Maximum Margin Interval Trees

Alexandre Drouin¹, Toby Dylan Hocking², François Laviolette¹

¹Département d'informatique et de génie logiciel, Université Laval ²Centre d'innovation Génome Québec et Université McGill, Université McGill

Université Laval Sainte-Foy, Québec 24 mai 2017

Plan

- Introduction
- 2 L'algorithme Maximum Margin Interval Tree
- Résultats
- 4 Conclusion

Introduction

3 / 25

Ensemble de données

$$\mathcal{S} \stackrel{\text{def}}{=} \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_n, \mathbf{y}_n))\} \sim D^n$$

 $\mathbf{x} \in \mathbb{R}^p$ est un vecteur de caractéristiques

 $\mathbf{y}_i \stackrel{\text{def}}{=} \left[\underline{y_i}, \overline{y_i} \right]$, avec $\underline{y_i}, \overline{y_i} \in \mathbb{R}$ et $\underline{y_i} < \overline{y_i}$, est un intervalle

D est une distribution inconnue qui génère les données

Données censurées

- Censure à droite : $\mathbf{y} = [y_i, +\infty)$
- Censure à gauche : $\mathbf{y} = (-\infty, \overline{y_i}]$
- Censure par intervalle : $\mathbf{y} = [y_i, \overline{y_i}]$

Ensemble de données

$$\mathcal{S} \stackrel{\text{def}}{=} \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_n, \mathbf{y}_n))\} \sim D^n$$

 $\mathbf{x} \in \mathbb{R}^p$ est un vecteur de caractéristiques

 $\mathbf{y}_i \stackrel{\text{def}}{=} \left[\underline{y_i}, \overline{y_i} \right]$, avec $\underline{y_i}, \overline{y_i} \in \mathbb{R}$ et $\underline{y_i} < \overline{y_i}$, est un intervalle

D est une distribution inconnue qui génère les données

Données censurées

- Censure à droite : $\mathbf{y} = [y_i, +\infty)$
- Censure à gauche : $\mathbf{y} = (-\infty, \overline{y_i}]$
- Censure par intervalle : $\mathbf{y} = [y_i, \overline{y_i}]$

24 mai 2017

Ensemble de données

$$\mathcal{S} \stackrel{\text{def}}{=} \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_n, \mathbf{y}_n))\} \sim D^n$$

 $\mathbf{x} \in \mathbb{R}^p$ est un vecteur de caractéristiques

 $\mathbf{y}_i \stackrel{\text{def}}{=} \left[\underline{y_i}, \overline{y_i} \right]$, avec $\underline{y_i}, \overline{y_i} \in \mathbb{R}$ et $\underline{y_i} < \overline{y_i}$, est un intervalle

D est une distribution inconnue qui génère les données

Données censurées

- Censure à droite : $\mathbf{y} = [y_i, +\infty)$
- Censure à gauche : $\mathbf{y} = (-\infty, \overline{y_i}]$
- Censure par intervalle : $\mathbf{y} = [y_i, \overline{y_i}]$

Ensemble de données

$$\mathcal{S} \stackrel{\text{def}}{=} \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_n, \mathbf{y}_n))\} \sim D^n$$

 $\mathbf{x} \in \mathbb{R}^p$ est un vecteur de caractéristiques

 $\mathbf{y}_i \stackrel{\text{def}}{=} \left[\underline{y_i}, \overline{y_i} \right]$, avec $\underline{y_i}, \overline{y_i} \in \mathbb{R}$ et $\underline{y_i} < \overline{y_i}$, est un intervalle

D est une distribution inconnue qui génère les données

Données censurées

- Censure à droite : $\mathbf{y} = [y_i, +\infty)$
- Censure à gauche : $\mathbf{y} = (-\infty, \overline{y_i}]$
- Censure par intervalle : $\mathbf{y} = [y_i, \overline{y_i}]$

24 mai 2017

Comment mesure-t-on l'erreur?

