Teoría de la Medida e Integración 2023

Lista 6

23.abril.2023

- 1. (a) Probar que $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$.
 - (b) Probar que $\mathcal{B}(\mathbb{R}^{m+n}) = \mathcal{B}(\mathbb{R}^m) \times \mathcal{B}(\mathbb{R}^n)$.
- 2. Sea X = [0,1], $A = \mathcal{B}([0,1])$, y sea $\mu : A \to \mathbb{R}$ una medida multiplicativa, esto es

$$\int fg\,d\mu = \Big(\int f\,d\mu\Big)\Big(\int g\,d\mu\Big),$$

para todas las funciones $f,g:X\to\mathbb{R}$ continuas. Identificar a μ .

3. Sea $c \in (0,1)$ fijo. Definamos $F : \mathbb{R}^2 \to \mathbb{R}$ como sigue:

$$F(x,y) = \begin{cases} \left(\frac{1-y}{x-y}\right)^c, & 0 \leqslant y < x, \ 0 < x < 1; \\ 0, & \text{caso contrario.} \end{cases}$$

Compruebe que $F \in mL^1(\mathbb{R}^2)$ respecto de la medida $\lambda^2 = \lambda^1 \times \lambda^1$ y hallar la integral

$$\int F d\lambda^2.$$

4. Sean X=Y=[-1,1], $\mathcal{A}=\mathcal{B}=\mathcal{B}([-1,1])$, y sean $\mu=\nu=\lambda^1$, la medida de Lebesgue en \mathbb{R} . Estudiar la integrabilidad de la función $f:X\times Y\to \mathbb{R}$, dada por

$$f(x,y) = \begin{cases} 0, & x^2 + y^2 = 0; \\ \frac{xy}{(x^2 + y^2)^2}; & x^2 + y^2 > 0. \end{cases}$$

En particular, determinar las funciones "marginales", determinar si f satisface el teorema de Fubini, y estudiar qué ocurre con la integral de f en la medida producto $\pi = \mu \times \nu$.

- 5. Sea (X, A) un espacio mesurable, y sean $\nu, \nu_1, \nu_2 : A \to \text{medidas con signo}$. Mostrar que
 - a) $\nu_1 \perp \nu_2 \Rightarrow \nu_2 \perp \nu_1$.
 - b) $\nu_1 \perp \nu$ y $\nu_2 \perp \nu \Rightarrow \nu_1 + \nu_2 \perp \nu$.
 - c) $\nu_2 \leqslant \nu_1 \Leftrightarrow |\nu_2| \leqslant \nu_1 \Leftrightarrow |\nu_2| \leqslant |\nu_1| \Leftrightarrow \nu_2^+, \nu_2^- \leqslant \nu_1$.
 - d) Si $\nu_2 \ll \nu$ y $\nu \perp \nu_1 \implies \nu_2 \perp \nu_1$.
 - e) Si $\nu_1 \leqslant \nu$ y $\nu_1 \perp \nu$, entonces $\nu_1 \equiv 0$.
- 6. Demostrar que el Teorema de Radón-Nikodym falla si μ no es σ -finita, aunque ν sea finita. Para ello, considerar el siguiente ejemplo. Sea X un conjunto no-enumerable, $\mathcal{A}=\{EX: E\text{es enumerable ó }X-E\text{ es enumerable}\}$, y μ la medida de conteo. Además, sea

$$\nu(E) = \begin{cases} 0, & E \text{ es enumerable;} \\ +\infty, & E \text{ no es enumerable.} \end{cases}$$

- 7. Sean $\mu_1, \mu_2, \nu_1, \nu_2$ medidas σ -finitas sobre un espacio mesurable (X, \mathcal{A}) . Pruebe que:
 - i) i) Si $\nu_1 \ll \mu_1$ y $\nu_2 \ll \mu_2$, entonces $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ y

$$\frac{d\nu_1 \times \nu_2}{d\mu_1 \times \nu_2}(x, y) = \frac{d\nu_1}{d\mu_1}(x) \times \frac{d\nu_2}{d\mu_2}(y).$$

- ii) Si $\nu_1 \perp \mu_1$ y $\nu_2 \perp \mu_2$, entonces $\nu_1 \times \nu_2 \perp \mu_1 \times \mu_2$.
- 8. Mostrar que, con las hipótesis adecuadas, valen:

1) Si
$$\nu_1 \ll \mu$$
 y $\nu_2 \ll \mu$, entonces

$$\nu_1 \pm \mu_2 \ll \mu \qquad {\rm y} \qquad \frac{d(\nu_1 \pm \nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} \pm \frac{d\nu_2}{d\mu}.$$

2) Si
$$\rho \ll \nu$$
 y $\nu \ll \mu$, entonces

$$\rho \leqslant \mu \qquad {\rm y} \qquad \frac{d\rho}{d\mu} = \frac{d\rho}{d\nu} \cdot \frac{d\nu}{d\mu}.$$

3) Si
$$\nu$$
 y μ son **equivalentes** (esto es, $\nu \ll \mu$ y $\mu \ll \nu$), entonces

$$\nu\big(\big\{\mathbf{x}\in X:\ \tfrac{\partial\nu}{\partial\mu}=0\big\}\big)=0\qquad \mathrm{y}\qquad \frac{d\mu}{d\nu}=\Big(\frac{d\nu}{d\mu}\Big)^{-1}.$$