Projet de Systèmes Polynomiaux. 2020-2021

FACULTÉ DES SCIENCES ET TECHNIQUES MASTER 1 - MATHS. CRYPTIS

Théorème fondamental des polynômes symétriques

A l'attention de : M. LICKTEIG

Rédigé par : PIARD A. JACQUET R. CARVAILLO T.

Table des matières

1	Rappels sur les Corps Finis		
	1.1	Construction	3
	1.2	Polynômes multivariés	4
2 Les polynômes symétriques		polynômes symétriques	5
	2.1	Introduction aux polynômes symétriques	5
	2.2	Le théorème fondamental des polynômes symétriques	6
R	Références		

1 Rappels sur les Corps Finis

Soit \mathbb{K} un corps quelconque et soit φ le morphisme suivant :

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{K} \\ n & \longmapsto & n \cdot 1_{\mathbb{K}} \end{array} \right|$$

Définition 1. Soit \mathbb{K} un corps quelconque. Toute partie \mathcal{P} de \mathbb{K} vérifiant :

- \mathcal{P} est non vide et est une partie stable pour + et × de \mathbb{K} et \mathcal{P} muni des lois induites par celles de \mathbb{K} est lui-même un corps.
- \mathcal{P} est un sous-anneau de \mathbb{K} , $1 \in \mathcal{P}$ et $(p \in \mathcal{P}^* = \mathcal{P} \{0\} \Rightarrow p^{-1} \in \mathcal{P}^*)$.
- \mathcal{P} est un sous-groupe de $(\mathbb{K},+)$ et \mathcal{P}^* muni de la loi \times est un sous-groupe multiplicatif (\mathbb{K}^*,\times) .

est appelée sous-corps de K.

Définition 2. Soit \mathbb{K} un corps quelconque.

- K est dit premier s'il ne contient aucun sous-corps strict.
- Si \mathbb{K} est un corps, le sous-corps de \mathbb{K} engendré par $1_{\mathbb{K}}$ est un corps premier, c'est le sous-corps premier de \mathbb{K} .

Le noyau du morphisme φ est un idéal de \mathbb{Z} et donc de la forme $k\mathbb{Z}$ pour $k \in \mathbb{Z}$. Par le premier théorème d'isomorphisme on a $\operatorname{Im}(\varphi) \cong \mathbb{Z}/n\mathbb{Z}$. Par intégrité de $\mathbb{Z}/n\mathbb{Z}$, n = 0 ou n est un nombre premier. Si n = 0 alors φ est injective et donc le sous-corps premier de \mathbb{K} est isomorphe à \mathbb{Q} . Si $n \neq 0$ alors le sous-corps premier est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ et n s'appelle la **caractéristique** de \mathbb{K} .

Définition 3. Soient L et \mathbb{K} deux corps. Si L/K est une extension de corps alors L est un espace vectoriel sur K, où l'addition vectorielle est l'addition dans L et la multiplication par un scalaire $K \times L$ est la restriction à $K \times L$ de la multiplication dans L. La dimension du K-espace vectoriel L est appelée le degré de l'extension et est notée [L:K].

Définition 4. Soit P un polynôme sur un corps K. On appelle corps de décomposition de P sur K une extension L de K telle que :

- dans L[X], P(X) est produit de facteurs de degré 1,
- les racines de P(X) engendrent L.

Proposition 1. Soit P un polynôme sur un corps K. Alors P admet un corps de décomposition, unique à K-isomorphisme près.

Proposition 2.

- Le cardinal de \mathbb{K} est une puissance de p.
- Réciproquement, pour tout $n \in \mathbb{N}^*$, il existe un corps \mathbb{K} de cardinal p^n . En outre \mathbb{K} est unique à isomorphisme près.

Démonstration.

- Puisque le sous-corps premier de \mathbb{K} est isomorphe à $\mathbb{Z}/p\mathbb{Z}$, alors \mathbb{K} est naturellement muni d'une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel. On note $n = [\mathbb{K} : \mathbb{Z}/p\mathbb{Z}]$. Alors $\#\mathbb{K} = \#(\mathbb{Z}/p\mathbb{Z})^n = p^n$.
- Soit $n \in \mathbb{N}^*$. Si \mathbb{K} est un corps fini de cardinal p^n , alors \mathbb{K} est le corps de décomposition de $X^{p^n} X$ sur $\mathbb{Z}/p\mathbb{Z}$: en effet, puisque pour tout $x \in \mathbb{K}$, x est racine de $X^{p^n} X$ alors $X^{p^n} X$ possède ses p^n racines dans \mathbb{K} . Réciproquement, soit K le corps de décomposition de X^{p^n} sur $\mathbb{Z}/p\mathbb{Z}$. Soit K l'ensemble des éléments de K qui sont racines de $X^{p^n} X$. On vérifie que K est un sous-corps de K. Puisque $1_K \in K$, et si $x, y \in K$ alors $x^{p^n} = x$ et $y^{p^n} = y$, donc $(x+y)^{p^n}x + y$ et $(xy^{-1})^{p^n} = xy^{-1}$, si bien que $x+y, xy^{-1} \in K$. Par ailleurs la dérivée formelle, $(X^{p^n} X)' = -1$ est premier avec $X^{p^n} X$ donc les racines de $X^{p^n} X$ sont simples. On en déduit alors que $\#K = p^n$. Finalement K = K est un corps à p^n éléments et il est unique à isomorphisme près en vertu de l'unicité du corps de décomposition de $X^{p^n} X$ sur $\mathbb{Z}/p\mathbb{Z}$.

