

SIM800系列_串口 _应用文档

GPRS 模组

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路633号晨讯科技大楼B座6楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com 官网: www.simcom.com

名称:	SIM800 系列_串口_应用文档		
版本:	1.03		
日期:	2020.6.15		
状态:	已发布		

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号晨讯科技大楼 B座 6楼

电话: 86-21-31575100

邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料。请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html 或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2020, 保留一切权利。

www.simcom.com 2 / 24

关于文档

版本历史

版本	日期	作者	备注
V1.00	2013-07-25	杨明	第一版
V1.01	2014-08-05	陈海兵	适用范围,增加部分项目
		陈海兵	第 6.5 章, 更新表格 3
		陈海兵	第7章,增加双串口功能和对应的 AT
V1.02	2016-11-17	陈海兵	第5章,增加流控说明
		由秀营	第7章,增加 SIM800C 和 SIM800C-DS 的双串口功能
V1.03	2020-03-31	曾福梅	修改风格样式
		/来文洁	

适用范围

本手册描述了模块串口接口及其使用方法。 本手册适用于带串口功能的 SIM800 系列版本。

www.simcom.com 3 / 24

目录

版材	又声 F	明		2
关于	F文	档		3
	版本	历史		3
	适用	范围		3
目家	₹			4
表材	客	引		5
图片	索	引		6
1	介统	绍		7
	1.1	文档目	的	7
	1.2	参考文	档	7
	1.3	术语和	缩写	7
2				
3				
			CU	
			CU	
4			率	
5				
			控(XON/XOFF)	
			控(RTS/CTS flow control)	
6				
7			能	_
			管脚定义	
			AT 命令限制	
	7.3	双串口	睡眠模式 1	22
		7.3.1	通过 UART1 进入休眠	22
		7.3.2	通过 UART1 唤醒模块	
		7.3.3	通过 UART2 进入休眠	22
		7.3.4	通过 UART2 唤醒模块	22
	7.4	双串口	睡眠模式 2	
		7.4.1	通过 UART1 进入休眠	
		7.4.2	通过 UART1 唤醒模块	
		7.4.3	通过 UART2 进入休眠	24
		7.4.4	通过 UART2 唤醒模块	24

表格索引

表 1:	串口逻辑电平	9
表 2:	RS232 电平	. 10
表 3:	RI 响应	. 16
表 4:	AT+CFGRI 开启 RI 引脚提示	. 17
表 5:	SIM800H 和 SIM800L 双串口管脚定义	. 18
表 6:	SIM800 和 SIM800M64 双串口管脚定义	. 18
表 7:	AT+CMNRP 开启关闭双串口功能	. 19
表 8:	SIM800C 和 SIM800C-DS 双串口管脚定义	. 20
耒α.	AT 命令限制	21

图片索引

图 1:	全功能串口连接	8
	非全功能串口连接	
图 3:	使用开漏输出缓冲器进行电平转换	9
图 4:	使用晶体管进行电平转换	10
图 5:	使用 SP3238E 进行电平转换——连接 PC	11
图 6:	同步波特率流程	12
图 7:	RI 响应	17
	串口连接图	
图 9:	串口连接图	21

1.1 文档目的

本文档旨在介绍模块串口接口及其使用方法,便于客户快速了解模块串口功能。

1.2 参考文档

- [1] SIM800 Series AT Command Manual
- [2] SIM800 系列_TCPIP_应用文档

1.3 术语和缩写

术语	描写
DCE	Data Communication Equipment
DTE	Data Terminal Equipment
UART	Universal Asynchronous Receiver and transmitter

www.simcom.com 7 / 24

2 连接方式

SIM800 系列模块被设计为 DCE (数据通信设备)。它提供了全功能串口,用作数据传输以及发送 AT 命令。包括数据传输线 TXD 和 RXD, 硬件流控线 RTS 和 CTS, 状态线 DTR, DCD 和 RI。串口标准电压为 2.80V。

