(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-72559

(P2002-72559A)

(43)公開日 平成14年3月12日(2002.3.12)

(51) Int.Cl.'	識別記号		FI					ŕ	-7]-}*(参考)
G03G 9/	087		CO	8 J	3/205		CE	R	2H005
C08J 3/	205 CER		C 0 8	8 L	91/06				4F070
C08L 91/	06				101/00				4 J O O 2
101/	00		G 0 3	3 G	9/08		3 6	5	
G03G 9/	08 365						3 8	1	
		審査請求	未請求	爾才	マダラ 多 8	OL	(全:	11 頁)	最終頁に続く
(21)出願番号	特願2000-261056(P200	特願2000-261056(P2000-261056)			人 000006	035			
			ŀ		三菱レ	イヨン	株式会	社	
(22)出願日	平成12年8月30日(2000.	8. 30)	東京都港区港南一丁目 6 番41号			41号			
			(72)	発明:	首 佐々木	章亘			
					広島県	大竹市	伊幸町	20番1	号 三菱レイヨ
			İ		ン株式	会社中	央技術	研究所	内
			(72)	発明和	者 廣本	泰夫			
								20番 1 · 研究所	号 三菱レイヨ 内
			(74)	(戦力			~~/ii	G17W/11	•
			``~`	. 4-12->			翻	(5 1-2:	条)
					,,,,,,,		_		
	•								最終頁に続く

(54) 【発明の名称】 ワックス含有トナー用パインダー樹脂の製造方法

(57)【要約】

【課題】 定着性、耐オフセット性、保存安定性、耐湿性、分子量の保持性に優れるワックス含有トナー用バインダー樹脂を効率的に製造する。

【解決手段】 重合体成分(A)を含むラテックスと、加熱または溶媒(D)により液状化した重合体成分(B)にワックス(C)を供給して得た混合液とを混合する。

【特許請求の範囲】

【請求項] 】 重合体成分(A)を含むラテックスと、 加熱または溶媒(D)により液状化した重合体成分

(B) にワックス (C) を供給して得た混合液とを混合 することを含む、ワックス含有トナー用バインダー樹脂 の製造方法。

【請求項2】 下記の工程

- 1) 重合体成分(A)を含むラテックスと凝固剤(E) と溶媒(F)とを混合し、分離される水を排水する工
- 2) 重合体成分(B) を加熱により液状化し、これにワ ックス(C)を混合する工程、
- 3)1)の混合物と2)の混合物とを混合する工程、お よび
- 4) 3) の混合物から残存する水、単量体および溶媒
- (F)を除去する工程を含む、請求項1記載のワックス 含有トナー用バインダー樹脂の製造方法。

【請求項3】 1)の工程において、ラテックス中の水 および凝固剤中の水の合計の50質量%以上を除去す る、請求項2記載のワックス含有トナー用バインダー樹 20 脂の製造方法。

【請求項4】 下記の工程

- 1) 重合体成分(B)を溶媒(D)に混合して液状化 し、これにワックス(C)を混合する工程、
- 2) 重合体成分(A)を含むラテックスと凝固剤(E)
- と1)の混合物とを混合し、分離される水を排水する工 程、および
- 3) 2) の混合物から残存する水、単量体および溶媒
- (D)を除去する工程を含む、請求項1記載のワックス 含有トナー用バインダー樹脂の製造方法。

【請求項5】 2)の工程において、ラテックス中の水 および凝固剤中の水の合計の50質量%以上を除去す る、請求項4記載のワックス含有トナー用バインダー樹 脂の製造方法。

【請求項6】 重合体成分(A)の重量平均分子量Mw (A) が10万~100万であり、重合体成分(B)の 重量平均分子量Mw(B)が1000~3万である、請 求項1~5のいずれかに記載のワックス含有トナー用バ インダー樹脂の製造方法。

【請求項7】 重合体成分(A)を含むラテックスが乳 化重合で製造されたものである、請求項1~6のいずれ かに記載のワックス含有トナー用バインダー樹脂の製造 方法。

【請求項8】 重合体成分(B)が150℃以上の温度 において実質的に無溶剤で重合されたものである、請求 項1~7のいずれかに記載のワックス含有トナー用バイ ンダー樹脂の製造方法。

【発明の詳細な説明】

[0001]

印刷法等に好適に使用可能なワックス含有トナー用パイ ンダー樹脂の製造方法に関する。本発明は、特に、高分 子量重合体成分と低分子量重合体成分との少なくとも2 成分からなるバインダー樹脂とワックスを含有し、定着 性、耐オフセット性、保存安定性、耐湿性、分子量の保 持性に優れるトナー用バインダー樹脂の製造方法に関す る。本発明は、とりわけ、ワックスを含有しており、バ インダー樹脂成分がスチレン系単量体、アクリル系単量 体の単独重合体または共重合体であるスチレンおよび/ 10 またはアクリル系トナー用バインダー樹脂の製造方法に

[0002]

関する。

【従来の技術】一般に、電子写真法、静電印刷法に基づ く代表的な画像形成プロセスは、光電導性絶縁層を一様 に帯電させる帯電工程、その絶縁層に対して形成すべき 画像の情報に対応する露光を行う露光工程、この画像情 報に対応して電荷を消散させることによって電気的な潜 像を形成し、この潜像に電荷を有する微粉末のトナーを 付着させる現像工程、得られた可視像を転写紙等の

(被) 転写材に転写させる転写工程、加熱または加圧に よりトナー像を転写材に永久定着させる定着工程からな

【0003】このような電子写真法または静電印刷法に 使用されるトナーおよびトナー用バインダー樹脂には、 上記各工程において種々の性能が要求される。例えば、 現像工程においては、電気的な潜像にトナーを付着させ るために、トナーおよびトナー用バインダー樹脂は、温 度、湿度等の周囲の環境に実質的に影響されることな く、コピー機に適した帯電量を保持することが要求され 30 る。また、熱ローラー定着方式による定着工程において は、熱ローラーに付着しない性質(耐オフセット性)お よび紙への定着性がともに良好であることが要求され る。さらに、コピー機におけるトナーの保存中にトナー がブロッキングしない性質(保存安定性)も要求され

