Autómatos e Linguagens Formais

Autómatos Finitos

M. Lurdes Teixeira Dep. Matemática Univ. Minho

2º semestre de 2019/2020

Autómatos Finitos

- Introdução
- Preliminares Grafos Orientados
- Definição de Autómato Finito
- Linguagens Reconhecíveis
- Lema da Iteração
- Autómatos completos
- Autómatos acessíveis
- Autómatos deterministas
- Autómatos com transições vazias
- Teorema de Kleene
- Autómato minimal de uma linguagem
- Minimização de autómatos

Os conceitos principais neste capítulo são:

- autómato finito,
- linguagem reconhecida por um autómato finito.

A relação entre linguagens regulares, estudadas no capítulo anterior, e linguagens reconhecidas por autómatos finitos é estabelecida pelo Teorema de Kleene, que é o resultado base de área de Teoria de Autómatos e Linguagens.

A prova do Teorema de Kleene é uma demonstração construtiva que conduz a dois algoritmos que permitem construir o autómato finito que reconhece a linguagem associada a uma certa expressão regular e vice-versa.

Preliminares - Grafos Orientados

Definição

Um grafo orientado e etiquetado G (também designado por multigrafo) é constituído por dois conjuntos: um conjunto V de vértices e um conjunto E de arestas (orientadas). Cada aresta é representada por um triplo ordenado (v, e, v') em que v e v' são vértices e e é uma etiqueta que pertence a um conjunto finito A. Um tal grafo representa-se por G = (V, A, E).

EXEMPLO 1

Na figura está representada a aresta (v, e, v') cujo vértice inicial é v, o vértice final é v' e a etiqueta é e.

Duas arestas (v, e, w) e (v', e', w') de um grafo orientado e etiquetado dizem-se:

• consecutivas se w = v' ou w' = v;

• coterminais se v = v' e w = w'.

Definições

Um caminho (orientado) é uma sequência de n arestas consecutivas $(n \in \mathbb{N}_0)$, que se podem representar por:

O vértice v_1 diz-se o vértice inicial ou origem do caminho e v_{n+1} diz-se o vértice final ou o fim do caminho. Alternativamente, diz-se que se trata de um caminho de v_1 para v_{n+1} .

No caso de n=0, o caminho é representado apenas por um vértice, que é a origem e o fim do caminho.

A sequência

$$e_1 \cdots e_n$$

diz-se a etiqueta do caminho.

No caso de $v_1 = v_{n+1}$ o caminho diz-se fechado.

Um autómato (finito) é um quíntuplo $A = (Q, A, \delta, i, F)$ onde

- Q é um conjunto finito não vazio, chamado o conjunto de estados de A;
- A é um conjunto finito, chamado o alfabeto (de entrada) de \mathcal{A} :
- \bullet é uma função de $Q \times A$ em $\mathcal{P}(Q)$, designada a função transição de A. Cada triplo (p, a, q), em que $p, q \in Q$ e $a \in A$ são tais que $q \in \delta(p, a)$, diz-se uma transição de A;
- $\mathbf{Q} \in \mathbf{Q}$ é dito o estado inicial de \mathcal{A} ;
- **5** $F \subseteq Q$ é dito o conjunto de estados finais de A.

Definição de Autómato Finito

Um autómato finito representa-se por um grafo em que:

- os vértices são os estados;
- as arestas representam as transições;
- as etiquetas são letras do alfabeto;
- o estado inicial é assinalado através de uma seta;
- os estados finais s\u00e3o assinalados por c\u00earculos duplos.

EXEMPLO 2

Seja $A = (\{1,2\},\{a,b\},\delta,1,\{2\})$ onde δ é a função definida pela tabela seguinte:

Um caminho diz-se um caminho bem sucedido se a origem é o estado inicial e o fim é um estado final do autómato.

EXEMPLO 3

Exemplos de caminhos bem sucedidos:

$$q_1 \stackrel{c}{\longrightarrow} q_4 \stackrel{b}{\longrightarrow} q_3$$

$$q_1 \stackrel{c}{\longrightarrow} q_4 \stackrel{a}{\longrightarrow} q_4 \stackrel{b}{\longrightarrow} q_3$$

$$q_1 \stackrel{c}{\longrightarrow} q_4 \stackrel{a}{\longrightarrow} q_4 \stackrel{b}{\longrightarrow} q_3 \stackrel{b}{\longrightarrow} q_5 \stackrel{a}{\longrightarrow} q_2$$

Exemplos de caminhos que não são bem sucedidos:

$$q_1 \xrightarrow{c} q_5 \xrightarrow{a} q_2 \xrightarrow{b} q_1$$

$$q_1 \xrightarrow{c} q_5 \xrightarrow{a} q_2 \xrightarrow{b} q_4 \xrightarrow{b} q_3 \xrightarrow{a} q_5$$

Dado um autómato \mathcal{A} , uma palavra sobre o alfabeto do autómato dizse aceite ou reconhecida pelo autómato se é etiqueta de um caminho bem sucedido.

