EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

1998

1. FASE 2. CHAMADA

PROVA ESCRITA DE MATEMÁTICA

COTAÇÕES

Primeira Parte	81
Cada questão certa	+9
Cada questão errada	3
Cada questão não respondida ou anulada	0
Nota: um total negativo nesta parte da prova vale 0 (ze	ro) pontos.
Segunda Parte	119
1	35
a)	12
b)	. 8
c)	15
2	22
a)	12
b)	10
3	22
a)	10
b)	12
4	40
a)	14
a)	17
b)	10
c)	12
TOTAL	200
IVIAL	V.S.F.F.
	135/C/1

CRITÉRIOS DE CLASSIFICAÇÃO

Primeira Parte

Se o examinando transcrever letras correspondentes às duas versões da prova, a cotação desta primeira parte será zero.

Deverão ser anuladas todas as questões com resposta de leitura ambígua (letra confusa, por exemplo) e todas as questões em que o examinando de mais do que uma resposta.

As respostas certas são as seguintes:

Questões	1	2	3	4	5	6	7	8	9
Versão 1	A	С	A	D	С	D	Α	В	D
Versão 2	н	G	G	G	E	Н	F	F	F

Na tabela seguinte indicam-se os pontos a atribuir nesta primeira parte em função do número de respostas certas e do número de respostas erradas.

Resp. erradas Resp. certas	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	9	6	3	0	0	0	0	0	0	T
2	18	15	12	9	6	3	0	0		
3	27	24	21	18	15	12	9			
4	36	33	30	27	24	21				I
5	45	42	39	36	33				1	L
6	54	51	48	45	2.50					
7	63	60	57	1				S Vine		
8	72	69	Lord						111	
9	81									

Segunda Parte

Critérios gerais

A cotação a atribuir a cada alínea deverá ser sempre um número inteiro de pontos.

O professor deverá valorizar o raciocínio do examinando em todas as questões.

Algumas questões da prova podem ser correctamente resolvidas por mais do que um processo. Sempre que um examinando utilizar um processo de resolução não contemplado nestes critérios, caberá ao professor corrector adoptar um critério de distribuição da cotação que julgue adequado e utilizá-lo em situações idênticas.

Pode acontecer que um examinando, ao resolver uma questão, não explicite todos os passos previstos nas distribuições apresentadas nestes critérios. Todos os passos não expressos pelo examinando, mas cuja utilização e/ou conhecimento estejam implícitos na resolução da questão, devem receber a cotação indicada.

Erros de contas ocasionais, que não afectem a estrutura ou o grau de dificuldade da questão, não devem ser penalizados em mais de dois pontos.

Critérios específicos

1. a)		12
	Cálculo de $f'(1)$	
b)		8
	Afirmar que se pode concluir que f é continua para $x=1$	
	Justificar a resposta7	
	Referir que f é diferenciável para $x=1$ (porque o valor	
	de $f'(1)$ é finito)3	
	Justificar a continuidade de f para $x=1$ (toda a função	
	diferenciável num ponto é contínua nesse ponto)4	
c)		15
	Determinar f"3	
	$f''(x) = \frac{\frac{1}{x} \cdot x - (1 + \ln x)}{x^2} $	
	$f''(x) = \frac{-\ln x}{x^2}$	
	Determinar o zero de f"3	
	Estudar a variação de sinal de $f^{\prime\prime}$	
	Indicar o sentido das concavidades3	
	Indicar o ponto de inflexão (ou, simplesmente, a sua abcissa)3	

2. a)	12
	Calcular a área do circulo2
	Obter as dimensões de um dos quatro rectângulos em que
	o rectângulo $[ABCD]$ está dividido (5 $sen x \in 5 cos x)$
	ou as dimensões do rectângulo $[ABCD]$ ($10senx$ e $10cosx$)
	Obter a área do rectângulo [ABCD]2
	Utilizar a fórmula da duplicação2
	Indicar a área sombreada como a diferença entre a área do círculo
	e a área do rectângulo [ABCD]2
b)	10
	Referir e justificar a continuidade de g em $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ 2
	$g(\frac{\pi}{4}) < 30$ 3
	$g(\frac{\pi}{6}) > 30$
	Conclusão2
	Nota: o examinando pode referir e justificar a continuidade de g em todo o seu
	domínio, que é o Intervalo $\left]0, \frac{\pi}{2}\right[$, para justificar a continuidade de g em $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$.
3. a)	10
	Número de posições que o algarismo zero pode ocupar = 43
	Número de possibilidades dos restantes algarismos = 9 ³ 3
	Número de códigos = $4 \times 9^3 = 2916$

D)	
Número de casos possíveis = 10 ⁴	3
Número de casos favoráveis $=A_4^{10}$	7
Probabilidade pedida = $\frac{A_4^{10}}{10^4}$	1
Probabilidade pedida = 0, 504	1
4.:	
a)	14
Justificar que o centro da superficie esférica é o ponto (3, 9	. 3) 5
Abcissa	
Ordenada	
Cota	
Para justificar a abcissa e a cota, o examinando po	de referir que
elas têm de ser iguais às dos centros das bases do	
Para justificar a ordenada, o examinando pode refe	erir que ela é
igual a 6 + 3 (ou a 12 - 3).	
Justificar que o ponto (1, 8, 1) pertence à superficie esférica	a9
Esta justificação pode ser feita por, pelo menos, doi:	s processos:
1.º Processo	
Determinar a distância do ponto (1, 8, 1) ao ponto (Referir que, pelo facto dessa distância ser igual ao r	
esfera, o ponto $(1,8,1)$ pertence à superficie esféri	ica2
2.º Processo	
Determinar uma equação da superfície esférica	
Verificar que as coordenadas (1, 8, 1) satisfazem a	equação4
b)	
Determinar um vector normal ao plano	
Determinar uma equação do plano	y
c)	12
Referir que a secção é um rectângulo	2
Referir que o comprimento do lado maior do rectângulo é 1:	2 2
Determinar o comprimento do lado menor do rectângulo	6
Determinar o perímetro do rectângulo	2
Nota 1: no enunciado não se pede um valor aprox Subentende-se, assim, que se pretende o valor exacto do	perimetro pedido. No
entanto, se o examinando determinar o valor exacto do per depois apresentar um valor aproximado, não deverá ser per Nota 2: se o examinando trabalhar sempre com valores apr penalizado em 2 pontos.	nalizado.