MPG Per Transmission

EGB

June 26, 2016

The following analysis looks into the affect of miles per gallon (MPG) based on type of transmission. We look at the **mtcars** dataset and compare the impact on MPG from a manual transmission versus an automatic one. By doing the analysis below, we find that on average a *MANUAL* transmission will give you a higher MPG rate.

Getting Data

```
library(datasets)
data("mtcars")
```

Exploratory Data Analysis

```
str(mtcars)
```

```
'data.frame':
                    32 obs. of 11 variables:
   $ mpg : num
                 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
   $ cyl : num
                 6 6 4 6 8 6 8 4 4 6 ...
##
                 160 160 108 258 360 ...
   $ disp: num
   $ hp : num
                 110 110 93 110 175 105 245 62 95 123 ...
##
   $ drat: num
                 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##
                 2.62 2.88 2.32 3.21 3.44 ...
         : num
##
   $ qsec: num
                 16.5 17 18.6 19.4 17 ...
                 0 0 1 1 0 1 0 1 1 1 ...
         : num
##
                 1 1 1 0 0 0 0 0 0 0 ...
   $ am : num
   $ gear: num
                 4 4 4 3 3 3 3 4 4 4 ...
                4 4 1 1 2 1 4 2 2 4 ...
   $ carb: num
```

head(mtcars)

```
##
                      mpg cyl disp hp drat
                                                   qsec vs am gear carb
                                                wt
## Mazda RX4
                               160 110 3.90 2.620 16.46
                     21.0
                                                                        4
## Mazda RX4 Wag
                     21.0
                            6
                               160 110 3.90 2.875 17.02
                                                                   4
## Datsun 710
                     22.8
                            4
                               108 93 3.85 2.320 18.61
                                                                   4
                                                                        1
## Hornet 4 Drive
                            6
                               258 110 3.08 3.215 19.44
                                                          1
                                                                   3
                                                                        1
                     21.4
## Hornet Sportabout 18.7
                            8
                               360 175 3.15 3.440 17.02
                                                                   3
                                                                        2
                               225 105 2.76 3.460 20.22
## Valiant
                     18.1
                                                                        1
```

Standard Linear Model (LM)

```
CR <- lm(mpg ~ am, data = mtcars)
summary(CR)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
   -9.3923 -3.0923 -0.2974
                            3.2439
                                     9.5077
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 17.147
                              1.125
                                     15.247 1.13e-15 ***
                  7.245
                              1.764
                                      4.106 0.000285 ***
##
   am
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

We see that transmission is very significant in determining MPG. If you have an automatic transmission, your average MPG is 17.147 while a manual transmission your average is +7.245 more making it 24.392 MPG.

Fit with Standard LM

From the plot, we have further support that manual transmissions tend to have higher MPG's.

Fit with Standard LM and Poisson GLM

Running a Poisson GLM did not result in a better fit. It is the same as with a standard linear model.

Residuals and Residual Plots

```
n <- length(mtcars$mpg)
e <- resid(CR)
yhat <- predict(CR)
max(abs(e -(mtcars$mpg - yhat)))</pre>
```

Residuals

```
## [1] 4.840572e-14
```

```
max(abs(e - (mtcars$mpg - coef(CR)[1] - coef(CR)[2] * mtcars$am)))
```

[1] 4.840572e-14

Residual Plots

Residual Plots1

Better Residual Plots

Standard Linear Model

Poisson GLM

Confidence Intervals

```
confint(CR)

## 2.5 % 97.5 %

## (Intercept) 14.85062 19.44411

## am 3.64151 10.84837

confint(glm1)
```

```
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## (Intercept) 2.7312549 2.9484974
## mtcars$am 0.1976786 0.5070595
```

From this, we see that although the fit may not show a difference, the confidence of the Poisson GLM is greater than the standard linear model.