Лекция 3 по курсу «Основы цифровой обработки сигналов» 16 сентября 2024 г.

1.5. Дискретное преобразование Фурье (ДПФ)

- Введение. Две формы записи ДПФ.
- ДПФ для последовательностей отсчетов конечной длительности. Форма записи ДПФ. Связь между ДПФ и ДВПФ в точках v = n/N. Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding). Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n/N$.
- ДПФ для периодических последовательностей. Форма записи ДПФ. Связь между ДПФ и ДВПФ для периодических последовательностей.
- Частотная ось ДПФ.
- Свойства ДПФ.
- Дискретные экспоненциальные функции (ДЭФ).

Введение. Две формы записи ДПФ.

Введение. Две формы записи ДПФ.

Пусть x[k] — последовательность отсчетов сигнала либо длиной в N отсчетов, либо периодическая с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Примечание. Именно такая запись ДПФ используется в качестве основной в библиотеках Python SciPy, NumPy, в Octave и MATLAB.

Далее в лекции мы будем использовать такую запись ДПФ для последовательностей отсчетов конечной длительности.

Наряду с приведенной парой формул, существует запись ДПФ с нормирующем множителем 1/N в прямом преобразовании:

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Далее в лекции мы будем использовать такую запись ДПФ для периодических последовательностей отсчетов. Для того, чтобы различать две записи, будем использовать обозначения $\tilde{X}[n]$ и X[n]. Очевидно, что

$$\tilde{X}[n] = \frac{1}{N}X[n].$$

Введение. Две формы записи ДПФ.

Пример. Пусть
$$x[k] = \cos\left(2\pi \frac{3}{16}k\right)$$
.

Вычислить 16-точечное ДПФ этой последовательности $\tilde{X}[n]$ по формуле с нормирующим множителем 1/N (N=16) в прямом преобразовании.

Решение.

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \cos(2\pi \frac{3}{16}k) \exp(-j2\pi \frac{n}{N}k) =$$

$$= \frac{1}{16} \sum_{k=0}^{15} \left\{ \frac{1}{2} \exp\left(j2\pi k \left(\frac{3}{16} - \frac{n}{16}\right)\right) + \frac{1}{2} \exp\left(-j2\pi k \left(\frac{3}{16} + \frac{n}{16}\right)\right) \right\}$$

Рассмотрим отдельно сумму вида $\sum\limits_{k=0}^{15} \exp \left(j2\pi k \frac{m}{16}\right)$ при

условии, что m — целое число, не равное нулю и не кратное 16. В таком случае по формуле суммы геометрической прогрессии

$$\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \frac{1 - \exp(j2\pi m)}{1 - \exp(j2\pi m \frac{1}{16})} = 0.$$

В случае когда m либо равно нулю, либо кратно 16, будет

выполняться
$$\sum\limits_{k=0}^{15} \exp\biggl(j2\pi k \, \frac{m}{16}\biggr) = \sum\limits_{k=0}^{15} \mathrm{e}^0 = 16$$
. В итоге на

периоде есть только два ненулевых отсчета ДПФ — $\tilde{X}[3] = 1/2$ и $\tilde{X}[13] = 1/2$.

ДПФ для последовательностей отсчетов конечной длительности.

Форма записи ДПФ

Пусть x[k] — последовательность отсчетов сигнала длиной в N отсчетов $k=0,1,\ldots,N-1$. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right), \quad k = 0, 1, ..., N-1.$$

Функцию X[n] обычно рассматривают только для значений $n=0,1,\dots,N-1$, при этом она является периодической с периодом N , $n\in Z$.

В обратном преобразовании необходимо ограничить длительность восстанавливаемой последовательности отсчетов сигнала, т.е. рассматривать x[k] для значений

 $k=0,1,\dots,N-1$. Если длительность не ограничить, то будет восстановлена последовательность, являющаяся периодическим продолжением x[k].