【0004】ワックスは、トナーの紙への定着性および 耐オフセット性を向上させる効果があり、従来より広く 使用されている。その使用の方法は、トナー製造時にバ インダー樹脂とカーボンブラックなどの着色剤、荷電調 40 整剤と一緒にワックスを混合する方法である。このよう にバインダー樹脂とワックスを別々に後で混合する方法 は、混合の手間がかかり、トナー製造の際の生産性低下 の要因となっていた。また、との方法では、混合の定量 性低下の恐れや、混合不良等の問題があり、トナー製造 上の問題となっている。

[0005]特開平10-120796号公報には、無 溶媒の樹脂と乳化分散液を撹拌下に混合し、この混合物 から水分を蒸発により除去してトナー用バインダー樹脂 を製造する方法が開示されている。そして、この方法の 【発明の属する技術分野】本発明は、電子写真法、静電 50 実施にあたり、添加剤(離型剤を含む)を使用すること

ができるということが記載されている。しかしながら、 上記公報には、解型剤の具体的な利用方法については記 載されていない。また、この方法では、水分の除去は蒸 発による除去に限定されている。蒸発による水分除去 は、エネルギー的に負荷が過大であり、工業的には不適 切であることは明らかである。このような状況下におい て、トナー用バインダー樹脂を構成する重合体成分の1 つがラテックスの形態にあり、ラテックス中の水をエネ ルギー負荷の大きい蒸発による除去ではない効率的な分 離方法により分離、除去することのできる、ワックス含 10 有トナー用バインダー樹脂の製造方法が望まれていた。 [0006]

【発明が解決しようとする課題】本発明の目的は、定着 性、耐オフセット性、保存安定性、耐湿性、分子量の保 持性に優れるワックス含有トナー用バインダー樹脂を効 率的に製造することのできる方法を提供することであ る。

[0007]

【課題を解決するための手段】本発明は、上記課題を解 決するため、重合体成分(A)を含むラテックスと、加 20 熱または溶媒(D)により液状化した重合体成分(B) にワックス(C)を供給して得た混合液とを混合すると とを含む、ワックス含有トナー用バインダー樹脂の製造 製造方法を提供する。

【0008】本発明者らは、この方法により、定量性、 耐オフセット性、保存安定性、耐湿性、分子量の保持性 に優れたワックス含有トナー用バインダー樹脂を効率的 に製造することができることを見出したのである。 [0000]

【発明の実施の形態】以下、本発明の好ましい実施の形 30 態について具体的に説明する。

重合体成分(A)および(B)

重合体成分(A)および(B)の組成は、それぞれ、特 に限定されるものではないが、トナー用バインダー樹脂 の物性の点からはスチレン系単量体およびアクリル系単 量体の少なくとも一方を含むポリマーからなることが好 ましい。

【0010】特に、重合体成分(A)および(B)を構 成する重合可能な全単量体のモル数(T)に対する、ス チレンおよび/またはアクリル系単量体の合計モル数 (S) の比(S/T)×100(%)が、60%以上 (さらには70%以上)であることが好ましい。 スチレンおよび/またはアクリル系単量体 本発明において好適に使用可能なスチレンおよび/また はアクリル系重合体成分(A)および(B)を構成する ために使用可能なスチレン系単量体としては、例えば、 スチレン、oーメチルスチレン、mーメチルスチレン、 p-メチルスチレン、α-メチルスチレン、p-エチル スチレン、2, 4-ジメチルスチレン、p-n-ブチル スチレン、p-tert-プチルスチレン、<math>p-n-へ 50 ましい。

キシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デンシルスチレン、p-n-ドデシルスチレン、p-フェニルスチレン、3、4-ジ クロロスチレンが挙げられる。

【0011】上記スチレンおよび/またはアクリル系重 合体成分(A)および(B)を構成するために使用可能 な(メタ)アクリル系単量体としては、例えば、アクリ ル酸、アクリル酸エチル、アクリル酸メチル、アクリル 酸n-ブチル、アクリル酸イソブチル、アクリル酸プロ ピル、アクリル酸2-エチルヘキシル、アクリル酸ステ アリル、メタクリル酸、メタクリル酸エチル、メタクリ ル酸メチル、メタクリル酸n-ブチル、メタクリル酸イ ソプチル、メタクリル酸プロピル、メタクリル酸2-エ チルヘキシル、メタクリル酸ステアリル等が挙げられ

【0012】その他の使用可能な単量体

上記スチレンおよび/またはアクリル系重合体成分

(A) および (B) を構成するために使用可能な、その 他の共重合可能な単量体としては、マレイン酸、フマル 酸、イタコン酸等の不飽和ジカルボン酸、マレイン酸モ ノメチル、マレイン酸モノエチル、マレイン酸モノブチ ル、フマル酸モノメチル、フマル酸モノエチル、フマル 酸モノブチル等の不飽和ジカルボン酸モノエステル、マ レイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジ ブチル、フマル酸ジメチル、フマル酸ジエチル、フマル 酸ジブチル等の不飽和ジカルボン酸ジェステル等のカル ボン酸基含有ビニル単量体が挙げられる。

