PRÁCTICA 3: TERMINACIÓN DE SISTEMAS DE REESCRITURA

Órdenes bien fundados

Recordamos algunas definiciones:

• Si $(A_1, <_1), \ldots, (A_n, <_n)$ son órdenes parciales estrictos, se define $(A_1 \times \ldots \times A_n, <_{\mathsf{lex}(n)})$ así:

$$(a_1, \ldots, a_n) <_{\mathsf{lex}(n)} (a'_1, \ldots, a'_n) \stackrel{\text{def}}{\iff} \exists k \leq n. ((\forall i < k. \ a_i = a'_i) \land a_k <_k a'_k)$$

• Si (A, <) es un orden parcial estricto, se define un orden parcial estricto $(A^*, <_{lex*})$ así, donde A^* denota el conjunto de las palabras sobre A:

$$u <_{\mathsf{lex}*} u' \iff |u| < |u'| \lor (|u| = |u'| \land u <_{\mathsf{lex}(|u|)} u')$$

• Si (A, <) es un orden parcial estricto, se define un orden parcial estricto $(\mathcal{M}(A), <_{\mathsf{mul}})$ así, donde $\mathcal{M}(A)$ denota el conjunto de los multiconjuntos finitos sobre A:

$$M <_{\mathsf{mul}} M' \overset{\mathrm{def}}{\iff} M (<^1_{\mathsf{mul}})^+ M'$$

donde además declaramos que vale $M <_{\mathsf{mul}}^1 M'$ cada vez que existen $n \geq 0$, elementos $a, a_1, \ldots, a_n \in A$ y un multiconjunto $N \in \mathcal{M}(A)$ tales que:

$$M = \{a_1, \dots, a_n\} \uplus N \quad M' = \{a\} \uplus N \quad \forall i \in \{1..n\}. a_i < a_i$$

Ejercicio 1. Demostrar que si $(A, <_1)$ y $(B, <_2)$ son órdenes parciales estrictos, entonces $(A \times B, <_{lex(2)})$ es un orden parcial estricto.

Ejercicio 2. Demostrar que si (A,<) es bien fundado entonces $(A^*,<_{\mathsf{lex}*})$ es bien fundado. Se puede usar sin demostración el hecho de que $(A^n,<_{\mathsf{lex}(n)})$ es bien fundado para cada $n \in \mathbb{N}_0$.

Ejercicio 3. Considerar el ARS $\mathcal{A} = (\mathbb{N}_0 \times \mathbb{N}_0, \rightarrow)$ donde la relación de reducción está dada por:

$$\mathcal{A}: \left\{ \begin{array}{ll} (n+1,m) & \to & (n,k) & \text{ para todo } n,m,k \in \mathbb{N}_0 \\ (n,m+1) & \to & (n,m) & \text{ para todo } n,m \in \mathbb{N}_0 \end{array} \right.$$

- a) Demostrar que \mathcal{A} es SN.
- b) Demostrar que **no** existe una función $\#: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ tal que $(n, m) \to (n', m')$ implique #(n, m) > #(n', m') para cualesquiera $n, m, n', m' \in \mathbb{N}_0$.

Ejercicio 4. Sea (A, <) un orden parcial estricto y sean $M, M' \in \mathcal{M}(A)$. Demostrar que son equivalentes:

- i) $M <_{\mathsf{mul}} M'$
- ii) Existen multiconjuntos $P, P', N \in \mathcal{M}(A)$ tales que:

$$M = P \uplus N$$
 $M' = P' \uplus N$ $P' \neq \emptyset$ $\forall x \in P. \exists y \in P'. x < y$

Ejercicio 5. Sea Σ una signatura y sea $A = \mathcal{P}^{fin}(\mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma))$. Los ARSs siguientes están definidos sobre el conjunto de objetos A, es decir, sus objetos son conjuntos finitos de pares de términos.

