neg (
255 M1-3	Thai	0.057 0.30		0.330	0.19	0.19	Neg (
256 M1-4	Thai	0.083 0.30		0.330	0.28	0.26	Nag (
257 M1-5	Thai	0.074 0.300		0.330	0.25	0.26	Neg 0
258 M1-6	Thai	0.084 0.300		0.330	0.28	0.24	Neg 0
259 M1-7	Thai	0.256 0.300		0.330	0.85	0.79	Neg 0 Neg 0
260 M1-8	Thai	0.114 0.300		0.330	0.38	0.39	Neg 0
261 M1-9	Thai	0.109 0.300		0.330	0.36	0.36	Neg 0
262 M1-10	Thai	0.073 0.300	0.066	0.330	0.24	0.22	Neg 0
263 M2-1	Thai	0.112 0.300	0.089	0.330	0.37	0.30	Neg 0
264 M2-2	Thai	0.197 0.300	0.223	0.330	0.66	0.74	Neg 0
285 M2-3	Thai	0.182 0.300		0.330	0.61	0.72	Neg 0
266 M2-4	Thai	0.376 0.300	0.414	0.330	1.25	1.38	Both + 3
267 M2-5	Thai	0.669 0.300	0.859	0.330	2.23	2.86	Both + 3
268 M2-6	Thai	0.277 0.300	0.473	0.330	0.92	1.58	swORF2 + 2
269 M2-7	Thai	0.244 0.300	0.266	0.330	0.81	0.89	Neg 0
270 M2-8	Thai	0.170 0.300	0.181	0.330	0.57	0.60	Neg 0
271 M2-9	Thai	0.267 0.300	0.213	0.330	0.89	0.71	Neg 0
272 M2-10	Thai	0.717 0.300	0.722 (0.330	2.39	2.41	Both + 3
273.M3-1	Thai	1.605 0.300	1.762 (0.330	5.35	5.87	Both + 3
274 M3-2	Thai	1.430 0.300	1.598 (0.330	4.77	5.33	Both + 3
275 M3-3	Thai	0.551 0.300	0.542 (0.330	1.84	1.81	Both + 3
276 M3-4	Thai	1.250 0.300	1.660 (0.330	4.17	5.53	Both + 3
277 M3-5	Thai	1.039 0.300	1.191 [0.330	3.46	3.97	Both + 3
278 M3-6	Thai	0.909 0.300	1.018 (0.330	3.03	3.39	Both + 3
279 M3-7	Thai	1.146 0.300	1.793 €	0.330	3.82	5.98	Both + 3
280 M3-8	Thai	1.445 0.300	1.664 0	0.330	4.82	5.55	Both + 3
281 M3-9	Thai	1.359 0.300	1 737 0	0.330	4.53	5.79	Both + 3
282 M3-10	Thai	0.194 0.300	0.274 0	0.330	0.65	0.91	Neg 0
283 M4-1	Thai	1.379 0.300	1.971 0	0.330	4.60	6.57	Both + 3
284 M4-2	Thai	1.036 0.300	1.285 C	0.330	3.45	4.28	Both + 3
285 M4-3	Thai	1.536 0.300	1.643 0).330	5.12	5.48	Both + 3
286 M4-4	Thai	0.537 0.300	0.688 0	0.330	1.79	2.29	Both + 3
287 M4-5	Thai	0.734 0.300	1.145 0	.330	2.45	3.82	Both + 3
288 M4-6	Thai	0.401 0.304	0.483 0).339	1.34	1.61	Both + 3
289 M4-7	Thai	0.536 0.30i	0.847 0	0.330	1.79	2.82	Both + 3
290 M4-8	Thai	0.181 0.30%	0.175 0	330	0.60	0.58	Neg 0
291 M4-9	Thai	1.347 0.300		.330	4.49	5.06	Both + 3
292 M4-10	Thai	0.283 0.300	0.369 0	330	0.94	1.23	swORF2 + 2
293 M6-1	Thai	0.804 0.300	1.115 0	.330	2.68	3.72	Both + 3
294 M6-2	Thai	0.577 0.300	0.756 0	.330	1.92	2.52	Both + 3
295 M6-3	Thai	0.772 0.300	1.341 0	.330	2.57	4.47	Both + 3
296 M6-4	Thai	0.374 0.300	0.383 0	.330	1.25	1.28	Both + 3
297 M6-5	Thai	0.610 0.300		.330	2.03	2.52	Both + 3
298 M6-6	Thai	1.118 0.300	1.308 0	.330	3.73	4.36	Both + 3

Figure 2F

		OD		Sample/Cof	,	Result
Name	SampleDate	humSAR55 Cutoff 1swO	RF2 Cutoff 2		NORF2	
	Thai	0.209 0.300	0.224 0.330	0.70	0.75	Neg
299 M6-7	Thai	0.585 0.300	0.908 0.330	1.95	3.03	Both +
300 M6-8 301 M6-9	Thai	0.258 0.300	0.307 0.330	0.86	1.02	swORF2 +
302 M6-10	Thai	0 906 0 300	1,170 0.330	3.02	3.90	Both +
303 A1	Thai	0.195 0.300	0.205 0.330	0.65	0.68	Neg
304 A2	Thai	0.141 0.300	0.149 0.330	0.47	0.50	Neg
305 A3	Thai	0.214 0.300	0.218 0.330	0.71	0.73	Neg
305 A4	Thai	0.266 0.700	0.275 0.330	0.89	0.92	Neg
307 A5	Thai	0.200 0.300	0.179 0.330	0.67	0.60	Neg
308 A6	Thai	0.245 0.300	0.256 0.330	0.82	0.85	Neg
309 A7	Thai	0.180 0.300	0.246 0.330	0.60	0.82	Neg
310 A8	Thai	0.123 0.300	0.351 0.330	0.41	1.17	swORF2 +
311 A9	Thai	0.588 0.300	0.740 0.330	1.96	2.47	Both +
312 A10	Thai	0.266 0.300	0.358 0.330	0.89	1.19	swORF2 +
313 WA3	Cana	1.060 0.300	1.560 0.330	3.53	5.20	ಕಿಂಚ +
314 WA4	Cana	0.722 0.300	0.894 0.330	2.41	2.98	Both -
315 WA5	Cana	1.009 0.300	1.426 0.330	3.36	4.75	Both +
316 WA6	Cana	1.146 0.300	1.498 0.330	3.82	4.99	Both +
317 WA7	Cana	0.635 0.300	0.872 0.330	2.12	2.91	Both +
318-WA8	Cana	1.644 D.300	2.156 0.330	5.48	7 19	Both +
319 WA9	Cana	1.067 0.300	1.494 0.330	3.56	4.98	8oth +
320 WA10	Cana	0.614 0.300	0.783 0.330	2.05	2.61	Both +
321 WA11	Cana	0.873 0.300	1.009 0.330	2.91	3.36	Both +
322 WA12	Cana	0.843 0.300	1.227 0.330	2.81	4.09	Both +
323 WB3	Cana	0.304 0.300	0.370 0.330	1.01	1.23	Both +
324 WB4	Cana	0.841 0.300	1.219 0.330	2.80	4.06	Both +
325 WB5	Cana	0.252 0.300	0.221 0.330	0 0.84	0.74	Neg
326 WB6	Cana	0.323 0.300	0.422 0.33	0 1.08	1.41	Both +
327 WB7	Cana	0.205 0.300	0.193 0.33	0 0.68	0.64	Neg
328 WB8	Cana	0.566 0.300	0.754 0.33	0 1.89	2.51	Both ◆
329 V/09	Cana	0.416 0.300	0.544 0.33	0 1.39	1.81	Both 4
330 WB10	Cana	0.392 0.300	0.420 0.33	0 1.31	1.40	Both ·
331 WB11	Cana	0.710 0.300	0.899 0.33	0 2.37	3.00	Both -
332 WC2	Çana	0.732 0.300	0.954 0.33	0 244	3.18	Both -
333 WC3	Cana	0.570 0.300	0.775 0.33	0 1.90	2.58	Both -
334 WC4	Cana	0.680 0.300	0.857 0.33	2.27	2.86	Both ·
335 WC5	Cana	0.647 0.300	0.803 0.33	0 2.16	2.68	Both
336 WC6	Cana	0.904 0.300	1.189 0.33	30 3.01	3.96	Both
337 WC7	Cana	0.958 0.300	1.147 0.33	30 3.19	3.82	Both
338 WC8	Cana		0.436 0.33	30 1.41	1.45	Both
339 WC9	Cana		0.520 0.33	1.39	1.73	Both
340 WC10	Cana		0.539 0.33	30 1.44	1.80	Both
341 WC11	Cana		0.283 0.33	30 0.87	0.94	Ne
342 WC12	Cana		0.533 0.33	30 1.54	1.78	Both
343 WO3	Cana		1.625 0.3	30 4.34	5.42	Both
344 WD4	Cana		0.743 0.3	30 1.99	2.48	Both
345 WD5	Cana		0.539 0.3	30 1.63	1.80	Bath
346 WD6	Can		1.176 0.3	30 3.31	3.92	Both
347 WD7	Can		0.521 0.3	30 1.42	1.74	Both
348 WD8	Can		0.326 0.3	30 1.14	1.09	Both
349 WD9	Can	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.598 0.3	30 1.68	1.99	Both
350 WD10	Can		0.573 0.3	1.82	1.91	Both
351 WD11	Can			30 2.06	2.26	Both
352 WE3	Can			1.77	2.07	Both
	Can			1.20	0.94	\$8:55
353-WE4	Can			330 0.79	0.77	N
354 WES 355 WE6	Can			330 1.33	1.56	Bott

Figure 2G

			Figure 20			
Resu		Sample/(0.0	SampleDate	Name
	RF2	humSAR55	wORF2 Cutoff 2	humSAR55 Cutoff 1 s		356 WE7
Ne	0.87	0.79	0.260 0.330	0.238 0.300	Cana	357 WEB
Ne	0.59	0.55	0.177 0.330	0.166 0.300	Сапа	358 WE9
Ne	0.58	0.64	0.175 0.330	0.192 0.300	Cana	359 WE10
Boan	1.19	1.15	0.356 0.330	0.345 0.300	Сала	360 WE11
Ne	0.80	0.89	0.239 0.330	0.267 0.300	Cana	361 WE12
Both	2.19	2.09	0.657 0.330	0.627 0.300	Cana	362 WF2
Both	1.53	1.36	0.458 0.330	0.408 0.300	Сала	363 WF3
Ne	0.68	0.92	0.204 0.330	0.276 0.300	Cana	364 WF4
sar55	0.84	1.10	0.251 0.330	0.329 0.300	Cana	365 WF5
Ne	0.56	0.70	0.168 0.330	0.211 0.300	Cana	366 WF6
sar55	0.74	1.15	0.223 0.330	0.346 0.300	Cana	367 WF7
sar55 -	0.80	1.11	0.239 0.330	0.332 0.300	Cana	368 WF8
Nes	0.91	0.95	0.274 0.330	0.285 0.300	Cana	369 WF9
Nec	0.85	0.84	0.254 0.330	0.252 0.300	Cana	370 WF10
Both 4	2.26	2.17	0.678 0.330	0.652 0.300	Cana	371 WF11
Neo	0.69	0.89	0.208 0.330	0.268 0.300	Cana	372 WF12
	0.78	1.00	0.235 D.330	0.300 0.300	Cana	
sar55 +	0.67	0.99	0.201 0.330	0.298 0.300	Cana	373 WG3
Neg-	0.76	0.99	0.228 0.330	0.298 0.300	Cana	374 WG4
-29	0.63	1.08	0.190 0.330	0.324 0.300	Cana	375 WG5
\$am5 +	1.79	1.85	0.536 0.330	0.555 0.300	Сапа	375 WG6
Both +	1.32	1.61	0.397 0.330	0.484 0.300	Cana	377 WG7
Both +	0.48	0.88	0.145 0.330	0.253 0.300	Сала	378 WG8
Neg	0.40	1.01	0.203 0.330	0.303 0.300	Cana	379 WG9
sar55 +	0.73	1.20	0.220 0.330	0.360 0.300	Cana	360 WG10
sar55 +	2.11	2.53	0.632 0.330	0.759 0.300	Cana	381 WG11
Both +	0.96	.,	0.287 0.330	0.434 0.300	Cana	382 WG12
sar55 +	1.66	0.98	0.499 0.3	0.294 0.300	Cana	383 WH3
swORF2 +	1.25	1.36	0.37530	0.409 0.300	Cana	384 WH4
Both +	1.35	1.81	್ರು 0.330	0.542 0.300	Cana	385 WH6
Both +	0.86	0.61	0.258 0.330	0.182 0.301	Sask	386 5-\$1
Neg	0.54	0.91	0.161 0.330	0.274 JUD	Sask	³⁸⁷ 5-S2
Neg	0.50	1.33	0.151 0.330	೨೯೮ 0.300	Sask	350
sar55 +	0.74	1.15	0.221 0.330	0.345 0.300		389 5-S4
sar55 +	0.46	0.75	0.138 0.330	0.225 0.300	Sask	390 5-S5
Neg	0.43	0.81	0.129 0.330	0.244 0.300	Sask	391 5-S6
Neg	2.57	3.78	0.770 0.330	1.133 0.300	Sask	392 5-S7
Both +	0.34	0.50	0.103 0.330	0.150 0.300	Sask	393 5-SB
Neg	0.96	1.15	0.288 0.330	0.344 0.300	Sask	394 5-89
sar55 +		0.78	0.148 0.330	0.234 0.300	Sask	195 5-S10
Neg	0.49	4.20	0.968 0.330	1.261 0.300	Sask	96 5-S11
Both +	3.23	1.50	0.235 0.330	0.449 0.300	Sask	397.5-S12
sar55 +	0.78	2.84	0.431 0.330	0.852 0.300	Sask	98 5-513
Both +	1.44	1.34	0.168 0.330	0.401 0.300	Sask	IS9 5-S14
sar55 +	0.56	2.20	0.396 0.330	0.661 0.300	Sask	00 5-515
Both +	1.32	2.24	0.535 0.330	0.671 0.300	Sask	01 5-S16
Both +	1.78	3.07	0.644 0.330	0.922 0.300	Sasy	02:5-\$17
Both +	2.15	2.27	0.413 0.330	0.682 0.300	Sask	03 5-S18
Both +	1.38	1.97	0.335 0.330	0.591 0.300	Sask	04-5-519
Both +	1.12	2.24	0.512 0.330	0.673 0.300	Sask	05·5·\$20
Both +	1.71	4.01	0.825 0.330	1.204 0.300	Sask	06 5-521
Both +	2.75		0.194 0.330	0.196 0.300	Sask	07 5-S22
Neg	0.65	0.65	0.237 0.330	0.253 0.300	Sask	08 5-S23
Neg	0.79	0.84	0.920 0.330	0.521 0.300	Sask	09 5-S24
Both +	3.07	1.74	0.089 0.330	0.074 0.300	Sask	10 5-525
Neg Neg	0.30	0.25	0.210 0.330	0.214 0.300	Sask	11 5-\$26
	0.70	0.71	U.C.U U.J.JU	2.2 0.444	Sask	12 6-S1

Figure 2H

			Figure 2F				
Resu	e/Coff swORF2	Sampl humSAR55	RF2 Cutoff 2	OD Cutoff 1 sv	humSAR55 (SampleDate	Name
				0.300	0.303	Sask	413 6-S2
Both	1.19	1.01		0.300	0.303	Sask	414 6-53
Ne	0.65	0.51		0.300	0.134	Sask	415 6-S4
Ne	0.89	0.69		0.300	0.589	Sask	416 6-S5
Both	2.79	2.30		0.300	0.238	Sask	417 6-S5
Ne	0.72	0.79		0.300	0.130	Sask	413 6-57
Ne	0.46	0.43	0.137 0.330	0.300	0.130	Sask	419 6-S8
Ne	0.62	0.66	0.186 0.330 0.314 0.330	0.300	0.197	Sask	420 6-59
swORF2	1.05	0.97		0.300	0.232	Sask	421 6-S10
Ne	0.70	0.71	0.211 0.330	0.300	0.212	Sask	422 .6-S11
Ne	0.87	0.84	0.553 0.330	0.300	0.436	Sask	423.6-S12
Both	1.84	1.45 0.74	0.243 0.330	0.300	0.222	Sask	424 6-S13
Ne	0.81		0.315 0.330	0.300	0.263	Sask	425 6-S14
swORF2	1.05	0.88	0.224 0.330	0.300	0.210	Sask	426 6·S15
Ne	0.75	0.70	0.469 0.330	0.300	0.360	Sask	427 7-S1
Both	1.56	1.20	0.425 0.330	0.300	0.319	Sask	428 7-S2
Both	1.42	1.06		0.300	0.146	Sask	429 7-83
Ne P	0 40	0.49	0.121 0.330	0.300	0.146	Sask	430 7-\$4
Both	2.26	1.56	0.679 0.330 0.722 0.330	0.300	0.494	Sask	431 7-S5
Both	2.41	1.65		0.300	0.191	Sask	432 7-56
Ne	0.74	0.64		0.300	0.251	Sask	433 7-57
Ne	0.81	0.84		0.300	0.177	Sask	434 7-58
Ne Ne	0.52	0.59	0.156 0.330			Sask	435 7-59
Both	1.43	1.49	0.428 0.330	0.300	0.448	Sask	436 7-S10
Ne	0.65	0.60	0.194 0.330		0.179 0.653	Sask	437 7-\$11
Both	2.27	2.18	0.681 0.330	0.300		Sask .	438 7-S12
swORF2	1.09	0.95	0.327 0.330	0.300	0.286	Sask	439 7-513
Ne	0.49	0.54	0.147 0.330	0.300	0.162	Sask	440 7-S14
Both	1.87	1.84	0.560 0.330	0.300	0.553	· · · · · · · · · · · · · · · · · · ·	441 7-S15
Both	1.22	1.50	0.367 0.330	0.300	0.449 0.227	Sask Sask	442 7-516
Ne	0.74	0.76	0.221 0.330	0.300		Sask	443 7-517
Ne	0.45	0.47	0 136 0 330	0.300	0.141	Sask	444 7-S18
swORF2	1,17	. 0.97	0.350 0.330	0.300	0.290 0.367	Sask	445 7-819
Both	1.23	1.22	0.369 0.330	0.300	0.367	Sask	445 7-S20
Ne Ne	0.39	0.54	0.116 0.330	0.300	0.162	Sask	447 7-S21
Ne	0.69	0.70	0.208 0.330			Sask	448 9-S1
Both	1.03	1.11	0.308 0.330	0.300	0.332 0.413	Sask	449 9-S2
Both	1.29	1.38	0.387 0.330	0.300	0.442	Sask	450 9-S3
Both	1.32	1.47	0.396 0.330	0.300	0.378	Sask	451 9-54
Bath	1.51	1.26	0.452 0.330	0.300	·	Sask	452 9-55
Both	2.93		0.880 0.330	0.300	0.776	Sask	453 9-S6
Ne	0.67	0.54	0.200 0.330	0.300	0.163	Sask	454 9-87
Ne	0.82	0.93	0.246 0.330	0.300	0.279		455 9-SB
Both	1.08	1.00	0.325 0.330	0.300	0.300	Sask	456 9-89
Ne	0.69	0.67	0.207 0.330	0.300	0.202	Sask	457 9-S10
Ne	0.56	0.88	0.169 0.330	0.300	0.264	Sask	458 9-S11
Both	1.61	1.42	0.483 0.330	0.300	0.425	Sask	459 9-S12
Both	1.12	1.15	0.335 0.330	0.300	0.346	Sask	460.9-S13
Both	1.16	1.28	0.349 0.330	0.300	0.383	Sask	461 9-S14
Ne O. W	0.49	0.58	0.146 0.330	0.300	0.174 0.474	Sask	462:9-S15
Both	1.21	1.58	0.362 0.330	0.300		Sask Sask	463 9-S16
\$ar55	0.91	1.05	0.274 0.330	0.300	0.315	Sask Sask	464 9-S17
Ne	0.52	0.64	0.157 0.330	0.300	0.192	Sask	465 1-1
Ne	0.28	0.42	0.085 0.330	0.300	0.127	Kor	456 1-2
Ne	0.26	0.32	0.079 0.330	0.300	0.097	Kor	467 1-3
Ne Ne	0.38	0.46	0.113 0.330	0.300	0.139	Kor	468 1-4
Ne	0.34	0.43	0.103 0.330	0.300	0.130		
Ne	0.43	0.70	0.129 D.330	0.300	0.210	Kor	469 1-5

Figure 21

_								
Resu		Sample	Cutoff 2	ORES	OD Cutoff 1 sv	humSAR55	SampleDate	Name
	swORF2	humSAR55			0.300	0.159	Kor	470 1-6
Ne	0.39	0.53	0.330	0.116	0.300	0.139	Kor	471 1.7
Ne	0.79	0.90	0.330	0.148	0.300	0.174	Kor	472 1-8
Ne	0 49	0.58	0.330	0.075	0.300	0.093	Kor	473 1-9
Ne	0.25	0.31	0.330	0.094	0.300	0.131	Kor	474 1-10
Ne	0.31	0.30	0.330	0.072	0.300	0.091	Kor	475 1-11
Ne	0.24	0.35	0.330	0.078	0.300	0.105	Kor	476 1-12
Ne	0.26 0.27	0.38	0.330	0.081	0.300	0.115	Kor	477 1-13
Nex	0.41	0.43	0.330	0.122	0.300	0 130	Kor	478 1-14
Neg	0.24	0.26	0.330	0.073	0.300	0.078	Kor	479 1-15
Nec	2.25	0.34	0.330	0.076	0.300	0 101	Kor	480 1-16
Nec Nec	0.27	0.43	0.330	0.082	0.300	0.128	Kar	481 1-17
Nec	0.27	0.44	0.330	0.081	0.300	0.132	Kor	482 1-18
Neg	0.25	0.36	0.330	0.075	0.300	0.109	Kor	483 1-19
Nec	0.52	0.62	0.330	0.155	0.300	0.185	Kar	484 1-20
Both 4	2.18	2.20	0.330	0.655	0.300	0.661	Kor	485 2-1
Neg	0.56	0.59	0.330	0.169	0.300	0.178	Kor	486 2-2
Both •	5.57	5.54	0.330	1.672	0.300	1.661	Kor	487 2-3
Neg	0.36	0.67	0.330	0.107	0.300	0.201	Kor	488 2-4
Neg	0.33	0.60	0.330	0.099	0.300	0.181	Kor	
Neg	0.35	0.59	0.330	0.106	0.300	0.177	Kar	
Neg	0.30	0.43	0.330	0.091	0.300	0.129	Kor	491 2-7
Neg	0.32	046	0.330	0.095	0.300	0.139	Kor	492 2-8
Neg	0.32	0.42	0.330	0.096	0.300	0.125	Kor	493 2-9
Neg	0.28	0 46	0.330	0.084	0.300	0.139	Kor	494.2-10
Neg	0.29	0.39	0.330	0.088	0.300	0.117	Kor	495 2-11
Neg	0.30	0.57	0.330	0.090	0.300	0.170	Kor	496 2-12
Both +	4.60	5.49	0.330	1.381	0.300	1.646	Kor	497 2-13 498 2-14
Neg	0.69	0.98	0.330	0.208	0.300	0.287	Kor	499 2-15
Neg	0.43	0.44	0.330	0.129	0.300	0.132	Kor	500 2-16
Neg	0.41	0.68	0.330	0.123	0.300	0.204	Kor	501 2-17
Neg	0.49	0.45	0.330	0.148	0.300	0.135	Kor	502 2-18
Both +	1.00	1.25	0.330	0.300	0.300	0.374	Kor	503 2-19
Neg	0.43	0.41	0.330	0.128	0.300		Kor	504 2-20
Neg	0.58	0.57	0.330		0.300		Kor	505 3-1
Both +	1.12	1.44	0.330		0.300 0.300		Kor	506 3-2
Both +	7.05	6.56	0.330		D.300		Kor	507 3-3
Both +	1.95	1.79	0.330		0.300		Kor	508 3-4
Both +	2.15	1.69	0.330		0.300		Kor	509 3-5
swORF2 +	1.20	0.91	0.330 0.330		0.300		Kor	510 3-6
Neg	0.67	0.86	0.330		0.300	·	Kor	511 3-7
Neg	0.30	0.27	0.330		0.300		Kor	512 3-8
Neg	0.24	0.23 0.34	0.330		0.300		Kor	513 3-9
Neg	0.33	0.43	0.330		0.300		Kor	514 3-10
Neg	0.39	1.01	0.330		0.300		Kar	515 3-11
Both +	1.18	6.43	0.330		0.300		Kor	516:3-12
Both +	6.80 5.89	5.28	0.330		0.300		Kor	517 3-13
Both +	1.25	1.11	0.330		0.300		Kor	518 3-14
Both +	3.96	3.04.	0.330		3.300		Kor	519 3-15
Both +	1.78	1.94	0.330).300		Kor	520 3-16
Both +	4.09	3.66	0.330		0.300		Kor	521 3-17
Both +	3.80	3.42	0.330		.300		Kor	522.3-18
	6.57	5.10	0.330		.300		Kor	523 3-19
Roth -	0.07				.300		Kor	524 3-20
Both +	4.85	5.48	D.3301	1.4.74 L	, .	1.045 1	1101	
Both + Both +	4.85 4.45	5.48 5.91	325		.326		Kor	1 Kor 5.1

Figure 2J

			ire 2J					
Resi	/Coff	Sampl			OD			Al
	swORF2	humSAR55	Cutoff	ORF2	utoff 1 sw	humSAR55	SampleDate	Name
sar55	0.96	1.57	0.325	0.311	0.326	0.511	Kor	3 Kor 5.3
Bott	1,15	1.34	0.325	0.374	0.326	0 436	Kor	4 Kor 5.4
Both	1.10	1.98	0.325	0.356	0.326	0.645	Kor	5 Kor 5.5
Both	7.01	8.21	0.325	2.278	0.326	2.678	Kor	6 Kor 5.6
Bost	2.50	4.02	0.325	0.812	0.326	1.309	Kor	7 Kor 5.7
N	0.50	0.71	0.325	0.161	0.326	0.230	Ker	8 Kor 5.8
N	0.56	0.75	0.325	0.181	0.326	0.246	Kor	9 Kor 5.9
Both	4.50	6.70	0.325	1.464	0.326	2.185	Kor	10 Kor 5.10
N	0.74	0.86	0.325	0.241	0.326	0.281	Kor	11 Kor 5.11
N	0.39	0.51	0.325	0.127	0.326	0 166	Kor	12 Kor 5 12
N	0.31	0.52	0.325	0.102	0.326	0.158	Kor	13 Kor 5.13
sar55	0.82	1.16	0.325	0.267	0.326	0.379	Kor	14 Kor 5.14
sar55	0.78	1.04	0.325	0.252	0.326	0.338	Kor	15 Kor 5.15
N	0.50	0.74	0.325	0 163	0.326	0.242	Kor	16 Kor 5.16
	0.35	0.56	0.325	0.114	0.326	0.182	Kor	17 Kor 5.17
No.	0.42	0.61	0.325	0.137	0.326	0.199	Kor	18 Kor 5.18
No.	0.55	1.01	0.325	0 180	0.326	0.330	Kor	19 Kor 5.19
sar55	0.55	0.85	0.325		0.326	0.277	Kor	20 Kor 5.20
No.	0.55	1.19	0.325	0.222	0.326	0.387	Kor	21 Kc. 3 1
\$ar55		0.42		0.091	0.326	0.137	Kor	22 Kor 6.2
Ne	0.28	4.43	0.325		0.326	1.444	Kor	23 Kor 6.3
Both	2.74	2.17	0.325		0.326	0.709	Kor	24 Kor 6.4
Both	1.42		0.325		0.326	0.359	Kor	25 Kor 6.5
sar55	0.72	1.10	0.325		0.326	1.531	Kor	26 Kor 6.6
Beth	3.53	4.70	0.325	0.137	0.326	0.305	Kor	27 Kor 6.7
Ne	0.42	0.94	0.325	0.544	0.326	0.793	Kor	28 Kor 6.8
Both	1.67	2.43	0.325		0.326	0.687	Kor	29 Kor 6.9
Both	140	2.11			0.326	0.271	Kor	30 Kor 6.10
Ne	0.61	0.83		0.199	0.326	0 109	Kor	31 Kor 6.11
Ne	0.24	0.33	0.325		0.326	0.622	Kor	32 Kor 6.12
Both	1.18	191	0.325				Kar	33 Kor 6.13
Ne	0.23	0.41	0.325		0.326	0.135	Kor	34 Kor 6.14
Both	1.37	1.99	0.325		0.326	0.648	Kor	35 Kor 6.15
Ne	0.30	0.42		0.096	0.326	0.136	Kor	35 Kor 6.16
Both	1.58	2.04		0.515	0.326	0.664	Kor	37 Kor 6.19
Both	1.60	2.05	0.325		0.326	0.667		36 Kor 6.20
Ne	0.30	0.35	0.325		0.326	0 115	Kor	1 Kor 8.1
Both	1.83	1.34	0.328	0.599	0.337	0.452	Koi	2 Kor 8.2
Ne	0.75	0.72	0.328	0.246	0.337	0.244	Kor	3-Kor 8.3
Both	3.81	3.46	0.328	1.249	0.337	1.167	Kor	
Both	1.38	1.58	0.328	0.451	0.337	0.532	Kor	4 Kor 8 4
Both	2.04	1.63	0.328	0.670	0.337	0.548	Kor	5 Kor 8.5
Both	2.89	2.50	0.328	0.948	0.337	0.842	Kor	6 Kor 8.6
Ne	0.18	0.16	0.328	0.058	0.337	0.055	Kor	7 Kor 8.7
Both	2.05	2.77	0.328	0.674	0.337	0.935	Kor	8 Kor 8.8
Both	3 11	3.31	0.328	1.021	0.337	1.115	Kor	9 Kor 8.9
sar55	0.89	1.72	0.328	0.292	0.337	0.581	Kor	10 Kar 8.10
Ne	0.18	0.17	0.328	0.059	0.337	0.056	Kor	11 Kor 8.11
Ne	0.65	0.59	0.328	0.213	0.337	0.198	Kor	12 Kor 8.12
Both	2.05	1.84	0.328	0.673	0.337	0.620	Kor	13 Kor 8.13
Both	2.13	2.34	0.328	0.699	0.337	0.787	Kor	14 Kor 8.14
Both	1.14	1.51	0.328	0.374	0.337	0.510	Kor	15 Kor 8.15
Both	5.13	4.88	0.328	1.681	0.337	1.646	Kor	16 Kar 8.16
Ne	0.34	0.44	0.328	0.111	0.337	0.147	Kor	17 Kor 8.17
Both	1.09	1,37	0.328	0.357	0.337	0.461	Kor	18 Kor 8.18
Ne	0.75	0.90	0.328	0.245	0.337	0.304	Kor	19 Kor 8.19
				0.110	0.222	0.146	Kor	20 Kor 8.20
Ne	0.36	0.43	0.328	0.119	0.337	0.146		20 1101 0.20