Soit $\mu \in \mathbb{R}$ la valeur prédite par un prédicteur quelconque. L'erreur par rapport à l'intervalle $[y, \overline{y}]$ est :

- O Soit $\ell: \mathbb{R} \to \mathbb{R}$, une fonction croissante
- Soit $[x]_+$, la fonction partie positive, i.e. $[x]_+ \neq 0 \Leftrightarrow x > 0$
- Le hinge loss associé à ℓ est $\phi_{\ell}(x) = \ell([x]_+)$

Comment mesure-t-on l'erreur?

Soit $\mu \in \mathbb{R}$ la valeur prédite par un prédicteur quelconque. L'erreur par rapport à l'intervalle $[y, \overline{y}]$ est :

- **1** Soit $\ell : \mathbb{R} \to \mathbb{R}$, une fonction croissante
- ② Soit $[x]_+$, la fonction partie positive, i.e. $[x]_+ \neq 0 \Leftrightarrow x > 0$
- **3** Le hinge loss associé à ℓ est $\phi_{\ell}(x) = \ell([x]_{+})$

Comment mesure-t-on l'erreur?

Soit $\mu \in \mathbb{R}$ la valeur prédite par un prédicteur quelconque. L'erreur par rapport à l'intervalle $[y, \overline{y}]$ est :

- **1** Soit $\ell : \mathbb{R} \to \mathbb{R}$, une fonction croissante
- ② Soit $[x]_+$, la fonction partie positive, i.e. $[x]_+ \neq 0 \Leftrightarrow x > 0$
- **1** Le hinge loss associé à ℓ est $\phi_{\ell}(x) = \ell([x]_{+})$

Comment mesure-t-on l'erreur?

Soit $\mu \in \mathbb{R}$ la valeur prédite par un prédicteur quelconque. L'erreur par rapport à l'intervalle $[y, \overline{y}]$ est :

- **1** Soit $\ell: \mathbb{R} \to \mathbb{R}$, une fonction croissante
- 2 Soit $[x]_+$, la fonction partie positive, i.e. $[x]_+ \neq 0 \Leftrightarrow x > 0$
- **3** Le *hinge loss* associé à ℓ est $\phi_{\ell}(x) = \ell([x]_{+})$

Objectif

Notre but est de trouver une fonction $f: \mathbb{R}^p \to \mathbb{R}$ qui minimise l'erreur pour tout exemple tiré de D:

$$\underset{f}{\text{minimize}} \mathbf{E}_{(\mathbf{x}_i, \mathbf{y}_i) \sim D} \phi_{\ell}(\underline{y_i} - f(\mathbf{x}_i)) + \phi_{\ell}(f(\mathbf{x}_i) - \overline{y_i}),$$

L'algorithme Maximum Margin Interval Tree

7 / 25

Maximum Margin Interval Tree

• Nous cherchons un arbre de régression $T: \mathbb{R}^p \to \mathbb{R}$ qui minimise :

$$C(T) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S} \left[\phi_{\ell} \left(-T(\mathbf{x}_i) + \underline{y_i} + \epsilon \right) + \phi_{\ell} \left(T(\mathbf{x}_i) - \overline{y_i} + \epsilon \right) \right]$$

où ϵ est un hyperparamètre de marge servant à la régularisation.

• Nous considérons les cas $\ell(x) = x$ et $\ell(x) = x^2$.

Maximum Margin Interval Tree

• Nous cherchons un arbre de régression $T: \mathbb{R}^p \to \mathbb{R}$ qui minimise :

$$C(T) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S} \left[\phi_{\ell} \left(-T(\mathbf{x}_i) + \underline{y_i} + \epsilon \right) + \phi_{\ell} \left(T(\mathbf{x}_i) - \overline{y_i} + \epsilon \right) \right]$$

où ϵ est un hyperparamètre de marge servant à la régularisation.

• Nous considérons les cas $\ell(x) = x$ et $\ell(x) = x^2$.