O conjunto de todas as palavras reconhecidas por um autómato finito $\mathcal A$ diz- se a linguagem reconhecida pelo autómato $\mathcal A$ e representa- se por $\mathcal L(\mathcal A)$.

EXEMPLO 3- continuação

As palavras cb, ca, ca^5b , ab^2a e cab^2a são palavras reconhecidas.

Qualquer palavra que termine na letra c ou que tenha prefixo b^3 não é reconhecida por este autómato.

Dado um autómato $\mathcal{A} = (Q, A, \delta, i, F)$, a função $\delta : Q \times A \to \mathcal{P}(Q)$ pode ser estendida a uma função $\delta^* : Q \times A^* \to \mathcal{P}(Q)$ da seguinte forma:

- $\delta^*(q, \varepsilon) = \{q\}$ qualquer que seja o estado q;
- ② $\delta^*(q, aw) = \bigcup_{q' \in \delta(q, a)} \delta^*(q', w)$ quaisquer que sejam $a \in A$, $w \in A^*$ e $q \in Q$.

$$L(\mathcal{A}) = \{ w \in A^* \mid \delta^*(i, w) \cap F \neq \emptyset \}.$$

EXEMPLO 3 - continuação

$$\begin{split} \delta^*(q_1,cb) &= \{q_3\} \\ \delta^*(q_3,cb) &= \emptyset \\ \delta^*(q_1,ab^2a) &= \{q_2\} \\ \delta^*(q_1,cab^2a) &= \{q_2,q_5\} \end{split}$$

Dois autómatos A e B dizem-se equivalentes se L(A) = L(B).

Definição

Uma linguagem L diz-se reconhecível se existe um autómato A que reconhece L, ou seja, tal que L = L(A).

EXEMPLO 4

A linguagem $L = bA^* \setminus A^*abA^*$ sobre o alfabeto $A = \{a, b, c\}$ é reconhecível, porque é reconhecida pelo autómato seguinte:

Note-se que $L = \mathcal{L}\left(b(b+c)^* \left(aa^*c(b+c)^*\right)^* (\varepsilon+aa^*)\right)$ é uma linguagem regular.

Linguagens Reconhecíveis

EXEMPLOS 5

Outros exemplos de linguagens reconhecíveis sobre um alfabeto A são: $\{\varepsilon\}$, $\{a\}$ para qualquer $a \in A$, $\{u\}$ para qualquer $u = a_1 \cdots a_n \in A^+$, $A^* \in A^+$. Os autómatos que as reconhecem são, respetivamente,

O resultado mais relevante da Teoria de Autómatos e Linguagens é o seguinte teorema.

Teorema de Kleene (1954)

Uma linguagem é regular se e só se é reconhecível.

Linguagens Reconhecíveis

Seja A um alfabeto qualquer.

- Recorde-se que P(A*), o conjunto de todas as linguagens sobre A, é infinito não numerável.
- E qual o cardinal do conjunto Rec(A) de todas as linguagens, sobre um alfabeto A, que são reconhecíveis?

Lema

O conjunto $\Re ec(A)$ é infinito numerável.

Prova

Fixemos um conjunto numerável $\Omega=\{q_1,q_2,\ldots\}$. Cada linguagem reconhecível é reconhecida por algum autómato finito $\mathcal{A}=(Q,A,\delta,i,F)$ de alfabeto A e conjunto de estados $Q=\{q_1,\ldots,q_n\}$. Note-se que Q, A e F são finitos. Então, fixados Q, F e i, o número de maneiras de escolher as arestas de um autómato também é finito. Assim, o conjunto destes autómatos tem cardinal \aleph_0 . Portanto o cardinal de $\Re ec(A)$ também é igual a \aleph_0 .

Corolário

Existe um conjunto infinito não numerável de linguagens não reconhecíveis.

O resultado seguinte apresenta uma condição necessária para que uma linguagem infinita seja reconhecível.

Lema da Iteração (ou da Bombagem)

Seja L uma linguagem reconhecível infinita, sobre um alfabeto A. Então existe uma constante $n \in \mathbb{N}$ tal que, para toda a palavra $u \in L$, se $|u| \geq n$, então existem palavras $x, y, z \in A^*$ tais que:

- 2 u = xyz;

EXEMPLO 6

$$L = \{a^m b^m \mid m \in \mathbb{N}_0\} \subseteq \{a, b\}^*$$

Sejam $n \in \mathbb{N}$ e $u = a^n b^n \in L$. Então |u| > n.

Sejam $x, y, z \in A^*$ tais que:

- \bullet u = xyz,
- $|xy| \le n$
- $y \neq \varepsilon$.

	a ⁿ	b ⁿ
Χ	У	Z

Assim, $y = a^{\ell}$, com $1 \le \ell \le n$, e

$$xy^kz = a^{n-\ell}a^{k\ell}b^n = \begin{cases} a^{n-\ell}b^n & \text{se } k = 0\\ a^nb^n & \text{se } k = 1\\ a^na^{(k-1)\ell}b^n & \text{se } k > 1 \end{cases}$$

Logo, $xy^kz \not\in L$ se $k \neq 1$.