Figure 2K

		•	re 2K	· .g u				
Resu	Coff	Samp			OD			Nome
	swORF2	humSAR55	Cutoff 2	RF2 (utoff 1 swC	humSAR55	\$ampleDate	Name
Ne	0.76	0.93	0.328	0.250	0.337	0.312	Kor	22 CM1-2
swORF2	1.12	0.91	0.328	0.367	0.337	0.305	Kor	23 CM1-3
Both	4.90	4.79	0.328	1.606	0.337	1.615	Kor	24 CM1-4
Both	3.27	3.12	0.328	1.074	0.337	1.051	Kor	25.CM1-5
sar55	0.70	1.29	0.328	0.231	0.337	0.435	Kor	26 CM1-6
Both	1.16	1.63	0.328	0.379	0.337	0.548	Kor	27 CM1-7
Both	1.27	1.21	0.328	0.417	0.337	0.408	Kor	28 CM1-8
Both	2.93	3.65	0.328	0.961	0.337	1.231	Kor	29 CM1-9
Both	1.63	1.80	0.328	0.533	0.337	0.608	Kor	30 CM1-10
sar55	0.99	1.09	0.328	0.326	0.337	0.367	Kor	31 CM1-11
Both	2.54	3.40	0.328	0.834	0.337	1.145	Kor	32 CM2-1
Both	1,24	1.42	0.328	D.407	0.337	0.477	Kor	33 CM2-2
Both	1.59	2.26	0.328	0.523	0.337	0.761	Kor	34 · CM2-3
Both	5.52	4.45	0.328	1.812	0.337	1,499	Kor	35 CM2-4
Both	1.29	1.01	0.328	0.423	0.337	0.342	Kor	36: CM2-5
	1.83	1.25	0.328	0.601	0.337	0.422	Kor	37 CM2-6
Both	0.7	0.78	0.328	0.255	0.337	0.264	Kar	38-CM2-7
Ne		1.06	0.328	0.299	0.337	0.358	Kor	39 CM2-8
sar55	0.91		0.328	0.260	0.337	0.329	Kor	40 C 42-9
Ne	0.79	0.98	0.328	0.430	0.337	0.308	Kor	41 CM2-10
swORF2	1.31	0.91			0.337	0.259	Kor	42.CM3-1
swORF2	1.02	0.77	0.328	0.335			Kor	43 CM3-2
Ne	0.71	0.83	0.328	0.233	0.337	0.279		
Both	1.91	1.95	0.328	0.628	0.337	0.657	Kor	44 CM3-3
Poth	1.13	1.75	0.328	0.371	0.337	0.591	Kor	45°CM3-4
Ne	0.33	0.48	0.328	0.108	0.337	0.161	Kor	46 CM3-5
Ne	0.73	0.58	0.328	0.238	0.337	0.195	Kor	47 CM3-6
Both	1.78	1.70	0.328	0.585	0.337	0.573	Kor	48 CM3-7
Both	1,44	1.43	0.328	0.471	0.337	0.482	Kbr	49 CM3-8
sar55	0.87	1.02	0.328	0.285	0.337	0.345	Kor	50 CM3-9
sar55	0.62	1.29	0.328	0.203	0.337	0.434	Kor	51 CM3-10
Ne	0.94	0.86	0.328	0.308	0.337	0.290	Kor	52 CM4-1
Both	2.11	2.31	0.328	0.691	0.337	0.780	Kar	53 CM4-2
Both	1.65	2.23	0.328	0.541	0.337	0.751	Kar	54 CM4-3
Both	1.15	1.29	0.328	0.376	0.337	0.434	Kor	55 CM4-4
Both	1.45	1.78	0.328	0.476	0.337	0.600	· Kor	56 CM4-5
Beth	2 45	3.07	0.328	0.803	0.337	1.034	Kor	57 CM4-6
Both	2.37	3.20	0.328	0.776	0.337	1.079	Kor	58 CM4-7
Both	1.72	1.31	0.328	0.564	0.337	0.443	Kor	59 CM4-8
Both	1.55	1.34	0.328	0.509	0.337	0.452	Kor	60 CM4-9
	3.18	3.04	0.328	1.042	0.337	1.025	Kor	61 CM4-10
Both	6.12	6.55	0.328	2 007	0.337	2.209	Kor	62 CM5-1
Both :		0.92	0.328	0.324	0.337	0.309	Kor	63 CM5-2
Ne	0.99	6.23	0.328	1.996	0.337	2.100	Kor	64 CM5-3
Both	6.09				0.337	0.180	Kar	65.CM5-4
Ne	0.38	0.53	0.328	0.125			Kor	66 CM5-5
Ne	0.30	0.46	0.328	0.097	0.337	0.156		67 CM5-6
Both	3.16	3.89	0.328	1.035	0.337	1,311	Kor	68 CM5-7
Both	5.14	5.79	0.328	1.686	0.337	1.950	Kor	
Ne	0.36	0.52	0.328	0.117	0.337	0.176	Kor	69 CM5-8
Ne	0.41	0.50	0.328	0.135	0.337	0.168	Kor	70 CM5-9
Both	2.38	1.97	0.328	0.782	0.337	0.664	Kor	71 CM5-10
Ne	0.91	0.64	0.328	0.297	0.337	0.215	Kor	72 CM6-1
Ne	0.80	0.83	0.328	0.263	0.337	0.280	Kor	73 CM6-2
swORF2	1.04	0.94	0.328	0.342	0.337	0.318	Kor	74 CM6-3
Ne	0.66	0.91	0.328	0.216	0.337	0.305	Kor	75 CM6-4
Ne	0.41	0.54	0.328	0.135	0.337	0.182	- Kor	761CM6-5
Ne	0.85	0.89	0.328	0.279	0.337	0.301	·Kor	77-CM6-6

Figure 2L

		OD					Result
SampleDate	humSAR55	Cutoff 1 sv	ORF2	utoff 2	humSAR55	swORF2	
Kor	0.231	0.337	0.192	0.328	0.69	0.59	Neg
Kor	0.240	0.337	0.177	0.328	0.71	0.54	Neg
Kor	0.357	0.337	0.239	0.328	1.06	0.73	sar55 +
Kor	0.162	0.337	0.124	0.328	0.48	0.38	Neg
Kor	0.154	0.337	0.115	0.328	0.46	0.35	Neg
Kor	0.152	0.337	0.251	0.328	0.45	0.77	Neg
Kor	1.052	0.337	0.849	0.328	3.12	2.59	Both +
Kor	1.014	0.337	0.882	0.328	3.01	2.69	Both +
Kor	1.699	0.337	1.276	0.328	5.04	3.89	Both •
Kor	0.286	0.337	0.197	0.328	0.85	0.60	Neg
	0.514	0.337	0.363	0.320	1.53	1.11	. Both
			0.479	0.328	1.75	1.46	Both 4
			0.341	0.328	1.94	1.04	Both -
						4.58	Both -
						1.76	Both -
						2.19	Both -
							Both
							Ne
	<u>. </u>						Both
							Ne
							Ne
							Both
							fie
							
							Ne Ne
	 -						Both
							
							Ne
					.4		Ne
2/25/00 USA1	0.08	1 0.332			<u> </u>		Ne
2/25/00 USA1	0.22	<u> </u>					Ne
2/25/00 USA1	0.21	0 0.332					No.
2/25/00 USA1	0 10		0.113				No.
2/25/00 USA1	0.07	1 0.332	0.09	7 0.32			N
2/25/00 USA1	0,08	0.332	0.10	3 0.32	9 0.24		N
2/25/00 USA1	0.06	4 0.332	0.07	5 0.32	0.19		N
2/25/00 USA1	0.38	0.332	0.50	0.37	9 1.14		Bott
2/2: 00 USA1	0.52	7 0.332	0.60	0.32	29 1.59	1.82	Bot
2/25/00 USA1	0.00	8 0.332	0.07	9 0.32	29 0.20	0.24	N
2/25/00 USA1	0.10	0 0.332	0.15	0 0.3	0.30	0.46	N
2/25/00 USA1	0.22	23 0.332	0.28	1 0.3	29 0.67	0.85	N
		25 0.332	0.14	8 0.3	29 0.38	0.45	N.
	_	33 0.332	0.82	6 0.3	29 1.91		
		78 0.332	0.19	2 0.3	29 0.54	0.58	N
2/25/00 USA1	0.3	51 0.332	0.37	3 0.3	29 1.06	1.13	Bot
		64 0.332	0.62	3 0.3	29 1.70	1.89	Bot
				8 0.3	29 0.21	0.21	,
						0.31	
						0.22	
							
							
2/25/00 USA 2/25/00 USA		238 0.332			329 0.18	0.9	
	Kor Kor Kor Kor Kor Kor Kor Kor Kor Kor	Kor 0.231 Kor 0.240 Kor 0.357 Kor 0.162 Kor 0.154 Kor 0.152 Kor 1.052 Kor 1.014 Kor 1.699 Kor 0.286 Kor 0.514 Kor 0.590 Kor 0.655 Kor 0.541 Kor 0.608 USA1 0.618 USA1 0.154 USA1 0.154 USA1 0.155 USA1 0.155 USA1 0.156 USA1 0.156 USA1 0.156 USA1 0.108 USA1 0.108 USA1 0.108 USA1 0.108 USA1 0.108 USA1 0.108 USA1 0.109 USA1 0.108 2/25/00 USA1 0.09 2/25/00 USA1 0.02 2/25/00 USA1 0.02 2/25/00 USA1 0.02 2/25/00 USA1 0.03 2/25/00 USA1 0.04 2/25/00 USA1 0.05 2/25/00 USA1 0.05 2/25/00 USA1 0.06 2/25/00 USA1 0.07 2/25/00 USA1 0.08 2/25/00 USA1 0.06 2/25/00 USA1 0.07 2/25/00 USA1 0.07 2/25/00 USA1 0.06 2/25/00 USA1 0.07 2/25/00 USA1 0.07	SampleDate NumSAR55 Cutoff 1 sw Kor 0.231 0.337 Kor 0.240 0.337 Kor 0.162 0.337 Kor 0.154 0.337 Kor 0.152 0.337 Kor 1.052 0.337 Kor 1.014 0.337 Kor 1.699 0.337 Kor 0.514 0.337 Kor 0.540 0.337 Kor 0.590 0.337 Kor 0.590 0.337 Kor 0.590 0.337 Kor 0.655 0.337 Kor 1.348 0.332 USA1 0.618 0.332 USA1 0.618 0.332 USA1 0.618 0.332 USA1 0.154 0.332 USA1 0.154 0.332 USA1 0.154 0.332 USA1 0.109 0.332 USA1	Number N	Number N	Name	None

