▼ US accident Factors

About This Project

The code you've provided seems to be a data preprocessing and exploration pipeline for analyzing US accident data. Here's a breakdown of what each section of the code does:

1. Data Loading and Preprocessing:

- Loads the dataset and limits it to the first 400,000 rows.
- Handles missing values by dropping rows with missing values in certain columns.
- Drops unnecessary columns ('End_Lat' and 'End_Lng').

2. Data Exploration and Analysis:

- o Performs exploratory data analysis to understand the data.
- · Visualizes correlations among numeric columns using a heatmap.
- o Focuses on data related to California ('CA').
- Removes rows with missing values in specific columns related to weather conditions.

3. Data Visualization:

- o Creates visualizations to showcase insights about the data.
- o Plots the top 10 cities by the number of accidents.
- Visualizes the relationship between 'Start_Lat' and 'Severity'.

4. Data Cleanup and Feature Engineering:

- o Drops unnecessary columns ('ID', 'Description', 'Street', 'City', 'Zipcode', 'Country').
- Defines functions to extract years and months from date columns.
- o Defines a function for one-hot encoding categorical columns.
- Applies one-hot encoding to selected categorical columns ('Side', 'County', 'State', 'Timezone', 'Airport_Code').
- Applies binary encoding to 'Source' and other columns related to twilight conditions.

5. Data Splitting:

- o Prepares the target variable 'Severity' (y) and the features (x) for training.
- o Adjusts the target variable values by subtracting 1 to make them start from 0.
- $\circ\;$ Splits the data into training and testing sets.

The code provided seems to handle various data preprocessing steps, exploratory data analysis, visualization, and feature engineering. However, it is important to note that the code does not include the model training and evaluation part, which typically involves using machine learning algorithms to build a predictive model and evaluating its performance.

If you want to proceed with model training and evaluation, you will need to add the relevant code for selecting a machine learning algorithm, training the model, making predictions, and evaluating its performance using appropriate metrics.

Getting Started import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import tensorflow as tf data = pd.read_csv('/kaggle/input/us-accidents/US_Accidents_March23.csv', nrows=400000)

	ID	Source	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	End_Lat	End_Lng	Dista
0	A-1	Source2	3	2016-02-08 05:46:00	2016-02- 08 11:00:00	39.865147	-84.058723	NaN	NaN	
1	A-2	Source2	2	2016-02-08 06:07:59	2016-02- 08 06:37:59	39.928059	-82.831184	NaN	NaN	
2	A-3	Source2	2	2016-02-08 06:49:27	2016-02- 08 07:19:27	39.063148	-84.032608	NaN	NaN	

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400000 entries, 0 to 399999
Data columns (total 46 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype
0	ID	400000 non-null	object
1	Source	400000 non-null	object
2	Severity	400000 non-null	int64
3	Start_Time	400000 non-null	object
4	End_Time	400000 non-null	object
5	Start_Lat	400000 non-null	float64
6	Start_Lng	400000 non-null	float64
7	End_Lat	0 non-null	float64
8	End_Lng	0 non-null	float64
9	Distance(mi)	400000 non-null	float64
10	Description	400000 non-null	object
11	Street	400000 non-null	object
12	City	399981 non-null	object
13	County	400000 non-null	object
14	State	400000 non-null	object
15	Zipcode	399957 non-null	object
16	Country	400000 non-null	object
17	Timezone	399957 non-null	object
18	Airport_Code	399956 non-null	object
19	Weather_Timestamp	396791 non-null	object
20	Temperature(F)	394085 non-null	float64
21	Wind_Chill(F)	59095 non-null	float64
22	Humidity(%)	393491 non-null	float64
23	Pressure(in)	395353 non-null	float64
24	Visibility(mi)	391221 non-null	float64
25	Wind_Direction	396770 non-null	object
26	Wind_Speed(mph)	325829 non-null	float64
27	Precipitation(in)	42045 non-null	float64
28	Weather_Condition	391792 non-null	object
29	Amenity	400000 non-null	bool
30	Bump	400000 non-null	bool
31	Crossing	400000 non-null	bool
32	Give_Way	400000 non-null	bool
33	Junction	400000 non-null	bool

```
34 No Exit
                          400000 non-null bool
35 Railway
                          400000 non-null
                                          bool
36 Roundabout
                          400000 non-null bool
37 Station
                          400000 non-null
                                          bool
38 Stop
                          400000 non-null bool
39 Traffic_Calming
                          400000 non-null bool
40 Traffic_Signal
                          400000 non-null bool
41 Turning Loop
                          400000 non-null bool
42 Sunrise Sunset
                          399981 non-null object
43 Civil Twilight
                          399981 non-null object
44 Nautical Twilight
                          399981 non-null object
45 Astronomical Twilight 399981 non-null object
dtypes: bool(13), float64(12), int64(1), object(20)
memory usage: 105.7+ MB
```

