Cours 1: TCP/IP Généralités

1

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

Qu'est-ce que l'Internet?

- des millions des machines connectées : hosts, endsystems
 - PCs workstations, servers PDAs.
- □ Liaisons de communication
 - o fibre, cuivre, radio, satellite
 - o débit = bande passante
- routeurs: redirection des paquets

3

Qu'est-ce que l'Internet?

- protocoles contrôlent l'envoi et la réception des msgs
 - o TCP, IP, HTTP, FTP, PPP
- Internet: "réseau de réseaux "
 - Hiérarchie incertaine
 - Internet public versus intranets privés
- Standards Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

Qu'est-ce que l'Internet?

- infrastructure de communication permet l'échange des applications distribuées:
 - Web, email, games, ecommerce, database., P2P...
- □ deux types de services:
 - o fiable avec connexion
 - o non fiable sans connexion

5

Qu'est-ce qu'un protocole?

Un protocole humain et un protocole réseau:

Les protocoles définissent le format, l'ordre des msgs envoyés et reçus parmis les entités de réseau, et les actions prises sur les msg en transmission, réception

Structure des réseaux:

- □ réseau d'accès:
 applications et hosts
- □ coeur de réseau:
 - o routeurs
 - o réseau de réseaux
- □ Supports physiques: liens de communication

7

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

Réseaux d'accès:

- end systems (hosts):
 - Exécutent des programmes d'application (Web, email)

modèle client/serveur

- client demande, reçoit de services de serveur
- Web: browser/server; email: client/server
- Modèle peer-peer (point à point):
 - l'application agit à la fois en tant que client et serveur
 - Gnutella, KaZaA

9

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

Le réseau coeur

- Réseau maillés de routeurs
- □ La question_fondamentale: comment les données sont transférées à travers le réseau?
 - Commutation de circuits: circuit dédié par appel: réseau téléphonique
 - Commutation par paquets: données envoyées sur le réseau par "morceaux"

11

Réseau coeur: commutation de Circuits

ressources réservées de bout en bout par "appel"

- bande passante de lien, capacité de commutation de commutation
- □ ressources: non partagées
- initialisation de l'appel demandé

Réseau coeur: commutation par

paquets

chaque flux de données est divisé en paquets

- □ les paquets des utilisateurs A, B partagent les ressources de réseau
- chaque paquet utilise la bande passante totale de lien

Problèmes de ressources:

- □ la demande d'agrégation de ressources peut dépasser la moyenne disponible
- congestion: paquets en file, attente pour l'utilisation de lien
- store and forward (enregistrement et retransmission)

<u>commutation par paquets: store-and-</u> forward

- L bits : longueur de message et R débit de lien
- délai = 3L/R

Exemple:

- □ L = 7.5 Mbits
- □ R = 1.5 Mbps
- délai = 15 sec

17

Commutation par paquets: segmentation du Message

Découpage du message en 5000 paquets

- □ 1,500 bits par paquet
- □ 1 msec pour transmettre un paquet sur un lien
- pipelining: chaque lien travaille en parallèle
- Délai réduit de 15 sec à 5,002 sec

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

Supports physiques

Q: comment connecter un terminal au routeur d'accès?

- accès résidentiel
- □ accès d'entreprise (universités, entreprises)
- accès mobile

A retenir

- □ bande passante (b/s) des réseaux d'accès?
- paratgé or dédié?

21

Accès résidentiel: accès point à point

- Modem (ligne téléphonique)
 - 56Kbps accès direct au routeur (souvent moins)
 - On ne peut pas "surf" et téléphoner au même temps

- □ <u>ADSL</u>: asymmetric digital subscriber line
 - Plus de 1 Mbps upstream
 - O Plus de 8 Mbps downstream
 - FDM: 50 kHz 1 MHz pour downstream

4 kHz - 50 kHz pour upstream

0 kHz - 4 kHz pour le téléphone ordinaire

Accès résidentiel: câble modems

- □ HFC: hybrid fiber coax
 - o asymétrique: plus de 1Mbps upstream, 10 Mbps downstream
- réseau de câbles et fibres connectent les utilisateurs au routeur de l'ISP
 - o accès partagé entre les utilisateurs
 - o issues: congestion, dimensionnement
- □ déploiement: disponible via les entreprises exemple:MediaOne

23

Accès résidentiel: câble modem Fiber Optic Transport Coaxial Cable Par Dour Soner, ATM or WDM at Occ 12 Regional Cable Headend Public Switched Telephone Network Public Switched Telephone Network Regional Cable Hubbin Per node Regional Cable Telephone Network Copyright 1999 Kinetic Strategies, Inc.

