sine basis 09

Design matrix

Statistics: p-values adjusted for search volume

set-	level	evel cluster-level				peak-level					mm mm mm		
р	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	$p_{ m uncorr}$	p_{FWE-c}	g corrFDR-co	T orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$			
p	С	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.702 0.773 0.464 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773	16 6 38 11 6 12 14 26 10 16 6 10 29 16	0.196 0.428 0.055 0.281 0.428 0.260 0.225 0.105 0.304 0.196 0.428 0.304 0.089 0.196	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.707 0.707 0.707 0.982 0.707 0.707 0.707 0.707 0.707 0.735 0.735 0.745 0.745	3.21 3.20 2.75 3.19 3.18 3.17 3.16 3.15 3.11 3.09 3.09 3.09	3.19 3.19 3.19 2.74 3.17 3.16 3.15 3.14 3.13 3.10 3.08 3.07 3.07	Puncorr 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	-26 52 -16 -22 28 -34 16 -16 -20 36 48 -26 14 -14	-36 34 -8 44 26 40 20 46 -12 38 -60 -2 -42 -2 -82 -32 -70 -18 -4 -28 -80 -10 32 -24 -22 58 -42 -44 -36 38	
		1.000 1.000 1.000 1.000 1.000 1.000	0.481 0.718 0.627 0.773 0.773 0.718 0.773	35 15 21 8 5 15	0.064 0.210 0.142 0.358 0.472 0.210 0.304	1.000 1.000 1.000 1.000 1.000 1.000	0.751 0.752 0.786 0.787 0.807 0.807 0.847	3.08 3.07 3.04 3.03 3.02 3.01 2.99	3.06 3.06 3.02 3.02 3.00 3.00 2.97	0.001 0.001 0.001 0.001 0.001 0.001	10 -32 -10 40 -20 14 -38	36 54 28 52 16 54 -12 -14 -86 -26 -54 -10 56 2	