

讲义P01-P16

章节	题目个数	举例个数	总数
算术	10	2	19
现实场景中的数学问题	4	3	19

抢佛 考试分析 距离考试73天

综合能力考试中数学基础部分主要考查考生的这四个能力:运算能力、逻辑推理能力、 空间想象能力和数据处理能力,通过问题求解和条件充分性判断这两种形式来测试.

科目	分值	题量	推荐时间
/ 数学	75	25	≤55分钟
逻辑	60	30	≤55分钟
写作	65 (30+35)	(600字 + 700字)	≤60分钟

- (1) 问题求解
- (2) 条件充分性判断

五选一的单选题

讲义 P1

掺像 考试大纲

整数及其运算 整除、公倍数、公 约数 整数 奇数、偶数 算术 质数、合数 分数、小数、百分数 比与比例

形式: 单项选择 (五选一)

数轴与绝对值

内容: 初数 (小学、初中、高中数学)

变化: 多年一字未变 (当然包括今年)

	整式	整式及其运算				
	E-7	整式的因式与因式分解				
	分式及其运算					
		集合				
	函数	一元二次函数及其图像				
		指数函数、对数函数				
	代数方程	一元一次方程				
代		一元二次方程				
数		二元一次方程组				
	不等式	不等式的性质				
		均值不等式				
		不等式求解 (一元一次不等式				
		(组)、一元二次不等式、简单				
		绝对值不等式、简单分式不等式)				
	 数列	等差数列				
	3 X 2 1	等比数列				

讲义 P2

趁傳 考试大纲

.

	平面图形	三角形
		四边形(矩形、平
	,,	行四边形、梯形)
		圆与扇形
	空间几何	长方体
几何		柱体
',		球体
	平面解析几何	平面直角坐标系
		直线与圆的方程
		两点间距离公式与
		点到直线的距离

_	_	
		加法原理、乘法原理
	计数原理	排列与排列数
		组合与组合数
		事件及其简单运算
数		加法公式
据分	概率	乘法公式
析		古典概型
		伯努利概型
		平均值
	数据描述	方差与标准差
		数据的图表表示(直方图、饼图、数表)

讲义 P2

後傳 必考考点梳理内参

• • • •

	比与比例	近5年考4题【2023.02】	【2023.03】	【2021.18】	【2019.03】			
	利润/利润率	近5年考1题【2022.02】						
	增长/增长率	近5年考2题【2023.01】	【2020.01】					
应	工程问题	近5年考5题【2022.01】	【2021.17】	【2019.01】	【2019.11】			
用 题	行程问题	近5年考7题【2023.06】	【2023.21】	【2022.14】	【2021.15】	【2021.23】	【2020.13】	【2019.13】
	集合问题	近5年考1题【2021.01】	(史上最难	集合问题)				
	一般方程	近5年考6题【2022.11】	[2022.20]	[2021.22]	【2020.03】	【2020.20】	【2020.22】	
	新题型	近5年考6题【2023.16】	[2023.23]	[2022.07]	[2020.06]	[2020.09]	【2019.06】	
	整数	近5年考1题【2019.19】						
	带余除法	近5年考2题【2022.08】	【2019.22】					
算术	质数与合数	近5年考2题【2023.22】	【2021.04】					
\I\	无理数	近5年考2题【2023.04】	【2021.03】					
	绝对值	近5年考6题【2023.09】	【2022.17】	[2022.25]	【2021.13】	【2021.19】	【2020.02】	
	绝对值	近5年考6题【2023.09】	【2022.17】	【2022.25】	[2021.13]	【2021.19】	[2020.02]	

後傷 必考考点梳理内参

0000

/₽*/ /= 	整式	近5年考4题【2023.04】【2022.03】【2022.22】【2020.25】【2019.04】
1 (安以工)	分式	近5年考2题【2022.22】【2020.07】

	基础问题	近5年考2题【2021.05】【2020.23】	
	构造二次方程	近5年考2题【2022.23】【2022.21】【2021.25】	
方程与 不等式	根的判别式	近5年考1题【2019.20】	
1.070	根的分布	近5年考1题【2023.17】	
	均值不等式	近5年考3题【2023.13】【2020.24】【2019.02】	

