

POST-ANALYSIS REPORT ON CHESAPEAKE BAY DATA PROCESSING

Informal Final Report by

F. Thomson

INFRARED AND OPTICS LABORATORY
WILLOW RUN LABORATORIES
INSTITUTE OF SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF MICHIGAN

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Wallops Station Contract NAS 6-2058 ORY SHOLOGY N G3/13 41381 1381 1381

TECHNICAL LIBRARY COPY-NASA-WALLOPS ISLAND, VA.

NOTICES

Sponsorship. The work reported herein was conducted by the Willow Run Laboratories of the Institute of Science and Technology for the National Aeronautics and Space Administration, NASA Wallops Station, under Contract No. NAS 6-2058, and under the guidance of Mr. Edgar Everton, Technical Monitor. Contracts and grants to The University of Michigan for the support of sponsored research are administered through the Office of the Vice-President for Research.

<u>Disclaimers</u>. This report was prepared as an account of Governmentsponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- (A) Makes any warranty or representation, expressed or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- (B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Availability Notice. Requests for copies of this report should be referred to:

National Aeronautics and Space Administration Scientific and Technical Information Facility P. O. Box 33 College Park, Md. 20740

<u>Final Disposition</u>. After this document has served its purpose, it may be destroyed. Please do not return it to the Willow Run Laboratories.

INFORMAL FINAL REPORT

POST-ANALYSIS REPORT ON CHESAPEAKE BAY DATA PROCESSING

by

F. Thomson

INFRARED AND OPTICS LABORATORY
WILLOW RUN LABORATORIES
INSTITUTE OF SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF MICHIGAN

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

April 1972

Contract NAS 6-2058

NASA Wallops Station Wallops Island, Virginia

TABLE OF CONTENTS

- 1.0 Introduction and Summary
- 2.0 SPARC WORK
 - 2.1 Analysis of New SPARC Results from Line 17
 - 2.2 SPARC Signature Extension Results
- 3.0 Conclusions of the Signature Extension Study
- 4.0 Recommendations for Future Data Collection

Appendix I - Delivered SPARC Materials

Appendix II - SPARC Data Sheets

of the unusual weather conditions, it was not possible to discriminate all the categories we had hoped to, and one compromise map of each line's data was prepared. Aspect ratios of each line's data were matched to photography by varying the imagery camera film speed, and precise match was obtained using different film speeds for each run.

Before histogram preparation, digitized data were corrected for scan angle dependent variations in observed radiance by subtracting quadratic functions of scan angle from each channel's data. Two sets of quadratic functions were determined—one for correcting water data and the other for correcting land data. Two types of histograms were prepared. The first type was a normal histogram—a plot of percentage of points in each training set in each voltage interval. The second histogram type produced a similar display, but with a comparison of the actual data marginal distribution functions to Gaussian distribution functions. From the χ^2 test, we determined that nearly all the training set marginal distribution functions could be considered Gaussian. This is a necessary, but not sufficient condition for the entire spectral signature statistics to be considered Gaussian.

SPARC results from two Rhode River Test Area lines flown on 11/6/70 at 1425-1436 hrs show that signatures can be extended between the two runs. Some dropout of recognition along the north edge of Line 12 is attributed to failure of the preprocessing correction. The effect is not serious. The recognition of various training sets on Line 11 from the new setup differ (in some cases materially) from the recognition obtained in April 1971. This is attributed to the fact that signature mean values had to be adjusted to account for some recalibration of SPARC which was completed last summer.

2.0 SPARC Work

The purpose of the SPARC work, performed on data from two flight lines over the Rhode River test site, was to attempt to extend spectral signatures from Run 11 to Run 12. The data for the processing were collected on 11/6/70 at 1425-1436 hrs. EST at 5000 ft. above terrain. Since processing had already been done on Line 11, spectral signature, SPARC training information, and preprocessor settings were already available for this run.

The same six optimum channels were used for this processing effort as were used for the previous effort (April 1971). These six channels were: 0.68-0.58, 0.75-0.85, 0.68-0.74, 0.55-0.58, 0.43-0.45 and 0.41-0.43 µm. Preprocessing applied in April (subtracting a function of scan angle from each channel) was again applied. Signals were examined and there were no discernable residual angle dependent variations.

Signature means, standard deviations, and covariances were entered from the SPARC record of the April work. Because of SPARC recalibration during the summer of 1971, the old signature settings did not produce proper recognition on Run 11 data. Because the prime part of the summer recalibration was an adjustment of operational amplifier zeroing, we felt that the signature mean values were probably in error, but that the standard deviation and covariance settings were probably correct. Accordingly, the mean values in each channel were readjusted for each training set, using data from the original tape loops and training sets to determine when the means had been properly adjusted. A comparison of recognition patterns on the tape loop data from the April work and from the present study was also made.

Filmstrips were printed of video channels and of recognition on both

Lines 11 and 12. The same camera film speeds were used for the two runs.

Individual recognition maps were enlarged about 2.5 times, the enlargements

converted to ozalids, and the resulting ozalids registered and photographed. Two separate color coded ozalid maps were provided to match previous work. The color codes of the Line 12 data were identical to those of the previously delivered Line 11 results. Because many of the recognition patterns were quite sparse, a 2.5 X blowup of a red channel of imagery (0.63-0.68 μ m) was provided for reference. This blowup is at the same scale as the enlarged recognition maps and the original ozalids.

3.7

2.1 Analysis of New SPARC Results from Line 11

As a first analysis step, the new recognition results from Line 11 were compared with the results previously generated. This analysis uncovered some discrepancies in recognition patterns between the two sets of SPARC results. These discrepancies are attributable to the fact that signature mean values had to be adjusted because of the SPARC calibration procedure.

Water recognition (w-blue) between the two setups is quite consistent.

All water areas except very shallow water (maybe mud flat?) at the head of the bay are detected. Tree shadows are prominent false alarms and are detected as water probably because they appear dark in most channels (blue channels an exception) as does water. Shallow water areas are probably not detected because the blue channels used penetrate the water, probably to the bottom.

Because of bottom reflectance, shallow water has a different spectral signature than the deeper water.

Recognition of bare soil 2 (BS2-black) seems slightly greater in the recent map than in the April 1971 map, but nearly all classifications appear to be correct. Some arcs of detection surrounding land areas in the right center of the scene may be false alarms in turbid shallow water.

Bare soil (BS4-brown) recognition seems to compare quite closely between the two sets of Line 11 maps. There seems to be slightly more BS-4 recognition, at the expense of BS-2 recognition, in two fields in the south center of the scene in the new SPARC results. No prominent false alarms can be identified. The spotty detection of the roadway is not considered a false alarm, because what may be detected is the gravel shoulders.

