EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRE

TEAM ID: PNT2022TMID28246

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTION

- 7.1 Feature 1
- 7.2 Feature 2

8. TESTING

8.1 Test Cases & User Acceptance Testing

9.RESULTS

9.1Performance Metrics

10.ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code GitHub & Project Demo Link

1. INTRODUCTION

Forest fires are a major environmental issue, creating economic and ecological damage while endangering human lives. There are typically about 100,000 wildfires in the United States every year. Over 9 million acres of land have been destroyed due to treacherous wildfires. It is difficult to predict and detect Forest Fire in a sparsely populated forest area and it is more difficult if the prediction is done using ground-based methods like Camera or Video-Based approach. Satellites can be an important source of data prior to and also during the Fire due to its reliability and efficiency. The various real-time forest fire detection and prediction approaches, with the goal of informing the local fire authorities.

1.1 Project Overview

The idea is to create aand develop a system that can identify the effects of the forest fire and it can analyse the forest fire by advanced AI techniques and CNN Algorithm then the Prediction model is Checked and then the model is connected with Twilio account credentials of the Developer consisting of phone numbers of the persons in the surroundings of the people in the area of easy forest fire zone then an security sound alert system is developed to make a alert sound which is downloaded from internet then the entire model is deployed to the IBM Cloud account that we have created.

1.2 Purpose

The forest fires destroys the wildlife habitat, damages the environment, affects the climate, spoils the biological properties of the soil, etc. So the forest fire detection is a major issue in the present decade. At the same time the forest fire have to be detected as fast as possible.

2. LITERATURE SURVEY

2.1 Existing problem

Forest fires have been and still are serious problem for the European Union and for all other countries in Europe. In the year 2000, the EU has established the European Forest Fire Information system (EFFIS), which will soon become part of the European Emergency. Management Service, maintained by the Copernicus Earth Observation Programme. This system provides valuable near real-time and also historical data on the forest fires in Europe, the Middle East and North Africa. Currently EFFIS is being used and supported with data by 25 EU member states and by numerous other countries. According to the annual report of EFFIS for 2016, more than 54 000 forest fires have occurred all around Europe and they have led to nearly 376 thousand hectares of burnt areas. If we compare these values to the average values from the EFFIS reports for the period 2006-2015, the number of forest fires have decreased by 13327 or by nearly 20%. This decrease can be explained with the more severe actions and sanctions towards the arsonists and with the introduction of more advanced technical solutions for early detection of the fires. Even though their number is decreasing, the forest fires continue to be extremely devastating events and they have destroyed just 27 thousand hectares (or 6.6%) less than the average burnt areas for the period 2006-2015, according to. Confirmation for this are the devastating forest fires form 2018, which took place in the Attica region of Greece and led to more than 90 fatalities and to more than 200 injured people, as well as to the destruction to thousands of buildings. Forest Fires can be divided into 4 categories in the forests of Hungary based on tree and other vegetation species:

- · underground burning, peat fire;
- · fire in undergrowth or dead fallen leaves;
- · fire in seedlings and saplings;
- fire in trunks and shrouds.

2.2 References

- 1. M. R. Nosouhi, K. Sood, N. Kumar, T. Wevill and C. Thapa, "Bushfire Risk Detection Using Internet of Things: An Application Scenario," in *IEEE Internet of Things Journal*, vol. 9, no. 7, pp. 5266-5274, 1 April1, 2022, doi: 10.1109/JIOT.2021.3110256.Chi Yuan, Youmin Zhang, and Zhixiang Liu, Published in: 2015, Published by NRC Research Press.
- 2. C.-Y. Chiang, C. Barnes, P. Angelov and R. Jiang, "Deep Learning-Based Automated Forest Health Diagnosis From Aerial Images," in IEEE Access, vol. 8, pp. 144064-144076, 2020, doi: 10.1109/ACCESS.2020.3012417.
- 3. O. M. Bushnaq, A. Chaaban and T. Y. Al-Naffouri, "The Role of UAV-IoT Networks in Future Wildfire Detection," in *IEEE Internet of Things Journal*, vol. 8, no. 23, pp. 16984-16999, 1 Dec.1, 2021, doi: 10.1109/JIOT.2021.3077593.Dr. Panagiotis Barmpoutis, Periklis Papaioannou, Dr. Kosmas Dimitropoulos, Dr. Nikos GRAMMALIDIS, Published in: 11 November 2020.

