

# **SmartBot Core V1.1**

The full SmartBot Core V1.1 project is available at: https://github.com/void0x11/SmartBot

#### 1 Overview

**SmartBot Core V1.1** is a professionally engineered, four-layer control PCB developed to serve as the central brain of modern autonomous or semi-autonomous robots. It combines compact hardware design with advanced electrical protection and power routing mechanisms, making it ideal for both prototyping and final product integration.

This board is designed to handle:

- **Robust power management:** Supports dual battery sources with automatic failover via a built-in Power Multiplexer (MUX), ensuring uninterrupted operation during battery depletion or switching.
- Reliable communication: Provides a dedicated USB-B port for serial communication and firmware uploading via a CH340G USB-to-Serial interface, simplifying debugging and integration with development environments like Arduino IDE.
- Motor and encoder interfacing: Integrates an L298N motor driver IC and supports up to 3 motor channels with 4 independent quadrature encoder inputs, making it suitable for wheeled mobile robots or robotic arms.
- **Signal clarity and EMI reduction**: Built on a 4-layer FR4 PCB with internal ground and power planes, combined with GND stitching vias for clean signal referencing and noise reduction.
- **User diagnostics:** Equipped with multiple onboard status LEDs for battery selection, voltage rails (12V, 5V, MCU power), and power presence, enabling easy visual diagnostics and field maintenance.
- **Clean expandability:** All interfaces such as I2C, UART, ultrasonic sensor, and user buttons are broken out and labeled clearly, allowing quick connection to external modules without clutter or confusion.

This board is particularly suited for:

- Educational robots used in labs, classrooms, and competitions
- Smart automation prototypes with modular design requirements
- Battery-powered mobile platforms with multiple actuators and sensors
- Research and development kits for embedded systems or motion control

## **2 Functional Description**

- Power MUX Module: Automatically selects between two DC sources (BAT1 and BAT2). A dual MOSFET configuration ensures seamless failover in case of main battery failure. Each source is filtered and passed through current-limiting resistors and LEDs for real-time source indication.
- Power Protection Module: Implements over-current and over-voltage protection using a surface-mounted fuse and a bidirectional TVS diode. It safeguards downstream logic and motor driver components from power surges up to  $18\,\mathrm{V}$  and currents over  $1.1\,\mathrm{A}$ .
- USB-B UART Interface: Provides a direct, external access point to the microcontroller's UART. This
  allows programming and debugging through a USB-B port routed to a CH340G USB-to-Serial converter.
- Microcontroller Core: An ATmega2560 is used as the central processor. It interfaces with 4 encoder inputs, 3 motor channels, and various peripheral I/Os (sensors, buttons, LCD). All key pins are labeled and broken out.
- Motor Driver Integration: The L298N IC is directly embedded on the PCB, minimizing layout footprint. It supports up to 3 motor channels. Flyback diodes and current sensing resistors are included for safe operation.
- **GND Shielding:** Multiple plated through holes and vias are tied to the internal GND layer, ensuring low-noise reference planes and shielding critical signals from EMI. A full copper GND shield surrounds the board edges.
- Indicators: Three primary LEDs indicate Power status, Battery 1 active, and Battery 2 active. They are connected through 330–470  $\Omega$  current-limiting resistors and positioned on the PCB front edge for easy visibility.

## 3 Technical Specifications

| Parameter               | Unit        | Value                         |
|-------------------------|-------------|-------------------------------|
| Operating Voltage Range | V           | 12                            |
| Max Continuous Current  | Α           | 1.1                           |
| TVS Clamping Voltage    | V           | 18                            |
| Fuse Rating             | Α           | 1.1 (SMD replaceable)         |
| Logic Level Voltage     | V           | 5                             |
| Number of Layers        | _           | 4                             |
| Board Material          | _           | FR4 (1.6mm thickness)         |
| Microcontroller         | _           | ATmega2560                    |
| I/O Pins Available      | _           | 54 Digital, 16 Analog         |
| PWM Channels            | _           | 14                            |
| ADC Resolution          | bits        | 10                            |
| Motor Channels          | _           | 3 (via L298N)                 |
| Encoder Inputs          | _           | 4                             |
| UART Interfaces         | _           | 1 (USB-B to CH340G)           |
| Protection Features     | _           | TVS + Fuse + Reverse Polarity |
| Operating Temperature   | $^{\circ}C$ | -20 to +70                    |
| Board Dimensions        | mm          | TBD                           |
| Mounting Holes          | -           | 4 (M3 compatible)             |

