

Поиск строк.

Мацкевич Степан

Алгоритмы и структуры данных

План

- Поиск подстроки в строке
 - Префикс-функция
 - Z-функция
- Бор
- Алгоритм Ахо-Корасик

Строки

Алфавит $A = \{a_0, a_1, \dots, a_{K-1}\}$

Строка $S = a_{i_0} a_{i_1} \dots a_{i_{n-1}}$, n – длина

Подстрока = совпадающая подпоследовательность

Суффикс – подстрока конца строки

Префикс – подстрока начала строки

Собственный суффикс S - суффикс, не совпадающий с S.

prefix

Префикс-функция

Префикс-функция

Префикс-функция (π -функция) – длина самого длинного собственного суффикса S[0..i], являющегося префиксом S[0..i].

Префикс-функци

Еще пример:

S	а	b	С	d	а	b	С	С	а	b	С	d	а	b	а
i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
π[i]	0	0	0	0	1	2	3	0	1	2	3	4	5	6	1

Вычисление префикс-функции

Вычисление «в лоб» – $O(n^3)$.

Можно вычислить за O(n).

Если
$$S[i] == S[\pi[i-1]]$$
, то $\pi[i] = \pi[i-1] + 1$

Если
$$S[i] == S[\pi[\pi[i-1]-1]]$$
, то $\pi[i] = \pi[\pi[i-1]-1]+1$

И так далее до 0.

Вычисление префикс-функции

По сути перебираем все возможные суффиксы S[0..i-1], являющиеся префиксами.

И ищем среди них самый длинный, который можно продлить символом S[i].

Перебираем их в порядке уменьшения длины:

$$\pi[i-1], \pi[\pi[i-1]-1], \pi[\pi[\pi[i-1]]-1], \dots$$

Алгоритм Кнута-Морриса-Пратта

Поиск вхождений подстроки. Конкатенируем шаблон, сентилен и текст.

pattern	\$ text

Вычисляем $\pi[]$. Ищем где $\pi[i]$ = length(pattern).

Время работы T = O(|pattern| + |text|).

Алгоритм Кнута-Морриса-Пратта

Память M = O(|pattern|).

Для достижения такого объема памяти не храним конкатенированную строку и не храним значения префикс-функции для всей строки pattern\$text.

Вычисление префикс-функции для индексов i > | pattern | остается без изменений: Также храним предыдущее значение префикс-функции.

Значения префикс-функции для индексов больше или равных | pattern | не потребуется, так как

 $|\pi| \leq |pattern|$.

Z-функция

Z-функция

Z(s, i) - длиннейший префикс подстроки, начинающийся с позиции i в s, который также является префиксом s. Такой отрезок будем называть отрезком совпадения.

Пример:

а	b	С	d	а	b	С	С	а	b	С	d	а	b	а
15	0	0	0	3	0	0	0	6	0	0	0	2	0	1

В 0 позиции отрезком совпадения является вся строка, а в 8 - подстрока "abcdab".

Вычисление z-функции

Храним индексы [l,r] позиции самого правого отрезка совпадения. Изначально I = r = 0. Пусть для всех k из {1, 2, ..., i - 1} z(k) подсчитана. Разберём теперь два случая:

- 1. i > r. В этом случае просто будем проверять совпадение букв s[z[i]] и s[i + z[i]], положив изначально z[i] = 0 и увеличивать z[i]. Т.к. мы получили новый отрезок совпадения (в случае z[i] > 0) обновим I = i, r = i + z[i] 1
- 2. i <= r. В этом случае мы можем воспользоваться уже подсчитанными значениями, а именно z[I-i]. Однако, оно может оказаться слишком большим. Поэтому положим z[i] = min(z[I-i], r-i+1) и далее проверим бОльшие значения z[i] тривиальным алгоритмом из п.1

Алгоритм Кнута-Морриса-Пратта (2)

Поиск вхождений подстроки. Конкатенируем шаблон, сентилен и текст.

Вычисляем z[]. Ищем где z[i] = length(pattern).

Время работы T = O(|pattern| + |text|).

