Emerging Markets and Inflation

Lecture 4. Brazil

Fall 2019 Yury Blyakhman

Agenda for Today

Lecture 4. Brazil

- Lecture fully dedicated to Brazil markets
- Variety of special onshore and offshore products
- Special features of FX and Rates products and connections
- FX Convertibility
- 1. Benchmarks and Day Count Conventions
- 2. Foreign Exchange (FX) products
- 3. Linear Interest Rate products
- 4. Interest Rate Options

Emerging Markets and Inflation

Agenda for Today

Lecture 4. Brazil

- Most special and peculiar Emerging Markets country
- Financial markets, conventions, products
- Special attention due to sheer size of the market
- Constrains due to capital controls and taxation
- 1. Benchmarks and Day Count Conventions
 - □ SELIC Rate
 - CDI Rate
 - □ FX PTAX
- 2. Foreign Exchange (FX) products
- 3. Linear Interest Rate products
- 4. Interest Rate Options

Emerging Markets and Inflation

Benchmarks and DCC. SELIC

- Introduce benchmarks and Day Count Conventions
- Mostly follow [JPMorgan, 2004] and use throughout the lecture

SELIC Rate:

- Central bank controlled repo rate
- Overnight borrowing and lending benchmark rate to banks
- Used for Govie's FRN overnight accrual
- Traded daily on Business / 252 convention:

$$\beta_{SELIC}(t,T) = \prod_{i=1}^{N} (1 + SELIC_i)^{1/252}$$

SELIC Rate (continue):

$$\beta_{SELIC}(t,T) = \prod_{i=1}^{N} (1 + SELIC_i)^{1/252}$$

- β is a SELIC-based bank account
- N is number of Brazil business days between t and T
- Note Holidays' contribution to any financial calculation!
- Addition or removal of public holidays:
 - Creates MTM and risk impact on any financial derivative
 - Propagates into fundamental Capital requirements!

CDI Rate:

$$\beta(t,T) = \prod_{i=1}^{N} (1 + CDI_i)^{1/252}$$
 (1)

- No subscript for a main bank account β
- Uncollateralized interbank overnight rate, priced off SELIC
- Interestingly and surprisingly, historically trades below SELIC:
 - Reflecting tight interbank credit constraints (tighter than CB!)
 - Serving as main interbank benchmark rate

Emerging Markets and Inflation

Benchmarks and DCC. PTAX

PTAX Rate:

- FX Fixing rate
- Weighted Average of intraday FX commercial transactions reported
- Main reference FX rate for settling:
 - Onshore and Offshore OTC trading
 - Exchange (BM&F) based trading
- ASK side only is used

Emerging Markets and Inflation

Agenda for Today. FX

Lecture 4. Brazil

Lecture fully dedicated to Brazil markets:

- 1. Benchmarks and Day Count Conventions
- 2. Foreign Exchange (FX) products
 - □ Onshore and Offshore FX
 - □ FX Futures
 - □ FX Convertibility
- 3. Linear Interest Rate products
- 4. Interest Rate Options

Emerging Markets and Inflation

FX Products. Onshore and Offshore

- Follow [JPMorgan, 2011]
- Brazilian Real (BRL) is non-deliverable
- USD/BRL spot exchange rate Is traded in domestic OTC, but is registered on local BM&F exchange
- Brazil Central Bank (BCB) buys and sells USD providing liquidity and controlling volatility

Onshore and Offshore FX:

- Cash settled FX derivatives traded onshore and offshore
- Note switch between Asset and Denominated in cases of Onshore vs. Offshore markets: settling in different currencies!

Emerging Markets and Inflation

FX Products. Onshore and Offshore

Onshore and Offshore FX (continued):

Onshore, Quantity in Asset=BRL

$$FV^{BRL}(T) = N^{BRL} \cdot \left[1 - \frac{K}{F(T)}\right]$$

Onshore, Quantity in Denominated=USD

$$FV^{BRL}(T) = N^{USD} \cdot [F(T) - K]$$
 (2)

Offshore, Quantity in Asset=USD

$$FV^{USD}(T) = N^{USD} \cdot \left[1 - \frac{K}{F(T)}\right]$$
 (3)

■ Keep definition of FX Spot rate of BRL per USD

FX Products. FX Future

FX Future:

- Onshore market
- FX Spot rate as underlying
- Settles on PTAX
- Virtually risk-free with daily margining
- Long dated trading + high rates + high vols → sizable Convexity Adjustment compared to FX Forwards as discussed in Lecture 2
- One of special Brazil features: locally traded USD rate! Different from US LIBOR
- USD local trading is still cash-settled in BRL of course

