2) Limite en un point

(a) Limite infinie et asymptote verticale

Définition

Soit un réel a qui appartient ou est une borne de lensemble de définition de f. Dire que f(x) tend vers $+\infty$ quand x tend vers a signifie que f(x) prend des valeurs aussi grandes que l'on veut pour x très proche de a.

On écrit
$$\lim_{x \to a} f(x) = +\infty$$

On dit que la droite déquation x = a est asymptote à la courbe.

Remarques:

- De manière analogue, $\lim_{\substack{x \to a \\ y \to a}} f(x) = -\infty$ si f(x) prend des valeurs négatives de plus en plus grandes en valeur absolue quand x est très proche de a.
- Il peut y a voir une limite à droite et à gauche.

Exemples: Soient $g(x) = \frac{2}{(x-4)^2}$ définie sur $\mathbb{R} \setminus \{4\}$ et $f(x) = \frac{1}{x-3}$ définie sur $\mathbb{R} \setminus \{3\}$:

(b) Limite à gauche et à droite

Exemple : Considérons la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$

La fonction f admet des limites différentes en 0 selon que :

$$x > 0$$
 (soit 0^+) ou $x < 0$ (soit 0^-).

Calculons ces 2 limites:

- Si x > 0: (on parle de limite à droite de 0) $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty \text{ ou } \lim_{\substack{x \to 0^+ \\ x > 0}} f(x) = +\infty$
- Si x < 0: (on parle de limite à gauche de 0) $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \text{ ou } \lim_{\substack{x \to 0^- \\ x < 0}} f(x) = -\infty$

Remarque : Les limites à gauche et à droite de $\frac{1}{X}$ en 0 ne sont pas égales, on dit donc que la limite de la fonction f en 0 n'existe pas.

(c) Limite finie

Définition

Soit une fonction définie sur un intervalle I. Soient a et ℓ deux réels. On dit que f admet ue limite ℓ lorsque x tend vers a si les valeurs de f(x) dont aussi proches de ℓ que l'on veut quand x est très proche de a.

Òn écrit :
$$\lim_{x \to a} f(x) = \ell$$

Exemple: Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 5$

Quand x prend des valeurs de plus en plus proches de 2, x^3 est très proche de 8, donc f(x) prend des valeurs de plus en plus proches de f(2) = 3.

Donc,
$$\lim_{x\to 2} f(x) = 3$$
.

(d) Limite des fonctions de références

f(x) =	$\frac{1}{x}$	$\frac{1}{x^2}$	$\frac{1}{x^n}$	$\frac{1}{\sqrt{\chi}}$
$\lim_{\substack{x\to 0\\x>0}}f(x)=$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
			$+\infty$ si n pair $-\infty$ si n impair	non définie

Ш. **Opération sur les limites**

f et g désignent deux fonctions, ℓ et ℓ' sont deux réels. α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1) Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
$\lim_{x\to\alpha}g(x)=$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x\to\alpha}[f(x)+g(x)]=$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.*

^{*}Forme indéterminée : On ne peut pas prévoir la limite.

Exemples : Déterminer les limites suivantes :

(a)
$$\lim_{x \to +\infty} x + 3 + \frac{1}{x} = ?$$

On a :
$$\lim_{x \to +\infty} x + 3 = +\infty$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$
Par somme, $\lim_{x \to +\infty} x + 3 + \frac{1}{x} = +\infty$

Par somme,
$$\lim_{x \to +\infty} x + 3 + \frac{1}{x} = +\infty$$

(b)
$$\lim_{x \to -\infty} x^2 + x - 3 =$$
?
On a : $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} x - 3 = -\infty$

Donc, $\lim_{x\to -\infty} x^2 + x - 3 = \text{est une forme}$ indéterminée, on ne peut donc rien conclure.

Limite d'un produit 2)

$\lim_{x\to\alpha}f(x)=$	$\ell \neq 0$	l	∞	0
$\lim_{x\to\alpha}g(x)=$	ℓ'	∞	∞	∞
$\lim_{x \to \alpha} [f(x) \times g(x)] =$	$\ell imes \ell'$	∞	∞	F.I.

 ∞ désigne $+\infty$ ou $-\infty$: on applique la règle des signes pour déterminer si le produit est positif ou négatif.

Exemples : Déterminer les limites suivantes :

(a)
$$\lim_{x \to -\infty} (x-3)(5+x^2) = ?$$

On a:
$$\lim_{x \to -\infty} x - 3 = -\infty$$
 et
 $\lim_{x \to -\infty} x^2 = +\infty$ donc $\lim_{x \to -\infty} 5 + x^2 = +\infty$

Par produit,
$$\lim_{x\to-\infty} (x-3)(5+x^2) = -\infty$$

(b)
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) \sqrt{x} = ?$$

On a: $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc $\lim_{x \to +\infty} \frac{1}{x} - 1 = -1$ et $\lim_{x \to +\infty} \sqrt{x} = +\infty$

Par produit,
$$\lim_{x\to +\infty} \left(\frac{1}{x}-1\right) \sqrt{x} = -\infty$$

Limite d'un quotient 3)

$ \lim_{x \to \alpha} f(x) = $	ℓ	$\ell \neq 0$	l	∞	∞	0
$\lim_{x\to\alpha}g(x)=$	$\ell' \neq 0$	0	∞	ℓ	∞	0
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{\ell}{\ell'}$	∞	0	∞	F.I.	F.I.

Exemples : Déterminer les limites suivantes :

(a)
$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{1 - 2x}{x - 3} =$$
?

(a)
$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{1}{x - 3} = ?$$

On a: $\lim_{\substack{x \to 3 \\ x < 3}} 1 - 2x = -5$ et
$$\lim_{\substack{x \to 3 \\ x < 3}} x - 3 = 0^{-1}$$

$$\lim_{x \to 3} x - 3 = 0^{-3}$$

Par quotient,
$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{1 - 2x}{x - 3} = +\infty$$

(b)
$$\lim_{x\to 0^+} \frac{7-x}{\sqrt{x}} = ?$$

On a : $\lim_{x\to 0^+} 7-x = 7$
et $\lim_{x\to 0^+} \sqrt{x} = 0^+$

Par quotient,
$$\lim_{x\to 0^+} \frac{7-x}{\sqrt{x}} = +\infty$$