The hardwood signature H1 (orange) seems to have recognized a considerable amount of bare soil in the new SPARC results compared to the old results. This effect is particularly apparent in the marsh area in the center of the scene and in the bare soil areas in the eastern portion of the scene. Some hardwood areas are more solidly detected in the new map as compared to the old This is especially apparent in the north central part of the scene. The cause of the bare soil false alarms is probably a slightly misadjusted set of mean values for the H1 signature. The signature means were readjusted to compensate for SPARC amplifier calibrations. The readjustments brought signals from the HI training set to zero mean, but apparently darker bare soil signals were also brought within the detection range of the Hl signature. readjustment has produced greater recognition of hardwood areas, at the expense of a higher false alarm rate in dark bare soil areas. This confusion does not materially affect the utility of these results for assessing the success of signature extension, because only comparison of recognition patterns on Line 11 and 12 are involved there.

Hardwood (H4-blue green) detection appears slightly greater in the new version of the recognition map than in the old version. Noticeable differences occur at the northern edge of the scene, where the new map reveals considerably greater detection than the old map. There also seems to be more recognition in the new map on the two peninsulas at the right center (eastern side) of the scene.

Loblolly pine (C3-violet) detection seems more prevalent in the new SPARC results compared with the old results. The training set at the tip of the easternmost peninsula appears well detected in both maps. Slightly more pine detection occurs in the north central and central portions of the new results. It is not possible for us to determine whether there are pine trees

in these areas of the scene, but the predominance of hardwood recognition would seem to argue against that. It is possible that some scene points which would have been classified as H1 are now classified as C3 because of the slight misadjustment of the H1 signature means.

The recognition of abandoned field (Fl-yellow) compares quite favorably between the two Line II maps. The training set seems slightly better detected in the new results than in the April 1971 results. All other major occurrences of Fl detection agree quite well.

The pasture detection (P-dark green) appears more solid in the new SPARC map, although no new major areas of pasture are identified in the new map. The training set seems more solidly detected and pastures in the eastern half of the run appear at least, if not more, solidly detected in the new map than in the old map. However, pasture areas in the western half of the run appear less solidly detected in the new map than in the old, although the effect is not major.

Spartina (S-olive green) detection seems quite sparse in both results.

The new results seem to have more false alarms in pastures and bare soil areas in the south central and western portions of the scene. Detection of spartina in what we assume is the major area (the marsh in the north central part of the scene) is spotty in both sets of results with more recognition apparent in the new results. The sparse recognition of spartina is felt to be caused-by the training on only brightest areas of spartina in the initial SPARC work.

On the whole, with the exception of the H1 signature, there seems to be reasonable agreement between the Line 11 results of April 1971 and those of March 1972. The agreement is quantified in Table 1, where the percentage of scene area classified as each of the categories is tabulated. Interpretation of these results, derived from area counts accumulated during SPARC processing,

must proceed with caution however. Even if the number of counts (and hence the percentage of the scene detected) agree for the two processing runs, the recognition patterns may not necessarily agree. For this reason, area count information should be interpreted jointly with the recognition maps. Further, there may be general disagreement between the total percentage of the scene detected as computed from the counter data and that estimated from looking at the map. This effect occurs because of the overlap of scan lines in printing which is necessary to achieve a map with proper aspect ratio.

The counter totals the number of tens of microseconds of recognition signal in the run. The film records the same signal with about 5:1 overlap for 5000 ft data. It is possible to have an area appear solidly recognized on the film but for the counter to show only 40-50% recognition, because only 1 line in 5 need be recognized to obtain a solid black area on the film.

2.2 SPARC Signature Extension Results

The signature extension from Line 11 to Line 12 was successful. In general, recognition patterns in the common area between the two runs agreed quite well. There was an area of no recognition on the northern edge of Line 12, probably caused by a failure of the preprocessing to properly correct signals at this edge of the scene.

The quantitative comparison of Line 11 and Line 12 is shown in Table 2.

The numbers in this table must be interpreted with a certain amount of caution as previously discussed. Also the relative proportions of various objects in the scene may be different because of different scene coverage.

Water (blue) is well recognized in both maps, with the exception of shallow water (possibly mud flat) which is not detected. This is probably because of water turbidity and/or bottom reflectance modifications of water spectral signature in the blue channels. Shadows of trees are detected on both Line 11 and Line 12 maps.

Bare soil (BS2-black) is well recognized on both Lines 11 and 12, and patterns in the common area are similar. Also, a comparable percentage of each scene was recognized as bare soil 2.

Bare soil (BS4-brown) detection in Line 12 results seem more spotty than in Line 11. Also, the training set for this category is not on the Line 12 data. This probably explains the lower percentage of the scene detected as bare soil 4 in Line 12.

Hardwood (H1-orange) recognition is comparable in the two runs of data, although there are prominent false alarms in such dark bare soil areas as the mud flat and certain fields and water courses. The percentage of the

scene recognized as H1 is comparable in Line 11 and Line 12 results.

Hardwood (H4-blue-green) recognition seems to be slightly greater in Line 11 than in Line 12, and this is borne out by the percentage figures. Recognition is concentrated in the upper half of Line 12 and the middle of Line 11. Since this is the same geographic area, this effect is probably not caused by preprocessing. A subset of all the hardwoods in the scene seems to be detected by this signature.

Loblolly pine (C3-violet) recognition on Line 11 is distinctly better than on Line 12. The signature area on Line 12 is in the region of the data where preprocessing failed to adequately account for signal variations. Consequently the training set is not detected on Line 12. Also some areas north of the spartina marsh are detected in Line 12 and not in Line 11. On the whole, this signature probably extends less favorably than any of the other signatures. A great deal of the problem is related to the failure of the preprocessing at the north edge of Line 12 data.

Abandoned field (F1-yellow) detection in Line 12 is not precisely comparable to Line 11, even though the percentages of the scene detected are similar. On Line 12, there seems to be a lot more detection of this category in bare soil fields and the patterns in these fields do not precisely compare in the two runs. Also this category seems to recognize a large area in the marsh on Line 11 which is not apparent on Line 12 results.

Pasture (P-dark green) detection in Line 12 and Line 11 is quite similar, with a few exceptions. The training set in Line 12 is more poorly detected than in Line 11. In Line 12 data, pasture seems to recognize more of the abandoned field training set than in Line 11. Aside from this, the patterns

of detection are quite comparable. The slightly lower percentage of scene detected in Line 12 is probably primarily caused by poorer performance in the training set area.

Spartina (S-olive green) in Line 12 is restricted to apparent false alarm areas in bare soil fields. Very little detection occurs in the marsh area on Line 12. The difference in percentages of the scene detected is fairly large and representative of the difference in classifier performance. Along with loblolly pine, the extension of this signature was probably the least successful of any of the signatures.

