PU M Sc Statistics

1 of '	100
194 F	PU_2015_375
A .	population census period in India is for every:-
_	quarterly
_	Quinqennial year
_ `	piannual
	Decennial year
	100 PU_2015_375 h of the following measures is more flexible when compared to other measures?
0	Geometric Mean
	Arithmetic Mean
O F	Harmonic Mean
O 1	Mode
In case expre	PU_2015_375 see of two attributes A and B, the class frequency (a B) in terms of other class frequencies can be essed as:- B) - (AB) N - (AB) AB) - (B) B) + (AB)
4 of 148 F 148 F The r	
which variat	PU_2015_375 In of the following distributions are considered to non similar with respect to the range of its random pole of Fisher's Z distribution: Beta -2 Distribution Student's - t distribution

0	
	Gamma distribution

Double Exponential distribution

6 of 100

101 PU_2015_375

Five measures summary can be represented with the following diagram:-

7 of 100

210 PU_2015_375

If A is a square matrix, then:-

$$\bigcirc$$
 Adj $A = |A|A^{-1}$

$$\bigcirc \det \left(A^{-1} \right) = \left(\det A \right)$$

$$\left(A \operatorname{dj} A\right)^{-1} = \frac{1}{|A|} A$$

8 of 100

119 PU_2015_375

Four students from a composition of 3 college boys, 2 high school boys and 4 middle school boys are selected. The probability that there will be exactly 2 middle school boys is:-

9 of 100

199 PU_2015_375

If
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, then $x^2 + xy + y^2 =$

10 of 100

	ich type of estimator does the Neyman factorization theorem provides?
000	sufficient
	consistent
	Efficient
0	unbiased
173 Nor	of 100 PU_2015_375 n parametric methods are based on:-
0	Order statistics
0	Sufficient statistics
0	Efficient estimates
0	Unbiased estimates
174 If po	of 100 PU_2015_375 pulation size is infinite, then sample size is:-
0	Un restricted
0	not necessarily finite
0	necessarily finite
0	uncountable.
149	of 100 PU_2015_375 n,n) is beta function having the following expression:-
0	$\Gamma(m+1)\Gamma(n+1)/\Gamma(m+n)$
0	$\Gamma(m)\Gamma(n)/\Gamma(m-n)$
0	$\Gamma(m+n)/\Gamma(m)\Gamma(n)$
	$\Gamma(m)\Gamma(n)/\Gamma(m+n)$
	of 100 PU_2015_375
Who	$s_{\rm c}^2 = \frac{{\rm C.S.S}}{{\rm m}-1}, s_{\rm E}^2 = \frac{{\rm E.S.S}}{({\rm m}-1)({\rm m}-2)}$ en the relative efficiency (E) of L.S.D. over R.B.D. when rows are en as block is:-
0	$\frac{s_c^2 + (m+1)s_E^2}{(m-1)s_E^2}$

$$\begin{array}{c}
\frac{s_c^2 + (m+5)s_E^2}{(m-5)s_E^2} \\
\frac{s_c^2 + (m-1)s_E^2}{ms_E^2}
\end{array}$$

$$\begin{array}{c}
s_c^2 + (m+1)s_{\mathcal{B}}^2 \\
(m+3)s_{\mathcal{D}}^2
\end{array}$$

204 PU_2015_375

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{2^n n^2}$$
The series $\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{2^n n^2}$ is convergent if:-

- \bigcirc $-2 \le x \le 1$
- -1≤x≤1
- \bigcirc $-3 \le x \le 1$
- $0 \le x \le 1$

16 of 100

102 PU_2015_375

Which of the following is not a descriptive statistic?

- Pearson's Mean Square Contingency
- Coefficient of Variation
- Inter quartile Range
- Standard Deviation

17 of 100

206 PU_2015_375

$$\sum_{n=0}^{\infty} \frac{(n^2-n+1)}{n!}$$
 The sum of the series is:-

- (3/2)e
- Зе

18 of 100

If in case of two attributes α and β , $(\alpha\beta) < \frac{(\alpha)(\beta)}{N}$, then the attributes are:-
Independent No conclusion Positively associated Negatively associated
19 of 100 142 PU_2015_375 Mean and standard deviations are equal for the following probability distribution:- Poisson Exponential Rectangular Normal
20 of 100 123 PU_2015_375 If F is the cumulative distribution function of a discrete random variable, then F(- \propto) and F(+ \propto) are equato:- 1 and 1 0 and 0 1 and 0 0 and 1
21 of 100 147 PU_2015_375
$ \lim_{r\to\infty} r! = \sqrt{2\pi} e^{-r} r^{r+\frac{1}{2}} $ The stirling's approximation $\lim_{r\to\infty} r = \sqrt{2\pi} e^{-r} r^{r+\frac{1}{2}} $ is used to get a p.d.f. of a continuous distribution from a particular discrete distribution. what are those discrete and continuous distributions?
Hyper geometric and half normal distributions Geometric and Normal distributions Binomial and Normal distributions Poisson and Exponential distributions
22 of 100 109 PU_2015_375 Let Y = X² and X is a standard normal variate with Mean 0 and variance 1, the Pearson's correlation coefficient between X,Y is:- 100% positive

0	50% both positive and negative
0	100% Negative
~	No relation
171 Whi	of 100 PU_2015_375 ch of the following distribution is considered for median test with small sample sizes? Geometric distribution
0	Poisson distribution
0	Hyper geometric distribution Binomial Distribution
	of 100 PU_2015_375
The	series $\frac{1}{2} + \frac{1.3}{2.5} + \frac{1.3.5}{2.5.8} + \dots$ converges to:-
0000	0 3/2 2/3 1
143	PU_2015_375 ch of the following distribution is non similar regarding the range of their variable? Poisson Chi-square Normal Exponential
	of 100 PU_2015_375
7 ²ⁿ	$+3^{n-1}.2^{3n-3}$ is divisible by:-
000	9 25 13

207 PU 2015 375

The sum of the series $1 + \log_e x + (\log_e x)^2/2! + (\log_e x)^3/3! + \underline{\hspace{1cm}}$ is

- © _{x⁻¹}
- log x
- O x
- O 2v

28 of 100

108 PU_2015_375

If the change in X & Y is in the same direction. (i.e. $X \uparrow$ implies that $Y \uparrow$; $X \downarrow$ implies that $Y \downarrow$ and vice versa), then Correlation between X and Y is:-

- No relation
- Negative
- Positive
- Spurious

29 of 100

202 PU_2015_375

Let
$$a_n = \frac{4n-7}{3n+2}$$
 then $\lim_{n \to \infty} a_n = \frac{1}{n \to \infty}$

- \circ
- ¹ 4/3
- 0
- O 7/2

30 of 100

164 PU_2015_375

For an independent random sample drawn from normal population $N(\mu,\sigma^2)$, to test the significance of mean and variances, the following is considered to be a simple statistical hypothesis:-

$$_{\circ}$$
 $\mu = \mu_0, \sigma > \sigma_0^2$

$$\rho = \mu < \mu_0, \sigma = \sigma_0^2$$

$$\rho = \mu = \mu_0, \sigma = \sigma_0^2$$

$$\rho = \mu > \mu_0, \sigma \neq \sigma_0^2$$

172 PU_2015_375

The non parametric test under the assumptions of (i) Measurements are such that the deviations $d_i = x_i - y_i$, can be expressed in terms of the +ve (or) –ve sign; (ii) Variables have continuous distributions; (iii) d_i 's are independent is:-

- Chi-square test
- Sign Test
- Run Test
- Median Test

32 of 100

154 PU_2015_375

The cumulant generating function of x^2 - distribution is:-

- $-\frac{n}{2}\log(1-2t).$

33 of 100

198 PU 2015 375

The domain of the real valued function $\sqrt{a^2 - x^2}$ is:-

- (-a,a)
- [-a,a]
- $_{\mathbb{C}}$ $(-\infty,-a)\cup(a,\infty)$
- $(-\infty, -a] \cup [a, \infty)$

34 of 100

152 PU 2015 375

Square of Standard Normal variate follows which probability distribution:-

- Gamma
- Normal
- Chi-square
- Standard Normal

196 PU_2015_375

The range of real valued function $\frac{1}{2-\cos 3x}$ is:

- $\left(\frac{1}{3},1\right)$
- $_{\bigcirc}$ [1,2]
- $\begin{bmatrix} \frac{1}{3}, 1 \end{bmatrix}$
- (1,2)

36 of 100

185 PU_2015_375

Process capability is equal to:-

- Ο 4σ
- [©] 6σ
- C 2σ
- 3σ

37 of 100

141 PU_2015_375

The probability of getting r^{th} success at k^{th} trial can be obtained by applying the probability distribution namely:-

- Binomial
- Negative binomial
- © Geometric
- Hypergeometric

38 of 100

128 PU_2015_375

Which of the following is not true?

- M.G.F. may not exists, moments may exists
- second central moment provide variance
- M.G.F. may exist, but moments may not exist
- moments must be obtained from M.G.F.

120	of 100 PU_2015_375 $_1$, C_2 are two random variables then C_1 X_1 + C_2 X_2 is:-
0	Indicator variable
0	Non Changing variable
0	Complex Variable
0	Random variable
	of 100 PU_2015_375
If	the system of equations $3x - 2y + Z = 0$, $\lambda x - 14y + 15z = 0$ and $x + 2y + 3z = 0$ has a
tri	ivial solution, then $\lambda =$
O	13
O	-9
0	29
0	-2
182 A st	of 100 PU_2015_375 cable pattern of variation (or) a constant cause system which is inherent in the scheme of production inspection is called:-
0	Chance cause
0	Dependable cause
0	man made cause
	Assignable cause
	of 100 PU_2015_375
	n usual notation of univariate random variables, the relation P ($a < x \le b$) = P ($a \le x \le b$) = P ($a < x < b$) = P ($a \le x \le b$) = F (b) - F(a) holds good if the random variable X is:-
0	continuous case
0	Discrete case
0	Both the cases
0	either of the cases
43	of 100

104 PU_2015_375
The grading of students based on their score in examinations is more suitable with the following format scaling:-

0000	Interval Scale Ratio Scale Nominal scale Ordinal Scale
	of 100 5 PU_2015_375
The	e limits of convergent sequence $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ limit lies between:-
0000	0 and 1/2 1/4 and 1 1/2 and 1 0 and 1
161	of 100 PU_2015_375 T_n be an estimator for θ . If $E(T_n)$ tends to θ and $V(T_n)$ tends to zero then the estimator is:- Efficient Sufficient Unbiased. Consistent
162	of 100 PU_2015_375 'X' be a Binomial variate such that X~B (n, p), further given (i) E (p)=P, (ii) E(X) = nP; for which, (i) is true but (ii) is false (i) is false but (ii) is true Both (i) and (ii) are true both (i) and (ii) are false
118	of 100 8 PU_2015_375 coin is tossed three times then the probability of getting the head and tail are in alternative times is:- 1/4 2/5 1/8

197 PU_2015_375

	$f(x) = \frac{3^x + 3^{-x}}{}$			
The function	1(x)=	3 ^x	- 3 ^{-x}	is:-

L I			
P			
	n eve	n tiin	ヘキュヘハ

neither even or nor odd

an odd function

both even and odd

49 of 100

201 PU 2015 375

The number of ways that 7 teachers and 6 students can sit around a table so that no two students are together is:-

(7!)2

7!.6!

(6!)2

[©] 7!5!

50 of 100

170 PU 2015 375

The test hypothesis dealt with the Wald-Wolfowitz Run Test is:-

Equality of two population medians

Equality of two population variances

Equality of p.d.f. of two populations

Equality of two population means

51 of 100

195 PU_2015_375

ISS in Indian administrative services is the acronym for:-

Indian Service Systems

Indian Statistical Services

Indian Social Systems

Indian Statistical Societies

52 of 100

184 PU_2015_375

Sampling inspection plans were pioneered by:-

Pascal & Fermat

0	Dodge & Romig
0	Neyman & Pearson
\circ	Cramer & Rao
145 Wh	of 100 PU_2015_375 ich pair of the following probability distributions will satisfy the memory less property? Exponential & Normal distribution
0	Geometric & Hypergeometric distributions
0	Gamma & Beta distributions
0	Geometric and Exponential distributions
146 Wh i) M	of 100 PU_2015_375 ich of the following single parameter probability distribution will satisfy the below mentioned properties ean <variance <math="" as="">\theta>1; ii) Mean>Variance as θ<1; iii) Mean=Variance as θ = 1</variance>
0	Beta
0	Geometric
0	Exponential
0	Gamma
	of 100 PU_2015_375
The	$A = \begin{bmatrix} -1 & -2 & -3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$ e rank of the matrix
0	0
0	1
0	2
O	3
150	of 100 PU_2015_375 ranges of Beta-1, Beta-2 and Gamma distributions are respectively:-
0	$(0,1),(0,\infty),(0,1)$
0	$(-\infty, +\infty), (0,1), (0,\infty)$
0	$(0,1), (0,n), (0,\infty)$

$(0,1), (0,\infty) (0,\infty)$
57 of 100 211 PU_2015_375
The equations $x + 2y - z = 3$, $3x - y + 2z = 1$, $2x - 2y + 3z = 2$ and $x - y + z = -1$, have
infinitely many solutions more than one but finite number of solutions Unique solution no solution
58 of 100 151 PU_2015_375 If X and y are two gamma variates with parameters a,b respectively, then X/(X+Y) is:- $\beta_2(a,b)$ $\gamma(a,b)$ $\beta_1(a,b)$ $\beta_1(a+b,a-b)$
59 of 100 124 PU_2015_375
The value of 'k' in the joint p.d.f. $f(x,y) = k(a-x-y)$; $0 \le x \le 2$, $2 \le y \le 4$; $a=6$ is:-
C 1/4 C 1/16 C 1/8 C 1/2
60 of 100 144 PU_2015_375 The probability distribution function of negative exponential distribution with parameter '4' is:- 1 - 4.e ^{-4x} 4 - e ^{-4x} 1 - e ^{-4x} 1 - e ^{-4x}
61 of 100 230 PU_2015_375

p[(-1, y < t) - (-1, y < t)]
If a ₁ ,b ₁ ,a ₂ ,b ₂ are real numbers such that $P[(a_1 < X \le b_1) \cap (a_2 < Y \le b_2)] =$
$ (a_1 a_2) - F(b_1 b_2) + F(a_1, b_2) - F(b_1, a_2) $
$F(a_1b_2) - F(b_1b_2) + F(a_1,b_2) - F(b_1,a_2)$
$F(a_1a_2) - F(b_1b_2) + F(a_1,b_1) - F(b_2,a_2)$
$ F(a_1 a_2) + F(b_1 b_2) - F(a_1, b_2) - F(b_1, a_2) $
62 of 100 235 PU_2015_375
If X_1, X_2 are two independent & identical geometric variates such that $P(X_1=K)=q^kp=p(x_2=k)$ then the conditional distribution of $X_1/(X_1+X_2)$ is:-
Geometric variate
Uniform variate
Poisson Variate
© Bernoulli variate
63 of 100 247 PU_2015_375 Which of the following shall be considered as fertility rate?
Crude Death Rate
Crude Birth Rate
C Life expectation
C Gender replacement rate
64 of 100 245 PU_2015_375 If the periodicity is an odd number say m=2k+1 then the moving average can be placed against:-
Between k th & (k+1) th positions
at K th position
(k-1) th position
at (k+1) th position
65 of 100 236 PU_2015_375 If X and Y are two independent standard normal variates then the continuous distribution of X/Y and X/ Y are:-
standard cauchy variates
Cauchy variates