PROVA do Lema da Iteração

Seja $\mathcal{A}=(Q,A,\delta,i,F)$ um autómato que reconhece L e seja n=|Q|. Então, para cada $u=a_1a_2\cdots a_r\in L$, com $r\geq n$, existe um caminho bem sucedido de \mathcal{A} , de etiqueta u:

$$i = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots q_{r-1} \xrightarrow{a_r} q_r$$

Dado que $r \ge n$, existem inteiros i e j, com $0 \le i < j \le n$, tais que $q_i = q_j$, e a palavra $a_{i+1} \cdots a_j$ é a etiqueta de um circuito com origem q_i :

Sejam

$$x = \left\{ \begin{array}{ll} \varepsilon & \text{se } i = 0 \\ a_1 \cdots a_i & \text{se } i > 0 \end{array} \right., \quad y = a_{i+1} \cdots a_j, \quad z = \left\{ \begin{array}{ll} \varepsilon & \text{se } j = r \\ a_{j+1} \cdots a_r & \text{se } j < r \end{array} \right..$$

Então $|xy|=j\leq n,\,y\neq \varepsilon,\,u=xyz$ e, para todo o $k\in\mathbb{N}_0,\,xy^kz\in L$ pois xy^kz é a etiqueta de um caminho bem sucedido de \mathcal{A} .

Um autómato $\mathcal{A}=(Q,A,\delta,i,F)$ diz-se completo se para cada par $(q,a)\in Q\times A$ existe uma transição (q,a,q') para algum $q'\in Q$, ou seja, $\delta(q,a)\neq\emptyset$.

EXEMPLO 7

Sendo $A = \{a, b\}$, o seguinte autómato é completo

EXEMPLO 8

Seja
$$A = \{a, b, c\}.$$

O autómato \mathcal{A} não é completo, mas o autómato \mathcal{B} é completo.

Notar que \mathcal{A} e \mathcal{B} são equivalentes.

Teorema

Todo o autómato é equivalente a um autómato completo.

PROVA

Seja que $\mathcal{A}=(Q,A,\delta,i,F)$ um autómato incompleto. Define-se um novo autómato $\mathcal{A}'=(Q\cup\{p\},A,\delta',i,F)$ em que:

- p é um novo estado;
- δ' é a extensão de δ a $Q \cup \{p\}$ tal que:
 - se $a \in A$ e $\delta(q, a) = \emptyset$, então $\delta'(q, a) = \{p\}$;
 - $\delta(p, a) = \{p\}$ para qualquer $a \in A$.

Logo, A' é completo.

Notar que qualquer caminho que passe no vértice p termina no vértice p e não é um caminho bem sucedido, porque $p \not\in F$. Logo, os caminhos bem sucedidos de \mathcal{A} e de \mathcal{A}' coincidem, ou seja, $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$. Então \mathcal{A}' é um autómato completo equivalente a \mathcal{A} .

Um autómato $A = (Q, A, \delta, i, F)$ diz-se:

- acessível se todos os estados são acessíveis, i.e., se para cada estado q ∈ Q existe um caminho de i para q.
- co-acessível se todos os estados são co-acessíveis, i.e., se para cada q ∈ Q existe um caminho de q para um estado final.

EXEMPLO 9

O autómato A é acessível e co-acessível.

EXEMPLO 10

Este autómato

- não é acessível, porque o estado q₄ não é acessível,
- nem co-acessível, porque o estado q₅ não é co-acessível.

O autómato seguinte é acessível e co-acessível e é equivalente ao anterior.

Um vértice faz parte de um caminho bem sucedido se e só se é um vértice acessível e co-acessível.

Teorema

Todo o autómato \mathcal{A} , tal que $L(\mathcal{A}) \neq \emptyset$, é equivalente a um autómato acessível e co-acessível.

PROVA

Sejam $\mathcal{A}=(Q,A,\delta,i,F)$ e P o subconjunto de Q constituído por todos os vértices acessíveis e co-acessíveis de \mathcal{A} . Seja $\mathcal{A}'=(P,A,\delta',i,F\cap P)$ onde, para qualquer $(q,a)\in P\times A,\ \delta'(q,a)=\delta(q,a)\cap P.$ Então,

- ① para qualquer $p \in P$, existe um caminho C bem sucedido em A que passa por p, sendo que todos os vértices de C são elementos de P e, em particular, o vértice final pertence a $F \cap P$;
- ② qualquer aresta de um caminho bem sucedido de \mathcal{A} é da forma (q, a, q') em que $q' \in \delta(q, a)$ e $q, q' \in P$, pelo que $q' \in \delta'(q, a)$;
- 3 os caminhos bem sucedidos de A e de A' coincidem, *i.e.*,

$$L(A') = \{ u \in A^* \mid \delta'^*(i, u) \cap (F \cap P) \neq \emptyset \}$$

= \{ u \in A^* \ \ \delta'(i, u) \cap F \neq \theta \}
= L(A).

Então A' é acessível, co-acessível e equivalente a A.

