NSR Search Results Page 1 of 3

Visit the **Isotope Explorer** home page!

13 reference(s) found:

Keynumber: 1995MO40

Reference: Aust.J.Phys. 48, 125 (1995) **Authors:** A.J.Morton, D.G.Sargood

Title: Thermonuclear Reactions Rates for Reactions Leading to N = 28 Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁴⁴, ⁴⁶K, ⁴⁶, ⁴⁷, ⁴⁸Ca, ⁴⁵, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹V, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹, ⁵²Cr, ⁵¹, ⁵², ⁵³Mn, ⁵², ⁵³, ⁵⁴Fe, ⁵⁵Co(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; ⁵⁶Ni(n,γ), (n,p), (n,α), (α,γ), (α,n), (α,p),E not given; ⁴⁶Ar, ⁴⁵, ⁴⁷K (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p),E not given; calculated stellar reaction rates vs temperature. Statistical model calculations, optical-model potential.

Keynumber: 1984RU06

Reference: Nucl. Phys. A419, 439 (1984)

Authors: J.F.A.G.Ruyl, J.B.M.De Haas, P.M.Endt, L.Zybert **Title:** Investigation of the 47 , 49 Ti(n, γ) 48 , 50 Ti Reactions

Keyword abstract: NUCLEAR REACTIONS ⁴⁹, ⁴⁷Ti(n, γ), (polarized n, γ),E=thermal; measured E γ ,I γ (E γ ,θ), γ CP; deduced Q. ⁴⁸, ⁵⁰Ti deduced levels, γ -branching,J, π . Enriched,polarized,unpolarized targets.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron

NSR Search Results Page 2 of 3

binding energy.

Keynumber: 1979THZW

Reference: Proc.Specialsts Meeting on Neutron Data Structural Materials for Fast Reactors, December

5-8, 1977, Geel, Belgium, p.675 (1979)

Authors: B.Thom, D.B.Gayther, M.C.Moxon, B.W.Thomas

Title: Capture Cross-Section Measurements on the Separated Isotopes of Titanium

Keyword abstract: NUCLEAR REACTIONS 46 , 47 , 49 , 50 Ti(n, γ),E=low; measured capture σ . 47 , 48 ,

⁵⁰, ⁵¹Ti deduced resonance parameters.

Keynumber: 1977ALYR

Reference: AAEC/E-402 (1977)

Authors: B.J.Allen, J.W.Boldeman, A.R.de L.Musgrove, R.L.Macklin

Title: Resonance Neutron Capture in the Isotopes of Titanium

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti(n,γ),E=2.75-300 keV; measured

capture γ-yield. ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹Ti deduced resonance parameters.

Keynumber: 1972KN07

Reference: Vestsi Akad.Navuk BSSR, Ser.Fiz.-Mat.Navuk No.3, 79 (1972)

Authors: U.A.Knatsko, S.A.Nyagrei, E.A.Rudak, A.M.Khilmanovich **Title:** Radiative Capture of Thermal Neutrons by Titanium Isotopes

Keyword abstract: NUCLEAR REACTIONS 46 , 49 , 50 Ti(n, γ),E=thermal; measured E γ ,I γ . 47 , 50 , 51 Ti

deduced levels, L, J, π .

Keynumber: 1971TE01

Reference: Phys.Rev. C3, 663 (1971)

Authors: J.Tenenbaum, R.Moreh, Y.Wand, G.Ben-David

Title: Study of the Level Structure of 50 Ti and 51 Ti Using the 49 Ti(n, γ) and 50 Ti(n, γ) Reactions

Keyword abstract: NUCLEAR REACTIONS ⁴⁹, ⁵⁰Ti(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ (θ); deduced

Q. 50 , 51 Ti deduced levels, J, π , γ -branching.

Kevnumber: 1971NEZZ

Coden: CONF Moscow(NuclSpectros,Structure) Abstr P38

Keyword abstract: NUCLEAR REACTIONS 46 , 47 , 48 , 49 , 50 Ti(n, γ),E not given; measured E γ ,I γ . 47 ,

⁴⁸, ⁴⁹, ⁵⁰, ⁵¹Ti deduced transitions.

Keynumber: 1970TEZW **Coden:** REPT IA-1218,P28

Keyword abstract: NUCLEAR REACTIONS ⁴⁹Ti(n, γ),E=thermal; measured E γ , $\gamma\gamma$ (θ),I γ , $\gamma\gamma$ -coin;

deduced Q. 50 Ti deduced levels,J, π .

Keynumber: 1968BAZZ

Reference: Program and Theses, Proc.18th Ann.Conf.Nucl.Spectroscopy and Struct.Of At.Nuclei, Riga,

p. 32 (1968)

Authors: I.F.Barchuk, D.A.Bazavov, G.V.Belykh, V.I.Golyshkin, A.V.Murzin, A.F.Ogorodnik

Title: Spectra of γ-Rays Caused by Capture of Slow Neutrons by ²⁵Mg, ⁴⁷Ti and ⁴⁹Ti

Keyword abstract: NUCLEAR REACTIONS ²⁵Mg, ⁴⁷, ⁴⁹Ti(n,γ), E=slow; measured Eγ, Iγ. ²⁶Mg, ⁴⁸,

⁵⁰Ti deduced transitions.

NSR Search Results Page 3 of 3

Keynumber: 1966WAZY

Reference: Proc.Intern.Conf.Study of Nucl.Struct.With Neutrons, Antwerp, Belgium (1965), M.N.de Mevergnies, P.Van Assche, J.Vervier, Eds., North-Holland Publishing Co., Amsterdam, p.536 (1966);

EANDC-50-S, Paper 99 (1966)

Authors: R. Wagner, W.M. Good, D. Paya

Title: s-Wave Neutron Strength Functions of Isotopes in the 3s-Resonance Region 40 <A <70

Keyword abstract: NUCLEAR REACTIONS ⁴³Ca, ⁴⁷, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶¹Ni(n, γ),E=2-60 keV; σ (nt)

(E). ⁴⁴Ca, ⁴⁸, ⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe, ⁶²Ni deduced resonances, level spacings, strength functions.
