

MAP3121 Métodos Numéricos e Aplicações

Autovalores e Autovetores de Matrizes Reais Simétricas - O Algoritmo QR

EP 2

Claudia Baz Alvarez 11261573 Gustavo de Mattos Ivo Junqueira 11259402

Índice

Resumo Introdução	3
	3
Tarefas	3
Item 1	3
Introdução	3
Algoritmo QR	3
Transformação de Householder	4
Resultados	4
Item 2	8
Introdução	8
Resultados	9
Conclusão	10

Resumo

O objetivo deste relatório é tanto apresentar os resultados obtidos do segundo exercício programa da disciplina MAP3121-2021 Métodos Numéricos e Aplicações como relatar a abordagem de cada tarefa. Assim, são vistos os conceitos de Método QR iterativo para a resolução de sistemas lineares e a Transformação de Householder para obter matrizes tridiagonais. Além disso, são simulados os deslocamentos de nós de treliças por meio da programação desenvolvida em Python 3.

Introdução

No exercício anterior foi utilizado o método QR para calcular os autovalores e autovetores de matrizes simétricas tridiagonais. Nesse exercício, serão calculados os autovetores e autovalores de matrizes simétricas quaisquer, que vão ser transformadas em matrizes tridiagonais por meio da Transformação de Householder, e em seguida utilizado o método QR.

Tarefas

Item 1

Introdução

Nesse item, pede-se para encontrar os autovalores e autovetores das matrizes fornecidas nas questões (a) e (b).

Portanto, são explicadas as ferramentas utilizadas para tal análise:

Algoritmo QR

Já utilizado no exercício anterior, o algoritmo QR é usado na álgebra linear para o cálculo de autovalores e autovetores. Assim, o resultado dele são duas matrizes: uma ortogonal Q e outra matriz triangular superior R. Sobre certas condições, o método QR converge a uma matriz diagonal Ak que contém os autovalores de A.

Transformação de Householder

A transformação de Householder tridiagonaliza uma matriz simétrica qualquer, deixando-a pronta para o uso do método QR. Como a transformação linear H_{ω} é linear, usa-se:

$$\begin{split} H_w{}^T &= (I - \frac{2ww^T}{w \cdot w})^T = I - \frac{2(ww^T)^T}{w \cdot w} = H_w \text{ e} \\ H_w H_w &= (I - \frac{2ww^T}{w \cdot w})(I - \frac{2ww^T}{w \cdot w}) = I - \frac{4ww^T}{w \cdot w} + \frac{4w(w^Tw)w^T}{(w \cdot w)^2} = I \ . \end{split}$$

Resultados

Nesse item foi pedido para calcular os autovalores e autovetores das matrizes dos itens

a)
$$A = \begin{pmatrix} 2 & 4 & 1 & 1 \\ 4 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 \end{pmatrix}$$

Figura 1 - Matriz do item (a)

Na Figura 2 é mostrado os resultados, e nas Figuras 3 e 4 mostram a comprovação de que $A \cdot v = \lambda \cdot v$ e que v é uma matriz ortogonal respectivamente.

```
ITEM A - Matriz 4x4
Matriz tridiagonal - householder
                                 ]
         -4.24264 -0.
[ 2.
                                 1
[-4.24264 3.
                1.41421 0.
          1.41421 2.
-0.
                         -0.
                                 11
-0.
          0.
                  -0.
                          -1.
Autovalores E Autovetores calculados
Autovetor 1 : [ 0.
                             -0.70711 0.70711]
                     -0.
Autovalor 2 : 1.9999999999999576
Autovetor 2 : [-0.31623 -0.31623 0.63246 0.63246]
Autovalor 3 : -1.9999999999999583
Autovetor 3 : [-0.70711 0.70711 -0.
                                             1
                                     -0.
Autovalor 4: 7.0000000000000003
Autovetor 4 : [0.63246 0.63246 0.31623 0.31623]
```

Figura 2 - Resultados do item 1.a)

```
Erro máximo entre A.v e lambda.v = 3.496366104416282e-07
```

Figura 3 - Subtração de A.v e lambda.v, que tende a zero, logo os termos são iguais.

