Notes for Algebraic Structures

Spring 2016

Transcribed by Jacob Van Buren (jvanbure@andrew.cmu.edu)

Notes for Algebraic Structures, taught Spring 2016 at Carnegie Mellon University, by Professor Clinton Conley.

Administrativia

Instructor. Clinton Conley (clintonc@andrew.cmu.edu), WEH 7121
http://www.math.cmu.edu/~clintonc/

Grading. 20% HW, $20\% \times 2$ midterms, 40% Final

Homework. Wednesday-Wednesday. Graded for completeness, one starred problem for which no collaboration of any type is allowed. Most homework out of textbook ("D&F").

Contents

Administrativia	
The Integers Lecture 1 (2016–01–11) Lecture 2 (2016–01–13) Lecture 3 (2016–01–15)	1 1 1 2
The Integers \pmod{n}	3
Groups Lecture 4 (2016–01–20)	5 5
Symmetric Groups Lecture 5 (2016–01–25) Lecture 6 (2016–01–27)	7 7 8
Subgroups	9
(Left) Coset equivalence Lecture 7 (2016–01–29) Lecture 8 (2016–02–01) Normal Subgroups	10 10 12 12
Homomorphisms	14
Index	15

The Integers

Lecture 1 (2016–01–11)

NOTATION. $\mathbb{N} := \{1, 2, 3, \ldots\}$ in this class.

Properties: Order, other things. Least element in a set $S: x \in S$ s.t. $\forall y \in S, x \leq y$ Addition $(\mathbb{Z}, +)$:

- Associativity (x + y) + z = x + (y + z)
- Identity x + 0 = 0 + x = 0
- Inversion x + (-x) = (-x) + x = 0
- Commutativity x + y = y + x

Multiplication $(\mathbb{Z}, +, \cdot)$:

- Associative
- <u>Distributive</u>
- Identity ("1")

Integer division: Assume x an integer and $y \in \mathbb{Z}^+$ then $\exists ! d \in \mathbb{Z}, \exists ! r \in \mathbb{Z} : 0 \leq r < y, x = \overline{d \cdot y + r}$

Definition 1. y|x "y divides x" iff $\exists d \in \mathbb{Z} : x = d \cdot y$.

E.g. 3|9,4/7.

DEFINITION 2. d is a gcd of x and y if

- $\bullet d|x,d|y$
- If c|x and c|y then c|d

Lecture 2 (2016-01-13)

DEFINITION 3. Given $a, b \in \mathbb{Z}$, denote by $\mathbb{Z}(a, b)$ the set $\{ax + by | x, y \in \mathbb{Z}\}$.

THEOREM 4 (Euclid, Bezout). Suppose $a, b \in \mathbb{Z}$ are nonzero and let d be the smallest positive element of $\mathbb{Z}(a,b)$, then d is the unique positive GCD of a and b.

PROOF. d is a gcd of a, b

- (1) (Existence of positive GCD)
 - (a) By integer division, $\exists q \in \mathbb{Z}, \exists r \in \mathbb{Z} \text{ with } 0 \leq r < d \text{ such that } a = qd + r.$ If r = 0 then d|a, so done. Otherwise, suppose 0 < r < d, so $r = a qd \text{ since } d \in \mathbb{Z}(a,b)$, we may fix x, y st d = ax + by, meaning r = a q(ax + by) = a(1 qx) + b(-qy), so $r \in \mathbb{Z}(a,b)$, meaning d was not the minimal positive element in $\mathbb{Z}(a,b)$, RAA. Thus, d|a
 - (b) HW: If c|a and c|b then c|(ax+by) for all $x,y\in\mathbb{Z}$ Hence c|d

(2) (Uniqueness of positive GCD) Suppose d_1, d_2 are both positive gcds of a and b. $d_1 \mid d_2$ and $d_2 \mid d_1$ as they are both gcds. i.e., $\exists m, n \in \mathbb{Z}$ such that $d_2 = md_1$ and $d_1 = nd_2$. As $sgn(d_1) = sgn(d_2)$, $m \ge 0$ and $n \ge 0$. As $d_1 = mnd_1$, m = n = 1. Thus $d_1 = d_2$.

