Insertion of Zinc into the Cyclophosphazene Skeleton: Synthesis and Structure of Six-Membered-Ring Complexes of Zinc

Sushil K. Pandey, Alexander Steiner, Herbert W. Roesky,* and Dietmar Stalke

Institute of Inorganic Chemistry, University of Goettingen, D-37077 Goettingen, Germany

Received June 25, 1993*

Cyclozincaphosphazenes have been synthesized by the reaction of the bis-silylated ligand HN[P(NMe₂)₂NSiMe₃]₂ (1) with ZnR_2 (2) (R = N(SiMe₃)₂, Me, Et). These complexes have been characterized by IR, NMR, and mass spectroscopy and by X-ray crystal structural analysis. X-ray analysis of [N{P(NMe₂)₂NSiMe₃}₂ZnN(SiMe₃)₂] (3) revealed that it crystallizes as a monomer in the solid state.

Introduction

In the last two decades transition metal complexes of acyclic phosphazenes have been investigated. 1-5 However, in recent years the syntheses of cyclometallaphosphazenes having transition metals as building blocks in ring skeletons have created an interesting new field of organometallic chemistry. 6-8 The studies on cyclic zinc amides have been quite limited.9 In contrast, the syntheses of Zn-O and Zn-S heterocycles are known. 10 Recently, the synthesis and structure of a dimeric species, cyclozincdisilatriazene, were reported by our laboratory.¹¹ So, in view of these findings, it was considered worthwhile to synthesize the cyclophosphazene derivatives of zinc. Herein we report the synthesis of cyclophosphazenes containing zinc in the phosphazene ring and the X-ray structure of [N{P(NMe₂)₂NSiMe₃}₂ZnN- $(SiMe_3)_2$ (3).

Results and Discussion

York, 1972.

The acyclic bis-silvlated phosphazene moiety HN[P(NMe₂)₂-NSiMe₃]₂ (1) reacts with Zn[N(SiMe₃)₂]₂, ZnMe₂, and ZnEt₂ in 1:1 molar ratios resulting in the formation of cyclic derivatives 3-5, respectively. The pathways for the reaction can be depicted as follows:

$$\begin{split} HN[P(NMe_{2})_{2}NSiMe_{3}]_{2} + & & & \\ I & & & & \\ ZnR_{2} & \stackrel{\textit{n-hexane}}{\longrightarrow} & [N\{P(NMe_{2})_{2}NSiMe_{3}\}_{2}ZnR] \\ & & & & \\ 2 & & & \\ R = & & & \\ N(SiMe_{3})_{2}, & & & \\ & & & \\ Me, & Et & & \\ \end{split}$$

It is found that monocyclic complexes are the final products,

- Abstract published in Advance ACS Abstracts, October 15, 1993. (1) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic Press: New
- (2) Greigger, P. P.; Allcock; H. R. J. Am. Chem. Soc. 1979, 101, 2492.
- (3) Allcock, H. R.; Greigger, P. P.; Wagner, L. J; Bernheim, M. Y. Inorg. Chem. 1981, 20, 716.
- (4) Allcock, H. R.; Wagner, L. J.; Levin, M. L. J. Am. Chem. Soc. 1983,
- (5) Allcock, H. R.; Riding, G. H.; Whittle, R. R. J. Am. Chem. Soc. 1984,
- (6) Roesky, H. W.; Katti, K. V.; Seseke, U.; Witt, M.; Egert, E.; Herbst, R.; Sheldrick, G. M. Angew. Chem. 1986, 98, 447; Angew. Chem., Int. Ed. Engl. 1986, 25, 477.
 (7) Roesky, H. W. Synlett 1990, 651.
- (8) Hasselbring, R.; Roesky, H. W.; Noltemeyer, M. Angew. Chem. 1992, 104, 613; Angew. Chem., Int. Ed. 1992, 31, 601.
 (9) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. Metal
- and Metalloid Amides; Ellis Harwood Limited: Chichester, U.K., 1980;
- (10) Power, P. P. J. Organomet. Chem. 1990, 400, 49.
 (11) Anil, J. S.; Schmidt, H.-G.; Noltemeyer, M.; Roesky, H. W. Organometallics 1992, 11, 462.