- 4. D. Q. Tran, M. Park, Y. Jeon, J. Bak and S. Park, "Forest-Fire Response System Using Deep-Learning-Based Approaches With CCTV Images and Weather Data," in IEEE Access, vol. 10, pp. 66061-66071, 2022, doi: 10.1109/ACCESS.2022.3184707.Majid Bahrepour, Nirvana Meratnia, Paul Havinga, Published in: January 2008.
- 5. L. Wang, A. Hawkins-Daarud, K. R. Swanson, L. S. Hu and J. Li, "Knowledge-Infused Global-Local Data Fusion for Spatial Predictive Modeling in Precision Medicine," in IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 2203-2215, July 2022, doi: 10.1109/TASE.2021.3076117.

2.3 Problem Statement Definition

The user interacts with a web camera to read the video.

Once the input image from the video frame is sent to the model, if the fire is detected it is showcased on the console, and alerting sound will be generated and an alert message will be sent to the Authorities.

- · Data Collection.
- · Collect the dataset or create the dataset.
- · Image Preprocessing.
- Import ImageDataGenerator Library.
- Define the parameters /arguments for ImageDataGenerator class
- Applying ImageDataGenerator on trainset and test set.
- Model Building
- Import the model building Libraries
- Initializing the model
- Adding CNN Layers
- Adding Hidden Layer
- Adding Output Layer
- · Configure the Learning Process
- Training and testing the model
- Optimize the Model
- · Save the Model
- Video Streaming and alerting
- OpenCV for video processing
- Creating an account in Twilio service
- Use Twilio API to send messages.

3. IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map canvas is a more in-depth version of the original empathy map, which helps identify and describe the user's needs and pain points.

3.2 Ideation & Brainstorming

organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

PROBLEM

To predict Forest fire using Computer vision and to alert local fire authorities for early detection of forest fire

Step-2: Brainstorm, Idea Listing and Grouping

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

0 20 minutes

Step-3: Idea Prioritization

3.3 Proposed Solution

Define CS, fit into CC	CUSTOMER SEGMENT(S) Forest department officers living in forest. Common people.	CC Statellites allow for detecting and monitoring a range of fires, providing information about the location, duration, size, temperature, and power output of those fires that would otherwise be unavailable. Satellite data is also critical for observing and monitoring smoke from the fires.	5. AVAILABLE SOLUTIONS Avoid burning wastes around dry grass. Obey local laws regarding open fires, including campfires Have firefighting tools nearby and handy. Use fire resistant roofing materials. undertake technical checkups regularly. Monitoring weather analytics, monitoring thermal anomalies, monitoring water stress and temperature rises.
Focus on JSP tan into BE understand RC	2. JOBS-TO-BE-DONE / PROBLEMS Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. During a fire event, active fires can be detected by detecting the heat, light and smoke plumes emitted from the fires. This application uses real-time satellitedata to detect and monitor forest fires (sending alerts to mobile	9. PROBLEM ROOT CAUSE Forest fires cause lots of damage, some of them are – loss of wildlife habitat, extinction of plants and animals, destroys the nutrient rich top soil, reduction in forest cover, loss of valuable timber resources, ozone layer depletion, loss of livelihood for tribal people and poor people, increase in global warming.	7. BEHAVIOUR Climate change should be monitored. Hot areas should be monitored clearly.
Identify strong TR & EM	a. TRIGGERS Human-caused fires result from campfires left unattended, the burning of debris, equipment use and malfunctions, negligently discarded cigarettes, and intentional acts of arson. 4. EMOTIONS: BEFORE / AFTER EM Before: Unable to detect small sparks. Camera should always be in motion. After: Able to detect small sparks. 360 view of camera is used.	10. YOUR SOLUTION For this problem we use image processing and video analysis so by using satellite image processing we can able to find the fire at the early stage and stop spreading fire in the forest. This model is mainly build by using CNN and machine learning and deep learning	8. CHANNELS of BEHAVIOUR ONLINE: Collect the date and form a dataset in order to compare the flames regions for forest fire detection. OFFLINE: In case of forest fire detection the information is sent to forest authorities so that they will prevent it at ease.

