Projekty z przedmiotu Optymalizacja 1

Małgorzata Łukomska Olga Waszczuk

PROJEKT 1

Funkcje Wyniki testów Obserwacje

Funkcje

- * largest_coefficient: zwraca zmienną, przy której stoi największy współczynnik w funkcji celu
- * maximal_objective: zwraca zmienną na podstawie wzrostu funkcji celu: zmienna wychodząca jest dobierana do zmiennej wchodzącej tak, aby ich zamiana w programie dawała najwyższy wzrost funkcji celu spośród wszystkich możliwych par zmiennych wchodzących i wychodzących
- * bland_rule: zwraca zmienną wchodzącą o najniższym indeksie, a zmienną wychodzącą dobieraną do zmiennej wchodzącej w zbiorze możliwych zmiennych wychodzących o najmniejszym indeksie
- * random_edge: zwraca zmienną wybraną losowo z prawdopodobieństwem jednostajnym
- * smallest_coefficient: zwraca zmienną, przy której w funkcji celu stoi najmniejszy współczynnik.
- * max_bounds_difference: zwraca zmienną dla której wartość bezwzględna różnicy współczynnika stojącego przy zmiennej w pierwszej funkcji ograniczającej, i sumy współczynników stojących przy zmiennej w pozostałych funkcjach ograniczających jest największa
- * lexicographical_min: zwraca najmniejszą zmienną wśród możliwych zmiennych wchodzących i wychodzących do programu, gdzie ułożenie zmiennych podlega pod porządek leksykograficzny.
- * lexicographical_max: zwraca największą zmienną wśród możliwych zmiennych wchodzących i wychodzących do programu, gdzie ułożenie zmiennych podlega pod porządek leksykograficzny.

Wyniki testów

Funkcje\testy	routes	paint	transportation	furniture	Whiskas 1	Whiskas 2	Hetmani 5	Hetmani 3	Exercise	profit
largest_ Coefficient	5	2	2	2	2	2	16	9	2	5
maximal_ objective_value	9	2	2	2	2	7	inf	15	2	5
bland_rule	7	3	2	2	2	11	29	10	3	4
random_edge	6	3	3	2	2	8	14	10	3	6
smallest_ Coefficient	6	3	3	2	2	8	20	11	3	7
max_bounds_ difference	7	2	2	2	2	10	31	10	2	3
Lexicographical _min	7	3	2	2	2	11	29	10	3	4
lexicographical_ max	8	2	3	2	2	2	31	15	2	5

Obserwacje

Reguła	Średnia liczba kroków
largest_Coefficient	4,7
bland_rule	7,3
random_edge	5,7
smallest_coefficient	6,5
max_bounds_difference	7,1
Lexicographical_min	7,3
lexicographical_max	7,2

* reguła largest_coefficient

- średnio dała najmniej kroków
 Nawet w najbardziej złożonych problemach takich jak hetmani oraz whiskas 2 dała znacząco mniej kroków niż przy pozostałych regułach
- * reguly bland_rule i lexicographical_min
 - średnio dały najwięcej kroków

PROJEKT 3

Ogólne o algorytmie
Problem liniowy
Funkcje opisujące struktury
Funkcje wypisujące

Ogólnie o algorytmie

Prezentacja każdej organizacji w formie drzewa

Sieć przepływów pomiędzy drzewami

Wygenerowanie problemu liniowego

Problem liniowy

* Funkcja celu: Szukamy maksimum po sumie zwolnionych osób

* Ograniczenia:

- * wydajnosci (Capacity constraints) ograniczenia liczby zwolnionych pracowników w danym departamencie
- * Równowagi (Flow conservation equations) suma zwolnień podwładnych dodana do informacji, czy szef jest zwolniony, czy nie, musi być równa informacji idącej od tego szefa do jego przełożonego. W przypadku gdy szef jest korzeniem (nie ma przełozonego) suma ta nie może przekroczyć maksimum zwolnień, dla tego szefa.