Sabe-se que dada uma matriz ortogonal M, $M^T \cdot M = I$, portanto, se V é ortogonal, a subtração $I = V^T \cdot V$ tem que tender a zero, o que é mostrado na Figura 4.

$$I - V_T.V = 1.7113131992329274e-15$$

Figura 4 - Subtração da matriz identidade pela multiplicação da transposta de V com ela mesma.

$$A = \begin{pmatrix} n & n-1 & n-2 & \cdots & 2 & 1 \\ n-1 & n-1 & n-2 & \cdots & 2 & 1 \\ n-2 & n-2 & n-2 & \cdots & 2 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & 2 & \cdots & 2 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

Figura 5 - Matriz do item (b)

Para a resolução desse item, foi utilizado uma matriz 20x20, e as Figuras 6, 7 e 8 mostram seu resultado.

```
Autovalores E Autovetores calculados
Autovalor 1: 0.25596443304227695
-0.02391 0.11676 -0.19873 0.26217 -0.30118 0.31211 -0.29396 0.2484 -0.1797 0.09424]
Autovalor 2: 0.2514735819058093
Autovetor 2 : [ 0.02391 -0.07117 0.11676 -0.15961 0.19872 -0.23318 0.26217 -0.28502 0.30118 -0.31029
 0.31212 -0.30664 0.29397 -0.2744 0.24841 -0.2166 0.1797 -0.1386 0.09424 -0.04768]
Autovalor 3: 0.26369005499760395
Autovetor 3 : [-0.07117 0.19873 -0.28502 0.31212 -0.2744 0.1797 -0.04768 -0.09424 0.21659 -0.29396
 Autovalor 4: 0.2750381894869601
Autovetor 4 : [ 0.09424 -0.24841  0.31212 -0.26217  0.11676  0.07117 -0.23319  0.31029 -0.2744
                                                                                0.13859
 0.04768 -0.21659  0.30663 -0.28502  0.15961  0.02391 -0.19873  0.30118 -0.29396  0.1797 ]
Autovalor 5: 0.290609546465799
Autovetor 5 : [ 0.11676 -0.28502 0.29396 -0.13859 -0.09424 0.2744 -0.30118 0.15961 0.07117 -0.26218
 0.30663 -0.1797 -0.04768 0.24841 -0.31029 0.19873 0.02391 -0.23318 0.31212 -0.21659]
Autovalor 6: 0.3112888120094566
Autovetor 6: [-0.13859 0.30663 -0.23318 -0.02391 0.26217 -0.29396 0.09424 0.1797 -0.31212 0.19873
 0.07117 -0.28502 0.2744 -0.04768 -0.21659 0.31029 -0.15961 -0.11676 0.30118 -0.24841]
```

```
Autovalor 7 : 0.33835913529466677
Autovetor 7 : [-0.15962    0.31212 -0.13859 -0.1797    0.31029 -0.11676 -0.19873    0.30663 -0.09424 -0.21659
 0.30118 -0.07117 -0.23319 0.29396 -0.04768 -0.24841 0.28502 -0.02391 -0.26217 0.2744 ]
Autovalor 8: 0.3736873637907064
Autovetor 8 : [ 0.1797  -0.30118  0.02391  0.28502 -0.21659 -0.13859  0.31029 -0.07117 -0.26217  0.24841
 0.09424 -0.31212  0.11676  0.23318 -0.2744 -0.04768  0.30663 -0.15962 -0.19873  0.29396]
Autovalor 9 : 0.4200300188320982
Autovetor 9 : [-0.19873 0.2744 0.09424 -0.31029 0.02391 0.30118 -0.13859 -0.24841 0.23318 0.15962