Связь между ДПФ и ДВПФ в точках v = n / N.

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

ДПФ для последовательности x[k], имеет следующий вид:

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j2\pi \frac{n}{N}k\right).$$

Сравнивая формулы, в точках v=n/N получаем равенство

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n]$$

Это означает, что коэффициенты ДПФ X[n] равны отсчетам функции X(v), взятым в точках v = n/N (с шагом $\Delta v = 1/N$).

Пример.

Рассмотрим для N = 20 последовательность отсчетов

$$x[k] = \begin{cases} \sin\left(2\pi \frac{4,5}{20}k\right) + \sin\left(2\pi \frac{7,5}{20}k\right), 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

ДПФ и ДВПФ этой последовательности для частот $v \in [0;1]$ изображены по модулю на рисунке. Заметим, что в точках v = n/20

$$X(\mathbf{v})\big|_{\mathbf{v}=n/20}=X[n],$$

т.е. значения ДВПФ и ДПФ (с точностью до использованной нормировки) совпадают. Расстояние между соседними отсчетами по оси частот $\Delta v = 1/N = 1/20 = 0.05$.

Заметим, что частоты синусоид в ней не совпадают с бинами ДПФ (1 бин соответствует 1/N):

$$v_1 = \frac{4.5}{20} = 0.225$$
, $v_2 = \frac{7.5}{20} = 0.375$.

В ДВП Φ вблизи 1 этих частот мы наблюдаем максимумы.

Вопрос. Как улучшить качество визуализации этих максимумов с помощью ДПФ?

Вопрос о смещении максимумов будет рассмотрен в весеннем семестре.

Интерполяция ДВПФ добавлением нулевых отсчетов в сигнал (Zero Padding)

Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим M — точечную последовательность. Добавим в исходную последовательность x[k] M-N отсчетов, равных нулю:

$$y[k] = \begin{cases} x[k], 0 \le k \le N - 1; \\ 0, N \le k \le M - 1. \end{cases}$$

Ее ДПФ M – точечное и определяется формулой

$$Y[n] = \sum_{k=0}^{M-1} y[k] \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{M}nk\right).$$

При этом ДВПФ не изменяется:

$$Y(v) = \sum_{k=0}^{M-1} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВПФ, поскольку число точек $\mathbf{v}_n = n \, / \, M$ на одном периоде больше, чем $\mathbf{v}_n = n \, / \, N$.

Возврат к примеру на слайде 5.

Теперь дополним рассматриваемый в ДПФ участок сигнала нулевыми отсчетами до длины 50. Отсчетов ДПФ на одном периоде станет больше, расстояние между ними $\Delta v = 1/50$.

Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n/N$

Рассмотрим N- точечную последовательность x[k]. Ее ДВПФ

$$X(v) = \sum_{k=0}^{N-1} x[k] \exp(-j2\pi vk).$$

Обратное ДПФ для последовательности x[k]

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

$$X(v) = \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi vk\right) =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X[n] \sum_{k=0}^{N-1} \exp\left(-j2\pi \left(v - \frac{n}{N}\right)k\right).$$

Рассмотрим отдельно множитель $\sum\limits_{k=0}^{N-1} \exp \left(-j2\pi (\mathbf{v}-n/N)k\right)$.

Это сумма N членов геометрической прогрессии с первым членом $b_1=1$, и знаменателем $q=\exp\left(-j2\pi(\nu-n/N)\right)$.