Figure 2M

Name SampleDate numSAR55 Cutoff 1 swORF2 Cutoff 2 numSAR55 swORF2 36 34 2/25/00 USA1 0.320 0.332 0.316 0.329 0.96 0.97 0.97 0.97 0.96 37 35 2/25/00 USA1 0.093 0.332 0.128 0.329 0.28 0.39 0.89 0.39 0.89 38 36 2/25/00 USA1 0.223 0.332 0.372 0.329 0.67 1.13 swORF2 - 40 38 2/25/00 USA1 0.065 0.332 0.071 0.329 0.20 0.22 0.22 0.48 0.39 41 39 2/25/00 USA1 0.116 0.332 0.157 0.329 0.30 0.48 0.89 42 40 2/25/00 USA1 0.174 0.332 0.161 0.329 0.35 0.49 0.99 42 40 2/25/00 USA1 0.174 0.332 0.234 0.329 0.52 0.71 0.99 5 2-1712 3/22/00 USA1 0.602 0.332 0.428 0.300 1.81 1.43 Both - 6 9-7115 3/22/00 USA1 0.364 0.332 0.120 0.300 1.10 0.40 sar55 - 7 1-1180 3/22/00 USA1 0.159 0.332 0.198 0.300 0.48 0.66 0.66 0.66 7 20-7260 3/22/00 USA1 0.272 0.332 0.198 0.300 0.48 0.66 0.66				Figure 2N	Л.		
1.5 1.5 2.7500 USA1	Name	Samula D.			Sample	JCoH .	Result
17 15 22200 USA1				ORF2 Cutoff 2	humSAR55	swORF2	
39 36				0.315 0.329	0.96	0.97	Nea
39 37				0.128 0.329	0.28	0.39	
0.38				0.372 0.329	0.67	1.13	
41.39				0.071 0.329	0.20	0.22	
12 12 12 13 13 14 15 13 12 13 14 15 13 14 14 15 15 15 15 15 15					0.30	0.48	Neg
5 2-7172					0.35	0.49	Neg
6 97-115 32200 USA1 0.394 0.332 0.196 0.30 1.10 0.40 Surf5-7 1.1186 32200 USA1 0.199 0.332 0.198 0.300 0.44 0.66 Neg 7 20-7260 32200 USA1 0.199 0.332 0.198 0.300 0.44 0.66 Neg 8 2-7102 32200 USA1 0.272 0.332 0.198 0.300 0.42 0.55 Neg 8 2-7102 32200 USA1 0.422 0.332 0.199 0.300 0.127 1.12 80n-9 0.247-313 32200 USA1 0.239 0.332 0.197 0.300 1.27 1.12 80n-9 0.247-313 32200 USA1 0.239 0.332 0.097 0.300 0.65 0.29 Neg 10 30-7333 32200 USA1 0.121 0.332 0.143 0.300 0.36 0.48 Neg 11 3-747-313 32200 USA1 0.121 0.332 0.143 0.300 0.36 0.48 Neg 11 3-747-313 32200 USA1 0.131 0.332 0.143 0.300 0.36 0.44 Neg 11 3-747-313 32200 USA1 0.155 0.332 0.130 0.077 0.300 0.70 0.26 Neg 11 3-447-46 32200 USA1 0.155 0.332 0.130 0.300 0.41 0.45 Neg 11 3-447-46 32200 USA1 0.054 0.332 0.130 0.300 0.41 0.45 Neg 11 3-447-46 32200 USA1 0.036 0.332 0.130 0.300 0.41 0.45 Neg 11 3-447-46 32200 USA1 0.036 0.332 0.130 0.300 0.24 0.39 Neg 11 3-447-46 32200 USA1 0.030 0.332 0.199 0.300 0.24 0.39 Neg 11 3-547-3 32200 USA1 0.030 0.332 0.199 0.300 0.28 0.39 Neg 11 3-547-3 32200 USA1 0.030 0.332 0.199 0.300 0.29 0.39 0.50 Neg 11 3-547-3 32200 USA1 0.030 0.332 0.199 0.300 0.29 0.39 0.50 Neg 11 3-547-3 32200 USA1 0.030 0.332 0.118 0.300 0.28 0.39 Neg 11 3-547-3 32200 USA1 0.030 0.332 0.199 0.300 0.29 0.39 Neg 11 3-547-3 32200 USA1 0.030 0.332 0.070 0.300 0.25 0.39 Neg 11 3-547-3 32200 USA1 0.056 0.332 0.070 0.300 0.25 0.34 Neg 11 3-77-7 0.32 0.000 0.300 0.200 0.300					0.52	0.71	Neg
7 1-1186					1.81	1.43	Both +
7 207260 37200 USA1 0.72 0.332 0.166 0.300 0.48 0.66 Neg 8 2.1712 37200 USA1 0.422 0.332 0.166 0.300 0.82 0.35 Neg 9 2.47135 372200 USA1 0.422 0.332 0.977 0.300 1.27 1.32 0.974 0.301 0.20 0.332 0.374 0.300 1.27 1.32 0.974 0.301 0.32 0.331 0.332 0.374 0.300 1.27 1.32 0.974 0.301 0.32 0.331 0.332 0.374 0.300 1.22 0.58 3.475 0.320 0.341 0.320 0.331 0.332 0.374 0.300 1.02 0.58 3.475 0.320 0.341 0.320 0.331 0.332 0.077 0.300 0.36 0.48 Neg 9 3.4511 302200 USA1 0.233 0.332 0.077 0.300 0.36 0.48 Neg 9 3.4511 302200 USA1 0.332 0.332 0.077 0.300 0.36 0.48 Neg 9 1.344746 302200 USA1 0.458 0.332 0.332 0.373 0.300 0.41 0.43 Neg 9 1.344746 302200 USA1 0.458 0.332 0.341 0.300 1.411 0.80 9.37200 USA1 0.301 0.332 0.373 0.300 0.411 0.84 Neg 9 3.4200 USA1 0.094 0.3312 0.118 0.300 0.28 0.33 Neg 9 3.4200 USA1 0.094 0.3312 0.118 0.300 0.28 0.33 Neg 9 3.4200 USA1 0.094 0.3312 0.118 0.300 0.28 0.33 Neg 9 3.4200 USA1 0.094 0.332 0.379 0.300 0.28 0.39 Neg 9 3.4200 USA1 0.094 0.332 0.379 0.300 0.26 0.39 0.39 Neg 9 3.4200 USA1 0.003 0.332 0.379 0.300 0.26 0.39 Neg 9 3.4200 USA1 0.003 0.332 0.332 0.330 0.231 0.300 0.24 0.332 0.332 0.333 0.332 0.333 0.332 0.333 0.					1.10	0.40	.sar55 +
6 2-7172 3/2200 USA1 0.422 0.332 0.579 0.300 1.27 1.32 80m- 6 2-8-7315 3/2200 USA1 0.339 0.332 0.174 0.300 1.02 0.58 3.675- 8 28-7333 3/2200 USA1 0.299 0.332 0.174 0.300 1.02 0.58 3.675- 9 3-8-131 3/2200 USA1 0.121 0.332 0.087 0.300 0.635 0.48 Neg 10 3.0734 3/2200 USA1 0.121 0.332 0.143 0.300 0.35 0.48 Neg 11 3.0734 3/2200 USA1 0.135 0.332 0.143 0.300 0.35 0.48 Neg 11 3.0734 3/2200 USA1 0.135 0.332 0.130 0.300 0.141 0.40 Neg 11 3.0734 3/2200 USA1 0.155 0.332 0.130 0.300 0.41 0.43 Neg 11 3.0741 0.32200 USA1 0.68 0.332 0.241 0.300 0.141 0.80 0.8155- 11 3.0741 0.32200 USA1 0.68 0.332 0.241 0.300 0.141 0.80 0.8155- 11 3.0741 0.32200 USA1 0.094 0.332 0.118 0.300 0.28 0.39 Neg 11 3.0741 0.32200 USA1 0.094 0.332 0.118 0.300 0.28 0.39 Neg 11 3.0741 0.32200 USA1 0.093 0.332 0.118 0.300 0.28 0.39 Neg 11 3.0741 0.32200 USA1 0.003 0.332 0.179 0.300 0.51 0.60 Neg 11 3.0741 0.32200 USA1 0.003 0.332 0.179 0.300 0.51 0.60 Neg 11 3.0741 0.32200 USA1 0.003 0.332 0.179 0.300 0.26 0.42 Neg 11 3.75-1 0.32200 USA1 0.003 0.332 0.079 0.300 0.26 0.42 Neg 11 3.75-2 0.32200 USA1 0.15 0.332 0.079 0.300 0.26 0.42 Neg 11 3.75-2 0.32200 USA1 0.15 0.332 0.079 0.300 0.26 0.42 Neg 11 3.75-1 0.32200 USA1 0.15 0.332 0.079 0.300 0.26 0.42 Neg 11 3.75-1 0.32200 USA1 0.16 0.332 0.079 0.300 0.26 0.42 Neg 11 3.75-1 0.32200 USA1 0.16 0.332 0.079 0.300 0.26 0.42 Neg 11 3.77-1 0.322 0.3200 USA1 0.118 0.332 0.007 0.300 0.26 0.42 Neg 11 3.77-1 0.322 0.3200 USA1 0.118 0.332 0.007 0.300 0.26 0.42 Neg 11 3.77-1 0.32200 USA1 0.118 0.332 0.007 0.300 0.35 0.35 0.32 Neg 11 3.77-1 0.32200 USA1 0.118 0.332 0.007 0.300 0.35 0.35 0.32 Neg 11 3.77-1 0.32200 USA1 0.118 0.332 0.007 0.300 0.35 0.35 0.32 Neg 11 3.77-1 0.32200 USA1 0.118 0.332 0.007 0.300 0.35 0.35 0.32 Neg 11 3.77-1 0.32200 USA1 0.102 0.332 0.135 0.300 0.06 0.35 0.32 Neg 11 3.77-1 0.32200 USA1 0.102 0.332 0.106 0.300 0.30 0.35 0.35 0.32 Neg 11 3.77-1 0.32200 USA1 0.102 0.332 0.300 0.300 0.35 0.35 0.35 Neg 11 3.77-1 0.32200 USA1 0.104 0.332 0.006 0.300 0.30 0.30 0.30 0.30 0.30 0.					0.48	0.66	Neg
8 24/315 3/2200 USA1 0.339 0.332 0.174 0.300 1.027 0.30 3.975 0.300 1.027 0.35 3.975 0.300 1.027 0.35 3.975 0.300 1.027 0.35 0.029 0					0.82	0.35	Neg
9 32-7333 3/22/00 USA1 0.209 0.332 0.087 0.300 0.63 0.29 Neg					1.27	1.32	Bath +
\$\begin{array}{c} \text{S} \text{ 34511 } \text{ 32200 USA1 } \text{ 0.121 } \text{ 0.332 } \text{ 0.143 } \text{ 0.300 } \text{ 0.36 } \text{ 0.48 } \text{ Neg} \\ 10.007334 \text{ 32200 USA1 } \text{ 0.135 } \text{ 0.332 } \text{ 0.143 } \text{ 0.300 } \text{ 0.70 } \text{ 0.26 } \text{ Neg} \\ 10.44710 \text{ 32200 USA1 } \text{ 0.135 } \text{ 0.332 } \text{ 0.130 } \text{ 0.300 } \text{ 0.70 } \text{ 0.44 } \text{ 0.45 } \text{ Neg} \\ 113.441746 \text{ 322200 USA1 } \text{ 0.094 } \text{ 0.332 } \text{ 0.18 } \text{ 0.300 } \text{ 0.26 } \text{ 0.39 } \text{ Neg} \\ 372200 USA1 \text{ 0.094 } \text{ 0.332 } \text{ 0.18 } \text{ 0.300 } \text{ 0.26 } \text{ 0.39 } \text{ Neg} \\ 372200 USA1 \text{ 0.094 } \text{ 0.332 } \text{ 0.18 } \text{ 0.300 } \text{ 0.28 } \text{ 0.39 } \text{ Neg} \\ 12.64847 \text{ 32200 USA1 } \text{ 0.094 } \text{ 0.332 } \text{ 0.118 } \text{ 0.300 } \text{ 0.28 } \text{ 0.39 } \text{ Neg} \\ 13.77 \text{ 32200 USA1 } \text{ 0.402 } \text{ 0.332 } \text{ 0.177 } \text{ 0.300 } \text{ 0.26 } \text{ 0.42 } \text{ Neg} \\ 13.77 \text{ 32200 USA1 } \text{ 0.126 } \text{ 0.332 } \text{ 0.077 } \text{ 0.300 } \text{ 0.26 } \text{ 0.42 } \text{ Neg} \\ 15 \text{ .26 } \text{ 372200 USA1 } \text{ 0.18 } \text{ 0.332 } \text{ 0.077 } \text{ 0.300 } \text{ 0.26 } \text{ 0.42 } \text{ Neg} \\ 15 \text{ .278 } \text{ 372200 USA1 } \text{ 0.18 } \text{ 0.332 } \text{ 0.077 } \text{ 0.300 } \text{ 0.56 } \text{ 0.42 } \text{ Neg} \\ 15 \text{ .278 } \text{ 372200 USA1 } \text{ 0.18 } \text{ 0.332 } \text{ 0.097 } \text{ 0.300 } \text{ 0.56 } \text{ 0.42 } \\\ 15 \text{ .278 } \text{ 372200 USA1 } \text{ 0.18 } \text{ 0.332 } \text{ 0.097 } \text{ 0.300 } \text{ 0.56 } \text{ 0.42 } \\\ 16 \text{ 0.372 } \text{ 0.320 } \text{ 0.541 } \text{ 0.18 } \text{ 0.332 } \text{ 0.097 } \text{ 0.300 } \text{ 0.56 } \text{ 0.32 } \\\ 15 \text{ 0.779 } \text{ 0.320 USA1 } \text{ 0.18 } \text{ 0.332 } \text{ 0.097 } \text{ 0.300 } \text{ 0.56 } \text{ 0.32 } \\\ 17 \text{ 1.1177 } \text{ 372200 USA1 } \text					1.02	0.58	sar55 +
10 307334 3/2200 USA1					0.63	0.29	Neg
10 4-8710 372200 USA1 0.135 0.332 0.130 0.500 0.41 0.43 Neg 13 4-41746 32200 USA1 0.668 0.332 0.116 0.300 0.28 0.33 Neg 3/2200 USA1 0.094 0.332 0.116 0.300 0.28 0.33 Neg 3/2200 USA1 0.094 0.332 0.116 0.300 0.28 0.33 Neg 13 36-01 3/2200 USA1 0.091 0.332 0.117 0.300 0.28 0.39 Neg 13 36-01 3/2200 USA1 0.093 0.332 0.118 0.300 0.28 0.39 Neg 13 36-01 3/2200 USA1 0.400 0.332 0.127 0.300 0.26 0.42 Neg 13 37-2 3/2200 USA1 0.400 0.332 0.127 0.300 0.26 0.42 Neg 13 37-2 3/2200 USA1 0.177 0.332 0.077 0.300 0.26 0.42 Neg 15 2.28 3/2200 USA1 0.126 0.332 0.077 0.300 0.26 0.42 Neg 15 2.28 3/2200 USA1 0.126 0.332 0.077 0.300 0.26 0.42 Neg 15 2.28 3/2200 USA1 0.180 0.332 0.077 0.300 0.26 0.42 Neg 15 2.28 3/2200 USA1 0.180 0.332 0.077 0.300 0.50 0.300 0.50 0.300 0.50 0					0.36	0.48	Neg
11 34-41746					0.70	0.26	Neg
M2200 USA1					0 4 1	0.43	Neg
37200 USA1					141	08.0	sar55 +
12 0-0847 3/22/00 USA1 0.031 0.332 0.178 0.300 0.91 0.60 Neg 13 35-41 3/22/00 USA1 0.033 0.332 0.118 0.300 0.28 0.39 Nes 13 7 3/22/00 USA1 0.032 0.273 0.300 1.21 0.99 Sar55 + 14 2 3/22/00 USA1 1.717 0.332 0.200 0.26 0.42 Neg 15 2.28 3/22/00 USA1 0.126 0.332 0.077 70 0.38 0.26 Neg 15 2.28 3/22/00 USA1 0.126 0.332 0.077 70 0.38 0.26 Neg 15 2.28 3/22/00 USA1 0.126 0.332 0.077 70 0.38 0.26 Neg 15 2.215 3/22/00 USA1 0.287 0.332 0.006 0.300 0.300 0.3	·				0.28	0.39	Neg
13 38-11 30200 USA1 0.402 0.332 0.273 0.300 121 0.91 Sat55-137 0.300 121 0.91 Sat55-137 0.300 0.26 0.42 Neg 14 0.24 372200 USA1 1.717 0.332 0.300 0.26 0.42 Neg 15 0.300 0.300 0.300 0.300 0.26 Neg 15 0.300	1 45 4 6947				0.91	0.60	
13 7.7. 3/22/00 USA1 1.717 0.312 0.300 0.26 0.42 Neg					0.28	0.39	Neg
14			0.402 0.332		1.21	0.91	sar55 +
3/22/00 USA1	13 /-	· · · · · · · · · · · · · · · · · · ·			0.26	0.42	Neg
15	- 14 - 24			0.300	5.17 .	3.02	Both +
15 9.7115 372200 USA1 0.287 0.332 0.106 0.300 U. 0.35 Neg 16 10-7119 372200 USA1 0.118 0.332 0.097 0.300 0.36 0.32 Neg 16 39.41855 372200 USA1 0.126 0.332 0.207 0.300 0.78 0.69 Neg 17 11-7127 372200 USA1 0.259 0.332 0.207 0.300 0.78 0.69 Neg 17 11-7127 372200 USA1 0.029 0.332 0.207 0.300 0.78 0.69 Neg 17 11-7127 372200 USA1 0.029 0.332 0.000 0.301 0.00 0.31 0.42 Neg 18 12-7129 372200 USA1 0.032 0.332 0.300 0.31 0.42 Neg 18 12-7129 372200 USA1 0.184 0.332 0.332 0.361 0.300 0.55 0.36 Neg 18 12-7129 372200 USA1 0.184 0.332 0.332 0.300 0.55 0.36 Neg 18 12-7130 372200 USA1 0.155 0.332 0.332 0.300 0.55 0.36 Neg 20 14-7132 372200 USA1 0.155 0.332 0.138 0.300 0.35 0.46 Neg 20 14-7132 372200 USA1 0.155 0.332 0.109 0.300 0.45 0.36 Neg 21 15-7133 372200 USA1 0.155 0.332 0.109 0.300 0.45 0.36 Neg 21 15-7133 372200 USA1 0.138 0.332 0.109 0.300 0.42 0.43 Neg 22 16-7171 372200 USA1 0.106 0.338 0.095 0.300 0.31 0.30 Neg 23 17-7172 372200 USA1 0.106 0.338 0.095 0.300 0.31 0.30 Neg 24 18-7199 372200 USA1 0.197 0.338 0.095 0.300 0.51 0.25 Neg 24 18-7199 372200 USA1 0.197 0.338 0.095 0.300 0.55 0.32 Neg 25 19-7259 372200 USA1 0.107 0.338 0.095 0.300 0.55 0.32 Neg 26 20-7260 372200 USA1 0.107 0.338 0.095 0.300 0.55 0.32 Neg 27 21-7262 372200 USA1 0.107 0.338 0.095 0.300 0.55 0.32 Neg 28 22-7275 372200 USA1 0.136 0.338 0.095 0.300 0.50 0.51 0.25 Neg 28 22-7275 372200 USA1 0.136 0.338 0.095 0.300 0.50 0.51 0.25 Neg 30 24-7315 372200 USA1 0.136 0.338 0.095 0.300 0.44 0.33 Neg 31 23-7316 372200 USA1 0.156 0.338 0.096 0.300 0.40 0.33 Neg 31 23-7316 372200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.40 0.33 Neg 31 23-7316 372200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.40 0.33 Neg 31 24-7315 372200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.40 0.33 Neg 31 24-7315 372200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.40 0.33 Neg 31 24-7315 372200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.40 0.33 Neg 31 24-7315 372200 USA1 0.156 0.338 0.006 0.300 0.40 0.30 0.40 0.30 Neg 31 32-7322 372200 USA1 0.156 0.338 0.006 0.300 0.40 0.30 0.40 0.30 Neg 31 32-7322	16			0.077 (11)	0.38	0.26	Neg
18 10-7119 312200 USA1 0.118 0.332 0.097 0.300 0.36 0.32 Neg 16 39-41855 312200 USA1 0.0259 0.332 0.207 0.300 0.36 0.32 Neg 17 11-7127 372200 USA1 0.020 0.332 0.207 0.300 0.31 0.42 Neg 17 41-41867 312200 USA1 0.532 0.332 0.361 0.300 0.31 0.42 Neg 18 12-7129 312200 USA1 0.532 0.332 0.361 0.300 1.80 1.20 86m - 18 12-7129 312200 USA1 0.532 0.332 0.361 0.300 1.80 1.20 86m - 19 13-7130 312200 USA1 0.461 332 0.301 0.300 0.55 0.35 Neg 18 42-41907 312200 USA1 0.461 332 0.332 0.300 1.39 1.11 86m - 19 13-7130 312200 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 20 14-7132 312200 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 21 15-7133 312200 USA1 0.138 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 312200 USA1 0.138 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 312200 USA1 0.138 0.332 0.129 0.300 0.42 0.43 Neg 21 16-7171 312200 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 21 17-7172 312200 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 21 17-7172 312200 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 21 18-7199 312200 USA1 0.107 0.338 0.095 0.300 0.56 0.32 Neg 25 19-7259 312200 USA1 0.107 0.338 0.095 0.300 0.56 0.32 Neg 25 19-7259 312200 USA1 0.107 0.338 0.095 0.300 0.56 0.32 Neg 25 19-7259 312200 USA1 0.107 0.338 0.095 0.300 0.56 0.32 Neg 25 20-7260 312200 USA1 0.130 0.338 0.095 0.300 0.56 0.32 Neg 25 20-7260 312200 USA1 0.130 0.338 0.095 0.300 0.56 0.32 Neg 25 23-7261 312200 USA1 0.136 0.338 0.095 0.300 0.46 0.29 Neg 30 24-7262 312200 USA1 0.136 0.338 0.095 0.300 0.46 0.29 Neg 30 24-7215 312200 USA1 0.156 0.338 0.095 0.300 0.46 0.29 Neg 31 28-7316 312200 USA1 0.156 0.338 0.095 0.300 0.46 0.29 Neg 31 28-7316 312200 USA1 0.156 0.338 0.095 0.300 0.40 0.30 0.40 0.30 Neg 31 28-7316 312200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.50 0.50 Neg 31 28-7316 312200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.50 Neg 31 28-7316 312200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.50 Neg 31 28-7316 312200 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.50 Neg 31 28-7316 312200 USA1 0.156 0.338 0.096 0.300 0.40 0.40 0.30 Neg 31 28-7316 312200 USA1 0.156 0.338 0.096 0.300 0				0.510 0.300	1.86	1.70	Both +
16 39-41855				0.106 0.300	U.u	0.35	Neg
17 11-7127 3/22/00 USA1 0.102 0.332 0.125 0.300 0.31 0.42 Neg 17 41-41867 3/22/00 USA1 0.532 0.332 0.361 0.300 1.80 1.20 8oth + 18 12-7129 3/22/00 USA1 0.184 0.332 0.300 0.55 0.36 Neg 18 42-41907 3/22/00 USA1 0.461 3.32 0.332 0.300 0.55 0.36 Neg 18 42-41907 3/22/00 USA1 0.461 3.32 0.332 0.300 0.55 0.36 Neg 20 14-7132 3/22/00 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 20 14-7132 3/22/00 USA1 0.153 0.332 0.109 0.300 0.45 0.46 Neg 21 15-7133 3/22/00 USA1 0.153 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 3/22/00 USA1 0.138 0.332 0.109 0.300 0.42 0.43 Neg 22 16-7171 3/22/00 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 23 17-7172 3/22/00 USA1 0.173 0.338 0.089 0.300 0.31 0.30 Neg 24 18-7199 3/22/00 USA1 0.173 0.338 0.089 0.300 0.51 0.25 Neg 24 18-7199 3/22/00 USA1 0.197 0.338 0.095 0.300 0.51 0.25 Neg 25 19-7259 3/22/00 USA1 0.197 0.338 0.095 0.300 0.58 0.32 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 27 21-7262 3/22/00 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 27 21-7262 3/22/00 USA1 0.107 0.338 0.095 0.300 0.58 0.32 0.25 Neg 27 21-7262 3/22/00 USA1 0.107 0.338 0.095 0.300 0.56 0.32 0.25 Neg 27 21-7262 3/22/00 USA1 0.106 0.338 0.089 0.300 0.48 0.26 Neg 29 23-7281 3/22/00 USA1 0.156 0.338 0.089 0.300 0.46 0.26 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.096 0.300 0.46 0.26 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.098 0.300 0.49 0.31 Neg 30 24-7315 3/22/00 USA1 0.156 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.159 0.338 0.098 0.300 0.49 0.30 0.35 Neg 31 25-7313 3/22/00 USA1 0.166 0.338 0.098 0.300 0.49 0.39 0.35 Neg 31 25-7333 3/22/00 USA1 0.166 0.338 0.098 0.				0.097 0.300	0.36	0.32	Neg
17 41-41867 3/22/00 USA1 0.532 0.332 0.361 0.300 1.50 1.20 80th - 18 12-7129 3/22/00 USA1 0.184 0.332 0.107 0.300 0.55 0.36 Neg 18 42-41907 3/22/00 USA1 0.461 3/32 0.332 0.300 1.39 1.11 80th - 19 13-7130 3/22/00 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 20 14-7132 3/22/00 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 21 15-7133 3/22/00 USA1 0.153 0.332 0.109 0.300 0.45 0.36 Neg 21 15-7133 3/22/00 USA1 0.138 0.332 0.129 0.300 0.42 0.43 Neg 22 16-7171 3/22/00 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 23 17-7172 3/22/00 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 24 18-7199 3/22/00 USA1 0.173 0.338 0.076 0.300 0.51 0.25 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.095 0.300 0.51 0.25 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.095 0.300 0.51 0.25 Neg 26 20-7260 3/22/00 USA1 0.107 0.338 0.095 0.300 0.51 0.25 Neg 27 21-7262 3/22/00 USA1 0.213 0.338 0.089 0.300 0.32 0.25 Neg 27 21-7262 3/22/00 USA1 0.30 0.338 0.089 0.300 0.32 0.25 Neg 27 21-7262 3/22/00 USA1 0.30 0.338 0.089 0.300 0.50 0.50 0.50 0.50 Neg 27 21-7262 3/22/00 USA1 0.50 0.338 0.089 0.300 0.50 0.50 0.30 Neg 27 21-7262 3/22/00 USA1 0.50 0.338 0.089 0.300 0.63 0.30 Neg 27 21-7262 3/22/00 USA1 0.50 0.338 0.089 0.300 0.48 0.26 Neg 30 0.27 0.25 Neg 30 0.27 0.25 Neg 30 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.2					0.78	0.69	Neg
18 12-7129 372200 USA1 0.184 0.332 0.107 0.300 0.55 0.36 Neg 18 42-41907 372200 USA1 0.461 332 0.332 0.300 1.39 1.111 Both + 19 13-7130 372200 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 20 14-7132 372200 USA1 0.153 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 372200 USA1 0.153 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 372200 USA1 0.138 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 372200 USA1 0.106 0.338 0.089 0.300 0.45 0.301 0.301 Neg 22 16-7171 372200 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 23 17-7172 372200 USA1 0.173 0.338 0.095 0.300 0.51 0.25 Neg 24 18-7199 372200 USA1 0.173 0.338 0.095 0.300 0.51 0.25 Neg 25 19-7259 372200 USA1 0.197 0.338 0.095 0.300 0.56 0.32 Neg 25 19-7259 372200 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 26 20-7260 372200 USA1 0.107 0.338 0.075 0.300 0.32 0.25 Neg 27 21-7262 372200 USA1 0.213 0.338 0.089 0.300 0.53 0.30 Neg 27 21-7262 372200 USA1 0.55 0.338 0.089 0.300 0.53 0.30 Neg 27 21-7262 372200 USA1 0.55 0.338 0.088 0.300 0.50 0.50 0.50 Neg 29 33-7281 372200 USA1 0.56 0.338 0.088 0.300 0.48 0.26 Neg 29 33-7281 372200 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 30 24-7315 372200 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 372200 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 372200 USA1 0.166 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 372200 USA1 0.166 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7315 372200 USA1 0.166 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7315 372200 USA1 0.166 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7315 372200 USA1 0.166 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7315 372200 USA1 0.166 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7315 372200 USA1 0.165 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7315 372200 USA1 0.165 0.338 0.098 0.300 0.40 0.30 0.40 0.33 Neg 31 25-7315 372200 USA1 0.165 0.338 0.098 0.300 0.40 0.30 0.40 0.33 Neg 31 25-7315 372200 USA1 0.165 0.338 0.098 0.300 0.40 0.30 0.40 0.30 Neg 31 25-7313 372200 USA1 0.156 0.338 0.098 0.300 0.40 0.30 0.35 Neg 31 25-7313 372200 USA1 0.156 0.338 0.098 0.000 0.30 0.40 0.30 0.35 Neg 31 3-7322 37200 USA1 0.165 0.338 0.07					0.31	0.42	Neg
18.42-41907 3/22/00 USA1 0.461 .32 0.300 0.35 0.36 Neg 19 13-7130 3/22/00 USA1 0.115 0.332 0.300 0.35 0.46 Neg 20 14-7132 3/22/00 USA1 0.153 0.332 0.109 0.300 0.45 0.36 Neg 21 15-7133 3/22/00 USA1 0.138 0.332 0.109 0.300 0.45 0.36 Neg 21 15-7133 3/22/00 USA1 0.138 0.332 0.129 0.300 0.42 0.43 Neg 22 16-7171 3/22/00 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 23 17-7172 3/22/00 USA1 0.106 0.338 0.089 0.300 0.51 0.25 Neg 24 18-7199 3/22/00 USA1 0.173 0.338 0.076 0.300 0.51 0.25 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.075 0.300 0.58 0.32 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.075 0.300 0.58 0.32 Neg 26 20-7260 3/22/00 USA1 0.137 0.338 0.075 0.300 0.56 0.32 Neg 27 21-7262 3/22/00 USA1 0.130 0.338 0.089 0.300 0.63 0.30 Neg 27 21-7262 3/22/00 USA1 0.130 0.338 0.089 0.300 0.63 0.30 Neg 27 21-7262 3/22/00 USA1 0.33 0.338 0.089 0.300 0.63 0.30 Neg 28 22-7275 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.26 Neg 29 23-7281 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 30 24-7315 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 31 25-7316 3/22/00 USA1 0.364 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.366 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7319 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.35 Neg 31 25-7333 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.35 Neg 31 25-7333 3/22/00 USA1 0.156 0.338 0.098 0.300 0.49 0.30 0.35 Neg 31 25-7334 3/22/00 USA1 0.156 0.338 0.098 0.300 0.49 0.30 0.35 Neg 31 25-7335 3/22/00 USA1 0.156 0.338 0.075 0.300 0.55 0.25 Neg 31 25-7335 3/22/00 USA1 0.156 0.338 0.075 0.300 0.55 0.24 Neg 31 3-7446 3/22/00 USA1 0.156 0.338 0.070 0.300 0.55 0.24 Neg 31 3-7446 3/22/00 USA1 0.156 0.338 0.070 0.300 0.59 0.25 Neg 31 3-7446 3/22/00 USA1 0.158 0.338 0.072 0.300 0.55 0.24 Neg 31 3-74					1.60	1.20	Both +
19 13-7130 3/22/00 USA1 0.115 0.332 0.138 0.300 0.35 0.46 Neg 20 14-7132 3/22/00 USA1 0.153 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 3/22/00 USA1 0.138 0.332 0.129 0.300 0.42 0.43 Neg 22 16-7171 3/22/00 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 23 17-7172 3/22/00 USA1 0.106 0.338 0.089 0.300 0.51 0.25 Neg 24 18-7199 3/22/00 USA1 0.173 0.338 0.076 0.300 0.51 0.25 Neg 24 18-7199 3/22/00 USA1 0.177 0.338 0.076 0.300 0.51 0.25 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.005 0.300 0.51 0.25 Neg 25 20-7260 3/22/00 USA1 0.107 0.338 0.005 0.300 0.58 0.32 Neg 26 20-7260 3/22/00 USA1 0.107 0.338 0.005 0.300 0.52 0.25 Neg 27 21-7262 3/22/00 USA1 0.136 0.338 0.089 0.300 0.63 0.30 Neg 27 21-7262 3/22/00 USA1 0.156 0.338 0.089 0.300 0.48 0.26 Neg 28 22-7275 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 29 23-7281 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 30 24-7315 3/22/00 USA1 0.156 0.338 0.088 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7322 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7322 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7332 3/22/00 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.35 Neg 31 25-7332 3/22/00 USA1 0.156 0.338 0.096 0.300 0.40 0.30 0.35 Neg 31 25-7332 3/22/00 USA1 0.156 0.338 0.000 0.59 0.25 Neg 31 23-7332 3/22/00 USA1 0.156 0.338 0.000 0.59 0.25 Neg 31 23-7332 3/22/00 USA1 0.156 0.338 0.000 0.50 0.59 0.25 Neg 31 23-7335 3/22/00 USA1 0.156 0.338 0.000 0.50 0.50 0.25 0.25 Neg 31 33-7446 3/22/00 USA1 0.156 0.338 0.000 0.000 0.50 0.50 0.25 0.24 Neg 31 33-7446 3/22/00 USA1 0.000 0.338 0.000 0.000 0.50 0.50 0.44 Neg 31 33-7446 3/22/00 USA1 0.000 0.338 0.000 0.00					0.55	0.36	Neg
20 14-7132 3/22/00 USA1 0.153 0.332 0.109 0.300 0.46 0.36 Neg 21 15-7133 3/22/00 USA1 0.138 0.332 0.109 0.300 0.42 0.43 Neg 22 16-7171 3/22/00 USA1 0.106 0.338 0.089 0.300 0.31 0.30 Neg 23 17-7172 3/22/00 USA1 0.173 0.338 0.089 0.300 0.31 0.30 Neg 24 18-7199 3/22/00 USA1 0.173 0.338 0.095 0.300 0.51 0.25 Neg 25 19-7259 3/22/00 USA1 0.197 0.338 0.095 0.300 0.58 0.32 Neg 25 19-7259 3/22/00 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 27 21-7262 3/22/00 USA1 0.213 0.338 0.095 0.300 0.53 0.30 Neg 27 21-7262 3/22/00 USA1 0.213 0.338 0.095 0.300 0.63 0.30 Neg 27 21-7262 3/22/00 USA1 0.338 0.098 0.300 0.63 0.30 Neg 28 22-7275 3/22/00 USA1 0.156 0.338 0.088 0.300 0.48 0.26 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.098 0.300 0.49 0.31 Neg 30 24-7315 3/22/00 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7316 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7319 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7319 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7319 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.33 Neg 31 25-7312 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.30 0.35 Neg 31 27-7322 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.30 0.35 Neg 31 25-7313 3/22/00 USA1 0.156 0.338 0.098 0.300 0.40 0.30 0.35 Neg 31 25-7313 3/22/00 USA1 0.157 0.338 0.075 0.300 0.59 0.25 Neg 31 25-7333 3/22/00 USA1 0.156 0.338 0.075 0.300 0.59 0.25 Neg 31 25-7333 3/22/00 USA1 0.156 0.338 0.075 0.300 0.59 0.25 Neg 31 25-7333 3/22/00 USA1 0.166 0.338 0.075 0.300 0.59 0.25 Neg 31 31-7335 3/22/00 USA1 0.166 0.338 0.075 0.300 0.50 0.27 0.21 Neg 31 31-7335 3/22/00 USA1 0.169 0.338 0.075 0.300					1.39	1.11	Both +
21 15-7133					0.35	0.46	Neg
22 16-7171					0.45	0.36	Neg
23 17-7172 372200 USA1 0.173 0.338 0.076 0.300 0.51 0.25 Neg 24 18-7199 372200 USA1 0.197 0.338 0.095 0.300 0.58 0.32 Neg 25 19-7259 3/2200 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 26 20-7260 3/2200 USA1 0.107 0.338 0.095 0.300 0.58 0.32 Neg 27 21-7262 3/2200 USA1 0.213 0.338 0.089 0.300 0.63 0.30 Neg 28 22-7275 3/2200 USA1 0.33 0.338 0.089 0.300 0.48 0.26 Neg 29 23-7281 3/2200 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 29 23-7281 3/2200 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 30 24-7315 3/2200 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 3/2200 USA1 0.306 0.338 0.161 0.300 0.91 0.54 Neg 31 25-7316 3/2200 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 32 26-7319 3/2200 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 33 27-7322 3/2200 USA1 0.159 0.338 0.098 0.300 0.40 0.33 Neg 34 28-7326 3/2200 USA1 0.127 0.338 0.096 0.300 0.47 0.36 Neg 34 28-7326 3/2200 USA1 0.127 0.338 0.096 0.300 0.39 0.35 Neg 35 29-7333 3/2200 USA1 0.126 0.338 0.075 0.300 0.39 0.35 Neg 36 30-7334 3/2200 USA1 0.126 0.338 0.075 0.300 0.59 0.25 Neg 36 30-7334 3/2200 USA1 0.165 0.338 0.075 0.300 0.59 0.25 Neg 37 31-7335 3/2200 USA1 0.165 0.338 0.075 0.300 0.59 0.25 Neg 38 32-7425 3/2200 USA1 0.165 0.338 0.070 0.300 0.50 0.20 0.20 Neg 39 33-7446 3/2200 USA1 0.189 0.338 0.072 0.300 0.55 0.24 Neg 39 33-7446 3/2200 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 39 33-7446 3/2200 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 39 33-7446 3/2200 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 39 33-7446 3/2200 USA1 0.175 0.338 0.072 0.300 0.59 0.52 0.24 Neg 30 34-41746 3/2200 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 30 34-41746 3/2200 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg				0.129 0.300	0.42	0.43	Neg
24 18-7199				0.089 0.300	0.31	0.30	Neg
25 19-7259 3/22/00 USA1 0.107 0.338 0.075 0.300 0.32 0.25 Neg 26 20-7260 3/22/00 USA1 0.213 0.338 0.078 0.300 0.30 0.32 0.25 Neg 27 21-7262 3/22/00 USA1 0.33 0.338 0.078 0.300 0.63 0.30 Neg 28 22-7275 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.098 0.300 0.46 0.29 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.093 0.300 0.46 0.29 Neg 30 0.47315 3/22/00 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 31 0.25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.49 0.31 Neg 31 0.25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 32 26-7319 3/22/00 USA1 0.159 0.338 0.098 0.300 0.40 0.33 Neg 32 26-7319 3/22/00 USA1 0.159 0.338 0.098 0.300 0.47 0.36 Neg 33 27-7322 3/22/00 USA1 0.127 0.338 0.098 0.300 0.47 0.36 Neg 35 29-7333 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 35 29-7333 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 36 30-7334 3/22/00 USA1 0.126 0.338 0.075 0.300 0.59 0.25 Neg 36 30-7334 3/22/00 USA1 0.166 0.338 0.270 0.300 0.59 0.25 Neg 37 31-7335 3/22/00 USA1 0.166 0.338 0.270 0.300 0.55 0.24 Neg 37 31-7335 3/22/00 USA1 0.169 0.338 0.073 0.300 0.55 0.24 Neg 37 31-7335 3/22/00 USA1 0.169 0.338 0.072 0.300 0.55 0.24 Neg 37 31-7335 3/22/00 USA1 0.169 0.338 0.072 0.300 0.55 0.24 Neg 39 33-7446 3/22/00 USA1 0.190 0.338 0.072 0.300 0.52 0.24 Neg 39 33-7446 3/22/00 USA1 0.190 0.338 0.072 0.300 0.50 0.50 0.24 Neg 39 33-7446 3/22/00 USA1 0.090 0.338 0.072 0.300 0.50 0.50 0.24 Neg 39 33-7446 3/22/00 USA1 0.090 0.338 0.072 0.300 0.50 0.50 0.24 Neg 31 3-41766 3/22/00 USA1 0.090 0.338 0.072 0.300 0.50 0.50 0.40 Neg 31 3-41766 3/22/00 USA1 0.090 0.338 0.072 0.300 0.50 0.50 0.40 Neg 31 3-41766 3/22/00 USA1 0.000 0.338 0.0000 0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000		-			0.51	0.25	Neg
26 20-7260 3/22/00 USA1 0.213 0.338 0.089 0.300 0.63 0.30 Neg 27 21-7262 3/22/00 USA1 0.53 0.338 0.078 0.300 0.63 0.30 Neg 28 22-7275 3/22/00 USA1 0.156 0.338 0.088 0.300 0.48 0.26 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.088 0.300 0.46 0.29 Neg 30 24-7315 3/22/00 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 31 25-7316 3/22/00 USA1 0.306 0.338 0.101 0.300 0.91 0.54 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 32 26-7319 3/22/00 USA1 0.159 0.338 0.109 0.300 0.47 0.36 Neg 33 27-7322 3/22/00 USA1 0.159 0.338 0.109 0.300 0.47 0.36 Neg 34 28-7326 3/22/00 USA1 0.127 0.338 0.706 0.300 0.38 0.35 Neg 35 29-7333 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 36 30-7334 3/22/00 USA1 0.166 0.338 0.75 0.300 0.59 0.25 Neg 37 31-7335 3/22/00 USA1 0.166 0.338 0.70 0.300 0.49 0.90 Neg 37 31-7335 3/22/00 USA1 0.166 0.338 0.70 0.300 0.49 0.90 Neg 38 32-7425 3/22/00 USA1 0.166 0.338 0.70 0.300 0.56 0.24 Neg 39 33-7446 3/22/00 USA1 0.090 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.208 0.338 0.157 0.300 0.57 0.52 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.157 0.300 0.57 0.52 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg			0.197 0.338	0.095 0.300	0.58	0.32	Neg
27 21-7262 372200 USA1 0 .53 0 .338 0 .078 0 .300 0 .48 0 .26 Neg 28 22-7275 372200 USA1 0 .156 0 .338 0 .088 0 .300 0 .46 0 .29 Neg 29 23-7281 372200 USA1 0 .164 0 .338 0 .093 0 .300 0 .49 0 .31 Neg 30 24-7315 372200 USA1 0 .306 0 .338 0 .161 0 .300 0 .91 0 .54 Neg 31 25-7316 372200 USA1 0 .136 0 .338 0 .098 0 .300 0 .40 0 .33 Neg 32 26-7319 372200 USA1 0 .159 0 .338 0 .098 0 .300 0 .47 0 .36 Neg 33 27-7322 372200 USA1 0 .127 0 .338 0 .090 0 .300 0 .47 0 .36 Neg 34 28-7326 372200 USA1 0 .127 0 .338 0 .000 0 .37 0 .25 Neg 35 29-7333 372200 USA1 0 .126 0 .338 0 .075 0 .300 0 .37 0 .25 Neg 36 30-7334 372200 USA1 0 .166 0 .338 0 .70 0 .300 0 .59 0 .25 Neg 37 31-7335 372200 USA1 0 .166 0 .338 0 .70 0 .300 0 .59 0 .25 Neg 37 31-7335 372200 USA1 0 .166 0 .338 0 .70 0 .300 0 .59 0 .25 Neg 38 32-7425 372200 USA1 0 .189 0 .338 0 .070 0 .300 0 .56 0 .24 Neg 39 33-7446 372200 USA1 0 .0189 0 .338 0 .072 0 .300 0 .52 0 .24 Neg 40 34-41746 372200 USA1 0 .028 0 .338 0 .072 0 .300 0 .52 0 .24 Neg 41 .35-41793 372200 USA1 0 .028 0 .338 0 .057 0 .300 0 .62 0 .45 Neg					0.32	0.25	Neg
28 22-7275 3/22/00 USA1 0.156 0.338 0.088 0.300 0.46 0.29 Neg 29 23-7281 3/22/00 USA1 0.164 0.338 0.093 0.300 0.49 0.31 Neg 30 24-7315 3/22/00 USA1 0.306 0.338 0.161 0.300 0.91 0.54 Neg 31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 32 26-7319 3/22/00 USA1 0.159 0.338 0.098 0.300 0.40 0.33 Neg 33 27-7322 3/22/00 USA1 0.127 0.338 0.709 0.300 0.47 0.36 Neg 33 27-7322 3/22/00 USA1 0.127 0.338 0.709 0.300 0.38 0.35 Neg 34 28-7326 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 35 29-7333 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 36 30-7334 3/22/00 USA1 0.165 0.338 0.7/0 0.300 0.59 0.25 Neg 37 31-7335 3/22/00 USA1 0.165 0.338 0.7/0 0.300 0.59 0.25 Neg 38 32-7425 3/22/00 USA1 0.165 0.338 0.7/0 0.300 0.56 0.24 Neg 39 33-7446 3/22/00 USA1 0.189 0.338 0.072 0.300 0.57 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.062 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.072 0.300 0.59 0.52 0.24 Neg 41 .35-41793 3/22/00 USA1 0.208 0.338 0.157 0.300 0.97 0.52 Neg 42 35-41893 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg				0.089 0.300	0 63	0.30	Neg
29 23-7281					0.48	0.26	Neg
30 24-7315					0.46	0.29	Neg
31 25-7316 3/22/00 USA1 0.136 0.338 0.098 0.300 0.40 0.33 Neg 32 26-7319 3/22/00 USA1 0.159 0.338 0.090 0.300 0.47 0.36 Neg 33 27-7322 3/22/00 USA1 0.127 0.338 0.706 0.300 0.38 0.35 Neg 34 28-7326 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 35 29-7333 3/22/00 USA1 0.201 0.338 0.075 0.300 0.37 0.25 Neg 36 30-7334 3/22/00 USA1 0.201 0.338 0.075 0.300 0.59 0.25 Neg 37 31-7335 3/22/00 USA1 0.166 0.338 0.270 0.300 0.49 0.90 Neg 37 31-7335 3/22/00 USA1 0.189 0.338 0.073 0.300 0.56 0.24 Neg 38 32-7425 3/22/00 USA1 0.090 0.338 0.062 0.300 0.57 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg				0.093 0.300	0.49	0.31	Neg
32 26-7319 3/22/00 USA1 0.159 0.338 0.109 0.300 0.47 0.36 Neg 33 27-7322 3/22/00 USA1 0.127 0.338 0.706 0.300 0.38 0.35 Neg 34 28-7326 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 35 29-7333 3/22/00 USA1 0.201 0.338 0.075 0.300 0.59 0.25 Neg 36 30-7334 3/22/00 USA1 0.166 0.338 0.270 0.300 0.59 0.25 Neg 37 31-7335 3/22/00 USA1 0.166 0.338 0.270 0.300 0.49 0.90 Neg 37 31-7335 3/22/00 USA1 0.189 0.338 0.073 0.300 0.56 0.24 Neg 38 32-7425 3/22/00 USA1 0.090 0.338 0.062 0.300 0.27 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.375 0.338 0.072 0.300 0.59 Neg 41 35-41793 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg				0.161 0.300	0.91	0.54	Neg
33 27-7322 3/22/00 USA1 0.127 0.338 0.106 0.300 0.38 0.35 Neg 34 28-7326 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 35 29-7333 3/22/00 USA1 0.201 0.338 0.075 0.300 0.59 0.25 Neg 36 30-7334 3/22/00 USA1 0.166 0.338 0.270 0.300 0.59 0.25 Neg 37 31-7335 3/22/00 USA1 0.166 0.338 0.270 0.300 0.49 0.90 Neg 38 32-7425 3/22/00 USA1 0.189 0.338 0.073 0.300 0.56 0.24 Neg 39 33-7446 3/22/00 USA1 0.090 0.338 0.062 0.300 0.27 0.21 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.072 0.300 0.52 0.24 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.157 0.300 0.62 0.45 Neg				0.098 0.300	0.40	0.33	Neg
34 28-7326				6.109 0.300	0.47	0.36	Neg
34 28-7326 3/22/00 USA1 0.126 0.338 0.075 0.300 0.37 0.25 Neg 35 29-7333 3/22/00 USA1 0.201 0.338 0.275 0.300 0.59 0.25 Neg 36 30-7334 3/22/00 USA1 0.165 0.338 0.170 0.300 0.49 0.90 Neg 37 31-7335 3/22/00 USA1 0.189 0.338 0.073 0.300 0.56 0.24 Neg 38 32-7425 3/22/00 USA1 0.090 0.338 0.062 0.300 0.27 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41 .35-41793 3/22/00 USA1 0.208 0.338 0.157 0.300 0.62 0.45 Neg				0 206 0.300	0.38	0.35	
35 29-7333 3/22/00 USA1 0.201 0.338 C.575 0.300 0.59 0.25 Neg 36 30-7334 3/22/00 USA1 0.166 0.338 0.270 0.300 0.49 0.90 Neg 37 31-7335 3/22/00 USA1 0.189 0.338 0.073 0.300 0.56 0.24 Neg 38 32-7425 3/22/00 USA1 0.090 0.338 0.062 0.300 0.27 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg	· · · · · · · · · · · · · · · · · · ·				0.37	0.25	
37 31-7335 3/22/00 USA1 0.189 0.338 0.073 0.300 0.56 0.24 Neg 38 32-7425 3/22/00 USA1 0.090 0.338 0.062 0.300 0.27 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg				0.075 0.300	0.59	0.25	Neg
38 32-7425 3/22/00 USA1 0.090 0.338 0.062 0.300 0.27 0.21 Neg 39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41.35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg				0.770 0.300	0.49	0.90	
39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41.35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg		·		0.073 0.300	0.56	0.24	
39 33-7446 3/22/00 USA1 0.175 0.338 0.072 0.300 0.52 0.24 Neg 40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41 35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg				0.062 0.300	0.27	0.21	Neg
40 34-41746 3/22/00 USA1 0.328 0.338 0.157 0.300 0.97 0.52 Neg 41.35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg		····	0.175 0.338	0.072 0.300	0.52	0.24	
41.35-41793 3/22/00 USA1 0.208 0.338 0.135 0.300 0.62 0.45 Neg			0.328 0.338	0.157 0.300	0.97	0.52	
42 36.41823 3/22/00 USA1 \$ 0.000 0.000				0.135 0.300	0.62	0.45	
	42 35-41823	3/22/00 USA1	0.286 0.338	0.216 0.300	0.85	0.72	