Um autómato $A = (Q, A, \delta, i, F)$ diz-se determinista se, para cada estado $q \in Q$ e cada letra $a \in A$, $\sharp \delta(q, a) \leq 1$, *i.e.*, existe no máximo uma transição de origem q e etiqueta $a: q \xrightarrow{a} q'$.

EXEMPLO 11

Autómato determinista

Autómato não determinista

Teorema

Todo o autómato A é equivalente a um autómato determinista D(A).

PROVA

Seja $A = (Q, A, \delta, i, F)$. Define-se $D(A) = (Q', A, \delta', I, F')$ o autómato tal que:

- $\begin{array}{cccc} \bullet & \delta' : & Q' \times A & \rightarrow & \mathbb{P}(Q') \\ & & (X,a) & \mapsto & \left\{ \bigcup_{q \in X} \, \delta(q,a) \right\} \end{array}$
- $I = \{i\} \in F' = \{X \in Q' \mid X \cap F \neq \emptyset\}.$

O autómato D(A) é determinista (e completo) por construção.

$$L(A') = \{ u \in A^* \mid (\delta'^*(I, u) \cap F' \neq \emptyset \}$$

$$= \{ u \in A^* \mid \delta^*(i, u) = X \wedge (X \cap F) \neq \emptyset \}$$

$$= \{ u \in A^* \mid \delta^*(i, u) \cap F \neq \emptyset \}$$

$$= L(A)$$

Logo, D(A) é equivalente a A.

Autómatos deterministas

EXEMPLO 12

Autómato não determinista

Existem estados não acessíveis ou não co-acessíveis?

Autómatos deterministas

EXEMPLO 12 - continuação

Removendo os vértices não acessíveis de D(A) obtém-se o seguinte autómato determinista, acessível e completo:

Teorema

Todo o autómato A é equivalente a um autómato determinista, completo e acessível.

EXEMPLO 12 - continuação

Removendo os vértices não acessíveis e não co-acessíveis de $D(\mathcal{A})$ obtém-se o seguinte autómato determinista, acessível e e co-acessível, mas não completo.

Teorema

Todo o autómato \mathcal{A} é equivalente a um autómato determinista, acessível e co-acessível.

Um autómato com transições vazias (ou transições- ε) é um autómato que se representa por $A = (Q, A, \delta, i, F)$ em que a função transição δ tem domínio $Q \times (A \cup \{\varepsilon\})$. Tais autómatos designam-se por autómatos assíncronos

Uma transição vazia é uma transição etiquetada pela palavra vazia: (q, ε, q') com $q, q' \in Q$.

A designação 'assíncrono' resulta por oposição aos autómatos sem transições vazias que são também chamados síncronos, nos quais, se unidade de tempo corresponde a uma qualquer transição, o tempo de leitura de uma palavra é proporcional ao comprimento da palavra.

Autómatos com transições vazias

Se \mathcal{A} é um autómato assíncrono, para cada estado q, denotamos por $\mathsf{fecho}_{\varepsilon}(q)$ o conjunto formado pelo próprio q e pelos estados atingíveis a partir de q por um caminho de etiqueta $\varepsilon i.e.$

$$\mathsf{fecho}_{arepsilon}(q) = \{q\} \cup \delta^*(q, arepsilon).$$

EXEMPLO 13

O grafo seguinte representa um autómato assíncrono.

$$\mathsf{fecho}_{\varepsilon}(1) = \{1, 2, 3\}, \quad \mathsf{fecho}_{\varepsilon}(2) = \{2, 3\} \quad \mathsf{e} \quad \mathsf{fecho}_{\varepsilon}(3) = \{3\}.$$

Teorema

Todo o autómato assíncrono é equivalente a um autómato síncrono.

PROVA

Sendo $\mathcal{A} = (Q, A, \delta, i, F)$ um autómato assíncrono qualquer, seja $\mathcal{A}' = (Q, A, \delta', i, F')$ o autómato tal que:

• $\delta': Q \times A \rightarrow \mathcal{P}(Q)$ é a função definida, para cada $(q, a) \in Q \times A$, por

$$\delta'(q, a) = \bigcup_{p \in \mathsf{fecho}_{\varepsilon}(q)} \delta(p, a).$$

• $F' = \{q \in Q \mid \text{fecho}_{\varepsilon}(q) \cap F \neq \emptyset\}.$

Como se pode verificar, A' é um autómato síncrono e é equivalente a A porque

$$L(A') = \{ u \in A^* \mid \delta'^*(i, u) \cap F' \neq \emptyset \}$$

= \{ u \in A^* \ \ \delta^*(i, u) \cap F \neq \empty \}
= L(A)

Exemplo 13- continuação

Consideremos o autómato com transições vazias A do exemplo anterior.

