

# EN.600.475 Machine Learning

### **Linear Regression**

Raman Arora Lecture 4 February 9, 2017

- Loss and Risk
- Least squares estimation

Slides credit: Greg Shakhnarovich <sup>1</sup>

#### Review

# Review: supervised learning

- $\bullet$  Task: build a mapping from input  ${\mathcal X}$  output  ${\mathcal Y}$
- Given a training set  $(\mathbf{x}_i, y_i)$ ,  $i = 1, \dots, N$ , with  $\mathbf{x}_i \in \mathcal{X}$ ,  $y_i \in \mathcal{Y}$ .
- ullet Goal (informally): predict y accurately for future xs

regression:  $\mathcal{Y} = \mathbb{R}$  learn a (continuous) function f



classification:  $\mathcal{Y} = \{1, \dots, C\}$  learn a separator between classes



# Review: supervised learning pipeline

- Set up (define) a supervised learning problem
- Data collection for traning and test set.
- Representation choose how data are fed to the model
- Modeling Choose a hypothesis (model) class
- Estimation (learning) Find best hypothesis you can in the chosen class, given the data.
- Model (class) selection

3 ◆ ₺

#### Review

## Review: linear regression

 Two goals in mind: Explain the data Make predictions



- Model class: linear functions
- Fitting criterion, to guide selection of a function: sum of squared distances from data to the line, along y axis



# Roadmap

- General form of linear regression and least squares fit
- Loss and risk: definitions and analysis
- Analysis of error in empirical risk minimization

10

**∢** 🗗 ▶

#### Linear regression

## Multiple input variables

- ullet Can consider additional features; e.g.,  $x_1$  horsepower and  $x_2$  vehicle weight.
- ullet We now have mapping from  ${f x}=(x_1,x_2)\in \mathbb{R}^2$  to y



colorbar: one possible way to convey multi-dimensional plots

# Fitting a plane to data

ullet Can use the same criterion: minimize sum of square distances along y-axis



12

**∢** 🗗 ▶

Linear regression

# **Linear functions**

• General form:

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$
$$= \mathbf{w} \cdot \mathbf{x}$$

denoting  $x_0 \equiv 1$ 

- ullet 1D case  $(\mathcal{X}=\mathbb{R})$ : a line
- ullet  $\mathcal{X}=\mathbb{R}^2$ : a plane
- ullet Hyperplane in general,  $d ext{-}D$  case.

### **Notation**

We will mostly stick to these throughout the course:

 $\mathbf{x}_i$  the *i*-th data point in  $\mathcal{X}$  (column vector)

Often 
$$\mathcal{X} \equiv \mathbb{R}^d$$
, so that  $\mathbf{x}_i = [x_{i1}, \dots, x_{id}]$ 

Often assume also  $x_{i0} \equiv 1$ 

- $y_i$  the label of the *i*-th data point;  $y_i \in \mathcal{Y}$
- $\mathbf{x}_0, y_0$  a single test point and its (unknown) label
- **X** the  $N \times d$  data matrix where *i*-th row is  $\mathbf{x}_i$
- $\mathbf{y}$  the label vector  $\mathbf{y} = [y_1, \dots, y_N]$
- $\mathbf{w} \cdot \mathbf{x}$  inner (dot) product,  $\sum_j w_j x_j$  sometimes write  $\mathbf{w}^T \mathbf{x}$

14

**∢** 🗗 ▶

#### Loss and risk

### Loss function

- ullet Recall: target labels are in  ${\mathcal Y}$  (e.g., regression:  ${\mathcal Y}\equiv {\mathbb R})$
- A *loss function*  $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$  maps prediction to cost, given true value:
  - $\ell(\hat{y},y)$  defines the penalty paid for predicting  $\hat{y}$  when the true value is y.
- Standard choice for regression: squared loss  $\ell(\hat{y}, y) = (\hat{y} y)^2$  is it a good loss function?..
- It is symmetric (sign of mistake doesn't matter); non-negative; gives zero loss for correct prediction
- Vaguely justifiable as "energy" of something
- Penalizes quite harshly for larger mistakes

## **Empirical risk**

- We consider a *parametric* function  $f(\mathbf{x}; \mathbf{w})$ E.g., linear function:  $f(\mathbf{x}; \mathbf{w}) = w_0 + \sum_{j=1}^d w_j x_{ij} = \mathbf{w} \cdot \mathbf{x}_i$
- The *empirical* risk of function  $y = f(\mathbf{x}; \mathbf{w})$  on a set  $\mathbf{X}$ :

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \ell(f(\mathbf{x}_i; \mathbf{w}), y_i)$$

- LSQ minimizes the empirical risk when  $\ell$  is squared loss.
- We care about accuracy of predicting labels for new examples.
  Why/when does empirical risk minimization help us achieve that?