Figure 2N

			·———	F 1-1C = 0	• •	Result
	S	OD humSAR55 Cutoff 1 swOf	E2 Cidoff 2	Sample/Cof humSAR55 sv	NORF2	
Kame				2.83	1.61	Botn +
43 37-41824	3/22/00 USA1	0.957 0.338	0.483 0.300 0.284 0.300	1.24	0.95	sar55 +
44 38-11828	3/22/00 USA1	0.418 0.338		0.63	0.48	Neg
45 39-41855	3/22/00 USA1	0.212 0.338		0.53	0.43	Neg
46 40-41863	3/22/00 USA1	0.178 0.338	0.129 0.300		1.02	Both +
47 41-41867	3/22/00 USA1	0.489 0.338	0.307 0.300	1.45	1.08	Both +
48 42-41907	3/22/00 USA1	0.362 0.338	0.324 0.300	0.26	0.18	Neg
49 R7-0799007	3/22/00 USA1	0.089 0.338	0.055 0.300	0.20	0.20	Neg
50 R31	3/22/00 USA1	0.070 0.338	0.059 0.300	0.21	0.19	Nes
51 R33	3/22/00 USA1	0.086 0.338	0.058 0.300	0.19	0.20	Nec
52 R48-0799038	3/22/00 USA1	0.065 0.338	0.060 0.300		0.21	Nec
53 R49	3/22/00 USA1	0.082 0.338	0.064 0.300		0.21	Nes
54 R66-0799049	3/22/00 USA1	0.094 0.338	0.062 0.300			Ne
55 R80-0799056	3/22/00 USA1	0.074 0.338	0.060 0.300		0.20	
56 R134	3/22/00 USA1	0.115 0.338	0.058 0.300		0.19	Ne: Ne:
57-R139	3/22/00 USA1	0.162 0.338	0.065 0.300		0.22	
58 R150	3/22/00 USA1	0.090 0.338	0.056 0.300		0.19	Ne
59 R168-0799244	3/22/00 USA1	0.099 0.338	0.055 D.300		0.18	Ne
60 R169-0799249	3/22/00 USA1	0.097 0.338	0.076 0.30		0.25	Ne
61-R195	3/22/00 USA1	0.058 0.338	. 0.052 0.30		0.17	Ne
62.R197	3/22/00 USA1	0.067 0.338	0.050 0.30		0.17	Ne
63 R 199	3/22/00 USA1	0.084 0.338	0.055 0.30		0.18	Ne
64 R213	3/22/00 USA1	0.087 0.338	0.060 0.30		0.20	No
65 R219	3/22/00 USA1	0.099 0.338	0.056 0.30		0.19	N
66 R242	3/22/00 USA1	0.098 0.338	0.060 0.30	0 0.29	0.20	N
67 R246	3/22/00 USA1	0.095 0.338	0.058 0.30	0 0.28	0.19	N-
68 R299	3/22/00 USA1	0 124 0.338	0.060 0.30	0.37	0.20	N
69-R346	3/22/00 USA1	0.131 0.338	0.061 0.30	0 0.39	0.20	N
70 R347	3/22/00 USA1	0.077 0.338	0.057 0.30	0.23	0.19	N
71 R361	3/22/00 USA1	0.106 0.338	0.065 0.30	0.31	0.22	N
72 R370	3/22/00 USA1	0.087 0.338	0.074 0.30	0.26	0.25	N
73 R374	3/22/00 USA1	0.062 0.338	0.052 0.30	0.18	0.17	
74 Y22-0799115	3/22/00 USA1	0.062 0.338	0.053 0.30	0.18	0.18	
/5 Y24-0799118	3/22/00 USA1	0.073 0.338	0.061 0.3	00 0.22	∙0.20	
76 Y26	3/22/00 USA1	0.065 0.338	0.051 0.3	0.19	0.17	<u> </u>
77 Y37	3/22/00 USA1		0.051 0.3	00 0.24	0.17	1
78 Y42	3/22/00 USA1		0 167 0.3	00 0.28	0.56	
79 Y43	3/22/00 USA1		0.054 0.3	00 0.19	0.18	
	3/22/00 USA1		0.056 0.3	00 0.32	0.19	
80 Y45 81 Y47	3/22/00 USA1		0.056 0.3	0.36	0.19	
	3/22/00 USA		0.055 0.3	00 0.25	0.18	
82 Y48 83 Y49-0799139	3/22/00 USA		0.056 0.3		0.19	
84 Y51-0799141	3/22/00 USA		0.068 0.3	000 0.24	0.23	
	3/22/00 USA			300 0.20	0.19	
85 Y52	3/22/00 USA			0.20	0.18	
86 Y54-0799143				300 0.18	0.18	
87 Y66-0799155	3/22/00 USA			300 0.25	0.18	
88 Y68	3/22/00 USA			300 D.25	0.20	
89 Y74	3/22/00 USA			300 0.37	0.17	
90 Y83	3/22/00 USA			300 0.37	0.18	
91 Y89	3/22/00 USA			300 0.19	0.18	
92 Y90	3/22/00 USA			300 0.13	0.19	
93 Y94	3/22/00 USA	0.075 0.338		300 0.22	0.18	

				Fig	*
Overall		S	ar55		
		Neg	Pos	Total	
Sworf2	Neg	476	35	511	
<u>.</u>	Pos	24	257	281	
		500	292	792	·
				к=	0
USA		S	ar55		
		Neg	Pos	Total	
~	Neg	286	5	291	
Ĕ.	Pos	8	61	69	
SwORF2		294	65	360	
				χ=	0.
Korea					
KOIES		Sar55			
-		Neg	Pos	Total	
£2 .	Neg	88	13	101	
SwORF2	Pos	5	84	89	
Ü		93	97	190	
				K=	U.
Canada		Sar55		K=	0.
Canada		Sar55 Neg	Pos	Total	0.
-	Neg	~ · · · · · · · · · · · · · · · · · · ·	Pos 15		0.
-	Neg Pos	Neg		Total	0.
SwORF2		Neg 51	15	Total 66	0.
-		Neg 51 6	15 80	Total 66 86	
-		Neg 51 6 57	15 80	Total 66 86 152	
SwORF2		Neg 51 6 57 57 Sar55	15 80 95	Total	
S S S S S S S S S S S S S S S S S S S	Pos	Neg 51 6 57 57 Sar55 Neg	15 80 95	Total 66 86 152 KT	
S S S S S S S S S S S S S S S S S S S		Neg 51 6 57 57 Sar55 Neg 26	15 80 95 Pos 0	Total 66 86 152 Km	
S S S S S S S S S S S S S S S S S S S	Pos	Neg 51 6 57 Sar55 Neg 26 5	15 80 95 95 Pos 0	Total 66 86 152 Km	
SwORF2	Pos	Neg 51 6 57 57 Sar55 Neg 26	15 80 95 Pos 0	Total 66 86 152 Km	0.
SwORF2	Pos	Neg 51 6 57 57 Sar55 Neg 26 5 31	15 80 95 95 Pos 0	Total 66 86 152 Km Total 26 34 60	0.
S S S S S S S S S S S S S S S S S S S	Pos	Neg 51 6 57	15 80 95 95 Pos 0 29 29	Total 66 86 152 K= 7 otal 26 34 60 K=	0.
SwORF2	Pos Neg Pos	Neg 51 6 57	15 80 95 Pos 0 29 29	Total 66 86 152 K= Total 26 34 60 K=	0.
Fraitand China	Pos Neg Pos	Neg 51 6 57 Sar55 Neg 26 5 31 Sar55 Neg 25 Sar55 Neg 25	15 80 95 Pos 29 29	Total 66 86 152 K= Total 26 34 60 K= Total 27	0.
SwORF2	Pos Neg Pos	Neg 51 6 57	15 80 95 Pos 0 29 29	Total 66 86 152 K= Total 26 34 60 K=	0.

Figure 3A

				Figure 3A					
Resu		off	Sample/C		OD				anti-HEV ELA
	%CV	swORF2	humSAR55	ORF2 coff	coff	humSAR55		SampleDate	Name
Ne		0.48	0.67	0.144 0.300	0.328	0.200	ThaiPH		3 P1
Ne		0.60	0.88	0.179 0.300	0.328	0.265	ThaiPH		4 P2
Both	18.56	2 14	2.79	0.642 0.300	0.328	0.835	ThaiPH		5 P3
N		0.38	0.42	0.114 0.300	0.328	0.126	ThaiPH		6 P4
N		0.36	0.40	0.107 0.300	0.328	0.121	ThaiPH		7 P5
Ne		0.39	0.45	0.116 0.300	0.328	0.136	ThaiPH		8 P6
N		0.36	0.41	0.108 0.300	0.328	0.122	ThaiPM		9 P7
Bott	3.70	3.07	2.92	0.922 0.300	0.328	0.875	ChiPH		10 CP-1
Bott	1.11	2.95	3.00	0.885 0.300	0.328	0.899	ChiPH		11 CP-2
Bon	4.99	3.13	2.92	0.939 0.300	J. 328	0.875	ChiPH		12 C.7-3
Bott	3.49	3.49	3.67	1.048 0.300	0.328	1.101	ChiPH		13 CP-4
Bott	4.26	3.00	3.19	0.901 0.300	0.328	0.957	ChiPH		14 CP-5
Bott	12.99	2.87	3.45	0.860 0.300	0.328	1.034	ChiPH		15 CP-6
Bot	14.50	2.67	3.28	0.801 0.300	0.328	0.984	ChiPH		16 CP-7
Bott	11.05	2.89	3.38	0.867 0.300	0.328	1.014	ChiPH		17 CP-8
Bot	10.79	2.78	3.24	0.835 0.00	0.328	0.973	ChiPH		18 CP-9
	11.88	2.60	3.08	0.780 0.300	0.328	0.923	СпіРН		19 CP-10
Bott	7.56	2.86	3.19	0.859 0.300	0.328	0.956	ChiPH		
Both	1.50	0.37			0.328			****	20 CP-11
N		0.37	0.48	0.110 0.300	0.328	0.143	ChinBD ChinBD		21 HD1
N			0 48	0.123 0.300		0.144		·	22 HD2
N		0.32	0.34	0.095 0.300	0.328	0.103	ChinBD		23 HD3
N		0.27	0.26	0.081 0.300	0.328	0.077	ChinBO		24 HD4
Bot	7.12	3.79	3.43	1.137 0.300	0.328	1.028	ChinBD		25 HD5
Bot	15.62	1 42	1.78	0.427 0.300	0.328	0.533	ChinBD		26.HD6
		0.24	0.27	0.072 0.300	0.328	0.082	ChinBD		27 HD7
N		0.23	0.22	0.068 0.300	0.328	0.067	ChinBO		28 HDB
Bot	11.92	6.55	7.76	1.967 0.300	0.328	2.329	ChinBD		29 HD9
N		0.26	0.28	0.077 0.300	0.328	0.085	ChinBD		30 HD10
N		0.25	0.27	0.074 0.300	0.328	0.080	ChinBD		31 HD11
٨		0.23	0.24	0.069 0.300	0.328	0.072	ChinBD		32 HD12
		0.24	0.26	0.072 0.300	0.328	0.078	ChinBD		33 HD13
N		0.29	0.37	0.086 0.300	0.328	0.111	ChinBD		34 HD14
N		0.61	0.65	0.184 0.300	0.328	0.195	ChinBD		35 HD15
Bot	11 51	4.61	5.43	1.383 0.300	0.328	1.628	ChinBD	· · · · · · · · · · · · · · · · · · ·	36 HD16
N		0.32	0.34	0.096 0.300	0.328	0.103	ChinBD		37 HD17
1		0.56	0.57	0.168 0.300	0.328	0.172	ChinBD		38 HO18
4		0.24	0.33	0.071 0 300	0.328	0.100	ChinBD		39 HD19
		0.24	0.28	0.073 0.300	0.328	0.083	ChinBD		40 HD20
		0.42	0.47	0.127 0.300	0.328	0.140	ChinBD		41 HD21
1		0.65	0.92	0.194 0.300	0.328		ChinBD		42 RH1
·I		0.56	0.62	0.167 0.300	0.328		ChinBD		43 RH2
		0.61	0.81	0.184 0.300	0.328		ChinBD		44 RH3
i		0.92	0.88	0.277 0.300		0.265	ChinBD		45 RH4
i		0.68	0.66	0.205 0.300		0.198	ChinBD		46 RH5
: I		0.70	0.58	0.211 0.300		0.205	ChinBD		47 RH6
		0.56	0.56	0.169 0.300		0.203	ChinBD		48 RH7
		0.34	0.39	0 102 0.300		0.118		 	·· <u> </u>
Bo	16.12	1.02	} _				ChinBD		49 RHB
	10.12	0.23	1.29	0.307 0.300		0.386	ChinBD	· · · · · · · · · · · · · · · · · · ·	50 RH9
			0.24	0.068 0.300		0.072	ChinBD		51 RH10
<u>Y</u>		0.77		0.255 0.331	0.342	0.123	Ld BD	3573	
N		0.39		0.130 0.331	0.342	0.092	rd BD	3565	4
swORF		2.47	0.98	0.816 0.331	0.342	0.334	Ld 80	3562	5
N		0.40	0.23	0.134 0.33	0.342	0.078	La BD	3564	6
N		0.37	0.21	0.121 0.33	0.342	0.072	L# BD	3563	7
		0.33	0.20	0.108 0.33	0.342	0.067	Ld BD	3572	
٨		0.33	-	0.110 0.33	0.342	0.063	Lci BD	3571	

Figure 3B

MI-HE	V ELA			OI		ure 3E				
ı	Name	SampleDate	humSAR55		swORF2	20#	Sample humSAR55			Res
10	3570	Lci BD	0.144	0.342				\$WORF2	%CV	
11	3569	Ld 8D	0.764	0.342	0.257		0.42	0.78		Ne
12	3568	Ld 8D	0.070	0.342	0.667		2.23	2.02	7.28	Both
13	3567	Lci BD	0.060	0.342	0.098		0.20	0.30		Ne
14	3561	id BD	0.138	0.342	0.056		0.18	0.17		Ne
15	12365	La BQ	0.392	0.342	0.175		0.40	0.53		Ne
16	12366	Lci BD	0.192	0.342	0.416	0.331,	1.15	1.26	6.51	Both
17	12367	La BD	0.515	0.342	0.250	0.331	0.56	0.76		Ne
18	532	Ld 80	0.071	0.342	0.400	0.331	1.51	1.21	15.49	Both
19	533	LG 8D	0.091	0.342	0.093	0.331	0.21	0.28		Ne
20	534	Ld BD	0.086	0.342	0.113	0.331	0.27	0.34		Ne
21.	547	Ld BD	0.232	0.342	0.345	0.331	0.25	1.04		swORF2
22	12361	Lci BD	0.066	0.342	0.196	0.331	0.68	0.59		Ne
23	548	Ld BD	1.843	0.342	0.118	0.331	·	0.36		Ne
24	1721	La BD	2.770	0.342	1.741	0.331		5.27	1.51	Both
25	536	Lci BD	1.078	0.342	_, '			7.82	2.52	Both
26	1722	Fq 50	0.069	0.342			′?	2.78	8.88	Both
27	535	Le BD	0.085	0.342		10		0.37		Ne
	1723	Lago	7.000	•			***	0.50		Ne
29	1724	Ld 8D	U. 102	.1.15						Ne
30	1725	Ld BD	0.066	0.342		14 april		0.38		Neg
	12371	La BD	0.126	0.342				3.28		Neg
•	12372	Ld BD	0.285	0.342			***	0.74		Neg
33	73	Ld 8D	0.090	0.342	G.241			0.75		Neg
34	123/-	Ld 8D	0.050	0.342				0.29		Neg
35	3584	Ld BD	0.134		0.074	7 731	0.45	0.22		Neg
36	3585	5.7 10.7	-10	0.342	0.235	(41)	0.43	0.71		N :
37	1726	ی D	0.087	0.342	0.146	0.331	0.35	0.44		Neg
38	1727	90	0.623	0.342	0.057	0.331	0.25	0.17		Neg
39	12360	La BO	0.109	0.342	2.534		1 82	7.66	87.06	Both +
40	12363	Ld BD	0.095	0.342	0.078		:2	0.24		Neg
41	12364	Lci BD		0.342		0.331	0.28	0.33		Neg
12	1742	La BD		0.342		0.331	1.69	1.82	5.19	Both +
43	1744	Lci BD		0.342		0.331	0.22	0.36		Neg
14	3613	Lai 8D		0.342		0.331	0.22	0.32		Neg
15	1733	Lci BD		0.342		0.331	0.19	0.32		Neg
16	3600	Let B0		0.342		0.331	0.24	0.32		Neg
7	3610	Lated		0.342		0.331	0.17	0.22		Neg
8	3604	La BD		0.342		0.331	0.18	0.19		Neg
9	3594	FG BD		0.342		0.331	0.20	0.28		Neg
0	12381			0.342		0.331	0.30	0.22		Neg
1	3598	Ld BD		0.342		0.331	2.04	1.19	37.40	Both +
2	12387	Ld BD).342		0.331	0.63	0.65		Neg
3	550	Ld 8D		342		0.331	0.21	0.33		Neg
	3605	Ld 8D		1.342	0.111 ().331	0.48	0.34		Neg
-	1729	Ld BD		.342	0.100 (.331	0.42	0.30		Neg
<u></u>	12382	Ld 8D		.342		.331	0.39	0.56		Neg
,		Ld BD		.342	0.079 0	.331	0.20	0.24		Neg
	12384	Ld BD		.342	0.065 0	.331	0.22	0.20		Neg
<u></u>	3608	Ld8D		.342	0.108 0	.331	0.36	0.33		Neg
	1737	Labo		342	0.071 0	.331	0.22	0.21		Neg
	1732	La BD		342	0.142 0	.331	0.78	0.43	<u> </u>	Neg
	1731	Ld BD	0.062 0.	342	0.094 0.	.331	0.18	0.28		Neg
	1743	Fa BD	0.071 0.	342	0.083 0.	331	0.21	0.25		Neg

20/38

Figure 3C

Rest		// +H							E I A	amai biresa
			Sampl	4	****	CoM	humSAR55	npleDate		anti-HEV Na
	%CV	swORF2	humSAR55		swORF2					
N∈	<u> </u>	0.26	0.18	0.331	0.085	0 342	0.061	Ld BD	1746	63
swORF2		1.01	0.82	0.331	0.335	0.342	0.280	Ld BD Ld BD	. 1730 1740	64
Ne		0.3B	0.23	0.331	0.125	0.342	0.078	Ld BD		65
Ne		0.24	0.30	0.331	0.079	0.342	0.101	Ld BD	12383	66
Both	4.81	3.11	3.32	0.331	1.028	0.342	1.137	LaBD	3592	67
sar55	39.86	0.91	1.63	0.331	0.302	0.342	0.557 0.550	Ld BD	3609	68
Both	0.17	1.60	1.51	0.331	0.531	0.342	0.079	Lci BD	1735	70
No		0.37	0.23	0.331	0.122	0.342	0.074	LciBD	3502	71
No		0.28	0.22	0.331	0.092	0.342	0.074	Ld BD	3597	72
No		0.18	0.42	0.331	0.059	0.342	0.081	Ld BD	12390	73
No		0.48	0.24	0.331	0.158		0.074	LaBD	545	74
Ne		0.26	D.22	0.331	0.085	0.342		La BD	3616	75
Ne		0.31	0.26	0.331	0.104	0.342	0.090	La BD	3595	76
Ne		0.27	0.24	0.331	0.090	0.342	0.083	Lci BD	543	77
Ne		0.38	0.63	0.331	0.126	0.342	0.217	La BD	549	- //
Ne		0.24	0.28	0.331	0.080	0.342	0.096			
Ne		0.32	0.22	0.331	0.106	0.342	0.075	Ld 8D	3506	79
Ne		0.29	0.40	0.331	0.097	0.342	0.138	Ld BD	1736	80
Ne		0.37	0.78	0.331	0.124	0.342	0.267	Lei BD	3611 1745	82
Both	19.51	1.19	1,57	0.331	0.393	0.342	. 0.536	Ld 8D		
Ne		0.25	0.27	0.331	0.082	0.342	0.092	Ld BD	1728	83
Ne		0.29	0.26	0.331	0.096	0.342	0.088	Lei BD	6121	84
Ne		0.25	0.18	0.331	0.083	0.342	0.062	Ld BD	3615	85
Ne		0.24	0.53	0.331	0.078	0.342	0.182	Let BD	1734	86
N€		0.25	0.26	0.331	0.083	0.342	0.089	Lci BD	3599	87
Ne		0.23	0.24	0.331	0.077	0.342	0.082	Ld BD	3618	88
Ne		0.25	0.18	0.331	0.082	0.342	0.063	Lei BD	3617	89
Ne		0.23	0.21	0.331	0.077	0.342	0.072	Ld BD	12386	90
Ne		0.76	0.40	0.331	0.252	0.342	0.138	Lcl BD	1739	91
Ne		0.32	0.31	0.331	0.106	0.342	0.106	Ld 8D	3603	92
Ne		0.23	0.22	0.331	0.077	0.342	0.076	Ld BD	12389	93
Ne		0.26	0.22	0.331	0.087	0.342	0.075	Ld BD	3614	94
Ne		0.25	0.41	0.331	0.082	0.342	0.141	Ld BD	3593	95
Ne		0.83	0.69	0.331	0.276	0.342	0.236	Ld BD	3596	3
Ne		0.81	D.85	0.331	0.267	0.342	0.290	Lci BD	3623	4
Ne		0.25	0 20	0.331	0.082	0.342	0.070	Ld BD	3663	5
Ne		0.98	0.54	0.331	0.325	0.342	0.185	Lci BD	3622	6
Ne		0.26	0.18	0.331	0.087	0.342	0.063	Lci BD	3637	
Ne		0.35	0.24	0.331	0.116	0.342	0.082	Lci BD	3657	8
Ne		0.25	0.24	0.331	0.082	0.342	0.081	La BD	3656	9
Ne		0.31	0.25	0.331	0.102	0.342	0.085	Ld BD	3655	10
Both	16.71	5.09	4.01	0.331	1.685	0.342	1.373	La BD	3654	11
Ne		0.30	0.33	0.331	0.098	0.342	0.113	Lci BD	12418	12
N€		0 26	0.21	0.331	0.087	0.342	0.072	Ld BD	12417	13
Both	3.02	3.44	3.49	0.331	1.204	0.342	1.192	Ld BD	12392	14
Both	10.88	4.38	5.11	0.331	1.450	0.342	1.748	Lci BD	3621	15
Ne		0.24	0.20	0.331	0.078	0.342	0.070	Ld BD	12391	16
Ne		0.23	0.23	0.331	0.077	0.342	0.079	Ld BD	3620	17
Both	5.54	5.00	4.62	0.331	1.655	0.342	1.581	Ld BD	12416	18
Ne		0.34	0.63	0.331	0.111	0.342	0.214	Ld BD	12415	19
Ne		vi.25	0.19	0.331	0.084	0.342	0.065	Ld 80	12414	20
Ne		0.26	0.24	0.331	0.085	0.342	0.082	Ld 80	552	21
Both	13.80	1.53	1.25	0.331	0.505	0.342	0.429	Ld BD	3639	22

Figure 3D

HEV EIA		C D		00			Sampl	e/Coff		Resu
Name		SampleDate	humSAR55	coff	swORF2	coff	humSAR55	swORF2	%CV	
	3690	Ld BD	0.064	0.342	0.058	0.331	0.19	0.18		Ne
	2412	La BD	0.083	0.342	0.132	0.331	0.24	0.40		Ne
	2410	Lci BD	0 127	0.342	0.157	0.331	0.37	0 47		Ne
	2408	Ld BD	0.235	0.342	0 243	0.331	0.69	0.73		Ne
	2409	Ld BD	0.070	0.342	0.086	0.331	0.20	0.26		Ne
	2413	Ld 80	0.254	0.342	0.197	0.331	0.74	0.60		Ne
	2425	Ld BD	0.072	0.342	0.082	0.331	0.21	0.25		Ne
	3653	Ld BD	0.058	0.342	0.080	0.331	0.17	0.24		Ne
	3662	Ld BD	0.937	0.342	0.977	0.331	2.74	2.95	5.27	
· · · · · · · · · · · · · · · · · · ·	1748	Lei BD	0.093	0.342	0.079	0.331	0.27	0.24		Ne
	2411	Lai BD	0.124	0.342	0.055	0.331	0.36	0.17		Ne
	638	Ld 80	0.068	0.342	0.065	0.331	0.20	0.20		Ne
	3636	Ld 9D	0.102	0.342	0.122	0.331	0.30	0.37		Ne
	2403	Ld BD	0.067	0.342	0.063	0.331	0.20	0.19		Ne
	424	La B D	0.059	0.342	0.061	0.331	0,17	0.18		Ne
	423	Lei BD	0.047	0.342	0.053	0.331	0 14	0.16		Ne
	394	La BD	0.071	0.342	0.149	0.331	0.21	0.45		Ne
	546	La BD	0.090	0.342	0.071	0.331	0.26	0.21		Ne
	393	Ld BD	0.060	0.342	0.088	0.331	0.18	0.27		Ne
	404	Lct BD	0.194	0.342	0.083	0.331	0.57	0.25		Ne
····	651	Lci BD	0.057	0.342	0.079	0.331	0.17	0.24		Ne
	422	Ld 8D	0.056	0.342	0.073	0.331	0.16	0.22	_	Ne
	549	Ld BD	0.216	0.342	0.118	0.331	0.63	0.36		Ne
	420	Ld 80	0.061	0.342	0.058	0.331	0.18	0.18		Ne
	648	Lci BD	0.069	0.342	0.080	0.331	0.20	0.24		Ne
	646	La BD	0.064	0.342	0.069	0.331	0.19	0.21		Ne
49 12	406	Ld BD	0 069	0.342	0.049	0.331	0.20	0.15		Ne
50 1	761	LØ 8D	0.063	0.342	0.066	0.331	0.18	0.20		Neg
51 1	759	Ld BD	0.073	0.342	0.080	0.331	0.21	0.24		Neg
52 12	378	Ld BD	0.064	0.342	0.073	0.331	0.19	0.22		Neg
53 12	377	Lci BD	0.813	0.342	1.388	0.331	2.38	4.19	39.09	Both 4
54 i2	376	Ld 8D	0.056	0.342	0.061	0.331	0.16	0.18		Neg
55 12	375	Lci BD	0 483	0.342	1.062	0.331	1.41	3,21	54.97	Both 4
56 3	587	Lct 8D	0.166	0.342	0.630	0.331	0.49	1.90		swORF2
57	541	Let BD	0.062	0.342	0.075	0.331	0.18	0.23		Neg
58	539	Lci BD	0.256	0.342	0.065	0.331	0.78	0.20		Neg
59	538	Lci BD	0.074	0.342	0 100	0.331	0.22	0.30		Neg
60 12	370	Ld BD	0.056	0.342	0.092	0.331	0.16	0.28		Neg
61 12:	369	Lci BD	2.102	0.342	2.366	0.331	6.15	7.15	10.66	Both 4
62 12:	368	rq8D	0.252	0.342	0.416	0.331	0.74	1.26		swORF2
63 3	590	Lc: BD	0.128	0.342	0.194	0.331	0.37	0.59		
64 35	589	Lc/ BD	0.058	0.342	0.154	0.331	0.37	0.39		Neg
	586	Ld BD	0.060	0.342	0.054	0.331	0.17	0.16		Neg
	588	Ld BD	0.059	0.342	0.084	0.331	0.10			Neg
	395	Lci BD	0.054	0.342	0.055	0.331	0.17	0.25		Neg
	396	Lago	0.059	0.342	0.053	0.331	0.15	0.17		Neg
	26	ra BD	0.058	0.342	0.126	0.331		0.19		Neg
	27	Ld BD	0.061	0.342	0.128	0.331	0.20	0.38		<u> </u>
	29	La BD	0.050	0.342	0.003	0.331	0.18	0.20		Neg
	30	Ld 8D	0.715	0.342		0.331	0.18	0.21	34.00	Neg
	56	ra 8D	0.058	0.342	0.117		2:09		34.23	Both +
74 124		LdBD	0.058	0.342	0.117	0.331	0.17	0.35		Neg
75 463					0.068	0.331	0.17	0.21		Neg
- 403	-3-3	Ld BD	0.060	0.342	0.073	0.331	0.18	0.22		Neg

