Thoughts while making final presentation

I had some thoughts & deeper review / overview on the project's status while making the final presentation: <u>Junwoo Hwang | Final Presentation | BA</u>. I would like to collect them here and discuss after the trial presentation.

Ground Velocity Curve

- Look-ahead angle as a function of normalized track error alone defines the exact ground course profile of approaching the path!
 - V_approach and V_path only acts as a 'starting' and 'ending' speed while following that course profile, and nothing else!
 - Technically, the same ground course profile can be followed with either: Constant speed, varying speed, etc, that's up to the velocity setpoint
 - When look-ahead angle function is fixed, the 'track error boundary' defines solely the scaling of the whole ground course.
 - In fact, the parallel travel along the path until convergence is only dependent on the track error boundary with a fixed look-ahead angle function. And it scales linearly.

- Proof:
$$d_{conv} = -\int_{e_b}^{0} V_g^{||} \cdot \frac{1}{V_g^{\perp}} de = e_b \cdot \int_{0}^{1} V_g^{||} \cdot \frac{1}{V_g^{\perp}} d\hat{e} = e_b \cdot \int_{0}^{1} tan(\theta_{la}(\hat{e})) d\hat{e}$$

- Reference: 15 Multirotor NPFG Formulation
- However the 'convergence time' is indeed dependent in the magnitude of the velocity following the ground course profile!

Therefore, the ground velocity curve problem breaks down into:

- 1. Defining look-ahead angle function (Shape of approach)
- 2. Defining track error boundary (Scale of approach)
- 3. Defining speed (norm of the velocity) profile (Convergence time & dynamics)

And the step 2 ~ 3 essentially encompasses the choice of V_approach and V_path!

Evaluations

Bringing back the evaluations, we can re-formulate the 3 step process incorporated into metrics like so:

Variables: $\theta_{la}(\hat{e})$ course shape, e_{h} track error boundary, $V_{a}(\hat{e})$ speed over ground profile

Criteria	Description	Evaluation
Time to convergence on a path [s]	Time required by the vehicle to converge to the path when following the ground velocity vector field with no error $t_{conv} = -\int_{e_b}^0 \frac{1}{V_g^\perp} de = e_b \cdot \int_0^1 \frac{1}{V_g(\hat{e}) \cdot cos(\theta_{la}(\hat{e}))} d\hat{e} (when e_b is constant)$	Smaller the better
Track error boundary length [m]	$oldsymbol{e}_b$	Smaller the better
Converging path parallel distance [m]	Path-parallel distance travelled to converge to path when following ground velocity vector field with no error $d_{conv} = -\int\limits_{e_b}^0 V_g^{ } \cdot \frac{1}{V_g^{\perp}} de = e_b \cdot \int\limits_0^1 V_g^{ } \cdot \frac{1}{V_g^{\perp}} d\hat{e} = e_b \cdot \int\limits_0^1 tan(\theta_{la}(\hat{e})) d\hat{e} (when e_b is constant)$	Smaller the better

Velocity on Path fulfilled [bool]	$V_g^{ } = V_{path} when \hat{e} = 0$	Needs to be True
Speed monotonicity [bool]	Whether the magnitude of velocity grows or decreases consistently throughout track error boundary $\{\frac{d}{de} V_g(e) \ \geq\ 0\ \ for\ all\ e\in[0,\ e_b]\}$ Or	Needs to be True
	$\left\{ \frac{d}{de} V_g(e) \le 0 \mid for \ all \ e \in [0, \ e_b] \right\}$	
Total acceleration RMS [m/s^2]	Root-Mean-Square value of acceleration	Smaller the better
	$acc_{rms} = \sqrt{-\frac{1}{e_b} \cdot \int_{e_b}^{0} (\frac{d}{dt}V_g(e) ^2) de} = \sqrt{\int_{0}^{1} (\frac{d}{dt}V_g(\hat{e}) ^2) d\hat{e}} (when e_b is constant)$	
	$= \sqrt{\int_{0}^{1} [\frac{d}{dt}V_{g}(\hat{e}) ^{2} + V_{g}(\hat{e}) \cdot \frac{d}{dt}\theta_{la}(\hat{e})] d\hat{e}} = \sqrt{\frac{1}{e_{b}} \int_{0}^{1} [V_{g}(\hat{e}) \cos(\theta_{la}(\hat{e}))] \cdot [\frac{d}{d\hat{e}}V_{g}(\hat{e}) ^{2} + (V_{g}(\hat{e}) \cdot \frac{d}{d\hat{e}}\theta_{la}(\hat{e}))^{2}] d\hat{e}}$	
Maximum acceleration total	Maximum total acceleration	Smaller the better
[CAo\colonial	$acc_{max} = max\{\frac{d}{dt}V_g(e) for e \in [0, e_b]\} = \frac{1}{e_b} \cdot max\{V_gcos(\theta_{la}(\hat{e})) \cdot \sqrt{ \frac{d}{d\hat{e}}V_g(\hat{e}) ^2 + (V_g(\hat{e}) \cdot \frac{d}{d\hat{e}}\theta_{la}(\hat{e}))^2}for \hat{e} \in [0, 1]\} (when e_b is constant)$	

Track error boundary scaling with ground speed

- This removes the absolute magnitude dependency (scaling), and keeps the scaling consistent
- HOWEVER, this doesn't apply in high-wind situations where the wind speed affects the ground speed significantly for different course targets!

Path Following high-level command output

- To unify the control of MC & FW, the following commands are expected:
 - Course over ground
 - Ground speed
- Depending on whether it's a FW or a MC, we can have a different approach to controlling the vehicle to follow that setpoint
 - For FW: COG is maintained, but ground speed will likely not be exactly the same
 - For MC: COG and ground speed is both expected to be followed closely
- However, there's still a problem:
 - What do we do in an intermediate transition state?
 - How should this high-level path following control setpoint morph between MC <-> FW configuration, to create sane setpoints?
 - Lateral acceleration command is only applicable to FW case, and thus the whole control pipeline isn't really *unified
 - **INDI** could help in this case?
 - E.g. https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6503