

This book is provided in digital form with the permission of the rightsholder as part of a Google project to make the world's books discoverable online.

The rightsholder has graciously given you the freedom to download all pages of this book. No additional commercial or other uses have been granted.

Please note that all copyrights remain reserved.

About Google Books

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Books helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

LIBRARY
NATIONAL RE ARCH COUNCIL
2101 CONSTITUTION AVENUE
WASHINGTON 25, D.C.

INTERNATIONAL CRITICAL TABLES OF NUMERICAL DATA PHYSICS, CHEMISTRY AND TECHNOLOGY ———

VOLUME II

INTERNATIONAL CRITICAL TABLES OF

NUMERICAL DATA, PHYSICS, CHEMISTRY AND TECHNOLOGY

Prepared under the Auspices of the International Research Council and the National Academy of Sciences

BY THE

NATIONAL RESEARCH COUNCIL

OF THE

UNITED STATES OF AMERICA

EDITOR-IN-CHIEF

EDWARD W. WASHBURN, Ph.D. Chief of the Division of Chemistry, U.S. Bureau of Standards

ASSOCIATE EDITORS

CLARENCE J. WEST, Ph.D.

Director, Research Information Service
National Research Council

N. ERNEST DORSEY, Ph.D. Formerly Physicist, U. S. Bureau of Standards

ASSISTANT EDITORS

F. R. BICHOWSKY, Ph.D.

Associate in Chemistry, Johns
Hopkins University

ALFONS KLEMENC, Ph.D.

Professor of Chemistry, University
of Vienna

VOLUME II

FIRST EDITION

PUBLISHED FOR THE NATIONAL RESEARCH COUNCIL

BY THE

McGRAW-HILL BOOK COMPANY, INC. NEW YORK: 370 SEVENTH AVENUE LONDON: 6 & 8 BOUVERIE ST., E. C. 4

1927

Q199 N32

COPYRIGHT, 1927, BY THE NATIONAL ACADEMY OF SCIENCES

PRINTED IN THE UNITED STATES OF AMERICA

BOARD OF TRUSTEES

GEORGE P. ADAMSON, Chairman, Director of Research, The General Chemical Company.

HARRISON E. Howe, Secretary to May 21, 1922, Editor, Industrial and Engineering Chemistry.

WILLIAM M. Corse, Secretary (since May 21, 1922), Vice-President and General Manager, Research Service, Inc.

EDWARD B. CRAFT, Executive Vice-President, Bell Telephone Laboratories, Inc.

Hugh K. Moore, D.Sc., Technical Director, Brown Company.

CHARLES L. REESE, Ph.D., Sc.D., Chemical Director, E. I. du Pont de Nemours & Co.; President, American Institute of Chemical Engineers.

REPRESENTING THE AMERICAN CHEMICAL SOCIETY

JULIUS STIEGLITZ, Ph.D., D.Sc., Chem.D., Professor and Chairman, Department of Chemistry, University of Chicago; Past President, The American Chemical Society.

REPRESENTING THE AMERICAN PHYSICAL SOCIETY

EDWARD P. HYDE, Ph.D., (until June, 1923), Director of Research (until July 1, 1923), National Lamp Works of General Electric Company.

F. B. Jewett, Ph.D., (September, 1923 to January, 1925), American Telephone and Telegraph Company.

MICHAEL I. PUPIN, Ph.D., Sc.D., (since January, 1925), Professor of Electro-Mechanics, Columbia University.

BOARD OF EDITORS

EDWARD W. WASHBURN, Chairman.

GEORGE K. BURGESS, D.Sc., D.Eng., Director, U.S. Bureau of Standards.

SAUL DUSHMAN, Ph.D., Physicist, General Electric Company.

JOHN JOHNSTON, D.Sc., Sterling Professor of Chemistry, Yale University.

S. C. LIND, Ph.D., Director, School of Chemistry, University of Minnesota, Minneapolis, Minn.

CHARLES E. MENDENHALL, Professor of Physics, University of Wisconsin.

RICHARD B. MOORE, D.Sc., Dean of Science and Head, Department of Chemistry, Purdue University, Lafayette, Ind.

CORRESPONDING EDITORS

AND

ADVISORY COMMITTEES

AUSTRIA

PROF. Dr. RUDOLF WEGSCHEIDER, University of Vienna, Vienna, Austria.

Belgium (and its dependencies)

Prof. Dr. Jean Timmermans, University of Brussels (Solbosch), Brussels, Belgium. Prof. Dr. M. M. Strauven (until November, 1924), École des Mines, Mons, Belgium

THE BRITISH EMPIRE (excluding British North America)

G. W. C. KAYE, O.B.E., M.A., D.Sc., National Physical Laboratory, Teddington, England.

Advisory Committee: Sir Robert Robertson, K.B.E., F.R.S.; W. Rosenhain, D.Sc., F.R.S.; Prof. A. W. Porter, D.Sc., F.R.S.; T.E. Stanton, C.B.E., D.Sc., F.R.S.; J. E. Sears, C.B.E., M.A.; A. C. Egerton, B.Sc.; W. F. Higgins, M.Sc. (Secretary).

BRITISH NORTH AMERICA

PROF. OTTO MAASS, McGill University, Montreal, Canada.

Advisory Committee: J. W. Bain, R. J. Durley, G. S. Whitby

DENMARK (Norway and Sweden)

Prof. Dr. Niels Bjerrum, Royal Veterinary and Agricultural College, Copenhagen, Denmark.

Advisory Committee: Martin Knudsen, Carl Jacobsen.

France (Spain and Portugal)

Dr. Charles Marie, Maître de Conférences adjoint à la Faculté des Sciences, Paris, France.

Advisory Committee: C. Moureu, Membre de l'Institut, Professeur au Collège de France, Paris, France; A. Fabry, Professeur à la Faculté des Sciences, Paris, France; A. Guillet, Directeur de l'École Centrale des Arts et Manufactures, Paris, France.

HOLLAND (and its dependencies)

Dr. W. J. van Heteren, Chemist, Royal Mint, Utrecht, Holland.

Advisory Committee: Dr. E. Cohen, Professor of Chemistry, University of Utrecht; Dr. C. A. Crommelin, Assistant Director, Physical Laboratory, University of Leiden; H. Baucke, Chemical Engineer, Director of the Laboratory, Koning and Bienfait, Amsterdam.

ITALY (and its dependencies)

Prof. Dr. Nicola Parravano, Director of the Chemical Institute of the Royal University of Rome, Rome, Italy.

Advisory Committee: Prof. Ugo Bordoni, R. Scuola di Ingegneria di Roma, Rome, Italy; Prof. Francesco Giordani, R. Politecnico di Napoli, Naples, Italy; Prof. Luigi Rolla, R. Università di Firenze, Florence, Italy.

Japan (and Eastern Asia)

Prof. Kotaro Honda, Tohoku University, Sendai, Japan.

SWITZERLAND

Prof. A. Berthoud, University of Neuchâtel, Neuchâtel, Switzerland.

*Advisory Committee: Prof. Ch. E. Guye, Genève; Prof. H. Rupe, Basel; Prof. F. Schüle, Zürich.

INTRODUCTION TO VOLUME II

This volume covers the characteristic properties of a variety of natural and industrial materials and products, together with some additional miscellaneous information of technological interest. Many of the materials treated in this volume are so variable in chemical composition or physical constitution, or both, that no critical evaluation of their properties in the ordinary sense of the term is possible. The values given have, therefore, been selected so as to portray one or all of the following: typical or average values with departures to be expected; maximum and (or) minimum values; range within which the value may be expected to fall; or (in cases where only fragmentary data are available) the values as recorded in the literature. In other cases, such as metals and alloys, commercial glasses, saccharimetry, etc., greater exactness is possible as the materials or substances dealt with have been or can be more or less exactly controlled as to chemical composition and physical condition. In the section on metals and alloys it has been deemed desirable to include most of the industrially important properties of the pure metallic elements. Properties not so included in this section are treated in the succeeding volumes but for completeness are included in the index table on p. 358 of this volume.

Certain topics logically belonging in this volume have had to be omitted owing to failure on the part of the Cooperating Expert to submit his manuscript in time or owing to delays incident to revisions therein required by the Board of Editors. Such topics should be looked for in the appendix to Volume V.

To obviate frequent repetition the definitions of a number of mechanical properties used rather frequently in the volume are brought together on p. viii. Throughout the volume these definitions are cited in the form: "Def. 3," "Def. 16," etc.

In the first edition of a work of this magnitude and complexity errors will necessarily occur, and the Board of Editors will be grateful if the users of the International Critical Tables will call its attention to all errata noted.

DEFINITIONS

- 1. Proportional Limit.—Stress at which the deformation ceases to be proportional to the load as determined by strainometer (extensometer for tension, compressometer for compression, and deflectometer for transverse tests, value being read from plotted results).
- 2. Elastic Limit.—In tensile and compressive tests: The stress at which the initial permanent elongation or shortening of the gage length occurs, as shown by an instrument of high precision (determined from set readings with extensometer or compressometer). In transverse tests: The extreme fiber stress at which the initial appreciable permanent deflection occurs as determined with deflectometer.

Tests are rarely made to determine the elastic limit, since such tests involve repeated application and release of load, and require considerable time. For practical purposes the elastic limit may be regarded as equal to the proportional limit.

- 3. Yield Point.—Stress at which marked increase in deformation of specimen occurs without increase in load as determined usually by drop of beam or with dividers for tensile, compressive, or transverse tests.
- 4. Tensile, Compressive, or Shearing Strength (Ultimate).— Maximum stress to which the test specimen is subjected by slowly increased load until rupture, divided by the original cross-sectional area of the test specimen.
- 5. Modulus of Rupture.—Maximum stress in the extreme fiber of a specimen tested to rupture, as computed by the empirical application of the flexural formula to stresses above the transverse proportional limit. For simple rectangular test piece with concentrated center load, it equals

$$\frac{1.5 \times load \times span}{area \times depth}$$

6. Torsional Strength (or Modulus of Rupture in Torsion).— Maximum stress in the extreme fiber of a specimen tested to rupture as computed by the empirical application of the torsional formula to stresses above the torsional proportional limit. For a round specimen it is

$$S = \frac{5.1 \times \text{twisting moment}}{\text{diameter}^3}$$

In ductile materials the stress at rupture may be considered uniformly distributed over the cross-sectional area and the above formula assumes the form

$$S = \frac{3.82 \times \text{twisting moment}}{\text{diameter}^3}$$

- 7. Elongation.—The percentage of elongation is found by dividing $100 \times$ the increase of length after rupture by the original gage length. The percentage of elongation depends on the gage length. The elongation indicates the ductility of the material.
- 8. Reduction of Area.—The percentage of reduction is found as the ratio of 100 × the difference between the original and broken area of cross section to the original area. Reduction of area indicates generally the ductility of material.
- 9. Poisson's Ratio.—The ratio of lateral contraction per unit of diameter to longitudinal extension per unit of length of a bar under terminal tension within the elastic limit of material.

DEFINITIONS

- 1. Limite de proportionnalité.—C'est la tension pour laquelle la déformation cesse d'être proportionnelle à la charge, cette tension étant déterminée à l'aide d'un appareil approprié: extensomètre pour la traction, compressomètre pour la compression, et déflectomètre pour les essais de flexion, la valeur de cette tension étant déduite d'une courbe tracée par points.
- 2. Limite d'élasticité.—Pour les essais de traction et de compression: c'est la plus petite tension pour laquelle la déformation permanente de la longueur entre repères devient appréciable au moyen d'un instrument de haute précision (cette tension étant déterminée au moyen des lectures effectuées à l'aide de l'extensomètre ou du compressomètre). Pour les essais de flexion: c'est la plus petite tension de la fibre extrême, pour laquelle la déformation permanente devient appréciable au moyen du déflectomètre.

Comme la détermination de la limite d'élasticité implique une succession de mises en charge et de décharges de l'éprouvette, et demande un temps considérable, ces essais sont rarement effectués. Dans la pratique on peut considérer la limite d'élasticité comme étant égale à la limite de proportionnalité.

- 3. Limite d'étirage.—C'est la tension pour laquelle se produit une augmentation importante de la déformation de l'éprouvette sans augmentation de la charge, cette détermination étant faite ordinairement par la chute de l'aiguille ou au compas pour les essais de traction, compression et flexion. (Limite élastique apparente.)
- 4. Résistance à la traction, à la compression; Résistance au cisaillement.—C'est l'effort maximum auquel l'éprouvette est soumise, par l'augmentation lente et progressive de la charge, jusqu'à rupture, divisé par la section transversale initiale de l'éprouvette.
- 5. Module de rupture.—C'est la tension maximum de la fibre extrême d'une éprouvette essayée jusqu'à rupture, ainsi qu'elle est calculée par l'application empirique de la formule de flexion, à une tension supérieure à la limite de proportionnalité de la flexion. Pour une éprouvette simple de section rectangulaire, avec une charge concentrée au milieu de la portée, elle est égale à:
 - 1,5 × charge × portée/section × hauteur de la pièce
- 6. Résistance à la torsion (ou module de rupture à la torsion).—
 C'est la tension maximum de la fibre extrême d'une éprouvette
 essayée jusqu'à rupture, ainsi qu'elle est calculée par l'application
 empirique de la formule de torsion à une tension supérieure à la
 limite de proportionnalité de la torsion. Pour une éprouvette de
 section circulaire, elle est égale à:

$$S = 5.1 \times \text{moment de torsion/diamètre}^3$$

Pour les matières ductiles, la tension lors de la rupture peut être considérée comme étant répartie uniformément dans la section transversale et la formule ci-dessus prend la forme:

- $S = 3.82 \times \text{moment de torsion/diamètre}^3$
- 7. Allongement.—Le pourcentage d'allongement est obtenu en multipliant par 100 le rapport de l'augmentation de la longueur après rupture à la longueur initiale entre repères. Le pourcentage d'allongement dépend de la longueur entre repères. L'allongement donne une mesure de la ductilité de la matière.
- 8. Striction.—Le pourcentage de striction est le rapport multiplié par 100 de la différence entre la section initiale et la section de rupture à la section initiale. La striction donne généralement une mesure de la ductilité de la matière.
- 9. Coefficient de Poisson.—C'est le rapport de la contraction transversale (par unité de diamètre) à la dilatation longitudinale

DEFINITIONEN

- 1. Proportionalitäts-Grenze.—Spannung, bei der die Formänderung aufhört proportional zur Belastung zu verlaufen; sie wird bestimmt durch ein Formänderungsmessinstrument (Dehnungsmesser für Zug, Zusammendrückungsmesser für Druck und Durchbiegungsmesser für Biegeversuche, der Punkt wird aus dem Diagramm ermittelt).
- 2. Elastizitäts-Grenze.—Bei Zug- und Druckversuchen: Diejenige Spannung bei der die erste bleibende Dehnung oder Verkürzung der Messlänge eintritt, bestimmt durch ein Messinstrument von hoher Präzision (bestimmt aus den Restablesungen am Dehnungs- oder Zusammendrückungsmesser). Bei Biegeversuchen: Die Spannung der äusseren Faser bei der die erste bemerkbar bleibende Durchbiegung eintritt, bestimmt mit dem Durchbiegungsmesser.

Versuche zur Bestimmung der Elastizitäts-Grenze werden selten ausgeführt, da solche Versuche wiederholte Belastung und Entlastung erforderlich machen und beträchtliche Zeit beanspruchen. Für praktische Zwecke kann die Elastizitäts-Grenze als gleichbedeutend mit der Proportionalitäts-Grenze angesehen werden.

- 3. Streck-Grenze.—Spannung, bei der ein deutliches Anwachsen der Formänderung der Probe eintritt, ohne dass die Belastung steigt, gewöhnlich bestimmt durch Absinken des Lastanzeigers oder an den Formänderungsmasstäben für Zug-, Druck- oder Biegeversuch.
- 4. Zug-, Druck- oder Scherfestigkeit (Höchstlast).—Grösste Spannung, der die Probe unterworfen ist, bei langsamer Steigerung der Belastung bis zum Bruch, dividiert durch den ursprünglichen Probenquerschnitt.
- 5. Biegespannung (oder Bruchmodul).—Grösste Spannung in der äusseren Faser einer bis zum Bruch geprüften Probe in der Annahme, dass die empirische Biegeformel für Spannungen oberhalb der Proportionalitäts-Grenze angewendet werden kann. Für Proben mit einfachem rechteckigen Querschnitt und zentrischer Belastung gilt
 - $1,5 \times \text{Last} \times \text{Stützweite/Querschnitt} \times \text{H\"{o}he}$
- 6. Torsions-Festigkeit (oder Bruchmodul für Torsion).—Grösste Spannung in der äusseren Faser der Probe beim Bruch, unter der Annahme, dass die Torsionsformel auch für Spannungen oberhalb der Proportionalitätsgrenze gilt. Für eine zylindrische Probe ist diese Torsions-Festigkeit

$$S = 5.1 \times \text{Drehmoment/Durchmesser}^3$$

Bei sehr formänderungsfähigen Materialien kann diese Bruchspannung als gleichmässig über den ganzen Querschnitt verteilt angesehen werden, und die obige Formel geht über in die Formel:

$$S = 3.82 \times \text{Drehmoment/Durchmesser}^3$$

- 7. Bruchdehnung.—Die prozentuale Dehnung wird gefunden, indem man die Längenzunahme nach dem Bruch durch die ursprüngliche Messlänge dividiert und mit 100 multipliziert. Die Bruchdehnung hängt von der Messlänge ab. Die Bruchdehnung ist ein Masstab für die Formänderungsfähigkeit des Materials.
- 8. Querschnittsverminderung.—Die prozentuale Querschnittsverminderung wird gefunden als das Verhältnis des Unterschiedes zwischen ursprünglichem und Bruchquerschnitt zu dem ursprünglichem Querschnitt multipliziert mit 100. Die Querschnittsverminderung zeigt allgemein die Formänderungsfähigkeit des Materials an.
- 9. Poisson'sche Konstante.—Das Verhältnis der Querkontraktion eines Stabes bezogen auf die Einheit des Durchmessers zur Längsdehnung, bezogen auf die Einheit der Länge eines

DEFINIZIONI

- 1. Limite di proporzionalità.—È quel valore della forza applicata dopo il quale le deformazioni cessano di essere proporzionali alla forza stessa. Le deformazioni sono misurate da apposito apparato (estensometro per le prove di trazione, compressometro per le prove di compressione, e deflettometro o flessimetro per le prove alla flessione). I valori vengono desunti da grafici.
- 2. Limite elastico.—Nelle prove di trazione e compressione. È quel valore della forza al quale corrisponde l'inizio dell'allungamento o del raccorciamento permanente. La deformazione permanente è messa in evidenza da un istrumento di alta precisione, e determinata mediante una serie di letture all'estensometro o compressometro.

Nelle prove di flessione. Quel valore della forza che si ha nella fibra estrema quando si manifesta una deflessione permanente apprezzabile determinata con il flessimetro.

Le prove per determinare il limite di elasticità si eseguono raramente, perchè richiedono ripetute applicazioni ed annullamenti della forza applicata, e quindi molto tempo. Per scopi pratici, si può considerare il limite di elasticità come coincidente con il valore del limite di proporzionalità.

- 3. Punto di snervamento.—È quel valore della forza in corrispondenza del quale si ha un aumento marcato nella deformazione del provino senza che il carico aumenti. Esso viene determinato osservando il momento in cui l'apparato registratore della forza applicata al provino cade rapidamente, oppure a mezzo di misurazione sul provino calibrato alle prove di trazione, compressione e flessione.
- 4. Carico di rottura alla trazione, compressione e taglio.—È il valore massimo dello sforzo al quale il provino è soggetto alla rottura, quando lo sforzo viene accresciuto lentamente. Questo valore viene riferito all'area della sezione trasversale primitiva del provino.
- 5. Modulo di rottura.—Massimo sforzo che si verifica nelle fibre maggiormente sollecitate di un provino che venga provato a flessione fino a rottura. Esso è calcolato con l'applicazione empirica della formula di sollecitazione per flessione, anche quando lo sforzo supera il limite di proporzionalità per sollecitazione della flessione stessa. Per pezzi di forma rettangolare semplice con carico concentrato nel centro, è eguale a:

$$\frac{1,5 \times \text{carico} \times \text{distanza tra gli appoggi}}{\text{area} \times \text{spessore}}$$

6. Sforzo di torsione (oppure modulo di rottura alla torsione).— Massimo sforzo che si verifica nelle fibre più sollecitate di un provino provato fino alla rottura, calcolato applicando empiricamente (anche al di sopra del limite di proporzionalità per torsione) la formula che dà la sollecitazione per torsione. Per un provino a sezione rotonda, la formula è:

$$S = \frac{5.1 \times \text{momento torcente}}{\text{diametro}^3}$$

Nei materiali duttili lo sforzo di rottura può essere considerato uniformemente distribuito sull'area della sezione trasversale, e la formula (2) diventa:

$$S = \frac{3.82 \times \text{momento torcente}}{\text{diametro}^3}$$

7. Allungamento.—L'allungamento percentuale è calcolato dividendo l'aumento di lunghezza dopo rottura per la lunghezza originale calibrata. L'allungamento percentuale dipende dalla lunghezza calibrata, cioè dalla lunghezza alla quale è riferito l'allungamento stesso. Questo allungamento indica la duttilità dei materiali.

- 10. Modulus of Elasticity ((a) in Tension or (b) in Compression).—Ratio of stress within the proportional limit to the corresponding strain as determined with a precise extensometer. Accurate determinations of the modulus of elasticity are made with a gage length at least 8 in. (203.2 mm) in length.
- 11. Modulus of Elasticity in Shear.—Ratio of stress within the proportional limit to the corresponding angular strain (in radians). The following theoretical relation exists between the modulus of elasticity in shear and the modulus of elasticity:

$$G=\frac{E}{2(1+\lambda)}$$

where G is the modulus of elasticity in shear, E modulus of elasticity, and λ Poisson's ratio.

It is difficult to make a direct experimental determination of G on account of the presence of other stresses. It is usually determined by the torsion of a round bar.

12. Brinell Hardness Number.—Ratio of load, on a sphere used to indent the material to be tested, to the area of the spherical indentation produced. The standard sphere used is a 10 mm diameter hardened steel ball. The loads are (a) 3000 kg (6615 lb.) and (b) 500 kg (1102 lb.), and the time of application of load is 30 sec. Values shown in the tables are based on spherical areas computed from measurements of the diameters of the spherical indentations, by the following formula:

$$H_B = \frac{P}{\pi h D} = \frac{P}{\pi D \left(\frac{D}{2} - \sqrt{\frac{D^2}{4} - \frac{d^2}{4}}\right)}$$

P being load in kg, h being depth of indentation, D being diameter of ball and d being diameter of indentation, all lengths being expressed in millimeters. Brinell hardness values have a certain relation to tensile strength, and hardness determinations may be used to determine tensile strengths approximately by employing the proper conversion factor for the material under consideration.

- 13. Shore Scleroscope Hardness.—Height of rebound of a diamond-pointed hammer falling on the object from a fixed, stated height through a tube under the acceleration due to its own weight. On very soft materials a "magnifier" hammer is used in place of the commonly used "universal" hammer, and values may be converted to the corresponding "universal" value by multiplying the reading by \$\frac{4}{3}\$.
- 14. Erichsen Value.—The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical-pointed tool. The depth of impression (or cup), in millimeters, required to obtain fracture is the Erichsen value.
- 15. Bend Test.—(a) Angle through which the material can be bent without fracture; or (b) the number of bendings around a predetermined diameter; or (c) a minimum diameter around which the test piece can be bent through a stated angle.
- 16. Impact Resistance.—(Bibliography on Impact Testing, Whittemore, Proc. A. S. T. M., 1922.) Indicates the shock-resisting qualities of material. Is of particular value in ascertaining the influence of heat treatment. Impact value depends on the form of the specimen and type of apparatus, both of which must be stated.

(par unité de longueur) d'une barre soumise à une tension inférieure à la limite d'élasticité de la matière.

- 10. Module d'élasticité (a) de traction, (b) de compression.—
 C'est le rapport de la tension (celle-ci étant inférieure à la limite de proportionnalité) à la dilatation correspondante, cette détermination étant faite au moyen d'un extensomètre de précision.
 Les déterminations précises du module d'élasticité se font sur une longueur entre repères d'au moins 203,2 mm.
- 11. Module d'élasticité de glissement.—C'est le rapport de la tension (celle-ci étant inférieure à la limite de proportionnalité) au glissement correspondant (en radians). Il existe entre le module d'élasticité de glissement et le module d'élasticité la relation théorique suivante:

$$G = \frac{E}{2(1+\lambda)}$$

ou G est le module d'élasticité de glissement, E le module d'élasticité et λ le coefficient de Poisson.

Il est difficile de faire une détermination expérimentale directe de G par le fait de la présence d'autres tensions. G est ordinairement déterminé par la torsion d'une barre de section circulaire.

12. Nombre de dureté Brinell.—C'est le rapport de la charge appliquée sur une bille qui pénètre dans la matière à essayer, à la surface de l'empreinte sphérique produite. La bille type utilisée est une sphère en acier trempé de 10 mm de diamètre. Les charges sont de (a) 3000 kg et (b) 500 kg et la durée d'application de la charge est de 30 secondes. Les valeurs données dans les tables sont basées sur les surfaces des calottes sphériques calculées d'après les diamètres mesurés des empreintes sphériques produites, par la formule suivante:

$$H_B = \frac{P}{\pi h D} = \frac{P}{\pi D \left(\frac{D}{2} - \sqrt{\frac{D^2}{4} - \frac{d^2}{4}}\right)}$$

P est la charge en kg, h la profondeur de l'empreinte, D le diamètre de la bille et d le diamètre de l'empreinte, toutes les longueurs étant exprimées en millimètres.

Il y a une certaine relation entre les nombres de dureté Brinell et la résistance de rupture, et des déterminations de dureté peuvent être employées pour déterminer approximativement la résistance de rupture en employant le facteur de conversion relatif à la matière considérée.

- 13. Dureté au scléroscope de Shore.—C'est la hauteur de rebondissement d'un petit marteau à pointe de diamant tombant sous l'effet de son propre poids sur l'object d'une hauteur fixe définie, en se déplaçant dans un tube. Lorsqu'il s'agit de matières très tendres, on utilise un marteau amplificateur à la place du marteau "universel" généralement employé, et les valeurs peuvent être converties en valeurs "universelles" correspondantes en multipliant la lecture par 44.
- 14. Nombre d'Erichsen.—On effectue l'essai en supportant la tôle sur une bague circulaire et en la déformant au centre de la bague par un outil à pointe sphérique. Le nombre d'Erichsen est la profondeur de l'empreinte exprimée en millimètres, nécessaire pour produire la rupture.
- 15. Essai de pliage.—(a) C'est l'angle sous lequel la matière peut être pliée sans rupture; ou (b) le nombre de pliages successifs autour d'une barre de diamètre prédeterminé; ou (c) le diamètre minimum du cylindre autour duquel l'éprouvette peut être pliée sous un angle défini.
- 16. Résistance au choc.—(Bibliographie concernant l'essai de choc, Whittemore, Proc. A. S. T. M., 1922.) Elle donne une mesure des qualités de résistance de la matière au choc. Elle est d'une importance particulière pour se rendre compte de l'influence d'un traitement thermique. Les valeurs obtenues aux essais de choc dépendent de la forme de l'éprouvette et du type d'appareil employé; ces deux éléments doivent être définis.

Stabes bei bestimmten Zugspannungen innerhalb der Elastizitätsgrenze des betreffenden Materials.

- 10. Elastizitäts-Modul (a) für Zug oder (b) für Druck.—Das Verhältnis der Spannung innerhalb der Proportionalitätsgrenze zur entsprechenden Formänderung, ermittelt durch einen präzisen Dehnungsmesser. Genaue Bestimmungen Elastizitätsmoduls werden ausgeführt mit einer Mindestmesslänge von 203,2 mm.
- 11. Elastizitäts-Modul bei Scherbeanspruchung.—Verhältnis der Spannung innerhalb der Proportionalitätsgrenze zu der entsprechenden Winkeländerung (in radians). Die folgende theoretische Beziehung besteht zwischen dem Elastizitätsmodul bei Scherbeanspruchung und den Elastizitätsmodul bei Zugbeanspruchung G = E/2 $(1 + \lambda)$, worin G der Elastizitätsmodul für Scherbeanspruchung, E der Elastizitätsmodul für Zugbeanspruchung und A die Poisson'sche Konstante ist. Es ist schwer, den Gleitmodul G direkt experimentell zu bestimmen wegen des Vorhandenseins von Nebenspannungen. Gewöhnlich wird er bestimmt durch einen Drehversuch mit einem Rundstab.
- 12. Brinell Härtezahl.—Das Verhältnis der Last, mit der eine Kugel in das zu prüfende Material eingedrückt wird, zur Fläche des erzeugten Kugeleindruckes. Die gebräuchliche Normalkugel ist eine gehärtete Stahlkugel von 10 mm Durchmesser. Die Kugelbelastungen sind (a) 3000 kg (6615 engl. Pfund) und (b) 500 kg (1102 engl. Pfund). Die Zeitdauer der Belastung beträgt 30 Sekunden. Die in den Tabellen angegebenen Werte für die Härtezahl werden aus Messungen der Durchmesser der erzeugten Kugeleindrücke unter Verwendung folgender Formel gewonnen:

$$H_B = \frac{P}{\pi h D} = \frac{P}{\pi D \left(\frac{D}{2} - \sqrt{\frac{D^2}{4} - \frac{d^2}{4}}\right)}$$

Darin bedeuten P die Kugelbelastung in kg, h die Eindrucktiefe in mm, D den Kugeldurchmesser in mm und d den Durchmesser des Eindrucks in mm. Die Brinell-Härtezahlen haben eine gewisse Beziehung zur Zugfestigkeit, Härtebestimmungen können deshalb angewandt werden, um angenähert die Zerreissfestigkeiten zu bestimmen, unter Anwendung eigenen Koeffizienten eines für jedes Material.

- 13. Shore Skleroskope-Härte.—Die Höhe des Rückpralls eines mit Diamantspitze versehenen Fallhammers, der aus einer bestimmten festgelegten Höhe durch eine Röhre unter Beschleunigung durch sein Eigengewicht auf die Probe fällt. Bei sehr weichen Materialien wird ein Spezialhammer angewandt an Stelle des gewöhnlich benutzten "Universalhammers;" die mit diesem Spezialhammer erzielten Werte können auf den Universalhammer bezogen werden durch Multiplikation der Ablesungen mit 34.
- 14. Erichsen-Wert.—Der Versuch wird ausgeführt, indem ein Blech am Rande kreisförmig eingespannt und in der Mitte durch einen kugelförmigen Stempel eingedrückt wird. Die Tiefe des Eindrucks (oder der Beule) in mm, die erforderlich ist um Bruch hervorzurufen, ist der Erichsen-Wert.
- 15. Biegeprobe.—(a) Winkel, um den das Material gebogen werden kann ohne zu brechen; oder (b) die Zahl der Biegungen um einen bestimmten Durchmesser: oder (c) der kleinste Durchmesser, um den die Probe um einen bestimmten Winkel gebogen werden kann
- 16. Schlag- oder Stossfestigkeit.—(Bibliography on Impact Testing, Whittemore, Proc. A. S. T. M., 1922.) Gibt die Eigenschaften eines Materials an, Stossbeanspruchungen zu widerstehen und ist von besonderem Wert zur Feststellung des Einflusses von Wärmebehandlung. Der gefundene Schlagfestigkeitswert hängt von der Form der Probe und der Art des Apparates ab, beides muss also festgelegt werden.
- 17. Widerstand gegen Ermüdung.—Widerstand eines Materials gegen wiederholte, zwischen zwei bestimmten Spannungsgrenzen

- 8. Riduzione di area.—Percentuale di riduzione di area calcolata come rapporto della differenza tra l'area del provino prima e dopo la rottura (nel punto dove è avvenuta la rottura) e l'area originale. La riduzione di area indica generalmente la duttilità dei materiali.
- 9. Rapporto di Poisson.—Il rapporto della contrazione laterale per unità di diametro e l'allungamento longitudinale, riferito alla unità di allungamento di una barra sottoposta, nei suoi estremi, a sollecitazioni di tensione entro i limiti di elasticità del materiale.
- 10. Modulo di elasticità (a) alla trazione, (b) alla compressione.—Il rapporto del valore dello sforzo entro i limiti di proporzionalità e le corrispondenti deformazioni determinate con un estensometro molto preciso. Determinazioni accurate del modulo di elasticità sono fatte sopra una lunghezza calibrata del provino di almeno mm 203,2.
- 11. Modulo di elasticità al taglio.—Rapporto del valore dello sforzo entro i limiti proporzionali corrispondenti alle deformazioni angolari espresse in radianti. La relazione teorica che esiste tra il modulo di elasticità al taglio e il modulo di elasticità è:

$$G = \frac{E}{2(1+\lambda)}$$

dove G è il modulo di elasticità al taglio, E quello di allungamento e λ il rapporto di Poisson.

È molto difficile eseguire un esperimento per misurare direttamente il valore di G, a causa della presenza di altri sforzi. Generalmente viene determinato eseguendo una prova di torsione sopra una barra rotonda.

12. Numero di durezza Brinell.—Rapporto tra il carico applicato sopra una sfera che penetra nel materiale sottoposto alla prova e l'area della impronta prodotta.

La sfera tipo è del diametro di mm 10 ed è di acciaio temprato. I carichi applicati sono: (a) kg 3000: (b) kg 500. Il tempo di applicazione del carico è di 30 secondi.

I valori riportati nelle tabelle si riferiscono alla misura dell'area fatta in base al diametro dell'impronta sferica.

$$H_B = \frac{P}{\pi h D} = \frac{P}{\pi D \left(\frac{D}{2} - \sqrt{\frac{D^2}{4} - \frac{d^2}{4}}\right)}$$

dove P è il carico in kg, h la profondità dell'impronta, D il diametro della sfera adoperata e d il diametro della impronta. La durezza Brinell ha una certa relazione col carico di trazione, e le determinazioni della durezza possono servire a determinare appunto i carichi di trazione, in via approssimativa, mediante un fattore di conversione caratteristico per il materiale in esame.

- 13. Durezza allo scleroscopio di Shore.—Altezza del rimbalzo di un martello munito di una punta di diamante che cade sull'oggetto da una altezza nota e determinata, percorrendo un tubo sotto l'accelerazione dovuta al proprio peso. Per materiali molto teneri si usa un martello "moltiplicatore" invece del martello comune chiamato "universale," ed i valori possono essere convertiti in corrispondenti valori del martello universale moltiplicando la lettura per ¾.
- 14. Valori di Erichsen.—La prova si fa appoggiando il foglio di lamiera contro un anello e deformandolo nel centro a mezzo di un utensile pure sferico. La profondità dell'impressione in mm, che si ha per ottenere la frattura, è il valore di Erichsen.
- 15. Prove di piegamento.—(a) Angolo di cui il materiale può essere piegato senza fratturarsi, oppure: (b) numero di piegature attorno ad un predeterminato diametro, oppure: (c) diametro minimo attorno al quale il provino può essere piegato percorrendo un determinato angolo.
- 16. Resistenza all'urto.—(Bibliography on Impact Testing, Whittemore, Proc. A. S. T. M., 1922.) Indica la resistenza del materiale all'urto, ed ha particolare valore per accertare l'influenza dei trattamenti termici. Il valore all'urto dipende dalla forma del provino e dal tipo della macchina, ed entrambi questi elementi devono essere specificati.

17. Fatigue Resistance.—Resistance of material to a load varying continuously and cyclically between two fixed stress values.

Numerical values of Fatigue Resistance for the case of zero mean stress (Reversed Stresses) may be given as follows:

- 17a. Fatigue Strength.—The numerical values of upper and lower limits of stress cycle which cause failure after a definite number of repetitions.
- 17b. Endurance Limit.—The value of the upper (or lower) limit of stress cycle which is just insufficient to cause failure after a stated number of repetitions have been endured.
- 17c. True Endurance Limit.—The limiting value of the endurance limit, i.e., the upper limit of a cycle of stress which can be applied an indefinitely great number of times without causing failure. The true endurance limit can never, of course, be determined experimentally. For many materials, however, it is found that if values of fatigue strength are plotted against the number of cycles N to fracture (logarithmically or semi-logarithmically) the resulting curve tends to become parallel to the N axis, affording strong evidence of the existence of a "true endurance limit."

Numerical values of fatigue resistance for cycles of stress whose mean stress is *not* zero may be given by stating the upper and lower limits of the stress cycles corresponding to 17a above, or by stating the value of the mean stress and the range (or semi-range) of the cycle. Consequently, corresponding to the above we shall have:

- 17d. Fatigue Strength Range.
- 17e. Endurance Range.
- 17f. True Endurance Range.
- 18. Ductility.—The ductility is the elongation of the test specimen measured after rupture on a distance distributed symmetrically on both sides of the place of rupture, and should be specified in % of the original length of the distance.
- 19. Acetyl Value.—Defined as g KOH (56.1) to neutralize the acetic acid from 1000 g acetylated oil (1, 2, 7). It gives hydroxyacids + alcohols + oxidized fatty acids + unknown acids + mono- and di-glycerides + rancidity (7).
- **20.** Iodine Value.—Per cent I_2 or its equivalent of other halogen absorbed (3, 6, 12, 13). Heat of bromination is proportional to I-value for most non-oxidized oils and fats (4, 8).
- 21. Saponification Value.—Mg KOH for complete saponification of 1 g of the oil, fat or wax. The corresponding mean equivalent weight of the substance is the "saponification equivalent." (5) gives a method for cold saponification.
- 22. Hehner Value.—Per cent insoluble fatty acids + unsaponifiables.
- 23. Polenske Value.—Proportion of insoluble volatile fatty acids (in terms of cm^3 of 0.1N KOH per 5 g of fat) obtained by Polenske's method of distillation (10).
- 24. Acid Value.—Mg KOH required to neutralize the free fatty acids in 1 g of oil or fat. The free fatty acids are also often expressed as a percentage of the principal fatty acid in the fat. Except in the case of the waxes, this value is not a constant, but varies with the degree of hydrolysis of the fat.
- 25. Reichert-Meissl Value.—Soluble volatile fatty acids in terms of 0.1N KOH per 5 g fat, under Meissl's test conditions (9, 11, 14).

LITERATURE

(For a key to the periodicals see end of volume)

- Benedikt and Ulzer, 57, 8: 41; 87.
 Grün, Oel-Fett Industrie, 1: 339, 364; 19.
 Hanus, 279, 4: 913; 01.
 Hehner and Mitchell, 173, 20: 146; 95.
 Henriques, 92, 8: 721; 95.
 221; 96.
 Hübl, 112, 253: 281; 84.
 Lewkowitch, 173, 24: 319; 99.
 Marden, 46, 8: 121; 16.
 Meissl, 112, 233: 229; 79.
- (10) Polenske, 279, 7: 273; 04.
 (11) Reichert, 91, 18: 68; 79.
 (12) Waller, 136, 19: 1831; 95.
 (13) Wijs, 26, 31: 750; 98.
 (14) Wollner, 173, 12: 203; 87.
 352, 16: 609; 87.

17. Résistance à la fatigue.—Résistance des matériaux soumis à une sollicitation variant d'une façon continue et périodique entre deux valeurs fixes.

Les valeurs numériques de la résistance à la fatigue pour le cas d'un effort moyen nul (efforts alternatifs) peuvent être données comme suit:

- 17a. Résistance à la fatigue.—Ce sont les valeurs numériques des limites supérieures et inférieures du cycle de tension qui produisent la rupture après un nombre défini de répétitions de l'effort.
- 17b. Limite d'endurance.—C'est la valeur de la limite supérieure (ou inférieure) du cycle de tension qui est juste insuffisante pour produire la rupture après un nombre défini de répétitions de l'effort.
- 17c. Limite d'endurance vraie.—C'est la valeur limite de la limite d'endurance, c'est-à-dire la limite supérieure d'un cycle de tension, qui peut être appliqué un nombre indéfini de fois sans produire la rupture. La limite d'endurance vraie ne peut naturellement jamais être déterminée expérimentalement.

Cependant, pour plusieurs matériaux, on a constaté que si l'on représente graphiquement les valeurs de la résistance à la fatigue en fonction du nombre de cycles N jusqu'à rupture (logarithmiquement ou semi-logarithmiquement), la courbe qui en résulte tend à devenir parallèle à l'axe des N, mettant ainsi bien en évidence l'existence d'une "limite d'endurance vraie."

Les valeurs numériques de la résistance à la fatigue pour des cycles de tension dont la valeur moyenne n'est pas zéro, peuvent être obtenues en fixant la limite supérieure et la limite inférieure des cycles de tension correspondant à 17a ci-dessus, ou en fixant la valeur de la tension moyenne et l'amplitude (ou demi amplitude) du cycle. Par conséquent, correspondant à ce que nous avons ci-dessus, nous aurons:

- 17d. Amplitude de la résistance à la fatigue.
- 17e. Amplitude d'endurance.
- 17f. Amplitude d'endurance vraie.
- 18. Ductilité.—La ductilité est l'allongement d'une éprouvette essayée, mesuré après rupture sur une distance répartie symétriquement de part et d'autre de la section de rupture. Elle doit être exprimée en % de la longueur initiale entre repères.
- 19. Indice d'acétyle.—Il est défini par le nombre de g de KOH (56,1) nécessaires pour neutraliser l'acide acétique de 1000 g d'huile acétylée (1,2,7). Il donne les hydroxyacides + alcools + les acides gras oxydés + acides inconnus + mono et diglycérides + rancidité.
- 20. Indice d'iode.—Pourcentage de I_2 ou son équivalent d'un autre halogène absorbé (3, 6, 12, 13). La chaleur de bromuration est proportionnelle á l'indice d'iode pour la plupart des huiles et graisses non oxydées (4, 8).
- 21. Indice de saponification.—Mg KOH pour la saponification complète de 1 g d'huile, graisse ou cire. Le poids équivalent moyen correspondant à la substance est "l'équivalent de saponification." (5) donne une méthode pour la saponification à froid.
- 22. Indice de Hehner.—Pourcent d'acides gras insolubles + insaponifiables.
- 23. Indice de Polenske.—Proportion d'acides gras volatils insolubles (exprimés en cm³ de 0,1N KOH pour 5 g de graisse) obtenue par la méthode de distillation de Polenske (10).
- 24. Indice d'acide.—Mg KOH nécessaires pour neutraliser les acides libres contenus dans 1 g d'huile ou de graisse. On exprime aussi souvent les acides gras libres en pourcent des acides gras principaux contenus dans la graisse. Excepté dans le cas des cires, cette valeur n'est pas une constante, mais elle varie avec le degré d'hydrolyse de la graisse.
- 25. Indice de Reichert-Meissl.—Acides gras volatils, solubles exprimés en 0.1N KOH pour 5 g de graisse, suivant les conditions de l'essai de Meissl (9, 11, 14).

schwingenden Beanspruchungen. Zahlenmässige Werte für den Ermüdungswiderstand können für den Fall, dass der Spannungsmittelwert Null ist (vollkommene Umkehrung der Spannung nach Richtung und Grösse) folgendermassen ausgedrückt werden:

- 17a. Ermüdungsfestigkeit.—Die zahlenmässigen Werte der oberen und unteren Grenzen des Spannungswechsels, welche nach einer bestimmten Anzahl von Wiederholungen Bruch hervorrufen.
- 17b. Dauerbruchgrenze.—Der Wert der oberen (od. unteren) Grenze des Spannungswechsels, welcher gerade noch nicht ausreicht, um den Bruch nach einer bestimmten Zahl von der Probe erlittener Lastwechsel hervorzurufen.
- 17c. Wahre Dauerbruchgrenze.-Der Grenzwert der Ermüdungsgrenze, d.h., die obere Grenze eines Spannungswechsels, welcher unbegrenzt häufig-ohne Bruch zu verursachen-angewandt werden kann. Die wahre Dauerbruchgrenze kann selbstverständlich niemals experimentell bestimmt werden. Sie ist jedoch für viele Materialien festgestellt, sobald man die Werte der Ermüdungsfestigkeit in Abhängigkeit von der Zahl der Spannungswechsel N, die zum Bruch führen, logarithmisch (oder für die eine Achse logarithmisch) aufgetragen, darstellt, die sich ergebende Kurve parallel zur N-Achse zu verlaufen strebt und damit einen sicheren Anhalt für das Vorhandensein einer "wahren Dauerbruchgrenze" bietet. Zahlenmässige Werte des Widerstandes gegen Ermüdung für Lastwechselfolgen, deren Spannungsmittelwerte nicht Null sind, können wiedergegeben werden durch Angabe der oberen und unteren Grenzen des Spannungswechsels, entsprechend 17a oder durch Angabe des Spannungsmittelwertes und der ganzen (oder halben) Amplitude. Entsprechend obigem, kann man demnach setzen:
 - 17d. Ermüdungsfestigkeit für bestimmte Spannungswechsel.
 - 17e. Dauerbruchfestigkeit für bestimmte Spannungswechsel.
- 17f. Wahre Dauerbruchfestigkeit für bestimmte Spannungswechsel.
- 18. Formänderungsfähigkeit.—Die Formänderungsfähigkeit ist die Verlängerung des Probestabes, gemessen nach dem Bruch auf eine Länge, die symmetrisch zu beiden Seiten der Bruchstelle verteilt ist. Sie ist in Prozenten der ursprünglichen Messlänge anzugeben.
- 19. Acetyl-Zahl.—Gibt die Gramme KOH (56,1) an, die für die Neutralisation der Essigsäure in 1000 g des acetylierten Öles notwendig sind (1, 2, 7). Damit sind bestimmt: Oxysäuren + Alkohole + oxydierte Fettsäuren + unbekannte Säuren + Mono und Diglyceride + Ranzigkeit (7).
- 20. Jod-Zahl.—Ist durch Prozente Jod bestimmt (Äquivalent den anderen absorbierbaren Halogenen) (3, 6, 12, 13). Die Bromierungs-Wärme ist proportional der Jod-Zahl bei den meisten nicht oxydierten Fetten (4, 8).
- 21. Verseifungs-Zahl.—Gibt die mg KOH an die für die vollständige Verseifung von 1 g Fett, Öl, Wachs notwendig sind. Das entsprechende mittlere Äquivalent-Gewicht der Substanz ist das "Verseifungs-Äquivalent." (5) gibt eine Methode für die Verseifung in der Kälte.
- 22. Hehner'sche-Zahl.—Ist Prozente unlösliche Fettsäuren + Unverseifbares.
- 23. Polenske-Zahl.—Gibt die Anzahl cm³ 0.1N KOH an die nötig sind, um die flüchtigen unlöslichen Fettsäuren für 5 g Fett zu neutralisieren, die entsprechend der Destillationsmethode nach Polenske (10) erhalten werden.
- 24. Säure-Zahl.—Ist die Anzahl mg KOH die für die Neutralisation der freien Fettsäuren von 1 g Öl oder Fett notwendig sind. Die freien Fettsäuren werden öfters in Prozenten der Hauptfettsäure im Fett angegeben. Mit Ausnahme bei den Wachsarten ist diese Zahl nicht konstant und ändert sich mit dem Grade der Hydrolyse des Fettes.
- 25. Reichert-Meissl'sche-Zahl.—Lösliche flüchtige Fettsäuren ausgedrückt in cm² 0.1N KOH für 5 g Fett, bestimmt nach dem Vorgange von Meissl (9, 11, 14).

17. Resistenza alla fatica.—Resistenza del materiale sottoposto a sforzi varianti in modo continuo e ciclico tra due valori fissi.

Valori numerici della resistenza alla fatica nel caso di uno sforzo medio eguale a zero (sforzi invertiti) possono essere indicati nella maniera seguente:

- 17a. Resistenza alla fatica.—I valori numerici dei limiti superiore ed inferiore delle sollecitazioni cicliche che producono rottura dopo un numero definito dei ripetizioni.
- 17b. Limite di durata.—Valore superiore (o inferiore) della massima sollecitazione ciclica insufficiente a produrre la rottura dopo essere stata applicata un determinato numero di volte.
- 17c. Limite vero (o pratico) di durata.—Valore limite del limite di durata, cioè valore superiore della massima sollecitazione ciclica che può essere applicata un gran numero di volte senza produrre rottura. Naturalmente, il vero limite di durata non può mai essere determinato sperimentalmente. Tuttavia, per molti materiali si è trovato che, se si riportano in un diagramma i valori della sollecitazione in funzione del numero di cicli N che producono la frattura (logaritmicamente o semilogaritmicamente) la curva risultante tende a divenire parallela all'asse N mostrando all' evidenza che esiste un "vero limite di durata."

Valori numerici di resistenza alla fatica per sollecitazioni cicliche nelle quali i valori medi delle sollecitazioni sono diversi a zero possono essere dati stabilendo i limiti superiore ed inferiore dei cicli delle sollecitazioni corrispondenti a 17a, oppure stabilendo il valore della sollecitazione media e l'intervallo (o semintervallo) del ciclo. Di conseguenza, d'accordo con quanto sopra si avrà:

- 17d. Ampiezza delle oscillazioni tra i valori delle sollecitazioni cicliche alla fatica.
 - 17e. Ampiezza od oscillazioni di durata.
 - 17f. Ampiezza od oscillazioni pratiche di durata.
- 18. Duttilità.—La duttilità è l'allungamento del provino, e viene misurata dopo la rottura sopra una lunghezza distribuita simmetricamente da entrambe le parti del punto di rottura. Essa è specificata in percento della lunghezza originale primitiva.
- 19. Numero di acetile.—Indica i grammi di KOH (56,1) necessari per neutralizzare l'acido acetico in 1000 g di olio acetilato (1, 2, 7). Esso è in relazione: con gli ossiacidi + gli alcooli + gli acidi grassi ossidati + acidi sconosciuti + mono e digliceridi, + la rancidità (7).
- **20.** Numero di iodio.—Percento di I_2 (o suo equivalente di altri alogeni) fissato (3, 6, 12, 13). Il calore di bromurazione è proporzionale al numero di iodio per la maggior parte degli olii e grassi non ossidati (4, 8).
- 21. Numero di saponificazione.—Mg di KOH necessari per la completa saponificazione di 1 g di olio, grasso o cera. Il corrispondente peso equivalente medio della sostanza è "l'equivalente di saponificazione." (5) dà un metodo di saponificazione a freddo.
- 22. Numero di Hehner.—Percento di acidi grassi isolubili + sostanze insaponificabili.
- 23. Numero di Polenske.—Quantità di acidi grassi volatili insolubili (riferito in cm² di KOH 0.1N per 5 g di grasso) ottenuta col metodo di distillazione di Polenske (10).
- 24. Numero di acidità.—Mg di KOH richiesti per neutralizzare gli acidi grassi liberi di 1 g di olio o grasso. Gli acidi grassi liberi sono spesso riferiti come percentuale dell'acido principale contenuto nel grasso. All'infuori del caso delle cere questo numero non è una costante, ma varia col grado di idrolisi del grasso.
- 25. Numero di Reichert-Meissl.—Acidi grassi volatili solubili, espressi in cm³ di KOH 0.1N per 5 g di grasso, ottenuti nelle condizioni di procedimento Meissl (9 , 11 , 14).

COOPERATING EXPERTS-VOLUME TWO

	PAGE
ABRAHAM, HERBERT, B.S.Chem.: President, The Ruberoid Company, New York City AITCHISON, LESLIE, D.Met., B.Sc., F.I.C., M.I.A.E.: Superintendent, James Booth and Co., Ltd., Nechells, Birmingham, England —ALEXANDER, JEROME, B.S., M.Sc.: Consulting Chemist and Chemical Engineer, New York City	542
ARCHBUTT, SYDNEY L., F.I.C.: Principal Assistant, Metallurgy Department, National Physical Laboratory, Teddington, Middlesex, England	
AUDLEY, JAMES A., B.Sc., A.R.C.S., F.I.C.: Director, New Hall Pottery Co., Ltd., Hanley, Stoke-on-Trent, England	73
BATES, FREDERICK JOHN, B.S.: Physicist and Chief, Carbohydrate Section, National Bureau of Standards, Washington, D. C BATES, PHAON H., A.B., B.S.: Chief, Ceramic Division, National Bureau of Standards, Washington, D. C	
BENEDICKS, CARL, Ph.D.: Director, Metallografiska Institutet, Stockholm, Sweden	
BIGG, PHILIP H., B.Sc.: Junior Assistant, Metrology Department, National Physical Laboratory, Teddington, Middlesex, England BONE, WILLIAM ARTHUR, D.Sc., Ph.D., F.R.S.: Chief Professor of Chemical Technology, Imperial College of Science and Technology.	
nology, London, S. W. 7, England	
Bureau of Forestry and the Bureau of Science of the Philippine Islands, Manila, P. I	
CHANEY, NEWCOMB K., M.S., B.A. (Oxon), Ph.D.: Research Laboratories, National Carbon Co., Cleveland, Ohio	
Middlesex, England	
Danielson, Ralph R., B.S., M.S.: Director of Ceramic Research, Metal & Thermit Corp., New York City	
Downs, Charles Raymond, Ph.D.: Consulting Chemist and Chemical Engineer, New York City	
EMLEY, WARREN E., B.S., Ch.E.: Chief, Organic and Fibrous Materials Division, National Bureau of Standards, Washington, D. C.	117
Farmer, F. Malcolm, M.E.: Chief Engineer, Electrical Testing Laboratories, New York City	
GARDNER, HENRY A.: Director, Institute of Paint and Varnish Research, Washington, D. C. GAYLER, MARIE L. V., D.Sc.: Assistant, Metallurgy Department, National Physical Laboratory, Teddington, Middlesex, England	
Geniesse, John C., B.S., Ph.D.: Instructor in Chemical Engineering, University of Michigan, Ann Arbor, Michigan 136, Gough, Herbert John, M.B.E., B.Sc., M.I.M.: Senior Assistant, Engineering Department, National Physical Laboratory, Teddington, Middlesex, England	161
Hadfield, Robert, Bart., F.R.S.: 22 Carlton House Terrace, London, England	
HALL, JOHN AINGER, A.R.C.S., B.Sc.: Junior Assistant, Physics Department, National Physical Laboratory, Teddington, Middlesex, England.	
Hanson, D., D.Sc.: Professor of Metallurgy, The University, Birmingham, England	
HARRIS, PHILIP, B.Sc.: Officer in Charge of Timber Testing Laboratory, Imperial Institute, London, England	17
HARTMANN, MINER L., Ph.D.: Technical Director, The Celite Company, Lompoc, California	
HATFIELD, W. H., D.Met., F.I.P., M.I.M.E.: Director, Brown-Firth Research Laboratories, Sheffield, England	
Holmes, Willis B., B.A., M.A., Ph.D.: Vice-president and Superintendent Chemist, The W. V-B. Ames Co., Fremont, Ohio	129
HOYT, SAMUEL LESLIE, E.M., Ph.D.: Research Metallurgist, General Electric Co., Schenectady, New York	558
HUDSON, O. F., D.Sc.: Superintendent of Research, British Non-ferrous Metals Research Association, Birmingham, England. 413, Hyde, James Henry, A.M.I.C.E., A.M.I.M.E., M.I.A.E.: Senior Assistant, Engineering Department, National Physical Labor-	
atory, Teddington, Middlesex, England	164
JENKINS, C. H. M., B.Sc., A.R.S.M.: Assistant, Metallurgy Department, National Physical Laboratory, Teddington, Middlesex, England	549
JESSUP, RALPH S., B.S.: Assistant Physicist, National Bureau of Standards, Washington, D. C.	327
JUDSON, LEWIS V., Ph.D.: Chief, Length Measurement Section, National Bureau of Standards, Washington, D. C.	
KESSLER, D. W., C.E.: Research Associate, National Bureau of Standards, Washington, D. C	
LAMPE, JOHN HAROLD, B.S., M.E.E.: Instructor in Electrical Engineering, Johns Hopkins University, Baltimore, Maryland	305

LINDSAY, DANIEL CURTIS, A.B.: Physicist, Carrier Engineering Corporation, Newark, New Jersey	321 231 479
Chemists; Editor of the Analyst; London, England	
PARKS, HAROLD C., Ph.B.: Chemist, Congoleum-Nairn Inc., Marcus Hook, Pennsylvania	130 334
PRIEST, OLIVE: Associate Metallurgist, Brown-Firth Research Laboratories, Sheffield, England	
RECORD, SAMUEL JAMES, M.A., M.F.: Professor of Forest Products, Yale University, New Haven, Connecticut	
Jersey	
-Ries, H., Ph.B., A.M., Ph.D.: Professor of Geology; Head of the Department of Geology, Cornell University, Ithaca, New York.	
Rose, Thomas K., Kt., D.Sc.: Chemist and Assayer, Royal Mint, London, England	584
ROSENHAIN, WALTER, D.Sc., F.R.S.: Superintendent of Metallurgy Department, National Physical Laboratory, Teddington, Middlesex, England	528
SAYERS, ROYD RAY, A.B., A.M., M.D.: Surgeon, U. S. Public Health Service; Chief Surgeon, Bureau of Mines, Washington, D. C	
SCHOFIELD, FRANCIS HAROLD, B.A., B.Sc.: Senior Assistant, Physics Department, National Physical Laboratory, Teddington,	
Middlesex, England SCHURECHT, HARRY G., B.S.: Senior Fellow, The National Terra Cotta Society Fellowship, National Bureau of Standards, Washington, D. C.	
Shirosawa, Homi, Doctor of Forestry: Director, Imperial Forestry Experiment Station, Shimomeguro near Tokyo, Japan	
SNYDER, CARL FRANCIS, A.B.: Associate Physicist, National Bureau of Standards, Washington, D. C.	
STEELE, L. L., B.S., Ph.D.: Chemist, National Bureau of Standards, Washington, D. C.	
STOTT, VAUGHAN H., M.Sc.: Assistant, Metallurgy Department, National Physical Laboratory, Teddington, Middlesex, England. STOTT, VERNEY, B.A., F.I.P.: Assistant, Metrology Department, National Physical Laboratory, Teddington, Middlesex, England.	
STEWART, LEROY C., Ch.E.: Chemical Engineer, Dow Chemical Company, Midland, Michigan	
SUENSON, E.: Professor, Polyteknisk Laereanstalt, Copenhagen, Denmark	
THOMAS, ARTHUR W., Ph.D.: Associate Professor of Food Chemistry, Columbia University, New York City	
Technology, London, S. W. 7, England	172
TURNER, W. E. S., D.Sc., M.Sc.: Professor and Head of the Department of Glass Technology, The University, Sheffield, England	
United States Forest Products Laboratory, Madison, Wisconsin	2
Weaver, Elmer, R., A.B.: Chemist, National Bureau of Standards, Washington, D. C.	
Weiss, John Morris, B.S.: Consulting Chemist and Chemical Engineer, New York City	
WHITBY, G. STAFFORD, M.Sc., Ph.D., F.R.S.C.: Professor of Organic Chemistry, McGill University, Montreal, Canada	
Wickenden, Thomas H.: Development and Research Department, International Nickel Company, New York City	
WILKES, GORDON B., S.B.: Associate Professor of Industrial Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts	316
-Wilson, John Arthur: Chief Chemist, A. F. Gallun and Sons Company, Milwaukee, Wisconsin	250
WOLFRAM, HAROLD G., B.Sc.: Associate Technologist in Enameling of Metals, National Bureau of Standards, Washington, D. C.	
WOOLMAN, J., M.Sc.: The Brown-Firth Research Laboratories, Sheffield, England	483 356

MATIÈRES **CONTENTS** vii Résistance et propriétés parents des bois 1 Strength and related properties of woods 1 46 46 47 56 Produits d'argiles lourds et briques de sable calcaire Heavy clay products and sand-lime brick 82 86 86 87 87 Émaux vitreux pour métaux........ Ciments et bétons de magnésie........ Pétroles bruts, derivés du pétrole et huiles minérales de com-Petroleums, petroleum products and commercial oils of Points d'inflammabilité des vapeurs saturées de liquides com-Flash points of saturated vapors of combustible liquids . . . 161 Quantitative effects of some compounds upon detonation in Effets quantitatifs de quelques composés sur la détonation dans des machines à combustion interne. Animal and vegetable oils, fats and waxes. 196 Huiles animales et végétales, corps gras et cires 196 Tannins and vegetable tanning materials Tanins et matériaux végétaux de tannage 296 296 296 Phenol resins and their products 298 Résines phénoliques et leurs produits 298 Commercial carbons for electrical uses. 303 Charbons de commerce pour l'usage électrique. Matières premières pour les industries des couleurs et vernis. 317 Raw materials of the paint and varnish industry. 317 318 Hygroscopic properties of industrial materials Propriétés hygroscopiques des matériaux industriels . . . 321 Spaces occupied by human beings 329 329 334 X-ray diffraction data for miscellaneous natural and industrial Données de diffraction des rayons-X pour différents matériaux Liste des journaux et leurs nombres-clés 611

INHALTSVERZEICHNIS INDICE PAGE PAGE vii viii Festigkeit und verwandte Eigenschaften der Hölzer. Kunstholz............. Legni da costruzione artificiali 47 47 56 ${\bf Ton\text{-}Schwerprodukte}~(Klinkerziegel)~und~Kalk\text{-}Sand~Ziegel~.$ Materiali massicci argillosi e mattoni silico-calcari 64 Laboratoriums Porzellane und Steingut 66 82 86 87 Mineralöle, Mineralölprodukte, und Öle von anderem mineral-Petrolio grezzo, derivati del petrolio ed olii commerciali di Entflammungspunkt des gesättigten Dampfes brennbarer Punti d'accensione di vapori saturi di combustibili liquidi . . 161 Quantitative Leistungen einiger Verbindungen bei der Ver-Effetti quantitativi di alcuni composti sulla detonazione nei puffung in Verbrennungs-Kraftmaschinen 162 164 166 168 Öle tierischen und pflanzlichen Ursprunges, Fette und Wachs-217 231 254 Caucciù, guttaperca e balata.......... 296 296 Materie plastiche a base di nitrocellulosa 298 Materie prime per l'industria dei colori e delle vernici. . . . 317 Die Beschaffenheit der Luft bei der Herstellung gewisser Proprietà igroscopiche di materiali industriali Hygroskopische Eigenschaften von Industrie-Materialien 321 Räume in denen sich Menschen aufhalten (Einfluss der Luft-Beschaffenheit im Raum auf den Menschen) . . . 325 Kälteflüssigkeiten........... 327 Valori della diffrazione dei raggi X per diversi materiali Das Verhalten verschiedener natürlicher und industrieller Stoffe gegen Röntgen-Strahlen (Brechung). 356

Elenco del periodici e numero chiave di essi. 611

Metallurgie. Eigenschaften der Metalle und Legierungen.

Verzeichnis der Zeitschriften und deren Schlüssel-Nummern 611

INTERNATIONAL CRITICAL TABLES

STRENGTH AND RELATED PROPERTIES OF WOODS

Contents	. Matières	Inhaltsverzeichnis	Indice Page
North America.	Amérique du Nord.	Nord Amerika.	America Settentrionale 2
Philippines.	Iles des Philippines.	Philippinen.	Filippine 4
Canada.	Canada.	Canada.	Canadà4
British Empire.	L'Empire Brittanique.	Grossbritanien.	Impero Brittanico 16
Denmark.	Danemark.	Dänemark.	Danimarca
Dutch East Indies.	Indes Néerlandaises.	Niederlandisch Indien.	Indie Orientali Ollandesi . 35
Japan and Eastern Asia.	Japon et l'Asie Orientale.	Japan und östliches Asien.	Giappone ed Asie Orientale 36
Tropical America.	L'Amérique Tropicale.	Amerika der Tropen.	America Tropicale 39
Hopical America.	L'Amerique Tropicale.	Amerika der Tropen.	America Tropicale 39
COLUMN HEADINGS	Entêtes des Colonnes	KOPFTITEL	TITOLI DELLE COLONNE
Index number.	Nombre index.	Index Nummer.	Numeri indice.
Botanical name.	Nom botanique.	Botanischer Name.	Nome botanico.
Family; genus and species.	Famille; genres et espèces.	Familie; Genus und Art.	Famiglia; genere e specie.
Common name.	Nom commun.	Gebräuchlicher Name.	Nome comune.
Place of growth of material tested.	Lieu où a poussé le matériel soumis aux essais.	Ort an dem das untersuchte Material gewachsen ist.	Luogo di origine del materiale esaminato.
Seasoning condition.	Condition de séchage à l'air.	Trocknungsbedingungen.	Condizione di stagionatura.
Bulk density of wood sub-	Densité apparente du bois;	Raumgewicht des Holzes:	Densità della sostanza legnosa:
stance; oven-dry weight di-	poids du bois séché au four	Gewicht nach der Ofen-	peso dopo seccata al forno
vided by volume in condi-	divisé par le volume dans	trocknung dividiert durch	diviso per il volume nella
tion stated.	la condition spécifiée.	das Volumen im angege-	condizione stabilita.
non stated.	in condition specimes.	benem Zustand.	condizione sussitius.
Bulk density of piece; weight	Densité apparente de la pièce;	Raumgewicht des Stückes:	Densità del pezzo: peso del
of sample divided by its	poids de l'éprouvette divisé	Gewicht der Probe dividiert	campione diviso per il suo
volume in condition	par son volume dans la	durch das Volumen im	volume nella condizione
stated.	condition spécifiée.	angegebenem Zustand.	stabilita.
	Séché au four.	Ofen trocken.	Seccato al forno.
Oven-dry.	Vert.		Verde.
Green.	Séché à l'air.	Frisch (grün).	
Air-dry.	Teneur en humidité.	Luft trocken.	Seccato all'aria.
Moisture content.		Feuchtigkeitsgehalt.	Contenuto di umidità.
Shrinkage from green to oven-	Retrait à partir du bois vert	Schwinden vom frischen bis zum	Contrazione dallo stato verde a
dry condition.	lorsque séché au four.	Ofen trockenem Zustand.	quello di essiccamento nel forno.
Static and impact bending;	Essai de flexion statique et au	Statische und dynamische	Incurvamento alla flessione sta-
compression parallel or	choc; compression parallèle	Biegefestigkeit; Druck par-	tica e all'urto; compressione
perpendicular to grain.	et perpendiculaire à la fibre.	allel oder senkrecht zur	parallela o perpendicolare
		Faser.	alla vena del legno.
Fiber stress at elastic limit.	Tension de la fibre à la limite élastique.	Faserspannung an der Elastizitätsgrenze.	Trazione della fibra al limite di elasticità.
36 11 6. 4	•	Bruchfestigkeit.	
Modulus of rupture.	Module de rupture.		Modulo di rottura.
Modulus of elasticity.	Module d'élasticité.	Elastizitätsmodulus.	Modulo di elasticità.
Work to elastic limit.	Travail jusqu'à la limite élas- tique.	Arbeit bis zur Elastizitäts- grenze.	Lavoro fino al limite di elasti- cità.
Work to maximum load.	Travail jusqu'à charge maxi- mum.	Arbeit bis zur Höchstlast.	Lavoro fino al carico massimo.
Total work.	Travail total.	Gesamtarbeit.	Lavoro totale.
Height of drop causing	Hauteur de chute occasion-	Fallhöhe die zum vollkom-	Altezza del neso causante

fendimento.

completa rottura.

Massima forza schiacciante.

Taglio; tensione perpendi-

colare alla vena; durezza;

nant une rupture complète.

diculaire à la fibre; dureté;

Cisaillement tension perpen-

maximum

Résistance

clivage.

l'écrasement.

menem Bruch führt.

Scherung; Druck senkrecht zur

Faser; Härte; Spaltbarkeit.

Schlagfestigkeit.

complete failure.

Maximum crushing strength.

grain; hardness; cleavage.

Shear; tension perpendicular to

I. NORTH AMER-

United States Forest

The following data on certain woods of North America are based on an extensive series of tests of small specimens free of defects. All the tests were conducted under a uniform procedure, so that the results are strictly comparable. Analysis of the test figures has made it possible to establish definite density-strength relations, which are represented by the equations given in the first section of the table (Table 1). These equations are all of the parabolic type, the degree being determined to the nearest quarterunit. By substituting the appropriate specific gravity for a given species (columns 8 and 9) in the equation for any property, the value of the corresponding property may be obtained.

In most species, however, there is a very considerable departure of average test results from the general equation values, although very few species, thus far investigated, are either wholly above or wholly below normal, all properties considered. Since the deviation of a property from the normal value as determined by the equation often indicates the special fitness or unfitness of the species for a particular use, it becomes necessary to supplement the equations with departure factors, for the properties of each species. Such factors, expressed as percentages and listed in order below the respective equations, make up the second part of Table 1. By multiplying the value, F, computed by the equation, by the proper correction factor, the actual average value for the property and species in question may be determined.

Example: To find the modulus of rupture of air-dried shagbark hickory. The finding list shows this to be No. 62, *Hicoria ovata*. From the equation of column 15 we find $F = 18.1 \ D_d^{1.16}$. For No. 62 we find (column 9) $D_d = 0.724$ and (column 15) correction factor = 119%, whence

 $F = 1.19 \times 18.1 \times (0.724)^{1.25} = 14.4 \text{ kg/mm}^2 = 14.4 \times 1422 = 20 500 \text{ lb./in.}^2$

The test methods that were used conform to Tentative Standard D143-24T of the American Society for Testing Materials, as set forth in *Proc. A. S. T. M.* 939; 24. (General description in U. S. Dept. Agr., *Bull.* No. 556.) The principal data relating to the procedure for each kind of test are summarized as follows:

Shrinkage in Volume.—Specimen $5.08 \times 5.08 \times 15.24$ cm $(2 \times 2 \times 6$ in.). Volume determined when green (unseasoned) and after oven-drying to constant weight at 100° C. Specimens thoroughly air-seasoned prior to drying in oven.

Shrinkage, Radial and Tangential.—Specimen $2.54 \times 10.16 \times 2.54$ cm $(1 \times 4 \times 1$ in.). Width measured when green (unseasoned) and after oven-drying to constant weight at 100° C. Specimens thoroughly air-seasoned prior to drying in oven.

Static Bending.—Specimen $5.08 \times 5.08 \times 76.20$ cm $(2 \times 2 \times 30 \text{ in.})$. Center loading, 71.12 cm (28 in.) span. Load applied by testing machine head moving 0.254 cm (0.10 in.) per min. Total work is defined as that obtained by continuing the test until either a 15.24 cm (6 in.) deflection is reached or the load falls to 90.7 kg (200 lb.) or less.

Impact Bending.—Specimen and span as above. 22.7 kg (50 lb.) hammer dropped first from 2.54 cm (1 in.) height, next from 5.08 cm (2 in.) height, etc., up to 25.4 cm (10 in.), then from height increments of 5.08 cm (2 in.) until failure.

Compression Parallel to Grain.—Specimen $5.08 \times 5.08 \times 20.32$ cm (2 \times 2 \times 8 in.). End load, testing machine head moving 0.061 cm (0.024 in.) per min.

Les données indiquées ici, relatives à certains bois de l'Amérique du Nord, sont basées sur une série d'expériences faites sur de petites éprouvettes exemptes de défauts. Tous les essais ayant été effectués suivant une procédure uniforme, les résultats sont donc strictement comparables. L'analyse des chiffres obtenus aux essais a permis d'établir des relations définies entre la densité et la résistance, qui sont représentées par les équations inscrites dans la première section de la table (Table 1). Ces équations sont toutes du type parabolique, le degré étant déterminé au quart d'unité le plus proche. En substituant le poids spécifique approprié pour une espèce donnée (colonnes 8 et 9) dans l'équation relative à une propriété donnée, on peut obtenir la valeur correspondante de la propriété.

Cependant pour la plupart des espèces il y a un écart considérable entre les résultats moyens des essais et les valeurs déduites de l'équation générale; pour autant que les expériences effectuées l'ont démontré, il n'y a qu'un petit nombre d'espèces qui sont, ou en entier au-dessus ou en entier au-dessous de la normale pour toutes les propriétés considérées. Comme l'écart d'une propriété de la valeur normale, ainsi qu'elle est déterminée par l'équation, indique souvent la convenance spéciale de l'espèce pour un usage particulier, ou sa non-convenance, il est nécessaire de compléter les équations par des facteurs de correction pour les propriétés de chaque espèce. Ces facteurs, exprimés en pourcentage et inscrits dans l'ordre au-dessous des équations respectives, constituent la deuxième partie de la Table 1. En multipliant la valeur F calculée au moyen de l'équation par le facteur de correction convenable, on peut déterminer la valeur moyenne de la propriété de l'espèce en question.

Exemple: Soit à déterminer le module de rupture du "shagbark hickory" séché à l'air. La liste de recherches montre qu'il s'agit du No. 62 Hicoria ovata. De l'équation de la colonne 15 on trouve F=18,1 $D_d^{1,25}$. On trouve pour le No. 62 (colonne 9) $D_d=0,724$ et (colonne 15) le facteur de correction = 119 %, d'où $F=1,19 \times 18,1 \times (0,724)^{1.25}=14,4$ kg/mm² = 14,4 × 1 422 = 20 500 lb./in.²

Les méthodes d'essais qui ont été utilisées sont conformes à l'examen type D143-24T de la société américaine pour l'essai des matériaux, ainsi qu'elles sont décrites dans *Proc. A. S. T. M.* 939: 24 (cf. U. S. Dept. Agr. Bull. 556). Les données principales relatives à la procédure pour chaque sorte d'essai sont rassemblées ci-dessous:

Retrait en volume.—Eprouvette $5{,}08 \times 5{,}08 \times 15{,}24$ cm (2 \times 2 \times 6 pouces). Le volume est déterminé lorsque le bois est vert, puis, après séchage à poids constant au four à 100° C. Avant le séchage au four, les éprouvettes sont complètement séchées à l'air.

Retrait radial et tangentiel.—Eprouvette $2.54 \times 10.16 \times 2.54$ cm $(1 \times 4 \times 1$ pouce). La largeur est mesurée sur le bois vert et après séchage à poids constant, au four à 100° C. Avant le séchage au four, les éprouvettes sont complètement séchées à l'air.

Essai de flexion statique.—Eprouvette $5.08 \times 5.08 \times 76.20$ cm $(2 \times 2 \times 30 \text{ pouces})$; charge centrale; portée 71.12 cm (28 pouces). La charge est appliquée par une machine à essai dont la pièce mobile se déplace de 0.254 cm (0.10 pouces) à la minute. Le travail total est défini par celui qu'on obtient en continuant l'essai jusqu'à ce qu'une flèche de 15.25 cm soit obtenue, ou que la charge tombe à 90.7 kg (200 lb.) ou moins.

ICAN WOODS

PRODUCTS LABORATORY

Die hier angegebenen Werte bestimmter nordamerikanischer Hölzer ergeben sich aus einer ausgedehnten Serie von Prüfungen an einer kleinen Zahl von fehlerfreien Arten. Alle Prüfungen sind bei einheitlichem Vorgange ausgeführt worden, so, dass sie direkt vergleichbar sind. Die Analysen der Zahlenwerte der Prüfungsergebnisse machten es möglich gewisse Beziehungen zwischen Dichte und Festigkeit aufzustellen, die durch Gleichungen im ersten Abschnitt der Tafel 1 wiedergegeben sind. Diese Gleichungen sind alle vom parabolischen Typus, der Exponent in der Gleichung ist auf die nächste Viertel-Einheit bestimmt. Durch Einsetzung des entsprechenden spezifischen Gewichtes für eine bestimmte Art (Reihe 8 und 9) in die Gleichung für ihrgend eine Eigenschaft, erhält man den Wert für die entsprechende Eigenschaft.

Bei vielen Arten jedoch ist eine bemerkenswerte Abweichung des durchschnittlichen Wertes des Prüfungsergebnisses von dem Werte, der sich aus der allgemeinen Gleichung ergibt, vorhanden. Es gibt indessen nur sehr wenige Arten, so weit untersucht, deren berücksichtigten Eigenschaften zur Gänze entweder über oder unter dem normalen Werten liegen. Da die Abweichung einer Eigenschaft, von dem durch die Gleichung erhaltenen Wert, häufig die besondere Eignung oder Nichteignung einer Art für eine besondere Verwendung anzeigt, wird es notwendig, für die Eigenschaft jeder einzelnen Art die Gleichung durch einen Abweichungsfaktor zu ergänzen. Solche Faktoren, in Prozenten ausgedrückt, befinden sich geordnet unter den entsprechenden Gleichungen und machen den zweiten Teil der Tafel 1 aus. Durch Multiplikation des Wertes F, der nach der Gleichung gefunden ist, mit dem eigenen Korrektionsfaktor, erhält man richtige Mittelwerte für die Eigenschaft des fraglichen Musters.

Beispiel: Es ist die Bruchfestigkeit von lufttrockenem Hykorynussbaum zu finden. Die Nachschlagsliste zeigt, dass dies No. 62 Hicoria ovata ist. Aus der Gleichung der Reihe 15 findet man P = 18,1 $D_d^{1.25}$. Für No. 62 findet man (Reihe 9) $D_d = 0,724$ und (Reihe 15) den Korrektionsfaktor = 119%, mithin

$$F = 1.19 \times 18.1 \times (0.724)^{1.25} = 14.4 \text{ kg/mm}^2$$

Die angewandten Prüfungsmethoden entsprechen der Standard Prüfung D143-24T der American Society for Testing Materials, wie es in *Proc. A. S. T. M.* 939; 24 (cf. U. S. Dep. Agr. Bull. 556) mitgeteilt wird. Die hauptsächlichsten Angaben, die den Vorgang bei jeder besonderen Prüfung bezeichnen, sind zusammengestellt, die folgenden:

Volumabnahme (Schwindung).—Muster $5.08 \times 5.08 \times 15.24$ cm. Das Volumen wurde in unausgetrocknetem Zustande und dann nach der Trocknung im Ofen bei 100°C, bis zum konstantem Gewicht bestimmt. Die Proben waren vor der Ofentrocknung vollständig lufttrocken.

Volumabnahme, tangential und radial.—Muster 2,54 × 10,16 × 2,54 cm. Die Masse sind im ungetrocknetem Zustande abgenommen und dann nach der Ofentrocknung bei 100°C, bis zum konstantem Gewicht bestimmt. Die Proben waren vor der Ofentrocknung vollständig lufttrocken.

Statischer Biegeversuch.—Muster 5,08 × 5,08 × 76,20 cm, Mittelbelastung, 71,12 cm Spannweite, Belastung durch eine Festigkeitsmaschine, derart, dass die Durchbiegung 0,254 cm in der Minute beträgt. Die gesammt Arbeit ist diejenige, die bei

I valori qui riportati per certi legni dell'America del Nord sono il risultato di una estesa serie di prove eseguite sopra un piccolo numero di specie senza difetti. Tutti i saggi sono stati condotti con lo stesso metodo, per modo che i risultati sono strettamente confrontabili. L'esame dei valori numerici ha permesso di stabilire alcune relazioni fra densitá e resistenza, le quali sono rappresentate dalle equazioni riprodotte nella prima parte della tabella (Tabella 1). Queste equazioni sono tutte di tipo parabolico, e il grado è determinato con l'approssimazione del quarto dell'unità.

Introducendo nell'equazione per una data proprietà il peso specifico di una determinata specie (colonne 8 e 9) si ottiene il valore della proprietà corrispondente.

In molte specie la media dei risultati dei saggi scarta notevolmente dai valori che si ottengono dall'equazione generale; solo in poche però, tutti i valori sono sempre al di sopra e sempre al di sotto dei normali.

Siccome lo scarto di una proprietà dal valore risultante dall' equazione sta spesso ad indicare se una specie è adatta o no ad uno speciale impiego, è necessario completare le equazioni con dei fattori di correzione per le proprietà di ogni specie. Questi fattori, espressi in percento, sono riportati sotto le equazioni corrispondenti e costituiscono la seconda parte della Tabella 1. Moltiplicando il valore F dato dall'equazione per il rispettivo fattore di correzione, si ottengono valori medi esatti per la proprietà del campione in questione.

Esempio: Si debba trovare la resistenza alla rottura dello "shagbark hickory" seccato all'aria. Dall'elenco di riferimento si ricava che si tratta del No. 62, Hicoria ovata. Dall'equazione della colonna 15 si ha F=18,1 $D_d^{1.25}$. Per il No. 62 si trova $D_d=0.724$ (colonna 9) e come fattore di correzione 119% (colonna 15), per modo che si ha

$$F = 1.19 \times 18.1 \times (0.724)^{1.25} = 14.4 \text{ kg/mm}^2$$

I metodi di prova adoperati corrispondono alle norme D143-24T della American Society for Testing Materials, quali si trovano indicate nei *Proc. A. S. T. M.* 939; 24 (v. U. S. Dep. Agr. *Bull.* 556). Le indicazioni principali riferentisi a ogni specie di saggio sono le seguenti:

Contrazione di volume.—Dimensioni della provetta $5,08 \times 5,08 \times 15,24$ cm. Il volume viene determinato su legno non stagionato e su legno seccato in forno a 100° C fino a costanza di peso. I provini vengono seccati completamente all'aria prima che nel forno.

Diminuzione di volume, tangenziale e radiale.—Dimensioni della provetta $2.54 \times 10.16 \times 2.54$ cm. La larghezza viene misurata su legno non stagionato e su legno seccato in forno a 100° C fino a costanza di peso. Le provette vengono seccate completamente all'aria prima che nel forno.

Flessione statica.—Dimensioni della provetta 5,08 × 5,08 × 76,20 cm. Carico centrale, distanza tra gli appoggi 71,12 cm. Il carico viene applicato con una macchina di prova in modo che la freccia di incurvamento cresca con la velocità di 0,254 cm al minuto. Il lavoro totale è quello che si ottiene prolungando il saggio finchè o si raggiunge una freccia di 15,24 cm o il carico si abbassa a 90,7 kg o meno.

Compression Perpendicular to Grain.—Specimen $5.08 \times 5.08 \times 15.24$ cm $(2 \times 2 \times 6$ in.). Load applied to side through a steel plate 5.08 cm (2 in.) wide laid across center of piece and at right angles to its length, $\frac{1}{3}$ of surface being thus directly subjected to compression; testing machine head moving 0.061 cm (0.024 in.) per min.

Shear Parallel to Grain.—Specimen $5.08 \times 5.08 \times 6.35$ cm $(2 \times 2 \times 2.5 \text{ in.})$. Undercut at one end to permit shear over area 5.08×5.08 cm $(2 \times 2 \text{ in.})$; testing machine head moving 0.038 cm (0.015 in.) per min.

Tension Perpendicular to Grain.—Specimen as above. Transverse recess bored at each end to permit gripping for tension over 5.08×2.54 cm $(2 \times 1$ in.) area; testing machine head moving 0.635 cm (0.25 in.) per min.

Hardness.—Specimen $5.08 \times 5.08 \times 15.24$ cm $(2 \times 2 \times 6$ in.). Load required to embed a steel ball having a maximum cross-sectional area of 1 cm² to $\frac{1}{2}$ its diam.; testing machine head moving 0.635 cm (0.25 in.) per minute.

Cleavage Parallel to Grain.—Specimen $5.08 \times 5.08 \times 9.525$ cm $(2 \times 2 \times 3\%)$ in.). Transverse recess bored at one end to permit gripping for cleavage of specimen over 5.08 cm (2 in.) width and along a 7.62 cm (3 in.) length; testing machine head moving 0.635 cm (0.25 in.) per min.

Conversion Factors

Multiply	By	To obtain
Kg per mm²	1422	lb. per in. ²
Kg-mm per mm ³	1422	inlb. per in.3
Meters	39.37	in.
Kg	2.205	lb.
Kg per mm of width	56	lb. per in. of width

WOODS OF THE PHILIPPINE ISLANDS

THE BUREAU OF FORESTRY AND THE BUREAU OF SCIENCE OF THE PHILIPPINE ISLANDS

Introduction

Density and strength values for five woods of commerce have been determined. The testing methods used and manner of displaying the results are identical with those used by the U. S. Forest Products Laboratory and the results have therefore been incorporated at the end of Table 1 below.

CANADIAN WOODS

A number of the species listed in Table 1 below have also been tested by the Canadian Forest Products Laboratory, using samples obtained from trees grown in Canada. As far as can be definitely determined, these woods are substantially the same in properties as like species grown in the United States.

Essai de flexion par choc.—Eprouvette et portée comme ci-dessus. Un marteau de 22,7 kg (50 lb.) tombe premièrement d'une hauteur de 2,54 cm (1 pouce), ensuite de 5,08 cm (2 pouces) de haut, etc., jusqu'à 25,4 cm (10 pouces), ensuite par augmentations successives de hauteur de 5,08 cm (2 pouces) jusqu'à rupture.

Compression parallèle à la fibre.—Eprouvette $5.08 \times 5.08 \times 20.32$ cm (2 \times 2 \times 8 pouces). Charge finale, machine à essai dont la pièce mobile se déplace de 0.061 cm par minute.

Compression perpendiculaire à la fibre.—Eprouvette $5.08 \times 5.08 \times 15.24$ cm $(2 \times 2 \times 6$ pouces). Charge appliquée sur le côté par l'intermédiaire d'une plaque d'acier de 5.08 cm de largeur disposée au milieu de la pièce et normalement à sa longueur, de façon que $\frac{1}{3}$ de la surface soit soumis à la compression; machine à essai dont la pièce mobile se déplace de 0.061 cm (0.024 pouce) par minute.

Cisaillement parallèle à la fibre.—Eprouvette $5.08 \times 5.08 \times 6.35$ cm $(2 \times 2 \times 2\frac{1}{2})$ pouce). Ecrénée à une extrémité pour permettre le cisaillement sur une surface de 5.08×5.08 cm (2×2) pouces); machine à essai dont la pièce mobile se déplace de 0.038 cm (0.015) pouce) par minute.

Traction perpendiculaire à la fibre.—Eprouvette comme ci-dessus. Niche transversale découpée à chaque extrémité de façon à permettre la traction sur une surface de $5,08 \times 2,54$ cm $(2 \times 1$ pouce). Machine à essai dont la pièce mobile se déplace de 0,635 cm (0,25 pouce) par minute.

Dureté.—Eprouvette $5.08 \times 5.08 \times 15.24$ cm ($2 \times 2 \times 6$ pouces). Charge nécessaire pour enfoncer une bille d'acier ayant une section maximum de 1 cm², de la moitié de son diamètre. Machine à essai dont la pièce mobile se déplace de 0.635 cm (0.25 pouce) par minute.

Clivage parallèle à la fibre.—Eprouvette $5,08 \times 5,08 \times 9,525$ cm $(2 \times 2 \times 3)$ pouces). Niche transversale découpée à une extrémité de façon à permettre le clivage de l'éprouvette sur une largeur de 5,08 cm (2 pouces) et le long de 7,62 cm (3 pouces); machine à essai dont la pièce mobile se déplace de 0,635 cm (0,25 pouce) par minute.

BOIS DES ILES PHILIPPINES

BUREAU DE SYLVICULTURE ET BUREAU DE SCIENCE DES ILES
PHILIPPINES

Introduction

Les valeurs de densité et de résistance ont été déterminées pour cinq bois du commerce. Les méthodes d'essais utilisées, et la façon de disposer les résultats sont identiques à celles utilisées par le U. S. Forest Products Laboratory (voir ci-dessus); c'est pourquoi les résultats ont été incorporés à la fin de la Table 1.

BOIS CANADIENS

Un certain nombre d'espèces mentionnées au bas de la Table 1 ont aussi été essayées par le "Laboratoire des Produits Forestiers Canadiens" qui employa des échantillons provenant d'arbres ayant poussé au Canada. Pour autant qu'on peut le déterminer d'une façon définie, ces bois sont les mêmes, au point de vue de leurs propriétés, que ceux des mêmes espèces croissant aux États-Unis.

fortgesetzter Prüfung entweder eine 15,24 cm Durchbiegung erreicht, oder das Gewicht fällt auf 90,7 kg oder weniger.

Schlagbiegeversuch.—Muster und Grösse wie oben. Ein 22,7 kg Hammer fällt zuerst von 2,54 cm dann von 5,08 cm u. s. w. Höhe herunter, bis 25,4 cm, von hier an, in Höhenzunahmen um 5,08 cm bis zum Bruch.

Druckversuch parallel zur Faserrichtung.—Muster $5.08 \times 5.08 \times 20.32$ cm. Endlast, Festigkeitsmaschine derart, dass Zusammendrückung in der Minute 0.061 cm beträgt.

Druck senkrecht zur Faserrichtung.—Muster 5,08 × 5,08 × 15,24 cm. Das Gewicht an die Seite drückt auf eine Stahlplatte von 5,08 cm Weite, die um die Mitte des Stückes in rechten Winkeln zu seiner Länge angelegt ist, wodurch ½ der Oberfläche dem Drucke ausgesetzt wird, derart, dass die Zusammendrückung 0,061 cm in der Minute beträgt.

Scherversuch, parallel zur Faserrichtung.—Muster $5.08 \times 5.08 \times 6.35$ cm. An einem Ende unterschnitten, um eine Scherung über eine Fläche von 5.08×5.08 cm zu gestatten; Scherung 0.038 cm in der Minute.

Zugversuch senkrecht zur Faserrichtung.—Muster so wie oben. Kreuzweise an jedem Ende gebohrt um die Zugkraft auf eine Fläche von 5,08 × 2,54 cm wirken zu lassen. Zug der Maschine 0,635 cm in der Minute.

Härte.—Muster 5,08 × 5,08 × 15,24 cm. Das notwendige Gewicht um eine Stahlkugel von einem maximalen Querschnitt von 1 cm bis zur Hälfte seines Durchmessers einzudrücken. Bewegung der Maschine 0,635 cm in der Minute.

Spaltung parallel zur Faserrichtung.—Muster $5.08 \times 5.08 \times 9.525$ cm. Kreuzweise an einem Ende gebohrt für die Fassung des Musters zur Spaltung über eine Weite von 5.08 cm und 7.62 cm der Länge nach. Spaltung 0.635 cm in der Minute.

HÖLZER DER PHILIPPINEN

THE BUREAU OF FORESTRY AND THE BUREAU OF SCIENCE OF THE PHILIPPINE ISLANDS

Einleitung

Dichte und Festigkeit von fünf Hölzern des Handels sind bestimmt worden. Die angewendeten Prüfungsmethoden und der Vorgang bei der Darstellung der Ergebnisse sind dieselben, welche von U. S. Forest Products Laboratory angewandt werden und schon oben verzeichnet sind. Es sind daher die Ergebnisse am Ende der Tafel 1 (unten) angegeben.

CANADISCHE HÖLZER

Eine Anzahl der in der Liste Tabelle 1 unten vorhandenen Arten sind ebenso vom Canadian Forest Products Laboratory untersucht worden, indem Proben von in Canada gewachsenen Bäumen, verwendet wurden. Soweit man ein abschliessendes Urteil abgeben kann, sind diese Hölzer im wesentlichen von gleicher Eigenschaft wie diejenigen, die in den Vereinigten Staaten gewachsen sind.

Flessione per urto.—Dimensioni come sopra. Un martello di 22,7 kg cade prima di una altezza di 2,54 cm, poi di 5,08 cm ecc. fino a 25,4 cm; da 25,4 in poi l'aumento di altezza è di 5,08 cm fino a rottura.

Compressione parallela alla fibra.—Dimensioni della provetta, $5.08 \times 5.08 \times 20.32$ cm. Carico finale, spostamento della macchina 0.061 cm al minuto.

Compressione perpendicolare alla fibra.—Dimensioni della provetta 5,08 × 5,08 × 15,24 cm. Il carico è applicato lateralmente a mezzo di una piastra di acciaio di 5,08 cm di larghezza, e questa è disposta nel mezzo del pezzo ad angolo retto rispetto alla lunghezza, per modo che ½ della superficie viene sottoposta a pressione. Lo spostamento della macchina deve essere di 0,061 cm al minuto.

Taglio nel senso della fibra.—Dimensioni della provetta $5,08 \times 5,08 \times 6,35$ cm. Adattato ad una estremità in maniera da permettere il taglio sopra un'area di $5,08 \times 5,08$ cm. Spostamento della macchina 0,038 cm al minuto.

Trazione perpendicolare al senso della fibra.—Dimensioni come sopra. Forato in croce ad ogni estremità per fare agire lo sforzo sopra una superficie di $5,08 \times 2,54$ cm. Spostamento della macchina 0.635 cm al minuto.

Durezza.—Dimensioni della provetta, $5.08 \times 5.08 \times 15.24$ cm. Carico necessario per far penetrare fino a metà spessore una sfera di acciaio avente una sezione massima di 1 cm.² Spostamento della macchina 0.635 cm al minuto.

Sfaldatura parallela alla fibra.—Dimensioni delle provette $5.08 \times 5.08 \times 9.525$. Forato a croce ad una estremità per sollecitare la provetta allo scorrimento per una larghezza di 5.08 cm e una lunghezza di 7.62 cm. Spostamento della macchina 0.635 cm al minuto.

LEGNI DELLE FILIPPINE

THE BUREAU OF FORESTRY AND THE BUREAU OF SCIENCE OF THE PHILIPPINE ISLANDS

Introduzione

Sono state determinate densità e tenacità di cinque legni del commercio. I metodi di saggio adoperati e la rappresentazione dei risultati sono gli stessi impiegati dall' U. S. Forest Products Laboratory (v. sopra). I risultati sono stati perciò incorporati nella Tabella 1 e riportati in fondo.

LEGNI DEL CANADÀ

Un certo numero delle specie elencate nella Tabella 1 in basso è stato esaminato dal Canadian Forest Products Laboratory, il quale ha eseguito i saggi su campioni di alberi cresciuti nel Canadà. Questi legni hanno dimostrato di possedere proprietà eguali a quelle delle stesse specie crescente negli Stati Uniti.

TABLE 1.—STRENGTH AND RELATED PROPER-

	ity base when ov		Season-	Place of growth of	0	otanical name	В	ndex	
i-ary	wnen ov		ing con-	material tested*	Common name	Genus and species	Family	No.	
When air-dry (D_d)	When green $(D_{m{ heta}})$	When oven-dry D.							
	g/cm³								
ength j	eina et	ovnro	D4:	T					
		o expre	Equation	1.					
9	8	7	6	5	4	3	2	1	
9	8	7	6						
9	8	7	6	5			oven-dry	reen to	

1	Aceraceae	Acer macrophyllum	Maple, bigleaf	Washington	Green	0.513	0.440		72
					Air-dry			0.483	12
2		Acer nigrum	Maple, black	Indiana	Green	0.620	0.520		65
			1		Air-dry			0.568	12
3		Acer pennsylvanicum	Maple, striped	Vermont	Green		0.438		35
					Air-dry			0.464	12
4		Acer rubrum	Maple, red	Wisconsin, Pennsylvania,	Green	0.546	0.488		63
				New Hampshire	Air-dry			0.538	12
5		Acer saccharinum	Maple, silver	Wisconsin	Green	0.506	0.439		66
		•	i		Air-dry			0.470	12
6		Acer saccharum	Maple, sugar	Ind., Pa., Vt., Wis.	Green	0.676	0.568		57
		1			Air-dry			0.630	12
7	Anacardiaceae	Rhus hirta	Sumach, staghorn	Wisconsin	Green		0.449		45
					Air-dry		-	0.473	12
8		Rhus metopium	Poisonwood	Florida	Green	0.553	0.511		71
				·	Air-dry			0.533	12
9	Aquifoliaceae	Ilex opaca	Holly	Tennessee	Green	0.606	0.503		82
					Air-dry			0.569	12
10	Betulaceae	Alnus rubra	Alder, red	Washington	Green	0.434	0.368		98
			1		Air-dry			0.407	12
11		Betula alaskana	Birch, Alaska	Alaska	Green	0.594	0.488		58
			i		Air-dry				
12		Betula lenta	Birch, sweet	Pennsylvania	Green	0.714	0.601		53
			1	New Hampshire	Air-dry			0.654	12
13		Betula lutea	Birch, yellow	Wis., Pa.	Green	0.668	0.550		68
			i		Air-dry			0.617	12
14		Betula papyrifera	Birch, paper	Wis., N. H.	Green	0.600	0.484		65
					Air-dry			0.552	12
15		Betula populifolia	Birch, gray	New Hampshire	Green	0.552	0.448		63
					Air-dry			0.506	12
16		Carpinus caroliniana	Beech, blue	Massachusetts	Green	0.717	0.575		48
_ i					Air-dry			0.694	12
17		Ostrya virginiana	Hornbeam	Wisconsin	Green	0.762	0.632		52
	_		1		Air-dry	1		0.708	12
18	Burseraceae	Bursera simaruba	Gumbo, limbo	Florida	Green	0.320	0.305		99
			l	_	Air-dry			0.307	12
19	Caprifoliaceae	Sambucus glauca	Elderberry, blue	Oregon	Green	0.570	0.464		124
					Air-dry			0.518	12
20	Combretaceae	Conocarpus erecta	Buttonwood, Florida	Florida	Green	0.851	0.694		47
	l	<u> </u>	<u> </u>		Air-dry	<u> </u>		0.709	12

^{*}All material tested was grown in the United States. The State or States in which grown are listed in column 5.

TIES OF CERTAIN NORTH AMERICAN WOODS

	inkage				24-11	hon II.			I	mpact	bendi	ng	Co	mpress	sion	to	01	00-		sion		dness:		CII.	
7	en to o			1	static	bendin	g				hamm			llel to		ılar	Sh	ear		endic- r to	The state of the s	nbed a of 1 so		Clea	avage
			t elastic	of rupture	asticity	ic limit	mum load		t elastic	asticity	ie limit	drop causing failure	t elastic	crushing	asticity	perpendicular			gr	ain_	sect	imum ion to its dia	one-		
In volume	Radial	Tangential	Fiber stress at limit	Modulus of ru	Modulus of elasticity	Work to elastic limit	Work to maximum load	Total work	Fiber stress at limit	Modulus of elasticity	Work to elastic limit	Height of drop ca	Fiber stress at elastic limit	Maximum cru strength	Modulus of elasticity	Compression grain	Radial	Tangential	Radial	Tangential	End	Radial	Tangential	Radial	Tangential
	% of limens hen gr	ion	l	g/mn	12	1	kg-mm mm³	/	100	g/ m²	kg- mm/ mm³	m	1	kg/mm	12	kg/ mm²		g/ m²		g/ m²		kg		mn	g/ n of dth
ies	and	shrink	age i	n ter	ms of	dens	ity																		
11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
			7.17Dg1.25	12.4Dg1.25	$1660D_{g^{1.00}}$	$0.00172D_{g^{1.50}}$	$0.0250D_{g^{1.75}}$	$0.0724D_{g}^{2.00}$	16.7Dy1.25	2070Dg1-00	0.00745Dg1.50	2.90D ₀ 1.75	$3.69D_{g^{1.00}}$	4.73Dg1.00	$2050D_{g^{1.00}}$	2.11Dg2.25	$1.73D_{g^{1.26}}$	1.85D _q 1.25	1.27Dg 2.00	$1.62D_{g^2.00}$	1700Dg2.25	1530Dg2.28	1570Dg:28	19.3Dg2 00	22.5Dg2.00
= 26.5Dg 1.00	9.10Dg1.00	16.3Dg1.00	F =	F	P =	P ==	F =	F =	F =	P =	P =	F =	F =	P =	H H	F =	F ==	F =	P =	P ==	P ==	F ==	P ==	F ==	P =
S = 2	.: S = 9.	8 = 10	11.74Dd1.25	$18.1D_{d}^{1.25}$	$1969D_d$ 1.00	$0.00389D_{d^{1.50}}$	$0.0228D_{d^{1.75}}$	$0.0511D_{d^2.00}$	$21.9D_{d^{1.25}}$	$2380D_{d^{1.00}}$	$0.0112D_{d^{1.50}}$	$2.40D_d^{1.75}$	$6.15D_{d^{1.06}}$	$8.58D_{d^{1.90}}$	$2380D_{d^{1.00}}$	3.26Da 3.25	$2.22D_{d^{1.25}}$	$2.40D_{d^{1.25}}$	$1.31D_d^{2\cdot00}$	1.60Dd2.00	$2180D_{d^2:55}$	$1690D_d$ 2.35	1730D _d ² .26	20.4Dd2.00	22.9D _d 2.00
			# d	= 4	P =	P=0	11	F =	= 4	F =	F = (= 4	F =	<i>A</i>	= A	=	F =	- A	P =	#	=	F =	F ==	11	11
ge	value	s exp	ressec	l in p	ercen	tage	of equ	uation	n valu	ies															
99	92	99	119 99	116 104	105 108	144 91	102 87	76 68	100	114 98	90	85 107	103 122	109 103	97 87	118 104	120 123	123 145	143 101	154 120	129 147	118 120	114 115	134 125	150
01	102	109	90 101 99	101 105 115	108 102 104	77 103 97	112 104 130	117 106 67	96 88 103	99 95 141	95 83 75	132 112 134	104 90 79	93 97 99	88 92 109	107 97 106	97 108 123	103 118 130	118 65	136 128	109 128 86	112 115 95	101 110	128 109	140
01	89	102	80 92 111	109 107 112	103 120 109	62 78 129	135 113 115	117 97 128	95 101 106	88 103 108	102 101 108	108 97 99	95 98	97 100 99	123 92	97 85 107	101 119	108 107 128	126 107	119 160	113 105 120	104 104 101	100 101	100 147	106
99	75 92	100	85 98 101 101 80 123	92 90 108 108 90 102	91 87 115 104 76 91	86 111 99 102 92 167	131 95 100 114 123 97	112 90 109 95 204 119	80 103 104 119	79 84 106 121	84 137 104 117	107 99 95 93	84 108 105 102	84 93 105 103 89 106	83 70 102 94	97 110 95 108 97 121	111 114 106 125	120 127 116 135	140 83 110 120	144 131 123 102	115 133 102 111 109 100	111 99 102 109 107 105	110 106 98 112 103 91	133 122 110 121	133 131 119 150
85 21	89 98	86 116	71 71 77	67 91 87	34 86 75	153 59 83	50 59 101	27 31 127	78 88	76 71	85 116	43 148	. 39 74	63 74 78	96 58	136 72 95	73 96	.91 .113	68 102	64 128	49 108	43 108	36 109	67 105	136
29	129	122	75 127 130	81 129 119	70 134 120	83 130 133	89 129 125	64 101 74	82 117 115	72 129 115	101 108 117	93 110 102	71 136 130	83 119 120	60 135 143	89 99 90	94 104 97	118 107 109	123 148 102	85 136 140	107 141 156	95 119 117	100 125 125	99 128 130	143 136
28			90	98	117	72	113	136	101	103	103	113	77	92	96	73	84	92	48	33	74	85	80	67	59
98 15	118	100	88 103 94	100 111 103	116 118 119	83 95 81	107 117 133	116 76 128	83 137 103	114 135 106	64 126 105	102 105 100	85 106 95	92 107 93	127 106 106	62 76 58	90 122 92	94 116 93	58 112 80	59 98 74	90 106 84	87 105 85	90 98 82	71 119 89	69 115 82
26	143	109	118 72	120 89	122 102	120 55	141 162	123 180	115 84	115 94	114 74	136 153	123 66	112 73	98 83	76 58	92 80	102 82	102 67	106 65	90 64	98 81	94 86	77 79	116 73
24	127		89 49 76	102 76 89	103 38 80	83 64 73	139 159 110	157 182 162	84 85 78	96 87 98	74 82 61	115 211 122	81 42 69	87 62 79	96 33 88	63 61 95	80	78			72 71 66	95 75 100	94 96 90	149	142
25			62	77 74	73 55	58 24	141 213	177 217	85 52	85 61	86 46	245	46 51	69 66	62 48	85 95	98 112	85 116	76 116	32	83 76	95 108	95 105	73 125	59 102
11	144	92	78 89	86 87	77 86	84 95	83 80	96 85	79 70	98 80	65 62	143 94	78 93	84 94	73 70	69 74	96 93	95 78	63	48	87 103	98 111	94 110	77	66
06	82	72	84	82 81	77 86	110 92	79 72	42 45	93 88	70 98	128 86	92 73	49 67	73 85	56 95	139 177	103 110	100 105	187 204	210 170	111	96 106	95 101	166 169	140 172
26	105	118	86 79	97 83	82 71	94 ° 80	95 98	156	87 77	92 70	85 87	128 108	100 76	97 82	109 81	98 73	116	107	144	113	114 79	119 94	117 102	151	104
79	86	75	70 62	66 60	73 79	71 51	33 34	33	93	79	110	66	84	88 90	118	86 76	75	77	44	51	66	74	74	68	62

Dogwood, Pacific Oregon Air-dry Green Oregon Air-dry Green Oregon Oreg	.796 0.63 .701 0.57 .524 0.45 .552 0.46 .776 0.63 .694 0.57 .744 0.61 .593 0.50 .601 0.50 .454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63 .657 0.56	0.735 12 52 0.644 12 97 0.496 12 55 0.507 12 59 0.748 12 69 0.653 12 0.684 12 0.684 12 134 0.576 12 134 0.459 12 68 0.683 12 74 0.720 12
Cornus nuttallii Dogwood, Pacific Oregon Green O. Air-dry Green O. Air-dry	. 524 0.45 .552 0.46 .776 0.63 .694 0.57 .744 0.61 .593 0.50 .601 0.50 .454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63	52 0.644 12 97 0.496 12 55 55 0.507 12 59 0.653 12 62 0.650 12 122 122 122 122 122 122 122 122 122
Nyssa aquatica Gum, tupelo Louisiana, Missouri Green O. Air-dry	.552	0.496 97 0.496 12 0.507 12 55 0.507 12 59 0.653 12 0.653 12 0.684 12 0.550 12 12 0.433 12 134 0.459 12 0.683 12 0.683 12 0.683 12 0.683 12 0.720 12
Nyssa sylvatica Gum, black Tennessee Green O. Air-dry	.776 0.63 .694 0.57 .744 0.61 .593 0.50 .601 0.50 .454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63	0.507 12 0.748 12 0.748 12 0.653 12 0.684 12 0.550 12 0.576 12 134 0.459 12 0.624 12 0.683 12 74 0.720 12
Disspyros virginiana Persimmon Missouri Green O. Air-dry O. Air-dr	.694 0.57 .744 0.61 .593 0.50 .601 0.50 .454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63 .657 0.56	0 0.748 59 12 69 0.653 12 62 0.654 12 122 122 122 0.433 12 134 0.459 12 62 0.683 12 74 0.720 12
Record Arbutus menziesii Madrofia Oregon, California Green Air-dry	.744 0.61 .593 0.50 .601 0.50 .454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63 .657 0.56	6 0.653 69
Kalmia latifolia Laurel, mountain Tennessee Green Air-dry Green Air-dry Green Oxydendrum arboreum Sourwood Tennessee Green Oxydendrum arboreum Sourwood Tennessee Green Oxydendrum arboreum Rhododendron, great Tennessee Green Oxydendrum arboreum Rhododendron, great Tennessee Green Oxydendrum arboreum Oxyd	.593	62 0.684 12 6 0.550 12 99 0.576 12 122 122 0.433 12 0.459 12 0.624 12 0.683 12 74 0.720 12
28 Oxydendrum arboreum Sourwood Tennessee Green Air-dry Green Air-dry Green O. Air-dry Tennessee Rhododendron maximum Rhododendron, great Tennessee Green Air-dry Green O. Air-dry Tennessee, Maryland Green O. Air-dry Green O. Air-dry Green O. Air-dry Green O. Air-dry Fagus grandifolia Beech Ind., Pa. Green Air-dry Quercus alba Oak, white La., Ark., Ind. Green Air-dry Quercus borealis Oak, red La., Ark., Ind., Tenn., N. H. Green Air-dry Quercus californica Oak, California black Oregon, California Green Air-dry Oregon Castanopsis chrysolepis Oak, canyon live California Green O. Air-dry Oregon Oak, searlet Massachusetts Oregon Oakir-dry Oregon Oregon Oakir-dry Oak	.593	0.684 12 69 0.550 12 99 0.576 12 122 0.433 12 0.459 12 62 0.624 12 63 0.683 12 74 0.720 12
Rhododendron maximum Rhododendron, great Tennessee Air-dry Green Air-dry Tennessee, Maryland Tennessee, Maryland Tennessee, Maryland Tennessee, Maryland Green Air-dry Green Air-dry Tennessee, Maryland Tennessee Tennessee Tenen Tennessee Tenen Tennessee Tennessee Tennessee Tennessee Tennessee Tennessee Te	.601 0.50 .454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63 .657 0.56	0.550 12 99 0.576 12 122 0.433 12 134 0.459 12 0.624 12 60 0.683 12 74 0.720 12
Tennessee, Maryland Air-dry Green O. Air-dry O. A	.454 0.39 .483 0.41 .655 0.54 .710 0.59 .792 0.63 .657 0.56	0.576 12 122 0.433 12 134 0.459 12 0.624 12 6 0.683 12 74 0.720 12
Castanopsis chrysophylla Chinquapin, golden Oregon Air-dry Green Air-dry Ind., Pa. Green Air-dry Quercus alba Oak, white La., Ark., Ind. Green Air-dry Indiana Green Air-dry Indiana Green Air-dry Green Air-dry La., Ark., Ind., Tenn., N. H. Green Air-dry Quercus borealis Oak, red La., Ark., Ind., Tenn., N. H. Green Air-dry Green Oak, California black Oregon, California Green Air-dry Quercus chrysolepis Oak, canyon live California Green Air-dry Quercus coccinea Oak, scarlet Massachusetts Green Oak, dar-dry Green Air-dry Oak, canyon live Oak, scarlet Massachusetts	.483 0.41 .655 0.54 .710 0.59 .792 0.63 .657 0.56	0.433 12 134 0.459 12 6 62 0.624 12 6 0.683 12 74 0.720 12
Fagus grandifolia Beech Ind., Pa. Air-dry Green Oak, white La., Ark., Ind. Green Air-dry Green Oak, white La., Ark., Ind. Green Oak, red Jindiana Green Oak, red La., Ark., Ind., Tenn., N. H. Oregon, California Green Oak, California	.655 0.54 .710 0.59 .792 0.63 .657 0.56	0.459 12 62 0.624 12 6 0.683 12 7 0.720 12
Quercus alba Oak, white La., Ark., Ind. Air-dry Green Air-dry Indiana Quercus bicolor Oak, swamp white Indiana Quercus borealis Oak, red La., Ark., Ind., Tenn., N. H. Air-dry Green Air-dry Green Air-dry Green Air-dry Green Air-dry Green Air-dry Creen Air-dry Oak, California black Oregon, California Green Air-dry Air-dry Quercus chrysolepis Oak, canyon live California Green Air-dry Oak, scarlet Massachusetts Green Air-dry Air-dry Oak, scarlet	.710 0.59 .792 0.63 .657 0.56	0.624 12 68 0.683 12 74 0.720 12
Quercus bicolor Oak, swamp white Indiana Air-dry Green Air-dry Quercus borealis Oak, red La., Ark., Ind., Tenn., N. H. Quercus californica Oak, California black Oregon, California Green Air-dry Quercus chrysolepis Oak, canyon live California Quercus coccinea Oak, scarlet Massachusetts Air-dry Green Air-dry Green Air-dry Oak, canyon live Oak, scarlet Massachusetts	.792 0.63 .657 0.56	0.683 12 74 0.720 12
34 Quercus bicolor Oak, swamp white Indiana Green Air-dry 35 Quercus borealis Oak, red La., Ark., Ind., Tenn., N. H. Green Air-dry 36 Quercus californica Oak, California black Oregon, California Green Air-dry 37 Quercus chrysolepis Oak, canyon live California Green Air-dry 38 Quercus coccinea Oak, scarlet Massachusetts Green Air-dry	. 657 0. 56	7 74 0.720 12
Quercus borealis Oak, red La., Ark., Ind., Tenn., N. H. Green Air-dry Quercus californica Oak, California black Oregon, California Green Air-dry California Quercus chrysolepis Oak, canyon live California Green Air-dry Quercus coccinea Oak, scarlet Massachusetts Green Air-dry Air-dry		
36 Quercus californica Oak, California black Oregon, California Green Air-dry 37 Quercus chrysolepis Oak, canyon live California Green Air-dry 38 Quercus coccinea Oak, scarlet Massachusetts Green Air-dry Air-dry		0.628 12
37 Quercus chrysolepis Oak, canyon live California Green Air-dry 38 Quercus coccinea Oak, scarlet Massachusetts Green Air-dry Air-dry	.578 0.51	106
38 Quercus coccinea Oak, scarlet Massachusetts Green Air-dry	. 838 0. 70	1 1
	. 709 0 . 60	0.778 12
	.701 0.61	61
40 Quercus garryana Oak, Oregon white Oregon Green 0.	.748 0.64	0.735 12
Air-dry Quercus laurifolia Oak, laurel Louisiana Green 0.	.703 0.56	0.724 12 84
Air-dry	.671 0.58	0.632 12
Air-dry	.674 0.57	0.644 12
Air-dry		0.658 12
Air-dry	.685 0.55	0.633 12
Air-dry	.708 0.60	0.680 12
Air-dry	.677 0.57	
47 Quercus phellos Oak, willow Louisiana Green O. Air-dry	. 688 0. 55	0.696 12
48 Quercus prinus Oak, swamp chestnut Louisiana Green Air-dry	.756 0.59	5 76 0.674 12
49 Quercus rubra Oak, southern red Louisiana Green Air-dry	.624 0.52	
	.738 0.59	
	. 669 0. 56	78
52 Quercus rirginiana Oak, live Florida Green 0.	.977 0.81) 50
	.714 0.55	
54 Liquidambar styraciftua Gum, red Missouri Green 0.	.530 0.44	
55 Hippocastanaceae Aesculus octandra Buckeye, yellow Tennessee Green 0.	. 383 0. 32	0.487 12 3 141
56 Juglandaceae Hicoria alba Hickory, mockernut Pa., Miss. Air-dry Green	0.64	0.363 12
57 Hicoria aquatica Hickory, water Mississippi Green	0.60	0.725 12
Air-dry 58 · Hicoria cordiformis Hickory, bitternut Ohio Green	0.60	0.621 12
Air-dry		0.663 12
Air-dry	0.66	0.754 12
60 Hicoria laciniosa Hickory, bigleaf shagbark Ohio, Miss. Green Air-dry	0.62	0.692 12
61 Hicoria myristicae formis Hickory, nutmeg Mississippi Green Air-dry	0.55	3 74 0.605 12

11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
117	122	109	82	87	78	90	130	127	52	44	65	111	24	84	20	95	104	106	30	J.	104	115	112	55	- 50
	1	1	82	87	75	94	103	99	71	66	77	79		89		85		103			103	119	114		-
112	121	101	81	92	80	86	124	113	81	89	77	129	75	93	91	100	97	105	114	102	105	101	95	81	90
103	103	103	78 110	71	82 97	74 132	72 92	107 94	58 101	76 105	45 100	76 104	77 115	99	91 102	99 117	90 119	96 132	147	123 165	108 127	101 120	98 123	71 117	95 160
	200	200	107	91	91	132	73	63	97	91	107	82	101	101	88	117	114	122	172	134	125	111	119	102	136
113	105	103	103	105	95	120	87	87	108	99	121	102	100	98	71	114	107	120	134	128	120	110	104	130	136
108	129	104	104	88	84	133	62	85	111	96	126	74	80	92	77	118	93	100	97	92	121	104	96	93	120
105	120	104	96 98	99	91 98	109	80 81	78 87	89 86	94 95	83	78 64	90 98	97 105	81 81	102 106	97 92	106 104	82 98	99 116	91 106	101 120	104 122	82 99	88 81
114	104	127	91	85	65	135	82	56	85	75	100	91	77	86	74	91	111	110	124	103	104	98	92	112	108
00	100	07	76	70	68	87	30	37	56	68	52	49	74	90	66	95	83	107			106	107	102	105	87
88	100	87	104 84	88	64	172 114	81 61	73 52	79 75	61 66	100 84	65 83		103 73		110 94	120	119		1	112 106	114 115	112 112		
113	137	107	101	102	110	94	92	79	106	106	108	110	102	95	128	106	105	109	140	133	107	101	99	131	136
			107	96	100	112	96	100	117	101	135	114	95	95	168	92	109	89	85	76	110	98	96	112	95
122	137	106	107	92	74	160	114	125		69		76		103		140	114	117			127	124	116		
109	94	103	82 95	88 101	70 99	99 97	99 100	93 106	106	65 107	108	52 104	98	95 92	84	111	107	93	148	124	115	99	102	137	124
			106	97	102	119	87	93	100	95	104	89	100	104	93	111	99	90	123	114	99	96	96	116	113
119	121	109	123	118	103	165	123	113	110	102	121	126	87	107	125	117	115	122	149	121	140	139	113	113	116
112	96	110	130	113	98	194	114	125	93	89	98	122	98	103	93	87	97	109	110	120	102	120	106	131	120
112	96	119	94	99 102	96 96	101	102 97	90 106	94 103	91 98	98 109	103 85	89 84	89 91	82 93	80 78	97 106	105 106	116 127	130	100 82	95 90	94 88	105 103	130 113
100	98	93	88	90	89	97	81	80	86	90	85	90	95	88	73	89	90	98	99	110	96	102	96	94	107
10.		100	79	95	93	73	89	76	88	92	84	76	72	89	82	67	98	106	56	105	75	88	84	61	96
104	95	102	92 91	98 103	106 102	85 86	105	89	98	109	89	96	103	101	80	87	86	93	104	103	89	99 88	87 92	97 68	105 82
90	78	89	81	96	102	71	105 101	130 107	107 91	101	115 84	92 106	88 78	96 91	88 95	66 92	85 99	99 96	66 118	87 113	73 103	110	104	114	114
			91	99	103	85	101	126	101	97	106	103	80	89	96	78	100	98	92	102	94	101	95	80	88
90	78	80	77	81	61	116	80	62	79	77	87	84	70	81	57	136	104	103	123	136	111	117	111	104	122
87	125	124	75 96	69 93	63 81	100 119	53 75	40 66	57 73	61	57	44	67	84	63	113	92 98	92 108	107 86	122 104	88 94	108 104	102 99	76 80	104
0.	120	121	78	70	75	87	46	43	58	86 66	62 51	76 60	109 94	99	76 77	87	95	99	106	104	95	119	112	89	87
86	84	98	83	111	103	71	102	119	94	111	80	115	90	100	93	108	106	102	99	89	98	109	110	99	97
70	70	71											100												
76	73	71	57 47	61	33	104 68	74 47	72 30	62 66	46 86	83 52	16 39	33	71 58	28	109	103 72	116	104	89 47	96 86	110 84	112 70	81 60	85
78	71	85	78	76	52	120	83	76	75	66	87	92	74	82	56	123	105	117	96	121	103	114	104	79	104
			60	60	54	69	53	49	57	63	55	52	65	76	52	96	87	98	42	105	81	97	87	34	81
127	76	103	90	92	104	84	86	75	88	109	76	93	92	84	91	86	94	95	110	123	99	107	104	94	110
82	83	93	82 69	88 80	95 64	74 82	82 77	112 87	84 82	107 70	69 98	93	85 75	92 84	113 50	81 94	102	111	91 116	99	72 104	92 109	89 109	72 106	73 108
	128		67	69	57	85	65	61	82	69	98	64	62	78	58	88	89	106	58	93	80	97	99	48	78
110	106	103	90	91	101	85	70	66	101	105	98	81	96	91	91	76	94	96	96	106	91	94	88	86	110
111	82	102	92	88 105	86	102	72 87	66	101	113	92	89	83	86	97	58	70	84		135	68	80	76 109	110	95 134
	02	102	94	106	118	113 82	148	99 106	102	123 115	86	95	109 70	100 89	108 147	96 76	102	101	115	138 115	105 82	112 93	84	82	109
102	94	109	118	114	125	115	99	98	96	128	76	113	118	113	114	97	97	96	103	107	104	115	108	99	110
0=	0.	101	109	114	121	102	112	93	124	119	136	102	109	107	118	81	105	103	85	93	78	95	94	65	76
95	81	101	77	94	97	67	103	122	100	114	90	110		94		102	101	102	110	122	93	116	101	115	124
128	98	106	89	87	98	87	69	67	81	101	66	86	85	80	86	95	96	99		119	103	108	106	113	110
			89	90	98	84	87	110	80	93	84	84	74	84	118	70	65	95		120	68	79	100		123
123	109	95	90	92	96	89	89	96	83	108	65	98	97	88	87	76	91	98	92	92	95	106	102	85	104
118	96	102	71 93	88 88	94	56 101	74	60 56	99 86	113 99	90 78	86 80	73 80	89 86	93 89	72 98	92	102 74	69 98	79 75	65 106	82 107	79 111	47 99	76 80
			70	84	91	59	74	54	96	87	103	70	57	86	165	77	66	102	67	77	71	96	92	70	96
102	100	101	93	87	77	117	77	65	87	94	83	94	90	87	71	114	93	98	107	108	100	108	104	93	104
95	88	105	74 91	84 95	80 88	74 120	81 94	118 88	92 97	87	96	96	66 94	80	88	93 106	93 102	94 94	140	97 129	68 97	95 114	82 110	65 122	90 126
55	00	100	87	99	96	83	100	103	84	88 88	108	95	88	91 88	86 92	76	110	111	140	108	87	102	93	87	101
68	89	71	107	88	82	143	50	38	94	82	109	71	97	99	147	135	109	116	68	84	72	91	86	65	77
107			61	83	79	48	72	72	79	77	83	43	72	82	131	99	94	94	58	65	85	88	96	45	62
127			101	97	84 85	127 126	152 155	176	108	83	143	97		90 83		77 92	89	92			101	106 128	107 123		
128	130	138	101	107	110	114	111	106	116	116	126	121	101	95	111	96	113	121	129	127	107	96	97	137	150
			119	114	109	142	123	92	135	117	158	119	100	98	99	95	118	121	148	169	101	95	92	114	150
138	117	147	105	111	127	91	108	86	111	119	105	112	95	93	104	87	97	114	136	153	119	107	101	132	155
105	135	105	107	105	116	112	109	81 172	116 110	109	129 123	96 167	100	96 103	124 81	96	101 86	106 89	202	181	98	93	93	122	168
			108	112	110	103	123	174	98	100	99	142	110	103	01	96	84	76							
			109	113	109	112	127	139	108	98	121	118	101	114	109	112	105	106							
			111	126	98	110	136 135	149 199	104	111	170	127	101	116	106	122	07	94							
			94	112	97	93	116	215	124 128	93	170 147	140 143	136	112	92	102 115	87 96	95							
102	120	107	101	111	106	102	183	191	119	94	154	161		108		96	89	92							
	15-31	19.5	97	112	108	92	154	201	116	108	127	127	1	103		102	96	94							
116	136	124	99 85	108	91 98	113	192	220	108	88	135	208	84	93	80	97	105	86							
		-	99	107	98	74 105	138 181	195 182	116 112	100 87	153 139	175 132	123	97 106	87	112	105 86	102 83							
1				122	101	80	188			-				95		133	110				1		1	1	1

1	2	3	4	5	6	7	8	ı 9	10
62		Hicoria ovata	Hickory, shagbark	Miss., Ohio, W. Va., Pa.	Green		0.637	1	60
63		Hicoria pecan	Hickory, pecan	Missouri	Air-dry Green	0.694	0.601	0.724	12 63
					Air-dry			0.666	12
64		Juglans cinerea	Butternut	Wisconsin, Tennessee	Green Air-dry	0.404	0.359	0.383	104 12
65		Juglans nigra	Walnut, black	Kentucky	Green	0.562	0.513		81 12
66		Juglans rupestris	Walnut, Mexican	Arizona	Air-dry Green	0.613	0.532	0.552	67
67	Lauraceae	Sassafras sassafras	Sassafras	Tennessee	Air-dry Green	0.473	0.424	0.570	12 67
68		Umbellularia californica	Myrtle, Oregon	Oregon	Air-dry Green	0.589	0.512	0.451	12 71
69	Leguminosae	Gleditsia triacanthos	Locust, honey	Indiana, Missouri	Air-dry Green	0.666	0.596	0.556	12 63
70		Robinia pscudacacia	Locust, black	Tennessee	Air-dry Green	0.708	0.659	0.636	12 41
71	Magnoliaceae	Liriodendron tuli pifera	Poplar, yellow	Tennessee, Kentucky	Air-dry Green	0.427	0.376	0.694	12 64
72		Magnolia acuminata	Magnolia, cucumber	Tennessee	Air-dry Green	0.516	0.440	0.401	12 80
					Air-dry			0.480	12
73		Magnolia fraseri	Magnolia, Fraser's	Tennessee	Green Air-dry	0.477	0.400	0.446	89 12
74		Magnolia grandiflora	Magnolia, evergreen	Louisiana	Green Air-dry	0.530	0.460	0.502	117 12
75	Moraceae	Toxylon pomiferum	Orange, osage	Indiana	Green Air-dry	0.838	0.761		31
76		Ficus aurea	Fig, golden	Florida	Green		0.438	0.444	88 12
77	Myrtaceae	Eucalyptus globulus	Gum, blue	California	Air-dry Green	0.796	0.625		79
78		Eugenia garberi	Stopper, Garber's	Florida	Air-dry Green	0.918	0.831	0.750	12 40
79	Oleaceae	Fraxinus americana	Ash, white	Ark., N. Y., W. Va.	Air-dry Green	0.638	0.542	0.877	12 42
80		Frazinus biltmoreana	Ash, Biltmore white	Tennessee	Air-dry Green	0.584	0.507	0.593	12 42
81		Fraxinus pennsylvanica lan-	Ash, green	Louisiana, Missouri	Air-dry Green	0.610	0.526	0.550	12 48
82		ceolata Frazinus nigra	Ash, black	Wisconsin, Michigan	Air-dry Green	0.526	0.457	0.566	12 84
83		Frazinus oregona	Ash, Oregon	Oregon	Air-dry Green	0.575	0.497	0.493	12 48
84		Fraxinus profunda	Ash, pumpkin	Missouri	Air-dry Green	0.551	0.485	0.550	12 51
					Air-dry			0.520	12 39
85	.	Fraxinus quadrangulata	Ash, blue	Kentucky	Green Air-dry	0.603	0.532	0.568	12
86	Palmaceae	Sabal palmetto	Palmetto, cabbage	Florida	Green Air-dry	0.453	0.372	0.387	133 12
87	Pinaceae	Abies amabilis	Fir, silver	Washington	Green Air-dry	0.415	0.351	0.385	66 12
88		Abies balsamea	Fir, balsam	Wisconsin	Green Air-dry	0.414	0.335	0.366	117 12
89		Abies concolor	Fir, white	California, New Mexico	Green Air-dry	0.397	0.348	0.371	115 12
90		Abies grandis	Fir, lowland white	Montana, Oregon	Green Air-dry	0.419	0.370	0.398	94 12
91		Abies lasiocarpa	Fir, alpine	Colorado	Green Air-dry	0.321	0.306	0.327	47 12
92		Abies magnifica	Fir, red	California	Green Air-dry	0.421	0.372	0.388	108 12
93		Abies nobilis	Fir, noble	Oregon	Green	0.403	0.351		36 12
94		Chamaecyparis lawsoniana	Cedar, Port Orford	Oregon	Air-dry Green	0.440	0.399	0.375	43
95		Chamaecyparis nootkatensis	Cedar, Alaska	Oregon	Air-dry Green	0.439	0.399	0.416	12 40
96		Chamaecyparis thyoides	Cedar, southern white	New Hampshire, North Car-	Air-dry Green	0.352	0.310	0.422	12 35
97		Juniperus pachyphloea	Juniper, alligator	olina Arizona	Air-dry Green	0.545	0.477	0.323	12 40
98		Juniperus virginiana	Cedar, eastern red	Vermont	Air-dry Green	0.492	0.442	0.511	12 35
99		Larix laricina	Tamarack	Wisconsin	Air-dry Green	0.558	0.491	0.471	12 52
100		Larix occidentalis	Larch, western	Montana, Washington	Air-dry Green	0.587	0.482	0.528	12 58
					Air-dry			0.520	12 108
101		Libocedrus decurrens	Cedar, incense	Oregon, California	Green Air-dry	0.365	0.346	0.368	108

11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
99	121	101	101	110	104	103	146	181	106	96	119	143	102	107	93	96	119	92							
0=	00	01	97	119	107	91	140	206	93	98	92	124		106	0.0	98	100	94						0.5	100
85	89	91	96 92	104 89	96	104	100 86	117 98	97 93	98 95	100 97	113 95	96 85	99 100	83 86	101 120	108 114	112 105	97	86 109	107	125 122	116 123	95 131	103 128
107	100	103	101	109	114	100	137	146	110	114	109	124	103	100	102	91	103	110	168	157	109	112	115	146	151
			116	105	110	128	137	189	120	119	126	135	115	112	107	109	119	125	134	150	105	109	117	113	128
83	111	85	120	123	117	129	132	123	115	117	115	104	133	124	117	90	111	108	106	105	115	120	116	123	110
76	92	53	126 73	121 99	109 73	173 78	92 108	93	91	102 78	129 110	101 122	124	116 84	110	108	84	94	152	72	84	105	100	103 86	72
	-	00	102	113	94	114	93	58	72	80	65	57		99		100								00	
91	103	90	102	99	91	119	90	122	104	94	121	145	108	95	70	106	118	101	161	125	113	110	101	157	131
00	60	ne	102	96	89	120	110	181	92	86	110	138	84	89	67	140	109	98	165	121	82	108	98	127	119
88	60	96	87 69	86 65	59 61	138 83	153	160	80 72	64 68	105 81	161 89	73 77	88 86	55 54	121 116	113	117	132 142	153 133	122 123	132 124	132 133	109	166
68	78	67	104	110	92	125	88	94	94	97	95	102	105	110	84	152	128	121	123	130	124	140	121	118	116
			95	103	93	101	92	129	88	86	94	109	100	100	80	139	125	121	84	126	108	126	110	80	94
56	73	64	144	131	119	182	90	100	129	122	138	80	181	153	100	122	132	101	94	81	113	113	123	72	85
123	118	114	122 112	119	106 122	148	108 85	149 61	107 122	109	105 132	114 88	125 100	121 95	157 138	112	116 93	130 105	72 136	57 169	75 93	99 92	108 88	55 121	57 146
120	110	***	116	113	134	106	105	81	137	134	139	105	100	111	157	101	103	109	138	174	93	95	95	134	155
116	130	122	115	117	150	93	118	108	108	129	94	111	119	106	129	87	102	115	114	106	101	98	93	114	116
	***		125	123	135	112	138	127	121	133	111	134	115	111	137	81	97	112	126	161	106	97	98	107	99
123	122	115	103	109	126 113	89	115 128	99	113 124	122 124	107	100	107	97	113	87	102	102	136	138	122	113	118	137	139
101	129	88	93	101	101	119 88	167	113	98	103	123 97	116 184	104 91	102 87	131 97	85 110	94	105	163 126	173 151	108 121	104 126	102 121	133 115	141
	The state of		98	105	101	100	131	79	103	96	112	101	80	91	120	110	122	105	143	143	126	130	127	165	122
44			106	109	74	156	172	170	92	67	126	169	99	113	60	139		1			91	126	94		
			86	93	57	130	79	76						89		138					100	114	105		
			64	77	65	64	88	77						82		155					106	114	105		
135	133	150	134	114	135	138	89	93	107	131	89	80	148	124	126	98	99	119	68	89	101	118	108	74	83
	Town !		100	93	114	96	63	57	95	107	87	72	134	112	119	72	57	103			67	82	77		
60	83	67	96	107	99	107	83	67	102	81	13	67	90	110	94	124	92	87	69	61				15	
90	94	81	89	72 117	82 113	113	118	67 118	36 111	101	30 123	14 100	67 120	87 111	78 100	87 105	121	111	119	107	111	104 113	82 110	108	108
	0.2	01	112	117	107	121	122	118	108	100	120	103	114	104	94	102	130	112	149	102	122	116	114	123	87
93	91	83	126	123	111	149	106	102	117	111	129	86	133	116	101	135	120	107	110	95	118	115	116	119	109
00	0.0	00	118	109	104	139	103	121	113	106	126	121	119	114	99	128	119	98	128	100	130	123	113	117	107
89	96	83	115	119	112	123 117	102	99 96	107 108	95 104	122 112	94 89	128 103	118	99 100	128 127	116	105	117 124	92 88	109 124	107 121	109	114 116	101
126	119	104	67	90	96	56	134	124	81	78	76	113	60	75	78	84	94	88	156	85	92	90	86	147	84
			106	120	116	85	160	186	91	109	91	131	101	101	103	101	130	105	142	133	119	105	116	139	120
100	91	100	99	103	96	108	116	112	90	103	81	115	105	105	115	105	115	109	119	112	110	111	112	102	111
93	84	80	89 108	105	88 91	96 132	127 93	111 77	91 91	103 84	82 103	98 97	87 111	92 103	87 78	130 168	119 123	120	130	105	116	116	123	130	100 126
50	01	00	89	98	88	94	78	67	100	91	115	77	84	92	66	170	133	112	138 184	103	120 131	117 118	108 112	131 155	114
83	81	75	122	119	98	155	125	137	103	88	119	113	126	117	84	275	139	128	100	101	126	124	124	100	111
0.50			99	110	88	115	120	147	120	108	135	120	111	102	72	149	122	129	78		129	126	120	105	116
253			64 59	73 60	55 51	82 72	64 73	96 125	72 65	48 58	112 76	73 90	58 25	69	33 74	58 32					83				
150	141	172	127	118	151	120	105	101	121	146	100	115	128	47 112	150	102	100	95	82	104	53 103	91	101	102	99
	-	100	123	122	142	110	155	160	121	120	128	133	131	120	140	93	133	93	02	86	113	98	100	99	124
121	93	120	114	108	122	111	90	67	113	118	110	95	118	106	129	82	96	93	81	72	91	97	103	102	94
102	100	100	111	105	122	106	91	128	122	104	76	124	127	105	128	80	7.5	79	76	53	105	104	105	110	100
404	100	123	140 133	120 124	125 133	168 140	90	89 84	132 118	135 129	133	120 114	120 101	105 119	119 118	134 121	97	110	115 91	121 91	109 142	103	107 112	118 93	120 93
108	94	120	121	118	147	105	89	104	117	129	108	110	137	120	170	106	106	101	87	81	105	96	103	98	89
			112	115	147	92	119	207	123	128	120	150	137	115	152	110	92	89	47	69	112	96	115	140	62
111	89	142	101 137	110	119	95	98 65	76 68	97 89	109	88 75	62	105	100	99	148	102	109	9		108	86	96	127	113
119	112	113	138	116	98 121	194 173	105	89	125	110 130	117	113 107	123	102 112	103	155 137	127 125	145 124	113	124	120 96	103 104	149 102	111	106 123
			136	137	143	138	151		124	136	114	126		112		154	112	98	105	119	190	121	116	98	109
134	141	143	131	121	152	122	105	124	133	138	132	105	127	115	167	119	106	110	83	98	94	87	90	94	110
0.5	100	100	136	134	151	129	152	168	122	148	105	139	153	123	169	129	103	104	78	76	133	97	105	72	81
95	128	106	121 138	110	151 148	107	104 132	148 198	121 130	135 146	111	93 137	128 160	116 129	159 144	94 122	103 96	104 102	60 108	50 117	99	92 110	92 105	56 98	57 113
74	53	77	109	110	102	126	134	144	114	113	118	118	114	107	91	109	98	102	87	74	110	92	97	79	73
			117	115	107	139	124	104	114	100	132	135	143	112	98	107	86	93	98	95	102	102	93		
102	100	102	106	116	103	121	127	136	108	102	118	121	103	114	105	141	120	115	97	86	152	121	119	115	104
61	62	40	116	108	103	200	90	71 69	100	103	101	102	104	117	122	140	198	104	98	108	139	121	113	106	101
01	63	46	89 75	94 60	40 45	209 138	137 64	69	72 42	49	111	67 40	96	116 66	45	181 168	128 75	125			136 123	121 142	132 140		56
66	78	65	92	110	62	152	175	166	81	81	87	126	112	120	53	182	116	104	82	82	128	124	114	80	73
			57	86	66	57	100		69	56	87	88		102		133			177		101		124	73	115
105	82	92	100	99	107	100	70	120	79	87	72	85	117	105	111	80	87	78	54	49	53	56	53	64	52
103	95	102	107 112	101	111	105 123	67 72	88 77	89 98	91 115	88 103	75 75	107 128	111	114	91 97	93	87	79	62	59 65	68	67	71	61 57
100	90	102	104	103	116	117	78	109	109	121	118	105	151	117 118	107	100	93 95	94	47 54	48 56	65 99	68 93	69 82	59 55	57 45
			144	132	103	192	114	64	116	126	111	96	151	135	111	167	127	120	126	107	167	124	125	123	107

1	2	3	1 4	5	9	7	8	9	10
102		Picea engelmanni	Spruce, Engelmann	Colorado	Green	0.347	0.312		100
103		Picea glauca	Spruce, white	Wis., N. H.	Air-dry Green	0.431	0.366	0.332	12 50
104		Picea mariana	Spruce, black	New Hampshire	Air-dry Green	0.428	0.376	0.391	12 38
105		Picea rubra	Spruce, red	Tennessee, New Hampshire	Air-dry Green	0.413	0.379	0.402	12 43
106		Picea sitchensis	Spruce, Sitka	Wash., Oregon	Air-dry Green	0.397	0.355	0.406	12 44
107		Pinus banksiana	Pine, jack	Wisconsin	Air-dry Green	0.461	0.394	0.384	12 105 12
108		Pinus caribaea	Pine, slash	Flonda	Air-dry Green	0.756	0.638		40
109	1	Pinus clausa	Pine, sand	Florida	Air-dry Green	0.506	0.451	0.682	12 36 12
110		Pinus contorta	Pine, lodgepole	Wyo., Mont., Colo.	Air-dry Green Air-dry	0.434	0.380	0.481	65 12
111		Pinus echinata	Pine, shortleaf	Ark., La.	Green Air-dry	0.584	0.494	0.542	64 12
112		Pinus edulis	Piñon	Arizona	Green Air-dry	0.567	0.502	0.530	63 12
113	1	Pinus flexilis	Pine, limber	New Mexico	Green Air-dry	0.420	0.374	0.401	68 12
114		Pinus jeffreyi	Pine, Jeffrey	California	Green Air-dry	0.425	0.371	0.402	101 12
115		Pinus lambertiana	Pine, sugar	California	Green Air-dry	0.378	0.348	0.360	137 12
116		Pinus monticola	Pine, western white	Montana, Idaho	Green Air-dry	0.418	0.363	0.385	54 12
117		Pinus palustris	Pine, longleaf	La., Miss., Fla.	Green Air-dry	0.038	0.551	0.592	47 12
118		Pinus ponderosa	Pine, western yellow	Colo., Wash., Aris., Cal., Mont.	Green Air-dry	0.420	0.379	0.402	91 12
119		Pinus pungens	Pine, mountain	Tennessee	Green Air-dry	0.549	0.494	0.523	75 12
120		Pinus resinosa	Pine, red	Wisconsin	Green Air-dry	0.507	0.440	0.479	54 12
121		Pinus rigida	Pine, pitch	Tennessee	Green Air-dry	0.542	0.470	0.505	85 12
122		Pinus rigida serotina	Pine, pond	Florida	Green Air-dry	0.580	0.501	0.539	56 12
123		Pinus strobus	Pine, eastern white	Wis., Minn., N. H.	Green Air-dry	0.373	0.344	0.362	68 12
124		Pinus taeda	Pine, loblolly	Florida	Green Air-dry	0.593	0.504	0.550	72 12
125		Pseudotsuga taxifolia	Douglas fir (coast type)	Lewis Co., Chehalis Co., Clark Co., Wash.; Lane Co., Clatsop Co., Wash. Co.,	Green Air-dry	0.512	0.448	0.482	36 12
126		Pseudotsuga taxifolia	Douglas fir (mountain type)	Ore.: Humboldt Co., Cal. Johnson Co., Wyo.; Missoula Co., Mont.	Green Air-dry	0.446	0.405	0.426	39 12
127	j	Sequoia sempervirens	Redwood	California	Green	0.436	0.410	0.427	113 12
. 128	1	Taxodium distichum	Cypress, southern	Louisiana, Missouri	Air-dry Green Air-dry	0.482	0.425	0.458	91 12
129		Thuja occidentalis	Cedar, northern white	Wisconsin	Green Air-dry	0.315	0.293	0.310	55 12
130		Thuja plicata	Cedar, western red	Montana, Washington	Green Air-dry	0.344	0.310	0.330	39 12
131		Tsuga canadensis	Hemlock, eastern	Wis., Tenn., N. H.	Green Air-dry	0.431	0.375	0.398	110 12
132		Tsuga heterophylla	Hemlock, western	Washington, Oregon	Green Air-dry	0.432	0.377	0.406	77 12
133		Tsuga mertensiana	Hemlock, mountain	Montana	Green Air-dry	0.480	0.418	0.450	70 12
134	Platanaceae	Platanus occidentalis	Sycamore	Indiana, Tennessee	Green Air-dry	0.539	0.456	0.494	83 12
135	Polygonaceae	Coccolobis laurifolia	Plum, pigeon	Florida	Green Air-dry	0.851	0.771	0.786	52 12
136	Rhamnaceae	Rhamnidium ferreum	Ironwood, black	Florida	Green Air-dry	1.077	1.045	1.147	32 12
137		Rhamnus purshiana	Cascara	Oregon	Green Air-dry	0.548	0.496	0.516	61 12
138	Rhizophoraceae	Rhizophora mangle	Mangrove	Florida	Green Air-dry	1.063	0.886	0.964	39 12
139	Rosaceae	Amelanchier canadensis	Serviceberry	Tennessee	Green Air-dry	0.791	0.656	0.747	48 12
140		Crataegus tomentosa	Haw, pear	Wisconsin	Green Air-dry		0.623	0.680	63 12
141		Prunus pennsylvanica	Cherry, wild red	Tennessee	Green Air-dry	0.425	0.361	0.394	46 12

11		13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
125	121	129	103 133	101 122	113 121	102 138	106 119	62 96	105 112	108 116	101 111	94 107	105 115	95 109	109 103	133 156	100 121	100 118			93	95 89	99 105	113 158	113 138
153	112	122	114 116	110 114	118 130	120 117	99 116	110 114	99 100	110 113	83 89	101 111	107 115	101 108	87 138	87 89	97 95	92 92	76	69	66	78	66	90	81
113	121	110	96	103	120	80	115	139	97	130	72	114	81	102	150	53	93	84	119 36	103 35	107 104	95 103	119	100 77	104 64
117	109	126	107 112	125 110	135 132	94	159 106	183 93	134 101	122 111	151 92	118 80	138 128	110	144 126	116 102	102 102	95 100	87 58	85	114 99	112 89	106 93	99 83	68 90
			125	122	134	121	125	98	116	119	115	129	139	119	135	95	100	103	107	97	101	96	102	83	90
121	134	128	117	113	147	102	106 150	141 179	130	130 137	136 121	130	113 122	108 112	164 114	106 132	109 122	106 118	76 122	89 142	118 133	100	103	89 102	92 117
100	94	102	93 89	98 91	99 103	92 82	84 73	127 75	105 104	94 106	127 107	134	108	97 107	91	103 124		91	94	98	83	85	89	106	88
75	100	79	97	96	104	113	52	66	96	98	98	164 70	101	110	115	65	83	96 70	105 54	103 43	95 51	111 60	104	88 51	94 43
83	95	99	109	99 115	110 96	101 128	67 108	59 104	94	114 89	80 144	71 88	112 108	119 113	96 103	87 112	98 125	82 118	65 102	49 80	60 75	68 83	76 85	95	41
		1	101	114	106	101	107	105	99	102	103	72	96	119	148	116	84	82	73	52	104	104	100	85	
114	128	108	99 124	104	120 117	86 142	86 102	82 94	100 94	111	92 92	96 100	105 128	102	131 113	92 124	93 87	88 79	80 102	69 68	77 84	93	88 98	101 96	81 79
95	113	101	106 111	109 111	124 126	94 102	84 87	140	113 105	123 124	108 92	117	139	114 119	131 132	78	92	77	67	65	64	77	83	76	73
74	100	63	60	64	55	70	72	86 88	81	63	110	113 62	127 61	76	122	100 75	96 86	84 85	93	50 85	67 65	81 81	86 83	82	55 68
83	71	84	75 128	68	77 90	89 193	43 81	61	60 102	77 97	48 108	39 88	99	101 96	109	143 97	99 102	96	66 94	92	81 73	96 86	96 82	99	108
		9.1	125	112	104	158	103	78	114	109	127	96		111		123	81	74	73	56	85	94	88	148	120
100	130	110	106 138	97 116	112	109 180	75 100	108 85	103 125	103 123	108 129	104	104 123	95 116	104	110	94 120	94 116	90	92	80 102	91	95 106	93 129	99 126
86	91	98	123	107	114	140	96	07	116	113	120	96	127	108	101	126	102	97	111	108	91	94	100	128	127
123	124	125	122 116	112 104	118 136	129 106	101 83	87 139	123 114	118 121	130 113	111 98	145 124	108 108	124 150	126 96	125 90	110 87	126 96	129 96	81	104 88	90	120 106	123 98
84	106	83	123 110	123 104	140 125	115 100	146 64	138 98	126 95	137 115	118 79	132 85	145 132	121 118	162 117	101 76	105 96	85 82	101 50	82 44	79 56	86 66	86 67	87 57	88 50
			116	116	124	112	83	89	95	111	82	86	135	124	114	99	99	82	59	50	68	79	78	61	47
95	112	102	101	95 112	108	104 133	78 101	92 97	95 98	92 103	102 98	94 88	104 120	93	103 102	106 125	91	90	99 120	97 124	72 91	82 94	81 93	99 110	99 112
83	76	84	106 108	103 104	109 106	111 114	78 84	110 86	103 104	108 105	103 107	87 95	114 90	106 110	97	91	96 87	86 78	75	56	62	72	70	76	65
98	115	100	102	101	133	83	68	139	87	110	70	103	106	104	118 128	115 76	92	78	51	46	66 60	80 65	73 62	62 77	58 63
94	112	96	91	122 97	134	153 96	112 89	98 139	126 98	125 92	126 100	95 95	139 85	124 96	136 86	94 93	112 100	88 92	95 93	111 66	74 67	77	85 78	82 89	68 81
04	111		90	96	97	93	88	95	108	99	137	98	84	99	96	94	99	97	84	104	68	80	77	92	82
84	111	87	105 110	100	108 116	106	71 78	98 62	93 93	103 104	84 81	97 88	113 129	108 119	95 117	86 102	95 104	80 85	55 67	54 55	58 67	71 85	70 76	66 74	60 64
90	74	107	114 128	107 123	125 126	110 135	95 124	93 116	106 108	117 116	104 106	95 116	116 122	108 111	135 127	106 119	99 100	97 90	98 109	100 113	90 103	97 105	102 106	105 105	102 102
94	120	90	107	101	120	102	75	99	93	108	82	93	108	108	102	86	92	76	58	52	51	61	63	66	60
99	122	107	115 127	106 117	125 146	116 116	76 78	94	89 112	106 131	76 100	83 87	124 145	122 129	110 162	101 104	109	77 97	64 59	47 59	64 82	75 84	70 85	68 67	53 69
		1-	123	116	143	110	96	137	103	129	86	114	163	129	144	103	93	81	64	66	84	92	95	64	72
00																									
98	97	94	110	111	123 117	103	93 89	76 106	117 113	128 122	113 109	87 122	117 125	110 118	126 116	115 123	108	104 84	108 85	98 89	92 105	89 112	90 116	93 73	78 72
58	73	63	163 136	137 121	120 114	255 171	99 103		125 103	122 115	132 96	89 87		158 126		135 149	104 103	104 91	78	49	124	99	100	88 76	68
93	100	87	119	109	118	136	83	100	107	109	110	98	137	125	121	114	97	89	75 94	57 72	125 82	97 76	91 80	90	69 76
90	78	98	114	109	93	126 158	98 136	113 107	103	105 90	78 121	100	130 91	114 100	112 88	113 153	86 116	78 108	64 156	61 118	80 137	79 106	79 105	64 157	67 129
99	89	100	126	109	93	182	114	79	98	98	100	99	100	105	98	115	114	121	122	124	131	115	126	126	132
35	00		137 122	128 119	131 126	152 126	109 130	91 122	128 114	128 126	86 107	116 115	152 153	136 128	125 131	147 150	127 107	118 105	122 82	99 87	161 163	105 108	107 113	133 87	103 99
98	88	108	129 116	124 106	122 108	143 131	97 99	117 102	110 113	113 106	112 125	100 112	126 115	124 115	113 117	140 144	119 97	110 98	82 54	84 50	122 130	113 105	108 98	101 65	87 62
117	132	127	116	116	136	105	95	92	115	127	104	97	115	115	159	103	107	108	86	96	128	106	115	98	103
97	116	104	120 101	111	127 95	121 118	97 120	131 176	116 109	114 97	117 124	122 145	147 117	118 102	112 98	102 95	99 106	99 100	72 93	70 106	133 110	104 97	113 96	91 95	104 99
117	121	101	102 85	104 97	90	127 80	114 83	90 71	119 99	104 99	140 100	154 92	98 100	111 95	97 90	134 88	94 98	99 110	61 133	98	136	100	105	68	71 150
			93	95	103	89	92	71	81	97	70	96	87	91	99	92	96	116	120	158 157	109 94	104 97	104 105	119 103	160
77	63	62	68	77 67	71 59	71 69	51 51	40	93	91	94	56	103 77	95 73	141 83	90 110	73	90	51	84	83	87 81	94 103	57	57
42	65	47	93 38	88 61	89 93	101 · 17	33 18	64 36	74	82	67	285	103	107	72	105		93	51						40
58	71	57	78	86	54	122	128	209	46 88	75 79	28 97	129 155	72	71 98	93 68	48 109	120	63 98	117	89	88	108	100	90	17 89
67	67		84 110	78 100	68 110	108 113	74 50	50	75 100	72 109	157 92	41 56	82 112	99 108	64 108	132 108	121 73	109 91	89		120 71	123 91	127 81	68	
100		101	88	89	110	73	58	96				36	66	92	91	77	93	92				80	79		
107	112	101	93 97	92 96	105 90	84 101	94	90 121	87 99	108 104	72 96	115 104	92 108	92 98	79 64	68 76	80 69	87 73	87	79	87 86	95 96	93	75	84
			68 75	78 94	65 67	74 84	146 143	109 97						74 83		95 83	95 90	96			94	105	98		
133	85	175	100	102	122	89	103	126	98	110	91	115	96	89	102	88	90	99	114	108	100 116	98 111	101 112	115	113
			111	108	115	116	132	194	104	110	102	171	116	99	99	94	101	105	101	101	128	113	110	120	127

1	2	3	4	5	6	7	8	9	10
142		Prunus serotina	Cherry, black	Pennsylvania	Green	0.534	0.471		55
					Air-dry			0.506	12
143		Pyrus malus	Applewood or wild apple	Virginia	Green	0.745	0.606		47
• • •	0.11				Air-dry			0.668	12
144	Salicaceae	Populus balsamifera	Poplar, balsam	Vermont	Green	0.331	0.301	0 210	121
145		Populus deltoides	Cottonwood, eastern	Missouri	Air-dry Green	0.433	0.372	0.316	12
140		Populus aettoraes	Cottonwood, eastern	Missouri	Air-dry	0.433	0.372	0.408	111 12
146		Populus grandidentata	Aspen, large tooth	Wisconsin, Vermont	Green	0.412	0.348	0.406	99
		1 oparas granasacinasa	rispen, range tooth	Wisconsin, Vermont	Air-dry	0.112	0.010	0.386	12
147		Populus tremuloides	Aspen	Wisconsin, New Mexico	Green	0.401	0.351	0.000	94
					Air-dry			0.380	12
148		Populus trichocarpa	Cottonwood, black	Washington	Green	0.368	0.315		132
					Air-dry			0.348	12
149		Salix lasiandra	Willow, western black	Oregon	Green	0.473	0.394		105
					Air-dry			0.441	12
150		Salix nigra	Willow, black	Wisconsin, Missouri	Green	0.408	0.338		139
			1.,	l	Air-dry			0.372	12
151	Sapindaceae	Exothea paniculata	Inkwood	Florida	Green	0.917	0.731	0.800	56
152	Sapotaceae	Dipholis salicifolia	Bustic	Florida	Air-dry Green		0.861	0.800	12 44
102	Sa polacede	Dipholis saticijolia	Bustic	Florida	Air-dry	1	0.801	0.885	12
153		Sideroxylon mastichodendron	Mastic	Florida	Green	1.034	0.886	0.000	39
-00		Svacrozgion manivendaniaren	1.245010	1.0	Air-dry	1.001	0.000	0.932	12
154	Simaroubaceae	Simarouba glauca	Paradise-tree	Florida	Green	0.359	0.332		81
					Air-dry			0.345	12
155	Styracaceae	Mohrodendron carolinum	Silverbell-tree	Tennessee	Green	0.475	0.418		70
				i	Air-dry			0.453	12
156	Taxaceae	Taxus brevifolia	Yew, Pacific	Washington	Green	0.673	0.601		44
				l	Air-dry	0.000		0.626	12
157	Tiliaceae	Tilia glabra	Basswood	Wisconsin, Pennsylvania	Green	0.398	0.325	0.200	103
158	Ulmaceae	Caltie Inspirate	Sugarberry	Missouri	Air-dry Green	0.545	0.473	0.368	12 62
100	U i maceae	Celtis laerigata	Sugarperry	Missouri	Air-dry	0.010	0.413	0.515	12
159		Celtis occidentalis	Hackberry	Indiana, Wisconsin	Green	0.558	0.486	3.010	65
		Com verdending		***************************************	Air-dry	3.003	3.100	0.531	12
160		Ulmus americana	Elm, American	Wisconsin, Pennsylvania,	Green	0.554	0.458		89
				New Hampshire	Air-dry			0.507	12
161		Ulmus fulva	Elm, slippery	Indiana, Wisconsin	Green	0.568	0.485		85
					Air-dry			0.528	12
162		Ulmus racemosa	Elm, rock	Wisconsin	Green	0.658	0.574		49
	l	1			Air-dry			0.634	12
163	Verbenaceae	Avicennia nitida	Blackwood	Florida	Green	0.963	0.830	0.000	42
	<u> </u>	1			Air-dry	1		0.830	12

TABLE 1A.—Strength and Related Properties of

I. Equations expressing strength properties

							I.	Equat	ions e	xpressi	ng stre	ength p	ropertie
1	2	3	4	5	6	7	8	9	10	11	12	13	14
													.; .;
											!		.08D.
													12
								1				<u> </u>	Ex.
						II.	Value	es as de	termin	ed by	tests-	-strengt	th value
170	Dipterocarpaceae	Dipterocarpus grandistorus	Apitong	P. I.	d	0.687	1	i			1		97
171		Pentacme contorta	White Lauan	P. I.	d	0.485				1			112
172		Shorea negrosensis	Red Lauan	P. I.	d	0.523				1		1	89
173		Shorea polysperma	Tangile	P. I.	d	0.538			ł	1			102
174	Sterculiaceae	Tarrietia javanica	Lumbayau	P. I.	d	0.571		}	l			1	95

11	12	13	14	15	· 16	17	18	19	20	21	22	23	24	25	26	27	,28	29	30	31	32	33	34	35	36
92	86	92	104	116	117	101	135	136	109	106	117	108	118	112	112	81	112	115	120	130	110	111	101	122	130
			128	114	105	166	115	77	103	110	95	101	142	118	110	87	115	132	107	105	146	110	128	125	96
109	102	102	66	78	73	65	106	78	60	65	60	69	62	73	98	88	120	120	117	122	86	100	97	112	108
		1	66	82	68	76	146	95	84	66	91	91	54	75	115	71	92	84	81		112	117	112	102	1.500
100			93	102	112	80	97	91	116	108	126	129	75	85	103	78	89	95	96	100	105	111	110	132	129
			98	111	115	94	132	104	104	115	100	113	105	99	104	111	103	113	162	150	112	102	123	160	170
142	115	151	96	102	115	89	116	124	103	117	96	103	90	90	118	75	87	96	149	139	95	93	94	133	139
107	102	120	108	104	121	103	110	187	71	99	57	99	99	102	101	80	82	94	147	184	93	89	86	125	149
127	103	139	106 110	114	136 131	88 97	100 126	105 119	116 120	123 119	113 127	102 126	104 116	106	124 123	91	103	112	133	120 120	115 112	115 96	118 94	136 117	131 126
124	109	116	114	116	103	135	112	100	107	100	123	123	89	90	106	79	105 95	113 96	132 101	84	79	93	93	99	88
121	103	110	115	112	112	122	130	122	97	108	93	122	98	94	114	90	89	90	113	68	97	85	80	116	123
148	124	165	118	116	144	102	106	122	121	129	116	132	107	102	124	92	97	103	129	138	100	100	100	133	156
110		100	120	123	129	113	131	127	118	121	115	145	120	106	113	89	119	113	115	144	124	102	101	147	150
131	81	141	97	102	110	97	154	155	103	115	96	147	87	88	117	91	104	113	112	111	107	122	117	121	111
			95	93	107	89	119	168	100	98	104	137	90	88	112	89	99	102	130	136	115	106	107	119	127
153	81	142	67	83	70	75	204	156	83	77	95	208	54	66	65	82	92	98	180	183	107	118	123	163	181
			82	84	70	116	137	103	86	77	106	114	63	78	66	99	112	115	162	157	108	111	110	148	193
97	100	91	104	90	89	124	78	116	95	88	102	76	84	91	93	108	101	102		71	72	85	86	82	63
			71	77	85	59	47	48				45	62	86	78	91	85	98			108	100	96		57
			68	84	91	51	63						83	92	90	79									
	100												58	89	100										
50	76	52	80	68	76	88	28	26	88	82	98	56	101	98	70	118	71	81	60	67	59	72	63	46	47
-320			43	43	68	28	21	11	49	72	34	28	45	61	64	71	36	61	34	42	51	46	54	30	38
98	73	96	74	78	89	85	35	21	90	87	95	44	71	81	103	106	121	100	150	123	112	82	89	130	101
	100		88	78	88	79	62	43	66	93	48	47	75	72	84	96	72	71	140	129	139	109	101	****	
113	100	112	102	109	118	94	113	103	113	113	114	109	95	100	102	102	110	108	126	130	106	99	97	133	140
01	73		94	90	104	90	84	88	117	109	124	102	88	95	110	89	97	98	114	110	111	93	97 99	118	142
61	13	55	120	108	69 78	218	138	174	104 70	88	124 69	81	106	115	54	109	123	118	61	60	113	112 139	108	63 43	54 42
184	220	176	107	114	134	133	131	95	105	72 111	102	74 104	81 100	101	59 136	135 89	120 96	132	122	47 131	96	92	89	118	121
101	220	110	125	118	142	120	130	109	110	120	107	98	111	101	145	96	112	118	94	147	104	104	105	139	150
101	116	95	79	94	73	98	125	138	88	86	91	107	78	88	64	105	105	105	158	130	121	119	113	145	140
101	110	00	88	90	80	113	110	128	86	79	95	120	90	93	69	124	90	92	138	100	122	120	109	113	119
107	109	111	70	90	83	70	144	150	81	78	86	148	80	81	66	83	103	104	135	123	102	104	102	129	120
777		1977	79	95	81	83	120	141	98	83	116	137	79	86	64	100	107	112	89	107	97	96	101	91	-101
120	100	127	101	108	103	108	130	130	95	102	91	130	78	94	102	85	103	107	145	132	105	105	106	142	126
		1000	107	109	95	130	132	154	103	90	121	134	93	90	83	88	113	108	137	115	109	101	105	122	109
111	111	113	97	112	108	99	152	182	95	96	94	145	111	101	93	87	113	102	151	118	102	99	98	146	128
100			104	114	101	115	160	211	111	98	126	147	101	101	94	93	115	110	111	73	99	95	97	109	96
93	92	86	89	107	88	93	146	136	98	100	94	124	92	97	75	88	111	106	212	128	92	93	95	161	112
			85	103	87	91	130	154	95	92	99	131	86	93	94	94	103	106	90	95	89	100	97	77	99
71	83	71	68	80	79	63	48	55	84	85	84	50	81	88	74	95	72	64	58	38	64	74	78	36	33
100			65	80	89	49	76	135						82		77									

CERTAIN WOODS OF THE PHILIPPINE ISLANDS of air-dry wood in terms of density

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
P = 20.90D,138	F = 2750D,1:00	F = 0.00416D ₂ 2							F = 7.38D ₀ 1.25	$F = 8.37D_{\rm o}$ 1.00		P = 2.71D.115	F = 2.17D ₀ 1:33	F = 2.17D ₀ 1.33			F = 1466Dott	P = 1365D,2:16	F = 1365D ₆ 235		
xpre	ssed i	n perc	entage	e of eq	uation	value	s			<u> </u>											
95 112	102 109	98	For	other P	hilippin	e woods	, see Bu	lletins	103 116	109 102		84 113	99 110	99 110			87 135	89 135	89 135		
85 107	85 103	90 114	Nos. 4	and 14		u of Fo	restry, l		106 96	99 96		92 109	108 98	108 98			95 108	96 106	96 106		
101	108	108	,,,,,			1010.			92	84		108	95	95			104	111	111	ı	ļ

WOODS NATIVE TO

PHILIP

STRENGTH AND

		Botanical name	Local name	Place of growth		D.,1	k density
ndex No.	Family	Genus and species	Local name	Trace of growth		- Bui	K density
					Sessoning condition	Green	Air-dry
							g/cm³
1	2	3	4	5	6	7	8
500	Aceraceae	Acer pseudo-platanus, Linn.	Sycamore	British Isles	Air-dry		
201	Anacardiaceae	Campnosperma sp.	Terentang	Fed. Malay States	Air-dry		0.348
202 203		Euroschinus falcatus, Hook., f.	Port Macquarie beech	Australia		1 1	0.433‡
500		Harpephyllum caffrum, Bernh.	Kaffir plum, Zuurbesje, um-Gwenya, Mategibe	S. Africa			0.691‡
204		Mangifera indica, Linn.	Am, Mango, Thayet	India		1	0.6741
205		Melanorrhoea? sp.	Rengas	Fed. Malay States	Green	0.697	_
206		Protorhus longifolia, Engl.	Red Cape beech, Rode Melkhout, um-	S. Africa			0.680‡
:07		Rhus lucida, Linn.	Komiso Taaibosch, in-Tlokoebomve, Manzi- mane	S. Africa			1.120
208	Anonaceae	Alphonsea ventricosa, H., f. and Th.	Chooi	India			0.7851
:09	A pocynaceae	Dyera costulata, Hook., f.	Jelutong	Fed. Malay States	Air-dry		0.3691
210	4 / (-1/	Rauwolfia natalensis, Sond.	Quinine tree, um-Hlambamasi	S. Africa		ł l	0.5301
211 212	Aquifoliaceae Araliaceae	Ilex capensis, Sond. and Harv. Cussonia sp.	Water tree, Wittehout, um-Duma Cabbage wood, um-Senge	S. Africa S. Africa			0.6101 0.4601
213	11. actuce	Panax pinnatum, A. Rich.	Mutati	E. Africa	Air-dry		0.360
214	Betulaceae	Betula spp.	Birch	British Isles	Air-dry		
215	Bombaceae	Bombax insigne, Wall.	Didu, Saitu, Semul	India	l		0.497‡
216 217		Coelostegia griffithii, Benth. Cullenia excelsa, Wight.	Punggai Karayani, Kabodda, Wild Durian	Fed. Malay States India	Air-dry Green Oven-dry	0.492	0.537
218	Boraginaceae	Cordia platythyrsa, Baker.	Pooli	W. Africa	Oven-ury		0.396‡
219	Burseraceae	Canarium australianum, F. Muell.	Turpentine pine	Australia		1	0.644‡
220		Canarium bengalense, Roxb.	Neribi	India		l j	0.625‡
221 222		Canarium mauritianum, Bl.	Colophane	Mauritius W. Africa			0.813‡
223	Casuarinaceae	Santiriopsis klaineana, Pierre Casuarina cunninghamii, Miq.	Odonomokuku, incense tree River oak	New South Wales,			0.702‡ 0.769‡
			· 	Queensland			2004
224		Casuarina decussata, Benth.	Karri Shea-oak	W. Australia	Green	0.702	
225		Casuarina equisetifolia, Forst.	Beefwood, Ru, Chouk, Kabwi	India, Fed. Malay	Green	0.785	
226		Casuarina fraseriana, Miq.	Shea oak	States, Queensland W. Australia	Green	0.723	0.744
227		Casuarina glauca, Sieb.	Swamp oak	Australia	Green	0.123	0.744
228		Casuarina torulosa, Ait.	Forest oak	Australia			1.028‡
229 230	Celastraceae	Cathastrum capense, Turcs. Elaeodendron croceum, DC.	Hard pear, coffee pear, um-Ngqangqa Saffraanhout, saffronwood, um-Bom-	S. Africa S. Africa			0.900¢ 0.894‡
		Ziacoconaron croccam, DC.	vana	o. milica			0.001
231		Elaeodendron velutinum, Harv.	um-Nqai, um-Ngayi	S. Africa			0.960‡
232		Pleurostylia wightii, Wight and Arn.	Panaka, Pairi, Chiru-piyari	Ceylon			0.879‡
233 234		Pterocelastrus rostratus, Walp. Pterocelastrus variabilis, Sond.	White pearwood Candlewood, Kersehout, Itwyina	S. Africa S. Africa			0.686‡ 1.063‡
235	Combretaceae	Anogeissus acuminata, Wall.	Yon, Chakwa, Panchi	India	Green	0.739	1.0004
236		Anogeissus latifolia, Wall.	Bakli, Dhaura	India	Green	0.793	
37		Combretum kraussii, Hochst.	Bush willow, Rodeblad, um-Dubu- weklati	S. Africa			0.850‡
238		Terminalia bialata, Wall.	Indian silver greywood, white Chug- lam, Lein, Chugalam	India	1		0.769‡
239		Terminalia myriocarpa, Huerck. and Muell. Arg.	Hollock, Panisaj, Sungloch, Shila	India			0.834‡
		Terminalia paniculata, Roth	Kindal, Kirijul	India		1 1	0.898‡

^{*} Tension parallel to grain.

[‡] Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

THE BRITISH EMPIRE

HARRIS

RELATED PROPERTIES

Tropical America, v. p. 39

Bulk density			Static	e bendi	ng				bendii hamn		Co	mpression allel to gr		to limit	Sh	iear	perpe	nsion endic- r to ain	Н	ardne	ess	
Oven-dry	Moisture content	Fiber stress at clastic limit	Modulus of rupture	Modulus of elasticity	Work to elastic limit	Work to maximum load	Fiber stress at elastic limit	Modulus of elasticity	Work to elastic limit	Height of drop causing complete failure	Fiber stress at clastic limit	Maximum crushing strength	Modulus of elasticity	Compression perpendicular to grain, fiber stress at elastic limit	Radial	Tangential	Radial	Tangential	End	Radial	Tangential	Lit.
g/cm³	% oven- dry		${\rm kg/mm^2}$		kg-em	/em³	kg/i	mm²	kg- em/ em³	em		kg/mm ²		kg/ mm²	kg/	$ m mm^2$	kg/	mm²		kg		
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0.570	16	2.23 2.25 4.57	7.03 4.18 3.54 8.40	872 788 881 1023	3							3.89 4.82										(5) (21) (61) (12, 49)
	45	4.50 3.16	6.96 9.61 6.40	1037 1476 1085								6.19 4.41										(31, 43) (21) (12)
		6.79	11.21	1253	0.197							9.78					Ξ					(12)
	17	2.60 2.67 2.17 2.34	10.20 4.38 4.91 5.11 2.86	749								5.79 4.54 4.13 2.67				083						(10, 43) (21) (12) (12) (12)
0.53-0.786	11	4.75	3.38 9.78 4.61 8.73	1470 743 1476				,				2.25 6.62 2.84			0.387	650						(22) (5) (10, 43) (21)
0.554	55 8	3.93 5.73 5.03 5.66 2.77	5.89 9.34 7.54 6.14 3.92 10.90 4.25 10.13	1285			8.51 14.02	1107 1747	0.375 0.612	69 74	2.18 3.76	2.72 5.28 4.22 3.95 5.69 2.25			0.654 0.3 1.0 0.9		0.316 0.355					(38) (38) (14) (24) (10, 43) (63) (57) (61)
	46 20	3.54 5.62	6.34 11.02	661 1589								2.81 6.68			0.3	752 58	8.	62*				(20) (10, 21, 37)
	33 43	7.80 11.46 3.52 5.55	8.43 14.52 11.38 6.41 9.93									6.11 5.54 4.98	1432		1.0	041 816 047	11.	33* 95* 59*				(20) (20) (2, 58, 59) (12) (55)
	35 35	5.16 5.32 3.74 3.61 5.63 4.47	10.82 9.11 10.93 7.96 9.24 8.51	1037 999 921 1346 1138	0.116 0.152 0.078 0.080 0.134 0.103				0.572 0.613			7.24 4.36 4.77 4.87 4.62 3.83 5.13			1.0 0.910	1.300	0.499 0.447				714 810	
		5,52	11.52	1477								5.88			1.4	13						(10, 43)
			11.60									3.84			0.7	755						(9)
			7.43 10.18	1098								4.62 6.52			1.0	032						(9) (10, 43)

1	2	3	4	5	6	7	8
242 243		Terminalia superba, Engl. and Diels. Terminalia tomentosa, W. and A.	Afara, Affram Indian laurel wood, Taukkyan, Sain	W. Africa India	Air-dry Green	0.707	0.440
		·			Air-dry Oven-dry		0.752
244	Compositae	Brachylaena discolor, DC.	um-Pahla, Vaalbosch, Mapata	S. Africa		0.763	0.816
245		Brachylaena hutchinsii, Hutch.	Muhugu	E. Africa	Green	0.812	
246	Coniferae (or	Abies pectinata, DC.	European silver fir	British Isles†	Air-dry Air-dry		0.849
247	pinaceae)	Abies pindrow, Spach.	W. Himalayan silver fir, Paludár, Bádar	India	Air-dry		0.385
248		Agathis alba	Damar Minyak	Fed. Malay States	Air-dry		0.497
249		Agathis australis, Steud.	Kauri pine	New Zealand	Air-dry		0.438
250 251		Agathis robusta, F. M. Bailey Araucaria bidwillii, Hook.	Queensland kauri, Dundathu pine Bunya pine	Queensland Queensland	Air-dry		0.433‡ 0.468
252		Araucaria cunninghamii, Sweet.	Moreton Bay pine, hoop pine	New South Wales, S. Queensland	Air-dry Air-dry		0.470
253		Athrotaxis selaginoides, D. Don.	King William pine	Tasmania		l	0.369‡
254 255		Callitris arborea, Schrad. Callitris calcarata, R. Br.	Clanwilliam cedar Black cypress pine	S. Africa New South Wales,	•		0.618‡ 0.753‡
200		Cuttivis tutturais, R. Br.		Queensland			0.7001
256 257		Callitris rhomboidea, R. Br.	Illawara Mountain pine, cypress pine	India† W. Australia	Green	0.516	0 657+
257 258	į	Callitris robusta, R. Br. Callitris tasmanica, R. T. B.	White cypress Oyster Bay pine	Victoria, N. S. W., Tasmania			0.657‡ 0.673‡
259		Codrus deodara, Loud.	Deodar, Himalayan cedar	India	Green Air-dry Oven-dry	0.468	
260		Cryptomeria japonica, D. Don.	Japanese cedar	India†	Green	0.329	
261		Cupressus macrocarpa, Hartw.	Monterey cypress	India†	Green	0.433	
262		Cupressus torulosa, D. Don.	Himalayan cypress	India	Green Air-dry	0.419	0.431
263	•	Dacrydium colensoi, Hook.	Westland pine, silver pine	New Zealand	Air-dry	1	0.547
264		Dacrydium cupressinum, Soland.	Rimu, red pine	New Zealand	Air-dry	1	0.451
265		Dacrydium franklinii, Hook.	Huon pine	Tasmania	Air-dry	1	0.536‡
266 267		Juniperus procera, Hochst. Larix europaea, DC.	East African juniper Larch	E. Africa British Isles†	Air-dry		0.548
268		Libocedrus doniana, Endl.	Kawaka, Wawaku	New Zealand			0.637‡
269		Phyllocladus rhomboidalis, A. Rich.	Celery-top pine	Tasmania			0.609‡
270 271		Picea excelsa, Link. Picea morinda, Link.	Norway spruce W. Himalayan spruce, Rai	British Isles† India	Air-dry	1	
				white wood red wood	Air-dry Air-dry		0.402 0.436
272		Pinus excelsa, Wall.	Bhotan pine, blue pine, Kail, Piuni	India	Air-dry Air-dry		0.405
273		Pinus longifolia, Roxb.	Long-needled pine, Chir	India	Green	0.541	
274		Pinus pinaster, Soland.	Cluster pine, maritime pine	British Isles†	Air-dry Air-dry		0.505
275		Pinus pinea, Linn.	Stone pine	S. Africa†	-	1 1	0.565‡
276 277		Pinus strobus, Linn. Pinus sylvestris, Linn.	Weymouth pine, white pine Dantsic fir, Scots pine	British Isles† British Isles	Air-dry		
•••		T true egiveente, Linn.	Dantale III, Scots pine	heavy timber	Air-dry		
			· · · · · · · · · · · · · · · · · · ·	light timber	Air-dry		
278 279		Podocarpus dacrydioides, A. Rich. Podocarpus elata, R. Br.	Kahikatea, white pine Brown pine	New Zealand New South Wales,			0.436‡ 0.817‡
280		Podocarpus elongata, L'Her	Outeniqua or bastard yellowwood, Geelhout, um-Koba	S. Queensland S. Africa		0.450	0.481
281		Podocarpus ferrugineus, Don.	Miro, black pine	New Zealand			0.658‡
282 283		Podocarpus gracilior, Pilg. Podocarpus milanjianus, Rendle	Musengera, Podo Podo	E. Africa E. Africa	Air-dry Air-dry		0.513 0.574
284		Podocarpus neriifolia, Don.	Welimadá, Thitmin	India	All-diy		0.673‡
285		Podocarpus spicata, R. Br.	Matai, black pine Upright or real yellow wood, um-	New Zealand S. Africa	Air-dry	0 507	0.715
286		Podocarpus thunbergii, Hook. var. fal- cata, Sim.	Sunti		_	0.597	0.626
287		Podocarpus totara, Don.	Totara	New Zealand	Green	0.407	
288 289		Pseudotsuga douglasii, Carr. Sequoia sempervirens, Endl.	Douglas fir Redwood	British Isles† Australia†	Air-dry		0.465‡
290	Cornaceae	Curtisia faginea, Ait.	Assagai, um-Gxina	S. Africa			0.940‡
291 292	Cunoniaceae	Ackama muelleri, Benth. Ceratopetalum apetalum, D. Don.	Corkwood Coachwood	Australia Australia			0.641‡
292		Cunonia capensis, Linn.	Red alder, Rode Els, um-Nqwaskube	S. Africa		0.657	0.608‡
		• • •				0.527	
294		Platylophus trifoliatus, Don.	White alder, Witte Els	S. Africa		1	0.575

^{*} Tension parallel to grain. † Not a native of this country.

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13		15	16	17	18	19	-	21	22	23	24	25	26	27	28	29	30	31
	10	4.43	5.60		0.120	0.222					3.08				0.816							(15)
	54	4.85	7.94		0.114				0.552		2.74	3.93						0.443		699	667	(9, 31, 38)
0.770	13	6.50	10.81		0.179 0.264				0.745 0.707		3,42	5.82 6.77						0.632 0.871		930	974 946	
0.772	70	8.51	12.92				10.70	2230	0.707	121	3,00		1715	1.02	1.140	1.20	0.780	0.011	1102	900	940	
0.840	10	5.04	11.10	1292	0.108							8.29										(8, 12)
0,010	28		4.22									4.99			0.	415						(22)
	13		4.78									6.82			0.	661						(23)
0.37-0.52		3,66	6.22	1224								4.24				1						(5)
				1								1	17				1000		100			100
	16	3.86	6.02		0.079		7.77	1280	0.266	48	2.82	3.30	1682	0.323	0.537	0.496	0.179	0.169	284	184	204	1
	18 15	4.64	8.12 6.60	1343	0.159							4.29					10	73*				(21) (1, 3, 4, 19,
	10	4.00	0.00	901	0.159							4.20					12.	13.				28, 51)
	-		4.96	652																		(61)
	12		9.79									5.50					1					(6)
	15		6.32	1440								5.27	914		1.	05	10.	15*				(6, 9, 58, 59)
- 1				1 22																		
			3.95	581								4 - 4 - 5										(61)
		3.32	5.81	100000	0.099							3.87			0.	356						(55, 56)
			2.85	844																		(61)
	31	3.39	4.60	649	0.103		7 97	851	0.358	58	1.89	2.75	99	0.703	0 791	0 671	0 126	0.369	481	386	377	(38)
	01	3.33	6.32	749	1		1.21	001	0.000	00	1.00	2.10	00	0.700	0.121	0.071	0.120	0.308	401	000	011	(61)
- 1		1 6	6.07	1252									3									(61)
			0.0.	1202																		, ,
	45	3.62	6.09	948	0.079		8.51	1009	0.398	51	2.13	3.12	993	0.467	0.569	0.714	0.165	0.249	329	252	265	(31, 38)
		4.61	7.41		0.171		1				3.05							0.225			340	
		7.17	9.25		0.238						4.58							0.246				
	24	2.12	4.01		0.052				0.251		0.77		457	0.306	0.531	0.517	0.186	0.260	163			
	40 35	2.52	4.35	7.00	0.057		7.28		$0.348 \\ 0.276$		1.17		784	0.428	0.534	0.696	0.151	0.295	340 334	265 231	288 227	
	10	4.70	4.13 6.43		0.170				0.413		2.09							0.559				
	17	3.82	6.85	1006			0.01	1100	0.110	00	2.00	5.48	1.00	0.000	10.101	0.012		87*	100	200	200	(4, 28)
	14	4.86	7.85	1273								4.33						07*				(1, 3, 4, 19,
1													11/1/2									28)
		3.14	6.96	467	0.111							100				1						(3)
No. 100 St. 100 St.	15		3.38	1 5			1					4.85			0.	309						(22)
0.45-0.75	-	4.80	11.25	1700								6.43										(5)
		3.80	6.07		0.141																	(3)
		0	7.33	1177								4.70										(61) (5, 61)
0.30-0.52		4.42	7.42	1371								4.70										(3, 61)
	15	3.81	6.17	1020	0.081		8.26	1331	0.285	53	2.14	3.15	1447	0.469	0.684	0.710	0.274	0.249	326	202	220	(38, 39)
	14	4.32	7.21		0.096				0.297		2.21							0.310				
	14	3.23	4.77	693								4.40	1			802						(31, 38)
1	78	3.25	5.53	1047	0.057			-	0.309		2.13							0.228		252		
V	15	4.02	6.90		0.077		9.32	1662	0.301	61	2.18		1575	0.48			0.214	0.172	377	295	322	
0.41-0.59		2.81	7.17	971					- 1			4.94				771						(5, 55, 56)
		2.70	7.35	1202	0.061							3.49 6.25	-1		0.	579						(55, 56) (5)
0.42 -0.55		4.71	10.23	1202								0.20										(0)
0.51 -0.76		5.22	10.97	1821								7,10					5	62*				(5, 25)
0.375-0.50		3.68	8.30	1329								5.23						1				(5, 25)
		2.19	5.42	889								3.19					9	46*		0		(3, 4, 19, 28)
			5.83	896									-									(61)
	1					1										1						
	110	4.08	6.08	837	0.113							3.76			0.	427						(8, 12, 55)
0.500	10 }	5.22	9.62	750	0.202											1						(3)
	13	0,22	6.12	109	0.202							4.08			0	372						(22)
	15	1	5.91									4.01				507						(22)
	77		9.29	1110						1		5.62				097						(10, 43)
	12	6.73	9.98		0.235							3.52				1	>4	92*				(3, 4, 13, 28)
	100	4.76	7.13	954	0.149							4.24			0	413						(8, 12, 55)
0.650	10 }	0.3000		1								7										
	45	3.12	5.09	831								3.03			0.	703	10	20*				(1, 3, 4, 19,
		4 00		*****																		28)
0.45-0.55		4.38	7.47	1300								5.17										(5)
		7.47	6.52	1120	0.212							6.04			0	939						(12, 55)
		1.21	10.34	1550								0.01			0.	1						(61)
			7.42	1109							1	4.66	941		1.	365	9	03*				(59)
	60		100	1											1	1		1				
	10	5.35	8.50	1238	0.129							4.71			0.	771						(8, 55)
0.750	0					1																
	130																					
	10	3.50	4.91	527	0.130						1	4.20			0.	458						(8, 55)
0.605	10)	0.00		1000			1	1		1		1				1						

1	2	3	1 4	5	6	7	8
295		Weinmannia lachnocarpa, F. Muell.	Mararie	New South Wales,	. <u> </u>	i i	0.802‡
				Queensland			
296		Weinmannia racemosa, Linn., f.	Kamahi	New Zealand	Green	0.512	
296.5	Dilleniaceae	Dillenia indica, Linn.	Ottengah, Thabyu, Chalta	India		1	0.705‡
297	Dipterocarpaceae	Anisoptera sp.	Sanai	Fed. Malay States	Air-dry	1	0.489
298		Balanocarpus maximus, King.	Chengal, Penak	Fed. Malay States	Air-dry	0.589	0.785
299 300		Balanocarpus penangianus, King. Balanocarpus sp.	Damar Hitan Chengal, Penak	Fed. Malay States Fed. Malay States	Green Air-dry	0.389	0.609
301		Dipterocarpus alatus, Roxb.	Kanyin	India	Green	0.574	0.008
001		Diploration and and and and and and and and and an	,		Air-dry	0.01	0.604
					Oven-dry	1	
302		Dipterocarpus pilosus, Roxb.	Hollong	India	-	1	0.689‡
303		Dipterocarpus sp.	Keruing, Kruin	Fed. Malay States,	Air-dry		0.665
				Borneo		1	
304	1	Dipterocarpus tuberculatus, Roxb.	In, Sooahn	India	Green	0.726	
305		Dintersament deskington Courty V	Curion	India	Air-dry	0.655	
303		Dipterocarpus turbinatus, Gaertn. F.	Gurjan	Ingia	Green Air-dry	0.655	
					Oven-dry	1	
306		(Kapur	Fed. Malay States	1		
		Dryobalanops aromatica, Gaertn.	Camphor-wood	Borneo	Air-dry	ì	0.689
307		Dryobalanops sp.	Keladan	Fed. Malay States	Green	0.601	
308		Hopea odorata, Roxb.	Thingan, Rinda	India		1	0.785‡
]				1	1
309		Hopea sp.	Merawan	Fed. Malay States	Green	0.608	
310		Shorea acuminata, Dyer	Meranti Rambai Daun	Fed. Malay States	Green	0.447	
311		Shorea assamica, Dyer	Makai	India			0.577‡
312 313		Shorea barbata, Brandis Shorea contorta, Vidal	Rasak White Lauan	Fed. Malay States Australia	Air-dry	[0.817
314		Shorea contorta, Vidai Shorea curtisii, Dyer	Seriah	Fed. Malay States	Air-dry	1	0.513‡ 0.513
315		Shorea, Hopea and Isoptera spp.	Salangan batu, Yacal	Borneo	Green	0.689	5.510
316		Shorea leprosula, Miq.	Meranti Bunga	Fed. Malay States	Air-dry		0.483
317		Shorea macroptera, Dyer	Melantai	Fed. Malay States	Green	0.454	1
318		Shorea obtusa, Wall.	Thitya	India		1	0.961‡
319		Shorea parrifolia, Dyer	Meranti Sarang Punai	Fed. Malay States	Air-dry		0.436
320		Shorea robusta, Gaertn., f.	Sál, Sákher	India	Green	0.714	
321		Shorea sericea, Dyer	Meranti Kepong	Fed. Malay States	Green Air-dry	0.772	0.374
322		Shorea sp.	Damar Laut Daun Besar	Fed. Malay States	Air-dry Air-dry		0.837
022		Shored sp.	Damar Laut Daun Kechil	Fed. Malay States	Air-dry		0.920
			Merani Kait Kait	Fed. Malay States	Green	0.513	0.020
			Seraya Batu	Fed. Malay States	Air-dry		0.777
			White Seriah, cedar	Borneo			0.481-0.641
323		Vatica affinis, Thw.	Mandora	Ceylon			0.957‡
324	Ebenaceae	Diospyros kurzii, Hiern.	Andaman marble-wood, Thitkya,	India			0.978‡
205		D'	Pecha-da Ebène marbre	Manualit		İ	0.7004
325 326		Diospyros melanida, Poir. Diospyros pentamera, Woods and F.	Grey plum	Mauritius New South Wales,			0.768‡
320		Muell.	Grey plum	Queensland			0.703
327		Diospyros sp.	Kayu Arang	Fed. Malay States	Air-dry		0.798
328		Euclea natalensis, A. DC.	i-Dungamuzi	S. Africa		1	0.890‡
329		Royena lucida, Linn.	Black-bark, Zwartbast, um-Tenattena	S. Africa		1	0.770‡
330	Elaeocarpaceae	Aristotelia racemosa, Hook., f.	Moko	New Zealand		1	0.593‡
331		Elaeocarpus dentatus, Vahl.	Hinau	New Zealand			0.562‡
332		Elasocarpus grandis, F. Muell.	Blue fig	Australia		1	0.665‡
333	Paramambian	Sloanea woollsii, F. Muell.	Mellow Carrabeen	Australia			0.577‡
334 335	Eucryphiaceae Euphorbiaceae	Eucryphia billiardieri, Spach. Baccaurea sapida, Muell. Arg.	Leatherwood Latecku, Lutio, Kanazo	Tasmania India			0.785‡
336	= apnorviaceae	Beyeria viscosa, Miq.	Pinkwood	Australia			0.673‡
337		Bischofia javanica, Bl.	Uriana, Tayôkthé, Aukkyu, Boa-	India			0.721
			ungza, red cedar				
338		Bridelia micrantha, Baill.	um-Hlahlamakwaba, Mazerie	S. Africa			0.590‡
339		Hemicyclia australasica, Muell. Arg.	Yellow tulip wood	Queensland, New			0.865‡
				South Wales			1
340	_	Ricinodendron africanus, Muell. Arg.	Ochwen	W. Africa			0.789‡
341	Fagaceae	Castanea sativa, Mill.	Sweet chestnut	British Isles†	Air-dry		
342		Castanopsis hystrix, A. DC.	Chestnut, Dalné, Hingori, Sirikishu	India	C	0 500	0.737‡
343		Castanopsis sp.	Berangan Tasmanian myrtla rad myrtla	Fed. Malay States	Green	0.569	
344 345		Fagus cunninghamii, Hook. Fagus fusca, Hook., f.	Tasmanian myrtle, red myrtle Red beech, black birch, Towai	Australia New Zealand	Green	0.656	0 577+
346		Fagus menziesii, Hook., f.	Silver beech, red birch, Towai	New Zealand New Zealand		ļ	0.577‡
347		Fagus moorei, F. Muell.	Negro head, white beech	New South Wales		1	0.860‡
348		Fagus sylvatica, Linn.	Beech	British Isles	Air-dry	1	3.300.
349		Quercus lamellosa, Sm.	Hill oak, Bûk.	India		1	0.945‡
		Quercus pedunculata, Ebrh.	Oak	British Isles	Air-dry	1	0.744
350							
351 352		Quercus robur, Linn. Quercus sessilistora, Salisb.	Oak Oak	British Isles British Isles	Air-dry		

^{*} Tension parallel to grain. † Not a native of this country.

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			13.30	1892																		(61)
	71	2.68	5.38	845	0.056	0.725					2.04	2.39		0.524	0.860	0.956	0.363	0.497	406	336	365	(29)
	,,	2.00	8.34	1036	11.12	0.120					2.01	5.17		0.021		1.014						(10, 43)
	19	3.44	6.46	1012									4									(21)
	17	7.81	11.49	1723							*											(21)
	24	4.28	7.76	1192																		(21)
	17	6.75	9.93	1455														5				(21)
	73	3.76	6.61		0.077				0.443		1.71	3.18			0.671						392	(31, 38)
	17	4.25	8.79		0.077		13.04	1553	0.629	76	2.86	4.57			0.885						438 501	
		7.81	9.61	1346	0.252						4.22	6.62 4.16	1501	0.784	0.889		0.639	0.714	080	557	301	(34, 43)
	17	11.49	7.41	1237								3.42			0.	0.						(9, 21)
	1.	1.20	1.11	1201								0.11										, , , , ,
	50	4.91	8.15	1233	0.110		14.13	1886	0.604	102	2.58	3.96			0.840						644	(31, 38, 46
		5.07	9.79		0.105						2.49	4.77			0.970						710	
	66	4.88	7.75		0.095		13,12	1896	0.507	81	2.73	4.12			0.622							(38)
		5.69	10.97		0.117						2.62	5.44			0.816 0.932						583 646	
		9.47	13.83	1775	0.288	1					6.68	8.75	1024	0.950	0.932	0.000	0.025	0.724	100	004	040	
	19	5.03	10.04	1680								3.89										(9, 21)
	21	3.94	8.64	1399					-													(21)
			11.50	1465								5.87			1.4	16						(10, 30, 3
																						43)
	20	5.68	10.28	1623																		(21)
	20	3.38	6.62	1005									1 1									(21)
			8.30	1102								4.49			0.9	934						(10, 43)
	18	5.92	13.73	2005 663																		(61)
	19	3.84	6.25 7.58	1234																		(21)
	28	3.84	8.66	1425								5.22						h		1		(9, 37)
	18	3.83	6.85	1203								0.22			h 1							(21)
	21	3.97	6.77	1244																		(21)
			15.64	1776								8.54			1.	873						(9, 31, 43)
	19	3.30	5.83	1033								4.50					0 400	0 070		070	000	(21)
	56	5.56	9.92	1373	0.128	3	13.44	1792	0.569	101	3.53	4.65	1432	0.984	0.914	0.972	0.480	0.678	625	679	692	(31, 36, 38
	28		10 05	1950	0.136	2						5.76			1	307						10, 10)
	17	5,55 2.85	10.65 5.28	1005		1						0.70			1.							(21)
	17	6.02	13.32	1920																		(9, 21)
	17	6.33	12.88	1860											1							
	31	4.10	7.53	1417		1																
	16	5.17	9.21	1167						1												
			7.20			1						3.59										
		5.46	9.64		0.107	7						4.12				436						(54)
			7.80	1270)							6.30			1.	19						(10, 43)
		3.78	5.55	1007								4.43			1	068						(63)
		0.10	9.75	1502		1/						1,10			1							(61)
			0.10	1002									1									
	16	5.38	11.02	1596	3	1																(21)
		4.69	8.98		0.081							4.84										(12)
		2.86	6.57		0.068						1 1	4,24			1.0							(12)
		3.14	6.17		0.131												1					(3)
		4.76	6.33		0.129	,						F F0	1007			100	19	46*				(3)
			8.11 9.08	1184							- v	5.58	1087		1.	466	12.	40.				(61)
			14.10	1668																		(2)
			7.51	925								4.62			0.	786						(10)
		5.06	9.86		0.164	1	1															(3)
			6.02	598								4.42										(10, 43)
																	1.					
		3,16	5.25		0.060)						5.05										(12)
			8.82	1237																		(2, 61)
		0.01	0.00	1000								0 70			0	697						(57)
		3.81	6.29	1046								3.78			0.	687						(5)
		2.90	7.70	925								5.17 4.05			1	274						(10, 43)
0.44-0.60	22	3.87	6.94	1073								4,00			1.	1						(21)
0.44-0.60		4.98	6.40		0.104	1	1					4.07			0.	876	6.	27*				(51, 61)
0.44-0.60	28		8.08	1054							1	4.20			0.			60*				(3, 13, 28)
0,44-0.60			7.73	914								4.20			0.			60*				(3, 13, 28)
0.44-0.60			1.10				1	1	1		1 1	5.22	1274		0	736	14.	40%	1			1 /9 12 501
0.44-0.60			8.15	1157									1211		0.							(2, 13, 59)
		3.69	8.15 10.34	1157 1389								5.09	12/1			1		73*				(1, 5)
0.44-0.60	28	3.69	8.15 10.34 8.94	1157								5.09 5.18	12,11		1.	1	7.	73*				(1, 5) (10, 31, 43
		3.69	8.15 10.34	1157 1389								5.09	12/1			1	7.					

1	2	3	1 4	5	6	<u> </u>	8
54	Flacourtiaceae	Doryalis zizyphoides, E. Mey.	Zuurbesjes, um-Kokolo	S. Africa			0.870
55		Kiggelaria africana, Linn.	Wild peach, Spekhout, Mpataselo	S. Africa	l	I	0.650
56		Scolopia ecklonii, Arn.	Red pear, Rode Peer	S. Africa		1	0.840
57		Scolopia zeyheri, Arn.	Thorn pear, Wolvedoorn	S. Africa			1.000
58		Trimeria alnifolia, Harv.	Wild mulberry, Wilde Moerbe, Xal-	S. Africa			0.790
9	Guttiferae	Calophyllum bracteatum, Thw.	Walukina	Ceylon]	0.519
30		Calophyllum calaba, Linn.	Gurukins	Ceylon		İ	0.705
31		Calophyllum inophyllum, Linn.	Alexandrian laurel, Tharapi, Sultana	India			0.673
32	1	Calanta Para	champa, Puna	D 1 35 1 0 .	١	l	
		Calophyllum sp.	Bintangor	Fed. Malay States	Air-dry		0.529
33	1	Calophyllum spectabile, Willd.	Dakar talada, Pantaga, Lal chuni	India			0.617
54		Garcinia conrauana, Engl.	Orugbo	W. Africa			0.716
55 56		Kayea assamica, King and Prain Mesua ferrea, Linn.	Sia Nahor Penaga (F. M. S.), Nageshwa, Gangaw	India India	Green Air-dry	0.745	0.897
37	Hamamelidaceae	Bucklandia populnea, R. Br.	Pipli, Dinghah, Singliang	India			0.721
88		Parrotia jacquemontiana, Dene.	Peshora, Shtar	India	Green	0.694	
	1	January 200 annionation of 200 annion		1.50.5	, dieen	0.636	
89	Icacinaceae	Apodytes dimidiata, E. Mey.	White pear, Witte Peer, um-Dakane	S. Africa	1 {	0.030	0.670
70		Villaresia moorei, F. Muell.	New South Wales maple	Australia	l		0.689
71	Lauraceae	Beilschmiedia obtusifolia, Benth.	Pomatum wood, She beech	New South Wales,	1	1	0.737
-			- SJean wood, one beech	Queensland	l	1	"."
72		Reilechmiedia taraini Banch and U	Taraire	_	1	1	1 0000
	1	Beilschmiedia tarairi, Benth. and H., f.	[New Zealand	0		0.888
73		Beilschmiedia tawa, Benth. and H., f.	Tawa	New Zealand	Green Air-dry	0.533	0.555
	1						
74		Cinnamomum olireri, F. M. Bailey	Black sassafras	Australia	1		0.513
75		Cryptocarya patentinervis, F. Muell.		New South Wales,		1	0.657
				Queensland			1
76		Endiandra discolor, Benth.	Murrogun	New South Wales,			0.753
		Buddandan maximi xent		Queensland	1	1	0 ====
77	1	Endiandra pubens, Meissn.	l <u>.</u>	Queensland	ا ـ		0.721
78		Eusideroxylon zwageri, Teijsm. and	Borneo ironwood, Billian	Borneo	Green	0.960	1
		Binn.			1	1	1
			Billian	Fed. Malay States	Air-dry	1	0.938
79		Litsea calicaris, Kirk.	Mangi, Mangeao, Tangeao	New Zealand	l -	1	0.621
80		Litsea reticulata, Meissn.	She beech, Bally Gum	Australia		1	0.433
81		Litsea reticulata, Meissn. and Litsea	Bally gum	Australia	Air-dry	1	0.484
٠.		ferruginea, Bl.	somy Bum			1	0.303
82	İ	1 2 2	Madang	Fed Maley Pinter	Green	0.601	1
		Litsea sp.	Medang Medana Tandah	Fed. Malay States	Green	0.001	0 701
83		Litsea? sp.	Medang Tandok	Fed. Malay States	Air-dry	1	0.721
84		Machilus odoratissima, Ness.	Lalie, Leddil, Kaula, Seiknangyi	India			0.641
_			L		1 /	0.659	1
85		Ocotea bullata, E. Mey.	Black stinkwood, stinkhout	S. Africa	1		0.758
86		Ocotea usambarensis	Muzaiti, camphor	E. Africa	Green	0.547	
-		Ocosea asamourensis				0.011	0.558
67		Barrer com/com/del/a	Dane!	Combon	Air-dry	1	1
87	F	Persea semicarpifolia	Ranai	Ceylon	0	0.005	1.015
88	Leguminosae	Acacia acuminata, Benth.	Jam wood	W. Australia	Green	0.935	0.00-
89		Acacia arabica, Willd.	Babul, Kikar	India	l	1	0.865
90		Acacia horrida, Willd.	Doornboom, thorn tree, um-Nga	S. Africa		1	0.790
91		Acacia melanoxylon, R. Br.	Blackwood	E. Australia, Tas-	İ	1	0.675
		l		mania		1	1
92		Acacia natalitia, E. Mey.	u-Munga	S. Africa	1	1	0.700
93		Adenanthera paronina, Linn.	Recheda, Yivè, redwood	India		1	0.898
94		Afrormosia laxiflora, Harms.	Ainyesan	W. Africa	}	1	0.802
95		Afzelia africana, Sm.	Aligna	W. Africa	Oven-dry	1	
96		Afzelia spp.	Merabau	Fed. Malay States	-	l	1
			Ipil	Borneo	Green	0.718	1
				/	1	0.415	1
97		Albizzia fastigiata, Oliver	Flat crown, Nebelele, um-Hlandhloti	S. Africa	{	5. 210	0.444
.		Alleren Liller Donal	Sinia Sinia Wallala	7-4:-	{	ļ	
98		Albizzia lebbek, Benth.	Sirio, Siris, Kôkko, walnut	India		İ	0.753
99		Albizzia odoratissima, Benth.	Suriya Mara, Thitmagyi	Ceylon			0.914
00		Albizzia procera, Benth.	Thitpyu, Sit, White Siris	India			0.737
01		Bauhinia variegata, Linn.	Kachnar, Bwèchin, Bwegyin	India		1	0.705
02		Berlinia acuminata, Soland.	Ekpagoy	W. Africa			0.891
03		Brachystegia spicaeformis, Benth.	Okwein	W. Africa	Air-dry		0.645
04		Cassia siamea, Lam.	Johor	Fed. Malay States	Air-dry	1	0.849
05		Castanos permum australe, A. Cunn.	Black bean	New South Wales,		1	0.837
~ 		Caranosperman austruc, m. Culli.		Queensland		1	""
ایم		Cylicodiscus gabunensis, Harms.	African greenheart, Okan	W. Africa			0.934
06		1					1
07		Dalbergia latifolia, Roxb.	East Indian rosewood, blackwood,	India	I	!	0.882
_		l	Kala Shisham	l			
08	ł	Dalbergia sissoo, Roxb.	Sissoo, Shishâm Ogwega	India		1	0.770
09		Detarium senegalense, J. F. Gmel.		W. Africa			1.091

^{*} Tension parallel to grain.

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		2.93 2.93 3.52 3.52 3.52	5.55 7.00 8.95	712 849 906	0.086 0.074 0.084 0.076 0.076							3.65 4.10 3.98 5.03 5.08										(12) (12) (12) (12) (12) (12)
		3.54 3.43			0.060 0.059							4.32 3.79 4.61			0.	237 666 232						(54) (54) (10, 43)
	18 41 16	4.83 5.01 8.44	7.21 < 19.67 8.90	1490 855 1307 1318 2025	0.106		15.10	2135	0.599	107	2.66	4.28 5.20 4.77 9.99	1520	1.026	>0.3 1.061			02*	801	760	785	(21) (10, 43) (11) (38) (10, 21, 3
	33	2.72	7.20 6.62	973 752	0.051							4.00			0.9	905						(10, 43) (40)
	50 10	4.23	9.36	1119	0.092							5.57			0.9	996						(8, 12, 55
0.690	0)		11.98 5.34	1670 910								4.										(61) (61)
	63 15	5.04 3.94 4.36	6.16	1155	0.137 0.076 0.094						2.22 2.90				0.699		0.300		526	386	376	(3) (3, 4, 29) (3, 4, 29)
			7.53 9.29	1113 1363													10.	13*				(61) (61)
			11.39	1372																		(2, 61)
	23		9.03 13.81	1303 1676								7.94										(61) (9, 37)
	14	9.39 5.52	6.97 5.77 6.93-	2398 901 925	0.188							3,66-4,29										(21) (3) (61) (6)
	20 16	3.30 5.62		1406 1623 886								3.41			0.5	907						(21) (21) (10, 43)
	80	8.06	11.49	1254	0.292							6.44			0.	918						(8, 12, 55
0.800	83 13 25	4.81 9.98 2.42	10.75 11.13	1655 1262	0.174				= X			3.38 4.71 4.10 <11.83 4.27 5.45	1260		0.	429 485 650 830 453		.44*				(22) (23) (54) (20) (31) (12) (51, 58, 5
0.639	9 21	2.34 3.79 7.41 6.87	10.13 7.14 12.66	1314 1284	0.188						4.77	3.71 7.13 4.68 6.75 6.35	1550	1,208		499 648 1.589						(12) (10, 43) (57) (15) (21, 37)
	70 10	6.33	9.54	961	0.232							4.77			1.	012						(8, 12,
0.460	0)	7.02	12.63	1456	0.224							6.73 6.58 7.45			0.1	433 902 733						57) (10, 43, 43) (54) (9)
	10 18	2.18 6.82 6.23	12.13	370 981 1672 1392 1188	0.145	0.785					4.47	2.90 3.78 6.58 4.28	1673 994	1	0.1.136	981 543 0.973 742		.58*				(10, 43) (57) (15) (21) (2, 59)
		5.44	1030	1277 1247								5.12 7.61			1.	017						(57) (9, 31)
		6.43	9.96	1146 1458								7.49 6.23			0	785						(31, 43) (57)

1	2	3	4	5	6	7	8
410	l	Dialium platysepalum, R. T. B.	Kranji	Fed. Malay States	Green	0.785	
11	i	Erythrina caffra, Thunb.	Kafirboom, um-Sinsi	S. Africa	Air-dry	1 1	0.240
12		Hardwickia binata, Roxb.	Anjan, Acha, Yepa	India	1	1 1	1.313
	ļ					1 1	
13	[Koompassia parrifolia, Prain	Tualang	Fed. Malay States	Air-dry	1 1	0.657
14		Milletia caffra, Meissn.	Kaffir ironwood, um-Zimbiti	S. Africa		1 1	1.150
15		Pericopsis mooniana, Thw.	Nedun, Hedun	Ceylon	1	1 1	1.135
16		Piptadenia africana, Hook., f.	Ekhimi, Agboin, West African green-	W. Africa	Oven-dry	1 1	
		1 speaking dynamic, 1100m, in	heart		0,000		
117		Pterocarpus indicus, Willd.	Padauk	India	Air-dry		0.685
18		Pterocarpus macrocarpus, Kurz.	Burma Padauk	India	1		0.865
19		Pterocarpus marsupium, Roxb.	Bijasāl, Vengai	India		1 1	0.881
20		Pterocarpus santalinus, Linn., f.	Red Sanders, Lal Chandanum	India		1 1	1.202
21		Pterolobium sp.	Agba	W. Africa	Air-dry	1 1	0,463
22		Sindora sp.	Sepetir	Fed. Malay States	Air-dry	1 1	0.508
23		· ·	1 =	•	An-dry	1 1	
20		Sophora tetraptera, J. Mill., var. grandistora, Hook., f.	Kohwai	New Zealand			0.884
24		Virgilia capensis, Lam.	Keur, vetch-leaved Virgilia	S. Africa	1	1 1	0.708
25		Xylia dolabriformis, Benth.	Ironwood of Burma and Arracan,	India	ŀ		0.961
			Pyinkado, Jambu		i	1 1	
26	Linaceae	Ixonanthes icosandra, Jack.	Pagar Anak	Fed. Malay States	Air-dry		0.697
27	Loganiaceae	Buddleia salvifolia, Lam.	Saliehout, Gwangi, sagewood	S. Africa	1	1	0.810
28		Nuzia floribunda, Benth.	Wild elder, Vlier, um-Quaqu	S. Africa			0.706
	I					1	
29]	Strychnos atherstonei, Harv.	Cape Teak, Kajatenhout, um-Hama- lala	S. Africa	1		0.780
30	Lythraceae	Lagerstroemia flos-reginae, Retz.	Pyinma, Ajhar, Jarul, Taman	India	Air-dry		0.566
31		Lagerstroemia hypoleuca, Kurz.	Pyinma, Pabda	India			0.641
32		Lagerstroemia lanceolata, Wall.	Nana, Benteak	India			0.850
33		Lagerstroemia tanceolata, Wall. Lagerstroemia parviflora, Roxb.	Indian Prima Vera, Dhauri, Lendia,	India			0.849
			Sida				2.3.0
34	1	Lagerstroemia sp.	Bungor	Fed. Malay States	Air-dry		0.513
35		Lagerstroemia tomentosa, Presl.	Burmese Lesa wood	India	1	1 1	0.802
	10	1 ·			ł	1 1	
36	Magnoliaceae	Michelia champaca, Linn.	Sapu, Champaca, saga	Ceylon	İ	1 1	0.638
37	ì	Michelia excelsa, Bl.	Magnolia, Bara champ, Gok	India	ŀ	1 1	0.529
38	Malvaceae	Hibiscus tiliaceus, Linn.	um-Lolwa	S. Africa		1 1	0.760
39		Thespesia populnea, Soland.	Tulip tree, Portia tree, Suriya	India		1	0.806
10	Meliaceae	Cedrela toona, Roxb.	Red cedar, Toon, Tuni, Poma, Thit-	Australia and India	Air-dry	1 1	0.479
	1.7 (1.00)	000,000,000,000	kado				0.200
41		Chickrassia tabularis, A. Juss.	Chikrassi, Arrodah, Yinma, Chitta- pong wood	India			0.785
42		Chlorozylon swietenia, DC.	Satinwood, Buruta, Mutirai	Ceylon	i	i l	1.031
43		Dysoxylon fraserianum, Benth.	Rosewood	Australia	1	1 1	0.726
				1	1	1 1	
14		Dysoxylon muelleri, Benth.	Red bean	Australia		i 1	0.723
45		Dysoxylon spectabile, Hook., f.	Kohe Kohe	New Zealand	۱ ،	0.490	0.678
46		Ekebergia capensis, Sparrm.	Dog plum, Essehout, Cape ash	S. Africa	{		0.517
47		Ekebergia meyeri, Presl.	Essehout	S. Africa	,		0.540
18	1	Entandrophragma candollei, Harms.	Ikpwapobo	W. Africa	I	1 1	0.674
19		Guarea sp.	Scented mahogany, cedar, Obobo-	W. Africa			0.814
•0			Nufwa	W 46:			0 ==:
50		Guarea thompsoni, Spr. and Hutch.	Obobo-Nikwi, cedar	W. Africa	1		0.774
51		Khaya ivorensis, A. Chev.	Mahogany, Ogwango	W. Africa		1 1	0.668
52	1	Khaya senegalensis, A. Juss.	Dry-zone mahogany, Ogwango	W. Africa	1]	0.513
3		Melia azedarach, Linn.	Margosa, Nym tree, Persian lilac,	Ceylon	1		0.758
54		Melia dubia, Cav.	bastard cedar, Thamaga Lucumidella, Ceylon mahogany or	Ceylon			0.327
55		Pseudocedrela sp.	cedar, Malai Apopo	W. Africa	! .		0.519
56		Pteroxylon utile, Eckl. and Zeyh.	Sneezewood, Nieshout, Mweri, um-	S. Africa	{	0.956	0.991
E 7	Mami-1	Danumbara as to E- 11		Australia	1 '		0.700
57	Monimiaceae	Doryphora sassafras, Endl.	Sassafras	Australia	I	1 1	0.593
58	Moraceae	Artocarpus chaplasha, Roxb.	Kaita-da, Chaplash, Chram, Taung- peinnè	India			0.545
i9		Artocarpus hirsuta, Lamk.	Aini, Ayani	India	Green	0.516	
				[Air-dry		
30		Artocarpus integrifolia, Linn., f.	Jak, Kanthal, Peinnè, Pilla	Ceylon `	i		0.695
B1		Artocarpus lakoocha, Roxb.	Dahu, Myauklot, Wonta	India	I	1 1	0.641
		· ·		!	1	1	
32		Artocarpus nobilis, Thw.	Del, Bedi-del	Ceylon	1		0.770
33		Artocarpus rigida, Bl.	Perian	Fed. Malay States	Air-dry		0.304
34		Artocarpus sp.	Keladang	Fed. Malay States	Green	0.601	
2 6		Chlorenhous encolor Bonth and II1-	Inoles Odum	W Africa	Air-dry		0 545
35		Chlorophora excelsa, Benth. and Hook.	Iroko, Odum	W. Africa	Air-dry	1	0.545
	I	Ficus natalensis, Hochst.	Wild fig, um-Tombi	S. Africa	1	1	0.410
86	l	1					
86 87		Ficus sp.	Pulut Pulut	Fed. Malay States	Air-dry		0.336

^{*} Tension parallel to grain.

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
0.250	23 10	7.73 1.17	13.07 1.93		0.032							1.29										(21) (8, 12)
	10	4 20	11.92	1507								8.45										(31, 43)
	18	4.36 8.09	8.51 11.83	1560	0.198							10.30										(21)
		7.13	11.28		0.180							6.16			1.	044						(54)
0.665	8	6.61	11.77			0.556					4.68		1530	1.47	1.377							(15, 57)
	17	8.12	8,96	1537								5.21			0.	956	10	.16*				(10, 20, 31
			10.99	879								8.78			1.	647						37, 43) (43, 47)
			8.73 9.85	1253 1271								<14.02 10.00			9	620						(31)
	10	6.07	8.63		0.193	0.668					3.17		957	0.698	0.758							(15)
	17	3.90	6.77	1054																		(21)
		4.96	10.51	962	0.168																	(3)
		6.00	8.95		0.193							4.47			0.	954						(55)
			10.13	1280								6.10			1.3	386						(31, 43)
	16	5.77	11.65	1673																		(21)
		3.60	7.67		0.107							4.95										(12)
		7.21 2.64	10.42 7.08		0.251 0.045							5.16 5.21			0.	728						(55) (12)
		2.01	1,00	000	0.010							0.21										()
	11	7.37	11.87		0.243							6.10				102			792	645	640	
			6.92 7.26	903								4.72 3.81				117 834						(10, 43) (9, 31, 43)
			11.46	1251								6.03				790						(9, 31, 43)
	19	4.72	8,35	1132																		(21)
	-		10.10	1147								5.96			1.3	388						(9, 44)
		3.30	5.49		0.072							2.47				530						(43, 54)
		0.24	7.13	812	0.050							3.95				700						(10, 43)
		2.34 4.16	6.71 8.20		0.053 0.127							4.21 4.43				352						(12)
	12	1.10	6.98	950	0.121							5.48				028						(6, 31, 43
			7.77	873		-						6.99										59) (31, 43)
		5.71	9.68		0.159							5.31			, ,	338						(31, 43, 54)
		0	8.37	1333	0.103							5.06	975		1.		10.	99*				(19, 58, 59)
			4.07	1086								4.88	720			596		1				(59)
	70)	4.66	5.94	1014	0.119																	(3)
	10	3.05	5.28	780	0.066							3.88										(8, 12)
0.520	0)	3.05	5.74	1043	0.059							3.78										(12)
		2.33	4.44	693	0.000							3.02			0.6	329						(12)
		3.08	5.13	754								2.68			0.6							(57)
		3.06	4.90	945								4.27			0.6	318						(57)
			<12.38	1079								4.56			>0.3		>4.	24*				(11)
		2.30	4.40	867								2.87				533						(57)
		4.09	8.07		0.110							4.71			0.9	932						(54)
		2.08	4.02	520	0.047							2.14			0.3	336						(54)
	25	1.93	4.33	647			1					3.01			>0.4	10						(57)
1.000	10	9.09	13.41	1434	0.318							9.70			0.7	71						(8, 12, 48, 55)
1.000	0)		8.33	1382	61																	(61)
			5.97	693								4.87			0.9	006						(10, 43)
	80	4.82	7.52	1045	0.127		10.17	1440	0.411	76	2,99	4.14	945	0.580	0.724	0.614	0.358	0.394	481	440	470	
	13	6.19	9.37	1265			11.47			58	3.74	5.81		0.865	0.949	0.875			617	390	528	62)
		4.13	4.81		0.126		1					5,36			0.4	73						(31, 43, 54)
		4.77	10.76 6.54	1303	0 110				1- 1			7.18			1.3							(10, 43)
	15	2.78	4.88	773	0.112							4.61			0.8	109						(54) (21)
	61	5.62	10.27	1582																		(21)
	14	6.40	11.32	1652										200		14						
	14	7.07	10.54			0.773					5,28	5.75	1203	1.043	0.976	0.833	0.536	0.651	639	508	544	
	17	2.46 2.65	3.75 5.20	787	0.064		1					2.76									İ	(12) (21)
	14	8.91	16.32	2030												0 1						(21)

1	2	3	4	5	6	7	8
169	Myristicaceae	Myristica irya, Gaertn.	Black Chuglam, Maloh	India		0.663	0.833‡
170	Myrsinaceae	Myrsine melanophlacos, R. Br.	Cape beech, Beukenhout, Magona	S. Africa		0.003	0.743
						.	ļ
171		Myrsine urvillei, A. DC.	Mapau	New Zealand			0.991‡
172	Myrtaceae	Angophora intermedia, DC.	Narrow-leaved apple	New South Wales,		1	0.929‡
173		Angophora lanceolata, Cav.	Smooth-barked apple	Queensland New South Wales,		1	0.962
		Tangopior Giornoscida, Com	binoom-baraca appie	Queensland			0.502
74		Angophora subvelutina, F. Muell.	Rough-barked apple	New South Wales,			0.769‡
75		Backhousia myrtifolia, Hook.	Grey myrtle	Queensland New South Wales.			1.042
				Queensland		į	
76		Eucalyptus accedens, Fitzg.	Powder bark	Australia		1	
77		Eucalyptus acerrula, Hook., f.	Red gum	Tasmania	_	1	1.026
78		Eucalyptus acmenioides, Schau.	White mahogany	New South Wales,	Green	0.757	
79		Proglamena amundalina Tahill	Plack normanyina	Queensland			0 000
80		Eucalyptus amygdalina, Labill.	Black peppermint	Tasmania			0.930
81		Eucalyptus andrewsi, J. H. M. Eucalyptus australiana, R. T. B. and	New England peppermint Narrow-leaved peppermint	New South Wales New South Wales.		ļ	0.8491
01		H. G. S.	Narrow-leaved peppermint	Victoria			0.7921
82		Eucalyptus beyeri, R. T. B.	Narrow-leaved ironbark	New South Wales		1	1.1461
83		Eucalyptus bicolor, A. Cunn.	Flooded box	New South Wales		1	1.021
84	1	Eucalyptus botryoides, Sm.	Bangalay, mahogany	Queensland, Victoria		1	1.013
85		Eucalyptus bridgesiana, R. T. B.	Apple, woolly-butt	New South Wales,		1	0.906
				Victoria		1	0.800
86		Eucalyptus calophylla, R. Br.	Marri, red gum	W. Australia	Green	0.659	1
			Transfer Sam		Air-dry	0.000	0.801
87		Eucalyptus campanulata, R. T. B. and	Stringybark	Australia			0.8331
		H. G. 8.					
88		Eucalyptus capitellata, 8m.	Brown stringybark	Australia		l	0.994
89		Eucalyptus citriodora, Hook., f.	Citron-scented gum	Queensland	1		0.930
90		Eucalyptus consideniana, J. H. M.	White ash	New South Wales			0.930
91		Eucalyptus cornuta, Labill.	Yate gum	W. Australia	Green	0.959	
92		Eucalyptus corymbosa, Sm.	Bloodwood	Australia	Air-dry		1.015 0.970
						1	
93		Eucalyptus corynocalyx, F. Muell.	Sugar gum	S. Australia		1	1.115
94		Eucalyptus crebra, F. Muell.	Narrow-leaved ironbark	Australia		1	1.120;
95		Eucalyptus delegatensis, R. T. B.	Southern Mountain ash, Tasman-	New South Wales,		1	0.657
			ian oak	Victoria, Tasmania	ļ	-	*
96		Eucalyptus diversicolor, F. Muell.	Karri	W. Australia	Green	0.749	
					Air-dry	ì	0.829
97		Eucalyptus dives, Schau.	Peppermint, messmate	Australia		ì	1.157
98		Eucalyptus drepanophylla, F. Muell.	Messmate, ironbark	Australia	١.		1.077
99		Eucalyptus eugenioides, Sieb.	White stringybark	E. Australia	Green	0.739	l
00		Eucalyptus fastigata, H. D. and J. H.	Stringybark	New South Wales,	1		0.898
		M.		Victoria	i		
01		Eucalyptus fergusoni, R. T. B.	Bloodwood ironbark	New South Wales			1.162
02		Eucalyptus stetcheri, R. T. B.	River box	New South Wales,	Į	i	1.066
03		Eucalyptus fraxinoides, H. D. and	White ash	Victoria New South Wales	1	1	0.722
		J. H. M.		The state of the s	1		****
04		Eucalyptus globulus, Labill.	Blue gum	India†	Green	0.676	
					Air-dry		0.806
				New South Wales,	Green	0.784	0 707
				Victoria, Tasmania	Air-dry		0.787
05		Eucalyptus gomphocephala, DC.	Tuart	S. W. Australia	Green	0.874	1
					Air-dry	1	0.972
06		Eucalyptus goniocalyx, F. Muell.	Mountain gum, grey gum	New South Wales,			0.915
	ı	Eucalyptus hemilampra, F. Muell.	Mehogeny	Victoria, S. Australia	i	1	1 050
07			Mahogany	New South Wales Australia	Green	0.754	1.058
		1 1	Gray how white how house has		Green	0.734	
		Eucalyptus hemiphloia, F. Muell.	Grey box, white box, brush box, gum- top box	7.430.44.14			
		1 1	, , , , , , , , , , , , , , , , , , , ,	1143444114	Air-drv		
		1 1	, , , , , , , , , , , , , , , , , , , ,		Air-dry Green	0.884	i İı
08		Bucalyptus hemiphloia, F. Muell.	top box		Air-dry Green	0.884	1,000
08		1 1	top box Bloodwood	New South Walcs S. W. Australia	Green		1.009
08		Eucalyptus hemiphloia, F. Muell. Eucalyptus intermedia, R. T. B.	top box	New South Walcs	Green Green	0.884 1.170‡	
08 09 10		Eucalyptus hemiphloia, F. Muell. Eucalyptus intermedia, R. T. B.	top box Bloodwood Red Tingle Tingle, stringybark	New South Wales S. W. Australia	Green		0.887
08 09 10		Eucalyptus hemiphloia, F. Muell. Eucalyptus intermedia, R. T. B. Eucalyptus jacksonii, J. H. M.	top box Bloodwood	New South Walcs	Green Green		0.887 0.802
08 09 10 11 12		Eucalyptus hemiphloia, F. Muell. Eucalyptus intermedia, R. T. B. Eucalyptus jacksonii, J. H. M. Eucalyptus laeropinea, R. T. B.	top box Bloodwood Red Tingle Tingle, stringybark Silvertop stringybark	New South Wales S. W. Australia Australia	Green Green		1.009: 0.887 0.802: 1.245: 1.163:
07 08 09 10 11 12 13		Eucalyptus hemiphloia, F. Muell. Eucalyptus intermedia, R. T. B. Eucalyptus jacksonii, J. H. M. Eucalyptus laevopinea, R. T. B. Eucalyptus largiforens, F. Muell.	top box Bloodwood Red Tingle Tingle, stringybark Silvertop stringybark Red box	New South Wales S. W. Australia Australia Australia	Green Green		0.887 0.802
08 09 10 11 12 13		Eucalyptus hemiphloia, F. Muell. Eucalyptus intermedia, R. T. B. Eucalyptus jacksonii, J. H. M. Eucalyptus laeropinea, R. T. B. Eucalyptus largiforens, F. Muell. Eucalyptus leucoxylon, F. Muell.	top box Bloodwood Red Tingle Tingle, stringybark Silvertop stringybark Red box Blue gum	New South Wales S. W. Australia Australia Australia S. Australia	Green Green Air-dry	1.170‡	0.887 0.802 1.245

^{*} Tension parallel to grain. † Not a native of this country.

[‡] Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	80]		11.68	1341								6.52			1.3	318						(10, 43)
	10	4.32	7.07	1089	0.103							4.34			0.	794						(8, 12, 55)
.780	0																			1		
		4.66	9.75		0.154																	(3)
			11.74	1585																		(61)
			9.53	1339							1											(61)
			0.00	1000																		
			6.91	1128																		(61)
		1 1																				(41)
			15.28	2120																		(61)
		8.47	10.20	1518																1.2		(20)
			8.46	2132																		(2)
	44		10.21	1550	0.167							6.28	1713		0.971	1.041	7.	39*				(2, 6, 24, 6
		1 1	7.18	1960																		(2)
		1 1	6.83	1017																		(2)
			10.02	1446								6.41	1557		1.	100	13.	79*				(2, 59)
			12.22 8.85	1562 1114								4.01	982			160	11	54*				(2)
			10.93	1468								4.99	875			160 613		25*				(2, 59)
			6.12	945								2100	0.0					1				(2)
	-																					200
	75 12	6.32	7.98	1265								4.66	873			506		56*				(2, 20)
	12	8.86	11.67 9.38	1820 1455								6.53	1389		0.	808	14.	20*				(2)
		1 1	0.00	1100																		. ,
			12.17	1588																		(2)
			8.69	1189																		(2, 24)
	32	8.93	12.48 11.74	1637 1617								4.69	999		0	879	12	85*				(2)
	12	11.95	15.12	1969								8.16	1336		1 2 2 2	178		02*				(-,)
		100	9.81	1408								6.97	1354			373		88*				(2, 6, 7, 2
																						52, 59)
			7.24	1144								4.18	718			526		61*				(59) (2, 24, 5
			12.25	1620								6.95	1536		1	540	12.	97*				59)
			9.55	1523																		(2)
	54	6.04	8.09	1230								3.87	926			533		25*				(2, 7, 20)
	12	9.53	12.16 11.30	1885								7.17 4.84	1425		0.	738		18*				(27)
			9.67	1245								1.01					11.					(24)
	39		11.22		0.172							5.70	1524		1.023	1.164	8.	61*				(2, 59, 60
			12.42	1987																		(2)
			15.94	2174												- 1						(2)
			8.40	931																		(2)
			0,20	100																	}	
			13.26	1782																		(2)
	*0	4 00	7 00	1400	0.000			1700	0 500	101	0 07	0.50	2000	0.501			0 400	0 001	001	500		/201
	52 13	8.00	7.93 12.79		0.082		12.45 16.24		0.508 0.602			3.59 5.83	2300	0.591	0.875	1.002 1.532	0.422	0.661	601 756		542	(38)
	42	6.22	8.47	1652				2004	2.002	130	3,10	3.99	1231			728		07*	, 50	302	550	(2, 7, 20, 5
	12	10.54	11.99	2355								6.24	1793			946		14*				56, 59)
	43	6.54	8.30	1146								4.91	1261			382		35*				(2, 7, 20)
	12	11.18	12.58 10.92	1800 1402								7.49 5.11	1332 1072			925 314		60* 49*				(2, 59)
				102								3.11	1012		1.0		0.	1				
			11.50	1608																		(2)
	70	7.16	8.79	1406								4.50	1300		0.8	591	9.	77*				(2, 20, 2
	12	10.68	11.38	1898								6 22	1070			750		53*				59)
	30	10.08	12.97		0.248							6.33	1673 1794		0.7	1.315		78*				(60)
			11.92	1679								5.00	2.02		1.102	2.010						(2)
		6.28	8.51	1311	1							4,36			0.6			21*				(20)
	12	10.39	12.78	2063					*			7.21			0.9	14	11.	03*				
			7.13	914									010			72	10	578				(2)
			9.96 11.71	1146 1705								5.57 6.59	819 1322		1.2			57* 57*				(7, 58, 59)
	30	8.16	10.97	1512								5.52	1287		0.8			38*				(20)
	12	8.61	11.88	1687								7.81	1413		0.8			65*				
	40		11.51		0.207								1652			1.172	14.					(2, 58, 5

1	2	3	4	5	6	7	8
516		Eucalyptus loxophleba, Benth.	York gum	W. Australia	Green	0.949	
		l			Air-dry		0.958
517		Eucalyptus macrorhyncha, F. Muell.	Red stringybark	E. Australia	_		0.877
518		Eucalyptus maculata, Hook., f.	Spotted gum	New South Wales,	Green	0.726	
				Queensland		1	
- 1					Air-dry		0.715?
519		Eucalyptus marginata, Sm.	Jarrah, West Australian mahogany	W. Australia	Green	0.727	
1					Air-dry		0.787
520		Eucalyptus media, Link.	Blackbutt	Australia	1		0.9291
521		Eucalyptus microcorys, F. Muell.	Tallowwood	New South Wales,	Green	0.834	
- 1		l		Queensland			
- 1					A:- a	1 1	0.000
522		Eucalyptus microtheca, F. Muell.	Coolibah	W. Australia	Air-dry Air-dry		0.8301 1.271
523		Eucalyptus muelleriana, A. W. Howitt	Yellow stringybark	Victoria	An-dry]	1.170
524		Eucalyptus nanglei, R. T. B.	Pink ironbark	Australia	1		1.106
525		Eucalyptus nitens, J. H. M.	Scrub box, silvertop gum	New South Wales.		i	1.127
020		Ducuspius miens, s. 11. N1.	berub box, savertop gam	Victoria			1.121
526		Eucalyptus obliqua, L'Hér	Stringybark	Australia, Tasmania	Green	0.605	
					Air-dry	1 1	0.6017
527		Eucalyptus paniculata, Sm.	Grey ironbark	Australia	Green	0.905	
528		Eucalyptus paniculata, Sm. and Euca-	Ironbark	New South Wales,	Green	0.915	
- 1		lyptus crebra, F. Muell.		Queensland	Air-dry	1 1	0.915
529		Eucalyptus patens, Benth.	Blackbutt	W. Australia	Green	0.687	
			l		Air-dry	1 1	0.772
530		Eucalyptus patentinervis, R. T. B.	Mahogany	New South Wales		1 1	1.058
531		Eucalyptus pellita, F. Muell.	Mahogany	Queensland		1 1	0.9941
532		Eucalyptus phellandra	Messmate	Australia E. Australia	_		0.7381
533		Eucalyptus pilularis, Sm.	Blackbutt	E. Australia	Green	0.755	
					}	1	
534		Eucalyptus piperita, Sm.	Sydney peppermint	E. Australia	l		0.918
535		Eucalyptus planchoniana, F. Muell.	Tallow-wood	New South Wales,	1		0.977
				Queensland			
536		Eucalyptus platyphylla, F. Muell.	Poplar gum	Australia			1.111
537		Eucalyptus polyanthemos, Schau.	Red box	New South Wales,			1.0861
				Victoria		1	
538		Eucalyptus propinqua, H. D. and J.	Grey gum	New South Wales,	Green	0.742	
		Н. М.		Queensland	Air-dry	1 1	0.730?
539		Eucalyptus punctata, D. C.	Grey gum	New South Wales,	Green	0.867	
		n	m	Queensland	1		
540		Eucalyptus raveretiana, F. Muell.	Thoset's box, iron gum tree	Queensland W. Australia		0.000	1.133‡
541		Eucalyptus redunca, Schau.	Wandoo, white gum	W. Australia	Green	0.989	1.015
542		Eucalyptus regnans, F. Muell.	Giant gum, swamp gum	Victoria, Tasmania	Air-dry Green	0.594	1.013
042		Bucutypeas regnans, 1. Macin	Ciant gum, swamp gum	Victoria, Lasmania	Air-dry	0.384	0.587?
543		Eucalyptus resinifera, Sm.	Red mahogany, forest mahogany	New South Wales,	Green	0.812	0.0011
		Zucary pour / com (cr. a)	Trock managemy, rottest managemy	Queensland	0.00	0.012	
					Air-dry		0.802?
544		Eucalyptus robusta, Sm.	Swamp mahogany	E. Australia			0.913‡
545		Eucalyptus rostrata, Schl.	Murray red gum	E. Australia	Green	0.712	•
					Air-dry		0.701?
546		Eucalyptus saligna, Sm.	Blue flooded gum, Sydney blue gum	New South Wales,	Green	0.681	
				Queensland	١	1 1	
		Eucalyptus saligna, Sm. var. pallidi-	Flooded aum	Name Canal W. 1	Air-dry		0.6727
547			Flooded gum	New South Wales			0.802
548		ralvis, R. T. B. and H. G. S. Eucalyptus salmonophloia, F. Muell.	Salmon gum	W. Australia	Green	0.897	
010		Dacas peas satisono piaota, 1. Mateix	Common Britis	··· Australia	Air-dry	0.091	0.944
549		Eucalyptus siderophloia, Benth.	Broad-leaved ironbark, red ironbark	New South Wales,	'in-ary	1 1	1.161
		=		Queensland			
550		Eucalyptus sieberiana, F. Muell.	Mountain ash	Australia	Green	0.771	
551		Eucalyptus squamosa, H. D. and J.	Ironwood, scaly-barked red gum	New South Wales			1.090‡
		н. м.		1			•
552		Eucalyptus stuartiana, F. Muell.	Messmate, apple of Victoria	Victoria			1.208‡
553		Eucalyptus tereticornis, Sm.	Forest red gum	E. Australia		1 1	1.082
554		Eucalyptus terminalis, F. Muell.	Pale bloodwood	Australia		1 1	1.158‡
555		Eucalyptus tesselaris, F. Muell.	Carbeen, Moreton Bay ash	S. Australia, N. S. W.		1 1	1.142
				Victoria, Tasmania			
556		Eucalyptus viminalis, Labill.	Ribbony gum, manna gum	Australia		1 1	0.974
557		Eucalyptus virgata, Sieb.	Mountain ash	Australia			0.877
- 1		1	(Ironbark	Tasmania S		1 1	
558		Eucalyptus wilkinsoniana, R. T. B.	Small-leaved stringy-bark	New South Wales		1 1	0.882‡
559		Eugenia brachyandra, J. H. M. and E. B.	Red apple	Australia		1	0.593‡
1		Eugenia coolminiana, C. Moore	Coolamon	New South Wales			0.738‡
560							

^{*} Tension parallel to grain.