Figure 3E

enti-HEV EIA			- CARGE	00	-		Sample			Resul
Name	SampleDate		humSAR55	coff	swORF2		humSAR55	swORF2	%CV	
76	1749	Ld BD	0.076	0.342	0.206	0,331	0.22	0.62		Neg
77	1750	Ld BD	0.081	0.342	0.088	0.331	0.24	0.27		Nec
78	12397	Ld BD	0.065	0.342	0.129	0.331	0.19	0.39		Ne
79	12398	Ld BD	0.057	0.342	0.060	0.331	0.17	0.18		Ne
80	12399	Ld BD	0.076	0.342	0.074	0.331	0.22	0.22		Ne
81	12400	Lci BD	0.943	0.342	1.643	0.331	2.76	4.96	40.41	Both
82	1757	Ld BD	0.084	0.342	0.076	0.331	0.25	0.23		Ne
83	12407	Ld BD	0.077	0.342	0.065	0.331	0.23	0.20	 _	Ne
84	3607	Ld BD	0.117	0.342	0.053	0.331	0.34	0.16		Ne
85	12385	Lci BD	0.059	0.342	0.083	0.331	0.17	0.19		Ne
86	3624	Ld BD	0.062	0.342	0.071	0.331	0.18	0.21		Ne
87	3641	ra BD	0.125	0.342	0.069	0.331	0.37	0.21		Ne
88	3642	Lci BD	0.200	0.342	0.071	0.331	0.58	0.21		Ne
89	3643	Ld BD	0.166	0.342	0.052	0.331	0.49	0.16		Ne
90	1751	Let BD	0.064	0.342	0.059	0.331	0.19	0.18		Ne
91	3644	Lci BD	0.090	0.342	0.059	0.331	0.26	0.18		Ne
92	3633	Ld 8D	0.354	0.342	D.479	0.331	1.04	1.45	23.48	Both
93	3631	Ld 8D	0.058	0.342	0.054	0.331	0.17	0.16		Ne
94	3634	Lci 9D	0.107	0.342	0.058	0.331	0.31	0.18		Ne
95	3632	Lcl BD	0.066	0.342	0.071	0.331	0.19	0.21		Ne
3	3625	Ld BD	0.199	0.342	0.067	0.331	0.58	0.20		Ne
4	1753	Ld BD	0.097	0.342	0.00	0.331	0.28	0.27		Ne
5	1754	Ld BD	0.301	0.342	0.3%.	0.331	0.88	0.94		Ne
6	1752	Lci BD	0.095	0.342	0.093	0.331	0.28	0.28		- Ne
7 13717	-0	Ld BD	0.105	0.342	0.072	0.331	0.31	0.22		Ne
	3645	Ld BD	0.110	0.342	0.056	0.331	0.32	0.17		Ne
9	12401	Ld BD	0.105	0.342	0.058	0.331	0.31	0.18		Ne
10	3635	Lc/ 80	0.168	0.342	0.075	0.331	0.49	0.23		Ne
11	12402	Ld BO	0.068	0.342	0.078	0.331	0.20	0.24		Ne
12	3628	Lci BD	0.094	0.342	0.089	0.331	0.27	0.27		Ne
13 99	934222	Ld 8D	0.132	0.342	0.069	0.331	0.39	0.21		Ne
14	551	La BD	0.140	0.342	0.065	0.331	0.41	0.20		Ne
15 9	920465	Lci BD	0.531	0.342	0.340	0.331	1.55	1.03	28.80	Both
16 99	901651	Ld BD	0.086	0.342	0.075	0.331	0.25	0.23		Ne
17 99	952134	Ld 80	0.168	0.342	0.088	0.331	0.49	0.27		Ne
18 99	952133	Ld BD	0.148	0.342	0.082	0.331	0.43	0.25		Ne
19 99	914721	Ld BD	0.083	0.342	0.092	0.331	0.24	0.28		Ne
20	3583	Lci BD	0.115	0.342	0.059	0.331	0.34	0.18		Ne
21	12362	Ld BD	0.073	0.342	0.076	0.331	0.21	0.23		Ne
22	3580	Lci BD	0.131	0.342	0.066	0.331	0.38	0.20		Ne
23	-579	Ld BD	0.068	0.342	0.071	0.331	0.20	0.21		Ne
24	3578	Lc BD	0.069	0.342	0.054	0.331	0.20	0.16		Ne
25	3577	Ld BD	0.095	0.342	0.079	0.331	0.28	0.24		Ne
26	3576	FQ BD	0.107	0.342	0.070	0.331	0.31	0.21		Ne
27	3582	Ld BD	0.199	0.342	0.111	0.331	0.58	0.34		Ne
28	3575	Lci 80	0.140	0.342	0.072	0.331	0.41	0.22		Ne
29	3565	La BD	0.089	0.342	0.074	0.331	0.26	0.22		Ne
30	3574	Lcl SD	0.093	0.342	0.095	0.331	0.27	0.29		Ne
31	3650	Lci BD	1.789	0.342	1.226	0.331	5.23	3.70	24.17	Both
32	12421	Lci BD	0.183	0.342	0.222	0.331	0.54	0.67		Ne
33	3661	Lci BD	0.135	0.342	0.066	0.331		0.20		Ne
34	12419	Lci BD	0.126	0.342	0.058	0.331		0.18		Ne
	3660	Lci BD	2.798	0.342	2.427					

Figure 3F

anti-H	EV ELA				OD			Sample	/Coff		Result
	Name	SampleDate		humSAR55	coff	swORF2	ofí	humSAR55	swORF2	%CV	
36	3658		La BD	0.055	0.342	0.059	0.331	0.16	0.18		Nec
37	3659		Lcl BD	0.128	0.342	0.066	0.331	0.37	0.20		Neg
38	1762		Ld BD	0.161	0.342	0.064	0.331	0.47	0.19		Neg
39	1760		Ld BD	0.223	0.342	0.072	0.331	0.65	0.22	~······	Neg
40	1758		Ld BD	0.601	0.342	0.466	0.331	1.76	1 4 1	15.61	Both +
41	540		Ld BD	0.088	0.342	0.067	0.331	0.26	0.20	<u>-</u> -	Nec
42	542		Lcl BD	0.097	0.342	0.134	0.331	0.28	0.40		Neg
43	537		Ld BD	0.115	0.342	0.072	0.331	0.34	0.22		Neg
44	12380		Ld BD	0.468	0.342	0.437	0.331	1.37	1.32	2.53	Both +
45	12379		Ld BD	0.080	0.342	0.085	0.331	0.23	0.26		Neg
46	7547		La 8D	0.625	0.342	0.438	0.331	1.83	1.32	22.63	Both +

Figure 3G

				re 3G	rigu					
Res		off	Sample/0			OD				nti-HEV EIA
	%CV	swORF2	humSAR55	off	swORF2	coff	humSAR55		SampleDate	Name
N		0.32	0.19	0.300	0.097	0.300	0.057	XJ PH	101	5
1		0.21	0.20	0.300	0.064	0.300	0.061	XJ PH	102	6
ħ		0.25	0 19	0.300	0.074	0.300	0.058	XJ PH	103	7
		0.26	0.22	0.300	0.077	0.300	0.067	XJ PH	104	8
١		0.24	0.18	0.300	0.073	0.300	0.055	XJ PH	105	9
•		0.28	0.18	0.300	0.084	0.300	0.055	XJ PH	106	10
		0.39	0.26	0.300	0.117	0.300	0.077	XJ PH	107	11
Bot	50.42	3.12	1.48	0.300	0.936	0.300	0 444	XJ PH	108	63
1	00.42	0.24	0.21	0.300	0.073	0.300	0.064	XJ PH	109	13
<u>;</u>		0.22	0.18	0.300	0.066	0.300	0.054	XJ PH	110	14
		0.24	0 18	0.300	0.071	0.300	0.055	XJPH	111	15
D.	22.20		4.57	0.300	0.862	0.300	1.372	XJ PH	112	64
Во	32.29	2.87					0.055	XJPH	113	17
	· · · · · ·	0.24	0.18	0.300	0.071	0.300				
1		0.89	0.47	0.300	0.268	0.300	0.141	XJPH	114	18
		0.20	0.20	0.300	0.060	0.300	0.059	XJPH	115	19
!		0.22	0.18	0.300	0.067	0.300	0.055	XJPH	116	20
Во	23 86	1.44	1.03	0.300	0.433	0.300	0.308	XJ PH	117	66
		0.20	0.18	0.300	0.061	0.300	0.054	XJ PH	118	22
		0.73	0.21	0.300	0.219	0.300	0.062	XJ P H	119	67
Во	23.46	1.66	1.19	0.300	0.499	0.300	0.357	XJ PH	121	68
		0.49	0.72	0.300	0.148	0.300	0.215	XJ PH	122	69
i		0.22	0.17	0.300	0.066	0.300	0.052	XJ PH	123	27
1		0.24	0.19	0.300	0.071	0.300	0.057	XJ PH	124	28
		0.22	0.22	0.300	0.067	0.300	0.066	XJ PH	125	29
-		0.31	0.21	0.300	0.092	0.300	0.062	XJ PH	126	30
		0.42	0.22	0.300	0.126	0.300	0.066	XJ PH	127	31
!		0.73	0.67	0.300	0.219	0.300	0.200	XJ PH	128	70
- 1		· · · · · · · · · · · · · · · · · · ·								.,,,
		0.24	0.18	0.300	0.071	0.300	0.054	XJ PH	129	33
		0.24	0 18	0.300	0.073	0 300	∪ 05 5	XJPH	130	34
		0.21	0.18	0.300	0.062	0.300	0.055	XJ PH	131	35
		0.27	0.21	0.300	0.081	0.300	0.062	XJPH	132	36
Bo	33.16	1.95	3,15	0.300	0.586	0.300	0.945	XJ PH	133	71
		0.21	0.18	0.300	0.064	0.300	0.054	XJPH	134	38
		0.45	0.23	0.300	0.136	0.300	0.068	XJPH	135	39
		0.21	0.18	0.300	0.064	0.300	0.055	XJ PH	136	40
		0.21	0 18	0.300	0.062	0.300	0.053	XJPH	137	41
		0.21	0.18	0.300	0.064	0.300	0.055	XJPH	138	42
		0.22	0 18	0.300	0.065	0.300	0.054	XJPH	139	43
Вс	22.07	4.39	6.01	9.300	1.317	0.300	1.804	XJPH	140	72
	22.01									
		0.66		0.300	- · 0.197	0.300	0.167	XJ PH	141	73
		0.39	0.44	0.300	0.116	0.300	0.131	XJ PH	142	46
		0.23	0.20	0.300	0.069	0.300	0.060	XJ PH	143	47
		0.25	0.22	0.300	0.074	0.300	0.066	XJ PH	144	48
		0.69	0.30	0.300	0.206	0.300	0.089	XJ PH	145	49
		0.91	0.89	0.300	0.274	0.300	0.268	XJ PH	146	75
		0.24	0.19	0.300	0.073	0.300	0.056	XJ PH	147	51
		0.35	0.22	0.300	0.107	0.300	0.065	XJ PH	148	52
		0.22	0.18	0.300	0.067	0.300	0.053	XJ PH	149	53
		0.20	0.17		0.060	0.300	0.052	XJ PH	150	54
	•••	0.20	0.18		0.060	0.300	نــــــــــــــــــــــــــــــــــــ	XJPH	151	55
Во	36.51	1.78	<u> </u>		0.533	0.300	0.904	XJ PH	152	76
		0.21	0.18		•		0.054			57
			<u> </u>		0.064	0.300		XJ PH	153	
		0.20	0.20		0.060	0.300	0.059	XJ PH	154	58
		0.22		0.300	0.067	0.300	0.057	XJPH	155	59
		0.25	0.20	0.300	0.076	0.300	0.059	ХJРН	156	60
			0.20 0.17	0.300 0.300						

Figure 3H

				re JH						
Resu			Sample/6	:		00	hCADEC		SampleDate	anti-HEV EIA Name
	%CV	#WORF2	humSAR55		swORF2	coff	humSAR55	2.5.	·····	
Ne		0.24	0.20	0.300	0.071	0.300	0.060	XJ PH	159	63
Ne		0.31	0.17	0.300	0.092	0.300	0 052	XJPH	160	65
Ne		0.28	0.18	0.300	0.084	0.300	0.054	XJPH	161	66
Ne		0.23	0.17	0.300	0.068	0.300	0.050	XJPH	163	67
Ne		0.23	0.18	0.300	0.069	0.300	0.053	XJ PH	164	68
Ne		0.23	0.22	0.300	0.068	0.300	0.067	XJ PH	165	69
Ne		0.20	0.19	0.300	0.060	0.300	0.058	XJ PH	166	70
Ne		0.21	0.18	0.300	0.064	0.300	0.054	XJ PH	167	71
Both	55.21	2.36	1.03	0.300	0.707	0.300	0.310	XJ PH XJ PH	168	72
Ne		0.45	0.27	0.300	0.135	0.300	0.080	XJ PH	169	73
Ne		0.68	0.29	0.300	0.204	0.300	0.086	XJ PH	170	74
Ne		0.24	0.20	0.300	0.072	0.300	0.059	XJ PH	171	75
Ne		0.21	0.18	0.300	0.064	0.300	0.054	XJ PH	172	76
Ne		0.24	0.18	0.300	0.071	0.300	0.034	XJ PH	173	77
Ne		0.28	0.25	0.300	0.084	0.300		XJPH	174	78
Both	26.37	1.46	1.00	0.300	0.439	0.300	0.301	XJ PH	175	79
Ne		0.24	0.25	0.300	0.071	0.300	0.075		176	80
Ne		0.25	0.22	0.300	0.075	0.300	0.066	XJPH	177	81
Ne		0.52	0.59	0.300	0.157	0.300	0.176	XJ PH	178	82
Both	17.72	4.39	3.41	0.500	1.316	0.300	1.023	XJPH	179	
Ne		0.23	0.27	0.300	0.070	0.300	0.080	XJPH		83
Ne		0.39	0.21	0.300	0.116	0.300	0.062	XJPH	180	84
Both	41.91	1.54	2.84	0.300	0.463	0.300	0.853	XJPH	181	83
Ne		0.31	0.20	0.300	0.092	0.300	0.061	XJPH	182	86
Ne		0.25	0.18	0.300	0.074	D.300	0.055	XJPH	183	87
Ne		0.26	0.18	0.300	0.078	0.300	0.054	XJ PH	184	88
Ne		0.25	0.20	0.300	0.074	0.300	0.060	XJ PH	185	89
Ne		0.24	0.20	0.300	0.072	0.300	0.060	XJPH	186	90
Ne		0.28	0.24	0.300	0.084	0.300	0.071	X.J.PH	187	91
Ne		0.27	0.20	0.300	0.080	0.300	0.060	XIPH	138	92
Ne		0.34	0.32	0.300	0.102	0.300	0.095	XJ PH	189	93
Ne		0.23	0.19	0.300	0.068	0.300	0.057	XJ PH	190	94
Ne		0.24	0.26	0.300	0.071	0.300	0.078	XJ PH	191	95
Ne		0.40	0.35	0.300	0.121	0.300	0.104	XJ PH	192	5
Ne		0.28	0.27	0.300	0.083	0.300	0.082	XJ PH	193	6
Ne		0.30	0.23	0.300	0.089	0.300	0.070	XJ PH	194	7.
Ne		0.36	0.40	0.300	0.109	0.300	0.119	XJ PH	195	8
Ne		0.77	0.86	D.300	0.230	0.300	0.259	XJ PH	196	84
Ne		0.32	0.30	0.300	0.096	0.300	0.090	XJ PH	197	10
Ne		0.36	0.28	0.300	0.109	0.300	0.084	XJ PH	198	11
Ne		0.27	0.27	0.300	0.080	0.300	0.080	X) PH	199	12
Ne		0.47	0.39	0.300	0.141	0.300	0.118	XJ PH	200	13
Ne		0.22	0.20	0.300	0.066	0.300	0.060	XJ PH	201	14
Ne		0.26	0.23	0.300	0.077	0.300	0.070	XJ PH	202	15
Ne		0.28	0.23	0.300	0.084	0.300	0.070	XJPH	203	
Neg		0.26	0.22	0.300	0.079	0.300	0.065	XJ PH	204	
Both ·	43.04	1.04	1.95	0.300	0.312	0.300	0.585	XJ PH	205	
Both -	37.22	1.72	1.00	0.300	0.516	0.300	0.301	XJPH	206	
Both -	51.15	1.33	2.83	0.300	0.398	0.300	0.849	XJPH	207	
Neg		0.30	0.26	0.300	0.090	0.300	0.079	XJPH	208	
Neg		0.24	0.22	0.300	0.072	0.300	0.065	XJ PH	209	
Neg		0.52	0.45	0.300	0.157	0.300	0.135	XJ PH	210	
Neg		0.42	0.74	0.300	0.125	0.300	0.221	XJ PH	211	
Neg		0.23	0.21	0.300	0.069	0.300	0.062	XJ PH	212	
Ne		0.24	0.22	D.300	0.073	0.300	0.067	XJ PH	213	
Both ·	34.44	4.91	8.08	0.300	1.474	0.300	2.423	XJ PH	214	
Ne		0.98	0.64	0.300	0.294	0.300	0.193	XJPH	215	28

Figure 31

Name	SampleDate	<u>·</u>	humSAR55	Coff	swORF2 o	-	Sample/C		%CV	Result
5	216	XJ PH	1.604	0.300			humSAR55	swORF2		
6	217	XJ PH	0.830	0.300	1.215 0.619	0.300	5.35 2.77	4.05	19.52 20.59	Bosn -
31	218	XJPH	0.065	0.300	0.013	0.300	0.22	2.06	20.39	Both -
32	219	XJ PH	0.070	0.300	0.085	0.300		0.26		Ne
33	220	XJPH	0.070	0.300	0.083	0.300	0.23	0.28		Ne
34	220	XJ PH	0.064	0.300	0.064	0.300		0.27		Ne
							0.21			Ne
35	222	XJ PH	0.080	0.300	0.072		0.27	0.24	44.66	Ne
7	223	XJ PH	0.668	0.300	0.364	0.300	2.23	1.21	41.66	Both
<u>B</u>	224	XJ PH	0.512	0.300	0.431	0.300	1.71	1.44	12.15	Both
9	225	XJ PH	1.328	0.300	1.062	D.300	4.43	3 54	15.74	Both
39	225	XJ PH	0.068	0.300	0.080	0.300	0.23	0.27		N
10	227	XJ PH	· ·59	0.300	0.547	0.300	2.20	1.82	13 13	Bot
41	228	XJ PH	0.202	0.300	0.286	0.300	0.67	0.95		N
42	229	XJ PH	0.068	D.300	0.088	0.300	0.23	0.29		N
43	230	XJ PH	0.137	0.300	0.204	0.300	0.46	0.68		N
44	231	XJ PH	0.140	0.300	0.250	0.300	0.47	0.83		N
45	232	XJ PH	0.210	0.300	0.264	0.300	0.70	0.88		N
46	233	XJ PH	0.079	0.300	0.064	0.300	0.26	0.21		N
47	234	XJ PH	0.085	0.300	0.072	0.300	0.28	0.24		N
48	235	XJ PH	0.069	0.300	0.084	0.300	0.23	0.28		N
49	236	XJ PH	0.067	0.300	0.071	0.300		0.24		N
50	237	XJ PH	0.084	0.300	0.093	0.300		0.31		N
51	238	XJ PH	0.078	0.300	0.087	0.300		0.29		N.
52	239	XJ PH	0.076	0.300	0.007	0.300		0.49		N
								0.49		
53	240	XJ PH	0.066	0.300	0.082	0.300			40.40	N N
15	241	XJPH	0.762	0.300	0.657	0.300		2.19	10.46	Bos
55	242	XJPH	0.068	0.300	0.080	0.300		0.27		N
56	243	XJ PH	0.066	0.300	0.074	0.300		0.25		N
57	244	XJ PH	0.063	0.300	0.069	0.300	0.21	0.23		N.
58	245	XJ PH	0.065	0.300	0.060	0.300	0.22	0.20		N
59	246	XJ PH	0.159	0.300	0.214	0.300	0.53	0.71		N
60	247	XJ PH	0.072	0.300	0.072	0.300	0.24	0.24		1
61	248	XJ PH	0.103	0.300	0.211	0.300	0.34	0.70		٨
62	249	- XJ PH	0.100	0.300	0.071	0.300	0.33	0.24		١
63	250	XJ PH	0.099	0.300	0.142	0.300	0.33	0.47		ì
64	251	XJ PH	0.073	0.300	0.106	0.300	0.24	0.35		1
65	252	XJ PH	0.059		0.069			0.23		
66	253	XJPH	0.065	0.300	0.077			0.26		1
		XJPH	0.064		0.068			0.23		- 1
67 .	254 255		0.284		0.245		. 1	0.82		<u>'</u>
68		XJ PH						0.23		
69	256	XJ PH	0.054		0.069			0.21		·
70	257	XJ PH	0.063		0.062					
71	258	XJ PH	0.074		0.065			0.22		
72	259	XJ PH	0.067		0.071			0.24		
73	260	XJ PH	0.102		0.066			0.22		
19	261	XJ PH	0.629	0.300	0.399			1.33	31.64	Вс
75	262	XJ PH	0.060	0.300	0.06	5 0.30	0.20	0.22		
76	263	XJ PH	0.346	0.300	0.55	1 0.30	0 1.15	1.64	32.32	В
77	264	XJ PH	0.062	0.300	0.06	5 0.30	0.21	0.22		
78	265	XJ PH	0.077		0.07	8 0.30	0.26	0.26		
79	265	XJ PH	0.145		0.22			0.76		
80	267	XJ PH	0.061		0.06			0.23		
	258	XJPH	0.152		0.17			0.57		
81		XJPH	0.497		0.37			1.25	19.60	B
23	269							0.20	.3.00	
83	270	XJ PH	0.063		0.06					
84	271	XJ PH	0.068	0.300	0.06	4 0.30	0.23	0.21		

