

在实际问题中, 试验结果有时需要同 时用两个或两个以上的随机变量来描述. 例如 用温度和风力来描述天气情况. 通过对含碳、含硫、含磷量的测定来研究 钢的成分. 要研究这些随机变量之间的联 系, 就需考虑若干个随机变量,即多维随机 变量及其取值规律——多维分布.

§3.1 二维随机变量及其分布

定义 设□为随机试验的样本空间,

$$\forall \omega \in \Omega \xrightarrow{-\text{cetall}} \exists (X(\omega), Y(\omega)) \in \mathbb{R}^2$$

则称二维向量(X,Y)为二维随机变量或二维随机向量

讨论:

二维随机变量作为一个整体的概率特性 其中每一个随机变量的概率特性与整体的 概率特性之间的关系

二维随机变量的联合分布函数

定义 设(X, Y) 为二维随机变量,对于任何一对实数(x, y),事件

$$(X \le x) \cap (Y \le y)$$
 (记为 $(X \le x, Y \le y)$ 的概率 $P(X \le x, Y \le y)$ 定义了一个

二元实函数 F(x,y),称为二维随机变量 (X,Y) 的分布函数,即

$$F(x,y) = P(X \le x, Y \le y)$$

分布函数的几何意义

如果用平面上的点(x, y)表示二维随机变量

(X,Y)的一组可能的取值,则F(x,y)表示(X,Y)的取值落入下图所示的角形区域的概率

联合分布函数的性质

$$\square \quad 0 \le F(x, y) \le 1$$

$$F(+\infty, +\infty) = 1 \qquad F(x, -\infty) = 0$$

$$F(-\infty, -\infty) = 0 \qquad F(-\infty, y) = 0$$

对每个变量单调不减

固定 x, 对任意的 y1 < y2, $F(x,y1) \square F(x,y2)$

固定 y, 对任意的 x1 < x2, $F(x1,y) \square F(x2,y)$

村每个变量右连续

$$F(x0, y0) = F(x0+0, y0)$$

$$F(x0, y0) = F(x0, y0 + 0)$$

$$F(b,d) - F(b,c) - F(a,d) + F(a,c) \square 0$$

事实上
$$F(b,d) - F(b,c) - F(a,d) + F(a,c)$$

= $P(a < X \square b, c < Y \square d)$

二维随机变量的边缘分布函数

由联合分布函数可以求得边缘分布函数,逆不真.

例1设二维随机变量(X,Y)的联合分布函数为

$$F(x,y) = A\left(B + \arctan\frac{x}{2}\right)\left(C + \arctan\frac{y}{2}\right)$$

 $-\infty < x < +\infty, -\infty < y < +\infty$ 其中A, B, C 为常数.

- 确定A, B, C; (1)
- 求X和Y的边缘分布函 (2)

$$F(-\infty, +\infty) = A\left(B - \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right) = 0$$

$$F(+\infty,-\infty) = A\left(B + \frac{\pi}{2}\right)\left(C - \frac{\pi}{2}\right) = 0$$

$$B = \frac{\pi}{2}, C = \frac{\pi}{2}, A = \frac{1}{\pi^2}$$

(2)
$$F_X(x) = F(x, +\infty)$$
$$= \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{2}$$

$$F_Y(y) = F(+\infty, y)$$
$$= \frac{1}{2} + \frac{1}{\pi} \arctan \frac{y}{2}$$

(3)
$$P(X > 2) = 1 - P(X \le 2)$$

$$=1-\left(\frac{1}{2}+\frac{1}{\pi}\arctan\frac{2}{2}\right)=\frac{1}{4}$$

二维离散型随机变量及其概率特性

定义 若二维随机变量(X,Y)的所有可能的取值为有限多个或无穷可列多个,则称(X,Y)为二维离散型随机变量.

设(X,Y)的所有可能的取值为 (x_i,y_j) , i,j=1,2, ?

则称
$$P(X = x_i, Y = y_j) = p_{ij}, \quad i, j = 1, 2,$$
 ?