-0.29396 -0.04768 0.31212 -0.07117 -0.28502 0.1797 0.21659 -0.26217 -0.11676 0.30663]
Autovalor 10 : 0.48155512239002185
Autovetor 10 : [ 0.21659 -0.23318 -0.19873  0.24841  0.1797 -0.26217 -0.15962  0.2744  0.13859 -0.2850
2 -0.11676 0.29396 0.09424 -0.30118 -0.07117 0.30663 0.04768 -0.31029 -0.02391 0.31212]
Autovalor 11: 0.5647697268347236
Autovetor 11 : [-0.23318 0.1797 0.2744 -0.11676 -0.30118 0.04768 0.31212 0.02391 -0.30663 -0.0942
4 0.28502 0.15962 -0.24841 -0.21659 0.19873 0.26217 -0.13859 -0.29396 0.07117 0.31029]
Autovalor 12: 0.6802549888122433
Autovetor 12 : [ 0.24841 -0.11676 -0.31029 -0.04768 0.28502 0.19873 -0.1797 -0.29396 0.02391 0.3066
3 0.13859 -0.23318 -0.26217 0.09424 0.31212 0.07117 -0.2744 -0.21659 0.15962 0.30118]
Autovalor 13: 0.8461219550213224
Autovetor 13 : [-0.26217    0.04768    0.30118    0.19873    -0.13859    -0.31212    -0.11676    0.21659    0.29396    0.0239
1 -0.2744 -0.24841 0.07117 0.30663 0.1797 -0.15962 -0.31029 -0.09424 0.23318 0.28502]
Autovalor 14 : 1.095452350071382
Autovetor 14 : [-0.2744 -0.02391 0.24841 0.29396 0.07117 -0.21659 -0.30663 -0.11676 0.1797 0.3121
2 0.15962 -0.13859 -0.31029 -0.19873 0.09424 0.30118 0.23318 -0.04768 -0.28502 -0.26217]
Autovalor 15 : 1.493989829058738
Autovetor 15 : [ 0.28502  0.09424 -0.15962 -0.30663 -0.24841 -0.02391  0.21659  0.31212  0.19873 -0.0476
8 -0.26217 -0.30118 -0.13859 0.11676 0.29396 0.2744 0.07117 -0.1797 -0.31029 -0.23318]
Autovalor 16 : 2.188080195110223
Autovetor 16 : [-0.29396 -0.15962 0.04768 0.23318 0.31212 0.24841 0.07117 -0.13859 -0.28502 -0.3011
Autovalor 17: 3.5604828076955597
Autovetor 17 : [-0.30118 -0.21659 -0.07117 0.09424 0.23318 0.30663 0.29396 0.19873 0.04768 -0.1167
6 -0.24841 -0.31029 -0.28502 -0.1797 -0.02391 0.13859 0.26217 0.31212 0.2744 0.15962]
Autovalor 18 : 6.896784892743414
Autovetor 18 : [ 0.30663  0.26217  0.1797  0.07117 -0.04768 -0.15962 -0.24841 -0.30118 -0.31029 -0.2744
 -0.19873 -0.09424 0.02391 0.13859 0.23318 0.29396 0.31212 0.28502 0.21659 0.11676]
Autovalor 19: 19.008099491009162
Autovetor 19 : [ 0.31029  0.29396  0.26217  0.21659  0.15962  0.09424  0.02391 -0.04768 -0.11676 -0.1797
 -0.23318 -0.2744 -0.30118 -0.31212 -0.30663 -0.28502 -0.24841 -0.19873 -0.13859 -0.07117]
Autovalor 20 : 170.4042675054278
Autovetor 20 : [0.31212 0.31029 0.30663 0.30118 0.29396 0.28502 0.2744 0.26217 0.24841 0.23318 0.21659
0.19873 0.1797 0.15962 0.13859 0.11676 0.09424 0.07117 0.04768 0.02391]
```