Table 1

Comparison of Percentage Scene
Composition in Two Rhode River
(Line 11) SPARC Processing Operations

Category	Color	April 1971 Results	March 1972 Results
Water	Blue	23.42	27.25
Bare Soil(2)	Black	1.056	1.099
Bare Soil(4)	Brown	3.80	0.511
Hardwoods(1)	Orange	4.700	4.800
Hardwoods(4)	Blue-Green	4.401	3.504
Loblolly Pine	Violet	0.258	0.973
Abandoned Field	Yellow	1.738	0.825
Pasture	Dark Green	1.562	0,628
Spartina	Olive Green	0.142	0.059
TOTAL	,	41.077	39.649

Table 2

Comparison of Percentage Scene Compositions for Two Rhode River Runs (Lines 12 and 11) April 1972 Results

Category	Color	Line 17	Line 18
Water	Bl ue	27.25	21.01
Bare Soil(2)	Black	1.099	1.370
Bare Soil(4)	Brown	0.511	.203
Hardwood(1)	Orange	4.800	4.577
Hardwood(4)	Blue-Green	3.504	3.643
Loblolly Pine	Violet	0.973	.912
Abandoned Field	Yellow	0.825	.539
Spartina	Olive Green	0.059	.050
TOTAL		39.649	33.106

3.0 Conclusions of the Signature Extension Study

In general, spectral signatures trained on Line 11 of the Rhode River

Test Site data classified data from Line 12 reasonably well. Some signatures

performed better than others on the Line 12 data. A similar effect has

been noticed in other signature extension work (on other data sets) conducted

by Mr. Richard Nalepka of The University of Michigan.

A more realistic quantitative test of signature extension could have been done had better quality original data been available and had more training sets been used to classify a greater fraction of the total scene. The present results are encouraging however. It should be pointed out that because the two data sets were collected over the space of a few minutes, changes in solar illumination were negligible and no compensation for these changes was necessary. Also, the preprocessing used for one run was applied to the second run without modification. In the more general signature extension case, both compensation for changes in solar illumination and changing the parameters of the preprocessing corrections will be necessary.

4.0 Recommendations for Future Data Collection for Rhode River and Pine Bark Beetle Attacked Trees

Data quality was a significant factor in the quality of processed results delivered under this contract. We realize that the November 1970 data collection mission was a compromise of many factors. In this section we will attempt to present some thoughts on more nearly optimum flight profiles and sensor configurations for delineating pine bark beetle attacked trees and for classification of the Rhode River Test Area.

Dr. F. P. Weber of the U.S. Forest Service Pacific Southwest Experiment Station, Berkeley, California, has shown that Black Hills ponderosa pine trees attacked by pine bark beetles exhibit temperature differences from normal trees at certain times of day. In previous work with Dr. Weber, we have had some success mapping attacked trees before visual symptoms appear using data from 1.0-1.4, 2.0-2.6, and 4.5-5.5 µm regions collected by a three element InSb detector. The data were collected at low altitude (1000-2000 ft) and were collected on a diurnal cycle of four flights from predawn through post-sunset on a clear day in May. Comparison with ground measurements showed greatest temperature difference between attacked and healthy trees in late morning.

From this experience, the following flight profile is suggested. Flights made during a diurnal cycle from predawn through post sunset should be made at a time when beetles have started to attack the trees. Flights should be made at low altitude (1000 ft is suggested) and should emphasize data from thermal (4.5-5.5 or 8-13.5 µm) and reflective near infrared (1.0-1.4, 1.5-1.8, and 2-2.6 µm) regions. Ground measurements of canopy temperatures of diseased and healthy trees should be made for correlation with aircraft data.

For classification of Rhode River Test Site Data, a flight in mid-summer is recommended. At this time, hardwood trees have green leaf canopies and can easily be distinguished from conifers. Pastures and abandoned fields would be relatively green, and marsh vegetation should be green and well developed. Flights at various altitudes should be made. The 5000 ft data is useful for general classification, but if more detailed mapping is desired, higher spatial resolution data collected at lower flight altitudes would be desirable. Flights should be made in midday, and flight direction should be such that the aircraft is flying directly into or away from the sun. This will minimize scan angle dependent variations in observed radiance. Visible and reflective near infrared data should be emphasized.

APPENDIX I

Delivered SPARC Materials

The following materials have been delivered to Mr. Edgar Everton as part of the SPARC processing job.

- 1) Original ozalid materials (2 sets) for color coded recognition maps of Line 18 data.
- 2) Two color negatives, two color positive transparencies, and three color prints (scale ~ 1.24000) of Line 18 results.
- 3) Enlarged recognition maps and video data from Line 18.

 Enclosed with this report are the original 70 mm SPARC maps and imagery.

 Table 3 relates the serial number of the SPARC map to the category recognized and the threshold used.

Table 3
Coding of Original SPARC Maps

Category	Threshold	Line 17 Serial No.	Line 18 Serial No.
Spartina	· · · · · · · · · · · · · · · · · · ·	051-032	051-032A
Pasture		051-033	051-033A
Abandoned Field		051-034	051-034A
Loblolly Pine		051-035	051-035A
Hardwood (H1)		051-037A	051-037AA
Hardwood (H4)		051-038	051 - 038A
Bare Soil (BS2)		051-039	051-039A
Bare Soil (BS4)		051-036	051-036A
Water		051-049	051- 049A
0.63-0.68 μm Video		051-040	051-040A

APPENDIX II SPARC Data Records

This appendix contains the SPARC data records for job 051 - the signature extension job for the Rhode River area. The form is virtually unchanged from the form on which job 022 (the first work on this data) results were reported. The standard deviation values and covariance values on job 051 were identical to those used on job 022A, and therefore are not recorded. Copies of SPARC data records from job 022A are also enclosed in this appendix.