Gamma Variates

Normal Variates

66 of 100

238 PU_2015_375

For t-distribution the values of pearson's coefficients are:-

$$\beta_1 = 0, \beta_2 = \frac{3}{n-4}$$

$$\beta_1 = 0, \beta_2 = \frac{3(n-2)}{n-4}$$

$$\beta_1 = 0, \beta_2 = \frac{3n}{n-4}$$

$$\beta_1 = 0, \beta_2 = \frac{3n}{n+4}$$

67 of 100

248 PU 2015 375

The possible number of five digited numbers that can be divided by 5 with using the digits 0,1,2,3,4 without repetition, are:-

[©] 120

[©] 24

O 96

O 72

68 of 100

239 PU_2015_375

If 'X' is a Bernoulli variate assuming values 1,0 with probabilities θ , 1- θ respectively then

$$\frac{1}{n(n-1)} \sum_{i=1}^{n} x_i \sum_{i=1}^{n} (x_i - 1)$$
 is an unbiased estimator of:-

 $(1-\theta)^2$

O θ2

^(1-θ)

۰,

69 of 100

231 PU_2015_375

The joint cumulative probability distribution function $F(a,b) = P(X \le a, Y \le b)$ is defined as:-

$$\bigcap_{\infty} \left[\int_{\delta}^{a} f(x, y) d_{y} \right] d_{x}$$

$$\begin{array}{ccc}
& & & & & \\$$

237 PU_2015_375

If X ~ N(
$$\mu$$
, σ^2) then $\frac{1}{2} \left(\frac{X - \mu}{\sigma} \right)^2 \sim$

$$\bigcirc \mathcal{A}\left(\frac{1}{2},\frac{1}{2}\right)$$

$$\bigcirc \beta_2\left(\frac{1}{2},\frac{1}{2}\right)$$

$$rac{\gamma\left(\frac{1}{2}\right)}{r}$$

71 of 100

249 PU_2015_375

In a set of 'n' things, 'r' things are similar and the remaining are different. Then the number of circular arrangements of those 'n' things are:-

$$(n-1)!$$

$$r(n-1)!$$

$$\circ \frac{(n-1)}{r}$$

72 of 100

232 PU_2015_375

A box contain 2^n tickets among which n_{ci} tickets bares the number 'I'; I=0, 1,2,_____, n. A group of 'm' tickets is drawn. Then the expectation of sum of the number is:-

$$O = \frac{mn}{2}$$

$$\begin{array}{ccc}
& \frac{m/n}{2} \\
& & \frac{m+n}{2} \\
& & & \frac{m-n}{2}
\end{array}$$

241 PU_2015_375

In order to test the randomness among sample observations, we may use the following test as most suitable option

0	Run Test
0	Median Test
0	Sign Test
0	chi-square test

74 of 100

233 PU_2015_375

The fourth central moment in terms of cumulants is:-

$$\mu_4 = k_4 + 3k_3^2$$

$$\mu_4 = k_4 - k_2^2$$

$$\mu_4 = k_4 + 3k_2^2$$

$$\mu_4 = k_4 - 3k_2^2$$

75 of 100

243 PU_2015_375

What are the values of x,y and z from the following ANOVA table :-

Source of variation	D.F.	S.S.	M.S.
Blocks	x-1	90	30
Treatments	4	У	25
Total	19		J. 5.5

76 of 100

Regarding the			f 1'	(1 1 .	41 (. 11		
Pagarding the	comparison of	' ATTICIANCIAC C	it camplina	mathage	tha tallawing	I raiatian naide	4004.
DEGREE OF THE P	GOHIDAHSOH OI		и запилити	HIGHIOOS.			しんんんん
				,			900.

 $(V(\bar{y}_{sys}) \leq V(\bar{y}_{sys}) \leq V(\bar{y}_{st})$

 $(\overline{y}_{sys}) \leq V(\overline{y}_{st})_{\text{Pr} op} \leq V(\overline{y}_{st})_{Opt}$

77 of 100

240 PU_2015_375

The lemma is based on H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$, if Wand W_1 are 2 critical regions with sizes α and α_1 respectively such that $\alpha_1 \le \alpha$ then:-

1-β < 1-β₁

 $\alpha (1-\beta) < 1-\beta_1$

1-β > 1-β₁

[©] α (1-β) >1-β₁

78 of 100

246 PU 2015 375

Value of money will be calculated with the following index numbers (i) Cost of Living index, (ii) Whole sale price Index, (iii) Laspeyre's Price Index Number:-

only (ii),(ii)

all (i),(ii),(iii)

only (i),(iii)

only (i),(ii),

79 of 100

244 PU_2015_375

In quality control charts, the level of standard and the level of variability can be studied with the charts respectively are:-

Range and number defectives

Average and Range charts

Range and fraction defectives

Range and Average charts

80 of 100

Let A_1, A_2, A_3 be a sequence of events on the probability space (Ω, B, P) and let
$A = \lim_{n \to \infty} Sup\{A_n\}$, if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(A) = 0$ is zero-one law due to
Cauchy –Schwartz Lemma
Neyman –Pearson Lemma
Borel –Cantelli Lemma
Chebychev's Bienayme Lemma
81 of 100 267 PU_2015_375 The odds in favour of a certain event are 5:4 and odds against another event are 4:3. the chance that at least one of them will happen by assuming the events are independent is:-
C 47/63
C 51/63
O 15/63
C 7/63
82 of 100 277 PU_2015_375
If X_1, X_2, \dots, X_n is an independent random sample drawn from a Cauchy population with p.d.f. $f(x)$ $= \frac{1}{\prod_{i=1}^{n} [1 + (x - \theta)^2]}$ then the sufficient estimator of ' θ ' is:-
$\bigcap_{i=1}^{n} x_i$
$\bigcirc \sum_{i=1}^{\infty} x_i$
$ \bigcirc \sum_{i=1}^{n} (x_i - \theta)^2 $
whole set $(X_1, X_2, \underline{\hspace{1cm}}, X_n)$
83 of 100 275 PU_2015_375 Let X~ β_1 (m,n) and Y ~ γ (λ , m+n), be independent random variables such that m,n, λ >0 Then X*Y ~
β ₂ (m,n)
[©] β₁(m-n,m=n)
[©] γ (λ ,m)

268 PU_2015_375

Let F denote bivariate probability distribution functions, then $F(-\infty, -\infty)$; $F(+\infty, +\infty)$

$$F(-\infty,+\infty)$$
 and $F(+\infty,-\infty)$ are equal to

- 0,1,0 and 0
- O,0,0 and 1
- 1,0,0 and 0
- 0,0,1 and 0

85 of 100

291 PU_2015_375

The sequence ${\{\mathcal{S}_n\}}$ of real numbers, is said to be non-decreasing if:-

- \circ $s_n \leq s_{n+1} \forall n$
- \circ $s_n > s_{n+1} \forall n$
- \circ $s_n \ge s_{n+1} \forall n$
- \circ $s_n < s_{n+1} \forall n$

86 of 100

279 PU 2015 375

When there are two samples for testing the randomness, Wald-Wolfowitz test is to test whether 2 samples being drawn from the same population or not; Let U be the number of runs then the values of mean: E(U) and variance: V(U) are equal to:-

$$\frac{n+1}{n}, \frac{n(n+2)}{4(n-1)}$$

$$\frac{n-2}{2}, \frac{n(n+2)}{4(n+1)}$$

$$\frac{n+2}{2}, \frac{n(n-2)}{4(n-1)}$$

$$\frac{n-1}{2}, \frac{n(n+2)}{4(n+5)}$$

87 of 100

292 PU_2015_375

$$1 + \frac{1}{1.2} + \frac{1}{1.2.3} + \frac{1}{1.2.3.4} + \dots$$
ne series

- Converges to 1
- Converges to 0
- C converges to -1
- Converges to 1/2

88 of 100

297 PU_2015_375

$$If\int\limits_0^\infty e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\,then\int\limits_0^\infty e^{-ax^2}dx=$$

$$O \sqrt{\frac{\pi}{2a}}$$

$$O = \frac{\sqrt{\pi}}{2a}$$

$$\sqrt{\pi}$$

$$O = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

89 of 100

294 PU_2015_375

$$\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0,$$

If a,b,c are different and

ab+bc+ac=0

abc=1

a+b+c=1

a+b+c=0

90 of 100

The geometric series
$$\sum_{n=1}^{\infty} a r^{n-1}$$
 converges to $\frac{a}{1-r}$ if:

$$-1 < r < 0$$

$$\cap$$
 $-1 < r < 1$

299 PU_2015_375

If
$$\frac{d}{dx} f(x) = g(x)$$
 then $\int_{a}^{b} f(x)g(x)dx =$

$$\begin{array}{ccc}
& \frac{f^2(b)-f^2(a)}{2}
\end{array}$$

$$\begin{array}{c}
\frac{f^2(a)-f^2(b)}{2}
\end{array}$$

92 of 100

278 PU 2015 375

In an experiment of Bernoulli population with 5 coins tossing problem with parameter P, and H_0 : P = $\frac{1}{2}$ Vs H_1 : $\frac{3}{4}$, then H_0 is rejected if more than 3 heads obtained, then values of α , β are respectively:-

93 of 100

266 PU_2015_375

If E1,E2, ... En are mutually disjoint events such that P(Ei) are not equal to zeros and let A be any arbitrary event such that P(A) > 0, Then the Bayes theorem is defined as:-

$$P(A \mid E_i) = \frac{\sum_{i=1}^{n} P(A) . P(E_i \mid A)}{P(A) . P(E_i \mid A)}$$

$$P(E_i \mid A) = \frac{P(A) . P(E_i \mid A)}{\sum_{i=1}^{n} P(A) . P(E_i)}$$

$$P(A \mid E_{i}) = \frac{P(A) \cdot P(E_{i} \mid A)}{\sum_{i=1}^{n} P(A) \cdot P(E_{i} \mid A)}$$

$$P(E_{i} \mid A) = \frac{P(E_{i}) \cdot P(A \mid E_{i})}{\sum_{i=1}^{n} P(E_{i}) \cdot P(A \mid E_{i})}$$

265 PU_2015_375

If the correlation coefficient of 20 observations is 0.685 and later a constant 6 is added to all the numbers of series X, all the numbers of series Y are multiplied with a constant 5; then the new correlation coefficient is:-

0.685

5*0.685

0.685 + 0.30

0.685 - 0.30

95 of 100

296 PU_2015_375

$$\Delta_{1} = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}, \Delta_{2} = \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix}$$
 th

 \bigcirc $\triangle_1 = \triangle_2^2$

 $\triangle_1 = 2\Delta_2$

 \bigcirc $2\Delta_1 = \Delta_2$

 \bigcirc $\Delta_1 = \Delta_2$

96 of 100

276 PU 2015 375

If χ^2 and χ^2 are two independent χ^2 variate with (n_1,n_2) d.f respectively then,

$$\begin{array}{cc}
\frac{\chi_1^2}{\chi_1^2 + \chi_2^2} \sim \gamma \left(\frac{n_1}{2}, \frac{n_2}{2} \right)
\end{array}$$

$$\begin{array}{cc} \frac{\chi_1^2}{\chi_2^2} \sim \gamma \left(\frac{n_1}{2}, \frac{n_2}{2} \right) \end{array}$$

$$\begin{array}{cc}
\frac{\chi_1^2}{\chi_1^2 + \chi_2^2} \sim \beta_1 \left(\frac{n_1}{2}, \frac{n_2}{2} \right)
\end{array}$$

$$\mathcal{L} = \frac{\chi_1^2}{\chi_1^2 + \chi_2^2} \sim \beta_2 \left(\frac{n_1}{2}, \frac{n_2}{2} \right)$$

295 PU_2015_375

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 then $I + A^2 + A^3 + \dots = 0$

$$\begin{bmatrix}
-1 & -2 \\
-3 & -4
\end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{3} \\ 1 & 0 \end{bmatrix}$$

$$0 \begin{bmatrix} \frac{1}{2} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{3} \\ -\frac{1}{2} & 0 \end{bmatrix}$$

98 of 100

269 PU_2015_375

If X and Y are two random variables then they are said to be stochastically independent when, (i) $P_{x,y}(x,y) = P_x(x) P_y(y)$; (ii). $P_{x/y}(x/y) = P_x(x)$ or $P_{y/x}(y/x) = P_y(y)$;

- (i) is true (ii) is false
- (i) is false (ii) is true
- both (i) and (ii) are true
- both (i) and (ii) are false

99 of 100

$$\int_{0}^{\frac{\pi}{2}} \sin^{6} x \cos^{3} x \, dx =$$

- $0 \frac{63}{2}$
- $0 \frac{2}{63}$
- $0 \frac{16}{63}$

$$\frac{22}{63}$$

100 of 100 293 PU_2015_375

$$\sum_{n=1}^{\infty} 5 {\left(\frac{-2}{7} \right)}^{n-1}$$
 The sum of the series $\sum_{n=1}^{\infty} 5 {\left(\frac{-2}{7} \right)}^{n-1}$ is:-

- 35/9
- ° 36/8
- ° 37/7
- ° 38/6

375 PU M Sc Statistics

1 of 100

193 PU_2016_375_E

For the following 2x2 contingency table for two attributes the value of chi-square is:-

	A	A
В	20	30
В	10	40

	D	31	10	332	
0	20/36				
0	10/38				
0	100/21				
0	10/18				

2 of 100

120 PU_2016_375_E If the values of the 1 $^{\rm st}$ and 3 $^{\rm rd}$ quartiles are 20 and 30 respectively, then the value of inter quartile range is:-

0	10
0	0
0	25
0	5

3 of 100

123 PU_2016_375_E

Which of the following distributions are involved in median test?

0	Poisson, Beta and Power series
0	Geometric, Exponential and Normal
0	Lognormal, Binomial and Normal
0	Hyper geometric, Normal and Chi square

4 of 100

127 PU_2016_375_E

What is the module in Analyze, the item of menu bar for performing statistical parametric tests of hypothesis in SPSS?

