Composite Materials - II

Contents

- √ Fiber Reinforced Composites (Contd.)
 - Polymer Matrix composites
 - Metal Matrix composites
 - Ceramic Matrix composites
 - Carbon Carbon composites
- √ Structural Composites

Fiber Reinforced Composites

(contd.)

Polymer-Matrix Composites (PMC)

Matrix – Polymer resin

Fibers – reinforcing medium

A) Glass Fiber-Reinforced Polymer (GFRP) Composites

Matrix – *Plastic* (most often epoxy, polyester resin)

Reinforcement – <u>Glass fiber/E-glass</u> (Diameter = 3-20 μ m)

- ✓ Typically 55% SiO_2 , 16% CaO, 15% Al_2O_3 , 10% B_2O_3 , 4% MgO.
- ✓ Easily drawn into high-strength fibers from the molten state.

GFRP (Fiber volume fraction = 0.6), Epoxy matrix			
Density	2100 kg/m³ (Light weight)		
	Longitudinal	Transverse	
Tensile Modulus (GPa)	45	12	
Tensile strength (MPa)	1020	40	

<u>E-glass</u>

<u>Limitation</u> – Service temperature up to 200°C (above which polymer/matrix starts deteriorating).

APPLICATIONS

Automotive and marine bodies, plastic pipes, storage containers, and industrial floorings.

GFRP Chemical Containers
http://www.hhzy.chemchina.com/hhzye/

GFRP rebars used for making pedestrian bridges

Polymer-Matrix Composites (PMC)

B) Carbon Fiber-Reinforced Polymer (CFRP) Composites

Matrix – Polymer resin Fibers – Carbon fiber (reinforcement)

- Carbon is a high-performance fiber material because
 - Highest specific modulus (E/ρ) and specific strength of all reinforcing fiber materials and retain same at elevated temperature.
 - ✓ At room temp. **not affected** by moisture or a wide variety of solvents, acids, and bases.
- Fiber diameters normally range between 4 10 μm.

CFRP (Fiber volume fraction = 0.6) ,Epoxy matrix			
Density	1600 kg/m³ (Light weight)		
	Longitudinal	Transverse	
Tensile Modulus (GPa)	145	10	
Tensile strength (MPa)	1240	40	

Carbon fiber

Carbon Fiber Wheel - BMW

Reference: http://www.tcbmw.com/carbon-fiber-reinforced-plastic-cfrp-wheels-announced/

Other applications - CFRP

Boeing 787 Dreamliner – nearly 50% frame of CFRP

Mountain bicycle frame

Racket

Lamborghini Aventador LP700-4

CFRP - Wheels, frame, seats

Reference: http://www.centralcarbonfiber.com/application/index.html

Smart Materials Structures and Systems Laboratory IIT Kanpur

Polymer-Matrix Composites (PMC)

C) Aramid Fiber-Reinforced Polymer (AFRP) Composites

- Trade name of most common Aramid fiber Kevlar[™] and Nomex[™]
- Chemically, this group of materials is known as poly(paraphenylene terephthalamide).
- Known for its toughness, impact resistance, and resistance to creep and fatigue failure.
- Strong covalent bond axially, weak hydrogen bond transversely.
- ❖ Negative Coefficient of expansion due to kinks
- UV sensitive degrades

Kevlar (Fiber volume fraction = 0.6) ,Epoxy matrix			
Density	1440 kg/m³ (Light weight)		
	Longitudinal	Transverse	
Tensile Modulus (GPa)	76	5.5	
Tensile strength (MPa)	1380	30	

Typical applications

- Ballistic products (bullet proof vests and armor)
- Sporting goods
- Ropes
- Missile cases
- Replacement for asbestos in automotive brake and clutch linings, and gaskets.

Bullet proof Vest

Comparison

(Fibre volume fraction = 0.6), Epoxy matrix

Material	Tensile Modulus (GPa)		Tensile Strength (MPa)	
	Longitudinal	Transverse	Longitudinal	Transverse
GFRP (2100 kg/m³)	45	12	1020	40
Aramid (Kevlar-49) (1440 kg/m³)	76	5.5	1380	30
CFRP (1600 kg/m ³)	230	10	1240	40

Metal-Matrix Composites (MMC)

Matrix – Ductile Metal (usually alloys of aluminum, magnesium, titanium, and copper) **Fibre** - Carbon, Silicon Carbide, Boron, Aluminum oxide, etc.

Advantage over PMC includes:

- ✓ Higher operating temperatures.
- ✓ Non-flammability.
- ✓ Greater resistance to degradation by organic fluids.

Demerit: MMCs are costlier than PMCs

	Properties of Several Metal-Matrix Composites Reinforced with Continuous and Aligned Fibers				
Fiber	Matrix	Fiber Content (vol%)	Density (g/cm ³)	Longitudinal Tensile Modulus (GPa)	Longitudinal Tensile Strength (MPa)
Carbon	6061 Al	41	2.44	320	620
Boron	6061 Al	48	_	207	1515
SiC	6061 Al	50	2.93	230	1480
Alumina	380.0 Al	24	_	120	340
Carbon	AZ31 Mg	38	1.83	300	510
Borsic	Ti	45	3.68	220	1270

Golf

B/Al tubular struts used as the frame and rib truss members in the mid-fuselage section **Space Shuttle**

Tank Armor – MMC (recent advances)

Antenna boom for the Hubble Space Telescope (Graphite fibres in 6061 Al)

Reference: http://www.tms.org/pubs/journals/jom/0104/rawal-0104.html

Smart Materials Structures and Systems Laboratory IIT Kanpur

Ceramic-Matrix Composites (CMC)

- Ceramics are highly brittle in nature. Thus, low fracture toughness.
- In general the fracture toughness of
 - ✓ **Ceramics** : 1 5 MPa \sqrt{m}
 - ✓ **Metal alloys** : 20 90 MPa \sqrt{m}
- By using CMC, fracture toughness can be increased to lie in the range 6 20 MPa \sqrt{m} .
- Crack initiation normally occurs within matrix phase, whereas crack propagation is hindered by the particles, fibers, or whiskers.
- Exhibit improved high-temperature creep behavior and resistance to thermal shock.