	三项数列	近5年考2题【2021.02】【2019.16】
₩₩₩	等差数列	近5年考3题【2022.24】【2020.05】【2019.24】
数列	等比数列	近5年考3题【2023.18】【2023.24】【2021.24】
	数列递推	近5年考2题【2020.11】【2019.05】

後傳 必考考点梳理内参

• • • • •

	三角形	近5年考8题【2023.11】【2022.09】【2022.16】【2022.19】【2020.10】【2020.16】 【2019.10】【2019.21】
平面几何	圆与扇形	近5年考1题【2020.12】
	阴影图形	近5年考2题【2022.04】【2021.09】

立体几何	立方体	近5年考2题【2020.21】	【2019.12】			
77.147 (14)	截面模型	近5年考5题【2023.10】	[2022.06]	【2021.07】	【2019.09】	【2019.12】

	点与直线	近5年考1题【2023.07】					
₩7±⊏ П /ता	圆	近5年考6题【2023.20】	【2021.10】	【2021.20】	【2021.21】	【2020.17】	[2019.18]
解析几何	线性规划	近5年考2题【2023.19】	【2020.08】				
	对称	近5年考1题【2019.05】					

	加法与乘法	近5年考3题【2022.10】	[2022.15]
排列	分组问题	近5年考2题【2021.08】	[2020.15] [2019.14]
组合	排列问题	近5年考2题【2023.08】	[2023.15]
	总体剔除	近5年考2题【2023.05】	[2022.12]

	古典概型	近5年考6题	[2023.25]	【2022.13】	【2021.11】	[2020.04]	【2020.14】	【2020.19】
概率	概率乘法	近5年考1题	【2019.17】					
	对立事件	近5年考5题	[2023.14]	[2022.05]	【2021.06】	【2021.14】	【2019.07】	

数据	平均值	近5年考4题【2022.18】【2021.16】【2020.18】【2019.23】
描述	方差	近5年考2题【2023.12】【2019.08】

後傷 脚 题型分析・问题求解

一、问题求解: 第1~15题, 每题3分, 共45分.

下列每题给出的A、B、C、D、E五个选项中,只有一个选项符合试题要求.请 在答题卡上将所选项的字母涂黑. 五选一的单选题

【2023.01】油价上涨5%后,加满一箱油比原来多花20元,一个月后油价下降4%,

则加满一箱油需要 (D).

A.384元 B.401元 C.402.8元 D.403.2元 E.404元

是【选择题】, 不是填空题, 不是计算题, 不是证明题.

後後脚 题型分析・条件充分性判断

• 0 0 0 0

二、条件充分性判断: 第16~25题, 每题3分, 共30分.

解题说明:本大题要求判断所给出的条件能否充分支持题干中陈述的结论.阅读条件

(1) 和(2) 后选择:

必看!

A: 条件(1) 充分, 但条件(2) 不充分.

条件充分性判断专题

B: 条件(2) 充分, 但条件(1) 不充分.

C:条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.

D: 条件(1) 充分, 条件(2) 也充分.

E:条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.

本质是【判断题】,判断的不同结果的组合对应A~E不同的选项

/ 大师笔记:条件充分性判断 讲义 P3

讲在前面的话 (严肃脸)

肯定有难度,没难度还叫全国统考的研究生入学考试嘛?

课程贴合考试中等难度水准,在目标分数45-54的基础上尽量拔高

中间某题没有跟上的同学莫慌,截图,看回放复盘,群里答疑,反复琢磨,心态稳住

焦虑和紧张是最无用的东西,唯一的缓解的办法就是现在立刻马上开始学

拼命是两个多月,不拼也是两个多月,不如拼一把

拼一把, 明年都是研究生!

算术

2024MBA大师零基础抱佛脚

第水 概要

- ₩ 平均每年2题左右(真题中共考过53题, 其中2023年1题)
- ₩ 概念多,属于工具型知识点
- 重要考点: 质数、奇偶性、绝对值
- 对特殊数字和它们之间关系要敏感

第一章 算术

1.1 整数

讲义 P07

第 整数

【标志词汇】完全平方⇒①算术中:穷举;②代数中:凑配完全平方式。

 $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ $4^2 = 16$ $5^2 = 25$ $6^2 = 36$ $7^2 = 49$ $8^2 = 64$ $9^2 = 81$ $10^2 = 10$

 $10^2 = 100$

 $11^2 = 121$ $12^2 = 144$ $13^2 = 169$ $14^2 = 196$ $15^2 = 225$

 $16^2 = 256$ $17^2 = 289$ $18^2 = 324$ $19^2 = 361$ $20^2 = 400$

【完全平方数】如果一个整数a是某一个整数b的平方,那么这个整数a叫作完全平方数.