如果模块使用全功能串口,所有的信号线都必须连接。下图显示了全功能串口模式下模块与终端(DTE)的连接方法。

图 1: 全功能串口连接

非全功能串口模式下,只需要连接 RXD 和 TXD,其他接口悬空。下图显示了非全功能串口模式下模块与终端(DTE)的连接方法。

图 2: 非全功能串口连接

注意:

DTE 发送数据给模块前必须拉低 DTR 引脚。如果 DTR 未连接至 DTE,必须通过 10K 电阻短地。

www.simcom.com 8 / 24

3 电平转换

有效电平: 0V(位0或者有效状态); 2.80V(位1或者无效状态)。电气特性请参考下表。

表 1: 串口逻辑电平

参数	最小值	最大值	单位
V_{IL}	0	0.4	V
V _{IH}	2.4	3.0	V
V _{OL}	0	0.1	V
V _{OH}	2.7	3.0	V

如果 MCU 或 PC 端电平超出此表范围,需要使用电平转换电路。

3.1 连接 MCU

两种方法进行电平转换: 1,使用开漏输出缓冲器(如: NC7WZ07); 2,使用晶体管。

使用开漏输出缓冲器:

图 3: 使用开漏输出缓冲器进行电平转换

www.simcom.com 9 / 24

使用晶体管:

图 4: 使用晶体管进行电平转换

注意:

VDD_EXT 由模块供电(2.80V),VCC_MCU 由终端供电。

3.2 连接 MCU

表 2: RS232 电平

参数	输出电平	输入电平	单位
逻辑 0	+5+15	+3+25	V
逻辑 1	-515	-325	V
未定义	-	-3+3	V

建议使用 RS-232 收发器(如: SP3238E或 MAX3221等)进行电平转换。

全功能串口连接:

www.simcom.com 10 / 24

图 5: 使用 SP3238E 进行电平转换——连接 PC

如果只使用 RXD 和 TXD,可以使用 MAX3221 进行电平转换。

■4 同步波特率

SIM800 系列模块的串口默认都是自适应波特(AT+IPR=0)。主机端必须首先与模块同步波特率。建议不停发送"AT"或"at"直到收到同步成功的回应"OK"为止。同步上波特率后,建议使用命令"AT+IPR"来设置固定波特率。下图显示了同步波特率的流程:

图 6: 同步波特率流程

5 流控

流控对于模块(DCE)和终端(DTE)之间数据传输的可靠性非常重要。比如如下应用场景:数据发送端发送速率快于接收端,当接收端缓冲过载,接收端可以通知发送端暂停数据发送,直到接收端缓冲区有足够空间继续处理数据。

SIM800 系列模块默认未启用流控功能。可以使用命令"AT+IFC"来开启硬件流控或软件流控功能。

5.1 软件流控(XON/XOFF)

软件流控通过发送不同特征字符来暂停(XOFF,0x13)和恢复(XON,0x11)数据传输。常用于非全功能 串口模式下。

命令 "AT+IFC=1,1" 开启软件流控。

开启软件流控功能后,PC 端串口通信工具(比如 ProComm Plus,Hyper terminal 或者 WinFax Pro)也必须同时开启软件流控功能。

软件流控方案中需要使用以下三个特殊字符: XON(0x11), XOFF(0x13), ESCAPE(0x77)。下面解释这些字符功能的各自作用。

当 MCU 通过串口接收大量数据, 而 MCU 来不及处理这些数据时, 可以在串口上直接发送 XOFF 字符给模块, 通知模块暂停数据的发送。

当 MCU 部分或全部处理完这些数据后,需要在串口上直接发送 XON 字符给模块,及时地通知模块继续后续数据的发送。

在用户将要发送的数据中,本身可能包含 0x11, 0x13, 0x77 这三个个字符, 那么要求 MCU 把这些数据进行转义后才可以发送。否则模块会误解这些数据为 XON, XOFF 等控制 字符; 0x11 转义为 0x77 0xEE 两个字符, 0x13 转义为 0x77 0xEC 两个字符, 0x77 转义为 0x77 0x88 两个字符; 当模块接收到这些带 ESCAPE(0x77)前导字符的数据后,会"自动"地恢复 成原始数据进行处理。

