HOME CHAPTERS LOGIN

17. Summary

Many local, state, and federal government agencies produce and rely upon geographic data to support their day-to-day operations. The **National Spatial Data Infrastructure (NSDI)** is meant to foster cooperation among agencies to reduce costs and increase the quality and availability of public data in the U.S. The key components of NSDI include standards, metadata, data, a clearinghouse for data dissemination, and partnerships. The seven **framework data themes** have been described as "the data backbone of the NSDI" (FGDC, 1997, p. v). This chapter and the next review the origins, characteristics and status of the framework themes. In comparison with some other developed countries, framework data are fragmentary in the U.S., largely because mapping activities at various levels of government remain inadequately coordinated.

Chapter 6 considers two of the seven framework themes: geodetic control and orthoimagery. It discusses the impact of high-accuracy satellite positioning on accuracy standards for the National Spatial Reference System—the U.S.' horizontal and vertical control networks. The chapter stresses the fact that much framework data is derived, directly or indirectly, from aerial imagery. Geospatial professionals understand how photogrammetrists compile planimetrically-correct vector data by stereoscopic analysis of aerial imagery. They also understand how orthoimages are produced and used to help keep vector data current, among other uses.

The most ambitious attempt to implement a nationwide collection of framework data is the USGS' **National Map**. Composed of some of the digital data products described in this chapter and those that follow, the proposed National Map is to include high resolution (1 m) digital orthoimagery, variable resolution (10-30 m) digital elevation data, vector transportation, hydrography, and boundaries, medium resolution (30 m) land characterization data derived from satellite imagery, and geographic names. These data are to be seamless (unlike the more than 50,000 sheets that comprise the 7.5-minute topographic quadrangle series) and continuously updated. Meanwhile, in 2005, USGS announced that two of its three National Mapping Centers (in Reston, Virginia and Rolla, Missouri) would be closed, and over 300 jobs eliminated. Although funding for the Rolla center was subsequently restored by Congress, it remains to be seen whether USGS will be sufficiently resourced to fulfill its quest for a National Map.

This textbook is used as a resource in Penn State's Online Geospatial Education online degree and certificate programs. If this topic is interesting to you and you want to learn more about online GIS and GEOINT education at Penn State, check out

our Geospatial Education Program Office.

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- ▼ Chapter 6: National Spatial Data Infrastructure I
 - 1. Overview
 - 2. National Geographic Information Strategies
 - 3. Legacy Data: USGS Topographic Maps
 - 4. Accuracy
 Standards
 - 5. Scanned Topographic Maps
 - 6. Federal Geographic Data Committee
 - 7. USGS National Map
 - 8. Theme: Geodetic Control
 - 9. Theme: Orthoimagery

- 10. Photogrammetry
- 11. Perspective and Planimetry
- 12. Stereoscopy
- 13. Rectification by Stereoscopy
- 14.
 Orthorectification
- 15. Metadata
- 16. Digital Orthophoto Quadrangle (DOQ)
- 17. Summary
- 18. Bibliography
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- People
- ResourcesServices
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and

Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy
- Program Office
- BA in Energy and Sustainability Policy Program

Office

Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Penn State
 World Campus
- Web Learning
 @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

- Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802 Contact Us Privacy & Legal Statements | Copyright Information The Pennsylvania State University © 2023