* Bounds:

- * Zmienne pierwszego typu $x_{i,i}$ mogą przyjmować wartości 0 lub 1 odpowiednio pracownik zostaje w firmie lub jest zwolniony
- * Zmienne drugiego typu $x_{i,j,0}$ i $x_{i,j,1}$ są nieujemne i przyjmują dowolną liczbę naturalna n, nieprzekraczającą maksimum możliwej liczby zwolnionych podwładnych pracownika j tego (wraz z nim).
- * Generals: Wypisanie wszystkich zmiennych

Zmienna pierwszego rodzaju:

"eb_(indeks pracownika)e_(indeks pracownika)"

Zmienna drugiego rodzaju:

"eb_(indeks szefa)e_(indeks podwładnego)_(numer organizacji)"

Funkcje opisujące struktury

* count(tree, index_pracownika, macierz_dane_wejsciowe)

Zlicza liczbę osób zatrudnionych w departamencie pracownika o pobranym indeksie przeszukując macierz z danymi wejściowymi

* get employees under boss(index_pracownika, tree, matrix_dane wejsciowe)

zwraca listę podwładnych dla pracownika o pobranym indeksie przeszukując macierz zawierajacą dane wejściowe

* get employees lists(tree, matrix_dane_wejsciowe)

Na podstawie macierzy zawierającej dane wejściowe zwraca listę opisującą strukturę danej (tree) organizacji, każdy pracownik opisany jest następująco:

- * "Self" jego własny indeks
- * "Count" liczba jego podwładnych
- * "ToFire" maksymalna liczba jego podwładnych (łącznie z nim), która może zostać zwolniona
- * "Tree" organizacje dla której opisywana jest hierarchia
- * "Boss" indeks szefa tego pracownika
- * "Employees" lista podwładnych tego pracownika (bez niego)

Funkcje wypisujące

* getSelfObjectiveFunction()

zwraca tekst, wypisuje sumę wszystkich zmiennych pierwszego typu

* getCapacityConstraint()

zwraca tekst, wypisuje nierówności - ograniczenia wydajności

* getConservationConstraint()

zwraca tekst, wypisuje ograniczenia równowagi

* getSelfBounds()

zwraca tekst, wypisuje ograniczenia dla zmiennych pierwszego typu

* getBounds()

zwraca tekst, ograniczenia dla zmiennych drugiego typu

* getSelfGenerals()

zwraca tekst, wypisuje zmienne pierwszego typu

* getGenerals

zwraca tekst, wypisuje zmienne drugiego typu

```
Maximize
eb 0e 0 + eb 1e 1 + eb 2e 2 + eb 3e 3 + eb 4e 4
Subject To
eb 0e 0 <= 0
eb 1e 1 + eb 1e 0 0 + eb 1e 4 0 <= 2
eb_2e_2 + eb_2e_1_0 + eb_2e_3_0 <= 3
eb 3e 3 <= 1
eb_4e_4 <= 1
eb 0e 0 + eb 0e 1 1 <= 3
eb_1e_1 + eb_1e_2_1 + eb_1e_3_1 <= 2
eb 2e 2 <= 1 eb 3e 3 + eb 3e 4 1 <= 1
eb 4e 4 <= 1
eb 0e 0 - eb 1e 0 0 = 0
eb_1e_1 + eb_1e_0_0 + eb_1e_4_0 - eb_2e_1_0 = 0
eb 2e 2 + eb 2e 1 0 + eb 2e 3 0 <= 3
eb 3e 3 - eb 2e 3 0 = 0
eb 4e 4 - eb 1e 4 0 = 0
eb_0e_0 + eb_0e_1_1 <= 3
eb_1e_1 + eb_1e_2_1 + eb_1e_3_1 - eb_0e_1 1 = 0
eb 2e 2 - eb 1e 2 1 = 0
eb_3e_3 + eb_3e_4_1 - eb_1e_3_1 = 0
eb_4e_4 - eb_3e_4_1 = 0
Bounds
                                       Generals
0 <= eb 0e 0 <= 1
                                       eb 0e 0
0 <= eb 1e 1 <= 1
                                       eb 1e 1
0 <= eb 2e 2 <= 1
                                       eb 2e 2
0 <= eb 3e 3 <= 1
                                       eb 3e 3
0 <= eb 4e 4 <= 1
                                       eb 4e 4
                                       eb 1e 0 0
0 <= eb 1e 0_0 <= 0
                                       eb 1e 4 0
0 <= eb_1e_4_0 <= 1
                                       eb_2e_1_0
0 <= eb 2e 1 0 <= 2
                                       eb 2e 3 0
0 <= eb 2e 3 0 <= 1
                                       eb 0e 1 1
0 <= eb 0e 1 1 <= 2
                                       eb 1e 2 1
0 <= eb_1e_2_1 <= 1
                                       eb 1e 3 1
0 <= eb 1e 3 1 <= 1
                                       eb_3e_4_1
0 <= eb 3e 4 1 <= 1
                                       End
```