Como fecho $_{\varepsilon}(1)=\{1,2,3\}, \quad \text{fecho}_{\varepsilon}(2)=\{2,3\} \quad \text{e} \quad \text{fecho}_{\varepsilon}(3)=\{3\}, \, \text{então}$

$$\begin{array}{lll} \delta'(1,a) &= \delta(1,a) = \{1\} & \delta'(1,b) &= \cup_{i \in \{2,3\}} \delta(i,b) = \{2\} & \delta'(1,c) &= \delta(3,c) = \{1\} \\ \delta'(2,a) &= \emptyset & \delta'(2,b) &= \cup_{i \in \{2,3\}} \delta(i,b) = \{2\} & \delta'(2,c) &= \delta(3,c) = \{1\} \\ \delta'(3,a) &= \emptyset & \delta'(3,b) &= \delta'(3,b) = \{2\} & \delta'(3,c) &= \delta(3,c) = \{1\} \end{array}$$

pelo que o autómato síncrono \mathcal{A}' descrito na prova do teorema anterior é

Teorema de Kleene

Ao longo desta secção considera-se que cada linguagem L_i reconhecível é reconhecida por um autómato (síncrono ou assíncrono) do tipo $A_i = (Q_i, A, \delta_i, i_i, F_i)$ em que $F_i = \{f_{i,1}, \dots, f_{i,n_i}\}$, com $j \in \{1, 2\}$, que é representado como na figura abaixo.

Teorema de Kleene

Lema A

Se L_1 e L_2 são linguagens reconhecíveis, então $L_1 \cup L_2$ é uma linguagem reconhecível.

PROVA

O autómato assíncrono $\mathcal{A} = (Q_1 \uplus Q_2 \uplus \{i\}, A, \delta, i, F_1 \cup F_2)$

reconhece $L_1 \cup L_2$. Logo $L_1 \cup L_2$ é uma linguagem reconhecível.

Teorema de Kleene

EXEMPLO 14

As linguagens a^*b^* e $b^*a(a+b)^*b$ são reconhecidas pelos autómatos

Então, a linguagem $a^*b^*+b^*a(a+b)^*b$ é reconhecida pelo autómato seguinte (obtido a partir dos autómatos acima)

Lema B

Se L_1 e L_2 são linguagens reconhecíveis, então L_1L_2 é uma linguagem reconhecível.

PROVA

O seguinte autómato $A = (Q_1 \uplus Q_2, A, \delta, i_1, F_2)$

reconhece L_1L_2 . Portanto L_1L_2 é uma linguagem reconhecível.

Teorema de Kleene

Lema C

Se L_1 é uma linguagem reconhecível, então L_1^* é uma linguagem reconhecível.

PROVA

O seguinte autómato $A = (Q_1 \uplus \{i\}\}, A, \delta, i, \{i\})$

reconhece L_1^* , donde esta linguagem é reconhecível,

Proposição

Se $L \subseteq A^*$ é uma linguagem regular, então L é reconhecível.

PROVA

Por indução estrutural sobre $\Re eg(A)$.

- **1** Se $L = \emptyset$ ou $L = \{\varepsilon\}$, então L é reconhecível.
- 2 Se $L = \{a\}$ em que $a \in A$, então L é reconhecível.
- Seja L = L₁ ∪ L₂ (resp., L = L₁L₂) e suponhamos, por hipótese de indução, que L₁ e L₂ são linguagens reconhecíveis. Então, pelo Lema A (resp., Lema B) , L é reconhecível.
- Seja $L = K^*$ e suponhamos, por hipótese de indução, que K é uma linguagem reconhecível. Então, pelo Lema C, L é reconhecível.

De (1)-(4) resulta, pelo Princípio de Indução Estrutural sobre $\Re eg(A)$, que L é uma linguagem reconhecível

Teorema de Kleene

Para completar a demonstração do Teorema de Kleene, falta provar que toda a linguagem reconhecida por um autómato finito pode ser representada por uma expressão regular.

Definição

Seja $\mathcal{A} = (Q, A, \delta, i, F)$ um autómato finito. Suponhamos que os estados são representado por números de modo que $Q = \{1, \dots, n\}$. O sistema de equações lineares à direita associado a \mathcal{A} é o sistema

$$\begin{cases} X_1 = r_{11}X_1 + r_{12}X_2 + \dots + r_{1n}X_n + s_1 \\ \vdots \\ X_n = r_{n1}X_1 + r_{n2}X_2 + \dots + r_{nn}X_n + s_n \end{cases}$$

onde, para cada $j, k \in Q$,

- - $R_{jk} = \{a \in A \mid \text{existe uma transição } (j, a, k)\};$
- $s_i = \varepsilon$ se $j \in F$, e $s_i = \emptyset$ caso contrário.

EXEMPLO 15

Considere-se o autómato .A.

O sistema associado a A é

$$\left\{ \begin{array}{l} X_1 = bX_1 + aX_2 + \emptyset X_3 + \emptyset \\ X_2 = (a+b)X_1 + \emptyset X_2 + aX_3 + \emptyset \\ X_3 = \emptyset X_1 + \emptyset X_2 + \emptyset X_3 + \varepsilon \end{array} \right.$$

que pode ser escrito simplesmente na forma

$$\begin{cases} X_1 = bX_1 + aX_2 \\ X_2 = (a+b)X_1 + aX_3 \\ X_3 = \varepsilon \end{cases}$$

Lema

Seja $(t_1, t_2, ..., t_n) \in ER(A)^n$ a solução mínima do sistema associado ao autómato finito $A = (Q, A, \delta, i, F)$. Então, para cada estado $j \in Q$,

$$\mathcal{L}(t_j) = \{u \in A^* \mid u \text{ \'e etiqueta de um caminho de } j \text{ para } q \in F\}.$$

Em particular,

$$L(A) = \mathcal{L}(t_i),$$

ou seja, a linguagem reconhecida pelo autómato \mathcal{A} é representada pela expressão regular t_i , onde i é o estado inicial de \mathcal{A} .

