

These are the slides of the lecture

Pattern Recognition

Winter term 2020/21 Friedrich-Alexander University of Erlangen-Nuremberg.

These slides are are release under Creative Commons License Attribution CC BY 4.0.

Please feel free to reuse any of the figures and slides, as long as you keep a reference to the source of these slides at https://lme.tf.fau.de/teaching/acknowledging the authors Niemann, Hornegger, Hahn, Steidl, Nöth, Seitz, Rodriguez, Das and Maier.

Erlangen, January 8, 2021 Prof. Dr.-Ing. Andreas Maier

Pattern Recognition (PR)

Prof. Dr.-Ing. Andreas Maier
Pattern Recognition Lab (CS 5), Friedrich-Alexander-Universität Erlangen-Nürnberg
Winter Term 2020/21

Rosenblatt's Perceptron (1957)

Motivation

- We want to compute a linear decision boundary.
- We assume that classes are linearly separable.
- Computation of a linear separating hyperplane that minimizes the distance of misclassified feature vectors to the decision boundary.

Objective Function

Assume the following:

- Class numbers are $y = \pm 1$.
- The decision boundary is a linear function:

$$y^* = \operatorname{sgn}(\boldsymbol{\alpha}^T \boldsymbol{x} + \boldsymbol{\alpha}_0).$$

Objective Function

Assume the following:

- Class numbers are $y = \pm 1$.
- The decision boundary is a linear function:

$$y^* = \operatorname{sgn}(\alpha^T \mathbf{x} + \alpha_0).$$

• Parameters α_0 and α are chosen according to the optimization problem

minimize
$$\left\{D(\alpha_0, \alpha) = -\sum_{\mathbf{x}_i \in \mathcal{M}} y_i \cdot (\alpha^T \mathbf{x}_i + \alpha_0)\right\}$$

where ${\mathscr M}$ includes the misclassified feature vectors.

• The elements of the sum in the objective function depend on the set of misclassified feature vectors $\mathcal M$.

- The elements of the sum in the objective function depend on the set of misclassified feature vectors M.
- \bullet In each iteration step the cardinality of ${\mathscr M}$ might change.

- The elements of the sum in the objective function depend on the set of misclassified feature vectors M.
- In each iteration step the cardinality of $\ensuremath{\mathscr{M}}$ might change.
- The cardinality of $\mathcal M$ is a discrete variable.

- The elements of the sum in the objective function depend on the set of misclassified feature vectors \mathcal{M} .
- In each iteration step the cardinality of M might change.
- The cardinality of M is a discrete variable.
- Competing variables: continuous parameters of linear decision boundary and the discrete cardinality of \mathcal{M} .

Remember the objective function $D(\alpha_0, \alpha)$:

minimize
$$D(lpha_0, oldsymbol{lpha}) = -\sum_{oldsymbol{x}_i \in \mathscr{M}} y_i \cdot (oldsymbol{lpha}^{ au} oldsymbol{x}_i + lpha_0)$$

Remember the objective function $D(\alpha_0, \alpha)$:

minimize
$$D(lpha_0, oldsymbol{lpha}) = -\sum_{oldsymbol{x}_i \in \mathscr{M}} y_i \cdot (oldsymbol{lpha}^{\mathsf{T}} oldsymbol{x}_i + lpha_0)$$

The gradient of the objective function is:

Remember the objective function $D(\alpha_0, \alpha)$:

minimize
$$D(\alpha_0, \alpha) = -\sum_{\mathbf{x}_i \in \mathscr{M}} y_i \cdot (\alpha^{\mathsf{T}} \mathbf{x}_i + \alpha_0)$$

The gradient of the objective function is:

$$\frac{\partial}{\partial \alpha_0} D(\alpha_0, \alpha) = -\sum_{\mathbf{x}_i \in \mathcal{M}} y_i$$

Remember the objective function $D(\alpha_0, \alpha)$:

minimize
$$D(\alpha_0, \alpha) = -\sum_{\mathbf{x}_i \in \mathscr{M}} y_i \cdot (\alpha^{\mathsf{T}} \mathbf{x}_i + \alpha_0)$$

The gradient of the objective function is:

$$\frac{\partial}{\partial \alpha_0} D(\alpha_0, \alpha) = -\sum_{\mathbf{x}_i \in \mathcal{M}} y_i$$

$$\frac{\partial}{\partial \alpha} D(\alpha_0, \alpha) = -\sum_{\mathbf{x}_i \in \mathcal{M}} y_i \cdot \mathbf{x}_i$$

We want to take an update step right after having visited each misclassified observation. The update rule in the (k+1)-st iteration step is:

$$\binom{\alpha_0^{(k+1)}}{\alpha^{(k+1)}} =$$

We want to take an update step right after having visited each misclassified observation. The update rule in the (k+1)-st iteration step is:

$$\begin{pmatrix} \alpha_0^{(k+1)} \\ \alpha^{(k+1)} \end{pmatrix} = \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} + \lambda \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix}$$

Here λ is the learning rate which can be set to 1 without loss of generality.