a) Demostrar que el ARS $A_1 = (A, \rightarrow_1)$ es SN. La relación de reducción está dada por:

$$\{(x,t)\} \cup X \rightarrow_1 X^{\{x \mapsto t\}} \text{ si } x \notin \text{vars}(t)$$

donde $\{x \mapsto t\}$ es la sustitución que instancia la variable x en t. Por ejemplo, $\{(x, f(y, y)), (y, g(x))\}$ reduce a $\{(y, g(f(y, y)))\}$ y también a $\{(x, f(g(x), g(x)))\}$, ambas en forma normal.

b) Demostrar que el ARS $A_2 = (A, \rightarrow_2)$ es SN. La relación de reducción está dada por:

$$\{(f(t_1,\ldots,t_n),f(t_1',\ldots,t_n'))\} \cup X \rightarrow_2 \{(t_1,t_1'),\ldots,(t_n,t_n'))\} \cup X$$
 para cada símbolo $f \in \Sigma$ de aridad n Por ejemplo, $\{(f(x,g(x)),f(y,y))\}$ reduce a $\{(x,y),(g(x),y)\}$, que es una forma normal.

c) Demostrar que el ARS $\mathcal{A}_3 = (A, \to_3)$ es SN, donde $\to_3 = \to_1 \cup \to_2$. Por ejemplo, $\{(f(x, g(x)), f(y, g(y)))\} \to_2 \{(x, y), (g(x), g(y))\} \to_2 \{(x, y)\} \to_1 \emptyset$.

Nota: estas reglas forman parte del algoritmo de Martelli–Montanari para decidir el problema de unificación de términos de primer orden.

Métodos de interpretación

Ejercicio 6. Demostrar que cada uno de los siguientes STSs sobre el alfabeto $\Sigma = \{a, b\}$ es SN. Para ello, entender a cada STS como un TRS sobre la signatura $\Sigma' = \{a^1, b^1\}$, y dar en cada caso una Σ' -álgebra monótona bien fundada sobre (\mathbb{N}^+ , <) que sea compatible con la correspondiente regla de reescritura.

$$S_1: \{ ab \rightarrow ba$$
 $S_2: \{ ab \rightarrow bba \}$

Más en general, demostrar que para cada $k \in \mathbb{N}_0$ el siguiente STS es SN, usando la misma técnica:

$$S_k: \left\{ ab \to b^k a = \underbrace{b...b}_{k \text{ veces}} a \right.$$

Ejercicio 7. Demostrar que el siguiente TRS sobre $\Sigma = \{f^1, g^1, a^2\}$ es SN dando una Σ-álgebra monótona bien fundada sobre ($\mathbb{N}^+, <$) que sea compatible con la regla de reescritura:

$$\mathcal{R}: \{ f(g(x)) \to a(g(f(x)), x) \}$$

Ejercicio 8. Demostrar que el siguiente TRS sobre $\Sigma = \{\circ^2\}$ es SN usando una interpretación polinomial:

$$\mathcal{R}: \{ (x \circ y) \circ z \rightarrow x \circ (y \circ z) \}$$

Recordar que \mathcal{R} es WCR, como ya fue visto en la Práctica 2, y concluir que es CR.

Ejercicio 9. Demostrar que el siguiente TRS sobre $\Sigma = \{*^2, +^1\}$ es SN usando una interpretación polinomial:

$$\mathcal{R}: \left\{ \begin{array}{ll} x*(y+z) & \rightarrow & (x*y)+(x*z) \end{array} \right.$$

Observar que no tiene pares críticos, por lo cual además es CR.

Ejercicio 10. Demostrar que el siguiente TRS sobre $\Sigma = \{f^1, g^1, h^1\}$ es SN usando una interpretación polinomial:

$$\mathcal{R}: \left\{ \begin{array}{lcl} f(g(x)) & \to & h(x) \\ h(x) & \to & g(f(x)) \end{array} \right.$$

¿Es CR?