Emerging Markets and Inflation

$$\Phi_{T} = S \cdot \frac{\left[1 + r_{CDI}(t, T)\right]^{BD/252}}{\left[1 + r_{USD}(t, T) \cdot \frac{(T - t)}{360}\right] \times \left[1 + CDI(T - 1, T)\right]}$$
(4)

- > S is FX Spot
- > BD is number of business days between t and T
- r_{USD} is onshore USD rate in Act/360 conventions
- r_{CDI} is effective term CDI rate defined via Eq.[1] as:

$$[1 + r_{CDI}(t_1 = t, t_N = T)]^{BD/252} \stackrel{def}{=} \prod_{i=1}^{N} (1 + CDI_i)^{1/252}$$

➤ Overnight correction term [1+CDI(T-1,T)]. Will discuss later in more details. Comes from different settlement rules of BRL and USD

FX Products. FX Future

FX Future (continued):

- Futures standardization in Exchange trading +
- Better risk protection +
- Wider access of external investors to FX Future than to local FX Spot
- As a result, a phenomenon of front FX Future being much more liquid and attractive than FX Spot!
- Massive position to front FX Future vs. FX Spot creates a differential position between the two →

13

■ Phenomenon of Casado

Emerging Markets and Inflation

FX Convertibility:

- Onshore and Offshore FX markets trading NDFs. Differences?
- Onshore used by Offshore players for hedging [<u>Lipscomb</u>, 2005]
- Offshore players trying to mange their risk onshore
- Offshore may have perception of lower risk:
 - Wider range of counterparties
 - Generally stricter (or different) regulations
 - Expectation of lower transaction cost than onshore
- Result: diverging On- and Off-shore prices leading to *Convertibility*

Emerging Markets and Inflation

FX Convertibility (continued):

- Taken to an extreme with Offshore market being driven by Onshore
- Convertibility evolves from a phenomenon to Tradable Asset
- Write Forward FX expression for Onshore and Offshore:

$$F^{OnShr}(T) = S^{OnShr} \cdot \frac{Z_{\$}^{OnShr}(t,T)}{Z_{BRL}^{OnShr}(t,T)}$$

$$F^{OffShr}(T) = S^{OffShr} \cdot \frac{Z_{\$}^{OffShr}(t,T)}{Z_{BRL}^{OffShr}(t,T)}$$
(5)

- S^{X-Shr} and F^{X-Shr} are FX Spot and Forward respectively
- Z^{X-Shr} is CCY Discount Factor

FX Convertibility (continued):

■ Combining Eq.[4] and [5] we can write for each of Discount Facotrs:

$$Z_{\$}^{OffShr} = \exp\left[-r_{US\ LIBOR}(t,T)\cdot(T-t)\right]$$

$$Z_{\$}^{OnShr} = \frac{1}{1 + r_{\$}^{OnShr}(t,T)\cdot\frac{(T-t)}{360}}$$

$$Z_{BRL}^{OnShr} = \left[1 + r_{CDI}(t,T)\right]^{-BD(t,T)/252}$$
(6)

Define Convertibility as On- vs. Off- Shore FX Forward differential:

$$C(t,T) \stackrel{def}{=} \frac{F^{OffShr}(T)}{F^{OnShr}(T)}$$

Or same in terms of Convertibility rate:

$$C(t,T) = 1 + c_{A360}(t,T) \cdot \frac{T-t}{360}$$
$$= \left[1 + c_{B252}\right]^{BD(t,T)/252}$$

Figure 1. Future Cash Flow and Collateral example

Assume same FX Spot to define Offshore FX via tradable Convertibility: $F^{OffShr}(T) = F^{OnShr}(T) \cdot C(t,T)$

$$F^{OffShr}(T) = F^{OnShr}(T) \cdot C(t,T)$$

$$\frac{Z_{\$}^{OffShr}(t,T)}{Z_{BRL}^{OffShr}(t,T)} = \frac{Z_{\$}^{OnShr}(t,T)}{Z_{BRL}^{OnShr}(t,T)} \cdot C(t,T)$$

$$Z_{BRL}^{OffShr} \stackrel{def}{=} Z_{BRL}^{OnShr}(t,T) \cdot \frac{Z_{\$}^{OffShr}(t,T)}{Z_{\$}^{OnShr}(t,T)} \cdot \frac{1}{C(t,T)}$$

FX Convertibility (continued):

Or same expressed via exponential rates for better visualization

$$\begin{split} Z_{BRL}^{OffShr} &= e^{-r_{CDI} \cdot \tau} \cdot \frac{e^{-r_{\$}^{OffShr} \cdot \tau}}{e^{-r_{\$}^{OnShr} \cdot \tau}} \cdot \frac{1}{e^{c \cdot \tau}} \\ &= \exp \left[-\left(r_{CDI} + r_{\$}^{OffShr} - r_{\$}^{OnShr} + c \right) \cdot \tau \right] \\ r_{BRL}^{OffShr} &\equiv r_{CDI} - \left(r_{\$}^{OnShr} - r_{\$}^{OffShr} \right) + c \end{split}$$

