正項級数の和の分割について

katatoshi

2018年4月25日

 $P \subseteq \mathbf{N}$ に対して,P の有限部分集合全体の集合を $\mathcal{F}(P)$ で表わす. $P \subseteq \mathbf{N}$, $P \neq \varnothing$ から \mathbf{R} への写像 $a: P \to \mathbf{R}$ を数列と呼び, $(a_n)_{n \in P}$ で表わす. $F \in \mathcal{F}(P)$ に対して $s_F = \sum_{n \in F} a_n$ とするとき, $\mathcal{F}(P)$ から \mathbf{R} への写像 $F \mapsto s_F$ を級数と呼び, $\sum_{n \in P} a_n$ で表わす. s_F を級数 $\sum_{n \in P} a_n$ の部分和と呼び,任意の $n \in P$ に対して $a_n \geq 0$ であるとき,級数 $\sum_{n \in P} a_n$ を正項級数と呼ぶ.以下,正項級数についてのみ考える.正項級数 $\sum_{n \in P} a_n$ に対して

$$\sup_{F \in \mathcal{F}(P)} s_F$$

を正項級数 $\sum_{n\in P}a_n$ の和と呼び,同じく $\sum_{n\in P}a_n$ で表わす. $\sup_{F\in\mathcal{F}(P)}s_F<+\infty$ であるとき正項級数 $\sum_{n\in P}a_n$ は収束するという.

この正項級数の和の定義は、部分和の極限として定義する一般的な和の定義と一致する.

命題 1 任意の $n \in \mathbb{N}$ に対して $a_n \ge 0$ であるような数列 $(a_n)_{n \in \mathbb{N}}$ について

$$\sum_{n \in \mathbf{N}} a_n = \lim_{m \to \infty} \sum_{n=1}^m a_n$$

である.

証明 $s = \sum_{n \in \mathbb{N}} a_n$, $t = \lim_{m \to \infty} \sum_{n=1}^m a_n$ とする. $t_m = \sum_{n=1}^m a_n$, $m \in \mathbb{N}$ とすると $(t_m)_{m \in \mathbb{N}}$ は単調増加列であるから $t = \sup_{m \in \mathbb{N}} t_m$ である. いま,F を $\mathcal{F}(\mathbb{N})$ の任意の元とすると, $s_F \leq t_{\max F} \leq t$ であるから $s = \sup_{F \in \mathcal{F}(\mathbb{N})} s_F \leq t$ である.逆に,任意の $m \in \mathbb{N}$ に対して $F = \{1, \cdots, m\}$ とすると $F \in \mathcal{F}(\mathbb{N})$ であるから $t_m = s_F \leq s$ である. したがって $t = \sup_{m \in \mathbb{N}} t_m \leq s$ である.

正項級数の和は、和をとる範囲を分割して計算することができる.

命題 2 $P, P_1, P_2 \subseteq \mathbb{N}, P \neq \emptyset, P_1 \neq \emptyset, P_2 \neq \emptyset, P_1 \cap P_2 = \emptyset, P_1 \cup P_2 = P$ とする. このとき正項級数 $\sum_{n \in P} a_n$ が収束するための必要十分条件は $\sum_{n \in P_1} a_n$ と $\sum_{n \in P_2} a_n$ が共に収束することである. そしてこの条件が成り立つとき

$$\sum_{n \in P} a_n = \sum_{n \in P_1} a_n + \sum_{n \in P_2} a_n$$

である.

証明 (必要性) F_1 を $\mathcal{F}(P_1)$ の任意の元, F_2 を $\mathcal{F}(P_2)$ の任意の元とする. $F_1 \cup F_2 \in \mathcal{F}(P)$ より $s_{F_1}+s_{F_2}=s_{F_1\cup F_2}\leq \sup_{F\in\mathcal{F}(P)}s_F$ であるから

$$\sum_{n \in P_1} a_n + \sum_{n \in P_2} a_n = \sup_{F_1 \in \mathcal{F}(P_1)} s_{F_1} + \sup_{F_2 \in \mathcal{F}(P_2)} s_{F_2} \le \sup_{F \in \mathcal{F}(P)} s_F = \sum_{n \in P} a_n$$
 (1)

である. $\sum_{n\in P} a_n$ は収束するので $\sum_{n\in P_1} a_n + \sum_{n\in P_2} a_n \leq \sum_{n\in P} a_n < +\infty$ である. したがって $\sum_{n\in P_1} a_n$, $\sum_{n\in P_2} a_n$ は収束する.