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	30 12	7.03	8.59 10.19	1054 1265								5.38	861			802		02*	1			(20)
	12	7.73	9.80	1373								6.96 6.23	833 1598			900 498	9	14*				(2, 59)
	61	6.82	8.71	1442								4.08	1167			647	10	95*				(2, 6, 20, 24,
													12.01			1		1				52, 58, 59,
																						60)
	12 50	10.54 5.83	11.32 7.45	1968 1019								5.52 4.39	1863 939			668		57*				(2, 20)
	12	7.24	10.54	1462								6.36	1050			661 738		90*				(2, 20)
		8.24	12.83		0.272							0.00	1000		٠.		10	1				(3)
	48	7.59	9.14	1374								4.22			0.	633	9	84*				(2, 6, 20, 24,
																						52, 58, 59, 60)
	12	10.68	12.02	1793								5.62			0.	746	11	60*				
	13	8.40	10.06	1181	0.313	0.512					5.42	6.98	1185	4.07	1.905	2.341		47*	1700	1670	1930	
			11.23 13.72	1912								5.75					10	54*				(27)
			9.99	1912								5.54					12	75*				(2)
			0.00									0.01					12					()
	72	4.92	6.61	1195								3.27	1090		0.	577	9	42*				(2, 3, 20, 27,
	12	10.97	11.74	2548								0	1070			004		00+	0.00			51, 59)
	24	10.97	12.48		0.213							5.59 6.62	1673 1645			984 1.376		.62* .86*				(2, 6, 59, 60)
	40	8.75	10.26	1530								5.45				787		54*				(20)
	12	13.00	13.64	2390								7.80	70.00		i	984		.07*				
	61	5.62 7.73	7.38 9.98	1160 1406								3.58	876 927		1000	626 795		.31*				(20)
	12	1.10	10.04	1403								0.94	941		0.	193	11					(2)
			7.13	1004																		(2)
	00		9.86	1100	0 100																	(61)
	33		11.08	1634	0.198							6.06	1498		1.052	1.157	11	35*				(2, 6, 7, 24, 52, 58, 59,
																					2	60)
			9.80	1653								4.62	1258		1.	365	13	.63*				(2, 58)
	1		14.12	1912																		(2)
			11.16	1182		X.																(24)
			11.39	1943								5.99	1648		1.	259	15	76*				(58, 59)
																1						
	64	6.54	8.02	1237								4.96	1054			619		.65*				(6, 20)
	12 33	10.48	11.24 11.22	1968	0.190							$5.91 \\ 6.32$	1371 1504			731 1.257		.23*				(2, 60)
	90		11.22	1020	0.100							0.02	1001		1,10	1.201	10					(-,)
			8.36	869									1					1				(24)
	28 12	8.26 9.60	9.84 11.32	1300 1539								5.85 7.63	1188 1231			809 921		.09*				(20)
	70	4.29	6.15	1265								2.95	1231			492		54*				(2, 20)
	12	9.00	10.19	2320								5.06				738		63*				, ,
	52	7.86	9.28	1371								4.31			0.	647	10	90*				(2, 6, 20, 24,
	12	10.19	11.60	1897								6.01			0	689	14	34*				49, 58, 60)
	1	10.20	9.18	1388								5.02	1207			100		82*	1			(2, 58, 59)
	40	3.58	4.78	521								2.64			0.	710	4	.98*				(2, 20, 59)
	12 67	6.75	7.31 8.22	990 1301								3.80	1090			027		29*				(2, 20, 24,
	01	0.00	0.22	1301								4.39	1090		0.	619		.87*				58, 59, 60)
	12	10.90	11.39	1877								6.01	1850		0.	773		29*		-		
			12.92	1822														1				(2)
	25	8.86	11.60	1477								5.69	910		0	851	11	.88*				(20)
	12	10.54	14.13	1758								7.52	1054			336	1	50*				()
			12.18	1649								5.83	1170			112		.33*				(2, 24, 52,
	34		12.24	1050	0 177								1004		0 -10	0 700		004				59)
	04		4.47	641	0.177							5.67	1234		0.540	0.586	9	80*				(2, 60) (2)
				0.11																1		(-)
			5.72	722																		(24)
			10.44	1292								6.09	1286		1.	433	10	72*				(2, 24, 59)
			10.62 10.03	1134 1028																		(24)
				1020														-				()
			8.30	1262								3.92	875			936		32*	1			(2, 27, 59)
			8.76	1481								5,32	1268		1.	483	12	24*				(2, 58, 59)
			13.58	1793		4		-														(2)
			8.04	1193																		(61)
			0.00	100																		(0)
		2.18	8.26 5.58	1307	0.032							3.79										(2)

1	2	3	4	5	6	7	8
62		Eugenia cotinifolia, Jacq.	Clou	Mauritius			0.978‡
33		Eugenia jambolana, Lam.	Jaman, black plum, Thabye	India			0.769‡
4		Eugenia maire, A. Cunn.	Maire	New Zealand	ł	i	0.790
5		Eugenia maire, A. Cunn. var. ?	Black Maire	New Zealand			1.1591
			Kelat	Fed. Malay States	Air day		0.689
6		Eugenia ridleyi, King.	-		Air-dry	1	
7		Eugenia sp.	Pomme	Mauritius			0.5471
8		Leptospermum ericoides, A. Rich.	Manuka, tea tree	New Zealand			0.943
9		Melaleuca maideni, R. T. B.	Bellbowrie tea tree	Queensland	1		0.7541
0		Melaleuca styphelioides, Sm.	Prickly-leaved tea tree	New South Wales,			1.074;
			-	Queensland			
1		Metrosideros robusta, A. Cunn.	Northern Rata	New Zealand			1.045
2		Planchonia andamanica, King.	Red Bambwe	India			1
				New South Wales			0.017
3		Rhodamnia argentea, Benth.	Silver myrtle		_		0.817
4		Syncarpia laurifalia, Ten.	Turpentine	New South Wales	Green	0.672	
				l			0.070
					Air-dry		0.672
5		Tristania conferta, R. Br.	Brush box	N. Australia, New	Green	0.738	ì
				South Wales			
				i	Air-dry		0.7301
6		Tristania laurina, R. Br.	Water gum	E. Australia			0.962
7		•	•	New South Wales		1	0.905
	۱.,	Tristania suaveolens, Sm.	Swamp mahogany	1	١	1	
8	Ochnaceae	Lophira procera, A. Chev.	Ironwood, Kaku, Ekki	W. Africa	Air-dry	1	0.930
9	Olacaceae	Scorodocarpus borneënsis, Becc.	Kulim	Fed. Malay States	Air-dry		0.737
0		Strombosia javanica, Bl.	Dedali	Fed. Malay States	Green	0.593	1
1	Oleaceae	Frazinus excelsior, Linn.	Ash	British Isles	Air-dry	1	1
2	· · · · · · · · · · · · · · · · · · ·	Noronhia broomeana, Horne	Sandal	Mauritius			0.891
3		1		New South Wales.	I	1	1
3		Notelaea ligustrina, Vent.	Silkwood	1		1	1.043
			l	Victoria, Tasmania	1	1	I .
4		Olea foreolata, E. Mey.	Bastard ironwood, Ijserhout, Maro-	S. Africa	1	1	1.010
			chani	1	1	1	l
5		Olea hochstetteri, Baker	Musharagi	E. Africa	Air-dry		0.825
		,		[0.802	1
6		Olea laurifolia, Lam.	Black ironwood, Regte Zwarte Ijser-	S. Africa	1.	1 5.552	0.897
•	1	otes tourijous, Laill.	I		1	11	5.051
_		la	hout, Igqwanxe	0.44	I	Y	
7		Olea verrucosa, Link.	Wild olive, Olyvenhout, um-Ngquma	S. Africa	1	i	1.122
8	Oliniaceae	Olinia cymosa, Thunb.	Mountain hard pear, red berry, Sat-	S. Africa		l l	0.890
			yobe		I	1	I
9	Palmae	Borassus flabellifer, Linn.	Tal, Tan, The Toddy, Palmyra palm	India	1		0.802
-	Pinaceae, v. Coni		, , _ = = = = = = = , = = = , = , = = , = = , = = , = = , = = , = = , = = , = = , = = , = = , = = , = = , = =	l .	1	1	
^		•	Neting hor	Australia	1	1	0.07-
0	Pittosporaceae	Bursaria spinosa, Cav.	Native box	Australia			0.871
1		Bursaria spinosa, Cav. var. ?	Prickly box	Australia		ì	0.922
2		Pittosporum tenuifolium, Gaertn.	Birch, Mapau	New Zealand		1	0.965
3	Proteaceae	Banksia integrifolia, Linn.	White honeysuckle	Australia		Ĭ	0.577
4		Banksia serrata, Linn.	Red honeysuckle	Australia		-	0.802
5			River Banksia	W. Australia	Green	0.473	0.501
		Banksia verticillata, R. Br.		1	Green	0.413	1
6		Embothrium wickhami, Hill and F.	Satin silky oak	Australia		l	0.529
		Muell.					1
7		Grevillea hilliana, F. Muell.	Red silky oak	New South Wales,	ł	1	0.994
		· ·		Queensland	1	1 .	1
8		Grevillea robusta, A. Cunn.	Silky oak	Australia	1	1	0.641
			1 -	New Zealand	1	1	
9		Knightia ezcelsa, R. Br.	Honeysuckle, Rewa Rewa		1		0.785
0		Orites excelsa, R. Br.	Silky oak	Australia	I		0.593
1		Stenocarpus salignus, R. Br.	Beef wood	New South Wales,	1	1	0.817
				Queensland	I	1	j .
2		Stenocarpus sinuatus, Endl.	Fire-tree	Australia	l		0.738
3		Xylomelum occidentale, R. Br.	Native pear	W. Australia	Green	0.628	0.658
•		and the same of the same same same same same same same sam	pour			0.020	•
		1	ln , ,	10	I		(12 % M.
4	Rhamnaceae	Alphitonia excelsa, Reiss.	Red ash	Queensland	l		0.737
5		Emmenosperma alphitonioides, F.	Bone-wood	New South Wales,	1	1	0.849
		Muell.	l,	Queensland	l	1	ĺ
			ľ		\ 1	0.806	1
6		Rhamnus zeyheri, Sond.	Red ivory, um-Nini, Niere	S. Africa] {		0.925
-					, 1		0.020
7		Ziannikus inisia - Yam	Tuinka Anna III	India	Ι '	·	0.50
7		Zizyphus jujuba, Lam.	Jujube tree, Hauthai, Bér, Bogri	India	l	1	0.784
	Rhizophoraceae	Anisophyllea laurina, R. Br.	Monkey apple	W. Africa	Air-dry	1	0.708
		Bruguiera gymnorrhiza, Lam.	Bakau Minyak	Fed. Malay States	Green	0.937	
8		Bruguiera rheedii, Bl.	Black or red mangrove	Australia	l	1	0.865
8 9 0	1	Carallia calycina, Benth.	Ubberiya	Ceylon	1		0.909
8 9 0		1	I		1		I .
8 9 0 1		Carallia integerrima, DC.	Dawata, Kierpa, Maniawga, Andi	Ceylon	l .	1	0.749
8 9 0 1 2			Musaisi	E. Africa	1	i	0.685
8 9 0 1 2		Weihea africana, Benth.		1	Air-dry	1	0.610
8 9 0 1 2	Rosaceas			S. Africa	All-uly		
8 9 0 1 2 3	Rosaceas	Weihea africana, Benth. Leucosidea sericea, Eckl. and Zeyh.	Oudehout, Dwa-dwa, um-Chicki			0.729	
8 9 0 1 2 3	Rosaceas	Weihea africana, Benth.		S. Africa Fed. Malay States	Green	0.729	
8 9 0 1 2 3	Rosaceas	Weihea africana, Benth. Leucosidea sericea, Eckl. and Zeyh.	Oudehout, Dwa-dwa, um-Chicki				
8 9 0 1 2 3	Rosaceas	Weihea africana, Benth. Leucosidea sericea, Eckl. and Zeyh.	Oudehout, Dwa-dwa, um-Chicki	Fed. Malay States	Green	0.729	
8 9 0 1 2	Rosaceas	Weihea africana, Benth. Leucosidea sericea, Eckl. and Zeyh.	Oudehout, Dwa-dwa, um-Chicki		Green		0.845
8 9 1 1 2 3 4	Rosaceas	Weihea africana, Benth. Leucosidea sericea, Eckl. and Zeyh. Parinarium sp.	Oudehout, Dwa-dwa, um-Chicki Muntelor . Bitter almond, red stinkwood, Dumi-	Fed. Malay States	Green		0.845
8 9 0 1 1 2 3 4 5	Rosaceas Rubiaceae	Weihea africana, Benth. Leucosidea sericea, Eckl. and Zeyh. Parinarium sp.	Oudehout, Dwa-dwa, um-Chicki Muntelor	Fed. Malay States	Green		0.845

^{*} Tension parallel to grain.

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		5.38	16.77	1549								7.05			1.	381	1	1				
	1		7.59	839								6.21										(31, 43)
		5.36	9.09	861	0.199																	(3, 28)
	1	9.77	15.90	1327	0.413																	(3)
	16	5.64	11.57	1976																		(21)
		3.95	6.64	756								3.97			0.	695						(63)
	1	5.82	12.10	1164	0.165																	(3)
			6.99	899																		(61)
		1 1	11.26	1367																		(61)
		4 71	9.92	1100	0 120																	(3)
		4.71	8.26	1188	0.139							3.85			1	378						(9)
			12.15	1416								0.00			1.	1						(61)
	74	5.83	7.33	1195								3.98	984		0	548	8	43*				(2, 6, 20, 24,
		0.00	1,00	1130								0.00	001		0.	1		1				58, 59, 60)
	12	9.70	10.41	1652								5.38	1364		0.	766	11	74*				
	65	6.47	7.91	1143								3.48				633		04*				(2, 20, 24,
																		1				60)
	12	10.33	11.04	1743								5.20			0.	843	11.	74*				
			9.56	1458																		(61)
	15.		7.54	827																		(2, 24)
	17	9.73	16.08	1919	0.250	2.355					5.96	7.35	1921	1.701	1.640	1.863	0.861	1.324	1952	1727	1727	(11, 18)
	16	4.57	8.41	1336																		(21)
	40	3.94	7.83	1336																		(21)
0.55 - 0.78		3.76	11.53	1287								5.86										(5)
		6.44	10.18	1300								6.26			0.	324						(63)
		5.67	13.15	1099	0.184																	(3)
		5.46	9.79	1613	0.109							7.08										(12)
			0.47									7 10				000						(22)
	14		6.47									7.46		9	0.	682						(22)
	50 10	6.66	11.45	1400	0.183							7.16			0	769						(8, 12, 48,
0.940	0	0.00	11.40	1400	0.165							7.10			0.	109						55)
0.940	0)	4.45	10.07	1116	0.100							6.47			1	258						(12)
		3.92	8.18		0.111							5.70				958						(8, 12, 55)
	111	0.02	0.10	1.11								0			0.	1						,
			11.12	1490								8.36										(31, 43)
				1														1				
		5.06	9.56	972	0.152																	(3)
		6.33	12.02		0.223																	(3)
		6.33	12.30	1045	0.212																	(3)
			5.67	752																		(61)
			9.54	1168																		(61)
	100	5.12	7.24	807											0.	773	5	62*				(20)
	1		8.01	831												1		1				(61)
	10 .			1																		
		2 1	13.52	1963																		(2, 61)
	1 100					(
			10.44	1208																		(61)
		4.71	8.15		0.134																	(3)
		15.2	7.24	1003																		(61)
		3	12.40	1554																		(61)
			11.43	908																		(61)
	43	4.57	5.39	594											0.	647	4.	92*				(20)
			10.71	1.000																		(61)
			10.74	1222											+							(61)
			15.38	1723		J. 1																(2, 61)
	60											,										
	10	4.69	9.86	1959	0.098							9.56										(12)
0.970	0	1.00	0.00	1202	0.000							0.00										()
0.810	0,	4.11	5.48	672	0.140	1.1						4.37			0	713						(54)
	15	6.97	9.26			0.668					3.73	4.49	1279	1.272	0.797							(17)
	20	7.03	14.23	2390							3.1.5		12.0									(21)
			9.38	1620		17																(61)
		4.03	7.09		0.079							5.40			0	750						(54)
		3.76	7.82		0.085							5.31				001						(45, 54)
	11		14.20	200		di l						6.40				745						(22)
		1.64	4.15	323	0.046							3.56										(12)
1	32	4.08	9.13	1518								-1-3										(21)
1	17	5.56	10.74	1630																		
	50					10																
	10	2.99	7.48	786	0.065							5.32			0.	984						(8, 12, 22)
0.870	0)																					
			7.75	990								7.34										(31, 43)
		5.53	8.84	1159							1 1	4.63			1 1	048	1	1		1		(63)

1	2	3	4	5	6	7	8
19		Mitragyna macrophylla, Hiern.	Subaha, Ya-ya, Abura	W. Africa	Air-dry		0.503
20		Plectronia mundtii, Poepp.	Rock alder, Klip Esse, Sandulane	S. Africa			0.830
21		Sarcocephalus esculentus, Afsel.	Opepe, Kusiaba	W. Africa		1 1	0.806
22	Rutaceae	Acronychia baueri, Schott.	Brush ash	New South Wales,		1	0.849
- 1				Queensland			
23		Calodendron capense, Thunb.	Wild chestnut, Kastanjehout, Moeh-	S. Africa		1	0.620
_			akalela, um-Baba			1 1	
24		Clausena inaequalis, Benth.	um-Nukambiba	S. Africa			0.800
5		Flindersia acuminata	Putt's pine	Australia		1 1	0.577
6		Flindersia australis, R. Br.	Colonial teak, crow's ash	New South Wales,	Green	0.747	0.011
٦ ١		Tithatista australis, It. Di.	Colonial teak, clow s asi	Queensland	Green.	9.111	
7		Flindensia kannettiana E Musli	She-teak	New South Wales,		1 1	0.850
'		Flindersia bennettiana, F. Muell.	SHE-(CAR	Queensland			0.000
ا ہ		mind of the state of the part of the state o	0	•			0.000
8		Flindersia chatawaiana, F. M. Bailey	Queensland maple	Queensland			0.689
9		Flindersia ifflaiana, F. Muell.	Cairn's hickory, Queensland hickory	Queensland			0.928
0		Flindersia oxleyana, F. Muell.	Long jack	New South Wales,			0.737
.				Queensland			
1		Murraya exotica, Linn.	Satinwood, Marchula	India	Ι,		0.994
		Į			1	0.715	
2		Toddalia lanceolata, Lam.	White ironwood, Maroogoo, um-Zani	S. Africa	1 {	1	0.787
		İ			l (
3		Xanthoxylum thunbergii, DC.	Knobthorn, Knopjsedoorn, um-Nun-	S. Africa	l `		0.940
- 1		1	gumabele				
4	Salicaceae	Populus spp.	Poplar	British Isles	Air-dry		
5		Solix caprea, Linn.	Willow	British Isles			0.490
8	Sapindaceae	Alectryon excelsum. Gaertn.	Titoki	New Zealand	1	1	0.916
	soprauceae					1	
7		Allophyllus zeylanicus, Linn.	in-Quala	S. Africa			0.750
3		Blighia sp.	Ukpe-Nikwi	W. Africa			1.148
9		Cupania anacardioides, A. Rich.	Carrot-wood, Tuckeroo	New South Wales,			0.833
				Queensland			
0		Diploglottis cunninghamii, Hook., f.	Native tamarind	New South Wales,			0.641
- 1			1	Queensland			
1		Harpullia pendula, Planch.	Tulip wood	New South Wales,			0.930
				Queensland			
2		Hippobromus alata, Eckl. and Zeyh.	Paardepis, Ulwatile, u-Qume	S. Africa			0.990
3		Ratonia tenax, Benth.	Brush teak	New South Wales,		1	0.738
۱ ۲		nasonia tenaz, Benth.	Di don (Car	Queensland		1	0.100
ا ،		Camindon Anidalisatus Timo	Saamus Disha	· ·		1	1 000
4	~ .	Sapindus trifoliatus, Linn.	Soapnut, Ritha	India			1.026
5	Sapotaceae	Bassia sp.	Belian	Fed. Malay States	Air-dry		0.904
В		Dichopsis petiolaris, Thw.	Tawenna	Ceylon		1	0.739
7		Dichopsis sp.	Mai-aug	Fed. Malay States	Air-dry	1 1	0.612
- 1			Nyatoh	Fed. Malay States	Air-dry	l i	0.569
8		Imbricaria maxima, Poir.	Natte	Mauritius			0.848
9		Mimusops caffra, E. Mey.	Red milkwood, Cholc, um-Tunzi	S. Africa	ľ		0.850
0		Mimusops elengi, Linn.	Bukal, Mulsari, Kaya	India			0.961
1		Mimusops littoralis, Kurz.	Andaman bullet-wood, Dogala,	India		1 !	1.058
- 1			Mowha, Katpali			1	
2		Mimusops obovata, Sond.	Red milkwood, um-Tunzi, Amasetole	S. Africa			0.910
3		Mimusops sp.	Baku	W. Africa	Air-dry		0.623
,		Payena utilis, Ridl.	Belian, Betis	Fed. Malay States	Air-dry		1.002
*		Sideroxylon grandiflorum, A. DC.	Tambalacoque	Mauritius	Au-ury	1	
			I	l			0.883
6		Sideroxylon inerme, Linn.	White milkwood, Witte Mclkhout,	S. Africa		1	0.990
_		.	um-Qwashu	l]	
7	Saxifragaceae	Anopterus glandulosus, Labill.	Native laurel	Australia			0.750
8		Carpodetus serratus, Forst.	White Mapau	New Zealand	1		0.822
9	Scrophulariaceae	Halleria lucida, Linn.	um-Binza	S. Africa			0.910
)	Sonneratiaceae	Duabanga sonneratioides, Ham.	Kokan, Lampatia	India	Air-dry		0.461
1		Sonneratia sp.	Perepat	Fed. Malay States	Green	0.657	
2	Sterculiaceae	Commersonia echinata, Forst.	Kurrajong	Australia	ł		0.465
3		Dombeya mastersii, Hook.	Mukao	E. Africa	Air-dry	1 1	0.527
4		Heritiera fomes, Buch.	Sundri, Pinlékanaso, Mawldá	India			1.074
5		Heritiera littoralis, Dryand.	Looking-glass tree, Chomuntri, Sun-	Ceylon			1.209
۱ ۱		110 moore seed asse, Diyanu.	dri, Pinlékanazo	00,101	1		1.208
ا ہ		Demandary and the T	I :	C1	l		0.440
6		Pterospermum suberifolium, Lam.	Vuinauku, Vincol	Ceylon			0.648
7		Sterculia tragacantha, Lindl.	Okoko	W. Africa	l		0.822
3		Tarrietia trifoliolata, F. Muell.	Stavewood	Australia	Air-dry		0.838
9		Tarrietia utilis, Hiern.	Attabini, Niankuma	W. Africa	Air-dry]	0.497
0		Triplochiton johnsoni, C. H. Wright	Owawa, Obeche, Arere	W. Africa	Oven-dry	1	
1	Symplocaceae	Symplocos grandiflora, Wall.	Bumroti, Most soom	India	1		
2	Tiliaceae	Berria ammonilla, Roxb.	Halmilla, Petwun, Trincomalee wood	Ceylon	ļ		0.801
3		Echinocarpus australis, Benth.	Maiden's blush	Australia	l		0.513
			I				
4		Entelea arborescens, R. Br.	Corkwood Kruishasia um Nachasa	New Zealand	1		0.189
5	***	Grewia occidentalis, Linn.	Kruisbesje, um-Nqabaza	S. Africa			0.730
В	Ulmaceae	Aphananthe philippinensis, Planch.	Native elm, Australian hickory	Queensland, New	1		0.737
			1	South Wales			
		[l l	0.636	
		Celtis rhamnifolia, Prest.	Kamdeboo, stinkhout, um-Vumvu,	S. Africa		1	0.699
7							

^{*} Tension parallel to grain

‡ Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

1		11	12	13	14	15	16	17	18	10	20	21	22	23	24	25	26	27	28	29	30	31
	12	5.45 3.16	7.21 7.53 11.34 13.88		0.145 0.057	0.618					3.41	3.92 5.89 5.72	919	0.628	0.717 > 0.5			0.812 42*	553	390	376	(18) (12) (11) (61)
		3.52	7.53	855	0.091							4.30										(12)
		4.34	7.89 8.84	1044 1268	0.101							5.84										(12) (61)
	25		8.10	1145	0.136							5,34	1113		0.992	1.043	14.	42*				(2, 6, 52, 5 59, 60) (2, 61)
			14.82	1888																		
			10.19 11.42 13.33	1466 1550 1645																		(61) (24) (2,61)
			10.80	1228								7.51			2.1	162						(10, 43)
	10	5.48	11,58	1230	0.148							6.49										(8, 12, 48)
0.820	0]	3.66	8.03	1139	0.071	-						5.05										(12)
0.48		2.10	7.73	928								4.00										(5)
		5.87	12.56	832 1113	0.173							3.24										(19) (3)
		5.16 5.83	9.61 9.14 12.96	1146 1273 1684	0.127							5.71 5.06			0.8	831						(12) (57) (61)
			9.79	1363																		(2, 61)
			12.87	1711																		(2, 61)
		4.45	8.31 6.45	1005 1163	0.112							6.15										(12) (61)
			8.38	992								6.37			2.0	075						(10, 43)
	19	5.69 3.41	12.99 5.67		0.048							5.44			0.3	762						(21) (54)
	15 17	3.30 5.02	9.53 8.66	1687 1434																		(21)
		4.96 3.40	11.52 6.70		0.078							6.28 5.51				878						(63) (12)
			16.35 8.53	1697 1008								7.89 5.42				095 101						(10, 43) (10, 43)
	13	2.58 5.99	8.62 8.72	987		0.677					3.44	4.62 4.17	1008	1.182	1.205	1.084	0.736	0.717	692	592	634	
	17	9.97 7.03	16.80 14.82	2475 1756								6.55			1.0	019						(63)
-		2.82	8.06		0.046			-				4.41										(12)
		4.20 4.05	8.98	810	0.177 0.127							2.00										(3) (12)
	11	3.91	9.38 5.97		0.071							6.00 5.26			1.0	003						(33)
	25	4.57	9.29 6.72	1343 843												100						(61) (22)
	10		5.42 12.60	1131								4.92 <20.48				408						(31, 43)
4		5.65	10.18		0.144							4.62	1			937						(54)
		3.08	6.69 7.47	1389	0.074		-					3.05	0		>0.	647						(57) (6, 24)
	18 12	5.52	9.84-11.82 7.58		0.172	0.569					3.52			0.739	0.880	0.885	0.576	0.646	383	365	401	(18)
0.430	9		4.22	1069 515								4.85 2.72				849						(19)
		6.21	10.87 6.68	1230 870	0.168							5.42			0	584						(43, 54) (61)
		6.58 3.52	1.62 8.56 9.78	200	0.013							6.03										(3) (12) (61)
	60 10	4.04	8.32		0.082							5,54										(8, 12)

1	1 2	3	4	5	6	7	8
678	Ĭ	Chaetachme aristata, Planch.	um-Kovoti	S. Africa		1	0.780‡
679		Trema guineensis, Priemer	Pigeon wood, um-Bengele	S. Africa		1 1	0.450
680		Ulmus app.	Elm	British Isles	Air-dry	1 1	
681	Umbelliferae	Heteromorpha arborescens, Cham. and Schl.	um-Bangandhlala	S. Africa			0.870‡
682	Urticaceae	Villebrunea integrifolia, Gaud.	Ban kotkora, Lipic	India	1	1 1	
683	Verbenaceae	Avicennia officinalis, Linn.	Grey mangrove	Australia			0.849‡
684		Clerodendron glabrum, E. Mey.	um-Qwaqwana	S. Africa	ŀ	1 1	0.690‡
685		Gmelina arborea, Roxb.	Yamane, Gamhar	India	1	1 1	0.577‡
686		Gmelina leichhardtii, F. Muell.	White beech	Australia			0.787‡
687		Tectona grandis, Linn., f.	Teak, Sáka, Sáj, Ságun	India	Green	0.581	
	ļ.				Air-dry		0.582
					Oven-dry		
688		Vitex altissima, Linn.	Milla, Nemili-adagu, Maila	India	1	1	0.9771

^{*}Tension parallel to grain. : Bulk density calculated from weight and volume at time of test, no determination of moisture content having been made.

LITERATURE

(For a key to the periodicals see end of volume)

- Australia, Minister for Lands and Agriculture, Notes re Timbers of Western Australia suitable for Railways, Engineering Works and Constructional Purposes Generally, Perth, 1906.
 Baker, Hardwoods of Australia and their Economics, Sydney, Gullick, Gov't printer, 1919.
 Balfour, Results of a Series of Experiments on the Strength of New Zealand and Other Colonial Woods. Published in Reports on the Durability of New Zealand Timber in Constructive Works, etc. Wellington, Gov't Printer, 1875.
 British Empire Forestry Conference, London, 1920, Forestry in New Zealand.
 British Empire Forestry Conference, London, 1920, Forestry in the United Kingdom.
 British Empire Forestry Conference, London, 1920, Forestry in Rewensland.
 British Empire Forestry Conference, London, 1920, Forestry in Rusensland.
 British Empire Forestry Conference, London, 1920, Forestry in Timber Exhibition. Catalogue of Exhibits, prepared by the Dep't of Overseas Trade, London, 1920.
- (10) Everett, 390, No. 6; 06. (11) Foster, Notes on Nigerian Trees and Plants, Guildford, 1914. (12) Fourcade, Report on the Natal Forests, Pietermaritaburg, 1889. (13) Imperial Forestry Conference, Ottawa, Forests and Forestry in New Zealand, Wellington, Skinner, Gov't Printer, 1923. (14) Imperial Institute, 257, 17: 277; 19. (18) Imperial Institute, 257, 21: 444; 23. (18) Imperial Institute, 257, 28: 280; 24. (17) Imperial Institute, 257, 28: 8; 25. (18) Imperial Institute, 257, 24: 000; 26. (19) Jenkins, Report on Materials of Construction used in Aircraft and Aircraft Engines. Aeronautical Research Committee, London, 1920.
- (20) Julius, Western Australian Timber Tests 1906 (and Supplement), 4th ed., abridged, Perth, 1918. (21) Kent, Report on the Results of Mechanical Tests carried out on some Malayan Timbers. Federated Malay States, Gov't Press, Kuala Lumpur, 1920. (22) Kenya, Colony and Protectorate of, Report of Forest Department, Nairobi, 1923. (23) Kenya, Colony and Protectorate of, Report of Forest Department, Nairobi, 1924. (24) Mac-

- Mahon, Merchantable Timbers of Queensland, Brisbane, Vaughan, Gov't Printer, 1905. (28) Molesworth, Pocket Book of Useful Formulae and Memoranda for Civil, Mechanical and Electrical Engineers, 28th ed., London, Spon, 1924. (28) New South Wales, Report of the Forestry Commission, Sydney, 1919-20. (27) New South Wales, Report of the Forestry Commission, Sydney, 1917-18. (28) New Zealand State Forest Service, Circular No. 1, Wellington, 1922. (29) New Zealand State Forest Service, Current Tests of Timber Strengths. Published by Branch of Forest Products, 1925.
- (30) Rodger, 390, No. 49; 22. (31) Rogers, Manual of Forest Engineering for India, I. Calcutta, 1900. (32) Pearson, 390, No. 14; 13. (33) Pearson, 390, No. 36; 17. (34) Pearson, 590, No. 39; 19. (35) Pearson, 590, No. 40; 20. (36) Pearson, 260, 7: Part 6; 19. (37) Schneider, Bureau of Forestry, P. I., Bulletin No. 14. Manila, Bureau of Printing, 1916. (38) Seaman, 260, 10: Part 7; 24. (32) Seaman, 391, 48: 34; 22.
- (40) Seaman, 391, 80: 459; 24.
 (41) Seaman, 391, 81: 151; 25.
 (42) Seaman and Kamesam, 391, 80: 298; 24.
 (43) Troup, Indian Woods and Their Uses, Indian Forest Memoirs, Economic Products Series, Vol. I, No. 1, Calcutta, Sup't of Gov't printing, 1909.
 (44) Troup, 392, No. 10; 09.
 (45) Troup, 392, No. 11; 09.
 (46) Troup, 392, No. 13; 09.
 (47) Troup, 392, No. 14; 09.
 (48) Unwin, 257, 1: 73; 95.
 (49) Unwin, 257, 1: 118; 95.
- (50) Unwin, 257, 1: 201; 95.
 (51) Unwin, 257, 1: 242; 95.
 (52) Unwin, 257, 2: 444; 96.
 (54) Unwin, 257, 5: 124; 99.
 (55) Unwin, 257, 6: 40; 00.
 (56) Unwin, 257, 6: 40; 00.
 (56) Unwin, 257, 6: 208; 00.
 (57) Unwin and Dalby, 257, 6: 144; 08.
 (58) Warren, Strength and Elasticity of New South Wales Timbers of Commercial Value.
 Sydney, Potter, Gov't Printer, 1887.
 (58) Warren, Australian Timbers, Sydney, Potter, Gov't Printer, 1892.
- (60) Warren, Strength, Elasticity and Other Properties of New South Wales Hardwood Timbers. Sydney, Gullick, Gov't Printer, 1911. (61) Welch, New South Wales Technological Museum, Bulletin No. 6, Sydney, 1923. (62) Wilson, 390, No. 60; 25. (63) Dalby, 257, 8: 11; 10.

DANISH WOODS

E. Suenson

For testing methods, see the original literature

					Sta	tic bend	ling	Comp	ession	
T., J.,,			Bulk density,	Moisture content	ress at limit	of	of,	Parallel to grain	Perpendicular to grain	
Index No.	Genus and species	Local name	air-dry		ر ع ا	Modulus c rupture	Modulus celasticity	Maximum crushing	Fiber strength at elastic	Lit.
				% of oven-drv	Fiber	Mo E	Mo elt	strength	limit	
			g/cm³	wt.		kg/mm	2	kg/mm ²	kg/mm²	
690	Abies pectinata	Ædelgran	0.440	15	1	1		3.60		(2)
691	Picea abies L. *	Rødgran	0.430	18	3.23	5.57	880	2.95	0.00	(3)
			0.474	15	4.06					(1, 2)
692	Pinus laricio v. Austriaca, Endl.	Østerrigsk Fyr	0.506	14.2				2.93		(2)
693	Pinus montana, Mill.	Bjærgfyr	0.487-0.564	12.4	İ			2.97-5.56		(2)
694	Pseudotsuga Douglasii, Carr.	Douglasie	0.490	15	ļ			3.24		(2)
695	Quercus robur, L.†	Eg	0.740	17	3.94	8.53	910	4.20	0.58	(3)

^{*} Tensile strength, 4.30-7.80 kg/mm² with 33-49 % moisture content (1).

LITERATURE

⁽¹⁾ Hornemann, Tidsskrift for Skorbrug 11: 294; 89. (2) Meldahl, Tidsskrift for Skorræsen 5B: 1; 93. (3) Suenson, Træ og Plantestoffer, Copenhagen,

[†] Quercus pedunculata, Ehrh. = Quercus sessiliflora, Sm.

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
		2.11	5.58	826	0.032							4.29										(12)
		1.88	4.65	739	0.030							3.81					1					(12)
0.570-0.794		4.86	9.97	1470								7.10					9	.56*				(1, 5, 25)
		3.05	5.97	888	0.060							3.81										(12)
			5.40	583								3.19			0.	855						(10)
			9.27	1194																		(61)
		2.34	6.23	521	0.058							3.86				1						(12)
			7.45	1044								4.03			0.	851						(9, 31)
			5.39	1006								4.68	960		1.	211	6	.28*				(59, 61)
	56	4.73	7.63	1093	0.116		11.15	1434	0.487	84	2.75	3.88	1291	0.734	0.721	0.828	0.399	0.508	405	450	449	(10, 31, 32,
																						38, 43)
	12	6.09	9.04	1195	0.176		12.75	1605	0.564	65	3.37	5.37	1317	0.969	0.939	0.920	0.391	0.502	456	467	485	
0.599	9	6.74	10.19	1243	0.209		12.74	1781	0.512	74	3.64	5.86	1242	1.124	0.884	1.030	0.590	0.734	474	477	535	
		5.74	10.38	1136	0.161							4.91			0.	706						(54)

WOODS OF THE DUTCH EAST-INDIAN ARCHIPELAGO

THE FOREST RESEARCH INSTITUTE, BUITENZORG, JAVA

The values recorded below were determined in the Forest Research Institute in accordance with the standard testing methods of the "IV Kongress des Internationalen Verbandes für die Materialprüfungen, Brussels, September 1906," except in the following minor points:

- 1. The rate of strain increase in the bending and compression tests was 50 instead of 20 kg/cm² per minute.
- 2. The test piece shown in the figure was used in the shear tests.

The values given are the average for 4 to 10 specimens from two or more trees of different localities, except in the case of Swietenia mahogani Jack. and Tectona grandis L., cultivated in Java, for which 30 to 40 tests were made. All specimens tested were airdried to the average moisture content shown.

Shearing test.

Index	1	Botanical name	Local name			1 .						mpres				Hard-
No.	Family	Genus and species	Locar name	۸.			8	tatic	pending		pa	grain		Sh	ear	ness
				Bulk density, air-dry,	Moisture content, air-dry	Fiber stress at elastic limit	Modulus of rupture	Modulus of elasticity	Work to clastic limit	Work to maximum load	Fiber stress at elastic limit	Maximum crushing strength	Modulus of elasticity	Radial	Tangential	End
				g/cm³	% oven- dry	1	g/mn	n²	kg-mn	n/mm³		k	g/mm	n ²		kg/cm ²
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
700	Anacardiaceae	Buchanania arborescens, Bl.	Popohan	0.48	16	3.20	6.83	900	0.0006	0.00593	1.74	3.47	930	0.67	0.78	431
701		Gluta Renghas, L.	Rengas	0.64	14	3.70	6.04	1260	.00027	.00333	3.30	4.74	1190	0.87	0.92	514
702	Apocynaceae	Alstonia scholaris, R. Br.	Pulaj	0.31	15	1.72	3.46	530	.00033	.00207	1.16	2.21	550	0.38	0.55	192
703	Casuarinaceae	Casuarina equisetifolia, Forst.	Chemara	0.71	19	5.70	9.55	1440	.00127	.00633	3.16	5.41				763
704	Dipterocarpaceae	Dipterocarpus sp.	Lagan, Kruing	0.68	15	4.99	8.79	1450	.00096	.00545	3.47	5.68		1.02	0.98	575
705	STATE OF THE PARTY	Dryobalanops camphora, Colebr.	Kapur	0.68	15	6.49	11.10	1585	.00147	.00814	4.31	6.18	1960	0.92	1.17	575
706		Dryobalanops oblongifolia, Dyer.	Petanang	0.66	16	5.67		1520	.00137	.00817						545
707		Dryobalanops oiocarpa, v. Sl.	Sintok	0.50	14	2.55		1097	.00047	.00447					0.70	316
708		Hopea Mengerawan, Miq.	Merawan	0.57	14	6.35		1495	.00186	.00974						583
709		Hopea sp.	Bankirai	0.72	17	1	11.69	-	.00220	.00773						686
710		Shorea Balangeran, Burck.	Belangiran	0.73	17	5.00		1212	.00113	,01053	100	200			100 100	521
711		Shorea sp.	Banio	0.47	17	2.69		1030		.00507				0.54	0.44	286
	911	CHARLES TO THE	Damar merah	0.31	15	2.85			.00053	.00173						166
		() () () () () () () () () ()	Simantok	0.78	16			1565	.00153	.01093					1.35	
712		Vatica sp.	Resak, Giam	0.79	16	6.42	10,60	1300	.00173	.00760	3.75	6.10	1585	1.15	1.24	871

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
713	Flacourtiaceae	Homalium tomentosum, Bth.	Dlingsem	0.81	16	5.90	12.50	1410	.00140	.01467	3.47	6.32	1560	1.03	1.41	1122
714	Hamamelidaceae	Altingia excelsa, Nor.	Rasamala	0.75	18	5.66	9.76	1365	.00130	.00730	3,20	5.72	1535	0.91	1.13	546
715	Lauraceae	Eusideroxylon Zwayeri, T. et B.	Ijserhout, Onglenbelian	0.85	15	7.88	13.89	1522	.00227	.01147	4.03	7.46	1650	1.01	1.44	1120
716	Leguminosae	Dalbergia latifolia, Roxb.	Sono kling, Java-palis- sander	0.75	14	5.35	13.27	1387	.00120	.01567	3.15	6.36	1508	1.22	1.16	953
717		Intsia amboinensis, Thouars.	Merbau, Ipil	0.80	14	8.37	14.54	1840	.00233	.01202	3.78	8.19				963
718	Meliaceae	Swietenia macrophylla, King.	Mahogany	0.54	15	4.57	6.73	817	.00147	.00433	2.55	4.27	853	0.92	0.87	530
719		Swietenia mahogani, Jack.	Mahogany	0.54	14	4.66	7.10	890	.00147	.00493	2.20	4.04	925	0.83	0.98	435
720		Toona Sureni, Merr.	Suren	0.38	15	3.46	5.47	860	.00077	.00340	2.05	3.44	790	0.68	0.80	323
721	Moraceae	Artocarpus elastica, Reinw.	Bendo	0.35	15	3.06	4.47	810	.00067	.00341	1.52	2.92	735	0.47	0.48	260
722	Olacaceae	Scorodocarpus borneensis, Becc.	Kulim	0.81	16	6.33	12.48	1552	.00137	.01060	3.49	6.67	1732	0.86	1.27	887
723	Rhizophoraceae	Combretocarpus Motleyi, Hook. f.	Mrapat	0.67	16	3.86	6.95	1237	.00073	.00507	2.05	4.82	1060	1.00	0.81	475
724	Sapindaceae	Schleichera oleosa, Merr.	Kesambi	0.88	16	6.11	11.50	1680	.00133	.00893	3.07	5.91	1490	1,15	1.79	1428
725	Sterculiaceae	Pterospermum javanicum, Jungh.	Bajur	0.44	17	4.45	7.55	920	.00120	.00833	2.63	3.68	1095	0.56	0.74	382
726	Taxaceae	Podocarpus imbricata, Bl.	Aruh, Djamud- juh ki chemara	l .	17	3.80	5.89	647	.00133	.00433	1.65	3.14				355
727	Theaceae	Schima Noronhae, Reinw.	Puspah, Seru	0.60	16	5.81	10.00	1488	.00133	.01056	3.34	5.49	1644	0.81	1.05	505
728	Tiliaceae	Actinophora fragrans, R. Br.	Walikukun	0.85	18	6.83	14.52	1520	.00172	.01974	4.26	7.10	1930	1.24	1.56	1220
729	Ulmaceae	Celtis Wightii, Planch.	Pendjalinan	0.72	16	4.20	11.60	1420	.00070	.02151	2.34	4.96	1590	1.13	1.31	775
730	Verbenaceae	Tectona grandis, Lin. f.	Djati, teak	0.59	14	5.75	8.90	1410	.00193	.01000	3.00	4.90	1316	0.82	0.97	396
731		Vitex pubescens, Vahl.	Laban	0.70	16	7.47	12.72	2 1510	.00207	.01040	4.69	6.84	1660	1.07	1.15	795

WOODS OF JAPAN AND EASTERN ASIA

Homi Shirosawa

The values recorded below are based on tests made in the Central Forest Experiment Station (Ringyo-Shikenjo), Meguro, Tokyo, Japan.

The equations expressing the relation between the density and the stress were derived from the bulk density of air-dried specimens (moisture content, 16%) and the green and oven-dry densities, given in the column "bulk density," are based on the volume in the air-dry condition (moisture content, 16%).

The testing methods employed were those described above under "Woods of North America," with the following exceptions:

Static Bending.—Specimen $6 \times 6 \times 48$ cm, 42 cm span mainly (85% of all specimens); 0.1 cm per min.

Compression Parallel to Grain.—Specimen $6 \times 6 \times 6$ cm mainly (83% of all specimens); 0.1 cm per min.

Compression Perpendicular to Grain.—Specimen $6 \times 6 \times 6$ cm mainly (85% of all specimens); 0.1 cm per min.

Shear Parallel to Grain.—Shear over a 9×4 cm area; 0.1 cm per min.

Tension Parallel to Grain.—Tension over a 2.25 cm area; 0.1 cm per min.

Hardness.—Specimen $6 \times 6 \times 6$ cm. Depth of indentation when the steel cylinder with 3 cm diameter hemispherical end is forced into the specimen with the load of 2000 kg against radial and tangential surfaces, and with 4000 kg against end surface.

Den unten angegebenen Werten liegen Prüfungen zu Grunde, welche im Central Forest Experiment Station (Ringyo-Shikenjo) Meguro, Tokyo, Japan, gemacht worden sind.

Die Gleichungen, welche die Beziehung zwischen Dichte und Druck enthalten sind aus der durchschnittlichen Dichte des lufttrockenen Materials abgeleitet. (Feuchtigkeitsgehalt 16%) und die Dichten des frischen und ofentrockenen Materials, die in der Kolonne "bulk density" stehen, gründen sich auf den lufttrockenen Zustand (Feuchtigkeitsgehalt 16%).

Die angewendeten Prüfungsmethoden waren die gleichen, welche unter "Woods of North America" angegeben sind. Mit Ausnahme:

Statischer Biegeversuch.—Muster $6 \times 6 \times 48$ cm durchschnittliche Spannweite 42 cm (85% aller Muster); 0,1 cm in der Min.

Les valeurs mentionnées oi-dessous sont basées sur des essais effectués à la Central Forest Experiment Station (Ringyo Shikenjo) Meguro, Tokio, Japon.

Les équations exprimant la relation entre la densité et la tension ont été déduites de la densité apparente d'éprouvettes séchées à l'air (teneur en humidité, 16%), et les densités du bois vert et du bois séché au four, données dans la colonne "bulk density" sont basées sur le volume de l'éprouvette séchée à l'air (teneur en humidité, 16%).

Les méthodes d'essais employées sont celles déjà décrites dans "Bois de l'Amérique du Nord" à l'exception des suivantes:

Essai de flexion statique.—Eprouvette $6\times 6\times 48$ cm, portée principalement 42 cm (85% de toutes les éprouvettes); 0,1 cm par minute.

Compression parallèle à la fibre.—Eprouvette $6 \times 6 \times 6$ cm principalement (83 % de toutes les éprouvettes); 0,1 cm par minute.

Compression perpendiculaire à la fibre.—Eprouvette $6 \times 6 \times 6$ cm principalement (85% de toutes les éprouvettes); 0,1 cm par minute.

Cisaillement parallèle à la fibre.—Cisaillement sur une surface de 9×4 cm; 0.1 cm par minute.

Traction parallèle à la fibre.—Traction sur une surface de 2,25 cm²; 0,1 cm par minute.

Dureté.—Eprouvette 6 × 6 × 6 cm. Profondeur de l'empreinte produite par un cylindre d'acier terminé par un hémisphère de 3 cm de diamètre forcé dans l'éprouvette avec une charge de 2000 kgs contre la surface radiale et tangentielle, et de 4000 kgs contre la surface terminale.

I valori qui sotto riportati sono stati dedotti da prove eseguite nella Central Forest Experiment Station (Ringyo-Shikenjo), Meguro, Tokyo, Giappone.

Le equazioni che esprimono la relazione fra la densità e la pressione sono derivate dalla densità (volumetrica) del materiale asciugato all'aria (con 16 per cento d'acqua): le densità del materiale greggio e quello asciugato alla stufa, i quali si trovano nella colonna "bulk density," sono fondate sul volume del materiale asciugato all'aria (il tenuto d'acqua essendo 16 per cento).

I metodi impiegati per i saggi sono gli stessi riportati nel capitolo "Legni dell'America del Nord" fatta eccezione per quanto segue:

Flessione statica.—Provetta $6 \times 6 \times 48$ cm, distanza media tra gli appoggi 42 cm (85 % di tutti i campioni); 0,1 cm al minuto.

Druck parallel zur Faserrichtung.—Muster $6 \times 6 \times 6$ cm hauptsächlich (83 % aller Muster); 0,1 cm in der Min.

Druck senkrecht zur Faserrichtung.—Muster $6 \times 6 \times 6$ cm hauptsächlich (85 % aller Muster); 0,1 cm in der Min.

Scherversuch parallel zur Faserrichtung.—Scherung über 9×4 cm, 0.1 cm in der Min.

Zug parallel zur Faserrichtung.—Zug über eine Fläche von 2,25 cm², 0,1 cm in der Min.

Härte.—Muster $6 \times 6 \times 6$ cm. Eindruckstiefe eines Stahlzylinders mit halbkugelförmigem Ende (Durchmesser 3 cm) beobachtet, bei Belastung mit 2000 kg gegen die radiale und tangentiale Oberfläche und mit 4000 kg gegen die Endfläche.

Compressione parallela alla fibra.—Provetta $6\times 6\times 6$ cm per la massima parte (83 % di tutti i campioni); 0,1 cm al minuto.

Compressione perpendicolare alla fibra.—Provetta $6 \times 6 \times 6$ cm per la massima parte (85 % di tutti i campioni); 0,1 cm al minuto.

Taglio nel senso della fibra.—Taglio sopra 9×4 cm; 0,1 cm al minuto.

Trazione nel senso della fibra.—Trazione sopra una superficie di cm² 2,25; 0,1 cm al minuto.

Durezza.—Provetta $6 \times 6 \times 6$ cm. Profondità di impronta di un cilindro di acciaio con estremità emisferica (diametro 3 cm) osservata caricando con 2000 kg contro la superficie radiale e tangenziale e con 4000 contro la superficie terminale.

STRENGTH AND RELATED PROPERTIES

Index		Botanical name	Local name	Bul	k der	nsity		S	tatio	ben	ding		in				Hardn	nee
No.	Family	Genus and species	Local name	Dan	K de	isity			carro	Den	ding	1	grain				nardn	ess
				Green	Air-dry	Oven-dry	Moisture content green, %	Fiber stress at elastic limit	Modulus of rupture	Modulus of elasticity	Work to elastic limit	Compression parallel to grain- maximum crushing strength	Compression perpendicular to	Shear parallel to grain	Tension parallel to grain	End	Radial	Tangential
					g/en	3		k	g/mi	m²	kg- mm/ mm³	k	g/r	nm²			cm	
			ions expressing	stren	gth	in te			den	sity	7							
1	2	3	4	5	6	7	8	-		11	12	13	14	15	16	17	18	19
								F = 6.50 Dal.20	$F = 10.10 D_a^{1.20}$	$F = 1350 D_o^1$	F = 0.0053 Da	$F = 7.00 D_{a^1}$	$F = 2.31 D_{a^2}$	$F = 1.34 D_o^1$	$F = 8.64 D_a^1$	Actual value given below	Actual value given below	Actual value given below
	I	I. Values as determined by t	ests—strength	value	s ex	press	ed i	n p	erce	enta	ge of	equa	atio	n v	alu	es		
751	Aceraceae	Acer japonicum, Thunb.	Hauchihakaede	1	0.7	2 0.60		1	98	88		87		105	71		0.15-0.18	8 0.12-0.2
752 753		Acer palmatum, Thunb. Acer pictum, Thunb. var. typi- cum, Koidz.	Kaede Itayakaede			0.60				3 145		83 100		116 98		0.54 1.08	0.36 0.18	0.36
754 755 756	Anacardiaceae Aquifoliaceae	Acer rufinerve, S. and Z. Rhus vernicifera, DC. Rex crenata, Thunb.	Urihadakaede Urushi Inutsuge	0.88	0.5	90.51 10.44 20.63	100)	118			87 136 81		117		2.10 0.09		
757 758 759	Araliaceae Betulaceae	Ilex macropoda, Miq. Kalopanax ricinifolius, Miq. Alnus firma, S. and Z. var. Sie-	Aohada Harigiri Yashabushi	0.88	0.5	6 0.57 4 0.47 4 0.58	7 78	5	100	5 105 2 54		108 91 76	99	101 91	84	0.12 1.08 0.45	0.42	0.36-0.4
760		boldiana, Winkel. Alnus incana, Willd. var. sibirica, Spach.	Yamahannoki			0 0.40				55		90				3,00	0.90	0.90
761 762 763		Alnus japonica, S. and Z. Betula carpinifolia, S. and Z. Betula Ermanni, Cham. and Schl. var. japonica, Koidz.	Hannoki Midzume Makamba		0.7	0 0.42 7 0.66 3 0.55	3	83			98	101 87 107		87 108				
764 765 766 767		Betula japonica, Sieb. Betula Maximowicziana, Regel. Betula Schmidtii, Regel. Betula ulmifolia, S. and Z.	Shirakamba Saihadakamba Onoorekamba Yogusominebari		0.6 0.8 0.7	0 0.60 8 0.58 6 0.75 0 0.60	5 52	2 110	107	72 146 155	116	88 96 122 109		125	108 97	1.05 0.06 0.03 0.03		0.18-0.4
768 769 770		Carpinus cordata, Bl. Carpinus japonica, Bl. Ostrya italica Scop. var. virginiana, Winkel.	Sawashiba Kumashide Asada	1.00	0.7	1 0.57 2 0.58 0 0.60	3 72	2	133	90				111 137 110	129	0.06	la proces	0.06 0.12
771 772 773 774	Buxaceae Cornaceae Ebenaceae Euphorbiaceae	Buxus japonica, Muell. Arg. Cornus contorversa, Hemsl. Diospyros lotus, L. Bischoffia javanica, Bl.	Tsuge Midzuki Mamegaki Akagi	0.90	0.6 0.6 0.7	5 0.68 0 0.50 0 0.50 5 0.68	80	70		8 65 71 5 88	47	91 98 85 57			81 127		0.15-0.1	
775 776 777 778	Fagaceae	Castanea sativa, Mill. Castanopsis taiwaniana, Hay. Fagus Sieboldi, Endl. Pasania cuspidata, Oerst.	Kuri Kurikashi Buna Shii	1.08	0.7	0 0.52 7 0.66 6 0.57 2 0.54	7 90	98	3 108	111	63 100	91 74 117 94	90	100		0.30		0.12-0.8 0.30 0.39-0.4

1	2	3	4	5	6	7		9	10	_	12	13	14	15	16	17	18	19
779		Pasania glabra, Oerst.	Shiribukagashi			0.60			106		17.14	120					1	
80		Quercus acuta, Thunb.	Akagashi	1.15		0.73		103			82	80				0.03		0.03-0.05
81		Quercus amygdalifolia, Skan.	Amigashi			0.93		91		102	50	75			102		0.42	0.36
2		Quercus crispula, Bl.	Ohnara			0.63		71			89	98		85		0.06		
33		Quercus gilva, Bl.	Ichiigashi			0.68		122			88	85		94				1 0.12-0.15
34		Quercus glandulifera, Bl.	Konara			0.65					97	95				0.00		0.09
5		Quercus glauca, Thunb.	Arakashi	1.17	0.82	0.70	67			117	77	88		100	91	0.03	0.06-0.1	8 0.06-0.09
6		Quercus myrsinaefolia, Bl.	Shirakashi	1.11	0.85	0.72	54	95	96	70	78	89		115	84	0.03	0.03-0.0	6 0.03-0.0
7		Quercus phyllireoides, A. Gr.	Ubamegashi	1.24	0.85	0.74	68								147			1.50
88		Quercus serrata, Thunb.	Kunugi		0.84				70	68		95		89	110	0.03	3	
9	Land of the second	Quercus stenophylla, Makino.	Urajirogashi	1.08	0.83	0.70	54	139	126	134	88	103		97	113	0.03	3	1
0	Ginkgoaceae	Ginkgo biloba, L.	Ichō	0.84	0.44	0.38	111		104	92		100		104	71		1.38-1.5	0,1.20-1.38
1	Hamamelidaceae	Distylium racemosum, S. and Z.	Isunoki	1.31	0.96	0.83	58		115	118		92		103	84	0.03	3	1
2	Hippocastanaceae	Aesculus turbinata, Bl.	Tochinoki	0.70	0.60	0.50	40	113	113		105	92		113	111			
3	Juglandaceae	Juglans mandschurica, Maxim.	Manshügurumi		0.48	0.42		117	110	143		128			100			
4		Juglans Sieboldiana, Maxim.	Onigurumi	0.90	0.54	0.47	92	107	100	132	97	113	125	111	136	1.02	0.33-0.8	5 0.33-0.66
5		Pterocarya rhoifolia, S. and Z.	Sawagurumi			0.35			126	69		91	104	107	138	3.00		
6	Lauraceae	Actinodaphne lancifolia, Meisn.	Kagonoki			0.63			77	83		77		109			0.02	0.06
7		Cinnamomum camphora, Ness.	Kusu			0.45			71			106	99		66		0.96	0.60
8		Cinnamomum pedunculatum,	Yabunikkei			0.46			70			86	00	103		3.00	1000	0.72
0		Ness.	Labumkkei	0.00	0.00	0.10	94		.0	01		80		100	90	3.00	0.01	0.72
0			Tahu	1 01	0 60	0 55	04	76	74	107	105	107	106	00		0.00		0.40
9	Leauminage	Machilus Thunbergii, S. and Z. Acacia confusa, Merril.	Tabu	1.01		0.55 0.77		76 60		107 69	105		100	00	114	0.06	'	0.42
	Leguminosae		Sōshiju	0 00		1.00					41	60			100			0.00
1		Albizzia Julibrissin, Durraz.	Nemunoki	1000	1	0.47			86			89			159	0	0.00	0.30
2		Gleditschia horrida, Makino.	Saikachi			0.64			95			92					1	5 0.09-0.12
3		Maackia amurensis, Rupr. and	Inuenju	0.98	0.75	0.63	56		107	95		78	79	106	112	0.06		0.12
		Maxim.	12.0							5.5								
4	Magnoliaceae	Magnolia hypoleuca, S. and Z.	Hōnoki		-	0.44	100			116			110			3.00		0.24
5		Magnolia Kobus, DC.	Kobushi	0.75	0.60	0.50	50		86	80		107		91	95	0.06	3	
6	Moraceae	Ficus retusa, L. var. nitida, Miq.	Gajumaru	0.90	0.58	0.50	80		61	52		83						
7		Morus alba, L. var. stylosa,	Yamaguwa	0.98	0.67	0.58	69		100	85		102			116	0.06	0.12	0.06
		Bureau																
8	Myricaceae	Myrica rubra, S. and Z.	Yamamomo	1.08	0.67	0.58	86		96	93		113		98	81	0.12		
)	Oleaceae	Fraxinus Bungeana, DC. var.	Toneriko			0.60		1	149			103			111	0.12	0.06-0.09	0.06
	Oteaccac	pubinervis, Wg.	TOHETIKO	1.02	0	0.00	,,,		140	100	- 1	100		00	111		0.00-0.0	0.00
0			Antono		0 70	0 61			110	00		100		100				
		Frazinus longicuspis, S. and Z.	Aotago	0 01		0.61			110			100	00	100				
1		Frazinus mandschurica, Rupr.	Yachidamo			0.54				115		108	89	105			0.82	0.48
2	n.	Fraxinus Spaethiana, Lingelsh.	Shioji			0.56					67	116				0.06		
3	Pinaceae	Abies firma, S. and Z.	Momi			0.42				200	126	105						0.30-1.17
4		Abies sachalinensis, Mast.	Todomatsu	0.82	0.41	0.35	134	95	96	106	118	125	106	111	98	3.00		
5		Abies Veitchii, Lindl.	Shirabe	0.73	0.40	0.33	121	88	100	93	118	124	97	124	94	3.00		1.44-1.80
6	77.4	Chamaecyparis formosensis, Mat-	Benihi		0.37	0.32		98	97	106	65	103			94			
		sum.				1												
7		Chamaecyparisobtusa form.form-	Taiwanhinoki		0.48	0.41		100	119	131	68	98			113			1
		osana, Hayata.				100		-			0.71	-						
8		Chamaecyparis obtusa, S. and Z.	Hinoki	0.98	0 46	0.40	145	132	125	115	134	123	106	110	93	3.00		1.08
		ottamanapan ta annua jar annua i		1000		0.37	110	10000	94		101	116	88	110	00	0.00		1.00
9		Chamaecyparis pisifera, S. and	Sawara			0.30	187	00	102			109	00	98	70	3.00		2 00
		Z.	Sawara	0.00	0.00	0.30	101		102	121	- 1	109	1	90	10	3.00		3.00
0			01	0 00	0 40	0 04	***				***	222				0 00		
0		Cryptomeria japonica, Don.	Sugi			0.34	162				118	141	111	102	81	3.00		0.90-1.14
			01 - 1			0.31			131	75	131	107						
1		Larix dahurica var. Principis	Chōsenkaramatsu		0.67	0.56		82	80	81		99		68	121			
		Rupprechtii, Rehd. and Wilson.															1,000	
2		Larix leptolepis, Gord.	Karamatsu	0.95			90				101	109	86	115	104	0.15	0.42	
3		Libocedrus macrolepis, Benth.	Shōnanboku		0.69			69	74	76	53	76						
4		Picea ajanensis, Fisch.	Ezomatsu			0.37	92	108	103	96	117	112	106	116	126	3.00		3.00
5		Picea Glehnii, Mast.	Akaezomatsu		0.47	0.41		153	141	134	137	153	96	104	154	3.00		3.00
6		Picea Hondoensis, Mayr.	Tōhi			0.38			106		153					3.00		3.00
7	4	Pinus densiflora, S. and Z.	Akamatsu			0.46	98				101	95	79			3.00		
8		Pinus koraiensis, S. and Z.	Chōsenmatsu			0.45				65	101	66		69			1.14-1.20	
9		Pinus Thumbergii, Parl.	Kuromatsu_	0.97				00	100		101	125		96			0.42-1.6	
0		Pseudotsuga japonica, Shirasawa.	Togasawara			0.47			103					- 4		3.00		4
1		Sciadopitys verticillata, S. and Z.	Kōyamaki				119			200		131		116			1	3.00
						0.45		10-		122	40	87		108	93	3.00		
2		Taiwania cryptomeriodes, Hay.	Taiwansugi			0.40		101	105		43	105			_			
3		Thuja japonica, Maxim.	Nezuko			0.32			95			115		112		3.00		3.00
4		Thujopsis dolabrata, S. and Z.	Hiba			0.44					115	115	87			3.00		1.44
5	20.00	Tsuga Sieboldii, Carr.	Tsuga			0.45		124	120		121	137	94	128				0.21-0.42
6	Rosaceae	Micromeles alnifolia, Koidz.	Adzukinashi	0.80	0.60	0.50	60		84	77		97		97	74	0.06		
7		Photinia villosa, DC.	Ushikoroshi	1.16	0.90	0.80	46		95	71					72	0.06	0.03	0.03
8		Prunus donarium, Sieb.	Yamazakura			0.58			91	97		73	96	102		0.24		0.09-0.12
		subsp. elegans, Koidz.				1	-		-				0.7					
		var. glabra, Koidz.																
9		Prunus Grayana, Maxim.	Uwamizuzakura	0.70	0 00	0 50	50								112			
0		Prunus grayana, Maxim. Prunus spinulosa, S. and Z.		0.79					10.	00		00			117	0 **	0 00 0 0	0 00 0
	Dutance		Rinboku			0.65			101			92						0.06-0.09
1	Rutaceae	Phellodendron amurense, Rupr.	Kihada	0.64					104									0.18-0.42
2	Salicaceae	Populus balsamifera, L.	Deronoki	0.83					88							3.00		
		Populus tremula, L. var. villosa,	Yamanarashi	0.70	0.48	0.40	75	111	111	97	71	118	120	131	147	3.00		
3																		
		Wesm.																
3 4 5	Scrophulariaceae Simarubaceae	Wesm. Paulownia tomentosa, Bail.	Kiri	0.56	0.31	0.27	107		119	96		107		110	86	3.00		3.00

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
846	Styracaceae	Styrax japonica, S. and Z.	Egonoki	0.97	0.60	0.5	2 87		114	141		105		104	151	0.06		
847	Taxaceae	Podocarpus Nageia, R. Br.	Nagi	0.88	0.5	0.4	82		97	157		127		117	56	0.12		0.60
848	Larren I	Taxus cuspidata, S. and Z.	Ichii	0.90	0.58	0.5	80		128	73		147	138	108	67	0.12	0.33	0.27
849		Torreya nucifera, S. and Z.	Kaya	1.03	0.5	0.4	115		107	96		118	118	92	111		1	
850	Tiliaceae	Tilia japonica, Engler.	Shinanoki		0.5	0.4	5		86	122		113		98	113	3.00	0.90	0.78
851	Trochodendraceae	Cercidiphyllum japonicum, S. and Z.	Katsura	0.58	0.4	0.3	53	71	75	88	90	89		103	80	0.09	1.20	1.02
852	Projection of the control of the con	Euptelaea polyandra, S. and Z.	Fusazakura	0.93	0.64	0.5	82		95	95		94		83	87	0.57	0.18-0.27	0.12-0.1
853	Ulmaceae	Aphananthe aspera, Planch.	Mukuenoki	1.02	0.68	0.5	8 76		93	107		100		116	125	0.45		
854		Celtis sinensis, Pers.	Enoki	0.94	0.60	0.5	81		77	74		79		89	97	1.26		
855		Ulmus campestris, Sm. var. laevis, Planch.	Harunire	0.94	0.6	0.5	74		81	97		70		86	131		0.42	0.36
856		Ulmus campestris, Sm. var.	Niganire	0.90	0.60	0.5	50		65	62		60		84	54			
857		Ulmus montana, Sm. var. laci- niata, Trauty.	Ohiōnire	0.90	0.5	0.5	80		105	149		101		108				
858		Ulmus parvifolia, Jacq.	Akinire	0.94	0.6	0.5	3 77		87	71		73			94			
859		Zelkowa acuminata, Planch. form. Keaki.	Keaki	1.06	0.70	0.6	77	112	142	127	71	117	127	109	122	0.06	0.12	0.12

^{*} Kiso-district in Honshû.

THE WOODS OF MEXICO, CENTRAL AND SOUTH AMERICA AND THE WEST INDIES SAMUEL J. RECORD

With the exception of the bulk density values recorded below, the available published data on mechanical properties of woods native to these countries are of doubtful reliability.

BULK DENSITY OF THOROUGHLY AIR-DRY SAMPLES
Values determined in the laboratory of the Yale School of Forestry

ndex No.	Family	Genus and species	Common name	Place of growth of material tested	D_d g/cm^3
860	A canthaceae	Bravaisia floribunda, DC.	Sancho-araña	Colombia	0.53
861	A mygdalaceae	Licania hypoleuca, Benth.	Chozo	Guatemala	1.03
862		Moguilea tomentosa, Benth.	Oity	Brazil	0.98
863	A nacardiaceae	Anacardium rhinocarpus, DC.	Espavé	Panama	0.54
864		Astronium balansae, Engl.	Urunday	Argentina	1.00-1.30
865		Astronium fraxinifolium, Schott.	Gonçalo Alves	Brazil	0.85-1.0
866		Loxopterygium sagotii, Hook. f.	Hoobooballi	British Guiana	0.60-0.7
867		Tapirira guianensis, Aubl.	Duka	British Guiana	0.54
868		Schinopsis lorentzii, Engl.	Quebracho colorado	Argentina	1.15-1.3
869	Anonaceae	Oxandra lanceolata, (Sw.) Baill.	Yaya, lancewood	Cuba	0.98
870	A pocynaceae	Aspidosperma polyneuron, Muell. Arg.	Peroba rosa	Brazil	0.70
871	22700	Aspidosperma quebracho-blanco, Schl.	Quebracho blanco	Argentina	0.90-1.0
872		Aspidosperma tomentosum, Mart.	Guatambú	Brazil	0.77
873		Aspidosperma vargasii, C. DC.	Amarillo	Venezuela	0.90-0.9
874	Aquifoliaceae	Ilex sp.	Kakatara-balli	British Guiana	0.80
875	Araliaceae	Didymopanax morototoni, (Aubl.) D. and P.	Yagrume	Tropical America	0.45
876	Betulaceae	Alnus sp.	Jaul	Costa Rica	0.47
877	Bignoniaceae	Crescentia cujete, L.	Cujete	Tropical America	0.60
878		Jacaranda copaia, (Aubl.) D. Don	Fotui	British Guiana	0.40-0.4
879		Tabebuia donnell-smithii, Rose	Prima vera	Mexico	0.45-0.5
880		Tecoma, spp.	Lapacho, guayacan	Tropical America	0.95-1.2
881		Tecoma pentaphylla, Juss.	Roble	Tropical America	0.60-0.6
882		Tecoma peroba, Record	Ipé peroba	Brazil	0.70-0.8
883	Bombacaceae	Bombacopsis spp.	Saqui-saqui	Venezuela	0.41-0.5
884		Bombax spp.	Imbirussú	Brazil	0.24-0.40
885		Cavanillesia platanifolia, H. B. K.	Bongo	Panama	0.10
886		Ceiba pentandra, (L.) Gaertn.	Ceibo	Tropical America	0.40-0.4
887		Chorisia speciosa, St. Hil.	Samohú	Argentina	0.35-0.4
888	,	Ochroma spp.	Balsa	Tropical America	0.12-0.20
889		Quararibea sp.	Veroity	Brazil	0.72
890	Boraginaceae	Auxemma gardneriana, Miers	Páo branco	Brazil	0.70
891	_	Cordia gerascanthoides, H. B. K.	Boscote	Mexico	0.97
892		Cordia gerascanthus, L.	Laurel	Central America	0.61
893		Cordia goeldiana, Huber	Frei-jo	Brazil	0.60
894		Patagonula americana, L.	Guayabí	Argentina	0.85-0.90
895	Burseraceae	Bursera gummifera, (L.) Sargent	West Indian birch	West Indies	0.35-0.40

[†] Obi-district in Kyūshū.

Index	 .	1		Place of growth of	D_d
No.	Family	Genus and species	Common name	material tested	g/cm^3
896	Canellaceae	Canella winterana, Gaertn.	Canela	West Indies	1.10
897	Celastraceac	Goupia glabra, Aubl.	Cupiúba	Brazil	0.82 - 0.88
898		Maytenus obtusifolia, Mart.	Carne d'anta	Brazil	0.82
899	Combretaceae	Terminalia sp.	Naranjo	Guatemala	0.65 - 0.75
900		Terminalia januarensis, DC.	Araça	Brazil	0.77
901	Cunoniaceae	Weinmannia trichosperma, Cav.	Tenio	Chile	0.59
902	Dilleniaceae	Curatella americana, L.	Chaparro	Tropical America	0.77
903	Eucryphiaceae	Eucryphia cordifolia, Cav.	Ulmo	Chile	0.63
904	Euphorbiaceae	Gymnanthes lucida, Sw.	Aité	Cuba	1.00-1.20
905		Hieronymia alchorneoides, Fr. Allem.	Urucurana	Brazil	0.72
906		Hippomane mancinella, L.	Manzanillo	West Indies	0.68
907		Hura crepitans, L.	Javillo, possum wood	Tropical America	0.36-0.44
908	Flacourtiaceae	Casearia praecox, Gris.	Zapatero, W. Ind. boxwood	Venezuela	0.80-0.90
909		Homalium sp.	Angelino	Venezuela	0.75-0.85
910	Guttiferae	Calophyllum calaba, Jacq.	Santa María	Central America	0.68-0.74
911		Mammea americana, L.	Mamey	West Indies	0.90
912		Platonia insignis, Mart.	Pacouri	French Guiana	0.86
913		Symphonia globulifera, L. f.	Waikey, chewstick	British Honduras	0.65-0.70
914	Humiriaceae	Humiria floribunda, Mart.	Bastard bullet wood	British Guiana	0.85-0.92
915	Juglandaceae	Juglans australis, Gris.	Nogal	Argentina	0.56
916	Lauraceae	Aniba panurensis, Mez	Bois de rose	French Guiana	0.60-0.68
917		Nectandra sp.	Determa	British Guiana	0.65-0.70
918		Nectandra sp.	Embuia	Brazil	0.70-0.76
919		Nectandra sp.	Waibaima	British Guiana	1.15
920		Nectandra rodioei, Schomb.	Greenheart	British Guiana	1.06-1.23
921		Persea lingue, Nees	Lingue	Chile	0.55
922		Phoebe ambigens, Blake	Guambo	Honduras	0.50
923		Phoebe porphyria, (Gris.) Mez	Laurel negro	Argentina Brazil	0.50-0.80
924 925	Lecythidaceae	Silvia navalium, Fr. Allem. Cariniana legalis, (Mart.) Kuntze	Tapinhoan Jequitibá	Brazil	0.86-1.00 0.50-0.70
926	Decymaaceae	Cariniana pyriformis, Miers	Albarco, Colombian mahogany	Colombia	0.65-0.70
927		Chytroma jarana, Huber	Jaraná	Brazil	0.05-0.70
928		Eschweilera corrugata, Miers	Manbarklak	Dutch Guiana	1.21
929		Lecythis ollaria, L.	Sapucaia	Brazil	0.95
930	Leguminosae	Andira vermifuga, Mart.	Angelim amargoso	Brazil	0.65
931	25 g umitioodo	Apuleia praecox, Mart.	Iberá-peré	Argentina	0.80-0.95
932		Bowdichia sp.	Sucupira	Brazil	1.00
933		Brya ebenus, DC.	Granadillo	Cuba	1.20
934		Caesalpinia echinata, Lam.	Páo brasil, Pernambuco wood	Brazil	0.98-1.24
935		Caesalpinia granadillo, Pittier	Ebano, coffee wood, partridge	Venezuela	1.10-1.20
936		Caesalpinia melanocarpa, Gris.	Guayacan negro	Argentina	1.10-1.30
937		Centrolobium spp.	Araribá	Brazil	0.65-0.90
938		Copaifera officinalis, (L.) Willd.	Copaiba	Colombia	0.70
939		Dalbergia sp.	Honduras rosewood	British Honduras	0.93-1.08
940		Dalbergia nigra, Fr. Allem.	Jacarandá, Brazilian rosewood	Brazil	0.85
941		Dalbergia retusa, Hemsl.	Cocobolo	Central America	0.99-1.22
942		Dialium divaricatum, Vahl.	Jutahy peba	Brazil	0.90
943		Dicorynia paraensis, Benth.	Angélique	French Guiana	0.75-0.90
944		Dimorphandra mora, B. and H.	Mora	British Guiana	0.97-1.00
945		Diplotropis sp.	Zwarte kabbes	Dutch Guiana	1.15
946		Dipteryx odorata, Willd.	Tonca bean	British Guiana	1.20
947		Enterolobium cyclocarpum, (Jacq.) Gris.	Guanacaste	Central America	0.35-0.60
948		Eperua falcata, Aubl.	Wallaba	British Guiana	0.90
949		Erythrina crista-galli, L.	Ceibo	Argentina	0.25
950		Eysenhardtia polystachia, (Ort.) Sarg.	Palo dulce	Mexico	0.87
951		Gleditschia amorphoides, (Gris.) Taub.	Espina corona	Argentina	0.86-0.95
952		Haematoxylon campechianum, L.	Logwood	British Honduras	1.00
953		Holocalyx balansae, Mich.	Alecrin	Argentina	1.00
954		Hymenaea courbaril, L.	Courbaril, algarroba, locust	Tropical America	0.80-1.05
955		Lysiloma sabicu, Benth.	Sabicú	Cuba	0.77
956		Melanoxylon brauna, Schott.	Braúna	Brazil	1.00
957		Myrocarpus frondosus, Fr. Allem.	Cabreúva	Brazil	0.87-0.97
958		Myroxylon toluiferum, H. B. K.	Oleo vermelho	Brazil	1.00

ndex	Family	Genus and species	Common name	Place of growth of	D_d
No.	1	_		material tested	g/cm³
959		Peltogyne paniculata, Benth.	Purpleheart	British Guiana	1.00
960		Peltophorum adnatum, Gris.	Sabicú moruro	Cuba	1.02
961		Peltophorum vogelianum, Benth.	Caña fistola	Argentina	0.75-1.0
962		Piptadenia sp.	Curupay	Argentina	1.03
963		Piptadenia rigida, Benth.	Angico	Argentina	0.95
964		Pithecolobium arboreum, (L.) Urb.	Moruro	Cuba	0.74
965		Pithecolobium racemiflorum, Ducke	Bois serpent	French Guiana	1.15
966		Pithecolobium vinhatico, Record	Vinhatico de espinho	Brazil	0.60
967		Plathymenia reticulata, Benth.	Vinhatico castanho	Brazil	0.56-0.6
968		Platycyamus regnellii, Benth.	Pereira	Brazil	0.75
969		Platymiscium polystachyum, Benth.	Roble colorado	Venezuela.	1.00
970		Pterogyne nitens, Tul.	Ibiráro	Argentina	0.76-1.0
971		Swartzia tomentosa, DC.	Wamara	British Guiana	1.05-1.2
972		Sweetia panamensis, Benth.	Billy Webb	British Honduras	1.00
973		Tipuana speciosa, Benth.	Tipa	Argentina	0.65
974		Torresia cearensis, Fr. Allem.	Umburana	Brazil	0.60
975		Vouacapoua americana, Aubl.	Acapú	Brazil	0.87-0.9
976		Zollernia paraensis, Huber	Páo santo	Brazil	1.30-1.3
977	Magnoliaceae	Drimys winteri, Forst.	Canelo	Chile	0.50
978	Malpighiaceae	Byrsonima crassifolia, H. B. K.	Nance	Mex., Centr. Amer.	0.70
979	Malvaceae	Hibiscus elatus, Sw.	Majagua	Cuba	0.65
980	Melastomaceae	Mouriria pseudo-geminata, Pittier	Pauji	Venezuela.	0.82
981	Meliaceae	Cabralea spp.	Cancharana	Argentina	0.65
982		Carapa guianensis, Aubl.	Crabwood	British Guiana	0.60-0.7
983		Cedrela spp.	Cedro, cedar	Tropical America	0.37-0.7
984		Guarea trichilioides, L.	Muskwood	Jamaica	0.50-0.5
985		Swietenia spp.	Caoba, mahogany	Tropical America	0.45-0.8
986		Trichilia alta, Blake.	Pimenteira	Brazil	0.45-0.8
987	Monimiaceae	Laurelia aromatica, Juss.	Laurel	Chile	
988	Moraceae				0.53
	M oraceae	Bagassa guianensis, Aubl.	Tatajuba	Brazil	0.80
989		Brosimopsis diandre, Blake	Leiteira	Brazil	0.75
990		Brosimum columbianum, Blake	Guayamero	Colombia	0.81
991		Brosimum paraense, Huber	Satiné	French Guiana	0.98-1.0
992		Cecropia adenopus, Mart.	Ambay	Argentina	0.44
993		Chlorophora tinctoria, Gaud.	Mora, fustic	Tropical America	0.93-0.9
994		Clarisia racemosa, R. and P.	Oiticica	Brazil	0.50-0.6
995		Perebea sp.	Kapiteinhout	Dutch Guiana	0.68
996		Piratinera guianensis, Aubl.	Letterhout, letterwood	Dutch Guiana	1.20-1.3
997	M yristicaceae	Virola bicuhyba, Warb.	Bicuiba	Brazil	0.63-0.7
998		Virola sebifera, Aubl.	Yayamadou	French Guiana	0.60
999	Myrsinaceae	Rapanea laetevirens, Mez.	Canelon	Argentina	0.55
000	Olacaceae	Minquartia guianensis, Aubl.	Acaricuára	Brazil	0.98
.001	Phytolaccaceae	Gallesia scorododendron, Casar.	Páo d'alho	Brazil	0.58
002	Pinaceae	Araucaria brasiliana, Lamb.	Pinheiro do Paraná	Brazil	0.50-0.6
003	Polygonaceae	Coccoloba uvifera, L.	Uvero	Tropical America	0.98-1.1
004		Ruprechtia sp.	Virarú	Argentina	0.66-0.7
	Proteaceae	Roupala brasiliensis, Kl.	Páo concha	Brazil	0.80-1.0
006	Rubiaceae	Calderonia salvadorensis, Standl.	Brasil	Salvador	0.60
007		Calycophyllum candidissimum, (Vahl.) DC.	Dágame, salamo, degame	W. I., Centr. Amer.	0.80
008		Calycophyllum multiflorum, Gris.	Palo blanco	Argentina	0.92-1.0
009		Genipa americana, L.	Jagua	Tropical America	0.73-0.8
010		Sickingia sp.	Arariba	Brazil	0.88
011	Rutaceae	Amyris balsamifera, L.	Amyris	Venezuela	0.99-1.1
012		Balfourodendron riedelianum, Engl.	Guatambú	Argentina	0.75
013		Esenbeckia leiocarpa, Engl.	Guarantán	Brazil	0.97-1.1
014		Euxylophora paraensis, Huber	Páo amarello	Brazil	0.81
015		Zanthoxylum flavum, Vahl.	West Indian satinwood	West Indies	0.90
016	Salicaceae	Salix humboldtiana, Willd.	Sauce colorado	Argentina	0.44
017	Sapotaceae	Achras zapota, L.	Nispero	Central America	1.09
017	na poraceae	Labourdonnaisia albescens, Benth.	Almique	Cuba Cuba	0.97
		· ·	Mucuri		
1019		Lucuma procera, Mart.		Brazil	0.90
000		Mimusops sp.	Massaranduba	Brazil	0.85 - 1.10
020 021		Mimusops globosa, Gaertn.	Bullet wood	British Guiana	0.90 - 1.2

Index No.	Family	Genus and species	Common name	Place of growth of material tested	D_d g/cm ³
1022		Pradosia latescens, (Vell.) Radlk.	Buranhem	Brazil	0.94
1023		Sideroxylon mastichodendron, Jacq.	Jocuma	Cuba	0.95-1.10
1024	Simarubaceae	Quassia amara, L.	Quassia	Surinam	0.50
1025		Simaruba amara, Aubl.	Marupá	Brazil	0.40-0.50
1026	Sterculiaceae	Sterculia sp.	Imbira quiaba	Brazil	0.25
1027	Theaceae	Caryocar villosum, Pers.	Piquiá	Brazil	0.81
1028	Tiliaceae	Guazuma ulmifolia, Lam.	Guacima	Tropical America	0.55
1029		Luehea divaricata, Mart.	Açoita-cavallo	Brazil	0.60
1030	Ulmaceae	Celtis tala, Gill.	Tala	Argentina	0.60-0.85
1031		Phyllostylon brasiliensis, Cap.	Baitoa, San Domingan boxwood	Dominican Repub.	0.95
1032	Verbenaceae	Avicennia nitida, Jacq.	Mangle prieto	Tropical America	0.95-1.10
1033		Petitia domingensis, Jacq.	Capá	West Indies	0.95
1034		Vitex longeracemosa, Pittier	Jocote de mico	Guatemala	0.70
1035	Vochysiaceae	Qualea rosea, Aubl.	Cèdre gris	French Guiana	0.65
1036		Vochysia guatemalensis, J. D. Smith	San Juan	Guatemala	0.42
1037	Zygophyllaceae	Bulnesia arborea, Engl.	Vera	Venezuela	1.10-1.25
1038		Guaiacum officinale, L.	Guayacan, lignum-vitae	West Indies	1.10-1.40

INDEX OF COMMON NAMES

The numbers in the following index refer to the Index Numbers in the preceding tables

	1 4 1 437	L D 1444	1 70 1 1 700 777
Abura, 619	Apple of Victoria, 552	Bean, red, 444	Box, brush, 508, 575
Acapú, 975	Apple, wild, 143	Bean, Tonca, 946	Box, flooded, 483
Acaricuára, 1000	Applewood, 143	Bedi-del, 462	Box, grey, 508
Acha, 412	Araça, 900	Beech, 32, 348	Box, gum-top, 508
Açoita-cavallo, 1029	Arakashi, 785	Beech, blue, 16	Box, native (Australia), 590
Adzukinashi, 836	Araribá, 937, 1010	Beech, Cape, 470	Box, prickly, 591
Ædelgran, 690	Arere, 670	Beech, Port Macquarie, 202	Box, red, 512, 537
Afara, 242	Arrodah, 441	Beech, red, 345	Box, river, 502
Affram, 242	Aruh, 726	Beech, red Cape, 206	Box, scrub, 525
Agba, 421	Asada, 770	Beech, silver, 346	Box, Thozet's, 540
Agboin, 416	Ash, 581	Beech, white, 347, 686	Box, white, 508
Aini, 459	Ash, Biltmore white, 80	Beefwood, 225, 601	Boxwood, San Domingan, 1031
Ainyesan, 394	Ash, black, 82	Belangiran, 710	Boxwood, West Indian, 908
Aité, 904	Ash, blue, 85	Belian, 645, 654	Brasil, 1006
Ajhar, 430	Ash, brush, 622	Bendo, 721	Braúna, 956
Akaezomatsu, 825	Ash, Cape, 446	um-Bengele, 679	Buckeye, yellow, 55
Akagashi, 780	Ash, crow's, 626	Benihi, 816	Búk, 349
Akagi, 774	Ash, green, 81	Benteak, 432	Bukal, 650
Akamatsu, 827	Ash, Moreton Bay, 555	Bér, 607	Bullet-wood, 1021
Akinire, 858	Ash, mountain, 550, 557	Berangan, 343	Bullet-wood, Andaman, 651
Albarco, 926	Ash, mountain, southern, 495	Berry, red, 588	Bullet-wood, bastard, 914
Alder, red, 10, 293	Ash, Oregon, 83	Betis, 654	Bumroti, 671
Alder, rock, 620	Ash, pumpkin, 84	Beukenhout, 470	Buna, 777
Alder, white, 294	Ash, red, 604	Bicuiba, 997	Bungor, 434
Alecrin, 953	Ash, white, 79, 490, 503	Bijasāl, 419	Buranhem, 1022
Algarroba, 954	Aspen, 147	Billian, 378	Buruta, 442
Aligna, 395	Aspen, largetooth, 146	Billy Webb, 972	Bustic, 152
Almique, 1018	Assagai, 290	Bintangor, 362	Butternut, 64
Almond, bitter, 616	Attabini, 669	um-Binza, 659	Buttonwood, Florida, 20
Almond tree, Indian, 241	Aukkyu, 337	Birch, 214, 592	Bwèchin, 401
Am, 204	Ayani, 459	Birch, Alaska, 11	Bwegyin, 401
Amarillo, 873	um-Baba, 623	Birch, black, 345	Cabbage-wood, 212
Amasetole, 652	Babul, 389	Birch, gray, 15	Cabreúva, 957
Ambay, 992	Badam, 241	Birch, paper, 14	Camphor, 386
Amigashi, 781	Bádar, 247	Birch, red, 346	Camphor-wood, 306
Amyris, 1011	Baitoa, 1031	Birch, sweet, 12	Caña fistola, 961
Andi, 612	Bajur, 725	Birch, West Indian, 895	Cancharana, 981
Angelim amargoso, 930	Bakau Minyak, 609	Birch, yellow, 13	Candlewood, 234
Angelino, 909	Bakli, 236	Biærgfyr, 693	Canela, 896
Angélique, 943	Baku, 653	Black-bark, 329	Canelo, 977
Angico, 963	Balsa, 888	Blackbutt, 520, 529, 533	Canelon, 999
Anjan, 412	Bambwe, red, 572	Blackwood, 163, 391, 407	Caoba, 985
Aohada, 757	Bangalay, 484	Bloodwood, 492, 509	Capá, 1033
Aotago, 810	um-Bangandhlala, 681	Bloodwood, pale, 554	Carbeen, 555
Apitong, 170	Banio, 711	Boaungsa, 337	Carne d'anta, 898
Ароро, 455	Bankirai, 709	Bogri, 607	Carrabeen, mellow, 333
Apple, 485	Ban kotkora, 682	Bois de rose, 916	Carrot-wood, 639
Apple, monkey, 608	Banksia, river, 595	Bois serpent, 965	Cascara, 137
Apple, narrow-leaved, 472	Bansa, 617	um-Bomvana, 230	Cedar, 266, 322, 449, 450, 983
Apple, red, 559	Bara champ, 437	Bonewood, 605	Cedar, Alaska, 95
Apple, rough-barked, 474	Basswood, 157	Bongo, 885	Cedar, bastard, 453
Apple, smooth-barked, 473	Bean, black, 405	Boscote, 891	Cedar, Ceylon, 454
			1 - ramel authorit and

Cedar, Clanwilliam, 254 Cedar, Himalayan, 259 Cedar, incense, 101 Cedar, Japanese, 260 Cedar, Port Orford, 94 Cedar, red, 337, 440 Cedar, red, eastern, 98 Cedar, red, western, 130 Cedar, white, northern, 129 Cedar, white, southern, 96 Cèdre gris, 1035 Cedro, 983 Ceibo, 886, 949 Chakwa, 235 Chalta, 296.5 Champaca, 436 Chaparro, 902 Chaplash, 458 Chemara, 703 Chengal, 298, 300 Cherry, black, 142 Cherry, wild red, 141 Chestnut, 30, 342 Chestnut, sweet, 341 Chestnut, wild, 623 Chewstick, 913 um-Chicki, 614 Chikrassi, 441 Chinquapin, golden, 31 Chir, 273 Chiru-piyari, 232 Chittapong-wood, 441 Chole, 649 Chomuntri, 665 Chooi, 208 Chôsenkaramatsu, 821 Chōsenmatsu, 828 Chou k. 225 Choso, 861 Chram. 458 Chugalam, 238 Chuglam, black, 469 Chuglam, white, 238 Clou. 562 Coach wood, 292 Cocobolo, 941 Coffeewood, 935 Colophane, 221 Coolamon, 560 Coolibah, 522 Copaiba, 938 Corkwood, 291, 674 Cottonwood, black, 148 Cottonwood, eastern, 145 Courbaril, 954 Crabwood, 982 Cujete, 877 Cupiúba, 897 Curupay, 962 Cypress, Himalayan, 262 Cypress, Monterey, 261 Cypress, southern, 128 Cypress, white, 257 Dágame, 1007 Dahu, 461 um-Dakane, 369 Dakar talada, 363 Dalné, 342 Damar Hitan, 299 Damar Laut Daun Besar, 322 Damar Laut Daun Kechil, 322 Damar merah, 711 Damar Minyak, 248 Dawata, 612 Dedali, 580 Degame, 1007 Del, 462 Deodar, 259 Deronoki, 842 Determa, 917 Dhaura, 236

Dhauri, 433

Didu, 215 Dinghah, 367 Diamudiuh ki chemara, 726 Diati. 730 Dlingsem, 713 Dogala, 651 Dogwood (flowering), 21 Dogwood, Pacific, 22 um-Doni, 561 Doornboom, 390 Douglasie, 694 um-Dubu-weklati, 237 Duka, 867 um-Duma, 211 Dumizulu, 616 i-Dungamuzi, 328 Durian, wild, 217 Dwa-dwa, 614 Ebano, 935 Ebène marbre, 325 Eg. 695 Egonoki, 846 Ekhimi, 416 Ekki. 578 Ekpagoy, 402 Elder, wild, 428 Elderberry, blue, 19 Elm. 680 Elm, American, 160 Elm, native (Australia), 676 Elm, rock, 162 Elm, slippery, 161 Embuia, 918 Enoki, 854 Espavé, 863 Espina, corona, 951 Essehout, 446, 447 Exomatau, 824 Fig. blue, 332 Fig, golden, 76 Fig, wild, 466 Fir, Alpine, 91 Fir, balsam, 88 Fir, Dantzic, 277 Fir, Douglas, 288 Fir, Douglas (coast type), 125 Fir, Douglas (mountain type), 126 Fir, noble, 93 Fir, red, 92 Fir, silver, 87 Fir, silver, European, 246 Fir, silver, West Himalayan, 247 Fir. white, 89 Fir. white, lowland, 90 Fire-tree, 602 Flat crown, 397 Fotui, 878 Frei-jo, 893 Fusasakura, 852 Fustic, 993 Gajumaru, 806 Gamhar, 685 Gangaw, 366 Geelhout, 280 Giam, 712 Gok, 437 Goncalo Alves, 865 Granadillo, 933 Greenheart, 920 Greenheart, African, 406 Greenheart, West African, 416 Greywood, Indian silver, 238 Guacima, 1028 Guanacaste, 947 Guarantán, 1013 Guatambu, 872, 1012 Guayabi, 894 Guayacan, 880, 1038 Guayacan negro, 936 Guayamero, 990 Gum, bally, 380, 381 Gum, black, 24

Gum, blue, 77, 504, 513 Gum, blue flooded, 546 Gum, blue, Sydney, 546 Gum, citron-scented, 489 Gum, flooded, 547 Gum, giant, 542 Gum, grey, 506, 538, 539 Gum, iron, 540 Gum, manna, 556 Gum, mountain. 506 Gum, poplar, 536 Gum, red, 54, 477, 486 Gum, red, forest, 553 Gum, red, Murray, 545 Gum, red, scaly-barked, 551 Gum, ribbony, 556 Gum, salmon, 548 Gum, silvertop, 525 Gum, spotted, 518 Gum, sugar, 493 Gum, swamp, 542 Gum, tupelo, 23 Gum, water, 576 Gum, white, 541 Gum, Yate, 491 Gum. York, 516 Gumbo limbo, 18 Gurjan, 305 Gurukina, 360 Gwambo, 922 Gwangi, 427 um-Gwenya, 203 um-Gxima, 290 Hackberry, 159 Haldu, 617 Halmilla, 672 um-Hamalala, 429 Hannoki, 761 Harigiri. 758 Harunire, 855 Hauchihakaede, 751 Hauthai, 607 Haw, pear, 140 Hazel, witch, 53 Hedun, 415 Hemlock, eastern, 131 Hemlock, mountain, 133 Hemlock, western, 132 Hiba, 834 Hickory, Australian, 676 Hickory, bitternut, 58 Hickory, Cairn's, 629 Hickory, mockernut, 56 Hickory, nutmeg, 61 Hickory, pecan, 63 Hickory, pignut, 59 Hickory, Queensland, 629 Hickory, shagbark, 62 Hickory, shagbark, bigleaf, 60 Hickory, water, 57 Hinau, 331 Hingori, 342 Hinoki, 818 um-Hlahlamakwaba, 338 um-Hlambamasi, 210 um-Hlandhloti, 397 Hnaw, 617 Hollock, 239 Hollong, 302 Holly, 9 Honeysuckle, 599 Honeysuckle, red, 594 Honeysuckle, white, 593 Honoki, 804 Hoobooballi, 866 Hornbeam, 17 Iberá-peré, 931 Ibiráro, 970 Ichii, 848 Ichiigashi, 783 Ichō, 790 Igowanye, 586

Ijzerhout, 584, 715 Ikpwabobo, 448 Imbira quiaba, 1026 Imbirussú, 884 In, 304 Incense tree, 222 Inkwood, 151 Inueniu, 803 Inutsuge, 756 Ipé peroba, 882) Ipil. 396, 717 Iroko, 465 Ironbark, 498, 528, 557 Ironbark, bloodwood, 501 Ironbark, broad-leaved, 549 Ironbark, grey, 527 Ironbark, narrow-leaved, 482, 494 Ironbark, pink, 524 Ironbark, red, 549 Ironwood, 551, 578 Ironwood, bastard, 584 Ironwood, black, 136, 586 Ironwood, Borneo, 378 Ironwood, of Burma and Arracan, 425 Ironwood, Kaffir, 414 Ironwood, white, 632 Isunoki, 791 Itayakaede, 753 Itwyina, 234 Ivory, red, 606 Jacarandá, 940 Jagua, 1009 Jak. 460 Jaman, 563 Jambu, 425 Jam wood, 388 Jaraná, 927 Jarrah, 519 Jarul, 430 Jaul. 876 Java-palissander, 716 Javillo, 907 Jelutong, 209 Jequitibá, 925 Jocote de mico, 1033 Jocuma, 1023 Johor, 404 Jujube tree, 607 Juniper, alligator, 97 Juniper, East African, 266 Jutahy peba, 942 Kabodda, 217 Kabwi, 225 Kachnar, 401 Kaede, 752 Kaffirboom, 411 Kagonoki, 796 Kahikatea, 278 Kail, 272 Kaita-da, 458 Kajatenhout, 429 Kakatara-balli, 874 Kaku, 578 Kala Shishan, 407 Kamahi, 296 Kamdeboo, 677 Kanazo, 335 Kanthal, 460 Kanyin, 301 Kapiteinhout, 995 Kapur, 306, 705 Karamatsu, 822 Karayani, 217 Karri, 496 Kastanjehout, 623 Katpali, 651 Katsura, 851 Kaula, 384 Kauri, Queensland, 250 Kawaka, 268 Kaya, 650, 849

Midsuki, 772

Kayu Arang, 327 Keaki, 859 Keladan, 307 Keladang, 464 Kelat, 566 Kersehout, 234 Keruing, 303 Kesambi, 724 Keur, 424 Kierpa, 612 Kihada, 841 Kikar, 389 Kindal, 240 Kiri, 844 Kirijul, 240 Klip Esse, 620 Knobthorn, 633 Knopisedoorn, 633 um-Koba, 280 Kohushi, 805 Kohe Kohe, 445 Kohwai, 423 Kokan, 660 Kôkko, 398 um-Kokolo, 354 um-Komiso, 206 Konara, 784 um-Kovoti, 678 Kōyamaki, 831 Kranji, 410 Kruin, 303 Kruing, 704 Kruisbesje, 675 Kulim, 579, 722 Kumashide, 769 Kunugi, 788 Kuri, 775 Kurikashi, 776 Kuromatsu, 829 Kurrajong, 662 Kusiaba, 621 Kusu, 797 Laban, 731 Lagan, 704 Lal Chandanum, 420 Lal chuni, 363 Lalie, 384 Lampatia, 660 Lancewood, 869 Lapacho, 880 Larch, 267 Larch, western, 100 Latecku, 335 Lauan, red, 172 Lauan, white, 171, 313 Laurel, 892, 987 Laurel, Alexandrian, 361 Laurel, mountain, 27 Laurel, native (Australia), 657 Laurel negro, 923 Laurel-wood, Indian, 243 Leatherwood, 334 Leddil, 384 Lein, 238 Leiteira, 989 Lendia, 433 Letterhout, 996 Letterwood, 996 Leza-wood, Burmese, 435 Lignum-vitae, 1038 Lilac, Persian, 453 Lingue, 921 Lipic, 682 Locust, 954 Locust, black, 70 Locust, honey, 69 Logwood, 952 um-Lolwa, 438 Long Jack, 630 Looking-glass tree, 665

Lougton, 618

Lucumidella, 454

Lumbayau, 174 Lutio, 335 Madrofia, 26 Magnolia, 437 Magnolia, cucumber, 72 Magnolia, evergreen, 74 Magona, 470 Mahogany, 451, 484, 507, 530, 531, 718, 719, 985 Mahogany, Ceylon, 454 Mahogany, Colombian, 926 Mahogany, dry-sone, 452 Mahogany, forest, 543 Mahogany, red, 543 Mahogany, scented, 449 Mahogany, swamp, 544, 577 Mahogany, West Australian, 519 Mahogany, white, 478 Mai-aug, 647 Maiden's blush, 673 Maila, 688 Maire, 564 Maire, black, 565 Majagua, 979 Makai, 311 Makamba, 763 Malai, 454 Maloh, 469 Mamegaki, 773 Mamey, 911 Manbarklak, 928 Mandora, 323 Mangeao, 379 Mangi, 379 Mangle prieto, 1032 Mango, 204 Mangrove, 138 Mangrove, black, 610 Mangrove, grey, 683 Mangrove, red, 610 Maniawga, 612 Manshügurumi, 793 Manuka, 568 Mansanillo, 906 Mansimane, 207 Mapata, 244 Mapau, 471, 592 Mapau, white, 658 Maple, black, 2 Maple, bigleaf, 1 Maple, New South Wales, 370 Maple, Queensland, 628 Maple, red, 4 Maple, silver, 5 Maple, striped, 3 Maple, sugar, 6 Mararie, 295 Marble-wood, Andaman, 324 Marchula, 631 Margosa, 453 Marochani, 584 Maroogoo, 632 Marri, 486 Marupá, 1025 Massaranduba, 1020 Mastic, 153 Matai. 285 Mategibe, 203 Mawldá, 664 Mazerie, 338 Medang, 382 Medang Tandok, 383 Melantai, 317 Merabau, 396 Merani Kait Kait, 322 Meranti Bunga, 316 Meranti Kepong, 321 Meranti Rambai Daun, 310 Meranti Sarang Punai, 319 Merawan, 309, 708 Merhau, 717

Messmate, 497, 498, 532, 552

Midsume, 762 Milkwood, red, 649, 652 Milkwood, white, 656 Milla, 688 Miro. 281 Most soom, 671 Moehakalela, 623 Moko. 330 Momi, 813 Mora, 944, 993 Morrell, 514 Moruro, 964 Mowha, 651 Mpataselo, 355 Mrapat, 723 Mucuri, 1019 Mueri, 616 Muhugu, 245 Mukao, 663 Mukuenoki, 853 Mulberry, wild, 358 Mulsari, 650 u-Munga, 392 Muntelon, 615 Murrogun, 376 Musaizi, 613 Musengera, 282 Musharagi, 585 Muskwood, 984 Mutati, 213 Mutirai, 442 Mutwa, 561 Musaiti, 386 Mweri, 456 Myauklot, 461 Myrtle, grey, 475 Myrtle, Oregon, 68 Myrtle, red, 344 Myrtle, silver, 573 Myrtle, Tasmanian, 344 Nageshwa, 366 Nagi, 847 Nana, 432 Nance, 978 Naranjo, 899 Natte, 648 Nebelele, 397 Nedun, 415 Negro head, 347 Nemili-adagu, 688 Nemunoki 801 Neribi, 220 Nezuko, 833 um-Nga, 390 um-Ngayi, 231 um-Ngqangqa, 229 um-Ngquma, 587 Niankuma, 669 Niere, 606 Nieshout, 456 Nigaki, 845 Niganire, 856 um-Nini, 606 Nispero, 1017 Nogal, 915 um-Ngabaza, 675 um-Nqai, 231 um-Nqwaskube, 293 um-Nukambiba, 624 um-Nungumabele, 633 Nyatoh, 647 Nym tree, 453 Oak, 350, 351, 352 Oak, black, 51 Oak, bur, 42 Oak, California black, 36 Oak, chestnut, 43 Oak, forest, 228 Oak, Gambel's, 39 Oak, hill, 349 Oak, Karri Shea, 224

Oak, live, 52 Oak, live, canyon, 37 Oak, Oregon white, 40 Oak, pin, 46 Oak, post, 50 Oak, red, 35 Oak, red, silky, 597 Oak, river, 223 Oak, satin silky, 596 Oak, scarlet, 38 Oak, shea, 226 Oak, silky, 598, 600 Oak, southern red, 49 Oak, swamp, 227 Oak, swamp chestnut, 48 Oak, swamp red, 45 Oak, swamp white, 34 Oak, Tasmanian, 495 Oak, water, 44 Oak, white, 33 Oak, willow, 47 Obeche, 670 Obobo-Nikwe, 450 Obobo-Nufwa, 449 Ochwen, 340 Odonomokuku, 222 Odum, 465 Ogwango, 451, 452 Ogwega, 409 Ohionire, 857 Ōhnara, 782 Oiticica, 994 Oity, 862 Okan, 406 Okoko, 667 Okwein, 403 Oleo vermelho, 958 Olive, wild, 587 Olyvenhout, 587 Onglen belian, 715 Onigurumi, 794 Onoorekamba, 766 Opepe, 621 Orange, osage, 75 Orugbo, 364 Østerrigsk Fyr, 692 Ottenga, 296.5 Oudehout, 614 Outeniqua, 280 Owawa, 670 Paardepis, 642 Pabda, 431 Pacouri, 912 Padauk, 417 Padauk, Burma, 418 Pagar Anak, 426 um-Pahla, 244 Pairi, 232 Palm, Palmyra, 589 Palmetto, cabbage, 86 Palo blanco, 1008 Palo dulce, 950 Paludár, 247 Panaka, 232 Panchi, 235 Panisai, 239 Pantaga, 363 Páo d'alho, 1001 Páo amarello, 1014 Páo branco, 890 Páo brasil, 934 Páo Concha, 1005 Páo santo, 976 Paradise-tree, 154 Partridge, 935 Pauii. 980 Peach, wild, 355 Pear, coffee, 229 Pear, hard, 229 Pear, mountain hard, 588 Pear, native (W. Australia), 603

Oak, laurel, 41

Pear, red, 356 Pear, thorn, 357 Pear, white, 369 Pearwood, white, 233 Pecan, 63 Pecha-da, 324 Peinnè, 460 Penaga (F.M.S.), 366 Penak, 298, 300 Pendjalinan, 729 Peppermint, 497, 515 Peppermint, black, 479 Peppermint, narrow-leaved, 481

Peppermint, New England, 480 Peppermint, Sydney, 534

Pereira, 968 Perepat, 661 Perian, 463

Pernambuco wood, 934 Peroba rosa, 870 Persimmon, 25 Peshora, 368 Petanang, 706 Petwun, 672 Pigeon-wood, 679 Pilla, 460 Pimenteira, 986 Pine, Bhotan, 272 Pine, black, 281, 285 Pine, blue, 272 Pine, brown, 279 Pine, Bunya, 251 Pine, celery-top, 269 Pine, cluster, 274 Pine, cypress, 256 Pine, cypress, black, 255 Pine, Dundathu, 250 Pine, hoop, 252

Pine, Illawara Mountain, 256

Pine, Huon, 265 Pine, jack, 107 Pine, Jeffery, 114 Pine, kauri, 249 Pine, King William, 253 Pine, limber, 113 Pine, loblolly, 124 Pine, lodgepole, 110 Pine, longleaf, 117 Pine, long-needled, 273 Pine, maritime, 274 Pine, Moreton Bay, 252 Pine, mountain, 119 Pine, Oyster Bay, 258 Pine, pitch, 121 Pine, pond, 122

Pine, Putt's, 625 Pine, red, 120, 264 Pine, sand, 109 Pine, Scots, 277 Pine, shortleaf, 111 Pine, ailver, 263 Pine, slash, 108 Pine, stone, 275 Pine, sugar, 115 Pine, turpentine, 219 Pine, Westland, 263 Pine. Weymouth, 276

Pine, white, 278

Pine, yellow, western, 118 Pinheiro de Paraná, 1002 Pinkwood, 336 Pinlékanazo, 664, 665 Piñon, 112

Pine, white, eastern, 123

Pine, white, western, 116

Pipli, 367 Piquiá, 1027 Piuni, 272 Plum, black, 563 Plum, dog, 446 Plum, grey, 326 Plum, Kaffir, 203 Plum, pigeon, 135 Podo, 282, 283 Poisonwood, 8 Poma, 440 Pomatum-wood, 371 Pomme, 567 Pooli, 218 Poplar, 634 Poplar, balsam, 144

Poplar, yellow, 71 Popohan, 700 Portia-tree, 439 Possum wood, 907 Powder bark, 476 Prima vera, 879 Prima vera, Indian, 433

Pulaj, 702 Pulut Pulut, 467 Puna, 361 Punggai, 216 Purpleheart, 959 Puspah, 727 Pyinkado, 425 Pyinma, 430, 431 in-Quala, 637 um-Quaqu, 428 Quassia, 1024 Quebracho blanco, 871 Quebracho colorado, 868

Quinine tree, 210 u-Qume, 642 um-Qwaqwana, 684 um-Qwashu, 656 Rai, 271 Ranai, 387 Rasak, 312 Rasamala, 714

Rata, northern. 571 Recheda, 393 Redwood, 127, 289, 393 Regte Zwarte Ijzerhout, 586 Rengas, 205, 701

Resak, 712 Rewa Rewa, 599 Rhododendron, great, 29

Rimu, 264 Rinboku, 840 Rinda, 308 Ritha, 644 Roble, 881 Roble colorado, 969 Rodeblad, 237 Rode Els. 293 Rode Melkhout, 206 Rode Peer, 356 Rødgran, 691

Rosewood, 443

Rosewood, Brazilian, 940 Rosewood, East Indian, 407 Rosewood, Honduras, 939

Ru, 225 Sabicú, 955 Sabicú moruro, 960 Saffraanhout, 230 Saffronwood, 230 Sagewood, 427 Saga, 436 Ságun, 687 Saihadakamba, 765 Saikachi, 802 Sain, 243 Saitu, 215 Sáj, 687 Sáka, 687 Sákher, 320 Sál, 320

Salamo, 1007 Salangan Batu, 315 Saliehout, 427 Samohú, 887 Sanai, 297 Sancho-araña, 860

Sandal, 582 Sanders, red, 420 Sandulane, 620 San Juan, 1036 Santa Maria, 910 Sapu, 436 Sapucaia, 929 Saqui-saqui, 883 Sassafras, 67, 457 Sassafras, black, 374 Satiné, 991 Satinwood, 442, 631

Satinwood, West Indian, 1015

Satyobe, 588 Sauce colorado, 1016 Sawagurumi, 795 Sawara, 819 Sawashiba, 768 Seiknangyi, 384 Semul, 215 um-Senge, 212 Sepetir, 422 Serava Batu, 322

Seriah, 314 Seriah, white, 322 Seru. 727 Serviceberry, 139

She beech, 371, 380 She teak, 627 Shii. 778 Shila, 239 Shinanoki, 850 Shioii, 812 Shirabe, 815

Shirakamba, 764 Shirakashi, 786 Shiribukagashi, 779 Shisham, 408 Shōnanboku, 823 Shtar, 368

Sia Nahor, 365 Sida, 433 Silkwood, 583 Silverbell-tree, 155 Simantok, 711 Singliang, 367 um-Sinsi, 411 Sintok, 707 Sirikishu, 342 Sirio, 398

Siris. 398 Siris, white, 400 Sissoo, 408 Sit. 400 Speezewood, 456 Soapnut, 644 Sono kling, 716

Sooahn, 304 Sōshiju, 800 Sourwood, 28 Spekhout, 355 Spruce, black, 104 Spruce, Engelmann, 102 Spruce, Norway, 270 Spruce, red, 105

Spruce, Sitka, 106 Spruce, West Himalayan, 271

Spruce, white, 103 Stavewood, 668 Stinkhout, 385, 677 Stinkwood, black, 385 Stinkwood, red, 616 Stopper, Garber's, 78 Stringybark, 487, 500, 510, 526 Stringybark, brown, 488

Stringybark, red, 517 Stringybark, silvertop, 511 Stringybark, small-leaved, 558 Stringybark, white, 499

Stringybark, yellow, 523 Subaha, 619

Sucupira, 932

Sugarberry, 158 Sugi, 820

Sultana champa, 361 Sumach, staghorn, 7

Sundri, 664, 665 Sungloch, 239 um-Sunti, 286 Suren. 720 Suriya, 439 Suriya Mara, 399

Sycamore, 134, 200 Taaibosch, 207 Tabu, 799 Taiwanhinoki, 817 Taiwansugi, 832

Tal, 589 Tala, 1030

Tallowwood, 521, 535 Taman, 430 Tamarack, 99

Tamarind, native (Australia),

640 Tambalacoque, 655 Tan. 589 Tangeao, 379

Tangile, 173 Tapinhoan, 924 Taraire, 372 Taree, 241 Tatajuba, 988 um-Tati, 456 Taukkyan, 243

Taungpeinne, 458 Tawa, 373 Tawenna, 646 Tayôkthé, 337 Tea tree, 568

Tea tree, Bellbowrie, 569

Tea tree, prickly-leaved, 570 Teak, 687, 730 Teak, brush, 643

Teak, Cape, 429 Teak, colonial, 626 Tempinis, 468 um-Tenattena, 329 Tenio, 901 Terentang, 201 Thabye, 563 Thabyu, 296.5

Thamaga, 453 Tharani, 361 Thayet, 204 The Toddy, 589 Thingan, 308 Thitkado, 440 Thitkya, 324 Thitmagyi, 399 Thitmin, 284 Thitpyu, 400 Thitya, 318 Thorn tree, 390

Tingle tingle, red, 510 Tips, 973 Titoki, 636 n-Tlokoebomve, 207 Tochinoki, 792

Todomatsu, 814 Togasawara, 830 Tōhi, 826 um-Tombi, 466 Toneriko, 809 Toon, 440 Totara, 287 Towai, 345, 346

Trincomalee wood, 672 Tsuga, 835 Tsuge, 771 Tualang, 413 Tuart, 505 Tuckeroo, 639 Tulip tree, 439 Tulip wood, 641

Tulip wood, yellow, 339 Tuni, 440 um-Tunzi, 649, 652 Turpentine, 574 Ubamegashi, 787 Ubberiya, 611 Ukpe-Nikwi, 638 Ulmo. 903 Ulwatile, 642 Umbrella, Fraser's, 73 Umburana, 974 Urajirogashi, 789 Uriana, 337 Urihadakaede, 754 Urucurana, 905 Urunday, 864 Urushi, 755 Ushikoroshi, 837 Uvero, 1003 Uwamizuzakura, 839 Vaalbosch, 244 Vengai, 419 Vera, 1037 Veroity, 889 Vincol, 666 Vinhatico castanho, 967 Vinhatico de espinho, 966 Virarú, 1004 Virgilia, vetch-leaved, 424 Vlier, 428 Vuinauku, 666 um-Vumvu, 677 Waibaima, 919 Waikey, 913 Walikukun, 728 Wallaba, 948 Walnut, 398 Walnut, black, 65 Walnut, Mexican, 66 Walukina, 359 Wamara, 971 Wandoo, 541 Waterbesie, 561 Water tree, 211 Wawaku, 268

Welimadá, 284 Wilde Moerbe, 358 Willow, 635 Willow, black, 150 Willow, black, western, 149 Willow, bush, 237 Witch-hazel, 53 Witgalboom, 677 Witte Els, 294 Wittehout, 211 Witte Melkhout, 656 Witte Peer, 369 Wolvedoorn, 357 Wonta, 461 Woolly-butt, 485, 515 Xalebo, 358 Yabunikkei, 798 Yacal, 315 Yachidamo, 811 Yagrume, 875 Yamaguwa, 807 Yamahannoki, 760 Yamamomo, 808 Yamanarashi, 843 Yamane, 685 Yamazakura, 838 Yashabushi, 759 Yaya, 619, 869 Yayamadou, 998 Yellowwood, bastard, 280 Yellowwood, real, 286 Yellowwood, upright, 286 Yepa, 412 Yew, Pacific, 156 Yinma, 441 Yivé, 393 Yogusominebari, 767 Yon, 235 um-Zani, 632 Zapatero, 908 um-Zimbiti, 414 Zuurbesje, 203 Zuurbesjes, 354 Zwartbast, 329 Zwarte kabbes, 945

DENSITY ARRANGEMENT

In the arrangement below, the lightest and heaviest woods are listed in the order (descending) of their bulk-densities in the air-dried condition. The bold-face numbers represent intervals on the density scale. The other numbers are the index numbers of the woods arranged in descending order of their densities. Bulk density = weight of air-dry piece divided by its bulk volume.

ARRANGEMENT PAR DENSITÉ

Dans l'arrangement ci-dessous les bois les plus légers et les plus lourds sont indiqués dans l'ordre (descendant) de leur densité apparente dans les conditions de séchage à l'air. Les nombres en caractères gras représentent les intervalles de l'échelle des densités. Les autres nombres sont les nombres index des bois disposés dans l'ordre descendant de leurs densités. Densité apparente = poids de la pièce séchée à l'air divisé par son volume apparent.

ANORDNUNG DER DICHTE

In der Anordnung unten sind die leichtesten und schwersten Hölzer in absteigender Reihe ihrer Dichten im Luft trockenem Zustande angegeben. Die hervorgehobenen Zahlen bezeichnen die Intervalle an der Dichteskala. Die anderen Zahlen sind die Indexnummern der angegebenen Hölzer in absteigender Reihe ihrer Dichten. Raumgewicht = Gewicht des Luft trockenen Stückes dividiert durch sein Volumen.

ORDINE SECONDO LE DENSITÀ

Nell'elenco che segue, i legni più leggeri e i più pesanti sono indicati nell'ordine decrescente delle loro densità nello stato

di essiccamento all'aria. I numeri marcati in nero rappresentano gli intervalli nella scala delle densità. Gli altri numeri sono i numeri indice dei legni disposti in ordine decrescente delle loro densità. Densità apparente = peso del pezzo seccato all'aria diviso per il suo volume.

1.40: 1038, 996, 868, 976, 412, 936, 864, 136, 971, 522. **1.25**: 1037, 1021, 880, 512, 934, 920, 941, 928, 665, 552, 420. **1.20**: 946, 935, 933, 904, 523, 513, 501, 549, 731, 565, 554, 497. **1.15**: 965, 945, 919, 414, 638, 482, 555, 415, 540, 525, 587. **1.12**: 494, 207, 493, 536, 524, 1032, 1023, 1020, 1013, 1011, 1003, 896, 409. **1.09**: 1017, 970, 551, 537, 553, 939, 138, 498, 664, 570. **1.06**: 502, 234, 651, 530, 507, 991, 954, 571, 153, 583, 475. **1.04**: 961, 442, 1008, 962, 861, 228, 644, 477, 483. **1.02**: 960, 541, 491, 387, 484, 584, 509, 654. **1.00**: 1005, 972, 969, 959, 958, 956, 953, 952, 944, 932, 924, 871, 865, 357.

0.41: 883, 814, 466, 88, 55, 123, 272, 115, 271. **0.40**: 1025, 886, 878, 820, 815, 785, 218, 148, 154, 247. **0.38**: 842, 720, 321, 102, 983, 833, 816, 130, 253, 209, 91, 96. **0.36**: 907, 820, 213, 144, 947, 895, 887, 819, 721, 201, 129. **0.344**: 18, 467, 454, 844, 711, 702, 463. **0.25**: 1026, 949, 884. **0.189**: 674. **0.12**: 888. **0.10**: 885.

ARTIFICIAL LUMBERS

The data given below are intended to illustrate the order of magnitude of some of the properties found for samples of certain artificial materials manufactured in board form for special uses. Since the properties of such materials vary with the method of manufacture, and as such methods are constantly being improved, the actual characteristics of the manufactured product at a given time can be obtained only from the manufacturer.

Common or trade name	Composition and structure	Bulk density, g/cm³	Strength kg/cm² Tr. = transverse Ten. = tensile Cr. = crushing	Approximate thermal conductivity $k = 10^{-4}$ g-cal cm ⁻² gec ⁻¹ (°C, cm ⁻¹) ⁻¹ cf. p. 312 (4)
Asbestos mill		1	1	1 A
board	Asbestos + binder	1.0		29
Asbestos wood	Asbestos + cement	2.0	1050 Cr. (3) 246 Tr.	93
Asphalt roofing	Felt saturated with asphalt	0.9		21
Celotex*	Felted bagasse	0.19 to	2.25 Tr.	
	fibers	0.24	26.2 Ten. (2)	10
Cork board	Cork, no binder	0.13		10
Cork board	Cork'+ bituminous binder	0.25		12
Insulite	Preseed wood pulp	0.19	1.62 Tr.	10
			11.7 Ten. (2)	13
Lith board	Mineral wool, vege- table fibers+ binder	0.2		
Sheet rock or	Gypsum + wood		2.04 Tr.	!
plaster board	shavings		12.3 Ten. (2)	ľ
Wall board (gypsum)	Gypsum			80
Wall board	Stiff paper	0.7	13 Ten. (1)	17
Thermolath†	Vegetable fibers + waterproofing		11.9 Ten. (8) 1.14 Tr.	13 (5)
	binder		1	

^{*} Water absorptivity on 48 hr immersion = 10 vol. %.

LITERATURE

(For a key to the periodicals see end of volume)

Bird and Son, O. (2) Celotex Company, Celotex. (3) Johns-Manville Co., Asbestos Wood. (4) Van Dusen, 385, 26: 625: 20. (5) Waldorf Paper Products Co., O.

[†] Water absorptivity on 48 hr immersion = 41 vol. %.

BUILDING STONES

D. W. KESSLER

Contents	Matières	Inhaltsverzeichnis	Indice Page
Compressive strength. Shearing strength.	Résistance à la compression. Résistance au cisaillement.	Druckfestigkeit. Schubfestigkeit.	Resistenza alla pressione 47 Resistenza alla cesoia-
Transverse strength. Tensile strength.	Résistance à la flexion. Résistance à la traction.	Biegefestigkeit. Zugfestigkeit.	menta
Resistance to abrasion. Impact hardness. Elasticity.	Dureté au frottement. Dureté au choc. Élasticité.	Abnutzbarkeit. Schlaghärte. Elastizität.	Resistenza alla usura
Bulk density. Porosity. Compressibility.	Densité apparente. Porosité. Compressibilité.	Raumgewicht. Porosität. Kompressibilität.	Densità apparente 52 Porosità 53 Compressibilità 54
Thermal expansion. Specific heat.	Dilatation thermique. Chaleur spécifique.	Wärmeausdehnung. Spezifische Wärme.	Dilatazione termica 54 Calore specifico 55
Thermal conductivity. Thermal diffusivity.	Conductibilité thermique. Diffusivité thermique.	Wärmeleitfähigkeit. Temperaturleitfähigkeit.	Conduttività termica 55 Diffusibilità termica 55
CONVERSIO		Dia	abase
1 kg cm ⁻² = 14.22 lb. in. ⁻² = 1 dyne cm ⁻² = 1.020 \times 10 ⁻⁶ kg = 1.044 \times 10 ⁻⁶ ton	$cm^{-2} = 1.450 \times 10^{-6} lb. in.^{-2}$	Ochenkopf, Bavaria Hasselfelde, Harz Mts Taylors Falls, Minn	2.1 (12)
$1 \text{ kg}^{-1} \text{ cm}^2 = 1.020 \times 10^6 \text{ dyne}$ = 1.033 atm ⁻¹	$e^{-1} \text{ cm}^2 = 0.0703 \text{ lb.}^{-1} \text{ in.}^2$		Range—1.0 to 2.5
$1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3} = 6$ $1 \text{ joule cm}^{-2} \text{ sec}^{-1} (^{\circ}\text{C}, \text{ cm}^{-1})^{-1} =$		Freiburg, Baden	
	$(^{\circ}\text{C, cm}^{-1})^{-1}$ 9.48 × 10 ⁻⁴ BTU ft. ⁻² sec ⁻¹ $(^{\circ}\text{F, in.}^{-1})^{-1}$	Boulder Canyon, Ariz	2.0 (21)
	(F. III. *) *		
per deg $C = 0.556$ per deg F .	(- , ,	A	plite
*1 ton = 2000 lb. Compressive	e Strength	Hingham, Mass	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻²	E STRENGTH × 10 ⁻³	Hingham, MassSyenite, Av. I	
*1 ton = 2000 lb. Compressive	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (⁴).	Syenite, Av. F Fine grained, East St. Cloud, M Porphyry, Pulaski Co., Ark	Range—1.0 to 2.0 Minn
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Rai Near Linz a. R Limburg, Nassau	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (⁴). nge—2.0 to 3.5	Hingham, Mass	Range—1.0 to 2.0 Minn
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse.	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. Fine grained, East St. Cloud, M. Porphyry, Pulaski Co., Ark	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse. Phon	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. Fine grained, East St. Cloud, M. Porphyry, Pulaski Co., Ark Gray quartzose, East St. Cloud Coarse, Watab, Minn Fine grained, Sauk Rapids, Mir Cape Ann, Mass Weinheim, Baden	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse.	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (⁴). nge—2.0 to 3.5	Syenite, Av. Fine grained, East St. Cloud, M. Porphyry, Pulaski Co., Ark	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau Ortenberg, Hesse Lauterbach, Hesse Phon Rothweil, Baden Aschaffenburg, L. Franconia Porphyry, Av. Ran	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. Fine grained, East St. Cloud, M. Porphyry, Pulaski Co., Ark	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse Lauterbach, Hesse Phon Rothweil, Baden. Aschaffenburg, L. Franconia. Porphyry, Av. Ran Quartz, Beutengrund, Silesia Quartz, Reinsdorf, Silesia	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. Fine grained, East St. Cloud, M. Porphyry, Pulaski Co., Ark Gray quartzose, East St. Cloud Coarse, Watab, Minn Fine grained, Sauk Rapids, Min Cape Ann, Mass Weinheim, Baden Serpentine, Av. Hollysprings, Ga Auburn, Calif	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse. Phon Rothweil, Baden. Aschaffenburg, L. Franconia. Porphyry, Av. Ran Quartz, Beutengrund, Silesia. Quartz, Reinsdorf, Silesia. Alpirsbach, Black Forest.	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. Fine grained, East St. Cloud, M. Porphyry, Pulaski Co., Ark	2.5 (41)
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse. Phon Rothweil, Baden. Aschaffenburg, L. Franconia. Porphyry, Av. Ran Quartz, Beutengrund, Silesia. Quartz, Reinsdorf, Silesia. Alpirsbach, Black Forest. Quartzite, Av. R Kugelberg, Alsace.	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. F Fine grained, East St. Cloud, M Porphyry, Pulaski Co., Ark Gray quartzose, East St. Cloud Coarse, Watab, Minn Fine grained, Sauk Rapids, Min Cape Ann, Mass Weinheim, Baden Serpentine, Av. Hollysprings, Ga Auburn, Calif Roxbury, Vt Einseidel, Bohemia Zoblitz, Saxony Granite, Av. F Quartz-monzonite, Westerly, R.	
kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse. Phon Rothweil, Baden. Aschaffenburg, L. Franconia. Porphyry, Av. Ran Quartz, Beutengrund, Silesia. Quartz, Reinsdorf, Silesia. Alpirsbach, Black Forest. Quartzite, Av. R Kugelberg, Alsace. Sierk near Metz. Pipestone, Minn.	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. F Fine grained, East St. Cloud, M Porphyry, Pulaski Co., Ark Gray quartzose, East St. Cloud Coarse, Watab, Minn Fine grained, Sauk Rapids, Min Cape Ann, Mass Weinheim, Baden Serpentine, Av. Hollysprings, Ga Auburn, Calif Roxbury, Vt Einseidel, Bohemia Zoblitz, Saxony Granite, Av. F Quartz-monzonite, Westerly, R. Muscovite, Stone Mountain, Ga Hornblende, Mosquito Mt., Ma	
*1 ton = 2000 lb. Compressive kg cm ⁻² Example: For basalt from Lim Basalt, Av. Ran Near Linz a. R. Limburg, Nassau. Ortenberg, Hesse. Lauterbach, Hesse. Phon Rothweil, Baden. Aschaffenburg, L. Franconia. Porphyry, Av. Ran Quartz, Beutengrund, Silesia. Quartz, Reinsdorf, Silesia. Alpirsbach, Black Forest. Quartzite, Av. R Kugelberg, Alsace. Sierk near Metz.	E STRENGTH × 10 ⁻³ burg, 3200 kg per sq. cm (4). nge—2.0 to 3.5	Syenite, Av. F Fine grained, East St. Cloud, M Porphyry, Pulaski Co., Ark Gray quartzose, East St. Cloud Coarse, Watab, Minn Fine grained, Sauk Rapids, Min Cape Ann, Mass Weinheim, Baden Serpentine, Av. Hollysprings, Ga Auburn, Calif Roxbury, Vt Einseidel, Bohemia Zoblitz, Saxony Granite, Av. F Quartz-monzonite, Westerly, R. Muscovite, Stone Mountain, Ga	

Granite.—(Continued)		
Coarse biotite, Stony Creek, Conn	1.1	(13)
Gneiss, Monson, Mass	1.1	(41)
Biotite, Aberdeen, Scotland	0.8	(13)
Gabbro		
Rice Pt., Duluth, Minn	1.9	(13)
Randauthal, Hanover	1.0	(4)
	1.0	1 (-)
Lava		
Niedermendig, Rhine	1.9	(6)
Fremont Co., Colo	0.7	(18)
Marble, Av. Range-0.8 to 1.8	5	
Hematitic dolomite, Swanton, Vt	1.9	(21)
Coarse dolomite, Pleasantville, N. Y	1.6	(13)
Carbonaceous, Isle LaMotte, Vt	1.5	(21)
Dolomite, South Dover, N. Y	1.4	(21)
Dolomite, Lee, Mass	1.4	(21)
Pink fossiliferous, Knoxville, Tenn	1.2	(21)
Saccharoidal calcite, Carrara, Italy	1.1	(15)
Saccharoidal calcite, Plattsburg, N. Y	1.0	(21)
Magnesian, Gouverneur, N. Y	1.0	(21)
Dolomite, Beaverdam, Md	0.9	(21)
Graphitic dolomite, Florence, Vt	0.9	(21)
Carbonaceous, Glens Falls, N. Y	0.8	(13)
Coarse calcite, Ball Ground, Ga	0.8	(21)
Saccharoidal calcite, Rutland, Vt	0.7	(21)
Actinolitic calcite, South Dorset, Vt	0.6	(21)
Dolomite, Av. Range—0.8 to 1.	5	
Compact, Lemont, Ill.	1.9	(13)
Compact, Red Wing, Minn	1.6	(13)
Arenaceous, Kasota, Minn	0.9	(21)
Bituminous, Marblehead, Ohio	.8	(21)
Pitted, Jefferson City, Mo	.8	(21)
Vesicular, Stone City, Iowa	.4	(3)
Essexite		
Mt. Johnson, Quebec.	1.8	(1)
Granodiorite	1.0	
Rocklin, Calif	1.5	(43)
Labradorite	1.0	(30)
		1 (1.0)
Beaver Bay, Minn	1.5	(13)
Sandstone, Av. Range—0.5 to 1	.5 	
Quartzitic, Potsdam, N. Y	1.5	(21)
Argillaceous, Warsaw, N. Y	1.4	(41)
Calcareous, Horst, Schleswig-Holstein	1.2	(12)
Calcareous, Craigleith, Scotland	0.9	(13)
Triassic, Hummelstown, Pa	.8	(21)
Triassic, Bellville, N. J	.8	(13)
Triassic, Portland, Conn	.7	(21)
Triassic, East Long Meadow, Mass	.7	(21)
Calcareous, Dorchester, N. B	.7	(13)
Feldspathic, Vitzenberg, Thuringia	.6	(12)
Calcareous, Warrensburg, Mo	.4	(8)
Feldspathic, Aquia Creek, Va	.4	(21)
Ferruginous, Chitwood, Ore	.4	(41)
Limestone, Av. Range—0.4 to 1	.4	
Argillaceous, St. Paul, Minn	1.4	(13)
Compact, Lias, France	1.4	(36)
Jurassic, Chatillon, France	1.4	(36)

Limestone.—(Continued)		
Aluminous, Minneapolis, Minn	1.2	(13)
Compact, earthy, Cassville, Mo	0.9	(21)
Fine-grained oolite, Marshalltown, Iowa	.9	(3)
Vesicular, Mantorville, Minn	.7	(13)
Magnesian, Andalusia, Ill	.4	(35)
Oolitic, Bedford, Ind	.4	(21)
Jurassic, Isle of Portland	.3	(33)
Oolitic, Caen, Normandy	.25	(13)
Oolitic, Bath, England	.09	(29)
Conglomerate		
Wilkesbarre, Pa	1.3	(18)
Königssee, Thuringia	1.2	(12)
Breccia (Volcanic)		
Boulder Canyon, Ariz	1.0	(21)
Tufa		
Lilliwaup, Wash	0.8	(31)
Slate		
Pen Argyl, Pa	0.7	(11)
Trachyte		
Köln, Rhine	0.7	(6)
Steatite		
Arrington, Va	0.6	(21)
Tuff		
Oregon	0.2	(21)
Grafenberg, Bavaria	0.1	(4)
Sum a praya Summayana		

SHEARING STRENGTH

The shearing values given in this table were determined by three types of apparatus, one of which appears to give results which are too low, due to the fact that bending stresses are produced. The values determined by authority No. 41 are probably low for this reason.

kg cm⁻² Marble, Av. Range—100 to 300

Hematitic dolomite, Swanton, Vt.....

22cmatrice dolomice, Swanton, V	100	(~~/
Dolomitic, Lee, Mass	320	(21)
Impure calcite, Carthage, Mo	310	(21)
Graphitic calcite, Albertson, Vt	260	(21)
Pink fossiliferous, Knoxville, Tenn	250	(21)
Karstmarmor, Nabresina, Istria	110	(15)
Dolomitic, Tuckahoe, N. Y	105	(41)
Siliceous, Neubeuern, Bavaria	100	(4)
Saccharoidal calcite, Carrara, Italy	90	(15)
Fine-grained, Laas, Tyrol	60	(15)
Serpentine		
Weisen, Tyrol	340	(15)
Hollysprings, Ga	320	(21)
Einsiedel, Bohemia	180	(15)
Granite, Av. Range—150 to 30	0	
Muscovite, Stone Mountain, Ga	300	(21)
Biotite, Millbridge, Maine	200	(18)
Biotite, Milford, Mass	180	(41)
Hornblende, Rockport, Mass	170	(41)
Hornblende, Cape Ann, Mass	170	(22)
Muscovite-biotite, Troy, N. H	160	(41)
Fine-grained biotite, Schwarzwasser, Poland	140	(15)
Fine-grained biotite, Mauthausen, Austria	140	(4)
Biotite, Hauzenberg, Bavaria	130	(4)
Biotite, Baveno, Italy	90	(15)

(21)

Steatite		
Arrington, Va	280	(21)
Slate		·
Calcareous mica, Pen Argyl, Pa	250	(21)
Siliceous mica, Monson, Maine	150	(27)
Limestone, Av. Range—100 to 2		,
		/21\
Earthy dolomite, Quincy, Ill	210 200	(21) (21)
Gray colitic, Bedford, Ind	170	(10)
Buff oolitic, Bedford, Ind	150	(10)
Flinty, Buffalo, N. Y	150	(41)
Oolitic, Rockwood, Ala	150	(21)
Pure white oolitic, Kehlheim, Bavaria	30	(4)
Sandstone, Av. Range—50 to 1	50	
Triassic, East Longmeadow, Mass	190	(21)
Fine-grained variegated, Murgtal, Baden	40	(4)
Argillaceous, Hochberg, Bavaria	30	(4)
Glauconitic, Ihrlerstein, Bavaria	20	(4)
Transverse Strength		
Modulus of Rupture		
kg cm ⁻²		
Serpentine, Av. Range—100 to 8		
Weisen, Tyrol	780	(15)
Hollysprings, Ga	340	(21)
Roxbury, Vt	310	(21)
Einsiedel, Bohemia	160	(15)
Auburn, Calif	90	(38)
Quartzite		1
White Haven, Pa	330	(21)
Marble, Av. Range—100 to 20	0	
Hematitic dolomite, Swanton, Vt	300	(21)
Carbonaceous, Isle La Motte, Vt	250	(21)
Fine-grained calcite, Laas, Tyrol	190	(15)
Pink fossiliferous, Knoxville, Tenn	180	(21)
Graphitic, Albertson, Vt	170	(21)
Saccharoidal calcite, Carrara, Italy	170	(15)
Karstmarmor, Nabresina, Istria	170 150	(15) (21)
Fossiliferous, Plattsburg, N. Y	150	(21)
Dolomitic, Lee, Mass	130	(21)
Coarse calcite, Ball Ground, Ga	110	(21)
Saccharoidal calcite, West Rutland, Vt	80	(21)
Granite, Av. Range—100 to 20		
		1 (4)
Fine-grained biotite, Mauthausen, Austria	230 180	(4) (15)
Fine-grained biotite, Schwarzwasser, Poland	180 170	(22)
Hornblende, Cape Ann, MassBiotite, Millbridge, Maine	140	(18)
Biotite, Baveno, Italy	110	(15)
Biotite, Gefrees, Franconia	80	(4)
	25	
Sandstone, Av. Range—25 to 1		
Sandstone, Av. Range—25 to 1	160	(21)
Flagstone, Lacyville, Pa	160 130	(21) (21)
Flagstone, Lacyville, PaQuartzitic, Potsdam, N. Y		1 1
Flagstone, Lacyville, Pa	130	(21)

Berea grit, Amherst, Ohio.....

Limestone, Av. Range-75 to 125

Arenaceous dolomite, Kasota, Minn	150	(21)
Compact earthy, Cassville, Mo	140	(21)
Flinty, Buffalo, N. Y	100	(41)
Pure white oolitic, Kehlheim, Bavaria	90	(4)
Oolitic, Bedford, Ind	80	(21)
Muschelkalk, Randersacker, Bavaria	70	(4)

TENSILE STRENGTH

$kg cm^{-2}$

Slate

Hematitic dolomite, Swanton, Vt. 160 (21)	Pen Argyl, Pa.	250	(11)	
Carbonaceous, Isle LaMotte, Vt. 90 (21) Graphitic calcite, Albertson, Vt. 90 (21) Pink fossiliferous, Plattsburg, N. Y. 90 (21) Karstmarmor, Nabresina, Istria 90 (15) Fine-grained, Laas, Tyrol 60 (15) Coarse gr. calcite, Ball Ground, Ga 50 (21) Dolomite, Parsberg, Bavaria 50 (4) Saccharoidal calcite, Carrara, Italy 40 (15) Dolomite, S. Dover, N. Y 30 (21) Saccharoidal calcite, W. Rutland, Vt 30 (21) Dolomite, Rehburg, Franconia 20 (4) Serpentine Roxbury, Vt 110 (21) Einsiedel, Bohemia 100 (15) Hollysprings, Ga 100 (21) Limestone, Av. Range—30 to 60 Compact earthy, Cassville, Mo 90 (21) Compact earthy, Phenix, Mo 80 (21) Arenaceous dolomite, Kasota, Minn 50 (21) Buff colitic, Bedford, Ind 30 (21)	Marble, Av. Range—30 to 90			
Carbonaceous, Isle LaMotte, Vt. 90 (21) Graphitic calcite, Albertson, Vt. 90 (21) Pink fossiliferous, Plattsburg, N. Y. 90 (21) Karstmarmor, Nabresina, Istria 90 (15) Fine-grained, Laas, Tyrol 60 (15) Coarse gr. calcite, Ball Ground, Ga 50 (21) Dolomite, Parsberg, Bavaria 50 (4) Saccharoidal calcite, Carrara, Italy 40 (15) Dolomite, S. Dover, N. Y 30 (21) Saccharoidal calcite, W. Rutland, Vt 30 (21) Dolomite, Rehburg, Franconia 20 (4) Serpentine Roxbury, Vt 110 (21) Einsiedel, Bohemia 100 (15) Hollysprings, Ga 100 (21) Limestone, Av. Range—30 to 60 Compact earthy, Cassville, Mo 90 (21) Compact earthy, Phenix, Mo 80 (21) Arenaceous dolomite, Kasota, Minn 50 (21) Buff colitic, Bedford, Ind 30 (21)	Hematitic dolomite, Swanton, Vt	160	(21)	
Graphitic calcite, Albertson, Vt. 90 (21)	Carbonaceous, Isle La Motte, Vt	90	(21)	
Pink fossiliferous, Plattsburg, N. Y.		90	(21)	
Karstmarmor, Nabresina, Istria		90	` '	
Fine-grained, Laas, Tyrol		90		
Coarse gr. calcite, Ball Ground, Ga. 50 (21)				
Dolomite, Parsberg, Bavaria 50 (4)			, ,	
Saccharoidal calcite, Carrara, Italy			`	
Dolomite, S. Dover, N. Y 30 (21)		1		
Saccharoidal calcite, W. Rutland, Vt. 30 (21)			, ,	
Serpentine Roxbury, Vt				
Roxbury, Vt				
Roxbury, Vt		20	(4)	
Einsiedel, Bohemia			,	
Hollysprings, Ga.) <i></i>	
Limestone, Av. Range—30 to 60 Limestone, Av. Range—30 to 60 Compact earthy, Cassville, Mo	Einsiedel, Bohemia	100	(15)	
Limestone, Av. Range—30 to 60 Compact earthy, Cassville, Mo. 90 (21) Compact earthy, Phenix, Mo. 80 (21) Arenaceous dolomite, Kasota, Minn. 50 (21) Buff oolitic, Bedford, Ind. 30 (10) Oolitic, Rockwood, Ala. 30 (21) Aluminous dolomite, Mantorville, Minn. 20 (21) Granite, Av. Range—30 to 50 Gneissoid, St. Gothard Tunnel. 40 (4) Biotite, Hausenberg, Bavaria. 40 (15) Biotite, Baveno, Italy. 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio. 40 (21) Asphaltic, Liberal, Mo. 20 (8) Fine-grained variegated, Murgtal, Baden. 20 (4) Triassic, E. Longmeadow, Mass. 20 (21) Variegated, Kronach, Bavaria. 10 (4) Argillaceous, Hochberg, Bavaria. 10 (4) Glauconitic, Ihrlerstein Bavaria. 10 (4)		100	(21)	
Compact earthy, Cassville, Mo. 90 (21) Compact earthy, Phenix, Mo. 80 (21) Arenaceous dolomite, Kasota, Minn. 50 (21) Buff oolitic, Bedford, Ind. 30 (10) Oolitic, Rockwood, Ala. 30 (21) Aluminous dolomite, Mantorville, Minn. 20 (21) Granite, Av. Range—30 to 50 Gneissoid, St. Gothard Tunnel. 40 (4) Biotite, Hausenberg, Bavaria. 40 (4) Fine-grained, Schwarzwasser, Poland. 40 (15) Biotite, Baveno, Italy. 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio. 40 (21) Asphaltic, Liberal, Mo. 20 (8) Fine-grained variegated, Murgtal, Baden. 20 (4) Triassic, E. Longmeadow, Mass. 20 (21) Variegated, Kronach, Bavaria. 10 (4) Argillaceous, Hochberg, Bavaria. 10 (4) Glauconitic, Ihrlerstein Bavaria. 10 (4)	Weisen, Tyrol	60	(15)	
Compact earthy, Phenix, Mo 80 (21) Arenaceous dolomite, Kasota, Minn 50 (21) Buff colitic, Bedford, Ind 30 (10) Oolitic, Rockwood, Ala 30 (21) Aluminous dolomite, Mantorville, Minn 20 (21) Granite, Av. Range—30 to 50 Gneissoid, St. Gothard Tunnel 40 (4) Biotite, Hausenberg, Bavaria 40 (4) Fine-grained, Schwarzwasser, Poland 40 (15) Biotite, Baveno, Italy 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4)	Limestone, Av. Range—30 to 60			
Arenaceous dolomite, Kasota, Minn 50 (21) Buff colitic, Bedford, Ind 30 (10) Colitic, Rockwood, Ala 30 (21) Aluminous dolomite, Mantorville, Minn 20 (21) Granite, Av. Range—30 to 50 Gneissoid, St. Gothard Tunnel 40 (4) Biotite, Hausenberg, Bavaria 40 (4) Fine-grained, Schwarzwasser, Poland 40 (15) Biotite, Baveno, Italy 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte	Compact earthy, Cassville, Mo	90	(21)	
Arenaceous dolomite, Kasota, Minn 50 (21) Buff colitic, Bedford, Ind 30 (10) Colitic, Rockwood, Ala 30 (21) Aluminous dolomite, Mantorville, Minn 20 (21) Granite, Av. Range—30 to 50 Gneissoid, St. Gothard Tunnel 40 (4) Biotite, Hausenberg, Bavaria 40 (4) Fine-grained, Schwarzwasser, Poland 40 (15) Biotite, Baveno, Italy 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte	Compact earthy, Phenix, Mo	80	(21)	
Buff colitic, Bedford, Ind	Arenaceous dolomite, Kasota, Minn	50	(21)	
Oolitic, Rockwood, Ala. 30 (21) Aluminous dolomite, Mantorville, Minn 20 (21) Granite, Av. Range—30 to 50 Gneissoid, St. Gothard Tunnel 40 (4) Biotite, Hausenberg, Bavaria 40 (4) Fine-grained, Schwarzwasser, Poland 40 (15) Biotite, Baveno, Italy 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		30	(10)	
Aluminous dolomite, Mantorville, Minn 20 (21)		30	(21)	
Gneissoid, St. Gothard Tunnel		20	(21)	
Biotite, Hausenberg, Bavaria	Granite, Av. Range—30 to 50			
Fine-grained, Schwarzwasser, Poland 40 (15) Biotite, Baveno, Italy 40 (15) Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		1	(4)	
Sandstone, Av. Range—10 to 30 Sandstone, Av. Range—10 to 30		40		
Sandstone, Av. Range—10 to 30 Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		40	(15)	
Feldspathic, McDermott, Ohio 40 (21) Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte	Biotite, Baveno, Italy	40	(15)	
Asphaltic, Liberal, Mo 20 (8) Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte	Sandstone, Av. Range—10 to 30			
Fine-grained variegated, Murgtal, Baden 20 (4) Triassic, E. Longmeadow, Mass 20 (21) Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		- 1	` '	
Triassic, E. Longmeadow, Mass. 20 (21) Variegated, Kronach, Bavaria. 10 (4) Argillaceous, Hochberg, Bavaria. 10 (4) Glauconitic, Ihrlerstein Bavaria. 10 (4) Trachyte	Asphaltic, Liberal, Mo	20	(8)	
Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		20	(4)	
Variegated, Kronach, Bavaria 10 (4) Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte	Triassic, E. Longmeadow, Mass	20	(21)	
Argillaceous, Hochberg, Bavaria 10 (4) Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		10	(4)	
Glauconitic, Ihrlerstein Bavaria 10 (4) Trachyte		10	(4)	
		10	(4)	
Spitzberg, Bohemia	Trachyte			
	Spitzberg, Bohemia	40	(15)	

RESISTANCE TO ABRASION ("HARDNESS") (19)

The hardness values were determined by subjecting cylindrical specimens 2.5 cm in diameter to the abrasive action of crushed and graded quarts which is fed upon a revolving steel disc. The coefficient of hardness equals $20 - (\frac{1}{2})x$, where w is the weight of specimen worn away by 1000 revolutions of the disc.

Rhyolite, Av. Range—18 to 20	
Adams Co., Pa	₹20
	Հ 2 0
Boise, Idaho	15
Basalt, Av. Range—17 to 19	
Nephelite, Austin, Texas	19
Olivine, Cliffs, Wash	18_
Diabase, Av. Range—17 to 19	
Upper Nyack, N. Y.	19
Ansonia, Conn	18
Quartzite, Av. Range—16 to 19	
Roanoke, Va	19 18
Gabbro, Av. Range—16 to 18	
St. Peters, Pa	19
York Haven, Pa	18
Trachyte	
Colorado Springs, Colo	19
Chert	
Chockie, Okla	19
Provo, Utah	17
Amphibolite	
Wilmington, Del	19
Granite, Av. Range—17 to 19	
Biotite, Vinal Haven, Maine	19
Biotite, Barre, Vt	19
Hornblende, Beverly, Mass	19
Aplitic, Richmond, Va	18
Biotite, Mt. Airy, N. C	18
Quartz monzonite, Milford, N. H	18
Slate, Av. Range—12 to 18	
Clay, Berks Co., Pa	19
Siliceous, Montgomery Co., Pa	18
Calcareous, Waynesboro, Va	12
Heber Springs, Ark	9
Diorite, Av. Range—16 to 19	
Bakersfield, Calif	19
Granite Falls, Wash	18
Glen Mills, Pa	17
Gneiss, Av. Range—16 to 19	10
Hornblende, Middle Valley, N. J	19 18
Biotite, Hanover, N. H.	18
Diorite, Derwood, Md	18
Pyroxene, Little Falls, N. Y	17
Schist, Av. Range—15 to 18	
Quartz hornblende, Havre de Grace, Md	19
Sericite, Atlanta, Ga	18
Quartzite, Haverhill, N. H	18 17
Andesite	
	18
Elbe, Wash	10

Syenite	
Vera Cruz, Pa	18
Charlottesville, Va	17
Sandstone, Av. Range—12 to 18	
Argillaceous, Culpeper, Va	18
Ferruginous, Manassas, Va	18
Calcareous, Huntington, W. Va	16
Argillaceous, Salford, Pa	16
Chloritic, Warren, R. I	15
Ferruginous, Shreveport, La	14
Feldspathic, Parkersburg, W. Va	12
Bituminous, Provo, Utah	6
Ferruginous, Marshall, Texas	3
Serpentine, Av. Range—12 to 16	
Rockville, Md	18
Blue Mountain, Pa	15
Newark, Calif	12
Limestone, Av. Range—12 to 17	
Siliceous, Coyote, Calif	17
Carbonaceous, Petersburg, Ind	17
Fossiliferous, East Smithfield, Pa	16
Dolomitic, Huntington, W. Va	15
Crystalline, New Decatur, Ala	15
Dolomite, Joliet, Ill	14
Travertine, Damascus, Va	12
Argillaceous, Pontoosuc, Ill	9
Bituminous, Ravia, Okla	3
Marble, Av. Range—10 to 16	
Hematitic dolomite, Burlington, Vt	17
Dolomitic, Port Kennedy, Pa	15
Graphitic calcite, Regal, N. C	14
Calcite, Ball Ground, Ga	11
Siliceous, Texas, Md	8
Tuff	
Andesite, Petaluma, Calif	5
Steatite	
New London, N. C.	4

IMPACT HARDNESS ("TOUGHNESS") (19)

The toughness values were determined by subjecting cylindrical specimens 2.5 cm high by 2.5 cm diameter to the impact produced by the fall of a 2 kg hammer upon a steel plunger, the lower end of which is spherical and rests on the test piece. The weight is first dropped from a height of 1 cm which is increased 1 cm for each blow until the specimen breaks. The toughness is recorded as the height of the last hammer fall.

Indurated, Green Lane, Pa	40
Micaceous, Green Lane, Pa	17
Heber Springs, Ark	16
Siliceous, Montgomery Co., Pa	11
Calcareous, Waynesboro, Va	10
Sandstone, Av. Range—5 to 20	
Ferruginous, Manassas, Va	47
Feldspathic, Little Rock, Ark	37
Ferruginous, Berks Co., Pa	35
Argillaceous, Culpeper, Va	24
Chloritic, Warren, R. I	24
Calcareous, Monroe, N. Y	19

Sandstone.— $(Continued)$	Limestone, Av. Range—5 to 15
Calcareous, Harrisburg, Pa	Dolomite, Springfield, Mo
Ferruginous, Shreveport, La	Carbonaceous, Petersburg, Ind
	B Dolomitic, Washington, Pa
, 0 ,	Fossiliferous, East Smithfield, Pa
,	Siliceous, Coyote, Calif 8
	Dolomitic, Huntington, W. Va
	6 Dolomite, Joliet, Ill
Ferruginous, Marshall, Texas	Cherty, Akron, N. Y
Rhyolite, Av. Range—5 to 25	Bituminous, Ravia, Okla
Adams Co., Pa	
Milton, Calif	
Boise, Idaho	Travertine, Damascus, Va
Diorite, Av. Range—8 to 25	Trachyte
Bakersfield, Calif	Colorado Springs, Colo
Granite Falls, Wash 17	7 Tuff
Glen Mills, Pa	Basalt, Rio Piedras, Porto Rico
Schist, Av. Range—8 to 25	Andesite, Petaluma, Calif
Chlorite epidote, Haw River, N. C	Amphibolite
Quartz hornblende, Havre de Grace, Md	
Sericite, Atlanta, Ga 10	
Quartzite, Haverhill, N. H	Marble, Av. Range—2 to 10
Muscovite, Charlottesville, Va	7 Hematitic dolomite, Burlington, Vt
Biotite, Leominster, Mass	Dolomitic, Port Kennedy, Pa 5
Diabase, Av. Range—5 to 30	Graphitic calcite, Regal, N. C
	Siliceous, Texas, Md
Ansonia, Conn	
Granite, Av. Range—5 to 18	Serpentine, Av. Range—8 to 15
	Rockville, Md
Hornblende, Beverly, Mass	1 37 1 0 116
Coarse biotite, Vinal Haven, Maine	
	Cabbio, Av. Range o to aa
	St. Peters, Pa 17
	York Haven, Pa 15
	Syenite, Av. Range—10 to 15
Quartzite, Av. Range-5 to 25	Vera Cruz, Pa 16
Greenbank, Del	Spartanburg, S. C
Courtland, Minn	I Charlottesville, va
Rockville, Pa	A = 4 = -4.
Roanoke, Va 1-	Augite, Elbe, Wash
Basalt, Av. Range—5 to 30	Steatite
Hoquiam, Wash	
Nephelite, Austin, Texas	T -
Olivine, Cliffs, Wash	
Lind, Wash	
Gneiss, Av. Range—5 to 15	(Dynes cm ⁻²) \times 10 ⁻¹¹ Example: For oolitic Bedford limestone, 180,000,000,000
Hornblende, Middle Valley, N. J	
Pyroxene, Little Falls, N. Y	
Plagioclase, Clinton Co., N. Y	Chiorne, Chichion, Japan
,	8
	Schalstein, Rickuchyu, Japan
	Tossimerous, Women, Canada
Chert	Impure calcite, Carthage, Mo
Chockie, Okla	Arenaceous dolomite, Kasota, Minn
- '	6 Aluminous, Mantorville, Minn. 3.0 (21)

Limestone.—(Continued)		
Oolitic, Russelville, Ala	2.9	(21) (10)
Gabbro		
New Glasgow, Quebec	11	(1)
Marble, Av. Range—5 to 7		
Carbonaceous, Isle LaMotte, Vt	10	(21)
Belgian black, Dinant, Belgium	7.2	(1)
Hematitic dolomite, Swanton, Vt	7.0 6.3	(21) (21)
Fossiliferous, Knoxville, Tenn	6.2	(1)
Saccharoidal calcite, Carrara, Italy	5.5	(1)
Saccharoidal calcite, Rutland, Vt	5.2 5.0	(1) (21)
Pink fossiliferous, Plattsburg, N. Y	3.0	(==)
Diabase	0.5.1	(1)
Sudbury, Ontario	9.5	(1)
Slate, Av. Range—6 to 9		
Siliceous, Granville, N. Y	9.0	(21) (24)
Sandy, Rickuchyu, Japan	$\begin{array}{c c} 8.2 \\ 6.2 \end{array}$	(24) (11)
Clay, Tanba, Japan	3.2	(24)
Anorthosite		
New Glasgow, Quebec	8.2	(1)
Essexite	·	
Mt. Johnson, Quebec	6.7	(1)
Serpentine (Peridotite)	0.1	
Kuzi, Japan	6.6	(24)
Roxbury, Vt	5.8	(21)
Hollysprings, Ga	3.3	(21)
Syenite (Nephelite)		
Montreal, Canada	6.3	(1)
Granite, Av. Range—4 to 6		
Biotite, Peterhead, Scotland	5.7	(1)
Biotite, Lake Lilly, N. B	5.6	(1)
Light gray hornblende, Rockport, Mass	5.5	(41)
Quartz monzonite, Westerly, R. I	5.1 5.0	(1) (1)
Biotite, Aberdeen, Scotland	5.0	(5)
Biotite, Baveno, Italy	4.7	(1)
Biotite muscovite, Sanstead, Canada	3.9	
Steatite		
Arrington, Va	3.9	(21)
Dolomite		
Yellow, Anston, Yorkshire	3.4	(5)
Siliceous, Mansfield, Nottingham	2.3	(5)
Rhyolite		45.55
Izu, Japan	2.5	(24) (24)
Kozuke, Japan	1.9	(==)
Tuff	0 1	(24)
Rhyolite, Iyo, JapanRhyolite, Mikawa, Japan	2.1 1.8	(24) (24)
Andesite, Echizen, Japan	1.3	(24)
Rhyolite, Iwashiro, Japan	1.1	(24)
Izu, Japan	0.67	(24) (24)
Rhyolite, Tochigi, Japan	0.20	

Sandstone		
Feldspathic, Cleveland, Ohio	1.6	(1)
Triassic, East Longmeadow, Mass	1.6	(21)
Bluestone, McDermott, Ohio	1.3	(21)
Bulk Density		
g cm ⁻³		
Basalt, Nephelite		
Austin, Texas	3.19	(19)
Debus, Bohemia	3.06	(12)
Lind, Wash	2.94	(19)
Gabbro		
York Haven, Pa	$\begin{bmatrix} 3.04 \\ 2.79 \end{bmatrix}$	(19) (9)
Gneiss, Av. Range—2.7 to 2.9		
		(19)
Hornblende, Port Deposit, Md	3.04 2.94	(19) (19)
Pyroxene, Little Falls, N. Y.	2.90	(19)
Chlorite, E. Providence, R. I	2.80	(19)
Sericite, Havre de Grace, Md	2.69	(19)
Biotite, Ansonia, Conn	2.69	(19)
Chloritic sericite, Potomac, Md	2.69	(19)
Breccia		
Basalt, Culpeper, Va	3.00	(19)
Volcanic, Boulder Canyon, Ariz	2.46	(21)
Rhyolite, Silver Cliff, Calif	2.14	(19)
Diabase		
Taylors Falls, Minn	3.00	(13)
Schist, Av. Range—2.7 to 2.9		
Chlorite, Chichibo, Japan	2.97	(24)
Talc, Prov. Awa, Japan	2.94	(40)
Chlorite epidote, Haw River, N. C	2.80	(19)
Hornblende, Port Deposit, Md	2.73	(19)
Biotite, Atlanta, Ga	2.72	(19)
Sericite, Leominster, Mass	2.69	(19)
Quartzite, San Pedro, Calif	2.64	(19)
Steatite		
Arrington, Va	2.97	(21)
New London, N. C.	2.85	(19)
Marble, Av. Range—2.7 to 2.8		
Coarse-grained dolomite, Texas, Md	2.86	(28)
Dolomitic, Lee, Mass	2.86	(21)
Small crystal dolomite, South Dover, N. Y	2.86	(21)
Hematitic dolomite, Swanton, Vt	2.83	(21) (21)
Carbonaceous, Isle La Motte, Vt	$\begin{bmatrix} 2.76 \\ 2.74 \end{bmatrix}$	(21) (21)
Coarse-grained calcite, Marblehill, Ga	2.72	(21)
Saccharoidal calcite, Rutland, Vt	2.72	(21)
Graphitic calcite, Albertson, Vt	2.71	(21)
Carbonaceous, Glens Falls, N. Y	2.70	(13)
Red and white, Cerfontaine, Belgium	2.21	(2)
Serpentine—Av. Range—2.7 to	2.8	
Hollysprings, Ga	2.84	(21)
Peridotite, Kuzi, Japan	2.82	(24)
Roxbury, Vt	2.80	(21)
Rockville, Md	2.69	(19)
Auburn, Calif	2.54	(38)

Limestone, Av. Range—2.3 to 2.	7	
Dolomite, Springfield, Mass	2.80	(19)
Compact dolomite, Red Wing, Minn	2.75	(9)
Argillaceous, Clarksburg, W. Va	2.75	(19)
Argillaceous, St. Paul, Minn	2.71	(9)
Aluminous, Minneapolis, Minn	2.71	(9)
Travertine, Damascus, Va	2.69	(19)
Compact earthy, Cassville, Mo	2.66	(21)
Vesicular, Mantorville, Minn	2.65	(21)
Siliceous, Petersburg, Ind.	2.64	(19)
Lithographic, Solenhofen, Bavaria	2.60	(7)
	2.57	(21)
Arenaceous dolomite, Kasota, Minn		. ,
Pitted dolomite, Jefferson City, Mo	2.55	(8)
Compact, hard, Lias, France	2.40	(36)
Bituminous, Marblehead, Ohio	2.40	(13)
Magnesian, impure, Andalusia, Ill	2.34	(35)
Gray oolitic, Bedford, Ind	2.32	(21)
Buff oolitic, Bedford, Ind	2.28	(21)
Oolitic, Caen, Normandy	1.90	(13)
Slate, Av. Range—2.7 to 2.8		
Calcareous, Pen Argyl, Pa	2.80	(11)
Siliceous, Granville, N. Y	2.76	(11)
Sandy, Rikuchyu, Japan	2.64	(24)
Clay, Mikawa, Japan	2.44	(24)
Diorite		
Boulder Canyon, Ariz	2.77	(21)
Anorthosite	·	
Au Sable Forks, N. Y	2.75	(26)
	2.70	(33)
Quartzite		
Pipestone, Minn	2.73	(45)
White Haven, Pa	2.67	(21)
E. Sioux Falls, S. D	2.64	(21)
Syenite, Av. Range—2.6 to 2.7		 _
Coarse light-colored, Watab, Minn	2.73	(9)
Fine-grained gray, Sauk Rapids, Minn	2.71	(9)
Fine-grained gray, East St. Cloud, Minn	2.70	(9)
Porphyry, Pulaski Co., Ark	2.69	(34)
Fine-grained red, Beaver Bay, Minn		
	2 65	` '
	2.65	(9)
Red, East St. Cloud, Minn	2.63	(9) (9)
Red, East St. Cloud, Minn	2.63 2.63	(9)
Red, East St. Cloud, Minn	2.63 2.63	(9) (9) (9)
Red, East St. Cloud, Minn	2.63 2.63	(9) (9) (9)
Red, East St. Cloud, Minn	2.63 2.63	(9) (9) (9)
Red, East St. Cloud, Minn	2.63 2.63	(9) (9) (9)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70	(9) (9) (9) (13)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68	(9) (9) (9) (13) (13) (21)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65	(9) (9) (9) (13) (13) (21) (13)
Red, East St. Cloud, Minn	2.63 2.63 2.63 2.72 2.70 2.68 2.65 2.65	(9) (9) (9) (13) (13) (21) (13) (21)
Red, East St. Cloud, Minn	2.63 2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65	(9) (9) (9) (13) (13) (21) (13) (21) (13)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13)
Red, East St. Cloud, Minn. Gray quartzose, East St. Cloud, Minn. Granite, Av. Range—2.65 to 2.7 Coarse biotite, Vinal Haven, Maine. Riebeckite-aegirite, Quincy, Mass. Biotite gneiss, Port Deposit, Md. Anorthosite, Au Sable Forks, N. Y. Coarse biotite, Vinal Haven, Maine. Coarse biotite, Stony Creek, Conn. Muscovite, Stone Mountain, Ga. Hornblende, Bay of Fundy, N. B. Chert Provo, Utah. Felsite Beaver Bay, Minn. Sandstone, Av. Range—2.2 to 2.	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13) (19)
Red, East St. Cloud, Minn Gray quartzose, East St. Cloud, Minn Granite, Av. Range—2.65 to 2.7 Coarse biotite, Vinal Haven, Maine Riebeckite-aegirite, Quincy, Mass Biotite gneiss, Port Deposit, Md Anorthosite, Au Sable Forks, N. Y Coarse biotite, Vinal Haven, Maine Coarse biotite, Stony Creek, Conn Muscovite, Stone Mountain, Ga Hornblende, Bay of Fundy, N. B Chert Provo, Utah Felsite Beaver Bay, Minn Sandstone, Av. Range—2.2 to 2. Chloritic, Warren, R. I	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60 2.69	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13) (19)
Red, East St. Cloud, Minn. Gray quartzose, East St. Cloud, Minn. Granite, Av. Range—2.65 to 2.7 Coarse biotite, Vinal Haven, Maine. Riebeckite-aegirite, Quincy, Mass. Biotite gneiss, Port Deposit, Md. Anorthosite, Au Sable Forks, N. Y. Coarse biotite, Vinal Haven, Maine. Coarse biotite, Stony Creek, Conn. Muscovite, Stone Mountain, Ga. Hornblende, Bay of Fundy, N. B. Chert Provo, Utah. Felsite Beaver Bay, Minn. Sandstone, Av. Range—2.2 to 2. Chloritic, Warren, R. I. Feldspathic, Portsmouth, R. I.	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60 2.69 8	(9) (9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13) (19) (19)
Red, East St. Cloud, Minn	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60 2.69	(9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13) (19)
Red, East St. Cloud, Minn. Gray quartzose, East St. Cloud, Minn. Granite, Av. Range—2.65 to 2.7 Coarse biotite, Vinal Haven, Maine. Riebeckite-aegirite, Quincy, Mass. Biotite gneiss, Port Deposit, Md. Anorthosite, Au Sable Forks, N. Y. Coarse biotite, Vinal Haven, Maine. Coarse biotite, Stony Creek, Conn. Muscovite, Stone Mountain, Ga. Hornblende, Bay of Fundy, N. B. Chert Provo, Utah. Felsite Beaver Bay, Minn. Sandstone, Av. Range—2.2 to 2. Chloritic, Warren, R. I. Feldspathic, Portsmouth, R. I.	2.63 2.63 2.72 2.70 2.68 2.65 2.65 2.65 2.63 2.60 2.69 8	(9) (9) (9) (9) (13) (13) (21) (13) (21) (13) (21) (13) (19) (19)

Sandstone.— $(Continued)$		
Argillaceous, Logan, Ohio	2.50	(19)
Triassic, Belleville, N. J.	2.26	(13)
Brownstone, Edinburgh, Scotland	2.26	(13)
Calcareous, Warrensburg, Mo	2.21	(8)
Triassic, East Longmeadow, Mass	2.17	(21)
Rhyolite		
Dunbarton, Calif	2.69	(19)
Kozuke, Japan	2.46	(24)
Izu, Japan	2.10	(24)
Tuff	2.10	
Rhyolite, Lake Shore, Calif	2.63	(19)
Rhyolite, Iyo, Japan	2.33	(24)
Basalt, Holcomb, Wash	2.29	(19)
Rhyolite, Douglas Co., Colo	2.19	(25)
Andesite, Petaluma, Calif	1.84	(19)
Rhyolite, Tochigi, Japan	1.37	(24)
Andesite	1.01	
Echizen, Japan	2.42	(24)
	2.72	()
Porosity		
Per cent of pore space		
Diabase		
Hohenberg, Bavaria	0.2	(2)
Hohenberg, Bavaria, green	0.5	(12)
Wiesbaden, Germany	1.2	(12)
Granite, Av. Range—0.5 to 1.5	%	
Biotite, Peterhead, Scotland	0.3	(2)
Biotite, Lysekil, Sweden	0.8	(12)
Biotite, Karlskrana, Sweden	1.0	(12)
Biotite, Malmö, Sweden	1.3	(12)
Hornblende, Pontresina, Switzerland	2.6	(39)
Basalt		
Lichtenau, Westphalia, blue	0.4	(12)
Debus, Bohemia	0.5	(12)
Marble, Av. Range—0.5 to 1.0	%	
Graphitic calcite, Albertson, Vt	0.4	(21)
Saccharoidal calcite, Rutland, Vt	0.4	(21)
Carbonaceous, Isle LaMotte, Vt	0.5	(21)
Hematitic dolomite, Swanton, Vt	0.5	(21)
Dolomitic, Beaverdam, Md	0.6	(21)
Dolomitic, Lee, Mass	0.7	(21)
Black, Dinant, Belgium	0.7	(2)
Fossiliferous, Meadow, Tenn	0.8	(21)
Saccharoidal calcite, Carrara, Italy	0.8	(2)
Red and white, Cerfontaine, Belgium	0.9	(2)
Breccia, Besazio, Switzerland	1.5	(39)
Magnesian, Ollon, Switzerland	1.8	(39)
Limestone, Av. Range—3.0 to 1		
Glauconitic, Sachseln, Switzerland	1.0	(39)
Compact, earthy, Cassville, Mo	2.0	(21)
Oolitic, St. Ursanne, Switzerland	4.8	(39)
Pitted dolomite, Jefferson City, Mo	8.3	(8)
Compact fossiliferous, Derbyshire	8.4	(2)
Oolitic, Bowling Green, Ky	16.0	(21)
Oolitic, Bedford, Ind	16.0	(21)
Schaumkalk, La Coudre, Switzerland	17.0	(39)
Bath oolite, Monks Park, Somerset	20.0	(2)
Porphyry		
Quartz, Beutengrund, Silesia	1.4	(12)

Quartzite		
White, E. Sioux Falls, S. Dak	1.5	(21)
Red, White Haven, Pa	1.6	(21)
Pink, Ashby-de-la-Zouch, England	2.9	(2)
Sandstone, Av. Range—5 to 20	%	
Calcareous, Beckenried, Switzerland	1.9	(39)
Graywacke, Huttensteinach, S. Coburg-Gotha.	3.7	(12)
Flagstone, Lacyville, Pa	5.6	(21)
Quartzitic, Potsdam, N. Y	6.7	(21)
Yellow grit, Leeds, England	12.0	(2)
Calcareous, Hummelstown, Pa	13.0	(21)
Brownstone, Portland, Conn	13.0	(21)
Calcareous, Mansfield, Nottingham	15.0	(2)
Calcareous, Warrensburg, Mo	17.0	(8)
Feldspathic, McDermott, Ohio	17.0	(21)
Triassic, East Longmeadow, Mass	19.0	(21)
Berea grit, Amherst, Ohio	20.0	(21)
Coarse grit, Glenmont, Ohio	22.0	(21)
Gneiss		
Two mica, Cresciano, Switzerland	2.5	(39)
Biotite, Castaneda, Switzerland	3.7	(39)
Muscovite, Osogna, Switzerland	4.4	(39)
Gabbro		
Randauthal, Hanover	3.0	(12)
Breccia		
Quartz, Mels, Switzerland	3.7	(39)
Diorite		
Quartz, Pontresina, Switzerland	4.3	(39)
Serpentine		
Peridotite, Hospenthal, Switzerland	6.0	(39)
Tuff		
Calcareous, Oberdorf, Switzerland	17.0	(39)

COMPRESSIBILITY

$$rac{1}{v}rac{\mathrm{d}v}{\mathrm{d}P}$$
, kg⁻¹ $imes$ 10⁻⁶

Example: For granite, the compressibility at a pressure of 2 000 kg cm⁻² is 0.000 0021 or 0.000 21% per kg.

3		
Granite { at 2 000 kg per sq. cm	2.1	(44)
at 10 000 kg per sq. cm	1.8	(44)
At 2 000 kg per sq. cm	1.8	(44)
Basalt { at 2 000 kg per sq. cm	1.5	(44)
Marble { at 2 000 kg per sq. cm	1.4	(44)
marble \ at 10 000 kg per sq. cm	1.4	(44)
Limestone 0 to 12 000 kg per sq. cm		
Lithographic { at 75°C	1.4	(7)
Litnographic \ at 30°C	1.3	(7)
Dishara at 2 000 kg per sq. cm	1.2	(44)
Diabase { at 2 000 kg per sq. cm	1.2	(44)

THERMAL EXPANSION

THERMAL EXPANSION
$$\frac{1}{l} \frac{\Delta l}{\Delta t}$$
, $\deg^{-1} C \times 10^{-6}$

Example: For Bedford limestone between 25 and 100°, 0.000 009 or 0.000 9% per °C.

Limestone

Semi-crystalline, Somersetshire, England	20°	to	100°	22	(2)
Semi-crystalline, Somersetshire, England	100	to	200	26	(2)
Semi-crystalline, Somersetshire, England					(2)
Oolitic, Bedford, Ind	25	to	100	9	(37)
Oolitic, Bedford, Ind	100	to	200	17	(37)

Limestone.—(Contin	ued)				
Oolitic, Bedford, Ind	200	to	300	22	(37)
Dense fossiliferous, Derbyshire, England	20	to	100	9	(2)
Dense fossiliferous, Derbyshire, England	100	to	200	16	(2)
Derbyshire, England	200	to	300	21	(2)
Mt. Vernon, Ky	0		100	8.3	(41)
Dense fossiliferous, Mt. Vernon, Ky	100		200	8.8	(41)
Oolitic, Bath, England	20		100	4.2	(2)
Oolitic, Bath, England	100		200	9.6	(2)
Oolitic, Bath, England	200	to	300	19	(2)
Blue calcite, Rutland, Vt	25	to	100	16	(37)
Blue calcite, Rutland, Vt	100		200	25	(37)
Blue calcite, Rutland, Vt	200		300	29	(37)
White magnesian calcite, Pittsford, Vt	25		100	14	(37)
White magnesian calcite, Pittsford, Vt	100		200	23	(37)
White magnesian calcite, Pittsford, Vt	200		300	25	(37)
Gray fossiliferous, Knoxville, Tenn	25		100	10	(37)
Gray fossiliferous, Knoxville, Tenn	100	to	200	22	(37)
Gray fossiliferous, Knoxville, Tenn	200	to	300	27	(37)
Fine-grained, Couillet, Belgium	20	to	100	9.2	(2)
Fine-grained, Couillet, Belgium	100	to	2 00	19	(2)
Fine-grained, Couillet, Belgium	200	to	300	19	(2)
Saccharoidal calcite, Carrara, Italy	20		100	8.8	(2)
Saccharoidal calcite, Carrara, Italy	100		200	18	(2)
Saccharoidal calcite, Carrara, Italy	200		300	24	(2)
Dolomitic, Lee, Mass	0		100	8.1	(41)
Dolomitic, Lee, Mass	100		200	13	(41)
Dense black, Dinant, Belgium	20		100	4.9	(2)
Dense black, Dinant, Belgium	100		200	10	(2)
Dense black, Dinant, Belgium Coarse calcite, Marble Hill, Ga	200		300	14	(2) (41)
Coarse calcite, Marble Hill, Ga	100		100 200	3.6 19	(41)
Quartzite	100		200	15	(*-)
Pink, Ashby-de-la-Zouch, England	20	to	100	16	(2)
Pink, Ashby-de-la-Zouch, England	100		200	20	(2)
Pink, Ashby-de-la-Zouch, England	200		300	20	(2)
Sandstone					
Yellow grit, Leeds, England	20	to	100	12	(2)
Yellow grit, Leeds, England	100		200	16	(2)
Yellow grit, Leeds, England	200	to	300	19	(2)
Calcareous, Nottingham, England	20	to	100	10	(2)
Calcareous, Nottingham, England	100	to	200	15	(2)
Calcareous, Nottingham, England	200	to	300	19	(2)
Triassic, Kibbe, Mass	0	to	100	10	(41)
Triassic, Kibbe, Mass	100	to	200	14	(41)
Triassic, Seneca Creek, Md	0	to	100	5	(41)
Slate					
Mica slate, Hydeville, Vt	0		100	12	(14)
Mica slate, Monson, Maine	0		100	9.4	(41)
Mica slate, Monson, Maine	100	to	200	9.7	(41)
Granite					
Quartz monzonite, Westerly, R. I	20		100	9	(42)
Quartz monzonite, Westerly, R. I	100		200	14	(42)
Quartz monzonite, Westerly, R. I	200		300	20	(42)
Biotite, Milford, Mass	0		100	7.6	(41)
Biotite, Milford, Mass	100		200	13	(41)
Gneissoid, Branford, Conn	0	to	100	7.2	(41)
	100	4	000	1-7	/A1 \
Gneissoid, Branford, Conn	100		200	17	(41)
	0	to	200 100 200	17 6.1 12	(41) (41) (41)

			в	JILDIN
Diabase				
	20	to 100	6.	3 (42)
1 -	00	to 200	9	(42)
2	00	to 300	12	(42)
Specific Heat				
The heat capacity of building stones,	. ir	respect	ive o	f type.
varies within the rather narrow limits of				
0.18-0.23 cal, per g or BTU per lb. for th				n occa-
sional higher value, such as 0.28 cal per a Cornwall, Eng., has been reported (17, 40)		r a ser	pentii	ne from
THERMAL CONDUCTIVE	TY			
Joules cm ⁻² sec ⁻¹ (°C, c	m-1	1)		
Room temperatures		,		
Quartzite				
Variegated, Prov. Bungo, Japan		. 0.0	54	(40)
Prov. Hizen, Japan				(40)
Gneiss		.,		
			24.1	(40)
Osogna, Turin	· · ·	0	34	(48)
Schist				
Talc, Prov. Awa, Japan		. 03	3	(40)
Granite, Simplon Tunnel			7†§	(48)
Epidote, Prov. Awa, Japan			_	(40)
Piedmontite, Prov. Awa, Japan	• • •	00	9	(40)
Marble, Av. Range—0.02 to 0.03	(Se	e also ir	ıfra)	
Black, Golzines, Belgium		. 03:	2	(30)
Dense fossiliferous, Knoxville, Tenn			2	(30)
Saccharoidal, Japan			- 1	(47)
Fine-grained yellow, Monte Arenti, Italy				(30)
Breccia, Seravezza, Italy			-	(30) (30)
Carbonaceous, Isle LaMotte, Vt		.02		(30)
Red marble, Devonshire, England				(17)
Onyx, Mexico				(30)
Green marble, Ireland			3	(17)
Saccharoidal calcite, Carrara, Italy			1	(30)
Vermont		02	1	(30)
Serpentine				
Prov. Hitachi, Japan		03	0	(40)
Red, Cornwall, England		02	0	(17)
Gabbro				
Hornblende, Prov. Chikuzen, Japan			0	(40)
Hornblende, Prov. Awadi, Japan			. 1	(40)
Sandstone, Av. Range—0.025 to 0.03			n [31.	5)
				(17)
Hard grit, Linton, England		02		(17)
Flagstone, Loch Rannoch			_ :	(17)
Flagstone, Loch Rannoch				(17)
Feldspathic, Bristol, England		4	7	(17)
* Stone wet.	Per	pendicula	r to cl	leavage.
		allel to c		
Limestone, Av. Range—0.02 to 0.02	5 (S	See also	p. 31	5)
Dolomite, Mansfield, Nottingham		02	9	(17)
Magnesian, South Shields, England		02	4	(17)
Oolitic, Musashi, Japan				(40)
Oolite, Caen, Normandy		. 02		(17)

Dolomite, Prov. Buzen, Japan.....

Gritty, Boniss Island..... Coral, Boniss Island..... .018

.015

.009

(40)

(40)

(40)

Conglomerate		
Nagelflue, St. Gallen	0.025	(48)
Calumet & Hecla Mine, Mich	.020	(48)
Granite		
Porphyry, Prov. Omi, Japan	.024	(40)
Biotite, Aberdeen, Scotland	.023	(17)
Biotite, Prov. Yamashiro, Japan	.022	(40)
Diorite		
Prov. Tanba, Japan	.023	(40)
Gneiss		
Prov. Yamashiro, Japan	.021	(40)
Amphibolite		
	.020	(40)
Porphyrite		
Hornblende, Prov. Omi, Japan	.018	(40)
Augite, Prov. Kai, Japan	.016	(40)
Prov. Higo, Japan	.012	(40)
Tuff		
Liparite, Prov. Bitchu, Japan	.017	(40)
Liparite, Prov. Harima, Japan	.014	(40)
Prov. Yamato, Japan	.007	(40)
Breccia, Prov. Yamato, Japan	.007	(40)
Rhyolite		
Prov. Etchu, Japan	.015	(40)
Basalt (See also p. 315)		
Prov. Tanba, Japan	.014	(40)
Andesite		
Olivine pyroxene, Prov. Idzu, Japan	.013	(40)
Pyroxene, Prov. Satsuma, Japan	.006	(40)
Travertine		
Campagna Romana	.011	(48)
Lava		
Mt. Vesuvius	.008	(48)
Shale		
	.008	(40)

Marble

Alabama white marble of density $2.7~g~cm^{-3}$, and sp. ht. 0.213cal g⁻¹/°C gave (49), 50-100°C, 0.0257: 100-200°C, 0.0206.

THERMAL DIFFUSIVITY (40)

 $\mathrm{cm^2~sec^{-1}}$

Quartzite

Variegated, Prov. Bungo, Japan	0.031
Red, Prov. Bungo, Japan	.023
Schist	
Piedmontite, Prov. Awa, Japan	.027
Talc, Prov. Awa, Japan	.014
Epidote, Prov. Awa, Japan	.008
Sandstone	
Compact, Prov. Kawachi, Japan	.014
Feldspathic, Prov. Awa, Japan	.012

Granite	•
Biotite, Prov. Yamashiro, Japan	0.013
Porphyritic, Prov. Omi, Japan	.012
Hornblende, Prov. Mikawa, Japan	.009
Two mica, Prov. Mikawa, Japan	.006
Gneiss	
Granite, Prov. Yamashiro, Japan	.013
Serpentine	
Peridotite, Prov. Hitachi, Japan	.013
Diorite	
Prov. Tanba, Japan	.012
Limestone	
Oolitic, Prov. Musashi, Japan	.011
Dolomite, Prov. Buzen, Japan	.008
Gritty, Boniss Island	.007
Coral, Boniss Island	.005
Marble (See also infra)	
White calcite, Prov. Mino, Japan	.011
White, Alabama (49)	.0106
Tuff	
Liparite, Prov. Harima, Japan	.009
Breccia, Prov. Yamato, Japan	.005
Pumiceous, Prov. Ugo, Japan	.004
Gabbro	
Hornblende, Prov. Awadi, Japan	.008
R hyolite	
Prov. Etchu, Japan	.008

Dasait	
Prov. Tanba, Japan	0.007
Andesite	
Olivine, Prov. Idzu, Japan	.006
Pyroxene, Prov. Satsuma, Japan	
Shale	.004

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Adams and Coker, 152, No. 46; 06. (2) Baldwin-Wiseman and Griffith, 153, 179: 290; 09. (3) Bain, 154, 8: 370; 98. (4) Bauschinger, 162, 1884-1889. (5) Beare, 153, 107: 341; 91. (6) Bohme, 161, 10: 188; 92. (7) Bridgman, 12, 7: 81; 24. (8) Buckley and Buehler, 155, 2; 04. (9) Dodge, 163, 1: 196; 72-82.
- (10) Dutton, U. S. Bureau of Standards, O. (11) Fuller, Tests of physical and electrical properties of slate, Lehigh Univ., 1921. (12) Gary, 161, 1895-8. (13) Gillmore, Compressive strength, etc., of various kinds of building stones, 1874. (14) Hallock, 156, No. 78: 109; 91. (15) Hanisch, B26: 79; 18. (16) Hermann, B27; 14. (17) Herschel, Lebour and Dunn, 133; 1874-9. (16) Howard, B33: 111; 03. (19) Hubbard and Jackson, 157, No. 370: 13; 16.
- (20) Johnson, B28. (21) Kessler, S2, No. 123: 35; 19. (22) Mass. Inst. Tech., B33: 121; 03. (23) Merrill, B29: 498. (24) Nagaoka, 5, 50: 53; 00. (28) Nettleton, 164; 86; cf. 829; 498. (26) Newland, 158, No. 151; 16. (27) Norton, B33; 114; 03. (28) Page, 30th. Congress, U. S., Doc. No. 23. (29) Parliamentary Comm. Gt. Brit., in B30: 481.
- (30) Pierce and Willson, 65, 34: 1; 98. (31) Purdue Univ., B33: 194; 03. (32) Reilly, B35: 89; 03. (32) Rennie, B28. (34) Rensselaer Polytechnic Inst., B33: 67; 03. (38) Rock Island Arsenal, 156, 17: 544; 06. (36) Rondelt, in B28. (37) Souder and Hindert, 31, No. 352: 415; 19. (38) Stone, B33: 78; 03. (39) Schweizerische Geotechnische Kommission, B31.
- (40) Tadakora, 159, 10: 339; 21. (41) Watertown Arsenal, B32: 385; 94. (42) Wheeler, 69, 4: 19; 10. (43) Williams, 160, 1890: 130. (44) Williamson, 143, 193; 491; 22. (48) Winchell, 163, 1: 142; 72. (46) Woolson, The quarry industry in 1903, p. 109 (U. S. Geol. Sur.). (47) Yamagawa, J. Coll. Sci., Imp. Univ. Japan, 2: 263; 89. (48) Schulz, 308, 9: 345; 24. (49) Carman and Nelson, 86, No. 122: 29; 21.

CLAYS

H. Ries

CONTENTS	Matières	Inhaltsverzeichnis	Indice
Density.	Densité.	Dichte.	Densità.
Porosity.	Porosité.	Porosität.	Porosità.
Tensile strength.	Résistance à la traction.	Zugfestigkeit.	Resistenza alla trazione.
Transverse strength.	Résistance à la flexion.	Biegefestigkeit.	Resistenza alla flessione.
Modulus of rupture.	Module de rupture.	Bruchmodulus.	Modulo di rottura.
Drying shrinkage.	Retrait à la dessication.	Trockenschwindung.	Contrazione per essiccamento.
Firing shrinkage.	Retrait à la cuisson.	Brennschwindung.	Contrazione al fuoco.
Water of plasticity.	Eau de plasticité.	Anmachwasser.	Acqua di plasticità.
Fusion points.	Points de fusion.	Schmelzpunkte.	Punti di fusione.
Thermal reactions.	Réactions thermiques.	Thermische Reaktionen.	Reazioni termiche.
Specific heat.	Chaleur spécifique.	Spezifische Wärme.	Calore specifico.
Dehydration behavior.	Conduite à la déhydratation.	Verhalten bei der Entwässerung.	Comportamento alla disidrata- zione.
Refractive index.	Indice de réfraction.	Brechungsindex.	Indice di rifrazione.
Properties of Bentonite clays.	Propriétés des argiles de Bentonite.	Eigenschaften der Bentonite Tone.	Proprietà delle argille Bento- nite.

LIST OF CLAYS AND THEIR INDEX NUMBERS For properties, v. Figs. 1, 2, 3

	For properties,	v. Figs	. 1, 2, 3
Index	Tuna of alas-	Index	Type of clay
No.	Type of clay	No.	Type of ciay
1	Allophane	40	Laclede Christy raw flint
2	Atlas		clay
3	American ball clay	41	Maryland flint clay
4	Dorset ball clay	42	Ohio flint clay
5	English blue ball clay	43	Semi-flint clay
6	English white ball clay	44	Gibbsite
7	Tennessee ball clay	45	Glass pot clay
8	Ayrshire bauxitic clay	46 46	Glenboig fire clay
9	Bentonite		Halifax clay
10	Refractory bond clay	47	•
11	Brazil, Ind., clay	48	Halloysite
12	Brick clay	49	Helmstadt clay
13	Common brick clay	50	Kaolinite
14	Face brick clay	51	Kaolin
15	Paving brick clay	52	Albsheim kaolin
16	Plastic clay for No. 1	53	Amberg kaolin
	fire brick, Md.	54	Australian kaolin
17	Plastic clay for No. 2	55	Crude kaolin
••	fire brick, Md.	56	Eger kaolin
18	Bunzlau clay	57	Geisenheim kaolin
19 20	Cornwall china clay	58	Georgia kaolin
20 21	English china clay	59	Halle kaolin
21 22	Crucible clay Czechoslovakia clay	60	North Carolina kaolin
22 23	Diaspore clay	61	St. Yrieix kaolin
23 24	English fire clay	62	Texas kaolin
24 25	Farnley fire clay	63	Washed kaolin
26	Grossalmerode fire clay	64	White sedimentary kaolin
20 27	Halle Saxony fire clay	65	Zettlitz kaolin
21 28	Kittanning No. 2 fire	66	Lower Kittanning clay
29	Lischwitz fire	67	Lower Mercer clay
30	Löthian fire	68	Sagger clay
31	Maryland fire	69	Sewer pipe clay
32	Meissen fire	70	Aluminous shale
33	Ohio fire	71	Galesburg, Ill. shale
34	Ohio plastic fire	72	Illinois shale
35	Vallendar fire	73	Ohio shale
36	Flint clay for No. 1 fire		Stoneware clay
	brick, Ky.	75	Cleveland surface clay
37	Flint clay for No. 1 fire		Georgia surface clay
	brick, Md.	77	Ohio surface clay
38	Flint clay for No. 2 fire		Tionesta clay
	brick, Md.	79	Velten clay
39	Flint clay for No. 1 fire		Plastic fire clay
	brick, Md. and Ky.	81	Flint clay

EFFECT O	FIRING	ON	TRANSVERSE	STRENGTH	OF	CLAY	(10))
----------	--------	----	------------	----------	----	------	------	---

		Mo	dulus o	fruptui	·e
Clay		Dried at		clay, hu lb./in.2	ındred
		110°C, lb. in2	Cone 6	Cone 8	Cone 10
Tionesta clay: Ellis, Mus-	∫ R	390	46	67	38
kingum County, Ohio.	\ \ W	468	72	83	53
Tionesta clay: Crooksville,	∫R	179	20	30	20
Perry County, Ohio.	∖ W	315	66	71	37
Lower Kittanning clay (un- weathered): Roseville,		219 320	32 86	34 87	27 75
Muskingum County, Ohio. Lower Kittanning clay: To- routo, Jefferson Co.,	∫R	384	28	23	23
: Ohio.	\ W	532	79	48	57

		Mod	dulus o	fruptu	re
Clay	*	Dried at		clay, hu lb./in.²	ındred
		lb. in. ⁻²	Cone	Cone	Cone
	L		6	8	10
New Brighton, Beaver	∫ R	194	29	31	19
County, Pa.	l w	191	49	58	34
New Brighton, Beaver	∫ R	195	26	33	15
County, Pa.		321	51	52	47
Fire brick, Lawrence	∫ R	325	41	51	30
County, Ohio.	l w	499	104	72	62
Nelsonville, Hocking	∫ R	247	16	35	20
County, Ohio.	l w	350	47	62	50
Lower Mercer clay: White	ſ R	132	30	32	17
Cottage, Muskingum	II w	1	57	73	47
County, Ohio.	(''	201	٠.		**
Mogadore, Summit	∫ R	143	20	23	22
County, Ohio.	\ w	259	46	48	34
Semi-flint clay: Scioto Fur-	∫ R	94	16	21	20
nace, Scioto County, Ohio.	1 w	270	37	74	27

^{*} R indicates run of mine, ground to pass a 20 mesh sieve. W indicates washed clay passing a 150 mesh sieve.

5	750	900	Ю00	1100	1150	1200	1250	1275	1300	1325	1350	1375	1400
.5	63.	63	63•	63•	80 38	80 38 39	38 ————————————————————————————————————	39	80 39	80 39 38-	39	39 ——	80 38 39 39 39 39 39 39 39 39 39 39 39 39 39

							Tru	e Specif	ic Gravit	y of C	lays (fir	ed to ten	nps indica	ted) Det	termined v	with	Pycnom	eter						
3.0	750	900	950	990	1000	1030	1050	1070	1090	1100	1110	1130	1150	1170	1190	1200	1210	1230	1250	1270	1290	1300	1370 I	400
2.5	<u>&</u>	63•	15 —	5—	63•	71•	71.	71 • 75 •	28 • 71 • 75 •	63• 75•	15 28• 71•	28• 71• 75•	15 28• 71• 75•	28 • 71 • 75 •	15 28 • 71 • 75 •	63•	28. 71 • 75•	75.	28•	15 ——	3	63.	3	63.
1.5															_									

								Porosii	さする	ays	(oben por	es) 1	ired to 1	emp	erature	Porosity of Clays (open pores) tired to temperatures indicated					
8	3	950	990	9	000 1010 1030	ĕ	030	1050	0701	980	0601	90	011	1125	1130	1150	1170	0611	1200	1210	1230
63 · 45 — 63 · 24 — 63 · 24 — 63 · 24 — 63 · 24 · 64 · 64 · 64 · 64 · 64 · 64 · 64	45	15 — C 14 — 74 · 34 · C	21 - 42 \frac{69 - C}{14 - C}	16	63. 24 45	14 • C 74 =	15 —— C	45 — 42 — C	15 — C 69. 14 • C 10 — 74 •	24	63. 42 74. C	63• 45	15 C 10 14 C	45•	74 <u>69 ⋅ C</u> C 42 <u> </u>	38 69 - C 39 17 45 21 3	69C C 14 74 • 34 • C 10 •	74 34 · C 10 21 3 - C 55 63 · 15 - C	39 ³⁸ ————————————————————————————————————	69.C 14.C 74.C 34	69 15

_	8	36 ———
	0 1500	3 ——
	1450	36 ——
	1430	10 42 •
	1410	69 — 69 — 68 · 68 · C 34 · C 34 ·
		38
	1400	16 10
	330	39 21 •
		37
	1375	17 16
	1370	68 C 74 69 - C C 42 34 - C 10 3 - C 55 63 - C
		38
	1350	45
	Ľ	39
	1330	3 C 14 74
ed)	5	38
ţ	1325	16 7
5	1320	
Porosity (Continued)	1310	68 — C 14
l	-	38
	1300	39 ————————————————————————————————————
	1290	42 — C 69 • 74 — C 3 — C
	-	38
	1275	17 16 45
		C I5
	1270	42
	982	21
		38 — 74 — 69 - C
	1250	17 16
	_	554 3 10•
	%	

Frg. 3.

LINEAR FIRE SHRINKAGE AND POROSITIES OF DIASPORE AND GIBBSITE CLAYS (3)

D. I Durming temperature. D - Shrinkage. 101 1010bit	В.	T. =	burning temperature.	S = shrinkage.	Por. = Porosity
--	----	------	----------------------	----------------	-----------------

2. 1. 0.		iiperature.	D — biii iii ku	.gc. 101.	- 10108109
B. T., °C	% S	% Por.	B. T., °C	% S	% Por.
1050	0-13	39-54	1300	5-40	36-50
1100	1-13	40-53	1350	9-42	34-48
1150	2-18	40-60	1400	9-44	32-49
1200	2-27	37-55	1450	12 - 55	16-48
1250	4-38	38-51	1500	17-55	9–46

WATER RATIOS TO CLAY VOLUME AND WEIGHT

Clay	Ratio of pore water to shrink- age water	% water in terms true clay volume	% shrink- age water in terms true clay volume	water in terms
Ball clays	0.64-1.10			
Crucible clays	0.56-1.36	69.5-132.5	37 . 2 –84 . 8	40.5-55.1
Refractory bond clay			15.5	
Chas pot clays	0.65-1.54	53 .4-132.5	26.8-77.4	26.6-59.4
Plastic fire clay, Md.				
No. 1 fire brick	1.09-2.08	1		
No. 2 fire brick	1.13-4.15			
Stoneware clay	0.61-1 .16	75-90.6	37.1-55.6	34.0-45.0

Fusion Point in Cones

Clay	Seger cone
Kaolin, washed	33 -35
White sedimentary, Ga. and S. C	
Ball clays	30 -35
Crucible clays	30
Refractory bond clays	28 -33
Glass pot clays	21] -32
Stoneware clays	18 -32
Plastic fire clays, various localities	27 -35
Md., bond in No. 2 fire brick	31 -32
Flint clays, Md	32 -35
Md., No. 2 fire brick	28 -31
Ohio	31 -32}
Sagger clays	27 -28
Face brick clays	17 -30 1
Common brick clays	

Fig. 6.—Heating curves of clays (1).

THERMAL REACTIONS IN CLAY WITH TEMPERATURES AT WHICH REACTIONS HAVE BEEN NOTED (2), cf. (7)

Clay	ı	hermic, C	Exothermic, °C
Kaolin		500	950
Ayrshire bauxitic clay		530	950
Dorset ball clay	110	500	920
Farnley fire clay		510	910
Atlas clay		490	930
Aluminous shale	90	510	920
Halifax clay after experimental			
electro-osmosis	90	520	915

Fig. 11.

CLAYS 63

HEAT ABSORBED AND EVOLVED BY CLAY DURING FIRING AND COOLING, G-CAL/G (7)

For the first two clays the values given are the average results of two independent experiments and the deviations from this average are indicated

				d per g p			evolve		Specific heat of	Deh	ydration	period
Clay type	Loss on ignition,	clay	over th	he tempers given		resulti	n cooling quan ired clay	tity of	the fired clay cal/g	Pres- sure	Period of max.	Pressure falls to
		25– 420°	420- 900°	900- 1200°	25- 1200°	1200- 900°	900- 700°	1200- 700°	1200- 700°	deg.	20 mm, deg.	3 mm, deg.
N. C. kaolin	14.0	$0.49 \\ +0.07$	$0.69 \\ +0.05$	$0.23 \\ +0.01$	0.50 ± 0.035	0.23 + 0.01	0.28	$0.24 \\ +0.05$	0.28 +0.05	25-460	460-570	570-780
A-1 English china	12.5	$0.42 \\ +0.01$	$0.95 \\ +0.07$	0.075 ± 0.004	0.55	0.17	0.31	0.20	0.23	25-480	480-540	540-760
Tenn. ball No. 5	13.8	0.47	0.53	0.51	0.51	0.20	0.33	0.25	0.29	25-470	470-550	550-830
Laclede-Christy raw flint	13.0	0.47 0.46	0.68	0.24	0.50 0.51	0.17 0.19	$0.37 \\ 0.32$	$0.25 \\ 0.24$	$0.29 \\ 0.27$	25-470	470-630	630-850

Bentonite (12), cf. (9)

Source of samples tested: 1. Quilchena, British Columbia; 2. Camrose, Alberta; 3. Rosedale, Alberta; 4. Newcastle, Wyo.;
 Medicine Bow, Wyo.

Sample No	1	2	3	4	5
Sp. gr. (pycnometer)	2.44	2.73	2.72	2.77	2.78
Softening point, cone	15		14	11	10
Refractive index	1.547		1.558	1.557	
Water absorption, g per g	1.53	4.15	4.71	4.93	4.95
Loss on ignition, %	!				
Air drying	4.64	3.70	4.28	3.67	
At 450°C	4.04*				
At 500°C	3.94	3.60*		3.49	
At 550°C			4.17*		
At 600°C	2.53	2.09		3.43*	
At 700°C	1.50	1.14		0.77	
% remaining on 200 mesh					
sieve	2.18	1.58	3.16	0.95	1.21
% passing 200 mesh which				ł	
settles out of water in					
24 hr	76.72	10.10	13.14	29.75	11.59
% in suspension in water					
after 24 hr	21.10	88.32	83.70	69.30	87.20

^{*} Capability of swelling completely destroyed.

COAGULATING EFFECTS OF REAGENTS UPON BENTONITE Water suspensions

Sample No.		1	1	3		4
	10 g in 5	00 cc H ₂ O		2 g in 50	0 cc H ₂ O	
	Re-	Precipi-	Re-	Precipi-	Re-	Precipi-
	agent,	tate,	agent,	tate,	agent,	tate,
Reagent	cc	cc	cc	cc	cc	cc
N HCl	4	200	10	225	4	175
<i>₹N</i> NaCl	17	200	19	275	18	215
<i>₹N</i> NH₄Cl	14	225	19	250	19	475
⅓N BaCl₂	4	165	9	200	14	185
N CaCl2	7	175	5	200	10	180
N AlCla	2	200	3	215	4	225
N HNO2	4	195	3	275	4	225
<i>₹N</i> KNO₂	11	200	15	225	10	375
₹N NH4NO2	12	200	19	220	19	485
½N Ba (NO₂)₂	5	200	3	200	4	200
⅓N Al(NO₃)₃	3	220	2	215	4	225
N H ₂ SO ₄	3	175	3	175	5	125
½N Na₂SO₄	13	200	19	435	18	180
<i>₹N</i> (NH ₄) ₂ SO ₄	11	230	19	260	30	275
N Al ₂ (SO ₄) ₂	5	175	4	200	12	175
Satd. CaSO4	No coa	gulation u	p to 50 c	C	35	230
Satd. Ca(OH) ₂	No coa	gulation u	p to 50 c	c :	36	185
⅓N NaOH	No co	agulation	14	285	28	380
	up to	50 cc	1			
NH4OH (0.9 sp. gr.)	No coa	gulation u	p to 100	cc	No co	agulation
		i i		İ	up t	o 50 co
₹N (NH4)2CO2	20	225	40	210	20	215
N Na ₂ CO ₂	No co	agulation	14	300	25	230
	up to	100 cc				
CO ₂	No coas	gulation	No coa	gulation	No coa	gulation
½N Na₂C₂O₄	No co	agulation	No co	agulation	30	300
	up to 4	O cc	up to	50 cc		
	g	1	8	1	g	
CaO	0.3	150	0.5	225	0.3	200

Effect of Dilution, Coagulation and Precipitation

Ten g of sample No. 3 agitated in 350 cc of water and diluted to

volume given

Volume in /	% in suspension after, days							
liters Days	1	4	6	10	120			
0.5	88.5	87.3	87.3	60.7				
1.0	86.5	74.1	63.4	56.7	33.6			
1.5	85.4	71.3	58.3	48.5	İ			
2.0	83.3	60.1	55.0	42.6	34.4			
3.0					29.6			
4.0					27.6			
5.0		1			25 1			

PROPERTIES OF SOME CLAY-LIKE MINERALS OF THE BENTONITE TYPE(11)

Source .	Index of refraction n_D	% water lost at 110°C after air drying	Softening point, cone	% water of plasticity in terms dry wt.	% vol. shrinkage in terms dry vol.	Drying behavior*	Color after firing†
Sanders, Ariz	1.48	16.6	3	71.83	69.08	В	Bf
Daggett, Cal	1.495-1.505	14.87	8	69.52	94.21	В	Bf
Creede, Colo., No. 1		14.93	12	48.07	59.00	A	Bf
Lovelock, Nev		10.82	12	78.10	77.26	C	Bf
Newcastle, Wyo	1.5175	7.26	9	114.61	161.39	B, E	Bf
Wyoming	1.5175-1.5375	9.25	4	99.21	162.73	B, D	Br
Belle Fourche, S. D	1.525-1.535	8.79	12	108.07	195.81	B, E	$\mathbf{B}\mathbf{f}$
Creede, Colo., No. 2	1.545	1.83	12	37.30	30.16	C	Bf
Enid, Miss	1.5475	4.64	14	46.16	73.25	C	Bf
Camden, Ark	1.5575	2.19	27	37.30	41.94	C	W
Grossalmerode clay, Germany	1.56	1.34	27	22.07	24.21	C	\mathbf{W}
Las Vegas, Nev	1.56	1.68	30				\mathbf{W}
Glass pot clay	1.5615	3.02	29	36.08	41.94	C	\mathbf{W}
Houston, Tex		0.27	34	1			\mathbf{W}
Enid, Miss		3.25	30	29.75	32.13	C	\mathbf{W}
New York	1.57	4.55	1	40.97	47.38	C	Bf

^{*} A = cracks, B = cracks badly, C = does not crack, D = warps, E = becomes very hard on drying. † Bf = buff; Br = brown; W = white.

LITERATURE

(For key to the periodicals see end of volume)

(1) Brown and Montgomery, 32, No. 21; 13. (2) Houldsworth and Cobb, 82, 22: 111; 23. (3) Howe and Ferguson, 38, 6: 496; 23. (4) Mellor, 82,

- 16: 73; 17. (5) Mellor and Holdcroft, 82, 11: 169; 12. (6) Mellor, Sinclair and Devereux, 88, 21: 104; 22. (7) Navias, 38, 6: 1268; 23. (8) Ricke, 100, 44: 638; 11. (9) Ross and Shannon, 58, 9: 77; 26. (10) Schurecht, 30, No. 233; 20. (11) Schurecht and Donda, 38, 6: 940; 23.
 - (12) Spence, Canada, Mines Branch, Rep. No. 626; 24.

HEAVY CLAY PRODUCTS

H. G. SCHURECHT

Contents	Matières	Inhaltsverzeichnis	Indice Page
Clay-brick: Specifications and properties.	Conditions pour la fourniture et propriétés des briques d'argile.	Prüfungsvorschriften und Eigenschaften der Tonziegel.	Mattoni laterizi: Norme e proprietà64
Sand-lime brick.	Brique de sable calcaire.	Kalk-Sand Ziegel.	Mattone silico-calcare 64
Hollow tile.	Tuile creuse.	Hohlziegel.	Tegole cave 65
Stoneware.	Grès-cérames.	Steingutgeschirr.	Grès ceramico 65
Sanitary ware.	Produits sanitaires.	Sanitätsgeschirr.	Prodotti sanitari 65
Floor and wall tile.	Briques de planchers et de murs.	Boden und Wandziegel.	Piastrelle per pavimenta- zione
Drain tile.	Tuile de drainage.	Ziegel für Kanalbau.	Tegole da drenaggio 65
Sewer pipe.	Tuyau d'égout.	Abzugschläuche.	Tubi di fognatura 65
Terra cotta.	Terre cuite.	Terrakotta.	Terracotta
Brick masonry.	Maçonnerie de briques.	Ziegelmauerwerk.	Armatura di mattoni 66

1. CLAY BRICK: SPECIFICATIONS AND PROPERTIES

True specific gravity, 2.4-2.6 (7). Specific heat, 20-100°C, 0.20-0.25 cal g⁻¹ deg.⁻¹C (1)

	Bulk	Water	Com-	Crossbreaking
	density,	absorp-	pressive	strength, modu-
	g/cm ³	tion,	strength,	lus of rupture,
	g/cm.	%	kg/cm²	kg/cm²
Vitrified brick	2.0-2.2	<5	281 to 351	56 to 84
Hard brick	1.9-2.1	5-12	175 to 281	28 to 56
Medium brick*	1.8-2.0	12-20	105 to 176	21 to 28
Soft brick	1.7-1.9	>20	56 to 105	14 to 21
Paving brick †	1.7-2.2	0.9-8.0	227 to 592	84 to 178

^{*}Thermal conductivity = 1.6 kg-cal $m^{-2} hr^{-1}$ (°C, m^{-1})⁻¹ (7), see also p.

2. SAND-LIME BRICK

COMPRESSIVE STRENGTH OF SAND-LIME BRICK WALLS (9) Walls 1.83 m long and 2.74 m high

Wall No.	Thickness, Mortar		Compressive strength			
No.	em)	First crack	Failure		
1	21.3	Lime	15.3	22.2		
2	33.5	Lime	14.1	20.4		
3	21.1	Cement-lime	34.0	47.8		
4	33 .2	Cement-lime	38.7	39.7		
5	21.3	Cement	50.4	67.5		
6	32 .7	Cement	48.1	59.8		

[†] Rattler loss, 22-26 % (1).

SAND-LIME BRICK (2)

Dr	y brick		Effect of wetting	. % change in	Effect of fre	ezing. % change	e in	Effect of	ire. % c	hange in	
Compressive kg/cm		Cross- breaking strength,	Compressive	Crossbreaking	Compressive	Crossbreaking	Ab	Compressive strength	7e		
American method	German method	modulus of rupture, kg/cm²	strength	strength	strength		Absorp- tion		Dry	Wet	Crossbreaking strength
122-706	66-185	14-83	+17 to -55	+25 to -75	+38 to -55	-22 to -46	+3.8	+53 to -100	-42	-72 to -95	

PER CENT WATER ABSORPTION OF SAND-LIME BRICK (10)

Plant		1 hr	24 hr	Total (boiling 5 hr)
	Maximum	10.6	12.0	17.7
A	Minimum	4.2	8.2	10.6
	Average of 1000	6.8	9.7	13.3
	Maximum	7.9	15.3	18.0
В	Minimum	4.8	11.3	12.8
	Average of 54	6.1	13.2	15.6
1	Maximum	6.9	11.9	18.3
C	Minimum	5.1	10.8	15.9
	Average of 6	6.0	11.3	16.9
	Maximum	10.5	14.2	20.6
D	Minimum	5.4	11.1	15.6
	Average of 56	7.1	12.2	17.3
	Maximum	14.4	15.4	22.0
E	Minimum	5.8	13.2	18.2
	Average of 50	8.1	14.1	20.0
	Maximum	16.3	16.7	23.5
F	Minimum	8.0	13.6	18.8
	Average of 51	12.2	14.9	20.7
	Maximum	18.0	18.4	23.8
G	Minimum	13.1	15.9	21.9
	Average of 8	16.1	16.9	22.8
	Maximum	22.4	23.0	31.2
Η.	Minimum	8.2	16.8	18.3
_	Average of 100	16.8	19.5	25.2

3. HOLLOW BUILDING TILE (2)

TT7 4 1		ompres	sive st	rength	, kg/cn	n²	0.61
Water absorption,		area in ng void			area ex ng void	Softening tempera- ture, °C	
70	End	Edge	Side	End	Edge	Side	ture, C
7.5 to	69-	22-	49-	162-	84-	162-	1100-1390
26	373	185	97	798	315	414	1100-1390

5. SANITARY BODIES (4)

	Water absorption, %	Crossbreaking strength, modulus of rupture
Fire clay ware		70 to 92 kg/cm ² 184 to 230 kg/cm ²

6. FLOOR AND WALL TILE (6)

Water Absorption.—Vitreous, 0 to 2%. Semi-vitreous, 2 to 10%. Plain unglazed, 10%.

7. DRAIN TILE

A. S. T. M. Specifications (1).

Types.—A, Extra quality, H₂O absorption, 11%; B, Standard, H₂O absorption, 13%; C, Farm, H₂O absorption, 14%. For compressive strength, see Fig. 1.

8. SEWER PIPE

A. S. T. M. specifications for vitrified salt-glazed sewer pipe (1). H_2O absorption, 8%. For crushing strength, see Fig. 1.

4. STONEWARE (7)

									` '					
Туре	True specific gravity	Bulk density, g/cm3	Water absorption, %	Compressive strength, kg/cm ¹	Tensile strength, kg/cm²	Crossbreaking strength, modulus of rupture, kg/cm²	Young's modulus of elasticity	Ball compression strength, kg	Resistance to shock, pendulum impact test, cm kg/cm²	Resistance to abrasion, sand blast tests, g/cm ²	Hardness, scleroscope	Linear coef. of expansion, per °C	Specific heat, 20°-100°C, g-cal g ⁻¹	Softening cone Heat conductivity, kg-cal m-1 hr-1 (°C, m-1)-1 Dielectric constant
Common.	2 44-2 65	2.06-2.37	70.03-5.1	3248-5833	63-116	234-416	4189- 6850	476-1044	1.26-1.90	3.0-9.9	39-62	4.1×10^{-6}	0.185-0.191	17-290.95-1.35
			20.13-1.80								55-64	to 4.9 × 10 ⁻⁶ 4.9 × 10 ⁻⁶ to 5 7 × 10 ⁻⁶		17-30 1 . 00-1 . 25 5 . 17

9. TERRA COTTA BODIES (5)

Water absorption, 10 to 19 %. Crossbreaking strength, modulus of rupture, 105 to 180 kg/cm². Linear coefficient of expansion, 17° to 100°C, (3.7 to 6.0) \times 10⁻⁶ per °C.

10. CRUSHING STRENGTH OF MASONRY WITH DIFFER-ENT MORTARS (8)

Brick employed: $23 \times 11 \times 5.5$ cm (nine different types). a, Cement mortar, 1:3. b, Lime mortar. c, Mortar mixtures. a + b (1:1).

Strength of one meter cubes of masonry in kilograms

_		-
a	b	c
1929	1959	1977
1908	1940	1955
1852	1885	1903
1772	1812	1851
1722	1780	1829
1713	1771	1823
1715	1770	1824
1709	1767	1821
1709	1765	1819

According to Kreuger (11) the compressive strength of a brick pier is ca. 0.22 × the compressive strength of the brick used in its construction. The corresponding relation to the compressive strength of the mortar used is shown in Fig. 2.

LITERATURE

(For a key to the periodicals see end of volume)

(1) American Society for Testing Materials, Specifications. (2) Emley, 32, No. 85: 35; 17. (3) Foster, 38, 7: 189; 24. (4) Fuller, Bureau of Standards, O. (5) Fuller and Merrit, Bureau of Standards, O. (6) Pence, 81, 17: 484; 15. (7) Singer, Keramik (Braunschweig, Vieweg und Sohn). 470; 23. (8) Svenson, 314, 36: 341; 12. (9) Whittemore and Stang, 32, No. 276: 65; 25.

(10) Johnson, Bureau of Standards, O. (11) Kreuger, 314, 40: 597; 16.

PORCELAIN AND WHITEWARE

I. Electrical porcelain. II. Laboratory porcelain and white ware. Owing to the overlapping of these two classes a certain amount of duplication occurs in the tables but for the complete data both sections should be consulted.

CONTENTS

Classification. Composition. Petrographic character. Density, porosity and compressibility. Strength. Elastic properties. Fixed impact and bending shock. Toughness and hardness. Rattler test. Softening point. Thermal expansion. Specific heat.

Electrical resistance. Dielectric properties. Flash-over voltage.

Thermal conductivity.

Resistance to thermal shock.

Electrolysis. Velocity of sound.

I. Porcelaines électriques. II. Porcelaines et faïences de laboratoire. Etant donné le chevauchement de ces deux classes, il y a un certain nombre de répétitions dans les tables; pour avoir des données complètes, les deux sections doivent être consultées.

MATIÈRES

Classification. Composition. Description pétrographique. Densité, porosité et compressibilité. Résistance mécanique. Propriétés élastiques. Résistance au choc et essai de flexion au choc. Dureté. Essais de fragilité. Point de ramollissement.

Dilatation thermique. Chaleur spécifique. Conductibilité thermique. Résistance au choc thermique.

Résistivité électrique. Propriétés diélectriques. Tension de crachement superficiel. Electrolyse. Vitesse du son.

I. Elektro-Porzellan, II. Laboratoriums Porzellane und Steingut. Da beide Gattungen in engerrer Beziehung stehen, ist eine gewisse Wiederholung den in Doch sollen für vollständige Daten beide Abschnitte herangezogen werden.

Tafeln vorhanden.

I. Porcellane elettriche. II. Porcellane di laboratorio e grès ceramico. Per la stretta relazione tra le due categorie, vi è qualche ripetizione nelle tabelle. Per avere dati completi bisogna però consultare entrambi i capitoli.

Inhaltsverzeichnis	Indice	PAGE
Einteilung.	Classificazione	67, 73
Zusammensetzung.	Composizione	67, 73
Petrographisches.	Caratteri petrografici .	68, 74
Dichte, Porosität und Kompres-	Densità, porosità e	
sibilität.	compressibilità	68, 75
Festigkeit.	Resistenza meccanica .	68 , 76
Elastische Eigenschaften.	Proprietà elastiche	69, 76
Schlagbiegefestigkeit.	Resistenza alla flessione	
	per urto unico	69, 77
Härte.	Durezza	70, 77
Trommelprobe.	Saggi di fragilità	70, 77
Erweichungspunkt.	Punto di rammollimento	70, 78
Wärmeausdehnung.	Dilatazione termica	70, 78
Spezifische Wärme.	Calore specifico	79
Wärmeleitfähigkeit.	Conduttività termica	79
Widerstandsfähigkeit gegen	Resistenza a sbalzi bru-	
schroffen Temperaturwechsel.	schi di temperatura .	70, 80
Elektrischer Widerstand.	Resistenza elettrica	71, 80
Dielektrische Eigenschaften.	Proprietà dielettriche	72, 80
Uberschlagsspannung.	Tensione di scintilla-	,
	mento	72
Elektrolyse.	Elettrolisi	72
Schallgeschwindigkeit.	Velocità del suono	72, 81

I. ELECTRICAL PORCELAIN

FRANK H. RIDDLE1

Classification of Porcelains Based on Their Use

I. Normal porcelains.

(A) Low tension porcelain, porosity, 1%.

Dry or wet process used under 5000 volts. Flint, clay, feldspar porcelain.

(B) High tension porcelain, porosity, 0%.

Wet process used above 5000 volts. Flint, clay, feldspar porcelains.

II. Special porcelains.

(C) Spark plug core porcelains, porosity, 0%.

Usually free from free quartz which has objectionable expansion and alkalis which have an injurious effect upon the insulation at increased temperatures.

(D) Heating element porcelains, porosity, 1%.

Usually containing over 50 % magnesia compounds.

(E) Thermocouple porcelains for protection.

High in alumina and free from free quartz.

Practically nothing is available in the literature regarding low tension porcelain or heating element porcelain.

Chemical Composition of Fired Body and Batch Composition of Raw Body

Typical compositions of the possible range of raw bodies are shown in Figs. 1, 2, 3 and 4. These figures can be used only as a general guide, since they do not portray the effects of the different varieties of clay, feldspar and flint, or the methods of grinding, etc.

¹ Grateful acknowledgments are due to Dr. Joseph A. Jeffery for the privilege of carrying out considerable research work in the research laboratories of the Champion Porcelain Company; to Messrs. H. F. Royal, E. K. Bibb, Walter Schmidt, and to Miss Chenoweth and other members of the staff for valuable aid in the assembling and classification of data; and to Messrs. L. E. Barringer and F. W. Peek, Jr., of the General Electric Company, for much valuable information.

The actual compositions of some of the bodies whose properties are listed in the following pages are shown below, together with the reference numbers by which they are identified in the tables.

BODY COMPOSITIONS

Calcines, wt. % (Chamotte, Aufbereitungsstoffe, Materiali digrassanti)

	Cone	MgCO ₂	Kaolin	Flint	Al ₂ O ₂	Boric acid
(A)	12	14.40	44.30	41.30		
(B)	13	18.20	56.00	25.80		
(C)	18		70.20		27.80	2.0
(D)	18		55.80		44.20	
(E)		23.85	76.15			

Bodies, wt. % (Matières céramiques, Keramische Massen, Paste ceramiche)

					,						
Ref. No.	1	2	3	4	5	6	7	8	9	10	11
Clay Flint Feldspar	. 35	35	45	45	50	50	55	55	55	55	65
Flint	40	30	30	20	25	15	10	22.5	15	5	10
Feldspar	25	35	25	35	25	35	35	22.5	30	40	25
reidspar	23	30	25	30	25	33	30	22.3	30	40	'
Ref No.	5 18	17 19	2 10	20	21	1 2	2	23	1 2	\overline{A}	25

Ref. No.	15	16	17	18	19	20	21	22	23	24	25
Clay	40	35	15	65	42		22	30.2	40	50.0	50.0
Sillimanite	}		l								30.0
Flint	15	20	45	15	24					32.5	2.5
Feldspar	45	45	40	20	34	1		ĺ		16.0	16.0
Al ₂ O ₃		ĺ			1		18	12.6			
Whiting		Į								1.5	1.5
Calcine							60D	57C	20B 40C		
Cone		10	to	14		18	32	30	17	11	11

^{*} Natural sillimanite (andalusite) with clay bond.

Ref. No.	26	27	28	29	30	31	32	33	34	35
Clay	50.0	50.0	50.0	50.0	45	50	55.0	60	50	45
Calcined clay						İ				35
Flint	18.5				27	26	15.0	10	30	
Sillimanite				30.0						
Feldspar	10.0	10.0	13.5	13.5	28	24	28.5	30	8	
Whiting	1.5	1.5	1.5	1.5			1.5			
Calcine	İ								12E	20

Ref. No.	36	37	38	39	40	41	42	Range %*	Stand- ard %†
Clay	50	50	46	46	50	50	50	40-55	50
Feldspar		16	26	21	20	20	20	25-30	30
Flint	25	34	28	33	30	30	30	15–25	20

^{*} For satisfactory bodies (20).

† A standard composition (20).

CHEMICAL COMPOSITION

Ref. No.	1	2	3	4	5	6	7	24*	25*	26*	27*	28*	29*
SiO ₂	74.08	70.81	69.23	65.96	66.78	63.51	61.08	72.51	52.10	64.59	49.81	55.93	50.38
Al ₂ O ₃	15.63	17.47	18.50	20.34	19.95	21.79	23.22	22.60	42.24	30.86	45.05	38.40	44.10
TiO ₂	0.40	0.40	0.56	0.56	0.64	0.64	0.72	0.16	0.12	0.15	0.24	0.19	0.23
Fe ₂ O ₂	0.48	0.50	0.59	0.61	0.64	0.66	0.71	0.14	0.59	0.53	0.64	0.66	0.63
CaO	0.25	0.32	0.27	0.34	0.28	0.35	0.36	1.05	1.10	1.07	1.11	1.13	1.13
MgO	0.22	0.25	0.26	0.29	0.28	0.31	0.33	0.18	0.26	0.22	0.28	0.28	0.27
K ₂ O	2.72	3.67	2.79	3.74	2.83	3.78	3.82	1.98	2.18	1.58	1.67	2.07	1.98
Na ₂ O	1.39	1.75	1.57	1.93	1.66	2.02	2.11	1.08	1.31	1.05	1.20	1.34	1.28
Ignition loss	4.83	4.83	6.24	6.24	6.94	6.94	7.65						

^{*} Fired body.

Petrographic Character of Insulator Porcelains

A comparative petrographic study of a number of insulator porcelains of American, French and German manufacture leads to the following conclusion.

A good porcelain insulator made from clay, feldspar and flint should consist largely of a glassy matrix with embedded crystals of quartz and mullite (3Al₂O₃.2SiO₂) evenly distributed throughout. The quartz should not exceed 20 to 25%, preferably less, and the fragments should have rounded edges and corners, as indicating partial solution by the feldspar glassy matrix. The average grain size of the quartz should not exceed 0.03 to 0.04 mm diameter, and the particles should be evenly distributed. No clay or partially decomposed clay particles should be present. The crystals of mullite should be abundant, well-formed, evenly distributed, and should not exceed ca. 0.01 mm length by 0.002 mm thickness.

Owing to the very close resemblance between mullite and sillimanite crystals, the following crystallographic characterization is given (9, 70).

	Mullite	Sillimanite
1	3Al ₂ O ₂ .2SiO ₂	Al ₂ O ₃ .SiO ₂
Crystal system	Orthorhombic	Orthorhombic
Prism angle, $110 \wedge 1\overline{10}$.	89° 13′	88° 15′
Cleavage	∥ 010	∥ 010
Optic orientation	$\dot{c} = \gamma \text{ and } a = \alpha$	$\dot{c} = \gamma \text{ and } a = \alpha$
Post + i 4: \ \gamma \cdot \ga	1.654	1.677
Refractive indices $\begin{cases} \gamma \\ \alpha \end{cases}$	1.642	1.657
Axial angle, 2V	$+45^{\circ}, -50^{\circ}$	+25°, -30°

BULK DENSITY, SPECIFIC GRAVITY AND POROSITY

1. Typical electrical porcelains for high-tension work

Specific gravity	Bulk density, g/cm ²	Open- pore poros- ity, %	Total porosity, %	Туре	Lit.
2.3-2.5				Hermsdorf	(53)
2.46	2.317		5.8	Berlin hard	
2.45	2.233	1.80	8.9	DTS sill. Z54	(53)
2.45	2.276	0.19	7.3	DTS sill. Z55	(53)
	2.24-2.35			In general	(4)
	1	0.01	1	Elec. average of 8	(63)
2.46	2.25		7.7	Elec. Ref. No. 15	(48)

2. Special spark plug and vitrified pyrometer porcelains (48)

-		_		• • • • • • • • • • • • • • • • • • • •	
2.77	2.54	0.00	8.4	"Sill." spark plug 6012, Ref. No. 20	
3.03	2.83	0.00	6.8	Artificial mullite, Ref. No. 21	
2.89	2.72	0.00	5.7	Artificial mullite, Ref.	
				No. 22	

Coefficient of Cubical Compressibility

 $\frac{10^{\circ} \text{d} V}{V \text{d} P} = 1.4$ to 1.8 per atm. The lower figure is for highly siliceous, and the latter for highly feldspathic, porcelains (56).

TENSILE STRENGTH (DEF. 4)

kg/cm²	Туре	Cross section*	Lit.
843.6	Sill. (mullite)	0.864 cm ²	(38)
684	Sill. (mullite)	0.864 cm ²	(39)
519	Insulator	3.226 cm ²	(20)
514	Sill. (mullite)	6.45 cm ²	(39)
421.8	Insulator average of 7†	0.864 cm ²	(12)
360	Hermsdorf 103	3.14 cm ²	(53)
320	Berlin hard	3.14 cm ²	(53)
261	Rosenthal H	$7\frac{1}{2} \times 2$ cm	(56)
240	Various	$7\frac{1}{2} \times 2 \text{ cm}$	(15)
178	DTS sill. Z54	0.314 cm ²	(53)
163	DTS sill. Z55	$7\frac{1}{2} \times 2 \text{ cm}$	(53)
140-260	Various	$7\frac{1}{2} \times 2$ cm	
130-200	Hermsdorf		(42)
122	Marquardt	$7\frac{1}{2} \times 2$ cm	(53)
98	Insulator	7½ × 2 cm	(45)

* The area of the cross section of the test piece is important, see Fig. 5.
† Batch weights and chemical compositions of these bodies are shown under
Ref. Nos. 1-7.

ILLUSTRATING THE INFLUENCE OF THE GLAZE
All pieces made of the same body and all burned together (40);

see also especially (21.1)

kg/cm²	623	720	642	305
Type	No glaze	Best glaze	Good glaze	Crazed glaze

Compare the tensile and crushing strengths of American and German bodies. The German bodies have a greater crushing strength, the American bodies a greater tensile strength.

MODULUS OF RUPTURE*

kg/cm ²	Type	Lit.	kg/cm²	Type	Lit.
590	Insulator	(45)	500		(49)
580	DTS sill. Z55	(53)	490	Hermsdorf	(46)
595-469	Average of 7 elec. †	(38)	416	DTS sill. Z54	(53)
560-420		(19)	246	Marquardt	(53)
540	Insulator H	(46)			

^{*} Extruded cyl. pieces 120 mm long, and 16 mm diam., burned hanging in vertical position and sawed to length. Supported on steel knife edges 10 cm apart and loaded centrally, 1 kg per sec.

† For compositions see Ref. Nos. 1-7, inclusive. For effect of glase see (21.1).

CRUSHING STRENGTH Unit is 1000 kg/cm²

Strength	Туре	Remarks	Lit.
5.8*	DTS sill		(53)
≯5.6*	Hermsdorf		(53)
≯5.0*	Rosenthal H	2.11 cm ²	(46)
4.8-4.2	Hermsdorf	16 × 16 mm	(56)
4.5	Insulator		(45)
4.2	Berlin hard	2.5 cm cubes	(42)
4.0	Sill. average of 7	4.90 cm ²	(39)
4.0†	Insulator		(56)
2.5†	Insulator average of 3	2.54 cm diam.	(38)
1.6-1.8‡		6 × 3 cm	(8)
1.0	Marquardt		(53)
4.2-3.1	Elec. various	Cyl. 3.14 cm ²	(44)

^{*}The higher values are probably due to the use of cylindrical test pieces instead of square ones. In 1920 the German committee appointed to arrange standard tests decided on a test piece 16×16 mm diameter. According to Demuth (15) test pieces smaller than 50×50 mm are too small and the high results obtained are misleading.

CRUSHING STRENGTH BETWEEN SPHERES* (53)

kg	982	792	748
Type	DTS sill. Z55	DTS sill. Z54	Marquardt

*The Gary press (*3) used for this test holds a piece 1 cm thick and 10 cm wide between steel balls 31.7 mm in diameter, through which the pressure is applied. Results calculated to correspond to a disc 1 mm thick.

Modulus of Elasticity (Def. 10) The unit is 1000 kg/mm²

Modulus	Туре	Remarks	Lit.
10.6	"G. E."	Bending	(10)
10.2	"G. E."	Tensile (v. Fig. 1)	(10)
8.9	Marquardt	Bending	(53)
8.7	O. S. Univ	Tensile	(10)
8.4*	Rosenthal	Bending	(56)
8.3	Berlin hard	Bending average of 72	(59)
8.0-7.0	Hermsdorf	01 72	(53)
7.8	Rosenthal		(53)
7.8	Insulator		(53)
7.1-5.4	Hermsdorf 104	End support	(19)
7.0	Average		(4)
7.0-5.0	Hermsdorf 1915		(42)
6.5	DTS sill. Z55		(53)
5.1	DTS sill. Z54		(53)
8.9	Westinghouse	Bending 12.7 mm rod	(20)
6.3	Hermsdorf 1921	End support	(56)
5.2			(20)
- · -	GG	rod	` '

^{*} With varying loads this value varied from 8.4 to 17.9 with the same test pieces and under uniform conditions. Tests made by Steger's method (59).

The modulus is dependent more upon the conditions of manufacture than upon chemical composition. It is substantially the same for tension and compression. For G. E. porcelain Boyd (1°) found the following relations: D=0.133L for compression; D=0.133L for bending; D=0.143L for tension; where D= deformation in 0.00001ths, and L= load in kg-cm⁻².

MODULUS OF ELASTICITY IN SHEAR (DEF. 11)

kg/cm ²	Туре	Lit.	kg/cm ²	Type	Lit.
600-480	Hermsdorf 103	(53)	481	Insulator 101 G	(46)
500	Rosenthal H	(46)	430	Seger 6833*	(46)
500	Rosenthal lab- oratory por-	(46)	323	DTS sill. Z54	(53)
	celain				

^{*} Square test piece.

FIXED IMPACT AND BENDING SHOCK (DEF. 16)*

em-kg-wt.	Rosenthal porcelains	Lit.	cm-kg-wt.		Туре		Lit.
2.4	Spec. 6412	(56)	1.9	Her	msdorf		(53)
1.61	Spec. 6048	(45)	1.8	DTS	sill. Z5	4	(53)
1.38	Spec. 6048	(56)	1.7	DTS	3 aill. Z 5	5	(53)
1.23 1.00	Laboratory	(\$6) (\$6)	Cone 15	Spar	Kaolin	Quartz	Lit.
		' ' '	I — —	1 04	40	1 10	1 (49)
0.95	Insulator H	(56)	1.43	34	48	18	(61)
0.90	Insulator G	(56)	1.29	26	46	28	(61)
0.08	Hard 6292	(56)	1.23	25	50	25	(81)

^{*} Pendulum-hammer method. $16 \times 16 \times 120$ mm bar, 100 mm span, 10 cm-kg-wt. blow (53).

[†] For compositions see Ref. Nos. 4, 5 and 7.

The higher value is for glased, the lower for unglased.

[§] For compositions see Ref. Nos. 8-11.

Successive Increasing Impact Shocks*

cm-kg-wt.	Rosenthal porcelain	Lit.
146	Stoneware 6412	(56)
117	Laboratory	(56)
105	Insulator H	(56)
98	Insulator G	(56)
69	Seger 6833	(56)
10	Marquardt	(53)

^{*} Marten's method consists in letting a weight drop from successively increasing heights upon a disc-shaped test piece until rupture occurs. The effect is measured in cm-kg-wt, per unit volume of the test piece. Result independent of size of test piece.

RESISTANCE TO ABRASION
Gary sand blast test, 2 min at 3 atm

Туре	Loss in cm ³	Lit.
Insulator G	2.4	(46)
Rosenthal (Selb.) H	3.3	(46)
Marquardt 1		(14)
DTS sill. Z54	2.5	(53)
DTS sill. Z55	3.9	(53)
Seger hard 6412	1.7	(46)

TOUGHNESS AND HARDNESS BY THE "RATTLER" TEST*

Per cent loss of weight by rattler test (38)

15 min	30 min	3 hr	Type
2.2	3.5	10.6	1, Fig. 6
3 .2	5.2	14.4	2, Fig. 6
4.4	8.8	21.6	3, Fig. 6
8.0	14.5	27.4	4, Fig. 6
5 .1	9.6	23.6	5, Fig. 6
7.8	12.2	29.6	6, Fig. 6
10.2	14.2	33.6	7, Fig. 6

* The 15 min test is an indication of the toughness or resistance to chipping. The 3 hr test is an indication of hardness after edges and corners are gone.

Ratio: Marquardt to DTS sill. Z54, is 2.6, time not stated (\$3).

With a constant clay content the higher spar and lower flint body is invariably weaker. Increase in clay and decrease in flint decreases strength. The compositions of the bodies are plotted on the triaxial diagram, Fig. 6. Note the relation between loss in wt. and body composition.

Tests were carried out under the following conditions: 13 test pieces $2.25 \times 2.25 \times 5.0$ cm with square edges. Tested in porcelain jar mills 24.75 cm diam. \times 33 cm long inside rotating at 40 r.p.m. Besides the test pieces there were 61 pebbles weighing 10 kg. The test pieces were removed and weighed at the time specified.

SOFTENING POINT

Cone	Type	Lit.
20	Ref. No. 15)	(48)
18	Ref. No. 16	(48)
15 down	Ref. No. 17	(48)
31	Raw Ref. No. 18	(48)
20 down	Ref. No. 19	(48)
26	American)	
27	French Typical insulator	(48)
31 tipped	German	
32 down	"Sill." spark plug	(48)

Softening point varies with size and shape of test piece, time of heating, etc.

COEFFICIENT OF THERMAL EXPANSION

COEFFICIENT OF THERMAL EXPANSION								
$\frac{10^6\Delta l}{l}$	Туре	Range,	Lit.					
$l\Delta t$								
4.25	Hermsdorf		(53)					
4.00	G. E	(00 101	(2)					
5.42	Lock insulator ('09)	20-101	(65)					
5.35		19-243	(65)					
3.79	High tension	16	(55)					
3.79	Rosenthal	20-100	(56)					
3.80	Seger 6833	20-100	(53)					
6.66	Elec. 1 EL	20-500	(11)					
4.36	Elec. 1 EL	20-400	(1.1)					
4.85	Elec. 2 EL	400-600	(11)					
5.2	Marquardt		(53)					
2.7	T 1 G 22 (1) 0 2(0)	25-200	(37)					
3.9	Fired to Cone 26 (Al ₂ O ₃ .SiO ₂)	200-400	(37)					
3.3		25-400	(37)					
3.36		30-200	(6)					
4.19	"Sill." spark plug; Ref. No. 23	200-400	(6)					
4.78 ∫	Sim Spara prag, Item 1101 20111111		(6)					
3.81			(6)					
5.3	Ref. No. 24	25-400	(37)					
3.5	Ref. No. 25	25-400	(37)					
5.5	Ref. No. 26	25-400	(37)					
3.5	Ref. No. 27	25-400	(37)					
3.3	Ref. No. 28	25-400	(37)					
3.7	Ref. No. 29	25-400	(37)					
6.17	High tension	?	(20)					
5.27	High tension	?	(20)					
3.43		119.0	1					
3.78		230.5	1					
4.01	Al ₂ O ₂ .SiO ₂ vitrified at cone 32	₹ 317.7	1					
4.16		392.7	H					
4.40		512.7	(0.7)					
3.63		117.0	(67)					
3.95		216.5						
4.18	3Al ₂ O ₂ .2SiO ₂ vitrified at cone 32	304.3						
4.36		383.3						
4.62		492.5	1					
2.37		114.2	i					
3.07		234.7						
3.69		357.2						
4.00 }	Average of five refractory porcelains	482.6	(68)					
4.21	parameter parame	601.7	II`					
4.51		724.1						
4.84		844.2						
1.01)	<u> </u>	077.2	,					

Resistance to Thermal Shock

The recorded data are not comparable owing to lack of standard methods v. (8, 54, 66, 29). The relative heat shock strengths of a series of electrical porcelains covering the whole range of com-

positions is shown in Fig. 4 (22). Substitution of ZrO₂ for SiO₂ improves the resistance to thermal shock (60, 69). "Sillimanite" (mullite) porcelains have a greater resistance than ordinary kinds.