Definition 5. Relatively prime $\iff \gcd(a,b) = 1$

THEOREM 6. Suppose p is prime and $a, b \in \mathbb{Z}$ are nonzero, and p|(ab) then p|a or p|b.

PROOF. Consider $d = \gcd(p, a)$. Since $d \mid p$, we know d = p or d = 1.

If d = p: By def of GCD, d|p and d|a ie. p|p and p|a so we're done.

If d=1: Fix integers x and y such that px+ay=1. b=p(xb)+(ab)y as p|p(xb)

Theorem 7 (Unique Prime Factorization). Suppose that a > 1 an integer, $m, n \geq 1$ and $p_1 \leq p_2 \leq \ldots \leq p_m, q_1 \leq q_2 \leq \ldots \leq q_m$ are positive primes.

Then m = n and $p_i = q_i$ for all i.

PROOF. By induction, it suffices to show $p_1 = q_1$. Suppose not. WLOG, assume $p_1 < q_1$. We know that $p_1 \mid a$ (as $p_1 \mid q_1 q_2 \dots q_n$) Hence, $\exists i \leq n$ such that $p_i \mid q_i$. since p_i and q_i prime, $p_1 = q_i$. However, $p_1 < q_1 \le q_i = p_1$ so $p_1 < p_2$ contradiction. Hence $p_1 = q_1$ so by induction, we're done.

Lecture 3 (2016–01–15)

Teaser: Construct numbers of the form $a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$.

Notion of addition still exists: (similar to complex numbers, coefficients remain integers) Same with multiplication

Among these "numbers", 2 is irreducible. But, 2 is not prime, as $2 / (1 + \sqrt{-5})$ and $2 / (1 + \sqrt{-5})$ $\sqrt{-5}$), but $2 \left| \underbrace{(1 + \sqrt{-5})(1 - \sqrt{-5})}_{=6=2\cdot3} \right|$.

The Integers \pmod{n}

For today, n > 0.

DEFINITION 8. For $a, b \in \mathbb{Z}$ we say $a \equiv b \pmod{n}$ iff $n \mid (b - a)$.

 \equiv is an equivalence relation

- Reflexivity: $a \equiv a$
- Symmetry: $a \equiv b \iff b \equiv a$
- Transitivity: $a \equiv b \land b \equiv c \implies a \equiv c$

PROOF. We know that $a \equiv b$ and $b \equiv c$, i.e. $n \mid (b-a)$ and $n \mid (c-b)$ We want $a \equiv c$, i.e., $n \mid (c-a)$

$$c - a = c + (-b + b) - a = \underbrace{(c - b) + (b - a)}_{n \text{ divides these}}$$

DEFINITION 9. Denote by \overline{a} or $[a]_n$ the equivalence class of a with respect to $\equiv \pmod{n}$ (I.e., The set $\{b \in \mathbb{Z} : a \equiv b \pmod{n}\} = \overline{\{a + kn : k \in \mathbb{Z}\}}$).

Example. If n = 2, there are 2 equivalence classes:

$$\overline{0} = \{\dots, -4, -2, 0, 2, 4, \dots\} = \overline{2} = \overline{-36}$$

 $\overline{1} = \{\dots, -3, -1, 1, 3, \dots\}$

DEFINITION 10. Denote by $\mathbb{Z}/n\mathbb{Z}$ the collection of all $\equiv \pmod{n}$ equivalence classes.

E.g.
$$\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$$

"Define" addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$ as follows:

$$\overline{a} + \overline{b} = \overline{a+b}$$
$$\overline{a} \cdot \overline{b} = \overline{ab}$$

Makes sense, but we need to check that this definition makes any sense at all (make sure it's well-defined). Specifically, we need to make sure that the results of these operations doesn't depend on the representatives of the equivalence classes we chose (e.g. check that $\overline{x} + \overline{z} \equiv \overline{y} + \overline{z}$ if $x \equiv y$).

For brevity, we just show addition.

Theorem 11. + and \cdot are well-defined on $\mathbb{Z}/n\mathbb{Z}$

PROOF. (of ·) Assume that $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ and $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$. Then, we want to show that $a_1b_1 \equiv a_2b_2 \pmod{n}$.

