Рекомендательные системы ШАД Весна 2025

Лекция 2: Качество рекомендательных систем

Recap первого семинара

- Precision@10
 - Jaccard: 0.0288
 - NPMI: 0.0587
 - SVD: 0.0413

Как оценить рексистему?

- offline vs online оценка
- offline-метрики
- аспекты качества
- online-метрики
- ключевые проблемы

Метрики: Offline vs Online

	Где берем Ground Truth	Связь с бизнесом		
Offline	из исторических данных - быстро: посчитать метрики можно сразу после обучения - неточно: разметка есть не для всех объектов	 коррелирующая : рост метрик не всегда означает + для бизнеса проверка "плохих" моделей не влияет на пользователей 		
Online	из взаимодействия пользователей с новой моделью в проде (АВ) - долго: нужно дождаться места в АВ, раскатить, собрать логи - точно: все объекты размечены	- прямая: метрики напрямую отражают бизнес-цели - "плохие" модели в проде приводят к потере денег и пользователей		

Метрики: Offline vs Online

- 1. Определяем метрики : цель бизнеса → online → offline
- 2. По offline: отбираем парочку моделей
- 3. Катим их в АВ
- 4. Πo online:
 - Все супер → раскатываем лучшую
 - Все не супер → goto п.1.

Offline-метрики

$$Q=\{q_i\},\,i=\overline{1,N_Q}\,$$
 – множество запросов/пользователей $D=\{d_i\},\,i=\overline{1,N_D}\,$ – множество документов

$$X=\{x_i\}$$
 – признаковые описания (qi, di) $Y=\{y_i\}$ – истинная разметка релевантности $\hat{Y}=\{\hat{y_i}\}$ – предсказания модели $rel_i=I\,(y_i=1)$

Offline-метрики: что-то из классики

- Метрики регрессии.

Например,
$$RMSE_{Q_j} = \sqrt{rac{1}{N_D}\sum_{i=1}^{N_D}(y_i - \hat{y}_i)^2}$$

- Не учитывают позиции

айтемов $\hat{m{y}}$ выдаче \hat{y} rec2				
У		reci		rec2
10	5	10	10	10
8	4	8	8	8
6	3	6	6	6
3	2	4	4	4
$oxed{RMSE_{Q_j}}$	7.1		()

- Метрики классификации
 - Вообще тоже
 - **НО: есть AUC**

$$AUC = P\left(y_{+} > y_{-}\right)$$

- **НО:** пользователь видит только топ
- → AUC@k

Offline-метрики: MAP@k

$$Precision = rac{1}{\hat{N_{rel}}} \sum_{v=1}^{N} rel_v.$$

- ограничиваемся тем, что видел пользователь - Precision@k

$$Precision@k = rac{1}{k} \sum_{v=1}^{k} rel_v$$

- усредняем по выдаче - AveragePrecision@k

$$AP@k = rac{1}{N_{rel}@k} \sum_{j=1}^k P@j \cdot rel_j.$$

- усредняем по всем запросам-MeanAveragePrecision@k

k	Url	reli	P@k	P@k*reli	AP@k
1	🍝 Карбонара	1	1	1	1
	Приготовить				
2	пиццу	0	0.5	0	0.5
3	« Болоньезе	1	0.67	0.67	0.835
4	ζυμαρικά με μανιτάρια	? → 1	0.75	0.75	0.807
5	Паста срыбой	1	0.8	0.8	0.805
6	« Макарошки	1	0.83	0.83	0.81

$$MAP@k = rac{1}{N_Q} \sum_{i=1}^{N} (AP@k)_i$$

Offline-метрики: Recall@k, CG@k

$$Recall = rac{1}{N_{rel}} \sum_{v=1}^{N} rel_v$$

- точное Nrel неизвестно
- ограничиваемся тем, что видел пользователь

$$Recall@k = rac{1}{N_{rel}} \sum_{v=1}^{k} rel_v$$

- общая "полезность" рекомендаций: Cumulative Gain

$$CG@k = \sum_{v=1}^k y_i$$

k	Url	reli	R@k
ī	🍝 Карбонара	1	0.2
2	Приготовить пиццу	0	0.2
3	— Болоньезе	1	0.4
4	ζυ μ αρικά μ ε μ ανιτάρια	? →	0.6
5	Паста с рыбой	1	0.8
6	« Макарошки	1	1

Offline-метрики: NDCG@k

- Normalized Discounted Cumulative Gain

$$DCG@k = \sum_{i=1}^k rac{y_i}{log_2(i+1)}$$

$$NDCG@k = rac{DCG@k}{IDCG@k}$$

				IDCG-DCG
i	log(i+1)	Ideal	rec	
ī	1	10	8	(10 + 5.06) - (8 + 6.33)
2	1.58	8	10	= 0.73
3	2	8	6	(4+ 2.59) - (3 + 3.45) =
4	2.32	6	8	0.14
DCG		21.65	20.78	
NDCG		1	0.96	

Offline-метрики: pFound@k

- вероятность психануть и перестать искать

$$pBreak = 0.15$$

- вероятность, что в і-м документе что-то полезное y_i
- вероятность долистать до і позиции

$$pLook_1 = 1$$

 $pLook_i = pLook_{i-1} (1 - y_{i-1}) (1 - pBreak)$

- вероятность найти ответ за первые к элементов

$$pFound@k = \sum_{i=1}^{k} pLook_i \cdot y_i$$

Offline-метрики: HR@k

HitRate@k хотя бы один
 позитив в топ-k

 $HR@k = 1(\operatorname{rel}_i \leq k)$

Offline-метрики: MRR

- Mean Reciprocal Rank (MRR) - первый позитив

$$MRR = rac{1}{firstRelevantPos}$$

- Relevance & Conversion
 - рекомендации должны быть релевантными
 - конвертироваться в целевое действие
 - Precision@k, CTR