VOLUME RESISTIVITY

Temp., °C	Sp. resist. Megohm-cm	Туре	Lit.	
613-900	0.068-1.098	1	(33)	
727	0.007	Berlin	(17)	
727-1292	0.100-0.0034		(33)	
20	129×10^6		(16)	
189	0.385×10^{6}		(16)	
300	19	闰	(2)	
350	9	<u>ي</u> ز .ي	(2)	
400	3.5	Stand. G. plastic	(2)	
500	1.5	pu ₁ d	(2)	
600	0.8	3	(2)	

Some experimenters compare porcelains by finding the temperature at which the resistance is equal to one megohm-cm. They have termed this temperature the "effective temperature," T_B ; see also Figs. 8, 9 and 10.

Ts, ℃	Composition	Cone	Lit.
370	Ref. No. 30	14	(52)
358	Ref. No. 31	14	(52)
390	Ref. No. 32	12	(52)
400	Ref. No. 33	10	(6)
590	Ref. No. 34	15	(6)
610	Ref. No. 35	16	(6)
690	Ref. No. 23	16	(6)

SURFACE RESISTIVITY

Varies enormously with humidity of the atmosphere and with the nature of the surface film. For variation of the resistivity of a clean surface with atmospheric humidity, see Fig. 11.

DIELECTRIC CONSTANT

6.15 for a G. E. wet process porcelain at 10^s cycles, 25°C and 60% relative humidity (2); see further p. 80.

DIELECTRIC STRENGTH

 Shape of the electrodes not given. Voltage increased 1 kv/2 sec, starting at 20 kv under oil

Volts per mm	Туре	Remarks				
10 000	Hermsdorf	5 mm thick test porcelain	(19)			
9 000	Hermsdorf	10 mm thick test porcelain	(19)			
of above	 	At 275°C	(19)			
16 000	Royal Berlin	2½ mm thick	(42)			
17 200	Ref. No. 36	-	(61			
12 500	Ref. No. 37		(61)			
18 100	Ref. No. 38		(61)			
20 300	Ref. No. 39	5 mm discs. Cone 15	(61			
27 400	Ref. No. 40		(61			
18 300	Ref. No. 41		(61			
28 700	Ref. No. 42		(61)			

 25°C under oil, 12.7 mm electrodes with rounded edges, voltage increased 1 kv per sec

		-	
9 100 9 400 10 600	Ref. No. 16 Ref. No. 17 Ref. No. 18	Test piece 6.35 mm to 9.14 mm. 60 cycle sine-	(3) (3) (3)
8 400	Ref. No. 19	wave voltage	(3)

According to Peek (31) the puncture tests on solid insulators vary greatly between different samples of the same material, shape and area of the electrodes, time of application of voltage, etc.; see Figs. 12-16.

DIELECTRIC LOSSES

For variation of dielectric losses and power factor with frequency, see~(25).

FLASH-OVER VOLTAGE

Effect of humidity, Fig. 18. Effect of length of test piece, Fig. 17.

ELECTROLYSIS OF HOT PORCELAIN

Above 300° porcelain behaves as an electrolytic conductor, the alkali metals migrating toward the cathode. For experimental details, results and conclusions, v. Haber (23).

VELOCITY OF SOUND

Velocity km/sec	Туре	Lit.	Velocity km/sec	Туре	Lit.
5.63	Insulator H	(46)	5.05	Hermsdorf hard	(46)
5.34	Seger 6833	(46)	4.9-5.2	In general	(56)

Velocity of transmission, or vibration of sound, varies with the modulus of elasticity. Porcelains having the highest velocity are the best. Velocity increases with increasing clay content.

LITERATURE

(For a key to the periodicals see end of volume)

- Austin, 129, 30: 2303; 11. (2) Barringer, General Electric Co., Schenectady, 0. (3) Bibb, Jeffery DeWitt Insulator Co., Kenover, West Virginia, 0. (4) Bleininger, 33, 16: 589; 17. (5) Bleininger, 109, 1919: 101. (6) Bleininger and Riddle, 38, 2: 564; 19. (7) Boudouard, 106, 1920: 681. (8) Boudouard, 102, 24: 79; 21. 103, 29: 496; 21. (8) Bowen, Grieg and Zies, 128, 14: 183; 24.
- Boyd, 122, 38: 222; 16. (11) U. S. Bureau of Standards, 0. (12) Champion Porcelain Co., Detroit, 0. (12) Curie, 6, 17: 385; 89. (14) Curtis, 31, No. 234; 14. (15) Demuth, 101, 41: 892; 20. (16) Dietrich, 63, 11: 187; 10. (17) Doelter, B10. (18) Foussereau, 6, 5: 241; 85. (19) Friese, B12.
- (20) E. H. Fritz, Westinghouse Electric and Manufacturing Co., East Pittsburgh, O. (21) Gary, 100, 56: 429; 23. (21.1) Gerold, 103, 38: 188; 25. (22) Gilchrist and Klinefelter, B6. (23) Haber, 93, 87: 154; 08. (24) Harker, S, 10: 430; 05. (25) Haworth, 5, 81: 221; 08. (26) Henderson and Weimer, 81, 13: 469; 11. (27) Henning, 8, 22: 631; 07. (28) Honaman and Fonseca, 109, 1919: 91. (28) Meyer, 101, 40: 278; 19.
- (30) F. W. Peek, Jr., General Electric Co., Pittsfield, Mass., 0. (31) Peek, B7. (22) Peek, 107, 76: 1061; 20. (33) Pirsni and Siemens, 9, 15: 969; 09. (34) Purdy, 81, 13: 550; 11. (38) Purdy, 81, 18: 499; 13. (38) Purdy and Potts, 81, 13: 431; 11. (37) Riddle, 38, 2: 804; 19. (38) Riddle, Chargin Personal Co., Detroit 6, (48) Riddle of Lind (38, 8: 385; 29).
- Champion Porcelain Co., Detroit, O. (38) Riddle and Laird, 38, 5: 385; 22. (40) Riddle and Laird, 38, 5: 500; 22. (41) Rieke, 103, 22: 143; 14. (42) Rieke, 92, 28: 374; 15. (42) Rieke and Gary, B5. (44) Rosenthal, 100, 48: 445; 15. (45) Rosenthal and Singer, 101, 41: 705; 20. (46) Rosenthal and Singer, 103, 29: 81, 93; 21. (47) Roth, 100, 55: 533; 23. (48) Royal, Champion Porcelain Co., Detroit, O. (49) Rxiha and Seidener, B8.
- (50) Schwaiger, 101, 43: 875; 22.
 (61) J. F. Scheid, H. Schomberg and Sons, Margarethenhütte, Saxony, Germany, 0.
 (62) Silsbee and Honaman, 109, 1919: 79.
 (63) Singer, 0 and B4.
 (64) Singer, 92, 81: 221, 227, 229; 18.
 (65) Singer, 112, 9: 96; 20.
 (64) Singer and Rosenthal, 104, 1: 3; 20.
 106, 5: 175; 21.
 100, 54: 250; 21.
 (57) Starke, 8, 60: 629; 97.
 (88) Steger, 124, 2: 51; 14.
 (59) Steger, 103, 27: 113; 19.
- (60) Twells and Lin, 38, 4: 195; 21. (61) Urban, 103, 33: 217; 24. (62)
 Wagner, 125, 3: 67; 14. (62) Washburn and Bunting, 38, 5: 527; 22. (64)
 Waters, 32, No. 105; 17. (68) Watts, 81, 11: 84; 09. (66) Watts, 81, 11: 179; 09. (67) Spencer, National Lamp Works, Nela Park, Cleveland, O. (68) MacGee, U. S. Bureau of Mines, O. (69) Geller and Woods, 38, 4: 842; 21. (70) Grieg, 12, 11: 1: 26.

II. LABORATORY PORCELAINS AND WHITEWARES

JAMES A. AUDLEY¹

A Classification of Porcelains and Whitewares Based on Their Composition and Properties

- I. Body vitrified Little or no porosity.
 - (A) Porcelain. More or less translucent.
 - 1. Hard porcelain.

Body and glaze fired up together to a comparatively high temperature, with or without a previous low fire biscuiting. Glaze composition approximating that of the body, but with lime and often zinc oxide added.

- 2. Soft porcelain.
 - (a) Seger porcelain.
 - (b) Frit porcelain.
 - (c) Bone porcelain.
 - (d) Belleek.
 - (e) Parian (biscuit or figure porcelain).
- (B) Stoneware. Not translucent.
- II. Body not completely vitrified, porous.
 - (C) General whiteware (earthenware).

This includes a variety of wares which pass under different trade names (semi-porcelain, white granite, etc.), but almost imperceptibly grade into one another, and into porcelain at one extreme.

Examples illustrating composition are given further on.

Wall tiles and floor tiles may be of porcelain, stoneware, or earthenware. They are made chiefly by the dry press process.

¹ Acknowledgments are due to Dr. J. W. Mellor for the free use of his library, which is rich in scientific and technical literature, and for occasional assistance kindly rendered in tracing important references.

Electrical porcelain possesses properties which give it a distinct value for certain technical purposes, so that it is impracticable to draw any hard and fast lines between it and some other porcelains. For electrical porcelains proper, v. p. 67.

Chemical Composition of Fired Body and Batch Composition of Raw Body

For composition limits assigned to the various types of porcelain and whiteware, v. the standard works such as those of Seger, Kerl, Bourry, Granger, etc., and special works such as (82, 99, 119).

The actual compositions of some of the bodies whose properties are listed in the following pages are appended hereto, together with the reference numbers by which they are identified in the subsequent pages.

BODY COMPOSITION, WT. %

		ODI		OSITI	,	WT.	70			
Ref. I	No.		6	7	8 9	10 1	1 12 1	3 14	15 1	6 17 18
Kaolin										0 50 50
Quartz			22	. 5 25	20 15	5 30 2	25 20 1	5 35	30 2	5 20 15
Feldspar			22	. 5 15	20 25	15 2	20 25 3	0 15	20 2	5 30 35
	7		lan	00/04	laala	010.4	o elo ale		- 1-	
Ref. 1					: :-		25 26 2	_ 	3 2	9 30 31
Kaolin							40 55			5 55 65
Quartz							25 40 3			
Feldspar	· · · · ·	• • • •	. 20	25 30	35 2	5 30	35 5	15 22	. 5 3	0 40 10
Ref. No.	32	33	34*	35	† 3	6†	37	38	3	39
Kaolin	65	65	25	3	0	35	43.4	40	.5	52.0‡
Quartz	17.5	10	45	1	2	11	29.5	25	. 1	
Feldspar	17.5	25	30	6	0	54	25.6	29	.2	42 .0
CaCO ₃							1.5	5	.2	6.0
• Seger porcelai	n. † 1	Figure	porce	lain.	‡ Sorr	nsig k	aolin.			
Ref. No.	40	41	42	43	44	45	46	47	48	49
China clay	30	30	30	30	30	30	15		30	30
Ball clay	25	25	25	25	15	35	40	20	25	25
Flint	30	20	10	į	30	10	1	15	ŀ	20
$\mathbf{Feldspar}$	15	25	35	45	25	25	45	30	35	10
Red clay								35		1
Zirconia							1	ĺ	10	
Steatite		L		<u> </u>	<u> </u>		<u> </u>			15
Ref. No.		50	51	52	53	54	55	56	57	58
		50 60	51 65	52	53	54 70	55	56 70	57	
Ref. No. Clay Quartz									-	80
Clay		60	65	70	65	70	75	70	75	80
Clay Quartz Feldspar		60 20 20	65 15 20	70 10 20	65 20 15	70 15 15	75 10 15	70 20 10	75 15 10	80 10 10
ClayQuartzFeldsparRef. No.	59	60 20 20 60	65 15 20	70 10 20 62	65 20 15	70 15 15 64	75 10 15 65	70 20 10	75 15 10	80 10 10 68
Clay Quartz Feldspar Ref. No. Clay	59	60 20 20 60 55	65 15 20 61 50	70 10 20 62 45	65 20 15 63 40	70 15 15 64 60	75 10 15 65 55	70 20 10 66 50	75 15 10 67 45	80 10 10 10 68 40
Clay Quartz Feldspar Ref. No. Clay Flint	59 60 20	60 20 20 60 55 22.5	65 15 20 61 50 25	70 10 20 62 45 27.5	65 20 15 63 40 30	70 15 15 64 60 25	75 10 15 65 55 30	70 20 10 66 50 35	75 15 10 67 45 40	80 10 10 68 40 45
Clay Quartz Feldspar Ref. No. Clay Flint Feldspar	59 60 20 20	60 20 20 60 55 22.5 22.5	65 15 20 61 50 25 25	70 10 20 62 45 27.5	65 20 15 63 40 30 30	70 15 15 64 60 25 15	75 10 15 65 55 30 15	70 20 10 66 50 35 15	75 15 10 67 45 40 15	80 10 10 68 40 45 15
Clay Quartz. Feldspar Ref. No. Clay Flint Feldspar Ref. No.	59 60 20 20 69	60 20 20 60 55 22.5 22.5	65 15 20 61 50 25 25 71	70 10 20 62 45 27.5 27.5	65 20 15 63 40 30 30 73	70 15 15 64 60 25 15	75 10 15 65 55 30 15 75	70 20 10 66 50 35 15	75 15 10 67 45 40 15	80 10 10 68 40 45 15
Clay Quartz. Feldspar. Ref. No. Clay. Flint. Feldspar. Ref. No. Clay.	59 60 20 20 69 60	60 20 20 60 55 22.5 22.5 70	65 15 20 61 50 25 25 71	70 10 20 45 27.5 27.5 72 45	65 20 15 63 40 30 30 73 40	70 15 15 64 60 25 15 74 60	75 10 15 65 55 30 15 75	70 20 10 66 50 35 15 76	75 15 10 67 45 40 15 77	80 10 10 68 40 45 15 78 40
Clay Quartz Feldspar Ref. No. Clay Flint Feldspar Ref. No. Clay Flint Flint	59 60 20 20 69 60 20	60 20 20 60 55 22.5 22.5 70 55 25	65 15 20 61 50 25 25 71 50 30	70 10 20 45 27.5 27.5 72 45 35	65 20 15 63 40 30 30 73 40 40	70 15 15 64 60 25 15 74 60 15	75 10 15 65 55 30 15 75 55 20	70 20 10 66 50 35 15 76 50 25	75 15 10 67 45 40 15 77 45 30	80 10 10 68 40 45 15 78 40 35
Clay Quartz Feldspar Ref. No. Clay Flint Feldspar Ref. No. Clay Flint Feldspar Flint Feldspar	59 60 20 20 69 60 20 20	60 20 20 60 55 22.5 22.5 70 55 25 20	65 15 20 61 50 25 25 71 50 30 20	70 10 20 45 27.5 27.5 72 45 35 20	65 20 15 63 40 30 30 73 40 40 20	70 15 15 64 60 25 15 74 60 15 25	75 10 15 65 55 30 15 75 75 20 25	70 20 10 66 50 35 15 76 50 25 25	75 15 10 67 45 40 15 77 45 30 25	80 10 10 68 40 45 15 78 40 35 25
Clay Quartz Feldspar Ref. No. Clay Feldspar Ref. No. Clay Flint Feldspar Feldspar Feldspar Feldspar	59 60 20 20 69 60 20 20	60 20 20 60 55 22.5 22.5 70 55 25 20	65 15 20 61 50 25 25 71 50 30 20	70 10 20 45 27.5 27.5 72 45 35 20	65 20 15 63 40 30 30 73 40 40 20	70 15 15 64 60 25 15 74 60 15 25 33 8	75 10 15 65 55 30 15 75 55 20 25	70 20 10 66 50 35 15 76 50 25 25	75 15 10 67 45 40 15 77 45 30 25	80 10 10 68 40 45 15 78 40 35 25 28
Clay Quartz Feldspar Ref. No. Clay Feldspar Ref. No. Clay Flint Feldspar Feldspar Foldspar Feldspar Clay Foldspar Ref. No. Clay Clay	59 60 20 20 69 60 20 20	60 20 20 55 22.5 22.5 70 55 25 20	65 15 20 61 50 25 25 71 50 30 20 0 80 0 55	70 10 20 45 27.5 27.5 72 45 35 20 81	65 20 15 63 40 30 30 73 40 40 20 82 8	70 15 15 15 64 60 25 15 74 60 15 25 25 33 8	75 10 15 65 55 30 15 75 75 20 25 4 85 65	70 20 10 66 50 35 15 76 50 25 25 40	75 15 10 67 45 45 15 77 45 30 25	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55
Clay Quartz Feldspar Ref. No. Clay Feldspar Ref. No. Clay Flint Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar	59 60 20 20 69 60 20 20	60 20 20 55 22 . 5 22 . 5 70 55 25 20 79 66 16	65 15 20 61 50 25 25 71 50 30 20 0 55 0 15	70 10 20 45 27.5 27.5 72 45 35 20 81 50 20	65 20 15 63 40 30 30 73 40 40 20 82 8 45 4 25 3	70 15 15 64 60 25 15 74 60 15 25 33 8 40 330 330	75 10 15 65 55 30 15 75 25 25 4 85 65 55 10	70 20 10 66 50 35 15 76 50 25 25 25	755 100 100 100 100 100 100 100 100 100 1	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55 15 10
Clay Quartz Feldspar Ref. No. Clay Feldspar Ref. No. Clay Flint Feldspar Feldspar Foldspar Feldspar Clay Foldspar Ref. No. Clay Clay	59 60 20 20 69 60 20 20	60 20 20 55 22 . 5 22 . 5 70 55 25 20 79 66 16	65 15 20 61 50 25 25 71 50 30 20 0 55 0 15	70 10 20 45 27.5 27.5 72 45 35 20 81	65 20 15 63 40 30 30 73 40 40 20 82 8 45 4 25 3	70 15 15 64 60 25 15 74 60 15 25 33 8 40 330 330	75 10 15 65 55 30 15 75 75 20 25 4 85 65	70 20 10 66 50 35 15 76 50 25 25 25	755 100 100 100 100 100 100 100 100 100 1	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55
Clay Quartz Feldspar Ref. No. Clay Feldspar Ref. No. Clay Flint Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar	59 60 20 20 69 60 20 20	60 20 20 55 22 . 5 22 . 5 70 55 25 20 79 66 16	65 15 20 61 50 25 25 71 50 30 20 0 55 0 15	70 10 20 62 45 27.5 27.5 72 45 35 20 81 50 20 30	65 20 15 63 40 30 73 40 40 20 82 8 45 45 30 30	70 15 15 64 60 25 15 74 60 15 25 33 8 40 330 330	75 10 15 65 55 30 15 75 25 25 4 85 65 55 10	70 20 10 66 50 35 15 76 50 25 25 86 8 40 25 35	755 100 100 100 100 100 100 100 100 100 1	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55 15 10
Clay Quartz Feldspar Ref. No. Clay Feldspar Ref. No. Clay Flint Feldspar Ref. No Clay Flint Feldspar Ref. No Clay Feldspar Ref. No	59 60 20 20 69 60 20 20 	60 20 20 60 55 22.5 70 55 25 20 79 66 10 36	65 15 20 61 50 25 25 71 50 30 20 0 80 0 55 0 15 0 30	70 10 20 62 45 27.5 27.5 72 45 35 20 81 50 20 30	65 20 15 63 40 30 30 73 40 40 20 82 8 45 4 30 30	70 15 15 64 60 25 15 74 60 15 25 25 33 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9	75 10 15 65 55 30 15 75 20 25 4 85 55 10 00 25	70 20 10 66 50 35 15 76 50 25 25 86 8 40 25 35	75 15 10 67 45 40 15 77 45 30 25 45 20 35	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55 15 10 35 35
Clay	59 60 20 20 69 60 20 20 	60 20 20 60	65 15 20 61 50 25 25 71 50 30 20 0 80 0 55 50 0 15 0 30 0 94 40 5 13.5	70 10 20 45 27.5 27.5 72 45 35 20 81 50 20 30 30 40 40 40 40 40 40 40 4	65 20 15 63 40 30 30 73 40 40 20 82 8 45 4 25 3 30 3 5 40 90 38	70 15 15 64 60 25 15 74 60 15 25 25 33 840 330 360 3 360 3 360	75 10 15 65 55 30 15 75 20 25 4 85 55 10 00 25 97 40 34.25	70 20 10 66 50 35 15 76 50 25 25 25 86 8 40 25 35 14 22 35 14 21 22 35 14 21 22 35 35 14 21 21 21 21 21 21 21 21 21 21 21 21 21	75 15 10 67 45 40 15 77 45 30 25 20 35 35 37 8	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55 15 10 35 35 100 50 23 30
Clay Quartz. Feldspar Ref. No. Clay Flint Feldspar Ref. No. Clay Flint Feldspar Ref. No Clay Feldspar Ref. No Clay Flint Feldspar Ref. No. 90 91 Clay 40 50	59 60 20 20 69 60 20 20 	60 20 20 60	65 15 20 61 50 25 25 71 50 30 20 0 80 0 55 50 0 15 0 30 0 94 40 5 13.5	70 10 20 45 27.5 27.5 72 45 35 20 81 50 20 30 30 40 40 40 40 50 42 50 50 45 45 50 50 50 50 50 50 50 5	65 20 15 63 40 30 30 73 40 40 20 82 8 45 4 25 3 30 3 5 40 90 38 20 19	70 15 15 64 60 25 15 74 60 15 25 25 33 8 40 3 30 3 30 3 30 3 60 0 20 0 0 20 0	75 10 15 65 55 30 15 75 20 25 4 85 55 10 00 25 97 40 34.25	70 20 10 66 50 35 15 76 50 25 25 25 86 8 40 25 35 14 28 36 19 36 19	75 15 10 67 45 40 15 77 45 30 25 20 35 35 37 8	80 10 10 68 40 45 15 78 40 35 25 25 38 89 50 55 15 10 35 35 100 50 23 30 24 00

BODY COMPOSITION, WT. %.—(Continued)										
Ref. No.		101	102	103	104	105	106	107	108	109
Clay, raw	5	50	50	50	50	50	50	50	50	50
Clay, calcined.		20	20	20	20	20	25	25	25	25
Flint	1	8.5	13.5	9.5	5.0		13.5	10	5	
Feldspar		0	15	19	23.5	28.	5 10	13.5	18.5	23.5
	<u> </u>	1.5	1.5	1.5	1.5	1.	5 1.5	1.5	1.5	1.5
Ref. No		11	10	111	11	2	113	114	1	115
Clay, raw		50		50	50	o [50	50		50
Clay, calcined		30)	30	30) (35			
Flint		8	.5	5		i		32.	5	34
Feldspar		10)	13.5	18	. 5	13.5	16		16
Whiting	· · · <u>· · ·</u>	1	. 5	1.5	1	. 5	1.5	1.	5	
Ref. No.	T	116	117	118	119	120	121	122	123	124
Clay		71.5	77.0	80.1	85	80	80	75	75	75
Feldspar						18.	5 13.5	23.5	18.5	10
Flint	1	2.4					5		5	13.5
Whiting		1.4	1.45	1.43	1.5	1	5 1.5	1.5	1.5	1.5
Alumina			l .	8.97	l .					
Ref. N	Jo		125	126	127	128	1 120	130	131	132
			70	70	70	80	75	70	50	50
Clay			23.5		15	10	13.5		16	16
Flint			5	-	13.5		5 10		32.5	
Whiting			1.5		l .		1		1	l
winting				<u> </u>				-	`	
Ref. No.	136	÷	37	138	13	9	140	14	1	142
Kaolin	39	39		39	39	-	39	39	- 1	39
Ball clay	6	6		6	6	ł	6	6		6
Flint	37	37		37	37		37	37		37
Feldspar	18	18	- 1	18	18	_	18	18		18
Whiting	3		.5	2	1	.5	1	0.	- 1	0
Dolomite.	0	0	.5	1	1	. 5	2	2	5	
R	ef. No.				143		14	4	14	15
Kaolin					48	3	4	- 1		16
Quartz					18	}	2	8	;	33
Feldspar				<u> </u>	34		2	6		21
Ref. N	To.		158	159	160	161	162	163	164	165
Clay substance	2		50	41	40	62	48	51.5	50	55
Quartz sand			22.5	54	52	33	42	43.5	42	40
Feldspar					5	5		5	5	5
Chalk			<u> </u>		3		10		3	
Ref. No.		166	167	168	169	170	171	172	173	174
Clay		24*	23*	25†	22‡	24				Ì
Kaolin		33	32	50	45	48	46	35	35	25
Quartz		38	37	20	22	23	23	60	60§	45

 Lean clay. 	† Fat clay.	‡ Meissen clay.	Quarts sand	calcined	twice at
cone 15.					

5

30

Ref. No.	1*	2*	3*	4*	5†	6‡
SiO ₂	60.75	69.37	74.52	79.32	70.7	67.
Al ₂ O ₃	.)				ſ	26.6
TiO ₂	. } 32	23.61	2.70	18.42	23.4	0.4
Fe ₂ O ₃	.]		ŀ		l	0.8
CaO	4 15	1.22	16.10	0.36	} 1.0{	0.4
MgO	0.08	0.08	0.61	1	1.0	0.3
K ₂ O	3.02	$\int 2.58$	3.45	1.82	} 4.8 {	3.3
Na ₂ O	3.02	2.42	2.63	0.32	4.8	0.1

BODIES.	CHEMICAL	Composition.—	(Continued)
---------	----------	---------------	-------------

Ref. No.	101	102	103	104	105	106	107	108	109
SiO_2	64.59	62.90	61.61	60.10	58.52	62.07	60.90	59.27	57.64
Al ₂ O ₃	30.86	31.76	32.53	33.36	34.25	33.15	33.80	34.70	35.63
$TiO_2.\dots.$	0.15	0.15	0.15	0.15	0.15	0.17	0.17	0.17	0.17
$Fe_2O_3\dots.$	0.53	0.55	0.57	0.61	0.63	0.56	0.58	0.60	0.64
CaO	1.07	1.08	1.09	1.10	1.12	1.09	1.11	1.15	1.14
MgO	0.22	0.23	0.23	0.24	0.25	0.23	0.24	0.25	0.25
K₂O	1.58	2.08	2.47	2.92	3.40	1.61	1.97	2.45	2.96
Na ₂ O	1.05	1.25	1.35	1.52	1.68	1.12	1.23	1.41	1.57
Ref. No). 1	10 1	111 1	112 1	113 1	15 1	133	134	135

Ref. No.	110	111	112	113	115	133	134	135
SiO ₂	59.56	58.36	56.80	55.93	72.51	72.49	71.40	75.64
Al ₂ O ₃	35.43	36.08	37.00	38.40	22.60	22.03	27.58	22.63
TiO ₂	0.18	0.18	0.18	0.19	0.16			
Fe_2O_3	0.63	0.65	0.62	0.66	0.44	3.66	0.75	0.68
CaO	1.10	1.12	1.13	1.13	1.05	Trace	0.35	0.68
MgO	0.26	0.27	0.28	0.28	0.18	0.24	0.06	0.06
K₂O	1.67	2.05	2.53	2.07	1.98		$}_{2.22}$	2.61
Na ₂ O	1.17	1.29	1.46	1.34	1.08		5 2.22	2.01
Ig. loss							0.10	0.22

Ref. No.	151	152	153	154	155	156	157
SiO ₂	68.4	70.00	69.52	67.65	76.45	71.27	75.02
Al ₂ O ₃							
Fe ₂ O ₃	0.82	0.75	0.76	0.73	1.01	0.71	0.15
CaO	0.3	0.54	0.51	0.63	0.93	0.72	0.61
K ₂ O	1.37	1.45	1.34	1.38	0.97	1.74	
Na ₂ O	1.03	0.88	0.87	0.97	1.35	0.81	0.89

Ref. No.	159	160	161	162	163	164
SiO ₂	74.6	72.4	60.5	62.7	68.9	67.0
Al ₂ O ₃	17.1	16.6	25.2	19.1	20.8	20.2
Fe ₂ O ₂	. 0.8	0.7	1.5	0.8	0.9	0.8
CaO	0.4	1.9	1.5	6.0	0.9	2.5
$MgO\dots\dots\dots$		l	0.6	0.5	0.5	0.5
K ₂ O		1.7	2.2	0.5	1.2	1.2
Ig. loss	5.6	6.7	9.3	10.9	6.8	7.8

^{*} Sevres hard porcelain, new body, soft porcelain and stoneware, respectively, according to Coupeau (20, 21). † Limoges porcelain according to Vogt (20, 21). ‡ Berlin porcelain, general chemical composition according to Rieke (103).

DISTRIBUTION OF REFERENCE NUMBERS (COMPOSITIONS) AMONG LITERATURE REFERENCES

Ref. No.	Lit.	Ref. No.	Lit.	Ref. No.	Lit.
1- 5	(20, 21)	36	(158, 159)	101-115	(93)
6	(18, 19,	37-39	(33)	116-132	(127)
	103, 105,	40-49	(144)	133	(134)
	129, 158,	50-58	(72)	134, 135	(90)
	159)	59-84	(74, 77,	136-142	(94)
7-25	(106)		85)	143-145	(138)
15	(56, 57)	85-91		151-157	(25, 26)
16	(106, 114)	52, 69	(80.84)	158	(18, 19)
26-33	(112)	73-79	(80, 84)	159-164	(42)
34	(105, 129,	81		165	(58)
	158, 159)	92-100	(76)	166-171	(88, 89)
35	(105, 129)			172, 173	(101, 102)

Petrographic Character of Laboratory Porcelains and Whiteware

The petrographic character of a ceramic body made from clay, feldspar, and flint varies according to the proportions of the component materials and also with the method of preparation (involving physical conditions) and conditions of firing. In porcelains wide variations occur in the relative amounts of glassy

matrix, undissolved quartz (or cristobalite), undecomposed or undissolved clay, and mullite (3Al₂O₁.2SiO₂). The mullite was for a long time regarded as sillimanite (Al₂O₁.SiO₂), discrimination being difficult owing to the close resemblance, v. p. 68.

A good porcelain of the kind indicated should consist largely of a feldspathic glassy matrix with embedded crystals of quartz and mullite distributed evenly, but no visible particles of clay. The quartz should not exceed 20, or at most 25% and the average size of its particles should not exceed 0.03 to 0.04 mm diameter, all edges and corners being rounded off through partial solution in the matrix. The crystals of mullite should be numerous and well

formed, and should not exceed ca. 0.01 mm in length and 0.002 mm in thickness. Porcelains answering to this description can be produced only at a comparatively high firing temperature. With lower temperatures smaller proportions of glassy matrix and mullite crystals are produced, the proportions diminishing gradually until the crystals cease to be formed and the amount of glassy matrix becomes relatively insignificant, and the product is no longer porcelain but simply white earthenware.

For the microscopic characters of thin sections of porcelains and whitewares, see (56, 57, 67, 68, 69, 79, 90, 91, 92, 108, 150, 158, 159)

BULK DENSITY, SPECIFIC GRAVITY, AND POROSITY

Specific gravity	Bulk density	% open pore porosity*	% total porosity	Туре	Lit.
gravity	2.15-2.02	porosity	porosity	Bayeux hard porcelain at red to white heat	(115)
0.2 0.5+	2.15-2.02			Hard porcelain	(29)
2.3 -2.5†				Idem., baked at ca. 950°C	(29, 103)
2.60-2.64† 2.46				Berlin technical porcelain	(103)
2.46	2.32		4.4	Berlin hard porcelain	(119, 121)
2.30-2.40	2.32		4.4	Hermsdorf porcelain	(32)
2.30-2.40	1.45-1.55			Hermsdorf porcelain, baked	(32)
2.42-2.49	2.27-2.38		4.1 - 7.9	8 commercial porcelains	(108, 118, 119)
2.42-2.49	2.21-2.38		4.1 - 7.9	Meissen porcelain	(123)
2.49				1 •	(123)
				Sèvres porcelain Chinese porcelain	(123)
2.38				· · · · · · · · · · · · · · · · · · ·	(123)
2.44				Laboratory porcelain (Rosenthal)	(123)
2.26				Seger porcelain (Rosenthal)	(123)
2.28	1			Rosenthal porcelain	(134)
2.36	0.07.0.41		3 –10	Japanese porcelain	(80)
2.47-2.53	2.27-2.41		3 -10 0.00- 1.76	19 trial porcelains, fired at cone 12	(157)
		0.010.0.004	0.00-1.76	6 American commercial porcelains, cone 12	(144)
		0.010- 0.034		10 trial porcelains, cone 10	` '
	0.05.0.00	0.05 - 9.7		26 trial porcelains, cone 10	(77)
	2.35-2.39	0.02 - 0.86		3 American hotel chinas	(128)
	1.96-2.12	6.4 -11.6		4 American hotel semi-porcelains	(128)
	2.03-2.40	0.0 - 9.8		14 American hotel wares	(125)
	1.98-2.10	7.4 -10.2		8 American household wares (semi-vitreous)	(125)
	2.13-2.33	2.7 - 6.0		4 English hotel wares	(125)
	2.18-2.35	0.0		3 French and German hotel wares	(125)
2.53	2.32	0.13	8.5	Fine stoneware 538	(119)
2.45	2.23	1.80	8.9	Fine stoneware DTS sill. 54	(119)
2.45	2.28	0.19	7.7	Fine stoneware, DTS sill. 55	(119)
1.33-1.65	0.47.0.65	17.1 -21.6		6 earthenware bodies, cone 4a	(42)
2.48-2.54	2.15-2.20	<u> </u>	11.8 -15.2	4 stonewares	(121)

^{*} For direct determination of pore volume, v. (142). Different absorption methods (140).

SPECIFIC GRAVITY AND BULK DENSITY (13)

Specific gravity	Bulk density	Туре
2.628	2.363	Palissy faience
2.884	2.354	Nevers faience
2.789	2.363	Rouen faience
2.564	2.433	Creil fine faience
2.482*		Creil fine faience
2.482	2.226	English fine faience
2.567	2.455	Flemish stoneware
2.610	2.556	Japanese stoneware
2.505	2.436	English stoneware
2.569	2.508	Hard porcelain from Saxony
2.531	2.314	Bayeux hard porcelain

SPECIFIC GRAVITY AND BULK DENSITY (13).—(Continued)

Specific gravity	Bulk density	Туре
2.556	2.133†	Sèvres hard porcelain (1798)
2.527	2.259†	Sèvres hard porcelain (1788)
2.470	2.334	Limoges hard porcelain
2.500	2.290	Chinese hard porcelain
2.525	2.384	English soft porcelain
2.525	1.873	Sèvres soft porcelain
2.477	2.143	Tournay soft porcelain

• After firing with Sèvres hard porcelain. Specific gravities of other bodies are given in the same table.

† Pores very visible.

COEFFICIENT OF CUBICAL COMPRESSIBILITY

See p. 68. Cf. (29, 32, 123).

[†] For effects of firing temperatures and fineness of grinding, v. (42, 62, 63, 80, 84, 94, 105),

Modulus of Rupture (Def. 5)

kg/cm ²	Type	Lit.
774-943	Berlin technical porcelain	(107, 108, 119)
588-777	7 commercial porcelains, other than Berlin	(107, 108, 119)
420-560	Hermsdorf porcelain	(32, 113, 123)
≯690	Hermsdorf porcelain	(119)
550-670	Hermsdorf porcelain	(35)
930	A special Hermsdorf porcelain	(35)
590	Rosenthal insulator G porcelain	(113, 119, 123)
540	Rosenthal insulator H porcelain	(113, 119, 123)
640	Rosenthal table porcelain	(113, 119, 123)
410	Rosenthal laboratory porcelain	(113, 119, 123)
520	Trial porcelain 6292 (copied from American insulator porcelain)	(113, 119, 123)
106-185	6 trial earthenwares, cone 8-9, Ref. No. 159-164*	(42)
233	Faience body 135	(119)
416	Fine stoneware, DTS sill. 54	(119)
580	Fine stoneware, DTS sill. 55	(119)
980	Special trial stoneware 6412	(113, 119, 123)

Extruded cylindrical rods 16 mm diameter are fired hanging vertically, and sawn to 120 mm lengths. Loaded centrally, between steel knife edge supports, 1 kg/sec.

TENSILE STRENGTH (DEF. 4)

	`		
kg/cm²	Туре	Cross sec- tion,* cm²	Lit.
1000-2000	Hard porcelain		(29)
280-363	Berlin technical porcelain	2.5 -2.9	(107, 108, 121)
161-265	7 commercial hard porcelains (other than Berlin)	2.8 -3.9	(107, 108, 119)
≯360	Hermsdorf porcelain		(119)
360-420	Hermsdorf porcelain	3.14	(35)
ca. 261	Rosenthal insulator porce- lain H		(113, 123)
500	Chinese porcelain		(119)
106-887	American porcelain		(119)
258-396	19 trial porcelains, cone 15, Ref. No. 7-25		(106)
180-240	Soft porcelain, cone 8-9	3.50-3.63	(33)
184-283	Soft porcelain, cone 8-9	2.76-3.40	(33)
84–191†	10 trial porcelains fired to vitrification, cone 7-10, Ref. No. 40-49	ca. 3.2	(144)
108-185	6 trial earthenwares fired at cone 8, Ref. No. 166-171‡		(88, 89)
44-80	6 trial earthenwares fired at cone 8-9, Ref. No. 159-164;		(42)
118	Special hard earthenware 237		(119)
67	Faience body 135		(119)
178	Fine stoneware DTS sill. 54		(119)
163	Fine stoneware DTS sill. 55		(119)

^{*}The area of the cross section of the test piece is important. On comparing the tensile and crushing strengths of German and American porcelains, it may be noted that, in general, the former have greater crushing strength and the latter greater tensile strength.

CRUSHING STRENGTH Unit = 1000 kg./cm²

Strength	Type	Remarks	Lit.
4–5	Hard porcelain		(14, 15, 113, 119)
4.2	Hard porcelain		(112, 123)
ca. 4.2	Berlin technical por- celain	2.5 cm cubes, determined by Rosenthal	(103)
≯5.6	Hermsdorf porcelain		(32, 119, 123)
4.8	Hermsdorf porcelain		(32, 113)
4.5 -5.5	Hermsdorf porcelain	16 mm diam., 16 mm long	(35)
2.8 - 4.6	American porcelain	_	(119)
7.43	Porcelain 152		(119)
2.7 -4.2	8 trial porcelains, cone 16, Ref. No. 26-33*	2 cm diam. cylinders (with 3.14 cm ² cross section)	(112)
2.7 -4.0	7 trial porcelains, cone		(94)
2.8 -4.5	6 American commercial porcelains, cone	Cylinders ca. 3.1 cm when just formed	(157)
0.04-0.08	6 trial earthenwares, cone 8†, Ref. No. 166-171	•	(88, 89)
5.8	Fine stoneware, DTS sill. 55		(119)

The higher values (5 and over) are probably due to the use of cylindrical instead of square test pieces. In 1920 the German Committee specified test pieces 16 mm diameter and 16 mm long.

CRUSHING STRENGTH BETWEEN SPHERES*

kg	Туре	Lit.
118-152	Berlin technical porcelain	(107, 108, 119)
76-137	7 commercial hard porcelains	(107, 108, 119)
50-94	(other than Berlin) 19 trial porcelains fired at cone 15, Ref. No. 7 to 25	(106)
96 (90 - 99)	Trial soft porcelain	(33)
526	Faience body 135	(119)
792	Fine stoneware, DTS sill. 54	(119)
982	Fine stoneware, DTS sill. 55	(119)

^{*} Gary press, v. p. 69 (34, 107, 108). The last three values are those of the breaking load—as are some of the others given in (118) and elsewhere—and are about 10 times as large as they should be. Unfortunately, the details are not available.

Modulus of Elasticity (Def. 10)
The unit is 1000 kg/mm²

Modulus	Type	Remarks	Lit.
5.4-7.1	Hermsdorf porcelain		(29, 32, 123)
7-8	Hermsdorf porcelain		(119)
8.7-7.4	Hermsdorf porcelain		(35)
8.2-8.4	Berlin technical porcelain	Bending. Av.	(107, 121,
	-	of 72 tests	123, 131)
7.1	Sèvres hard porcelain	Fired at 1370°	(62, 63)
6.7	Sèvres new porcelain	Fired at 1270°	(62, 63)
5.0	Sèvres soft porcelain	Fired at 1100°	(62, 63)
2.5	Sèvres stoneware	Fired at 1270°	(62, 63)
3.7	Fine faience	Fired at 1270°	(62, 63)

^{*} Values for firings at cones 01a and 4a are also given in this paper.

[†] The respective values in order of the composition Ref. No. 40-49 are 125.8, 126.5, 126.5, 109.7, 123, 83.7, 92.1, 126.5, 191.2, and 141.3.

[‡] Values for firings at cones 01a and 4a are also given in this paper. For other measurements of tensile strengths of trial bodies, v. (145). For influence of glase, v. p. 68.

^{*} Highest value given by body with 55 % Zettlitz kaolin and 22.5 % each of quarts sand and feldspar. Only a little inferior were the values for bodies having 15 % feldspar and 30 % quarts, and 30 % feldspar and 15 % quarts, respectively.

† Value for firings at cones 01a and 4a are also given in this paper.

MODULUS OF ELASTICITY (DEF. 10).—(Continued)

Modulus	Type	Remarks	Lit.
8.4	Rosenthal insulator porce- lain G and H	Bending	(123)
7.8	Rosenthal insulator porce- lain G and H	Bending	(119)
9.1	Rosenthal table porcelain	Bending	(123)
8.1	Rosenthal table porcelain	Bending	(119)
8.6	Rosenthal trial porcelain 6292	Bending	(123)
14.9	Rosenthal trial stoneware 6412	Bending	(123)
8.9	Rosenthal laboratory por- celain		(119)
6.8	Rosenthal Seger porcelain 6833		(119)
6.5	Chinese porcelain		(119)
2.4	Faience body 135		(119)
5.1	Fine stoneware DTS sill.		(119)
6.5	Fine stoneware DTS sill. 55		(119)
151	Trial stoneware 6412		(119)

The value of the modulus changes (usually inversely) with the load. It depends less upon chemical composition than upon conditions of manufacture. It is substantially the same for tension and compression.

MODULUS OF ELASTICITY IN SHEAR (DEF. 11)

kg/cm²	Туре	Lit.
430	Trial Seger porcelain Body 6833 (Rosen-	
	thal)*	(113)
481	Rosenthal insulator Body G	(113, 119)
500	Rosenthal insulator Body H	(113, 119)
500	Rosenthal laboratory porcelain	(113, 119)
480-600	Hermsdorf porcelain	(119)
226	Fine stoneware 238	(119)
323	Fine stoneware DTS sill. 54	(119)
169	Faience Body 135	(119)
232	Special hard earthenware 237	(119)
246	Special body 240	(119)

^{*} Square cross section.

FIXED IMPACT AND BENDING SHOCK (DEF. 16)
Pendulum-hammer method (34, 108, 119)

cm-kg/cm ²	Type	Lit.
2.0	Berlin technical porcelain	(107, 108, 119, 121)
1.75-1.95	7 commercial porcelains (other than Berlin)	(107, 108, 119)
1.9	Hermsdorf porcelain	(119)
1.9-2.3	Hermsdorf porcelain	(35)
0.90	Rosenthal insulator porcelain G	(113, 119, 123)
0.95	Rosenthal insulator porcelain H	(113, 119, 123)
1.36	Rosenthal table porcelain	(113, 119, 123)
1.23	Rosenthal laboratory porcelain	(113, 119, 123)
0.08	Rosenthal trial hard porcelain 6292 (copied from American insulator porcelain body)	(113, 119, 123)
1.0	Rosenthal Seger porcelain 6833	(113, 119, 123)
2.4	Rosenthal trial porcelain 6412	(113, 119, 123)
1.61*	Rosenthal trial porcelain 6048	(113, 123)
1.76-1.95	19 trial porcelains fired at cone 15, Ref. Nos. 7-25	(106)

FIXED IMPACT AND BENDING SHOCK (Def. 16).—(Continued)

cm-kg/cm ²	Type	Lit.
1.23-1.8	8 trial porcelains, Ref. No. 15 considered the best	(138)
1.68-1.92	Soft porcelain, cone 8-9	(33)
1.6	Faience body 135	(119)
2.0	Hard earthenware 236	(119)
1.5	Hard earthenware 237	(119)
1.7	Earthenware 240	(119)
1.7	Fine stoneware 238	(119)
1.8	Fine stoneware DTS sill. 54	(119)
1.7	Fine stoneware DTS sill. 55	(119)
1.3-1.9	Stonewares Z58, Z59, Z60, Z61	(121)

* In (123) this value is given as 1.38, but the 1.61 occurs twice in (113). See also (125) for a different impact test.

Successive Increasing Impact Shocks Marten's method

112 cm \times kg/cm³ for a table porcelain (113); see also p. 70

RESISTANCE TO ABRASION*
Gary sand blast test, 2 min at 3 atm

Туре	Loss in cm ³	Lit.
Stoneware 6412 (Rosenthal)	1.7	(113, 123)
Faience body 135	7.2	(119)
Special hard earthenware 236	5.8	(119)
Special hard earthenware 237		(119)
Fine stoneware 238	2.4	(119)

* In (123, p. 57) Singer quotes from (32) results for hardness obtained by Linck with the use of the sclerometer, and the corresponding values according to the hardness scale of Mohs, as follows:

	Sclerometer number	Number in Mohs scale
Easy baked porcelain	10-12	2
Hard baked porcelain	22-25	2.5
Porcelain fired to maturity, unglazed	550-650	7
Surface layer of glase	950-1000	8
Glaze below the surface	350-400	6.3

TOUGHNESS AND HARDNESS BY THE RATTLER TEST

	OUGHNE.	S AND L	IANDNES	B DI IN	E ILAII	LER IES	<u> </u>
weig	ess of that by the test	Туре	Lit.	weigh	oss of ht by er test	Туре	Lit.
15 min	60 min	Ref. No.		15 min	60 min	Ref. No.	
1.93	4.62	92	(76)	4.42	8.21	70	(77)
0.68	1.95	93	(76)	2.33	5.09	71	(77)
1.57	4.33	94	(76)	2.30	4.39	72	(77)
0.30	0.88	95	(76)	1.96	4.12	73	(77)
0.58	1.97	96	(76)	5.66	10.23	74	(77)
1.17	3.31	97	(76)	5.19	8.22	75	(77)
1.73	3.46	98	(76)	2.51	5.45	76	(77)
1.95	3.70	99	(76)	2.82	5.65	77	(77)
1.96	4.95	100	(76)	5.02	8.51	79	(77)
5.36	13.94	59	(77)	4.33	8.02	80	(77)
6.10	15.36	60	(77)	3.38	6.34	81	(77)
5.18	14.73	61	(77)	2.71	4.80	82	(77)
4.77	9.32	64	(77)	2.19	4.78	83	(77)
1.06	5.54	65	(77)	1.98	4.17	84	(77)
4.03	7.43	69	(77)				
% los	s of weig	ht by	Type	% los	s of wei	ght by	Type
r	attler tes	st	(94)	r	2.33 5.09 71 2.30 4.39 72 1.96 4.12 73 5.66 10.23 74 5.19 8.22 75 2.51 5.45 76 2.82 5.65 77 5.02 8.51 79 4.33 8.02 80 3.38 6.34 81 2.71 4.80 82 2.19 4.78 83 1.98 4.17 84		(94)
15 min	30 min	180 min	Ref. No.	15 min	30 min	180 min	Ref. No.
4.67	6.38	11.25	136	3.66	5.20	10.70	140
4.09	5.60	11.40	137	3.60	5.15	9.80	141
4.47	5.98	12.80	138	3.05	4.12	10.30	142
2.95	4.60	9.42	139		<u> </u>		

The 15 min test serves to indicate the toughness or resistance to chipping.

The 180 min test indicates hardness after edges and corners have been removed.

These rattler tests were made in a ball mill 934 in. diameter and 13 in. long inside, making 40 revolutions per minute. The charge consisted of 61 nearly equal pebbles, weighing 2234 lb. For each test 13 specimens of porcelain were used, which were weighed at the proper time intervals. For a standard test it is suggested that 10 kg of pebbles might be used along with 12 specimens. The above results of tests are comparable, as the same conditions were maintained throughout.

Further data relating to the rattler test with trial bodies will be found in (53, 65, 128, 145).

SOFTENING POINT AND CONE MELTING POINT

°C	Type and remarks	Lit.
1500	Normal	(122)
1700	Special	(122)
1710	Rosenthal porcelain melts	(119, 120, 123)
1390	Japanese table porcelain, Ref. No. 133	(134)
1690	Porcelain, Ref. No. 134 melts	(90)
1670	Porcelain, Ref. No. 135 melts	(90)
	Berlin porcelain	
900-1000	Appreciable softening begins	(103, 123)
ca. 1680	Melting takes place	(103, 119, 123)
ca.950	Berlin glaze softens	(103, 123)
Cone	_	
25	Berlin porcelain begins to deform	(72)
25	Ref. No. 58 begins to deform	(72)

Softening point varies with size and shape of test piece and also with time of heating, etc.

In spite of the softening of Berlin porcelain, perceptible far below 1000°C according to Rieke (103, 123), porcelain tubes, crucibles, etc., if suitably protected and not too severely loaded, can be safely used at temperatures up to 1400° or even higher. For Rosenthal porcelain it is claimed that when very strongly heated it can be worked like glass to make laboratory apparatus, see (120).

Rosenthal (112) heated one side of thick rods of different hard porcelains in an electric arc-light. He found that bodies rich in feldspar immediately split off in numerous small pieces, bodies rich in quartz and clay substance cracked off more slowly and in larger pieces, whilst specially resistant bodies merely melted at the heated places.

COEFFICIENT OF THERMAL EXPANSION

10°Δl	Туре	Range °C	Lit.
3.43)	23-200	(29, 101, 102,
3.53	Berlin technical porcelain, un-	23-400	103, 119) (101, 102, 103, 119)
3.55	glazed.	23-600	(101, 102, 103)
3.56		23-700	(29, 101, 102,
1.77		-191 to 16	103) (49, 101, 102, 103, 123)
3.36		16-250	(49, 101, 102, 103, 123)
3.64		16-500	(49, 101, 102, 103, 123)
3.77		16-750	(49)
4.34	Berlin porcelain	16-1000	(49, 101, 102,
		}	103, 119, 123)
3.16		0- 250	(50)
3.50		0-500	(50)
3.60		0-750	(50)
4.09		0-1000	(50)
ca. 4.4		>1000	(52)
3.76		0-625	(51)

COEFFICIENT OF THERMAL EXPANSION.—(Continued)

10°Δl	Туре	Range °C	Lit.
ca. 1.79	1	(- 191 to 16	(117, 118)
2.94		14-56	(117, 118)
3.08		1 ((117, 118)
2.99		14-100 0-100	(14, 15, 16, 17)
3, 12	Berlin porcelain	(-100	(100)
1		11	(119, 121)
3.8			
3.03-4.31		Various up to	(119)
	YY 4	(1000*	(110)
4.25	Hermsdorf porcelain		(119)
3.80	Seger porcelain 6833	20-100	(123)
3.52	Rosenthal laboratory porcelain	20-100	(123)
3.60-4.79	Rosenthal elec. porcelain	0-100	(119)
2.69	Meissen porcelain	0-99	(101, 102, 123,
- · · · ·			153)
5.4		0-1106	(115)*
5.3		0-1298	(20, 21, 115)
5.3		0-1457	(20, 21, 115)
6.8		0-1524	(20, 21, 115)
2.82-3.81		0-83	(14, 15, 20, 21)
2.522	i	0	(101, 102, 123,
ļ]		135, 136)
2.819]	20	(135, 136)
3.166	Bayeux porcelain	40	(135, 136 ₎
3.265	Daycux porcesain	50	(101, 102, 123,
İ			135, 136)
3.414		60	(135, 136)
3.711		80	(135, 136)
4.008		100	(101, 102, 123,
			135, 136)
4.305		120	(101, 102, 123,
		120	135, 136)
3.53-4.07		100-600	(1, 2, 3, 119)
0.00 1.01)	Ref. No. 16, fired at:	(100-000	(-, -, -,,
7.76	1000°C		(110)
5.71	1100°C		(110)
5.21	1250°C		(110)
			(110)
3.97	Cone 15		
3.74	Cone 16		(110)
3.72-3.60	Fired more than once		(110)
	Sèvres new porcelain fired at:		
5.23	1270°		(20, 21, 25, 26)
5.01	1370°	i	(20, 21, 25, 26)
2.99	1500°		(20, 21, 25, 26)
	Sèvres hard porcelain:	,	
5.1		0-200	(20, 21)
6.0	Fired at 1000°	0-400	(20, 21)
6.1		0-600	(20, 21)
5.5		0-800	(20, 21)
3.9		0-200	(20, 21)
4.3	Fired at 1370°	0-400	(20, 21)
4.5	1010	0-600	(20, 21)
4.7		0-800	(20, 21)
13.5	Soft fined at 11000	∫ 0–200	(20, 21)
14.3	Soft, fired at 1100°	0-400	(20, 21)
5.5		0-200	(20, 21)
6.5	New, fired at 1000°	0-400	(20, 21)
8.5		0-600	(20, 21)
6.4		0-200	(20, 21)
7.0	N 6 1	0-400	(20, 21)
7.5	New, fired at 1270° (normal).	0-600	(20, 21)
6.9		0-800	(20, 21)
4.5		0-200	(20, 21)
4.7		0-100	(20, 21)
4.8	New, fired at 1370°	0-600	(20, 21)
4.9		0-800	(20, 21)
/	Sèvres stoneware:	, 5 500	/
4.5	SULLED BY ONC WALL.	(0-200	(20, 21)
5.0		0-200	(20, 21)
> 1	Fired at 1000°	(' ' '	(20, 21)
6.6		0-600	
4.8		0-800	(20, 21)
6.0		0-200	(20, 21)
7.1	Fired at 1270° (normal)	0-400	(20, 21)
8.6	, , , , , , , , , , , , , , , , , , , ,	0-600	(20, 21)
6.8	1	0-800	(20, 21)
9.0		0-200	(20, 21)
8.3	Fired at 1370°	{ 0−400	(20, 21)
7.7		0-600	(20, 21)
* Davilla	d Troost made more than 200 ex	norimente != -!!	
· Devine an	u 1100st made more (nam 200 ex	periments in all.	

COEFFICIENT OF THERMAL EXPANSION.—(Continued)

10°Δl	Туре	Range °C	Lit.
7.2	Fired at 1370°	0-800	(20, 21)
3.8	i	0-200	(20, 21)
4.2		0-400	(20, 21)
4.5	Limoges porcelain fired at 1370°	0-600	(20, 21)
4.5		0-800	(20, 21)
5.0)		0-200	(20, 21)
6.0	Fine faience (Choisy) fired at	0-400	(20, 21)
7.8	1200°	0-600	(20, 21)
6.3		0-800	(20, 21)
8.1	1	(0−300	(22)
7.2	Body of composition, Al ₂ O ₂	0-500	(22)
6.8	2SiO ₂ ,† fired at 1250°.	0-700	(22)
6.4 J		0-900	(22)
7.0		(0−300	(22)
8.2	Body of composition, Al ₂ O ₂ ,-	0-500	(22)
9.8	108iO ₂ ,† fired at 1250°.	0-700	(22)
9.3	1	0-900	(22)
2.9	Ref. No. 116)	(127)
3.4	Ref. No. 117		(127)
3.1	Ref. No. 118		(127)
3.2	Ref. No. 119	Room tem-	(127)
2.9	Ref. No. 120	perature to	(127)
3.3	Ref. No. 121	200°	(127)
3.5	Ref. No. 122	200	(127)
3.2	Ref. No. 123		(127)
4.1	Ref. No. 124		(127)
3.7	Ref. No. 125	J	(127)

COEFFICIENT OF THERMAL EXPANSION.—(Continued)

10°Δl lΔt	Туре	Range °C	Lit.
3.3	Ref. No. 126	1	(127)
3.4	Ref. No. 127		(127)
4.7	Ref. No. 128	Room tem-	(127)
3.7	Ref. No. 129	perature to	(127)
6.1	Ref. No. 130	200°	(127)
6.2	Ref. No. 131		(127)
4.7	Ref. No. 132]	(127)
5.4	Special hard earthenware 236.	'	(119)
7.1	Special hard earthenware 237		(119)
5.7	Fine stoneware 238		(119)
4.9	Fine stoneware DTS sill. 55		(119, 121)
4.3-4.9	4 stonewares (58-61)		(119)
	Earthenwares fired at cone 9		1
ca. 10.3	Ref. No. 172, 173	22-150	(101, 102)
12.2	Ref. No. 172	220-340	(101, 102)
10.8	Ref. No. 173	220-340	(101, 102)

For other values for Berlin porcelain, v. (119, p. 428). For expansion coefficients of bodies with calcined clay replaced by sillimanite (mullite) or other special component, v. p. 70, and also (93, 127).

† Chantepie records results obtained with these two bodies fired at 1370°, and also at 1000° in the case of the former; also with bodies obtained by admixture of considerable percentages of iron oxide, feldapar, or chalk respectively with the former, and of lime or magnesia respectively with the latter. Coefficients for the range 200°-400° are also given in (127). Other thermal expansion coefficients, mainly of trial bodies, will be found in (84, 85, 146, 149). For coefficients of thermal expansion of glazes, v. (20, 21, 25, 26, 109).

HEAT CAPACITY (SPECIFIC HEAT)

g-cal/g°C	Range	Type	Cone	Lit.	g-cal/g°C	Range	Туре	Cone	Lit.
0.258	15-912	Porcelain		(40)	0.212	20-200	Marquardt body	15	(130)
0.256	15-958	Porcelain		(40)	0.229	20-400	Marquardt body	15	(130)
0.254	15-1075	Porcelain	}	(40)	0.190		Porcelain, Japanese table		(134)*
0.202	20-210	Porcelain, Berlin technical	15	(103, 130)	0.17		Porcelain, hard		(32)
0.221	20-400	Porcelain, Berlin technical	15	(103, 130)	0.25		Porcelain, Rosenthal	}	(123, 130)†
0.212	20-200	Marquardt body	09	(130)	0.2		Porcelain, Hermsdorf		(119)
0.229	20-400	Marquardt body	09	(130)	0.185-0.183	7,17-100	Stonewares		(121)

^{*} A "brown porcelain" (Japanese) used for making bottles with specific heat reported as 0.171, is evidently a stoneware.

Average Specific Heat in Mean Calories between 20°C and

•C	100	200	300	400	500	600	700	800	900	1000	1100	Lit.
Berlin porcelain, green *	0.185	0.187	0.197	0.213	0.228							(18, 19)
Berlin porcelain, fired	0.189	0.195	0.203	0.212	0.222	0.232	0.245	0.264	0.287	0.304	0.337	(18, 19)
Berlin porcelain, glaze, green	0.170	0.174	0.183	0.193	0.208	İ	ĺ			ĺ		(18, 19)
Berlin porcelain, glaze, fired	0.179	0.181	0.189	0.197	0.199	0.202	0.204	0.211	0.218	0.230	0.245	(18, 19)
Earthenware, green †	0.181	0.183	0.192	0.201	0.215							(18, 19)
Earthenware, fired	0.186	0.192	0.203	0.212	0.223	0.234	0.275	0.286	0.296	0.307	0.324	(18, 19)

^{*}For composition, see Ref. No. 6, fired at cone 16 (1460°C).

THERMAL CONDUCTIVITY

Joule cm ⁻² sec ⁻¹	cal cm ⁻² sec ⁻¹	BTU ₆₀ ft. ⁻² sec ⁻¹	Type and remarks	Lit.
(°C, cm ⁻¹) ⁻¹	(°C, cm ⁻¹) ⁻¹	(°F, in1)-1		
0.0104	0.00248 (95°)	0.00200	Porcelain	(64, 119)
0.0185	0.00442	0.00356	Japanese table porcelain	(119, 134
0.0080	0.0019 (15°-20°)	0.00153	Rosenthal porcelain	(123)
ca. 0.00837	ca. 0.002	ca. 0.00161	Hermsdorf porcelain	(32)
0.00837-0.0167	0.002 -0.004	0.00161-0.00322	Porcelain	(29, 103)
0.0163 -0.0197	0.0039-0.0047 (165°-1055°)	0.00314-0.00379	Sèvres porcelain	(155, 156
0 0121 -0.0222	0.0029-0.0053 (70°-1000°)	0.00234-0.00427	Stoneware	(155, 156
0.0113	0.0027	0.00218	Fine stoneware (DTS sill.)	(121)
0.0121	0.0029	0.00234	Stoneware 58	(121)
0.0105	0.0025	0.00202	Stoneware 59, 60, 61	(121)

[†] According to Dolasalek, the heat capacity per cm³ is 0.575, the specific gravity being 2.3.

[†] For composition, see Ref. No. 158, fired at cone 9.

RESISTANCE TO THERMAL SHOCK

No standard methods of testing have been adopted, and the recorded data therefore are not comparable; see (10, 11, 72, 74, 103, 120, 137, 143, 147, 148, 154).

Specific Resistivity (144) Unit: 1012 ohm-cm

Temp.,					Ref	. No.				
°C	40	41	42	43	44	45	46	47	48	49
20	165	129	109	66	85	109	53	109	109	355
30	80	62	52	31	40	52	25	52	52	173
40	39	30	25	15	20	25	13	25	25	86
50	19	15	13	8	10	13	6	13	11	42
60	9.5	6.3	4.8	3.8	4.2	5.4	2.1	6.3	4.2	21
70	4.8	2.7	1.9	1.7	1.9	2.4	0.9	3.2	1.8	10
80	2.0	1.2	0.8	0.8	0.8	1.0	0.4	1.3	0.8	3.8
90	1.0	0.5	0.3	0.3	0.3	0.5	0.2	0.6	0.3	1.9
100	0.44	0.21	0.17	0.15	0.14	0.18	0.07	0.25	0.13	0.84
120	0.11	0.05	0.04	0.04	0.03	0.04	0.02	0.06	0.03	0.18
140	0.029	0.013	0.011	0.01	0.008	0.011	0.005	0.017	0.008	0.044
160	0.0083	0.0039	0.0032	0.003	1 ¹ 0.0033	0.0036	0.001	10.0056	0.002	10.0136
180	0.0028	0.0014	0.0011	0.001	10.001	0.0012	0.000	50.002	0.000	0.0043
200	0.0010	10.000e	0.0004	0.000	10.000	0.000	n . 000:	20.0008	30.000	30.0016
				Unit:	10º ol	ım-cm				
220	0.43	0.21	0.18	0.18	0.18	0.21	0.09	0.31	0.13	0.66

VOLUME RESISTIVITY Specific resist. = $A \times 10^{12}$ ohm-cm

0.07

0.08 0.051 0.037 0.035 0.035 0.041 0.021 0.073 0.033 0.14 0.046 0.029 0.021 0.018 0.021 0.023 0.012 0.041 0.02 0.073

0.026 0.016 0.013 0.010 0.012 0.015 0.007 0.033 0.013 0.050

0.07

0.04

0.14 0.06

0.078

0.08 0.08

0.20

240

260

280

0.10

Temp.,	(A)	Type	Lit.
50	2150	Porcelain	(31)
100	16.1	Porcelain	(31)
150	0.416	Porcelain	(31)
200	0.134	Porcelain	(31)
210	0.00651	Porcelain	(31)
ca. 1000	0.033	Porcelain	(75)
727	0.017	Berlin porcelain	(78, 103)
20	129	Coburg porcelain	(27, 28)*
51	281	Coburg porcelain	(27, 28)
97.5	40	Coburg porcelain	(27, 28)
160.5	1.72	Coburg porcelain	(27, 28)
189	0.385	Coburg porcelain	(27, 28)
400	20		(36)
600	3.125		(36)
800	1.818 }	Berlin porcelain, glazed	(36)
1000	1.000		(36)
1100	0.769		(36)
400	20		(36)
600	5.556		(36)
800	2.500}	Meissen porcelain, glazed	(36)
1000	1.064		(36)
1100	0.787		(36)
22	300 (Chemical porcelain, unglazed	∫ (24)
30	22 0 ∫		(24)
2.1	141	Hermsdorf porcelain	(43, 44)
20.5	35.5	Hermsdorf porcelain	(43, 44)
50.4	2.64	Hermsdorf porcelain	(43, 44)
59.1	1.08	Hermsdorf porcelain	(43, 44)
81.9	0.15	Hermsdorf porcelain	(43, 44)

For results of resistivity tests on a typical porcelain body (fired up to 1400°C) at temperatures ranging from 860°-1315°, v. (55).

TEMPERATURE COEFFICIENTS OF ELECTRICAL RESISTANCE Berlin porcelain (124)

Temp.,	$\frac{1}{R_t} \frac{\mathrm{d}R}{\mathrm{d}t}$	Temp., °C	$\frac{1}{R_t}\frac{\mathrm{d}R}{\mathrm{d}t}$	Temp., °C	$\frac{1}{R_t} \frac{\mathrm{d}R}{\mathrm{d}t}$
575	-16.00	725	-2.00	875	-0.35
600	- 9.80	750	-1.60	900	-0.30
625	- 6.20	775	-1.00	925	-0.25
650	- 4.60	800	-0.70	950	-0.20
675	- 3.70	825	-0.50	975	-0.16
700	- 2.80	850	-0.40	1000	-0.12

Effect of Moisture on Electrical Resistance of Powdered Porcelain (47)

Glazed	porcelain	Unglazed porcelain		
Moisture, %	Resistance of a cube of 1 cm edge, kilo-ohm	Moisture, %	Resistance of a cube of 1 cm edge, kilo-ohm	
0.43	121 700	1.14	4 521	
1.58	12 160	1.54	3 292	
1.90	5 953	6.12	1 241	
3.34	2 382	9.39	673.8	
5.48	563.2	14.1	278.3	
8.08	320.7	19.2	40.30	
10.9	150.0	23.8	13.78	
15.3	39.40	27.3	3.822	
19.0	19.32			

SURFACE RESISTIVITY

This varies enormously with humidity of the atmosphere and with the nature of the surface of the film, see (29, 119).

DIELECTRIC CONSTANT

_	Diabbeini	C CONDIANI	
Dielec- tric constant	Туре	Remarks	Lit.
5.73	Berlin hard porcelain	Ref. No. 6 for composition, sp. gr., 2.38	(129, 103, 119)
6.61	Berlin Seger porce- lain	Ref. No. 34, fired at cone 9, sp. gr., 2.40	(¹⁰³ , 129)
6.84	Berlin figure porce- lain	Ref. No. 35, sp. gr., 2.41	(103, 129)
4.5-5.3	Hermsdorf porcelain		(29, 32)
5–6	Hermsdorf porcelain		(119)
5.8	Hard porcelain	Ref. No. 16, same value whether pot- ash feldspar or soda feldspar used	(37, 114)
4.38	Baked porcelain*	"Doit être un peu fort"	(23)
8.95	Hermsdorf porcelain at 20°C		(43, 44)
5.17	Fine stoneware, DTS sill. 55		(119)

^{*} The value is low probably because the test piece was "une plaque de porcelaine degourdie" or product of the low biscuit firing, and therefore would be very porous.

^{*} Dietrich found no essential difference between glazed and unglazed porcelain.

DIELECTRIC STRENGTH

 Shape of the electrodes not specified (except in (112)). Voltage increased 0.5 ky per sec, starting at 20 ky under oil (138)

Volts per mm	Туре	Remarks	Lit.
13 200 13 800 14 000 13 200 12 400 12 800 13 200 12 400	Ref. No. 26 Ref. No. 27 Ref. No. 28 Ref. No. 29 Ref. No. 30 Ref. No. 31 Ref. No. 32 Ref. No. 33	Test pieces, 10 cm in diam. and about 2.5 mm thick, with rounded edges, under oil. Fired at cone 16	(112)

 Electrodes cup-shaped. Voltage increased 250 volts per sec, starting at 50% of the estimated puncture voltage (144)

Sour Ca	ing at 00 // 01 t	no commuted panetare veriage ()
11 150?	Ref. No. 40	Test cups 65 and 69 mm diam. at bottom
13 300	Ref. No. 41	and top respectively and 65 mm in
22 650	Ref. No. 42	height. Minimum thickness 3 mm
32 300	Ref. No. 43	(middle of bottom). Firing temp.
14 300	Ref. No. 44	resp. cones 10+, 10, 9, 8, 9+, 9, 8, 7,
27 750	Ref. No. 45	9, 7. The figures in each case repre-
23 000	Ref. No. 46	sent the peak value of the puncture
16 300	Ref. No. 47	pressure, which was found to be 1.46
18 400	Ref. No. 48	$\times RMS$ value of puncture pressure
15 600	Ref. No. 49	

EFFECT OF TEMPERATURE AND OF DIFFERENT FIRING TEMPERATURES

Volts per mm	Temp.	Туре	Remarks	Lit.
11 380 375	1 >	Composition 49% mixed clays, 16% fiint, 35% feld-spar. Fired at cone 9 (all American materials)	Tested in elec. furnace	(48)
17 700 16 600 7 200 790	100 200	Ref. No. 88		
17 450 16 550 6 560 920	100	Ref. No. 86	Test pieces were small cups (jiggered) 5½ in. high, 3 in. diam., 0.15	
16 800 16 250 7 750 1 840	100 200	Ref. No. 74	in. thick. At 325° all four bodies became conductors, though still offering high resistance	(152)
17 600 16 400 6 950 1 310	25 100 200	Ref. No. 76		
13 550 13 470			Fired quickly to cone 10; cooled slowly Fired quickly to cone 13; cooled to cone 02 in. one hour; then slowly	
14 660		Composition 59% mixed clays, 18% flint, 23% feldspar	Fired quickly to cone 10; then slowly to cone 12; quickly to cone 17; cooled slowly	(*6)
12 850			Fired quickly to cone 10; then slowly to cone 13 and fired 20 hr; cooled quickly to cone	
13 560 14 820 14 100 13 860	<u>}</u>	Composition as above but with soda-feldspar instead of potash-feldspar	2 and then slowly Fired like the foregoing Other bodies of different compositions gave sim- ilar results	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Effect of Temperature and of Different Firing Temperatures.—(Continued)

1	Volts per mm		э.	Туре		Remarks	Lit.
18 5 1 1		104 150 213		Ref. No. 42	{	Test pieces were the cups described above	} (144)

^{*} After prolonged application of pressure. Two curves are given (30) showing the current-time effects of the application of a potential of 584 volts (from a storage battery) to porcelain test-pieces heated to 530°. For other tests of dielectric strength of various trial bodies refer to (6, 71, 148).

VELOCITY OF SOUND

Veloc- ity km/sec	Туре	Lit.	Veloc- ity km/sec	Туре	Lit.
5.93	Rosenthal labora- tory porcelain	(113, 123)	4.9-5.2	Porcelain in gen- eral	(32, 113, 123)
6.68	Rosenthal special trial porcelain 6048	(113, 123)	3.6	Bad porcelain	(32, 113, 123)
5.05	Hermsdorf hard porcelain	(29, 113)			

The velocity of transmission of sound vibrations depends on the modulus of elasticity of the material. Hence the tone given by porcelain when struck is a function of the velocity of sound, and from such tones may be obtained indications of the quality of the porcelain.

TRANSLUCENCY OF PORCELAIN

For methods and results, v. (65, 74, 77, 81, 133, 151).

LITERATURE

(For a key to the periodicals see end of volume)

- Bedford, 67, 17: 148; 99. (2) Bedford, 133, 1899: 245. (3) Bedford, 5, 49: 90; 00. (4) Bleininger and Kinnison, 81, 17: 130; 15. (5) Bleininger and McDanel, 38, 3: 134; 20. (6) Bleininger and Stull, 81, 12: 628; 10. (7) Bleininger and Teetor, 81, 15: 328; 13. (8) Boudouard, 106, 7: 691; 20. (6) Boudouard, 378, 6: 583; 21.
- Boudouard, 102, 24: 79; 21. (11) Boudouard, 103, 29: 496; 21. (12) Bowen and Greig, 38, 7: 238; 24. (13) Brongniart, Traités des Arts Céramiques, (Paris, Bechet) 1844. (14) Chappuis, 3, 50: 433; 00. (15) Chappuis, 67, 17: 355; 01. (16) Chappuis, 67, 18: 89; 01. (17) Chappuis and Harker, 238, 12: 1902. (18) Cohn, 104, 4: 55; 23. (19) Cohn, 38, 7: 359, 475, 548; 24.
- (20) Coupeau, 420, 1898: 1274. (21) Coupeau, B75, 455, 494; 06. (22) Chantepie, 420, 1900: 39. B75, 514; 06. (23) Curie, 6, 17: 385; 89. (24) Curtis, 31, No. 224: 14. (25) Damour, 420, 1879: 191. (26) Damour, B75, 393; 06. (27) Dietrich, Diss. Göttingen, 1909. (28) Dietrich, 65, 11: 187; 10. (29) Doelter, B10.
- (30) Earhart, 419, 16: 81; 16. (31) Foussereau, 6, 5: 241; 85. (22) Friese, B12. (33) Funk, 104, 3: 270; 22. (34) Gary, 100, 56: 429; 23. (25) Gerold, 103, 32: 225; 24. (36) Goodwin and Mailey, 2, 23: 22; 06. (37) Grüneisen and Giebe, 88, 14: 921; 12. (28) Haber, 93, 57: 154; 08. (39) Haber, 100, 41: 225; 08.
- (40) Harker, 5, 10: 430; 05.
 (41) Harkort, 81, 15: 368; 13.
 (42) Harkort and Scherbius, 100, 52: 297, 309, 321; 19.
 (43) Haworth, Diss., Zurich, 1906.
 (44) Haworth, 5, 81: 221; 08.
 (45) Hecht, 420, 1898: 1321.
 (46) Hecht, B75, 503, 505; 06.
 (47) Hecht and Ashley, 81, 13: 259; 11.
 (48) Henderson and Weimer, 81, 13: 469; 11.
 (49) Henning, 8, 22: 631; 67.
- (50) Holborn and Day, 8, 2: 505; 00.
 (51) Holborn and Grüneisen, 3, 6: 136; 01.
 (52) Holborn and Wien, 8, 47: 107; 92.
 (53) Hope, 81, 11: 494; 09.
 (54) Howat, 81, 18: 268; 16.
 (55) Kinnison, 81, 17: 421; 15.
 (56) Klein, 82, No. 80: 16.
 (57) Klein, 81, 18: 377; 16.
 (58) Kohl, 104, 4: 137; 24.
- (60) Le Chatelier, 420, 1895: 181. (61) Le Chatelier, B75, 388; 06. (62)
 Le Chatelier, 420, 1898: 1317. (62) Le Chatelier, B75, 497; 06. (64)
 Lees and Chorlton, 5, 41: 495; 96. (65) Lin, 38, 2: 622; 19. (66) Lunelund, 60, 55A: No. 13; 13. (67) Mellor, 82, 5: 75; 06. (68) Mellor, 54, 26: 375; 07. (69) Mellor, 418, 32: 833; 07.
- (70) Mellor, 82, 14: 176; 15.
 (71) Minneman, 81, 13: 704; 11.
 (72) Montgomery and Babcock, 81, 18: 88; 16.
 (73) Muller, 124, 1: 219; 13.
 (74) Murray, 81, 13: 585; 11.
 (75) Nernst and Reynolds, 188, 1900: 328, (76) Ogden, 81, 7: 370; 05.
 (77) Ogden, 81, 13: 395; 11.
 (78) Pirani

- and Siemens, 9, 15: 969; 09. (79) Plenske, 100, 41: 256, 271, 287, 301, 326; 08.
- (**) Potts and Knollman, \$1, 15: 285; 13.
 (**) Priest, \$1, 17: 150; 15.
 (**) Purdy, \$1, 18: 86; 11.
 (**) Purdy, \$1, 18: 550; 11.
 (**) Purdy, \$1, 18: 499; 13.
 (**) Purdy and Potts, \$1, 13: 431; 11.
 (**) Radcliffe, \$1, 14: 575; 12.
 (**) Rebuffat, \$490, 1906: 222.
 (**) Regout, \$103, 30: 131; 22.
- (90) Reichau, 82, 23: 145; 24. (91) Reichau, 82, 24: 279; 24. (92) Reichau, 103, 22: 531; 24. (93) Riddle, 33, 2: 804; 19. (94) Riddle, 33, 2: 812; 19. (98) Riddle and Laird, 38, 3: 835; 22. (96) Riddle and Laird, 38, 3: 500; 22. (97) Riddle and Laird, 66, 21: 1050; 21. (98) Riddle and McDanel, 38, 1: 606; 18. (99) Rieke, B74.
- 38, 1: 006; 18. (**) Rieke, B/4. (100) Rieke, 100, 45: 225; 12. (101) Rieke, 103, 22: 143, 155; 14. (102) Rieke, 124, 2: 125; 14. (103) Rieke, 92, 28: 374; 15. (104) Rieke, 103, 25: 259, 263, 267; 17. (105) Rieke, 100, 51: 95, 135; 18. (106) Rieke, 104, 3: 187; 22. (107) Rieke, 92, 37: 190; 24. (108) Rieke and Gary, 104, 3: 5; 22. (109) Rieke and Steger, 100, 47: 457, 577; 14.
- (110) Rieke and Steger, 100, 48: 297; 15.
 (111) Rieke and Steger, 103, 27: 193, 203; 19.
 (112) Rosenthal, 100, 48: 445; 15.
 (113) Rosenthal and Singer, 103, 29: 81, 93; 21.
 (114) Roth, 100, 58: 53; 23.
 (115) Sainte Claire-Deville and Troost, 54, 59: 162; 64.
 (118) Scheel, 89, 4: 35; 04.
 (117) Scheel, 243, 28: 106; 08.
 (118) Scheel, 96, 5: 167; 21.
 (119) Singer, B4.

- (120) Singer, 92, 31: 221, 227, 229; 18. (121) Singer, 104, 4: 49; 23. 4: 164; 24. (122) Singer, 112, 335: 96; 20. (123) Singer and Rosenthal, 104, 1, No. 3: 47; 20. (124) Somerville, 2, 31: 261; 10. (125) Sortwell, 38, 5: 276; 22. (126) Sortwell, 32, No. 196: 21. (127) Souder and Hidnert, 31, No. 352: 19. (128) Staley and Hromatko, 38, 2: 227; 19. (129) Starke, 8, 60: 629; 97.
- (130) Steger, 124, 2: 51; 14. (131) Steger, 103, 27; 113; 19. (132) Steger, 103, 27; 313; 19. (133) Steger, 104, 2: 9; 21. 3: 50; 22. (134) Tadokoro, 159, 10: 339; 21. (135) Tutton, 3, 3: 631; 02. (136) Tutton, 67, 18: 182; 02. (137) Twells and Lin, 38, 4: 195; 21. (138) Urban, 103, 32: 217; 24. (138) Urban, 103, 32: 229; 24.
- (140) Walker, 81, 18: 444; 16. (141) Ward, 81, 17: 431; 15. (142) Washburn and Bunting, 38, 5: 527; 22. (143) Waters, 32, No. 105: 17. (144) Watkin, 82, 23: 185; 24. (145) Watts, 81, 4: 86; 02. 9: 600; 07. (146) Watts, 81, 11: 84; 09. (147) Watts, 81, 10: 265; 08. (148) Watts, 81, 11: 179; 09. (149) Watts, 81, 13: 406; 11.
- (150) Watts, 81, 11: 185; 09. (151) Weelans and Ashley, 81, 13: 102; 11.
 (152) Weimer and Dun, 81, 14: 280; 12. (153) Weinhold, 8, 149: 186; 73.
 (154) White, 82, 21: 320; 22. (155) Wologdine, 420, 1909: 879. (156) Wologdine and Queneau, 53, 7: 383, 433; 09. (157) Wright and Sewell, 33, 2: 282; 19. (158) Zoellner, 100, 41: 471, 533; 08. (159) Zoellner, Diss. Berlin, 1908.

REFRACTORY MATERIALS

GORDON B. WILKES

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Typical compositions.	Compositions typiques.	Typische Zusammensetzungen.	Composizioni tipiche 82
Specific gravity.	Poids spécifique.	Spezifisches Gewicht.	Peso specifico 82
Porosity.	Porosité.	Porosität.	Porosità 82
Crushing strength.	Résistance à la compression.	Druckfestigkeit.	Resistenza alla compressione 83
Fusion temperature.	Point de fusion.	Schmelzpunkt.	Punto di fusione 83
Temperature of failure under load.	Température de fléchissement sous la charge.	Temperatur der Erweichung unter Belastung.	Temperatura di rammolli- mento sotto carico 83
Thermal expansion.	Dilatation thermique.	Wärmeausdehnung.	Dilatazione termica 83
Specific heat.	Chaleur spécifique.	Spezifische Wärme.	Calore specifico 85
Thermal conductivity.	Conductibilité thermique.	Wärmeleitfähigkeit.	Conduttività termica 85
Electrical resistivity.	Résistivité électrique.	Elektrischer Widerstand.	Resistenza elettrica 86

TYPICAL COMPOSITIONS, % BY WEIGHT

Materials	Al ₂ O ₃	CaO	Fe ₂ O ₂	MgO	SiO2	Others	Lit.
Alundum	92-99						(72)
Bauxite brick	65-95		3-8		5–13	TiO2, 1-7	(34)
Carborundum							
brick	0–5		0-1		0–5	SiC, 90-100	(28, 34)
Chrome brick	14-20	Trace	14-19	11-17	3-10	Cr2O2, 36-46	(34)
Fire clay brick	15-45	0-0.7	0–6	0-0.7	40-75	Alkalies, 0-2	(13, 34, 36,
							84)
Magnesite brick.	0-4	0–6	0-10	80-94	0-11	TiO ₂ , 0-2.8	(34, 47, 54)
Silica brick	0-2	0–6	0-2	0-0.8	90-98	Alkalies, 0-0.6	(24, 35, 40,
	l						49, 53, 70,
		ŀ					.86)
Zirconia brick	l	i				ZrO ₂ , 75-95	(74, 34, 28,
	İ						•)

BULK DENSITY AND SPECIFIC GRAVITY

	Bulk density g/cm³	True sp. gr.	Lit.
Alumina, Al ₂ O ₃		∫ α3.93-4.01	(62, 68)
·		$\beta 3.03 \pm 0.01$	1
Alundum	2.6	3.02-4.00	(48, 34)
Bauxite brick		3.15-3.25	(34, 11)
Carborundum, SiC		3.12-3.20	(80)
SiC brick	2.05-2.60		(25, 80)
Chrome brick	2.8-3.2	3.90-4.00	(80, 34)
Fire clay brick	1.7-2.1	2.1-2.8	(34, 84, 18, 25)
Magnesium oxide		∫ a3.2	(81, 55)
(MgO).		β3.67-3.69	
Magnesite brick	2.0-2.8	3.1-3.6	(80, 55, 34, 18,
_			54)

BULK DENSITY AND SPECIFIC GRAVITY.—(Continued)

	Bulk density g/cm ²	True sp. gr.	Lit.
Silica, fused	$ \left\{ \begin{array}{l} 2.22 \text{ (transparent)} \\ 2.07 \text{ (translucent)} \end{array} \right\} $		(41)
Quartz, SiO2	1	2.646-2.656	(48, 14)
Tridymite, SiO2		2.31-2.32	(48)
Cristobalite, SiO2		2.32-2.41	(46, 14)
Silica, amorphous		2.04-2.21	(48)
Silica brick	1.50-1.88	2.05-2.75	(70, 34, 18, 42,
			29, 83, 86, 84)
Zirconia, ZrO2		5.48-5.90	(48, 66, 74, 8)
Zirconia brick		4.55-5.00	(58, 74)
Carbon		1.7-2.0	(48)
Graphite		2.17-2.32	(48, 18)

Porosity

Material	Porosity, %	Lit.
Bauxite brick	46-50	(38)
Carborundum brick	17-34	(25)
Fire clay brick	20-30	(37, 84)
Magnesite brick	24-40	(42)
Silica brick	18-43	(70, 38, 42) (58, 74)
Zirconia brick	19	(58, 74)

CRUSHING STRENGTH, MEGADYNE CM⁻²

1 megadyne cm⁻² = 14.5 lb. in.⁻² = 1020 g cm⁻²

- 1110600	J == C ===	2 2			8	•
	20°C	800°C	1000°C	1300°C	1500°C	Lit.
Bauxite brick*	390-650	260-350	670-700	54-93	15	(4)
Carborundum*	407	417	574	147	69	(4)
Characa badalat	f 442	442	417	211	74	(4)
Chrome brick*	252	1	116	5.8	1.9	(51)
Fire clay brick*	f 191-1090	123-544	103-740	113-726	20-64 \	(4, 81, 84,
rife day oriek	₹ 70–300	60-300	70-250	20-120	0–20 ∫	87)
Magnesite brick*	∫ 441	201	186	152	29 լ	(4, 51, 54)
Magnesite Drick	140–600		82	64	3.5	(1, 11, 11)
Silica (fused)*	2500	1020	765	164	98	(4)
Silica brick	150-200	90-170	70-160	60-110	20-80	(4, 51, 54,
	1	1				57, 29, 70)
Zirconia*	388	270	338	88	9.8	(4)

^{*} Values given by Bodin, probably high for standard brick. Test specimens were 2 cm cube.

Fusion Temperature

	°C	Lit.
Alumina, Al ₂ O ₃	2010-2050	(8, 48)
Alundum	1750-2000	(79, 72)
Bauxite clay	1750-2000	(84, 35)

FUSION TEMPERATURE — (Continued)

	°C	Lit.
Bauxite brick	1565-1785	(44, 45)
Carborundum	2200-2240 d	(82, 8, 21, 72)
Chromium oxide, Cr ₂ O ₃	1990	(44)
Chrome brick	1850-2050	(44, 54, 45, 48)
Fire clay brick	1500-1750	(44, 34, 40, 39, 45, 84)
Magnesium oxide, MgO	2800	(8)
Sintered magnesia	2200-2600	(84, 10)
Magnesite brick	2150-2165	(54, 12, 44)
Silica, SiO ₂		(8, 44, 48)
Silica brick		(29, 19, 38, 48, 12, 40, 44, 45)
Mullite ("sillimanite"), (Al ₂ O ₃) ₃ -		·
$(SiO_2)_2$	1816	(15)
Spinel, MgO.Al ₂ O ₃	2135	(68)
Zirconia, ZrO2	ľ	(8, 71, 1, 83)
Zirconia brick	2000-2600	(8, 71, 1, 74)

TEMPERATURE OF FAILURE UNDER LOAD

Load = 34.5×10^5 dyne cm⁻² = 50 lb. in.⁻² = 3520 g cm⁻²

Material	Alundum brick	Bauxite brick	Carbo- rundum	Chrome	Fire clay	Magnesite brick	Silica	Zirconia brick
Temp. °C	No failure	1350 Softens (69, 7)	1650+ No failure (52, 25)	1400-1450 Shears (7, 35)	1250-1500* Softens (84, 3, 19, 35)	Shears	1600-1650 Shears (7, 25, 19)	1510 Softens (7)

^{*} Load = 25 lb. in. -2.

MEAN LINEAR COEFFICIENT OF THERMAL EXPANSION BETWEEN t°C AND 25°C

$$k = \frac{1}{l_{25}} \frac{l_t - l_{25}}{t - 25} = A \times 10^{-6}$$

	Vanisaisa	A				T:4
	Variation	100°C	500°C	1000°C	1500°C	Lit.
Alumina, Al ₂ O ₃	7.2-8.0 between	900°C and 25°C	C			(79)
Alundum		7.1-8.5				(79, 72)
Bauxite brick		4.4	5 . 2	5.3	5.3	(84)
Carborundum, SiC	4.38(800-700°C) 2.98(900-800°C)	6.58		4.35		(43)
SiC brick			5.2	5.8		(84)
Chrome brick				9.0	1.1	(48, 78)
Fire clay brick		8.1 ± 3.0	7.5 ± 3.0	6.7 ± 3.0	5.9 ± 3.0	(84, 78, 63, 55)
Mag. oxide, MgO	11.5-13.1 (300-25°C)	9.7-11.4	-			(23, 84)
Magnesite brick		11.5 ± 1.0	11.7 ± 2.0	12.4 ± 1.5	13.5 ± 1.0	(78, 54, 64, 50, 65, 48)
Silica brick	$36 \pm 3(200-25^{\circ}\text{C})$	28 ± 3	$22~\pm~5$	13 ± 2	8.6 ± 1	(78, 29, 77, 55, 53, 70, 84, 48)
Zirconia (fused), ZrO2		8.4				(8)
CarbonGraphite			1.5-5.5	•		(84, 48) (48)

For mean coefficient between any two temperatures, $\alpha_m = \frac{\alpha_{t_1}(t_1 - 25) - \alpha_{t_2}(t_2 - 25)}{t_1 - t_2}$, where α_{t_1} and α_{t_2} may be taken from a graph.

EXPANSION AND CONTRACTION DURING HEATING

The data given in Figs. 1-4 and in the table below record the % changes in length undergone by $1 \times 1 \times 9$ in. test bars when heated in a gas fired muffle furnace with neutral atmosphere at the rate of 100°C per hour. Specimens marked "brick" are commercial products. For compositions of these and methods of preparing all specimens, v. the original (88).

				10 ⁷ Δl	Ī
No.	Torne	M. P.,*	Fired	lst	t.†
No.	Туре	$^{\circ}\mathrm{C}$	to, °C	0° to	°C
				t.	<u> </u>
1	Silica brick	1700		83	1550
2	Kaolin	1740	1300	47	1050
3	Kaolin	1740	1430	68	1380
4	Kaolin	1740	1500	53	1580
5	Kaolin	1740	1620	43	1610
6	Fire clay brick (Mo.)	1720		54	1300
7	Fire clay brick (Pa.)	1680		51	1250
8	Fire clay brick (Colo.)	1700		54	1220
9	Fire clay brick (Md.)	1610	l l	45	1100
10	SiC brick	>2000		43	>1700
11	Zircon white	>2000	1650	64	1510
12	Zircon brown	1935	1590	42	1550
13	ZrO2	>2000	1675	59	1600
14	Mullite	1850	1785	53	>1700
15	Magnesite	>2000	1680	142	>1700
16	Magnesite brick			147	1440
17	Chrome brick		1	104	1540
18	Mg-spinel	>2000	1690	76	1600
19	Lime	>2000	1740	138	>1700
20	Fused Al ₂ O ₃	>2000	1650	77	1580
21	Infusorial-earth brick	1630		74	1050

^{*} Reducing atm.

[†] Beginning of shrinkage or expansion.

Figure 5 shows a comparison of the expansion of German and American silica brick. Curves 1, 2 and 3 are for American silica brick (measurements reported by the National Bureau of Standards); Curves I, II and III, for German silica brick (measurements by Endell and Steger, Glastech. Ber., 4; May, 1926).

MEAN SPECIFIC HEAT BETWEEN t° AND 25°C Joule per gram per °C

1 joule g^{-1} per °C = 0.239 g-cal g^{-1} per °C = 0.239 BTU lb.⁻¹ per °F

	100°C	500°C	1000°C	1500°C	Lit.
Alumina, Al ₂ O ₂	0.837	1.00	1.09	1.15	(84)
Alundum	0.778				(79)
SiC brick	0.838 ± 0.13		0.78 ± 0.17		(79, 33, 18)
Chrome brick	0.71	0.84	0.92		(78)
Fire clay brick	0.83 ± 0.04	0.93 ± 0.04	1.08 ± 0.04	1.25 ± 0.04	(78, 5, 85, 18,
				1	31)
Mag. oxide, MgO	0.98 ± 0.02	1.09 ± 0.02	1.17 ± 0.02	1.21 ± 0.02	(84, 48, 54)
Magnesite brick	0.93 ± 0.04	1.05 ± 0.04	1.16 ± 0.04	1.24 ± 0.04	(32, 76, 84, 78,
					18)
Silica brick	0.84 ± 0.06	0.95 ± 0.06	1.10 ± 0.06	1.24 ± 0.06	(5, 32, 76, 84,
					61, 78, 18)
Zirconium oxide	0.46 ± 0.02	0.55	0.66	0.75	(5, 8)
Carbon	0.516	2.0 at 2000°C	1.3		(16)
Graphite		2.2 at 2000°C	1.23	1.71	(16, 46)

Mean Coefficient of Thermal Conductivity between t° and 25°C Joule cm⁻², sec⁻¹ (°C, cm⁻¹)⁻¹ 1 joule cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹ = 0.239 g-cal cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹ = 0.193 BTU ft.⁻² sec⁻¹ (°F, in.⁻¹)⁻¹

	100°C	500°C	1000°C	1500°C	Lit.
Alundum	0.035 between 12	50°C and 650°C			(62, 67)
Bauxite brick	0.0046		0.0064		(6)
SiC bonded brick			0.08-0.10		(18, 86, 79)
Chrome brick			0.024		(86)
Fire clay	0.0065 ± 0.0015	0.0089 ± 0.0015	0.0117 ± 0.0015	0.0143 ± 0.0020	(18, 22, 17, 84,
					25, 31, 86)
		0.048			(84)
Magnesite bonded brick, elec. sintered	0.041 ± 0.009	0.044 ± 0.015	0.047 ± 0.020		(18, 22, 17, 84,
					86)
Silica brick	0.0080 ± 0.0010	0.0096 ± 0.0010	0.0121 ± 0.0010		(18, 22, 17, 84,
					16)
Carbon	0.38 at 360°C	0.45	0.55	0.58	(30)
Graphite	1.41 at 390°C	1.38	1.19	1.15	(30)

For mean coefficient between any two temperatures, $k_m = \frac{k_{t_1}(t_1 - 25) - k_{t_2}(t_2 - 25)}{t_1 - t_2}$ where k_{t_1} and k_{t_2} may be taken from a graph.

Sp.Gr.

800

ELECTRICAL RESISTIVITY

	Megohm-cm ³			Ohm-cm³		T '4
	25°C	1000°C	1200°C	1400°C	1500°C	Lit.
Alundum		1.8 × 10 ⁶				(79)
Diaspore	137		193 000	1	2 500	(28)
Bauxite brick	133	17 200	6 100	2 200	1 100	(27)
Carborundum		3.7	1.3	0.65		(80)
Carborundum refrax brick	107×10^{-6}	4.1	2.5	1.74	1.62	(27)
Carborundum 95 % SiC bonded	107×10^{-3}	4 720	4 160	1 435	745	(27)
Carborundum 90 % SiC bonded	127	197 000	29 500	10 100	8 590	(27)
Chrome brick	48.1	171	63	85	41	(27)
		420	450	320		(75)
Fire clay brick	137	10 800	4 160	1 420	890	(27)
•		6 600	480 000	180 000	80 000	(84)
			2 300	690	280	(75)
Magnesite brick	137	708 000	193 000	22 400	2 500	(27)
•			100 000	40 000	3 000	(84)
			12 000	400		(60)
Silica (fused)	5×10^{12}	4 × 104	at 727°C	1		, ,
Silica brick	125	300 000	62 000	16 500	8 420	(27)
			360 000	125 000	63 000	(84)
				2 400	710	(75)
Zirconia brick	134	131 300	1 230	1		(56)
			1 250	300		(1)
			7 710	968	412	(27)
Zirconia			12×10^7			(8)
Carbon	46×10^{-10}	3.7×10^{-3}	3.7×10^{-3}	3.7×10^{-3}	$3.6 \times 10^{-3} \text{ at } 2000^{\circ}\text{C}$	(30)
Graphite		7.95×10^{-4}	7.9×10^{-4}	7.9×10^{-4}	7.9 × 10 ⁻⁴ at 2000°C	(30)

For review of recent literature v. (89).

LITERATURE

(For a key to the periodicals see end of volume)

- Arnold, 136, 42: 413; 18.
 Barrat, 67, 32: 361; 19.
 Bleininger and Brown, 33, 23: 629; 20.
 Bodin, 102, 25: 177; 20.
 Bradshaw and Emery, 82, 19: 84; 19.
 Brown and Townshend, Thesis, Mass. Inst. Tech., 1914.
 Brown, Mellor and Emory, quoted by Howe, 33, 23: 1215; 20.
 Marden and Rich, 29, No. 186; 21.
 Holbrook and Fraser, 29, No. 234; 25.
- Anon., 276, 8: 419; 23. (11) Crawford, J. L., O. (12) Dana and Foote, 55, 28: 23, 63; 20. (13) Davidson, 135, 116: 75; 17. (14) Day, Sosman and Hostetter, 12, 37: 1; 14. (15) Demasure, Bull. fed. Ind. Chim. Belg. 3: 182; 24. (16) Dewar, 25, 5: 814; 72. (17) Dougill, Hodsman and Conn. 54, 26: 465; 15. (18) Dudley, 78, 27: 285; 15. (19) Endell, 77, 41: 6; 20.
- (20) Fitzgerald, 33, 10: 129; 12. (21) Gillett, 50, 18: 213; 11. (22) Goerens and Gillis, 139, 12: 17; 15. (22) Goodwin and Mailey, 78, 9: 89; 06. (24) Graham, 307, 102: 639; 18. (28) Hartmann and Westmont, 78, 46: 485; 24. (26) Hartmann and Kobler, 78, 37: 707; 20. (27) Hartmann, Sullivan and Allen, 78, 37: 292; 20. (28) Hartmann and Sullivan, 78, 38: 279; 20. (29) Havard, Refractories and Furnaces (McGraw-Hill Book Company, Inc., 1912).
- (30) Hering, 119, 29: 485; 10. (31) Hersey and Butsler, 315, No. 2564; 24. (32) Heyn, 312, 32: 185; 14. (33) Howe, 33, 23: 1215; 20. (34) Ibid., 23: 232; 20. (35) Howe, Refractories for Electric Furnaces (Elec. Furnassoc., Niagara Falls, 1920). (36) Howe, 38, 6: 471; 23. (37) Howe, 45, 11: 1145; 19. (35) Howe and Ferguson, 38, 4: 37; 21. (35) Howe and Shepherd, 38, 4: 207; 21.

- (40) Howe, Phelps and Ferguson, 38, 6: 590; 23. (41) Hougen, 33, 30: 737;
 24. (42) Houldsworth and Cobb, 58, 6: 658; 23. (43) Quoted by Hougen, 55, 30: 740; 24. (44) Kanolt, 32, No. 10; 12. (45) Kanolt, 78, 22: 93; 12. (46) Kopp, 12, Suppl. III, 1: 289; 64. (47) Kowalke and Hougen, 507, 102: 639; 18. (48) Quoted from B5. (49) Lange, 77, 22: 1731; 12.
- (50) Le Chatelier, quoted by McDowell and Howe, (84).
 (51) Le Chatelier and Bogitch, 34, 164: 761; 17.
 (52) Linbarger, Carborundum Co., O.
 (53) McDowell, 80, 57: 3; 17.
 (54) McDowell and Howe, 38, 3: 185; 20.
 (55) Mellor, 82, 15: 93; 15.
 (56) Nernst and Reynolds, 188, 1900: 328.
 (57) Nesbit and Bell, 45, 11: 1149; 19.
 (58) Meyer, 35, 12: 791; 14.
 (59) Nilson and Petterson, 25, 13: 1459; 80.
- (60) Northrup, 78, 27: 233; 13.
 (61) Norton, C. L., O. (62) Boeck, 81, 14: 470; 12.
 (63) Norton F. H., 38, 3: 29; 25.
 (64) Phelps, Mellon Inst., O. (65) Pierce, Harbison-Walker Refractories Co., O. (66) Podszus, 92, 30: 17; 17.
 (67) Randolph, 120, 16: 120; 13.
 (68) Rankin and Merwin, 1, 38: 568; 16.
 (69) Rochow, 45, 11: 1148; 19.
- (70) Ross, 32, No. 116; 19. (71) Ruff and Lauschke, 100, 36: 70; 16. (72)
 Saunders, 78, 19: 333; 11. (73) Seaver, 80, 53: 125; 16. (74) Sheppard, 38, 6: 294; 23. (75) Stansfield, MacLeod and McMahon, 78, 22: 89; 12. (75) Steger, 124, 2: 203; 14. (77) Stockman, Thesis, Mass. Inst. Tech., 1902. (73) Tadokoro, 159, 10: 339; 21. (73) Norton Co., Trade Cat. and O.
- (80) Carborundum Co., Trade Cat. (81) Vitrefrax Co., Trade Cat. (82) Tucker and Sampen, 1, 28: 953; 06. (82) Washburn and Libman, 38, 3: 634; 20. (84) Wilkes, G. B., O. (85) Wilson, Holdcroft and Mellor, 82, 12: 279; 12. (86) Wologdine and Queneau, 35, 7: 383; 09. (87) Dupuy, 108, 28: 308; 22. (88) Norton, 38, 8: 799; 25. (89) Ferguson, 324, 10: 131; 26.

ABRASIVE MATERIALS

M. L. HARTMANN

COMMON AND TRADE NAMES

IND. No.

- 1. Aluminium oxide (fused, impure) ("aloxite," "alundum," "lionite," "borolon," "alumo"). Al₂O₃
- 2. Corundum. Al₂O₃
- Diatomaceous earth (infusorial earth, kieselguhr, fossil flour, fossil meal, tripolite, diatomite, polerschiefer, desmid earth, molera, white peat, tellurine, randanite, ceyssatite, bergmehl, radiolarian earth). SiO₂
- 4. Emery.
- 5. Flint. SiO₂
- 6. Garnet (almandite, rhodolite).
- 7. Glass (alkali lime).
- 8. Pumice (pumicite, santorini, santorine earth).
- Silicon carbide ("carborundum," "crystolon," "carbolon.")
 SiC

For diamond, iron oxides, iron alloys and quartz, see other sections of I. C. T.

87 **GLASS**

Ind. No.		Density g/cm ²	Thermal expansion $\frac{10^6}{l} \frac{dl}{dt}$ per °C	Thermal conductivity $k = 10^{-6} \times A \text{ g-cal}$ $cm^{-2} sec^{-1} (^{\circ}C, cm^{-1})^{-1}$ A
1	9+ (25)	3.93-4.00 (3,25)	8.7 (25-900°C) (2) 7.7 (0-1580°C) (17)	
2	9 (1, 4, 10, 11, 21)	3.95-4.10 (1, 4, 10, 21)	6.76 (19)	
3	1-1.5 (10)	2.1-2.2		227 (200°C) (10) 315 (800°C)
4	7-9 (10)	3.75-4.35 (⁴)		
5	7 (4,10)	2.61-2.63 (26)	17.4 (15-1000°C) (7)	
6	6.5-7 (10), cf. (1, 16)	3.4-4.3 (10), cf. (1, 16)		
7		2.4-2.6	8.01-11.88 (15)	1080-2270 (18)
8	6 (10)	2.5 (10)		
9	9-10 (*, 22)	3.17-3.21 (3, 5)	4.74 (100-900°C) (2) 4.3 (0-1700°C) (*)	43000 (1350°C) (6) (34 % porosity)

Compressibility $\frac{dV}{VdP}$ (P in atm.) = 3.8 × 10⁻⁷ for No. 2 (12);

 2.2×10^{-7} for No. 9 (100-500 atm.) (24).

Specific heat in $g-cal/g = 0.1976 (8-98^{\circ}C)$ for No. 2 (23); 0.212-0.236 (133-405°C) for No. 7 (8); 0.186 (31-98°C) for No. 9 (20), cf. (13, 27).

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Barlow, 586, No. 50; 15. (2) Boeck, 81, 14: 470; 12. (3) Carborundum Company, Niagara Falls, New York, O. (4) Dana, System of Mineralogy, 6th ed., New York, Wiley, 1892. (5) Fitzgerald, 145, 148: 81; 97. (6) Hartmann and Westmont, 38, 8: 259: 25. (7) Houldsworth and Cobb, in Searle, The Chemistry and Physics of Clays and Other Ceramic Materials, p. 579. London, Benn, 1924. (8) Iitaka, 159, 8: 99; 19. (9) Kuns, 78, 12: 40; 07.
- (10) Ladoo, Non-Metallic Minerals, New York, McGraw-Hill Book Company, Inc., 1925. (11) Larsen, 156, No. 679; 21. (12) Madelung and Fuchs, 8, 65: 293; 21. (13) Magnus, 8, 70: 303; 23. (14) Mellor, B71, VI: 524; 25. (15) Mellor, B71, VI: 529; 25. (16) Mellor, B71, VI: 911; 25. (17) Norton, 38, 8: 799; 25. (18) Paalhorn, in B71, VI: 531; 25. (19) Pfaff, 8, 107: 148: 59.
- (20) Potter, 78, 12: 191; 07. (21) Pratt, 156, No. 269; 06. (22) Pratt, 587, 15: 98; 06. (23) Regnault, 6, 1: 129; 41. (24) Richards, Stull, Brink and Bonnet, 152, No. 76; 07. (25) Saunders, 78, 19: 333; 11. (26) Washburn and Navias, 38, 5: 565; 22. (27) Weigel, 188, 1915; 264, 320.

PROPERTIES OF GLASS

GEORGE W. MOREY

Contents	Matières	Inhaltsverzeichnis	Indice Page
Composition of commercial and	Compositions des verres du	Zusammensetzung gewöhn-	Composizione di vetri com-
experimental glasses.	commerce et des verres d'ex- périences.	licher und experimentier Gläser.	merciali e sperimentali 88
Silica glass v. vol. III.	Verre de silice, v. vol. III.	Quarzglass siehe Bd. III.	Vetro di silice; consultare il Tomo III.
Mechanical properties.	Propriétés mécaniques.	Mechanische Eigenschaften.	Proprietà meccaniche 92
Density.	Densité.	Dichte.	Densità 92
Viscosity.	Viscosité.	Viskosität.	Viscosità 94
Surface tension.	Tension de surface.	Oberflächenspannung.	Tensione superficiale 96
Strength.	Résistance.	Festigkeit.	Resistenza 97
Elastic properties.	Propriétés élastiques.	Elastische Eigenschaften.	Proprietà elastiche 97
Thermal properties.	Propriétés thermiques.	Verhalten bei der Erwärmung.	Proprietà termiche 97
Melting point diagrams.	Diagrammes des points de fusion.	Schmelzpunkt Diagrame.	Diagrammi dei punti di fusione 97
Annealing temperatures and other arbitrary thermal	Températures de recuit et autres constantes thermi-	Abkühlung und andere gele- gentliche thermische Kon-	Temperatura del ricuo- cere ed altri costanti
constants.	ques arbitraires.	stanten.	termici arbitrarii 99
Coefficient of thermal expan-	Coefficient de dilatation ther-	Thermischer Ausdehnungs-	Coefficiente della dilata-
sion.	mique.	koeffizient.	zione termica 100
Specific heats.	Chaleurs spécifiques.	Spezifische Wärme.	Calori specifici 101
Thermal conductivity.	Conductibilité thermique.	Wärme Leitfähigkeit.	Conduttività termica 101
Electrical properties.	Propriétés électriques.	Elektrische Eigenschaften.	Proprietà elettriche 101
Magnetic susceptibility.	Susceptibilité magnétique.	Magnetische Suszeptibilität.	Suscettibilità magnetica. 101
Dielectric properties.	Propriétés diélectriques.	Dielektrische Eigenschaften.	Proprietà dielettriche 101
Electrical resistivity and con-	Résistivité et conductibilité	Elektrischer Widerstand und	Resistenza e conduttibi-
ductivity.	électriques.	elektrische Leitfähigkeit.	lità elettrica 101

CONTENTS.—(Continued)

Optical properties.

Refractive index and dispersion.

Effect of temperature on index.

Effect of pressure and strain on index.

Transmission and absorption.

The "Index Nos." of Table 1 are identification numbers by means of which the glasses are identified in the property tables which follow.

TABLE 1.—GLASS COMPOSITIONS

With the exception of those glasses whose index numbers are in italics, all the compositions listed below are calculated from the ingredients melted to produce the glass type (so-called "batch" compositions). The glasses actually measured will therefore differ from the compositions given by unknown amounts: a difference in optical properties between the types of Table 1 and like numbered glasses in subsequent tables indicates such uncontrolled variations. The analyses of similar types shown in Table 1 give an idea of the magnitude of the difference to be expected. In the tables which follow, this uncertainty as to the actual glass composition is usually greater than that introduced by errors in measurement.

The numbers under "Glass Types" in Table 1 represent $(n_D-1)\,10^3/10\nu$; in which $\nu=\frac{n_D-1}{n_F-n_C}$. Glasses 1-114 are arranged in the order of increasing n_D ; glasses 115-133, in order of decreasing SiO₂ content; glasses 134-146 in order of decreasing n_D .

MATIÈRES.—(Suite)

Propriétés optiques.

Indice de réfraction et dispersion.

Action de la température sur l'indice.

Action de la pression et de la tension sur l'indice.

Transmission et absorption.

Les nombres index de la Table 1 sont des nombres d'identification au moyen desquels les verres sont identifiés dans les tables des propriétés qui font suite

Table 1.—Compositions des

A l'exception des verres dont les nombres index sont en italique, toutes les compositions indiquées ci-dessous sont calculées à partir des substances de départ entrant dans la fabrication du verre type. La composition réelle des verres dont on donne les mesures peut donc différer des compositions indiquées par un montant inconnu; une différence dans les propriétés optiques entre les types de la Table 1 et les verres de même numéro dans les tables subséquentes met en évidence ces variations incontrôlées. Les analyses de types similaires indiquées dans la Table 1 donnent une idée de l'ordre de grandeur de la différence à laquelle on peut s'attendre. Dans les tables qui suivent, cette incertitude en ce qui concerne la composition réelle du verre est ordinairement plus grande que celle introduite par des erreurs dans les mesures.

Les nombres dans "Verres types" dans la Table 1 représentent $(n_D-1)10^3/10\nu$; dans laquelle $\nu=\frac{n_D-1}{n_F-n_C}$. Les verres 1 à 114 sont disposés dans l'ordre de n_D accroissant; les verres 115 à 133 dans l'ordre de la teneur décroissante en SiO₂; les verres 134 à 146 dans l'ordre de n_D décroissant.

Inhaltsverzeichnis.—(Fortsetzung)

Optische Eigenschaften.
Brechungsindex und Dispersion.

Einfluss der Temperatur auf den Brechungsindex.

Druck und Spannungs-Einfluss auf den Brechungsindex.

Transmission und Absorption.

Die Indexnummern der Tafel 1 sind Erkennungszahlen mit Hilfe deren die Gläser in den folgenden Eigenschaftstafeln identifiziert sind.

TAFEL 1.—GLAS-ZUSAMMEN-SETZUNGEN

Mit Ausnahme bei jenen Gläsern deren Indexnummern kursiv geschrieben sind, ist ihre folgende Zusammensetzung aus den Bestandteilen berechnet. die zur Erschmelzung des Glases verwendet worden sind (Glassatz). Die wirkliche Zusammensetzung des Glases wird deshalb von der angegebenen in unbekanntem Ausmasse abweichen. Ein Unterschied in den optischen Eigenschaften der Glastypen in der Tafel 1 und denen in den folgenden Tabellen, welche ähnlich bezeichnet sind, zeigt solche unkontrollierbare Veränderungen. Die Analyse ähnlicher Glassorten, welche in der Tabelle 1 verzeichnet sind, geben eine Vorstellung von der Grösse der Abweichungen die zu erwarten sind. In den folgenden Tabellen ist die Unsicherheit bezüglich der wirklichen Glaszusammensetzung gewöhnlich grösser, als sie durch Messfehler verursacht werden kann.

Die Zahlen unter "Glass Types" in der Tafel 1 bedeuten $(n_D-1)10^3/10\nu$ wobei $\nu=\frac{n_D-1}{n_F-n_C}$ ist. Die Gläser 1-114 reihen sich nach aufsteigenden n_D -Werten, Gläser 115-133 nach absteigendem SiO₂-Gehalt und Gläser 134-146 nach absteigenden n_D -Werten.

INDICE.—(Azione)

PAGE

Proprietà ottiche	101
Indice di refrazione e la	
dispersione	104
Effetto della temperatura	
sul indice	105
Effetto di compressione	
e tensione sul indice	106
Trasmissione ed assor-	

I numeri indici della Tabella 1 sono numeri di identificazione a mezzo dei quali si possono individuare i diversi vetri nelle tabelle delle proprietà.

bimento 106

TABELLA 1.—Composizione dei vetri

Fatta eccezione per i vetri con numero indice scritto in corsivo, per tutti gli altri le composizioni riportate sono quelle che si calcolano dalle quantità dei componenti messe a fondere assieme.

Le composizioni effettive differiscono perciò da quelle indicate di una quantità sconosciuta; ed eventuali differenze nelle proprietà ottiche dei vetri della Tabella 1 e di quelli delle tabelle successive contradistinti da uno stesso numero stanno a dimostrare appunto queste incontrollatibili variazioni. Le analisi di tipi simili di vetri riportate nella Tabella 1, danno una idea della grandezza delle differenze che possono aversi. La incertezza intorno alla composizione effettiva del vetro è, in genere, maggiore di quella che può essere dovuta ad errori di misura.

I numeri sotto la dicitura "Glass Types" nella Tabella 1 rappresentano $(n_D - 1)10^3/10_v$;

dove $v = \frac{n_{\rm D}-1}{n_{\rm F}-n_{\rm C}}$. I vetri da 1 a 114 sono disposti in ordine accrescente di $n_{\rm D}$; i vetri da 115 a 133 in ordine decrescente del contenuto di SiO₄; i vetri da 134 a 146 in ordine decrescente di $n_{\rm D}$.

The control of the		Туре	Namo		II	BIO					BaO Zn	ZnO PbO		0.0	0 1	O Wn	MgO AlrOs FerCe MarOs SbrOs AssOs AssOs	o v	0 V	<u>ਹ</u>	I-	80, HrO	Table No.	ا ر
2000 2000	7.5	/636			<u> </u>	0.75		9 		ස					% —			<u>. </u>	\$, 5, 11a, 1 11c, 12a, 1	116 17a
### 100 10	28			7423 0802			-		 			<u> </u>		. 6.	- · · ·			<u>.</u>	~~			8 - 8	, 11c 1a, 11c, 13 , 4, 5, 7,	မ္က ထိ
Control Cont	282			03.8		9.591						г		∞	000	0		0 0	4 11				11 <i>e</i> 0, 13 7 1.36	
Outs (vi) (vi) (vi) (vi) (vii) (vii) (viiii) (viiiii) (viiiii) (viiiii) (viiiii) (viiiii) (viiiii) (viiiii) (viiiiii) (viiiiiii) (viiiiiiiii) (viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	3 8		Same, analysis	خ 		988		~		35.			<u> </u>				<u>.</u> .					N C	, , 150	
ways 4,600 (1) (1) (2) (2) (3)<	3 8 8		Schott, Jens geräte			- 1. S				. B .	10		<u> </u>				10	o o o	, T -			7 ~ -	. 126	
Option (**) <	3 = 5		Chance, boroalicate crown			1.1				9 00	=		-					. o c	- 01 :				. m c	
Outstand (3) 72.15 5.88 5.10 13.6 2.04 0.07 0.04 0.01 0 0.24 0.08 0.06 0.12 0.08 0.06 0.12 0.08 0.00 0.04 0.04 0.01 0.04 <t< td=""><td>==</td><td>610</td><td>Schott, borosilicate crown</td><td>0144</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>· ·</td><td>2 61</td><td></td><td></td><td>- 01</td><td>4, 5, 7, 126, 14, 1</td><td>10, 7a,</td></t<>	==	610	Schott, borosilicate crown	0144						<u> </u>							3	· ·	2 61			- 01	4, 5, 7, 126, 14, 1	10, 7a,
van. OGZ74 (**) 88.1 3.5 6.0 16.0 7.0 7.0 9.								5. 16 13										<u> </u>		0.0	30.12		176	
vorm (1709) (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 70.7 (**) 80.8 (**) 8	⊒ ≌			0374 0627					0 10		1 - 81	0.0						o o	4 61			- 8	15	
Company Comp	223		Schott, zinc silicate crown Chance, zinc crown	1066														<u> </u>					<u> </u>	
1933 (1) 67.1 17.2 10.2 2.0 17.2 17.2 19.3	- :			03882			_						<u> </u>					<u> </u>		5 	9		'n	2
Name	==			0493		₹.					N .			<u> </u>	·			• —				- 9	3 . 16	
van Out (**) 60.0 (**) 61.0 2.5 4.0 16.0 8.0 10.1 0.1 0.1 0.1 0.1 0.1 0.4 ven 0.00 (**) 64.6 2.7 5.0 15.0 10.2 2.0 1.0 0.1 0.4 0.2 0.4 0.2 <td>===</td> <td></td> <td>Chance, hard crown</td> <td>1203</td> <td></td> <td></td> <td></td> <td>51</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td><u>.</u></td> <td>ه</td> <td></td> <td>5</td> <td></td> <td>61</td> <td></td> <td></td> <td></td> <td></td> <td></td>	===		Chance, hard crown	1203				51		-				<u>.</u>	ه		5		61					
The column Composition C																<u> </u>			4 4			9 01 01	4, 7, 11c	15.
Company Comp	=			0203				— sod mo		nknow		proba		ffers b	ut lict	le from		— %				- 10	17a 7. 14	
High crown Gold (**) G	= :							5.6 15		6				_		<u>.</u>			4 0			- 1	4, 17c	
Second control of the control of t	2 2) <u>81</u>				 ?		•				<u> </u>	N 61			`-		
borosiliente crown. Construction of the con	81 5		Bureau of Standards, light crown									بن 		0	e2			o o	4 0		•	- 1		
Comparison Com	8		Bureau of Standards, borosilicate crown.									0		; 	,				1 00 0				;	
10 10 10 10 10 10 10 10	ស្តី ស៊			0381(1151)		- so 90 -9	1 2	3.0			N 69	8 0	n 0		- 2				N 01				la, 14, 17c t	v
te crown. O1282 (35) 62.5 2.0 5.0 15.0 1.0 1.0 3 1.0 0.1 0.1 0.1 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	20 20			0381(1168)		8.2	2 7	3.5		30	6, 6	0 13. 85 10.	1 2 1 2 1					0 0	14				, 7, 11c	
1.0 1.0	N.		Schott, ordinary silicate crown.					5.0	0	=	0	-		: —					4					
Octobe O	3 3		Ordinary crown					0.6	0. 8	0 8							8					9 -	, 16 1a, 13	
n O2388 (*) 66.8 Off unknown composition 5.2 7.1 0.3 7.0 0.1 nt 7863 (*) 66.4 9.2 3.9 0.4 5.2 7.1 0.3 7.0 0.1 nt O122(1809) (3.9) 35.4 3.4 7.4 1.9 5.0 0 0.11 0.0 0.3 int O227 (*) 59.13 3.04 3.16 9.70 0.1319.25 5.00 0 0.11 0.02 0 0.34 crown 3.463 (*) 59.13 3.04 3.16 9.70 0.1319.25 5.00 0 0.11 0.02 0 0.34 crown 0.726 (*) 59.17 1.8 1.3 0.3 24.1 2.50 0 0.11 0.02 0 0.34 crown 0.52 0.3 2.4.1 3.2 2.5.0 0 0.3 0.25 0 0.3 0.3 0.3 0.3 0.3 0 0	8		Schott, telescope flint					f unk	own c	omposi	tion, b	ut pro	bably	differs	but li	tle fro	n pree	eding				_	1c, 14, 17b	æ
tet (1920) (34) 35.4 34.3 7.4 (44) 59.5 3.0 (44) 56.2 (44) 56.3 (44) 56.2 (45) 56.2 (4	2 8		Schott, telescope crown	02388		9)f unkr	TOWD CO	mposi 4 –	_		_	_	-		-						f, 17a	
int Co27 (**) 59.5 3.0 10.0 19.2 5.0 0.11 0.02 0 0.34 (**) 59.13 3.04 3.16 9.70 0.1319.25 5.00 0 0.11 0.02 0 0.34 crown 3463 (**) 57.1 1.8 13.7 0.3 26.9 crown 658 (**) 59.7 12.8 crown 658 (**) 59.7 12.6 0.3 crown 726 (**) 59.7 12.6 0.3 crown 726 (**) 59.7 12.6 0.3 crown 726 (**) 59.7 12.6 0.3 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 59.7 crown 726 (**) 60.6 crown 726 (**) 60.6 crown 726 (**) 60.8 crow	6								_	<u> </u>					. ~		<u>. </u>		•				la, 16	
te flint. 3463 (*) 55.11 1.8 13.7 0.1319.25 5.00 0 0.11 0.02 0 0.34 crown. 3463 (*) 57.1 1.8 13.7 0.3 26.9 0.02 0.01 0.02 0.01 te flint. 0658 (*) 52.7 13.7 0.3 24.1 25.0 7 0.06 0.25 t. 0378 (*) 59.7 12.6 0.3 26.9 0.3 0.1 t. 0378 (*) 59.7 12.6 0.3 22.5 0.3 0.1 flint. 506.6 (*) 56.4 12.0 0.3 15.1 4.1 11.1 0.2 0.7 barium flint. 5062 (*) 56.9 1.5 1.5 1.0 0.2 0.7 0846 (**) 56.2 1.5 1.6 0.0 7.0 0.3 0.7	7		Schott, light barium flint					0,	0.	19.								0,	e (_	-	
te flint.	- -		Same, analysis	3463				Ē.	9 c	13 19. 3 26.				o c				o c	-				~	
te flint.	-		Schott, light flint	0726				10	- 10	<u> </u>								· •	4 65			_	. 3	
t. (**) 53.7 (**) 59.7 (**) 59.7 (**) 50.8 (**) 50.8 (**) 50.8 (**) 50.8 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.4 (**) 50.8 (**) 50.4 (**) 50.8 (**) 50.9 (**	7 4		Schott, light borosilicate flint	0658		10						52.5	-	-		ö	8	0 0	22			4.	7, 10, 15,	16
flint 1018 (*) 60.6 13.9 0.3 2.5 22.5 0.3 0.7 flint 1078 (*) 56.4 12.0 0.3 15.1 4.1 11.1 0.2 0.7 barium flint (**) 56.9 1.7 1.7 8.3 14.8 4.1 11.7 0.2 0.7 barium flint 0.946 (**) 56.2 1.5 1.5 1.6 9.0 7.0 0.3	# #		Schott, extra light flint	0378		. 60				•		27.	D 10	<u> </u>	•			<i>.</i>	- 63			<u>- 10</u>		
Mint	34.5		Chance, light flint	1018		9.0		113			٠, ١٥, ٠	22.	٠, دي	0 0	en c								ee e	
Derium flint 0846 (**) 56.2 1.7 1.7 8.3 14.3 2.5 12.7 0.3	23		Chance, light barium flint			# G.		1 2	- m		4 4	2 2		· •	4 61									
	22 22	/530	Bureau of Standards, barium flint					_=	e c			5	۰ ۵					_					0. 125. 179	

Contains also 7.5 %

No.	-		TARG.					-					1		1						
52 552/461	161 Change Right basium flint	7003	(6)	1 4 4 4	-	11.0	19 0 61	0 2 4	4 5	194	0	-	0	-	0 0	2 0 1			-	1.0	
		0463	-	unknown composition, but	n com	osition	but 1	probab	probably differs	ers but	but little f	from 58	q			_				5. 7.	14
		8653		55.9	-	=	11.1	1.3	-	32	6.	0.	23	_		0.1			_	13	
56 568/440		665	(6)	52.3		-	_	0.3 7	7.4	29	6.	0.3	2	_		0.3			_	13	
57 563/497	_	0543		51.6		2	9.5			12.0 11	11.0	_		_		0.3			_	5, 14	_
58 566/550		4469		49.3		3.2	_	0.3 27			1	0.3	53	_	0.8	_			_	11c, 13	13
59 568/530		0602	(89)	51.2	_	22	0.0	20			0.	_	_	_	_	0.3			_	176	
0 571/430		0154	(89)	54.3	1.5	0	8.0			33	33.0			_		0.2				2, 4,	2, 4, 7, 11a,
																					91
7	Same, analysis			54.75	0.45	.31	7.99	0.05	64	0.96 29	29.30 0		0.04 0.	0.02 0		0.14		90.090.0	0	20	
		0527				-	9.5	20.	0		0.	_		_		0.3			-	7, 15	7, 15
		0211		_	3.0	_	5.	29.	0	10.3						0.4			_	63	
		0211						55	8.3 10	10.1				0.1		0.1				2, 4,	5, 11c, 1
2				200	_	14	0	0.15 29	29.88 8	19.8		0.05 0.	0.65 0.01	01		0.38		0.030	0.03 0.04 0.14		
				9.	4.0		0.9	22	2.2	6.6						1.4			_	7	
	120 Light flint		3	54		9	20				35.0		_							6, 16	
	577 Chance, medium barium crown	2006		45.6	4.4			0.3 32		6.7	_	4.9	6			9.0			_	13	
67 574/570	570 Light barium crown			47	4	3		25			_	1		_						6, 16	
68 574/571		01143		8.74	4.5	0.	5.5	32	28.5 10	10.3			_	0.1		0.3			_	14, 17c	170
9 575/414		1017		52.8		10	_	0.3		36	20	0.2	2			0.1			-	13	
70 576/408		0184	(68)	53 7		1 0 1	8		_	36	36.6			0	_	0					116 112
										3									_	19%	
579/541	Schott light barium grown	0440	(68)				10	9.1	0 15		-					0 3				1	5 7 14 170
710 580/538		22.0		46.09	4 50	0.0	0.0	0 0	99 30 15 53		4 70		00 0	0		0 0	0 0				71, 114
		100	(6)				-		0.03		0.	0	0.00	0		0.0				,	
		407		92.9		_	0	0.3	91	67.5		0.		-		0.1			-	10, 13	9
	142 Schott, ordinary light flint	0276		52.45	=	_	_		34.	00				0.02	2	0.2			-		
74 581/419				53.9		1.0	7.6	2.0	_		35.2					0.3				7	
583/469	169 Schott, light barium flint	0578	(89)	49.1		-	3.5	1.	13.0 8	8.5 19	2	_		0.1		0.5			_		7, 10, 14,
750 600 1400				00			00	,		3	i									176	
		007	6	00.64		1.24	02.50		13.30 8.	3 :	10.74	0 0	0.00 0.01	0 10		0.01	0.01		0.08		
		466		_						20 1		0.5	20 1	_		_				13	
77 584/561		7472		_	5.1	_				2	-	0	57	_	0.8	_				13	
5 555/405		2	(48)		_	1.0	6.0	2.0		36	36.7	1	1	_		0.3				1	
80 501/605	305 Sobott dones barium groun	00100			15.0	_	_		0.75	_		0.7	- 0	_		0.0			_	1 2	
	Schott, dense barrum crown	02122	(00)	0.70	0.0	_		4 .			4	0.	0			1.5			_	5, 7, 14	14
69 606/440	Schott, Darlum mnt	01266		45.2			8.1	1		3	27.7			0.1		0.4			_	11a,	17a
2 606/570	140 Barum lint		€			9		11	15			c								6, 16	
84 610/574	274 Sebatt barriert benefit	00000		à.			_	4 4				0 1			_					0, 10	6, 16
		01029		04.0	1.0			4.2	0.	o.			0	0.1		0.0			_	2, 5,	14, 15, 17a,
																				176	
86 610/568	568 Same, analysis	01209	(3)	40.17	5.96	0.13	0.03	0.03 42	42.35 8	8.17 0		63	2.79 0.02	0 0 0		_	0.03			126	
		4873			7.7	_		CO3	9 9.	2.7		33	20		0.3	3 0.7			_	13	
		02071			12.0	_	_	48	48.0	_		8.0	0	_	_	1.0				5, 7, 10	10
				34.561	-	0.21	_		16.9	1.14 0			5.02	0.02			0.04		_	3	
		8065	(6)	31.3	15.4		0.5	03				00	3.5	_	0.4	0.5			_	13	
90 613/563		2065		36.7	_	_	_		45.1 6	8.9	- (65	9	_		0.8				5, 11	5, 11a, 13
1 013/369	369 Schott, ordinary silicate flint	0118		46.6		1.5	00.	_		43	43.8		_	_		0.3			_	5, 7	, 9, 110
91a 614/369			(67)	45.64				0.05		43	45		0.03			0 22			_	110	11c, 12
		4743		48.0		5.2	2	0.3		45	45.1	0.	0.2	_		0.1				13	
		3743	(6)	47.5				0.3		45	9.	0	2	_		0.1			_	13	
		1065		_	4.7		_	0.2 45.	6	6.7		89	5	_	0.4	-			_	13	
				45		_	4			48		_		_					_	6, 16	
96 621/361	361 Schott, ordinary silicate flint	0103		44.6		20	*		_	46.	9.		_	_		0.3			_	10,	10, 11a, 11c,
					_						_	_		_					_	126	125, 14, 16,
7 621/361		26.1		18 2		_	-	0		4.7	0	0	c	_	_				_	13	
98 627/391		0748	(68)	42.8	-	0.7	1 10		10.8	5.1 32.6	9		9		_	0.0				5.7	5. 7. 10. 14. 17a
		6160		44		_			_			_	_	_	_				_	10, 17a	70
		0102				_		-		-				_							
		2010		41		_				51.7	51.7	_	_	0.1	_	0.2			_	2, 4,	2, 4, 5, 16, 176

	25.			ä	BRO.	Bace Naso Kao	N O		CaO B	BaO Zn	O Pb	O ME	ZnO PbO MgO AlsO FerOs MnsOs 8bsOs AstOs AssOs	FeaOs	Mn ₂ O ₈	P.O.q	PiO. As	<u>5</u>	 	80. H.O	Table No.
ē	047/337	extra	337	Ē	8.	_	_	50	0.2	_	21.6	9	0.2			-	0.1	_		13	
102	650/322	650/322 Schott, heavy silicate flint	_		0. Q	0	0.5	٠.		_	22	9			80.0		8.			10	5, 7, 9, 11c,
103	AKK/330	Tabeta Gint			9	•				_	52				-						14, 17c 6. 16
3 3	668/356	Chance very dense barium flint	4675	€	9	-		.0	.2 13.6	.6 4.7		- 23	0.3		_	0.6	-2.				11c. 13
105	680/317		0192		38.0		2	5.0				o c			9.0		0.2	-			10, 16, 17a
108	717/295				35.1		~		0.1		61	20	0.1							13	
107	717/295	Schott, heavy silicate flint			33.7		4		_		62	_			-	_	0.3			S.	5, 7, 11a, 16
108	751/276	Schott, heavy silicate flint		•	ლ ფ						67.5	<u>-</u>				_			•	20	2, 4, 14,] 17c
100	755/275	Schott heavy allicate flint	0165		4.8		- ~	10			8						0.1			7	7. 9. 15
110	756/270			Ξ,	80		3		_		69						_			9	6, 16
===	778/265				77.3		_	29.			71					_	0.1			ď	5, 7, 11c
112	890/226	_	S163		22.0				-		78.0	_									14, 15, 17c
113	905/217	_		9	ج ا				-		3 8									0, 1	2, 11a
114	/AI /20A				2 0	_	0 68 11	11 60 7	S		70	-	33	5	_			-		<u>-</u>	01 '01 '41
116		Kanamantal alass #7	IIIAAI	<u> </u>	0.00	2	10.00		8 0	5.0	_	_			0.2					- 6	4
117		Experimental glass #34	_			12.0 10.3		-		_		3.0	4.5		!					-	-
118		Experimental glass #90.	_		69.5			0.			8	2				_	1.4			લ	4
119		Experimental glass #87.					_	9.5		67						_	2.			4	
120		Experimental glass #8.	1419		37.9	16.8	∞ .		_	δ.	8 8.1		1.0		0.1	_	0.3	_		<u>01</u>	4
121		Experimental glass #84	-			0	0.			6	0.6	S				_	ъ.			4	
122		Normal thermometer	10,111		67.3	5 7			7	_	_		2.2	١	2 5					<u>~</u>	2, 4, 7, 126
1880		Same, analysis						Tr. 7.			42	0		: ,	 87. 0	_					
183		Jena combustion, analysis	_			77	2.75			77.7		9.0	6.38							_	
124		Experimental glass #3	172		4.4	8 	- 6	_				Ξ.				_	-			N 0	,
125		Experimental glass #10	_		38.7 55.0	14	3 7						17				٠ •			N C	•
12.		Hyperimental glass #39			0. 75	<u> </u>	28			12			:_			_	2			- 6	4
128		Experimental glass #12	121111	.		- 14			25	. 2		_	4.5			_	87.			· (2)	
129		Experimental glass #24.			44.2	0	0.5 8			_	47		_		0.1	_	2.0			67	4
130		Experimental glass #23				10.2			42				2				.5			#	
131			-		0.0	18	œ (-	4	6	9 .	2.		0.1	_					126
132			81419	<u> </u>	67.9	20.5	x , c			20.50	xi s	- 4	<u>-</u>		- e					-	126
3 5	507/614	507/614 Schott, light borate crown	8205			69.1	0.8		2 4	4.7	i 		18.0	-	3	_	7.0			- 01	2, 4, 7, 14, 15,
				,															_		16
135	510/600	510/600 Schott, borate crown	8204	9	<u>.</u>	63.8	8.0 3	3.5	<u> </u>	3.5	3.0	_	18.0			_	0.2	k			14, 17c
136	519/800	Schott horate erourn	VSAKS	•		-	_						92				3 0	210		7	116
137	523/614	Schott	8186	.		8.17							22.4				'n	900		67	. 21
138	573/469	Schott, borate flint		•	- w.)	0.9					32.0	_	12.0								;
139	658/489	Schott, zinc borate	2865		4.	41				- 29	2		4			_	-			× 0	, 7, 14
140	285/999	Schott, Dorate fint	212		†	×					70		0.0				<u>.</u>			•	
141	516/703					3.0	12	12.0				4.0					2.0			87	2, 7, 9, 15
142						3.0	=	<u> </u>	- 6			*					٠. نو. د				
¥ 1	558/670	558/670 Schott, phosphate crown	820e 8179		57	3.0			37				1.5	-			1.5	-		v	2, 4, 7, 13 14, 17c
																	_	o l			
145	562/665	562/665 Schott, phosphate crown	295	(15)	59.5	0.8			8 8				5.0				1.5 3.0	0		- 6	15, 7 2
	200		1		-1		-				-										

MECHANICAL PROPERTIES OF GLASS Density

The density of glass is dependent not only on its composition but also on its thermal history; variation in the latter factor may cause differences of ± 0.002 . Figures 1–5 give the density-composition relations for a number of annealed experimental glasses. The density of four series of glasses of the general formula $100 \, \text{SiO}_2 \cdot 20$ or $40 \, \text{Na}_2\text{O}$ (or $20 \, \text{or} \, 40 \, \text{K}_2\text{O}$) · xCaO can be represented by the equation d = mx + b, in which x = weight % CaO. Values of m, b and the range of x are: For $20 \, \text{Na}_2\text{O} : 0.0124$, 2.368, 3.7 - 23.7%; for $40 \, \text{Na}_2\text{O} : 0.0092$, 2.475, $3.2 - 21 \, \%$; for $20 \, \text{K}_2\text{O} : 0.0097$, 2.386, $3 - 22 \, \%$; for $40 \, \text{K}_2\text{O} : 0.0089$, 2.464, $2.7 - 18.6 \, \%$ (45). The density of multicomponent commercial and experimental glasses is given in Table 2 and of optical glasses in Table 13.

Fig. 1.—Density of the ternary Na₂O-CaO-SiO₂ glasses. Composition in weight % (41).

Fig. 2.—Density of some glasses obtained from Na₂O.3SiO₂ by substitution of CaO, MgO, Al₂O₃ or TiO₂ for Na₂O. Exact compositions are given in the originals (19, 20, 24, 55).

Fig. 3.—Density of some alkali-lead oxide glasses of the approximate composition shown (46).

Fig. 4.—Density of some alkali-barium oxide glasses of the approximate composition shown (47).

Fig. 5.—Density of some Na₂O₃-SiO₂ glasses. Exact compositions are given in the original (28).

TABLE 2.—PROPERTIES OF SOME MULTICOMPONENT GLASSES

Serial No.	Ind.	Туре	Density g/cm³	Young's modulus	Poisson's ratio	Tensile strength	Com- pressive strength	Thermal expansion $10^6 \ \Delta l$	Specific heat
110.	110.		g/em·		1 kilo-mega			$l = \overline{\Delta t}$	g-cal/g
				-	4.50 lb./in.2	= 1.020 kg	g/cm²		
1	1	Pyrex laboratory		611(12)				$3.2 (19-350^{\circ})(^{12})$	$0.20(^{12})$
1a		Pyrex radio						3.0	
2	3	496/644		715(65)	0.197(59)	0.68(66)	12.4(66)		0.204(65)
3	6	Thermometer, 59 ^{III}		711(65)				5.90 (0-100)(34)	
4	7	506/602		644(65)	0.221(59)				
5	12	511/640		731(65)	0.210(59)				
6	14	513/637		781(65)	0.213(59)			7.97 (17.5-94.7)(51)	
7	15	513/573		637(65)	0.226(59)	0.83(66)	9.6(66)		
8	21	516/536	2.6 (68)		0.219(59)			0 00 (10 # 00 #)(20)	
9	22	517/609	2.49 (68)	704(65)	0.001/75	0.00	0.000	8.83 (18.7-90.5)(34)	
10	23	517/602	2.580(66)	647(65)	0.231(59)	0.66(66)	9.0(66)	9.63 (17-95.5)(51)	
11	60	571/430	0.01 (65)	598(65)	0.222(59)	1		7.93 (12.9–97.6)(51)	
12	62	573/580	3.21 (68)		0.000(50)			7.90 (18.9-93.1)(51)	
13	63	573/576	3.21 (68)	727(65)	0.252(59)	0 70/00	0.0(00)		0.140/85\
14	84	610/574	3.532(66)		0.271(59)	0.73(66)	8.3(66)		0.140(65)
15	100	645/341	3.879(66)	535(65)	0.224(59)	0.53(66)	8.3(66)		ŀ
16	108	751/276	4.731(66)		0.239(59)	0.52(66)	6.6(66)	0.00 (04 5.04)(51)	
17	113	905/217 165 ^{III}	5.944(66)		0.261(59)	0.35(66)	5.9(66)	9.33 (24.5-84)(51)	0.100/65
18	116	105	2.479(66) 2.378(66)			0.82(66)	11.1(66)		0.196(65)
19 20	117 118		2.378(00)		0.001/59	0.80(66)	9.7(66)		
21	118			621(65) 782(65)	0.221(59)				
22	120		2.629(66)			0.66(66)	9.7(66)		į
23	120	Thermometer, 16 ^{III}	2.585(66)	732(65)	0.228(59)	0.66(00)	9.7(00)	8.03 (14.6-92.2)(34)	
23 24	124	I nermometer, 10	2.383(66)		0.228(33)			8.03 (14.0-92.2)(04)	0.209(65)
25	124		2.424(66)	1	0.253(59)	0.77(66)	6.7(66)		0.209(55)
26	126		2.480(66)	, ,	0.233(33)	0.11(33)	0.7(55)		0.103(65)
20 27	120		2.668(66)		0.261(59)	0.81(66)	7.2(66)		0.201(-0)
28	128		2.848(66)		0.201(-3)	0.01(-3)	1.2(-3)	4.57 (12.69-89.8)(34)	0.162(65)
29	129		3.578(66)	,	ĺ	0.60(66)	7.6(66)	4.07 (12.03 03.0)(-1)	0.102(**)
20	123	Borate glasses	0.010(*)	020(**)		0.00()	1.0()		
30	134	507/614	2.243(66)	461(65)	0.274(59)	0.57(66)	8.0(66)	6.71 (14.4-94.4)(51)	0.218(65)
31	137	523/614	2.238(66)		0.273(59)	3.01(11)	0.0(-)	(11.1 01.1)(-1)	0.232(65)
32	139	653/508	3.527(66)		0.319(59)			3.33 (10.35-92.9)(51)	0.166(65)
33	140	666/392	3.691(66)		3.325()			3.33 (20.00 52.5)()	0.136(65)
-•	- 20	Phosphate glasses	21332()		}				
34	141	516/700	2.588(66)					9.30(17.7-92.7)(51)	0.190(65)
35	142	522/697	2.588(66)	664(65)	0.235(59)	0.55(66)	7.0(66)		'
36	143	558/670	3.070(66)		0.253(59)	0.75(66)	7.4(66)	8.70(20.3-92.2)(51)	0.159(65)
37	146	567/656		1 ' '	0.272(59)	, ,	, /		0.146(65)

Viscosity

For definition of viscosity see vol. 1, p. 42. The variation of viscosity with composition and with temperature in the ternary system Na₂O-CaO-SiO₂ is shown in Figs. 6-12; the effect of replacement of CaO by MgO or by Al₂O₃, in Figs. 13 and 14 respt.; and the temperature-viscosity curves of a number of experimental glasses are shown in Fig. 15 and of optical glasses in Fig. 16.

Fig. 6.—Log isokoms (lines of constant viscosity) in the system Na_2O -CaO-SiO₂, at 900°. Viscosity in log poises; composition in weight %. The broken line is the liquidus curve at 900°. *Cf.* Fig. 20 (61).

Fig. 7.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1000°. The broken line is the liquidus curve at 1000° (*1).

Fig. 8.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1100°. The broken line is the liquidus curve at 1100° (*1).

Fig. 9.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1200°. The broken line is the liquidus curve at 1200° (⁶¹).

Fig. 10.—Log isokoms in the system $Na_2O-CaO-SiO_2$ at 1300°. The mixtures at this temperature are all above the liquidus surface, except a few high in SiO_2 (61).

Fig. 11.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1400° (61).

Fig. 12.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1500° (61).

Fig. 13.—Effect on viscosity of replacing CaO by MgO in the mixture $1.2\mathrm{Na}_2\mathrm{O} \cdot 0.8$ CaO \cdot 6SiO₂, at different temperatures. Viscosity in poises (14-1).

Fig. 14.—Effect on viscosity of replacing CaO by Al₂O₃ in the mixture 1.1Na₂O · 0.9 CaO·6SiO₂, at different temperatures (14.1).

Viscosity

For definition of viscosity see vol. 1, p. 42. The variation of viscosity with composition and with temperature in the ternary system Na₂O-CaO-SiO₂ is shown in Figs. 6-12; the effect of replacement of CaO by MgO or by Al₂O₃, in Figs. 13 and 14 respt.; and the temperature-viscosity curves of a number of experimental glasses are shown in Fig. 15 and of optical glasses in Fig. 16.

Fig. 6.—Log isokoms (lines of constant viscosity) in the system Na₂O-CaO-SiO₂, at 900°. Viscosity in log poises; composition in weight %. The broken line is the liquidus curve at 900°. Cf. Fig. 20 (61).

Fig. 7.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1000°. The broken line is the liquidus curve at 1000° (*1).

Fig. 8.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1100°. The broken line is the liquidus curve at 1100° (⁶¹).

Fig. 9.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1200°. The broken line is the liquidus curve at 1200° (*1).

GLASS 95

Fig. 10.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1300°. The mixtures at this temperature are all above the liquidus surface, except a few high in SiO₂ (61).

Fig. 11.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1400° (61).

Fig. 12.—Log isokoms in the system Na₂O-CaO-SiO₂ at 1500° (61).

Fig. 13.—Effect on viscosity of replacing CaO by MgO in the mixture $1.2\mathrm{Na}_2\mathrm{O} \cdot 0.8$ CaO \cdot 68iO₂, at different temperatures. Viscosity in poises (14.1).

Fig. 14.—Effect on viscosity of replacing CaO by Al_2O_3 in the mixture $1.1Na_2O \cdot 0.9$ CaO $\cdot 6SiO_2$, at different temperatures (14.1).

Fig. 15.—Variation of log viscosity, in poises, with temperature, of a number of experimental glasses (14).

Fig. 16.—Variation of viscosity with temperature in a number of optical glasses (*1.1).

Surface Tension

The variation of surface tension with composition in the ternary Na₂O-CaO-SiO₂ glasses at constant temperature is shown in Figs. 17 and 18; the variation with temperature in Fig. 19.

Fig. 17.—Surface tension of Na₂O-CaO-SiO₂ mixtures at 12Q6° (61).

Fig. 18.—Surface tension of Na₂O-CaO-SiO₂ mixtures at 1454° (61).

Fig. 19.—Variation of surface tension with temperature (61).

Strength

The strength of glass is so greatly influenced by its thermal history (33) and the condition of its surface (38) that the values given are of uncertain significance and should be used only with an ample factor of safety.

Values of tensile and compressive strength of a number of glasses are given in Table 2. The strength of glass fibers as a function of thickness is given by Griffith (33). The following summarizes the data for tubes, determined on a glass of unknown composition.

Table 3.—Bursting Strength of Glass Tubes (44) Maximum fiber stress, T_m , calculated from the formula

$$T_m = \frac{1}{4} \left[5P_m + 7 \left(\frac{P_m - 1}{\left(\frac{R}{R'} \right)^2 - 1} \right) - 1 \right]$$
 (unit = 10⁶ barye)

Shape of tubes	Range of r	adii, R, mm	Num- ber	Range of bursting	Max. fiber	Mean var. from
	External,	Internal,	tubes tested	pressures,	stress, Tm	mean,
Thick walled	9-18	3-6	9	230-380	470	14
Capillary	5-7	0.24-1.0	16	420-1200	902	27
Thin walled	3.8-7.8	3.4-7.3	17	54-377	628	20

Elastic Properties

Young's modulus, E, and Poisson's ratio, σ , for a number of commercial and experimental glasses are given in Table 2; the rigidity and bulk moduli, C and K, are related to these through the equation $C = E/2(1+\sigma)$ and $K = E/3(1-2\sigma)$. The variation of E, in kilo-megabaryes, with weight % of CaO is given by the equation E = 13.9y + 565.6, in the range 0-11% CaO (10a). The variation of Young's modulus with temperature is shown in Table 4.

Table 4.—The Effect of Temperature on Elasticity (66) $E_1 = E_{20} [1 - \alpha (t - 20)^{\beta}];$ range, room temp. to t_{max} . (unit: 109 barye)

			30)		
Ind. No.	Glass Type	E 20°	$\log_{10} \alpha$	$\log_{10}eta$	$t_{ m max}$
3	496/644	752	9.018	0.428	482
7	506/602	655	4.618	0	448
12	511/640	740	$\bar{4}.352$	0	475
15	513/573	684	5.912	0.065	409
22	517/609	709	4.369	0	433
23	517/602	654	4.575	0	394
45	545/503	549	$\overline{15}.452$	0.706	383
60	571/430	609	$\overline{10}.973$	0.499	374
63	573/575	744	6.923	0.165	427
100	645/341	540	$\overline{24}.492$	0.945	340
108	751/276	539	8.634	0.401	357
116		738	5.543	0.082	460
117		721	5.114	0	482
118	i		4.616	0	434
119		817	4.248	0	447
120		652	15.401	0.717	433
121		741	11.092	0.553	407
122		730	6.435	0.232	426
125		-604	5.696	0.113	455
127	,	577	4.193	0	417
129		532	13.897	0.643	413
130	1	798	5.330	0.094	486
134	507/614	492	4.449	0	281
143	558/670	631	$\overline{6}$. 230	0.255	412

THERMAL PROPERTIES OF GLASS

Melting Point Diagrams

The melting point diagrams showing the compositions of the crystalline solid phases which may exist in equilibrium with liquid and the relation between equilibrium temperature and composition of that liquid are not known for most of the glass-forming systems. Figures 20 and 21 give these for the ternary system Na₂O · SiO₂-CaO · SiO₂-SiO₂ and the binary system PbO-SiO₂.

Fig. 20.—Melting point diagram of the system Na₂O-CaO-SiO₂.

Composition in weight % (3°).

Fig. 21.—Melting point diagram of the system PbO-SiO₂ (11).

TABLE 5.—THERMAL CONSTANTS OF REPRESENTATIVE GLASSES

Glasses are undercooled liquids, and hence have no melting points. Following are some of the empirical definitions that have been proposed for characterizing glasses as to their thermal behavior, and corresponding temperthe atures for some representative glasses. (a) Annealing temperature (62): the temperature at which the ratio of final to initial strain is a minimum, when heating and cooling are carried out in a prescribed manner; v. also Table 6 and Figs. 22, 23 and 24. (b) Deformation temperature (62): the lowest temperature at which, after 6 hr, one observes a deformation of the polished faces of a 20 mm cube embedded in kieselguhr with a diagonal vertical. (c) Cohesion temperature (69): the lowest temperature at which 2 plane polished pieces, 2 mm thick, 10 mm diameter, will coalesce in 30 min. (d) Softening temperature, for pyrex (12): the temperature at which a rod 9 in. long and 0.6 mm diameter lengthens under its own weight at the rate of 1 mm per min when heated in an electric furnace throughout its upper 9.5 cm of length. For the rest of the glasses (69), the constant to in the empirical 3-constant equation $(t_0 - t)(S + S_0) = C$, expressing the relation between the stress, S (measured by birefringence), produced by quickly cooling a cm cube from the temperature t. (e) Flow temperature (63): the temperature at which a 25 mm cube embedded in kieselguhr with diagonal vertical flows until the corner cannot be detected, in the given time.

TABLE 5.—CONSTANTES THER-MIQUES DES VERRES REPRÉ-SENTATIFS

Les verres sont des liquides surfondus, et par conséquent ne possèdent pas de point de fusion. Dans ce qui suit, on trouvera quelques-unes des définitions empiriques qui ont été proposées pour caractériser les verres en se basant sur la façon dont ils se comportent au point de vue thermique, et les températures correspondantes pour quelques verres représentatifs. (a) Température de recuit (62): c'est la température à laquelle le rapport de la tension finale à la tension initiale devient minimum, lorsque la conduite du chauffage et du refroidissement est effectuée d'une manière prescrite; voir aussi Table 6. (b) Température de déformation (62): c'est la température la plus basse à laquelle on observe, après six heures, une déformation des faces polies d'un cube de 20 mm de côté, disposé dans du kieselguhr avec une diagonale verticale. (c) Température de cohésion (69): c'est la température la plus basse à laquelle deux pièces polies planes de 2 mm d'épaisseur et de 10 mm de diamètre s'accoleront en trente minutes. (d) Température de ramollissement; pour le Pyrex (12): c'est la température à laquelle une baguette de 23 cm de long, et de 0,6 mm de diamètre s'allonge sous son propre poids à raison de 1 mm par min, la baguette étant chauffée dans un four électrique sur une longueur de 9,5 cm. Pour le reste des verres (69), la constante t_0 dans l'équation empirique à 3 constantes $(t_o - t)(S + S_o) = C$, exprimant la relation entre la tension, S (mesurée par biréfringence), produite par un refroidissement rapide d'un cube de 1 cm de côté de la température t. (e) Température d'écoulement (63): c'est la température à laquelle un cube de 25 mm de côté, disposé dans du kieselguhr, avec une diagonale verticale, s'écoule d'une façon telle que le coin ne peut plus être décelé dans un temps donné.

TAFEL 5.—THERMISCHE KON-STANTEN TYPISCHER GLAS-SORTEN

Gläser sind unterkühlte Flüssigkeiten und haben deshalb keinen Schmelzpunkt. Im folgenden sind einige empirische Definitionen angegeben, welche zur Charakterisierung des thermischen Verhaltens von Gläsern herangezogen werden. Auf die entsprechende Temperatur so bezogen, ist das thermische Verhalten einiger typischer Glassorten ebenfalls angegeben. (a) Kühltemperatur (62): Die Temperatur bei welcher das Verhältnis der Endspannung zur Anfangsspannung ein Minimum ist, wenn Erwärmung und Kühlung in vorgeschriebener Weise erfolgt, Siehe Tafel 6 und Fig. 22, 23 und 24. Deformations-Temperatur (62): Die tiefste Temperatur bei welcher nach 6 Stunden eine Deformation der polierten Flächen eines 20 mm Würfels bemerkt wird, welcher in Kieselgur eingebettet ist (mit vertikaler Diagonale). (c) Kohäsions-Temperatur (69): Die tiefste Temperatur bei welcher zwei plan geschliffene Flächen, 2 mm dick, 10 mm Durchmesser in 30 Minuten zusammenschmelzen. Erweichungs-Temperatur für Pyrex-Glas (12): Die Temperatur bei welcher ein Stab von 23 cm Länge und 0,6 mm Durchmesser, bei der Erhitzung der ersten obern 9.5 cm seiner Länge, im elektrischen Ofen, unter dem eigenen Gewicht eine minutliche Verlängerung um 1 mm erfährt. Für den Rest der Gläser (69) ist to die Konstante der empirischen Gleichung (drei Konstanten) $(t_o - t)(S + S_o) =$ C, welche die Beziehung zum Druck S herstellt, der durch eine rasche Kühlung von der Temperatur t herunter in einem 1 cm Würfel erzeugt wird (Druck messung nach der Doppelbrechung). (e) Fluss-Temperatur (63). Ist die Temperatur bei welcher ein 25 mm Würfel in Kieselgur eingebettet (diagonal, vertikal) zerfliesst, so, dass in der gegebenen Zeit die Ecken nicht mehr erkannt

werden können.

TABELLA 5.—COSTANTI TER-MICHE DI VETRI TIPICI

I vetri sono liquidi sopraraffreddati e non hanno perciò punto di fusione.

punto di fusione. Qui sono indicate alcune delle proprietà proposte per caratterizzare i vetri dal punto di vista del loro comportamento termico, e sono riportate le temperature corrispondenti per alcuni vetri tipici. (a) Temperatura di (ricottura) (62): la temperatura alla quale è minimo il rapporto fra tensione finale e iniziale, quando riscaldamento e raffreddamento vengono eseguiti in una maniera prescritta. Vedi pure Tabella 6, e Fig. 22, 23 e 24. (b) Temperatura di deformazione (62): la temperatura più bassa alla quale, dopo sei ore, si osserva deformazione delle facce pulimentate di un cubo di 20 mm immerso nella farina fossile con una diagonale posizione verticale. (c) Temperatura di adesione (69): la temperatura più bassa alla quale aderiscono in 30 minuti due pezzi pulimentati a superficie piana di 2 mm di spessore e 10 di diametro. (d) Temperatura di rammollimento. Per il Pyrex (12) è la temperatura alla quale una bacchetta di 23 cm di lunghezza e 0,6 mm di diametro si distende sotto il proprio peso alla velocità di 1 mm per minuto quando sia scaldata in un forno elettrico lungo i 9,5 cm superiori di lunghezza; per gli altri vetri (69) è la costante to nella equazione empirica a 3 costanti $(t_0 - t)(S + S_0) = C$, esprimente la relazione tra sforzo, S (misurato dalla birifrangenza), prodotto raffreddando rapidamente un cubo di un centimetro dalla temperatura t. (e) Temperatura di scorrimento (63): la temperatura alla quale un cubo di 25 mm immerso in farina fossile con una diagonale disposta verticalmente, scorre fino a non potersi più distinguere il vertice nel tempo indicato.

GLASS 99

Ind. No.	Anneal-	Deform-	hesion	Soften-	Flow	temperatu	res (e)
	ing (a)	ation (b)	(c)	ing (d)	30 min	2 hr	6 hr
1				815(12)			
3		570(62)	603(69)	648(69)			
12	1				850(63)	815(63)	755(63)
17	495(62)	605(62)	583(69)	565(69)	810(63)	795(63)	780(63)
24	1		555	647			
47			505	498(40)	740	725	685
57			632	640			
63			632	639	910	885	860
70			484	499			
71		590	632	642	845	805	785
80	585	645	694	681	845	830	795
87		650	694	735	870	835	820
90	565	645	686	681	840	815	800
91	410	460	486	490	730	695	680
98	1	585	547	595	780	730	685
100	390	430	493	491	660	645	630
107			465	473			
111			457	469			

Fig. 23.—Annealing temperatures of glasses derived from Na₂O :-3SiO₂, by substitution of CaO, MgO, Al₂O₃ or TiO₂ for Na₂O. Exact compositions are given in the original (15, 17, 21, 55).

ANNEALING TEMPERATURE,C°

WEIGHT PER CENT SiO2

Fig. 22.—Annealing temperature of Na₂O-SiO₂ glasses (14).

Annealing Temperature

Figures 22, 23 and 24 show the relation between annealing temperature and composition of a number of experimental glasses; in these, the annealing temperature is that at which strain disappears rapidly. Table 6 gives the annealing constants of a number of optical glasses.

TABLE 6.—ANNEALING TEMPERATURES

Values of M_1 and M_2 in equation $\log_{10} A = M_1\Theta - M_2$, in which $\Theta =$ temp., °C, and M_1 and M_2 are experimental constants, from which may be calculated the annealing constant A. The annealing temperature is defined as that temperature at which the strain will decrease from 50 to $2.5\mu\mu$ in 2 min, calculated from the formula $At = 1/\Delta n - 1/\Delta n_0$ in which t = time in min, $\Delta n =$ birefringence in $\mu\mu$.

Ind. No.	Туре	M_1	M 2	Annealing temp., °C
19	516/620	0.030	18.68	599
36	523/590	0.029	17.35	573
65	573/420	0.033	15.92	461
67	574/570	0.032	20.10	606
82	606/440	0.028	16.28	556
83	608/570	0.038	24.95	638
95	616/370	0.038	18.34	464
103	655/330	0.037	17.51	454
110	756/270	0.033	15.03	434

Fig. 24.—Annealing temperatures and thermal expansions of glasses derived from 1.2Na₂O · 0.8CaO · 6SiO₂ by substitution of CaO by MgO; and from 1.1Na₂O · 0.9CaO · 6SiO₂ by substitution of CaO by Al₂O₃ (21, 28)

Coefficient of Expansion

The linear coefficient of expansion, $\alpha=10^6\Delta l/l\Delta t$, of multicomponent commercial and experimental glasses is given in Tables 2 and 7 and for a systematic series of experimental glasses in Figs. 24–28.

Table 7.—Coefficient of Thermal Expansion $(V, also \text{ Table } 2) l = l_0 (1 + 10^{-6}\alpha t)$

		(V. also Tat	ne z) t		+ 10	•αt)	
Ind. No.	α	Range, °C	Lit.	lnd. No.	α	Range, °C	Lit.
13	9.12	18-97	(34)	71	7.02		(69)
17	7.79		(69)	74	8.8	22-451	(48)
23	9.20	37 (mean)	(34)		34.7	494-512	(48)
	10.04	93 (mean)	(34)	75	8.23		(69)
	10.61	151 (mean)	(34)	78	7.0	23-420	(48)
	11.11	212 (mean)	(34)		2.92	495-511	(48)
24	9.00		(69)	80	5.87		(69)
26	10.2	22-426	(48)	87	6.48		(69)
	55.5	502-522	(48)	91	7.88	11-99	(51)
28	10.4	24-422	(48)	98	8.76		(69)
	54.8	494-507	(48)	102	8.75		(69)
30	9.00	22-498	(48)	107	8.33		(69)
	39.3	539-562	(48)	109	8.03	20-94	(34)
33	9.03	16 -94	(34)	111	8.18		(69)
45	5.23	7-92	(34)	114	9.34	18-99	(51)
47	8.14		(69)	134	6.74	14-94	(34)
51	8.8	22-494	(48)	136	5.60	0-100	(34)
	33.1	519-550	(48)	138	5.37	0-100	(34)
54	7.74		(69)	141	9.30	18-93	(34)
61	9.00	10-93	(34)	145	8.71	21-100	(51)
64	9.0	23-499	(48)	122	*	-253 to	(2)
	64.9	569-610	(48)			+100	

* $l = l_0 \{ 1 + 10^4 [716.8 (T/100) + 48.33 (T/100)^2 + 9.02 (T/100)^3 + 10.9 (T/100)^4 \}.$

Fig. 27.—Thermal expansion of glasses derived from Na₂O · 3SiO₂ by substitution of PbO for Na₂O (42).

WEIGHT PER CENT SiO₂ Na₂O SiO₂ Glasses MEAN LINEAR COEFFICIENT OF EXPANSION, TO AT

Fig. 25.—Thermal expansion of Na₂O-SiO₂ glasses (22).

Fig. 26.—Thermal expansion of glasses derived from Na₂O · 3SiO₂ by substitution of CaO, MgO, Al₂O₃ or TiO₂ for Na₂O. Exact compositions are given in the original (16, 18, 23, 55).

Fig. 28.—Thermal expansion of Na₂O-B₂O₃-SiO₂ glasses (28).

SPECIFIC HEAT

The specific heats of commercial and experimental glasses are given in Table 2; Table 8 gives the specific heats of mineral glasses.

Table 8.—Mean Specific Heats of Silicate Glasses g cal₁₅/g per °C; v. also Table 2

These determinations are the most accurate in the literature and the compositions are well established (64).

Glass	0-100°	0-300°	0-500°	0-700°	0-900°	0-1100°
Anorthite, An					1	
$CaO \cdot Al_2O_3 \cdot 2SiO_2$				0.2406		
Andesine, Ab ₁ An ₁	0.1932	0.2211		0.2484	0.2615	
Albite, Ab	1					
Na ₂ O · Al ₂ O ₃ · 6SiO ₂ .	0.1977	0.2238	0.2410		0.2640	!
Microcline			i			
$K_2O \cdot Al_2O_3 \cdot 6SiO_2$.	0.1919	0.2163	0.2321	0.2431	0.2515	0.2598
Wollastonite						İ
CaO · SiO ₂	0.1852	0.2078	0.2208	0.2355		
Diopside					İ	
CaO · MgO · 2SiO ₂	0.1938	0.2189	0.2333	0.2439		
Magnesium metasilicate						
MgO · SiO ₂	0.2040	0.2302	0.2474	0.2598	1	

Thermal Conductivity

TABLE 9.—THERMAL CONDUCTIVITY (29)

Ind. No.	Class tumo	g-c	al cm ⁻² sec	⁻¹ (°C, cm	1)-1
ma. No.	Glass type	-190°	-78°	0°	100°
3	496/644	1.181	2.532	2.796	3.243
17	516/640	1.195		2.825	
91	613/369	0.865		1.900	
102	649/338	0.851		1.867	
109	754/275	0.807		1.698	1.812
141	516/692	0.877		1.796	2.007

ELECTRICAL PROPERTIES

Table 10.—Magnetic Susceptibility (35)

Magnetic susceptibility, κ, in units of 10⁶ cgs, as function of magnetic field-strength, H, in gausses

Ind.	,	1	Ind.		к	
No.	H = H		No.	H =	H =	H =
	1350 180	00 2200		1350	1800	2200
4	-0.90 -0.	90 -0.90	52	-0.93	-0.93	-0.93
11	-0.85 -0.	865 - 0.885	72	-0.91	-0.92	-0.93
12	-0.93 -0.	93 -0.93	75	ļ	-0.38	-0.395
35	-0.59 -0.	60 -0.607	87	-0.95	-0.95	-0.95
45	[-0.78] - 0.	78 -0.78	105	-1.01	-1.01	-1.01

TABLE 11.—DIELECTRIC PROPERTIES

The factors which measure the value of a dielectric are: (a) dielectric constant, ϵ ; (b) dielectric strength, measured by the sparking voltage, and varying with the thickness of material tested; and, (c) the energy taken up by the dielectric, measured either by the phase angle, PA, between displacement current and charging current, or by the power factor, PF, the cosine of the phase angle.

(a) Dielectric constant, e

Ind. No.	Glass type	6	Lit.	Ind. No.	Glass type	ŧ	Lit.
1	Pyrex	4.83*	(12)	81	604/438	7.71	(54.1)
(Near 2)	464/657	5.81	(54.1)	84	610/574	8.20	(54.1)
17	516/640	6.2	(13)	90	614/564	7.6	(13)
31	520/520	6.92	(54.1)	91	613/369	7.47	(54.1)
37	523/513	4.8	(13)	96	620/362	6.8	(13)
41	537/512	6.7	(13)	107	717/295	8.5	(13)
60	569/426	6.5	(13)	(Near	917/	16.2	(54.1)
				113)			

^{* (50 000} cycles.)

(b) Dielectric strength. Unit: 103 volts cm-1

Ind. No.	Glass type	Thickness tested, mm	D. S.	Lit.
1	Pyrex	6.35	134	(12)
15	513/573	0.41	429	(13)
		1.42	220	(13)
		2.28	179	(13)
70	576/408	0.41	1000	(13)
136	519/609	1.49	240	(13)
		1.60	252	(13)

(c) Energy adsorption in dielectric

Ind. No.	Type	PF, %	Ind. No.	Type	PA min
1	Pyrex lab.	0.52	58	570/560	2.81
1a	Pyrex radio	0.18	63	573/575	2.68
		PA min	70	577/414	1.82
(Near 2)	464/656	6.14	84	611/572	1.90
3	501/659	11.46	91	613/369	1.54
17	516/640	6.80	96	620/363	1.39
22	519/604	7.85	102	649/338	1.40
33	526/513	22.6	104	657/363	1.48
3 8	529/518	2.94	111	778/265	2.60

Table 12.—Electrical Resistivity and Conductivity

(a) Resistivity

Ind. No. 1, Pyrex: Surface resistivity (12): 10^{14} ohm at 34% humidity, 5×10^{3} ohm at 84% humidity. Volume resistivity (12): 10^{14} ohm-cm.

(b) Conductivity, κ . Unit: 10^{12} ohm⁻¹ cm⁻¹

Ind. No.	100°	125°	150°	175°	200°	Lit.
12	0.012	0.0703	0.334	1.59	6.90	(6)
23	0.0132	0.0672	0.425	2.32	1	(6)
44	0.00542	0.0418	0.221	1.57	7.69	(6)
52	0.0190	0.0416	0.0968	0.5076	2.38	(6)
70	0.0025	0.015	0.0684	0.668	2.544	(6)
85	0.00256	0.0134	0.0406	0.106	0.374	(6)
96	0.00233	0.00994	0.039	0.116	0.393	(6)
131	132	462	2 650	8 700	26 300	(6)
132	103	456	1 692	5 854	17 800	(6)
133	542	302	1 400	4 740		(6)

Unit: 107 ohm-1 cm-1

Ind. No.	<u> </u>			<u>' '</u>	, ,		к	t°		K	
6	250	129	402	4008	502	13	000	602	50	000	(5)
8	250	6.77	400	415.8	489	2	100				(5)
122	250	2.5	409	90.8	500		345	600	1	178	(5)

OPTICAL PROPERTIES

The relations between composition and optical properties in several systematic series are shown in Figs. 29-36. The properties of typical optical glasses are shown in Table 13, which, together with the compositions, was furnished by Chance Bros. and Co., Ltd. Table 14 gives the index for the infra-red and ultra-violet; Table 15, the effect of temperature on index; Table 16, the effect of pressure and strain; and Table 17, the absorption of light by various glasses.

TABLE 13.—DISPERSIONS OF TYPICAL OPTICAL GLASSES (9)

Ind.		Mean dis-	$\nu = \left(\frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}\right)$	Partial rela	dispersion	ons and	Sp. gr.
No.		persion n _F - n _C	$\binom{n_{\mathbf{F}}-n_{\mathbf{C}}}{}$		lispersion		
	1			D-C	F-D	G'-F	
2	1.4785	0.00682	70.2	0.00202 .296	0.00480 .704	0.00363 .532	2.47
5	1.4980	.00763	65.3	.00227	.00536	.00425	2.40
9	1.5087	.00793	64.1	.00237 .299	.00556 .701	.00445 .561	2.46
18	1.5160	.00809	63.8	.00242	.00567 .701	.00454 .561	2.54
10	1.5100	.00821	62.1	.00246		.00462	2.50
79	1.5881	.00962	61.1	.00287 .298	.00675 .702	.00541 .563	3.31
20	1.5155	.00848	60.8	.00250	.00598	.00482	2.48
27	1.5175	.00856	60.5	.00254 .297	.00602 .703	.00484 .565	2.49
29	1.5186	.00860	60.3	.00254 .295	.00606 .705	.00489 .569	2.49
89	1.6130	.01025	59.8	.00302	.00723	.00582	3.58
43	1.5407	.00910	59.4	.294 .00268	.706 .00642	.568 .00517	2.90
86	1.6118	.01037	59.0	. 295 . 00305	.705 .00732	. 568 . 00590	3.56
16	1.5149	.00890	57.9	. 294 . 00265	.706 .00625	.569 .00506	2.62
				.298	.702	. 569	
66	1.5744	.00995	57.7	.00292	.00703	.00567 .570	3.23
90	1.6134	.01090	56.3	.00319 .292	.00771 .708	.00626 .575	3.58
94	1.6150	.01097	56.1	.00323	.00776	.00630 .575	3.58
77	1.5837	.01041	56.1	.00304	.00737 .708	.00596 .573	3.29
58	1.5661	.01029	55.0	.00301	.00728 .707	.00591 .574	3.14
37	1.5237	.01003	52.2	.00295	.00708	.00577 .575	2.67
50	1.5515	.01067	51.7	.00310	.00757	.00619 .581	2.99
40	1.5290	.01026	51.6	.00300	.00726	.00593	2.56
49	1.5523	.01075	51.4	.00313	.00762 .709	.00624	3.06
76	1.5833	.01251	46.6	.00362	.00889	.00738	3.30
53	1.5534	.01201	46.1	. 289 . 00347	.711 .00854	.590 .00711	2.96
46	1.5472	.01196	45.8	.289 .00348	.711 .00848	.592 .00707	2.93
48	1.5491	.01206	45.5	.291 .00348	.709 .00858	.591 .00714	2.95
56	1.5677	.01291	44.0	. 289 . 00 371	.711 .00920	. 592 . 00763	3.08
55	1.5632	.01312	42.9	.288 .00375	.712 .00937	.591 .00781	3.07
69	1.5746	.01388	41.4	.286 .00396	.714 .00992	.595 .00830	3.18
72	1.5787	.01420	40.8	. 285 . 00406	.715 .01014	.598 .00851	3.26
93	1.6125		37.0	.286 .00471	.714 .00184	.599 .01003	3.54
92	1.6134	.01662	36.9	.285 .00473	.715 .01189	.606 .01008	3.55
97	1.6214	.01722	36.1	.285 .00491	.715 .01231	.606 .01047	3.63
104	1.6683	.01876	35.6	. 285 . 00533	.715 .01343	.608 .01147	3.98
101	1.6469		33.7	.284 .00541	.716 .01376	.611 .01170	3.87
106	1.7167		29.5	.282 .00686	.718 .01744	.610 .01511	4.47
	<u> </u>		L	. 282	.718	.622	

The order is that of decreasing ν .

Fig. 29.—Refractive index of Na₂O-CaO-SiO₂ glasses (41).

Fig. 30.—Refractive index and γ -value of K₂O-CaO-SiO₂ glasses of the approximate composition shown (48).

GLASS 103

Fig. 31.—Refractive index and γ-value of Na₂O-BaO-SiO₂ glasses of the approximate composition shown (46).

Fig. 32.—Refractive index and γ-value of K₂O-BaO-SiO₂ glasses of the approximate composition shown (46).

Fig. 33.—Refractive index and γ-value of Na₂O-PbO-SiO₂ glasses of the approximate composition shown (47).

Fig. 34.—Refractive index and γ-value of K₂O-PbO-SiO₂ glasses of the approximate composition shown (⁴⁷).

Fig. 35.—Refractive index and γ -value of glasses derived from Na₂O · 3SiO₂ by substitution of Al₂O₃ or TiO₂ for Na₂O. Exact compositions are given in the original (10, 55).

Fig. 36.—Refractive index and γ-value of Na₂O-B₂O₃-SiO₂ glasses. Exact compositions are given in the original (28)

INTERNATIONAL CRITICAL TABLES

TABLE 14 —REPROTIVE INDICES FOR VARIOUS WAVE LENGTHS

	Wave					Index	number	(from 7	Table 1)	and Lit.				
Source	$\mu\mu$	134(60)	135(53)	12(60)	24(60)	25(60)	31(53)	32(55)	38(60)	39(60)	42(60)	54(60)	144(53)	57(60)
	2200	101()	100()	12()	21()	1.4943	01()	02()	00()	00()	12()	01()	(/	0.()
	2000		1.4845				1.4973						1.5390	
	1800		1.4884				1.4999						1.5424	
	1600		1.4919				1.5024						1.5452	
	1400		1.4950				1.5048						1.5476	
	1200		1.4979				1.5069						1.5497	
	1000		1.5009				1.5096						1.5522	
	800		1.5044			1.5103							1.5555	
	768		1.50426			1.51143	1.51368	1.51410					1.55651	
	656.3	1.50486	1.50742	1.50883	1.51436	1.51446	1.51712	1.51742	1.51932	1.52441	1.53755	1.55771	1.55957	1.56014
		1.50525		1.50917										1.56068
	589.0	1.50734	1.51007	1.51124	1.51693	1.51698	1.52002	1.52046	1.52231	1.52704	1.54025	1.56075	1.56207	1.56343
	537.9	1.50976		1.51362	1.51957				1.52536	1.52961	1.54297	1.56375		1.56671
	534.9		1.51287			1.51971	1.52327	1.52363					1.56476	
	533.8	1.51004		1.51386	1.51982				1.52568	1.52989	1.54321	1.56407		1.56689
		1.51154	1.51447	1.51534	1.52143	1.52132	1.52525	1.52567	1.52754	1.53146	1.54489	1.56596	1.56643	1.56914
	486.1		1.51610	1.51690		1.52299	1.52715	1.52752	1.52954	1.53303			1.56794	1.57148
		1.51362												
	467.8	1.51461	1.51769	1.51828	1.52466	1.52451	1.52903	1.52946	1.53129	1.53464	1.54825	1.56968	1.56949	1.57333
		1.51704		1.52066	1.52725							1.57268		1.57667
		1.51775	1.52092	1.52136		1.52778	1.53312	1.53341	1.53521	1.53790			1.57273	1.57764
	398.8	1.52210		1.52546	1.53261				1.54075	1.54245	1.55646	1.57896		1.58375
		1.52852	1.53195	1.53156	1.53943	1.53897	1.54664	1.54726	1.54897	1.54911	1.56354	1.58704	1.58330	1.59300
	353.6	1.53010			1.54111					1.55071	1.56525			1.59526
		1.53157												
		1.53307	1.53660	1.53586	1.54432	1.54369	1.55262	1.55330	1.55504	1.55379	1.56852	1.59279	1.58776	1.59978
		1.53490							1.55746	1.55564	1.57046	1.59452		1.60248
		1.53721		1.53982	1.54879				1.56043	1.55804	1.57296	1.59796		1.60593
		1.53811							1.56157					1.60748
	326.1		1.54046			1.54755	1.55770	1.55838					1.59138	
		1.53896								1.56004	a second	1.60033		1.60900
		1.53932		1.54168					1.56311	1.56086	1.57511	1.60081		1.61015
	321.0			1.54204										
		1.53982		1.54238							1.57593			1.61189
		1.54079			1.55175					1.56193	1.57830	1.60263		
	315.7		1 51111	1.54475			1 50007	1 50001	1.56675	1 500.40	1 55050	1.60475		
	313.3	1				200 10 10 10 10 10 10 10 10 10 10 10 10 1	1.56307				1.57870			
	306.5		1.04020	1.04009	1.00010	1.00040	1.56558	1.00032	1.56714		1.58293			
	298.0		1.55005			1 55792	1.57093	1 57176		1.00/14				
	288.0	1	1.55437			1.56161		1.0/1/0						
	283.7		1.55648			1.56372								
	276.3		1.56027			1.56759	1							
	2400		1.00021	1.5440		1.00100					1.6131		-	1.8286
	2200			1.5463							1.6150		1.7082	1.8310
	2000		1.5515	1.5487							1.6171		1.7104	1.8316
	1800	1		1.5512							1.6193			1.8364
	1600	1 1		1.5535							1.6217		Control of the second	1.8396
	1400	1		1.5559							1.6246		1-11 0.000 NOVE 1	1.8433
	1200			1.5585							1.6277		1.7215	THE RESERVE THE PROPERTY OF THE PARTY OF THE
	1000		1.5637	1.5615							1.6315		A. T. C. C. C. C. C. C. C. C. C. C. C. C. C.	1.8541
	800		1.5673	1.5659							1.6373		CHANGE WAS TO SECTION	1.8650
1)		1.56731				1.57508		1.60277			1.63820		1.73530	1.86702
.)		1.57073	1.57120	1.57119			1.58848	1.60644	1.61574	1.62285	1.64440	1.65326	1.74368	1.87893
	643.9				1.57619		1.58896		1.61656			1.65435		
)		1.57363	1.57422	1.57524	1.57893	1.58282	1.59144	1.60956	1.62073	1.62750	1.64985	1.65762	1.75130	1.88995
	537.9				1.58211		1.59433		1.62578	1.63226		1.66146		
		1.57687	1.57746	1.57973		1.58689	l a sala a sala	1.61292			1.65601		F7790557570000	1.90262
					1.58244		1.59463		1.62630			1.66185		
	E00 0	1 57000	1 57029	1 58947	1 58444	1 58941	1 50644	1 61504	1.62952	1 63577	1 65070	1 66492	1 76520	

GLASS 105

Source	Wave length					Index	number	(from Ta	able 1) a	nd Lit.				
	μμ	68(55)	68(53)	70(54)	71(60)	75(55)	80(60)	84(55)	96(60)	98(60)	102(53)	139(60)	108(53)	112(53)
Cd5	479.9	1.58132	1.58188	1.58594	1.58715	1.59257	1.59878	1.61770	1.63396	1.63992	1.66482	1.66742	1.77256	
Cd6	467.8	1.58253	1.58306	1.58772	1.58848	1.59419	1.59996	1.61891	1.63615	1.64196	1.63725	1.66904	1.77609	
Cd7	441.6				1.59174		1.60285		1.64162	1.64704		1.67292		
$H_{\gamma}(G^1)$	434.0	1.58651	1.58710	1.59355	1.59268	1.59920	1.60367	1.62320	1.64319		1.67561	1.67436	1.78800	1.9449
Cd8	398.8				1.59852		1.60870		1.65333	1.65792		1.68104		
Cd9	361.2	1.59951	1.60022	1.61388	1.60726	1.61691	1.61622	1.63683	1.66933	1.67269	1.70536	1.69146	1.83263	
Cd	353.6				1.60937		1.61800		1.67346			1.69400		
Cd10	346.7	1.60326	1.60399	1.62008	1.61148	1.62228	1.61978	1.64077	1.67753	1.68018	1.71485	1.69648	1.84731	
Cd11	340.4	1.60510	1.60583	1.62320	1.61356	1.62492	1.62148	1.64271	1.68160	1.68390	1.71968	1.69892	1.85487	
Cd	334.5				1.61559		1.62356		1.68685	1.68838		1.70135		
Cd ₁₂	328.4				1.61922		1.62622		1.69265	1.69454		1.70408		
Cd	326.4				1.62069				1.69356			1.70562		
Cd	326.1	1.60973	1.61045	1.63134		1.63166		1.64754			1.73245			
Cd	323.6				1.62159									
Cd	322.1													
Cd	321.0									In	dex num	ber 108(54)	
Cd	320.2				1.62256					1		11		
Cd	318.5				1.62311				Wave		n	Wave		n
Cd	315.7				1.62462				length	μ		length	μμ	
Cd_{13}		2011	1.61525			1.63908		1.65254	4.12	1.	6688	1.2	16 1.7	7208
Cd14		1.61664	1.61744	1.64453		1.64258			3.83	1.	6758	936	1.7	7276
Cd	306.5								3.56		6821	769.9	3 1.7	35000
Cd			1.62213	1.65397					3.24	1.	6885	656.3	3 1.7	43488
Cd		1.62642							2.98	1.	6934	589.3	2 1.7	751094
Cd		1.62893	1.62997						2.71	1	6980	534.9	6 1.7	59751
Cd	276.3								2.40	1.	7029	486.1	6 1.7	70658
									2.02	1.	7086	434.0	9 1.7	787782
									1.625	1.	7144	404.4	4 1.8	801758

Table 15.—Effect of Change in Temperature on the Absolute Refractive Index of Glass

Ind.	Туре	Mean	Chang		active in $= \pm 50^{\circ}$	dex, $10^5 \Delta$	$n/\Delta t$
No.	13 pe	temp.	C	D	F	G'	Lit.
14	513/637	52.8	+0.119	+0.137	+0.178	+0.213	(51)
23	517/602	59.3	-0.129	-0.105	-0.060	-0.010	(51)
45	545/503	59.2	+0.267	+0.299	+0.356	+0.410	(51)
60	571/430	58.0	+0.226	+0.250	+0.307	+0.360	(52)
		149.6	+0.324	+0.362	+0.456	+0.548	
		251.5	+0.509	+0.568	+0.666	+0.768	
		351.5	100	+0.639		111111111111111111111111111111111111111	
		436.5	-1.861	-1.720	-1.504	-1.329	
61	572/504	56.5	+0.014	+0.045	+0.107	+0.150	(52)
	200	157.1	0.094		0.179	100	, ,
		261.5	0.144	0.167	0.249	0.355	
		357.0	0.217	0.249	0.350	0.461	
63	573/576	61.2	0.024	0.035	0.092	0.099	(52)
		154.0	0.096		0.152		` '
		257.0	0.156		0.223	0.258	
		358.0	0.221	0.247	0.297	0.340	
84	610/574	55.9	0.394	0.410	0.504		(52)
	1	148.0	0.419	0.444	0.543	0.517	, ,
		251.0	0.455		0.603		
		356.5	0.509		0.648		

Table 15.—Effect of Change in Temperature on the Absolute Refractive Index of Glass.—(Continued)

Ind.	Туре	Mean	Change		ctive ind	ex, 10 ⁵ Δ1	$n/\Delta t$
No.		temp.	C	D	F	G′	Lit.
91	613/369	55.1	0.244	0.281	0.389	0.503	(51)
109	755/275	57.7	0.703	0.778	1.058	1.294	(52)
		126.0	0.916	1.051	1.302	1.668	
		176.5	0.960	1.092	1.430	1.714	
		231.0	1.127	1.237	1.632	1.993	
		280.5	1.277	1.396	1.790	2.140	
		325.0	1.382	1.544	1.960	2.405	
		379.0	1.758	1.904	2.263	2.893	
112	890/226	60.5	1.119	1.278	1.752	2.161	(52)
		125.5	1.275	1.442	1.959	2.477	
		177.5	1.379	1.594	2.098	2.617	
		250.5	1.577	1.783	2.396	2.992	
		330.0	1.808	2.027	2.753		
114	963/197	62.6	1.218	1.472	2.110	2.800	(52)
	1	156.2	1.579	1.809	2.536	l	
		233.0	1.928	2.251	3.212		
		281.0	1.591	1.911	2.918		
134	507/604	60	-0.066	-0.074	-0.033	-0.003	(51)
141	516/703	58.1	-0.202	-0.190	-0.168	-0.142	(51)
145	562/665	60.3	-0.314	-0.305	-0.246	-0.237	(51)

TABLE 16.—Effect of Pressure on Optical Properties

The birefringence produced by a thrust F is measured in terms of the difference in index for white light of the two rays: $n_v - n_s = BF$, in which $B = \frac{n}{2R} \left(\frac{q}{v} - \frac{p}{v} \right)$, in which R = rigidity, $\frac{q}{v}$ and $\frac{p}{v}$, optical coefficients. The effect of uniform pressure, P', can be calculated from the equation $\frac{n_z - n}{n} = \frac{P'}{E} (1 - 2\sigma) \left(\frac{2p}{v} + \frac{q}{v} \right)$, in which E and σ are Young's modulus and Poisson's ratio. Unit of $F = 10^{-13}$ barye.

Ind. No.	Type	F	$oldsymbol{p}/oldsymbol{v}$	q/v	Lit
19	516/620	-2.79			(1)
36	523/590	-2.52			(1)
41	537/512	-2.66			(30)
45	545/503	-3.70	0.289	0.182	(50
60	571/430	-2.87	0.306	0.213	(50)
65	573/420	-3.13			(1)
67	574/570	-2.75			(1)
82	606/440	-3.03			(1)
83	608/570	-2.10			(1)
95	616/370	-3.06			(1)
96	621/361	-2.77			(30)
100	645/341	-2.56	0.335	0.264	(50)
103	655/330	-2.61			(1)
105	680/317	-2.17			(30)
107	717/295	-1.70			(30)
108	751/276	-1.30	0.354	0.319	(50)
110	756/270	-1.19			(1)
114	963/197	+1.88	0.427	0.466	(50)
134	507/614	-4.23	0.274	0.166	(50)

TABLE 17a.—TRANSMISSION FACTOR

 $A = I/I_0$ (v. vol. I, p. 34); ultraviolet region; wave length, λ , in $\mu\mu$; In. = Index number of glass

	Glass thickness, 1 mm (36)										
. I1	12	23	39	52	71	81	84	98	99	105	
384					0.995	0.986	0.989	0.983	0.985	0.947	
361	0.995	0.995	0.994	,	.984	.962	.958	.952	.959	. 83	
347	.988	.991	.983	0.988	.959	.925	.88	.92	.89	.64	
330	.957	.974	.938	. 959	. 89	.75	.76	.71	.74	.33	
309	.78	.70		. 69	.65	1	ĺ	1			
Glass thickness, 10 mm (36)											
434	1	1	1	1	0.969	1	1	1		1	
425	0.993	0.982	0.970	0.978	.961	0.963	0.965	0.952	0.961	0.905	
415	.982	1	.968	.973	.965	1	ł		1	ł	
406		ł	.964	Ì	.974		İ				
396	.986	.981	.980	.987	.971	.931	.941	.917	.944	.76	
384	.972	.975	.955	.968	.948	.865	.894	.84	.86	. 58	
361	.950	.969	.942	.952	.849	.68	.65	.61	.66	. 16	
347	.88	.91	.85	.88	.66	.46	.28	.41	.30	.01	
330	.65	.77	. 53	.66	.32	.06	.07	.03	.05	0	
309	.08	.03	0	.02	.01	0	0	0	0	0	
		Gla	ss thic	kness,	100 m	m (36)					
480	0.95	0.97	0.93	0.96		0.94	1	0.94	0.94	0.89	
468	0.94	0.93	0.91	0.94		0.86		0.87	0.95	0.83	
448	0.93	0.92	0.81	0.89		0.79	l	0.79	0.83	0.63	
434	l l	ł	İ		0.73	1	1	ľ			
425	0.94	0.83	0.74	0.80	0.67	0.68	0.70	0.61	0.67	0.67	
415	0.84	1	0.72	0.76	0.70		1]		
406	ł		0.70		0.77					1	
396	0.87	0.82	0.82	0.88	0.74	0.49	0.54	0.42	0.56	0.06	
384	0.75	0.78	0.63	0.72	0.59	0.23	0.33	0.18	0.22	0	
361	0.60	0.60	0.55	0.61	0.19	0.02	0.13	0.01	0.01		
347	0.92	0.38	0.19	0.29	0.02	0	0	0	0		
330	0.01		0	0.02	0	<u> </u>	<u> </u>]	l	1	
		Ind. N	o. 1, p	yrex,	l mm t	hick (12)				
λ	396	384	3	61	347	1 :	330	309		280	
A	1.00	0.97		.93	0.85		.70	0.50) (0.05	

Table 17b.—Factor (1-A)
Absorption for 1 cm path for the visible spectrum (49)

Ind.	Tuma		Wave length in μμ							
No.	Type	357	388	415	442	500	640			
12	510/640	4.7	2.5	1.2	1	0.7	0.5			
23	518/602	3.4	2.5	1.8	1.4	0.5	0.3			
38	523/513	49	3 0	12	3.6	0.7	0.7			
59	568/530	9	6	2.7		1.6				
75	583/464	18	8.6	2.5	2.1	0.9	0.5			
84	611/572	35	9.8	5.2	3.4	2.5	1.6			
96	620/362	28	9.6	4.1		0.0	0.0			
100	649/338	41	28	6.9		0.9	0.5			

Table 17c.—Absorption Constant, $k, (I = I_0 e^{-kd})$ for the Infra-red Spectral Range (53)

Ind.				1	Wave	lengt	th in	μ			
No.	0.7	0.95	1.1	1.4	1.7	2.0	2.3	2.5	2.7	2.9	3.1
25	0.01	0.04	0.05	0.01	0.01	0.09	0.20	0.34	0.51	0.73	1.2
31	0.02		0.01	0.01	0.02	0.06	0.11	0.23	0.29	0.79	1.1
68	0.02		0.03		0.05	0.07	0.11	0.17	0.34	0.75	1.3
70	0.00		0.01		0.02	0.05	0.08	0.18	0.25	0.62	1.0
102	0.00	·	0.02		0.01	0.02	0.02	0.03	0.11	0.41	0.6
108	0.00		0.00		0.00		0.00	0.01	0.08	0.30	0.6
112	0.00		0.02		0.01		0.01		0.06	0.25	0.5
135	0.00	0.01	0.06	0.10	0.16	0.21	0.37	0.85	1.25	1.73	
144		0.02	0.05	0.10	0.18	0.40	0.71	0.14	1.69		

LITERATURE

(For a key to the periodicals see end of volume)

- Adams and Williamson, 143, 190: 597, S35; 20. (2) van Agt and Onnes, 64V, 34: 618; 25. (3) Allen and Zies, 38, 1: 739; 18. (4) Ambronn, 8, 58: 139; 19. 63, 19: 401; 18. (5) Baumeister, Diss., Rostock, 1912. (4) Bolle, Diss., Berlin, 1900. (7) Branson, 54, 34: 471; 15. (8) Cauwood, English and Turner, 105, 1: 153; 17. (9) Chance Bros. and Co. Ltd., Smethwick, Birmingham, England, O.
- (10) Clarke and Turner, 105, 5: 119; 21. (10.1) Clarke and Turner, 105, 3: 260; 19. (11) Cooper, Shaw and Loomis, 11, 42: 461; 09. (12) Corning Glass Co., Corning, N. Y., O. (13) Eckert, 200, 20: 93; 23. (14) English, 105, 8: 265; 24. (14.1) English, 105, 9: 83; 25. (15) English, Hodkins, Muirhead and Turner, 105, 4: 387; 20. (16) English and Turner, 105, 3: 25; 19. (16.1) English and Turner, 105, 3: 238; 19. (17) English and Turner, 105, 3: 278; 19. (18) English and Turner, 105, 4: 115; 20. (19) English and Turner, 105, 4: 126; 20.
- (20) English and Turner, 105, 4: 153; 20. (21) English and Turner, 106, 5: 115; 21. (22) English and Turner, 105, 5: 121; 21. (23) English and Turner, 105, 5: 183; 21. (24) English and Turner, 105, 5: 277; 21. (23) English and Turner, 105, 5: 357; 21. (26) English and Turner, 105, 6: 228; 22. (27) English and Turner, 105, 7: 73; 23. (22) English and Turner, 105, 7: 155; 23. (29) Eucken, 8, 34: 185; 11.
- (30) Filon, 201, 12: 313; 04. (31) Gray, Gray and Dobbie, 5, 36: 488; 84. (32) Griffith, 62, 221: 162; 20. (33) Harris, 5, 106: 718; 24. (34) Hovestadt-Everett, Jena Glass (New York, Macmillan), 1902. (35) Königsberger, 8, 66: 698; 96. (36) Krüss, 243, 23: 197, 229; 03. (37) Lecrenier, 28, 33: 119; 24. (33) Littleton, 2, 23: 510; 23. (33) Morey and Bowen, 105, 9: 226; 25.
- (40) Morey, Bowen and Kracek, Geophysical Laboratory, Washington, D. C.,
 O. (41) Morey and Merwin, Geophysical Laboratory, Washington, D. C.,
 O. (42) Mori, 379, 385: 176; 23. (43) National Physical Laboratory, England, 54, 34: 210; 15. (44) Onnes and Braak, 64V, 16: 890; 08. 64P, 11: 30: 08. (45) Peddle, 105, 4: 20, 46, 59; 20. (46) Peddle, 105, 4: 299, 310, 330; 20. (47) Peddle, 105, 5: 201, 212, 220; 21. (48) Peters and Cragoe, 31, No. 393; 20. (49) Pflüger, 8, 11: 561; 03.
- (50) Pockels, 8, 7: 745; 02. (51) Pulfrich, 8, 45: 609; 92. (52) Reed, 8, 65: 707; 98. (53) Rubens, 8, 45: 238; 92. (54) Rubens, 8, 53: 267; 94. (54.1) Rubens, 76, 1916: 1280. (55) Sheen and Turner, 105, 8: 187; 24. (56) Simon, 8, 53: 542; 94. (57) Stott, 105, 9: 207; 25. (58) Stott, Irvine and Turner, δ, 108: 154; 25. (59) Straubel, 8, 68: 369; 99.
- (60) Trommsdorf, Diss., Jena, 1901. (61) Washburn, Shelton and Libman, 86.
 No. 140; 24. (61.1) Washburn and Shelton, 2, 15: 149; 20. (62) Weidert and Berndt, 97, 1: 121; 20. (64)
 White, 12, 47: 1; 19. (65) Winkelmann, 8, 49: 401; 93. (66) Winkelmann and Schott, 8, 51: 697; 94. (67) Wright, Manufacture of Optical Glass, Ordnance Dept. Document No. 2037; 21. (62) Zschimmer in B10, I: 869; 12. (63) Zschimmer, 124, 2: 129; 14.
- (70) Zschimmer and Schulz, 8, 42: 345; 13.

CHEMICAL DURABILITY OF GLASSES

W. E. S. TURNER

In the measurement of the durability of glasses, results may be duplicated with an accuracy of 5 to 10% only. In a series of glasses of similar composition, the results with the more durable glasses may be reproduced with an accuracy of 5%; the less durable, up to about 10%.

Les résultats ne peuvent être reproduits, dans les mesures de durabilité des verres, qu'avec une précision de 5 à 10 % seulement. Dans les séries de verres de composition similaire, les résultats concernant les verres les plus durables peuvent être reproduits avec une précision de 5 %; ceux relatifs aux verres les moins durables, jusqu'à environ 10 %.

Die Messungsergebnisse über die Dauerhaftigkeit der Gläser lassen sich nur mit einer Genauigkeit von 5 bis 10 % angeben. In einer Reihe von Gläsern ähnlicher Zusammensetzung können die Ergebnisse mit dauerhafteren Gläsern auf 5 %, mit weniger dauerhaften bis gegen 10 % Genauigkeit angegeben werden.

I risultati ottenuti nelle misure di resistenza chimica dei vetri, sono riproducibili con una approssimazione del 5–10% soltanto. In una serie di vetri di composizione simile, i valori riferentisi ai vetri più resistenti sono riproducibili con l'approssimazione del 5%, e quelli riguardanti i vetri meno resistenti con una approssimazione del 10%.

EFFECT OF COMPOSITION

TABLE 1.—FUSED-QUARTZ GLASS

Milligrams loss in wt. sustained in each test by a 76 cm³ quartz flask, with 89 cm² surface exposed, when subjected in succession to the following reagents under the conditions shown (35); cf. (53).

Reagent, time and temperatu	re		Loss mg
H ₂ O, 18°-100°	Many	80	0.0
10% NH ₃	2	_	0.8
10% NaOH	2	at	0.4
30 % NaOH	2	Days	0.0*
30% KOH	4	Õ	1.2†
2N NaOH	3 '	_	48
2N Na ₂ CO ₂	3	100°	12
2N KOH	3	1	31
2N NaOH	3	at	33
2N Na ₂ CO ₃	3	Hours	8
2N KOH	3	윤	1
2.V NaOH	3		64
N NaOH	14		` 2
N NaOH	14		1.8
N Na ₂ CO ₂	14	18	0.6
Satd. Ba(OH) ₂	14	at	0
Satd. Na ₇ SO ₄	14		0
N H ₁ PO ₄	14	Hours	. 0
10% NH ₂	14	H	0
25% NH ₃	60		0
25% NH2, Fresh flask. Up to 60° with	4 renews	als of	
reagent during experiment, 6 hrs			2.6

^{*} No adsorption of NaOH.

Remarks: Ba(OH)₂, 6 mo. at 18°, small crystals of Ba silicate formed. H₂PO₄ at 400°, extensive corrosion with formation of silicyl phosphate. Dilute acids in general, and conc. H₂SO₄,

18-100°, no action. Aqueous methylene blue, congo red, and rhodamine; ethereal iodoeosin; and alcoholic aniline blue; all slightly adsorbed but removable by hot solvents.

TABLE 2.—CAO · SIO₂ WOLLASTONITE
Milligrams oxides extracted from 2 g by acids (17, 30, 33, 38).

Oxide Acid	in at	2N Acetic	0.1 <i>N</i> HCl	2N HCl	at 60°	2N HCl	10N HCl
mg CaO	0 m	0.010	0.017	0.11	hrs 50°-	0.70	0.76
mg SiO ₂	င္က	0.000	0.004	0.040	ω	0.26	0.020

3- (or 4-) Oxide Glasses

TABLE 3

Grams H₂SO₄ equivalent to the alkali extracted by water at 80° acting for 1 hr on glass powder, size <160 mesh/in. (38, 41, 42, 43)

1. N	1. Molecular composition: $100 \text{SiO}_2 + 40 \text{R}_2 \text{O} + x \text{RO}$												
x \	$40 \mathrm{Na_2O} + x \mathrm{CaO}$	40K ₂ O + x C _a O	$20Na_2O + 20K_2O + xCaO$	$40 \mathrm{Na_2O} + x \mathrm{PbO}$	$40 \text{K}_2 \text{O} + x \text{PbO}$	$20Na_{2}O + 20K_{2}O + xPbO$	$40 \mathrm{Na_2O} + x \mathrm{BaO}$	$40\text{K}_{2}\text{O} + x\text{BaO}$	$20 \text{Na}_2 \text{O} + 20 \text{K}_2 \text{O} + x \text{PbO}$				
5	18.4	28.3	30.2	31.6		31.2	37.7	34.0	34 .0				
10	9.0	27.6	15.3	9.3		19.0	4.54	31.2	21.6				
15 .	4.3	20.4	4.42	4.2		18.2	4.44	27.8	7.6				
20	3.7	8.6	3.26	3.4	23.0	6.6	4.25	24.6	6.2				
30	2.3	5.1	2.08	1.68	19.0	3.2	1.85	17.4	3.8				
40	1.06	2.2	1.05	1.04	8.9	1.50	1.08	9.5	2.8				

[†] Adsorbed KOH difficult to remove by washing.

TABLE 3.—(Continued)

	TABLE 6 (Communica)												
2. N	2. Molecular composition: 100SiO ₂ + 20R ₂ O + xRO												
4	$20 \mathrm{Na_{2}O} + x \mathrm{CaO}$	$20\mathrm{K}_2\mathrm{O} + x\mathrm{CaO}$	$10Na_{2}O + 10K_{2}O + xCaO$	$20\mathrm{Na_{2}O}+x\mathrm{PbO}$	$20 \mathrm{K_2O} + x \mathrm{PbO}$	$10\mathrm{Na_2O} + 10\mathrm{K_2O} + x\mathrm{PbO}$	$20\mathrm{Na_{2}O} + x\mathrm{BaO}$	$20 \text{K}_2\text{O} + x \text{BaO}$	$10\text{Na}_2\text{O} + 10\text{K}_2\text{O} + x\text{PbO}$				
5	3.03	5.4	1.99		9.6	3.32		10.4	2.44				
10	1.34	1.44	0.94	0.69	3.7	1.15	1.20	2.01	1.50				
15	0.66	0.96	0.66	0.51	1.61	0.68	1.07	1.76	1.21				
20	0.40	0.60	0.40	0.37	0.60	0.37	0.87	1.08	1.03				
30	0.34	0.36	0.26	0.140	0.26	0.16	0.55	0.74	0.87				
40	0.25	0.30	0.24	0.091	0.15	0.12	0.50	0.64	0.68				

TABLE 4

Grams oxide extracted by water at 100° acting for 5 hr on 100 g glass powder, containing 7300 to 7624 particles per cm³ (30, 32).

Molecula	Molecular composition: $6SiO_2 + (2 - x)R_2O + xRO$											
Oxide extracted Comp.	2Na ₂ O	2K2O	$1.75 \mathrm{Na_2O} + 0.25 \mathrm{CaO}$	$1.75K_2O + 0.25C_8O$	$1.5\mathrm{Na_{2}O} + 0.5\mathrm{CaO}$	$1.5K_2O + 0.5C_8O$	$1.25 \text{Na}_2\text{O} + 0.75 \text{CaO}$	$1.25K_{2}O + 0.75C_{8}O$	$Na_{1}O + CaO$	$K_iO + CaO$		
R ₂ O				8.84		1	1			ı		
SiO ₂				15.82		l	1	ı		ı		
Total	15.7	35.2	2.67	24 . 66	0.22	1.17	0.09	0.17	0.04	0.05		

TABLE 5

Grams of oxides extracted at 100° in 5 hr by the action of 60 cm³ H₂O on powdered glass,
4000 particles per cm³ (21, 22, 58).

M	olecular	compositi	on: xSiO2 -	+ yR ₂ O	+zRO	$+ wR_2$	O ₂
	Compos	sition. Wt	. %	Gra	ms oxid	e extrac	eted
SiO ₂	Na ₂ O	RO	Al ₂ O ₃ + Fe ₂ O ₃	SiO ₂	Na ₂ O	RO	Total
73.7	22.5		4.0	4.25	1.47		5.80
69.6	22.0	5.1)	3.5	1.84	0.716	0.0191	2.60
70.0	17.7	9.9 Q	2.7	0.061	0.098	trace	0.159
68.0	14.8	15.7 💆	1.7	0.024	0.035	trace	0.058
66.7	11.8	19.6	1.9	0.0134	0.018	trace	0.031
69.6	19.3	7.6	3.8	2.74	0.97	0.0515	3.82
67.5	16.2	14.2 OF	2.4	0.236	0.168	trace	0.415
62.2	9.6	25.6	2.9	0.026	0.109	trace	0.134

TABLE 6

Per cent Na₂O extracted by boiling water in 1 hr acting on powdered glass, 20-30 mesh (I. M. M. sieves, v. p. 329) (11, 12, 44, 47, 48, 49).

Molecul	ar comp		100SiO R ₂ O ₃ or		3-x)	Na ₂ O +	xRO
R_aO_b	CaO	MgO	Al ₂ O ₃	TiO ₂	ZrO ₂	ZnO	BaO
0.5 1.0 2.0	8.20			1.54	4.4	7.18	17.60

 $0.59 \mid 0.27$

0.24 0.13

0.38 1.57

0.19 0.30

4.0

2.35 | 1.39

1.00 0.76

TABLE 6.—(Continued)

R _e O _b	CaO	MgO	Al ₂ O ₃	TiO2	ZrO ₂	ZnO	BaO
8.0	0.50	0.29	0.09	0.07		0.18	0.68
10	0.25	0.13	0.03	0.045		0.12	0.22
12	0.10	0.07	ł	0.03		0.06	0.12
14	0.05	0.048	ļ	0.02		0.04	0.06
16	0.04	0.028		0.012		0.02	0.04
18	0.02	0.020		0.010			
20		1		0.008			

TABLE 7

Per cent loss in weight in 1 hr in boiling 20.24 % HCl, 2N NaOH and 2N Na₂CO₃ acting on powdered glass 20-30 mesh (I. M. M. sieves) (12).

Mo	Molecular composition: $100\text{SiO}_2 + (33.3 - x)\text{Na}_2\text{O} + x\text{RO}$												
	x	2	4	6	8	10	12	14	16	18	20		
	CaO		8.2	4.2	2.6	1.7	1.2	1.0	1.0				
	MgO		1.4	0.7	0.4	0.3	0.2	0.2	0.1				
=	Al ₂ O ₃		0.9	0.4	0.2	0.2							
HCI	TiO ₂	2.0	1.0	0.5	0.3	0.2	0.2	0.2	0.1	0.1	0.1		
_	ZrO2	1.8	0.6	0.4	1				1				
	ZnO	1.8	0.9	0.5	0.3	0.2	0.2		0.1				
	BaO	9.6	2 .0	1.0	0.5	0.3	0.2	0.2	0.2				
•	CaO		2.6	2.3	2.1	2.0	1.7	1.5	1.2				
	MgO		3.1						2.1				
H	Al ₂ O ₃		2.8			2.6							
NaOH	TiO2		6.0			3.6	3.2	2.9	2.6	2.4	2.3		
Z	ZrO ₂	1.3	0.8	0.7									
	ZnO	3.7	3.2	2.8	2.4	2.2	2.1	1.9	1.7				
	BaO	5.6	3.8	3.0	2.5	2.3	2.2	1.9	1.7				
-	CaO		6.8	2.8	2.4	2.0	1.9	1.5	1.3				
	MgO			4.1									
Ċ	Al ₂ O ₂		1.0			0.4							
Na ₂ CO ₃	TiO ₂	11.3				0.9	0.8	0.7	0.7	0.6	0.5		
S	ZrO ₂	2.0			- 1								
_	ZnO	11.2			0.4	0.3	0.2	0.2	0.2				
	BaO	38.0		4.9	4.0	3.5	3.2	2.6	2.2				

TABLE 8

Grams H₂SO₄ equivalent to alkali extracted by water at 80° acting for 1 hr on 100 g glass powdered to pass 160 mesh sieve.

1. (Compos	ition: (70	-x)%	$SiO_2 + x$?	6 RO + 1	y% R₂O	(39, 42)
				12.5Na ₂ O			10Na ₂ O
\boldsymbol{x}	RO	25Na ₂ O	$25 K_2 O$	+	20Na ₂ O	20K₂O	+
				12.5K ₂ O			10K2O
5	CaO	5.32	4.50				
	PbO	34.2	17.5				
	BaO	34.5	21.1	28.2			
10	CaO				1.64	0.75	0.67
	PbO				9.23	11.4	11.5
	BaO	28.8	18.6	22.9	13.3	9.64	7.40
15	CaO	1.98	1.00		1.12	0.60	0.49
	PbO	23.1	17.7		9.81	6.65	3.92
	BaO	22.6	15.8		10.4	7.11	4.87
20	CaO				0.72	0.51	0.40
	PbO				7.89	7.78	3.52
	BaO				8.93	3.47	2.99
25	CaO						
	PbO						
	BaO	14.0	12.7				

TABLE 8.—(Continued)

				· (30/Win			
	1			12.5Na ₂ O			10Na ₂ O
I	RO	25Na ₂ O	25K ₂ O	+	20Na ₂ O	20K ₂ O	+
				12.5K₂O			10K ₂ O
30	CaO						
	PbO				4.88	4.61	3.17
	BaO	1 1			2.99	1.77	1.45
40	CaO						
	PbO	1			4.05	6.65	2.79
	BaO	1					
50	CaO						
	PbO				4.61	9.16	3.92
	BaO						
_		1		7 EN. O	ī	1	· FN - C
_	RO	15Na ₂ O	1516 0	7.5Na ₂ O	10 No. 0	10K₂O	5Na ₂ O
x	, RU	TOINE2O	15K₂O	7.5W O	10Na₂O	101.20	· +
	100		0.046	7.5K₂O	<u>'l</u>	1	5K ₂ O
15	CaO	0.44	0.240	0.22			1
	PbO	2.91	1.696	1.05			
	BaO	2.68	1.371	1.28			
20	CaO	0.57	0.277		0.29	0.173	0.156
	PbO	2.54	1.610				
.	BaO	2.09	0.998				
25	CaO	0.15					
	PbO	2.12	.848]		
	BaO	1.66					
30	CaO						
	PbO				.45	.208	
	BaO				.68	. 575	.337
35	CaO]		
	PbO	1.40	.798				
	BaO	1.37					
40	CaO						
	PbO			1	.30	. 163	1
	BaO				. 69	. 563	. 536
45	CaO			1			
	PbO	1.40	.845				
	BaO		1	1			
50	CaO	l		1	II.		

PbO

TABLE 8.—(Continued)

	2. Composition: $y\% \text{ SiO}_2 + z\% \text{ PbO} + (a - x)\% \text{ Na}_2\text{O} + x\% \text{ K}_2\text{O} (19, 40)$												
•	a	y	z x	0.0	2.5	5	7	7.5	10	14	15	17.5	20
-	20	60	20	7.9	İ	4.9			3.5	1.68	2.08	3.8	7.8
:	20	50	30	4.8		3.6			2.31	1.50	1.63	3.00	4.5
	10	60	30	0.43	0.32	0.19	0.122	0.136	0.28				l
_	10	50	40	0.30	0.21	0.123	0.069	0.128	0.175				L

TABLE 9

Per cent Na₂O extracted by boiling H_2O and % loss in weight by action of boiling 20.24% HCl, 2N NaOH and 2N Na₂CO₃ solns. resp. Time 1 hr. 20–30 mesh powder. The final glasses contained 0.08–0.2% CaO and 0.05–0.14% Fe₂O₃ (12, 49, 50).

Batch		Analy	tical 7	,	% Na ₂ O by	%	wt. by	
Ba.	SiO ₂	B ₂ O ₂	Na2O	Al ₂ O ₃	H ₂ O	HCl	NaOH	Na ₂ CO ₃
%x	79.8		19.5	0.69	2.11	1.40	2.92	6.35
", C	74.2	4.5	19.8	0.93	0.16	0.33	3.16	2.73
2 + 2 Na.O	71.6	1	18.8	1.00	0.06	0.31	3.10	2.64
SiO.	68.3	11.4	19.0	1.09	0.04	0.30	3.46	3.16
% SiC 20%	64.7	14.5	20.0	0.71	0.07	1.02	4.54	3.70
	. 01.6	1	18.9	0.74	0.14	7.36	5.65	3.84
		28.8	20.4	0.78	2.25	39.4	17.2	17.1
ļċ	35.2	40.0	23.7	0.84	11.6	38.9	69.7	45.6
88 14	32.2	43.7	23.1	0.82	14.7	39.1	94.6	56.1
H Ç	-	12.5						
+ 5	74.9	1		0.92	0.004	1 1	3.11	1.40
+ z	70.8			0.79	0.07		4.73	3.10
% SiO ₂		1		0.88	0.36	l 1	7.01	4.29
% C		i i	l	0.84	I F	32.7	22 .1	15.2
\sim $^{+}$. 57.9	1		0.98	1	41.0	62.1	38.6
(90 - x)	52.1	1	1	0.89	1	49.0		54.3
- œ	46.3	1	10.4	0.80	7.46	49.3		64.4
(90 187 187 187 187 187 187 187 187 187 187	41.8	46.1	11.5	0.80				72.8

MULTI-OXIDE GLASSES. APPARATUS GLASS

In the tables of durability data for these glasses, the glasses are identified by means of the Index Numbers (I. N.) given in Table 10. Additional literature (1, 6, 10, 14, 18, 20, 23, 24, 25, 31, 32, 34, 35, 36, 54, 55, 57).

Table 10.—Composition in Molecules per 100 Molecules SiO2

I. N.	Origin	$ B_2O_3 As_2O_3$	$O_5 \mid Sb_2O_3 \mid Al_2O_3 + Fe_2O_3$	CaO	MgO	ZnO	PbO	Na ₂ O	K ₂ O	MnO	Lit.
C/1		14.37	4.09				1	14.79		0.06	(18)
C/2			2.84	10.31		5.07		13.06		0.35	(18)
C/3			0.23	14.68				9.70	4.87		(18)
C/4			0.46	13.28				8.47	5.49		(18)
C/5			0.30	13.95				8.07		0.22	(18)
C/6			0.23	11.37				10.54		1	(18)
C/7			0.39	10.84					10.03		(18)
C/8			0.23	10.77				0.000	3.53		(18)
C/9			0.30	10.68				27.33	3.80		(18)
C/10		2.55	2.18	8.82		7.65		20.09			(18)
C/11			2.42	16.99				100000000000000000000000000000000000000	0.54	0.48	(18)
C/12			0.15	7.87				1000	11.31		(18)
C/13			1.05	16.14				1	1.57		(18)
C/14			0.32	9.83				11.77		tr.	(18)
C/15			2.74	11.19					6.20		(18)
C/16				11.10			14.09		14.13		(18)
C/17			2.03	8.57			11.00	17.77		0.46	(18)
C/18			0.39	11.48				7.20		0.10	(15)
C/19			1.44	21.92			0.85		0.64		(15)
C/20		0		BaO 2.91			16.87			0.02	(15)

Table 10.—Composition in Molecules per 100 Molecules SiO₂.—(Continued)

I. N.	Origin	B ₂ O ₃	As ₂ O ₅	Sb ₂ O ₃	Al ₂ O ₃ +	-Fe ₂ O ₃	CaO	MgO	ZnO	PbO	Na ₂ O	K ₂ O	MnO	Lit.
C/21					2.	39	10.12				17.13	6.11	0.45	(15)
C/22					l o.	47	11.52				15.35	4.63		(14)
C/23	•				0.		14.34				14.47			` ′
C/24				ŀ	2.	54	11.69				17.66	6.78		
C/25				1	3.	04	10.62	1		ł	24.18	2.20		
C/26	Jena 1914	13.3			5.	7	0.13	0.29	13.5		11.00	tr.	tr.	(4)
C/27	Jena 1914	14.55			3.	99	0.89		12.86		11.95			(26, 27)
					Al ₂ O ₃	Fe ₂ O ₃								
C/28	Jena 1920	5.33			6.8		1.28		BaO 2.33		6.3	0.47		(26, 27)
C/29	British 1916*	2.6			8.3		12.40	0.20			20.20	4.00		(4)
C/30	British 1916*	9.4			5.6	0.05	0.64	tr.	10.3	i	17.40	0.33		(4)
C/31	Duroglass 1916*	5.9		Ì	5.9	0.04	7.00	0.8	4.0		16.80	2.50		(4)
C/32	Moncrieff 1916*	9.0			5.8	0.07	0.80	0.3	9.7		14.6	1.0		(4)
C/33	Wood Bros. 1916*	10.1			9.0	0.06	9.6	0.5			15.0	1.6		(4)
C/34	Poulenc Frères 1916	4.9		l	0.85	0.07	8.9	tr.	7.9		9.0	5.5		(4)
C/35	French 1916			l	0.75	0.05	11.8	1.1			23.6	0.6		(4)
C/36	Swedish 1916	2.5			0.9	0.08	7.8	0.3	3.2		20.3	1.2		(4)
C/37	Italian 1916	2.0			0.3	0.07	10.9	tr.			17.2	3.0		(4)
C/38	U. S. A. Nonsol 1917.	9.5		0.13	2.25	0.11	1.25	7.5	8.05		17.0	0.28	tr.	(7)
C/39	U. S. A. Insolo 1917	4.95		0.3	0.8	0.18	2.6	13.45	4.05		15.5	0.64	tr.	(7)
C/40	U. S. A. Fry 1917	10.0	0.07		2.5	0.11	4.15	5.55	3.85		14.1	1.25	tr.	(7)
C/41	U. S. A. Pyrex 1917	12.6	0.23		1.45	0.07	0.3	0.5			4.6	0.5	tr.	(7)
C/42	U. S. A. Insol 1917	2.9		0.2	0.57	0.12	5.0	10.05	8.95		14.3	2.9	tr.	(7)
$\mathbf{C}/43$	Macbeth-Evans 1919.	9.03	0.02	0.11	1.30	0.18	0.96	5.47	5.50		14.65	0.27	tr.	(7)
C/44	Greiner & Friedrich									ĺ				
•	Resistance "R"	4.8		0.47	2.75	0.08	0.33	7.4	9.15	1	17.05	1.35		(7)
C/45	Köln-Ehrenfeld	5.45	0.82	0.4	2.25	0.12	2.85	5.9	10.9	ļ	10.8	1.7	tr.	(7)
C/46	Kavalier 1917		tr.		0.18	0.05	12.4	0.3			9.35	6.65	tr.	(7)
C/47	German (unmarked)				0.21	0.07	8.95	0.57			14.3	4.75		(7)
C/48	Hungarian (Zsolna)				0.23	0.07	12.6	tr.		Ì	9.0	6.4	tr.	(7)
C/49	Japanese 1917				1.9	0.07	5.3	0.22		1	22.6	1.2		(7)
C/50	Murano 1922	13.63			5.61		1.62		11.17		8.79			(26, 27)
C/51	Murano 1923 No. 1	1			4.71		8.57				5.16	[(26, 27)
C/52	Murano 1923 No. 2	10.99			3.62		3.30	1			5.21			(26, 27)
C/53	Murano 1923 No. 3	1			2.94						5.56			(26, 27)

^{*} Most of the glasses of these makes have been modified and improved since 1916.

TABLE 11.—ACTION OF WATER ON FLASKS

The values given are thousandths mg alkali extracted and mg loss in weight, each for 100 cm² surface. The autoclave data at 190° and at 183° respectively are not comparable with one another.

I. N.	All extra 10-2		Auto- clave mg loss	I. N. (17, 28)	Alk extra 10-2	Auto- clave mg loss	
(11, 20)	8 da 20°	3 hr 80°	4 hr 190°	(11, 20)	8 da 20°	3 hr 80°	4 hr 190°
C/1	2.5	2.7	23.7	C/9	17.8	66	67.0
C/2	2.1	6.3		C/10	16.6	65	34.0
C/3	10.7	28.4		C/11	27.0	98	
C/4	8.9	28.2	17.2	C/12			63.0
C/5	13.1	26.8]	C/13			37.0
C/6	14.0	56		C/14	32.0	217	'
C/7	14.5	45	51.3	C/15	77.0	654	126
C/8	14.9	50		C/16	74.0	356	
C/46	12.5	24.6	(7)	C/48	13.6	29.3	(7)

TABLE 11.—Action of Water on Flasks.—(Continued)

	Alkali e	xtracted		Milligrar	ns loss ir	weight	
I. N.	10-3	mg	3	hr stean	n	2 hr	Auto-
(4)	8 da	3 hr	T	reatment	ts	evap.	clave 3 hr
	20°	80°	1st	2nd	3rd	100°	183°
C/26	1.6	1.9	0.30	0.15	0.05	0.6	26.0
C/29	3.7	7.0	0.30	0.10	0.08	0.9	22.0
C/30	3.1	5.6	0.28	0.15	nil	0.6	23.7
C/31	2.6	6.2	0.25	0.12	0.08	1.05	26.8
C/32	2.3	4.7	0.22	0.04	nil	0.45	20.7
C/33	2.5	4.9	0.25	nil	nil	0.67	18.5
C/34	3.3	6.3	0.24	0.40	0.16	0.52	20.5
C/35	25.7	43.2	4.00	2.23	2.12	8.6	2210
C/36	12.3	24.7	2.13	1.85	1.24	2.1	875.0
C/37	21.7	35.4	2.30	1.75	1.43	4.7	1040

TABLE 11.—ACTION OF WATER ON FLASKS.—(Continued)

	mg loss i	n weight		mg loss in weight			
I. N.	2 hr evap. 100°	Autoclave 3 hr 183°	I. N.	2 hr evap. 100°	Autoclave 3 hr 183°		
C, 38	0.8	31.5	C/44	1.05	55.4		
C/39	1.05	139	C/45	1.0	48.5		
C/40	0.95	48.7	C/46	2.6	614		
C/41	0.67	10.0	C/47	0.4	3183		
C/42	1.0	79.6	C/48				
C/43	0.3	46.2	C/49	5.4			
Lit.	(7, 24, 29)						

TABLE 12.—ACTION OF ACIDS ON FLASKS

Mean loss in wt. (mg per 100 cm² surface) from 3 successive treatments with each reagent. Reagents: A, HCl vapor for 3 hr (4). B, 20.24% HCl evap. for 1.5 hr (4, 7). c, 2N H₂SO₄ for 6 hr at 100° (17). D, concd. H₂SO₄ heated to fuming for 4 hr (51). E, 1.2 sp. gr. HNO₂ evap. for 1.5 hr (28, 29, 51). (Cf. Tables 15, 16, 18, and 20.)

R	I. N.	26	29	30	31	32	33	34	35	36	37
	A		1				2.60				0.73
	В	10.6	5.0	3.2	2.4	2.7	11.1	1.7	2.7	1.9	1.8
	C	1.2	0.8	0.9	1.3	0.8	0.8	0.8	1.9	1.9	1.3
	D	l			1.0	1	0.2	i	1.0		
	E					1.0	1.8	1.6			l
\equiv	L.N.	20	39	40	41	42	43	44	45	40	477
R		38	98	40	41	42	43	44	45	46	47
	В	1.0	1.0	1.1	0.5	1.1	0.5	0.9	1.4	0.7	0.2

TABLE 13.—Action of Alkalies on Flasks

Loss in wt., mg/100 cm² surface.

Reagents: A, 2N NaOH for 3 hr at 100° (17). B, 0.1N NaOH for 3 hr at 100° (17). c, 2N NH₄OH evap. for 65-70 min (17). D, 2N Na₂CO₃, 3 hr at 100° (17). E, 2N (NH₄)₂S 3 hr at 100° (4, 7, 50). F, Na₂HPO₄ 3 hr at 100° (28, 29, 50).

From No. 26 onwards in the case of the sodium hydroxide, ammonia and sodium carbonate tests the values quoted are the mean of three successive treatments.

I. N.	1 2	3	4	6	7	8	9	10 1	1 15	16
A 67	.3 39. .5 17.								.346. .745.	-1
I.N.	26	29	30	31	32	33	34	35	36	37
A	129.2	92.2	97.4	79.8	94.6	104	78.6	157	114	121
В	21.4	20.0	20.7	18.0	20.6	17.5	15.3	45.6	30.2	37.1
C	3.2	4.5	2.7	3.0	2.9	2.6	2.4	7.2	4.9	5.6
D	30.7	30.1	27.7	24.7	26.0	27.7	36.0	200	87.8	121
E	1917				1.0		1.2	1.1		
F, 0.5N						2.8	2.0	7.3		
F, $0.25N$						1.6	1.2	5.3		
I	N. 38	39	40	41	4	2 43	44	45	46	47
A	95.	7 98.	0 93.	6 118	79	.882.	3 79.	1 81.0	96.4	91.2
В	17.	7 21.	4 18.	8 30	.7 15	.5 18.	6 21.	8 13.7	28.1	32.8
D	29.5	2 48.	5 36.	0 51	.1 32	.3 29	1 26.	0 25.3	141	132

TABLE 14

Action of Na₂CO₃ and K₂CO₃ solutions for 3 hr at 100° and of water and NaOH for 50 days at room temperature. Loss in wt., mg/100 cm² (14).

I. N.	Na ₂ C(O ₃ g/l	K ₂ CO ₃ g/l	NaOH g/l				H ₂ O†		
	13.2	132	172	10*	10†	100*	100†	a	<u>b</u>	
C/22	46.4	75.8	48.1	3.9	4.6	5.2	5.7	6.6	6.0	
C/23	49.5	83.3	52.8	4.5	5.1	6.3	6.2	16.5	12.6	
C/24	26.3	45.2						23		
C/25	24.8	41.2	20.0	5.5	5.0	6.6				

^{*} Successive treatments of same flask.

 \dagger I.e., alkali extracted by water in 50 days from (a) new flasks, (b) flasks pretreated with the 100 g/l NaOH for 100 days.

TABLE 15.—THE EFFECT OF BORIC OXIDE

Mg loss in wt. by 500 cm³ flasks. Reagent: (1), N HCl boiling for; A, 0.5 hr; B, 2 hr; c, 0.1N HCl autoclave 3 hr. (2), 0.01N NaOH boiling for: D, 0.5 hr, E, 2 hr, F, 0.1N NaOH autoclave 3 hr at 120° (25, 26).

L N.	A	В	С	D	E	F	I.N.	A	В	С	D	E	F
C/27				3.2	10.0	81	C/41	0.30	2.0	2.0	6.0	19.5	229
C/28	0.35	2.0	2.1	4.5	11.0	123	C/51	0.34	2.6	2.3	4.3	10.5	94
							C/52						
C/50	0.50	3.1	2.5	2.5	9.0	81	C/53	0.31	2.0	2.0	6.0	19.1	200

^{*} Murano 1923, white badge.

TABLE 16

Per cent loss in weight in 1 hr by boiling water, 20.24% HCl, and 2N NaOH, respectively, acting on 20-30 mesh powdered glass (46, 52).

Wt. % composition: $(75.8 - x)SiO_2 + xB_2O_3 + 8.6CaO + 6.9Na_2O + 7.9K_2O + 0.66R_2O_3$

\overline{x}	H ₂ O	HCl	NaOH	x	H ₂ O	HCl	NaOH
0	0.060	0.056	1.50	12.5	0.085	1.45	2.32
0.5	0.060	0.056	1.45	15.0	0.105	7.40	2.70
1.0	0.060	0.056	1.45	20.0	0.170	29.8	3.95
2.5	0.060	0.056	1.46	25.0	0.485	47.2	5.65
5.0	0.060	0.060	1.55	30.0	1.150	54.80	8.00
7.5	0.062	0.090	1.75	35.0	2.175	59 .4	13.5
10	0.068	0.300	2.00	40.0		62.6	25 .5

Table 17.—Action of Neutral Salt Solutions mg/100 cm² loss in wt. in 3 hr at 100°

Na ₂ SO ₄ , 178 g/l (14)		-	treat	men	ts (4)	,		
I.N.C/ 22 23 24 25 26	29	30*	31*	32	33	34*	36	37
mg 1.8 3.1 1.6 2.3 0.25	0.28	30.28	0.23	0.40	0.28	0.16	0.29	0.39
* No loss on 3rd treatment.								

Table 18.—The Influence of Reagent Concentration

	1111	g/ 100	CIII	108	5 III W U. ("	·, ··,				
6 hr a	t 100°		ilass ex N	-	6 hr a	6 hr at 100°		Glass index No.		
Reagent	Equiv./l	C/8	14	15	Reagent	Equiv./l	C/8	14	15	
H ₂ SO ₄	0.001	0.2	1.1	1.7	HCl	0.001			1.5	
	0.1	0 1	1 0	1.5		0.1	0.2	0.9	1.6	
	0.1	1	1	1 1		1	0.3	1.1	1.9	
	1	0.2	1.2	1.7		2	0.3	İ	1.8	
	5	0.2	1.0			4			1.7	
	10	0.3	0.9	1.7	C ₂ H ₄ O ₂	0.1	0.2	0.8	1 8	
	25	0.1	0.2	0.5	Acetic	1		0.8	1	
(Sp. gr.	= 1.84)	0.1	0.1	0.2		5	0.1		1.4	

Table 18.—The Influence of Reagent Concentration.—
(Continued)

 $mg/100 \text{ cm}^2 \text{ loss in wt. } (14, 15)$

6 hr a	t 100°	Glass index No.	6 hr at 100°		Glass index No.
Reagent	Equiv./l	C/8 14 15	Reagent	Equiv./l	C/16 19 20
HNO ₃	0.1	0.2 1.2 1.7	HCl	1	1.2 0.3 1.4
٠	1	0.20.71.8		5	1.3
	5	0.11.01.5	C ₂ H ₄ O ₂	1	0.9
	10	0.41.21.5	C2114O2		0.9
	16.5	0.2 1.0	H ₂ SO ₄	1	1.2
KOH g/	1 14	140 210 28	80 420	490 Data	a for 6SiO ₂ +

KOH g/l $\stackrel{|S|}{|S|}$ 14 140 210 280 420 490 Data for 6SiO₂ + mg loss, 3 $\stackrel{|S|}{|S|}$ 17.5 28.0 28.3 27.2 23.6 24.6 CaO in same paper (14)

	КО	H g/l	NH ₄ OH g/l (or wt. %)							
	140	490	4.3	43	10 %	25 %				
I. N.	3 hr	at 100°	50 days at room temperature							
C/22	21.7	20.8*		3.5		0.9				
C/23	23.3	21.1*	3.6	3.5	3.2	1.0				
C/24	26 .9	21.6	3.4	3.5	3.6	1.0				
C/25	28.5	24.1*	3.2	3.5	4.1	0.9				

^{*} Mean of 2 determinations.

Table 19.—Influence of Repeated Action and Time Continued action of H₂O at 20° on glass No. C/21 (¹6)

nt	mmg (=	10 ⁻⁶ g) N	a ₂ O per 10	00 cm² dis	solved fro	m glass
Time of treatment	1. In original condition	2. After 42 da in H ₂ O vapor at 30°	3. After 42 da in moist CO ₂ at 30°	4. After 12 mo in air of room	5. After 12 mo in outdoor air	4 followed by 3
1 min	36	65	59	48	66	109
1 day	63	62	10	50	45	13
2 days	19		7	17	18	6
3 days	14	17	6	15	15	7
5 days	14	14		12	12	6
7 days	11	9		9	8	
10 days	8	8		8	8	7

Table 20 mg/100 cm² loss in wt. by successive treatments (8)

	6,											
No. of	l	r evaj			hr ev	•	_			at 10		
treat-	H ₂ O	at 10	10°	20.2	24 %	HCl	2N	Nε	юн	2N	Na ₂ (ю,
ments	C/31	33	35	26	31	35	31	33	35	32	33	35
1	0.6	1.2	12.2	7.0	2.1	3.75	68	86	160	25.7	26.2	85
2	0.7	1.65	8.7	9.1	2.9	2.25	75	97	143	21.7	26.1	121
3	0.75	1.8	5.6	8.8	2.4	1.5	68	97	124	20.0	30.1	135
4	0.9	1.7	5.2	9.0	2.1	1.35	83	86	131	22.6	27.0	135
5	0.2	0.08	2.4	8.8	2.0	0.9	75	111	132	22.8	28.3	157
6	0.3	0.3	2.3	10.2	2.2	1.05	78	99	120	24.8	29.8	137
7	1.05	1.5	3.4	8.5	2.0	1.3	77	97	130	22.6	25.3	130
· 8	0.9	1.4	2.6	9.6	2.2	1.1	74	117	137	23.2	27.3	181
9	0.15	0.9	2.8	9.9	2.3	1.2	67	110	121	22 .6	25.7	154
10	0.08	0.8	4.4	10.9	2.2	1.3	75	100	153	21.8	27.7	163
11				10.4	2.2	1.2				21.9	24.5	138
12				8.8	2.0	0.9				21.8	25.2	145
13				11.0	1.75	0.7				21.6	27.3	133
14					2.25	0.6				20.3	23.5	149
15					2.0	0.9				20.4	23.7	141

Table 20.—(Continued)

mg/100 cm² loss in wt. by successive treatments (8)

20.24 % HCl evaporating for 1.5 hr										
No. of treatments Index No. C/31 Index No. C 35	16	17	18	19	20	21	22	23	24	25
Index No. C/31	2.1	2.1	1.35	1.75	1.8	1.75	2.7	1.8	1.8	2.0
Index No. C 35	1.1	1.05	0.3	0.15	0.3	0.3	0.9	0.45	0.6	0.45

Table 21.—The Influence of Temperature
Amount extracted per 100 cm² surface

	Alka	ali e	xtract	ed (1	4)		mg	matte	er ext	racte	d (9)
B	y H₂O		Na ₂ 0 132	-,	, ,, ,			H₂O for 24 hr 250 cm³ flask			
Index No.	3 days room temp.	1 hr 80°	50 days room temp.	3 hr 100°	50 days room temp.	3 hr 100°	Index No.				
C/	10-6	g		10-	3 g		C/	80°	90°	95°	100°
22	6.3	63	4.4	75.8	2.0	48.1	33		1.4	2.4	5.0
23	16.5	210	4.6	83.3	2.1	52.8	32		1.0	2.0	4.0
24	23	337	2.2	45.2	0.8	21.2	47		1.0	2.4	5.4
25	40	607	2.0	41.2	0.9	20.0	38	4.8	7.5	14.2	55.4

mg loss in wt. of 500 cm³ flasks by 20.24 % HCl for 12 hr (9)

I. N. C/	90°	95°	99.9°	102°	104.8°
26	6.2	7.8	9.8	10.8	13.2
31	1.6	2.1	2.7	3.4	4.6
33	5.4	7.2	9.3	10.4	12.9

mg loss in wt. of 500 cm³ flasks in 3 hr (5)

Index No.		By	2 <i>N</i> N	aOH		Index No.	By 2N Na ₂ CO ₂							
C/	40°	60°	80°	90°	100°		40°	60°	80°	90°	100°			
31	1.7	4.1	18.9	31.7	74.2	32		2.6	10.2	16.8	32.9			
33	1.5				88.9					18.1				
36		l	24.1	45.5	154	48	2.1	5.9	25.9	49.2	115			

Table 22.—Influence of Concentration, Time and Temperature

mg/100 cm² loss in wt. by action of commercially pure NaOH (C. P. NaOH somewhat less corrosive) (14)

NaOH	Time	Temp.		Index	No. C/	
g/l	Time	•C	22	23	24	25
1	*3 hours	100	1	1	18.3	1
10	50 days	18	3.9	4.5	5.1	5.5
10	*3 hours	100	27.6	32.8	35.2	34.5
100	50 days	18	5.2	6.3	6.1	6.6
100	*3 hours	100	54.0	58.3	60.6	62.9
450	50 days	18	1.8	1.7	2.0	3.7
	*3 hours	100	46.6	52.5	52.7	52.8

^{*} Not clearly stated in text, but assumed from reference from earlier page.