Notar que num sistema associado a um autómato síncrono se tem que $\varepsilon \notin R_{j,k}$ para quaisquer estados j, k, pelo que a solução do sistema é única.

Proposição

Se L é uma linguagem reconhecível, então L é regular.

Teorema de Kleene

Estamos então em condições de estabelecer o resultado fundamental desta área.

Teorema [Kleene'1954]

Uma linguagem é regular se e só se é reconhecível.

EXEMPLO 15 - continuação

Resolvendo o sistema obtém-se, sucessivamente,

$$\begin{cases} X_{1} = bX_{1} + aX_{2} \\ X_{2} = (a+b)X_{1} + aX_{3} \\ X_{3} = \varepsilon \end{cases} \Leftrightarrow \begin{cases} X_{1} = bX_{1} + aX_{2} \\ X_{2} = (a+b)X_{1} + a\varepsilon \\ X_{3} = \varepsilon \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = bX_{1} + a((a+b)X_{1} + a) \\ X_{2} = (a+b)X_{1} + a \\ X_{3} = \varepsilon \end{cases} \Leftrightarrow \begin{cases} X_{1} = (b+a^{2} + ab)X_{1} + a^{2} \\ X_{2} = (a+b)X_{1} + a \\ X_{3} = \varepsilon \end{cases}$$

$$\Leftrightarrow \begin{cases} X_{1} = (b+a^{2} + ab)^{*}a^{2} \\ X_{2} = (a+b)X_{1} + a \\ X_{3} = \varepsilon \end{cases} \Leftrightarrow \begin{cases} X_{1} = (b+a^{2} + ab)^{*}a^{2} \\ X_{2} = (a+b)(b+a^{2} + ab)^{*}a^{2} + a\varepsilon \\ X_{3} = \varepsilon \end{cases}$$

A solução mínima do sistema é portanto

$$((b+a^2+ab)^*a^2, (a+b)(b+a^2+ab)^*a^2+a, \varepsilon).$$

Dado que o estado inicial de \mathcal{A} é 1, conclui-se que $L(\mathcal{A})$ é representada pela expressão regular $(b+a^2+ab)^*a^2$.

Um autómato determinista, completo e que reconhece uma linguagem $L \subseteq A^*$ e que tem um número mínimo de estados, de entre os autómatos deterministas e completos que reconhecem L, diz-se um autómato minimal de L.

Seja *L* uma linguagem reconhecível. Notar que:

- Existe um autómato minimal que reconhece L. Mais, prova-se que que tal autómato é único (a menos da forma de identificar os esta- dos) e, usualmente, representa-se por A(L).
- A(L) é determinista, completo e acessível (abreviadamente, DCA).

Se $\mathcal{A}=(Q,A,\delta,i,F)$ é um autómato finito DCA, então a função transição δ é uma função em que, para qualquer par $(q,a)\in Q\times A$, a imagem $\delta(q,a)$ é um conjunto singular, digamos $\{q'\}$ com $q'\in Q$. Podemos então, neste caso, considerar que a função de transição é uma função total sobrejetiva $\delta:Q\times A\to Q$ e, com a notação anterior, diríamos que $\delta(q,a)=q'$.

Proposição

Seja $L \subseteq A^*$ uma linguagem. Então,

1 L é reconhecível se e só se o conjunto

$$Q_L = \{u^{-1}L \mid u \in A^*\}$$

é finito;

- 2 $A(L) = (Q_L, A, \delta, L, F_L)$ onde
 - $F_L = \{ u^{-1}L \mid u \in L \} = \{ K \in Q_L \mid \varepsilon \in K \};$
 - a função de transição δ é definida, para cada $a \in A$, por

$$\delta(u^{-1}L,a)=a^{-1}(u^{-1}L)=(ua)^{-1}L.$$

EXEMPLO 16

Seja $L = A^*baA^*$ sobre o alfabeto $A = \{a, b\}$.

$$\varepsilon^{-1}L = L = L_{1}$$

$$a^{-1}L_{1} = a^{-1}(A^{*})baA^{*} \cup a^{-1}(baA^{*}) = L_{1} \cup \emptyset = L_{1}$$

$$b^{-1}L_{1} = b^{-1}(A^{*})baA^{*} \cup b^{-1}(baA^{*}) = L_{1} \cup aA^{*} = L_{2}$$

$$a^{-1}L_{2} = a^{-1}L_{1} \cup a^{-1}(aA^{*}) = L_{1} \cup A^{*} = A^{*} = L_{3}$$

$$b^{-1}L_{2} = b^{-1}L_{1} \cup b^{-1}(aA^{*}) = L_{2} \cup \emptyset = L_{2}$$

$$a^{-1}L_{3} = L_{3}$$

$$b^{-1}L_{3} = L_{3}.$$

Assim, $Q_L = \{L_1, L_2, L_3\}$ e $A(L) = (Q_L, A, \delta, L_1, \{L_3\})$ é o autómato seguinte.

