Cadenas de Markov.

Q Course	■ Procesos Estocasticos
<pre># Confidence</pre>	Not Confident
② Last Edited	@February 2, 2025 3:32 PM

CONSTRUCCIÓN DE LAS CADENAS DE MARKOV

Una cadena de markov es un proceso estocastico $\{X_t|\ t\in T\}$. Considere un sistema el cual pueda estar en un conjunto númerable o infinito numerable de estados. Defina S como el <u>espacio de estados</u>, ademas asuminos que $S\subseteq \mathbb{Z}$. Y supongamos que el sistema es observado a tiempo discreto n=1,2,3... y sea X_n el estado del sistema al tiempo n.

Toda cadena de Markov, cumple la siguiente propiedad:

PROPIEDAD DE MARKOV

$$egin{aligned} P[X_{t+1} = x_{t+1} | X_0 = x_0, X_2 = x_2, \cdots, X_t = x_t] \ &= P[X_{t+1} = x_{t+1} | X_t = x_t] \ &= P(x_t, x_{t+1}) \end{aligned}$$

PROPIEDADES DE PROBABILIDADES DE TRANSICION

1.
$$0 \le P(x,y) \le 1, \forall (x,y) \in S \times S$$

$$2. \quad \sum_{y \in S} P(x,y) = 1, orall x \in S, ext{fijo}$$

FINITO DIMENSIONAL

$$P[X_0 = x_0, X_1 = x_1 X_2 = x_2, \cdots, X_t = x_t] \ \pi_0(x_0) imes p(x_0, x_1) imes p(x_1, x_2) imes \cdots imes p(x_{t-1}, x_t)$$

ESTADO ABSORBENTE

Un estado a de una cadena de Markov se llama **estado absorbente** si P(a,a)=1 ó de manera equivalente P(a,y)=0, y
eq a

Además cumple las siguientes igualdades:

$$P^n(a,a)=1=P(X_n=a|X_0=a) \ P^n(x,a)=P_x(T_a\leq n)$$

CÁLCULO CON FUNCIONES DE TRANSICIÓN

Calcular facil probabilidades paso tras paso:

$$P[X_{n+1} = y_1, \cdots, X_{n+m} = y_m | X_0 = x_0, X_1 = x_1, \cdots, X_n = x_n] \ = P(x_n, y_1) imes P(y_2, y_3) imes \cdots imes P(y_{m-1}, y_m)$$

Funcion de transicion en **m** pasos $P^m(x,y)$, esta definida como:

$$P^m(x,y) = \sum_{y_1} \cdots \sum_{y_{m-1}} P(x,y_1) imes P(y_2,y_3) imes \cdots imes P(y_{m-1},y)$$

Y como notación:

$$P^m(x,y) = P(X_m = y | X_0 = x)$$
 ó bien $= P(X_{n+m} = y | X_n = x)$

Formula de Chapman-Kolmogorov

Probabilidad de transición en $\mathbf{m+n}$ paso. Considere \mathbf{m} y n números enteros positivos.

$$P^{n+m}(x,y) = \sum_{z \in S} P^n(x,z) P^m(z,y)$$

Ahora la probabilidad de que el sistema en algún tiempo n , este en el estado y (i.e. $X_n=y$)

$$P(X_n=y) = \sum_{z \in S} \pi_0(z) P^n(z,y)$$

o de manera similar, si es que no necesariamente sabemos que la inicial:

$$P(X_{n+1}=y) = \sum_{z \in S} P(X_n=z) P(X_{n+1}=y|X_0=z)$$

TIEMPOS DE ALCANCE

Definimos los tiempos de alcance como: El primer tiempo en el que la cadena de Markov se encuentra en A.

Si $X_n \in A$ para algún n>0, entonces

$$T_A = \min\{n \geq 0 : X_n \in A\}, \text{donde}, A \subseteq S$$

Y si $X_n
otin A$, entonces $T_A = \infty$

En particular, si A es un subconjunto de un solo elemento, como nos interesa, Entonces si $A=\{a\}$

$$T_A = T_{\{a\}} = T_a = \inf\{n \geq 0: X_n = a\}$$

Antes de seguir, note que los siguientes evento.ms son disjuntos: $\{X_n=y,T_y=m\}$, para 1< m< n. Entonces, es claro que:

$$\texttt{NOTACION:} P_x(T_v = m) = P(T_v = m | X_0 = x)$$

$$\{X_n=y\}=igcup_{m=1}^n\{X_n=y,T_y=m\}$$

Tenemos ahora las siguientes fomulas:

$$P^n(x,y)=\sum_{m=1}^n P_x(T_y=m)P^{n-m}(y,y)$$

Recuerde además que: $P_x(T_y=m)=P(T_y=m|X_0=x)$

En particular, si y es un estado absorbente, entonces $P^n(x,a) = P_x(T_a \leq n)$

Ahora, si queremos calcular la probabilidad de que: Dado que estamos en $X_0=x$, el sistema alcance el estado y al tiempo m, entonces:

Si m=1, entonces

$$P_x(T_y = 1) = P(X_1 = y | X_0 = x) = P(x, y)$$

Si m=2, entonces,

$$P_x(T_y=2)=P(X_1
eq y,X_2=y|X_0=x),\;X_1$$
 está en cualquier otro estado $=\sum_{z
eq y}P(X_1=z,X_2=y|X_0=x) =\sum_{z
eq y}P(x,z)P(z,y)$

En general, tenemos que:

$$P_x(T_y=n+1)=\sum_{z
eq y}P(x,z)P_z(T_y=n),\quad n\geq 1$$

Lo anterior tiene mucho sentido, pues para ir de x a y por primera vez al tiempo n+1, primero es necesario que vaya a algun estado $z \neq y$ y despues ir de z a y en n pasos.