3.4 Proposed Solution

S.No	Parameter	Description
1	Problem Statement (Problem to be solved)	Forest fires are a major environmental issue, creating economic and ecological damage while endangering human lives. It is difficult to predict and detect Forest Fire in a sparsely populated forest area. So, it is necessary to detect the fire in an early stage to control it.
2	Idea / Solution description	Use computer vision methods for recognition and detection of smoke or fire, based on the still images or the video input from the drone cameras.
3	Novelty / Uniqueness	When the fire is detected, the station will get a notification via message and an alarm system will be activated automatically to alert the user.
4	Impact on society	By using this system it reduces global warming which causes major climatic changes and prevents wild animals and birds from danger by this method the smoke due to fire is also prevented which causes various effects on Nature.
5	Business Model (RevenueModel)	This system is used to predict the forest fire at the early stage, prevent the wild lives from fire and prevents global warming. This model is more reliable and can produce accurate detection of forest fire.
6	Scalability of the Solution	Computer vision models enable land cover classification and smoke detection from satellite and ground cameras.

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement	Sub Requirement (Story /
	(Epic)	Sub-Task)
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Login	Login using credentials
FR-4	User Search	Search for Info on forest fire occurrence
FR-5	User Profile	User shall be given a live feed of the forest
FR-6	User Application	User is alerted if there is a forest fire occurrence in their
		surroundings

4.2 Non-Functional requirements

FR No	Non-Functional Requirement	Description
NFR-1	Usability	Alerts according to the user
		location
NFR-2	Security	Instant live feed with alert of
		the situation
NFR-3	Reliability	The prediction of the forest
		fire is 87% accurate
NFR-4	Performance	The feed and the alert
		message an immediate
		action without a lag
NFR-5	Availability	The application gives alerts
		and live feeds 24/7
NFR-6		Early detection and alerting
		users are done efficiently and
		in a faster means

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

S.No	Component	Description	Technology
1	User Interface	The user uses the	Python/HTML,CSS,
		console to access	Javascript and
		the interface	react.Js
2		Video Feed	Web Camera/Video
	Input		on a site
3	Conversion	Video inputted is	Frame Converter
		converted into	
		Frames	
4	Feeding the Model	The Frames are sent	Our Model
		to the Deep learning	
		model	
5	Dataset	Using Test set and	Data set from Cloud
		train set , train the	Storage , Database
		model	
6	Cloud Database	The model is trained	IBM Cloudant ,Python
		in the cloud more	Flask.
		precise with	
		detections more	
		images can be added	
		later on.	
7	Infrastructure (Server	Application	Java/python
	/ Cloud), API	Deployment on Local	,React.Js,JavaScript
		System / Cloud Local	,HTML ,CSS ,IBM
		,Cloud Server	Cloud ,OPEN CV
		Configuration , Twilio	,Anaconda Navigator
		API to send	,Local.
		messages	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1	Open-Source	Python Flask	Technology of
	Frameworks	framework is used	Opensource
			framework
2	Security	Mandatory Access	e.g. SHA-256,
	Implementations	Control (MAC) and	Encryptions, IAM
		Preventative Security	Controls, OWASP etc.
		Control is used	
3	Scalable Architecture	High scalability with	Web server – HTML
		3-tier architecture	,CSS ,JavaScript
			Application server –
			Python , Anaconda
			Database server
			-IBM DB2
4	Availability	Use of load balancing	IBM load balancer
		to distribute traffic	
		across servers	
5	Performance	Enhance the	IBM Content Delivery
		performance by using	Network
		IBM CDN	

5.3 User Stories

5.4

User Type	Functional	User	User Story /	Acceptance		
	Requireme	Story	Task	criteria	Priority	Release
	nt (Epic)	Number				
Environme	Collect the	USN-1	As an	It is	High	Sprint-1
ntalist	data		Environmentalist	necessary		
			,it is	to collect		
			necessary to	the right		
			collect the	data else		
			data of the	the		
			forest which	prediction		
			includes	may		
			temperature,hu	become		
			midity,wind	wrong		
			and rain of the			
			forest			