OPTICAL GLASSES

Table 23
Hundredths-milligrams of iodoeosin per 100 cm² surface (2, 45)

				=		.		- n		<u>`</u>	<u> </u>
		-		Fractu	red su	rfaces	j	Po	lished	sur	faces
		ì	- 1	air		at			air	8	at
Glass index No.					Fractured under the soln.	ž				Heated 4 hr 150°	ᆲ
×	Туре	np		da in moist at 18°	5 .				7 da in moist at 18°	큠	
ě	-3,50			٥.	ed of	79 ≟			= .	*	ਤ ਤੋਂ
-			_	da in at 18°	actured the soln.	Steamed 1 2 atm.	ပ	اء	da in at 18°	3	Steamed 1 2 atm.
2			Fresh	da at	th is	ca 2	Grade	Fresh	da	8	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5			Œ	2	도	Š	Ö	Œ	7	H	202
0/1	Fluor crown	1.4942	3	2	23		h1	2	2	3	
2	Borosil. crown	1.5108	11	7	10	108	h²	2	3	4	63
3	Borosil. crown	1.5135	8	3	18	106	h1	3	3	4	65
4	Borosil. crown		17	8	17	112	h²	2	2	3	72
5	Hard crown		16	1	8	181	h²	4	6	9	155
6	Soft crown		19	ı	33		h ⁵	8	26	23	
7	Light Ba crown		14	5	16	150	h1	3	2	3	
8	Medium Ba crown.			3	12	94	h1	4	4	3	
9	Dense Ba crown		21	8	22	115	h²	4	3	3	
10	Dense Ba crown		19		21	71	h²	3	3	3	
11	Dense Ba crown		15 10		19 11	65 137	h¹ h²	4 5	2 2	4	
12 13	Telescope flint Light Ba flint				13	55	h1	4	4	3	
14	Light Ba flint		14	ı	16	130	h2	5	3	4	
15	Light Ba flint		_		11	164	h1	4	2	3	1
16	Ba flint		16	1	19	56	h1	3	2	3	
17	Extra light flint		_		14	108	h2	3	4	4	
18	Light flint	1	8		10	106	h1	2	2	3	
19	Light flint				· 12	95	h²	3	2	2	
20	Dense flint		-		20	86	h²	3	2	2	
21	Dense flint			2	19	85	Ьı	3	2	3	80
22	Extra dense flint	1.6521	26	1	20	69	h1	2	1	1	58
23	Borosil. crown	1.5089	12	8			h²				
24	Hard crown	1.5186	19	9			h2				
25	Zinc crown	1.5160		1	1	l	p,				
26	Light Ba crown			_		ł	h1				
27	Medium Ba crown	_		1		ŀ	h1				
28	Dense Ba crown			_		į	h²				
29	Dense Ba crown				ł	1	h²				
30	Dense Ba crown					1	h ¹				İ
31 32	Light Ba flint Dense Ba flint					1	h1		1	1	
33	Dense Ba flint			_	1		h1	ľ	1	1	
34	Extra light flint						h2	ŀ			
35	Light flint		1			1	hı				
36	Dense flint			_			h2				
37	Dense flint			1		1	h1				1
38	Extra dense flint			2	1		h1				1
39	Denecst extra large		1							1	1
	fint						h1				
40	Pluor crown			1	4		h1	2	3	3	
41	Borosil. crown				17	107	h²	3	4	4	
42	Silicate crown			1	34		h³	4	17	18	1
43	Ordinary sil. crown.				23		h4				.l
44	Soft sil. crown				48	100	h*	5	25	24	1
45	Light Ba flint		1		16	102	h1	3	2 2	3	
46	Ordinary light flint.				16	104 80	h1	2	2	1 3	
47	Heavy flint	11.0190	23	2	1 19	1 80	lu,	2		1 2	1 /1

TABLE 24.—DURABILITY BY AUTOCLAVE TREATMENT

Dimming test (appearance after weathering polished surface in air saturated with water vapor at 80° for 30 hr) and moisture retained by powdered glass. Grading by apparent effect of autoclave treatment: Grade 1 = least apparent effect. Grade 5 = greatest apparent effect. Dimming test: Three grades, 1, 2, 3. Symbols 1 + and 2 - erather worse than 1 and rather better than 2 resp. (2, 13, 45).

		Water	or 4 hr at	4 atm.		mg H ₂ O	retained
	۵.	_	Iodo-		Grade	per 100	g glass
	Glass	Loss	eosin	Grade	by dim-	powder,	90-100
	ind.	in wt.	value of	by	ming	me	esh
	No.	mg/100	water	appear-	test	Dried	Heated
		cm²	extract	ance		in vacuo)
	0/1	127	182	5		1	
	2	16.6	25.8	3	2	33	0
	3	14.8	43.8	1	_		
	4	10.9	41.3	ī	1		
	5	16.9	38.6	1	2-	135	87
	6	10.0	1875	5	3-	230	151
	7	21.7	38.0	3	1	9	0
	8	10.5	31.4	3	1+	26	7
	9	14.0	31.0	1	1+	26	7
	10	11.5	19.7	4	2-	27	13
	11	9.8	30.8	4	_		
	12	8.6	21.9	4	2-	71	36
	13	9.2	20.9	4	1+	28	12
	14	8.5	18.9	4	2-	53	17
	15	5.8	30.0	2	_		
	16	6.1	11.5	3	1		
	17	2.7	15.5	2			
	18	3.7	10.4	2			
	19	3.2	8.5	1	1	43	27
	20	4.7	4.2	2	1+	28	16
	21	3.2	3.4	2			
	22	4.8	6.3	2	ŀ		
	23	27.2	73.2	2			ļ
	24 ·	17.3	61.7	2			ł
	25	13.7	31.7	4		1	
	26	18.8	48.0	4			
	27	11.0	31.7	3		İ	
	28	8.4	24.9	3			ŀ
ı	29	9.2	20.7	3	1		1
l	30	9.0	28.9	1			
	31	5.3	18.5	2			
	32	2.6	3.5	3			
	33	2.8	4.3	3			
	34	3.5	19.6	4			1
l	35	2.4	7.7	1			}
l	36	3.8	6.1	2			
١	37	2.7	2.7	1			
١	38	4.0	5.2	2			
١	39	1.3	1.6	1		1	
ı	40	513	545	5			
١	41	21.6	63.6	3			1
١	42	18.2	68.5	4			
١	43	12.9	63.4	4			
١	45	10.9	25.8	4			
۱	46	3.3	9.4	3			1
١	47	4.5	9.1	3			1

LITERATURE

(For a key to the periodicals see end of volume)

- Baillie and Wilson, 54, 41: 45T; 22.
 von Bichowsky, 38, 3: 296; 20.
 Cauwood, Clarke, Muirhead and Turner, 105, 3: 228; 19.
 Cauwood, English and Turner, 106, 1: 153; 17.
 Cauwood and Turner, 106, 1: 144; 17.
 Cauwood and Turner, 106, 2: 32; 18.
 Cauwood and Turner, 106, 2: 235; 18.
 Cauwood and Turner, 106, 2: 235; 18.
- (10) Committee Report, Journal of the Institute of Chemistry of Great Britain and Ireland, \$2: 202; 20.
 (11) Dimbleby, Muirhead and Turner, 105, 6: 101; 22.
 (12) Dimbleby and Turner, O.
 (13) Elsdon, Roberts and Jones, 105, 3: 52; 19.
 (14) Foerster, \$5, 25: 2494; 92.
 (15) Foerster, \$1, 33: 322; 94.
 (17) Foerster, \$1, 33: 381; 94.
 (18) Foerster, \$43, 13: 457; 93.
 (19) Hodkin and Turner, 105, 4: 120; 20.

- (20) Kato, 379, 367; 138; 23. (21) Keppeler, Beiträge zur Metallurgie, Goldschmidt-Festschrift (Dresden), 40; 21. (22) Keppeler, 106, 8: 256; 24. (23) Kohlrausch, 26, 24: 3560; 91. (24) Kohlrausch, 26, 26: 2998; 93. (25) Mauri, 216, 5: 495; 23. (26) Mauri, 216, 6: 429; 24. (27) Mauri, 216, 7: 452; 25. (28) Migliacci, 216, 15: 87; 25. (29) Muirhead and Turner, 106, 3: 129; 19.
- (30) Mylius and Foerster, 25, 23: 1092; 89. (31) Mylius and Foerster, 25, 25: 97; 92. (32) Mylius and Foerster, 91, 31: 241; 92. (33) Mylius and Foerster, 243, 9: 117; 89. (34) Mylius and Foerster, 243, 11: 311; 91. (35) Mylius and Meusser, 243, 44: 221; 05. (36) Nicolardot, 34, 163: 355; 16. (37) Nicolardot, 378, 9: 233, 469; 23. (28) Peddle, 105, 4: 14, 36, 55, 67, 93, 307, 317, 327, 351; 20. (39) Peddle, 105, 4: 97, 352; 20.
- (40) Peddle, 105, 5: 195; 21.
 (41) Peddle, 105, 5: 95, 209, 218, 226, 247; 21
 (42) Peddle, 105, 5: 247, 264; 21.
 (43) Peddle, 85, 23: 103; 21.
 (44) Rand, 81, 17: 236; 15.
 (45) Haigh, Report R.11, British Scientific Instrument Research Association, 1921.
 (46) Schaller, 92, 23: 2369; 09.
 (47) Sheen and Turner, 38, 8: 187; 24.
 (48) Turner, 38, 3: 379; 20.
 (49) Turner, 356, 71: 401; 23.
- (50) Turner, 38, 7: 313; 24.
 (51) Turner and Wilson, 105, 6: 17; 22.
 (52) Turner and Winks, 0.
 (53) Vilbrandt, 45, 17: 835; 25.
 (54) Walker, 1, 27: 865; 05.
 (55) Walker and Smither, 45, 9: 1090; 17.
 (56) Weber, 98, 4: 662; 91.
 (87) Weber and Sauer, 26, 25: 70, 1814; 92.
 (58) Williams and Cox, 81, 18: 315; 16.

VITREOUS ENAMELS FOR METALS

RALPH R. DANIELSON AND H. G. WOLFRAM

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Compositions.	Compositions.	Zusammensetzung.	Composizione 114
Density.	Densité.	Dichte.	Densità
Strength.	Résistance mécanique.	Festigkeit.	Resistenza meccanica 115
Hardness.	Dureté.	Härte.	Durezza
Thermal expansion.	Dilatation thermique.	Wärmeausdehnung.	Dilatazione termica 115
Heat transfer.	Transmission de la chaleur.	Wärmeübertragung.	Trasmissione di calore 115
Emissivity.	Puissance rayonnée.	Ausstrahlungsvermögen.	Potere irradiante 116
Reflectivity.	Pouvoir réflecteur.	Reflektions vermögen.	Potere riflettente 116
Acid resistance.	Résistance aux acides.	Säurewiderstandsfähigkeit.	Resistenza agli acidi 117

COMPOSITIONS

1. MOLECULAR COMPOSITIONS

Component	Na ₂ O	K,0	CaO	. ZnO
Jewelry (28)	0.3 -0.6	KNaO	0	0
Cast Fe (3)	0.54	0.16	0.10	0.05
Cast Fe (15)	0.70-0.74	0.06-0.11	0-0.19	0-0.2

Component	PbO	Al ₂ O ₃	As ₂ O ₃	Sb ₂ O ₃
Jewelry (28)	0.4-0.7	0	0.05-0.15	0
Cast Fe (3)		0.16	F	0.075
Cast Fe (15)	0	0.12-0.15	0.6 -0.86	0-0.13

Type	B ₂ O ₃	SiO ₂	SnO ₂	P ₂ O ₅
Jewelry (28)	0-0.2	1.3 -1.8	0	0
Cast Fe (3)	0.20	1.80	0	0
Cast Fe (15)		0.64-0.77	0-0.34	0-0.43

2. WEIGHT PER CENT

A = Jewelry enamels.

B = Single coat gray ware enamels.

C = Dry process white cover enamels for cast iron.

D = Single coat white enamel. Wet process for cast iron.

E = White cover enamels. Wet process for cast iron.

F = White cover enamels for sheet iron and steel.

G = Ground coats for sheet iron and steel.

Enamel Component	Quartz	Feldspar	Borax	H,BO,	Na ₂ CO ₃	NaNO,	K2CO3	KNO,	Cryolite	CaF,	Lit.
A	14.4			19.2		9.9		23.2			(30)
A	31.2	1.2			1.7	2.4	2.1	2.9			(8)
В		50.2	30.5		3.1	3.1			3.7	4.2	(1)
В	10.0	40.0	30.5		6.5	5.5				1.5	(6)

2. WEIGHT PER CENT.—(Continued)

Enamel Component	Quartz	Feldspar	Borax	H,BO,	Na,CO,	Na NOs	BaCO,	KNO,	Cryolite	CaF,	Lit.
C		33.1	18.7		2.6	2.6	1		2.6	4.4	(26)
							4.4				(0.0)
\mathbf{C}	ľ		19.5			2.4			9.8		(26)
D	12.8	18.9	25.6	1					9.4	2.7	(24)
D		36.0	31.8		5.5	3.7	_		3.2		(9)
${f E}$	10.2	32.3	20.8		3.3	5.3	ا ۾ ا		4.3	4.7	(9)
${f F}$	17.0	31.0	27.0		3.5	3.5	CaCO,		12.0		(6)
F	22.0	31.0	21.0		3.5	3.5	ပ္		17.0		(6)
\mathbf{G}	20.5	27.0	30.0		9.8	5.0				6.0	(6)
G	21.0	26.0	34.6		7.4	4.0	2.2			3.5	(19)
\mathbf{G}	29.0	22 .0	30.0		5.0	4.6				6.0	(6)
G	129.0	22.0	30.0	1	5 .0	4.6			<u>!</u>	0.0	(6)

Enamel Component Bone ash Pb,O ₄ ZnO SnO ₃ As ₂ O ₃ MnO ₂	Co ₂ O ₂
A	(20) (8) (1) (6) (26) (26) (24) (9) (9) (9) (6) (9) (10) (10)
B 3.1 2.1	1 6
B 4.5 1.5	(6)
C 14.6 9.1 7.9	(26)
C 10.2 6.8	(26)
D 30.6	(24)
D 18.2 1.6 1	(9)
E 14.0 5.1	(9)
F 1.0	(6)
F 2.0	(6)
).5 (6)
G 0.26 0.26 0).26 (19)
G).4 (6)

SPECIFIC GRAVITY

Ground coat for sheet steel 2.54. White cover enamel for sheet steel 2.66. High lead-tin oxide enamel for cast iron 2.93. Leadless antimony enamel for cast iron 3.32. High lead oxide enamel for jewelry 3.79 (31).

STRENGTH

Ultimate Compressive Strength (Def. 4)

Commercial ground coat for sheet steel, 95 500 lb./in.². Commercial white cover for sheet steel, 91 740 lb./in.². Cylindrical test pieces ½ in. diam. × 1 in. long (11).

Cross Bending Strength

See (12, 20).

Impact Resistance

See (11, 17, 29).

HARDNESS

See (2).

THERMAL EXPANSION OF VITREOUS ENAMELS

The coefficient of cubical expansion, $\frac{10^7 \text{d} V}{V \text{d} t}$, can be approximately calculated from the wt. % composition of the melted enamel and the moduli given below.

	Moduli														
AIF.	Al ₃ O ₃	As ₁ O ₆	Ba0	B,0,	BeO		C80	CaF.	CeO;	CoO	$Cr_{\mathbf{i}}O_{\mathbf{i}}$	Cryo-	lite	CuO	FeO
4.4	5.0*	2.0	3.0	0.1	4.	5. 74.	0* 9†	2.5	4.2	4.4	5.1	7	. 4	2.2	4.0
K,O	MgO		MnO	NaF	Na ₂ O	NiO.	Pho	Sh,O	SiO		SnO ₂	ThO;	TiO,	ZrO.	ZnO
8.5	0.1* 1.3 ₆		2.2	7.4		4.0		3.6	$\frac{0.8}{0.18}$	• 5†2	.06	.3	4.1	2.1	1.8

^{*} Values from Winkleman and Schott (32).

The calculation is illustrated in the following example and in the table of Expansion of Enamels.

Composition	Wt.	Moduli	
Silica	25.30 ×	0.8 =	20.2
Alumina	7.20 ×	5.0 =	36.0
Potassium oxide	6.60 ×	8.5 =	56.1
Sodium oxide	8.94 ×	10.0 =	89.4
Boric oxide	12.77 ×	0.1 =	1.3
Barium oxide	6.21 ×	3.0 =	18.6
Zinc oxide	14.00 ×	1.8 =	25 .2
Calcium oxide	1.68 ×	5.0 =	8.4
Calcium fluoride	7.30 ×	2.5 =	18.3
Antimony oxide	10.00 ×	3.6 =	36.0
	100.00		309.5

The calc. cubical coefficient of expansion for this enamel is therefore 309.5×10^{-7} per °C.

Danielson and Souder (10) have shown, however, that values so calculated are only approximate. The following are typical:

	Coeff.	$\frac{10^6}{l} \frac{\Delta l}{\Delta t}$			
Types of enamel	20° to 200°C	20° to 400°C	20° to 450°C	20° to 500°C	Calcu- lated values
Single coat gray ware Ground coat for sheet	9.8	11.6		13.4	11.0
steel	9.4	10.3	11.5		

The determinations made by Mayer and Havas were over the range 0-100°C while those made by Danielson and Souder were carried to the softening points of the enamels, *i.e.*, about 450° to 500°C. It will be noted that the coefficient rapidly increases with increase in temperature as shown by Fig. 1 (10).

The results of these various studies indicate that the factors given by Mayer and Havas place the oxides in approximately their correct order as regards their relative effect on the expansivity of enamels and may thus serve as a valuable guide in the technical control of enamel mixtures.

Fig. 1.—Expansion of some typical gray ware enamels and enameling steel.

From the observations of the various investigators it may generally be assumed that the average coefficients of expansion of commercial enamels and enameling metals will be within the following limits:

Type of enamel	10' dV V di
Ground coat for sheet steel	260 to 320
White cover enamel for sheet steel	320 to 400
White enamel for cast iron	290 to 330
White enamel for jewelry	300 to 350
Cast iron	310
Sheet iron and steel	381 to 438

For table of expansion of various enamels v. p. 116.

HEAT TRANSFER BY ENAMELED METALS

Observations on a large number of commercial steel enameled units led to the following over-all coefficients of heat transfer under the conditions named (22).

[†] Values from English and Turner (13).

All others from Mayer and Havas (18).

Operating conditions	Over-all coefficient joule m ⁻² hr ⁻¹ (°C	
Steam, to cold water	1674 to 2929	
Hot water, to cold water	1464	
Steam, to boiling water		
Steam, to thick fruit product		
Hot water, to cold water or brine	837 to 2510	
Hot oil, to cold oil	271 to 586	
Hot oil, to boiling water	628 to 837	
Steam, to water in tubular heaters		
Condensing steam to water in tubular condenser		
jacket	2929	

Velocities of liquids over heating surfaces as affected by agitation, differences in mobility, and specific heat were involved in the above experiments.

Fig. 2.—Opacifiers for enamels. No. 1. Tin oxide, 7%. No. 7. Sodium antimonate, 11%. No. 6. Sodium antimonate, 9%. No. 5. Sodium antimonate, 7%. No. 15A. Feldspar calcined, 9%. No. 16A. Zinc aluminate calcined, 9%. No. 8. Zinc aluminate calcined, 7%. No. 16B. Zinc aluminate, 9%. No. 16D. Zinc aluminate, 9%.

The data on enameled cast-iron units are more limited. Overall coefficients of heat transfer are given ranging from 1088 to 1464.

The thickness of the enamel coating rather than the thickness of the metal, seems to be the determining factor in the overall coefficient.

THERMAL EMISSIVITY OF WHITE VITREOUS ENAMELED SURFACES

Very nearly the same as that of white-lead paint (4).

REFLECTIVITY OF SHEET STEEL ENAMELS

A typical white tin oxide enamel for sheet steel has an average reflectivity of 69%, relative to magnesium carbonate (7).

The same frit with other opacifying agents replacing tin oxide has reflectivities varying between 48 and 66% as shown in Figs. 2 and 3 (7).

See (27) for the effect of fineness of grinding on the opacity of enamels.

Fig. 3.—Opacifiers for enamels. No. 1. Tin oxide, 7%. No. 4. Zirconium oxide, 7%. No. 14. Zirconium oxide, 9%. No. 10. Zirconium product, 7%. No. 13. Commercial substitute, 7%. No. 26. Zirconium silicate B, 9%. No. 25. Zirconium silicate B, 7%. No. 25A. Zirconium silicate B calcined, 7%. No. 12. Zirconium silicate A, 7%. No. 20. Zirconium silicate A, 11%. No. 27. Zirconium silicate B, 11%.

EXPANSION OF ENAMELS OF VARIOUS COMPOSITIONS (18)

			Cry	olite									dV
Type of enamel	SiO ₂	B ₂ O ₃	AlF,	NaF	CaF ₂	CoO	MnO	Al ₂ O ₂	CaO	K ₂ O	Na ₂ O		$\mathbf{d}t$
			AIF 3	Nar								Obs.	Calc.
Ground coat	51.00	15.79			5.44	0.25	0.71	7.86	1.51	2.60	14.84	28.8	27.6
	64.86	9.46			3.67	0.21	0.51	6.45	1.01	1.71	12.12	24.5	23.7
	54.69	12.47			4.68	0.31	0.45	8.83	1.26	2.54	14.77	28.9	27.9
Cover	55.91	6.96	3.95	6.03	1.73			10.30	0.54	1.73	12.85	32.7	32.1
	51.00	6.80	6.29	9.62				8.85	1.77	2.28	13.39	35.8	36.1
	51.40	8.31	3.87	5.77	2.14			11.58	1.30	0.97	14.66	34.6	33.8
	48.08	8.98	6.38	9.75				9.36	0.54	1.67	15.24	37.2	37.5
~							SnO ₂						
Cover, with	54.81	6.82	3.87	5.91	1.70		1.96	10.10	0.53	1.70	12.60	31.8	31.8
various oxides	53.76	6.69	3.80	5.80	1.66		3.85	9.90	0.52	1.66	12.36	30.9	31.6
							TiO2						İ
	54.81	6.82	3.87	5.91	1.70		1.96	10.10	0.53	1.70	12.60	32.7	32.2
	53.76	6.69	3.80	5.80	1.66		3.85	9.90	0.52	1.66	12.36	31.1	32.4
	7 4 01	0.00	0.07	- 01			ZrO ₂	10.10	0.50		10.00		٠
	54.81	6.82	3.87	5.91	1.70		1.96	10.10	0.53	1.70	12.60	31.2	31.8
	53.76	6.69	3.80	5.80	1.66		3.85	9.90	0.52	1.66	12.36	30.1	31.6
Dry process	33.92	5.01	$\begin{array}{c} As_2O_3\\ 5.23 \end{array}$	PbO 44.61	ZnO 3.34			0.22	0.41	0.75	6.51	30.1	30.7

ACID RESISTANCE OF VITREOUS ENAMELS

 $S_{\ell\ell}$ (20, 16, 21, 5, 23, 14, 11, 29) for sheet steel enamels and (25) for cast iron enamels.

LITERATURE

(For a key to the periodicals see end of volume)

Arnold, 38, 5: 86; 22.
 Blumenthal, 38, 4: 900; 21.
 Brown, 81, 14: 470; 12.
 Coblents and Hughes, 32, No. 254; 24.
 Collins, 45, 11: 757; 19.
 Danielson, 38, 3: 961; 20.
 Danielson and Frehafer, 38, 6: 634; 23.
 Danielson and Reinecker, 38, 4: 827; 21.
 Danielson and Reinecker, 32, No. 246; 23.

- (10) Danielson and Souder, 38, 4: 631; 21. (11) Danielson and Sweely, 38, 6: 1011; 23. (12) Danielson and Lindemann, 38, 8: 795; 25. (13) English and Turner, 105, 4: 115; 20. 5: 121; 21. 5: 183; 21. (14) Frost, 38, 1: 422; 18. (15) Krase, 100, 49: 33; 14. (16) Landrum, 81, 13: 494; 11. (17) Landrum, 81, 14: 489; 12. (18) Mayer and Havas, 100, 44: 188, 207, 220; 11. (18) Menzel, 103, 22: 423; 14.
- (20) Orton, 81, 11: 320; 09. (21) Poste, 81, 17: 137; 15. 18: 762; 16. 38, 2: 32; 19. 2: 560; 20. (22) Poste, 45, 16: 469; 24. (23) Shaw, 81, 12: 463; 10. (24) Shaw, Notes submitted to Data Committee, American Ceramic Society. (28) Staley, 38, 4: 703; 21. (24) Staley, 32, No. 142: 85; 19. (27) Sweely, 38, 5: 855; 22. (28) Sweely, 38, 4: 350; 21. (29) Wolfram, 38, 7: 1; 24.
- (20) Wolfram and Harrison, 38, 7: 857; 24. (21) U. S. Bureau of Standards, O. (22) Winkelmann and Schott. 8, 51: 735; 94.

STRUCTURAL CEMENTS, LIMES AND PLASTERS

P. H. BATES AND W. E. EMLEY

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Hydraulic cements.	Liants hydraulique.	Hydraulische Bindemitteln.	Conglutinanti idraulici 117
Portland cement.	Ciment Portland.	Portland-Ziment.	Cemento Portland 117
Gypsum.	Sulfate de chaux.	Gips.	Solfato di calcio 122
Lime mortar and masonry.	Mortier de chaux et maçon-	Kalkmörtel und Mauerwerk.	Calci e muratura 123
	nerie.		

HYDRAULIC CEMENTS

P. H. BATES

Hydraulic cements have the property of hardening under water and are usually made by burning argillaceous limestones or mixtures of argillaceous and calcareous materials. They include: portland, rosendale, natural, grappier, Eisenportland, Erzportland, Hochofen, trass, tufa, pozzuolana, etc., and hydraulic limes.

The definition and classification of cements is largely a matter of usage, which varies from nation to nation. In the U. S. there is a well-recognized standard for portland cement alone (A. S. T. M., C9-21).

A very infrequently used standard for natural cement differentiates this from portland cement only by its not requiring grinding before calcination, and giving different numerical values for the other properties (A. S. T. M., C10-09).

Rosendale, grappier, and hydraulic limes are natural cements in that the raw material is not ground before calcination. The other classes of cement mentioned above are mixtures of portland cement with various amounts of different slags of natural or of artificial origin. Their use is not very extensive and in general is confined to a few countries.

In France one standard covers the several varieties of hydraulic limes and cements (3).

"Hydraulic limes and cements will be called quick-, medium-, slow-, or extremely slow-setting according as their time of initial set is less than 5 min, 5 to 30 min, 30 min to 6 hr or more than 6 hr respectively.

"Until the time when compression test results can be generalized, the classification by strength shall be made as follows according to minimum strength in tension at 7 and 28 days."

Designation	Minimum tensile strength					
(package to show this designation)	kg	cm^{-2}	lb. in2			
	7 da	28 da	7 da	28 da		
1/3 kg	1	3	14.2	42.6		
3/5 kg	3	5	42.6	71.0		
6/10 kg	6	10	85.0	142.0		
10/15 kg	10	15	142.0	213.0		
15/20 kg	15	20	213.0	284.0		
20/25 kg	20	25	284.0	355.0		

The chemical composition of all cements, even of the same class, varies widely. The following table, taken from the file of the U.S. Bureau of Standards, gives the composition of some portland cements of the U.S., wt. %:

$\overline{\mathrm{SiO}_2}$	22.25	25.02	20.75	22.66	20.37	23.40	19.03	19.82	20.80
Al ₂ O ₃	6.63	6.08	7.79	5.58	3.64	6.97	8.75	7.62	6.94
Fe ₂ O ₃									
CaO	63.84	62.89	60.48	62.22	61.42	60.87	62.81	62.04	64.12
MgO	2.41	1.11	3.28	. 62	.82	1.13	1.33	3.90	1.02
SO_3	1.07	1.75	1.76	1.05	1.19	1.41	1.37	1.43	1.30
Na ₂ O									
K ₂O									
Ig. loss	1.14	2.03	2.76	2.86	2.07	2.78	1.56	2.72	1.26

In the following table are given the analyses of some other cements:

	Natura	l cemer	nts(10)	Hydraulic lime (3)	Erzportland(10)	Slag (CaS, 2.7 %) (10)	White (10)
SiO ₂	20.85	24.07	23.81	22.89	20.37	30.19	22.66
Al_2O_3	6.04	11.69	8.01	0 15	3.64	11.08	8.61
Fe ₂ O ₃	1.40	.35	4.18	2.15	8.97	1.64	. 55
CaO	34.83	47.08	32.00	64.85	61.42	46.16	62.46
MgO	22.25	1.51	18.45	1.47	.82	2.17	1.10
Na ₂ O	. 14	.25	.26		1.54	. 29	. 40
K ₂ O	1.60	.91	.44		.24	. 64	. 53
SO ₃		. 10	2.53	. 61	1.19	1.10	1.64
Ig. loss	11.12	1.79	8.26	8.03	2.07	4.00	2.06

PORTLAND CEMENT

P. H. BATES

In view of the relatively very small amounts of cements used other than portland, and especially in view of the lack of any critical data on these other types of cements, this section will deal only with portland cements and products made therefrom.

Portland cement is a heterogeneous mixture of several compounds of silica, alumina and lime (being mostly 3CaO.SiO₂,

2CaO.SiO₂, 3CaO.Al₂O₃, glass and uncombined lime), produced by heating to incipient fusion finely ground mixtures of limestone, marl, or other calcareous compounds with certain argillaceous materials as clay, shale, slag, etc. The cement contains, in addition to the above, compounds or solid solutions of iron, magnesium, sodium, potassium, titanium, etc. The compounds present do not occur in fixed or definite quantities and as a consequence the properties of portland cement vary widely. Furthermore, as it is not stable towards water, moisture, or carbon dioxide in the presence of moisture, its properties are constantly changing (2).

Fig. 1.—Effect of size of aggregate on modulus of elasticity. Compression tests of 6 by 12-in. cylinders. Sand and pebble aggregate. Relative consistency 1.10. Each value is the average of 24 tests from 6 times of mixing.

On mixing portland cement with water certain hydration reactions take place. The character and degree of these reactions depend upon the amount of water used and the presence of dissolved salts. The character and the degree of the reaction determine also the physical properties of the resulting material.

In view of the lack of the use of cement in the neat form (cement and water without the presence of any aggregate, either fine or coarse) no data will be presented referring to the properties when so used. All data will refer to concrete—large particles bonded with cement, or mortar—fine particles, all passing the 3% inch sieve, bonded with cement.

Strength of Concrete

The following equations have been suggested for calculating the compressive strength (Def. 4). Feret (22) states that if values of the expression

$$\left(\frac{V_c}{1-V_s-V_A}\right)^2$$

[where V_{ϵ} = absolute volume of cement in unit volume of mortar.

 V_{\bullet} = abs. vol. of sand in unit vol. of mortar,

and V_A = abs. vol. of large aggregate in unit vol. of mortar] be graphed against the compressive strength (Def. 4) of any concrete made of any aggregate of the same consistency, aged under the same condition and for the same period, the points so obtained will lie close to a straight line passing through the origin.

According to Abrams (1) the compressive strength, S, is expressed by the equation $S = A/B^z$

where x = the $\frac{\text{water}}{\text{cement}}$ vol. ratio in the mixture, and A and B are constants depending upon the quality of cement, age of concrete, curing conditions, etc.

Fig. 2.—Effect of amount of cement on modulus of elasticity. Compression tests of 6 by 12-in. cylinders. Sand and pebble aggregate; graded 0-1½ in. Relative consistency 1.10. Each value is the average of 24 tests from 6 times of mixing.

Talbot (40) finds
$$S = 32\ 000 \left(\frac{C}{V+C}\right)^{2.5}$$
 lb./in.²,

where C = vol. of cement in unit vol. mixture

and V = voids (air and water) in unit vol. mixture, when the "basic water" content is used. The "basic water" content is the amount of water per unit volume of the mortar that gives the minimum voids. The relation between strength and relative water content is not a straight line function. The strength of the concrete having a water content of 1.5 times that of the basic content would be reduced about one-third.

Modulus of Elasticity

Walker (42) gives $E = CS^m$

where E = modulus of elasticity,

C and m = constants depending upon the conditions of test,

and S = the compressive strength.

"Four different measures of modulus of elasticity of concrete are in more or less common use, as follows:

 E_i = the initial tangent modulus;

 E_t = tangent modulus at some load;

 E_{\bullet} = secant modulus at some load;

 E_d = load modulus between two loads.

The initial tangent modulus for usual concrete mixtures may be represented by the equation $E_i = 33\ 000\ S^{\frac{5}{6}}$. For the tangent modulus at 25% of the compressive strength the equation becomes $E_i = 66\ 000\ S^{\frac{1}{2}}$."

Fig. 3.—Effect of consistency of concrete on modulus of elasticity. Compression tests of 6 by 12-in. cylinders. Each value is the average of 15 tests from 3 sizes of sand and pebble aggregate.

Figures 1-4 illustrate the effect of the several variables mentioned above on the initial tangent modulus. In these graphs certain of the terms used have the same significance as indicated in the tables under "Strengths."

Poisson's Ratio (Def. 9)

Recorded values range from 0.08 to 0.18 (27, 39, 50).

Bulk Density

Varies from 0.68 to 0.90, according to grading and size of particles and is not affected by aging or slight changes in mixing temperature.

Thermal Expansion

Norton (34) found the following values for a "1:2:5 stone concrete." The concrete was permanently deformed by the heat treatment and did not return to its original length. The length

on cooling was 75% of the maximum length obtained during heating.

Temperature range	$\frac{10^{6}\Delta l}{l \Delta t}$
72°- 360°F	4.5 to 6.0
72°- 750°F	5.0 to 6.0
72°-1190°F	4.0 to 5.0
72°-1600°F	3.5 to 4.2

SPECIFIC HEAT (34)

Temperature	g-cal g ⁻¹ deg. ⁻¹ C				
range	1:2:5 stone	1:2:4 stone	1:2:4 cinder		
72°- 312°F	0.156	0.154			
72°- 372°F	.192	.190	0.180		
72°-1172°F .	.201	.210	.206		
72°-1472°F	.219	.214	.218		

Fig. 4.—Effect of age of concrete on modulus of elasticity. Compression tests of 6 by 12-in. cylinders. Mix 1:5 by volume. Each value is the average of 30 to 35 tests from 6 or 7 consistencies.

Thermal Conductivity

1 g-cal cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹ = 1.24 BTU ft.⁻² sec⁻¹ (°F, in.⁻¹)⁻¹

Upper temp.,	Norton (34)	<u>k</u>
°C	Mix	g-cal unit
35	stone 1-2-5*	0.00216
50	stone 1-2-4*	0.00113
50	cinder 1-2-4	0.00081
200	stone 1-2-4	0.0021
400	stone 1-2-4	0.0022
500	stone 1-2-4	0.0023
. 1000	stone 1-2-4	0.0027
1100	stone 1-2-4	0.0029

^{*} Not tamped.

	xture olumes			C 200°C to 300°C F 390°F to 570°F						
Cement:		g-cal c	g-cal cm ⁻² sec ⁻¹ (°C, cm ⁻¹) ⁻¹							
aggre- gate	sand: gravel	k	k	k						
"Neat"		0.00140	0.00163	0.00140						
1-2	1-1.2-1.1	0.00326	0.00344	0.00318						
1-3	1-1.9-1.7	0.00335	0.00379	0.00318						
1-4	1-2.4-2.3	0.00413	0.00352	0.00328						
1-5	1-3.1-3.0	0.00327	0.00323	0.00334						
1-7	1-4.3-4.0	0.00400	0.00384	Carman and						
1-9	1-5.6-5.1	0.00574	0.00352	Nelson (11)						

VARIATION WITH RELATIVE WATER CONTENT

	Relative		k-			
Mixture	water con-	50°C to	100°C to	200°C to		
	tent, %	100°C	200°C	300°C		
1:2	100	0.00365	0.00322	0.00320		
	110	0.00300	0.00332	0.00310		
	120		0.00317	Ì		
1:3	100	0.00347	0.00365	0.00340		
	110	0.00343	0.00391			
	120	0.00353	0.00345	0.00310		
1:4	100		0.00357			
	110	0.00415	0.00373	0.00322		
	120	0.00410	0.00316			
1:5	100		0.00353	1		
	110	0.00381	0.00380	0.00380		
	120	0.00273	0.00305	0.00270		
1:7	110	0.00402	0.00387			
•	120		0.00300			
1:9	110	0.00573	0.00359	Carman an		
	120		0.00273	Nelson (11		

EFFECT OF AGE (11)

Mix- ture	Rela- tive water content %	Age days	k	Mix- ture	Relative water content	Age days	k
1:2	110	28	0.00335	1:5	120	28	0.00330
		120	331			120	297
1:3	110	28	398	1:7	110	28	380
		120	365			120	380
1:4	110	28	376	1:9	110	28	340
		120	337			120	387

For additional data, see p. 122.

Thermal Diffusivity (11) DIFFUSIVITY OF CONCRETE, 100°-200°C Relative water content, 110%

Mixture	Density g cm ⁻³	k	Specific heat cal g ⁻¹ °C ⁻¹	Diffusivity cm² sec ⁻¹
"Neat"	1.83	0.00147	0.278	0.00289
1-2	2.26	0.00344	0.216	0.00705
1-3	2.28	0.00379	0.218	0.00762
1-4	2.29	0.00352	0.218	0.00705
1-5	2.29	0.00323	0.217	0.00650
1-7	2.23	0.00384	0.227	0.00758
1-9	2.16	0.00352	0.223	0.00732

Setting Time

In the U.S., the standards of the Govt. and Amer. Eng. Stands. Com. require an initial set in not less than 1 hour, and a final set within 10 hours, as determined by a purely empirical test. In other countries cements may be made to meet various specification requirements as to setting (cf. p. 117). No method of measuring the set of mortars or concretes has been developed.

Time Rate of Change of Volume

These data have been obtained by linear measurements alone, and are as usual faulty, owing to lack of data that would accurately delimit the concrete under investigation. The change is among other variables a function of the size of specimen, amount of water used, and the humidity of the surrounding atmosphere. The values given indicate a contraction ranging from 0.018 to 0.08% for "reinforced concrete" (33).

Resistance to Weathering and Chemical Action

Mortars and concretes are attacked by acid. If dense and carbonated on the exterior they offer great resistance to weather and other chemical agents.

TESTS OF PORTLAND CEMENT

Used in obtaining the data given in Tables 2, 3, 4, and 5.

The cement used in all tests consisted of a mixture of equal parts of four brands purchased in Chicago and gave satisfactory soundness tests (over boiling water).

Tests were made in accordance with the Standard Specifications and Tests for Portland Cement, A. S. T. M.

Miscellaneous tests

-				1	ime o	seti	ting		
Fineness. Residue on No. 200 Tyler	Normal consistency		Vicat	need	le	1 (Gillmo	re nee	dle
Sieve %	wt. %	Initial Final			Initial Final				
		hr	min	hr	min	hr	min	hr	min
18.8	24.0	3	40	8	20	5	45	9	40
17.6	23.0	3	45	8	00	6	30	8	30

Mortar strength tests

1:3 Standard Sand Mortar.

Mixing water						Compressive strength (Def. 4) 2 × 4 in. cylinders, lb./in. ²					
%	7 da	28 da	3 mo	6 mo	l yr	7 da	28 da	3 mo	6 mo	1 yr	
10.5	235	365	425	380	405	1670	2570	3520	4250	3840	
10.3	280	430	410	385	355	1720	2870	3710	4150	4370	

TABLE 2.—EFFECT OF CURING CONDITION OF CONCRETE

Mix, 1:4 by volume. Relative consistency of concrete, 1.10; water-ratio, 0.82. Age at test, 28 days.

Aggregate: sand from Janesville, Wis., and pebbles from Elgin. Ill.; graded up to $1\frac{1}{2}$ in. Each value is the average of 5 tests made on different days.

Ref.	Days s	torage	Modulus of	Compressive sive	Modulus of rupture	
No.*	Damp burlap	Dry air	rupture of beams, lb./in.2	6 × 12 in. cylinders, lb./in. ²	% com- pression	
7, 8	28	0	550†	2580†	21.3	
42	26	2	510	2630	19.4	
43	21	7	450	2850	15.8	
44	14	14	485	2920	16.6	
45	7	21	470	3020	15.6	
46	4	24	410	2330	17.6	
47	0	28	370	2340	15.8	
			Average 465	2670	17.5	

^{*} See Table 1 for Ref. Nos.

[†] Average of 25 beam tests and 115 cylinder tests.

TABLE 1.—Sieve Analysis and Unit Weight of Aggregates

Used in obtaining the data given in Tables 2, 3, 4, and 5.

Square mesh wire cloth sieves, Tyler Series (v. p. 329), were used in making sieve analyses. Each sieve has a clear opening twice the width of the preceding one.

Ref.	Aggregate			Sieve analysis									Fineness modulus	Unit
No.	W:-1	Size	Size		Wt. % retained on each sieve								of aggre-	weight,
	Kind	No.		100	50	30	16	8	4	38	3 4	11/2	gate*	lb./ft.3
36		0-No.	16	97	78	20	0						1.95	108
37	Janesville sand	0-No.	8	98	80	28	11	0					2.17	111
38		0-No.	4	98	82	35	19	9	2	0			2.45	113
39		0-0.37	5 in.	99	90	63	54	49	45	0			4.00	123
40		0-0.75	in.	99	93	75	69	64	61	39	0		5.00	128
1-28, 41		0-1.5	in.	99	95	80	76	74	71	52	18	0	5.65	130
29		0-1.5	in.	98	84	43	30	20	14	-8	3	0	3.00	118
30	Iilldd-Fleinbbl	0-1.5	in.	99	88	57	46	41	35	25	9	0	4.00	127
31	Janesville sand and Elgin pebbles	0-1.5	in.	99	90	64	56	51	46	33	11	0	4.50	131
32		0-1.5	in.	99	92	71	65	61	57	41	14	0	5.00	132
33		0-1.5	in.	99	93	75	70	66	62	45	15	0	5.25	133
34		0-1.5	in.	100	96	86	83	80	78	58	19	0	6.00	127
35		0-1.5	in.	100	97	89	86	85	84	63	21	0	6.25	124
42-53 59-64	Janesville sand and Elgin pebbles	0-1.5	in.	99	95	80	76	74	71	52	18	0	5.65	130
54	Janesville sand and crushed slag	0-1.5	in.	99	95	80	76	74	71	52	18	0	5.65	118
55	Janesville sand and crushed limestone	0-1.5	in.	99	95	80	76	74	71	52	18	0	5.65	129
56	Janesville sand and crushed granite	0-1.5	in.	99	95	80	76	74	71	52	18	0	5.65	121
57	Washed Elgin sand and Elgin pebbles	0-1.5	in.	99	95	86	80	72	67	49	17	0	5.65	127
58	Unwashed Elgin sand and Elgin pebbles	0-1.5	in.	100	98	91	86	81	73	50	18	0	5.97	130

^{*}Sum of per cents in sieve analysis, divided by 100.

TABLE 3.—EFFECT OF QUANTITY OF CEMENT AND MIXING WATER

Aggregate: sand from Janesville, Wis., and pebbles from Elgin, Ill.; graded up to $1\frac{1}{2}$ in. Fineness modulus, 5.65. Age at test, 28 da. Specimens tested damp. Each value for modulus of rupture is the average of 10 tests, and for compressive strength 20 tests, made on 10 different days.

Ref. No.	Mix by	Cement vol. % of	Relative	Water- ratio of		rupture of be 10 in. wide,	eams, lb./in. ² 38 in. long)	Compressive strength of 6×12 in.	Modulus of rupture, %
	volume	concrete	consistency	concrete	Bottom*	Top*	Aver.	cylinders, lb./in.²	compression
				Effect of quar	tity of cemen	t			
1, 2	1:6	16.4	1.10	1.03	430	420	425	1820	23.4
3, 4	1:5	19.0	1.10	0.92	500	490	495	2140	23.1
5, 6	1:4.5	20.7	1.10	0.87	480	510	495	2130	23.2
7, 8	1:4	23.0	1.10	0.82	560	540	550†	2580†	21.3
9, 10	1:3.5	25.4	1.10	0.76	590	540	565	2980	19.0
11, 12	1:3	28.7	1.10	0.71	600	590	595	3480	17.1
13, 14	1:2.5	33.0	1.10	0.64	590	590	590	4110	14.3
15, 16	1:2	38.7	1.10	0.59	660	620	640	4390	14.6
				Average	550	 540	545	2950	19.5
	<u>'</u>	<u>'</u>	Eff	ect of quantit	y of mixing w	ater	·		
17, 18	1:4	23.8	0.90	0.68	590	560	575	3760	15.3
19, 20	1:4	23.5	0.95	0.72	580	600	590	3280	18.0
21, 22	1:4	23.4	1.00	0.75	580	560	570	3100	18.4
23, 24	1:4	23.2	1.05	0.78	570	550	560	2720	20.6
7, 8	1:4	23.0	1.10	0.82	560	540	550†	2580†	21.3
25, 26	1:4	22.5	1.25	0.92	460	540	500	1920	26.0
27, 28	1:4	22.3	1.50	1.08	400	500	450	1300	34.6
	Ì								
				Average	535	550	540	2660	22.0

^{*} Part of concrete beam (as molded) which was exposed to tensile stress during loading.

[†] Average of 25 beam tests and 115 cylinder tests.

TABLE 4.—Effect of Size and Grading of Aggregate

Aggregates: sand from Janesville, Wis., and pebbles from Elgin, Ill. Aggregates of different size were obtained by separating sand and pebbles into various sizes and recombining as shown by sieve analyses in Table 2. Different gradings of aggregates were produced by mixing sand (0 to No. 4) and pebbles (No. 4 to 1½ in.) in different proportions.

Mix, 1:5 volume. Relative consistency, 1.10. Specimens tested damp. Each value is the average of 5 tests made on different days.

Def No	Aggr	egate	Water- ratio of	Мо	dulus of beams,			Compressive strength 6 × 12 in. cylinder, lb./in.				Modulus of rupture % compression			
Ref. No.	Size	Fineness Modulus	concrete	7 da	28 da	3 mo	1 yr	7 da	28 da	3 mo	1 yr	7 da	28 da	3 mo	1 yr
					Effect	of size	of aggre	egate							
36	0-16	1.95	1.29	95	160	255	340	270	620	1190	1600	35.2	25.8	21.5	21.2
37	0-8	2.17	1.25	95	195	320	370	360	850	1470	1860	26.4	23.0	21.8	19.9
38	0–4	2.45	1.20	125	250	370	425	430	1010	1620	2100	29.4	24.8	22.8	20.2
39	0-0.375	4.00	0.98	290	455	595	640	1040	2110	2930	4490	27.9	21.6	20.3	14.3
40	0-0.75	5.00	0.87	365	560	730	775	1290	2650	3650	4890	28.3	21.2	20.0	15.9
41	0-1.5	5.65	0.82	420	550*	810	880	1410	2580*	3590	5000	29.8	21.3	22.6	17.6
			į						l —						
			Average	230	360	510	570	800	1640	2410	3320	29.5	22.9	21.5	18.2
				F	Effect of	gradin	g of age	regate							
29	0-1.5	3.00	1.11	165	255	410	450	620	1290	1640	2330	26.6	19.8	25.0	19.3
30	0-1.5	4.00	0.98	230	390	505	570	950	2000	2550	3230	24.2	19.5	19.8	17.7
31	0-1.5	4.50	0.93	285	485	610	645	1090	2190	2750	3830	26.2	22.2	22.2	16.9
32	0-1.5	5.00	0.87	325	505	660	710	1160	2410	3580	4510	28.0	21.0	18.4	15.8
33	0-1.5	5.25	0.85	365	555	735	820	1320	2940	3810	5340	27.7	18.9	19.3	15.4
41	0-1.5	5.65	0.82	420	550*	810	880	1410	2580*	3590	5000	29.8	21.3	22.6	17.6
34	0-1.5	6.00	0.78	405	600	735	825	1300	2250	3310	4400	31.2	26.7	22.2	18.8
35	0-1.5	6.25	0.77	235	590	730	865	1140	1990	2840	4080	33.8	29.6	25.7	21.2
															
	4051		Average	320	490	650	720	1120	2210	3010	4090	28.4	22.4	21.9	17.8

^{*} Average of 25 beam tests and 115 cylinder tests.

TABLE 5.—EFFECT OF KIND OF AGGREGATE

Mix, 1:4 by volume. Relative consistency, 1.10; water-ratio, 0.82.

Aggregate: sand, 0 to No. 4; and coarse aggregate, No. 4 to $1\frac{1}{2}$ in.; all of same grading. Specimens tested damp. Age at test, 28 days. Each value is the average of 5 tests made on different days.

Ref.	Kind of aggregate			Modulus of rupture of beams, lb./in. ²				Compressive strength 6 by 12 in. cylinder, lb./in. ²				Modulus of rupture % compression		
No.	Sand	Coarse	7 da	28 da	3 mo	1 yr	7 da	28 da	3 mo	1 yr	7 da	28 da	3 mo	1 yr
7, 8	Janesville	Elgin pebbles	420	550*	810	880	1410	2580*	3590	5000	29.8	21.3	22.6	17.6
54	Janesville	Slag	450	585	765	760	1240	2300	3150	4530	36.3	25.4	24.3	16.8
55	Janesville	Limestone	440	595	790	830	1320	2350	3280	3970	33.4	25.3	24.1	20.9
56	Janesville	Granite	375	540	665	725	1010	1980	2960	3760	37.1	27.3	22.4	19.3
57	Elgin washed	Elgin pebbles	405	595			1490	2640		İ	27.2	22.5		
58	Elgin unwashed	Elgin pebbles	425	610			1340	2520			31.7	24.2		
				 —				l						
		Average	420	580	760	800	1300	2390	3240	4320	32.6	24.3	23.4	18.8

^{*} Average of 25 beam tests and 115 cylinder tests.

GYPSUM

(Plaster-of-Paris)

W. E. EMLEY

Raw Materials and Calcination.—Commercial gypsum should contain $\leq 64.5\%$ CaSO_{4.2}H₂O (A. S. T. M., C22-23T; C23-22). On calcination below 163°C, CaSO_{4.2}H₂O (gypsum) = CaSO_{4.1}½ H₂O + 1½ H₂O. Gentle calcination above 163°C, CaSO_{4.1}½ H₂O = CaSO₄ (soluble anhydrite) + ½ H₂O. At higher temperatures CaSO₄ (soluble anhydrite) = CaSO₄ (natural anhydrite (insol.)) (29, 44). For dissociation pressures, consult this item in the index of I. C. T. Commercial calcination and product v. (8, 21, 38).

Properties.—The properties of products made from calcined gypsum are dependent upon the nature of the calcined gypsum (purity, method of calcination, and fineness), upon the quantity of water used in placing it, and upon the kind and amount of

other materials (accelerators, retarders, lime, clay, sand) added to it. These facts must be constantly borne in mind when interpreting the figures given below.

Setting Time.—A normal figure is 6 min for no impression by Vicat needle (24) (A. S. T. M., C26-33). Doubling the amount of water will give 29 min (24). Fine grinding after calcination may lower to 3 min (49). The setting reaction is not complete when the Vicat needle indicates that the material is set. Evolution of heat continues and the temp. continues to rise for many min (18). If the calcined gypsum is of such a nature that a max. temp. rise of 14°C is attained in 53 min this time can be decreased to 21 min (by 2% sodium chloride) or increased to more than 240 min (by 2% calcium acetate) (43).

The commercial accelerator generally recommended is finely ground raw or set gypsum. The accelerating effect of this material is so powerful that especial care must be taken to clean all vessels

and tools before mixing a fresh batch of material. 0.5 to 0.6% of this material will decrease the time of set of gypsum plaster about 1 hr (48). Other soluble sulfates, such as are generally found in our water supplies, have similar effects.

Commercial retarder is a mixture made by cooking together soda, lime, and slaughter house refuse; 0.2% of this material will retard the time of set 2.5 to 3 hr (43). Carpenters' glue has a similar effect and is more readily obtainable.

Expansion on Setting.—Calcined gypsum will normally expand when it sets. Heavily retarded material may contract due to settling out of the solid. Calcined gypsum retarded to set in 2 hr and mixed with 35% water expanded 0.15% in length while setting. Increasing the water to 47% increased the expansion to 0.30%. Addition of sand seemed to have little effect.

After the gypsum has set and dried, wetting will cause expansion, drying, contraction. The magnitude of the movement is about 0.04% for the pure material. Addition of sand reduces this expansion, the reduction being proportional to the amount of sand, so that a specimen made of one part calcined gypsum to a little more than two parts of sand shows practically no movement, and leaner mixtures actually contract instead of expanding on being wetted (35).

Strength.—Calcined gypsum, if pure, properly calcined, of such fineness that it will all react, mixed with as little water as possible to bring it to a pouring consistency, molded in the form of a cylinder 2 in. diameter by 4 in. high, not retarded to such an extent that much water can evaporate prior to setting, and stored in a cool place until dry, will develop a compressive strength of at least 1000 lb./in.² (A. S. T. M. C23-22); av. 1665, max. 2285 (21).

Naturally occurring impurities or added materials (except accelerators) will decrease the strength. The average figure for the compressive strength of a mixture of one part calcined gypsum to two parts sand by weight may be taken at 415 lb./in.² (21); for a 1:3 mixture the figure is 335. Lime and clay reduce the strength at early ages, but this is gradually recovered (36). Portland cement reduces the strength in proportion to the cement added until the mixture reaches a minimum at 20% gypsum 80% cement, the strength of which is little more than half that of calcined gypsum (35).

Increased fineness up to 80% through a No. 100 U. S. Stand. sieve (v. p. 329), by making the calcined gypsum more reactive, causes increased strength. This size is 50% stronger than material only 40% of which passes a No. 100 sieve. Further increase in fineness is accompanied by a decrease in strength because more water is required to bring the mixture to a workable consistency $(^{45})$.

The above figures are based on the max. consistency thickness which will allow pouring. Thicker consistencies will give greater strength, clear to the limit of workability of the mixture (9). Thinner consistencies will give lower strengths to zero, for calcined gypsum will not harden under water.

While there is a tendency for accelerators to increase the strength of calcined gypsum and for retarders to reduce it, the action of neither is marked unless retarder is present in sufficient amount to delay the set until the water required for setting has evaporated. Two per cent calcium acetate, for example, will retard calcined gypsum so far as to destroy completely its strength (43).

Castings made of calcined gypsum are strongest when completely dry. Moisture, or more particularly percolating water, seems to dissolve the bond between the crystals, resulting in permanent loss of strength or eventual disintegration. On account of the comparatively high dissociation pressure of gypsum at ordinary temperatures (100 mm Hg at 62°C) (41), it is dangerous to resort to artificial drying. The strength reaches very nearly its maximum as soon as the casting is dry, so that the age of a test specimen is of little importance (A. S. T. M. C26-23).

The ratio compressive strength/tensile strength = ca. 4.62 (21).

Thermal Conductivity and Fire Resistance.—(25). (See also p. 315.)

Heat of Dehydration.—See I. C. T. Section on Thermochemistry.

Porosity, Solubility and Weather Resistance.—Calcined gypsum will not harden under water. When hardened in air and immersed in running water, castings made of calcined gypsum will eventually disintegrate. Calcined gypsum should not be used in situations where it will be exposed to the weather unless special precautions are taken.

These characteristics are usually attributed to the fact that gypsum is "quite soluble," but it is now believed that they are dependent more upon porosity than solubility.

The solubility of gypsum in pure water varies from 0.18% at 0°C to a maximum of 0.21% at 40°C, but it is much more soluble in water containing certain common salts (23). Taking the weight of set gypsum at 77 lb./ft. (32) and the specific gravity of the solid material at 2.35, the pores must occupy 47.5% of the total volume. (This figure may vary within wide limits, depending upon the fineness of the calcined gypsum and the quantity of mixing water used.) Owing to the crystalline nature of the material, these pores are comparatively large and afford passages for circulation of water, thereby rendering material assistance in the solution of the gypsum.

It has been found that if calcined gypsum is heavily retarded so that it can be trowelled frequently while setting, the dense surface thus produced is quite effective in improving the weather resistance of the finished product (46).

LIME MORTAR AND MASONRY

W. E. EMLEY

Commercial limes and mortars are made by mixing properly calcined limestone with water, or water and sand. Their properties depend on many variables, lack of control of which render most of the published quantitative data valueless. For the available qualitative information, reference should be made to the literature cited.

Raw Materials

Nature of Raw Materials, Commercial Definitions and Specifications (12).—(A. S. T. M. C51-22T; C5-22T).

Density.-v. p. 53.

Porosity.—Limestone usually less than 1 vol. % (v. p. 53).

Dissociation Pressure and Rate of Dissociation.—The dissociation pressure reaches 1 atm at 898°C for CaCO₃ and 756.5°C for MgCO₃. For further data, v. "Dissociation pressure" in the index of I. C. T. Commercial calcination is ca. 6 hr at ca. 1400°C (6, 15).

Other Properties.—See the pure materials in the various tables of I. C. T. See also p. 47.

Hydrated Lime and Lime Putty

Manufacture.—When CaO is properly mixed with an excess of water sufficient to keep the temp. below 100°C "lime putty" is obtained. With less excess, the resultant product is dry "hydrated lime." With still less water, the temperature may rise above 375°C and an "oxyhydrate" is obtained (17, 26).

"Plasticity."—(20, 25, 26, 28).

Lime Mortars

Decrease in Volume on "Setting."—From 9% for non-plastic to 27% for plastic lime putty (2^8) . This contraction is in practice reduced to ca. 5% by admixture of 80-90% of sand (5, 40).

Setting Time.—No agreement as to definition of term. The following laboratory test has been proposed (37):

Setting shall be assumed to be attained when an electrical resistance of 30 000 ohms is reached between two 5 mm brass plugs imbedded 8 mm in the plaster with their centers 10 cm apart.

Under this definition, neat lime putty will set in 40-50 hr, and this may be reduced 5-10 hr by admixture of sand (37).

Rate of Carbonation.—As ordinarily mixed and placed, lime mortar will carbonate from the surface inwards at ca. $\frac{1}{8}$ in. per month (16). This is subject to change, within narrow limits, by variations of the factors enumerated above. A 2-in. cube exposed on 5 sides will carbonate completely in ca. 8 months; an 8-in. mortar joint exposed on one side will require more than 5 years.

Soundness.—(20, 31, 47).

Strength.—For purposes of intercomparison only, the following figures may be quoted as the strength of a mortar made of high calcium hydrate with three parts by weight of run-of-mine Ottawa sand and enough water to bring the mixture to "Standard" consistency (19) on the plunger viscometer, the mortar being molded in the form of 2-in. cubes for compression, the usual type of briquette for tension, and $12 \times 1 \times 1$ in. bars for transverse and shear, and the specimens stored in the laboratory, with 5 sides exposed, for 90 days: Compressive, 403; Tensile, 69; Shearing, 82; Transverse, 146 lb./in.²

Expansion after Setting.—No published data. Humidity and thermal coefficients at room temperature approximately equal to those of concrete. Thermal coefficient much greater at higher temperatures (9).

Strength of Masonry (7, 13).—Common brick masonry (1 to 4 pt. by vol. lime mortar) should withstand a compression of 125 lb./in.² (14). See also p. 66.

Thermal Conductivity and Fire Resistance —(25).

LITERATURE

(For a key to the periodicals see end of volume)

- Abrams, 309, No. 1; 22.
 Ibid., No. 6; 24.
 Ancienne Soc. J. and A. Pavin de LaFarge, Sales Circ.
 Anon, 66, 23 II: 432; 23.
 Anon., Nat. Lime Assoc., Bull. No. 305A.
 Bleininger and Emley, 81, 13: 618; 11.
 Bragg, 32, No. 111; 18.
 Bur. Standards, Circ. No. 108; 21.
 Ibid., No. 151: 24.
- (10) Bur. Standards, O. (11) Carman and Nelson, 86, No. 122: 29; 21. (12) Clarke, 156, No. 695: 557; 20. (13) Cleare, Proc. Sand Lime Brick Assoc., 1920: 57. (14) Dept. of Commerce, Report of building code committee, 1925. (15) Emley, 32, No. 16: 84; 13. (16) Emley, 81, 16: 117; 14. (17) Emley, 310, 1914: 254. (18) Emley, 81, 19: 573; 17. (19) Emley, 32, No. 169; 20.
- (20) Emley and Berger, 38, 6: 1007; 23. (21) Emley and Faxon, 38, 3: 984;
 20. (22) Feret, 311, 6, No. 3: 63; 23. (23) Gale and Schaller, 156, No. 580; 302; 14. (24) Householder, 38, 1: 578; 18. (25) Hull, 32, No. 130;
 19. (26) Hursh, 81, 14: 792; 12. (27) Johnson, 66, 24 II: 1024; 24. (28) Johnson, O. (29) Larsen, 66, 23 I: 236; 23.
- 301 Lasell, Hydrated Lime, p. 39; 15. (31) Lasell, 310, 1905: 135. (32) Marani in Kidder-Nolan Architects' Handbook, 1918. (33) Matsumoto, 86, No. 126: 5; 21. (34) Norton, 122, 35: 1012; 13. (35) Porter, 66, 23 I: 244; 23. (36) Porter, Rock Products, 1924: 47. (37) Stockett, O. (38) Stone, 30, No. 155; 17. (39) Talbot, 86, No. 20; 08.
- (40) Talbot and Richart, 86, No. 137; 23. (41) van't Hoff, 7, 45: 257; 03. (42) Walker, 309, No. 5; 23. (43) Welch, 38, 6: 1197; 23. (44) Welch, 45, 16: 238; 24. (45) Welch and Emley, 38, 4: 301; 21. (46) Welch, 0. (47) White, 310, 1916: 109. (48) Wilder, Iowa Geol. Sur., 18: 371; 18. (49) Winterbottom, S. Australia Chem. Dept., Bull. No. 7; 17.
- (50) Withey, Univ. Wisconsin, Bull. No. 466; 11.

MAGNESIA CEMENTS AND CONCRETES

LEROY C. STEWART

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Bulk density.	Densité apparente.	Raumgewicht.	Peso specifico apparente 124
Strength.	Résistance mécanique.	Festigkeit	Resistenza meccanica 124
Elastic properties.	Propriétés élastiques.	Elastische Eigenschaften.	Proprietà elastiche 124
Hardness.	Dureté.	Härte.	Durezza 126
Resistance to wear.	Dureté au frottement.	Abnutzbarkeit.	Resistenza alla usura 128
Coefficient of friction.	Coefficient de frottement.	Reibungskoefficient.	Coefficiente d'attrito 128
Thermal expansion.	Dilatation thermique.	Wärmeausdehnung.	Dilatazione termica 128
Specific heat.	Chaleur spécifique.	Spezifische Wärme.	Calore specifico 128
Thermal conductivity.	Conductibilité thermique.	Wärmeleitfähigkeit.	Conduttività termica 128
Heat of mixing and setting.	Chaleur de mélange et de prise.	Mischungs- und Abbindungs-	Calore di mescolamento e
		wärme.	di presa 128
Electrical resistance.	Résistivité électrique.	Elektrischer Widerstand.	Resistenza elettrica 128
Setting time.	Durée de solidification.	Abbindungsdauer.	Tempo di presa 128

BULK DENSITY (7)

Grams per cm³: Stucco, 3.0 to 3.4. Flooring, 1.55 to 1.8. Special mixes with wood flour, cork dust, etc., 1.0 to 2.0.

ULTIMATE TENSILE STRENGTH (DEF. 4) AND MODULUS OF RUPTURE (DEF. 5) OF CEMENTS MADE WITH SPECIALLY CALCINED DOLOMITES

Wt. %: Calcined dolomite 31, ground flint 12.5, Ottowa sand 56.5. 1.179 sp. gr. MgCl₂ soln., kg/cm² (²²).

Dolo-	Ter	isile stre	ngth	Modulus of rupture*						
mite	1 day	3 days	7 days	Not sprayed	Wet	Recovered				
A			32.6	112.2	54.0	68.0				
B	18.1	30.2	34.4	133.0	69 .6	102.6				

*Bars sprayed 24 hr at 14, 16 and 18 days' age. "Wet" bars broken at 19 days' age and "Recovered" at 21 days' age. "Not Sprayed" bars broken at 20 days' age.

ELASTIC PROPERTIES

Elastic limit (Def. 2), modulus of elasticity (Def. 10a) and ultimate compressive strength (Def. 4) of cement mortar and concrete.

 $1.23~\rm sp.~gr.~MgCl_2~soln.~used.~Aged~80–85~days.~Unit~kg/cm^2~(^1).$

Magnesite-sand- rock by wt.	Elas. lim.	Mod. elas.	Compr. str.
1- 4-0	253	194 000	319
1- 6-0	150	192 000	240
1- 8-0	127	146 000	185
1-10-0	53-114	96 400	143
1- 2-4	234	269 000	359
1- 3-6	234	194 000	305

Fig. 1.—Ultimate compressive strength (Def. 4) of magnesium oxychloride flooring mixtures as affected by size and burning temperature of magnesite ore (3).

Fig. 2.—Ultimate compressive strength (Def. 4) of magnesium oxychloride mortar mixtures as affected by size and burning temperature of magnesite ore (3).

Graphs in Figs. 1 and 2 represent averages of three compositions, using MgCl₂ solution (sp. gr. 1.184) and Washington magnesite. Coarse ore passed 3.35 mm sieve, retained on 2.00 mm; medium passed 2.00 mm, retained on 0.585 mm; fine passed 0.249 mm opening.

Fig. 9.—Effect of active lime in magnesite on magnesium oxychloride cement (21).

Fig. 3.—Modulus of rupture (Def. 5) of magnesium oxychloride flooring mixture as affected by source, size and burning temperature of magnesite ore (4).

Sizes of magnesite: 1, passing 2.54 cm, retained on 1.27 cm screen; 2, passing 1.27 cm, retained on 0.64 cm screen; 3, passing 0.64 cm, retained on 0.32 cm screen. Mix: 45 % MgO, 10 % wood flour, 5 % asbestos, 20 % silex, 5 % silocel, 5 % clay, 10 % pigment (all by weight); MgCl: soln., sp. gr. 1.179.

Fig. 4.—Modulus of rupture (Def. 5) of magnesium oxychloride stucco mixture as affected by source, size and burning temperature of magnesite ore (4).

Sizes as in Fig. 3. Mix: 10 % MgO, 20 % silex, 67 % mortar sand, 3 % asbestos (all by weight); MgCl₂ soln., sp. gr. 1.179.

Fig. 7.—Tensile strength of oxychloride-silex-sand mixtures (*).

Fig. 5 (Insert).—Strength of magnesium oxychloride cements (7). Average for 12 commercial magnesites.

Fig. 6.—Effect of magnesium chloride solution strength on tensile strength of oxychloride cements (11).

Fig. 8.—Water resistance of oxychloride-silex-sand mixtures. Modulus of rupture (10).

Fig. 10.—Effect of variation in amount of magnesium chloride solution on strength and elasticity of magnesium oxychloride flooring (19).

Modulus of elasticity = $Pl^1/4dbh^1$, where P = load applied at center, l = length of bar between supports, d = deflection of supports at center, b = width of bar and b = thickness of bar.

Fig. 11.—Effect of variation in density of magnesium chloride solution on strength and elasticity of magnesium oxychloride solution (19).

Fig. 15.—Tensile and compressive strengths of an hydraulic magnesian cement (24).

Fig. 12.—Effect of variation in amount of magnesium chloride solution on Brinell hardness of magnesium oxychloride flooring (19).

Fig. 13.—Effect of variation in density of magnesium chloride solution on Brinell hardness of magnesium oxychloride flooring (1°).

Fig. 16.—Volume change in magnesium oxychloride cements (7).

Fig. 14.—Tensile strength of high magnesite oxychloride mixtures as affected by density of magnesium chloride solution (7).

Fig. 17.—Effect of wood flour on strength of magnesium oxychloride cement mixture (7).

Fig. 18 (Insert).—Effect of % of magnesite on wearing resistance of magnesium oxychloride flooring (12).

Fig. 19.—Permanency of magnesium oxychloride cement under exterior weathering (7).

Fig. 20.—Transverse strength and elasticity of magnesium oxychloride cement at various ages (7).

Fig. 21.—Effect of temperature on setting time of magnesium oxychloride cements (*).

Fig. 22 (Insert).—Effect of magnesite proportion on setting time of magnesium oxychloride cements (*).

Fig. 23.—Effect of magnesium chloride solution strength on setting time of oxychloride cement (*).

Fig. 24.—Effect of consistency on setting time of magnesium oxychloride cements (*).

Fig. 25.—Effect of kind and amount of asbestos on covering capacity and absorption of magnesium oxychloride stucco (?).

COEFFICIENT OF STATIC FRICTION OF COMMERCIAL MAGNESIUM
OXYCHLORIDE FLOORING (7)

	Coefficient of friction
Flooring on flooring	0.35-0.50
Leather on flooring	0.45-0.70
Flooring on flooring	0.25-0.50

WEARING RESISTANCE

Effect of fiber variation on wearing resistance of magnesium oxychloride flooring (12).

Wt. %: Magnesite 46, silex 27, talc 9, fiber 9, pigment 9; 1.179 sp. gr. MgCl₂ soln. Wearing resistance of hard maple taken as 100 (¹²).

Fiber	A	best	tos	WI pi	nite ne		ard ple	0	ak	re	lif. d- ood	C	ork	wdust
	Long fiber	Medium fiber	Short fiber	Sawdust	Flour	Sawdust	Flour	Sawdust	Flour	Sawdust	Flour	Granulated	Flour	Hard yellow pine sa
Wear. resist	61	55	47	50	42	40	31	45	41	43	38	56	50	43

Fig. 26.—Effect of kind and amount of asbestos on water resistance of magnesium oxychloride stucco (7).

COEFFICIENT OF LINEAR THERMAL EXPANSION

Dry ingredients by weight	Sp. gr. MgCl ₂ solution	$\frac{10^6}{l} \frac{l}{\Delta t}$	$\Delta t^{\circ} C$	Lit.
1 magnesite : 4 sand	1.23	12.60	13-93	(1)
1 magnesite: 6 sand	1.23	11.4	13-93	(1)
54 magnesite: 32 sawdust: 14				ĺ
asbestos	1.20	22.7	Room	(19)
1 magnesite: 2 silex: 5 sand	1.179	15.1	4-51	(18)

SPECIFIC HEAT AND THERMAL CONDUCTIVITY OF CEMENT MORTARS (1)

•	By wt. mag sand	Sp. gr. MgCl ₂ soln.	c _p , cal g°C	k, cal cm ⁻² sec ⁻¹ (°C cm ⁻¹) ⁻¹
•	1-4	1.23	0.19	0.0042
	1–6	1.23	0.20	0.0045

(See also p. 314.)

HEAT EVOLVED DURING MIXING AND SETTING OF MAGNESIUM OXYCHLORIDE CEMENTS (7)

150 to 250 g-cal per gram of commercially calcined magnesite.

ELECTRICAL RESISTANCE OF CEMENT MORTARS

 1.23 sp. gr. MgCl₂ solution. R for various ages in megohm-cm (1)

 Magnesite-sand by wt.
 2 days
 2 mo. dry
 2 mo. wet

 1-4
 0.025
 200
 0.0012

Fig. 27.—Effect of humidity on setting time of magnesium oxychloride cements (*).

SETTING TIME OF COMMERCIAL MAGNESITES IN VARIOUS MIXES (9)

Sp. gr. MgCl₂ soln. 1.179. Normal temperature, humidity and consistency. Stucco test mix by weight, 1:2:5 magnesite, silex and sand. Flooring test mix by weight, 5:3:1:1:1 magnesite, silex, talc, wood flour and pigment. Time of set determined with Gilmore needles.

For fourteen different samples of commercial magnesites, the initial set for neat mix varies from 0.5-6.25 hr, the final set from 1.5-16 hr; for stucco test mix, the initial set from 1-7.5 hr, final set, 2.75-11.5 hr; for flooring test mix, initial set, 1.5-8 hr, final set, 3-15 hr, depending on the nature of the magnesite.

SETTING TIME OF MAGNESIUM OXYCHLORIDE CEMENT MIXTURES

Effect of source, size and burning temperature of magnesite ore (4). Flooring mix: Wt. %: MgO 45, wood flour 10, asbestos 5, silex 20, silocel 5, clay 5, pigment 10. Stucco mix: Wt. %: MgO 10, silex 20, mortar sand 67, asbestos 3. 1.179 sp. gr. MgCl₂ soln. Gilmore needles.

Magnesite		t°C		Floori	ng mi	x	Stucco mix				
			Initial		Final		Initial		Final		
Source	Size*		Hr	Min	Hr	Min	Hr	Min	Hr	Min	
Washington	1	900	3	45	8+	Ī	2	05	6	55	
Washington	2+3	800	1	20	3	50	2	00	3	40	
Greece	1	900	1	15	3	00	1	25	3	15	
Greece	2	800		i			0	50	2	25	
Porterville, Calif	1	1100	1	35	3	50	2	45	3	40	
Porterville, Calif	1	900	0	30	2	30	0	55	2	00	
Porterville, Calif	2	800	1	15	2	50	0	55	1	50	
Porterville, Calif	3	750	3	15	5	45	4	00	6	05	
Livermore, Calif	1	900	2	15	4	00	2	30	4	30	
Livermore, Calif	2	850	1	10	2	20	1	50	3	20	
Livermore, Calif	3	800	1	15	2	25	1	15	2	00	

^{*}Sizes of Magnesite: 1—passing 2.54 cm, retained on 1.27 cm screen; 2—passing 1.27 cm, retained on 0.64 cm screen; 3—passing 0.64 cm, retained on 0.32 cm screen.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Alvares, Univ. Calif., Pub. in Eng., 1, No. 3: 21; 15. (2) Andre, 34, 94: 444; 82. (3) Bates and Young, 38, 4: 570; 21. (4) Bates, Young and Rapp, 32, No. 239; 23. (8) Bender, 25, 3: 932; 71. 13, 159: 341; 71. (4) Davis, 136, 25: 258; 72. (7) Dow Chemical Co., O. (8) Dow Chem. Co., MgCl2 Service Bull., No. 1; 22. (2) Ibid., No. 2; 22.
- (10) Dow Chem. Co., MgCl₂ Service Bull., No. 4; 22. (11) Ibid., No. 5: 21.
- (12) Ibid., No. 6; 21. (13) Hof, 156, 33: 693; 09. (14) Kallauner, 156, 33: 871; 09. 37: 1045, 1275; 13. (15) Krause, 15, 165: 38; 73. (16) Krieger, 156, 34: 246; 10. 37: 1274; 13. (17) Lahrman, 514, 35: 265; 11. (18) Olin and Peterson, 55, 31: 266; 24. (19) Roark, Univ. Wisconsin, Eng. Expt. Sta., Bull. 879; 17.
- (20) Robinson and Waggaman, 50, 13: 673; 09. (21) Seaton, Hill and Stewart, 53, 25: 270; 21. (22) Shaw and Bole, 53, 6: 311; 22. (23) Sorel, 54, 68: 102; 67. (24) Vournaxos, 34, 172: 1578; 21. (25) Webber, 54, 10: 111: 91.

DENTAL CEMENTS

W. B. Holmes

1. TYPICAL CHEMICAL COMPOSITIONS, WEIGHT % ZINC OXIDE CEMENTS

ZINC	Oxi	DE	CEMENTS		
Powder			Liquid	s	
ZnO 70)-100)	Sp. gr	1	.55- 1.85
Bi ₂ O ₃)- (3	$P_2O_5\dots\dots\dots$	33	-50
MgO ()- {	•	H ₂ O	45	-67
Fe ₂ O ₃ ()- 2	2	Al ₂ O ₃	4	- 6
*Al ₂ O ₂ ()- 7	7	Na ₂ O	0	- 3
*SiO ₂)- 8	3			
)- 2	2			
Sili	CEOU	J 8	CEMENTS		
Powder			Liquid	s	
SiO ₂	25–45	5	Sp. gr	1	.50- 1.80
Al ₂ O ₂	27-40)	$P_2O_5\dots\dots\dots$	35	-45
CaO	4-13	3	H_2O	44	-70
Na ₂ O	0- 8	3	Al ₂ O ₃	4	- 6
*BeO	0-16	3	$\mathbf{ZnO}.\dots\dots$	0	- 8
PO ₄	4-24	Ł			
F	0-10)			
Co	PPEF	ł (Cements		
Powder			Liquid	8	
ZnO	0-90)	Sp. gr	1	.50- 1.70
CuO	0-90)	P ₂ O ₅	33	-45
Cu ₂ O	0-30)	H ₂ O	44	-65
Cu_2I_2	0- 5	5	$Al_2O_1.\dots\dots$	4	- 6
Co ₂ O ₃ ,	0- 8	3	$ZnO\ldots\ldots\ldots$	0	- 4
Fe ₂ O ₂	0-20)	$FeO\dots\dots\dots$	0	- 4
CuSiO ₁	0- 1	l	NiO	0	- 1
$Cu_2(PO_4)_2$	0- 5	5	$CuO\ldots\ldots\ldots$	0	- 1
♦MgO.					

2. CRUSHING STRENGTH(1)

1. Limits for Commercial Cements.—Cement mixed at 20°C and then incubated at 37°C in oil. For the saliva tests the cylinders are incubated in oil for 15 min, then washed with petroleum ether and the incubation continued in saliva. Pressure applied to a cylinder $(5 \times 5 \text{ mm})$ at the rate of 453.6 kg/min.

1										
	(1) In oil for									
15	min	1 da	y	7 days	28 days					
	Crushing strength. Unit = 100 kg									
1.8	5-2.8	3.3-	5.6	4.1-6.3	4.0-6.5					
	4-3.5	0.9-	4.8	0.7-5.6	1.0-5.6					
0.	5–2 .9	0.5-	4.4	0.4-5.4	0.7-5.4					
ion:	on: (2) In saliva for									
	1 d	lay	7	days	28 days					
_	Crus	hin g st	reng	th. Uni	t = 100 kg					
	1.0	5.6	1.	1-5.9	1.2-6.6					
	0.9-	4.4	1.	1-4.9	1.0-4.4					
	0.8-	4.4	1.	2-4.5	0.0-4.3					
	1 0 0	1.5-2.8 0.4-3.5 0.5-2.9 ion: 1 d	Crushing stree 1.5-2.8 3.3-4 0.4-3.5 0.9-4 0.5-2.9 0.5-4 ion: (2 1 day Crushing st 1.0-5.6 0.9-4.4	Crushing strength 1.5-2.8 3.3-5.6 0.4-3.5 0.9-4.8 0.5-2.9 0.5-4.4 ion: (2) In 1 day 7 Crushing streng 1.0-5.6 1. 0.9-4.4 1.	Crushing strength. Unit = 1.5-2.8 3.3-5.6 4.1-6.3 0.4-3.5 0.9-4.8 0.7-5.6 0.5-2.9 0.5-4.4 0.4-5.4 ion: (2) In saliva fo 1 day 7 days Crushing strength. Unit 1.0-5.6 1.1-5.9 0.9-4.4 1.1-4.9					

- 2. Influence of Mixing Temperature.—See Curve A, Fig. 1.
- 3. Rate of Hardening of a "Synthetic Porcelain" Cement at 37°C as Measured by Its Crushing Strength.—See Fig. 2, which gives the crushing strength in % of maximum strength, during the first hour.

3. SETTING TIME(1)

Time from mixing to failure of Gilmore needle to indent in 5 sec application. Seven siliceous cements, 5–12 min; 18 ZnO cements, 9–78 min; 15 Cu cements, 8–25 min; $t=20^{\circ}$ C. For influence of mixing temperature see Fig. 1, Curve I, a siliceous cement and Curves II and III, ZnO cements.

Heat of Setting

No calorimetric data available. For temperature rise on setting v. (2).

LITERATURE

(For a key to the periodicals see end of volume)

(1) Poetschke, 45, 8: 302; 16. (2) Poetschke, 45, 15: 339; 23.

SOLID FUELS

S. W. PARR

Contents	Matières	Inhaltsverzeichnis	Indice
Classification and nomenclature.	Classification et nomenclature.	Klassifikation und Nomenklatur.	Classificazione e nomen- clatura
Composition and calorific value of coals, coke and charcoal.	Composition et pouvoir calori- fique des houilles, du coke et du charbon de bois.	Zusammensetzung und Kalori- meterwerte von Kohle, Koks und Holzkohle.	Composizione e potere ca- lorifico dei carboni fossili, del coke e del carbone di legno
Calorific value.	Pouvoir calorifique.	Kalorimeterwerte.	Potere calorifico
Sulfur content.	Teneur en soufre.	Schwefelgehalt.	Contenuto in zolfo
Ash fusibility.	Fusibilité des cendres.	Sintern (Schmelzbarkeit) der Asche.	Fusibilità delle ceneri
Density.	Densité.	Dichte.	Densità
Porosity.	Porosité.	Porosität.	Porosità
Specific heat.	Chaleur spécifique.	Spezifische Wärme.	Calore specifico
Spontaneous combustion, weathering and deterioration.	Combustion spontanée, effrite- ment et détérioration.	Selbstentzündung, Verwitter- ung und Verschlechterung der Kohle.	Combustione spontanea, disgregazione all'aria e deterioramento
Coking behavior of coal.	Pouvoir cokéfiant de la houille.	Verkokbarkeit der Kohle.	Comportamento del car- bone fossile nella coki- ficazione
Ignition temperatures.	Températures d'inflammation.	Entzündungstemperatur.	Temperature di accensione
Combustibility of coke.	Combustibilité du coke.	Brennbarkeit der Kohle.	Combustibilità del coke
		 	

1. CLASSIFICATION

For the purpose of displaying typical values of their properties and compositions, solid fuels will be assigned to classes on the basis of two characteristics which will be called unit-heat-value (UHV) and unit-volatile-matter (UVM), respectively, and which are defined by the following equations (17, 21).

$$UHV = \frac{H - 5000S}{F} BTU/lb. = \frac{H - 2778S}{F} g-cal/g,$$
 (1)

where H is the total calorific value of the fuel (BTU/lb., g-cal/g, respectively); and

$$UVM = 100 \left(\frac{V - (0.08 + 0.4S)}{F} \right) \%, \tag{2}$$

where V = the volatile matter per unit mass of fuel.

In both equations the factor, F = 1 - (W + 1.08A + 0.55S), where W, A and S are, respectively, the water, ash and sulfur content of the unit mass of fuel as determined by chemical analysis.

The numerical factors in equations (1) and (2) are such that the quantities UHV and UVM represent, respectively, the heating value and the volatile matter per unit mass of fuel-substance contained in the solid fuel; see also (17, 21).

By means of these two characteristics, every solid fuel can be represented as a point on a plane and the location of this point with respect to the areas which have been selected for delimiting the various classes of solid fuels, identifies the class to which the fuel belongs and its relative location in that class. This is illustrated by the diagram in Fig. 1. The circles represent the loci of certain selected samples, representative of each class, and whose compositions are shown in Table A. The crosses represent the loci of a series of coals corresponding to the composition averages of Tables 2–10.

Another method for classifying coals, based upon limits for carbon, hydrogen, oxygen plus nitrogen, and volatile matter has been proposed by Seyler (27, 28, 29, 30). The classes which he proposes are, however, in close agreement with those defined in Fig. 1 [cf. (24)] and a comparison of the proposed nomenclatures is shown in the following table. All proposed nomenclatures are provisional, since no agreement has as yet been reached.

Page . 130

. 135 . 135 . 135

135

135

Fig. 1.—Classification of solid fuels.

SOLID FUELS 131

TABLE A.—PERCENTAGE COMPOSITION OF TYPE SAMPLES OF SOLID FUELS

	G	Proximate			Ultimate				Air-	g-	BTU/	UHV			
Туре	State and county	Vola- tiles	Fixed C	H ₂ O	Ash	s	Н	C	N	О	dry loss	cal/	lb	BTU	UVM
Anthracite	Schuylkill Co., Pa.	3.27	84.28	3.33	9.12	0.60	2.71	81.35	0.79	2.10	2.6	7 417	13 351	15 410	2.66
Semi-anthracite	Sullivan Co., Pa.	8.59	78.08	3.16	10.17	0.67	3.12	79.49	1.10	2.29	2.6	7 431	13 376	15 610	8.79
Bituminous A	McDowell Co., W. Va.	18.68	72.04	2.80	6.48	0.70	4.26	81.75	1.35	2.66	0.0	7 923	14 261	15 820	19.89
Bituminous B	Mingo Co., W. Va.	34.37	56.85	2.44	6.34	0.95	4.96	77.90	1.54	5.87	1.0	7 721	13 898	15 340	38.20
Bituminous C	Williamson Co., Ill.	32.92	48.30	9.94	8.84	1.28	4.24	66.18	1.46	8.06	4.4	6 508	11 714	14 590	39.71
Bituminous D	Moffat Co., Colo.	30.41	44.36	18.94	6.29	0.64	3.60	57.47	0.82	12.23	6.1	5 401	9 722	13 080	40.19
Lignite	El Paso Co., Colo.	24.44	27.27	34.40	13.89	0.14	2.64	35.94	0.66	12.33	26.4	3 364	6 055	11 930	46.20
Peat	Fond du Lac Co.,	13.37	5.70	76.94	3.99	0.17	1.02	10.87	0.68	6.33	73.8	1 044	1 879	10 100	69.58
	Wis.	ı				ŀ									
Wood	Air-dry	61.87	26.50	11.36	0.27	1	5.35	44.13	0.08	38.83		4 242	7 635	8 650	70.05
Cannel	Johnson Co., Ky.	5 0.64	36.70	2.20	10.46	0.99	6.33	72.01	1.17	6.84	1.3	7 63 8	13 748	15 920	57.55

TABLE B.—PERCENTAGE COMPOSITION OF TYPICAL WORLD COALS

Country and location	H ₂ O	Vola- tiles	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
England, Durham, Horden	1.50	34.68	59.15	3.80	0.87	13 330	7 420	14 140	36.20
England, Leicester, Nailstone		30.99	50.52	5.27	1.25	13 170	7 320	16 290	38.05
England, Yorkshire, Dearne Valley		37.01	51.19	2.00	1.36	13 397	7 440	15 020	40.90
Scotland, Ayrshire, Caprington		36.65	51.56	4.14	0.79	12 422	6 905	14 010	40.80
Scotland, Edinburgh, Newbattle	9.87	31.32	55.02	3.43	0.36	12 915	7 200	14 930	63.40
Scotland, Lanark, Coalburn	7.50	31.56	56.68	4.04	0.22	13 690	7 610	15 540	35.25
Wales, Cardiff	1.04	17.17	76.53	5.26	0.86	14 479	8 045	15 540	17.68
Wales, Neath		7.47	86.82	3.88	0.79	14 574	8 090	15 520	7.32
Wales, Port Talbot	2.41	11.65	70.49	15.45	1.01	13 124	7 310	16 260	12.48
Germany, Westphalia, Ruhr	0.30	6.00	87.60	6.10	0.90	14 080	7 822	15 100	5.90
Germany, Westphalia, Ruhr	0.80	12.40	79.50	7.30	1.40	13 940	7 745	15 300	12.42
Germany, Westphalia, Ruhr	2.60	29.20	64.20	4.00	0.80	13 760	7 644	14 810	30.80
Germany, Saar	1.73	33.16	57.54	7.57	0.94	13 896	7 720	15 450	35.90
Germany, Saxony	8.17	35.93	53.75	2.15	0.76	12 728	7 071	14 230	39.80
Germany, Saxony, brown coal	14.42	44.63	33.85	7.10	1.17	8 872	4 929	11 400	56.50
Bulgaria, Boronschtitza	0.72	36.05	56.43	5.30	3.01	12 690	7 050	13 650	37.50
Japan, Joban	12.24	40.61	36.11	11.04	1.02	9 759	5 423	12 900	52 . 20
Japan, Chihuko	4.21	42.92	45.71	7.33	0.68	12 965	7 205	14 780	48.10
S. Africa, Middleburg	2.57	29.16	57.68	10.59	0.42	12 392	6 885	14 425	32.45
S. Africa, Natal		23.70	67.06	7.96	1.24	13 720	7 622	15 271	25.01
Australia, New South Wales	1.89	41.35	50.51	6.25	1.01	12 760	7 090	14 000	41.50
Australia, New Zealand		16.68	77.67	4.95	0.30	14 915	8 286	15 890	17.20
Canada, Alberta, Crows Nest	2.10	23.10	58.60	16.20	0.50	12 400	6 888	15 420	26.95
Canada, New Brunswick, Minto		31.70	53.80	13.30	6.60	13 020	7 240	15 690	37.90
Canada, Nova Scotia, Sidney Field	3.70	35.00	54.20	7.02	2.79	13 150	7 306	14 910	37.40

TABLE 1.—CLASSIFICATION OF COALS

ž	Š	Туре	Na	me
Type	Table	Parr	Common	Seyler
1	2	Anthracite	Anthracite	Anthracite
2	3	Semi-anthracite	Semi-anthracite	Carbonaceous
3	4	Bituminous A	Semi-bituminous or low volatile	Meta-bituminous (short flame)
4	5	Bituminous B	Bituminous (eastern field)	Ortho-bituminous (true bituminous)
5	6	Bituminous C	Bituminous (mid-con- tinental field)	Para-bituminous (long flame)
6	7	Bituminous D	Lignite, black, or sub- bituminous	Lignitous
7	8	Lignite	Lignite, brown	Lignitous

TABLE 1.—CLASSIFICATION OF COALS.—(Continued)

No.	No.	Туре	Name						
Туре	Table	Parr	Common	Seyler					
8	9	Peat							
9		Wood							
10	10	Cannel							
11	11	Coke	i						
12		Semi-coke							
13		Briquettes							
14		Pulverised	i						

PERCENTAGE COMPOSITION OF U. S. COALS

TABLE 2.—Type 1, ANTHRACITE

State, county, and seam	H₂O	Vol.*	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Colo., Gunnison	2.70	3.32	88.15	5.83	0.80	14 099	7 840	15 510	2.79
Colo., Gunnison	4.86	6.96	81.87	6.31	0.81	13 468	7 475	15 300	6.98
N. Mex., Santa Fe	5.70	2.18	86.13	5.93	0.69	13 286	7 375	15 130	1.63
N. Mex., Santa Fe	7.55	7.25	75.88	9.32	0.76	12 101	6 725	14 720	7.55
Pa., Schuylkill	2.76	2.48	82.07	12.69	0.54	12 577	6 970	15 075	1.51
Pa., Schuylkill	2.80	1.16	88.21	7.83	0.89	13 298	7 380	15 010	0.24
Pa., Schuylkill	2.30	1.54	82.77	13.39	1.05	12 523	6 955	15 080	0.08
Pa., Schuylkill	3.33	3.27	84.28	9.12	0.60	13 351	7 415	15 410	2.66
Pa., Luzerne	1.31	5.68	85.87	7.14	0.42	13 777	7 645	15 150	5.44
Pa., Luzerne	2.19	5.67	86.24	5.90	0.57	13 828	7 680	15 120	5.77
Pa., Lackawanna	3.43	6.79	78.25	11.53	0.46	12 782	7 097	15 200	6.75
Utah, Washington, No. 6	8.21	4.41	58.02	29.36	2.28	8 908	4 948	14 920	2.05
Wash., Lewis, Primrose	7.40	4.80	52.00	35.80	0.74	8 200	4 555	15 530	1.20
Wash., Whatcom, Puget	4.40	7.40	76.00	12.23	0.96	12 590	6 998	15 360	7.37
Average	4.21	4.49	78.98	12.31	0.82	12 485	6 935	15 170	3.86

^{*} Vol. = volatile matter.

TABLE 3.—Type 2, Semi-anthracite

State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Ark., Pope, Hartshorne	2.07	9.81	78.82	9.3	1.74	13 702	7 620	15 690	9.65
Col., Gunnison, Crested Butte	1.94	9.22	80.34	8.50	0.85	13 740	7 640	15 485	9.28
Pa., Sullivan	3.38	8.47	76.65	11.50	0.63	13 156	7 305	15 660	8.71
Pa., Sullivan	3.47	9.28	76.10	11.15	0.78	13 216	7 345	15 685	9.60
Pa., Sullivan	3.40	9.34	75.58	11.68	0.81	13 120	7 292	15 630	9.67
Pa., Sullivan	3.16	8.59	78.08	10.17	0.67	13 376	7 430	15 610	8.58
Utah, Washington, No. 4	7.02	10.30	60.61	22.07	4.06	10 408	5 787	15 290	10.35
Va., Montgomery, large	2.5	12.40	67.50	17.60	0.51	12 360	6 860	15 770	13.81
Wash., Lewis, Primrose		8.40	59.60	28.40	0.66	10 050	5 578	15 330	9.00
Average	3.39	9.53	72.58	14.48	1.19	12 570	6 980	15 580	9.83

TABLE 4.—TYPE 3, BITUMINOUS A

State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Ark., Sebastian, Hartshorne	1.7	16.91	73.03	8.36	1.23	13 840	7 688	15 510	17.70
Md., Allegheny, Pittsburgh	2.43	19.02	71.19	7.36	1.04	14 087	7 822	15 730	20.12
Md., Garrett, Freeport	2.39	16.41	71.82	9.38	2.01	13 707	7 618	15 770	17.23
Okla., Haskell, Hartshorne	2.37	19.26	69.54	8.83	1.03	13 840	7 690	15 740	20.72
Pa., Cambria, Lower Freeport	2.87	21.44	69.23	6.46	1.52	14 177	7 875	15 690	22.74
Pa., Clearfield, Lower Kittanning	3.20	21.00	69.30	6.50	0.69	14 060	7 820	15 700	22.60
Pa., Somerset, Pittsburgh	3.04	19.59	70.33	7.04	0.74	14 175	8 045	15 920	21.10
Pa., Huntington, Fulton	1.65	17.48	72.26	8.61	1.55	14 076	7 825	15 850	18.31
Va., Tazewell, Pocahontas No. 3	2.85	21.25	71.43	4.47	0.59	14 620	8 128	15 830	22.40
W. Va., Fayette, Sewell	3.58	21.07	72.75	2.60	0.64	14 751	8 190	15 790	22.20
W. Va., McDowell, Pocahontas No. 4	2.87	14.91	78.39	3.83	0.81	14 809	8 235	15 920	14.33
W. Va., McDowell, Pocahontas No. 3	2.03	18.51	75.54	3.92	0.49	14 812	8 240	15 840	19. 29
Average	2.58	18.90	72.06	6.45	1.02	14 246	7 915	15 795	19.87

TABLE 5.—TYPE 4, BITUMINOUS B

State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Ala., St. Clair, Harkness	2.28	33.07	54.63	10.02	1.76	13 333	7 405	15 410	36.77
Ala., Tuscaloosa, Jagger	1.60	24.98	68.55	4.87	0.51	14 697	8 155	15 800	26.28
Ala., Jefferson, Pratt	1.05	31.70	62.15	6.15	1.38	14 377	7 980	15 610	33.45
Ky., Letcher, Elkhorn	2.91	36.33	57.53	3.23	0.53	14 170	7 875	15 160	3 8.44
Ky., Harlan, Harlan	2.80	37.00	55.90	4.30	1.10	13 950	7 748	15 120	39.42
Ky., Whitley, Jellico	5.02	36.08	54.47	4.43	0.92	13 608	7 555	15 110	39 . 40

SOLID FUELS 133

TABLE 5.—Type 4, BITUMINOUS B.—(Continued)

TABLE 5.—Type 4, BITUMINOUS B.—(Continued)												
State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM			
Ohio, Jefferson, Lower Freeport	3.50	37.98	51.08	7.44	3.09	13 286	7 377	15 140	41.78			
Ohio, Tuscarawas, Lower Kittanning	4.49	40.55	47.43	7.53	2.93	12 958	7 200	14 960	45.25			
Ohio, Belmont, Meigs Creek	4.34	38.95	45.50	11.21	3.65	12 402	6 895	14 990	49.85			
Ohio, Guernsey, Pittsburgh		41.14	45.76	8.74	4.85	12 710	7 058	14 910	46.05			
Pa., Washington, Washington		33.53	49.51	12.51	3.04	12 242	6 800	15 060	39.00			
Pa., Westmoreland, Pittsburgh	2.73	30.34	57.80	9.13	1.33	13 613	7 556	15 610	33.47			
Pa., Cambria, Upper Freeport	2.73	26.04	65.05	6.18	1.39	14 269	7 925	15 800	27.82			
Pa., Jefferson, Lower Freeport	1.86	34.63	53.23	10.28	2.91	13 151	7 300	15 220	38.00			
Va., Russell, Upper Banner	2.07	35.90	57.70	5.33	0.57	14 335	7 952	15 590	38.40			
Va., Wise, Imboden	2.16	33.10	58.27	6.47	0.68	13 994	7 756	15 410	35.70			
W. Va., Marion, Pittsburgh	1.75	36.77	55.14	6.34	0.90	14 107	7 845	15 490	39.50			
W. Va., Randolph, Lower Kittanning	1.45	28.97	59.48	10.10	0.98	13 718	7 620	15 700	31.84			
W. Va., Kanawha, Coalburg	3.44	35.20	53.08	8.28	0.70	13 304	7 396	15 220	39.50			
W. Va., Kanawha, No. 2 gas	2.66	33.30	59.60	4.44	1.14	14 368	7 975	15 590	35.38			
g,												
Average	2.85	34.27	55.59	7.35	1.71	13 630	7 580	15 330	37.40			
Table	6.—TY	ре 5, Ві		s C								
State, county, and seam	H₂O	Vol.	Fixed C	Ash	S	BTU/ lb.	g- cal/g	UHV BTU	UVM			
Ill., Vermilion, No. 7	13.16	37.95	39.02	9.85	4.33	11 110	6 175	14 760	46.60			
Ill., Williamson, No. 6	9.44	32.99	48.95	8.62	0.93	11 858	6 594	14 470	39.10			
Ill., Saline, No. 5	5.56	34.41	51.31	8.72	2.87	12 643	7 038	14 990	39.04			
Ill., Sangamon, No. 5	13.09	36.51	41.14	9.26	3.77	10 935	6 075	14 360	45.70			
Ill., Bureau, No. 2	16.27	38.35	38.00	7.38	2.93	10 883	6 045	14 480	49.25			
Ill., Mercer, No. 1	15.58	39.17	35.80	9.45	4.69	10 673	5 927	14 570	50 .98			
Ind., Sullivan, No. 6	14.86	31.65	46.14	7.35	2.16	11 324	6 300	14 620	39.78			
Ind., Vigo, Minshall	13.10	36.83	41.73	8.34	2.60	11 484	6 378	14 860	49.20			
lowa, Lucas	15.39	30.49	41.49	12.63	3.19	10 242	5 690	14 560	40.70			
lowa, Marion	14.21	33.17	37.40	15.22	4.66	10 019	5 573	14 640	45.00			
Ky., Webster, No. 12	5.58	35.04	51.32	8.06	1.59	12 755	7 095	14 950	39 .68			
Ky., Hopkins, No. 14	8.85	35.29	47.51	8.35	2.79	11 921	6 625	14 595	41.51			
Ky., Union, No. 9	4.37	36.27	47.67	11.69	3.58	12 325	6 852	14 985	41.80			
Kans., Cherokee, Cherokee	5.11	32.60	53.39	8.90	4.34	12 926	7 185	15 320	36 . 40			
Kans., Osage, Osage	5.10	36.85	48.10	9.95	5.02	10 930	6 070	14 970	47.58			
Mo., Henry, Jordan	10.10	34.83	41.76	13.31	4.32	11 158	6 200	14 950	43.78			
Okla., Pittsburg, Lower Hartshorne	4.33	35.51	54.04	6.12	0.84	13 574	7 548	15 260	39.15			
Okla., Okmulgee, Henryetta	8.87	34.82	47.68	8.63	1.62	12 096	6 720	14 880	41.45			
Average	10.16	35.15	45.13	9.54	3.12	11 603	6 460	14 720	42.55			
Table	7.—Ty	PE 6, Br	ruminou	s D								
State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM			
Colo., Boulder	19.14	33.44	42.07	5.35	0.27	10 017	5 570	13 380	43.90			
Colo., El Paso		32.34	41.41	7.02	0.45	9 306	5 170	12 780	43.43			
Colo., Moffat	22.10	31.61	41.95	4.34	0.72	9 297	5 165	12 710	42.50			
Colo., Weld	22.20	39.23	33.12	5.45	0.33	9 578	5 320	13 310	53.90			
Mont., Choutou		27.89	43.78	11.50	1.19	9 563	5 315	13 575	37.69			
Mont., Musselshell, Homestead	18.14	27.22	50.49	4.15	0.88	10 420	5 795	13 540	33.20			
Mont., Park, Maxey	16.33	30.12	40.05	13.50	0.41	9 247	5 130	13 400	40.51			
N. Mex., McKinley	13.50	37.75	42.51	6,24	0.36	11 140	6 195	13 990	46.65			
N. Mex., San Juan		32.43	43.15	5.41	0.92	10 193	5 670	13 575	42.30			
Utah, Summit		36.94	41.24	4.74	1.53	10 179	5 663	13 140	46.72			
Wash., King, No. 1		34.63	36.38	12.54	0.38	9 581	5 335	13 690	47.96			
Wash., Lewis	20.50	33.50	33.70	12.31	1.28	8 690	4 820	13 170	48.80			
Wash., Thurston		33.10	36.70	9.20	0.42	8 910	4 950	12 910	46.78			
Wyo., Carbon		34.55	43.14	8.69	1.44	10 339	5 745	13 480	43.60			
Wyo., Hot Springs, Gebo		31.26	43.48	7.39	0.66	10 062	5 594	13 780	41.75			
Wyo., Sheridan	22.57	32.53	40.36	4.55	0.30	9 218	5 123	12 710	44.34			
Wyo., Sweetwater	15.71	33.50	48.40	2.39	0.93	11 144	6 185	13 670	40.55			
Average	18.31	33.06	41.29	7.34	0.73	9 818	5 450	13 330	43.80			

TABLE 8.—Type 7, LIGNITE

State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Ark., Ouachita, Lignite	39.50	25.35	22.57	12.58	0.53	5 877	3 262	12 550	51.75
Colo., Adams	35.00	27.39	30.23	7.38	0.31	6 982	3 880	12 230	46.90
Colo., Elbert, Laramie	33.10	25.60	25.60	15.66	0.44	6 150	3 420	12 300	48.60
Colo., El Paso	34.40	24.44	27.27	13.89	0.14	6 055	3 362	11 930	46.20
N. D., Adams, Haynes	32.65	30.57	28.49	8.29	1.53	7 357	4 080	12 640	50 .80
N. D., Billings	43.51	25.23	24.87	6.39	1.04	5 814	3 230	11 700	49.40
N. D., Bowman	34 .80	31.09	25.98	8.13	0.66	6 916	3 840	12 270	53 . 80
N. D., Morton	38.52	27.60	26.60	7.28	1.31	6 703	3 722	12 530	50 . 15
N. D., Stark	42.06	24.55	25.73	7.66	1.13	6 158	3 420	12 440	47.80
N. D., Ward	36.93	24.92	27.72	10.43	0.22	6 010	3 340	11 610	46.40
N. D., Williams	42.91	26.81	24.98	5.30	0.71	6 232	3 460	12 160	49.30
Tex., Milam	35.30	26.22	29.58	8.90	0.76	6 898	3 830	12 540	46.15
Tex., Wood	33.71	29.25	29.76	7.28	0.53	7 348	4 075	12 600	50.70
Average	37.11	26.85	26.87	9.17	0.72	6 500	3 640	12 300	49.20

TABLE 9.—TYPE 8, PEAT

State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Conn., Fairfield	90.31	3.79	1.27	4.63	0.08	511	284	10 900	82.68
Conn., New London	85.66	8.52	4.54	1.28	0.10	1 382	769	9 900	67.40
Fla., Duval	73.10	14.00	8.05	4.85	1.06	2 309	1 282	10 695	61.80
Fla., Lake	82.12	11.75	5.72	0.41	0.05	1 886	1 047	10 820	67.20
Fla., Putnam	80.78	9.72	6.32	3.18	0.40	1 661	924	10 520	59 .80
Me., Aroostook	86.18	8.27	3.98	1.57	0.10	1 294	719	10 680	67.00
Me., Knox	90.82	6.07	2.73	0.38	0.02	819	455	9 350	68.80
Me., Washington	85.22	8.86	4.72	1.20	0.07	1 444	802	10 710	64.90
Mich., Kalamazoo	66.91	19.04	9.29	4.76	0.09	3 024	1 670	10 825	66.66
N. Y., Oswego	54.66	29.15	12.44	3.75	0.17	4 104	2 278	9 950	69.77
Wis., Dane	71.33	16.01	6.75	5.91	0.12	2 187	1 216	9 820	69.61
Wis., Langlade	80.24	9.21	4.17	6.38	0.13	1 256	697	9 780	67.40
Wis., Marinette		10.78	4.66	8.20	0.16	1 498	832	9 930	68.30
Average	78.74	11.93	5.74	3.57	0.19	1 798	999	10 370	66.80

TABLE 10.-TYPE 10, CANNEL COAL

State, county, and seam	H ₂ O	Vol.	Fixed C	Ash	s	BTU/ lb.	g- cal/g	UHV BTU	UVM
Ind., Perry	1.47	49.08	26.35	23.10	1.50	10 850	6 030	14 810	64.0
Ky., Johnson, Cannel	2.36	48.40	38.75	10.49	1.20	13 770	7 645	16 010	54.9
Ky., Johnson, Lesley Cannel	1.7	50.7	38.2	9.3	1.02	14 250	7 915	16 190	56.5
Tenn., Campbell. Blue Gem	1.50	45.10	34.10	19.30	1.16	12 340	6 855	15 930	55.8
Tex., Webb, Cannel	3.98	48.87	34.91	12.24	1.96	12 227	6 790	14 830	57.65
Wash., Lewis, Cannel No. 3	7.88	61.57	15.11	15.44	0.29	11 920	6 630	15 810	79.26
W. Va., Boone, Chilton	0.52	50.92	35.82	12.74	1.10	13 830	7 680	16 200	57.95
W. Va., Boone, Cedar Grove	0.43	56.99	33.90	8.68	1.85	15 000	8 335	16 720	62.30
Average	2.48	51.45	32.14	13.91	1.26	13 023	7 230	15 820	60.85

TABLE 11.—ANALYSIS AND PHYSICAL PROPERTIES OF COKE AND WOOD CHARCOAL

Туре	H ₂ O	Vol.	Fixed C	Ash	Н	C	N	0	s	BTU/ lb.	% porosity	lb./ ft. ³
Jones and Laughlin	0.2	1.5	85.9	12.4	0.6	84.9	1.0	0.2	0.9	12 400	48.2	31
Continental No. 1	0.1	0.9	88.1	10.9	0.7	86.3	1.3	0.0	0.8	12 810	50.3	29
Leisenring No. 1	0.1	0.5	88.0	11.4	0.4	85.9	1.1	0.4	0.8	12 510	46.5	30 .5
Wilkenson	0.2	0.5	80.3	19.0	0.4	78.9	1.4	0.0	0.5	11 690	54.1	27
Wood charcoal	3.2	20.0	72.8	4.0	3.7	78.7	0.4	13.1	0.1	12 920	63.2	17

SOLID FUELS 135

CALORIFIC VALUE

The values characteristic of the different classes of solid fuels are evident from Fig. 1. The calorific value of a solid fuel of the fossil fuel type may be computed (1 to 2%) by means of the Du Long formula, $H = 8080C + 34\,500\left(H - \frac{O}{H}\right) + 2250S$, g-cal, where C = total carbon, $\left(H - \frac{O}{H}\right) = \text{combustible hydrogen}$, and S = sulfur; G. (34).

It may also be computed from equation (1) since the value of UHV is constant for a given mine or region and needs to be determined only once. For standard calorimetric methods, v. (5).

SULFUR CONTENT

For methods of differentiating between organic and inorganic S, v. (23). Distribution of the different forms, v. (19, 39, 40).

ASH FUSIBILITY

Methods (14,26). Results for 2000 coals (26). Fusibility of coal ash by states and seams (41). Bibliography (7); see also (8,25). Values range from 1040° to 1700°C.

Fig. 2.—(Courtesy Industrial and Engineering Chemistry.)

DENSITY

True density, g/cm²; anthracite, 1.4-1.8; bituminous, 1.2-1.5; lignite, 1.1-1.4 (15). Coke, 1.45-2.0(35).

Bulk Density in Bin or Pile, ± 10 to 15% (9)

Anthracite

55 54	888
54	0=0
	870
56	891
56	899
56	891
54	866

Additional literature: (3, 11, 12, 42).

POROSITY

Methods (3). Coal—no data. Coke—29–59 % (3); v. Table 11.

SPECIFIC HEAT

0.26 to 0.37 g-cal/g (22).

SPONTANEOUS COMBUSTION, WEATHERING AND DETERIORATION

Absorption of oxygen by powdered bituminous coal: Fig. 2 (18). Effect of storage on calorific power: Fig. 3 (20).

COKING BEHAVIOR

See (6, 10, 13, 14, 16, 32, 33, 37)

Fig. 3.—(Courtesy Industrial and Engineering Chemistry.)

Fig. 4.—(Courtesy Industrial and Engineering Chemistry.)

IGNITION TEMPERATURES

The ignition temperature of a mass of coal is the temperature at which oxidation within the mass proceeds autogenously under the conditions of the experiment. Curves showing typical progress of heating within and without a 10 g sample of bituminous coal are shown in Figs. 4 and 5 (38). The following table (36) gives the ignition temperatures of various types of coal, using dry oxygen and 60 mesh "as-received" coal

Type No.	CO ₂ evolved at, °C	Ignition temp., °C
5	73	153
5	70	152
5	74	169
5	75	147
5	70	153
5	65	157
5	70	157
5	81	152
5	75	159
5	80	149
4	70	170
5	75	171
1	70	242
4	75	171
4	75	194
4	78	213
4	85	185

COMBUSTIBILITY OF COKE

A combustibility test is designed to show "the speed at which the carbon molecules in the coke combine with oxygen under given conditions" and is especially important in determining the value of a blast furnace coke. For method and results, v. (31).

Fig. 5.—(Courtesy Industrial and Engineering Chemistry.)

LITERATURE

(For a key to the periodicals see end of volume)

- (1) A. S. T. M., 66, 22 I: 815; 22.
 (2) A. S. T. M., 66, 22 I: 822; 22.
 (3) A. S. T. M., 66, 23 I: 766; 23.
 (4) A. S. T. M., 393, 904; 1924.
 (5) Dunn, 54, 32: 397; 13.
 (7) Fieldner, Hall and Field, 29, No. 129; 13.
 (8) Fieldner, Selvig and Parker, 45, 14: 695; 22.
 (9) Flagg, 32, No. 124; 18.
- Foxwell, 394, 8: 122; 24.
 Hachita, 395, 83: 670; 07.
 Hailstone, 396, 151: 566; 20.
 Laying and Hathorne, 45, 17: 165; 25.
 Lessing, 394, 2: 152, 186; 23.
 Marks, Mechanical Engineers' Handbook, p. 455 (New York, McGraw-Hill Book Company, Inc., 1916.
 Meurice, 394, 2: 305; 23.
 Parr, 45, 14: 919; 22.
 Parr, 46, 17: 120; 25.
 Parr, Univ. of Illinois, Univ. Studies, 1, No. 7: 33; 04.
- Meurice, 394, N: 305; 25. (**) Farr, 40, AN: 317; 22. (**) Farr, 40, AN: 212; 25. (1*) Parr, Univ. of Illinois, Univ. Studies, 1, No. 7: 33; 04. (2*) Parr and Milner, 45, 17: 115; 25. (2*) Parr and Wheeler, 86, No. 37: 09. (2*) Porter and Taylor, 45, 5: 289; 13. (2*) Powell and Parr, 86, No. 111; 19. (2*) Ralston, 50, No. 98; 15. (2*) Rose, 53, 25: 141; 21. (2*) Selvig and Fieldner, 89, No. 209; 22. (2*) Seyler, 394, 2: 272; 23. (2*) Seyler, 394, 3: 15; 24. (2*) Seyler, 394, 3: 41; 24.
- (20) Seyler, 394, 3: 79; 24.
 (31) Sherman and Blisard, U. S. Bureau of Mines.
 O. (32) Sinkinson, 4, 117: 839; 20.
 (33) Sinnatt and Grounds, 54, 38: 83; 20.
 (34) Somermeier, Coal; Its Composition, Analysis, Utilization and Valuation, p. 10 (New York, McGraw-Hill Book Company, Inc.), 1912.
 (35) Sperr, 80, 64: 640; 20.
 (36) Staley, Univ. of Illinois, O. (37) Weighell, 396, 186: 885; 21.
 (36) Wheeler, 394, 3: 366; 24.
 (39) Yancey and Fraser, 86, No. 125; 21.
- (40) Yancey and Parr, 45, 16: 501; 24. (41) Coal Catalog, 1926: 1078. (42) Ibid., 1926: 1116.

PETROLEUMS, PETROLEUM PRODUCTS AND COMMERCIAL OILS OF MINERAL ORIGIN

E. H. LESLIE AND J. C. GENIESSE

With acknowledgments to E. B. Badger and Sons Company of Boston for valued clerical assistance

cific gravity of crude petrol- eums.
Proximate composition of crude
petroleums.
Density and thermal expansion.
Compressibility.
Viscosity.
Surface tension and interfacial tension.
Penetrativity.
Melting and freezing points.
Meiting and Heezing points.
Solubility of paraffin.
Vapor pressure and boiling
point.
Dew point.
Flash point.
Thermal conductivity and dif-
fusivity.
Specific heat.
Latent heat of fusion and of
vaporization.
Heat of combustion (calorific
power),
Refractive index.

CONTENTS

Chemical composition and spe-

specinque des petroles bruts.
Produits de fractionnement des pétroles bruts. Densité et dilatation thermique.
Compressibilité. Viscosité. Tension superficielle.
Pouvoir pénétrant.
Points de fusion et de congéla- tion.
Solubilité de la paraffine.
Tension de vapeur et point d'ébullition.
Point de rosée.
Point d'inflammabilité.
Conductivité et diffusivité thermique.
Chaleur spécifique.
Chaleur de fusion et de vapori- sation.
Pouvoir calorifique.
Indice de réfraction.

MATIÈRES

Composition chimique et poids

Die chemische Zusammen-
setzung und das spezifische
Gewicht des Erdöls.
Chemisch technische Zusam-
mensetzung des Erdöls.
Dichte und Wärmeausdehnung.
<u> </u>
Kompressibilität.
Viskosität.
Oberflächen und Grenzflächen-
spannung.
Eindringungsfähigkeit.
Schmelz- und Erstarrungs-
punkt.
Löslichkeit der Paraffine.
Dampfdruck und Siedepunkt.
Dampiarack and Sicaepunkt.
Kondensationspunkt.
Flammpunkt.
Temperatur- und Wärmeleit-
fähigkeit.
Spezifische Wärme.
Schmelz- und Verdampfungs-
wärme.
Verbrennungswärme (Heiz-
wert).
Brechungs Index.

INHALTSVERZEICHNIS

Indice	PAGE
Composizione chimica e	
peso specifico del petrolio	
grezzo	137
Prodotti di frazionamento	
dei petroli grezzi	139
Densità e dilatazione ter-	
mica	144
Compressibilità	146
Viscosità	146
Tensione superficiale	146
<u>-</u>	
Potere penetrante	146
Punti di fusione e di con-	
gelamento	148
Solubilità della paraffina	149
Tensione di vapore e punto	
di ebollizione	149
Punto di condensazione	149
Punto di infiammabilità	150
Conducibilità e diffusibili-	
tà termica	151
Calore specifico	151
Calore di fusione e di	
vaporizzazione	151
Calore di combustione (po-	
tere calorifico)	152
Indice di rifrazione	152

Optical rotation.
Coefficient of light absorption.

Iodine and bromine numbers (olefines, unsaturation).
Sulfuric acid absorption for

gasolene (olefines, unsaturation).

Gum test.

Composition and properties of individual oils.

Terminology and specifications of petroleum products of commerce.

Pouvoir rotatoire optique. Coefficient d'absorption oclu lumière.

Indices de brome et d'iode (oléfines, non-saturation).

Absorption par l'acide sulfurique pour les gazolines (oléfines, non-saturation).

Essai de goudron.

Composition et propriétés des huiles particulières.

Noms et propriétés caractéristiques des huiles minérales de commerce. Optische Rotation. Lichtabsorptionskoeffizient.

Jod- und Bromzahl (ungesättigte Kohlenwasserstoffe). Schwefelsäure Absorption des

Gasolines (Benzin) (ungesättigte Kohlenwasserstoffe).

Teerzahl, Harzzahl.

Zusammensetzung und Eigenschaften an einzelnen verschiedenen Ölen.

Terminologie und Prüfungsvorschriften der Erdölprodukte des Handels.

Potere rotatorio ottico Coefficiente di assorbimen-	153
to ottico	153
(idrocarburi non saturi)	154
Assorbimento della gaso- lina con acido solforico	
(idrocarburi non saturi).	154
Saggi per il catrame	154
Composizione e proprietà	
dei singoli oli	154
m	

Terminologia e proprietà degli oli minerali del commercio........... 160

COMPOSITION AND DENSITY OF CRUDE PETROLEUMS

North America

CANADA

Low boiling constituents are of the C_nH_{2n+2} series up to C_{10} . The C_nH_{2n} series starts at C_{11} and includes both straight-chain olefins and saturated naphthenes. The series poorer in hydrogen occur in the high boiling fractions. More aromatics present than in Pennsylvania or Ohio oils. Sulfur as thiophanes, $C_nH_{2n}S$ (121, 127, 135, 136, 172).

Source	Sp. gr at t°C		% C	% H	% N	% % O S	Lit.
Bothwell		_		13.4 13.1		2.3	(53.1) (53.1)
Great Manitoulin Is Humboldt Humboldt			85.6	14.3 12.4 11.8		2.6 0.37 0.15	,
Oil Springs	0.862	20	83.9	13.4		0.6	(53.1) (53.1)
Petrolia (169 m)				13.5 13.5	 -	3.8	(53.1) (53.1)

UNITED STATES

Source	Sp. gr. at	% C	% H	% N	% O	% S	Lit.

California.—Proportion of distillates below 225°C small to moderate and composed of methylenes similar in B. P. and sp. gr. to those in Russian oil, except for the compounds C₁₁H₂₂, C₁₂H₂₄ and C₁₂H₂₆. Proportion of aromatics large. Members of the C_nH_{2n+2} series absent (1³³). Organic bases mainly mixture of alkylated quinolines with small side chains (1³⁹). Oxygen usually as naphthenic acids with some phenolic compounds. Sulfur as C_nH_{2n}S.

Adams Canyon 0.921	30			1.46	0.90	(113)
Bardsdale 0.892	20	84.2	12.2	1.25	1.5	(113)
Coalinga*0.951	15	86.4	11.7	1.14	0.60	(53.1)
Kern River 0.967	15	86.4	11.3	0.74	0.89	(53.1)
McKittrick		86.1	11.5		0.87	(113)
McKittrick 0 960	15	86.5	11.4	0.58	0.74	(53.1)
Midway 0.958	15	86.6	11.6	0.74	0.82	(53.1)
Puente† 0.892	20	85.0	12.0	1.20	0.80	(113)
Summerland0.985		86.3	11.7	1.25	0.84	(125)

California.—(Continued)

	1 0		T					
Source	Sp. gr		% C	% H	% N	% 0	% S	Lit.
Sunset	0.971	15	85.6	11.4	0.84	T	1.09	(53.1)
Torrey	0.884	20	86.0	12.5	1.15		0.5	(113)
Ventura			86.9	11.8	1.11			(113)
Ventura County	0.912		84.0	12.7	1.7	1.2	0.4	(15.1)
San Joaquin Val-			İ	1				' '
ley	0.961	15.5	86.3	11.4	0.81		0.82	(7)
Fresno region	0.842	20	86.2	13.1			0.21	(53.1)

*Contains hexane, benzene, toluene, xylene and 7 hydrocarbons of the C_nH_{2n} series (123).

† Contains naphthenes C₇H₁₄, C₈H₁₆, C₁₉H₁₉, C₁₁H₂₂. Paraffins above M. P. 95° absent. A considerable proportion of aromatics in distillate. Large proportion of naphthene in 221°-222° distillate.

Kansas.—Mixture of paraffin- and naphthene-base crude (172).

Chanute	84.7	14.6	0.45	0.61	(165)
Humbolt0.912	85.6	12.4		0.37	(113)
Neodesha	84.0	13.1	0.81	0.040.88	(165)
Towanda	84.2	13.0	0.45	1.9	(165)

Ohio.—Paraffin-base predominates in the east. Heptylene and many alkyl sulfides have been isolated (129, 137).

				•	•	
Baltimore	0.824 2	84.2	14.6	0.08	0.61	(53.1)
Findlay	0.836	84.6	13.6	0.11	0.72	(113)
Heilstone Oil Co.	0.830 2	85.8	13.8	0.023	0.63	(53.1)
Liberty (Wood)	0.843 2	85.1	13.3	0.056	0.76	(53.1)
Liberty (Han-		ľ				
cock)	$0.828 \mid 26$	0 34.2	13.4	0.35	0.68	(53.1)
Liberty (Han-				1		, ,
cock)	0.835 2	84.0	13.1	0.047	0.71	(53.1)
Lima	0.851 2	85.0	13.1	0.024	0.81	(53.1)
Lima		85.0	13.8		0.60	(113)
Mahone*	0.904	86.4	13.3	0	0.01	(128)
Mecca		86.3	13.1	0.23		(53.1)
Montgomery	0.827 2	83.9	13.2	0.054	0.37	(53.1)
Ohio(0.887 (84.2	13.1	1	2.7	(53.1)
Ohio (Wood)	0.819 20	84.3	13.5	0.21	0.56	(53.1)
Portage	$0.815 \mid 20$	84.4	13.4	0.13	0.68	(53.1)
St. Mary's	$0.829 \mid 20$	84.7	13.5	0.068	0.61	(53.1)
Trenton Lime-			1			
stone†		85.5	13.9			

* Does not contain C_nH_{2n} or C_nH_{2n+2} series. The C_nH_{2n-2} series from C_{11} to C_{15} present in small amounts. Main constituents $C_{16}H_{26}$, $C_{17}H_{20}$ and $C_{18}H_{36}$. No nitrogen and only 0.01 % sulfur.

† Similar to Pennsylvania but larger proportion of aromatics. 0.2 to 0.5 % nitrogen. The x = 0, -2 and -4 series (C_nH_{2n+x}) present and 13 hydrocarbons isolated (129, 120.1).

Unm	ED ST	ATES.	(Co	ntinu e d)	_		F	RANC	E.—(C	ontinu	ed)			
Source	gr. at °C	% C	% H	% N		Lit.	Source	Sp. gr		% C	% H	% N	% O	% S	Lit.
Oklahoma.—Mixed par	affin-	and a	sphalt	ic-base	oils.		Pechelbronn			İ	1				
Field not given		85.7	13.1	0.30	0.	0 (113)	(wet)	0.891	15	85.9	12.3	1.5	2	0.6	(31, 32)
Healdton			12.9		0.	6 (113)	Pechelbronn						_		
Oregon.—Trace of aron	natics	(53.1)).				(dried)	1	15	86.4	12.1	0.8		0.7	(31, 32)
0.960	20	86.1	11.9	0.87	1.	9 (53.1)	Pechelbronn (dry)	1	15	86.0	12.0	1.5		0.8	(31, 32)
Pennsylvania.—Typica							(dry)	0.900	13	00.0	12.0	1	<u>.</u>		(,)
C ₃₅ . C _n H _{2n} series	-					-	Pechelbronn	0.912	0	86.9	11.8		1.3		(169)
mainly $x = -2$ seri							Pechelbronn	1	0	85.6	9.6		4.75	5	(169)
and -8 series, and		ries u	p to	-16 ha	ve beer	identified	Schwabweiler	1		79.5	1		6.9		(169)
(124, 126, 130, 172)							Schwabweiler		1	86.2			0.5	,	(169) (169)
				-		-	Gabian	0.894	<u> </u>	86.1	12.7		1.2	l!	(105)
Allegheny0.886 Oil City0.810		84.9 85.8		0.06	1.4	(53.1) (113)		1	1	GERMA	NY			i i	- · · · · · · · · · · · · · · · · · · ·
Oil Creek0.810		82.0	14 8		3.2	(53.1)	Hanover	0.941	15	86.5	11.6	0.	7	1.2	(31, 32)
Pennsylvania			13.9		0.0	1 \	Odesse		1	80.4		6.9	-		(53.1)
Pennsylvania		1	14.0			(124)	Oberg	0.944		84.4		4.			(53.1)
Pa. pipe line0.862	15	85.5	14.2			(53.1)	Wietze	0.955	0	86.2	11.4	2.4	4		(53.1)
Texas										Ital	Y				
								1							
Beaumont*0.91		85.7	11.0	2.6	0.	(53.1)	Pavia, Retorbido	0.979	0	86.4	12.2	1.4	4		(53.1)
Beaumont*0.912	:	1	12.3	0.9		75 (173)	Parma								
			1	1			Neviano di Rossi	0.00		81.9	19.5	5.0	R		(53.1)
*Sulfur as organic, H: methylenes with small a	s, and	free.	Oil con	posed l	argely of	bicylic poly-	Marzolaro	1	1	84.9	1	3.			(53.1)
							1	1	~	0				1	, ,
derivatives. $x = -2$ and	-4 ser						Sala Braganze	0.786	0	84.0	13.4	1.5	8		(53.1)
to -20 (130, 122, 131, 174	-4 ser						Sala Braganze Terra di Lavoro	1	_	84.0 83.6	1	1.8	8		(53.1) (53.1)
	-4 ser							1	_	83.6	10.8	1.8	8		, ,
to -20 (130, 122, 131, 174	-4 ser	ies (C _n		present a		gher series up	Terra di Lavoro	1	21	83.6 Polai	10.8 ND			ne aro	, ,
to -20 (130, 122, 131, 174	-4 ser	86.9	H _{2n+a})	0.02	and also h	gher series up	Terra di Lavoro. Galicia. C _n H _{2n}	series	21	POLAT	10.8 ND No olef			ne aro	(53.1)
to -20 (130, 122, 131, 174 Utah West Virginia.—Simila	-4 ser	86.9	11.9	0.02	0.	gher series up	Galicia. C _n H _{2n} East Galicia.	0.970 series 1	prese	83.6 POLATENT. 1 82.2	10.8 ND No olef	ins bu	t son	ne aro	(53.1) matics.
Utah West Virginia.—Simila Rogers Gulch0.85	ar to F	86.9 Pennsy	11.9 lvanis	0.02	0.0	(53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia.	0.970 series 1 0.870 0.885	prese	83.6 POLATERIT. 1 82.2 85.3	10.8 No olef 12.1 12.6	ins bu 5.7 2.1	t son	ne aro	(53.1) matics. (109) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85' Mecook0.89'	-4 ser). -4 r to F 7 0 7 0	86.9 Pennsy 83.2 83.6	11.9 rlvanis 13.2 12.9	0.02	0.4 3.6 3.5	(53.1) (53.1) (53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw	0.970 series p 0.870 0.885 0.845	0 0 0 15	83.6 POLATENT. 1 82.2 85.3 84.4	10.8 No olef 12.1 12.6 14.3	5.7 2.1 1.3	t son	ne aro	(53.1) matics. (109) (53.1) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85 Mecook0.89 White Oak0.87	-4 ser). -4 r to F 7 0 7 0	86.9 Pennsy 83.2 83.6	11.9 lvanis	0.02	0.0	(53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa	0.970 0.870 0.885 0.845 0.903	0 0 15 15	83.6 POLATENT. 1 82.2 85.3 84.4 84.4	No olef 12.1 12.6 14.3 14.4	5.7 2.1 1.3	t son		(53.1) matics. (109) (53.1) (53.1) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85 Mecook0.89 White Oak0.873	-4 ser). -4 ser 0. -7 0 0 0 0 0	86.9 Pennsy 83.2 83.6 83.5	11.9 vlvanis 13.2 12.9 13.3	0.02	0.0 3.6 3.5 3.2	(53.1) (53.1) (53.1) (53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw	0.970 0.870 0.885 0.845 0.903	0 0 15 15	83.6 POLATENT. 1 82.2 85.3 84.4	No olef 12.1 12.6 14.3 14.4	5.7 2.1 1.3	t son	0.11	(53.1) matics. (109) (53.1) (53.1) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85 Mecook0.89 White Oak0.87	-4 ser). -4 ser 0. -7 0 0 0 0 0	86.9 Pennsy 83.2 83.6 83.5	11.9 rlvanis 13.2 12.9 13.3	0.02	0.4 3.6 3.5	(53.1) (53.1) (53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa	0.970 0.870 0.885 0.845 0.903 0.863	0 0 15 15 15	83.6 POLATENT. 1 82.2 85.3 84.4 84.4	10.8 No olef 12.1 12.6 14.3 14.4	5.7 2.1 1.3 1.2	t son	0.11	(53.1) matics. (109) (53.1) (53.1) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85 Mecook0.89 White Oak0.87 B u r n i n g Springs0.84	-4 ser). Let to F 7 0 7 0 8 0 1 0	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4	0.02 0.02 0.54	0.0 3.6 3.5 3.2	(53.1) (53.1) (53.1) (53.1) (53.1) (53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz	0.970 0.870 0.885 0.845 0.903 0.863 0.867	0 0 15 15 15	83.6 POLAN ent. 1 82.2 85.3 84.4 84.4 85.3 85.5	10.8 No olef 12.1 12.6 14.3 14.4 14.4	5.7 2.1 1.3 1.2 0.2	t son	0.11	(109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85 Mecook0.89 White Oak0.87 B u r n i n g Springs0.84	-4 ser). Let to F 7 0 7 0 8 0 1 0	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2	11.9 rlvanis 13.2 12.9 13.3	0.02 0.02 0.54	0.0 3.6 3.5 3.2	(53.1) (53.1) (53.1) (53.1) (53.1) (53.1)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz	0.970 0.870 0.885 0.845 0.903 0.863 0.867	0 0 15 15 15	83.6 POLATERIA SEC. 2 85.3 84.4 85.3 85.5 84.6	No olef 12.1 12.6 14.3 14.4 14.4 13.9	5.7 2.1 1.3 1.2 0.2	t son	0.11	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1)
Utah West Virginia.—Simila Rogers Gulch0.85 Mecook0.89 White Oak0.87 B u r n i n g Springs0.84	-4 ser). Let to F 7 0 7 0 8 0 L 0 ME:	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (11.9 lvanis 13.2 12.9 13.3 14.1 13.4 (31, 32	0.02 0.54) 0.54	3.6 3.5 3.2	(53.1) (53.1) (53.1) (53.1) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza	0.970 0.870 0.885 0.845 0.903 0.863 0.867	0 0 15 15 15 15	83.6 POLATERIT. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0	No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1	5.7 2.1 1.3 1.2 0.2	t son 34 25 20 0.57	0.11 0.14 0.027	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia.—Similar West Virginia.—Similar Rogers Gulch 0.85 White Oak 0.87 B u r n i n g Springs 0.84 Cumberland Crude—no location given 0.92 0.94	-4 ser). Let to F 0 0 0 1 0 15 15	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (11.9 lvanis 13.2 12.9 13.3 14.1 13.4 31, 32	0.02 0.54) 0.54) 0.54) 0.54	3.6 3.5 3.2 1.6	(53.1) (53.1) (53.1) (53.1) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz	0.970 0.870 0.885 0.845 0.903 0.863 0.867	0 0 15 15 15 15	83.6 POLATERIA SEC. 2 85.3 84.4 85.3 85.5 84.6	No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1	5.7 2.1 1.3 1.2 0.2	t son 34 25 20 0.57	0.11	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
### To 120, 122, 131, 174 Utah	-4 ser). Let to F 0 0 0 1 0 15 15	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (11.9 lvanis 13.2 12.9 13.3 14.1 13.4 (31, 32	0.02 0.54) 0.54) 0.54) 0.54	3.6 3.5 3.2 1.6	(53.1) (53.1) (53.1) (53.1) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa-	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.880	0 0 15 15 15 15 15 15	83.6 POLAR ent. 1 82.2 85.3 84.4 84.4 85.3 85.5 84.6 85.0 84.9	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1	5.7 2.1 1.3 1.2 0.2	0.57 0.57	0.11 0.14 0.027	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia.—Similar West Virginia.—Similar Rogers Gulch 0.85 White Oak 0.87 B u r n i n g Springs 0.84 Cumberland Crude—no location given 0.92 0.94	ME:	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (11.9 lvanis 13.2 12.9 13.3 14.1 13.4 31, 32	0.02 0.54) 0.14 1.15	3.6 3.5 3.2 1.6	(53.1) (53.1) (53.1) (53.1) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.880	0 0 15 15 15 15 15 15 15	83.6 POLAT ent. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1	1.2 0.2 0.8 0.1	t son 344 25 25 20 0.57 25 36 34	0.11 0.14 0.027 0.16	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. — Similar West Virginia. — Similar Rogers Gulch 0.85 Mecook 0.87 White Oak 0.87 B u r n i n g Springs 0.84 Cumberland Crude—no location given 0.92 0.94 0.97 0.	ME: So	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0	0.02 0.54 0.54 1.1.	3.6 3.5 3.2 1.6	(53.1) (53.1) (53.1) (53.1) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow. Not definitely	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.880 0.886	0 0 15 15 15 15 15 15 15	83.6 POLAR ent. 1 82.2 85.3 84.4 84.4 85.3 85.5 84.6 85.0 84.9	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1	5.7 2.1 1.3 1.2 0.2 1.2 0.8	t son 344 25 25 20 0.57 25 36 34	0.11 0.14 0.027 0.16	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Simi	ME: So So So So So ME: So So So So So So So So So S	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0 merics	0.02 0.54) 0.54 1.1	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow Not definitely located Not definitely	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.880 0.886 0.854	0 0 15 15 15 15 15 15 15	83.6 POLAT ent. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1	1.2 0.2 1.2 0.8 0.8	134 25 20 0.57 0.57	0.11 0.14 0.027 0.16 0.19	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. — Similar West Virginia. — Similar Name Na	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0 merics	0.02 0.54) 0.54 1.1.	3.6 3.5 3.2 1.6 8 3.4 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow. Not definitely	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.880 0.886 0.854	0 0 15 15 15 15 15 15 15	83.6 POLAT ent. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1	1.2 0.2 0.8 0.1	134 25 20 0.57 0.57	0.11 0.027 0.16 0.19	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Simi	ME: So 15 15 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0 merics	0.02 0.54) 0.54 1.1	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow Not definitely located Not definitely	0.970 0.870 0.885 0.845 0.903 0.867 0.880 0.886 0.854 0.855 0.871	0 0 0 15 15 15 15 15 15 15 15 15	83.6 POLAT ent. 1 82.2 85.3 84.4 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1	1.2 0.2 0.8 0.1 0.2	134 25 20 0.57 0.57	0.11 0.14 0.027 0.16 0.19	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Simi	ME: So 15 15 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0 merics	0.02 0.54) 0.54 1.1. 1.0.	3.6 3.5 3.2 1.6 8 3.4 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow Not definitely located Not definitely	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.880 0.886 0.854 0.855	21 0 0 15 15 15 15 15 15 15 15	83.6 POLATERIAL INC. INC. INC. INC. INC. INC. INC. INC.	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.6 cf. (66	1.2 0.2 1.2 0.8 0.8 0.1 0.2	t son 34 25 20 0.57 25 36 34	0.11 0.14 0.027 0.16 0.19 0.3	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Similar Rogers Gulch 0.85 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.84 Cumberland 0.84 Cumberland 0.94 0.97 Mecook 0.94 0.97 Mecook 0.92 Mecook 0.92 Mecook 0.93 Mecook 0.94 Mecook 0.95 Mecook 0.96 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.97 Meco	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A 86.7 86.2 87.0	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0 merics 12.1 11.7 10.8	0.02 0.54) 1. 1. 1. 0. 10.54	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow Not definitely located Not definitely	0.970 0.870 0.885 0.845 0.903 0.867 0.880 0.886 0.854 0.855 0.871	21 0 0 15 15 15 15 15 15 15 15	83.6 POLAT ent. 1 82.2 85.3 84.4 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5	10.8 No olef 12.1 12.6 14.3 14.4 13.9 14.0 14.1 14.4 13.0 12.6	1.2 0.2 0.8 0.1 0.2	134 25 20 0.57 0.57	0.11 0.14 0.027 0.16 0.19	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Simi	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.8 83.0 uth A 86.7 86.2 87.0	11.9 rlvanis 13.2 12.9 13.3 14.1 13.4 (31, 32 11.4 11.3 11.0 merics 12.1 11.7 10.8	0.02 0.54) 1. 1. 1. 0. 10.54	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Terra di Lavoro Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa- Brelikow Not definitely located Not definitely located	0.970 0.870 0.885 0.845 0.903 0.867 0.880 0.886 0.854 0.855 0.871	21 0 0 15 15 15 15 15 15 15 15	83.6 POLATERIAL INTERPOLATION	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.6 17.6 18.6	1.2 0.2 1.2 0.8 0.8 0.1 0.2	t son 34 25 20 0.57 25 36 34	0.11 0.14 0.027 0.16 0.19 0.3 0.3	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Similar Rogers Gulch 0.85 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.84 Cumberland 0.84 Cumberland 0.94 0.97 Mecook 0.94 0.97 Mecook 0.92 Mecook 0.92 Mecook 0.93 Mecook 0.94 Mecook 0.95 Mecook 0.96 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.97 Meco	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.0 uth A 86.7 86.2 87.0 85.6	11.9 elvanis 13.2 12.9 13.3 14.1 13.4 11.3 11.0 merics 12.1 11.7 10.8 211.9	0.02 0.54) 1. 1. 1. 0. 10.54	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa. Not definitely located Not definitely located Source Crude (location	0.970 0.870 0.885 0.845 0.903 0.867 0.880 0.886 0.854 0.855 0.871	21 0 0 0 15 15 15 15 15 15 15 15 15 15 15 15 15	83.6 POLATERIAL III 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5 86.8 ANIA [C 86.8	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.4 13.0 12.6 % H	1.2 0.2 1.2 0.8 0.8 0.1 0.2	% O	0.11 0.14 0.027 0.16 0.19 0.3 0.3	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Similar Rogers Gulch 0.85 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.84 Cumberland 0.84 Cumberland 0.94 0.97 Mecook 0.94 0.97 Mecook 0.92 Mecook 0.92 Mecook 0.93 Mecook 0.94 Mecook 0.94 Mecook 0.95 Mecook 0.96 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.87 Mecook 0.97 Meco	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xICO (84.2 83.8 83.0 uth A 86.7 86.2 87.0 85.6	11.9 elvanis 13.2 12.9 13.3 14.1 13.4 11.3 11.0 merics 12.1 11.7 10.8 211.9	0.02 0.54) 1. 1. 1. 0. 10.54	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa. Not definitely located Not definitely located Source Crude (location	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.886 0.854 0.855 0.871	21 0 0 0 15 15 15 15 15 15 15 15 15 15 15 15 15	83.6 POLATE 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5 86.8 ANIA [C 86.8 87.2	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.4 13.0 12.6 % H	1.2 0.2 1.2 0.8 0.8 0.1 0.2 0.3	% O 7	0.11 0.14 0.027 0.16 0.19 0.3 0.3	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (21) (21)
West Virginia. Similar West Virginia. Similar Similar Similar West Virginia. Similar Similar	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.0 uth A 86.7 86.2 87.0 85.6	11.9 elvanis 13.2 12.9 13.3 14.1 13.4 11.3 11.0 merics 12.1 11.7 10.8 211.9	0.02 0.54) 1. 1. 1. 0. 10.54	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa-Brelikow Not definitely located Not definitely located Source Crude (location not given)	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.886 0.854 0.855 0.871	21 0 0 0 15 15 15 15 15 15 15 15 15 15 15 15 15	83.6 POLAN ent. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5 86.8 ANIA [C 86.8 87.2 87.1	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.4 13.0 12.6 % H	1.2 0.2 1.2 0.8 0.8 0.1 0.2 0.3	% O 7 1 1 1 . 0	0.11 0.14 0.027 0.16 0.19 0.3 0.3 0.4 0.4	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Similar Similar West Virginia. Similar Similar	ME: So 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.0 uth A 86.7 86.2 87.0 85.6	11.9 elvanis 13.2 12.9 13.3 14.1 13.4 11.3 11.0 merics 12.1 11.7 10.8 211.9	0.02 0.54) 1. 1. 1. 0. 10.54	3.6 3.5 3.2 1.6 8 3.1 7 4.	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa-Brelikow Not definitely located Not definitely located Source Crude (location not given)	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.886 0.854 0.855 0.871	21 0 0 15 15 15 15 15 15 15 15	83.6 POLAN ent. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5 86.8 ANIA [C 86.8 87.2 87.1 85.5	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.1 14.1 11.3 11.5 14.1	1.2 0.2 1.2 0.8 0.8 0.1 0.2 0.3	% O 7 1 1 1 . 0	0.11 0.14 0.027 0.16 0.19 0.3 0.3 0.4 0.4 0.19	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)
West Virginia. Similar West Virginia. Similar Similar Similar West Virginia. Similar Similar	ME: 15 15 15 15 15 15 15 1	86.9 Pennsy 83.2 83.6 83.5 84.3 85.2 xico (84.2 83.0 uth A 86.7 86.2 87.0 85.6 some a Euro FRAN	11.9 elvanis 13.2 12.9 13.3 14.1 13.4 11.3 11.0 merics 12.1 11.7 10.8 211.9	0.02 0.04) 0.54 1.1 1.0 0.54 188.	3.6 3.5 3.2 1.6 8 3.1 7 4.0 0 0.8	(53.1) (53.1) (53.1) (53.1) (53.1) (113) (53.1) (113) (113) (113)	Galicia. C _n H _{2n} East Galicia. West Galicia. Boryslaw Harklowa Justa Nowice. Kosmacz Mraznica Schodniza Urycz Wankowa-Brelikow Not definitely located Not definitely located Source Crude (location not given)	0.970 0.870 0.885 0.845 0.903 0.863 0.867 0.886 0.854 0.855 0.871	21 0 0 0 15 15 15 15 15 15 15 15 15 15 15 15 15	83.6 POLAN ent. 1 82.2 85.3 84.4 85.3 85.5 84.6 85.0 84.9 85.3 86.5 86.8 ANIA [C 86.8 87.2 87.1	10.8 No olef 12.1 12.6 14.3 14.4 14.4 13.9 14.0 14.1 14.1 14.4 13.0 12.6 6f. (66 H	1.2 0.2 1.2 0.8 0.8 0.1 0.2 0.3	% O 7 1 1 1 . 0	0.11 0.14 0.027 0.16 0.19 0.3 0.3 0.4 0.4	(53.1) matics. (109) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1) (53.1)

RUMANIA	[cf.	(66)].—(Continued)
---------	------	------	----------------

Source	Sp. gr		% C	% H	% N	% O	% S	Lit.
Bisoca	0.877	15	85.2	13.9			İ	(53.1)
Bustenari	0.842	15	86.3	13.3			0.18	(53.1)
Campeni Parjol.	0.773	15	85.3	14.2			0.03	(53.1)
Campina		15	86.0	13.3			0.13	(53.1)
Casin		15	85.1	13.8			0.14	(53.1)
Comanesti	0.839	15	85.2	14.2			1	(53.1)
Dofteana Pacu-								
ritza	0.847	15	86.1	13.0	İ		0.21	(53.1)
Glodeni	0.833	15	85.6	13.9			i	(53.1)
Gura Ocnitzei	0.870	15	85.9	13.1				(53.1)
Lucacesti	0.873	15	85.9	13.3			0.28	(53.1)
Matitza-Maora	0.878	15	85.5	13.9			0.05	(53.1)
Mosoarele	0.836	15	85.5	13.4			İ	(53.1)
Pacuretzi	0.811	15	85.9	13.3			0.08	(53.1)
Poiana-Verbilau.	0.804	15	85.4	13.9			0.07	(53.1)
Recca	1 1	15	86.2	12.8			0.16	(53.1)
Sarata Monteoru	0.876	15	85.4	13.2			0.33	(53.1)
Solontzi	1	15	86.5	13.2			0.17	(53.1)
Stanesti	0.846	15	86.0	13.0			0.06	(53.1)
Tega	0.893	15	86.5	12.9				(53.1)
Tetscani Antal		15	85.9	13.4			0.14	(53.1)
Tetscani Sarbi	1	15	85.7	13.3				(53.1)
Tetscani Vatra	1	15	85.2	14.0				(53.1)
Wallachei (Plo-							·	` ′
esti)	1 1	0	82.6	12.5		4.9		(53.1)
	0.901	0	83.0	12.2		4.8		(53.1)

RUSSIA

	1			1			1
Crude (no lo-)	0.876	15	86.3	12.9	0.6	0.2	(31)
cation given)	0.902	15	86.1	12.8	0.9	0.2	(31)

Baku.—Low boiling distillate is of the C_nH_{2n} series. Aromatics 85–250°C. The high boiling distillate contains the x = -6, -8, -10, -12, and -20 series (C_nH_{2n+z}) and small amount naphthenic acids (130, 142).

Baku0.897	86.5	12.0	1.5	(53.1)
Baku0.954	85.3	11.6	3.1	(53.1)
Benkendorff	86.6	13.4		(53.1)
Benkendorff	87.0	13.2		(53.1)
Benkendorff	86.9	13.2		(53.1)
Baku (av.				
analysis)	86.0	13.0	1.0	(53.1)
Balachany-				1
Seabuntschi 0.882	87.4	12.5	0.1	(53.1)
Binagady0.913	85.5	12.0 2.4	0.41	(53.1)

Caucasian.—Almost entirely naphthene hydrocarbons. Small amounts of phenols, naphthenic acids and other aromatics (143).

Caucasian		86.9	13.3		0.064	(143)
Caucasian 0.940	20	85.3	11.6	3	.1	(169)
Caucasian 0.887	0	84.2	12.4	3	. 4	(169)
Fergana-						
Tschimeon 0.872		85.8	13.6		0.08	(53.1)
Grozni0.850		86.0	13.0	0.07 0	.740.14	(53.1)
Grozni0.906		86.4	13.0	0.07 0	.4 0.10	(53.1)
Transcaspian.		86.9	12.2	0.80	0.16	(53.1)
Transcaspian. 0.873		86.6	12.4	0.14 0	.37	(53.1)
Tscheleken 0.874		86.4	12.4	0	.38	(53.1)
Uchta0.928		85.5	12.2	0.20 1	.031.09	(53.1)
Uchta0.897		85.3	12.5	0.14 1	.210.88	(53.1)

Africa—EGYPT

	1	1	1-	~	- 1	
ì	1 1		- 1			
0.907	15.585	. 15/11 . '	71 0	892	2. 25 l	(82)
 0.00.	120.000	. 10 11 .	•	.00-	- . - 0	· /

Mixture of paraffin- and asphalt-base oils rich in sulfur.

	Asia—India					
Assam	Ī			, [Ī
Digboi*0.85	6 15.5	86.3	12.9	0.2 0.45	0.15	(216)
Badarpur†	i	88.8	10.8	0.2 0.1	0.1	(216)
Burma ‡ 0.83					0.1	(216)
	1					1
Rangoon \$ 0.87	5 28.2	83.8	12.7	3.5		(169)

- * Mixed-base oil with small amount naphthenic acid. Low-boiling distillate contains aromatics.
 - † No solid paraffins and little asphalt. Empirical composition CaH1.47a.
- Mixed-base petroleum containing solid paraffins and asphalt. Aromatics and small amounts of naphthenic acids in the lighter distillates.

§ C26H26, C22H22, C26H26, C26H26, xylene and isocumene isolated (208).

JAPAN (138)

Chiefly the C_nH_{2n} series. Aromatics much smaller than in California.

Amaze0.8	3240 20	84.66 13.22 0.35	1.320.22
Hirei0.8	8622 20	83.28 13.19 0.74	1.830.41
Katsubo0.8	3771 20	84.52 13.12 0.97	0.210.82
Kitatany0.8	8952 20	83.05 13.05 0.75	0.240.61
Koguchi0.9	9435 20	83.91 13.60 1.34	0.410.49
Kosudsu0.9	210 20	84.49 13.40 1.23	0.300.37
Miyagawa0.8	8911 20	84.86 13.83 0.5	0.200.32

PERSIA

Maidan-I-Naf-			İ			
tun*	0.837	85.4	12.8	0.76	1.06	(47)

* Mixed-base oil. Gasolene fraction contains ca. 10 % aromatics.

East Indies-Borneo

Sarawak* 0.902 15 86.47 12.37 0.13 0.68 0.35 (1

* Naphtnene-base oil, with paraffin-base oils at the 1950-foot level. Small amounts aromatics.

JAVA

	1 .			1		
Rembang	0.923	0	87.1	12.0	0.9	(169)
Cheribon	0.827	0	83.6	14.0	2.4	(169)
Surabaya	0.972	0	85.0	11.2	2.8	(169)

PROXIMATE COMPOSITION

For comprehensive tables covering the chief producing fields of the world see (39, 53.1); for extensive tables of data on North and South American crudes, see (108).

Below are given the data for the oil fields of the United States as collected from the reports of the U. S. Bureau of Mines, Reports of Investigations, Nos. 2293, 2595, 2608, 2235, 2364, 2322, 2202, 2416.

The various fractions ("cuts") used in these tables are defined by their distilling ranges or by their Saybolt viscosities (η) at 100°F as follows:

- 1. Gasolene and naphtha. Below 200°C at 1 atm.
- 2. Kerosene. Between 200° and 275°C at 1 atm.
- 3. Gas oil. All vacuum fractions (p = 40 mm) with $\eta < 50$ sec.
- 4. Light lubricating distillate. All vacuum fractions (p = 40 mm) with η between 50 and 99 sec.
- 5. Medium lubricating distillate. All vacuum fractions (p = 40 mm) with η between 100 and 199 sec.
- 6. Viscous lubricating distillate. All vacuum fractions (p = 40 mm) with $\eta > 199 \text{ sec}$.

Specific gravities (d) are at 60/60F = 15.5/15.5C. % S = % sulfur.

		-			olene	77		-			L	ubrica	ting distillat	es	
Field	Country	Cı	rude		nd htha	Ker	osene	Ga	s oil		Light		Medium		Heavy
Field	County	% S	d15.5	% map	d15.5	%	d 15.5	%	d15.5	%	d15.5	%	$d_{15.5}^{15.5}$	%	d _{15.5}
ARKANSAS										1				1	
El Dorado	Union	0.83	0.852	30.7	0.735	13.0	0.823	12.0	0.857	11.3	0.882	4.6	0.903		
El Dorado	Union	.79	.853	28.8	.736	12.8	0.824	12.5	.853	10.8	.880	5.6	.908		
CALIFORNIA															
Coalinga (Eastside)	Fresno	. 67		19.8	100000000000000000000000000000000000000			34.1	.863	20.20	0.877-0.904		0.904-0.913		0.913-0.91
Coalinga (Eastside)	Fresno	.71	.919	9.2				29.9		7.9		6.5			
Coalinga (Eastside)	Fresno	.45			.782			29.4		10.2		5.8	.918928		
Coalinga (Eastside)	Fresno	.51	.930	6.8				26,8		11.4	.906930	7.3	.930940	7.9	.94095
Coalings (Westerds)	Fresno Fresno	.10	.839					36.8		10.0	001 026	7 7	006 049	0 2	042 06
Coalinga (Westside)	Kern	.71		23.8				18.7	100000	12.0	.901926	7.7 5.0	.926943 .926940	11	.94396
North Belridge	Kern	.79			.781			22.0		6.1	.891913	3.8	.913929	11	
North Belridge	Kern	.69		1000				24.7		6.3		4.4	.911924		.92493
Buena Vista	Kern	.50			1000000			21.8		5.7	100000000000000000000000000000000000000	3.7			
Buena Vista	Kern	. 59						23.4		6.5	1.00	6.5		11	
Buena Vista	Kern	. 59	.894	26.9	.783			23.1	.860	6.6	.896916	5.1	.916932	8.0	.93294
East Elk Hills	Kern	. 68	.915	12.3	.781			31.4	.860	7.6	.905923	7.1	.923935	6.7	.93594
East Elk Hills	Kern	. 61	.895	24.0	.786			25.0		7.1	.900918	5.7	.918933		.93394
East Elk Hills	Kern	1.04						27.2	.870	7.8	.908929	5.9	.929937	12.5	.93795
West Elk Hills	Kern	0.17	1		.754	5.1	.816						262 000	1	2000 02
West Elk Hills	Kern	1.06		12.2	.783			29.7		7.2		3.3	.916923		.92395
Kern River	Kern	1.14						16.0		9.9		4.1	.935945	11	
Kern River	Kern	1.07						14.0	1000000	6.1		5.3			.94396
Kern River	Kern Kern	0.94		5.1	.798			12.2 19.0	1	8.8		5.0			.93496
Lost Hills	Kern	0.99	1	7.6	1 1 1 1 1 1			23.6		7.0		4.6			
Lost Hills	Kern	0.66		31.5				20.4		7.5	2007 1 200 200 200 200 200 200 200 200 200 2	4.6		1	.91792
Maricopa Flat	Kern	1.07		13.3				20.9		5.9		3.9			
Maricopa Flat	Kern	0.60						21.9		7.0		4.0			
Maricopa Flat	Kern	0.75			.790			21.5		6.8		4.5			
Maricopa Flat	Kern	0.69						21.1		7.0		5.4			The second secon
Maricopa Flat	Kern	1.29						16.6	.877	5.3	100000000000000000000000000000000000000	5.0		11	.94897
Maricopa Flat	Kern .	0.68	.895	24.1	.774			21.5	.859	7.1	.886903	5.2	.903915	8.9	.91592
McKittrick	Kern	1.02	.965	2.1	.810			19.9	.873	6.9	.911932	6.6	.932950	17.2	.95098
McKittrick	Kern	0.91		11.1	.796			22.3	1	7.1		5.9		11	.95197
McKittrick (front)	Kern	1.38						14.5		6.6		6.6			
Midway	Kern	1.00						15.4		7.6		5.4			.95096
North Midway	Kern	0.96						10.8		9.8		5,5			
North Midway	Kern	0.88		7.1	76.5			26.7	77.55	8.3		4.1	.932936		
North Midway	Kern	0.98		3.3	.806			17.5		7.3		5.1			
North Midway	Kern	1.01						$15.4 \\ 10.2$		7.4		6.0			
North Midway	Kern Kern	1.03						18.2	75.5	8.4		6.2	.935949		
North Midway	Kern	0.92		0.6	.778		7	23.7	1	7.2	The second second	4.7	.926936		.93695
Sunset	Kern	1.16		3.0				19.3		5.2		5.5			
Sunset	Kern	0.84		2.9	.824			18.3		8.2		5.7			
Sunset	Kern	0.73		1 - 0				26.9		7.5		6.3		11	
Brea	Los Angeles	2.99		6.6				19.4		6.5		3.0		11	
Coyote Hills	Los Angeles	1.46		100000		4.7	.819			8.2		5.6			
Long Beach	Los Angeles	1.25				5.7		17.5		7.0		4.7			
Long Beach	Los Angeles	1.29	.897	19.8		3.7	.823	17.3	.854	8.0		4.5	.905917	7.2	.91793
Long Beach	Los Angeles	0.80	.872	29.3	.757	4.4	.818	17.7	.848	8.8	.874901	5.0	.901914	4.2	.91492
Long Beach	Los Angeles	1.16		24.1	.762	4.1	.818	17.5	.852	7.2	.879898	5.2	.898912		.91293
Long Beach	Los Angeles	1.59		15.8				19.4		6.8		5.3	.907920		.92093
Long Beach	Los Angeles	1.34	1 0 0 0 0	20.0	.763	4.5	.824			6.5		5.7	.905921		Control of the Contro
Montebello	Los Angeles	0.96						19.4	1000000	1	.905925	7.3	.925936		
Montebello	Los Angeles	2.19		6.7				25.9		5.2		5.1	.920929	11	
Montebello	Los Angeles	0.79			.794			25.4		10.2		6.5	.905916		.91692
Montebello	Los Angeles	0.75			1 3 3 3 3			28.1		9.8	.890907	9.3	.907920		
Salt Lake	Los Angeles	2.73						12.8		6.0		7.1	.918942 .894901	13.5	.94296
Santa Fe Springs	Los Angeles	0.54						31.3		9.2	.873894 .870894	3.2	.894907	9 1	007 01
Santa Fe Springs	Los Angeles	0.56				5 2	.819			10.8	.870898	5.4	.898907		.90791
Santa Fe Springs	Los Angeles Los Angeles	0.45		36.7 18.8		0.0	.019	30.8		8.9	.875897	4.8	.897908		200 000
Santa Fe Springs	Los Angeles	0.45	100000			5.3	.821	20.3		8.0		4.6	.894906	11	.90691
Santa Fe Springs	Los Angeles Los Angeles	0.45			.763	5.1		19.0		9.9	.868898	3.6	.898905	11	.90591
Santa Fe Springs	Los Angeles	0.40				5.5	10000	20.8		8.6		6.7	.899912	III -	.91291
Santa Fe Springs	Los Angeles	0.44		33.3		6.3		20.1		9.5		4.9	.901909		200 100
Torrence	Los Angeles	1.62		3.39	10000	1		21.5		10.0	.884911	5.1	.911921	4.3	.921930
Whittier	Los Angeles	0.56		100000				26.4		6.5	The second second	4.7	.922936	100000	.93695
	Los Angeles	0.77		8.2				22.4		9.4	.901924	4.1	.924935	11/1/2013	
Whittier								1000		1				M Comment	1.1.1.510531110.0000032
Whittier	Los Angeles	1.43	.920	18.1	.771			21.3	.858	7.6	.887909	6.7	.909923	5.3	.923933
Fullerton	Los Angeles Orange	1.43		18.1		3.7	.817	15.6				5.2	.896911	110000	
Fullerton			.905		.750	3.7 4.1			.846	9.2	.869896			5.0	.911923

Field	County	Cr	ude	a	olene nd htha	Ker	osene	Ga	s oil		Light		Medium		Heavy
		% S	d 15.5	%	d15.5	%	d 15.5	%	d 15.5	%	d15.5	%	d15.5	%	d 15.5
California—(Continued)							Ì	1							
Huntington Beach	Orange	-	0.938		0.790				0.858		0.889-0.910		0.910-0.923		0.923-0.94
Huntington Beach	Orange	1.31		25.0		100	0.825			7.0		5.4		5.9	
Huntington Beach	Orange	2.07 1.09		16.7 14.7	1 2 2 2	3.3	.825			7.7	The state of the s	6.4		6.5	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rich	Orange Orange	1.60		25.2		3.8	.821	21.0 16.8	10000	7.9	.884906 .876903	5.9		5.0 6.9	
Casmalia	Santa Barbara		1.023	20.2		0.0	.021	26.8		2.0		12.7		7.6	
Cat Canyon	Santa Barbara	4.13		9.8	.781			25.5		5.6		5.6		7.8	100000000000000000000000000000000000000
Santa Maria	Santa Barbara	2.63		21.8	1 1			21.2		6.6		4.5		5.7	
Summerland	Santa Barbara	0.54						14.8		6.6	.913939	5.5	.939956	13.1	.956978
Sargent	Santa Clara	0.86	.952	8.3	.776			23.3	.878	7.7	.920944	4.1	.944953	11.7	.953973
Arroyo Grande	San Luis Obispo	1.30		5.3				17.3		6.2		4.2		11.9	
Bardsdale	Ventura	0.83		26.8	.762	5.1	.817			9.3		7.3		2.3	
Conejo	Ventura	0.52			=00			11.0		8.4		7.6		20.7	
Ojai	Ventura	1.63		13.0				18.6		6.5		4.6		10.9	
Santa Paula	Ventura Ventura	0.55		13.1 32.9		5.2	.820	29.5 18.9		7.4		3.6	6.00	12.4 5.4	
South Mountain	Ventura	1.73		25.5		4.5				8.7		7.0		2.1	
Ventura	Ventura	1.15	1000	28.6		4.4		17.2				4.9		4.5	
Ventura	Ventura	0.47	.794	64.4		15.9				3.0	10.0	1.0		2.0	
Ventura	Ventura	0.90		22.4	.756	11.0				14.1	.865902	7.5	.902917	1.2	.917920
Composite sample	Ventura	1.79	1 1 1 1	23.7		4.5		17.1				4.6		5.6	
Florence	Fremont and Pueblo	0.17	.880	8.9	.758	14.5	.808	16.2	.842	13.3	0.871	8.3	0.892		
Rangely	Rio Blanca	.06	.819	34.6	.748	19.3	.810	12.3	.844	11.7	.860	5.6	.880		
ILLINOIS	*	.24	.863	20.4	.769	14.5	.834	8.0	.856	10.7	.877	6.0	.893		
INDIANA								17		199					
LimaKansas	t	.48	.846	26.0	.753	19.2	.817	10.2	.843	10.9	. 869	6.8	. 885		
Iola	Allen	.66	.937	.8	.800	8.4	.842	4.7	.876	14.0	.891	8.2	.907	6.9	0.923
Moran and Elsmore	Allen	.32	.875	20.2	.758	15.3	.826	6.9	.856	12.6	.875	10.8	.898		
Augusta	Butler	.41	.865	24.2		20.5		11.1	.863	11.4	.890	5.5			
Cattlemen	Butler	.30	.838	32.8		15.3		9.8		10.0		5.1	. 895		
Elbing	Butler	.29	.856	29.8		20.7		13.3			.888	5.0			
Eldorado	Butler	.29	.853	27.3		20.5				11.1	.885	5.7			
Potwin	Butler	.14	.807	45.0 19.0		17.1 16.6	.813	9.9	.850	8.2 6.4	.872 .876	3.9			
Peru Sedan	Chautauqua Chautauqua	.24		12.6		18.4	.839	10.7			.878	14.0			
Peru Sedan	Chautauqua	.12	.858	20.6		17.1	.817	11.3	1 2 3 3		.875	7.3			
Peacock	Cowley	.23	.853	25.9		20.2	.821	11.2		11.7	.878	6.3			
Elrod	Cowley	.20	.853	25.9		18.6		1	1 1 1 1 1 1 1		.878	6.7	.897		
New Albany	Elk	.27	. 866	24.7		1000	.822	10.7	.857	9.9	.878	5.5	.896		
Rantoul	Franklin	.51	.880	22.4	.740	14.0	.824	9.2	.864	5.8	.878	6.7	.898		
Sallyyard	Greenwood and But- ler	.24	.839	33.2	.737	16.6	.821	9.8	.857	9.7	.877	5.0	.893		
Tester	Greenwood	.19	.841	30.1		18.5	.819	11.3		10.9	.875	5.3	.895		
Florence and Peabody	Marion	.23		25.1		18.2		13.3			.884	6.4	.901		
Osawatomie	Miami	.57		17.1		16.3				5.5		11.8	.901		
Independence	Montgomery	.24		25.3		17.0		100	.857			10.8			
Tyro	Montgomery	.34		14.2		15.4		11.5		6.2		12.7	.894		
Wayside	Montgomery Neosho	.37		17.3 15.9		14.6 17.6	.821		.862	5.3	.877	9.8	.900		
Erie	Neosho	.30		21.2		16.2	.823		.864	6.6	.880	5.7	.894	6.1	.906
Urbana	Neosho	.32		18.8	.759		.828	4.7	.861	19.1	.877	6.0	,900	0.1	.500
Altoona	Wilson	.25		16.2		17.0						6.7	.893		
Neodesha	Wilson	.23		29.9				10.5			.875	4.4	.894		
Yates Center	Woodson	.46	.889	7.8	.808	18.9				15.2	.879	6.7	.896		
KENTUCKY	Bath	.23	.853	11.2	.757	24.5	.804	11.5	.841	12.8	.860	6.5	.872		
Olympia Ragland	Bath	.31		12.6			.826	8.7	.856	11.6	.878	5.4	.898		
······································	Lawrence	.21	.835		.744		.818	7.7		1000	.873	6.0	.896		
Big Sinking	Lee and Estell	.14		31.2		17.3	.819				.876	5.9	.891		
Composite from several counties		.23		35.4			.824	9.3	.851	9.5	.874	4.6	.894		
	Wayne	.49	19.00	35.9	.751		.839	11.0	.862		.887	5.0	.898		
Cow Creek	Wolf and Estell	.13		19.7	.771				.855		.871	7.1	.883		
Ross Creek	Wolf, Lee and Jack- son	.12		35.9	.744		.826	9.7	.848	10.3	.874	5.9	.894		
Compton	Wolf	.23	.842	30.8	.747	16.7	.821	10.3	,850	10.4	.870	6.0	.882		
	Bossier	.27	879	13.5	.793	18.5	.841	16.7	.858	15 8	.878	7.2	.904		
Elmgrove															

^{*}Lawrence, Crawford, Jasper and Cumberland. † Composite from Allen and other counties.

		C	ude		olene nd	V.	osene	Co-	s oil	-	L	ubrica	ting distillate	28	
Field	County	Cr	uae		htha	Ker	osene	Ga	s on		Light	1	Medium		Heavy
		% S	d15.5	%	d 15.5	%	d15.5	%	d 15.5	%	d15.5	%	d15.5	%	d 15.5
LOUISIANA (North) (Continued)															
Caddo	Caddo	100	0.820	1	0.748	100					0.864	5.2	0.884		
Pine Island Homer	Caddo Claiborne	.42	1000	3.0		18.3 15.5		7.5		17.1	.899	15.6	.907		
DeSoto, Red River and Bull	DeSoto and Red	.03		27.6		36.1		11.8		8.4	.875	3.7	.895		
Bayou. LOUISIANA (South)	River	.21	,022	21.0	,,,,,,	00.1	,000	11.0	.010	0,1	.000	0	,000		
Jennings	Acadia	.37	.911					40.5	.880	12.4	0.909-0.922	7.5	0.922-0.929	13.6	0.929-0.94
Jennings	Acadia	.36	.908					45.6	.873	14.7	.902921	8.1	.921930	8.7	.93094
Edgerly	Calcasieu	.68						25.9	-	15.0		8.0			.93597
Vinton	Calcasieu	.33						22.9		13.8		8.2			.94596
Anse La Butte	St. Martin's St. Martin's	.22	27.75					34.8		14.6 16.1		8.0 9.5			.92894
Anse La Butte	St. Martin s	.30	, 900					04.1	, 007	10.1	.890912	9.0	.912920	0.4	, 92099
Winnett	Musselshell	.36	.781	63.2	.747	25.5	.814								
NEW YORK		1													
	Alleghany	.10	.828	30.0	.748	17.5	,802	10.3	. 838	11.3	0.854	6.3	0.873		
Оню															
North Lima	Allen	. 55		31.0		19.2	1 2 3 0	1		10.7	100000000000000000000000000000000000000	5.5	100000		
South Lima	Allen, Auglaize and	. 55	.842	27.0	.758	20,0	.818	10.8	.841	11.5	.869	4.9	.889		
T. (Mercer Composite from Allen	.48	946	26.0	752	19.2	917	10.2	942	10.9	.869	6.8	.885		
Lima	and others	.40	.040	20.0	. 100	19.2	.017	10.2	.040	10.9	.009	0.0	.000		
Corning	Washington	.10	.838	27.8	.740	17.0	.805	9.7	.835	10.5	.854	6.3	.871		
Penn Grade	Washington	.05		33.5		20.2		11.3		11.2		5.5			
Оксанома											100				
Cement	Caddo	.19		20.2		20.7	.809	14.0	.846	6.7	.864	13.3	.880		
Healdton	Carter	.72		22.3		15.8					.880	12.1	.897		
Hewitt	Carter	.72				14.3			1			12.4	.899		
Walters	Cotton	.42		27.7		17.7		10.9	100			9.3			
North Bristow	Creek Creek	.25				18.1 18.0		III and a second	1			4.6	.899		
Cushing	Creek and Tulsa	.30	1530	24.8		17.4			1 7 7 7			11.5	A		
Kellyville	Creek	.28		14.6		15.9		Mark Control				6.3		5.8	0.903
Mounds	Creek	.26				15.8				11.2		6.0			
Slick	Creek	.44	.875	22.9	.746	13.0	.832	5.9	.856	11.4	.884	4.5	.902		
Garber	Garfield	.14				11				11.9		2.7	.891		
Blackwell or Dilsworth	Kay	.24		11		18.0				1	1 22.00	4.8	.898		
Newkirk or Mervine	Kay Marshall	.15		35.9 46.2		18.9						4.1	.884		
Arbuckle	Marshall Marshall	.06				10.5			.839	8.2	.858	3.4	.874		
Boynton	Muskogee	.15		24.1		19.6		13.0	.850	12.4	.870	5.9	.879		
Muskogee	Muskogee	.23				17.8	1					7.3			
Billing	Noble	.16	.823	40.4	.739	17.6	.819	10.7	.858	9.6	.875	4.8	.890		
Bluff and Alluwe	Nowata	.19	1	22.1		19.5		10.7		13.8	.886	5.1	.906		
Delaware Extension	Nowata	.23				17.6		13.2			P.A. COLOR	6.1	.902		
Delaware and Lenapak	Nowata	.19		19.9		19.1		11.4				11.5			
Deaner	Okfuskee Okfuskee	.13		32.1 28.3		16.4		11.3		10.6	.876	5.9 6.1	.893		
LyonsBald Hill	Okmulgee	.15		37.6		16.4	1	10.5		10.4		4.8			
Beggs	Okmulgee	.15		29.9		14.9		III and the		14.1		5.5			
Henryetta	Okmulgee	.13				18.3		11		11.1	.873	5.9			
Okmulgee	Okmulgee	.13		17.3		17.3			.849	12.8	.867	7.5	.878		
Philipsville	Okmulgee	.17				15.4				11		4.1	.886		
Youngstown	Okmulgee	. 32				16.0						5.4	.890	6.8	.901
Bigheart	Osage	.19		28.1		19.1						10.9	150000		
Burbank	Osage Osage	.32		29.7 30.9		16.9						9.7	.894		
Osage	Osage	.23		28.9		18.0				13.1		10.8	100000000000000000000000000000000000000		
Pershing	Osage	.17	1	26.4		19.9				11		5.5		6.2	.903
Cleveland	Pawnee	. 26				19.8						10.1	.897	0.7	1555
Jennings	Pawnee	.33	.840	32.9	.750	18.6	.820	11.7	.855	10.2	.876	5.4	.894		
Yale or Quay	Payne	. 33				17.8				11		4.9	17.75		
Allen	Pontotoe	. 62		22.7		16.5	1	11			3.3.2.0	14.9	1000		
Claremore	Rogers	.14	1	23.8		19.2		11				6.5			
Comanche	Stephens	.41				17.1		11				10.5			
Duncan	Stephens Tulsa and Rogers	.40		31.4 26.9		18.0		10.4				11.6	.897		
OwassoSkiatook, Sperry and Turley	Tulsa and Rogers	.23				18.5						13.6	100000000000000000000000000000000000000		
Broken Arrow	Wagoner and Tulsa	.19		26.2		17.8		10.9		11.5		5.2			
Wagoner	Wagoner	.15	.864	16.9	.765	17.5		11.1		12.4		7.2			
Bartlesville	Washington	. 25		19.0		18.5				13.6		13.2			
Canary	Washington	.32		20.4		19.2		13.5		6.1		12.9	.894		
Ochelata Hogshooter	Washington	.27	.864	22,0	.767	17.7	.826	6.5	.859	13.1	.875	5.1	.891	8.4	.910

		Cr	ude	100	olene nd	Ker	osene	Ga	s oil		48.77		ating distillate	es	_
Field	County		aac		htha	1101	овене				Light		Medium		Heavy
		% S	d15.5	%	d15.5	%	d15.5	%	$d_{15.5}^{15.5}$	%	d 15.5	%	d 15.5	%	d 15.5
PENNSYLVANIA															
	Allegheny and Wash.		0.800				0.792		0.831	9.3	0.848	5.7			
	Green	.08	2.27.3			18.7			1 1 1 1 1 1 1 1 1	11.9	.850	6.1	.865		
Special Franklin Crude	McKean Mercer	.10	.823	32.5 9.0	.824	17.8 15.1		9.4	.839		.853	5.7 8.4	.867 .876		
Composite	Mercer	.08	.811			19.9			1000000	11.1	.852	6.3			
composito	Venango	.10	.819			17.3		10.9		12.2	.850	5.2			
	Venango	.08	.832			16.4		12.5	.827	12.2	.850	7.1	7.53.75.7		
TEXAS (North)															
Holiday	Archer	.41	.839		.734			11.0	.858		.885	4.9	.908		
Brownwood	Brownwood Clay	.17	.850		.747	16.5 18.7		12.5	.862		.891	5.8			0.007
Santa Anna	Coleman	.38	.828			18.6		10.9 16.3	. 856 852	5.1	.877	5.2		5.7	0.907
Desdemona	Comanche and East-	.14				19.4		14.0			.873	11.0	0.050		
Ranger	Eastland	.17	.840	30.2	.759	19.7	.821	12.1	.858	12.6	.867	9.9	.895		
Mexia	Limestone	.19		17.3	.768			17.3	and the second	12.3	.869	4.9	.894		
Corsicana	Navarro	.24		19.7	.765			14.7	.859		.877	11.5			
Strawn	Palo Pinto	.13			.763			11.7	.857	M -	.876	6.7	.890		
Moran	Shackelford Stepheno	.16	.830		.743	17.2		11.6 11.4	100000000000000000000000000000000000000	10.0	.877	4.7			
Caddo	Stepheno	.28	.839	30.0	.756		.822		.860	1 5	.880 .864	5.0			
Burkburnett	Wichita	.38				17.7		10.8	100000000000000000000000000000000000000		.885	5.1			
Burkburnett	Wichita	.39	.841			17.0		10.8	.857	5.1	.880	9.4			
Electra	Wichita	.25	1 2 2 2 2	40.8	.734		.822		.860		.876	9.0			
C. M. A	Wichita	.33	.836	35.1	.746	18.1	.821	10.4	.860	5.6	.878	6.2	.895	5.4	.915
C. M. A	Wichita	.72			.746		.819		.858		.880	9.6	.899		
exhoma	Wichita	.33	.866	38.0	.739				.858		.877	10.1	.897		
Chrall	Williamson Young	.15				20.8 18.7		12.2 10.3	.847		.866	5.7	.880		
Texas (South)	Toung	.20	,000	04.0	.700	10.1	,040	10.3	, 809	5.5	.875	10.8	.892		
omerset	Atascosa	.42	.823	38.8	.735	18.3	.812	8.4	.851	10.8	0.858-0.889	5.2	0.889-0.904		
omerset	Atascosa	1.40	.855	31.0	.746	10.7	.818	14.6	.854	8.4	.874898	7.4	.898916		
turri	Bexar	0.45	.863	24.6	.752	10.8	.813	14.3	.840		.858883	6.6	.883901	2.7	0.901-0.90
Damon Mound	Brazoria	. 28	.923					36.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.9	.915933	8.4		14.1	.93994
Oamon Mound	Brazoria	.36	.921	5.8	.818			36.5	.874		.913933	6.0		17.5	.94096
Vest Columbia	Brazoria Brazoria	.29	.934					27.0 48.8	.851	13.8	.917933 .911916	8.2 13.2	.933943 .916923	20.7 8.0	.94395 .92392
West Columbia	Brazoria	.45	.940					28.6	.886		.918934	7.5	202		.94595
Barbers Hill	Chambers	.67	.858	31.0	.757	5.5	.825		.854		.885906	4.7	.906912	5.9	.91291
Pierdes-Pintos	Duvall	.55	.927					33.9	.870	10.8	.894919	9.4	F 100 COV 13 AV 53	21.9	.94896
Blue Ridge	Fort Bend	.45						21.8	,883	11.4	.922937	7.6	.937947	18.1	.94796
Blue Ridge	Fort Bend	.39	.894					23.7	.867		.896909	5.9	.909927		.92796
Satson	Hardin	.61	.903	8.2	.789			34.9		11.4	.908920	8.2		8.1	.92893
aratogaour Lake	Hardin Hardin	.57	.977	16.7	.765			16.8 30.6			.919934 .907927	8.6		9.4	.95097
Goose Creek	Harris	.22	.926		.700			28.5		14.2	.911926	8.3			.93595
ioose Creek	Harris	.20	.917					36.0	1000000		.914924	7.4	.924930	14.7	.93094
loose Creek	Harris	.21	.910					39.2	5.00	13.7	.909919	7.5	and the second s		.92896
Joose Creek	Harris	.55	.897					51.7	.872	13.2	.900915	7.4	.915927	7.1	.92794
loose Creek	Harris	.49	A Comment					31.0	100		.915926	7.3			.93595
lumble	Harris	.43			000			24.8	.885		.912918	20.0	.918947		.94796
fumble	Harris Harris	0.40		3.7	.823			24.9	.882		.913931	7.7	.931942		.94296
pindle Top	Jefferson	2.31	.921					36.2 28.5	.880		.922940 .910925	5.8	.940946		.94696 .93795
full	Liberty	0.35	.863	26.6	.762			27.3	.858		.886905	7.0		7.7	.91893
[ull	Liberty	.44	.926	3.8	.800			22.0	.871		.901916	6.6	.916924	15.6	.92494
orth Dayton	Liberty	.50	. 899	9.8	.796			45.5		11.8	.924937	7.2	.937939	8.6	.93994
farkham	Matagorda	.18	.831	50.2	.782	9.3	.809		.850						
acogdoches	Nacogdoches	.39	.923					19.5	.877		.891905	12.6	.905915	8.8	.91592
range	Orange	.45	.912					31.9		13.6	.896911	9.7	.911926	8.0	.92693
erry	Orange Zapata	.34	.881					27.0		13.6	.901920	7.2	.920928	16.0	.92893
West Virginia	Lapata	.25	.923					49.8	. 693	14.0	.915931	4.5	.931941	14.8	.941969
faryland Grade	Hancock Harrison and Dodd-	.084		45.9 29.5	.718 .741	16.5 18.9	.794 .795	8.4 9.0	.839 .823	8.3 11.5	0.848 .840	4.3 7.2	0.858 .859		
	ridge														
faryland Grade	Harrison and others	.27		33.4		20.4	.795	9.8	.823	12.1	.843	4.0	.864		
Slue Creek	Kanawha	.11		40.2		18.0		9.2	.829	9.1	.849	4.6	.862		
Sabin Creek	Kanawha Kanawha	.19		40.5 39.6	.730		.797		.827	8.9	.844	4.2	.856		
ureka Grade	*	.10		31.3	.731	18.4			.829	9.8	.847	4.5 5.6	.859 .856		
ureka Grade	*	.24		37.7		17.7			.829	9.6	.845	6.0	.848		

^{*} Ritchie, Wood, Wirt, Calhoun, Roan and Kanawha.

					solene							Lubricat	ing distilla	tes	
Field	County	Cr	ude		and phtha	Ke	rosene	Ga	s oil		Light	N	Medium		Heavy
		% S	$d_{15.5}^{15.5}$	%	d 15.5	%	d 15.5	%	d 15.5	%	$d_{15.8}^{15.5}$	%	d15.5	%	$d_{15.5}^{15,5}$
WEST VIRGINIA (Continued)				1	1							11 1		11 1	
Maryland Grade	*	0.28	0.805	38.	3	18.0	0.804	9.3	0.825	9.3	0.852	5.2	0.872		
Maryland Grade	Tyler	.095	.804	35.	80.744	20.8	8 .795	10.6	.824	11.2	.844	4.8	.862		
Eureka Grade	Tyler, Doddridge, and Wetzel	.098	.808	34.	.748	19.4	.810	9.9	.828	10.3	.844	5.3	.857		
Maryland Grade	Tyler, Doddridge, and Wetzel	.094	. 803	37.	1 .737	18.	7 .798	10.1	.827	9.8	.839	4.8	.852		
Maryland Grade	Wetzel and Marshall	.11	.804	34.	6 .732	19.	.798	10.7	.827	10.0	.846	5.1	.862		
Greybull	Bighorn	.08	.803	38.	6 .738	17.8	8 .806	11.0	.830	10.9	.844	4.7	.858	11	
Ferris	Carbon	.19	.842	31.	1 .747	13.4	.823	10.8	.847	11.7	.864	6.0	.881		
Lost Soldier	Carbon	.11	.875	16.	7 .804	18.	.854	18.6	.864	15.7	.875	6.7	.898		
Rock Creek	Carbon	.27	.843	31.	4 .744	14.5	. 826	10.0	.854	10.3	.876	5.4	.890		
Big Muddy	Converse	.17	.863	22.	2 .762	15.	.832	9.0	.860	11.1	.877	5.9	.890		
Dallas	Fremont	2.42	.914	12.	8 .772	14.	.827	10.8	.873	7.5	.897	7.0	.916	7.2	0.935
Lander	Fremont	2.62	.913	11.	0 .755	16.0	.825	11.1	.869	15.1	. 899	6.1	.921		
Maverick	Fremont	2.46	.922	8.	6 .765	14.	.824	10.9	.869	13.7	.901	8.0	.924	11 1	
Pilot Butte	Fremont	0.22	.848	24.	0 .765	19.7	.815	13.2	.846	12.8	,864	5.9	.884		
Plunkett	Fremont	.55	.846	21.	0 .779	22.6	.827	16.3	.852	14.0	.868	6.5	.883		
Grass Creek	Hot Springs	.14	.809	42.	6 .741	20.0	.820	9.9	.850	9.3	.865	4.5	.881		
Hamilton Dome	Hot Springs	2.09	.903	17.	6 .746	15.8	8 .826	8.7	.876	5.7	.893	12.4	.917		
Pine Mountain	Natrona	0.51	.953					Decor	mposed	when	heated at	atmosphe	eric pressu	re	
Salt Creek	Natrona	.18	.841	29.	3 .750	15.7	.824	10.8	.847	11.1	.865	5.8	.880	11	
Shannon	Natrona	.20	.909	3.	1 ,838	11.1	.867	4.9	.884	19.1	.892	8.0	.905	8.4	.909
Lance Creek	Niobrara	.18	,823	33.	.754	16.2	.812	11.3	.849	10.7	. 859	6.0	.876		
Mule Creek	Niobrara	.14	.867	11.	7 .768	17.4	.821	13.1	.850	14.6	.869	7.4	.882		
Elk Basin	Park	.14	.827	40.	.748	17.4	.829	10.6	.862	9.8	.875	4.8	.890		
New Castle	Weston	.15	.840	31.	.754	17.4	.826	10.3	.856	11.0	.871	5.6	.887		
Osage Range	Weston	. 29	.837	34.8	.746	15.8	.825	9.8	.857	10.5	.873	5.1	,893		

^{*} Ritchie, Wood, Wirt, Calhoun, Roan, Kanawha and Gilmer.

SPECIFIC GRAVITY AND THERMAL EXPANSION

In this section, S will be used to represent $d_{16.56}^{15.56}$ C = d_{60}^{80} F.

Conversion Formulae All weights in vacuo

$$^{\circ}$$
API = $\frac{141.5}{S}$ - 131.5. $^{\circ}$ Bé (American) = $\frac{140}{S}$ - 130
Lb. per gal. (U. S.) = 8.328 $\times S$
Lb. per gal. (Brit.) = 10.00 $\times S$
Gal. (U. S.) per lb. = 0.1201 $\times S$
Gal. (Brit.) per lb. = 0.1000 $\times S$

For other conversion factors, v. vol. I, p. 23. For elaborate computed conversion tables convenient for interpolation, v. (10).

Crude Petroleums

The specific gravity of crudes varies with locality between the extreme limits 0.65 to 1.07. Below are given only those crudes for which values above 0.95 or below 0.75 have been recorded. The recorded data for all other crudes lie between the above values. For these v. (26, 39, 53.1, 87, 120, 169).

Specific Gravity of Crude Petroleum from Various Parts of the World Sp. gr. > 0.95

op. gr. > 0.00	
Source	Sp. gr.
AFRICA	
Algeria	0.79 to 0.98
Egypt	0.83 to 0.97
Gold Coast	0.87 to 0.98
Ivory Coast	0.96
Sidi Brahim	1.02
Tunis	0.97
Asia	
Assam	0.86 to 0.98
Burma	0.81 to 1.00
Japan	0.80 to 0.98
Malay Archipelago	
Borneo	0.86 to 0.97

SPECIFIC GRAVITY OF CRUDE PETROLEUM.—(Continued)

Source	Sp. gr.
Java	0.81 to 0.97
Roengkoet	0.97
Persia	0.78 to 1.06
AUSTRALIA	0.84 to 0.97
New Zealand	0.84 to 0.97
EUROPE	
Galicia (Drohobycz)	0.84 to 0.96
Germany	0.81 to 1.00
Greece	1.05
Hungary	0.80 to 0.98
Italy	0.75 to 0.97
Russia (Daghestan)	0.85 to 0.96
North America	
Canada	0.75 to 0.97
Cuba	0.73 to 0.96
Haiti	0.92 to 0.96
Mexico	0.79 to 1.06
United States	
Alaska	0.79 to 0.99
California	0.77 to 1.01
Louisiana	0.80 to 0.97
Oklahoma	0.79 to 0.88
Texas	0.80 to 0.97
Utah	0.83 to 0.95
Wyoming	0.80 to 1.00
South America	
Argentina	0.90 to 1.00
Barbados	0.88 to 0.97
Colombia	0.86 to 0.97
Ecuador	0.88 to 0.99
Peru	0.82 to 0.95
Trinidad	0.81 to 0.98

SPECIFIC GRAVITY OF CRUDE PETROLEUM.—(Continued)

Source	Sp. gr.
Sp. gr. < 0.75	
EUROPE	
Italy	0.75 to 0.97
Russia (Caucasus)	0.65
North America	
Canada	0.75 to 0.97
Cuba	0.73 to 0.96
United States	
Pennsylvania	0.70 to 0.89

STRAIGHT RUN PETROLEUM PRODUCTS (113)

Approximate specific gravity range at 15.5°C = 60°F

Product	Range
Paraffin-base Crude	
Cymogene (rare)	0.588
Light petroleum ether	0.633-0.626
Heavy petroleum ether	0.654-0.639
Natural gas gasolene	0.675-0.622
Gasolene	0.747-0.709
Kerosene	0.816-0.797

STRAIGHT RUN PETROLEUM PRODUCTS (113).—(Continued)

Product	Range
Mineral seal oil (300 burning oil)	0.825-0.811
Gas oil	0.845-0.816
Non-viscous neutrals	0.865-0.850
Viscous neutrals	0.882-0.865
Paraffin oils	0.904-0.876
Paraffin wax	0.947-0.871
Red oils	0.910-0.904
Filtered cylinder stock	0.896-0.887
Bright stock	0.916-0.893
Steam-refined oils	0.928-0.898
Naphthene-base Crude	
Natural gas gasolene	0.702-0.669
Light gasolene (if any)	0.720 - 0.702
Gasolene (if any)	0.763-0.731
Kerosene (if any)	0.825-0.816
Gas oil	0.876-0.855
Low pour test machine oil (low viscosity)	0.928 - 0.922
Low pour test machine oil (medium viscosity).	0.934-0.928
Low pour test machine oil (high viscosity)	0.940-0.934
Black oil	0.947-0.940
Flux	0.986-0.973

GASOLENE FRACTIONS (177)

		CASOLENE TRACTIONS ()			
		Sp. gr. of fraction. $15.5^{\circ}/15.5^{\circ}C = 60^{\circ}/60^{\circ}F$			
Kind of gasolene	Kind of gasolene Fractionation temperatures				
	Up to 50°C	50° to 75°C 75° to 100°C 100° to 125°C 125° to 150°C 150° to 175°C 175° to 200°C			
Eastern "straight" refiner	y 0.633 to 0.639	0.666 to 0.672 0.699 to 0.712 0.727 to 0.736 0.742 to 0.755 0.764 to 0.770			
Mid-Continent "straight"					
refinery	. 0.630 to 0.645	0.672 to 0.696 0.712 to 0.736 0.736 to 0.761 0.755 to 0.779 0.773 to 0.779 0.788 to 0.79			
California "straight" re-					
finery	. 0.639 to 0.645	0.678 to 0.693 0.723 to 0.739 0.752 to 0.764 0.773 to 0.788			
Blended casing head (east-					
		0.663 to 0.675 0.703 to 0.715 0.733 to 0.739 0.752 to 0.761 0.767 to 0.776 0.782 to 0.78			
Cracked (Mid-Continent).	. 0.636 to 0.645	0.675 to 0.684 0.712 to 0.721 0.736 to 0.749 0.752 to 0.767 0.767 to 0.785 0.788 to 0.80			

Blending Chart.—For use in determining % of naphtha to be added to gasolene to obtain blend of given density, v. (8).

LUBRICATING OIL AT LOW TEMPERATURES

This sample had the following properties: $S_{16.6}^{16.6} = 0.9427$; Fl. P., 224°C; η at 98.9°C, 92 sec Saybolt; Pour point, -18°C. The density data were $d_1^t = 0.9740$, (-35° to -40°C); and $d_1^t = 0.9523 - 0.000665t$, (-30° to +20°C) (76).

PARAFFINS

Solid.— $d_{15}^{15} = 0.87 - 0.94$; $d_{15}^{50} = 0.84 - 0.89$. Recorded data on thermal expansion very conflicting, possibly due to enclosed air (19, 158, 166, 211). Between -190° and 17°C Dewar found $\frac{1}{V} \frac{\Delta V}{\Delta t} = 0.000357$ per deg (43).

Liquid.— $d_{15}^{50} = 0.777 - 0.785$; $d_{15}^{60} = 0.755 - 0.780$. $d_{15}^{t} =$ const. (= 53 to 85) $\times 10^{-5}t$ (between ca. 50° and 100°C) (19, 158, 166, 211).

MISCELLANEOUS

Petrolatum ("Vaseline").— $d_4^t = 0.873$, 23°; 0.868, 32°; 0.862, 42°C (206).

Petroleum Ether.— $V_t = V_0(1 + 146 \times 10^{-5}t + 16.0 \times 10^{-7}t^2), -190^{\circ}$ to 0° C (90).

THERMAL EXPANSION

$$\begin{array}{l} d_t = d_s - \alpha(t - t_s) + \beta(t - t_s)^{\frac{1}{2}} \\ \alpha = (66 \pm 5) \times 10^{-5}; \text{ for } S < 0.84 \\ \alpha = [(189.4 - 146.5S) \pm 3] \times 10^{-5}; \text{ for } S > 0.84 \\ \beta = [(-15.4 + 19S) \pm 2] \times 10^{-7} \\ d_t = d_s^t \text{ or } d_{15.5}^t \\ d_s = d_s^{t_s} \text{ resp. } d_{15.5}^{t_s} \text{ when } 15^\circ < t_s < 35^\circ \end{array}$$

S = the density or specific gravity (two decimal places sufficient) at any temperature between ca. 15° and 35°.

Example: Given $d_{15.5}^{17} = 0.6935$, to find $d_{15.5}^{60}$ $d_{60} = 0.6935 - (189.4 - 146.5 \times 0.69) \times 10^{-6} \times (60 - 17) + (-15.4 + 19 \times 0.69) \times 10^{-7}(60 - 17)^2 = 0.6551 \pm ca. 0.0003$.

For all practical purposes, the above relations appear to be applicable to all petroleum oils, both crude and refined, between 0° and 50°C (and probably to 100°C) as long as they continue to remain homogeneous liquids sufficiently fluid to be measured with a hydrometer (18). For elaborate computed tables convenient for temperature conversions and based substantially on the above relations v. (10, 41).

Additional Literature on Thermal Expansion.—Crudes (51, 94, 148, 182, 183, 197). Derivatives (94, 102, 117, 181).

Expansion above 100°C.—A recent investigation (225) of California petroleum products yields the equations:

$$v_t = v_{18-86} [1 + \alpha(t - 15.56^{\circ}) + \beta(t - 15.56^{\circ})^2]$$
 (Range, 15° to 260°C)

and $v_t = v_{260} \left[1 + \alpha'(t - 260^\circ) + \beta'(t - 260^\circ)^2 \right] \text{(Range, 260° to 400°C)}$ $\alpha = \left[2.32 - 1.7S \right] \times 10^{-3}; \text{ for } S < 0.82$ $\alpha = \left[4.36 - 4.2S \right] \times 10^{-3}; \text{ for } 0.82 < S < 0.75$ $\beta = \left[4.86 - 4.5S \right] \times 10^{-6}$ For $S = 1.0 \quad 0.95 \quad 0.90 \quad 0.89$ $10^3 \alpha' = 0.75 \quad 0.83 \quad 1.05 \quad 1.20$ $\beta' = \left[20.29 - 19.45 S \right] \times 10^{-6}$

where v_t is the volume (cm³) at t°C, and S is the specific gravity at 15°C.

COMPRESSIBILITY

The mean coefficient of compressibility between P_1 and P_2 is defined by the equation

$$\beta = \frac{V_{P_1} - V_{P_2}}{V_{P_1}(P_2 - P_1)}$$

Kerosene and Lubricating Oils,—Within the accuracy of the measurements, all available data are correctly expressed by the equation

$$\frac{10^{-6}}{\beta} = a + bP - cP^2 + dP^2,$$

 $\frac{10^{-6}}{\beta}=a+bP-cP^2+dP^3,$ in which $\beta=\frac{V_0-V_P}{V_0P}$ is the mean coefficient between 0 and P.

Conversion Factors.—To convert a pressure, in any of the following units, into atmospheres, multiply it by the factor given.

Megabarye	kg cm ⁻²	Lb. in2
0.98692	0.96784	0.068047

Kerosene.—Between 1 and 11 atmospheres and 0-100°C, β in atm.⁻¹ is expressed by the equation $\beta = (67.5 + 0.458t) \times 10^{-6}$ (161).

PARAFFIN (17)

M. P. 55°C
$$\beta = \frac{V_{20} - V_P}{V_{20}P}$$

P	l			
atm.	64°	100°	185°	310°
20	1			
100	83	106	172	331
200	83	103	156	289
300	84	99	147	257
400	solid	94	137	236

P in atmospheres. "Range" = pressure limits within which the equation may be used to calculate $\frac{V_{P_1} - V_{P_2}}{V_{P_1}}$

Name of oil	t°C	10³a	10 6 b	10 ¹² c	1015d	Range atmospheres	$\frac{10^{5}(V_{0}-V_{1000})}{V_{0}\times1000}$	Lit.
Kerosene	20	(13.05)	4.4175	160.24	5.114	2000-12 000	5.776	(1)
Kerosene	20	13.05	4.2059	135.94	3.687	0-12 000	5.839	(23)
Kerosene	40	11.60	4.2220	135.39	3.348	0-12 000	6.374	(23)
Kerosene	60	10.48	4.0379	113.69	2.484	0-12 000	6.941	(23)
Kerosene	80	9.55	3.8079	91.15	1.794	0-12 000	7.537	(23)
"Paraffin oil"*	34	12.0	4.631	280.6	24.3	0- 4 300	6.107	(153)
Lubricating oils	1							, ,
"F. F. F. cylinder"	40	17.7	4.3	0.0	0.0	0- 1 400	4.545	(95.1)
"Mobile A"	40	17.4	4.3	0.0	0.0	0- 1 400	4.608	(95.1)
"Mobile BB"	40	18.0	4.3	0.0	0.0	0- 1 400	4.484	(95.1)
"Victory red"	40	18.9	5.0	0.0	0.0	0- 1 400	4.184	(95.1)
"Bayonne"	40	17.1	4.3	0.0	0.0	0- 1 500	4.673	(95.1)

 $[*]d_4^0 = 0.812; d_4^{34} = 0.78_6$; flash point 55°C.

VISCOSITY

See also Lubricants and Lubrication, p. 164.

Viscosity Units and Their Interconversion. See vol. I, p. 25.

Viscosity at Room Temperatures.—Typical values in poises are:

- (a) Gasolenes, 0.003-0.006;
- (b) Kerosene, 0.02;
- (c) Light lubricating oils, 0.025-1.5;
- (d) Medium lubricating oils, 1.5-3.5;
- (e) Heavy lubricating oils, 3.5-20;
- (f) Petrolatum (M. P., 85°-95°F), 1.3 at 130°, 0.24 at 210°F.

Variation of Viscosity with Temperature.--If the viscosity of an oil is known at two temperatures, its viscosity at a third temperature may be obtained graphically with the aid of Fig. 1. When the viscosity temperature values for any oil are graphed on this chart a straight line will be obtained for all portions of the temperature range within which the oil remains a homogeneous liquid of constant composition (11). Copies of this chart may be obtained by addressing The Texas Company, New York City.

SURFACE TENSION

Below are summarized the reported data on the surface tension $(\gamma, \text{ in dynes per cm})$ of various products.

Crudes.—24-38 at 20°C (63, 84, 160, 176). The lower values. 24-26, are reported for crudes from Pennsylvania and California (176); the higher values, 35-38, for crudes from California fields at Montebello, Sunset, and Kern (84).

Petroleum Distillates.—For distillates up to 300°C, $\gamma = 19-29$ at 20° and is approximately a linear function of the density. See Fig. 12 (p. 157). $d\gamma/dt = ca. -0.1$ per °C between 0° and 50° (63, 64, 140, 176).

Naphthas.—(B. P. up to 150°C). $\gamma = 19-23$ at 20° (176). Kerosenes.—(B. P. 150°-300°C). $\gamma = 23-32$ at 20° (77, 176).

"Gas Oil Distillates."—(150°-300°C). $\gamma = 21-28$ (175).

"Tar Oils."— $\gamma = 34-37.6 (175)$.

Gas Oils.— $\gamma = 28-29 (175)$.

"Tar Oil Distillates."—(150°-300°C). $\gamma = 27-36$ (175).

Lubricating Oils.—Oklahoma and California, $\gamma = 36-37.5$ at 30°C (63, 78).

"Wax Distillates."— $\gamma = 34-36$ at 30°C (63).

 $Paraffin. -\gamma = 30.6 \text{ at } 54^{\circ}\text{C } (162).$

INTERFACIAL TENSIONS

Oil-Water Interface.—Dyne cm-1. Gasolenes and naphthas, 39-51: kerosene, 47-49: mineral seal, 47-50: lubricating oils. 33-54: cylinder oils, petrolatum, paraffin at higher temperatures. 35-50, increasing after filtration. Several days' exposure to light produces decreases up to 30% (70, 99). $d\gamma/dt = ca$. -0.1between 4° and 8°C.

Addition of fatty acids lowers the interfacial tension against both H₂O and Hg (20, 213).

PENETRATIVITY (1)

The penetrativity, z, of a liquid is measured by the ratio $\gamma/2\eta$ where η is the viscosity (206). If z for H₂O is taken as 1 at room temperature, z for kerosene is 0.05 at 20°C; z for paraffin is 0.092 at 65°, 0.39 at 185° and 0.45 at 215°C. z for petrolatum ("vaseline") in absolute units is $0.063(t-30)^2$ cm sec⁻¹, where t is the temperature in °C between 100 and 200.

VISCOSITY---TEMPERATURE CHART

THE TEXAS COMPANY
PETROLEUM AND ITS PRODUCTS

Fig. 1.

Fig. 2.—Variation of viscosity with pressure.

Curve No.	Designation of oil	t, °C	Lit.
1	Mobiloil "A"	40	(95)
2	Bayonne: d ₁₅ 0.906; Fl. P. 191°C; η ₁₀₀ 330 Saybolt; pour test 0°C		(95)
3	F. F. cylinder: d _{.5} 0.892; Fl. P. 260.0°C; 7100 2400 Saybolt; pour test 5.6°C	40	(95)
4	Mobiloil "B. B."	40	(95)
5	Mobiloil "A"	24	(85,
6	Mobiloil "A"	100	(85)

Curve No.	Designation of oil		Lit.
7	Texaco	24	(85)
8	Texaco	100	(88)
9	Vecdol	22	(85)
10	Veedol	100	(85)
11	Victory red mineral: d_{15}^{15} 0.914; Fl. P. 183.9°C; η_{100} 1140 Saybolt; pour test 2.8°C	40	(95)
12	Saybolt	40	(95)

MELTING POINT

The petroleum products of commerce are all mixtures, and consequently possess no sharp melting or freezing point; but exhibit instead a *melting range*. It is, of course, possible by suitable blending to obtain a product with almost any initial melting or freezing point between the extreme limits of -150° C (0.70 specific gravity gasolene) and $+60^{\circ}$ C (the high melting waxes).

Typical Values.—The limiting values recorded below show the regions of the temperature scale within which the melting or freezing ranges of some typical commercial products may be expected to lie (For "pour test" see p. 156).

Material		melting or range, °C
Gasolene 0.704 sp. gr. 15.5/15.5	-122	to -150
.719 sp. gr. 15.5/15.5	-120	to -147
Petroleum jelly—pale	3 9	to 51
Paraffin waxes:		
Match wax	40.5	to 46
White crude scale (Pa.)	50	to 52.2
Semi-refined (Pa.)	50	to 51
Fully refined (Pa.)	49	to 50
Fully refined (Calif.)	59	to 60
Ceresins:		
General range	60	to 80
Normal wax	65	to 66
Pure	79	to 80

MELTING POINT OF PARAFFINS

Variation of melting point with oil content (221)

Material	% of pressed oil	Refractive index at 25°C	Melting point °C
"Parowax"	0.16	1.4481	51.7
Refined wax	0.28	1.4487	50.0
Refined wax	0.25	1.4485	50.0
Refined wax	0.17	1.4481	51.7
Refined wax	0.16	1.4479	51.7
Refined wax	0.09	1.4476	54 . 4
Refined wax	0.08	1.4475	54.4
Scale wax	2.58	1.4570	48.3
Scale wax	2.56	1.4568	48.3

Variation of Melting Point of Paraffin with Pressure $t_P = t_0 + 0.029776 \quad (P-1) - 0.0000523 \quad (P-1)^2$, between 1 and 200 atm.

 t_P (resp. t_0) = melting point of paraffin under pressure P (resp. 1 atm.).

SOLUBILITY OF PARAFFIN

For solubility of various kinds of paraffin in gasolenes, kerosene, lubricating oil, paraffin oil, fuel oil, benzene, alcohols, and acetic acid see (184).

VAPOR PRESSURE AND BOILING POINTS

The few available data when graphed (log p against 1/T) are found empirically to give approximately straight lines. p = the vapor pressures at $T^{\circ}K$. In the table below are given, (1) typical or limiting values of the B. P. (at 1 atm.) for the class, (or, in parentheses, the B. P. at 1 atm. as obtained by extrapolation of the vapor pressure curve); (2) the range covered by the available vapor pressure data; (3) the value of d $\log_{10} p/d(1/T)$, the slope of the vapor pressure curve; and (4) the source of the experimental data.

Fig. 3.—Comparison of the physical properties of petroleum distillates from different crudes (176).

Source of Crude Petroleums Used

- 1. Pa., Brandon, Pleasantville (580 ft.).
- 2. Okla., Collinsville.
- 3. Pa., Emlinton (1050 ft.).
- 4. Pa., Emlinton (1195 ft.).
- 5. Pa., Brandon, Pleasantville (850 ft.).
- 6. Calif., Piru Ventura Co.
- 7, 9, 10. Okla., Collinsville.

VAPOR PRESSURE DATA-PETROLEUM PRODUCTS

Designation of material	No. of sam- ples	of mal range B. P. mm Hg $\frac{d \log_{10} p}{d (1/T)}$		Pressure range		Lit.
Gasolenes	6	93-198	30- 2	500	1600-1700	(25, 35, 45, 61,
						171, 217, 218, 219)
Kerosene	1	215-255	50-	630	2230	(218, 219)
Kerosene	1	(240)	1800-30	000	3100	(42)
Gasolene	1	(63)	1800-30	000	1160	(42)
Paraffin-base oil	1	(315)	10-	100	1240	(222)
Transformer oil	1	200	300-	700	740	(33)
Vaseline	1	(215)	2000-16	000	2950	(42)
CeHe	1	80.5	160-40	000	1670	(44, 115, 217)
л-С ₁₀ Н	1	330	130- 8	000	3600	(217)
Kerosene W. W	1	125	250- 3	000	860	(33)
Casinghead gasolene	1	(48)	1000-13	000	1130	(33)
Gasolene,	1	(81)	1000- 6	400	1320	(33)

See also (200, 215, 220),

- 8. Okla., Healdton.
- 11. Calif., Piru, Ventura Co.
- 12. Calif., Santa Maria.
- 13, 14. Russia
- 15, 16, 18. Calif., Midway, Kern Co.
- 17. Mexico.

Correction of B. P. for Barometric Pressure.—In the present state of our knowledge, it is necessary to know the slope of the $\log p$, 1/T curve for the particular type of product under examination (i.e., the B. P. must be determined at two pressures), in order to be able to make this correction with any degree of certainty for pressures not close to 760 mm.

DEW POINTS

Definitions and Abbreviations.—The temperature at which condensation begins, when a mixture of air and motor fuel is cooled, is called the dew point, t_D . The dew-point index, I_D , is the sum of the °C boiling points at the 10, 20, 50, 70, 90, and 100 % points of the 100 cc standard Engler distillation procedure. For °F it is one-half this sum. The 85% point, t_{85} , is the boiling point corresponding to the 85% point of the Engler distillation.

The following generalizations have been put forward.

Thirteen commercial gasolenes with I_D values ranging from 612 to 1025 give, when mixed with 15 parts of air by weight, values of t_D ranging from 10° to 88°C, the relation being

 $t_D = [12 + 0.187 (I_D - 600)] \pm ca. 5^{\circ}C (79, 80, 218).$

Thirteen commercial gasolenes with t_{55} values ranging from 115° to 210°C give values of t_D ranging from 10° to 88°C, the relation being

$$t_D = [10 + 0.83 (t_{88} - 115)] \pm ca. 5^{\circ} \text{ to } 10^{\circ}\text{C } (79, 80, 218).$$

An increase in the ratio of air to fuel lowers the t_D (79, 80). See Fig. 4. According to Stevenson and Stark (193) the dew point of any gasolene-air mixture may be accurately $(\pm 2^{\circ}\text{C})$ obtained from the chart of Fig. 5. This chart is based upon the

Deppé end point for the particular gasolene under examination. For method of determining this end point, v. (193).

For another method requiring the determination of three empirical constants of the gasolene, v. (103).

FLASH POINT

Definition.—The Flash point (Fl. P.) of a liquid is an arbitrary ignition temperature of its saturated vapor. Its value depends very materially upon the apparatus and experimental procedure employed, as illustrated by the following tables:

Fig. 4.—(Courtesy Industrial and Engineering Chemistry.)

Fig. 5.—(Courtesy Industrial and Engineering Chemistry.)

The ratios for the curves are parts gasolene to parts air by weight.

COMPARISON OF FLASH TESTS BY DIFFERENT INSTRUMENTS

		°C			
Type of oil (2)	Sp. gr.	Treu- mann	Al- brecht	Pen- sky	
Russian spindle	0 890	171.5	164.5	151	
Russian machine	.908	211	199.6	193	
Mixture of the above	. 896	180.5	180	159	
Wagon oil	.910	181	173.5	160	
Locomotive oil	.912	185	182	170	
Heavy machine oil	.916	236	207	202	
Russian cylinder	l .		265	256	

Type of oil (30)	Pensky Martens, °C	Open cup, °C
Mexican crude oil	19.0	35.0
Pechelbronn gas oil	26.2	34.0
Motor petrol	26.5	33.5
Diesel motor oil		82.0
Dried Pechelbronn crude	60.0	72.0
Motor oil	84.0	97.5
Cracking gas oil	85.0	95.0
Diesel motor oil	89.0	90.0
Tar oil	87.0	92 .5
Residue	98.5	119.5
Heavy oil	101.0	110.0
Vaseline oil	175.0	177.0
Galician Diesel motor	128.0	177.0

Typical Values .- See Fig. 6.

COMPARISON OF FLASH TESTS BY DIFFERENT INSTRUMENTS

Material (39)	Abel, °C	Taglia- bue closed, °C	El- liot, °C	Pensky Martens, °C	Cleve- land open, °C	Luchaire (French), °C
Naphtha	3 0.0	33.3	33.3	35.0	37.8	37.8
Naphtha Water-white	34.4	39.4	36.7	40.6	46.1	50.0
kerosene	52 .8	54.4	53.3	57.2	60 .0	58.9
Petrolite	61.1	59.4	60.0	65.6	68.3	62.2
Gas oil				90.6	93.3	92.2
300 oil				123.9	129.4	130.0
Straw oil Ice machine				157.2	162.8	161 . 1
oil				204.4	196.1	205.6
Engine oil				221.1	226.7	221.1
Cylinder oil Heavy cylin-				262.8	273.9	263.9
der oil				265.6	293.3	265.5

	Kerosene, °C				
Apparatus (53.1)	A	В	C		
Engler and Haass	22	29	40		
Tagliabue open	31	42	52		
Danish open	21	30	43		
Saybolt open	31	36	51		
Tagliabue closed	32				
Abel closed	17	23	33		
Parish closed	21	27	38		

Variation with Barometric Pressure.—If the logarithm of the barometric pressure is graphed against $1/T_{Fl}$ where T_{Fl} is the absolute temperature of the Fl. P., a straight line is obtained, which apparently is parallel to the corresponding boiling point line for the same liquid. Few data are, however, available, v. (157). The correction of Fl. P. to standard barometric pressure is therefore made in exactly the same way as the correction for boiling point, q,v.

Effects of Additions.—(a) Addition of lower boiling hydrocarbons lowers the Fl. P. (15, 179, 212, 214). (b) Addition of halogenated hydrocarbons usually raises but in some instances lowers the Fl. P. C₂Cl₆ and C₂H₄Br₂ are among the compounds producing the greatest increase in Fl. P. (16, 210). (c) Addition of water raises the Fl. P.; 6°C for 1% H₂O being given in one instance (146).

Relation between Fl. P. and Other Properties.—(a) Specific gravity: For gasolenes the relation Fl. P. (°C) = $800 \times (\text{sp. gr.} - 0.729) \pm ca.$ 2°, agrees with the data of (195). See also (156). Boiling point, v. (48, 49, 94).

Fire Point.—The literature cited above contains a few values for fire points.

Mixtures.—For method of calculating the Fl. P. of a mixture from the Fl. P. of its constituents, v. (83).

Pure Liquids.—See p. 161.

°F0	0	100_		200		Paraffin Oils -	_	·	500	600
		pen	Cup			Neutrals w Vis MighVis	Red Oils	6	Filtered ylinder a yentolook	Steam Refined Stocks
ĺ		6a:	Oil						- Marter	
ine	14	105894						Closed	Cup	
				PARAFFIN	1 8	ASE PRODUC	TS			
T				NAPTHENE	8	ASE PRODUCT	5			
100	Ke	Pro-						Closed	Cup	
		605	Oil					Pensky	Marten	8
					Ţ	Red and PaleOils		Open (Cup	
71	78	328		93		49	204		260	316

Fig. 6.—Average flash point range of petroleum oils.

Ignition Temperatures in High Pressure and Low Pressure
Oxygen

Material	Fl. P. °C	Ignition temperature, °C			
		1 atm.	33 atm.		
Sperm oil	236	308	140		
Lard oil	240	273	144		
Castor oil	263	325	153		
Glycerine		412	205		
Kerosene	55	255	175		
Spindle oil	194	248	178		
Turbine oils			253-291		
Compressor oil, A		309	188		
Compressor oil, B		273	187		
Compressor oil, C		286	157		

U. S. Bureau of Mines, Rep.

THERMAL CONDUCTIVITY AND DIFFUSIVITY

 $k = A \times 10^{-6} \text{ cal cm}^{-2} \text{ sec}^{-1} (^{\circ}\text{C, cm}^{-1})^{-1}$

= $4.18 \text{ A} \times 10^{-6} \text{ joule cm}^{-2} \text{ sec}^{-1} (^{\circ}\text{C}, \text{ cm}^{-1})^{-1}$

= $0.806 \text{ A} \times 10^{-6} \text{ BTU}_{60} \text{ ft.}^{-2} \text{ sec}^{-1} (^{\circ}\text{F, in.}^{-1})^{-1}$

Designation of material (M. P. and sp. gr.)	t°C	A	Lit.
Paraffin	-198	828	(59)
Paraffin	- 78	887	(59)
Paraffin	0.0	688	(59)
Paraffin	20	285	(147)
[1]	0.29	372	(209)
Paraffin, 50.4°	0.34	473	(209)
Paraffin, 66°, 0.92	23	640	(97)
Paraffin, 54°	0-14	571	(155)
Paraffin	0-31	558	(155)
Paraffin, 84°	0-13	608	(155)
Paraffin, 84°	0-26	584	(155)
Paraffin, 84°	0-33	564	(155)
Paraffin, 84°	22-48	489	(155)
Paraffin, 84°	21-57	470	(155)
f I	0-29	331	(209)
"Paraffinöl," M. P. < −20° {	0-34	368	(209)
Cylinder oil	81	290	(58)
"Vaseline"		440	(110)
	0-29	368	(209)
Kerosene	0-34	403	(209)
Designation of material (M. P. and sp. gr.)	t°C │	$\alpha = d_k/d_t$ per °C	Lit.
Paraffin		+0.0634 (?)	(207, 208
Do no ffin	10 45	0.0078	(107)

Paraffin 10-45 $\begin{vmatrix} +0.0034 & (7) & (207, 208) \\ -0.0076 & (107) & (75) \end{vmatrix}$ Rerosene ... 10-45 $\begin{vmatrix} +0.0034 & (7) & (207, 208) \\ -0.0076 & (107) & (75) & (75) \end{vmatrix}$ Diffusivity $=\frac{k}{c \times d} = 10^{-6}$ B cm² sec⁻¹, where c = specific heat

and d = density. For kerosene at 13°C, B = 890 (75).

SPECIFIC HEAT

A recent critical examination ((36) q.v. for bibliography) of all the available data for animal, vegetable and mineral oils together with many new determinations shows that the data for all types of oils are well represented by the following equation:

$$c_p = \frac{A}{\sqrt{d_1^{16}}} + B(t - 15) \text{ g cal/g},$$

where d_4^{15} is the density at 15°C and A and B are constants characteristic of the class to which the oil belongs, as shown by the following table and Fig. 7.

Oil	No. of sam- ples	A	Av. dev. ±	Max. dev. ±	10 ² B	Av. dev. ±	Max. dev. ±
Paraffin base	15	0.425	0.002	0.004	0.90		
Naphthene base	7	0.405	0.002	0.004	0.90		
Mixed base	8	0.415	0.002	0.004	0.90		
Fatty, non-drying.	7	0.450	0.001	0.002	0.70		
Fatty, semi-drying	1	0.445			0.70		•
Fatty, drying	1	0.440			0.70		
Castor		0.500			0.70		
Petroleum oils Fatty oils (except	30	0.415	0.007	0.013	0.90	0.03	0.06
castor)	9	0.450	0.003	0.010	0.70	0.03	0.05

Latent Heat of Fusion

Paraffin, 35-39 g cal/g (72).

Latent Heat of Vaporization

Recorded data mostly fragmentary. In the following summary, the values given are calories per gram: 1 cal g⁻¹ = 1.800 BTU₆₀ lb.⁻¹; 10 gasolenes, 71-81; 2 kerosenes, 60; 1 light crude, 75.6; 1 heavy crude, 86; 1 gas oil, 69; 1 light "vaseline," 63; 1 heavy "vaseline," 54; 1 "cleaning oil," 66.5 (73, 152, 170).

One investigation of a series of 12 petroleum fractions with boiling points $(t_B^{\circ}C)$ ranging from 67° to 300°, gives the following: $l = (93.4 - 0.187t_B)$ cal g^{-1} at t_B (114) cf. (152).

Investigation (81) of a series of fractions of Baku petroleum gave:

Sp. gr	0.640	0.698	0.743	0.762	0.797	0.813
$t_{\text{B}}^{\circ}\text{C}$						
l, cal/g	80.6	75.0	68.3	66.6	53 . 6	51.6

CALORIFIC VALUES

The heats of combustion, H, (at constant volume, to produce liquid water and gaseous CO_2) of petroleum products can be very

satisfactorily represented as a linear function of their specific volumes, the parameters of the equation varying slightly according to the type of product. The equation may be conveniently written in the form

$$H = A + B\left(\frac{1}{d} - 1\right),$$

where H is the heat of combustion per gram, d is the density in g cm⁻³, and A and B are constants. From the data reported in the literature the constants A and B have been evaluated and the results are set forth below.

Fig. 7.—Specific heat of petroleum products.

1 kg-cal ₁₈ g ⁻¹ = 1800 BTU ₆₀ lb. ⁻¹ = 4.185 kj g ⁻¹											
		- 1)	Dev.	$H_{ m obs}$. – H	calc.					
Туре		$= A + 4 (1/d)$ $\frac{1}{4}$	Ave	rage	Maxi- mum						
	No. of samples	H = A $kg-cal p$	Plus	Minus	Plus	Minus					
Crudes (6, 7, 31, 39, 74, 104,											
154, 183, 185, 189, 198,											
223)	164	10.14	0.08	0.11	0.77	0.19					
Distillates											
d from 0.67 to 0.75	44	9.69	.17	.25	.77	. 67					
d from 0.75 to 0.85	41	10.03	.16	.21	.95	. 83					
d from 0.85 to 0.90	83	10.20	.07	. 10	.21	.70					
d from 0.90 to 0.97	38	10.30	.12	.08	. 45	.25					
(5, 22, 28, 31, 34, 39, 96,											
118, 151, 154, 164, 167,											
170, 177, 189, 196, 223 _{).}											
"Lubricating oil" (190)	3	10.27	.02	.01	.02	.03					
Coal tar oils (32)	8	9.69	.15	.09	.24	.18					
Coal tar oils (223).	3	10.02	.03	.06	.06	.06					

For the following products density data were not available and the values given are H in kg-cal g^{-1} .

REFRACTIVE INDEX

The function $\frac{n_D-1}{d}$; where n_D is the refractive index for the D line (approximately daylight) and d is the density, both at the same temperature, is approximately a constant for all types of petroleum products, varying between the extreme limits of 0.53 and 0.61. For a set of distillates from a given crude the value of this function for the crude and for all of its distillation fractions is apparently constant within 1 to 3%. In the table below are shown for various types of products (1) the number of samples included in the average; (2) the average and extreme values of $\frac{n_D-1}{d}$ at room temperatures, or similar values of n_D for samples for which d values were not available.

LIQUID FUELS 153

	No.	$n_{\rm D} - 1$		
Designation of product	of	$\frac{m}{d}$	Lit.	
Designation of product	sam-		1310.	
	ples	Low Av. High		
Crudes	17	0.530 0.554 0.567	(54, 62, 112)	
Ligroin	1	0.552	(199, 203)	
Bensine	13	0.531 0.557 0.567	(62, 199, 203)	
"Turpentine substitute"	3	0.54 0.558 0.57	(199, 203)	
Naphtha	4	0.558 0.560 0.563	(62, 203)	
Gasolene	23	0.557 0.566 0.577	(62, 112, 203)	
Kerosene	11	0.553 0.556 0.563	(62, 112, 199,	
			207)	
"Gas oil"	4	0.554 0.556 0.558	(62)	
Pressure distillate	2	0.563	(62)	
Mineral oils	4	0.562 0.563 0.564	(178)	
Liquid paraffin (Ph. G.)	5	0.542 0.543 0.543	(203, 68)	
Wax distillate	3	0.560 0.565 0.608	(62)	
Distillation fractions for	l			
various intervals of each	!			
of the total ranges given.	1			
140°-310°C	20	0.543 0.556 0.572	(50)	
40°-300°C	50	0.556 0.559 0.578	(111)	
195°-282°C	10	0.5550.5570.557	(26)	
50°- 60°C	1	0.562	(159)	
340°-350°C	1	0.581	(159)	
•		Values of $n_{\rm D}$		
Petroleum ether	1	1.375	(203)	
Mineral oil	2	1.478 1.498	(91)	
Spindle oil	2	1.477 1.489	(168, 203)	
Lubricating oil		1.478 1.517	(94)	
Machine oil	1	1.498	(203)	
Petroleum jellies-"vase-			•	
line," at 15°C	7	1.471 1.474 1.498	(203)	
			`	

Parafins and Mineral Waxes.—Recorded data on n_D at various temperatures between 15° and 100° for 35 samples with melting points from 36° to 61°C, range from 1.415 to 1.446, density data on the samples unfortunately not being given (29, 65, 68, 168, 203). For 3 ozokerite samples, $40^{\circ}-90^{\circ}$, $n_D = 1.42$ to 1.53 (68). For 16 ceresin samples, M. P. 57°-73°, $t = 15^{\circ}$ to 100° C, $n_D = 1.426$ to

1.454 (29, 68, 168, 203). $\frac{dn_D}{dt} = -0.00039$ to -0.00043 per °C for paraffin; -0.00047 per °C for ceresin (68, 221).

Effect of Acid Washing.—For effect of washing and filtering on $n_{\rm D}$ of petroleum distillates v. (62, 132).

OPTICAL ACTIVITY

Most petroleum products contain optically active constituents. The reported values of the specific rotatory power $[\alpha]_D$ (v. vol. I, p. 41) range from -1° to $+9^{\circ}$ of arc per decimeter per $(g \text{ per cm}^3)$, the lower value being reported for a $134-142^{\circ}$ C boiling point (11.5 mm Hg) fraction from a Roengkoet crude (53.1) and the higher value for a 216° C B. P. fraction from an Argentine (Mendoza) crude (57). For detailed data v. (52, 53, 53.1, 56, 57, 164, 192, 224).

COEFFICIENT OF LIGHT ABSORPTION (204)

In Figs. 8, 9, 10, 11, the coefficient of light absorption, K, of various petroleum products in solution in chloroform is graphed against the wave lengths in millimicrons.

$$K = \frac{\log \frac{J_0}{J}}{Cl}$$

where J_0 (resp. J) = intensity of initial (resp. emergent) radiation, C = concentration of the oil in CHCl₃ in g/cm³, and l = absorption thickness. In the various experiments the quantity 1/Cl was varied between 50 and 4×10^4 .

DESIGNATION OF OILS

Num- ber	Oil	Num- ber	Oil
1 2 3* 4 5 6 7 8 9*	Tar Dry crude petroleum oil Crude petroleum oil Crude gasolene White spirit (gasolene) Heavy gasolene Light rectified gasolene Light refined gasolene Crude petroleum oil	10 11 12 13 14 15 16 17 18	Crude kerosene Cleaning oil Rectified kerosene Refined kerosene White spirit Dry crude petroleum oil Crude machine oil Refined machine oil Crude paraffin

^{*} For these curves, multiply the ordinates by 330.

IODINE AND BROMINE NUMBERS

("Olefins," "unsaturation")

Values reported range over wide limits and "type characteristic" values apparently do not exist. Time, temperature, concentrations of reagents, and other test conditions influence the results obtained. The original literature must be consulted. In the following summary $I = iodine\ No.$, $Br = bromine\ No.$

Crudes.—Br, 0.6 to 17 (53.1); I, 0.0 to 15 (53.1, 98, 185, 104).

Distillates.—Br, 0.5 to 95 (4, 53.1, 98, 144, 202); I, 0.0 to 100 (53.1, 61, 69, 71, 94, 98, 163, 177).

Lubricating Oils.—Br, 0.0 to 56 (4, 144); I, 0.4 to 57 (15, 53.1, 163, 185).

Waxes and Jellies.—Br, 0.5 to 20 (4, 144); I, 0.4 to 21 (3, 15, 46, 60, 71, 86, 98, 100, 101, 116, 163, 180, 191).

Transformer Oils.—(163).

Bibliography.—(98).

Some Sample Values.—The following values are by one observer, using the Hanus method, but with CCl_4 as the solvent for the halogen. A = "addition value," S = "substitution value" (98).

IODINE AND BROMINE VALUES OF TYPICAL PETROLEUM
PRODUCTS

	Grams	Ic	dine v	alue	Bromine value			
	used	A	s	A+28	A	8	A+28	
Pentane	1	0.37		0.37	0.39	0.06	0.51	
Straight run naphtha	1	0.53	1.58	3.69	0.65	1.55	3.75	
Straight run naphtha		Ì			t			
(treated)	1	0.47	1.14	3.29	0.64	1.44	3.52	
Cracked naphtha	1	14.70	8.16	31.02	9.39	4.62	18.63	
Cracked naphtha (treated)	1	10.72	8.48	27.68	6.80	5.65	18.10	
Straight run lamp oil distil-		ĺ	1					
late	1	1.32	5.04	11.40	0.69	3.13	6.95	
Straight run lamp oil distil-		ļ	1		1			
late (treated)	1	0.74	5.06	10.86	0.48	3.00	6.48	
Cracked lamp oil distillate	0.5	23.23	9.52	42.27	21.81	7.57	36.95	
Cracked lamp oil distillate		1			l			
(treated)	0.5	17.59	10,63	38,85	16.42	8.57	33.56	
Straight run gas oil	1	2.56	9.62	21.80	2.44	3.93	10.30	
Cracked gas oil	1	4.59	14.26	33.11	4.45	7.22	18.89	
Lubg. stock (uncracked)	1	0.83	12.06	24.95	2.09	5.83	13.75	
Lubg. stock (uncracked, fil-	ĺ	1			l	l		
tered)	1	0.32	11.48	23.28	1.55	5.78	13.11	
Lubg. stock (from run to	1	ľ	i					
coke)	1	0.85	14.43	29.71	3.55	9.48	22.51	
Lubg. stock (from run to					l	1		
coke, treated)	1	0.42	13.32	27.06	1.39	7.17	15.73	
2614 cylinder stock (Pa.)	1	2.29	10.99	24.27	1.76	6.43	14.62	
2614 cylinder stock (filtered).	1	0.21	11.67	23.55	0.64	6.56	13.76	
Petrolatum stock	1	11.31	7.26	25.83	6.93	3.10	13.13	
Petrolatum stock (filtered,		i			1			
U. S. P.)	1	1.76	11.31	24.38	2.43	4.40	11.23	
Refined paraffin wax (132°	1	ł						
M. P.)	1	1.10		1.10	1.16	2.25	5,66	
Amorphous wax from petro-						İ		
latum (165° M. P.)	1	1.32	2.90	7.12	1.38	1.50	4.38	
White medicinal oil	1	0.05		0.05		1.90	4.20	
86-88 gasolene	1	1.74	0	1.74	0.58	0.34	1.26	
70 gasolene	1	1.20	0	1.20	0.83	0.05	0.93	
Motor gasolene	1	5.91	2.73	11.37	3.71	1.15	6.01	
V. M. & P. naphtha (55°Bé).	1	2.00	2.51	7.02		1.10		
Varnoline (51°Bé)	1	2.63		9.3	1.49	0.85	3.19	

SULFURIC ACID ABSORPTION FOR GASOLENE

("Unsaturation," "olefins")

The reported data are mostly not systematically obtained and methods are ill-defined. In one investigation (40), however, 43 samples of gasolene were investigated both as to iodine No. (Hanus) and % absorption by 1.84 sp. gr. H_2SO_4 . The I numbers ranged from 47 to 293 and the acid absorption from 8 to 46, the ratio showing an average value of 6.5 with 7.5 as maximum and 5.3 as minimum. For discussion of reaction between olefins and H_2SO_4 see (24).

GUM TEST

(37, 92, 93, 106, 187) and also (67), which contains a bibliography.

COMBINED PROPERTY TABLES

In this section are given, for comparison purposes, tables displaying values of several properties determined on the same sample of oil. In most instances these are expressed in the units given by the investigator.

Crude Petroleums

California Petroleums, Average Values For values of all the samples examined, v. (6).

		Open cup		Viscos-			Volume per cent							
District	d15	Flash point °C	$\frac{\text{sh}}{\text{nt}} \begin{vmatrix} \text{Dull} & 20^{\circ}\text{C} \\ \text{point} & \text{Engle} \end{vmatrix}$	ity at 20°C Engler	%	S %	Naph- tha unre- fined	Fuel oil	Gaso- lene re- fined	Lamp oil re- fined	Lubri- cants re- fined	Re- fining losses	Dis- tilling losses	Asphaltum (com-mercial)
Los Angeles City	0.963	107	145	272.5	1.7	0.6	0.0	98.3	0.0	4.5	32.1	12.5	0.6	48.6
La Brea, Salt Lake or Santa Fe			89	574.3	0.9	2.3	0.0	99.1	0.0	13.0	22.3	9.6	0.9	53.3
	0.921	18	52	110.5	0.2	0.9	0.3	99.5	0.3	21.7	24.1	10.3	1.3	42.1
Brea Canyon	0.923	11	40	16.0	Tr.	0.9	0.1	99.9	0.1	23.1	24.5	10.9	1.2	40.2
Puente Hills		-2	18	3.1	Tr.	0.4	0.8	99.2	0.8	32.3	23.1	10.3	1.2	32.3
Whittier	0.939	46	84	34.6	0.0	0.6	0.0	100.0	0.0	17.1	30.1	12.6	0.6	39.6
Coyote Hills	0.905	27	50	10.5	Tr.	1.1	0.0	100.0	0.0	18.2	26.4	10.4	1.0	44.0
Newhall	0.925	60	83	118.2	0.2	0.4	0.1	99.7	0.1	23.0	27.7	10.8	0.8	37.3
Piru	0.914	23	47	47.0	0.2	0.7	0.4	99.4	0.4	21.7	28.1	11.1	0.6	37.9
Bardsdale			30	22.5	4.2	1.9	1.8	94.0	1.8	16.7	25.7	9.8	0.7	41.1
Sespe	0.895	18	40	10.8	0.4	0.3	1.1	98.5	1.1	22.0	27.5	10.8	1.2	37.0
Santa Paula	1	1	18	5.8	0.5	0.5	1.2	98.3	1.2	25.4	27.2	10.9	0.7	34.1
Adams Canyon	0.920	38	55	11.3	Tr.	0.6	0.0	100.0	0.0	17.7	30.6	11.8	0.7	39.3
Wheeler Canyon	0.888	-12	2	2.3	0	0.5	1.3	98.7	1.3	28.6	25.4	9.9	1.0	33 .8
Summerland			130	222.1	1.2	0.4	0.0	98.8		1.2	39.8	14.7	0.5	42.6
Santa Maria	0.905	-2	20	19.0	0.1	1.9	2.0	97.9	2.0	26.1	22.5	9.2	1.5	38.6
Lompoc	0.934	-1	21	62.5	0.7	3.6	0.0	99.3	0.0	17.0	18.4	7.5	1.1	55.3
Arroyo Grande	0.975	109	154	1322.2	0.2	1.1	0.0	99.8	0.0	0.0	29.1	11.2	0.4	59.1
Coalinga			93	80.7	0.4	0.5	0.0	99.6	1	7.6	37.2	14.2	0.5	40.1
Midway	0.932	54	83	91.7	0.6	0.7	0.0	99.4		15.9	33.5	13.2	0.7	36.1
Sunset	0.942	47	79	120.5	0.5	0.8	0.3	99.2	0.3	14.6	30.3	11.8	0.9	41.6

RUMANIAN PETROLEUMS

Source	Sp. gr.	r. point	Wt.	oz Sp.	% pa	ıraffin	El		tary wt.	analy	rsis	Specific heat cal	Vis- cosity centi-	Hübl- Waller iodine	ity as	Treat-
	15/15 °C	limits °C	dist.	gr.	Dist.	Crude	C	Н	0	N	S	g-1	poises	No.	SO ₃	loss*
Moinesti	0.869	80-150 150-300 >300		0.730 0.814		5.04	85.8	13.1	0.35	0.28	0.44		13	7.7	0.04	48.0
Bustinari	0.842	75–150 150–300 >300	26.6	0.737 0.821	0.77	0.25	86.0	13.3	0.29	0.31	0.15	0.463	5.8	3.7	0.17	30.0
Campina, rich in paraffin.	0.855	100	12.6	0.738 0.815	7.30	3.18	85.1	13.7	0.81	0.24	0.15	0.468	8.4	5.3	0.07	34.0
Campina, poor in paraffin	0.869		12.7	0.739 0.825		0.76	86.3	12.5	0.77	0.27	0.2	0.467	13.1	6.5	0.18	48.0
Filipesti	0.853	91-150 150-300 >300	17.2	0.725 0.809		4.97	86.6	13.0		0.29	0.17		5.6	27	0.007	29.0
Policiori	0.829		9.9	0.750 0.813		4.6	85.8	12.2	1.55	0.27	0.15	0.472	4.4	1.7	0.007	18.5
Moreni	0.888		14.8	$0.746 \\ 0.844$		0.29	86.4	10.2	2.79	0.30	0.24		22	5.9	0.34	47.5
Baicoi	0.881			0.743 0.841		0.16	85.7	12.9	0.85	0.30	0.2		11	8.8	0.25	72.0

^{*} Loss on shaking 4 parts 66° H₂SO₄ and 1 part oil for 15 minutes at 25°C (188).