- Soit \widetilde{T} , l'ensemble des feuilles d'un arbre T
- Une feuille $au \in \widetilde{T}$ est associée à un ensemble d'exemples $S_{ au} \subseteq S$ t.q.
 - $\triangleright S = \bigcup_{\tau \in \widetilde{\tau}} S_{\tau}$
- ullet Chaque feuille prédit une constante pour tous les exemples dans $S_{ au}$
- La contribution d'une feuille au coût total de l'arbre, étant donné qu'elle prédit $\mu \in \mathbb{R}$, est donnée par

$$C_{\tau}(\mu) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau}} \left[\phi_{\ell}(-\mu + \underline{y}_i + \epsilon) + \phi_{\ell}(\mu - \overline{y}_i + \epsilon) \right]$$

- Soit \widetilde{T} , l'ensemble des feuilles d'un arbre T
- Une feuille $\tau \in \widetilde{T}$ est associée à un ensemble d'exemples $S_{\tau} \subseteq S$ t.q.
 - $S = \bigcup_{\tau \in \widetilde{\tau}} S_{\tau}$
- ullet Chaque feuille prédit une constante pour tous les exemples dans $S_{ au}$
- La contribution d'une feuille au coût total de l'arbre, étant donné qu'elle prédit $\mu \in \mathbb{R}$, est donnée par

$$C_{\tau}(\mu) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau}} \left[\phi_{\ell}(-\mu + \underline{y}_i + \epsilon) + \phi_{\ell}(\mu - \overline{y}_i + \epsilon) \right]$$

- Soit \widetilde{T} , l'ensemble des feuilles d'un arbre T
- Une feuille $\tau \in \widetilde{T}$ est associée à un ensemble d'exemples $S_{\tau} \subseteq S$ t.q.
 - $S = \bigcup_{\tau \in \widetilde{\tau}} S_{\tau}$
- ullet Chaque feuille prédit une constante pour tous les exemples dans $\mathcal{S}_{ au}$
- La contribution d'une feuille au coût total de l'arbre, étant donné qu'elle prédit $\mu \in \mathbb{R}$, est donnée par

$$C_{\tau}(\mu) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau}} \left[\phi_{\ell}(-\mu + \underline{y}_i + \epsilon) + \phi_{\ell}(\mu - \overline{y}_i + \epsilon) \right]$$

- Soit \widetilde{T} , l'ensemble des feuilles d'un arbre T
- Une feuille $au \in \widetilde{T}$ est associée à un ensemble d'exemples $S_{ au} \subseteq S$ t.q.
 - $S = \bigcup_{\tau \in \widetilde{\tau}} S_{\tau}$
 - $S_{\tau} \cap S_{\tau'} \neq \emptyset \Leftrightarrow \tau = \tau'$
- ullet Chaque feuille prédit une constante pour tous les exemples dans $\mathcal{S}_{ au}$
- La contribution d'une feuille au coût total de l'arbre, étant donné qu'elle prédit $\mu \in \mathbb{R}$, est donnée par

$$C_{\tau}(\mu) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau}} \left[\phi_{\ell}(-\mu + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu - \overline{y_i} + \epsilon) \right]$$

L'arbre est construit par partitionnement récursif

• Soit une feuille $au_0 \in \widetilde{T}$:

• Nous remplaçons τ_0 par deux nouvelles feuilles τ_1 et τ_2 selon une règle à valeur booléenne $r: \mathbb{R}^p \to \{ Vrai, Faux \} :$

Partitionnement d'une feuille

$$\overleftarrow{C_{\tau_0}}(\mu_1 \mid j, \delta) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau_0} : \mathbf{x}_{ij} \leq \delta} \left[\phi_{\ell}(-\mu_1 + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu_1 - \overline{y_i} + \epsilon) \right]$$

$$\overrightarrow{C_{\tau_0}}(\mu_2 \mid j, \delta) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau_0} : \mathbf{x}_{ij} > \delta} \left[\phi_{\ell}(-\mu_2 + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu_2 - \overline{y_i} + \epsilon) \right]$$

