$$HTN$$
; $t = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} = \frac{0.111}{0.031} \approx \frac{5.58}{5.58} > 1.96$

So, leject the null. Thus, there is evidence that a history of hypertension is associated with an increased probability of dath.

Smoke:
$$t = \frac{\beta_2}{5E(\beta_2)} = \frac{0.234}{0.072} = 3.25 > 1.96$$

So, reject the null. Thus, there is evidence that a history of smoking is associated with an increased probability of death.

Age:
$$t = \frac{\beta_3}{5E(\hat{\beta}_3)} = \frac{0.100}{0.100} = 1.00 < 1.96$$

So, full to reject the null. Thus, there is no evidence that advanced age is associated With an increased probability of death.

With an increased probability of death.

Remember, it increments by
$$\sqrt{3}yr$$
.

 $\sqrt{3} = \exp(d\hat{\beta}_s) = \exp(0.1.2) \approx \sqrt{1.22}$

Remember, it increments by $\sqrt{3}yr$.

Thus, the odds of sudden death is 1.22 higher in women who are 10 yr, older.

95% (I =
$$\exp\left(\frac{d \cdot \hat{\beta}_3}{0.2} \pm 1.96 \cdot d \cdot SE(\hat{\beta}_3)\right) = \left(0.825, 1.808\right)$$

c) According to Dr. Zou during review.

In the situation where you have a case-control study, you cannot use the fitted logistic regression for prediction. Since you have selected on a specific outcome, the number of controls & cases are not as they are present in the population. In this case, the intercept is a result of our design & is not applicable to the population as it Will tend to overestimente the probability of death.

1 d) According to Dr. Zou, there are two correct ways of phrasing this answer.

Method 1: We want to test HoiBi=B2 (HoiBi-B2=0.

We could use a score test,
$$(\beta_1 - \beta_2) = \frac{(\beta_1 - \beta_2)}{\sqrt{Var(\beta_1 - \beta_2)}} = \frac{(\beta_1 - \beta_2)}{\sqrt{Var(\beta_1) + Var(\beta_2)} - 2Cor(\beta_1, \beta_2)}$$

We don't have (ov $(\beta_1; \beta_2)$, we were only given $Var(\beta_1) = SE(\beta_1)^2$ and $Var(\beta_2) = SE(\beta_2)^2$. So, we are shit out of luck. (3)

Method 2: Again, want to test to: B,=B2 (Ho: B,-B2=0,

We could use a likelihood ratio (LR) test. This involves computing a log-likelihood ratio for the full model (logit(\hat{p}) = $\hat{\beta}_0$ + $\hat{\beta}_1$ +ITN+ \hat{p}_2 · Smoke+ $\hat{\beta}_3$ · Age) and a logilikelihood ratio for the reduced model (logit(\hat{p}) = $\hat{\beta}_0$ + $\hat{\beta}_1$ *(HTN+smoke) + $\hat{\beta}_2$ * Age).

Would adapte - 2 LR (reduced) - (-2 LR(full)) ~ X2 of (full) - df (reduced) = X1

However, again we were not given the likelihood ratios for the full & reduced models, so no bueno.

1 e) Without info regarding the distribution of age in the controls, the investigator cannot make any conclusion regarding risk of death.

First, Know Var(
$$\hat{p}$$
) = $Var(\frac{x}{n}) = \frac{1}{n^2} Var(x) = \frac{1}{n^2} A \hat{p}(1-\hat{p}) = \frac{\hat{p}(+\hat{p})}{n}$

Will beable to use this eqn. for variance to derive 95% CI's.

Point Estimates:
$$\hat{p}_0 = \text{Moutcome} = 1 | \text{intervention} = 0) = \frac{14+5}{75} \approx [0.253]$$

$$\hat{P}_{1} = P(\text{outcome} = 1 | \text{intervention} = 1) = \frac{20+10}{75} = [0.40]$$

95%
$$CI(P_0) = 0.253 \pm 1.96 \sqrt{\frac{0.253(1-0.253)}{75}} = (0.155, 0.351)$$

95% $CI(P_1) = 0.40 \pm 1.96 \sqrt{\frac{0.40(1-0.40)}{75}} = (0.289, 0.511)$

2 b) Than compute an OR, RR, or RD (visk difference, same as difference in properties). Here, will compute an RD:

$$\overrightarrow{P_1} = \overrightarrow{P_1} - \overrightarrow{P_0}$$
 where $\overrightarrow{P_0} = P(\text{outcome} = 1 | \text{intervention} = 0) = 0.253 (los+part)$
 $\overrightarrow{P_1} = P(\text{outcome} = 1 | \text{intervention} = 1) = 0.40 (los+part)$

$$\Rightarrow \stackrel{\wedge}{RD} = 0.4 - 0.253 = 0.247$$

95%
$$CI(RD) = (\hat{p}_1 - \hat{p}_0) \pm 1.96 \sqrt{\hat{p}_1(1-\hat{p}_1)} + \hat{p}_0(1-\hat{p}_0)$$

$$= 0.247 \pm 1.96 \sqrt{0.4(1-0.4)} + \frac{0.253(1-0.253)}{75}$$

$$= (0.099, 0.395)$$

The patients who received intervention had almost 25 additional cases (out of 100) of the Alc below 7.5% when compared to patients who received only would care.