SiC whisker in Al₂O₃ (matrix)

Whisker Content (vol%)	Fracture Strength (MPa)	Fracture Toughness $(MPa\sqrt{m})$
0	_	4.5
10	455 ± 55	7.1
20	655 ± 135	7.5–9.0
40	850 ± 130	6.0

Brake disc of Ferrari Race Car
(Carbon fiber-reinforced in SiC matrix)

Cermets

Ceramic + **Met**al = Cermet

- Composites of **ceramic particles** (strong, brittle) in a **metal matrix** (soft, ductile).
- Has higher toughness and wear resistance than traditional materials.
- For instance, tungsten carbide or titanium carbide ceramics embedded in a matrix of a metal such as cobalt or nickel.
- Only about 10-15% metal volume.
- They are used for **cutting tools** for hardened steels.
- **Electrical components** such as resistors and vacuum tubes (valves).

(Small variable resistors, used in circuits for tuning and calibration)

Reference

www.ceramtec.com http://global.kyocera.com/news/2008/1202.html

Carbon - Carbon Composite

- Both reinforcement and matrix are carbon Very Expensive
- High modulus of elasticity (up to 200 GPa) and strength, even retained at around 2000°C.
- Low density (1830 kg/m³)
- High thermal conductivity (100 W/m-K)
- Low coefficient of friction (in fiber direction).
- High abrasion resistance.

Missile cone

Carbon - Carbon Composite

Wing leading edges of the Space Shuttle

Structural Composites

1. Laminated Composites

A laminate is constructed by stacking a number of laminae.

Examples

- Unidirectional laminate
 - ✓ Fiber orientation angles are the same in all laminas such as $\theta = 0^{\circ}$.
- Angle-ply laminate
 - ✓ Fiber orientation angles in alternate layers are $/\theta/-\theta/\theta/-\theta/$, where $\theta \neq 0^{\circ}$ or 90°
- Cross-ply laminate
 - ✓ Fiber orientation angles in alternate layers are / 0° / 90° / 0° / 90° /.
- Symmetric laminate
 - ✓ Identical ply (in material, thickness, and fiber orientation angle) at an equal distance about centerline, i.e., $\theta(z) = \theta(-z)$, where z is the distance from the midplane of the laminate.

[0/+90/+45/-45/-45/+45/+90/0] Code: [0/90/45/-45],

Unidirectional laminate

Angle-ply laminate

Cross-ply Laminate

Symmetric laminate (contd.)

The bar over 90° indicates that the plane of symmetry passes midway through the thickness of the 90° lamina

Adjacent +45° and -45° laminas are grouped as ±45°.

✓ Four adjacent 0° plies are grouped together as 0_{4} .

Two adjacent $\pm 45^{\circ}$ plies are grouped as $(\pm 45)_2$.

Antisymmetric laminate:

Ref.: P. K. Mallick - Fiber-reinforced Composites Materials, Manufacturing, and Design-CRC Press (2008)

✓ Ply orientation is antisymmetric about the centerline of the laminate, $\theta(z) = -\theta(-z)$.

Example: $/+\theta/-\theta/+\theta/-\theta/$ is an Antisymmetric laminate while $/+\theta/-\theta/-\theta/+\theta/$ is Symmetric laminate.

- **Quasi-isotropic laminate**: Equal angles between each adjacent lamina.
 - \checkmark If the total number of laminas is n, the orientation angles of the laminas are at an increments of π/n
 - ✓ Example: [0/+60/-60], [0/+45/-45/90]

2. Sandwich Panels

- Consist of two strong and stiff sheet faces that are separated by a core material or structure.
- Combine relatively high strengths and stiffness with low densities.
- Outer sheet aluminum alloys, fiber-reinforced plastics, titanium, steel, or plywood.
- Core materials Rigid polymeric foams (e.g., phenolics, epoxy, polyurethanes), wood (i.e., balsa wood), and honeycomb (hexagonal cells).

Steel - Polystyrene Sandwich roof panel

Sandwich panels

- 1. Low water absorption
- 2. Good anti-corrosion
- 3. Good thermal insulated capacity

3. Hybrid Composites

- Two or more different kinds of fibers in a single matrix.
- For example using-
 - ✓ Carbon fibers Strong and relatively stiff and provide a low-density reinforcement but expensive.
 - ✓ Glass fiber Inexpensive and lack the stiffness of carbon.
- The glass—carbon hybrid is stronger and tougher, has a higher impact resistance.
- The fibers may all be aligned and intimately mixed with one another; or laminate may be constructed.

Hybrid laminate

$$[0_{\rm B}/0_{\rm B}/45_{\rm C}/-45_{\rm C}/90_{\rm G}/90_{\rm G}/-45_{\rm C}/45_{\rm C}/0_{\rm B}/0_{\rm B}]$$
 Code:
$$[0_{\rm 2B}/(\pm 45)_{\rm C}/90_{\rm G}]_{\rm S}$$

Where B, C, and G represent Boron, Carbon, and Glass fiber, respectively.

Ref.: P.K. Mallick - Fiber-reinforced Composites Materials, Manufacturing, and Design-CRC Press (2008)

Ice Skates