【0013】架橋剤

上記単量体の重合においては、必要に応じて架橋剤を使 用してもよい。との架橋剤としては、多官能ビニル単量 体が好適に使用可能である。架橋剤として用いられる多 官能ビニル単量体は、全単量体(多官能ビニル単量体自 体をも含む)100質量部に対して、0.05質量部以 下の範囲で使用されてもよい。多官能ビニル単量体の使 用量が0.05質量部を超えると、重合体成分(A)と 重合体成分(B)とが混合しにくくなる傾向が強まる。 【0014】使用可能な多官能ビニル単量体としては、 ジビルベンゼン、ジビニルナフタレン等の芳香族ジビニ ル化合物、エチレングリコールジ(メタ)アクリレー ト、トリエチレングリコールジ(メタ)アクリレート、 テトラエチレングリコールジ (メタ) アクリレート、ポ リエチレングリコールジ (メタ) アクリレート、ジプロ ヒレングリコールジ (メタ) アクリレート、1,3-ブ チレングリコールジ (メタ) アクリレート、ビスフエン ールA誘導体系ジ(メタ)アクリレート等が挙げられ る。これらは、それぞれ単独でまたは必要に応じて2種 以上を組み合わせて使用することができる。これらの中 でも、ジビニルベンゼン、1、3-ブチレングリコール ジ(メタ)アクリレートから選ばれる1種以上が特に好

【0015】重合体成分(A)および(B)の組合せ 本発明における上記した重合体成分(A)および(B) の好適な組合わせは、以下の通りである。

5

重合体成分(A)/重合体成分(B)の組合せ スチレン系重合体/スチレン系重合体の組み合わせ スチレン系重合体/(メタ)アクリル系重合体の組み合 わせ

スチレン系重合体/スチレン系と(メタ)アクリル系重 合体の組み合わせ

(メタ) アクリル系重合体/スチレン系重合体の組み合 10

(メタ) アクリル系重合体/(メタ) アクリル系重合体 の組み合わせ

(メタ) アクリル系重合体/スチレン系と(メタ)アク リル系重合体の組み合わせ

スチレン系と(メタ)アクリル系重合体/スチレン系重 合体の組み合わせ

スチレン系と(メタ)アクリル系重合体/(メタ)アク リル系重合体の組み合わせ

(メタ) アクリル系重合体の組み合わせ

また、トナー用バインダー樹脂の物性の点で、重合体成 分(A)と重合体成分(B)の混合比率は、AとBの合 計を100部(質量)として、Aの比率が5~95部 で、Bの比率が95~5部であるのが好ましく、特にA の比率が10~99部で、Bの比率が90~10部であ るのが好ましい。

【0016】重合体成分(A)および(B)の分子量 ゲルパーミエーション(GPC)による分子量測定にお いて、トナー樹脂およびトナーの物性の観点から、重合 体成分(A)の重量平均分子量Mw(A)は10万~1 00万、重合体成分(B)の重量平均分子量Mw(B) は1000~3万であることが好ましい。

[0017] 重合体成分(A)を含むラテックスの製造 方法

重合体成分(A)を含むラテックスとは、主として水中 に重合体成分(A)が粒子状に分散している混合液のと とをいう。かかるラテックスを製造する方法としては、 重合体成分(A)を粉砕して水中に分散させる方法や、 に製造することの点からは、乳化重合法が好適である。

【0018】乳化重合

乳化重合とは、一般に、界面活性剤を溶解した水溶液中 に単量体を撹拌により分散させ、重合開始剤を用いて重 合する方法である。最近では、界面活性剤を使用しない 乳化重合、いわゆるソーブレス重合や、予め単量体を水 に分散させたエマルジョンを作成した後重合する重合、 いわゆるミニエマルジョン重合や強制乳化重合も開発さ れているが、本発明で使用可能な乳化重合はこれらのソ ープレス重合、ミニエマルジョン重合、強制乳化重合等 を含む。

【0019】界面活性剤

乳化重合で使用可能な界面活性剤としては、特に制限さ れず、陰イオン性界面活性剤、陽イオン性界面活性剤、 非イオン性界面活性剤のいずれのものでも使用可能であ るが、中でも陰イオン性界面活性剤、非イオン性界面活 性剤が好適に使用可能である。

【0020】陰イオン性界面活性剤としては、半硬化牛 脂脂肪酸ソーダ石けん、ステアリン酸ソーダ石けん、半 硬化牛脂脂肪酸カリ石けん、オレイン酸カリ石けん等の 脂肪酸塩;ラウリル硫酸ナトリウム等のアルキル硫酸エ ステル塩;ドデシルベンゼンスルホン酸ナトリウム等の アルキルベンゼンスルホン酸塩;ジアルキルスルホコハ ク酸ナトリウム等のアルキルスルホコハク酸塩:アルキ ルジフェニルエーテルジスルホン酸ナトリウム等のアル キルジフェニルエーテルジスルホン酸塩、ポリオキシエ チレンアルキルエーテル硫酸ナトリウム等のポリオキシ エチレンアルキル硫酸エステル塩、ポリオキシエチレン アルキルフェニルエーテル硫酸ナトリウム等のポリオキ スチレン系と(メタ)アクリル系重合体/スチレン系と 20 シエチレンアルキルアリール硫酸エステル塩等が挙げら れる。

> 【0021】非イオン性界面活性剤としては、ポリオキ シエチレンラウリルエーテル、ポリオキシエチレンオレ イルエーテル等のポリオキシエチレンアルキルエーテ ル:ポリオキシエチレンオクチルフェニルエーテル、ポ リオキシエチレンノニルフェニルエーテル等のポリオキ シエチレンアルキルアリールエーテル;ポリオキシエチ レングリコールモノラウレート、ポリエチレングリコー ルモノステアレート、ポリエチレングリコールジラウレ 30 ート、ポリエチレングリコールジステアレート、ポリエ チレングリコールモノオレエート等のポリオキシエチレ ン脂肪酸エステル等が挙げられる。

【0022】重合開始剤

乳化重合で使用可能な重合開始剤としては、特に制限さ れず、クメンハイドロパーオキサイド、t-ブチルハイ ドロパーオキサイド、ジーt-ブチルパーオキサイド等 のパーオキサイド類、過硫酸カリウム等の過硫酸塩、レ ドックス系開始剤等が挙げられる。