Алгоритм Кнута-Морриса-Пратта (2)

Память M = O(|pattern|).

Для достижения такого объема памяти не храним конкатенированную строку и не храним значения z-функции для всей строки pattern\$text.

Вычисление z-функции для индексов i > | pattern | остается без изменений:

Также храним текущие значения параметров I и г.

Значения z-функции для индексов больше или равных | pattern | не потребуется, так как $|r-l| \leq |pattern|$.

Бор

Бор

Бор – дерево слов.

Англ. – **trie (трай)**. Trie = tree + retreival

Ha картинке бор для множества {"hers", "his", "she", "he"}

Как хранить переходы?

К – размер алфавита. Варианты:

- 1) unordered_map<char, Node*> Переход стоит O(1) в среднем.
- 2) map<char, Node*>
 Переход стоит O(log(K)).
 Но можно перебирать по порядку.
- 3) vector<Node*> или array<256, Node*>, если символ однобайтный Переход стоит O(1). Расходуется память.

Построение бора

Добавляем каждое слово от корня. По буквам переходим к следующему узлу.

Если перехода нет – строим его. Если слово закончилось – помечаем вершину как терминальную.

Строится за O(n), n – суммарная длина слов в множестве.

Поиск строки в боре

Задача. Есть множество строк $\{p_i\}$ и строка s длины n. Проверить, есть ли строка s в множестве $\{p_i\}$.

Хеш-таблица? O(n) в среднем.

Бор! Построенный по строкам р_і.

Спускаемся в боре по символа строки s.

O(n) гарантированно.

Алгоритм Ахо-Корасик

Алгоритм Axo-Корасик (Aho, Corasick, 1975)

<u>Задача</u>:

 $P = \{ P1, P2, ..., Pk \}$ - шаблоны. $n = \sum |Pi|$.

T - T -

Найти все появления шаблонов из Р в тексте Т.

<u>"Простое" решение</u>: O(n + k * m) последовательным применением k линейных алгоритмов.

Ахо-Корасик: O(n + m + z), z - количество появлений шаблонов.

Бор с суффиксными ссылками

Суффиксная ссылка f(s) указывает на самый длинный суффикс из s, являющийся префиксом в боре.

Пример:

Максимальный суффикс из "she", являющийся префиксом бора - "he".

Еще один пример бора с суффиксными ссылками

Алгоритм Ахо-Корасик

- 1. Строим бор шаблонов с суффиксными ссылками.
- 2. Обрабатываем символы текста по одному. Начальное положение корень бора.

Основная идея – сразу вывести все шаблоны, оканчивающиеся в обработанном символе текста.

Все такие шаблоны являются суффиксами друг другу.

Обработка одного символа текста

Обработав символ, хотим находиться в боре в самой длинном префиксе шаблона, являющейся подстрокой текста и оканчивающейся в обработанном символе. Обработаем очередной символ а. Находимся в узле v

- 1) Если из v есть переход по a, то переходим по нему.
- Если нет, то переходим в наибольший суффикс, являющийся префиксом шаблона там может быть переход по а. Этот переход = переход по суффиксной ссылке.
 Перебираем f(v), f(f(v)),..., пока не найдем переход по а, либо не упремся в корень.
- 3) Перейдем по а.
- 4) Выведем в ответ все шаблоны, являющиеся суффиксом текущей вершины.

Удобно сделать из корня переходы по всем отсутствующим символам в корень же.

Пример работы алгоритма

Строки-шаблоны:

- abd
- abdk
- abdchijn
- chnit
- ijabdf
- ijaij

Текст:

abchnijabdfk

Алгоритм Ахо-Корасик

Состояние - узлы бора. Начальное состояние - корень s.

Обозначим:

<u>Функция перехода:</u> g(s,a) - возвращает состояние, в которое можно перейти из состояния s по символу a.

<u>Функция неудачи:</u> f(s) - возвращает состояние, в которое нужно перейти при просмотре неподходящего символа – суффиксная ссылка.

Выходная ф-я: Out(s) - множество шаблонов, которые обнаруживаются при переходе в s.

