

Advanced Mathematics - Final Exam

120 minutes

28 February 2019

open book

Linear algebra

1. Given the symmetric matrix

Apply **one** step of the (p,q)-rotation of Jacobi to find the eigen values. Note down the non-zero elements of the transformation matrix $\underline{\mathbf{U}}$ and the upper triangle of the resulting matrix $\underline{\mathbf{A}}^{[1]}$. Non-integer values should be given with 4 digits after the decimal separator. (15 points)

Laplace Operator

2. Use the 'frame vectors' \hat{h}_{q_i} to derive (step-by-step) the Laplace operator in the system:

$$x = \arctan \frac{\alpha}{\beta}$$
$$y = \frac{1}{2} \ln(\alpha^2 + \beta^2).$$

For which functions $g(\beta)$ is the field $\Phi(\alpha, \beta) = g(\beta) \sinh \alpha - 3\alpha^2 \beta + \beta^3$ harmonic in this coordinate system? (28 points)

ntegral theorems

- 3. Calculate the flux of the vector field $F = (x^3, -y^3, z)^T$ through the body \mathcal{B} , which is defined in the following way:
 - · The curved 'bottom surface' is given by

$$\mathcal{H}_0 = \left\{ x \in \mathbb{R}^3 : x^2 + y^2 - 8z^2 = 4, x \ge 0, y \ge 0, 1 \le z \le 2 \right\}.$$

- Move each point of the surface \mathcal{H}_0 (without rotation) parallel to the vector $v = \begin{pmatrix} 1, & 1, & 2 \end{pmatrix}^{\mathsf{T}}$ until the plane $\mathcal{P} = \{x \in \mathbb{R}^3 : z + 2x + 2y = 6\}$.
- Every location in space which is passed by one of the points is part of the volume \mathcal{B} .

In case of an adequate parametrization, the trigonometric relations

$$\cos x + \sin x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right), \qquad \cos x - \sin x = \sqrt{2} \sin \left(\frac{\pi}{4} - x\right)$$

might be helpful and can be used without proof.

(30 points)

Differential equation

4. Given the differential equation

$$x^2y'' + 3xy' = \frac{1}{y^3x^4}.$$

- a) Verify, that the ODE is *scale invariant*. Hence, there is a value $p \in \mathbb{R} \setminus \{0\}$ in such a way, that the substitution $x := a\bar{x}$ and $y := a^p\bar{y}$ leads to the same ODE in the expressions $\{\bar{x}, \bar{y}\}$. (10 points)
- b) Introduce a new dependent function $u(x) = x^p y(x)$ and eliminate the variable x from the ODE by the substitution $x = e^t$. The resulting ODE of first order can be solved by using $v = \dot{u}$ as new variable. The determination of u is not required! (17 points)

Good luck!