APPENDIX: EXAMPLE STUDENT LEARNING OBJECTIVES

This appendix provides examples of student learning objectives that are organized according to Marzano's taxonomy. These learning objectives are a preliminary set that will be extended and revised to match the Pitt General Chemistry curriculum.

Marzano's Learning Taxonomy:

- 1) *Retrieval* (perform a procedure, produce information on demand, determine if information is accurate, inaccurate or unknown)
- 2) Comprehension (construct symbolic representation of information, identify basic structure of information)
- 3) Analysis (Specifying, Generalizing, Error Analysis, Classify, Matching)
- 4) Knowledge Utilization (Investigate, Experiment, Problem Solve, Decision Making)

Unit 1: Atoms, Molecules, and Compounds

1.1 Atoms

- 1) Identify the number of protons, neutrons, and electrons in an atom or ion based on the mass number, atomic number, and the overall charge
- 2) Draw a model or appropriate symbol to accurately represent a particular element, ion, or isotope
- 3) Convert quantities representing mass, numbers of atoms, or moles of an element
- 4) Decide the most appropriate way to express the amount of matter based on how the information will be used

1.2 Compounds

- 1) Identify whether a compound is ionic or molecular based on the type of elements that make up their composition
- 2) Draw an appropriate microscopic representation depicting both the chemical composition and phase (solid, liquid, gas)
- 3) Specify the name and symbolic notation representing an ionic or molecular binary compound using an appropriate microscopic or symbolic model
- 4) Decide what type of microscopic composition should be selected based on a desired observation or application of the material.

1.3 Solutions

- 1) Identify whether a compound is soluble or not based on the solubility rules
- 2) Represent a solution both qualitatively through an appropriate microscopic representation and quantitatively in terms of molarity
- 3) Identify all species present at any point upon the addition of a series of aqueous ions to the same beaker and their concentration in terms of molarity
- 4) Describe an appropriate procedure to make a solution based on available materials and intended use

Unit 2: Fundamentals of Chemical Reactions and Heats of Reaction

2.1 Reactions

- 1) Identify appropriate molar quantities based on chemical formulas and reaction equations
- 2) Represent a balanced chemical reaction symbolically and draw an appropriate microscopic representation illustrating the effect of a limiting reactant
- 3) Calculate specific quantities representing mass, numbers of atoms, or moles for a chemical reaction
- 4) Propose the most likely scenario that would generate a particular observation resulting from a chemical reaction

2.2 Bond Energy

- 1) Define what is meant by enthalpy of atom combination and the terms exothermic and endothermic in terms bond making or breaking processes
- 2) Draw a reaction energy diagram based on energies of atom combination data and describe how it relates overall energy of reaction
- 3) Analyze and compare individual molecular bond energies and overall reaction energies based on bond order, bond length or enthalpies atom combination
- 4) Select the best compound for a reaction based on an assessment of the amount of energy absorbed or released.

2.3 TBD

Unit 3: Origins of Properties in Quantum Mechanics

3.1 Shell Model

- 1) Identify the key terms of Coulomb's law and describe how it is used to assess the amount of attraction or repulsion between two particles
- 2) Describe the relationship between potential energy, ionization energy, core charge, and distance. Use these concepts to create an appropriate shell model representation of an atom
- 3) Analyze and compare properties of elements in terms of their ionization energy based on core charge and number of shells
- 4) Decide what element best fits the properties described based on experimental data provided and justification according to Coulomb's Law

3.2 Electronic Configuration

- 1) Define what each specific quantum number is used to represent about an electron in an atom
- 2) Describe the experimental evidence justifying each of the four quantum numbers and the general region of space an electron would most likely be found (or not) based on this information

- 3) Appropriately represent and analyze features of the electron configuration or photoelectron spectra of any element
- 4) Select the best element for an application based on the energy and configuration of its electrons

3.3 TBD

Unit 4: Nature of Chemical Bonding

4.1 Molecular Bonding

- 1) Define what is meant by electronegativity and how it relates to ionization energies or AVEE trends.
- 2) Illustrate how to determine the partial charge for one particular atom type in a molecule
- 3) For a given skeletal structure, draw the "best" Lewis structure based on formal charges and describe any resonance effects on properties such as bond length and bond strength.
- 4) Propose a particular arrangement of elements that would most likely form a molecule

4.2 Molecular Structure

- 1) List the different molecular geometries and identify corresponding bond angles & hybridization
- 2) Describe valence bond theory and why hybrid orbitals are defined for atoms in a molecule
- 3) Assign molecular geometries, number of pi and sigma bonds, and assess the overall magnitude and direction molecular dipole moments
- 4) Select the best molecule for an application based on its 3D structure and polarity

4.3 MO Theory & Valence Bond Theory

- 1) Identify the types of hybrid and unhybridized orbitals associated with a type of bond and bond angle
- 2) Characterize the region of space electrons occupy in molecules based on either molecular orbital theory or valence bond theory
- 3) Compare the properties of molecules (e.g., spin, bond order, pi & sigma bonds) using an appropriate bonding theory
- 4) TBD

Unit 5: Intermolecular interactions

5.1 Ideal Gases

TBD

5.2 Molecular Forces

1) Define and list different types of intermolecular forces that exist between molecules

- 2) Draw a graph and describe differences in the system due to changes in temperature and intermolecular forces and clearly describe the types of bonds broken
- 3) Analyze and compare properties of molecules based on the types of intermolecular forces present
- 4) Select the best molecule for a desired property or application based on intermolecular forces