同样,当 MCU 通过串口发送大量数据给模块,模块来不及处理这些数据时,模块将在 串口上发送 XOFF 字符给 MCU,通知 MCU 暂停数据的发送;所以,需要注意的是:当 MCU 在串口上不停地发送大量数据给模块的时候,要有能力或办法 "监视" 串口上模块发给 MCU 的数据,用来判断是否含有 XOFF, XON 等控制字符。

当模块处理完部分或全部数据后,模块将在串口上发送 XON 字符给 MCU,通知 MCU 进行后续数据的发送。模块发送数据给 MCU 时,数据本身可能含有 0x11,0x13,0x77 等三个字符,那么模块将把这些数据进行转

www.simcom.com 13 / 24

义后再发给 MCU, 0x11 转义为 0x77 0xEE 两个字符, 0x13 转义为 0x77 0xEC 两个字符, 0x77 转义为 0x77 0x88 两个字符; 当 MCU 接收到这些带 ESCAPE(0x77)前导字符后, 要把这些数据恢复后再提交给 MCU 的上层应用进行处理。

5.2 硬件流控(RTS/CTS flow control)

硬件流控通过 RTS/CTS 信号来实现。当接收缓存快满的时候,模块(DCE)把 CTS 信号设置为无效,数据传输被暂停,当模块的接收缓存可以接收更多数据时,CTS 信号重新被设置为有效。

命令 "AT+IFC=2,2" 开启硬件流控功能。

要实现硬件流控功能,请确保 RTS/CTS 线的正确连接。

注意:

终端(DTE)发送数据时,必须拉低 DTR 引脚; 否则, CTS 引脚状态变化可能被忽略。

■ 6 控制引脚

6.1 CTS

该信号由模块(DCE)发送给终端(DTE),有效时(低电平),表示允许终端(DTE)发送数据;反之,禁止终端(DTE)发送数据。

6.2 RTS

该信号由终端(DTE)发送给模块(DCE),有效时(低电平),表示允许模块发送数据;反之,禁止模块发送数据。

6.3 DCD

指令 AT&C 用来设置 DCD 功能模式。"AT&C0",DCD 保持有效(低电平);"AT&C1",DCD 只在有数据载波时有效(低电平)。

6.4 DTR

设置 AT+CSCLK=1 后,如果模块处于待机状态并且 DTR 拉到高电平,没有其他中断产生(GPIO,来电,来短信等),模块会进入休眠状态,耗流降低至最低水平。休眠状态下,模块仍可正常接收来电和短信。如果拉低 DTR,模块将退出休眠状态,串口恢复输入功能。通话中,DTR 必须保持为低。

指令"AT&D"用来设置 DTR 功能模式:

- 设置"AT&D0", TA 将忽略 DTR 引脚状态。
- 设置"AT&D1", DTR 由 ON (低)->OFF (高)时: TA 保持数据通话, 切换至命令模式。
- 设置"AT&D2", DTR 由 ON (低)->OFF (高)且超过 ATS10 设置的时长时: TA 释放数据通话, 切换至 命令模式。

TCP/IP应用仅支持AT&D1和AT&D0。DTR被用来切换数据模式至命令模式(详情请参考TCP/IP应用文档)。首先,设置AT&D1,然后拉低 DTR 至少 1 秒,接着再拉高,模块将从数据模式切换至命令模式,并且返回OK,指示切换成功。