On notera dorénavant \mathbb{F}_q le corps fini à $q=p^n$ éléments.

1.1 Construction

Soit $P \in \mathbb{F}_p[X]$ un polynôme irréductible sur \mathbb{F}_p . On note $n = \deg(P)$. Puisque P est irréductible, l'idéal (P) est donc maximal. Le quotient $\mathbb{F}_p[X]/(P)$ est le corps de rupture de P sur \mathbb{F}_p de cardinal p^n . Afin de montrer que l'on peut toujours construire les corps finis nous allons montrer que pour tout $n \in \mathbb{N}^*$ il existe un polynôme irréductible sur \mathbb{F}_p de degré n.

Proposition 3. Soit $n \in \mathbb{N}^*$, on définit $\mathcal{P}(n,p)$ par

 $\mathcal{P}(n,p) = \{P \in \mathbb{F}_p[X], \, P \text{ unitaire, irréductible de degré n}\}.$

Alors pour tout $n \in \mathbb{N}^*$ on a,

$$X^{p^n} - X = \prod_{d|n} \prod_{P \in \mathcal{P}(n,p)} P.$$

Démonstration. — Soit P un facteur irréductible de $X^{p^n} - X$ sur \mathbb{F}_p de degré d. Le corps de rupture de P sur \mathbb{F}_p est de cardinal p^d du corps de décomposition $X^{p^n} - X$ sur \mathbb{F}_p , c'est-à-dire F_{p^n} , donc d divise n.

— Réciproquement, on suppose que d divise n et soit $P \in \mathcal{P}(n,p)$. Soit α une racine de P dans le corps de rupture de P sur \mathbb{F}_p . Alors on a $\mathbb{F}_p(\alpha) \simeq \mathbb{F}_{p^d}$. D'où α est racine de $X^{p^n} - X$. Or, puisque P est irréductible, alors P est le polynôme minimal de α sur \mathbb{F}_p donc P divise $X^{p^n} - X$. En outre les facteurs

irréductible de $X^{p^n}-X$ sur \mathbb{F}_p sont simples puisque P est le polynôme minimal de α et que P divise $X^{p^n}-X$.

Corollaire 1. Soit $n \in \mathbb{N}^*$, il existe un polynôme irréductible de degré n sur \mathbb{F}_p .

Démonstration. En conservant les notations de la proposition précédente, il s'agit de montrer que $\#\mathcal{P}(n,p) > 0$. Pour ce faire on évalue le degré de l'égalité

$$X^{p^n} - X = \prod_{d|n} \prod_{P \in \mathcal{P}(n,p)} P.$$

on a alors

$$p^n = \sum_{d|n} d \cdot \# \mathcal{P}(n, p)$$

On en déduit alors que pour tout $d \in \mathbb{N}^*$ on a $p^d \geq d \cdot \# \mathcal{P}(n, p)$, puis,

$$n \cdot \#\mathcal{P}(n, p) = p^n - \sum_{d \mid n, d \neq n} d \cdot \#\mathcal{P}(n, p)$$

$$\geq p^n - \sum_{d \mid n, d \neq n} p^d$$

$$\geq p^n - \sum_{d=1}^{n-1} p^d$$

$$\geq p^n - p \frac{p^{n-1} - 1}{p - 1} > 0$$

Puisque n est positif alors $\mathcal{P}(n,p) > 0$.