【0023】乳化重合では、分子量を調整するために、 乳化重合法等が例示される。高分子量体を容易かつ簡便 40 必要に応じて、連鎖移動剤を使用してもよい。連鎖移動 剤として、n-オクチルメルカプタン、n-ドデシルメ ルカプタン、t-ドデシルメルカプタン、チオグリコー ル酸2-エチルヘキシル、α-メチルスチレンダイマー 等が挙げられる。

重合体成分(B)の製法

重合体成分(B)の重合方法は、特に制限されないが、 低分子量体を容易かつ簡便に製造する点からは、熱塊状 重合法または溶液重合法が好適である。

【0024】熱塊状重合法は、実質的に無溶媒の条件 50 で、1種のまたは2種以上の単量体を単独で、または単

8

量体と重合開始剤とを混合し、好ましくは150℃以上で重合する方法である。この方法により、容易に重量平均分子が1000~3万の重合体成分(B)を製造できる。溶液重合法は、溶媒の存在下で、1種のまたは2種以上の単量体を単独で、または単量体と重合開始剤とを混合し、重合する方法である。

【0025】重合開始剤

熱塊状重合法、溶液重合法で使用可能な重合開始剤としては、特に制限されず、アゾビスイソブチルニトリル(AIBN)、アゾビスバレロニトリル、アゾビスシアノ吉草酸等のアゾ系重合開始剤、ベンゾイルパーオキサイド、ジーtーブチルパーオキサイド、tーブチルパーオキシベンゾエート等の有機過酸化物系重合開始剤などが挙げられる。

【0026】溶液重合で使用する溶媒

重合体成分(B)の溶液重合で使用する溶媒としては、特に制限は無いが、ヘキサン、ヘブタン、石油エーテル等の脂肪族炭化水素;シクロヘキサン等のシクロアルカン炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、ジエチルベンゼン等の芳香族炭化水素;塩化メチレン、クロロホルム、四塩化炭素、トリクレン、クロロベンゼン等のハロゲン化炭化水素;酢酸 nープロビル、酢酸 nーブチル等のエステル化合物等が挙げられる。溶液重合で使用する溶媒は1種類でもよいし、2種以上の混合溶媒としてもよい。

【0027】連鎖移動剤

熱塊状重合、溶液重合において、分子量を調整するため に、必要に応じて、連鎖移動剤を使用してもよい。連鎖 移動剤としては、n-オクチルメルカプタン、n-ドデシルメルカプタン、チオグ リコール酸2-エチルヘキシル、α-メチルスチレンダイマー等が挙げられる。

【0028】 重合のプロセス

熱塊状重合法、溶液重合のプロセスは、特に制限されず、バッチ、連続、滴下等のプロセスを用いることができる。

重合体成分(B)の液状化

重合体成分(B)の液状化方法は、(B)の加熱による方法または後述する溶媒(D)の使用による方法である。

【0029】液状とは、通常液体として扱える流体状の状態を指し、使用温度における粘度が1~100000 Pa·Sであることが好ましい。但し、粘度は一般にせん断速度に依存するので、ここではせん断速度10(1/S)での粘度とする。粘度を1Pa·S以上とすることで、ワックス(C)の分散およびその安定が良好となる傾向があり、好ましい。粘度を100000Pa·S以下とすることで液体として扱うことができ、取り扱い性が良好となり、ワックス(C)を分散させた重合体成分(B)を容易に供給することができるので、好まし

【0030】本発明で利用できるワックス(C)としては、ポリエチレンワックス、ポリプロピレンワックス等のポリオレフィン系ワックスおよびその変性物、高級脂肪酸およびその金属塩、アミドワックスなどが例示される。ここで、変性物とは、樹脂の組成を変性したものの他、表面処理などにより表面改質を行ったもの等を示す。ワックス(C)を上記の液状化した重合体成分(B)に供給することにより、ワックス(C)を含有する重合体成分

【0031】溶媒(D)は、重合体成分(B)の溶剤としての機能の他、重合体成分(A)を含むラテックスからの水の分離の促進の機能、重合体成分(A)と重合体成分(B)との混合の促進の機能を果たす。従って、溶媒(D)としては、水との相溶性が悪く、重合体成分(A)や(B)との相溶性が良い溶剤が好適に利用でき

(B) の混合液を得ることができる。

る。溶媒(D)の水に対する溶解度(25°C)は、5質 量%以下、さらには3質量%以下であることが好まし い。溶媒(D)としては、例えば、ヘキサン、ヘブタ ン、石油エーテル等の脂肪族炭化水素;シクロヘキサン 等のシクロアルカン炭化水素;ベンゼン、トルエン、キ シレン、エチルベンゼン、クメン、ジエチルベンゼン等 の芳香族炭化水素;塩化メチレン、クロロホルム、四塩 化炭素、トリクレン、クロルベンゼン等のハロゲン化炭 化水素;酢酸n-プロピル、酢酸n-ブチル等のエステ ル化合物等の非重合性有機溶媒や;スチレン、メタクリ ル酸メチル、α-メチルスチレン等の重合性有機溶媒が 挙げられる。溶媒(D)は1種類でもよいし、2種以上 の混合溶媒としてもよい。溶媒(D)の使用量は、特に 制限は無いが、重合体成分(A)と(B)の混練性向 上、溶媒の除去の負荷低減の点で、重合体成分(A)と (B)の合計100質量部に対して、5~200質量部 が好ましく、さらに10~150質量部が好ましい。 【0032】重合体成分(B)を溶液重合で製造した場