- Offshore FX implied BRL rate is thus equal to:
 - Onshore CDI rate
 - Less US Rates differential (always positive! As will be shown later!)
 - And FX Convertibility

- Very important methodologically, but also practically!
- Defines formation of the offshore FX market and Hedging approach!
- Controls <u>Interpolation</u> rules:
 - Assume defined FX Forward benchmarks for 1Y and 2Y BRLUSD FX
 - How do we come up with 18m point?
 - 1. Interpolate directly in FX Forwards space
 - 2. Interpolate USD and BRL FX Implied curves separately, then combine
 - 3. Interpolate 3 rates per conventions + Convertibility, then combine!
 - More on that later once we consider onshore rates interpolation

Emerging Markets and Inflation

Agenda for Today. Rates

Lecture 4. Brazil

- 1. Benchmarks and Day Count Conventions
- 2. Foreign Exchange (FX) products
- 3. Linear Interest Rate products
 - IR Futures
 - CDI Swap
- 4. Interest Rate Options
- Consider Rates products linked to benchmarks considered in Sec 1

Emerging Markets and Inflation

IR Products

Main peculiarity: onshore rates products are FX dependent

IR Futures:

Summarize in a table:

Name	Underlying	Category	Benchmark
			Reference
DI	Capitalized interbank deposit rates between trading day	IR	CDI
Future	and Expiry		
DDI	Ratio between capitalized CDI and USD/BRL exchange rate	FX / IR	CDI and
Future	variation up to futures expiry		USD/BRL PTAX
ОС	Capitalized repo rate (SELIC) between trading day and	IR	SELIC
Future	Expiry		
DCO	Ratio between capitalized SELIC and USD/BRL exchange	FX / IR	SELIC and
Future	rate variation up to futures expiry		USD/BRL PTAX

Table 1. Interest Rates Futures trading on Brazil BM&F exchange.

Emerging Markets and Inflation

DI Future

- Most liquid one and is CDI Rate based
- Market participants express views on overnight lending CDI
- As always: daily margin for participants to place on Exchange
- Effectively swaps compounded floating O/N rate for a Fixed one:
- Traded as purely discount instrument, so the price PU is:

$$PU_{DI} = \frac{100,000}{\left[1 + r_{CDI}(t,T)\right]^{BD(t,T)/252}}$$
 (7)

- Collection of PU's across maturities uniquely defines Zero Curve
- Note: no convexity as Futures are effectively on a Zero Coupon bond in a market with daily compounding rates

DI Future (continued)

- Recall zero curve bootstrapping complexities discussed in Lecture 3
- Specifically on possible Interpolation approaches!
- Brazil market is very specific on using Flat Forward
- Flat Forward Interpolation in rates space for $T_1 < S < T_2$ between two market traded DI Futures:

$$PU_{T_{1}} = \frac{100,000}{\left[1 + r_{CDI}(t, T_{1})\right]^{BD(t, T_{1})/252}}$$

$$PU_{T_{2}} = \frac{100,000}{\left[1 + r_{CDI}(t, T_{2})\right]^{BD(t, T_{2})/252}} \equiv PU_{T_{1}} \cdot \frac{1}{\left[1 + f_{CDI}(T_{1}, T_{2})\right]^{BD(T_{1}, T_{2})/252}}$$
(8)

here $f_{CDI}(T_1, T_2)$ is Forward CDI Rate between T_1 and T_2 , then

$$PU_{S} = PU_{T_{1}} \cdot \frac{1}{\left[1 + f_{CDI}(T_{1}, T_{2})\right]^{BD(T_{1}, S)/252}}$$

DDI Future

- USD referencing DDI Future or Cupom Cambial
- Expect some FX dependency (recall FX/IR category in Table 1)
- Difference between effective CDI rate and FX PTAX variation
- Serves as source and effective hedge against onshore USD rate
- Traded also as discount instrument via onshore USD rates:

$$PU_{DDI} = \frac{100,000}{1 + r_{\$}(t,T) \cdot \frac{T - t}{360}}$$

Homework

Let us now go back to FX Forwards pricing and consider Convertibility based interpolation compared to other simpler methods

- **HW1:** Compare pricing of the 18m USD-BRL off-shore NDF via 3 approaches using market data provided:
 - 1. Direct interpolation in the forward FX space
 - 2. Two curves interpolation: US Libor and FX implied BRL off-shore
 - 3. Convertibility approach interpolating 4 curves at once. Use Linear interp for Onshore USD and Convertibility, use market defined Flat Forward for DI rate

Emerging Markets and Inflation

DDI Future continued...