VARIOUS CRUDE PETROLEUMS

	. 15	Flash	Visco	sity	Amoun	te, vol. %	Resi- due	
Source	d 15	°C	Eng- gler°	ℓ° C	to 130°C	130- 270°C	270- 300°C	vol. %
California	0.962	82	4.3	80			32	68
Coalinga	0.958	111	3.1	80			31	69
Argentina	0.940	124	13.6	80			24	76
Peru	0.865	< 15			21	29	9	41
Pennsylvania	0.805	<15			12	50	13	25
Mexico	0.934	24	11	15	7	38	31	24
Texas	0.944	120	34	20		16.8	12.2	71
Sumatra	0.792	<0	i i			50.5	4	11.5
Rumania	0.854	<15			20	35	7	38
Wietze	0.942	105	15	50		11.9	8.8	79.3
			4.7	80			1	
Alsace (upper								
layer)	0.880	<15			5	22	7	66
Russia	0.873	38			1	40	13	47
Galicia	0.862	< 15			20	45	11	24
			Sec		to 175°	175-300°	300-360°	
Argentina (119).	0.96	41	350.6	50	3.4	12	17	62.7

Hydrocarbon Oils (154)

		%	com	tion	Open cup		
Designation	$d_{15}^{15} = d_{18}^{18}$	C	Н	s	O and N	Flash °C	Fire °C
Fuel oil	0.921	85.3	11.9	0.6	2.2	133	164
Crude	. 923			0.5		125	155
Light fuel	.900*	88.6	10.8	0.4	0.2	187	220
Admiralty fuel	.928	86.4	11.6	0.3	1.7	138	163
Residuum	.943*	86.4	11.2	0.3	2.0	166	197
Black oil	.928	86.4	11.8	0.5	1.2	144	172
Refined oil	.904*	85.1	12.2	0.4	2.4	122	135
Rumanian crude	.825			0.2		Ro	om
Rumanian crude	.830	83.8	13.0	0.3	3.0	Ro	om
Texas solar	.862*	85.4	12.9	0.2	1.6	92	97
(.855*	86.2	12.4	0.3	1.2	129	158
Scottish shale oil	. 862	85.4	12.4	0.3	1.7	130	150
	. 867			0.3		130	148
Gas oil	1.067	87.6	6.0	0.7	5.7	90	109
Gas oil	1.004	83.7	7.3	0.8	8.2	77	86

Hydrocarbon Oils (29)

Source	d15	B. P. Range °C	Index of ref.	Rieke and Halphen sol. index	Crit. diss. temp. in alc., °C	Turbidity temp. in acetic anhy- dride, °C
Naphtha fractions	<u> </u>	1	Ι			
American	0.780	— to 191	1.4345	93	50	78.5
American	0.800	191 -227	1.4453	117	68.5	91
American	0.820	227 -266	1.4563	154	87	104.5
Russian	0.780	— to 158.5	1.4309	75	36	66
Russian	0.800	158.5-182	1.4419	85	47.5	72
Russian	0.820	182 -219.5	1.4533	92	60	79.5
Rumanian	0.780	— to 153	1.4334	73	Clear	53
Rumanian	0.800	153 -179	1.4458	79.5	30	57
Rumanian	0.820	179 -207.5	1.4572	90.5	42	63.5
Galician	0.780	— to 166	1.4356	74	31	60
Galician	0.800	166 -202	1.4466	94	53	75.5
Galician	0.820	202 -242	1.4586	125.5	72.5	89.5
Shale	0.780	— to 167.5	1.4373	74	31	54.5
Shale	0.800	167.5-198	1.4469	92.5	42.5	63
Shale	0.820	198 -227.5	1.4568	109	54	71
		Luchaire				Solidi-
		flash				fication
Russian spindle	0.894	198	1.4888		150	<-15
American cylinder.	0.891	255	1.4950		194	0

Typical Lubricating Oils

Average values representative of one large manufacturer.

Other companies may produce products whose tests vary widely from those listed below

Specific	1	reland . C.		bolt osity	Pour	N. P. A.
gravity 60/60°F	Flash	Fire		ī	point	color
00/00°F	°F	°F	70°F	100°F	°F	
		Ver	TRAL O	ıt a		
0.843	275	325	45	LLS	25	1
0.849	285	330	50		25	1
0.854	325	375	70		25	i
0.859	330	385	65	70	25	11
0.862	350	405	87	85	25	11
0.864	375	425	105	100	25	2
0.867	380	435	120	110	25 25	3
0.870	395	450	130	120	25 25	3
0.872	400	455	150	140	25	4-5
0.875	410	475	185	165	25 25	5
0.878	420	485	200	180	25 25	6
0.0.0	120	WESTER	•	TRALS"		, 0
0.883	370	430	N NEU	140	30	3
0.889	375	435.		170	25	3
0.892	385	440		200	25 25	3
0.892	390	450		230	25 25	4
0.897	395	455		250		4
0.897	400	460	1	280	25 25	5
0.800	1 400	•	0		20	1 5
0.050	l 0 0#		FFIN OI			٠
0.870	325	380	70	65	30	21
0.875	330	385	80	70	30	21
0.878	345	400	85	80	30	21
0.881	350	405	90	85	30	21+
0.886	355	410	105	100	35	21+
0.892	375	430	180	155	35	3
0.897	395	450	205	180	35	3
0.900	400	460	250	210	40	4
0.903	410	480	310	250	40	5
0.909	415	485	350	280	40	6
0.912	420	490	370	290	40	6+
	Naph	THENE E	BASE. G	ULF COA	ST [*]	
0.924	295	335	100		0	21/2
0.927	320	365	200		0	3+
0 .9 3 0	340	400	300		0	3+
0.933	350	410	360		0	3+
0.933	360	415	500		0	3 1 +
0.937	385	440	750	60	0	3½+
		Саз	LIFORNIA	*		
0.921	295	345	100 .		0	3
0.927	310	350	150		0	3
0.933	330	365	205		0	31
0.940	350	390	400		0	4
0.943	365	415	450		0	41
0.946	380	430	8 50		0	6
CYLINDER	STOCK	PENNSYL	VANIA,	BRIGHT,	Cord-	SETTLED*
0.892	535	600		140	45	FF
0.897	540	605		152	40	FFF
0.900	545	610		168	40	FFF

* Viscosities at 100° and 210°F.

GAS OILS AND DERIVED TARS AND THEIR DISTILLATES (175) All data for 20°C unless indicated otherwise. Charge for distillations 400 cc

Gas oil No. 1	Gas oil No. 2	Gas oil No. 3	Gas oil No. 4
0.872	0.858	0.872	0.890
28.60	28.40	28 . 54	28.91
2.3		2.1	6.8
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c c c c c c c c c c c c c c c c c c c $
0.9 0.790 22.40 1.416	1.3 0.788 22.22 1.419	1.1 0.759 21.59 1.412	0.8 0.775 23.38 1.426
1.5 0.800 24.30 1.434	1.10.79824.291.442		
1.10.809 25.57 1.441	2.0 0.814 25.97 1.448	1 1 1	
4.2 0.818 26.28 1.454			
5.4 0.836 27.60 1.464	1 1 1		
1 1 1 1			
25.4 0.837 27.16 1.463	24.2 0.828 26.90 1.458	24.6 0.830 25.77 1.462	31.40.83326.601.458
Tar oil No. 1	Tar oil* No. 2	Tar oil* No. 3	Tar oil No. 4
I .	1.090	1,122	1.086
i e	34.83	36.55	37.6
4.04	11.86	10.9	5.60
1 77 7 1 1 1	177 1 1 1		
$ \begin{vmatrix} \operatorname{Vol.} \\ c_{\%} \end{vmatrix} d_{15.5}^{15.5} \begin{vmatrix} \gamma \\ n_{D}^{20} \end{vmatrix} $	$\left \begin{array}{c c} \operatorname{Vol.} & d_{15.5}^{15.5} & \gamma & n_{\mathrm{D}}^{20} \end{array}\right $	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
$\left \begin{array}{c c} \% & d_{16.5} & \gamma & n_{D} \end{array}\right $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\left \begin{array}{c c} % & d_{18.5} & \gamma & n_{\mathrm{D}} \\ \hline & 1.2 & & \end{array}\right $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{ \left \begin{array}{c c} \% & a_{15.5}^{15.5} & \gamma & n_{D}^{2} \\ \hline 1.9 0.870 27.49 1.491 \end{array} \right }{ \left \begin{array}{c c} 1.9 0.870 27.49 1.491 \\ \hline \end{array} \right }$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\begin{array}{c c c} 0.872\\ 28.60\\ 2.3\\ \hline \\ Vol.\\ \gamma_0 & d_{14.4}^{18.4} & \gamma & n_p^{20}\\ \hline 0.9 0.790 22.40 1.416\\ 1.5 0.800 24.30 1.434\\ 1.1 0.809 25.57 1.441\\ 4.2 0.818 26.28 1.454\\ 5.4 0.836 27.60 1.464\\ 12.2 0.849 28.12 1.472\\ 25.4 0.837 27.16 1.463\\ \hline \\ Tar oil No. 1\\ 1.071\\ 33.83\\ 4.04\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*} Much difficulty was experienced in distilling tar oils Nos. 2 and 3, owing to the presence of water.

Typical Lubricating Oils.—(Continued)

Specific gravity	Cleve O.			bolt osity	Pour	N. P. A.			
60/60°F	Flash °F	Fire °F	100°F	eosity Pour point of F	color				
MID-CONTINENT, BRIGHT, COLD-SETTLED									

0.961	5	0	570	1	1	145		45	Lt.	D.
	•						-			

	I EXAS,	BRIGHT	(NAPHTHENE	BASE)	
0.921	535	600	150	30	6

FILTERED CYLINDER STOCK (STEAM-REFINED)

0.881	450	525	90	75	
0.886	505	570	100	90 .	D
0.889	520	590	135	80	D
0.892	540	625	140	75	\mathbf{E}
0.897	550	640	150	60	Е

Unfiltered Cylinder Stock (Steam-Refined).

* = Mid-Continent

0.897	550	615	1 1	140	35	ĺ
0.900	555	620		150	35	ı
0.903	560	625		160	40	
0.906	575	645		185	40	1
0.909	590	660		200	35	
0.912	600	690		240	40	1
0.915	625	710		575	50	1
0.921	645	730	1	290	50	
*0.915	510	570		140	50	1
*0.915	535	600		175	50	ı
*0.927	525	605		180	40	ı

Continued on p. 158

Fig. 12.—Variation of surface tension of petroleum distillates with density.

For comparison of the physical properties of petroleum distillates from different crudes see Fig. 3 (p. 149).

Typical Lubricating Oils.—(Continued)

Specific	Cleveland O. C.		Saybolt viscosity		Pour point	N. P. A.
gravity 60/60°F	Flash °F	Fire °F	100°F	210°F	°F	color
		Ві	ACK OIL	8		
0.881	320	370		35	20	1
0.886	350	400		50	10	
0.895	375	425	l	60	15	
0.897	400	450	1	80	35	1
0.915	420	470		100	30	1

Various Lubricating Oils (105)

Bk = Black; Bl = Blue; Br = Brown; G = Green; O = Orange; R = Red; t = Translucent; W = White; Y = Yellow

Designation	Source	d15	Solid- ifica- tion	Flash point °C Pensky		osity ;ler °	Color
			point °C	Martens closed cup	25°C	50°C	
Light	1					1	
LUBRICATING		ŀ					
Vaseline oil			< - 30	150	4.5	i	w
Medium spindle		0.890		155	5.3	1	Y
Heavy spindle			<-20	180	9.0		Y
Thin spindle	Penn.	0.865		155	3.0		Y
Average spindle	Penn.	0.875	- 1	185	5.0	l	Y
MEDIUM		1				i	
LUBRICATING Machine	Penn.	0.890	0	195	8.0	3.2	R-Y
Machine		0.917	i .	205	16.0	4.6	G-R-t
Machine	Lima	0.921	- 2	205	16.5		G-R
Machine		0.920	_	170	17.0	4.9	G-R
Machine	Russia	,	<-15	195	14.0	4.2	0
Machine	Texas		<-15	175	14.5	4.4	G-R-t
Arctic	Penn.	0.878	ı	200	7.6	1	G-R-t
Arctic	l	0.907		180	7.3		G-R-t
Turbine	Penn.	0.878	- 5	210	16.2	ĺ	G-R-t
HEAVY					*	ľ	
LUBRICATING							
Machine	Russia	0.910	<-15	195	27.0	6.3	O-R
Machine	Russia	1	< - 15	200	36.0	8.0	Br–R
Machine	Germany		<-15	185	24.8		0
Machine		0.940		190	27.0	6.3	Bl-t
Machine	Texas	0.932	- 5	185	26.0	6.1	Br-R
Machine	Texas	0.936		185		7.0 8.7	G-t
Machine	Texas	0.946		195		8.1	G-t
	Germany	0.932		180	35.4 26.5		G-t
	Texas Texas	0.940 0.946		180 200	20.5	13.6	G-t G-t
	Texas	0.950		205		14.3	G-t
DARK	I CAMB	0.830	Pour	200			G-1
LUBRICATING			point			Ì	
Winter	Russia	0.910	< - 20	160	37.0	8.0	Bk-G
Summer	Russia	0.914	-12	155	50.9	11.0	Bk-G
Winter	Germany	0.927	<-20	155	16.5	5.0	Bk-Br
Summer	Germany			185	440	9.6	
BRIGHT STEAM							
CYLINDER		1			50°C	100°C	
Cylinder	Penn.	0.884	34	260	15.0	2.9	G-R
Cylinder	Penn.	0.886	30	275	23.0	3.5	G-R
Cylinder	Penn.	0.890	10	290	26.0	4.0	G-R
Cylinder		0.913		220	12.0	2.3	Bl-R
Cylinder	Russia	0.915		235	15.0	2.9	BI-R
Cylinder	Texas	0.955	- 5	215		2.7	G-R
DARK STEAM							
Cylinder	Penn.	0.895	5	280	29.0	4.0	G-Bk
Cylinder	Penn. Penn.	0.895	3	280 295	29.0 40.0	4.0 5.0	G-Bk
Cylinder	renn.	0.803	ا	240	10.0	3.0	G-DK
steam oil	Penn.	0.905	o	325	60.0	7.0	G-Bk
Cylinder		0.928	0	280	30.0	4.1	G-Bk
Cylinder	Russia	0.928	ŏ	255	50.0	6.0	G-Bk
Cylinder		0.950	7	270	27.0	3.8	G-Bk
Cylinder		0.954	-11	230	2	3.2	

LUBRICATING OIL FROM BLENDS OF STOCKS FROM CUSHING AND BIXBY CRUDES (62)

C	Cleveland open cup		Viscosity 100°F	Cold test	Color	$n_{\rm D}^{20}-1$
Sp. gr.	Flash °F	Fire °F	seconds Saybolt universal	°F	N. P. A.	Sp. gr.
0.889	390	450	102	25	3	0.554
.889	395	440	100	23	3	. 555
.887	350	405	95	24	2.5	. 554
.896	400	430	184	26	3	. 555
. 895	405	445	172	26	4.5-	. 555
. 897	410	465	185	26	4	. 556
.897	400	445	189	26	4.5+	. 5 56
.897	395	445	180	24	4.5-	. 556
.899	410	465	185	24	4.5-	. 556
.899	400	445	198	26	5+	. 557
.900	390	440	178	32	6-	. 555
.900	400	460	196	25	6 —	. 555
.897	410	450	227	26	3	. 556
.902	405	465	246	28	4 —	. 555
.902			237	28	5+	. 557
.903	415	470	227	28	6+	. 557
.903	420	460	236	26	5+	. 556
.901	410	460	226	28	Q	. 557
.904	405	465	239	30	Q	. 558
. 904	410	460	250	34	6-	. 558

Lubricating Oils for Internal Combustion Engines.—Oils designated by manufacturers' trade names. Sp. gr., flash and fire point, solidification temperature, viscosity at three temperatures, color. % distillation under 300°C, oxidation oven test (164.1).

Steam Turbine Oils (188)

Visco Engl	- 1	71.5	Iodine No.	. 90	Resinification	n index
20°C	50°C	d_4^{16}	Hübl-	n_{D}^{20}	150°C	120°C
20 0	30 0		Waller		Tar Coke	Tar

OILS OF GOOD QUALITY

8.80	2.60	0.875	14.2	1.4828	0.44	0.50	0.13
9.08	2.66	.876	12.8	1.4826	.37	. 17	.12
9.1	2.61	.876	11.7	1.4814			.11
9.78	2.66	.904	5.8	1.5020	. 68	. 63	. 24
10.8	2.81	.883	0.4	1.4795	2.10	0	1.05
13.8	3.32	.900	7.1	1.4965	.74	. 82	0.37
19.3	4.08	. 908	8.5	1.5034	.84	1.02	.39
22 .5	4.32	.904	4.3	1.4940	. 64	0.92	.39
31.7	6.4	.874	10.4	1.4826	.46	. 57	. 29

Oils of Poor Quality

		_					
20.9	4.73	0.873	10.4	1.4822	0.65	0.92	0.23
25.4	4.57	.905		1.4965			
28.7	5.13	.907	4.6	1.4948	. 63	.79	.38
30 .0	5.28	. 905	6.1	1.4949	. 82	1.10	.62
13.1	3.20	. 904			i		.30

A	"Goop	Ω	,,
A	··· Croop	UHL.	

9-14	0.870-0.905		0.2

Petroleum Oils for Diesel Motors (31)

-15	Galicia	Germany	Rumania	Russia	N. America	Mexico	So. America	India	Japan
d ₁₆	0.86-0.89	0.725-0.94	0.89-0.95	0.876-0.95	0.865-0.95	0.86-0.97	0.85-0.99	0.89-0.95	0.92-0.96
Flash °C (Pensky Martens)	53-155	< -15 to 175	87-162	53-138	82-166	32-132	-10 to 144	92-150	131-164
Fire °C	77–170	< - 15 to 203	106-194	78–180	103-200	58-162	-6 to 199	120-174	176-211
Residue dist. above 400°C, vol. %	0.0-3.9	0.2-15.0	1.0-23.0	1.5-11.5	2.2-16.5	0.3-23.0	4.0-21.0	0.0-4.9	2.5-15.0
Water %	0.0-0.8	0.0-9.8	0.0-0.8	0.0-0.0	0.0-3.3	0.0-9.56	Tr8.94	0.0-0.12	0.0-0.15
Ash %		0.0-0.6	0.0-0.2	0.0-0.16	0.0-0.4	0.0-0.64	0.01-0.17	0.0-0.03	0.0-0.19
Combustible %	>98.8	>90	99	99.8	>96	>89.8	>90.9	99.8	99.8
C %	85.6-86.9	85.1-86.8	86.5-87.4	86.1-87.5	84.2-86.9	83.0-85.1	85.5-87.0	86.5-87.7	87.0-88.0
Н %	12.0-13.1	11.6-11.4	11.3-12.1	11.3-12.9	11.3-13.1	12.8-13.0	10.8-12.8	11.1-12.5	11.0-11.7
(O + N) %	0.1-1.2	0.0-1.2	0.6-1.5	0.5-0.9	0.2-2.0	0.5-1.7	0.9-1.8	0.2-1.0	0.2-1.0
8 %	0.1-0.8	0.1-1.2	0.2-0.6	0.2-0.4	0.1-2.5	1.6-4.3	0.2-1.3	0.2-1.2	0.2-1.0
H per 1000 C	137-151	113-169	127-140	128-150	129-151	130-150	123-148	125-143	124-134
Coke %	0.21-1.0	0.5-5.6	1.11-3.8	0.9-3	1.9-6.4	0.14-10.9	1.9 -6.7	0.0-4.7	0.8 -5.4
Asphalt %	0.0 -0.01	0.0-8.5	0.0 -1.9	0.0-0.8	0.0-8	0.0 -19.15	0.17-14.9	0.38-7.90	0.09-1.46
Heat of combustion kg-cal/kg									
Net { Crude	9.95-10.9	8.93-10.4	9.78-9.99	9.80-10.2	9.29-10.1	8.49-10.1	9.0 -10.1	9.81-10.0	9.74-9.97
Net \ Water-free oil	10.0 -10.2	9.87-10.4	9.78-9.99	9.81-10.2	9.6 -10.1	9.37-10.1	9.72-10.1	9.81-10.0	9.74-9.97
Gross	10.7 -10.9	10.5 -11.1	10.4 -10.6	10.4 -10.86	10.3 -10.8	10.1 -10.8	10.3 -10.8	10.4 -10.7	10.3 -10.6
Engler viscosity									
20°C	1.65- 2.96	5.24-136	18.1 -114	3-149	5.3- 11	1.62-317		10.4-14.8	12-302
35°C								4.1-5.5	5.0-64
50°C	1.23- 1.56	2.04-17.7	3.56-13	1.6 -15	2.06-2.58		43-205	3.0- 2.45	2.7-27
75°C							20-42		
100°C	1.02- 1.13	1.26- 2.43		1.14- 2.40	1.23-1.38	1.03- 4.47	6.3 -13	1.22-1.37	1.3-2.5

Tar Oils for Diesel Motors (32)

						Oven	retorts	Vertical o	ven retort	GI :
	Source of tar	Coke oven	Water gas	Oil gas	Coal tar oil	Horisontal	Inclined	Dessau	Woodall- Duckham	Chamber oven
d15	••••••	1.14-1.18	0.97-1.13	1.05-1.07	1.0-1.11	1.15-1.23	1.12-1.16	1.06-1.12	1.08-1.10	1.06-1.09
Flash	point °C (Pensky Martens)	90-135	34-91	18-69	66-121	67-92	52-78	49-75	41-52	35-71
Fire p	oint °C	108-166	50-ca. 155	20-89	84-160	93-129	79–107	70-102	71-90	70-93
Explos	sion °C	ca. 600		ca. 560	ca. 550	520-630	490-520	510-530	500-510	480-510
(Jec.)	(ł					
£	Light oil, 0-170°	0.0	1-12	2.5-23	0-12	1.0-6.6	1.5-6.7	1-9	3-8	2.5-10
ೆರೆ	Medium oil, 170–230°	1-17	6-23	11-16	0-59	10-14	14.7-18	16-24	13-17	21-24
# # 3	Heavy oil, 230-270°	6–14	11-24	11–19	1-36	8.5-13	4.9-14	8.8-18	11–13	9-12
Distillate (ash HrO 1	Anthracene oil, 270-350°	19–27	1951	18–31	9-66	9.9-22	12.9-21	19-24.5	19–21	17-24
	(residue) %	50-65	18-51	31–37	1-34	52-66	47.6-55	31-47	44-51	39-41
	n pitch %	16-34	25-39	33		32-47	32-40	16-27	20-25	21-22
С %		89.6-92.2	89.3-93.0	91.4-92.2	87.4-91.4	90.4-93	89.3-90.4	87.6-89.9	87.9-88.8	87.1-89.3
Н %		5.1 -5.7	5.5-9.2	6.3-7.2	6.0-7.8	4.7-5.5	5.9-6.4	6.0-7.3	6.6-7.2	6.7-7.1
0 + N	%	2.2-4.0	0.4-1.7	0.5-1.1	1.4-4.9	1.7-3.2	3.2-3.9	2.6-4.9	4.1-4.7	3.6-5.2
8 %		0.4-1.2	0.6-1.0	0.4-0.9	0.4-0.9	0.5-1.0	0.4-0.7	0.4-0.6	0.5-0.9	0.3-0.6
H per	1000 C	52-59	58-101	66–77	62-83	1.8-57	60–66	61-77	68-75	69-74
Com	p. (Water %	0.6 -6.7	0.0-36	0.3-10	0.0-1.8	0.0-8.7	1-7.3	0.8-3.6	1.1-2.8	1.3-5.8
of		0.04-0.36	0.0-0.67	0.0-0.2	0.0-0.04	0.0-0.06	0.01-0.07	0.00-0.09	0.00-0.03	0.0
Tax		93-99	63.1-100	89-99	98-100	91-100	92-98	96-99	97-99	94-98
	f Combustion kg-cal/kg				l					
2 {	Experimental	8.27-8.85	ca. 5.65- 9.57	8.18-9.31	8.84-9.12	8.06-8.74	8.15-8.71	8.62-8.82	8.59-8.76	8.28-8.76
2	Water-free oil (calc.)	8.77-8.92	8.99-9.59	9.09-9.34	8.86-9.14	8.75-8.83	8.77-8.86	8.83-9.08	8.84-8.90	8.79-8.90
Gross.		9.09-9.22	9.39-10.1	9.53-9.73	9.25-9.51	9.01-9.16	9.10-9.21	9.17-9.48	9,22-9,30	9.20-9.27
Coke.		7.6 -17	3.1 -11	7.5 -11	0.4 -3.6	15-33	15-22	4-11	7–10	7.1-7.3
Free C	arbon	2.2 -10	0.0 -4	0.0 -4	0.0 -0.2	9-28	10–19	1-6	3-6	2.3 -3.0
Napht	halene	0.5 -10	0.3 -10	0.0 -3	0.8 -10.5	4-6	1-3	0.2 -2.5	0.1 -1.0	0.6 - 2.1
[20°C		1.8 -4.4		1.4 -2	43-150	23-115	2.5 -52	32-40	8-13
F 🕏	35°C	15-103			ł	9-91	7-35	4–12	7–10	3-5
[2 6 1	50°C	4.9-38				4-25	3-8.6	1.5-4	2.7-3.4	2.0-2.5
Engler Viscosity	75°C	2.5-4.8								
	100°C	1.4-1.7	1-1.2	l	0.95-1.07	1.5-2.4	1.5-2.2	1.0-1.4	1.2-1.4	1.18-1.22

Diesel Motor Oils (223)	Dies	el M	otor ()ils	(223)
-------------------------	------	------	--------	------	-------

	Type of oil	d_{15}^{15}	Engler η, 80°	Flash °C	Fire °C	%Н	%C
2	Crude lignite oil	0.9	1.02	1		12.4	85.6
Fnit	Paraffin oil	.916	1.09	98	112	11.5	85.9
3	Soft paraffin	.894	1.01	123	142	11.8	85.7
Petr	oleum gas oil	.855	1.13	74	107	13.6	83.7
Run	enian crude oil	.858	1.12	10	10	12.3	83.1

Diesel	Motor	Oils	(223)	(Continued)
Dieser	MULUI	OIID	1/	((() () () () () ()

Type of oil	d_{15}^{15}	Engler η, 80°	Flash °C	Fire °C	%Н	%C
Rumanian gas oil	0.853	1.08	66	101	12.2	85.0
Solar oil	.849	1.03	81	106	13.3	85.7
Tegernsee crude	.868	1.01	56	81	11.1	86.9
Texas gas oil	.892	0.98	114	128	12.2	86.4
Refined petroleum	.879	1.03	57	72	14.2	85.1

Gasworks and Coke Oven Tar Distillates and "Diesel Engine Tar
Oils" (150)

		•	•			
	Coal	tar disti	illates	Pet	roleum	oils
Property	Aver-	Maxi-	Mini-	Aver-	Maxi-	Mini-
	age	mum	mum	age	mum	mum
Sp. gr	1.02	1.09	0.95	0.91	0.96	0.86
Water %	1.1	12	0	0.91	9.5	0
Carbon %	89.2	90.0	87.1	85.4	88.3	83.4
Hydrogen %	7.3	8.0	6.5	11.5	12.5	10.9
0 + N %	3.9	4.8	3.0	1.3	2.2	0.07
Sulphur %	0.64	1.0	0.3	1.3	2.8	0.04
Ash %		0.10	0	0.05	0.39	0
Closed flash point °F.		208	97	187	280	<60
Viscosity Redwood	:					
70°F	9	23	7	780	4800	9
Gross BTU $\times 10^{-3}$	17.4	17.9	16.4	19.0	19.7	17.6
Net BTU \times 10 ⁻³	16.6	17.2	15.9	17.8	18.5	16.5
Engler distillation %						
at 250°C	58	76	28	5	13	1
Engler distillation %]					
at 300°C	80	94	51	19	24	13
Retort test % at				1		
350°C		į		28.5	30	14
Coke yield %	3	15	1	3	12	0.2
Free carbon %	0.26	5.2	0			
Tar acids %	9.5	30	Tr.			
Asphaltum %				12.0	37	1.5
Spontaneous ignition					İ	1
° ℃	480	520	415	264	264	254

TERMINOLOGY AND SPECIFICATIONS FOR PETROLEUM PRODUCTS OF COMMERCE

The characteristics that should be possessed by a "good" petroleum product for use under a given set of conditions may be inferred from the specifications established by law, custom, or fiat for such products. Specifications of this character for different countries can be found in the following publications:

United States.—Bur. Mines, Tech. Paper 323A. See further Bur. Stands., Misc. Pub. 65: 1925; "National directory of commodity specifications."

Canada.—Canadian Engineering Standards Association, "Interim report on the manufacture, testing and use of gasoline for automotive purposes (with notes on lubrication)."

Belgium, France, Holland, Italy, Japan, Poland, Rumania, Spain, and Czechoslovakia.—International Union of Pure and Applied Chemistry. Reports from the Copenhagen Meeting, 1924.

Czechoslovakia.—Idem. Reports from the Bucharest meeting, 1925. (These reports may be obtained from the Secretary of the Union, 49 Rue des Mathurins, Paris, at 10 fr. per copy.)

France.—Commission Permanente de Standardisation, "Standard Terminology of Petroleum Oils and Their Derivatives; bituminous substances, asphalts and tarry materials."

Italy.—Rass. min. met. chim., 63: 18; 25.

Germany.—Verein Deutscher Eisenhüttenleute Gemeinschaftsstelle Schmiermittel "Guides for the Purchase and Testing of Lubricants," Düsseldorf, 1921.

Austria.—Österr. Chem. Ztg. 28: 68; 25.

England.—British Engineering Standards Association, 28 Victoria St., London. No. 209; 1924 "Standard specifications for fuels for heavy-oil engines (petroleum and shale oils)." No. 210; 1924 "Standard classification of pure mineral lubricating oils." No. 135; 1921 "Standard specification for benzol for motor fuel (commonly known as benzole)." Institution of Petroleum Technologists, "Standard methods of testing petroleum and its products."

LITERATURE

(For a key to the periodicals see end of volume)

- Adams, Williamson and Johnston, 1, 41: 27; 19. (2) Aisinmann, 112, 294: 65; 94. (3) Akunjanz, 373, 21: 308; 97. (4) Allen, 173, 6: 177; 81. (5) Allen, 30, No. 37; 13. (6) Allen et al., 30, No. 74; 14. (7) Allen and Jacobs, 29, No. 19; 12. (8) Anderson, 45, 12: 1011; 20.
- (10) Anon., 365, No. 184; 24. (11) Anon., 255, June 1921. (18) Archbutt and Deeley, Lubrication and Lubricants, London, 1912, p. 341 (Griffin and Co.). (15.1) Arnold, 156, No. 309: 203; 07. (18) Barrier, 45, 2: 16; 10. (17) Barus, 12, 39: 494; 90. (18) Bearce and Peffer, 52, No. 77; 16. (19) Beilby, 4, 43: 388; 83.
- (20) Bhatnagar and Garner, 54, 39: 185; 20. (21) Blount, 368, 3: 301; 09. (22) Brame, Fuels—Solid, Liquid and Gaseous. Longmans Green, 1925. (23) Bridgman, 65, 48: 357; 12. (24) Brooks and Humphreys, 1, 40: 847; 18. (25) Burrell, Siebert and Oberfell, 29, No. 88; 15. (26) Bushong, 371, 9: 303; 08. (27) Bushong, 45, 6: 888; 14. (28) Charitschkoff, 369, 1: 352; 98. (29) Chercheffsky, 34, 150: 1338; 10.
- (30) Constam and Schläpfer, 98, 87: 1491; 13. (31) Constam and Schläpfer, 98, 87: 1576; 13. (31·1) Constam and Schläpfer, 98, 87: 1621; 13. (22) Constam and Schläpfer, 98, 87: 1661; 13. (33) Cooke, 313, No. 2368; 22. (24) Coste and Andrews, Examination and Thermal Values of Liquid Fuels, 1914, p. 218 (Griffin and Co.). (35) Cox, 45, 15: 592; 23. (36) Cragoe, O. (37) Daeschner, 54, 21; 168; 02. (38) Damien, 34, 112: 785; 91. (39) Day, Handbook of the Petroleum Industry, 1922.
- (40) Dean and Hill, 313, No. 181; 17. (41) Delbridge, 360, 14: 41; 22. (42) Denig, 33, 25: 751; 21. (42) Dewar, 5, 70: 237; 02. (44) Dixon, 376, 45: 211; 21. (45) Dow, 313, No. 2279; 21. (46) Dreyfus, 261, 3: 394; 08. (47) Dunstan, 364, 11: 63; 24. (48) Dvorkovits, 363, 13: 7, 24; 05. (49) Engler, 317, 3: 44; 85.
- (50) Engler, 372, 66: 637; 87. (51) Engler, 161, 11: 643; 92. (52) Engler, 136, 30: 711; 06. (53) Engler, 92, 21: 1592; 08. (53.1) Engler-Höfer, Das Erdöl, 1909-25 (Hirzel, Leipsig). (54) Engler-Höfer, in Bell, American Petroleum Refining, p. 39, 1923. (55) Engler and Otten, 112, 268: 375; 88. (56) Engler and Steinkopf, 359, 10: 181; 14. (57) Engler and Steinkopf, 26, 47: 3358; 14. (58) Ernst, 76, 111: 922; 02. (59) Euken, 8, 34: 185; 11.
- (60) Faragher, Gruse and Garner, 45, 13: 1044; 21.
 (61) Francis, 33, 23: 291; 20.
 (62) Francis and Bennett, 359, 8: 134; 21.
 (63) Francis and Bennett, 45, 14: 627; 22.
 (64) Frankenheim, 8, 72: 177; 47.
 (65) Freund and Palik, 361, 15: 757; 20.
 (66) Gane and Zilisteanu, 377, 7: 6; 25.
 (67) Garner, 358, 7: 98; 21.
 (68) Goldsmith and Kanthack, Refractive Indices, 1921 (Hilger, London).
 (69) Gooday, Petrol and Petroleum Spirits, 1919 (Arnold).
- (70) Gordon, 54, 42: 405; 23. (71) Graefe, 92, 18: 1584; 05. (72) Graefe, 561, 2: 521; 07. (73) Graefe, 54, 29: 338; 10. (74) Graefe, 10, 2: 690; 13. (75) Graeta, 8, 25: 337; 85. (76) Griffin, 45, 17: 1157; 25. (77) Grunmach, 8, 3: 660; 00. (78) Grunmach and Schweikert, 7, 113: 432; 24. (78) Gruse, 45, 15: 796; 23.
- (80) Gruse, 359, 12: 20; 23. (81) Gurwitsch, Wissenschaftliche Grundlagen der Erdöl Verarbeitung, Berlin, 1913, p. 85. (82) Guthrie, 364, 9: 731; 23. (83) Harker and Higgins, 354, 8: 19; 11. (84) Harvey, 45, 17: 85; 25. (85) Hersey, 306, 35: 648; 23. (86) Hladky, 362, 16: 207; 22. (87) Höfer, Das Erdöl, 1886.
- (90) Holborn, 8, 6: 242; 01. (91) Holde, 312, 8: 269; 90. (92) Holde, 312, 13: 174; 95. (93) Holde and Eickmann, 361, 2: 1341; 07. (94) Holde, Examination of Hydrocarbon Oils and Saponifiable Fats, 1915. Translated from the 4th edition by Müller. New York, John Wiley and Sons. (95) Hyde, 5, 97: 240; 20. (95.1) Hyde, 5, 97: 257; 20. (95) Inchley, 355, 111: 155; 11. (97) Jakob and Erk, 243, 43: 92; 23. (98) Johansen, 45, 14: 289; 22. Bibliography of Br Nos. (99) Johansen, 45, 16: 132; 24.
- (100) Kawai, 142, 25: 406; 22. (101) Kawai, 54, 41: 535; 22. (102) Kasankin, 252, 13: 139; 06. (103) Kennedy, 31, No. 500; 25. (104) Kewley, 364, 11: 49; 24. (105) Kissling, 136, 47: 101; 23. (106) Kissling, Chemische Technologie des Erdöls, 1915 (Vieweg). (107) Koenigsberger and Disch, 8, 23: 655; 07. (108) Kraemer and Calkin, 30, No. 346; 25. (109) Lachowicz, 13, 230: 188; 83.
- (110) Lees, 62, 191: 399; 98. (111) Lengfeld and O'Neill, 11, 15: 19; 93. (112) LeRoy, 342, 16: 12; 11. (113) Leslie, Motor Fucls, 1923. (114) Leslie and Geniesse, O. (115) Lewes, 556, 65: 757, 773, 792; 15. (116) Lewkowitsch, Chemical Technology and Analysis of Oils, Fats and Waxes, p. 617, 1921 (Macmillan). (117) Linser, 252, 8: 265; 96. (118) Longbein, 92, 13: 1266; 00. (119) Longobardi, 357, 2: 365; 24.
- (120) Lucas, C. R. Cong. Int. Pétrole. Sess., 3: 352; 07. (120.1) Mabery, 4, 72: 450; 97. (121) Mabery, 11, 19: 419; 97. (122) Mabery, 1, 23: 264; 01. (123) Mabery, 65, 36: 255; 01. (124) Mabery, 11, 28: 170; 02. (125) Mabery, 11, 23: 270; 05. (126) Mabery, 11, 23: 285; 05. (127) Mabery, 19. 28: 415; 06. (128) Mabery, 45, 6: 101; 14. (129) Mabery, 1, 41: 1690; 19.
- (130) Mabery, 45, 15: 1233; 23. (131) Mabery and Buck, 1, 22: 555; 00.
 (132) Mabery and Hudson, 11, 19: 482; 97. (133) Mabery and Hudson, 65, 36: 266; 01. (134) Mabery and Kittelberger, 65, 32: 185; 97. (135)

Mabery and Quayle, 65, 41: 89; 05. (136) Mabery and Quayle, 11, 35: 404; 06. (137) Mabery and Smith, 65, 25: 278; 89. (138) Mabery and Takano, 65, 36: 295; 00. (139) Mabery and Wesson, 1, 42: 1014; 20.

(144) Magie, 8, 25: 421; 85. (141) Mahler, 10, 2: 717; 13. (142) Markounikov, 13, 234: 89; 86. (143) Markounikov and Oglobin, 6, 6: 2, 372; 84. (144) M'Arthur, 64, 7: 64; 88. (145) Masmejean and Berehare, Le Pétrole, p. 36. (146) Mautuschek, 367, 4: 209; 01. (147) Melmer, 76, 130: 209; 11. (148) Mendelejeff, in Rakusin, Untersuchung des Erdöls, 1906. (149) de Metz, 8, 41: 663; 90.

(156) Moore, Liquid Fuels, p. 90, 1920. (151) Morpugo, 216, 4: 15; 21. (152)
Ognodzinski and Pitat, 136, 38: 1275; 14. (153) Parsons and Cook, 5, 85: 346; 11. (154) Patterson, 54, 32: 218; 13. (155) Pecsalski, 16, 7: 185; 17. (156) Peltzer, 112, 189: 61; 68. (157) Physikalisch-Technische Reichsanstalt, Beilage zum Beglaubigungsschein für den Abelschen Petroleumprober, 1910. (158) Piotrowski, 7, 93: 596; 18. (159) Predescu, 377, 6: 148: 19.

(166) Predescu, 377, 6: 188; 19. (161) Protz, 8, 31: 141; 10. (162) Quincke, 8, 133: 141; 69. (163) Radcliffe and Polychronis, 54, 35: 340; 16. (164) Rakusin, Die Untersuchung des Erdöls, p. 81, 179; 1906 (Vieweg). (164.1) Rathbun, 359, 9, No. 3: 98; 20. (165) Rathbun, 359, 10, No. 9: 39; 22. (166) Redwood, 54, 8: 162; 89. (167) Redwood, Treatise on Petroleum, 3rd ed. 1: 219; 13 (Lippincott). (168) Redwood, Treatise on Petroleum, p. 297, 1921 (Griffin and Co.). (168) Redwood, Treatise on Petroleum, 1922. p. 286.

(176) Ricardo, Internal Combustion Engine, 2: 30; 23 (Blackie and Son). (171)
 Rhodes and McConnel, 4δ, 15: 1273; 23. (172) Richardson, 143, 162: 57; 06. (173) Richardson and Wallace, δ4, 20: 690; 01. (174) Richardson and Wallace, δ4, 21: 316; 02. (175) Rittman and Egloff, 4δ, 7: 481; 15. (176) Rittman and Egloff, 4δ, 7: 578; 15. (177) Rittman, Jacobs and

Dean, 30, No. 163; 16. (178) Roberts, 374, 1904; 1328. (179) Robson and Withrow, 33, 21: 244; 19.

(180) Röderer, 92, 33: 235: 20. (181) Rossbacher, 45, 7: 578; 15. (182) Sainte-Claire Deville, 34, 68: 442; 68. 68: 349, 485, 686; 69. (183) Sainte-Claire Deville, 34, 72: 192; 71. (184) Sakhanov and Vassiliev, 361, 21: 735; 25. (188) Scheller, 361, 8: 730; 13. (186) Schmitt, 366, 2: 369; 14. (187) Schwarz, 136, 35: 1417; 11. (188) Schwartz and Marcusson, 92. 26: 387-13. (189) Sherman and Kropff, 1, 30: 1628; 08.

(190) Sherman and Snell, 1, 23: 164: 01: (191) Smith and Tuttle, 32, No. 27; 14. (192) Steinkopf, 136, 36: 653; 12. (193) Stevenson and Stark, 45, 17: 679; 25. (194) Stohmann, 7, 6: 334; 90. (195) Strache, 367, 27: 19; 24. (196) Strong and Stone, 29, No. 43; 13. (197) Takano, Oest. Chem. Tech. Zto., 8: 2; 01. (198) Takano, 369, 6: 1050; 11. (199) Tauss, 92, 32: 317; 19.

(200) Tisard and Marshall, 368, 8: 217; 22. (201) Uts, 262, 12: 295; 05. (202) Uts, 54, 25: 1140; 06. (202) Uts, 361, 17: 1292; 21. (204) Vlès and Gex, 350, 17: 7107; 25. (208) Warren and Storrer, 370, 9: 208; 65. (206) Washburn and Bunting, 38, 4: 983; 21. (207) Weber, 242, 23: 209; 78. (208) Weber, 149, 33: 590; 95. (209) Weber, 8, 11: 1047; 03.

(210) Weber and Wynne, 78, 46: 197; 24. (211) Weinstein, 136, 12: 875; 88. (212) Weise, 375, 49: 378; 71. (213) Wells and Southcombe, 54, 39: 51; 20. (214) White, in Allen, Commercial Organic Analysis, 4th ed., 3: 220; 1914. (215) Williamson, 35, 22: 1151; 20. (216) Wilson, 364, 11: 511; 24. (217) Wilson and Bahlke, 45, 16: 115; 24. (218) Wilson and Barnard, 45, 13: 906; 21. (218) Wilson and Barnard, 244, 12: 287; 23.

(220) Wilson and Davis, 45, 15: 947; 23. (221) Wilson and Wilkins, 45, 16: 9; 24. (222) Wilson and Wylde, 45, 15: 801; 23. (222) Wimplinger, 112, 328: 539; 13. (224) Zalosiecki and Klarfeld, 136, 31: 1155; 07. (223) Zeitfuchs, Standard Oil Co. (California), O.

FLASH POINTS OF SATURATED VAPORS OF COMBUSTIBLE LIQUIDS

E. H. LESLIE AND J. C. GENIESSE

1. Pure Substances.—The flash point of the vapor above a liquid is the temperature at which ignition will occur. The observed value is materially dependent upon the type of apparatus used (v. p. 150) for comparison of values with different types of apparatus). The lower limit of the flash point of a pure liquid is approximately the temperature at which its vapor pressure is equal to B/kN where B is the barometric pressure, N is the number of moles of O_2 required for complete combustion of one mole of the liquid, and k is a constant varying with the type of apparatus employed of. (4). The flash point varies with the barometric pressure at the same rate as the boiling point.

In the accompanying table are shown for a number of liquids; (a) the value of N, (b) the observed flash point as recorded in the literature and (c) the flash point as calculated from the above relation, assuming k=8. A better agreement between observed and calculated flash point might perhaps be obtained by using different values of k for different types of apparatus but the recorded flash points vary greatly and a careful and comprehensive investigation is needed.

			Flash poi	nt	
Formula	Name	N	Observed	Calcu- lated, min.	Lit.
CS ₂	Carbon disulfide	3	-25.5 to -20	-27	(4)

HYDROCARBONS C.H. (4, 5) Benzene..... -12 to 10 -13C4H12 Cyclohexane..... -17 -17 C4H14 9.5 **–** 18 Hexane -26 (4, 5) C₂H₄ Toluene 6.5 to 30 6.5 C2H14 11 -1 to 17 - 5 (5) Heptane..... (4) CaH₁₀ Ethylbenzene 10.5 15.5 23 29 to 50 CiHia Xylene..... 10.5 25 (5) C.H. Octane..... 12.5 17 15 (4) (4) C.H12 n-Propylbenzene. ... 12 30.5 40.5 C₁₀H₈ Naphthalene 86 (4, 5) 78 (3) C10H12 Tetralin C10H14 sec.-Butylbenzene... 52 (4) C₁₀H₁₅ Dekalin......

	Name		Flash poi		
Formula .		N	Observed	Calcu- lated, min.	Lit.
	Hai	LIDES			
C2H4Cl2	Dichloroethylene		17	1	(8)
C ₆ H ₄ Cl ₂	o-Dichlorobensene		77		(8)
C ₄ H ₄ Cl ₂	p-Dichlorobenzene	9.5	67 to 78	55	(5, 8)
C ₆ H ₅ Br	Bromobenzene	8.5	65	42	(8)
C ₆ H ₅ Cl	Chlorobenzene	8.5	27.5 to 39	23.5	(5, 8)
	Alcohols a	nd P	HENOLS		
CH ₄ O	Methyl alcohol	1.5	-1 to 32	13	(4, 5)
C ₂ H ₆ O	Ethyl alcohol	3	9.0 to 32.0	14	(4, 5)
C ₂ H ₄ O	n-Propyl alcohol	4.5	22.5 to 45.5	25	(4, 5)
C ₂ H ₅ O	Isopropyl alcohol		11.75 to 14.5		(4)
C ₄ H ₁₀ O	n-Butyl alcohol		35 to 35.5		(4)
C ₄ H ₁₀ O	Isobutyl alcohol	6	27.5	28	(4)
C _b H ₁₂ O	Isoamyl alcohol	7.5	40 to 42	44	(4)
C ₆ H ₆ O	Phenol		79		(4)
C6H6O2	Catechol		127		(4)
C6H6O2	Resorcinol	6.5	152	160	(4)
C6H6O2	Hydroquinol	6.5	165	167.5	(4)
C ₆ H ₇ O	Cyclohexanol (hexa-				
	lin)		68		(3)
C;H,O	o-Cresol	8.5	81 to 83	79	(4, 5)
C7H ₅ O	m-Cresol	8.5	86	89.5	(4)
C7H5O	p-Cresol	8.5	86	90.5	(4)
C ₁₀ H ₈ O	β-Naphthol	11.5	161	139	(5)
	ALDEHYDES, KET	ONES	AND ETHERS		
C2H6O	Methyl ether		-41		(5)
C ₂ H ₆ O	Acetone	4	-18 to 2	- 19	(2, 5)
C4H10O	Ethyl ether	6	-41 to -20	-43	(5)
C7H6O	Benzaldehyde	8	62.5	63	(5)
	Ac	CIDS			
C7H6O2	Benzoic acid	7.5	121 to 131	136	(4, 5)
Esters					
CaH6O2	Ethyl formate	3.5	-19.5	-18	(4)
CaH ₆ O ₂	Methyl acetate	3.5	-15.5 to 4.6	- 15	(4)
C ₄ H ₇ ClO ₂	Chloroethyl acetate		67	I	(8)

ESTERS.—(Continued)

	1		Flash po		
Formula	Name	N	Observed	Calcu- lated, min.	Lit.
C ₄ H ₇ ClO ₂	Ethyl chloroacetate		54		(8)
C ₄ H ₈ O ₂	Ethyl acetate	5	-5.0 to 5	-5	(4)
C4H4O2	Methyl propionate	5	-2.0	-3	(4)
C4H8O2	n-Propyl formate	5	-3.0	-2	(4)
C4H4O2	Isopropyl formate	- 1	-5.5	İ	(4)
C6H10O2	n-Butyl formate		17.5		(4)
C5H10O2	Ethyl propionate	6.5	12.5	9	(4)
C5H10O2	Methyl n-butyrate	6.5	14	11	(4)
C5H10O2	n-Propyl acetate	6.5	14.5	10.5	(4)
C3H10O2	Isopropyl acetate	ı	4.5	ŀ	(4)

Nitrogen	COMPOUNDS
----------	-----------

CeH2ClN2O4	Dinitrochlorobenzene.	187	(5)
C6H4CINO2	Nitrochlorobenzene	127	(5)
CoHoN2O	m-Dinitrobenzene	150	(5)

NITROGEN COMPOUNDS.—(Continued)

		···	Flash p		
Formula .	Name	N	Observed	Calcu- lated, min.	Lit.
C ₆ H ₆ NO ₂	Nitrobenzene	7.5	88 to 90	89.5	(4, 5)
C ₆ H ₇ N	Aniline	9	71	70	(5)
C ₆ H ₁₁ N	Dimethylaniline	12	61 to 76	70	(5)
C10H0N	α-Naphthylamine	13.5	157	144	(5)

2. Mixtures.—See p. 150.

LITERATURE

(For a key to the periodicals see end of volume)

Battle, Handbook of Industrial Oil Engineering, p. 262; Philadelphia, Lippincott, 1920.
 Coste, 173, 42: 168; 17.
 Gardner, Paint Mfgrs. Assoc. U. S., Circular 248: 62; 25.
 Mack, Boord and Barham, 45, 15: 963; 23.
 Ormondy and Craven, Chem. Trade J., 70: 41; 22.
 Schrauth, 416, 2: 184; 21.
 Sherman, Gray and Hammerschlag, 45, 1: 13; 09.
 Weber and Wynne, 78, 45: 197; 24.

QUANTITATIVE EFFECTS OF SOME COMPOUNDS UPON DETONATION IN INTERNAL COMBUSTION ENGINES

T. A. Boyd

The detonation or "knock" that characterizes combustion in gasoline engines under certain conditions is influenced primarily by the chemical composition or structure of the fuel, and secondarily by the compression to which the combustion mixture is subjected, by its temperature, and by the point in the cycle at which ignition occurs, as well as by some more minor factors, such as the shape of the combustion chamber and the location of the spark plug (1, 8). The principal types of compounds that may be used as fuels in the gasoline engine arrange themselves in the order of decreasing tendency to knock as follows (2, 8): ethers, paraffins, olefins, naphthenes, aromatics, alcohols. The tendency of any given fuel to detonate may either be increased or decreased as desired by the addition of a suitable compound to the combustion mixture, the amount required being very small in some cases.

Die Detonation oder das Klopfen (knock), welche die Verbrennung in Benzinmotoren unter gewissen Bedingungen kennzeichnet, ist zunächst von der chemischen Zusammensetzung oder Struktur des Brennstoffes beeinflusst, in zweiter Linie von der Kompression, dem das Verbrennungsgemisch ausgesetzt ist, von seiner Temperatur und von der Lage des Zündpunktes im Kreisprozess. In gleicher Weise hängt es noch von kleineren Faktoren ab, wie der Form des Verbrennungsraumes und der Lage der Zündkerze (1, 8). Die hauptsächlichsten Arten die als Motorbetriebsstoffe in Frage kommen, ordnen sich selbst in abnehmender Ordnung ihrer Fähigkeit zu klopfen, in folgender Weise (2, 8): Äther-Arten, Paraffine, Olefine, Naphtene, Stoffe der aromatischen Reihe und Alkohole. Die Neigung irgend eines gegebenen Betriebsstoffes zu detonieren, kann nach Bedarf erhöht oder erniedrigt werden, durch Hinzufügung einer passenden Verbindung zum Betriebsstoff. Die dazu notwendige Menge ist in manchen Fällen sehr gering.

La détonation ou le "cognage" qui caractérise la combustion dans les moteurs à benzine sous certaines conditions, est influencée premièrement par la composition chimique ou la structure du carburant et secondairement par la compression à laquelle le mélange combustible est soumis, par sa température, et par le point du cycle auquel l'allumage se produit, de même que par quelques autres facteurs de moindre importance, tels que la forme de la chambre de combustion et la situation de la bougie d'allumage (1, 8). Les principaux types de composés qui peuvent être utilisés comme carburants dans les moteurs à essence peuvent être classés dans l'ordre de leur tendance décroissante à détoner. comme suit (2, 8): Ethers, Paraffines, Oléfines, Naphthènes, Aromatiques et Alcools. La tendance de chaque carburant à détoner peut être augmentée ou diminuée suivant le désir, par l'addition d'un composé convenable au mélange de combustion, la quantité requise pour produire l'effet étant dans certains cas très faible.

La detonazione (Knock) che, in certe condizioni, caratterizza la combustione nei motori a essenza, è influenzata anzitutto dalla composizione chimica o struttura del carburante, e in secondo luogo dal grado di compressione della miscela, dalla sua temperatura, e dal momento in cui l'accensione avviene durante il ciclo. Essa dipende pure da altri fattori secondari, come la forma della camera di combustione e la posizione della candela (1, 8). I principali tipi di composti che possono adoperarsi come carburanti nei motori a essenza si possono disporre nell'ordine seguente graduandoli secondo la tendenza decrescente a detonare (2, 8): eteri, paraffine, olefine, nafteni, sostanze aromatiche, alcoli. La tendenza di un dato combustibile a detonare può essere accresciuta o diminuita a piacere aggiungendo alla miscela combustibile un adatto composto. La quantità di sostanza a ciò necessaria è in alcuni casi molto piccola.

RELATIVE EFFECTS OF SOME MISCELLANEOUS COM-POUNDS FOR SUPPRESSING DETONATION IN ENGINES

Aniline in concentration of 2% of the fuel by volume taken as standard of effect. All measurements made with bouncing-pin apparatus, using kerosene as fuel (1, 3, 4). The values given below are, respectively, (a) amount in grams required to give an "anti-knock" effect equivalent to 1 g of aniline, and (b) reciprocal of the number of mols required to give an "anti-knock" effect equivalent to 1 mol of aniline.

		(a) Wt.	(b) Rel.	
Compound	Formula	for	mol.	Lit.
Compound	Formula	given	effec-	Int.
		effect	tiveness	
Aniline	C ₆ H ₆ NH ₂	1	1	
Benzene	C ₆ H ₆	9.8	0.085	(1)
Toluene	C ₆ H ₅ CH ₃	8.8	0.112	(¹)
Xylene	C ₆ H ₄ (CH ₃) ₂	8.0	0.142	(1)
Alcohol	C ₂ H ₄ OH	4.75	0.104	(5)
Ethyl iodide	C ₂ H ₄ I	1.55	1.09	(6)
Diethyl selenide	(C₂H₅)₂Se	0.214	6.9	(6)
Diphenyl selenide	(C₀H₅)₃Se	0.49	5.2	(6)
Diethyl telluride	(C ₂ H ₅) ₂ Te	0.075	26.6	(6)
Diphenyl telluride	(C ₆ H ₄) ₂ Te	0.139	22.0	(6)
Triphenylphosphine	(C ₆ H ₅) ₂ P	3.08	0.91	(7)
Triphenylarsine	(C ₆ H ₅) ₂ As	2.44	1.35	(7)
Triphenylstibine	$(C_6H_4)_3Sb$	1.56	2.42	(7)
Tetraethyl tin	(C ₂ H ₄) ₄ Sn	0.66*	3.8*	(7)
Tetraethyl lead	(C₂H₄)₄Pb	0.0295	118	(3)
Tetraphenyl lead	(C ₆ H ₅) ₄ Pb	0.080†	69.5†	(9)
Diphenyl diethyl lead	(C ₆ H ₄) ₂ -			
	(C ₂ H ₄) ₂ Pb	0.041†	110†	(9)
Triethylbismuthine	(C ₂ H ₄) ₂ Bi	0.135†	23.8†	(9)
Triphenylbismuthine	(C₀H₃)₃Bi	0.22†	21.5†	(9)
Nickel carbonyl	Ni(CO)4	0.053†	35†	(9)
Dimethyl cadmium	(CH ₃) ₂ Cd	1.23†	1.25†	(9)
Titanium tetrachloride	TiCl₄	0.64†	3.2†	(9)
# Walnes for total the time	in Joseph Bassassa	-6	! ! !	L 4 L .

^{*}Values for tetraethyl tin in doubt because of preignition induced by the compound.

RELATIVE EFFECTS OF SOME COMPOUNDS OF NITROGEN FOR SUPPRESSING DETONATION IN ENGINES

Aniline in concentrations up to 3% of the fuel by volume taken as standard of effect. All measurements made with bouncing-pin apparatus, using kerosene as fuel (4). The values given below are, respectively, (a) amount in grams required to give an "antiknock" effect equivalent to 1 g of aniline, and (b) reciprocal of the number of mols required to give an "anti-knock" effect equivalent to 1 mol of aniline. Negative values are marked (-).

Compound	Formula	(a) Wt. for given effect	(b) Rel. mol. effect- iveness
Aniline	C ₆ H ₆ NH ₂	1	1
Cumidine	$(CH_1)_2C_6H_2NH_2$	0.96	1.51
Diphenylamine	$(C_6H_4)_2NH$	1.21	1.5
m-Xylidine	$(CH_3)_2C_6H_3NH_2$	0.92	1.4
Monomethylaniline	C6H5NHCH3	0.83	1.4
Toluidine	CH ₂ C ₆ H ₄ NH ₂	0.94*	1.22*
Amylaminobenzene	C.H.11C.H.NH.	1.53	1.15
Ethylaminobenzene		1.14	1.14
Aminodiphenyl	C ₆ H ₆ C ₆ H ₄ NH ₂	1.6	1.14

Compound	Formula	(a) Wt. for given effect	(b) Rel. mol. effect- iveness
Methyl-o-toluidine(7).	CH,C,H,NHCH,	1.15	1.13
n-Butylaminobenzene	C4H9C4H4NH2	1.44	1.11
n-Propylaminobenzene	C ₂ H ₇ C ₆ H ₄ NH ₂	1.32	1.10
Monoethylaniline	C ₆ H ₆ NHC ₂ H ₆	1.27	1.02
Mono-n-propylaniline	C ₆ H ₅ NHC ₂ H ₇	1.95	0.75
Ethyldiphenylamine	$C_2H_5N(C_6H_5)_2$	3.65	0.58
Mono-n-butylaniline	CoHoNHCoHo	3.1	0.52
Diethylamine	$(C_2H_4)_2NH$	1.59	0.495
Di-n-propylaniline	$C_6H_6N(C_2H_7)_2$	7.15	0.27
Mono-isoamylaniline.	C6H5NHC5H11	7.1	0.248
Diethylaniline	$C_6H_6N(C_2H_6)_2$	6.7	0.24
Dimethylaniline	$C_6H_6N(CH_1)_2$	6.2	0.21
Ethylamine	C ₂ H ₆ NH ₂	2.4	0.20
Triethylamine	$(C_2H_6)_3N$	7.95	0.14
Triphenylamine	$(C_6H_5)_3N$	30.0	0.09
Ammonia	NH ₂	2.0(-)	0.09(-)
Isopropyl nitrite	C ₂ H ₇ NO ₂	0.085(-)†	11.5(-)†

^{*} Average of o-, m-, and p-values.

[†] Approx. only. Organic nitrates and nitrites in general are inducers of detonation, the former being more effective than the latter, and the alkyl compounds much more effective than the aryl. Chlorine and bromine, as well as some of their compounds, induce detonation also.

Relative effect of hydrocarbons for suppressing detonations in engines (1, 5). Kerosene as fuel; xylidine as standard of effect upon detonation.

LITERATURE

(For a key to the periodicals see end of volume)

Midgley and Boyd, 45, 14: 589; 22.
 Midgley, 244, 7: 495; 20.
 Midgley and Boyd, 45, 14: 894; 22.
 Boyd, 45, 16: 893; 24.
 Midgley and Boyd, 244, 10: 451; 22.
 Midgley, 45, 18: 421; 23.
 Boyd, 6.
 Ricardo, 381, 11: 92; 21.
 Charch, Mack and Boord, 45, 18: 334; 26.

[†]These figures computed from the data of the original article, and converted to the aniline scale used for the other values in the table, on which tetraethyl lead is 118, instead of 100 as it is in the system of comparison used by the authors.

LUBRICANTS AND LUBRICATION

J. H. HYDE

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Journal-bearing friction.	Frottement des paliers à collets.	Tragzapfenreibung.	Attrito nei cuscinetti 164
Coefficient of kinetic friction.	Coefficient de frottement ciné- tique.	Reibungskoeffizient der Bewegung.	Coefficiente di attrito cinetico
Rupture of lubricating film in a journal bearing, for bearings of different clearances.	Rupture de la couche lubri- fiante d'un palier à collets pour des paliers de différents dégagements.	Bruch des Ölfilmes (Schmier- mittel-Filmes) bei Traglagern mit verschiedenem Lager- spiel.	Rottura della pellicola di lubrificazione nei cusci- netti di diversi valori di giuoco
Coefficient of static friction between surfaces of mild steel and various metals when lubricated with various oils.	Coefficient de frottement sta- tique entre surfaces d'acier doux et de métaux variés lorsque graissées avec des huiles variées.	Reibungskoeffizient der Ruhe zwischen Oberflächen aus Flusseisen und verschiedenen Metallen bei der Schmierung mit verschiedenen Ölen.	Coefficiente di attrito sta- tico fra superficie di acciaio dolce e vari me- talli nella lubrificazione con vari olii
Coefficient of kinetic friction for surfaces of cast iron and steel when lubricated with various oils	Coefficient de frottement ciné- tique pour des surfaces de fonte et d'acier lorsque grais- sées avec des huiles variées.	Reibungskoeffizient der Bewe- gung für Oberflächen aus Gusseisen und Stahl bei Schmierung mit verschie- denen Ölen.	Coefficiente di attrito cine- tico per superficie di ghisa e acciaio nella lu- brificazione con vari olii 165
Effects of additions of rape oil and of fatty acids to Bayonne oil.	Action des additions d'huile de colza et d'acides gras à l'huile de Bayonne.	Einfluss eines Zusatzes von Rüböl und von Fettsäuren zu Bayonne-Öl.	Influenza dell'aggiunta di olio di ravizzone e di acidi grassi all'olio di Bayonne
Effect of pressure on coefficient of static friction.	Effet de la pression sur le coefficient de frottement statique.	Einfluss des Flächendruckes auf den Reibungskoeffizient der Ruhe.	Influenza della pressione sul coefficiente di attrito statico
Variation of static friction with lubricant for various lubricants under constant pressure.	Variation du frottement sta- tique avec le lubrifiant pour des lubrifiants variés sous pression constante.	Änderung des Reibungskoef- fizienten der Ruhe bei Schmierung mit verschie- denen Schmiermitteln und konstanten (Flächen-) Druck.	Variazione dell'attrito sta- tico per lubrificazione con vari lubrificanti a pressione costante 165
Lubricating value of oils under conditions of heavy loads and temperatures up to 100°C.	Indice de graissage des huiles dans des conditions de charges élevées et de tempéra-	Schmierfähigkeit von Ölen bei grosser Belastung und Tem- peraturen bis 100°C.	Valore lubrificante di olii sotto forti carichi e a tem- perature fino a 100°C 165

For density, viscosity and other physical properties of lubricants, see p. 136.

tures allant jusqu'à 100°C.

JOURNAL BEARING FRICTION

In the following tables the value of the coefficient of friction of a journal bearing is given for different values of the quantity: $\frac{60\eta N}{P} = 60 \times \frac{\text{Absolute viscosity of lubricant at bearing temperature} \times \text{r. p. s.}}{\text{Pressure on bearing}}, \text{ where pressure on bearing} =$

Total load on bearing
Length of bearing X diameter of journal

Coefficient of Kinetic Friction for Different Values of the Ratio $\frac{\text{Clearance}}{\text{Diameter}}$ (4)

$\frac{60\eta N}{P}$	Lasche	Sommerfeld calc.	Lasche	Sommerfeld calc.	Lasche	Sommerfeld calc.	Lasche	Sommerfeld calc.
	1/:	1000	1/	500	1/	250	1,	/100
100	0.005	0.006	0.0045	0.0025	0.0035	0.0032	0.003	0.010
250	0.0115	0.012	0.011	0.006	0.0095	0.0035	0.0075	0.010
500	0.018	0.024	0.017	0.012	0.016	0.0060	0.0115	0.0096
750	0.024	0.036	0.021	0.018	0.019	0.0090	0.0135	0.0092
1000	0.030	0.048	0.025	0.024	0.020	0.0125	0.0150	0.0090
1250	0.036	0.060	0.029	0.030	0.021	0.0158	0.0165	0.0090

$\frac{60\eta N}{P}$	100	200	300	400	500	600	700	800	900	1000	1100	1200
Stribeck white metal bearing 5.40 in. long	0.0128	0.0190	0.0245	0.0290	0.0335	0.0370	0.0405	0.0435	0.0462	0.0482	0.0500	0.0512
Bronze bearing 9.06 in. long	0.0085	0.0125	0.0156	0.0182	0.0205	0.0222	0.0240	0.0255	0.0270	0.0282	0.0295	0.0305
Hersey full bearing. $\frac{\text{Clearence}}{\text{Diameter}} = 0.04$	0.0038	0.0055	0.0075	0.0092	0.0110	0.0130	0.0145	0.0165	0.0182	0.0200	0.0220	0.0238

COEFFICIENT OF KINETIC FRICTION (4)

LUBRICATION 165

RUPTURE OF LUBRICATING FILM Values of $\frac{60\eta N}{P}$ for rupture of lubricating film in a journal bearing, for bearings of different clearances (4).

$\frac{60\eta N}{P}$	60	50	40	35	30	25	20	15	12	11
Diameter Clearence at rupture	260	300	350	400	46 0	555	700	900	1200	1400

EFFECT OF VARIOUS LUBRICANTS ON STATIC FRICTION

Coefficient of static friction between surfaces of mild steel and various metals when lubricated with various oils, for pressures ranging from 10 to 120 lb./in.² and at a temperature of 16°C; "Deeley" Machine Tests (3).

				Coefficient o	of static f	riction		
Lubricant			Mi	ld steel agai	nst			Hardened
	White metal	Axle steel	Cast iron	Wrought iron	Gun metal	"Stones" bronze	Alum- inum	steel against Bronze*
Rape	0.109	0.137	0.102	0.136	0.155	0.124	0.111	0.080
Lard	0.118	0.110	0.133	0.125	0.155	0.117	0.100	0.082
Castor	0.138	0.121	0.131	0.136	0.166	0.121	0.126	0.109
FFF cylinder	0.165	0.147	0.179	0.159	0.177	0.128	0.137	0.120
Bayonne	0.185	0.157	0.214	0.185	0.207	0.158	0.145	0.132
Mobiloil BB	0.188	0.174	0.182	0.174	0.233	0.152	0.145	
Sperm	0.195	0.121	0.138	0.146	0.214	0.173	0.156	0.111
Mobil E								0.115
Victory red						1		0.117

^{*} Average between 10 and 120 lb./in.2

COEFFICIENT OF KINETIC FRICTION FOR SURFACES OF CAST IRON AND STEEL WHEN LUBRICATED WITH VARIOUS OILS

Pressure 30 lb./in.²; 22° to 24°C. Variation of coefficient of kinetic friction with rubbing speed and quantity of stearic acid addition to lubricant. "Deeley" Type Machine (4).

			<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>				<u> </u>			5.5 6.0
Mineral auto oil alone								0.115	0.11	0.105 0.105
+1 % stearic acid										
+2% stearic acid	0.085	0.075	0.0650.0	60 0.055	0.053	0.052	0.050	0.048	0.047	0.046 0.045

EFFECT OF ADDITIONS TO BAYONNE OIL

Effect of additions of rape oil and of fatty acids to Bayonne oil (straight mineral). Coefficient of static friction between surfaces of hardened steel and bronze. "Deeley" Machine Tests. Pressure 10 to 120 lb./in.² 16°C (2).

	For a	neutral	rape oil	. No j	free fatt	y acid	For a	rape of	l conta	ining 2.	44 % fre	e fatty	acid
Per cent of added oil	0	4	8.2	20.5	41.0	100	0	2	4	8.2	20.5	40.9	100
Coeff. of static friction	0.132	0.110	0.105	0.099	0.096	0.083	0.132	0.109	0.102	0.099	0.093	0.088	0.080

	Γ			_		_	For ad	ldi	tion	of ol	eic acıc	i		
Per cent oleic seid added Coeff. of static							0.80				10	40	80	100
friction	lo.	132	0.	102	0.09	97	0.092	0	.088	0.087	0.086	0.085	0.079	0.075

Effect of Pressure on C	OEFFIC	IENT	of St.	ATIC I	RICTIC	ON (⁵)
Pressure between surfaces, lb./in.2	8.6	17.3	26.0	36.6	43.3	52.0
Mild steel and cast iron with rape oil	0.205	0.200	0.203	0.208	0.218	0.229
Mild steel and gun motel with FFF			l i			
cylinder oil		0.100	0.081	0.067	0.058	0.052
Mild steel and gun metal with sperm oil	0.020	0.029	0.036	0.045	0.053	0.061

VARIATION OF STATIC FRICTION WITH LUBRICANT FOR VARIOUS LUBRICANTS UNDER CONSTANT PRESSURE OF 10 LB./In.2 (5)

Mild steel against	Clock oil (HB)	Bayonne	Type- writer	Victory red	FFF cylinder	Manchester spindle	Castor	Sperm	Trotter (hard)	Olive	Rape	Valvoline cylinder
Cast iron	0.271	0.213	0.211	0.195	0.193	0.183	0.153	0.127	0.123	0.119	0.119	0.143
Gun metal	0.275	0.234	0.294	0.246	0.236	0.262	0.169	0.189	0.152	0.196	0.136	

LUBRICATING VALUE OF OILS UNDER CONDITIONS OF HEAVY LOADS AND TEMPERATURES UP TO 100°

Tests made on the Daimler-Lanchester Worm Gear Testing Machine at the National Physical Laboratory, England, show that the value of a straight mineral oil as a lubricant, when the load is great, diminishes rapidly above a certain critical temperature. It has been found by a very large number of tests under the same

conditions of speed, load and supply of lubricant at a given temperature, that the efficiency of the worm gear in the testing machine remains remarkably constant at the load selected for the tests, and, as differences of efficiency could be determined to $0.1\,\%$ (absolute efficiency to $0.2\,\%$), the efficiency-temperature values obtained give a valuable indication of the quality of the lubricant.

EFFECT OF TEMPERATURE ON GEAR EFFICIENCY

Variation of efficiency of power transmission by worm gear, with temperature of lubricant, for a straight mineral oil (Bayonne oil). This example is typical of all mineral oils (*).

$^{\circ}\mathrm{C}$	15 to 42	45	50	55	60	65	70		
Gear efficiency,	95.0	94.7	94.2	93.8	93.4	93.1	92.9		
°C	75	80	85	;	90	95	100		
Gear efficien cy ,	Gear iciency, 92.8 92.3		92.	6	92.5	92.5	92.4		

The following critical temperatures were observed: Bayonne, 42°; FFF cylinder, 71°; Victory red oil, 50°; Mobiloil "A," 56°; Mobiloil "BB," 62°; lard, rape, castor and sperm, none observed. A small addition of fatty oil, fatty acid or graphite raises the critical temperature 10 to 20°.

LITERATURE

(For a key to the periodicals see end of volume)

Hersey, 306, 35: 648; 23. (2) Hyde, 115, 111: 708; 21. (3) Hyde, National Physical Laboratory, England, O. (4) Wilson and Barnard, 45, 14: 682; 22.
 Report of the Lubrications and Lubricants Enquiry Committee, Dept. of Scientific and Industrial Research, England, 1920.

TYPICAL ANALYSES AND PROPERTIES OF GASEOUS FUELS

E. R. WEAVER

The hydrocarbons in natural gases and the hydrogen and saturated hydrocarbons in manufactured gases are usually determined by combustion, and the actual compounds present are not determined. The properties which affect the use of the gas as a fuel (heating value, specific gravity, air required for combustion and products formed by combustion) would be the same for a mixture of the composition stated by the analysis as for the mixture analyzed. For example, a mixture of one volume of

hydrogen and one of ethane has the same values for these properties as two volumes of methane; and in an analysis of manufactured gas they would appear as methane. The "illuminants" of manufactured gas generally include all hydrocarbons present except those of the paraffin series. The first table gives the actual compositions of some typical gases; the second table gives analyses stated in the conventional manner. The same index letter in the two tables refers to the same gas.

ACTUAL COMPOSITION

The last column of each series of hydrocarbons in which a number is entered includes higher homologs

						Cons	tituents	of gas	, % b	y volur	ne					
Gas	II	CO.	1 8	Saturat	ed hydr	ocarbo	ns			Illum	inants		2	I	nerts	
	H_2	CO	CH ₄	$\mathrm{C_2H_6}$	C_3H_8	$C_3H_8 \mid C_4H_{10} \mid C_8H_{1$		C_2H_4	C_3H_6	$\mathrm{C_4H_8}$	C_2H_2	C_6H_6	C_7H_8	CO_2	O2	N_2
Natural gases	A 3		90.7 84.7		3.3	0.8	0.4									1.0
Appalachian field			80.4		4.1 21.3	4.0	1.3 16.2									1.5
Oklahoma E Texas ("wet gas") F			74.7 50.6	13.0	6.0	1.5	0.8						ca. 1	% He		4.0
Gas "F" after removal of gasolene G.	f		54.8		2.6	0.8							ca. 1			37.5
Coal gas H	. 52.5				0.12 0.3	0.02	rts.	2.0 9.8	0.3	0.1 1.7	0.01	1.1		1.7		3.5

COMPOSITION GIVEN BY CONVENTIONAL METHODS OF ANALYSIS

													Heat of	Pro	ducts	of com	bustion
	- 4		(Constit	uents	of gas,	% by v	olume			α.	Volume	combustion	vol	umes	per vol	ume
											Speci-	air per	kg-cal per		of	gas	
Ga	s	H ₂	СО	СН4	$\mathrm{C_2H_6}$	$\mathrm{C_3H_8}$	Illumi- nants	CO_2	O_2	N ₂	fic grav- ity (air = 1)	volume gas re- quired for com- bustion	$1 (1 \text{ atm.,} 15.5^{\circ}\text{C}) \text{ to}$ form liquid H_2O and gaseous CO_2 at 15.5°C		$ m H_2O$	N_2	Total
	A			84.2	14.8		1		-	1.0	0.63	10.5		1 14	2.13	0 25	11.62
	В			79.1						1.6		10.5 10.8	9.9 10.2		2.16	8.57	100000000000000000000000000000000000000
	C			63.1	95.							1 2 2 2 2 2 2					1800
Natural acces	D			05.1	38.8	60.2				000	0.73	12.0	11.3		2.32	9.50	
Natural gases	Talkar ob a garden			eo =	200	60.2				1.0		20.9	20.0		3.57	16.35	
	E			1000	33.5					4.0		11.6	11.0		2.26	9.22	1 1 1 1 1 1 1 1 1
	F			23.0						35.5		9.2	8.7		1.70	7.60	100000
T G G	G				10.9					38.5		6.7	6.3	1	1.36	6.66	
	alif	1	0.0		10.3			9.7	0 0	1.4		9.2	8.7	1	1.88	7.33	
Coal gas H							3.9		0.6	3.5		5.4	5.5	1	1.25	4.31	
Carburetted w	ater gas 1	28.0	29.8	19.8			15.8	4.8		1.3	0.71	6.4	6.2	0.99	1.11	5.05	7.15
Coal and coke-	oven gases																
"700 BTU"		44.8	4.3	41.1			6.0	1.1	0.4	2.3	0.42	6.3	6.2	0.61	1.42	4.96	6.99
"600 BTU"		48.7	7.8	33.0			4.3	1.5	0.2	4.5	0.41	5.3	5.3	0.53	1.25	4.21	5.99
"550 BTU"		49.3	9.4	28.4			3.5	2.3	0.6	6.5	0.43	4.8	4.9	0.49	1.15	3.84	5.48
"500 BTU"		51.0	11.0	23.7			3.1	2.6	0.5	8.1	0.44	4.3	4.5	0.45	1.06	3.46	4.97
"450 BTU"		41.5	9.6	22.2			3.0	4.2	0.5	19.0	0.54	3.9	4.0	0.44	0.932	3.26	4.63
Carburetted w	ater gas																
"700 BTU"		31.2	28.2	20.2			15.3	2.0		3.1	0.65	6.1	6.2	0.89	1.08	4.82	6.79
"600 BTU"		34.8	30.6	15.0			11.5	4.2		3.9	0.65	5.1	5.3	0.80	0.93	4.08	5.81
"500 BTU"		40.4	32.7	10.5			8.0	5.1		3.5	0.61	4.1	4.5	0.68	0.81	3.29	4.78
"400 BTU"		45.2	36.5	5.2			4.0	6.0		3.1	0.59	3.2	3.6	0.58	0.66	2.55	3.79
"Blue" wat	er gas	50.5	40.2	1.2			0.0	4.4		3.8	0.54	2.3	2.7	0.46	0.53	1.85	2.84
Oil gas	The state of	1983	1	-													
"800 BTU"		38.1	2.8	40.9			12.2			6.0	0.49	7.2	7.1	0.77	1.51	5.74	8.02
"700 BTU"		41.5	7.0	36.8			8.4	1.5		4.8	0.47	6.2	6.2	0.67	1.36	4.96	6.99
"600 BTU"		45.8	9.6	31.0			4.7	2.8		6.1	0.46	5.3	5.4	0.58	1.21	4.24	6.03
"550 BTU"		50.3	10.6	27.4			3.5	2.5		5.7	0.43	4.8	4.9	0.50	1.14	3.84	5.48
"500 BTU"		55.2	12.4	23.4			1.6	2.8		4.6	0.40	4.3	4.5	0.45	1.07	3.33	4.85
Producer gas			15				-								1		
"175 BTU"		21.1	19.8	4.0				6.8		48.3	0.80	1.36	1.6	0.31	0.29	1.56	2.16
"150 BTU"		15.3	23.2	2.4				6.1		53.0		1.15	1.3		0.20	1.44	
"125 BTU"			23.0					5.5	1	58.6	0.89	0.95	1.1		0.14	1.34	
"100 BTU"			23.8					6.0			0.95	0.75	0.9		0.70	1.23	1 3 6
Blast furnace g	zas			27.2		T		8.0			1.01	0.68	0.8		0.01	1.18	

ASPHALTS AND MINERAL WAXES

HERBERT ABRAHAM

Under this heading will be considered the following groups of substances: (1) Mineral waxes; (2) native asphalts; (3) asphaltites; (4) asphaltic pyrobitumens; and (5) pyrogenous asphalts. These five groups are members of the class "Bituminous substances," the first three falling within the group "Bitumens," the fourth within the group "Pyrobitumens," and the fifth within the group "Pyrogenous residues."

NOMENCLATURE

The definitions which follow show the relationship between these respective groups of substances.

Bituminous Substances.—A class of native and pyrogenous substances containing bitumens or pyrobitumens, or resembling them in their physical properties. [This definition includes bitumens, pyrobitumens, pyrogenous distillates (pyrogenous waxes and tars) and pyrogenous residues (pitches and pyrogenous asphalts).]

Bitumen.—A generic term applied to native substances of variable color, hardness and volatility; composed of hydrocarbons substantially free from oxygenated bodies; sometimes associated with mineral matter, the non-mineral constituents being fusible and largely soluble in carbon disulfide; the distillates, fractionated between 300 and 350°C, yield considerable sulfonation residue. [This definition includes petroleums, native asphalts, native mineral waxes and asphaltites.]

Pyrobitumen.—A generic term applied to native substances of dark color; comparatively hard and non-volatile; composed of hydrocarbons, which may or may not contain oxygenated bodies; sometimes associated with mineral matter, the non-mineral constituents being *infusible*, and relatively *insoluble* in carbon disulfide. [This definition includes the asphaltic and non-asphaltic pyrobitumens and their respective shales.]

Mineral Wax.—A term applied to a species of bitumen, also to certain pyrogenous substances; of variable color, viscous to solid consistency; having a characteristic luster and unctuous feel; comparatively non-volatile; composed of hydrocarbons, substantially free from oxygenated bodies; containing considerable crystallizable paraffins; sometimes associated with mineral matter, the non-mineral constituents being easily fusible and soluble in carbon disulfide. [This definition is applied to crude and refined native mineral waxes, also to pyrogenous waxes. Crude native mineral waxes include ozokerite, etc. Refined native mineral waxes include ceresine (refined ozokerite) and montan wax (extracted from lignite or pyropissite by means of solvents). Pyrogenous waxes include the solid paraffins separated from non-asphaltic and mixed-base petroleums, peat, tar, lignite tar and shale tarl.

Asphalt.—A term applied to a species of bitumen, also to certain pyrogenous substances of dark color, variable hardness, comparatively non-volatile; composed of hydrocarbons, substantially free from oxygenated bodies; containing relatively little to no crystallizable paraffins; sometimes associated with mineral matter, the non-mineral constituents being fusible, and largely soluble in carbon disulfide; the distillate, fractionated between 300 and 350°C,

yields considerable sulfonation residue. [This definition is applied to native asphalts and pyrogenous asphalts. Native asphalts include asphalts occurring naturally in a pure or fairly pure state, also asphalts associated naturally with a substantial proportion of mineral matter, sometimes termed "rock asphalts." The associated mineral matter may be sand, sandstone, limestone, clay, shale, etc. Pyrogenous asphalts include residues obtained from the distillation, blowing, etc., of petroleums (e.g., residual oil, produced by the dry distillation of non-asphaltic petroleum, the dry or steam distillation of mixed-base petroleum and the steam distillation of asphaltic petroleum, blown asphalt, produced by blowing air through heated residual oils, residual asphalts, produced by the steam distillation of mixed-base and asphaltic petroleum, sludge asphalt, produced from the acid sludge obtained in the purification of petroleum distillates with sulfuric acid, etc., also from the pyrogenous treatment of wurtzilite (e.g., wurtzilite asphalt, produced by depolymerizing wurtzilite in closed retorts).]

Asphaltite.—A species of bitumen, including dark colored, comparatively hard and non-volatile solids; composed of hydrocarbons, substantially free from oxygenated bodies and crystallizable paraffins; sometimes associated with mineral matter, the non-mineral constituents being difficultly fusible and largely soluble in carbon disulfide; the distillation residue, fractionated between 300 and 350°C, yields considerable sulfonation residue. [This definition includes gilsonite (conchoidal fracture and characteristic brown streak on porcelain), glance pitch (conchoidal to hackly fracture and black streak) and grahamite (conchoidal to hackly fracture and black streak).]

Asphaltic Pyrobitumens.—A species of pyrobitumen, including dark colored, comparatively hard and non-volatile solids; composed of hydrocarbons, substantially free from oxygenated bodies; sometimes associated with mineral matter, the non-mineral constituents being infusible and largely insoluble in carbon disulfide. [This definition includes elaterite (characteristic rubbery nature and brown streak), wurtzilite (conchoidal to hackly fracture; brown streak; depolymerizes on heating, becoming fusible and soluble), albertite (conchoidal to hackly fracture; brownish black streak; depolymerizes partially on heating), impsonite (hackly fracture; black streak; does not depolymerize on heating) and the asphaltic pyrobituminous shales.]

CHARACTERISTICS

The distinguishing physical and chemical characteristics of the substances enumerated above are given in the following table.

THERMAL PROPERTIES

An asphalt of 2.12 specific gravity gave the following values for the *thermal conductivity* in joule cm² sec⁻¹ (°C, cm⁻¹)⁻¹: 0°, 0.0061; 10°, 0.0065; 20°, 0.0070; 30°, 0.0074 (Poensgen, 98, **56**: 1653; 12. **60**: 27; 16).

According to Kinoshita (380, 39: 497; 16) the specific heat of asphalt is 0.22 g-cal per g per °C.

Genus	Species	Member	r. at 25°C (of non-	toetion at 25°Cf	sptibility factor:	oility °C [§]	д свъроп∥		mineral matter inso	Prestam fare	enes**	ttadtdan °88 ni əld	laranim-non ni na †† _{Ta} t		fin scale	ffelese aff
			.q2 nim	Pene	əsng	isu¶	ьхіЧ	ppg	- 1	niM	Cart	nloS		Рата		
	Petroleums				-											
	Native mineral waxes	Ozokerite	0.85 - 1.00 $0.90 - 1.00$	5-10	8 00	60 to 95 75 to 95	\$-10 2-10	95–100 98–100	$0-1 \\ 0-2$	0-5	0-3	75–95 80–100	0-2 3-6	50-90 0-10		90–100 0–10
Bitumens	Native asphalts		0.95-1.12	0-35015-100	5-100	15 to 165	1-25	86-09	04-0	0-10	0-5	25–95	0-2	0-5	l _ 55	90-100
		cont g more than 10% mineral matter	0.95-1.15	0-15030-100	0-100	15 to 175	5-25	Tr90	0-25	10-95	0-5	Tr85	0-5	0-5	_8_	90-100
	Asphaltites	Gilsonite	1.05-1.10 1.10-1.15 1.15-1.20	8 20	91 10	120 to 175 10-20 120 to 175 20-30 175 to 320 30-55		90-100 95-100 45-100	1113	Tr1 Tr5 Tr50	0-4 0-1 0-80	40-60 20-50 Tr50	0-5 0-2 0-2	9-Tr. 9-Tr. 9-Tr.	<u> 28 28 28</u>	85-95 85-95 80-95
		Elaterite	0.90-1.05	Rub	-	Inf.	2-5	10-20	20-90	Tr10	Tr2	5-10	1-5	0-Tr.	8	80-90
		Wurtzilite		bery 5			5-25		80-95	Tr10	Tr2	Tr2	0-2	0−Tr.	86-06	86
	Asphaltic pyrobitumens		1.07-1.10 $1.10-1.25$	0 0		Inf. 5	25-50 50-85	2-10 1-6	85-98 90-99	Tr10 Tr10	Tr. 2 Tr2	Tr. 2 Tr2		0-Tr. 0-Tr.	86-06 80-88	98 98
Pyrobitumens		Asphaltic pyrobituminous shales	1.50-1.75	0		Inf. 2	2-25	Tr3	15-70	30-85	0-Tr.	0-Tr.	0-3	Tr3	86-06	86
	Non-asphaltic pyrobitumens	:														
Pyrogenous distillates	Pyrogenous waxes															
	Tars															
		Residual oilsBlown petroleum		100-350			2-10	98-100	- -	1 -0	0-1	66-08	0-3	0-15	90-100	8
D	Pyrogenous	asphalts	0.90-1.07	25-200	8 6 9 6	25 to 200	5-20	95-100	0-5	j ;	0-10	50-90	2-5	0 - 10	90-100	88
residues	aspinares	Sludge asphalts	1.05-1.20	9 15	\$ 6 8 8	25 to 110	5-30	95-100	P 15	ΙĮ	0 15	60-95	3-7		<u> 8</u>	80-95
		Wurtzilite asphalt	1.04-1.07	5-10	30-40	65 to 150	5-25	98-100	0-3	Tr2	0-2	50-80	0-5	0-Tr	6	90-95
	Pitches						İ									

BITUMINOUS MATERIALS

JOHN M. WEISS AND CHARLES R. DOWNS

TARS, PITCHES AND DISTILLATES

This section deals with those species of pyrogenous residues known as "tars," together with the products of tar distillation, i.e., "residuals" or "pitches," and "distillates" or "tar oils." These are highly complex materials formed by the pyrogenetic decomposition of various organic materials, so that a particular member or sub-member may vary widely in its physical characteristics.

In the first section are given certain so-called constants in terms of ranges for the various materials. These give general information as to the nature of the various materials. The results are expressed in terms of arbitrary tests which depend upon rigid adherence to details of manipulation; the test methods are those generally used in the United States. The ranges given have been taken partly from the literature, but for the most part from pri-

vate communications from various commercial concerns dealing with the products (2, 5, 6, 11, 16, 18, 19), and certain U. S. Government laboratories (4, 10). Freak results caused by some unusual procedure in the production of a given material have been eliminated so as to make the ranges representative of the materials as they are ordinarily encountered in industry.

In addition, there are reported the available more or less absolute constants that have been determined. As the materials in a given narrow class vary in ordinary tests, so they also vary in these "absolute" constants between samples in the same class; the accuracy of the figures is only moderate, but, in general, adequate to the commercial need which caused the determinations to be made. Blanks indicate that no authentic results are available. Single figures mean that the test of a single sample only could be obtained.

TABLE 1.-TARS

The figures in Table 1 apply to water-free tar. In attempting to identify tars, it is advisable to distill them and test the oils (See Table 3.) Methods of testing are given by Weiss (22). η is Engler viscosity, see for 100 cm²; % insol. is the % organic insoluble in C_0H_0 and C_7H_0 .

Genus	Species	Member	Sub-member	d15.5	η	% insol.	% fixed carbon	% ash	% tar acids
Tars	Coal tars	Bituminous coal	Coke oven	1.15-1.26	30–100	3–17	14-40	0-0.5	1-4
			Horizontal gas retort	1.25-1.33	150-650	16–40	15-40	0-0.5	1-4
			Inclined gas retort	1.23-1.24	300	15–20	15-40	0-0.5	4–6
			Vertical gas retort	1.12-1.16	25-50	2-51/2	15-30	0-0.5	5–11
			Low temperature processes	0.95-1,12	25-50	0–7	5-15	0-1.5	10–30
			Blast furnace	1.15-1.30	80	10–25	10–30	10–15	5–10
			Gas producer	1.12-1.20	100-α	5–25	10–35	0–25	3–9
		Cannel coal		0.945		0.2		. 0.1	9.0
		Lignite		0.85-1.05		0-2	5–20	0-1	5–20
	Petroleum	Carburetted water gas		1.06-1.15	25- 50	0.2-5.0	10–20	0-0.5	0
	tars	Oil gas		0.95-1.10	25	0-2.0	10-25	0-0.5	0
	Wood tars	Hardwood		1.10-1.21	50	0-5.0	5–20	0-1.0	5–15
		Softwood (pine tars)		1.05-1.15	65	0-7.5	5–15	0-1.0	10-40
	Miscellaneous tars	Bone		0.95-1.05	28	0-5.0	3–15	0-0.5	0.3-40
	Legits	Shale		0.85-0.95		0-2.0	5–10	0-1.0	0-2
		Peat		0.90-1.05		0-3.0	5–15	0-1.0	5-15

 $d_{16.5}^{16.5}$ of 235-315° fraction (A. S. T. M. distn.): Coke oven, 1.02-1.05; horizontal and inclined gas retort, 1.02-1.04; vertical gas retort, 1.00-1.01; bone tar, 0.950.

Table 2.—Pitches

Method of testing, Weiss (22). The M. P. range given is about the maximum in which they have been known to occur commercially

Genus	Species	Member	Sub-member	Cube M. P.	d15.5	% Insol.	% fixed carbon	% as h
Tar pitches	Coal tar pitches	Bituminous coal	Coke oven	30–150	1.20-1.35	8-50	17-60	0-0.5
			Horizontal gas retort	30–100	1.25-1.40	30-55	36-65	0-0.5
			Inclined gas retort	30–100	1.25-1.35	28-37	37–45	0-0.5
			Vertical gas retort	30–150	1.15-1.30	6-30	15–40	0-0.5
			Low temperature processes	30- 90	1.00-1.26	2-15	8-22	0-3.0
			Blast furnace	30–100	1.20-1.30	15–35	10-30	10-20
			Gas producer	30-100	1.20-1.35	15-40	25-45	0–2
		Cannel coal		55	1.067	5.3	14.2	0.2
		Lignite coal		30–115	1.05-1.20	3–16	10-40	0-1.0
	Petroleum tar pitches	Carburetted water gas tar		30–150	1.10-1.25	2-25	25-45	0-0.5
		Oil gas tar		30–150	1.15-1.30	2–30	20-35	0-0.5
	Wood tar pitches	Hardwood		40–100	1.20-1.30	5-70	15–35	0-1.0
		Softwood		40-100	1.10-1.20	2-60	10-25	0-1.0
	Miscellaneous tar	Bone		30–125	1.10-1.20	1-20	15-25	0-0.5
	pitches	Shale						
		Peat		35–125	1.05-1.15	0- 5	10-30	0-1.0
Stearine pitch	Fatty acids				0.90-1.10	0- 5	5–35	0–5
Rosin pitch				50-100	1.08-1.15	0- 2	10-20	0–1

Table 3.—Distillates

Method of testing: Tar acids, Weiss (22); d, n, sulfonation residue, Bateman (3)

	d_{θ}^{θ}	0				n 60 D		Sul	fonation	resid	ue	Tar acids
235-5	° 255–75°	275–95°	295–315°	235–55°	255–75°	275–95°	295–315°	235- 55°	255– 75°	275– 95°	295– 315°	Total oil distil- late
Coke oven	04 1.02 -1.06	1.03-1.08	1.06-1.09	1.588-1.609	1.590-1.618	1.594-1.628	1.608-1.635	0-3.5	0-5.0	0-5	0-5	1-12
Horizontal gas retort 1.01 -1	025 1.02 -1.04	1.04-1.07	1.06-1.09	1.580-1.596	1.590-1.602	1.598-1.614	1.610-1.628	0-1.5	0-1.5	0-3	0-3	5-20
Inclined gas retort 1.005-1	015 1.01 -1.03	5 1.03-1.06	1.04-1.06	1.574-1.593	1.577-1.596	1.586-1.608	1.594-1.623	0.5-4.5	1-7	2-8	3-8	14
Vertical gas retort 1.000-1	01 1.01 -1.02	5 1.02-1.05	1.04-1.06	1.53 -1.575	1.579	1.587-1.594	1.600-1.612	4-6	5-7	5-6	4-6	20-30
Blast furnace 0.94 -0	95 0.95	0.94-0.96	0.96-0.98	1.523	1.530	1.534	1.543	17	21	21	19	30
Gas producer 0.95			0.98	1.50 -1.52				16				10
Lignite 0.96	0.96	0.96-0.97	0.97-0.98	1.520	1.528	1.534	1.542	21	25	28	29	30-50
Carburetted water gas. 0.96 -1	01 0.965-1.03	0.97-1.07	0.98-1.08	1.558-1.598	1.562-1.602	1.572-1.622	1.578-1.630	0-11	0-13	0-16	0-17	0
Oil gas 0.93	0.93	0.93	0.94-0.95	1.533	1.533	1.533	1.530-1.540	26.0	32.0	38.0	34.0	0
Hardwood 0.98	0.97			1.500	1.495			7	9			47
Softwood	99 0.99	0.99	0.99	1.505	1.514	1.523	1.533	2	3-4	4-5	4.0	15
Bone 0.92	0.94	0.95	0.94					12.0	7.4	3.0	0.0	0.5

Low temperature coke oven shows tar acids in total oil distillate 20-50.

COEFFICIENTS OF CUBICAL EXPANSION

 $\frac{10^6(V_2-V_1)}{V_1}$. In each case an average figure for use is suggested, with figures showing the maximum deviation of individual samples from the average suggested. For special cases, reference to the original articles is recommended (3, 8, 13, 21, 23). For effect of solids in creosote oil, see (8, 13).

Material	Range °C	α per °C	Max. dev. ±
Water gas tars	15-80	655	25
Vertical retort coal tars	15-80	640	10
Coke oven coal tars	15-80	575	25
Horizontal gas retort coal tars	15-80	550	60
Low temperature coal tars	15-85	760	15
Coal tar and heavy oils (when liquid)	15-80	760	40
Water gas tar and heavy oils	15-60	770	20
Low temperature tar and heavy oils	15-85	760	30
Coal tar middle oils	15-60	800	20
Gas drip (holder oils)	15-60	1000	50
Coal tar and water gas tar pitches	15-250	460	40
Low temperature tar pitches	15-85	660	40

FLASH POINTS

These represent open cup results (3, 5, 6, 18).

40°C M. P. Coal tar pitch	145°C
60°C M. P. Coal tar pitch	211°C
Coal tar creosotes	70–75°C
Low temperature tars	$100^{\circ}\text{C} \pm 10^{\circ}\text{C}$

SPECIFIC HEAT-G-CAL G-1 DEG.-1 C

Coal tars—from 0.35 (±.05) at 40°C to 0.45 (±.05) at 200°C. Coal tar oils—0.34 (\pm .04) at 15°-90°C ((3) and private communications).

LATENT HEAT OF VAPORIZATION Coal tar oils (24)

Temperature range, °C	Heat of vapori- zation, g/cal g ⁻¹
199–249	84.8
249-296	81.0
2 96–3 4 5	85.1
345-392	73.3
392-438	65.1
438-488	63.1

VISCOSITY (3, 13.5, 15, 20)

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Abraham, B68. (2) Abraham, Standard Paint Co., O. (3) Bateman, 157, No. 1036; 22. (4) Bateman, E., U. S. Dept. Agriculture, O. (5) Burke, S. P., Combustion Utilities Corpn., O. (*) Church, S. R., Barrett Co., O. (7) Church and Weiss, 66, 15, II: 274; 15. (*) Church and Weiss, 295, 1918: 160. (9) Dean and Bateman, U. S. Forest Service, Circ. No. 112:08.
- (10) Fieldner, A. C., U. S. Bur. Mines, O. (11) Fulweiler, W. H., U. G. I. Contracting Co., O. (12) Hubbard, U. S. Dept. Agr., Public Roads Bull. No. 99; 12. (13) Huff, 45, 10: 1016; 18. (13.8) Huff, 45, 15: 1026; 23. (14) Morgan and Soule, 45, 15: 587; 23. (15) Pochettino, 59, 8: 77; 14. (16) Rhodes, E. O., American Tar Products Co., O. (17) Soule, 295, 1923; 114. (18) Soule, R. P., Combustion Utilities Co., O. (19) Sperr, F. W., Koppers Co., O.
- (20) Trouton and Andrews, 3, 7: 347; 04. (21) Weiss, 143, 172: 277; 11. (22) Weiss, 45, 10: 732, 817, 1911; 18. (23) Weiss, Am. Gas Assoc. Mo., 3: 497; 21. (24) Weiss, 45, 14: 72; 22.

EXPLOSIONS AND GASEOUS EXPLOSIVES

WILLIAM A. BONE AND DONALD T. A. TOWNEND

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Ignition temperatures.	Températures d'inflammation.	Entzündungstemperatur.	Temperatura di accensione 172
Electrical ignition.	Inflammation électrique.	Elektrische Zündung.	Accensione elettrica 175
Limits of inflammability.	Limites d'inflammabilité.	Grenzen für die Entflammbar- keit.	Limiti di infiammabilità 176
Propagation of flame.	Propagation de la flamme.	Fortpflanzung der Flamme.	Propagazione della fiamma 182
Detonation.	Détonation.	Detonation.	Detonazione 184
Explosions in closed vessels.	Explosions en récipients clos.	Explosionen in geschlossenen Gefässen.	Esplosione in recipienti chiusi

IGNITION TEMPERATURE

The ignition temperature of a gaseous mixture is the temperature at which the heat lost by conduction, etc., is more than counterbalanced by the rate at which it is developed by the reaction, the combustion thus becoming self-propellant. This temperature is a function not only of the gaseous mixture employed but also of the means used for heating it. Also, there is often a short "pre-flame" period, during which the combustion is autogenous, but without any actual appearance of flame.

Experimental Methods

- A. Mixture passed through tube held at known temperature.
- B. Mixture rapidly admitted to hot bulb at known temperature. Pre-flame "lag" sometimes determined by this method.
- C. Bulb containing mixture heated rapidly to definite temperature.
- D. Mixture passed through small reservoir while temperature was raised until flame at exit tube ran back into it.
- E. Constituent gases heated separately in concentric tubes, gas

from inner tube being then passed into gas in outer tube. In most recent methods pre-flame "lag" has been controlled.

- F. Constituent gases heated separately and mixed in open away from surface contact.
- G. Mixture adiabatically compressed and temperature calculated from final volume.
- H. Mixture adiabatically compressed and temperature calculation based on final pressure experimentally determined. Correct temperature lies between the values calculated by methods G and H.
- I. Glass vessel within an iron one, each containing a constituent gas. Glass vessel broken at definite temperature.
- J. Small drop of inflammable liquid dropped into air or oxygen maintained at a known temperature.
- K. Soap bubble blown with mixture touched by hot wire at known temperature.

Pressure = 1 atm. unless otherwise noted.

	hod A (41);		Metho	od B
cf. (7,	9, 10, 16, 17)		(4)	(0.4)
t°C*	$ 2H_2 + O_2 +$	t°C	2H ₂ + O ₂ +	(24)
605	-	550	<u> </u>	For
605	H ₂	552-559	Н2	15% H2 in air, 590°
611	4H ₂			in 375 cm² vessel
617	7H ₂	560-570	3H ₂	and 625° in 9 cm3
604	O ₂	530-532	1102	vessel.
599	2½O,	1		For
594	402	552-553	4N ₂	60% H2 in air, 620°
589	4½O2	560-595	3CO₂	in 375 cm ³ vessel
584	702	562-592		and 712° in 9 cm ³ vessel.

* All at P = 300 mm.

	thod C (18); f. (6, 9)	Method D (13)	Method F (42)
t°C	$2H_2 + O_2 +$, ,
589	 -	$650^{\circ} - 2H_2 + O_2$	$642^{\circ} - 2H_2 + O_2$
560	N ₂		
543	2N ₂		
577	3N ₂		
609	4N ₂		

Method E (50, 52, 58); cf. (21, 43): L = lag in sec; (a) = $H_2 in O_2;$ (b) = $H_2 in air$

							(a)				
1/2	625	630	2	615	619	5	597 589	602	10	582	585
1	622	625	3	607	613	7	589	592	15	573	577

Influence of Pressure on Ignition Temperature of H_2 in Air

Method E (50, 52, 58): L = lag in sec; P in mm

P^{\bullet}	75	100	200	400	600	760	1000	1200	1520
1	513	524	558	598	622	630	632	630	628
1	511	521	554	592	614	620	623	621	619
2	509	519	549	581	601	606	609	609	608
3			545	576	592	595	600	600	599

• For P = 7 atm. the ignition temp. = 611° for 0.5 sec lag.

(5	fethod G 0, 51, 58); (20, 26, 28)	N	Iethod H (37)	N	1ethod I (36)
t°C*	$12H_2 + O_2 +$	t°C	$ 2H_2 + O_2 +$	t°C	$2H_2 + O_2 +$
521	T -	410†	ca. 4N ₂	412	Н,
544	H ₂		ļ .	433	2H2
581	2H ₂	For 5	3% H ₂ in air,	397.5	1 0₂
501	O ₂		460°†	407	O_2
481	302				
459	702				
439	1502			M	ethod K
540 ca. 4N ₂				((31, 33)
468					
	16N ₂				

* Calc. using $\gamma = 1.4$.

$H_2 + Cl_2$

For $Cl_2 + H_2$ by method A (9), 430°-440°; method C (9), 240°-270°; in dark, 190° (11).

H₂S

For $2H_2S + 3O_2$ by method A (9), $315^{\circ}-320^{\circ}$; method C (9), $250^{\circ}-270^{\circ}$. For H_2S , by method E (21), in O_2 , $220^{\circ}-235^{\circ}$; in air, $346^{\circ}-379^{\circ}$.

NH.

By method E (21), in O_2 , 700° -860°. By method not stated (22), in air, 780° .

CO

Method B	(4): M	= 2CO +	O ₂	
t°C	M+	t°C	M+	Method E (43); cf. (21)
645-650 630-650 650-680 For method (19); for	4CO O ₂ od A a D (13);	650-657 695-715 nd C cf. (for meth	4N ₂ 3CO ₂ 9); for nod G	lag: 685° with 10 see lag

CH, Methane

 $CH_4 + 2O_2$, by method A (9), 650°-730°; by method C (9), 606°-650°. By method D (13), 656°-678°.

By method B (4), CH₄ + 2O₂ at 600°-650°; 5CH₄ + 2O₂ at 640°-660°; 10% CH₄ by vol. in air at 730°-790°. (First observation of lags prior to explosion.) Method B*(23, 24, 40). % = % CH₄ in air; V_{15} = temp. in 15 cm³ vessel, V_{275} in 275 cm³ vessel and V_{51} in 81 cm³ vessel.

%	V ₁₅	V 275	%	V 1 5	V 275	%	V_{81}	%	V 81
3	737	680 675 680	10	750	710	2	711	8.8	707
6.5	736	675	12	765	710	3	700	10	714
8.0	735	680	16	807	750	5.9	695	11.8	724
	1					7.0	697	14.4	742

* The explosion occurs after certain definite time lags.

Method E (43), cf. (21). For CH₄ in O_2 , $\frac{1}{2}$ sec lag, 665°; 10 sec lag, 624°. For CH₄ in air, $\frac{1}{2}$ sec lag, 725°; 10 sec lag, 685°. Method E (50, 52, 58). For CH₄ in air. P = mm pressure; L = lag in sec.

$\frac{P}{L}$	100	200	400	600	760	1520	2280	3800	5320
0.5							705	675	653
0.6	815	788	765	753	746	722		ŀ	
1	804	768	747	737	728	711	695	666	644
2	782	733	717	712	715	690	680	652	633
3	:	715	702	696	694	676	667	640	624

Method E (58). For CH₄ in O₂. P = mm pressure; L = lag in sec.

L^{P}	75	100	200	400	600	760
0.5	727	728	732	720	696	670
0.6	715	716	721	715	688	666
1	694	695	697	692	675	657
2	667	665	660	652	645	641
3		651	643	636	631	629
10		633	621	611	604	602

By method G (58), $CH_4 + 3O_2$, 340° ; $CH_4 + 5O_2$, 345° ; $CH_4 + 15O_2$, 377° ; $7\frac{1}{2}$ % CH_4 in air, 428° .

C2H2 Acetylene

By method E (21), in O₂, $400^{\circ}-440^{\circ}$; in air, $406^{\circ}-440^{\circ}$. By method B (24), for 45-55% C₂H₂ in air, 335° ; 20% in air, 400° ; 10% in air, 500° .

C₂H₄ Ethylene

For $C_1H_4 + 3O_2$, method C (9), 530°-606°. By method B (24), for 4.5-6.5% C_2H_4 in air (vol. vessel = 275 cm³), 487°. By method E (21), for C_2H_4 in O_2 , 500°-519°; in air, 542°-547°. Cf. (9), method A; (13), method D; (31), method K.

[†] Calc. using $\gamma = 1.32$ to allow for cooling losses during compression.

C2H6 Ethane

By m	ethod B	(47). 9	% = % C	He in ai	r (vol. v	ressel = 8	85 cm³)
%	1.9	2.3	4.05	4.85	5.7	8.15	10.60
t°C	594	571	560	555	550	540	534

For C_2H_6 , method A, cf. (9); method D (13). By method C (9), for $C_2H_6 + 3.5O_2$, $530^{\circ}-606^{\circ}$. By method B (24), for 4-8% C_2H_6 in air (275 cm³ vessel), 560° .

C₂H₈ Propane

By method D (13), in O₂, $545^{\circ}-548^{\circ}$. By method E (21), in O₂, $490^{\circ}-570^{\circ}$. Method B (47), vol. of vessel = 85 cm³

% C ₃ H ₈ in air	1.25	2.50	3.05	4.90	6.50	7.85
ℓ°C	588	552	544	525	516	514

C4H10 n-Butane

Method B (47), vol. of vessel = 85 cm³

% n-C ₄ H ₁₀ in air	1.25	2.00	2.60	3.65	4.85	7.65
t°C	569	545	531	515	502	489

C4H10 Isobutane

For iso-C₄H₁₀ by method D (13), in O₂, 545°-550°.

C₅H₁₂ n-Pentane

For 2-3% C_5H_{12} in air, 512° by method B (24). For 6.7% in air, 320°-336° by method H (37). Method B (47), vol. of vessel = 85 cm³.

% C6H12 in air	1.5	2.15	2.75	3.75	5.30	7.65
t°C	548	532	520	502	486	476

C6H6 Benzene

Method	B		J		K
Lit.	(24)	(30)	(38)	(45)	(31, 33)
	In air	In O ₂	In O ₂	In air	
	5%, 587°	566°	570	490	

C₆H₁₄ n-Hexane

By method H (37), for 6.7% in air, 300°-306°.

C7H16 n-Heptane

By method H (37), for 6.7% in air, 285°; (39) 5% in air, 280°(39).

C₈H₁₈ n-Octane

By method H, for 6.7% in air, 275° (37); 280° (39).

Petroleum

Method	В		K				
Lit.	(24)	(30)			(27)	(31, 33)	
	In air		In O ₂	In air	In air		
	2.2%	Texas	256°	387°	Borneo		
	481°	Borneo	269°	380°	400°		
		Mexico	274°	424°			

C2H6O Ethyl Alcohol

Method	B (in air)			J			
Lit.	(24)	4) (34)*			(38)	(45)	
		2%, 515-520° 3%, 505°	4%, 455–500° 5%, 480–495°	395°‡ 518°†	355°‡	360°†	

^{*} Sub-ignition temp.

C₄H₁₀O Ether

In air by method A (32), 190°; method B (35), 185°-193°; method J (30), 347°. In O_2 by method J (30), 190°.

By method B* (34), for 4.8% in air, 178°-184°; for 4.1%, 179°-185°; for 3.5%, 180.5°-188°. By method H (39), for 6.6% in air, 212°. Method K, cf. (31, 33).

* Giving sub-ignition temp. with incomplete combustion.

CS₂

Method E (48)

In O ₂ , °C	132	128	123	118	114	110	107
In air, °C	156	151	145	138	130	124	120
Lag in sec	0.5	1	2	3	5	7	10

By method B (5), for $CS_2 + 10O_2$ at P = 750 mm, 160° with 1-2 sec lag. At P = 300 mm and with 15 sec lag, for $CS_2 + 5O_2 + 5N_2$, 155° ; for $CS_2 + \frac{1}{2}O_2 + 8N_2$, 290° . By method F (42), in O_2 , 236° . By method H (39), for 12.5% in air, 253° .

C2N. Cvanogen

By Method E (21), in O2, 803°-818°

Miscellaneous

(a) = acetone, (b) = paraffin, (c) = turpentine, (d) = creosote oil, (e) = palm oil, (f) = aldehyde, (g) = aniline, (h) = toluene, (i) = xylene, (j) = methyl alcohol, (k) = amyl alcohol, (l) = anthracene, (m) = naphthalene.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
Method	B* ‡	J†	J	J*	J*	?*	?*
Lit.	(34)	(30)	(30, 45)	(27)	(27)	(22)	(22)
	4%, 500° 8%, 500°		275°*† 240°*	550°	400°	380°	530°
	(h)	(i)	(j)	(k)	(1)	(m)
Method	J†	?*	J†	J†	J	 	J†
Lit.	(38, 30)	(22)	(38)	(38)	(3	8)	(38)
	563° 516°	500°	500°	315°	47	2°	500°

^{*} In air.

LITERATURE

(For a key to the periodicals see end of volume)

- Davy, 62, 106: 7; 1816.
 Bunsen, B72.
 Mitscherlich, 25, 9:1171;
 (4) Mallard and Le Chatelier, 34, 91: 825; 80. 51, 1: 173; 82. 15,
 4: 274; 83. 27, 89: 2; 83. (8) Turpin, 183, 1890: 776. (4) Krause and Meyer, 13, 284: 85: 91. (7) Freyer and Meyer, 26, 25: 622; 92. (4)
 Askenasy and Meyer, 13, 269: 49; 92. (9) Freyer and Meyer, 7, 1: 28; 93.
- (10) Mitscherlich, 25, 26: 160; 93. (11) Mitscherlich, 25, 26: 399; 93. (12) Meyer, 25, 26: 429; 93. (13) Meyer and Munch, 25, 26: 2421; 93. (14) Meyer and Raum, 25, 28: 2904; 94. (18) Gautier and Helier, 34, 122: 566; 96. (16) Helier, 6, 10: 521; 97. (17) Bodenstein, 7, 29: 665; 99. (18) Emich, 57, 29: 1061; 00. (19) Falk, 1, 28: 1517; 06.
- (20) Falk, 1, 29: 1536; 07. 8, 24: 450; 07. (21) Dixon and Coward, 4, 95: 514: 09. (22) Holm, 92, 26: 273; 13. (23) Taffanel and Le Floch, 34, 186: 1544; 13. (24) Taffanel and Le Floch, 34, 187: 469; 13. (23) Dixon, Bradshaw and Campbell, 4, 100: 2027; 14. (26) Dixon and Crofts, 4, 100: 2036; 14. (27) Constam and Schläpfer, 98, 57: 39; 14. (28) Crofts, 4, 101: 290, 306; 15. (29) Cassel, 8, 51: 685; 16.
- (30) Moore, 54, 36: 109; 17. (31) McDavid, 4, 103: 1003; 17. (32) Alilaire, 34, 168: 729; 19. (33) White and Price, 4, 118: 1248; 19. (34) White and Price, 4, 115: 1462; 19. (35) McClelland and Gill, 117, 16: 109; 20. (36) Fiesel, 7, 97: 158; 21. (37) Tizard, 411, 37: 381; 21. (28) Wollers and Emcke, Krupp's Monatsheft, 1921. (38) Tizard and Pye, 3, 44: 79: 22. (40) Mason and Wheeler, 4, 121: 2079; 24. (41) Mitscherlich and Reuter, 93,
- (40) Mason and Wheeler, 4, 121: 2079; 24. (41) Mitscherlich and Reuter, 93, 121: 53; 22. (42) Wartenburg and Kannenberg, 7, 105: 205; 23. (43) Dixon, 398, 68: 1; 23. (44) Tauss and Schulte, 98, 68: 574; 24. (43) Jentzsch, 98, 68: 1150; 24. (46) Ormandy, 358, 10: 335; 24. (47) Mason and Wheeler, 4, 128: 1869; 24. (48) Dixon, 70, 44: 305; 25. (49) David, 133, 1925: 303.
- (50) Dixon, 133, 1925; 303.
 (51) Dixon and Harwood, 398, 1925.
 (52) Dixon and Higgins, 398, 69: 19: 25.
 (53) Parr, 45, 17: 1215; 25.
 (54) Coward and Wheeler, Safety in Mines Research Board, Paper No. 8; 25.
 (55) Naylor and Wheeler, Ibid. No. 9; 25.
 (58) Tizard and Pye, 3, 1: 1094; 26.
 (57) Pignot, 34, 182: 376; 26.
 (58) Dixon, Harwood and Higgins, 83, preprint, 1926.
 (59) Dixon and Russell, 4, 78: 600; 99.

[†] In air.

[‡] In O2.

[†] In O2.

[‡] Satd. at 15°, 505°.

ELECTRICAL IGNITION

In the case of electrical ignition and probably also in contact with direct flame or with an incandescent wire, ionization of the gas is an important factor. In the case of electric spark ignition, attempts have been made to determine experimentally the minimum igniting current or spark energy. Unfortunately, however, quantitative values are not easily determined owing to experimental difficulties. Consequently, much of the experimental evidence is of a contradictory nature, so that the part played by ionization in determining the least energy required to inflame a given explosive mixture remains an unknown factor. Representative curves showing least igniting currents are given in Figs. 1 to 4.

Fig. 1.—Least igniting currents for mixtures in air of members of the paraffin series, using break-sparks. Iron poles. 100 volts (*).

Fig. 2.—Least igniting currents for mixtures in air of members of the paraffin series, using impulsive electrical discharges (23).

LITERATURE

(For a key to the periodicals see end of volume)

- Thornton, 80, 44 I: 145; 12. 46 II: 112; 13. (2) Thornton, 115, 94: 348; 13. 396, 120: 295; 13. 121, 70: 62; 13. (3) Thomson, 63, 14: 11; 13. (4) Thornton, 121, 71: 1012; 13. (5) Thornton, 5, 90: 272; 14. (6) Thornton, 121, 73: 822; 14. (7) Thornton, 6, 91: 17; 14. (8) Thornton, 5, 28: 734; 14. (9) Hauser, 529, 1916; 521.
- (10) Thornton, δ, 92: 9; 16. (11) Thornton, δ, 92: 381; 16. (12) Morgan, 115, 102: 427; 16. (13) Morgan, 121, 76: 536; 16. 599, 111: 66; 16. (14) Thornton, 599, 112: 504; 16. (15) Sastry, 4, 109: 523; 16. (16) Wheeler, 4, 111: 130; 17. (17) Wheeler, 4, 111: 17. (18) Wright, 4, 111: 643; 17. (19) Paterson and Campbell, 67, 31: 168; 19.

Fig. 3.—Influence of the nature of the pole on the least igniting current for mixtures of methyl or ethyl alcohol vapor with air, using break-sparks. Iron and nickel poles. 100 volts (*).

Fig. 4.—Influence of current voltage on the least igniting current for methane-air mixtures, using break-sparks. Iron poles, continuous current (*).

- (20) Thornton, 5, 38: 613; 19. (21) Morgan, 4, 115: 94; 19. (22) Thornton, 5, 40: 345; 20. (23) Thornton 5, 40: 450; 20. (24) Wheeler, 4, 117: 903; 20. (25) Morgan, 5, 41: 462; 21. (26) Morgan and Wheeler, 4, 119: 239; 21. (27) Thornton, 400, 11: 524; 22. (28) Jones, Morgan and Wheeler, 5, 43: 359; 22. (29) Thornton, 133, 1923; 469.
- (30) Morgan, 4, 123: 1304; 23. (31) Morgan, 5, 43: 968; 23. (32) Thornton, 46, 62: 481; 24. (33) Wheeler, 4, 125: 1858; 24. (34) Wheeler, 4, 127: 14; 25. (38) Morgan, 7, 49: 323; 25. (38) Thomson, The Conduction of Electricity through Gases, London, Cambridge Univ. Press, 1903. (37) Morgan, Principles of Electric Spark Ignition in Internal Combustion Engines. London, Lockwood, 1923. (38) Wheeler, Safety in Mines Research Board, Paper No. 20; 26. (39) Bone and Weston, 5, 110: 615; 26.

PRE-FLAME CONDITION

(40) Kirkby, 5, 7: 223; 04. (41) Kirkby, 5, 13: 289; 07. (42) Kirkby, δ, 85: 151; 11. (43) Lind, 78, 21: 177; 12. (44) Finch and Cowln, 5, 111: 257; 26.

LIMITS OF INFLAMMABILITY

The limits are given in volume % and apply to atmospheric conditions of temperature and pressure unless otherwise stated. The first value in the limits column is the lowest lower limit, and the second the highest higher limit of the experimentally found values, which usually agree within a few tenths of 1%.

Abbreviations

$\mathbf{E}_{\mathbf{v}}$	Explosion in closed vessel of volume v, cm ³ generally stated.
$\mathrm{Fl}_{\mathtt{D}}$	Downward propagation of flame.
Fl_{H}	Horizontal propagation of flame.
$\mathrm{Fl}_{\mathtt{v}}$	Upward propagation of flame.
Atm.	Nature of atmosphere.
Exper. condn.	Experimental conditions.
$\mathbf{Tb}_{\mathbf{x}}$	Tube whose diameter $= x$ cm.
Sat.x	Gases saturated with H ₂ O vapor at x°.
P _{xat} .	Pressure, x atmospheres.
P_{xmm}	Pressure, x mm Hg.
All temperatur	es are in °C.

Fig. 4a.—Limits of inflammability of mixtures of gases and vapors with air.

H,

Atm.	Limits	Exper. condn.	Lit.
02	9.4-91.0	15° Fl B, Tb4, Sat. 17. 5	(12)
	9.0-93.3	100° 5 11 H, 104, Sat. 17.5	()
Ai r	9.2-65.0	15°) FI Th Sot	(12)
	9.2-68.5	100° Fl _H , Tb ₄ , Sat. 17. 5	()
Air	9.0-62.8	15° \ Fl _H , Tb ₄ , dried by	(12)
	9.0-68.6	100° ∫ P₂O₅	()
CO ₂ :O ₂	11.7-68.4	15° \ El Th Sot	(12)
79:21	11.4-69.4	100° Fl H, Tb4, Sat. 17.4	()
Air	5.0-72.0	Glass, Tb _{7.5} , Fl _v	(14)
Air	10.0-	E 2000	(18)
Air	9.5-66.3		(19)
Air	9.45-66.4	E110, Sat.	(23)
Air	9.73-63.6	Tb _{1.4} , Fl _p	(25)

		. (Continued)	
Atm.	Limits	Exper. condn.	Lit.
O ₂	5.45-94.7	Sat. 15-18	(28)
Air	8.7 -		(34)
O ₂	8.7 -	$\left.\right $ \mathbf{E}_{100} , $\mathbf{Fl}_{\mathbf{D}}$	(34)
Air	9.05-68.6	P_{2-2at}	(36)
	9.28-68.0	P5-6at. E1940, Flp	(36)
	9.47-67.5	P _{10at.}	(36)
Air	4.1 -	E170 000, Fl v, Sat. 17-18	(39)
Air	4.1 -60.0	,	(51)
Air	10 -66.0	$\mid \mathbf{E_v} \mid$	(52)
Air	-74.2	Sat. room	(56)
		15 l vessel	
Air	9.4 -65.3	E120	(60)
02	9.1 -91.7	E ₁₂₀	(60)
$O_2: N_2$	9.2 -81.2	E120	(60)
40.1:59.9			
$O_2: N_2 \dots$	9.2 -86.4	E ₁₂₀	(60)
56.2:43.8			
Air	9.46-64.5	Glass pipette	(73)
	9.42-65.9	Glass bulb	(73)
	10.78-59.8	(20°)	
	9.27-67.5	100° Iron tube	(73)
	8.98-72.2	200° Hon tube	
	8.62-79.1	300°	
Air	4.15-75.0	Fl _v , Tb ₇₋₅	(74)
	6.50-	Fl _H , Tb _{7.8}	(74)
	8.8 -74.5	Fl D, Tb7.5	(74)
Air	9.40-71.5	17 ± 3°)	
	9.2 -	50°	
	8.8 -73.5	100°	
	8.3 -	150°	
	7.9 -76.0	200° Fl _D , Tb ₃₋₅	(78)
	7.5 -	250°	
	7.1 -79.0	300°	
	6.7 -	350°	
	6.3 -81.5	400°	
		H ₂ S	
Air	4.5 -19.0	1	(51)
Air	5.9 -27.2	Fl _H , Tb ₆	(72)
Air	4.30-45.5	Fl _v , Tb ₇₋₅	(74)
,	5.30-35.0	Fl _H , Tb ₇₋₅	(74)
	5.85-21.3	Fl _D , Tb ₇₋₅	(74)
		NH,	
Air.,	16.2-27.0	E ₅₀₀ , sphere	(34)
02	15 -80	Found by altering burner mix-	(45)
	1	,	

		NH,	
Air	16.2-27.0	E ₅₀₀ , sphere	(34)
02	15 -80	Found by altering burner mix-	(45)
		ture	
Air	16.1-26.6	Fl _v , Tb _s , 18°	(65)
	18.2-25.5	Fl _H , Tb ₅ , 18°	(65)
	22.1-23.3	Fl _p , Tb _s , 70°	(65)
	21.0-24.6	Fl _p , Tb ₅ , 90°	(65)
	15.0-28.7	Fl _v , Tb _s , 140°	(65)
	17.0-27.5	Fl _H , Tb ₅ , 140°	(65)
	19.9-26.3	Fl _D , Tb _b , 140°	(65)
	14.0-30.4	Fl _U , Tb _s , 250°	(65)
	15.9-29.6	Fl _H , Tb _b , 250°	(65)
	17.8-28.2	Fl _p , Tb _s , 250°	(65)
	13.0-32.2	Fl _v , Tb _s , 350°	(65)
	14.7-31.1	Fl _H , Tb ₅ , 350°	(65)
	16.0-30.0	Fl _D , Tb ₅ , 350°	(65)
	12.3-33.9	Fl ₀ , Tb ₅ , 450°	(65)
	13.5-33.1	Fl _H , Tb ₅ , 450°	(65)
	14.4-32.0	Fl _D , Tb ₅ , 450°	(65)
	O ₂	O ₂	Air

NH ₃ .—(Continued)					H, Metha	ine		
Atm.	Limits	Exper. condn.	Lit.	Atm.	Limits	I	Exper. condn.	L
	17.1-26.4	Fl _v , Tb ₇₋₅ , 18°	(65)			1		1
	17.4-26.3	Fl _H , Tb _{7.5} , 18°	(65)	02	6.0 - 57.3	15°) 151	Th C.+	(1
1 	15.3-79.0	Fl _v , Tb ₅ , 18°	(65)	1	5.7 - 57.4	100° F1	H, Tb4, Sat. 17.5	١,
	16.7-79.0	Fl _B , Tb _b , 18°	(65)	Air	5.7 -13.2	150 1		
	14.8-	II	(65)		5.5 -13.2	100° FI	H, Tb4, Sat. 17.5	(1
		Fl _H , Tb ₅ , 250°	1 ' '			, ,	The defendance)	
	15.8-	Fl _D , Tb ₅ , 250°	(65)		5.8 -12.8		H, Tb4, dried over	(1
	12.6-	Fl _H , Tb ₅ , 450°	(6.5)	1	5.8 - 13.6	100° ∫ P ₂	2O ₅	Ι,
	13.5-	Fl _D , Tb ₅ , 450°	(65)	CO2:O2				i
	14.8	Fl _v , Tb _{7.5} , 18°	(65)	79:21	8.7 -11.9	15°) 77	, m, a,	١.,
	15.6-	Fl _B , Tb ₇₋₆ , 18°	(65)		8.5 -12.2	100° F	l _H , Tb ₄ , Sat. 17. 5	(
			(65)	Air		, ,		10
	17.3-	Fl _D , Tb ₇₋₅ , 18°	1 (00)	Air	5.0 -13.0	Fl _v , Tb ₇ .		Ι,
		CO			6.0 -11.0	Fl _D , Tb ₇	• 5	0
	15.4 -94.1	15°) ra	1	Air	6.0 -	E _{2 000}		0
	1	100° Fl _H , Tb ₄ , Sat. 17.5	(12)	Air	6.4 - 12.8	i		1 (
	14.4 -94.8	100)		Air	6.1 -12.8	E110, Sat	i .	10
	14.1 -74.8	15° Fl _H , Tb ₄ , Sat. 17. 5	(12)		6.3 -	Flp, Tbe		Ιè
	13.0 -77.6	100° } FlH, 1 D4, Sat. 17. 5	` '	A:	l			,
02:02	21.6 -73.1	15°) El Th Sat	(12)	Air	5.6 -	1	re 16 cm diam., cent-	(
,	20.0- 75.1	100° Fl _H , Tb ₄ , Sat. 17. 5	(12)	1	1	ral igni		1
,	13.0 -75.0	Fl _v , Tb _{7.6}	(14)	Air	6.0 -	100° F	L. E Sot	1
	1		(14)	0,	6.25-	100° 1	l _D , E ₁₀₀ , Sat. ₁₈₋₁₈	1
	15.9 -74.5	Fl _H , Tb ₄	1 ' '	Air	6.0 -13.0	D 1		1
	19.1 -61.7	Tb _{0.6}	(17)		6.6 -14.0	Ploat.	Fl _d , E ₁₉₄₀	(
	38.0 -57.0	Tb ₀₋₃ *	(17)	N .0 .00	0.0 14.0	4 10at. j		
	16.4 -	P ₄₃₀	(17)	N ₂ :O ₂ :CO ₂		1,		
	18.6 -	P ₁₃₀	(17)	81:19	5.5 -13.5	11		
	27.9 -		(17)	31:19:50	8.0 -11.3	11		
	1	P ₈₅		83:17	5.7 -11.8	11		
	14.2 -	400°	(17)	40:17:43	8.3 -8.7	Limits	given are for explo-	1
	9.3 -	470°	(17)	85:15	5.9 -9.6	1 >	in a large steel bomb	(
	7.4 -	575°	(17)	1		Sion	in a large steel bomb	
· . 	1		(18)	64:15:21	7.3 -7.5	11	•	1
	17.3 -74.8		(19)	87:14	6.3 - 7.1	11	-	
		n	' '	85:13:2	6.6 -6.8	1 1		
	16.5 -75.0	E110, Sat.	(23)	O ₂	5.99-	'		Ì
	14.5 -	100° E. Fl. Set	(34)	O2: N2		1,		
. .	15.7 -	$\left \frac{100^{\circ}}{100^{\circ}} \right $ E ₁₀₀ , Fl _D , Sat. ₁₅₋₁₈	(34)		F 05	11		1
	15.9 -72.9	P _{1at.} , E ₁₉₄₀	(36)	80:20	5.95-	11		
	18.4- 62.0	P _{10at.} , Fl _p	(36)	60:40	5.90-	11		.1
	1		(39)	40:60	5.82-	11		1
	ł .	E _{170 000} , Fl _D , Sat. ₁₇₋₁₈	1 ` ′	30:70	5.77-	Ev. spl	nere 16 cm diam.	1
	12.6 -70.0		(51)	25:75	5.76-		nere 16 cm diam.	
	15.0 -73.0	Sat.room	(52)	20:80	5.78-	Dv, sp.	icie 10 cm diam.	Ι'
	-74.2	15 l vessel	(56)			1 1		1
	15.55-71.0	E ₁₂₀	(60)	19:81	5.84-	1 1		1
	16.63-93.6	E ₁₂₀	(60)	13.4:86.6	6.41-			1
	10.00-00.0	2120	(3.5)	13:87	6.63-	11		1
N ₂		1_		Air	5.3 -	É170 000,	Sat.15-17	1
	15.85-83.6	E ₁₂₀	(60)	Air		Ignition		1
8:49.2	15.85-87.7	E ₁₂₀	(60)		5 B 14 C	1 0)	1
	15.75-68.9	Glass pipette	(73)		5.6 -14.8	Center	D 10 :	1
	15.4 -71.6	Glass bulb	(73)		5.4 -14.8	Тор	$\mathbf{E_{v}}$, 16 cm sphere	(
					6.0 -13.4	Bottom]	1
	15.8 -63.8	(20°)			5.4 - 14.3	Fl _H , E _v ,		1
	14.05-69.6	100° Iron tube	(73)	O2: N2			• •	1 `
	13.80-76.6	200°]			5 80 14 0	1		1
	12.8 -75.0	Fl _v , Tb _{7.5}	(74)	20.9:79.1	5.60-14.8			1
	13.6 -	Fl _H , Tb ₇₋₅	(74)	19.2:80.8	-12.9			
			' '	18.3:81.7	-11.9			1
	15.3 -70.5	Fl _D , Tb ₇₋₅	(74)	17.0:83.0	5.80-10.6	11		١.
	16.3 -70.0	17 ± 3°	1	15.8:84.2	5.83-8.96	1 }		(
	15.7 -	50°	1	14.9:85.1	6.15-8.36			1
	14.8 -71.5	100°	1	1				1
	14.2 -	150°	1	13.9:86.1	6.35-7.26			1
	1	1	/7#\	13.5:86.6	6.50-6.70	IJ		1
	13.5 -73.0	200° Fl _D , Tb _{2.5}	(78)	13.2:86.8	*	-		1
	12.9 -	250°		Air	5.76-	Fl_{D}		1
	12.4 -75.0	300°		*****				1 '
	12.0 -	350°			5.56-	FlH		(
	11.4 -77.5	400°	1		5.52-	$ \mathrm{Fl}_{v} $		(

		ethane.—(Continued)			CH, Me		,	
Atm.	Limits	Exper. condn.	Lit.	Atm.	Limits	<u> </u>	Exper. condn.	Li
Air	4.9 -	$ \mathbf{Fl}_{\sigma} $			5.5 -14.6	200°		i
	5.7 -	Fl_D Box, 5.75 ft., cube	(47)		5.30-	250°	(
	5.5 -	Fl _H		Air	5.10-15.5	300°	Fi Th.	(7)
Air	5.0 -	Fl _U , E ₂₂₀₀	(47)		4.95-	350°	Fl_{D} , $Tb_{2.5}$	(7)
	-13.9	Fl _D , Tb ₃₀	(47)		4.80-16.6	400°		
	-15.4	Fl _v , Tb ₃₀	(47)		4.55-	450°		- 1
	5.5 -13.2	Fl _D , E ₁₀₀	(47)	Air	5.4 -14.1	Ev, Tb	• 5	(7
Air	5.46-	25°, E ₁₀₀	(48)	Air +				
	4.98-	200°, E ₇₀₀	(48)	0.8% C2H2Cl2	7.35-10.2			1
	4.75-	300°, E ₁₀₀	(48)	0.8% C2H2Cl4	7.15-9.2			11
	4.55-	400°, E ₁₀₀	(48)	1.0% C2HCls	5.95-10.3			
	3.75	500°, E ₁₀₀	(48)	20% C2H2Cl2.	*	ļ		- } (7
	5.5 -	P _{1-5at.} , E ₁₀₀	(48)	5.5% C2HCl3.	*			11 `
Air	5.6 -14.8		(51)	8.5% CCl4	9.0 -9.9			
Air	5.5 -14.5		(52)	12.2% CCl4	*			
Air	6.00-13.4	20°, Fl _D , E _v	(55)	* No propagati	on of flame.			
	5.45-13.5	100°, Fl _D , E _V	(55)	See also p. 1				
	5.20-13.6	150°, Fl _D , E _V	(55)	1	•	TT A	1	
	5.05-13.9	200°, Fl _D , E _V	(55)		C ₂	H ₂ Acety	dene	
	4.60-14.0	250°, Fl _D , E _V	(55)	Air		Fl _H , Tb	0.05	(1
	4.40-14.3	300°, Fl _D , E _▼	(55)	1	7.7 -10.0	Fl _H , Tb	0-08	(1
	4.15-	350°, Fl _D , E _V	(55)	1	5.0 -15.0	Fl _H , Tb	0-2	(1
	4.00-14.7	400°, Fl _D , E _V	(55)	1	4.5 -25.0	Fl _H , Tb		(1
	3.65-15.4	500°, Fl _D , E _V	(55)		4.0 -40.0	Fl _H , Tb	0.6	(1
	3.35-16.4	600°, Fl _D , E _V	(55)		3.5 -55.0	Fl _B , Tb	2-0	(1
	3.25-18.8	700°, Flp, Ev	(55)		3.1 -62.0	Fl _H , Tb		(1
	-23.6	750°, Fl _D , E _V	(55)		2.9-64.0	Fla, Tb		(1
	-29.0	800°, Fl _D , E _V	(55)	Air	2.8 -65.0		nuous propagation,	11
	6.00-13.0	P ₇₆₀ , Fl _D , E _v	(55)	0,	2.8 -93.0	large		} (¹
	6.05-13.2	P ₁₂₅₀ , Fl _D , E _v	(55)	Air	3.8 -40.0	`		(1
	-13.4	P2100, Flp, Ev	(55)	Air	3.0 -82.0	Flo, Tb	7.6	(1
	6.20-13.6	P ₂₉₀₀ , Fl _D , E _v	(55)	Air	3.35-52.3	E110, Sa		(2
	6.25-	P 3350, Fl., Ev	(55)	Air	1.53-58.7	Flp, Tb		(2
	-13.8	P ₃₇₅₀ , Fl _D , E _v	(55)	Air	2.82-51.7	Flp, E10		_ } 4
	6.40-14.1	P ₄₆₅₀ , Fl _D , E _v	(55)		-73.0	Flu, E		_
Air		15 l vessel, Sat. room	(56)		2.98-	Fl _{υ-D} , I		_
O2: N2		10011	` '		2.53-	Flu, E2		_ } •
13.7:86.3	6.4 -6.9	Fl ₂ , Tb _{2.5}	1	İ	2.87-	Fl _D , E ₂		1 6
17.0:83.0	1	Fl _H , Tb ₂₋₅	11	Air	3.0 -46.0	5,	,,,,	(5
21.0:79 .0		Fl _H , Tb _{2.5}	{ (58)	Air	3.0 -73.0			(5
33.0:67.0	5.8 -25.1	Fl _H , Tb _{2.5}	11	Air	3.4 -52.5	E120		(6
50.0:50.0	5.8 -38.8			O ₂	3.4 -90.0	E120		(6
66.0:34.0		Fl _H , Tb ₂₋₅		O ₂ : N ₂	0.1			\
O ₂	5.7 -59.2	Fl _H , Tb _{2.5}	(58)	40.5:59.5	3.4 -74.4	E120 .		nl
Air	6.05-12.1	E ₁₂₀	(60)	58.0:42.0	3.4 -82.4	E ₁₂₀		} (e
_	6.39-52.1	I _	(60)	78.5:21.5	3.4 -87.4	E ₁₂₀		\mathbb{R}^{C}
O ₂	0.39-32.1	E ₁₂₀	(33)	Air	2.68-	Glass p	inette	¹ (7
O2: N2	6 06 00 7	100	1	All			- <u>-</u>	(7
45.2-54.8	6.26-29.7	E ₁₂₀	(60)		2.39- 3.12-	(20°)	uib	10
62.2–37.8	6.30-38.6	E120	[]		1 05 DE DE	100°	Iron tube	/7
86.3–13.7	6.44-47.8	E ₁₂₀	/73\		1.90	2000	HOH tube	(7
Air	6.12-13.6	Glass pipette	(73) (73)	l Aim	1.95- 2.60-80.5	200°		//2
	5.82-13.6	Glass bulb	(,3)	Air		Fl _v , Tb		(7
	6.25-12.8	(20°)		1	2.68-78.5	Fl _H , Tb		(7
	6.02-13.9	100° Iron tube	(73)	A:=	2.78-71.0	Fl _D , Tb	`	(7
	5.91-14.1	200		Air	2.90-55.0	17 ± 3°		
. •	5.80-14.1	300° J	(74)		2.83-59.0	50°	.	
Air	5.35-14.9	Fl _v , Tb _{7.5}	(74)		2.68-65.0	100°	Tal mi	,_
	5.40-14.0	Fl _H , Tb _{7.5}	(74)		2.52-73.0	150°	Fl _D , Tb _{2.5}	(7
	5.95-13.4	Fl _D , Tb _{7.5}	(74)		2.39-81.0	200°		
A ir	6.30-12.9	17 ± 3°			2.30-	250°	j	
	6.20-	50° Fl _D , Tb _{2.5}	(78)		2.19-	300°	J	
	5.95-13.7	100° (F1b, 152.5	` '				· · · · · · · · · · · · · · · · · · ·	
	5.75-14.1	150°	ı	1				

C ₂ H ₄ Ethylene			C ₅ H ₁₂ n-Pentane				
Atm.	Limits	Exper. condn.	Lit.	Atm.	Limits	Exper. condn.	Lit.
Air	4.0 -22.0	Fl _v , Tb _{7.5}	(14)	Air	1.1 -		(18)
Air	4.1 -14.6	E110, Sat.	(23)	Air	1.35-	E _v , sphere 16 cm diam.	(30)
	3.4 -	Fl _D , Tb ₆₋₂ , Sat.	(23)	Air	2.4 -4.9	E ₁₁₀ , Sat.	(23)
Air	5.7 - 17.5	_	(51)	Air	1.35-4.5		(51)
Air	3.8 -14.2	E ₁₂₀	(60)	Air	1.6 -5.4	Fl _H , Tb ₂₋₅	(58)
02	4.0 -62.0	E ₁₂₀	(60)	Air	1.42-8.0	Fl _v , Tb _{7.6}	(74)
O ₃ : N ₂ 40.4:59.6	4.0 -47.7	E ₁₂₀			1.44-7.45	Fl _H , Tb _{7.5} Fl _D , Tb _{7.5}	(74) (74)
74.7-25.3	4.0 -56.4	E ₁₂₀	(60)	Air	1.53-4.5	17 ± 3°)	
Air	3.4 -14.1	Fl _H , Tb ₂₋₅	(62)		1.50-	50°	
	3.6 -13.7	Fl _D , Tb _{2.6}	(62)		1.44-4.75	100°	
	3.2 -25.6	Fl _v , Tb _{2.5}	(62)		1.39-4.90	150° Fl _D , Tb ₂₋₅	(78)
Air	3 · 52 –	Glass pipette	(73)		1.34-5.05	200°	
	3.34-	Glass bulb	(73)		1.30-	250°	
	3.69-	(20°)	/72\		1.22-5.35	300° J	
	3.22- 3.40-	100° Iron tube 200°	(73)		Ci	H ₁₂ Isopentane	
Air	3.02-34.0	Fl _v , Tb _{7.6}	(74)		1	Center ignit. E _v , sphere 16	1
***************************************	3.20-23.7	Fl _H , Tb _{7.5}	(74)	Air	1.30-	cm diam.	(30)
	3.33-15.5	Fl _p , Tb _{7.5}	(74)				
Air	3.45-13.7	17 ± 3°)			C	C₀H₀ Benzene	
	3.35-	50°		Air	1.5 -	E2000	(18)
	3.20-14.1	100°		Air	1.4 -4.7	E ₂₀₀₀	(21)
	3.10-	150° Fl _p , Tb ₂₋₅	(78)	Air	2.65-6.5	E ₁₁₀	(23)
	2.95-14.9	200° 250°	. ,		1.4-	Fl _D , Tb ₆₋₂	(23)
	2.85-15.7 2.75-17.9	300°		Air	1.5 -8.0	T.	(51)
	2.60-	350°		O ₂	2.6 -7.2 2.6 -30.1	$\begin{array}{c} \mathbf{E_{120}} \\ \mathbf{E_{120}} \end{array}$	(60) (60)
	2.50-	400°		O ₂ : N ₂	2.0 -30.1	12130	(**)
		C ₂ H ₆ Ethane		40.5:59.5	-15.5	E ₁₂₀	
1	2.12	[Center ignit. Ev, sphere 16]	(30)	58.0.42.0	2.6 -21.0	E ₁₂₀	(60)
Air	3.10-	cm diam.	(30)	78.5:21.5	-27.5	E ₁₂₀	
Air	3.10-10.7		(51)	Air	1.41-7.45	$\left \begin{array}{c} \mathbf{Fl_{v}} \\ \mathbf{Fl} \end{array} \right $ Wide tube	(64)
Air	2.5 -5.0		(52)		1.46-5.55	Fl _D	
Air	3.3 -10.6	Fl _H	(58)		C	6H14 Hexane	
Air	3.9 -9.6 3.9 -46.2	Tb ₂₋₅ Tb ₂₋₅	(60) (60)	Air	1.3-	E ₂₀₀₀	(18)
02: N2	0.0 20.2	103.5					
37.4:63.6	3.80-21.9	E ₁₂₀			C	7H ₈ Toluene	
59.5:40.5	3.90-33.6	E ₁₂₀	(60)	Air	1.3 -	E ₂₀₀₀	(18)
74.7:25.3	3.80-39.7	E ₁₂₀		Air	1.4 -	E ₂₀₀₀	(21)
Air		Fl _v , Tb _{7.δ}	(74)	Air	1.27-6.75		(64)
	3.15-12.9 3.26-10.2	Fl _H , Tb _{7.5}	(74) (74)		1.28-4.60	Fl _D Wide tube	
		Fl _D , Tb _{7.5}	(.4)		С	7H16 Heptane	
Air	2.18-9.7	Fl _v , Tb ₇₋₈	(74)	Air	1.1-	E ₂₀₀₀	(18)
***************************************	2.22-9.3	Fl _B , Tb ₇₋₅	(74)		1 2 . 2	1 2000	· ,
_	2.26-7.4	Fl _D , Tb _{7.5}	(74)			C ₈ H ₁₈ Octane	
	C	H ₈ Propane		Air	1.0-	E ₂₀₀₀	(18)
Air	2.15-	Center ignit. Ev, sphere 16	(30)			Petroleum	
Air		cm diam.		Air	2.4 -4.9	E ₁₁₀	(23)
Air	2.17-7.35 2.4 -7.3	Fl _H , Tb ₂₋₅	(51) (58)	AII	1.1 -	Fl _D , Tb ₆₋₂	(23)
		4H ₈ Butylene	()	Air	2.94-8.22	E _v , 60° fraction	(40)
Air			(74)	Air	1.9 -5.3	Fl _D , E ₁₀₀	(48)
ли	1.70-9.0 1.75-9.0	Fl _v , Tb _{7.5} Fl _u , Tb _{7.5}	(74)		1.5 -6.4	Fl _v , E ₁₀₀	(48)
	1.75-9.0	Fl _D , Tb _{7.5}	(74)	1	1.50-	23°	(48)
		H ₁₀ n-Butane		1	1.42-	200°	(48)
		Center ignit. E _v , sphere 16			1.22-	300°	(48)
Air	1.60-	cm diam.	(28)	l Air	1.02-	400°	(48) (51)
Air	1.55-5.7)	(51)	Air	1.5 -6.0 1.8 -5.15	E ₂₂₀₀ E ₁₂₀	(60)
Air	1.9- 6.5	Fl _H , Tb ₂₋₅	(58)	O ₂			(60)
		· · · · · · · · · · · · · · · · · · ·			20.0		` '

	Petrol	eum.—	-(Continued)			C ₃ H ₈ C) Isopro	pyl Alcohol	
Atm.	Limits		Exper. condn.	Lit.	Atm.	Limits		Exper. condn.	Lit.
O2: N2					Air	2.65-	E2000		(18)
44.0:56.0	1.8 -14.1	E120				CHO	Esh-l-s	ethyl Ketone	
59.5: 40.5 74.7: 25.3		E ₁₂₀		(60)			<u>_</u>	etnyl Ketone	·····
14.1.20.0		,			Air	1.97-10.1	Fl _v	Wide tube	(64)
		Met	hyl Alcohol			2.05-7.6	$ \operatorname{Fl}_{D} $		
Air	5.5 -21.0			(51)		C₄H ₈	O ₂ Eth	yl Acetate	
Air	7.8 –18.0 6.0 –			(21) (18)	Air	2.26-11.4	Fl _v)	Wide tube	(64)
Air	7.05-36.5	Fl_{σ})	` '		2.33-7.1	Fl _D	wide tube	
	7.45-26.5		Wide tube	(64)	İ	C	C ₄ H ₁₀ O	Ether	
	C ₂ H	4O Ac	etaldehyde		Air	1.9 -	1		(18)
Air	3.97-57.0	Fl_{v})		Air	1.8 - 5.2			(21)
	4.27-13.4	Fl_{D}	Wide tube	(64)	Air	2.75-7.7	E110		(23)
	C.H		nyl Alcohol		1	1.6 -	Fl _D , T	b6.2	(23)
Air	3.07-	1		(18)	Air	0.59-0.195* 2.7 - 7.7	'	•	(25)
Air	4.0 -			(21)	Air	2.7 - 7.7	Fl _v		(29)
Air	3.95-13.7	E110		(23)		2.38-6.2		Tb _{2.5}	(56)
Air	4.0 -13.7			(29)		2.34-6.3	FlD		` ´
Air	2.8 -9.5			(51)		1.93-15.8	Fl _v		
Air	3.56-18.0 3.74-11.5	Flo	Wide tube	(64)		2.05- 8.0 2.15- 6.2		Tb ₅ , 20°	(56)
Air	5.02-	Fl _D Fl _U	{			1.93-17.1	$ Fl_{D} $		
	5.18-	FlH	Tb ₂₋₅ , 60°	(56)		2.05-13.0		Tb₅, 60°	(56)
	5.21-	Fl_{D}	1			2.15-7.5	Fl	,	` ′
	4.24-19.0	Fl_{v}				1.73-23.3	Flv		
	4.32-13.8 4.44-11.5	FlH	Tb ₅ , 60°	(56)		1.93-22.3		Tb ₁₅	(56)
	4.44-11.5	Fl _D Fl _U	{			1.80- 6.5 1.87-	$\begin{bmatrix} \mathbf{Fl_D} \end{bmatrix}$	F1_	(56)
	4.37-	Fl	Tb ₁₅ , 60°	(56)	1	-12.9	P ₇₆₁ , 1		(56)
	4.23-	Fl_{D}]			-10.5	P 600, 1	F1 _■	(56)
	С	H ₆ O	Acetone		ł	- 9.2	P 520, 1		(56)
Air	2.9 -	}		(18)		1.88-	$P_{460}, 1$		(56)
Air	2.7 -	ł		(21)		- 8.2 - 7.8	$\begin{bmatrix} P_{450}, \\ P_{400}, \end{bmatrix}$		(56) (56)
Air	5.0 -12.0	Ì		(29)	ı	1.92- 7.3	P 300, 1		(56)
Air	2.15-9.7	Flo		(52)		2.08-6.8	P200, 1		(56)
Air	2.35 - 8.5 $2.3 - 7.5$	Fl₀ Flʊ	1	(52)	Į.	2.33-6.1	$P_{100}, 1$		(56)
АП	2.4 - 6.7	Fl	Tb2.5	(56)			P_{50} , I	_	(56)
	2.75-6.5	Fl_{D}		` ′		-6.2	$P_{800}, 1$		(56) (56)
	2.2 - 9.5	Fl_{v}) .			- 5.9	P ₂₀₀ , 1		(56)
	2.25-9.3	FlH	Tb ₅	(56)		- 5.5	P100, 1		(56)
	2.40- 8.3 2.15- 9.7	$ Fl_{\mathfrak{p}} $	{]	A :	1 71 40 0	P 50		(56)
	2.20- 9.5	Fl	Tb10	(56)	Air	1.71-48.0 1.85-6.4	$\left\{ egin{array}{c} \mathbf{Fl_{D}} \\ \mathbf{Fl_{D}} \end{array} \right\}$	Wide tube	(64)
	2.35-8.5	$\mathrm{Fl}_{\mathtt{D}}$]	` ′	Air	2.26-6.90	1,10	pipette	(73)
	2.88-12.4	Fl_{v}]	1		2.38-6.51	Glass	• •	(73)
	2.89-12.4	Fla	Tb15	(56)		2.34 - 6.15	(20°)	}	
Air	3.11-10.9 2.89-13.0	Fl _D Fl _U) ì			1.97-	100°	Iron tube	(73)
7111	2.93-8.6	Flp	Wide tube	(64)		1.63-	200°	J	
Air	3.59-9.6	-	s pipette	(73)	*Gm per l.	0.77			
	4.03-8.5	1	s bulb	(73)				tyl Alcohol	
	3.68-8.6	(20°	' Iron tubo	(73)	<u>Air</u>	1.68-	E2000		(18)
	3.30-10.1	100°	<u> </u>				CS:	ı	
		IA O	yl Alcohol		Air	1.94-			(18)
<u>Air</u>	3.04			(18)	Air	4.1 -			(21)
	C ₃ H ₅ C	n-Pr	opyl Alcohol		Air	2.5 -45.0			(51)
Air	2.55-	E2000)	(18)	Air	1.06-50.0 1.91-35.0	$\left egin{array}{c} \mathbf{Fl_{D}} \\ \mathbf{Fl_{D}} \end{array} \right\}$	Wide tube	(64)
	·	, ,,,,,,,,			ı	1.81-00.0	LID		1 '

(19)

	CS	.—(Continued)	
Atm.	Limits	Exper. condn.	Lit.
Air	2.11-31.7	Glass pipette	(73)
	2.22-31.2	Glass bulb	(73)
	3.38-29.2 1.35-33.1	$\begin{pmatrix} (20^{\circ}) \\ 100^{\circ} \end{pmatrix}$ Iron tube	(73)
	C.	N ₂ Cyanogen	
Air	7.6-38.0		(51)
	C	H₅N Pyridine	
Air	1.81-12.4 1.88- 7.2	$\left egin{array}{c} \mathbf{Fl_{\sigma}} \ \mathbf{Fl_{D}} \end{array} ight. ight. \left. ight. Wide tube$	(64)
	C ₂ H ₅ I	VO ₃ Ethyl Nitrate	
Air	3.01- 7.5 3.83-15.1	$\left\{ egin{array}{c} \mathbf{Fl_{\sigma}} \\ \mathbf{Fl_{o}} \end{array} ight\}$ Wide tube	(64)

Air	12.4-66.8 12.3-	E ₁₁₀ , Sat. Fl _D , Tb _{6.2}	(23) (23)
Water	Gas (49.45	% H ₂ , 47.90% CO, 2.65% air)	
Air	12.4-66.2	E ₁₂₀	(60)
Air	12.6-92.1	E120	(60) (60)
02: N2			
38.6:61.4	12.5-81.3	E120	(60)

Water Gas (50% H₂, 50% CO)

12.5-66.5

52.7:47.3 . . . | 12.6-86.1 | E₁₂₀

Mixtures of Combustible Gases (56)

E15 000, Flu

Vol. compn.	Limits
H ₂ :CO:CH ₄	
100	4.1 -71.5
75 : 25	4.7 -
50 : 50	6.05–71.8
25 : 7 5	8.2 -
10 : 90	10.8 -
100	12.5 -73.0
90: 10	11.0 -
75: 25	9.5 -
50: 50	7.7 -22.8
40:60	7.2 -
25: 75	6.4 -
100	5.6 -15.1
25 : 75	4.7 -
50 : 50	4.6 -
75 : 25	4.1 -
90 : 10	4.1 -
33 : 33: 33	5.7-29.9
55 : 15: 30	4.7 -
48.5 : 51.5	-33.6

Relative Limiting Igniting Pressures (89)

Below which, under the same sparking conditions, explosive mixtures would not ignite; P = limiting ignition pressure inmm Hg.

% H2 in O2	. P	% CO in O2	P
92.3	285	94.0	>400
91.7	341	93.9	75
88.9	212	92.5	108
85.7	183	91.0	99
80.0	149	88.9	81
75.0	123	85.7	78
66.7	103	80.0	55
50.0	66	75.0	50

% H ₂ in O ₂	P	% CO in O ₂	P
40.0	53	66.7	50
36.7	53	50.0	30
33.3	45	40.0	26
25.0	52	37.5	24
16.7	54	35.3	27
11.8	57	33.3	32
9.1	72	25.0	74
8.8	68*	20.0	92
6.7	80*	18.4	106
		17.0	124
		16.0	135
		15.0	148
		14.3	340
		14.0*	
		13.8*	

^{*} Incomplete combustion.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Humboldt and Gay-Lussac, 51, 60: 129; 1804. 13, 53: 239; 1805. (2) Davy, 62, 106: 1; 1816. 107: 45; 1817. (3) Turner, 410, 11: 311; 1824. (4) Regnault and Reisit, 13, 73: 129; 50. (5) Bunsen, B72, 338; 77. (6) Mallard, 15, 7: 355; 75. (7) Coquillon, 34, 83: 709; 76. (8) Wagner, 409, 8: 186; 76. (9) Mallard and Le Chatelier, 15, 4: 347; 83.
- (10) Wüllner and Lehmann, Berichte der preussischen Schlagwetterkommission, B2: 193: 86. (11) Broockmann, 597, 32: 189; 89. (12) Roszkowski, 397, 33: 491, 524, 535, 553; 90. 7, 7: 485; 91. (13) Le Chatelier, 15, 19: 388: 91. (14) Clowes, 5, 56: 2; 94. 57: 353; 95. 54, 15: 701; 96. Detection and Estimation of Inflammable Gas and Vapour in the Air. London, Lockwood, 1896. (15) Le Chatelier, 34, 121: 1144; 95. (16) Courier and Meunier, 34, 126: 750; 98. (17) Le Chatelier and Boudouard, 34, 126: 1344; 98. (18) Le Chatelier and Boudouard, 34, 126: 1510; 98. (19) Bunte, 25, 31: 19: 98.
- (20) Meunier, 34, 131: 727; 00. (21) Kubierschky, 92, 14: 129; 01. (22) Bunte and Eitner, 397, 44: 835; 01. (23) Eitner, 397, 45: 2, 21 et seq.; 02. Diss., München, 1902. (24) Peler and Jomine, 27, 27: 1207; 02. (25) Teclu, 52, 75: 212; 07. (26) Meunier, 34, 144: 796, 1107; 07. (27) Perman, 58, 87: 416; 11. (28) Fischer and Wolf, 25, 44: 2956; 11. (29) Hartman, 395, 91: 62; 11.
- (30) Burgess and Wheeler, 4, 99: 2013; 11. (31) Brunswig, Explosives, p. 73. New York, Wiley, 1912. Translated by Munroe and Kibler. (32) Clement, 70, No. 43; 13. (34) Parker, 4, 103: 934; 13. (34) Schlumberger and Piotrowski, 397, 87: 941; 14. (38) Crussard, 34, 158: 125, 340; 14. (38) Terres and Plents, 397, 57: 995, 1001, 1016, 1025; 14. (37) Somermeier, 45, 6: 191, 374; 14. (38) Parker, 4, 105: 1002; 14. (39) Coward and Brinsley, 4, 105: 1859; 14.
- (40) Biluchowski and Lahocinski, 136, 1: 1038; 14. 359, 9: 605; 14. (41) Burgess and Wheeler, 4, 105: 2591; 14. (42) Burgess and Wheeler, 4, 105: 2596; 14. (43) Le Prince Ringuet, 34, 158: 1793; 14. (44) Le Prince Ringuet, 34, 158: 1999; 14. (45) Reis, 7, 88: 518; 14. (46) Burrell and Oberfell, 30, No. 112; 15. (47) Burrell and Oberfell, 30, No. 119; 15. (48) Burrell and Boyd, 45, 7: 414; 15. (49) Burrell and Robertson, 45, 7: 417;
- (50) Burrell and Oberfell, 30, No. 134; 16. (51) Thornton, 3, 33: 190; 17. (52) Burrell and Ganger, 30, No. 150; 17. (52) Wheeler and Whitaker, 4, 111: 267; 17. (54) Payman, 54, 37: 406; 18. (55) Mason and Wheeler, 4, 113: 45; 18. (56) Coward, Carpenter and Payman, 4, 115: 27; 19. (57) White and Price, 4, 115: 1426; 19. (58) Payman, 4, 115: 1436; 19. (59) Satterly and Burton, 69, 13: 211; 19.
- (60) Terres, 397, 63: 785, 805, 820, 836; 20. (61) Jorissen, 70, 39: 715; 20. (62) Chapman, 4, 119: 1677; 21. (63) Kats and Smith, 313, No. 2400: 11; 22. (64) White, 4, 121: 1244; 22. (65) White, 4, 121: 1688; 22. (66) White, 4, 121: 2561; 22. (67) Jorissen, 176, 19: 193; 22. (68) Boussu, 34, 175: 30; 22. (69) Asch, 97, 4: 468; 23.
- (70) Builder, 136, 47: 435; 23. (71) Payman and Wheeler, 4, 128: 426; 23. (72) Jones, Yant and Berger, 45, 16: 353; 24. (73) Berl and Fischer, 9, 30: 29; 24. (74) White, 4, 125: 2387; 24. (75) Jorissen and Velisek, 70, 43: 80; 24. (76) Jorissen and Meuwissen, 70, 43: 591; 24. (77) White, 4, 127: 48; 25. (78) White, 4, 127: 672; 25. (79) Jorissen and Meuwissen, 70, 44: 132; 25.
- (80) Crouch and Carver, 45, 17: 641; 25. (81) Jorissen and Valk, 70, 44: 810; 25. (82) Jorissen and Ongkiehong, 70, 44: 814; 25. (83) Jorissen, 70, 44: 1039; 25. (*32) Burgers and Wheeler, Safety in Mines Research Board, Paper No. 15; 26. (\$3b) Coward and Hartwell, Ibid., No. 19; 26. (83c) Jorissen and Ongkiehong, 70, 45: 162, 224, 400; 26. (83d) Explosives in Mines Committee, 3rd Report. London, H. M. Stationery Off., 1913.

LIMITING PRESSURES

(*4) Meyer and Seubert, 4, 45: 581; 84. (*5) Dixon, 62, 175: 634; 84. (*6) De Hemptinne, 186, 761; 02. (*7) Fischer and Wolf, 26, 44: 2956; 11. (*8) Coward, Cooper and Warburton, 4, 101: 2278; 12. (*9) Coward, Cooper and Jacobs, 4, 105: 1069; 14.
(*0) Stavenhagen and Schuchard, 92, 33: 286; 20. (*1) Stavenhagen and

(90) Stavenhagen and Schuchard, 92, 33: 286; 20. (91) Stavenhagen and Schuchard, 92, 34: 114; 21.

RELATIVE INFLAMMABILITIES

(92) Emich, 57, 18: 6; 97. (93) Emich, 57, 19: 299; 98.

PROPAGATION OF FLAME

The "Uniform Movement" and Attendant Phenomena

Given certain conditions, an initial "slow uniform flame movement" can usually be effected in a gaseous explosive medium; its velocity is, however, dependent upon (1) the composition of the mixture, (2) its temperature and pressure, (3) the nature and dimensions of the containing vessel (in case of a tube, the diameter being the important dimension) and (4) the source and character of ignition. It is usually determined experimentally by igniting each explosive mixture with the same type of flame at the open end of a tube which is closed at the other end.

The flame movement so initiated usually proceeds at uniform velocity for a certain short distance, and its termination is marked by a period of accelerated vibrational flame movement, which may in some cases give rise to detonation. In other cases, however, it seems to be succeeded abruptly by detonation.

Recently attempts have been made to establish a so-called "law of flame speeds" for complex combustible gaseous mixtures, e.g., coal-gas and air, on the supposition that in such cases the observed flame speed is caused by the oxygen or combustible gas (whichever of the two is in defect) dividing itself during the combustion so as to form a series of explosive mixtures (of each single component combustible gas with oxygen) giving the same flame speed. This, however, seems a fundamentally wrong view of things.

Abbreviations and Units

 $\mathrm{Tb}_{\mathbf{x}}$. A tube of diameter \mathbf{x} cm was used in experiment. The values given in the tables are the velocities of propagation of flame in cm/sec for the mixtures noted. All gas percentages are in volume %.

			H	[,			
Tb	1 (4)	(8))	Tb ₁	(7)	Tb2.5	(27)
H2 i	n air	2H ₂ +O ₂	+4N ₂	$2H_2+C$	$2+4N_2$	H, i	n O2
Co H2	cm/sec	Tb ₁	350	20°	350	% H ₂	cm/sec
20	200	Tb _{0.6}	323	100°	430	59.9	574
25	280	Tb _{0.3}	350			66.6	662
30*	340	Tb _{0.09}	172			75.2	515
35	410	$3H_{2} +$	· Cl ₂				
40	440	Tb_1	315				
50	380	H ₂ +	3Cl ₂				
60	230	Tb_1	600				

* Not propagated in Tbo.09 or less.

 H_2 in air (16). A, in $Tb_{0.2}$; B, in $Tb_{1.15}$; C, in $Tb_{2.5}$

% H ₂	A	% H ₂	В	% H ₂	C
11.80	No	17.30	150	6.10	No
17.30	125	25.15	260	6.19	10
23.65	200	33.90	383	6.31	12
30.45	320	37.15	400	20.15	260
36.55	390	40.10	410	29.70	405
40.10	420	43.10	420	36.30	490
43.10	420	46.80	400	40.50	480
46.80	400	51.55	360	44.55	460
50.55	353	57.15	270	49.15	385
57.00	280	59.45	175	61.60	145
62.00	155]		71.39	50
63.50	No			71.51	*

* Flame to open end only.

CO

Tb _{2.5} ((23) CO						
in air, s	aturated	Effect of	H ₂ and H	I2O on fla	me speeds	s of CO -	
with	H ₂ O at	air mixtures (34)					
room te	emp. and						
P =	1 atm.	-t°	% CO	% H ₂	% H ₂ O	cm/sec	
		6	39.25	0.65	1.90	73.5	
% CO	cm/sec	28	38.00	0.65	3.70	103.5	
		4	39.70	1.90	0.80	103.5	
16.15		6	46.15	3.85	0.90	152.0	
16.29	19.5	10	47.30	4.05	1.20	150.0	
16.51	19.4	29	46.00	4.05	3.95	167.0	
24.47	34.0	20	47.30	4.15	2.30	144.0	
30.50	46.0	5	37.45	5.60	0.85	170.0	
44.84	60.1	6	43.75	5.60	0.90	170.5	
59.58	56.2	31	42.20	5.60	44.0	156.0	
67.10	30.2	6	40.80	6.05	0.90	160.5	
70.63	20.0	27	39.60	6.05	3.50	158.0	
71.19	19.4	Tb ₁ (7)					
71.31	†	2CO +	O ₂ , 220 ct	m/sec			

^{*} Flame tongue.

[†] Flame to 15 cm.

Fig. 5.—Influence of tube diameter on speed of "uniform movement" with mixtures of hydrogen and air (16).

Effect of H_2O on flame-speed (33). Tb_{2.5}. $t^{\circ} = \text{temp. of saturation with } H_2O$

t°	% H ₂ O	cm/sec	t°	% H₂O	cm/sec	t°	% H₂O	cm/sec
2*	0.70	56	42*	8.00	118	27†	3.50	96
13*	1.45	76	4†	0.80	56	34†	5.20	107
27*	3.50	106	12†	1.35	68	39†	6.85	107
34*	5.20	120	20†	2.30	86	1		
_	45 ~ 0	· ·						

^{* = 45 %} CO in air. † = 40 % CO in air.

CH, Methane

	-	. ,, .	(3, 6, 7, and 1 (3) (3) (3) (4)	<i>,</i> -		air (13) b.
			in iron T		% CH4	cm/sec
% CH4	A	В	C	D	5.4	36
5.99	21.7	19.4	18.3	21.2	6.8	55
6.83	33.4	32.5	32.7	34.1	8.8	100
7.6	45.6	43.5	42.4	43.8	9.45	110
7.95	48.6	48.2	45.2		10.6	109
8.94	63.66	58.7	59.4	63.3	11.5	84
10.0	69.8	65.0	63.2	67.3	13.0	42
10.98	61.1	53.9	54.1	57.5	14.3	36
11.3	53.3	45.4	47.7	50.6		
11.74	36.9	35.2	34.5	36.1		

"Uniform-movement" velocities in tubes of small diameter (20). D = internal diam. of tube in mm; % = % CH₄ in air

D %	7.6	8.0	8.25	8.4	8.5	9.0	9.5	9.95	10.15
3.6	0	0	0	0	0	0	0	0	0
4.5	0	0	(20)	(18)	(20)	(20)	(20)	(33)	0
5.6	(25)	(20)	(27)		36.3	38.4	40.8	41.2	40.8
7.2	(37)	(30)	(30)	(30)	38.0	40.5	46.8	46.3	44.5
8.1	(45)	(30)	(35)	36.5	39.3	42.4	47.7	47.4	46.7
9.0	(55)	32.6	34.8		40.4	44.4	48.9	48.0	47.9

D %	10.5	10.65	10.8	11.0	11.5	11.6	11.65	12.0
3.6	0	0	0	0	0	0	0	0
4.5	0	0	0	0	0	0	0	0
5.6	38.4	0	0	0	0	0	0	0
7.2	42.9	(60)	(53)	(43)	0	0	0	0
8.1	44.0	42.2	41.0	(45)	(50)			(60)
9.0	46.5	45.5		42.5	36.9	35.3	(69)	(60)

Figures in parentheses denote distance travelled before flame died out.

Fig. 6.—Influence of tube diameter on speed of "uniform movement" with mixtures of methane and air (19).

CH4 in air	, Tb _{2.5} (23)	CH₄ ir	$1 O_2 (27)$	
% CH4	cm/sec	% CH ₄	cm/sec	
5.71	*	5.59	†	
5.80	23.3	5.72	20	
6.95	35.0	10.52	266	
7.82	47.4	15. 53	722	
9.12	64.4	21.63	2300	
9.96	66.2	26.95	3991	
10.32	65.5	33.00	5502	
11.10	57 .0	40.00	3020	
12.25	35.0	45.61	488	
13.09	22.0	53.36	82	
13.35	19.1	57.67	29	
13.42	l +	59.50	t	

^{*} Flame to 15 cm.

Fig. 7.—Influence of the direction of flame propagation on speed of "uniform movement" with mixtures of methane and air (28).

Fig. 8.—Comparison of the speeds of "uniform movement" of mixtures of various individual gases with air (29).

Fig. 9.—Speeds of "uniform movement" of mixtures of combustible gases with air (23).

[†] Flame to 5 cm.

[‡] Flame to 30 cm.

C₂H₂ Acetyle	12	Ace	ty.	en	(
--------------	----	-----	-----	----	---

C ₂ H ₂ in	air	C ₂ H ₂ i	n air	C ₂ H	in a	ir (2	22)	_
Tb ₄ (Tb ₄ (9)		Tb _{0.9} (17)		Diam. of tube in mm			be
% C ₂ H ₂	cm/sec	% C ₂ H ₂	cm/sec		12.5	25	50	90
2.9*	10	4	45	2.75				40
8.0	500	6	147	3.45	25	41	60	
9.0-10.0	600	8	260	4.40				115
22.0	40	9	266	4.60	82	95	115	
64*	5	10	264	6.10	158	172	205	
		12	175	7.00		1	ĺ	265
		14	114	8.15	258	270	303	
		16	75	9.45				335
		18	50	10.35	260	278	304	
		20	38	11.6	206	245	283	
	•		1	11.85				285
				13.25	115	145	175	220
			-	16.00	60	68	72	
	,			18.20		l	60	70

^{*} Limit.

Fig. 10.—Speed of "uniform movement" of mixtures of the paraffin series with air (31).

C ₂ H ₄ E	thylene	C ₂ H ₆	Ethane	C,H, P	ropane	C ₄ H ₁₀	Butane
In ai	r (29)	In air	(23)	In air	(23)	In air	(22)
Tb _{1.6} % C ₂ H ₄	cm/sec	Tb2.1 % C2H6	cm/sec	Tbr.s % C3Hs	cm/sec	Tb2.5 % C4H10	cm/sec
3.55	25.8	3.16	*	2.30	‡	1.90	‡
4.00	41.3	3.30	18.1	2.37	20.8	1.95	20.1
6.10	108.4	3.58	25.6	2.58	26.0	2.05	23.3
6.50	129.9	4.47	52.7	2.80	31.4	2.57	49.1
7.20	142.4	4.90	65.0	3.50	48.2	3.01	67.9
8.10	120.6	5.57	80.5	4.28	72.8	3.40	80.2
9.45	72.6	6.08	82.5	4.39	79.1	3.66	82.6
13 35	23.5	6.53	85.6	4.71	82.1	4.05	75.0
14 00	22.2	7.07	81.3	4.84	80.2	4.34	61.9
		7.70	60.4	5.14	66.0	4.88	43.4
	Ì	8.23	45.8	5.90	41.2	5.50	27.7
		9.00	27.7	6.58	30.2	6.27	22.0
		9.50	23.1	7.10	23.0	6.53	20.3
		10.09	20.8	7.30	20.3	6.60	
		10.60	19.7	7.35	§		
		10.71	†		<u> </u>		

^{*} Flare only.

	C ₆ H ₁₂	Pentane		C ₃ H ₆ O A	cetone	CS2+31	70 (7)	
	ln air (2	3). Tb ₂ .	5	In air	(17)			
% C ₅ H ₁₂	cm/sec	% C ₈ H ₁₂	cm/sec			Cf. (5, 8)		
1.52		3.85	48.0	%C₃H ₆ O	cm/sec			
1.61	20.2	4.00	44.0	2.70	55.0	Tb ₃	125	
1.98	40.1	4.32	33.0	3.85	69.0	Tb ₂	124	
2.35	60.2	4.56	28.7	5.05	93.8	Tb ₁	75	
2.63	74.3	4.87	25 .8	6.40	68.5	Tb _{0.4}		
2.92	83.0	5.40	20.2	7.65	39.5	1]	
3.00	82.1	5.50	 	8.20	30.5			
3.13	76.0						!	
3.35	65.9						1	
3.49	61.5			1		<u> </u>		

^{*} Flame to 6 cm.

† Flame to open end only.

LITERATURE

(For a key to the periodicals see end of volume)

- Bunsen, 8, 131: 161; 67. (2) Mallard, 15, 7: 355; 75. (3) Fonseca Benevides, 407, 7: 166; 80. (4) Mallard and Le Chatelier, 34, 93: 145; 81. (5) Mallard and Le Chatelier, 34, 95: 599; 82. (6) Mallard, 185, 15: 268; 82. (7) Mallard and Le Chatelier, 51, 1: 173; 82. 27, 39: 369, 572; 83. (8) Mallard and Le Chatelier, 15, 4: 296; 83. (9) Le Chatelier, 54, 121: 1144; 95.
- Bunte, 25, 31: 19; 98. (11) Sellars and Campbell, 54, 32: 730; 13. (12)
 Parker and Rhead, 4, 105: 2150; 14. (13) Wheeler, 4, 105: 2806; 14. (14) Morgan, 115, 99: 39; 15. 67, 26: 172; 14. (15) Parker, 4, 107: 328; 15. (16) Haward and Otagawa, 4, 109: 83; 16. (17) Wheeler and Whitaker, 4, 111: 267; 17. (18) Haward and Sastry, 4, 111: 841; 17. (19) Mason and Wheeler, 4, 111: 1044; 17.
- (20) Payman and Wheeler, 4, 113: 656; 18. (21) Payman and Wheeler, 4, 115: 36; 19. (22) Mason and Wheeler, 4, 115: 578; 19. (23) Payman, 4, 115: 1446, 1454; 19. (24) Morgan, 115, 108: 535; 19. (25) Nickolls, Underwriters Labs. Special Investigation No. 528; 19. (26) Mason and Wheeler, 4, 117: 36; 20. (27) Payman, 4, 117: 48; 20. (28) Mason and Wheeler, 4, 117: 1227; 20. (29) Chapman, 4, 119: 1677; 21.
- (30) Payman and Wheeler, 4, 121: 363; 22. (31) Mason, 4, 123: 210; 23. (32) Payman, 4, 123: 412; 23. (33) Payman and Wheeler, 4, 123: 1251; 23. (34) Ellis, 4, 123: 1435; 23. (35) Campbell and Ellis, 4, 125: 1957; 24. (36) Ellis and Stubbs, 4, 125: 1960; 24. (37) Ellis and Robinson, 4, 127: 760; 25. (38) Ellis and Wheeler, 4, 127: 764; 25. (39) Gouy, 6, 18: 1; 79. (40) Bunte, 25, 31: 19; 98. (41) Hofsass, 397, 62: 541; 19. (42) Payman and

THEORETICAL

Wheeler, 83, preprint, 1926.

(43) Vicaire, 6, 19: 118; 70. (44) Mallard and Le Chatelier, 15, 4: 296; 83. (45) Jouguet, 34, 156: 872; 13. (46) Nusselt, 98, 89: 872; 15. (47) Jouguet and Crussard, 34, 158: 820; 19.

DETONATION

The phenomenon of detonation, or "l'onde explosive" as it was originally known, in gaseous explosions was discovered by Berthelot and Vieille and by Mallard and Le Chatelier in the year 1881. It is set up when a sufficiently explosive mixture is ignited by means of a detonator (such as fulminate) or under circumstances such that the burning gases are exposed to the repeated effects of reflected compression waves. In the last named circumstance the initial uniform slow velocity is rapidly accelerated up to the point of detonation.

When once established its velocity is constant and within wide limits unaffected by the material and diameter of the tube employed, being solely dependent on the nature of the explosive mixture and on its temperature and pressure.

In the explosion wave the explosive mixture is fired adiabatically by compression so that the chemical reaction is more intense and of much shorter duration than in the case of normal combustion. In addition the pressure in the wave is much greater than in ordinary explosions, this being the cause of its shattering effect.

Abbreviations

Values not otherwise designated are detonation velocities in meters per second.

Composition of gas mixtures when given in percentages are in volume %.

[†] Flame to 4 cm. ‡ Flame to 6 cm.

[§] Flame to 15 cm.

^{||} Flame to open end only.

The initial conditions of the detonating mixture are ordinary temperature and pressure unless otherwise stated.

H₂
Determinations in a lead pipe 100 m long \times 6 mm diam. (8)
For $2H_2 + O_2$, normal conditions, 2821

	A	t 10°		At 100°				
P_{mm}	m/sec	$\parallel P_{\mathrm{mm}}$	m/sec	$P_{\rm mm}$	m/sec	$P_{ m mm}$	m/sec	
200	2627	760	2821	390	2697	1000	2828	
300	2705	1100	2856	500	2738	1450	2842	
500	2775	1500	2872	760	2790			

$2H_2 + O_2$						
$2H_2 + 2O_2$	2328	$4H_2 + O$	2 3268	2H ₂ +	$O_2 + 3N_2$	2055
$2H_2 + 4O_2$						
$2H_2 + 6O_2$	1707	$8H_2 + O$	3532	2H ₂ +	$20_2 + 2N_2$	2003

 $H_1 + N_2O$, at $P_{mm} = 500$, 2094; $P_{mm} = 760$, 2307; $P_{mm} = 1000$, 2302

Determinations in a lead pipe 100 m long × 9 mm diam. (24)

					m/sec			
22.2	77.8	1600	50.0	50.0	2311 2817	85.5	14.5	3527
25.0	75.0	1693	66.7	33.3	2817	88.9	11.1	3532
33.3	66.7	1917	80.0	20.0	3278			

% H ₂	% O2	% N ₂	m/sec	% H ₂	% O2	% N ₂	m/sec
25.0	50.0	25.0	1756	33.3	33.3	33.3	1990.
33 . 3	44.4	22.3	1961	50.0	25.0	25.0	2388
50 .0	33.3	16.7	2374	66.6	16.7	16.7	2767
66.6	22.2	11.2	2822	75.0	12.5	12.5	2846
75.0	16.7	8.3	3090	33.3	26 .6	40.1	2016
80.0	13.3	6.7	3137	50.0	20 .0	30.0	2383
				66.6	13.3	20.1	2655
				71.4	11.4	17.2	2671

In glass tub	es (22)	(8)	77 . 61 .	
Tube diam. =	9 12	7 15	(*)	H ₂ + Cl ₂ in dark, dry,
	2821	2828	H ₂ + Cl ₂ 1729	1705 west
$2H_1 + 4O_2$ $2H_2 + O_2 + 3N_2$	1927 192 2055	2089	2H ₂ + Cl ₂ 1849 3H ₂ + Cl ₂ 1855	1770 (6)

Determinations in rubber tube 40 m long × 5 mm diam. (3)

$2H_2 + O$	2H ₂ + O ₂ , normal conditions, 2810				$_2 + O_2$	% H2 in air	
P_{mm}	m/sec	$P_{\rm mm}$	m/sec	In air		30	1439
560	2763	1260	2776	45	1439	26.7	1201
760	2800	1580	2744	40	1251	23.3	1205
$2H_2 + N$	$2H_2 + N_2O$ 22		84	35	1205	21.7	•
$2H_2 + N_2 + O_2$		2121		32.5	•		1

^{*} Detonation not propagated.

ClO2

53.5% ClO₂, 46.5% O₂, 1065. 64.0% ClO₂, 36.0% O₂, 1126 (11)

			CO	
•	2CO P _{mm} 570 760 834 1560	+ O ₂ m/sec 1120 1089 1072 1132	$ \begin{array}{c c} (3) \\ \hline \text{CO} + \text{N}_2\text{O} & 1106 \\ 2\text{CO} + \text{O}_2 \\ + 2\text{N}_2 \\ \end{array} \right\} (1000) \\ 30\% \text{CO in air} \\ \text{not detonated} $	2CO + O ₁ (13). In CO mixtures the speed may be influenced by nature of igniting charge. Fired by 0.10 g chlorate powder
	1560	1132		

^{*} Wave variable.
† Explosive.

2CO + O₂; influence of H₂O vapor (8); t° = saturation temp.

t°	% H ₂ O	P_{mm}	m/sec	t°	% H ₂ O	$P_{ m mm}$	m/sec
	Well-dried		1264	35	5.6	760	1738
	Dry		1305	35	5.6	1100	1782
10	1.2		1676	45	9.5	400	1570
20	2.3	400	1576	45	9.5	760	1693
20	2.3	760	1703	45	9.5	1100	1742
20	2.3	1100	1737	55	15.6		1666
28	3.7		1713	65	24.9		1526
35	5.6	400	1616	75	38.4		1266

CH, Methane

(\$)		In O ₂ (24)	(4)
CH4 + 2O2	CH4 + 202 2146	% CH.	CH4 + 2O1 2287
Pmm m/se	- CH, + 110.)	11.1 1678 20.0 1980	$\begin{pmatrix} \text{CH}_4 + 2\text{N}_2 \\ + 4\text{O}_2 \end{pmatrix}$ 1858
500 2280 760 2322	+ 1Na 2349	25.0 2146 33.3 2337	· (
1000 2319 CH ₄ + 1‡O ₂	$+11N_2$ $\}^{2154}$	40.0 2465	$CH_4 + 7.52 N_2 + 20_2$
500 2418 760 2470	1 1 21 No 1	50.0 2513 53.3 2388	gives no detonation.
1000 2488			

C₂H₂ Acetylene

	(1	3)	(8)		
2C2H2 + O2	2160	$C_2H_2 + 6O_2$	1950	C2H2 + 21O2	2391
$1\frac{1}{2}C_{2}H_{2} + O_{2}$	2510	$C_2H_2 + 10O_2$	1850	$C_2H_2 + 1\frac{1}{2}O_2$	2716
$C_2H_2 + O_2$	2920	$C_2H_2 + 2N_2O$	2580	$C_2H_2 + 1\frac{1}{2}O_2 + N_2$	2414
$C_2H_2 + 3O_2$	2220	$C_2H_2 + 6N_2O$	2400	$C_2H_2 + O_2$	2961 (16)
$C_2H_2 + 4O_2$	2190	$C_2H_2 + 2NO$	2850	$C_2H_2 + 210_2$	2482 (3)
		$C_2H_2 + 6NO$	2800		<u>L</u>

98% C₁H₂ (12). Determinations made in tube 1 m long × 3.5 mm diam. Since C₁H₂ is an endothermic compound, it can be detonated under pressure.

 $P = \text{initial detonating pressure in kg/cm}^2$.

P	5	10	12	15	20	30
Speed	1050	1100	1280	1320	1500	1600

C₂H₄ Ethylene (8)

$C_2H_4 + 2O_2^*$		$C_2H_4 + 6O_2$	2118	$C_2H_4 + 2O_2$	2211
$C_2H_4 + 2O_2\dagger$	2538	$C_2H_4 + 8O_2$	1880	+ 2N ₂	j
$C_2H_4 + 3O_2$	2364	$C_2H_4 + 10O_2$	1856	$C_2H_4 + 2O_2$	2024
$C_2H_4 + 4O_2$	2247	$C_2H_4 + 2O_2 + N_2$	2413		,
(3)				$C_2H_4 + 2O_2$ + 6N ₂	1878
$C_2H_4 + 3O_2$	2209				
			ł	$C_2H_4 + 2O_2 + 8N_2$	1734
			ļ	+8N ₂	1754

^{* 10°.} † 100°.

C_2H_6 Ethane $C_2H_6 + 3\frac{1}{2}O_2$, 2363 (3)

C₂N₂ Cyanogen

	(3)			(8)	(22	3)
$C_2N_2 + 4N_2O$ 2035 $C_2N_2 + 2O_2$ 2043		$P_{\mathbf{mm}}$	C ₂ N ₂ + O ₂	$C_2N_2 + 2O_2$, 2321	C ₂ N ₂ - + 2	
C ₂ N ₂ + 20 C ₂ N ₂ +	0_1 $\left.\begin{array}{c} 1203 \\ \end{array}\right.$	500 760 1000	2677	2110	Diam. of tube	m/sec
$\frac{+20}{P_{\text{mm}}}$	$\begin{array}{c c} O_2 & \\ \hline C_2N_2 + 2O_2 \end{array}$	t° 10	2728	$+ N_2, 2398$ $C_2N_2 + O_2$	6 mm 9 mm 12.7 mm	2161 2230 2230
388 758 878	2171 2195 2052	100	2/11	+ N ₂ , 2165		

^{*} Detonation not propagated.

[‡] Undulatory.

MIXTURES OF COMBUSTIBLE GASES

		(23	B)			(8)
2(xH ₂	+ yCC	l				
x	l y l	m/sec	x	y	m/sec	+2CO
						$2H_1 + O_2$ 2080
0.75	99.25	1754	1	99	1747	+6CO
1.5	98.5	1758	2	98	1755	$\left \begin{array}{c} H_2 + O_2 \\ \end{array}\right\rangle_{2143}$
7.5	92.5	1796	5	95	1776	$+2CO$ $\int ^{2140}$
15	85	1858	25	75	1952	(3)
37 .5	62.5	2020	50	50	2 212	$\left \begin{array}{c} H_2 + O_2 \\ OO \end{array} \right 2008$
50	50	2130	75	25	2614	$+ \cos \int 2008$
75	25	2391	85	15	2819	$3H_{2} + 210_{2}$
85	15	2507	92.5	7.5	3015	$+ 2CO \int_{-\infty}^{\infty}$
92.5	7.5	2643	100	0	3284	$ H_2 + C_2 H_4 \rangle_{0.417}$
100	0	2810				$+3\frac{1}{4}O_{2}$ 2417
H ₂ +	CH4 (2	²⁴). M	= % n	ixture	in O ₂	2H. ⊥ С.Н.)
H ₂ +	· CH4	2H2	+ CH ₄	H ₂ -	- 2CH ₄	$\left\{\begin{array}{c} 2119 + 09114 \\ +40_2 \end{array}\right\} 2579$
M	m/sec	M	m/sec	M	m/sec	$\left \frac{H_2 + C_2 H_6}{H_2 + C_2 H_6} \right 2250$
13.8	1532	14.3	1449	14.3	1728	$+40_2$ $\int 2200$
21.0	1875	15.8	1582	25.0	2050	
44.4	2464	16.7	1666	40.0	2444	
50.0	2561	20.0	1764	46.1	2546	
57.1	2697	33.3	2094	50.0	2605	
66.7	2604	50.0	2474	54.5	2679	
		54.5	2572	60.0	2600	
		66.7	2782			

Limiting Dilutions of Explosive Mixtures for the Initiation of Detonation

Detonation cannot be propagated in mixtures diluted beyond the limits given

	Limits	Speed	Lit.
H ₂ and air	Lower 23.3% H ₂	1205	(3)
	Between \ 21.7\% H ₂		(3)
CO	$4CO + 2N_2 + O_2$		(3)
	$2CO + N_2 + O_2$	*	(3)
CH4 Methane	$CH_4 + O_2$		
	Lower 11.1% CH4	1678	100
	Upper 53.3% CH ₄	2388	(24)
	$CH_4 + 4N_2 + 2O_2$	1151	(3)
	$CH_4 + 7.5N_2 + 2O_2$	•	(3)
	9.5% CH4 in air		(3)
C ₂ H ₂ Acetylene	$C_2H_2 + 10O_2$	1850	(13)
•	$C_2H_2 + 6NO$	2800	(13)
C ₂ N ₂ Cyanogen	$C_2N_2 + 2N_2 + 2O_2$	1203	(3)
	$C_2N_2 + 4N_2 + 2O_2$	*	(3)
	$C_2N_2 + 4N_2O$	2035†	(3)
	$C_2N_2 + 4NO$	*	(3)

^{*} Detonation not propagated.

Mean flame velocity before a uniform detonation speed ensues (3). $2H_2 + O_2$, in rubber tube 5 mm diam.; D = distance from initiating explosive in m; S = time in sec; V = mean vel. from origin in m/sec; $V_{\text{int.}} =$ mean vel. in each interval.

D	S	V	$V_{ m int.}$
0.020	0.000275	72.72	72.7
0.050	0.000342	146.2	448.0
0.500	0.000541	924.4	2261
5.250	0.002108	2491 .0	3031
20.190	0.007620	2649.0	2710
40.430	0.015100	2679 0	2706

Distance in inches from spark at which detonation occurs = D_0 for spark at end of tube and D_3 for spark 3 in. from end (16).

Mixture	D_0	D_3
$2H_2 + O_2$	48	12
$2H_2 + 2\frac{1}{2}O_2$	•	48
$6H_2 + O_2$		192
$C_2N_2 + O_2$	81	4
$C_2N_2 + 2O_2$	12	10
$2C_2H_2 + 3O_2$	4 ½	$2\frac{1}{2}$
$C_2H_4 + 2O_2$	9	5

Distance before detonation wave is established = D cm (13). Glass tube, 10 mm diam. Spark at end of tube

Mixture	D
$2C_{2}H_{2} + O_{2}$	100
$C_2H_2 + O_2$	5
$C_2H_2 + 6O_2$	15
$C_2H_2 + 10O_2$	80
$C_2H_2 + 2NO$	20
$C_2H_2 + 6NO$	50
$C_2H_2 + 2N_2O$	100
$C_2H_2 + 6N_2O$	10

Influence of tube diameter on the distance from the firing source at which detonation occurs (25). Mixture $= CS_2 + 3O_2$. Spark at end of tube. $D_{cm} = cm$ travelled by flame before detonation.

Tube diam., mm	$D_{ m cm}$
6.5-7	48
10	50
24-25	58
34–35	84
43–44	103
53-54	131

Distance required for the re-establishment of detonation waves after they are damped out by passing from one tube to another of larger diameter (26). Diam. of first tube = 7 mm. Distance in cm travelled by flame in second tube prior to detonation = D.

Diam. mm second tube	13	16	23-24	33-34	44-45
$D (CS_2 + 3O_2) \dots$	8	10	15	50	100
\overline{D} (2H ₂ + O ₂)			3	62	

WAVE VELOCITIES (14)

	$C_2H_2 + O_2$	$C_2H_2 + 2NO$	$ 2CO + O_2 $
L'onde explosive (déton-	2990	0050	1000
ation wave) L'onde rétrograde (reton-	2990	2850	1900
ation wave)*	2300	1140	
L'onde réfléchie (reflex-			
ion wave)†	I .	1350	1000
L'onde prolongée (colli-			
sion wave) ‡	2050		

^{*} A "retonation" wave is thrown back into the burnt gases when the detonation wave is set up.

‡ Collision waves occur when two detonation waves meet,

REFLECTED WAVES IN A C2H2 + O2 MIXTURE

		After first crossing	
After reflection	1350	After second crossing	980

[†] Sometimes propagated.

[†] The wave reflected through the burnt gases after a detonation wave has reached the walls of the vessel in which the explosion occurs.

RATIO OF WAVE VELOCITIES (16)

Mixture	Detonation wave velocity	Reflection wave velocity	Ratio of velocities
$2H_2 + O_2 \dots$	2820	1538	1.83
$H_2 + N_2O$	2305	1383	1.67
$2CO + O_2 \dots \dots$	1676	1078	1.56
$C_2N_2 + O_2 \dots$	2728	1230	2.22
$C_1N_2 + 2O_2 \dots$	2321	1129	2.06
$2C_2N_2 + 5O_2$	2391	1133	2.11

Two equations of importance have been deduced whereby velocities of detonation agreeing closely with experimental values may be calculated (34, 35).

$$V^{2} = \frac{2RJ}{\mu C_{p}} [\{(m-n)C_{p} + mC_{v}\}C_{p}T_{o} + (C_{p} + C_{v})h] \text{ where}$$

Velocity of wave.

R Gas constant.

Dynamical equivalent of heat $(42 \times 10^6 \text{ ergs})$.

Gram equivalents of the mixture exploded.

Number of molecules before and after the chemical n and m change in the wave.

 C_{\bullet} and C_{\bullet} Mean specific heats of the products at constant pressure and volume, respectively.

Total heat generated in the wave.

Initial temperature (abs.) of the mixture exploded.

$$\left(\frac{dP}{dl}\right)^2 = \mu^2 \frac{Rk_2T_1}{M} \left(1 + \frac{k_2R}{MC_2}\right), \text{ where}$$

Velocity of the wave.

Gas constant.

Molecular mass of the gas taken.

Temperature of the flame.

 $\frac{d_2}{d}$ (ratio of the final and initial densities).

Mean specific heat at constant volume of the explosion products.

k, Number of molecules in the explosion products.

LITERATURE

(For a key to the periodicals see end of volume)

EXPERIMENTAL

(1) Berthelot, 34, 93: 18; 81. (2) Mallard and Le Chatelier, 34, 93: 145; 81. (3) Berthelot and Vieille, 34, 94: 101; 82. 95: 151, 199; 82. 6, 28: 289; 83. 27, 40: 353; 83. (4) von Oettingen and von Gernet, 8, 33: 586; 88. (5) Dixon and Smith, 398, 2: 2; 89. (6) Dixon and Harker, 398, 2: 118; 90. (7) Lean and Bone, 133, 1892: 673. (8) Dixon, 62, 184: 97; 93. (9) Dixon and Cain, 398, 8: 180; 94.

(10) Dixon, Strange and Graham, 4, 69: 759; 96. (11) Dixon and Harker, 4, 69: 789; 96. (12) Berthelot and Le Chatelier, 34, 129: 427; 99. (13) Le Chatelier, 6, 20: 15; 00. 34, 130: 1755; 00. (14) Le Chatelier, 34, 131: 30; 00. (15) Jones and Bower, 398, 42: No. 7; 98. (16) Dixon et al., 62, 200: 345; 03. (17) Dixon and Bradshaw, 5, 79: 234; 07. (18) Bradshaw,

5, 79: 236; 07. (19) Dixon, 4, 99: 588; 11.

(26) Dixon, Campbell and Slater, 5, 90: 506; 14. (21) Butcher, 2, 15: 228; 20. (22) Campbell, 4, 121: 2483; 22. (23) Dixon and Walls, 4, 128: 1025; 23. (24) Payman and Walls, 4, 123: 420; 23. (25) Laffitte, 54, 176: 1392; 23. (26) Laffitte, 54, 177: 178; 23. (27) Evreinoff, Journal des Mines (Russie), No. 2; 23. (28) Audibert, 34, 178: 1275; 24. (29) Laffitte, 34, 179: 1394; 24.

(30) Wendlandt, 7, 110: 637; 24. (31) Malinowski, 42, 21: 468; 24. (32) Wendlandt, 7, 116: 227; 25. (328) Laffitte, 16, 4: 587; 25.

THEORETICAL

(33) Berthelot, 34, 94: 149; 82. 96: 672; 83. (34) Chapman, 3, 47: 90; 89. (35) Jouguet, 34, 184: 1418; 02. 185: 778; 02. 188: 1685; 04. 189: 121, 786; 04. 140: 711; 05. 142: 831, 1034; 06. 408, 1: 347; 05. 2: 5; 06. (36) Zemplin, 34, 141: 710; 05. (37) Jouguet, 34, 144: 415; 07. (38) Crussard, 34, 144: 417; 07. (39) Crussard and Jouguet, 34, 144: 560; 07.

(43) Jouguet, 34, 144: 632; 07. (41) Crussard, 401, 6: 297; 07. (42) Jouguet, 54, 146: 915; 08. (43) Jouguet and Crussard, 54, 146: 954; 08. (44) Jouguet, 34, 180: 91; 10. (48) Crussard, 34, 186: 447, 611; 13. Jouguet, 54, 186: 872, 1058; 13. (47) Crussard, 54, 188: 125; 14. (48)

Jouguet and Crussard, 34, 168: 820; 19. (49) Crussard, 402, 12: 243, 295; 20. (50) Jouguet, 34, 181: 546; 25. (51) Vieille, 315, 10: 177; 89. 54, 181: 413; 00. (52) Jouguet, 34, 181: 658; 25. (53) Payman and Robinson, Safety in Mines and Research Board, Report No. 18; 26.

EXPLOSIONS IN CLOSED VESSELS

Much of the experimental determination of explosion times and pressures using gaseous mixtures has been carried out with coal gas-air mixtures. Owing to the variable composition and heat of combustion of the samples of coal gas so employed, it has not been found possible to tabulate such data except in so far as they may have a general bearing on the subject of gaseous explosionsand more particularly where data relative to the simpler combustible gases are lacking.

All maximum pressures have been expressed as a ratio, maximum pressure, thus giving a better basis of comparison.

In most cases the published figures for initial pressures refer to room temperatures. Where this has been found to be otherwise, the initial pressures have been adjusted to correspond to a temperature of 15°C, and a corresponding correction applied to maximum

No attempt has been made to tabulate investigators' estimates of their explosion temperatures because (a) an arbitrary correction must necessarily be applied for cooling loss during the explosion period—this being dependent on the explosion vessel employed and (b) allowances must be made for dissociation. An approximate value of the temperature attained may be calculated from the formula

$$T_{(\text{max.}) \text{ abe.}} = \frac{P_{\text{max.}}}{P_{\text{init.}}} \times T_{(\text{init.}) \text{ abe.}} \times \frac{m}{n}$$

where m/n represents the molecular change.

Few direct determinations of explosion temperatures have been possible owing to the very high temperatures developed.

In comparing explosion times, consideration must be given to the dimensions of the explosion vessels concerned—on which they are solely dependent.

In the following tables all results may be considered to refer to explosions of gaseous mixtures at atmospheric pressure and temperature unless specially stated otherwise.

Abbreviations

Pinit.	Ratio of maximum pressure developed to initial pressure.
$P_{\mathrm{init.}}$	Initial pressure in atmospheres.
$T_{ m init.}$	Initial temperature in °C.
$V_{\mathbf{x}}$	Vessel whose capacity is x cm ³ , unless otherwise stated.
Cyl.	Cylindrical.
Con.	Conical.
Sphere	Spherical.
Exper. condn.	Experimental conditions.
Milli-sec	Time in milli-seconds to attain maximum pressure.

Time in milli-seconds to attain maximum pressure.

Н,					
Mixture	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
2H ₂ +O ₂ +O ₂ + 4N ₂	9.5 6.5	10	Cyl., V ₁₈ Cyl., V*	(2) (6)	
+O ₂ +O ₂ + 2H ₂ +O ₂ + 4H ₂	9.25 8.34 7.58	-9			
+0: +6H: +0: +2O: +0: +60:	6.67 8.2 6.4		Cyl., V4000	(*)	
$+0_1 + N_1 + O_1 + 2N_1$	8.65 8.26				
$+0_2 + 4N_2 + 0_2 + 6N_3$	7.5 6.5				

		H ₂ .—((Continued)		CO.—(Continued)				
Mixture	Pmax.	Milli- sec	Exper. condn.	Lit.	Mixture	$\frac{P_{\text{max}}}{P_{\text{init}}}$	Milli-	Exper. condn.	Lit.
+2N ₂ O	12.85		Cyl, V 4000	(9)	+02	9.56	<u> </u>	1)	
$+2N_{2}O + 2N_{2}$	10.47])		$+0_2 + N_2$	8.82		Cyl., V 4000	(*)
+O ₂ +O ₂	7.41 9.69	1.04 2.14	Cyl., V ₃₀₀ Cyl., V ₄₀₀₀	(11, 15) (11, 15)	+0 ₂ + 2N ₃	8.28	l	, , , , , ,	• • •
+O ₂ + : h H ₂	8.03	2.27)	(33, 33)	$+0_2 + 5N_2 + 0_3$	6.66 9.42		 {	
+O ₂ + 1 H ₂		2.53	Con V	(11 15)	+02 + 11CO2	7.50			
$+O_2 + \frac{1}{4} H_2$	1	2.41	Cyl., Vecos	(11, 15)	$+0_2 + 3CO_3$	6.50			
$+O_2+H_2$		2.82			+0 ₂ + 4 ₃ CO ₂	4.8			
$+O_2 + 2H_2 + O_2 + 2H_2$		1.67	Cyl., V ₂₀₀	(11, 15)	$+0_1 + 1_{\frac{1}{2}}CO$ $+0_1 + 6CO$	8.33 7.01		Cyl., V 4000	(13) cf.
$+0_2 + 3H_2$		5.95			+02 + 1302	8.52			(5, 7)
$+O_2 + 4H_2$		9.67			+02 + 602	6.40			
$+0_2 + 20_2$		8.16	Cyl., V 1000	(11, 15)	$+0. +31N_2$	7.24			
$+O_2 + 6O_2 + O_2 + N_2$		16.04 2.86		•	$+O_2 + 7_{\frac{1}{2}}N_2 + O_2$	5.98 9.29	12.86	Cyl., V ₂₀₀	(11, 15)
+01 + 101 + 101		3.55	{		+01	9.93	15.51	Cyl., V 4000	(11, 15)
+02 + 2N2	8.63	6.87			$+0_2 + N_2$		17.78	Cyl., V ₃₀₀	(11, 15)
+02 + 2N2	7.60	2.67	Cyl., V ₂₀₀	(11, 15)	$+0_2 + 2N_2$		26.49	Cyl., V 200	(11, 15)
$+0_{1} + 4N_{2}$	7.55	11.98	Cyl., V 1000	(11, 15) (11, 15)	+0 ₂ + CO ₂	1	27.18	Cyl., V.00	(11, 15)
$+O_2 + 4N_2 + O_2 + 6N_2$	7.34 6.64	24.45	Cyl., V ₂₀₀ Cyl., V ₄₀₀₀	(11, 15)	+0; + 2CO; +0;	10.0	35.80 12.5	Cyl., V ₂₀₀ 4.3 Sphere, V ₂₄₀	(11, 15)
$+0_2 + 6N_2$	6.12		Cyl., V 100	(11, 15)	+0;	11.5	5.0	21.4 Pinit.	(73)
$+0_2 + 8N_2$		36.35	Cyl., V 200	(11, 15)	+02	12.1	5.0	50.0) Tinit. = 17°C.	, ,
+02	8.48		[]		+O ₂ + 2A	10.6	10	Sphere, V240	
$+O_2 + \frac{1}{2}O_2 + O_2 + 3O_2$	8.37 7.94		Cyl., V 4000	(13). Cf.	$+0_1 + 20_2 + 0_2 + 0_2 + 200$	10.3 10.01	5 5	Pinit. = 35.7	(69)
$+0_1 + 60_2$	7.0		Cy1., 7 4000	(5, 7)	+01 + 200 +01 + 2N1	9.55	40	Tinit. = 17°C	
$+O_2 + 3H_2$	8.02	i	J	, ,	+O ₂ + 4A	10.20	25	Sphere, V ₂₄₀	
$+O_2 + 4N_2$	6.8	9.5	Con., V ₁₁₅ in. ³ , ignit. at	(68)	+02 + 402	9.20	5	Sphere, V_{240} $P_{\text{init.}} = 50$	(69)
10 1 4N	7		vertex		+0 ₂ + 4CO	9.00	10	Tinit. = 17°C	(,
$+0_2 + 4N_2 + 0_2 + 4N_2$	7.54†	1	$\begin{vmatrix} 1.15 \\ 3.0 \end{vmatrix} P_{\text{init.}} \begin{cases} Cyl., V^* \\ T_{\text{init.}} \end{vmatrix}$	(75)	+O ₂ + 4N ₂ +O ₂ + 6A	8.30 9.7	190 140	Sphere. V240	
$+0_2 + 4N_2$	8.14†	ľ	5.5 atm. = 54°C	(**/	+O ₁ + 6CO	7.9	130	Pinit. = 64.3	(69)
+02 + 4N2	7.98	5.5			+02 + 6N2	6.4	1100) Tinit. = 17°C	, ,
+0 ₂ $+2$ N ₂	8.28	2.2				8.5	35	3.0	
$+O_2 + 4H_2 + O_2 + 2H_2$	8.1 9.13	1.0	Tinit. = 15°C			8.9 10.2	50 25	10.0 50.0 Sphere, V ₂₄₀	
+02	9.3	0.7	Pinit. = 2 atm.	(75)	+O ₂ + 4A	10.53	15	75.0 Pinit.	(79)
$+0_2 + 40_2$	7.7	2.9	Cyl., V*		1	10.63	10	100.0 Tinit. = 17°C	
$+0_2 + 20_2$	8.8	1.5				11.2	10	125.0	
+0: +4C0:	5.65	25.5				11.66	10	150.0)	
+O ₂ + 2CO ₃	7.10	4.6 5 or	3)			8.65 9.1	Sames	s above except $P_{\max}/P_{\text{init.}}$	
	7.8	less,	10			10.1		been corrected: Pmax. for	
	8.0	de-	25		+O ₂ + 4A	10.3	1 1	ng loss during combustion	(79)
$+0^{1}_{2}+4N_{2}$	8.1	creas-	50 Sphere,	/7A\	1	10.33		od; Pinit. for deviation from	
+01 + 4.12	8.33 8.50	ing at	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(79)		10.84	Boy	e's law.	
	8.64	high-	125			7.6	60	3.0)	
	8.67	er	150			7.7	45	10.0 Sphere, V240	
	8.80	Pinit.	175)		+O ₂ + 4O ₂	8.6	10	25.0 Pinit.	(73)
	7.7]			9.2	5 5	50.0 Tinit. = 17°C	
	8.05	Same	as above except Pmax./			10.1	10	75.0	
	8.16		t. has been corrected:			9.8	5	100 0 Sphere, V240	
$+0_2 + 4N_3$	8.43	1	x, for cooling losses during	(79)	+02 + 4CO	10.0	5	125.0 Pinit. Tinit. = 17°C	(7 9)
	8.63 8.79		bustion period; Pinit. for ation from Boyle's law.			10.13	5	[130.0]	
	8.82	devi	bion from Boyle's law.			9.68		s above except $P_{\text{max.}}/P_{\text{init.}}$ ected for combustion period	(79)
	8.98])			+02 + 4CO	9.95		and deviation from Boyle's	()
н,	-					10.16	law.		
+N ₂ O	200	2.06	Cyl., V ₁₀₀ Cyl., V ₄₀₀₀	(11, 15) (13) cf.		7.13	70	3.0	
$+Cl_2 + 3.6H_2$	6.88		Cy1., 7 4000	(5, 7)		7.5	100 150	10.0	
% H2 in air	Values	calculated	from published temp. estim			8.20	190	50.0 Sphere, V 240	
25.4	7.23	1	Cyl., V 30 cm		+O ₂ + 4N ₂	8.47	320	75.0 Pinit.	(79)
15.3	5.03	i	diam., 30 cm deep	(61)		8.80	400	100.0 Tinit. = 17°C	
10.0	4.03	!				8.88	470	125.0	
						9.03	530 560	150.0	
			СО		1	7.80	1)		
						8.00	_		
2CO +O ₂	10.1		Cyl., V ₁₀	(2)		8.30 8.65		as above except Pmax./	
$+0_{2} + 4N_{2}$	7.3		Cyl., V ₁₀	(2)	+O ₂ + 4N ₂	9.14		and deviation from Boyle's	(79)
						9.37	law.		` '
* Diam. 7 in., d † Calculated to						9.45			
, 5544600 10	- im. (•			1	9.76			
					1	• .	Ćontinu	ed on p. 190.	
					•				

Digitized by Google

Fig. 11.—Time-pressure curves of $2H_2 + O_2 + 4N_2$ explosions at initial pressures of 3, 75 and 175 atm. (73, 79). Spherical vessel, 2400 cc capacity.

Fig. 12.—Time-pressure curve of 2CO + O₂ explosion at an initial pressure of 21.4 atm. (**). Spherical vessel, 240 cc capacity.

Fig. 13.—Time-pressure curves of 2CO + O₂ + (2CO, 4CO, 6CO) explosions at initial pressures of 35.7, 50 and 64.3 atm. respt. (**).

Fig. 15.—Time pressure curves of $2CO + O_2 + 4A$ explosions at initial pressures of 3.75 (72) and 175 atm. (73). Spherical vessel, 240 cc capacity.

Fig. 14.—Time-pressure curves of 2CO + O₂ + (2N₂, 4N₂, 6N₂) explosions at initial pressures of 35.7, 50, and 64.3 atm. respt. (**).

Fig. 16.—Time-pressure curves of 2CO + O₂ + (2A, 4A, 6A) explosions at initial pressures of 35.7, 50 and 64.3 atm. (**).

Fig. 17.—Time-temperature curves of $2CO + O_2 + 4O_2$ explosions at initial pressures of 3 and 75 atm. (73). Spherical vessel, 240 cc capacity.

Fig. 18.—Time-pressure curves of 2CO + O₂ explosions at initial pressures of 4 and 50 atm. (73). Spherical vessel, 240 cc capacity.

Fig. 19.—Time-pressure curves of 2CO + O_2 + $4N_2$ explosions at initial pressures of 3 (79), 75 and 175 atm. (73). Spherical vessel, 240 cc capacity.

Fig. 20.—Influence of initial pressure on the ratio maximum pressure/initial pressure (79). Spherical bomb, capacity 240 cc. The corrected curve gives maximum pressure (corrected for cooling loss during combustion period)/initial pressure (corrected for deviation from Boyle's law).

Fig. 21.—Influence of initial pressure on the time taken for the attainment of maximum pressure (7*). Spherical bomb. capacity 240 cc.

CO.—(Co	ontinued)
---------	-----------

Mixture	Pmax.	Milli-	Exper. condn.	Lit.
	I Init.	sec		
СО				(8)
+N ₂ O	10.78		Cyl., Vacce	(*)
+N ₂ O		15.40	V 200	(11, 15)
% CO (97.5 %)				
in air				
20	5.77	800		
25	7.12	385	Pinit. = 2	
30	7.86	231	Sphere V, 16 in. diam.;	
35	8.16	211	silver plated interior:	
40	8.27	175	central ignition; gas	(76)
45	8.25	170	saturated with water	
50	7.65	189	vapor at room tem-	
55	7.10	251	perature	
60	6.05	390	•	
65	4.87	920	[]	
1	6.39	280	l´ 1)	
	7.12	385	-	
	7.10	482	3	
25	7.22	550	4 Pinit.	(76)
- 0 }	7.39	668	5 1 1 1 1	,
	7.24	990	6	
	7.47	1010	7	
,	7.86	231	'2	
30		335	1	(76)
30	8.25		4 Pinit.	(,,,
1	8.85	560	1 6) i	

Influence of the amount of water vapor present. 29.3 % CO in air

Vol. H ₂ O vapor + 100 of mixture 0 2.56 1.68 1.67 1.24 1.21 0.60 0.30	7.72* 7.93* 7.94* 7.96* 7.96* 7.96* 7.98*	90.1 97.0 92.0 101.5 101.0	Cyl. V, 7 in. diam., 8 in. deep Tinit. = 50°C Pinit. = 5	(83)
--	---	--	---	------

^{*} Calcd. to Tinit. = 15°.

Mixtures of H₂ and CO

2CO					
$+H_{2}+1$	10.	9.28		Y	
$+H_{2}+4$	•	8.3		11	
+3H ₂ +	_	8.92		Cyl., Vasse	(9, 15)
+4H ₂ +	•	9.08		1}	
2H ₂ +		5.66	1.04	Cyl., V 300	(11)
2CO +	-		12.86	Cyl., V 200	(11)
2H:	٠.		12.00	Cy., <i>r</i> 200	, ,
+C0 +	140:		2.57	Cyl., Vace	(11)
+CO +	01		1.39	Cyl., V200	(11)
H:					
+CO +	02		3.88	Cyl., V ₃₀₀	(11)
+2CO +	140:		4.14	Cyl., V ₂₀₀	(11)
2(xH: +	yCO) +	1			
O2 +	- 4N2				
x	y			1.	
100	0	8.10*	7.5]	
49.7	50.3	8.10*	15.5	Cyl. V. 7 in. diam.	
24.8	75.2	8.10*	29.3	8 in. deep	
11.9	88.1	8.10*	46.5	Pinit. = 5	(83)
8.0	92.0	8.10*	56.6	Tinit. = 50°C	
4.1	95.9	8.05*		111111111111111111111111111111111111111	
0.2	99.8	7.79*	245.9		
2(xH ₂ +					
- •	- 4N:			,	
100	0	7.82	5	[]	
50	50	7.98	15	[]	
25	75	8.2	15	Sphere, Vace	
12.5	87.5	8.2	25	} Tinit. = 17°C	(67)
8	92	8.5	25-30	Pinit. = 50	
4	96	8.5	30	[]	
0	100	8.4	180	[]	

^{*} Calcd. to Tinit. = 15°.

C.H.	Acetylene

Mixture	$\frac{P_{\text{max.}}}{P_{\text{init.}}}$	Milli- sec	Exper. condn.	Lit.
$C_2H_2 + 2\frac{1}{2}O_2$	14.45		Cyl., V4000	(9, 15)
$C_1H_1 + 2\frac{1}{2}O_2$		1.94	Cyl., V 300	(11)

$C_2H_4 + 3O_2$	15.25	Cyl., V 1000	(9, 13)
$C_2H_4 + 3O_2$	14.18	2.86 Cyl., V ₃₀₀	(11, 14)
$C_2H_4 + 3O_2$	15.73	2.23 Cyl., V4000	(11, 14)

C₂H₆ Ethane

Mixture	Pmax. Pinit.	Milli- sec	Exper. condn.	Lit.
C2H4 + 31O2	15.30		Cyl., V4000	(9)
C ₂ H ₆ + 3½O ₂ % C ₂ H ₆ in air		0.83	Cyl., V ₃₀₀	(11)
3.05	3.8		1	
3.3	4.9			
3.6	5.75		Deduced from a pub-	
4.05	6.85		lished curve	(56)
4.8	7.8		nshed curve	
5.6	8.3		[]	
6.7	9.75	•	()	

Fig. 22.—Time-pressure curves obtained from the explosion of $2(xH_2 + yCO) + O_2 + N_2$ mixtures. Initial pressure, 5 atm. Initial temperature, 50°C. Cylindrical vessels 7" in diam., 8" deep (*3)

Curve	1	2	3	4	5	6	7	8
H ₂	100	50	25	12	8	4	2.2	0.2
C 0	0	50	75	88	92	96	97.8	99.8

\sim	U.	M	٠+h	9	_

		CH₄	Methane	
CH ₄			1	
+1.8401	14.35		1	
+2.802 + 10.5N2	7.9			
+1.9201 +				41.5
7.24 N ₂	8.95		Cyl., V 4000	(13)
+1.4402 +				
5.41N ₂	7.98		IJ	
+20:	15.44		Cyl., V 4000	(9, 15)
+20:	13.94	1.24	Cyl., V ₂₀₀	(11, 14)
+201	14.81		Cyl., V4000	(11, 14)
$+0_1 + 4N_2$	5.6	80	Sphere, V ₂₄₀ ; Pinit. = 50 Tinit. = 17°C	(53)
% CH, in air				
6.30	4.20			
6.80	6.10			
7.45	6.64		li l	
7.95	7.09		11	
8.45	7.40			
9.20	7.73			
9.40	7.80			
9.65	7.90		Sphere, V 4000; highly	(54)
10.10	7.97		polished interior surface	
10.25	7.97			
10.75	7.87			
11.40	7.73			
12.10	7.36			
12.90	6.78			
13.40	4.80			
13.90	3.50			
6.05	3.86		1)	
6.85	5.35			
7.80	6.85			
8.80	7.66		Sphere, V16 000; highly	(54)
9.80	7.94		polished interior surface	
10.80	7.80			
11.90	7.40			
12.80	6.78		{	
12.1	8.15*		[]	
11.0	8.56*	140.6	Tinit. = 100°C	
10.5	8.69*		Cyl., V, 7 in. diam.	
9.9	8.70*		8 in. deep	(83)
9.7	8.77*		Pinit. = 6.5	
8.5	8.19*			
7.3	7.20*	225.9	1.1	

^{*} Caled. to Tinit. = 15°. See also p. 177.

C.H.	\mathbf{a}	M	46	1 10	than
CoHa	· C	Mte	inv	L	tner

$C_2H_6O + 3O_2$	18.82		Cyl., V 4000	(9)
_		$C_4H_{10}O$	Ethyl Ether	
$C_4H_{10}O + 6O_2$	15.42		Cyl., V4000	(°)
		C ₂ N ₂	Cyanogen	
C2N2				
$+ O_2 + 4N_2$	10.95		Cyl., V ₁₈	(2)
+20:	19.80			
$+N_2 + 2O_2$	16.72			1
$+2N_2 + 2O_2$	13.93		11	l
$+4N_2 + 2O_2$	11.66		11	
+01	23.72		11	
$+\frac{3}{4}N_2 + O_2$	19.52		Cyl., V 4000	(9, 15)
$+2N_2+O_2$	14.42		Cy1., 7 4000	Cf. (5, 13)
$+4N_2+O_2$	11.14			
+4NO	16.00		11	
$+N_2O$	21.40		11	
+2NO	22.08			
+2N ₂ O	24.6		IJ	
+01	1	1.06	Cyl., V ₃₀₀	(11)
+202	1	1.55	Cyl., V ₃₀₀	(11)
+202		4.50	Sphere, V ₁₅₀₀	(11)
+20: +2N:		15.4	Cyl., V ₂₀₀	(11)
$+20_2 + N_2$		6.09	Cyl., V ₃₀₀	(11)
$+0_2 + \frac{1}{4}N_2$	18.65	3.20	Cyl., V ₂₀₀	(11)
$+0_2 + \frac{3}{4}N_2$	21.09	2.74	Sphere, V ₁₅₀₀	(11)
+0z + 3Nz	13.88	10.35	Cyl., V ₃₀₀	(11)
$+0_2 + 3N_2$	15.56	15.12	Sphere, V1500	(11)
$+0_2 + 3N_2$		23.63	Cyl., V ₃₀₀	(11)
+02 + 4N2	10.6	29.78	Cyl., V ₂₀₀	(11)
+4N ₂ O	1	4.53	Cyl., V 300	(11)
+4 N ₂ O	12.02		Sphere, V ₁₈₀₀	(11)

C₆H₆ Benzene (82)

Mixture	$rac{P_{ ext{max.}}}{P_{ ext{init.}}}$	Milli-sec	Exper. condn.
16.84	8.28	105.1	
14.76	9.00	73.5	$T_{\rm init.} = 100^{\circ} \rm C$
13.24	9.50	59.7	$P_{\rm init.} = 95 \rm lbs./in.^2$
13.16	9.50	59.8	Cyl., V , 7 in. diam.,
12.06	9.74	55.1	8 in. deep
10.7	9.78	49.0	
9.15	Loud meta	llie knock	

C₆H₁₄ Hexane (82)

Mixture	$\frac{P_{\max}}{P_{\text{init.}}}$	Milli-sec	Exper. condn.
16.91	8.86	91.2	$T_{\rm init.} = 100^{\circ} \rm C$
14.80	9.48	69.5	$P_{\text{init.}} = 95 \text{ lbs./in.}^2$
13.97	9.56	64.0	Cyl., V, 7 in. diam.,
13.20	9.50	58.6	8 in. deep
10.72	Violent	explosion	•

Petrol (82)

Ratio	$P_{\mathtt{max}}$.	Milli-	E	xper. condn.
air/fuel by wt.	P _{init} .	sec	Pinit. lbs./in.2	
19.2	7.74	175.2	95.2	
16.9}	8.58	109.6	95.5	$T_{\rm init.} = 100$ °C
10.9	8.52	110.8	142.5	Cyl., V ,
14.8	9.33	78.4	95.5	7 in. diam.,
13.0	9.71	67.1	95.7	8 in. deep
10.7	Loud meta	llic knock	95.3	

^{*}Calcd. to Tinit. = 15°C.

Fig. 23.—Time-pressure curve obtained from the explosion of $2(xH_2 + yCO) + O_2 + 4N_1$ mixtures. Initial pressure, 50 atm., room temperature. Spherical vessel, 240 cc capacity (67, 71).

Curve	1	2	3	4	5	6	7
H ₂	100	50	25	12.5	8	4	0
c o		50	75	87.5	92	96	100

INFLUENCE OF TEMPERATURE AND PRESSURE Mixture: 9.9 % CH₄ in air. Cyl. V, 7 in. diam., 8 in. deep

Tinit.	Pinit.	P _{max} .	Pmax.	Milli-
$^{\circ}\mathrm{C}$	lb./in. ²	$P_{ m init.}$	$P_{\mathrm{init.}}$	sec
24.7	30.3	8.32	8.57*	99.7
24.7	53.0	8.41	8.65*	11.63
100	38.1	6.79	8.51*	79.8
100	66.7	6.79	8.52*	104.7
100	95.0	6.95	8.71*	109.0
200	48.2	5.60	8.57*	68.2
200	84.4	5.65	8.64*	75.0
200	120.6	5.66	8.69*	83.8
300	58.2	4.68	8.36*	49.6
300	102.3	4.75	8.48*	59.7
300	145.9	4.80	8.57*	67.1
400	68.5	4.12	8.30*	41.0
400	120.1	4.12	8.30*	47.3
400	171.5	4.19	8.56*	54.8

^{*}Caled. to Tinit. = 15°C.

EFFECT OF INITIAL TEMPERATURE AND PRESSURE Petrol, Hexane and Benzene (82)

$T_{ m init.}$ °C	P _{init} .	Pressure rise (lbs./in.2) ratio air/fuel by wt.				
•0	°C lbs./in.2		Hexane	Benzene		
	1	13	14	12		
100	100	6 6 0	668	680		
100 }	50	321	324	327		
000	100	519	520	523		
200 }	50	250	250	248		

Fig. 24.—Time-pressure curves obtained from the explosion of methane-air mixtures. Initial pressure, 95.1 lb./in.² Initial temperature, 100°C (*3).

Effect of Initial Temperature and Pressure C₆H₆ Benzene (82)

$T_{ m init.}$ °C	Pinit.	Maximum pressure rise (lbs./in.2) ratio air/fuel by wt.				
-0	lbs./in.²	12.0	10.7	9.15		
1	95.0	645	644			
100 }	67.0	447	449			
)	38.0	242	248	241		
)	120.5	636		646		
200 }	84.5	438		442		
J ·	48.2	238		240		
)	146.0	614		633		
300 }	102.0	420		434		
	58.0	226		237		

MEASUREMENTS OF EXPLOSION TEMPERATURES

Temperature Distribution at Moment of Maximum Pressure

Ten per cent coal gas (680 BTU/ft.³) (31). Vessel (Fig. 25): Capacity 6.2 ft.³

Mean temperature (inferred from pressure)	1600°C
(a) Temperature at center near spark (B)	1900°C
(b) Tomporature 10 cm within well (C)	1700°C

- (d) Temperature 1 cm from wall (at the side).......... 850°C

Temperature Distribution 0.5 sec after Maximum Pressure

Mean temperature throughout the gas	
contact with the walls	

Direct Measurement of the Temperature-cycle in a Gas Engine (47); cf. (18, 20, 38)

Coal gas (460 BTU/ft.³); cylinder 7 in. diameter; stroke 15 in.; working volume 577 in.³; thermocouple: 10% alloys of Pt-Rh and Pt-Ir (0.0005-0.0008 in. thick).

No	1	2	3	4	5
Ratio Air/ Gas	7.35/1	7.08/1	7.13/1	6.71/1	5.66/1
Jacket outlet, °C	35.6	37.2	81.4	40.6	52.8
Angle of crank	Temp.,	Temp.,	Temp.,	Temp.,	Temp.,
360	569	568	582	705	636
300	496	503	515	624	540
240	349	348	371	517	431
180	256	269	317	422	371
120	217	223	262	365	330
60	228	241	273	326	337
30	267	275	330	339	442
720					2249
710				1947	
709					
708				1889	
705		1848	1871		1918
697	1836				
690	1546	1551	1532	1579	1721
675	1423	1418	1397	1437	1586
660	1154	1147	1269	1247	1417
645	1159	1124	1139	1193	1275
630	1041	1052	1018	1098	1192
615	1022	1007	1017	1058	1124
600	1017	975	975	982	1068
540	856	843	816	895	889
480	726	708	704	794	764
420	648	646	637	751	705

RADIATION LOSSES

Pressure-time curves obtained from the explosion of a 15% coal gas (675 BTU/ft.²)—air mixture in an explosion vessel: (a) with a highly polished, (b) with a blackened interior surface (44); volume of vessel 0.788 ft.³; area of interior surface 4380 cm².

Maximum pressure for initial pressure 1	Pressure lb./in.2 for seconds after ignition					
atmosphere	0.15	0.25	0.35	0.45		
(a) 114.0 lb./in.*	98.7	84.2	73.5	64.9		
(b) 110.8 lb./in.2	89.2	73.1	61.3	53.5		

Same for 9.8% coal gas (575 BTU/ft.3) (45). Vessel as above

Time from ignition	Mean temp- erature °K, inferred from pressure	Mean radia- tion received per cm ² of wall	Total loss of heat by radia- tion, % heat of combustion
0.15	1600	0.12	5.0
0.18	1700*	0.17	7.0
0.20	1680	0.21	8.7
0.25	1600	0.28	11.6
0.50	1280	0.46	19.0
0.75	1085	0.54	22.3
1.00	950	0.57	23.6

^{*} Maximum temperature.

Fig. 26.—Direct measurement of temperature-cycle in a gas engine

INFLUENCE OF DENSITY OF GAS ON RADIATION LOSS
Fifteen per cent coal gas (575 BTU/ft.3)—air mixture (45)

Time from igni-	Mean tempera- ture °K, of gas (inferred from pressure)		Mean radiation received per cm ² of wall		Total heat loss by radiation, % heat of combustion	
tion, sec	$P_i =$	$P_i =$	$P_i =$	$P_i =$	$P_i =$	$ P_i =$
BEC	⅓ at.	1 1 at.	⅓at.	1 ½ at.	₃ at.	1 ½ at.
0.05	2270	2400	0.061	0.14	3.3	2.5
0.10	2020	2210	0.2	0.425	11.0	7.7
0.15	1790	2040	0.29	0.615	15.9	11.3
0.20	1600	1890	0.35	0.75	19.2	13.6
0.25	1440	1765	0.39	0.843	21.4	15.3
0.50	1030	1350	0.47	1.065	25.7	19.3
0.75	810	1140	0.49	1.143	26.8	20.7
1.00	700	1010	0.492	1.158	26.9	21.0

HYDROGEN-AIR MIXTURES (61)

Strength of mixture	Maximum temperature °K, devel- oped (infer- red from pressure)	Time of explosion (sec)	Total radia- tion re- ceived per cm² of wall	% heat of combustion lost by radi- ation up to max. pressure	Total heat loss by radi- ation, % heat of com- bustion
25.4	2400	0.017	0.60	0.5	16.1
15.3	1580	0.065	0.245	1.3	11.0
10.0	1230	0.240	0.12	1.4	8.2

		Compared	with coal ga	ıs	
15.0	2410	0.05	0.98	3.3	26.1
13.0	2170	0.07	0.81	3,7	25.0
9.8	1700	0.18	0.57	7.0	23.6

Fig. 27.—Pressure-time curves obtained from the explosion of a 15 % coal gas air mixture (44).

Fig. 28.—Influence of shape of explosion vessels having the same initial capacity on the maximum pressure developed (68).

HEAT LOSS

Mixture of 15% coal gas (570 BTU/ft.3) in air (64)

Sec*	Mean† gas tempera-		m ² , % heat of of of the coal gas	combustion
	ture, °K	Conduction	Radiation	Total
0.05	2440‡	5.1	3.8	8.9
0.1	2220	14.4	10.4	24.8
0.15	2020	20.3	15.0	35.3
0.2	1840	24.5	17.9	42.4
0.25	1710	27.7	20.3	48.0
0.3	1600	30.0	22.2	52.2
0.4	1430	34.4	24.3	58 . 7
0.5	1300	37.6	25.6	63.2

- * Time after ignition in seconds.
- † Inferred from pressure.
- 1 Maximum temperature.

Various Formulae for Approximate Estimation of Cooling Losses in Explosions of Coal Gas—Air Mixtures

General formula for radiation loss in coal gas—air explosions (59)

$$R_T = 0.0001 (T_{\text{max.}} - 700 \sqrt{D \times L})$$

where

 R_T = Total radiation registered

T_{max.} = Maximum temperature (mean, °K)

D = Density of the gaseous mixture in atmospheres

L =Length of the explosion cylinder in cm

Rate of loss of heat by radiation, cm² of wall surface/sec (R_L) (64)

$$R_L = 1.75 \times 10^{-14} \theta^4$$

where

 θ = mean absolute temperature.

For a cylindrical vessel (h cm diam. \times h cm deep):

$$R_L = 0.32 \times 10^{-14} \theta^4 \sqrt{h}$$
.

Rate of loss of heat by conduction, cm² of wall surface/sec (R_L) (64):

$$R_c = 4 \times 10^{-13} (t - t_w)^4$$

for temperatures above 2000°K;

$$R_c = 7 \times 10^{-10} (t - t_u)^3$$

for temperatures below 2000°K where $(t - t_{\rm w})$ is the temperature difference, °C, between the hot gases and the walls of the explosion vessel.

Fig. 29.—Heat loss from 15 % mixture of coal gas and air (64, 74). R = mean loss of heat by radiator per cm² of wall surface. C = mean loss of heat by conductor per cm² of wall surface. H = total heat loss. R', C' and H' give the rate of heat loss by radiation, conduction and total loss, respectively. T = mean gas temperature (deduced from the pressure).

Rate of total heat loss, cm² of wall surface/sec (H_T) in a cylinder $(h \text{ cm diam.} \times h \text{ cm deep})$ (64):

$$H_T = 4 \times 10^{-13} (T - T_w)^4 + 0.32 \times 10^{-14} T^4 \sqrt{h}$$

for temperatures above 2000°K;

$$H_T = 7 \times 10^{-10} (T - T_u)^3 + 0.32 \times 10^{-14} T^4 \sqrt{h}$$

for temperatures below 2000°K.

Total heat loss to walls of cylindrical explosion vessel (30 cm × 30 cm up to moment of maximum pressure (64) (coal gas—air explosions) at atmospheric density:

$$H_{\text{max.}} = 2.15 \times 10^{-8} \theta_{\text{max.}}^{2.5} \times t_e$$

or expressed as a proportion of the heat of combustion

$$H_{c \text{ max.}} = 1.43 \times 10^{-5} \theta_{\text{max.}}^{1.5} \times t_{\bullet}$$

where t_{\bullet} is the explosion time.

Total heat loss per unit area in similar engines working under similar conditions may be given by the equation (74):

$$H = C + R\sqrt{d}$$

where

C =conduction loss per unit area

 $R\sqrt{d}$ = radiation loss per unit area in an engine of diameter d.

INFLUENCE OF TURBULENCE

Explosions of coal gas—air mixtures in conical vessel, capacity 115 in. (ignition at vertex) (68); cf. (7, 31, 39, 56, 75)

Ratio	$rac{P_{ m ms}}{P_{ m ini}}$		Mill	i-sec
air/coal gas	With turbulence	Quiescent	With turbulence	Quiescent
2.08	6.92		70.0	
2.61	7.23	6.44	28.0	95.0
3.13	7.48	6.68	39.0	71.0
3.65	7.24		38.0	
4.17	6.70	6.30	51.6	83.0
5.21	6.13	5.52	49.6	139.0
6.25	5.53	4.70	81.0	329 .0
7.29	4.84	3.76	136.0	942.0
8.33	4.15		344.0	

Ethane, C₂H₆, and air mixtures in spherical vessel, capacity 4000 cm³ (sparked at center) (⁵⁶)

% C ₂ H ₆	Mil	li-sec
in air	Quiescent	Turbulence
3.30		176
3.45		96
3.60	332	
3.80	152	
3.85	146	45
4.05	124	36
4.30		33
4.35	94	
4.60		26
4.65	73	
4.70		29
4.80	70	
5.00	63	24
5.25		21
5.35	54	20
5.60	52	1
5.95	-	19
6.00	46.5	1
6.40	20.0	19
6.45	46	1
6.75	46.5	19
7.05	50	20
7.15	52	20

Distribution of Energy at the Moment of Maximum Pressure Coal gas—air explosions (64)

Internal Thermal Energy.—From 72% of the heat of combustion in a 9.7% coal gas—air mixture to 80% in a 15% mixture.

