Introduction to Project 1: Mapping relaxation times with MRI

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

Measuring relaxation times with MRI

- Map relaxation times using
 - Multiple echo time measurements of T₂=R₂-1
 - Inversion recovery measurements of T₁=R₁-1

Multiple echo time measurements of T₂

- Acquire a series of images, each at a different time after the tipping B₁ pulse
- Signal intensity decays exponentially with time constant T₂.

Multiple echo time measurements of T₂

Fit signal decay in each pixel to an exponential

$$S(T_E) = S_0 \cdot e^{-T_E/T_2}$$

Inversion recovery measurements of T₁

- Apply an 'inversion' B₁ pulse to orient M along –Z
- Wait some delay (inversion) time, TI, during which M_z recovers toward M₀
- Tip spins into the transverse plane and measure magnetization immediately (indirect measure of M_z)

Inversion recovery measurements of T₁

- Acquire a series of images each with a different inversion time
- For each pixel location, fit signal recovery to estimate T₁

Goals of project

- Calculate and interpret T₂ and T₁ maps
- Compare T₁ and T₂ for tissue classification
- Practice basic MATLAB skills for image analysis

Making a head mask

- Identify pixels in background of image
- Compare pixel intensities to a threshold at 10% of maximum:

 $mask_m = (image_m > 0.1*max(image_m(:)));$

figure
imagesc(mask_m)
colormap(gray)
axis image
axis off
title('Head mask')

mask_m has 1's in head