0	Compare Means
0	Non - Parametric Tests
0	General Linear Model
0	Data Reduction

5 of 100

	PU_2016_375_E Yule's coefficient of association assumes:-
0	only negative value
0	only positive value
0	only zero value
0	positive, negative or zero values
191	F 100 PU_2016_375_E 2x2 contingency table it is given that (A) = 56; (b) = 48; (AB) = 35; N=100 What is the value of (aB)? 17 27 35 21
217 A di	PU_2016_375_E screte random variable X takes the values 1, 2, 3 and 4 such that 3P(X=1) = 2P(X=2) = 5P(X=3) = = 4). Then P(X = 3) is equal to:- 3/61 1/61 2/61 6/61
166	PU_2016_375_E ch of the following is NOT a difference between a confidence interval and a prediction interval? Confidence interval uses the standard error of estimate and the prediction interval does not Addition of "1" under the radical for the prediction interval Confidence interval is narrower than the prediction interval Prediction interval refers to a specific case
169	PU_2016_375_E coefficient of determination measures the proportion of:- error variation relative to total variation explained variation relative to total variation
0	variation due to the relationship among variables
	variation due to regression

195 PU 2016 375 E

The factor reversal test is satisfied by:-

Paasche's index

C Laspeyre's index

Simple aggregate index

Fisher's index

11 of 100

124 PU_2016_375_E

100% inspection is possible when:-

Samples are easy to obtain

C Testing is destructive

Measurement is not possible

More time is allotted for inspection

12 of 100

199 PU_2016_375_E

A hypothesis is rejected at the level of significance α = 5% by a test. Then which one of the following statements is true regarding the p-value of the test?

p > 5%

o p < 5%

p = 5%

Any one of the above three can be true

13 of 100

190 PU_2016_375_E

In the usual notations, two attributes S and T at 2 levels each are said to be positively associated if:-

$$C \quad (ST) < \frac{(S)(T)}{N}$$

$$\bigcirc$$
 $(ST) = (st)$

$$C \quad (ST) = \frac{(S)(T)}{N}$$

$$C \quad (ST) > \frac{(S)(T)}{N}$$

14 of 100

125 PU_2016_375_E

Double Sampling Inspection Plan for attributes, a second sample is taken:-

Always

When the number of defectives in the first sample is in between two pre-assigned numbers When the first sample contains only one defective item When the first sample does not contain any defective items 15 of 100 218 PU_2016_375_E Which one of the following in a linear contrast of the treatment effects T₁, T₂, T₃, T₄? $T_1 + T_2 + T_3 - T_4$ $O_{3T_1 + T_2 - 3T_3 + T_4}$ -3T₁ - T₂ + T₃ + 3T₄ $T_1 + 3T_2 - 3T_3 + T_4$ 16 of 100 213 PU 2016 375 E The value of $\lim_{x\to\infty} \left(\frac{x^2+5x+3}{x^2+x+2}\right)^x$ is 17 of 100 147 PU 2016 375 E Let $f(x) = a_0 + a_1 x^2 + a_2 x^4 + \dots + a_n x^{2n}$ be a polynomial in $x \in \mathbb{R}$ with $0 < a_0 < n$ $a_1 < \dots < a_n$ then f(x) has:only one minimum only one maximum one maximum and one minimum neither a maximum nor a minimum 18 of 100 184 PU_2016_375_E Population census in India are undertaken at one of the given intervals:-Twelve years Fifteen years Ten years Eight years

19 of 100

168 PU_2016_375_E

In multiple regression analysis, when the independent variables are highly correlated, it is called:-

Autocorrelation

Multicollinearity

Homoscedasticity

Curvilinearity

20 of 100

111 PU_2016_375_E

The value of $\int x^{16} (1+x^{17})^4 dx$ is equal to:-

$$0 \quad \frac{1}{85} \frac{(1+x^{17})^6}{5} + c$$

$$0 \frac{1}{85}(1+x^{17})^5+c$$

$$0 \frac{1}{85} \frac{(1+x^{16})^5}{5} + c$$

$$\frac{x^{17}}{85} + c$$

21 of 100

162 PU 2016 375 E

Which of the following statements regarding the coefficient of correlation is true?

It measures the strength of the relationship between two variables

A value of 0.00 indicates two variables are not related

It ranges from -1.0 to +1.0 inclusive

All of the above

22 of 100

164 PU_2016_375_E

A hypothesis test is conducted at the .05 level of significance to test whether or not the population correlation is zero. If the sample consists of 25 observations and the correlation coefficient is 0.60, then what is the computed value of the test statistic?

[©] 2.94

3.60

C 1.96

197 PU_2016_375_E

Algebraic sum of deviations from arithmetic mean is equal to:-

- 0 ,
- O 3
- O 1
- O 0

24 of 100

181 PU_2016_375_E

Let $_{n}D_{x}$ be the number of deaths in the age group (x, x+n) and $_{n}P_{x}$ be the total population of the age group x to x+n, then the age specific death rate for the age group x to x+n ($_{n}m_{x}$) is given by:-

$$\bigcirc \frac{{_{\mathbf{n}}} D_{\mathbf{x}}}{{_{\mathbf{n}}} P_{\mathbf{x}}} X100$$

$$\bigcirc \frac{{}_{n}D_{x}}{{}_{n}P_{y}}X1000$$

25 of 100

165 PU_2016_375_E

Which of the following is true about the standard error of estimate?

- It is based on squared vertical deviations between Y and Ŷ
- It is a measure of the accuracy of the prediction
- It cannot be negative
- All of the above

26 of 100

148 PU_2016_375_E

If
$$y = \frac{7+4x}{3+2x}$$
 then $\frac{d^2y}{dx^2}$ is:-

$$0 \frac{16}{(3+2x)^3}$$

0	$\frac{-8}{(3+2x)^8}$
0	$\frac{8}{(3+2x)^3}$
0	$\frac{-16}{(3+2x)^3}$
121 In o	of 100 PU_2016_375_E order to test the randomness among sample observations, we may use the following test as most able option:- Run Test
0	Chi-Square test
0	
0	Sign Test
	Median Test
143 Let	of 100 PU_2016_375_E $X_1, X_2,, X_n$ be a random sample from B(1, p), then a consistent estimator of p(1-p) is:- $\overline{X}(1-\overline{X})$
0	n \overline{X}
0	\overline{X}
	\overline{X}^2
122	of 100 PU_2016_375_E exact distribution of the number of defectives in a single sampling plan is:-
0	Hyper geometric
0	Poisson
0	Geometric
	Binomial
110 If D	of 100 PU_2016_375_E = diag(d_1,d_2,d_3), where each of d_1,d_2,d_3 is non zero, then D^{-1} is:-
0	Zero matrix
O	$diag(d_1^{-1}, d_2^{-1}, d_3^{-1})$
O	I_3
0	D

149 PU_2016_375_E

If $X_i \sim N(\mu_i, \sigma_i^2)$ then the distribution of $Z_i^2 = \left(\frac{X_i - \mu i}{\sigma_i}\right)^2$ is:

- Cauchy Distribution
- Gamma Distribution
- Chi-square Distribution
- Beta Distribution

32 of 100

113 PU_2016_375_E

Let
$$a_n = \frac{2n-7}{3n+2}$$
 then $\lim_{n \to \infty} a_n = \frac{1}{n \to \infty}$

- \circ
- 0 1
- 0 7/2
- 0 2/3

33 of 100

160 PU_2016_375_E

Arithmetic Mean (A.M.) of 'n' numbers of a series is \overline{X} . After calculations, it was observed that two number 'a' and 'b' are misread in the place of 'c' and 'd'. What is the corrected mean value?

$$\bigcirc \frac{n\overline{X} - (a+b) + (c+d)}{(n-1)}$$

$$\bigcirc \frac{n\overline{X} - (a+b) + (c+d)}{(n+1)}$$

$$\bigcirc \quad \frac{\overline{X} - (a+b) + (c+d)}{n}$$

$$\bigcirc \frac{n\overline{X} - (a+b) + (c+d)}{n}$$

34 of 100

183 PU_2016_375_E

The central mortality rate m_x in terms of q_x is given by the formula:-

- $q_x/(2+q_x)$
- $q_x/(2-q_x)$
- © 2q_x/(2-q_x)
- C 2q_x/(2+q_x)

219 PU_2016_375_E

Probability of getting two aces when two cards are drawn from the well shuffled pack of cards is:-

- 219/221
- 11/221
- 1/221
- 220/221

36 of 100

161 PU_2016_375_E

If U= aX - bY, a=8, b=9, V(X)=16, V(Y) = 25, X and Y are independent data sets, then the standard deviation of U is:-

37 of 100

144 PU_2016_375_E

If T_1 is an UMVUE of $\gamma(\theta)$; $\theta \in \Theta$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency e_{θ} , the correlation coefficient between T₁ & T₂, say ρ_{θ} , equals:-

38 of 100

112 PU_2016_375_E
If
$$\frac{x+1}{(x-a)(x-3)} = \frac{2}{(x-a)} + \frac{b}{(x-3)}$$
, then the value of (a, b):-

- **(4,1)**
- ° (7, -1)
- (-4, 1)

39 of 100

146 PU_2016_375_E

	1+x 1-x 1-x
If	1-x $1+x$ $1-x=0$, then the solution set is:-
	1-x 1-x 1+x
0	(0, 3)
\circ	(1, 3)
\circ	-1, 3
0	(0, 1)
	of 100 PU_2016_375_E
In r	egression analysis, a transformation is used when:-
0	the correlation is near zero
0	the confidence interval is wider than a prediction interval
0	the relationship between dependent and independent variables is not linear
0	two variables are not independent
142 Let Unb	of 100 PU_2016_375_E a linear model be $Y = X\beta + \epsilon$, where X is a n x (p + 1) matrix of rank (p + 1) < n. Then the Best Linear biased Estimator (BLUE) of β is:- $\hat{\beta} = (X^TX)^{-1}X^TY$ $\hat{\beta} = (X^TX)^{-1}X^{-1}Y$
	1000 1000 1000 1000 1000 1000 1000 100
	$\widehat{\beta} = (X^T X) X^T Y$
0	$\hat{\beta} = (X^{-1}X)X^{T}Y$
212	of 100 PU_2016_375_E duct control is achieved through:-
0	Control Charts
0	A study of assignable causes of variation in quality
0	A study of tolerance limits
0	Acceptance Sampling Plans
129	of 100 PU_2016_375_E m which Excel ribbon, we can place header and footer for a excel document?
0	View
0	Insert
\sim	Data

0	Page Layout
216	of 100 PU_2016_375_E fourth central moment in terms of cumulants is:-
0	$\mu_4 = k_4 + 3k_2^2$
	$\mu_4 = k_4 - k_2^2$
	$\mu_4 = k_4 - 3k_2^2$
0	$\mu_4 = k_4 + 3k_3^2$
211 Prol	of 100 PU_2016_375_E babilities of Accepting true H_0 , and Rejecting the false H_0 are referred as:-
0	Level of significance and size of the critical region
0	Confidence coefficient and size of type two error
0	Confidence coefficient and Power of the test
0	Size of the critical region and power of the test
141 If X	of 100 PU_2016_375_E is a random variable and for any real number k > 0, then the inequality denoted by $X ^r \geq k^r\} \leq \frac{\mathtt{E} x ^r}{k^r} \text{ is called:-}$
0	Holder's Inequality
0	Chebychev's Inequality
0	Markov's Inequality
0	Jensen's Inequality
180 In p	of 100 PU_2016_375_E artial confounding experiment, the confounded interaction effects:-
0000	can never be recovered if the total number of replications is 4
	can be recovered from all the replications
	can be recovered from those replications in which they are not confounded
	can never be recovered
128	of 100 PU_2016_375_E rull form of SPSS is:-
0	Software Programs for Statistical Sciences
0	Statistical Programs for Systems Sciences

\cap					
	Statistical	Packages	for	Social	Sciences

Software Packages for Statistical Sciences

49 of 100

215 PU_2016_375_E

Which of the following functions is the solution of the given differential equation

$$\frac{dy}{dx} = \frac{2y^4 + x^4}{xy^3}$$

$$y = x^8 - x^4$$

$$y = (x^8 - x^4)^{1/4}$$

$$y = \sqrt{x^8 - x^4}$$

$$y = \sqrt{x^8 - x^4}$$

50 of 100

214 PU 2016 375 E

If the roots of the equation x^2 - bx + c=0 are two consecutive integers then b^2 - 4ac is equal to:

51 of 100

182 PU_2016_375_E

If P₁ and P₂ are the population at an interval of 10 years, the population just after five years will be:-

$$\bigcirc \sqrt{P_1 + P_2}$$

$$\bigcirc \sqrt{(P_1 + P_2)}$$

$$\bigcirc \quad \frac{1}{2} \left(\frac{1}{P_1} + \frac{1}{P_2} \right)$$

$$\bigcirc \quad \frac{1}{2}(\mathbb{P}_1 + \mathbb{P}_2)$$

52 of 100

126 PU 2016 375 E

For what purpose is the 'variable view' in IBM SPSS's data editor used?

Writing syntax

Viewing output from data analysis

Defining characteristics of variables

Entering data

```
198 PU 2016 375 E
If \sigma_1^2 and \sigma_2^2 are the variances of n_1 and n_2 observations respectively, then the combined variances is:-
     n_1(\sigma_1 2 - d_1^2) + n_2(\sigma_2^2 - d_2^2)
     (\sigma_1^2 + \sigma_2^2)/(n_1 + n_2)one
     n_1\sigma_1^2 + n_2\sigma_2^2/n_1 + n_2
     n_1(\sigma_1 2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)/n_1 + n_2
54 of 100
196 PU_2016_375_E
The mean of a random sample of 16 observations for N(\mu, \sigma^2 = 4) distribution is 25 The 95% confidence
interval for \mu is approximately equal to:-
     (24.5, 25.5)
     (21,29)
     (23,27)
     (24, 26)
55 of 100
145 PU_2016_375_E
 \int \sin^5 x \cos x dx =
     1/3
     3/2
     1/6
     2/3
56 of 100
140 PU 2016 375 E
The probability of choosing a random number that is divisible by 6 or 8 from among numbers 1 to 90 is:-
0
     1/30
     23/90
     11/90
     5/30
57 of 100
194 PU 2016 375 E
If a null hypothesis is rejected at 5% level then which one of the following is a true statement?
     The alternate hypothesis will be accepted at 95% level
     The null hypothesis will be rejected at 4% level
```

0	The null hypothesis will be rejected at 6% level
\sim	The null hypothesis was not selected properly
	of 100

209 PU_2016_375_E

If $X \sim N(\mu, \sigma^2)$, and μ is assumed to be known, then M.L.E of σ^2 is

$$O(1/n-1) \sum_{i=n}^{n} (x_i - \mu)$$

$$C \frac{(1/n)\sum_{i=1}^{n} (x_i - \mu)}{}$$

$$\int_{n-1}^{1} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$(1/n)\sum_{i=1}^{n} (x_i - \mu)^2$$

59 of 100

210 PU_2016_375_E

If X is a random variable that has Uniform/Rectangular distribution with parameters α,β such $\alpha>\beta$, then the Maximum Likelihood Estimator of β is:-

Median {X_i}

Sum {X_i}

□ Max{X_i}

Min {X_i}

60 of 100

163 PU_2016_375_E

What can we conclude if the coefficient of determination is 0.94?