- Diversity
 - рекомендации должны быть достаточно разнообразными
 - category coverage

$$CategoryCoverage@k = \frac{|UniqueCategories@k|}{|Categories@k|}$$

- intra-list similarity

$$ILS@k = rac{2}{k(k-1)} \sum_{i=1}^{k} \sum_{j=i+1}^{k} \sin{(i,j)}$$

- Novelty

- способность рекомендательной системы предлагать новые или малоизвестные айтемы

$$Novelty@k = rac{1}{k}\sum_{i=1}^{k}\left(1-Popularity\left(i
ight)
ight)$$

Discover y

User Discovery — насколько часто пользователи получают новые релевантные айтемы.

$$User Discovery = rac{|I_{rec} \cap I_{new}|}{|I_{rec}|}$$

Item Discovery — насколько часто товары находят новых заинтересованных пользователей.

$$ItemDiscovery = rac{|U_{rec} \cap U_{new}|}{|U_{rec}|}$$

Serendipity

- способность системы рекомендовать неожиданные, но релевантные товары, которые пользователь не искал активно и не нашел бы самостоятельно
- **WOW-эффект**

$$S@k = rac{1}{k} \sum_{i=1}^{k} y_i \left(1 - P_{expected}\left(i
ight)
ight)$$

$$S@k = rac{1}{k} \sum_{i=1}^{k} y_i \left(1 - \mathop{max}_{j \in R_{prim}} \sin\left(i, j
ight)
ight)$$

- Retention

- рекомендации должны заставлять пользователей возвращаться в сервис: совершать повторные покупки / пересматривать или находить новый контент / ...
- Retention Rate

$$RR_{DayN} = \frac{|UsersDayN| - |NewUsers0N|}{|UsersDay0|}$$

$$ChurnRate_{DayN} = 1 - RR_{DayN}$$

Repeated Purchases Rate

$$RPR = \frac{|RepeatedPurchases|}{|AllPurchases|}$$

Online - метрики

Online -метрики: AB-тестирование

зачем:

 для определения наиболее эффективной версии продукта

как:

- сформулировать гипотезы
- выбрать целевые метрики
- и подумать про метрикиантагонисты
- определить сетап эксперимента: длительность, размеры выборок, MDE, ...
- запустить, подождать посчитать метрики, p-value, принять решение

Online -метрики: база

- релевантны ли рекомендации в моменте?
 - Explicit Feedback Count (Likes, Cart-updates, ...)
 - Click-Through Rate (CTR)
 - Time to First Interaction (TTFI)
 - Bounce Rate
- не скучно ли?
 - Diversity Score
 - Discovery Score
- а еще придете?
 - Retention Rate
 - Daily/Weekly/... Active Users (DAU/MAU/...)
 - Life-time value (LTV)

Online -метрики: E-com

- 🛒 Conversion to P<u>urchase</u>
- (
- Average Revenue per User (ARPU)
- Average Order Value (AOV)
- Gross Merchandise Volume (GMV)
- **X** Time to Purchase
- X Cart Abandonment Rate

How to накосячить:

- растим: Conversion to Purchase
- получаем: в топе товары по скидке / дешевые товары / товары из истории
- роняем: все денежные метрики

- растим: AOV
- получаем: в топе дорогие товары / товары, которые пользователь итак берет всегда
- роняем: DAU

Online -метрики: Новостные платформы и соцсети

- Dwell Time
 Scroll Depth
 Read Depth
- Popularity Score
 Novelty Score
- Consistent Selance

ЭТО СКРЫВАЛИ ОТ НАС ВСЮ ЛЕКЦИЮ!!! CTR PACTET HA ГЛАЗАХ! ПРОСТО ПОРЕКОМЕНДУЙТЕ...

- самый кликбейтный контент
- и уроните все что можно -**Dwell Time, Read Depth,** Retention, ...

Online -метрики: Стриминговые сервисы

- 🗾
 - Session Length/Total Watch/Listening Time
 - Average Watch/Listening Time
 - Streaming Time
- **Completion Rate**
- X Skip Rate

How to накосячить:

- растим: Completion Rate
- получаем: в топе короткие видео
- роняем: Session Length

How to раскосячить:

- показать "заботу о пользователе": Autoplay VS "Time to break"

Ключевые проблемы

Ключевые проблемы: Exploration-Exploitation Trade-Off

- известные релевантные айтемы -> высокое вовлечение в моменте
- **пузыри интересов,** скучно

- слишком много нерелевантных айтемов
- исследование новых интересов -> выше long-term влияние

Ключевые проблемы: Feedback Loop

Ключевые проблемы: Холодный старт

- Новые пользователи
 - Рекомендовать популярное
 - Гибридные модели (демография/внешние данные)
 - Онбординг
- Новые айтемы
 - Бустинг новинок
 - Гибридные модели (контент
 - RL
- Новые платформы
 - Предобученные модели
 - Внешние данные

Спасибо!

Алена Зайцева, Группа рекомендаций Лавки, Белград 2025