We know: $n | (a_2 - a_1)$ and $n | (b_2 - b_1)$.

We want: $n | (a_2b_2 - a_1b_1)$.

$$a_2b_2 - a_1b_1 = a_2b_2 + (-a_1b_2 + a_1b_2) - a_1b_1$$

$$= (a_2b_2 - a_1b_2) + (a_1b_2 - a_1b_1)$$

$$= \underbrace{(a_2 - a_1)b_2 + a_1(b_2 - b_1)}_{n \text{ divides these}}$$

So, $n | (a_2b_2 - a_1b_1)$ as desired

Remark: This is a special case of a "quotient construction," in which you start with a set and an equivalence relation on it and operations on the set that "respect" the equivalence relations (i.e. equivalent inputs yield equivalent outputs)

Moar notes: Mutiplicative inverses are uncommon in the integers (only for 1 and -1). However, it's "more prevalent" in $\mathbb{Z}/n\mathbb{Z}$ in the following sense:

THEOREM 12. Suppose n > 0 is an integer, $a \in \mathbb{Z}$ such that $\gcd(n, a) = 1$ (they're coprime). Then there is $b \in \mathbb{Z}$ such that $ab = 1 \pmod{n}$ (alternatively, $\overline{a} \cdot \overline{b} = \overline{1}$)

PROOF. Use Bezout's theorem (from last lecture) Take integers x, y such that $nx + ay = \gcd(a, n) = 1$. Then, nx = 1 - ay, so $n \mid (1 - ay)$, so $1 \equiv ay \pmod{n}$, Choose b = y and we're done $(\overline{ab} \equiv \overline{1})$.

Groups

DEFINITION 13. We say that * is a binary operation on some set X if it is a function $*: X \times X \to X$. (That is, * accepts two (ordered) inputs from X and it outputs one element of X.)

Remark: usually write a * b for the output of * on the input (a, b).

DEFINITION 14. A group is a set G with a binary operation * (often abbreviated (G,*)) satisfying the following 3 axioms.

- i. Associativity: $\forall a, b, c \in G : (a * b) * c = a * (b * c)$
- ii. Identity: There is some $e \in G$ such that $\forall a \in G : a * e = e * a = a$
- iii. Inversion: $\forall a \in G(\exists b \in G(a * b = b * a = e))$ (where e is as described in ii)

Lecture 4 (2016–01–20)

Recall the definition of a group.

DEFINITION 15. (G,*) is an abelian (commutative) group if it is a group and

iv.
$$(G, *)$$
 is commutative $(\forall x, y \in G : x * y = y * x)$

Let (G, *) be an arbitrary but fixed group.

PROPOSITION 16. There is a unique identity element.

PROOF. Suppose e and f both satisfy the second group property. we compute e * f in two ways. e * f = f and e * f = e, so by transitivity, e = f.

PROPOSITION 17. If $a \in G$, a has a unique inverse.

PROOF. Suppose that b and c are both inverses for a, b*a = e, a*c = e. Then,

$$b = b * e = b * (a * c) = (b * a) * c = e * c = c$$

Notational Conventions.

- We will often just call a group G instead of (G,*)
- We abbreviate multiplication (x * y) as $x \cdot y$ or just xy
- We will often write xyz for (x*y)*z (due to associativity)
- When working with $(\mathbb{Z}, +)$, we'll just use +
- We'll denote the (unique) identity of G by 1 or by e.
- We'll denote the inverse of x by x^{-1}
- Given an integer exponent $n \in \mathbb{Z}$ and $x \in G$, define

$$x^{n} = \begin{cases} \prod_{i=1}^{n} x, & \text{if } n > 0 \\ e, & \text{if } n = 0 \\ \prod_{i=1}^{-n} (x^{-1}), & \text{if } n < 0 \end{cases}$$

Group Examples. "Definition:" $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}^+ \right\}$

- (1) $(\mathbb{Z},+)$ is an abelian group
- (2) (\mathbb{Z}, \times) is not a group Why? 2 has no inverse in \mathbb{Z} . $(\nexists x \in \mathbb{Z} : (2x = 1))$
- (3) $(\mathbb{Q}, +)$ is an abelian group
- (4) (\mathbb{Q}, \times) is not a group (0 has no inverse)
- (5) $(\mathbb{Q} \setminus \{0\}, \times)$ is an abelian group.
- (6) GL(n) is the set of matricies $A_{n\times n}$ for which $\det A_{n\times n} \neq 0$
- (7) The set G of 2×2 matrices with determinant 1, along with matrix multiplication, is a group. Called the "special linear group."