94% of total variation of one variable is explained by variation in the other variable

Strength of relationship is 0.94

Direction of relationship is positive

All of the above are correct

61 of 100

233 PU_2016_375_M

Let A be the event of getting sum on two dice is a multiple of 3, B be the event of getting sum on two dice is a multiple of 4, when two fair dice are thrown simultaneously. Then, P(AUB) and P(A∩B) are equal to:-

21/36,1/36

21/36, 20/36

20/36, 19/36

20/36, 1/36

```
62 of 100
248 PU_2016_375_M
The value of y<sub>0</sub> in the p.df. f(x) = y_0e^{-|x|} dx; -\infty < x < \infty is:-
0
    1/2
    1/4
    1/8
63 of 100
247 PU_2016_375_M
If E(X)=2, E(Y)=3, V(X)=4, V(Y)=5, COV(X,Y)=1, Z=3X+2Y, then E(Z), V(Z)=1
    16,68
    12,45
    12.68
    10,12
64 of 100
242 PU_2016_375_M
 Two distributions with p.d.f.'s f1(.) and f2(.) to be identical is that their characteristic
functions \phi_1(t) and \phi_2(t) are identical is a condition of:-
    Necessary & Sufficient
    Necessary but not sufficient
    Not Necessary but sufficient
    Neither necessary nor Sufficient
65 of 100
234 PU_2016_375_M
Given that P(A) = 1/3, P(B) = 3/4, P(A \cup B) = 11/12, the probability, then P(B|A) =
0
    1/6
    4/9
    1/4
    1/2
66 of 100
245 PU_2016_375_M
Two balls are drawn from an urn consisting of 7 white and 3 red balls, and if X be a random variable
denotes the number of red balls drawn, then E(X) is:-
0
    21/12
    12/21
```

\sim	21/15
ີ 1	5/21
A and person 1 8 7	F 100 PU_2016_375_M B stand in a queue at random with 15 other persons. What is the probability that there will be two ons between A and B? 7/68 8/68 7/68
Given 1 3 4	F 100 PU_2016_375_M n P(AUB)=7/10, P(A∩B) =2/5 and P(A B) =2/3, then the values of P(A), P(B), and P(B A) are:- 1/2, 3/5, 4/5 8/5, 2/5,7/8 1/5, 2/5,2/3 6/6,4/5,1/2
A spe that a the state of the s	F 100 PU_2016_375_M eaks truth 2 out of 3 times and B speaks truth 4 out of 5 times. Both of them agree in the assertion a bag contains 6 different coloured balls among which one is Red coloured. Then the probability of atement is true, is:- 20/41 80/41 80/41
	f 100 PU_2016_375_M V(X)and Cov(X,Y) based on the following bivariate probability distribution is:-
Y	X -1 0 1 -1 0 0.1 0.1 0 0.2 0.2 0.2

0	0.2, 0.6, 0.8
0	0.25, 0.50, 1

249 PU 2016 375 M

If the probability distribution of a discrete random variable X is as follows, then the value of constant 'a' and P(X>1) are:-

X	1	2	3	4	5	6	7
P(x)	a	2a	2a	3a	a ²	2 a ²	7 a ² + a

1/7,6/7

1/10, 9/10

1/8,7/8

1/9,8/9

72 of 100

241 PU 2016 375 M

The P.G.F. of sum of 'n' independent discrete random variables is equal to the Product of their individual P.G.F.s, this property is also referred as:-

- Probability Convolution Property
- Probability Multiplicative Property
- Probability Additive Property
- Probability complementary Property

73 of 100

243 PU 2016 375 M

Expected value of sum of numbers of points, when two dies are thrown simultaneously is:-

12

74 of 100

240 PU_2016_375_M

The rth order cumulant K_r=

$$\bigcirc \quad \frac{d^r}{dt^r} [K_x(t)]_{t=0}$$

$$\bigcirc \quad \frac{d^r}{dt^r} [M_x(t)]_{t=1}$$

$$\frac{d^r}{dt^r} [M_X(t)]_{t=1}$$

$$O \frac{d^r}{dt^r} [M_x(t)] = 0$$

230 PU 2016 375 M

In a city, 60% read newspaper A, 40% read newspaper B and 50% read newspaper C, 20% read A and B, 30% read A and C, 10% read B and C. Also 5% read all papers A, B and C. What is the percentage of people who do not read any of these newspapers?

45%

C 5%

C 65%

^C 15%

76 of 100

235 PU 2016 375 M

X and Y sit around a round table with another 10 persons. Assuming the seating arrangement is in random order, what is the chance that there are 3 persons between X and Y?

0 2/11

[©] 1/11

[©] 5/11

[©] 7/11

77 of 100

244 PU 2016 375 M

If X is a random variable with the following probability distribution, then $E(X^2)$ is

X=x:	-3	0	6	9
P(X=x)	1/6	0	1/2	1/3

45/93

່ 93/2

¹ 45/4

90/3

78 of 100

238 PU 2016 375 M

If (20,30) is a 90% Confidence Interval (C.I.) for a parameter θ then which one of the following is a correct statement about the confidence interval?

All other intervals will contain θ with probability less than 90%

0	(20,30) is a C.I. randomly selected from a collection of intervals 90% of which contain θ
0	
0	With probability 90% θ will be in the interval (20,30)
	θ will be in the middle of the confidence interval with a longer probability (> 90%) than towards the of C.I
239 If X	of 100 PU_2016_375_M and Y are two random variables then V [(aX± b) ± (cY± d)] =
0	$a^2V(X) + c^2V(Y) \pm ac Cov(X,Y)$
0	$a^2V(X) + c^2V(Y) \pm 2ac Cov(X,Y)$
0	$a^2V(X) + c^2V(Y) + 2ac Cov(X,Y)$
0	$a^2V(X) - c^2V(Y) + ac Cov(X,Y)$
232 If A Ass	PU_2016_375_M point P is taken at random in a line AB of length 2a, all positions of the point being equally likely. ume that the AP and PB formed a rectangle. Then the probability of the formed rectangular is more in a²/2 is:-
0	$\frac{1}{\sqrt{2}}$
0	$\frac{1}{\sqrt{3}}$
295	of 100 PU_2016_375_D be the sum of the out comes when two fair dice are thrown simultaneously, then P[$ X - 6 \ge 1$]= 31/36 6/36 30/36 5/36
	of 100
	PU_2016_375_D
IW	o dimensional random variable (X, Y) has the joint density $(8xy, 0 < x < y < 1)$
22000	$f(x,y) = \begin{cases} 8xy, 0 < x < y < 1 \\ 0, elsewhere \end{cases}$
T	hen the conditional distribution of X given Y is:-

$$\bigcirc \frac{2x^2}{y^2}$$

$$O = \frac{2x}{y^3}$$

$$O = \frac{2x}{y}$$

$$O = \frac{2x}{y^2}$$

269 PU_2016_375_D

Stratified random sampling is recommended where the population is:-

Non-homogeneous

Non-homogeneous but can be divided into homogeneous sub-populations

Having a linear trend

Homogeneous

84 of 100

266 PU_2016_375_D

If the population size is 'N' and sample size is 'n', then total number of possible samples that can be obtained through SRSWR and SRSWOR respectively are:-

$$\bigcap_{n \to 1} N^{n+1}; \binom{N}{n+1}$$

$$N^{n+1}$$
; $\binom{N}{n}$

$$N^n$$
; $\binom{N}{n}$

$$\bigcap_{n \to \infty} n^{N}; \binom{N}{n+1}$$

85 of 100

276 PU_2016_375_D

If
$$x^x y^y z^z = k(constant)$$
 then $\frac{\partial z}{\partial x}$ is given by:-

$$-\left(\frac{1+\log x}{1+\log x}\right)$$

$$-\left(\frac{1+\log z}{1+\log x}\right)$$

291 PU 2016 375 D

Which of the following relation holds good for the following data? The values of X are 1,2,3,4,5,6,7,8 and 9; their respective frequencies are 2,18,15,13,12,9,7,4,1:-

- Mean = Mode
- Mode = Median
- Mode > Mean
- Mean > Mode

87 of 100

299 PU_2016_375_D

If X and Y are standardized variates, u = ax + by, v = bx + ay, $r_{xy} = \frac{1 + 2ab}{a^2 + b^2}$ then $r_{uv} = ax + by$

$$\bigcirc \frac{a^2+b^2}{(a^2-b^2)-2ab}$$

$$C = \frac{a^2 + b^2}{\left(a^2 - b^2\right)^2 - 2ab}$$

$$\bigcirc \frac{a+b}{(a^2-b^2)-2ab}$$

88 of 100

292 PU 2016 375 D

If the values of a variate are a, ar, ar², ar³,...., arⁿ⁻¹ each with frequency 1, then Arithmetic Mean is:-

$$\bigcirc$$
 $ar^{(n-1)/2}$

$$\frac{a(1-r^n)}{n(1-r)}$$

$$\frac{a(1-r)r^{(n-1)}}{a(1-r)}$$

$$\bigcirc \frac{a(1-r)r}{(1-r^n)}$$

$$\bigcirc \frac{an(1-r)r^{(n-1)}}{(1-r^n)}$$

294 PU 2016 375 D

The Probability generating function of sum of independent random variables is equal to the product of their individual probability generating functions is propagated through the property named a:-

- Additive Property
- Convolution Property
- Multiplicative Property
- Hybrid Property

90 of 100

290 PU 2016 375 D

Which of the following statement is true regarding the shape of the frequency curve?

- (1) Poisson and Exponential Distributions;
- (2) Chi-square and Snedecor's -F Distributions;
- (3) Student's -t and Normal Distributions:
- (1), (2) and (3) are Symmetric
- (1) and (2) are positively skewed; (3) are Symmetric
- (1) and (2) are symmetric; (3) are Positively skewed
- (1) are positively skewed; (2) and (3) are Symmetric

91 of 100

279 PU 2016 375 D

The solution of the equation $\int_{\log 2}^{x} \frac{dt}{e^{t}-1} = \log\left(\frac{3}{4}\right)$ is given by $x = \frac{1}{2}$

- $\log \left(\frac{8}{5}\right)$
- e²
- $O \log \left(\frac{5}{8}\right)$
- \circ

92 of 100

275 PU_2016_375_D

If T is an unbiased estimator of θ then:-

- The average error is zero
- T has both the errors
- the error in T will tend to 0 as the sample size tends to ∞
- T has no error

93 of 100

277 PU_2016_375_D

If [x] denotes the greatest integer function then the value of $\int_{0.5}^{4.5} [x] dx + \int_{-1}^{1} x dx$ is:-
0 6 0 7 0 8 0 9
94 of 100 267 PU_2016_375_D The total number of possible samples of size 2 that can be drawn from a population with 5 units without replacement is:- 10 20 25 5
95 of 100 298 PU_2016_375_D The Cumulant Generating Function of χ^2 - distribution is:- o $\frac{n}{2}\log(2t)$. o $\frac{n}{2}\log(1+2t)$. o $-\frac{n}{2}\log(1-2t)$. o $\frac{n}{2}\log(1-2t)$.
96 of 100 268 PU_2016_375_D In a sample survey, the true value of a unit is 16 and it is wrongly recorded as 61 and analysis carried out. This error comes under:- Non-sampling Error Arithmetic error Sampling Error Experimental Error
97 of 100 296 PU_2016_375_D If X, Y are any two random variables then the conditional Expectation E[E(X/Y)] = E[X/E(Y)]

E(Y)

E(X)

E(X/Y)

98 of 100

297 PU_2016_375_D

Let $\{X_n\}$ be a sequence of random variables. X_n converges almost surely if and only if: $P(\lim_{n\to\infty}X_n=X)=1$

$$\bigcap P(\lim_{n\to\infty} X_n = X) = 1$$

$$\bigcap P(\lim_{n\to\infty} X_n = X) = 0$$

99 of 100

265 PU_2016_375_D

For a Normal distribution, Quartile deviation, Mean deviation and Standard deviation are in the ratio:-

1:4/5:2/3

1/2 : 1 : 4/5

2/3 : 4/5 : 1

4/5 : 2/3 : 1

100 of 100

278 PU_2016_375_D

The value of $\int_{\frac{1}{e}}^{e} |logx| dx$ is:-

$$2\left(\frac{e+1}{e}\right)$$

$$2\left(\frac{e-1}{e}\right)$$

$$0 \frac{2}{e}$$

$$\bigcirc 2\left(\frac{1-e}{e}\right)$$

Sr No.	MSc Statistics
1	Choose the missing term out of the given options:
	aababbabaab
Alt1	aaabb
	babab
	bbaab
Alt4	bbbaa
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears:
	Hour : Second :: Tertiary : ?
ΛI+1	Intermediary
	Primary
	Ordinary
	Secondary
3	Select the lettered pair that has the same relationship as the original pair of words:
	Stickler :Insist
Alt1	Laggard: Outlast
Alt2	Braggart: Boast
	Haggler: Concede
Alt4	Trickster: Risk
4	Select the lettered pair that has the same relationship as the original pair of words:
A I±1	Necromancy : Ghosts
	Romance: Stories Magie: Amulets
	Alchemy: Gold
	Sorcery: Spirits
71101	Sorecity) Spirites
5	Find out the number that has the same relationship as the numbers of the given pair:
	MAD: JXA: RUN: ?
Alt1	ORK
Alt2	OSQ
Alt3	
Alt4	UXQ
	Spot the defective segment from the following:
	Keep the miscreants
	at your arm's length
Alt3	they will pull the wool over your eyes
AIL4	they will pull the wool over your eyes
7	The terrorists held the tourists for ransom.
	as hostages
	hostages
	hostage

Alt4	captives
8	If I wealthy, I would have got many friends.
Alt1	had been
Alt2	were
Alt3	was
Alt4	am
9	Choose the option closest in meaning to the given word:
	NEOLOGISM
Alt1	inoculation
Alt2	coinage
Alt3	consistency
Alt4	mirth
10	Choose the antonymous option you consider the best:
	SUAVE
Alt1	crestfallen
Alt2	polite
	rough
	cherished
11	In a certain code, REFRIGERATOR is coded as ROTAREGIRFER. Which wordwould be coded as NOITINUMMA?
Alt1	ANMOMIUTNI
Alt2	AMNTOMUIIN
Alt3	AMMUNITION
Alt4	NMMUNITIOA
12	Traffic : Road in the same way as
	Aeroplane : Aerodrome
Alt2	Blood : Veins
Alt3	Roots: Tree
Alt4	Car : Garage
13	The following information is given: One of M.Gopi, his wife, their son and Mr.Gopi's mother is an architect and
	another is a doctor.
	(i) If the doctor is younger than the architect, then the doctor and the architect are not blood relatives.
	(ii) If the doctor is a woman, then the doctor and the architect are blood relatives.
	(iii) If the architect is a man, then the doctor is a man.
	Whose occupation is known by this information?
Alt1	Mr. Gopi is the doctor
Alt2	Mr. Gopi's son is the architect
Alt3	Mrs. Gopi is the doctor
Alt4	Mr. Gopi's mother is the doctor
	•

