$\delta^{11}B$ and B/Ca ontogenetic variability within Globigerina bulloides

 $\label{eq:mattheubuisson} \begin{subarray}{l} Mattheu Buisson 1*, Pascale Louvat1, Szabina Karancz2,3, Ruchen Tian2,4, Markus Raitzsch2,5, Jelle Bijma2,6, Claire Rollion-Bard1$

¹ Institut de Physique du Globe de Paris, CNRS, University of Paris, Paris, France,* mbuisson@ipgp.fr
²Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
³ Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
 4Eberhard Karls Universität Tübingen, Tübingen, Germany
⁵MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
⁶Jacobs University, Bremen, Germany

Keyword: Climatology, Microbiology

Understanding the atmosphere-continent-ocean carbon cycle and its associated oceanic carbon system is one of the keystones to face the Anthropocene's climate change. Since the 1990s the isotopic ratio of boron ($\delta^{11}B$) in calcitic shells of planktic foraminifera has proven to be a powerful geochemical proxy to determine the oceanic paleo-pH and its link to atmospheric CO₂ level over geological times¹, whereas the ratio B/Ca as proxy of the seawater carbonate chemistry is still questionable^{2,3}.

However, the use of planktonic foraminifera in paleoclimatic reconstructions requires calibrations of the $pH-\delta^{11}B$ relationships to correct what is known as « vital effect »⁴: each species controls differently its calcification process and consequently slightly modifies the seawater chemistry during biomineralization^{5,6}. Moreover, shell size effect on $\delta^{11}B$ has been reported for some symbiont-bearing species due to photosynthetic increase of $pH^{7,8}$.

Calibrations for the symbiont-barren *Globigerina bulloides* have been already determined^{9,10} but sparse data have been reported so far for the test size effect on $\delta^{11}B^{11}$.

Here we measured the $\delta^{11}B$ of three different fractions (250-315, 315-400 and >400 µm) of *G. bulloides* sampled along the coretop PS97-122 from the Chilean margin (54.10°S, 74.91°W), by using a new protocol developed at IPGP and dedicated to small samples which couple a microsublimation technique and a micro-direct injection device (μ -dDIHEN¹²). Our preliminary results show significantly higher $\delta^{11}B$ values for the large fractions compared to the small ones, as found for symbiont-bearing planktonic species such as *Globigerinoides sacculifer*⁷ and *Globigerinoides ruber*⁸.

- (1) Pearson & Palmer, 2000, Nature 406, 695-699
- (2) Yu et al., 2007, Paleoceanography 22, PA2202
- (3) Allen et al., 2012, EPSL 351-352, 270-280
- (4) Urey et al., 1951, Geol. Soc. Am. Bull. 62, 399-416
- (5) Erez, 2003, Rev. in Min. and Geochem. 54 (1), 115-149
- (6) de Nooijer et al., 2014, Earth-Science Reviews 135, 48-58
- (7) Hönisch & Hemming, 2004, Paleoceanography 19, PA4010
- (8) Henehan et al., 2013, EPSL 364, 111-122
- (9) Martínez-Botí et al., 2015, Nature 518, 219-222
- (10) Raitzsch et al., 2018, EPSL 487, 138-150
- (11) Henehan et al., 2016, EPSL 454, 282-292
- (12) Louvat et al., 2019, JAAS 8, 1553-1563