ass3.md 2024-05-22

Assignment 3 Report

1. PyTorch Version

pip show torch

Name: torch

Version: 2.3.0a0+6ddf5cf85e.nv24.4

2. Implement the three methods

I created three classes to implement the methods mentioned in the paper: GMF, MLP, and NeuMF. Then, I defined the functions train and evaluate to train and test all three models. For detailed code, please refer to run_models.ipynb.

3. Training and Test Setting

I followed the settings introduced in Subsection 4.1 of the paper. Specifically:

- Loss function: Binary Cross Entropy
- Number of negative instances: Four negative instances per positive instance
- Optimization method: Adam with a learning rate of 0.001
- **Predictive factors:** Using factor=8
- Network structure: A tower pattern, where the bottom layer is the widest and each successive layer
 has half the number of neurons

4. Comparing the Three Methods

First, I must declare that the number of layers in the MLP model and the NeuMF model are the same, and all three models share the same predictive factor.

Analysis:

1. According to the plots, NeuMF has the best performance on both HR@10 and NDCG@10, followed by the GMF.

ass3.md 2024-05-22

This is different from the outcome in the paper, where GMF underperforms compared to the other two models.

2. All models converge quickly: all three models reach relatively stable performance levels within approximately 10 epochs.

After nearly 20 epochs, there is a downward trend in the performance of NeuMF, which may be caused by overfitting.

5. Reproduce the ablation study in Table 3

	metric	mlp_0	mlp_1	mlp_2	mlp_3	mlp_4
0	HR	0.452815	0.520530	0.577483	0.610762	0.624669
1	NDCG	0.251862	0.292952	0.327352	0.344839	0.353480

The scores obtained in the table are the highest scores during training. For instance, the mlp_4 model achieves the best performance after 20 epochs and then its performance starts to decrease.

Analysis:

- 1. The results are similar to the paper: stacking more layers is beneficial to performance. This result is highly encouraging, indicating the effectiveness of using deep models for collaborative recommendation.
- 2. However, more layers can also lead to the possibility of overfitting.