

Latest developments of the airGR rainfall-runoff modelling R-package:

composite calibration/evaluation criterion and improved snow model to take into account satellite products

Olivier Delaigue¹, Guillaume Thirel¹, Philippe Riboust^{1,2}

¹ IRSTEA – Hydrology Research Group (HYCAR) – Antony, France ² Conseil Général des Hauts-de-Seine – Nanterre, France

GR is a family of lumped hydrological models designed for flow simulation at various time steps. The models are freely available in an R package called airGR (Coron et al., 2017, 2019). The models can easily be implemented on a set of catchments with limited data requirements.

GR hydrological models

- Designed with the objective to be as efficient as possible for flow simulation at various time steps (from hourly to interannual)
- Warranted complexity structures and limited data requirements
- ► Can be applied on a wide range of conditions, including snowy catchments (CemaNeige snow routine included)

Main components of the airGR package

state variables

Efficiency criteria

Plot diagnostics example (GR4J with CemaNeige)

New features since EGU 2018 – airGR 1.0.5.12 vs airGR 1.2.13.16

▶ It is now possible to use a composite criterion to calibrate a GR model It can combine different:

Outputs

Time series of simulated flows and internal

Plot diagnostics for simulation

- error criteria (NSE, KGE, KGE')
- variables (flow, snow cover area [SCA], snow water equivalent [SWE])
- variable transformations (raw, square root, logarithm, inverse, sorted)
- weights for the different variables
- ► A version of CemaNeige including a SWE-SCA Linear Hysteresis allows to use satellite SCA for calibration (Riboust et al., 2019)
 - A new vignette explains how to use it

Validation performance criteria distributions on SCA and flow using CemaNeige with or without the Linear Hysteresis

Using a composite criterion for calibration of the Linear Hysteresis CemaNeige

Variables needed (note the need for the SCA data)

```
0.7 0.5 19046 0.721 0.228 0.678 0.865 0.935
## 2 2000-02-27 0 0.1 0.4 18218 0.690 0.127 0.562 0.806 0.913 0.959
## 3 2000-02-28 0 -1.0 0.3 18855 0.714 0.158 0.604 0.844 0.932 0.946
```

Data preparation

```
## preparation of the InputsModel object
inMod <- CreateInputsModel(FUN_MOD = "RunModel_CemaNeigeGR4J",</pre>
                      DatesR = basinObs$DatesR, Precip = basinObs$P,
                           PotEvap = basinObs$E, TempMean = basinObs$T,
                           ZInputs = median(basinInfo$HypsoData),
                           HypsoData = basinInfo$HypsoData, NLayers = 5)
```

Calibration options preparation (note the need for the new IsHyst argument)

```
## calibration period selection
IndCal <- seq(which(format(basinObs$DatesR, format = "%Y-%m-%d") == "2000-09-01"),</pre>
              which(format(basinObs$DatesR, format = "%Y-%m-%d") == "2005-08-31"))
## preparation of the CalibOptions object
optCal <- CreateCalibOptions(FUN_MOD = "RunModel_CemaNeigeGR4J",</pre>
                             FUN_CALIB = Calibration_Michel, IsHyst = TRUE)
## preparation of the RunOptions object for the calibration period
optRun <- CreateRunOptions(FUN_MOD = "RunModel_CemaNeigeGR4J", InputsModel = inMod,</pre>
                           IndPeriod_Run = IndCal, IsHyst = TRUE)
```

Composite criterion preparation

```
## efficiency criteria: 75 % KGE'(Q) + 5 % KGE'(SCA) on each of the 5 layers
inCrit <- CreateInputsCrit(FUN_CRIT = rep("ErrorCrit_KGE2", 6),</pre>
                           InputsModel = inMod, RunOptions = optRun,
                           Obs = basinObs[IndCal, c("Qmm", "SCA1", "SCA2",
                                                    "SCA3", "SCA4", "SCA5")],
                           VarObs = list("Q", "SCA", "SCA", "SCA", "SCA", "SCA"),
                           Weights = list(0.75, 0.05, 0.05, 0.05, 0.05, 0.05)
```

Model calibration

```
## calibration (GR4J with CemaNeige)
outCal <- Calibration(InputsModel = inMod, RunOptions = optRun,</pre>
                     InputsCrit = inCrit, CalibOptions = optCal,
                     FUN_MOD = "RunModel_CemaNeigeGR4J",
                     FUN_CALIB = Calibration_Michel)
Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
Screening completed (6561 runs)
Param = 432.681, -0.020, 83.096,
                                    2.384,
                                              0.002,
                                                        3.787, 15.000,
Crit. Composite = 0.8139
Steepest-descent local search in progress
Calibration completed (107 iterations, 8248 runs)
Param = 419.893, 0.517, 275.687, 1.345, 0.632,
                                                         3.864, 16.911, 0.472
Crit. Composite = 0.8995
Formula: sum(0.75 * KGE', [Q], 0.05 * KGE', [SCA], 0.05 * KGE', [SCA],
0.05 * KGE'[SCA], 0.05 * KGE'[SCA], 0.05 * KGE'[SCA])
```

airGR websites: get started with the packages or discover advanced uses

- ► High degree of customization with airGR:
- https://hydrogr.github.io/airGR/
- ➤ Simple features to learn hydrology with airGRteaching (Delaigue *et al.*, 2018, 2019):

https://hydrogr.github.io/airGRteaching/

airGRmaps interface (Génot & Delaigue, 2019) to get parameter values of GR4J, GR5J or GR6J all over France

Future developments

- ▶ airGRmaps: parameter maps on France for GR4J, GR5J & GR6J models for ungauged bassins (Poncelet et al., submitted) available soon through a Shiny interface
- > airGRtools: different useful tools like event detection, statistics computations (Base Flow Index, Standardized Streamflow Index), etc.

Download the airGR packages on the Comprehensive R Archive Network

- ➤ airGR: https://CRAN.R-project.org/package=airGR/
- airGRteaching: https://CRAN.R-project.org/package=airGRteaching/

References

- ➤ Coron L., Delaigue, O., Thirel, G., Perrin C. & Michel C. (2019). airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. R package version 1.2.13.16. URL: https://CRAN.R-project.org/package=airGR.
- Coron, L., Thirel, G., Delaigue, O., Perrin, C. & Andréassian, V. (2017). The suite of lumped GR hydrological models in an R package. Environmental Modelling & Software, 94, 166–171. DOI: 10.1016/j.envsoft.2017.05.002.
- ▶ Delaigue, O., Coron, L. & Brigode, P. (2019). airGRteaching: Teaching Hydrological Modelling with the GR Rainfall-Runoff Models ('Shiny' Interface Included). R package version 0.2.6.14. URL: https://CRAN.R-project.org/package=airGRteaching.
- ▶ Delaigue O., Thirel G., Coron L. & Brigode P. (2018). airGR and airGRteaching: Two Open-Source Tools for Rainfall-Runoff Modeling and Teaching Hydrology. In: HIC 2018. 13th International Conference on Hydroinformatics. EPiC Series in Engineering, 541–548. EasyChair. DOI: 10.29007/qsqj.
- ▶ Poncelet, C., Andréassian, V., & Oudin, L. (submitted). Regionalization of Hydrological Models by Group Calibration. Water Resources Research.
- > Riboust, P., Thirel, G., Le Moine, N. & Ribstein, P. (2019). Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydrodynamics, 1, 67, 70-81. DOI: 10.2478/johh-2018-0004.

National Research Institute of Science and Technology for Environment and Agriculture