Partitionnement d'une feuille

$$\overleftarrow{C_{\tau_0}}(\mu_1 \mid j, \delta) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau_0} : \mathbf{x}_{ij} \leq \delta} \left[\phi_{\ell}(-\mu_1 + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu_1 - \overline{y_i} + \epsilon) \right]$$

$$\overrightarrow{C_{\tau_0}}(\mu_2 \mid j, \delta) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau_0} : \mathbf{x}_{ij} > \delta} \left[\phi_{\ell}(-\mu_2 + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu_2 - \overline{y_i} + \epsilon) \right]$$

Partitionnement d'une feuille

$$\overleftarrow{C_{\tau_0}}(\mu_1 \mid j, \delta) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau_0} : \mathbf{x}_{ij} \leq \delta} \left[\phi_{\ell}(-\mu_1 + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu_1 - \overline{y_i} + \epsilon) \right]$$

$$\overrightarrow{C_{\tau_0}}(\mu_2 \mid j, \delta) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau_0} : \mathbf{x}_{ij} > \delta} \left[\phi_{\ell}(-\mu_2 + \underline{y_i} + \epsilon) + \phi_{\ell}(\mu_2 - \overline{y_i} + \epsilon) \right]$$

Problème d'optimisation convexe

Nous trouvons la règle à utiliser et les valeurs à prédire dans les feuilles en solutionnant le problème d'optimisation suivant :

$$\min_{j,\delta,\mu_1,\mu_2} \left[\overleftarrow{C_{ au}}(\mu_1 \,|\, j,\delta) + \overrightarrow{C_{ au}}(\mu_2 \,|\, j,\delta) \right]$$

Pour une règle donnée $(x_{ij} \leq \delta)$, ceci correspond à deux problèmes d'optimisation convexe :

$$\min_{j,\delta} \left[\min_{\mu_1} \overleftarrow{C_{\tau}} (\mu_1 \,|\, j, \delta) + \min_{\mu_2} \overrightarrow{C_{\tau}} (\mu_2 \,|\, j, \delta) \right]$$

Problème d'optimisation convexe

Nous trouvons la règle à utiliser et les valeurs à prédire dans les feuilles en solutionnant le problème d'optimisation suivant :

$$\min_{j,\delta,\mu_1,\mu_2} \left[\overleftarrow{C_{ au}}(\mu_1 \,|\, j,\delta) + \overrightarrow{C_{ au}}(\mu_2 \,|\, j,\delta) \right]$$

Pour une règle donnée $(x_{ij} \leq \delta)$, ceci correspond à deux problèmes d'optimisation convexe :

$$\min_{j,\delta} \left[\min_{\mu_1} \overleftarrow{C_{ au}}(\mu_1 \,|\, j,\delta) + \min_{\mu_2} \overrightarrow{C_{ au}}(\mu_2 \,|\, j,\delta) \right]$$

Observation

 $\overset{\longleftarrow}{C_{\tau}}(\mu_1 \mid j, \delta)$ et $\overset{\longrightarrow}{C_{\tau}}(\mu_2 \mid j, \delta)$ calculent la somme d'un ensemble de *hinge* loss de type :

- $\mu \mapsto \phi_{\ell}(-\mu + \underline{y_i} + \epsilon)$
- $\mu \mapsto \phi_{\ell}(\mu \overline{y_i} + \epsilon)$
- Supposons qu'il existe un algorithme Ω
 - ightharpoonup Entrée : un ensemble quelconque de tels *hinge loss* définis sur μ
 - Tâche : calcule la somme de tous les hinge loss
 - **Sortie**: la valeur d'un minimum global et la valeur de μ correspondanteur de μ
- ullet Nous montrerons que nous pouvons utiliser un tel Ω pour résoudre le problème d'optimisation précédent de façon efficace

Observation

 $\overset{\longleftarrow}{C_{\tau}}(\mu_1 \mid j, \delta)$ et $\overset{\longrightarrow}{C_{\tau}}(\mu_2 \mid j, \delta)$ calculent la somme d'un ensemble de *hinge* loss de type :

