第三节 常见分布的期望和方差

(结论证明部分主要自学)

计算工具: 高等数学中的积分计算和幂级数求和

要求: 熟记其结论

分 布	分布律或概率密度	EX	DX
0-1分布 X ~ B(1, p)	$P\{X = k\} = p^{k} (1-p)^{1-k}$ $k = 0,1$	p	p(1-p)
二项分布 $X \sim B(n, p)$	$P\{X = k\} = C_n^k p^k (1-p)^{n-k}$ $k = 0, 1, \dots, n$	np	np(1-p)
泊松分布 X ~ P(λ)	$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$ $k = 0, 1, 2, \dots$	λ	λ
几何分布 $X \sim G(p)$	$P\{X = k\} = (1-p)^{k-1} p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
均匀分布 X ~ U[a,b]	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{#$\dot{\mathbb{C}}$.} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 X ~ E(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态分布 $X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2

例 1 设随机变量 $X \sim U[0,6]$, $Y \sim E(0.5)$, 计算 $\begin{vmatrix} EX & DX \\ EY & DY \end{vmatrix}$.

解
$$EX = \frac{0+6}{2} = 3$$
, $DX = \frac{(6-0)^2}{12} = 3$, $EY = \frac{1}{0.5} = 2$, $DY = \frac{1}{0.5^2} = 4$, 所以
$$\begin{vmatrix} EX & DX \\ EY & DY \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 2 & 4 \end{vmatrix} = 6$$
.

例 2 设随机变量 $X \sim P(1)$, 求 $P\{X = E(X^2)\}$.

解 因为 $X \sim P(1)$,所以 EX = 1, DX = 1, 因此 $E(X^2) = DX + (EX)^2 = 2$,

故
$$P\{X = E(X^2)\} = P\{X = 2\} = \frac{1^2}{2!}e^{-1} = \frac{1}{2e}.$$

例 3 设甲袋中有70 只黄色乒乓球和30 只白色乒乓球, 乙袋中有45 只黄色乒乓球和5 只白色乒乓球, 现从两袋中各取一只乒乓球, 记 X 为两只乒乓球中白球的个数, 求 EX , DX .

解 设 X_1 表示从甲袋中所取一个乒乓球中白球的个数, X_2 表示从乙袋中所取一个乒乓球中白球的个数,则 $X = X_1 + X_2$,又由题意知 X_1 与 X_2 相互独立,且 $X_1 \sim B(1,0.3)$, $X_2 \sim B(1,0.1)$,则有 $EX = EX_1 + EX_2 = 0.3 + 0.1 = 0.4$, $DX = DX_1 + DX_2 = 0.3 \times 0.7 + 0.1 \times 0.9 = 0.3$.

例 4 设随机变量 X 与 Y 独立,且 $X \sim N(1,2)$, $Y \sim N(0,1)$. 试求 Z = 2X - Y + 3的密度函数 $f_Z(z)$.

解 由正态分布的性质知,Z 服从正态分布. 又因为 EX = 1, EY = 0, DX = 2, DY = 1,

所以
$$EZ = 2EX - EY + 3 = 2 \times 1 - 0 + 3 = 5$$
, $DZ = 2^2 DX + DY = 4 \times 2 + 1 = 9$,

故 $Z \sim N(5,9)$, 因此Z的密度函数为

$$f_Z(z) = \frac{1}{\sqrt{2\pi \times 3}} e^{-\frac{(z-5)^2}{2\times 9}} = \frac{1}{3\sqrt{2\pi}} e^{-\frac{(z-5)^2}{18}}, -\infty < z < +\infty.$$

练习:

1. 设二维随机变量 $(X,Y) \sim N(\mu,\mu;\sigma^2,\sigma^2;0)$,

则
$$E(XY^2) =$$
_____.

答案:
$$\mu(\mu^2 + \sigma^2)$$
.

2. 设随机变量
$$X \sim U[-1,2]$$
, $Y = \begin{cases} 1, & X > 0, \\ 0, & X = 0, \\ -1, & X < 0, \end{cases}$

则
$$DY = _____$$
. 答案: $\frac{8}{9}$.

答案:
$$\frac{8}{9}$$
.

3. 设随机变量 X 的分布函数为

$$F(x) = 0.3\Phi(x) + 0.7\Phi(\frac{x-1}{2})$$
,

其中 $\Phi(x)$ 为标准正态分布的分布函数,求EX.

答案: 0.7.