零也是完全平方数.

$$1^3 = 1$$

$$2^3 = 8$$

$$3^3 = 27$$

$$4^3 = 64$$

$$2^3 = 8$$
 $3^3 = 27$ $4^3 = 64$ $5^3 = 125$

$$21 - 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^1 = 2$$
 $2^2 = 4$ $2^3 = 8$ $2^4 = 16$ $2^5 = 32$

$$2^6 = 64$$

$$2^7 = 128$$

$$2^8 = 256$$

$$2^8 = 256$$
 $2^9 = 512$

$$2^{10} = 1024$$

第 整数

- 1.【2019.19】 (条件充分性判断) 能确定小明年龄.()
- (1) 小明年龄是完全平方数. (2) 20年后小明年龄是完全平方数.

【答案】C

讲义 P7

第 整数

▶ 特殊数字①完全平方数

$$1^2 = 1$$
 $2^2 = 4$ $3^2 = 9$ $4^2 = 16$ $5^2 = 25$ $6^2 = 36$ $7^2 = 49$ $8^2 = 64$ $9^2 = 81$ $10^2 = 100$ $11^2 = 121$ $12^2 = 144$ $13^2 = 169$ $14^2 = 196$ $15^2 = 225$ $16^2 = 256$ $17^2 = 289$ $18^2 = 324$ $19^2 = 361$ $20^2 = 400$

▶ 特殊数字②立方数

$$1^3 = 1$$
 $2^3 = 8$ $3^3 = 27$ $4^3 = 64$ $5^3 = 125$

- ▶ 特殊数字③质数 常用的30以内的十个质数: 2,3,5,7,11,13,17,19,23,29
- ▶ 特殊数字④2的1~10次幂

$$2^{1} = 2$$
 $2^{2} = 4$ $2^{3} = 8$ $2^{4} = 16$ $2^{5} = 32$ $2^{6} = 64$ $2^{7} = 128$ $2^{8} = 256$ $2^{9} = 512$ $2^{10} = 1024$

第一章 算术

1.2 整数的除法

讲义 P07-P09

第4 整数的除法·整除

【整除】一个整数a能表示为整数b与另一个整数q相乘的形式,即有等式a = bq.

称b能够整除a,或者a能够被b整除,记作b|a,其中a叫作被除数,b叫作除数,q叫作商.

代数表达	解读1	解读2
42 6 7	42可以被6整除, 商是7	42可以被7整除, 商是6
$42 = 6 \times 7$	6是42的因数,42是6的倍数	7是42的因数, 42是7的倍数
42 2 44	42可以被3整除, 商是14	42可以被14整除, 商是3
$42 = 3 \times 14$	3是42的因数,42是3的倍数	14是42的因数, 42是14的倍数

【整除的表示】 $\frac{a}{b}$ 是整数 \Leftrightarrow a能被b整除 \Leftrightarrow a是b的倍数 \Leftrightarrow b是a的因数.

【标志词汇】判断一个表示为分数形式的数是否可能是整数⇒ ①判断分子是否是分母的倍数/②分母是否是分子的因数

讲义 P8

第4 整数的除法·整除

【联考中整除的常用性质】

性质	举例
如果a是c的倍数	6是3的倍数
那么am也是c的倍数.	那么2×6=12也是3的倍数
如果a和b都是c的倍数	6和9都是3的倍数
那么a+b也是c的倍数.	那么6+9=15也是3的倍数
如果a和b都是c的倍数	6和9都是3的倍数
那么am+bn也是c的倍数.	那么6×2+9×4=48也是3的倍数

说明: a、b、c、m、n均为正整数

整数的除法•整除

• 0 0 0 0

2.【模拟题】已知k是整数,关于x的方程7x - 5 = kx + 9有正整数解,则k的所有可能取值有()

A.1个

B.2个

C.3个

D.4个

E.5个

【答案】D

讲义 P8

自然数N: **0**, 1, 2, 3, ...等, 叫作自然数.

