Red-Black Trees

Red-Black Trees

- Red-black trees:
 - Binary search trees augmented with node color
 - Operations designed to guarantee that the height $h = O(\lg n)$
- First: describe the properties of red-black trees
- Then: prove that these guarantee $h = O(\lg n)$
- Finally: describe operations on red-black trees

Red-Black Properties

- The red-black properties:
 - 1. Every node is either red or black
 - 2. Every leaf (NULL pointer) is black
 - o Note: this means every "real" node has 2 children
 - 3. If a node is red, both children are black
 - o Note: can't have 2 consecutive reds on a path
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black

Red-Black Trees

- Put example on board and verify properties:
 - 1. Every node is either red or black
 - 2. Every leaf (NULL pointer) is black
 - 3. If a node is red, both children are black
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black
- black-height: # black nodes on path to leaf
 - Label example with *h* and bh values

Height of Red-Black Trees

- What is the minimum black-height of a node with height h?
- A: a height-h node has black-height $\geq h/2$
- Theorem: A red-black tree with n internal nodes has height $h \le 2 \lg(n+1)$

RB Trees: Worst-Case Time

- We will prove that a red-black tree has
 h = O(lg n) height
- Corollary: These operations take O(lg *n*) time:
 - Minimum(), Maximum()
 - Successor(), Predecessor()
 - Search()
- Insert() and Delete():
 - Will also take $O(\lg n)$ time
 - But will need special care since they modify tree

Red-Black Trees: An Example

• Color this tree:

Red-black properties:

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 8
 - Where does it go?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 8
 - Where does it go?
 - What color should it be?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 8
 - Where does it go?
 - What color should it be?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 11
 - Where does it go?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 11
 - Where does it go?
 - What color?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 11
 - Where does it go?
 - What color?
 - o Can't be red! (#3)

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 11
 - Where does it go?
 - What color?
 - o Can't be red! (#3)

- 1.
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 11
 - Where does it go?
 - *What color?*
 - Solution: recolor the tree
- Every node is either red or black 1.
- 2. Every leaf (NULL pointer) is black
- If a node is red, both children are black 3.
- Every path from node to descendent leaf 4. contains the same number of black nodes
- 5. The root is always black

- Insert 10
 - Where does it go?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 10
 - Where does it go?
 - What color?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. If a node is red, both children are black
- 4. Every path from node to descendent leaf contains the same number of black nodes
- 5. The root is always black

- Insert 10
 - Where does it go?
 - What color?
 - A: no color! Tree is too imbalanced
 - Must change tree structure to allow recoloring
 - Goal: restructure tree in O(lg *n*) time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 13.2 The rotation operations on a binary search tree. The operation LEFT-ROTATE(T,x) transforms the configuration of the two nodes on the left into the configuration on the right by changing a constant number of pointers. The configuration on the right can be transformed into the configuration on the left by the inverse operation RIGHT-ROTATE(T,y). The letters α,β , and γ represent arbitrary subtrees. A rotation operation preserves the binary-search-tree property: the keys in α precede key[x], which precedes the keys in β , which precedes the keys in γ .

RB Trees: Rotation

• Our basic operation for changing tree structure is called *rotation*:

- Does rotation preserve inorder key ordering?
- What would the code for rightRotate() actually do?

RB Trees: Rotation

- Answer: A lot of pointer manipulation
 - x keeps its left child
 - y keeps its right child
 - x's right child becomes y's left child
 - *x*'s and *y*'s parents change
- What is the running time?

Rotation Example

• Rotate left about 9:

Red-Black Trees: Insertion

- Insertion: the basic idea
 - \blacksquare Insert *x* into tree, color *x* red
 - Only r-b property 3 might be violated (if p[x] red)
 - If so, move violation up tree until a place is found where it can be fixed
 - Total time will be $O(\lg n)$

```
rbInsert(x)
  treeInsert(x);
 x->color = RED;
 // Move violation of #3 up tree, maintaining #4 as invariant:
 while (x!=root && x->p->color == RED)
 if (x->p == x->p->p->left)
     y = x-p-p-right;
     if (y->color == RED)
         x->p->color = BLACK;
         y->color = BLACK;
         x->p->p->color = RED;
         x = x->p->p;
     else // y->color == BLACK
         if (x == x-p-right)
             x = x-p;
                                      Case 2
             leftRotate(x);
         x->p->color = BLACK;
         x-p-p-color = RED;
         rightRotate(x->p->p);
  else
         // x->p == x->p->p->right
     (same as above, but with
       "right" & "left" exchanged)
```

```
rbInsert(x)
  treeInsert(x);
 x->color = RED;
  // Move violation of #3 up tree, maintaining #4 as invariant:
  while (x!=root && x->p->color == RED)
 if (x->p == x->p->p->left)
     y = x-p-p-right;
     if (y->color == RED)
         x->p->color = BLACK;
         y->color = BLACK;
                                      Case 1: uncle is RED
         x->p->p->color = RED;
         x = x->p->p;
     else // y->color == BLACK
         if (x == x->p->right)
             x = x-p;
             leftRotate(x);
         x->p->color = BLACK;
         x-p-p-color = RED;
         rightRotate(x->p->p);
         // x->p == x->p->p->right
  else
      (same as above, but with
       "right" & "left" exchanged)
```

RB Insert: Case 1

- if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;
- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

Change colors of some nodes, preserving #4: all downward paths have equal b.h.

The while loop now continues with x's grandparent as the new x

RB Insert: Case 1

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

Same action whether x is a left or a right child

RB Insert: Case 2

- if (x == x->p->right)
 x = x->p;
 leftRotate(x);
 // continue with case 3 code
- Case 2:
 - "Uncle" is black
 - Node *x* is a right child
- Transform to case 3 via a left-rotation

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 4: all downward paths contain same number of black nodes

RB Insert: Case 3

x->p->color = BLACK; x->p->p->color = RED; rightRotate(x->p->p);

- Case 3:
 - "Uncle" is black
 - Node *x* is a left child
- Change colors; rotate right

Perform some color changes and do a right rotation
Again, preserves property 4: all downward paths contain same number of black nodes

RB Insert: Cases 4-6

- Cases 1-3 hold if x's parent is a left child
- If x's parent is a right child, cases 4-6 are symmetric (swap left for right)

Red-Black Trees: Deletion

- And you thought insertion was tricky...
- We will not cover RB delete in class
 - You should read section 14.4 on your own
 - Read for the overall picture, not the details

Red-Black Trees

- Red-black trees do what they do very well
- What do you think is the worst thing about redblack trees?
- A: coding them up

Skip Lists

Skip Lists

- A relatively recent data structure
 - "A probabilistic alternative to balanced trees"
 - A randomized algorithm with benefits of r-b trees
 - O(lg n) expected time for Search, Insert
 - o O(1) time for Min, Max, Succ, Pred
 - *Much* easier to code than r-b trees
 - Fast!

The End