Chapitre 4 : Réduction d'endomorphismes

L3-S5. Algèbre générale 1

Licence Mathématiques Université d'Avignon

Année 2018-2019

- 1. Endomorphismes et matrices
- 2. Sous-espaces invariants

1. Endomorphismes et matrices

 \mathbb{K} désigne un corps commutatif, d'élément unité $1 \neq 0$. Lorsque ce n'est pas précisé, E désigne un \mathbb{K} -espace vectoriel de dimension finie n. Si $A = (a_{ij}) \in M_n(\mathbb{K})$,

$$\det[(a_{ij})_{1 \leqslant i,j \leqslant n}] = \sum_{s \in S_n} \varepsilon(s) a_{s(1)1} \dots a_{s(n)n}$$

Théorème

Soit $\bar{e}=(e_i)_{1\leqslant i\leqslant n}$ une base de E, et $\bar{f}=(f_i)_{1\leqslant i\leqslant n}$ une famille d'un \mathbb{K} -ev F. Alors il existe une et une seule application \mathbb{K} -linéaire $u:E\to F$ telle que $\forall i\in\{1,...,n\}, u(e_i)=f_i$. Cette application est surjective (resp. injective) si et seulement si \bar{f} est génératrice (resp. libre). En particulier, c'est un isomorphisme si et seulement si \bar{f} est une base de F.

- 1. Endomorphismes et matrices
- 2. Sous-espaces invariants

1. Endomorphismes et matrices

Ainsi, une fois choisie une base $\bar{e} = (e_j)_{1 \leq j \leq n}$ de E et une base $\bar{e}' = (e_i')_{1 \leq i \leq m}$ de F, se donner une application K-linéaire $u: E \to F$ équivaut à prescrire l'image de \bar{e} par u, ie. les n vecteurs $u(e_j)$, qu'on peut exprimer dans la base \bar{e}' :

$$u(e_j) = \sum_{i=1}^{m} a_{ij} e_i'$$

On appelle **matrice** de u dans les bases \bar{e} , \bar{e}' la matrice $m \times n$ à coefficient dans K des (a_{ij}) . On la note $\mathrm{Mat}_{\bar{e},\bar{e}'}(u)$.

- 1. Endomorphismes et matrices
- 2. Sous-espaces invariants

1. Endomorphismes et matrices

Dans le cas F = E; on peut choisir comme base \bar{e}' dans le E d'arrivée, la même base \bar{e} du E de départ! On note alors simplement : $\mathrm{Mat}_{\bar{e}}(u)$.

- 1. Endomorphismes et matrices
- 2. Sous-espaces invariants

1. Endomorphismes et matrices

Dans le cas F = E; on peut choisir comme base \bar{e}' dans le E d'arrivée, la même base \bar{e} du E de départ! On note alors simplement : $\mathrm{Mat}_{\bar{e}}(u)$.

Changer de bases équivaut alors à remplacer la matrice M associée à l'endomorphisme u dans l'ancienne base par la matrice $P^{-1}MP$ où la matrice $P = \operatorname{Mat}_{\bar{e}',\bar{e}}(Id_E)$ est la matrice de passage de \bar{e} à \bar{e}' .

- . Endomorphismes et matrices
- 2. Sous-espaces invariants

2. Sous-espaces invariants

Définitions

Un sous-espace $F \subset E$ est dit u-invariant si $u(F) \subset F$. Dans ce cas une base de E est dite adaptée à F si ses premiers vecteurs forment une base de F.

- . Endomorphismes et matrices
- 2. Sous-espaces invariants

2. Sous-espaces invariants

Définitions

Un sous-espace $F \subset E$ est dit u-invariant si $u(F) \subset F$. Dans ce cas une base de E est dite adaptée à F si ses premiers vecteurs forment une base de F.

Proposition

Dans une base \bar{e} de E adaptée à F (SEV u-invariant, de dimension k), la matrice de u est une matrice par blocs :

$$\left(\begin{array}{cc} M & B \\ 0 & \bar{M} \end{array}\right)$$

où M est la matrice de $u_{|F}$ dans la base de F formée des k premiers vecteurs de \bar{e} .

- l. Endomorphismes et matrices
- 2. Sous-espaces invariants

3. Déterminant d'un endomorphisme

Définition

Le déterminant d'un endomorphisme u de E est le déterminant de toute matrice exprimant u dans une base de E. On le note det u.

- . Endomorphismes et matrices
- 2. Sous-espaces invariants

3. Déterminant d'un endomorphisme

Définition

Le déterminant d'un endomorphisme u de E est le déterminant de toute matrice exprimant u dans une base de E. On le note det u.

