Квадратичные вычеты

Определение: Зафиксируем простое число p. Для числа a, не делящегося на p, рассмотрим сравнение $x^2 \equiv a \pmod{p}$. Если это сравнение имеет решение, то число a называется квадратичным вычетом по модулю p, в противном случае — квадратичным невычетом по модулю p. Достаточно часто слово «квадратичный» мы будем опускать.

Свойства:

- П Пусть p > 2. Докажите, что
 - (a) по модулю p существует ровно $\frac{p-1}{2}$ квадратичных вычетов и столько же невычетов;
 - (b) произведение двух квадратичных вычетов вычет;
 - (с) произведение вычета на невычет невычет;
 - (d) произведение двух невычетов вычет.
- $\boxed{2}$ Докажите, что все квадратичные вычеты являются корнями многочлена $x^{\frac{p-1}{2}}-1\in \mathbb{F}_p[x],$ а все невычеты корнями многочлена $x^{\frac{p-1}{2}}+1\in \mathbb{F}_p[x].$

Определение: Символом Лежандра называется выражение, обозначаемое $\left(\frac{a}{p}\right)$, равное 1, если a — квадратичный вычет по модулю p; равное -1, если a — невычет по модулю p и 0, если a кратно p.

Из свойств 1 и 2 следует, что $\left(\frac{a}{p}\right)\cdot\left(\frac{b}{p}\right)=\left(\frac{ab}{p}\right)$, а также $\left(\frac{a}{p}\right)\equiv a^{\frac{p-1}{2}}\pmod{p}$.

Задачи:

- Пусть p=163, $\left(\frac{a}{p}\right)$ символ Лежандра. Чему равно $\sum_{a=1}^{p}\left(\frac{a}{p}\right)$?
- [2] Докажите, что если $x^2 + 1$ делится на p, то p имеет вид 4k + 1.
- Покажите, что для каждого простого числа p существуют целые числа a и b, такие что a^2+b^2+1 кратно p.
- $\boxed{4}$ Докажите, что $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$.
- [5] Решите в целых числах уравнение $z(y^2 5) = x^2 + 1$.
- [6] Докажите, что уравнение $4xy x y = z^2$ (a) не имеет решений в натуральных числах; (b) имеет бесконечно много решений в целых числах.
- [7] Решите в целых числах уравнение $x^3 + 7 = y^2$.
- [8] Докажите, что $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.

9 Лемма Эйзенштейна Докажите, что

$$\left(\frac{a}{p}\right) = (-1)^{\sum_{n=1}^{(p-1)/2} \left\lfloor \frac{2an}{p} \right\rfloor}.$$

- 10 Четность числа $\varepsilon(q)$ совпадает с четностью числа целых точек в треугольнике, заданном неравенствами $0 < x < \frac{p}{2}, 0 < y < \frac{q}{2}, y < \frac{qx}{p}$
- 11 **Квадратичный закон взаимности** Для различных нечетных простых чисел имеет место равенство

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

- 12 Является ли число 74 квадратичным вычетом по модулю 131?
- 13 Целое число a таково, что a^2-6a+3 делится на некоторое простое p. Докажите, что существует целое число b такое, что $b^2-2b-53$ делится на p.
- Дано натуральное a, не делящееся на простое p. Рассмотрим перестановку чисел $0,1,\ldots,p-1$, на i-м месте которой стоит остаток ai от деления на p. Докажите, что эта перестановка четна при $\left(\frac{a}{p}\right)=1$ и нечетна при $\left(\frac{a}{p}\right)=-1$
- 15 Для простого p найдите значение выражения

$$\sum_{a=1}^{p-1} \left(\frac{a^2 + a}{p} \right)$$

16 Докажите, что для простого числа p>2 наименьший квадратичный невычет по модулю p меньше $1+\sqrt{p}$.