Missing Values

data.isna().sum()

ID 0 Source 0 Severity 0 Start Time 0 0 End_Time Start_Lat 0 Start Lng 0 End Lat 400000 End_Lng 400000 Distance(mi) 0 Description 0 Street 0 City 19 County 0 0 State Zipcode 43 Country 0 Timezone 43 44 Airport Code Weather_Timestamp 3209 Temperature(F) 5915 Wind_Chill(F) 340905 Humidity(%) 6509 Pressure(in) 4647 Visibility(mi) 8779 3230 Wind_Direction Wind_Speed(mph) 74171 357955 Precipitation(in) 8208 Weather_Condition Amenity 0 Bump 0 Crossing 0 0 Give_Way 0 Junction

No_Exit	0
Railway	0
Roundabout	0
Station	0
Stop	0
Traffic_Calming	0
Traffic_Signal	0
Turning_Loop	0
Sunrise_Sunset	19
Civil_Twilight	19
Nautical_Twilight	19
Astronomical_Twilight	19
dtype: int64	

data.isna().mean()

ID 0.000000 Source 0.000000 Severity 0.000000 Start_Time 0.000000 End_Time 0.000000 Start_Lat 0.000000 Start_Lng 0.000000 End_Lat 1.000000 End_Lng 1.000000 Distance(mi) 0.000000 Description 0.000000 Street 0.000000 City 0.000048 County 0.000000 State 0.000000 Zipcode 0.000107 Country 0.000000 Timezone 0.000107 Airport_Code 0.000110 Weather_Timestamp 0.008023 Temperature(F) 0.014788 Wind_Chill(F) 0.852263 Humidity(%) 0.016272 Pressure(in) 0.011617 Visibility(mi) 0.021948 Wind_Direction 0.008075 Wind_Speed(mph) 0.185427 Precipitation(in) 0.894887 Weather_Condition 0.020520 Amenity 0.000000 0.000000 Bump Crossing 0.000000 Give_Way 0.000000 Junction 0.000000 No_Exit 0.000000 Railway 0.000000 Roundabout 0.000000 0.000000 Station

```
      Stop
      0.000000

      Traffic_Calming
      0.000000

      Traffic_Signal
      0.000000

      Turning_Loop
      0.000000

      Sunrise_Sunset
      0.000048

      Civil_Twilight
      0.000048

      Nautical_Twilight
      0.000048

      Astronomical_Twilight
      0.000048

      dtype: float64
```

```
null_columns = ['End_Lat','End_Lng']
data = data.drop(null_columns, axis=1)
```

data.isna().sum()

ID	0
Source	0
Severity	0
Start Time	0
End_Time	0
Start Lat	0
Start Lng	0
Distance(mi)	0
Description	0
Street	0
City	19
County	0
State	0
Zipcode	43
Country	0
Timezone	43
Airport_Code	44
Weather_Timestamp	3209
Temperature(F)	5915
Wind_Chill(F)	340905
Humidity(%)	6509
Pressure(in)	4647
Visibility(mi)	8779
Wind_Direction	3230
Wind_Speed(mph)	74171
Precipitation(in)	357955
Weather_Condition	8208
Amenity	0
Bump	0
Crossing	0
Give_Way	0
Junction	0
No_Exit	0 0
Railway Roundabout	0
Station	0
Stop	9
3 top	0

```
Traffic_Calming 0
Traffic_Signal 0
Turning_Loop 0
Sunrise_Sunset 19
Civil_Twilight 19
Nautical_Twilight 19
Astronomical_Twilight 19
dtype: int64
```

```
data = data.dropna(axis=0).reset_index(drop=True)
```

```
print("Total missing values: ",data.isna().sum().sum())
```