#### 4 Pinout and Indicators

| Pin Label                     | Function                                                     |
|-------------------------------|--------------------------------------------------------------|
| VIN                           | Main External Power Input (Battery1 Using DG-Jack Connector) |
| BAT1 / BAT2                   | Dual battery source terminals (Main and Backup Battery)      |
| GND                           | Common Ground connection                                     |
| USB-B Port                    | UART connection for Arduino programming/debugging            |
| TX / RX                       | UART Serial interface to MCU                                 |
| OUT1 - OUT4                   | Motor driver outputs (up to 4 motors supported)              |
| ENC1 - ENC4 (CHA/CHB/+5V/GND) | Quadrature encoder inputs                                    |
| LCD (SDA/SCL/+5V/GND)         | I2C LCD interface                                            |
| TRIG / ECHO                   | Ultrasonic sensor interface                                  |
| RESET (S2)                    | Arduino reset button (For clear code)                        |
| Power Switch (S1)             | Toggle main system ON/OFF                                    |
| BAT1_LED / BAT2_LED           | Indicators for active battery source                         |
| PWR_STAT                      | General system power status indicator                        |
| MCU ON / 12V OK / 5V OK       | LED indicators for onboard voltage rails                     |

## 5 Absolute Maximum Ratings

| Parameter             | Max Value  | Unit |
|-----------------------|------------|------|
| Input Voltage (VIN)   | 18         | V    |
| Output Current (OUTx) | 1.0        | Α    |
| Logic Voltage (MCU)   | 5          | V    |
| Storage Temperature   | -40 to +85 | °C   |
| Operating Temperature | -20 to +70 | °C   |

Note: The maximum input current the circuit is rated for is  $1.1\,\mathrm{A}$ . If this value is exceeded, the onboard surface-mount fuse will blow to prevent damage to circuit components. The fuse is easily replaceable and can be re-soldered or swapped during maintenance.

# 6 Layer Stackup

- Layer 1 (Top): Surface-mounted signal routing
- Layer 2: GND reference and light signals
- Layer 3: Power delivery (Main power + auxiliary traces)
- Layer 4 (Bottom): Core routing layer (MainCU)

All ground planes are tightly coupled through dense stitching vias and perimeter pad holes, forming a continuous low-impedance ground network. This architecture significantly enhances EMI suppression and ensures consistent signal referencing across the PCB, especially in high-speed or sensitive analog regions.



Figure 1: Layer 1: Surface-mounted Signal Routing



Figure 3: Layer 3: Power Plane and Auxiliary Routes



Figure 2: Layer 2: Ground Reference and Signal Traces



Figure 4: Layer 4: Core Routing Layer

# 7 Electrical Characteristics

| Parameter                 | Min       | Тур  | Max        |
|---------------------------|-----------|------|------------|
| Supply Voltage (VIN)      | 7         | 12   | 18 V       |
| Logic High Level (MCU IO) | 2.0       | 5.0  | 5.5 V      |
| Motor Output Voltage      | VIN - 2.0 | _    | VIN        |
| UART Baud Rate            | _         | 9600 | 115200 bps |
| Encoder Supply Voltage    | 4.8       | 5.0  | 5.2 V      |



Figure 5: SmartBot Core V1.1 - Full Schematic

| Version | Date         | Description                                                        |
|---------|--------------|--------------------------------------------------------------------|
| V1.0    | May 2, 2025  | Initial release with basic motor driver and encoder support        |
| V1.01   | May 4, 2025  | Added USB-B UART external interface                                |
| V1.02   | May 7, 2025  | Integrated Power MUX circuit and LED indicators                    |
| V1.03   | May 12, 2025 | Improved GND shielding and PCB 4-layer restructuring               |
| V1.04   | May 20, 2025 | Added full encoder input headers and button support                |
| V1.1    | May 28, 2025 | Final layout with all diagnostics, labels, and protection circuits |



Figure 6: SmartBot Core V1.1 - Board Dimensions



Figure 7: Typical Application: Full PCB Shape 90 degree left



Figure 8: Typical Application: Full PCB Shape 90 degree right



Figure 9: Typical Application: Full PCB Shape centered



Figure 10: Typical Application: Full PCB Shape zoomed



Figure 11: Typical Application: Full PCB Back Traces