

Constraint-based Modeling of Metabolic Networks

Alexander Bockmayr
Freie Universität Berlin

Research Center MATHEON

Mathematics for key technologies

Metabolic networks

http://web.expasy.org/pathways/

Importance

- Biology
 - Cell metabolism
 - Catabolism, anabolism
- Medicine
 - Metabolic disorders
 - Cancer
- Biotechnology
 - Biofuel, e.g. phototrophic organims
 - Bioleaching

Mathematical representation

Algebraic description

Stoichiometric matrix

 $S \in \mathbb{R}^{m \times n}$

- ▶ Rows \rightsquigarrow internal metabolites i = 1, ..., m
- ► Columns \rightsquigarrow internal and external reactions j = 1, ..., n
- \triangleright S_{ii} : stoichiometric coefficient of reactant i in reaction j
- Set of irreversible reactions

Irr

Metabolic model

$$\mathscr{M} = (S, \mathit{Irr})$$

1. Kinetic modeling

- Metabolites i and reactions j
- \triangleright $C_i(t)$: metabolite concentrations at time t
- $v_j = v_j(C, k)$: reaction rates, depending on kinetic law and kinetic parameters k
- ⊳ S_{ii}: stoichiometric coefficient

$$\frac{dC_i}{dt} = \sum_{i=1}^n S_{ij} v_j$$
 or $\frac{dC}{dt} = S \cdot v(C, k)$

System of ordinary differential equations (ODEs)

$$\begin{pmatrix} dC_1/dt \\ dC_2/dt \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} v_1(C,k) \\ v_2(C,k) \\ v_3(C,k) \end{pmatrix}$$

$$v_1(C,k) = v_{m1}/(1+(C_2/k_i)^p)$$

$$v_2(C,k) = v_{m2} \cdot C_1/(k_1 + C_1)$$

$$v_3(C,k) = v_{m3} \cdot C_2/(k_2 + C_2)$$

Which kinetic laws?

Which kinetic parameters?

2. Constraint-based modeling

- Steady-state assumption:
 - Assume metabolite concentrations C_i and reaction rates v_j are constant \rightsquigarrow flux vector $v \in \mathbb{R}^n$

$$\sum_{j=1}^{n} S_{ij} v_{j} = 0$$
, for all $i = 1, ..., m$

▶ Thermodynamics constraints (reaction directionality):

$$v_i \ge 0$$
, if j is irreversible

 \rightsquigarrow system of linear equations and inequalities in \mathbb{R}^n

Steady-state flux cone

Set of all possible steady-state flux distributions

$$C = \{ v \in \mathbb{R}^n \mid Sv = 0, \ v_i \ge 0, \ i \in Irr \}$$

→ polyhedral cone

3. Flux balance analysis (FBA)

- Assume cellular behavior is determined by a certain biological objective.
- Determine a corresponding "best" flux distribution.
- Use mathematical optimization to predict phenotype.

$$\max\{c^T x \mid Ax < b, x \in \mathbb{R}^n\}$$

⊳ Flux balance problem (FBA)

$$\max\{c^T v \mid Sv = 0, I \le v \le u\}$$
 (FBA)

Reminder: Linear programming

Example

b Mathematically represent metabolic reactions and constraints

C Mass balance defines a system of linear equations

d Define objective function $(z = c_1^* v_1 + c_2^* v_2 \dots)$

Calculate fluxes that maximize Z

$$-V_1 + \dots = 0$$

 $V_1 - V_2 + \dots = 0$
 $V_1 - 2V_2 + \dots = 0$
 $V_2 + \dots = 0$
etc.

To predict growth, $Z = v_{\text{biomass}}$

- > E. coli metabolism
- Genome-scale reconstruction (iJO1366)
- 1336 metabolites, 2251 reactions
- Objective function: biomass
- Glucose and oxygen uptake reactions
- Aerobic and anaerobic growth
- Software: e.g. COBRA Toolbox 2.0

Orth/Thiele/Palsson 10

4. Flux variability analysis (FVA)

- Optimal solutions to FBA problems need not be unique.
- Enumerating all optimal solutions is computationally expensive.
- Alternative: Analyse flux variability

$$z_{opt} = \max\{z = c^T v \mid Sv = 0, I \le v \le u\}$$
 (FBA)

For all $j = 1, \ldots, n$:

$$\max\{\pm v_i \mid Sv = 0, \ l \le v \le u, \ c^T v = z_{opt}\}$$
 (FVA)