合には、溶液重合で使用した溶媒を溶媒(D)とみなすことができる。凝固剤(E)と重合体成分(A)を含むラテックスとを加えることでラテックスの凝固が可能であり、その凝固方法は特に制限されず、酸凝固、塩凝固等、公知の方法から適宜選択して利用できる。使用する凝固剤(E)としては、硫酸、塩酸、硝酸等の無機酸;酢酸、プロピオン酸等の有機酸;硫酸アルミニウム、硝酸アルミニウム、硫酸マグネシウム、塩化カルシウム、酢酸カルシウム等の塩が挙げられる。凝固の効率、均一性の点からは、凝固の際に、ラテックスを撹拌、混合しながら凝固を行うことが好ましい。重合体成分(A)を含むラテックスと凝固剤(E)と溶媒(D)または(F)を加えることにより、ラテックス中の水や、凝固剤中の水を分離することができる。【0033】溶媒(F)は、重合体成分(A)を含むラ

•

テックスからの水の分離の促進の機能、重合体成分 (A)と重合体成分 (B)との混合の促進の機能を果たす。従って、溶媒 (F)としては、水との相溶性が悪く、重合体成分 (A)や (B)と相溶性が良い溶剤が好適に利用できる。溶媒 (F)の水に対する溶解度 (25℃)は、5 質量%以下、さらには3 質量%以下であるとが好ましい。溶媒 (F)としては、例えば、ヘキサン、ヘブタン、石油エーテル等の脂肪族炭化水素;シクロヘキサン等のシクロアルカン炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、ジエチルベンゼン等の芳香族炭化水素;塩化メチレン、クロルベンゼン等のハロゲン化炭化水素;酢酸 n ープロビル、酢酸 n ーブチルロゲン化炭化水素;酢酸 n ープロビル、酢酸 n ーブチル

ロゲン化炭化水素;酢酸n - プロビル、酢酸n - ブチル等のエステル化合物等の非重合性有機溶媒や;スチレン、メタクリル酸メチル、α-メチルスチレン等の重合性有機溶媒が挙げられる。溶媒(F)は1種類でもよいし、2種以上の混合溶媒としてもよい。溶媒(F)の使用量は、特に制限は無いが、重合体成分(A)と(B)の混練性向上、溶媒の除去の負荷低減の点で、重合体成分(A)と(B)の合計100質量部に対して、5~200質量部が好ましく、さらに10~150質量部が好ましい。

【0034】ワックス含有トナー用バインダー樹脂の製法

重合体成分(A)を含むラテックスと、加熱または溶媒

- (D) により液状化した重合体成分(B) にワックス(C) を供給して得た混合液とを混合する方法として、以下の2つの方法が例示される。第1の方法は、下記の工程
- 1)重合体成分(A)を含むラテックスと凝固剤(E) と溶媒(F)とを混合し、分離される水を排水する工 稈.
- 2) 重合体成分(B) を加熱により溶融させて液状化し、これにワックス(C)を混合する工程、
- 3) 1) の混合物と2) の混合物とを混合する工程、および
- 4) 3) の混合物から残存する水、単量体および溶媒
- (F)を除去する工程を含む方法である。
- 【0035】第2の方法は、下記の工程
- 1) 重合体成分(B)を溶媒(D)に混合して液状化し、これにワックス(C)を混合する工程、
- 2) 重合体成分(A)を含むラテックスと凝固剤(E)
- と1)の混合物とを混合し、分離される水を排水する工 程、および
- 3) 2) の混合物から残存する水、単量体および溶媒 (D) を除去する工程を含む方法である。
- 【0036】上記第1の方法においては、溶媒(F)の利用により、ラテックス中の水や凝固剤中の水を分離することができる。水の分離効率は、ラテックス中の水や凝固剤中の水の合計の50%(質量)以上を分離し、排 50

水することが可能となる。第2の方法においては、重合体成分(B)の溶解に用いる溶媒(D)により、ラテックス中の水や凝固剤中の水を分離することができる。水の分離効率は、ラテックス中の水や凝固剤中の水の合計の50%(質量)以上を分離し、排水することが可能となる。

【0037】溶媒(D)または(F)の存在下で、重合体成分(A)と、ワックス(C)を含有する重合体成分(B)を混練することにより、定着性、耐オフセット 性、保存安定性、耐湿性、分子量の保持性に優れたワックス含有トナー用バインダー樹脂を製造することができる。この際には、混練機、特に二軸混練機を使うことが好ましい。

【0038】こうして製造された混練物から、残存する水、未反応の単量体および溶媒(D)または(F)を除去することにより、トナー用バインダー樹脂を製造することができる。除去方法としては、特に限定されないが、混練物を加熱状態にし、減圧して除去する方法(減圧乾燥)、加熱加圧状態から大気圧または減圧雰囲気中で噴出させて除去する方法(フラッシュ方法)、混練物を押し出し機に連続的に供給し、減圧にされた排出口(いわゆるベントロ)から除去する方法(脱揮押し出し法)等が例示される。これらの方法は、単独でまたは2つ以上を組み合わせて用いることができる。

【0039】上記したワックス含有トナー用バインダー 樹脂の製造のための第1および第2の方法において、重 合体成分(A)のラテックス中の水や凝固剤(E)中の 水を分離、排水により予め除去しておくことにより、水 の分離のエネルギー的な効率に優れているという利点が 30 得られる。このようにして得られたトナー用バインダー 樹脂としては、軟化温度110~170℃、ガラス転移 温度40~80℃の範囲のものが、トナーの定着性、耐 オフセット性、保存安定性、流動性等の点で好ましい。 【0040】

【実施例】以下、実施例により本発明をさらに説明する。以下の実施例においては、諸特性に関して、以下の 測定方法を用いた。

(1)重量平均分子量(Mw)

ゲルパーミエーションクロマトグラフィー(GPC)に 40 より測定した。下記の測定系を使用し、ポリスチレン換 算により求めた。その際、ポリスチレン標準試料として は、下記の分子量620000~500のもの(合計 12種類、いずれも東ソー社製)を用いた。

[0041]