Le déterminant de u est bien défini :

$$\det(P^{-1}MP) = (\det P^{-1})(\det M)(\det P)$$
$$= (\det P^{-1})(\det P)(\det M) = \det M$$

- 2. Sous-espaces invariants

3. Déterminant d'un endomorphisme

Définition

Le déterminant d'un endomorphisme u de E est le déterminant de toute matrice exprimant u dans une base de E. On le note $\det u$.

Le déterminant de u est bien défini :

$$\det(P^{-1}MP) = (\det P^{-1})(\det M)(\det P)$$
$$= (\det P^{-1})(\det P)(\det M) = \det M$$

Rappelons aussi que pour tout u, v dans End(E):

$$\det(u \circ v) = (\det u)(\det v).$$

Un endomorphisme u de E est un isomorphisme si et seulement si son déterminant est non-nul. ◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

II. Réductibilité

Définition

Un endomorphisme u est **diagonalisable** s'il existe une base de E pour laquelle la matrice associée à u est diagonale.

II. Réductibilité

Définition

Un endomorphisme u est **diagonalisable** s'il existe une base de E pour laquelle la matrice associée à u est diagonale.

Ce n'est pas toujours possible : tout endomorphisme n'est pas diagonalisable! Nous verrons que l'on essaye alors de simplifier le problème en cherchant un sous-espace $F \subset E$ invariant par u, ie. tel que $u(F) \subset F$, permettant de se ramener à la restriction de u à F: ceci permet déjà de diminuer la dimension! Pour décomposer l'étude de u en parties plus simples, l'idéal est de trouver une décomposition de E en somme directe de sous-espaces vectoriels u-invariants.

1. Sous-espaces propres

Définitions

S'il existe un vecteur **non nul** $x \in E$ et un scalaire $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$, on dit que λ est une **valeur propre** de u et x un **vecteur propre** associé à λ . Dans ce cas le SEV

$$E_u(\lambda) = \operatorname{Ker}(u - \lambda I d_E),$$

est dit sous-espace propre associé à λ . L'ensemble des valeurs propres de u est dit spectre de u et noté $\mathrm{Sp}(u)$.

1. Sous-espaces propres

Théorème

Soit $(\lambda_1,...,\lambda_k)$ une famille finie de valeurs propres de u, deux-à-deux distinctes. Alors la somme des sous-espaces propres associés $E(\lambda_i)$ est directe.

1. Sous-espaces propres

Théorème

Soit $(\lambda_1, ..., \lambda_k)$ une famille finie de valeurs propres de u, deux-à-deux distinctes. Alors la somme des sous-espaces propres associés $E(\lambda_i)$ est directe.

Corollaire

u admet au plus n valeurs propres distinctes, et s'il en admet n, alors :

$$E = E(\lambda_1) \oplus ... \oplus E(\lambda_n)$$

2. Polynôme caractéristique

Définition

Soit M une matrice de $M_n(\mathbb{K})$. On appelle **polynôme** caractéristique de M le déterminant de la matrice $XI_n - M$. On le note P_M , ou $P_M(X) = \det(XI_n - M) \in \mathbb{K}[X]$.

II. Réductibilité

2. Polynôme caractéristique

Définition

Soit M une matrice de $M_n(\mathbb{K})$. On appelle **polynôme** caractéristique de M le déterminant de la matrice $XI_n - M$. On le note P_M , ou $P_M(X) = \det(XI_n - M) \in \mathbb{K}[X]$.

Proposition-Définition

Le polynôme caractéristique de la matrice associée à u dans une base ne dépend pas du choix de la base. On l'appelle **polynôme** caractéristique de u et le note P_u , ou $P_u(X)$.

II. Réductibilité

2. Polynôme caractéristique

Théorème

Les valeurs propres de u sont exactement les racines de son polynôme caractéristique.

II. Réductibilité

2. Polynôme caractéristique

Théorème

Les valeurs propres de u sont exactement les racines de son polynôme caractéristique.

Corollaire

Si \mathbb{K} est algébriquement clos, tout endomorphisme admet au moins une valeur propre.

II. Réductibilité

2. Polynôme caractéristique

Théorème

Les valeurs propres de u sont exactement les racines de son polynôme caractéristique.

Corollaire

Si \mathbb{K} est algébriquement clos, tout endomorphisme admet au moins une valeur propre.

Proposition

Le polynôme caractéristique de la restriction de u à un SEV u-invariant F divise le polynôme caractéristique de u.