5. Flux coupling analysis (FCA)

Burgard et al. 04

- ho $C = \{v \mid Sv = 0, v_k \ge 0, k \in Irr\}$ flux cone
- ▷ A reaction *i* is blocked if $v_i = 0$, for all $v \in C$.
- ▶ Let i and j be two unblocked reactions.
 - ▶ *i* is directionally coupled to *j*, $i \stackrel{=0}{\rightarrow} j$, if for all $v \in C$, $v_i = 0$ implies $v_i = 0$.
 - ▶ *i* and *j* are partially coupled, $i \stackrel{=0}{\leftrightarrow} j$, if for all $v \in C$, $v_i = 0$ is equivalent to $v_j = 0$.
 - ▶ *i* and *j* are fully coupled, $i \backsim^{\lambda} j$, if there exists $\lambda \in \mathbb{R} \setminus \{0\}$ such that for all $v \in C$, $v_j = \lambda v_j$.
- $\triangleright i \hookrightarrow^{\lambda} j$ implies $i \stackrel{=0}{\leftrightarrow} j$, which is equivalent to $i \stackrel{=0}{\rightarrow} j$ and $j \stackrel{=0}{\rightarrow} i$.

$$\begin{array}{cccc} 2 & \stackrel{=0}{\rightarrow} & 3 \\ 3 & \stackrel{=0}{\rightarrow} & 2 \\ 4 & \stackrel{=0}{\rightarrow} & 1,2,3,5,6 \\ 5 & \stackrel{=0}{\rightarrow} & 6 \\ 6 & \stackrel{=0}{\rightarrow} & 5 \end{array}$$

LP-based flux coupling analysis

▶ Reaction i is blocked iff

$$\max\{\pm v_i \mid Sv = 0, v_k \ge 0, k \in Irr\} = 0$$

▶ Two unblocked reactions *i* and *j* are directionally coupled, i.e., $i \stackrel{=0}{\rightarrow} j$ iff

$$\max\{\pm v_i \mid Sv = 0, v_k \ge 0, k \in Irr, v_i = 0\} = 0$$

 $\triangleright O(n^2)$ linear programming problems

Fast Flux Coupling Calculation F2C2

Larhlimi/David/Selbig/Bockmayr 12

Network	FFCA		F2C2	
	#LPs	Time	#LPs	Time
M. barkeri, iAF692	301975	59m40s	774	7s
S. cerevisiae, iND750	472629	1h50m17s	1280	21s
M. tuberculosis, iNJ661	556504	3h5m36s	1506	22s
E. coli, iJR904	655437	2h40m33s	1580	26s
E. coli, iAF1260	4256786	4d31m26s	3309	2m47s
E. coli, iJO1366	4877262	4d5h30m46s	3955	3m55s
H. sapiens, Recon1	4566304	4d18h3m37s	3903	5m20s

6. Elementary flux modes

Schuster/Hilgetag'94

- ho $C = \{v \in \mathbb{R}^n \mid Sv = 0, v_i \ge 0, i \in Irr\}$ steady-state flux cone
- ▷ Support of $v \in \mathbb{R}^n$: $supp(v) = \{i \in \{1, ..., n\} \mid v_i \neq 0\}$.
- ▶ Elementary flux mode (EFM): Flux vector $v \in C \setminus \{0\}$ with minimal support, i.e., there is no $v' \in C \setminus \{0\}$ with $supp(v') \subsetneq supp(v)$.

$$\textbf{e}^1 = (1,1,1,1,0,0), \quad \textbf{e}^2 = (-1,-1,0,0,1,1), \quad \textbf{e}^3 = (0,0,1,1,1,1)$$

Computing EFMs

- ▶ If all reactions are irreversible, EFMs correspond to extreme rays of the flux cone (Gagneur/Klamt 04).
- ▷ EFMs can be computed by algorithms that enumerate the extreme rays of a pointed cone → double description method
- Software
 - Metatool (Pfeiffer et al. 99, Univ. Jena)
 - efmtool (Terzer 09, ETH Zurich)
- ▶ Enumerating EFMs is computionally hard (Acuña et al. 09 and 10).

MILP to enumerate shortest EFMs

de Figueiredo et al. 09

Assume all reactions are irreversible.

$$\min \sum_{j=1}^n a_j$$

$$Sv = 0, v \ge 0,$$

$$a_j \le v_j \le M a_j, \quad \text{for } j = 1, \dots, n, \quad \text{``BigM''}$$

$$\sum_{j=1}^n a_j \ge 1,$$

$$v \in \mathbb{R}^n, a \in \{0,1\}^n$$

Forbidding the *i*-th solution (v^i, a^i) :

$$\sum_{j \in supp(v^i)} a_j \le |supp(v^i)| - 1, \text{ for } i = 1, 2, \dots, k \text{ "no-good cut"}$$

Constraint-based analysis methods

- Metabolic networks at steady state
- Steady-state flux cone
- ▶ FBA, FVA, FCA
- Elementary flux modes

- ▶ Terzer M, Maynard ND, Covert MW, Stelling J. Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med. 2009 Nov-Dec;1(3):285-97.
- Orth JD, Thiele I, Palsson B. What is flux balance analysis? Nat Biotechnol. 2010 Mar;28(3):245-8.
- ▶ Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol. 2012 10(4):291-305.