

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DO TRIÂNGULO MINEIRO - Campus Ituiutaba CURSO SUPERIOR DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

GABRIEL DE ARAUJO

CONSTRUÇÃO DE UM SOFTWARE PARA ANÁLISE DE DADOS DE PARTIDAS DE FUTEBOL COLETADOS ATRAVÉS DO PROCESSO DE SCOUT

GABRIEL DE ARAUJO

Construção de um software para análise de dados de partidas de futebol coletados

através de processo de scout

Projeto de pesquisa apresentado ao Instituto

Federal de Educação, Ciência e Tecnologia do

Triângulo Mineiro, Campus Ituiutaba, como

requisito parcial para conclusão do Curso de

Bacharelado em Ciência da Computação.

Orientador: Prof. Dr. Rodrigo Grassi Martins

ITUIUTABA, MG

Lista de Figuras

1	Fluxograma do sistema	proposto																								4
1	i iuxograma uo sistema	proposio	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	┰

Lista de Tabelas

1	Cronograma de atividades do projeto.				_				_	 					_					_	6	
	cronograma de atritadades do projeto.	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•		•	0	

Sumário

1	INTRODUÇÃO	1	Ĺ
	1.1 OBJETIVO GERAL	2)
	1.2 OBJETIVOS ESPECÍFICOS	2	2
2	2 REFERENCIAL TEÓRICO	3	3
3	3 METODOLOGIA	4	ļ.
4	4 RECURSOS	5	;
5	5 CRONOGRAMA	6	ĺ
RI	REFERÊNCIAS	7	7

1 INTRODUÇÃO

O futebol é uma das modalidades esportivas mais famosas e disputadas do mundo. Tratase de um esporte cujo objetivo transpor uma bola entre as balizas, que são as extremidades do campo, utilizando basicamente toques com os pés. Vence a partida a equipe que atingir o objetivo – que são chamados de gols - mais vezes na partida (SFEIR, 2011). Uma das principais razões pelo futebol se tornar uma febre mundial é o fácil entendimento das regras, o baixo custo e o fato de ser uma das modalidades mais empolgantes no meio esportivo. A última copa do mundo que foi jogada na Rússia no ano de 2018 atingiu uma audiência televisiva de mais de 3,5 bilhões de pessoas, batendo recorde de audiência, e somente a final entre França e Croácia atraiu 1,1 bilhões de telespectadores (CHADE, 2018).

O alto nível de interesse das pessoas por esse esporte gera não apenas telespectadores, mas também muita movimentação financeira em torno dessa modalidade. A copa do mundo de 2018 teve lucro para a FIFA de 5,35 bilhões (FIFA, 2018). A movimentação financeira envolve patrocínios a clubes e seleções nacionais, venda de ingressos, produtos licenciados e transmissões por veículos de comunicação. Além é claro de transações de transferências envolvendo jogadores. Esse tipo de movimentação financeira atrai vários investidores que visão lucrar com o esporte. Sistemas computacionais que trabalham com a previsão de resultados e que auxiliam a minimizar os riscos e maximizar os lucros tornam-se então uma importante ferramenta de trabalho para o dia a dia do futebol (PERIN; VUILLEMOT; FEKETE, 2013).

O processo de scout é amplamente utilizado esportes, principalmente no futebol, para o registro, observação e análise do desempenho técnico e tático de equipes em partidas. Em esportes, o scout pode ser definido como uma técnica que consiste em analisar a partida, os momentos, os lances de um jogo para verificar o rendimentos das equipes. O scout é obejto de estudo em várias modalidades esportivas: basquete, vôlei, handebol, futebol americano, beisebol e futebol (MARTINS et al., 2017). A coleta de dados é utilizada não apenas para conhecimento do rendimento da própria equipe, mas também para o estudo de táticas e técnicas de equipes adversárias. Esses dados possibilitam mensurar quais são as principais características de uma equipe, identificando quais são suas principais jogadas, seus principais jogadores, sua organização tática e técnica, porém não existe uma padronização de quais dados devem ser coletados, o que deixa o processo muito abrangente (DUARTE; SOARES; TEIXEIRA, 2015). O objetivo proposto é criar um software que seja capaz de acessar base de dados e compilar e projetar esses dados de maneira que auxilie o usuário a tomar decisões.