2. Polynôme caractéristique

Corollaire

Soit λ une valeur prore de u, soit $q(\lambda)$ la dimension de $E(\lambda)$, et soit $m(\lambda)$ la multiplicité de λ en tant que racine de P_u . Alors :

$$1 \leqslant q(\lambda) \leqslant m(\lambda)$$

3. Endomorphisme diagonalisable

Théorème

Les deux assertions suivantes sont équivalentes :

- \bullet u est diagonalisable,
- ② le polynôme caractéristique de u est scindé, et pour toute valeur propre λ de u, la dimension de $E(\lambda)$ est égale à la multiplicité de la racine λ de P_u .

3. Endomorphisme diagonalisable

Théorème

Les deux assertions suivantes sont équivalentes :

- \bullet u est diagonalisable,
- ② le polynôme caractéristique de u est scindé, et pour toute valeur propre λ de u, la dimension de $E(\lambda)$ est égale à la multiplicité de la racine λ de P_u .

Théorème

Si P_u admet n racines distinctes, alors u est diagonalisable.

II Réductibilité

4. Endomorphisme trigonalisable

Définition

L'endomorphisme u est **trigonalisable** s'il existe une base pour laquelle la matrice associée à u est triangulaire supérieure.

II Réductibilité

4. Endomorphisme trigonalisable

Définition

L'endomorphisme u est **trigonalisable** s'il existe une base pour laquelle la matrice associée à u est triangulaire supérieure.

Nota Bene : Qu'une base $(e_1, ..., e_n)$ soit une base de "trigonalisation" équivaut à ce que pour tout k, le sous-espace vectoriel F_k engendré par les k-premiers éléments de la base soit u-invariant : $u(F_k) \subset F_k$.

II Réductibilité

4. Endomorphisme trigonalisable

Théorème

Un endomorphisme u est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} .

II Réductibilité

4. Endomorphisme trigonalisable

Théorème

Un endomorphisme u est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} .

Corollaire

Si $\mathbb K$ est algébriquement clos, tout endomorphisme d'un $\mathbb K$ -espace vectoriel de dimension finie est trigonalisable.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

l. Endomorphisme et polynômes

Définition

Soit $P = \sum_{i \geqslant 0} a_i X^i$ un polynôme de $\mathbb{K}[X]$. On note P(u) l'endomorphisme $\sum_{i \geqslant 0} a_i u^i$ de E.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphisme et polynômes

Définition

Soit $P = \sum_{i \geqslant 0} a_i X^i$ un polynôme de $\mathbb{K}[X]$. On note P(u) l'endomorphisme $\sum_{i \geqslant 0} a_i u^i$ de E.

Théorème

L'application de $\mathbb{K}[X]$ vers L(E) qui envoie P sur P(u) est un morphisme de \mathbb{K} -algèbres. Son noyau est appelé **idéal** annulateur de u. Son image est notée $\mathbb{K}[u]$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caracteristiques
- 3. Endomorphismes nilpotents

1. Endomorphisme et polynômes

Définition

Soit $P = \sum_{i \geq 0} a_i X^i$ un polynôme de $\mathbb{K}[X]$. On note P(u) l'endomorphisme $\sum_{i \geq 0} a_i u^i$ de E.

Théorème

L'application de $\mathbb{K}[X]$ vers L(E) qui envoie P sur P(u) est un morphisme de \mathbb{K} -algèbres. Son noyau est appelé **idéal** annulateur de u. Son image est notée $\mathbb{K}[u]$.

Théorème

Il existe un unique polynôme unitaire qui engendre l'idéal annulateur de u. On l'appelle **polynôme minimal de** u, et on le note μ_u .

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Proposition

• Un polynôme P est un multiple de μ_u si et seulement si P(u) = 0.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Proposition

- Un polynôme P est un multiple de μ_u si et seulement si P(u) = 0.
- En particulier, si v est la restriction de u à un SEV u-invariant, alors μ_v divise μ_u .

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Proposition

- Un polynôme P est un multiple de μ_u si et seulement si P(u) = 0.
- En particulier, si v est la restriction de u à un SEV u-invariant, alors μ_v divise μ_u .

Théorème de Cayley-Hamilton

Soit P_u le polynôme caractéristique d'un endomorphisme u de E. Alors, $P_u(u) = 0$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caracteristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Corollaire

Le polynôme minimal μ_u divise le polynôme caractéristique P_u .

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Corollaire

Le polynôme minimal μ_u divise le polynôme caractéristique P_u .

