

לא לשכוח להפעיל הקלטה!

מה נלמד בשיעור זה?

- רגרסיה לינארית עם משתנה יחיד ✓
- עבור רגרסיה ליניארית gradient descent ✓ למשתנה יחיד
- scikit-learn רגרסיה לינארית עם ספריית ✓
 - r^2 הערכת ביצועים \checkmark

רגרסיה ליניארית

רגרסיה לינארית עם משתנה יחיד

רגרסיה לינארית

מטרות מציאת מודל?

מדוע העברתם את הקו? למה לא להסתפק רק בהצגת הנתונים?

- ✓ דרך להעריך מתמטית מה עומד מאחורי הנתונים (למשל, אם אלו נתוני מתח-זרם, נוכל להסיק משיפוע הקו את ההתנגדות).
 - ✓ data compression דרך להציג את הנתונים בצורה
 הפשוטה שלהם. במקום להציג את כולם להציג רק נוסחא.
- דרך לאפשר יכולת של חיזוי על נקודות שאינן חלק מהנתונים ✓

מהי רגרסיה?

- מציאת קו המתאר את הנתונים •
- בבעיית רגרסיה, בניגוד לבעיית קלסיפיקציה,
 אנחנו מנסים למצוא פונקציה מסוימת המקשרת
 את סט הנתונים לפלט מסוים.
- מבחינת ערכי הפלט (y) אנו מנסים לחזות את הערך המדויק של y, לא רק לחלק את הנתונים למחלקות (הפלט הוא לא רק 0 או 1).

חסרונות ויתרונות של רגרסיה לינארית

 $\hat{y} = w \cdot x + b$:מודל המניח יחסים ליניארים בין המשתנים

מודל ליניארי ורגרסיה ליניארית יהיו טובים במקרה שיש קשר ליניארי בין המשתנים.

> אלו מקרים כאלו אתם מכירים? זרם לעומת מתח,

> גובה הורים לעומת גובה ילדים, הכנסה לעומת השכלה וכו'

ישנם מקרים שבהם יש קשר בין המשתנים, אבל הקשר לא לינארי: במקרים האלה נבצע רגרסיה לא ליניארית.

כיצד בוחרים מודל?

$$\hat{y} = w \cdot x + b$$

תרגיל 1 – חיזוי על ידי רגרסיה לינארית

ברגרסיה לינארית לחיזוי רוחב עלה של אירוס על בסיס אורכו נמצאו הפרמטרים הבאים:

- w=0.416 •
- b=-0.366 •

מה יהיה חיזוי רוחב העלה עבור הפרחים הבאים:

$$\hat{y} = w \cdot x + b$$

PetalWidthCm	2.5 -						••••		
	2.0 -					•			-
	1.5 -					010 00	•		
	1.0 -				00	•••			_
	0.5 -	0 0							-
	0.0 -	1	2	3	4		5	5 7	
				F	etalLen	gthCm			

Petal length	Petal width
1.5	
2.5	
6.5	
0.5	
0	

איך נחליט האם המודל טוב?

שגיאת ריבועית על הדוגמא ה-(1)

בהינתן סט של m דוגמאות (x⁽ⁱ⁾,y⁽ⁱ⁾) - ערכי דגימות של המשתנה הבלתי תלוי - x⁽ⁱ⁾ – ערכי דגימות המשתנה התלוי בהתאמה - y⁽ⁱ⁾ –

- $\hat{y} = w \cdot x + b$ ובהינתן מודל רגרסיה
- :(i)-ו נגדיר את שגיאת החיזוי על הדוגמא ה

$$l^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 = (w \cdot x^{(i)} + b - y^{(i)})^2$$

פונקציית המחיר ל

- $(x^{(i)},y^{(i)})$ בהינתן סט של m בהינתן -
- ערכי דגימות של המשתנה הבלתי תלוי x_i –
- ערכי דגימות המשתנה התלוי בהתאמה y_i
 - $\hat{y} = w \cdot x + b$ ובהינתן מודל רגרסיה
- :נגדיר את שגיאת החיזוי על כל סט נתוני האימון

$$J = \frac{1}{m} \sum_{i=1}^{m} l^{(i)} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x^{(i)} + b - y^{(i)})^2$$

W,B פונקציית המחיר J היא פונקציה של

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x^{(i)} + b - y^{(i)})^{2}$$
Exercise 1. The second of the property of t

המטרה – למזער את הטעות עבור ערכי w,b שונים

- w*x+b
 - y הנתונים האמיתיים
 - m מספר הדגימות
- אינדקס שרץ על כל הדגימות -i

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x^{(i)} + b - y^{(i)})^{2}$$
הערך האמיתי הערך החזוי \hat{y}