Figuras 6, 7 e 8 - Resultado do item (b).

Além disso, foi feita a comparação entre os autovalores fornecidos e os encontrados por meio do método QR na Figura 9.

```
Autovalores analiticos
[170.40427 19.0081
                     6.89678
                             3.56048 2.18808
                                                 1.49399
                                                          1.09545
                                                                   0.84612
                                                                             0.68025
                                                                                      0.56477
                                                                          0.25596
0.48156
        0.42003 0.37369 0.33836 0.31129 0.29061 0.27504
                                                               0.26369
                                                                                   0.25147]
Autovalores calculados com o algoritmo QR
[170.40427 19.0081
                     6.89678
                              3.56048
                                       2.18808
                                                 1.49399
                                                          1.09545
                                                                   0.84612
                                                                             0.68025
                                                                                      0.56477
0.48156
       0.42003
                 0.37369
                           0.33836
                                    0.31129
                                              0.29061
                                                       0.27504
                                                               0.26369
                                                                          0.25147
                                                                                   0.25596]
```

Figura 9 - Comparação entre os autovalores analíticos e os calculados.

Também foram calculados os erros entre Av e λv e entre I e $Vt \cdot V$:

Erro máximo entre A.v e lambda.v = 6.665582960585503e-08

I - V_T.V = 4.392291651916791e-13

Figura 10 - Erros de cálculo dos autovetores e autovalores

Item 2

Introdução

Nesse item, pede-se para utilizar as ferramentas construídas no item anterior para calcular as menores frequências e seus modos de vibração das treliças mostradas na Figura 10.

Figura 11 - Treliças utilizadas no item 2.

Dados os valores de densidade, comprimento e elasticidade das treliças foram calculadas as matrizes K de rigidez e M de massas (concentradas nos nós) para assim poder calcular o deslocamento de cada nó da seguinte forma:

$$K'y = w^2 y$$

Sendo *w* as frequências de vibração de cada nó e tendo:

$$K' = M^{-1/2} K M^{-1/2}$$

Foi montada a matriz K' com o vetor de massas M e a matriz K. Assim, aplicando o método de householder foi obtida a matriz tridiagonal equivalente de K' e, posteriormente, com o QR foram obtidos os autovalores e os autovetores dela. Por equivalência tem-se:

 $autovalores^{1/2} = frequências de vibração$ $M^{-1/2}autovetores = modos de vibração$

Resultados

Assim, foram extraídas as 5 menores frequências de vibração e seus respectivos modos de vibração:

```
MENORES FREQUÊNCIAS DE VIBRAÇÃO
Frequência 1 : 24.592547769722938
Frequência 2 : 92.0124446460414
Frequência 3 : 94.70336537381642
Frequência 4 : 142.80969710649006
Frequência 5 : 150.82212651081582
```

Figura 12 - Menores frequências de vibração das treliças

```
MENORES FREQUÊNCIAS DE VIBRAÇÃO
Frequência 1: 24.592547769722938
Modo de Vibração 1 :
-0.00099837 -0.00181731 -0.00004182 0.0002961 -0.00004182 -0.0002961 ]]
Frequência 2: 92.0124446460414
Modo de Vibração 2 :
[[-0.00000626 -0.00218617 0.00000626 -0.00218617 0.00047293 -0.00298518
  0.00017608 -0.00205077 -0.00017608 -0.00205077 -0.00047293 -0.00298518
 -0.00000417 -0.00308711 -0.00000403 -0.00174399 0.00000403 -0.00174399
  0.00000417 -0.00308711 0.00004212 -0.00109725 -0.00004212 -0.00109725]]
Frequência 3: 94.70336537381642
Modo de Vibração 3 :
[ 0.0007789 -0.00080836 0.0007789 0.00080836 -0.00064051 -0.00283799
 -0.00087459 -0.00071358 -0.00087459 0.00071358 -0.00064051 0.00283799
 -0.00248421 -0.00294086 -0.00239731 -0.00031093 -0.00239731 0.00031093
 -0.00248421 0.00294086 -0.00115663 0.00005634 -0.00115663 -0.00005634]]
Frequência 4 : 142.80969710649006
Modo de Vibração 4 :
[ 0.00386879 -0.0019304  0.00386879  0.0019304 -0.00148814  0.00268095
 -0.00069039 -0.00114298 -0.00069039 0.00114298 -0.00148814 -0.00268095
 -0.00055654 0.00291262 -0.00051228 0.00002022 -0.00051228 -0.00002022
 -0.00055654 -0.00291262 -0.00023113 0.00004475 -0.00023113 -0.00004475]]
Frequência 5 : 150.82212651081582
Modo de Vibração 5 :
-0.00043433 -0.00179742 0.00043433 -0.00179742 0.00150512 0.0033877
  0.00068927 0.00371749 0.00062813 -0.00112948 -0.00062813 -0.00112948
 -0.00067874]]
```

Figura 13 - Modos de vibração das 5 menores frequências

Conclusão

Por fim, nota-se que o programa foi satisfatório, tendo em vista que no item 1 os autovalores e autovetores foram encontrados, além de provar que $A \cdot v = \lambda \cdot v$, tendo em vista que o erro da subtração tende a zero e que v é ortogonal, pois a subtração de $V^T \cdot V = I$ também tende a zero. No item 2 os menores valores de frequência de vibração também foram encontrados, além de seus modos naturais.