Closure:

$$\det\left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)\cdot\left(\begin{smallmatrix} e & f \\ g & h \end{smallmatrix}\right)\right)=(bc-ad)(fg-eh)=1$$

- i. Associativity: proof left for the reader.
- ii. Identity: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- iii. Given $a = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, take $a^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, which you can verify is still in G. The group is *not* abelian. Take $a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Verify that $ab \neq ba$

(8) Suppose that $X \neq \emptyset$ is some set, and denote by S_X the set of bijections $f: X \to X$. Then (S_X, \circ) is a group, where \circ is function composition. $((f \circ g)$ is the function $x \mapsto f(q(x)).$

Identity is $x \mapsto x$. Inversion $f^{-1} = f^{-1}$.

Symmetric Groups

Lecture 5 (2016-01-25)

Recall: if X is a set then S_X is the group of bijections on it.

DEFINITION 18. S_X (or Sym_X) is called the symmetric group on X.

Note: \circ is associative because $(f \circ q) \circ h$ is

$$x \overset{\mathrm{h}}{\mapsto} (x) \overset{\mathrm{g}}{\mapsto} g(h(x)) \overset{\mathrm{f}}{\mapsto} f(g(h(x)))$$

Note: if $X = \{1, ..., n\}$, then we usually write $\underline{S_n}$ instead of $S_{\{1,...,n\}}$. (Sometimes called symmetric group of degree n.)

Let's examine S_3 :

Lot b chaining			
1	2	3	
1	2	3	
1	2	3	
1	3	2	
2	3	1	
3	1	2	
3	2	1	
	1 1 1 2 3	1 2 1 2 1 3 2 3 3 1	

The group has 6 = 3! elements.

Lets compute ab and ba

 $ab = a \circ b$, looking it up in the table gives ab = d and ba = c.

In particular, S_3 is not abelian.

DEFINITION 19. A cycle is a permutation σ of the following form:

There is a sequence x_1, x_2, \ldots, x_m of finitely many (distinct) elements of $\{1, 2, \ldots, n\}$ such that $\sigma(x_{i-1}) = x_i$, $\sigma(x_m) = x_1$, and $\sigma(y) = y$, for $y \notin \{x_1, \ldots, x_m\}$.

We call m the length of the cycle.

Ex. In S_3 , $d = \frac{123}{312}$ is a cycle of length 3, with $x_1 = 1, x_2 = 3, x_3 = 2$.

Ex. In S_3 , $a = \frac{123}{132}$ is a cycle of length 2, with $x_1 = 2, x_2 = 3$.

NOTATION. Given a cycle, we can efficiently denote it by $(x_1 x_2 x_3 \dots x_m)$.

EXAMPLE. In S_3 , $a = \frac{123}{132}$ would be written as $(1\ 3\ 2)$.

Let's work in S_5 .

 $\varphi := \frac{12345}{34152}$ is not a cycle, but it is the "superposition" of two cycles (1 3) and (2 4 5). Thus, we may write $\varphi = (1 3) \circ (2 4 5)$, or (2 4 5)(1 3).

THEOREM 20. Every permuation in S_n may be written as the product of "disjoint" cycles. (The identity is the empty product).

PROOF. Sketch: If you have e then you're done trivially.

Otherwise, fix the least element x of $\{1,\ldots,n\}$ "moved" by σ (i.e. $\sigma(x)\neq x$). Look at $x, \sigma(x), \sigma^2(x), \ldots, \sigma^m(x) = \sigma^n(x), n < m$. So, as σ is invertible, $\sigma^{m-n}(x) = x$, so x is part of a cycle.

Theorem 21. Cycles can be written as a product of transpositions.

General propositions on inversion in groups. Let G be a group, and let $a,b,x\in G$ be arbitrary.

