Lecture 4 Functions

4.1 What is a function?

Generally a function relates an <u>input</u> to an <u>output</u> $f(x) = \dots$ The classic way to write a function

4.2 Examples

$$f(x)=x^2$$
 'f of x equals x squared' $f(x)=x^3+1$ 'f of x equals x cubed plus one' $f(q)=1-q+q^2$ $h(m)=m^3+2m+1$ $s(\alpha)=\alpha-10$

 $f: x \to x^2$ same as above notation $f: N \to N$ 'f has a domain of Natural numbers, and range of N too' $f: R \to W$ 'f has a domain of Real numbers & range of Whole numbers'

Sometimes there is no function name:

$$y = x^2$$
$$y = x^3 + 1$$

4.3 What can functions do?

Function processes <u>sets</u> by taking elements of a set and gives back elements of a set Which means a set can be an input and an output to a function

4.4 Characteristics of a function

From set A to B, a function must satisfy the following rules:

- 1. Each element in A must be matched with an element in B
- 2. Some elements in B may not be matched with any element in A
- 3. Two or more elements in A may be matched with the same element in B
- 4. An element in A (domain) cannot be matched with two different elements in B

4.5 Domain, Codomain and Range

4.6 Properties of Functions

A function's behaviour is defined as injective, surjective or bijective

A B	A B	A B	A B
•	•	00	• •
0 0	•	0	•
• • •	○ → ○	·	• •
•		•	•
•	•	•	•
General Function	Injective Not surjective	Surjective Not injective	Bijective (injective and surjective)
More than one A maps to one B (many to one)	Only one A can map to one B (one to one)	All B has at least one matching A	Combination of both Injective and Surjective
B without a matching A is OK	B without a matching A is OK	B cannot be left out	Perfect one to one

4.7 On the graph

- always unique X₁ X₂ X

 "Injective" (one-to-one)
- Plot the ordered pairs of a function on a Cartesian coordinate
- Do a <u>Horizontal</u> or a <u>Vertical</u> **line test**
- If the test line **intersects** more than once like in the General Function above, then it is a function just not an injective function

Example

State the following function:

- a) {(2,3), (4,5), (1,5), (3,4)}
- b) {(2,3), (4,2), (1,5), (3,4)}
- c) $f: R \to R$ where $y = x^3$
- d) $f: R \to R$ where $f(x) = \sqrt{x+5}$
- e) $f: Z \to Z$ where $y = 9 x^2$

Solution

$$y = x^3$$

$$f(x) = \sqrt{x+5}$$

4.8 Inverse Functions

Let f be a function from set A to set B. The inverse function of f is noted as f^{-1} . Say we have f(x) = 2x + 3. In a flow diagram this can be represented as follow:

The inverse function of f(x) = 2x + 3 would be as follow:

$$\frac{y-3}{2}$$
Divide by 2 Subtract 3

We usually solve the inverse function using the algebra methods:

Step

JUD		
1	The function	f(x) = 2x + 3
2	Put y for $f(x)$	y = 2x + 3
3	Solve x in the form of y	y - 3 = 2x
		$\frac{y-3}{2} = x$
4	Swap sides	$x = \frac{y-3}{2}$
5	Put $f^{-1}(y)$ for x	$f^{-1}(y) = \frac{y-3}{2}$

4.9 Composition of Functions

Function composition is applying one function to the result of another

The result of f() is sent through g()You can write the composition above as $(g \circ f)(x)$ or g(f(x))

Example

Given f(x) = 2x + 3 and $g(x) = x^2$. Find the following composition:

a)
$$f \circ g = f(g(x)) = f(x^2) = 2x^2 + 3$$

b)
$$g \circ f = g(f(x)) = g(2x+3) = (2x+3)^2$$

c)
$$f \circ f = f(f(x)) = f(2x+3) = 2(2x+3) + 3 = 4x + 9$$

d)
$$g \circ g = g(g(x)) = g(x^2) = (x^2)^2 = x^4$$

4.10 Formula

Calculating number of functions in $f: X \to Y$

 $|Y|^{|X|}$ where |Y| = number of elements in Y and |X| = number of elements in X

Calculating number of bijective functions in $f: X \to Y$

|X|! where |X| = number of elements in X

Calculating number of subsets in X

 $2^{|X|}$ where |X| = number of elements in X