1.2 Polynômes multivariés

2 Les polynômes symétriques

2.1 Introduction aux polynômes symétriques

Les polynômes symétriques prennent forme à partir de l'étude des racines de n'importe quel polynôme. Considérons le polynôme $P = X^3 + bX^2 + cX + d$. C'est un polynôme cubique donc il a 3 racines, non nécessairement distinctes. On notera ces racines α_1, α_2 et α_3 . Le polynôme P peut alors se factoriser ainsi :

$$X^{3} + bX^{2} + cX + d = (X - \alpha_{1})(X - \alpha_{2})(X - \alpha_{3}),$$

ce qui nous donne :

$$X^{3} + bX^{2} + cX + d = (X - \alpha_{1})(X - \alpha_{2})(X - \alpha_{3})$$

$$X^{3} + bX^{2} + cX + d = X^{3} - X^{2}(\alpha_{3} + \alpha_{2} + \alpha_{1}) + X(\alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3} + \alpha_{1}\alpha_{2}) - \alpha_{1}\alpha_{2}\alpha_{3}$$

Par identification, on obtient

$$b = -(\alpha_3 + \alpha_2 + \alpha_1)$$

$$c = \alpha_2 \alpha_3 + \alpha_1 \alpha_3 + \alpha_1 \alpha_2$$

$$d = -\alpha_1 \alpha_2 \alpha_3.$$

On observe donc que les coefficients de P sont polynomiaux en ses racines. Par ailleurs, comme modifier l'ordre des termes de P ne le change pas, il s'ensuit que les polynômes définissant b, c et d par rapport à α_1 , α_2 et α_3 restent les mêmes si on permute α_1 , α_2 et α_3 .

Les polynômes respectant ce fait sont dits *polynômes symétriques*. Cela nous amène à la définition générale suivante.

Définition 5. Un polynôme $P \in K[X_1, X_2, \dots, X_n]$ est dit symétrique si

$$P(X_{i_1}, X_{i_2}, \dots, X_{i_n}) = P(X_1, X_2, \dots, X_n),$$

pour toute permutation $X_{i_1}, X_{i_2}, \dots, X_{i_n}$ de X_1, X_2, \dots, X_n .

Exemples. 1. Soit $P = X^{n_1} + Y^{n_2} + Z^{n_3} \in K[X, Y, Z]$, avec $n_1, n_2, n_3 \in \mathbb{N}$. Alors P est un polynôme symétrique. En effet,

$$P = X^{n_1} + Z^{n_3} + Y^{n_2}$$

$$P = Y^{n_2} + X^{n_1} + Z^{n_3}$$

$$P = Y^{n_2} + Z^{n_3} + X^{n_1}$$

$$P = \dots$$

2. Soit $P = XYZ \in K[X, Y, Z]$. Ce polynôme est symétrique car $P = XYZ = YZX = ZYX = \dots$

2.2 Le théorème fondamental des polynômes symétriques

En considérant tous les rappels faits à précédemment, nous pouvons introduire le fameux théorème fondamental des polynômes symétriques.

Théorème 1. Tout polynôme symétrique de $K[X_1, X_2, ..., X_n]$ peut s'écrire de façon unique comme une expression polynomiale en les polynômes symétriques élémentaires $\sigma_1, \sigma_2, ..., \sigma_n$.

Démonstration. Pour cette démonstration nous allons utiliser l'ordre lexicographique suivant, $x_1 > x_2 > \ldots > x_n$. Soit $f \in K[x_1, \ldots, x_n]$ un polynôme symétrique non nul, et on définit l'application LT par $LT(f) = ax^{\alpha}$, où $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ et $a \in K$. On peut supposer sans perte de généralité que les α_i , $i \in \{1, \ldots, n\}$ sont ordonnés comme tel : $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$. En effet, supposons que l'on ait $\alpha_i < \alpha_{i+1}$ pour un certain $i \in \{1, \ldots, n\}$. Il suffit alors de considérer le vecteur d'exposants β , obtenu à partir de α en permutant α_i et α_{i+1} . On écrit $\beta = (\alpha_1, \ldots, \alpha_{i+1}, \alpha_i, \ldots, \alpha_n)$. Puisque ax^{α} est un terme de f, on en déduit que ax^{β} est un terme de $f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n)$. Or, f est symétrique donc $f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n) = f$, et par conséquent, ax^{β} est un terme de f. Ceci est impossible puisque $\beta > \alpha$ selon l'ordre lexicographique.