Available Chemical Energy.—About 10% in each case.

Heat Loss to Walls of Vessel.—From about 10% in a 15%

Heat Loss to Walls of Vessel.—From about 10% in a 15% mixture to about 18% in a 9.7% mixture.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Hirn, 375, 1861: 254, 450, 847. (2) Bunsen, 8, 181: 161; 67. 5, 34: 489; 67. B72. (2) Vieille, 34, 95: 1280; 82. (4) Mallard and Le Chatelier, 54, 95: 1352; 82. (8) Mallard and Le Chatelier, 51, 1: 173; 82. (8) Clerk, 155, 69: 220; 82. (7) Mallard and Le Chatelier, 15, 4: 379; 83. (8) Mallard and Le Chatelier, 27, 39: 98, 268; 83. (9) Berthelot and Vieille, 34, 98: 545; 84.
- (10) Berthelot and Vieille, 34, 98: 601; 84. (11) Berthelot and Vieille, 34, 98: 646; 84. (12) Berthelot and Vieille, 34, 98: 705; 84. (13) Mallard and Le Chatelier, 61, 4: 59; 85. (14) Berthelot, 6, 4: 13; 85. (15) Berthelot and Vieille, θ, 4: 29, 39, 48, 59; 85. (16) Clerk, 163, 85: 1; 86. 136,

- **53**: 207; 86. (17) Douglas, 355, **63**: 308; 87. (18) Burstall, 3, **40**: 282; 59. (19) Berthelot and Vieille, 34, **123**: 523; 96.
- (20) Burstall, 403, 1898: 209. 1901: 1031. 1908: 5. (21) Berthelot and Vieille, 34, 128: 777; 99. (22) Fenn, 404, 44: 366; 00. (23) Petavel, 598, 46: 1; 01. (24) Oliver, 412, 8: 616; 01. (25) Bairstow and Horseley, 115, 74: 723; 02. (26) Petavel, 5, 3: 461; 02. (27) Langen, 414, No. 8: 1; 03. (28) Petavel, 62, 205: 357; 05. (29) Bairstow and Alexander, 5, 76: 340: 05.
- (30) Beyling, 405, 42: 130; 06. (31) Hopkinson, 5, 77: 387; 06. (32) Clerk, 5, 77: 500; 06. (33) Hopkinson, 5, 79: 138; 07. (34) Hopkinson, 3, 13: 84; 07. (35) Clerk, 153, 169: 121; 07. (36) Nagel, 414, No. 54: 1; 08. 115, 86: 278; 08. (37) Coker, 115, 86: 497; 08. (38) Dalby and Callendar, 5, 80: 57; 08. (39) Committee on gaseous explosions, 133, 1908: 308. 1909: 247. 1910: 199. 1911: 130. 1912: 192. 1913: 166. 1914: 177. 1915: 158. 1916: 292.
- (40) Pier, 9, 15: 536; 09.
 (41) Pier, 7, 66: 759; 09.
 (42) Clerk, The Gas, Petrol and Oil Engine. New York, Wiley, 1909.
 (43) Pier, 9, 16: 897; 10.
 (44) Hopkinson, 5, 84: 156; 10.
 (45) David, 62, 211: 375; 12.
 (47) Coker and Scroble, 163, 196: 1; 13.
 (48) David, 5, 28: 256; 13.
 (49) Thornton, 3, 28: 18; 14.
 133, 1941: 84, 513.
- (50) Siegel, 7, 87: 641; 14.
 (51) Flamm and Mache, 75, 126: 9; 17.
 (52) Thornton, 5, 30: 383; 15.
 (53) Bone et al., 62, 215: 278; 15.
 (54) Wheeler, 4, 113: 84; 18.
 (55) Mackensie and Honaman, 244, 6: 119; 19.
 (58) Wheeler, 4, 115: 81; 19.
 (57) David, 115, 108: 251, 300; 19.
 (58) David, 3, 38: 492; 19.
 (59) David, 3, 39: 66, 84; 20.
- (40) David, 3, 40: 318; 20.
 (41) David, δ, 98: 183; 20.
 (42) Woodbury, Lewis and Canby, 244, 8: 209; 21.
 (43) Dixon, 244, 9: 237; 21.
 (44) David, δ, 98: 303; 21.
 (45) Womersley, δ, 100: 483; 21.
 (46) David, 5, 42: 868; 21.
 (47) Bone and Haward, δ, 100: 76; 21.
 (48) Kratz and Rosecrans, 86, 17: No. 133; 22.
 (49) Bone, Newitt and Townend, 5, 103: 205: 23.
- (70) Ellis, 4, 123: 1435; 23. (71) Bone, Newitt and Townend, 4, 123: 2008; 23.
 (72) Midgley and McCarty, 244, 14: 182; 24. (73) Bone, Newitt and Townend, 5, 105: 406; 24. (74) David, 403, 1924: 741, 763. (75) Fenning, 299, No. 902; 24. (76) Crowe and Newey, 5, 49: 1112; 25. (77) Ellis and Wheeler, 4, 127: 761; 25. (78) Brown, Leslie and Hunn, 45, 17: 397; 25. (79) Bone, Newitt and Townend, 5, 106: 393; 25.
- (80) Nickolls, Underwriters Laboratories Misc. Hazard 1130, Pamphlet 95; 1925.
 (81) David, 5, 106: 617; 25.
 (82) Fenning, 299, No. 979; 25.
 (83) Fenning, 62, 225: 331; 26.
 (838) Groves, Practical Treatise on Oil and Gas Engines. Manchester, 1897.
 (*3b) David, Richardson and Davies, Proc. Leeds Phil. Soc. 1: 37; 26.
 (*3c) Bone, Newitt and Townend, 5, 110: 645; 26.
 (*3d) Maxwell and Wheeler, Safety in Mines Research Board, Report No. 10; 25.
 (*3e) Tisard, 83, preprint, 1926.
 (*3f) David, 83, preprint, 1926.

THEORETICAL PAPERS

- (84) Berthelot, 6, 12: 302; 77. (85) Mallard and Le Chatelier, 34, 93: 1014, 1076; 81. (86) Berthelot, 27, 39: 145; 83. 34, 96: 1186; 83. (87) Berthelot and Vieille, 34, 96: 116, 1218, 1358; 83. (88) Mallard and Le Chatelier, 27, 39: 269; 83. (89) Berthelot, 34, 97: 767; 83.
- (90) Berthelot and Vieille, \$7, 41: 561, 566; 84.
 (91) Berthelot and Vieille, \$4, 98: 770, 852; 84.
 (92) Le Chatelier, \$7, 48: 122; 87.
 (93) Le Chatelier, \$4, 104: 1780; 87.
 (94) Bjerrum, \$9, 17: 731; 11.
 7; 79: 537; 12.
 (95) David, \$7, 39: 551; 20.
 (96) Le Chatelier, \$4, 179: 971, 24.
 (97) Goodenough and Felbeck, \$6, 18: No. 139; 24.
 (98) David, \$7, 11: 334; 26.
 (988) Wimperis, \$56, 94: 354; 02.
 96: 511; 03.
 (985) Tisard, \$5, preprint, 1926.

Papers Dealing with Engine Efficiency and "Knocking" or "Detonation" in Engines from the Combustion

Standbount

(**) Lucker, 412, 10: 553; 02.

(100) Midgley, £44, 7: 489; 20. (101) Ricardo, 581, 11: 51, 92, 130, 169, 201, 242; 21. 12: 265, 299, 329; 22. (102) Ricardo, 165, 17 I: 123; 22. (103) Tizard and Pye, 581, 11: 55, 98, 134; 21. (104) Tizard, 411, 37: 381; 21. (105) Midgley and Boyd, £44, 10: 7; 22. (106) Midgley and Gilkey, £44, 10: 218; 22. (107) Midgley, £44, 10: 357; 22. (108) Midgley and Boyd, 45, 14: 589; 22. (109) Midgley, £44, 10: 387; 22. (108) Midgley and Boyd, 45, 14: 589; 22. (109) Midgley, £44, 10: 389; 22. (108) Midgley, £45, 14: 849, 894; 22. 15: 421; 23.

(110) Empire Motor Fuels Committee, 153, 18 I; 23. (111) Ricardo, 244, 13: 367; 23. (112) Ricardo, 413, 28: 49; 24. (113) Young and Holloway, 244, 14: 235, 315; 24. (114) Midgley and McCarty, 244, 14: 182; 24. (115) Morgan, 155, 19: 254; 24. (116) Schlesinger, 244, 16: 433; 25. (117) Dumenois, 34, 180: 1392; 25. (118) Fieldner, Straub and Jones, 45, 18: 51; 21. (115) Fieldner and Jones, 45, 14: 594; 22. (120) Wendt and Grimm, 45, 16: 890; 24. (121) Clark, Brugmann and Thee,

(126) Wendt and Grimm, 45, 16: 890; 24. (121) Clark, Brugmann and Thee, 45, 17: 1226; 25. (122) Brown, 45, 17: 1229; 26. (123) Lovell and Boyd, 45, 17: 1216; 25. (124) Clark and Thee, 45, 17: 1219; 25. (125) Church, Mack and Boord, 45, 18: 334; 26. (126) Muraour, 378, 14: 851; 25. (127) Denison, 244, 17: 273; 25. (128) Callendar, 115, 121; 475; 26. (129) Sims and Mardles, 85, preprint, 1926.

Digitized by Google

ANIMAL AND VEGETABLE OILS, FATS AND WAXES

C. AINSWORTH MITCHELL

Contents	Matières	Inhaltsverzeichnis	INDICE TABLE	E
Common names.	Noms usuels.	Gebräuchliche Namen.	Nomi comuni	1
Scientific names and common	Noms scientifiques et propriétés	Wissenschaftliche Namen und	Nomi scientifici e proprietà	
properties.	usuelles.	Eigenschaften.	comuni 2	2
Chemical composition.	Composition chimique.	Chemische Zusammensetzung.	Composizione chimica	3
Polenske values.	Indices de Polenske.	Polenske Zahl.	Numero di Polenske 4	4
Compressibility.	Compressibilité.	Kompressibilität.	Compressibilità	5
Viscosity.	Viscosité.	Viskosität.	Viscosità	6
Viscosity under pressure.	Viscosité sous pression.	Viskosität unter Druck.	Viscosità sotto pressione	7
Melting points.	Points de fusion.	Schmelzpunkt.	Punto di fusione	8
Boiling points.	Points d'ébullition.	Siedepunkt.	Punto di ebollizione	9
Thermal expansion.	Dilatation thermique.	Thermische Ausdehnung.	Dilatazione termica 10	0
Specific heat.	Chaleur spécifique.	Spezifische Wärme.	Calore specifico 1	1
Heat of combustion.	Chaleur de combustion.	Verbrennungswärme.	Calore di combustione 15	2
Flash point.	Point d'inflammabilité.	Flammpunkt.	Temperatura di accensione. 13	3
Electrical conductivity.	Conductibilité électrique.	Elektrische Leitfähigkeit.	Conducibilità elettrica 14	
Dielectric constant.	Constante diélectrique.	Dielektrizitäts Konstante.	Costante dielettrica 1	5
Refractive index and butyrore-	Indice de réfraction et lecture	Brechungsexponent und Able-	Indice di rifrazione e indica-	
fractometer reading.	au butyroréfractomètre.	sung am Butyrorefrakto-	zioni del burrorefratto-	
		meter.	metro 16	6
Optical rotation.	Pouvoir rotatoire.	Optische Rotation.	Rotazione ottica 17	7
Special Property-Substance	Tables des Propriétés Speciales	Stoff-Eigenschafts	Tabelle di Proprietà	
Tables	des Substances	Tafeln	Speciali	
Density.	Densité.	Dichte.	Densità 18	g
Melting point.	Point de fusion.	Schmelzpunkt.	Punto di fusione	
Congelation point.	Point de congélation.	Erstarrungspunkt.	Punto di solidificazione 20	
Acetyl value.	Indice d'acétyle.	Azetylzahl.	Numero di acetile 21	_
Iodine value.	Indice d'iode.	Jodzahl.	Numero di iodio	_
Saponification value.	Indice de saponification.	Verseifungszahl.	Numero di saponificazione 23	
Hehner value.	Indice d'Hehner.	Hehner'sche Zahl.	Numero di Hehner 24	
Reichert-Meissl value.	Indice de Reichert-Meissl.	Reichert-Meissl Zahl.	Numero di Reichert-Meissl. 25	_
Unsaponifiables.	Insaponifiable.	Unverseifbares.	Insaponificabile	_
Fatty acid melting and solidifi-	Points de fusion et de solidifica-	Schmelz- und Erstarrungs-	Punto di fusione e di solidi-	•
cation points ("Titer test").	tion des acides gras (Titer	punkte der Fettsäuren	ficazione degli acidi grassi	
Carron position (arron 6000).	test).	(Titer test).	(Titer test) 27	7
Hydrogenated oils.	Huiles hydrogénées.	Gehärtete Öle.	Oli induriti p. 216	

INTRODUCTION

The General Property Table.—In Table 2, the oils and fats are first classified according to the Alder Wright system. Under each class, the individuals are arranged in alphabetical order of their generic names; and each individual is given a General Index No. by means of which it is identified in all subsequent tables. Where only one series of values is given, the data are usually those recorded for a single specimen of the particular oil. Table 2 serves therefore as a general finding table based upon the scientific names. If the scientific name is not known to the reader, he should first consult Table 1 and obtain the General Index No.

Supplementary Tables.—Properties not covered by Table 2 are set forth in Tables 3 to 17 inclusive.

Property-Substance Tables.—In these tables (Tables 18 to 27, inclusive) the individuals are arranged by index number in ascending order of the value of the property, the intervals on the scale of property values being indicated in bold-face type. These property-substance tables may be used (1) to select an individual having any desired value of a given property, or (2) to identify (in some cases at least) an individual by means of its properties. For the latter purpose, the properties cited in the following example are most useful.

Example; An oil is found by test to have the following properties: Congealing point, 0°; saponification, 190; iodine, 82; acetyl,

INTRODUCTION

Table des propriétés générales.—Dans la Table 2, les huiles et les graisses sont d'abord classées suivant le système d'Alder Wright. Dans chaque classe, les huiles et graisses sont rangées suivant l'ordre alphabétique de leurs noms génériques et on leur a attribué un "numéro index général" au moyen duquel elles seront identifiées dans toutes les tables suivantes. Où on a donné seulement une serie de valeurs, les données sont généralement ceux d'un seul échantillon de l'huile particulière. La Table 2 est donc une table de recherche générale, basée sur les noms scientifiques. Si le nom scientifique n'est pas connu du lecteur, il devra d'abord consulter la Table 1 afin d'obtenir le "numéro index général."

Tables supplémentaires.—Les propriétés qui ne sont pas mentionnées dans la Table 2 sont contenues dans les Tables 3 à 17 inclusivement.

Tables des propriétés des substances.—Dans ces tables (Tables 18 à 27 inclusivement), les huiles et graisses représentées par leur nombre index sont arrangées suivant l'ordre ascendant de la valeur de la propriété, les intervalles de l'échelle des valeurs de la propriété étant indiqués en caractères gras. Ces tables des propriétés des substances peuvent être utilisées: 1) pour choisir une huile ou graisse possédant une valeur désirée d'une propriété donnée, ou 2) pour identifier (au moins dans quelques cas) une huile ou graisse au moyen de ses propriétés. On se servira alors de

11; unsaponifiables, 0.6; fatty acids, M. P., 28°; "titer," 21°; n26, 1.466. From each of Tables 20, 23, 22, 21, 26, 27 and 16B, write down a list of the General Index Nos. lying in the neighborhood of the experimental value and arrange each list in ascending order of these numbers. Determine the number of times each Index No. occurs in this set of lists. For the present example, this gives the following result: 8 times, No. 8; 7 times, No. 31; 4 times, Nos. 3, 5, 26, 47, 62, 91; 3 times, Nos. 13, 20, 29, 33, 54, 61, 67, 83, 84, 92.

By turning to Table 2 and examining the properties there recorded for these oils, all but Nos. 8 and 31 are definitely eliminated. The oil under examination must, therefore, be either olive oil or neat's foot oil, or some oil closely resembling these but not included in Table 2. A further comparison of Nos. 8 and 31 results in the elimination of No. 31 on the basis of the acetyl and iodine values, but additional confirmatory tests are necessary.

Definitions.—v. p. viii.

EINLEITUNG

Die Haupteigenschafts Tafel.—In der Tafel 2 werden die Öle und Fette zuerst entsprechend dem Alder Wright System klassifiziert. In jeder Klasse sind die einzelnen Fette und Öle in alphabetischer Ordnung mit deren Gattungsnamen angeordnet, wobei jedem eine "General Index No." zu geordnet ist mit der es in den folgenden Tafeln erkannt werden kann. Ist nur eine Serie von Werten angegeben, so beziehen sich diese gewöhnlich auf eine einzelne Probe des bezeichneten Öles. Tafel 2 dient daher allgemein zum Nachschlagen, mit den wissenschaftlichen Namen als Grundlage. Ist dem Leser der wissenschaftliche Name nicht bekannt, so wäre zuerst die Tafel 1 heranzuziehen, wo die General Index No. erhalten wird.

Brgänzende Tafeln.—Eigenschaften die sich nicht in der Tafel 2 vorfinden, sind in den Tafeln 3 bis einschliesslich 17 enthalten.

Rigenschafts Tafeln.—In diesen (Tafel 18 bis einschliesslich 27) sind die einzelnen Öle und Fette nach ihren Index Nummern in aufsteigender Ordnung ihrer Eigenschaftswerte gereiht, wobei die Intervalle an der Skale der Eigenschaftswerte durch hervorgehobene Schrift angezeigt werden. Diese Eigenschafts Tafeln wären zu benützen:1) Um ein besonderes Öl oder Fett heranzuziehen, welches ihrgend einen gewünschten Wert einer gegebenen Eigenschaft hat. 2) Zur Erkennung (wenigstens in einigen Fällen) eines besonderen Öles oder Fettes auf Grund seiner Eigenschaften. In diesem zweiten Falle ist es am nützlichsten die Eigenschaften in der Art des folgenden Beispieles festzulegen.

Beispiel: Von einem Öl wurden durch Untersuchung folgende Eigenschaften gefunden: Erstarrungspunkt 0°; Verseifungszahl 190; Jodzahl 82; Azetylzahl 11; Unverseifbares 0,6; Fettsäure: Sm. P. 28°; Erstarrungs-Punkt 21°; $n_2^{15} = 1,466$. Aus jeder der Tafeln, 20, 23, 22, 21, 26, 27; und 16B schreibe man eine Liste der General Index Nummern heraus, welche in der Nähe der experimentell bestimmten Grösse liegen, wobei in der Liste die Nummern in aufsteigender Reihenfolge anzuordnen sind. Dann bestimmt man wie oft jede einzelne Index Nummer in der Liste anzutreffen ist. Für das vorliegende Beispiel bekommt man als Ergebnis: 8 mal No. 8, 7 mal No. 31, 4 mal No. 3, 5, 26, 47, 62, 91, 3 mal No. 13, 20, 29, 33, 54, 61, 67, 83, 84, 92.

Verwendet man die Tafel 2 und prüft die für diese Öle hier angegebenen Eigenschaften, so findet man, dass bis auf No. 8 und No. 31, alle anderen ausscheiden. Das gesuchte Öl ist daher entweder Olivenöl oder Klauenöl, oder ihrgend ein Öl, welches den genannten zwei sehr eng verwandt sein muss und nicht in der Tafel 2 enthalten ist. Ein weiterer Vergleich von No. 8 und No. 31 gibt, dass No. 31 auf Grund der Azetyl- und Jodzahl wegfällt. Besondere bestätigende Untersuchungen sind jedoch notwendig.

Definitionen.—v. p. viii.

préférence des propriétés citées dans l'exemple suivant, qui sont les plus utiles pour atteindre ce but.

Exemple: On a trouvé expérimentalement qu'une huile possède les propriétés suivantes: point de congélation 0°; indice de saponification, 190; indice d'iode, 82; indice d'acétyle, 11; insaponifiable 0,6; acides gras Pt. F., 28°, Pt. S., 21°; n_{20}^{25} , 1,466. On consulte alors les Tables 20, 23, 22, 21, 26, 27 et 16B et on dresse pour chacune des tables la liste des "numéros index général" qui se trouvent dans le voisinage de la valeur expérimentale, en disposant dans chaque liste ces numéros dans l'ordre ascendant. Ensuite on détermine combien de fois chaque numéro index se trouve dans l'ensemble des différentes listes. Pour l'exemple indiqué, on obtient les résultats suivants: 8 fois le No. 8; 7 fois le No. 31; 4 fois les Nos. 3, 5, 26, 47, 62, 91; 3 fois les numéros 13, 20, 29, 33, 54, 61, 67, 83, 84 et 92.

En se référant à la Table 2 et en examinant les propriétés qui y sont mentionnées relativement à ces huiles, on peut éliminer tous les numéros à l'exception des Nos. 8 et 31. L'huile à déterminer doit donc être ou de l'huile d'olive, ou de l'huile de pied de boeuf, ou une huile présentant une ressemblance étroite avec celles-ci, mais non mentionnée dans la Table 2. D'une comparaison ultérieure des Nos. 8 et 31, il résulte l'élimination du No. 31, sur la base les indices d'acétyle et d'iode, mais des essais supplémentaires confirmant la chose sont nécessaires.

INTRODUZIONE

Tabella delle proprietà principali.—Nella Tabella 2 gli olii ed i grassi sono anzitutto classificati secondo il sistema di Alder Wright. In ogni classe essi sono disposti in ordine alfabetico in base al nome comune, e ad ognuno è assegnato un numero indice che serve a riconoscerlo nelle tabell successive. Data una sola serie di valori, questi sono in generale quelli di uno solo campione del olio particolare. La Tabella 2 serve perciò come tabella generale di riscontri in base ai nomi scientifici. Se il lettore non conosce il nome scientifico, deve consultare prima la Tabella 1 dove trova il numero indice.

Tabelle supplementari.—Le proprietà che non si trovano nella Tabella 2, sono contenute nelle tabelle da 3 a 17 inclusa.

Tabelle delle proprietà.—In queste (da 18 a 27 inclusa) i singoli olii e grassi sono disposti nell'ordine crescente delle loro proprietà in base ai numeri indici: gli intervalli nella scala dei valori delle proprietà sono indicati con caratteri in grassetto.

Queste tabelle di proprietà possono servire: 1) per scegliere una sostanza che abbia un determinato valore di una certa proprietà, oppure, 2) per identificare (in alcuni casi almeno) una sostanza in base alle sue proprietà. A questo ultimo scopo sono sopratutto utili le proprietà citate nel seguente esempio.

Esempio.—Si sia trovato che un olio ha le seguenti proprietà: Punto di congelamento 0°; numero di saponificazione 190; numero di iodio 82; numero di acetile 11; insaponificabile 0,6; punto di fusione degli acidi grassi 28°, punto di solidificazione 21°; n_1^{26} , 1,466.

Da ognuna delle Tabelle 20, 23, 22, 21, 26, 27 e 16B si ricava allora una lista di numeri indici con valori delle proprietà vicini a quelli sperimentali e si dispone ogni lista con questi valori in ordine crescente. Si osserva quindi quante volte ogni numero indice figura in questa serie di elenchi. Nel caso presente si ha: 8 volte il numero 8; 7 volte il numero 31; 4 volte i numeri 3, 5, 26, 47, 62, 91; 3 volte i numeri 13, 20, 29, 33, 54, 61, 67, 83, 84, 92.

Se ora si considera la Tabella 2 e si esaminano le proprietà ivi riportate per questi olii, essi vengono ad essere tutti scartati tranne i numeri 8 e 31. L'olio in esame perciò deve essere olio di oliva, oppure olio di piede di bue, o un olio che rassomiglia molto a questi due, ma che non è compreso nella Tabella 2.

Confrontando ancora i numeri 8 e 31, si scarta pure il 31 in base ai numeri di acetile e di iodio.

E' necessario però confermare ulteriormente questo risultato.

1. INDEX OF COMMON NAMES

English

(In the following index the word "oil" has been omitted. The various entries are oils unless specifically classified as "fats," "waxes," etc.)

Aburachan seed, 127 Acorn, 46 Akebia, 97 Akee, 109 Akoon fat, 112 Almond, 13 Anaja, 133 Apricot kernel, 14 Arctic sperm, 162 Argemone, 57 Asclepia, 112 Awara, 100 Babassu, 102 Baobab, 99 Bay tree, 126 Beechnut, 40 Beef tallow, 151 Beeswax, 169 Ren 7 Bicuhybao, 138 Black mustard seed, 25 Black walnut, 64 Bone fat, 160 Borneo tallow, 125 Bottlenose, 162 Brazil nut, 33 "Brown oil" (California), 76 Butter fat, 161 Cacao, 147

Cameline, 34 Canari, 114 Candellila wax, 165 Candlenut, 54, 56 Cantaloup seed, 37.5 Cardamom, 42 Carnauba wax, 164 Carthamus, 59 Cashew nut, 2 Castor, 27 Cedar nut, 74 Chaulmoogra, 49 Cherry kernel, 15 Chicken fat, 157 China wood, 53, 55 Chinese insect wax, 171 Chinese vegetable tallow, 146 Chironii fat. 110 Chrysalis, 95

Coal fish, 90

Coconut, 117

Cod liver, 91

Colsa, 20

Cohune nut, 101

Corn. 51 Cotton, 124 Cottonseed, 41 Coumu, 139 Crab. 4 Croton, 37 Cupu, 148 Curcas, 26 Curua palm, 103 Dame's violet, 62.5 Date kernel, 11 Deer fat, 155 Dika fat, 132 Diave butter, 108 Dodder, 34 Doegling, 162 Dogfish liver, 94 Dolphin, 88 Earthnut, 3 Garden cress, 43 Garden rocket, 62.5 Gerard's pine (Himalayas), 75 German sesame, 34 Ghee, 161

Goa butter, 123 Goat's butter, 154 Goose fat, 153 Grape seed, 28 Grey pine (California), 76 Haselnut. 5 Hemp seed, 58 Herring, 85 Horse fat, 156 Illipe butter, 105 Indian beeswax, 168 Indian mustard seed, 19 Indian rape, 22 Japan wax, 144 Japanese sardine, 87 Java almond, 114 Kapok, 39 Karite butter, 111 Katio, 107 Kokum butter, 123 Kuromoji, 128 Lallemantia. 68

Lard, 29, 150 Lard oleine, 29 Laurel butter, 126 Lemon pip, 36 Linseed, 67 Luffa seed, 43.5 Lumbang, 54 Mabula pansa, 141
Macassar, 145
Mace butter, 136
Madia, 45
Mafura, 131
Mahua butter, 105
Maise, 51
Malabar, 149
Mangosa, 134
Mangosteen, 123
Manihot, 68
Manketti nut, 81
Maripa fat, 140
Marotti fat, 42
Menhaden, 83
Mexican poppy seed.

Mexican poppy seed, 57 M'kani fat. 98 Mocaya, 96 Montan wax, 166 Montanin wax, 166 Mowrah butter, 106 Mutton fat, 152 Myrtle wax, 135 Neat's foot, 31 Neem, 134 Niam fat, 130 Niger seed, 61 Njave butter, 108 Nutmeg, 136 Oats, 32 Oiticica, 60

Orange pip, 35.5 Otoba butter, 137 Owala, 141 Palm, 119 Palm kernel, 120, 122 Palm pulp oil, 121 Paradise nut, 6 Para rubber seed, 63 Peach kernel, 1 Peanut. 3 Pecan, 64 Perilla, 71 Phulwa butter, 104 Physic nut, 26 Pilchard, 86 Pili nut, 115

Olive, 8

Olive kernel, 9

Pimento seed, 72 Piney tallow, 149 Piririma, 118 Pistachio nut, 12 Plum kernel, 16
Pongam, 143
Poona fat, 113
Poppy seed, 69
Porpoise, 89
Pumpkin seed, 38
Rabbit's fat, 158
Radish seed, 23
Ranga butter, 142
Rape seed, 20
Ravison rape, 21
Red pine seed, 73
Rice, 10

"Pitch tree," 78

Sacha Almendras, 116
Safflower, 59
Sardine, 86
Sawari nut, 116
Scotch pine, 80
Seal, 92
Sedge, 5.5
Sesame, 47
Shark, 93, 94.5
Shea butter, 111
Shiromoji, 129
Silver fir (Mid. Europe), 78

Soya, 48 Sperm, 163 Spermaceti, 172 Spruce, European, 73 Stearine, 124 Stillingia, 82, 146 Stillingia tallow, 146

Stone pine (S. Europe, S. Africa), 78 Strophantus seed, 16.6

Sunflower, 62
Swiss pine, 74
Tallow, 30, 159
Tallow oleine, 30
Tama fat, 142
Tea seed, 17
Teglam fat, 125
Tomato, 44
Tung, 52, 53, 55, 70
Ucuhuba fat, 138
Ungnadia, 18
Veppam fat, 134
Walnut, 65
Whale, 84
Wheat, 50

White mustard seed, 24 Wild mango, 132 Wool fat, 167

French

(Dans la table suivante, le mot "huile" n'est pas mentionné. Les diverses références sont des huiles à moins qu'elles ne soient spécifiées comm "graisses" "cires," etc.)

Abeille chinoise, 170
Abeille commune, 169
Abeille des Indes, 168
Aiguillat, 94
Akébie, 97
Alose, 83
Amande, 13
Andiroba, 4
Anthelmintique, 42
Arachide, 3
Argemone du Mexique, 57
Arolle, 74

Argémone du Mexic Arolle, 74 Avoine, 32 Azédarac, 134 Babassu, 102 Bancoulier, 52, 53, 54, 55, 56 Baobab, 99 Ben, 7 Beurre, 161 Beurre de Galam, 111 Beurre de lait de chèvre, 154 Beurre de Tama, 142 Cacao, 147

Cameline, 34
Canarium de Java, 114
Carapa, 4
Carthame, 59
Cerf commun, 155
Chaulmoogra, 49

Chènevis, 58 Chrysalide du bombyx, 95 Cire de montagne, 166 Cirier, 135 Cocotier, 118

Cocotier, 118
Colza, 20
Coton, 41, 124
Cresson alénois, 43
Croton, 37
Dauphin, 88
Epicéa, 73

Euphorbe antisyphilitique, 165 Faine, 40 Foie de morue, 91 Froment, 50 Ghé, 161 Gland, 46

Hevea, 63

Graisse de boeuf, 30, 151 Graisse de cheval, 156 Graisse de laine, 167 Graisse de lapin, 158 Graisse de mouton, 152 Graisse d'oie, 153 Graisse d'oie, 160 Graisse de poulet, 157 Grand requin, 94 Hareng, 85

Hyperodon à rostre, 162 Julienne, 62.5

Digitized by Google

Kanock, 39 Lard. 29 Laurelle, 126 Lin, 67 Madar, 112 Mais, 51 Mangue, 132 Manihot, 68 Manioc, 68 Marsouin, 89 Merlan, 90 Moutarde indienne, 19

Moutarde noire, 25 Mudar, 112 Muscade, 136, 137, 138 Navette, 21 Noisette, 5

Noix. 65 Noix d'acajou, 2 Noix d'Amérique, 64 Noix du Brésil, 33 Noix de coco, 117 Novaux d'abricot, 14 Noyaux de cérises, 15 Noyaux de datte, 11 Noyaux d'olive, 9 Noyaux de pêches, 1 Noyaux de prunes, 16 Oeillette, 69 Olive, 8 Palme, 120, 121, 122

Palmier africain, 119 Palmier américain, 164 Passerage, 43 Paulonia, 70 Pavot, 69 Pépins de citron, 36

Pépins de courge, 38

Gänsefett, 153

Pépins de melon, 37.5 Pépins d'orange, 35.5 Pépins de raisin, 28 Perilla, 71 Phoques divers, 92 Pied de boeuf, 31 Pignon, 79 Piment, 72 Pin de montagne, 77 Pin silvestre, 80 Pistache, 12 Puceron, 171 Radia 23

Requin de Japon, 94.5 Requin petit, 93 Ricin, 27 Ricin infernal, 26 Riz, 10

Ris de veau végétal, 109

Roquette, 22 Saindoux, 150 Sapin blanc, 78 Sapin rouge, 73 Sardine, 86 Sardine japonaise, 87 Sénevé blanc, 24 Sénevé noir, 25 Sésame, 47 Souchet, 5.5 Sova. 48 Spermaceti, 172 Sperme du cachalot, 163

Strophante, 16.6 Suif. 159 Suif végétal, 82 Sumac, 144 Tomate, 44 Tournesol, 62

Rotraps, 62.5

Rübe, 20

Rucka, 22

Safflor, 59

German

(In dem folgenden Index wird das Wort "Öl" meistens ausgelassen. Die verschiedenen Bezeichnungen gelten Ölen, wenn sie nicht besonders mit den Namen
"Fette," "Wachse," etc. bezeichnet sind)

Mandel, 13

Mankettinuss, 81

Afrikanischer Butterbaum, 142 Afrikanischer Ölbaum, 119 Akebia, 97 Ahorn, 46 Amerikanische Nuss, 64 Aprikosenkern, 14 Arachis, 3 Asnarol, 100 Bankulnuss, 54, 56 Baobab, 99 Baumwolle, 124 Baumwollsamen, 41 Becuhybafett, 138 Behenől, 7 Bienenwachs, 169 Bongoschmals, 130 Buchnuss, 40 Butter, 161 Candlennuss, 54, 56 Carapa, 4 Cedernuss, 74 Chaulmoogra, 49 Chaulnegraöl, 42 Chinesischer Talg, 82 Chinesisches Wachs, 170 Citronenkern, 36 Cohune, 101 Colum. 20 Coumăl, 139 Curcas, 26 Dattelkern, 11 Dintennuss, 2 Dolphin, 88 Dorsch, 91 Dorschleber, 94

Gartenkresse, 43 Goabutter, 123 Haring, 85 Hafer, 32 Haifisch, 93, 94.5 Hanf. 58 Haselnuss, 5 Haushuhnfett, 157 Indischer-Butterbaum, 104 Indisches Wachs, 168 Jamaika-Pfeffer, 72 Japanwachs, 144 Java Mandel, 114 Kakao, 147 Kandellila Wachs, 165 Kaninchenfett, 158 Kapok, 39 Karnauba Wachs, 164 Kirschenkern, 15 Knochenfett, 160 Kohl, 21 Kokosnuss, 117 Kongo Akasie, 141 Kopalbaum, 149 Korungöl, 143 Kroton, 37 Kurbis, 38 Kuromoji, 128 Legföhre, 77 Leindotter, 34 Leinsamen, 67 Lorbeer, 126 Macaja, 96 Macasar, 145 Madinöl, 45 Mafura Talg, 131

Meerschwein, 89 Melone, 37.5 Menhaden, 83 Mexikanischer Mohnsamen, 57 Mohn, 69 Montanwachs, 166 Muskatnuss, 136 Muskatnuss von Santa Fe, 137 Myrthe, 135 Ölfirnisbaum, 52, 53, 55 Ölpalme, 121 Olive, 8 Olivenkern, 9 Orangensamen, 35.5 Otobafett, 137 Palmkern, 120, 122 Paradisnuss, 6 Parakautschuk, 68 Parakautschukbaumsamen, 63 Paranuss, 33 Paulownia, 70 Peki, 116 Perilla, 71 Pferdefett, 156 Pfirsichkern, 1 Pflaumenkern, 16 Piatasi, 12 Pottwal, 163 Puppe, 95 Radischen, 23 Reis, 10 Ricinus, 27 Rinderklauen, 31 Rindertalg, 151 Rosfichtensamen, 73

Sardine, 86 Sardine japanische, 87 Schaffsfett, 152 Schwarmkürbiskern, 43.5 Schweinefett, 29, 150 Seal, 92 Senf. 19 Senf, weiss, 24 Senf, schwarz, 25 Sessm. 47 Shiromoji, 129 Silberföhre, 78 Sonnenblume, 62 Soyabohne, 48 Steinfichte, 79 Stillingiatalg, 146 Strophantus, 16.6 Talg, 30, 159 Teglamfett, 125 Tomaten, 44 Tuajapalme, 133 Traubensamen, 28 Ungnadia, 18 Wachsbaum, 144 Walfisch, 84 Walnuss, 64 Walrat, 172 Weisen, 50 Wildfett, 155 Wollfett, 167 Yercum, 112 Zedrach, 134 Ziegenbutter, 154

Italian

Rotföhre, 80

Avena, 32

(Nell'indice seguente è stata omessa la parola "olio." I diversi prodotti sono olii, tranne che non sia esplicitamente dichiarato che si tratta di "grassi," "cere," ecc.)

Abete, 73 Abete rosso, 78 Agretto, 43 Akebia, 97 Akee, 109 Akoon, 112 Albero da burro indiano, 104 Albero di caucciù, 63

Albero della cera, 135

Erdmandel, 5.5

Fulwabutter, 161

Erdnuss, 3

Feldkohl, 20

Alloro, 126 Ape chinese, 170 Ape indiana, 168 Arachide, 3 Aringa, 85 Asclepia, 112 Astrocario, 100

Mahuabutter, 105

Albero del sego, 82

Albicocche, 14

Mais. 51

Balena, 84 Bangu, 35 Baobab, 99 Basilico della China, 71 Bene, 7

Bombice del gelso, 95 Burro, 161 Burro di Diave, 108

Burro di Ghee, 161 Burro di Illipè, 105 Burro di Karité, 111 Burro di Niave, 108 Cacao, 147, 148 Camellina, 34 Canapa, 58 Capodoglio, 163 Carapa, 4

INTERNATIONAL CRITICAL TABLES

Cardamomo, 42 Cembro, 74 Cera carnauba, 164 Cera gialla, 169 Cera del Giappone, 144 Cera di mirica, 135 Cera montana, 166 Cipero commestible, 5.5 Chaulmagra, 49 Chiura, 104 Cocciniglia della cera, 171 Colsa, 20 Comore, 139 Cotone, 41, 124 Crescione inglese, 43 Crotontiglio, 37 Delfino dal rostro, 162 Dorella, 34 Essensa di Kuromoji, 128 Faggiola, 40 Fegato di merlusso, 91 Fibre di Piassava, 102 Focena, 89 Frumento, 50 Garcinia, 123 Girasole, 62 Globicefalo, 88 Gomma elastica ceara, 68 Grano, 50 Granone, 51 Granoturco, 51 Grasso di anitra domestica, 153 Grasso di Bonantio, 98 Grasso di Borneo, 125 Grasso di bue, 30 Grasso di capra, 154 Grasso di cavallo, 156 Grasso di cervo, 155 Grasso di Chironji, 110 Grasso di Cohune, 101

Grasso di cokkerite, 133

Grasso di coniglio, 158

Grasso di Katian, 107

Grasso di Kobi, 4 Grasso di lana, 167 Grasso di Mafura, 131 Grasso di Maratty, 42 Grasso di Mené, 130 Grasso di montone, 152 Grasso di Morrah, 106 Grasso di Niam, 130 Grasso di ossa, 160 Grasso di pollo, 157 Grasso di Pongamia, 143 Grasso di Sawari, 116 Grasso di Taccamaca, 113 Grasso di Tama, 142 Grasso di Teglam, 125 Grasso di Teomaica, 113 Hesperide, 62.5 Iperodonte, 162 Jatrofa, 26 Kapok, 39 Lallemansia, 66 Lana vegetále, 39 Lardo, 29, 150 Lauro, 126 Lauro greco, 134 Legno della China, 53, 55 Legno del Giappone, 52 Lino, 67 Luffa, 43.5 Macassar, 145 Madia, 45 Mandorle, 13 Mandorle di Giava, 114 Mandorle di pesco, 1 Mango, 132 Manihot, 68 Maripa, 103, 140 Melia, 134 Mellone, 37.5 Merlango, 90

Miagro falso, 34

Mocaja, 96

Nasturzio, 43

Noccioli di acagiù. 2 Noccioli di cilegia, 15 Noccioli di dattero, 11 Noccioli d'oliva, 9 Noccioli di palma, 120, 122 Noccioli di prugne, 16 Nocciuola americana, 3 Nocciuole, 5 Noce americana, 64 Noce di Bankul, 54, 56 Noce del Brasile, 33 Noce di cocco, 117 Noce moscata, 136 Noce moscata di Santa Fè, 137 Noce nostrale, 65 Noce di Para, 33 Noci di Maringa, 7 Noci del Paradiso, 6 Noci di Sapucaia, 6 Noci di Soccari, 116 Oliva, 8 Owala, 141 Palma da olio, 119, 121 Papavero messicano, 57 Paulonia, 70 Patava, 139 Pepe della Giamaica, 72 Pescecane, 93, 94.5 Pianta del sego, 146 Piede di bove, 31 Pimento, 72 Pino di California, 76 Pino cembro, 74 Pino domestico, 79 Pino dell' Imalaia, 75 Pino montano, 77 Pino ad ombrello, 79 Pino da pinoli, 79 Pino di Scosia, 80 Pino selvatico, 80 Pistacchio, 12 Pomodoro, 44

Popone, 37.5

Porco marino, 89 Quercia, 46 Rafano, 23 Ravissone, 20, 21 Ricino, 27 Ricinodendro, 81 Riso, 10 Ruchetta, 22 Sardina comune. 8 Sardina giapponese, 87 Sego. 159 Sego di palma, 103 Sego di Ucuhuba, 138 Semi di Aburacan, 127 Semi di arancia, 35.5 Semi di Guisotia, 61 Semi di limone, 36 Semi del Niger, 61 Semi di papavero, 69 Semi di strofanto, 16.6 Senapa bianca, 24 Senapa indiana, 19 Senapa nera, 25 Sesamo, 47 Sevo di bue, 151 Sevo di Malabar, 149 Sevo di Piney, 149 Shiromoji, 129 Sicomoro falso, 134 Soja, 48 Spermaceti, 172 Spinarolo imperiale, 94 Stillingia, 82 Strutto, 29 Sugna, 29 Ungnadia, 18 Vinaccioli, 28 Vitello marino, 92 Zafferano falso, 59 Zafferanone, 59 Zucca, 38

2. SCIENTIFIC NAMES AND COMMON PROPERTIES Non-drying Vegetable Oils of the Olive Oil Type

F = fruit pulp; G = whole grain; Gm = germ; K = kernel; N = nut; S = seed; R = rhizome; n = refractive index

'	in the party of a more known; one	Kerm; n = kerner;	ei; in = nut; is = ac	red; n = rnisome		retractive index							
General	9,100	Density	Congelation	Acid value	Saponifica-	Iodine value	Acetyl	Hebner	Reichert-	Unsapon-	Fatty	"Titer"	n Finding
Index No.		7 f	temperature °C	r. p. viii	s. p. vili	a. p. viii	v. p. viii	F. P. viii	value v. p. viii		M. P. °C	. p. viii	No. 9. p. 212
0.5	Abelmoschus moschatus (S)	0.917-0.918			195	95		96		0.3			,
- 6	Amygaalus Perenca (B)	0.918-0.925	02-	1-1.5	191-193	92-99.7	6.5	94-96				13-13.5	66 16
. m	Arachis hypogaea (S).	0.917-0.926	m	8.0	186-194	88-98	20	95	0.0	0.5-0.9		30, 5-39	99
3.5	Camellia oleifera (S)	0.916-0.9227	-12		180-196	08-08) ;	93-96	78.0		21-30	:	
₩ 1	Carapa Guianensis (S)	0.912 - 0.923	4.5		188-195.6	28-65		92-93.7	2.5-3.3		38.8		43
יט ע	Corylus avellana (S)	0.917	-17 to -18		191-197	87	2.	95.5	66.0	0.5	22-22	19-20	25
	Lecuthia zabucajo (8)	0.924	Delow U	. 91	225	97-76	8 7 8				37.6		11
	Moringa oleifera (S).	0.912-0.920	7-8	9	185–189	109-112.6	•	95	0.5		?	37.8	: 8
90	Olea Buropaea sativa (F)	0.915-0.920	(+2 turbid)	0.3-1.0	185-196	29-88	10.5	95	0.6-1.5	0.4-1.0	26-30	16.9-26.4	63
æ	Olea Rusanaea satua (S)	Cf. Table 10	(-6 deposit)	a	189_186	8		1					. A
. 01	Oriza sativa (S)	0.920-0.927	- 10	43-77.2	192-195.8	96.4-99.9		95.2		8			2 20
==	Phoenix dactylifera (S)		18.1		211	52.3		95.2	0.88			-	37
2 :	Pistacia vera (S)	0.913-0.919	-5 to -10		161	83 87		96			17-20	13-14	22
2 :	Prunus amyodalus (S)	0.914-0.921	-15 to -20	0.5-3.5	183.3-207.6	93-103.4	Ø 9	0.0	0.5	0.75	13-14	9.5-11.8	28
15	Prunus cerasus (S)	0.918-0.920	- 19 to -20	6 -	193 3-195	110-114 3	7.7		7.0		19-21	13-15	2 %
16	Prunus domestica and P. damascena		:	<u>.</u>								;	!
	(S)	0.912 - 0.913	-5 to -8	0.55	191–193	100-103.6					12.4-18		89
16.5	Sterculia foetida (F, S)	0.926			188-199	76-83		92-96	1.0			31-32	81.5
16.6	Strophanthus hispidus (S)	0.9249-0.9254			188–195	96-102		92-95	0.5-0.9		32.2		į
10.7	Terminalia calappa (S)	0.917-0.920			175–196	89-13		91-92			45-44		48.5
18	I nea susangua (S)	0.912	-5 to -12		191-194	81-82		e: 76			19	- 01	66, 53
			Non-drying	g Vegetable	يه ا	Rane Oil Tyne	9						
	- ·						-	-			-		
£ 8	Brassica juncea (S)	0.916-0.921		3.7-7.2	172-180	102-108	77. 77.	95.5	0.33-0.89	97	200	11 7 10 0	8 % 3 %
8 2	Brassica (varieties of) (S)	0.916-0.919	8 8	2.106.0	177-181	109-122			•	_	10.02	13.5-16.5	3 3
22	Eruca sativa (S)	0.916-0.919		2.5-3.7	169-174	97.5-102		95.5	0.75				8
8 2	Raphanus sativa (S)	0.916-0.918	2 2 2 3	,	174–178			95.9	0.33		20	13-15	2 :
4 %	Singuis alog (S)	0.912-0.916	-8 to -16	5.4	171-174	94-98.4		96-94			15-16	12 4-12 7	22
25.1	Sinapis nigra (Russian)	0.920			181-182	115-120					-		3
			Non-drying	Vegetable	Oils of the C	Castor Oil Ty	Type						
. 56	Jatropha curcas (8)	0.919-0.924	{ 4.4 turbid }	0.5-5.0	192.5-210	98-110	9-25.3	95.2	0.28-0.48		24-30		67
27	Ricinus communis (8)	0 960 0 967	(- 12 turbid	8 0-61 0	175-183	ä	146_150 5		7	9			91
88	Vites rinifera (S)	0.917-0.933	(-17 to-18 solid) -10 to -17	0.75	171-191	135	13.5-14.5	85	0.46	1.6	23-25		88
				Non-drying	-								
L	= lard; T = tallow; F = foot			•									
29	Oleum adipis (L)	0.913-0.915	-2 to +4	1.56	193–198	62.5-79		26		9.0	33-38.4	27-33	45
8 8	Oleum adipis boris (T)	0.914-0.919	2 to 7.5	0.2-0.25	193.5-199	56-60.5	7 7-0 3	04 8-05 0	- 1-0	12.0 85		35-37.5	47
			3		N	Oils	5		•		- : :		
ᄕ	= fruit pulp; G = whole grain; Gm = germ; K = kernel; N	rm; K = kernel;	N = nut; S = seed)									
22 22	Avena sativa (G)	0.925	0 to 3	34.7-35.3	189.8–192.4	114.2		94.9	-	1.30-2.65	27.5 28-30 3	31.1-32.2	114
÷	Camelina sativa (Myagrum sativa)	2000	•		9								101
	[(g)]	0.923-0.927	- 18	_	- 881 -	132-152	_		_	_	13-14	17-18	707

Vegetable Semi-drying Oils.— (Continued)

			and So.	regerante comitante ous.		(someone)							
General	Scientific name and source	Density	Congelation	Acid value	Saponifica-	Iodine value	Acetyl	Hehner	Reichert- Meissl	Unsapon-	Fatty	"Titer"	n Finding
Index No.		d!!	temperature °C	e. p. viii	P. p. viii	e. p. viii	r. p. viii	P. p. viii	value t. p. viii	ifiables % M. P °C	M. P °C		No. r. p. 212
35	Ceratotheca sesamoides (S)	0.916		0.63	190.2	110.6							88
35.5	Citrus aurantium (S)	0.918 - 0.919			194-197	97-104	_	95-96	0.5-0.8				70.5
36	Citrus limonum (S)	0.916 - 0.918	9-		188.3	107.3	13.6	95.6	0.55			19.7 - 21.0	
37	Croton tiglium (S)	0.942 - 0.944	-8 to -18	27-30.9	193-215	108-109	19.8-38.6				-	17-19	115
37.5	Cucumis medo (S)	0.92123		0.43	192.3	125.9	15.8	95.1	0.33	1.1			
38	Cucurbita pepo (S)	0.923 - 0.925	- 15		188-193	121-130		96	4.45			26-28	95
38	Eriodendron anfractuosum (S)	0.923-0.933		3-15	189-194.5	78-93					38		49
40	Fagus sylvatica F. Americana (K)	0.922	-17		191-196	97-111		95 96			23-24		73
41	Gossypium species (S)	0.917-0.91828	+12 to -13	0.6-0.9	194-196	103-111.3	21-25	95.7	0.95	1.1	34.5		
41.5	Hydnocarpus alcalae	0.94830	24	6.7	202	94.0					55		143
42	Hydnocarpus anthelmintica (8)	0.9493		9.0	206-209.8	84.5-90.8	21.8	95.5	1.02		46		122
42.1	Hydnocarpus Hutchinsonii (S)	0.94310	23	5.3	199	83.5					43		
42.2	Hydnocarpus subfalcata (S)	0.95130	21	9.9	506	89.0					7		140, 142
42.3	Hydnocarpus venenata (8)	0.94730	23	1.2	191	2.06				_	47	_	145
42.4	Hydnocarpus Wightiana (S)	0.94736	=======================================	6.7	202	0.70					40		144
42.5	Hydnocarpus Woodii (S)	1	18	5.9	192	68.5					43		
43	Lepidium sativum (S)	0.920 - 0.924	- 15		180-183	102-118		95,5	0.2.0.4	-	16-18		
43.5	Lufa Bayptica (S)	0.9254		28.8	188	108.5		95	1.4				86.5
4	Lycoperation esculentum (S)	0.922			187-192	107-125	11.4-20.5	92-96.6	0.1-0.3				26
45	Madia satisa (S)	0.921-0.933	-10 to -12		193-194	121-129		95.5			21.7	22-36	
45.1	Pangium edule (S)	0.92520	7	6.9	200	78.5					18		137
46	Quercus agrifolia (S)	0.916	- 10		199.3	100.0					25		
47	Sesamum indicum (S)	0.91935	-4 to -6	9.8	188-193	103-117		95	1.1-1.2		25-35	23-32	87
4 8	Soja hispida (Dolichos hispida) (S)	0.924-0.927	-10 to -16	0.3-1.8	189-193.5	122-134	6.4	93-94.5	0.5-2.8	1.27-1.54	26.2-		96
464	Taraktogenos Kurzii (S)	0.943-0.954	20-25	0.79-21.5	196-218	97.6-110.4					?		130
25	Triticum sativum (Gm)	0.924 - 0.929	0 Viscous		183-190	115			2-3	2.4-2.6	39-40		100
51	Zea mais (8)	0.921-0.928	-10 to -20	1.37-2.02	187-193	1111-128	7.5-11.5	93-95	4.3	1.5-2.8	17-20	14-16	86
				Vegetable	Vegetable Drying Oils	80							

Alteurites Pordit (S). 0.030-0.940 2 190-197 163-171 0.03 1.10 0.03 Alteurites molucona (B). 0.925 2 180-197 163-164 9.8 95-96 1.2 0.03 Alteurites molucona (B). 0.927 2 180-197 163-143 9.8 95-96 1.2 0.03 <	52	Aleurites cordata (S)	0.934-0.940		က	194-197	150-158			0.39	0.4-0.8	30-49	36-39	149
Alcurites moluccana (8) 0.925 1.2 1.89–105 163–164 9.8 95–06 1.2 0.5-0.9 Alcurites moluccana (8) 0.927 0.939–0.949 2 180–197 163–171 9.8 95–06 1.2 0.5-0.9 Alcurites molatos (8) 0.927 0.927 1.0	જ	Aleurites Fordii (8)	0.939-0.949		8	190-197	163-171			1.10	0.4 0.8			149
Aleurites montana (S). 0.939-0.949 2 190-197 163-171 0.35 0.4-0.8 Aleurites prilodo (S). 0.927 10.927 17.0 120-204 139-143.8 0.4-0.8 0.4-0.8 Argenories prilodo (S). 0.928-0.934 -15 to -28 0.45 190-192 135-13.5 0.0-0.1 1.14 Cannabis estiva (S). 0.928-0.934 -15 to -28 0.45 190-192 127-141 16.1 95.1 0.0 1.14 Carthamus inclorius (S). 0.928-0.928 -15 to -28 0.45 190-195 122-141 16.1 95.0 1.08 Conspirate activa (S). 0.928-0.928 -15 to -28 0.65.7 188-6 179.5 1.00 1.14 Conspirate activa (S). 0.924-0.926 -17 188-193 120-141 16.1 95.4 0.5 0.70.2 Heisanthu annuu (S). 0.924-0.926 -17 188-193 120-136 95.4 0.5 0.71.1 Heesa Bactileani (S). 0.924-0.936 -12 190-190 117-140	Z	Aleurites moluccana (8)	0.925		8	189-195	163-164	8.6	95-96	1.2	0.5-0.9			111
Aleurites tribos (S). 0.927 17.0 202-204 139-143.8 93.2 1.6 Amoora robitula (S). 0.925 0.925 17.0 190-192 135 93.2 1.6 Amoora robitula (S). 0.925-0.934 -15 to -28 6.0 188-190 120-12.5 95.1 0.0 1.14 Carithamue tiridorius (S). 0.925-0.928 -15 to -28 0.6 188-193 122-141 16.1 95 0-0.2 1.06 Conepia grandifolia (S). 0.925-0.928 -15 to -28 0.6 188-193 122-141 16.1 95 0-0.2 1.06 Conepia grandifolia (S). 0.924-0.926 -17 188-192 126-136 170-5 1.06 Guizolia delifera (S). 0.924-0.926 -17 188-192 126-133 95.4 0.5 0.31 Helianthus amuus (S). 0.924-0.926 -12 17 188-193 124-133 95.4 0.55 0.31 Hees Braziliensis (S). 0.924-0.930 -12 turbid 8.6-9.0 190-1-197<	22	Aleurites montana (S)	0.939-0.949		2	190-197	163-171			0.35	0.4-0.8			149
Amoora robituka (S) 0.931-0.939 17.0 190-192 135 93.2 1.6 Argemone Mexicana (S) 0.925	28	Aleurites triloba (S)	0.927			202-204	139-143.8						17.8	111
Argemone Mexicana (S) 0.025 0.925 6.0 188-190 120-122.5 95.1 0.0 1.14 Cannobis sation (S) 0.928-0.934 -15 to -28 0.45 190-195 145-161.7 0.0 1.08 Cannobis sation (S) 0.925-0.928 -15 to -28 0.45 190-195 145-161.7 0.0 0.0 1.08 Conspira grandiolis (S) 0.925-0.928 -15 188-203 179.5 0.0 0.0 1.09 Guiroid alerjera (S) 0.925-0.927 -8 0.05-2.94 188-192 126-4133.8 95.4 0.5 0.31 Helainthus annus (S) 0.924-0.926 -17 188-103 120-136 95.4 0.5 0.31 Hesperia matronalis (S) 0.924-0.926 -12 turbid 8.6-9.0 190-190 175.6 95.3 0.27-0.3 Juglans regia (N) 0.938-0.927 -22 190-190 191-142.7 94-96 0.4-3.0 1.3 Lallemantia iberica (S) 0.933** -19 to -27 1-35 192-10 1.	56.5	Amoora rohituka (S)	0.931-0.939		17.0	190-192	135		93.2	1.6		20-22	16-14	105.5
Cannabie satira (8) Caribamus tinctorius tinctorius tinctori	22	Argemone Mexicana (S)	0.925		0.9	188-190	120-122.5		95.1	0.0	1.14	22.8		91
Carthamus tinctorius (8). 0.925-0.928 0.6 188-203 122-141 16.1 05 0-0.2 Conepia grandifolia (8). 0.989 5.7 188.6 179.5 179.5 0-0.2 Quirotia alertyra (8). 0.925-0.927 -8 0.05-2.94 189-192 126.4-133.8 95.4 0.6 Helanthus annuus (8). 0.931-0.034 -22 189-192 126.4-133.8 95.4 0.5 0.31 Heaveris matronalis (S). 0.931-0.034 -22 190-192 15-142.7 28 95.3 0.27-0.3 Heaveris matronalis (S). 0.924-0.930 -12 turbid 8.6-9.0 190.1-197 139-150 95.8 0.27-0.3 Juglans regia (N). 0.925-0.927 -25 190.1-197 139-150 94.95.4 0.92 Linum usitatisismum (8). 0.933m -19 to -27 1-35 188-195 177-20 94.96 0.4-3.0 Manido plaziorie (A). 0.924-0.932 -177 192.2 177.0 94.96 0.4-3.0 Ondo 0.930<	88	Cannabis sativa (S)	0.928-0.934	-15 to -28	0.45	190-195	145-161.7				1.08	17-21	15.6-16.6	126
Conepia grandifolia (8). 0.969 5.7 188.6 179.5 (179.5) Quisotia oleifera (8). 0.925-0.927 -8 0.05-2.94 189-192 126.4-133.8 95.4 0.31 Hetianthue annuue (8). 0.924-0.926 -17 188-193 129-136 0.5 0.31 Heraperia matronalia (8). 0.924-0.926 -22 192 155 0.31 Heraperia matronalia (8). 0.924-0.930 -12 turbid 8.6-9.0 190.1-191.5 141-12.7 95.8 0.27-0.3 Juglana regia (N). 0.938-0.921 -12 turbid 8.6-9.0 190.1-197.5 139-150 93.4-95.4 0.92 Lallemantia iberica (8). 0.938-0.927 -25 190.1-197.5 139-150 93.4-95.4 0.92 Maniba micro (N). 0.938-0.938 -19 to -27 1-3.5 188-195 117-2.2 94.96 0.4-3.0 Maniba micro (N). 0.924-0.932 -17.0 12.7.7 94.96 0.4-3.0 1.3	20	Carthamus tinctorius (8)	0.925-0.928		9.0	188-203	122-141	16.1	95	0-0.2		11-17	7-12	102
Guizotia oleifera (S) 0.925-0.927 -8 0.95-2.94 189-192 126.4-133.8 95.4 0.5 Hetjanthue annuue (S) 0.924-0.926 -17 188-193 129-136 0.5 0.31 Herperia matronalia (S) 0.924-0.926 -22 182-133 129-136 0.5 0.31 Herperia matronalia (S) 0.924-0.926 -12 turbid 8.6-9.0 190-190 117-140 28 95.3 0.27-0.3 Juglana regia (N) 0.935-0.927 -25 190.1-191.5 141-142.7 95.8 0.92.8 Lallemantia iberica (S) 0.933-0.937 -19 to -27 1-3.5 182-193 175-202 94.96 0.4-3.0 Linum usitatierimum (S) 0.924-0.932 -17 turbid 12.1 12.5 94-96 0.4-3.0 Maniba negical (A) 0.924-0.932 -17 turbid 12.1 192.2 94-96 0.4-3.0 Admidate negical (S) 0.924-0.932 -17 turbid 12.5 182-193 177-0 94-96 0.4-3.0 Admidate negical (S) 0.924-0.932 -17 turbid 12.5 192-20 94-96 0.4-3.0	8	Conepia grandifolia (8)	0.969		5.7	188.6	179.5					21.5		148
Guizotia oleifra (S). 0.925-0.927 -8 0.05-2.94 189-192 126.4-133.8 95.4 Helianthus annuue (S). 0.924-0.926 -17 188-193 120-136 0.5 0.31 Hesperis matronalis (S). 0.931-0.934 -22 192 155 0.31 0.5 0.31 Hesperis matronalis (S). 0.931-0.934 -22 192 155 0.31 0.5 0.31 Hesperis matronalis (S). 0.931-0.934 -22 190-200 117-140 28 95.3 0.27-0.3 Juglans regia (N). 0.935-0.927 -25 190.1-197 139-150 93.4-95.4 0.92 Lallemantia iberica (S). 0.933** -19 to -27 1-3.5 182-16 94.96 0.4-3.0 Maniable dazione and M. ceara (S). 0.924-0.932 -17.0 94-96 0.4-3.0 1.3												(begins)		
Quirolia oleifera (8) 0.925-0.927 -8 0.95-2.94 189-192 126.4-133.8 95.4 0.5 Helpianthue annuue (8) 0.924-0.926 -17 188-192 126.4-133.8 95.4 0.5 0.31 Herea Brazilensie (8) 0.924-0.936 -22 190-200 117-140 28 95.3 0.27-0.3 Juglans nigra (N) 0.925-0.927 -25 190.1-191.6 141-142.7 95.8 0.92 Lallemanta is iberica (8) 0.937-0.938 -19 to -27 1-35 188-195 117-202 94-96 0.4-3.0 Linum unitatisismum (8) 0.924-0.932 -17 1-3.5 188-195 117-202 94-96 0.4-3.0 Maniba naica (S) 0.924-0.932 -17 1-3.5 198-195 117-139 21 94-96 0.4-3.0												65.0		
Quizotia oleifera (S). 0.025-0.027 -8 0.05-2.94 180-192 126.4-133.8 95.4 0.5 Hetianthus annuus (S). 0.031-0.926 -17 188-193 120-136 95.4 0.5 0.31 Hesperia matronalis (S). 0.931-0.934 -22 192 155 0.27-0.3 0.27-0.3 Hesperia matronalis (S). 0.926-0.927 -12 turbid 8.6-9.0 100.1-191.6 142.7 95.8 0.27-0.3 Juglans regia (N). 0.926-0.927 -12 turbid 8.6-9.0 190.1-197 139-150 93.4-95.4 0.92 Lallemantia iberica (S). 0.933m -25 190.1-197 139-150 94.95.5 0.92 Manidolia plazione and M. ceara (S). 0.924-0.933 -19 to -27 1-3.5 188-195 117-139 21 94-96 0.4-3.0 Adminologia plazione and M. ceara (S). 0.924-0.932 -17 192.2 177.0 94-96 0.4-3.0 1.3				-								(ends)		
Hetianthue annuue (S) 0.924-0.926 -17 188-193 129-136 0.5 0.31 Heaperia matronalia (S) 0.931-0.034 -22 192 155 0.27-0.3 0.27-0.3 Here Bazziliania (S) 0.924-0.030 -12 turbid 8.6-9.0 190.1-191.5 14-142.7 28 95.3 0.27-0.3 Jugiana rapia (N) 0.938-0.921 -12 turbid 8.6-9.0 190.1-191.5 14-142.7 93.4-95.4 0.92 Lallemantia iberica (S) 0.933m -25 190.1-197 139-150 93.4-95.4 0.92 Linum usitatismum (S) 0.934m -19 to -27 1-3.5 188-195 175-202 94.96 0.4-3.0 0.4-3.0 Manipal parajora (A) 0.934m -0.932 -177 19.2 177 94-96 0.4-3.0 1.3	61	Guszotia oleisera (S)	0.925-0.927	œ i	0.05-2.94	189-192	126.4-133.8		95.4	_		25.4	22.6	
Heaperis matronalis (S)	62	Helianthus annuus (S)	0.924-0.926	-17		188-193	129-136			0.5	0.31	22-24	18-19.8	108
Herea Braziliensis (8)	62.5	Hesperis matronalis (S)	0.931-0.934	-22		192	155							
Juglans nigra (N). 0.918-0.921 -12 turbid 8.6-9.0 190.1-191.5 141-142.7 95.8 Juglans ragia (N). 0.925-0.927 -25 190.1-197 139-150 93.4-95.4 0.92 Lallemantia iberica (S). 0.933-9 -25 190.1-197 139-150 93.4-95.4 0.92 Linum usidatisismum (S). 0.930-0.938 -19 to -27 1-3.5 188-195 177-202 94.5-95.5 0.95.8 Manifold plasyorie (S). 0.924-0.932 -17 12.1 192.2 117-139 21 94-96 0.4-3.0	3	Herea Braziliensis (8)	0.924-0.930			190-200	117-140	82	95.3	0.27-0.3			15-20	93
Juglans regia (N) 2.5 190.1-197 139-150 93.4-95.4 0.92 Lallemantia iberica (S) 0.933** -25 1-25 185 162 93.4-95.4 0.92 Linum unitatissimum (S) 0.934-0.932 -19 to -27 1-3.5 188-195 175-202 94-96 0.4-3.0 0.4-3.0 Manifold patropine and M. ceara (S) 0.924-0.932 -17 12.1 192.2 177.0 17.0 1.3	2	Juglans niora (N)	0.918-0.921	- 12 turbid	8.6-9.0	190.1-191.5	141-142.7		95.8			0		
Lattemantia iberica (8)	3	Juglans regia (N)	0.925-0.927		2.5	190.1-197	139-150		93.4-95.4			15-20	14.3	113
Linum usidatismum (8)	8	Lallemantia iberica (8)	0.933*	-25		185	162		93.3			22.2		
Manisha plazionic and M. coara (8) 0.924-0.932 -17 188-192 117-139 21 94-96 0.4-3.0	29	Linum usitatissimum (8)	0.930-0.938	-19 to -27	1-3.5	188-195	175-202		94.5-95.5		0.4-1.2	20-24	16-20.6	127, 128
Outside anniance (8)	28	Manihot plazionic and M. ceara (8)	0.924-0.932	-17		188-192	117-139	77	94-96			23-26	20-24	06
	88.8	Oncoba spinosa (B)	0.830		12.1	192.2	177.0		_	_	e .		_	125

*Osum Chaulmoograe (U.S.P.X.): d 25, ca. 0.950; congeals below ca. 25°; sapon. value, 196-213; I value; 98-104; [a]p 48-60°,

2
ned
nlin
ప్ర
Ī
S S S
Bu
J.
P
tab
980

General. Index No.	Scientific name and source	Density d!!	Congelation temperature °C	Acid value	Saponifica- tion value	Iodine value r. p. viii	Acetyl value	Hebner value	Reichert- Meisal value	Unsapon- ifables %	Fatt	"Titer"	Finding
							ii i		e. p. viii		M. F. C	e. p. viii	v. p. 212
8 8	Paparer somniferum (8)	0.924-0.926	-16 to -18	2.5	193-195	128-141		95.4	0.6	0.43	20.5	17-19	100
2 2	Perilla ocimoides (S)	0.930-0.940	Delow - 17		193.4-196.3	185-206		9 20					02:
72	Pimento officinialis (S)	0.923*6		50 0	17.1 4	134 4		0.0			i I		35
73	Piece (8)	0.00	80	3									
74	Pinus cembra (S)	0.930-0.932	- 20	1.5	191.8	150-159.2		93 27	0 8	×			101
75	Pinus Gerardiana (S)	0.931	-17		191-192	118-119))	0		2
٤ ١	Pinus monophylla (S)	0.933	. ;		189-192.8	101.3-108					10		72
14	Pinus montana (S)	0.932	- 25		180-190	145-146		85			0		
8 62		0.921	- 18 to - 20		191	119-120					16-19	10-16	146
e &	Pinus sulnestrie (3)	0.829-0.833	17-		190 6	120-121		91-92				10-15	86
8 8	Ricinodendron Rautannenii (S)	0.928-0.930	-12 to -22		190-195	124-135		86-66	0 75		30-40		105
82	Stillingia sebifera (S)	0.940-0.946		1.24	209-210.4	145-161	28.7	C.	0.93-0.99	1.45	14.5	•	135
			•	Fish and Ma	Marine Animal	Oils							
- 1	= Whole han; B = blubber; L = liver												
3	Alosa menhaden (Brevortia tyran-												
3	nus) (F)	0.923-0.933	5-		189-192.9	148-185			1.2	0.6-1.43			123
\$	Dunena myssicaus and other species	0 017-0 094	6-040	•	160 909	971	11	5	:				
82	Clupea harengus (F)	0.920-0.939	l	n.	170-194	102-140	52-11	93-95	4	4 9	30-29	10-24	103
3 8	Clupea pilchardus, C. scombrinus							3		•	20-00		211
į	(F)	0.920-0.934	20-22		187.7-196	150-193	21-22	93.3-96	0.5-1		30-34.8	28.2	134
280	Clupanodon melanostica (F)	0.928-0.935		2.5	189-192.1	121.5-124.5		94.5-97		0.5-3	35-36	27.6-28.2	92
8	Despained globiceps (B)	0.808-0.930	£- 01 c+		187.3 290 (Jaw)	98.5 32.8 CD		93.1 65.9 (I)	5.6	81			26, 49
68	Delphinus phocaena (B)	0.926			203.4 (Body)	_		68.4-	46.9 (Bo)	16-17			33
					253.7-272.3	ä		72.0 (J)	132 (J)	ક			
8	Gadus merlangus (L)	0.925-0.930			177-189	123-181		- 25	0.4-0.7	0 7-7			
91	Gadus morrhua (L)	0.922-0.931	-3	5.6	171-189	137 - 166	1.15	95.3		30	38	17.5-24.3	118
85	Phoca species (B)	0.915-0.926	8		187.5-196.2	130-152		93- 96		0.3-1.0			109
	Selache (cetorhinus) maxima et al. (L)	0.916-0.919			157-164	115-139	11.9	87-97		2.8-15.2	21-22		119, 121
24	Vorious encountries (L)	818.0			169.7	126.4				œ.			93
	(L)*	0.864-0.932		0.0-4.3	23-186	91–345				1-90	25.35		
*Extren	*Extremes for 36 species (188).							-					
Japanes	Japanese salmon and trout oils: see Toyama, 142, 36: 273; 23.		Liver oil of palm-crab, Kobayashi, Ibid., 585.	rab, Kobayashi,	Ibid., 585.								
				Ins	Insect Oil								
95	Bombyx mori (from pupae)	0.928	0	18.6-27.5	190-194	116.3-131.9	19.7	94.5	3.4	2.61	36.5	27-28	8
				Veget	Vegetable Fats								
FI II	= fruit pulp; G = whole grain; Gm = ge	= germ; K = kernel; N	N = nut; S = seed										
96	Acrocomia sclerocarpa (F & K)	0.866100 (K)		55.8 (F)	189 (F)	77.2(F)			5.7-7.2		20.5-21		10
26	Akebia quinada (8)	0.934		0.4-4.7 (K) 25.4	237-255 (K) 246.4	16-30 (K) 78.38		85.8	(K) 39.76		3 E		ន
86	Allanblackia (Stearodendron) Stuhl-												
	mannii (8)	0.856-0.861100	30.4–38	11.6-23	186.6-191.7	38.7-41.9				_	29	61.4-61.6	17
8	Adansonia digitata (S)	0.915-0.920	+3 to -3			62-29					35-38		19, 39
901	Astrocaryum vulgare (S)	0.867100 (K)	28.6 (K)	43.8 (F) 0.54-1.69 (K)	220.2 (F) 240-250 (K)	46.4(F)			3.8 (K)	0. 75 (F)	27 (K)		. 6
101	Attalea cohune (S)	0.868-0.871100			254	11-13.7			∞ (27-28		က
5 S	Attalea spectabilis (S)	0.86910	24.6	2.2	246.9	15.6-16.3			 	0.36	23.6		2
						•	•	•		•		•	,

ontinued)
C
Ĭ
25
Fats
•
瓦
2
ĕ
ĕ
Š

				Vegetable Fats.—(Continued)	its.—(Contin	(ned)							
General	7-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	Density	Congelation	Acid value	Saponifica-	Iodine value	Acetyl	Hebner	Reichert- Meisel	Unsapon-	Fatty	"Titer"	n Finding
Index No.		****	temperature °C	v. p. vili	e. p. viii	e. p. viii	P. p. viii	r. p. viii	value v. p. viii		M. P. °C	P. P. viii	No. ". p. 212
201	Bassia butyracea (8)	0 862100	19–22		188-190.8	42.1-42.6		94.8-95.6 0.4-1.31 94.7-94.90.44-0.88	0.4-1.31	1.36	\$8.4 5.4	38-40	4 50 4 48
106	Bassia longifolia (S)	0.858-0.862100	36		188.4-189.8			?	1-2		3	38-41	2
107	Bassia Mottleyana (S)	0.864100		11.3	189-192	31.5		95.7	8.0-9.0	0.5	8		જ
108	Bassia toxisperma (S)	0.858190	21	9.27	180-188.6	57-65		94.5-95	1.1-2.5	38. 88.	49-52.8	47	83
100	Blighia sapida (8)	0.85810	8	20.1	194.6	49.1		93	6.0		42-46	38-40	
110	Buchanania latifolia (8)	0.858100			191.8-195.4	54.7-59.9		94.8-95.8	0.33				
111	Butyrospermum Parkii (8)	0.859100	25-30	88.	178-190	7 8		93.8-95.8	1.25-1.4	<u>.</u>	52-53		81
112	Calotropis gigantea (S)				196-197	84-85		95-96	0.5	_	33-34	8	62
116	Canarium commune (S)	0.915			193-200	20 S	15-16	95-96	85.0		40-42	37-40	132
115	Canarium ovatum (B)	0.907		1.42	197.4	55.9	2	3		0.19	!	;	
91:	Caryocarpus lomenlosum, etc. (S)	0.898	23–29		199.5	49.5	6.6	9.96	0.65		0	46-47	31
ì	Cocos bulyracea, C. nucifera (K)	0.864-0.868100	14-22	2.5-10.0	253.4-262	6.2-10	2.3-6.9	82.3-90.5	6.6-7.5		72-52	21.22-22.12	
118	Cocos syagras (S)		26.8	2.9-3.2	252.5	12.5-13.4		1			:		20 (
811	Elaers guineensis (W. Africa) (F)	0.924		2	200-202	49.2-58.9	15.7	94.5-97	0.9-1.9		28	42.5-45.5	20
120	Elacis guineensis (W. Africa) (8)	0.866-0.873100			243-255	10.5-17.5	7.6	91-91.5	8.9.2		25-28.5	20-25.5	12
121	Elacis guincensis (S. America) (F).		21.9	29.8-20.5	197	78.1-88.3							
152	Elacis guineensis (S. America) (S).	0 052188	27.4	0.55-0.33	220.2-231.4	25.5-31.6		04 4 05 40 11 1 54	7		19 08		۶
124	Gossupium species (S)	0.867-0.868199		4-10	6.181.0	88.7-93.6		96.55	0.22		27-45	30.9-51	3 8
125	Isoptera borneensis (S)	0.856100		11.3	192.1	31.5		95.7		0.5	. 8	3	: 83
126	Laurus nobilis (F)	0.880100			198-199	68-80			1.6				124
127	Lindera praecox (S)	0.935			274	20.5		80.5	1.39			13	87
129	Lindera serica (3)	0.936			282	65.3		2 2	2. S			P-10	
130		0.901			180-194.6	80-78		}	0.8-0.9		42-49		
131	Matureira oloifera (S)	0.859100	25-37		199-221	40.47		66	1-4		51-55	48-52	
132	Mangifera Jabonensis (Irringia		:			:		3			3	}	
	Barteri) (8)	0.860100	27-35	4-10	241-245	29-31		ž	0.2-0.4		35		₩.
134	Maximiliana regia (S)	0.86719	35	0.33	240.9-253	13-16			. o. o.		24.2		o <u>.</u>
135	Myrica cerifera (M. Carolinensis)	}	}			:			 :				i
	(F)	0.995	39-43		205.5-211.7	3.9-9.8		92-94	0.5		47-48		œ
136	Myristica officinalis (S)	0.945-0.996		17.2	154-178				1.1-4.2				
38.	Muristica okoba (S)	0.892	32-32 5	8.01	219-220	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		03-04		20.4	5-46	37 : 2	117
139	Oenocarpus batava (F)	!	7.0	0.48	191.8	78.2		:		1.1	2		48
139.5	Oncoba echinata	0.898199	2	3.4	192.4	2.68		8		1.6			
141	Pentaclethra macrophylla (S)	0.912-0.921	25.5-26		270.5	17.3	21-37	94-96	2-5 6		50-57		7.4
142	Pentadesma butyracea (S)	0.869100			186-197	4549	 :	95	0.3		57-60		52
143	Pongamia glabra (8)	0.924-0.935**	80 14	;	178-185	78-94			_	•	44-45	36-42	131
Ē	where successing (I.)	0.875100	9	71-11	200.002	4.8-12.0	26.5	r S		0.1-1.0	96-36		5
145	Schleichera trijuga (8)	0.924-0.942	10		215-230	48–55		91-91.5	8	3.1	52-55	49.7-50.7	42
	יייייייייייייייייייייייייייייייייייייי	0.810-0.822	5	*	007-811	63-40.9		 	R. 0		/0-A0	50.9-52.5	3
147	Theobroma cacao (8)	0.964-0.974		1.1-1.9	192.8-195	32.8-41.7	1.97	94-95	0.3-1		48-53	47.2-49.2	21
148	Theobroma grandiffora (8).	0.852100		44.0	187.8	44.8		0.08	0.08	0.91	9	48.1	85
2 1	Valeria indica (S)	0.810	_	0.01-0.0	100.1-104	61.8-311.1	-	95. I-vo. z	0.2-0.4	-	106.8-57	-	3

200
•
•
æ
ъ.
_
_
•
~
м
_
•
-
-

AT -	AT = Adipose tissue			Ania	Animal Fats								
General Index No.	Scientific name and source	Density d'is	Congelation temperature °C	Acid value s. p. viii	Seponifica- tion value v. p. viii	Iodine value ". p. viii	Acetyl value r. p. viii	Hebner value r. p. viii	Reichert- Meisel value	Unsapon- ifiables	Fatty acids M. P. °C	"Titer" test °C	n Finding No.
150	Adeps (AT)	0.934-0.938	27.1-29.9	0.5-0.8	195-203	47-66.5	2.6	93-95			37-46.6	36-42.4	24
151	Adeps boris	0.895	31–38	0.25	196-200	35.4-42.3	2.7-8.6	96-96.5	-		42.5-44	37.9-46.2	
152	Adeps oris	0.937-0.953			195–196	48-61					33.5-49	40-48.5	88
153	Anser cinereus	0.923-0.930	22-24		191-193	58-67 25-37		94.5-95.3 0.2-0.98	0.2-0.98		36.6-40	31-34	44
155	Cervus elephus, etc Equus caballus	0.919-0.933		0.8-5.3	194, 5-200 195-200	26-36 75-86		95.8 95-98	0.68	0.52	50-64 31.3-	46-50	: 35
157	Gallus domesticus (AT)	0.924	21–27		193-204.6	66–71.5	45	94.6	8.1		38-40	32-34	88
158	Lepus cuniculus	0.934-0.936			199-203	8.66-02		89.2	0.7-2.8		39-50	35-41	
159	Serum osets	0.925-0.950			193-198	35-45	. 11.3	95-96	0.5-1.0		42.544	40-50	
191	Vaccae lactis adeps	0.907-0.9121			210-230	26-28 (Extremes	1.9-8.6	87.6–89.6 17.0–34.5	17.0-34.5		38 41	33–39	15, 27, 30
				Spe	Sperm Oil								į
162	Hyperoodon rostralus	0.880-0.881		0.4-0.5	123-134	80.4-82.0	4.1-6.4			36-41	10.3	8.3-8.6	11
163	Physeder macrocephalus	0.878-0.884			120-137	80-8t	4.5-6.4				13.4		16
			Ň	Vegetable Non	Non-glyceridic	Waxes							
164	Corypha cerifera (exudation from leaves)	0.995-0.999		8,4	79-84	13.5	55.2	_		54-55			20.
165	Euphorbia anti-syphilitica			17.0	51		}			3			8
	peat)			73	74	16				47			
				Animal	al Waxes								
167	Adeps lanae (sheep's wool)	0.970-0.973		59.8	82-130	17-29	23			39-44	41.8		141
169	Apis mellifera (bees).	0.961-0.968	60.5-62	16.8–20.6	96-88	8.8-10.7	15.2				•		8
170	Apis (Chinese bees)			5.3-9.7	90.2-120.2								18
- 621	Frazinus chinensis)	0.809-0.811	80-81	8	200		c			,			
711	opermaced (one of ceated)	0.806-0.81215.6		0.0-6.0	120-133		2.0			6.16			

3. COMPOSITION TABLE

(In weight %)

GENERAL INDEX NUMBER

Class 1. Non-drying Oils of Almond and Olive Oil Type

Glycerides principally of oleic acid. Linolic acid present in small proportion

0.5. v. (98.5).

- 1. Similar to No. 13.
- Oil from kernels is non-drying. Olein, 80.4; stearin, 17.3
 (48). The oil from the pericarp is black and has high iodine value (294) (202).
- Palmitin, stearin, arachidin, lignocerin, olein, linolin and possibly hypogaein. The mixed lignoceric and arachidic acids (Renard's "arachidic acid") vary from 4.3 to 5.4 (av. 4.8); stearic acid ca. 5. Unsaturated acids ca. 30, of which ca. 60% is linolic (63). Hypogaeic acid not found (164) but occurrence considered probable (78). For variations in constants v. (100). "Unsaturated" fatty acids 75-79.5, with iodine value, 109-126 (100).
- 3.5. Similar to No. 17 (185).
- 4. Non-drying glycerides.
- Oleic acid, 85; palmitic, 9.4; stearic, 1; glycerol, 10.4; phytosterol, 0.5 (76).
- 5.5. v. (19, 28.5, 150).
- Glycerides of eleic, stearic and palmitic acids, and, according to Völker, behenic acid.
- Ca. 25 solid and 75 liquid glycerides, mainly olein. Linolic acid, 7; oleic, 93 (80). No stearic acid (83). A mixed glyceride (1-2%, M. P. 53-55°), probably stearic, palmitic and oleic, has been isolated (92). Ultimate composition: C, 77.2; H, 11.3; O, 11.5 (163). Highly unsaturated acids, 78-93.5, with iodine value, 89-98 (100).
- Similar to No. 8. Solid acids, 9.7 (of which stearic, 40; palmitic, 60); liquid acids, oleic and linolic; no arachidic (110).
- Oil from commercial rice meal contains free fatty acids, 43-77 (168). Impure fat from polishings v. (68).
- The constants indicate presence of oleic and volatile insoluble fatty acids. On the border-line between oils and solid fats.
- 12. Largely oleic glycerides.
- Fatty acids, mainly oleic, with ca. 6 linolic (63). No linolenic. Little, if any, stearic (84).
- 14. Similar to No. 13 cf. (160).
- Resembles No. 13, but has higher iodine value (110-114), indicating larger amount linolic acid. HCN present (141).
- 16. Similar to No. 13, but contains more linolic acid.
- 16.5. v. (32, 200).
- 16.6. v. (21.1).
- 16.7. v. (72).
- Very similar to No. 8. 88-93 liquid acids with iodine value 99.6-104.4 (118). This commercial oil is distinct from tea oil (Thea sinensis) v. (184).

Class 2. Non-drying Oils of Rape Oil Class

- 19. Greater proportion unsaturated fatty acids than No. 20.
- Mainly glycerides of rapic and erucic acids (159.5); linolenic acid present (63); arachidic and lignoceric acids ca. 1.43 (11).
 Yields ca. 1% insoluble bromide of mixed glyceride (84).
 "Unsaturated" acids 94-95, with iodine value, 100.5-105 (100).
- 21. Larger amount less saturated glycerides than No. 20.
- 22. Similar to No. 24.
- 23. Resembles No. 20, but has less drying capacity.
- Resembles No. 20. Contains ca. 1.3 arachidic and lignoceric acids (11). Yields ca. 1.5 insoluble bromide (84).

 Similar to No. 24. "Unsaturated" acids, 91.5-94.5, with iodine value, 103-120 (100).

Class 3. Non-drying Oils: Castor Oil Type

- 26. Glycerides of hydroxylated fatty acid, not identical with ricinoleic. Liquid fatty acids, consist of equal proportions oleic and linolic (111). Solid fatty acids, ca. 10, of which palmitic, 80, and stearic, 20. No linolenic.
- Largely glycerides of ricinoleic and isoricinoleic acids (79), with small amount saturated acids.
- 28. Palmitic, stearic, oleic and linolic acids, and hydroxy acids (ca. 25), not identical with ricinoleic (5).

Class 4. Animal Oils Largely Glycerides of Oleic Acid

- Mainly olein, with small amount linolin, palmitin, and stearin. Practically free from volatile fatty acids.
- 30. Glycerides of oleic with very little solid acids.
- Resembles No. 30, but contains more saturated glycerides.
 Stearic 2-3; palmitic, 17-18; oleic, 74.5-76.5; glycerol, 5-10; unsaponifiables, 0.1-0.5 (54).

Class 5. Semi-drying Oils

Glycerides of linolic acid are characteristic constituents

- 32. Resembles No. 51 (146).
- Glycerides of oleic and linolic acids. Does not yield insoluble bromide.
- 34. Glycerides of oleic, linolic and palmitic acids, with small amount of erucic acid (141).
- 35. Similar to No. 47, but does not give Baudouin reaction (2^7) . 35.5. v. (52, 91.5).
- Glycerides of stearic, palmitic, myristic, lauric, caproic, butyric, and acetic acids; also tiglic and higher homologues of oleic acid, but no oleic (163).
- 38. Glycerides of oleic and linolic acids.
- Glycerides of oleic and linolic acids. Slight reaction in Becchi's test and Halphen's test.
- 40. Olein, linolin, with small amount palmitin and stearin.
- 41. C, 76.4; H, 11.4; O, 12.2 (163). Glycerides of oleic and linolic acid in approx. proportion 3 to 4.5 (224). Linolic acid, 17-18 (63). Stearic acid present. Fatty acids liberated by hydrolysis in practically same proportion as in original oil (101). Unsaturated acids, 69.7-73.9, with iodine value, 144.2-148 (100).
- 42. Contains hydnocarpic acid, a cyclic fatty acid of general formula $C_nH_{2n-4}O_2$ (154); with neutralization value, 222.7; specific rotation +67.70°; iodine value, 100 (33). Method of separation from chaulmoogric acid, v. (51).

43.5. v. (48).

- 44. Glycerides of oleic, linolic, stearic and myristic acids, with 2.3 lecithin (16). Arachidic acid at least 0.4 (223).
- 45. Glycerides of oleic, linolic, stearic and palmitic acids. 45.2. $v.~(^{59.5})$.
- C, 75.22; H, 11.13; O, 13.65 (163). Glycerides of oleic, and linolic acids, with small amount stearic, palmitic and myristic acids. Solid fatty acids, 12-14; linolic acid, ca. 16 (63). Glycerides of oleic, 48.1; linolic, 36.8; palmitic, 7.7; stearic, 4.6; arachidic, 0.4; unsaponifiables, 1.7. Unsaturated acids, 80.6%, with iodine value, 129.7 (104).
- 48. Saturated acids, ca. 12 (mainly stearic and palmitic); unsaturated, ca. 80 (linolic and oleic, with ca. 50 of isomer of linolic (109)). Insoluble fatty acids: palmitic, 10; stearic, 2; arachidic, 1; lignoceric, linolenic, linolic and oleic, 88 (199); cf. (18).
- Glycerides of chaulmoogric, hydnocarpic, linolic and myristic acids (45). Chaulmoogric acid: neutralization value, 200-202; specific rotation, +58° to +59°; iodine value, 89.5-90.7 (33). For constants of oils from 8 authentic species of

- seeds allied to chaulmoogra, v. (147). Also v. references for No. 42.
- 50. Contains glycerides of oleic and linolic acids.
- 51. Mainly glycerides of oleic and linolic acids, with small amounts palmitic, stearic, and arachidic acids (195). Saturated acids, 4.5; olein, 44.8; linolin, 48. 2 (95). Unsaturated acids, 84.6-86.4, with iodine value, 140.8-142.9 (102).

Class 6. Drying Oils

Usually characterized by linolenic and isolinolenic acids and linolic and isomeric acids

- 52. Glycerides of oleic (ca. 25) and elaeostearic acids (isomer of linolic acid). For constants of oils from different species v. (138).
- 53. Glycerides of α-elaeostearic and oleic acids [(1), p. 207].
- 54. Glycerides of oleic (56.9), linolic (33.4), stearic, palmitic, myristic and linolenic acids (6.5) (204). Yields ca. 8% insoluble bromide.
- 55. Glycerides of β -elaeostearic, oleic, and probably linolic acids (144).
- 56. Oleic, 57; linolic, 33.5; linolenic, 6.5; oxidised glycerides, 2.8 (203)
- 57. For general characteristics, v. (10).
- 58. Glycerides of linolic, 70; linolenic and isolinolenic, 15; oleic acid, 15 (224).
- Glycerides of solid fatty acids (palmitic and stearic) ca. 10;
 liquid acids (oleic and linolic) ca. 90 (122).
- 60. For characteristics, v. (30).
- 61. Yields only small amount insoluble bromide (84).
- 62. Glycerides of oleic acid, 33.4; linolic, 57.5; palmitic, 3.5; stearic, 2.9; arachidic, 0.6; and lignoceric, 0.4 (99).
- 63. For characteristics, v. (29).
- 64. For characteristics, v. (108). Cross between J. nigra and J. cinere contains ca. 70 linolic acid glycerides, with those of stearic, oleic, and linolenic acids (65).
- 65. Glycerides of myristic, lauric, oleic, linolic, and linolenic acids. Liquid acids: linolic, 80; linolenic, and isolinolenic, 13; oleic, 7 (224).
- 66. Elaidin test indicates large proportion olein.
- 67. C, 78.11; H, 10.96; O, 10.93 (163). Glycerides of solid fatty acids, 10-15. Liquid acids: oleic, 15-20; linolic, 30; linolenic, 38 (62). Saturated acids: stearic, 64.4; palmitic, 20 (140). On bromination, liquid acids yield 20-25 linolenic hexabromide (84). Yields 2 insoluble mixed glycerides on bromination: (1) linolic-dilinolenic bromoglyceride, 22-25; (2) trilinolic bromoglyceride, or oleic-linolic-linolenic bromoglyceride (182). Oil contained: α-linolenic acid, 21.1; isomeric linolenic, 2.7; α-linolic, 17.0; hydoxy-acids, 0.5; saturated acids, 8.0; glyceryl radical, 4.1; phytosterol, 1.0; undetermined, 46.2 (55).
- 69. Glycerides of oleic (20); linolic (65); linolenic acids (5) (224).
- 70. v. Nos. 52, 53, 55.
- Glycerides of oleic, linolic, linolenic, palmitic and stearic acids. Fatty acids yield 45-51 linolenic hexabromide (66). Linolenic acid yields hexabromide identical with that from No. 67 (17).
- 72. Unsaturated acids, 82.8, with iodine value, 157.9 (53).
- 73-80. For characteristics v. (73).
- 81. v. (74, 170).
- 82. For characteristics v. (52).

Class 7. Fish and Marine Animal Oils

Characterized by presence of highly unsaturated glycerides.

These oils yield insoluble bromoglycerides, which blacken

when heated

83. Glycerides of palmitic, 22.7; myristic, 9.2; stearic, 1.8; unsaturated acids with 18 carbon atoms, 24.9; 20 carbon atoms, 22.2; 22 carbon atoms, 20.2 (190).

- 84. Glycerides of fatty acids with: C₁₄, 4.5; C₁₆ (palmitic), 11.5; palmitoleic, 17; C₁₈ (stearic), 2.5; unsaturated (mainly oleic), 36.5; C₂₀ (unsaturated), 16; C₂₂ (unsaturated), 10; C₂₄ (unsaturated), 1.5; unsaponifiables, 1.7 (136). Oil yields ca. 25% insoluble bromoglyceride (84). Clupanodonic octobromide (8.39%) from fatty acids.
- Glycerides of highly unsaturated fatty acids (iodine value, 296-317) (40). Yields clupanodonic octobromide (3.8-6.5%) (183).
- 86. Glycerides of highly unsaturated acids. Jecoric acid, C_{1s}-H₂₀O₂ (isomeric with linolenic) and palmitic (13.6) (61). For characteristics of pilchard oil v. (119).
- 87. Glycerides of highly unsaturated acids 13% with iodine value 319.5 (40). From 13-14 of clupanodonic acid, C₁₅-H₂₈O₂ (iodine value 344.4) in mixed fatty acids (183). Glycerides yielded 23.6 insoluble bromide (183).
- 88. High proportion glycerides of volatile fatty acids (139).

 Also esters of other alcohols. Deposits spermaceti. Isopropylacetic acid (Chevreul's "phocoenic" acid) in volatile acids (6).
- 89. Glycerides of highly unsaturated acids (14.3 with iodine value 285.4) (40). Valeric acid, 19.9-24 in jaw oil; 2.71 in body oil (139).
- 90. For characteristics v. (180, 181).
- 91. Glycerides of myristic, palmitic, stearic, oleic, erucic and unsaturated acids C₁₆H₃₀O₂ and C₂₀H₃₅O₂ (39, 40, 41). From 17-21 of highly unsaturated acids with iodine value, 324 (189). Clupanodonic acid present (189). Acid of general formula C_nH_{2n-8}O₂ (clupanodonic acid) isolated. Oil yields ca. 34-42 insoluble bromide (84).
- 92. Glycerides of saturated acids, 17; liquid acids (oleic and physetoleic) 83 (128); linolic (225); highly unsaturated acids (iodine value 330), 11.96 (40). Mixed fatty acids yield 13.9—14 insoluble bromides.
- 93. Glycerides of highly unsaturated acids (8.57 with iodine value 312.5) (40). Yields ca. 22 insoluble bromide (83). Oil from certain species contains large proportion of C₂₀H₅₀, spinacene (43) and squalene (186). For characteristics of liver oils (Jap. sharks) v. (187, 188). The liver of Cetorhinus maximus, 41.9-55.5 unsaponifiables, mainly squalene.
- 94. For characteristics v. (180). A shark oil.

Class 8. Insect Oil

95. Glycerides of oleic, linolic (4.38), solid fatty acids (mainly palmitic), phytosterol (not cholesterol); glycerol, 9.42 (185). Also v. (127).

Class 9. Vegetable Fats

- 96. v. (28).
- 97. v. (131).
- 98. Much stearic, little palmitic acid. Mixed glyceride, oleo-distearin, isolated (86, 89).
- 99. v. (179).
- 100. v. (28).
- 101. v. (29).
- 102. v. (28).
- 103. v. (9).
- 104-106. v. (31).
- 107. v. (31, 34).
- 108. v. (31).
- 109. v. (94).
- 110. v. (48).
- 111. v. (31).
- 112. v. (52).
- 113. v. (64, 72). The crude oil contains ca. 3.5% resin, on removal of which a semi-drying oil containing a large amount of linolic acid is obtained. Cong. pt. ca. -2°, iodine value, 96.8 (169).

- 114. v. (145).
- 115. Glycerides of oleic acid, 59.6; palmitic, 38.2; and stearic, 1.8; unsaponifiables, 0.2 (201).
- Solid fatty acids, mainly palmitic; liquid acids, oleic (124);
 v. (28).
- 117. Glycerides of fatty acids in approximately proportions given: caproic, 2; caprylic, 9; capric, 10; lauric, 45; myristic, 20; palmitic, 7; stearic, 5; oleic, 2 (57). For criticisms on method of alcoholysis, v. (59, 174). Glycerides of kernel oil: caprylic, 9.5; capric, 4.5; lauric, 51; myristic, 18.5; palmitic, 7.5; stearic, 3 (?); oleic, 5; linolic acid glycerides, 1.0 (13). Mixed glycerides isolated (24).
- 118. v. (28).
- Palmitin, free palmitic acid, olein and small amount linolin (84).
- Glycerides of caproic acid, 2; caprylic, 9; capric, 10; lauric, 45; myristic, 20; palmitic, 7; stearic, 5; oleic, 2 (58). v. No. 117. Mixed glycerides (5) isolated (26).
- 121-122. v. (28).
- 123. Mainly oleo-distearin (87); v. (48).
- 124. Mainly palmitin, with glycerides of oleic and linolic acids. Stearic acid, 3.3 (83).
- 125. Glycerides of stearic, palmitic and oleic acids. Oleo-distearin and oleo-dipalmitin isolated (115). For characteristics of fats from different varieties of pontianak nuts, v. (71). For relationship of constants, v. (178).
- Largely laurin with glycerides of oleic and probably linolic acid; v. (60).
- 127-129. v. (192).
- 131. Solid acids, 71.4; liquid acid (oleic), 23 (141).
- 132. Glycerides of lauric, myristic and palmitic acids (121).
- 133. v. (28).
- 134. v. (126).
- 135. Glycerides of myristic, palmitic, stearic, and oleic acids. Glycerol, 13.4 (1).
- 136. Glycerides of myristic acid, 73-74; oleic, 20; butyric, 1; essential oil, 2-3 (1).
- Glycerides of lauric acid, 15.1; myristic, 52.2; palmitic, 0.2; oleic, 3.9. Unsaponifiables, 20.4 (20).
- 138. Glycerides of myristic and oleic acids and an essential oil.
- 139. v. (28).
- 140. v. (72).
- 141. v. (196, 200).
- 142. v. (197).
- 143. v. (126).
- 144. Largely palmitic acid and its glycerides. Mixed glyceride isolated (69).
- 145. Insoluble fatty acids, including lauric and arachidic, 91 (163).
 Volatile acids contain butyric and acetic acids. Liquid acids, 55; unsaponifiables, 3.12 (207).
- 146. Glycerides of palmitic and oleic acids. No stearic acid (83).
 Oleo-dipalmitin isolated (114).
- 147. Glycerides of stearic, palmitic, oleic, and linolic acids. Stearic acid in fatty acids, 40 (83). Saturated acids, 59.7; oleic, 31.2; other acids, 6.3 (63). Mixed glycerides (113, 116). Oleic, 43-45; palmitic, 23-25; stearic, 31-33. Five mixed glycerides isolated (3).
- 149. Ca. 75 solid (palmitic) and 25 liquid acids (oleic) (121).

Class 10. Animal Fats

- 150. Mainly glycerides of palmitic, stearic and oleic acids, with small amounts linolic. Palmito-distearin and stearo-dipalmitin isolated (23). Stearic acid, 7-13 (83).
- 151. Mainly glycerides of palmitic, stearic, and oleic acids, with traces of linolic and linolenic acids (63). Mixed glycerides isolated include oleo-dipalmitin, stearo-dipalmitin, oleo-

- palmito-stearin and palmito-distearin (23). These crystallize in different form from lard glycerides.
- 152. Glycerides of palmitic, stearic and oleic acids. Stearic, 0-36 (83).
- 153. Mainly triolein, with small amounts stearo-dipalmitin, palmito-diolein, and oleo-dipalmitin (4). Fatty acids contain stearic, 3.8; palmitic, 21.2; and oleic, 72.3 (25.5).
- 154. For characteristics, v. (117).
- 155. Glycerides of palmitic, stearic and oleic acids.
- 156. Glycerides of oleic and linolic acids, 9.9 (63). Stearic acid sometimes present (1). No linolenic (63).
- 159. v. Nos. 151, 152.
- 160. Glycerides of stearic acid, 19-21; palmitic, 20-21; oleic, 53-59; glycerol, 5-10; unsaponifiables, ca. 0.5 (54).
- 161. Glycerides of butyric, caproic, caprylic, and capric acids, 8.35; oleic, 32.5; stearic, 1.83; palmitic, 38.61; myristic, 9.89; and lauric, 2.59, with 1.83 dihydroxystearic acid (35). Stearic acid, 0-22 (137). Mixed glycerides include butyro-diolein, butyro-palmito-olein and oleo-dipalmitin (2). For particulars of ghee, v. (29.1, 29.2, 109.5, 193.5).

Class 11. Liquid Animal Waxes

- 162. Mainly various alcohols (iodine value, 64.8-65.2) in combination with fatty acids of oleic series (1).
- 163. Mainly alcohols, chiefly of ethylene series, in combination with fatty acids of oleic series. Iodine value of alcohols, 63.9-74.1 (22).

Class 12. Vegetable Non-glyceridic Waxes

- 164. Contains a hydrocarbon (M. P. 59°), an alcohol, C₁₇H₃₆O; myricyl alcohol, carnaubic acid, cerotic acid, and a hydroxy acid (175).
- 165. From 50-52 hydrocarbons (37).
- 166. Esters of montanic acid and unsaponifiable matter (157, 162, 212).

Class 13. Animal Non-glyceridic Waxes

- 167. Complex mixture of esters of higher alcohols; also glycerides (50, 112, 165).
- 168. Free cerotic acid and esters of alcohols (36).
- 169. Free cerotic acid, myricin, with smaller amounts free melissic acid, unsaturated fatty acids, and ceryl and other alcohols (81, 96). Free hydrocarbons, 11.0-17.5 (38).
- 170. v. (36).
- 171. Chiefly ceryl cerotate with small amounts of other esters.
- 172. Mainly cetin or cetyl palmitate with very small amounts of similar esters or glycerides.

4. POLENSKE VALUES

General index No.	Polenske value	General index No.	Polenske value
148	0.12	133	7.0
134	0.25	120	9–10
36	0.3	116	9–12
81	0.4	102	10.2
104	0.5-0.65	96	10.2-12.6
161	1.5-3.0	103	15.6
154	4.9-8.7	117	16.8-17.8
100	5.9		

5. COMPRESSIBILITY

1 megabarye⁻¹ = 10^{-6} cm² dyne⁻¹ = $1.0133A_n^{-1}$ = 0.0690 in.² lb.⁻¹ = 0.9807 cm² kg⁻¹.

t = 14.8°C. $\Delta P = 1$ to 10 atm (134)

General index No	27	67	13	91	8
$\frac{10^6}{V} \frac{\Delta V}{\Delta P} = \dots$	47	52	53	53	56

5. COMPRESSIBILITY.—(Continued)

 $t = 40^{\circ}$. $d = \text{density, g cm}^{-3}$. $C = \frac{10^{\circ}}{V} \frac{\text{d}V}{\text{d}P}$ per megabarye (96)

. P	General No.		General No.		General No.	
kg — cm ⁻²	Casto	r oil	Rape	oil	Sperm	ı oil
	d	\overline{c}	d	\overline{c}	d	\overline{c}
0	0.9414		0.8980		0.8660	
157.5	0.9488	50.5	0.9058	55.7	0.8746	60.8
315.0	0.9558	48.6	0.9129	52.1	0.8820	58.2
472.5	0.9625	47.0	0.9199	51.1	0.8898	56.3
630.0	0.9686	45.3	0.9270	50.5	0.8958	53.4
787.5	0.9748	44.5	0.9330	48.2	0.9124	51.5
945.0	0.9808	43.2	0.9381	46.0	0.9088	50.5
1102.5	0.9858	41.5	0.9440	44.8	0.9136	48.1
1260.0	0.9906	40.1	0.9496	43.6	0.9196	46.9
1417.5	0.9958	39.4	0.9547	42.7	0.9249	45.7
1575.0	1.0010	38.3				

6. VISCOSITY

Conversion factors for different viscometer degrees, v. vol. I, p. 32.

Change of viscosity of oils with temperature (91).

Fish oils (205).

Solutions of camphor, of ethyl alcohol and of chloroform in olive oil (35.5).

Lubricating oils (12).

 η in Poises
OILS (12, 171) $t = 60^{\circ}\text{F} = 15.5^{\circ}\text{C}$

General index No.	715-5	General index No.	715-5
163	0.42-0.44	• 26	0.858-0.878
At 100°F	0.185	13	0.860
At 150°F	0.085	1	0.869
At 212°F	0.046	21	0.935
67	0.55	. 3	0.942-0.950
58	0.697	8	0.950-1.01
61	0.697	At 100°F	0.377
84	0.711	At 150°F	0.154
92	0.724	At 212°F	0.070
62	0.776	31	0.987-1.13
69	0.789	20	1.08-1.18
51	0.789	At 100°F	0.42-0.45
47	0.797	At 150°F	0.18-0.19
48	0.797	At 212°F	0.08-0.09
14	0.857	27	v. infra
41	0.82-0.994	1	

 F_{ATS} (12, 171) $t = 50^{\circ}C$

General index No.	750	General index No.	750
117	0.154	150	0.258
120	0.171	159	0.274
147	0.171	167	
105	0.175	At 150°F	1.672
119	0.198	At 212°F	0.314
160	0.256		

Kinematic Viscosity

R = Redwood; degrees at 70°F = sec per 50 cc. η_{70} = (0.0026R - 1.715/R) × d (±5% approx.)

General	R _{70°F}	General	R _{70°F}
index No.	cf. (48)	index No.	cf. (48)
167	212	29	
84	188	At 60°F	356- 534
At 120°	71.3	52	853-1433
65	232	At 60°F	1230-2178
69	255-259	57	
59	249-294	At 100°F	1160-1190
61	263-292	117	
57	269–272	At 140°F	63.9
8	312	123	l
3	350	At 140°F	101.1
22	371	106-104	
23	385	At 140°F	110.4
20	372-465	149	
24	402	At 140°F	104.0
25	425		

DENSITY	AND VISCO	SITY OF CA		(No. 27)	(12, 105)
t, °C	d, g cm ⁻³	η, poises	l t, °C	d , $g \text{ cm}^{-3}$	η, poises
5	0.9707	37.60	25	0.9569	6.51
6	. 9700	34.475	26	.9562	6.04
7	. 9693	31.56	27	. 9555	5.61
8	. 9686	28.90	28	.9548	5.21
9	. 9679	26.45	29	.9541	4.85
10	. 9672	24.18	30	. 9534	4.51
11	. 9665	22.075	31	. 9527	4.21
12	.9659	20.075	32	. 9520	3.94
13	. 9652	18.25	33	. 9513	3.65
14	. 9645	16.61	34	. 9506	3.40
15	. 9638	15.14	35	. 9499	3.16
16	. 9631	13.805	36	. 9492	2.94
17	. 9624	12.65	37	. 9485	2.74
18	.9617	11.625	38	. 9478	2.58
19	.9610	10.71	39	.9471	2.44
20	. 9603	9.86	40	. 9464	2.31
21	. 9596	9.06	37.8	. 9473	2.729
22	. 9589	8.34	65.6	. 9284	0.605
23	. 9583	7.67	100.0	. 9050	0.169
24	.9576	7.06			

7. VISCOSITY UNDER PRESSURE

Values of η_P/η_0 at 40°C (98)

			- 、 /	
P kg cm ⁻²	General index No. 20 Rape oil	General index No. 163 Sperm oil	P kg cm ⁻²	General index No. 27 Castor oil
0	1.00	1.00	0	1.00
157.5	1.125	1.23	23.94	1.03
315.0	1.44	1.535	227.6	1.365
472.5	1.875	1.94	550.5	2.295
630 .0	2.345	2.39	864.6	3.625
787.5	3.905		1164.0	5.255
866.2		3.135		
945.0	3.495			
1102.5	4.21	4.02		
1260.0			(v. also	Fig. 1.)

Influence of Temperature on Viscosity under Pressure

400 kg cm⁻² (6000 lb. in.⁻²) produces approx. the following % increase in viscosity: Lard (No. 150) 75% at 25°, 34% at 100°; sperm (No. 163) 72% at 25°, 29% at 100°.

For lard oil (No. 150) the solidifying pressure at 21° is ca. 155 kg cm⁻² (22 800 lb. in.⁻²) and at 100° the viscosity is increased 240% by 1500 kg cm⁻² and 600% by 3000 kg cm⁻² (44 000 lb. in.⁻²) [Report of Research Sub-committee on Lubrication, Amer. Soc. Mechan. Engineers, No. 1833 (Dec. 1921)].

8. MELTING POINT

	0. III.	711110	1 01111		
Gen-		Gen-		Gen-	
eral	M. P.,	eral	M. P.,	eral	M. P.,
index	$^{\circ}\mathrm{C}$	index	$ $ $^{\circ}$ C $ $	index	$^{\circ}\mathrm{C}$
No.		No.		No.	
4	16	117	20-28	148	32
11	22.4	118	29	149	37.5-42
20	-2 to -6	119	27-43	150	29.8-45.5
23	-4	120	23-30	151	42-50
32	ca. 8	121	30-30.5	152	47-49
52	Below −17	122	30.2-31	153	27.5-32.5
54	Below -18	123	41-42	155	48-54
65	-12 to -28	124	29-33	156	18-39
96	24.9 (pulp)	125	28-31	157	33-40
	19.4-24 (kernel)	126	32-36	158	35-46
97	38-39	130	10-24	159	41-51
98	40-41	131	35-40	160	44-45
100	35 (pulp)	132	38-42	161	28-36
	30.6-32.5 (kernel)	133	27-28.5	164	83-91
101	22-24	135	40-48	165	68-70
102	26.1	136	38-51	166	∫ 76
103	· 23.6	137	37.8	100	₹ 95–97
105	23-29	138	39-43	167	39-42
106	42	140	26.5-27	168	65-66
107	28-31	141	4-18	169	62-66
109	25–35	142	32	170	62-66
110	32	144	53-56	171	81-83
111	37-42	145	22-28	172	42-49
113	37	146	36-46		
114	15–30	147	26.6-34.5		
116	29.5-35.5				

* Montan wax.

Under Pressure No. 172 (49)

P., atm.	M. P., °C	P., atm.	M. P., °C	P., atm.	M. P., °C
1 11 20	46.5 48.33 48.64	56 96	49.36 50.10	141 182	50.90 51.38

Fig. 1.—Effect of pressure on relative viscosity of oils.

9. BOILING POINT OF OILS

No. 27, castor, ca. 265°C. No. 67, linseed, ca. 287°C. B. P. varies with time owing to decomposition.

10. THERMAL EXPANSION

The value of $d_{15.5}^t$ for any oil for temperatures between 10° and 25° may be approximately calculated from the expression $d_{15.5}^t = d_{15.5}^0 (1 - 0.0007 \ t) = (\text{approx.}) d_{15.5}^{15.5} - 0.0006 \epsilon (t - 15) (210)$.

Values of
$$\frac{d_{18.6}^{t_1} - d_{18.6}^{t_2}}{t_2 - t_1} \times 1000$$
. $t_2 = 98^{\circ} \text{ or } 99^{\circ} (1)$

Values uncorrected for expansion of glass plummet of Westphal balance

General index No.	t_1°	Differ- ence for 1°C	General index No.	t ₁ °.	Differ- ence for 1°C
117	40	642	159	50	673
119	5 0	717	161	40	617
120	40	657	164	90	975
144	60	692	169	80	750
147	50	717	172	60	716
150	40	650			

Correction in Density, $d_{18.8}^{18.8}$, for 1°C $A = -10^3 \frac{dd}{dt} \text{ at } 15^{\circ}\text{C}$

$$A = -10^3 \frac{dd}{dt}$$
 at 15°C

General index No.	A	General index No.	A	General index No.	A
3	0.655	41	0.629	84	0.722
8	.629	47	. 624	89	. 654
20	.620	61	.637	92	.615
27	.653	67	.648	93	. 646
29	.658	83	. 654	161	. 643
31_	.625	84	. 697	162	.648

Empirical Equations

 $V_t = V_0(1 + a \times 10^{-6}t + b \times 10^{-6}t^2 + c \times 10^{-9}t^3)$

General index No.	Name	a	ь	с	Range	Lit.
169	Beeswax	7386	1.752	-8.27	0-100	(132)
8	Olive oil	79 8	-0.773	8.27	9-106	(214)
8	Olive oil	68215	1.14053	5.39		(215)
8	Olive oil	d_4^{20} :	= 0.91268,	$d_4^{30} = 0$.90590	(216)

11. SPECIFIC HEAT

Mean c_p between 20° and 30°. 1 joule $g^{-1}/^{\circ}C = 0.2389$ cal₁₈ g-1/°C or BTU 60 lb.-1/°F (130).

General index No 8	12	20	26	31
c_{ν} , joules $g^{-1}/^{\circ}C$ 1.988	2.051	1.963	2.084	1.913
General index No	40	47	52, 53	67
c_{ν} , joules $g^{-1}/^{\circ}C$	1.984	2.000	1.833	1.846
General index No 9	1 117	150	163 1	69 (221)
c_p , joules $g^{-1}/^{\circ}C$	891 2.13	9 2.021	1.938	2.0

For thermal conductivity of beeswax v. p. 311.

12. HEAT OF COMBUSTION

 H_v = heat of combustion, at constant volume, in kilojoules per gram. 1 kj $g^{-1} = 238.9 \text{ cal}_{16} g^{-1} = 430.1 \text{ BTU}_{60} \text{ lb.}^{-1}$

General index No.	Oil	Iodine value	Free acids as oleic	H _v (166)
3	Arachis	105.9	0.16	39.39
8	Olive	85.1	2.51	39 .58
13	Almond	98.1	5.13	39.56
20	Rape	107.4	0.82	39.71
27	Castor	84.1	0.26	37.09
47	Sesame	105.3	1.65	39.32
51	Maize	120.3	3.32	39.39
51	Maize (crude)	122.4	1.68	39.42
67	Linseed (fresh)	182.4	4.30	39.19

General index No.	Oil	Iodine value	Free acids as oleic	H _v (166)
69	Poppy	129.6	2.66	39.26
83	Menhaden		0.36	39.17
84	Whale			39.64
91	Cod liver	165.6	0.56	39.49
93	Shark			39.22
150	Lard	74.3	0.74	39.55
163	Sperm	78.7	0.78	41.62
General				1

General index No.	Fat	Н,	Lit.
150	Lard	39.77-40.40	
	Oleomargarine	40.18	
161	Butter fat {	39.00-39.18 38.47-38.63	(173)
153	Goose fat		(173)
172	Spermaceti	41.62	(166)

 $H_{\nu} \times d_{18}^{18} = 36-37$. For H_{ν} of fatty acids ν . (173).

13. FLASH POINTS OF OILS AND FATS

See also (12, 158)

1. Closed Test (42)

General		Averag	Extreme	
index No.	Oil or fat	°F	°C	values, °F
8	Olive	437.5	225.2	410-465
162	Arctic sperm	446.2	230	390-485
163	Southern sperm	457.5	236.3	420-485
20	Rape, Black Sea refined	464.4	240.2	430-490
31	Neat's foot	470.3	243.5	410-540
84	White whale	476.0	246.4	430-530
20	Rape oil, E. Indian refined.	478.6	248.1	410-510
41	Cottonseed	523 .0	272.7	500-540

2. Methods Not Stated (8)

General index	Oil or fat	Flash point		Fire point	
No.	00	°F	°C	°F	°C
67	Linseed	378	192	572	300
67	Linseed, boiled	419	215	468	242
150	Lard, No. 2	419	215	468	242
163	Sperm, No. 1	428	220	518	270
31	Neat's foot	439	226	523	273
8	Olive	451	233	541	283
27	Castor	459	237		-
51	Maize (corn)	480	249	635	237
163	Sperm, No. 2	486	252	574	302
150	Prime lard	530	277	644	340
41	Cottonseed	582	305.6	644	340

14. ELECTRICAL CONDUCTIVITY

 $\kappa = A \times 10^{-5}$ mhos (cf. vol. 1, p. 35) (90)

General index No.		$A (= \kappa \times 10^5) \text{ at}$ 18°C
161	Butter	646-701
	Margarine	822-863
41	Cottonseed oil	863
3	Arachis oil	872
47	Sesame oil	878
8	Olive oil	993

RELATIVE VALUES ON AN ARBITRARY SCALE (15)

		·	JILS			
General index No.	8	8	47	69	21	1
. C ⋅	Olive I	Olive II	Sesame	Poppy	Ravi- son rape	Peach kernel
0	0.00	0.00	0.2	0.48	7.9	42
20	0.00	0.00	0.9	3.2	19.4	132
40	0.00	0.06	1.7	7.0	45	252
60	0.00	0.14	2.3	17.0	108	501
80	0.00	0.70	8.6	34.9	168	1024
100	0.00		18.0	60.5	236	1748
120	0.01		28.8	115	340	2974
140	0.06		47.0	218	480	4400
160	0.51		107		670	6230
180	1.62	7.62	182.5		100o	8700
200	3.38	10.7	275		1450	11600
220	6.08	15.0	400		2030	14700
240	10.4	21.6	660		2840	18280
260	16.5	33.0	120o		400o	22250
280	23.7	52.5	2270		600o	27750
300	31.70	83.0				

Drying oils heated in contact with air acquire greater conductivity; also oils that have become rancid. If a definite temperature has not been reached (about 260°) the original conductivity is restored on cooling. Of the oils tested, linseed oil showed the greatest conductivity.

FATS				WAXES				
General index No.	157	150	88	117	172	169	164	144
°C	Chicken fat	Lard	Dol- phin oil	Coco- nut oil	Sper- maceti	Bees- wax (yellow)	Car- nauba wax	Japan wax
	1.7			1	0.0	0.0	14.5	0.0
20	2.2	6.6	5.8	0.48	0.02	0.10	28.0	0.0
•	(liquid)		(liquid)					
40	3.3	8.8	9.4	1.25	1.3	1.0	55.6	0.0
		(liquid)		(liquid)	(liquid)			1
60	5.3	18.5	14.8	5.02	2.9	7.1	85.5	0.0 (liquid)
80	7.8	24.0	30.9	7.80		29.0 (liquid)	100	19.0
100	11.0	28.5	58.0	14.0	4.5	36.0	175	27
120	14.1	38.0		22.4	8.6	64.0	316	50
140	17.6	61	157.4	33.7	13.6	121	520	90
160	21.5	101	280.0	48.0	19.0	260	109o	155
180	25.4	126	369	102	24.2	600		236
200	30.0	60	470	1	30.8			343
220	35.1	60.5	625					641
240	40.5	99	880		1			
260	46.8	158						
280	54.0	230			l			
300	63.5	339		1				<u> </u>

15. DIELECTRIC CONSTANTS

Mixtures of Castor Oi	l (No. 2	7) and	F oluene	(167, 1	07, 193)	; cf. (7)
Per cent castor	oil	0	10	20	30	40
e at 12.5°		2.655	2.820	3.102	3.264	3.452
e at 20.0°		2.541	2.748	2.920	3.150	3.352
$-\frac{\Delta\epsilon}{\Delta t}$		0.0141	0.0158	0.0174	0.0190	0.0206
Per cent castor oil	50	60	70	80	90	100
e at 12.5°	3.746	3.952	4.152	4.308	4.564	4.798
ε at 20.0°	3.536	3.684	3.950	4.182	4.334	4.578
$-\frac{\Delta\epsilon}{\Delta t}$	0.0223	0.0239	0.0255	0.0272	0.0288	0.0304

For castor, olive, and linseed oils see (222).

16. REFRACTIVE INDEX AND BUTYROREFRACTOMETER READING

In preparing Table 16B below, butyrorefractometer values have first been converted into values of n_D by means of the conversion factors given in Table 16A. Values of n_D below 25° and above 40°C have then been converted to 25° and 40°, respectively, by means of the convenient approximate relation,

$$\frac{\Delta n_D}{\Delta t} = -0.00037 \, (^{106}).$$

16A. TABLE FOR CONVERTING BUTYROREFRACTOMETER READINGS INTO REFRACTIVE INDICES

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
sions sions sions sions 0.0 1.4220 19.5 1.4373 45.2 1.4560 72.7 1.4740 0.5 1.4224 20.0 1.4377 46.0 1.4566 73.5 1.4745 1.0 1.4228 20.4 1.4380 46.6 1.4570 74.3 1.4750 1.2 1.4230 21.1 1.4385 47.3 1.4575 75.1 1.4755 1.5 1.4232 21.7 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.
sions sions sions sions 0.0 1.4220 19.5 1.4373 45.2 1.4560 72.7 1.4740 0.5 1.4224 20.0 1.4377 46.0 1.4566 73.5 1.4745 1.0 1.4228 20.4 1.4380 46.6 1.4570 74.3 1.4750 1.2 1.4230 21.1 1.4385 47.3 1.4575 75.1 1.4755 1.5 1.4232 21.7 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.
0.0 1.4220 19.5 1.4373 45.2 1.4560 72.7 1.4740 0.5 1.4224 20.0 1.4377 46.0 1.4566 73.5 1.4745 1.0 1.4228 20.4 1.4380 46.6 1.4570 74.3 1.4750 1.2 1.4230 21.1 1.4385 47.3 1.4575 75.1 1.4755 1.5 1.4232 21.7 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0
0.5 1.4224 20.0 1.4377 46.0 1.4566 73.5 1.4745 1.0 1.4228 20.4 1.4380 46.6 1.4570 74.3 1.4750 1.2 1.4230 21.1 1.4385 47.3 1.4575 75.1 1.4755 1.5 1.4236 22.5 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5
1.0 1.4228 20.4 1.4380 46.6 1.4570 74.3 1.4750 1.2 1.4230 21.1 1.4385 47.3 1.4575 75.1 1.4755 1.5 1.4236 22.5 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4445 54.8 1.4625 83.8 1.4805
1.2 1.4230 21.1 1.4385 47.3 1.4575 75.1 1.4755 1.5 1.4232 21.7 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4260 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805
1.5 1.4232 21.7 1.4390 48.0 1.4580 76.0 1.4760 2.0 1.4236 22.5 1.4396 48.8 1.4585 76.8 1.4765 2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4795 5.0 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 7.5 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815
2.5 1.4240 23.0 1.4400 49.5 1.4590 77.7 1.4770 3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4260 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825
3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4260 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 7.0 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4826 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830
3.0 1.4244 23.5 1.4404 50.2 1.4595 78.6 1.4775 3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4266 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4264 28.3 1.4440 54.8 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 7.0 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.5 1.4280 31.0 1.4452 57.1 1.4640 86.4 1.4820 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296
3.5 1.4248 24.3 1.4410 51.0 1.4600 79.4 1.4780 3.7 1.4250 25.0 1.4415 51.7 1.4607 80.3 1.4785 4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4266 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4470 59.4 1.4650 89.1 1.4830
4.0 1.4254 25.6 1.4420 52.5 1.4610 81.2 1.4790 4.5 1.4256 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4665 89.1 1.4835 9.0 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
4.5 1.4256 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4665 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
4.5 1.4256 26.3 1.4425 53.3 1.4615 82.0 1.4795 5.0 1.4260 27.0 1.4430 54.0 1.4620 82.9 1.4800 5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4665 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
5.5 1.4264 28.3 1.4440 54.8 1.4625 83.8 1.4805 6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
6.0 1.4268 29.0 1.4445 55.6 1.4630 84.6 1.4810 6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
6.2 1.4270 29.7 1.4450 56.3 1.4635 85.5 1.4815 7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
7.0 1.4276 30.0 1.4452 57.1 1.4640 86.4 1.4820 7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
7.5 1.4280 31.0 1.4460 57.9 1.4645 87.3 1.4825 8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
8.0 1.4284 31.8 1.4465 58.6 1.4650 88.2 1.4830 8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
8.7 1.4290 32.5 1.4470 59.4 1.4655 89.1 1.4835 9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
9.0 1.4292 33.0 1.4474 60.2 1.4660 90.0 1.4840 9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
9.5 1.4296 33.9 1.4480 60.9 1.4665 90.9 1.4845
المتحد التنا المسمد والسامة التمري والمارة التنار والتنار والتنار
10.0 1.4300 34.6 1.4485 61.7 1.4670 91.8 1.4850
10.5 1.4304 35.3 1.4490 62.5 1.4675 92.7 1.4855
11.0 1.4308 36.0 1.4495 63.2 1.4680 93.6 1.4860
11.3 1.4310 36.7 1.4500 64.0 1.4685 94.0 1.4862
12.0 1.4316 38.1 1.4510 64.8 1.4690 94.5 1.4865
12.5 1.4320 38.7 1.4515 65.6 1.4695 95.4 1.4870
13.8 1.4330 39.5 1.4520 66.4 1.4700 96.0 1.4873
15.0 1.4340 40.0 1.4524 67.2 1.4705 96.3 1.4875
15.5 1.4343 40.9 1.4530 68.0 1.4710 97.2 1.4880
16.4 1.4350 41.5 1.4535 68.7 1.4715 98.1 1.4885
17.0 1.4354 42.3 1.4540 69.5 1.4720 99.1 1.4890
17.8 1.4360 43.0 1.4545 70.3 1.4725 100.0 1.4895
18.5 1.4366 43.7 1.4550 71.1 1.4730
19.1

For more extensive data v. (106). For specific refraction (Lorenz) v. (156).

The following empirical relations have been proposed:
$$\frac{n^2-1}{n^2+2} \times \frac{100}{d_4^4} = 33.07 + 0.00075(I) - 0.01375(S) +$$

0.002(t-15)

where d = density, S = saponification value, and I = iodinevalue, all at t°C. When hydroxy acids are present, the first constant of the equation is lower (14).

$$n_D^{40} = 1.4643 - 0.000046 (S) - 0.0096 \left(\frac{A}{S}\right) + 0.0001171 (I),$$

where A = acid value.

An observed refractive index higher than that calculated from this formula indicates oxidation of the oil (149).

In the case of hydrogenated cottonseed, linseed, arachis, sesame and sardine oils, and bassia tallow,

 $n_D^{60} = [1.4468 + 1.03 \times 10^{-4} (I) + 7.3 \times 10^{-3} (I^2)] \pm 0.0005.$

The refractive indices of hydrogenated castor oil are lower than those of other oils with similar iodine values, owing to reduction of the hydroxyl groups by the catalyst (178).

16B. REFRACTIVE INDICES

Finding No.	General index	$n_D^{2\delta}$	n_D^{40}
	No.		
1	117	1.453	1.4477-95
2	127	1.4543	İ
3	101		1.4490-6
4	132		1.4499
5	118		1.4496-505
6	100		1.4497-506
7	103		1.4503
8	135		1.4511
9	133		1.4512
10	96		1.4502-25
11	162	1.4567-71	1.4511-5
12	120	1.4007-71	1.4492-543
13	146		1.4470-579
14	1		
	154		1.4499-551
15	161*	1 4570	1.4528
16	163	1.4573	1.4488-581
17	98		1.4540
18	168-170		1.4538-66
19	99		1.4521-85
20	104		1.4552-656
21	147		1.4537-80
22	97	1.4605	
23	125		1.4559-66
24	150	1.4609-20	1.4542-81
25	142	1.4617	1.4559-66
26	88†	1.4517-717	
27	161‡		1.4534-89
28	152		1.4545-85
29	123	1.4628	1.4566
30	161		1.4555-78
31	116		1.4567
32	89	1.4622-5	1.4568
33	165		1.4569
34	144		1.4560-91
35	149		1.4575
36	157		1.4580
37	11	1.4535-633	1.4581
38	15	1.4635	1.1001
3 9	99	1.1000	1.4521-85
40	138		1.4588-600
41	105		1.4578-614
42	145		1.4578-014
			II .
43	4		1.4593-613
43.1	131		1.4593-624
44	153		1.4583-626
45	29		1.4607
46	105		1.4605-13
47	31	1 . 46 <i>43–85</i>	
48	139		1.4610
48.5	16.7	1.4664	
49	88	1.4665	
50	107		1.4609-16
51	134	<u> </u>	1.4607-20
* Indian cow.			

^{*} Indian cow.

[‡] Indian buffalo.

[†] Japanese.

16B. REFRACTIVE I	NDICES	(Continued)	١
-------------------	--------	-------------	---

16B. REFRACTIVE INDICES.—(Continued)					
Finding No.	General index No.	n_D^{2b}	n_D^{40}		
52	5	1.4667			
53	108		1.4584-649		
54	17	1.46 <i>62–89</i>			
55	17		1.4618		
56	33	1.4671			
57	12	1.4672			
58	13		1.4593-646		
59	119		1.4603-39		
60	7		1.4593-652		
61	2	1 4070	1.4623		
62	112	1.4678	1.4623		
63	8	1.4657-67	1.4603-56		
64	39	1 4000 0	1.4602-57		
65 66	9	1.4682-8	1 4690 59		
66 67	3	1 4001 01	1.4620-53		
67	26 16	1.4681-91	1.4636		
68	16	1.4679-702	1 4880 10		
69 70	1	1.4682-701	1.4630-49		
70 70 5	14 25 5	1 . 46 3 6–705	1.4635-49		
70.5	35.5	1 4840 4	1.4641		
71	23 78	1.4640-6	1.4642		
72 72	76 4 0	1.4698 1.4698	1.4643		
73 74	40 141	1.4080	1.4637-54		
	141 24		1.4649		
75 76	2 4 87		1.4633-66		
76 77	6	1.4705	1.3000-00		
77 78	19	1.4705	1.4650		
78 79	19 124	1.4710	1.4646-54		
79 80	22	1.4100-20	1.4653		
80 81	111		1.4642-64		
81.5	16.5		1.4654		
82	20		1.4649-59		
83	35		1.4656		
84	156	1 . 4658-702	1.4618-96		
85	10	1.4711			
86	51	1.4733	1.4656-62		
86.5	43.5	1.1.00	1.4660		
87	47	1.4704-17†	1.4649-75		
88	25	1.4718			
89	28	1.4713-25	1.4659-78		
90	68	1.4724	1.4671-8		
91	57		1.4675		
92	94	1.4730	1.4675		
93	63	-	1.4666-85		
94	21	1.4710-74			
95	38	1.4724-39			
96	48	1.4723-56	1.4675-82		
97	44	1.4715-36	1.4679		
98	79		1.4678-85		
99	95	1.4731-43			
100	50	1.4751			
101	73	1.4756			
102	59	1.4769	1.4679-91		
103	84	1.4679-724	1.4659-713		
104	164	,	1.4672-701		
	80		1.4685		
105					
	56.5		1.4688		
105		1 . 47<i>39–42</i>	1.4688 1.4679–98		
105 105.5	56.5	1 . 47 <i>39–42</i> 1 . 4743	I.		

Finding No.	General index No.	n_D^{25}	n_D^{40}
109	92	1.4742-62	1.4685-702
110	27	1.4771	1.4659-730
111	54, 56	1.4760-90	1.4696
112	85		1.4665-729
113	65	1.4770	1.4690-710
114	32		1.4701
115	37		1.4710
116	74		1.4710
117	137		1.4710
118	91	1.4758-83	1.4702-35
119	94.5	1.4701-852	
121	93	1.4825	1.4685-770
122	42	1.4775-91	1.4721-39
123	83	1.4787	1.4731-6
124	126	1.4783	1.4735
125	68.5		1.474
126	58		1.4740-5
127	67	1.4807-15*	1.4739-48
128	67	1.4797-802†	
130	49	1.4777-9	1.4720-74
131	143	1.4770	1.4723-72
132	113		1.4737-60
133	71		1.4753
134	86	1.4763-852	
135	82	1.4818	1.4768-72
137	45.3	1.474	
138	45.5	1.475	
140	42.2	1.4750	
141	167		1.4784-822
142	42.2	1.4778	
143	41.5	1.4780	
144	42.4	1.4780	
145	42.3	1.4786	
146	78		1.4861
147	81	1.4857	
148	60	1.4953	
149	52, 53, 55	1.515-20‡	1.5080-128
150	70	1.5099-186	

^{*} Russian.

16C. OPTICAL DISPERSION

$$\omega = \frac{n_F - n_C}{n_D - 1}$$

Fryer and Weston (67) at 40°

General index No.	n_D	$n_F - n_C$	1/ω
1	1.46439	0.00910	51.0
3	1.46431	0.00878	52 .9
8	1.46184	0.00862	53.6
13	1.46403	0.00890	52 . 1
20	1.46770	0.00936	50.0
27	1.47194	0.00897	52 .7
41	1 46535	0.00910	51.1
47	1.46650	0.00908	51.3
51	1.46711	0.00938	49.8
52	1.51256	0.01904	26 .9
58	1.47404	0.00980	48.4
61	1.46968	0.00935	50.2
62	1.47211	0.00973	48.5
65	1.47054	0.00985	47 .8
67	1.47379	0.01032	45.8

[†] American. ‡ Am. Soc. Testing Materials limits.

16C. OPTICAL DISPERSION.—(Continued)

10c. OPTICAL DISPERSION.—(Commuted)					
General index No.	n_D	$n_F - n_C$	1/ω		
69	1.46984	0.00978	48.0		
71	1.47527	0.00984	48.3		
83	1.47361	0.00979	48.4		
84	1.46630	0.00918	50 .8		
92	1.47018	0.00918	50.8		
93	1.46849	0.00955	49.0		
117	1.44924	0.00751	59.8		
120	1.45034	0.00812	55.4		
147	1.45724	0.00853	53.6		
150	1.45928	0.00851	53 .8		
161	1.45427	0.00830	54.7		
163	1.45814	0.00864	53.0		
172	1.44066*	0.00740	59.5		
	Szalagyi (1	177) AT 45°			
3	1.46444	0.00949	48.9		
8	1.46040	0.00877	52.5		
20	1.46553	0.00933	49.9		
27	1.47027	0.00904	52 .0		
41	1.46394	0.00917	48.7		
47	1.46398	0.00917	50 .6		
58	1.46889	0.00962	48.7		
67	1.47224	0.01018	45.1		
91	1.46984	0.00988	47.5		
117	1.44746	0.00739	60.5		
150	1.45716	0.00818	55.9		
150	1.45753	0.00882	51.9		
161	1.45213	0.00830	54.4		
161	1.45296	0.00784	57.6		
# A. E00					

^{*} At 56°.

(*3) describes a method based on the inversion of the spectrum colors shown by tung oil.

17. OPTICAL ROTATION OF OILS

Values expressed in reading on Laurent's saccharimeter (200 mm at 20°) unless otherwise stated (148)

at 20) unless otherwise stated (140)						
General index No.	Oil or fat	Optical rotation				
69	Poppy oil	0.0				
3	Arachis oil	-0.1 to -0.4				
14	Apricot kernel oil	-0.2				
65	Walnut oil	-0.3				
13	Almond oil	-0.7				
20	Rape oil	-1.6 to -2.1				
82	Stillingia oil	-18.6				
8	Olive oil	+0.2 to +0.6				
47	Sesame oil	+0.8 to +2.4				
27	Castor oil	+7.6 to +9				
37	Croton oil	+14.5 to $+16.4$				
42	Hydnocarpus oil α_D^{20}					
49	Chaulmoogra oil α_D^{20}	+50.8 to $+58.2$				

PROPERTY-SUBSTANCE TABLES

The bold-faced numbers are intervals on the scale of property values. The other numbers are General Index Numbers in the order of the value of the property.

18. DENSITY

Oils.—15/15: 0.861: 163, 162, 6, 88, 94.5. 0.91: 88, and all others except 60. 0.95: 49, 27, 60, 42.2. 0.97.

Fats.—100/15.5: **0.852**: 148, 138, 141, 149, 125, 116, 119, 147, 131, 108, 115, 109, 111, 99, 130, 146, 117. **0.86**: 141, 146, 117, and all others except 155. **0.90**: 155. **0.91**.

Waxes.—100/15.5: 0.805: 172, 171, 169, 167, 164. 0.85.

19. MELTING POINT

Fats.—4°: 141. 10°: 141, 130, 114, 156, 96. 20°: 130, 114, 156, 117, 145, 101, 103, 105, 120, 96. 25°: 114, 156, 117, 145, 105, 120, 109, 102, 140, 147, 119, 133, 153, 125, 107, 161, 100, 118, 116, 124, 150. 30°: 156, 109, 147, 119, 153, 125, 107, 161, 116, 124, 150, 121, 148, 142, 126, 110, 157. 35°: 156, 119, 161, 116, 150, 126, 157, 158, 131, 146, 113, 111, 149, 137, 97, 132, 136, 167, 138. 40°: 119, 150, 158, 146, 111, 149, 132, 136, 167, 138, 98, 135, 123, 159, 106, 172, 151, 160. 45°: 150, 158, 146, 136, 135, 159, 172, 151, 152, 155, 144. 50°: 136, 159, 155, 144. 60°: 169, 170, 168, 165. 70°: 166. 80°: 171, 164. 90°: 166, 164.

20. CONGELATION TEMPERATURE

Oils.— $-30^{\circ}: 66, 59, 51, 80, 65, 79, 58, 73, 67, 77, 13. <math>-20^{\circ}: 51, 65, 58, 77, 13, 81, 54, 66, 59, 51, 80, 65, 79, 58, 73, 67, 77, 13, 81, 54, 52, 53, 15, 74, 14, 1, 45, 34, 69, 5, 27, 37, 28, 75, 40, 25, 68, 62, 24, 88, 38. <math>-15^{\circ}: 51, 65, 77, 13, 14, 45, 27, 37, 28, 48, 23, 43, 41, 61, 64, 17. <math>-10^{\circ}: 37, 39, 12, 16, 10, 46, 20, 21, 3, 36, 8. -5^{\circ}: 20, 3, 8, 47, 83, 99, 91, 84, 29, 31, 30, 92, 82. <math>0^{\circ}: 41, 99, 29, 31, 53, 30, 7, 95, 33, 26, 6. 5^{\circ}: 41, 31, 30, 4, 45.3. 10^{\circ}: 41, 30, 4, 11, 42.4, 42.5. 20^{\circ}: 30, 42.3, 42.2, 42.1, 41.5. 75^{\circ}.$

21. ACETYL VALUE

0: 91, 161, 117, 172, 150, 147, 3. **3**: 3, 5, 163, 13. **5**: 163, 13, 51, 116, 26, 120, 58, 31, 159, 54. **10**: 51, 26, 54, 8, 65, 125, 84, 44, 69, 160, 36, 20, 41, 28. **15**: 26, 84, 37.5, 44, 41, 169, 92, 119, 59, 153, 28, 144, 37. **20**: 26, 84, 44, 41, 144, 68, 141, 63, 82, 28. **30**: 141, 37, 28, 113. **40**: 28, 2. **50**: 164, **55**. **149**: 27. **150**.

22. IODINE VALUE

Oils.—**50**: 11, 30, 31, 4. **60**: 30, 31, 4, 29, 42.5. **70**: 31, 29, 16.5, 6, 5.5, 39, 2, 8, 45.3. **80**: 16.5, 39, 8, 42.1, 18, 12, 27, 42, 5, 9, 3, 42.2. **90**: 42.3, 39, 42, 3, 33, 17, 1, 13, 24, 20, 41.5, 28, 10, 22, 49, 113, 40, 42.4, 26, 88, 25. **100**: 33, 13, 20, 28, 22, 49, 40, 26, 25, 16, 46, 14, 73–80, 19, 35.5, 41, 47, 36, 44, 37, 7, 21. **110**: 28, 49, 40, 73–80, 41, 47, 44, 7, 21, 35, 15, 51, 93, 84. **120**: 44, 21, 51, 93, 84, 57, 87, 45, 38, 48, 59, 61, 37.5, 89, 62, 81. **130**: 93, 48, 59, 61, 56.5, 62, 63, 34, 72, 68, 91, 56, 65. **140**: 59, 34, 72, 68, 82, 91, 56, 65, 58, 83, 82, 55, 70. **150**: 34, 52, 91, 58, 83, 52, 53, 55, 70, 74, 82. **160**: 53, 55, 91, 58, 83, 54. **170**: 83, 86, 67, 60, 68.5. **180**: 83, 86, 67, 71. **190**: 86, 67, 71. **200**: 67, 71. **205**: 71. **260**: 92. **344**.

Fats and Waxes.—4: 135, 167, 144, 172, 103, 168–170, 117, 138.

10: 167, 144, 168–170, 120, 101, 129, 100, 118, 133, 164, 102, 166, 96, 167, 140, 161.

20: 96, 167, 137, 146, 155, 161, 122, 132, 125, 147, 123, 159, 151, 148, 98.

40: 167, 137, 146, 161, 147, 159, 151, 98, 104, 131, 142, 100, 150, 152, 145, 109, 116.

50: 167, 137, 150, 152, 145, 160, 105, 111.

110, 115, 99, 108, 153.

60: 150, 152, 105, 111, 99, 108, 153, 106, 107, 128, 157, 126, 158, 130.

70: 99, 157, 126, 158, 130, 134, 156, 96, 139, 121, 97.

80: 158, 156, 121, 124.

90: 158, 124, 113, 139.5.

100.

23. SAPONIFICATION VALUE

50: 165, 166, 164, 167, 168, 169, 170. **100**: 167, 168, 170, 163, 162, 172. **150**: 136, 93, 84, 20, 94, 85, 72, 91, 24, 28, 19, 25, 6, 23, 27, 21, 90, 146, 143, 111. **180**: 84, 85, 91, 28, 19, 27, 21, 90, 143, 111, 146, 43, 108, 76, 16.7, 130, 9, 141, 50, 13, 66, 134, 7, 8, 137, 142, 51, 3, 88, 60, 123, 98, 44, 92, 34, 36, 148, 68, 106, 104, 38, 47, 62, 71, 4, 67, 86, 59, 96, 61, 87, 107, 149, 48, 83, 39, 54, 49. **190**: 84, 85, 28, 146, 130, 13, 8, 42.3, 68.5, 137, 142, 51, 139.5, 3, 123, 98, 44, 42.5, 92, 68, 104, 38, 47, 62, 71, 4, 67, 86, 59, 61, 87, 107, 149, 37.5, 48, 83, 39, 54, 49, 35, 80, 32, 99, 64, 17, 95, 81, 58, 160, 65, 63, 12, 78, 75, 18, 1, 16, 79, 153, 40, 5, 14, 73, 74, 125, 139, 110, 10, 26, 33, 57, 45, 69, 147, \$15, 70, 29, 159, 30, 31, 105, 114, 157, 37, 113, 41, 52, 53, 55, 2. 195 84, 13, 8, 137, 142, 92, 86, 59, 49, 160, 65, 63, 40, 5, 14, 10, 26, 70, 29, 159, 30, 31, 105, 114, 157, 37, 41, 52, 53, 55, 2, 109, 152, 155, 156, 150, 112, 151, 115, 121, 126, 46, 116, 158, 131, 119, 56, 89, 135, 42, 144, 82, 42, 45.3, 41.5, 42.2, 1 v. Table 3.

42.4. 210: 37, 131, 135, 144, 161, 11, 145, 138, 100, 122, 154, 96, 100. **240:** 96, 100, 132, 133, 190, 97, 102. **250:** 89, 96, 133, 190, 118, 117, 101, 128, 103. **260:** 117, 140, 127, 89. **280:** 129, 85 **290.**

24. HEHNER VALUE

65: 88, 89. 82: 97, 117, 127, 128, 129, 140, 161, 93, 17. 90: 117, 93, 17, 120, 16.7, 144, 145. 92: 3.5, 4, 16.6, 18, 28, 48, 51, 65, 66, 74, 77, 79, 84, 88, 95, 106, 108, 109, 111, 113, 119, 131, 132, 135, 138, 141, 142, 147, 149, 150, 153, 157, 160, 81, 87. 95: 93, 119, 141, and all others for which data are available. 96: 0.5, 12, 93, 119, 141, 86, 151. 97: 29, 81, 87, 156, 158.

25. REICHERT-MEISSL VALUES

	REICHERI-	WEISST ANTOES	
General index	Reichert-	General index	Reichert-
No.	Meissl value	No.	Meissl value
57	0.0	65	0.92
59	0 -1.2	31	0.9 -1.2
20	0 -0.79	119	0.9 -1.9
17	0.1	41	0.95
114	0.1	82	0.93-0.99
44	0.1 -1.3	67	0.95
123	0.11-1.54	5	0.99
91, 92	0.2	143	1
14	0.2	106	1 -2
124	0.22	131	1 -4
132	0.2 -0.4	42	1.02
43	0.2 -0.4	53	1.1
		125	1.1
149	0.2 -0.4		
153	0.2 -0.8	47	1.1 -1.2 1.1 -2.5
146	0.2 -0.9	108	
160	0.2 -1.7	136	1.1 -4.2
26	0.28-0.48	54	1.2
142	0.3	83	1.2
147	0.3 -1.0	111	1.25-1.4
110	0.33	127	1.39
37 . 5	0.33	27	1.4
19	0.33-0.89	66	1.5
55 ·	0.35	126	1.6
113	0.38	157	1.8
52	0.39	74	2.0
3	0.4	129	2.0
90	0.4 -0.7	50	2 -3
104	0.4 -1.31	4	2.5 - 3.3
69	0.4 -3.0	128	2.53
105	0.44-0.88	133	3.0
28	0.46	95	3.4
7, 13	0.5	100	3.8
62, 138	0.5	51	4.2 -9.9
112	0.5	140	4.5
48	0.5 -2.8	38	4.45
86	0.5 -1	120	5 -6.8
159	0.5 -1	88	5.6
36	0.55	96	5.7 -7.2
2, 69	0.6	102	5.8
141	0.6	103	6.3
107	0.6 -0.5	117	6.6 -7.5
8	0.6 -1.8	101	8
116	0.65	134	8.27
155	0.68	145	9
158	0.7 -2.8	84	14
23	0.75	161	17.0-34.5
23 22	0.75	154	20.8-27.7
81	0.75	89 (Body)	64.9
	0.75	88 (Jaw)	65.9
130	0.8 -0.9		132
11	0.00	89 (Jaw)	102
	·	1	

26. UNSAPONIFIABLE MATTER

	20. UNGAFONIFIABLE MATTER					
General index	%	General index	%			
No.	%	No.	%			
31	0.12-0.65	84	1 -4			
115	0.19	139	1.1			
134	0.25	144	1.1 -1.6			
92	0.3 -1.0	57	1.14			
103	0.36	51	1.25-1.60			
52	0.41	48	1.27-1.54			
8	0.4 -1.0	74	1.3			
67	0.4 -1.2	68.5	1.3			
69	0.43	32	1.30-2.65			
5	0.5	104	1.36			
54	0.5 -0.9	82	1.45			
107	0.5	139.5	1.6			
3	0.5 -0.9	88	2			
87	0.5 -3.0	50	2.4 -2.6			
125	0.5	95	2.61			
62	0.51	10	3			
155	0.52	25	3.3			
91	0.54-2.68	108	3.86			
53	0.59	93	2.8 -15.2			
29	0.6	111	5 -9			
83	0.6 -1.45	133	7.0			
90	0.7 -7.0	94	8.4			
13	0.75	89	16 -17			
100	0.75	137	20.4			
86	0.98	162	36 -41			
55	0.99	167	39 -44			
85	1 -2	166	47			
58	1.08	172	51.5			
37.5	1.1	164	54 -55			
41	1.1	94.5	1 -90			
	!		L			

27. MELTING AND SOLIDIFICATION POINTS OF FATTY ACIDS

		FAILI	ACIDO	,	
Gen- eral index No.	Melting point, fatty acids, °C	Solidification point, fatty acids, "titer" test, °C	Gen- eral index No.	Melting point, fatty acids, °C	Solidification point, fatty acids, "titer" test, °C
71	-5		51	17 -22	19
64	0		45.3	18	
75	0		20	18.5-20	11.7-13.6
77	0		18	19	10
14	2.3-4.5		76	19	
162	10.3-10.8	8.3-8.6	15	19 -21	13 -15
128		9 -10	23	20	13 -15
59	11 -17	7 -12	21		13.5-16.5
163	13.4]	63		15 -20
13	13 -14	9.5-11.8	69	20.5	17 -19
34	13 –14		56		17.6
16	13.4-18		67	20 -24	16 -21
84	14 -27	10 -24	96	20.5-21	
82	14.5		60	21.5	
127		13		(begins)	i
65	15 -20	14.3		65.0	
25	16 -17	13.4-13.7		(complete)	
43	16 -18		37		17 -19
78	16 -19	10 -16	45	21.7	22 -26
79		10 -15	93	21 -22	
58	17 -21	15.6-16.6	91	21.8-38	17.5-24.3
12	17 -20	!	5	22 -25	19 –20

27. MELTING AND SOLIDIFICATION POINTS OF FATTY ACIDS.—(Continued)

Gen-		Solidifi-	Gen-		Solidifi-
eral	Melting	cation point,	eral	Melting	cation point,
index	point, fatty	fatty acids,	index	point, fatty	fatty acids,
	acids, °C	"titer"	No.	acids, °C	"titer"
No.	•	test, °C	No.		test, °C
92	22 -23	i	39	38	
62	22 -24	18 -19.8	4	38.8	
66	22.2	10 10.0	157	38 -40	32 -34
57	22.8	ļ	161	38 -41	33 -39
46	23		50	39 -40	00 00
28	23 -25	ŀ	30	00 10	35 -37
40	23 -24		158	39 -50	35 -41
36	20 24	19.7-21.0	100	(45.2-47.2
68	23 -26	20 -24	146	39 -57	50.9-52.5
103	23.6	20 -24	105	39 -45	38 -40
26	24 -30		42.4	40	30 -40
	24.2		106	40	38 -41
133		01 0 05 0	114	40 -42	I
117	24 -27	21.2-25.2	l I	l '	37 –40
120	25 -28.5	20 -25.5	42.2	41	
61	25.4	22.6	167	41.8	00 40
94.5		00 00	109	42 -46	38 –40
47	25 -35	23 -32	130	42 -49	07.0.40.0
8	26 -30	16.9-26.4	151	42.5-44	37.9-46.2
48	26.2-27.5		138	42.5–46	
100	27		42.1		
140	27 -28		42.5		
101	27 –28		143	44 -45	36 –42
124	27 -45	39.9-51	42	46	
32	27.5		137		37.2
33	28 -30	31.1-32.2	160		42.5-44
31	29 -41	16 -26.5	159		40 -50
81	30 –40		42.3	ł	1
27	30		135	47 –48	
85	30 -32		116	48.3-50	46 –47
38	1	26 -28	147	48 -53	47.2-49.2
113		28 -29	108	49 -52.8	47
86	30 -34.8	28.2	119	50	42.5-45.5
3		30.5–39	141	50 -57	
52	30 -49.4	36 -39	155	50 -64	46 -50
90	31		131	51 -55	48 -52
97	31		148		48.1
156	31.3-53.4		111	52 -53	
112	33 -34	1	145	52 -55	49.7-50.7
29	33 -38.4		144	53 -56.5	
152	33.5-49	40 -48.5	41.5	55	
41	34.5		125	56	İ
132	35		107	56	
87	35 -36	27.5-28.2	149	56 -57	!
99	35 -38		142	57 -60	
153	36.6-40	31 -34	104	58.4	
95	36.5	27 -28	98	59	61.4-61.5
150	37 -46.6	36 -42.4	123	60 -61	
6	37.6				1

HYDROGENATED OILS

Hydrogenation reduces the iodine value, and refractive index, (56) but has little influence upon the acid value, saponification value and unsaponifiable matter.

In oils, such as castor oil, containing hydroxyl groups, the hydroxyl value is lowered (143). The amount of insoluble bromides is reduced. The stearic acid formed on hydrogenation is identical with normal stearic acid (120).

A method of differentiating hydrogenated and natural oils has been based on the ratio between the amounts of stearic acid and palmitic acid (135). Hydrogenated oil may be recognized by a determination of the iso-oleic acid formed in the process (208).

PARTLY HYDROGENATED OILS (218)

Gen- eral index No.	Oil	м. Р., °С	Con- gelation point, °C	Butyrore- fractometer reading (40°)	Acid value	Saponi- fication value	Iodine value
117	Coconut	44.5	27.7	35.9	0.4	254.1	1.0
47	Sesame (techn.)	62.1	45.3	38.4	4.7	188.9	25.4
84	Whale	45.1	33.9	49.1	1.2	192.3	45.2
. 3	Arachis	51.2	36.5	50.1	1.0	188.7	47.4
47	Sesame	47.8	33.4	51.5	0.5	190.6	54.8
41	Cottonseed	38.5	25.4	53.8	0.6	195.7	69.7

WHALE OIL (GEN. IND. No. 84) AT DIFFERENT STAGES OF HYDROGENATION (219)

	м. Р., °С	Con- gelation point, °C	Acid value	Saponi- fication value	Lodina	Molecular equiva- lence of fatty acids
Original oil	Fluid	Fluid	9.50	192.2	144.8	287.7
Artificial tallow	47.5	38.1	9.88	183.7	56.9	296.4
Artificial stearine	54.3	47.3	7.80	187.7	11.7	297.0
Hydrogenated whale oil	41.9	31.9	5.30	190.9	57.8	282.9

COMPLETELY HYDROGENATED OILS (220)

General index No.	Hydrogenated oil or fat	М. Р., °С	Iodine value	Saponi- fication value	Fatty acid, M. P., °C
159	Tallow	62	0.1	197.7	64
150	Lard	64	1.0	196.8	62
147	Cacao butter	63.5-64	0.0	193.9	65.5
3	Arachis	64-64.5	0.0	191.6	67
91	Cod liver	65	1.2	186.2	59
67	Linseed	68	0.2	189.6	70.5
47	Sesame	68.5	0.7	190.6	69.5
8	Olive	70	0.2	190.9	71
69	Poppy	70.5	0.3	191.3	71
13	Almond	72	0.0	191.8	71

LITERATURE

(For a key to the periodicals see end of volume)

- Allen, Commercial Organic Analysis, II: 1924. London and Philadelphia.
 Amberger, 279, 35: 313; 18.
 Amberger and Bauch, 279, 48: 371; 24.
 Amberger and Bromig, 279, 42: 193; 21.
 André, 34, 173: 1413; 21.
 André, 27, 35: 857; 24.
 Angervo and Liiri, 60, 56A: No. 9; 13.
 Anon., 212, 4: 433; 23.
 Anon., 267, 18: 172; 20.
- (10) Anon., 257, 20: 292; 22. (11) Archbutt, 54, 17: 1009; 98. (12) Archbutt and Deeley, Lubrication and Lubricants, 1912. (13) Armstrong, Allen and Moore, 54, 44: 63T; 25. (14) Backer, 176, 13: 954; 16. (18) Bartoli, 59, 28: 25; 90. (16) Battaglia, 342, 6: 434; 01. (17) Bauer, 252, 31: 33; 24. (18) Baughman and Jamieson, 1, 44: 2947; 22. (19) Baughman and Jamieson, 341, 26: 77; 23.
- (20) Baughman, Jamieson and Brauns, 1, 43: 199; 21. (21) Benedikt and Ulser, 67, 8: 41; 87. (21.1) Bjalobreski, 252, 8: 123; 01. (22) Blakely and Reilly, 45, 9: 1099; 17. (23) Bömer, 279, 25: 321; 13. (24) Bömer and Bauman, 279, 40: 97; 20. (25.5) Bömer and Merten, 279, 43: 101: 22. (26) Bömer and Schneider, 279, 47: 61; 24. (27) Bolton, 173, 44: 233; 19. (28) Bolton and Hewer, 173, 42: 35; 17. (28.5) Bolton and Jesson, 173, 40: 3; 15. (29) Bolton and Revis, Fatty Foods. London, 1912. (29.1) Bolton and Revis, 173, 35: 343; 10. (29.2) Bolton and Revis, 173, 36: 392; 11.
- (30) Bolton and Revis, 173, 43: 251; 18. (31) Bolton and Revis, in Allen's Commercial Analysis, II: 241; 24. (32) Brill and Agcaoili, 267, 10: 105; 15. (33) Brill and Williams, 267, 12: 207; 17. (34) Brooks, 173, 34: 205; 09. (35) Browne, 1, 21: 807; 99. (35.5) Bubanovic, 55, 10: 178; 12. (36)

- Buchner, 185, 69 I: 151; 98. (37) Buchner, 136, 42: 373; 18. (38) Buisine, 343, 5: 91; 99. (29) Bull, 136, 28: 996; 99.
- (40) Bull, 136, 28: 1043; 99. (41) Bull, 25, 39: 3570; 06. (42) Carpenter and Leask, in (123), 3rd ed., p. 208. (42) Chapman, 4, 111: 56; 17. (44) Chapman, 173, 48: 161; 17. (45) Chatopadhyay, 184, 87: 473; 15. (46) Crismer, 28, 9: 71, 145, 359; 95. (47) Crismer, 28, 10: 312, 453; 97. (48) Crossley and Le Sueur, 54, 17: 989; 98. (49) Damien, 54, 112: 785; 91.
- (50) Darmstaedter and Lifschüts, 25, 29: 2890; 96. (51) Dean and Wrenshall, 1, 42: 2626; 20. (81:1) Deiler and Fraps, 11, 43: 90; 10. (52) Diedrichs, 279, 27: 132; 14. (53) Ebert and Bailey, 348, 7, No. 12: 35; 24. (54) Eckart, 279, 44: 1; 22. (85) Eibner and Schmidinger, 352, 30: 293; 23. (56) Ellis, 45, 6: 117; 14. (87) Elsdon, 173, 38: 8; 13. (88) Elsdon, 173, 39: 78; 14. (59) Elsdon, 173, 49: 275; 24. (59-5) Fabris, Olii e grassi, 1933: 247.
- (60) Fabris and Settimj, Atti del VI Cong. Chim. Roma, 5: 749; 07. (61) Fabrion, 136, 17: 434; 93. (62) Fabrion, 92, 23: 1106; 10. (63) Farnsteiner, 279, 2: 1; 99. (64) Fendler, 344, 20: 6; 05. (65) Fouchet, 346, 18: 529; 12. (66) Fox, 45, 4: 229; 12. (67) Fryer and Weston, 173, 43: 311; 18. (68) Garelli, 216, 8: 109; 17. (69) Geitel and van der Want, 52, 61: 151: 00.
- (7*) Georgi, 346, 12: 77; 24. (72) Grimme, 252, 17: 156; 10. (73) Grimme, 136, 35: 925; 11. (74) Grimme, 252, 20: 1; 13. (75) Grün, Oel-Fett. Industrie, 1: 339, 364; 19. (76) Hanus, 279, 2: 617; 99. (77) Hanus, 279, 4: 913; 01. (75) Hasura and Grüssner, 57, 10: 242; 89. (79) Hasura and Grüssner, 57, 9: 475; 89.
- (**) Hasura and Grüssner, 57, 9: 944; 89.
 (*1) Hehner, 175, 8: 16; 83.
 (*2) Hehner and Mitchell, 175, 20: 146; 95.
 (*3) Hehner and Mitchell, 175, 21: 316; 96.
 (*4) Hehner and Mitchell, 175, 28: 310; 98.
 (*6) Heise, 291, 18: 540; 96.
 (*7) Heise, 291, 18: 302; 97.
 (*8) Henriques, 92, 8: 721; 95.
 9: 221; 96.
 (*9) Henriques and Künne, 25, 28: 387; 99.
- (9°) Herlant, 28, 10: 48; 96.
 (9¹) Herschel, 45, 14: 715; 22.
 (9¹.8) Hewer, 173, 42: 271; 17.
 (9²) Holde and Stange, 25, 34: 2402; 01.
 (9²) Holley, Analysis of Paint Vehicles, Japans and Varnishes, 1920.
 (9⁴) Holmes, 347, 65: 691; 00.
 (9⁵) Hopkins, 1, 20: 948; 98.
 (9³) Hubl, 112, 253: 281; 84.
 (9³) Hyde, 5, 97A: 249; 20.
 (9∗8) Jamieson and Baughman, 1, 42: 166; 20.
 (9³) Jamieson and Baughman, 1, 44: 2952; 22.
- (100) Jamieson and Baughman, 348, 6, No. 1: 34; 22. (101) Jamieson and Baughman, 348, 7, No. 2: 35; 23. (102) Jamieson and Baughman, 348, 7, No. 12: 34; 24. (104) Jamieson and Baughman, 1, 46: 775; 24. (105) Kahlbaum and Raber, 353, 84: 201; 05. (106) Kanthack, Tables of Refractive Indices, II. Oils, Fats and Wazes. 1921. (Hilger, London). (107) Karhi and Suikkanen, 60, 84A: No. 19; 11. (108) Kebler, 143, 181: 394; 01. (109) Keimatsu, 136, 38: 839; 11. (109.5) Kesava-Menon, 64, 29: 1428: 10.
- (110) Klein, 92, 37: 847; 98.
 (111) Klein, 92, 37: 1012; 98.
 (112) Kleinbusch, Das Wollfett, p. 92; 01.
 (113) Klimont, 57, 23: 51; 02.
 (114) Klimont, 57, 24: 408; 03.
 (115) Klimont, 57, 25: 929; 04.
 (116) Klimont, 57, 26: 563; 05.
 (117) Knowles and Urquhart, 173, 49: 509; 24.
 (115) Lane, 54, 20: 1083; 01.
 (119) Langton, 54, 42: 47T; 23.
- (120) Leimdörfer, 349, 40: 1317; 13. (121) Lemarié, 257, 1: 206; 03. (122)
 Le Sueur, 54, 19: 104; 00. (123) Lewkowitsch, Technology of Oils, Fats, and Waxes. London, 1914. (124) Lewkowitsch, 54, 9: 842; 90. (128)
 Lewkowitsch, 173, 24: 319; 99. (126) Lewkowitsch, 173, 28: 342; 03. (127) Lewkowitsch, 279, 12: 659; 06. (128) Ljubarsky, 52, 87: 19; 98. (128-1) Mahle, 136, 19: 1786; 95. (129) Marden, 45, 8: 121; 16.

- (130) Marden and Dover, 45, 9: 858; 17. (131) Matthes and Streicher, 293, 251: 438; 13. (132) Mattioli, 24, 75, 2: 358; 15. (133) Meissl, 112, 233: 229; 79. (134) de Mets, 8, 41: 663; 90. (135) Mihály, Akatalysisses uton Hydrogennel telitett Zsirok Vizsgálata, p. 17—19. Budapest. (136) Milligan, Knuth and Richardson, 1, 46: 157; 24. (137) Mitchell, 173, 49: 515; 24. (138) Miura, 142, 26: 316; 23. (139) Moore, 54, 9: 331; 90.
- (140) Morrell, 54, 32: 1091; 13. (141) de Negri and Fabris, 91, 33: 547; 94.
 (143) Norman and Hugel, 136, 37: 815; 13. (144) Parker, Rau, Robertson and Simonsen, 260, 10: 11; 23. (148) Pastrovich, 136, 31: 781; 07. (144) Paul, 173, 46: 238; 21. (147) Perkins and Crus, 267, 23: 543; 23. (148) Péter, 27, 43: 483; 87. (149) Pickering and Cowlishaw, 54, 41: 74T; 22.
- (150) Pieraerts, 350, 16: 6674; 24. (152) Polenske, 279, 7: 273; 04. (154)
 Power and Barrowcliffe, 4, 87: 884; 05. (156) Proctor, 54, 17: 1021; 98. (157) Pschorr and Pfaff, 25, 58: 2147; 20. (158) Redwood, Treatise on Petroleum, 3: 785; 22. (159) Reichert, 91, 18: 68; 79. (159.5) Reimer and Will, 25, 20: 2385: 87.
- (160) Ross and Race, 173, 36: 263; 11. (162) Ryan and Dillon, 117, 12: 202; 13. (163) Schaedler, Die Technologie der Fette und Oele des Pflanzen- und Thier-reichs. 2nd ed. Berlin, 1892. (164) Schoen, 25, 21: 878; 88. (168) Schulze, 25, 31: 1200; 98. (166) Sherman and Snell, 1, 23: 164; 01. (167) Siivola, 138, 1, No. 18; 22. (168) Smetham, 173, 18: 191; 93. (169) Soliven, 340, 13: 65; 24.
- (170) Sprinkmeyer and Diedrichs, 279, 27: 113; 14. (171) Strevens, 54, 38: 109; 14. (172) Stewart, 351, 26: 312; 18. (173) Stohmann et al, 52, 49: 99; 94. (174) Stokes, 173, 49: 577; 24. (178) Stürcke, 15, 233: 283; 86. (176) Sudborough, Watson and Athawall, 54, 42: 103A; 23. (177) Szalagyi, 205, 66: 149; 14. (178) Tate and Pooley, 173, 46: 229; 21. (179) Thomas and Boiry, 27, 13: 827; 13.
- (180) Thomson and Dunlop, 54, 28: 272; 06. (181) Tolman, 45, 1: 340; 09-(183) Toms, 173, 48: 71; 24. (183) Taujimoto, 43, 4: 11; 06. (184) Tauji, moto, 252, 18: 224; 08. (188) Tsujimoto, 45, 4: 63; 06. (188) Tsujimoto, 45, 8: 889; 16. (187) Tsujimoto, 142, 21: 1015; 19. (188) Tsujimoto, 45, 81: 63; 20. (189) Tsujimoto and Kimura, 142, 26: 1162; 23.
- (190) Twitchell, 45, 9: 581; 17. (191) Ubbelohde, Handbuch der Chemie und Technologie der Öle und Fette. 3 vol. 1908-20. (Leipzig, Heisel). (192) Uchida, 54, 35: 1089; 16. (192) Väisälä, 60, 54A: No. 14; 11. (193.5) Väkil, 54, 34: 320; 15. (194) Valenta, 112, 252: 296; 84. (198) Vulté and Gibson, 1, 23: 1; 01. (196) Wagner and Muesmann, 279, 27: 124; 14. (197) Wagner, Muesmann and Lampart, 279, 28: 244; 14. (198) Waller, 136, 19: 1831; 95. (199) Wallis and Burrows, 1, 46: 1949; 24.
- (200) Wedemeyer, 279, 13: 210; 06. (201) West and Balce, 267, 23: 269; 23. (202) West and Crus, 267, 23: 337; 23. (203) West and de Leon, 267, 24: 123; 24. (204) West and Montes, 267, 18: 619; 21. (205) White, 45, 4: 106; 12. (206) Wijs, 25, 31: 750; 98. (207) Wijs, 185, 71 I: 374; 00. (208) Williams and Bolton, 173, 49: 460; 24. (209) Wollner, 173, 12: 203; 87. 352, 16: 609; 87.
- (210) Wright, 54, 26: 513; 07. (211) Wright and Mitchell, Oils, Fats and Waxes. London, 1921. (212) Zalosiecki and Hausmann, 92, 20: 1141; 07. (212) Special Research Committee on Lubrication, 3rd report, 56, 45: 23. (214) Kopp, 13, 93: 129; 55. (218) Spring, 186, 3: 331; 82. (216) U. S. Bureau of Standards, O. (218) Bömer and Leschly-Hansen, 252, 19: 218, 247; 12. (219) Sandelin, 54, 33: 1097; 14.
- (220) Mannich and Thiele, 273, 26: 36; 16. (221) Person, 34, 29: 300; 49.
 (222) Bell and Poynton, 3, 49: 1065; 25. (223) Jamieson and Bailey, 54, 38: 781A; 19. 45, 11: 850; 19. (224) Hazura, 57, 9: 180; 88. 10: 190; 89. (228) Kurbatoff, in (211), p. 596.

ADHESIVES AND GELATINS

JEROME ALEXANDER

INTRODUCTION

Most practical adhesives are mixtures of several ingredients, with or without some kind of salt, and may be classified as:

- (A) Animal adhesives: e.g., glues, gelatins, casein, albumin;
- (B) Vegetable adhesives: e.g., flours, starches, dextrins, gums, gum resins, oils, and proteins;
- (C) Mineral adhesives: e.g., silicate of soda, cements, limes, plasters, clays, pitches, tars, artificial resins, solders, and such mixtures as iron + sulfur and litharge + glycerin.

In using an adhesive to join two surfaces, the surfaces concerned are the ultimate exterior ones and the adhesive must either take hold of these exterior surfaces or must remove them and take hold on the surface below. Thus, if the articles to be joined are not cleaned, the exterior surface is frequently a layer of grease.

Setting and drying are promoted by any agency which increases the concentration of the adhesive; for example, by removing the solvent. Joint strength is influenced by quantity of adhesive used, by speed of set and drying, and by the application of pressure.

Animal Glues

Use.—(1) Keep dry and from excessive heat; (2) use definite weights of glue and water; (3) soak glue in cold water until soft-ened; (4) melt on water bath and keep temperature as low as work permits (usually below 65°C); melt small batches successively to avoid prolonged heating which injures strength; (5) supply evaporation losses; (6) use clean vessels, and, if necessary, a preservative.

SELECTION

Wood Joints.—Hide-stock glues, grades 70-130.1 Joining pressure before setting increases joint strength rapidly up to 200, and then more slowly up to 1000 lb./in.2. Surfaces must be well joined, dry, and preferably warm. Good joints are stronger than the wood, and may show shearing strength of 2000 to 3000 lb./in.2

Veneers.—Bone and hide stock mixtures between 50 and 70. Avoid foam.

Paper Boxes.—For hand setting-up, 70 to 90 test; for machine, 100 to 160 test. For covering or stripping, 30 to 60 test.

Book Binding.—For rounding and backing, grades above 90 are best (usually mixed with some glycerin). For hand pasting, grades about 50. For case-making machines, grades 60 to 100.

Leather Belting, Printer's Rollers, Plaster Molds.—Hide glues above 120; usually with addition of glycerin, etc.

Gelatins

Photographic Gelatin (1).—Jelly strength, 130 or above. pH, 5-6 (limit 4-7). Ash <3%. Fe and Cu <50-60, Pb <50, parts per million. Al₂O₃ <0.2%, SO₂ <0.1%, of dry gelatin. Mucin, grease, and ammonia≯traces. Traces of thiocarbimides are essential(⁵⁵).

Food Gelatin.—U. S. Dept. of Agriculture, Bureau of Chemistry, tolerance limits (parts per million): As₂O₅, 1.4; Zn, 100; Cu, 30; Pb, 20; SO₂ must be declared on label.

1. ADHESIVES

COMPARISON OF AMERICAN GRADES OF GLUE AND GELATIN
(1, 5, 22)

Cooper		Alexa	ander		Bogue	Glue	National Assn. Glue Mfrs. (U. S. A.)		
Grade	Grade	S*		ηt	Grade	Grade	S‡	η§	
	10	Ī	15.8	5 ± 0.25		1	10		
1	20		16	± 0.25	1	2	27	24	
2	30		16.5	5 ± 0.25	2	3	47	28	
$1\frac{7}{8}$	40	1701	1	± 0.25	3	4	70	32	
1 3	50	2324		± 0.5	4	5	95	37	
1 🖁	60	2948	l	± 0.5	5	6	122	42	
1 ½	70	3572		± 0.5	6	7	150	47	
1 🖁	80	4196		± 0.5	7	8	178	53	
11	90	4820		± 0.75		9	207	60	
1 X	100	5443	-	± 0.75		10	237	67	
1	110	6067		± 0.75	10	11	267	75	
1 Extra	120	6691		± 1	11	12	299	83	
A Extra	130	7314		± 3	12	13	331	92	
ŀ	140		28	± 5		14	363	102	
1	150		34	± 8		15	395	113	
1	160		40	± 12		16	428	125	
I	1			1	1	17	461	138	
J	1			1		18	495	152	
	1			1		19	530	167	
ļ	·					20	565	183	
						21	600	200	

^{*} Jelly "strength" in grams, Alexander tester.

SPECIFIC GRAVITY OF GLUE SOLUTIONS (40)

Wt. % glue	d_{75}^{75}	°Bé, 54.4°C	°Bé, 32°C	°Bé, 15.6°C
7	1.001			
8	1.003			
9	1.006			
10	1.009	2.2	3.1	4.0

¹ The "grades" here referred to are the Alexander grades listed in Table 1.

SPECIFIC GRAVITY OF GLUE SOLUTIONS (40),—(Continued)

Wt. % glue	d_{75}^{75}	°Bé, 54.4°C	°Bé, 32°C	°Bé, 15.6°C
15	1.023	4.2	5.1	6.0
20	1.037	6.1	7.0	7.9
25	1.051	8.0	9.0	9.8
30	1.065	9.8	10.7	11.6
35	1.079	11.5	12.4	13.3
40	1.093	13.2	14.1	15.0
45	1.107	14.9	15.7	16.5
50	1.121	16.5	17.4	18.3

NITROGEN CONTENT OF GLUES, WT. % (10)

H = hide glue; B = bone glue; F = fish glue; P = protein; I = isinglass

Form	H*	B*	F	P	I
Ammonia	2.9	4.6	5.2	1.3-3.6	4.0
Melanin	0.6	0.9	1.1	0.7	0.7
Cystine	0	0	tr	tr	0
Arginine	13.9	13.2	13.8	11-12.6	14.2
Histidine		1.8	2.0	0.8-2.2	2.3
Lysine	8.0	8.3	8.6	8.3-8.6	6.1
Amino†	56.8	56.3	60.2	58-60	58.7
Non-amino†	15.6	15.3	9.7	15.5	13.6

^{*} Av. of 6 samples.

Joint Strength

The strength of joints made with an adhesive depends upon the kind of material joined and the condition of its surface, upon the thickness of the adhesive film, and upon such conditions as temperature, humidity, time of drying, and pressure used in forming the joint.

TENSILE STRENGTH (DEF. 4): OAK TO OAK (32)

Unit: kg/cm²

Effect of air humidity and temperature

At t°C	15° 20°		25°	25°	
Air humidity	50 %	75%	90 %	95%	
A \ *	49.6	45.8	35.4	26.4	
Eliquid	45.7	44.1	39.1	29.0	
:ृ द C ∫	31.7	31.3	31.1	30.3	
D \ '	42.7	41.2	39.4	37 7	

^{*} Very hygroscopic.

Tensile (TS) and Shearing (SS) Strength of Metal to Metal Joints (21)

A = High grade commercial gelatin. B = Silicate of soda. C = Commercial nitrocellulose cement "A." D = Molten shellac (pure). E = American commercial cement (hard). F = American commercial cement (medium). G = A wax. H = Fish glue. I = Liquid commercial glue "C." J = Rubber solution. K = Marine glue. L = Commercial glue "B." M = Gum arabic. T = Drying or setting time in days. Stl. = Mild steel. Fe = cast iron. Bra. = Brass. Unit: kg/cm².

Adhesive	Days	Metal	Ni	Stl.	Fe	Cu	Bra.	Al	Sn	Pb
A	17	TS	63	70	77	84	49	(21)	56	56
	20	SS		70	49	56	77		35	1
В	20	TS	35	49†	49	56‡	70	49	35	21
\mathbf{C}^{ullet}	14-21		112	112	98	140	105	119	70	35
	21	SS		49	56	35	35	56	42	28

[†] Viscosity in seconds (water = 15).

Lower limit of jelly "strength" in grams, Bloom gelometer.

[§] Viscosity in millipoises, lower limit.

[†] Soluble.

[†] Slightly hygroscopic.

TENSILE (TS) AND SHEARING (SS) STRENGTH OF METAL TO METAL JOINTS (21).—(Continued)

			LEIAD	• • • • • • • • • • • • • • • • • • • •	, ().	(·,		
Adhesive	Days	Metal	Ni	Stl.	Fe	Cu	Bra.	Al	Sn	Pb
D	1-5	TS	246	225	211	232	176	197	77	42
	1-3	SS		239	211	232	232	155		
E	1-2	TS	295	337	309	281	204	162	105	35
	1-3	SS		295	288	288	267	218	77	42
F	1	TS				309		169		
	1	SS		260	225	239	246	147		
G	1-2	TS	84	70	98	70	77	70	56	35
	• 1	SS	35			35	42	42	42	35
H	16	TS	84	56	84	98	49	70		
	16	SS	35	98	84	77	98	(14)		
ΙŞ	18	TS				21		28	28	
	18	SS		35	28	35	21	21		
J	16	TS			21	1				
K	4-5	TS	77	120	63		105	98	56	
	4-5	SS	42	84	56	42		63	63	
L	77	TS	88	133	112	112	140	70	77	1
	77	SS	88	112	106	105	84	91		
M	77	TS	84	63	77	112	112	49	56	
	77	SS	(98)	88	70	(112)	56	105	56	

^{*}TS = 28 with amalgamated Cu and 77 with platinized Cu.

Fig. 2.—Effect of moisture content on joint strength (2). A, B = bone glues. C, D, E, F = hide glues. G = gelatin.

Fig. 1.—Shearing strength of water-glass joints between walnut surfaces (21).

Fig. 4.—Effect of joining pressure (11). Shearing strength of wood to

wood joints with a hide glue H, and a bone glue B.

Fig. 3.—Effect of film thickness (2). TS = tearing strength, in kg/cm2, of glue.

Fig. 5.—Effect of heat (11). Shearing strength of wood-to-wood joints made under constant joining pressure of 14 kg/cm² using a glue heated to 80°C.

SHEARING STRENGTH, WALNUT TO WALNUT (21) Unit: kg/cm²

Adhesive	Days dried	kg/cm²	
Fish glue	7	98	
Liquid commercial glue "C"		84	
High grade gelatin	6	84*	
Fish glue + bone gelatin	7	49	
Casein + borax cement	6	42	
Gum arabic	6	28	
Commercial glue "B"	12	28	
Casein and silicate cement	8	21	
Commercial nitrocellulose cement "A"	30	21	
Starch	9	21†	

^{*} Reduced to about 30 if the joint be heated to 100° for 4 days while clamped. † Film not complete. Three coatings raise value to 112; values have been measured as high as 600. Additional data are given in Figs. 1-5.

[†] When rough = 21, oxidized = 35.

[‡] Amalgamated Cu.

TS = 28 with platinized Cu.

TENSILE STRENGTH OF SOME COMMON ADHESIVES
Unit: kg/cm²

Glue (calculated)	700-2000
Collagen	1300
Gelatin	960
Viscose	2100

Jelly Strength

The jelly strength of a glue is usually measured by the force required to cause a definite compression of the jelly. The addition of formaldehyde to glues decreases the jelly strength in direct proportion to the amount of HCHO added, until the glue becomes insoluble. Figure 6 shows the number of cm² of 10% HCHO required to produce insolubility in various glues, the numbers on the curve giving the grams of glue to 180 g total weight of solution (7).

Figure 7 shows the effect of added substances upon the jelly strength. 1 H_2SO_4 ; 2 NaOH; 3 MgCl₂; 4 Acetic acid; 5 Chloral hydrate; 6 KI. 1 and 2 in cm³ of 0.5N soln. added instead of wt. % (7).

The relation between the nitrogenous constituents and the jelly strengths of hide (H) and bone (B) glues is shown in Figs. 8 and 9 (9).

Viscosity; η

The viscosity of 20% solutions of hide and bone glues at 15.5°C (60°F) is constant for at least 90 minutes after preparation. Vigorous agitation lowers η slightly (2% after 2 minutes beating) (7).

The increase in η produced in dilute solutions of glues by formaldehyde is slight, but rises rapidly with increasing glue content. Agitation increases η of HCHO treated glues slightly and after drying such glues exhibit increased η on re-solution or become insoluble with increasing HCHO content (7).

The amount of protein precipitated by 24–30% MgSO₄ solution from liquid glue varies directly as η for glue solutions having the same jelly strength (*).

The amount of material absorbable from glue solutions decreases as η decreases (34).

Figure 10 shows the effect of time on η (in seconds, $H_2O = 42$) of HCHO treated glues and Fig. 11 the effect of temperature. (Numbers on curve = cm²; 10% HCHO added.) (7).

Figure 12 shows the effect of alums on η of glue solutions; Fig. 13 the effect of time, and Fig. 14 the effect of temperature on the η of alum-treated glues (7).

Figure 15 shows the variation of η (in seconds, $H_2O=42$) of glue solutions with temperature, the melting point of the glue solution being taken as temperature at which the slope of the curve approaches infinity (8).

Figure 16 shows the effect of temperature on the η of hide glues, and Fig. 17 on the η of bone glues (η in MacMichael degrees) (8).

Figure 18 shows the relation of η to jelly strength of hide glues (11).

The flow of starch pastes, under pressure, through a capillary tube is shown in Fig. 19 and of dextrin pastes in Fig. 20. The numbers on the curves give the wt. % of dry solids in the pastes (16).

The η of 10% hide and glue solutions, measured at 35°C, is decreased considerably by heating under pressure up to 5 atm. for 1 to 5 hr. (23).

Addition of anhydrous chrome alum in small percentages has little or no effect on the η of glue solutions (33).

Gelling point

The gelling point of a glue is the temperature at which appreciable flow under the action of gravity ceases.

Chrome alum (anhydrous salt = 0.8% wt. of dry glue) raises the setting or gelling point ca. 2°C with 20% glue solutions and ca. 10° with 50% glue solutions. The gelling points (in °F on curves) of glue solutions as affected by addition of chrome alum are shown in Fig. 21 (33).

Drying Behavior

High grade liquid glues lose water much more slowly than low grade glues when dried at room temperatures (2).

2. GELATINS
Jelly Strength

Alcohol up to ca. 25 vol. % tends to increase the rigidity of 10 % gelatin gels; larger amounts cause a decrease. Acetone acts similarly (20).

According to Bogue (15) the maximum jelly strength occurs at pH = ca. 4, and minimum at pH = ca. 5, near the isoelectric point. Sheppard and Sweet (27) find the maximum at the isoelectric point, pH = 4.7, with a minimum at pH = ca. 5.5 and a second maximum at pH = 7.8.

Figure 22 shows the influence of traces of Al salts on the rigidity of a 7% gelatin jelly (28).

For the effect of sulfuric, phosphoric and lactic acids on jelly strength, see (4).

a range rather than at a point. At 35°C, time rate of change of η varies with the pH of the solution, the concentration and nature of inorganic ions, and the amount of hydrolyzed protein present (3).

Figure 23 shows the variation of η at 35°C (in arbitrary units) with time for a 5% purified photographic gelatin, pH = 4.9 (18).

The η at 25°C of solutions of gelatin in aqueous acetic acid is given in Fig. 24. Curve (1) is for the two liquids alone, (2) for 0.2 g gelatin per 100 cm³ of solution, (3) for 0.6 g, (4) for 5 g, (5) for 10 g, (6) for 15 g, (7) for 20 g per 100 cm³ (20).

The η at 25°C of solutions of gelatin (10 g per 100 cm³) in formamide + water and formamide + acetic acid is given in Fig. 25. The dotted curves are the η of the mixtures without the gelatin (20).

Slight hydrolysis increases the adhesive strength of high-grade gelatin, while continued hydrolysis decreases it (13).

Viscosity

Gelatin in aqueous solution, as measured by the MacMichael viscometer, follows the laws of viscous flow at temperatures above ca. 40°C, but exhibits the properties of plastic flow below the solidification point. The sol-gel transformation occurs over

Figure 26 shows the η at 28°C of solutions of gelatin (5 g per 100 cm³) in methyl alcohol-water mixtures. $A = \eta$ of fresh solution; $B = \eta$ after 30 min (20).

Figure 27 shows η at 30°C of solutions of gelatin (15 g per 100 cm²) in methyl alcohol-water mixtures. A = freshly prepared; B = after 15 min (20).

Figure 28 gives η at 25°C of solutions of gelatin (2 g per 100 cm²) in ethyl alcohol-water mixtures. A = freshly prepared; B = after 30 min (20).

Figure 29 gives η at 30°C of solutions of gelatin (10 g per 100 cm³) in ethyl alcohol-water mixtures. A = freshly prepared; B = after 30 min (2°).

Figure 30 gives η at 35°C of solutions of gelatin (10 g per 100 cm³) in acetone-water mixtures (20).

Figure 31 gives η at 30° of solutions of gelatin (15 g per 100 cm³) in acetone-water mixtures. A = freshly prepared; B = after 15 min (20).

The addition of pyridine to solutions of gelatin in water increases η , while addition of dimethylamine and diethylamine up to ca. 25 wt. % of solution decreases, and over 30% again increases η (20) cf. (45, 46, 47).

Plasticity and Elasticity

The temperature at which plasticity appears in gelatin solutions depends both on the concentration and on the way in which the solution is prepared (49).

Figure 31a gives the change with time of the elastic resistance to shear of dilute gelatin solutions (0.2-0.6%) at 8°C (50).

Figures 31b and 31c show the behavior of gelatin jellies under torsion and stretch, respectively. The gelatin content of the jellies is given in wt. % (51).

Figure 31d shows the behavior of gelatin jellies (3.4-4.5 wt. % gelatin) which have been under a load of 500 g at 16.5°F . The portion of the load removed in order to keep the deformation constant is given as a function of time (52).

Figure 31e shows the relation between the elastic limit of gelatin solutions and the concentration of the gelatin in the solution. A = purified gelatin; B = a commercial gelatin.

Surface Tension; γ

Figure 32 shows the variation in the drop-weight of water solutions of ossein gelatin with varying concentrations of gelatin (13). Figure 33 shows the variation of drop weight of gelatin-water solutions with temperature, and Fig. 34 with pH (13).

Figure 35 shows the effect of pH on the drop weight of various gelatin-water solutions containing 0.5% gelatin (13).

Figure 36 shows the effect of pH on a hide gelatin (0.5 and 1 wt. % of gelatin) solution in water at 25° and 40°C (13).

Figure 37 gives the variation in drop weight of 1 and 2% gelatin in water solutions with time (13).

Surface tension dynes/cm

Figure 38 (20) shows the variation of γ with temperature for various gelatin solutions. $A_1 = \text{pure } H_2O$. $A_2 = 5$ g gelatin per 100 cc water solution. B = pure formamide (same for 5 g gelatin per 100 cc formamide solution). $C = \text{phenol-acetic acid mixture (dotted line gives values of } \gamma$ after addition of gelatin, 5 g per 100 cm² of mixture). D = o-cresol-acetic acid mixture (dotted line

after addition of 5 g gelatin per 100 cm³ of mixture). E_1 = pure acetic acid. E_2 = pure acetic acid + 5 g gelatin per 100 cm³. The inset gives γ for water-alcohol solutions of gelatin against temperature. Solid curve for mixtures of alcohol-water. Dotted curve for mixtures with 10 g gelatin per 100 cm³ solution.

Two per cent gelatin solutions at 30°C by stalagmometer show a rise in γ to a maximum at pH = 8-9, falling to a minimum at pH = 4.5 and rising to a lower maximum at pH = 3 (12).

See (54) for γ between toluene and gelatin solutions.

Figure 38a shows the relation between pH and foam on aqueous gelatin solutions, γ for the solution being smallest at the isoelectric point where the foam is most stable.

THERMAL EXPANSION
Aqueous solutions of gelatin (37)

$\frac{\text{Wt. \% gelatin.}}{V} \frac{50^{\circ} \text{ Gelatin.}}{V} \frac{\Delta V}{\Delta t} \text{ (15°-32°C).}$	0.0	2.02 249	5.04 267	8.9 289	10.4 300	16.5 341	24.8 386
Wt. % gelatin Temp. of max. density	0.0 +4.0°	1 3	3.60 -2.5°	7	.05 1.3°	13	3.00 1.2°

Osmotic Pressure

Figure 39 gives the osmotic pressure at 10°C of 0.5 g gelatin per 100 cm² water solution against solutions of acids and bases of pH value indicated (29).

Swelling and Contractility

Figure 40 shows the swelling behavior of dry gelatins when immersed in pure H_2O for the times indicated. The 10% gel was prepared by drying a solution made from 90 g $H_2O + 10$ g gelatin and the 40% gel from a solution of 60 g $H_2O + 40$ g gelatin, the dried pieces being of the same area and thickness (15).

Figure 41 shows the influence of temperature, $S/G = grams H_2O$ imbibed per gram gelatin (25).

Figures 42, 43, 44, and 45. Silver bromide emulsion gelatin on plates when immersed in the solutions indicated for varying times (25).

The following table and Fig. 46 show the contractility of gelatin films as measured by the curvature produced in thin Al discs coated on one side with 10% gelatin solution and dried under uniform conditions. In Fig. 46, the gelatin films were prepared from de-ashed material, in solutions of the pH indicated (28).

CONTRACTILITY

Gelatin	Radius in cm	Curva- ture 1/R	Remarks
Commercial hard A	24	0.041	Good grade
Commercial hard B	24.5	0.0405	photographic gelatins
Ossein gelatin	26	0.038	Photographic quality
Hide gelatin No. 6902	31	0.032	Good grade hide gelatin
Same, de-ashed	31	0.032	Ash less than 0.01%
Sizing gelatin	34	0.029	Poor grade

There is no definite relation between the contractility of gelatins and their swelling on immersion in H₂O, indicating that there are individual structural differences in gelatins, depending not simply on physico-chemical conditions but on origin and previous history (26).

Figure 47 shows the contraction in mm³ per g of gelatin on dissolving in 100 cm³ of H_2O as a function of the H_2O content of the gelatin before dissolving, and Fig. 48 shows the contraction on increasing swelling v. (36).

dissolving a gelatin of constant H₂O content in 100 cm³ of acid or

alkali of varying normality (31).

Gelatin gels show a minimum resistance to stretch at pH = 4.7 and a maximum at pH = 3 and 11 (24).

Melting Point

Figure 49 shows the "M. P." of gelatins, prepared with different pH values, as determined after immersion for a constant time in alum solutions of the concentrations indicated (25).

Figure 50 shows the "M. P." of gelatins, prepared with different pH values, as determined after immersion for a constant time in alum solutions with 0.5 and 1.0% of citric acid (25).

Solubility in H₂O

<0.01 wt. % at room temp. (17, 18).

Parts %. 22°C, 1; 18.3°, 0.7; 15–17°, 0.5; 0°, 0.2 (35).

Solvent Power Numbers

The solvent power number is the relative volume of a liquid required to start the precipitation of gelatin from a solution containing 15 g gelatin per 100 cm³, upon mixing at 25°C.

Figure 51 shows the solvent power numbers for acetone on solutions of gelatin in acetic acid mixtures and Fig. 52 the same values for xylene (20).

Hydrolysis of Collagen to Gelatin (6)

The experiments covered by the following figs. were carried out on well limed hide pieces for periods of 8 hr unless otherwise indicated and exhibit the effect of the pH during hydrolyzing on the factors named:

- Fig. 53. On the % of total N recovered in the solution.
- Fig. 54. On the % of N evolved as NH₂.
- Fig. 55. On the % of amino acid N recovered in the solution.

Fig. 56. On the viscosity (in arbitrary units) of the product at 35°C.

Fig. 57. On the jelly strength of the product at 10°C.

Fig. 58. On total N recovered in the solution after hydrolyzing at temperatures indicated.

Fig. 59. On amino acid N in the solution after hydrolyzing at temperatures indicated.

Fig. 60. On the total N recovered and Fig. 61 on the amino acid N, in the solution after hydrolyzing at 80°C for times indicated.

Mutarotation

The change in specific rotation (mutarotation) of gelatin solutions of constant concentration, upon reducing the temperature from 35° to 15°C, decreases very rapidly with decreasing jelly consistency of the gelatin or glue (4). See also (17, 35, 48).

Electrical Conductivity

The conductivity of gelatin solutions in water is a useful criterion of the purity of the gelatin. The purest solutions which have been prepared have the same conductivity as pure water (38).

See (39) for the conductivity of some gelatin and glutin solutions.

Miscellaneous

For the extraction of gelatin from bones as a function of temperature and time, see (19).

Figure 62 shows the influence of pH on the alcohol number, turbidity, and foam of gelatin solutions (4).

A method of determining the gelling power of gelatins is given in (43).

For the liquefaction of gelatins by salt solutions, see (44).

LITERATURE

(For a key to the periodicals see end of volume)

- Alexander, Glus and Gelatin, New York, Chem. Cat. Co., 1923. (2)
 Bechhold and Neumann, 92, 37: 534; 24. (3)
 Bogue, I, 44: 1313; 22. (4)
 Bogue, I, 44: 1343; 22. (5)
 Bogue, Chemistry and Technology of Gelatine and Glue. New York and London, McGraw-Hill Book Company, Inc., 1923. (6)
 Bogue, First Colloid Symposium Monograph. New York, Chem. Cat. Co., 1923. (7)
 Bogue, 33, 23: 61; 20. (8)
 Bogue, 33, 23: 105; 20.
- Bogue, 33, 28: 154; 20. (11) Bogue, 33, 28: 197; 20. (12) de Caro, 22,
 729; 25. (13) Davis, Salisbury and Harvey, 45, 16: 161; 24. (14)
 Gerngross and Brecht, 92, 37: 847; 24. (18) Gortner and Hoffman, 227,
 19: 257; 22. (16) Herschel and Bergquist, 45, 18: 703; 21. (17) Knaggs;
 Manning and Schryver, 230, 17: 473; 23. (18) Manning, 230, 18: 1085,
 24. (19) Manning and Schryver, 230. 15: 523: 21.
- 24. (19) Manning and Schryver, 230, 15: 523; 21. (20) Mardles, 230, 18: 215; 24. (21) McBain and Hopkins, 50, 29: 188; 25, (22) National Assoc. of Glue Mfrs., 45, 16: 310; 24. (23) Sauer, 136; 83: 473; 24. (24) Scarth, 50, 29: 1009; 25. (25) Sheppard, 45, 14: 1025. 22. (25) Sheppard, Elliott and Sweet, 83, 19 II: 1; 23. (27) Sheppard and Sweet, 45, 16: 593; 24. (22) Sheppard, Sweet and Benedict, 1, 44: 1857; 22. (29) Smith, 1, 43: 1350; 21.

- (30) Stiasny, 55, 35: 353; 24. (31) Svedberg, 1, 46: 2673; 24. (32) Treasler, 45, 16: 943; 24. (33) Wilson and Ross, 45, 15: 367; 22. (34) Wislicenus and Lorens, 55, 34: 207; 24. (35) Fairbrother and Swan, 4, 122: 1239; 22. (36) Popoff and Seioff, 205, 156: 97; 25. (37) Taffel, 4, 121: 1971; 22. (38) Rockefeller Institute, New York City, O. (39) Wintgen and Vogel. 55, 30: 45; 22.
- (40) Thiele, Leim und Gelatin. 2nd ed. Leipzig, Jaenecke, 1914. (41) Wilson and Kern, 1, 44: 2633; 22. (42) Fischer and Hooker, 1, 40: 857; 18. (43) Smith, 45, 12: 878; 20. (44) Briggs and McHieber, 50, 24: 74; 20. (45) Oakes and Davis, 45, 14: 706; 22. (46) Davis, Oakes and Browne, 1, 43: 1526; 21. (47) Bogue, 1, 43: 1764; 21. (48) Smith, 1, 41: 135; 19. (49) Sheppard, 50, 29: 1224; 25.
- (50) Rohloff and Shinjo, 63, 8: 442; 07. (51) Sheppard and Sweet, 1, 43: 540: 21. (52) Rankine, 3, 11: 447; 06. (53) Freundlich and Seifris, 7, 104: 233; 23. (54) Sheppard and Sweet, 1, 44: 2797; 22. (55) Sheppard, Third Colloid Symposium Monograph. New York, Chem. Cat. Co., 1925. (56) Second Report of the Adhesives Research Committee (Dept. of Sci. Ind. Research, London, 1926) contains valuable information on adhesive action, glue, gelatin, etc.

TEXTILE FIBERS

J. MERRITT MATTHEWS

Contents	Matières	Inhaltsverzeichnis	Indice	PAGE
Botanical classification.	Classification botanique.	Einteilung (bot.).	Classificazione botanica	231
Microscopical characteristics.	Caractéristiques microscopique.	Mikroskopisches Verhalten.	Caratteri microscopici	232
Cotton.	Coton.	Baumwolle.	Cotone	233
Physical properties.	Propriétés physiques.	Physikalische Eigenschaften.	Proprietà fisiche	
Silk.	Soie.	Seide.	Seta	234
Rayon.	Soie artificielle.	Kunstseide.	Seta artificiale	234
Wool.	Laine.	Wolle.	Lana	
Cordage fibers.	Fibre de corde.	Seilfasern.	Fibre da cordame	
Minor hair fibers.	Cheveux.	Haare.	Peli	235
Fur fibers.	Poils.	Pelzhaare.	Fibre da pelliccia	236
Comparative breaking strengths.	Résistances à la traction com- paratives.	Vergleichende Bruchfestigkeit.	Resistenza relativa alla trazione	
Specific gravity.	Poids spécifique.	Spezifisches Gewicht.	Peso specifico	
Specific heat.	Chaleur spécifique.	Spezifische Wärme.	Calore specifico	
Hygroscopic moisture.	Hygroscopicité	Hygroskopizität.	Umidità igroscopica	237
Effect of humidity.	Action de l'humidité.	Einfluss der Feuchtigkeit.	Effetto dell'umidità	237
Regain relations.	Relations de recouvrement.	Wiederherstellungs-Bezieh- ungen.	Relazioni di riacquisto	238
Thermal conductivity.	Conductibilité thermique.	Wärmeleitfähigkeit.	Conduttività termica	238
Fireproofing of cotton.	Rendrant le coton incombus- tible.	Unbrennbarmachung der Baumwolle.	Il rendere incombustible il cotone	

BOTANICAL CLASSIFICATION OF IMPORTANT VEGETABLE FIBERS

- (A) Vegetable hairs.
 - 1. Cotton (seed-hairs of Gossypium sp.).
 - 2. Bombax cotton (fruit-hairs of Bombaceæ).
 - 3. Vegetable silks (seed-hairs of various Asclepiadacex and Apocynacex).
- (B) Bast fibers from the stalks and stems of dicotyledonous plants.
 - (a) Flax-like fibers.
 - 4. Flax (Linum usitatissimum).
 - 5. Hemp (Cannabis sativa).
 - 6. Gambo hemp (Hibiscus cannabinus).
 - 7. Sunn hemp (Crotalaria juncea).
 - 8. Queensland hemp (Sida retusa).
 - 9. Yercum fiber (Calotropis gigantea).
 - (b) Bœhmeria fibers.
 - 10. Ramie or China grass (Bæhmeria nivea).
 - (c) Jute-like fibers.
 - 11. Jute (Corchorus capsularis and C. olitorius).
 - 12. Raibhenda (Abelmoschus tetraphyllos).
 - 13. Pseudo-jute (Urena sinuata).
 - 'd) Coarse bast fibers.
 - 14. Bast fibers from Bauhinia racemosa.
 - 15. Bast fibers from Thespesia lampas.
 - 16. Bast fibers from Cordia latifolia.
 - (e) Basts.
 - 17. Linden bast (Tilia sp.).
 - 18. Bast from Sterculia villosa.
 - 19. Bast from Holoptelea integrifolia.
 - 20. Bast from Kydia calycina.
 - 21. Bast from Lasiosyphon speciosus.
 - 22. Bast from Sponia Wightii.

- (C) Vascular bundles from monocotyledonous plants.
 - (a) Leaf fibers.
 - 23. Manila hemp or abaca (Musa textilis and others of this kind).
 - 24. Pita (Agave americana and A. mexicana).
 - 25. Sisal (Agave rigida).
 - 26. Mauritius hemp (Agave fætida).
 - 27. New Zealand flax (Phormium tenax).
 - 28. Aloe fibers (Aloë sp.).
 - 29. Bromelia fibers (Bromelia sp.).
 - 30. Pandanus fibers (Pandanus sp.).
 - 31. Sansevieria fibers (Sansevieria sp.).
 - 32. Esparto fibers (Stipa tenacissima).
 - 33. Piassave (Attalea funifera, Raphia vinifera, etc.).
 - (b) Stem fibers. 34. Tillands
 - Tillandsia fibers, southern moss (Tillandsia usneoides).
 - (c) Fruit fibers.
 - 35. Coir or coconut fiber (Cocos nucifera).
 - 36. Peat fibers.
 - (d) Paper fibers.
 - 37. Straw fibers (rye, wheat, oat, rice).
 - 38. Esparto fibers (leaf fibers of Stipa tenacissima).
 - 39. Bamboo fibers (Bambusa sp.).
 - 40. Wood fiber (pine, fir, aspen, etc.).
 - 41. Bast fiber from paper mulberry (Broussonetia papyrifera).
 - 42. Bast fiber from Edgeworthia papyrifera.
 - 43. Peat fibers.
 - (Wiesner, Die Rohstoffe des Pflanzenreiches)

MICROSCOPICAL CHARACTERISTICS OF IMPORTANT VEGETABLE FIBERS

	VEGETABLE FIBERS
Fiber	Microscopical appearance
Cotton	Appears as a flat, ribbon-like band, more or less
	twisted on its longitudinal axis. Twist of fiber
	not continuous in one direction; cell-walls thick;
	lumen breadth much thicker than cell-wall;
	between thickened edges fiber shows finely
	granulated surface. Diameter uniform for ¾
	length, then tapers to a point where it is cylin-
_	drical and solid
Flax	Cylindrical tapering to sharp point; cell-wall so
	thick that lumen appears as thread; fine cross-
	lines at intervals give appearance of joints or
11	nodes, sometimes intersecting like letter X
Hemp	Lumen is broad, equaling or exceeding the thickness of the walls. Pronounced longitudinal
	striations. Ends of fibers blunt and thick-
	walled, often with lateral branches. Dis-
	locations or folds; also swellings and cross-
	fissures. Fibers less transparent than flax and
	canal more difficult to distinguish
Jute	Lumen irregular, at times as wide as or wider than
	cell-wall; at ends of fiber lumen broadens out;
	end round. Longitudinal striations, no trans-
	verse markings, no jointed ridges
Manila hemp	Lumen broad, distinct and uniform; cell-wall thin;
(abaca)	ends narrow and sharp; no markings; diameter
	uniform
Manila hemp,	Fibers usually very stiff, and become very broad
sisal or Do-	toward middle; have broad lumen, broad, blunt,
mingo hemp.	thick ends, which are seldom forked. Short
	thick-walled cells are abundant, and show a
	narrow lumen and distinct surface pores. Pecu- liar spiral and parenchyma cells are often
	present
Straw	Bast cells are long thin fibers of regular structure
	with small canal; very slender and taper to fine
	point. Epidermal cells are thick-walled, short,
	broad, serrated. Parenchyma cells thin-walled
	and shaped like coffee bean
Esparto	Cells smaller than, but very similar to, straw
	cellulose. Esparto does not have the thin-walled
	bean-shaped cells, but has very small character-
	istic pear-shaped cells. Bast cells have numer-
Dami-	ous cross-markings
Ramie	Bast cells very long and broad, diameter very
	irregular; base very irregular; lumen, sometimes quite distinct, and sometimes disappearing
	entirely; fibers show numerous joints and trans-
	verse fissures; ends of fibers form a thick-walled,
	rounded point, and the lumen is reduced to a line
New Zealand	
flax.	and uniform, surface is smooth in general.
	Lumen is usually narrower than cell-wall and
	very uniform in width. Ends are sharply
	pointed, and not divided. Fragments of paren-
	chyma and epidermis can often be seen on the
	fibers
Pita fiber	Fiber is stiff and short, has a rather thin wall.
	Fiber has a distinctive wavy appearance and is
	very elastic. Very similar to sisal hemp in microscopical appearance
	microscopical appearance

	
Fiber	Microscopical appearance
Pineapple leaf	Fiber very fine and has great durability. Lumen
fiber.	narrow and appears like a line. This fiber is
	distinguished from all other leaf fibers by its extreme fineness
Coniferous	Fibers from coniferous trees have a characteristic
wood fibers.	flat ribbon-like appearance, and numerous circu-
	lar spots or pores are to be seen on many of them.
	The circular markings are more prominent in
	hard, strong sulfites or sulfates, but are often less
	distinct in well-boiled pulps. Occasionally the
	cells are twisted something like cotton fibers.
	The shape and distribution of the pores in the
	fibers give some indication of the tree used
Broad-leaf	The fibers from broad-leaf trees are shorter and
hardwood	more cylindrical in shape, and are always pointed
fibers.	at each end, and occasionally exhibit cross-
прегз.	,
	markings. In addition to the true fibers, there
	are always a number of vessels, tubular in shape,
	short and of very large diameter, which show
	numerous pits; these establish the presence of
	fibers from broad-leaf trees
	DIMENSIONS OF FIBER ELEMENTS

Dimension	DIMENSIONS OF FIBER ELEMENTS						
	Length, mm			Breadth, microns			
Name	Min.	Max.	Mean	Min.	Max.	Mean	Source
Abelmoschus tetraphyllos	0.1	1.6		8	29	13	W
Agave americana (pita)	1.0	2.2		16	21	17	w
	1.5	4	2.5	20	32	24	v
Aloë perfoliata	1.3	3.7		15	24		W
Asclepias (vegetable silk)		30		20	44		W
Bauhinia racemosa		4.0		8	20		w
Beaumontia (vegetable silk)	30	45	1	3 3	50		W
Boehmeria nivea (China grass)	i	į.	22.0	40	80	50	w
Boehmeria tenacissima (ramie)	1		8.0	16	12.6		W
Bombax heptaphyllum (cotton	200	20	1		~		w
wool) Bromelia karatas (silk grass)	1	30 6.7		19 27	29 42		w
Brometia karatas (siik grass)	1.4	10	5	20	32	24	v
Bromelia pinguin (wild pine-	2.5	10	ا ۱	20	32	24	•
apple)	0.8	2.5	2	8	16	13	v
Calotropis gigantea (bast)		3.0	*	18	25		w
Calotropis gigantea (vegetable	i • • •	0.0					••
silk)	20	30		12	42	38	w
Cannabis sativa (hemp)	0.8	4.1		16	32	20	W
	5	55	20	16	50	22	v
Cocos nucifera (coir fiber)	0.4	0.9		12	20	16	W
	0.4	1	0.7	12	24	20	v
Corchorus capsularis (jute)	0.8	4.1		10	21	16	W
	1.5	5	2	20	25	22.5	v
Corchorus olitorius (jute)		4.1		16	32	20	W
Cordia latifolia	0.1	1.6		14.7	16.8	15	W
Corypha umbraculifera (talipot	i .						
palm)	1.5	5	3	16	28	24	v
Crotalaria juncea (sunn hemp)	0.5	6.9		20	42		w
Elaeis guineensis	4	12 3.5	8	25 10	50 13	30 11	V V
Esparto grass	1.5	1.9	2.5	9	15	**	w
Esparto grass	0.5	3.5	1.5	7	18	12	v
Gossypium acuminatum (cotton).	0.5	ا ۵۰۰۰	28.4	20.1	29.9	29.4	w
Gossypium arboreum (cotton)		1	25.0	20	37.8	29.9	w
Gossypium barbadense (cotton)		i i	40.5	19.2	27.9	25.2	w
Gossypium conglomeratum (cot-							
ton)		i i	35.1	17	27.1	25.9	W
Gossypium herbaceum (cotton).			18.2	11.9	22	18.5	W
See also following table							
Hibiscus cannabinus (gambo			1	- 1			
hemp)	2	6	5	14	33	21	V
	4.0	12.0	- 1	20	41		₩
Holoptelea integrifolia		2.1		9	14	12	₩
Humulus lupulus (hop)	4	19	10	12	26	16	. <u>v</u>
Kydia calycina	1	2		17	24	1	₩
Lagetta lintearia (lace bark) Lasiosyphon speciosus	3	6	5	10	20	1	<u>v.</u>
Linen	0.4	5.1 66	25	8 15	29 37	20	₩.
Linum usitatissimum (flax)	2.0	4.0	20	12	25	16	1
Lygaeum spartum		4.5	2.5	12	20	18	*
magamenta abatemata	1.0	T.0	2.0		au 1	10 1	•

DIMENSIONS	OF	FIRER	ELEMENTS	-(Continued)

	Le	ngth, r	nm	Breadth, microns			Source
Name	Min.	Max.	Mean	Min.	Max.	Mean	Source
Marsdenia (vegetable silk)	10	25		19	33		W
Mauritia flexuosa (ita palm)	1	3	1.5	10	16	12	v
Melilotus alba (sweet clover)	5	18	10	20	36	30	v
Musa paradisaica (banana)		l	5	20	40	28	V
Musa textilis (Manila)	3	12	6	16	32	24	v
Pandanus odoratissimus	1.0	4.2	i		1	20	W
Paper mulberry		25	10			30	\mathbf{v}
Phoeniz dactylifera (date palm)	2	6	3	16	24	20	v
Phormium tenax (New Zealand		l		Ì	1		
flax)	2.5	5.6		8	29	13	\mathbf{w}
-	5	15	9	10	20	16	\mathbf{v}
Pineapple	3	9	5	4	8	6	V
Raphia toedigera	1.5	3	2.5	12	20	16	v
Saliz alba (willow)		3	2	17	30	22	v
Sansevieria	1.5	6	3	15	26	20	\mathbf{v}
Sarothamnus vulgaris (broom-	1	l					
grass)	2	9	5	10	25	15	. v
Sida retusa	0.8	2.3	ł	15	25		w
Spartium junceum (feather-grass)	5	16	10			20	v
Sponia Wightii		l	4			21	W
Sterculia villosa	1.5	3.5		17	25	20	w
Strophanthus (vegetable silk)	10	56	Ì	49	92	1	w
Thespesia lampas	0.9	4.7		12	21	16	w
Tilia europaea (linden-bast)	1.2	5	2	14	20	16	v
•	1.1	2.6	}	l	1	15	w
Tillandeia	0.2	0.5	i	6	15		w
Urena sinuata	1.1	3.2	ļ	9	24	15	W
Urtica dioica (nettle)	4	57	27	20	70	50	v
Urtica nivea (ramie) See also	60	250	120		80	50	v
Bochmeria	1		ĺ		1	1	
Yucca	0.5	6	4	10	20	15	v

V - Vétillard, Études sur les fibres végétales textiles. W - Wiesner, Die Rohstoffe des Pflanzenreiches.

COTTON

DIMENSIONS OF COTTON FIBERS

DIMENSI	DIMENSIONS OF COTTON FIBERS						
	L	ength, mr	n	Diameter,			
	Max.	Min.	Av.	microns			
African	30.2	22.1	26.2	20.8			
Algerian			37.5				
Brazilian							
Ceara	30.2	22.1	26.2	20.1			
Maceo			29.3	ļ			
Maranham	30.2	23.9	26.9	20.1			
Paraiba			29.7				
Pernambuco	34.8	28.4	31.8	20.1			
Surinam		1	30.2				
American				}			
Georgia			25.4	10.3			
Louisiana			25.0				
Mississippi			24.2	13.4			
Mobile	25.4	19.1	22.1	19.4			
Orleans	28.4	23.9	26.2	19.2			
Tennessee			25.1	15.0			
Texas	28.4	22.1	25.4	19.4			
Upland	26.9	20.6	23.9	19.4			
Chinese			21.4	24.1			
Egyptian							
Brown	38.1	28.4	33.3	18.7			
Gallini	42.4	31.7	36.3	17.1			
Smyrna	28.4	22.1	25.4	22.8			
White	34.8	28.4	31.7	19.5			
Indian							
Bengal	25.4	19.1	22.1	22.1			
Broach	25.4	17.5	21.3	21.1			
Comptah	25.4	19.1	22.1	21.5			
Dharwar	22.6	17.5	22.1	21.1			
Dhollerah	26.9	21.3	22.6	21.5			
Hingunghat	30.2	22.1	26.2	21.1			

DIMENSIONS OF COTTON FIBERS.—(Continued)

	I	Diameter,		
	Max.	Min.	Av.	microns
Madras	25.4	19.1	22.1	21.1
Oomrawutte	26.9	19.1	21.9	21.5
Scinde	22.1	12.7	16.5	21.3
Tinnevelly	26.9	17.5	22.1	21.1
Peruvian				
Rough	36.6	23.5	32.5	19.8
Smooth	36.6	23.5	32.5	19.5
Sea Island				
Edisto			41.9	9.65
Fiji	53.8	42.4	46.6	16.2
Fitschi			48.7	16.7
Florida	45.9	38.1	41.9	16.2
John Isle		l	39.3	
Peruvian	44.5	34.8	39.6	17.1
Tahiti	44.5	31.7	38.1	16.3
Wodomalam			39.0	
West Indian	34.8	26.9	31.0	22.8

Physical Properties of Individual Cotton Fibers

Variety	Length,	Rigidity, dynes cm ²	Weight, 10 ⁻⁶ g
Sea-island	4.2-5	0.010-0.021	5.9-6.7
Egyptian nubarri		0.024	6.3
Egyptian affifi	3.1	0.032	5.6
Peruvian hybrid	2.9	0.063	7.7
Trinidad native	2.6	0.045	4.9
Upland Memphis	2.6	0.039	5.3
American FGM	2.4	0.061	5.6
Upland cross	2.3	0.045	5.0
Pernams		0.071	6.7
Indian Bharat	1.7	0.111	5 .8

The rigidity of the fiber is the torque, or twisting force, in the fiber when 1 cm is given one complete twist.

Pierce¹ furnishes the following physical factors for the cotton fiber, that may be calculated approximately from the staple length:

, •	• •	· · · · · · · · · · · · · · · · · · ·
Staple length		L (in cm)
Fiber mass		$5.8 \times 10^{-6} \mathrm{g}$
Mass per centimeter		$(5.8/L) \times 10^{-6} \mathrm{g}$
Wall cross section		$(3.9/L) \times 10^{-6} \mathrm{cm}^2$
Rigidity		$0.3/L^2$ dynes cm ²
Breaking load		20/L g
Fibers in yarn section.		$1000L/N \text{ or } (L''/4N) \times 10^4$
Initial couple in yarn.		$300t/LN = 300p/L\sqrt{N}$

The density of the cotton fiber is assumed as 1.51; N is the count of the yarn, L'' is the staple length in inches, t is the twist, and p the spinning factor t/\sqrt{N} .

Breaking Strengths of Different Varieties of Cotton

Cotton	Mean breaking strain			
Cotton	Grains	Grams		
Sea-island (Edisto)	83.9	5.45		
Queensland	147.6	9.59		
Egyptian	127.2	7.26		
Maranham	107.1	6.96		
Bengal	100.6	6.53		
Pernambuco	140.2	9.11		
New Orleans	147.7	9.61		
Upland	104.5	6.79		
Surat (Dhollerah)	141.9	9.22		
Surat (Comptah)	163.7	10.64		

1 415, 14: 7; 23.

ABSORPTION	ΛF	SODIEM	Hyppoxine	ъv	COTTON1
ARSORPTION	()1	NUBLUM	TITDROXIDE	нı	COTTON

Concn. NaOH, g		1	1		ī	Ţ			ı		-		1			-
per 100 cc H ₂ O.	0.4	12.	06	.08.	0 1	2	16	20	24	28	1	33	35	5	40	
g NaOH fixed per		1	ī	i	Ţ			i	1		Ī					•
100 g cotton	0.4	10.	92	74.	48.	4	12.	6 13	13	15.	420).4	22.	5	22.	5

¹ Vieweg, 25, 40: 3876; 07.

Effect of Mercerizing on the Physical Properties of Cotton Yarns

Thoms¹ obtained the following results on the effect of mercerizing and bleaching on cotton yarns:

	Gray	Boiled	Mer- cerized	Mer- cerized and bleached, chloride of lime
Loss in weight, %	0	5.53	4.61	3.02
Loss in length, %	0	1.95	1.00	0.37
Mean count	16.46	17.66	17.42	17.35
Lea break, in lb	97.0	72.41	82.19	86.41
Double thread break, in oz	27.68	23.26	26.12	27.55
Double thread stretch, in 18				1
in	20.57	14.22	11.08	10.25
Mean turns per in	20.18	19.88	19.57	19.99
Moisture, % as regain	5.86	5.07	7.18	7.34

	Mercer-	Mercer-			
	ized and	ized and	Bleached,	Bleached,	
	bleached,	bleached,	,	sodium	
	sodium	electro-	chloride of lime	hypo-	
	hypo-	lytic	of line	chlorite	
	chlorite	bleach			
Loss in weight, %	3.03	3.06	5.00	4.91	
Loss in length, %	1.11	1.14	2.04	1.73	
Mean count	17.02	17.02	17.35	17.45	
Lea break, in lb	87.12	85.94	17.66	79.97	
Double thread					
break, in oz	28.08	27.58	24.14	23.93	
Double thread					
stretch, in 16 in	11.09	10.78	13.76	13.97	
Mean turns per in	20.20	20.25	20.07	20.11	
Moisture, % as re-					
gain	7.55	7.59	5.28	5.46	

	Bleached, electro- lytic bleach	Bleached, chloride of lime and mercer- ized	Bleached, sodium hypo- chlorite and mer- cerized	Bleached, electrolytic bleach and mercer- ized
Loss in weight, %	4.88	3.40	3.37	3.37
Loss in length, %.	1.97	0.17	0.63	0.10 gain
Mean count	17.40	17.58	17.24	17.40
Lea break, in lb	79.78	80.28	80.47	78.28
Double thread break, in oz Double thread	23.65	26.52	26.14	25.85
stretch, in 16 in.	13.78	9.08	9.23	8.90
Mean turns per in.	19.89	19.91	19.32	19.59
Moisture, % as regain	5.42	7.63	7.69	8.19

^{1 290, 27: 178; 11.}

SILK
Sizes of Cocoon Threads from Different Sources¹

Source	Size in deniers
Yellow Piedmont	3.06
Yellow Cevennes	3.03
White Persians	2.87
Yellow Adrianople	2.84
Yellow Tuscan	2.81
Yellow Salonika	2.73
Yellow Greece	2.61
Yellow Hungarian	2.64
White Turkestan	
White Japanese	2.12
White Chinese	

¹ Report Lyon's Conditioning House.

The single silk filament in the double cocoon thread, therefore, is about $1\frac{1}{2}$ to $1\frac{1}{2}$ deniers in size.

COMPARISON OF DIFFERENT VARIETIES OF SILK FIBERS1

Name of sills	Name of sille Coun-		Diam	et	er, in.	Elasticity, in. in 1 ft.		Tensile strength, dr		Size of	
Name of silk ti	try		Outer fibers		Inner fibers	Outer	HOERS	Inner	Outer fibers	Inner	cocoon, in.
Bombyx mori	China	0	. 00052	2 0	0.00071	1.3	1	1.9	1.6	2.6	1.1×0.5
Bombyx mori	Italy	0	.00053	3 0	.00068	1.2	1	1.9	1.9	2.6	1.2×0.6
Bombyx mori	Japan	0	.00057	ď	0.00069	1.2	1	1.4	2.0	3.1	1.1×0.6
Bombyx fortuna-		l		١			1				ļ
tus	Bengal	0	.0004	s	0.00051	1.8	1	2.3	1.6	2.8	1.2×0.5
Bombyx textor	India	0	.00042	9	0.00047	1.5	- 1	1.9	1.4	2.6	1.2×1.5
Antheræa mylitta	India	0	.00161	C	0.00172	1.9	1	2.7	6.6	7.8	1.5×0.8
Attacus ricini	India	0	.00088	5 0	0.00093	1.7	1	2.0	1.5	3.0	1.5×0.8
Attacus cynthia	India	0	.00083	3 0	0.00097	2.6	.	2.9	2.4	3.5	1.8×0.8
Antheræa assama.	India	0	.00128	s C	0.00125	2.4	1	2.9	2.8	4.8	1.8×1.0
Attacus selene	India	0	.00100	0	0.00109	2.0	1	2.8	2.4	4.0	3.0×1.2
Attacus atlas	India	0	.00102	2 0	0.00111	1.9	1	2.8	2.1	4.1	3.5×0.8
Antheræa yama-	i	l		ł			-				
mai	Japan	0	.00088	3 0	0.00096	2.0	Н	4.0	6.8	7.5	1.5×0.8
Cricula trifen-				1			-1			l	ſ
estrata	India			C	0.00120		-			l	2.0×0.8
Antherwa pernyi	China	0	.00118	3 0	0.00138	2.0	1	2.7	3.2	5.8	1.6×0.8

¹ Murphy, Textile Industries, p. 6.

TENSILE STRENGTH

	kg/mm^2		
	Dry	Wet	
Chinese silk	53.2	46.7	
French raw silk	50.4	40.9	
French silk, boiled off	25 .5	13.6	
French silk, dyed red and weighted	20.0	15.6	
French silk, blue-black, weighted 110 %	12.1	8.0	
French silk, black, weighted 140 %	7.9	6.3	
French silk, black, weighted 500 %	2.2		

RAYONS OR ARTIFICIAL SILKS

PHYSICAL PROPERTIES

Туре	Breaking strain per denier in g	Elasticity, %		
Natural silk	2.50	21.6		
Chardonnet	0.93	8.0		
Lehner	1.43	7.5		
Cuprammonium	1.64	12.5		
Gelatin	0.63	3.8		
Viscose	1.40	9.5		

BREAKING STRENGTH

7 0	kg/mm²			
Type	Dry	Wet		
Chardonnet's collodion, undyed	14.7	1.7		
Lenher's collodion, undyed	17.1	4.3		
Strehlenert's collodion, undyed	15.9	3.6		
Cuprammonium, undyed	19.1	3.2		
Viscose early samples	11.4	3.5		
Viscose latest samples	21.5			
Cotton yarn (for comparison)	11.5	18.6		

Type	Tensile streng	Elasticity, %	
	Dry	Wet	-
Viscose	1.3-1.8	0.4-0.8	15
Acetate		1.5	20
Cuprammonium	1.4	0.55	16

WOOL

EFFECT OF MOISTURE CONTENT ON STRENGTH1

Treatment	Average strength of warp strips, lb.	Average elon- gation before rupture, in.	Moisture content,	
Before treatment	160.0	2.26	10.04	
After wetting	130.7	4.53	53.0	
Damp		4.46	33.0	
Air-dry		2.67	10.54	

¹ Woodmansey, 290, 1918, 227.

BREAKING STRENGTH1

751-1-61	Strength in g					
Kind of wool	High	Low	Average			
Cotswold	44.54	16.10	30.44			
Leicester	30.00	15.50	23.70			
Lincoln	36.72	15.79	25.66			
Southdown	21.29	6.48	12.78			
Oxford	45.15	19.15	30.43			
Merino	11.92	3.86	7.35			

¹ McMurtie, Reports on the examination of wool fibers.

ACTION OF CAUSTIC SODA ON BREAKING STRENGTH

NaOH solution, °Bé	Breaking strength, g	NaOH solution, °Bé	Breaking strength, g
Untreated wool	610	32	420
4	510	36	580
8	475	40	770
12	250	42	815
16	180	44	740
20	95	48	720
24	200	50	620
28	240		

ABSORPTION OF VARIOUS ACIDS1

	Hydroch	loric acid	Sulfur	ic acid	Oxalio	acid	Acetic	acid	Formi	c acid
~		Perma-	l	Perma-		Perma-	1	Perma-		Perma-
% acid used	Absorbed,	nently	Absorbed,	nently	Absorbed,	nently	Absorbed,	nently	Absorbed,	nently
	%	retained,	%	retained,	%	retained,	%	retained,	. %	retained,
	<u> </u>	%		%		%		%		%
1	0.97	0.63	0.97	0.78	0.94	0.72	0.73	0.63	0.33	.0.15
2 .	1.51	0.58	1.90	1.48	1.72	0.95	0.94	0.73	0.71	0.34
3	1.97	0.71	2.67	1.76	2.46	0.94	0.97	0.72	0.95	0.54
4	2.32	0.78	3.58	2.12	3.16	1.33	0.35	1.06	1.35	0.83
5	2.25	0.61	3.48	1.97	3.62	1.51	1.27	0.91	1.51	0.86
6	2.40	0.72	3.86	1.90	4.06	1.31	1.19	0.83	1.78	1.16
7	2.47	0.63	3.72	2.09	4.67	1.53	1.09	0.68	1.58	0.64
8	2.71	0.76	3.80	2.04	5.16	1.78	1.25	0.70	1.55	0.65
9	2.40	0.51	3.62	1.92	5.03	1.53	1.30	0.68	1.71	0.71
10	2.58	0.61	3.79	2.00	5.16	1.39	1.39	0.73	1.48	0.55
11	2.81	0.74	4.17	2.23	5.61	1.71	1.41	0.78	1.81	0.65
12	2.69	0.61	4.06	2.03	5.77	1.47	1.40	0.64	1.54	0.56

10.0

Strong paper.....

CORDAGE FIBERS RELATIVE STRENGTHS

Fiber	Breaking strain of thread in g	Calcu- lated cross section in mm ²	Break- ing strain, g per mm²	Break- ing strain, tons per in. ²	Break- ing length, km
Sisal	1375	0.0240	57 300	36.2	38.2
Sansevieria	1289	0.0224	57 540	36.6	38.4
Manila (abaca)	1655	0.0181	91 430	58.0	60.9
Hedychium	828	0.0093	89 300	56.7	59.1
Cotton fiber	8.2	0.00026	31 458	20.0	22.8
Cellulose monofil	294	0.0140	21 000	13.3	14.0

MINOR HAIR FIBERS1

	Mohair	Alpaca	Camel-hair	Cashmere
Length, in	9	12	5	3
Strength	Very strong	Fairly strong	Fairly strong	Fairly strong
Luster	Very high	High	Good	Good
Color	White	Vari-colored	Brownish	Brown and white
Fineness, in	1/700	1/800	1/800	1/12 000
Handle	Fairly soft	Soft	Soft	Very soft
Form of staple	Straight	Straight	Fairly curly	Fairly curly
Uniformity	Uniform	Uniform	Fair	Fair
Uses	Dress fabrics, linings, up- holsteries	Dress fabrics, linings	Dress fabrics	Shawls and hosiery

¹ Barker, Textile Mfr.

¹ Fort and Lloyd, 290, 1914, 5.

The "breaking length" refers to a length of fiber or thread that will break of its own weight.

Physical Properties¹

Fiber	Weight per yd., gr	Break- ing strain per strand,	Break- ing length in yd.
Abaca (Manila hemp), Musa textilis:			
Highest	0.567	46.6	82.2
Lowest	0.962	31.0	32.2
Average	0.772	34 .8	45.0
Henequen (Yucatan sisal), Agave four- croya	0.765	16.7	21.8
Sisal (Hawaii and East Africa), Agave sisalana	0.616	22.7	38.4
Cantala (Manila maguey), Agave cantala	0.429	9.6	22.3
Phormium (New Zealand hemp), Phormium tenax	0.659	18.8	28.5
Zapupe Vincent (Agave lespinassei)	0.722	21.5	29.7
Cabuya (from Costa Rica), Furcraea cabuya	0.574	20.0	32. 2

¹ Bureau of Plant Industry, Washington, D. C.

Comparative Strengths

The following results were from tests made on ropes of the same size and 1.2 m in length¹:

COMPARATIVE STRENGTHS. DRY AND WET

Fiber	Dry, kg	Wet, kg
Hemp from Calcutta	72 ·	86
Sunn hemp (fresh retted)	51	72
Sunn hemp (retted after drying)	27	35
Jute (Corchorus capsularis)	65	66
Jute (Corchorus olitorius)	51	56
Jute (Corchorus strictus)	47	52
Gambo hemp (Hibiscus cannabinus)	52	60
Roselle hemp (Hibiscus sabdariffa)	41	53
Hibiscus abelmoschus	49	49
Ramie (Bæhmeria tenacissima)	110	126

¹ Royle, Fibrous Plants of India.

Comparative Strengths of Prepared Ropes, and of Ropes after Steeping in Water 116 Days

Fiber ·	Pr	Water- soaked,				
	Natural	Tanned	Tarred	natural		
Hemp, English	47			Rotted		
Hemp, Calcutta	34	63	20	Rotted		
Coir	39			24		
Sunn hemp	31	31	27	Rotted		
Jute	31	31	28	18		
Linen, Calcutta	17			Rotted		
Agave americana	50	36	35	Rotted		
Sansevieria zeylanica	54	33	22	13		

OKRA, JUTE AND OTHER CORDAGE FIBERS

	Breaking strain, lb.		
-	Dry	Wet	
Indian okra	79	95	
Jute	113	125	
Hemp (Bengal)	158	190	
Hibiscus cannabinus	115	133	
Hibiscus sabdariffa	95	117	
Hibiscus strictus	104	115	
Hibiscus furcatus	89	92	

FUR FIBERS¹
RELATIVE DURABILITY

Species	Durability
Species	(otter = 100)
Beaver	90
Bear, black or brown	94
Chinchilla	15
Ermine	25
Fox, natural	40
Fox, dyed	20-25
Goat	15
Hare	5
Kolinsky	25
Leopard	75
Lynx	25
Marten (skunk)	70
Mink, natural	70
Mink, dyed	35
Mole	7
Muskrat	45
Nutria (Coypu rat), plucked	25
Otter, sea	100
Otter, inland	100
Opossum	37
Rabbit	5
Raccoon, natural	65
Racoon, dyed	50
Sable	60
Seal, hair	80
Seal, fur	80
Squirrel, gray	20-25
Wolf	50
Wolverene	100

¹ Peterson, The Fur Trade and Fur Bearing Animals.

COMPARATIVE BREAKING STRENGTHS

1	Breaking	Breaking
Fiber	length	strength,
·	in km	kg per mm²
Cotton	25.0	37.6
Wool	8.3	10.9
Raw silk	33.0	44.8
Flax fibers	24.0	35.2
Jute	20.0	28.7
Ramie	20.0	28.7
Hemp	30.0	45.0
Manila hemp	31.8	47.7
Coconut fiber	17.8	29.2
Vegetable silk	24.5	35.9

	Ramie	Hemp	Flax	Silk	Cotton
Tensile strength	100	36	25	13	12
Elasticity	100	75	66	400	100
Torsion		95	80	600	400

TENSILE STRENGTHS OF FIBERS FOR EQUAL CROSS SECTIONS

Kind of fiber				
numan nair	100			
Lincoln wool	96.4			
Leicester	119.9			
Northumberland	130.9			
Southdown	62.3			
Australian merino	122.8			

TENSILE STRENGTHS OF FIBERS FOR EQUAL CROSS SECTIONS.—
(Continued)

Kind of fiber	Relative strength
Saxony merino	224.6
Mohair	136.2
Alpaca	358.5
Cotton, Egyptian	

COMPARATIVE STRENGTHS OF EQUIVALENT YARNS

Vind of som	Breaking strain, in oz.		
Kind of yarn	1-in. test	27-in. test	
Tram silk	45.0	40.0	
Ramie	34 .5	24.5	
Linen	29 .5	18.0	
American cotton	17.0	13.5	
Viscose rayon	11.0	11.0	
Luster worsted	9.0	5.0	
Botany worsted	7.5	3.5	

SPECIFIC GRAVITIES

Determined in benzene (Vignon)

Silk, rawSilk, boiled-off	1.30 to 1.37 1.25
Wool	1.28 to 1.33
Cotton	1.50 to 1.55
Mohair	1.30
Hemp	1.48
Ramie	1.51 to 1.52
Linen	1.50
Jute	

SPECIFIC HEAT

The specific heat of all vegetable textile fibers thus far tested is practically that of cellulose, 0.32; wool, 0.325; silk, 0.33; asbestos, 0.25; glass wool, 0.157.

¹Limits observed by Dietz, Leipzig Monatsch. Textilind., 1912: 85, 0.319-0.327.

HYGROSCOPIC MOISTURE

VEGETABLE FIBERS¹

TEGETABLE TIPETO			
Fiber	Air-dry condition, %	Maximum amount hygroscopic water, %	
Cotton	6.66	20.99	
Flax (Belgian)	5.70	13.90	
Jute		23.30	
China-grass	6.52	18.15	
Manila hemp (abaca)	12.50	50.00	
Sunn hemp	5.31	10.87	
Hibiscus cannabinus	7.38	14.61	
Abelmoschus tetraphyllos	6.80	13.00	
Esparto	6.95	13.32	
Urena sinuata	7.02	15.20	
Piassave	9.26	16.98	
Sida retusa	7.49	17.11	
Aloë perfoliata	6.95	18.03	
Bromelia karatas	6.82	18.19	
Thespesia lampas	10.83	18.19	
Cordia latifolia		18.22	
Bauhinia racemosa		19.12	
Tillandsia fiber		20.50	
Pita		30.00	
Calotropis gigantea (bast)		13.13	

¹ Wiesner, Die Rohstoffe des Pflanzenreiches.

COTTON AND MERCERIZED COTTON¹

	%
Ordinary cotton, unbleached	6.52
Ordinary cotton, bleached	6.25
Mercerized without tension, unbleached	9.33
Mercerized without tension, bleached	9.12
Mercerized with tension, unbleached	8.28
Mercerized with tension, bleached	8.05

¹ Higgins, 54, 28: 188; 09.

MOISTURE FIXED BY VARIOUS FIBERS AT 100°C IN AN ATMOSPHERE SATURATED WITH STEAM

Fiber, previously dried at 100°C	Water fixed, %
Bleached white cotton	23.0
Unbleached linen	27 . 7
Unbleached jute	28 .4
Bleached silk	36 .5
Bleached and mordanted wool	50 .0

(Scheurer, Bull. Soc. Ind. Mulh., 1900: 89.)