为二维随机变量(X,Y)的联合概率分布或联合分布律

显然,
$$p_{ij} \ge 0$$
, $i, j = 1, 2$, $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$

二维表形式

二维离散型随机变量的边缘分布律

$$P(X = x_i) = \sum_{j=1}^{+\infty} p_{ij}^{\text{idft}} = p_{i \cdot}, \quad i = 1, 2, ?$$

$$P(Y = y_j) = \sum_{i=1}^{+\infty} p_{ij}^{\text{idft}} = p_{\cdot j}, \quad j = 1, 2, ?$$

已知联合分布律可以求出边缘分布律;

例2 把三个球等可能地放入编号为1,2,3 的三个盒子中,每 盒容纳的球数无限.记X为落入1号盒的球数,Y为落入2 号盒的球数,求

(1) (X,Y) 的联合分布律与边缘分布律;

(2)
$$P(X=Y), P(Y>X);$$

解 联合分布律的求法: 利用乘法公式

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j | X = x_i)$$

(1) 本例中,
$$P(X = i, Y = j) = P(X = i)P(Y = j | X = i)$$

$$= C_3^i \left(\frac{1}{3}\right)^i \left(\frac{2}{3}\right)^{3-i} \cdot C_{3-i}^j \left(\frac{1}{2}\right)^j \left(1 - \frac{1}{2}\right)^{3-i-j}$$

$$j = 0, ?, 3 - i; i = 0,1,2,3;$$

其联合分布与边缘分布如下表所示

pi X Yj	0	1	2	3	<i>p</i> • <i>j</i>
0	$\frac{1}{27}$	$\frac{1}{9}$	$\frac{1}{9}$	1 27	8 27
1	9 1	$\frac{2}{9}$	$\frac{1}{9}$	0	$\frac{4}{9}$
3	9 1	9 0	0	0	9
pi •	$\frac{8}{27}$	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{1}{27}$	1

(2) 由表可知

$$P(Y = X) = \frac{7}{27}$$
$$P(Y > X) = \frac{10}{27}$$

$$P(Y > X) = \frac{10}{27}$$

例3 把3 个红球和3 个白球等可能地放入编号为1, 2, 3 的三个盒子中, 每盒容纳的球数无限, 记X为落入1号盒的白球数, Y为落入1号盒的红球数. 求(X,Y)的联合分布律和边缘分布律.

P
$$P(X = i, Y = j) = P(X = i)P(Y = j|X = i)$$

$$= C_3^i \left(\frac{1}{3}\right)^i \left(\frac{2}{3}\right)^{3-i} \cdot C_3^j \left(\frac{1}{3}\right)^j \left(1 - \frac{1}{3}\right)^{3-j} \quad i, j = 0, 1, 2, 3$$

A
$$P(X = i, Y = j) = P(X = i)P(Y = j|X = i)$$

$$= C_3^i \left(\frac{1}{3}\right)^i \left(\frac{2}{3}\right)^{3-i} \cdot C_3^j \left(\frac{1}{3}\right)^j \left(1 - \frac{1}{3}\right)^{3-j} \quad i, j = 0, 1, 2, 3 \qquad 见下表 \quad 本例 与前$$

例有 相同 的边 缘分 布, 但它 们的 联合 分布 却不

pi X Yj	0	1	2	3	$p^{\bullet}j$
0	$\frac{8}{27} \cdot \frac{8}{27}$	$\frac{4}{9} \cdot \frac{8}{27}$	$\frac{2}{9} \cdot \frac{8}{27}$	$\frac{1}{27} \cdot \frac{8}{27}$	<u>8</u> 27
1	$\frac{8}{27} \cdot \frac{4}{9}$	$\frac{4}{9}.\frac{4}{9}$	$\frac{2}{9}.\frac{4}{9}$	$\frac{1}{27} \cdot \frac{4}{9}$	$\frac{4}{9}$
2	$\frac{8}{27} \cdot \frac{2}{9}$ $\frac{8}{8} \cdot \frac{1}{1}$	$\frac{4}{9} \cdot \frac{2}{9}$ 4 1	$\frac{2}{9} \cdot \frac{2}{9}$ 2 1	$\frac{1}{27} \cdot \frac{2}{9}$ 1 1	9
3	27 9	$\frac{7}{9} \cdot \frac{1}{27}$	$\frac{2}{9} \cdot \frac{1}{27}$	27 27	1/27
pi•	8	$\frac{4}{0}$	$\frac{2}{9}$	27	1