Table I. Crystallographic Data for 3

chem formula	C ₂₀ H ₆₀ N ₈ P ₂ Si ₄ Zn
space group	C2/c
fw	652.43
T(K)	153(1)
a (pm)	2023.3(4)
b (pm)	1173.2(3)
c (pm)	1695.3(4)
β (deg)	117.56(1)
$V(nm^3)$	3.568(1)
\boldsymbol{Z}	4
crystal size	$0.5 \times 0.3 \times 0.3$
$\rho_{\rm calc}$ (g cm ⁻³)	1.215
$\mu(Mo K\alpha) (cm^{-1})$	0.936
F(000)	1408
2θ range (deg)	8-55
no. of reflns measd	4295
no. of unique reflns	4119
no. of refins used	4118
R_{w2} (all data) ^a	0.109
$R_1(\hat{F} > 4\sigma(\hat{F}))^a$	0.041
g 1	0.0685
g ₂	2.556
no. of refined params	170
ρ (e nm ⁻³)	896

 $^{a}R_{1} = \sum |F_{0} - F_{c}|/\sum F_{0}$ and $R_{w2} = [\sum w(F_{0}^{2} - F_{c}^{2})^{2}/\sum wF_{0}^{4}]^{1/2}$.

even when the reactions are carried out in a 2:1 molar ratios and forcing conditions such as higher boiling solvents and long refluxing times are used. The versatility of the bonding mode of the ligand is noteworthy here; in complexes 3-5, bidentate modes of attachment are observed, while in case of an alkaline earth metal, e.g. Ba, the mode of bonding is tridentate.¹²

The electron impact mass spectra indicate the monomeric species in the gas phase; for 3 the ion at m/z 489 (62%, M - N $(SiMe_3)_2$) and for 5 the peak at m/z 490 (100%, M - Me) are found. The characteristic absorptions for P-N bonds were found between 1135 and 1289 cm⁻¹ in the IR spectra of these compounds, indicating the formation of a phosphazene ring. 1H NMR gives the characteristic resonance pattern, the signal for the methyl protons of NMe₂ appearing as a doublet (δ 2.6 ppm with J = 10.5Hz), which is in accordance with the symmetry of the ring system. In the ³¹P NMR spectra, one singlet is observed in each case with a downfield chemical shift, showing the equivalence of phosphorus nuclei in the molecule.

X-ray Structure of 3

Important bond lengths and angles are listed in Table III. Compound 3 crystallizes as a monomer in the solid state (Figure

Pandey, S. K.; Steiner, A.; Roesky, H. W.; Stalke, D. Angew. Chem. 1993, 105, 625; Angew. Chem., Int. Ed. Engl. 1993, 32, 596.

Figure 1. Molecular structure of [N{P(NMe₂)₂NSiMe₃}₂ZnN(SiMe₃)₂] (3), giving the numbering scheme used in Tables II and III.

Table II. Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (pm² × 10⁻¹) for 3^{a}

	x	y	z	U(eq)
Zn(1)	5000	1908.0(3)	2500	16.8(2)
P(1)	4226.3(3)	-333.1(5)	1820.7(3)	17.3(2)
Si(1)	3244.7(3)	1529.1(6)	1880.2(4)	23.3(3)
Si(2)	4957.2(4)	4201.9(6)	1578.7(5)	32.2(4)
N(1)	5000	-859(2)	2500	22.1(12)
N(2)	4083.6(9)	961(2)	2012.9(11)	18.2(8)
N(3)	4162.4(10)	-397(2)	813.0(12)	24.1(9)
N(4)	3566.8(10)	-1178(2)	1812.4(13)	26.6(9)
N(5)	5000	3545(2)	2500	24.6(14)
C(1)	4444(2)	-1381(2)	533(2)	35.4(14)
C(2)	3642(2)	297(2)	75(2)	34.1(14)
C(3)	3088(2)	-1907(2)	1084(2)	39.8(13)
C(4)	3593(2)	-1480(3)	2659(2)	39.0(14)
C(5)	2389.5(13)	702(3)	1158(2)	41.2(11)
C(6)	3278(2)	1664(3)	2995(2)	42.5(15)
C(7)	3092.7(14)	2960(2)	1350(2)	32.2(12)
C(8)	4287(2)	5420(3)	1177(2)	53(2)
C(9)	5865(2)	4826(3)	1744(2)	56(2)
C(10)	4661(2)	3136(3)	653(2)	40(2)