MOISTURE ABSORBED BY VARIOUS FIBERS AT 75°F UNDER DIFFER-ENT CONDITIONS OF HUMIDITY

Relative	Mo	Moisture, %		Relative	Mo	isture,	%
humid-	Cot-	Silk	Wool	humid-	Cot-	Silk	Wool
ity, %	ton	SHA	11 001	ity, %	ton	SIIK	WOOI
5	1.4	1.8	2.2	55	6.3	9.4	13.4
10	2.4	3.2	4.0	60	6.7	9.9	14.2
15	3.0	4.4	5.7	65	7.3	10.5	15.0
20	3.6	5.4	7.1	70	7.9	11.4	16.0
25	3.9	6.1	8.3	75	8.8	12.5	17.1
30	4.3	6.7	9.4	80	9.9	14.0	18.6
35	4.6	7.3	10.4	85	11.4	15.9	20.5
40	5.0	7.8	11.0	90	13.6	18.4	23.2
45	5.3	8.4	11.8	95	17.5	22.7	27.0
50	5.7	8.8	12.6				

See also pp. 316, 323.

EFFECT OF HUMIDITY

EFFECT OF HUMIDITY ON THE TENSILE STRENGTH OF FABRICS OF COTTON, LINEN AND WOOL

Humidity,	Tensile strength in kg		
%	Cotton	Linen	Wool
44	236	272	84.5
44	237	278	82.7
47	244	284	82.2
56	240	296	81.8
56	246	297	79.5
57	248	295	78.6
59	245.5	295	79.0
60	241	295	79.5
62	250	303	79.5
65	251	310	77.0
66	256	312	78.6
68	250.5	300.5	78.6
70	260	319	72 .5
71	257.5	324	78.6
72	252	310.5	77.0
72	258	312.5	76.2
75	265	323	76.2
77	264.5	323	75 .0
82	268	330	75.8
82	269	330.5	72 .7

(Marschik and Breiner, Leips. Monatsch. Textilind., 1913: 219.)

HUMIDITUES

Relative humidity at 70°F,	Tensile strength, g
45	234
55	231
65	220
75	216
85	191

EFFECT OF M	Effect of Moisture on Strength of Linen Sail Cloth ¹			
Moisture,	Strength, kg	Moisture,	Strength, kg	
0.0	180	12.0	350	
${f 2}_{\cdot}{f 2}_{\cdot}$	190	15.0	402	
5.5	232	19.1	417	
9.0	288	35.0	425	

1 Brun, Chem. Zeit., 1893.

EFFECT OF STEAMING ON TENSILE STRENGTH OF WOOLEN CLOTH¹

Steaming at		ı	
100°C, hr	Warp	Filling	Mean
Original cloth	100	100	100
3	86	78	82
6	80	75	77
12	7 5	69	72
24	68	53	60
36	62	37	50
48	40	32	36
60	29	23	26

1 Scheurer, Bull. Soc. Ind. Mulh., 1893.

Effect of Moisture on Cotton Yarn in Finishing

Moisture in yarn, %	Breaking strain
2.89 (dry)	39.9
8.93 (usual)	64.0
17.36 (moist)	69.2

REGAIN

REGAINS IN CONDITIONING VARIOUS FIBERS FIXED BY THE INTER-NATIONAL CONGRESS AT TURIN

	%
Silk	11
Wool (tops)	18‡
Wool (yarn)	17
Cotton	81
Linen	12
Hemp	12
Jute	13 🛊
New Zealand hemp	133

PERCENTAGE OF MOISTURE IN TEXTILE MATERIALS CORRESPOND-ING TO PERCENTAGE OF REGAIN

Regain,	Moisture, %	Regain,	Moisture,
5	4.76	12.5	11.11
6	5.66	13	11.50
7	6.54	14	12.28
7.5	6.98	15	13.04
8	7.41	16	13.79
8.5	7.83	17	14.53
9	8.26	18	15.25
10	9.09	19	15.97
11	9.91	20	16.67
12	10.71		

Tensile Strengths of Worsted Yarns at Different Relative | Table of Regain for Cotton at Various Temperatures and PERCENTAGES OF HUMIDITY

Humidity,	1		٥	F		
%	50	60	70	80	90	100
40	5.90	5.79	5.65	5.47	5.25	5.05
50	6.89	6.78	6.63	6.45	6.18	5.86
60	8.00	7.87	7.69	7.44	7.13	6.80
70	9.14	9.00	8.79	8.58	8.32	8.05
80	10.58	10.42	10.23	9.95	9.70	9.60
90	12.28	12.10	11.85	11.56	11.43	11.85
100	14.12	14.00	13.80	13.65	13.70	14.50

REGAIN IN WORSTED TOPS AT 70°F AT DIFFERENT RELATIVE HUMIDITIES OF THE AIR

Relative humidity, %	Regain, %
45	13.33
55	14.51
65	15.37
75	16.38
85	18.92

HEAT CONDUCTIVITY

HEAT CONDUCTING POWERS OF TEXTILE MATERIALS

	Relative values
Slag wool	100
Hair felt	117
Cotton felt	122
Sheep's wool	126
Air space	280

Comparative Values of Fibers as Non-Conductors of Heat¹

A mass of the non-conducting material 1 in. thick was placed on a flat surface of iron kept heated to 310°F; the amount of heat transmitted per hr through the non-conductor was measured in lb. of water heated 10°F, the unit of area being 1 sq. ft. of covering:

Substance	Lb. water heated 10°F	Solid matter in 1 sq. ft., 1 in. thick, parts in 1000	Air occluded, parts in 1000
Loose wool	8.1	56	944
Goose feathers	9.6	50	950
Carded cotton	10.4	20	980
Hair felt	10.3	185	815
Fine asbestos	49.0	81	919
Air alone	48.0	0	1000

¹ Ordway, Eng. Min. J., 1890, 650.

Heat Retaining Value of Clothing Materials

Count Rumford heated a large thermometer to 70°R and then ascertained the length of time required for the thermometer to fall to 10°R when surrounded with various textile materials, as follows:

	Sec
Air	576
Raw silk	1284
Sheep's wool	118
Cotton	1046
Fine lint (linen?)	1032
Beaver's fur	1296
Hare's fur	1315
Eiderdown	1305

In another series of experiments, however, using the same materials differently arranged, different results were obtained, as follows:

	Sec
Sheep's wool, loosely arranged	1118
Woolen thread, wound round bulb	934
Cotton, loose	1046
Cotton thread, wound round bulb	852
Lint, loose	1032
Linen thread, wound round bulb	873
Linen cloth, wound round bulb	786

From these experiments, Rumford showed that the heat-retaining value of clothing depends more on its texture than on its actual material.

FIREPROOFING

MINIMUM QUANTITY OF CHEMICAL SUBSTANCES REQUIRED TO RENDER 100 PARTS OF COTTON NON-INFLAMMABLE (Duhem)

Reagent	Parts by weight
Tungstate of ammonium	12
Sulfate of ammonium	41/2
Phosphate of sodium	30
Chloride of sodium (common salt)	35
Phosphate of calcium	30
Phosphate of magnesium	30

FIREPROOFING.—(Continued)

Reagent	Parts by weight
Chloride of magnesium	4-5
Phosphate of zinc	20
Sulfate of zinc	
Borate of aluminum	24
Aluminum hydrate	3
Chloride of ammonium	
Phosphate of ammonium	41/2
Silicate of sodium	50
Borax	81
Chloride of calcium	41/2
Sulfate of magnesium	15
Chloride of potassium	45
Borate of zinc	
Phosphate of aluminium	
Boric acid	10
Silicic acid	30 .

LITERATURE

(For a key to the periodicals see end of volume)

For much additional material on textile fibers and a fairly complete bibliography, see Matthews, The Textile Fibers. 4th ed., New York, Wiley, 1924.

TANNINS AND VEGETABLE TANNING MATERIALS

JOHN ARTHUR WILSON

AND

ARTHUR W. THOMAS

The tabulation of the properties of tanning substances of vegetable origin is complicated by the facts that the chemistry of these exceedingly complex substances is still in its infancy, the literature is not always clear, due to confusion in terminology, and the authenticity of the specimen studied is often uncertain. Formulas, especially those reported in the literature before 1910, are of little value, except as they indicate the relative percentages of C, H and O.

CLASSIFICATION

The earlier classification, based upon color reactions with ferric salts, is of no present value. Two systems are now used: Perkin (34) and Freudenberg (13).

Perkin's classification: α , Gallotannins (Depsides); β , Ellagitannins (Diphenylmethylolids); γ , Catecholtannins (Phlobatannins). These are characterized by the following reactions: $FeCl_2$: α , blue; γ , green. Boiling dilute H_2SO_4 : α , gallic acid is formed; β , ellagic acid ppts.; γ , phlobaphenes or "reds" ppt. Br: γ give a ppt. HCl and pine wood: γ give phloroglucinol reaction, while α and β do not. C_0H_1N : NCl: γ give a ppt., indicating the presence of phloroglucinol or resorcinol groups, while α and β do not. Fusion with alkali: α yield gallic acid and a little pyrogallol; γ yield protocatechuic acid. Heating in glycerol: α form pyrogallol; γ form catechol. HCHO and HCl: γ give complete precipitation, the others do not. Lead acetate in CH_2 - CO_2H : α are pptd., γ are not.

Freudenberg's classification: A. Hydrolyzable tannins in which the benzene nucleus is united to a larger complex through the O atoms. A1. Mutual esters of phenolcarboxylic acids or with other hydroxy-acids (Depsides). A2. Esters of phenolcarboxylic acids with polyatomic alcohols and sugars. A3. Glucosides. In this group gallic acid predominates as the phenolic component. There is also the extraordinary distribution of combined caffeic acid and the presence of a new phenolcarboxylic acid in chebulinic

acid. The ellagic acid glucosides also belong here. The most important criterion for the inclusion in this group is the splitting into simple components by hydrolyzing enzymes, especially tannase and emulsin.

B. Condensed tannins in which C linkages hold the nuclei together. These are not decomposed into simple components by enzymes. They are generally, not always, precipitated by bromine and under the influence of oxidizing agents or strong acids condense to high molecular weight tannins or "reds." By drastic treatment, preferably by alkalis, the C skeleton is broken up and phloroglucinol, if present, is dissolved out while the remainder of the molecule is transformed mainly into phenolcarboxylic acids. B1. Simple ketones such as hydroxybenzophenones and hydroxyphenylstyryl ketones. The phloroglucinol and benzene nuclei are present in equimolecular proportions. B2. This group is more complicated. The phloroglucinol and benzene nuclei are present in equimolecular proportions. This class embraces the catechols with their corresponding tannins and "reds." This is the most important class of technically used tannins. B3. There is practically nothing that can be said about this class of condensed tannins. It is even impossible to state whether they are really jointly condensed systems. In common with the first class of the condensed tannin group, they are precipitated by bromine and are transformed into "reds." On the other hand, they contain no phloroglucinol nucleus. It is possible that the hydroxycinnamic acids are characteristic components of this class; caffeic acid itself is readily transformed into condensation products of the nature of "reds."

In the following tables, the information is given in the following order: Name; classification (Perkin's being indicated by Greek letters, Freudenberg's by the above combinations of letters and figures); (1), source; (2) color and form in which it is isolated; (3) formula; (4) solvents; (5) specific rotatory power; (6) color with ferric salts; (7) remarks as to constitution, etc.

I. NATURAL TANNINS

- Beech tannin. γ . (1) Bark of red beech. (3) $C_{20}H_{22}O_{9}$ (34).
- Caffetannic acid. γ. (1) Coffee berries as Ca and Mg salts; cainia root, Chiococca brachiata; Nux vomica; St. Ignatius beans; Paraguay tea, Ilex paraguensis. (2) Amorphous powder. (4) H₂O, C₂H₅OH. (6) Dark green (34).
- Callutannic acid. γ. (1) Heather, Calluna vulgaris. (2) Amber colored powder. (6) Dark green (34).
- Canaigre tannin. γ. B3. (1) Tuberous roots of the sorrel, Rumex hymenosepolus. (2) Bright yellow powder. (3) C, 58.10; H, 5.33 (34). (4) H₂O, C₂H₄OH. (6) Green (13, 34).
 Catechol. γ. B2. (6) Green. See Table 3.
- Chebulinic acid, Eutannin. α . A2. (1) Myrobalans, fruit of the Terminalia chebula. (2) Rhombic prisms, also colorless needles (34). (3) C, 50.60; H, 3.65. Probably $C_{14}H_{10}O_{21}$ (16). Airdry substance contains 16.5% H_2O of crystn., which is lost at 100° (2). Mol. wt. by titration and by boiling point elevation in acetone, 806 (16). (4) Hot H_2O , C_2H_3OH , acetone, ethyl acetate (13). (5) α_D , $+61.7^{\circ}$ to 66.9° (H_2O) (5). α_D^{18} , $+85^{\circ} \pm 4^{\circ}$ (abs. C_2H_3OH) (11); α_D^{12} , -60 (acetone, 1%) (2). $\alpha_D +59^{\circ}$ to 67° (C_2H_3OH , 1-2%)(13). (6) Blue-black. (7) Apparently union between di-gallolyl-glucose and the dibasic acid, $C_{14}H_{14}O_{11}$ with elimination of $2H_2O$ (11, 16). D. at 234° (34).
- Cherry bark tannin. γ . (1) Bark of *Prunus cerasus*. (3) $C_{21}H_{20}O_{10}.0.5H_2O$. (6) Green (34).
- Chestnut tannin. α. A3. (1) Leaves, bark and wood of Spanish chestnut, Castanea vesca. (3) Purified tannin, C, 50.79; H, 3.32. Mol. wt. 400 or multiple as detd. by titration (24).
 (4) H₂O. (6) Dark green to blue. (7) Tannin from leaves, wood and bark identical. Raw tannin is mixture containing quercetin, sugar, ellagic and gallic acids. Contains no phloroglucinol. Probably similar to tannin of German native oak (24).
 Chinese tannin. See Gallotannin.
- Chlorogenic acid. A1. (1) Monopotassium salt combined with one molecule of caffein in coffee beans. (2) Cryst. (3)
 C₁₆H₁₅O₂.0.5H₂O. (4) Hot H₂O, C₂H₅OH, acetone, ethyl acetate. (5) α_D, -33.1° (H₂O, 1-3%). (6) Green ppt. (7)
 3, 4-Dihydroxy-cinnamoyl-quinic acid (13).
- Cinchona tannin, quinotannic acid. γ. B3. (1) Cinchona bark.
 (2) Light yellow powder. (3) C₁₄H₁₆O₉(?) (34). (4) H₂O, C₂H₄OH (13). (6) Green ppt. (7) Very hygroscopic.
- Cocatannic acid. γ. (1) Leaves of Erythroxylon coca. (2) Yellow micro. cryst. (3) C₁₇H₂₂O₁₀.2H₂O(?) (6) Green (34).
- Colatein. γ. B2. (1) Cola nuts, Cola acuminata. (4) Hot H₂O,
 C₂H₆OH, acetone. (6) Green. (7) M. P. 257°-288° (13).
- Colatin, Colatannin. γ. B2. (1) Cola nuts, Cola acuminata.
 (2) Cryst. (13). Light red amorphous powder (34). (3) C₁₆-H₂₀O₈ (34). (4) C₂H₄OH, acetone, ethyl acetate. (5) Inactive. (6) Green. (7) M. P. 148° (13).
- Cortepinitannic acid. γ. (1) Bark of Scotch fir, Pinus sylvestris.
 (2) Bright red powder. (3) C₂₂H₃₄O₁₇. (6) Intense green (34).
- Cyanomaclurin. B2. (1) Wood of Artocarpus integrifolia. (2) Cryst. (3) C₁₈H₁₂O₆. (6) Violet. (7) M. P. above 290° (13).
- m-Digallic acid. α. A1. (1) Esterified with glucose in Chinese tannin; also synthetic. See Table 2.
- Ellagic acid. β. (1) From many tannins containing ellagitannin by boiling with dilute H₂SO₄. Divi-divi, myrobalans and valonia best sources; also synthetic. See Table 2.
- Filitannin. γ. B2. (1) Fern-root, Aspidium filix-mas. (2) Redbrown powder (34). (3) C₄₁H₂₅NO₁₈(?) (29, 34). (4) C₂H₅OH, H₂O (29). (5) Inactive (13). (6) Olive-green. (7) Heated at 125°, loses water and becomes insoluble (13).
- Fraxitannic acid. γ. (1) Leaves of ash tree, Fraxinus excelsior. (2) Brownish-yellow deliquescent powder. (3) C₂₄H₂₂O₁₄ (?)

- (29, 34). (4) H₂O, C₂H₅OH (29, 34). (6) Dark green ppt.
 (7) Heated at 100°, loses water and becomes practically insoluble. Yields quinone upon oxidation by permanganate (29, 34).
 Galitannic acid. γ. (1) Bark of Galium verum. (3) C₁₄H₁₅O₁₀. H₂O. (6) Green (34).
- Gallotannin, Gallotannic acid, Tannin, Tannic acid. α . A2. (1) From galls on leaves and buds of various species of oak, especially Quercus infectoria and Q. lusitania ("Turkish tannin") due to puncture by insects of the genus Cynips. From galls on leaves and buds of a species of sumach, Rhus semialata ("Chinese tannin") due to puncture of insect, Aphis chinensis. (2) Light yellow-brown powder. (3) Average of several specimens, C, 52.59 to 53.70; H, 3.24 to 3.40 (6). C₇₆H₅₂O₄₆ (E. Fischer). Mol. wt., 1247-1636 by boiling point elevation in acetone. (4) H_2O , C_2H_3OH , ethyl acetate. (5) α_D^{20} , +58° to +70° (different specimens, H_2O); α_D^{20} , +18° (one specimen, C_2H_4OH) (1, 6); α_D^{22} , +12.9° (acetone); α_D^{22} , +17.6° (purified specimen, C₂H₅OH) (1, 3). (6) Bluish-black. (7) Hydrolysis of purified specimen by dil. H₂SO₄ yields 93.6 % gallic acid and 6.8 % glucose (1, 3). Undoubtedly a mixture of at least two individuals (34). The tannin, according to E. Fischer, is penta-m-digalloylglucose. Nierenstein objects, asserting that gallotannin is probably a glucoside of polydigalloyl-leucodigallic acid anhydride or of its free acid (31).
- Gallotannin, Chinese Tannin. a. A2. (1) See Gallotannin above. (2) Amorphous yellow to light brown powder. (3) Penta-mdigallolyglucose. Mol wt., 1700 (13). (4) See Gallotannin above. (5) α_D^{26} , +73° (purified specimen, H₂O, 1%) (1, 7); α_D , +45° to +53° (H₂O, 20%), rising rapidly on dilution to +135° to +140° (H₂O, 1.2%) (13); α_D in formamide, +13°; acetone, +14°; C₂H₄OH, +18°, glacial acetic acid, +25°; pyridine, $+40^{\circ}$. These all showed high and low α_D fractions in water; were alike in organic solvents. Colloidal forms and impurities markedly affect α_D in water (23). Two fractions— (a) α_D , +30° to +40° (H₂O); +40° to +41° (pyridine); (b) α_D , +150° to +158° (H₂O); +50° to +51° (pyridine) (27). Purified tannin, after removing part difficultly soluble in water, α_D , $+13.9^{\circ}$ (C₂H₆OH, 3%); $+14.9^{\circ}$ (C₂H₆OH, 10%); $+13.1^{\circ}$ (acetone, 10%) (1, 4). Potassium salt, containing 10.2% K, α_D^{18} , +46.3° (H₂O, 1%) (1, 4). (6) Bluish-black. (7) Upon hydrolysis with dil. H₂SO₄ there is produced 88.6% gallic acid and 11.4% glucose (13). This tannin is a mixture of deka-, nona-, and octa-gallolyl-glucoses averaging 8 to 9 gallic acid radicals to 1 molecule glucose. The fractions of lower α_D contain more depside-like gallic acid (27). See also gallotannin above.
- Gallotannin, Turkish Tannin. α . A2. (1) See Gallotannin above. Aleppo galls. (2) Amorphous yellow to light brown powder. (3) C, 52.5; H, 3.5 (13). (4) See Gallotannin above. (5) α_D^{17} , 2.5° (H₂O, 7%); α_D , +5° (H₂O, 7% and less); α_D^{14} +23.2° to +24.2° (acetone, 10%) (1, 8). (6) Bluish-black. (7) Hydrolysis of purified specimens with dil. H₂SO₄: 81.8 to 84.8% gallic acid; 2.7 to 3.8% ellagic acid; 11.5 to 13.8% glucose; 2.0 to 4.1% tannin residue (1, 8). Hydrolysis and fractionation give a series of fractions of increasing α_D in alcohol from 15.7° to 43.7°. Concomitantly there is a decrease in ellagic and increase in gallic acid content. The ellagic acid is a part of the tannin molecule. At least 25% of the gallic acid is in depside form, partly directly bound in ester form to the sugar hydroxyl groups (28).
- Gallnut Tannin. α. A2. (1) Galls on acorn cups of Quercus robur and Q. pedunculata. (3) C, 52.0; H, 3.3 (13). (7) Undoubtedly identical with gallotannin.
- Hamamelitannin. α. A2. (1) Bark of Hamamelis rirginica. (2) Fine white needles (13). (3) C, 49.9; H, 4.0; H₂O of crystn-17.9%, approximating $C_{20}H_{20}O_{14}.6H_{2}O$ (10, 18). (4) Hot H₂O, $C_{2}H_{4}OH$, acetone, ethyl acetate (13). (5) α_{21}^{20} , +29° (H₂O,

2.35%); α_D^{23} , +33° (H₂O, 1.24%); α_D^{20} , +35.6° (another specimen, H₂O, 1.2%) (1°). (7) Contains no free carboxyl group. Acidity, equal to that of pyrogallol, is due to phenolic hydroxyls (1°, 18). Upon hydrolysis with dil. H₂SO₄: gallic acid, 70%; sugar, 30%. Upon hydrolysis with tannase: gallic acid, 66%; sugar, 34% (1³). M. P., 115°-117° (air-dry); 203° (dried at 100°) (3⁴).

Hemlock tannin. γ. (1) Hemlock bark, Tsuga (Abies) canadensis.
(3) C₂₀H₁₈O₁₀ (?). (7) Probably related to quercitannic acid of the oak (29, 34).

Horsechestnut tannin. γ. (1) Nearly all parts of the Aesculus hippocastanum and in root bark of apple tree. (2) Nearly colorless powder. (3) C₃₄H₂₄O₁₂. (6) Green (34).

Ipecacuanhic acid. γ. (1) Roots of Psychotria ipecacuanha.
(2) Reddish-brown hygroscopic substance. (3) C₁₄H₁₈O₇.
(6) Green (34).

Larch tannin. γ . (1) Bark of the larch, Larix europea. (6) Green (34).

Maclurin. B1. (1) Wood of "old fustic," Chlorophora tinctoria; also synthetic. (2) Yellow crystals (13). Colorless needles when pure (34). (3) C₁₁H₁₀O₆. (4) 14°, 1 part in 190 parts H₂O (13). (6) Green. (7) 2, 4, 6, 3′, 4′-Pentahydroxybenzophenone, M. P. 200° (anhydrous form) (34).

Maletto tannin. γ. B2. Bark of Eucalyptus occidentalis and other species of Eucalyptus. (2) Brown powder. (3) (C₁₅H₂₀-O₉)_n (2⁹, ³⁴). (4) H₂O, abs. C₂H₅OH (from which it is precipitated by ether) (1³). (7) Similar to quebracho tannin (1³, ³⁴).

Mangrove tannin. γ. B2. (1) Rhizophora mangle, R. mucronata,
 Ceriops candolleana, C. roxburghiana. (2) Amorphous red
 powder. (3) C₁₄H₂₆O₁₂ (2⁹). (6) Green. (7) Closely resembles catechutannic acid (3⁴).

Mimosa tannin. γ . (1) Various species of *Mimoseae* such as *Acacia arabica* of Egypt and the "wattles" of Australia. (6) Bluish-violet. (7) With the exception of the reaction with ferric salts, gives all the ordinary reactions of the phlobatannins (34).

Oak tannin. B3 (36). (1) Leaves and buds of German oak, Quercus pedunculata. (2) Amorphous reddish-yellow powder (22). (3) C, 49.9; H, 4.2. (4) H₂O, C₂H₄OH, acetone (22, 36). (4) αH₂ yellow, -39° ±10° (H₂O); -30° ±4° (CH₂OH) (21). (7) Tannin from leaves of Quercus sessiflora identical (21). Molecule contains 18-25% bound ellagic acid; 3-7% bound glucose; and the rest is an amorphous acid, "Quercus acid," C, 50.2; H, 3.6. Titration equivalent about 400 (21, 22).

Oak tannin, Quercitannic acid. γ. B2. (1) Bark of various species of Quercus (34); Bark of Quercus robur (13). (2) Reddish-white powder (34). Light brown powder (13). (3) C₂₀H₂₀O₄ (?): C, 59.79; H, 5.0 (34). C, 56.8; H, 4.4. C, 55.4; H, 4.1 (13). (6) Green (34). Black-blue (13).

Oak tannin, Quercin, Quercic acid, Quercinic acid. γ. B2.
(1) Wood of various species of Quercus. (2) Light brownish-yellow (34). (3) C₁₄H₁₂O₉.2H₂O (29, 34). C, 48.3; H, 4.5 (13). (6) Blue.

Paullinio tannin, Guarana tannin. γ. B2. (1) "Guarana paste" from seeds of Paullinia cupana. (2) Small colorless crystals (34). Gray needles (30). (3) C₁₇H₁₈O₁₈.COOH.2H₂O (30). (4) H₂O, C₂H₄OH, ethyl acetate, glacial acetic acid (30). (5) α²⁰₂₀, -74.4° (H₂O, 10%); α¹⁸₂₀, -39.1° (C₂H₄OH, 8%); -48.1° (acetone, 6%); α²⁰₂₀, -56.8° (initial rotation in pyridine, 8%. By mutarotation falls to constant value of -8.6°) (30). (7) M. P. 199°-201° with evolution of CO₂. Loses two mol. H₂O of crystn. at 130°. M. P. of anhydrous form 259°-261° with evolution of CO₂ (30). Paullinia catechol isolated from paullinia tannin is identical with "acacatechin" in crystal form and chemical properties. Chemically it is identical with gambier-catechin (13).

Pinicortannic acid. γ. (1) Bark of Scotch fir, Pinus sylvestris. (2) Reddish-brown powder. (3) (C₁₆H₁₈O₁₁)₂.H₂O. (6) Green (34).

Pistachio tannin. γ. B2. (1) Leaves of mastic tree, Pistachia lentiscus. (2) Pale brown brittle mass (34). (4) H₂O, C₂H₄OH, ethyl acetate (13). (6) Blue-black. (7) Often sold for sumach (34).

Pomegranate tannin, Ellagitannin. β. A3. (1) Root bark of Punica granatum. (2) Amorphous greenish-yellow powder.
(3) C₂₀H₁₆O₁₃ (34). Two fractions: A (sol. in H₂O), C, 50.9; H, 3.4. B (insol. in H₂O), C, 52.4; H, 3.4 (13). (4) Fraction A: H₂O, C₂H₆OH, ethyl acetate (13). (6) Blue-black. (7) Glucoside of ellagic acid and hexose (13).

Quebracho tannin. γ. B2. (1) Wood of Quebracho colorado, Schinopsis lorentzii and Balsanae. (2) Red powder. (3) C, 62.5; H, 5.4. (4) Hot H₂O, C₂H₄OH, ethyl acetate, acetone (13). (6) Green. (7) Tannin is mixture of products insol. in H₂O and sparingly sol. in cold H₂O. A benzoyl derivative, C, 73.0; H, 4.2, showed a mol. wt. in benzene of about 2300.

Rhatany tannin. γ. Bark of root of rhatany, Krameria triandra.
(2) Light yellow powder. (4) H₂O. (6) Green (34).

Rheotannic acid, Rhubarb tannin. γ. B2. (1) Rhubarb. (2) Yellowish-brown powder. (3) C₂₀H₂₀O₁₄ (34). (4) H₂O. (6) Black-green ppt. (7) Contains two glucosides, glucogallin (C₁₂H₁₀O₁₀) and tetrarin (C₂₂H₂₂O₁₀) (34). Catechin also present which is probably identical with gambier-catechin (13).

Rubitannic acid. γ . (1) Leaves of Rubia tinctorum. (3) $C_{14}H_{22}O_{13}.0.5H_2O$. (6) Green (34).

Sequiatannic acid. γ. (1) Cones of Sequoia gigantea. (2)
Reddish-brown powder. (3) C₂₁H₂₀O₁₀ (2^{29, 34}). (4) H₂O,
C₂H₄OH. (6) Brown-black ppt.

Spruce bark tannin. γ. (1) Bark of spruce. (3) C₂₁H₂₀O₁₀ (?) (34).
Sumach tannin. α. A2. (1) From leaves of many species of Rhus. Also Coriaria myrtifolia (French), Colpoon compressum (Cape), Arctostaphylos (Russian). (2) Yellow powder. (3) C, 52.3; H, 3.5. (Rhus coriaria) (13). (4) H₂O, C₂H₄OH, ethyl acetate. (7) Similar to Turkish tannin.

Tannecortepinic acid. γ. (1) Bark of young Scotch firs in spring time. (3) C₂₈H₂₆O₁₂. (6) Green (34).

Tannic acid. See Gallotannin.

Tea tannin. γ . A2. (1) Leaves of black tea. (4) H₂O, ethyl acetate. (5) α_D , -177.3° (2°). (7) Probably identical with quercitannic acid (2°, 34). A gallotannin (1°3).

Tormentilla tannin. γ. (1) Root of Potentilla tormentilla.
(2) Amorphous reddish powder. (3) C₂₆H₂₂O₁₁. (6) Bluegreen (34).

Turkish tannin. See Gallotannin.

Willow bark tannin. γ. (1) Bark of Salix triandra. (6) Green. (7) Glucoside tannin (34).

II. SYNTHESIZED TANNINS

m-Digallic acid. α. A1. (2) Fine needles. (3) I (13). (4) CH₂OH, C₂H₅OH, C₅H₁₁OH. 23°, 1 part in 950 parts H₂O; 1 part in 350 parts ethyl acetate; 1 part in 2000 parts ether (1, 5). 25°, 1 part in 1900 parts H₂O. 100°, 1 part in 50-60 parts H₂O (13). (5) Inactive. (6) Blue-black. (7) Found esterified with glucose in Chinese tannin. When hot aq. solution is chilled, it jellifies (13). M. P., 275° (282° corr.) with foaming and decomposition (1, 5).

Digalloyl-levoglucosan. A2. (2) Micro-needles. (3) C₂₀H₁₈O₁₈.
 (4) H₂O, C₂H₅OH, acetone. (5) α₀¹⁸, -27.9° (C₂H₅OH, 1.8%).
 (6) FeCl₁ gives blue-black ppt. in C₂H₅OH solution. (7) Decomposes 220°, carbonizes 270° (26).

Digentisic acid. α. (2) Fine needles. (3) II. (4) 0°, 1 part in 900 parts H₂O. (5) Inactive. (6) Fugitive blue and ppt. (1, 5).
(7) Dry form melts 204°-205° (208°-209° corr.) with sintering.

Diprotocatechuic acid. α. (2) Fine needles. (3) (OH)₂C₆H₃-CO.O.C₆H₃(OH)COOH. (4) Acetone, CH₃OH. 1 part in 2500 parts H₂O. (5) Inactive. (6) Blue-green. (7) M. P., 237°-239° (corr.) (1, 5).

I. m-Digallic acid

II. Digentisic acid

III. Di-β-resorcylic acid

IV. Ellagic acid

Di-β-resorcylic acid. α. (2) Micro-needles. (3) III. Isomeric with digentisic acid. (4) C₂H₄OH, acetone, ethyl acetate, hot H₂O, ether. (5) Inactive. (6) Violet red. (7) Foams and decomposes at about 210° (215° corr.) (1, 5).

Ellagic acid. β. (2) Cryst. from pyridine in prismatic needles which are converted by C₂H_δOH to a pale yellow cryst. powder.
(3) C₁₄H_δO_{8.2}H₂O. IV. (5) Inactive. (7) Above 360° sublimes with carbonization (34). Not a true tannin. See Table 1.

Hexagalloyl mannite. A2. (2) Amorphous brown powder. (3) $C_6H_3O_6[CO.C_6H_2(OH)_3]_6$. (4) H_2O , C_2H_3OH , acetone, ethyl acetate. (5) α_D^{18} , $+27.0^\circ$ (C_2H_3OH , 2%). (6) Dark blue (1, 4).

Maclurin. B1. See Table 1.

Penta-m-digalloyl-α-glucose. A2. (2) Light brown amorphous mass. (3) $C_{76}H_{52}O_{46}$. (4) 18°, 1 part in 200 parts H_2O . (5) Prepared by alkaline hydrolysis of acetates: α_D^{18} , $+36^{\circ}(C_2H_{5-}OH, 10\%)$; $+40^{\circ}$ to 41° (acetone, 10%); 43.8° (H_2O , 1%) (1, 3). Prepared from acetates by CH₂OH and HCl: α_D^{18} , $+41.3^{\circ}$ (C_2H_5OH , 5%); $+44.6^{\circ}$ (acetone, 5%); $+51^{\circ}$ (H_2O , 0.5%) (1, 4). (6) Blue-black. (7) Potassium salt containing 10.3% K, α_D^{18} +56.6° (H_2O , 5%) (1, 4).

Penta-m-digalloyl-β-glucose. A2. (2) Light brown amorphous mass. (3) $C_{76}H_{12}O_{46}$. (4) 20°, 1 part in 1000 parts $H_{2}O$. (5) Prepared by alkaline hydrolysis of acetates: α_{D}^{13} , +14.9° ($C_{2}H_{4}OH$, 10%); +13.1° (acetone, 10%); +42.3° ($H_{2}O$, 1%) (1, 3). Prepared from acetates by CH₁OH and HCl: α_{D}^{18} , +10.8° ($C_{2}H_{4}OH$, 5%); +10.8° (acetone, 5%); +21° ($H_{2}O$, 0.1%) (1, 4). (6) Blue-black. (7) Apparently identical with Chinese tannin. Potassium salt containing 10.3% K, α_{D}^{18} , +33.7° ($H_{2}O$, 0.5%) (1, 4).

Pentagalloyl-α-glucose. A2. (2) Yellow mass. (3) [(OH)₁-C₆H₂CO]₅C₆H₇O₆. (4) H₂O, C₂H₅OH, ether (1, 3). (5) α_D^{18} , +66.5° (H₂O, 1%). α_D^{23} , 65.4° (H₂O, 1%). α_D^{20} , +77.0° (C₂H₅OH, 3%). α_D^{18} , 76.4° (C₂H₅OH, 2%) (1, 3). α_D^{16} , +60° (H₂O, 1%); +81.5° (C₂H₅OH, 2%) (1, 4). (6) Blueblack.

Pentagalloyl-\$\mathbb{G}\$-glucose. A2. (2) Yellow mass. (3) [(OH)₁C₆-H₂CO]₅C₆H₇O₆. (4) H₂O, C₂H₅OH (1, 3). (5) α_D^{16} , +13.1° (H₂O, 1%); +13.6° (H₂O, 10%); +23.3° (C₂H₅OH, 2%) (1, 3). α_D^{18} , +15° (H₂O, 1%); +24° (C₂H₅OH, 2%). (6) Blue-black. (7) Potassium salt contains 10.1% K.

Pentapyrogallol-carboyl-glucose. A2. (2) Amorphous powder.
(3) [(OH)₂C₆H₂CO]₅C₆H₇O₆. (4) Hot H₂O, C₂H₅OH, acetone.
(5) α¹⁵₁₀, +69° (H₂O, 2.5%). (6) Dark blue (1, 9). (7) Sinters at 160° and melts at about 200° with decomposition.

Tetragalloyl-erythrite. A2. (2) Cryst. (3) [(OH)₂C₆H₂CO]₄-C₄H₆O₄. (4) Hot H₂O, C₂H₄OH, acetone, mixtures of H₂O and C₂H₆OH. (7) Decomposes at about 308° (1, 4).

Tetragalloyl-α-methylglucoside. A2. (3) C₁₅H₁₀O₁₂. (4) Identical with pentagalloyl-glucoses. (5) α²⁰_D, +26.4° (H₂O, 4%).
(6) Identical with pentagalloyl-glucoses in reactions. (7) M. P. 130°-140° with decomposition (1, 6).

Trigalloyl-acetone-glucose. A2. (2) Amorphous light brown mass. (3) [C₆H₂(OH)₂CO]₂C₆H₇O₆(C₂H₆). (4) Warm H₂O, CH₃OH, C₂H₆OH, acetone, ethyl acetate. (5) α_D²⁰, -93° (dry acetone, 4%). (6) Blue-violet (1, 2).

Trigalloyl-glucose. A2. (2) Amorphous yellowish brown mass.
(3) [C₆H₂(OH)₂CO]₂C₆H₃O₆. (4) Cold H₂O, CH₂OH, C₂H₅OH, acetone, ethyl acetate, pyridine. (5) α_D²⁰, -118° (dry acetone, 2.5%). (6) Deep violet (1, 2).

Trigalloyl-glycerol. A2. (2) Amorphous yellowish brown mass. (3) [(OH)₃C₅H₂CO]₃C₃H₄O₃. (4) H₂O, acetone, ethyl acetate, warm ether. (6) Deep blue (1, 4).

α-Trigalloyl-levoglucosan. A2. (2) Micro. hexagonal crystals. (3) $C_{27}H_{22}O_{17}$. (4) Hot acetone. (5) α_D^{18} , -18.0° (C_1H_4OH , 19%). (6) FeCl₂ gives blue-black ppt. in C_2H_4OH solution. (7) Decomposes 250°-300°, carbonizes 320° (26).

β-Trigalloyl-levoglucosan. A2. (2) Micro-needles. (3) C₂₇H₂₁-O₁₇. (5) α_D¹⁸, -21.0° (C₂H₅OH, 1%). (6) FeCl₁ gives blue-violet ppt. in C₂H₅OH solution. (7) Decomposes 270°, carbonizes 320° (28).

III. CATECHOLS OR CATECHINS

d-Catechol. (1) Acacia and gambier catechus. (2) Thin needles. (3) $C_{15}H_{14}O_6.4H_{2}O$ (20). (4) $C_{2}H_{5}OH$, ethyl acetate, pure ether. Anhydrous form almost insoluble in latter two. (5) α_{578} , +17° (50% acetone, 9%) (14, 15, 19, 20). α_{578} , ±0° ($C_{2}H_{5}OH$) (20). α_{D} , -2° ($C_{2}H_{5}OH$) (20). α_{D}^{18} , -0.47° ±0.03° ($C_{2}H_{5}OH$, 9%); +3.7° ±0.5° (50% $C_{2}H_{5}OH$, 9%). α_{D}^{20} , +18.4° ±0.9° ($H_{2}O$, 0.9%, increasing markedly with temperature decrease) (14). (7) For discussion of structural formula see (20, 29, 33). M. P. 93°-95°; anhyd., 174-5°.

l-Catechol. (1) Isolated from acacia and gambier catechus. (2) Thin needles. (3) $C_{15}H_{14}O_{6.4}H_{2}O$. (5) α_{576} , $\pm 0^{\circ}$ ($C_{2}H_{5}OH$); α_{576} , -16.8° (50% acetone, 3%) (20). (7) M. P. 93°-95°; anhyd., 174°-175° (19, 20).

dl-Catechol. (1) Principal constituent of catechol separated from acacia catechu. (2) Thin needles. (3) C₁₅H₁₄O₆.3H₂O. (7) Is "acacatechin" (19). Sinters at 100°, melts 214°-216° with decomposition (19, 20).

Catechol-a. (1) Acacia catechu (33, 35). (3) C₁₅H₁₄O_{6.3}H₂O (35). (7) Is dl-catechol (14). Methylated "acacatechin" has same melting point and crystal form as synthetic methyl compound (14). M. P. 204°-205° (35).

Catechol-b, Gambier catechol. (1) Gambier catechu (33, 35). (7) Identical with d-catechol in crystal form, melting point, solubility, and constitution.

Catechol-c. (1) Gambier catechu. (2) Small pale yellow prisms (35). (3) $C_{15}H_{14}O_{6}$. (7) Identified as *d*-epicatechol (20). M. P. 235°-237° (35).

Chinese rhubarb catechol. (5) α_{578} , +18° (50% acetone) (15). Mahogany catechol. (5) α_{D} , +23° (50% acetone). α_{578} , +16° (50% acetone); +15° (C₂H₅OH) (15).

Paullinia catechol. (5) Inactive in C_2H_3OH . α_D , +3.7° (50% acetone) (15).

d-Epicatechol. (2) Thick prisms. (3) $C_{15}H_{14}O_{6.4}H_{7}O.$ (5) α_{578} , +68.9° ($C_{2}H_{5}OH$, 7%); +59.9° (50% acctone, 4%). (7) M. P. 245° (20).

l-Epicatechol. (1) Gambier and acacia catechus (19). (2) Thick prisms. (3) $C_{15}H_{14}O_{6.4}H_{2}O$ (19, 20). (5) α_{578} , -68.2° ($C_{2}H_{5}-OH$, 6%): -59.0° (50% acetone, 4%) (19, 20). (7) M. P. 245°.

- dl-Epicatechol. (1) Gambier and acacia catechus (19). (2)
 Exists both as prisms and needles. (3) C₁₆H₁₄O₆.4H₂O. (7)
 M. P. of prisms, 224°-226° (20).
- d-β-Gambier catechol-carboxylic acid. (2) Micro-needles. (3) $C_{16}H_{14}O_{5}$. (5) α_{20}^{20} , +12.6° (H₂O, 5%); +17.6° (C₂H₅OH, 7%). (7) M. P. 249°-251° with evolution of CO₂ (30).
- *l*-β-Gambier catechol-carboxylic acid. (2) Large needles. (3) $C_{16}H_{14}O_{3}$. (5) α_{15}^{16} , -22.4° ($H_{2}O$, 5%). α_{15}^{17} , -31.6° ($C_{1}H_{5}-OH$, 6%). (7) M. P. 258°-261° with evolution of CO_{2} (30).
- dl-G-Gambier catechol-carboxylic acid. (3) $C_{16}H_{14}O_{5}$. (7) M. P. 252°-253° with evolution of CO_{2} (30).

The relationship between the catechols and epicatechols is shown as follows:

M = mixing; Ra = racemizing; Re = rearrangement (20).

LITERATURE

(For a key to the periodicals see end of volume)

- Fischer, Untersuchungen über Depeide und Gerbstoffe, 1919. (2) Fischer and Bergmann, 25, 51: 298; 18. (3) Idem., 25, 51: 1760; 18. (4) Idem., 25, 52: 829; 19. (8) Fischer and Freudenberg, 8, 384: 225; 11. (6) Idem., 25, 45: 915; 12. (7) Idem., 25, 45: 2709; 12. (8) Idem., 25, 47: 2485; 14. (8) Fischer and Rapaport, 25, 46: 2389; 13.
- Freudenberg, 25, 52B: 177; 19. (11) Idem., 25, 52B: 1238; 19. (12) Idem., 25, 53B: 1416; 20. (13) Idem., Die Chemie der natürlichen Gerbstoffe, 1920. (14) Freudenberg, Böhme and Beckendorf, 25, 54B: 1204; 21. (15) Freudenberg, Böhme and Purrmann, 25, 55B: 1734; 22. (16) Freudenberg and Fick, 25, 53B: 1728; 20. (17) Freudenberg, Orthner and Fekentacher, 8, 436: 286; 24. (18) Freudenberg and Peters, 25, 53B: 953; 20. (19) Freudenberg and Purrmann, 25, 55B: 1185; 23.
- (20) Freudenberg and Purrmann, 8, 437: 274; 24. (21) Freudenberg and Vollbrecht, 8, 429: 284; 22. (22) Idem., 25, 55B: 2420; 22. (22) Freudenberg and Scilasi, 25, 55B: 2813; 22. (24) Freudenberg and Walpuski, 25, 54B: 1695; 21. (28) Iljin, 52, 82: 422; 10. (24) Karrer and Salomon, 37, 5: 108; 22. (27) Karrer, Salomon and Peyer, 37, 6: 3; 23. (28) Karrer, Widmer and Staub, 8, 423: 288; 23. (29) Nierenstein, Abderhalden's Biochemisches Handlexikon, vol. 7, 1912.
- (36) Nierenstein, 4, 121: 23; 22. (31) Idem., 54, 41: 29; 22. (32) Idem., 1, 46: 2793; 24. (33) Perkin, 4, 87: 398; 05. (34) Perkin and Everest, The Natural Organic Coloring Matters, 1918. (35) Perkin and Yoshitake, 4, 81: 1160; 02. (36) Vollbrecht, 259, 1921: 1.

SOURCE AND TANNIN CONTENT OF VEGETABLE TANNING MATERIALS

The names and tannin contents listed were taken from the literature at large for what they may be worth; in some cases the information given may be considerably in error. The place grown may indicate either the place where the sample analyzed was grown or the place where the material grows in abundance. In

the majority of cases, at least, the tannin contents are supposedly those of the air-dried material.

In using the tannin figures, it should be recognized that they are not true tannin contents, but merely figures obtained by methods open to very serious question. A number of slightly different methods were used, but all conformed roughly to the following general scheme. A solution of the tanning material of concentration confined to certain limits was treated with lightly chrome-tanned hide powder until no tannin was left in solution; i.e., the solution no longer gave a precipitate with gelatin solution. The decrease in concentration of all matters in solution was then taken as the measure of the tannin content. Obviously all substances of a slightly acid nature would be removed to some extent by the hide powder and hence all figures must be high where these are present.

The probable magnitude of the error was shown by Wilson and Kern for a number of the commoner tanning extracts. By first freeing the tannin solution of tannin by shaking with hide powder and then freeing the hide powder from nontannin by washing, they were able to estimate the tannin by the increase in weight of the dried hide powder. The tannin contents so obtained differed in many cases by startling amounts from those obtained by the methods generally accepted as official.

The comparison is with the official method of the American Leather Chemists' Association, which is similar in principle to the methods employed in other countries.¹

	Per cent tannin found		
Tanning material	A. L. C. A. method	Wilson-Kern method	
Chestnut wood extract	25.80	11.90	
Gambier extract	24 . 95	7.79	
Hemlock bark	10.06	6.17	
Hemlock bark extract	26.68	23.38	
Oak bark extract	24.20	12.88	
Osage orange extract	39.87	13.37	
Quebracho extract	68.01	47.41	
Spruce bark extract	22.14	11.71	
Sumac extract	25.51	16.29	
Sumac leaves	25 .56	9.61	
Wattle bark extract	33.55	24.16	

Many of the tanning materials are leached on a large scale by extract manufacturers and the concentrated extracts are available on the market showing a tannin content by the A. L. C. A. and similar methods of from 20 to 35% for liquid extracts and from 45 to 70% for solid extracts.

It may be assumed that nearly every form of plant life contains some tannin. The following list is not complete but is intended to serve as a guide to those whose interests might be directed into these fields of work.

¹ For a detailed comparison of the methods and their interpretation, see J. A Wilson, *The Chemistry of Leather Manufacture*, p. 215-31 (The Chemical Catalog Co., New York, 1923).

SOURCE AND TANNIN CONTENT OF VEGETABLE TANNING MATERIALS

Botanical name	Common name	Place grown	Per cent tannin
Abies alba	White spruce	Northern America	Bark 7-13
Abies canadensis	Hemlock fir	Northern America	Bark 8-15
Abies dumosa	Hemlock spruce	Northern America	Bark 10
Abies excelsa	Norway spruce	Northern Europe	Bark 7-13
Abies grandis	Lowland fir	California	Bark 9
Abies pectinata	Silver fir	Europe	Bark 6-15
Acacia acuminata	Raspberry jam wood	Australia	Bark 7-15
	Angica	Brazil	Bark 20-25
Acacia angica	1 -		Bark 5-9
Acacia anema	Mulga	New South Wales	.
Acacia arabica	Babul	India	Bark 12-20
			Pods 20-42
Acacia binervata	Black wattle	Australia	Bark 30
Acacia catechu	Cutch	India	Wood ext. 60
Acacia cavenia	Espinillo	South America	Pods 18–21
	Lispinino	South America	Bark 6
Annin pobil	Red cebil	A	∫ Bark 10–15
Acacia cebil	Red cebii	Argentina	Leaves 6-7
Acacia cunninghamii		Queensland	Bark 9
Acacia curupi	Curupy	South America	Bark 18
Acacia dealbata	Wattle	Africa and Asia	Bark 17-23
Acacia decurrens	Wattle	Australia	Bark 17-25 Bark 18-51
Acacia granulosa	11 2000	New Caledonia	
	Varran		Bark 12
Acacia homalophylla	Yarran	New South Wales	Bark 9
Acacia horrida	Doornbosch	Cape Good Hope	Bark 8-18
Acacia koa	Koa tree	Hawaii	Bark 18
Acacia leptocarpa		Queensl an d	Bark 10
Acacia longifolia		Cyprus	Bark 15
Acacia melanoxylon	Blackwood	New South Wales	Bark 11
Acacia meianox ywn	Diackwood	New South Wates	Leaves 3
A construction 1 Access	36	1	Bark 18-27
Acacia microbotrya	Manna wattle	Australia	Leaves and twigs 20
Acacia mollissima	Green wattle	Australia	Bark 12-47
Acacia neriifolia		Australia	Bark 14
Acacia oswaldi	Miljie	Australia	Bark 10
Acacia penninervis	Hickory	Europe	Bark 14-38
Acacia podalyriaefolia	lickory	Queensland	Bark 14-36
• •		1 -	
Acacia polystachya		Queensland	Bark 18
Acacia pycnantha	Golden wattle	Australia	Bark 40-50
Acacia salicina		Australia	Bark 6-8
Acacia sentis		New South Wales	Bark 6
Acacia seyal	Talh	Sudan	Bark 18
Acacia sp	Gallol	Somaliland	Bark 24
Acacia spiralis	Guaic	New Caledonia	Bark 17
Acer campbellii	Himalayan maple	India	Bark 3
Acer campestre	Field maple	Europe	Bark 4
Alchornea triplinervia	Tapia gwazu-ih	Paraguay	Bark 12
Allophylus edulis	Koku	Paraguay	Bark 10
Alnus firma	Minibari	Japan	Fruits 25
Alnus glutinosa	Alder	Europe	Bark 16-20
Alnus incana	Grey alder	1 *	
	"	Europe	Bark 10
Alnus maritima	Hannoki	Japan	Fruits 25
Alnus oregona	Red alder	Pacific states	Bark 9
Anacardium occidentale	Kashew nut	India	Bark 9
Anogeissus acuminata	Yon	India	Bark 10
			Bark 16
Amondianus Intifolia	Dhama	T- 4:-	Leaves 10-18
Anogeissus latifolia	Dhawa	India	Shoots 20-30
	1		Red tips 54
Anogeissus pendula		India	Bark 9
A puleia praecox	Yhvihra-pere		· · · · · ·
1 paicia praecos	Bearberry	Paraguay Russia	Bark 11
		1 DUSSIS	Leaves and twigs 14
Arctostaphylos uva-ursi	· .		,
Arctostaphylos uva-ursi Areca catechu Aspidiosperma polyneuron	Betelnut palm	India Paraguay	Fruits 10–15 Bark 3

Botanical name	Common name	Place grown	Per cent tannin		
			Leaves 27–28		
Aspidiosperma quebracho-blanco	White quebracho	Argentina	Bark 4		
1	The state of the s		Wood 3		
Banksia integrifolia	Coast honeysuckle	Queensland	Bark 11		
Banksia serrata	Heath honeysuckle	Australia	Bark 11-23		
Bauhinia vahlii		India	Bark 9		
Betula alba		Northern Europe	Bark 2-18		
Betula lenta		Northern America	Bark 3-18		
Boswellia serrata		India	Bark 13		
Bruguiera gymnorrhiza		East Africa	Bark 22-52		
Bruguiera parviflora		Philippines	Bark 7-13		
·	- Languary	1	Bark 27-42		
Bruguiera rhumphii	Mangrove	New Caledonia	Root bark 6		
ay wood or the more than the second of the s	mang.0vc	Tien candania	Root wood 9		
Bumelia obtusifolia	Pihkasurembiu	Paraguay	Bark 8		
Byrsonima cydoniaefolia	Mureci	Bolivia	Bark 20		
Byrsonima spicala	Tamwood	South America	Bark 44		
abralea sp		Paraguay	Bark 5		
aesalpinia brevifolia		Chile	Pods 43-67		
aesalpinia cacolaco		Mexico	Pods 40-55		
aesalpinia coriaria		Central America	Pods 30-50		
aesalpinia digyna	Tari	India and Burma	Pod cases 40-60		
			Pods 15–23		
Caesalpinia melanocarpa	Guyacan	Argentina	Wood 8		
Caesalpinia tinctoria	Celavinia	Central America	Pods 30-32		
allitris calcarata	Australian fir	Australia	Bark 17-31		
allitris glauca		Australia Australia	Bark 12-15		
amellia thea	Tea	Asia and Africa	Leaves 5-10		
	1ea	India	Leaves 8-12		
Carissa spinarum	Tarwar	India	Bark 16-22		
		· ·	Bark 11-15		
Cassia fistula	Amaltas	South India	Pod husk 17		
			Bark 6		
Castanea pubinervis	Japanese chestnut	Japan	Wood 7		
	r	Southern Europe	Bark 6-8		
Castanea cesva	Spanish chestnut	Southern U. S.	Wood 7-11		
Castanopsis chrysophylla	Western chinquapin	Pacific states	Bark 8		
astanopsis ettrysophytta		Indo-China	Bark 12		
	Ironwood	New Caledonia	Bark 10		
Casuarina	ľ	Southern Asia	Bark 11-18		
Casuarina equisetifolia					
Casuarina glauca	I	New South Wales	Bark 12		
Seanothus velutina		Western U. S.	Leaves 17		
Ceriops candolleana		India and Africa	Bark 24-42		
Ceriops roxburghiana		India	Bark 13		
Ceriops tagal		Philippines	Bark 24-37		
Cleistanthus collinus		m	Bark 33 Bark 7		
		Paraguay	[
Copaifera lansdorfii	Kupaih	Paraguay	Bark 17		
Copaifera lansdorfii	Kupaih French sumac	Paraguay France	Bark 17 Leaves 15		
Copaifera lansdorfii	Kupaih French sumac	Paraguay France India	Bark 17 Leaves 15 Leaves 20		
Copaifera lansdorfii	Kupaih French sumac Tutu	Paraguay France India New Zealand	Bark 17 Leaves 15 Leaves 20 Bark 16–17		
Copaifera lansdorfii	Kupaih French sumac Tutu Hazel	Paraguay France India New Zealand Europe	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5		
Copaifera lansdorfii	Kupaih French sumac Tutu Hazel	Paraguay France India New Zealand	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5 Pods 43–51		
opaifera lansdorfii. Foriaria myrtifolia Foriaria nepalensis Foriaria ruscifolia Forylus avellana Forylus inctoria	Kupaih French sumac Tutu Hazel Tara	Paraguay France India New Zealand Europe	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5		
Topaifera lansdorfii. Toriaria myrtifolia Toriaria nepalensis Toriaria ruscifolia Torylus avellana Toulteria tinctoria	Kupaih French sumac Tutu Hazel Tara	Paraguay France India New Zealand Europe Algeria and Peru	Bark 17 Leaves 15 Leaves 20 Bark 16-17 Bark 5 Pods 43-51 Wood 21		
Copaifera lansdorfii. Coriaria myrtifolia Coriaria nepalensis Coriaria ruscifolia Corylus avellana Coulteria tinctoria Crossostylis multiflora.	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5 Pods 43–51 Wood 21 Bark 3		
Copaifera lansdorfii. Coriaria myrtifolia Coriaria nepalensis Coriaria ruscifolia Corylus avellana Coulteria tinctoria Crossostylis multiflora Cryptomeria japonica Cupania sp	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar Cedrillo	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan Paraguay	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5 Pods 43–51 Wood 21 Bark 3 Bark 6		
Copaifera lansdorfii. Coriaria myrtifolia Coriaria nepalensis Coriaria ruscifolia Corylus avellana Coulteria tinctoria Crossostylis multiflora Cryptomeria japonica Cupania sp. Cupania uraguensis	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar Cedrillo Kambuata	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan Paraguay Paraguay	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5 Pods 43–51 Wood 21 Bark 3 Bark 6 Bark 16 Bark 18		
Copaifera lansdorfii. Coriaria myrtifolia. Coriaria nepalensis. Coriaria ruscifolia. Corylus avellana. Coulteria tinctoria. Crossostylis multiflora. Cryptomeria japonica. Cupania sp. Cupania uraguensis. Cupania vernalis.	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar Cedrillo Kambuata Yaguarataih	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan Paraguay Paraguay Paraguay Paraguay	Bark 17 Leaves 15 Leaves 20 Bark 16–17 Bark 5 Pods 43–51 Wood 21 Bark 3 Bark 6 Bark 16 Bark 18 Bark 15		
Copaifera lansdorfii. Coriaria myrtifolia Coriaria nepalensis Coriaria ruscifolia Corylus avellana Coulteria tinctoria Crossostylis multiflora Cryptomeria japonica Cupania sp Cupania vernalis Cupania vernalis Cupania sp	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar Cedrillo Kambuata Yaguarataih Yhsapih-ih	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan Paraguay Paraguay Paraguay Paraguay Paraguay Paraguay	Bark 17 Leaves 15 Leaves 20 Bark 16-17 Bark 5 Pods 43-51 Wood 21 Bark 3 Bark 6 Bark 16 Bark 18 Bark 15 Bark 6		
Copaifera lansdorfii. Coriaria myrtifolia. Coriaria nepalensis. Coriaria ruscifolia. Corylus avellana. Coulteria tinctoria. Crossostylis multiflora. Cryptomeria japonica. Cupania sp. Cupania uraguensis. Cupania vernalis. Dalbergia sp. Dioscorea atropurpurea.	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar Cedrillo Kambuata Yaguarataih Yhsapih-ih Cu-nao	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan Paraguay Paraguay Paraguay Paraguay Indo-China	Bark 17 Leaves 15 Leaves 20 Bark 16-17 Bark 5 Pods 43-51 Wood 21 Bark 3 Bark 6 Bark 16 Bark 18 Bark 15 Bark 6 Tubers 20		
Cocos romanzoffiana Copaifera lansdorfii Coriaria myrtifolia Coriaria nepalensis Coriaria ruscifolia Corylus avellana Coulteria tinctoria Crossostylis multiflora Cryptomeria japonica Cupania sp Cupania uraquensis Cupania vernalis Dalbergia sp Dioscorea atropurpurea Elaeocarpus grandis Elephantorrhiza burchellii	Kupaih French sumac Tutu Hazel Tara Bush mangrove Japanese cedar Cedrillo Kambuata Yaguarataih Yhsapih-ih Cu-nao Blue fig bark	Paraguay France India New Zealand Europe Algeria and Peru New Caledonia Japan Paraguay Paraguay Paraguay Paraguay Paraguay Paraguay	Bark 17 Leaves 15 Leaves 20 Bark 16-17 Bark 5 Pods 43-51 Wood 21 Bark 3 Bark 6 Bark 16 Bark 18 Bark 15 Bark 6		

Botanical name	Common name	Place grown	Per cent tannin
Eremophila longifolia	Emu bush	New South Wales	Bark 5
	Smarked mum	Assatuatio	Leaves 10
Eucalyptus accedens	Spotted gum Mountain gum	Australia Australia	Bark 18 Bark 30–32
Eucalyptus alba	, 0	New South Wales	1
Eucalyptus amygdalina	Ribbon gum	New South Wales	Gum 58-65 Gum 28
T	Disalmand	New South Wales	Leaves 18
Eucalyptus corymbosa	Bloodwood	New South Wales	
77 1 4 21 1 1	77	A	Bark 6
Eucalyptus diversicolor	Karri	Australia	Bark 16-20
Eucalyptus erythronema	•	Australia	Bark 30
Eucalyptus falcata		Australia	Bark 5-32
Eucalyptus globulus	Eucalyptus	Australia	Sap 28 Leaves 17
Eucalyptus gunnii	Red gum	New South Wales	Bark 11
Eucalyptus longifolia	Woolly-butt	Australia	Bark 8
Eucatypius tongijotia	Woolly-butt	Australia	Gum 45
Eucalyptus maculata	Spotted gum	New South Wales	Bark 10
Eucatypius macutata	Spotted gum	New South Wates	
Fucaluntus loranhlaha	York gum	Australia	Leaves 5 Bark 5–10
Eucalyptus loxophleba Eucalyptus obliqua		New South Wales	Bark 5-10
Eucalyptus occidentalis	Black mallet	New South Wales Australia	Bark 20–26
•	Red mallet	Australia	Bark 40-50
Eucalyptus occidentalis astringens Eucalyptus odorata	White box	New South Wales	Leaves 7
••	White box	New South Wates	Gum 32–62
Eucalyptus piperita	Messmate	New South Wales	Leaves 13
Eucalyptus platypus	Round leaf moort	Australia	Bark 25
Eucalyptus redunca	Wandoo	Australia	Bark 16-20
Eucalyptus redunca oxymitra	Blue leaf mallet	Australia	Bark 22-30
Eucalyptus robusta	Mahogany	Florida	Leaves 12–17
Eucalyptus rostrata	Blue gum	Australia	Bark 16
Eucalyptus salmonophloia	Salmon gum	Australia	Bark 8-13
Eucalyptus salubris	Gimlet	Australia	Bark 16-19
——————————————————————————————————————			Gum 35–73
Eucalyptus siderophloia	Red iron bark	New South Wales	Bark 10
			Leaves 6
Eucalyptus sieberiana	Cabbage gum	New South Wales	Bark 37
Eucalyptus spathulata	Swamp mallet	Australia	Bark 26
F	1	Name Cauth Wales	Bark 13
Eucalyptus stellulata	Black gum	New South Wales	Leaves 17
Eventuation of the state of the	Apple	New South Wales	Bark 5
Eucalyptus stuartiana	Apple	New South Wates	Leaves 10
Eucalyptus torquata	Flowering gum	Australia	Bark 17
Eucalyptus viminalis	Manna gum	New South Wales	Bark 8
Lawrey peace venturates	Maina guin	New Bouth Wates	Leaves 4
			Bark 43
Eugenia braziliensis	Yhva-poroitih	Paraguay	Leaves 17
		1	Wood 12
Eugenia jambolana	Java plum	India	Bark 19
Eugenia jambos		Brazil	Bark 12
Eugenia maire		New Zealand	Bark 16-17
Eugenia michellii	0.	Paraguay	Bark 29
Eugenia pungens	Yhva viyu	Paraguay	Bark 11
Eugenia smithii		Australia	Bark 17
Eugenia sp	Yhvajhay puihta gwazu	Paraguay	Bark 16-29
Exocarpus cupressiformis	Native cherry	Australia	Bark 15-16
Fiscus sp	Kili bark	Sudan	Bark 19
Fusanus acuminatus	1 •	Australia	Bark 19
Garicinia mangostana	Mangoustan	Cochin-China	Fruit shells 14
Grevillia striata	Beefwood	Australia	Bark 18
Guarea sp		Paraguay	Bark 10
Hakea glabella		Australia	Bark 18
Hakea leucoptera	I	New South Wales	Bark 11
Heritiera fomes	Sundri bark	India	Bark 7

Botanical name	Common name	E TANNING MATERIALS.—(Co	Per cent tannin
		i	Bark 14-15
Hopea odorata		India	Leaves 11
•			Wood 10
Hopea parviflora	Ironwood	India	Bark 17-22
Hydnora longicollis	Ganib	Africa	Roots 32
Inga affinis		Paraguay	Bark 26
Inga fevillei	Paypay	Peru	Pods 12-15
Juniperus recurva		Japan	Bark 8
Krameria triandria		Peru	Root bark 20
Larix dahurica		Japan	Bark 9
Larix europaea	Larch	Europe	Bark 9-10
Larix occidentalis	Western larch	N. W. United States	Bark 11 Wood 7
Laurus lingue		Chile	Bark 17-19
Leuceadendron argenteum	Silver tree	Cape Good Hope	Bark 9-16
Leucospermum conocarpum		Cape Good Hope	Bark 10-22
Ludwigia caparossa	Caparossa	Brazil	Bark 20-25
Lysiloma candida		Lower California	Bark 26
Maclura pomifera		Texas	Wood 11
Malpighia faginea		Mexico	Bark 26
Malpighia punicifolia	1	Nicaragua	Bark 20-30
Mimosa farinosa	1	Argentina	Bark 4
Mimosa pudica		India	Roots 10
Mimosa sp	1	Paraguay	Bark 11 Leaves 4–5
Myrica asplenifolia	1	Michigan	Roots 4-6
Myrica nagi	Box myrtle	India	Bark 13-27
Nauclea gambir	Gambier	East Indies	Leaves and twigs 5-6
Ocolea bullata	377 .1	South Africa	Bark 6
Ocotea sp	1	Paraguay	Bark 11
Osyris abyssinica		Transvaal	Leaves and twigs 13-25
Osyris arborea		Northern India	Leaves 20
Osyris compressa		Cape Good Hope Chile	Leaves 17-23
Oxalis gigantea Paullinia sorbilis		Brazil	Bark 25 Fruit 43–55
Peltophorium dubium		Paraguay	Bark 31
emophoreum auseum	Thvinia punica	Taraguay	Leaves 12-24
Pentacme suavis		India	Bark 7-13
		111111111111111111111111111111111111111	Wood 4
			Stoned fruit 26–35
Phyllanthus emblica	Amla	India	Leaves 23–28
			Bark 15-24
Phyllocladus asplenifolia	Celery-topped pine	Tasmania	Bark 23
Phyllocladus rhomboidalis		Tasmania	Bark 21
Phyllocladus trichomanoides		New Zealand	Bark 28-30
Picea glehni	1	Japan	Bark 19
Picea silchensis	A Committee of the Comm	Pacific states	Bark 12-18
Pinus cembra	1	Alpine Europe	Bark 3-5
Pinus densiflora		Japan	Bark 6
Pinus halepensis		Mediterranean coasts	Bark 10-15
Pinus Khasya		Burma	Bark 7-10
Pinus longifolia		India	Bark 11-14
Pinus muricala		California	Bark 13
Pinus radiata	•	California	Bark 14
Pinus sylvestris		Northern Europe	Bark 4-5
Pinus thunbergii		Japan	Bark 6
Piptadenia cebil		Argentina	Bark 15
Piptadenia rigida		Paraguay	Bark 28
Pistacia lentiscus	1	Mediterranean India	Leaves 12–19
Pistacia orientalis		India Marias	Galls 30–40
Pithecolobium dulce	1	Mexico	Bark 15-25
Polygonum amphibium		Missouri	Roots 22 Branches 17
Polygonum bistorta	1	England	Roots 16-21
	1	1	1 20000 20 22

Botanical name	Common name	Place grown	Per cent tannin
Populus tremula	Poplar	Europe	Bark 3
Prosopis oblonga	Abu-surug	Sudan	Bark 14
Protea grandiflora		Cape Good Hope	Bark 15-16
Protea mellifera	Sugarbush	Cape Good Hope	Bark 18-25
Pseudotsuga taxifolia		Pacific states	Bark 7
e settation tayla vally of tax	Douglas in	1 acinc states	Fruit rind 27–30
Desir to a manufacture	Damaina ata	India	Kernel 32
Punica granatum	Pomegranate	India	11:
	İ		Bark 18-22
Quebrachia lorentzii	Quebracho	South America	Wood 20-30
•	1 *		Bark 6–8
Quercus aegilops	Valonia	Mediterranean	Acorns 17-40
Quercus agrifolia		California	Bark 19
Quercus alba	White oak	Northern America	Bark 7
Quercus californica		California	Bark 10
Quercus cerris	•	Southern Europe	Galls 35
Quercus chrysolepis	1 *	Pacific states	Bark 7-12
	I	Mediterranean	Bark 10-18
Quercus coccifera			
Quercus coccinea	Scarlet oak	United States	Bark 8
Quercus densiflora	Tanbark oak	California	Bark 10-29
Quercus dentata	Japanese oak	Japan	Bark 11
	Japanese oak	Japan	l Wood 7
Quercus fenestrata		Northern India	Bark 10-16
Quercus garryana	Pacific post oak	Pacific states	Bark 6-7
• •		_	Bark 9
Quercus grosseserrala	Water oak	Japan	Wood 2
Quercus ilex	Evergreen oak	Southern Europe	Bark 5-11
•		India	Bark 22
Quercus incana			
Quercus infectoria	1	Turkey	Galls 24-60
Quercus lamellosa	I .	Northern India	Bark 8-10
Quercus lineata		Northern India	Bark 11
Quercus lobata	White oak	California	Bark 12
Quercus mirbechi	l .	Algeria	Bark 8
			Acorn cups 13-15
Quercus pachyphylla	Sungra katus	Northern India	Bark 12-13
• · · · · · · · · · · · · · · · · · · ·			Leaves 10
Quercus prinus	Chestnut oak	United States	Bark 9-12
Quercus pseudocornea	Gie-quang	Indo-China	Bark 16
Quercus pseudocornea	Gle-qualig	Indo-China	Bark 9-12
Quercus robur	Common oak	Europe and U. S.	{ - · · · · · · · · · · · · · · · · · ·
		-	Wood 2-4
Quercus rubra	Red oak	Northern America	Twig galls 35
			Bark 4-6
Quercus spp	Gie-bob	Indo-China	Bark 11
Quercus suber	Cork oak	Europe	Bark 12-19
Quercus tozae		Southern France	Bark 14
Quercus velutina	Black oak	United States	Bark 6-12
Quercus wislizeni	Highland oak	California	Bark 7-8
Rheedia braziliensis	Pakuri	Paraguay	Bark 22
		1 ~ •	Bark 26-32
Rhizophora conjugata	Mangrove	Philippines	,
Rhizophora mangle	Mangrove	Tropical coasts	Bark 15-42
		_	Leaves 22
Rhizophora mucronata	Mangrove	Asia and Africa	Bark 21–48
Rhus copallina	Sumac	United States	Leaves 17-38
Rhus coriaria	Sicilian sumac	Sicily	Leaves 25-32
Rhus cotinus	Venetian sumac	Italy	Leaves 17
Rhus cotinoides	Sumac	United States	Leaves 21
Rhus glabra	White sumac	United States	Leaves 15-25
	•	United States	Leaves 8
Rhus metopium	1		
Rhus mysorensis	1	Southern India	Bark 20
Rhus pentaphylla	Tizra sumac	Morocco	Roots 29
			Wood 23
Rhus rhodanthema	Deep yellow wood	New South Wales	Bark 23
with thoughtime ma			
Rhus semialata		America and Asia	Leaves 5

Botanical name	Common name	Place grown	Per cent tannin
Rhus succedanea	Sumac	India	Leaves 20
Rhus thunbergii		Cape Good Hope	Bark 28
Rhus typhina	Virginian sumac	Virginia	Leaves 10-18
Robinia pseudacacia	Black locust	Europe	Bark 2-7 Wood 3-4
Rollinia sp	Aratiku gwazu	Paraguay	Bark 4
Rumex hymenosepalum	Canaigre	Mexico	Roots 25-30
Rumex maritima	Docks	Europe	Roots 22
Sabal palmetto	Cabbage palmetto	Florida	Roots 10-18
Sabal serrulata	Saw palmetto	Florida	Leaves 13
Salix alba	White willow		Bark 9
Salix arenaria	Willow	Russia	Bark 13
Salix caproea		Japan	Bark 8-12
Salix fragilis	Willow		Bark 9-12
Salix lasiandra		California	Bark 2
Salix purpurea		Japan	Bark 8
Salix viminalis	1	Russia	Bark 7-10
Schinus molle	Molle	Argentina	Leaves 19
		<u> </u>	Heartwood 4-12
Sequoia sempervirens	Redwood	Pacific states	Sapwood 1-2
		}	Bark 1-3
Shorea obtusa		India	Bark 9
•		T 1:	Wood 6-7
Shorea robusta	Sal bark	India	Bark 6-15
Sonneratia pagatpat	Pagatpat	Philippines	Bark 11-12
Spermole psis gummifera	Oak gum	New Caledonia	Bark 17 Resin 43–80
Statice coriaria	Marsh rosemary	Southern Russia	Roots 20-22
Stryphnodendron barbatimao	Barbatimao	Brazil	Bark 18-27
		1	Galls 26-56
Tamarix africana	Tamarisk	Mediterranean	Twigs 9
T	Tomorish	Manage	Leaves 9
Tamarix articulata	Tamarisk Jhao	Morocco India	Galls 43–56 Bark 10
Taxus cuspidata	Yew	Japan	Bark 10
Terminalia arjuna	Kahua	India	Bark 18-24
Terminalia belerica	Bedda	India	Nuts 12
Terminalia catappa	Badamier	India	Bark 12-25
Terminalia chebula	Myrobalan	India	Nuts 30–40
Terminalia glabra	Kumbuk	Cevlon	Bark 27-32
Terminalia mauritiana	Jamrosa	India	Bark 30
	The	Malam	Bark 31
Terminalia oliveri	Thann	Malay	Leaves 14
Tormentilla erecta		Europe	Roots 20-46
Trichilia catigua	Kaatigua puihta	Paraguay	Bark 21
Trichilia hieronymi	Kaatigua moroti	Paraguay	Bark 23
Tsuga canadensis	Hemlock	Northern America	Bark 7-12
Tsuga heterophylla	Western hemlock	Pacific states	Bark 9-16
Umbellularia californica	California laurel	California	Bark 16
Vateria indica	C	India	Fruit 25
Weimannia glabra	Curtidor	Venezuela	Bark 10–13 Bark 27
Woodfordia floribunda	Itcha	India	Leaves 15
Ximenia americana	Alimu	Sudan	Bark 17 Bark 9–19
Xylia dolabriformis	Jamba	Burma and India	Wood 4
Xylocarpus granatum	Piagao	Africa and Asia	Bark 21-48
Xylocarpus obovatus	Tabique	Philippines	Bark 22-25
Zizyphus nummularia	Ber	India	Bark 10
Zizyphus xylopyra	Gothar	India	Fruit flesh 23

LITERATURE

(For a key to the periodicals see end of volume)

The following periodicals, reports and books were used in the above compilation: 45; 54; 157; 257; 258; 258; 260; 261; 262; 263; 264; 266; Reports. Freiberg Experiment Station; Reports, Australian Institute of Science and Industry; U. S. Department of Commerce, Reports; H. R. Procter, Principles of Leather Manufacture, New York, 1922; J. Dekker, Die Gerbstoffe, Berlin, 1913; A. Harvey, Tanning Materials, London, 1921; J. A. Wilson, The Chemistry of Leather Manufacture, New York, 1923.

Electrical Potential Difference (P. D.) between Tannin Particles and Solutions of Tanning Extracts

1. Extracts from Different Sources

Ender of a	Concn. g dry	P. D.
Extract of	solids per l	(volts)
Gambier	18.7	-0.005
Oak bark	17.0	-0.009
Chestnut wood	17.8	-0.009
Hemlock bark	16.7	-0.010
Sumac leaves	19.6	-0.014
Spruce bark	19.5	-0.018
Osage orange wood	1	-0.018 (?)
Quebracho wood	11.0	-0.028

2. Effect of Removal of Nontannin by Dialysis

Extract of	Initial concn. g dry solids per l	Hours dialyzed	Final concn. g dry solids per l	P. D. (volts)	
Gambier	32.8	24	21.0	-0.029	
Hemlock bark		24		-0.024	
Sumac leaves	16.0	24	8.6	-0.026	
Osage orange	16.0	24	10.9	-0.024	
Quebracho wood	16.0	60	9.6	-0.033	

3. Effect of Concentration of Quebracho Extract

Concn. g dry solids per l	P. D. (volts)
4.0	-0.030
8.0	-0.029
16.0	-0.028
32.0	-0.024

4. Effect of Addition of Acid (16 g solid quebracho extract per l)

0.1N HCl added per l	P. D. (volts)
0.0	-0.024
10.0	-0.014
15.0	-0.010
20.0	approx. zero

LITERATURE

Thomas and Foster, 45, 14: 191; 22. 15: 707; 23.

LEATHER

JOHN ARTHUR WILSON

CONTENTS	Matières	Inhaltsverzeichnis	INDICE PAGE
Types studied.	Genres de cuirs étudiés.	Die untersuchten Lederarten.	Tipi studiati 250
Composition.	Composition.	Zusammensetzung.	Composizione 251
Tensile strength, elongation and resistance to stitch tear.	Résistance à la traction, allongement et résistance au déchirement du point de couture.	Reissfestigkeit, Dehnbarkeit, Nähfestigkeit.	Prova di resistenza, allungamento e resistenza nella cucitura 251
Absorption of water from moist air.	Absorption de l'eau à partir de l'air humide.	Wasseraufnahme aus feuchter Luft.	Assorbimento di acqua dall'aria umida 253
Swelling by water.	Gonflement à l'eau.	Quellung in Wasser.	Rigonfiamento nell'acqua 253-
Permeability to water vapor and to air.	Perméabilité à la vapeur d'eau et à l'air.	Durchlässigkeit für Wasser- dampf und Luft.	Permeabilità al vapor d'acqua e all'aria 253
Resilience.	Rejaillessement.	Elastische Nachwirkung.	Rimbalzo 254
TYPE Ind. No.	GENRES DE CUIRS	DIE UNTERSUCHTEN LEDERARTEN	TIPI DI PELLE
1. Colored, vegetable-tanned calf.	Veau teint, tanné au végétal.	Farbiges longares Kalbleder.	Vitello al tannino, colorato.
2. Colored, chrome-tanned calf.	Veau teint, tanné au chrôme.	Farbiges Chromkalbleder.	Vitello al cromo, colorato.
3. Black, chrome-tanned, glazed kid.	Chevreau verni, noir, tanné au chrôme.	Schwarzes Chromchevreaux.	Cuoio morbido di montone; glacé tinto in nero al cromo.
4. Black, chrome-tanned kangaroo.	Kangourou noir, tanné au chrôme.	Schwarzes chromgares Kängu- ruhleder.	Pelle di canguro al cromo, tinta in nero.
5. Black, vegetable-tanned horse butt (Cordovan).	Croupon de cheval, tanné au végétal (Cordovan).	Schwarzer lohgare Rosspiegel (Cordovan).	Culatta di cavallo al tannino tinta in nero (Cordovano).
6. Colored, chrome-tanned, buffed and split cow hide (buck).	Cuir de vache teint, tanné au chrôme, refendu et effleuré (façon daim).	Farbige chromgare, gebuffte Rindernarbenspalte (buck).	Pelle di vacca al cromo, spac- cata, scamosciata, colorata.
7. Colored, chrome-tanned side (split cow hide).	Bande entière de vache (refendue) teinte, tannée au chrôme.	Farbige chromgare Rindspalte.	Fianco di vacca (spaccata) al cromo, colorato.

251 **LEATHER**

- 8. Black, chrome-tanned slink calf (suede).
- 9. Uncolored, vegetabletanned calf (shoe lining).
- 10. Uncolored. vegetabletanned sheep (shoe lining).
- 11. Black, vegetable-tanned shark.
- 12. Patent, chrome-tanned side (split cow hide).
- 13. Patent, chrome-tanned kid.
- 14. Patent, chrome-tanned colt.
- 15. Heavy, black, chrometanned cow hide.
- 16. Chrome-re-tan, army upper leather (split cow hide).
- 17. Vegetable-tanned steer hide (sole leather).
- 18. Chrome-tanned steer hide (sole leather).

Each analysis was made on one representative skin of each type. The same 18 skins were used to make all measurements listed in this section, thus making all properties of any one type directly comparable and related to chemical composition.

Veau mort-né noir, tanné au chrôme (façon suède).

Veau naturel, tanné au végétal (doublure de chaussure).

Mouton naturel, tanné au végétal (doublure de chaussure).

Requin noir, tanné au végétal.

Bande entière de vache (refendue), vernie, tannée au chrôme.

Chevreau verni. tanné chrôme.

Poulain verni, tanné au chrôme.

Cuir de vache, fort, noir, tanné au chrôme.

Cuir d'empeigne pour l'armée, semi-chrôme (peau de vache refendue chrômé, puis retanné au végétal).

Cuir de génisse, tanné au végétal (cuir de semelles).

Cuir de génisse, tanné au chrôme (cuir de semelles).

Chaque analyse a été effectuée sur une peau représentative de chaque genre de cuir. On a utilisé les mêmes 18 peaux pour faire toutes les mesures mentionnées dans cette section. De la sorte, toutes les propriétés de chaque genre de cuir sont directement comparables et en relation avec la composition chimique.

(suède).

Ungefärbtes lohgare Kalbleder (Schuhfutterleder).

Ungefärbtes lohgare Schafleder (Schuhfutterleder).

Schwarzeslohgare Haifischleder.

Rindspaltlack-Chromgares leder.

Chromchevreauxlackleder.

Chromgares Rosslackleder.

Schweres schwarzes Chromrindleder.

Nachchromiertes Militäroberleder (Rindspalte).

Lohgares Rindleder (Sohlenleder).

Chromgares Rindleder (Sohlenleder).

Jede Analyse wurde an einem besonderem Vertreter einer Hauttype gemacht. Dieselben 18 Häute sind für alle Messungen die in diesem Abschnitt angeführt werden, verwendet worden. Eswerdendadurchalle Eigenschaften jeder einzelnen Type direkt vergleichbar und in Beziehung zur chemischen Zusammensetzung gebracht.

Schwarzes chromgare Kalbleder Pelle di vitello (feto) al cromo, tinta in nero (tipo svedese).

> Vitello al tannino in color naturale (fodera da calza-

> Montone al tannino in color naturale (fodera da calzature).

> Pelle di squalo al tannino, tinta in nem

> Fianco di vacca (spaccata) al cromo, brevettato.

> Cuoio morbido di montone al cromo, brevettato.

Puledro al cromo, brevettato.

Pelle di vacca al cromo tinta in nero, pesante.

Cuoio di vacca (spaccata) superiore per l'esercito, riconciato al cromo.

Pelle di giovenco al tannino · (cuoio da suola).

Pelle di giovenco al cromo (cuoio da suola).

Ogni analisi fu fatta sopra un campione rappresentante ciascun tipo di pelle. Gli stessi 18 campioni furono usati per eseguire tutte le misure indicate in questa sezione, risultando così tutte le proprietà di ogni singolo tipo direttamente paragonabili ed in rapporto alla composizione chimica.

line midway between backbone and belly edge. The leather was in equilibrium with an atmosphere of 50% relative humidity. The stitch tear was made with Irish flax shoe thread No. 6 slipped through a hole 2 mm from the leather edge.

l = average thickness; $TS = \text{tensile strength in kg per cm}^2$ of original cross section; S = stretch (a) at 13.6 kg per 2.54 cm width,(b) at 225 kg per cm²; ST = stitch tear.

Ind.	l	TS	97	ST	
No.	mm	kg/cm ²	(a)	(b)	kg
1	1.19	422	5	17	13
2	1.00	327	7	22	10
3	0.76	409	20	34	8
4	0.52	508	16	24	9
5	1.12	113	14	53	7
6	0.92	201	9	34	5
7	1.22	213	11	36	10
8	0.63	156	19	36	1
9	0.93	310	11	27	8
10	0.87	200	13	35	6
11	0.80	118	35	84	5
12	1.09	90	10	69	3
13	0.96	217	17	42	7
14	1.43	228	13	46	8
15	2.94	182	8	54	27
16	2.48	346	6	29	28
17	6.28	191	1	23	38
18	4.80	100	1	70	21

Composition, % at 50%						RELATIVE HUMIDITY (1)										
Ind. No.	н.о	Skin protein	Fat	H,804	Na,80,	HCI	NaCl	CaO	MgSO.	Al ₂ O ₃	Fe ₂ O ₃	Cr ₂ O ₃	Organic water soluble	Collodion	Combined tannin by diff.	Other organic matter by diff.
1	13.6									0.4			9.1		23.5	
2	16.3				0.4					1.2						5.0
3	13.7				0.9					0.2						6.6
4	12.0				0.2	0.3				0.1		3.0		- 1	- 1	5.1
5	10.0							0.1		- 1	0.1		8.7		21.8	
6	14.1				0.3			0.2		1.0			i	.		3.6
	16.3				1.0		0.3			0.2			- 1		- 1	2.1
-	12.7		7.1		0.4	0.2				1.0	1.2	5.4				15.8
_	11.9					اء ؞		0.2 0.1		0.1			12.3	Ī	21.8	
	10.9 12.2		6.1 6.9		ı	0.6		0.1		0.1	0.1	ı	13.0 5.4		17.4 28.4	
	10.1				0.6	ا. ۸		0.1		0.1				9.0	28.4	14.4
	11.8				0.8	0.1		0.2		0.1				8.4		12.2
	13.0					ا ،	- 1			0.1				6.1	- 1	9.1
	14.4				0.4		n 4	-	- 1		0.7			٠.٠	1	2.9
- 1	15.1				0.3		0.4	8 I	- 1	0.3				- 1		15.2
	14.6				ا			Ca80	0.8	- 1	0.7	- · -	35.6		14.6	
	16.3				12.3	0.8						1.7				1.4
	F-17															

TENSILE STRENGTH, STRETCH AND STITCH TEAR (1)

Each value recorded is the average of 3 determinations. The strips for strength and stretch were cut with a die 2.54×15.24 cm and the jaws of the testing machine were initially 10.16 cm apart. The 3 strips from each skin were cut with their lengths parallel to the backbone and spaced equally between head and tail end along a

AREA CHANGE WITH RELATIVE HUMIDITY

Measurements were made after 30 days contact at 25°C. The samples were kept in desiccators over sulfuric acid solutions of 37.5, 17.6, 13.6, 11.8, 10.2, 6.6, and 0.0 normalities to maintain the relative humidities at 0, 20, 40, 50, 60, 80 and 100% respectively.

T- 3	% incr	ease in ar	ea with in	creasing r	elative hu	midity
Ind. No.			Relativ	e humidit	y	
210.	20	40	50	60	80	100
1	3.6	4.2	4.5	4.8	5.5	5.7
2	7.7	10.0	10.3	11.5	12.4	16.0
3	3.4	4.6	4.8	5.5	7.5	15.6
4	5.7	6.9	6.9	7.5	10.9	19.0
5	2.0	3.0	3.0	3.2	3.4	4.0
6	6.7	7.5	7.7	8.8	10.5	14.7
7	6.7	7.7	8.0	9.2	10.5	15.8
8	8.0	10.7	10.9	11.7	11.9	13.8
9	5.3	6.5	6.7	6.9	7.5	9.2
10	4.2	5.5	5.5	5.9	8.2	9.4
11	4.0	4.9	5.1	5.3	5.7	8.0
12	5.5	6.3	6.3	6.9	8.6	10.5
13	5.3	5.9	6.1	6.5	7.1	9.6
14	4.5	6.3	6.3	6.5	8.2	13.0
15	7.1	8.0	8.0	9.2	10.9	16.9
16	6.5	7.7	8.0	8.4	9.0	11.5
17	1.0	1.4	2.7	3.0	3.0	5.5
18	3.8	4.5	5.9	6.3	7.7	13.0

Fig. 1.—Variations in strength and resistance to stretch for calf leather from different parts of the skin (3).

Tensile strength given in kg per cm². Percentage stretch measured under load of 225 kg per cm².

Tensile strength less than 170 kg.
Stretch greater than 60 %.
Tensile strength 170 to 260 kg.
Stretch 60 to 26 %.

Tensile strength 260 to 350 kg.
Stretch 26 to 20 %.
Tensile strength greater than
350 kg.
Stretch less than 20 %.

WATER CONTENT AT DIFFERENT RELATIVE HUMIDITIES (1, 2)

Ind. No.	g water per 100 g dry leather after 30 days relative humidity of %											
110.	0	20	40	50	60	80	100					
1	1.4	10.8	14.0	15.7	17.9	21.2	39.6					
2	2.1	12.4	18.1	19.5	21.0	27.9	53.4					
3	2.9	10.6	14.2	15.9	18.1	27.3	62.2					
4	0.4	9.3	12.6	13.6	15.4	22.8	51.7					
5	1.8	7.0	9.8	11.1	11.8	15.6	22.9					
6	2.2	11.7	15.4	16.4	17.4	25.1	47.8					
7	1.8	12.1	17.2	19.5	20.8	25.9	54.5					
8	0.3	9.4	13.4	14.5	15.8	20.9	59.5					

WATER CONTENT AT DIFFERENT RELATIVE HUMIDITIES (1, 2).—
(Continued)

Ind. No.	g wat			ry leat humidi			ys at
No.	0	20	40	50	60	80	100
9	0.9	8.8	12.1	13.5	16.1	19.6	32.0
10	1.1	8.2	11.3	12.2	14.6	19.6	48.4
11	2.4	10.2	12.7	13.9	14.3	17.1	38.1
12	0.7	8.5	10.4	11.2	12.6	18.5	36.9
13	1.9	10.5	12.7	13.4	14.6	20.7	39.5
14	2.0	9.6	12.4	13.6	15.1	22.7	57 .5
15	1.2	12.9	15.1	16.8	17.7	21.9	49.6
16	4.4	12.5	16.4	17.8	18.4	21.1	37.8
17	3.4	12.2	17.0	17.1	18.3	21.7	43.6
18	8.6	14.9	18.1	19.5	20.6	24.5	50.4

Load in Kilogrems per Square Centimeter of Leather Cross Section Fig. 2.—Effect of oil content (4).

Fig. 3.—Relative strengths of splits of vegetable-tanned calf leather compared with unsplit leather. Average tensile strength of skin 324 kg/cm²; average thickness 0.91 mm. Strengths in chart are given per unit width, not cross section (*).

LEATHER 253

Fig. 4.—Percentage gain or loss in strength per unit cross section of chrome calf leather with change of relative humidity. The difference between the two curves reflects the volume change in the leather with relative humidity. Leather with high fat content shows much less change in strength with relative humidity (*).

Fig. 5.—Effect of relative humidity of 1 atmosphere upon passage of water into it from an atmosphere kept at 100% relative humidity through vegetable-tanned calf leather and through free space (•).

Fig. 7.—Effect of oil content of leather (6).

Fig. 8.—Effect of quantity of casein used as finishing material (*).

VENTILATING PROPERTIES Effect of kind of skin and tannage (1)

Ind. No.	1	2	3	4	5	6	7	8	9
1 mm	1.08	1.00	0.73	0.53	1.15	0.88	1.22	0.60	0.88
P_w^* , %	70	70	70	65	54	95	74	97	79
$P_A\dagger$	197	67	249	185	41	1183	369	1820	246
Ind. No.	10	11	12	13	14	15	16	17	18
1 mm	0.88	0.89	1.01	0.99	1.37	2.59	2.31	6.28	4.80
Pw*, %	78	89	6	9	5	38	49	34	4
$\underline{P_A}\dagger \dots$	251	1416	0	0	0	45	179	43	0

*Pw, % permeability to water vapor, is defined as 100 times the ratio of the rate of passage of water from an atmosphere of 100% relative humidity to one of zero humidity through a given area of the leather sample, of thickness, 1, to the rate of a similar passage of water through an equal area of free space at the same temperature. In these measurements, the area chosen was 1,267 cm² and the temperature 25°C.

†P_A, permeability to air, is defined as the rate of flow of air (cm²/min per cm² of leather) through thickness 1, under the pressure difference, atmospheric to 35 mm Hg.

Effect of temperature, Fig. 6; effect of relative humidity, Fig. 5.

Fig. 6.—Effect of temperature upon passage of water from an atmosphere of 100 % relative humidity to one of zero relative humidity through vegetable-tanned calf leather and through free space (*).

Fig. 9.—Effect of quantity of collodion used as finishing material (*).

Relative resilience is defined as the percentage rebound of a brass plunger (weighing 48.5 g and having a contact area of 0.70 cm²) when dropped from a height of 60 cm upon a thickness of 3 mm of leather backed by a solid maple block. Relative humidity 50%.

The relative resilience is decreased by an increasing content of either water or oil.

RESILIENCE (1, 7)

Ind. No	· ·									,	,				,	
Rel. resilience	22	26	28	24	16	23	21	21	222	1 23	19	22	23	17	11/3	917

LITERATURE

(For a key to the periodicals see end of volume)

Wilson et. al., \$61, \$21: 193, 198, 241; 26.
 Wilson and Gallun, \$5, \$16: 268; 24.
 Wilson, \$45, \$17: 829; 25.
 Wilson and Gallun, \$45, \$16: 1147; 24.
 Wilson and Kern, \$45, \$18: 312; 26.
 Wilson and Lines, \$45, \$17: 570; 25.
 Wilson, \$61, \$20: 576; 25.
 Wilson and Kern, \$61, \$21: 250; 26.

RUBBER, GUTTA-PERCHA AND BALATA

G. STAFFORD WHITBY

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Latex.	Latex.	Latex.	Latex 255
Chemical composition of raw	Composition chimique de caout-	Chemische Eigenschaften des	Composizione chimica di
rubber.	chouc cru.	Rohgummi.	caucciù crudo 258
Physical properties of raw	Propriétés physiques de caout-	Physikalische Eigenschaften des	Proprietà fisiche di caucciù
rubber.	chouc cru.	Rohgummi.	crudo
Viscosity.	Viscosité.	Viskosität.	Viscosità
Tensile properties.	Résistance à la traction.	Dehnbarkeit.	Comportamento alla tra-
			zione 261
Various types of Hevea.	Hevea des types diverses.	Verschiedene Arten von Hevea.	Hevea di tipi diversi 262
Factors in preparation.	Facteurs de la préparation.	Herstellung.	Fattori nella prepara-
			zione 263
Non-Hevea rubber.	Caoutchouc non-Hevea.	Andere Gummiarten.	Caucciù non-Hevea 264
Vulcanized rubber.	Caoutchouc vulcanisé.	Vulkanisierter Kautschuk.	Caucciù vulcanizzata 264
Physical properties.	Propriétés physiques.	Physikalische Eigenschaften.	Proprietà fisiche
Tensile properties.	Résistance à la traction.	Dehnbarkeit.	Comportamento alla tra-
•			zione 266
Mechanical hysteresis.	Hystérésis mécanique.	Hysteresis.	Isteresi meccanica 267
Hardness.	Dureté.	Härte.	Durezza 269
Resistance to tearing.	Résistance au déchirement	Reissfestigkeit.	Resistenza allo squarcia-
			mento 269
Compressibility.	Compressibilité.	Kompressibilität.	Compressibilità 269
Thermal properties.	Propriétés thermiques.	Thermische Eigenschaften.	Proprietà termiche 269
Absorption.	Absorption.	Absorption.	Assorbimento 269
Imbibition of liquids.	Imbibition des liquides.	Aufsaugbarkeit für Flüssig- keiten.	Imbibizione di liquidi 271
Solubility of solids in rubber.	Solubilité des solides en	Löslichkeit fester Stoffe im	Solubilità di solidi nel
	caoutchouc.	Kautschuk.	caucciù
Permeability.	Perméabilité.	Permeabilität.	Permeabilità 272
Electrical properties.	Propriétés électriques.	Elektrische Eigenschaften.	Proprietà elettriche 272
Milling.	Moulage.	Einfluss des Mahlens.	Getto 276
Softeners.	Amollissants.	Erweichungsstoffe.	Rammollitori 277
Accelerators.	Accélérateurs.	Beschleuniger.	Acceleratori
Compounding ingredients.	Additions diverses.	Füllmassen.	Aggiunte diverse 286
Aging.	Viellissement.	Altern.	Invecchiamento 290
Hard rubber.	Caoutchouc durci.	Hartgummi.	Caucciù duro
Gutta-Percha and balata.	Gutta-percha et balata.	Gutta-Percha und Balata.	Guttaperca e balata 294

ABBREVIATIONS

- T_B Breaking load expressed unless otherwise stated as kg per cm² unstrained cross section
- E_B Ultimate elongation (percentage of unstrained length)
- T_x Stiffness, expressed as the load (kg/cm² unstrained cross section) required to produce an increase in length x times the unstrained length
- E_T Stiffness, expressed as the percentage elongation produced by a load T kg/cm² unstrained cross section
- V. C. Vulcanization coefficient
- D_{20} Plasticity expressed as the thickness of a disc (0.4 g) after 30 min in a Williams' plastometer at 100° under a load of 5 kg
- ΔD Plasticity expressed as D_{25} – D_{35}
- Cure Unless otherwise indicated, the period of vulcanization required to give an optimum or standard "cure."
- Viscosity, expressed unless otherwise indicated as the time of flow of a 1% solution in benzene relative to the time of flow of the pure solvent.

LATEX Specific Gravity

Average Undiluted Latex.—0.97 to 0.98 (197). Serum from Normal Latex.—1.016 to 1.025 (197). Globules in Latex.—0.914 (181).

Table 1.—Variation with Rubber Content of Original Undiluted Latex (197)

UN	DILUTED	LATEA	()		
g rubber/100 cm ³	50	45	40	35	30
d _t	0.9620	0.9678	0.9736	0.9794	0.9852
g rubber/100 cm³	25	20	17	15	10
d,	0.9910	0.9968	1.0003	1.0026	1.0084

Table 2.—Temperature Coefficient of Specific Gravity of Latex (81)

Sp. gr	0.9900	0.9850	0.9800	0.9750
Corr. 1° 0.00030	0.00034	0.00038	0.00042	0.00046

Viscosity

Table 3.—Viscosity of Original Latex with and without NH₃ (191)

% rubber co	35	30	25	20	15	
η/η _w at 30°	Without NH:	12-15	8	5-6	4	
	With NH ₂ *		4-5.5	3–4	2.5	2

^{*} Viscosity falls on keeping.

Table 4.—Influence of Dilution on Viscosity of Ammoniated Latex (94)

Ra	tio	%	d ²⁰	1	in Engler simeter
Latex	Water	solids	<i>a</i> ₄	Sec	Deg. Engler
5	0	48.5	0.963	110	2.1
4	1	37.5	0.972	75	1.42
2.5	2.5	24.25	0.981	65	1.23
2	3	18.7	0.983	60	1.15
1	4	9.4	0.992	50	1.0

Surface Tension (10)

Drop No.—(a) water, 31; (b) latex diluted with equal volume of water, 37 to 40; (c) 2% NH₃, 37 to 38; (d) c after 2 months, 49 to 50.

Miscellaneous

Fresh Latex.—pH: 5.8 to 6.4 (10), 6.2 to 6.6 (20); acidity: 0.02 to 0.04N (phenolphthalein) (190); alkalinity: 0.002 to 0.008N (methyl red) (190).

Potential Difference between Surface of Particles and Surrounding Liquid (Ammoniated Latex).— -35 millivolts (145).

Size and Shape of Globules (19, 66, 225).

Rubber Content

Table 5.—Distribution of Rubber Content in Latex from 245 7-yr Old Trees (211) Mean: 36.58 + 0.25%

			00.00		-0 /0				
g/100 cm³]	23	24-5	26-7	28-9	30-1	32–3	3 34-5	5 36-7
Number of trees		4	2	7	11	16	27	44	35
g/100 cm ³ 3	8-9	40 –1	1 42–3	44-5	46-7	48-9	50-1	1 52-3	54-5
Number of trees	23	12	1 17	12	5	1 1	4	1 3	12

Influence of severity of tapping (181) and of resting trees (179, 181) on rubber content of latex; cf. Tables 7, 8.

Chemical Composition

Acetaldehyde in Latex.—0.006 g/l (91). Trace of NH₂ present (91).

Heat-Coagulable Protein in Serum.—After coagulation by acetic acid, 0.15% (rubber content of latex, 40%) (11); 0.115% (203); after coagulation by alcohol, 0.19% (203).

TABLE 6

		-			_
Component	a(7)	b(7)	c(7)	d(130)	e(71)
Total solids	30.0	22.0	25.8	32.4	
Rubber by coagulation			i	29.0	37.0
Solids in serum			Ì	3.4	2.91
Solids in dialysate	2.6	1.65	1.54	3.2	ì
Protein (non-diffusible, N ×				İ	
6.25)	1.26	0.87	1.04		i
Diffusible N:	1		ļ		1
Total	0.048	0.054	0.043	0.072	
Ammoniacal				0.0096	ļ

Total N (mean of 3 samples): 0.29 for f(11).

Dialysates from samples a, b, c (mean values)							
	Sugars*	Ash	SO ₂	P ₂ O ₅	CaO	MgO	K ₂ O
% latex	0.18	0.31	0.008	0.09	0.01	0.016	0.17
% ash		1	2 6	29.1	3.2	5.2	54.8

^{*} After inversion.

Serum solids from sample e, NH2 also present

	Ash	Protein (N × 6.25)	Sugars	Quebra- chitol
g/100 cm ³	0.53	0.34	0.25	1.45

Deposit Which Forms in Ammoniated Latex

Composition of deposit (ca. 0 to 7% of the latex) (3^7) , %: Of this deposit ca. 30% is volatile in steam in the presence of MgO.

	Sample 3*	Sample 5*
Rubber	ca. 30	ca. 30
Acetone extract	11.6	6.4
N insol. in Me ₂ CO	2.4	1.6
Fe ₂ O ₂	9.0	15.1
MgO	16.0	13.1
P ₂ O ₅	28 .0	23.6
K ₂ SO ₄	Tr.	Tr.

^{*} See Table 9.

Deposit consisting of NH₄MgPO₄, 0.3 to 1.1 g/l (190). Oxidases

Present.—Peroxidase (the chief oxidase; fatal temperature, 80 to 85°); oxidase; catalase; tyrosinase (fatal temperature, 70°). Optimum pH, 4.65 to 4.95, using citrate buffer solution; 8.13 to 8.28, using borax buffer solution. Inhibitory pH, 1.03; very sensitive to alkali (21).

Activators.—Ca and Mg salts (21, 207).

TABLE 7.—RUPBER CONTENT OF LATEX AND SOLID CONTENT OF SERUM UNDER DIFFERENT TAPPING SYSTEMS (203)

Tapping system	1 cut on 1	2 cuts on 1	2 cuts on ½	2 cuts on 1	2 cuts on ‡
Rubber content*	34.2	31.65	28.2	22.75	22.4
Solid content†	8.8	9.5	10.1	8.6	11.6

^{*} g/100 cm³ by coagulation. † Expressed on rubber %.

Table 8.—Influence of Resting Trees on Rubber Content of Latex and Solid Content of Serum (6)

Days after tapping began following long rest	1	3	12	18	22	33
Rubber content by coagulation (%)	43.0	39.3	31.5	35.8	21.8	14.8
Serum solids (% of rubber)	4.9	7.1	10.15	13.2	13.8	16.9

Ammoniated Latex

0.33% NH₃ will preserve latex in liquid condition, while 0.5%, giving an alkalinity of 0.25N (methyl red), is absolutely reliable (190).

Table 9.—Coagulation of Ammoniated Latex in Europe (37)

	Rubber	NH; conten	NH: content (% rubber)				
Sample content,		Added Found (in Ceylon) (In Europe		% CH ₂ CO ₂ H*			
1	33.2	0.89	0.82	4.4			
2	33 .0	1.19	1.00	4.46			
3	32.5	1.80	1.57	8.75			
4	31.8	2.40	2.17	12.2			
5	32 .6	2.92	2.73	15.8			

^{*} Per cent of acetic acid necessary for coagulation in excess of the acid equivalent to the NH, present.

Table 10.—Vulcanizing Properties of Rubber by CH₂CO₂H Coagulation from Latex Preserved with Different Proportions of NH₂ (37)

Pure gum mixture (ring-shaped test pieces)

Sample, cf. Table 9	Cure, min	T_B	E_B	E_{104}	Slope
1	115	164	855	777	35
2	130	157	859	781	36
3	126	144	842	786	37
4	125	147	840	771	36
5	125	164	874	784	36

Table 11.—Influence of Age of Ammoniated Latex on Vulcanizing Properties of Rubber (201)

Undiluted latex containing 0.72% NH₄; coagulated by CH₂CO₂H; stock: rubber, 92.5; S, 7.5%; vulcanized at 148°

		A	. 1			7			
	Aqueous extract, %	Acetone extract, %	Cure, min	179	Orig.	After 14 mo	Orig. in acid C ₆ H ₆		
Control	0.44	3.0	110	128	31	29	16		
Ammoniated:					1				
Same day	0.37	2.9	90	135	31	30	15.5		
Next day	0.54	3.2	70	143	27	30	17		
After 1 mo	0.23	3.2	105	143	53	22.5	19		
After 3 mo	0.22	3.9	100	124	56	28	18		

Table 12.—Ammoniated Latex Creamed by Centrifugation (129)

Stock: rubber, 92.5; S, 7.5; vulcanized for 90 min at 147°; coagulated by CH₂CO₂H

	Comp	Composition of rubber by evaporation, %						
	Rubber	H ₂ O	Acetone extract	Ash	Protein	Aqueous extract	8*	
Orig. latex	17.6	2.0	2.3	1.0	4.0	3.4	4.7	
Cream	48.0	0.6	1.8	0.4	1.8	0.4	3.9	
Skimmed latex	9.7	4.1	2.9	2.0	7.4	13.1	5.2	

^{*} Per cent combined S.

Latex with NaOH

0.5 to 1% NaOH will preserve latex in a liquid condition; 1.3% or more causes the separation of a paste or coagulation, the resulting rubber being of poor quality and becoming tacky on keeping (198).

Table 13.—Influence of Age of NaOH Latex on Rubber (Crepe) by CH₂CO₂H Coagulation (198)

Stock: rubber, 92.5; S, 7.5; vulcanized at 148° (ring-shaped test pieces)

Period after addition	Ash,	Aqueous extract, %	Acctone extract,	N, %	Cure, min	T_B	Slope	η
Control*	0.40	1.11	2.6	0.55	<35	133	39.5	24.5
Same day	0.31	0.37	3.0	0.52	<45	145	40	33
Next day	0.29	0.21	3.1	0.43	80	122	36.5	40.5
1.5 mo	0.40	0.28	3.7	0.42	60	122	37	36
3.5 mo	0.46	0.30	2.9	0.38	50	137	33	31
6 mo	0.34	0.38	3.4	0.50	110	132	38.5	33

^{*}Same day, no NaOH.

Table 14.—Rubber from Creamed NaOH Latex (198)
Latex containing 1.1% NaOH allowed to stand 2 yr; layers coagulated by CH₂CO₂H; crepe; stock: rubber, 92.5; S, 7.5; vulcanized at 148°.

	Cream	2nd layer	3rd layer	4th layer	Residue
% rubber content	62.8	50.0	45.8	26.8	4.4
% H ₂ O	0.67	0.95	1.72	1.66	1.68
% ash	0.55	0.58	0.65	0.73	1.22
% N	0.09	0.10	0.13	0.18	0.48
Cure, min	55	45	>25	35	
T_B	130	135	130	120	
Slope	34	34	34	34	
η (ordin.)	13	30	41	48	78
η (acid)	7	15	17.5	18.5	26
Plasticity:					
$D_{f 30},\ldots,$	0.88	1.15	1.36	1.29	1.16
$\Delta D \dots \dots \dots$	0.085	0.11	0.08	0.10	0.11

Vulcanization of Latex

Table 15.—Influence of Period of Vulcanization and of Character of the S on the Combined S (43)

Composition of mixture: 100 cm³ latex; 50 cm³ H₂O; 2 g S (rubber coagulated by acetone). Latex No. 1: rubber, 32.9%; NH₂, 0.6%. Latex No. 2: rubber, 30.15%; NH₂, 0.43%. Vulcanizing conditions: rise to 141°, 10 min; blow-off, 20 min.

	1	Combined	sulfur, %	_
Time at 141°,	Latex No. 1		Latex No.	2
min	Flowers	Flowers	Pptd.	Colloidal
0	0.18	0.13	0.23	0.47
20	0.59		0.85	1.56
30	į	0.46	1.04	1.87
60	0.91	0.55	1.47	2.44
120	1.07	1		2.64

Table 16.—Influence of Concentration of S (43) Composition of mixture: 100 cm³ latex (30.7% rubber; 0.43% NH₂); 50 cm³ H₂O; 1% S (calculated on rubber + S). Vulcanizing conditions: 10 min rise; 30 min at 141°; 20 min at blow-off.

S		Comb. S, %	E 60
g	% on rubber	Сошо. 5, %	(films)
1	3.26	0.64	1000
2	6.51	1.02	954
4	13.02	1.42	951
6	19.53	1.65	886

Table 17.—Vulcanization with Sodium Polysulfide (43) Composition of mixture: 120 cm³ latex (32.9% rubber, 0.6% NH₂); 10 cm³ sodium polysulfide (21.0% S on pptn.). Vulcanizing conditions: 10 min rise to 141°; 20 min blow-off.

Period at 141°, min	0	20	30	60	120
Combined S, %	0.31	0.85	1.02	1.42	1.88

Coagulation

Acidity Necessary for Coagulation.—By addition of acid, pH = 4.3 to 4.8 (10, 20). By addition of acid to ammoniated latex (dialyzed or undialyzed), pH ca. 5.5 (103). For spontaneous coagulation, pH = 4.8 to 5.6 (20).

CH, CO, H, ACETIC ACID

Table 18.—Proportion of CH₃CO₂H Used in Plantation Practice (189)

Rubber	15	%	25%		
For coagulation on	Same day	Next day	Same day	Next day	
CH ₃ CO ₂ H(g/l)	1-1.25	0.75	1.5	1	

Table 19.—Concentration of CH₂CO₂H Required to Coagulate Latex Diluted to Different Extents (189), cf. (188)

% rubber content	Ratio, acid:rubber	% rubber content	Ratio, acid: rubber
30	1:303	6	1:83.5
24	1:190	3	1:91
18	1:115	1.5	1:125
15	1:100	0.75	1:83.5
12	1:89		

Influence of excess CH₂CO₂H on properties of crepe: Double the minimum quantity increases time of cure 0 to 5 min; decreases viscosity 0 to 4. Four times minimum quantity increases time of cure 5 to 10 min for the stock: rubber, 92.5; S, 7.5, at 148°; decreases viscosity 2 to 7 (176).

Fig. 1.—Concentrations of hydrochloric acid producing coagulation in latex (31.8 % rubber, ca. 35 % total solids) diluted to different extents (188).

Fig. 2.—Concentrations of nitric acid producing coagulation in latex (28% rubber) diluted to different extents (100).

Fig. 3.—Concentrations of sulfuric acid producing coagulation in latex (28% rubber) diluted to different extents (100).

H₂SO₄, SULFURIC ACID

Proportion H_2SO_4 Used in Practice.—0.45 to 0.6 g/l latex (15% rubber).

Table 20.—Vulcanizing Properties of Crepe Rubber Prepared by H₂SO₄ (182)

Stock: rubber, 92.5; S, 7.5; vulcanized at 148° (ring-shaped test pieces)

N	ormal p	roportion		Double	the nor	mal prop	ortion
Cure, min	T_B	Slope	η	Cure, min	T_B	Slope	7
125	140	38	35	150	136	38.5	27

ALUM

Minimum Effective Proportions.—3 to 4 g/l.

Table 21.—Effect of Alum (Compared with CH₂CO₂H) on Properties of Crepe (182)

Alum (g/l)	3-4	10	20
Increase in time of cure, min	∢15	₹3 0	≮85
Decrease in viscosity	4-7	7-12	10-12

HCO2H, FORMIC ACID

The proportion of HCO₂H necessary for coagulation is about half the quantity of CH₂CO₂H (130); cf. Tables 18, 19.

Table 22.—Comparison of HCO₂H and CH₂CO₂H (101) Stock: rubber, 92.5; S, 7.5 %; vulcanized at 150° (ring-shaped test pieces, 11 samples)

Description	Cure, min	T_B	Slope	η
Smoked sheet:		•		
CH ₂ CO ₂ H	105	143	36.7	31
HCO ₂ H	109	141.5	36.7	35.5
Pale crepe:				
CH ₂ CO ₂ H	110	143.5	35.6	33
HCO ₂ H	113	143	35 .5	33

Stock: rubber, 100; S, 3; ZnO, 30; (CH₂)₆N₄, hexamethylenetetramine, 1; vulcanized at 150° (ring-shaped test pieces)

Vulcanization time in min	T_B	E_B	E180	T_B	E_B	E180
	Smoked	sheet, C	H,CO2H	Smoke	d sheet,	HCO ₂ H
40	185	784	693	173	784	714
50	173	751	678	173	766	695
60	176	763	688	174	769	693
70	146	738	712	167	763	698
80	146	772	748	131	764	762
	Pale c	repe, CF	I,CO,H	Pale o	repe, H	CO ₂ H
40	165	803	750	168	811	752
50	182	785	712	179	776	708
60	176	778	714	179	782	714
70	167	765	714	168	771	717
80	157	779	738	151	776	743

Stock: rubber, 100; S, 5; PbO, 10; vulcanized at 150° (ring-shaped test pieces)

Vulcanization time in min	T_B	E_B	E 100	T _B	E_B	E 100
	Smoked	sheet, C	H ₂ CO ₂ H	Smok	ed sheet,	HCO ₂ H
30	106	895	883	102	905	900
60	106	944	932	100	935	935
90	97	989	997	87	977	1000
120	79	1000	1056	84	1014	1060
	Pale c	repe, CI	I ₂ CO ₂ H	Pale	crepe, H	CO ₂ H
30	125	931	887	118	923	891
60	124	977	933	119	964	929
90	105	1014	1003	105	1006	995
120	94	1027	1042	99	1039	1040

Table 23.—Chemical Composition, %

	H ₂ O	Ash	Water extract	Acetone extract	N
Smoked sheet, CH ₃ CO ₂ H	0.75	0.35	0.75	3.4	0.49
Smoked sheet, HCO ₂ H.	0.72	0.30	0.58	3.4	0.47
Pale crepe, CH ₃ CO ₂ H	0.33	0.23	0.16	3.0	0.36
Pale crepe, HCO ₂ H	0.37	0.17	0.21	3.0	0.36

TABLE 24.—Aging Raw crepe rubber

				7		Plasticity	
	Cure,	T_B	Slope	C ₆ H ₆	HCl	1 100	
·	min	18	ыоре		+ C ₆ H ₆	D30	ΔD
Initial, CH, CO, H.	110	141	34	32	17	1.52	0.065
Initial, HCO ₂ H	<120	134	35	31	16.5	1.41	0.07
After 1 yr,			1			1	
CH ₂ CO ₂ H	120	141	35	27	16.5	1.58	0.07
After 1 yr, HCO ₂ H	>120	145	35	26	16.5	1.58	0.06

Table 24.—Aging.—(Continued)

Vulcanized rubber; stock: rubber, 92.5; S, 7.5; vulcanized at 150° (ring-shaped test pieces)

Cura min		Change in	
Cure, min	Initial	After 1 yr	E1 30
75, CH ₂ CO ₂ H	86	119	ca. 170
75, HCO₂H	86	118	ca. 170
120, CH ₂ CO ₂ H	133	17	
120, HCO₂H	140	16	

OTHER COAGULANTS

Hydrofluoric (57), citric (57), oxalic (57), tartaric (57), lactic (202), sulfurous acids (178); calcium chloride (208); alcohol (40); pyroligneous acid (58); freezing (58); electrolysis (187).

CHEMICAL COMPOSITION OF RAW RUBBER

TABLE 25.—Composition of Hevea Rubbers

	Number of	H ₂ O, %		Ash, %		Acetone extract, %		Protein, $\%$ (N \times 6.25)		Water extract,	Lit.
•	samples	Mean	Limits	Mean	Limits	Mean	Limits	Mean	Limits	%	
Latex crepe	102	0.61	0.30-1.08	0.30	0.15-0.87	2.88	2.26-3.45	2.82	2.17-3.76		(130)
Smoked sheet	35	0.42	0.18-0.90	0.38	0.25-0.85	2.89	1.52-3.50	2.82	2.18-3.50		(130)
Unsmoked sheet	25	0.58	0.32-1.30*	0.23	0.15-0.31	2.88	2.30-3.47	2.31	2.04-2.68		(35)
Fine hard Para				0.3		3		2.3		0.5	(183)
		1		1.10		4.25		4.2		6.50	(86)
Latex sprayed				1.5		4.7		4.2		7.1	(158)
		1.2		1.5		5.1		4.3		7.7	(128)
Kerbosch rubber		}	2.5 - 4.5		1.6 -2.2	2.2		5.0		1.5	(194)
Kerbosch rubber	i	1 4.2		1.9		2.5		4.5		4.1	(128)

^{* %} loss on washing.

TABLE 26.—MOISTURE CONTENT OF RAW RUBBER

	Number of	Moistur	e content, %
	samples	Mean	Limits
In the tro	pics (177)		
Latex crepe	54	0.67	0.34-1.01
Smoked sheet	96	0.76	0.43-1.16
Lump crepe	17	1.05	0.65-1.80
Scum or skimmings crepe	3	0.43	0.35-0.53
Washings crepe		0.55	0.27-0.78
Scrap crepe		1.16	0.68-1.64
Dark crepe		1.07	0.90-1.33
Earth crepe		0.70	0.60-0.81
In Europ			
Latex crepe	102	0.42	0.18-0.90
Smoked sheet	35	0.61	0.30-1.08
Fine hard Para, washed and air-			
dried			0.56
Caucho			0.31

Table 27.—Resin Content

Hevea.-v. Table 29.

Castilloa, %.—16.7, 18.9 (130); 5.4-52 (17 samples) (26). Ceara (Manicoba), %.—3.4, 6.8 (130); 2.0 (206).

Congo, %.—2.0, 4.4, 5.2 (130).

Kassai, Red.—3.8 (206).

Kassai, Black.-4.0 (206).

Jelutong.—76-81 (3 samples) (55).

Table 28.—Optical Activity of Resin from Various Rubbers (85)

Source	$[\alpha]_{\mathbf{D}}^{20}$		$[\alpha]_{\mathbf{D}}^{20}$
Upper Congo	12-13°	Padang	28-30°
Manaos	16-18°	Guayule	11-15°
Peruvian	29-31°	Kassai	29-30°
Jelutong	49-50°	PadangGuayule Kassai	

Table 29.—Saponifiability (130)

•	Danin	Unsaponifiable, %			
Rubber	Resin, %	Of the rubber	Of the resin		
Fine hard Para	3.0	0.8	25.4		
Hevea sheet	1.8	0.9	48.3		
Hevea crepe	3.2	0.7	22.0		
Castilloa	18.9	14.0	73.7		
Congo	4.4	3.0	68.3		
Jelutong	38.1	31.7	83.2		
Jelutong crepe	7.2	5.6	77.8		

TABLE 30.-NITROGENOUS CONSTITUENTS

Average N content of crepe and sheet, 0.45%; of slab, 0.21-0.30% (57).

A sample of crepe contained 0.40% N, representing 61.5% of the total N (0.11%) of the latex (57).

Properties of Rubber Proteins .- v. (11, 12, 150).

Nitrogen in Acetone Extract.—Crepe (2 samples), 0.04; sheet, 0.014; fine hard Para, 0.053; Manicoba, 0.069; Manihot, 0.041; Castilloa, 0.027; hard Congo, 0.013; soft Congo, 0.15% (130).

Table 31.—Constituents Identified in the Resin of Hevea

	Itub	BER	
Constituent	M. P., °C	$[\alpha]_{\mathtt{D}}^{t}$	Approximate % of the raw rubber
Smoked	sheet and	latex crepe (215)	•
Phytosterol ester	83	-11.0° (24°)	0.075
Sitosterol d-glucoside.	285-90 d	-41.7° (23°)	0.175
Phytosterol	125	$-24.6^{\circ} (23.5^{\circ})$	0.225
d-Valine	ca. 260 d	26.5° (16°)	0.015
Quebrachitol	190	-80.3° (20°)	Tr.
Stearic acid			0.15
Oleic + linoleic acids.			1.25

^{*}In slab (matured) rubber (28) acetic and valeric acids have been identified (probably as the NH₄ salt or amide); also valeramide, M. P. 102-3°, and palmitic and stearic acids (0.5-0.7%).

Table 32.—Acid Content
Water-soluble acids* by cold extraction for 24 hr (130)

Sheet					Ст	ере	
Num- ber of samples	Mean	Maxi- mum	Mini- mum	Num- ber of samples	Mean	Maxi- mum	Mini- mum
35	0.03	0.078	0.006	102	0.006	0.024	0.006

^{*} Results expressed as % acetic acid.

By extraction with boiling water (8, 50, 136). Pale crepe, 0-0.1%; smoked sheet, 0.055-0.25%.

Acetone-soluble acids

	1	R (213,	214, 222	1)		b (28)	
Kind of rubber	Num-	lum- Acid number*				Acid number*		
	ber of sam- ples	Mean	Maxi- mum	Mini- mum	ber of sam- ples	Mean	Maxi- mum	Mini- mum
Heven smoked sheet	19	275	314	234		292	300	284
Hevea latex crepe	12	282	296	272	ll			
Fine hard Para	12	218	384	100	ĮĮ.	215	ł	1
Hevea scrap (brown)			i	l		1		
crepe		151	223	92	li			i
Latex sprayed	3	453	534	301	2	273.5		1
Slab (matured rub-			l		II			l
ber):					ll .		l	l
Unwashed				ļ	3	851	896	818
Outside	1	256		ĺ	ll .			l
Interior	1	459	l		ll			
Washed	_	224			2	237.5	240	235
Palembang "plain					11			ŀ
sheet"	ł			İ	3		366	336
Caucho	1	57		ł	1			1
Kassai	1	75						l
Massai					2	182	182	166

e (34). Acid number: Fine hard Para, 294; Kassai, 32; Guayule, 240; Ceara, 172; Upper Congo, 43; Benguella, 60; Peruvian, 18; Accra lumps, 75.5.

Table 33.—Manganese Content (29)

	Number of	g Mn/100 kg			
	samples	Mean	Limits		
Sound rubber (fine hard Para, sheet, crepe, slab)			0.125-0.625		
Very tacky rubber (sheet, brown crepe)	5	20.0			

PHYSICAL PROPERTIES OF RAW RUBBER

Coefficient of cubical expansion: under no load, $\frac{10^{\circ}}{V} \frac{\mathrm{d}V}{\mathrm{d}t} = \mathrm{at}$ 10°, 657; 20°, 665; 30°, 670 (133). At constant length practically the same values hold as those for no load (99, 105, 133).

TABLE 34

	d_4^{20}	V _M ²⁰	n_D^t	M_D
Purified rubber (106)	0.9237		1.521920	22.46
Smoked sheet (106)	0.9217	73.8	1.520820	22.44
Pale crepe (164), cf. (42)			1.52515	
Synthetic methyl rubber (106)	0.9292	88.23	1.52520	27 .03

Viscosity of Raw Rubber and Its Solutions

RUBBER

TABLE 34A

Unmilled.—ca. 10²⁰ poise at 15.5° (1). (By extrapolation from values for solutions.)

Milled (77).

Period of milling, min	10	22	32	39
10 ⁻⁷ η at 100°	9.3	5.0	3.2	2.4

Heavily Milled.— $\eta = 22.4 \times 10^{5} \text{ at } 10^{\circ}; 2.29 \times 10^{5} \text{ at } 60^{\circ} (1).$

UNMILLED RUBBER SOLUTIONS

Ostwald viscosimeter used unless otherwise indicated

TABLE 35.—CASTILLOA RUBBER (65)

Resir	Resin	Relative viscosity in benzene							
Number of samples	content,	0.25%		0.5%		1.0%			
samples	%	Mean	Limits	Mean	Limits	Mean	Limits		
13	118.9-37.0	3.0	2.0-3.5	6.7	3.5-9.0	26.0	9.2-36.5		

For viscosity of 1 % solution in benzene of typical samples of Hevea rubber v. Tables 49, 57, 58.

Fig. 4.—Viscosity of plantation rubber in various solvents (67).

Fig. 5.—Viscosity of fine hard Para rubber in various solvents (67).

Table 36.—Concentrated Solutions in Benzene (1) Falling sphere method

Concentration, %	2	3	4	5	6
η at 15°, poise	5.04	35.63	162.8	464.4	1577

TABLE 37.—ONE PER CENT SOLUTION IN CHLOROFORM (113)

	Number	η/η_0 at 25°, centipoise			
	of samples	Mean	Limits		
Pale crepe	5	32.7	22.5-41.6		
Smoked sheet		22.9	16.3-26.6		

^{*} Acid number = mg KOH required to neutralize the acid in the acetone or alcohol extract from 100 g rubber.

Table 38.—Comparison of Viscosity in C_6H_6 , C_7H_8 and CCl_4 (130)

Solvent	San	nple No	. 1	Sa	mple N	o. 5
						CCl ₄
Concn	. 0.998	0.998	0.997	0.993	0.991	0.993
η/ηο	. 20.26	20.94	29.95	53.5	68.1	119.5
η/η _{CeH s soln.}					1.29	

Table 39.—Viscosity in Various Solvents at Various Concentrations (92)

g/100 cm² solvent	0.5	1	2	3
Benzine	1.9	4.3		94.0
Benzene	2.1	4.7	23.5	97.3
Carbon tetrachloride	2.6	7.5		211.3
Tetrachloroethane	2.5	6.9		168
Pentachloroethane	3.0	8.7	46.0	213.5

Variations of viscosity with concentration: (1) $\eta_x = k^x$, where $\eta_x =$ the viscosity at concentration x; k = a constant (67). (2) Log $\eta/\eta_0 = \theta C$, where $\eta =$ viscosity of solution, $\eta_0 =$ viscosity of solvent, C = concentration (147).

Fig. 6.—Influence of water on viscosity of benzene solutions (*2).

Table 40.—Influence of Heating on Viscosity (67)

Toluene solution at 40°

Period of heating, days	0	6	12
Time of efflux, sec	260	150	129

Xylene	solutions	at	80°
--------	-----------	----	-----

g/100 cm ³	Time of efflux, sec									
Period of heating	0.4	0.48	0.54	0.60	0.73	0.82				
0	61.5	73.0	87.0	104.5	138.0	187.0				
30 min	53 .0	62.0	74.0	89.5	120.0	161.0				
1 hr	51.0	60.0	70.0	81.5	111.5	148.0				
2 hr	46.5	57.0	64.0	73.5	105.0	132.0				
3 hr	44.0	56.0	62.0	69.0	98.0	124.5				

Xylene solutions heated 2 hr at 100°

	Number	Time of efflux, sec			
Rubber	of samples	Initial	After heating		
Fine hard Para	3	111-103	48-46		
Plantation Hevea	3	115-108	72-65		
Fine hard Para (45 min in cold)	1	118	81		
Funtumia	3	104-100	81-70		
Castilloa	2	111, 107	80.5, 78		
Ceara	1	118	90		

Law of diminution of viscosity with time of heating: $x = a + b \log t$, where x = diminution in time t; a = diminution in first unit of time; b = increment of diminution with time (67).

Fig. 7.—Viscosities at 18° of 0.5% solutions in xylene of two samples of plantation rubber heated for two hours at various temperatures (1°).

TABLE 41.—INFLUENCE OF ULTRA-VIOLET LIGHT* (13)

	Plantation					Fine	Par	18.		
Min exposed Viscosity†	0	15	30	45	60	0	15	30	45	60
Viscosity †	90	57	30	25	15	180	109	32	25	15

*Three per cent solution in xylene exposed at distance of 12 cm from quarts lamp (110 volts, 2.5 amp.).

† Frank-Mackwald viscosimeter.

Fig. 8.—Influence of diethylamine on the viscosity of a benzene solution of rubber (218).

MILLED RUBBER SOLUTIONS

Table 42.—Influence of Milling. 2% Solution in C₆H₆ (13)

Milling period, min	25	5	10	15	20	30	40	50	60
Time of flow, sec	1900	540	150	100	90	70	65	60	59

Table 43.—Effect of Temperature on Viscosity and Density Falling sphere method; heavily milled smoked sheet (10 g/100 cm² solution in C_6H_6) (1)

°C	11.3	14.6	20.0	30.0	42.0	50.0	62.0
d_4^t	0.890	0.887	0.881	0.871	0.859	0.851	0.840
77*	3.97	3.77	3.42	2.92	2.57	2.32	1.95

^{*} Expressed in poises.

Fig. 9.—Influence of acetic and the chloroacetic acids on the viscosity of a benzene solution of resin-free rubber (218); cf. (60, 150, 192).

TABLE 44.—VISCOSITY OF BENZENE SOLUTIONS OF HEAVILY MILLED RUBBER AT LOW CONCENTRATIONS (1)

Same sample as in Table 43 and Fig. 12

Concn	0	0.5	1.0	2.0	3.0
η , poises	0.0063	0.0124	0.021	0.055	0.131

Relation between viscosity and concentration (1): $\eta_c = \mathrm{Ke}^{\mathbf{k}\sqrt{c}}$, for c = 1 - 40, where $c = \mathrm{concn.}$; K and k are constants; $\mathbf{e} = \mathrm{base}$ Naperian logs.

TABLE 45.—INFLUENCE OF LIGHT (123)

Solutions of milled rubber in benzene exposed to light through a screen of benzene: (a) $3 \text{ g}/97 \text{ cm}^2$ benzene. (b) a + 0.06 g Sudan III/100 cm².

-	(a) exposed	(b) exposed	(b) protected
Initial viscosity	548.7	548.7	548.7
After 30 days	52 . 5	457.0	473.2
After 60 days	30.2	339.0	393.2

Fig. 12.—Viscosity of rubber solutions in C₆H₆; variation with temperature and concentration (falling sphere method) (1).

Fig. 13.—Ultra-violet absorption spectrum curve of ether solution of caoutchouc calculated on a 3 % solution in a 1 cm cell (102).

Tensile Properties TABLE 46

At room temperature: unmilled sheet (16 samples from a single sheet), T_B : 10.4 (limits: 7.8–18.1); E_B : 527 (limits: 423–616) (130). At low temperature; rubber calendered and then allowed to

age before testing (cross section of test pieces not stated) (101).

			Crepe			•	ne ha		
°C	-13	-21	-34	-50	-55	-13	-23	-37	-51
E_{δ}	425	320	275	120	50			290	250
Breaking load, kg.	8	20	40	40	20	3	4	40	20
E_{δ}	530	610	670	710	570	360	280	650	705
			weak				Cor		

	Fine weak Para			·II	Congo			
°C E ₅	-14	-23	-40	- 53	-15	-26	-42	-55
E_{δ}	510	460	440	120		520	440	20
Breaking load, kg. $E_B \dots E_B$	5	20	30	16	2			
E_B	510	700	790	610	500	520	850	640

Table 46.—(Continued)

At optimum temperature; E (%) for (a) crepe and (b) fine hard Para (101)

Load, kg	1	2	3	4	5	6	7	8	9
(a) at -34°	0	0	50	200	275	320	370	400	430
(b) at -37°	0	10	110	220	290	350	400	440	460
Load, kg	10	12	14	16	18	20	25	30	40
(a) at -34°	460	490	510	540	560	580	610	640	670
(b) at -37°	470	490	520	540	560	570	610	630	650

VARIOUS TYPES OF HEVEA

Vulcanizing Properties, Etc., of Various Types and Grades of Hevea Rubber

LATEX CREPE AND SMOKED SHEET

TABLE 47

Stock: rubber, 92.5; S, 7.5; vulcanized at 150° (ring-shaped test pieces)

Type of rubber	Number of samples	Cure, min	T_B	Slope	7/70\$	Lit.
Pale crepe*	1293	108.7 ± 7.6	142.4	35.4	33.5	(195)
Smoked sheet*.	853	105.9 ± 12.5	143.5	36.7	33.9	(195)
Pale crepe*†	101	109.2 ± 7.2	140.8	36.0	34.7	(195)
Smoked sheet*†	149	104.6 ± 11.7	142.7	37.9	33.5	(195)
Pale crepet	1668	110.5	140.3	35.2	32.3	(192)
Smoked sheet!	1647	97.5	140.7	36.4	32.6	(192)

^{*} Prepared 1921-23. † Ca. 100 plantations sampled. ‡ Prepared 1917-23. § One per cent in C_6H_6 .

Distribution as regards time of cure (195)

Type of rubber	Number of	Variati	on from n value, %	nedium
V.F	samples	< 10	< 20	> 20
Pale crepe	1293	83.5	99.5	0.5
Smoked sheet		60.5	91	9.
Pale crepe	101	86	99	1
Smoked sheet	149	64.5	90	10

Stock: rubber, 90; S, 10; vulcanized at 140° . Mean for latex crepe: (cure = 195 min) $T_B = 130$. Mean for smoked sheet: (cure = 165 min) $T_B = 146$ (57).

Table 48.—Vulcanization Coefficients (110)

Data refer to a "standard" cure, i.e. T_{\$20} = 136 in the stock:
rubber, 90; S, 10; vulcanized at 148°

Age of tree	10 year	r old trees*	20 year old trees*		
	Cure, min	v. c.	Cure, min	V. C.	
Latex crepe	107	5.20 ± 0.16	126	5.00 ± 0.07	
Sheet	61	5.47 ± 0.19	72	5.38 ± 0.10	

^{*} Six samples.

FINE HARD PARA

Mean Values.—Rubber, 92.5; S, 7.5; vulcanized at 150°. (Ringshaped test pieces.) Cure (min), 100; T_B , 145; slope, 35.39; η , (1% in C₆H₆), 33 (182).

Table 50.—Comparison with Smoked Sheet from Same Latex (209)

Stock: rubber, 90; S, 10; vulcanized at 141° (ring-shaped test pieces)

Туре	Cure, hr	T_B	E_B	Slope
Brazilian from young trees Smoked sheet from young	2.25	168	929	40
trees	1.75	158.5	928	38
Brazilian from old trees	2.25	153	919	38
Smoked sheet from old trees.	2.25	149.5	944	36

CEYLON BLANKET CREPE

TABLE 49 (154)

Stock: rubber, 92.5; S, 7.5; vulcanized at 150° (ring-shaped test pieces)

		1	,				
	Air dried	Heat dried	Average (17 samples)		Thin crepe (for comparison)		
	mean*	mean †	Mean	Limits	Mean	Limits	
Thickness, mm			11	4- 22			
Moisture, %			0.4	0.24-0.62	0.6	0.35-1.0	
Ash, %			0.2	0.12-0.33			
Vulcanization			l				
time in min	124	132	129	115-140	109		
$T_B \dots \dots$	146	140	142		142		
Slope	34	35.5	35	34-36	35.5		
η, 1% in C ₆ H ₆ ‡	37	23	29	21-44	34		
η, 1% in acid							
C.H.‡	20	15	17	14.5-21.5			

^{*6} samples. †9 samples. ‡ Rate of flow compared with rate of flow of the solvent.

SLAB (MATURED RUBBER)

TABLE 51 (205)

Stock: rubber, 92.5; S, 7.5; vulcanized at 150° (ring-shaped test pieces)

Thickness	Number of samples	% loss on wash- ing	Cure, min	T_{B}	Slope
3 cm	11	22.0	35	155	32.2
1-1.5 cm	4	21.6	36	157	31.5

For stock: rubber, 90; S, 10; vulcanized at 141° (ring-shaped test pieces); cure, 75 min; $T_B = 151$ (mean values) (57).

Table 52.—Variation in Time of Cure (Compared with Crepe and Sheet) (205)

Stock: rubber, 92.5; S, 7.5; vulcanized at 150°

	Cure	, min	% deviation		
Туре	Mean	Limits	Maxi- mum	Mean	
Slab (193 samples)*	35.5	15–57	118	18.8	
Pale crepe	108.2	80-135	51	6.66	
Smoked sheet	103.9	65-150	78	11.62	

^{*} By CH₂CO₂H and natural coagulation.

Latex crepe......

LATEX SPRAYED RUBBER

Comparison with sheet and crepe

Table 53 (86) Stock: rubber, 100; S, 10; at 141°

Type	Number of samples	Cure, min	T_B
Latex sprayed	20	127	251
Smoked sheet		165	230

TABLE 54 (38)

Stock: rubber, 90; S, 10; at 148° (ring-shaped test pieces); cure giving load-strain curve passing approx. through $E_{775}=104$

Туре	Number of samples	Cure, min	T_B	E_B	Slope
Latex sprayed	6	60	157.5	863	39
Smoked sheet	5	107	171	867	40
Latex crepe	5	136	155.5	854	37

183

227

TABLE 55 (38)

Stock: rubber, 90; ZnO, 90; S, 10; hexamethylenetetramine, 1

	Cure giving								
Type and number of samples	Load-			Maximum breaking load					
	Min	T_B	$\mid E_B \mid$	Min	T_B	E_B			
Latex sprayed, 3	23	184	607	47	193	392			
Smoked sheet, 5	37	175	604	45	193	458			
Latex crepe, 5		184	624	45	187	478			

TABLE 56.—PLASTICITY OF UNMILLED LATEX SPRAYED RUBBER

Number					
of	D_{30}	ΔD	1 % in	1% in HCl	Lit.
samples			C ₆ H ₆	$+ C_{\bullet}H_{\bullet}$	
6	1.94	0.08	ca. 40	17	(196)

OTHER TYPES LATEX RUBBER

Unsmoked Sheet.—Differs from smoked sheet only in vulcanizing in about 10% less time (183).

Evaporated Latex.—Time of cure, 70 to 75 % that of crepe (203); 75 min in stock: rubber, 90; S, 10; at 141° (56).

Kerbosch Rubber.—Time of cure, 50 to 60 min in stock: rubber, 92.5; S, 7.5; at 150° (194). Deteriorates on aging.

TABLE 57.—LOWER PLANTATION GRADES (183)

Stock: rubber, 92.5; S, 7.5; vulcanized at 150° (ring-shaped test pieces)

	Samples	T Cure, min		T_B		Slope		η, 1% in C ₆ H ₆	
	washed crepe	Mean	Limits	Mean	Limits	Mean	Limits	Mean	Limits
Lump (naturally coagulated clots)	90	104.5	7-130	133	107-150	37.3	33.5-40	30.5	10-58
Scum or skimmings (from tanks, etc.)	30	112.5	85-135	134	124-142	36.8	34 -40	28.5	20-59
Washings (diluted latex from cups, etc.)	25	118	95-145	127	106-145	39.1	35.5-46	22.6	15-31
Tree scrap	90	105	70-185	125	104-146	38.8	35.5-44.5	25.7	13-48
Bark scrap	25	111	90-140	108	82-136	42.9	38 -47.5	19.5	11-33
Earth rubber		97.5	70-130	126	106-138	37.6	34 -40	20.1	15-28

TABLE 58.—NATIVE RUBBER (155)

Stock: rubber, 92.5; S, 7.5; vulcanized at 150° (ring-shaped test pieces)

	Number of	9	% ash	Cur	e, min		T_B	η, 1 %	in C ₆ H ₆	η, 1 % + (in HC
	samples	Mean	Limits	Mean	Limits	Mean	Limits	Mean	Limits	Mean	Limits
Crepe prepared in laboratory from						1	1				
native slab*	253	}		96	40-160	138		24.5	1	12.5	
Amber crepe prepared in native fac-		Ì						}	1		į
tories†	14	1.01	0.2-1.8	114	100-130	130	110-153	20	11-64	11	7-25
Amber crepe prepared from native]			}						ŀ
rubber in Singapore		0.82	0.5-1.2	93	70–140	140	125-157	20	5-48		İ
First quality plantation latex crepe	i							1	I		ł
(for comparison)	1		0.2-0.4	107	80-130	143		33			

^{*} Per cent washing loss = 10-50 (limits). † Plasticity: D₂₀ = 1.30 (mean), 1.0-1.72 (limits); ΔD = 0.07 (mean), 0.04-0.13 (limits).

TABLE 59.—INFLUENCE OF DILUTION OF LATEX ON THE PROPERTIES OF RUBBER (192)

Ring-shaped test nieges

Ring-snapea te	st pieces	5		
	Cure, min	T_B	Slope	η*
Undiluted l	atex			
Crepe milled same day	103.5	140	37.2	23.9
Crepe milled next day	84.5	142.5	36.7	27.2
Smoked sheet rolled next day	69	149	37.8	2 8.6
Diluted to 15% rul	ber con	tent		
Crepe milled same day	113.5	138.5	37.7	25.4
Crepe milled next day	100.5	140.5	38.0	23.6
Smoked sheet rolled next day	80	144.5	37.1	31.0
A One was send in C H				

One per cent in C₆H₆.

FACTORS IN THE PREPARATION OF HEVEA RUBBER | Table 60.—Influence of Age of Trees on Properties (192)

	A	Cr	ере	Sheet	
	Age, yr	Time,	T _B	Time,	T_B
	3	77	123	59	127
First group of trees	4.5	82	129	58	134
	7.5	97	138	64	145
Second many of twee	4.5	77	125	58	132.5
Second group of trees	8	96	137	68	144.5
Age, yr (184)	8	35	19	18	8
Vulcanization of crepe, min.	14	15	130	135	110
7, 1% in C ₆ H ₆		50	39	41	28

Table 61.—Influence of Resting Trees (203)

Change in rubber content of latex, vulcanizing properties, viscosity
(1% in C₆H₆), after a period of rest

	Rubber		Cure,	min†		η			
Days*	content,	Cre	ере	Sh	eet	Cre	ре	She	eet
	%	A‡	B§	A‡	B§	A‡	B§	A‡	B§
1-2	51.3	<125	160	115	160	36.5	31.5	42.5	38
3	49.3	125	150	<105	<160	36.5	34	44.5	38.5
7	43.2	125	150	95	145	36.5	30.5	42	37
10	40.9	110	140	<95	125	32	28	40.5	30
14	38.5	<105	130	90	130	31.5	29	33	31
18	35.0	95	130	80	<110	28	23	30.5	25.5
23	32.4	95	<120		100	23	23	32	27.5
28	30.1	<85	115	<80	<100	28	25	29.5	32.5
35	29.0	90	115	75	90	26.5	21.5	32	31.5
39-56	28.4	89	104	69	81	26.9	23.4	30.3	29.5

^{*} Days after tapping started again. † Stock: rubber, 92.5; S, 7.5; vulcanized at 148°. ‡ A, undiluted latex. § B, latex diluted to 15% rubber content.

Table 62.—Influence of Length of Rest on Rate of Cure (204)

Period of rest, mo	1	1	2	3	4
Increased time of cure, min*.	2	10	20	20	40

^{*} For early tappings (2-6 expts.).

TABLE 63.—INFLUENCE OF ANTICOAGULANTS ON THE PROPERTIES OF RUBBER

	NaH	SO ₁ *	Na ₂ SO ₃ .7H ₂ O
Lit	(186)	(186)	(185)
g/l latex	0.5-1	2	1.2
Increase in T _B	- 5	0-5	0- 3
Decrease in min of cure5	-10	10-15	5–10
Decrease in slope	- 1.5	1-1.5	1-1.5
Increase in η (1% in C_6H_6)	. 5–10	3–10	1- 2

^{*} Proportion necessary to inhibit action of latex oxidase: 1 part in 400 to 2400 parts latex (*).

NON-HEVEA RUBBERS

Table 64.—Vulcanization of Caucho Ball with S Only (217) Stock: rubber, 90; S, 10; vulcanized at 141° (ring-shaped test pieces)

Min	150	180	210	240
T_8	6.8	9.2	11.45	
T_B	34	46	57	62
E_B	1082	1045	1010	968

Table 65.—Vulcanization of Caucho Ball with the Aid of an Accelerator (217)

Stock: rubber, 100; S, 5; ZnO, 5; zinc pentamethylenedithiocarbamate, 0.5; vulcanized at 115° (ring-shaped test pieces)

				-
Min	30	60	90	120
T_7	53.2	114	120	
T_B	130	152	138	27
E_B	861	769	737	

Table 66.—Vulcanization of Figur Rubber with S Only (217) Stock: rubber, 90; S, 10; vulcanized at 141° (ring-shaped test pieces)

Min	150	180	210
T_7	8.5	11.3	13.6
T_B	49	68	83
E_B	1112	1102	1074

TABLE 67.—VULCANIZATION OF FIGUS RUBBER WITH THE AID
OF AN ACCELERATOR (217)

Stock: rubber, 100; S, 5; ZnO, 5; zinc pentamethylenedithic-carbamate, 0.5; vulcanized at 115° (ring-shaped test pieces)

Min	60	90
T_7	77.5	96
T_B	187	163
E_B	853	794

VULCANIZED RUBBER

Hot Vulcanization with Sulfur

Fig. 14.—Vulcanization of simple rubber-S mixture (rubber, 90; S, 10) (165). Influence of temperature on rate of cure, ultimate tensile strength, stiffness, rate of combination of S and sharpness of tensile peak (ring-shaped test pieces).

LOAD-STRAIN RELATIONS OF VULCANIZED RUBBER TABLE 68.—PROGRESSIVE CHANGE ON VULCANIZING A SIMPLE RUBBER-S MIXTURE

Stock: rubber, 92.5; S, 7.5, vulcanized at 148° (ring-shaped test pieces) (165)

Period		Number			
vulcan-	T_B	of	E_B	E_{130}	V. C.
ized, min		samples			
75	75 ±1.5	20	991 ± 3.9	1110?	2.86
80	90 ± 1.4	23	999 ± 2.2	1063?	
85	102 ±1.4	29	990 ± 2.6	1040?	3.58
90	114.5 ± 0.8	58	992 ± 1.4	1018	3.77
95	122 ± 0.9	52	985 ± 1.8	994	
100	131.5 ± 0.9	39	969 ± 1.8	966.5	4.24
105	134.5 ± 0.8	38	957 ± 1.9	950	4.27
110	139 ± 0.8	58	944 ± 1.6	932	4.65
115	140.5 ± 0.7	50	928 ± 1.5	913	4.85
120	142 ± 0.6	60	916 ± 1.0	898	5.07
125	141 ± 0.8	34	901 ± 1.5	885.5	5.30
130	139 ± 0.9	28	885 ± 1.0	771	5.49
140	137	4			
150	130	4			

TABLE 69.-MOST PROBABLE VALUES ON VULCANIZING 341 SAMPLES OF RUBBER-S MIXTURE (RUBBER, 92.5; S. 7.5) AT 148° (130), cf. (54, 152, 165, 175)

V. C.	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
T_4		12.4	13.9	15.4	16.9	18.4	19.9	21.4	22.9
$T_{3,5}$	34.6	47.4	60.2	73.0	85.7	98.5	111.3	132.4	148.0
T_B	64.3	77.6	91.0	104.4	119.0	128.4	138.2	137.3	115.5
E_B	965	950	930	915	910	895	890	855	800

TABLE 70.—TEMPERATURE COEFFICIENT OF HOT VULCANIZATION WITH S (165), cf. (54, 130, 152, 175)

	Mixture A*	Mixture B
Temperature range	128-168°	108-148°
Temperature coefficient based on:		
Combination of S	2.3	2.3
Extensibility of vulcanizate		2.5
Tensile strength of vulcanizate	2.4	2.4

- * Unaccelerated mixture: rubber, 90; 8, 10.
- † Accelerated mixture: rubber, 90; 8, 10; aldehyde ammonia 0.125-1.0.

Fig. 15.—Temperature lag in vulcanization of a tire, vulcanized on air bags in steam autoclave for 2 hr at 146.3° (121). Temperatures at the following points in a 4-ply cord: (1) between second and third plies; (2) between second and third plies, under edge of the breaker; (3) same, under the center of the tread; (5) near the edge and on the top of the breaker.

Fig. 16.—Vulcanized as in Fig. 15. Temperatures at following points in an 8-ply cover: (1) in the side between sixth and seventh plies; (2) between the sixth and seventh plies, under the edge of the breaker; (3) same, under the center of the tread; (4) same, under the edge of the breaker; (5) near the edge and on the top of the breaker.

Table 71.—Influence of % of S on Simple Rubber-S MIXTURES

Mixtures vulcanized 90 min at 148° (130)								
8, %	2.5	5	7.5	10	12.5	15	17.5	20
E_{B}	29	63	99	124	57	23	25	62?
$E_B \dots$	900	894	894	766	431	198	183	384
V. C	1.05	2.33	2.92	3.92	6.24	7.45	8.12	9.41

Vulcanized at 148° (199)									
	Ī	5	T	7	Ī	7.5	8	9	10
		1200	ī	1000	ī	965	925	870	79

8, %	5	7	7.5	8	9	10
E_{so}	. 1200	1000	965	925	870	790
T_B	. 58	105	107			126
E_B	. 1124	1016	984	964	911	840

Table 72.—Influence of % of S on Time of Cure at 148° AND ON TENSILE PROPERTIES AT OPTIMUM CURE (199)

S, %	Min	T_B	T11.25	E_B	E120	v. c.
7.5	75	133		911	891	1
6	105	135		946	924	
5	120	135		1024	1001	4.41
3	120		40	>1125		2.81

Vulcanization by Other Means

Fig. 17.—Vulcanization in solution. Rate of combination of S with (A) crepe, (B) crepe plus an accelerator and (C) crepe deprived of 52 % of its protein, on heating a 5 % solution in dichlorobenzene with 1000 % S (219); cf. (23, 84, 100, 157).

Fig. 18.—Comparison of the tensile properties (load-strain curve and stiffness) of rubber vulcanized by dipping in S₂Cl₂ solution and by heating with S (ring-shaped test pieces) (230).

SULFUR MONOCHLORIDE (130, 230)

Sheets of calendered latex crepe, 1 mm thick, dipped in solutions of S_2Cl_2 (1 - 5% in CS_2) for not more than 120 sec: T_B , 84 to 127; E_B , 800 to 1000 (ring-shaped test pieces) (230).

NITRO COMPOUNDS AND ORGANIC PEROXIDES

m-Dinitrobenzene. Stock: rubber, 100; PbO, 8; *m*-dinitrobenzene, 4; vulcanized 10 min at 147° : T_B , 103; E_B , 798 (30). Other nitro compounds and organic peroxides, v. (30).

TABLE 73.—MIXTURES OF SE AND S (228)

Comp	osition of s	tock	Cure giving stiffest vulcanizate				
Crepe	S	Se Time at 143°, min		T 500			
94	6.00	0.00	270	375			
94	5.11	2.19	180	430			
94	4.51	3.69	210	370			
94	3.73	5.6	240	315			
94	0.00	14.80	No cure in 300 min				

ULTRA-VIOLET RAYS (83) NITROGEN SULFIDE (126)

PHYSICAL PROPERTIES

Tensile Properties

FACTORS INFLUENCING TENSILE PROPERTIES

TABLE 74.—INFLUENCE OF SHAPE OF TEST PIECE AND DIRECTION OF ITS AXIS WITH REFERENCE TO THE CALENDER DIRECTION (32)

	T_B	E_B	$ T_B $	$ E_B $	T_B	E_B
Sample No	. 1	l	2	2	3	
Rings	151	635	119	675	74.5	525
Longitudinal				640 670	84.5 88.5	
Sample No	1 4	1	5		6	
Rings	107	435	36	285	51.5	320
Longitudina		410 460	48.5 36	320 280	62 48.5	315 315

Fig. 19.—Load-strain curves of Samples 1 and 2 (Table 74) as determined by (a) ring test pieces, (b) straight test pieces cut longitudinally and (c) transversely (32).

Table 75.—Influence of Width of Straight Test Pieces (32)

Sample	Co	ver	Tı	ıbe	T	ube	Co	ver	_ Tu	ıbe
Width, mm	6.35	12.7	6.35	12.7	6.35	12.7	6.35	12.7	6.35	12.7
$T_B \dots \dots E_B \dots \dots$	110	102	151	137	72	67	51.5	48.5	175	144
$E_B \dots \dots$	525	515	580	570	350	340	335	350	615	575

Table 76.—Influence of Width of Ring Test Pieces (112)

Diameter, 44.6 mm; thickness, 4 mm

	Higher-grade rubber				Lower-grade rubber				
Sample No	1		11	2	1	3		4	l l
Width, mm	T_B	E_B	$ T_E$	$ E_{E} $, !	T_B	E_B	$ T_B $	E_B
2	158.9	808	105	8 61	1	18.9	182	25.2	187
4	117.7	806	97	1 62	1	18.8	193	27.3	203
6	97.4	809	87	5 628	3 ∐	17.2	183	26.0	199

Table 77.—Influence of Rate of Stretching (32)
Straight test pieces

Rate of jaw separation		1	I		i .	1
(cm/min)	12.5	60	115	12.5	60	115
		Hig	her-gra	de ru	bber	
Sample No		5			2	
$\overline{T_B}$	175	188.5	190.5	133	136	138
E_B		635	635	465	500	490
		Lov	ver-gra	de rul	ber	
Sample No		3			4	
$\overline{T_B}$	26.3	30.1	32.5	23.8	27.3	30.1
E_B			375			120

Table 78.—Influence of Temperature on the Stiffness of an Accelerated Stock (47)

Stock: smoked sheet, 100; S, 3; ZnO, 6; hexamethylenetetramine, 0.9; vulcanized 60 min at 141°

	,			
t, °C	21	24	27	30
T_7	85	80	74	67

Table 79.—Influence of High Temperatures (131) Stock: rubber, 92.5; S, 7.5; vulcanized to various extents at 147°

	1	Time of heating		1	
	t, °C	prior to test,	T_B	E_B	T
		min			
	24		63	991	31
	70	15			22
Sample No. 1 (vulcanized	100	15			20
60 min; V. C. = 2.1)	130	15			19
60 mm; v. C. = 2.1)	147	2			19
	147	5	13	700	
	147	15	14	678	
	26		107	990	49
	70	15	104	1049	37
	100	15	18	595	
Sample No. 2 (vulcanized	130	1	12	460	
90 min; V. C. = 3.2)	130	5	13	500	
	147	1	12	465	
	147	5	14	512	
	23		118	914	79
	70	1	15	453	
	70	5	17	491	
Sample No. 3 (vulcanized	100	1	14	423	
120 min; V. C. = 4.2)	100	5	13	395	
•	130	1	12	381	
	130	5	12	379	
	147	1	13	384	

Load-Strain Curves for Vulcanized Rubber

Independently of state of cure, the load-strain curve for rubber-S stock is a conchoid expressed by

$$y = a - b \sin \alpha \tag{1}$$

$$x = n \left(a \cot \alpha - b \cos \alpha \right)$$

 $x = n (a \cot \alpha - b \cos \alpha)$

where x = load; y = strain; a = distance between pole and asymptote; b = distance between origin and asymptote; and n = distance

a constant fraction of corresponding abscissae of parent conchoid (137).

$$y = cx + a \sin^2 bx \tag{2}$$

where y = strain; x = load; c, a, b = constants for the rubber specimen in question, characterizing respectively the initial, the middle, and the ultimate elongations (39).

$$x = A \left\{ 1 - \frac{2}{l - b} \right\} e^{h(p - l)^2}$$
 (3)

where x = load; l = length; $b = \text{breadth}\left(\text{taken as }\frac{1}{\sqrt{l}}\right)$; h, p = constants for the rubber specimen in question (118).

Fig. 20.—Influence of temperature on the tensile strength and ultimate elongation of five samples (32).

Stress-Strain Curve for Vulcanized Rubber

$$y = \frac{ax}{b+x} \tag{1}$$

where y = strain; x = load referred to unstrained cross section; a = distance of asymptote from axis; b = intercept cut off by tangent at origin on the asymptote.

The curve is a rectangular hyperbola, with asymptotes parallel to the axes, with the equations

 $y=a,\,x=-b.$

Making the asymptotes the axes

$$x'y' = -ab \ (82)$$

$$Stress = Ee + e/B^{k}$$
 (2)

where e = elongation; l = original length; E = Young's modulus; Band k = constants (146).

Mechanical Hysteresis

Extension and sub-permanent set in a succession of cycles of extension and retraction (24). Pure gum rubber, sp. gr. 0.985, loaded at rate of 0.8 kg/cm² per 27 sec.

Cycle No									
Extension produced, %		516	568	590	604	617	627	336 6	343
Sub-permanent set, %		20	23	25	28	28	28	28	28

Extension, sub-permanent set, energy absorption, energy of hysteresis in succession of cycles of various amplitudes (80).

Extension in a series of cycles. Extension $= a + b \log$ (No. of cycle) where a =extension in second cycle; b =increment of extension in subsequent cycles (140).

Influence of amount of extension on amount of hysteresis. In general, the shorter the cycle, the smaller the energy of hysteresis (cf. Fig. 23).

Fig. 21.—Load-strain curve for cycles Nos. 1 and 8 and part of cycle No. 2 (Table 80) (24).

Fig. 22.—Relation between cycle number and max. (solid lines) and min. (dotted lines) extension for cycles between various loads. Stock: rubber (smoked sheet), 94 vols.; S, 3 vols.; MgO, 1 vol.; carbon black, 2 vols.; vulcanized 60 min at 149°. Load expressed in kg/cm² (**).

Fig. 23.—Relation between the cycle number and energy absorption (solid lines) and energy of hysteresis (dotted lines) for cycles between various loads. Load expressed in kg/cm² (**).

TABLE 81

Pure gum rubber subjected to a succession of cycles of different lengths, each cycle being repeated until the course of the load-strain curves was constant (24).

Cycle No.	Amplitude kg/cm²	Difference between elongation at same load during extension and retraction, %
1	0-4	61
2	0-8	167
3	0-12	286
4	0–16	533

Influence of rate of loading and unloading. The higher the rate of loading and of unloading, the smaller the extension and the greater the hysteresis (24).

Influence of state of cure and of the presence of a filler on energy absorption (Figs. 26 and 27) and energy of hysteresis (Figs. 28 and 29) in a succession of cycles of extension and retraction (80).

Stock A (by volume): rubber, 94; S, 3; MgO, 1; carbon black, 2. Stock B (by volume): rubber, 63; S, 2; MgO, 1; carbon black, 2; whiting, 32.

Fig. 24.—Pure gum rubber subjected to hysteresis cycles of different lengths (141).

Fig. 25.—Influence of temperature on extension (24). Pure gum rubber, sp. gr. 0.985, loaded to 18.4 kg/cm² at 0° and 60°.

Fig. 26.—Stock A vulcanized for periods from 0.25 to 2 hr at 149° (*0).

Fig. 27.—Stock B vulcanized for periods from 0.25 to 1 hr at 149° (**).

Influence of compounding ingredients on Poisson's ratio for rubber (174). (P_v, P_i, P_w) : Poisson's ratio from measurements of volume, thickness, width, respectively.)

1. $P_t = P_w = P_v$ at elongations up to 200: carbon black, ZnO.

2. P_t does not equal P_w ; $P_v = 0.5$.

Fig. 28.—Stock A vulcanized for periods from 0.25 to 2 hr at 149° (*0).

 F_{IG} . 29.—Stock B vulcanized for periods from 0.25 to 1 hr at 149° (**).

Fig. 30.—Increase in volume produced by straining to 100 % elongation stocks containing various volumes of barytes, china clay. lampblack, whiting and ZnO. Basal stock: rubber, 100; S, 5; litharge, 30 (139).

3. $P_w = P_t$; $P_v < 0.5$ at 300 %: barytes, lithopone. 4. P_w does not equal P_t ; $P_v < 0.5$: tripoli at high elongations (cf. Fig. 32).

	At 25 % elongation				
-	P_t	$P_{\mathbf{w}}$	P,		
Magnesium carbonate	0.72	0.31	0.51		
Clay	0:69	0.32	0.505		
Magnesium carbonate	0.61	0.39	0.50		

Fig. 31.—Effect of strain on the ratio thickness: width as influenced by various compounding ingredients (20 vols. per 100 vols. rubber) (174).

Fig. 32.—Effect of tripoli on Poisson's ratio and on increase in volume at various extensions (174). Stock contains 20 vols. tripoli per 100 vols. rubber.

Fig. 33.—Load-compression curves for the stock: rubber, 100; S, 10; in various states of cure (17).

Fig. 34.—Load-compression curves for the stock: rubber, 100; china clay, 20; S, 10; ZnO, 5; diphenylguanidine, 1; using clay of different degrees of fineness (17).

Hardness

Definitions.—Plastometer number: the depression in hundredths mm produced by a steel sphere when the force against a surface of the rubber is increased from 85 to 1085 g, and then maintained for 60 sec (79).

Modulus of hardness: the force in dynes producing a depression of 1 cm³ (79).

See p. 270 for Figs. 35-39, giving illustrative values.

Resistance to Tearing

Table 82.—Influence of State of Cure on Resistance to . Tear (231)

Stock: rubber, 92.5; S, 7.5; vulcanized at 145°

Time of cure, min.	30	45	60	75	90	105	120	135	150
Resistance to tear, cm ²	kg/					1			
cm ²	5.6	7.7	9.8	11.6	13.3	16.8	13.3	11.9	11.2

Compressibility

Compressibility.—92.95 \times 10⁻⁶ of the original volume per kg/cm² (⁴⁰). Equal to that of bronze (²), cf. (¹⁰⁵).

Volume Elasticity (107).—Soft, gray rubber (sp. gr., 1.289; T_B , 58; E_B , 890): 14 000 kg/cm². Red rubber (sp. gr., 1.407; T_B , ca. 58; E_B , 630): 8000 kg/cm². Gray rubber (sp. gr., 2.340; T_B , 58; E_B , 340): 66 000 kg/cm².

Thermal Properties

Expansion.—Coefficient of cubical expansion of:

- (a) Sample of vulcanized rubber (sp. gr., 0.996), 2.25° above to 2.25° below its maximum density: 0.000526 (88).
- (b) Sample of black vulcanized rubber (sp. gr., 0.90166 at 17.4° ; S content, 2.5 to 3%) at $0-60.7^{\circ}$; 0.000763 (105).
 - (c) Gray rubber: 0.000562 (105).

Specific Heat.—Above mentioned sample (a): 0.415 (88).

Conductivity.—Vulcanized rubber, crepe, smoked sheet, etc. (45-100°): 0.00032 cal/sec/cm³ (227).

Absorption

ABSORPTION OF ORGANIC VAPORS

TABLE 84.—ABSORPTION (g/g RUBBER) BY RAW RUBBER AND A RUBBER STOCK (RUBBER, 100; S, 12.5) VULCANIZED TO VARIOUS DEGREES (93)

				•	4.4 6.4
Carbon tetrachloride	0.99	0.975	0.99	0.98	0.99 1.05
Benzene	0.98	0.895	0.87	0.86	0.86 0.85
Carbon disulfide		0.64	0.65	0.63	0.64 0.67

Fig. 35.—Force-volume depression curves for 2 samples of vulcanized rubber (steel balls 3.175 and 6.35 mm in diameter) (79).

Fig. 36.—Relation between plastometer number and modulus of hardness (79).

Fig. 38.—Influence of thickness of thin specimens on apparent hardness as determined by the plastometer (6 samples) (79).

Fig. 37.—Change of modulus of hardness with temperature (4 samples) (79).

Fig. 39.—Modulus of hardness and degree of vulcanization (vulcanizing unit = (time of vulcanization at t°) × 1.1¹⁵⁰⁻⁶ (79).

ABSORPTION OF WATER

Table 85.—Absorption by Raw Rubber of Water from Moist Air (130), cf. (210)

Relative humic	lity, %	100 89 79 49	100 89 79 49
Туре	Resin %	% absorption at 16°	% absorption at 30°
Hevea sheet	3.32	1.85 0.88 0.31 0.23	2.88 0.76 0.44 0.24
Hevea crepe	3.43	2.80 0.89 0.39	4.54 1.06 0.37
Castilloa	5.2	0.62 0.28	1.57 0.23 0.16
Congo	16.7	6.02 2.12 0.9	15.8 2.58 1.26 0.42

Vulcanized rubber shows the same absorption from water vapor as from liquid water (22).

Fig. 40.—Various types of raw rubber in distilled water at 80-90° (*4).

Fig. 41 (Insert).—Water absorption by cut sheet. Effect of

temperature on (A) raw rubber, (B) cold vulcanized (*4).

Table 86.—Water Absorption by Various Types of Rubber g/cm² surface of sheets 0.35 mm thick (22)

Туре	t, °C	Immersion, hr	Absorption	
P.1.	24	200	0.0356	
Pale crepe	70	50	0.072	
Smoked sheet	70	50	0.103	
Fine Para	70	50	0.087	
Latex sprayed	70	50	0.33	
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24	50	0.0070-0.0097	
Vulcanized rubber*	70	50	0.035-0.045	
Hard rubber †	70	100	0.0137	
Hard rubber	70	100	0.0110	
Gutta-Percha	24	200	0.0122	

^{*}Stock: rubber, 24; ZnO, 18; whiting, 12; litharge, 3; S, 1.5; cured 60 min at 135°. Crepe, smoked sheet and fine Para used.

Table 87.—Absorption by Samples Immersed 18 Weeks at 15-25° (117)

Туре	Medium	% absorption
Para rubber	Distilled water	31.77
Para rubber	Sea water	2.80
Gutta-Percha*	Distilled water	1.13-1.44†

^{*4} samples; resin content: 20.3-16.3 %.

Table 88.—Influence of Degree of Vulcanization on Water Absorption (94), cf. (22)

Stock: crepe, 100; S, 7; MgO, 5

Time of cure at 143°, min	15	30	60	120
Combined S, %	0.62	1.17	2.37	4.12
	% water absorbed			
Immersed 6 hr at 70-80°	4.45	3.6	2.8	2.3
Immersed 24 hr at 70–80°	5.32	4.74	3.9	2.9
After 48 hr more at 20°	13. 2	10.5	7.8	5.9

Temperature coefficient for absorption of water by vulcanized rubber: 1.32-1.44 fold for each 10° rise in temperature (22).

Influence of pressure: water absorption is unaffected by increase of pressure from 1 to 5 atmospheres (22).

Imbibition of Liquids

TABLE 89.—IMBIBITION BY RAW RUBBER cm³ liquid by 1 cm² fine Para in 10 days at room temperature (151)

Carbon tetrachloride 12.05	Benzene	9.05
Chloroform	Xvlene	8.89
Carbon disulfide	Ethyl ether	4.82
Toluene 9.52	Methyl alcohol	0.13

g liquid by 1 g fine Para under pressure of 1.12 kg/cm² (124)

0 1 0		•	• •
Carbon tetrachloride	11.06	Benzene	4.41
Chloroform	9.31	Cymene	4.38
symDichloroethylene	7.35	Cumene	4.13
Thiophene	5.32		2.71
Toluene	4.65	Ether	2.40

Table 90.—Imbibition by Vulcanized Rubber cm² liquid by 1 cm² rubber (sp. gr., 0.997; ash, 2; total S, 12.54; combined S, 1.28%) in 24 hr at 17° (65)

Chloroform	9.64	Nitrobenzene	1.36
Carbon disulfide	8.11	Ethyl acetate	0.33
Toluene	7.40	Acetone	0.15
Xylene	6.35	Acetic acid	0.12
Benzene	5.86	Amyl acetate	0.085
Turpentine	5.52	Ethyl alcohol	0.025
Benzyl chloride	4.39	Methyl alcohol	0.02
Petroleum ether	4.38	Ethyl alcohol (96%)	0.011
Kerosene	3.67	Water	0.005
Ethyl ether	3.43		

cm³ liquid by 1 cm³ "black rubber tubing," sp. gr., 1.06 (160)

Chloroform	7.37	Ethyl ether	3.09
Carbon disulfide	6.52	Ethyl acetate	0.71
Benzene	5.87	Acetone	0.21

g liquid by 1 g rubber, (stock: rubber, 90; S, 10; vulcanized 75 min at 148°) in 48 hr (214)

Benzene	3.63	Aniline	0.13
Toluene	3.84	Methylaniline	1.49
<i>m</i> -Xylene	3.01	Dimethylaniline	3.02
d-Pinene	2.57	o-Toluidine	0.69
Tetrahydronaphthalene.	5.22	Diethylamine	6.24
<i>n</i> -Pentane	0.72	Piperidine	17.75
Carbon tetrachloride	8.50	Acetic acid	0.16
Chloroform	6.51	n-Butyric acid	1.57
Trichloroethylene	8.10	Dichloroacetic acid	14.20
Tetrachloroethane	8.19	Acetyl chloride	5.96
Tetrachloroethylene	6.47	Ethyl acetate	0.49
Pentachloroethane	8.02	Propyl acetate	1.27
Bromobenzene	6.17	n-Butyl acetate	1.43
Benzyl chloride	3.01	Isoamyl acetate	1.73
Phenyl mustard oil	3.21	Ethyl benzoate	2.26
Nitrobenzene	1.46	Cyclohexanol	0.58
Benzonitrile	2.20		

TABLE 91.—FACTORS INFLUENCING IMBIBITION

Degree of vulcanization: cm² CCl₄ imbibed by 1 g rubber (stock: rubber, 100; S, 12.5; vulcanized to various degrees) (93)

V. C.	1.20	2.0	3.6	4.4	6.4
1	8.09	5.86	5.12	4.04	3.40
6	24.10	14.30	9.82	7.74	5.12
.24	29.00	16.10	10.40	7.87	5.40

Temperature: cm³ C₆H₆ imbibed in 10 hr by 1 g rubber (stock: rubber, 100; S, 12.5; vulcanized to various degrees) (93)

v. c.	1.2	2.0	3.6	4.4	6.4
40	8.73	6.30	5.16	4.33	3.30
50	9.00	6.55	5.37	4.60	3.60
80	10.70	7.56	5.85	5.20	4.00

Pressure: g C₆H₆ imbibed by 1 g raw fine Para (124)

kg/cm ²	0.72	1.12	2.12	3.12	5.12
Imbibition	5.14	4.41	3.28	2.71	2.09

For similar data for toluene, cumene, cymene, ether, chloroform, carbon tetrachloride, ethylene chloride, sym.-tetrachloroethane. sym.-dichloroethylene and thiophene, v. (124).

[†] Stock: rubber, 30; S, 17.5; p-nitrosodimethylaniline, 0.3; cured 120 min at 148°.

¹ Stock: rubber, 60; S, 35; cured 240 min at 148°.

[†] Calculated on the gutta.

Table 92.—Velocity of Imbibition Velocity of swelling (under a pressure of 1.12 kg/cm²)

$$k = \frac{1}{z} \log_e \frac{\omega_{\infty}}{\omega_{\infty} - \omega}$$

where k = a constant, z = time in minutes, $\omega_{\infty} = imbibition$ at equilibrium, $\omega = imbibition$ at time z, $t = 17-18^{\circ}$ (124).

Liquid		Benzene	1	Cumene	Cl	nloroform	Thiophene
k		0.0019	T	0.0021	(0.00057	0.00083

Solubility of Solids in Rubber

TABLE 93.—SULFUR (90)

In raw rubber: at 33°, 1.01; at 55°, 1.96 g/100 g raw rubber In vulcanized rubber:

t, °C	Rubber: S ratio	hr cured at 141°	V. C.	Solubility g S/100 g stock
40	100:10	1	1.46	1.48
		2	2.98	1.45
		3	4.34	1.53
		4	6.54	1.61
		5	7.95	1.69
55	100:10	1	1.46	2.13
		2	2.98	2.24
		3	4.34	2.39
		4	6.54	2.56
5 5	100:30	3	5.47	2.36
		4	8.72	2.94
		5	13.92	3.00
75	100:30	3	5.47	3.22
		4	8.72	4.25
		5	13.92	5.42
		6	16.91	5.90

SELENIUM (228)

In raw rubber: <0.05 % at 80°C.

Fig. 42.—Solubility of naphthalene, azobenzene and p-toluidine in raw rubber (27).

Permeability to Gases and Vapors

Permeability is proportional to the partial pressure of the gas and to the thickness of the rubber (44, 59, 89, 229).

SPECIFIC PERMEABILITY

Unit.—cm³ gas/min/cm² area/cm thickness.

Hydrogen.—20.4 × 10⁻⁶ at 25° (vulcanized rubber on balloon fabric) (5.520 + 0.876t) × 10⁻⁶, range 12.8 to 30.7° (sp. gr., 0.9455 at 18 to 20°) (8.9).

Carbon Dioxide.— $(-5.084 + 2.928t) \times 10^{-6}$, range 9 to 33° (sp. gr., 0.9455 at 18 to 20°) (89).

Table 94.—Permeability Relative to Hydrogen at Same Temperature

In (59) samples are vulcanized rubber on balloon fabric. In (44) samples are vulcanized, probably by sulfur chloride

	Relative		
Gas	perme-	t°, C	Lit.
	ability		
Hydrogen	1		
,	0.445	25	(59)
0	0.337	20	(44)
Oxygen	0.500	25	(45)
(0.45		(72)
	0.160	25	(59)
Nitrogen	0.12	20	(45)
()	0.18		(72)
Argon	0.23	25	(45)
	0.26		(125)
Helium	0.65	25	(59)
Air	0.230	25	(59)
)	0.194	17	(44)
	2.91	25	(59)
1	2.76	17	(44)
Carbon dioxide	2.8		(45)
11	2.48		(89)
4	2.47		(72)
Nitrous oxide	4.54	17	(44)
Ammonia	8	25	(59)
	11.4	17	(44)
Water vapor	55	25	(59)
Liquid water	105	25	(59)
Methyl chloride	18.5	25	(59)
Ethyl chloride	198	25	(59)

Fig. 43.—Variation of conductivity for raw india rubber with temperature and frequency (*2).

Electrical Properties

RAW RUBBER, GUTTA-PERCHA AND BALATA

TABLE 95.—ELECTRICAL PROPERTIES OF RAW RUBBER (42)

	Ago	Number	Dielectric	Power	Resistivity
Type	Age, mo	of	constant	factor,	(10 ⁴ meg-
	шо	samples	at 1000 ~	%	ohm-cm)
Fine Para		13	2.43	0.14	35
Pale crepe		6	2.43	0.16	50
Pale crepe*		3	2.36	0.29	40
Smoked sheet	3	6	2.53	0.19	8
Smoked sheet	15	3	2.38	0.16	10
Smoked sheet*	12	3	2.35	0.29	60
Cameta		5	2.56	0.28	10
Guayule		2	2.69	0.51	60

^{*} Thoroughly washed and dried.

BALATA (42)

		ALAT.	A (**)				
	% 0	ompos	ition*			%	
	Gutta	Resin	Mechanical impurities	Н.О. %	Dielectric con- stant at 1000	Power factor at 1000 ∼	Resistivity (10 ^a megohm cm)
Gutta-Percha refined by acetone extraction Gutta-Percha (Tjipetir			1.0	o	2.56	0.09	370
	89.2	9.3	1.5	>0	2.60	1.1	65
3. No. 2 after drying	89.2	9.3	1.5	0	2.61	0.23	45
4. Gutta-Percha, refined	79.9	19.3	0.8		2.78	0.35	60
5. Gutta-Percha,	i l					l I	
	57.3	• ,	3.5	2.5	4.13	3.1	
6. No. 5 after drying				0	3.01	1.8	25
7. Resin from Gutta-Percha	0.0	100.0	1		3.27		25
8. Balata, commercial sheet	44.8	39.8	15.4		3.48	2.3	
				<u>' </u>			

^{*} On dry weight.

TABLE 97.—INFLUENCE OF FREQUENCY ON ELECTRICAL PROPER-TIES OF RAW RUBBER AND GUTTA-PERCHA (42)

	Die	electric	constan	it	D			
	Altern	_	Direct 0.6 sec disch		At	factor At	Resis- tivity (10s meg-	
	1000~	60~	0.1 sec	1.0 sec	1000 ~, %	60 ∼, %	ohm-em)	
Pale crepe	2.38	2.40	2.65	2.70	0.3	0.5	30	
Gutta-Percha*	2.62	2.63	2.81	2.87	0.2	0.3	50	
Gutta-Percha†	2.82 2.84		3.01	3.07	0.4	0.5	60	

^{*} Tjipetir.

† Refined commercial.

Fig. 44.—Variation of S/cp (power factor) with temperature and frequency for raw india rubber condenser (62).

Fig. 45.—Variation of S/cp (power factor) with temperature and frequency for Gutta-Percha from -75 to 50°C (62).

TABLE 98.—INFLUENCE OF TEMPERATURE AND FREQUENCY ON ELECTRICAL PROPERTIES (62)

	R	aw rubb	er	Gı	tta-Perc	ha
Frequency	920	2 760	4 600	920	2 760	4 600
Temperature, °C	18	18	18	15	15	15
Dielectric constant for alternating current		2.60	2.60	2.86	2.86	2.86
Temperature coef- ∫ per °C					0.124	0.133
ficient range	0 to	0 to	0 to	-14 to	-14 to	-14 to
•	43°	440	440	50°	50°	50°
Resistivity, alternating cur-						
rent, megohm-cm	145 000	54 500	35 400	33 700	10 200	5 600
Power factor, %	0.005	0.005	0.004	0.020	0.023	0.025
Specific conductance for						
frequency n, micro-						
microhm-cm	1.5	3 + 0.00	58n	-16.9	+0.04n	(at 19°)

Table 96.—Electrical Properties of Gutta-Percha and | Table 99.—Influence of Frequency and Temperature on CONDUCTANCE OF GUTTA-PERCHA (62)

Fre- quency	Co	Conductance (k) in bi-mhos (1012 mhos) per cm2									
920	t, °C	-75	-53	-34	-26	-14	0	15	19	27	50
920	K	1	2	10	15	22	33	30	20	10	4
0700	t, °C	-75	-54	-35	-25	-14	0	15	19	27	50
2760	K	3	9	14	35	53	91	97	87	46	14
4600	t, °C		-56	-36	-25	-14	0	15	19	27	50
	K		3	13	49	80	146	177	163	97	32

SOFT VULCANIZED RUBBER

Fig. 46.—Dielectric constant at 1000 cycles; pure gum mixture (smoked sheet, 96; S, 4 and smoked sheet, 92; S, 8) vulcanized for various periods of time at various temperatures (42).

Fig. 47.—Power factor for samples described in Fig. 46 (42).

Resistivity: ranges from 10×10^8 to 150×10^8 megohm-cm irregularly (42)

_		
TABLE	1(X)	(42)

	tion		ι, °C	Cure,	Dielectric constant	Power factor.	Resistivity						
Rubber Accel.* ZnO S				- "	min†	at 1000 ~	%	ohm-cm)					
Without free sulfur													
98	1	1	0	155	45	2.42	0.87	185					
			1		90	2.40	0.81	195					
92	3	5	0	126	15	2.49	0.42	20					
					40	2.48	0.41	24					
88	5	10	0	155	4	2.60	0.90	200					
					12	2.59	0.80	220					
85	5	10	0	126	20	2.66	0.47	20					
					40	2.62	0.45	20					
80	10	10	0	126	20	2.84	0.50	5					

TABLE 100 (42).—(Continued)

C	Compositio	n		ı.°C	Cure,	Dielectric constant	Power factor.	Resistivity (10° meg- ohm-cm)	
Rubber	Accel.*	ZnO	8	·	min*†	at 1000 ~	%		
				With f	ree sulfu	ır			
91.75	3	5	0.25	126	20	2.48	0.40	27	
			1		35	2.45	0.26	45	
92.5	2	5	0.5	126	10	2.51	0.23	150	
					40	2.48	0.35	80	
92.75	0.75	5	1.5	126	10	2.49	0.35	150	
					25	2.49	0.34	210	
90.75	0.25	5	4	126	15	2.60	0.23	90	
			1		30	2.78	0.41	10	

^{*} Tetramethylthiuram disulfide.

TABLE 101.—INFLUENCE OF FREQUENCY (42)

		Diel	ectric	consta	nt	Power factor			
Composition		Alternating current		Direct cur- rent 0.6 sec charge, discharge		At 1000 ~,	,	Resis- tivity (10° meg- ohm-cm)	
		1000 ~	60 ~	0.1 sec	1.0 sec	%	%	onm-em)	
	Rubber, 96; S, 4 Rubber, 90.75; S, 4; ZnO, 5; tetramethyl-	2.89	2.90	3.25	3.32	0.35	1.2	20	
3.	thiuram disulfide, 0.25 (2) + ZnO, 75	2.67 9.76	2.67 10.3		2.94 13.1	0.20 1.9	0.2 4.8	80 0.5	
4.	(2) + carbon black, 20.	6.12	8.61	10.3	12.4	7.5	10.5	0.4	

TABLE 102.—INFLUENCE OF TEMPERATURE AND FREQUENCY (62)

Frequency	920	2 760	4 600
Temperature, °C	17	17	17
Dielectric constant for alternat-]	
ing current	2.73	2.71	2.71
Temperature coefficient range		ļ	
(-14 to 83°)	-0.150	-0.130	-0.140
Resistivity, alternating current,		i	
megohm-cm	342 300	103 000	38 100
Power factor, %	0.2	0.2	0.4
Specific conductance for fre-			
quency n, micro-microhm-cm.	2.0 -	- 1180 × 1	$0^{-12}n^2$.

TABLE 103.—INFLUENCE OF TEMPERATURE AND FREQUENCY ON THE CONDUCTANCE OF SOFT VULCANIZED RUBBER (62)

Frequency	Cond	uctan	се (к)	in b	i-mh	os (10	12 ml	nos)	per cm	3
920	t, °C	-76	-63	-42	-32	-23	-14	0 17	7 41 60 8	- 83
920	K	2	4	32	50	26	19	7 3	8 8 12	16
2760	t, °C	-76	-63	-42	-33	-23	-14	0 17	7 42 61 8	83
2700	К	4	8	53	141	102	76	31 10	0 18 29 4	41
4600	t, °C	-76	-63	-42	-32	-24	-14	0 17	7 44 60 8	<u>84</u>
4000	K	3	9	62	220	205	158	57,26	3 26 43 4	 57

Fig. 48.—Variation of S/cp (power factor) with temperature and frequency for soft vulcanized rubber from - 90 to 100°C (*2).

INFLUENCE OF COMPOUNDING INGREDIENTS

Fig. 49.—Influence of carbon black, ZnO, litharge, Se and quarts on dielectric strength (42).

In the case of ZnO, quartz, and Se, "% of filler" means the parts of filler by weight added to the following basal mixtures:

	Rubber	s	ZnO	Palm oil	Tetra- methyl- thiuram disulfide
Zinc oxide	93.75	1 2	1	4	0.25
Quarts	92.75	2	1	4	0.25
Selenium	90.75	4	5	, ,	0.25

In the case of litharge '' % filler'' means the percentage present in the following series of mixtures:

Litharge Rubber Sulfur Ozokerite Palm oil	0 96 4	88 4 4	10 82 4 4	20 74 6	40 52 8	66 22 11	88 9 1
---	--------------	--------------	--------------------	---------------	---------------	----------------	--------------

Fig. 50.—Influence of filler on the power factor at optimum cure (42); cf. note to Fig. 49.

Fig. 51.—Influence of carbon black on the resistivity (42).

[†] Extremes of range.

Table 104.—Influence of Barytes, "Titanox," Iron Oxide, Tellurium, China Clay and Asbestine (42)

Stock No. 1: smoked sheet, 90.75; S, 5; ZnO, 4; tetramethylthiuram disulfide, 0.25%. Stock No. 2: smoked sheet, 90.75; S, 5; ZnO, 4; diphenylguanidine, 1%

	Dielectric	Power	Resistivity
Rubber mixture, %	constant,	factor,	(108
, i	1000 ~	%	megohm-cm)
No. 1	2.70	0.32	90
No. 1 + barytes, 45	3.37	1.1	20
No. 1 + titanox,* 50	3.77	1.1	13
No. 1 + iron oxide, 46	3.61	1.39	30
No. 1 + tellurium, 25	3.20	0.50	85
No. 2	2.62	0.75	190
No. 2 + china clay, 49	3.27	1.13	170
Rubber, 41; S, 2; ozokerite,			
5.4; tetramethylthiuram di-			
sulfide, 0.1; asbestine, 50	4.24	2.1	14

^{*} Approximate composition: titanium dioxide, 25; barium sulfate, 75 %.

INFLUENCE OF SOFTENERS

In a stock cured by the aid of tetramethylthiuram disulfide, the following softeners have little effect on the dielectric constant: ozokerite, 10; vaseline, 10; beeswax, 10; stearic acid, 10; palm oil, 5 parts.

The following increased the dielectric constant from 2.67 to the figures noted: p-coumarone resin, 10, to 2.80; mineral rubber, 33, to 2.88 (42).

HARD RUBBER

Table 105.—Electric Strength (63, 63.5)

	Thickness,	Electric strength, kilovolt-mm	t, °C
1. Rubber with 35 % S*	0.5	150	10-20
2. Medium quality	0.5	36	10-20
	1.0	25 18	10-20
3. Medium quality	2.0	18 11	10-20 60
4. Medium quality	1.0	45 32	10-20 100
5. Switch handle quality	0.5	26	10-20

^{*} Sp. gr., 1.201.

Table 106.—Electrical Properties of Various Grades of Hard Rubber (3)

			•							
	Admiralty	sheet (U. S.)	G. P. O. sheet*	(U. S.)	Sheet		Rods and	tapes:	Radio panels	and parts*
Specific gravity	1	. 22	1	. 20	1	. 19	1	. 18	1	. 46
Tensile strength, kg/cm ²	635		530		440		480		395	
Compressive strength, (kg/cm²) to laminations, 0.5 in. cube	1		282		245		265		220	
Compressive strength (kg/										
cm²) \(\perp \) to laminations	•		300		249		ŀ		237	
Elongation, %		.8	4	. 5	4	. 5	5	. 1	3	.3
alternating current	367		351		325		370		322	
Resistivity (megohm-cm) × 10 ⁶	26	.6	30	. 2	32	.9	628		100	
Dielectric constant at radio										
frequencies	ĺ								4	. 3
Water absorption (%) (24)									
hr at 50°)	0	.03	0	.04	0	. 05	0	.04	0	.08

^{*} Mean of 3 samples.

TABLE 107 (42)

	Dielectric constant, 1000 ~		Resistivity, megohm-cm
Rubber, 71.4; S, 28.6	3.50	0.4	110×10^{8}

Table 108.—Influence of Temperature and Frequency (62)

Frequency	920	2 760	4 600
Dielectric constant for alternating current	3.17	3.15	3.14
Temperature coefficient range (0 to 84°)	0.360	0.310	0.290
Resistivity, alternating current, megohm-cm	148 500	38 500	23 100
Power factor, %		0.5	0.5
Specific conductance for fre-			
quency n, micro-microhm-cm		0 + 0.01n	

Table 109.—Influence of Heat and Immersion on the Electrical Properties of a Medium Grade of Hard Rubber (63.5)

	Ele	ctric strer	igth,	1	Volume resistiv	ity,		Surface resistiv	vity,		
	kv/	mm at 10)–20°		megohm-cm		megohm				
	Im-	Sample	Sample	Im-	m- Sample Sample			Sample	Sample		
	mersed	No. 6	No. 8	mersed	No. 6	No. 8	mersed	No. 6	No. 8		
Normal		45	29		5 × 10 ⁸	4 × 10 ⁸		16 × 10 ⁶	44 × 10 ³		
Water	24 hr	32	29	1 wk	5×10^8	5×10^8	1 wk	1.8×10^{6}	0.8×10^{4}		
Brine	24 hr	37	35	1 wk	$5 imes 10^8$	$5 imes 10^8$	1 wk	1.7×10^6	27×10^3		
H ₂ SO ₄ *				1 wk	5×10^3	5×10^6	1 wk	15×10^6	1.2×10^{6}		
Oil	24 hr		30	1 wk	$3.5 \times 10^8 \mathrm{at} 100^\circ$	5×10^{6} at 50°	1 wk	$26 \times 10^6 \mathrm{at} 100^\circ$	5×10^6 at 50°		
Air	1			6 hr	1 × 10 ⁸ at 100°	5×10^8 at 50°	6 hr	4 × 10° at 100°	4 × 108 at 50°		

^{*} Specific gravity, 1.21.

[†] Mean of 4 samples.

[‡] Mean of 5 samples.

Table 110.—Influence of Compounding Ingredients (120) Stock: fine Para, 65; S, 35

Ingredient added	Sp. gr. of mixture	Electric strength, kv/mm
None	1.201	150
Talc	1.298	128
Soft palm pitch	1.185	118
Waste, soft grade	1.192	115
Hard palm pitch	1.224	108
Waste, hard grade	1.199	92
Caramba wax	1.171	78
Factice (vulcanized oil)	1.187	72
Zinc oxide	1.335	69

Fig. 52.—Variation of conductivity of ebonite with temperature and frequency (62).

Fig. 53.—Variation of S/cp (power factor) for an ebonite condenser with temperature and frequency. Black dots denote 920, crosses 2760, and small circles 24 600 p. p. s. (*2).

MILLING

TABLE 111.—INFLUENCE OF TIME OF MILLING ON PLASTICITY (78)

79 kg rubber (half sheet, half crepe) milled on a 214 cm fast mill. Extrusion time is the time in min required to extrude a length of 2 cm through the orifice of a Griffiths' plastometer at 85°.

Time, min	12.	5	18		25		32	. 5	45	60
Extrusion time	2.	77	2	. 05	1.	72	1	. 47	1.23	0.97

Table 112.—Influence of Time and Temperature of Milling on Plasticity (172)

k =plasticity determined by a Williams' plastometer

Milling c	onditions		Milling	onditions		
Time, min			Time, min	Temp.,	k	
13	100	4.7	30	40	2.0	
25	100	3.7	60	40	1.6	
5 5	100	3.0	120	40	1.3	

TABLE 113.—INFLUENCE OF TIME OF MILLING ON VISCOSITY OF RUBBER SOLUTIONS (25, 130)

Time of milling, m	in	0	10	15
Viscosity number	Fine hard Para	72.1	24.8	15.2
	Latex crepe	49.6	20.4	16.4

Time of milling, min	2.5	5	10	15	20	30	40	50	60
Relative viscosity of 2% soln	1900	540	150	110	90	70	65	60	59

TABLE 114.—Time in Min Required to Produce a Given Degree of Plasticity

Influence of (a) distance between the rolls ("nip") and (b) the size of the batch of rubber on the time required to reduce rubber to a given degree of plasticity and the temperature acquired during milling in the case of a 214 cm mill, with a friction ratio of 1:1.5 and a surface speed of the front roll of 25.4 m per min (78).

	4	45.4 kg batch				79 kg batch			
Extrusion time, min	2.2	1.45	1.3	1.2	2.2	1.45	1.3	1.2	
Nip, mm				1					
4.3	11	28.5	33	36.5	19	46.5	53	57.5	
3.57	13	25	28	31	21.5	42.5	50	53.5	
2.78	9	17.5	20.5	22.5	15.5	34.5	39.5	43	
1.98	ca. 9	15.5	18	20	16	32.5	39	44.5	
1.19	ca. 13	16.5	18.5	20	17	34	39	42	
0.40		13.5	15.5	17	16.5	29			

		113 kg batch				147 kg batch			
Extrusion time, min	2.2	1.45	1.3	1.2	2.2	1.45	1.3	1.2	
Nip, mm	1								
4.3	36				49				
3.57	31	60			41			ĺ	
2.78	23	51	58	63	35.5	63		İ	
1.98	30	51	57.5	62	35	59			
1.19	29	46.5	51	54	35.5	53	57.5	60	

Recovery from Milling

Figure 54 shows the recovery from milling (expressed as maturing time/plasticity) of the same batch of typical pale crepe rubber milled to different degrees of plasticity and then allowed to remain at room temp. in the form of rolls 25 cm long \times 7.5 cm diam. (78); the plasticity is expressed as the extrusion time in a Griffiths' plastometer (cf. Table 111).

Figure 55 shows the recovery of rubber (2 samples) from milling as shown by the viscosity of solutions (2 g in 97 cm² CS₂) after storage for various periods (123).

Figure 56 shows the influence of temperature of storage on recovery from milling (3 samples). "Hot" storage: 22.75 kg held at 42° in the form of a roll 25.5 cm long; "cold" storage: slices 6.3 cm thick cooled in water immediately after milling and held at room temp. (78).

Calender Grain

Difference in tensile properties in the direction of calendering and at right angles to it (cf. Poisson's ratio).

Raw Rubber.—Sheet calendered on cloth: longitudinal direction, T_B , 7.1; E_B , 95. Transverse direction, T_B , 1.4; E_B , 533 (127).

TABLE 115

Vulcanized Rubber.—Stock calendered on cloth or on a cold calender roll (224).

X = rotation of the load-strain curve from the strain axis expressed as excess energy of resilience shown by test pieces cut along the calendar direction compared with pieces cut transversely to the calender direction, i.e.,

$$\left[\int_0^x \Delta T dE / \int_0^x T \text{ (with grain) } dE\right] \times 100,$$

the upper limit of integration being taken at 90 % of the mean EB.

Z = displacement of the load-strain curve expressed as the extent to which the curve for test pieces in the calender direction has to be shifted along the strain axis to coincide with the curve for test pieces cut transversely to the calender direction.

a, vulcanized, wrapped, on mandrel; b, vulcanized in mold with no overflow.

Composition of stocks: (1) rubber, 97; S, 3 (by volumes); (2) rubber, 92; S, 4; ZnO, 4; (3) rubber, 90; antimony sulfide containing 40% CaSO₄, 10; (4) rubber, 73; S, 3.5; litharge, 3; whiting, 18; gas black, 2.5; (5) rubber, 52; S, 8; litharge, 2; whiting, 35; gas black, 3.

Stock	1	2	3	4	5
∫ X	9	5	21	27	18
2 $\{ z \dots \dots \dots$	10	12	30	45	40
$X \dots \dots X$	12	5	15	23	11
$P \setminus Z \dots \dots$	30	8	25	50	35

Comparison of grain in calendered and in extruded rubber after vulcanization. Stock No. 3 (above) a: calendered, X, 21; Z, 30; extruded, X, 11; Z, 10 (224).

SOFTENERS

Table 116.—Effect of Softeners on Properties of Cured and Uncured Stock (Ring-shaped Test Pieces) (31)

Stock: rubber, 100; S, 5; ZnO, 1; diphenylguanidine, 0.25; vulcanized 90 min at 148°

	canized	1 90 min	at 148°			
		Uncure	d stock	Cu	red st	ock
Softener	%	Plas-	Soft-	<i>T</i>	T_B	E
		ticity*	ness†	E 60	1 B	E_B
None		6.05	1.18	797	144	936
	0.125	5.32	1.31	784	152	921
	0.25	5.95	1.33	794	152	933
Mineral oil, sp. gr.,	0.5	5.75	1.38	800	150	948
0.905; η, 951 190	1	6.45	1.40	787	124	924
	2	6.75	1.42	797	121	912
	5	6.84	1.45	817	111	909
	0.125	6.30	1.31	783	113	870
	0.25	6.35	1.31	801	145	900
Vaseline	0.5	6.35	1.32	807	133	940
v abount	1	6.27	1.36	817	131	941
	2	6.48	1.45	821	133	968
	5	6.60	1.48	826	116	935
	0.125	6.45	1.34	785	147	902
	0.25	6.45	1.36	794	135	917
Naphthalene	0.5	6.50	1.37	795	129	920
•	1	6.69	1.38	800	127	922
	2 5	6.80	1.39	798	123	936
		6.85	1.39	814	107	920
	0.125	6.20	1.31	819	144	960
	0.25 0.5	6.35 6.35	1.30	810 806	126 110	940
Mineral rubber	1	6.29	1.29	783	102	867
	2	6.55	1.31	772	98	894
	5	7.05	1.42	834	88	953
	0.125	6.40	1.29	800	147	893
	0.25	6.47	1.33	807	128	925
	0.5	6.47	1.37	814	110	942
Pine tar	1	6.55	1.37	831	110	947
	2	7.72	1.39	837	93	909
	5	7.83	1.42	902	93	972
	0.125	6.63	1.33	813	136	940
	0.25	6.63	1.35	810	135	937
Pine tar pitch	0.5	6.63	1.36	804	134	932
ime tar pitch	1	6.25	1.39	815	114	922
	2	6.21	1.51	857	107	955
	5	6.21	1.64	933	84	1003
	0.125	6.20	1.42	845	115	940
	0.25	5.90	1.42	824	104	926
Rosin (colophony)	0.5	5.70	1.42	815	116	915
(<u>(</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u></u>	1	6.20	1.50	852	114	954
	2	6.45	1.47	883	114	992
	5	7.10	1.56	930	82	948

Table 116.—Effect of Softeners on Properties of Cured and Uncured Stock (Ring-shaped Test Pieces) (31).—
(Continued)

	<u> </u>	Uncure		Cured stock			
Softener	%	Plas-	Soft-		104 50		
Sortener	70	ticity*	ness†	E 60	T_B	E_B	
	0.125	5.80	1.47	825	119	936	
	0.25	5.80	1.47	832	115	940	
D 11 '	0.5	6.12	1.48	859	108	957	
Rubber resin	1	6.60	1.51	869	109	974	
	2	6.65	1.58	916	84	975	
	5	6.72	1.61	962	81	1020	
	0.125	6.05	1.39	782	147	934	
	0.25	6.11	1.40	775	146	920	
Rosin oil	0.5	6.21	1.40	770	146	911	
2002	1	6.30	1.39	775	136	902	
	2 5	6.35	1.48	843	119	962	
	'	6.43	1.67	896	92	968	
	0.125	6.22	1.30	747	147	887	
	0.25	6.26	1.30	751	146	892	
Rape oil	0.5	6.35 6.35	1.30 1.39	758 768	144 102	907 846	
	2	6.55	1.47	808	125	926	
	5	6.67	1.51	834	99	911	
	0.125	5.12	1.30	785	132	910	
	0.25	5.64	1.31	784	130	908	
	0.5	6.15	1.30	780	139	905	
Linseed oil (raw)	1	6.22	1.37	826	116	935	
	2	6.55	1.42	789	115	898	
	5	6.57	1.51	845	102	933	
	0.125	6.45	1.30	811	118	911	
	0.25	6.70	1.33	828	113	922	
Olive oil	0.5	6.80	1.40	851	103	939	
Onve on	1	7.10	1.44	853	123	972	
	2	6.96	1.51	854	110	953	
	5	6.60	1.60	868	104	962	
	0.125	5.57	1.40	732	126	855	
	0.25	5.57	1.40	739	131	865	
Stearin	0.5	5.57	1.40	750	145	894	
	1 2	5.60	1.43	770	144 131	930 890	
	5	5.85 7.02	1.41 1.40	755 790	130	930	
	0.125	6.25	1.42	798	142	939	
	0.125	6.20	1.42	815	131	940	
	0.5	6.23	1.44	824	128	949	
Palm oil	1	6.35	1.47	784	140	924	
	2	6.66	1.51	815	107	906	
	5	6.70	1.66	863	113	970	
	0.125	6.35	1.38	865	119	963	
	0.25	6.35	1.40	843	112	950	
Oleic agid	0.5	6.40	1.44	846	108	943	
Oleic acid	1	6.44	1.46	872	106	940	
	2	6.95	1.56	827	98	1017	
	5	8.12	1.82	1020	84	1080	
	0.125	5.25	1.40	824	123	941	
	0.25	5.35	1.44	827	126	950	
Stearic acid	0.5	5.50	1.46	833	117	958	
	1 2	6.30	1.53 1.55	858 902	126 118	989 1030	
	5	6.73 7.60	1.56	954	111	997	
	U	1 1.00	1.00	1 004		1 001	

Table 116.—Effect of Softeners on Properties of Cured and Uncured Stock (Ring-shaped Test Pieces) (31).—
(Continued)

	1	Uncure	d stock	Cu	red st	ock
Softener	%	Plas- ticity*	Soft- ness†	E 60	T _B	E _B
	0.125	6.45	1.40	783	129	910
	0.25	6.50	1.44	790	131	924
Palmitic acid	0.5	6.55	1.48	800	137	930
raminic acid	1	6.55	1.50	842	137	982
	2	6.60	1.58	919	104	1030
	5	6.70	1.63	954	105	1070
	0.125	5.94	1.39	811	144	951
	0.25	6.07	1.40	802	144	940
Ceresin wax	0.5	6.05	1.41	794	146	936
Ceresin wax	1	6.27	1.46	815	142	952
	2	6.55	1.48	813	130	942
	5	7.08	1.44	820	118	933
	0.125	5.17	1.46	864	117	977
	0.25	4.25	1.48	859	114	914
Carnauba wax	0.5	4.44	1.51	830	114	977
Carnauda wax	1	4.18	1.40	866	133	993
	2	3.80	1.48	855	114	977
	5	3.66	1.33	855	110	969

^{*} Depression (mm) in 3 min in Williams' plastometer at 70° with a load of 5 kg on a disc 5 cm² in area and 1 cm thick.

Table 117.—Influence of Fatty Oils on Tensile Properties of Pure Gum Vulcanizate (122) .
Stock: rubber, 90; S, 10; vulcanized at 143.3°

Cottonseed oil	Time of cure, hr						
Cottonseed on	1.5	2	2.5	3	3.5		
$T_{-(\log)}$ without oil	3.7	5.25	6.5	8.5	10.9		
T_{\bullet} (kg) $\left\{ \begin{array}{l} \text{with 2 \% oil } \dots \end{array} \right.$	3.15	4.2	6.1	7.6	9.7		
$T_{-(\log)}$ without oil	19.1	25.1	25.8	30.0	33.8		
T_B (kg) $\begin{cases} \text{without oil} \dots \\ \text{with } 2\% \text{ oil} \dots \end{cases}$	9.6	18.8	24.2	20.4	18.0		
E_B without oil	936	877	820	769	726		
E B With 2 % oil	857	896	831	730	619		

Similar results with rape-seed oil, palm oil and mineral oil.

ACCELERATORS OF VULCANIZATION Index of Accelerators

Aldehyde ammonia, Fig. 59 (61, 109, 143, 144, 226)

Aniline, Figs. 57, 58 (61, 98)

Arsenic, Table 118

Benzidine (98)

Cadmium diethyldithiocarbamate (169)

Calcium hydroxide, Fig. 73 (95)

Cinchonine (51)

Diacetoneamine, Figs. 57, 58

Di(dimethylaminophenyl)guanidine (114)

Diethylammonium diethyldithiocarbamate (138)

Dimethylammonium dimethyldithiocarbamate (41, 138)

Dimethylaniline (61)

Dimethylthiuram disulfide (166)

Diphenylguanidine, Figs. 57, 58, 64, 65, 66, 67, 69; Table 124 (143)

Di-n-propylamine (143)

Dithiobenzoyl disulfide (126)

Di- α -thionaphthoyl disulfide (220)

Di-o-tolylguanidine, Figs. 67, 68, 69 (142)

Di-o-tolylthiourea (162)

Di-p-tolylguanidine, Fig. 69 (142)

Di-p-tolylthiourea (162)

Dixanthogen, Fig. 62

[†] Depression (mm) with 3 mm steel ball under 0.5 kg load at room temperature.

Di-m-xylylguanidine (114) Ethylammonium ethyldithiocarbamate (166) Ethylideneaniline, Table 123 (143) Formaldehydeaniline, Figs. 57, 58 (226) Furfuramide, Fig. 63 Hexamethylenetetramine, Figs. 71, 72; Table 125 (41, 109, 132, 143, 144, 162, 167, 169) Hydrazobenzene (98) Litharge, Fig. 74; Table 126 Magnesium oxide, Fig. 75; Table 127 (96) Mercaptobenzothiazole (143) Mercuric oxide, Fig. 74 Methylene-p-toluidine (143) Nitrogen sulfide (126) p-Nitrosodimethylaniline, Figs. 57, 58; Table 128 (4, 61, 120.5, 143, 144, 156, 161) m-Phenylenediamine, Fig. 76 (98, 109) p-Phenylenediamine, Fig. 76 (61, 109) Phenylisothiocyanate (162) Piperidine (143) Piperidinium pentamethylenedithiocarbamate, Fig. 61; Table 119, 120, 121, 122 (109, 134, 135, 166, 212, 221) Potassium hydroxide, Fig. 77 Quinine (51) Quinoidine, Figs. 57, 58 (51) Selenium (228) Sodium phenoxide, Fig. 73 Tetraethylthiuram disulfide (166) Tetramethylthiuram disulfide, Fig. 79; Table 129 Thiocarbanilide, Fig. 78 (61, 97, 109, 143, 144, 165, 166, 167, 221) Thiocarbamide, Figs. 57, 58 o-Toluidine, Figs. 57, 58 (61) p-Toluidine (61, 98, 143, 162) Triphenylguanidine, Fig. 70 Zinc n-butylxanthate, Table 132 Zinc dimethyldithiocarbamate, Fig. 60 Zinc ethylxanthate, Tables 130, 131, 132 Zinc mercaptobenzothiazole, Table 123 (143)

ARSENIC

Zinc methylxanthate, Table 132

Zinc n-propylxanthate, Table 132 Zinc sulfate-ammonia, Fig. 73 (143)

Zinc pentamethylenedithiocarbamate, Table 122

Zinc phenylmethyldithiocarbamate, Table 122 Zinc isopropylxanthate, Fig. 80; Table 132

Table 118.—Effect of Different Amounts of the Accelerator (Expressed as % of the Total Mixture) upon the Time of Optimum Cure for Slab and Crepe (52) Stock: rubber, 90; S, 10; vulcanized at 140° (ring-shaped test pieces)

As _z O _z	Cure	e, min	As ₂ O ₃	Cure	e, min	As ₂ O ₂	Cure, min		
A52U3	Slab	Crepe	AS ₂ U ₃	Slab	Crepe	AS ₂ U ₃	Slab	Crepe	
0	45	120	0	75	150	0	45	120	
0.0002	40	105	0.4	37	60	0.0021	35	95	
0.0096	40	95	0.8	35	77	0.1050	34	75	
0.0192	45	95	3.2	40	105	0.315	40	115	
			6.4	90	165	0.660	80	180	

Fig. 57.—Various accelerators in the absence of ZnO. Basal stock: rubber, 90; S, 10. Tensile strength and stiffness (ringshaped test pieces) (176).

Fig. 58.—Various accelerators in the presence of ZnO. Basal stock: rubber, 90; S, 10; ZnO, 5. Tensile strength and stiffness (ring-shaped test pieces) (170). For key to numbers see Fig. 57.

Fig. 59.—Influence of various proportions of aldehyde ammonia at 138° on rate of vulcanization, ultimate tensile strength, stiffness, vulcanization coefficient and flatness of curve. Basal stock: rubber, 90; S, 10 (ring-shaped test pieces) (168). Data are also given for vulcanization of the same mixture at 98°, 108°, 118°, and 148°. Temperature coefficient for these mixtures, see Table 70. ZnO has little or no effect on the activity of aldehyde ammonia (168).

Fig. 60.—Zinc dimethyldithiocarbamate (0.25 part) when employed with and without ZnO (ring-shaped test pieces) (166). O—rubber, 90; S, 10. □—rubber, 90; S, 10; ZnO, 1. △—rubber, 90; S, 10; ZnO, 5.

Fig. 61.—Piperidinium pentamethylenedithiocarbamate (0.25 part) with and without ZnO (ring-shaped test pieces) (102). ○—rubber, 90; S, 10. □—rubber, 90; S, 10; ZnO, 1. △—rubber, 90; S, 10; ZnO, 5. Vulcanization coefficients insert for curves ○ and □.

Fig. 62.—Dixanthogen (thiocarbethoxydisulfide)—influence of temperature and of proportion of ZnO. Tensile strength and stiffness (ring-shaped test pieces) (170). (1) 2.5 % dixanthogen, 1 % ZnO, 5 % S, 128°. (2) 2.5 % dixanthogen, 25 % ZnO, 5 % S, 128°. ZnO, 5 % S, 98°. (3) 2.5 % dixanthogen, 25 % ZnO, 5 % S, 128°. Zinc methylxanthate—influence of temperature. (4-5). 3 % zinc methylxanthate, 1 % ZnO, 10 % S at 98° and 138° (170).

PIPERIDINIUM PENTAMETHYLENEDITHIOCARBA-MATE

TABLE 119.—EFFECT OF CONCENTRATION OF ACCELERATOR IN A Low Sulfur Mixture (135)

Stock: rubber, 100; S, 2; ZnO, 2.5; vulcanized at 141° (ring-shaped test pieces)

Accelerator added in admixture with 3 parts of colloidal clay. These periods for vulcanization include those giving the maximum tensile strength.

Acceler-	5 min cure			7.5 min cure			10 min cure		
ator	E . 0	T_B	$ E_B $	E . 0	T_B	E_B	E 60	T _B	$ E_B $
0.25	773	128	1040	775	109	1008	743	98	934
0.50	600	172	870	585	144	817	534	115	800
0.75	612	176	902	583	186	870	579	217	894
1.0	516			510	256	830	523	182	794

TABLE 120.—Effect of Concentration of Accelerator in A HIGH SULFUR MIXTURE (220)

Stock: rubber, 100; S, 7.5; ZnO, 5; vulcanized at 115° (straight test pieces)

Accel-	20	min	cure	30	min	cure	40	min	cure	60	min o	eure
erator	Tel	T_B	E_B	T 6	T_B	E_B	T 6	T_B	E_B	T ₆	T_B	E_B
0.25	57	215	805	133	307	740					302	
0.33	66	234	815								335	
0.50	159	325	715				247	336	650	280	298	615
0.66	230	321	660		267	590		215	515		194	37 0

Table 121.—Effect of Concentration of ZnO on the Activity OF PIPERIDINIUM PENTAMETHYLENEDITHIOCARBAMATE (166)

Stock: rubber, 90; S, 10; accelerator, 0.25 (ring-shaped test pieces)

ZnO	Vulcan-	Cure givi	Cure giving maximum tensile strength							
parts	ized at	Time, min	E 50	T _B	V. C.					
1	118°	60	· 487	172	2.3					
5	118°	10	587	214						
	1	20	504	210	1.6					
20	118°	20	453	223	1.7					
20	108°	30	454	219						

TABLE 122.—Comparison of the Effects of Piperidinium PENTAMETHYLENEDITHIOCARBAMATE (A) WITH ZINC PENTA-METHYLENEDITHIOCARBAMATE (B) AND ZINC PHENYL-METHYLDITHIOCARBAMATE (C) (220)

Stock: rubber, 100; S, 10; ZnO, 5; accelerator, 0.50 A or equivalent amounts B and C (straight test pieces)

V	With accelerators; vulcanized at 115°								Control; vulcan-				
Min		A			В	C			ized at 141°				
MILL	T ₆	T_B	$ E_B $	T ₆	T_B	E_B	T_6	T_B	E_B	Min	T ₆	T_B	E_B
10	93	272	750	47	180	825	44	172	810	60	16	37	820
20	198	326	700	96	254	755	71	226	765	90	22	74	865
30	244	289	610					i		120	28	101	830
40	262	256	595	144	274	715	121	276	735	150	32	114	800
60	1	199	500	168	253	670	131	260	720	180	41	131	790
90	1	64	285	180	205	615	129	252	710	240		61	560
120	<u> </u>						134	247	700	300		17	300

ETHYLIDINEANILINE AND ZINC MERCAPTO-BENZOTHIAZOLE

TABLE 123 (123)

A = ethylidineaniline; B = zinc mercaptobenzothiazole; cure giving maximum tensile strength; vulcanized at 141.7° (straight test pieces).

Stoc	k, pa	arts	Accelerator		Cure,	Tr.	T	
Rubber	s	ZnO	A	B	min	17	T_B	
100	3	5	0.5		40	ca. 95	ca. 200	
100	4	5		0.6	30	ca. 90	ca. 200	

Fig. 63.—Furfuramide (ring-shaped test pieces) (163). O—rubber, 90; S. 10; furfuramide, 1.

—rubber, 90; S. 10; furfuramide, 1; ZnO, △-rubber, 90; S, 10; furfuramide, 1; ZnO, 5.

Fig. 64.—Diphenylguanidine with various proportions of Smaximum tensile strength attained. Basal stock: rubber, 100; ZnO, 5; vulcanized at 135° (ring-shaped test pieces) (4).

Fig. 65.—Diphenylguanidine with various proportions of S-maximum stiffness attained. Basal stock: rubber, 100; ZnO, 5; vulcanized at 135° (ring-shaped test pieces) (4).

Fig. 66.—Diphenylguanidine with various proportions of S-rate of cure. Basal stock: rubber, 100; ZnO, 5; vulcanized at 135° (ringshaped test pieces) (4).

DIPHENYLGUANIDINE

Table 124.—Effect of ZnO and "Light" MgCO₁ on the Action of Diphenylguanidine (4)

Cure showing maximum tensile strength; vulcanized at 135° (ring-shaped test pieces)

Accelerator parts	ZnO	MgCO ₃	Cure, min	T_B	E_B	T 7
	St	tock: rubb	er, 100;	8, 7.5		
1	5		90	213	687	131
1	30		105	190	677	138
1	5	15	75	210	594	216
0.125	5	i	180	106	823	36
0.125	30		270	97	761	44
0.125	5	15	195	160	762	81
	5	Stock: rubl	ber, 100;	S, 3		
1	5		75	176	822	48
1	30	1	150	175	735	93
1	5		120	206	665	159
0.125	5	15	480	66	890	16
0.125	30		540	89	792	23
0.125	5	15	420	51	704	31

Fig. 67.—Diphenylguanidine (DPG) and Di-o-tolylguanidine (Do-TG)—influence of temperature. Basal stock: rubber, 100; S, 4; ZnO, 3 (straight test pieces) (142).

Fig. 70.—Triphenylguanidine—rate of cure as indicated by (A) tensile strength and (B) stiffness. Basal stock: rubber, 90; S, 10; vulcanized at 148° (ringshaped test pieces) (167).

Fig. 68.—Di-o-tolylguanidine—influence of various proportions of ZnO on accelerating power. Basal stock: rubber, 100; S, 3; di-o-tolylguanidine, 0.5; vulcanized at 141° (straight test pieces) (142).

HEXAMETHYLENETETRAMINE

Table 125.—Effect of the Accelerator in the Presence of Great Quantities of ZnO (226)

Stock: rubber, 100; ZnO, 100; S, 7 (straight test pieces)

				exam						
Cure, min	0		0.	5	0.7	75	1.	0	1.	5
	T_B	E_B	T_B	E_B	T_B	E_B	T_B	E_B	T_B	E_B
		Vu	lcaniz	zed at	141.	.7°				
45			102	510	140	540				
60	l í		140	550	163	520	152	520	147	480
90			148	490			188	480	158	420
120	82	680	146	480			197	470	198	410
150	87	550			183	460	140	340	119	300
180	88	500			205	460				
210	87	500	-	ł						
		Vu	lcaniz	ed at	147.	8°				
30		Ī					119	540	152	500
45			154	520	154	510	180		186	450
60	82	500	160	500	172	520	176	500	180	440
90	93	500	188		188	480	163	420	103	270
120			159	470	159	410				
150	122	540								
180	116	530							- 1	
		Vu	lcani	zed at	152	.8°			•	
20	1 1								172	510
30	1 1						134	520	188	
45			172	480	182	480	192	490	180	
60	99	480	200		191	470	186		152	380
90	113	500	113	330	103	300	160	240		
120	122	540							- 1	l
150	88	470								

LITHARGE

Table 126.—Influence of Small Quantities of Litharge (156) Stock: rubber, 90; S, 10; vulcanized 60 min at 138° (ring-shaped test pieces)

% PbO	0	1	0.1		0.25	T	0.5	0.8
T_8	23.7	1	24.4	İ	24.8	T	28.2	37.0
V. C	1 26	T	1.25	1	1.27	1	1.37	1.75

MAGNESIUM OXIDE

Table 127.—Influence of Small Quantities of Magnesium Oxide (156)

Stock: rubber, 90; S, 10; vulcanized 60 min at 138° (ring-shaped test pieces)

			,		
% MgO	0	0.1	0.25	0.4	0.75
$T_1 \dots T_n$	15.2	39.0	75.5	112.0	132.0
v. c	1.40	2.66	3.31	3.68	4.08

Fig. 69.—Comparison of the activity of equimolecular amounts of diphenyl-, di-o-tolyl- and di-p-tolylguanidine. Basal stock: rubber, 100; S, 4; ZnO, 1; vulcanized at 141° (straight test pieces) (142).

Fig. 71.—Hexamethylenetetramine (HMT) with and without zinc oxide. Basal stock: rubber, 90; S, 10 (ring-shaped test pieces) (168).

Fig. 72.—Hexamethylenetetramine (HMT) and zinc oxide. Tensile strength and stiffness (ring-shaped test pieces) (162). ○—rubber, 90; S, 10; ZnO, 0.5; HMT, 1. □—rubber, 90; S, 10; ZnO, 2; HMT, 1. □—rubber, 90; S, 10; ZnO, 5; HMT, 1. □—rubber, 90; S, 10; ZnO, 5; HMT, 2.5.

Fig. 73.—Basal stock: rubber, 90; S, 10. Tensile strength and stiffness (ring-shaped test pieces) (170). (1) Sodium phenoxide (1%) at 138°. (2) Zinc sulfate ammonia ($ZnSO_4.5NH_2$) (Sulzin) (1%) at 138°. (3) Lime (5%) at 138°. (4) Rubber, 90; S, 10 at 148°.

p-NITROSODIMETHYLANILINE

Table 128.—Influence of ZnO and MgO on the Action of p-Nitrosodimethylaniline (4); cf. Figs. 57, 58

Stock: rubber, 100; S, 10; accelerator, 0.5; ZnO or MgO, 5; vulcanized at 142° (ring-shaped test pieces)

	7	ZnO		MgO				
Cure, min	T 6	T_B	E_B	Cure, min	T 6	T_B	E_B	
20	31	133	875	15	24	90	886	
30	35	103	804	25	41	166	890	
50		24	465	35	44	135	834	

Fig. 74.—Basal stock: rubber, 90; S, 10. Tenaile strength and stiffness (ring-shaped test pieces) (170). (1) Litharge (PbO) (20%) at 128°. (2) PbO (10%), ZnO (5%) at 128°. (3) Mercuric oxide (HgO) (10%) at 128°. (4) Rubber, 90; S, 10 at 148°.

Fig. 77.—Potassium hydroxide. Tensile strength and stiffness (ring-shaped test pieces) (vulcanization coefficients inserted) (187). Basal stock: rubber, 90; S, 10. ZnO has little or no influence on the accelerating activity of KOH in rubber mixtures (220).

TETRAMETHYLTHIURAM DISULFIDE

Table 129.—Vulcanization with Tetramethylthiuram Disul-FIDE; NO SULFUR ADDED (166)

Stock: rubber, 90; ZnO, 5; accelerator, 5 (ring-shaped test pieces)

t. °C	Cure, min	E 50	T_B
148	15	580	112
138	15	695	106

Fig. 75.-Magnesium oxide. Basal stock: rubber, 90; S, 10 (ringshaped test pieces) (167).

ZINC XANTHATES

TABLE 130.—EFFECT OF ZINC ETHYLXANTHATE AND ZNO ON THE PROPERTIES OF THE VULCANIZATES AT OPTIMUM CURE (169) Ring-shaped test pieces

, °C	Parts	of	Tr.	72
t, °C	Accelerator	ZnO	$T_{\mathcal{B}}$	E_{so}
	Stock:	rubber, 90;	S, 10	
108	1	0	71	852
108	0.5	1	85	761
108	0.5	5	120	665
	Stock:	rubber, 95;	S, 5	
108	1	1	130	641
98	3	1	169	523
98	5	1	219	486
98	5	5	214	443
98	5	20	156	403
98*	10	1	177	441
98*	10	5	189	364
98*	10	20	163	292

Badly over-vulcanized.

TABLE 131.—EFFECT OF ZINC ETHYLXANTHATE AND S ON THE PROPERTIES OF THE VULCANIZATES AT OPTIMUM CURE (VUL-CANIZATION TEMPERATURE, 108°) (169)

ъ.	•	•		•
King	r_ghat	ned '	test '	pieces

Rubber	s	Parts/100 rubber -	E . 0	T _B	V. C.		
	l ——	Accelerator	ZnO		- 2		
100	1.0	3	1	727	122	0.5	
100	3.1	3	1	612	140	1.6	
100	5.3	3	1	531	171	2.5	
100	11.1	3	1	486	173	3.5	
100	3.1	1	1	753	97	0.7	
100	5.3	1	1	652	186	1.6	

Fig. 76.—m- and p-Phenylenediamines (ring-shaped test pieces) (105). Basal stock: rubber, 90; S, 10.

Fig. 78.—Thiocarbanilide (ring-shaped test pieces) (165). Basal stock: rubber, 90; S, 10. The "elongation" shown is the extension under a load of 0.5 kg/cm².

Fig. 79.—Tetramethylthiuram disulfide with and without ZnO. Tensile strength and stiffness (ring-shaped test pieces) (¹es). ○—rubber, 90; S, 10, tetramethylthiuram disulfide, 0.25. □—same + ZnO, 1. △—same + ZnO, 5.

Fig. 80.—Zinc isopropylxanthate—influence of temperature and flat or static curing qualities. Tensile strength and stiffness. Basal stock: rubber, 90; S, 10. Figures inserted show vulcanization coefficients (ring-shaped test pieces) (100).

Table 132.—Comparison of the Effect of Various Zinc Xanthates and Influence of Temperature on Their Activity (170)

Stock: rubber, 90; S, 10; ZnO, 1; data for optimum cures (ringshaped test pieces)

		Vulcanizing temperatures							
Accelerator	Parts	arts 138°		128°		118°		98°	
		E 50	T_B	E 60	T_B	E so	T_B	E 80	T_B
Zinc isopropylxanthate	1.1	577	168	558	167	536	190	508	200
Zinc n-butylxanthate	1.2	631	154	600	168	580	175	543	199
Zinc n-propylxanthate	1.1	706	92	666	134	642	141	606	174
7	1.0	l l				960	59	932	65
Zinc methylxanthate	3.0	813	74	776	100	750	103	713	124

Zinc ethylxanthate, at 88°: $E_{60} = 555$; $T_B = 205 \ (^{169})$. At $108^{\circ} \ (^{1} \text{ part})$: $E_{60} = 635$; $T_B = 185 \ (^{170})$.

COMPOUNDING INGREDIENTS

TABLE 133.—AVERAGE SIZE OF THE PARTICLES (74)

Ingredient	Microns	Ingredient	Microns
Carbon black	ca. 0.15	ZnO	
Lampblack	0.3 - 0.4	American process	0.4-0.6
Lithopone	0.3-0.4	French process	0.3-0.4
		Barytes, silica, asbes-	
White lead	0.75-2	tine, whiting	ca. 5-10

TABLE 134.—THERMAL CONDUCTIVITY (227)
For conductivity of rubber, v. p. 269

Compounding ingredient	Conductivity (cal/sec/cm³) (45-100°)	Compounding ingredient	Conductivity (cal/sec/cm ³ (45-100°)	
Antimony sulfide		MgCO ₃		
(15.6 % free S)	0.00021	Red oxide	0.00132	
Blanc fixe	0.00078	S	0.00012	
Clay (Dixie)	0.00058	Whiting	0.00084	
Gas black	0.00067	Z nO	0.00166	
Litharge	0.00051	Cord fabric	0.00082*	
Lithopone	0.00094			

^{*} Approximately.

Digitized by Google

Figures 81, 82. Effect on the tensile strength, stiffness and rate of cure of an unaccelerated rubber-sulfur mixture (100:10) of 10 vols. of each of the following ingredients: (a) acetylene black; (b) pptd. barytes; (c) china clay; (d) colloidal clay; (e) gas black (carbon black); (f) lampblack; (g) lithopone; (h) MgCO₃; (i) mineral rubber (bitumen); (j) thermatomic carbon; (k) whiting; (l) ZnO (the figures in the upper set of the curves show the number of results of which each curve represents the mean. Ringshaped test pieces used) (168).

Fig. 87.

Figures 83-90. Effects on load-strain relations of various volumes of barytes (83), carbon black (84), china clay (85), glue (86), red oxide (87), tripoli flour (88), whiting (89), ZnO (90), added to the basal stock (rubber, 100; PbO, 30; S, 5. Stocks were vulcanized at 141° to approx. max. tensile strength) (223).

Figure 91. Effect on the load-strain relations of adding 5 vols. of barytes, carbon black, china clay, lithopone, titanium white, whiting or ZnO to the basal stock (rubber, 77.5; S, 5 vols.), vulcanized 175 min at 141° (ring-shaped test pieces) (104).

Figure 92. Influence on load-strain relations of various proportions of "light" MgCO₃ added to the basal stock (rubber, 100; PbO, 30; S, 5; vulcanized 45 min at 143°) (straight test pieces used) (75).

Fig. 90.

Tinconde Scround Magnesite

Scround Magnesite

Scround Magnesite

Scround Magnesite

Volumes Filler to 100 Volumes Rubber

Frg. 93.

The influence of various proportions of carbon black, "light" MgCO₃, magnesite and ZnO added to the basal stock (rubber, 100; PbO, 30; S, 5; vulcanized 49 min at 143°) on the hardness of rubber is shown in Fig. 93; on the sub-permanent set in Fig. 94 (75).

The effect of adding various proportions of BaSO₄ (colloidal), carbon black, china clay, MgCO₃ (light), lithopone, and ZnO to the basal stock (rubber, 100; ZnO, 5; S, 5; hexamethylenetetramine, 1; basal stock cured 80 min at 148°; other stocks given a slight undercure) upon the ultimate tensile strength is shown in Fig. 95; stiffness, Fig. 96; resilient energy, Fig. 97; resistance to abrasion, Fig. 98; and hardness, Fig. 99 (straight test pieces

used). The resistance to abrasion is expressed as the percentage loss in weight of disks 5.625 cm diameter by 0.2 cm thick when rotated for 100 000 revolutions (10 hr) in loose granular carborundum (76).

55 John Colloidal Barium Sulfate

Colloidal Barium Sulfate

So Colloidal Barium Sulfate

Lithopone

Volumes Filler to 100 Volumes Rubber

Fig. 99.

Figures 100-102 illustrate the influence on the load-strain relations, ultimate tensile strength and energy of resilience of various proportions of MR (mineral rubber, prepared from blown asphalt and gilsonite) (solid lines), and of carbon black (dotted lines) added to the basal stock (rubber, 100; S, 10) (115). Figs. 100, 102: cured at 141° for 165 min; Fig. 101: cures giving maximum tensile strength.

Figure 103 illustrates the influence on the sub-permanent set of various proportions of barytes, carbon black, MR and ZnO added to the basal stock (rubber, 100; S, 10) (115).

BROWN FACTICE

Rubber substitute, vulcanized oil

TABLE 135.—EFFECT ON VULCANIZED RUBBER (4)

Stock: rubber, 100; S, 7.5; ZnO, 5; diphenylguanidine, 0.5; vulcanized 45 min at 135°

Brown factice, parts	T_B	E_B	T_7
0	180	748	147
1	171	746	136
5	170	738	124
10	162	791	106
40	102	698	103
- 40 40*	60	571	

* Also contained 9 parts "light" MgCO2; vulcanised 60 min at 142°.

BROWN FACTICE, "GOLDEN" ANTIMONY SULFIDE AND IRON OXIDE

Table 136.—Effect of Brown Factice When Used with Antimony Sulfide or Iron Oxide (5)

	Composition of stocks							
Stock	Rubber	s	Brown factice	Antimony sulfide (3 % free S)	Iron oxide			
A	76.5	8.0		15.5				
В	76.5	8.5]	15.5			
C	59.5	8.0	17.0	15.5				
D	59.5	8.5	17.0		15.0			

Tens	ile prop	oerties	after	vulcan	ization	at 14	1°	
Stock	1	A	1	B .	1	<u> </u>	1	<u> </u>
Cure, min	T _B	$ E_B $	T _B	$ E_B $	T_B	E_B	T _B	$ E_B $
75					89	738		1
90	113	733			104	724	88	734
120	121	707			90	640	109	700
150	123	706	124	777	İ		106	600
165	1]	134	752]		l	
175			136	768			1	
180	132	654		l	4	301		
190		l	134	731			64	514
205	1		134	709				
210	83	510					1	

CLAY

Effect of adsorptive power (defined as % of dye adsorbed by 2 g of clay from 50 cm² of 0.1% malachite green solution) on the properties of rubber.

Table 137 (159)

Stock: rubber, 48.375; clay, 21; ZnO, 11; lithopone, 17; S, 2; diphenylguanidine, 0.625; vulcanized at 145° (cure giving maximum tensile strength)

Sample No.	1	2	3	4	5	6	7
Adsorptive power, %	40.14	47.6	56.2	89.7	89.9	99.2	99.5
Cure, min	20	20	20	20	20	5 0	40
T_B	174.3	170.1	167.3	140.6	140.6	106.8	87.9

TABLE 138 (159)

Stock: rubber, 63.496; clay, 26; ZnO, 5.5; MgO, 2.0; S, 2.5; diphenylguanidine, 0.504; vulcanized at 153° (cure giving maximum tensile strength)

	Sample No.	Mean size, microns	Adsorptive power, %	Cure, min	T_B
_	1	3.3	40	15	232.7
	2	3.3	59	20	232
	3	3.3	75	20	225

Table 138 (159).—(Continued)

Sample No.	Mean size, microns	Adsorptive power, %	Cure, min	T_B
4	5.0	75	20	214.4
5	3.2	77	20	228.2
6	3.2	81	25	208.1
7	3.9	82	20	224.3
8	3.3	82	3 0	220
9	2.9	85	25	200.3
10	3.7	100	40	161
11	4.4	100	40	117.4

CARBON BLACK

Table 139.—Effect of Differences in Samples of Carbon Black on the Properties of Rubber* (149)

Stock A: rubber, 73.5; carbon black, 19.06; ZnO, 4.33; S, 1.84; diphenylguanidine, 1.27. Stock B: rubber, 72.83; carbon black, 18.80; ZnO, 4.25; S, 3.60; hexamethylenetetramine, 1.12.

Cure giving maximum T_B								
	8	Stock A	Stock B					
	Mean	Max.	Min.	Mean	Max.	Min.		
Cure, min	36	55	25	68.5	75	60		
<i>T</i> ₅	165	244	97	154	23 8	85		
T_B	346	379	310	298	320	278		
E_B	703	790	604	673	737	590		

* 18 samples of carbon black were used with stock A, and 7 with stock B. For details as to their properties, r. (14*).

RECLAIMED RUBBER AS A COMPOUNDING INGREDIENT

Table 140.—Vulcanization of Reclaimed Rubber (16)
Whole black tire reclaim (alkali process): sp. gr., 1.18; acctone extract, 7.5%; ash, 20%

Fig. 107.

Fig. 106.

Composition				Vulcanized at 142°			
Rubber	Rubber S ZnO Diphenylguanidine			Cure, min	T_B	E_B	
100	5	0	0	20	54.8	410	
100	5	0	0	30	59.8	450	
100	3	3	0.5	20	93.5	400	
100	3	3	0.5	30	80.9	320	

Table 141.—Composition of Stocks Containing Reclaimed Rubber, Showing Possible Variations in the Amounts of ZnO and Carbon Black Used

For load-strain curves and resistance to abrasion, v. Figs. 104-107
(16)

	Orig- inal	Reclaimed rubber content increased, with decrease:									
	stock*		Of ZnC)	Of carbon black						
Sample	a	b	c	d	e	f	g				
Rubber	60	57	54	51	57	54	51				
Reclaim †	0	6	12	18	6	12	18				
Z nO	12	8	4	0	13	14	15				
Carbon black.	24.1	25.1	26.1	20.1	16.1	12.1					

* Contained also: S, 2.4; ethylidineaniline, 0.45; diphenylguanidine, 0.45; stearic acid, 0.3; mineral oil, 0.3. † For properties of the reclaimed rubber, v. Table 140.

AGING

Table 142.—Effect of Age on the Vulcanization of Raw Rubber

Stored in the tropics (53); cf. Tables 24, 144; stock: rubber, 90; S, 10

Туре	Number of	Mean age,	cure (r	time of nin) at	Mean tensile product $(T_B \times E_B/1000)$		
	samples	mo	Initial	After aging	Initial	After aging	
Slab crepe	23	34	76.3	106.3	129.8	100.5	
Crepe	35	34.5	172	138	118.1	105.7	
Sheet	27	34.5	135	120	129.1	110.8	

TABLE 143.—AGING OF CEYLON BLANKET CREPE (154)

	Air-d	ried*	Heat-dried*		
	Initial	After 2 yr	Initial	After 2 yr	
Cure, min	127	116	135	130	
T_B	145	141	140	132	
Slope	34.5	35	35.5	36 .5	
η , 1% in C ₆ H ₆ \dagger	39.5	26.5	23.5	17.5	
η , 1% in C ₆ H ₆ + HCl†		15		12	

* Two samples. † Viscosity relative to that of solvent.

