CNN

Week 3

Classification, Localization and Detection

Image Classification

Classification with localization

Detection

Classification with localization

Define the output

3 Object Categories

Pedestrian

Car

Motorcycle

0.5 0.7 0.3 0.4 0 1

0 NA NA NA NA NA NA NA

Arun Kumar Anala analaarun.k@gmail.com in/arun-kumar-anala-35760523/

ittns://www.

Define the output

If P_c!= 0 [Object is present in image]

$$L(y`, y) = (P_c` - P_c)^2 + (b_x` - b_x)^2 + (b_y` - b_y)^2 + (b_h` - b_h)^2$$

$$+ (b_w` - b_w)^2 + (c_1` - c_1)^2 + (c_2` - c_2)^2 + (c_3` - c_3)^2$$

If $P_c = 0$ [Object is not present in image]

$$L(y', y) = (P_c' - P_c)^2$$

3 Object Categories

Pedestrian

Car

Motorcycle

Object Detection

Training Data Set

Train a Convolutional Network using Closely-Cropped images.

Trained ConvNet Model

Sliding Window Detection

High Computation:

Sequential Processing of cropped images. Lower Strides Low dimensions of cropped images

Low Performance:

Higher Strides
Inaccurate boundary box values
Actual boundary box may not be square

Sliding Window: Replace FC layers with Convolutional layers

Input Image

Arun Kumar Anala analaarun.k@gmail.com

https://www.linkedin.com/in/arun-kumar-anala-35760523/

Input Image

Arun Kumar Anala analaarun.k@qmail.com https://www.linkedin.com/in/arun-kumar-anala-35760523/

Input Image

analaarun.k@gmail.com https://www.linkedin.com/in/arun-kumar-anala-35760523/

YOLO Algorithm (You Look Only Once)

3 x 3 x 8 Output

Single Convolution Implementation Real Time Object Detection.

of Grids is a hyperparameter. Usually 19 x 19 considered as optimal to avoid image overlapping across grids

Assign the object to the grid that contains the center of the object

YOLO Algorithm (You Look Only Once)

Output values are specified relative to the grid cell

 $\mathbf{b_{x}}$ and $\mathbf{b_{y}}$ are always between 0 and 1

 $b_{h \text{ and}} b_{w} \text{ could be > 1}$

Measurement of Object Localization

"Correct" if IoU >= 0.5

IoU is a measure of overlap between two bounding boxes

Multiple Grid Cells could detect the center of the car.

How to identify the number of cars in the image?

Each grid cell output is

Each grid cell output is

Discard all boxes with P_c value of < 0.6.

Each grid cell output is

Discard all boxes with P_c value of < 0.6.

While there are remaining boxes:

Pick the box with the largest P_c output as prediction

Each grid cell output is

Discard all boxes with P_c value of < 0.6.

While there are remaining boxes:

Pick the box with the largest P_c output as prediction Discard any remaining boxes with IoU >= 0.5 with the box output in previous step.

Anchor Boxes: Overlapping Objects

Use of Predefined Anchor boxes to detect multiple objects with in same grid cell.

Each grid cell would provide output for two anchor boxes

https://www.linkedin.com/in/arun-ku

Disadvantage of Sliding window: Classifies lot of cropped region that does not have any object.

Uses Segmentation Algorithm to generate **blobs** in the image.

Uses Segmentation Algorithm to generate **blobs** in the images.

The bounding box of different scales is drawn across blobs, which is send for classification. If founds 200 bounding boxes, it send 2000 cropped regions for classification

Uses Segmentation Algorithm to generate **blobs** in the images.

The bounding box of different scales is drawn across blobs, which is send for classification. If founds 200 bounding boxes, it send 2000 cropped regions for classification

Disadvantage of R-CNN: Segmentation algorithm is quite slow.

Region Proposal: Faster R-CNN

	>	>>>	*** **
	R-CNN	FAST R-CNN	FASTER R-CNN
Propose Region	Segmentation Algorithm to propose regions	Segmentation Algorithm to propose regions	Use Convolution Network to propose regions
Classification of Region	Sequential classification of proposed region	Convolution implementation to classify proposed regions	Convolution implementation to classify proposed regions Arun Kumar Anala analazin, k@qmail loon

Landmark Detection

Bounding Box

Used in AR (Augmented Reality)

Pose Detection

Each Coordinate is a Landmark

Output = 1 + # of Landmarks

1 for detecting object tun Kumar Anala
analaarun k@gmail.com
https://www.linkedin.com/in/arun-kumar-anala-35760523/