14	Gopal was ranked 5th from the top and 16th from the bottom in a test. How many students were there in his
	class
Alt1	19
Alt2	21
Alt3	
Alt4	
Alt4	
	Г
15	Median of 10o, 5o, -2o, -1o, -5o, 15o is
Alt1	-20
Alt2	
Alt3	-10 20
AILS	
Alt4	3o
]50
1.0	Wilhigh of the fallowing in IOVVA ACRONIC
	Which of the following is 'OXYMORON'?
	Found Missing
Alt2	TIT-TAT
Alt3	GOTO
Alt4	Misunderstood
17	There are 5 persons in a class. Each one is shaking hand with the other. Find the total number of hand shakes?
1,	There are a personal in a shall all and a shall all a shall all a shall a shal
Alt1	5
Alt2	10
Alt3	20
Alt4	
7.161	
10	Of the 26 Capital latters, how many are symmetrical along with vertical and havizantal avec
	Of the 26 Capital letters, how many are symmetrical along with vertical and horizontal axes.
Alt1	
Alt2	
Alt3	6
Alt4	5
19	There are 30 boys and 60 girls in a village . There are 70 men and 40 women in that village. What is the
	percentage of boys in that village?
Alt1	
	0.25
Alt3	
Alt4	0.15
20	There are Nicturdants in a class and only 0 of these are side if 44 hours added to the class have recovered to the
20	There are N students in a class and only 8 of them are girls. If 11 boys added to the class, how many students in
	Itho class are hove?
	the class are boys?
	N+3
Alt2	N+3

21	A statistical organization established by the Department of Economic Affairs, Ministry of Finance is
	A. Labour Bureau of Statistics
	B. National Sample Survey Organization
	C. Indian Labour Organization
	D. World Health Organization
Alt1	A
Alt2	В
Alt3	C
Alt4	D
22	If the c.d.f. of a r.v. X is $F(x)=0$, for $x<0$; $F(x)=1-(e^{-x}/2)$, for $x\ge0$, then the m.g.f. of X is:-
	$A. \frac{(2-t)}{2t}, t < 1$

		B. $\frac{(1-t)^{-t}}{(1-t)^{-t}}$, $t < 1$ C. $\frac{2-t^2}{(1-t)}$, $t < 1$ D. $\frac{2-t}{2(1-t)}$, $t < 1$	
Alt1	Α		
Alt2	В		
Alt3	С		
Λ I+ <i>1</i>	D		

23	If the joint pdf is $f(x,y)=e^{-(x+y)}$, $0 < x$, $y < \infty$ then the value of $P(X < Y) = A$. 1/4 B. 1/2 C. 1/3 D. 1/5
Alt1	A
Alt2	В
Alt3	С
Alt4	D

24	In case of a random effect model, the hypothesis which is to be tested with regard to treatments is:-
	A. $\Sigma \tau_i = 0$ B. $\tau_i = 0$ C. $\sigma_{\tau}^2 = 0$ D. $\Sigma \tau_i^2 = 0$
Alt1	Δ
Alt2	
Alt3	
Alt4	
71104	
25	The outcomes of an experiment were marked on the two dimensional space of X, Y plane taking the values 0 <x<1 0="" <y<1.="" a="" and="" chance="" chosen="" fall="" in="" outcome="" randomly="" region="" that="" the="" will="" x<sup="">2+Y²>a² is:- A. π/4 B. π/2 C. 1-π/4 D. 1-π/2</x<1>
Alt1	
Alt2	
Alt3	
Alt4	D
26	If arithmetic mean and coefficient of variation of x are 20 and 20 respectively, what is the variance of y = 10 - 2 x? A. 84 B. 64 C. 36 D. 16
Alt1	A
Alt2	
Alt3	
Alt4	

27	The unknown coefficient of the equation $x^2 + bx + 3 = 0$ is determined by throwing an ordinary six faced die. The probability that the equation has real roots is:-
	A. 1/36 B. 4/36 C. 2/3 D. 1/2
Alt1	A
Alt2	В
Alt3	С
Alt4	D

In the analysis of data degrees of freedom a	of a Randomized Block Design (RBD) with b blocks and v treatments, the error re:-
A. v b B. (b-1) (v-1) C. v (b-1) D. b (v-1)	
Alt1 A	
Alt2 B	
Alt3 C	
Alt4 D	

29	A partial correlation:-
	A. Controls for influence on both of the variables being correlated B. Controls for influence on both of the variables being uncorrelated C. Controls for influence on the first of the variables being correlated D. Controls for influence on the second of the variables being correlated
Alt1	A
Alt2	В
Alt3	C
Alt4	D

30	The sum of the series $\frac{1}{2} + \frac{1}{3} \cdot (\frac{1}{2})^3 + \frac{1}{5} (\frac{1}{2})^5 + \dots$ is equal:-
	A. $\sqrt{3}$ B. log 3
	C. log √3 D. 3
Alt1	A
Alt2 l	8
Alt3	
Alt4	D

31	In a split plot design with Factor A at 'p' levels in main plots, Factor B at 'q' levels in sub-plots and 'r' replications, the degrees of freedom for sub-plot error is:-
	A. (q-1)(r-1) B. (p-1)(q-1)(r-1) C. q(r-1)(p-1) D. p(q-1)(r-1)
Alt1	A
Alt2	В
Alt3	С
Alt4	D

32	The analysis of variance technique test the significant difference of:-
	A. Two or more means when σ^2 is unknown B. Two or more variances when μ is known C. Two or more means when σ^2 is known D. Two or more variances when μ is unknown
Alt1	A
Alt2	В
Alt3	C
Alt4	D

Let A and B be two square matrices of the same order, then

(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3 only when_____.

A. BA = I
B. AB = I
C. AB ≠ BA
D. AB = BA

Alt1 A

Alt2 B

Alt3 C

Alt4 D

34	If $A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$ and $\begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$ are two matrices such that
1	the product AB is the null matrix, then α - β is equal to:-
	 A. an odd multiple of π/2 B. a multiple of π C. 1 D. 0
Alt1 A	
Alt2 B	

Alt3	c
Alt4	D
35	If p is the ratio of the roots of the equation $ax^2 + bx + c = 0$, then $\frac{(p+1)^2}{p}$ is:- A. $a^2b^2c^2$ B. $\frac{b^2}{a^2b^2}$ C. $\frac{b}{ac}$ D. $a^2b^2c^2$
Alt1	
Alt1	
Alt3	
Alt4	
71104	
36	A student is answering the objective multiple choice questions, each consist of 4 options and one among them is correct and the rest of them are incorrect. He answers the question either by guessing or by knowing the correct answer with chances 1/3 and 2/3 respectively. What is the chance that he guessed the answer given that the response is correct? A. 1/6 B. 1/10 C. 1/8 D. 1/9
Alt1	
Alt2	
Alt3	
Alt4	<u>D</u>
37	Which of the following statement about the assumptions of the error term in the simple linear regression is not correct? A. Mean is zero B. Variance is 1 C. Constant Variance D. Normality
Alt1	A
Alt2	В
Alt3	c
Alt4	D

38	If α is a root of the equation $4x^2+2x-1=0$, then the other root is:- A. $-(\alpha+1/2)$ B. $4\alpha^3+3\alpha$ C. $2\alpha^2+2\alpha-1$ D. $4\alpha^3-3\alpha$
Alt1	A
Alt2	В
Alt3	С
Alt4	D

39	Let C be the midpoint of a straight lir	ne AB with a length of a units. Let D and E be the two points in AC the distance between D and E is less than λa , where $0 < \lambda < 1$?
	A. $1-\lambda/2$ B. $1-\lambda$ C. $\lambda^2/2$ D. $2\lambda^2$	
Alt1	A	
Alt2	В	
Alt3	С	
Alt4	D	

The cumulative distribution function of a random variable X is $F(x) = \begin{cases} \frac{1}{2} & 0 \le x < 2 \\ \frac{5}{6} & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$ Then F (2) is equal to:
A. 1/6
B. 1/3
C. 1/7
D. 1/4

Alt1 A

Alt2 B

Alt3 C

Alt4 D

The	characteristic function of standard Cauchy distribution is:-	
	A. e ^t	
	B. elti	
	C. e-It	
	D. e-t	

Alt1	A
Alt2	В
Alt3	С
Alt4	D

42

If $K(t_1,t_2) = log_e M(t_1,t_2)$, where $M(t_1,t_2)$ is the joint m.g.f. of X and Y, then Mean and Variances of X are:

Alt1	Α
------	---

Alt2 B

Alt3

Alt4 D

12					
43	In simple random sampling with	replacement,	variance of	f sample mean	is equal to:-

A.
$$\left(\frac{1}{N} - \frac{1}{n}\right) S^{2}$$
B.
$$\left(\frac{1}{n} - \frac{1}{N+1}\right) S^{2}$$
C.
$$\left(\frac{1}{n+1} - \frac{1}{N-1}\right) S^{2}$$
D.
$$\left(\frac{1}{n} - \frac{1}{N}\right) S^{2}$$

Alt1	ı,

Alt2

Alt3

Alt4

44	The p.d.f. of a random variable is $f(x) = \frac{3}{4}x(2-x)$; $0 \le x \le 2$ otherwise then the median of the distribution is
	A. 3/4 B. 4/5 C. 1 D. 2/3
Alt1	A
Alt2	В
Alt3	C
Alt4	D

45	A and B play a ga exactly two games	ame in which their chances s out of five is equal to:-	of winning are in the ratio 3:2 then A's chances of winning
	A. 625/ 3125 B. 600/ 3125 C. 720/3125 D. 700/ 3125	5	
Alt1	A		
Alt2	В		
Alt3	С		
Alt4	D		

A random sample $x_1, x_2, \dots x_n$ is drawn from a normal population $N(\mu, \sigma^2)$. To test the hypothesis $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, the likelihood ratio statistic is: $\begin{cases}
\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \\
\sum_{i=1}^{n} (x_i - \overline{x})^2
\end{cases}$ A. $\begin{cases}
\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \\
\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_0)^2
\end{cases}$ B. $\begin{cases}
\sum_{i=1}^{n} (x_i - \mu_0)^2 \\
\sum_{i=1}^{n} (x_i - \mu_0)^2
\end{cases}$ C. $\begin{cases}
\sum_{i=1}^{n} (x_i - \mu_0)^2 \\
\sum_{i=1}^{n} (x_i - \overline{x})^2
\end{cases}$ D.

Alt1	A
Alt2	В
Alt3	С
Alt4	D

47	Suppose $X \sim N(\mu, \sigma^2)$ then $U = \frac{1}{2} \left(\frac{X-\mu}{\sigma}\right)^2$ follows:-
	 A. Gamma distribution with parameter 1/2 B. Normal distribution with parameters 0 and 1 C. Normal distribution with parameters 0 and σ² D. Gamma distribution with parameter 1 and 1
Alt1	A
Alt2	В
Alt3	C
Alt4	D

	D.	V(T ₁) - V	(T ₂) (T ₂)						
Alt1 A				4					
Alt2 B				A 1	1 40				
Alt3 C									

49	As per Weak Law of Large Numbers, $P\{ \overline{x}_n-\mu <\varepsilon\}\to (L)$, as $n\to\infty$; and $P\{ \overline{x}_n-\mu \geq\varepsilon\}\to (M)$, as $n\to\infty$, where (L) and (M) are respectively: A. 0,1 B. 1,1 C. 1,0 D. 0,0
Alt1	A
Alt2	В
Alt3	C
Alt4	D

50	X is a random variable taking values 1 and 2 with probabilities p and q, p+q=1. To test H: p = 0.2, a single observation is made on X (say x). A test rejects H if x = 1. What is the size of the test? A. 0.8 B. 0.2 C. greater than 0.2 D. less than 0.2
Alt1	A
Alt2	В
Alt3	С
Alt4	D

51	If $A(t) = \int_{-t}^{t} e^{- x } dx$ then $\lim_{\substack{A = 1 \\ B = 4 \\ C = 2}}$	$n_{t o \infty} A(t)$
	C. 2 D. 0	
Alt1	A	
Alt2	В	
Alt3	С	
Alt4	D	

52	The mean of a random sample of 16 observations for N(μ,σ²= 4) distribution is 25. The 95% confidence interval for μ is approximately:- A. (21, 29) B. (23, 27) C. (24.5, 25.5) D. (24, 26)
Alt1	A
Alt2	В
Alt3	C
Alt4	D

53	If $f(x) = \frac{1}{x} \left\{ \int_y^a e^{\sin^2 t} dt - \int_{x+y}^a e^{\sin^2 t} dt \right\}$ for $x \neq 0$ is continuous at $x = 0$ then $f(0)$ is
	A. $e^{\sin^2 y}$ B. $e^{\cos^2 y}$
	C. $\sin 2y e^{\sin^2 y}$ D. $-\sin 2y e^{\sin^2 y}$
Alt1 A	4

Alt2	В
Alt3	С
Alt4	D
54	Systematic sampling means:-
	A. selection of n units situated at equal distances
	B. selection of n contiguous units
	C. selection of n largest units
	D. selection of n middle units
Alt1	Δ
Alt2	
Alt3	
Alt4	
AIT4	
55	ISS in Indian administrative services is the acronym for:-
	A. Indian Service Systems
	B. Indian Statistical Services C. Indian Social Systems
	D. Indian Statistical Societies
Alt1	A
Alt2	В
Alt3	C
Alt4	D
56	If X and Y are independent with common Exponential distribution with parameter θ = 1, then the distribution of (X-Y) is:-
	A. A standard normal distribution
	B. A standard Cauchy distribution
	C. An exponential distribution D. A standard Laplace distribution
	D. A standard Laplace distribution
Alt1	
Alt2	В
Alt3	C
Alt4	D
57	The PGF of a random variable X where P(X=0)=0.5, P(X=1)=0.3 and P(X=3)=0.2 is:-
	A. 0.2t ³
	B. 0.5+0.3t+0.2t ³
	C. 0.3t+0.2t ³
	D. 0.5+0.3t
Alt1	A
Alt2	В
Alt3	С
Alt4	D

58	If the mean, standard deviation and coefficient of skewness of a frequency distribution are 60, 45 and - 0.4, respectively, then the mode of the frequency distribution is:-
	A. 78 B. 80 C. 68 D. 42
Alt1	A
Alt2	В
Alt3	C
Alt4	D

59	
	The variance of the first n natural numbers is:- $ \frac{n^2-1}{12} $ A. $\frac{n-1}{2}$ B. $\frac{n^2+1}{2}$ C. $\frac{n+1}{2}$ D. $\frac{n+1}{2}$
Alt1	A
Alt2	В
Alt3	С
Alt4	D

60	Which one the following is true?
AILL	The sum of the observation from the median is zero
	The sum of the observation from the mode zero
Alt3	The sum of the observation from the Harmonic Mean is zero
Alt4	The sum of the observation from the arithmetic mean is zero.