Figure 3J

North Series Nort	ani NEV EN						ure 3.				
Belle			SampleDate	humSARSS					Coff		Resul
87 274 XJPH 0.144 0.300 0.2004 0.300 0.24 0.28 NP 88 0.275 XJPH 0.046 0.300 0.066 0.300 0.22 0.22 0.22 NP 199 276 XJPH 0.070 0.300 0.077 0.300 0.22 0.22 0.22 NP 191 278 XJPH 0.240 0.300 0.207 0.300 0.80 0.66 NP 191 278 XJPH 0.240 0.300 0.207 0.300 0.80 0.66 NP 192 279 XJPH 0.070 0.300 0.070 0.300 0.26 0.25 NP 193 278 XJPH 0.070 0.300 0.070 0.300 0.26 0.25 NP 192 279 XJPH 0.071 0.300 0.070 0.300 0.26 0.25 NP 193 280 XJPH 0.072 0.300 0.066 0.300 0.26 0.25 NP 194 281 XJPH 0.072 0.300 0.069 0.300 0.25 0.27 0.30 NP 194 281 XJPH 0.072 0.300 0.069 0.300 0.27 0.27 0.30 NP 195 282 XJPH 0.071 0.300 0.0073 0.34 1.060 1.19 2072 Both 15 283 XJPH 0.071 0.300 0.0073 0.34 1.060 1.19 2072 Both 17 285 XJPH 0.087 0.300 0.0073 0.34 1.02 0.22 0.22 NP 17 285 XJPH 0.081 0.300 0.0073 0.34 1.02 0.02 0.24 NP 187 286 XJPH 0.086 0.300 0.035 0.34 1.22 1.04 1.099 Both 18 287 XJPH 0.086 0.300 0.031 0.34 1.22 1.04 1.099 Both 19 287 XJPH 0.086 0.300 0.031 0.34 1.22 1.04 1.099 Both 19 287 XJPH 0.086 0.300 0.031 0.34 1.12 1.04 1.099 Both 19 287 XJPH 0.086 0.300 0.031 0.34 1.12 1.04 1.099 Both 19 287 XJPH 0.086 0.300 0.031 0.34 1.12 1.04 1.099 Both 19 287 XJPH 0.050 0.300 0.007 0.30 1.00 0.00 0.00 0.00 0.00 0.00 0.00	86							humSAR55	swORF2	%CV	
88 277									0.28		Neg
Section Sect	88	275							0.68		Neg
25	89	276									Neg
91 278 XJPH 0078 0300 0078 0300 026 025 Ne 92 279 XJPH 0078 0300 0080 0300 026 025 Ne 93 280 XJPH 0078 0300 0091 0300 025 030 Ne 94 281 XJPH 0085 0300 0091 0300 025 030 Ne 95 282 XJPH 0085 0300 0092 0300 022 032 Ne 96 282 XJPH 0085 0300 0097 0301 0200 025 030 Ne 97 285 283 XJPH 0080 0300 0097 0341 1600 119 2072 Ben 98 280 XJPH 0070 0300 0097 0341 023 021 Ne 98 281 XJPH 0087 0300 0098 0341 023 021 Ne 99 287 XJPH 0087 0300 0098 0341 023 021 Ne 99 287 XJPH 0087 0300 0098 0341 022 022 Ne 99 287 XJPH 0087 0300 0098 0341 122 104 1099 Ben 99 287 XJPH 0087 0300 0098 0341 122 104 1099 Ben 11 288 XJPH 0087 0300 00315 0341 122 104 1099 Ben 12 288 XJPH 0087 0300 0031 0341 179 185 222 Ben 13 291 XJPH 0087 0300 0181 0341 179 185 222 Ben 14 292 XJPH 0087 0300 0188 0341 179 185 222 Ben 14 292 XJPH 0086 0300 0187 0341 179 185 222 Ben 15 293 XJPH 0086 0300 0187 0341 179 185 222 Ben 15 293 XJPH 0086 0300 0187 0341 179 185 222 Ben 16 294 XJPH 0086 0300 0187 0341 179 185 222 Ben 17 288 XJPH 0086 0300 0187 0341 179 185 222 Ben 18 289 XJPH 0086 0300 0187 0341 179 185 222 Ben 19 297 XJPH 0086 0300 0187 0341 179 185 222 Ben 19 297 XJPH 0086 0300 0187 0341 179 185 222 Ben 19 297 XJPH 0086 0300 0187 0341 179 185 222 Ne 19 298 XJPH 0086 0300 0057 0341 179 034 165 Ne 19 297 XJPH 0086 0300 0057 0341 179 036 165 Ne 19 297 XJPH 0086 0300 0057 0341 022 032 Ne 19 298 XJPH 0086 0300 0057 0341 022 032 Ne 19 299 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 022 036 Ne 19 297 XJPH 0086 0300 0050 0341 037 036 Ne 19 297 XJPH 0086 0300 0050 0341 037 036 Ne 19 297 XJPH 0086 0300 0050 0341 037 036 Ne 19 298 XJPH 0086 0300 0050 0341 037 036 Ne 19 299 XJPH 0086 0300 0050 0341 037 039 038 Ne 19 297 XJPH 0086 0300 0050 0341 0341 037 039 038 Ne 19 297 XJPH 0086 0300 0050 0341 0341 03	25	277									Neg
92 279 XJPH 0.078 0.300 0.066 0.300 0.26 0.29 NN 94 281 XJPH 0.077 0.300 0.091 0.300 0.25 0.30 NN 95 281 XJPH 0.087 0.300 0.095 0.300 0.25 0.30 NN 96 281 XJPH 0.087 0.300 0.089 0.300 0.22 0.23 NN 97 281 XJPH 0.087 0.300 0.087 0.341 1.160 1.18 20.72 Born 98 281 XJPH 0.087 0.300 0.083 0.341 0.20 0.24 NN 98 281 XJPH 0.087 0.300 0.083 0.341 0.20 0.24 NN 98 281 XJPH 0.087 0.300 0.083 0.341 0.20 0.24 NN 98 281 XJPH 0.087 0.300 0.083 0.341 0.20 0.24 NN 99 287 XJPH 0.087 0.300 0.085 0.341 0.22 0.22 NN 99 287 XJPH 0.087 0.300 0.085 0.341 0.22 0.22 NN 99 287 XJPH 0.085 0.300 0.035 0.341 1.22 1.04 1.09 Born 11 288 XJPH 0.087 0.300 0.083 0.341 0.22 0.22 NN 11 288 XJPH 0.087 0.300 0.083 0.341 0.22 0.40 NN 11 289 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 289 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 289 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 289 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 289 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 289 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 290 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 290 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 290 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 290 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 290 XJPH 0.087 0.300 0.189 0.341 0.22 0.55 NN 11 290 XJPH 0.087 0.300 0.087 0.341 0.22 0.32 NN 11 290 XJPH 0.080 0.300 0.077 0.341 0.23 0.23 NN 11 290 XJPH 0.080 0.300 0.077 0.341 0.22 0.30 0.39 NN 11 290 XJPH 0.080 0.300 0.077 0.341 0.23 0.23 NN 11 290 XJPH 0.080 0.300 0.080 0.341 0.21 0.18 NN 11 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.18 NN 11 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.18 NN 11 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.18 NN 11 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.18 NN 11 290 XJPH 0.081 0.300 0.082 0.341 0.20 0.18 NN 11 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.20 0.18 NN 12 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.20 0.18 NN 12 290 XJPH 0.081 0.300 0.082 0.341 0.21 0.20 0.18 NN 13 31 31 XJPH 0.082 0.300 0.085 0.341 0.21 0.20 0.18 NN 13 31 31 XJPH 0.086 0.300 0.085 0.341 0.21 0.21 0.18 NN 13 31 31 XJPH 0.080 0.300 0.080 0.34		278									Neg
93 280 XIPH 0.074 0.300 0.091 0.300 0.25 0.30 Ne 94 281 XIPH 0.085 0.300 0.656 0.300 0.22 0.22 0.23 Ne 26 282 XIPH 0.081 0.300 0.656 0.300 0.22 0.22 0.23 Ne 26 282 XIPH 0.070 0.300 0.070 0.341 1.00 1.19 0.27 BeDP 5 283 XIPH 0.070 0.300 0.072 0.341 0.023 0.27 Ne 6 284 XIPH 0.081 0.300 0.083 0.341 0.20 0.22 Ne 7 285 XIPH 0.087 0.300 0.083 0.341 0.22 0.22 Ne 7 285 XIPH 0.087 0.300 0.083 0.341 0.22 0.22 Ne 9 287 XIPH 0.085 0.300 0.035 0.341 0.22 0.22 Ne 11 289 XIPH 0.085 0.300 0.355 0.341 1.122 1.104 10.99 BeDP 11 289 XIPH 0.085 0.300 0.035 0.341 0.22 0.40 Ne 11 289 XIPH 0.057 0.300 0.031 0.341 0.20 0.40 Ne 11 289 XIPH 0.057 0.300 0.031 0.341 0.22 0.40 Ne 11 289 XIPH 0.057 0.300 0.031 0.341 0.22 0.55 Ne 13 291 XIPH 0.037 0.300 0.321 0.341 1.19 0.54 16.50 asa45 14 292 XIPH 0.057 0.300 0.032 0.341 0.22 0.55 Ne 14 292 XIPH 0.086 0.300 0.067 0.341 0.37 0.49 Ne 14 292 XIPH 0.062 0.300 0.067 0.341 0.37 0.49 Ne 15 293 XIPH 0.062 0.300 0.067 0.341 0.37 0.49 Ne 16 293 XIPH 0.062 0.300 0.067 0.341 0.37 0.49 Ne 17 289 XIPH 0.062 0.300 0.067 0.341 0.37 0.49 Ne 18 295 XIPH 0.062 0.300 0.067 0.341 0.37 0.49 Ne 18 296 XIPH 0.062 0.300 0.067 0.341 0.37 0.49 Ne 18 296 XIPH 0.062 0.300 0.067 0.341 0.37 0.39 Ne 19 297 XIPH 0.062 0.300 0.062 0.341 0.21 0.11 Ne 18 296 XIPH 0.062 0.300 0.062 0.341 0.21 0.11 Ne 18 296 XIPH 0.062 0.300 0.062 0.341 0.21 0.21 0.18 Ne 19 297 XIPH 0.065 0.300 0.062 0.341 0.20 0.18 Ne 19 297 XIPH 0.065 0.300 0.062 0.341 0.27 0.18 Ne 19 297 XIPH 0.066 0.300 0.060 0.341 0.27 0.18 Ne 19 297 XIPH 0.066 0.300 0.066 0.341 0.20 0.18 Ne 19 297 XIPH 0.066 0.300 0.060 0.341 0.27 0.18 Ne 19 297 XIPH 0.066 0.300 0.060 0.341 0.20 0.18 Ne 19 297 XIPH 0.066 0.300 0.060 0.341 0.20 0.18 Ne 19 297 XIPH 0.066 0.300 0.066 0.341 0.20 0.18 Ne 19 297 XIPH 0.066 0.300 0.066 0.341 0.20 0.18 Ne 19 297 XIPH 0.066 0.300 0.066 0.341 0.20 0.16 Ne 19 297 XIPH 0.067 0.300 0.068 0.341 0.20 0.16 Ne 19 297 XIPH 0.067 0.300 0.068 0.341 0.20 0.17 Ne 19 297 XIPH 0.067 0.300 0.068 0.341 0.20 0.16 Ne 19 307 XIPH 0.066 0.300 0.067 0.341 0.20 0.16 Ne	92										Neg
19	93	280									Neg
26	94	281									Neg
5 283 XJPH 0070 0300 0070 0341 0.020 0.024 NR 6 284 XJPH 0061 0300 0073 0341 0.020 0.24 NR 7 285 XJPH 0061 0300 0.083 0.341 0.020 0.24 NR 7 285 XJPH 0067 0300 0.076 0.341 0.020 0.24 NR 9 287 XJPH 0.065 0.300 0.076 0.341 0.020 0.24 NR 1 288 XJPH 0.055 0.300 0.055 0.341 1.22 1.04 10.99 Buth 1 288 XJPH 0.055 0.300 0.055 0.341 1.22 1.04 10.99 Buth 1 288 XJPH 0.057 0.300 0.055 0.341 1.22 0.022 0.022 NR 1 289 XJPH 0.057 0.300 0.058 0.341 1.79 1.85 2.22 Both 1 289 XJPH 0.057 0.300 0.058 0.341 1.79 0.055 0.055 NR 1 299 280 XJPH 0.057 0.300 0.058 0.341 1.79 0.49 16.50 3.455 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.	26	282									Neg
6 284 XJPH 0.061 0.300 0.083 0.341 0.20 0.24 New 7 285 XJPH 0.067 0.300 0.076 0.341 0.22 0.22 New 7 286 XJPH 0.067 0.300 0.076 0.341 0.22 0.022 New 7 286 XJPH 0.067 0.300 0.056 0.300 0.356 0.341 0.22 1.040 0.99 Both 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		283								20.72	Both +
7 285 XJPH 0.087 0.300 0.076 0.341 0.22 0.22 NBM 27 286 XJPH 0.366 0.300 0.0756 0.341 0.22 0.22 NBM 9 287 XJPH 0.085 0.300 0.0135 0.341 1.22 1.04 10.99 BDM 28 288 XJPH 0.505 0.300 0.135 0.341 1.79 1.85 2.22 BDM 11 288 XJPH 0.505 0.300 0.851 0.341 1.79 1.85 2.22 BDM 29 290 XJPH 0.057 0.300 0.185 0.341 1.19 0.94 1.650 sa.65 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	6	284									Neg
27	7	285									Neg
9 287 XJPH 0.085 0.300 0.735 0.341 0.22 0.40 New 11 1 288 XJPH 0.558 0.300 0.631 0.341 1.79 1.85 2.22 Born-1288 XJPH 0.558 0.300 0.631 0.341 1.79 1.85 2.22 Born-1288 XJPH 0.357 0.300 0.818 0.341 1.79 0.94 1.550 sand5-131 2.91 XJPH 0.112 0.300 0.616 0.341 0.22 0.55 and5-131 2.91 XJPH 0.112 0.300 0.067 0.341 0.23 0.23 0.49 New 11 1.79 0.94 1.550 sand5-131 2.91 XJPH 0.112 0.300 0.077 0.341 0.23 0.23 0.35 New 11 1.79 0.94 1.550 sand5-131 2.91 XJPH 0.082 0.300 0.077 0.341 0.23 0.23 New 11 1.79 0.94 1.550 sand5-131 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.9	27	286				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Neg
28	9	287								10.99	Both +
11	28	288							· · · · · · · · · · · · · · · · · · ·		Neg
29 290 XJPH 0.55 0.300 0.321 0.341 1.19 0.94 16.50 sa15	11	289								2.22	Both +
131 291 XJPH 0112 0.300 0.167 0.341 0.37 0.49 Neg 14 292 XJPH 0.066 0.300 0.077 0.341 0.23 0.23 Neg 15 293 XJPH 0.066 0.300 0.077 0.341 0.23 0.23 Neg 10 294 XJPH 0.066 0.300 0.077 0.341 0.23 0.23 Neg 10 294 XJPH 0.052 0.300 0.052 0.341 0.21 0.18 Neg 11 295 XJPH 0.350 0.300 0.370 0.341 117 1.09 5.13 8mcNF2 11 296 XJPH 0.351 0.300 0.062 0.341 0.20 0.18 Neg 19 297 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 19 297 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 19 298 XJPH 0.062 0.300 0.062 0.341 0.20 0.18 Neg 19 299 XJPH 0.076 0.300 0.065 0.341 0.21 0.20 Neg 12 299 XJPH 0.076 0.300 0.085 0.341 0.21 0.20 Neg 13 301 XJPH 0.065 0.300 0.085 0.341 0.21 0.20 Neg 13 301 XJPH 0.066 0.300 0.085 0.341 0.21 0.20 Neg 13 301 XJPH 0.066 0.300 0.085 0.341 0.21 0.20 Neg 14 302 XJPH 0.061 0.300 0.085 0.341 0.22 0.17 Neg 15 303 XJPH 0.611 0.300 0.064 0.341 0.21 0.19 Neg 15 303 XJPH 0.077 0.300 0.084 0.341 0.21 0.19 Neg 15 303 XJPH 0.077 0.300 0.084 0.341 0.21 0.19 Neg 15 303 XJPH 0.077 0.300 0.064 0.341 0.20 0.17 Neg 16 304 XJPH 0.077 0.300 0.060 0.341 0.20 0.17 Neg 17 305 XJPH 0.060 0.300 0.060 0.341 0.19 0.18 Neg 18 306 XJPH 0.064 0.300 0.069 0.341 0.19 0.18 Neg 18 305 XJPH 0.064 0.300 0.069 0.341 0.19 0.18 Neg 19 307 XJPH 0.064 0.300 0.069 0.341 0.19 0.18 Neg 19 307 XJPH 0.065 0.300 0.069 0.341 0.19 0.18 Neg 19 307 XJPH 0.066 0.300 0.069 0.341 0.19 0.18 Neg 19 308 XJPH 0.075 0.300 0.069 0.341 0.20 0.17 Neg 10 30 308 XJPH 0.075 0.300 0.069 0.341 0.20 0.17 Neg 10 30 308 XJPH 0.075 0.300 0.060 0.341 0.20 0.17 Neg 10 30 308 XJPH 0.075 0.300 0.069 0.341 0.20 0.16 Neg 10 30 308 XJPH 0.075 0.300 0.060 0.341 0.20 0.16 Neg 10 30 308 XJPH 0.075 0.300 0.069 0.341 0.20 0.16 Neg 10 30 308 XJPH 0.068 0.300 0.069 0.341 0.20 0.16 Neg 10 30 308 XJPH 0.068 0.300 0.069 0.341 0.20 0.16 Neg 10 30 308 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 10 30 308 XJPH 0.068 0.300 0.069 0.341 0.20 0.18 Neg 10 30 31 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 10 31 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 10 31 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 10 31 XJPH 0	29										Neg
14 292 XJPH 0066 0.300 0.077 0.341 0.23 0.23 Neg 15 293 XJPH 0.062 0.300 0.077 0.341 0.23 0.23 Neg 30 294 XJPH 0.062 0.300 0.052 0.341 0.25 0.1018 Neg 31 295 XJPH 0.355 0.300 0.352 0.341 0.85 1.03 swGRF2 31 295 XJPH 0.050 0.300 0.370 0.341 1177 1.095 5.13 Both- 18 296 XJPH 0.051 0.300 0.062 0.341 0.20 0.18 Neg 298 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 20 298 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 21 299 XJPH 0.061 0.300 0.062 0.341 0.21 0.20 Neg 21 299 XJPH 0.065 0.300 0.068 0.341 0.21 0.20 Neg 23 300 XJPH 0.065 0.300 0.068 0.341 0.22 0.17 Neg 23 301 XJPH 0.064 0.300 0.066 0.341 0.22 0.17 Neg 25 303 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 26 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.18 Neg 27 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.19 Neg 28 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.19 Neg 29 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.19 Neg 29 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.19 Neg 29 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.19 Neg 29 300 XJPH 0.061 0.300 0.066 0.341 0.20 0.19 0.18 Neg 28 306 XJPH 0.075 0.300 0.0060 0.341 0.26 0.30 Neg 29 307 XJPH 0.075 0.300 0.0060 0.341 0.20 0.19 0.18 Neg 30 308 XJPH 0.075 0.300 0.066 0.341 0.20 0.19 0.18 Neg 31 309 XJPH 0.066 0.300 0.067 0.341 0.20 0.17 Neg 31 309 XJPH 0.066 0.300 0.067 0.341 0.21 0.20 Neg 31 309 XJPH 0.067 0.300 0.067 0.341 0.20 0.17 Neg 32 310 XJPH 0.068 0.300 0.069 0.341 0.20 0.17 Neg 33 311 XJPH 0.066 0.300 0.067 0.341 0.21 0.20 Neg 34 312 XJPH 0.066 0.300 0.067 0.341 0.21 0.20 Neg 35 313 XJPH 0.066 0.300 0.066 0.341 0.20 0.18 Neg 36 314 XJPH 0.066 0.300 0.066 0.341 0.20 0.18 Neg 37 315 XJPH 0.066 0.300 0.065 0.341 0.21 0.19 0.18 Neg 38 317 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 38 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.19 0.17 Neg 30 324 XJP	13	291						- · 		16.50	sar55 +
15 293 XJPH 0.062 0.300 0.062 0.341 0.21 0.18 Neg 30 294 XJPH 0.255 0.300 0.522 0.341 0.85 1.03 \$\frac{1}{3}\$ \$\mathre{\text{MOPR}}\$? 18 295 XJPH 0.350 0.300 0.537 0.341 1.17 1.09 5.13 Both- 18 296 XJPH 0.061 0.300 0.062 0.341 0.27 0.18 Neg 19 287 XJPH 0.081 0.300 0.062 0.341 0.27 0.18 Neg 20 298 XJPH 0.062 0.300 0.068 0.341 0.27 0.18 Neg 21 299 XJPH 0.065 0.300 0.068 0.341 0.27 0.18 Neg 22 300 XJPH 0.065 0.300 0.066 0.341 0.27 0.19 Neg 23 301 XJPH 0.064 0.300 0.055 0.341 0.22 0.17 Neg 33 302 XJPH 0.064 0.300 0.065 0.341 0.22 0.17 Neg 32 302 XJPH 0.061 0.300 0.066 0.341 0.21 0.19 Neg 25 303 XJPH 0.077 0.300 0.064 0.341 0.21 0.19 Neg 25 303 XJPH 0.077 0.300 0.064 0.341 0.21 0.19 Neg 26 304 XJPH 0.077 0.300 0.064 0.341 0.21 0.19 Neg 27 305 XJPH 0.060 0.300 0.060 0.341 0.19 0.18 Neg 28 306 XJPH 0.060 0.300 0.060 0.341 0.29 0.18 Neg 30 307 XJPH 0.064 0.300 0.066 0.341 0.29 0.17 Neg 30 307 XJPH 0.060 0.300 0.060 0.341 0.29 0.17 Neg 31 309 XJPH 0.067 0.300 0.060 0.341 0.29 0.18 Neg 31 309 XJPH 0.067 0.300 0.060 0.341 0.29 0.17 Neg 31 309 XJPH 0.067 0.300 0.060 0.341 0.29 0.17 Neg 31 309 XJPH 0.060 0.300 0.069 0.341 0.20 0.17 Neg 31 309 XJPH 0.067 0.300 0.067 0.341 0.20 0.17 Neg 31 309 XJPH 0.075 0.300 0.067 0.341 0.20 0.17 Neg 31 309 XJPH 0.075 0.300 0.067 0.341 0.20 0.17 Neg 31 309 XJPH 0.068 0.300 0.069 0.341 0.20 0.17 Neg 31 309 XJPH 0.068 0.300 0.069 0.341 0.20 0.17 Neg 32 310 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 33 311 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 34 312 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 34 312 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 34 312 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 34 312 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 34 312 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 34 312 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 35 313 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 36 314 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 37 315 XJPH 0.069 0.300 0.069 0.341 0.20 0.16 Neg 38 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.20 0.18 Neg 39 3	14										Neg
30 294 XJPH 0.255 0.300 0.352 0.341 0.25 1.03 SWORF2+ 31 295 XJPH 0.350 0.300 0.370 0.341 1.17 1.09 5.13 SWORF2+ 18 296 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 19 297 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 20 288 XJPH 0.062 0.300 0.068 0.341 0.27 0.16 Neg 21 299 XJPH 0.065 0.300 0.068 0.341 0.27 0.16 Neg 22 300 XJPH 0.065 0.300 0.068 0.341 0.27 0.17 Neg 23 301 XJPH 0.065 0.300 0.065 0.341 0.22 0.17 Neg 23 301 XJPH 0.064 0.300 0.065 0.341 0.22 0.17 Neg 25 303 XJPH 0.064 0.300 0.064 0.341 0.22 0.17 Neg 26 303 XJPH 0.067 0.300 0.064 0.341 0.22 0.17 Neg 27 305 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 28 300 XJPH 0.067 0.300 0.064 0.341 0.22 0.17 Neg 29 300 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 29 300 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 30 302 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 29 303 XJPH 0.077 0.300 0.060 0.341 0.22 0.17 Neg 26 303 XJPH 0.077 0.300 0.060 0.341 0.20 0.09 Neg 27 305 XJPH 0.067 0.300 0.060 0.341 0.20 0.09 Neg 29 307 XJPH 0.057 0.300 0.060 0.341 0.20 0.07 Neg 30 308 XJPH 0.057 0.300 0.060 0.341 0.20 0.07 Neg 30 308 XJPH 0.065 0.300 0.066 0.341 0.20 0.07 Neg 30 308 XJPH 0.075 0.300 0.060 0.341 0.20 0.07 Neg 31 309 XJPH 0.019 0.300 0.007 0.341 0.22 0.17 Neg 31 309 XJPH 0.058 0.300 0.065 0.341 0.20 0.07 Neg 32 310 XJPH 0.058 0.300 0.065 0.341 0.20 0.07 Neg 31 309 XJPH 0.058 0.300 0.066 0.341 0.20 0.07 Neg 32 310 XJPH 0.058 0.300 0.066 0.341 0.20 0.01 Neg 33 311 XJPH 0.067 0.300 0.066 0.341 0.20 0.01 Neg 34 312 XJPH 0.067 0.300 0.066 0.341 0.20 0.01 Neg 35 313 XJPH 0.067 0.300 0.066 0.341 0.20 0.01 Neg 36 314 XJPH 0.067 0.300 0.066 0.341 0.20 0.01 Neg 39 317 XJPH 0.068 0.300 0.066 0.341 0.20 0.01 Neg 39 317 XJPH 0.068 0.300 0.066 0.341 0.21 0.19 0.18 Neg 34 312 XJPH 0.067 0.300 0.066 0.341 0.21 0.19 0.17 Neg 39 317 XJPH 0.068 0.300 0.066 0.341 0.20 0.18 Neg 39 317 XJPH 0.068 0.300 0.066 0.341 0.20 0.18 Neg 39 317 XJPH 0.069 0.300 0.066 0.341 0.20 0.11 Neg 39 317 XJPH 0.069 0.300 0.066 0.341 0.20 0.17 Neg 39 317 XJPH 0.069 0.300 0.069 0.341 0.19 0.17 Neg 39 317 XJPH 0.069 0.300	15								0.23		Neg
31 285 XJPH 0.350 0.300 0.370 0.341 0.85 1.03 swQRF2 = 18 296 XJPH 0.061 0.300 0.062 0.341 0.20 0.18 Neg 297 XJPH 0.061 0.300 0.062 0.341 0.27 0.18 Neg 20 288 XJPH 0.061 0.300 0.065 0.341 0.27 0.18 Neg 21 299 XJPH 0.061 0.300 0.068 0.341 0.21 0.20 Neg 21 299 XJPH 0.065 0.300 0.068 0.341 0.21 0.20 Neg 21 299 XJPH 0.065 0.300 0.068 0.341 0.22 0.17 Neg 21 299 XJPH 0.065 0.300 0.065 0.341 0.22 0.17 Neg 21 299 XJPH 0.065 0.300 0.065 0.341 0.22 0.17 Neg 21 299 XJPH 0.065 0.300 0.055 0.341 0.22 0.17 Neg 21 299 XJPH 0.065 0.300 0.055 0.341 0.22 0.17 Neg 21 20 300 XJPH 0.065 0.300 0.057 0.341 0.22 0.17 Neg 21 20 300 XJPH 0.061 0.300 0.064 0.341 0.21 0.19 Neg 22 300 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 22 300 XJPH 0.061 0.300 0.064 0.341 0.22 0.17 Neg 22 300 XJPH 0.061 0.300 0.064 0.341 0.25 0.30 Neg 22 300 XJPH 0.061 0.300 0.060 0.341 0.19 0.18 Neg 22 300 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Neg 22 300 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Neg 22 300 XJPH 0.060 0.300 0.060 0.341 0.19 0.18 Neg 22 305 XJPH 0.060 0.300 0.059 0.341 0.20 0.17 Neg 22 305 XJPH 0.060 0.300 0.059 0.341 0.20 0.17 Neg 23 300 XJPH 0.064 0.300 0.059 0.341 0.20 0.17 Neg 23 300 XJPH 0.065 0.300 0.066 0.341 0.20 0.17 Neg 31 300 XJPH 0.065 0.300 0.066 0.341 0.20 0.11 Neg 31 300 XJPH 0.065 0.300 0.066 0.341 0.20 0.16 Neg 31 300 XJPH 0.065 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.065 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.066 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.066 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.066 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.066 0.341 0.20 0.16 Neg 31 300 XJPH 0.066 0.300 0.066 0.341 0.20 0.17 Neg 31 300 XJPH 0.068 0.300 0.066 0.341 0.20 0.17 Neg 31 300 XJPH 0.068 0.300 0.068 0.341 0.									0.18		Neg
18	31										swORF2 +
19 287 XJPH 0.081 0.300 0.062 0.341 0.27 0.18 Meg 20 298 XJPH 0.062 0.300 0.068 0.341 0.21 0.20 Meg 21 299 XJPH 0.076 0.300 0.068 0.341 0.25 0.25 Meg 22 3000 XJPH 0.065 0.300 0.068 0.341 0.25 0.25 Meg 22 3001 XJPH 0.066 0.300 0.067 0.341 0.22 0.17 Meg 33 301 XJPH 0.064 0.300 0.066 0.341 0.21 0.19 Meg 32 302 XJPH 0.611 0.300 0.704 0.341 0.22 0.17 Meg 32 302 XJPH 0.611 0.300 0.704 0.341 0.26 0.300 Meg 25 303 XJPH 0.077 0.300 0.704 0.341 0.26 0.30 Meg 27 305 XJPH 0.061 0.300 0.060 0.341 0.19 0.18 Meg 32 305 XJPH 0.067 0.300 0.0060 0.341 0.19 0.18 Meg 32 305 XJPH 0.066 0.300 0.066 0.341 0.19 0.18 Meg 33 305 XJPH 0.066 0.300 0.067 0.341 0.26 0.30 Meg 34 Meg	18	~~~							1.09	5.13	Both +
20 298 XJPH 0.062 0.300 0.068 0.341 0.21 0.20 Neg	19										Neg
21 299 XUPH 0.076 0.300 0.085 0.341 0.27 0.20 0.25 Neg	20								0.18		Neg
22 300 XJPH 0.065 0.300 0.057 0.341 0.22 0.17 Neg 23 301 XJPH 0.064 0.300 0.057 0.341 0.22 0.17 Neg 32 302 XJPH 0.611 0.300 0.704 0.341 0.22 0.17 Neg 32 302 XJPH 0.611 0.300 0.704 0.341 0.26 0.30 0.96 Doh- 25 303 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Neg 26 304 XJPH 0.057 0.300 0.104 0.341 0.26 0.30 Neg 27 305 XJPH 0.057 0.300 0.060 0.341 0.20 0.17 Neg 28 306 XJPH 0.056 0.300 0.067 0.341 0.20 0.17 Neg 30 307 XJPH 0.119 0.300 0.067 0.341 0.21 0.20 Neg 30 308 XJPH 0.075 0.300 0.067 0.341 0.20 0.16 Neg 31 309 XJPH 0.058 0.300 0.067 0.341 0.25 0.22 Neg 32 310 XJPH 0.056 0.300 0.063 0.341 0.19 0.18 Neg 32 310 XJPH 0.060 0.300 0.063 0.341 0.19 0.18 Neg 33 311 XJPH 0.067 0.300 0.064 0.341 0.20 0.16 Neg 34 312 XJPH 0.067 0.300 0.064 0.341 0.20 0.16 Neg 35 313 XJPH 0.067 0.300 0.064 0.341 0.20 0.16 Neg 36 314 XJPH 0.066 0.300 0.062 0.341 0.20 0.16 Neg 36 314 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 37 315 XJPH 0.060 0.300 0.062 0.341 0.20 0.16 Neg 38 316 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 39 317 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 39 318 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 319 XJPH 0.066 0.300 0.065 0.341 0.20 0.16 Neg 31 319 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 31 319 XJPH 0.066 0.300 0.065 0.341 0.21 0.18 Neg 31 319 XJPH 0.066 0.300 0.065 0.341 0.21 0.18 Neg 31 319 XJPH 0.068 0.300 0.065 0.341 0.21 0.18 Neg 31 319 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 32 310 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 32 317 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 33 317 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 34 322 XJPH 0.068 0.300 0.065 0.341 0.20 0.17 Neg 34 322 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 34 321 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 34 322 XJPH 0.068 0.300 0.065 0.341 0.20 0.17 Neg 34 322 XJPH 0.068 0.300 0.065 0.341 0.20 0.17 Neg 34 322 XJPH 0.068 0.300 0.065 0.341 0.20 0.17 Neg 34 322 XJPH 0.068 0.300 0.068 0.341 0.20 0.17 Neg 34 322 XJPH 0.068 0.300 0.068 0.341 0.20 0.17 Neg 34 322 XJPH 0.068 0.300 0.068 0.341 0.20 0.17 Neg	21										Neg
23 301 XJPH 0.064 0.300 0.064 0.341 0.21 0.19 Neg 32 302 XJPH 0.611 0.300 0.704 0.341 0.204 2.06 0.95 Bdb+ 25 303 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Neg 25 304 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Neg 27 305 XJPH 0.060 0.300 0.060 0.341 0.19 0.18 Neg 28 305 XJPH 0.064 0.300 0.059 0.341 0.20 0.17 Neg 29 307 XJPH 0.019 0.300 0.059 0.341 0.20 0.17 Neg 30 308 XJPH 0.075 0.300 0.076 0.341 0.20 0.61 Neg 31 309 XJPH 0.075 0.300 0.076 0.341 0.25 0.22 Neg 31 309 XJPH 0.058 0.300 0.061 0.341 0.25 0.22 Neg 32 310 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 33 311 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 34 312 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 35 313 XJPH 0.067 0.300 0.061 0.341 0.20 0.16 Neg 36 314 XJPH 0.064 0.300 0.053 0.341 0.20 0.16 Neg 36 314 XJPH 0.064 0.300 0.052 0.341 0.20 0.16 Neg 37 315 XJPH 0.064 0.300 0.052 0.341 0.20 0.16 Neg 38 316 XJPH 0.066 0.300 0.052 0.341 0.20 0.16 Neg 39 317 XJPH 0.060 0.300 0.054 0.341 0.20 0.16 Neg 39 317 XJPH 0.060 0.300 0.050 0.341 0.20 0.16 Neg 39 317 XJPH 0.060 0.300 0.050 0.341 0.20 0.16 Neg 39 317 XJPH 0.060 0.300 0.050 0.341 0.21 0.18 Neg 39 317 XJPH 0.060 0.300 0.050 0.341 0.21 0.18 Neg 39 317 XJPH 0.060 0.300 0.051 0.341 0.20 0.18 Neg 30 318 XJPH 0.050 0.300 0.055 0.341 0.21 0.18 Neg 31 319 XJPH 0.050 0.300 0.055 0.341 0.21 0.18 Neg 31 310 XJPH 0.050 0.300 0.055 0.341 0.19 0.17 Neg 31 312 XJPH 0.050 0.300 0.055 0.341 0.19 0.17 Neg 31 313 XJPH 0.050 0.300 0.059 0.341 0.19 0.17 Neg 31 315 XJPH 0.050 0.300 0.059 0.341 0.19 0.17 Neg 32 32 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 32 32 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 33 316 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 34 321 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 34 322 XJPH 0.050 0.300 0.050 0.341 0.20 0.17 Neg 34 323 XJPH 0.050 0.300 0.050 0.341 0.20 0.17 Neg 34 324 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 34 325 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 34 325 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 34 326 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 34 327 XJPH 0.050 0.300 0.058 0.341 0.20	22								0.25		
32 302 XJPH 0.611 0.300 0.704 0.341 0.21 0.19 Neg 25 303 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Neg 26 304 XJPH 0.057 0.300 0.104 0.341 0.26 0.30 Neg 27 305 XJPH 0.060 0.300 0.050 0.341 0.20 0.17 Neg 28 306 XJPH 0.064 0.300 0.059 0.341 0.20 0.17 Neg 29 307 XJPH 0.119 0.300 0.059 0.341 0.20 0.17 Neg 30 308 XJPH 0.075 0.300 0.057 0.341 0.22 0.22 Neg 31 309 XJPH 0.055 0.300 0.056 0.341 0.19 0.18 Neg 32 310 XJPH 0.065 0.300 0.063 0.341 0.19 0.18 Neg 33 311 XJPH 0.067 0.300 0.063 0.341 0.19 0.18 Neg 34 312 XJPH 0.065 0.300 0.063 0.341 0.22 0.18 Neg 34 312 XJPH 0.065 0.300 0.052 0.341 0.20 0.16 Neg 35 313 XJPH 0.065 0.300 0.052 0.341 0.20 0.16 Neg 36 314 XJPH 0.066 0.300 0.052 0.341 0.20 0.16 Neg 37 315 XJPH 0.066 0.300 0.052 0.341 0.20 0.16 Neg 38 316 XJPH 0.066 0.300 0.052 0.341 0.20 0.18 Neg 39 317 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 39 318 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 39 319 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 39 310 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 31 312 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 31 312 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 31 315 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 31 315 XJPH 0.066 0.300 0.050 0.341 0.20 0.18 Neg 31 315 XJPH 0.068 0.300 0.050 0.341 0.20 0.18 Neg 31 315 XJPH 0.068 0.300 0.050 0.341 0.20 0.18 Neg 32 317 XJPH 0.050 0.300 0.050 0.341 0.24 0.19 Neg 32 317 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 33 317 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 34 312 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 34 312 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 34 315 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 34 316 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 35 317 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 36 314 XJPH 0.050 0.300 0.050 0.341 0.20 0.18 Neg 37 315 XJPH 0.050 0.300 0.050 0.341 0.20 0.17 Neg 38 317 XJPH 0.050 0.300 0.050 0.341 0.20 0.17 Neg 39 317 XJPH 0.050 0.300 0.050 0.341 0.20 0.17 Neg 30 324 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 31 325 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 328 XJPH 0.050 0.300 0.050 0.341 0.21 0.19 0.1	23										Neg
25 303 XJPH 0.077 0.300 0.104 0.341 0.26 0.30 Meg 26 304 XJPH 0.057 0.300 0.1040 0.341 0.19 0.18 Meg 27 305 XJPH 0.060 0.300 0.059 0.341 0.20 0.17 Meg 28 306 XJPH 0.064 0.300 0.067 0.341 0.20 0.17 Meg 30 307 XJPH 0.119 0.300 0.067 0.341 0.20 0.161 Neg 31 309 XIPH 0.075 0.300 0.066 0.341 0.25 0.22 Neg 31 309 XIPH 0.058 0.300 0.063 0.341 0.19 0.18 Neg 32 310 XJPH 0.061 0.300 0.063 0.341 0.19 0.18 Neg 33 311 XJPH 0.061 0.300 0.064 0.341 0.22 0.18 Neg 34 312 XJPH 0.061 0.300 0.054 0.341 0.20 0.16 Neg 35 313 XJPH 0.060 0.300 0.063 0.341 0.21 0.20 0.16 Neg 36 314 XJPH 0.060 0.300 0.065 0.341 0.21 0.10 0.18 Neg 37 315 XJPH 0.064 0.300 0.065 0.341 0.21 0.10 0.18 Neg 38 316 XJPH 0.064 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.066 0.300 0.060 0.341 0.20 0.18 Neg 39 318 316 XJPH 0.066 0.300 0.060 0.341 0.20 0.18 Neg 39 317 XJPH 0.066 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.066 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.066 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 30 318 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 31 319 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 31 310 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 31 311 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 31 312 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 31 313 XJPH 0.066 0.300 0.065 0.341 0.20 0.18 Neg 32 310 XJPH 0.066 0.300 0.066 0.341 0.20 0.17 Neg 33 317 XJPH 0.066 0.300 0.066 0.341 0.20 0.17 Neg 34 312 XJPH 0.066 0.300 0.065 0.341 0.20 0.17 Neg 34 312 XJPH 0.066 0.300 0.065 0.341 0.20 0.17 Neg 34 322 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 323 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg 34 326 XJPH 0.069 0.300 0.065 0.341 0.20 0.17 Neg											Neg
25 304 XJPH 0.057 0.300 0.060 0.341 0.19 0.18 Neg 27 305 XJPH 0.060 0.300 0.059 0.341 0.20 0.17 Neg 28 306 XJPH 0.064 0.300 0.067 0.341 0.21 0.20 Neg 29 307 XJPH 0.119 0.300 0.209 0.341 0.40 0.61 Neg 30 308 XJPH 0.075 0.300 0.063 0.341 0.40 0.61 Neg 31 309 XJPH 0.052 0.300 0.063 0.341 0.25 0.22 Neg 32 310 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 33 311 XJPH 0.062 0.300 0.061 0.341 0.20 0.16 Neg 34 312 XJPH 0.062 0.300 0.	25									0.95	Both +
27 305 XJPH 0.060 0.300 0.059 0.341 0.20 0.17 Neg 28 306 XJPH 0.064 0.300 0.067 0.341 0.20 0.17 Neg 29 307 XJPH 0.019 0.300 0.067 0.341 0.40 0.61 Neg 30 308 XJPH 0.075 0.300 0.076 0.341 0.25 0.22 Neg 31 309 XJPH 0.056 0.300 0.063 0.341 0.19 0.18 Neg 32 310 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 34 312 XJPH 0.067 0.300 0.054 0.341 0.20 0.16 Neg 35 313 XJPH 0.060 0.300 0.050 0.341 0.20 0.18 Neg 36 314 XJPH 0.060 0.300 0.	26										Neg
28 306 XJPH 0.064 0.300 0.067 0.341 0.20 0.17 Neg 29 307 XJPH 0.119 0.300 0.067 0.341 0.21 0.20 Neg 30 308 XJPH 0.075 0.300 0.076 0.341 0.25 0.22 Neg 31 309 XJPH 0.058 0.300 0.063 0.341 0.19 0.18 Neg 32 310 XJPH 0.067 0.300 0.063 0.341 0.19 0.18 Neg 33 311 XJPH 0.067 0.300 0.054 0.341 0.22 0.18 Neg 34 312 XJPH 0.062 0.300 0.054 0.341 0.20 0.16 Neg 35 313 XJPH 0.062 0.300 0.054 0.341 0.20 0.16 Neg 36 314 XJPH 0.060 0.300 0.061 0.341 0.20 0.18 Neg 37 315 XJPH 0.064 0.300 0.061 0.341 0.20 0.18 Neg 38 316 XJPH 0.064 0.300 0.061 0.341 0.20 0.18 Neg 39 317 XJPH 0.068 0.300 0.061 0.341 0.20 0.18 Neg 39 317 XJPH 0.068 0.300 0.061 0.341 0.20 0.18 Neg 39 317 XJPH 0.068 0.300 0.065 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.24 0.19 Neg 40 318 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 40 318 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 40 318 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 41 320 XJPH 0.057 0.300 0.065 0.341 0.20 0.18 Neg 42 320 XJPH 0.057 0.300 0.065 0.341 0.20 0.18 Neg 43 321 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 44 322 XJPH 0.068 0.300 0.065 0.341 0.20 0.18 Neg 44 322 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 45 323 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 46 324 XJPH 0.068 0.300 0.065 0.341 0.20 0.17 Neg 46 324 XJPH 0.068 0.300 0.065 0.341 0.20 0.17 Neg 47 325 XJPH 0.068 0.300 0.068 0.341 0.20 0.17 Neg 48 326 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg	27	305							0.18		Neg
29 307 XJPH 0.119 0.300 0.209 0.341 0.21 0.20 Neg 30 308 XJPH 0.075 0.300 0.076 0.341 0.25 0.22 Neg 31 309 XJPH 0.058 0.300 0.063 0.341 0.19 0.18 Neg 32 310 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 33 311 XJPH 0.061 0.300 0.054 0.341 0.20 0.16 Neg 34 312 XJPH 0.062 0.300 0.062 0.341 0.20 0.16 Neg 35 313 XJPH 0.060 0.300 0.060 0.341 0.20 0.16 Neg 36 314 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 37 315 XJPH 0.064 0.300 0.061 0.341 0.20 0.18 Neg 38 316 XJPH 0.058 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.058 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.050 0.300 0.065 0.341 0.21 0.18 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.21 0.18 Neg 40 318 XJPH 0.060 0.300 0.065 0.341 0.24 0.19 0.17 Neg 40 318 XJPH 0.057 0.300 0.065 0.341 0.20 0.18 Neg 41 320 XJPH 0.914 0.300 0.695 0.341 0.20 0.18 Neg 42 320 XJPH 0.914 0.300 0.065 0.341 0.20 0.18 Neg 43 321 XJPH 0.068 0.300 0.069 0.341 0.20 0.18 Neg 44 322 XJPH 0.058 0.300 0.065 0.341 0.20 0.18 Neg 44 322 XJPH 0.068 0.300 0.069 0.341 0.20 0.18 Neg 44 322 XJPH 0.068 0.300 0.069 0.341 0.20 0.18 Neg 45 323 XJPH 0.068 0.300 0.068 0.341 0.23 0.19 Neg 46 324 XJPH 0.068 0.300 0.068 0.341 0.20 0.17 Neg 46 324 XJPH 0.068 0.300 0.068 0.341 0.20 0.17 Neg 47 325 XJPH 0.069 0.300 0.068 0.341 0.20 0.17 Neg 48 326 XJPH 0.069 0.300 0.068 0.341 0.20 0.17 Neg 49 327 XJPH 0.069 0.300 0.068 0.341 0.20 0.17 Neg 48 326 XJPH 0.069 0.300 0.068 0.341 0.20 0.17 Neg 49 327 XJPH 0.069 0.300 0.068 0.341 0.20 0.17 Neg 50 328 XJPH 0.066 0.300 0.057 0.341 0.21 0.21 Neg	28	306									Neg
30 308 XJPH 0.075 0.300 0.076 0.341 0.25 0.22 Neg 31 309 XJPH 0.058 0.300 0.063 0.341 0.19 0.18 Neg 32 310 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 33 311 XJPH 0.061 0.300 0.054 0.341 0.20 0.16 Neg 34 312 XJPH 0.062 0.300 0.062 0.341 0.21 0.16 Neg 35 313 XJPH 0.060 0.300 0.060 0.341 0.20 0.16 Neg 36 314 XJPH 0.064 0.300 0.060 0.341 0.20 0.18 Neg 37 315 XJPH 0.064 0.300 0.061 0.341 0.20 0.18 Neg 38 316 XJPH 0.063 0.300 0.065 0.341 0.19 0.17 Neg 38 316 XJPH 0.073 0.300 0.065 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 40 318 XJPH 0.073 0.300 0.065 0.341 0.20 0.18 Neg 40 318 XJPH 0.057 0.300 0.065 0.341 0.20 0.18 Neg 41 319 XJPH 0.057 0.300 0.065 0.341 0.20 0.18 Neg 42 320 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 43 321 XJPH 0.068 0.300 0.064 0.341 0.20 0.18 Neg 44 322 XJPH 0.068 0.300 0.069 0.341 0.20 0.18 Neg 44 322 XJPH 0.068 0.300 0.069 0.341 0.23 0.19 Neg 45 323 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 45 323 XJPH 0.068 0.300 0.064 0.341 0.20 0.17 Neg 46 324 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 47 325 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg									0.20		Neg
31 309 X/PM 0.058 0.300 0.063 0.341 0.19 0.18 Neg 32 310 X/PM 0.057 0.300 0.063 0.341 0.19 0.18 Neg 33 311 X/PM 0.061 0.300 0.061 0.341 0.22 0.18 Neg 34 312 X/PM 0.062 0.300 0.062 0.341 0.20 0.16 Neg 35 313 X/PM 0.060 0.300 0.062 0.341 0.21 0.18 Neg 36 314 X/PM 0.064 0.300 0.060 0.341 0.20 0.18 Neg 37 315 X/PM 0.064 0.300 0.061 0.341 0.21 0.18 Neg 38 316 X/PM 0.058 0.300 0.065 0.341 0.19 0.17 Neg 39 317 X/PM 0.060 0.300 0.065 0.341 0.24 0.19 Neg 40 318 X/PM 0.060 0.300 0.065 0.341 0.20 0.18 Neg 40 318 X/PM 0.057 0.300 0.065 0.341 0.20 0.18 Neg 6 319 X/PM 0.057 0.300 0.065 0.341 0.20 0.18 Neg 41 312 X/PM 0.060 0.300 0.065 0.341 0.24 0.19 Neg 42 320 X/PM 0.057 0.300 0.059 0.341 0.19 0.17 Neg 43 321 X/PM 0.068 0.300 0.695 0.341 0.19 0.17 Neg 44 322 X/PM 0.068 0.300 0.0695 0.341 0.20 0.18 Neg 44 322 X/PM 0.083 0.300 0.064 0.341 0.23 0.19 Neg 45 323 X/PM 0.083 0.300 0.064 0.341 0.20 0.17 Neg 46 324 X/PM 0.083 0.300 0.058 0.341 0.19 0.17 Neg 47 325 X/PM 0.060 0.300 0.058 0.341 0.20 0.17 Neg 48 326 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 X/PM 0.060 0.300 0.058 0.341 0.20 0.17 Neg 48 326 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 X/PM 0.060 0.300 0.058 0.341 0.20 0.17 Neg 49 327 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 X/PM 0.059 0.300 0.058 0.341 0.20 0.17 Neg 50 328 X/PM 0.059 0.300 0.058 0.341 0.21 0.21 0.21 Neg										_	Neg
32 310 XJPH 0.067 0.300 0.061 0.341 0.22 0.18 Neg 33 311 XJPH 0.061 0.300 0.054 0.341 0.22 0.18 Neg 34 312 XJPH 0.062 0.300 0.054 0.341 0.20 0.16 Neg 35 313 XJPH 0.060 0.300 0.050 0.341 0.21 0.18 Neg 36 314 XJPH 0.064 0.300 0.050 0.341 0.20 0.18 Neg 37 315 XJPH 0.058 0.300 0.058 0.341 0.21 0.18 Neg 38 316 XJPH 0.073 0.300 0.058 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.24 0.19 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.068 0.300 0.069 0.341 0.19 0.17 Neg 42 320 XJPH 0.068 0.300 0.069 0.341 0.19 0.17 Neg 43 321 XJPH 0.068 0.300 0.695 0.341 0.23 0.19 Neg 44 322 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.068 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 47 325 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.058 0.300 0.057 0.341 0.29 0.17 Neg									0.22		Neg
33 311 XJPH 0.061 0.300 0.054 0.341 0.22 0.18 Neg 34 312 XJPH 0.062 0.300 0.062 0.341 0.21 0.18 Neg 35 313 XJPH 0.066 0.300 0.062 0.341 0.21 0.18 Neg 36 314 XJPH 0.064 0.300 0.065 0.341 0.20 0.18 Neg 37 315 XJPH 0.058 0.300 0.065 0.341 0.21 0.18 Neg 38 316 XJPH 0.073 0.300 0.065 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 40 318 XJPH 0.060 0.300 0.065 0.341 0.20 0.18 Neg 6 319 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 42 320 XJPH 0.068 0.300 0.695 0.341 0.19 0.17 Neg 43 321 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.083 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.083 0.300 0.064 0.341 0.28 0.21 Neg 45 323 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.21 0.21 Neg 49 327 XJPH 0.058 0.300 0.057 0.341 0.20 0.17 Neg 50 328 XJPH 0.058 0.300 0.057 0.341 0.19 0.17 Neg									0.18		Neg
34 312 XJPH 0.052 0.300 0.052 0.341 0.21 0.18 Neg 35 313 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 36 314 XJPH 0.064 0.300 0.061 0.341 0.20 0.18 Neg 37 315 XJPH 0.058 0.300 0.061 0.341 0.20 0.18 Neg 38 316 XJPH 0.073 0.300 0.058 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.24 0.19 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 41 319 XJPH 0.091 0.091 0.095 0.341 0.19 0.17 Neg 42 320 XJPH 0.068 0.300 0.695 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.083 0.300 0.064 0.341 0.28 0.21 Neg 44 322 XJPH 0.083 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.083 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 47 325 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.062 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.068 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.068 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.068 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.068 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.068 0.300 0.058 0.341 0.21 0.21 Neg 40 328 XJPH 0.064 0.300 0.058 0.341 0.21 0.21 Neg			···								Neg
35 313 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 36 314 XJPH 0.064 0.300 0.061 0.341 0.20 0.18 Neg 37 315 XJPH 0.058 0.300 0.058 0.341 0.21 0.18 Neg 38 316 XJPH 0.073 0.300 0.058 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.065 0.341 0.24 0.19 Neg 40 318 XJPH 0.057 0.300 0.060 0.341 0.20 0.18 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 41 320 XJPH 0.914 0.300 0.695 0.341 0.19 0.17 Neg 42 320 XJPH 0.914 0.300 0.695 0.341 0.23 0.19 Neg 43 321 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.050 0.300 0.058 0.341 0.19 0.17 Neg 47 325 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.050 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg									0.16		Neg
36 314 XJPH 0.064 0.30D 0.061 0.341 0.20 0.18 Neg 37 315 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 38 316 XJPH 0.073 0.300 0.065 0.341 0.20 0.18 Neg 39 317 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.914 0.300 0.695 0.341 3.05 2.04 28.05 Both + 42 320 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 45 323 XJPH 0.088 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.060 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.060 0.300 0.058 0.341 0.19 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.21 0.21 Neg	35								0.18		Neg
37 315 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 38 316 XJPH 0.073 0.300 0.065 0.341 0.24 0.19 Neg 39 317 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.914 0.300 0.695 0.341 3.05 2.04 28.05 Both + 42 320 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 44 322 XJPH 0.088 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.21 0.21 Neg 51 329 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg											Neg
38 316 XJPH 0.073 0.300 0.065 0.341 0.19 0.17 Neg 39 317 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.914 0.300 0.695 0.341 3.05 2.04 28.05 Both + 42 320 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.21 0.21 Neg 51 329 XJPH 0.064 0.300 0.057 0.341 0.21 0.21 Neg									0 18		Neg
39 317 XJPH 0.060 0.300 0.060 0.341 0.20 0.18 Neg 40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.914 0.300 0.695 0.341 3.05 2.04 28.05 Both + 42 320 XJPH 0.083 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.24 0.18 Neg 48 326 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 51 329 XJPH 0.064 0.300 0.057 0.341 0.21 0.21 Neg									0.17		Neg
40 318 XJPH 0.057 0.300 0.059 0.341 0.19 0.17 Neg 6 319 XJPH 0.914 0.300 0.695 0.341 0.19 0.17 Neg 42 320 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.064 0.341 0.23 0.19 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.28 0.21 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.072 0.300 0.058 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.24 0.18 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.21 0.21 Neg 49 327 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.064 0.300 0.060 0.341 0.21 0.18 Neg			····								Neg
6 319 XJPH 0.914 0.300 0.695 0.341 3.05 2.04 28.05 Both + 42 320 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.072 0.300 0.058 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.063 0.341 0.24 0.18 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 51 329 XJPH 0.058 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.064 0.300 0.060 0.341 0.21 0.18 Neg									0.18		Neg
42 320 XJPH 0.068 0.300 0.064 0.341 0.23 0.19 Neg 43 321 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.072 0.300 0.063 0.341 0.24 0.18 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.055 0.300 0.058 0.341 0.21 0.21 Neg 50 328 XJPH 0.058 0.300 0.057 0.341 0.19 0.17 Neg 50 328 XJPH 0.064 0.300 0.050 0.341 0.19 0.17 Neg											Neg
43 321 XJPH 0.083 0.300 0.071 0.341 0.28 0.21 Neg 44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.072 0.300 0.063 0.341 0.24 0.18 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.073 0.341 0.21 0.21 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.064 0.300 0.060 0.341 0.21 0.18 Neg							——			28.05	Doth +
44 322 XJPH 0.058 0.300 0.058 0.341 0.19 0.17 Neg 45 323 XJPH 0.060 0.300 0.058 0.341 0.20 0.17 Neg 46 324 XJPH 0.072 0.300 0.063 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 50 328 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 51 329 XJPH 0.064 0.300 0.050 0.341 0.19 0.17 Neg											Neg
45 323 XJPH 0.060 0.300 0.058 0.341 0.19 0.17 Neg 46 324 XJPH 0.072 0.300 0.063 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.063 0.341 0.24 0.18 Neg 48 326 XJPH 0.059 0.300 0.058 0.341 0.20 0.17 Neg 48 326 XJPH 0.052 0.300 0.073 0.341 0.21 0.21 Neg 49 327 XJPH 0.058 0.300 0.057 0.341 0.19 0.17 Neg 50 328 XJPH 0.064 0.300 0.060 0.341 0.21 0.18 Neg											
46 324 XJPH 0.072 0.300 0.063 0.341 0.20 0.17 Neg 47 325 XJPH 0.059 0.300 0.063 0.341 0.24 0.18 Neg 48 326 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.013 0.200 0.060 0.341 0.21 0.18 Neg											
47 325 XJPH 0.059 0.300 0.058 0.341 0.24 0.18 Neg 48 326 XJPH 0.052 0.300 0.058 0.341 0.20 0.17 Neg 49 327 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.064 0.300 0.060 0.341 0.21 0.18 Neg						··					Neg
48 326 XJPH 0.062 0.300 0.073 0.341 0.21 0.21 Neg 49 327 XJPH 0.058 0.300 0.057 0.341 0.19 0.17 Neg 50 328 XJPH 0.064 0.300 0.060 0.341 0.21 0.18 Neg											
49 327 XJPH 0.058 0.300 0.057 0.341 0.21 0.21 Neg 50 328 XJPH 0.064 0.300 0.057 0.341 0.19 0.17 Neg 51 329 XJPH 0.132 0.300 0.060 0.341 0.21 0.18 Neg											
50 328 XJPH 0.064 0.300 0.060 0.341 0.19 0.17 Neg 51 329 XJPH 0.112 0.300 0.060 0.341 0.21 0.18 Neg											Neg
51 329 X PPH 0.112 0.200 0.341 0.21 0.18 Neg											Neg
0.112 0.300 0.119 0.341 0.37 0.35 Neg				·········							Neg
		J. 3	- A Pri	0.112	U.3UQ	0.119	0.341	0.37	0.35		Neg