•
$$(a^{-1})^{-1} = a$$

PROOF. Show that a is the inverse of a^{-1} . Follows from group axiom.

•
$$(ab)^1 = b^{-1}a^{-1}$$

PROOF. $(ab)(b^{-1}a^{-1}) = (a(bb^{-1}))a^{-1} = (ae)a^{-1} = aa^{-1} = e$. Similarly, this works when we multiply from the other side.

Lecture 6 (2016–01–27)

DEFINITION 22. The cardinality (or order) of a group G is the number of elements in it, denoted by |G|.

EXAMPLE.

- $|\mathbb{Z}| = \infty (= \aleph_0)$
- $|(\mathbb{Z}/5\mathbb{Z})| = 5$ $|S_4| = 4! = 24$

DEFINITION 23. Given a group G and $x \in G$, the <u>order</u> of x is the smallest integer n > 0such that $x^n = e$. If no such n exists, we say the order is ∞ . We denote by |x| the order of x.

EXAMPLE. In
$$(\mathbb{Z}, +)$$
: $|0| = 1$, $|5| = \infty$.
In S_5 : $|(1\ 3)| = 2$, $|(2\ 4\ 5)| = 3$, $|(1\ 3)(2\ 4\ 5)| = 6$.

PROPOSITION 24. If G is a finite group, every $x \in G$ has finite order. Moreover, |x| < |G|.

PROOF. Say |G| = k. Consider the sequence $x^0, x^1, x^2, \ldots, x^k$. There are k+1 items in the sequence. So $\exists m < n \text{ such that } x^m = x^n$. $x^{n-m} = x^n x^{-m} = x^m x^{-m} = e$. As $0 < n - m \le k$, it follows that $|x| \le n - m \le |G|$.

Subgroups

DEFINITION 25. Suppose (G, *) is a group and $H \subseteq G$ some subset of G. We say H is a subgroup of G, written $H \subseteq G$ if (H, *) happens to be a group, i.e., the following properties hold:

* is a associative binary operator on H (i.e., it's closed) with inverses and an identity element.

EXAMPLE.

- $\mathbb{Z} < \mathbb{Q}$ (under addition)
- Even integers $\leq \mathbb{Z}$ (under addition)
- $n\mathbb{Z} \leq \mathbb{Z}$, where $n\mathbb{Z} := \{nx : x \in \mathbb{Z}\}$ Aside: every subgroup of \mathbb{Z} is of the form $n\mathbb{Z}$
- $\{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} \leq S_4$.

Proposition 26. (HW): $H \leq G$ iff

- (a) $H \neq \emptyset$ (nonempty)
- (b) $\forall x, y \in H(xy \in H)$ (closed under product)
- (c) $\forall x \in H(x^{-1} \in H)$ (closed under inverses)

PROPOSITION 27. Suppose G is a finite group. Then $H \leq G$ iff $H \neq \emptyset$ and $\forall x, y \in H$: $xy \in H$.

PROOF. We show that for $H \subseteq G$ (a) and (b) \Longrightarrow (c) (letters from proposition (26)) Fix $x \in H$. Since G is finite, |x| is finite (in G). Say |x| = n > 0 $x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}} = e_G$.

Hence, $e_G \in H$.

Examine
$$x^{n-1}$$
.
$$x^{n-1} = \begin{cases} x^0 = e & \text{if } n = 1 \\ \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}} & \text{if } n > 1 \end{cases}$$

 $x^{n-1} = \left\{ \underbrace{x \cdot x \cdot \dots \cdot x}_{n \text{ times}} \quad \text{if } n > 1 \right.$ But $x^{n-1} = x^{-1}$, since $x^{n-1}x = x^n = xx^{n-1} = e$. Thus, (c) holds for H.

REMARK. $\mathbb{N} = \{0, 1, \ldots\} \subseteq \mathbb{Z}$, but $\mathbb{N} \nleq \mathbb{Z}$, despite satisfying (a) and (b).

(Left) Coset equivalence

Suppose G is a group and $H \leq G$ is a subgroup of G.

DEFINITION 28. We say $x \sim y \pmod{H}$ if $x^{-1}y \in H$.