В точках $v\neq n/N$, где $q\neq 1$, получаем (используя известные формулы $S_N=b_1(1-q^N)/(1-q)$ и $\sin\phi=(e^{j\phi}-e^{-j\phi})/(2j)$):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - n/N\right)N\right)} =$$

$$= \frac{e^{-j\pi(\nu - n/N)N} \left\{\exp\left(j\pi\left(\nu - n/N\right)N\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}}{e^{-j\pi(\nu - n/N)} \left\{\exp\left(j\pi\left(\nu - n/N\right)\right) - \exp\left(-j\pi\left(\nu - n/N\right)N\right)\right\}} =$$

$$= \exp\left(-j\pi\left(\nu - n/N\right)(N-1)\right) \frac{\sin\left(\pi(\nu - n/N)N\right)}{\sin\left(\pi(\nu - n/N)\right)}$$

Подставив формулу для суммы в связь, получаем интерполяционную формулу восстановления континуальной функции X(v) по коэффициентам ДПФ X[n]:

$$X(v) = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \frac{\sin(\pi(v-n/N)N)}{\sin(\pi(v-n/N))} \exp(-j\pi(v-n/N)(N-1)).$$

Заметим, что для последовательностей конечной длительности ДВПФ непрерывно, а значит для интерполяционной формулы выполняется

$$\lim_{v\to n/N} X(v) = X[n].$$

\mathcal{M} ДПФ периодических последовательностей \mathcal{M} \mathcal{M} . Форма записи ДПФ

Пусть x[k], $k \in \mathbb{Z}$ — периодическая последовательность отсчетов сигнала с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

 $\tilde{X}[n]$ может рассматриваться как N- точечная последовательность коэффициентов ДПФ (отсчетов ДПФ), где $n=0,1,\ldots,N-1$. $\tilde{X}[n]$ может также рассматриваться как периодическая последовательность с периодом $N,\ n\in Z$. В обратном преобразовании последовательность x[k] также получится периодической.

смотри далее!

Связь между ДПФ и ДВПФ для периодических последовательностей.

Пусть аналоговый периодический сигнал x(t) с периодом T дискретизован с шагом $\Delta t = T/N$. Тогда на одном периоде x(t) будет содержаться N отсчетов (если крайний правый отсчет попадает на границу периода, то будем считать его относящимся к следующему периоду). Выделим для последовательности отсчетов x[k] один период

$$x_N[k] = \begin{cases} x[k], & 0 \le k \le N-1; \\ 0, & \{k < 0\} \cup \{k \ge N\}. \end{cases}$$

Пусть $x_N[k] \leftrightarrow X_N(v)$. Последовательность x[k] может быть представлена в виде дискретной сверки

$$x_N[k] \otimes \sum_{m=-\infty}^{\infty} \mathbf{1}[k-mN].$$

Причем

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k - mN \right]^{DTFT} \stackrel{1}{\longleftrightarrow} \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{N} \right).$$

Тогда

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

Последовательность $x_N[k]$ имеет конечную длительность, является абсолютно суммируемой. $X_N(v)$ непрерывна.

$$X(v) = \frac{1}{N} X_N(v) \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right).$$

При этом X(v) (ДВПФ периодической последовательности x[k]) имеет дискретную структуру, которой в континуальной записи соответствует некоторый периодический набор δ -функции. Заметим, что для каждого слагаемого в сумме по свойствам δ -функции выполняется равенство

$$\frac{1}{N}X_N(\nu)\delta\left(\nu-\frac{n}{N}\right) = \frac{1}{N}X_N\left(\frac{n}{N}\right)\delta\left(\nu-\frac{n}{N}\right).$$

Введем периодическую функцию дискретного аргумента $\tilde{X}[n]$, значения которой будут соответствовать площадям дельта-функций в X(v) в точках v=n/N:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(v - \frac{n}{N}\right).$$

При этом

$$\tilde{X}[n] = \frac{1}{N} X_N \left(\frac{n}{N} \right) = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k).$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv = \int_{0}^{1} X(v) \exp(j2\pi vk) dv =$$

$$= \int_{0}^{1} X_{N}(v) \frac{1}{N} \sum_{n=-\infty}^{\infty} \delta\left(v - \frac{n}{N}\right) \exp(j2\pi vk) dv =$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} X_{N}(\frac{n}{N}) \exp(j2\pi \frac{n}{N}k).$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k).$$

Получаем следующую пару формул

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp(-j2\pi \frac{n}{N}k),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi \frac{n}{N}k),$$

определяющую прямое и обратное дискретное преобразование Фурье (ДПФ). В ДПФ частотная (n) и временная (k) переменная дискретны, функция $\tilde{X}[n]$ периодична с периодом N, а в качестве главного периода для отсчетов ДПФ выбирают такой, на котором $n=0,\ldots,N-1$.