大师笔记: 带余除法

#♥ P8

鄭承 整数的除法•带余除法

【带余除法】当整数a不能被整数b整除时,余下的部分就叫作余数,一般用r表示。

有等式a = bq + r, 其中 $0 \le r < b$.

注意: ①余数一定小于除数; ②余数 = 0时, 即为整除

【标志词汇】整数a除以整数b, 余数为 $r \Rightarrow$ 有等式a = bk + r (其中k为整数, $0 \le r < b$).

文字描述	代数表达
53除以5的商是10,余数为3	$53 = 5 \times 10 + 3$
12除以3的商是4,余数为0	$12 = 3 \times 4 + 0$
4除以8的商是0,余数为4	$4 = 8 \times 0 + 4$
13除以2的商是6,余数为1	$13 = 2 \times 6 + 1$

讲义 P9

② 整数的除法·带余除法

【联考中余数的常用性质】

	性质内容	举例
性质1	如果a,b除以c的余数相同, a与b的差能被c整除	17与11除以3的余数都是2, 17-11=6能被3整除
	一般情况: a + b除以c的余数等于a、b 分别除以c的余数之和.	23除以5余数为3,16除以5余数为1, 23+16=39除以5的余数等于3+1=4.
性质2	特殊情况①:当余数之和大于除数时, 所求余数等于余数之和再除以c的余数	23, 19除以5的余数分别是3和4, 23+19=42除以5的余数 等于3+4=7除以5的余数2
	特殊情况②:若其中a能被c整除,则a+b除以c的余数等于b除以c的余数	170能被5整除,7除以5余数为2, 170+7=177除以5的余数 等于7除以5的余数2.

ш∨ Р

E.4

	整数的除法	・帯余除法
--	-------	-------

3.【2022.08】某公司有甲、乙、丙三个部门,若从甲部门调26人去丙部门,则丙部门是甲部门人数的6倍;若从乙部门调5人去丙部门,则丙部门的人数与乙部门人数相等.则甲、乙两部门人数之差除以5的余数是().

D.3

C.2

A.0 B.1

【答案】C

讲义 P9

第一章 算术

1.3 奇数与偶数

讲义 P09-P10

第 奇数与偶数

【标志词汇】整数a除以整数b, 余数为 $r \Rightarrow$ 有等式a = bk + r (其中k为整数, $0 \le r < b$).

【拓展】当b = 2时,任何整数除以2的余数只有两种可能,即r = 0或r = 1,据此可以把所有的整数分为两类,也就是我们常说的偶数和奇数.

(偶数 能被2整除的数得到余数0

整数除以2

奇数 不能被2整除的数得到余数1

- ① 奇数与偶数均有正有负,但为方便起见,往往题目重限制为正(正负性不影响其奇偶性)
- ② 0可以被2整除,故0是偶数

人 大师笔记: 奇数与偶数 讲义 P9

第 奇数与偶数

【偶数】能被2整除的数,常表示为2k

【奇数】不能被2整除的数,常表示为2k+1

奇数±奇数=偶数 偶数±偶数=偶数 偶数±奇数=奇数 两数和为奇数,必为一奇一偶

 1 ± 1 2 ± 2 2 ± 1

^{2±1} 偶数个奇数之和为偶数

偶数×任意整数=偶数 奇数×奇数=奇数 奇数个奇数之和为奇数

 $2 \times n$ $1 \times 1 = 1$

两个相邻整数必为一奇一偶. a + b = a - b同奇同偶 $(a, b \in \mathbf{Z})$

#₩ Р9

第一章 算术 1.4 不定方程问题

讲义 P10

第 不定方程问题

【**不定方程**】解的范围为整数、正整数等的方程或方程组 3x + 2y = 10 $(x, y \in \mathbf{Z}^+)$ 一般来说,其未知数的个数多于独立方程的个数

【标志词汇】[多个未知量]+[一个等式]

- ▶ 讨论范围限制为整数、正整数等 ⇒ 奇偶性、因数倍数特性

<u>常用整理方法</u>:将已知奇偶性,或具有相同倍数特性的项移项至等号右侧, 未知奇偶性的项移项至等号左侧.