Z c) Taking difference in proportions from 26) have,

Ann Morie Weideman MS Exam I, 2018

$$Z = \frac{\hat{p}_{1} - \hat{p}_{0}}{\sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{0}(1-\hat{p}_{0})}{n_{2}}}} = \frac{0.4 - 0.253}{\sqrt{\frac{0.4(1-0.4)}{75} + \frac{0.253(1-0.253)}{75}}} \approx 1.94 < 1.96$$

Using 2. pnorm (1.943, lower. tail = F) in R returns p = 0.052 Assuming an a=0.05, we fail to reject the null hypothesis & conclude that there is no evidence that the intervention is effective in lovening BS.

2 d) [Have logit (p) = po+p, intervention+ 1/2 sex + 1/2 intervention sex + 2 Have introvention= { 1 ; intervention o , usual care

$$SeX = \begin{cases} 0, \text{ female} \\ 1, \text{ male} \end{cases}$$

Testing: Ho: B3=0

H. : B3>0 (Know B3 must be positive since B3 exists if Sex=1 & intervention=1 in order for an increased

Fitting the above model in R gives: \(\beta_3 = 0.2029\) [1911(p) - our hypothesis. p = 0.7903 (for a two-sided test)

Used,

glm (Outcome NIntervention * sex, data = df, family = 'binomial')

However, we need the p-value for a one-sided test. For symmetric distributions, if two-tailed p-value > 0.5, then one-tailed p-value = 1- (two-tailed p). If two-tailed p-value <0.5, then one-tailed p-value = (two-tailed p).

Here $P_2 = 0.7903 > 0.5$, so $P_1 = 1 - \frac{0.7903}{2} \approx 0.605$

Sine P=0.605 > d=0.05, we fail to reject the null. There is no evidence that males respond better to the intervention.

Ze) T Simply fit the model legit (p) = $\beta_0 + \beta_1$ intervention + β_2 . Sex + ξ Using glm (Outcome N intervention + sex, data = df, family = "binomial") in R to get a sex adjusted estimate of $\beta_1 = 0.7165$ with associated SE(β_1) = 0.3634.

Then, $95\% \text{ CI}(\beta_1) = \hat{\beta}_1 \pm 1.96 \cdot \text{SE}(\hat{\beta}_1) = 0.7165 \pm 1.96 \cdot 0.3634$ = (0.0042, 1.4288)

The confidence interval borderline contains the O estimate. However, at a significant level of α =0.05, these results would still be considered "startistically significant!" and we would conclude that the intervention, when adjusted for differences in Sex, has a positive effect on the outcome (increasing the probability of low blood sugar).

AVOVA	22	df	F	
Between	$ \begin{array}{cccc} & & & \\ & &$		(SS between/i-1) (SS within/n-i)	General formulas for I groups
Within	$\sum_{i=1}^{T} \sum_{j=1}^{n_i} [y_{ij} - y_{ij}]^2$	//-1	11/1/11/11	Ta - groups
Total	SSbetween + SSwithin	N-1-1	4/1////	

ANOVA	22	df	F
Between	70.94	2	52.24
Within	201,57	297	1111/1/11
Total	272.51	299	11/1/1/1

Where
$$\overline{y} = \text{grand mean} = \frac{3.78(100) + 3.23(100) + 2.59(100)}{300} = \frac{3.78 + 3.23 + 2.59}{3} = 3.2$$

≈ 201.57

$$SSTotal = SS_{between} + SS_{within} = 70.94 + 201.57 = 272.51$$

 $df_{between} = 3 - 1 = 2$, $df_{within} = 300 - 3 = 297$, $df_{total} = 300 - 1 = 299$

$$F = \frac{SS_{between}/(i-1)}{SS_{within}} = \frac{(70.94/2)}{(201.57/297)} \approx 52.24 \text{ NF}_{2,297}$$

P-value = pf (52.24, df1=2, df2=297, lower.tail=F) = 1.61 × 10⁻¹⁹ in R. Since $p = 1.61 \times 10^{-19} < \alpha = 0.05$, we reject the null hypothesis and conclude that the group means are not all identical (at least one is different),

From given construct, have:

$$\beta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

Then, three steps:

1) Find parameter estimates.

Tit following model in P, Im (ynx) where
$$y = c(3.78, 3.23, 2.59)$$
vector

vector containing 1,2, and 3
Will return parameter estimates of,
$$\vec{\alpha}_1 = 4.39$$
 and $\vec{\alpha}_2 = -0.595$

2) Find LUSE, 62

According to the GG3 Extbook, on pg. 325,

$$6^2 = 55$$
 within $/N-i = 201.57/297 \approx 0.679$
on previous pg,

MSE

(3) Find SEE (standard error of the estimates).