SPARC Processing Record

			· •	· · · · · · ·	.		Target	Loop	Gat	e l	P/M	Gat	e 2	
•		PI	RINTS	/-30		1		·				253	325	H
	덖	*******		-	•	•	. 5	5				22)	33 J	V
Channe1	Channe1	Gain				2	- н		172	130			1 "	H
Char	ਹੈ.				*********		P	8	120	261				V
Tape (Patch	Amp		Skew	Delay	3			504	5-18				H
Ta	Ъа	ď.		<u></u>	_ <u>~</u>		F 1	2	440	580	<u> </u>			V.
1				-10		4	0 2	4				268	1	1 -
2 {	2	2		-5			C3					370	500	V
3				-5		3	001	6	221	194				H V
4	3	2	у -	-5		7	B54	0	540	690				1
5	6	2		<u>-5</u>		70/8	·			-			057	H V
6	1	3		-2	+4	8	#1	2				 	450	
8				0		3	44	6				366	361	li V
9				-9		7	2 (•					200	270	н
10	4	3		+2	+4	8	BS-Z	4	199	147				v
11	5	2		-5		10	83-2		030	310		· · · · · · · · · · · · · · · · · · ·		11
12	_			<i>+5</i>	<u> </u>	•								v
13				+9					100		_			Н
2		ļ	SYNC	INVE	OED	10	NOTE:							v
				<u> </u>			<u></u>	2)47	# FI	2011	0	22,4	<u> </u>	H
<u> </u>		φ	A Delay	•	,	11								v
26	.z z	59	B Delay					ļ	 		1			Н
] B Delay			. 12			ļ ·	<u> </u>		<u> </u>		v
I		R	7				 	-	 	<u> </u>	<u>}</u>			н
63	86	.76	Zero Cla		,	13			-	<u> </u>			 _	V
] Sun Gat€		_			 	<u> </u>		ļ			H
	1	• •.		L	R	1 14				1			}	V
12	1		¹ D Ga	te 200	100						-	 -		Ħ
1	4	amp		1.04		1 ^{1 :}			-		-			V
			Period		<u>, 80</u>	1	ļ	 	 	}	├		<u> </u>	Н
[2	9 8	Samb	T.I. A to	B 34	<u>ა</u>	16	1				{	 		V
-			· . •	OV [<u> </u>		<u>i</u>	<u> </u>	<u> </u>	<u>!</u>	1
	•		•	•		7-1	k eta	T J	000000	1 -7		Date		
Pro	ojant Ale		3AY 1	1-6-70	0830		ь №.	r r	onesso CRJ	<u> </u>				1
			8 ring		r		051			K		3-2	-72	
	160	· · · /										·		.1

	Preprocessor Setup*	Purpose	Sheet 5 f
*Applies to sheets_AGC	27/12	$S_{i} = S_{i} - C$	Sheet $ $
Inputs Inputs 1 / 2	Pots Input Setting	Multipliers X In M/D Y In	Sum Circuit
3 3	2	POTI	3 1
4 9 5 S	3 4	1N1 10TZ	S 3
6 4	5 2) POT 2	0 5
8	8 3	S POTIO	5 7
10	9	M POT 2 1N3 POT 2	
12	11 4) M POT 22	-
Buffers Inputs Gain	13 BUF1 054	1N9 POT 2	~-
1	15 BUF1 067	IN 5 POT 29	Conditioner
2 31/2 2	17 BUE! 010 6	M POT 24	-
100	19 BUF 2 088	IN 6 POT 30	In +
3 BNC3	20 BUEZ 0 7		BNC's on
Outputs Monitor	22 13UF 2 085 23 BUF 2 102 8	377×3	Front Panel
to SPARC Jacks 1 Por 31 /2073/	24 DUFZ 673 25 ZUFZ 041	}	2 -10 /2 3 +10 /3
2 PUTZL PUTZL 3 PUTZZ PUTZZ	26 30 F 3 044 90 27 20 F 3 034		1 1
4 POT 39 POT 39 5 POT 35 POT 35	28 BUF3 038 29 BUF3 060 100		
6 POT36 POT36	30 80E3 032 31 MIY 1000		2 4 6
8 9	32 M2 7 250 116 33 M3 7 250		g \$ 0
10	· 34 M4Y 750 · 35 M57 150 12		21-5
12	-36 MGY 1000		3-2

SPARC Setup

4 12 Sheet X of N

											•		<u></u> -	·`
		_	(Targ	•	. S		Inputs			(Targe	et 2)	P		
	<u> </u>	<u></u>	V3	V4	V5	V6		V1	_V2	V3	V4	⊽ 5	V6	ţ.
S	678	185	618	901	1000	1003	SS	359	461	574	904		869	s
√ ,	855	126	520	7.6	639	650	мм	424	374	785	707	680	3 7×	М
	1000	013	0 <i>5</i> 0	032	002	00°	н1	1000	003	538	269	000	213	н1
In	puts	1000	042	200	005	098	Н2		1000	450	121	198	000	H2
VI]	1003	078	007	0.82.	11.3	puts	1	1000	030	008	058	н3
.V2	1223			958	0 03	095	H4.V1	1000			/ 3 53	242	075	н4
V3		1000	,	1	004	0/8	н5 ^{V2}	042	1000			524	046	น5
V4	212	086	1000	<u> </u>	ì	83	н6	014	091	655			416	н6
	200		078	888			V4	114	006	000	538			puts
V5	067	000	064	000	510	Inpu	•	001	000	0/2	032	182	,	
∠ ∨6	029	205	000	046	025	1005	V6	060	035	015	026	008	614	
S	632	634	940	1000	1000	466	S S	969	525	1000	100	1000	1000	s
M	481.	431	732	238	635	272	им	623	385	1195	593	5-54	09/	М
	H1	H2	Н3	H4	Н5	H6	_	Hl	Н2	н3	H4	Н5	Н6	•
			(Targ	et 3)	FI		Inputs			(Targe	et 4)	e 3.		
													•	

		•	-	` 7							7	•	•	,
	VI	. V2	(Targ	- p,	B34		Inputs			(Targe	et 🗷	H1		
s	520	441	769	951	98 7	953	s s	2° 244	V2	<u>V3</u>	<u>V4</u>	<u> 75</u>	V6	<u> </u>
М	800	308		859	ا	674	мм	257	433 435	301 271	345	1000	/255	S
-			094		724							3-3.1	¥77	M
	1000			128	081	006	H1 ·	996	<i>Ĉ</i> \$\$	005	207	017	013	Hl
Ĭı	puts	946			142	/3/	H2 H3 In	puts	1563	058	000	3/2	124	н2
V1	1900	l ·	1000	011	199	132	H4 ^{V1}	,	ا . ا	رندن/	005	004	232.	Н3
V2	1	1000	•	1000	0/2	077	H4 H5 ^{V2}	1000			1000	000	0 55	H4
V3	032	234	1000]	1000	000	H6 ^{V3}	107	,		1	A34	000	н5
, V 4	149	000	005	8.16	}	1303	ј но V4	104	024			1	1000	н6
√ v5	055	000	000	018	344	Inpu	its V5		003	031	1005	c	In	puts
. V6			000	052	010	53/	V6	000	005		028	256		1
S	918	F					‡		 	051	008	002	923	
M		750	960		1000	1329	s s	720	556		1000	1000	100	S
	H1	<u>137≈</u> H2.	. H3	H4	H5	11.5	јм м	<u> </u>	107	593	255	721	7	М
,		n2				Н6	Inputs	H1	Н2	Н3	H4	H5	Н6	
			· (rarg	et 🞝 ,	H #						et 😮)	<i>es-<u>2</u></i>	:	,
	•	• •		7						Job No	10		Date	·
•		•		•	· •					0.5	- An		4	
										03	51		3-9	-72

