Weight averaging for RLHF

Alexandre Ramé

Google DeepMind

What is model merging?

We consider 2 deep models, with different parameters θ , sharing the same non-linear architecture (with attention/relu/etc layers).

We want to use them together; can we merge them?

Weight averaging? Really? Despite the non-linearities?

Model merging by weight averaging

When fine-tuning from a shared pre-trained initialization,

we can merge models (and their abilities) by weight averaging

Weight averaging as an efficient and improved ensembling strategy

Name	Weight averaging	Prediction averaging (traditional ensembling)
What	Inference with averaged model Predictions	Inference with model 1 Predictions 1 Averaged predictions Inference with model 2
Inference cost	1 single forward	2 forwards
Constraint	Weights fine-tuned from a shared pretrained init for a given architecture	No constraint
Reliability in	Generalizes under distribution shifts thanks to	Generalizes under distribution shifts thanks to

variance reduction

Memorization of corrupted labels

variance reduction

Reduced memorization by removing

run-specific features

OOD

Robustness to

corruptions

RLHF in one slide

Reward model

WARM: Weight Averaged Reward Models (ICML 2024)

The problem: reward hacking

Misalignment as the policy exploits errors in the RM without really improving human preferences (because of label noise and distribution shifts).

Experiments: better when merging more RMs

Our solution: merge reward models

Train several RMs, weight average them, and then run RLHF against the WARM.

WARP: Weight Averaged Rewarded Policies (arXiv 2024)

We use the merged policy as an advanced new initialization for subsequent WARP iterations.

Rewarded soups: towards Pareto-optimal alignment (NeurIPS 2023) and Conditioned Language Policy (arXiv since yesterday)

Goal: Maximizing a linear combination of rewards (for multi-objective RLHF).

Where the reward weightings λ are usually manually fixed before training

$$heta = rgmax egin{array}{c} \lambda_1 R_1 + \lambda_2 R_2 + \cdots + \lambda_M R_M \ & heta = & \lambda_1 heta_1 + \lambda_2 heta_2 + \cdots + \lambda_M heta_M \end{array}$$

Our solution: Learn $\{\theta_i\}_{1 \le i \le M}$ (one for each reward) and interpolate them for improved results and flexibility at deployment.

Thank you