商品名	分子量
F-700	620000 0
F-228	280000 O
F-128	1100000
F-80	70700 0
F-40	35400 0

<GPC>

GPC装置: 東ソー製、商品名HCL-8020

カラム:東ソー製、商品名TSKGel GMHXL (内径7.8mm×長さ30cm)2本および商品名T SKguardculmn HXL-H(内径6.0mm×長さ

11

4. 0 cm) 1本

移動相:テトラヒドロフラン サンプル注入量:0.1mし サンプル濃度:1mg/mL

流速: 1. 0 m L / 分

検出器としてRI(示差屈折率計)を使用した。

【0042】(2) ガラス転移温度(Tg)

測定すべきサンプルを100℃まで昇温してメルトクエ 20 ンチした後、DSC(示差走査熱量計)(セイコー電子 製、DSC22システム)を用い、初期温度25℃、昇温速度10℃/分の条件下で測定したショルダー値で示した。

(3) 軟化温度

内径 $1 \text{ mm} \phi \times 1 \text{ 0 mm}$ のノズルを有するフローテスター(島津製作所製、商品名 CFT-500)を用い、荷重 294N(30kgf)、初期温度 $80\mathbb{C}$ 、昇温速度 $3\mathbb{C}/分の条件下で <math>1g$ のサンブルの 1/2が流出した時の温度で示した。

【0043】(4)残存単量体、溶媒の測定

下記の測定系により求めた。ガスクロマトグラフィー装 置:島津製作所製、GC-8A

溶媒:N, N-ジメチルホルムアミド(DMF)

サンプル: DMF約10gに、重合体(残存単量体、溶媒を含む)約0.5gを溶解。

【0044】内標:イソプロピルアルコール

注入量:1μL

インジエクション温度:170℃

カラム温度:120℃

(5)定着性評価

製造されたトナーを複写機(東芝製、PREMAGE251)に充填した。複写機より得られた未定着画像を、ローラー温度および速度可変の定着試験機を用い、定着温度150℃、定着速度130mm/秒で定着画像を得た。この定着画像を砂消しゴム(JIS 512)で一方向に9回繰り、その前後での画像濃度をマクベス濃度計で測定して、以下の基準で評価した。

[0045]

〇:画像濃度の低下が10%未満

×: 画像濃度の低下が10%以上

(6) 耐オフセット性評価

複写機(東芝製、PREMAGE 251)により得られた未定着画像を、ローラー温度および速度可変の定着試験機を用い、定着温度 220℃、定着速度 130 mm/ 秒で定着させ、この時の定着ローラーの汚染の度合を目視して、以下の基準で評価した。

[0046]

◎: ほとんど汚染なし

10 ○: 汚染少ない(実用上問題なし)

×:汚染著しい(実用上問題有り)

(7)保存安定性

トナーをガラス瓶に入れ、50℃の条件下に16時間放置し、トナーのブロッキングの状態を目視により以下の基準で評価した。

[0047]

◎:ほとんどブロッキングなし

〇:ブロッキング少ない(実用上問題なし)

×:ブロッキング著しい(実用上問題有り)

(8)耐湿性の評価

(9)分子量の保持率

分子量の保持性を、分子量保持性= (トナー化した後の バインダー樹脂の重量平均分子量) / (トナー化する前 のバインダー樹脂の重量平均分子量) × 100(%) で 40 定義する。

、 たびりる。 【0049】実施例1

35)

重合体成分(A)を含むラテックスの製造

1900gの水中に、界面活性剤として特殊カルボン酸型界面活性剤(花王製、商品名ラテムルASK)8g (固形分として)を溶解させて重合用の分散媒体とした。

【0050】この分散媒体中に、単量体として、スチレン800g、アクリル酸nーブチル200gおよび連鎖 移動剤としてαーメチルスチレンダイマー(日本油脂

50 製、ノフマーMSD)1.5gの混合物を加え、アンカ

13

ー翼を用いて200rpm (毎分200回転)で分散さ せながら、30分で分散液の温度を室温から70℃に上 昇させた。そして、水100gに開始剤として過硫酸カ リウム2gを溶解した水溶液を加え、重合を開始した。 重合開始約30分で液温度が75℃に違し、さらに75 ℃のままで2時間保持して、重合体成分(A)を含むラ テックスを得た。このようにして得たラテックスの上記 GPCで測定した重量平均分子量は64×10°であ り、ガスクロマトグラフィーで測定した重合率 {1-(残存単量体の質量)/(製造された重合体の質量)} は99.7%であった。このラテックスを120℃で1 時間真空乾燥したところ、固形分は33.1%であっ た。この重合体成分(A)のガラス転移温度65.9℃ であり、軟化温度は210.0℃であった。

スチレン90質量部とメタクリル酸n-ブチル10質量 部、開始剤としてジーtert-ブチルパーオキサイド (日本油脂 (株) 製、商品名バーブチルD) 1 質量部を 混合した混合物を、190℃に保たれた重合反応器(東 器に備えたリボン翼を150rpm(毎分150回転) で回転させながら重合させ、滴下終了後にさらに1時間 同温度に保持して、重量平均分子量が9.8×10°の 低分子量の塊状重合体を得た。重合率は98.5%であ った。重合体を160°Cで1時間真空乾燥して得たサン ブルのガラス転移温度は5 4. 8 ℃であり、軟化温度は 102.9℃であった。

【0051】重合体成分(B)の製造

【0052】重合体成分(B)へのワックス(C)の分

製造された重合体成分(B)2000gを、図1に示す 装置の溶解タンク2に入れ、溶解タンク2のジャケット に120℃の熱媒を循環させて溶融させた。重合体成分 (B) の120℃での粘度をキャピログラフ (東洋精機 製)で測定したところ、900Pa・S(せん断速度1 0 (1/S) での値) であった。この溶融状態のB成分 をプロペラ形状の撹拌翼3により150rpm(毎分1 50回転)で撹拌しながら、ワックス(C)としてポリ プロピレンワックス(三洋化成工業製、ビスコール66 OP) 90gを供給して、分散させた。