www.simcom.com 15 / 24

6.5 RI

RI 状态请见表 3。

表 3: RI 响应

状态	RI 响应
待机	高
通话(包括语音与数据)	如果模块主叫,RI将保持为高电平。
(不受 CFGRI 设置控制)	如果模块被叫,RI 响应情况如下所示:
	切换至低, 然后:
	(1)建立连接,RI切换至高。
	(2) 执行指令 ATH, RI 切换至高。
	(3) 主叫挂断, RI 切换至高。
	(4) 收到 SMS, RI 切换至高。
SMS	接收到 SMS 时会触发 RI 产生 120ms 低电平脉冲, 然后再
(不受 CFGRI 设置控制)	切换至高;同时串口会上报如下 URC:
	+CMTI:
	+CMT:
	+CDS:
TCPIP	以下情况将触发 RI 产生 120ms 低电平脉冲,然后再切换至
(受 CFGRI 设置控制)	高:
	(1) TCP 通过 CIICR 激活账户
	(2) TCP 通过 CIPSHUT 去激活账户
	(3)TCP 通过 CIPSTART 建立联接
	(4) TCP 通过 CIPCLOSE 关闭联接
	(5) TCP 通过 CIPSEND 发送数据
	(6)接收到数据
FTP	FTP 主动上报消息时会触发 RI 产生 120ms 低电平脉冲,
(受 CFGRI 设置控制)	然后再切换至高。
URC	下面的 URC 消息将触发 RI 产生 120ms 低电平脉冲, 然后
(受 CFGRI 设置控制)	再切换至高:
	UNDER-VOLTAGE WARNNING
	OVER-VOLTAGE WARNNING
	Call Ready
	ALARM RING
URC	When report following URCs, the RI will be changed to
(controlled by the setting of CFGRI)	LOW and hold at low level for about 120 ms, then it is
	changed to HIGH.
	UNDER-VOLTAGE WARNNING
	OVER-VOLTAGE WARNNING

Call Ready ALARM RING

图 7: RI 响应

表 4: AT+CFGRI 开启 RI 引脚提示

AT+CFGRI 开启 RI 引脚提示	
查询命令	响应:
AT+CFGRI?	+CFGRI: <status></status>
	ОК
写命令	响应
AT+CFGRI= <status></status>	ОК
	or
	ERROR
参数保存方式	AT&W_SAVE
最大响应时间	-
参考	Note

参数:

<status></status>	0	关闭
	1	开启

www.simcom.com 17 / 24

7 双串口功能

SIM800H, SIM800L, SIM800, SIM800M64, SIM800C 和 SIM800C-DS 模块支持双串口功能。

7.1 双串口管脚定义

SIM800H, SIM800L, SIM800和 SIM800M64模块支持双串口功能,硬件可以同时支持一路全功能串口(UART2)和一路三线串口(UART1)。双串口功能需要在 UART1设置 AT 命令"AT+CMNRP=1"之后才生效。客户需要双串口时,可以按如下表格进行硬件设计。

表 5: SIM800H 和 SIM800L 双串口管脚定义

串口1定义	名称	引脚	信号方向	描述
UART1_TXD	TXD	32	输出	用于升级的串口
UART1_RXD	RXD	31	输入	
串口2定义	名称	引脚	信号方向	描述
UART2_TXD	RTS	33	输出	
UART2_RXD	CTS	34	输入	
UART2_RTS	UART_RI	68	输入	清除发送
UART2_CTS	UART_DCD	70	输出	请求发送
UART2_DTR	UART_DTR	69	输入	
UART2_RI	ROW4	63	输出	
UART2_DCD	COL4	24	输出	

表 6: SIM800 和 SIM800M64 双串口管脚定义

串口1定义	名称	引脚	信号方向	描述
UART1_TXD	TXD	9	输出	用于升级的串口
UART1_RXD	RXD	10	输入	
串口 2 定义	名称	引脚	信号方向	描述
UART2_TXD	RTS	8	输出	
UART2_RXD	CTS	7	输入	
UART2_RTS	UART_RI	4	输入	清除发送
UART2_CTS	UART_DCD	5	输出	请求发送
UART2_DTR	UART_DTR	3	输入	
UART2_RI	ROW4	40	输出	

输出	47	COL4	UART2_DCD
----	----	------	-----------

注意:

- 1: 客户设计双串口时需要占用按键的 COL4、ROW4。
- 2: AT 命令"AT+CMNRP"只能在 UART1 执行。
- 3: B05 及之后的版本支持双串口功能。