Total missing values: 0

data

		ID	Source	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	Distance(mi)	Description	Street	• • •	Rour
	0	A-6	Source2	3	2016-02-08 07:44:26	2016-02- 08 08:14:26	40.100590	-82.925194	0.01	Accident on I-270 Outerbelt Northbound near Ex	Westerville Rd		
	1	A-10	Source2	3	2016-02-08 08:10:04	2016-02- 08 08:40:04	40.100590	-82.925194	0.01	Right hand shoulder blocked due to accident on	Westerville Rd		ı
	2	A-12	Source2	3	2016-02-08 08:21:27	2016-02- 08 08:51:27	39.932709	-82.830910	0.01	One lane blocked due to accident on I-70 Westb	I-70 E		ı
	3	A-15	Source2	2	2016-02-08 08:39:43	2016-02- 08 09:09:43	39.972038	-82.913521	0.01	Accident on OH-16 Broad St at James Rd. Expect	E Broad St		ı
	4		Source2	2	2016-02-08 10:11:15	2016-02-	40.052509	-82.882332	0.00	Accident on Brookhill Dr at Glenhurst	Brookhill Dr	•••	
Unne	cessary C 												
101 1													
a+1=a	ata[data[2017-04-13					,	,		
df1	40000	Λ-	0	^	2017-04-13	40	00 000070	404 470000	0.00	0 D-I	0		

--- --

```
Source Severity Start Lat Start Lng Distance(mi)
                                                                   County State Timezone Airport Code Temperature(F) ... Su
      146
                          2 38.510437 -121.464523
                                                           0.01 Sacramento
                                                                              CA US/Pacific
                                                                                                   KSAC
                                                                                                                   45.0
      147
                          2 38.676666 -121.638069
                                                           0.01
                                                                      Yolo
                                                                              CA US/Pacific
                                                                                                   KSAC
                                                                                                                   44.1
df1.duplicated().sum()
    20
d1f=df1.dropna(subset=['Precipitation(in)'])
     13988
                          2 39.253979 -121.170898
                                                           0.00
                                                                   Nevada
                                                                              CA US/Pacific
                                                                                                  KGOO
                                                                                                                   41.0
df1=df1.dropna(subset=['Temperature(F)','Wind_Chill(F)','Humidity(%)','Pressure(in)','Visibility(mi)','Wind_Direction', 'Wind_Speed(mph)',
                     'Weather_Condition'])
                          df1.shape
    (2799, 41)
    2/99 rows × 41 columns
df1.isna().sum()/len(df1)*100
     Source
                              0.0
                              0.0
    Severity
    Start_Lat
                              0.0
    Start_Lng
                              0.0
    Distance(mi)
                              0.0
                              0.0
    County
                              0.0
    State
    Timezone
                              0.0
    Airport Code
                              0.0
    Temperature(F)
                              0.0
    Wind_Chill(F)
                              0.0
```

Humidity(%)

Amenity

Crossing

Give_Way

Junction

No Exit

Railway

Station

Stop

Roundabout

Traffic_Calming

Bump

Pressure(in)

Visibility(mi)

Wind Direction

Wind_Speed(mph)

Precipitation(in)

Weather_Condition

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

```
Traffic Signal
                               0.0
     Turning Loop
                               0.0
                               0.0
     Sunrise_Sunset
    Civil Twilight
                               0.0
    Nautical Twilight
                               0.0
    Astronomical Twilight
                               0.0
    Start_Time_Month
                               0.0
    Start Time Year
                               0.0
     End Time Month
                               0.0
     End Time year
                               0.0
    Weather_Timestamp_Month
                               0.0
    Weather Timestamp Year
                               0.0
     dtype: float64
{column:len(data[column].unique()) for column in data.columns if data.dtypes[column] == 'object'}
     {'ID': 13993,
      'Source': 2,
      'Start Time': 13947,
      'End Time': 13927,
      'Description': 12402,
      'Street': 4789,
      'City': 1473,
      'County': 285,
      'State': 25,
      'Zipcode': 5445,
      'Country': 1,
      'Timezone': 3,
      'Airport_Code': 301,
      'Weather_Timestamp': 8554,
      'Wind_Direction': 23,
      'Weather Condition': 53,
      'Sunrise_Sunset': 2,
      'Civil_Twilight': 2,
      'Nautical Twilight': 2,
      'Astronomical_Twilight': 2}
df1=df1.dropna(subset=['Sunrise_Sunset',
       'Civil_Twilight', 'Nautical_Twilight', 'Astronomical_Twilight'])
df1.isna().sum()/len(df1)*100
                               0.0
     Source
                               0.0
     Severity
                               0.0
     Start_Lat
    Start_Lng
                               0.0
    Distance(mi)
                               0.0
                               0.0
     County
     State
                               0.0
```