Пример. Предположим, что имеется периодическая последовательность ($\infty < k < +\infty$)

$$x[k] = \cos(2\pi \frac{3}{16}k).$$

Учитывая, что

$$\cos(2\pi \frac{3}{16}k) = \frac{1}{2}\exp(j2\pi \frac{3}{16}k) + \frac{1}{2}\exp(-j2\pi \frac{3}{16}k),$$

получаем для ДВПФ этой последовательности

$$X(v) = \sum_{n=-\infty}^{\infty} \frac{1}{2} \delta(v - \frac{3}{16} - n) + \frac{1}{2} \delta(v + \frac{3}{16} - n).$$

X(v) содержит две δ -функции с площадями 1/2 на каждом периоде. Рассмотрим период $0 \le v < 1$ (правую крайнюю точку можем не включать из-за периодичности X(v)). На нем содержится две δ -функции в точках $v_1 = \frac{3}{16}$ и $v_2 = \frac{13}{16}$. Последовательность имеет период N = 16 точек. Это означает, что можно установить значения 16-точечного ДПФ $\tilde{X}[3] = 1/2$, $\tilde{X}[13] = 1/2$, а в остальных точках главного периода $\tilde{X}[n] = 0$.

Пример. ДВПФ и окна

Пример.

Предположим, что нужно вычислить ДВПФ последовательности отсчетов y[k] = x[k]w[k], где

$$x[k] = \cos(2\pi \frac{3}{16}k),$$

w[k] — прямоугольное окно длиной N = 16 отсчетов:

$$w[k] = \sum_{m=0}^{15} \mathbf{1}[k-m].$$

Решение. Заметим, что

$$W(v) = e^{-j(N-1)\pi v} \frac{\sin(N\pi v)}{\sin(\pi v)},$$

$$X(v) = 0.5 \sum_{m=-\infty}^{\infty} \delta(v - \frac{3}{16} - m) + 0.5 \sum_{m=-\infty}^{\infty} \delta(v + \frac{3}{16} - m).$$

Способ 1. ДВПФ последовательности Y(v) может быть представлено в виде циклической свертки

$$Y(\mathbf{v}) = \int_{-1/2}^{1/2} X(\tilde{\mathbf{v}}) W(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}} = \int_{-1/2}^{1/2} W(\tilde{\mathbf{v}}) X(\mathbf{v} - \tilde{\mathbf{v}}) d\tilde{\mathbf{v}}$$

Используя фильтрующее свойство дельта-функции

$$\int_{a}^{b} W(v)\delta(v-v_{1})dv = \begin{cases}
W(v_{1}), a < v_{1} < b, \\
0.5W(v_{1}), (v_{1} = a) \cup (v_{1} = b), \\
0, (v_{1} < a) \cup (v_{1} > b),
\end{cases}$$

получаем, что

$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

Пример. ДВПФ и окна

Способ 2. Аналогично через теорему смещения

$$y[k] = \left(\frac{1}{2}\exp(j2\pi k\frac{3}{16}) + \frac{1}{2}\exp(-j2\pi k\frac{3}{16})\right)w[k],$$
$$Y(v) = 0.5W(v - \frac{3}{16}) + 0.5W(v + \frac{3}{16}).$$