(十分性) 任意の $F \in \mathcal{F}(P)$ は $F = F_1 \cup F_2$, $F_1 \in \mathcal{F}(P_1)$, $F_2 \in \mathcal{F}(P_2)$ と表わされるので $s_F = s_{F_1} + s_{F_2} \le \sup_{F_1 \in \mathcal{F}(P_1)} s_{F_1} + \sup_{F_2 \in \mathcal{F}(P_2)} s_{F_2}$ である. したがって

$$\sum_{n \in P} a_n = \sup_{F \in \mathcal{F}(P)} s_F \le \sup_{F_1 \in \mathcal{F}(P_1)} s_{F_1} + \sup_{F_2 \in \mathcal{F}(P_2)} s_{F_2} = \sum_{n \in P_1} a_n + \sum_{n \in P_2} a_n$$
 (2)

である. $\sum_{n\in P_1}a_n, \sum_{n\in P_2}a_n$ は収束するので $\sum_{n\in P}a_n\leq \sum_{n\in P_1}a_n+\sum_{n\in P_2}a_n<+\infty$ である. したがって $\sum_{n\in P}a_n$ は収束する.

(1), (2) & 9

$$\sum_{n \in P} a_n = \sum_{n \in P_1} a_n + \sum_{n \in P_2} a_n$$

である**.** ■

系 1 $P\subseteq \mathbf{N}, P_l\subseteq \mathbf{N}, l=1,\cdots,L, L\geq 2, P\neq\varnothing, P_l\neq\varnothing, l=1,\cdots,L, P_l\cap P_{l'}=\varnothing, l\neq l', P=\bigcup_{l=1}^L P_l$ とする.このとき正項級数 $\sum_{n\in P} a_n$ が収束するための必要十分条件 は任意の $l, l=1,\cdots,L$ に対して $\sum_{n\in P_l} a_n$ が収束することである.そしてこの条件が 成り立つとき

$$\sum_{n \in P} a_n = \sum_{l=1}^L \sum_{n \in P_l} a_n \tag{3}$$

である.

証明 L についての数学的帰納法で証明する. L=2 ならば命題 2 より主張は正しい.

L>2 とし,L-1 に対しては主張は正しいと仮定する. $Q=P_1\cup\cdots\cup P_{L-1}$ とすると, $Q\neq\varnothing$, $Q\cap P_L=\varnothing$, $Q\cup P_L=P$ である.いま, $\sum_{n\in P}a_n$ が収束するならば,命題 2 より $\sum_{n\in Q}a_n$ と $\sum_{n\in P_L}a_n$ は共に収束する.したがって,帰納法の仮定より,任意の $l,\,l=1,\cdots,L$ に対して $\sum_{n\in P_l}a_n$ は収束する.逆に,任意の $l,\,l=1,\cdots,L$ に対して $\sum_{n\in P_l}a_n$ が収束するならば,帰納法の仮定より, $\sum_{n\in Q}a_n$ は収束するので,命題 2 より $\sum_{n\in P_l}a_n$ は収束する.

命題 2 より $\sum_{n\in P}a_n=\sum_{n\in Q}a_n+\sum_{n\in P_L}a_n$ であり、帰納法の仮定より $\sum_{n\in Q}a_n=\sum_{l=1}^{L-1}\sum_{n\in P_l}a_n$ であるから

$$\sum_{n \in P} a_n = \sum_{l=1}^{L-1} \sum_{n \in P_l} a_n + \sum_{n \in P_L} a_n = \sum_{l=1}^{L} \sum_{n \in P_l} a_n$$

である.

系 1 の対偶をとれば, $\sum_{n\in P}a_n$ が $+\infty$ に発散することと,少なくとも一つの l, $l=1,\cdots,L$ が存在して $\sum_{n\in P_l}a_n$ が $+\infty$ に発散することは同値であり,このとき式 (3) の両辺は $+\infty$ となるので,式 (3) は級数の収束・発散に関わらず成り立つことになる.