联合分布可以唯一确定边缘分布 但边缘分布却不能唯一确定联合分布

作业 习题3

A组: 1, 2

定义 设二维随机变量(X,Y)的分布函数为 F(x,y),若存在非负可积函数 f(x,y), 使得对于任意实数 x,y 有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) dv du$$

则称(X,Y) 为二维连续型随机变量, f(x,y) 为(X,Y) 的联合密度函数 简称为联合密度或概率密度

联合密度与联合分布函数的性质

$$f(x,y) \ge 0$$

□ 对每个变元连续,在

$$\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$$

□ 塔尔里帕兰的区域,则 点处

$$P((X,Y) \in G) = \iint_G f(x,y) dxdy$$

解读

联合密度与联合分布函数的性质

与离散型随机变量相同,已知联合分布可以求得边缘分布;反之则不能唯一确定.

□ 边缘分布与边缘密度函数

$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) dv du$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, v) dv$$

$$F_{Y}(y) = \int_{-\infty}^{y} \int_{-\infty}^{+\infty} f(u, v) du dv$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(u, y) du$$

例4 设二维连续型随机变量(X,Y) 的联合密度为

$$f(x,y) = \begin{cases} kxy, & 0 \le x \le y, 0 \le y \le 1, \\ 0, & 其他 \end{cases}$$

其中k为常数. 求

- (1) 常数 k;
- (2) $P(X + Y \square 1), P(X < 0.5);$
- (3) 边缘密度函数.

$$D = \{(x, y) | 0 \le x \le y, 0 \le y \le 1\}$$

(1)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$\implies \iint_D f(x,y) dx dy = 1$$

$$\int_0^1 dy \int_0^v kxy dx$$

$$= k \int_0^1 y \frac{y^2}{2} dy = \frac{k}{8}$$

$$\Rightarrow k = 8$$

(2)
$$P(X + Y \ge 1)$$

= $\int_{0.5}^{1} dy \int_{1-y}^{y} 8xy dx$
= $\frac{5}{6}$

$$P(X < 0.5)$$

$$= \int_0^{0.5} dx \int_x^1 8xy dy$$

$$= \frac{7}{16}$$

(3) 可以直接由联合密度求边缘密度

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, v) dv$$

$$= \begin{cases} \int_{x}^{1} 8xv dv, & 0 \le x < 1 \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} 4x - 4x^{3}, & 0 \le x < 1 \\ 0, & \text{ 其他} \end{cases}$$

常见的连续型二维随机变量的分布

区域G上的均匀分布,记作U(G)

设区域G 是平面上的有界区域, 其面积为A(>0)

若二维随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} \frac{1}{A}, & (x,y) \in G \\ 0, & 其他 \end{cases}$$

则称(X,Y) 服从区域G上的均匀分布

口 若(X,Y)服从区域G上的均匀分布,则

□ G1 □ G, 设G1的面积

$$P((X,Y) \in G_1) = \frac{A_1}{A}$$

例5 设 $(X,Y) \sim G$ 上的均匀分布,其中

$$G = \{(x, y) | 0 \le y \le x, 0 \le x \le 1\}$$

- $\vec{x}(X,Y)$ 在平面上的落点到y 轴距离小于 0.3的概率

$$f(x,y) = \begin{cases} 2, & 0 \le y \le x, 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$

$$P(Y > X^{2})$$

$$= \int_{0}^{1} dx \int_{x^{2}}^{x} 2 dy$$

(3)
$$P(|X| < 0.3)$$

= $P(-0.3 < X < 0.3)$

$$=2\cdot\frac{1}{2}\cdot(0.3)^2=0.09$$

二维正态分布

若二维随机变量(X,Y)的联合密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \times e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]} - \infty < x < +\infty, -\infty < y < +\infty$$

则称(*X*,*Y*) 服从参数为[]1,[]12,[]2,[]22,[]的 正态分布, 记作(*X*,*Y*) ~ N([]1,[]12; []2,[]22; [])

其中[]1,[]2>0,-1<[]<1

正态分布的边缘分布仍为正态分布

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, -\infty < x < +\infty$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < +\infty$$

作业 习题3

A组: 3, 4, 12, 14