61	The mid point of a class in a frequency distribution is obtained by
Alt1	Adding upper and lower class limits
Alt2	Subtrating the lower class limit from the upper class limit
Alt3	Dividing the sum of lower and upper class limiits by 2
Alt4	Dividing by 2 the difference of upper and lower class limits

62 The empirical relationship among mean , median and mode is

	mean-mode=2(mean-median)
	mean-mode=median-mode
	mean-mode=4(mean-median)
Alt4	mean-mode=3(mean-median)
63	The mean of 50 items is 25 and their standard deviation is 2. Then the sum of squares of all the items is
Alt1	31450
Alt2	31455
Alt3	31405
Alt4	31250
64	A random variable X is such that Var(X) =2, then Var(2x+3) is
Alt1	
Alt2	
Alt3	13
Alt4	
65	Two attributes A and B are said to be positively associated if
03	Two detributes in diffe said to be positively associated if
	(AB) > (A)(B)/N
Alt1	
Alt2	(AB) = (A)(B)/N
Alt3	(AB) < (A)(B)/N
Alt4	(AB) - (A)(B)/N
66	The regression equations are 5x=22+y and 64x=24+45y. Then the regression coefficient of y on x is
Alt1	1/5
Alt2	45/64
Alt3	5
	64/45
67	When one regression coefficient is Negative, the other should be
Alt1	Negative
Alt2	
	Positive
Alt4	
68	If A and B are mutually exclusive events, then
Alt1	P(AUB)=P(A) P(B)
Alt2	P(AUB) = P(A) + P(B)

Alt3	P(AUB) = 0
Alt4	P(AUB)=P(A) - P(B)
69	Three houses were available in a locality for allotment. Three persons applied for a house. The probability that
	all the three persons applied for the same house is
	all the three persons applied for the same house is
	- fa
Alt1	
Alt2	
Alt3	1/27
Alt4	1
70	If X is a random variable and its p.d.f is f(x), E(log X) represents its
, ,	A 7 to a random variable and its plan is 1(x), 2(10g x) represents its
Λ I+1	Arithmetic mean
	Geometric Mean
	Harmonic Mean
Alt4	None of the above
71	The joint cumulative distribution function F(x, y) of the random variables X and Y takes values in the interval
Λ I+1	[-1, 1]
	[-1, 0]
	(-∞, 0]
Alt4	[0, 1]
72	The number of normal equations for fitting a polynomial of degree 3 is
Alt1	2
Alt2	3
Alt3	
Alt4	
Alt4	
70	The coefficient of containing the phoematical in a fearth characteristic to the Politic and the Containing to
/3	The coefficient of variation of n observations is c. If each observation is multiplied by a constant k, then the
	coefficient of variation for the new set observations is
Alt1	
Alt2	c/k
Alt3	с
Alt4	c+k
7/1	If X and Y are two random variables, the covariance between the variables aX + b and cY+d, (a, b not equal to 0)
'4	
A I . 4	in terms of COV(X,Y) is
	COV(X,Y)
	abcd COV(X,Y)
	ac COV(X,Y)+bd
Alt4	ac COV(X,Y)

75	The standard deviation of the campling distribution of a statistic is known as
	The standard deviation of the sampling distribution of a statistic is known as sampling error
	non sampling error
	mean square error
	standard error
All4	Stalitatiti Elloi
76	If a random variable X has the following probability distribution:
	x: -1 -2 1 2
	Prob.: 1/3 1/6 1/6 1/3
	then the expected value of X is:
Alt1	
Alt2	
Alt3	
Alt4	0
	The Cramer- Rao inequality gives the lower bound for the variance of
	a Least square estimator
	a moment estimator
	an unbiased estimator
Alt4	an MLE
70	For testing the independence of attributes in a (4,3) contingency table the degrees freedom is
Alt1	
Alt2	
Alt3	
Alt4	
79	Which one of the following probability distribution is impossible?
Alt1	A Poisson distribution with mean 16 and standard deviation is 4
Alt2	A Binomial dsitribution with mean 16 and standard deviation 4
Alt3	A Binomial distribution with mean 18 and variance 6
Alt4	A Gamma distribution with mean 5 and variance 5
90	The distribution having memory- less property is
	Rectangular distribution
	Normal distribution
	Cauchy distribution
	Exponential distribution
	•
81	The mean of the following distribution is:
	x: 1 2 3 n
	f(x): 1 2 3 n
Alt1	[n(n+1)]/2
Alt2	1
Alt3	[(n+1)(2n+1)]/6

Alt4	[2n+1]/6
82	Which of the following is not true for normal distribution?
Alt1	Skewness = 0 and Kurtosis =3
Alt2	The frequency curve is not symmetric about the mean
Alt3	Mean = Median = Mode
Alt4	All moments of odd order about the mean is zero
83	If X and Y are independent gamma random variables with parameters μ and ν , then the distribution of X/X+Y is
Alt1	Normal with aprameters μ and ν
Alt2	F distribution with parameters μ, ν
Alt3	Beta distribution with parameters μ, ν
Alt4	Gamma with parameters μ, v
84	The normal distribu on is a liming form of binomial distribuon if
	$n \to \infty$, $p \to 0$
	n is finite and $p \rightarrow 0$
	n → ∞, p =1/2
	$n \rightarrow \infty$ and neither p nor q is small
All4	II → ∞ and herther p nor q is small
85	Which one of the following is not correct?
Alt1	The mean of Chi-Square distribution with n d.f is n
Alt2	The variance of Chi-Square distribution is 2n
Alt3	The range of Chi-Square variate is -∞ to +∞
Alt4	The skewness of Chi-Square distribution is 8/n
86	Let X be a random variable U(0, 1), then the variable
	Y = -2logX follows
Alt1	Chi-Squares distribu on
	Normal distribu on
	Binomial distribu on
	t - distribution
7110-1	C distribution
87	A simple random sample of 5 households was drawn from a village containing 250 households. The numbers of
07	persons per household in the sample were 5, 6, 4, 7, and 3. The estimate of the total number of people in the
Alta	village is
Alt1	
	3125
Alt3	
Alt4	1250
00	In systematic compling the coloction of sampling waits is
	In systematic sampling the selection of sampling units is
	selection of any n successive units
	selection of n largest units
Alt3	selection of n units situated at equal distances

Alt4	selection of n middle units in a sequence
80	A simple random sample can be drawn with the help of
	Random number tables
	Lo ery Method Roule e wheel
AIL4	all the above
90	Under Optimal allocation in stratified sampling, the sample size in each stratum is directly porportional to
Alt1	the sample size
Alt2	total popula on size
Alt3	the population size in each stratum
Alt4	Population MSE of each stratum
91	A value of an estimator is called
Alt1	an estimate
Alt2	as a statistic
Alt3	a parameter
Alt4	a random sample
92	The bias of an estimator can be
Alt1	positive
Alt2	negative
Alt3	always zero
Alt4	either positive or negative
93	If an unbiased estimator and a sufficient statistic exist for a parametric function $g(\theta)$, then the minimum
	varaince unbiased estimator of $g(\theta)$ is a function of
Alt1	the unbiased estimator
Alt2	the unbiased estimator and the sufficient statistic
Alt3	the sufficient statistic
Alt4	the efficient estimate
94	The Rao-Blackwell theorem enables us to obtain minimum variance unbiased estimator through
Alt1	an unbiased estimator
Alt2	a Bayes' estimator
	a maximum likelihood estimator
Alt4	a sufficient Statistic
95	To test the difference between two normal population means (with known variances) based on two
	independent random samples from them, the test used is
Δl+1	t-test
\(\tau_1\tau	
	Z-test
Alt2	Z-test Chi-Square test

	The test based on the ratio of the likelihood function under null hypothesis and under the entire parametric
	space is called
	Neyman Pearson test
	SPRT
Alt3	Likelihood ratio test
Alt4	Run test
97	A curve showing the probability of accepting a lot of quality p is known as
Alt1	OC Curve
Alt2	ASN Curve
Alt3	Gompetz Curve
Alt4	Power curve
	To remove biasedness in the experimental studies of designs of experiments, we use
Alt1	Completely Randomizied Design
	Randomized Block Design
	Latin Square Design
Alt4	Factorial Design
1	
	A time series is unable to adjust the influences like
	Customs and policy changes
	Seasonal changes
	Long term influences
Alt4	Trend
100	The Fisher's ideal index mumber satisfies
	Time reversal test
	Factor reversal test
	both time and factor reversal tests.

Alt4 circular test

Bookmark □

Examination: M.Sc. Statistics Section 1 - Section 1 **Question No.1** 4.00 The standard error of the sampling distribution of median is given by **Question No.2** 4.00 The average travel time to a distant city is c hours by car or b hours by bus. A woman cannot decide whether to drive or take the bus, so she tosses a coin. What is her expected travel time? \circ 2(c+b) $\circ c + b$ **Question No.3** 4.00 Bookmark The determinant of an elementary matrix of the third kind is 0 0 0 -1 0 1 02

Question No.4 4.00

If P(A) = 0.25 and P(B) = 0.8, which of the following is true?

$$0.05 \le P(A \cap B) \le 0.25$$

$$0.05 \le P(A \cap B) \le 0.50$$

$$0.25 \le P(A \cap B) \le 0.8$$

$$0.05 \le P(A \cap B) \le 0.8$$

Question No.5	4.00
The range of multiple correlation coefficient R is	Bookmark
© [0.5,1]	
C (-∞,∞)	
○ [0,1]	
© [-1,1]	
Question No.6	4.00
The ratio of class frequency to the class width is called	Bookmark
© Relative frequency	
Conditional frequency	
Cumulative frequency	
Frequency density	
Question No.7	4.00
	Bookmark □
If X is a continuous random variable and a< b	
then $\int_a^b f(x)dx$ is equal to	MA
$0 {F(b) + F(a)}/2$	
© (i (b) + i (a)), z © F(b)-F(a)	
© F(a)-F(b)	
○ F(b)/F(a)	
Question No.8	4.00 Bookmark
If a fair coin is tossed twice, what is the probability of getting at least one head?	
C 2/3	
o 1/4	
0 3/4	
C 1/2	
Question No.9	4.00
When three unbiased coins are tossed at a time the chance of getting no heads is	Bookmark 🗖
o 1/8	
C 5/8	
O 1/4	
O 1/4 O 3/8	
	4.00
© 3/8 Question No.10	Bookmark □
Question No.10 A nonparametric method in the analysis of variance for one-factor experiments is provide	Bookmark □
Question No.10 A nonparametric method in the analysis of variance for one-factor experiments is provide C Kruskal-Wallis H test	Bookmark □
Question No.10 A nonparametric method in the analysis of variance for one-factor experiments is provide C Kruskal-Wallis H test Friedman test	Bookmark <u></u>
Question No.10 A nonparametric method in the analysis of variance for one-factor experiments is provide C Kruskal-Wallis H test C Friedman test C Wilcoxon's signed rank test	Bookmark □
Question No.10 A nonparametric method in the analysis of variance for one-factor experiments is provide C Kruskal-Wallis H test Friedman test	Bookmark □

Question No.11	4.00
The maximum probability with which we would be willing to risk a type I error is termed as	Bookmark
c error probability	
C power of the test	
nargin of error	
○ significance level	
Question No.12	4.00
When two six-faced dice are rolled simultaneously the chance of getting a sum of 8 is 0 1/36	Bookmark □
O 1/2	
C 5/36	
○ 8/36	
Question No.13	4.00
A quicker response to a shift in the process average is provided by c exponential weighted moving average chart standard deviation chart mean chart acceptance control chart	Bookmark □
Question No.14	4.00
The equation of the tangent to $y = x^3 - 2x^2 + 4$ at (2, 4) is $x + 4y = 18$ $x + 4y = 18$ $4x - 4$ $4x + y = 18$	Bookmark □
Question No.15	4.00
The proportion of nonconforming items being produced by a process is monitored by using ONP chart U chart	Bookmark <u>□</u>
O P - chart	
○ Both P and NP charts	

Question No.16

4.00 Bookmark |

The null hypothesis that the three or more sampling means are all equal is tested using

- C Chi-square test procedure
- ANOVA procedure
- O normal Z test procedure
- C Student's t test procedure

Question No.17

4.00

Bookmark |

The amount of variation present in a set of time series data can be reduced by using the method of

- noving averages
- separate averages
- free-hand
- least-squares

Question No.18

4.00

For a normal distribution, which of the following relations is correct?

$$^{\circ}$$
 $MD = \frac{4}{5}SD$

$$SD = \frac{4}{5}MD$$

$$^{\circ}$$
 $SD = \frac{2}{3}MD$

$$^{\circ} MD = \frac{2}{3}SD$$

Question No.19

4.00

Bookmark [

For two attributes A and B,

$$(AB) = \frac{(A)(B)}{N}$$
. This

is the criterion for:

