Содержание

Вв	Введение	
1	Вариант 1	6
2	Вариант 2	7
3	Вариант 3	8
4	Вариант 4	9
5	Вариант 5	9
6	Вариант 6	9
7	Вариант 7	9
8	Вариант 8	9
9	Вариант 9	9
10	Вариант 10	9
11	Вариант 11	9
12	Вариант 12	9

13 Вариант 13	9
14 Вариант 14	9
15 Вариант 15	9
16 Вариант 16	9
17 Вариант 17	9
18 Вариант 18	9
19 Вариант 19	9
20 Вариант 20	9
21 Вариант 21	9
22 Вариант 22	9
23 Вариант 23	9
24 Вариант 24	9
25 Вариант 25	9

Введение

1. Вариант 1

№1.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + \sin t$$
, $u|_{t=0} = x$, $u_t|_{t=0} = x$.

№1.2. Определить решение начальной задачи для однородного волнового уравнения в точке $x=\frac{\pi}{2}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \sin x, & |x| < \pi, \\ 0, & |x| > \pi; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \pi, \\ 0, & |x| > \pi. \end{cases}$$

№1.3. Построить профиль полуограниченной струны с жёстко закреплённым концом x = 0 в момент времени $t = \frac{5c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 2h), $(3c, \frac{3h}{2})$, (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}.$

- **№1.4.** Полуограниченной струне со свободным концом x = 0 в начальный момент времени t = 0 с помощью поперечного удара передаётся импульс I в точках $x = x_0$ и $x = 4x_0$. Найти отклонения точек струны в момент времени $t = \frac{3x_0}{2a}$.
 - №1.5. Найти решение начально-краевой задачи

$$u_{tt} - 4u_{xx} = 0, \quad t > 0, \quad x > 0;$$

 $u|_{t=0} = 2 - x, \quad u_t|_{t=0} = 2,$
 $(u_t + 3u_x)|_{x=0} = 3t - e^t.$

№1.6. Решить задачу о колебаниях струны, один конец которой (x = 0) свободен, а другой $(x = \pi)$ — закреплён жёстко. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos\frac{x}{2}, \ u_t|_{t=0} = \cos\frac{x}{2}.$$

№1.7. Рассмотреть задачу о поперечных колебаниях струны, закреплённой на конце x=0 и подверженной на конце x=l действию силы $Asin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

2. Вариант 2

№2.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + \cos t$$
, $u|_{t=0} = x$, $u_t|_{t=0} = 0$.

№2.2. Определить решение начальной задачи для однородного волнового уравнения в точке $x=\frac{\pi}{4}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \cos x, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \frac{\pi}{2}, \\ 0, & |x| > \frac{\pi}{2}. \end{cases}$$

№2.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), $(2c, \frac{3h}{2})$, (3c, 2h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}.$

- №2.4. Полуограниченной струне c жёстко закреплённым концом x=0 в начальный момент времени t=0 c помощью поперечного удара передаётся импульс I в точках $x=x_0$ и $x=3x_0$. Найти отклонения точек струны в момент времени $t=\frac{3x_0}{2a}$.
 - №2.5. Найти решение начально-краевой задачи

$$4u_{tt} - u_{xx} = 0, \quad t > 0, \quad x > 0;$$

$$u|_{t=0} = \cos x, \quad u_t|_{t=0} = 0,$$

$$u|_{x=0} = 1 + \sin t.$$

№2.6. Решить задачу о колебаниях струны, один конец которой (x = 0) свободен, а другой $(x = \pi)$ — закреплён жёстко. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \cos\frac{x}{2}, \ u_t|_{t=0} = 0.$$

№2.7. Рассмотреть задачу о поперечных колебаниях струны, один конец которой (x=0) двигается по заданному закону $u|_{x=0}=A\sin\omega t$, а другой (x=l) — свободен. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

3. Вариант 3

№3.1. Используя формулу Даламбера, найти решение задачи

$$u_{tt} = u_{xx} + xt$$
, $u|_{t=0} = x$, $u_t|_{t=0} = \sin x$.

№3.2. Определить решение начальной задачи для однородного волнового уравнения в момент времени $t = \frac{\pi}{4a}$. Начальные функции имеют вид

$$\varphi(x) = \begin{cases} \sin x, & |x| < \pi, \\ 0, & |x| > \pi; \end{cases} \psi(x) = \begin{cases} v_0, & |x| < \pi, \\ 0, & |x| > \pi. \end{cases}$$

№3.3. Построить профиль полуограниченной струны со свободным концом x = 0 в момент времени $t = \frac{3c}{2a}$, если начальное отклонение отлично от нуля только на интервале (c, 4c) и имеет форму ломаной с вершинами в точках (c, 0), (2c, 2h), (3c, 2h), (4c, 0).

Начальная скорость равна нулю. Найти формулы, представляющие закон движения точки $x=\frac{5c}{2}$.

- №3.4. Полуограниченной струне c жёстко закреплённым концом x=0 в начальный момент времени t=0 c помощью поперечного удара передаётся импульс I в точках $x=\frac{x_0}{2}$ и $x=x_0$. Найти отклонения точек струны в момент времени $t=\frac{3x_0}{2a}$.
 - №3.5. Найти решение начально-краевой задачи

$$9u_{tt} - u_{xx} = 0, \quad t > 0, \quad x > 0;$$

$$u|_{t=0} = \sin x, \quad u_t|_{t=0} = 0,$$

$$u|_{x=0} = \sin t.$$

№3.6. Решить задачу о колебаниях струны, один конец которой (x = 0) закреплён жёстко, а другой $(x = \pi)$ — свободен. Начальное отклонение и начальная скорость имеют вид:

$$u|_{t=0} = \sin\frac{x}{2}, \ u_t|_{t=0} = 0.$$

№3.7. Рассмотреть задачу о поперечных колебаниях струны, свободной на конце x=0 и подверженной на конце x=l действию силы $A\sin\omega t$. Начальные условия — нулевые. Найти решение при всех $0 < t < \frac{3l}{2a}$.

- 4. Вариант 4
- 5. Вариант 5
- 6. Вариант 6
- 7. Вариант 7
- 8. Вариант 8
- 9. Вариант 9
- 10. Вариант 10
- 11. Вариант 11
- 12. Вариант 12
- 13. Вариант 13
- 14. Вариант 14
- 15. Вариант 15
- 16. Вариант 16
- 17. Вариант 17
- 18. Вариант 18
- 19. Вариант 19
- 20. Вариант 20
- 21. Вариант 21
- 22. Вариант 22
- 23. Вариант 23
- 24. Вариант 24