Course 2318 2012

Sheet 3

Due: see www.maths.tcd.ie/~rtange/teaching/algebraic_geometry/algebraic_geometry.html

Exercise 1

Let p_1, p_2, p_3, p_4 be distinct points of \mathbb{P}^2 with no 3 collinear.

- (i) Prove that there exists coordinate system, unique upto multiplication by a single nonzero scalar, in which the 4 points are (1:0:0), (0:1:0), (0:0:1) and (1:1:1).
- (ii) Find all conics passing through p_1, \ldots, p_4 and $p_5 = (a : b : c)$.

Exercise 2

Use the parametrization of the cuspidal cubic $C = \{y^2 = x^3\}$ to show that any polynomial vanishing on C is divisible by $y^2 - x^3$.

Exercise 3

Let C be the curve given by f(x,y) = 0 and $p = (a,b) \in C$. Assume that the gradient $\nabla f = (f_x, f_y)$ is nonzero at (a,b).

(i) Recall that the tangent line to C at p is defined by the equation

$$f_x(p)(x-a) + f_y(p)(y-b) = 0.$$

Show that L is the unique line through p such that f|L has a multiple root at p.

(ii) Show that the tangent line can be obtained as the limit of the secant line passing through p and another point $q \in C$ as $q \to p$.

Exercise 4

Let C be given by $y^2 = x(x-1)(x+1)$.

- (i) What is the projectivisation \widetilde{C} of C, i.e. the cubic obtained in \mathbb{P}^2 by homogenization of the equation for C? Find the point at infinity of \widetilde{C} .
- (ii) Show that \widetilde{C} is smooth.
- (iii) Choosing the origin at infinity, find all points of order 2 with respect to the group law, i.e. all points $A \in \widetilde{C}$ with 2A = A + A = 0. Hint. Use Exercise 3.