1.1 OBJETIVO GERAL

O objetivo deste trabalho é construir um software que consiga acessar diferentes bases de dados e compilar e projetar esses dados de maneira que auxilie o usuário no processo de tomada de decisão.

1.2 OBJETIVOS ESPECÍFICOS

Os objetivos específicos deste trabalho são:

- comparar as bases de dados existentes e compilar essas informações de maneira a projetar uma base de dados única;
- fornecer acesso ao usuários de informações referentes aos quatro elementos do processo de scout: espaço, tempo, jogador e fundamento;
- permitir ao usuário projetar e visualizar os relatórios com a compilação das informações proveniente da base de dados.

2 REFERENCIAL TEÓRICO

Em uma partida de futebol o número de anotações que se pode fazer para que seja possível sua correta descrição é bastante elevado (CONSTANTINOU; FENTON; NEIL, 2013). Se for levado em consideração outros fatores extracampo temos novamente um alto número de componentes envolvidos. Dessa maneira a definição de quantas e quais características serão utilizadas para se realizar a predição dos resultados de partidas se torna bastante complexa (TAX; JOUSTRA, 2015). Na literatura é possível encontrar trabalhos que levam em consideração uma série de fatores tais como dados de fundamentos obtidos por scout como em Sfeir (2011), outros como em Owramipur e Mozneb (2013) são utilizados fatores de logísticas tais como distância percorrida entre duas partidas subsequentes (TAX; JOUSTRA, 2015) ou fatores psicológicos como em Duarte, Soares e Teixeira (2015).

O processo scout apesar de bastante difundido e utilizado não é padronizado no que diz respeito ao número de fundamentos que serão coletados (PENDHARKAR; KHOSROWPOUR; RODGER, 2000). Em Brooks (BROOKS; KERR; GUTTAG, 2016) é utilizado um conjunto de 7 fundamentos obtidos por scout e um conjunto de 6 características de logísticas para se obter uma correta predição. Já em Ulmer e Fernandez (2013) são utilizados 9 fundamentos obtidos por scout. Em Igiri (2015) são utilizadas como características 23 fundamentos coletados por scout. Em Hucaljuk e Rakipović (2011) são utilizados 10 fundamentos obtidos por scout. Tax e Joustra (2015) utiliza 19 características obtidas por scout, 12 de logística e 12 baseadas em sites de apostas. Enquanto que Duarte, Soares e Teixeira (2015) utiliza um conjunto de 12 características obtidas por scout e 12 características envolvendo aspectos psicológicos das equipes.

É importante ressaltar mais uma vez que não existe uma padronização para as características envolvidas com os trabalhos existentes na literatura. Pode-se afirmar, entretanto que as características estão ligadas ao tipo de informação que se necessita coletar sobre um ou mais aspectos que envolvem uma partida de futebol (TAX; JOUSTRA, 2015). Não é possível ainda afirmar que uma outra metodologia é superior a outra, mas que são complementares. Para o caso desse software o mesmo deverá ser capaz de: comparar as bases de dados existentes e compilar essas informações de maneira a projetar uma base de dados única.

3 METODOLOGIA

Toda a execução do projeto será realizada por microcomputador presente no parque computacional da instituição. Serão utilizadas as linguagens HTML, PHP, Java e JavaScript e o software Weka, que já se mostraram ser uma boa escolha em desenvolvimento de softwares esportivos scout.

A construção do software será modularizada, conforme podemos observar na figura 1. A montagem da base de dados será baseada nas bases de dados existentes na literatura e deverá ser capaz de armazenar diferentes modelagens em uma única base. O primeiro módulo, selecionar, é o responsável por selecionar: a base de dados e partida desejada. O próximo módulo, visualizar, é o responsável por apresentar os dados do jogo através dos seus quatro elementos do processo de scout: espaço (imagens de campo), tempo (escolha do tempo da partida), jogador(escalação) e fundamento (tabelas de dados). Já o terceiro e o quarto módulo, otimizar e relatório permite ao usuário projetar e visualizar os relatórios com a compilação das informações proveniente da base de dados.

