MATH 524 - Lecture 28 (11/30/2023) Today: * Cohomology of IK² Example 3 (Continued...)

Consider the 1-cochain $\psi = \sum_{i=0}^{2} m_i e_i^*$. It is a cocycle (trivially), as there are no 2-cochains. We show that ψ^{\perp} some multiple of e_0^* .

We show except and except. But we get these results from $\delta v_0^* = e_2^* - e_8^*$ and $\delta v_1^* = e_0^* - e_1^*$.

 $\Rightarrow y' \sim me_o^{*}$ for some $m \in \mathbb{Z}$, $m \neq 0$.

 me_o^* is not a coboundary unless m=0.

Suppose $me_{o}^{*} = S(\underbrace{\tilde{S}_{i=o}^{!}} n_{i} v_{i}^{*}) = \underbrace{\tilde{S}_{n_{i}}^{!}}(Sv_{i}^{*})$

 $= (n'_1 - n'_0) e_0^* + (n'_2 - n'_1) e_1^* + (n'_0 - n'_2) e_2^*.$ $= 0 \longrightarrow \text{needed}.$

 \Rightarrow $n_0'=n_1'=n_2'$. \Rightarrow m=0 if me_i^* is a coboundary.

Hence we conclude that $H(K) \simeq \mathbb{Z}$, and is generated by $\{C^{*}\}$, or by $\{C^{*}\}$ or $\{C^{*}\}$.

Here $H^{1}(K) \simeq H_{i}(K)$ Hi (they are both trivial for inz).

But in general, Hi(K) of Hi(K).

Here, $H^4(k) \simeq H_o(K)$ and $H^o(K) \simeq H_o(K)$, actually.

Example \neq (K lein bottle) We show that $H^2(K)$ is nontrivial. Recall, $H_2(K) = 0$.

Orient all triangles CCW. Let $\overline{\uparrow} = \sum_{i=1}^{n} f_{i}$ (all elementary 2-chains).

Then, is not a 2-cycle.

$$\partial \bar{r} = 2\bar{z}_1$$
, where $\bar{z}_1 = [a,e] + [e,d] + [d,a]$.

Let σ be a 2-simplex, [bfc] here. Then σ^* is a 2-waycle (as there are no 3-simplices). Also, σ^* is not a 2-woboundary.

For, if ϕ^1 is an arbitrary 1-cochain, then

$$\langle 8\phi^1, \bar{r} \rangle = \langle \phi^1, \partial \bar{r} \rangle = \langle \phi^1, 2\bar{z}_1 \rangle = 2\langle \phi^1, \bar{z}_1 \rangle$$
.

But $\langle \sigma^*, \bar{r} \rangle = 1$, which is odd.

 \Rightarrow \forall represents a nontrivial member of $H^2(K)$.

In fact, T^* represents an element of order 2 in $H^2(K)$, Indeed, for $\Psi^1 = \sum_{i=1}^{10} e_i^*$ as shown in the figure, $S\Psi^1 = 2T^*$.

The CCW orientation of σ agrees with that of both \bar{e}_i and e_{10} . But all other triangles in the "band"appear twice in the expression for SV^{\dagger} , once with +1 and once with -1 (as part of Se_i^* and Se_{i+1}^* ...).

Thus, for the Klein bottle, $H^2(K; \mathbb{Z}) \not\leftarrow H_2(K)$, which is yet another example where homology and cohomology groups differ in their structure.

In fact, we can show that $H^2(\mathbb{K}^2; \mathbb{Z}) \simeq \mathbb{Z}_2$.