SPARC Processing Record

	,	PR I	M73 .	3/-	- 4	8	-	Target	Loop	Gat	e l	P/N	Gat	e ⋅2	
	•				·		1	S					255	227	H_
-	e1			·			•		5				230	320	V
Channel	Patch Channel	Gain					· 2	P	6/8	172	130				H
	5	Amp (5 .			-8	710	870				V
Ţape	atcl		 E		Skew	Delay	3	FI	25	509	518		ļ <u>-</u>		H
		_ d	<u> </u>	-			7			160	300				V
1		ļ ·		ļ			4	C3	4	<u></u>	ļ <u> </u>		268	265	
2	2	2						! 		ļ		<u> </u>	140	300	٧
3			<u> </u>				. 5			 				<u> </u>	II.
4	3	Z		-			- 4			<u> </u>		<u> </u>	ļ	ļ <u>.</u>	H
5	6	2	·	 			6						<u> </u>		\ v
6 8		3		-		+4	-		ļ <u> </u>		10-		<u> </u>	<u> </u>	٠,,
9		<u> </u>					. 7	B59	6/8	220	192				ر " ر ا
10	4	3		+		+4	-	#1		450	590		091	058	H
11	5	2				74	. 8	21-7	Z	 			083 Z46	300	v -
12	3	-		+				49	1	<u> </u>			366	36/	II
13				-			9		6/8				140	2/0	V -
フ			SYNC	111	IEIRT	ED		852	_	194	167	<u></u>	, , , _		11
•					 		10		4	010	160		<u> </u>		v
8	·	φ	<u> </u>		<u> </u>		11						- -		н
			A Delay			•	1.1								v
			B Delay				12	LOOPS	FRO	M.	151	7	APE		Н
I.		R	•					QUP.	<u>_</u>						v
			Zero Cl	amp	•		13					-			H
			Sun Gat	e			- `	·					(-		v
	-		=	_	L	R	, 14								и
	ф D	elay	D Ga	ite [] v
	φR	amp		-			, 15								H
	9 D	elay	Period	I A				·							V
	o R	anp	T.I. A to	Г			16								H
	•]	FOV											V
		•											-		
Pro	ject	****	magaza yanda e bari e bi ba r	**** = .		/ *** · *** · #	Job	No.		cessor			Date	- 	,
							/	251	(CRJ			3-10	27-2	
1									1	RIC			,		1

AND COUARIANCE VALUES

051

3~/3~72

SPARC Processing Record

Tape Channel Patch Channel Op Amp Gain	<u>E</u>	Skew	Delay	1 2 3				;			
1 2 3	E.	Skew	Delay	3				;			
2 3	Ē	Skew	Delay	3				;			
2 3	щд	Skew	Delay	7	·				ŢŢ		
2 3				7,	1		1 1		7		
3			-			.			+		
		_	l		WATER						
4				5							
_								<u> </u>			
6				6					┦┡		
8								 			
9				7					 		
LO				8					\dagger		
.1				l °					1		
.2				9							
1.3											
				10					<u> </u>		
	<u> </u>			}					<u> </u>		
φ <u>θ</u>	Delay			11					-	•	
В	Delay					 -					
I. R				12				 -	1 -		
	ero Clamp			13							
St	ın Cate				,					.i	
•	. г	L	R	14					┦┝		
¢ Delay	D Gate		·]					-		
# Ramp	В Г			۱ ا					-	<u> </u>	
0 Delay 0 Ramp T.I	l l	<u> </u>									
n Creatin Ter	FOV			16				,	╽┝		
ŧ	h			• i.	· · · · · · · · · · · · · · · · · · ·		······································		1	!	
roject	·			Job	No.	Pro	cessor		D.	ate	·
`	x				051					5-/3	~)2

. 1

2

5

6

7

8

9

10

11

12

irea Covered		
leometry Corrections:	Camera Settings:	<u> </u>
Tan Ø	Your Care 300	1
Yaw	Drive Frequency 25.2	2000 F
'ield Of View	Exposure f 56	· .

				•	
Prin No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
1	UID	TAPE CH 1	TAPE	051	× 099-500
2		2		1/ 2	× 108
3		3		y ·	162
4		4		. 11 -	178
ર્ડ		5		1,	174
6		6		. U	154
8		8		· y	146
9		9		11	108
10		10		11	117
11		11		U	168
12		12		ll.	112
,3		13	·	<i>! '</i>	146
14		4	TAPE	022-/ 27	150
15		5		. (1	113
16		6		i i	099
18		. 8		11	099
19		9		11	080
20	4	(0)		Job No	090
				05,	
				<u> </u>	

Area Covered	
Geometry Corrections:	Camera Settings:
Tan Ø	Motor Settings 300
Yaw ———	Drive Frequency 25.2 Hz 500) FT
Field Of View	Exposure f 5.6

					<u> </u>	r
Print No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds `	Other Comments RUN 17 KINGE	
2/	LR	1.0	71	OTHERS	1090/569	دے
22		0.5	72	ĺ	15330/9440	MUCE
73.	·	1.0	73	-	41740 39000	MUCH
24		0.5	TA		20320/3550	SPECIAL SPECIAL
25		0.5	77		3300/960	40
7 %		0.5	78		72200/66130	_
2)		0.75	79		62800 58000	_
28	<	0.5	710	4	16060/10260	-
29	UID.	SDARC CH 1		2	061,000 8000	00
30	VIP	0224 LOOP	GATE	r!		<u> </u> .
31	et	LOOP	6476	72		
32	11.		2	73		
33	U	-	<u> </u>	76	;	
34	4		Q.	74		
35	ų		4	T8]
36	(1		6	75		
37	4		6	177		

Job No.	Date
051	3-9-72

Area Covered	·	
Geometry Corrections:	Camera Settings:	
Tan Ø	Motor Settings 300	<u>.</u>
Yaw	Drive Frequency 25.2 Hz	5000 FT
Field Of View 800	Exposure f S.6	

Prir No.	Type of	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments			
22	LR				RUN 17	RUN18		
32	-/	+60	T/	OTHERS	1180	9/3		
33		0.5	72		12400	9 800		
34		1.6	73		16300	19600		
35		0.5	74		19200	16600		
36		0.75	77		10100	3 700		
37 37A		0.5	T8		94 800	726100		
38		0.75	79		69200			
39	4	0.5	710		22700	20700		
40	VIO	CH. 1		1,	97500			
41			T3 GATE	400p 2 t				
42			7/ 11	200P5		,		
43		Ţ,	T2 "	200P 6/8				
44			77 "	"				
15			79 11		-			
46	·		T4 11	11 200P 4		-		
27								
18			770 11 78 11	11				
19	ED	-1.0	74	LOOP 2 5	8 200 13	78240		
	-			Job No	. Det			
		- ·		051	3-	13-72		