- $\mu \mapsto \phi_{\ell}(-\mu + \underline{y_i} + \epsilon)$
- $\mu \mapsto \phi_{\ell}(\mu \overline{y_i} + \epsilon)$
- ullet Supposons qu'il existe un algorithme Ω :
 - **Entrée** : un ensemble quelconque de tels *hinge loss* définis sur μ
 - ▶ **Tâche** : calcule la somme de tous les hinge loss
 - ightharpoonup Sortie: la valeur d'un minimum global et la valeur de μ correspondante
- Nous montrerons que nous pouvons utiliser un tel Ω pour résoudre le problème d'optimisation précédent de façon efficace

Observation

 $C_{\tau}(\mu_1 | j, \delta)$ et $C_{\tau}(\mu_2 | j, \delta)$ calculent la somme d'un ensemble de *hinge* loss de type :

- $\mu \mapsto \phi_{\ell}(-\mu + \underline{y_i} + \epsilon)$
- $\mu \mapsto \phi_{\ell}(\mu \overline{y_i} + \epsilon)$
- ullet Supposons qu'il existe un algorithme Ω :
 - **Entrée** : un ensemble quelconque de tels *hinge loss* définis sur μ
 - ▶ **Tâche** : calcule la somme de tous les hinge loss
 - Sortie : la valeur d'un minimum global et la valeur de μ correspondante
- Nous montrerons que nous pouvons utiliser un tel Ω pour résoudre le problème d'optimisation précédent de façon efficace

Espace de recherche pour δ

- Étant donné un attribut j, nous cherchons le meilleur seuil $\delta \in \mathbb{R}$ pour une règle de type $x_{ij} \leq \delta$
- Il existe une infinité de valeurs possibles
- Seul les valeurs $\delta \in \{x_{1j}, \dots, x_{nj}\}$ doivent être considérées, car les autres valeurs ne changent pas les valeurs de S_{τ_1} et S_{τ_2} .

• Soit $n_j \le n$, le nombre de valeurs uniques que prend l'attribut j, nous considérons les seuils : $\delta_{i,1} < \cdots < \delta_{i,n_i}$

14 / 25

- Pour chaque valeur de seuil $\delta_{j,k}$, nous définissons $\Phi_{j,k}$, l'ensemble des hinge loss de type $\mu \mapsto \phi_\ell(-\mu + \underline{y_i} + \epsilon)$ et $\mu \mapsto \phi_\ell(\mu \overline{y_i} + \epsilon)$ pour les $(\mathbf{x}_i, \mathbf{y}_i) \in S_\tau$ tels que $\mathbf{x}_{ij} = \delta_{j,k}$.
- Puisque $\delta_{j,i} < \delta_{j,i+1}$, nous avons :

$$\min_{\mu} \overleftarrow{C_{\tau}}(\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,1} \cup \dots \cup \Phi_{j,k})$$

$$\min_{\mu} \overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,1} \cup \dots \cup \Phi_{j,k})$$

- De plus, nous pouvons obtenir $C_{\tau}(\mu | j, \delta_{j,k})$ à partir de $C_{\tau}(\mu | j, \delta_{i,k-1})$ en ajoutant les *hinge loss* dans $\Phi_{i,k}$.
- De façon similaire, nous pouvons obtenir $\overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k})$ à partir de $\overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k-1})$ en enlevant les *hinge loss* dans $\Phi_{j,k}$.

- Pour chaque valeur de seuil $\delta_{j,k}$, nous définissons $\Phi_{j,k}$, l'ensemble des hinge loss de type $\mu \mapsto \phi_\ell(-\mu + \underline{y_i} + \epsilon)$ et $\mu \mapsto \phi_\ell(\mu \overline{y_i} + \epsilon)$ pour les $(\mathbf{x}_i, \mathbf{y}_i) \in S_\tau$ tels que $\mathbf{x}_{ij} = \delta_{j,k}$.
- Puisque $\delta_{i,i} < \delta_{i,i+1}$, nous avons :

$$\min_{\mu} \stackrel{\longleftarrow}{C_{\tau}} (\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,1} \cup \cdots \cup \Phi_{j,k})$$

$$\min_{\mu} \overrightarrow{C_{\tau}}(\mu | j, \delta_{j,k}) = \Omega(\Phi_{j,k+1} \cup \cdots \cup \Phi_{j,n_j})$$