	USN-2	Identify algorithms that can be used for prediction	To collect the algorithm to identify the accuracy level of each algorithms	Medium	Sprint-2
	USN-3	Identify the accuracy of each algorithms	Accuracy of each algorithm- calculated so that it is easy to obtain the most accurate output	High	Sprint-2
	USN-4	Evaluate the Dataset	Data is evaluated before processing	Medium	Sprint-1
	USN-5	Identify accuracy,precis ion ,recall of each algorithms	These values are important for obtaining the right output	High	Sprint-3
	USN-6	Outputs from each algorithm are obtained	It is highly used to predict the effect and to take precautionary	High	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User story/Task	Story	Priority	Team
	Requirement	story		points		Members
	(Epic)	number				
Sprint-1	Collecting	USN-2	Collecting the	10	high	All members
	Data		data is really			
			important for the			
			detection of fire.			
Sprint-2	Creating and	USN-2	As a developer	10	high	All members
	Saving the		creating and			
	Model		saving the model			
			developed for			
			estimation of fire			
Sprint-3	Testing	USN-2	As a developer	10	high	All members
	model		creating and			
			saving the model			
			developed for			
			estimation of fire	1		
Sprint-3	Video	USN-3		10	Medium	All members
	Analysis					
Sprint-4	Twilio	USN-3		10	Low	All members
	Message					
	Service					
Sprint-4	Alert Sound	USN-4	Sending Alert text	10	Low	All members
	and Message		message using			
			registered twilio			
			account and			
			produce output			
			sound alert alarm			

Sprint-4	Train Model	USN-5	Application	10	Medium	All members
	on cloud		Deployment on			
			Local System/			
			Cloud Local Server			
			Configuration:			
			Cloud Server			
			Configuration and			
			to train the deep			
			learning model in			
			IBM Cloud			

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date(Plann ed)	Story Points Completed (as on planned end date)	Sprint Release Date (Actual)
Sprint-1	20	6 days	24 Oct	29 Oct	20	29 Oct
			2022	2022		2022
Sprint-2	20	6 days	31 Oct	05 Nov	20	05 Nov
			2022	2022		2022
Sprint-3	20	6 days	07 Nov	12 Nov	20	12 Nov
			2022	2022		2022
Sprint-4	20	6days	14 Nov	19 Nov	20	19 Nov
			2022	2022		2022

The following table shows the sprint works assigned to the members along with the priority and story points assigned with the functional requirements with regards to user story.

6.3 Reports from JIRA

Burndown Chart:

7. CODING & SOLUTION

7.1 Feature 1

In Feature 1 module we have made data collection and Image preprocessing for and Model training.

importing Required Libraries:

import keras from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import numpy as np_batch_size = 32

image resizing and preprocessing:

```
train_datagen = ImageDataGenerator( shear_range=0.2, rotation_range=180, zoom_range=0.2, horizontal_flip=True, ) val_datagen = ImageDataGenerator( rescale=1./255 )

train_generator = train_datagen.flow_from_directory( 'train_set/', target_size=(150, 150), batch_size=batch_size, class_mode='binary' )

val_generator = val_datagen.flow_from_directory( 'test_set/', target_size=(150, 150), batch_size=batch_size, class_mode='binary' )
```

Creating the sequential model:

from keras.models

import Sequential from keras.layers

import Convolution2D from keras.layers

import MaxPooling2D from keras.layers

import Activation from keras.layers

import Dropout from keras.layers

import Flatten from keras.layers

import Dense model=Sequential()

```
model.add(Convolution2D(32,(3,3),input_shape=(150,150,3))) #Convolutional 2D Layer model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2,2))) # MaxPooling Layer

model.add(Flatten()) #Flatten Layer to make a array

model.add(Dense(150))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(1))

model.add(Activation('sigmoid'))

model.add(Activation('sigmoid'))

model.compile( loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']
)
```

Model summary:

model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	148, 148, 32)	896
activation (Activation)	(None,	148, 148, 32)	0
max_pooling2d (MaxPooling2D)	(None,	74, 74, 32)	0
flatten (Flatten)	(None,	175232)	0
dense (Dense)	(None,	150)	26284950
activation_1 (Activation)	(None,	150)	0
dropout (Dropout)	(None,	150)	0
dense_1 (Dense)	(None,	1)	151
activation 2 (Activation)	(None,	1)	0

Total params: 26,285,997 Trainable params: 26,285,997 Non-trainable params: 0

7.2 Feature 2

```
import cv2 import
numpy as np
from keras.preprocessing import
image from keras.models import
load_model from twilio.rest import
Client from playsound import
playsound
model=load_model('forest1.h5')
video=cv2.VideoCapture(0)
name=['forest','with fire']
while(True):
 ret,frame=video.read()
 cv2.imshow('frame',frame)
 cv2.imwrite('image.jpg',frame)
 img=image.load_img('train_set/forest/NoFire
(1).bmp',target_size=(64,64))
 x=image.img_to_array(img)
 x=np.expand_dims(x,axis=0)
 pred=model.predict(x)
   index=np.argmax(pred)
   if index==0:
account sid='AC50d663c8a7c2d8b35b1fc09dfda93bda'
     auth_token='86f345babfa094d1015a0e1137dbb679'client
     =Client(account_sid,auth_token)
     message=client.messages \
    .create(body='-----Fire is detected, Stay Alert !!! ------',
           from_='+19457581434',to='+916369 659 356')
     print(message.sid)
    print('Fire detected')
    print("Alert Message sent!")
     playsound('tornado-siren.mp3')
  else:
    print('No Danger')
    cv2.imshow("image.jpg",frame)
    if cv2.waitkey(2)\&0xff == ord('q'):
        break
video.release()
cv2.destroyAllWindows()
```