SPARC Processing Record

		· • • .					Target	Loop	Gat	e 1 :	P/M	Gate	≥ 2	
-		•				1	03-	4.	271	262				H
ınne	me1	. 1				}		7	340	500		110		V .
Patch Channel	Tape Channel	Amp Gain	11			2	LH	2	152	110	P	118	076	H V
tch	pe	A	Unit			3			080	170		370	450	н
Pa		o d	F	<u> </u>		1	5	5	 			249 230	230	v
1	8	3		.63-68	0+4	4		_	186	147		7-50	330	H
2	10	/	· ·	.75-,85	+5		PS	3	0/5	110				v
. 3	9	4		.6874	12	5	05.2	5	·}			300	275	H
. 5	9	2		154-58			<i>BS</i> 3	-	 		-	573	650	V
6	4	2		43:45	+4	6	HI	2			-	082	057	H
7	2	2		,4/-,43	+4	7		 ~	 	 	<u> </u>	330	450	Н
8						′	C1	1			4	132		v
9						8			237	207	T	1000	120	н
10	d						B	5	200	300	1			V
1	_					9								н
1				 	<u> </u>			<u> </u>]_			ν.
Syn	d 7 d /3	-		 		10	į			<u> </u>		<u></u>		н
FIAM	۹ <u>/⊃</u> 8	4		1		1		}		-	-	 		V
2		259	A Delay	•		11				<u> </u>	4			H
<u>-</u>			B Delay	•		•					┿	+	 	H
	L	R				13	4		-	 	-	 	 	V
. 6	38	676	Zero Cl	.amp		1	ļ	1	 	+	+-	+	 	H
	<u> </u>		Sun Gat	:e		\				 	7	-	 	V
				L	R	-, l	4				\top	-	-	H
2		Delay		ate 200	700						<u> </u>			V
		Ramp				٦ 1	4							Н
	_			d A /5		-				-	4			v
<u>کا</u>	=1 °	vamb	T.I. A t	0 B <u>J</u>	488	 1	.≰			-	4	-	-	H
1	j						· L							\ V
P	roje	et.	ē			Je	ob No.	EF	, Y anses			_		
						Ť		- 	rocess.) E		Date	 -	7
	5	HE.	5 8,	94.			022		6 J		,	4-1	19-71	

11-6-70 0830 EUN-17 LINE!

		•	SPARC Setup					44			Sheet 2 of 1)				
			Inputs					(Target 2)							
	V1	V2	<u>v3</u>	. V4	V5	V6			V1	<u>v</u> 2	V3	V4	V5	V6	,
S	453	141	627	988	1000	1000	S	S	711	846	980	1000	1000	1000	S
M	345	070	224	330	360	573	М	M	672	493	476	378	450	693	М
	1000	054	186	<i>113</i>	090	120	Н1	:	1000	170	/3ス	166	057	051	Hl
Τn	puts	103	191	124	064	050	Н2			1000	230	018	000	018	Н2
V1			1000	204	076	048	н3		puts	1.	1000	<i>0</i> 22	000	038	Н3
V2	1000		1	1000	/32	125	Н4	VI	1000			481	032	0	H4
٠.	093	7-17		1	463	077	Н5	V2 _.	000	1000		 - -	150	014	Н5
V3	176	077	899			1000	Н6	V3	063	000	1000			622	Н6
V4	119	0		274			•	V4	098	032	000.	198			puts
V5	032	0	031	0/7	208	Inpu	ts	V5	035	000	056	000	040		pucs
V6	025	Q	<i>0</i> 23	031	014	579		V6	034	001	038	000	000	1000	
S	443	834	850	1000	1000	1000	s	S	755	642	874	966	994	1000	s
M	529	434	485	437	442	647	М	M	934	390	508	494	504	727	M
	H1	H2	Н3	H4	H5	Н6			Н1	Н2	Н3	H4	Н5	H6	ļ
			(Targ	et 3)	. •		Inp	uts			(Targ	et 4)		-	
•			~	5								ر ک			

			BS				<i>H1</i>							
		y2 .	(Targ	et 5) V4	٧5	. V6	Inputs	171	V2	(Targ				•
S,	1000	998	1000	1000	1000	998	ss	27	506	465	941	1000	1000	s
M	824	270	414	340	394	378	ми	422	345	498	459	454	690	M
	607	160	008	0	002	102	ні	1000	148	213	282	084	07/	HI
_		139	040	032	0	096	H2	<u> </u>	1000	250	0	0	019	H2
	puts)	014	011	002	052		puts	,	896	010	0	0	н3
V1	1000		t	007	008	041	H4 ^{V1}	1000	*		687	0	044	H4
V2	170	1000	/ -	1 -	000	176	H5 ^{V2}	134	1000	:	,	0	σ <i>5</i> 3	H5
V3	148	207	763			148	H6 ^{V3}	049	043	857	,	<u></u>	671	Н6
V4	043	0	030	0			V 4	107	0	013	042			puts
V5	0	0	033	0	0	Inpi	its V5	038	0	0	006	0]	puls
, V6	028	0/2	016	406	012	144	V6	039	0	050	O	0	175	
S	760	983	1000	1000	1000	1000	s s	559	917	1000	1000	1000	1000	S
M	458	500	484	354	433	671	мм	528	358	468	388	416	618	М
	H1	Н2	y H3	H4	H5	Н6		H1	Н2	н3	Н4	Н5	Н6)
		•	(Targ	et 7)	Cal. 1	1.	Inputs			(Targ	et 8)			
			C.	/	(4/10/2	7				Job No			Date	
				•	-									
							•			0	22	-A	4-13	- 7/

Area covered OHESAPEAKE	BAY (HOG ISLANS)
Geometry corrections:	Camera settings:
Tan 🌢	Motor setting 300
Yaw	Drive frequency 45.2Hz
Field of view	Exposure f 5.6

Print No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
1	NIB	SPARC-1	C 3	GATE	Loop 4
2	11 %		LH	,,	" a
3	11	//	HI	11	" 2
4	. //	"	S	"	. 5
5	11 .	4	8	"	1 5
6	"	4	<i>BS-3</i>	1/	" 5
7	11	"	PS	1/	<i>"</i> 3
8	11	"	C-/	1/	" /
9	LR	.7	C3	H-1,C-1,B C3,5,PS,NS-3	6078
10	4	1.5	んり		12733
11	11	1.5	S	HI, C-1, B C3, LH, PS, BS-3 H-1, C-1, B	2447
12	11	1.5	P5	H-1, C-1, B C3, LN, S, BS-3 H-1, C-1, B	1219
13	ч	11	B S-3	C3, LH, PS, H-1	83
14		1.0	H-1	C-1, B, S C3, LH, PS, BS3 C-1, B, S	25731
15		*	C-1	C-1, B, S C3, LH, PS, BS-3 H-1, S, B C3, LH, S, PS,	2949
16		.,	B	85-3, H1, C-1 C-3, LH, S, AS-3	36/64
16		165	B	C-3, LH, S, AS-3 H-1, S, C-1	5913

10/3680 Date Job No.