PROPOSITION 29. $\sim \pmod{H}$ is an equivalence relation.

PROOF.

- Reflexivity $(x \sim x)$: $x^{-1}x = e \in H$, so $x \sim x$.
- Symmetry $(x \sim y \implies y \sim x)$: We know $x^{-1}y \in H$. H is closed under inversion, so $H \ni (x^{-1}y)^{-1} = (y^{-1}(x^{-1})^{-1}) = (y^{-1}x)$. Thus, $y \sim x$.

• Transitivity $((x \sim y) \land (y \sim z) \Longrightarrow (x \sim z))$: We know $x^{-1}y \in H$ and $y^{-1}z \in H$. Thus, $H \ni (x^{-1}y)(y^{-1}z) = x^{-1}ez = x^{-1}z$, so $x \sim z$.

Lecture 7 (2016-01-29)

G is a group. $H \leq G$ a fixed subgroup of G.

Given $x, y \in G$, $x \sim y \pmod{H}$ iff

$$x^{-1}y \in H$$
.

Last time: we showed it was an equivalence relation.

What are the equivalence classes of $\sim \pmod{H}$? We examine

$$[x] = \{ y \in G : x \sim y \pmod{H} \}$$

$$= \{ y \in G : x^{-1}y \in H \}$$

$$= \{ y \in G : \exists h \in H(x^{-1}y = h) \}$$

$$= \{ y \in G : \exists h \in H(x(x^{-1}y) = xh) \}$$

$$= \{ y \in G : \exists h \in H(y = xh) \}$$

So, [x] is exactly the set

$$\{xh:h\in H\}.$$

NOTATION. We write xH to abbreviate the set $\{xh : h \in H\}$.

DEFINITION 30. The equivalence class xH is called the (left) coset of x with respect to H.

NOTATION. The cyclic subgroup of x is denoted by $\langle x \rangle$.

Examples:

- $G = (\mathbb{Z}, +), H = n\mathbb{Z} = \text{multiples of } n.$ So $H \leq G$. For $x \in \mathbb{Z}$, its coset is $\overline{x} = \{x + h : h \in n\mathbb{Z}\} = \{x + nk : k \in \mathbb{Z}\}$
- $G = S_3 = \{e, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$ Take $H = \{e, (1\ 2\ 3), (1\ 3\ 2)\} \leq S_3$ (the cyclic subgroup of $(1\ 2\ 3)$).

So what are the cosets? $eH = \{eh : h \in H\} = \{h : h \in H\} = H$. (In general, eH is always just H). (Even more generally, xH = H whenever $x \in H$.)

Another coset is $(1\ 2)H$. Just compute $(1\ 2)h$ for each $h\in H$. Thus

$$(1\ 2)H = \left\{ \begin{array}{ll} (1\ 2) & e & = (1\ 2) \\ (1\ 2) & (1\ 2\ 3) & = (2\ 3) \\ (1\ 2) & (1\ 3\ 2) & = (1\ 3) \end{array} \right\} = \{(1\ 2), (2\ 3), (1\ 3)\}$$

We note that $(1\ 2)H = (2\ 3)H = (1\ 3)H$, as each of those are in $(1\ 2)H$.

• $G = S_3$, $K = \langle (1 \ 3) \rangle = \{e, (1 \ 3)\} \leq G$. Analyze cosets mod K.

Easy coset: eK = K.

For the next coset, choose $(1\ 2\ 3)K$

$$(1\ 2\ 3)K = \left\{ \begin{array}{ll} (1\ 2\ 3)\ e & = (1\ 2\ 3) \\ (1\ 2\ 3)\ (1\ 3) & = (2\ 3) \end{array} \right\} = \{(1\ 2\ 3), (2\ 3)\}$$

Next coset after that is $(1\ 2)K = \{(1\ 2), (1\ 3\ 2)\}.$

We note that the equivalence classes mod K partition S_3 , Although they are not all subgroups.

In the last two examples, it wasn't a coincidence that each coset was of the same cardinality.

PROPOSITION 31. Suppose G is a group, $H \leq G$, and $x \in G$. Then |xH| = |H|.

PROOF. We establish a bijection between H and xH.