Figura 1: Fluxograma do sistema proposto

4 RECURSOS

Para a realização do projeto, foram utilizados os seguintes recursos:

- Um notebook;
- Eclipse IDE;
- A ferramenta WEKA.

5 CRONOGRAMA

Abaixo encontra-se o cronograma de atividades que serão desenvolvidas neste projeto até a defesa do TCC.

Atividades	Fev/2019	Mar/2019	Abr/2019	Mai/2019	Jun/2019	Jul/2019	Ago/2019	Set/2019	Out/2019	Nov/2019	Dez/2019
Levantamento Bibliográfico	X	X									
Montagem da base de dados			X	X							
Estudo da ferramenta Weka				X	X						
Preparação dos Dados						X	X				
Execução dos testes							X	X	X		
Escrita de artigo e relatório									X	X	
Banca											X

Tabela 1: Cronograma de atividades do projeto.

REFERÊNCIAS

- BROOKS, J.; KERR, M.; GUTTAG, J. Using machine learning to draw inferences from pass location data in soccer. **Statistical Analysis and Data Mining: The ASA Data Science Journal**, Wiley, v. 9, n. 5, p. 338–349, jun 2016.
- CHADE, J. China faz Copa de 2018 ter audiência recorde de 3,5 bilhões de pessoas. 2018. Disponível em: (https://esportes.estadao.com.br/noticias/futebol, china-faz-copa-de-2018-ter-audiencia-recorde-de-3-5-bilhoes-de-pessoas,70002654539). Acesso em: 17 jun 2019.
- CONSTANTINOU, A. C.; FENTON, N. E.; NEIL, M. Profiting from an inefficient association football gambling market: Prediction, risk and uncertainty using bayesian networks. **Knowledge-Based Systems**, Elsevier BV, v. 50, p. 60–86, sep 2013.
- DUARTE, L. M. da S.; SOARES, C.; TEIXEIRA, J. **Previsão de resultados de jogos de futebol**. Dissertação (Mestrado) Faculdade da Engenharia da Universidade do Porto, 2015.
- FIFA. **FIFA Financial Report 2018**. 2018. Disponível em: (https://resources.fifa.com/image/upload/xzshsoe2ayttyquuxhq0.pdf). Acesso em: 17 jun 2019.
- HUCALJUK, J.; RAKIPOVIć, A. Predicting football scores using machine learning techniques. **2011 Proceedings of the 34th International Convention MIPRO**, may 2011.
- IGIRI, C. P. Support vector machine—based prediction system for a football match result. **IOSR Journal of Computer Engineering**, v. 17, n. 3, p. 21–26, jun 2015.
- MARTINS, R. G. et al. Exploring polynomial classifier to predict match results in football championships. **Expert Systems with Applications**, Elsevier BV, v. 83, p. 79–93, oct 2017.
- OWRAMIPUR, P. E. F.; MOZNEB, F. S. Football result prediction with bayesian network in spanish league-barcelona team. **International Journal of Computer Theory and Engineering**, October 2013.
- PENDHARKAR, P. C.; KHOSROWPOUR, M.; RODGER, J. A. Application of bayesian network classifiers and data envelopment analysis for mining breast cancer patterns. **Journal of Computer Information Systems**, v. 40, n. 4, p. 127–132, 2000.
- PERIN, C.; VUILLEMOT, R.; FEKETE, J. D. Soccerstories: A kick-off for visual soccer analysis. **IEEE Transactions on Visualization and Computer Graphics**, v. 19, n. 12, p. 2506–2515, Dec 2013. ISSN 1077-2626.
- SFEIR, M. N. Laws of the game (adapted from fifa 2010-11). **World Literature Today**, v. 85, n. 3, p. 38–39, may 2011.
- TAX, N.; JOUSTRA, Y. Predicting the dutch football competition using public data: A machine learning approach. Unpublished, 2015.
- ULMER, B.; FERNANDEZ, M. Predicting Soccer Match Results in the English Premier League. Tese (Doutorado) Stanford University, 2013.