

Présentation BE VHDL PILOTE DE BARRE FRANCHE

Présenté par: NOÉ JONAS HOUNTONDJI Monique MESSAOUDI Sara

Encadré par:Mr Thierry PERISSE

PLAN DE PRÉSENTATION

- I. PRÉSENTATION DU PROJET
- II. PRÉSENTATION DES OUTILS
- III. FONCTION ANÉMOMÈTRE
- IV. FONCTION GESTION VÉRIN
 - V. Bonus: GESTION DES BOUTONS POUSSOIRS
- VI. CONCLUSION

I. PRÉSENTATION DU PROJET

II. PRÉSENTATION DES OUTILS

III.1. Analyse fonctionnelle

III.2. Machine à états

III.3. Test et simulation

Mode continu

III.3. Test et simulation

Mode monocoup

III. FONCTION ANÉMOMÈTRE (Partie logicielle)

III.4. Implémentation avec Nios II

IV. FONCTION GESTION VÉRIN

IV.1. Analyse fonctionnelle

IV. FONCTION GESTION VÉRIN

IV.3. Test de l'ADC

- 1- Nous avons mesuré Vmax = 4.72V sur la broche VCC.
- 2- A partir des LED allumées, on a converti la trame en décimal

Vcalculé = trame décimal * Vmax / 2¹²

Vcalculé = 2.63V.

3- Nous avons mesuré Vmesuré = 2.33V

Vcalculé =Vmesuré

IV. FONCTION GESTION VÉRIN

IV.4. Implémentation avec Nios II

```
Lecture des données
Boutons = 3
data_anemometre = 0
config_anemo = 3
freq= 2000
duty= 1500
butee_d= 1320
butee_g= 410
config= 1
angle_barre= 4095
```


V. Bonus: GESTION DE BOUTONS POUSSOIRS

V.1. Analyse fonctionnelle

V. Bonus: GESTION DE BOUTONS POUSSOIRS

V.2. Machine à états

V. Bonus: GESTION DE BOUTONS POUSSOIRS

V.3. Test et simulation

VI. Conclusion