Un autre critère utile pour caractériser le polynôme minimal est :

Proposition

Les racines du polynôme minimal sont exactement celles du polynôme caractéristique.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Théorème

Soit u un endomorphisme de E et P_1, \ldots, P_k des polynômes de $\mathbb{K}[X]$ premiers entre eux deux-à-deux, et $P := P_1 \ldots P_k$, alors on a la somme directe : $ker[P(u)] = ker[P_1(u)] \oplus \ldots \oplus ker[P_k(u)]$

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Théorème

Soit u un endomorphisme de E et $P_1, ..., P_k$ des polynômes de $\mathbb{K}[X]$ premiers entre eux deux-à-deux, et $P := P_1...P_k$, alors on a la somme directe : $ker[P(u)] = ker[P_1(u)] \oplus ... \oplus ker[P_k(u)]$

Corollaire

Si de plus P est dans l'idéal annulateur de u (ie. P(u)=0) alors :

$$E = ker[P_1(u)] \oplus ... \oplus ker[P_k(u)]$$

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

1. Endomorphismes et polynômes

Théorème

Soit u un endomorphisme de E et $P_1, ..., P_k$ des polynômes de $\mathbb{K}[X]$ premiers entre eux deux-à-deux, et $P := P_1...P_k$, alors on a la somme directe : $ker[P(u)] = ker[P_1(u)] \oplus ... \oplus ker[P_k(u)]$

Corollaire

Si de plus P est dans l'idéal annulateur de u (ie. P(u)=0) alors :

$$E = ker[P_1(u)] \oplus ... \oplus ker[P_k(u)]$$

Exemple

Soit u un endomorphisme de E tel que $u^2 - 3u + 2Id_E = 0$, alors $E = ker(u - Id_E) \oplus ker(u - 2Id_E)$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

2. Sous-espaces caractéristiques

Dans toute cette section, u désigne un endomorphisme de E dont le polynôme caractéristique est scindé. Alors :

$$P_u = \prod_{i=1}^p (X - \lambda_i)^{m_i}$$

où les λ_i sont les valeurs propres de u deux-à-deux distinctes.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

2. Sous-espaces caractéristiques

Dans toute cette section, u désigne un endomorphisme de E dont le polynôme caractéristique est scindé. Alors :

$$P_u = \prod_{i=1}^p (X - \lambda_i)^{m_i}$$

où les λ_i sont les valeurs propres de u deux-à-deux distinctes.

D'après le Théorème de Cayley-Hamilton, on a :

$$\mu_u = \prod_{i=1}^p (X - \lambda_i)^{r_i}$$

avec $1 \leqslant r_i \leqslant m_i$.

200

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

2. Sous-espaces caractéristiques

Définition

Le sous-espace caractéristique associé à λ_i est le noyau de $(\lambda_i \operatorname{id}_E - u)^{r_i}$. On le note $N_i(u)$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

2. Sous-espaces caractéristiques

Définition

Le sous-espace caractéristique associé à λ_i est le noyau de $(\lambda_i \operatorname{id}_E - u)^{r_i}$. On le note $N_i(u)$.

D'après le Corollaire précédent

Théorème

E est la somme directe des sous-espaces caractéristiques $N_i(u)$:

$$E = N_1(u) \oplus ... \oplus N_p(u)$$

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

2. Sous-espaces caractéristiques

Proposition

Chaque $N_i(u)$ est u-invariant, et la seule valeur propre de la restriction u_i de u à $N_i(u)$ (au départ et à l'arrivée) est λ_i . Le polynôme minimal de u_i est $(X - \lambda_i)^{r_i}$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

2. Sous-espaces caractéristiques

Proposition

Chaque $N_i(u)$ est u-invariant, et la seule valeur propre de la restriction u_i de u à $N_i(u)$ (au départ et à l'arrivée) est λ_i . Le polynôme minimal de u_i est $(X - \lambda_i)^{r_i}$.

Proposition

Soit m_i la multiplicité de la racine λ_i de P_u . Alors :

$$\dim N_i(u) = m_i.$$

Le polynôme caractéristique de u_i est $(X - \lambda_i)^{m_i}$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Théorème

Un endomorphisme u de E est diagonalisable si et seulement si son polynôme minimal est scindé sur \mathbb{K} et n'a que des racines simples (de multiplicité un).

