Презентация по лабораторной работе № 8

Информационная безопасность

Адебайо Р. А.

27.10.2023

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Адебайо Ридвануллахи Айофе
- студент группы НКНбд-01-20
- Факультет физико-математических и естественных наук
- Российский университет дружбы народов
- · Страничка на GitHub
- · Страничка на LinkedIn

Цель лабораторной работы

Цель лабораторной работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P_1 и P_2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C_1 и C_2 обоих текстов P_1 и P_2 при известном ключе ; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Порядок выполнения работы(1)

Определить функцию шифрования и дешифрования

```
M
      import random
    2 from random import seed
      import string
M
       def cipher text function(text, key):
           #condition to check if the key and text have the same length
           if len(kev) != len(text):
    4
               return "Key and text must have the same length"
           cipher text = ""
    6
           for i in range (len(kev)):
               cipher text symbol=ord(text[i]) ^ ord(kev[i])
    8
               cipher text+=chr(cipher text symbol)
    9
           return cipher text
```

Порядок выполнения работы(2)

Определить вид шифротексты и ключа

```
In [4]: Н 1 Р1="НаВашисходящийот1204"
2 Р2="ВСеверныйфилиалБанка"

In [5]: Н 1 key=""
2 seed(23)
3 for i in range(len(P1)):
4 key += random.choice(string.ascii_letters + string.digits)
5 print(key)

7X8s51fbLtByHwiUmrCa
```

Рис. 2: создание ключа той же длины, что и открытый текст

Порядок выполнения работы(3)

Вызов функции шифрования.

```
In [6]: 

1 cipher_P1 = cipher_text_function(P1, key)
2 cipher_P2 = cipher_text_function(P2, key)
3 print(f"Encoded P1: {cipher_P1}")
4 print(f"Encoded P2: {cipher_P2}")
5

Encoded P1: ЫМЪУἆЉЧЧӨрЍаΨюїЗ\@sU
Encoded P2: ΧογЍсЀψҺЩνаОтΨчҕфѝяоуё
```

Рис. 3: получение шифротекста

Порядок выполнения работы(4)

Пример обратного шифрования

```
print(f"P1: {cipher_text_function(cipher_P1, key)}")
           Р1: НаВашисходящийот1204
           print(f"Key: {cipher text function(P1, cipher P1)}")
n [8]:
           Kev: 7X8s51fbLtBvHwiUmrCa
        print(f"P2: {cipher text function(cipher P2, key)}")
 [10]:
            2 print(f"Key: {cipher text function(P2, cipher P2)}")
           Р2: ВСеверныйфилиалБанка
           Kev: 7X8s51fbLtBvHwiUmrCa
```

Вывод

Вывод

В ходе выполнения данной лабораторной работы я освоил на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.