Timezone

Airport Code

Temperature(F)

0.0

0.0

0.0

```
Wind Chill(F)
                          0.0
Humidity(%)
                          0.0
Pressure(in)
                          0.0
Visibility(mi)
                          0.0
Wind Direction
                          0.0
Wind Speed(mph)
                          0.0
                          0.0
Precipitation(in)
Weather Condition
                          0.0
Amenity
                          0.0
Bump
                          0.0
Crossing
                          0.0
Give Way
                          0.0
Junction
                          0.0
No Exit
                          0.0
Railway
                          0.0
Roundabout
                          0.0
Station
                          0.0
Stop
                          0.0
Traffic_Calming
                          0.0
Traffic_Signal
                          0.0
Turning_Loop
                          0.0
Sunrise Sunset
                          0.0
Civil Twilight
                          0.0
Nautical_Twilight
                          0.0
Astronomical Twilight
                          0.0
Start Time Month
                          0.0
Start_Time_Year
                          0.0
End_Time_Month
                          0.0
End Time year
                          0.0
Weather_Timestamp_Month
                          0.0
Weather_Timestamp_Year
                          0.0
dtype: float64
```

```
df_cat=df1.select_dtypes('object')
col_name=[]
length=[]

for i in df_cat.columns:
    col_name.append(i)
    length.append(len(df_cat[i].unique()))

df_2=pd.DataFrame(zip(col_name,length),columns=['feature','count_of_unique_values'])
df_2
```

feature count_of_unique_values

0	County	30
1	State	1
2	Timezone	1
3	Airport_Code	40
4	Wind_Direction	23
5	Weather_Condition	30

df1['Weather_Condition'].value_counts()

Fair	1450
Partly Cloudy	324
Cloudy	260
Mostly Cloudy	217
Light Rain	211
Overcast	113
Rain	46
Haze	35
Fog	23
Clear	20
Fair / Windy	18
Smoke	16
Light Snow	10
Heavy Rain / Windy	9
Snow	8
Rain / Windy	7
Light Rain / Windy	5
Scattered Clouds	5
Heavy Rain	5
Showers in the Vicinity	3
Light Freezing Fog	3
Mostly Cloudy / Windy	2
Partly Cloudy / Windy	2
Light Thunderstorms and Rain	1
Blowing Dust / Windy	1
Light Rain with Thunder	1
Light Drizzle	1
Thunder in the Vicinity	1
T-Storm	1
Light Rain Shower	1
Name: Weather_Condition, dtype:	int64

del df1['Airport_Code']

df_num.columns

	feature	<pre>count_of_unique_values</pre>
0	Source	2
1	Severity	3
2	Start_Lat	1330
3	Start_Lng	1343
4	Distance(mi)	6
5	Temperature(F)	98
6	Wind_Chill(F)	187
7	Humidity(%)	96
8	Pressure(in)	200
9	Visibility(mi)	21
10	Wind_Speed(mph)	46
11	Precipitation(in)	32
12	Sunrise_Sunset	1
13	Civil_Twilight	1
14	Nautical_Twilight	1
15	Astronomical_Twilight	1

import matplotlib.pyplot as plt
import seaborn as sns

```
plt.figure(figsize=(35, 12))
sns.heatmap(df1.corr(), annot=True)
```

/tmp/ipykernel_32/738400029.py:5: FutureWarning: The default value of numeric_only in DataFrame.corr is sns.heatmap(df1.corr(), annot=True)


```
cities = df1['County'].unique()
len(cities)
```

30

```
accidents_by_cities = df1['County'].value_counts()
accidents_by_cities
```