大师笔记: 不定方程 讲义

第 不定方程问题

【举例1】已知x, y为正整数, 3x + 2y = 10, 求x, y的可能取值. $\begin{cases} x = 2 \\ y = 2 \end{cases}$

【标志词汇】[多个未知量]+[一个等式]

▶ 讨论范围限制为整数、正整数等 ⇒ 奇偶性、因数倍数特性

3x = 10 - 2y

偶 偶 a x为偶数

【穷举验证】 x = 2时,解得y = 2,满足

x = 4时,解得y = -1 < 0,不满足

讲义 P10

第 不定方程问题

【**举例2**】已知x, y为正整数, 7x + 2y = 35, 求x, y的可能取值. $\begin{cases} x = 1 \\ y = 14 \end{cases} \begin{cases} x = 3 \\ y = 7 \end{cases}$

【标志词汇】[多个未知量]+[一个等式]

▶ 讨论范围限制为整数、正整数等 ⇒ 奇偶性、因数倍数特性

7x = 35 - 2y

奇 奇 偶 7x为奇数 $\Rightarrow x$ 为奇数

【穷举验证】x = 1时,7 = 35 - 2y, 解得y = 14,满足

x = 3时, 21 = 35 - 2y, 解得y = 7, 满足

x = 5时, 35 = 35 - 2y, 解得y = 0, 不满足

诎♥ P1

第 不定方程问题

【举例2】已知x, y为正整数, 7x + 2y = 35, 求x, y的可能取值. $\begin{cases} x = 1 \\ y = 14 \end{cases}$ $\begin{cases} x = 3 \\ y = 7 \end{cases}$

【标志词汇】[多个未知量]+[一个等式]

▶ 讨论范围限制为整数、正整数等 ⇒ 奇偶性、因数倍数特性

$$2y = 35 - 7x = 7(5 - x)$$

2y为7的倍数 $\Rightarrow y$ 一定为7的倍数

【穷举验证】y = 7时,7x = 35 - 14, 解得x = 3,满足

$$y = 14$$
时, $7x = 35 - 28$, 解得 $x = 1$, 满足

$$y = 21$$
时, $7x = 35 - 42$, 解得 $x = -1 < 0$, 不满足

讲义 P10

第 不定方程问题

4.【2017.10】某公司用1万元购买了价格分别为1750元和950元的甲、乙两种办公设备,则购买的甲、乙办公设备的件数分别为().

A.3, 5

B.5, 3

C.4, 4

D.2, 6

E.6, 2

【答案】A

	不定方程问题	Į
--	--------	---

5.【2016.18】利用长度为a和b的两种管材能连接成长度为37的管道.(单位:米)()

(1) a = 3, b = 5. (2) a = 4, b = 6.

【答案】A

讲义 P10

第 不定方程问题

6.【2020.20】 (条件充分性判断) 共有n辆车,则能确定人数. ()

(1) 若每辆20座, 1车未满.

(2) 若每辆12座,则少10个座.

【答案】E

讲义 P10

第一章 算术 1.5 质数与合数

讲义 P11-P12

第 质数与合数

质数 对于大于等于2的正整数,若它有且只有两个正因数(即1和它本身),则称之为质数(素数).

合数 对于大于等于2的正整数,若它除了1和它本身之外至少还有一个其他因数,则称之为合数.

<u>常用的30以质数: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29</u>

大师笔记: 质数与合数 讲义 P11

第 质数与合数

- ▶ 质数/合数均为正整数,且有无穷多个;
- ▶ 1既不是质数也不是合数;
- ▶ 质数与奇偶性: 最小的质数是2, 也是所有质数中唯一的偶数;
- ▶ 若两个质数之差(和)为奇数,其中一个一定是2;
- ▶ 若两个质数之积为偶数,其中一个一定是2;
- ▶ 30以内常用质数: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. 熟读并背诵!!!

讲义 P11

③ 质数与合数·结合奇偶性

2 3 5 7 11 13 17 19

- ▶ 最小的质数是2, 也是所有质数中唯一的偶数.
- ▶ 除了2以外的所有质数都是奇数.

