

Royal Institute of Technology

DGM CONDITIONAL INDEPENDENCE

CONDITIONAL INDEPENDENCE

★ X and Y are conditionally independent given Z iff

$$p(X, Y | Z) = p(X | Z)p(Y | Z)$$

★ Implies

$$p(X | Y, Z) = p(X, Y | Z)/p(Y | Z) = p(X | Z)$$

★ Denoted

$$X \perp Y \mid Z$$

WHEN ARE X AND Y CONDITIONALLY INDEPENDENT?

$$p(x_1,\ldots,x_N) = \prod_{n=1}^N p(x_n|\boldsymbol{x}_{\mathrm{pa}(x_n)})$$

STUDENT EXAMPLE

INDEPENDENCE I-MAP

- I(G) (conditional) independences implied by G (not yet defined)
- ⋆ I(P) (conditional) independences in the distribution P
- ★ G is an I-map for P if $I(G) \subseteq I(P)$

р	X	$Y \mid$	P(X,Y)		q	X	Y	P(X,Y)	
	x^0	y^0	0.08	_		x^0	y^0	0.4	
	x^0	y^1	0.32			x^0	y^1	0.3	
	x^1	y^0	0.12			x^1	y^0	0.2	
	x^1	y^1	0.48			x^1	y^1	0.1	
	X	Y	/	X	,	Y		X	Y

INDEPENDENCE I-MAP

- I(G) independences implied by G (not yet defined)
- ⋆ I(P) independences in the distribution P
- \star G I-map for P in I(G) ⊆ I(P)

- * p: X and Y ind. ex. p(X=1) = 0.48 + 0.12 = 0.6, p(Y=1) = 0.8, and p(X=1,Y=1) = 0.48
- q: X and Y are dependent

INDEPENDENCE I-MAP

- I(G) independences implied by G (not yet defined)
- ⋆ I(P) independences in the distribution P
- \star G I-map for P in I(G) ⊆ I(P)

- All three graphs are I-maps for p
- **★** G₁ and G₂ are I-maps for q, but G₃ is not

D-SEPARATION

- ★ A path is d-separated by O if it has
 - a chain $X \to Y \to Z$ where $Y \in O$
 - a fork $X \leftarrow Y \rightarrow Z$ where $Y \in O$
 - a v-structure $X \rightarrow Y \leftarrow Z$ where $(Y \cup desc(Y)) \cap O = \emptyset$

D-SEPARATION SETS AND CLOF DAGS

- ★ A is d-separated from B given O if every undirected path between A and B is d-separated by O
- ★ Cond. ind rel. in DAG G,

$$oxed{x_A ot_G oldsymbol{x}_B oxed{x}_C}$$

A is d-separated from B given O

SOUNDNESS AND COMPLETENESS

- I(G) conditional independence relations implied by d-sep in G
- I(p) conditional independence relations satisfied by p
- * Theorem

A distribution P can be factorised over G iff $I(G) \subseteq I(p)$

* "=" not possible to achieve, ex. clique and independent distribution

