Теометрия в компьютерных приложениях

Лекция 3: Первая и вторая квадратичная формы поверхности

Богачев Николай Владимирович

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applications

29 августа 2017 г.

4.4. Первая квадратичная форма.

Пусть задана поверхность $M = r(U) \subset \mathbb{R}^N$ и пусть $P \in M$. На $T_PM \subset \mathbb{R}^N$ имеется евклидово скалярное умножение (\cdot,\cdot) . Канонический базис в точке P обозначим через $\{e_1,\ldots,e_n\}$.

Определение

Квадратичная форма, матрица G которой в каноническом базисе $\{e_1,\ldots,e_n\}$ пространства $T_P M$ является матрицей Грама этого базиса, называется первой квадратичной (фундаментальной) формой поверхности M в точке P.

Заметим, что $g_{ij}(P) = (e_i(P), e_j(P)).$

Предложение

Пусть $a,b\in T_PM$, то есть $a=\sum_{j=1}^n a_je_j$, $b=\sum_{j=1}^n b_je_j$. Тогда

$$(a,b) = \sum_{i,j=1}^{n} g_{ij} a_i b_j, \quad |a| = \sqrt{\sum_{i,j=1}^{n} g_{ij} a_i a_j}$$

Предложение

Пусть $r(\gamma(t))$ – кривая на M. Тогда длина дуги кривой от t_1 до t_2 вычисляется по формуле:

$$L(\gamma) = \int_{t_1}^{t_2} \sqrt{\sum_{i,j=1}^n g_{ij}(r(\gamma(t)))\gamma_i'(t)\gamma_j'(t)} dt$$

Предложение

Объем n-мерной области $\mathbf{r}(U_1)$ выражается по формуле

$$\operatorname{vol} \ \vec{r}(U_1) = \int \cdots \int \sqrt{\det G} \, du_1 \ldots du_n$$

4.5. Вторая квадратичная форма поверхности. Кривизны.

Определение

Поверхность размерности n в \mathbb{R}^N называется гиперповерхностью, если N=n+1.

Далее рассматриваем только гиперповерхности. В этом случае однозначно определяется вектор нормали $\mathbf{N}(P)$.

Определение

$$b(a,a)=k(a)|a|^2.$$

Предложение

$$b_{ij} = (\mathbf{N}(P), \frac{\partial^2 r}{\partial u_i \partial u_j})$$

Список литературы

- [1] Иванов, Тужилин
- [2] Иванов, Тужилин
- [3] Фоменко
- [4] Тайманов