Need SE(2,) and SE(2)

Need
$$SE(d_1)$$
 and $SE(a_2)$.
Use formula $SEE = \sqrt{6^2 \text{diag}(X'X)^{-1}}$, Code X in R using X = cbind(rep(1,300), c(rep(1,100),

Use formula
$$SEE = 10$$
 and 1×1 , 100 ,

Then, use
$$Sqr + (0.679 \circ (x'x)^{-1})$$
 and $Srab$ diagonal entries. These will be $SE(\hat{a}_i)$ and $SE(\hat{a}_2) = 0.022$.

SE(2). You will find SE(2) = 0.0476 and SE(2) = 0.022.

3 c) The given hypothesis of $H_0: \beta_2 = \beta_3 = 0$ is equivalent to testing $M_1 = M_2 = M_3$ because if $\beta_2 = \beta_3 = 0 \implies M_1 = \beta_1$, $M_2 = \beta_3$, and $M_3 = \beta_1$.

This is equivalent to the F test in the one-way ANOVA table in part a).

Thus, F & 52,24 NF2,297

p-value = pf(52.24, df1=2, df2=297, lower+cil=F)=1.61x10-19 3in R

Since $p = 1.61 \times 10^{-19} < \alpha = 0.05$, we reject the null hypothesis and conclude that at least one β : (for i=2,3) is non-zero.

ANOVA	22	/ of	The state of the s		
Between	= [[y; - y] 2	1-1	(SS between/1-1)	1	General formulas
Within	I [Y:j-Y:] ²	N-1	(SSwinin/n-i)	And the Control of th	for I groups
Total	SSbetween + SSwithin	N-1	17		

where
$$\overline{y} = \text{grand mean} = \frac{3.78(100) + 3.23(100) + 2.59(100)}{300} = \frac{3.78 + 3.23 + 2.59}{3} = 3.2$$

Then,
$$55$$
 between = $\begin{bmatrix} \frac{3}{7} & \frac{100}{7} & [y_1 - y_1]^2 \\ = 70.94 \end{bmatrix}$ = $\frac{100(3.78 - 3.2)^2 + 100(3.23 - 3.2)^2 + 100(2.59 - 3.2)^2}{n_1 & y_1 & y_2 & y_2 & y_3 &$

P 201.57

SS-total = SS between + SS within = 70,94+201.57 = 272.51

df between = 3-1=2, df within = 300-3=297, df +otal = 300-1=299

$$F = \frac{SS_{between} / (i-1)}{SS_{within}} = \frac{(70.94/2)}{(201.57/297)} \approx 52.24 \text{ NF}_{2,797}$$

$$P_{value} = pf(52.24, df1=2, df2=297, lower_tail=F) = 1.61 \times 10^{-20}$$
Since $P = 1.61 \times 10^{19} < d = 0.05$, we reject the null hypothesis and conditions

Since P=1.61×10¹⁹ < x=0.05, we reject the null hypothesis and conclude that the group means are not all identical (at least one is different).

From given construct, have:

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{cases} 100 \times \\ 100 \times \\ 1 & 3 \end{cases}$$

$$\beta = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

$$(xx)^{-1} = \begin{pmatrix} -0.023333 & -0.0/0 \\ -0.0/0 & 0.005 \end{pmatrix}$$

Then, three steps:

Then, three steps:

(1) Find parameter estimates.
$$lm(\tilde{\gamma} \sim 00001+02\tilde{\chi})$$
 --- (*)

The following model in P, $lm(\tilde{\gamma} \sim 00001+02\tilde{\chi})$ vector

(2) $lm(\tilde{\gamma} \sim 00001+02\tilde{\chi})$ vector

Fit following model in R,
$$\chi$$
 (C171) where $\gamma = c(3.78, 3.23, 2.59)$
and $\chi = c(1, 2, 3)$ vector

Will return parameter estimates of, $\vec{\alpha}_1 = 4.39$ and $\vec{\alpha}_2 = -0.595$, RSS = 0.00/35

2 Find WIE, 62

According to the GG3 Extbook, on pg. 325,

Find SEE (standard error of the estimates).

Need SE(2,) and SE(2)

Need
$$SE(d_1)$$
 and $SE(n_2)$.
Use formula $SEE = \sqrt{6^2 \text{diay}(X'X)^{-1}}$, Code X in R using X = cbind (rep(1,300), c(rep(1,100), rep(2,100))

Then, use
$$Sqr+(0.679 \cdot (X'X)^{-1})$$
 and $grab$ diagonal entries. These will be $SE(\hat{\alpha}_1)$ and $SE(\hat{\alpha}_2) = 0.000$. $SE(\hat{\alpha}_2) = 0.000$.

0.05878