Алгебраическая геометрия

Определение 1. Кривой второго порядка называется множество точек на плоскости, задаваемых уравнением вида:

$$a_1x^2 + a_2xy + a_3y^2 + b_1x + b_2y + c = 0.$$

Теорема 1. Теорема Безу. Если кривая второго порядка имеет с другой кривой второго порядка 5 общих точек общего положения, то они совпадают.

1. Прямую, проходящую через точки A,B будем обозначать через l_{AB} . Пусть точки A,B,C,D принадлежат окружности ω , задаваемой уравнением f=0. Тогда существуют числа α и β такие, что

$$f = \alpha l_{AB} l_{CD} - \beta l_{AC} l_{BD}.$$

- **2. Теорема Паскаля.** Дана окружность ω и точка O вне неё. Через O проводится три секущие l_1, l_2, l_3 . Прямая l_1 пересекает ω в токах A_1, A_2 , прямая l_2 пересекает ω в токах A_3, A_4 , прямая l_3 в точках A_5, A_6 . Докажите, что точки пересечения пар прямых A_1A_4 и A_2A_3 , A_1A_6 и A_2A_5 , A_3A_6 и A_4A_5 лежат на одной прямой.
- **3. Теорема о бабочке.** Пусть хорды KL и MN проходят через O середину хорды AB. Тогда прямые KN и ML пересекают прямую AB в точках равноудаленных от O.
- 4. Даны две прямые $l_1 = A_1x + B_1y$ и $l_2 = A_2x + B_2y$, причём $A_1^2 + B_1^2 = A_2^2 + B_2^2 = 1$. Доказать, что прямая $l = (l_1 + l_2)/2$ биссектриса исходных прямых (Напоминание: коэффициенты A_1 , B_1 в уравнении прямой —это вектор, перпендикулярный нашей прямой с координатами (A_1, B_1)).
- **5.** а) Докажите, что биссектрисы улов треугольника пересекаются в одной точке. б) Докажите, что основания внешних биссектрис (неравнобедренного) треугольника лежат на одной прямой.
- **6.** Дан четырехугольник. В одной паре его противоположных углов провели внешние биссектрисы получили точку их пересечения. Потом в другой паре получили вторую точку. Потом противоположные стороны продлили до пересечения, получили два угла по ним аналогично построили третью точку. Докажите, что эти три точки лежат на одной прямой.