- That is where complexity starts!
- Simple no-arbitrage must uniquely connect DI and DDI Futures via FX Futures
- Complexity comes from different settlement rules as already noted in Eq.(4)
- Different settlement rules between Rates and FX, but also BRL and USD
- From Eq.(4) connecting PU prices of DI and DDI Futures, FX Future price $\Phi(T)$ and TC_{T-1} is FX PTAX fixing prior to expiry:

$$PU_{DDI}(T) = PU_{DI}(T) \cdot \frac{\Phi(T)}{TC_{T-1}}$$

DDI Future (continued)

- TC_{T-1} is prior expiry FX PTAX fixing, so is not a good indicator of current market and current USD rates!
- Thus a name of Dirty FX Coupon
- And dedicated FRA called FRC or Clean FX Coupon to overcome is defined as differential between Short and Long DDI Future:

Emerging Markets and Inflation

- Now can deduce bootstrapping of the <u>Onshore USD Curve</u> from:
 - Traded local DI and DDI Futures
 - FX Futures and
 - > FRC contracts
- Follow [Fabozzi, 2002] first to discuss why onshore USD rate is different from USD LIBOR
- No-arbitrage domestic (onshore) rate expression via:
 - Offshore US LIBOR
 - Some spread and
 - > FX devaluation we already used in Lecture 3

Emerging Markets and Inflation

Onshore USD Curve [Fabozzi, 2002] (continued)

Onshore rate via Offshore, spread s and FX devaluation \hat{e}_{t}

$$\left(r_{\$}^{OffShr} + s\right) \cdot \tau = \frac{\left(1 + r_{\$}^{OnShr}\right)^{\tau}}{\left(1 + \hat{e}_{t}\right)} - 1$$
(9)

- > Right side: interest earned investing locally, hedge currency risk
- ➤ Left side: cost of funding in USD (assuming LIBOR funding contrary to Differential Discounting discussion in Lecture 3)
- Break in equality means arbitrage and is equivalent to free money flowing in or out
- Domestic rate side is higher → money starts flowing in
- And the other way around
- Eq.(9) also offers clear path for local policy actions to balance money flows across borders via capital controls

Onshore USD Curve [Fabozzi, 2002] (continued)

- Easy and most usual capital control is to add tax on earnings
- Thus restricting capital flow into the country
- Amend Eq.(9) to reflect that:

$$\left(r_{\$}^{OffShr} + s\right) \cdot \tau = \frac{\left[\left(1 + r_{\$}^{OnShr}\right)^{\tau} - 1\right] \times \left(1 - tax\right) + 1}{\left(1 + \hat{e}_{t}\right)} - 1$$

■ Anything else? →

HW2: More economics than math, but suggest effects of upfront fees and minimum tenor requirements as yet another measures of capital control on on-shore USD rates in Brazil

CDI Swap

- OTC version of DI Future called Pre-DI or CDI Swap
- Combine Eq.(1) and (7) to write for Future Value of unit legs:

$$fv^{FIX}(t_o, t_N = T) = (1 + K)^{BD(t_o, T)/252}$$

$$fv^{FLT}(t_o, t_N = T) = \prod_{i=0}^{N} (1 + CDI_i)^{1/252}$$
(10)

PV converges to simple discounting:

$$pv^{FLT} = \mathbf{E} \left[\frac{fv^{FLT}(t_o, T)}{\beta(t_o, T)} \right]$$
$$= Z_{BRL}^{OnShr}(t, T) \cdot \prod_{i=0}^{N} (1 + CDI_i)^{\frac{1}{252}}$$
(11)

Spot starting Floating leg must price to par (unity)

Percentage CDI Swap

- Market uses a scaling factor instead of the additive Spread to adjust the Floating payment when needed
- Reason is clear after looking at historical levels of rates
- Leverage factor κ (quoted in percentage terms) or percentage accumulation of the overnight rate

$$fv^{FLT}(t_o, t_N = T) = \prod_{i=0}^{N} \left\{ (1 + CDI_i)^{\frac{1}{2}52} - 1 \right\} \cdot \kappa + 1$$
(12)

■ No simple discounting as in Eq.(11), so need Convexity Adjustment:

$$pv^{FLT}(t_o, t_N = T) = Cxty \cdot Z(t, T) \cdot \prod_{i=0}^{N} \{ (1 + CDI_i)^{\frac{1}{252}} - 1 \} \cdot \kappa + 1 \}$$