^a U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table III. Selected Bond Lengths (pm) and Angles (deg) for 3

Zn(1)-N(5)	192.1(3)	Zn(1)-N(2)	198.4(2)
P(1)-N(1)	157.78(13)	P(1)-N(2)	160.7(2)
P(1)-N(3)	165.4(2)	P(1)-N(4)	165.7(2)
Si(1)-N(2)	173.8(2)	Si(2)-N(5)	170.75(15)
N(2)-Zn(1)-N(2a)	111.91(10)	N(5)-Zn(1)-N(2)	124.04(5)
N(1)-P(1)-N(2)	115.62(11)	N(1)-P(1)-N(3)	108.25(8)
N(2)-P(1)-N(3)	108.47(10)	N(1)-P(1)-N(4)	107.16(11)
N(2)-P(1)-N(4)	110.34(10)	N(3)-P(1)-N(4)	106.63(10)
P(1)-N(1)-P(1a)	133.9(2)	P(1)-N(2)-Si(1)	126.32(11)
P(1)-N(2)-Zn(1)	113.10(9)	Si(1)-N(2)-Zn(1)	120.51(10)
Si(2)-N(5)-Si(2a)	126.4(2)	Si(2)-N(5)-Zn(1)	116.82(8)

1) with a crystallographic 2-fold axis through N(1), Zn(1), and N(5). A side view perpendicular to this axis (Figure 2) shows that the six-membered cyclozincadiphosphatriazene ring system is slightly twisted. The coordination at the zinc atom is trigonal planar, with a shorter Zn-N distance to N(5) [192.1(3) pm] and two equal distances to the phosphazene nitrogen atoms [N(2)], N(2a): 198.4(2) pm]. For comparison the Zn-N distance in $O{O[Me_2SiN(t-Bu)]_2Zn}_2$ is 184.3 pm (mean).¹³

Experimental Section

All experiments were carried out strictly under a moisture- and oxygen-

Figure 2. Side view showing the slightly twisted phosphazene ring system in 3.

free nitrogen atmosphere or in vacuo by using Schlenk methods. All solvents were dried and distilled prior to use and stored under dry nitrogen. ZnCl2, ZnMe2, and ZnEt2 were obtained from Strem Chemicals and Schering AG. Zn[N(SiMe₃)₂]₂ was prepared by the method described in the literature.14

¹H, ²⁹Si, and ³¹P NMR spectra were recorded by means of a Bruker AM 250 instrument using TMS (¹H, ²⁹Si) and 85% H₃PO₄ (³¹P) as external standards. Infrared spectra were recorded on a Bio-Rad FTS 7 spectrophotometer. Mass spectrometric analyses were performed with a Finnigan MAT 8230 instrument.

Preparations. [N{P(NMe₂)₂NSiMe₃}₂ZnN(SiMe₃)₂] (3). A solution of 1 (2.0 g, 4.7 mmol) in n-hexane (20 mL) was added dropwise to an *n*-hexane solution of $Zn[N(SiMe_3)_2]_2$ (1.8 g, 4.7 mmol), and the contents were heated just below reflux and stirred overnight. The evaporation of all volatiles under reduced pressure resulted in a spectroscopically pure white solid in quantitative yield. Mp: 115-120 °C. MS (EI, m/z): 489 $(M - N(SiMe_3)_2, 62\%)$. ¹H NMR (CDCl₃): δ 0.10 (s, 18H, SiMe₃), 0.20 (s, 18H, NSiMe₃), 2.50 ppm (d, 24H, NMe₂, J = 10.5 Hz). ³¹P NMR (CDCl₃): δ 20.8 ppm (s). ²⁹Si NMR (CDCl₃ + toluene): δ -4.8, 2.3 ppm (s). IR (Nujol): 1287 b, 1244 s, 1196 s, 1145 m, 1104 s, 1064 m, 981 vs, 839 vs, 773 m, 724 s, 675 m, 627 s, 536 vs, 506 s cm⁻¹.