Cost Function

gradient descent רגרסיה לינארית עם

GRADIENT DESCENT אלגוריתם

- :J(w) על מנת למצוא את נקודת המינימום של פונקציה
 - W_0 נגריל נקודת התחלה –
 - :תקדם את ערך w לפי הנוסחה –

$$w \leftarrow w - \alpha \frac{\partial J(w)}{\partial w}$$

- קצב הלמידה α
- נגזרת הפונקציה $\frac{\partial J(w)}{\partial w}$ •

עבור GRADIENT DESCENT אלגוריתם פונקציה רב ממדית

- :J(w,b) על מנת למצוא את נקודת המינימום של פונקציה
 - w_0,b_0 נגריל נקודת התחלה –
 - :ערכי w,b לפי הנוסחאות -

$$w \leftarrow w - \alpha \frac{\partial J(w, b)}{\partial w}$$

$$b \leftarrow b - \alpha \frac{\partial J(w, b)}{\partial b}$$

gradient descent שלבים למציאת המשקולות באמצעות

- ראשית אנו מאתחלים את פרמטרי b ,W ו. איתחול √ המודל בערכים רנדומלים
 - b ,W 2. חישוב הנגזרת החלקית ל
- שווה לערך הקודם של b הערך הקודם של b עידכון b עידכון b פחות הנגזרת של b פול גודל הצעד b פחות הנגזרת של
- עידכון w הערך החדש של w שווה לערך הקודם של w פחות הנגזרת של w כפול גודל הצעד
 - r^2 בדיקת ביצועים חישוב. 5 \checkmark

אנו חוזרים על שלבים 2-4 עד שפונקציית העלות תתכנס לערך המינימלי

פונקציית המחיר ונגזרותיה

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (w \cdot x^{(i)} + b - y^{(i)})^2$$

$$\frac{\partial}{\partial w} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} 2(w \cdot x^{(i)} + b - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial b}J(w,b) = \frac{1}{m}\sum_{i=1}^{m} 2(w \cdot x^{(i)} + b - y^{(i)})$$

אתחול

```
w = 0
b = 0
alpha = 0.01

plot_reg_line(w,b)
```


צעד למידה

```
dw_ = dw(w,b)
db_ = db(w,b)

w = w - alpha * dw_
b = b - alpha * db_

plot_reg_line(w,b)
print (w,b,J(w,b))
```

0.11586266666666667 0.0239733333333333 0.8680644756207763

אחרי 10 צעדים

```
dw_ = dw(w,b)
db_ = db(w,b)

w = w - alpha * dw_
b = b - alpha * db_

plot_reg_line(w,b)
print (w,b,J(w,b))
```

0.3196755592709454 0.05501231875098751 0.07458529160580048

אחרי 1000 צעדים

```
for i in range(1000):
    dw_ = dw(w,b)
    db_ = db(w,b)

w = w - alpha * dw_
b = b - alpha * db_

plot_reg_line(w,b)
```


תהליך הלמידה

: פרמטרי המודל

J פונקציית המחיר

הערכת ביצועים ברגרסיה לינארית

הערכת ביצועים של רגרסיה לינארית מדד השונות המוסברת R²

$$SS_{tot} = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \bar{y})^2$$

$$SS_{error} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

$$R^2 = 1 - \frac{SS_{error}}{SS_{tot}}$$

ערכים נעים (לרוב) בין 1-0

1: התאמה מלאה

0: אין התאמה

ערכים שליליים: חיזוי יותר גרוע מאשר מדד הממוצע

GD תרגיל 2 – רגרסיה עם

- ממשו את הקוד במצגת לפתרון רגרסיה לינארית עם GD (חיזוי petal width לפי GD)
 - (w,b,J) שרטטו את גרפי ההתכנסות •
- alpha השוו את קצב ההתכנסות עבור מספר ערכישונים
 - ?מהו ערך alpha המקסימלי האפשרי
 - ?מה קורה אם alpha סטן מאוד
 - R^2 מהו מדד השונות המוסברת \bullet

תרגיל 3

- נתונה רגרסיה לינארית עם מאפיין אחד ובסיס נתונים
 עם m דוגמאות.
 - רשמו את הסוג (סקלר, וקטור, מטריצה) והממדים
 של המשתנים הבאים:

scikit-learn רגרסיה לינארית עם ספריית

דוגמא – חיזוי רוחב עלה של אירוס לפי אורכו

רגרסיה לינארית עם SKLEARN

```
X=df[['PetalLengthCm']].to numpy()
y=df['PetalWidthCm'].to_numpy()
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
X1 = np.expand_dims(X,axis=1)
X1.shape
(150, 1)
reg = LinearRegression()
reg.fit(X1,y)
w_sk = reg.coef_
b_sk = reg.intercept_
print(w_sk,b_sk)
```

[0.41575542] -0.3630755213190291

חרזור

```
# predict
reg.predict([[3]])
```

array([0.88274335])

r² הערכת ביצועים

reg.score(X1,y)

0.9271098389904927

```
sns.scatterplot(x=X, y=y)
r = np.array([[X.min()], [X.max()]])
r_pred = reg.predict(r)
plt.plot(r, r_pred, color='red')
plt.title("Scatterplot with Regression Line")
plt.xlabel("petal_length")
plt.ylabel("petal_width")
plt.show()
```

ויזואליזציה