- De plus, nous pouvons obtenir $C_{\tau}(\mu | j, \delta_{j,k})$ à partir de $C_{\tau}(\mu | j, \delta_{j,k-1})$ en ajoutant les *hinge loss* dans $\Phi_{j,k}$.
- De façon similaire, nous pouvons obtenir $\overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k})$ à partir de $\overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k-1})$ en enlevant les *hinge loss* dans $\Phi_{j,k}$.

- Pour chaque valeur de seuil $\delta_{j,k}$, nous définissons $\Phi_{j,k}$, l'ensemble des hinge loss de type $\mu \mapsto \phi_\ell(-\mu + \underline{y_i} + \epsilon)$ et $\mu \mapsto \phi_\ell(\mu \overline{y_i} + \epsilon)$ pour les $(\mathbf{x}_i, \mathbf{y}_i) \in S_\tau$ tels que $\mathbf{x}_{ij} = \delta_{j,k}$.
- Puisque $\delta_{i,i} < \delta_{i,i+1}$, nous avons :

$$\min_{\mu} \overleftarrow{C_{\tau}}(\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,1} \cup \cdots \cup \Phi_{j,k})$$

$$\min_{\mu} \overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,k+1} \cup \cdots \cup \Phi_{j,n_j})$$

- De plus, nous pouvons obtenir $C_{\tau}(\mu | j, \delta_{j,k})$ à partir de $C_{\tau}(\mu | j, \delta_{j,k-1})$ en ajoutant les *hinge loss* dans $\Phi_{j,k}$.
- De façon similaire, nous pouvons obtenir $\overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k})$ à partir de $\overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k-1})$ en enlevant les *hinge loss* dans $\Phi_{j,k}$.

- Pour chaque valeur de seuil $\delta_{i,k}$, nous définissons $\Phi_{i,k}$, l'ensemble des *hinge loss* de type $\mu \mapsto \phi_{\ell}(-\mu + y_i + \epsilon)$ et $\mu \mapsto \phi_{\ell}(\mu - \overline{y_i} + \epsilon)$ pour les $(\mathbf{x}_i, \mathbf{y}_i) \in S_{\tau}$ tels que $\mathbf{x}_{ii} = \delta_{i,k}$.
- Puisque $\delta_{i,i} < \delta_{i,i+1}$, nous avons :

$$\min_{\mu} \overleftarrow{C_{\tau}}(\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,1} \cup \cdots \cup \Phi_{j,k})$$
 $\min_{\mu} \overrightarrow{C_{\tau}}(\mu \mid j, \delta_{j,k}) = \Omega(\Phi_{j,k+1} \cup \cdots \cup \Phi_{j,n_j})$

- ullet De plus, nous pouvons obtenir $\overleftarrow{C_{ au}}(\mu\,|\,j,\delta_{j,k})$ à partir de $C_{\tau}(\mu \mid j, \delta_{i,k-1})$ en ajoutant les hinge loss dans $\Phi_{i,k}$.
- ullet De façon similaire, nous pouvons obtenir $\overrightarrow{C_{ au}}(\mu\,|\,j,\delta_{j,k})$ à partir de $C_{\tau}(\mu | j, \delta_{j,k-1})$ en enlevant les *hinge loss* dans $\Phi_{j,k}$.