MATRICES DE TRANSICION

Suponga ahora que el espacio de estados S, es finito, digamos $S=\{0,1,2,\cdots,d\}$. En este caso pensamos a P como **la matriz de transición,** con d+1 filas y columnas:

$$0 \quad \cdots \quad d$$

$$0 \quad P(0, 0) \quad \cdots \quad P(0, d)$$

$$\vdots \quad \vdots \quad \vdots$$

$$d \quad P(d, 0) \quad \cdots \quad P(d, d)$$

Se puede probar que la matriz P^n matriz de transición en n pasos. Es la n-esima potencia de la matriz P.

Una distribución inicial π_0 puede ser tomada como un vector fila (d+1)-dimensional:

$$\pi_0 = (\pi_0(0), \pi_0(1), \cdots, \pi_0(d))$$

Analogamente con π_n puede ser tomado como un vector fila (d+1)-dimensional:

$$\pi_n = (P(X_n = 0), P(X_n = 1), \cdots, P(X_n = d))$$

De donde se concluye lo siguiente

- $\pi_n = \pi_0 P$
- $\pi_{n+1} = \pi_n P$

CLASIFICACION DE ESTADOS

Estado absorbente

Un estado a de una cadena de Markov se llama **estado absorbente** si P(a,a)=1 ó de manera equivalente $P(a,y)=0, y \neq a$

Además cumple las siguientes igualdades:

$$P^n(a,a)=1=P(X_n=a|X_0=a)$$
 $P^n(x,a)=P_x(T_a\leq n)\quad n\geq 1$

Probabilidades de alcance

Sea $\{X_n\}$ una cadena de Markov que tiene espacio de estados S y función de transición P.

Definimos ho_{xy} como:

$$egin{aligned}
ho_{xy} &= P_x(T_y < \infty) \ &= P(T_y < \infty | X_0 = x) \quad x,y \in S \end{aligned}$$

La cual denota la probabilidad de que la cadena alcance el estado y en algún instante dado que se ecuentra inicialemente en x.

Estados Recurrentes y Transitorios

Vea que ho_{yy} denota la prob. de que la cadena que comienza en y vuelva a y en algún momento.

Entonces, podemos clasificar:

Recurrente	$ ho_{yy}=1$
Transitorio	$0 \leq ho_{yy} \leq 1$

Vea entonces que si z es un estado **transitorio** entonces, si la cadena comienza en z se tiene un probabilidad de $(1-\rho_{zz})$ de **nunca regresar a** z

Los estados **asbsorbentes son recurrentes:** $P_y(T_y=1)=P(y,y)=1$ entonces $ho_{yy}=1$

Número de visitas a un estado y

Defina la siguiente función indicadora:

$$I_{\{y\}}(x_n) = \left\{egin{array}{ll} 1 & si & x_n = y \ & & & \ 0 & si & x_n
eq y \end{array}
ight.$$

Sea N(y) = # de visitas que hace la cadena al estado y.

Entonces podemos saber el numero de visitas que hace la cadena a un estado y. Esto es:

$$N(y) = \sum_{i=1}^\infty I_{\{y\}}(x_n)$$

Vea que los eventos $\{N(y) \geq 1\} = \{T_y < \infty\}$. Entonces

$$P_x(N(y) \geq 1) = P_x(T_y < \infty) =
ho_{xy}$$

Ahora, considere m,n enteros positivos. Vea que si la cadena empieza en x y visita por primera vez a y al tiempo m y despues, estando en y visita a y en n tiempos, pude ser expresada como: $P_x(T_y=m)P_y(T_y=n)$

$$egin{aligned} P_x(N(y) \geq 2) &= \sum_{m=1}^\infty \sum_{n=1}^\infty P_x(T_y = m) P_y(T_y = n) \ &= \left(\sum_{m=1}^\infty P_x(T_y = m)
ight) \left(\sum_{n=1}^\infty P_y(T_y = n)
ight) \ &= P_x(T_y < \infty) P_y(T_y < \infty) \ &=
ho_{xy}
ho_{yy} \end{aligned}$$

En general:

$$P_x(N(y) \geq m) =
ho_{xy}(
ho_{yy})^{m-1}$$

Además, la probabilidad de empezar en \boldsymbol{x} y visitar a \boldsymbol{y} más de \boldsymbol{m} veces. Entonces:

$$P_x(N(y)=m)=
ho_{xy}(
ho_{yy})^{m-1}(1-
ho_{yy})$$

En palabras, para que la cadena que empieza en x visite al estado y en exactamente m ocaciones, debe visitar a y por primera vez, luego regresar a y en m-1 ocaciones, y finalmente nunca regresar a y.