若两个质数之积为偶数

若两个质数之差为奇数 □ 其中一个质数一定是2

若两个质数之和为奇数

第 质数与合数

 $2700 = 27 \times 100$

 $= 3 \times 9 \times 10 \times 10$

 $= 3 \times 3 \times 3 \times 2 \times 5 \times 2 \times 5$

 $= 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5$

 $= 2^2 \times 3^3 \times 5^2$

算术基本定理 任一大于等于 2 的整数均能表示成质数的乘积,即对于任意整数 $a \ge 2$,有:

 $a = p_1 p_2 \cdots p_n$

其中 p_k $(k=1,2,\cdots,n)$ 为质数且 $p_1 \leq p_2 \leq \cdots \leq p_n$,且这样的分解式是**唯一**的. 这样的分解过程称为**因数分解**.

讲义 P11

第 质数与合数

两质数一定互质, 互质的数不一定是质数

若两个整数除了1以外没有其它公因数,则称这两个数互质.

常用的30以内的十个质数: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

质数 VS 质数 3的因数有1,3 3和5互质 5的因数有1,5

质数 VS 合数 3 = 1 × 3 3的因数有1,3

 $8 = 2 \times 2 \times 2$ 8的因数有1, 2, 4, 8

15 = 3 × 5 15的因数有1, 3, 5, 15

合数 VS 合数 14 = 2 × 7 14的因数有1, 2, 7, 14

16 = 4 × 4 16的因数有1, 2, 4, 8, 16

第 质数与合数

100以内质数表 (共25个)

20以内	2	3	5	7	11	13	17	19
20-29	23	29						
30-39	31	37						
40-49	41	43	47					
50-59	53	59						
60-69	61	67						
70-79	71	73	79					
80-89	83	89						
90-99	97							

讲义 P11

第 质数与合数

【标志词汇】质数

- ①[质数]+[确定范围]⇒穷举法;_
- ②包含质数的等式⇒结合奇偶性及其四则运算判断;
- ③[一个数]=[某些数的乘积] ⇒ 将此数因数分解.

讲义 P11

7.【**2023.22**】已知*m*, *n*, *p*为三个不同的质数,则能确定*m*, *n*, *p*的乘积.()

(1) m + n + p = 16.

(2) m+n+p=20.

【答案】A

讲义 P11

第 质数与合数

8.【模拟题】m本不同的书分给n个人,则可以确定m的值为52. ()

(1) 每人分5本则缺3本.

(2) 每人分k本(某个适当的k),则多出8本.

【答案】C

第一章 算术 1.6 无理数与有理化

讲义 P12

第 无理数与有理化

【有理数】可以表示为形如 $\frac{a}{b}$ (其中a,b为整数)的两个整数之比的形式的数,形式为整数或分数.

【无理数】不能写作两个整数之比形式的数.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环(即无限不循环小数).

 $\sqrt{2} \approx 1.414$ $\sqrt{3} \approx 1.732$ $\sqrt{5} \approx 2.236$ $e \approx 2.718$ $\pi \approx 3.142$

大师笔记: 无理数与有理化 讲义 P12

第 无理数与有理化

_ ...

有理数Q: 可以写成两整数之比的数

无理数 $\overline{0}$: 不能写成两整数之比的数

实数 = 有理部分 + 无理部分

【标志词汇】两实数相等 ⇔ 两实数有理部分与无理部分分别相等.

【举例】若实数2 + $a\sqrt{5}$ 与实数b + $3\sqrt{5}$ 相等,则有理数a和b的值分别为多少?

$$a\sqrt{5} = 3\sqrt{5}$$
, $a = 3$, $b = 2$.

讲义 P12

第 无理数与有理化

若两个含有根号的非零数字或算式相乘,乘积中不含根号,则它们**互为有理化因式**.

$$\sqrt{2} \times \sqrt{2} = 2$$

$$(3 - \sqrt{5}) \times (3 + \sqrt{5}) = 3^2 - (\sqrt{5})^2 = 4$$

$$(3 + 2\sqrt{5}) \times (3 - 2\sqrt{5}) = 3^2 - (2\sqrt{5})^2 = -11$$

$$(\sqrt{3} + \sqrt{5}) \times (\sqrt{3} - \sqrt{5}) = (\sqrt{3})^2 - (\sqrt{5})^2 = -2$$

第 无理数与有理化

【标志词汇】分数的分母中带有根号,要求化简/求值→ 分母有理化.