Los Angeles	1691
Riverside	561
Ventura	172
San Bernardino	66
Contra Costa	38
Placer	35
Nevada	35
Alameda	31
El Dorado	29
Sacramento	29
Sonoma	25
Santa Clara	13
Solano	13
San Joaquin	10
Calaveras	9
Lake	6
Santa Cruz	6
San Mateo	4
Amador	4
Sierra	3
Yolo	3
Napa	3 3
Butte	3
Stanislaus	2
Mendocino	2
San Diego	2
Tuolumne	1
Monterey	1
Yuba	1
San Francisco	1
Name: County,	dtype: int6

#top 10 cities by number of accident
accidents_by_cities[:10]

Los Angeles 1691 Riverside 561 Ventura 172 San Bernardino 66 Contra Costa 38 35 Placer Nevada 35 Alameda 31 29 El Dorado 29 Sacramento Name: County, dtype: int64

accidents_severity = df1.groupby('Severity').count()
accidents_severity

```
df1['Start_Lat'].dtypes
    dtype('float64')
         2
                 1870
                           1870
                                      1870
                                                   1870
                                                           1870
                                                                 1870
                                                                           1870
                                                                                           1870
                                                                                                         1870
                                                                                                                      1870
df1['E'].dtypes
    dtype('float64')
df_num.plot(kind='scatter', y='Start_Lat', x='Severity')
```

<Axes: xlabel='Severity', ylabel='Start_Lat'>


```
sns.jointplot(x=df_num.Start_Lat.values , y=df_num.Start_Lng.values,height=10)
plt.ylabel('Start lattitude', fontsize=12)
plt.xlabel('Start lattitude', fontsize=12)
plt.show()
```


Unneeded_columns = ['ID', 'Description','Street','City','Zipcode','Country']
data = data.drop(Unneeded_columns,axis=1)

data

	Source	Severity	Start_Time	End_Time	Start_Lat	Start_Lng	Distance(mi)	County	State	Timezone	 Roundabout
0	Source2	3	2016-02-08 07:44:26	2016-02- 08 08:14:26	40.100590	-82.925194	0.01	Franklin	ОН	US/Eastern	 False
1	Source2	3	2016-02-08 08:10:04	2016-02- 08 08:40:04	40.100590	-82.925194	0.01	Franklin	ОН	US/Eastern	 False
2	Source2	3	2016-02-08 08:21:27	2016-02- 08 08:51:27	39.932709	-82.830910	0.01	Franklin	ОН	US/Eastern	 False
3	Source2	2	2016-02-08 08:39:43	2016-02- 08 09:09:43	39.972038	-82.913521	0.01	Franklin	ОН	US/Eastern	 False
4	Source2	2	2016-02-08 10:11:15	2016-02- 08 10:41:15	40.052509	-82.882332	0.00	Franklin	ОН	US/Eastern	 False
13988	Source2	2	2017-04-13 19:12:02	2017-04- 13 19:41:50	39.253979	-121.170898	0.00	Nevada	CA	US/Pacific	 False
13989	Source2	3	2017-04-13 21:04:44	2017-04- 13 21:34:27	39.320442	-120.560776	0.01	Nevada	CA	US/Pacific	 False
13990	Source2	3	2017-04-17 09:18:08	2017-04- 17 09:47:33	39.303341	-120.657280	0.01	Placer	CA	US/Pacific	 False
13991	Source2	2	2017-04-17 16:09:52	2017-04- 17 16:39:18	39.187840	-120.833069	0.00	Placer	CA	US/Pacific	 False
13992	Source2	3	2017-04-17 21:35:48	2017-04- 17 22:05:28	39.202686	-120.809448	0.01	Placer	CA	US/Pacific	 False
40000	20	I									