Promedio de visitas a un estado.

Vea que con N(y) podemos contabilizar el promedio de visitas a un estado. Entonces. $E_x[N(y)]$ nos denota el promedio de visitas al estado y , dado que la cadena inicia en x.

$$egin{aligned} E_x[N(y)] &= \sum_{i=1}^\infty E_x[I_y(x_i)] \ &= \sum_{i=1}^\infty P_x(X_n = y) \ &= \sum_{i=1}^\infty P^n(x,y) \end{aligned}$$

Por notación: $G(x,y)=E_x[N(y)]=\sum_{i=1}^\infty P^n(x,y)$

Teorema

• PARA ESTADOS TRANSITORIOS

Sea y un estado transitorio, entonces:

$$P_x(N(y) < \infty) = 1 \tag{1}$$

$$G(x,y) = rac{
ho_{xy}}{1-
ho_{yy}} \quad x \in S$$

• PARA ESTADOS RECURRENTES

Sea y un estado recurrente, entonces

$$P_y(N(y) = \infty) = 1 \tag{3}$$

$$G(y,y) = \infty \tag{4}$$

Además.

$$P_x(N(y) = \infty) = P_x(T_y < \infty) = \rho_{xy} \tag{5}$$

Si
$$\rho_{xy} = 0$$
 entonces $G(x, y) = 0$ (6)

Si
$$\rho_{xy} > 0$$
 entonces $G(x, y) = \infty$ (7)

🚺 Note que si una cadena tiene espacio de estados finito, debe tener almenos un estado recurrente. Entonces una cadena de Markov no puede ser transitoria.

Descomposición del espacio de estados.

Definición

Sean x y y dos estados, no necesariamente distintos. Decimos que x accede a y (ie $x \longrightarrow y$) si $ho_{xy} > 0$

Ademas vea que:

- $x \longrightarrow y \quad \land \quad y \longrightarrow z \Longrightarrow x \longrightarrow z$
- No es reflexiva, ni simetrica. ie si x accede a y no necesariamente y accede a x

Teorema

Sea x un estado recurrente y suponga que $x \longrightarrow y$. Entonces y es recurrente y ademas $ho_{xy}=
ho_{yx}=1$

Defina ahora las siguientes clases.

$$C_x = \{y \in S_R | x \longrightarrow y\} = C_x = \{y \in S_R |
ho_{xy} > 0)$$

DEFINICION

Sea $C\subset S$ decimos que C es cerrado, si ningun estado de C se comunica con algun estado fuera de C.

$$ho_{xy}=0, x\in C, y
otin C$$
 $\delta P^n(x,y)=0, x\in C, y
otin C$

Sea C una clase cerrada. Decimos que C es IRREDUCIBLE si $x \longrightarrow y \quad x,y \in C$

COROLARIO

Sea C una clase cerrada e irreducible de estados. Entonces $ho_{xy}=1$, $P_x(N(y)=\infty)=1$, y $G(x,y)=\infty$ para cualquiera $x,y\in C$

TEOREMA

Sea ${\cal C}$ una clase finita cerrada e irreducible de estados. Entonces, cada estado en ${\cal C}$ es recurrente

TEOREMA

Suponga que el conjunto S_R de estados recurrentes es no vacio. Entonces S_R es la union finita o contable finita de clases cerradas irreducibles disjuntas $C_1, C_2 \ldots$

Probabilidades de Absorcion

Sea C un conjunto cerrado e irreducible de estados recurrentes. Se define la probabilidad de Absorcion de un estado $x \in S$ como:

$$ho_C(x) = P_x(T_C < \infty)$$

Ademas, definimos para el calculo de probabilidades:

$$ho_C(x) = \sum_{y \in C} P(x,y) + \sum_{y \in S_T} P(x,y) p_C(y)$$

Cadenas de Muerte y Nacimiento

Defina

$$u(x) = P_x(T_a < T_b) \quad a < x < b \ u(a) = 1 \quad u(b) = 0$$

$$ext{Definase} \quad \gamma_0 = 1, \gamma_y = rac{q_1 \cdots q_y}{p_1 \cdots p_y}, 0 < y < d$$

Entonces tenemos dos casos.

$$P_x(T_a < T_b) = rac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}, \quad a < x < b$$

$$P_x(T_b < T_a) = rac{\sum_{y=a}^{x-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}, \quad a < x < b$$

Matriz de transicion para dos estados

$$P=egin{pmatrix} 1-p & p \ q & 1-q \end{pmatrix}$$
 $P^n=rac{1}{p+q}egin{pmatrix} q & p \ q & p \end{pmatrix}+rac{(1-p-q)^n}{p+q}egin{pmatrix} p & -p \ -q & q \end{pmatrix}$