ДПВФ последовательности y[k]

$$Y(v) = \frac{1}{2} \exp\left(-j(N-1)\pi(v-\frac{3}{16})\right) \frac{\sin(N\pi(v-\frac{3}{16}))}{\sin(\pi(v-\frac{3}{16}))} +$$

$$+\frac{1}{2}\exp\left(-j(N-1)\pi(\nu+\frac{3}{16})\right)\frac{\sin(N\pi(\nu+\frac{3}{16}))}{\sin(\pi(\nu+\frac{3}{16}))}.$$

Частотная ось ДПФ

У 6 Частотная ось ДПФ

Отчету N- точечного ДПФ с номером n в случае сигнала конечной длительности соответствует значение ДВПФ в точке v=n/N по оси нормированных частот:

$$X(\mathbf{v})\big|_{\mathbf{v}=n/N} = X[n].$$

Если рассматривается периодическая последовательность отсчетов, и коэффициенты ДПФ вычисляются по периоду последовательности, то весам дельта-функций в точках v = n / N в ДВПФ соответствуют отсчеты ДПФ с номерами n:

$$X(v) = \sum_{n=-\infty}^{\infty} \tilde{X}[n] \,\delta\left(v - \frac{n}{N}\right).$$

Эти два обстоятельства позволяют сопоставить отсчётам ДПФ частоты в спектре дискретизованного сигнала. Учитывая, что $v=f \ / \ f_{\pi} = f \Delta t$, где f_{π} — частота дискретизации, Δt — шаг дискретизации, получаем, что отсчету с номером n соответствует частота $f=nf_{\pi}\ / \ N=n\ / \ (N\Delta t)$ Гц. Разрешение по оси частот при ДПФ анализе составляет $f_{\pi}\ / \ N$ Гц.

Частотная	Связь	Разрешение	Диапазон
переменная и	частотной	по частоте	изменения
ee	переменной		частоты,
размерность	с номером		соответствующий
	отсчета ДПФ		отсчетам $[0,N)$
f , [Гц]	$f = \frac{nf_{_{\rm II}}}{N}$	$\Delta f = \frac{f_{\pi}}{N}$	$[0,f_{_{ m I\!\! I}})$
ω, [рад/с]	$\omega = \frac{n\omega_{\text{A}}}{N}$	$\Delta \omega = \frac{\omega_{\pi}}{N}$	$[0,\omega_{_{ m I\! I}})$
v, безразмерная	$v = \frac{n}{N}$	$\Delta v = \frac{1}{N}$	[0,1)
θ,[рад]	$\theta = 2\pi \frac{n}{N}$	$\Delta\theta = \frac{2\pi}{N}$	$[0,2\pi)$

В таблице ниже рассмотрены основные способы введения частотной оси для отсчетов ДПФ.

Частотная ось ДПФ

Заметим, что $f=nf_{\pi}/N$ Гц — это частота в спектре дискредитированного сигнала, который при отсутствии наложения спектров образуется путем периодического продолжения (повторения) спектра исходного аналогово сигнала с периодом, равным частоте дискретизации (f_{π} в случае оси в Гц или 1 в случае оси нормированных частот). Это означает, что отсчет ДПФ с номером n будет соответствовать в спектре аналогового сигнала частоте $f \in [-f_{\pi}/2; f_{\pi}/2]$, такой, что $f = (n+mN)f_{\pi}/N$, где m — целое число.

Пример.

Частотная ось ДПФ

Пояснения к примеру.

Рассмотрим для $f_0 = 5$ Γ ц сигнал длительностью 1 с вида $x_a(t) = \sin\left(2\pi f_0 t\right), \ 0 \le t < 1.$

Выберем частоту дискретизации $\,f_{_{\rm I\!I}} = 20\,\,\Gamma_{\rm I\!I}\,\,(\Delta t = 0.05\,\,{\rm c}\,)\,$

Последовательность отсчетов дискретизованного сигнала

$$x[k] = x_a(k\Delta t) = \sin\left(2\pi \frac{f_0}{f_{\pi}}k\right).$$

Спектр $X_{{}_{\rm A}}(f)$ дискретизованного сигнала связан со спектром $X_a(f)$ аналогового сигнала соотношением

$$X_{\mathrm{I}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X_{\mathrm{a}}(f - mf_{\mathrm{I}}).$$