Figure 3K

						re 3K				
nti-HEV EIA	S		h. Caber	00			Sample/(1.2.1	Resul
Name	SampleDate		humSAR55	coff	swORF2		humSAR55	sw0RF2	%CV	
7	330	XJ PH	0 455	0.300	0.389	0.341	1.52	1,14	20.00	Bath ·
53	331	XJ PH	0.070	0.300	0.090	0.341	0.23	0.26		Ne
54	332	XJ PH	0.060	0.300	0.056	0.341	0.20	0.16		Ne
55	333	XJ PH	0.090	0.300	0.075	0.341	0.30	0.22		Ne
56	334	XJ PH	0.089	0.300	0.081	0.341	0.30	0.24		Ne
57	335 336	XJ PH	0.059	0.300	0.056	0.341	0.20	0.16		Ne
58 8	337	XJ PH	0.057	0.300	0.055	0.341 0.341	0.19 1.55	0.16 1.09	24.81	No
60	338	XJ PH	0.464	0.300	0.370	0.341	0.35	0.59	24.51	Both
10	339	XJ PH	0.105	0.300	0.201	0.341	5.50	3.93	23.60	Both
62	340	XJ PH	1.650 0.065	0.300	1.339 0.064	0.341	0.22	0.19	23.00	
63	341	XJ PH	0.069	0.300	0.062	0.341	0.23	0.18		No No
11	342	XJ PH	1.433	0.300	1,163	0.341	4.78	3.41	23.60	Both
65	343	XJ PH	0.073	0.300	0.064	0.341	0.24	0.19	23.00	Ne
12	344	XJ PH	0.525	0.300	0.466	0.341	1.75	1.37	17.40	Both
67	345	XJ PH	0.059	0.300	0.058	0.341	0.20	0.17		Ne
68	346	XJ PH	0.060	0.300	0.062	0.341	0.20	0.18		No
13	347	XJ PH	0.301	0.300	0.305	0.341	1.00	0.89	8.12	sar55
70	348	XJ PH	0.087	0.300	0.065	0.341	0.29	0.19		Ne
14	349	XJ PH	0.347	0.300	0.317	0.341	1.16	0.93	15.39	sar55
72	350	XJ PH	0.062	0.300	0.060	0.341	0.21	0.18		Ne
73	351	XJ PH	0.059	0.300	0.062		0.20	0.18		Ne
74	352	XJ PH	0.058	0.300	0.056		0 19	0.16		Ne
15	353	XJ PH	0.695	0.300	0.692		<u></u>	2.03	9.35	Both
76	354	XJ PH	0.059	0.300	0.057		0.20	0.17		No
77	355	XJ PH	0.063	0.300	0 063			0.18		Ne
78	356	XJ PH	0.058	0.300	0.070		0.23	0.21		Ne
79	357	XJ PH	0.060	0.300	0.060			0.18		Ne
80	358	XJ PH	0.062	0.790	0.063		0.21	0.18		No
81	359	XJ PH	0.061	0.300	0.058			0.17	-	No
82	360	XJ PH	0.060	0.300	0.058		0.20	0.17		N
83	361	XJ PH	0.061	0.300	0.060		 	0.18	0_0	N
84	362	XJ PH	0.093	0.300	0.138		0.31	0.40		N
85	363	XJ PH	0.060	0.300	0.064	0.341	0.20	0.19		N
86	364	XJ PH	0.086	0.300	0.114	0.341	0.29	0.33		N
87	365	XJ PH	0.059	0.300	0.058	3 0.341	0.20	0.17		N
16	366	XJ PH	0.757	0.300	0.523			1.53	34.50	Bott
89	367	XJ PH	0.064	0.300	0.063		0.21	0.18		N
90	358	XJ PH	0.065	0.300	0.06	2 0.34	0.22	0.18		· N
91	369	XJ PH	0.069	0.300	0.06	0.34	0.23	0.20		N
92	370	XJ PH	0.061	0.300	0.06			0.19		N
93	371	XJ PH	0.074	0.300	0.051	0.34	0.25	0.17		N
94	372	XJ PH	0 141	0.300	0.18			0.54		N
95	373	XJ PH	0.062	0.300	0.06		0.21	0.20		N
5	374	XJ PH	0.068	0.300	0.06	1 0.300	0.23	0.20		٨
6	375	XJ PH	0.112	0.300	0.08		0.37	0.29		N
7	376	XJ PH	0.068		0.05	6 0.30	0.23	0.19		N.
17	377	XJ PH	0.344	0.300	0.24			0.81	24.05	sars
9	378	XJPH	0.073		0.05			0.19		<u> </u>
10	379	XJ PH	0.117	0.300	0.12			0.42		1
11	380	XJPH	0.067		0.05			0.19		<u>-</u>
12	381	XJ PH	0.072		0.05		· · · · · · · · · · · · · · · · · · ·	0.19		
13	382	XJ PH	0.072		0.05	-	·	0.20		I
14	383	XJ PH	0.070		0.06			0.21	-	
18	384	XJ PH	1.457		1.08			3.62	20.70	Bo
16	385	XJ PH	0.065		0.05			0.19		1
17	386	XJ PH	0.069		0.06			0.21		<u> </u>

Figure 3L

					, .9.	ure 3L	•			
anti-HEV		ania Data	hCADEC	01			Sample	/Coff		Resul
		npleDate	humSAR55		swORF2		humSAR55	sw∪RF2	%CV	
18 19	387 388	H9 LX	0.241	0.300	0.262		0.80	0.87		Neg
20	389	XJ PH	0.108	0.300	0.113		0.36	0.38		Neg
21	390	XJ PH	0.072	0.300	0.059	0.300	0.24	0.20		Neg
22	391	XJ PH		0.300	0.058	0.300	0.21	0.19		Neg
23	392	XJ PH	0.186	0.300	0.295	0.300	0.62	0.98		Neg
24	393	XJ PH	0.084	0.300 0.300	0.058	0.300	0.22	0.19		Neg
25	394	XJ PH	0.070	0.300	0.060	0.300	0.28	0.20		Neg
26	395	XJ PH	0.228	0.300	0.065	0.300	0.23	0.22		Neg
27	396	AJ PH	0.070	0.300	0.267	0.300	0.76	0.89		Neg
28	397	XJ PH	0.064	0.300	0.060	0.300	0.2ა	0.20		Neg
29	398	XJ PH	0.068	0.300	0.057	0.300	0.21	0.19		Neg
30	399	XJPH	0.068	0.300	0.059	0.300	0.23	0.19		Neg
31	400	XJ PH	0.067	0.300	0.059	0.300	0.23	0.20		Neg
22	401	H4 LX	0.610	0.300	0.035	0.300	0.22	0.20		Neg
33	402	XJ PH	0.063	0.300	0.055	0.300	2.03	1.25	33.74	Both +
34	403	XJ PH	0.068	0.300	0.059	0.300	0.21	0.18		Neg
35	4D4	XJ PH	0.075	0.300	0.050	0.300	0.23	0.20		Neg
36	405	XJPH	0.069	0.300	0.058	0.300	0.25	0.20		Neg
37	406	XJ PH	0.139	0.300	0.196	0.300	0.46	0.19		Neg
38	407	XJ PH	0.070	0.300	0.065	0.300	0.23	0.65		Neg
39	408	XJ PH	0.115	0.300	0.127	0.300	0.23	0.22		Neg
40	409	XJ PH	0.074	0.300	0.070	0.300	0.25	0.42		Neg
41	410	XJ PH	0.069	0.300	0.070	0.300	0.23	0.23		Neg
42	411	XJ PH	0.070	0.300	0.064	0.300	0.23	0.23		Neg
43	412	XJ PH	0.069	0.300	0.061	0.300	0.23	0.20		Neg
44	413	XJ PH	0.063	0.300	0.057	0.300	0.21	0.19		Neg
45	414	XJ PH	0.056	0.300	0.056	0.300	0.22			Neg
46	415	XJPH	0.184	0.300	0.221	0.300	0.61	0.19 0.74		Neg
47	416	XJ PH	0.106	0.300	0.124	0.300	0.35	0.74		Neg
48	417	XJ PH	0.073	0.300	0.066	0.300	0.24	0.22		Neg
49	418	XJ PH	0.069	0.300	0.058	0.300	0.23	0.19	···	Neg
50	419	XJ PH	0.065	0.300	0.055	0.300	0.22	0.18	 _	Neg
51	420	XJ PH	0.063	0.300	0.055	D.300	0.21	0.18		Neg
24	421	XJ PH	1.019	0.300	0.831	0.300	3.40		14.37	Neg
53	422	XJ PH	0.066	0.300	0.059	0.300	0.22	0.20	14.07	Both +
25	423	· XJPH	0.662	0.300	0.532	0.300	2.21		15.40	Neg
55	424	HªLX	0.070	0.300	0.056	0.300	0.23	0.19	13.40	Both +
56	425	HAIX	0.065	0.300	0.069	0.300	0.22	0.13		Neg
57	426	XJ PH	0.108	0.300	0.139	0.300	0.36	0.46		Neg
58	427	H9 LX	0.186	0.300	0.212	0.300	0.62	0.71		Neg
27	428	XJ PH	0.658	0.300	0.652	0.300	2.19	2.17	0.65	Both +
60	429	XJ P H	0.078	0.300	0.063	0.300	0.26	0.21	0.05	Neg
61	430	XJ PH	0.065	0.300	0.055	0.300	0.22	0.18		Neg
62	431	XJ PH	0.067	0.300	0.056	0.300	0.22	0.19		: leg
63	432	XJ PH	0.071	0.300	0.058	0.300	0.24	0.19		Neg
64	433	XJ PH	0.245	0.300	0.268	0.300	0.82	0.89	 .	Neg
65	434	XJ PH	0.128	0.300	0.171	0.300	0.43	0.57		Neg
66	435	XJ PH	0.069	0.300	0.058	0.300	0.23	0.19		Neg
29	436	XJ PH	0.751	0.300		0.300	2.50		5.31	Both +
68	437	XJ PH	0.072	0.300		0.300	0.24	0.21		Neg
69	438	XJ PH	0.064	0.300	0.055	0.300	0.21	0.18		Neg
70	439	XJ PH	0.065	0.300		0.300	0.22	0.22		Neg
71	440	XJ PH	0.111	0.300		0.300	0.37	0.36		Neg
72	441	XJ PH	0.074	0.300		0.300	0.25	0.20		Neg
73	442	XJ PH	0.108	0.300		0.300	0.36	0.45		Neg
74	443	XJ PH	0.062	0.300		0.300	0.21	0.18		Neg
								y. 10		recy

