

Curso de Bacharelado em Engenharia de Computação

Disciplina: Internet das Coisas (IoT)
Professor: Alexandre Sales Vasconcelos

Equipe: Ítalo Santos Neves Mateus Barbosa de Moura

RELATÓRIO DO PROJETO

Campina Grande 2023

OBJETIVO

O projeto proposto visa criar um sistema de monitoramento da irrigação por meio de tecnologias de IoT. A ideia é desenvolver um sistema que possa coletar dados de sensores de temperatura e umidade do ar, umidade do solo e a luminosidade, permitindo que os usuários possam monitorar o estado de suas plantas e verificar se estão recebendo a quantidade adequada de água. Para isso, os dados serão enviados para um microcontrolador, que poderá ser acessado remotamente. Essa solução trará benefícios significativos para o meio ambiente, permitindo que os usuários economizem água e reduzam o desperdício, além de garantir a saúde e o desenvolvimento saudável de suas plantas.

ARQUITETURA DO PROJETO

ESPECIFICAÇÕES

QUANTIDADE	NOME DO COMPONENTE	DESCRIÇÃO
1	ESP32	O ESP32 será utilizado como node para coletar dados dos sensores LDR, DHT11 e Higrometro.
1	ESP8266	Receberá os dados dos NODES e encaminhará as informações para o banco de dados na nuvem
1	DHT11	O DHT11 é um sensor de temperatura e umidade. Ele é capaz de medir temperaturas entre 0 e 50 graus Celsius, bem como a umidade relativa do ar entre 20% e 90%
1	HIGRÔMETRO	O higrômetro que será utilizado para coletar umidade do solo. Ele é composto por dois pinos de metal que são colocados no solo e um circuito eletrônico interno que converte a leitura da resistência elétrica em um valor de umidade.
1	LDR	O LDR (Resistor Dependente de Luz) é um sensor que vai medir intensidade da luz.
2	E01-ML01DP5 (NRF24L01)	O E01-ML01DP5 (NRF24L01) é um transceptor sem fio que permite a comunicação bidirecional em curta distância com baixo consumo de energia. No contexto do projeto, o NRF24L01 será utilizado para transmitir as informações coletadas pelo node para o gateway

TECNOLOGIAS REDE

O nosso projeto envolve a utilização de várias tecnologias de rede para que os dispositivos possam se comunicar e enviar informações.O node será o ESP32, que utilizará o transceptor sem fio NRF24L01(o NRF24L01 vai utilizar seu próprio protocolo de comunicação para enviar dados entre os dispositivos. O **protocolo Enhanced Shockburst - ESB**)para transmitir as informações para o gateway, que será o ESP8266. Esse gateway irá receber as informações do node por meio do NRF24L01 e em seguida, enviará essas informações para o Firebase por meio do protocolo WebSockets.

RESULTADOS E DISCUSSÕES

Após a implementação do projeto de monitoramento da irrigação utilizando tecnologias de IoT, foram obtidos resultados significativos. No entanto, durante o processo de comunicação entre o gateway e o node, inicialmente tentamos conectar usando o transceptor LoRa, mas não conseguimos fazer a comunicação, o que impediu a sua utilização.

Apesar dessa dificuldade, o projeto avançou com sucesso utilizando o transceptor sem fio NRF24L01, que permitiu a comunicação bidirecional em distância até 2,5 km em área aberta. O node, composto pelo ESP32, foi responsável por coletar os dados dos sensores de temperatura e umidade do ar (DHT11), umidade do solo (higrômetro) e luminosidade (LDR). Essas informações foram transmitidas pelo NRF24L01 para o gateway, que consistia no ESP8266.

O gateway recebeu os dados enviados pelo node e os encaminhou para o banco de dados na nuvem, utilizando o protocolo de transporte HTTP. O banco de dados escolhido para esse projeto foi o Firebase, conhecido por sua facilidade de integração com aplicativos móveis e plataformas de IoT.

Após o envio dos dados para o Firebase, os usuários do sistema puderam acessar remotamente as informações coletadas pelos sensores. Sendo capaz de monitorar o estado de suas plantas, verificando a temperatura, umidade do ar, umidade do solo e luminosidade. Esses dados permitem que os usuários tomem medidas adequadas para garantir o bem-estar das plantas, evitando o uso excessivo ou insuficiente de água.

Imagem 1 - Distância alcançada

Imagem 2 - Gateway do projeto

Imagem 3 - Node do projeto

Para o sucesso do projeto dividimos em partes o trabalho a ser executado e elaboramos um cronograma com as datas de entregas para o professor Alexandre, segue o cronograma abaixo:

Data	Objetivo
23/03	Conectar e realizar leitura dos sensores
10/04	Comunicação do gateway com Firebase
26/05	Comunicação do node com o gateway
26/05	Comunicação do firebase com a web
15/06	Projeto finalizado

Tabela 1 - Cronograma de entregas

Conclusão

Em conclusão, o projeto de monitoramento da irrigação por meio de tecnologias de IoT apresentou resultados satisfatórios, o projeto permite aos usuários monitorar o estado das plantas e ajustar a irrigação de forma eficiente. Apesar das dificuldades encontradas na comunicação do gateway com o node utilizando o transceptor LoRa, o uso do NRF24L01 possibilitou a transmissão dos dados em até 2,5km em área aberta. Recomenda-se explorar soluções alternativas para aprimorar a comunicação entre os dispositivos no futuro. No entanto, esse sistema pode ser eficaz na economia de água, redução de desperdícios e garantia da saúde das plantas, cumprindo assim os objetivos propostos.