Utilisation de l'algorithme Ω

Le coût associé à chacune des n_i valeurs de seuil est donnée par :

Si Ω est un programme dynamique, nous pouvons calculer chaque solution efficacement

Utilisation de l'algorithme Ω

Le coût associé à chacune des n_i valeurs de seuil est donnée par :

De haut en bas pour la première colonne

Utilisation de l'algorithme Ω

Le coût associé à chacune des n_i valeurs de seuil est donnée par :

De bas en haut pour la deuxième colonne

Les *hinge loss* que nous considérons ont la forme suivante (cas $\ell(x) = x$) :

• Cas $\mu \mapsto \phi_{\ell}(-\mu + y_i + \epsilon)$:

• Cas $\mu \mapsto \phi_{\ell}(\mu - \overline{y_i} + \epsilon)$:

Une somme de *hinge loss* est une fonction convexe qui est linéaire (ou quadratique) par parties

Nous maintenons toujours un pointeur sur le premier point de changement le plus à droite de tout minimum global

On ajoute les hinge loss un par un. Le pointeur doit parfois être déplacé.

• Supposons que nous avons *n hinge loss*

- Nous ajoutons les hinge loss à la somme un par un (n fois)
- L'insertion d'un nouveau loss se fait en $O(\max(\log n, k))$ où k est le nombre de déplacements de pointeur requis
- Cas $\ell(x) = x$: nous avons démontré que $k \in \{0,1\}$, donc $O(n \log n)$
- Cas $\ell(x) = x^2$: nous n'avons pas de telle garantie (démonstration empirique)

- Supposons que nous avons *n hinge loss*
- Nous ajoutons les *hinge loss* à la somme un par un (n fois)
- L'insertion d'un nouveau loss se fait en $O(\max(\log n, k))$ où k est le nombre de déplacements de pointeur requis
- Cas $\ell(x) = x$: nous avons démontré que $k \in \{0,1\}$, donc $O(n \log n)$
- Cas $\ell(x) = x^2$: nous n'avons pas de telle garantie (démonstration empirique)

- Supposons que nous avons *n hinge loss*
- Nous ajoutons les *hinge loss* à la somme un par un (n fois)
- L'insertion d'un nouveau loss se fait en $O(\max(\log n, k))$ où k est le nombre de déplacements de pointeur requis
- Cas $\ell(x) = x$: nous avons démontré que $k \in \{0,1\}$, donc $O(n \log n)$
- Cas $\ell(x) = x^2$: nous n'avons pas de telle garantie (démonstration empirique)

- Supposons que nous avons n hinge loss
- Nous ajoutons les *hinge loss* à la somme un par un (n fois)
- L'insertion d'un nouveau loss se fait en $O(\max(\log n, k))$ où k est le nombre de déplacements de pointeur requis
- Cas $\ell(x) = x$: nous avons démontré que $k \in \{0,1\}$, donc $O(n \log n)$
- Cas $\ell(x) = x^2$: nous n'avons pas de telle garantie (démonstration empirique)

- Supposons que nous avons n hinge loss
- Nous ajoutons les hinge loss à la somme un par un (n fois)
- L'insertion d'un nouveau loss se fait en $O(\max(\log n, k))$ où k est le nombre de déplacements de pointeur requis
- Cas $\ell(x) = x$: nous avons démontré que $k \in \{0,1\}$, donc $O(n \log n)$
- Cas $\ell(x) = x^2$: nous n'avons pas de telle garantie (démonstration empirique)

Résultats

Mesure empirique de la complexité de calcul

En moyenne, nous avons observé un temps de calcul proportionnel à $n \log n$ pour le cas linéaire et le cas quadratique

MMIT peut modéliser des fonctions non-linéaires

MMIT arrive à modéliser des fonctions non-linéaires, alors que le modèle linéaire de Hocking et al. (2013) n'y arrive pas

- **Constant**: utilise l'ensemble d'entraînement pour trouver la fonction constante qui traverse le plus d'intervalles possible
- Interval-CART: un arbre de régression (Breiman et al., 1984) où chaque exemple $(\mathbf{x}_i, \mathbf{y}_i) \in S$ a été remplacé par deux exemples de régression standard: $(\mathbf{x}_i, y_i + \epsilon)$ et $(\mathbf{x}_i, \overline{y_i} \epsilon)$.
- L1-Linear : régression linéaire par intervalle à base de marge (Hocking et al., 2013)
- Transfo Tree : un algorithme d'arbre de décision pour données censurées n'utilisant pas de marge (Hothorn et Zeileis, 2017)