分数分子分母上下同乘分母的有理化因式

$$\frac{1}{1+\sqrt{2}} = \frac{1\times(1-\sqrt{2})}{(1+\sqrt{2})\times(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1-2} = \sqrt{2}-1$$

$$\frac{2}{\sqrt{5} - \sqrt{3}} = \frac{2 \times (\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3}) \times (\sqrt{5} + \sqrt{3})} = \frac{2 \times (\sqrt{5} + \sqrt{3})}{5 - 3} = \sqrt{5} + \sqrt{3}$$

讲义 P12

第 无理数与有理化

【标志词汇】分数的分母中带有根号,要求化简/求值⇒分母有理化.

分数分子分母上下同乘分母的有理化因式

原式	有理化因式	乘积	举例	
单项式√a	\sqrt{a}	$\sqrt{a} \cdot \sqrt{a} = a$	$\sqrt{2} \cdot \sqrt{2} = 2$	
$\sqrt{a} + \sqrt{b}$	$\sqrt{a} - \sqrt{b}$	$\left(\sqrt{a} - \sqrt{b}\right) \cdot \left(\sqrt{a} + \sqrt{b}\right) = a - b$	$\left(\sqrt{3} + \sqrt{2}\right) \times \left(\sqrt{3} - \sqrt{2}\right) = 1$	
$a\sqrt{x} + b\sqrt{y}$	$a\sqrt{x} - b\sqrt{y}$	$a^2x - b^2y$	$(3\sqrt{2} + 2\sqrt{5})(3\sqrt{2} - 2\sqrt{5}) = -2$	

有理化的核心是利用平方差公式将根式每一项平方

注:上表中所有二次根式均有意义且有理化因式是相互的

第 无理数与有理化

9. [2021.03] $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}} = ()$.

A.9

B 10

C 11

 $D.3\sqrt{11} - 1$

 $E.3\sqrt{11}$

【答案】A

讲义 P12

第一章 算术

1.7 比与比例

#₩ P12-P13

第 比与比例

【比与比例】两个数相除,又叫做这两个数的比,a和b的比($b \neq 0$),记为a:b或 $\frac{a}{b}$,这个比的值叫做a与b的比值,表示两个比相等的式子叫做比例.

如: 3和2的比记为3:2或 $\frac{3}{2}$,这个比的比值为1.5.

【比的基本性质】比的前项和后项扩大或缩小相同的倍数,比值不变,即:

$$\frac{a}{b} = \frac{am}{bm}(m \neq 0)$$
或 $a:b=am:bm$

注:比的基本性质常用来将分数形式的比化为整数形式的比.

$$\frac{1}{2}: \frac{1}{3} = \left(\frac{1}{2} \times 6\right): \left(\frac{1}{3} \times 6\right) = 3:2$$

○ 大师笔记: 算术-比与比例 讲义 P12

② 比与比例 • 比的常用定理 注意: 分母均不为零!!!

定理	公式	解读/简要证明
更比定理		
反比定理		
合比定理		等式左右同加1
分比定理	$ \frac{a}{b} = \frac{c}{d} $,则 $ \frac{a-b}{b} = \frac{c-d}{d} $	等式左右同减1
合分比定理		合比定理分比定理结论相除

₩♥ P1

第 比与比例 • 比的常用定理 注意: 分母均不为零!!!

定理	公式	解读/简要证明
等比定理	$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$	若几个分式相等,则: 分子相加与分母相加的比值仍与原比值相等.
糖水不等式	$\frac{b}{a} < \frac{b+c}{a+c} (a > b > 0, c > 0)$	一个真分数在分母分子同时加上一个正数时, 分数值将变大.

【标志词汇】见比设k

$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$

$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$
 $a = bk, c = dk, e = fk$ 使用前提: 这几个比的

$$\frac{a}{b} = \frac{1}{d} = \frac{1}{f} = k$$

$$\frac{a + c + e}{b + d + f} = \frac{bk + dk + fk}{b + d + f} = \frac{k(b + d + f)}{b + d + f} = k$$

$$\frac{b}{b} = \frac{1}{d} = \frac{1}{f} = k$$

$$\frac{d}{d} = \frac{1}{$$

$$(b+d+f\neq 0)$$

第 比与比例

10. 【2002.10.08】若
$$\frac{a+b-c}{c} = \frac{a-b+c}{b} = \frac{-a+b+c}{a} = k$$
,则 k 值为().

A.1

$$D-2$$

【答案】B