где ${
m T}$ определено соотношением $x[k]={
m T} x_a(k\Delta t)$. Если бы эффекта наложения не было, то $X_{_{
m H}}(f)$ и $X_a(f)$ совпадали бы на интервале $\left[-f_{_{
m H}}/2,\,f_{_{
m H}}/2\right]$, т.е. от $-10~{
m \Gamma}$ ц до $10~{
m \Gamma}$ ц.

Заметим, что отсчеты ДПФ размерности N=32 для n=0,1,...,N-1 находятся на полуинтервале $[0,\,f_\pi)$.

Свойства ДПФ

Свойства ДПФ

Далее запись вида $x[k]_N$ обозначает $x[k \mod N]$. Символ * обозначает здесь комплексное сопряжение.

далее запись вида $x_{[K]_N}$ обозначает $x_{[K]_N}$ посту ј. Символ обозначает здесь комплекеное соприжение.				
N —точечные ДПФ $ ilde{X}[n]$ и	$\widetilde{Y}[n]$	N-точечное ДПФ $X[n]$ и $Y[n]$		
(с нормирующим множителем $1/N$ в прямом преобразовании)		(без нормирующего множителя $1/\sqrt{N}$ в прямом		
		преобразовании)		
$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$		$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$		
$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$		$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right).$		
	<i>N−</i> точечные ДП	\widetilde{I} Ф $\widetilde{X}[n]$ и $\widetilde{Y}[n]$	N–точечное ДПФ $X[n]$ и $Y[n]$	
Сигналы $x[k]$ и $y[k]$	(с нормирующим м	ножителем $1/\sqrt{N}$ в	(без нормирующего множителя	
	прямом преобразовании)		1/N в прямом преобразовании)	
Линейность				
$\alpha x[k] + \beta y[k], \ \alpha, \beta \in \mathbb{C}$	$\alpha \tilde{X}[n] + \beta \tilde{Y}[n]$		$\alpha X[n] + \beta Y[n]$	
Единичный импульс				
[1, k = 0,	$\tilde{X}[n] \equiv \frac{1}{N}$		$X[n] \equiv 1$	
$x[k] = 1[k] = \begin{cases} 1, k = 0, \\ 0, k \neq 0. \end{cases}$	$\Lambda[n]$	$-\frac{1}{N}$	$\uparrow X[n]$	
$ \begin{array}{c} 1 \\ 1 \\ 0 \\ \hline -2 -1 0 1 2 \end{array} $	$ \begin{array}{c} 1 \\ N \end{array} $ $ \begin{array}{c} 1 \\ N \end{array} $ $ \begin{array}{c} N = 4 \\ 0 \\ 1 \\ 2 \\ 3 \end{array} $		$ \begin{array}{c c} 1 & & & N = 4 \\ 0 & & & & \\ 0 & 1 & 2 & 3 \end{array} $	

