RSA加密算法

Ron Rivest, Adi Shemir, Len Adleman

可厉害的土豆

加密过程

步骤	说明	描述
	选择一对不相等且足够大的质数	p,q
2	计算p,q的乘积	n=p*q
3	计算n的欧拉函数	$\phi(n)=(p-1)*(q-1)$
4	选一个与φ(n)互质的整数e	1 <e<φ(n)< th=""></e<φ(n)<>
5	计算出e对于φ(n)的模反元素d	de mod $\varphi(n)=1$
6	公钥	KU=(e,n)
	私钥	KR=(d,n)

明文 M 加密 Me mod n = C

密文 C 解密 Cd mod n = M

3. 计算n的欧拉函数

- 欧拉函数是小于n的正整数中与n互质的数的数目。
- 互质是公约数只有1的两个整数,叫做互质整数。
- 质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

3. 计算n的欧拉函数

- 如果n可以分解成2个互质的整数之积,那么n的欧拉函数等于这两个因子的欧拉函数之积。
- 即若n=p*q, 且p,q互质,则φ(n)=φ(p*q)=φ(p)*φ(q)。

4. 计算模反元素d

如果两个正整数e和 $\phi(n)$ 互质,那么一定可以找到一个整数d,使得ed-1被 $\phi(n)$ 整除,或者说ed除以 $\phi(n)$ 所得余数为1。

此时,d就叫做e的模反元素。

加密 Me mod n = C 解密 Comod n = M

排排 可厉害的土豆