## Was sind und was sollen Kategorien?



Ingo Blechschmidt

## Gliederung

- Motivation: Beispiele für kategorielles Verständnis
  - Produkte
  - Isomorphismen
  - Dualität
- 2 Grundlagen
  - Definition des Kategorienbegriffs
  - Initiale und terminale Objekte
  - Mono- und Epimorphismen
  - Die duale Kategorie einer Kategorie
- 3 Anwendungen

## Produkte in Kategorien I

- Kartesisches Produkt von Mengen:  $X \times Y$
- **Kartesisches Produkt von Vektorräumen:**  $V \times W$
- Kartesisches Produkt von Gruppen:  $G \times H$
- Minimum von Zahlen:  $min\{n, m\}$
- Größter gemeinsamer Teiler von Zahlen: ggT(n, m)
- Paartyp in Programmiersprachen: (a,b)
- Mutterknoten zweier Knoten in einem Graph

All dies sind Spezialfälle des allgemeinen kategoriellen Produkts.



$$X \times (Y \times Z) \cong (X \times Y) \times Z$$

$$U \times (V \times W) \cong (U \times V) \times W$$

$$\min\{m, \min\{n, p\}\} = \min\{\min\{m, n\}, p\}$$

$$ggT(m, ggT(n, p)) = ggT(ggT(m, n), p)$$

All dies sind Spezialfälle der allgemeinen *Assoziativität* des kategoriellen Produkts.



- Zwei Mengen *X*, *Y* können gleichmächtig sein.
- Zwei Vektorräume *V*, *W* können isomorph sein.
- $\blacksquare$  Zwei Gruppen G, Hkönnen isomorph sein.
- $\blacksquare$  Zwei top. Räume X, Ykönnen homöomorph sein.
- $\blacksquare$  Zwei Zahlen n, mkönnen gleich sein.
- Zwei Typen a, b können sich verlustfrei ineinander umwandeln lassen.

All dies sind Spezialfälle des allgemeinen kategoriellen Isomorphiekonzepts.



### Dualität

$$f \circ g \quad g \circ f$$
 $\leq \quad \geq$ 
injektiv surjektiv
 $\{\star\} \quad \emptyset$ 
 $\times \quad \text{II}$ 
 $ggT \quad kgV$ 
 $\cap \quad \cup$ 
Teilmenge Faktormenge

All dies sind Spezialfälle eines allgemeinen *kategoriellen Dualitätsprinzips*.

#### Dualität

Typ der Streams Typ der endlichen Listen

Monaden Komonaden

Rechts-Kan-Erweiterung Links-Kan-Erweiterung

All dies sind Spezialfälle eines allgemeinen kategoriellen Dualitätsprinzips.

#### **Definition:** Eine Kategorie $\mathcal{C}$ besteht aus

- 1 einer Klasse von *Objekten* Ob  $\mathcal{C}$ ,
- zu je zwei Objekten  $X, Y \in Ob \mathcal{C}$  einer Klasse  $Hom_{\mathcal{C}}(X, Y)$ von Morphismen zwischen ihnen und
- einer Kompositionsvorschrift:

$$\begin{array}{lll} \operatorname{zu} \ f \in \operatorname{Hom}_{\mathcal{C}}(X,Y) & \operatorname{zu} \ f:X \to Y \\ \operatorname{und} \ g \in \operatorname{Hom}_{\mathcal{C}}(Y,Z) & \operatorname{und} \ g:Y \to Z \\ \operatorname{habe} \ g \circ f \in \operatorname{Hom}_{\mathcal{C}}(X,Z), & \operatorname{habe} \ g \circ f:X \to Z, \end{array}$$

#### sodass

- **1** die Komposition  $\circ$  assoziativ ist:  $f \circ (g \circ h) = (f \circ g) \circ h$ , und
- es zu jedem  $X \in \mathsf{Ob}\,\mathcal{C}$  einen Morphismus  $id_X \in Hom_{\mathcal{C}}(X, X)$  mit  $f \circ id_X = f$  und  $id_X \circ g = g$ .

#### **Fundamentales Motto**

Kategorientheorie stellt *Beziehungen zwischen Objekten* statt etwaiger innerer Struktur in den
Vordergrund.



## Initiale und terminale Objekte

# **Definition:** Ein Objekt X einer Kategorie $\mathcal C$ heißt genau dann

■ initial, wenn

$$\forall Y \in \mathrm{Ob}\,\mathcal{C} \colon \exists ! f : X \to Y.$$

■ terminal, wenn

$$\forall Y \in \text{Ob } C: \exists ! f: Y \to X.$$

Frage: Was ist ein terminales Objekt in Set?

## Initiale und terminale Objekte

**Definition:** Ein Objekt X einer Kategorie  $\mathcal{C}$  heißt genau dann

initial, wenn

$$\forall Y \in \mathrm{Ob}\,\mathcal{C} \colon \exists ! f : X \to Y.$$

*terminal*, wenn

$$\forall Y \in \text{Ob } \mathcal{C} : \exists ! f : Y \to X.$$

In Set:  $\emptyset$  initial,  $\{\star\}$  terminal.

In  $\mathbb{R}$ -Vect:  $\mathbb{R}^0$  initial und terminal.

## Mono- und Epimorphismen

**Definition:** Ein Morphismus  $f: X \to Y$  einer Kategorie  $\mathcal{C}$ heißt genau dann

■ *Monomorphismus*, wenn für alle Objekte  $A \in Ob C$ und  $p, q : A \to X$  gilt:

$$f \circ p = f \circ q \implies p = q.$$

■ *Epimorphismus*, wenn für alle Objekte  $A \in Ob C$ und  $p, q: Y \to A$  gilt:

$$p \circ f = q \circ f \implies p = q.$$

**Beobachtung** in Set, Grp und  $\mathbb{R}$ -Vect:

$$f$$
 Mono  $\iff$   $f$  injektiv.  
 $f$  Epi  $\iff$   $f$  surjektiv.

## Duale Kategorie

■ **Definition:** Zu jeder Kategorie C gibt es eine zugehörige *duale Kategorie*  $C^{op}$ :

$$\mathsf{Ob}\,\mathcal{C}^\mathsf{op} := \mathsf{Ob}\,\mathcal{C}$$
  $\mathsf{Hom}_{\mathcal{C}^\mathsf{op}}(X,Y) := \mathsf{Hom}_{\mathcal{C}}(Y,X)$ 

- **Beispiel:** X in  $C^{op}$  initial  $\iff$  X in C terminal
- **Beispiel:** f in  $C^{op}$  Mono  $\iff$  f in C Epi
- Nichttriviale Frage: Wie kann man in konkreten Fällen  $C^{op}$  explizit (inhaltlich) beschreiben?



## Anwendungen

- Kategorientheorie liefert einen Leitfaden, um richtige Definitionen zu formulieren.
- Triviales wird *trivialerweise* trivial: Allgemeiner abstrakter Nonsens.
- Konzeptionelle Vereinheitlichung: Viele Konstruktionen in der Mathematik sind Spezialfälle von allgemeinen kategoriellen: Limiten, Kolimiten, adjungierte Funktoren
- Forschungsprogramm der Kategorifizierung, um tiefere Gründe für Altbekanntes zu finden.