Свойства ДПФ

Сигналы $x[k]$ и $y[k]$	N –точечные ДПФ $ ilde{X}[n]$ и $ ilde{Y}[n]$	N–точечное ДПФ $X[n]$ и $Y[n]$		
Теорема запаздывания				
$x[k-m]_N$	$\tilde{X}[n]\exp\left(-j\frac{2\pi}{N}nm\right)$	$X[n]\exp\left(-j\frac{2\pi}{N}nm\right)$		
	Теорема смещения			
$x[k]\exp\left(\pm j\frac{2\pi}{N}n_0k\right), n_0 \in \mathbb{Z}$	$\left[\tilde{X}[n \mp n_0]_N\right]$	$X[n \mp n_0]_N$		
Симметрия				
$x^*[k]$	${ ilde X}^*[N-n]_N,$	$X^*[N-n]_N$,		
$x[N-k]_N$	$\tilde{X}[N-n]_N$	$X[N-n]_N$		
$x[k] = x^*[k]$	$\tilde{X}[n] = \tilde{X}^*[N-n]_N$	$X[n] = X^*[N-n]_N$		
действительная последовательность				
$x[k] = -x^*[k]$	$\tilde{X}[n] = -\tilde{X}^*[N-n]_N$	$X[n] = -X^*[N-n]_N$		
мнимая последовательность				
Теорема о свертке (во временной области)				
$\sum_{m=0}^{N-1} x[m] y[k-m]_N$	$N\widetilde{X}[n]\widetilde{Y}[n]$	X[n]Y[n]		
Произведение сигналов (теорема о свертке в частотной области)				
x[k]y[k]	$\sum_{m=0}^{N-1} \tilde{X}[m] \tilde{Y}[n-m]_{N}$	$\frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[n-m]_{N}$		

Свойства ДПФ

Равенство Парсеваля			
x[k], y[k]	$\frac{1}{N} \sum_{k=0}^{N-1} x[k] y^*[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \tilde{Y}^*[n],$ $\frac{1}{N} \sum_{k=0}^{N-1} x[k] ^2 = \sum_{n=0}^{N-1} \tilde{X}[n] ^2.$	$\sum_{k=0}^{N-1} x[k] y^*[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] Y^*[n],$ $\sum_{k=0}^{N-1} x[k] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} X[n] ^2.$	

Пример. Циклический сдвиг последовательности.

Пусть X[n] — восьмиточечное ДПФ последовательности $x[k] = \{0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8\}$

изображенной на графике. Изобразить последовательность y[k], ДПФ которой имеет вид

$$Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n]$$

для m = 3, m = 4, m = 5.

Решение.

Воспользуемся теоремой запаздывания для ДПФ:

Если
$$x[k] \stackrel{DFT}{\longleftrightarrow} X[n]$$
, то

$$x[k-m]_N \stackrel{DFT}{\longleftrightarrow} X[n] \exp\left(-j\frac{2\pi}{N}nm\right).$$

Тогда последовательность y[k] получается путем циклического сдвига x[k] на m отсчетов вправо (для положительных m):

$$y[k] = x[k-m]_N = x[(k-m) \mod N].$$

Дискретные экспоненциальные функции

Пример. Симметрия ДПФ.

Пусть дана последовательность $x[k] = \cos(2\pi k 0, 2)$, k = 0,1,2,...,15. Эта последовательность не является периодом для $\cos(2\pi k 0, 2)$. Частота косинусоиды $v_{\cos} = 0, 2$ не совпадает с частотами отсчетов ДПФ $v_n = n/N$, N = 16. Максимально близкий отсчет к частоте $v_{\cos} = 0, 2$ — это n = 3 ($v_3 = 0,1875$). ДПФ этой последовательности представлено на рисунке.

Для действительной последовательности $x[k] = x^*[k]$ $x[k] \leftrightarrow X^*[N-n]_N$. Это означает, что $X[n] = X^*[N-n]_N$. Например, $X[3] = X^*[13]$.В данном случае мы наблюдаем симметрию действительной части и модуля и антисимметрию мнимой части и фазы коэффициентов ДПФ относительно отсчета с номером n = N/2 = 8.

Дискретные экспоненциальные функции (ДЭФ) Функции ДЭФ определяются следующим образом:

$$\varphi_n[k] = W_N^{nk} = \exp\left(j\frac{2\pi}{N}nk\right).$$

Здесь n и k — целые числа, n, k = 0, 1, ..., N-1, т. е. число функций в системе равно числу отсчетов каждой функции. Система ДЭФ является ортонормированной и полной в пространстве $\mathbf{l}_2^{\mathbf{N}}$.

Основные свойства ДЭФ.