18 ∄ →

#### Loss and risk

### Risk: empirical and expected

- Fundamental assumption: example  $\mathbf{x}/label\ y$  are drawn from a joint probability distribution  $p(\mathbf{x},y)$ .
- Data are i.i.d.: same (unknown!) distribution for all pairs  $(\mathbf{x}, y)$  in both training and test data.
- We can measure the empirical risk on training set

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \ell(f(\mathbf{x}_i; \mathbf{w}), y_i)$$

• The ultimate goal is to minimize the expected loss, also known as risk:

$$R(\mathbf{w}) = E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[ \ell \left( f(\mathbf{x}_0; \mathbf{w}), y_0 \right) \right]$$

### Risk: empirical and expected

• Empirical risk:

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \ell(f(\mathbf{x}_i, \mathbf{w}), y_i)$$

Risk:

$$R(\mathbf{w}) = E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[ \ell \left( f(\mathbf{x}_0, \mathbf{w}), y_0 \right) \right]$$

- Empirical risk minimization (ERM) approach: to the extent that the training set is a representative of the underlying distribution  $p(\mathbf{x}, y)$ , the empirical loss serves as a proxy for the risk (expected loss).
- ullet Technically: estimate  $p(\mathbf{x},y)$  by the *empirical distribution* of data.

20



#### Loss and risk

### **Learning via empirical risk minimization**

### Two steps:

- Select a restricted class  $\mathcal{H}$  of hypotheses  $f: \mathcal{X} \to \mathcal{Y}$ Here: linear functions parametrized by  $\mathbf{w}: f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \mathbf{x}$
- Select a hypothesis  $f^* \in \mathcal{H}$  based on training set Here: minimize empirical squared loss, i.e., select  $f(\mathbf{x}; \mathbf{w}^*)$  where

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

• How do we find  $\widehat{\mathbf{w}} = [\widehat{w}_0, \widehat{w}_1, \dots, \widehat{w}_d]$  ?

# Least squares: estimation

ullet We need to minimize  $\widehat{R}_n(\mathbf{w})$  w.r.t.  $\mathbf{w}$ 

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

• Necessary condition to minimize  $\widehat{R}_n(\mathbf{w})$ :

$$\frac{\partial \widehat{R}_n(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0},$$

i.e., derivatives w.r.t.  $w_0, w_1, \ldots, w_d$  must all be zero.

#### Least squares estimation

### Matrix derivatives

• Scalar valued function of one variable

$$f: \mathbb{R} o \mathbb{R}$$
 derivative:  $\frac{df}{dx}$ 

Scalar valued function of multiple scalar variables

$$f: \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{d ext{times}} o \mathbb{R}$$
 gradient:  $\nabla f = \left[ \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d} \right]$ 

ullet If we collect multiple variables in a vector:  $\mathbf{x} \in \mathbb{R}^d$ :

$$\nabla f = \frac{\partial f}{\partial \mathbf{x}}$$

derivative of f w.r.t.  $\mathbf x$  has the same dimension as  $\mathbf x$ 

## Least squares: estimation

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

$$\frac{\partial \widehat{R}_n(\mathbf{w})}{\partial w_0} = \frac{1}{N} \sum_{i=1}^N \frac{\partial}{\partial w_0} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 = 0$$

$$\Rightarrow \sum_{i=1}^N (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$

- $y_i \mathbf{w} \cdot \mathbf{x}_i$  is the *prediction error* on the *i*-th example.
- Necessary condition for optimal w is that the errors have zero mean. (why does it make sense?)