Use same Discount Factor notation as in Eq.(11)

Percentage CDI Swap (continued)

■ Approximate Eq.(12) via short exp rate ex subscript for simplicity and replace starting time t_o with 0:

$$fv^{FLT}(0,T) = \prod_{i=0}^{N} \left\{ \left(1 + CDI_i\right)^{1/252} - 1 \right\} \cdot \kappa + 1$$

$$\approx \exp\left(\kappa \int_{0}^{T} r(s) ds\right)$$

Expectation for Present Value:

$$pv^{FLT}(0,T) = \mathbf{E} \left[\exp \left(\kappa \int_{0}^{T} r(s) ds \right) \cdot \exp \left(-\int_{0}^{T} r(s) ds \right) \right]$$
$$= \mathbf{E} \left[\exp \left(-\left(1 - \kappa\right) \int_{0}^{T} r(s) ds \right) \right]$$

Percentage CDI Swap (continued)

■ As per Lecture 2 Convexity Primer, try simple model. Vasicek:

$$dr_{t} = (\theta - \mu \cdot r_{t})dt + \sigma \cdot dW_{t}$$

- here μ is constant mean reversion and
- σ is constant volatility
- Integrate Vasicek for closed form of zero-coupon bond price (more on that later)

$$pv(0,T) = \exp\left[(1-\kappa) \cdot r_o \cdot B_T + (1-\kappa) \frac{\theta}{\mu} (B_T - T) - (1-\kappa)^2 \frac{\sigma^2}{2\mu^2} \left(B_T - T + \frac{\mu}{2} B_T^2 \right) \right]$$

- here
$$B_T = \frac{1}{\mu} \left(1 - e^{-\mu T} \right)$$

Percentage CDI Swap (continued)

■ No-Convexity term ignores expectation:

$$pv_{NoCxty}(0,T) = \exp\left[(1-\kappa)\cdot r_o\cdot B_T + (1-\kappa)\frac{\theta}{\mu}(B_T - T) - (1-\kappa)\frac{\sigma^2}{2\mu^2}\left(B_T - T + \frac{\mu}{2}B_T^2\right)\right]$$

And Convexity expression is a ratio of the two:

$$Cxty = \frac{pv(0,T)}{pv_{NoCxty}(0,T)} = \exp\left[\kappa(1-\kappa)\frac{\sigma^2}{2\mu^2}\left(B_T - T + \frac{\mu}{2}B_T^2\right)\right]$$

■ Simplify more for $\mu = 0$

$$Cxty \approx \lim_{\mu \to 0} \left\{ \exp \left[\kappa (1 - \kappa) \frac{\sigma^2}{2\mu^2} \left(B_T - T + \frac{\mu}{2} B_T^2 \right) \right] \right\}$$
$$= \exp \left[-\frac{1}{6} \kappa (1 - \kappa) \sigma^2 T^3 \right]$$

Percentage CDI Swap (continued)

HW3: Estimate level of Percentage CDI Swap convexity adjustment for ranges of κ , σ and T. Suggest validity limits where convexity could be safely ignored and where it should be accounted.

Agenda for Today

Lecture 4. Brazil

- 1. Benchmarks and Day Count Conventions
- 2. Foreign Exchange (FX) products
- 3. Linear Interest Rate products
- 4. Interest Rate Options
 - CDI Swaption and Option on DI Future
 - CDI Cap
 - IDI Option
- Assume general familiarity with Options pricing theory and IR Options

Emerging Markets and Inflation

4. Brazil

IR Options

CDI Swaption, Option on DI Future

■ Future Value of Fixed Rate payer CDI swap as per Eq.(10)

$$fv(t_o, t_N = T) = \prod_{i=0}^{N} (1 + CDI_i)^{1/252} - (1 + K)^{BD(t_o, T)/252}$$

Rewrite with effective CDI rate r and PV as in Eq.(11)

$$pv(t,T) = \left[(1+r(t,T))^{\frac{BD(t,T)}{252}} - (1+K)^{\frac{BD(t,T)}{252}} \right] \cdot Z(t,T)$$

Option to enter on swap starting date t

$$\pi^{CDI \ Swptn}(t) = \max \left[(1 + r(t,T))^{BD(t,T)/252} - (1 + K)^{BD(t,T)/252}, 0 \right] \cdot Z(t,T)$$

IR Options. CDI Swaption

CDI Swaption (continued)

