

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Computer

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Scheme 1

Fig. 16

Scheme 2

Precursors	R ¹	R ²	Porphyrin
8 + 2	—TIPS	—TMS	11 (20%)
9 + 2	I	—TMS	12 (21%)
10 + 3	CH ₃	I	13 (21%)

Fig. 17

Porphyrin	R ¹	R ²	R ³	R ⁴	Triple Decker	Yield
14		p-tolyl		p-tolyl	TD7	74%
11	p-tolyl			p-tolyl	TD8	79%
13	p-tolyl	p-tolyl		p-tolyl	TD9	62%
15	n-pentyl	n-pentyl		n-pentyl	TD10	25%

Fig. 18

Scheme 4

Fig. 19

Type a triple-deckers

TD1 M¹/M² = Eu, R¹/R² = CH₃TD2 M¹/M² = Ce, R¹/R² = CH₃TD3 M¹ = Eu, M² = Ce, R¹ = I, R² = ——TMS

Type c triple-deckers

TD4 M¹/M² = Eu, R = p-tolylTD5 M¹ = Eu, M² = Ce, R = p-tolylTD6 M¹/M² = Eu, R = n-pentyl**Fig. 20**

Scheme 5

Porphyrin	R ¹	R ²	Triple Decker	Yield
12	CH ₃	I	TD11	54%
14	I	CH ₃	TD3	46%

Fig. 21

10079938 • 021402

R ¹	R ²	Triple Decker
I	TMS	TD11
	TMS	AcS-TD11 (57%)
	H	AcS-TD11' (66%)

 ← Pd(PPh₃)₄Cl₂, CuI
THF, TEA, 35 °C
(n-Bu)₄NF, THF, 0 °C

Fig. 22

2019-08-26 08:00

Fig. 23

Scheme 8

Fig. 24

Fig. 25

Scheme 10

Fig. 26

Scheme 11

Fig. 27

Scheme 12

Fig. 28

Scheme 13

Fig. 29

10079938.021903

Fig. 30

Fig. 31

Fig. 32

Fig. 33

Fig. 34