Posons maintenant,

$$h = \sigma_1^{\alpha_1 - \alpha_2} \sigma_2^{\alpha_2 - \alpha_3} \dots \sigma_{n-1}^{\alpha_{n-1} - \alpha_n} \sigma_n^{\alpha_n}$$

Pour trouver le LEADING TERM de h, on a besoin de $LT(\sigma_r) = x_1x_2\cdots x_r$ avec $r \in \{1, \ldots, r\}$. On en déduit alors que,

$$LT(h) = LT(\sigma_1^{\alpha_1 - \alpha_2} \sigma_2^{\alpha_2 - \alpha_3} \dots \sigma_{n-1}^{\alpha_{n-1} - \alpha_n} \sigma_n^{\alpha_n})$$

$$= LT(\sigma_1)^{\alpha_1 - \alpha_2} LT(\sigma_2)^{\alpha_2 - \alpha_3} \dots LT(\sigma_n)^{\alpha_n}$$

$$= x_1^{\alpha_1 - \alpha_2} (x_1 x_2)^{\alpha_2 - \alpha_3} \dots (x_1 x_2 \dots x_n)^{\alpha_n}$$

$$= x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} = x^{\alpha}.$$

Il s'ensuit donc que f et ah ont le même LEADING TERM, et par conséquent,

$$\operatorname{multideg}(f - ah) < \operatorname{multideg}(f), \operatorname{lorsque} f - ah \neq 0.$$

Posons maintenant $f_1 = f - ah$. On remarque que f_1 est symétrique puisque f et ah le sont. Donc, si $f_1 \neq 0$, on peut répéter l'étape précédente pour construire $f_2 = f_1 - a_1h_1$, où a_1 est une constante et $h_1 = \prod_{i=1}^n \sigma_i^{\gamma_i}$, $\gamma_i \in \mathbb{N}$. On sait aussi que $LT(f_2) < LT(f_1)$ lorsque $f_2 \neq 0$. En continuant ainsi on obtient une suite de polynômes f, f_1, f_2, \ldots avec

$$\operatorname{multideg}(f) > \operatorname{multideg}(f_1) > \operatorname{multideg}(f_2) \dots$$

Comme l'ordre lexicographique est bien ordonné, la suite est finie. Mais le processus se termine seulement lorsque $f_{t+1} = 0$ pour un certain $t \in \mathbb{N}$. On voit alors assez naturellement que

$$f = ah + a_1h_1 + \ldots + a_th_t$$

ce qui montre que f est polynomiale en les polynômes symétriques élémentaires.

Il nous reste à montrer l'unicité. Supposons qu'on a un polynôme symétrique f pouvant s'écrire

$$f = g_1(\sigma_1, \ldots, \sigma_n) = g_2(\sigma_1, \ldots, \sigma_n).$$

Notons y_1, \ldots, y_n les n variables des polynômes à n indéterminées g_1 et g_2 . On doit montrer que $g_1 = g_2$ dans $K[y_1, \ldots, y_n]$.

Si on pose $g = g_1 - g_2$, alors $g(\sigma_1, \ldots, \sigma_n) = 0$ dans $K[x_1, \ldots, x_n]$. La preuve revient alors à montrer que g = 0 dans $K[x_1, \ldots, x_n]$.

Par l'absurde, supposons que $g \neq 0$. Si on écrit $g = \sum_{\beta} a_{\beta} y^{\beta}$, alors $g(\sigma_1, \dots, \sigma_n)$ est la somme des polynômes $g_{\beta} = a_{\beta} \sigma_1^{\beta_1} \sigma_2^{\beta_2} \dots \sigma_n^{\beta^n}$, où $\beta = (\beta_1, \dots, \beta_n)$. De plus, par le calcul de LT(h), on déduit que

$$LT(g_{\beta}) = a_{\beta} x_1^{\beta_1 + \dots + \beta_n} x_2^{\beta_2 + \dots + \beta_n} \dots x_n^{\beta_n}.$$

Montrons maintenant que l'application,

$$\iota: \mid (\beta_1, \dots, \beta_n) \longmapsto (\beta_1 + \dots + \beta_n, \beta_2 + \dots + \beta_n, \dots, \beta_n)$$

est injective. Soient $\beta = (\beta_1, \dots, \beta_n)$ et $\beta' = (\beta'_1, \dots, \beta'_n)$,

 $\Leftrightarrow \beta_i = \beta_i'$, $\forall i \in \{1, \dots, n\}$, en remontant les égalités de chaque ligne

Donc ι est une application injective. Par conséquent, les g_{β} ont des Leading Term distincts. En particulier, en choisissant β tel que $LT(g_{\beta}) > LT(g_{\gamma})$, quelques soient $\gamma \neq \beta$, alors $LT(g_{\beta})$ sera plus grand que tous les termes des g_{γ} . Finalement il n'y a rien pour annuler $LT(g_{\beta})$, et par conséquent, $g(\sigma_1, \ldots, \sigma_n)$ ne peut être nul, l'unicité en découle.

Corollaire 1.

Références

- [1] COX David, LITTLE John, O'SHEA Donal Ideal, Varieties, and Algorithms An Introduction To Computational Algebraic Geometry and Commutative Algebra, Third Edition, 7.1, p.317-?
- $[2] \ \mathtt{https://math.unice.fr/~walter/L3_Alg_Arith/cours2.pdf}$