表 7: AT+CMNRP 开启关闭双串口功能

AT+CMNRP 开启关闭双串口功能				
测试命令	响应			
AT+CMNRP=?	+CMNRP: (0-1)			
	ок			
读命令	响应			
AT+CMNRP?	+CMNRP: <mode></mode>			
	ок			
写命令	响应			
AT+CMNRP= <mode></mode>	ОК			
	or			
	ERROR			
参数保存方式	AT&W_SAVE			
最大响应时间				
参考				

参数:

<mode></mode>	0	单串口模式,	关闭双串口功能。
	1	双串口模式,	打开双串口功能。

模块双串口与客户设备连接示意图如下,该图适用于 SIM800H、SIM800L、SIM800 和 SIM800M64。

图 8: 串口连接图

SIM800C、SIM800C-DS 模块支持双串口功能,硬件可以同时支持一路全功能串口(UART1)和一路三线串口(UART2)。客户需要双串口时,可以按如下表格进行硬件设计。

表 8: SIM800C 和 SIM800C-DS 双串口管脚定义

串口1定义	名称	引脚	信号方向	描述
UART1_TXD	UART1_TXD	1	输出	用于升级的串口
UART1_RXD	UART1_RXD	2	输入	
UART1_RTS	UART1_RTS	3	输入	清除发送
UART1_CTS	UART1_CTS	4	输出	请求发送
UART1_DTR	UART1_DTR	6	输入	
UART1_RI	UART1_RI	7	输出	
UART1_DCD	UART1_DCD	5	输出	
串口1定义	名称	引脚	信号方向	描述
UART2_TXD	UART2_TXD	22	输入	
UART2_RXD	UART2_RXD	23	输出	

模块双串口与客户设备连接示意图如下,该图适用于 SIM800C 和 SIM800C-DS。

www.simcom.com 20 / 24

图 9: 串口连接图

7.2 双串口 AT 命令限制

当模块工作在双串口模式时,部分AT命令只能在某一个串口上执行,具体如下:

表 9: AT 命令限制

如下表格适用于 SIM800H、SIM800L、SIM800 和 SIM800M64。

AT 命令	UART1	UART2	备注
AT+IFC=2,2	不支持	支持	UART1 接口无硬件流程 pin 脚
AT+CSCLK=1	不支持	支持	UART1 接口无 DTR pin 脚
ATD*99# (PPP)	不支持	支持	PPP 连接后 UART1 会丢数据
AT+CSCLK=2	支持	不支持	UART2 接口的 RXD pin 脚无中断功能
AT+CMNRP=0	支持	不支持	
AT+CMNRP=1	支持	不支持	

如下表格适用于 SIM800C 和 SIM800C-DS。

AT 命令	UART1	UART2	备注
AT+IFC=2,2	支持	不支持	UART2 接口无硬件流程 pin 脚
AT+CSCLK=1	支持	不支持	UART2 接口无 DTR pin 脚
ATD*99# (PPP)	支持	不支持	PPP 连接后 UART2 会丢数据
AT+CSCLK=2	支持	支持	

www.simcom.com 21 / 24

7.3 双串口睡眠模式 1

该章节适用于 SIM800H、SIM800L、SIM800 和 SIM800M64。

在双串口模式下,UART1 和 UART2 默认都是自适应波特(AT+IPR=0)。在没有同步串口波特率的情况下,模块无法进入休眠:两个串口波特率均进行同步以后模块才可以进入睡眠模式。

7.3.1 通过 UART1 进入休眠

在双串口模式和下,UART1 是三线串口(只连接 TXD, RXD, GND 三个信号线), 休眠功能只能采用休眠模式 2。设置 AT+CSCLK=2 后,模块会连续监测 UART1 和 UART2, 如果模块的 UART1 和 UART2 上都没有数据输入,并且没有其他中断产生(GPIO,来电,来短信等),5 秒后模块会自动进入休眠模式 2。在这种模式下,模块仍能接收来自网络的呼叫和短消息。

7.3.2 通过 UART1 唤醒模块

当模块处于休眠模式2时,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号:
- 接收到语音或数据呼叫:
- 接收到短消息(SMS);
- UART1 接收到数据(第一个字符会丢失)。

注意:

在 UART2 处输入 AT 命令不会唤醒模块,拉低 UART2 DTR 也不会唤醒模块。

7.3.3 通过 UART2 进入休眠

客户可以拉高 UART2 接口的 DTR 使模块进入休眠模式 1。客户设置"AT+CSCLK=1"后,如果模块处于待机 状态并且 DTR 是高电平,没有其他中断产生(GPIO,来电,来短信,UART1 无数据等),模块将自动进入 休眠模式 1。在这种模式下,模块仍能接收来自网络的呼叫和短消息。在休眠模式 1 下,串口是不可用的。

7.3.4 通过 UART2 唤醒模块

当模块处于休眠模式1时,可以通过以下的几种方法唤醒模块。

www.simcom.com 22 / 24

- 接收到外部中断信号:
- 接收到语音或数据呼叫:
- 接收到短消息 (SMS);
- 拉低 UART2 DTR 引脚。

接收到语音或数据呼叫,接收到短消息(SMS)时模块会通过串口上报 URC,但不可以输入 AT 命令;只有在 DTR 引脚被拉到低电平大概 50mS 后,串口才可以输入 AT 命令。

注意:

在 UART1 输入 AT 命令不会唤醒模块。

7.4 双串口睡眠模式 2

该章节适用于 SIM800C 和 SIM800C-DS。

在双串口模式下,UART1 和 UART2 默认都是自适应波特(AT+IPR=0)。在没有同步串口波特率的情况下,模块无法进入休眠;两个串口波特率均进行同步以后模块才可以进入睡眠模式。

7.4.1 通过 UART1 进入休眠

客户可以拉高 UART1 接口的 DTR 使模块进入休眠模式 1。客户设置"AT+CSCLK=1"后,如果模块处于待机 状态并且 DTR 是高电平,没有其他中断产生(GPIO,来电,来短信,UART1 无数据等),模块将自动进入 休眠模式 1。在这种模式下,模块仍能接收来自网络的呼叫和短消息。在休眠模式 1下,串口是不可用的。

休眠模式 2。设置 AT+CSCLK=2 后,模块会连续监测 UART1 和 UART2, 如果模块的 UART1 和 UART2 上都没有数据输入,并且没有其他中断产生(GPIO,来电,来短信等),5 秒后模块会自动进入休眠模式 2。在这种模式下,模块仍能接收来自网络的呼叫和短消息

7.4.2 通过 UART1 唤醒模块

当模块处于休眠模式1时,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号;
- 接收到语音或数据呼叫;
- 接收到短消息(SMS);
- 拉低 UART1 DTR 引脚。

接收到语音或数据呼叫,接收到短消息(SMS)时模块会通过串口上报 URC,但不可以输入 AT 命令;只有在 DTR 引脚被拉到低电平大概 50mS 后,串口才可以输入 AT 命令。

www.simcom.com 23 / 24

当模块通过 UART1 设置处于休眠模式 2 时,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号:
- 接收到语音或数据呼叫;
- 接收到短消息(SMS);
- UART1 接收到数据(第一个字符会丢失)。

注意:

在 UART2 处输入 AT 命令不会唤醒模块,拉低 UART1 DTR 也不会唤醒模块。

7.4.3 通过 UART2 进入休眠

UART2 是三线串口(只连接 TXD,RXD,GND 三个信号线),休眠功能只能采用休眠模式 2。设置 AT+CSCLK=2 后,模块会连续监测 UART1 和 UART2,如果模块的 UART1 和 UART2 上都没有数据输入,并且没有其他中断产生(GPIO,来电,来短信等),5 秒后模块会自动进入休眠模式 2。在这种模式下,模块仍能接收来自网络的呼叫和短消息

7.4.4 通过 UART2 唤醒模块

当模块通过 UART2 设置处于休眠模式 2 时,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号:
- 接收到语音或数据呼叫;
- 接收到短消息(SMS);
- UART2接收到数据(第一个字符会丢失)。

注意:

在 UART1 处输入 AT 命令不会唤醒模块,拉低 UART1 DTR 也不会唤醒模块。

www.simcom.com 24 / 24