Ejercicio 11. Demostrar que el siguiente TRS sobre $\Sigma = \{0^0, +^2, *^2\}$ es SN usando una interpretación polinomial:

$$\mathcal{R}: \left\{ \begin{array}{ccc} 0+x & \to & x \\ x+0 & \to & x \\ x*0 & \to & 0 \\ x*(y+z) & \to & (x*z)+(y*x) \end{array} \right.$$

¿Es CR?

Ejercicio 12. Si \mathcal{E} es un conjunto de ecuaciones entre términos de primer orden bajo una signatura Σ , la teoría ecuacional generada por \mathcal{E} es el conjunto de ecuaciones $t \approx s$ que se pueden deducir partiendo de los axiomas de \mathcal{E} . Más precisamente, se define $\vdash_{\mathcal{E}} t \approx s$ así:

- (Axioma). Si $\ell \approx r$ es una de las ecuaciones de \mathcal{E} , entonces $\vdash_{\mathcal{E}} C[\ell^{\theta}] \approx C[r^{\theta}]$ para cualquier contexto C y cualquier sustitución θ .
- (Reflexividad). Vale $\vdash_{\mathcal{E}} t \approx t$ para todo $t \in \mathcal{T}(\Sigma)$.
- (Simetría). Si $\vdash_{\mathcal{E}} t_1 \approx t_2$ entonces $\vdash_{\mathcal{E}} t_2 \approx t_1$.
- (Transitividad). Si $\vdash_{\mathcal{E}} t_1 \approx t_2$ y $\vdash_{\mathcal{E}} t_2 \approx t_3$ entonces $\vdash_{\mathcal{E}} t_1 \approx t_3$.

Considerar los dos conjuntos de ecuaciones \mathcal{G} y \mathcal{G}' en la signatura $\Sigma = \{\cdot^2, i^1, e^0\}$:

$$\mathcal{G}: \left\{ \begin{array}{cccc} e \cdot x & \approx & x \\ x \cdot e & \approx & x \\ i(x) \cdot x & \approx & e \\ x \cdot i(x) & \approx & e \\ (x \cdot y) \cdot z & \approx & x \cdot (y \cdot z) \end{array} \right. \quad \mathcal{G}': \left\{ \begin{array}{cccc} i(e) & \approx & e \\ i(x \cdot y) & \approx & i(y) \cdot i(x) \\ x \cdot (i(x) \cdot y) & \approx & y \\ i(x) \cdot (x \cdot y) & \approx & y \\ i(i(x)) & \approx & x \end{array} \right.$$

Las ecuaciones de \mathcal{G} y \mathcal{G}' representan igualdades que valen en cualquier grupo, donde $x \cdot y$ denota el producto, i(x) denota el inverso multiplicativo y e denota el elemento neutro. Formalmente, la teoría de grupos es la teoría ecuacional generada por \mathcal{G} . En este ejercicio probaremos que la teoría de grupos es decidible.

- a) Verificar que si se orientan las ecuaciones de \mathcal{G} de izquierda a derecha, el TRS que se obtiene no es confluente.
- b) Demostrar que $\mathcal{G} \cup \mathcal{G}'$ es una extensión conservadora de \mathcal{G} , es decir, que vale $\vdash_{\mathcal{G}} t_1 \approx t_2$ si y sólo vale $\vdash_{\mathcal{G} \cup \mathcal{G}'} t_1 \approx t_2$. Sugerencia: alcanza con probar que todas las ecuaciones de \mathcal{G}' valen en la teoría de grupos.
- c) Verificar que el TRS que resulta de tomar todas las ecuaciones $\mathcal{G} \cup \mathcal{G}'$ orientadas de izquierda a derecha es SN y CR.
- d) Concluir que es decidible el problema de determinar si vale $\vdash_{\mathcal{G}} t \approx s$, es decir, la teoría de grupos es decidible.