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

3. Endomorphismes nilpotents

Pour achever la description de u, il suffit de comprendre sa restriction à chaque sous-espace caractéristique $N_i(u)$. Or, cette restriction est de la forme $u_{|N_i(u)} = \lambda_i \operatorname{id}_{N_i(u)} + n_i$, où $n_i = u_{|N_i(u)} - \lambda_i \operatorname{id}_{N_i(u)}$. Et ce n_i est nilpotent au sens suivant :

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

3. Endomorphismes nilpotents

Pour achever la description de u, il suffit de comprendre sa restriction à chaque sous-espace caractéristique $N_i(u)$. Or, cette restriction est de la forme $u_{|N_i(u)} = \lambda_i \operatorname{id}_{N_i(u)} + n_i$, où $n_i = u_{|N_i(u)} - \lambda_i \operatorname{id}_{N_i(u)}$. Et ce n_i est nilpotent au sens suivant :

Définition

Un endomorphisme u de E est **nilpotent** s'il existe un entier k tel que $u^k = 0$. Le plus petit entier tel que $u^k = 0$ est appelé indice de u.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caracteristiques
 3. Endomorphismes nilpotents

3. Endomorphismes nilpotents

Pour achever la description de u, il suffit de comprendre sa restriction à chaque sous-espace caractéristique $N_i(u)$. Or, cette restriction est de la forme $u_{|N_i(u)} = \lambda_i \operatorname{id}_{N_i(u)} + n_i$, où $n_i = u_{|N_i(u)} - \lambda_i \operatorname{id}_{N_i(u)}$. Et ce n_i est nilpotent au sens suivant :

Définition

Un endomorphisme u de E est **nilpotent** s'il existe un entier k tel que $u^k = 0$. Le plus petit entier tel que $u^k = 0$ est appelé **indice de** u.

Proposition

Soit u un endomorphisme de E nilpotent d'indice r. Alors le polynôme minimal de u est X^r .

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Définition

Une matrice nilpotente de Jordan élémentaire est une matrice carrée $(a_{ij})_{1 \le i,j \le n}$ dont les coefficients sont nuls, sauf ceux "juste au-dessus de la diagonale", ie. les a_{ij} avec j = i + 1, pour lesquels on a $a_{i,i+1} = 1$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Définition

Une matrice nilpotente de Jordan élémentaire est une matrice carrée $(a_{ij})_{1 \leq i,j \leq n}$ dont les coefficients sont nuls, sauf ceux "juste au-dessus de la diagonale", ie. les a_{ij} avec j = i + 1, pour lesquels on a $a_{i,i+1} = 1$.

Pour tout n, il existe donc une unique matrice nilpotente de Jordan élémentaire dans $M_n(\mathbb{K})$. Pour n=3, il s'agit de :

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Proposition

Tout endomorphisme u d'un \mathbb{K} -espace vectoriel E de dimension n est nilpotent d'indice n si et seulement si il existe une base de E dans laquelle u s'exprime sous la forme de la matrice nilpotente de Jordan élémentaire de $M_k(\mathbb{K})$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Proposition

Tout endomorphisme u d'un \mathbb{K} -espace vectoriel E de dimension n est nilpotent d'indice n si et seulement si il existe une base de E dans laquelle u s'exprime sous la forme de la matrice nilpotente de Jordan élémentaire de $M_k(\mathbb{K})$.

Définition

Une matrice nilpotente de Jordan est une matrice carrée $(a_{ij})_{1 \leq i,j \leq n}$ dont les coefficients sont nuls, sauf ceux "juste au-dessus de la diagonale", ie. les a_{ij} avec j = i + 1 pour lesquels on a soit $a_{i,i+1} = 1$, soit $a_{i,i+1} = 0$.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Théorème

Tout endomorphisme u d'un \mathbb{K} -espace vectoriel E est nilpotent si et seulement si il existe une base de E dans laquelle u s'exprime sous la forme d'une matrice nilpotente de Jordan.

- 1. Endomorphismes et polynômes
- 2. Sous-espaces caractéristiques
- 3. Endomorphismes nilpotents

Théorème

Tout endomorphisme u d'un \mathbb{K} -espace vectoriel E est nilpotent si et seulement si il existe une base de E dans laquelle u s'exprime sous la forme d'une matrice nilpotente de Jordan.

Corollaire: Trigonalisation de Jordan

Pour tout endomorphisme u d'un \mathbb{K} -espace vectoriel E, trigonalisable, il existe une base de E telle que la matrice de u dans cette base est bloc-diagonale dont chaque bloc est de la forme $\lambda_i I_{m_i} + N_i$ où $N_i \in M_{m_i}(\mathbb{K})$ est nilpotente de Jordan d'indice r_i