■ Discounting as per Eq.(6)

$$\pi_o^{CDI Swptn} = \max \left[\left(1 + r(t, T) \right)^{BD(t, T)/252} - \left(1 + K \right)^{BD(t, T)/252}, 0 \right] \cdot Z(0, T)$$

$$\pi_o^{CDI Swptn} \equiv Z(0, T) \cdot \max(FLT - FIX, 0)$$

■ As per market conventions quote via implied Black-Sholes vol σ_{FLT} :

$$\pi_o^{CDI \ Swptn} \equiv Z(0,T) \cdot BS(FLT, FIX, t, T, \sigma_{FLT})$$

Also, per same conventions it must be expressed via rate vol as follows:

$$\frac{dr}{r} = \mu dt + \sigma dW_{CDI}$$

$$\frac{dFLT}{FLT} = \mu_{FLT} dt + \sigma_{FLT} dW_{FLT}$$

IR Options. CDI Swaption

CDI Swaption (continued)

Continue from before

$$dFLT = \frac{dFLT}{dr}dr$$

$$= \frac{BD(t,T)}{252} (1+r)^{BD(t,T)/252^{-1}} dr$$

$$= \frac{BD(t,T)}{252} \frac{FLT}{(1+r)} dr$$

$$\frac{dFLT}{FLT} = \frac{BD(t,T)}{252} \frac{r}{(1+r)} \frac{dr}{r} \implies \sigma_{FLT} = \frac{BD(t,T)}{252} \frac{r}{(1+r)} \sigma$$

- Market strongly is required to confirm every swaption on price (premium), rate vol and price vol as per above!
- Anything wrong with these assumptions?
- Only flexibility left is in Vol smile or Vol-per-strike approach

CDI Cap

- Cap on a CDI rate as single Caplet similarly to a regular IR Cap
- Accumulation starting at t and ending at T:

$$\pi(t_o = t, t_N = T) = \max \left[\prod_{i=0}^{N} (1 + CDI_i)^{\frac{1}{252}} - (1 + K)^{\frac{BD(t,T)}{252}}, 0 \right]$$

Approximate overnight accumulation via integral over short rate r(s) again as $e^r \approx 1 + CDI$ to re-write Eq.(1) for the bank account:

$$\beta(t,T) = \exp\left[\int_{t}^{T} r(s)ds\right] \propto \prod_{i=0}^{N} (1 + CDI_{i})^{1/252}$$

■ Then Cap's pay-off reduces to

$$\pi_T = \max[\beta(t, T) - FIX, 0]$$

CDI Cap (continued)

PV of that pay-off we can write via short rate stochastic Discount **Factor:** $\pi_t = \max[1 - D(t, T) \cdot FIX, 0]$

$$D(t,T) = \exp\left(-\int_{t}^{T} r(s)ds\right)$$

Try deriving D(t,T) from dynamics of a Zero Coupon bond. Note drift explicitly expressed via the short rate

$$\frac{dZ(t,T)}{Z(t,T)} = r(t)dt + \sigma_Z(t,T)dW_t$$
(13)

And solve it:
$$d \ln[Z(t,T)] = \left(r(s) - \frac{\sigma_Z^2(t,T)}{2}\right) dt + \sigma_Z(t,T) dW_t$$
$$Z(t,T) = Z(0,T) \cdot \exp\left[\int_0^t \left(r(s) - \frac{\sigma_Z^2(s,T)}{2}\right) ds\right] \cdot \exp\left[\int_0^t \sigma_Z(s,T) dW_s\right]$$

CDI Cap (continued)

■ Invert and add a unit Zero Coupon bond:

$$\frac{Z(T,T)}{Z(t,T)} = \exp\left[\int_{0}^{T} \left(r(s) - \frac{\sigma_{z}^{2}(s,T)}{2}\right) ds - \int_{0}^{t} \left(r(s) - \frac{\sigma_{z}^{2}(s,T)}{2}\right) ds\right] \cdot \exp\left[\int_{0}^{T} \sigma_{z}(s,T) dW_{s} - \int_{0}^{t} \sigma_{z}(s,T) dW_{s}\right]$$

$$= \exp\left[\int_{t}^{T} r(s) ds\right] \cdot \exp\left[\int_{t}^{T} \left(-\frac{\sigma_{z}^{2}(s,T)}{2}\right) ds\right] \cdot \exp\left[\int_{t}^{T} \sigma_{z}(s,T) dW_{s}\right]$$

■ To extract Stochastic Discount Factor expression:

$$D(t,T) = \exp\left[-\int_{t}^{T} r(s)ds\right] = Z(t,T) \cdot \exp\left[\int_{t}^{T} \left(-\frac{\sigma_{Z}^{2}(s,T)}{2}\right)ds\right] \cdot \exp\left[\int_{t}^{T} \sigma_{Z}(s,T)dW_{s}\right]$$
(14)