Accès d'entreprise: réseaux locaux

- entreprise/univ local area network (LAN) connecte le terminal au routeur d'accès
- □ Ethernet:
 - lien partagé ou dédié entre le terminal et le routeur
 - 10 Mbs, 100Mbps, Gigabit Ethernet
- □ LANs: cours premier semestre

29

Accès mobile

- accès radio partagé
 - o via base station ou "access point"
- wireless LANs:
 - o 802.11b (WiFi): 11 Mbps
- accès étendu par radio
 - 3*G* ~ 384 kbps
 - WAP/GPRS en Europe

Supports physiques

- □ Bit: propage entre émetteur/récepteur
- □ lien physique: permet de liéer deux machines
- □ supports guidés:
 - signaux se propagent sur un support solide, cuivre, fibre, coax
- □ supports non guidés :
 - signaux se propagent librement, radio

Twisted Pair (TP) ou paires torsadées

- deux fils en cuivre isolés
 - Catégorie 3: ligne de téléphone, 10 Mbps Ethernet
 - Catégorie 5 TP:
 100Mbps Ethernet

Supports physiques: coax, fibre

Câble Coaxial:

- deux conducteurs en cuivre à structure concentrique
- bidirectionnel
- □ bande de base:
 - Câble à 50 ohms →
 Ethernet
- □ large bande:
 - o câble à 75 ohms→ TV

Fibre optique:

- Permet la propagation sous forme d'impulsions lumineuses représentant chacune un bit
- □ Débit élevé :
 - transmission point à point (5 Gps)
- taux d'erreur faible

33

Supports physiques: radio

- signaux (ondes) envoyés dans le spectre radio-électromagnétique
- effets sur l'environnement de propagation :
 - o réflexion
 - obstacles
 - o interférence

Types de liens radio:

- Canaux radio terrestres
 - 2Mbps, 11Mbps (WLAN)
 - 100 kbps (cellulaires)
- □ satellite
 - plus de 50Mbps channel (ou multiple petits canaux)
 - 270 msec délai de bout en bout

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

35

Structure d'Internet: réseau de réseaux

- □ 3 niveaux hiérarchiques
- □ niveau 1: "tier-1" ISPs (UUNet, BBN/Genuity, Sprint, AT&T), national/international couverture

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

- 3. Délai de transmission :
- R=link bandwidth (bps)
- □ L=packet length (bits)
- time to send bits into link = L/R
- 4. Délai de propagation :
- □ d = length of physical link
- □ s = propagation speed in medium (~2×10⁸ m/sec)
- propagation delay = d/s

43

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

<u>Les couches de protocoles : modèle</u> <u>OSI</u>

Couches OSI

Application

Présentation

Session

Transport

Réseau

Liaison

Physique

Fonctions

Applications réseaux : transfert de fichiers.

Formatage et cryptage des données

Etablissement et maintien des sessions

Transport de bout en bout, fiable et non fiable

Envoi et routage des paquets de données

Transfert des unités d'informations et contrôle d'erreurs

Transmission des données binaires

45

<u>Les couches de protocoles : TCP/IP</u> <u>et le modèle OSI</u>

mo	dèle C							
		Pro	tocol Impl	ementation	<u>1</u>			<u>OSI</u>
	File Transfer	Electronic Termina Mail Emulation		File Transfer	Client Server		Network Mgmt	Application
	File Transfer Protocol	Simple Mail Transfer Protocol	1 1010001	Trivial File Transfer	Network File System Protocol (NFS) RFC 1024, 1057 and 1094		Simple Network Management Protocol	Presentation
	(FTP) RFC 559	(SMTP) RFC 821	RFC 854	Protocol (TFTP) RFC 783			(SNMP)	Session
	Transmission Control Protocol (TCP) User Datagram Protocol (UDP) RFC 793 RFC 768							Transport
	Proto ARP: RF	Idress Resolution			e Protocol	Network		
	Network Interface Cards Ethernet Token Ring Starlan Arcnet FDDI SMDS							Data Link
Transmission Mode TP STP FO Satellite Microwave, etc								Physical

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

51

Internet Historique

Les années soixante: principes de commutation par paquets

- □ 1967: ARPAnet conçu par Advanced Research Projects Agency
- ☐ 1969: premier noeud ARPAnet opérationnel
- **1972**:
 - Démonstration publique d'ARPAnet
 - NCP (Network Control Protocol) premier protocole de serveur à serveur
 - Premier programme email
 - ARPAnet a 15 noeuds

Internet Historique

- □ 1979: ARPAnet a 200 noeuds
- 1970: ALOHAnet réseau satellite reliant les différentes universités à Hawaii
- □ 1983: déploiement de TCP/IP
- □ 1982: SMTP
- □ 1983: DNS
- □ 1985: FTP
- □ 1988: TCP congestion control
- □ dans 1990: Web
 - O HTML, HTTP
 - o 1994: Mosaic, plus tard Netscape

53

Cours 1: plan

- 1.1 Qu'est-ce que l'Internet?
- 1.2 Réseau d'accès
- 1.3 Réseau coeur
- 1.4 réseau d'accès et le support physique
- 1.5 Structure d'Internet et les ISPs
- 1.6 Délais dans les réseaux à commutation par paquets
- 1.7 les couches de protocoles
- 1.8 Historique
- 1.9 Bibliographie

Bibliographie

- □ TCP/IP architecture protocoles applications, Douglas Cormer
- □ Computer Networking Atop-Down Approch Featuring the Internet, James Kurose et Keith Ross, second Edition
- □ Réseaux et Télécoms, Claude Servin. Dunod