- c dependence
- correlation
- association
- independence

Question No.20	4.00
The number of parameters for bivariate normal density is	Bookmark
© 3	
0 5	
₾ 6	
O 2	
Question No.21	4.00
	Bookmark □
The effect of a factor is defined to be the change in response produced by a change in the factor. This is frequently called	e level of the
© interaction effect	
© fixed effect	
○ random effect	
○ main effect	
Question No.22	4.00
	Bookmark □
The square of a standard normal random variable is distributed as	
c chi-square with n degrees of freedom	
chi-square with n/2 degrees of freedom normal with mean 0 and variance 2	
C chi-square with one degree of freedom	
	T.
Question No.23	4.00
Question No.23 One of the types of sampling involves a researcher determining the appropriate sample si	Bookmark □
One of the types of sampling involves a researcher determining the appropriate sample signoups identified as important, and then taking convenience samples from those groups.	Bookmark zes for the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. Type of sampling.	Bookmark zes for the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. type of sampling. © Quota sampling	Bookmark zes for the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. type of sampling. • Quota sampling • Multi-stage sampling	Bookmark zes for the
One of the types of sampling involves a researcher determining the appropriate sample signoups identified as important, and then taking convenience samples from those groups. type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling	Bookmark zes for the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. It type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling	Bookmark ☐ zes for the dentify the
One of the types of sampling involves a researcher determining the appropriate sample signoups identified as important, and then taking convenience samples from those groups. type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling	Bookmark zes for the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a	Bookmark zes for the dentify the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. Type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a vector of zeros and ones	Bookmark zes for the dentify the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. Itype of sampling. O Quota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a vector of zeros and ones Constant vector	Bookmark zes for the dentify the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. It type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a vector of zeros and ones constant vector zero vector	Bookmark zes for the dentify the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. Itype of sampling. O Quota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a vector of zeros and ones Constant vector	Bookmark zes for the dentify the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. It type of sampling. © Quota sampling © Multi-stage sampling © Proportional stratified sampling © Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a © vector of zeros and ones © constant vector © zero vector	Bookmark zes for the dentify the 4.00 Bookmark 4.00
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. type of sampling. Ouota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a vector of zeros and ones constant vector zero vector unit vector Question No.25	Bookmark zes for the dentify the 4.00 Bookmark 4.00 Bookmark 5.00 4.00 Bookmark 5.00 Bookmark 5.00
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. Type of sampling. Quota sampling Multi-stage sampling Proportional stratified sampling Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a vector of zeros and ones constant vector zero vector unit vector Question No.25 The ratio of imports to exports for the years 2015 and 2016 are 1.25 and 1.40 respectivel imports in 2015 was Rs. 250 crores and the total exports in the years 2015 and 2016 together.	Bookmark zes for the dentify the 4.00 Bookmark 4.00 Bookmark y. If the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. It type of sampling. © Quota sampling © Multi-stage sampling © Proportional stratified sampling © Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a constant vector constant vector © zero vector © unit vector Question No.25 The ratio of imports to exports for the years 2015 and 2016 are 1.25 and 1.40 respectively imports in 2015 was Rs. 250 crores and the total exports in the years 2015 and 2016 togs. 500 crores, find the imports in 2016.	Bookmark zes for the dentify the 4.00 Bookmark 4.00 Bookmark y. If the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. It type of sampling. © Quota sampling © Multi-stage sampling © Proportional stratified sampling © Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a constant vector of zeros and ones © constant vector © zero vector © unit vector Question No.25 The ratio of imports to exports for the years 2015 and 2016 are 1.25 and 1.40 respectively imports in 2015 was Rs. 250 crores and the total exports in the years 2015 and 2016 togs. 500 crores, find the imports in 2016. © 270 crores	Bookmark zes for the dentify the 4.00 Bookmark 4.00 Bookmark y. If the
One of the types of sampling involves a researcher determining the appropriate sample si groups identified as important, and then taking convenience samples from those groups. It type of sampling. © Quota sampling © Multi-stage sampling © Proportional stratified sampling © Cluster sampling Question No.24 The set consisting of a single vector is linearly dependent if and only if that vector is a constant vector constant vector © zero vector © unit vector Question No.25 The ratio of imports to exports for the years 2015 and 2016 are 1.25 and 1.40 respectively imports in 2015 was Rs. 250 crores and the total exports in the years 2015 and 2016 togs. 500 crores, find the imports in 2016.	Bookmark zes for the dentify the 4.00 Bookmark 4.00 Bookmark y. If the

Question No.26	4.00 Bookmark □
If A is an attribute, then its negation is denoted by	BOOKIIIAIK [
Ο α Ο 1/A	
O -A	
○ A ²	
Question No.27	4.00
The slopes of the regression lines of X on Y and Y on X are equal if and only if	Bookmark
O r=±1	
O r=0 O r= -1	
O r=1	
Question No.28	4.00
Coefficient of determination is defined by	Bookmark □
C Unexplained variation / Total variation	
 Unexplained variation / Explained variation Explained variation / Total variation 	
© Explained variation / Unexplained variation	
Question No.29	4.00
If A and B are two events that cannot happen simultaneously then P(AÇB) =	Bookmark
© 0	
C 1	
© P(A)xP(B) © P(A)+P(B)	
	4.00
Question No.30	4.00 Bookmark □
V-3	
(A) (B) (C) (D) C B	
C A	
O D	
O C	

	Admission A
Question No.31	4.00 Bookmark □
Two attributes A and B satisfies the relation (AB)(αβ) < (Aβ)(Bα). Then correlated. c positively associated.	
negatively associated. independent.	
Question No.32	4.00 Bookmark □
Find out the missing term:	DOMINIK _
1, 2, 3, 6, 11, 20, 37, 68, ? © 126 © 105 © 124	
© 125	
Question No.33	4.00 Bookmark □
The distribution function of X is given by $F(x) = 1 - e^{-2x}, x \ge 0.$	CO
Then, $P(X > 2)$ is $cond 1 - e^4$ $cond e^4$	
e^{-4} e^{-4}	
Question No.34	4.00 Bookmark □
The expectation of the sum of points obtained in tossing a pair of fair of 6/7	
○ 7/6	
○ 1/3 ○ 7	

One of the following relationships is only true ○ GM =	Question No.35	4.00
cooks will be together is 3! 10! 6! 10! 6! 3! 10! 6! 3! 10! Cuestion No.36 A.00 Bookmark □ Commark Co		
C 3! 10! C 6! 10! C 6! 3! 10! C 8! 3! 10! C 8! 3! 10! C 8! 3!		mathematics
C 6! 10! C 6! 3! 10! C 8! 3! 10! C 6M = √AMxHM C GM = √AMxHM C AM = √GMxHM C HM = √GMxAM C HM = √GMxAM C C Coincident ocefficient 'r' is equal to +1 then the two regression lines will be C Coincident C Parallel C Lie at 450 C Perpendicular to each Cuestion No.38 Cobtain the missing term. C 246 C 250 C 244		
10! C 6! 3! 10! C 8! 3! 10! Question No.36 A.00 Bookmark □ GM = √AMxHM GMX+HM AM = √GMxHM C AM = √GMxAM Wight and AM = √GMxAM C Coincident C Parallel C Lie at 450 C Perpendicular to each Question No.38 A.00 Question No.38	10!	
10! C 6! 3! 10! C 8! 3! 10! Question No.36 A.00 Bookmark □ GM = √AMxHM GMX+HM AM = √GMxHM C AM = √GMxAM Wight and AM = √GMxAM C Coincident C Parallel C Lie at 450 C Perpendicular to each Question No.38 A.00 Question No.38		
C 6! 3! 10! Question No.36 A.00 Dine of the following relationships is only true GM = √AMxHM GM = √AM + HM AM = √GMxAM COmestion No.37 The correlation coefficient it is equal to +1 then the two regression lines will be Coincident Parallel C Lie at 450 Perpendicular to each Cuestion No.38 4.00 Question No.38 4.00 Bookmark □ Bookmark □ Bookmark □ Coincident Parallel C Lie at 450 Perpendicular to each	o 6!	
C 6! 3! 10! Question No.36 A.00 Dine of the following relationships is only true GM = √AMxHM GM = √AM + HM AM = √GMxAM COmestion No.37 The correlation coefficient it is equal to +1 then the two regression lines will be Coincident Parallel C Lie at 450 Perpendicular to each Cuestion No.38 4.00 Question No.38 4.00 Bookmark □ Bookmark □ Bookmark □ Coincident Parallel C Lie at 450 Perpendicular to each	101	
To! C 8! 3! To! Question No.36 4.00 Bookmark □ Bookmark □ C GM = √AMxHM C GM =√AM+HM C AM = √GMxHM C HM = √GMxAM C C c Coincident C Parallel C Lie at 45° C Perpendicular to each C Question No.38 C Question No.38 C C 250 C 244	10.	
To! C 8! 3! To! Question No.36 4.00 Bookmark □ Bookmark □ C GM = √AMxHM C GM =√AM+HM C AM = √GMxHM C HM = √GMxAM C C c Coincident C Parallel C Lie at 45° C Perpendicular to each C Question No.38 C Question No.38 C C 250 C 244	0 6131	
Cuestion No.36 Question No.36 Question No.36 A.00 Bookmark □ GM =		
Question No.36 Question No.36 Question No.36 Question No.37 Question No.38 Question No.3	10!	
Question No.36 Question No.36 Question No.36 Question No.37 Question No.38 Question No.3		
Question No.36 4.00 The of the following relationships is only true GM = √AMxHM GMM = √AM + HM CAM = √GMxHM HM = √GMxAM Question No.37 4.00 Bookmark □ Bookmark □ Bookmark □ Coincident Parallel Lie at 45 ⁰ Perpendicular to each Question No.38 4.00 Bookmark □ Bookmark □ Bookmark □ Bookmark □ Cuestion No.38 4.00 Bookmark □ Cuestion No.38 4.00 Cuestion No.38	0 8! 3!	
Question No.36 4.00 The of the following relationships is only true GM = √AMxHM GMM = √AM + HM CAM = √GMxHM HM = √GMxAM Question No.37 4.00 Bookmark □ Bookmark □ Bookmark □ Coincident Parallel Lie at 45 ⁰ Perpendicular to each Question No.38 4.00 Bookmark □ Bookmark □ Bookmark □ Bookmark □ Cuestion No.38 4.00 Bookmark □ Cuestion No.38 4.00 Cuestion No.38	10'	
Dine of the following relationships is only true ○ GM =		
Dine of the following relationships is only true ○ GM =		
One of the following relationships is only true C GM =	Question No.36	4.00
C GM = √AMxHM C GM = √GMxHM C HM = √GMxAM C HM = √GMxAM C Hore correlation coefficient 'r' is equal to +1 then the two regression lines will be C Coincident C Parallel C Lie at 45° C Perpendicular to each Cuestion No.38 4.00 Bookmark □ Bookmark □ Bookmark □ Cuestion No.38 4.00 Coefficient to each	One of the following relationships is only true	Bookmark □
√AMxHM C GM =√AM + HM C AM = √GMxHM C HM = √GMxAM Question No.37 4.00 Bookmark □ the correlation coefficient 'r' is equal to +1 then the two regression lines will be C Coincident C Parallel C Lie at 45 ⁰ C Perpendicular to each Question No.38 4.00 Bookmark □ Stock of the missing term. 00, 296, 287, 271, ?, 210 C 246 C 250 C 244		
C GM =√AM + HM C AM = √GMxHM C HM = √GMxAM Question No.37 4.00 Bookmark □ the correlation coefficient 'r' is equal to +1 then the two regression lines will be C Coincident C Parallel C Lie at 450 C Perpendicular to each Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 C 246 C 250 C 244		
=√AM + HM C AM = √GMxHM C HM = √GMxAM Question No.37 4.00 Bookmark □ the correlation coefficient 'r' is equal to +1 then the two regression lines will be C Coincident C Parallel C Lie at 45 ⁰ C Perpendicular to each Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 C 246 C 250 C 244		
Cuestion No.37 Question No.37 Sookmark □ Coincident Parallel Lie at 45° Perpendicular to each Cuestion No.38 Question No		
Question No.37 Question No.37 Coincident Parallel Lie at 45° Perpendicular to each Question No.38 Questio		
Cuestion No.37 Question No.37 Shokmark □ the correlation coefficient 'r' is equal to +1 then the two regression lines will be Coincident Parallel Lie at 45° Perpendicular to each Cuestion No.38 4.00 Bookmark □ Obtain the missing term. 100, 296, 287, 271, ?, 210 246 250 244	O AM =	
Question No.37 4.00 Bookmark the correlation coefficient 'r' is equal to +1 then the two regression lines will be Coincident Parallel Lie at 45 ⁰ Perpendicular to each Question No.38 4.00 Bookmark Obtain the missing term. 00, 296, 287, 271, ?, 210 246 250 244	√GMxHM	
Question No.37 4.00 Bookmark □ the correlation coefficient 'r' is equal to +1 then the two regression lines will be ○ Coincident ○ Parallel ○ Lie at 45 ⁰ ○ Perpendicular to each Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 ○ 246 ○ 250 ○ 244	O HM =	
Question No.37 4.00 Bookmark □ the correlation coefficient 'r' is equal to +1 then the two regression lines will be ○ Coincident ○ Parallel ○ Lie at 45 ⁰ ○ Perpendicular to each Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 ○ 246 ○ 250 ○ 244	√GMxAM	
the correlation coefficient 'r' is equal to +1 then the two regression lines will be Coincident Parallel Lie at 450 Perpendicular to each Question No.38 4.00 Bookmark Bookmark 00, 296, 287, 271, ? , 210 246 250 244		
the correlation coefficient 'r' is equal to +1 then the two regression lines will be Coincident Parallel Lie at 45 ⁰ Perpendicular to each Question No.38 4.00 Bookmark Obtain the missing term. 00, 296, 287, 271, ? , 210 246 250 244	Question No.37	
Coincident Parallel Lie at 45 ⁰ Perpendicular to each Question No.38 4.00 Bookmark □ Dobtain the missing term. 200, 296, 287, 271, ? , 210	the correlation assettainet (2 is equal to 14 then the true regression lines will be	Bookmark 🗖
C Parallel C Lie at 45 ⁰ C Perpendicular to each Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 C 246 C 250 C 244		
C Lie at 45 ⁰ C Perpendicular to each Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 ○ 246 ○ 250 ○ 244		
Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 ○ 246 ○ 250 ○ 244		
Question No.38 4.00 Bookmark □ Obtain the missing term. 00, 296, 287, 271, ? , 210 ○ 246 ○ 250 ○ 244		
Bookmark ☐ Obtain the missing term. 00, 296, 287, 271, ? , 210 ○ 246 ○ 250 ○ 244	C Perpendicular to each	
Bookmark Debtain the missing term. 00, 296, 287, 271, ? , 210 246 250 244	Question No.38	4.00
00, 296, 287, 271, ? , 210 © 246 © 250 © 244		
© 246 © 250 © 244	Obtain the missing term.	
© 246 © 250 © 244	00 296 287 271 2 210	
© 250 © 244		
O 244		

Question No.39	4.00 Bookmark
For a chi-square distribution with n degrees of freedom, the mean and variance are n and 2n n and n/2 n and n n/2 and n	DOOKIIIAIK [
Question No.40 Choose the correct meaning of the italicized idiom.	4.00 Bookmark □
Anil got me into trouble by giving a false colour to my statement. Colouring the sentence Giving a wrong character Giving a wrong colour box Giving good impression	
Question No.41	4.00 Bookmark
The standard deviation of the values $\{3,3,3,3,3,3,3\}$ is $0.1/3$ 0.0 0.0	
Question No.42	4.00 Bookmark
If 'r' denotes the correlation coefficient between X and Y the coefficient of determination is 1-r 1/r r ² 1-r ²	
Question No.43	4.00 Bookmark
Deseasonalized time series data still include trend and cyclic movements trend, cyclic and irregular movements cyclic and irregular movements trend and random movements	DOCKHAIK
Question No.44	4.00 Bookmark
Identify the underlined part of speech: Sorry, I don't know any foreign languages adverb noun pronoun adjective	

Question No.45 4.00 Bookmark | When a = E(X), the quantity $E[X - a]^2$ is ○ zero a maximum C a minimum O one **Question No.46** 4.00 Bookmark □ Price relatives computed by chain base method are called chain indices O average price relatives price relatives link relatives **Question No.47** Bookmark □ In the usual notation the coefficient of contingency C is given by **Question No.48** 4.00 Bookmark [Statements: Some bats are snakes, No snake is dangerous Conclusion: I. Some dangerous animals are snakes II. Some bats are not dangerous. Olf neither I nor II follows C If only conclusion II follows If either I or II follows If only conclusion I follows **Question No.49** 4.00 Bookmark In the usual notation the distribution function of a random variable X is stated as F(x) = \circ P(X > x) ○ P(X=x) P(X=1/x) ○ P(X<=x)</p>

	Admission .
Question No.50 A statement of the error or precision of an estimate is often called its c efficiency Bias reliability Consistency	4.00 Bookmark
Assertion: - India's president is appointed on a five-year term Reason: -PratibhaPatil was appointed as India's first woman president in 2007 Both A and R are true and R is not the correct explanation of A A is false but R is true Both A and R are true and R is the correct explanation of A A is true but R is false	4.00 Bookmark
Question No.52 Normality of data can be tested using O Normal probability plot, Kolmogorov-Smirnov test and Anderson-Darling test Normal probability plot only Andesrson-Darling test only Kolmogorov-Smirnov test only	4.00 Bookmark □
The 95% confidence interval for the population variance when a sample is drawn from a population normal distribution is specified by $ \frac{ns^2}{\chi_{0.025}^2} \le \sigma^2 \le \frac{ns^2}{\chi_{0.975}^2} $ $ \frac{\chi_{0.975}^2}{ns^2} \le \sigma^2 \le \frac{\chi_{0.025}^2}{\chi_{0.025}^2} $ $ \frac{ns^2}{\chi_{0.975}^2} \le \sigma^2 \le \frac{\chi_{0.025}^2}{\chi_{0.025}^2} $ $ \frac{\chi_{0.025}^2}{\chi_{0.025}^2} \le \sigma^2 \le \frac{\chi_{0.975}^2}{\chi_{0.025}^2} $ $ \frac{\chi_{0.025}^2}{ns^2} \le \sigma^2 \le \frac{\chi_{0.975}^2}{\chi_{0.025}^2} $	4.00 Bookmark ☐ µlation

Question No.54 4.00 Bookmark □

Identify the type of set: (2, 3, 4, 4, 4, 5, 5, 7, 7, 7, 9).