Define $\varphi: H \to xH$, $\varphi(h) = xh$.

CLAIM (1). φ is surjective.

PROOF. Suppose $y \in xH$. By definition of xH, $\exists h \in H$ such that y = xh. so $y = \varphi(h)$.

 $\Box(C1)$

CLAIM (2). φ is injective.

PROOF. Suppose $h_1, h_2 \in H$ such that $\varphi(h_1) = \varphi(h_2)$.

By definition of φ , we have $xh_1 = xh_2$. Since G is a group, x has an inverse x^{-1} .

Thus,
$$x^{-1}(xh_1) = x^{-1}(xh_2) \implies h_1 = h_2$$
 as desired.

Thus φ is a bijection, meaning |xH| = |H| as desired. $\square(\text{Prop.})$

THEOREM 32 (Lagrange). Suppose that G is a finite group and $H \leq G$. Then |H| divides |G|.

PROOF. Left coset equivalence partitions G into k equivalence classes of size |H|. Thus |G| = k|H|, as desired.

Corollary 33. Suppose that G is a finite group and $x \in G$. Then |x| divides |G|.

PROOF. Consider $\langle x \rangle$ (the cyclic subgroup generated by x). $\langle x \rangle = \{e, x, x^2, \dots, x^{n-1}\}$, where |x| = n. $|\langle x \rangle| = n$. Hence n = |x| divides |G|.

Lecture 8 (2016-02-01)

We go to the previous lecture for examples.

Consider
$$G = S_3, H = \{e, (1\ 2\ 3), (1\ 3\ 2)\} \le G, K = \langle (1\ 3) \rangle = \{e, (1\ 3)\} \le G.$$

DEFINITION 34. If G is a group and $H \leq G$, denote by G/H (G "mod" H) the collection of (left) cosets of H in G.

EXAMPLE.

- (a) $n\mathbb{Z} \leq \mathbb{Z}, \, \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$
- (b) $S_3/H = \{eH, (1\ 2)H\}, \quad eH = H, \quad (1\ 2)H = \{(1\ 2), (2\ 3), (1\ 3)\}$
- (c) $S_3/K = \{\{e, (1\ 3)\}, \{(1\ 2\ 3), 23\}, \{(1\ 2), (1\ 3\ 2)\}\}$

Normal Subgroups

Fundamental question: When is there "natural" group operation on G/H? Prototype: $\mathbb{Z}/n\mathbb{Z}$, $\overline{x} + \overline{y} = \overline{x+y}$.

Natural Attempt:

$$(g_1H)(g_2(H)) \stackrel{?}{=} (g_1g_2)H.$$

This works fine for (b) in the sense that if $g_1H = g_2H$ and $k_1H = k_2H$ then $(g_1k_1)H = (g_2k_2)H$ (verification left to reader).

But it doesn't work for (c). e and (1 3) both represent eK. But they give different cosets after multiplication by (1 2 3).

- \bullet $e(1\ 2\ 3) = (1\ 2\ 3)$
- $(1\ 3)(1\ 2\ 3) = (1\ 2).$

In general, what would we need to have, in order to have multiplication in G/H be "well-defined?"

We want: $\underbrace{x_1 \sim x_2}_{x_1^{-1}x_2 = h \in H}$ and $\underbrace{y_1 \sim y_2}_{y_1^{-1}y_2 = k \in H}$ $\Longrightarrow x_1y_1 \sim x_2y_2$. Thus, we want $(x_1y_1)^{-1}(x_2y_2) \in H$. $(x_1y_1)^{-1}(x_2y_2) = (y_1^{-1}x_1^{-1})(x_2y_2) = y_1^{-1}(x_1^{-1}x_2)y_1k = \underbrace{y_1^{-1}hy_1}_{\in H} \underbrace{k}_{\in H} \in H$

This expression motivates the definition of a normal subgroup

DEFINITION 35. If G is a group, and $N \leq G$, we say N is <u>normal</u> if for all $n \in N$, and $g \in G$, we have $g^{-1}ng \in N$. We write this as $N \leq G$.

REMARK. For fixed $g \in G$, the map for $x \in G$

$$x \mapsto g^{-1}xg$$

is called conjugation by g.