Input: training data: $S = \{(\textbf{\textit{x}}_1, y_1), (\textbf{\textit{x}}_2, y_2), (\textbf{\textit{x}}_3, y_3), \dots, (\textbf{\textit{x}}_m, y_m)\}$


```
Input: training data: S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), \dots, (\mathbf{x}_m, y_m)\} initialize k = 0, \alpha_0^{(0)} = 0 and \alpha^{(0)} = 0 repeat select pair (\mathbf{x}_i, y_i) from training set.
```


Input: training data:
$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), \dots, (\mathbf{x}_m, y_m)\}$$
 initialize $k = 0$, $\alpha_0^{(0)} = 0$ and $\alpha^{(0)} = 0$ repeat select pair (\mathbf{x}_i, y_i) from training set. if $y_i \cdot (\mathbf{x}_i^T \boldsymbol{\alpha}^{(k)} + \alpha_0^{(k)}) \leq 0$ then
$$\begin{pmatrix} \alpha_0^{(k+1)} \\ \boldsymbol{\alpha}^{(k+1)} \end{pmatrix} = \begin{pmatrix} \alpha_0^{(k)} \\ \boldsymbol{\alpha}^{(k)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix}$$
 $k \leftarrow k+1$

end if


```
Input: training data: S = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_m, y_m)\}
initialize k=0, \alpha_0^{(0)}=0 and \alpha^{(0)}=0
repeat
     select pair (\mathbf{x}_i, \mathbf{y}_i) from training set.
     if v_i \cdot (\mathbf{x}_i^T \boldsymbol{\alpha}^{(k)} + \boldsymbol{\alpha}_2^{(k)}) \le 0 then
          \begin{pmatrix} \alpha_0^{(k+1)} \\ \alpha_0^{(k+1)} \end{pmatrix} = \begin{pmatrix} \alpha_0^{(k)} \\ \alpha_0^{(k)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix}
           k \leftarrow k + 1
     end if
until y_i \cdot (\mathbf{x}_i^T \alpha^{(k)} + \alpha_0^{(k)}) > 0 for all i
Output: \alpha_0^{(k)} and \alpha^{(k)}
```


Remarks on Perceptron Learning

- The update rule is extremely simple.
- Nothing happens if we classify all x_i correctly using the given linear decision boundary.
- \bullet The parameter α of the decision boundary is a linear combination of feature vectors.

Remarks on Perceptron Learning

- The update rule is extremely simple.
- Nothing happens if we classify all x_i correctly using the given linear decision boundary.
- The parameter α of the decision boundary is a linear combination of feature vectors.
- The decision boundary thus is:

$$F(\mathbf{x}) = \left(\sum_{i \in \mathscr{E}} y_i \cdot \mathbf{x}_i\right)^T \mathbf{x} + \sum_{i \in \mathscr{E}} y_i = \sum_{i \in \mathscr{E}} y_i \cdot \langle \mathbf{x}_i, \mathbf{x} \rangle + \sum_{i \in \mathscr{E}} y_i$$

where \mathscr{E} is the list of indices that required an update (indices may appear more than once).

10

Remarks on Perceptron Learning (cont.)

- The final linear decision boundary depends on the initialization, i. e. $\alpha_0^{(0)}$ and $\alpha^{(0)}$.
- The number of iterations can be rather large.
- If data are not linearly separable, the proposed learning algorithm will not converge.
 The algorithm will end up in hard to detect cycles.

Convergence of Learning Algorithm

Theorem (Convergence Theorem of Rosenblatt and Novikoff)

Assume that for all i = 1, 2, ..., m

$$y_i(\mathbf{x}_i^T \boldsymbol{\alpha}^* + \boldsymbol{\alpha}_0^*) \geq \rho$$

where $\rho > 0$ and $\|\alpha^*\| = 1$. Let $M = \max_i \|\mathbf{x}_i\|_2$.