 $[N{P(NMe_2)_2NSiMe_3}]_2ZnMe]$ (4). A 2.0-g (4.7-mmol) sample of 1 was dissolved in n-hexane (20 mL). This solution was cooled by liquid air (-193 °C), and ZnMe₂ (0.45 g, 4.7 mmol) was added by condensation through a vacuum line. Finally the flask was allowed to warm to room temperature, and the mixture was stirred for about 18 h. All volatiles were evaporated under reduced pressure, giving a white solid product in quantitative yield. Mp: 103-105 °C. MS (EI, m/z): 490 (M - Me, 100%). ¹H NMR (CDCl₃): δ 0.1 (s, 18 H, SiMe₃), 0.3 (s, 3H, Me), 2.6 ppm (d, 24H, NMe₂, J = 10.5 Hz). ²⁹Si NMR (CDCl₃ + toluene): δ –4.5 ppm (s). ³¹P NMR (CDCl₃): δ 22.3 ppm (s). IR (Nujol): 1287 m, 1245 s, 1170 s, 1135 m, 1101 m, 981 vs, 852 s, 835 s, 780 m, 726 s, 679 m, 637 m, 536 s, 505 m cm⁻¹. Anal. Calcd for C₁₅H₄₅N₇P₂Si₂Zn (M_r 507.01): C, 35.5; H, 8.9; N, 19.3. Found: C, 34.8; H, 8.6; N, 18.5.

 $[N{P(NMe_2)_2NSiMe_3}_2ZnEt]$ (5). A 2.0-g (4.7-mmol) sample of 1 and 0.58 g of ZnEt₂ (4.7 mmol) were used for the reaction. The experimental details were the same as for compound 4. 5 was obtained as a white semisolid. MS (EI, m/z): 517 (M – 2H, 4%), 427 (M – ZnEt, 20%), 75 (-PNMe₂, 100%). ¹H NMR (CDCl₃): δ 0.05 (s, 18H, SiMe₃), 0.20 (m, 3H, CH₃), 1.20 (t, 2H, CH₂), 2.60 ppm (d, 24H, NMe₂, J =10.5 Hz). ^{31}P NMR (CDCl₃): δ 22.0 ppm (s). IR (Nujol): 1289 m, 1245 vs, 1180 s, 1135 m, 1097 m, 981 vs, 851 m, 835 s, 781 m, 727 s, 679 m, 628 m, 537 s, 505 s cm^{-1} .

X-ray Measurements of 3. The intensities for the structure were collected on a Stoe-Siemens AED instrument with graphite-monochromated Mo K α radiation ($\lambda = 71.073$ pm). Data were collected from an oil-coated rapidly-cooled crystal at -120 °C with a profile-fitted method.15 The structure was solved by Direct Methods 16 and refined by full-matrix least-squares procedures against $F^{2,17}$ All non-hydrogen atoms were refined anisotropically, and the hydrogen positions were set geometrically.

⁽¹³⁾ Elias, A. J.; Schmidt, H.-G.; Noltemeyer, M.; Roesky, H. W. Eur. J. Solid State Inorg. Chem. 1992, 29, 23-42.

Haaland, A.; Hedberg, K.; Power, P. P. Inorg. Chem. 1984, 23, 1972.

Clegg, W. Acta Crystallogr. 1981, A37, 22. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467. Sheldrick, G. M. SHELXL-92 program for crystal-structure refinement. University of Göttingen, 1992.

A weighting scheme of the form $w^{-1} = \sigma(F_0^2) + (g_1P)^2 + g_2P$ with $P = (F_0^2 + 2F_0^2)/3$ was introduced.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. S. K. P. is grateful to the Alexander von Humboldt

Foundation for a postdoctoral fellowship.

Supplementary Material Available: Tables of crystallographic parameters, hydrogen atomic coordinates and isotropic thermal parameters, anisotropic thermal parameters, and bond distances and angles for 3 (4 pages). Ordering information is given on any current masthead page.