Thus, N is normal if it is stable under all conjugation.

Theorem 36. Let G a group $H \leq G$. Then the following are equivalent:

- (I) $(g_1H)(g_2H) = (g_1g_2)H$ is a well-definied group operation on G/H.
- (II) $H \leq G$.

(II)
$$\implies$$
 (I). $x_1^{-1}x_2 = h, y_1^{-1}y_2 = k$. (Exercise for the reader)

(I) \Longrightarrow (II). Suppose $h \in H$ and $g \in H$ want $g^{-1}hg \in H$.

Note: $e \sim h$ since $e^{-1}h = h \in H$.

By (I), we have (eg)H = (eH)(gH) = (hH)(gH) = (hg)H.

So,
$$gH = (hg)H$$
, meaning $g \sim hg$, so $g^{-1}hg \in H$.

 \Box (thm)

Proposition 37. If G is abelian, every subgroup is normal.

PROOF. Fix $H \leq G$, $h \in H$, $g \in G$. Then $g^{-1}hg = g^{-1}gh = h \in H$.

Proposition 38. $G \subseteq G$ and $\{e\} \subseteq G$.

PROOF. $g^{-1}hg \in G$ and $g^{-1}eg = g^{-1}g = e \in \{e\}.$

DEFINITION 39. For $A \subseteq G$, denote by $g^{-1}Ag$ the set $\{g^{-1}ag : a \in A\}$. Called the conjugate of A by G.

REMARK. Thus, N is normal iff $N \leq G$ and $\forall g \in G : g^{-1}Ng \subseteq N$.

Proposition 40. $N \leq G \implies \forall g \in G : g^{-1}Ng = N$

PROOF. Fix $n \in N$. we want $n \in g^{-1}Ng$. (This shows $N \subseteq g^{-1}Ng$.) We know by $N \leq G$ that $m = (g^{-1})^{-1}n(g^{-1}) \in N$. Then $m = gng^{-1}$.

Claim. $g^{-1}mg = n$

 $\Box(\text{Prop})$

Homomorphisms

DEFINITION 41. Suppose G, H are groups and $\varphi : G \to H$ is a function. We say φ is a homomorphism if $\forall g_1, g_2 \in G : \phi(g_1 *_G g_2) = \varphi(g_1) *_H \varphi(g_2)$.

DEFINITION 42. Suppose $\varphi: G \to H$ is a homomorphism. The <u>Kernel</u> of ϕ is $Ker(\varphi) = \{g \in G: \varphi(g) - e_H\} = \varphi^{-1}(\{e_H\})$.

PROPOSITION 43. Suppose $\varphi: G \to H$ is a homomorphism between groups. Then $K = \operatorname{Ker}(\varphi) \leq G$.

Proof.

CLAIM (1). $K \neq \emptyset$. In fact, $e_G \in K$.

PROOF. We know that e_G is the unique element of G such that $\forall g \in G(e_G g = g e_g = g)$. So, $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G) = \varphi(e_G)$ Multiplying both sides by $\varphi(e_G)^{-1} \in H$ So $\varphi(e_G) = e_H$.

CLAIM (2). $\forall g \in G\varphi(g^{-1}) = (\varphi(g))^{-1}$

PROOF.
$$\varphi(g^{-1})\varphi(g) = \varphi(gg^{-1}) = \varphi(e_G) = e_H$$
 By symmetry, $\varphi(g)\varphi(g^{-1}) = e_H$ $\square(C2)$ $\square(Prop.)$

Index

 $S_n, 7$ (Left) Coset Of x With Respect To H, 10 Associative, 1 Associativity, 1 Commutativity, 1 Distributive, 1Identity, 1 Integer Division, 1 Inversion, 1 Kernel, 14 Relatively Prime, 2 Abelian, 5 Binary Operation, 5 Cardinality, 8 Conjugation By g, 12 Cycle, 7 Equivalence Class, 3 $\mathrm{Gcd},\,1$ Group, 5 Homomorphism, 14 Length, 7 Normal Subgroup, 12 Normal, 12 Order, 8 Subgroup, 9 Symmetric Group Of Degree n, 7Symmetric Group, 7 The Conjugate Of A By G, 13