26

∢♬♪

#### Least squares estimation

### Least squares: estimation

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

$$\frac{\partial \widehat{R}_n(\mathbf{w})}{\partial w_j} = -\frac{2}{N} \sum_{i=1}^N (y_i - \mathbf{w} \cdot \mathbf{x}_i) x_{ij} = 0.$$

- Second necessary condition: errors are uncorrelated with the data!
   (And with any linear function of the data)
- ullet d+1 linear equations in d+1 unknowns  $w_0,w_1,\ldots,w_d$

$$\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) x_{ij} = 0 \qquad \forall j = 1 \dots, d,$$
 (1)

$$\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$
 (2)

## Least squares in matrix form

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \vdots & & \vdots & \\ 1 & x_{N1} & \cdots & x_{Nd} \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

• Predictions:  $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$ , errors:  $\mathbf{y} - \mathbf{X}\mathbf{w}$ , empirical loss:

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} (\mathbf{y} - \mathbf{X}\mathbf{w}) \cdot (\mathbf{y} - \mathbf{X}\mathbf{w}) = \frac{1}{N} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$
$$= \frac{1}{N} (\mathbf{y}^T - \mathbf{w}^T \mathbf{X}^T) (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Using 
$$(AB)^T = B^T A^T$$
,  $(A + B)^T = A^T + B^T$ ,  $(A^T)^T = A$ .

30

**∢** 🗗 ▶

#### Least squares estimation

### **Derivative of loss**

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} (\mathbf{y}^T - \mathbf{w}^T \mathbf{X}^T) (\mathbf{y} - \mathbf{X} \mathbf{w}).$$

$$\frac{\partial \mathbf{a}^T \mathbf{b}}{\partial \mathbf{a}} = \frac{\partial \mathbf{b}^T \mathbf{a}}{\partial \mathbf{a}} = \mathbf{b}, \ \frac{\partial \mathbf{a}^T \mathbf{B} \mathbf{a}}{\partial \mathbf{a}} = 2\mathbf{B} \mathbf{a}$$

$$\frac{\partial \widehat{R}_{n}(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \frac{\partial}{\partial \mathbf{w}} \left[ \mathbf{y}^{T} \mathbf{y} - \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{y} - \mathbf{y}^{T} \mathbf{X} \mathbf{w} + \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w} \right] 
= \frac{1}{N} \left[ \mathbf{0} - \mathbf{X}^{T} \mathbf{y} - (\mathbf{y}^{T} \mathbf{X})^{T} + 2 \mathbf{X}^{T} \mathbf{X} \mathbf{w} \right] 
= -\frac{2}{N} \left( \mathbf{X}^{T} \mathbf{y} - \mathbf{X}^{T} \mathbf{X} \mathbf{w} \right)$$

## Least squares solution

$$\frac{\partial \widehat{R}_n(\mathbf{w})}{\partial \mathbf{w}} = - \frac{2}{N} (\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w}) = \mathbf{0}$$
$$\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{X} \mathbf{w} \Rightarrow \widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- $\mathbf{X}^{\dagger} \triangleq (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$  is called the *Moore-Penrose pseudoinverse* of  $\mathbf{X}$ .
- Linear regression in Python:

X[:,0]=1; X[:,1::]=x # assumes X is right size
w=np.dot(np.linalg.pinv(X),y)

• Prediction: yhat=np.dot(X,w)

$$\widehat{y} = \widehat{\mathbf{w}} \cdot \mathbf{x}_0 = \mathbf{y}^T \mathbf{X}^{\dagger T} \mathbf{x}_0$$

Note: we have d+1 numbers in  $\widehat{\mathbf{w}}$  capture what the training data  $\mathbf{X}$ ,  $\mathbf{y}$  tell us about  $\mathcal{X} \to \mathcal{Y}$  under our model class

#### Least squares estimation

## Data set size and regression

- What happens when we only have a single data point (in 1D)?
  - Ill-posed problem: an infinite number of lines pass through the point and produce "perfect" fit.
- Two points in 1D?
- Two points in 2D?
- This is a general phenomenon: the amount of data needed to obtain a meaningful estimate of a model is related to the number of parameters in the model (its complexity).

# Linear regression - generalization

ullet Toy experiment: fit a line to varying number of points drawn from the same distribution  $p(\mathbf{x},y)$ 





- A paradox?
  - The more training data we have, the "worse" is the fit;
  - But at the same time our prediction ability seems to improve.