The set is bimodal.

- The set is unimodal.
- The set is multimodal.
- The set has no mode.

	4.00
In the usual notation the inter-quartile range of a data set is given by	Bookmark □
$(Q_3 - Q_1)$	
C (Q ₃ /Q ₁)	
\circ (Q_3-Q_1)	
$\frac{\overline{(Q_3 + Q_1)}}{\overline{(Q_1 + Q_1)}}$	
$(Q_3 + Q_1)$	
(43 . 41)	
Question No.56	4.00
For a random variable X if E(X) = m then E(3X+5) =	Bookmark □
© 3m+5	
○ 9m	
© 3m+15	
○ 3m	
Question No.57	4.00
- Control (1010)	Bookmark □
Based on the information given, answer the below question.	
 A,B,C,D,E and F are travelling in a bus. There are two reporters, two mechanics, one photographer and one writer in the group. 	
3. Photographer A is married to D who is a reporter.	
4. The writer is married to B who is of the same profession as that of F.	
4. The writer is married to B who is of the same profession as that of F.5. A,B,C,D are two married couples and no one in this belong to the same profession.6. F is the brother of C.	
4. The writer is married to B who is of the same profession as that of F.5. A,B,C,D are two married couples and no one in this belong to the same profession.	
 4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? 	
 4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? C Brother-in-law C Sister C Brother 	
 4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? © Brother-in-law © Sister 	
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? Brother-in-law Sister Brother Cannot be determined	4.00
 4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? C Brother-in-law C Sister C Brother 	4.00 Bookmark
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? Brother-in-law Sister Brother Cannot be determined Question No.58	
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? Brother-in-law Sister Brother Cannot be determined Question No.58	
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? C Brother-in-law C Sister C Brother C Cannot be determined Question No.58	
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? Brother-in-law Sister Brother Cannot be determined Question No.58	
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? Brother-in-law Sister Brother Cannot be determined Question No.58	
4. The writer is married to B who is of the same profession as that of F. 5. A,B,C,D are two married couples and no one in this belong to the same profession. 6. F is the brother of C. How is C related to F? C Brother-in-law C Sister C Brother C Cannot be determined Question No.58 $e^{\ln 3 - \ln 2 + \ln(1/x)} =$ $1 + 1/x$ $3/2 - 1/x$	

Question No.59	4.00 Bookmark □
Choose the best antonym of the italicized word.	DOOKIIIAIK [_
Ravi and Raghu are really <i>obstinate</i> men.	
© friendly	
© compliant	
© considerate	
© understanding	
o understanding	
Question No.60	4.00 Bookmark □
In a code language, 321 means "Hot Black Coffee", 536 means "Very Hot Summer", and "Summer and Winter". Which digit stands for "Very"?	1 589 means
○ 5	
○ 3	
○ 9	
○ 6	
Question No.61	4.00
	Bookmark □
Data on categorical variables is summarized as	
O Average	
© Ratio	
○ Interval	
© Frequency	
o i requestey	
Question No.62	4.00
	Bookmark □
In the usual notation, if AÇB = null set then P(A B) =	
○ P(B)	
○ P(A)/P(B)	
00	
○ P(A)	
Question No.63	4.00
	Bookmark □
In the usual notation the expression	
$\sqrt{\frac{r_{12}^2 + r_{13}^2 - 2r_{12}r_{13}r_{23}}{1 - r_{13}^2}} \text{ denotes}$	
C R _{2.13}	
○ R _{3.12}	
○ R _{13.2}	
○ R _{1.23}	
Question No.64	4.00
- Carolin Holo I	Bookmark □
Choose the correct meaning of the italicized idiom.	
Sheela's work seems to be a <i>Penelope's web</i> .	
© Endless	
© Declining	
○ In her best form	
© Difficult	

Question No.65	4.00 Bookmark ☐
For what value of c, the function $f(x) = c, a \le x \le b$ is the density function?	
○ 1/(b-a) ○ 1 ○ 1/(a-b)	
Question No.66 Good restaurants serving pure vegetarian food are very hard to	4.00 Bookmark □
○ get in○ come by○ take to	
○ go through	
Question No.67 Consider the following statements: I: The company sold 5000 units of product A each costing Rs. 100.	4.00 Bookmark □
II: This company has no other product line. To find the total sales of the company, which of the following is true? C I alone is sufficient while II alone is not sufficient Either I or II is sufficient	
 Il alone is sufficient while I alone is not sufficient Both I and II are sufficient 	
Question No.68	4.00 Bookmark
The diagram used to understand the nature of relationship between two variables is Histogram Scatter diagram Line chart Pie chart	

	NIa	60
Ullestion	NO	D9

4.00 Bookmark

The standard error of the sampling distribution of proportions is given by

О

$$\sqrt{\frac{n}{p(1-p)}}$$

0

$$\frac{n}{p(1-p)}$$

O

$$\frac{p(1-p)}{n}$$

О

$$\sqrt{\frac{p(1-p)}{n}}$$

Question No.70

4.00

Three sources of error or variability can be controlled using

- factorial design
- C Latin squares design
- C Greaco Latin squares design
- C randomized block design

Question No.71

4.00

Bookmark □

A quantity computed with complete population data to represent a characteristic of the population is called

- index
- parameter
- statistic
- C sample point

Question No.72	4.00
	Bookmark □
Assume that	
$r_{12} = r_{13} = r_{23} = r \neq 1.$	
Then, $R_{1,23} =$	
0 72	
$\sqrt{\frac{2}{1-r}}$	
$r\sqrt{\frac{2}{1-r}}$	
V1-r	
0 2	
$\sqrt{\frac{2}{1+r}}$	
5	
$r\sqrt{\frac{2}{1+r}}$	
V1+r	
Outstiern No. 72	1.00
Question No.73	4.00 Bookmark □
The most common multiplier used in vital statistics mortality rates is	
C 10000 C 1000	
0 100	
C 10	
Question No.74	4.00
A nonparametric test for randomness is provided by	Bookmark <u></u> □
○ Kruskal-Wallis test	
ℂ sign test	
C theory of runs C Friedman test	
O Friedmantest	
Question No.75	4.00
Select the option which improves the underlined part of the sentences.	Bookmark
The Prime Minister called on the President.	
○ to ○ by	
© in	
○ No improvement	
Question No.76	4.00
	Bookmark [
The Arithmetic Mean of first 9 natural numbers is © 4.5	
0 4.5	
C 55	
ℂ 5.5	

Question No.77	4.00
	Bookmark □
The word on of a cinta	
The number of points	
of intersections of the	
graphs of $y = x^2$ and	
$y = 2 - x^2$	
y-z x	
0.1	
0 2	
03	
O 0	
Question No.78	4.00
If X is a discrete random variable taking values 1,2,,n then P(X=i) is called	Bookmark ☐ function
o probability density	_ lunction
O distribution	
o probability mass	
characteristic	
Question No.79	4.00
	Bookmark
Choose the correct meaning of the italicized idiom.	_
He had great difficulty to save his bacon when he was blackmailed.	
 Threaten somebody 	
© Escape death	
○ Save pork	
C Put bacon in the refrigerator	
Question No.80	4.00
	Bookmark
In case the population is normally distributed, the sampling distribution of means is	
normally distributed only for small values of n	
O not normal even for large values of n	
 normally distributed even for small values of n 	
 normally distributed only for large values of n 	

	4.00
Based on the given information, answer the following question. 1. Six friends P,Q,R,S,T and U are memebers of a club and play different games of Tennis, Basketball, Badminton and Volleyball 2. T who is taller than P and S plays Tennis. 3. The tallest among them plays Basketball. 4. The Shortest among them plays volleyball. 5. Q and S neither play Volleyball nor Basketball. 6. R plays Volleyball 7. T is between Q who plays Football and P in order of height	Bookmark ☐ f Football, Cricket,
What does S Play? C Cricket Badminton Either Cricket or Badminton None of the above	
Question No.82 It takes eight hours for a 600 km journey, if 120 km is done by train and the rest by cominutes more, if 200 km is done by train and the rest by car. The ratio of the speed of the cars is: 3:4 1:4 2:3 1:2	
Question No.83	4.00 Bookmark □
When Y and X are related by the model Y = 2x+4 then the correlation coefficient bet C -1 C +1	
O -1	
C -1 C +1 C 0.5 C 0	tween X and Y is

Question	No	26
QUESTION	110	OU.

4.00

$$E(X \mid Y) =$$

$$\int_{-\infty}^{\infty} x f(y \mid x) dx$$

$$\int_{0}^{\infty} y f(y \mid x) dy$$

$$\int_{-\infty}^{\infty} x f(y \mid x) dy$$

$$\int_{-\infty}^{\infty} x f(x \mid y) dx$$

Question No.87

4.00

Bookmark

If (X,Y) is a bivariate random variable then the marginal density of Y is given as

$$\int_{-\infty}^{\infty} f(x,y) \, dy$$

$$\circ$$
 $f(x)$

$$\frac{f(x)}{f(x,y)}$$

$$\begin{array}{c}
 f(x,y) \\
 \hline
 g(x)
\end{array}$$

$$\int_{-\infty}^{\infty} f(x,y) \, dx$$

Question No.88

4.00

Bookmark □

Choose the best synonym of the italicized word.

Each one of us is the subject of *derision* at some time or the other in our life.

- C criticism
- irony
- C laughter
- ridicule

4.00

Question No.89

Bookmark □

The regression equation of X_1 on X_2 and X_3 can be written as X_1 =

$$a + b_{13.2}X_2 + b_{12.3}X_3$$

$$a + b_{12}X_2 + b_{13}X_3$$

$$a + b_{12,3}X_2 + b_{13,2}X_3$$

$$a + b_{13}X_2 + b_{12}X_3$$

Question No.90 4.00

Bookmark

Suppose that X is a random variable having mean μ and variance σ^2 , which are finite. Then, if ϵ is any positive number, which of the following is true?

$$P[|X - \mu| \le \varepsilon] \le \frac{\sigma^2}{\varepsilon^2}$$

$$^{\circ} P[|X - \mu| \geq \varepsilon] \geq \frac{\sigma^2}{\varepsilon^2}$$

$$^{\circ} P[|X - \mu| \geq \varepsilon] \leq \frac{\sigma^2}{\varepsilon^2}$$

$$P[|X - \mu| \le \varepsilon] \ge \frac{\sigma^2}{\varepsilon^2}$$

Question No.91 4.00

Bookmark 🗆

If $s_n = \frac{2n+1}{n+1}$, then

 $\lim_{n\to\infty} s_n =$

0 0

Indeterminate

02

0 1

Question No.92 4.00

Ramesh had a cold and couldn't go to the party, so I bought him a cake to make up for his____

- c depression
- disgust
- c disappointment
- disillusion

Bookmark Study the following information carefully and answer the question below it The Director of an MBA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday. (i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised. (ii) Motivation should be organised immediately after Assessment Centre. (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion How many lectures are organised between Motivation and Quality Circle? One Four Two Three	.00
Bookmark Study the following information carefully and answer the question below it The Director of an MBA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday. (i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised. (ii) Motivation should be organised immediately after Assessment Centre. (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion How many lectures are organised between Motivation and Quality Circle? One Four Two Three	
The Director of an MBA college has decided that six guest lectures on the topics of Motivation, Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday. (i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised. (ii) Motivation should be organised immediately after Assessment Centre. (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion How many lectures are organised between Motivation and Quality Circle? One Four Two Three	
Decision Making, Quality Circle, Assessment Centre, Leadership and Group Discussion are to be organised on each day from Monday to Sunday. (i) One day there will be no lecture (Saturday is not that day), just before that day Group Discussion will be organised. (ii) Motivation should be organised immediately after Assessment Centre. (iii) Quality Circle should be organised on Wednesday and should not be followed by Group Discussion (iv) Decision Making should be organised on Friday and there should be a gap of two days between Leadership and Group Discussion How many lectures are organised between Motivation and Quality Circle? One Four Two Three	
Leadership and Group Discussion How many lectures are organised between Motivation and Quality Circle? One Four Two Three	
One Four Two Three	
The quantity E[X-E(X)] ³ is a measure of Scale Kurtosis Skewness Location	.00
	.00
Choose the missing term: 3F,6G,11I,18L, ?	
	.00
Bookmark Bayes theorem produces probability Apriori Complementary Empirical	

Question No.98

4.00 Bookmark

In the usual notation $E(e^{itX})$ is called

- Probability Generating Function
- Moment Generating Function
- C Characteristic Function
- C Cumulant Generating Function

Question No.99

Bookmark

If \overline{A} denotes the compliment of A then $P(\overline{A}) =$

- 0 1
- P(A)+0.5
- O 1/P(A)
- O 1-P(A)

Question No.100

4.00

Bookmark □

Consider F and t distributions. Which of the following relations is true?

$$F_{1-p,1,\nu} = t_{1-(p/2),\nu}^2$$

$$F_{1-p,1,\nu} = t_{p/2,\nu}^2$$

$$F_{1-p,1,\nu} = t_{p,\nu}^2$$

$$F_{1-p,1,\nu} = t_{1-p,\nu}^2$$