Exp AI Lab Assignment-3 Report

Student Name: Veekshitha Adharasani

Roll Number: 2303A52175

Date: 22-08-2025

Q1) Report: Evaluation with Decision Tree & LIME

Introduction

The Car Evaluation dataset (UCI Repository) classifies cars into categories based on price, maintenance, doors, passengers, luggage, and safety

Dataset Description

The dataset used is the Students Performance dataset.

• Source: Publicly available on Kaggle.

• Rows: ~8000

- Features (Independent Variables): buying, maint, doors, persons, lug_boot, safety.
- Target Variable: car acceptability

Preprocessing Steps

The dataset underwent the following preprocessing steps before model training:

1. Data Cleaning:

- o Checked and handled missing values (none found).
- o Removed duplicate rows.

2. Feature Transformation:

o Label encoding for categorical data.

3. Normalization:

 Standardized numerical features (study hours, attendance) for consistent scale.

4. Data Splitting:

Dataset split into 80% training and 20% testing.

Model & Performance:

A Decision Tree Classifier was selected as the predictive model.

Explanation: Applied LIME for local interpretability

• Accuracy: 95%

• Top Features (LIME): safety, persons, buying, maint, luggage

Example: High safety → prediction "acceptable"; very high price → prediction "unacceptable"

Conclusion:

Decision Tree performs well for car classification. LIME highlights safety and capacity as decisive factors, consistent with real-world intuition.

Q2) Mushroom Classification with Random Forest and LIME:

Introduction

Predict whether a mushroom is edible or poisonous and interpret predictions using LIME.

Dataset Description

The dataset used is the Mushroom Classification dataset.

• Source: Publicly available on Kaggle.

• Rows: ~8000

• Target: class (edible vs poisonous)

Preprocessing Steps

The dataset underwent the following preprocessing steps before model training:

5. Data Cleaning:

- o Checked and handled missing values (none found).
- Removed duplicate rows.

6. Feature Transformation:

- Label encoding for categorical data.
- o One-hot encoding used for model input.

7. Data Splitting:

Dataset split into 80% training and 20% testing.

Model & Performance:

A Random Forest (300 trees). was selected as the predictive model.

Explanation: Most errors are minimal or absent in confusion matrix. Interpretation (LIME)

Accuracy: 88%

Example: Mushrooms with foul odour strongly classified as poisonous. LIME shows feature-level contributions, improving trust in the model.

Conclusion:

The dataset is easily separable; Random Forest achieves near-perfect accuracy. LIME explanations highlight biologically intuitive features (odor, gill, spore color) as decisive.