Area covered CHESA.	<i>B</i> A γ
Geometry corrections:	Camera settings:
Tan ϕ χ	Motor setting 300
Field of view 800	Drive frequency Z 5.2 Hz
Tield of view 800	Exposure f 5.6

			*	•	•			
		Print No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments	
		17	VID	SPARC-1			Law CANTROT	
		12	LR	1.0	1	2-8	LOW CONTRAST	
		19	11	1.5	2	1, 3-8	5078	
	 - -	20	11	1.5	3	1,2,4-8		
		71	11	0.5	9	1-3, 5-8		
	[]	22	- 4	0.5	5	1-9,6-8	5389	
	: :	23	16	1.0	. 6	1-5,7,8	32 2	
	 ! 	2:4	11	1.5	7	1-6,8	26/01	
	•	25	"	1.75	8	1~7	134	
<i>}</i>	 	26	V10	SPARC 1	.6368		7 £ 7 7	6
1 1 1 1		27	W.	" 1	63-68		NORMAL CONT.	(
467	7	28		2	75-85			
	23-	29		3	68-74		(/	į
	4-	30	"	4	54-58			j
	• .	3/	11	5	43-45		′′	
		32	1,	6	41-43			ı
					71-73		',	
						and and anti-ordinal security in the second security and an an anti-ordinal second second second second second		
1		1		•		Job No.	Nate	

0224

PRINTS 27-112

SPARC Processing Record

1 S S 230 33	2.5 H
	<u> </u>
	Н Н
Taumer Channel	— , "
5 d d d d d d d d d d d d d d d d d d d	- Н
# # E	— v
19 2 12 12 12 12 12 12 12 12 12 12 12 12 1	
	V H
	v
	52 H
	150 V
	36/ H
	5 /2 .▼
9 1941/7	н
8 BS-2 4 194 167 030 310	v
11 9	т
Sync	1
Frame	·
6 \$ 11	1
262 259 A Delay	
B Delay	
L R	
638 676 Zero Clamp 13	
Sun Gate	
L R 14	
Z	
/	
/ 0 Delay Period A 15680	
2 8 Ramp T.I. A to B 3488 16	
Project Job No. Processor Date	

Project	Job No.	Processor	Date
CHESA BAY.	022 A	WJ, CRJ.	4-20-71

11-6-70 0830

SPARC	Setup
-------	-------

					_				-up			•		·	
			(Targe	et 1)	5		Inpi	ıts			(Targe	t 2)	ρ		
,	·V1	V2	V3	V4	V5	V6_			V1	V2	٧3	V4	V5	V6	
. S	678	186	618	901	1000	1000	S	S	389	461	574	904	1000	869	S.
· ₹	855	12(520	726	604	650	М	М	424	374	488	742	680	542	М
	1000	012	050	032	002	000	Н1		1000	005	<i>53</i> 8	269	000	213	H1
		1000	042	244	065	098	Н2	_	-	1000	458	121	198	000	Н2
	puts	- } ·	1000	078	007	082	Н3		puts) }.	1000	030	008	058	н3
V1	1003		· 1	958	<i>0</i> 03	095	н4	ΛŢ	0:		1	/ವರಕ	242	095	H4 .
V2	006	1000		1	004	0/8	H5	V2	242	1000		•	524	046	Н5
· V3	212	086	1000		1.	83	Н6	V3	014	091	655		,	416	н6
V4	204	06-	078	888				V4	114	506	000	538		In	puts
V5	047	000	060	005	510	Inpu	4	V5	001	000	0/2	032	/82		
₩V6	029	20-	006	046	025	1000	<u> </u>	۷6	060	035	015	026	003	614	
S	632	634	940	1000	1000	466	s	S	969	575	1000	1050	1000	1000	S
M	681	431	732	738	635	272	М	M	623	385	496	593	554	581	М
	H1	Н2	Н3	Н4	Н5	Н6	_		Hl	H2	Н3	Н4	Н5	Н6	
			(Targ	et 3)	F,		Inp	uts			(Targ	et 4)	C 3		

					* -									
	۷l	V2	(Targe	et 5) '	834 V5		Inputs	۷1	٧2	(Targe	et 6)	/-// ∇5	V6	
S	620	446	769	951	987	953	s s	234	482	نازد آ	2/3	1000	1203	s
M	844	308	726	859	724	674	мм	259	430	276	238	137	527	М
	1000	008	294	058	08/	006	H1 .	996	<i>රි</i> රා	000	207	017	0/3	н
.		946	053	128	142	131	н2	- 1	1000	058	000	0/2	124	H
	nputs	1	1000	011	199	132	(41)	puts		, 1 ₃ , 1	000	004	232	H
V1	J 79 G G		†	1000	0/2	077		1000		3	/As 3	000	Otta	Н
V2	1020	1000			1000	000	н5 ^{V2}	000	1000			254	000	Н
V3	0 20	234	1000	-	· ·	1000	н6 ^{V3}	107	024	1000			15%	H
V4	. V / T .	000.	003	5 %	<u> </u>	,	V 4	104	003	031	1000		In	Ipu
٧٤	ルンシン	000	000	018	33	Inp	uts V5	000	000	001	058	856		_
V€	083	000	000	052	020	: 21	V6	000	005	05%	008	002	923	
9	918	150	760	1000	1	101.	s s	720	556	737	1000	رون کا از	34] s
1	1 -26	300	320	ड ुः		5	м м	924	297	596	858	721	7/2] .
	H1	H2	Н3	Н4	Н5	Н6		H1	Н2	Н3	H4	Н5	Н6	-
			(Targ	et 7)	H 4		Input	5		(Targ	et 8)	85-2		
										Job No			Date	•
									,					

Area covered CHESA	BAY
Geometry corrections:	Camera settings:
Tan φ <u>X</u>	Motor setting 300
Yaw	Drive frequency 25.2 Hz
Field of view80 *	Exposure f 5. 6

