Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$-\frac{2ik(t_{1}\!-\!2t_{3})}{(1\!+\!2k^{2})(3t_{1}t_{3}\!+\!2k^{2}(r_{1}\!+\!r_{5})(t_{1}\!+\!t_{3}))}$	$\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}lpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 (r_1+r_5) (t_1+t_3))}$	$\frac{6k^{2}(r_{1}+r_{5})+t_{1}+4t_{3}}{(1+2k^{2})^{2}(3t_{1}t_{3}+2k^{2}(r_{1}+r_{5})(t_{1}+t_{3}))}$	0	$-\frac{i\sqrt{2}k(6k^2(r_1+r_5)+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2(r_1+r_5)(t_1+t_3)}$	$-\frac{\sqrt{2} \ (t_1-2 t_3)}{(1+2 k^2) (3 t_1 t_3 + 2 k^2 (r_1 + r_5) (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2(r_1+r_5)(t_1+t_3))}$
${\tau_1^{\#1}}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)\cdot kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{lpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$	

	$\omega_0^{\sharp 1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	-t ₁

$\omega_{2^{^{-}}}^{\#1}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2+}^{\#1}$ $\beta_{2+}^{\#1}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} +^{lphaeta}$	$f_{2+}^{#1} +^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1}^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 \left(r_1 + r_5 \right) + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3} i k (t_1 - 2 t_3)$
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ik(t_1-2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

Quadratic (free) action

 $S_{F} == \\ \iiint \left(\frac{1}{6} \left(-2 \left(t_{1} - 2 t_{3}\right) \omega_{i}^{\alpha i} \omega_{\kappa \alpha}^{\kappa} - 6 t_{1} \omega_{i}^{\kappa \lambda} \omega_{\kappa \lambda}^{i} + 6 f^{\alpha \beta} \tau_{\alpha \beta} + 6 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}^{-1} \right) \right) \\ = Gr_{5} \partial_{i} \omega^{\kappa \lambda}_{\kappa} \partial^{i} \omega_{\lambda}^{\alpha}_{\alpha} - 4 r_{1} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - 4 r_{1} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} + \\ + 4 r_{1} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\theta \alpha \beta} - 6 r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} + 6 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha}_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda}^{-1} - \\ 6 r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 12 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - 3 t_{1} \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - 3 t_{1} \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \\ 3 t_{1} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda}^{i} + 2 t_{1} \omega_{\kappa \alpha}^{\alpha} \partial^{\kappa} f_{i}^{i} - 4 t_{3} \omega_{\kappa \alpha}^{\alpha} \partial^{\kappa} f_{i}^{i} + 2 t_{1} \omega_{\kappa \lambda}^{\lambda} \partial^{\kappa} f_{i}^{i} - \\ 4 t_{3} \omega_{\kappa \lambda}^{\lambda} \partial^{\kappa} f_{i}^{i} + 4 t_{1} \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f_{i}^{i} - 8 t_{3} \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f_{i}^{i} - 2 t_{1} \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{i}^{i} + \\ 4 t_{3} \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{i}^{i} + 12 t_{1} \omega_{i\kappa \theta} \partial^{\kappa} f_{i}^{\theta} - 2 t_{1} \omega_{i\alpha}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \omega_{i\alpha}^{\alpha} \partial^{\kappa} f_{\kappa}^{i} - \\ 2 t_{1} \omega_{i\lambda}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} + 4 t_{3} \omega_{i\lambda}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} + 3 t_{1} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\lambda \alpha} + 3 t_{1} \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} + \\ 3 t_{1} \partial_{\kappa} f_{\theta}^{\lambda} \partial^{\kappa} f_{\lambda}^{\theta} - 2 t_{1} \partial^{\alpha} f_{\alpha}^{\lambda} \partial^{\kappa} f_{\lambda \kappa} + 4 t_{3} \partial^{\alpha} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda \kappa} + 4 r_{1} \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \\ 4 r_{1} \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} + 4 r_{1} \partial^{\beta} \omega_{i}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{i} - 16 r_{1} \partial^{\beta} \omega_{i}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{i} + \\ 6 r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha} \theta^{\partial} \partial^{\kappa} \omega^{\kappa} \partial^{\kappa} \partial^{\kappa}$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#_{1}}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

Source constraints/gauge generators	uge generators
SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	1
$t_{1}^{\#2}\alpha + 2ik \sigma_{1}^{\#2}\alpha = 0$ 3	3
$\tau_{1}^{\#_{1}}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 \ \ 3$	3
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta = 0$ 5	5
Total constraints:	16

Massive and massless spectra

	Massive particle			
	Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))}>0$		
?	Polarisations:	3		
٠	Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$		
	Spin:	1		
	Parity:	Odd		

Massive particle				
Pole residue:	$-\frac{1}{r_1} > 0$			
Polarisations:	5			
Square mass:	$-\frac{t_1}{2r_1} > 0$			
Spin:	2			
Parity:	Odd			

(No massless particles)

Unitarity conditions