十五周作业

董仕强

Monday 2nd June, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明	J	0
1	Pro	blem Set for 26-May and 29-May	
	1.1	Exercise 0	1
	1.2	Exercise 1	1
	1.3	Exercise 2	1
	1.4	Exercise 3	1
	1.5	Exercise 5	2
	1.6	Exercise 6	2

1 Problem Set for 26-May and 29-May

1.1 Exercise 0

Show that $U \otimes V \simeq V \otimes U$ with the following steps.

- 1. Construct $\varphi:U\otimes V\to V\otimes U$ via a 1:1 correspondence (refer to the preceding assignment). Describe φ by tracing the image of simple tensors.
- 2. Define $\psi: V \otimes U \to U \otimes V$ analogously.
- 3. Establish via 1:1 correspondence that both $\psi \circ \varphi$ and $\varphi \circ \psi$ are identical mappings.

解答 定义双线性映射 $\Phi: U\&V \to V \otimes U, (u,v) \mapsto v \otimes u$, 这唯一确定了线性映射 $\varphi: U \otimes V \to V \otimes U$ 和 $\psi: V \otimes U \to U \otimes V$, 那么 $\varphi \circ \psi = I$ 且 $\psi \circ \varphi = I$, 因此 φ, ψ 是双射, 于是 $U \otimes V \simeq V \otimes U$.

1.2 Exercise 1

Show that the following is an isomorphism:

$$\operatorname{Hom}(U, V^*) \simeq \operatorname{Hom}(V, U^*), \quad [u \mapsto f_u] \mapsto [v \mapsto [u \mapsto f_u(v)]].$$

解答
$$\operatorname{Hom}(U, V^*) \simeq (V \otimes U)^*$$
, $\operatorname{Hom}(V, U^*) \simeq (U \otimes V)^*$, 且 $U \otimes V \simeq V \otimes U$

1.3 Exercise 2

Let V be a finite-dimensional vector space with basis $\{e_i\}$. Let $\{f_i\}$ denote the dual basis of V^* . Define the following mappings:

$$-\Delta: \mathbb{F} \to V \otimes V^*, \quad 1 \mapsto \sum_{i=1}^n e_i \otimes f_i;$$

$$-\nabla: V \otimes V^* \to \mathbb{F}, \quad \sum u_i \otimes \varphi_i \mapsto \sum \varphi_i(u_i).$$

For $f, g: V \to V$, determine the composition

$$\mathbb{F} \xrightarrow{\Delta} V \otimes V^* \xrightarrow{(f \otimes g^*)} V \otimes V^* \xrightarrow{\nabla} \mathbb{F}.$$

解答
$$1 \mapsto \sum e_i \otimes f_i \mapsto f(e_i) \otimes f_i g \mapsto \sum f_i g f e_i = tr(gf)$$

1.4 Exercise 3

Demonstrate that, for finite-dimensional vector spaces, there exists an isomorphism determined via simple tensors:

$$\Phi: V_1^* \otimes V_2^* \otimes V_3 \xrightarrow{\sim} \operatorname{Hom}(V_1 \otimes V_2, V_3), \quad f \otimes g \otimes x \mapsto [a \otimes b \mapsto f(a)g(b)x].$$

Now take $\otimes = \otimes_{\mathbb{R}}$ and $V_i = \mathbb{C}$ (the two-dimensional vector space with basis $\{1, i\}$). We know that the usual multiplication defines a map in $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C} \otimes \mathbb{C}, \mathbb{C})$:

$$\times : \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C}, \quad w \otimes z \mapsto w \cdot z.$$

What is $\Phi^{-1}(\times)$?

解答 考虑基的变换, $(1 \otimes 1, 1 \otimes i, i \otimes 1, i \otimes i) \mapsto (1, i, i, -1)$, 因此令 1, i 的对偶基为 $f, g, \Phi^{-1}(\times) = f \otimes f \otimes 1 + f \otimes g \otimes i + g \otimes f \otimes i + g \otimes g \otimes (-1)$

1.5 Exercise 5

Let $A \in \mathbb{C}^{m \times m}$ and $B \in \mathbb{C}^{n \times n}$ be normal matrices (i.e., $PP^H = P^H P$). Show that AX = XB if and only if $A^H X = XB^H$.

解答 ⇒: AX = XB, 得到 $A^HAXB^H = A^HXBB^H$, 因此 $A(A^HXB^H) = (A^HXB^H)B$, $X \in \ker(A \otimes I - I \otimes B^T)$, we want to show $X \in \ker(A^H \otimes I - I \otimes \bar{B})$, $A \otimes I - I \otimes B^T$ 也是正规矩阵, $(A \otimes I - I \otimes B^T)^H = P^H = A^H \otimes I - I \otimes \bar{B}$ $\ker(P) = \ker(PP^H) = \ker(P^HP) = \ker(P^HP)$

1.6 Exercise 6

Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian positive-definite matrices, i.e., $A = A^H$ and $u^H \cdot A \cdot u \geq 0$ with equality if and only if $u = \mathbf{0}$. Define the matrix C via component-wise multiplication (the stupid multiplication):

$$C = (c_{i,j}), \quad c_{i,j} = a_{i,j} \cdot b_{i,j}.$$

Show that C is also Hermitian positive-definite

解答 $A = P^H P$, $B = Q^H Q$, $A \otimes B = (P^H P) \otimes (Q^H Q) = (P^H \otimes Q^H)(PQ) = (P \otimes Q)^H (P \otimes Q)$. 因此 $A \otimes B$ 厄尔米特正定, $C \not\in A \otimes B$ 的一个主子式, 因此也正定.