【0053】トナー用バインダー樹脂の製造 上記で得た重合体成分(A)(高分子量重合体)のラテ ックスおよびワックス(C)を含有する重合体成分

(B) (低分子量重合体)を用い、図1に示す装置を用 いてトナー用バインダー樹脂を製造した。上記の重合体 成分(A)のラテックス全量3000g(内、樹脂分約 1000g)を図1の装置のバッチ式二軸混練機1(モ リヤマ製) に入れ、混練機1を約80 r p mの回転数で 稼働させながら60℃まで昇温した後、水3000gに 凝固剤(E)として硫酸10gを溶解した硫酸水溶液を 入れて重合体成分(A)のラテックスと混合した。5分 50 経過後、溶媒(F)としてトルエン400gを入れ、混 練機のジャケット温度を70℃にして、さらに10分間 混合し、その後混練機の回転を止め、混練機を傾けて分 離される水を排出した。排出された水を計量すると、4 250gであった。ラテックス中には水が約2000 g、硫酸水溶液中には水が3000g、合計5000g の水が使用されているので、分離された水の割合は、4 250/5000×100=85%と計算される。

【0054】混練機を正常の位置に戻した後、混練機を 10 約80 r p mの回転数で回転させながら、重合体成分 (B) にワックス (C) を分散させた混合液2090g を5分間かけて徐々に加え、添加後混練機1のジャケッ ト温度を120℃にして10分間混練した。得られた混 合物を、真空乾燥機(ヤマト科学製、DP61)を用 い、170℃で240分間乾燥した。これを粉砕器(協 立理工製、SK型)を用い、平均粒径約300μmに粉 砕した。得られたワックス含有トナー用パインダー樹脂 中の残存トルエンは320ppmであり、残存スチレン は160ppmであり、残存アクリル酸nーブチル、残 洋髙圧製)に1時間にわたり滴下すると共に、重合反応 20 存メタクリル酸n-ブチルは検出されなかった(検出限 界3 ppm)。

> 【0055】とのトナー用バインダー樹脂のガラス転移 温度は57.6℃であり、軟化温度は137.5℃であ

トナーの製造

このトナー用バインダー樹脂を9 4質量部、カーボンブ ラック (三菱化学製、#40)5 質量部および荷電制御 剤(オリエント化学工業製、ポントロンS-84)1質 量部を二軸混練機(HAAK BUCHLER INSTRUMENT INC.製、 商品名レオコードシステム90)を用いて150℃で3 0 分間混練し、その後ジェットミル(日本ニューマチッ ク工業製、超音波ジェット粉砕器、商品名LABO J ET)を用いて粉砕し、分級機 (ALPINE社製、商 品名ジグザグ分級機)を用いて分級して、粒子径5~1 5 μ mのトナーを得た。

【0056】とのようにして得られたトナーの定着性、 耐オフセット性、保存安定性、耐湿性の評価を行った。 結果を後述する表1に示す。表1には、製造されたワッ クス含有トナー用バインダー樹脂の製造方法のGPCに 40 よる分子量測定において、高分子量側の重量平均分子量 と低分子量側の重量平均分子量、高分子量側の分子量安 定性を記載した。

【0057】実施例2

重合体成分(B)と溶媒(D)の溶解、ワックス(C)

実施例1と同様にして得られた重合体成分(B)200 0gを105℃に加熱溶融し、溶媒(D)としてトルエ ン400gを供給して溶解させた。この溶解物の粘度 は、50Pa·Sであった。次いで、ワックス(C) (ビスコール660P)を90g 供給して分散液を得

tc.

【0058】トナー用バインダー樹脂の製造

実施例1と同様にして、重合体成分(A)のラテックスと硫酸水溶液を混合した。5分経過後、上記した重合体成分(B)、ワックス(C)、溶媒(D)からなる混合液を入れて、混練機のジャケット温度を70℃にし、さらに10分間混合し、その後混練機の回転を止め、混練機を傾けて分離される水を排出した。バインダー樹脂の製造において混練機から排出された水の量は、3440gであった。分離された水の割合は69%と計算される。

【0059】残存トルエンは280ppmであり、残存スチレンは180ppmであり、残存アクリル酸nーブチルは検出されなかった。 このトナー用バインダー樹脂のガラス転移温度は58.1 ℃であり、軟化温度は136.8℃であった。

トナーの製造

上記で得たパインダー樹脂を用いた以外は、実施例1と 同様な操作によりトナーを製造した。トナーの評価結果 を表1に示す。

【0060】実施例3

トナー用バインダー樹脂の製造

図2 に示す装置を用いてトナー用バインダー樹脂の製造 を実施した。実施例1で使用したと同じ重合体成分

(A)を含むラテックス、重合体成分(B)、ワックス (C)を使用した。ジャケットに75℃の温水を連続的 に流した連続式二軸混練機11(栗本鉄工所製、KRC

ニーダー)に、連続的に、供給口12から重合体成分 (A)のラテックスを90g/分、供給口13から1質 量%硫酸水溶液を15g/分、供給口14から溶媒

(F)としてトルエンを15g/分で供給した。溶解タンク17のジャケットに120℃の熱媒を循環させて重合体成分(B)を溶解し、プロペラ形状の撹拌翼18を150rpm(1分間当たり150回転)で回転させながら、溶解タンク上部より、重合体成分(B)100質量部に対してワックス(C)(ビスコール660P)