1000% AC= 2,007,600

				10	
Print No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
33	UID	5P4RC 2 .7585	T1 - S	200P 5	CATE
34	11		72- P	. 8	. 11
33	11		73- F1	2	"
36	",	• •	T4- C3	4	. 11
37	"	"	75- BS9	6	11
38		11	T6- H1	. 2	71
39	"/		77-49	6	11
40	"	10	18-352	4	11
41	ED	-10	71		4REA COUNT 3,190
42		75	TI		2,121
43		50	T1		1,2/0
44		75	72		11,530
45		60	72		8.090
46		50	72		5,950
47		~.75	73		8,460
98	6		73		4 720
49	4	50	73		2,870

Job No.	Date
022 A	4-23-71

Area covered	CHES	BAY
Geometry corrections	•	Camera settings:
Tan ϕ X		Motor setting 300
Yaw		Drive frequency ZS.Z Hz
Field of view	20 6	Exposure f S. C

Print No.	Type o		Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
50	EL	2	-1.25	T4		2,840
5/			-1.0	79		1740
52		-	~.15	Tø	- '	990
53			-60	75		2860
59			75	75	·	6,010
55			-50	15		3,530
56			-1.0	76		51350
57			75	76		32,790
58			-50	76		19.510
59			-1.0	77	,	59720
60			- 32	T1		40,300
61			-50	7)		13,680
62			-1.0	78		12,250
63		•	75	78		7,650
69		7	50	T8		3,620
		,				

Job No.	Date
0224	4-23-71

SPARC Film Output

Area coveredCHES	BAY
Geometry corrections:	Camera settings:
Tan \$	Motor setting 300
Yaw	Drive frequency 25.2 _{Hz}
Field of view 80°	Exposure £ 5.6

Print	Type of	G		Т	
No.	Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
65	2.R.	7.0	1	ALL OTHERS	2860 V
66		1.25	,		2130 -
67		1.5	,		1150 -
68	· .	0.5	2		31360 -
69		0.75	2		27020 -
20		1.0	2		22730
7/		1.0	3		34900 -
72		125	3	<i>y</i> .	22/60 ~
23		1-5	3		11180 -
74		0.5	4		5140 -
75		0.25	4		4490 W
26		1-0	4		3720 0
77		0.75	5 ,.		11080 ~
78		1-6	5		9780 -
79		1.25	5		7880 ~
80		0.5	6		94350 ~
8%		0.75	6		86590 -
82	*	1.0	6	V	76190 W
				Job No.	Date
				022	A 4-26-71

Area covered	CHES	B4Y	
Geometry correction	s:	Camera settings:	
Tan o 🗶		Motor setting 300	
Yaw		Drive frequency 25.2 Hz	
Field of view	800	Exposure f 5.6	

					<u> </u>
Print No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
83	LR	0.75	7	ALL OT HERS	88350
84		1-0	7		78880 -
85		1.25	7		633302
86		0.5	8		21200
87		0.75	8		19 9000
88	▼	1.0	8	♥	182502
			•		
				·	
				·	
					_
	-				

Job No.	Date
022 A	4-27-71

Area covered CHES BAY	
Geometry corrections:	Camera settings:
Tan ø	Motor setting 300
Yaw	Drive frequency 25.2 Hz
Field of view 804	Exposure f S.6

Print No.	Type of Print	Spectral Channel or Threshold	Targets	Backgrounds	Other Comments
89	LR+VID	1 1.0	1	ALL OTHERS	(50% WOES) 2950
90		1.25			2150
91		1.5			1180
92	- .	,5	2		30/80
93		-25	2		26690
91		1.0	2		22220
95		1.0	. 3		30 690
96		1.25	3		21,250
97		1.5	1		10,500
98		.5	4		5200
99		.25	4		4,400
00		1.0	4		3,590
101		-75	ς		10,768
102		1.0	6		9,448
103		1.25	r		7,670
100		.5	<u> </u>		94,860
105		.75	6		76 920
106	4	1.0	6	T-1 N	77,170 Date
				Job No.	

Area covered CHES BAY		
Geometry corrections:	Camera settings:	
Tan ϕ	Motor setting 300	
Yaw	Drive frequency 252 Hz	
Field of view 800	Exposure f 5.6	

Print No.	Type of Print	Spectral Channe or Threshold	Targets	Backgrounds	Other Comments
107	LR+VID	טוע 1 .75	7	ALL OTHERS	84 645
108	-	1.0	7		74670
109		1.25	7		60098
110		. 5	8		21,130
11/		.25	· 6		-10 120
112	<u> </u>	1.0	. 8	,	18,138
//3	VID	:3585-	79	LOOP 4	TRAIN GATE
114	ED	-/-0	79	(12 COPIES)	477260
-			<u> </u>		
1		· ·	· · · · · · · · · · · · · · · · · · ·		
	·				
		·			

Job No.	Date						
021 A	4-27-71						

PRINTS 113-114

SPARC Processing Record

The second secon		Target L			Loop Gate 1			P/M Gate 2		
e e e e e e e e e e e e e e e e e e e		1								
Tape Channel Op Amp Gain FM Unit	de Trade per Sample de									
Tape Channel Op Amp Gain FM Unit		2		-				! 		
Tape Ch Op Amp FM Unit					ļ					
Tape Op 4		3	,			,	-			
		4 WAT	ER		098	095	م	318	546	
					001	750	Ĺ	22 <u>0</u>	410	
3		5								
		<u> </u>								
5		6					ļ			
					ļ <u></u>					
' - - - - - - - - -		7				`				
3										
) July		8								
`` 		<u> </u>								
11		9				·				
12 64										
¹ 4		10								
ne l										
θ φ	-	11	• • •					<u> </u>		
A Delay			·							
B Delay		12								
L R]			
Zero Clamp		13					Π			
Sun Gate	•		•			·	1			
L	R.	14					Г			
ф Delay D Gate				,			1			
ф Ramp		15					1		<u> </u>	
θ Delay Period A	·	7		}			1			
0 Ramp T.I. A to B		16					1	 		
						 	1 .		 	
		,	 .	· 	<u></u>	-	_	<u>}</u>	<u></u>	
roject	j	Job No.	•	₽÷	ocesso:	r		Date		
:		•			W.J.		_		· · · · · · · · · · · · · · · · · · ·	
•		022 B			CR.J.				?7-7/	

Sync signal:

600B

60 HZ 600D

Tape quality:

Signal variations: PREPROCESSING REQUIRED

TO REMOVE CROSS-FLIGHT SIGNIAL

UARLATIONS. ALONG-FLIGHT SIGNIAL

VARIATIONS PREVENTED GOOD

WATER RECOGNITION.

Preprocessing problems:

CROSS-FLIGHT CORRECTIONS

DIFFERENT FOR LAND AND

WATER AREAS.

Processing problems:

SOME EVIDENCE OF NON-OPTIMUM PRE-PROCESSING SHOW AS POOR EDGE RECOGNITION. Date Job No. 4-28-71 022,4,8