- 1. ДЭФ являются комплекснозначными функциями.
- 2. Матрица $\left\|W_N^{nk}\right\|$ является симметричной.

Дискретные экспоненциальные функции

- 3. Система ДЭФ периодична с периодом N по обеим переменным.
- 4. Система ДЭФ ортогональна:

$$\sum_{k=0}^{N-1} \varphi_n[k] \varphi_m^*[k] = \sum_{k=0}^{N-1} W_N^{nk} W_N^{-mk} = \begin{cases} N, & n=m, \\ 0, & n \neq m. \end{cases}$$

5. Система ДЭФ мультипликативная:

$$W_N^{nk} W_N^{mk} = W_N^{lk},$$

где $l = (n+m)_{\bmod N}$, т. е. индексы суммируются по модулю N .

6. Ряд Фурье по этой системе

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n]W_N^{nk}$$
,

где коэффициенты Фурье

$$\tilde{X}[n] = \frac{1}{N} \sum_{n=0}^{N-1} x[k] W_N^{-nk}.$$

Эти два соотношения определяют пару (прямое и обратное) дискретного преобразования Фурье (ДПФ).

Пример. Вычислить 16-точечное ДПФ для периодической последовательности

$$x[k] = \cos\left(2\pi \frac{3}{16}k\right).$$

Обратное ДПФ:

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi k \frac{n}{16}) = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{-j2\pi k \frac{3}{16}}$$
$$x[k] = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{j2\pi k \frac{7}{16}}$$

Отсюда

$$\tilde{X}[n] = \begin{cases} \frac{1}{2}, & n = \pm 3 + 16m, m \in \mathbb{Z}, \\ 0, & n \neq \pm 3 + 16m, m \in \mathbb{Z}. \end{cases}$$

Значения ДПФ на основном периоде (n = 0, 1, ..., N-1)

n	3, 13	0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15
$ ilde{X}[n]$	0,5	0

Задачи с лекции

Задачи для самостоятельного решения с лекции 16 сентября 2024 г.

№1. Вычислить ДВПФ прямоугольного окна длины N = 8:

$$w_{\text{пр}}[k] = \begin{cases} 1, & \text{при } 0 \le k \le N - 1, \\ 0, & \text{при других } k. \end{cases}$$

Изобразить по модулю на одном графике:

- а) ДВПФ и 8-точечное ДПФ для последовательности отсчетов данного окна;
- б) ДВПФ и 16-точечное ДПФ для той же последовательности (дополненной нулями справа до 16 отсчетов).

№2. Найти ДПФ₁₆ 16 - точечных последовательностей

a)
$$x[k] = \sum_{m=0}^{15} \mathbf{1}[k-m]$$
,

- 6) $y_1[k] = x[k]\cos(2\pi k5/16)$,
- B) $y_2[k] = x[k]\sin(2\pi k5/16)$.

Для всех пунктов задания изобразить график действительной и мнимой части коэффициентов ДПФ.

№3. а) Определить для N = 16 ДП Φ_{16} $W_B[n]$ окна Блэкмана $W_B[k]$. Построить график для $|W_B[n]|$.

$$w_B[k] = \begin{cases} 0,42-0,5\cos\left(2\pi\frac{1}{N}k\right) + 0,08\cos\left(2\pi\frac{2}{N}k\right), \\ \text{при } k = 0,1,2,\dots,N-1, \\ 0, \text{ при других } k. \end{cases}$$

б) Найти ДП Φ_{16} Y[n] 16 - точечной последовательности $y[k] = w_B[k] \cos(2\pi k5/16)$, где $w_B[k]$ — окно Блэкмана длиной в 16 отсчетов. Построить график для Y[n].

№4. Пусть X[n]- четырехточечное ДПФ последовательности x[k], изображенной на графике.

Изобразить последовательность конечной длительности y[k], ДПФ которой имеет вид

$$Y[n] = \exp\left(-j2\pi \frac{1}{4}n\right)X[n].$$