13993 rows × 38 columns

```
def get years(df, column):
    return df[column].apply(lambda date: date[0:4])
def get_months(df, column):
   return df[column].apply(lambda date: date[5:7])
data
             Source Severity Start Lat Start Lng Distance(mi) County State Timezone Airport Code Temperature(F) ... Sunr
                                          -82.925194
                                                                              OH US/Eastern
                                                                                                    KCMH
                                                                                                                      37.9
            Source2
                            3 40.100590
                                                              0.01 Franklin
            Source2
                            3 40.100590
                                          -82.925194
                                                              0.01 Franklin
                                                                              OH US/Eastern
                                                                                                    KCMH
                                                                                                                      37.4
       2
            Source2
                            3 39.932709
                                          -82.830910
                                                              0.01 Franklin
                                                                              OH US/Eastern
                                                                                                    KCMH
                                                                                                                      37.4
            Source2
                            2 39.972038
                                          -82.913521
                                                              0.01 Franklin
                                                                              OH US/Eastern
                                                                                                    KCMH
                                                                                                                      37.4
            Source2
                            2 40.052509
                                          -82.882332
                                                              0.00 Franklin
                                                                              OH US/Eastern
                                                                                                    KCMH
                                                                                                                      33.8
                                                                              CA US/Pacific
                                                                                                    KG00
     13988 Source2
                            2 39.253979 -121.170898
                                                              0.00 Nevada
                                                                                                                      41.0
                                                                              CA US/Pacific
     13989 Source2
                            3 39.320442 -120.560776
                                                                   Nevada
                                                                                                    KBLU
                                                                                                                      30.0
     13990 Source2
                            3 39.303341 -120.657280
                                                                    Placer
                                                                              CA US/Pacific
                                                                                                    KBLU
                                                                                                                      42.1
                                                              0.01
     13991 Source2
                            2 39.187840 -120.833069
                                                                     Placer
                                                                                   US/Pacific
                                                                                                     KBLU
                                                                                                                      44.1
                                                              0.00
     13992 Source2
                            3 39.202686 -120.809448
                                                              0.01
                                                                    Placer
                                                                              CA US/Pacific
                                                                                                     KBLU
                                                                                                                      41.0
     13993 rows × 41 columns
def onehot encode(df,columns,prefixes):
   df = df.copy()
   for column,prefix in zip(columns,prefixes):
        dummies = pd.get dummies(df[columns],prefix=prefix)
       df = pd.concat([df,dummies],axis=1)
        df = df.drop(columns,axis=1)
   return df
{column:len(data[column].unique()) for column in data.columns if data.dtypes[column] == 'object'}
     {'Source': 2,
      'County': 285,
      'State': 25,
```

'Timezone': 3,
'Airport_Code': 301,
'Wind_Direction': 23,
'Weather_Condition': 53,
'Sunrise_Sunset': 2,

	Source	Severity	Start_Lat	Start_Lng	Distance(mi)	County	State	Timezone	Airport_Code	Temperature(F)	• • •	Sunr
0	Source2	3	40.100590	-82.925194	0.01	Franklin	ОН	US/Eastern	KCMH	37.9		
1	Source2	3	40.100590	-82.925194	0.01	Franklin	ОН	US/Eastern	KCMH	37.4		
2	Source2	3	39.932709	-82.830910	0.01	Franklin	ОН	US/Eastern	KCMH	37.4		
3	Source2	2	39.972038	-82.913521	0.01	Franklin	ОН	US/Eastern	KCMH	37.4		
4	Source2	2	40.052509	-82.882332	0.00	Franklin	ОН	US/Eastern	KCMH	33.8		

13988	Source2	2	39.253979	-121.170898	0.00	Nevada	CA	US/Pacific	KGOO	41.0		
13989	Source2	3	39.320442	-120.560776	0.01	Nevada	CA	US/Pacific	KBLU	30.0		
13990	Source2	3	39.303341	-120.657280	0.01	Placer	CA	US/Pacific	KBLU	42.1		
13991	Source2	2	39.187840	-120.833069	0.00	Placer	CA	US/Pacific	KBLU	44.1		
13992	Source2	3	39.202686	-120.809448	0.01	Placer	CA	US/Pacific	KBLU	41.0		
13993 rc	ws × 41 co	olumns										

4

data['Source'].unique()

```
array(['Source2', 'Source3'], dtype=object)

def get_binary_column(df, column):
    if column == 'Source':
        return df[column].apply(lambda x: 1 if x == 'Source2' else θ)
```

```
else:
    return df[column].apply(lambda x: 1 if x == 'Source2' else 0)

data['Source'] = get_binary_column(data, 'Source')

data['Sunrise_Sunset'] = get_binary_column(data, 'Sunrise_Sunset')
data['All'atical_Twilight'] = get_binary_column(data, 'Civil_Twilight')
data['Natical_Twilight'] = get_binary_column(data, 'Natical_Twilight')
data['Astronomical_Twilight'] = get_binary_column(data, 'Astronomical_Twilight')

y = data['Severity'].copy()
x = data.drop('Severity',axis=1).copy()

y.unique()
    array([3, 2, 1, 4])

y=y-1

x.shape
    (13993, 40)
```