CDI Cap. HJM for short CDI rate

■ Introduce forward rate f(t,T) and use martingale Z(t,T)/β(t)

$$df(t,T) = \mu_f(t,T)dt + \sigma_f(t,T)dW_t$$

$$Z(t,T) = \exp\left[-\int_t^T f(t,s)ds\right]$$

$$\mu_f(t,T) = \sigma_f(t,T)\int_t^T \sigma_f(t,s)ds$$

■ Drift condition above derived equating drift of Z(t,T) from Eq.(13) and (15):

$$r(t) - \int_{t}^{T} \mu_{f}(t,s)ds + \frac{1}{2} \left\| \int_{t}^{T} \sigma_{f}(t,s)ds \right\|^{2} = r(t)$$

(15)

CDI Cap. HJM for short CDI rate

Simplest form of Hull-White vol for extended Vasicek

$$\sigma_f(t,T) = \sigma(t) \exp\left[-\int_t^T \lambda(x) dx\right]$$

■ Or even easier for λ =Const:

$$\sigma_f(t,T) = \sigma(t)e^{-\lambda(T-t)}$$

CDI Cap. HJM for short CDI rate

■ Derive Zero Coupon Bond vol σ_7 via Ito and Eq.(13) and (15):

$$f(t,T) = -\frac{\partial \ln[Z(t,T)]}{\partial T}$$
$$df(t,T) = \sigma_Z \frac{\partial \sigma_Z}{\partial T} dt - \frac{\partial \sigma_Z}{\partial T} dW_t$$

■ To arrive at that we write

$$\sigma_{Z}(t,T) = -\int_{t}^{T} \sigma_{f}(t,s)ds$$

That for constant vol converges to

$$\sigma_{Z}(t,T) = -\sigma \int_{t}^{T} e^{-\lambda(s-t)} ds$$
$$= \frac{\sigma}{\lambda} \left(e^{-\lambda(T-t)} - 1 \right)$$

CDI Cap. HJM for short CDI rate (continued)

■ Back to Eq. (14) to integrate σ_Z

$$\exp\left[-\int_{t}^{T} \frac{\sigma_{Z}^{2}(s,T)}{2} ds\right] = \exp\left[-\frac{1}{2} \int_{t}^{T} \frac{\sigma^{2}}{\lambda^{2}} \left(e^{-\lambda(T-s)} - 1\right)^{2} ds\right] \equiv \exp\left[-\frac{1}{2} \sum_{Z}^{2}\right]$$

■ Where

$$\Sigma_Z^2 = \int_t^T \frac{\sigma^2}{\lambda^2} \left(e^{-\lambda(T-s)} - 1 \right)^2 ds$$

$$= \frac{\sigma^2}{\lambda^2} \left\{ \frac{e^{-2\lambda T}}{2\lambda} \left(e^{2\lambda T} - e^{2\lambda t} \right) - \frac{2e^{-\lambda T}}{\lambda} \left(e^{\lambda T} - e^{\lambda t} \right) + \left(T - t \right) \right\}$$
(16)

Combine all of the above re-writing Eq. (14) for our stochastic DF:

$$D(t,T) = \exp\left[-\int_{t}^{T} r(s)ds\right] = Z(t,T) \cdot \exp\left[-\frac{1}{2}\Sigma_{Z}^{2}\right] \cdot \exp\left[\int_{t}^{T} \sigma_{Z}(s,T)dW_{s}\right]$$
(17)

CDI Cap. Final Cap price

Once again for Option's price with Expectation:

$$\pi_o = [1 - D(0, T) \cdot FIX]^+$$

$$\equiv \int_{-\infty}^{\infty} \max[1 - D_T \cdot FIX, 0] \cdot \phi(D_T) dD_T$$

■ Take log of Eq.(17):

$$\ln(D_T) = \left(\ln(Z(0,T)) - \frac{1}{2}\Sigma_Z^2\right) + \int_0^T \sigma_Z(s,T)dW_s$$

to see it is Normally distributed with mean

$$m_D = \left(\ln(Z(0,T)) - \frac{1}{2}\Sigma_Z^2\right) \tag{18}$$

and variance Σ_7^2

CDI Cap. Final Cap price (continued)

- Define new variable $x = \frac{\ln(D_T) m_D}{\Sigma_Z}$
- Now $x \propto N(0,1)$ and $D(0,T) = \exp(x \cdot \Sigma_Z + m_D)$, so we can write

$$\pi_o = \int_{-\infty}^{\infty} \max \left[1 - e^{x \cdot \Sigma_Z + m_D} \cdot FIX, 0 \right] \cdot \varphi(x) dx,$$

where
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

■ Thus we can write similar to Black-Sholes with m_D and Σ_Z^2 defined in Eq.(16) and (18)

$$\pi_o = N(d_1) - e^{m_D + \Sigma_Z^2/2} N(d_2) \cdot FIX$$

$$d_1 = -\frac{\ln(FIX) + m_D}{\Sigma_Z} \qquad d_2 = d_1 - \Sigma_Z$$

CDI Cap. Final Cap price (continued)

