

UNICAMP - Faculdade de Engenharia Elétrica e computação ${\rm EA960 - Organização \ de \ Computadores}$

Soluções/Respostas: Prova 1

Monitor: Caio Hoffman

Professor: Ivan Luiz Marques Ricarte

Maio de 2010

Questão 1

Solução:

a)

$$T_{pf}^{i} = \alpha T_{pf}$$

$$T_{pf}^{ii} = (1 - \sigma)T_{pf} + \beta \sigma T_{pf}$$

$$= (1 - \sigma + \beta \sigma)T_{pf}$$

$$= (1 + \sigma(\beta - 1))T_{pf}$$

Sendo $\alpha,\beta<1.$ Para que i resulte em melhor desempenho \Rightarrow

$$T_{pf}^{i} < T_{pf}^{ii} \Leftrightarrow$$

$$\alpha \mathcal{T}_{pf} < \left(1 - \sigma(1 - \beta)\right) \mathcal{T}_{pf}$$

$$\sigma(1 - \beta) < 1 - \alpha$$

$$\sigma < \frac{1 - \alpha}{1 - \beta}$$

Resposta: $\sigma < \frac{1-\alpha}{1-\beta}$

b)

$$T_f = 4 = \sigma T_{pf} = \sigma 10 \Leftrightarrow$$

$$\sigma = 0, 4$$

$$\frac{0, 25}{1 - \beta} < 0, 4$$

$$-0, 15 < -0, 4\beta \Leftrightarrow$$

$$\frac{0, 15}{0, 4} > \beta$$

Resposta: $\beta < 0,375$

Questão 2

Solução:

a)

- 32 Bytes por linha \Rightarrow 5 bits de identificação de palavra na linha (offset)
- 256 KiBytes = 2^{18} bytes $\Rightarrow \frac{2^{18} \text{ bytes}}{2^5 \text{ bytes/linha}} = 2^{13} \text{ linhas}$
- \bullet Associatividade 8 \Rightarrow 8linhas/grupo $\therefore \frac{2^{13} \text{ linhas}}{2^3 \text{ linhas/grupo}} = 2^{10} \text{ grupos, desse modo } 10$ bits de índice
 - Sobram 9 bits que vão de 000000000₂ à 111111111₂.

Resposta: Faixa de valores é de 000_{16} à $1FF_{16}$.

b)

Considerando que não há bits adicionais como de LRU, validade, escrita, etc. Temos: $(8 tags/grupo \cdot 9 bits/tag) \cdot 2^{10} grupos = 72 Kibits$

Resposta: 72 Kibits.

c)

Resposta: O endereço seria mapeado no rótulo 0B7₁₆ e no conjunto 0FD₁₆.

d)

A desvantagem é a tradução necessária de endereços virtuais em endereços físicos. Normalmente, um endereço virtual requisitado pelo processador passa pela TLB que faz a tradução para endereço físico e envia à memória cache.

Comentário: Uma vantagem de uma cache que opera com endereços físicos sobre uma que opera com endereços virtuais é que ela não gera aliasing. Por exemplo, uma troca de página pode fazer com que a cache fique com um endereço virtual correspondente a um quadro na memória e, depois da troca, ganhe um outro endereço virtual que aponte para o mesmo quadro na memória.

Questão 3

Solução:

a)

Penalidade de escrita é o atraso ocasionado pelo cálculo e escrita da paridade no sistema de discos.

b)

O esquema RMW não dimunuíra o atraso na escrita, num sistema RAID 4, devido o "gargalo" ser o disco de paridade. Independentemente se for apenas um bloco, ou vários, o cálculo da paridade depende do disco de paridade. Portanto, como em ambos esquemas RW e RMW, há centralização da escrita de paridade num único disco, não existe maneiras de haver paralelismo na escrita de blocos, consequentemente, não haverá melhorias modificando a forma que é calculada a paridade.

c)

Num sistema de discos, quando uma falha ocorre, ela é detectada pelo controlador de discos, que sabe exatamente onde ela ocorreu. Desse modo, não é necessário localizá-la apenas corrigí-la, tarefa que a paridade é capaz de fazer. Já na memória principal, não existe essa possibilidade, portanto, se faz necessário o uso de um sistema que detecte e corrija erros, exatamente o que código de Hamming é capaz.

Questão 4

Solução:

a)

O multiplicador de Booth executa em média menos operações de soma e subtração que o que multiplicador comum, pois há iterações do algoritmo que só ocorrem deslocamentos, sem qualquer operação de soma ou subtração.

b)

Mutiplicando	Resultado/Multiplicador	Q	Etapa
0110	0000 110 1	0	Inicío
"	1010 110 <u>1</u>	0	Subtraindo
11	1101 011 0	1	Deslocando
11	0011 011 <u>0</u>	1	Somando
"	0001 101 1	0	Deslocando
"	1011 101 <u>1</u>	<u>0</u>	Subtraíndo
11	1101 110 <u>1</u>	1	Deslocando
	1110 111 0	1	Final

 $1110 \ 1110 = -18$