- **Constant**: utilise l'ensemble d'entraînement pour trouver la fonction constante qui traverse le plus d'intervalles possible
- Interval-CART: un arbre de régression (Breiman et al., 1984) où chaque exemple $(\mathbf{x}_i, \mathbf{y}_i) \in S$ a été remplacé par deux exemples de régression standard: $(\mathbf{x}_i, y_i + \epsilon)$ et $(\mathbf{x}_i, \overline{y_i} \epsilon)$.
- L1-Linear : régression linéaire par intervalle à base de marge (Hocking et al., 2013)
- Transfo Tree : un algorithme d'arbre de décision pour données censurées n'utilisant pas de marge (Hothorn et Zeileis, 2017)

- **Constant**: utilise l'ensemble d'entraînement pour trouver la fonction constante qui traverse le plus d'intervalles possible
- Interval-CART: un arbre de régression (Breiman et al., 1984) où chaque exemple $(\mathbf{x}_i, \mathbf{y}_i) \in S$ a été remplacé par deux exemples de régression standard: $(\mathbf{x}_i, y_i + \epsilon)$ et $(\mathbf{x}_i, \overline{y_i} \epsilon)$.
- L1-Linear : régression linéaire par intervalle à base de marge (Hocking et al., 2013)
- Transfo Tree : un algorithme d'arbre de décision pour données censurées n'utilisant pas de marge (Hothorn et Zeileis, 2017)

- **Constant**: utilise l'ensemble d'entraînement pour trouver la fonction constante qui traverse le plus d'intervalles possible
- Interval-CART: un arbre de régression (Breiman et al., 1984) où chaque exemple $(\mathbf{x}_i, \mathbf{y}_i) \in S$ a été remplacé par deux exemples de régression standard: $(\mathbf{x}_i, y_i + \epsilon)$ et $(\mathbf{x}_i, \overline{y_i} \epsilon)$.
- L1-Linear : régression linéaire par intervalle à base de marge (Hocking et al., 2013)
- TransfoTree : un algorithme d'arbre de décision pour données censurées n'utilisant pas de marge (Hothorn et Zeileis, 2017)

Résultats pour 5 ensembles de test par ensemble de données :

Métrique utilisée pour la comparaison :

$$\mathsf{MSE}(h,S) = \frac{1}{n} \sum_{i=1}^{n} \left([h(\mathbf{x}_i) - \underline{y_i}] I[f(\mathbf{x}_i) < \underline{y_i}] + [h(\mathbf{x}_i) - \overline{y_i}] I[f(\mathbf{x}_i) > \overline{y_i}] \right)^2$$

- Nous avons proposé un nouvel algorithme d'arbre de décision pour le paradigme de la régression par intervalles
- Nous avons montré que les arbres pouvaient être entraînés en solutionnant une série de problèmes convexes
- Nous avons proposé un algorithme de programmation dynamique efficace pour cette tâche
- Notre algorithme se compare favorablement à l'état de l'art

- Nous avons proposé un nouvel algorithme d'arbre de décision pour le paradigme de la régression par intervalles
- Nous avons montré que les arbres pouvaient être entraînés en solutionnant une série de problèmes convexes
- Nous avons proposé un algorithme de programmation dynamique efficace pour cette tâche
- Notre algorithme se compare favorablement à l'état de l'art

- Nous avons proposé un nouvel algorithme d'arbre de décision pour le paradigme de la régression par intervalles
- Nous avons montré que les arbres pouvaient être entraînés en solutionnant une série de problèmes convexes
- Nous avons proposé un algorithme de programmation dynamique efficace pour cette tâche
- Notre algorithme se compare favorablement à l'état de l'art

- Nous avons proposé un nouvel algorithme d'arbre de décision pour le paradigme de la régression par intervalles
- Nous avons montré que les arbres pouvaient être entraînés en solutionnant une série de problèmes convexes
- Nous avons proposé un algorithme de programmation dynamique efficace pour cette tâche
- Notre algorithme se compare favorablement à l'état de l'art

Merci!

Questions?