Once again Brazil IR Option via Black-Sholes:

$$\pi_o^{CAP} = BS \left[CALL, FLT(t,T), FIX(t,T), T, \frac{\Sigma_Z(t,T,\sigma,\lambda)}{\sqrt{T-t}} \right] \cdot Z(0,T)$$

IDI Option

■ IDI Index: average overnight interbank deposit rate index

$$IDI_{t} = IDI_{t-1} \cdot \left[(1 + CDI_{t-1})^{1/252} \right]$$

■ Compare that to Eq.(1) to see that IDI is identical to a bank account with some initial reset

IR Options. IDI Option

IDI Option (continued)

■ Cash settled IDI Call Option pay-off is:

$$\pi_T^{IDI\ CALL} = \max[IDI_T - K, 0]$$

is a simplified expression for Today starting CDI Cap:

$$\pi_{o}^{IDI\ CALL} = IDI_{o} \cdot \max[FLT(0,T) - FIX(0,T), 0] \cdot Z(0,T)$$

$$= IDI_{o} \cdot \max[1 - FIX(0,T) \cdot Z(0,T), 0]$$

$$= IDI_{o} \cdot BS\left[CALL, 1, FIX(0,T) \cdot Z(0,T), T, \frac{\Sigma_{Z}(T,\sigma,\lambda)}{\sqrt{T}}\right]$$

where

$$\Sigma_{Z}(T,\sigma,\lambda) = \frac{\sigma^{2}}{\lambda^{2}} \left\{ \frac{e^{-2\lambda T}}{2\lambda} \left(e^{2\lambda T} - 1 \right) - \frac{2e^{-\lambda T}}{\lambda} \left(e^{\lambda T} - 1 \right) + T \right\}$$

IR Options. IDI Option

IDI Option. Last comment

■ HJM vol σ we used in derivation could be connected to CDI rate vol σ_{CDI} from earlier via simple relationship:

$$\sigma = \sigma_{CDI} \cdot f(T - 1, T)$$

where $f_{CDI}(T-1,T)$ is instantaneous forward CDI rate

	C)
;	F	;
	π	9
ū	_	
	≧	i
۰		۰
	\overline{c}	5
	and	:
	π	5
	Ç,)
ì	rkets	5
	$\overline{\mathbf{v}}$	ì
	J	
	z N	5
9	$\overline{}$:
s	_	:
		D
	\subseteq	
	=	מ
	۲	"
	nergi)
	ϵ	
L	ī	i

[JPMorgan, 2004]	Guide to Brazilian Local Markets. J.P.Morgan. 2004
[JPMorgan, 2011]	Local Markets Guide. Brazil. J.P.Morgan. 2011
[Lipscomb, 2005]	Lipscomb, (2005). An Overview of Non-Deliverable Foreign Exchange Forward Markets. Federal Reserve Bank of New York
[Fabozzi, 2002]	Fabozzi, (2002). <i>Investing in Emerging Fixed Income Markets</i> . John Wiley & Sons

4. Brazil

Homework Supplement

1. Compare pricing of the 18m USD-BRL off-shore NDF via 3 approaches using market data provided:

Tadau	22 Nov. 15			
	23-Nov-15			
FX Spot	3.75			
Multiplier	10,000			
			Convertibility	
		USD Disc	Rate, Linear	
Tenor	FX Fwd Pts	Factor	Act/360	
1Y	4,400.0	0.9935	0.96%	
2Y	9,050.0	0.9810	0.40%	
Brazil Onshore Dates and Rates				
			USD Onshore	
	Relevant	BRL Onshore	Rate, Linear	Num BRL
	Dates	Rate, Bus/252	Act/360	Bus Days
		15.33%	4.03%	341
	1-Apr-17			
	1-Jul-17	15.43%	4.02%	402
18M date =>	23-May-17			375

Emerging Markets and Inflation

4. Brazil

Homework Supplement

3. Estimate level of Percentage CDI Swap convexity adjustment for ranges of κ , σ and T via few study cases provided. Suggest validity limits where convexity could be safely ignored and where it should be accounted for properly.

Start with level of rates at 15%, consider cases of log-normal rate vol of 10% and 30%, consider κ from 50% to 150%, and consider maturities from 1y to 10y. Discuss adjustment for swap with a notional of \$1mm.

Hint: note that Vasicek model of short rates we considered requires normal volatility. Discuss how to convert log-normal vol provided to normal vol needed in our formulae