8.TESTING

8.1 Test Cases & User Acceptance Testing

Testing with input video recording from user end:

```
def message(val):
 if val==1:
  from twilio.rest import Client
  print('Forest fire')
  account sid='AC882fb904c019982a8338bfce6209f0b7'
  auth token='69359c9ed0bffcfd52e1d316866304e2'
  client=Client(account_sid,auth_token)
  message=client.messages \
   .create(
     body='forest fire is detected, stay alert',
     #use twilio free number
     from ='+18318513711',
     #to number
     to='+91 89397 68258')
  print(message.sid)
  print("Fire detected")
  print("SMS Sent!")
 elif val==0:
  print('No Fire') from matplotlib import pyplot as plt
#import load model from keras.model
from keras.models import load model
#import image from keras
from tensorflow.keras.preprocessing import image
img1 = image.load img('/content/drive/MyDrive/IBM forestfire/Dataset/Dataset/test set/with fire/Wild
fires.jpg',target_size=(128,128))
Y = image.img_to_array(img1)
x = np.expand_dims(Y,axis=0)
val = model.predict(x)
plt.imshow(img1)
plt.show()
message(val)
img2 = image.load_img('/content/drive/MyDrive/IBM_forestfire/Dataset/Dataset/test_set/with_fire/horse
shoe_bay_fire.jpg',target_size=(128,128))
Y = image.img_to_array(img2)
x = np.expand_dims(Y,axis=0)
val = model.predict(x)
plt.imshow(img2)
plt.show()
message(val)
```

OUTPUT:

Forest fire SMaad17a5770e383ee435a41b939a5b124 Fire detected SMS Sent!

Forest fire SM1fa39487133a96009462a9819b79c093 Fire detected SMS Sent!

9.Result

9.1 Performance Metrics

```
loss: 0.3438 - accuracy: 0.8483 - val_loss: 0.2485 - val_accuracy: 0.958

loss: 0.3816 - accuracy: 0.8483 - val_loss: 0.2569 - val_accuracy: 0.958

loss: 0.4068 - accuracy: 0.8391 - val_loss: 0.2547 - val_accuracy: 0.958

loss: 0.3312 - accuracy: 0.8437 - val_loss: 0.2601 - val_accuracy: 0.950

loss: 0.5621 - accuracy: 0.8368 - val_loss: 0.2679 - val_accuracy: 0.958
```

10. ADVANTAGES & DISADVANTAGES

Advantages:

- Easily detect and Estimate the Forest Fire.
- Most Accurate
- Flexible Model which can give maximized outcome
- No Specific Requirements needed to implement the model

Disadvanatges:

- Training model is time consuming process.
- Error in CV can cause damage to camera
- Access of camera are prohibited due to personal issues

11. CONCLUSION:

Thus we have constructed a model that can identify the effects of the forest fire and it can analyse the forest fire by advanced AI techniques and CNN Algorithm then the Prediction model is Checked and then the model is connected with Twilio account credentials of the Developer consisting of phone numbers of the persons in the surroundings of the people in the area of easy forest fire zone then an security sound alert system is developed to make a alert sound which is downloaded from internet then the entire model is deployed to the IBM Cloud account that we have created was made with the studies we have done.

12. FUTURE SCOPES:

- 1. It can be developed as a Web or Android Application.
- 2. In future Alternate Advanced technologies can be Implemented.
- 3. The Identification and tracking system can be implemented if possible.

13. APPENDIX:

Source Code: https://github.com/IBM-EPBL/IBM-Project-23510-1664355259/blob/main/Final%20Deliverables/Final_Code.ipynb

GitHub & Project Demo Link:

Github: https://github.com/IBM-EPBL/IBM-Project-23510-1664355259

Demo Link: https://drive.google.com/file/d/1wxVAC-

xULMvsAENdGO_CIGMSS8gLn6B6/view