Псевдокод поиска подстрок А-К

```
q = 0; // Начинаем из корня
for( i = 0; i < m; i++ ) {</pre>
    while (q != 0 \&\& g(q, T[i]) == 0) {
        q = f(q);
    q = g(q, T[i]); // Выполняем переход, если возможно.
    if( out( q ) != 0 )
        print( out( q ) );
```

Вычисление суффиксных ссылок

Надо найти самый длинный суффикс родителя, который может быть продолжен по символу, входящему в v.

```
Если v - he корень, то f(v) = goto(f(parent(v)), in(v)), где parent(v) – родительская вершина v, in(v) – метка на ребре бора, ведущем в v.
```

Построение бора А-К с суффиксными ссылками. Вариант 1

- 1. Строим бор, в конце слова out(v) = { Pi }. Корень зацикливаем по оставшимся символам.
- 2. Считаем f(q) обходом в ширину. out(q) = out(q) U out(f(q))
- 3. Убираем зацикленность корня.

Время работы может быть больше O(n).

Автомат Ахо-Корасик.

Состояние - вершина бора.

Начальное (стартовое) состояние - корень (0).

<u>Функция перехода:</u> goto(v, a) - возвращает состояние, соответствующее переходу из состояния s по символу a.

Если в исходном боре из v есть переход по символу а в вершину u, то goto(v, a) = u. Если в исходном боре из v нет перехода по символу a, то проходим по суффиксной ссылке и ищем переход по символу a уже от f(v): goto(v, a) = goto(f(v), a)

Построение автомата А-К. Вариант 2. Ленивое построение для задачи поиска всех вхождений шаблонов.

- **1.**Строим бор, в конце слова out(v) = $\{P_i\}$. Корень зацикливаем по оставшимся символам.
- 2.Выполняем переходы по символам текста goto(v, T[j]):

Если есть ребро в боре от текущего состояния, переходим по нему – goto(v, a) совпадает с этим узлом.

Если ребра в боре нет, то используем либо закэшированное значение goto(v, a), либо вычисляем его и сохраняем в кэше.

Перебираем все длинные суффиксные ссылки вместо out(v).

Поиск подстрок с помощью автомата Ахо-Корасик.

```
// Сам алгоритм.
void AhoKorasik({P}, T) {
    BuildTrie();
    int q = 0; // Стартовая.
    for( int i = 0; i < m; i++ ) {</pre>
        q = goto( q, T[i] );
        print( out( q ) );
```

Поиск подстрок с помощью автомата Ахо-Корасик.

```
// Функция перехода.
int goto( q, a ) {
   if( g[q, a] != -1 ) // В исходном боре есть переход или уже вычисляли
       return g[q, a];
   if( q == 0 ) // Корень
       return 0;
   return g[q, a] = goto( f( q ), a );
// Суффиксная ссылка.
int f( q ) {
   if( f cache[q] != -1 )
       return f_cache[q];
    if( q == 0 | parent( q ) == 0 ) // Корень или родитель - корень
        return 0;
   return f_cache[q] = goto( f( parent( q ) ), in( q ) );
```

Поиск подстрок с помощью автомата Ахо-Корасик.

```
// Функция ответа.
std::vector<int> out( int q ) {
    std::vector<int> result;
    if( !IsTerminal( q ) )
        q = TermLink( q );
    for(; q != 0; q = TermLink( q ) )
        // Пока не дошли до корня по длинным суффиксным ссылкам
        result.emplace_back( q );
    return result;
}
```

Оценка времени работы

Обработка одного символа текста складывается из:

1. Одного вызова goto.

Ленивое построение переходов для каждого узла и символа строит переход по а не более одного раза.

Ленивое построение суффиксной ссылки выполняется не более одного раза для каждого узла

2. Проходу по терминальным ссылкам.

Ленивое построение терминальных ссылок – по 1 вызову на каждую вершину бора Каждый переход по терминальной ссылке к корню – находит один ответ или упирается в корень. Количество ответов – k.

Общее время – O(n + m + k)

Спасибо за внимание!