PCT/US02/14100

Figure 3M

					~	re 3M				
-HEV EIA				Φ			Sample/C			Result
Name	SampleDate		humSAR55	coff	swORF2	off	humSAR55	swORF2	%CV	
75	444	XJ PH	0.198	0.300	0.216	0.300	0.66	0.73		Neg
76	445	XJ PH	0.065	0.300	0.059	0.300	0.22	0.20		Neg
77	446	XJ PH	0.065	0.300	0.057	0.300	0.22	0.19		Neg
78	447	XJ PH	0.064	0.300	0.059	0.300	0.21	0.20		Neg
79	448	XJ PH	0.066	0.300	0.058	0.300	0.22	0.19		Neg
80	449	XJ PH	0.070	0.300	0.058	0.300	0.23	0.19	-	Neg
81	450	XJ PH	0.063	0.300	0.057	0.300	0.21	0.19		Neç
82	451	XJPH	0.081	0.300	0.064	0.300	0.27	0.21		Neg
B3	452	XJ PH	0.067	0.300	0.059	0.300	0.22	0.20		Neg
84	453	XJ PH	0.071	0.300	0.060	0.300	0.24	0 20		Ne
31	454	XJ PH	0.821	0.300	0.604	0.300	2.74	2.01	21.54	Both ·
86	455	XJ PH	0.100	0.300	0.141	0.300	0.33	0.47		Ne
87	456	XJ PH	0.066	0.300	0.057	0.300		0.19		Ne
	457	XJ PH	0.683	0.300	0.576	0.300		1.92	12.02	Both
32		XJ PH	0.084	0.300	0.074			0.25		Ne
89	458		0.066	0.300	0.055			0 18	~ ~~	Ne
90	459	XJ PH		0.300	0.060		<u> </u>	0.20	-	Ne
91	460	XJ PH	0.064					0.39		Ne
92	461	XJ PH	0.112	0.300	0.116			0.78		Ne
93	462	XJ PH	0.227	0.300	0.234				.	
94	463	XJ PH	0.124	0.300	0.129			0.43		Ne
95	464	XJ PH	0.103	0.300	0.215			0.72		Ne
5	485	XJ PH	0.056	0.300	0.064			0.21	·	Ne
6	466	XJ PH	0.072	0.300	0.067			0.22		Ne
7	467	XJ PH	0.064	0.300	0.05			0.19		Ne
8	468	XJ PH	0.066	0.300	0.071	0.30		0.23		Ne
7	469	XJ PH	0.748	0.300	0.98	0.30	0] 2.49	3.29		Both
8	470	XJ PH	0.634	0.300	0.86	0.30	2.11	2.87	21.3 ⁰	Both
9	471	XJ PH	0.306	0 300	0.40	6 0.30	0 1.02	1.35	19.86	Bath
12	472	XJ PH	0.068	J 300	0.06	1 0.30	0.23	0.20		N
10	473	XJ PH	0.561	0.300	0.78	3 0.30	00 1.87	2.61	23.36	Both
14	474	XJPH	0.066		0.05	8 0.30	0 0 22	0.19		N
	475	XJ PH	0.072		0.06	0 0.30	0 0.24	0.20	1	N
15	476	XJ PH	0.066		0.06			0.20)	N
16		XJ PH	0.061		0.05			0.19)	N
17	477		0.001		0.21			0.70)	N
18	478	XJ PH			0.25			0.84		N
19	479	XJPH	0.143					0.19		N
20	480	XJ PH	0.064		0.05			0.74		
21	481	XJPH	0.131		0.27			0.11		
22	482	XJ PH	0.065		0.05					, N
23	483	XJ PH	0.07		0.05			0.19		
24	484	XJ PH	0.069		0.00			0.2		<u> </u>
25	485	XJ PH	0.069		0.00			0.2		
26	486	ХЈ РН	0.08	3 0.300	0.0			0.2		<u> </u>
27	487	XJ PH	0.07	5 0.300	0.0	59 0.3		0.2		!
28	488	XJ PH	0.06	7 0.300	0.0	52 0.3	00 0.22	0.2		
29	489	XJ PH	0.07	1 0.300	0.0	56 0.3	0.24	0.1	9	
30	490	XJ PH	0.08	4 0.300	0.0	B4 0.3	0.28	0.2	8	
31	491	XJ PH	0.06		0.0	60 0.3	0.23	0.2	0	
32	492	XJ PH	0.06				0.22	0.2	1	
	493	XJ PH	0.08				300 0.27	0.2	8	
33		XJ PH					300 0.21	0.1	19	
34	494						300 0.21	0.2		
35	495	XJ PH					300 0.24	0.2		
36	496	XJ PH					300 0.22	0.1		
37	497	XJ PH						0.3		
38	498	XJ PH					300 0.23			
39	499	XJ PH	D.17	78 Q.300	0.2	241 0.	300 0.59	0.8	_	

Figure 3N

				re 3N	- 0 -					
Rest		Coff	Sample			OD	h	······································	SampleDate	Inti-HEV EIA
	%CV	swORF2	humSAR55	coff	swORF2	coff	humSAR55			Hame
N		0.20	0,25	0.300	0.061	0.300	0.074	XJ PH	501	41
N		0.48	0.41	0.300	0 145	0.300	0.124	XJ PH	502	42
Ni		0.19	0.20	0.300	0.058	0.300	0.061	XJ PH	503	43
N		0.19	0.21	0.300	0.057	0.300	0.062	X1 PH	504	44
N		0.2 G	0.25	0.300	0.060	0.300	0.074	XJ PH	505	45
N		0.19	0.22	0.300	0.058	0.300	0.067	XJ PH	506	46
Box	20.03	3.68	4.89	0.300	1.103	0.300	1.467	XJ PH	507	15
N		0.20	0.22	0.300	0.059	0.300	0.067	XJ PH	508_	48
N		0.47	0.34	0.300	0.141	0.300	0.102	XJ PH	509	49
N		0.21	0.20	0.300	0.063	0.300	0.061	XJ PH	510	50
N		0.43	0.33	0.300	0.129	0.300	0.099	XJPH	511	51
N		0.19	0.21	0.300	0.057	0.300	0.064	XJ PH	512	52
N		0.19	0.20	0.300	0.057	0.300	0.059	XJ PH	513	53
N		0.18	0.20	0.300	0.054	0.300	0.059	XJ PH	514	54
N		0.33	0.25	0.300	0.098	0.300	0.076	XJ PH	515	55
N		0.19	0.21	0.300	0.058	0.300	0.062	XJ PH	516	56
N		0.19	0.20	0.300	0.056	0.300	0.059	XJ PH	517	57
Ŋ		0.18	0.20	0.300	0.054	0.300	0.061	XJ PH	518	58
N		0.21	0.22	0.300	0.063	0.300	0.066	XJ PH	519	59
N		0.19	0.21	0.300	0.058	0.300	0.054	XJ PH	520	60
N		0.19	0.21	0.300	0.058	0.300	0.062	XJ PH	521	61
Ŋ		0.39	0.33	0.300	0.116	0.300	0.099	XJ PH	522	62
N		0.20	0.23	0.300	0.061	D.300	0.068	XJ PH	523	63
N		0.25	0.30	0.300	0.075	<u> </u>	0.089	XJ PH	524 ,	64
N		0.22	0.21	0.300	0.065		0.064	XJ PH	525	65
N		0.19	0.20	0.300	0.058	0.200	0.060	XJ PH	526	66
N		0.19	0.21	0.300	0.058	0.300	0.062	XJ PH	527	- 67
N		0.19	0.21	0.300	0.057	0.300	0.062	XJ PH	528	68
N		0.19	0.22	0.300	0.057	0.300	0.067	XJ PH	529	69
N		0 16	0.21	0.300	0.055	0.300	0.063	XJ PH	530	70
N		0.19	0.21	0.300	0.058	0.300	0.063	XJ PH	531	71
N		0.19	0.24	0.300	0.058	0.300	0.073	XJ PH	532	72
N		0.20	0.23	0.300	0.060	0.300	0.069	XJ PH	° 3 3	73
N		0.20	0.23	0.300	0.059	0.300	0.069	XJ PH	J34	74
N		0.19	0.22	0.300	0.058	0.300	0.067	XJPH	535	75
N		0.19	0.22	0.300	0.058	0.300	0.067	XJPH	536	76
N		0.21	0.22	0.300	0.062	0.300	0.066	XJ PH	553	77
٨		0.20	0.21	0.300	0.059	0.300	0.062	XJPH	554	78
N		0.53	0.41	0.300	0.159	0.300	0.122	XJ PH	555	79
N		0.19	0.21	0.300	0.056	0.300	0.062	XJ PH	556	80
٨		0.19	0.21	0.300	0.058	0.300	0.063	XJ PH	557	81
٨		0.23	0.30	0.300	0.070	0.300	0.090	XJ PH	558	82
٨		0.28	0.34	0.300	0.083	0.300	0.101	XJ PH	559	83
٨		0.24	0.29	0.300	0.073	0.300	0.088	XJPH	560	84
١		0.21	0.24	0.300	0.062	0.300	0.072	XJ PH	561	85
١		0.27	0.25	0.300	0.080	0.300	0.075	XJ PH	562	86
		0.20	0.21	0.300	0.059	0.300	0.06	XJ PH	563	87
		0.19	0.22	0.300	0.057	300	Ç	XJ PH	564	88
		0.19	0.22	0.300	0.057	90	C	XJ PH	565	B9
١		0.20	0.22	0.300	0.059	<u>::</u> :::	0.4	XJPH	566	90
١		0.19	0.24	0.300	0.058	ü.300	0.073	XJ PH	567	91
N		0.21	0.24	0.300	0.062	0.300	0.071	XJPH	568	92
ስ		0.70	0.59	0.300	0.211	0.300	0.177	XJ PH	569	93
9ot	15.49	1.67	2.08	0.300	0.500	0.300	0.623	XJ PH	570	17
١		0.20	0.23	0.300	0.060	0.300	0.068	XJ PH	571	95
N		0.24	0.22	0.300	0.071	0.300	0.067	XJPH	572	5
			0.34	0.300	0.075	0.300	0.101	XJ PH	573	6

Figure 30

					Figur	e 30			
nti-HEV EIA				OD			Sample/C	off	Resul
Name	SampleDate		humSAR55	coff	swORF2 c	off	humSAR55	swORF2	%CV
7	574	XJ PH	0.068	0.300	0.063	0.300	0.23	0.21	Ne
8	575	XJ PH	0.077	0.300	0.068	0.300	0.26	0.23	Ne
9	576	XJ PH	0.071	0.300	0.052	0.300	0.24	0.21	Ne
10	577	XJ PH	0.169	0.300	D.133	0.300	0.55	0.44	Ne
11	578	XJ PH	0.195	0.300	0.152	0.300	0.65	0.51	Ne
12	579	XJ PH	0.079	0.300	0.065	0.300	0.26	0.22	Ne
13	580	XJ PH	0.155	0.300	0.147	0.300	0.52	0.49	Ne
14	581	XJ PH	0.062	0.300	0.062	0.300	0.21	0.21	Ne
15	582	XJ PH	0.123	0.300	0.109	0.300	0.41	0.36	Ne Ne
16	583	XJ PH	0.069	0.300	0.063	0.300	0.23	0.21	Ne
17	584	XJ PH	0.163	0.300	0.146	0.300	0.54	0.49	No.
18	585	XJ PH	0.154	0.300	0.131	0.300	0.51	0.44	No.
19	586	YU PH	0.080	0.300	0.071	0.300	0.27	0.24	No.
20	587	XJ PH	0.069	0.300	0.060	0.300	0.23	0.20	Ni
21	588	XJ PH	0.078	0.300	0.067	0.300	0.26	0.22	Ni
18	589	XJ PH	1.895	0.300	1.486	0.300	 	4.95	17.11 Both
23	590	XJ PH	0.103	0.300	0.076	0.300		0.25	N:
24	591	XJ PH	0.074	0.300	0.061	0.300		0.20	N.
25	592	XJ PH	0.069	0.300	0.063	0.300	<u> </u>	0.21	N
26	593	XJ PH	0.071	0.300	0.062	0.300		0.21	N
27	594	XJ PH	0.070	0.300	0.063	0.300		0.21	N Date
19	595	XJ PH	0.456	0.300	0.335	0.300		1.12	21.63 Bot
29	596	XJ PH	0.066	0.300	0.062	0.300	 	0.21	N
30	597	XJ PH	0 090	0.300	0.064	0.300		0.21	N N
31	598	X) PH	0.064	0.300	0.060	0.300		0.20	N N
32	599	XJ PH	0.069	0.300	0.061	0.300		0.20	N N
33	600	XJ PH	0.075	0.300	0.060	0.300		0.20	N
34	601	XJ PH	0.211	0.300	0.167	0.300		0.56	N
35	602	XJ PH	0.097	0.300	0.066	0.300		0.22	N
36	603	XJ PH	0.067	0.300	0.062	0.300		0.21	N
37	604	XJ PH	0.069	0.300	0.063	0.30		0.21	N
38	605	XJ PH	0.072	0.300	0.063	0.30			<u>\</u>
39	606	XJ PH	0.080	0.300	0.072			.4	۸ .
40	607	XJ PH	0.064	0.300	0.071			0.24	<u> </u>
41	608	XJ PH	0.080	0.300	0.072			0.24	
42	609	XJ PH_	0.069	0.300	0.066			0.22	102.37 sar5
21	610	XJ PH	0.462	0.300	0.074			0.23	102.37
44	611	XJ PH	0.071	0.300	0.062			0.23	<u> </u>
45	612	XJ ÞH	0.089	0.300	0.069			0.23	· ·
46	613	XJ PH	0.076		0.066			0.22	
47	614	XJ PH	0 085		0.067			0.22	
48	615	XJ PH	0.074		0.073			0.64	······································
49	616	XJPH	0.114		0.197			0.21	
50	617	XJ PH	0.068		0.06			0.21	
51	618	XJ PH	0.086		0.07			0.24	
52	619	XJ PH	0.066		0.05			0.19	
53	620	XJ PH	0.067					0.21	
54	621	XJ PH	0.063					0.19	·
55	622	XJ PH	0.065					0.25	
56	623	XJ PH	0.085					0.23	· · · · · · · · · · · · · · · · · · ·
57	624	XJ PH	0.082					0.22	
58	625	XJ PH	0.279					0.72	
59	626	XJ PH	0.093					0.56	
60	627	XJ PH	0.070					1.55	
23	628	XJ PH							
62	629	XJ PH						0.21	
63	630	XJ PH	6.08	5 0.300	0.07	6 0.3	0.28	0.25	

Figure 3P

Ala	· · · · · · · · · · · · · · · · · · ·	Dete		OD			Sample	Coff	_	Res
Name	Sample		humSAR55	coff	swORF2	coff	humSAR55	swORF2	%CV	
64	631	XJPH	0.106	0.300	0.101	0.300	0.35	0.0		ı
65	632	XJ PH	0.065	0.300	0.060	0.300	0.22	0.20		
66	633	XJ PH	0.078	0.300	0.074	0.300	0.26	0.25		
67	634	XJPH	0.051	0.300	0.063	0.300	0.20	0.21		
6B	635	ХJРн	0.067	0.300	0.063	0.300	0.22	0.21		
69	636	XJ PH	0.081	0.300	0.067	0.300	0.27	0.22		1
70 71	637	XJ PH	0.084	0.300	0.062	0.300	0.28	0.21		1
72	638 639	XJPH	0.099	0.300	u.076	0.300	0.33	0.25		- 1
73		XJPH	0.085	0.300	0.079	0.300	0.28	0.26		
74	64D 641	XJ PH	0.087	0.300	0.074	0.300	0.29	0.25		1
75		XJ PH	0.068	0.300	0.065	0.300	0.23	0.22		
76	642 643	XJ PH	0.073	0.300	0.063	0.300	0.24	0.21		
77	544 544	XJ PH	0.063	0.300	0.061	0.300	0.21	0.20		
78	645	XJ PH	0.068	0.300	0.066	0.300	0.23	0.22		
79	646	XJ PH	0.066	0.300	0.068	0.300	0.22	0.23		ı
80	647	XJ PH	0.074	0.300	0.064	0.300	0.25	0.21		1
81	648	XJ PH XJ PH	0.075	0.300	0.068	0.300	0.25	0.23		
82	010	AJ PH	0.071	0.300	0.063	0.300	0.24	0.21		١
83	65.		2486	0.300	0.060	0.300	0 29	0.20		1
84	651	7 20	0.054	0.300	0.056	0.300	0.31	0.22		٨
85	652		0.072	C.300	0.068	0.300	0.24	0.23		N
86	653	XJ Ph	0.071	0.300	0.066	0.300	0.24	0.22		
00	023	XJ PH	0.081	0.300	0.064	0.390	0.27	0.21		1
		XJ PH	0.074	0.300	0.065	0.300	0.25	0.22		1
		XJ PH	0.065	0.300	0.061	0.300	0.22	0.20	_	1
∋0	657	XJ PH	0.062	0.300	0.059	0.300	0.21	0.20		-
91	658	XJ PH	0.075	0.300	0.067	0.300	0.25	0.22		ħ
92 `	659	XJ PH	0.075	0.300	0.064	0.300	0.25	0.21		N
24	660	XJ PH	0.088	0.300	0.075	0.300	0.29	0.25		٨
94	661	XJ PH	0.538	0.300	0.513	0.300	1.79	1.71	3.36	Bot
95	662	XJ PH	0.097	0.300	0.067	0.300	0.32	0.22		N
25	663	XJ PH	0.104	0.300	0.095	0.300	0.35	0.32		N
6		XJ PH	0.225	0.300	0.169	0.300	0.75	0.56		N
7	664	ХЈ РН	0.063	0.300	0.054	0.300	0.21	0 18		N
- / B	665	XJ PH	0.090	0.300	0.066	0.300	0.30	0.22		٨
9	666	XJ PH	0.172	0.300	0.110	0.300	0.57	0.37		N
	667	XJ PH	0.063	0.300	0.058	0.300	0.21	0.19		N
	668	XJ PH	0.060	0.300	0.055	0.300	0.20	0.18		N
	669	XJ PH	0.086	0.300	0.073	0.300	0.29	0.24		N
	670 671	XJ PH	0.080	0.300	0.058	0.300	0.27	0.19		N
	·	XJ PH	. 0.14B	0.300	0.053	0.300	0.49	0.16		N
	672	XJ PH	0.090	0.300	0.057	0.300	0.30	0 19		N
	673	XJ PH	0.061	0.300	0.057	0.300	0.20	0.19		N
	674	XJ PH	0.080	0.300	0.066	0.300	0.27	0.22		N
	675	XJ PH	0.096	0.300	0.064	0.300	0.32	0.21		N
	676	XJ P H	0.058	0.300	0.053	0.300	0.19	0.18		N
	677	XJ PH	0.064	0.300	0.057	0.300	0.21	0.19		N
	678	XJ PH		0.300	0.058	0.300	0.24	0.19		N
	679	XJ PH	0.104	0.300	0.066	0.300	0.35	0.22		No
	680	XJ PH		0.300	0.079	0.300	0.35	0.26		No
	681	хЈ Рн		0.300	0.058	0.300	D. 22	0.19		. N
	582	XJ PH		0.300	0.055	0.300	0.24	0.18		N
	683	XJ PH		0.300	0.056	0.300	0.24	0.19		N
	584	XJ PH		0.300	0.054	0.300	0.22	0.18		No
	885	XJ PH	0.097	0.300	0.070	0.300	0.32	0.23		Ne
	88	XJ PH	0.085	0.300	0.073	0.300	0.28	0.24		Ne
29 6	587	XJ PH	0.061	0.300	0.055	0.300	0.20	0.18		Ne

Figure 3Q

Result		Coff	Sample/C			OD				/EIA	nti-HEV EL
	%CV	swORF2	humSAR55	off	swORF2	coff	humSAR55		SampleDate	ame	Name
N		0.23	0.26	0.300	0.069	0.300	0.078	XJ PH	88	64	30
N		0.18	0.24	0.300	0.055	0.300	0.072	XJPH	89	6	31
N		0 19	0.27	0.300	0.058	0.300	0.082	XJ PH	90	6	32
N		0 19	0.22	0.300	0.057	0.300	0.065	XJ PH	91	6	33
N		0.25	0.33	0.300	0.075	0.300	0.099	XJ PH	92		34
N		0.18	0.19	0.300	0.054	0.300	0.058	XJ PH	93		35
N		0.20	0.25	0.300	0.059	0.300	0.074	XJ PH	94	6	36
N		0.22	0.30	0.300	0.066	0.300	0.090	XJ PH	95	6	37
		0.19	0.24	0.300	0.058	0.300	0.071	XJ PH	96	6	38
ħ		0.26	0.30	0.300	0.077	0.300	0.090	XJ PH	97	6	39
٨		0.19	0.28	0.300	0.058	0.300	0.085	XJ PH	98	6	40
١		0.18	0.19	0.300	0.055	0.300	0.058	XJ PH	99	6	41
Bot	13.47	1.61	1.33	0.300	0.483	0.300	0.399	XJ PH	OD	7	26
٨		0.18	0.20	0.300	0.054	0.300	0.059	XJ PH	01	7	43
1		0.20	0.23	0.300	0.061	0.300	0.068	XJ PH	'02	7	44
P		0.19	0.22	0.300	0.056	0.300	0.067	XJ PH	03	7	45
۴		0.20	0.26	0.300	0.060	0.300	0.078	XJ PH	'04	7	46
ŀ		0.59	0.87	0.300	0.176	0.300	0.260	XJ PH	05	7	47
1		0.18	0.22	0.300	0.055	0.300	0.065	XJ PH	'06	7	48
1		0.21	0.20	0.300	0.063	0.300	0.060	XJ PH	707	7	49
1		0.20	0.25	0.300	0.060	0.300	0.075	XJ PH	'08	7	50
-		0.58	0.81	0.300	0.174	0.300	0.243	XJ PH	709	7	51
ı		0.22	0.21	0.300	0.067	0.300	0.063	XJ PH	10	7	52
1		0.18	0.23	0.300	0.055	0.300	0.068	XJ PH	711	7	53
sars	32.64	0.87	1.39	0.300	0.260	0.300	0.416	XJ PH	712	7	29
ŀ		0.24	0.29	0.300	0.072	0.300	0.088	XJ PH	713	7	55
1		0.19	0.23	0.300	0.057	0.300	0.070	XJ PH	714	7	56
1		0.17	0.19	0.300	0.052	0.300	0.057	XJ PH	715	7	57
1		0.19	0.22	0.300	0.058	0.300	0.065	XJ PH	716		58
		0.18	0.21	0.300	0.053	0.300	0.062	XJ PH	717		59
		0.18	<u> </u>	0.300	0.054	0.300	0.064	XJ PH	718		60
		0.19	0.24	0.300	0.056	0.300	0.072	XJ PH	719		61
i		0.18		0.300	0.055	0.300	0.061	XJ PH	720		62

				Figure	: 3K
	·				
Overali			Sar\$\$		
		Neg	Pos	Total	
SwORF	Neg	765	7	7772	
· §	Pos	6	104	110	
	Total	771	111	882	
·-···				K=	0.938
	·				0.930
n Pig Handlers		9	ar55		
		Keg	Pos	Total	
œ ·	Neg	6	0	6	
SwOR!	Pos	0	12	12	
	Total	6	12	18	
			<u>.,</u>	Ka Io	1.000
					1.000
Blood Donors			ar55		
		Neg	Pos	Total	
£	Neg	26	0	26	
SwOR	Pos	0	5		
	Total	26	5	5	
	10101	40		31	
	mar beam.		 -	Кя	1.000
od Donors					
00 0011015		Neg	er55 Pos		
£	Neg	194	1	Total.	
	Pos	5		195	
	Total	199	30	35	
	TOTAL	199	31	230	
				Ke	0.894
Handlers/Workers					
	· -		ar55		
;	No.	Nep	Pos	7otal	
	Neg	539	6	545	
·	Pos	1	57	58	
	Total	540	63	603	
				K=	0.936
	·				
··-					

FIG. 4

- human ---- swine

FIG. 5

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 November 2002 (14.11.2002)

PCT

(10) International Publication Number WO 02/089733 A3

(51) International Patent Classification7: A61K 39/00, 39/29

C07K 17/00,

(21) International Application Number: PCT/US02/14100

2 May 2002 (02.05.2002) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/289,220

7 May 2001 (07.05.2001)

(71) Applicant (for all designated States except US): THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DE-PARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health, Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MENG, Xiang-Jin [CN/US]; 401 Craig Drive, Blacksburg, VA 24060 (US). PURCELL, Robert, H. [US/US]; 17517 White Grounds Road, Boyds, MD 20814 (US). EMERSON, Suzanne, U. [US/US]; 4517 Everett Street, Konsington, MD 20895 (US).

(74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson and Bear, LLP, 2040 Main Street, Fourteenth Floor, Irvine, CA 92614 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE (utility model), DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 4 September 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

02/089733 A3

(54) Title: RECOMBINANT ORF2 PROTEINS OF THE SWINE HEPATITIS E VIRUS AND THEIR USE AS A VACCINE AND AS A DIAGNOSTIC REAGENT FOR MEDICAL AND VETERINARY APPLICATIONS

(57) Abstract: The invention relates to open reading frame 2 (ORF-2) proteins of a swine hepatitis E virus and the use of these proteins as an antigen in diagnostic immunoassays and/or as immunogen or vaccine to protect against infection by hepatitis E.

INTERNATIONAL SEARCH REPORT

International application No.

A. CLA	SSIFICATION OF SUBJECT MATTER		101/0302/1410	· · · · · · · · · · · · · · · · · · ·
IPC(7)	: C07K 17/00; A61K 39/00, 39/29		-	
USCL	: 424/186.1. 189 1 225 1 228 1. sanuara			
According to	International Patent Classification (IPC) or to be	th national classification	and IPC	
	DE DIMERCHEO	•		
Minimum de	ocumentation searched (classification system follow	ed by classification sum	hole)	
U.S. : 4	24/186.1, 189.1, 225.1, 228.1; 530/350	· · · · · · · · · · · · · · · · · · ·	V(10)	
Documentati	on searched other than minimum documentation to	who are transition is a second		
	· · ·	me extent that such doc	muents are include	d in the fields searched
			·	•
171				
Please Sea C	ata base consulted during the international scarch ()	name of data base and, w	here practicable.	tourch forme need)
TACING GEG C	optimization 20est		(,	orreat writing theory
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where	appropriate of the rales	last seres	77
A.	[*** >3/04023 A.2 (MENG et al.) 28 January 1999	9 (28.01.1999) claims 1	9 5 15 04	Relevant to claim No.
				1, 3, 5, 7, 9, 11, 19-
A ,	MBNG et al. A movel virus in swine is closely tel	lated to the hurnan hepati	ils E virus.	15, 26, 31 1, 3, 5, 7, 9, 11, 13-
	Figure 4 on page 9864.	ol 94, pages 9860-9865,	especially	15, 26, 31
1	2.8ατο 4 οπ βαζε 3664.			, 20, 22
ł				
j				
			i	
			1	
- (•			
1			}	
i			ļ	
,				
			į	
i			i	
			1	
Further	damma			
	documents are listed in the continuation of Box C.	Sea patent fa	mily annex.	
Spi	scial categories of cited documents:	Later document	published after the inter	national filing date at priority
"A" document de of particula	fefining the general state of the art which is not considered to be or relevance		conflict with the applica ory underlying the luves	tion last after decreased according
an, exclict sbbl	ication or pateur published on or after the international filing dute	"X" despitest of par	ricular followance; the ci	aimed invention cannot be
"I," dominient v	which more throw almihite on actualization and actual and actual and actual and actual	when the decou	lent is taken alone	man an manufact steb
establish the	s buplication date of machet citation or other theory reason (w	"Y" document of pay	ricular relevance: the el	simed invention amnot be
• •		Community to Its	POLVE an inventive area (When the document is
	eferring to an oral disclosure, use, exhibition or other means	confibrities as a fill of the confib	the or more exher such a to paracustilled in the	feetimense erals nomblesses -
P" domanent p	sibilated prior to the international filing data but later than the			· · · · · · · · · · · · · · · · · · ·
,	- WHELIOU	co modificati wisus	er of the same patent fa	unif.
Date of the act	nal completion of the international search	Date of mailing of the	Internation 1	3
	2002 (12.12.2002)	Date of mailing of the	THE THE PART SEALC	Trebair
Name and muil	ing address of the ISA/US	-1. 7 J/	IN 2003	f
Commi	asioner of Parcurs and Trademarks	Au horized officer	adoors	
Box L		Anenon Foley	-	
Guesimile No.	kkm, D.C. 2013) (703)305-3230	, •		()
	210 (second sheet) (July 1998)	Telephone No. (703)	108-0196	
	-10 (account speet) (AMA 1888)			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/14100

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: 2,4,6,8,10,12,27-30 and 32 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims 2, 4, 6, 8, 10, 12, 27-30 and 32 could not be searched because no computer readable form of the sequence listing was submitted.
3. Claim Nos.; because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Bax II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this International application, as follows: Please See Continuation Sheet
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional scarch fees were timely paid by the applicant. Consequently, this international search repolis restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1, 3, 5, 7, 9, 11, 13-15, 2 and 31
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

「わげだけ」 ひょく ひょくかん	SEARCH DEPORT	
	 SPAKI H PHOID	

PCT/US02/14100

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid. If applicant pays no additional fees, Group I. claims 1-15 and 26-32 will be examined.

Group I, claim(s) 1-, 3, 5, 7, 9, 11, 13-15, 26 and 31, drawn to HEV ORF2 protein, a DNA molecule, kit, first method of making, and first method of using the protein as a vaccine.

Group II, claim(s) 16-19, drawn to a method of detecting antibodies.

Group III, claim(s) 20 and 21, drawn to antibodies.

Group IV, claim(5) 22 and 23, drawn to a method of detecting HEV using the HEV ORF2 protein.

Group V, claim(s) 24 and 25, drawn to a method of making antibodies.

The inventions listed as Groups I-V do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of group I is the HEV ORF2 protein, a DNA molecule encoding the protein, the first method of making the protein and the first method of using the protein as a vaccine. Any product or subsequent methods using the same or different products lack unity of invention because they do not share a special technical feature with the first group.

Group II is drawn to a second method of using the first product. The special technical feature of this group is a method of detecting antibodies. This method does not share the special technical feature with the first group because the method of group II requires

different method steps from those in group 1.

Group III is drawn to a second product. The special technical feature of this group is antibodies. This group does not share a special technical feature with group I because the products do not share a common structure or activity.

Group IV is drawn to a first method of using the second product. The special technical feature of this group is a method of detection, which does not share the special technical feature with Group I because the method does not require the products or the method steps

Group $\hat{\mathbf{V}}$ is drawn to a third method of using the first product. The special technical feature of this group is a method of making antibodies, which does not require the same method steps required in Group I.

Continuation of B. FIELDS SEARCHED Item 3:

USPatfull, EPO, JPO, Dorwent, USPOpub, medline, embase, biosis, vetu search terms: hepatitis E virus, HEV. Porcine Reproductive and Respiratory Syndrome Virus, PRRSV, Mystery Swine Disease, Lelystad, ORF 2, open reading frame 2, pig, swine, porcine

Form PCT/ISA/210 (second sheet) (July 1998)