Presentation on

Digital Signal Processing Assignment

Md. Saiful Islam Sajol Matriculation no. 300 428 36 Task 1

Task 1 (a)

$$H(z)=1/2 + (1/3) \frac{z}{z-1} - \frac{1}{2z-1}$$

Task 1 (b)

$$H(z)=4+\frac{1}{2z-1}-\frac{1}{2z}$$

Task 1 (c)

a)
$$h(n)= 1/2 \delta(n)+ \delta(n-1)+1/2 \delta(n-2)$$

b)
$$H(z)=1/2 + 1/z + 1/2z^2$$

Zeros, at -1, -1 Poles at 0. 0

d) $|H(z)|=V(1.5+2\cos w+0.5\cos 2w)$

Task 2

The sample frequency of the signal is 40KHz and the signal is modulated using a 3KHz carrier signal.

The message signal is a binary signal, just two dominant phases are available in the BPSK modulated signal. The 180° shift of phase codes a '1' and the 0° of phase codes a '0'.

Task 2

Designing Band pass filter

Zeros

For zero at $+1 \rightarrow highpass$ For zero at $-1 \rightarrow lowpass$ Zeros at 1,-1 \rightarrow bandpass

H(z)=
$$\frac{(z-1)(z+1)}{(z-Re^{jw})(z-Re^{-jw})}$$

Poles

F1=3400Hz F2=2700Hz BW=f2-f1=3400-2700=700Hz Fs=40 000Hz

 $R=1-(BW/fs)*\pi$ $=1-(700/40\ 000)*\pi$ R = 0.945

 $, \omega = 2\pi (f_0 /Fs)$ $f_0 = 3000 Hz$, **ω**=0.15 π =27dgre

P1=Re^{jw} P2=Re-jw

P1=0.945(cos27+ jsin27) P2=0.945(cos27-jsin27)

The denominator of the Transfer function (z-P1)(z-P2)=(z-0.945L 27)(z-0.945L-27) $=z^2-1.684z+0.893$

$$H(z) = \frac{z^2 - 1}{z^2 - 1.684z + 0.893}$$

Reverse coefficients a0=1 a1=-1.684 a2=0.893 Forward coefficients b0-1 b1=0 b2=-1

Implementing IIR Filter

Generating a carrier clock using a sine wave

Fs is the sampling rate in samples per second 40000Hz **#s** is the number of samples in the waveform 103000 (from Source signal)

Fc=3000 Amplitude =25 (close to the IIR output)

Demodulation

Rectification

For rectification Absolute value function Is used

Restricting high frequency components By using low pass filter

For understanding the signal, the output is converted in binary form

Thank you....