Lecture Introduction to graph-based bottom-up planning

Infratrain 2021

Energy system modeling with sector coupling

Agenda

- 1. Course structure and introduction
- 2. Basics of bottom-up planning models
- 3. Basics of graph-based approach

Schedule

Time	Mon 11.10	Tue 12.10	Wed 13.10	Thu 14.10	Fri 15.10
9:00 -		Code along	Code along		Group Work
10:30		Parameters, variables, and constraints in bottom-up planning models	Storage, multi-temporal capacity expansion and time-series representation		
11:00 –	Welcome	Integrated session	Group Work	Integrated session	Group Work
12: 30		Project and paper discussion		Project and paper discussion	
13:30 –	Lecture	Lecture	Lecture	Group Work	Final presentations
15:00	Introduction to graph- based bottom-up planning	Overview of exemplary applications for graph-based bottom-up planning	Advanced features based on interests (e.g. retrofitting, stochastic optimization, technology deployment, solution algorithm)		
15:30 –	Code along	Guest lecture	Group Work	Group Work	Final presentations
17:00	Program setup, data files and plotting with AnyMOD.jl				
Evening	Integrated session		Fun Evening		
	Software Troubleshooting				

Survey and introduction round

OR

Scan this QR code to join

Go to ahaslides.com/4CARV

Agenda

- 1. Course structure and introduction
- 2. Basics of bottom-up planning models
- 3. Basics of graph-based approach

Capacity expansion models

Scope

- Investigate how a portfolio of technical systems can be deployed to satisfy an exogenously set energy demand
- Considered systems include generation and storage technologies and exchange infrastructure
- Integrates decision on capacity expansion and subsequent dispatch of capacities to meet demand
- Might cover a single time-step of capacity expansion (<u>snapshot year</u>) or multiple consecutive time-steps (<u>pathway</u>)
- Might cover a single energy carrier or sector (e.g. electricity) or multiple sector at once to cover their interaction

Method

- Linear optimization problem (with continuous variables)
 - Objective function: minimization of system costs
 - Subject to constraints (technical, environmental, political, ...)
- → Since LP models solve comparatively <u>fast</u>, a <u>great scope and level of detail</u> is possible

Basics of linear optimization

Sets: \mathcal{I}, \mathcal{J}

Variables: X_i , Z

Parameters: u_i , $a_{i,j}$, c_j

Objective

$$\min Z = \sum_{i=1}^{\mathcal{I}} u_i \ X_i$$

Constraints
$$\begin{cases} \sum_{i=1}^{\mathcal{I}} a_{i,j} \ X_i \leq c_j, \ j \in \mathcal{J} \\ X_i \in \mathbb{R}, \ Z \in \mathbb{R} \end{cases}$$

Definitions for framework, model, and scenario

Abstract mathematical formulation and interface

Examples : general definition of sets, algorithms for generation of equations

Sets and mappings among sets

Examples : energy carriers, technologies, assigning energy carriers to technologies

Parameter data

Examples: demand, emission limits, efficiencies ...

Framework

Model

Scenario

based on definitions by the Open Energy Modelling Initiative

Applying definitions to a linear optimization problem

$$\mathcal{I} = \{1,2,3,4\}$$

$$\mathcal{J} = \{1,2\}$$

$$a = \begin{pmatrix} 30 & 20 & 60 & 20 \\ 40 & 30 & 10 & 50 \end{pmatrix}$$

$$u = (500 \quad 400 \quad 200 \quad 100)$$

$$c = \begin{pmatrix} 110 \\ 990 \end{pmatrix}$$

Model

$$\max Z = u_1 \quad X_1 + u_2 \quad X_2 + u_3 \quad X_3 + u_4 \quad X_4$$

$$a_{1,1} \quad X_1 + a_{2,1} \quad X_2 + a_{3,1} \quad X_3 + a_{4,1} \quad X_4 \leq c_1$$

$$a_{1,2} \quad X_1 + a_{2,2} \quad X_2 + a_{3,2} \quad X_3 + a_{4,2} \quad X_4 \leq c_2$$

Scenario

$$\max Z = 500 \ X_1 + 400 \ X_2 + 200 \ X_3 + 100 \ X_4$$

$$30 \ X_1 + \ 20 \ X_2 + \ 60 \ X_3 \ + \ 20 \ X_4 \leq 110$$

$$40 \ X_1 + \ 30 \ X_2 + \ 10 \ X_3 \ + \ 50 \ X_4 \leq 900$$

Typical in- and outputs of bottom-up planning models

Input parameters

Capacity expansion

- Investment costs
- Upper capacity limits

- Discounting rates
- Budget constraints

Dispatch of capacity

- Variable costs
- Efficiency and availability
- Demand for energy
- Emission limits
- Import prices

Result outputs

- Costs and installed capacities
 - Generation technologies
 - Storage technologies (energy and power)
 - Exchange infrastructure
- Variable costs
- Generated, stored and exchanged energy quantities
- Unmet demand
- Emissions

Agenda

- 1. Course structure and introduction
- 2. Basics of bottom-up planning models
- 3. Basics of graph-based modelling

Basics of graph theory

Definitions

- A graph is defined by vertices and edges
- Edges can either be directed or undirected
- In a tree any two vertices are connected by exactly one path
- In a hierarchical (or rooted) tree one vertex is defined to be the root
- The number of vertices on the path from any vertex to the root is termed depth
- All vertices on the path from a vertex to the root are ancestors to the root (descendants are defined vice versa)
- A vertex without any descendants is termed leaf

Hierarchical tree of regions

Hierarchical tree of time-steps

Hierarchical tree of carriers

Defining the resolution for each carrier

carrier with depth 1	carrier with depth 2	carrier with depth 3	temporal		spatial	
carrier with depth 1			dispatch	expansion	dispatch	expansion
electricity			5	2	1	1
heat	district heat		4	2	2	2
gas	natural gas	synthetic gas	3	2	1	1
gas	natural gas	fossil gas	3	2	1	1
gas	hydrogen		3	2	1	1
coal			2	2	1	1

- Temporal resolution of dispatch is an implicit assumption on a carrier's inherent flexibility
- Appropriate resolution depends on
 - Physical properties of the carrier
 - Corresponding spatial resolution
 - Scope of research
- → Can achieve a more accurate and computationally less intensive representation

Hierarchical tree of technologies

Qualitative energy flow graph

Quantitative energy flow graph for 2040

- 19 -

Example technology: CCGT power plant with CHP