Autómato minimal de uma linguagem

EXEMPLO 17

Seja $L = a^*b(ab)^*$ sobre o alfabeto $A = \{a, b\}$.

$$\varepsilon^{-1}L = L = L_{1}$$

$$a^{-1}L_{1} = a^{-1}(a^{*})b(ab)^{*} \cup a^{-1}(b(ab)^{*}) = L_{1} \cup \emptyset = L_{1}$$

$$b^{-1}L_{1} = b^{-1}(a^{*})b(ab)^{*} \cup b^{-1}(b(ab)^{*}) = \emptyset \cup (ab)^{*} = (ab)^{*} = L_{2}$$

$$a^{-1}L_{2} = a^{-1}(ab)(ab)^{*} = b(ab)^{*} = L_{3}$$

$$b^{-1}L_{2} = b^{-1}(ab)(ab)^{*} = \emptyset = L_{4}$$

$$a^{-1}L_{3} = L_{4}$$

$$b^{-1}L_{3} = L_{2}$$

$$a^{-1}L_{4} = L_{4}$$

Assim, $Q_L = \{L_1, L_2, L_3, L_4\}$ e $A(L) = (Q_L, A, \delta, L_1, \{L_2\})$ é o autómato:

Seja $\mathcal{A}=(Q,A,\delta,i,F)$ um autómato DCA. Define-se a relação \sim sobre Q escrevendo $q \sim q'$ se a partir dos estados q e q' o autómato tem o mesmo "comportamento", isto é,

$$q \sim q'$$
 sse $\forall u \in A^*, \delta^*(q, u) \in F \Leftrightarrow \delta^*(q', u) \in F$.

Lema

Seja $\mathcal{A}=(Q,A,\delta,i,F)$ um autómato DCA. Então, a relação \sim é uma equivalência sobre Q.

Se dois estados q e q' de um autómato DCA são tais que $q \sim q'$, então dizem-se estados equivalentes.

Lema

Seja $\mathcal{A}=(Q,A,\delta,i,F)$ um autómato DCA. Então, se \overline{q} representa a classe- \sim equivalência de $q\in Q$, e

$$\overline{Q} = Q/_{\sim} = {\overline{q} : q \in Q},$$

a correspondência

$$\overline{\delta}: \overline{Q} \times A \rightarrow \overline{Q}$$
 $(\overline{q}, a) \mapsto \overline{\delta(q, a)}$

é uma função.

PROVA

Para quaisquer $q_1, q_2 \in Q$ e $a \in A$,

$$\overline{q_1} = \overline{q_2} \implies q_1 \sim q_2$$

$$\implies \forall u \in A^*, \ \delta^*(q_1, au) \in F \Leftrightarrow \delta^*(q_2, au) \in F$$

$$\implies \forall u \in A^*, \ \delta^*(\delta(q_1, a), u) \in F \Leftrightarrow \delta^*(\delta(q_2, a), u) \in F$$

$$\implies \delta(q_1, a) \sim \delta(q_2, a)$$

$$\implies \overline{\delta(q_1, a)} = \overline{\delta(q_2, a)}.$$

Seja $\mathcal{A} = (Q, A, \delta, i, F)$ um autómato DCA. Define-se o autómato quociente de A por \sim como sendo o autómato $A/_{\sim} = (\overline{Q}, A, \overline{\delta}, \overline{i}, \overline{F})$ onde $\overline{F} = \{\overline{f} : f \in F\}$ é o conjunto das classes- \sim de equivalência dos elementos de F.

EXEMPLO 18

Dado um autómato DCA, como calcular a equivalência ~?

Seja $A = (Q, A, \delta, i, F)$ um autómato DCA. Para cada $k \in \mathbb{N}_0$, definese a relação \sim_k sobre Q, por: para quaisquer $q, q' \in Q$,

$$\mathbf{q} \sim_{\mathbf{k}} \mathbf{q}'$$
 sse $\forall u \in A^*, |u| \leq \mathbf{k} \Rightarrow \Big(\delta^*(\mathbf{q}, u) \in F \Leftrightarrow \delta^*(\mathbf{q}', u) \in F\Big).$

Notar que:

- \bullet $\sim_{k+1} \subseteq \sim_k$ para todo o $k \in \mathbb{N}_0$;
- ② $q \sim q'$ se e só se $q \sim_k q'$ para todo o $k \in \mathbb{N}_0$ (i.e., $\sim = \bigcap_{i \geq 0} \sim_i$);
- 3 $q\sim_0 q'$ se e só se $q\in F\Leftrightarrow q'\in F$ (i.e., $Q/_{\sim_0}=\{F,Q\setminus F\}$);
- **4** as relações \sim_k podem ser definidas recursivamente da seguinte forma:

 - ② para cada $k \in \mathbb{N}_0$,

$$q \sim_{k+1} q' \quad \Leftrightarrow \quad \forall a \in A \left(q \sim_k q' \land \delta(q, a) \sim_k \delta(q', a) \right).$$

Lema

Seja $A = (Q, A, \delta, i, F)$ um autómato DCA e seja n o número de estados de A. Então,

- **1** \sim_{r+1} = \sim_r para algum $r \in \{0, 1, ..., n-2\}$.
- 2 Se $k \in \mathbb{N}_0$ é tal que $\sim_{k+1} = \sim_k$, então $\sim = \sim_k$.