The perceptron learning algorithm converges to a linear decision boundary after k iterations, where k is bounded by

$$k \leq \frac{(\alpha_0^{*2}+1)(1+M^2)}{\rho^2}.$$

11

$$\begin{pmatrix} lpha_0^{(k)} \\ oldsymbol{lpha}^{(k)} \end{pmatrix}^T egin{pmatrix} lpha_0^* \\ oldsymbol{lpha}^* \end{pmatrix} =$$

$$\begin{pmatrix} \alpha_0^{(k)} \\ \boldsymbol{\alpha}^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \boldsymbol{\alpha}^* \end{pmatrix} = \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \boldsymbol{\alpha}^* \end{pmatrix}$$

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \\
= \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix}$$

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \\
= \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \\
\geq \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} + \rho$$

Let us look at the estimated parameters after k iterations and how the parameters change with iterations:

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \\
= \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \\
\geq \begin{pmatrix} \alpha_0^{(k-1)} \\ \alpha^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} + \rho \\
\geq k\rho$$

Conclusion: The more iterations (i. e. misclassifications) we have, the more the vectors are aligned.

Now we apply Cauchy-Schwartz inequality for inner products:

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \left\| \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \right\|_2$$

Now we apply Cauchy-Schwartz inequality for inner products:

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \left\| \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \right\|_2$$

$$= \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \sqrt{\alpha_0^{*2} + 1}$$

The norm of the vector estimated in the k-th iteration step is:

$$\left\| \begin{pmatrix} \alpha_0^{(k)} \\ \boldsymbol{\alpha}^{(k)} \end{pmatrix} \right\|_2^2 = \left\| \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix} \right\|_2^2$$

The norm of the vector estimated in the k-th iteration step is:

$$\left\| \begin{pmatrix} \alpha_0^{(k)} \\ \boldsymbol{\alpha}^{(k)} \end{pmatrix} \right\|_2^2 = \left\| \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix} \right\|_2^2$$

$$= \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix} + 2 \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix}^T \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix}^T \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix}$$

We only go into iteration step (k+1) if we did a mistake in iteration k. A misclassification implies:

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix} = y_i \cdot (\mathbf{x}_i^T \alpha^{(k)} + \alpha_0^{(k)}) \quad < \quad 0$$

We only go into iteration step (k+1) if we did a mistake in iteration k. A misclassification implies:

$$\begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} y_i \\ y_i \cdot \mathbf{x}_i \end{pmatrix} = y_i \cdot (\mathbf{x}_i^T \alpha^{(k)} + \alpha_0^{(k)}) \quad < \quad 0$$

And thus we get

$$\left\| \begin{pmatrix} \alpha_0^{(k)} \\ \boldsymbol{\alpha}^{(k)} \end{pmatrix} \right\|_2^2 \le \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^{(k-1)} \\ \boldsymbol{\alpha}^{(k-1)} \end{pmatrix} + \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix}^T \begin{pmatrix} y_i \\ y_i \cdot \boldsymbol{x}_i \end{pmatrix} \le k(1 + M^2)$$

Wrap-up:

$$k\rho \leq \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \sqrt{\alpha_0^{*2} + 1}$$

Wrap-up:

$$k\rho \leq \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \sqrt{\alpha_0^{*2} + 1}$$

Using Cauchy-Schwartz:

$$k\rho \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \sqrt{\alpha_0^{*2} + 1} \leq \sqrt{k(1+M^2)(\alpha_0^{*2} + 1)}$$

Wrap-up:

$$k\rho \leq \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix}^T \begin{pmatrix} \alpha_0^* \\ \alpha^* \end{pmatrix} \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \sqrt{\alpha_0^{*2} + 1}$$

Using Cauchy-Schwartz:

$$k\rho \leq \left\| \begin{pmatrix} \alpha_0^{(k)} \\ \alpha^{(k)} \end{pmatrix} \right\|_2 \cdot \sqrt{\alpha_0^{*2} + 1} \leq \sqrt{k(1+M^2)(\alpha_0^{*2} + 1)}$$

shows:

$$k \leq \frac{(\alpha_0^{*2}+1)(1+M^2)}{\rho^2}$$

Lessons Learned

- Objective function changes in each iteration step.
- Optimization problem is discrete.
- Very simple learning rule.
- A Very important: Number of iterations does not depend on the dimension of the feature vectors.

Next Time in Pattern Recognition

19

Further Readings

- Brian D. Ripley: Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge, 1996.
- T. Hastie, R. Tibshirani, and J. Friedman: The Elements of Statistical Learning – Data Mining, Inference, and Prediction, 2nd edition, Springer, New York, 2009.

Comprehensive Questions

· What is Rosenblatt's perceptron?

What is the objective function for Rosenblatt's perceptron?

Why is the optimization of the objective function nonlinear?

When and how does Rosenblatt's perceptron algorithm converge?