4.5質量部を供給して分散させた。このワックスを含有する重合体成分(B)を供給口16から73.1g/分の流量で供給した。

【0061】排水□15からは、水が66g/分の流量 40で排出された。重合体(A)のラテックス中に水として約60g/分、希硫酸中に水として約15g/分、合計75g/分の水が供給されている。従って、分離排水される水の割合は、66/75×100=88%と計算される。排出□19から排出される混練物を、バレル温度を200℃に設定した二軸押出機20(池貝鉄工製、PCM30)に供給□21から連続的に供給し、ベント□22で脱揮しながら、トナー用バインダー樹脂を製造した。ベント□の第1の□(上流側)は25kPa(絶対圧)、第2の□は5kPa(絶対圧)として、トナー用 50

バインダー樹脂を約100g/分の速度で連続的に製造した。得られた樹脂のガラス転移温度は58.5℃であり、軟化温度は136.2℃であった。残存トルエンは480ppmであり、残存スチレンは160ppmであり、残存アクリル酸n-ブチル、メタクリル酸n-ブチルは検出されなかった。

【0062】トナーの製造

上記で得られたバインダー樹脂を用いた以外は、実施例 1と同様な操作によりトナーを製造した。トナーの評価 結果を表1に示す。

実施例4

トナー用バインダー樹脂の製造

図3に示す装置を用いてトナー用バインダー樹脂の製造を実施した。実施例2で使用した重合体成分(A)を含むラテックス、溶媒(D)としてトルエンに溶解した重合体成分(B)、それに分散させたワックス(C)を使用した。ジャケットに75℃の温水を連続的に流した連続式二軸混練機31(栗本鉄工所製、KRCニーダー)に、連続的に、供給口32から重合体成分(A)のラテックスを90g/分、供給口33から1質量%硫酸水溶液を15g/分で供給した。溶解タンク36には、重合体成分(B)100質量部に対してワックス(C)(ビスコール660P)4.5質量部を供給して溶解させ、重合体成分(B)100質量部に対してワックス(C)(ビスコール660P)4.5質量部を供給して分散させた。このワックスを含有する重合体成分(B)を供給口34から87.2g/分の流量で供給した。

【0063】排水口35からは、水が43g/分の流量 で排出された。重合体成分(A)のラテックス中に水と して約60g/分、希硫酸中に水として約15g/分、 合計75g/分の水が供給されている。従って、分離排 水される水の割合は、43/75×100=57%と計 算される。排出口38から排出される混練物を、バレル 温度を200℃に設定した二軸押出機39(池貝鉄工 製、PCM30)に供給口40から連続的に供給し、ベ ント口41で脱揮しながら、トナー用バインダー樹脂を 製造した。ベントロの第1の口(上流側)は25kPa (絶対圧)、第2の口は5 k P a (絶対圧) として、ト ナー用バインダー樹脂を約100g/分の速度で連続的 に製造した。得られた樹脂のガラス転移温度は59.2 ℃であり、軟化温度は135.4℃であった。残存トル エンは360ppmであり、残存スチレンは120pp mであり、残存アクリル酸n-ブチル、残存メタクリル 酸n-ブチルは検出されなかった。

【0064】トナーの製造

上記で得られたバインダー樹脂を用いた以外は、実施例 1と同様な操作によりトナーを製造した。トナーの評価 結果を表1に示す。

[0065]

0 【表1】

	I	耐オフセ	保存	<u> </u>	パインダー	分子量保持率 (高分子量)	
	定着性	ット	安定性	耐湿性	高分子量過	低分子量Mw	(高分子量)
実施例1	0	©	Ø	0	66. 4万	10100	84%
実施例 2	0	6	©	0	62. 2万	9500	90%
実施例 3	0	•	•	0	63.8万	9100	86%
実施例 4	0	€	@	0	62. 4万	9900	86%

[0066]

【発明の効果】上記したように、本発明の方法によれ ば、定着性、耐オフセット性、保存安定性、耐湿性、分 子量の保持性に優れるワックス含有トナー用バインダー 樹脂を効率良く製造することができる。

【図面の簡単な説明】

【図1】本発明のワックス含有トナー用バインダー樹脂 製造方法を実施するための装置系の第1の例を示す模式 断面図である。

【図2】本発明のワックス含有トナー用バインダー樹脂 製造方法を実施するための装置系の第2の例を示す模式 20 32、33、34…供給口 断面図である。

【図3】本発明のワックス含有トナー用バインダー樹脂 製造方法を実施するための装置系の第3の例を示す模式 断面図である。

【符号の説明】

- 1…バッチ式二軸混練機
- 2…溶解タンク
- 3…撹拌翼

10*11…連続式二軸混練機

- 12、13、14、16…供給口
- 15、19…排出口
- 17…溶解タンク
- 18…撹拌翼
- 20…二軸押出機
- 21…供給口
- 22…ベントロ
- 23…吐出口
- 31…連続式二軸混練機
- 35、38…排出口
- 36…溶解タンク
- 37…撹拌翼
- 39…二軸押出機
- 40…供給口
- 41…ベント口
- 42…吐出口

*

【図2】

【図1】

【図3】

フロントページの続き

(51)Int.Cl.7

識別記号

(72)発明者 永渕 慶秀

広島県大竹市御幸町20番1号 三菱レイヨ

ン株式会社中央技術研究所内

(72)発明者 好村 壽晃

広島県大竹市御幸町20番1号 三菱レイヨ

ン株式会社中央技術研究所内

FI テマント (参考) G O 3 G 9/08 3 8 4 F ターム (参考) 2H005 AA06 AB02 AB06 CA14 EA06 EA07 4E070 AA63 AA71 AB11 AE28 AE30 DA32 DA38 FA02 FA04 FA05

FA06 FA10 FA12 FA17 FB06
4J002 AE03Y BB03Y BB12Y BC03W
BC03X BC07W BC07X BC08W
BC08X BC09W BC09X BC11W
BC11X BG04W BC04X BG05W
BG05X BG06W BG06X BH01W

BHO1X BHO2W BHO2X

THIS PAGE BLANK (USPTO)