PROVA

- **1** Como, para todo o $k \in \mathbb{N}_0$, $\sim_{k+1} \subseteq \sim_k$, então $[q]_{\sim_{k+1}} \subseteq [q]_{\sim_k} \subseteq Q$ para todo o $q \in Q$. Dado que Q é finito, então existe $r \ge 0$ tal que $[q]_{\sim_{r+1}} = [q]_{\sim_r}$ para todo o $q \in Q$ e, como $\sharp Q = n$, então $r \le n 2$.
- ② Notar que se $k \in \mathbb{N}_0$ é tal que $\sim_{k+1} = \sim_k$, então $\sim_{k+\ell} = \sim_k$ para qualquer $\ell \ge 0$. Então,

$$\cdots = \sim_{k+\ell} = \cdots = \sim_{k+1} = \sim_k \subseteq \sim_{k-1} \subseteq \cdots \subseteq \sim_0$$

pelo que
$$\sim = \bigcap_{i>0} \sim_i = \sim_k$$
.

Minimização de autómatos

EXEMPLO 18 - continuação

Usando a definição recursiva das relações $\sim_{\it k}$, obtém-se:

- $Q/_{\sim_0} = \{\{1,2,4\},\{3,5\}\}.$
- Notando que $\sim_1 \subseteq \sim_0$, para calcular \sim_1 basta verificar em cada classe- \sim_0 quais os elementos que são equivalentes módulo \sim_1 .

Assim,

1
$$\checkmark$$
₁ 2 pois $\delta(1,b) = 4$, $\delta(2,b) = 3$ e 4 \checkmark ₀3;
2 \sim ₁4 pois 2 \sim ₀4, $\delta(2,a) = 2\sim$ ₀4 = $\delta(4,a)$ e $\delta(2,b) = 3\sim$ ₀5 = $\delta(4,b)$;
3 \sim ₁5 pois 3 \sim ₀5, $\delta(3,a) = 4\sim$ ₀2 = $\delta(5,a)$ e $\delta(3,b) = 5\sim$ ₀3 = $\delta(5,b)$.

Consequentemente, $\sim_1 \neq \sim_0$ e $Q/_{\sim_1} = \{\{1\}, \{2,4\}, \{3,5\}\}.$

EXEMPLO 18 - continuação

• Notando que $\sim_2 \subseteq \sim_1$, para calcular \sim_2 basta verificar em cada classe- \sim_1 quais os elementos que são equivalentes módulo \sim_2 .

$$2 \sim_2 4$$
 pois $2 \sim_1 4$, $\delta(2, a) = 2 \sim_1 4 = \delta(4, a)$ e $\delta(2, b) = 3 \sim_1 5 = \delta(4, b)$;

$$3 \sim_2 5$$
 pois $3 \sim_1 5$, $\delta(3, a) = 4 \sim_1 2 = \delta(5, a)$ e $\delta(3, b) = 5 \sim_1 3 = \delta(5, b)$.

Tem-se então $\sim_2=\sim_1$, donde $\sim=\sim_1$ e, pelo lema anterior,

$$\overline{Q} = Q/_{\sim} = \{\{1\}, \{2,4\}, \{3,5\}\}.$$

Quanto à função $\overline{\delta}$, tem-se que:

$$\overline{\delta}(\overline{1}, a) = \overline{\delta}(1, a) = \overline{2} \quad \text{e} \quad \overline{\delta}(\overline{1}, b) = \overline{\delta}(1, b) = \overline{4}$$

$$\overline{\delta}(\overline{2}, a) = \overline{\delta}(2, a) = \overline{2} \quad \text{e} \quad \overline{\delta}(\overline{2}, b) = \overline{\delta}(2, b) = \overline{3}$$

$$\overline{\delta}(\overline{3},a) = \overline{\delta(3,a)} = \overline{4}$$
 e $\overline{\delta}(\overline{3},b) = \overline{\delta(3,b)} = \overline{5}$

Logo, o autómato quociente $\mathcal{A}/_{\sim}$ é o seguinte:

Minimização de autómatos

Proposição

Se $\mathcal{A}=(Q,A,\delta,i,F)$ é um autómato DCA, então o autómato quociente $\mathcal{A}/_{\sim}$ é um autómato DCA equivalente a \mathcal{A} e tem o menor número de estados entre os autómatos DCA equivalentes a \mathcal{A} . Assim, $\mathcal{A}/_{\sim}$ é (a menos dos nomes dos estados) o autómato minimal da linguagem $L(\mathcal{A})$.