Table 144.—Aging of Slab Crepe (205) Stock: rubber, 92.5; S, 7.5; vulcanized at 150°; aged 4 yr in tropics

	Slab crepe	Latex crepe (control)
Number of samples	6	3
% H ₂ O	0.41	0.34
% ash	0.34	0.20
% aqueous extract		0.28
Cure, min { initialaged	39 .5	107
cure, mm aged	57	105
$T_B \left. egin{cases} ext{initial} \\ ext{aged} \\ ext{.} \end{aligned} \right.$	146	146
^{1 B} aged	133	148
Slope { initial	34	36
Slope aged	34	36
η, relative { initial	102	39
η, relative { aged	23	31

Table 145.—Aging of Pure Gum Stock at Room Temperature*
Influence of % of S (200)

Stock A: rubber, 90; S, 10; vulcanized 80 min at 148°

Age, da	T_B	E_B	E 130
3	129	906	907
111	142	873	853
181	136	851	842
380	135	821	816
495	149	821	790
619	137	795	784

Stock B: rubber, 92.5; S, 7.5; vulcanized 105 min at 148°

Age, da	T_B	E_B	E_{180}
3	134	930	923
113	144	900	877
181	144	886	863
376	136	836	827
495	137	810	800
619	115	769	793

Stock C: rubber, 95; S, 5; vulcanized at 148°

C	1	(Cure, 2	200 mi	n	Cure, 300 min					
Age, da	T _B	EB	E 130	Age, da	T _B	E _B	E 180	Age, da	Тв	E _B	E 130
3	110	987	1023	3	131	952	950	3	105	969	1019
111	126	960	967	111	143	918	898	108	116	944	970
216	129	953	954	181	139	898	883			l	1
430	121	889	905	376	51	581		423	12	381	ł
550	116	869	895	457	14	380		532	10	333	
673	93	899	856	567	13	314		<u> </u>			

^{*} Ca. 27° (in tropics).

Table 146.—Accelerated Aging of Pure Gum Stock at 65° (180)

Influence of degree of vulcanization; stock: rubber, 92.5; S, 7.5; vulcanized at 148°

A J-	Cure, 70 min										
Age, da	T_B	E_B	E 90	V. C.							
0	86.5	1053	1115	1.98							
1	75	1009	1052								
2	85	998	1010								
3	92	982	976	2.42							
4	93	965	958								
6	94.5	952	943	2.30							
9	95	926	912								
16	98	903	885	2.70							

A 3-	Ī	Cure	, 90 m	in		Cure, 110 min					
Age, da	T_B	E_B	E120	V. C.	T_B	E_B	E 130	V. C.			
0	91	984	1060	2.82	128.5	943	950	3.89			
1	103	949	998		134	919	915				
2	110	937	973		137	901	889				
3	106	914	956	3.24	139.5	888	872	4.07			
4	119	907	925		136.5	858	848				
5	129	912	924	2.96	141.5	853	835	4.02			
7	125.5	900	907		143	848	825				
12	104.5	833	878	3.74	104	722		4.27			

Fig. 108.—Accelerated aging of pure gum vulcanized rubber. Influence of degree of vulcanization on the tensile product of the stock. Basal stock: rubber, 100; S, 8; vulcanized at 143° (111). The figures on the curves denote the time (in min) of vulcanization at 143°.

Fig. 109.—Comparison of aging of some compounded stocks in the dark at room temperature with aging accelerated by heating at 60° in oxygen at a pressure of 21 kg/cm² (straight test pieces) (1°s). Stock A: rubber, 100; S, 4; diphenylguanidine, 0.5; pptd. whiting, 50; ZnO, 4; vulcanized 30 min at 142°. Stock B: rubber, 100; S, 6; PbO, 10; pptd. whiting, 50; vulcanized 25 min at 142°.

Fig. 110.—Same as Fig. 109. Stock: rubber, 100; S, 1; tetramethylthiuram disulfide, 1; ZnO, 100; vulcanized 10 min at 134° (18).

Fig. 111.—Comparison of aging in the dark at room temperature, accelerated aging at 60° in oxygen at 21 kg/cm², and accelerated aging at 70° in a current of air at atm. pressure in the case of a tire tread stock vulcanized for various periods (1s). Stock: rubber, 60; S, 3; diphenylguanidine, 0.5; ethylideneaniline, 0.375; pine tar, 1; ZnO, 17.125; carbon black, 18. For further data on the aging of compounded stocks, especially low-grade stocks, see (22).

Fig. 112.—Influence of compounding ingredients on accelerated aging. Basal stock: rubber, 100; ZnO, 5; S, 4; diphenylguanidine, 0.75. Other stocks prepared by adding 20 vols. of the following to 100 vols. of rubber: (1) barytes; (2) carbon black; (3) clay; (4) MgCO₃; (5) thermatonic carbon; (6) whiting; (7) ZnO (1¹³). (A) Effect on the tensile product of heating the best technical cure (30–45 min at 141° for all stocks except 4 (15 min) and 2 (60 min)) for 6 days in a current of air at atmospheric pressure and 70°. (B) Effect on the tensile product of heating the best technical cure for 16 hr in oxygen at 28 kg/cm² and 60°. (C) Increase in weight as in (B) of the vulcanizates obtained by various periods of cure (mins denote period of vulcanization at 141°).

Fig. 114.—Change of ultimate elongation on aging as in Fig. 113 (5).

Fig. 113.—Change in tensile strength on accelerated aging at 70° in a current of air at atmospheric pressure of stocks containing (A) Fe₂O₂, (B) Sb₂S₄. Stock A: rubber, 76.5; S, 8.5; Fe₂O₂, 15. Stock B: rubber, 76.5; S, 8; "golden" Sb₂S₄ (3% free S), 15.5. Vulcanized at 141° (a), 2 hr; (b) and (d) 2.25 hr; (c) and (f), 2.5 hr; (e) 2.75 hr (5).

Fig. 115.—Influence of light on aging at room temperature. Curve marked "light" is for rubber behind glass in a very light room (1s). Stock (left-hand curves): rubber, 100; S, 4; ZnO, 4; diphenylguanidine, 0.5; pptd. whiting, 50; (right-hand curves): rubber, 100; S, 6; litharge, 10; pptd. whiting, 50 (cf. Fig. 109).

HARD RUBBER

Commercial Samples.— $T_B = 105-700$; $E_B = 2-75$; compressive strength = 210-1400 kg/cm²; sp. gr. = ca. 1.20 (mean) (33). Electrical Properties.—v. Tables 105-110.

Coefficient of Thermal Expansion.— 80×10^{-6} (20-60°) (148). Specific Gravity.—v. commercial samples and Tables 105, 106, 110.

Table 147.—Influence of Degree of Vulcanization on Sp. Gr. (70)

Stock A: rubber, 70; S, 30. Stock B: rubber, 70; S, 30; diphenyl-guanidine, 1.4. Both vulcanized at 170°

Cure, min	Sp. gr.						
Cure, min	Stock A	Stock B					
15	1.076	1.163					
45	1.162	1.174					
75	1.167	1.176					

Fig. 116.—Vulcanization of pure gum hard rubber stocks. Influence of the proportions of S on the progressive change in tensile properties (**). Stocks containing rubber and S in the ratios indicated vulcanized at 170°.

Fig. 118.—Influence of various proportions of MR (mineral rubber) and resin on tensile properties of hard rubber (basal stock: rubber, 70; 8, 30 by wt.) vulcanized 40 and 45 min at 170° (straight test pieces) (**).

Fig. 117.—Tensile strength and vulcanization coefficients of pure gum hard rubber stocks vulcanized for various periods at 170°. Stock A: rubber, 70; S, 30. Stock B: rubber, 70; S, 30; diphenylguanidine, 1.4 (7°). Data are also given in this article for other accelerators.

Fig. 119.—Influence of various proportions of tire reclaim on the tensile properties of hard rubber (basal stock: rubber, 70; S, 30) vulcanized 40 and 45 min at 170°.

Table 148.—Effect of Heating on the Softening Temperature, Impact Strength and Transverse Strength and the Influence of Vulcanization Conditions on the Impact Strength (46)

Stock A: rubber, 71.43; S, 28.57; vulcanized 12 hr at 149° (3 hr rise). Stock B: rubber, 70.42; S, 28.17; diphenylguanidine, 1.41; vulcanized 12 hr at 149° (3 hr rise). Stock C: rubber, 70.42; S, 28.17; diphenylguanidine, 1.41; vulcanized 2 hr at 149° (1 hr rise). Test bars: 7.5 × 1.25 × (4.75-6.25) cm.

			After heating in air								
	Stock	Initial	al At 70°		At 149°						
	ļ		7 da	14 da	5 hr	10 hr*	15 hr*	25 hr*	40 hr*	60 hr*	60 hr†
Softening temperature, °C‡	A	77.8	91.7	91.1	78.3		!	82.8	1		
sortening temperature, C1	B	80	87.8	90	82.8	87.2	82.2	82.2	73.9	67.2	
Transverse strength (kg/cm²)§	A	857.8	1040.4	1047.5	984.3	[991.2		485.1	
Transverse strength (kg/cm ²) §	В	822.4	1061.3	1040.3	1019.2	1064.4	998.2	984.1	534.2	400.7	
(A	41.1	41.26	25.72	19.13	ł		6.40		2.32	5.71
Impact strength (kg cm/cm ²)	В	47.70	21.61	30.37	10.90	19.49	13.40	7.14	3.99	2.32	3.57
	C	71.64	25.37	25.01	9.47	1		5.36		1.43	2.32

^{*} Heating intermittent: 5 hr daily on successive days.

^{6.25} cm between supports.

[†] Heating continuously.

[‡] Under the load at which excessive flow begins; 5 cm between supports.

[§] Dead load producing rupture; 5 cm between supports.

GUTTA-PERCHA AND BALATA

Table 149.—Chemical Composition, Softening Point, Tensile Properties and Electrical Properties of Gutta-Percha (116)

	Number	Chemical composition, %			Soft	ening	Hard- ening			Insula- tion at	Induc- tive	
	of samples	Gutta	Resin	Dirt	Water	Begins at t, °C	Pliable at t, °C*	time, min	T_B	E_B	24°, megohm	capacity micro- farad
Pahang	40	78.1	19.2	1.5	1.2	47.7	65.5	3.33	322	427	2 408	0.0535
Genuine Banjer red	70	67.0	30.2	1.5	1.3	43.8	66.1	6.75	252	384	6 400	0.0559
Bulongan red	22	68.6	29 .0	1.4	1.0	45.5	63.3	8	250	419	7 643	0.0552
(Bagan	i	57.5	40.9	1.0	0.6	40. 0	61.6	9.5	172	379	5 728	0.0524
Soondie Kotaringin Goolie red	48	55.2	42.9	1.2	0.7	39.4	60.5	20	148	372	3 739	0.0563
Serapong	31	56.2	42.4	0.9	0.5	40.5	60.5	15.75	167	391	33 590	0.0537
Bulongan	7	52.2	45.4	1.5	0.9	41.1	67.7	23.5	172	426	44 220	0.0570
White Mixed	8	49.8	47.4	1.1	1.7	42.7	76.1	21.5	179	364	67 800	0.0606
Banjer	9	51.8	44.1	1.8	2.3	42.2	73.3	28.5	204	409	50 060	0.0624
Medium quality cleaned		54.7	39.4	2.7	3.2	37.7	58.8	17	112	360	34 970	0.0613
Medium quality hardened by ex-												
tracting resin		93.0	2.8	2.5	1.7	57.2	91.1	0.75	399	285	27 410	0.0575

^{*} Temperature at which a strip 70 mm × 25 mm × 2 mm tears under a load of 14.2 g.

TABLE 150.—CHEMICAL COMPOSITION OF BALATA (87)

		Chemical composition, %					
		Gutta	Resin	Dirt	Water		
	Brazilian block	46.7	38.7	3.4	11.2		
C	Prima Amazonian	45.9	35.9	2.8	15.4		
Commercial	Iquitos	46.2	46.0	0.4	7.4		
	Demerara			3.7	5.7		
Cleaned bala	ta			0.54	1.57		

Fig. 120.—Influence of various proportions of lime and magnesia on the tensile properties of hard rubber (basal stock: rubber, 70; S, 30 by wt.) vulcanized 40 and 45 min at 170° (straight test pieces) (**).

TABLE 151.—PROPERTIES OF LEAF GUTTA-PERCHA (171)

Number of samples	Chen	nical co	mpositi	ion, %	Surface resistivity*	Dielectric	
	of samples	Gutta	Resin	Dirt	Water		strength, kv-cm
Tjipetir	2	77.2	6.85	11.55	4.3	0.5 to 14 × 1012	210 to 310

^{*} Tests with 6 sheets of different thicknesses.

For further data on electrical properties, v. Tables 96-99.

Chemical Character of the Resin of Gutta-Percha

Saponification No. (4 samples), 79.8 to 77.3; acid No. (4 samples), 5.0 (14). Contains:

Fluavile, amorphous, molten at 100° , $C_{20}H_{32}O$ (119), or $C_{40}H_{64}O_{2}$ (116), soluble in cold alcohol.

Albane, M. P. ca. 160°, C₂₀H₈₂O₂ (119), soluble in boiling alcohol, insoluble in cold alcohol.

Nitrogen content of Gutta-Percha, 0.83 % (150).

Physical Properties of Gutta-Percha and Balata

Refractive index, 1.52 (108).

Specific heat at 4.5° , 0.402 g-cal/g (88).

Linear expansion (2.4 to 5.8°), 0.0001575 cm per °C (88). Specific gravity (116).

	Gutta- Percha (leaf)	Gutta- Percha	Gutta- Percha	Gutta- Percha	Balata
Number of samples	1	3	3	3	
Gutta/resin ratio	5.19		1.37	1.37	
Sp. gr., mean	0.9625	0.9879	0.9735	1.0063	0.9731

Table 152.—Softening Point and Viscosity of Gutta-Percha (48)

	% com	position	Softening point,	Viscosity (2 % soln.
	Gutta	Resin	°C	in CCl ₄)
Tjipetir	74.98	11.09	60	1.60
White	49.10	48.65	50	1.44
Salai prima	33.76	48.58	47	1.59
Gulai sekunda	29.54	55.39	37	1.33
Akassa	12.83	73.19	42	1.41
Siak	14.34	69.50	35	1.02
Penang	20.41	65.12	40	1.12

Table 153.—Effect of Compounding Ingredients on the Softening Temperature of Gutta-Percha (49)
Sample of Gutta-Percha contained 55.39% resin

Ingredient	None	Kieselguhr	Barytes	M	g O
% ingredient	0	100	70	100	140
Softening temperature	38°	55°	44°	65°	84*

Water Absorption by Gutta-Percha

Table 154.—Osmotic Pressure and Molecular Weight of Gutta-Percha (36)

C₆H₆ soln. of washed and de-resinified Gutta-Percha

	% concentration	Osmotic pressure, atm.	Molecular weight
_	6.03	0.0500	29 500
	3.04	0.0238	31 100
	2.04	0.0146	34 000
	1.26	0.0086	35 600

Table 155.—Rate of Combination of S (153)

Time by	Combined	i S, %
Time, hr	Gutta-Percha	Balata
2	3.12	
5		9.43
8	14.12	13.27
15	1	25.61
25	31.95	31.89
30	31.97	31.85

Table 156.—Vulcanization of Mixtures of Rubber and Gutta-Percha (87)

Co	mposition		1			Vulca	nizat	ion a	148	•		
Butta- Gutta-	45	45 min		60 min		75 min		90 min		120 min		
Rubber	Percha	s	T_B	E 10	T_B	E 50	T _B	E 60	T_B	E 50	T_B	E 50
90	0	10	74	885	120	813	143	766	157	715	170	715
88	2	10	49		93	915	111	830	135	788		
86	4	10	72	900	100	865	112	817	170	750	- 1	
80	10	10	60	893	133	865	159	810	158	748	1	

Fig. 121.—Water absorption (in mg) of different classes of Gutta-Percha and of balata. Thickness of sheet 2.2 mm, area 100 cm², wt. 10 g (114).

LITERATURE

(For a key to the periodicals see end of volume)

- Abernethy, 441, 70: 775; 25. (2) Amagat, 54, 99: 130; 84. (3) American Hard Rubber Co., 9 Mercer St., N. Y. C., O. (4) Ames, 54, 48: 117T; 24.
 (5) Anderson and Ames, 54, 48: 136; 23. (6) Arisz, 443, 4: 30; 20. (7) Beadle and Stevens, 56, 18: 207; 13. (8) Beadle and Stevens, 441, 46: 161; 13. (9) Beadle, Stevens and Morgan, 441, 46: 222; 13.
- Belgrave, 346, 11: 348; 23. (11) Belgrave, 346, 11: 371; 23. (12) Belgrave, 346, 18: 154, 367; 25. (13) Bernstein, δδ, 12: 193; 13. (14) Berry, δ4, 32: 529; 04. (18) Bierer and Davis, 46, 17: 860; 25. (18) Bierer and Davis, 46, 18: 348; 26. (17) Birkitt, 450, 1: 368; 26. (18) Bishop, 346, 11: 310; 23. (19) Bobilioff, 443, 2: 374; 19.

- (20) Bobilioff, 445, 8: 609; 24. (21) Bobilioff, 445, 8: 817; 24. (22) Boggs and Blake, 45, 18: 224; 26. (23) Boiry, 34, 175: 102; 22. (24) Bouasse and Carrière, Annales de la faculté des sciences de Toulouse, 5: 257; 03. (28) Boutaric, 449, 8: 4965; 11. (26) Brown, Rubber, Its Sources, Cultivation and Preparation, p. 226. London, Murray, 1914. (27) Bruni, 216, 3: 51; 21. (28) Bruni and Levi, 216, 7: 447; 25. (28) Bruni and Petissola, 216, 3: 451: 21.
- (30) Bunschoten, 176, 15: 257; 18. (31) Burbridge, 450, 1: 429; 26. (32) Bureau of Standards, 565, No. 38: 6; 21. (32) Buttfield, 45, 15: 474; 23. (34) Bysow, 441, 71: 99; 26. (35) Campbell, Dept. Agri. Ceylon, Bulletin, No. 27; 1916. (36) Caspari, 4, 105: 2139; 14. (37) Ceylon Rubber Research Scheme, Bulletin, No. 32; 24. (32) Ceylon Rubber Research Scheme, Bulletin of the Rubber Grower's Association, 6: 93; 24. (33) Cheneveau and Heim, 54, 152: 320; 11.
- (40) Clapeyron, 34, 46: 208; 58.
 (41) Cranor, 447, 61: 137; 19.
 (42) Curtis and McPherson, 32, No. 239; 25.
 (43) Davey, 54, 42: 473T; 23.
 (44) Daynes, 5, 27: 286; 20.
 (45) Dewar, 525, 21: 543, 786; 15.
 (46) Dieterich and Gray, 46, 18: 428; 26.
 (47) Dinsmore, 45, 17: 540; 25.
 (48) Ditmar, 55, 10: 233; 12.
 (49) Ditmar, 456, 27: 384; 12.
- (50) Eaton, 346, No. 17; 12.
 (81) Eaton and Bishop, 54, 41: 374T; 22.
 (82) Eaton and Bishop, 54, 42: 303T; 23.
 (83) Eaton and Bishop, 54, 42: 389; 23.
 (84) Eaton and Day, 54, 36: 16, 1116; 17.
 (83) Eaton and Dennett, 346, 11: 219; 23.
 (84) Eaton and Grantham, 54, 35: 715; 16.
 (87) Eaton, Grantham and Day, 346, No. 27; 18.
 (88) Eaton and Whitby, 346, 5: 124; 17.
 (89) Edwards and Pickering, 31, No. 387; 20.
- (60) Eggink, 70, 42: 317; 23.
 (61) Endres, 449, 18: 11089; 21.
 (62) Fleming and Dyke, 46, 49: 323; 12.
 (63) Flight, 46, 60: 218; 22.
 (63.6) Flight, 441, 65: 967, 1007; 23.
 (64) Flusin, 6, 13: 480; 08.
 54, 126: 1479; 98.
 (65) Fol, 172, 9: 71; 12.
 (64) Freundlich and Hauser, 55, 36: 15; 24.
 (67) Gaunt, 54, 33: 446; 14.
 (68) Geer and Evans, 447, 64: 887; 21.
 (69) Glaney, 45, 16: 359; 24.
- (70) Glancy, Wright and Oon, 45, 18: 73; 26. (71) Gorter, 443, 1: 375; 17.
 (72) Graham, 3, 32: 401; 66. (72) Green, 143, 192: 637; 21. (74) Green, 55, 28: 53; 23. (78) Greider, 45, 14: 385; 22. (78) Greider, 45, 15: 504; 23. (77) Griffiths, 460, 1: 327; 25. (78) Griffiths, 450, 1: 308; 26. (79) Gurney, 45, 18: 707; 21.
- (50) Gurney and Tavener, 45, 14: 134; 22. (81) Hartjens, 443, 2: 261; 18. (82) Hatschek, 54, 40: 251T; 21. (83) Helbronner and Bernstein, 54, 188: 1343; 14. (84) Hinrichsen and Kindscher, 25, 46: 1291; 13. (85) Hinrichsen and Marcusson, 92, 23: 49; 10. 24: 725; 11. (86) Hopkinson, 45, 18: 1267; 23. (87) Howson, 450, 1: 36; 25. (88) Joule, 62, 149: 91; 59. (88) Kayser, 8, 43: 544; 91.
- (90) Kelly and Ayers, 45, 16: 148; 24. (91) Kerbosch, 70, 34: 235; 15. (92) Kirchhof, 55, 15: 30; 14. (92) Kirchhof, 287, 6: 1; 14. (94) Kirchhof, 55, 35: 367; 24. (95) Krats and Flower, 35, 30: 417; 19. (96) Krats and Flower, 45, 13: 971; 20. (97) Krats, Flower and Shapiro, 45, 13: 128; 21. (98) Krats, Flower, and Shapiro, 54, 13: 67; 21. (99) Lebedev, 53, 13: 246; 81
- (100) Le Blanc and Kröger, 55, 28: 348; 23. (101) Le Blanc and Kröger, 55, 27: 205; 25. (102) Lewis and Porritt, 54, 40: 18T; 21. (102) Loomis and Stump, 441, 66: 339; 23. (104) Luff, The Chemistry of Rubber, p. 157. London, Ernest Benn, 1923. (105) Lundal, 8, 66: 741; 98. (106) Maccallum and Whitby, 69, 18 III: 191; 24. (107) Mallock, 5, 46: 233; 89. (108) Mallock, 58, 113: 643; 24. (109) Martin and Davey, 54, 43: 31T; 24.
- (110) Martin and Elliott, 54, 41: 225T; 22. (111) Marsetti, 216, 5: 122; 23. (112) Memmler and Schob, 312, 29: 185; 11. (113) Munro, 447, 63: 169; 20. (114) Naunton, 54, 44: 243T; 25. (115) North, 33, 26: 253; 22. (114) Obach, 556, 46: 97, 114, 117, 133, 137, 164, 169, 196; 97. (117) Obach, Die Guttapercha, p. 66, 105. Dresden, 1899. Getah-pertja, Amsterdam, de Bussy, 1898. (118) Ono, 219, 7: 36; 13. (119) Oudemans, Repert. Gen. Chim., 1: 455; 58.
- (120) Paterson, Rayner and Kinnes, 46, 50: 254; 13. (120.8) Peachey, 54, 34: 368; 15. English Patent, No. 4263, Feb. 19, 1914. (121) Perks and Griffiths, 441, 67: 25; 24. (122) Pickles and Turner, International Rubber Conference, Brussels, p. 194. London, Cranleighs, 1924. (123) Porritt, Physical and Chemical Colloids. London, H. M. Stationery Office, 1921. (124) Posnjak, 287, 3: 417; 12. (128) Rayleigh, 3, 49: 220; 00. (128) Romani, 449, 19: 11626; 22. (127) van Rossem, 441, 62: 343; 21. (128) van Rossem, 176, 20: 106, 124; 23. (129) van Rossem, 54, 44: 33T; 25.
- (136) van Rossem, Dekker, Fol, Hellendoorn, van Heurn and van der Leur, 287, 10: 1; 18; cf. van Rossem, 287, 12: 103; 20. (131) van Rossem and van der Meijden, 54, 45: 67T; 26. (132) Ruby and Depew, 46, 12: 1155; 20. (133) Russner, 428, 18: 152; 82. (134) Schidrowits and Bean, 54, 41: 324T; 22. (135) Schidrowits and Burnad, 54, 40: 268T; 21. (136) Schidrowits and Goldsborough, 441, 44: 1147; 12. (137) Schidrowits and Goldsborough, 54, 38: 347T; 19. (138) Schidrowits, Gouvea and Osborne, 441, 64: 75; 22. (138) Schippel, 45, 12: 33; 20.
- (140) Schwartz, 46, 44: 693; 10. (141) Scoble, 441, 60: 723; 20. (142) Scott, 45, 15: 286; 23. (143) Sebrell and Vogt, 45, 16: 792; 24. (144) Shepard and Krall, 45, 14: 951; 22. (145) Sheppard and Eberlin, 45, 17: 711; 25. (146) Shields, Rubber Age (N. Y.), 10: 88; 21. (147) Shimada, 142, 26: 705; 23. (148) Souder and Hidnert, 51A, 15: 387; 19. (149) Spear and Moore, 45, 18: 418; 26.

- (180) Spence and Krats, δδ, 14: 262; 14. (181) Spence and Krats, δδ, 15: 217;
 14. (182) Spence and Young, δδ, 11: 28; 12. (183) Spence and Young, δδ, 18: 265; 14. (184) Spoon, 443, 8: 869; 24. (185) Spoon, 443, 9: 574;
 25. 10: 29; 26. (186) Stevens, δ4, 87: 156T; 18. (187) Stevens, 54, 40: 186; 21. (188) Stevens, Rubber Age (London), 4: 215; 23. (189) Thies, 46, 17: 1165; 25.
- (166) Tompkins, in Physics and Chemistry of Colloids, p. 162. London, H. M. Stationery Office, 1921. (161) Twiss, 64, 86: 782; 17. (162) Twiss, 64, 40: 242T; 21. (163) Twiss, 441, 65: 607; 23. (164) Twiss, 68, 113: 822; 24. (165) Twiss and Brasier, 64, 39: 125T; 20. (166) Twiss, Brasier and Thomas, 64, 41: 81T; 22. (167) Twiss and Howson, 64, 39: 287T; 20. (168) Twiss and Murphy, 64, 45: 121T; 26. (169) Twiss and Thomas, 64, 42: 499T: 23.
- 170) Twiss and Thomas, 64, 44: 100T; 25. (171) Van Lennap, 441, 65: 367; 23. (172) Vogt, 45, 17: 535; 25. (173) Vogt, 45, 17: 870; 25. (174) Vogt and Evans, 45, 15: 1015; 23. (178) de Vries, Meded. van het Centraal Rubberstation, No. 1; 1916. (176) de Vries, 443, 1: 36; 17. (177) de Vries, 445, 2: 45; 18. (178) de Vries, 443, 2: 67, 112; 18. (179) de Vries, 443, 2: 453; 18.
- (188) de Vries, 445, 2: 792; 18. (181) de Vries, 445, 3: 183; 19. (182) de Vries, 445, 4: 163; 20. (183) de Vries, B79. (184) de Vries, B79, p. 53. (185) de Vries, B79, p. 88. (186) de Vries, B79, p. 94. (187) de Vries, B79, p. 441. (188) de Vries, 64P, 26: 677; 23. (188) de Vries, 441, 65: 433: 23.
- (199) de Vries, 443, 7: 168; 23. (191) de Vries, 443, 7: 409; 23. (192) de Vries, 54, 43: 47T; 24. (193) de Vries, 441, 67: 849; 24. (194) de Vries, 443,

- 8: 145, 177; 24. (198) de Vries, 443, 8: 587, 601; 24. (198) de Vries, 443, 9: 446; 25. (197) de Vries, 443, 10: 1; 26. (198) de Vries and Beumée-Nieuwland, 443, 9: 694; 25. (198) de Vries and Hellendoorn, 443, 2: 769; 18
- (200) de Vries and Hellendoorn, 445, 4: 429; 20. (201) de Vries, Riebl and Beumée-Nieuwland, 443, 9: 345; 25. (202) de Vries and Spoon, 445, 4: 103; 20. (203) de Vries and Spoon, 445, 7: 311, 342; 23. (204) de Vries and Spoon, 445, 8: 689; 24. (205) de Vries and Spoon, 443, 9: 849; 25. (206) Weber, The Chemistry of India Rubber, p. 119. London, Griffin, 1903. Philadelphia, Lippincott, 1903. (207) Whitby, 55, 12: 147; 13. (208) Whitby, 55, 12: 154; 13. (208)
- Whitby, 55, 12: 154; 13. (209) Whitby, 54, 25: 493; 16. (210) Whitby, 55, 12: 154; 13. (211) Whitby, 54, 23: 313; 19. (212) Whitby, 45, 15: 1005; 23. (213) Whitby, 450, 1: 12; 25. (214) Whitby, McGill University, Montreal, O. (215) Whitby, Dolid and Yorston, 4, 1926: 1448. (216) Whitby, Evans and Pasternack, McGill University, Montreal, O. (217) Whitby and Greenberg, 45, 18: 1168; 26. (218) Whitby and Jane, Second Colloid Symposium Monograph, p. 16. New York, Chem. Catalog Co., 1925. (219) Whitby and Jane, 69, 20 III: 121; 26.
- (220) Whitby and Simmons, 45, 17: 931; 25. (221) Whitby and Walker, 45, 13: 816; 21. (232) Whitby and Winn, 54, 42: 336T; 23. (222) Wiegand) 324, 4: 160; 20. (234) Wiegand and Braendle, 45, 15: 259; 23. (228) Wightman and Trivelli, 45, 17: 164; 25. (226) Williams, 447, 65: 101; 21, (227) Williams, 45, 15: 154; 23. (228) Williams, 45, 15: 1019; 23. (229) Wroblewski, 8, 8: 29; 79.
- (230) Zeitlin, 450, 1: 255; 25. (231) Zimmerman, Rubber Age (N. Y.), 13: 130; 22.

FACTITIOUS PLASTICS

CONTENTS MATIÈRES INDICE INHALTSVERZEICHNIS A. Nitrocellulose plastics. Plastiques de nitrocellulose. Plastische Massen aus Nitro-Materie plastiche a base di 295 cellulose. nitrocellulosa..... Phenolharze und deren Pro-Resine a base di fenoli e B. Phenol resins and their Résines phénoliques et leurs products. produits. dukte. loro prodotti...... 298 C. Comparison of properties of Comparaison des propriétés du Vergleich der Eigenschaften Confronto fra le proprietà hard rubber, vulcanized caoutchouc dur, de la fibre von Hartgummi, Vulkanfiber della gomma indurita, laminated and vulcanisée, des matières isogeblättertes und geformtes fibra vulcanizzata, mamolded phenolic insulatteriali isolanti a base di lantes phénoliques laminées (gegossenes) phenolisches Isoliermaterial. fenoli laminati e fusi.... 299 ing materials. et moulées.

A. NITROCELLULOSE ("PYROXYLIN") PLASTICS1

Made by the application of heat and pressure to colloidal mixtures of pyroxylin with relatively non-volatile solvent (camphor or substitute for camphor) and volatile solvent (usually ethyl alcohol), followed by evaporation of the volatile solvent; ordinarily containing sufficient non-volatile solvent to insure "plasticity" at 75-90°C—e.g., celluloid, fiberloid, pyralin, pyradiolin, viscoloid, xylonite.

Except as otherwise noted, the data given are for the freshly manufactured, commercial type of camphor product. Photographic film is not covered.

1. Composition.—Varies according to manufacturer. The following are illustrations:

Pyralin (7)

Pyroxylin 11 % N	Camphor	Stabilizer	Residual volatile solvent	Additions: dyes, pig- ments, etc.
68-75 %	23-27 %	0.5-1%	1-5 %	0-14%

VARIOUS FOREIGN AND DOMESTIC SAMPLES (21)

Nitrocellulose	Camphor + solvent	Ash
58-78 %	17-31 %	0.7-28%

¹Acknowledgment is made to Mr. A. F. Randolph, du Pont Viscoloid Company, for a critical examination of this section.

Mechanical

- 2. Density.—g cm⁻³. 1.35 (transparent) to 1.60 (commercial pigmented material)(7). d = 1.37 + 0.0125p, where p = % ZnO between 1 and 15 (14). For influence of stretching v. (16).
- 3. Permeability.—Transparent material of thickness 0.030 in., exposed on one surface to atmosphere dried by CaCl₂ and on other side to summer atmosphere, transmitted moisture at rate of 0.013 g per in.² per week (⁷).

Pyralin, from saturated air to air dried by CaCl₁, 0.0046 resp. 0.063 in. thick, transmitted moisture at the rate of 0.029 resp. 0.004 g in.⁻² day⁻¹ in three days (7).

- 4. Modulus of Elasticity (Def. 10a).—Young's modulus = $(2.0 \text{ to } 3.9) \times 10^5 \text{ lb. in.}^{-2}$ (5, 7, 11, 12, 16, 17). Exhibits hysteresis (13).
- 5. Elastic Limit.—Yield point = (3.9 to 7.4) × 10³ lb. in.⁻². Varies with thickness and pigment content (5, 7, 12, 16).
 - 6. Poisson's Ratio.—0.36 to 0.43 (5, 11).
- 7. Tensile Strength (Def. 4).—Varies with thickness, nature of nitrocellulose, camphor content, and pigment content. (4.9 to 8.5×10^3 lb. in.⁻² (7, 11, 12); 6 kg mm⁻² (5). Variation with temp. °C; 20°, 7.5; 70°, 4.5; 90°, 1.0; $\times 10^3$ lb. in.⁻² (7).
- 8. Ultimate Elongation at Failure.—From 10% for 0.005 in. thick up to 40% for 0.2 in. thick; for 0.015 in. thick, from 20 to 30% for 0 pigment, to 15 to 25% for 16% pigment (7), cf. (4, 5).
- 9. Resistance to Bending.—Schopper's folding endurance tester. Sample $0.5 \times 4.0 \times 0.015$ in., double bends of 100° required to break $(B_D) = 8$ to 22. $B_D = k \times (\text{thickness})^{-1.25}$ (7).

10. Hardness.—Brinell, 10.7 to 11.7 (20). $H = \text{const.} - (0.05 \times \% \text{ ZnO})$, approx. between 1 and 15%. Method of penetration by loaded sphere (14).

11. Coefficient of Friction.—Static, of polished material on self, glass, paper, or planed wood, 0.25 to 0.35 (7).

12. Viscosity.—Solutions in camphor-alcohol (15).

Thermal

- 13. Thermal Expansion. $-\frac{1}{l}\frac{dl}{dt}$ (20-50°C) = (12 to 16) × 10⁻⁵ (19, 20).
- 14. Heat Capacity (Specific Heat).—0.34 to 0.38 cal g⁻¹ °C⁻¹ (20).
- 15. Thermal Conductivity.—Cal cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹. 3.1×10^{-4} (20), 5.14×10^{-4} (22, 27).
 - 16. Working Range for Molding.—85 to 120°C (7).
- 17. Permanent Shrinkage on Heating.—1.4% after two heatings to 100° in air (18); 0.5-1% (7). Variable, depends on amount of internal strain.
- 18. Flash Point.—141 to 185°C for 0.3 g of powder heated 3° per min (15). 160 to 200°, for material of good quality (7, 9). 550 to 640° for edge contact with hot porcelain rod (21).
 - 19. Loss in Weight at 110°.—Very variable (7, 9), cf. (21).

Fig. 1.—Average explosion times.

20. Explosion Times.—(21). For improved method of test, v. (24).

Time in seconds	Tempera- ture of	Transp pyr:	parent alin	Pyradiolin		
	metal, °C	A	В	A	В	
(A) to the start, (B)	215	63	65	300	330	
to the finish, of	225	59	61	5 8	85	
fuming-off or burn-	235	39	42	50	65	
ing of $0.5 \times 0.5 \times$	250	22	24	36	47	
0.06 in. samples	275	10	15	12	30	
thrown on surface	300	4	13	15	27	
of molten metal (7).	350	3.5	9	8	20	

21. Rate of Combustion.—For thin strips, 5 to 10 times that of thin paper or wood shavings of same dimensions (21). For composition of gases produced see (21, 25). Pyradiolin, vertically upward about ½ that of pyralin; horizontally or vertically downward, 0 if flame is removed after ignition (7).

Fig. 2.—Behavior of celluloid at various temperatures.

Electrical

22. Electrical Resistivity.—Volume resistivity, $R_* = (2 \text{ to } 30) \times 10^{10}$ ohm-cm. Surface resistivity, R_* , at 50% humidity, ca. $3R_*$; at 85% humidity, ca. $0.2R_*$ (3).

(7)	R. i	n 1010 ohm-c	R. in 1010 ohm				
(-)	1	11 10 Omm-C	400	V			
Material ·	At 500 v 20°C	50 % humidity	Water- soaked	50 % humidity	Water- soaked		
Transparent pyra-							
lin	98	7.2	6.6	>104	36		
Pyradiolin	2350	2200	840	>104	600		
Source	E. T. L.	Cruft Lab., Harvard					

23. Phase Difference (Power Factor).—In circular degrees, 3.0 to 4.6° at 6×10^5 , 2.5 to 5.3° at 10 5 cycles sec⁻¹ (3).

(7)	P. F.			Phase angle, circular degree					
Kilocycles sec ^{−1} =	(2 kv.) 0.06	1	5	20	100	500	2000	1	l
Transparent pyralin	2.5%	0.0301	0.026	0.0273	0.0305	0.0350	0.043	0.034*	0.034†
Pyradiolin	4.0%	0.0365	0.041	0.0402	0.0340	0.0289	0.025	0.036*	0.038†
Source	E. T. L.	Cruft Lab., Harvard							

^{* =} at 50% humidity. † = water-soaked.

24. Dielectric Constant.—6.9-8.8 at 6×10^{5} cycles \sec^{-1} ; 7.2-9.8 at 10^{5} cycles $\sec^{-1}(3)$; 12 at 40 cycles (1).

(7)	(2 kv.)	•	- at	50%		idity. ked	† -	water-
Kilocycles-sec ⁻¹ =	0.06	1	5	20	100	500	2000	1
Transparent pyralin Pyradiolin	6.3 5.6	7.00 5.65	$6.78 \\ 5.42$	6.59	6.38	6.19	5.98 4.58	7.2* 7.2† 5.7* 5.8†
Source	E. T. L.	-					rvard	, , , , , , , ,

25. Dielectric Strength.—Averages of 10 determinations using blunt needle-point electrodes under oil. Source: E. T. L. (7).

Material	Thickness, mils	Volts per mil	
Pyralin:	1		
Black	60	780	
Black	215	230	
Transparent	23.4	900	
Transparent		475	
Transparent		270	
White		210	
Green transparent	200	225	
Yellow transparent	64	635	
Pyradiolin		780	
Pyradiolin		750	

Optical

26. Refractive Index.— $n_D = 1.46 \pm 0.03$ (7).

27. Birefringence.—Celluloid under tension exhibits birefringence. The specific birefringence, $\frac{N_E - N_O}{\%E}$, for Na light (where E is the elongation and N_E , resp. N_O , the refractive indices for the extraordinary and ordinary ray resp.), is 0.046 for 0% camphor and decreases to 0.005 for 50% camphor. For constant tension it increases with time. Data in re the after effects of tension on birefringence, density, and dispersion are also given in (5, 10, 11, 16).

28. Coefficient of Absorption.— $I = I_0 l^{-kt} = 1.81$ and 1.95, two samples (Na light) (11). Cellulose acetate transmits the ultraviolet down to $230\mu\mu$ (13).

Chemical

29. Chemical and Solvent Action of Various Reagents.—A, Little or no effect at room temperature. B, Superficial attack, blistering or softening. C, Gelatinization. D, Solution with decomposition. E, Good solvent. F, Not solvent, but becomes good solvent on addition of small amounts of camphor. G, Not solvent, but becomes good solvent on addition of large amounts of camphor. H, Can be used as diluent for E. I, Causes precipitation if used as diluent. Not solvent and does not become solvent on addition of camphor (4, 7, 23, 26).

H₂SO₄. <40 %, A; 45 %, B; 60 %, D.

HNO₃. 14%, A; 25%, B; conc. D.

HCl. 13%, A; 25%, B after several days; 35%, B and D.

Acetic acid (CH₃COOH). Dilute, B; glacial, E.

Alkaline solutions. Weak at room temp., B; with increasing strength or temp., D.

Ketones, diacetone alcohol, wood spirit, methyl, ethyl, propyl, butyl or amyl acetate, nitrobenzene, E.

The lower aliphatic alcohols, C, F.

The ethers and the lower aromatic hydrocarbons, G, H.

CHCl₃, C₂H₂Cl₄, CCl₄, gasolene, turpentine, water, I.

Oils and fats, A, except for castor oil which has slight solvent action.

SeOCl₂, E.

Pyridine, D.

30. Absorption of Water.—(7).

Tests on Standard Transparent Material

		Thickness	Thickness
	Symbol		0.860 in.
Net gain in weight of seasoned material, resulting from immersion in water,* %	A	1.3 to 2.1	1.6 to 2.3
Hours required to reach approximately maximum wt. and length		24	100 to 200
Net increase in length of sea- soned material, resulting from immersion in water,* %	М	0.4 to 0.7	0.5 to 0.7
Loss of weight due to extraction of camphor in 2	ъ		
months,† % Total water absorbed by sea-	В		0.5 to 2.1
soned material,† % Loss in weight of seasoned material in atmosphere dried by	A+B	2.3 to 2.6	2.8 to 3.2
CaCl ₂ , ultimate, % Hours required to reach ap-	C	1.1 to 1.2	1.4 to 1.6
proximately minimum wt. and length		100 to 200	700 to 1000
Decrease in length over CaCl ₂ , %	N	0.5	0.5 to 0.7
ure, %	A+B+C	3.4 to 3.8	4 to 4.1
tremes, %	M+N	1 to 1.2	1.2

^{*}I.e., net effect of absorption of water; extraction of camphor; replacement of alcohol by water (probably negligible).

† Neglecting replacement of alcohol by water.

31. Molecular Complexity.—"Films of celluloid have been made on water by evaporation of a dilute solution. The thinnest stable films are 10 Å thick, indicating that the molecular complex of celluloid is not over 10 Å in diameter" (2).

LITERATURE

(For a key to the periodicals see end of volume)

- Addenbrooke, 121, 66: 629; 11. (2) Barton and Hunt, 68, 114: 861; 24.
 U. S. Bureau of Standards, O. (4) Clement and Riviere, La Cellulose. Paris, 1920, p. 308-315. (8) Coker and Chakko, 62A, 221: 139; 20. (8) Curtis, 31A, 11: 359; 14. (7) du Pont Viscoloid Co., O. (8) Electrical Testing Laboratories, New York City, O. (9) The Fiberloid Corporation, O.
- Filon and Jessup, 5, 101: 165; 22.
 Heymans and Allis, 285, 2: 217; 23.
 Heymans and Calingaert, 45, 16: 939; 24.
 Martin, 248, 6: 323; 22.
 Nishida, 296, 4: 287; 14.
 Nishida, 45, 8: 1096; 16.
 Ramspech, 8, 74: 722; 24.
 Rossi, 71, 16: 206; 10.
 Souder and Hidnert, 31A, 15: 408; 19.
 Souder and Hidnert, U. S. Bureau of Standards. O.
- (20) Stifler, Columbia University, New York City, O. (21) Stokes and Weber, 32, No. 98; 17. (22) Tesche, 97, 5: 233; 24. (22) Ullmann, B61, III: 303; 15. (24) Weber, 51, No. 192; 12. (25) Will, 92, 19: 1382; 06. (26) Worden, Nitrocellulose Industry, I, Chap. IV (New York, Van Nostrand, 1911). Technology of Cellulose Esters, I, 2655-2759 (New York, Van Nostrand, 1921). (27) Dickinson and Van Dusen, 382, 3: 5: 16

B. PHENOL RESINS AND THEIR PRODUCTS

("Bakelite," "Redmanol," "Condensite," Etc.)

L. V. REDMAN

Commercial Phenol Resins are phenol-formaldehyde condensation products, prepared under conditions that produce a resin capable of becoming hard, strong, insoluble and infusible with application of heat and pressure. Phenol Resin Products include: (1) Pure Resin; (2) Molded Products (employing as fillers wood flour, asbestos or other fibrous materials); and (3) Laminated

Products (prepared from paper or cloth which has been previously impregnated with the uncured resin).

The information given below is based upon data from (1, 2).

TYPE OF MATERIAL

Tyma	Molded, and filled with			Lami	Pure		
Туре	Wood flour	Asbes- tos	Mica	Paper	Canvas	Cloth	resin
Symbol	M _w	M _A	M _M	L _P	L_{c}	$\mathbf{L}_{\mathbf{c}_{\mathbf{l}}}$	P

Tensile Strength.—One-half inch figure-8 shaped test pieces for M and P materials (A. S. T. M. [D-48-24]). For L materials, values are parallel to laminations; v. (3) for shape of test piece. Tensile strength = $A \times 10^3$ lb. in.⁻² = $A' \times 10^7$ dyne cm⁻².

Type $ M_{M}, M_{W} \text{ and } M_{A} $	$\mathrm{L}_{\scriptscriptstyle{\mathtt{P}}}$	L_{c}	P
A 3.5- 6.0	8.7- 25	8.5-12	5-11
A' 24 -40	60 -175	62 -80	35-75

Compressive Strength.—Inch-cube test-piece. (A. S. T. M. [D-48-24].) Compressive strength = $A \times 10^3$ lb. in.⁻² = $A' \times 10^7$ dyne cm⁻²; at 20° unless otherwise noted; parallel or perpendicular to laminations as indicated.

Type	M _w	M _w ,100°	M _A	L _P	L _c	L _c ⊥	P
$\overline{\mathbf{A}}\dots$	25- 36	3 12					
A'	175-250	80	125-250	140-275	140-175	245-330	180-230

Modulus of Elasticity in Tension, Young's Modulus.— $M = 1.5-2.5 \times 10^6$ lb. in.⁻² = 1.1-1.75 × 10¹¹ dyne cm⁻² for the L_P material parallel to laminations; v. (3) for sample used.

Modulus of Elasticity in Bending.—Samples 12 in. long by 1 in. wide, with 10 in. span. $M = load \times span^3 + 4 \times width \times thickness^3 \times deflection at center = 1.1-2.1 \times 10^6$ lb. in.⁻² = 75-175 \times 10° dyne cm⁻² for the L_P material \perp to laminations.

Modulus of Rupture.—Samples 12 in. by 1 in. by 0.25 in.; 10 in. span. $M = 3 \times load \times span \div 2 \times width \times thickness^2$ =, for L_P material, 15 000-30 000, and for P material, 12 500-20 000 lb. in.⁻² = for L_P , 1.05-2.10 × 10° and for P, 0.85-1.40 × 10° dyne cm⁻².

Impact Behavior.—(a) Olsen impact machine. Test piece $2\frac{1}{2}$ in. $\times 1$ in. $\times \frac{1}{2}$ in. with edges and corners rounded, 2 in. span. Drop increments of $\frac{1}{2}$ in. between blows, from zero up to the breaking point. The values given below are the sums of the corresponding mass-height products.

	ype		M_{A}		$L_c \perp$	P
Σmh	lb. in.	500-1200	200-540	400-2000	3500-5300	500-1750
Z mn	kg cm	575-1380	230-620	460-2300	4000-6000	575-2000

(b) Pendulum method. Energy of blow to break a $\frac{1}{2}$ in. square sample. L_P, || 0.3-1.5 lb. ft.; 0.04-0.20 kg m; L_C, || 2-3 lb. ft.; 0.25-0.40 kg m.

Bulk Density and Hardness.—Brinell test by application of 500 kg wt. for 30 sec. Scleroscope test with hard hammer.

	Type	M _₩	$\mathbf{M}_{\mathbf{A}}$	$\mathbf{L}_{\mathtt{P}}$	$ \mathbf{L_c}$	P
d	, g cm ⁻³	1.33-1.40	1.78-2.00	1.32-1.40	1.36-1.40	1.20-1.29
Ė	Brin Scler	30-38	38-42	35-45	33-38	30-45
E	Scler	78–92	75–95	84–94	60-67	75–110

Water Absorption.—Per cent gain in weight of sample $(5 \times 10 \times 1)$ 4 cm) after 24 hr immersion in water at 20°.

Туре	M _w	M _A	L_{P}	L_{cl}	P
Per cent	1				
gain	. 0.05-0.20	0.05-0.10	0.20-1.0	0.20-2.0	0.05-0.07

Softening Point Under Load.—A. S. T. M. method [D-17-T-1919]. M_w , 125-130; M_A , 130-150; L_P , 125-150; P, 75-100; deg. C. Do not flow under pressure of screw heads and similar forces at ordinary temperatures.

Thermal Expansion and Specific Heat.—Mean coefficient of linear expansion = $A \times 10^{-6}$ per °C between 20 and 70°. Specific heat, c_1 in joules g^{-1} per °C, c_2 in cal g^{-1} per °C or BTU lb.⁻¹ per °F.

Type	M _w	MA	$\mathbf{L}_{\mathbf{P}}$	L_{c}	P
A	25-45	20-45	20-30	20-30	50-110
≠ c1, joules	1.2-1.5	1.5-1.7	1.2-1.7		1.4-1.5
. c2. cal or					
ஜ் BTU	0.30-0.36	0.35-0.40	0.30-0.40		0.33-0.37

Electrical Resistivity.—At 20°C and 50% atmospheric humidity the total resistivity (in ohm) is of the order of 10^{10} – 10^{11} for most types, that for the M_A material being somewhat lower, 10^8 – 10^9 , and that for the pure resin sometimes higher, 10^{10} – 10^{12} . The surface resistivity for L_P (in 10^9 ohm) is 10–90 000 for 24%, 0.9–660 for 50% and 0.1–15 for 84% relative humidity. Exposure to light, especially ultra-violet, decreases surface resistivity.

Dielectric Constant (ϵ) and Power Factor.—At radio frequencies. Phase difference = power factor (P. F.) \times 0.57.

Type	$M_{\mathbf{w}}$	M _M	L _P	$ $ L_{c_1}	P
e	4.5-7.5	4-5	4.5-6.0	4.5-6.0	4.5-7.0
P. F., %	1.5-7	0.5-1.5	1.5-5	2-7	0.2-3

Dielectric Strength.—A. S. T. M. low frequency test. L and P materials in $\frac{1}{3}$ 2 in. sheets.

Туре	M _w	M _A	L_{P}	L _c	P
Volts mil ⁻¹	250-700	150-500	750-1300	250-500	250-700
Kilovolts cm ⁻¹	100-280	60-200	300- 500	100-200	100-280

Flash-over Voltage.—Between two 2 cm skirted brass studs 2 cm apart. Radio frequencies, L_P, 18-28; L_C, 18-25 kilovolts.

Optical Properties.—For the pure resins, $n_D^{20} = 1.62-1.70$. Quite transparent in the infra-red. Darkening occurs on long exposure to sunlight.

Miscellaneous Effects.—Exposure to (1) steam, does not affect mechanical properties but increases water absorption; (2) weak acids, no effect; (3) strong acids, charring of the organic fillers; (4) strong oxidizing acids, disintegration of the resin; (5) mild alkalis, softening; (6) strong alkalis, disintegration; (7) organic solvents, no effect; (8) aging, no effect.

LITERATURE

(For a key to the periodicals see end of volume)

Bakelite Corporation, Research Lab., O.
 Dellinger and Preston, 31, No. 216; 22.
 Dellinger and Preston, 32, No. 471; 23.
 A. S. T. M., American Society for Testing Materials.

C. COMPARISON OF PROPERTIES OF HARD RUBBER, VULCANIZED FIBER, LAMINATED AND MOLDED PHENOLIC INSULATING MATERIALS!

Hard rubber is composed of crude rubber, sulfur, and usually some mineral filling compound. The relatively high cost of crude rubber had induced some makers of hard rubber to use reclaimed rubber or else load the new rubber with a high percentage of mineral filler. The lack of a proper understanding of this fact between the maker and the user has often resulted in unjust censure of hard rubber as an insulator. The better grades of hard rubber are made of new rubber containing no mineral filler

¹ Dellinger and Preston, 52, 216: 619; 22.

and are free from excess sulfur. With these points in mind it is evident that the values assigned to a particular property or the effect of a certain test must necessarily be broad. Neither the best nor the poorest grade of hard rubber is considered in the data and opinions given in the following table.

Vulcanized fiber is made of parchmentized paper. For the better grades of fiber, rag base paper is used. The paper is run slowly through a warm concentrated solution of sulfuric acid or zinc chloride, the one solution being used in making fiber sheets one-eighth inch thick or less, the other solution being used for thicknesses greater than one-eighth inch. The purpose of the acid or zinc chloride is to soften the walls of the cellulose (cotton) fibers, so that when several sheets of treated paper are pressed together the fibers tend to mat and cohere. The treated paper is wound on a drum until the cylindrical tube of the desired thickness is obtained, the cylindrical tube being then cut so as to form a sheet whose width is equal to the width of the paper and whose length is equal to the circumference of the drum. The composite sheet of treated paper is then soaked in water to remove the acid or zinc chloride, dried, and pressed. The term "vulcanized" is somewhat misleading. Fiber does not depend upon heat and pressure to cure it as does hard rubber.

Vulcanized fiber varies much in both mechanical and electrical properties. The properties depend somewhat on the quality of rags used, the amount of residual sulfuric acid or zinc chloride, and upon the density of the finished product. Since the various processes of fiber making are difficult to control, the following statements relative to fiber must be taken as general and the recorded numerical data as average data.

Hard rubber

Properties

The several makes and many grades of laminated phenolic insulating material are discussed quite fully in the paper. Any numerical value or statement given in the following summary table is an approximation.

The molded phenolic insulating materials are subject to as many variations as hard rubber. There is probably not as much variation in the phenolic resin binder in the molded phenolic materials as there is in the crude or reclaimed rubber binder of hard rubber. There are many other chances for variation in the press pressure and temperature, length of curing in the presses, and kind and quality of filler. Some of the fillers used are wood flour, pulverized mica, and asbestos. The kind and amount of filler will affect both the mechanical and electrical properties. All these possible variations make the data only approximate and require rather general statements in the summary table.

Most of the numerical data given in the table below are from tests made at the Bureau of Standards. The statements concerning the effects of various things on the different insulating materials are based on the experience of various members of the Bureau of Standards staff and upon the experience of the manufacturers of these materials. The manufacturers' experience on hard rubber and vulcanized fiber extends over many years, while the experience on the phenolic insulating materials is much more limited.

While it is possible to make up insulating materials which would give results different from those recorded for any particular property, yet it is believed that this table gives information in a condensed form which will serve to show some of the limitations as well as some of the possibilities of these various materials as now obtainable commercially.

Laminated

Phenolic insulating materials

Molded

COMPARISON OF PROPERTIES OF HARD RUBBER, VULCANIZED FIBER, LAMINATED AND MOLDED PHENOLIC INSULATING MATERIALS

Vulcanized fiber

Surface resistivity at 50 % rela-							
tive humidity, ohm	10^{12} to $> 10^{15}$		1011	1011			
Phase differences (\(\psi\)) at radio							
frequencies, deg	0.5*	3.0†	1.5 to 4.0	1.5 to 4.0			
Dielectric constant (e) at radio							
frequencies	3.0*	5.0†	4.5 to 6.0	5.0 to 7.5			
Dielectric strength, volt/mm	10 000 to 38 000‡§	9 000 to 16 000‡§	27 000 to 45 000‡§	9 000 to 40 000‡§			
	3 500 to 6 500	9 000 to 20 000	10 000 to 25 000	3 500 to 7 000			
Water absorbed in 24 hr, per-			*				
, . .	0.02	26 to 45	0.2 to 1.0¶	0.05 to 0.2**			
Density, g/cm ³	1.12 to 1.40††	1.3 to 1.5	1.3 to 1.4	1.3 to 1.4			
Thermal expansivity (at 20 to	,,						
60°C)	60 to 80 × 10 ⁻⁶	27×10^{-6}	20 to 30 × 10 ⁻⁶	$25 \text{ to } 45 \times 10^{-6}$			
Effects of various agents							
Age	Deteriorates slowly, but	Improves in quality by	Improves§§	No depreciation in phys-			
	if properly vulcanized	seasoning ##		ical or chemical proper-			
	and protected from the	344		ties; slight increase in			
	light it is not affected			hardness§§			
Heat	At 65.5°C (150°F) pure	Will not melt under any	Not readily inflammable;	See statement for lami-			
22000	hard rubber softens	circumstances; not	will withstand contin-	nated materials for cel-			
	perceptibly; at 100°C	readily inflammable; at	uously a temperature	lulose-filled molded			
	(212°F) it is so soft it	very high temperature	of 149°C (300°F); heat	materials. Asbestos-			
	may be bent easily; at	chars and becomes brit-	, , , , ,	filled and mica-filled			
	115.5°C (240°F) it be-	tle; active combustion	reaction and volatile	materials are much			
	comes leathery and	begins at about 343°C	substances are driven	more resistant to			
	may readily be cut with	0	off. Hence, when	heat¶¶			
	a knife; melts at 200°C	(600 1)	cooled it shrinks con-	nous a a			
	(392°F)‡		siderably and may				
	(OO= 1)+		split; shrinks and loses				
			in weight above 60°C				
ŀ	'		I III HEIGHT ABOVE OF CHI				

Comparison of Properties of Hard Rubber, Vulcanized Fiber, Laminated and Molded Phenolic Insulating Materials.—(Continued)

Hard rubber		Vulcanized fiber	Phenolic insulating materials		
		, 	Laminated	Molded	
Sunlight	Discolors and disintegrates after a few months; the sulfur of the hard rubber is oxidized, forming the equivalent of sulfuric acid; this may take up ammonia from the air or may attack the filling materials and form various sulfates upon the surface; the surface resistivity is greatly reduced***	No effect‡	No visible effect††	After two and one-half years some materials show a slight change, such as discoloration or very fine cracks; other materials show no such change;†††	
Ultra-violet light for 20 hr	Discolors and disinte- grates; the action is as pronounced for a few hours' exposure to ultra-violet light as for many months' exposure to sunlight; the surface resistivity is greatly re- duced***	No data	Appreciable lowering of surface resistivity	Appreciable lowering of surface resistivity ***	
Moist air	Hard-rubber compounds excepting those con- taining organic sub- stances other than rub- ber are practically moisture proof	Absorbs water freely, but without permanent injury; while saturated it becomes soft and flexible and swells; warps and twists upon drying	Absorbs slight amount of water, reducing dielec- tric properties;;;	Absorbs slight amount of water, reducing dielec- tric properties	
Steam	The only effect is that due to the high temper- ature	Same as above, except absorption is more rapid	Best grades not affected beyond slight absorp- tion of moisture; after a few days in steam the cheaper grades will swell appreciably and split; superheated steam tends to warp and blister all grades of the material	Absorbs a slight amount of moisture; if steam is superheated, the high temperature will cause decomposition of cellulose-filled materials. The mineral-filled materials are much more resistant to heat	
Solvents: Acetone	Attacks, dissolving oils	No permanent effect‡	No effect‡§§§	No effect‡§§§	
Alcohol	and free sulfur‡ Attacks to a slight	No permanent effect‡	No effect‡§§§	No effect‡§§§	
Ammonia	degree‡ No effect‡	No permanent effect‡	Strong solutions may cause material to swell‡	No effect other than slight absorption of moisture;	
Aniline	Softens at ordinary temperature;	Not known	Probably no effect‡	Probably no effect;	
Benzene	Softens at ordinary temperature;	No permanent effect‡	Probably no effect‡§§§	Probably no effect \$\$\$\$	
Carbon bisulfide	Dissolves small amount of hard rubber and any free sulfur;	No permanent effect;	Probably no effect‡§§§	Probably no effect;§§§	
Ether	Dissolves small amount of hard rubber and any free sulfur;	No permanent effect‡	No effect‡	Probably no effect‡§§§	
Naphtha	Softens and swells to slight extent;		Probably no effect;	Probably no effect‡§§§	
Oil of turpentine	Dissolves in boiling oil;	No permanent effect‡	Probably no effect‡	Probably no effect‡§§§	

Comparison of Properties of Hard Rubber, Vulcanized Fiber, Laminated and Molded Phenolic Insulating Materials.—(Continued)

	Hard rubber	Vulcanized fiber	Phenolic insula	ating materials
	TIAIG TUDDET	vuicanizeu noci	Laminated	Molded
Oil: Mineral Organic Weak acids	Slight softening‡ Unaffected‡ Unaffected‡	Slight absorption; Slight absorption; Swells due to absorbed water; may be attacked		Practically impervious; Practically impervious; Practically un- affected ¶¶¶
Weak caustic alkalis	Unaffected‡	after some time‡ Swells due to absorbed water; may be attacked after some time‡	of water Does not successfully resist the action of alkali unless very dilute	Does not successfully resist the action of alkali unless very dilute
Stronger acids (HNO ₃ , HCl, H ₂ SO ₄)	Not attacked by con- centrated hydrochloric, hydrofluoric, a c e t i c acids; not attacked by sulfuric acid of less than 1.50 specific gravity or nitric acid of less than 1.12 specific gravity;	Cellulose fiber attacked; soon decomposes	Decomposes; rapidity depends on specific gravity and temperature of acid	Cellulose-filled materials decompose; rapidity depends on specific gravity and temperature of acid. Molding materials made with acid-resistant fillers, such as mica, offer much greater resistance****
Stronger caustic alkalis	No effect	Cellulose fiber attacked; soon decomposes	Binder and filler decompose ¶¶¶	Completely destroyed; speed of the reaction depends on the strength of the solution
Ozone	Oxidizes and soon ruins for electrical purposes	No effect ‡	Not known	Not known
Metallic inserts	Rapidly deteriorated by contact with iron or copper, the metals themselves being corroded; the inserts should be coated with tin, paper, unvulcanized rubber, or other mutually protecting medium	No effect‡	No effect	No effect
		Miscellaneous		
Machining qualities	Admits of a high polish; machines less accurately than would be supposed, due to great resiliency; the better the grade the more readily it is machined; quality may be judged roughly by color and texture, to ughness, color, and grain of a shaving; has tendency to warp; can be molded but not accurately to size	may be sawed, punched, drilled, stamped, embossed, turned, planed, bent, tapped; tough, resists shock; can not be molded†††	Admits of a good polish; can be sawed, punched, drilled, stamped, turned, planed, knurled, embossed, milled, tapped either with or against the grain, though not as easily as hard rubber and vulcanized fiber; tough, resists shock; cannot be molded † † †	Admits of a fine lasting polish; can be machined, cut, filed, sawed with difficulty; can be molded accurately to size; quite brittle
Cost (1922)	About \$2 per pound in sheet form	50-80 cents per pound up to 1 inch in thickness; about \$5 per pound for 2 inches in thickness	About \$1 per pound	Cost varies with complexity of steel molds

^{*} These values were obtained at frequencies between 750 000 and 75 000 cycles per second (400 to 4000 meters wave length), there being very little change throughout this range. The grade of the sample tested is unknown, so values differing somewhat from these might be expected on other samples using different quantities and kinds of filler.

[†] Values of ψ and K may be somewhat lower or much higher, depending on amount of moisture present in the fiber.

- I Information obtained from sources other than the Bureau of Standards.
- § Values vary with the thickness of sample, kind of filler, shape of electrodes used, rate of increase of voltage, as well as atmospheric conditions under which tests are made.
- || The Railway Signal Association specifications require an absorption when immersed in water at 70°F for 24 hours, not to exceed 45% by weight for one-eighth inch fiber, 30% for three-sixteenth inch fiber, and 26% for one-fourth inch fiber.
 - ¶ Dependent upon nature of surface, surface area, and kind and amount of filler.
 - ** Varies with polish of mold, press pressure, and temperature, length of curing, ratio of resin to filler, kind of filler, and size of sample.
- †† The density depends on the amount of sulfur present and increases with the increase in amount of filler. Pure hard rubber ranges from 1.12 to 1.25. A fair commercial quality ranges from 1.25 to 1.40.
 - ‡‡ This means seasoning or aging in a protected place, such as a storage house.
- §§ These materials are of comparatively recent development, and hence no information has been gained covering very long periods. Theoretically, under certain conditions the chemical reactions would tend to continue, which would age and improve the material. One manufacturer claims a slight improvement in dielectric properties and a marked improvement in machining qualities when the aging takes place under ordinary atmospheric and temperature conditions. If the aging takes place in a moist atmosphere, the dielectric properties are subject to deterioration.
 - III See pages 580 to 583 of Technologic Paper, U. S. Bureau of Standards, No. 216.
- This can be carried out many times with the same result, the material becoming more brittle. Tests made on these materials show that they are very erratic in behavior and do not expand or contract in a uniform way. It seems altogether probable that a point would be reached after all volatile matters had been driven off, when further subjection to a moderate temperature and subsequent cooling would not result in further shrinkage. This has not been proved experimentally. High temperature will produce decomposition. Further information regarding these tests will be found in Scientific Paper of the Bureau of Standards No. 352. (See also pages 580 to 583 of Technologic Paper, U. S. Bureau of Standards, No. 216.)
 - *** A further discussion of the tests at the Bureau of Standards may be found in Scientific Paper of the Bureau of Standards, No. 234.
 - ††† See effect of ultra-violet light.
 - \$\$\frac{1}{2}\$ See discussion on pages 599 and 600 of Technologic Paper, U. S. Bureau of Standards, No. 216.
- §§§ Strong solvents affect the phenolic binder of the material to a limited extent unless the chemical reaction has been carried to the point where it is in the insoluble state. This condition would render the sheet material too brittle for general use. When water is present, the material will absorb it in various amounts.
- ||||| The effects vary with the materials, different molding mixtures, and acids. Nitric acid is harmful. In general weak acids will mar the surface and attack the edge of a sample soon after they come in contact with the sample, but there is little or no further change.
 - IT See page 608 of Technologic Paper No. 216.
- **** The action differs for various materials and grades. Some materials resist the action of a 30% solution of H₂SO₄ for several months and will withstand hydrochloric acid without any visible sign of attack. On other materials of this class sulfuric and nitric acids attack the surface of the sample and form a protective coating. This ruins the sample as far as further electrical use is concerned, but on removing the sample from the acid and cutting it open it is found that the acid has not penetrated more than one-sixteenth inch after several months' exposure to the acid.
 - †††† Thin sheets can be pressed to simple shapes when warm.

COMMERCIAL CARBONS FOR ELECTRICAL USES

N. K. CHANEY

Manufactured carbon articles in the form of rods, plates, blocks, tubes, etc. in a wide variety of shapes are made by molding or extruding specially prepared mixtures of pulverized carbon "flours" with binding materials of tar or pitch, and subsequently carbonizing the binder at high temperatures. The resulting products always consist of a porous mass of carbon particles knit together by the residual carbon resulting from the decomposition of the binding materials. Because of the variations inherent in all manufacturing processes the physical properties of commercial carbons are subject to characteristic variations, the allowable range of which is determined by the service and cost requirements of the consumer. A high degree of precision in the individual determinations is therefore valueless, the typical range of variation being alone significant. Individual values where given must be regarded merely as representative.

CHARACTERISTIC RANGE IN PHYSICAL PROPERTIES OF TYPICAL GRADES OF COMMERCIAL CARBONS (5)

<u>-</u>				
	Resist- ance	Density	Sclero-	
	milliohm- cm	True*	Bulk	scope hardness
Coke electrodes	3.5 - 5.0	2.00-2.10	1.53-1.64	
Coal electrodes	3.3 -6.3	1.95-2.10	1.50-1.67	
Brushes:				
Electrographitic A	4.0 - 5.0	2.03-2.07	1.50-1.60	49-61
Electrographitic B	0.8 - 1.8	2.16-2.19	1.41-1.61	20-36
Artificial graphite	2.3 -3.8	2.08-2.10	1.45-1.60	30-45
Natural graphite	0.25-0.50	2.23-2.27	1.85-2.00	10-20
Arc light carbons	7.0 -8.0	1.85-1.90	1.30-1.40	70-80

^{*} By immersion in kerosene.

TEMPERATURE COEFFICIENT OF RESISTANCE (3)

t°C	% res	istance	t°C	% resistan		
ıc	Carbon	Graphite	, ,	Carbon	Graphite	
25	100	100	2000	77.6	68.0	
400		94	2200		69.0	
800		81.5	2400	65.9		
1200	91.6	66.0	2800	50.9		
1600	87.0	65.0	3500	22.4		

THERMAL EXPANSION

	Δt°C	$\frac{10^6 \Delta l}{l \ \Delta t}$	Lit.
Electrodes:			
Coal	220-1820	11.0	(5)
Coke	180-1920	7.2	(5)
Graphite	440-1720	10	(5)
Graphite		0.55 + 0.0032t	(2)
Arc carbon:			
Lampblack	25-1000	6.0	(5)
Coke		0.32	(4)
Coke		1.5	(4)
Coke		2.05	(4)
Coke		3.0	(4)

MEAN SPECIFIC HEAT, g-cal/g per °C (1)

Δt °C	Carbon	Graphite	Δt °C	Carbon	Graphite
26- 76	0.168	0.165	36- 902		0.324
26-282	.200	. 195	47-1193		. 350
26-538	. 199	. 234	48-1180	0.351	Ī
30-752		.290	56-1450	. 387	. 390
40-892	.314				

THERMAL CONDUCTIVITY

 $K = \text{g-cal cm}^{-2} \text{sec}^{-1} (^{\circ}\text{C, cm}^{-1})^{-1}$

102K	Range, °C	10°K	Range, °C
Electrographit	ic brush A (5)	39	180- 220
2.9	20- 43	35	260- 340
Natural graphi	te brush A (5)	31	350- 450
3.9	20- 43	29	440- 560
Graphite elec	ctrode (3, 5)	27	500- 700
5.7	20- 43	0.019	2800-3200
50	90 110		

THERMAL CONDUCTIVITY.—(Continued)

10°K	Range, °C	10°K	Range, °C
Coke elec	trode (3, 5)	1.7	200-340
0.79	20- 40	1.2	240-523
1.6	37-163	1.2	263-543
1.7	105-225	1.2	283-597
1.1	160-325	0.019	3000
1.6	170-330		

LITERATURE

(For a key to the periodicals see end of volume)

Acheson Graphite Co., O. (2) Day and Sosman, 45, 4: 490; 12. (3)
 Hansen, 78, 16: 329; 09. (4) Muraoka, 8, 13: 307; 81. (5) National Carbon Company. O.

INDUSTRIAL ELECTRICAL INSULATORS

CONTENTS 1. Pure chemical substances.

- 1. Pure chemical substances.
- 2. Air.1
- 3. Insulating oils.
 - (a) General properties.
 - (b) Dielectric strength.

 Effect of moisture.

Effect of cleaning and drying.

Effect of temper-

- (c) Resistivity.
- 4. Insulating solids.
 - (a) Description of materials.
 - (b) Electrical properties.
 - (c) Mechanical and thermal properties.
- ¹ Consult the desired property in the index of I. C. T.

MATIÈRES Substances chimiques pures.¹

Air.1

Huiles isolantes.

- (a) Propriétés générales.
- (b) Pouvoir diélectrique. Action de l'humidité.

Action de la purification et du séchage.

Action de la température.

- (c) Résistivité.
- Isolants solides.
- (a) Description des matériaux.
- (b) Propriétés électriques.
- (c) Propriétés mecaniqués et thermiques.
- ¹ Consulter la propriété désirée dans l'index des L. C. T.

INHALTSVERZEICHNIS Reine chemische Stoffe.¹

Luft.1

Isolierende Öle.

- (a) Allgemeine Eigenschaften.
- (b) Dielektrische Festigkeit.

 Einfluss der Feuchtigkeit.

Einfluss der Reinigung und der Trocknung.

Einfluss der Temperatur.

- (c) Widerstand.
- Feste Isolatoren.
 - (a) Beschreibung des Materials.
 - (b) Elektrische Eigenshaften.
 - (c) Mechanische und thermische Eigenschaften.

¹ Siehe die entsprechenden Eigenschaften im Index der I. C. T.

INDICE PAGE Sostanze chimicamente pure. 1

Aria.¹

- (b) Rigidità dielettrica.. 305 Influenza dell' umidità...... 306 Influenza del grado
 - di limpidezza e
 di secchezza... 307
- Influenza della temperatura... 307
 (c) Resistività..... 307
- - teriali......... 308
 - (b) Proprietà elettriche. 310(c) Proprietà meccaniche e termiche... 311

¹ Consultarne le proprietà nell'indice delle T. C. I.

Abbreviations

- B. D. Complete breakdown
- B. T. Burning temperature
- D Diameter
- d Specific gravity, room temperature, water = 1
- E. Engler viscometer; data given in Engler degrees
- F. T. Flash point
- G Spark gap = minimum distance between surfaces of electrodes
- Max. Maximum
- P. D. Potential difference between electrodes
- P. F. Power factor
- P. Sp. Preliminary sparking
- S. T. Solidifying temperature
- S. U. Saybolt Universal viscometer; data given are times of efflux, seconds
- V Viscometer value. For interconversion of E. and S. U. data, and for conversion of either to kinematic viscosity, see Vol. I, p. 33
- % Δ Per cent deviation from mean
- e Dielectric constant
- ρ Volume resistivity

Abréviations

- B. D. Rupture diélectrique complète
- B. T. Température de combustion
- Diamètre
- d Poids spécifique, à la température de la chambre, eau = 1
- E. Viscosimètre d'Engler; données en degrés Engler
- F. T. Point d'inflammabilité
- G Distance explosive = distance minimum entre les surfaces des électrodes
- Max. Maximum
- P. D. Différence de potentiel entre électrodes
- P. F. Facteur de puissance
- P. Sp. Lueur préliminaire
- S. T. Température de solidification
- S. U. Viscosimètre universel de Saybolt; les valeurs données sont les durées de l'écoulement en secondes
- V Constante du viscosimètre. Pour l'interconversion des valeurs de E. et S. U., et pour la conversion de ces deux valeurs en viscosité cinématique, voir Vol. I, p. 33
- % \(\Delta \) Pourcentage d'écart de la moyenne
- € Constante diélectrique
- ρ Résistivité

Abkürzungen

- B. D. Dielektrische Festigkeit
- B. T. Brenntemperatur
- Durchmesser
- d Spezifisches Gewicht, Zimmertemperatur, Wasser = 1
- E. Engler Viskosimeter, Werte in Englergraden
- F. T. Entflammungspunkt
- G Funkenstrecke = minimal Entfernung der Oberflächen der Elektroden
- Max. Maximum
- P. D. Potentialdifferenz zwischen den Elektroden
- P. F. Kraftfaktor
- P. Sp. Glimmentladung
- S. T. Erstarrungstemperatur
- S. U. Saybolt Universalviskosimeter, die angegebenen Daten sind Ausflusszeiten in Sekunden
- V Viskosimeterwert. Für die gegenseitige Abmessung von E und S. U. Werte, für die Umrechnung auf die kinematische Viskosität siehe Vol. I, p. 33
- % A Prozentuelle Abweichung vom Mittel
- Dielektrizitätskonstante
- Widerstand im Inneren

INSULATING OILS

J. B. WHITEHEAD AND J. H. LAMPE

Only oils commonly used in industrial electrical apparatus are considered in this section. For data on other oils which might possibly meet industrial requirements, reference must be made to other sections of this volume. Among the following data are some for 7 distinct samples of domestic (U. S. A.) oil; these oils are here designated by the letters A to F, inclusive.

On n'utilise dans les appareils électriques que les huiles minérales de paraffine; on n'a considéré que de telles huiles dans cette section. Pour les données relatives à d'autres huiles qui peuvent présenter, éventuellement, une utilisation industrielle, il faut s'adresser à d'autres sections de ce volume. Parmi les données suivantes, il s'en trouve pour 7 échantillons distincts d'huiles indigènes (U. S. A.); ces huiles sont désignées par les lettres A à F, inclusivement.

Es werden nur Mineralöle paraffinischen Ursprunges in den elektrischen Apparaten benützt, nur solche sind deshalb Gegenstand des Abschnittes. Für Zahlenwerte weiterer Öle, welche vielleicht industrielle Beachtung verdienen, muss an anderer Stelle dieses Bandes nachgesehen werden. Unter den folgenden Werten sind 7 von heimischen (U. S. A.) Ölproben vorhanden. Diese Öle sind hier vom Buchstaben A bis einschliesslich Fangeführt.

Solo gli olii minerali di paraffina sono adoperati negli apparecchi elettrici, e solo essi perciò sono qui presi in considerazione. Per le caratteristiche di altri olii che potrebbero eventualmente soddisfare alle richieste vedi altri capitoli di questo stesso volume.

Tra i valori che seguono sono riportati quelli di 7 campioni di olii degli S. U. A. Questi olii sono indicati con le lettere da A a F inclusa.

TABLE 1.—GENERAL PROPERTIES OF VARIOUS INSULATING OILS

For dielectric strength, see Table 2. Bracketed numbers indicate the range of variation; e.g., first entry indicates that d varies from 0.846 to 0.915.

Unit of $\rho = 10^{12}$ ohm-cm; of $\epsilon = 1$ egse; of P. F. = 1%; of temperature = 1°C.

Abbreviazioni

- B. D. Interruzione continua
- B. T. Temperatura di combustione
- Diametro
- d Peso specifico, temperatura ordinaria, acqua = 1
- E. Viscosimetro di Engler, valori in gradi Engler
- F. T. Punto di infiammabilità
- Lunghezza di scintilla = distanza minima tra le superficie degli elettrodi
- Max. Massimo
- P. D. Differenza di potenziale tra gli elettrodi
- P. F. Fattore di potenza
- P. Sp. Preliminare scintillamento
- S. T. Temperatura di solidificazione
- S. U. Viscosimetro universale Saybolt; i valori riportati rappresentano tempi di efflusso in secondi
- Valore viscosimetrico. Per la conversione dei valori E. in
 S. U. e viceversa, e per la conversione degli uni e degli altri in viscosità cinematica, vedi Vol. I, p. 33
- % Deviazione percentuale della media
- Costante dielettrica
- Resistività di volume

\ iio	U.	S. A.		Germ	any*	France	Japan
Prop.	W. E. & M. (20)	G. E. (10)	Tobey (23)	Schen- dell (18)	Stern (22)	Crus- sard (4)	Hirobe (8)
d	$\left\{ egin{array}{l} 0.846 \\ 0.915 \end{array} \right.$	$\begin{cases} 0.83 \\ 0.93 \end{cases}$	0.870	$\begin{cases} 0.85 \\ 0.92 \end{cases}$	$ \left\{ \begin{array}{l} 0.85 \\ 0.95 \end{array} \right. $	$\left\{ \begin{array}{l} \textbf{0.85} \\ \textbf{0.92} \end{array} \right.$	$\begin{cases} 0.827 \\ 0.861 \end{cases}$
v	100	40 120	{ 40 110	8° 10°	8°	8°	1.43° 2.96°
-	S. U. 40°	S. U. 40°	S. U. 40°	E. 20°	E. 20°	E. 20°	E. 30°
P	13.2	20 150					
s. T.	$\left\{ egin{array}{ll} 2.5 \ -2 \ -34 \end{array} ight.$	$\left\{ egin{array}{ll} 2.15 \ 0 \ -40 \end{array} ight.$:		-5	-1	
F. T.	140 170	130 190	130 190		160	160	{ 125 152
В. Т.		(0.00	140 215	180 190		180	
P. F.	0.44	$\begin{cases} 0.03 \\ 0.06 \end{cases}$	1 1				

* Heat conductivity of a German oil is given as 0.00031 cal/(cm deg sec) (24).

Table 2.—Dielectric Strength of Various Transformer Oils

Average effective breakdown voltage

Unit of voltage = 1000 effective (r. m. s.) volt; of D and G = 1 in. = 2.54 cm.

	Sphere	Disk	Needle	Disk	Disk	
Diameter (D)	0.5	0.5	points	point	1	Lit.
Gap (G)	0.15	0.15	0.15	0.15	0.1	
Tobey			18.0	16.5		(23)
Digby & Mills	11.5		17.5	11.0		(3)
N. E. L. A	40.0	29.0		1		(12)
Peek	64.0	31.0	22.0	l		(13, 14)
Hirobe	92.0	62.0		15.0		(8)
Schroter	92.0					(19)
Everest	20.0	20.0	22.0	18.5		(5)
W. E. & M	61.5	48.0			36.2	(1)
Vac. Oil Co	51.7	37.1			24.0	(1)
B. S	61.3	49.9			2 8.2	(1)

TABLE 3.—DIELECTRIC STRENGTH OF INSULATING OIL E (5, 25) Breakdown voltage: Effective (r.m.s.) kilovolt

Units of D = 1 in.; of G = 0.001 in.; 1 in. = 2.54 cm.

	Spher	e, D	- 0.5	Disk	. D =	0.5	Nee	dle poi	nts	Po	int, dis	k
G	B. D.	P. Sp.	% Δ	B. D.	P. Sp.	% Δ	B. D.	P. Sp.	% Δ	B. D.	P. Sp.	% 4
25	3.6	2.9	40							8.4	7.1	10
50	5.7	4.3	30	6.5	4.7	15	1.2	8.1	15	12.2	8.2	15
75	1 1			8.9	6.2	30						
100	13.2	7.6	40	14.5	7.4	40	17.8	13.5	10	16.0	11.8	8
150	19.5	11.1	30	19.1	11.1	40	22.1	16.3	8			
175	- 1	İ			ì					19.7	14.7	5
200	27.2	15.3	15	27.9	22.1	20	24.4	18.7	6			
250		-			Į.		26.7	20.4	8	23.3	17.4	6

TABLE 4.—DIELECTRIC STRENGTHS OF FOUR U. S. A. TRANS-FORMER OILS (1)

Parallel tests by Vacuum Oil Co. (Vac.), Westinghouse Electric and Manufacturing Co. (W), and National Bureau of Standards (B. S.). Most accurate data available. Each number is average of 15 observations; individual deviation from mean = 10%. the same in all cases.

Unit of D and G = 1 in. = 2.54 cm. V = 1 sec by S. U. at 0°C.

	· · · · · · · · · · · · · · · · · · ·								
		Break	Breakdown values, effective (r. m. s.) kilovolt, 60						
Elec-	Gap		cycles, 25°C						
trodes	G	B. S.	Vac.	W	Mean	B. S.	Vac.	w	Mean
	}	A (d	= 0.85	64, V :	= 55)	B (d	= 0.86	57, V =	= 100)
Disks	0.05	15.2	11.7	18.0	15.0	15.2	8.9	14.3	12.8
D = 1	0.10*	23.6	23.2	35.8	27.5	26.5	22.3	30.5	26.4
	0.15	33.6	32.9	39.3	35.3	36.3	32.2	42.8	37 . 1
	0.20	40.6	39.1	53.8	44.5	42.8	37.6	55.7	45.4
Disks	0.05	21.2	15.3	22.2	19.6	21.5	13.2	20.9	18.5
D = 0.5	0.10	37.9	29.4	38.9	35.4	37.1	24.8	38.7	33 .5
	0.15	48.7	38.9	47.5	45.0	47.9	33.4	42.8	41.4
	0.20	49.3	45.2	51.0	48.5	49.8	46.1	54.9	50.3
Spheres	0.05	23.6	23.6	29.5	25.6	22.6	20.7	25.3	22.9
D = 0.5	0.10	44.2	45.5	51.1	46.9	38.5	35.2	48.6	40.8
	0.15	61.1	l	67.1	64.1	56.0	51.1	60.6	55.9
	0.20	68.9			68.9	70.5			70.5
		C (d	= 0.82	29, V =	= 34)	D (d	= 0.8	60, V	= 74)
Disks	0.05	16.5	8.8	18.5	14.6	16.8	11.0	17.8	15.2
D = 1	0.10*	33.5	25.9	40.7	33.4	29.1	24.6	37.8	30.5
	0.15	39.5	32.5	53.7	42.0	38.5	30.9	48.7	39.4
	0.20	50.8	39.8	64.8	51.8	41.2	37 .9	59.8	46.3
Disks	0.05	27.1	20.0	24.9	24.0	25.8	14.0	19.4	19.7
D = 0.5	0.10	48.4	34.6	42.9	42.0	41.0	26.9	40.7	36.2
	0.15	48.8	42.3	57.9	49.7	54.3	33.7	47.0	45.0
	0.20	60.0	50.6	67.4	59.3	55.5	42 .5	52 .8	5 0. 3
Spheres	0.05	33.4	26.3	32.9	30.8	26.2	22.5	30.0	26.2
D = 0.5	0.10	49.1	50.2	55.3	51.5	50.1	43.8	56.4	50.1
	0.15	67.1			67.1	61.1	52 .4	56.7	56.7
	0.20					72.5			72.5

^{*} This is the standard gap recommended by American Society for Testing Materials (1)-1 in. flat disks with square shoulders, spaced 0.1 in. apart. For this gap, the B. D. value for transformer oils should lie in the range 26.4 to 33.4 kilovolt.

TABLE 5.—RELATIVE BREAKDOWN VOLTAGES FOR THREE COM-MERCIAL TEST GAPS (1)

(Voltage, gap E_1)/(voltage, gap E_2)

Unit of D and G = 1 in. = 2.54 cm.

E	A	В	С
A	1.00	1.80	2.05
В	0.55	1.00	1.20
\mathbf{C}	0.50	0.85	1.00
	Disk	Disk	Sphere
D	1	0.5	0.5
$oldsymbol{G}$	0.1	0.2	0.15

TABLE 6.—ERROR IN THE AVERAGE OF n TESTS OF DIELECTRIC STRENGTH OF AN OIL

Based on 3000 tests (6, 7)

Unit of error = 1%.

n	Error	Sphere long*	Sphere short*	Point, sphere
1	Av.	7.8	7.8	8.4
1	Max.	48.5	34.1	44.8
3	Av.	5.2	4.9	4.9
3	Max.	22.4	19.7	19.1
6	Av.	2.7	3.5	4.1
6	Max.	17.5	15.0	14.3

* Average: Long = 27 mm; short = 2 mm.

TABLE 7.—Sparkover Voltage between Concentric CYLINDERS (14)

For $\frac{R}{2} > 3.5$ corona appears in transformer oils before sparkover occurs; for $\frac{R}{\omega}$ < 3.5, the sparkover and corona voltages are the same and obey the relation: $g = 36\left(1 + \frac{1.2}{\sqrt{r}}\right)$. g = maximumvoltage gradient at surface of electrode, in kilovolt/cm; R, r =radius of outer, inner, cylinder in cm; g_o , $g_c = g_z$ observed, g_z computed. The * denotes where R/r becomes less than 3.5.

Unit of r = 1 cm; of P. D. = 1000 volt; of g = 1000 volt/cm (R = 3.81 cm).

r	P. D., max.	g.,	g c
0.238	84.0	127.7	123.8
0.317	85.5	108.1	112.7
0.635	98.3	86.3	90.3
0.794	106.1	85.5	84.6
0.952	103.2	78.1	80.2
1.111*	108.5	79.4	76.9
1.270	107.5	77.0	74.3
1.587	104.3	75.1	70.4
1.905	93.7	70.7	67.2
2.540	64.3	62.4	63 . 1

TABLE 8.—INFLUENCE OF MOISTURE ON DIELECTRIC STRENGTH Kilovolt (kv) for breakdown; disks, D = 0.5 in., G = 0.2 in.; temp. 25°C; U. S. A. Oil F (13, 14)

Water, volume in 10 000...... 0 | 0.5 | 1.0 | 2.0 | 5.0 | 10.0

Ryan (17), Tobey (23), Peek (13, 14, 15), and others (11, 16, 2) show that moisture in very small quantities decreases the dielectric strength of insulating oil.

Hirobe (8), McLaughlin (9), Stern (22), Spath (21), and Schroter (19) agree experimentally that moisture has little effect on the dielectric strength of the purest oils. The potent causes of low dielectric strength are fibers and dust particles in the oil.

Their effect is increased by the presence of moisture (cf. Table 9). For methods and effect of cleaning electrodes, see (8).

Table 9.—Dielectric Strength: Effect of Cleaning and Drying the Oil (19)

F = effective field strength at which breakdown occurs Unit of F = 1000 volt/cm; of $\%\Delta$ = 1%.

Condition of oil*	\overline{F}	%∆
As delivered	48.5	75
Filtered through 4 mm clay wall	115.0	50
Centrifuged		30
Filtered through ordinary filter paper	163.0	35
After prolonged drying by heat		40
Prolonged drying by heat and filtered once		
through celloid filter	232.0	8
As in preceding, but filtered twice	332.0	7

^{*} Each line of the table is complete in itself; tests were not successive.

Table 10.—Resistivity (R) and Dielectric Strength (S) of Dry Oil: Variation with Temperature (2^3)

R is expressed in terms of the resistance between disks, D=4 in., G=0.44 in.; S in terms of the effective breakdown P. D. between spheres, D=0.5 in., G=0.15 in. Approximately $S=S_{25}-0.13$ $(t-25^{\circ})$ kilovolt (1); t= temperature, °C; $S_{25}=$ value of S at 25°C.

Unit of S = 1000 volt; of $R = 10^6$ ohm; of $t = 1^{\circ}$ C.

							90°C
Strength (S)	33	35	36	37	38	39	41
Resistivity (R)			1225	960	570	360	250

LITERATURE

(For a key to the periodicals see end of volume)

- Silabee, 66, 21: 397; 21. (2) Armstrong, 107, 62: 1322; 13. (3) Digby and Mills, 46, 28: 769; 09. (4) Crussard, 106, 13: 443; 23. (5) Everest, 121, 87: 702; 21. (6) Hayden and Eddy, 129, 41: 102; 22. (7) Hayden and Eddy, 129, 41: 394; 22. (6) Hirobe, Elect. Technical Laboratory Report, No. 28: Sect. 3 (Japan). (6) McLaughlin, 121, 88: 325; 21.
- Moody, W. S., General Electric Co., Schenectady, New York, O. (11) Moody and Faccioli, 129, 28: 769; 09. (12) National Electric Light Association, Bulletin, June, 1910. (13) Peek, 129, 38 II: 783; 16. (14) Peek, 120, 18: 821; 15. (18) Peek, Dielectric Phenomena in High Voltage Engineering, Chap. IV. New York, McGraw-Hill Book Company, Inc., 1915. (16) Rodman, 114, 20: 51; 23. (17) Ryan, 129, 30: 1; 11. (18) Schendell, 101, 37: 242; 18. (19) Schroter, 126, 12: 67; 23.
- (20) Skinner, C. E., Westinghouse Electric and Manufacturing Co., East Pittsburgh, O. (21) Spath, 125, 12: 331; 23. (22) Stern, 101, 43: 140; 22. (23) Tobey, 129, 29 Π: 1189; 10. (24) Tesche, 97, 5: 233; 24. (25) Wedmore, 121, 87: 702; 21.

INSULATING SOLIDS

F. MALCOLM FARMER

Because of inherent variations in composition and physical condition of both manufactured and natural products, no single value can be assigned to any of the various properties of solid electrical insulators. Furthermore, the value obtained in the measurement of many electrical properties depends upon the method employed and the conditions under which the test was made. For example, in determinations of either the volume or the surface resistivity, the result will depend upon the voltage employed, the duration of its application, temperature, humidity, etc. No standard procedure has yet been established for determining the various quantities. The available data have been obtained under a great variety of conditions and with many different procedures (which, in most cases, are not fully stated) so that the selection of values for these tables has been a matter of judgment, the aim being to select those values which it is believed are most typical and, consequently, the most reliable for general application. Some of the principal sources from which data have been obtained are named on p. 311. Discussions of some of these variable factors will be found in (1, 3, 9); for bibliographies, see (2, 18, 19).

Par suite des variations inhérentes à la composition et aux conditions physiques des produits manufacturés et naturels, il n'est possible d'assigner une valeur unique à aucune des propriétés variées des isolants électriques solides. De plus, les valeurs obtenues par les mesures de plusieurs propriétés électriques dépendent de la méthode employée et des conditions dans lesquelles l'essai a été effectué. Par exemple, dans les déterminations de la résistivité du volume et de la résistivité superficielle, le résultat dépend du voltage employé, de la durée de l'application, de la température, de l'humidité, etc. Aucune procédure type n'a encore été établie pour déterminer les quantités variées. Les données disponibles ont été obtenues suivant une grande variété de conditions et avec des procédures différentes (qui, dans la plupart des cas, ne sont pas complètement spécifiées); de sorte que la sélection des valeurs pour ces tables a été une question de jugement, l'objectif étant de choisir celles des valeurs qui étaient présumées les plus typiques et par conséquent les plus dignes de confiance pour l'application générale. Quelques unes des sources principales dont ont été tirées les valeurs sont indiquées à la page 311. On trouvera les discussions relatives à quelques uns des facteurs variables à (1, 3, 9); en ce qui concerne la bibliographie, voir (2, 18, 19).

Entsprechend der eigenartigen Änderung in der Zusammensetzung und des physikalischen Zustandes der festen Isolatoren, kann man sowohl den künstlichen als auch den natürlichen Produkten keinen einzelnen Wert ihrgend welcher der verschiedenen Eigenschaften zu ordnen. Es hängt ferner der gemessene Wert vieler elektrischer Eigenschaften von der angewandten Methode und den Bedingungen unter welchen die Probe ausgeführt worden ist, ab. Z. B. bei der Bestimmung des Oberflächen Widerstandes wird das Ergebnis von der angewandten Volt-Zahl, der Dauer der Einwirkung, der Temperatur, der Feuchtigkeit u. s. w. abhängen. Bis jetzt ist keine diesbezügliche Standardmethode zur Messung der verschiedenen Grössen aufgestellt. Die erreichbaren Daten sind unter den verschiedenen Bedingungen und sehr verschiedenen Prüfungsvorgängen (die in vielen Fällen auch nicht ganz angegeben sind) erhalten. Es ist deshalb diese Auswahl nach besonderem Urteil gemacht worden, mit dem Ziel im Auge, diejenigen Werte herauszugreifen, die man als die typischesten ansieht und demzufolge allgemein am zuverlässlichsten sein werden. Einige der hauptsächlichsten Quellen aus denen die Werte geschöpft wurden sind Seite 311 angegeben. Zur Diskussion einiger der veränderlichen Faktoren, (1, 3, 9), Literatur dazu, siehe (2, 18, 19).

A causa di alterazioni nella composizione e nello stato fisico sia dei prodotti artificiali che naturali, non si può assegnare un valore determinato alle varie proprietà degli isolanti elettrici solidi. Inoltre, il valore ottenuto nella misura di molte proprietà elettriche dipende dal metodo impiegato e dalle condizioni nelle quali la prova è stata fatta. Per espempio, quando si determina la resistività di volume o di superficie, il risultato dipende dal voltaggio adoperato, dalla durata di applicazione, dalla temperatura, dalla umidità, ecc. Non è stata ancora stabilita una procedura uniforme per determinare le varie grandezze.

I dati disponibili sono stati ottenuti in condizioni molto diverse e con metodi differenti (il più delle volte neppure completamente indicati); per modo che la scelta dei valori per queste tabelle è stata fatta con un certo arbitrio e con lo scopo di raccogliere i valori ritenuti più tipici e quindi suscettibili di una più generale applicazione.

Alcune delle fonti principali dalle quali i dati sono stati tratti sono indicate a pag. 311. Per la discussione di alcuni dei fattori variabili si veda (1, 3, 9) e per le indicazioni bibliografiche si veda (2, 18, 19).

Manufacturers Mentioned in this Section

- M1 Alberene Stone Company, New York, N. Y.
- M2 Chicago Mica Company, Chicago, Ill.
- M3 Continental Fibre Company, Newark, Del.
- M4 Electrose Manufacturing Co., Brooklyn, N. Y.
- M5 Garfield Manufacturing Co., Garfield, N. J.
- M6 General Electric Co., Schenectady, N. Y.
- M7 General Insulate Co., Brooklyn, N. Y.
- M8 Hemming Manufacturing Co., Garfield, N. J.
- M9 Irvington Varnish and Insulator Co., Irvington, N. J.
- M10 Mica Insulator Co., Schenectady, N. Y.
- M11 Minerallac Electric Co., Chicago, Ill.
- M12 Mitchell-Rand Mfg. Co., New York, N. Y.
- M13 National Vulcanized Fibre Co., Wilmington, Del.
- M14 Spaulding Fibre Co., Inc., Tonawanda, N. Y.
- M15 D. M. Stewart Manufacturing Co., Chattanooga, Tenn.
- M16 Westinghouse Electric and Manufacturing Co., East Pittsburgh, Pa.

TABLE 1.—INDEX AND DESCRIPTION OF MATERIALS

Glass, v. p. 87, porcelain, v. p. 66, rubber and rubber products, v. p. 254, phenol condensation products, v. p. 296

I. Bituminous, Wax and Molded Materials

INDEX

- Ambrion.—A molded product (German). Asbestos, impregnated with a pitch or rosin binder. Several grades—some fireproof, some limited to 80 to 100°C.
- 2. Asphalt.—Various grades known as bitumen, byerlite, elaterite, gilsonite, manjak, and mineral pitch. A black, natural product found in various parts of the world. Used extensively as base for insulating varnishes, for impregnating insulating materials, and (in Europe) for insulating wires and cables (instead of rubber). Hard at ordinary temperatures, plastic at 40-60°C, melts at 100-200°C, depending upon purity.
- 3. Beeswax.—The secreted substances of which the bee's honeycomb is constructed; yellow; agreeable odor and taste. Solid at ordinary temperatures, plastic when warm, melts at 62-64°C.
- 4. Ceresin.—A yellow or white wax made by purifying and bleaching ozokerite (see 10). Used extensively in manufacture of insulating compounds.
- 5. Electrose.—Trade name for a product manufactured and molded by M4; working temperature limit, about 90°C.
- 6. Gummon.—Trade name for a coal tar and asbestos product manufactured and molded in desired shape by M5. Black, hard, dense, not easily drilled or sawed, can be highly polished, and will withstand 200°C indefinitely.
- 7. Hemit.—Trade name for a coal tar and asbestos product manufactured and molded in desired shape by M5. Hard, dense, not easily drilled or sawed; withstands temperature of 600 to 800°C. Grade "B" is gray and hygroscopic; grade "A" is impregnated, making it black and more nearly waterproof.
- 8. Insulate.—Trade name for a mineral product manufactured and molded in desired shape by M7. Non-hygroscopic; maximum working temperature, 70°C.
- 9. Minerallac.—Trade name for asphaltic base insulating material manufactured by M11 in various grades for different applications (principally cable joints, cable terminals, etc.). Some grades semi-liquid, others semi-solid at 25°C. Moisture-proof.
- 10. Ozokerite (See Ceresin).—A natural, mineral wax material, usually associated with rock salt or gypsum; found throughout the world, but principally in Galicia. Is probably

- paraffin resulting from natural decomposition of petroleum. Natural color brown or black, but white when purified; melts at 110°C.
- 11. Paraffin.—Translucent, more or less colorless wax material obtained in the distillation of petroleum. Various commercial grades; melts at 45 to 80°C, depending upon grade; unaffected by ordinary acids and alkalies.
- 11(a). Petrolatum.—A neutral and purified residue derived by distillation of petroleum. Three forms—liquid, soft, and hard. The soft form is a grease similar to vaseline and is used extensively as an impregnating material for paper insulated cables; melts about 50-55°C; electrical properties vary greatly with the purity.
- 12. Rosin.—A variety of resin. Product of distillation of oil of turpentine from crude turpentine.
- Tegit.—Trade name for a coal tar and asbestos product manufactured and molded in desired shape by M8. Uses limited to 200°C.

II. Fibrous Materials and Fiber Products

- 14. Cellulak.—Trade name for laminated paper insulation manufactured by M9. Processed under heat and pressure. Hard, tough, readily machined.
- 15. Cellulose.—A carbohydrate similar in chemical composition to starch. When pure, is amorphous and white; is basis of practically all fibrous insulating materials. Unsized, well bleached linen paper is practically pure cellulose.
- 16. Conite.—(See 18.) Trade name for a thin, hard, vulcanized fiber prepared by M3 with special care to insure its freedom from acid.
- 17. Empire Cloth.—Trade name of M10 for various varnished cloths having coatings of linseed-oil base (see 29).
- 18. Fiber, Vulcanized.—Also known as fiber, horn fiber, hard fiber, indurated fiber, leatheroid, etc. Made by treating layers of paper stock made from pure cotton cellulose (old cotton rags free from dirt, oil, and grease) with concentrated acids or zinc chloride. Compressed under great pressure to desired thickness; soaked and washed in water for long periods to remove acid or chloride; air dried, pressed in steam-heated presses and calendered to final thickness. Hard, tough, bone-like, hygroscopic, absorbs water readily, disintegrates with strong acids, unaffected by organic solvents and oils, becomes brittle at 80 to 100°C sustained temperature, readily machined, various colors. Manufactured by M3, M13, M14, and others.
- 19. Fish Paper.—Also known as tarpon paper, leather paper, leatheroid, and fiberoid. Prepared in similar manner to vulcanized fiber using cotton rag stock. Flexible; dark gray; thickness about 0.1 to 1.2 mm.
- Kobak Cloth.—Trade name (M10) for black varnished cambric (see 28).
- 21. Kraft Paper (For cables).—Unsized paper made from wood pulp stock by sulfate process (21a). Hygroscopic. Used extensively in Europe in high tension power cables where it is impregnated with an insulating material (21b) after application to conductors.
- 22. Manila Paper (For cables) (See 26).—Unsized paper made from old manila rope (22a). Used extensively in America on high tension power cables where it is impregnated with an insulating material (22b) after application to conductors.
- Paraffined Paper.—Bond paper coated or saturated with hot paraffin. Used extensively in low voltage electric condensers.
- 24. Pressboard.—Also known as fullerboard and presspan (in Europe). A high grade cardboard paper made from cotton rag and paper clipping stock. Hygroscopic.

- 25. Pressboard, Treated.—Pressboard dried (sometimes in vacuum) and varnished (25a) or boiled in mineral oil (25b) to make it moisture-proof and to increase dielectric strength.
- 28. Rope Paper (See 22).—Paper made from old rope stock (hemp and jute). Compressed but unsized. Hygroscopic.
- 27. Varnished Cloth (See 17, 20, 28, 29, 30, 31 and 33).—Also known as treated cloth. Thin cotton, linen, or silk cloth dried and coated with various thicknesses of various kinds of liquid insulating materials so applied and treated as to produce a smooth, sheet insulating material which is flexible, tough, and uniform in thickness. Great variety manufactured (some under trade names) by M6, M9, M10, M12, M16, and others.
- 28. Varnished Cambric, Black (See 27).—Coated with an asphaltic material and an oxidizing oil. Black, oil-proof, but not moisture-proof; is more flexible, and remains flexible longer, than the yellow cambric; is, also, more resistant to action of corona discharge (i.e., ozone and nitric acid). Thickness, 0.1 to 0.4 mm.
- 29. Varnished Cambric, Yellow (See 27).—Also known as varnished muslin, oiled cambric and oiled muslin. Coated with linseed oil and a resin; filler is yellow and translucent; absorbs moisture, but is oil-proof. Thickness, 0.1 to 0.4 mm.
- Varnished Duck or Canvas, Black.—Same as black varnished cambric except that the base is duck or canvas. Thickness, 0.4 to 0.8 mm.
- Varnished Duck or Canvas, Yellow.—Same as yellow varnished cambric except that the base is duck or canvas. Thickness, 0.4 to 0.8 mm.
- 32. Varnished Paper.—Paper [cotton (bond), linen, and hemp (manila) stock papers, also fish paper] treated like varnished cloth. Treatment greatly increases resistance to moisture absorption and increases dielectric strength (ca. 25%).
- 33. Varnished Silk.—Same as yellow varnished cambric except that base is silk. Thickness, 0.05 to 0.2 mm.
- 34. Woods, Hard.—Maple, hickory, cherry, ash, and yellow pine principally used. Dried (34a) and impregnated with oil (34b), paraffin (34c) or rosin, either by boiling until evolution of gas ceases or by impregnation under pressure after drying in vacuo.

III. Mineral Materials

- 35. Alberene (See soapstone, 47).—A fine grade of natural soapstone uniformly gray in color, free from metallic veins. Marketed by M1. Does not split or shale under intense local heating, such as electric arc. Stated to be capable of withstanding 1300 to 1600°C. Soft, easily machined, sawed, and drilled.
- 36. Asbestos Paper.—Soft, flexible sheet material made from fibrous asbestos with 15 to 20% cotton. Very hygroscopic.
- 37. "Lava."—A form of talc (hydrated magnesium silicate), similar to pumice, which, while in its natural state, is formed or machined to desired shape and then baked at 1100°C, making it very hard. It is then not affected by any lower temperature; very porous, but dimensions not affected by absorption of water; slightly affected by HCl, but not by other ordinary acids and alkalis; very light yellow.
- 38. Lavite.—Trade name for patented product manufactured by M15. Similar to "lava." Compares with glass in hardness; unaffected by temperatures up to 1000°C, or by ordinary acids or alkalis; porous; very light yellow.
- 39. Marble.—Crystalline limestone which takes a high polish.

 Pure marble is white; colored marbles contain impurities, such as iron oxide. Much used for electrical switchboards where, because of porosity, it is frequently impregnated

- with insulating material to increase dielectric strength; often stained black (called marine finish) to prevent discoloration due to oil staining, etc.
- 40. Mica.—A laminated mineral composed of crystallized anhydrous silicate of aluminum and potash, or soda. Pure mica is transparent, but frequently colored by salts deposited between laminations. Laminations easily separated so that mica can be split down to 0.005 mm. In natural state it is not uniform in quality, is not flexible, and largest pieces are relatively small; hence it is reconstructed, by splitting into thin laminations and cementing together the small pieces, with suitable binders, to form continuous sheets of various thicknesses, which are marketed under trade names (see 41 to 45 inc.). Powdered and flaked mica is used in conjunction with suitable binders to make molded insulations (a substitute for hard rubber, etc.). Properties vary considerably with impurity content, and with sources from which obtained, the principal of which are India, Africa, Canada, and United States. The clear variety has highest dielectric strength.
- 41. Mica Cloth.—Reconstructed mica (see 40) with special binder and backed with cloth. Flexible (to various degrees); thickness, 0.1 to 3 mm.
- 42. Mica Bond.—Trade name for mica cloth, mica paper, and mica plate products manufactured by M2 (see 41, 43 and 44).
- 43. Mica Paper.—Reconstructed mica (see 40) with special binder and backed with Japanese paper. Flexible; thickness, 0.25 to 0.5 mm.
- 44. Mica Plate.—Reconstructed mica (see 40) with shellac binder.

 Not flexible; thickness, 0.25 to 3 mm.
- 45. Micanite.—Trade name for mica cloth, mica paper, and mica plate products manufactured by M10 (see 41, 43, 44).
- 46. Slate.—Natural rock of clay or mica composition with natural cleavage. Formed by geological processes involving high temperature and pressure. Principal components are silica and alumina with some iron oxides, lime, magnesia, potash, and soda. Slate for electrical purposes is principally the mica variety from Vermont (purple to green), Maine, and Pennsylvania; the last two are dark gray (called black slate). Is hygroscopic and contains relatively large amount of water of composition, hence thorough drying followed by oil treatment or coating with insulating varnish or enamel greatly improves insulating value. Easily machined; takes good polish.
- 47. Soapstone (See Alberene, 35).—A natural, soft stone; a variety of talc. (Also called steatite.) Slightly soapy or oily to touch. Easily machined, drilled, and sawed. Hygroscopic. Withstands temperatures of the order of 1500°C.

IV. Gum Materials

- 48. Amberite.—(Ambroid.) Compressed scrap amber (fossilized vegetable resin). Equal to native amber in volume resistivity, but surface must be kept clean for high surface resistivity.
- 49. Copal.—A resinous substance which, when dissolved in alcohol, oil of turpentine, or linseed oil, makes a colorless varnish. Very inflammable; brittle when cold.
- 50. Shellac.—A crude form of lac, a resinous gum exuded by an East Indian insect, also obtained from sap of certain trees. Shellac dissolved in alcohol is extensively used as an insulating varnish which on drying forms hard, protective coating. Brittle, brown, hygroscopic.

V. Miscellaneous Materials

51. Enamel.—A hard, smooth, and flexible coating baked on magnet wire as substitute for cotton and silk, or in addition thereto. Composition more or less a manufacturing secret.

but stated in some cases to be stearin pitch, cellulose acetate, or cellulose nitrate. Applied by running wire through thin bath and rapidly drying each coat by passing through hot oven. Occupies less space than cotton and silk, has greater thermal conductivity; moisture-proof and mineral oil-proof, but more or less soluble in vegetable oil, animal oil, alcohol, turpentine, and coal tar solvents; withstands 100°C indefinitely; breaks down electrically at 300°C.

- 52. Galalith.—German product manufactured from skim-milk heated with caustic soda and precipitated with acid. The precipitate, in sheet and plate form, is dried, saturated with formaldehyde, and again dried and pressed. Used as substitute for ivory. Translucent and yellowish white; readily shaped, after softening in hot water; rather hygroscopic.
- 53. Ivory.—Tusks of the elephant, walrus, etc. Hard and white.

TABLE 2.—ELECTRICAL PROPERTIES

Volume resistivity (see Vol. I, p. 41) = $R_v \times 10^n$. Surface resistivity (see Vol. I, p. 41) = $R_s \times 10^n$. Power factor = $\cos \varphi$. Temperature = 18 to 25°C except as indicated. Unit of: $R_v = 1$ ohm-cm; $R_s = 1$ ohm; frequency = 1 cycle/sec; dielectric constant = 1 cgse (essentially, air = 1); thickness = 1 mm.

ndex	Material	Resistivity			Dielectric constant		Dielectric strength		Power factor		
No.		R,	n	R.	n	Frequency	Constant	Thickness	Kv/mm	Frequency	COS 49
35	Alberene		Ì	İ	l			1			1
		stone)							ł		1
8	Amberite (ambroid)	5	16	2	15		2.8*				
1	Ambrion	2	13		ŀ			0.8	6		l
6	Asbestos paper	2	5					1.0	4		İ
2	Asphalt			_			2.7	2.0 to 3.0	1 to 2		
3	Beeswax	5 to 20†	14	8	145		1.85		10		ł
4	Cellulak		١.		١			3.0	16		
5	Cellulose	1	9		١.,		3.9 to 7.5				i
4	Ceresin	5	18	8	16						
6	Conite		1		ŀ			0.12 3.0	15 3		
5	Copal	1 to 15	١.,	1 to 1000	12			3.0	25		ļ
1	Enamel	l	14	1 10 1000	12			0.02	20 to 25		i
8	Fiber, vulcanized	1 5 to 20	9	1 1	10	90 to 650‡	5.0 to 7.5	1.0	8 to 18	90 to 6501	0.045
°۱	riber, vuicamized	3 10 20	9	*	10	80 10 000‡	3.0 to 1.3	3.0	5 to 12	80 10 0901	0.043
- 1								6.0	4 to 9		i
								12.0	3 to 6		1
9	Fish paper]			0.1 to 1.2	10 to 15		1
2	Galalith	1	10	6	10			0.1 00 1.2	6 to 8.5		
6	Gummon	3	12	3	12			ł	3		ļ
7	Hemit	i	10	i	10			l	2		İ
8	Insulate (No. 2)	8	15	4	14			10	1.5 to 2		
53	Ivory	2	8	6	9						1
1a	Kraft paper	_	-	_				0.15 to 0.2	4 to 6		j
16	Kraft paper			l		60	3.5	0.15 to 0.2	30 to 40	60	0.005
7	"Lava"								3 to 10		.,
8	Lavite	5 to 25	8	1	11				8 to 10		i
22a	Manila paper					920 to 4600	2.0	0.15 to 0.2	3 to 5	920 to 4600	0.007 to 0.0
22ь	Manila paper	2	9			60	3.5	0.15 to 0.2	20 to 30	60	0.005
346	Maple, oiled						ı	25	3.0		
34c	Maple, paraffined	3	10	8	11		4.1	15	4.5		
19	Marble	1 to 100	9	6	9	60	8.3	25	2 to 4	90 to 650	0.003 to 0.
ı						90 to 650‡	9.5 to 11.5				
10	Mica	1 to 200	15	1 to 3000	10		4.5 to 7.5	0.05	80 to 200	800	0.001 to 0.
								0.3	40 to 120		
								0.6	25 to 75		
, 43	Mica, cloth and paper			İ				0.1 to 3	40 to 15		
4	Mica plate							0.1 to 3	50 to 25		
9	Minerallac		İ			60	2.7	0.5	40		
10	Osokerite	5	14				2.2	0.6	45		
11	Paraffin	1 to 500	16	1†	16		1.9 to 2.3		15 to 50		
23	Paraffined paper					20			40 to 60	20	
lla	Petrolatum	2 to 10	12			60	2.2	2.5	20	60	0.005
24	Pressboard	1	9				2.9	0.2 to 3.0	12 to 5		
25a	Pressboard							0.5 to 3.0	15 to 10		
256	Pressboard	_		7	14		4.5 2.5	0.5 to 3.0	30 to 20		
2	Rosin	5 1	16	7	13		2.7 to 3.7				
	Shellac	1	16 8	i	8		6.0 to 7.5	25	0.2 to 0.4	950	0.086
6 7	Slate	6	8		•		0.0 10 7.3	25 25	1.0	830	0.080
3	Soapstone	2	12	7	11			20	2		
8	Varnished cambric b	²	12	'	11			0.1 to 0.4	70 to 50		
9			į į				3.5 to 5.5	0.1 to 0.4	60 to 45		
10	Varnished cambric y						3.0 (0 3.3	0.1 to 0.4 0.4 to 0.8	12 to 30		
11	Varnished canvas b							0.4 to 0.8	25 to 10		
32	Varnished paper						İ	J. T (U U. O	10 to 25		
33	Varnished silk							0.05 to 0.2	70 to 45		
	v as asblicu bish		1					0.00 10 0.4	.0.00.40		

^{*} Amber.

[†] Has very large negative temperature coefficient, R_* at 30° being about $\frac{1}{2}$ 6 of that at 90°C.

[‡] Kilocycles.

[§] Fresh surface. Deteriorates rapidly.

TABLE 3.-MECHANICAL AND THERMAL PROPERTIES 18 TO 25°C

Unit of: density = 1 g/cm²; strength = 1 kg/cm² (for Nos. 21, 22, 28 to 33 = 1 kg per cm width); expansivity = 10⁻⁴ per °C; thermal conductivity = 1 milliwatt per (cm °C).

Index	Material	Domeiter	Stre	ength	Cubic	Thermal	
No.	Material	Density	Tensile*	Compressive	expansivity	conductivity	
1	Ambrion	1.4 to 1.8	150	190			
36	Asbestos paper	3.2				2.5	
2	Asphalt	1.04 to 1.40			5 to 7		
3	Beeswax	0.96				0.35	
4	Ceresin	0.75					
16	Conite		550 to 1100			Ì	
18	Fiber, vulcanized	1.2 to 1.5	625 to 1050	1800 to 3200	0.27		
52	Galalith	1.3					
6	Gummon		40	40			
7	Hemit		140	110			
53	Ivory	1.9					
21a	Kraft paper	0.8	500 to 700†				
21b	Kraft paper		400 to 500†			i	
37	"Lava"	2.5 to 2.7		1400 to 2100	Negligible	8	
3 8	Lavite	2.5 to 2.7	400 to 800‡	1400 to 2100			
22a	Manila paper	0.8	700†			1.2	
22b	Manila paper		500†			1.7	
39	Marble	2.5 to 2.8	100 to 200‡	600 to 1500	0.3 to 0.6	30	
40	Mica	2.7 to 3.1				3.6	
41, 43	Mica, cloth and paper					1.0 to 1.6	
9	Minerallac	1.0			7		
11	Paraffin	0.87 to 0.94			3 to 6	2.6	
25a	Pressboard					1.4	
50	Shellac					2.5	
46	Slate	2.7 to 2.9	550 to 700‡	700 to 1000	0.15 to 0.3	20.0	
47	Soapstone	2.6 to 2.8	·	550			
13	Tegit		85	80			
28, 29	Varnished cambric		8 to 10§			2.5	
30, 31	Varnished canvas		10 to 20§			1	
33	Varnished silk		2 to 3§				
34	Woods, hard, dried	0.6 to 0.9	500 to 1000	250 to 550	0.1 to 2.0	1.5 to 2.5	

^{*} For Nos. 38, 39, 46 data are for transverse strength, as noted.

LITERATURE

(For a key to the periodicals see end of volume)

Barringer, 120, 27: 736; 24. (2) Bureau of Standards, Letter Circular, LC-50, Nov. 4, 1922. (2) Committee Report, 66, 24: 642; 24. (4) Curtis, 314, 11: 359; 15. (5) Drysdale and Jolly, Electrical Measuring Instruments. London, Benn, 1924. (6) Dye and Hartshorne, 67, 27: 42; 24. (7) Fleming and Dyke, 46, 49: 323; 12. (8) Flight, Electrical Insulators. London, Pitman, 1923. (9) Fowle, Standard Handbook for Electrical Engineers. New York, McGraw-Hill Book Company, Inc., 5th ed., 1922.

(10) Harvey and Keyes, 66, 23: 535; 23.
 (11) Hemming, Plastics and Moulded Electrical Insulation. New York, Chem. Cat. Co., 1923.
 (12) Hendricks, 129, 30: 167; 11.
 (13) Jackson, 114, 16: 326; 19.
 (14) Langmuir, 129, 28: 303; 13.
 (15) Monasch, 8, 22: 905; 07.
 (16) Peek, Dielectric Phenomena in High Voltage Engineering. New York, McGraw-Hill Book Company, Inc., 1915.
 (17) Pender, Handbook for Electrical Engineers. New York, Wiley, 1914.
 (18) Rayner, 46, 49: 53; 12.
 (19) Simons, 129, 41: 601; 22.

(20) Taylor, 114, 16: 526; 19. (21) Turner and Hobart, Insulation of Electric Machines. London, Pitman, 1918. (22) Walker and Symonds, 46, 48: 674; 11.

[†] In machine direction (i.e., lengthwise of majority of fibers). Strength crosswise about half as great.

¹ Modulus of rupture (transverse strength)—probably somewhat higher than tensile strength.

[§] Kg per cm of width. Stress in direction of warp. About half as strong when stress is in direction of filler.

THERMAL INSULATING MATERIALS FOR MODERATE AND LOW TEMPERATURES

F. H. Schofield and J. A. Hall

This section covers the various types of commercial insulating materials, associated structural materials and some miscellaneous materials. For the second group of materials reference should also be made to the sections of I. C. T. dealing with these classes of materials.

In the tables below the various materials are assembled in groups which are arranged approximately in the ascending order of the lowest thermal conductivity of any material of the group.

The thermal conductivity, k, is given in 10^{-2} joule cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹, one unit of which = 0.239×10^{-2} g-cal cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹, = 0.192×10^{-2} BTU ft.⁻² sec⁻¹ (°F, in.⁻¹)⁻¹. See also vol. I, p. 25 for other conversion factors.

Cette section comprend les types variés des matières isolantes du commerce, les matériaux de construction associés, et quelques matières diverses. En ce qui concerne le deuxième groupe de matières, il faut aussi consulter les sections des I. C. T. qui traitent de ces classes de matières.

Dans les tables ci dessous, les matières variées sont arrangés en groupes approximativement dans l'ordre ascendant de la conductibilité thermiqué la plus basse du groupe.

La conductibilité thermique, k, est donnée en 10^{-3} joule cm⁻³ sec⁻¹(°C, cm⁻¹)⁻¹, une unité de celle-ci = 0.239×10^{-3} g-cal cm⁻² sec⁻¹(°C, cm⁻¹)⁻¹, = 0.192×10^{-3} BTU ft.⁻² sec⁻¹(°F, in.⁻¹)⁻¹. Voir vol. I, p. 25 pour d'autres facteurs de conversion.

Dieser Abschnitt behandelt die verschiedenen Typen von handelsüblichen Isoliermaterial, damit zusammenhängendem Material und einigem verschiedenen anderen. Für die zweite Gruppe der Materialien soll auch in dem Teil der I. C. T. nachgeschlagen werden, die diese Klasse von Materialien behandeln.

In der unteren Tafel sind die verschiedenen Materialien in Gruppen angeordnet und zwar ansteigend von dem kleinsten Wert der Gruppe für die thermische Leitfähigkeit.

Die thermische Leitfähigkeit, k, ist gegeben in 10^{-3} Joule cm⁻² sec⁻¹(°C cm⁻¹)⁻¹, deren Einheit = 0.239×10^{-3} g-cal cm⁻² sec⁻¹(°C, cm⁻¹)⁻¹, = 0.192×10^{-3} BTU ft.⁻² sec⁻¹ (°F, in.⁻¹)⁻¹. Umrechnungsfaktoren, Bd. I, p. 25.

Questa sezione comprende i diversi tipi di materiali isolanti che si trovano in commercio, i prodotti analoghi per costruzioni e materiali varii. Per il secondo gruppo di materiali, si consultino anche le sezioni della I. C. T., che trattano di queste classe di materiali.

Nelle tabelle seguenti, i diversi materiali sono disposti in gruppi approssimativamente secondo l'ordine della conduttività termica, crescente dalla più bassa del gruppo in su.

La conduttività termica, k, e data in 10^{-3} joule cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹, di cui una unità = 0.239×10^{-3} g-cal cm⁻² sec⁻¹ (°C, cm⁻¹)⁻¹, = 0.192×10^{-3} BTU ft.⁻² sec⁻¹ (°F, in.⁻¹)⁻¹. Vedi inoltre tomo I, p. 25, per altri fattori di conversione.

THERMAL CONDUCTIVITY

THERMAL C	ONDUCTI	VITY		
	Bulk		****	
Material	density,	l rc	k	Lit.
	g/cm³			
Air	0.00129	0	0.23	(19, 22)
Silk	-0.00123		0.40	(30)
Scrap from spinning mill	0.101	o	0.442	(33)
Scrap from spinning min	0.101	50	0.524	(26)
		100	0.595	()
Braided	0.147	100	0.455	
2141000	0.11.	50	0.547	(36)
	l .	100	0.60s	l` '
Scrap from spinning mill	0.100	- 200	0.232	
		-150	0.314	
		- 100	0.372	
	1	- 50	0.437	(15)
	1	0	0.495	
		50	0.559	1
Fabric		40	0.46	(89)
"Calorox" (fluffy mineral matter)	0.064	30	0.31s	(52)
Slag wool (mineral wool)	0.15	30	0.42	l` ′
,	0.20	30	0.45	74. 60
	0.25	30	0.48	(14, 52)
	0.30	30	0.52]
With binder, waterprf. Rock cork	0.25	30	0.50	(52)
Cork	v. infra p	. 315.		
Ashes (soft wood)		20	0.32	(32)
				(
Rubber, hard sponge, rigid	0.087	25	0.34	(14)
	0.090	25	0.40	(55)
	0.16	35	0.42	(, ,
Cellular (expanded after vulcanising under very high gas pressure, cells				l
unbroken)	0.09	20	0.36	(14)
Sponge (vulcanising rubber mixed	0.00	-~	0.00	1,500
with ammonium carbonate, cells				1
broken)	0.22	20	0.54	(14)
Ebonite	1.19	- 190		(29, 50, 13,
		- 78	l l	20, 10, 11,
		o	1.60	50)
Soft, vulcanized	1.1	30	1.76	(82, 20)
Commercial, 40 % pure rubber		25	2.84	(50)
50 % pure rubber			2.21	(59)
67 % pure rubber			1.75	(59)
92 % pure rubber			1.68	(50)
100 % pure rubber				
(Plantation crepe)			1.34	(80)
Kapok, loosely packed	0.015	20	0.35	(52, 4, 28)
Tightly packed			0.50	(, -,,
Wool	0.09	0	0.372	
		60		(26)
Pure	0.09	30	0.364	۱
Pure, very loose packing	1	30	0.428	(0)
Slightly greasy		0	0.384	l
		50	0.48s	(36)
		100	0.582	_
	0.08	75	0.77	(*)
Blankets	0.08	30	0.48	(42)
Cotton, tightly packed	0.08	-150	0.378	
		o	0.558	(36, 15)
		150	0.75s	1
Fabric		40	0.80	(59)
Cotton wool, tightly packed	0.08	30	0.42	(52, 23)
Glass wool	0.22	50	0.418	
		100	0.50e	
		200	0.651	(41)
		300	0.81a	
Wood fiber, shredded, soft, flexible	0.09	35	0.42	(88)
Rice paper		40	0.46	(80)
Blotting paper		20	0.68	(20)
Corrugated cardboard 5 layers per in		20	0.68	gay 1
	, ,			, , ,

THERMAL CONDUCT	TVITY	(Cont	inued)	
Material	Bulk density, g/cm³	rc	k	Lit.
Pasteboard	0.69	30	0.71	(52)
Cardboard, various		50 20	1.7-3.4 0.99	(59) (14)
Felted flax fibers	0.18	30	0.47	(52)
Flax and paper lining for steel railway	0.20		0.45	, ,
Cars		30	to }	(52)
Felt, asphalt-impregnated	0.88	30	0.65 J 1.01	(52)
Wood felt, flexible paper stock	0.33	30	0.52	(52)
Felted vegetable fibers	0.18	30	0.47	(52)
Wool felt	0.15 0.33	40 30	0.63 0.52	(50) (52)
Hair felt	0.27	30	0.36	(52)
Balsa wood, across grain	0.118	30	0.45	(52, 59)
Balsa wood, waterproofed	0.12s 0.14s	30 30	0.52 ∫ 0.55s	(52)
Balsa wood, heavy	0.33	0	0.839	(52)
Pseudo balsa wood (_ grain)	0.25		0.67	(59)
Pseudo balsa wood (grain)			1.21	(59)
Cottonseed hull fiber, loose pack	0.071	30	0.45	(52)
Eucalyptus bark fiber	0.15	- 0	0.45	(14)
Saragossa grass	0.15 0.22	30 30	0.45	(14)
Straw fibers, pressed	0.14	-0	0.454	(28)
		20	0.466	(25)
Eelgrass	0.25	30	0.46	(52)
Ceiba wood, 1 grain, untreated	0.11	30	0.47	(52)
Curled cattle hair, loose, soft, flex	0.088	35	0.48	(55)
Sugar cane fiber (bagasse) board Pressed wood pulp board	0.25 0.19	35 30	0.54 0.43	(55) (52)
Waterproof lith board (slag wool, veg.				
fiber, waterprf. binder)	0.20	30	0.55	(52)
Bulrush in cloth	0.14	30	0.49	(52)
outside layer of trunk)	0.13	30	0.49	ļ
Solid from outside		30	0.76	(14)
Solid from inside	0.15	30	1.06	<u> </u>
Horsehair, compressed	0.172	20 65	0.509	(26)
Diatomite	v., p. 315	·		
Peat, dry	0.19	30	0.52	(36)
Peat boards	0.23 0.37	20 20	0.581	(18)
	0.73	20	1.16	, ,
Peat blocks	0.84	20	1.74	(18)
Charcoal	0.18	20	0.55	(4, 14, 25, 36, 38)
Sawdust, various	0,20	30	0.60	(12, 52, 36, 8)
Shavings, various	0.14	30	0.60	(52)
Leather, chamois		85	0.63	(30)
Leather, sole	1.0	85 30	1.76 1.59	(30)
Jongdala wood (grain)		30	0.67	
Jongdala wood (grain)		30	1.20	(14)
Asbestos, cork, straw and distomite	0.41	0	0.698	
steam-pipe covering, dry, loose		50 100	0.818	(36)
		150	0.918	` ′
wa		200		
Ideal, molded with water to solid	0.69	150 220	1.16	(36)
Asbestos-diatomite, loose	0.550	50		ľ
	0.609	50		
•	0.62s 0.66s	50 50	0.860	
	0.609	50	,	(41)
	0.609	100	0.930	
•	0.609	200 300	0.95s 0.96s	
•	, 0.009	1 300	U.808)	1

WODELWILL MID IOW TEM	2	- 0 - 0 - 0 - 0	 .	010
THERMAL CONDUCT	TVITY.	(Cont	inued)	
Material	Bulk density, g/cm ³	ℓ° C	k	Lit.
Asbestos, wool	0.40	0		
	0.50	0		
	0.70	o	1.97	(15, 36, 4)
	0.40	- 100		
	0.40	100	0.90 1.01	
Asbestos, slate	0.40 1.8	100 50		(15)
pressed)	2.0	50		(52)
Pipe coverings of asbestos felt cor- rugated asbestos paper, etc	0.3 to 0.5	50	0.8 to 1.0	(52, 54, 31)
Paper, thin layers with organic binder		30	0.71	(52)
Paper		20		(30, 50)
Corrugated	0.14	30	0.66	(52)
Asbestos car lining	0.43	30 30		(52)
neocetoe-and-plaster process	0.47	30	1.30	(52)
Fire felt, flexible (asbestos sheet) Fire felt, rigid (asbestos sheet, cement	0.42	30	0.86	(52)
coated)	0.68	30	0.92 0.81a	(52)
Asbestos-diatomite-cork (loose)	0.33 0.33	50 100	0.818	(41)
	0.33	200	0.890	'
Magnesia-asbestos (85 % MgO)	0.3	30	0.75	(31, 52)
Cork linoleum	0.54	20	0.80	(15)
Linoleum (dry)	1.18	0 20	1.75	(15)
Steel wool	0.152	55	0.80s	
	0.101 0.076	55 55	0.875	(40)
Linen	0.076	20	0.86 0.88	(32)
Pumice gravel	0.3	20	0.92	(15)
	0.6	0	1.75	(18)
		20	1.86	
Cypress wood (1 grain)	0.46	30	0.96	(52)
Coffee husks		30	0.98	(14)
Fuller's earth Blast furnace slag	0.53	- 30 20	1.01	(52)
2 to 5 mm grain size No. 1	0.78	20	1.05	
3 cm grain size No. 2	0.36	20	1.51	(18)
Nos. 1 and 2 mixed	0.30	20	1.28	(59)
Spruce (grain) Spruce (grain)	0.41		1.1 2.2	(59)
Coal dust	0.73	30 90	1.11 }	(50)
White pine (\(\price \) grain)	0.50	30	1.18	(52)
(IIin)	0.45	60	1.07	(50)
(∥ grain)	0.48	60	2.57) 1.18	(59)
Virginia pine (⊥ grain)	0.55	30	1.38	(52, 59)
Pitch pine (_ grain)	0.62	30 20	1.49	(14)
0.38 mm) Cement paper, treated (12 layers, each	1.02	50 20	1.35	(50)
0.46 mm) Cement wood (sawdust and Portland cement)	0.71	50 0 20	1.6s 1.2s 1.39	(36)
	0.82	20	1.74	
Snow	0.50	0	1.8	(22)
	0.11	0	1.07	(24)
	0.45 0.24	0	0.49 1.67	
	0.25	ŏ	1.88	(37)
	0.27	0	1.34	
Mahogany (grain)	0.55	30	1.30	(52)
	0.70	20	1.7 1.6	(35) (59)
(grain)			3.1	(59)
Oak (1 grain)	0.61	30	1.37	(52, 59)
	0.82	15	1.9s }	(38)
	1	1 13	~. IV)	l

	Bulk	<u>. </u>		1
Material	density,	r _C	k	Lit.
Material	g/cm³	۱۰۰۱		Litt
Oak (grain)	0.82	12	3.49	!
Oak (grain)	0.02	20	3.61	(38)
		50)	[()
Soil, dry		20	1.38	
wet		20	6.70	(30)
normal, including stones 2 to 7 cm	2.04	o		Ī
,		20	5.28	(15)
		70	5.82	
Garden mold, dry			2.01	(35)
Teak (⊥ grain)	0.64	0	1.68	
		15		(38)
		50	1.98	
	0.72	20	1.4	(59)
(grain)	0.60	12		
		18	3.84	(38)
Fir (⊥ grain)	0.54	50 20	3.94 J 1.4	(38, 54, 51
(grain)		20	3.5	(38)
Walnut (grain)		20	1.4	1 ' '
(grain)			3.3	(59)
Baobab wood (grain)		30	1.41	(14)
				l ` ' —
Fuller board, treated 11 layers each 0.51 mm	1.39	20	1.61	
11 myets each o.of Hill	1.00	50	1.75	
16 layers each 0.76 mm	1.15	20	6.1*	
• • • • • • • • • • • • • • • • • • • •		50	6.9*	
4 layers each 1.42 mm	1.00	20		
•		60	1.66	
2 layers each 3.1 mm	0.95	20	1.42	
		50	1.46	İ
Fuller board soaked in transformer oil				
3 layers each 3.18 mm	1.01	20	2.12	
		50	2.27	ł
Fuller board, untreated		50	5.15*	
15 layers each 0.38 mm	1.38	20	2.68	(50)
10 myers each 0.00 mm	1.00	50	2.68	(33)
7 layers each 7.6 mm	1.26	20	2.55	
-		50		}
16 layers each 7.6 mm	1.28	20	6.28*	
		50	6.62*	ı
21 layers each 0.25 mm	1.39	20	2.60	
4.1		50	2.89	į
4 layers each 1.42 mm	1.15	20	1.98	
9 layers each 1.42 mm	1.18	50 20	2.15 6.37*	
o layers cach 1.12 mm	1.18	50	6.90*	
3 layers each 3.18 mm	1.01	20	1.45	
		50	1.62	
Facing cement (Mg oxychloride)			1.46	(14)
Boxwood	0.90	20	1.51	i
		100	1.72	(3)
Coke dust	1.00	20	1.51	(18)
Concrete, pumice gravel and cement	0.60	20	1.51	1 ' '
_		30	1.68	(15)
Pumice pebbles 9, fine sand 2, \setminus	1 1-	85	•	(8)
Portland cement 1	1.17	1	2.3	(8)
1: 12, air-dried 2 weeks	2.05	0	7.66	
		20	8.15	(38)
Granulated cork 2 fine 2 0		30	8.36	
Granulated cork 3, fine sand 2, Portland cement 1	1.27	85	2.58	(8)
Slag 9, fine sand 2, Portland cement 1	1.52	85	2.96	(8)
Lime mortar, "Beffes No. 3"	1.75	90	3.51	(8)
Cement mortar, Portland No. 1	1.73	90	3.36	(8)
Portland No. 2	1.89	90	5.35	(*)
Concrete, blast furnace slag 9 pts vol.,				
cement 1 pt. vol	0.55	50	2.21	(36)
	1.6	0	8.36	(26)
Concrete	0.0	0	12.1 ∫	(5-7)
Concrete plus moisture 10 % by volume	2.3			1
Concrete plus moisture 10 % by volume Cement mortar 10.5 mm thick, includ-				
Concrete plus moisture 10 % by volume Cement mortar 10.5 mm thick, includ- ing 4 mm reinforcing metal	2.3	90	5.77	(*)
Concrete plus moisture 10 % by volume Cement mortar 10.5 mm thick, includ- ing 4 mm reinforcing metal 12.0 mm thick, including 3 mm	2.12			
Concrete plus moisture 10 % by volume Cement mortar 10.5 mm thick, includ- ing 4 mm reinforcing metal		90	5.77 5.97	(*) (*)

^{*} Longitudinally.

THERMAL CONDUCT	TVITY.—	(Cont	inued)	
Material	Bulk density, g/cm ³	t°C	k	Lit.
Concrete, gravel 9, fine sand 2, cement 1, air-dried six months	2,18	20	7.6s	(15)
Portland cement	2.18	60	3.0	(36, 30)
Ash (\(\perp \) grain)	0.74	20	1.7 3.1	(89) (59)
Bricks, very porous, dry	0.71	20	1.74	(18)
Bricks, very porous, moisture 1.2 %	0.81	20	1	
volume	0.74 0.79	20 20	1.69 2.44	(7)
Moisture 21.5 % volume	0.94 1.54	20 0	3.96 3.88	(38)
Bricks, hand-made, dry	1.67	ŏ	5.12	[` '
	!	40 80	5.3s 5.4e	(38)
	1.62	50	,	(25)
Bricks, machine-made Moisture 0.8 % volume		50	4.99	
Moisture 1.2 % volume		50	9.56	(25)
Old brick masonry	1.85	20	3.82 4.07	(15)
		47	4.42	
Maple (\(\perp \) grain)	0.72	30		(52, 50) (50)
Fish paper				· · · · · ·
21 layers each 0.25 mm	1.06	20 50	1.72	
75 layers each 0.25 mm	1.06	20	4.80*	
10 layers each 0.58 mm	1.08	50 20	5.0s* } 2.01	(50)
0.1		50		
6 layers each 1.4 mm	1.01	20	2.37	
30 layers each 0.18 mm	1.06	20 50		
15 layers each 0.38 mm	1.18	20 50	2.17	(50)
8 layers each 0.97 mm	1.15	20		
Powdered graphite 100 mesh	0.48	40	100)	
40 mesh	0.42	40		(50)
20 mesh on 40 mesh	0.70	40	11.•	
No. 226, 5.7 mm thick		20		
No. 227, 5.05 mm thick		50 20	1.95	1
No. 247, 5.7 mm thick		50 20		(50)
No. 227, 13 mm thick	1	50 20	2.1s 9.82*	
		50	9.84	
Fish paper and mica	<u> </u>	60	2.0	(50)
Celluloid, white	1.4	30 50	2.1e 2.1-3.3	(82) (59)
Fiber, white	1.2	20	2.76	(59)
Micanite		50 30	2.91 2.1-4.2	(50) (59)
Varnished cambric, tacky 30 layers each 0.23 mm	1 1-		2 `	
	1.17	20 50	2.17 2.28	
75 layers each 0.23 mm	1.17	20 50	4.3e* 4.3e*	(50)
Varnished cambric, dry	1.24	20 50	2.1e 2.2s	1.
Kraft paper and mica, No. 312, 13.2			 ,	-~#
mm thick			11.s*) 11.s* }	(94)
<i>Idem.</i> , 5.6 mm thick		50		
Paraffin wax	0.89	30	2.30	inc.
Micarta folium, No. 249, 5.9 mm thick. 14.5 mm thick		50 50	2.81 \ 11.4* \[AL.
Cellulose, compressed	1.142	15	2.44	the state of

^{*} Longitudinally.

THERMAL	CONDUCTIVITY.—	(Continued))

THERMAL CONDUCTIVITY.—(Continued)										
Material	Bulk density, g/cm³	rС	k	Lit.						
Presspan		54	2.40	(49)						
Black bias cloth, 22 layers each 0.23										
mm	1.26	50	2.51							
80 layers each 0.23 mm	1.26	20	3.82* }	(50)						
		50	4.26*							
Lignum-vitae	1.16	20	$\{2.52\}$	(3)						
NG	1.0-	$\frac{100}{50}$	3.02							
Mica tape, 30 layers each 0.15 mm 30 layers each 0.20 mm	1.06	50	2.68	(50)						
120 layers each 0.15 mm	1.06		14.5*	,						
Plaster of paris, powder		20	10.0	(30)						
Plaster of paris, cast		20	3.0 {	(55)						
Fine river sand, dried	1.52	0	3.02	(1.5)						
		20 160	3.26 3.84	(15)						
Fine river sand with normal moisture			11.8							
content (ca.6.9 % by weight)	1.64		11.5	(15)						
Gypsum plaster	0.74	30	3.35	(52)						
Plaster	1.69	20	7.9	(15)						
Mica		41	3.6	(49)						
Mica, various		50		(59)						
Gravel	1.85	20	3.7	(15)						
Bitumen Flooring composition		30 30	4.2 to 6.3 8.5	(14) (14)						
Greenhart	1.08	20	4.69							
		100	4.61	(3)						
Water	1.0	20	5.9	(22)						
Glass, lead		15	6.0	(33)						
Glass, soda	2.59	20 100	$\left. egin{array}{c} 7.2 \\ 7.6 \end{array} ight. \right\}$	(3, 33, 50)						
Limestone, Villers-Adam, soft	1.81	90	6.01	(\$)						
Lerouville, hard	2.58		12.9	(a)						
Fine-grained, dry	1.66	0	6.29							
		25		(38)						
Coarse-grained, dry	1.99	40								
<u> </u>		25		(35)						
		40	9.90							
Caen stone		ا ،	18.0	(20)						
Limestone			19 to 24 16 to 21	(39)						
			13 to 15	` ′						
Asphalt composition	2.12	0	6.05							
		10		(38)						
		20 30		, ,						
Alumina (compressed powder)	1.84	47	6.77	(27)						
Chalk.	1.04		9.2	(20)						
Poreelain		90	10.4	(30)						
Slate, _ cleavage			15.0	(30)						
			13.2 to	'						
Sheka it alaamama			15.1	(20)						
Sinte, cleavage			23.0 to 27.2							
Sandstone, grey, natural, freshly cut	2.26	10	15.8							
	-	1	16.7							
Completence of the first of the second			18.4	(38)						
Sandstone, air-dried six months	2.25		12.s 12.s							
			13.2							
Bandt			20	(83, 46, 17,						
				39)						
Internation	0.92		22	(22, 34, 48)						
	1 2.8	l	22	(20)						

Hollow Tile Ceiling (4). k at 10° C.—Sample A: Top tile 1, air 2.5, tile 1, air 11, tile 1, air 2.5, tile 1 cm, k = 6.86. Sample B: Top tile 0.85, air 0.8, tile 0.85, air 13, tile 0.85, air 0.8, tile 0.85, concrete 3 cm, k = 6.76. Sample C: Same as B but with the 13 cm air space filled with concrete, k = 11.9. Heat flow up.

THERMAL CONDUCTIVITY OF DIATOMITE

d	0°C	100°	200°	300°	400°	Remarks
0.20 0.30 0.40 0.50	0.61 0.73	0.74 0.88	0.86	0.98 1.18	1.1 ₁ 1.3 ₄	Average values. The use of binding materials will increase the conductivity by amounts varying up to 100% (5, 14, 18, 36, 38, 44, 52)

	THERMAL.	CONDUCTIVITY	OF	CORK
--	----------	--------------	----	------

d	0°C	20°	40°	60°	80°	100°	Remarks
0.05	0.32	0.34	0.36	0.37	0.39	0.41	Average values. Use of
0.10	0.37	0.39	0.41	0.43	0.45	0.47	binding materials gives
0.20	0.46	0.49	0.52	0.54	0.57	0.60	increases up to 30 %
0.30	0.56	0.60	0.63	0.66	0.69	0.73	(4, 8, 14, 15, 26, 36, 38,
0.35	0.61	0.65	0.68	0.72	0.75	0.79	44, 52, 57, 58)

THERMAL CONDUCTIVITY OF POWDERS UNDER REDUCED AIR PRESSURES

For granular powders, Smoluchowski gives the following formula connecting the thermal conductivity k with the pressure p of the gas in the interstices:

 $k = A \log (1 + ep)$

where, for a given gas A is a constant depending on the arrangement of the grains and e on the material of which they are composed. For spongy powders this law does not hold. In the following table the conductivity of various powders (having the indicated average grain diameters in mm) is given in hectoerg (=10⁻⁵ joule) per cm² per sec per (deg. C per cm). Smoluchowski, Acad. Sci. Crac. Bull. 5b: 129; 10 and 8a: 548; 11.

Pressure mm Hg	Quarts 0.26 mm	Emery 0.11 mm	Quartz 0.09 mm	Lyco- podium 0.03 mm	Zinc 0.028 mm	Iron 0.025 mm	Rice 0.003 mm	Dia- tomite	Lamp- black
0.05	1.4		0.6		1			1	
0.10	2.8		1.1		İ			1.3	ŀ
0.20	5.6	2.0	2.1	1.0	1.1	0.9	0.6	2.1	1.0
0.50	11.7	. 5.0	4.8	2.2	2.4	1.9	1.3	3.9	2.0
1.0	20.1	8.8	8.8	4.1	4.4	3.4	2.3	5.9	3.0
2.0	33.5	15.1	15.1	6.9	7.5	5.9	3.7	8.8	4.2
5.0	61	28.5	29.7	13.1	15.1	12.2	7.1	13.4	6.6
10	88	43.9	48.1	20.5	25.1	20.5	10.9	17.6	8.4
20		66	71	28.9	40.1	33.5	16.8	21.8	10.5
50		88		38.9	67	59	24.7	26.8	13.8
100		10s		43.9	88	77	31.8	30.1	16.8
200		118		46.0	109	10o	38.5	33.1	18.8
400		121		48.1	126	121	43.9	34.8	21.8
700		128		50	136	132	48.1	35.6	23.4
Solid					111000	60100			

THERMAL DIFFUSIVITY

Thermal diffusivity, $\Delta t = k/dc$, where k = thermal conductivity, d = bulk density, c = specific heat. $\Delta t = 10^{-3} \times A \text{ cm}^2 \text{ sec}^{-1}$

Material	\boldsymbol{A}	Lit.
Gutta-Percha, 43°	0.486	(45)
Ebonite	0.928	(47)
Coal	1.13	(17, 34)
Rubber, 26°	1.42	(45)
Water, 20°	1.43	(22)
Snow $(d = 0.19), 0^{\circ}$	2.50	(1)
$(d = 0.33), 0^{\circ}$	4.60	(1)
(densely packed), 0°	4.1	(21)
Gypsum	3.0	(17)
Soil, very dry	3.1	(22)
Garden sand	3.6	(6)
Sandy clay	5.1	(6)
Coarse sand	7.6	(6)
Garden sand	8.7	(6)

THERWAL.	DIFFUSIVITY.	-(Continued)

Material	\boldsymbol{A}	Lit.
Frozen mold	9.2	(56)
Gravel	12.5	(56)
Sandy loam	13.6	(6)
Porphyritic trachyte	5.9	(2)
Trap rock	7.86	(51)
Sandstone	10.7	(51)
Marble	11.1	(17, 46)
Ice, 0°	11.4	(34)
Basalt	11.5	(46)
Granite	13.1	(34, 46)

Adsorbed Moisture in Equilibrium with Air of Various Humidities (60)

	Moisture content (per cent of dry weight)					
Rel. humidity, %	15	30	50	70	90	
Absorbent cotton (cottonwool)	8.9	10.1	20.6	22.2	25.8	
Cotton cloth	2.99	4.56	6.7	9.6	13.5	
Raw silk	5.0	7.1	9.0	13 . a	19.0	
Paper pulp (pine)	4.55	6.3	7.9	9.5	12.0	
Kraft paper	2.50	3.85	5.4	7.0	9.2	
Sole leather	7.0	11.1	16.0	20.6	29.2	
Feathers	5.0	6.4	8.1	10.4	12.7	
Rubber (solid tire)	0.17	0.28	0.60	0.74	0.99	
Fuller's earth	4.54		7.5	i	15.6	
Asbestos fiber	0.22	0.26	0.40	0.62	0.84	
Diatomite	0.50	0.88	1.40	2.00	3.19	
Kaolin	0.30	0.60	0.92	1.06	1.27	
Glass wool	0.09	0.09	0.17	0.23	0.40	
Lampblack	2.48	3.42	3.85	4.31	6.0	

LITERATURE

(For a key to the periodicals see end of volume)

- Abels, Wild's Repertorium far Meteorologie, 16, No. 1; 92. (2) Ayrton and Perry, 3, 5: 241; 78. (3) Barratt, quoted by Herter, 382, 10: 256: 24. (4) Biquard, 383, 2: 116; 09. 4: 232; 12. Proceedings of the II Cong. Refrigeration, Vienna, 1910. 384, 61: 502; 12. (8) Boeck, 33, 12: 109; 14. (6) Callendar, Encyclopedia Britannica, VI: 894; 10. (7) Cammerer, quoted by Herter, 382, 10: 256; 24. (8) Desvignes, Proceedings of the I Int. Cong. Refrig., Paris, 1908. (9) Dickinson and Van Dusen, 382, 3: 5; 16.
- (10) Dina, 72, 22: 205; 99. (11) Eucken, 8, 24: 185; 11. (12) Forbea, 68,
 8: 62; 74. (13) Giacomini, 88, 20: 94; 18. (14) Griffiths, Report on Heat Insulators. Food Investigation Board, Special Report No. 5, 1921. Heat Transmission through Walls, Concrete and Plaster. Building Research Board, Special Report No. 7, 1923. 5, 104: 71; 23. 85, 18 II: 252; 22. Proceedings of the IV Int. Cong. Refrig., London, 1924. (18) Groeber, 148, 18: 84; 09. 98, 54: 1319; 10. (16) Hartl, 514, 28: 1157; 01. (17) Hecht, Thesis, Koenigsberg, 1903. (18) Hencky, quoted by Herter, 382, 10: 256; 24. (19) Hercus and Laby, 5, 95: 190; 18.
- Herschel, Lebour and Dunn, 133, 49: 58; 79. (21) Ingersoll and Koeppl 2, 24: 92; 24. (22) Ingersoll and Zobel, An Introduction to the Mathematica, Theory of Heat Conduction. Boston, Ginn and Co., 1913. (28) Jaeger and Diesselhorst, 89, 8: 269; 00. (24) Jansson, 388, 88: 207; 01. (28) Knoblauch, 380, 38: 172; 15. (26) Knoblauch, Raisch and Reiher, 380, 43: 607; 20. (27) Kresta, 75, 123: 1923; 13. (28) Lamb and Wilson, 5, 68: 285; 99. (28) Lees, 62, 204: 433; 05. British Fire Prevention Committee Red Book, No. 251; 21.
- (30) Lees and Chorlton, 5, 41: 495; 96. (31) McMillan, 56, 37: 921; 15. 385, 27: 387; 20. 56, 40: 970; 18. (32) Melmer, 75, 120: 269; 11. (33) Meyer, 8, 34: 596; 88. (34) Neumann, 5, 25: 63; 63. (38) Niven, 5, 76: 34; 05. (36) Nusselt, 98, 52: 1006; 08. 148, 15: 193; 08. 115, 87: 1; 09. 382, 1: 33; 15. (37) Okada, Abe and Yamada, Tokyo Sugaku-Buturigahkwi Kixi, 4: 385; 08. (38) Poensgen, 98, 56: 1653; 12. 60: 27; 16. (39) Poole, 5, 24: 45; 12. 27: 58; 14.
- (40) Randolph, 78, 21: 545; 12. (41) Saborsky, 38, 6: 674; 23. (42) Sale and Hedrick, 32, No. 266; 24. (43) Zinger and Schtscheglajew, 53, 27: 30; 95. (44) Skinner, quoted by Herter, 382, 10: 256; 24. (45) Smith and Knott, 68, 8: 623; 74. (46) Stadler, Thesis, Berne, 1889. (47) Stefan, 75, 74: 438; 76. (48) Straneo, 22, 6: 262; 97. (49) Symons and Walker, 46, 48: 682; 12.
- (50) Taylor, 56, 41: 605; 19. (51) Thomson, 174, 22: 405; 61. (52) Van Dusen, 382, 7: 202; 20. (53) Weber, 149, 28: 590; 95. (54) Willard and Lichty, 86, No. 102; 17. (55) U. S. Bureau of Standards, O. (56) Everett, Units and Physical Constants, p. 101. New York, Macmillan, 1879. (87) Maura, Il Politecnico, 63 II: 695; 10. 10, I: 668; 10. (54) Noell, quoted by Herter, 382, 10: 256; 24. (54) Griffiths and Kaye, 5, 104: 71; 23.

(60) Wilson and Fuwa, 45, 14: 913; 22.

THERMAL INSULATING MATERIALS FOR HIGH TEMPERATURE

GORDON B. WILKES

	Bulk density, g/cm ⁻³	Max. safe tem- perature for con- tinuous use, °C	Mean coefficient of thermal con- ductivity* 600 to 25°C
Insulating blocks composed chiefly of			
1. Diatomaceous earth and asbestos	0.32-0.40	700- 900	0.00072-0.00096
2. Rock and slag wool mixtures	0.26-0.40	700- 900	0.00090-0.00120
Insulating bricks			
1. Diatomaceous earth (natural)	0.48	850-1000	0.00066-0.00108
2. Clay, diatomaceous earth and cork (fired)	0.43	850-1000	0.00096-0.00120
3. Diatomaceous earth and clay (fired)		1100-1300	0.00150-0.00360

^{*} Joule, cm⁻² sec⁻¹ (°C, cm⁻¹).

Values taken from U. S. Bur. Stand., trade catalogs of The Celite Products Co., Armstrong Cork and Insulation Co., and mainly from determinations in Heat Measurement Laboratory, Mass. Inst. Tech.

RAW MATERIALS OF THE PAINT AND VARNISH INDUSTRIES

AVERAGE BULKING VALUES AND SPECIFIC GRAVITIES OF THE MORE COMMON DRY PIGMENTS USED IN THE PAINT INDUSTRY

HENRY A. GARDNER AND H. C. PARKS

	Specific gravity	Wt. per solid gal.,			Specific	Wt. per solid gal.,	1 lb. bulks,
		lb.	gal.		1	lb.	gal.
Basic carbonate white lead	6.81	56.73	0.01763	Chromium oxide	4.95	41.23	0.02425
Basic sulfate white lead	6.41	53.40	0.01873	Litharge	9.40	78.30	0.01277
Zinc oxide	5.66	47.15	0.02121	Orange mineral	8.80	73.30	0.01364
Zinc oxide, leaded (contains 35%				Red lead	8.80	73.30	0.01364
basic lead sulfate)	5.95	49.56	0.02018	Pure paranitraniline toner	1.50	12.50	0.08000
Lithopone (ca. 28 % ZnS, 72 % BaSO ₄)	4.30	35.82	0.02792	Para red 10% (on lime and barium]	
Titanox (25 % TiO ₂ , 75 % BaSO ₄)	4.30	35.82	0.02792	base)	2.65	22.07	0.04531
Talc (contains ca. 5 % CaCO ₃)	2.85	23.74	0.04212	Pure toluidine red toner	1.49	12.41	0.08058
Barytes	4.45	37.07	0.02698	Chromo aroon C P	3.90*	ļ i	
China clay	2.62	21.82	0.04583	Chrome green, C. P	5.08*	1	
Silica	2.65	22.07	0.04531	American blue (iron cyanide blue)	1.85	15.41	0.06489
Whiting (CaCO ₃)	2.71	22.57	0.04431	Ultramarine blue	2.35	19.58	0.05107
Venetian red (20 % Fe ₂ O ₃)*	3.05	25.41	0.03935	Chrome yellow, C. P*	6.00*	1	
Red oxide (40 % Fe ₂ O ₃)	3.45	28.74	0.03479	Lampblack	1.78	14.83	0.05743
Red oxide (95% Fe ₂ O ₃)	4.95	41.23	0.02425	Carbon black	1.81	15.08	0.06631
Indian red (90 % Fe ₂ O ₂)	4.92	40.98	0.02440	Drop black	2.64	21.99	0.04548
Ferric oxide (98 % Fe ₂ O ₃)	5.15	42.90	0.02331	Graphite	2.36	19.66	0.05086
Tuscan red	3.95	32.90	0.03040	Mineral black filler (clay base with			
Ochre	2.80	23.32	0.04288	from 15 to 30% carbon)	2.71	22.57	0.04431
Sienna, raw	3.27	27.24	0.03671	Zinc dust	7.06	58.81	0.01700
Sienna, burnt	3.95	32.90	0.03040	Aluminum dust	2.64	21.99	0.04548
Umber, raw	2.68	22.32	0.04480	Lead dust	11.09	92.38	0.01082
Umber, burnt	3.80	31.65	0.03160	* These will vary widely according to com	nosition rea	mired for she	de or tore
Brown oxide (50 % Fe ₂ O ₃)	3.35	27.91	0.03583	and character of base.	rommon 164		
Mineral brown (45% Fe ₂ O ₂)	3.34	27.82	0.03595	Red and brown oxides of variable comoxide may be clay, silica, etc.	position. 1	Matter other	than iron

AVERAGE CONSTANTS OF OILS USED IN PAINT AND VARNISH INDUSTRY

HENRY A. GARDNER AND L. L. STEELE

Oil	Species	Specific gravity 15.5°C 15.5°C	Iodine (Hanus) No.	Saponifi- cation No.	Acid No.	Refractive index 25°C
	Vegetable and se	ed oils				
Chia	Salvia hispanica	0.934	196	192	0.6	1.486
Corn	Zea mays	0.921	125	190	4.0	1.480
Cottonseed	Gossypium herbaceum	0.924	112	194	0.9	1.472
Hempseed	Cannabis sativa	0.927	149	191	4.0	1.482
Kapok seed	Eriodendron anfractuosum	0.924	119	196		
Linseed (boiled)	Linum usitatissimum	0.941	172	187	2.7	1.490
Linseed (heavy bodied)	Linum usitatissimum	0.968	133	189	2.8	1.497
Linseed (lithographic)	Linum usitatissimum	0.970	102	199	2.7	1.498
Linseed (raw)		0.934	186	191	2.0	1.480
Oticia	Conepia grandifolia	0.969	180	189	8.0	
Palo maria		0.934	97	193	46.0	1.474
Perilla	Perilla ocimoides	0.934	200	188	2.0	1.487
Poppyseed	Papaver somniferum	0.926	134	192		
Raisinseed (grapeseed)	Vites, spp.	0.926	133	193	4.5	1.471
Rosin oil	Pinus palustris	0.964	69	36	32	
Rubberseed	Hevea brasiliensis	0.924	137	193	57	1
Sesame		0.924	110	190	1.5	
Soya bean		0.924	129	189	2.3	1.481
Sunflower		0.924	125	189	7.5	1.480

Oil	Species	Specific gravity 15.5°C 15.5°C	Iodine (Hanus) No.	Saponifi- cation No.	Acid No.	Refractive index 25°C
	Nut oils					
Lumbang (candlenut)	Aleurites moluccana	0.927	152	192	1.0	1.477
Lumbang (soft)	Aleurites trisperma	0.938	164	194	4.4	1.493
Peanut	Arachis hypogaea		102	193	2.2	1.479
Tung (American)	Aleurites fordii	0.941	166	195	0.2	1.517
Tung (Chinese)	Aleurites fordii	0.944	165	192	4.8	1.517
Walnut	Juglans regia	0.926	143	193		1.477
Wood (Japanese)	Aleurites cordata	0.934	154	193	0.9	1.508
	Marine animal oil	8				
Channel catfish		0.923	123	192	11	1.474
Fur seal	Phoca vitulina, etc.	0.925	132	182	9	1.477
Grayfish	·	0.916	135	180	2	1.470
Menhaden	Alosa menhaden (Brevoortiu tyrannis)	0.932	158	187	4	1.485
Salmon	Salmo salar	0.927	159	183	10	1.479
Sardine	Clupea sardinus	0.919	135	177	10	1.480
Shark		0.910	133	160	5	1.482
Shark liver	Borealis scymnus	0.922	136	62	1.5	1.471
Skate liver	Squatina vulgaris	0.932	152	180	2	1.471
Tuna fish	-	0.933	184	190	0.5	1
Whale	Balæna	0.924	148		9	1.482
Yellow tail fish	Seriola dorsalis	0.932	180	190	0.6	

TOXICOLOGY OF GASES AND VAPORS

R. R. SAYERS

EFFECTIVE CONCENTRATIONS AND PROPERTIES

In the following paragraphs the numbers in bold face have the following significance:

- 1. Boiling point.
- 2. Percentage fatal in 30 minutes or less.
- 3. Percentage causing dangerous illness in 0.5 to 1 hour.
- 4. Percentage that can be borne without severe effects for 0.5 to 1 hour.
- 5. Maximum safe concentration.
- 6. Properties (1).
- 7. Portal of entry (1).
- 8. Symptoms (1).
- 9. Occupations (1).

Acrolein, CH₂:CHCHO.—1. 52°.
2. 0.001 (2).
5. 0.00033 (2).
6. Colorless, pungent fluid, of fiery taste.
7. As vapor, through organs of respiration and mucous membranes.
8. Itching in the throat; irritation of eyes, exciting lachrymation; conjunctivitis, irritation of the air passages, bronchial catarrh.
9. Manufacture of lard, linoleum, stearic acid; bone and fat rendering, galvanizing, tallow refining, tinsmithing, varnish boiling.

Ammonia, NH₂.—1. —35.5°. 3. 0.25—0.45 (3). 4. 0.03 (3). 6. Colorless gas of sharply penetrating odor. 7. As gas, through organs of respiration. Seldom pure, mostly in combination with other gases. Immediate effects on the conjunctiva and the cornea. 8. Acute inflammation of the respiratory organs, cough, edema of the lungs, chronic bronchial catarrh, redness of the eyes, increased secretion of saliva, retention of urine. 9. Manufacture of acetylene, ammonium salts, artificial ice, artificial silk, bone-black, dyes, shellac, soda, varnish; work around coke-ovens, refrigerating plants, sewers; bronzing, dyeing, galvanizing, gas purifying, mercerizing, shoe finishing, sugar refining, tinsmithing; work with glue, illuminating gas.

Aniline, C₆H₅NH₂.—1. 184.4°. 4. 0.00004–0.00006 (3). 6. Colorless oil acquiring tint on exposure to air and light. 7. Absorption through skin, directly or by saturation of clothing; absorption through respiratory organs as volatile particles and impalpable dust; through digestive organs. 8. Pallor of skin, vertigo, unsteady gait, loss of appetite, increased frequency of respiration, anemia, slowing of the pulse, eczematous eruptions, bloody urine, spasmodic muscular pains, cyanosis. 9. Manufacture of aniline, artificial leather, calico, explosives, coaltar products, dyes, paint, colored pencils; vulcanizing, tanning, printing, typesetting, photography, painting, lithography; work with feathers; compounding, mixing, reclaiming rubber, and work in press rooms.

Arsine, AsH₃.—1. —54.8°.
2. 0.05 (2).
5. 0.001 (2).
6. Colorless, extremely offensive gas, with the odor of garlic.
7. As gas, through respiratory organs, generally mixed with hydrogen.
8. General malaise, difficult breathing, fainting fits, gastric disturbances, jaundice, bluish discoloration of the mucous membrane, pain in the region of spleen and kidney, darkened urine, fetor of the mouth resembling garlic.
9. Manufacture of dry batteries, dimethyl sulfate, dyes, fertilizer, nitroglycerin, shoddy, zinc chloride; acid dipping, filling toy balloons, bronzing, enamelling, galvanizing, lead and lime burning, pickling, metal refining, tinsmithing; work with aniline, sulfuric acid, submarine storage batteries; ferro-silicon work.

Benzene, C₆H₆.—1. 80.2°. 4. 0.001-0.0015 (3). 5. 0.0005 (3). 6. Unstable, extremely volatile, colorless fluid, burning with a bright sooty flame. A coal tar product. 7. As vapor, through the respiratory organs; re-absorption through the skin. 8. Headache, vertigo, anemia, muscular tremor, scarlet lips, spots of extravasated blood in the skin, irritant cough, fatty degeneration of liver, kidneys and heart. 9. Manufacture of aniline, artificial leather, dry batteries, carbolic acid, colors, dyes, explosives, fertilizer, lacquer, paint, rubber tires, shellac, shoes,

smokeless powder, varnish; vulcanizing, coal-tar still cleaning, photography, photoengraving, painting, lithography, gilding, electroplating, dry cleaning, leather and fertilizer degreasing, pottery decorating, case scrubbing, bronzing; compounding, drying, mixing, washing, reclaiming, treading rubber; mixing rubber cement, cementing rubber shoes; work with benzol stills, coke ovens, coal tar, feathers, illuminating gas, glue, mordants.

Bromine, Br₂.—1. 58.6°.
2. 0.1 (3).
3. 0.004–0.006 (3).
4. 0.0004 (3).
5. 0.0001 (3).
6. Fuming liquid with an extremely disagreeable odor.
7. As gas, through the respiratory organs.
8. Pallid countenance, emaciation, decayed teeth, bronchial irritation and asthma, gastric disturbances, irritation of the skin.
9. Manufacture of dyes; chemical and pharmaceutical industries.

Carbon Disulfide, CS_2 .—1. 46.2°. 3. 0.001 (3). 4. 0.0002-0.0003 (3). 5. 0.0001 (3). 6. When pure, a limpid, highly refractive, volatile fluid, having an odor like chloroform; imperfectly refined, it is pale yellow, with an offensive odor. 7. As vapor, through respiration; as fluid, through the skin. Headache, pain in the extremities, trembling, deafness, reduction of the reflexes, accelerated heart action, nausea, digestive trouble, emaciation, disturbance of sense of vision, excitement and violent temper followed by depression, hyperstimulation of the sexual instinct, later its abnormal decline, chronic dementia. 9. Manufacture of ammonium salt, artificial silk, carbon disulfide, celluloid, insecticide, matches, paint, putty, smokeless powder; asphalt testing, cementing rubber shoes, rubber cement mixing, dry cleaning, enamelling, oil extracting, tallow refining, sulfur extracting, vulcanizing, rubber drying and reclaiming, work with paraffin and glue.

Carbon Dioxide, CO₂.—1. —78.2°.
2. 30.0 (3).
3. 6.0-8.0 (3).
4. 4.0-6.0 (3).
5. 2.0-3.0 (3).
6. Specifically dense, odorless, colorless gas, collecting near the ground or floor.
7. As gas, by inhalation.
8. Anemia, cyanosis, headache, drowsiness, vertigo, tinnitus, and general nervousness.
9. Manufacture of alkali salts, carbon dioxide, fertilizer, pottery, soda, starch, wine, white lead, yeast; blacksmithing, brass founding, brewing, brick, charcoal and lime burning, lime kiln charging, mining, sugar refining; work in boiler rooms, caissons, drying rooms, silos; work around furnaces, sewers.

Carbon Monoxide, CO.-1. -190°. 2. 0.5-1.0 (7). 3. 0.2-0.3 (3). 4. 0.05-0.10 (3). 5. 0.04 (7). 6. Colorless, tasteless gas, odorless in diffused state, burning with a blue flame in air. 7. As gas, through the respiratory organs. 8. Stage 1 (7): Tightness across forehead, dilatation of cutaneous vessels, headache (frontal and basal), throbbing in temples, weariness, weakness, dizziness, nausea and vomiting, loss of strength and muscular control, increased pulse and respiration rates, collapse. Stage 2: Increased pulse and respiration, fall of blood pressure, loss of muscular control, especially sphincters, loss of reflexes, coma usually with intermittent convulsions, Cheyne-Stokes respiration, slowing of pulse, respiration slow and shallow cessation of respiration, death. 9. Manufacture of acetylene, carbide, celluloid, cores (founding), felt hats, incandescent lamp filaments; baking, blacksmithing, brass founding, cable splicing, calico printing, charcoal burning, charging (zinc smelting), chimney sweeping, copper smelting, enamelling, incandescent lamp finishing; work with bisque kilns, coke ovens, coal tar; work in drying and boiler rooms.

Carbon Tetrachloride, CCl₄.—1. 76.74°. 2. 0.03-0.04 (3).
3. 0.015-0.02 (3). 4. 0.0025-0.004 (3). 5. 0.001 (3). 6. Colorless liquid with pleasant odor, having a narcotic action somewhat similar to chloroform (11). 7. As vapor, through the respiratory organs. 8. Nausea, vomiting, abdominal pain, stupor deepening into coma, absence of reflexes, clonic convulsions,

weak pulse, increased temperature and death (11). 9. Used in industry as a rubber solvent, an ingredient of certain types of paint, a fire extinguisher, and a shampooing agent.

Chlorine, Cl_2 .—1. -33.6°. 2. 0.10 (3). 3. 0.004-0.006 (3). 4.

0.0004 (3). 5. 0.0001 (3). 6. Yellowish-green, suffocating gas of penetrating odor, whose water solution is a greenish-yellow. 7. As gas, through the respiratory organs. 8. Pallid countenance, emaciation, decayed teeth, bronchial irritation and asthma, gastric disturbances, irritation of the skin, chloracne. Manufacture of alkali salts, brooms, chloride of lime, chlorine, disinfectants, dyes, phosgene, sulfur and zinc chloride; pulp beating, bleaching, calico printing, laundry work, photography. Chloroform, CHCl₃.—1. 61.2°. 2. 0.03-0.04 (3), 3. 0.007 (3). 4. 0.0025-0.003 (3). 5. 0.001 (3). 6. Heavy colorless liquid, with characteristic odor and sweet taste; used as an anesthetic (11). 7. As vapor, through the respiratory organs. 8. In anesthesia the untoward symptoms are shallow or irregular respiration, sudden cessation of respiration, pulse either very slow or very rapid, dilatation of the pupils, cyanosis, asphyxia leading to dilatation of the heart, vagus stimulation, and finally failure of heart due to asphyxial condition. In delayed poisoning there is great prostration, delirium, coma, death (11). 9.

as an anesthetic.

Chloropicrin, CCl₃NO₂.—1. 112°. 2. 0.05 (2). 3. 0.002 (2). 4. 0.0001 (2). 6. Colorless oil, insoluble in water. Sufficiently volatile to keep the strata of air above it thoroughly poisonous, and persistent enough to be dangerous after 5 or 6 hours. 7. As gas, through the respiratory organs. 8. Lachrymatory and respiratory irritant, with specific action on the vomiting center. Causes coughing, nausea, vomiting, and in large quantities unconsciousness. Secondary effects are bronchitis, shortness of breath. 9. Warfare.

Chloroform manufacture, but the principal hazard is in its use

Dichlorodiethyl Sulfide, (CH₂ClCH₂)₂S.—1. 215-217°. 5. 0.002 (2). 6. Oily fluid with sharp odor. Its peculiar property of blistering the skin, combined with its high persistency, makes it the most valuable war gas known. 7. As vapor, through the respiratory passages, and through the skin. 8. Conjunctivitis and superficial necrosis of the cornea; hyperemia, edema and, later, necrosis of the skin, leading to skin lesion of great chronicity; congestion and necrosis of the epithelial lining of the trachea and bronchi. Systemic effects due to the absorption of the substance into the blood stream and its distribution to the various tissues of the body (4). 9. Warfare.

Hydrogen Chloride, HCl.—1. -82.9°. 2.0.5 (2). 3.0.15-0.2 (3).
4.0.005-0.01 (3). 5.0.005 (2). 6. Pure HCl is a colorless gas that fumes when open to the air, forming a dense, acid, white mist. The crude commercial acid is, for the most part, impure, containing arsenic among other mixtures. 7. Action on skin and nasal mucous membrane; seldom as vapor affecting the respiratory organs. 8. Irritation of mucous membranes, conjunctivitis, coryza; pharyngeal, laryngeal, and bronchial catarrh; dental caries. 9. Manufacture of alkali salts, ammonium salts, aniline, dry batteries, camphor, carbolic acid, dyes; dipping, mixing, recovering, transporting acid; cartridge dipping, shoddy carbonizing, calico printing, acid finishing (glass).

Hydrogen Cyanide, HCN.—1. 26.5°. 2. 0.048 (9). 3. 0.012—0.024 (9). 4. 0.005—0.006 (3). 5. 0.002—0.004 (3) 6. Colorless, highly volatile fluid, of penetrating, pungent, and irritating odor. 7. As gas, through the respiratory organs; also through the epidermis. 8. Headache, vertigo, unsteadiness of gait, nausea, loss of appetite, disturbance of gastric and intestinal functions, slowing of the pulse, albuminuria. 9. Manufacture of ammonium salts, celluloid, dyes; acid dipping, blacksmithing, browning (gun barrels), calico printing, case hardening, electroplating, fulminate mixing, gas purifying, gold refining, photog-

raphy, pickling, silver refining, tanning, tempering; work around blast furnaces, and with illuminating gas.

Hydrogen Sulfide, $H_2S(10)$.—1. -60.2°. 2. 0.06-0.1 (10). 3. 0.05-0.07 (3). **4.** 0.02-0.03 (3). **5.** 0.01-0.02 (10). **6.** Colorless gas with odor of rotten eggs in low concentration; burns with bluish flame forming SO₂ and water; mixed with 7 parts air, explodes with violence when ignited. 7. As gas, through the respiratory organs. 8. Poisoning is of two types—acute and subacute—causing asphyxiation and irritation (conjunctivitis, bronchitis, pharyngitis, and depression of the central nervous system), respectively. In low concentration the symptoms are headache, sleeplessness, dullness, dizziness, and weariness; pain in the eyes, followed by conjunctivitis, is fairly constant; bronchitis and pains in the chest are frequent. Further poisoning produces depression, stupor, unconsciousness and death. Spasms—clonic and tonic—are present. Death from asphyxia is caused by paralysis of respiratory center, while death from subacute poisoning is associated with edema of the lungs. 9. Manufacture of alkali salts, celluloid, dyes, fertilizer, matches, soda, sodium sulfide, starch, artificial silk; bronzing, cable splicing, flax retting, gas purifying, petroleum refining, pyrites burning, sugar refining, tanning; work around blast furnaces; work with glue, illuminating gas, sewers.

Iodine, I₂ (11).—1. 184.35°. 4. 0.0003 (3). 5. 0.00005-0.0001 (3).
6. At ordinary temperatures gives off invisible vapor very irritating to the nose and eyes (1). 7. As vapor. 8. Inflammation of the lungs and pulmonary edema. 9. Manufacture of iodine.

Mercury, Hg.—1. 357.33°. 5. Less than 0.000125 causes symptoms of poisoning after daily exposure for 2 or 3 months (5). 6. Silver-white, shining metal, unchangeable in air, but evaporating at house temperature (6). 7. Through the uninjured skin, and the respiratory organs in the form of vapor and dust (amalgam dust, dust of the compounds of mercury) (6). 8. Industrial mercurial poisoning is a chronic poisoning occasioned by work in this metal for a long period. The first symptom is generally increased ptyalism, with swelling and inflammation of the gums and of the buccal mucous membrane, often with the formation of rodent ulcers; frequently disturbances of digestion, lassitude and pallor. With further absorption of the metal, "erethism" supervenes—a peculiar psychic excitability (timorousness, bewilderment, irritability), tremor. Death may result in the worst cases in consequence of the violent tremor and spasms affecting the entire body; in other cases increasing weakness (6). 9. Mining and smelting of quicksilver; mirror plating, amalgam gilding and silvering; manufacture of thermometers, barometers, manometers, incandescent electric lamps, Roentgen and Hittorf tubes, mercurial vapor lamps, salts of mercury, amalgams, colors, pharmaceutic products, antiseptic dyes, inflammable materials, explosives; use of mercury salts, especially in the hare's fur business and felt hat manufacture; photography, steel engraving (6).

Nitrogen Oxides (Expressed in Percentages as Nitric Acid) NO.—1. —153°.
2. 0.07 (1²).
3. 0.01 (1²).
4. 0.007 (1²).
5. 0.0033 (1²).
6. NO is colorless gas readily transformed into brown NO₂ by atmospheric oxygen.
7. As gas, through respiratory organs.
8. Local cauterization of the respiratory tract, leading to laryngitis, bronchitis, hyperemia, hemorrhages and severe edema in addition to vicarious emphysema of the lungs. In men the real illness generally appears only 4 to 6 hours or more after inhalation of the gas; in animals lung edema and a condition threatening to be dangerous ensue promptly (1²).
9. Manufacture of aniline, artificial leather, celluloid, dimethyl sulfate, explosives, felt hats, fertilizer, imitation pearls, incandescent lamps, picric acid, soda; dipping, mixing, recovering, transporting acid; bleaching, cartridge dipping, dipping and wringing gun-cotton, enamelling, etching, fur preparing, galva-

nizing, lithography, mining, nitrating, photo-engraving, pickling, metal refining, steel engraving; work with glue, jewelry, mordants, nitric acid, nitroglycerin, sulfuric acid.

Nitrobenzene, C₆H₆NO₂.—1. 210.9°. 4. 0.0001 (3). 5. 0.00002 (3). 6. Colorless, highly refractive fluid having an odor like that of bitter almonds. (All nitro-compounds of benzene have similar properties). 7. As gas, through the respiratory organs. 8. Methemoglobin formation, general debility, anemia, presence of free hematoporphyrin, albumin, and sometimes free poison in the urine; jaundice, gradually becoming cyanosis; skin eruptions, visual disturbances, dyspnea, odor of bitter almonds in breath. 9. Manufacture of aniline, dyes, explosives, perfumes, smokeless powder, soap.

Phosgene, COCl₂.—1. 8.2°.
2. 0.02-0.05 (2).
3. 0.0025 (2).
5. 0.0001 (2).
6. Colorless gas of suffocating odor.
7. As vapor, through the respiratory organs.
8. Destruction of lung tissue, emphysema and edema, myocardial insufficiency due to the emphysema, pleural thickening and adhesions, chronic bronchitis, mild diffuse bronchiectasis, nocturnal dyspnea, polycythemia.
9. Manufacture of dyes, phosgene.

Phosphorus Trichloride, PCl₃.—1.76°. 2.0.00035 (3). 3.0.00003-0.00005 (3). 4.0.00001-0.000002 (3). 5.0.0000004 (3). 6. Liquid with sharp smell, fuming in air, and decomposing into phosphorous acid and hydrochloric acid (13). 7. As vapor, through the respiratory organs. 8. Sensation of suffocation, difficulty of breathing, lachrymation, bronchitis, edema and inflammation of the lungs, with frothy, blood-stained expectoration. 9. Manufacture of phosphorus trichloride and organic compounds; use of phosphorus trichloride as chlorinating agent and as solvent of phosphorus.

Phosphine, PH₃.—1. -85°.
2. 0.2 (14).
3. 0.04-0.06 (3).
4. 0.01-0.02 (3).
6. Colorless gas of nauseating odor.
7. As gas, through the respiratory organs.
8. Oppressed feeling in the chest, headache, vertigo, tinnitus aurium, general debility, loss of appetite, great thirst.
9. Manufacture of acetylene, red phosphorus; phosphorus extracting, work with ferro-silicon.

Sulfur Dioxide, SO₂.—1. -10°. 2. 0.2 (2). 5. 0.01 (2) 6. Gas with pungent odor and suffocating effect. 7. As gas, through the respiratory organs. 8. Irritation of the mucous membrane of the respiratory organs and eyes, spasmodic cough, bronchial catarrh, digestive disturbances, blood-tinged mucus. 9. Manufacture of alkali salts, bricks, brooms, carbolic acid; work around blast furnaces, brass foundries, sulfuric acid towers; bleaching, zinc charging.

Sulfur Trioxide, SO₃.—2. 0.001 (2). 5. 0.0002 (2). 6. White solid, which evolves dense white fumes on exposure to the air.
7. As gas, through the respiratory organs. 8. Irritation of the respiratory organs, bronchitis. 9. Manufacture of sulfuric acid.
Toluidine, CH₂C₆H₄NH₂.—1. 200°. 4. 0.00025 (3). 5. 0.0001–0.00025 (3). 6. Reddish brown liquid. 7. As vapor, through the respiratory organs. 8. Headache, weakness, difficulty in breathing, cyanosis, convulsions, psychical disturbances, air hunger, marked irritation of the renal organs (13). 9. Manu-

LITERATURE

facture of aniline, coal-tar dyes; tank and still work (13).

(For a key to the periodicals see end of volume)

D. G. Robertson, Service Publication No. 22, Commonwealth of Australia. Dept. of Health, 1922.
 Chemical Warfare Service, American University Experiment Station, Washington, D. C., O.
 K. B. Lehmann, in Kobert's Kompendium der praktischen To kologie zum Gebrauche für Aerzte, Studierende und Medizinalbeamte, 5th Edition. Stuttgart, 1912.
 Fries and West, Chemical Warfare, 1921.
 J. A. Turner, 231, 59: No. 8; 24.
 Kober and Hayhurst, Industrial Health, 1924.
 September 231, 313, No. 2476; 23.
 Chemical Warfare Service, O.
 S. B. Grubbs, 231, 32: No. 16; 17.

(10) Sayers, Mitchell and Yant, 313, No. 2491; 23. Also 29, 231: 59; 25-(11) F. P. Underhill, Toxicology, or the Effects of Poisons, 1924. (12) Leh. mann and Hasegawa, Arch. Hyg., 77: 323; 12. (12) J. Rambousek, Industrial Poisoning. London, 1913. (14) Sollmann, Manual of Pharmacology and Its Application to Therapeutics and Toxicology. Philadelphia, Saunders, 1924.

PREVENTION AND EMERGENCY TREATMENT OF GAS POISONING

I. Prevention of poisoning

A. For all gases

- Prevention of escape of vapor or fumes into the air of working places.
- 2. Good ventilation.
- Testing before entering air suspected of containing poisonous gases.
- 4. Never entering or working alone in places where the air is known to be contaminated by poisonous gases.
- Wearing of respirators, gas masks, hose masks, or oxygen breathing apparatus—the latter especially if the air is low in oxygen.
- Education of workmen regarding the danger of poisoning and methods of prevention.

B. For special gases

 Protection of the skin by suitable clothing and by the application of oils, etc.

In the case of dichlorodiethyl sulfide (mustard gas), ordinary clothing affords no protection, but cloth painted with linseed oil is adequate. Oiling the skin gives some protection from short exposure to low concentrations of this gas and in high concentrations increases the efficiency of removal-treatment; for long exposure, oils give practically no protection.

- Abstinence from alcohol, at least during and immediately after labor, especially when exposed to such gases as aniline, toluidine, and nitrobenzene.
- Scrupulous cleanliness of working places and personally on the part of the workmen.
- 4. Physical examination of prospective employees to see that they are not suffering from any disease that would make them more susceptible to certain poisonous gases; reexamination of employees at stated intervals (every 30 days for workers in aniline) to detect beginning of poisoning, especially where exposed to fumes of aniline, mercury, and other gases, the action of which is cumulative and danger of acute poisoning is not so great.

II. Emergency treatment

A. For all gases

- 1. Immediate removal from poisonous atmosphere to fresh
- Immediate administration of artificial respiration (preferably by the Schaefer prone pressure method) if breathing has ceased.
- 3. Calling a physician.
- Keeping the patient at rest, lying down (very important).
- Keeping the patient warm and stimulating circulation by rubbing limbs of patient.

B. For special gases

- Administration of pure oxygen, especially in case of carbon monoxide poisoning.¹
- 2. Administration of stimulants: Black coffee, caffein, camphor, or ether in case of poisoning by aniline, hydrogen cyanide, hydrogen sulfide, phosphine, and toluidine; subcutaneous administration of atropine in poisoning by hydrogen chloride, hydrogen sulfide, and phosphine; hypodermic administration of morphine in poisoning by hydrogen cyanide; inhalation of chloroform in poisoning by phosgene; inhalation of ammonia vapor or soda spray in poisoning by hydrogen chloride, phosgene, phosphorus trichloride, and chloropicrin; infusion of alkaline solution in poisoning by arsine, bromine, iodine, and sulfur dioxide.
- Venesection is recommended in treatment of poisoning by bromine, chlorine, iodine, nitrogen oxides, phosgene, and chloropicrin, but must not be used after collapse has started.
- 4. In the case of dichlorodiethyl sulfide (mustard gas) prevention is especially important as palliative measures are not very successful. The respiratory lesions may be treated by frequent spraying or instillation of a few drops of 1 % sodium bicarbonate, followed by liquid petrolatum and gargling of the throat with a weak Dakin's solution. The eyes should be kept clean by frequent irrigation with a saturated solution of boric acid or with 1 % sodium bicarbonate, followed by a few drops of oil. All clothing should be removed to the skin. Burns of the skin from the vapor should be treated with antiseptics and protected from any irritation. Irritant drugs, such as picric acid or mercuric chloride solutions, should not be applied.
- ¹ Five per cent carbon dioxide in oxygen, if available, may be administered in carbon monoxide poisoning.

AIR CONDITIONING

A. HYGROSCOPIC PROPERTIES OF INDUSTRIAL MATERIALS

D. C. LINDSAY

Hygroscopic Moisture.—The moisture contained in a hygroscopic material in equilibrium with the relative humidity of the surrounding atmosphere. The moisture content of a hygroscopic material when in equilibrium depends upon the relative humidity of the surrounding atmosphere but varies widely with different materials. The moisture content also varies to a slight extent with different temperatures at the same humidity. Hygroscopic moisture in materials is in most industries termed "regain," and is expressed in parts of water per 100 parts of dry material.

Hygroscopic Properties of Materials.—The hygroscopic properties of materials vary widely from one another and even in the same material a wide variation is frequently observed, and is dependent upon the prior history of the material. The curves given below

are based upon a critical study of available data. Qualitatively, they are correct and can be used where extreme accuracy is not required. Consistency in form will be noted in all cases. For the accurate determination of hygroscopic characteristics of materials, the use of insulated cabinets provided with air circulation and automatic instruments (10) for controlling temperature and humidity are recommended as being superior to the taking of such data, within a stagnant atmosphere, the moisture equilibrium of which is maintained by hygroscopic solutions such as sulfuric acid.

Electrostatic Condition of the Atmosphere —Electrical charges are dissipated at normal temperatures (18 to 30°C) at a relative humidity of 50% or above.

This is of extreme importance in textile mills and printing plants where the charged atmosphere prevalent during the winter causes bristling of the fibers and hampers operations.

The elimination of static by humidification has been successfully applied to reduce explosion hazards in munition plants and other explosive atmospheres.

Mildew Fungi.—These will thrive in relatively still atmosphere only at relative humidities above 75%.

FAVORABLE CONDITIONS OF TEMPERATURE AND HUMIDITY ARTIFI-CIALLY CREATED AND MAINTAINED IN MANUFACTURING PROCESSES

	I MOCESSES		
Industry and		Temp.,	Relative
product	Process	°C	humid-
			ity, %
1	Carding	20 to 23	50
	Combing	20 to 23	60-65
	Roving	20 to 23	50-60
Cotton	Spinning	20 to 23	60-65
	Spooling, twisting	20 to 23	65
	Warping	20 to 23	65
	Weaving	20 to 23	75–80
1	Carding	23 to 25	65-70
Wool	Spinning	23 to 25	55-60
W 001	Weaving	20 to 23	50-55
	Storage for shipping	20 to 23	55-60
	Dressing	21 to 25	60-65
Silk	Spinning	21 to 25	65-70
SIIK	Throwing	21 to 25	65-70
l	Weaving	21 to 25	60-70
:	Chocolate enrobing	18	≯55
Confectionery	Hard candy making	21	≯50
Confectionery	Storage	- 1	≯70
	Storage	+15*	≯55
Tobacco	Softening	29	85
Tobacco	Cigar and cigarette making	21 to 23	55-70
	Lithographing	21	45
Deinting	Relief and offset	25	45
Printing	Folding	25	65
(Binding	21	45
	Dough fermentation	27	65
Baking	Proofing	32 to 35	80-90
	Loaf cooling	21	65
Electrical cable	Winding insulation	≯40	≯ 5
Cellulose			
	Application		≯20
Munitions	Fuse loading	21	55
Cereals	Seal packing prepared,		
	crisp cereals	23	45-50

^{*} Divergence in practice.

LITERATURE

(For a key to the periodicals see end of volume)

- Bailey, 45, 12: 1102; 20. (2) Campbell, 45, 9: 658; 17. (3) Carrier Engineering Corporation Laboratory, O. (4) Forest Products Laboratory, O. (5) Hartshorne, 122, 39: 905; 17. (6) Houston, Carson and Kirkwood, Paper Trade J., 76, No. 15: 237; 23. (7) Kress and McNaughton, Paper, 22, No. 26: 11; 18. (4) Kujirai and Akahira, 210, 1: 95; 23. (9) Kujirai, Kobayashi and Toriyama, 210, 1: 79; 23.
- Lindsay and Wadleigh, 38, 8: 677; 25. (11) Müller and Haussner, Herstellung und Prüfung des Papiers, p. 1642. (12) Schloesing, 34, 116: 808; 93. (13) Sclvig and Kaplan, 45, 12: 783; 20. (14) Wilson and Fuwa, 45, 14: 913; 22.

Fig. 1.—Hygroscopic moisture of various papers (cf. (2, 3, 6, 7, 11)).

Curve No.	Description	Ash, %	Rosin, %	Rag, %	Chemical wood bleached, %	Coniferous, %	Manila and jute, %	Lit.
1	Sulfite cellulose pulp				100			(3, 11)
$\frac{2}{3}$	News print	2.9	1.0		100 100		1	343
	Writing	0.8	1.2	100	100		ı 1	(6 7)
4 5	Fine white writing		1.0	100				(2)
9	White bond	1.0 0.2						32
6	Fine white bond		1.0	100	0.5			32
7	Commercial ledger	0.6	1.4	75	25			320
8	White ledger	0.9	1.2	100	ا ــا			322
9	Index bristol	1.0	1.7	50	50			(2)
10	Kraft wrapping	0.3	1.3		1 1	100		(*)
11	Rope manila	1.6	1.5			25	75	(*)
<u> </u>	reope mama	1.0	4.0				-,0	<u>~~</u>

Fig. 2.—Composite curves for all papers in Fig. 1. Variation is dimensions with variation in relative humidity.

 F_{1G} . 3.—Hygroscopic moisture of natural fiber textile materials 2, 5, 12, 14).

Curve No.	Material	Curve No.	Material
1	Absorbent cotton	7	Indian cotton Cotton cloth Egyptian cotton
2	Wool, worsted	8	
3	Silk, new yellow	9	

Fig. 4.—Hygroscopic moisture of artificial textile fibers compared with crude constituents and natural silk (3, 14).

Curve No.	Material
1 1	Viscose rayon (artificial ailk)
Ž	Natural silk, new yellow
ā	Nitrocellulose
4	Cellulose acetate

Curve No.	Material	Curve No.	Material
4	Jute	10	American cotton
5	Manila hemp	11	Linen
6	Sisal hemp	12	Flax

All observations at approx. 25°C.

Fig. 6.—Hygroscopic moisture of various fibrous materials prepared for electrical insulation (*, *).

Curve No.	Material
1	Manila paper
2	Red rope paper
3	Press board
4	Leatheroid paper
5	Silk
6	Red rope paper (varnished)
7	Empire cloth
8	Asbestos paper

Fig. 5.—Hygroscopic moisture of leather and rubber (3).

	 • •	
Curve No.	Material	_
1 2 3 4 5	Leather (sole oak tanned) Sheepskin Gold beater skin Latex, dipped cord Reclaimed rubber Smoked, crepe sheet	
	 omokeu, crepe sucet	

Fig. 11.—Effect of varying temperature on equilibrium water content at constant relative humidity of 50 % (14).

	· · · · · · · · · · · · · · · · · · ·
Curve No.	Material
1	Wood
2	Silk
3	Wool
4 1	Cotton

Fig. 7.—Hygroscopic moisture of cereal foods (1, 2, 14).

Curve No.	Material	
1 2 3 4	Macaroni Flour (patent) Bread Crackers	

Fig. 8.—Hygroscopic moisture of some inorganic substances (10, 14).

Curve No.	Material	
1 2 3 4 5 6	English ball clay Kieselguhr Kaolin Asbestos fiber Zinc oxide Glass wool	-

Fig. 9.—Hygroscopic moisture of some organic substances.

Curve No.	Material	Lit.
1	North Carolina leaf tobacco	(3)
2	Cigarette tobacco (Fatima)	(14)
3	Sole leather (oak tanned)	(3)
4	Catgut	(14)
5	Soap (Ivory)	(14)
6	Lumber*	1 (1)
7	Glue (hide, first grade)	[[14]

*All species of timber have been found to have approximately the same values at given relative humidities. Rate of absorption or evaporation from timbers varies according to the density of the species.

Fig. 10.—Hygroscopic moisture of carbon products (13, 14).

Curve No.	Material
1 1	Carbon black for rubber trade
2	By-product furnace coke (Franklin Co., Ill., coal)
3	By-product coke, domestic size (Pittsburgh bed coal)
4	By-product coke (domestic size)
5	Connellsville, 72 hour bee-hive foundry coke

B. SPACES OCCUPIED BY HUMAN BEINGS

R. R. SAYERS

Effects of Temperature and Humidity on Human Beings in Still Air

Tempera- ture of air,		Effect	s when at rest		Effects when at moderate work			
relative humidity 100 %	Pulse rate	Body tempera- ture	Metabolism	Remarks	Pulse rate	Body tempera- ture	Remarks	
°F 98	Greatly in- creased	Marked in- crease	Marked increase	Very hot, even with little clothing	Very rapid	Marked in- crease	Very hot	
95	Marked in- crease		Increased	Hot, even when little clothing worn		Marked in- crease	Very hot	
90	Increased	Increased	Increased	Very warm	Rapid	Increased	Hot ·	
85	No change	No change	Slight increase	Warm	Increased	Slight increase	Very warm	
75–80	Slight decrease	Slight decrease	Minimum metab- olism	Comfortable	Slight increase	Slight increase	Comfortable or warm	
65–70	Decrease	Slight decrease	Slight increase	Slightly cool to comfortable	Slight increase	Slight increase	Comfortable	
55–60	Decrease Slight decrease		Slight increase	Cool, clothing need- ed for comfort	Slight increase	Slight increase	Comfortable to	
45-50	Decrease	Slight decrease	Increased	Cool, clothing need- ed for comfort	Slight increase	Slight increase	Cool	

* Jour. Am. Soc. of Heat. and Vent. Eng., 31: 66; 25.

REFRIGERATING BRINES

R. S. Jessup

Aqueous Solutions.—All data are based upon weight in vacuo. p = wt. % anhyd. salt, $t = {}^{\circ}\text{C}$, d = gram per milliliter, $\eta = \text{viscosity}$ in centipoise, c = heat capacity under atmos. pressure.

For other data see sections of I. C. T. on the properties of salt solutions.

DENSITY AND SPECIFIC GRAVITY

Conversion Factors

1 g ml $^{-1}$ = 0.999973 g cm $^{-3}$ = 0.036126 lb. in. $^{-3}$ = 62.426 lb. ft. $^{-3}$ = 8.34523 lb. gal. $^{-1}$ (U. S.) = 10.0221 lb. gal. $^{-1}$ (Brit.).

SODIUM CHLORIDE, NACL

 d_4^{28} = sp. gr. = [(0.99707 + 0.0070033p + 14.059 × 10⁻⁸ p^2 + 330.9 × 10⁻⁸ p^3) ± 0.005%] g ml⁻¹. Range, 5-25% (3, 4, 15, 20, 25).

 $1/d_t = 1/d_0 \ (1 + at + bt^2 - ct^3) \pm 0.005 \ \% \ (20)$ whose values check those of (14, 27, 29, 30).

 $d_1^4 \pm < 0.01 \%$

	T / 0	.01 %						
p	−20° C	- 10°C	0°C	10°C	20°C	30°C	a×104 b×104	c×10
5			1.03820	1.03659	1.03405	1.03074	1.0685 5.1425	21.750
6			1.04590	1.04403	1.04131	1.03786	1.3380 4.7100	19.000
7			1.05361	1.05150	1.04860	1.04503	1.5879 4.3162	16.547
8			1.06133	1.05900	1.05594	1.05225	1.8235 3.9350	14.000
9	1		1.06909	1.06654	1.06332	1.05951	2.0394 3.6062	12.047
10	1		1.07686	1.07411	1.07074	1.06682	2.2409 3.3037	10.297
11			1.08467	1.08173	1.07821	1.07417	2.4272 3.0362	8.875
12			1.09251	1.08939	1.08572	1.08158	2.6001 2.7962	7.703
13			1.10039	1.09709	1.09329	1.08904	2.7613 2.5725	6.578
14			1.10830	1.10483	1.10090	1.09656	2.9260 2.2575	3.750
15		1.11945	1.11626	1.11262	1.10857	1.10413	3.0629 2.0937	3.297
16		1.12765	1.12427	1.12047	1.11630	1.11177	3.1936 1.9187	2.453
17		1.13588	1.13232	1.12838	1.12409	1.11946	3.3127 1.7725	1.922
18		1.14415	1.14041	1.13634	1.13193	1.12722	3.4253 1.6300	1.328
19		1.15246	1.14857	1.14436	1.13984	1.13504	3.5290 1.5100	1.000
20		1.16082	1.15678	1.15244	1.14782	1.14293	3.6237 1.4125	0.922
21		1.16923	1.16505	1.16058	1.15586	1.15089	3.7129 1.3187	0.797
22		1.17770	1.17337	1.16880	1.16397	1.15891	3.7950 1.2375	0.750
23	1.19044	1.18622	1.18176	1.17707	1.17215	1.16702	3.8717 1.1337	İ
24		1.19480	1.19022	1.18542	1.18040	1.17519	3.9425 1.0675	
25			1.19874	1.19383	1.18873	1.18344	4.0090 1.0050	

CALCIUM CHLORIDE, CACL2

 $d_4^0 = \text{sp.}$ gr. = [(0.99987 + 0.0086417p + 29.17 × 10⁻⁶ p^2 + 321.3 × 10⁻⁶ p^3) ± 0.03%] g ml⁻¹ (6).

 $d_t = (d_0 - at - bt^2) \pm 0.05\%$ (23.5).

_	1 (00								
p	-30°	- 20°	10°	0°	10°	20°	30°	a×104	b×104
5				1.0438	1.0425	1.0402	1.0369	80	5.0
6	1 1			1.0528	1.0513	1.0489	1.0456	105	4.5
7	i i	l l		1.0619	1.0602	1.0577	1.0544	130	4.0
8	l I			1.0710	1.0691	1.0664	1.0629	150	4.0
9	1 1			1.0802	1.0781	1.0753	1.0718	175	3.5
10	·			1.0895	1.0872	1.0843	1.0808	200	3.0
11	i I			1.0989	1.0964	1.0934	1.0899	225	2.5
12				1.1083	1.1056	1.1025	1.0993	250	2.0
13	1 1			1.1178	1.1150	1.1117	1.1079	255	2.5
14	1	İ		1.1274	1.1244	1.1210	1.1172	280	2.0
15	l 1		1.1396	1.1371	1.1340	1.1304	1.1261	278	2.8
16			1.1496	1.1469	1.1438	1.1399	1.1357	297	2.6
17	1 [1.1597	1.1568	1.1534	1.1495	1.1451	315	2.5
18	1		1.1698	1.1667	1.1632	1.1592	1.1548	332	2.2
19			1.1801	1.1768	1.1731	1.1690	1.1645	350	2.0
20	1 1		1.1904	1.1869	1.1831	1.1788	1.1742	368	1.8
21	1 1	1.2046	1.2010	1.1972	1.1932	1.1889	1.1844	392	1.2
22		1.2150	1.2114	1.2075	1.2033	1.1989	1.1942	403	1.3
23	l l	1.2260	1.2221			1.2092	1.2045	420	1.0
24	l i	1.2369	1.2328	1.2285	1.2240	1.2194	1.2146	438	0.8
25	1 [1.2481	1.2437	1.2392	1.2346	1.2299	1.2251	455	0.5
26	1.2634	1.2590	1.2545	1.2499	1.2452	1.2403	1.2354	467	0.6
27	1.2749	1.2703	1.2656	1.2608	1.2559	1.2510	1.2460	483	0.4
28	1.2868	1.2818			1.2668	1.2617	1.2567	502	0.1
29	1.2981	1.2930	1.2879	1.2828	1.2777	1.2725	1.2674	512	0.1
30	1.3098	1.3045	1.2993	1.2940	1.2888	1.2835	1.2783	525	0

MAGNESIUM CHLORIDE, MGCL2

 $d_t^0 = \text{sp. gr.} = [(0.99987 + 0.008652p + 16.26 \times 10^{-6}p^2 + 487.7p^3) \times 10^{-9} \pm 0.03\%] \text{g ml}^{-1} (6).$ $d_t = (d_0 - \text{a}t - \text{b}t^2) \pm 0.05\% (23.5).$

	- (140		50) _	0.00 //	,	•			
p	-30°	-20°	-10°	0°	10°	20°	30°	a×10	b×10⁴
5	1	1		1.0436	1.0426	1.0404	1.0372	50	5.5
6	1			1.0525	1.0513	1.0491	1.0459	70	5.0
7	١ ١			1.0614	1.0600	1.0577	1.0545	95	4.5
8				1.0704	1.0689	1.0665	1.0633	105	4.5
9				1.0794	1.0778	1.0753	1.0719	115	4.5
10	1			1.0885	1.0867	1.0842	1.0807	145	3.5
11				1.0977	1.0958	1.0932	1.0899	155	3.5
12			1.1083	1.1069	1.1049	1.1022	1.0989	172	3.1
13	1 1		1.1177	1.1162	1.1141	1.1114	1.1081	180	3.0
14			1.1272	1.1255	1.1233	1.1205	1.1173	197	2.6
15			1.1368	1.1350	1.1327	1.1299	1.1266	205	2.5
16			1.1465	1.1445	1.1421	1.1392	1.1360	222	2.1
17			1.1561	1.1540	1.1515	1.1486	1.1453	230	2.0
18		1.1677	1.1659	1.1637	1.1611	1.1582	1.1549	238	1.8
19		1.1778	1.1758	1.1735	1.1709	1.1679	1.1647	247	1.6
20		1.1878	1.1857	1.1833	1.1806	1.1776	1.1743	255	1.5
21	1.1995	1.1977	1.1956	1.1932	1.1905	1.1874	1.1840	258	1.6
22	1.2099	1.2080	1.2058	1.2033	1.2005	1.1974	1.1940	264	1.5
23		1.2186	1.2161	1.2134	1.2105	1.2074	1.2041	280	1.0
24	l i	1.2289	1.2263	1.2236	1.2206	1.2175	1.2142	285	1.0
25		1.2393	1.2367	1.2339	1.2310	1.2278	1.2245	288	0.8
26		1.2500	1.2473	1.2444	1.2413	1.2381	1.2347	298	0.8
27		ĺ	1.2578	1.2549	1.2518	1.2486	1.2452	298	0.8
28			1.2686	1.2656	1.2625	1.2592	1.2558	307	0.7
29			1.2794	1.2763	1.2731	1.2698	1.2664		0.5
3 0	1		1.2903	1.2872	1.2840	1.2807	1.2773	315	0.5

HEAT CAPACITY (SPECIFIC HEAT)

Conversion Factors

1 joule g^{-1} per °C =0.2389 g-cal₁₅ g^{-1} per °C or BTU₅₀ lb.⁻¹ per °F = 2.778 \times 10⁻⁷ kw-hr g^{-1} per °C

1 joule cm⁻² per °C = 1.994 BTU₆₀ gal.⁻¹ per °F (U. S.) = 2.394 BTU₆₀ gal.⁻¹ per °F (Brit.)

SODIUM CHLORIDE, NACL

 $c_{20} = [0.6516 + (0.3475)(0.96285)^p] \text{ cal}_{16} \text{ g}^{-1} \text{ per } ^{\circ}\text{C}; c_t = [c_{20} + \text{a}(t - 20) - \text{b}(t - 20)^2] \text{ cal}_{16} \text{ g}^{-1} \text{ per } ^{\circ}\text{C} (2).$

_	J	oule per g	ram per °	C ± 0.1 %	,	a×104	b×10•
P	-10°	0° 10°		20°	30°	4 7 10	0 / 10
5		3.911	3.921	3.931	3.940	2.3	0
6		3.862	3.874	3.886	3.896	2.6	-1
7	11 1	3.816	3.830	3.843	3.854	2.8	-2
8	11 1	3.771	3.787	3.801	3.813	3.0	-3
9	li l	3.730	3.747	3.761	3.772	3.0	-4
10	li l	3.689	3.708	3.723	3.734	3.1	-5
11		3.651	3.670	3.686	3.697	3.2	-5
12	11 1	3.615	3.635	3.650	3.661	3.2	-5
13	11 1	3.580	3.600	3.615	3.627	3.2	-5
14	11 1	3.547	3.567	3.583	3.593	3.1	-6
15	3.491	3.516	3.536	3.551	3.561	3.0	-6
16	3.463	3.487	3.506	3.520	3.530	2.8	-6
17	3.435	3.458	3.477	3.491	3.500	2.7	-6
18	3.409	3.432	3.450	3.463	3.471	2.5	-6
19	3.384	3.406	3.423	3.435	3.443	2.3	-6
20	3.361	3.382	3.398	3.409	3.415	2.0	-6
21	3.338	3.358	3.374	3.384	3.389	1.8	-6
22	3.318	3.337	3.351	3.359	3.363	1.5	-6
23*	3.298	3.315	3.328	3.336	3.340	1.5	-5
24	3.279	3.295	3.306	3.313	3.316	1.2	- 5
25	3.261	3.276	3.286	3.292	3.293	0.9	-5

^{*} For p = 23; c = 3.277 at -20° .

CALCIUM CHLORIDE, CACL2

 $c_0 = [(1.0138 - 0.018091p + 197.34 \times 10^{-6}p^2) + 0.002] \text{ cal}_{15}$ g⁻¹ per °C (10).

 $c_t = (c_0 + at + bt^2) \pm 0.002 \text{ cal}_{15} \text{ g}^{-1} \text{ per } ^{\circ}\text{C}$

	$t = (c_0)$	T 21	T 01-)	Ξ 0.0	OZ Cai	15 g -]	per C	•		
_			Jou	le per g	ram per	°C			- V 104	b×104
p	-40°	- 30°	-20°	-10°	0°	10°	20°	30°	* ^ 10	DX 10-
8					3.691	3.712	3.733	3.754	5.0	0
9					3.628	3.649	3.670	3.691	5.0	0
10					3.570	3.591	3.612	3.633	5.2	0
11					3.511	3.532	3.553	3.578	5.4	0
12					3.453	3.478	3.500	3.524	5.5	0
13					3.398	3.423	3.444	3.469	5.7	0
14	1 1				3.344	3.369	3.393	3.419	5.9	0
15					3.294	3.319	3.344	3.369	6.0	0
16				3.214	3.243	3.268	3.294	3.315	6.8	-4
17				3.164	3.193	3.222	3.243	3.264	6.9	-4
18				3.118	3.147	3.176	3.197	3.218	7.0	-4
19				3.072	3.101	3.130	3.155	3.176	7.1	-4
20	1			3.026	3.059	3.089	3.114	3.135	7.1	-4
21				2.984	3.017	3.047	3.068	3.093	7.2	-4
22			2.909	2.946	2.976	3.005	3.030	3.051	7.3	-4
23	1 1		2.871	2.904	2.938	2.967	2.992	3.017	7.4	-4
24			2.837	2.871	2.900	2.930	2.955	2.980	7.2	-3
25			2.804	2.837	2.867	2.896	2.921	2.946	7.0	-2
26		2.745	2.775	2.804	2.833	2.858	2.888	2.912	6.7	-1
27		2.716	2.745	2.775	2.800	2.829	2.854	2.883	6.6	0
28	2.662	2.687	2.716	2.745	2.770	2.800	2.825	2.854	6.5	0
29	2.653	2.674	2.695	2.716	2.741	2.770	2.796	2.825	6.0	2
30	2.641	2.657	2.670	2.691	2.716	2.741	2.766	2.796	5.7	3

MAGNESIUM CHLORIDE, MGCL2

 $c_0 = [(1.00070 - 0.016746p + 144.9 \times 10^{-6}p^2) \pm 1\%] \text{ cal}_{15}$ $\mathbf{g}^{-1} \text{ per °C } (2^3).$ $c_t = (c_0 + at) \text{ cal}_{15} \mathbf{g}^{-1} \text{ per °C } (2^3).$

p	Joule per gram per °C									
	- 30°	-20°	-10°	0°	10°	20°	30°	a×104		
5				3.879	3.888	3.896	3.905	1.9		
6				3.817	3.825	3.838	3.846	2.4		
7				3.754	3.767	3.779	3.787	2.8		
8	11		}	3.691	3.704	3.720	3.733	3.3		

MAGNESIUM CHLORIDE, MgCL.-(Continued)

	WINGI	ESIOM	CILLOIG	DL, M	G C D J.	(001401		
			Joule p	er gram	per °C			8 × 104
p	-30°	-20°	-10°	0°	10°	20°	30°	* × 10-
9	11			3.633	3.649	3.662	3.679	3.7
10	1			3.574	3.591	3.607	3.624	4.1
11				3.515	3.536	3.553	3.573	4.5
12	<u> </u>		3.440	3.461	3.482	3.503	3.520	4.8
13			3.386	3.407	3.428	3.448	3.474	5.2
14		1	3.327	3.352	3.373	3.398	3.419	5.5
15		ł	3.273	3.297	3.323	3.348	3.369	5.8
16	il.	3.197	3.222	3.248	3.273	3.297	3.323	6.0
17		3.147	3.172	3.197	3.222	3.248	3.277	6.2
18		3.093	3.122	3.147	3.172	3.202	3.227	6.3
19		3.047	3.076	3.101	3.126	3.155	3.181	6.4
20	2.976	3.001	3.030	3.055	3.084	3.109	3.139	6.5
21	2.930	2.955	2.984	3.009	3.038	3.063	3.093	6.5
22	1	2.912	2.938	2.967	2.992	3.022	3.047	6.5
23		2.871	2.896	2.921	2.950	2.976	3.005	6.5
24	11	2.829	2.854	2.883	2.909	2.938	2.963	6.5
25	II	2.787	2.817	2.842	2.867	2.896	2.921	6.4
26	1	2.750	2.779	2.804	2.829	2.858	2.883	6.4
27	11	2.708	2.737	2.762	2.787	2.817	2.842	6.3
28	1	!	2.699	2.729	2.754	2.779	2.808	6.2
29	li		2.666	2.691	2.716	2.741	2.766	6.1
30	μ	1	2.632	2.657	2.683	2.708	2.733	6.0

VISCOSITY

Data for low temperatures, very meager. The information available is expressed by the following equations and tables: (cf. I. C. T. sections on viscosity of H₂O and salt solutions).

NaCl, $\eta = [(\eta_w + ap + bp^2) \pm 0.5\%]$. Range, 0-30° and 5-20% (18, 19, 32, 37).

CaCl₂, $\log \eta = [(\log \eta_w + ap + bp^2) \pm 3\%]$. Range 10-30°, 5-30% (37).

For p = 30.89%, $\eta = [(0.1392 + 0.004815t + 47.27 \times 10^{-42}) \pm 5 - 10\%$?]. Range, -50 to 30° (39).

MgCl₁, $\eta_{25}^{\circ} = 0.895 + 0.0339p + 900 \times 10^{-6}p^2 + 82.14 \times 10^{-6}p^3$. Range 0-22%. Precision ± 0.5 %. Accuracy? (18, 41).

		0°	5°	10°	15°	20°	25°	30°
CaCl ₂	a×103=			113.94	54.61	0	-47.69	-95.83
	b×103=			6.0996	6.4427	6.8451	7.0553	7.6747
	c×104=			380.50	381.31	375.85	370.27	352.68
21.56%	7-		3.113(17)	2.729(17)	2.412(17)			
NaCl	a×10³=	4.90	9.20	10.65	10.90	10.70	10.20	9.75
	b×103=	1.930	1.410	1.125	0.930	0.790	0.690	0.005
0%	η _w =	1.794	1.519	1.310	1.145	1.009	0.895	0.860
20%	η=	2.663	2.269	1.973	1.733	1.538	1.376	1.240

LITERATURE

(For a key to the periodicals see end of volume)

- Barnes and Scott, 80, 2: 536; 98.
 Barott and Taylor, U. S. Bur. Standards, O.
 Baxter and Wallace, 1, 38: 70; 16.
 Bousfield and Bousfield, 5, 103: 429; 23.
 Buchanan, 174, 49: 1; 12.
 Charpy, 6, 29: 5; 93.
 Cheveneau, 6, 12: 267; 07.
 de Coppet, 6, 25: 511; 72.
 1; 183.
 Despretz, 34, 5: 19; 37.
- (10) Dickinson, Mueller and George, \$1A, 6: 379; 09.
 (11) Drecker, \$, 34: 952; 88.
 (12) Erman, \$, 101: 577; 57.
 (13) Guthrie, \$, 1: 354; 76.
 (14) Haigh, \$1, 34: 1137; 12.
 (15) Hall, \$128, 14: 167; 24.
 (16) Hammerl, \$5.
 78: 59; 78.
 (17) Herschel, U. S. Bur. Standards, \$O.
 (18) Hers, \$3, 39: 393; 14.
 (19) Hoeking, \$3, 49: 274; 00.
- (20) Jessup, Peffer and Taylor, U. S. Bur. Standards, O. (21) Jones and Chambers, 11, 23: 89; 00. (22) Jones and Getman, 11, 27: 430; 02. (23) Koch, 143, 29: 37; 22. (23.5) Idem., 31: 105; 24. (24) Loomis, 8, 51: 500; 94. (25) Kohlrausch and Hallwachs, 8, 53: 14; 94. (26) Kohlrausch, 8, 6: 1; 79. (27) Marignac, 149, 39: 273; 70. 15, 8: 364; 70 (Suppl.). (28) Möller, 8, 117: 386; 62. (29) Nicol, 8, 23: 385; 87.
 (30) Ostwald, 8, 2: 429; 77. (31) Poggiale, 6, 8: 463; 43. (32) Pulvermacher,
- (30) Ostwald, 8, 2: 429; 77. (31) Poggiale, 6, 8: 463; 43. (32) Pulvermacher, 93, 113: 141; 20. (33) Rodebush, 1, 40: 1204; 18. (34) Rodorff, 8, 114: 63; 61. (35) Schiff, 13, 108: 325: 58. (36) Simeon, 3, 27: 95; 14. (37) Sprung, 8, 159: 1; 76. (38) Tschernaj, 53, 20: 430,486; 88. 21: 73,176; 89. (39) Tucker, 67, 28: 111; 13.
- (40) van't Hoff and Meyerhoffer, 7, 27: 75; 98. (41) Wagner, 7, 5: 31; 90.

SIEVES AND SCREENS

Lewis V. Judson

CONTENTS

Woven sieves.
Tolerances for U. S. Standard sieves.

Pharmaceutical sieves.
Bolting cloth.
Sieves for sand, cement, pebbles, etc.

Gages for broken stone, slag, etc.

Introduction

The accuracy of woven metal sieves is often very high. An idea of the accuracy which may reasonably be expected in precision testing sieves may be obtained from the data in Table 2. For many purposes, such a narrow tolerance is not necessary and should not be required. An abnormally wide separation between two adjacent parallel wires may cause a serious error, especially in sieves with narrow openings. In bolting cloth, the diameters of the threads and the widths of the openings vary, not only from brand to brand, but even from bolt to bolt of the same brand. When accuracy is required, it is necessary to select particular portions of selected bolts of the cloth. Sieves are commonly designated either by the mesh per unit of length, or by the mesh per unit of area. Several different units of length (and of area) are employed. For U. S. A. grain sieves, see following publications of the U.S. Department of Agriculture: Handbook of Official Grain Standards for Wheat, Shelled Corn, Oats, and Rue (U. S. G. S. A. Form No. 90): Handbook of United States Grades for Grain Sorghum (U. S. G. S. A.-GI-Form No. 142); United States Grades for Milled Rice (Dept. Agriculture Circular 291); Proposed Revision of United States Grades for Rough Rice (Mimeograph U. S. G. S. A.-GI-No. 26).

Matières

Tamis tissés.
Tolérances pour les tamis standards des États Unis.

Tamis pharmaceutiques. Étamines.

Tamis pour sable, ciment, cailloux, etc.

Jauges pour pierres cassées, scories, etc.

Introduction

La précision des tamis métalliques tissés est souvent très grande. On peut se faire une idée de la précision qui peut être raisonablement attendue des tamis pour essais de précision, en consultant les données de la Table 2. Pour beaucoup de buts, une tolérance aussi étroite n'est pas nécessaire et ne doit pas être exigée. Une séparation anormalement large entre deux fils adjacents parallèles peut occasionner une sérieuse erreur spécialement dans les tamis à réseaux fins. Dans les étamines, les diamètres des fils et la largeur des ouvertures varient, non seulement de marques à marques, mais aussi souvent d'étamines à étamines de la même marque. Lorsqu'on exige de la précision, il est nécessaire de choisir des portions particulières d'étamines choisies. Les tamis sont communément désignés ou par le nombre de mailles par unité de longueur, ou par le nombre de mailles par unité de surface. On emploie plusieurs unités de longueur (et de surface) différentes. Pour les tamis de grains des États Unis, voir les publications suivantes du Département d'Agriculture des États Unis: Handbook of Official Grain Standards for Wheat, Shelled Corn, Oats, and Rye (U.S. G. S. A. Form No. 90) Handbook of United States Grades for Grain Sorghum (U. S. G. S. A.-Form No. 142); United States Grades for Milled Rice (Dept. Agriculture Circular 291) Proposed Revision of United States Grades for Rough Rice (Mimeograph U. S. G. S. A.-GI-No. 26).

INHALTSVERZEICHNIS

Gewebte Siebe.

Tolerierung für die Standard
Siebe der Vereinigten Staaten.

Pharmazeutische Siebe. Siebtücher.

Siebe für Sand, Zement, Kiesel,

Siebe für Sand, Zement, Kiesel, etc.

Abmessung für Bruchsteine, Schlag, etc.

EINLEITUNG

Gewebte Metallsiebe haben häufig einen hohen Grad von Genauigkeit. Eine Vorstellung davon, wieweit sich diese bei der Präzision der Prüfung treiben lässt, erhält man aus den Angaben der Tafel 2. Für viele Zwecke ist eine so kleine Toleranz nicht notwendig und soll auch nicht gefordert werden. Eine abnormal grosse Entfernung zwischen zwei benachbarten parallelen Drähten, kann Ursache grösserer Fehler werden, besonders bei Sieben mit engen Öffnungen. Bei Siebtüchern ändert sich der Durchmesser der Fäden und die Öffnungsweite nicht nur von Marke zu Marke, sondern sogar in den Tüchern derselben Marke. Ist hier Genauigkeit gefordert, so ist es notwendig, gewisse Teile der gewählten Tücher auszusondern. Siebe sind im allgemeinen entweder durch die Zahl der Maschen pro Längen- oder pro Flächengekennzeichnet. Es einheit sind einige verschiedene Längenund Flächenmasse üblich. Für die Siebe (Korn, etc.) der Vereinigten Staaten siehe die folgenden Abhandlungen des U. S. Department of Agriculture: Handbook of Official Grain Standards for Wheat, Shelled Corn, Oats, and Rye (U. S. G. S. A. Form No. 90) (Korn Standard); Handbook of United States Grades for Grain Sorghum (U. S. G. S. A.-GI-No. 142) (Sandzucker); United States Grades for Milled Rice (Dept. Agriculture Circular 291) (Mühlen Reis); Proposed Revision of United States Grades for Rough Rice (Mimeograph U. S. G. S. A.-GI-No. 26).

Indice	PAGE
Stacci tessuti	330
Tolleranze per gli stacci	i
tipo degli S. U	331
Stacci farmaceutici	331
Tele da buratti	332
Stacci per sabbia, cemento,	,
ciottoli, ecc	
Misure per pietrame, scorie	
ecc	[°] 333

INTRODUZIONE

Gli stacci di tessuto metallico hanno spesso un alto grado di esattezza. Una idea della approssimazione che può ragionevolmente attendersi con stacci per saggi di precisione, può dedursi dai dati della Tabella 2. Per molti scopi una tolleranza così stretta non è necessaria, e non potrebbe pretendersi. Una distanza anormalmente grande fra due fili paralleli adiacenti può essere causa di gravi errori, specialmente negli stacci a fori piccoli. Nelle tele da buratti, il diametro dei fili e l'ampiezza dei fori variano non solo da marca a marca, ma anche nei tessuti di una stessa marca. Se si richiede grande esattezza è necessario scegliere particolari porzioni di tessuti scelti. Gli stacci sono in genere designati in base al numero di maglie per unità di lunghezza o di superficie. Le unità adoperate sono differenti.

Per gli stacci da granaglie degli S. U. A. vedi le pubblicazioni seguenti del U.S. Department of Agriculture: Handbook of Official Grain Standards for Wheat, Shelled Corn, Oats, and Rye (U. S. G. S. A. Form No. 90); Handbook of United States Grades for Grain Sorghum (U.S. G. S. A.-GI-Form No. 142): United States Grades for Milled Rice (Dept. Agriculture Circular 291); Proposed Revision of United States Grades for Rough Rice (Mimeograph U. S. G. S. A.-GI-No. 26).

Table 1.—Series of Woven Sieves For pharmaceutical sieves, see Table 3

D = diameter of wire (mm); O = width of opening (mm).

		U	nited States of A	merica	,	Great Britain		France		Switz erland
Sieve designation•		tandard ^a	Tylere d Standard screen scale	Howards sand Morse sieve series (old)	Newark ^d , ^e "Market Grade" test- ing sieves	Instituted, / Mining and Metallurgy; Standard screens	Suter- Strehlerø sieve series	Weiller and Cie.	Franck and Cie.	Marketh Grade test- ing sieve cloth
N	D	o	0	O	0	0	0		<u> </u>	<u> </u>
2 2 2 3 3 3 4 5 6 7 8 9 10 11 12 14 15	1.27 1.12 1.02 0.92 0.84 0.76 0.69 0.61	4.76 4.00 3.36 2.83 2.38 2.00 1.68 1.41	*26.67 22.43 *18.85 15.85 *13.33 11.20 * 9.423 7.925 * 6.680 5.613 * 4.699 3.962 * 3.327 2.794 * 2.362 1.981 * 1.651 1.397 * 1.168	5.11 3.33 2.43 1.86 1.49 1.23	0	2.540 1.574 1.270 1.056	12.1 9.5 8.1 5.94 4.66 3.83 3.27 2.77 2.18 1.81 1.54	same designation are woven with wires of various sizes, and wire.	olumn.	12 9.5 7.8 5.8 4.5 3.7 3.2 2.7 2.4 2.1 1.9 1.75 1.45
16	0.54	1.19	0.991	1.07		0.792	1.34	p	8	1.30
18	0.48	1.00		0.93		···	1.14	ë në	i g	1 10
20 22 <u>1</u> 24 25	0.42	0.84	* 0.833 0.701	0.85	0.864	0.635	0.75	eceding column. Sieves of the same 20 sieve in 14 different sizes of wire.	mm; for approximate size of openings, see following column	0.95 0.87 0.76
27 <u>1</u> 28			* 0.589					Siever	nings,	0.66
30 32	0.33	0.59	0.495	0.54	0.516	0.421	0.65	1	odo je	0.62
35 40	0.29 0.25	0.50 0.42	* 0.417	0.44 0.38	0.381	0.317	0.55	olui n 1	8	0.53 0.47
42 45	0.23	0.35	0.351	0.38	0.301	0.314	0.494	mm; cf. preceding column. te lists No. 20 sieve in 14 di	ate si	0.7
48 50	0.188	0.297	* 0.295	0.28	0.279	0.254	0.376	. 20 .	Oxim	
60 65	0.162	0.250	0.246 * 0.208	0.23	0.234	0.211	0.30	. c. p B No	appr	
70	0.140	0.210		0.20	0.185	0.180	0.26	H is	§	
80	0.119	0.177	0.175	0.174	0.173	0.157	0.227	oni Lue	ä	
90 100	0.102	0.149	* 0.147	0.155 0.142	0.155 0.140	0.139 0.127	0.209 0.178	teshes per 27.777 mm; cf. pr pple, the catalogue lists No.		
110 115			0.124	0.127	0.130			per se c	1 2	
120 130	0.086	0.125		0.117 0.104	0.117 0.109	0.107	0.151 0.134	shes ple, th	meshes per 27	
140	0.074	0.105		0.100	0.107		0.128	i i	ă	
150 160			* 0.104	0.091 0.088	0.104 0.097	0.084	0.125	er of	er of	
170 180 190	0.063	0.088	0.088	0.083 0.079 0.079	0.089 0.084 0.079		0.094	Designated by number of m varies accordingly: for exam	Designated by number of	
200	0.053	0.074	* 0.074	0.071	0.074	0.063	0.089	ਨੂੰ ਜ਼ੁੰ	⁴	
230 250	0.046	0.062	0.061		0.065 0.061			nated s acco	ns ted	
270 300	0.041	0.053	0.053		0.053 0.046		i	Desig varies	Desig	
325	0.036	0.044	0.043		0.043		1	76	"	

^{*} Sieve designation is number of meshes per linear unit. For U. S. and Great Britain the unit is the inch (=25.4 mm), excepting for the U. S. Standard, for which the unit varies slightly but always approximates closely to the inch; for the Suter-Strehler series it is 27.8 mm; and for Switzerland it is 27 mm.

 $^{h}D+O=27/N.$

b Specifications require a frame 8 in. in diameter (3 in. for paint pigments), and either 5 cm or 2.5 cm high (above cloth). For tolerances, see Table 2. This series has been tentatively adopted, as standard, by the American Society for Testing Materials, using a preferred designation of width of opening in microns. Sieves of this series now used by most A. S. T. M. committees, and specifications requiring other series, are in process of revision.

Widths of openings in successive sieves are related as 1 to $\sqrt[4]{2}$ (=1.189): those starred (*), as 1 to $\sqrt[4]{2}$ (=1.414). The scale is based upon the No. 200 sieve with openings 0.0029 in. wide. Successive sieves finer than No. 4 nominally correspond, within limits of tolerance, with successive sieves of the U. S. Standard series, but there are notable differences in the designations of the two series.

 $^{^{4}}D + O = 25.4/N.$

[•] U. S. Standard is now regular with Howard and Morse, Inc., but the Old Howard and Morse Standard is obtainable.

[/] This series is the standard of British Engineering Standards Committee.

 $[\]bullet D + O = 27.8/N.$

Table 2.—Tolerances for U. S. Standard Sieves*

D = diameter of wire; O = width of opening; min. = minimum; max. = maximum; av. = average. Unit: 1% of specified value.

Sieves		0	$D_{\mathbf{av}}$.			
Sieves	Av.	Max.	Min.	Max.		
4 to 18	±3	10	-15	+30		
20 to 45	±5	25	-15	+30		
50 to 120	±6	40	-15	+35		

Table 2.—Tolerances for U.S. Standard Sieves. *—(Continued) D = diameter of wire; O = width of opening; min. = minimum; max. = maximum; av. - average. Unit: 1% of specified value.

Sieves		0	$D_{\mathtt{av}}$			
Sieves	Av.	Max.	Min.	Max.		
140 to 200	±8	60	-15	+35		
230 to 325	±8	90	-15	+35		

^{*} See Table 1

Example: For sieve No. 30 of U. S. Standard, the average diameter of the wire must be not more than 15 % smaller or 30 % greater than 0.33 mm (Table 1); the width of the average opening must not differ from 0.59 mm by more than ± 5 % (= ± 0.01 mm), and the width of the largest opening must not exceed 0.59 mm by more than 25 % (= 0.15 mm).

TABLE 3.—PHARMACEUTICAL SIEVES

In the body of the table are indicated the sieves composing a complete set, and the customary designations of the several sieves:

* indicates that the sieve is designated by the number of meshes per cm as given in first column (Italy is an exception:

**see note*). "Width" = width of opening.

Meshes per cm	(mm)			논		Fra	ance	ly.	Sritain	8				Netherlands ³ . 4			•	land 3	
Meshes	Width (mm)	Austria	Belgium	Denmark	Finland	Old¹	New	Germany	Great Britain	Hungary	Italy2	Japan	Mexico	Netherl	Norway	Russia	Sweden	Switzerland ³	U. S. A.
	8 6	I								I					1				
2	5					5	I												
	4				I					II		1	1		2				
3	_		*	*		8	II												
	3 2	III			III		l l			ш		2 3	2 3		3		1		
5		111			111					***		3	J		°				
5 6						16	III		7		!							`	
0	1.5					25	IV		Commercial sieves not specifically designated										-
9 10		IV				25	10		sign	IV		4	4		4	IV	No. 10		Table 1
	0.75	-			IV			4	, g	- '	ŀ	_	-		1	-	110, 10		Ē
15			İ			40	v		ally									IV	ن
18 20									ific						5	III	No. 20		
20 22						60	VI) Mg) °		No. 20)tar
25									ot	v									o z
26		V				70	VII		99			5							D.
27 30						80	VIII		ieve						6		No. 30	v	Ħ
20 22 25 26 27 30 32						~	V 1111		al s				5			II	110. 30		Selected from U. S. Standard.
	0.30				v			5	erci.	}								,	et
37 40						100	IX		E E	vi		6		*	7	I	No. 40	\mid $\}$ vi	, sele
45	ľ					120	x		Ž	*1		0			'	1	No. 40	,	02
48 50		$\}_{VI}$.6									6	*					
50		J ' '		•									U					,	ĺ
51 52						140	XI											VII6	
	0.15		İ		VI	***		6										,	1
70						_							7		_			_	
Grading ⁵		а	b	c	а	d	d	e	h	а	a	c	<u>d</u>		d	<i>f</i>	g	d	i

¹ Numbers in this column are the number of meshes per "pouce" (=2.7 cm), and are the customary commercial designations of the sieves.

Digitized by Google

² Sieves designated by number of openings per cm² = square of number of meshes per cm.

³ Also sieves with round holes; diameters, 1.5 mm, 3 mm, and 5 mm.

⁴ Manufacturers commonly designate sieves by meshes per 26 mm.

⁵ Material which passes a sieve of 9 or 10 meshes per cm is considered a "powder," and powders are graded, depending upon the country, in accordance with one of the following systems:

⁽a) Coarse, fine, very fine; (b) "farines," medium fine, fine, very fine; (c) coarse, medium, fine; (d) coarse, medium fine, fine, very fine; (e) coarse, medium fine, fine; (f) coarse, medium, fine, very fine; (g) coarse, medium coarse, medium fine, fine; (h) 20 to 30 mesh = coarse powder, 40 to 60 = powder, 80 to 120 = fine powder; (i) No. 12 = very coarse, No. 20 = coarse, No. 40 = moderately coarse, No. 50 = moderately fine; No. 60 = fine, No. 80 = very fine; No. 6, No. 30, and No. 100 also used.

Silk sieves.

TABLE 4.—BOLTING CLOTH

Designation	Switzerland,* inch (=	France										
	Bodmer	Wydler										
No.												
0000	18	18] BG									
000	23	23	35									
00	28	29	ļ ķ									
0	38	38	l m _									
1	48	48	umber of 1 (=27 mm)									
2	54	54	7 11 7									
3	58	58	du 2									
4	62	62	# "									
5	66	66	d by no									
6	74	74	i e i									
7	82	82	ed									
8	86	86	l at									
9	97	97	120									
10	109	109	Oesignated by number of meshes per pouce (=27 mm)									
11	116	116	"									

TABLE 4.—BOLTING CLOTH.—(Continued)

Designation	Switzerland,* inch (=	France	
	Bodmer	Wydler	
12	124	125	-
13	130	129	r of
14	139	140) =)
15	148	149	g B
16	157	157	y num pouce n)
17	165	163	d by
18	170	166	F Ged
19	175	169	B tt
20	180	175	resignated by number neshes per pouce (= mm)
21	185	185	Designameshes
25	200	197	

*The "quality" of the cloth is determined by the coarseness of the thread used. The figures given apply to the Standard, the Extra (X), and the Double Extra (XX) qualities. For the Triple Extra Heavy (XXX) quality the number of meshes per inch is in each case one less than the number given in the table. Diameter of threads is not specified. Grit gauze is designated by number of meshes per inch (= 25.4 mm) and is obtainable from No. 14 to No. 86.

TABLE 5.—WOVEN SIEVES FOR SPECIAL PURPOSES (METRIC DESIGNATION)

Sand and cement sieves, except as indicated for pharmaceutical sieves, see Table 3

In the body of the table are given the widths of the openings (0) in mm. If D = diameter of wire (mm) and N = number of meshes per cm, D = 10/N - O. Sieves are woven, except as noted. * indicates that neither D nor O is specified.

Meshes per cm ²	64	144	225	324	900	2500	4900	5000	6400	
Meshes per cm = N =	8	12	15	18	30	50	70	70.71	80	
			N	lillimet	ers	l	1	i		
Austria	0.85	0.53			0.23		0.09			
Argentina			l	}	0.18	l	0.09			a
Belgium	0.85	0.53		1	0.18		1		i	
Brazil				ļ					i	
China		В	ritish si	eves us	ed to so	me exte	nt. Se	e Table	6	
Denmark			1		0.222	0.13	1	0.09		ð. c
Finland			İ				•			
France		į.	l	0.36	0.18		0.09			d
Germany	1				0.222					b. •
Germany (for coal dust, etc.)*	Design	nation is	N:O	= 6/N:	D=4	/ N				
Great Britain			1	1	1	l				
Hungary	0.85	0.53			0.23		0.09			
Italy	i	i	i		0.18		0.09			
Japan	0.85	0.53	0.47		0.23			1		
Mexico							1			
Netherlands	ĺ				0.23		0.09			1
Norway					0.23		i	0.09		
Portugal							l			•
Rumania		ŀ			*		*			
Russia	0.85	0.53	0.47	1	0.23		0.09	'		A
Spain				0.36	0.18		0.09			
Sweden					0.222					b, i
Switzerland	0.85	0.53			0.23		0.09			i
United States of America	See Ta	ble 6								
Uraguay		1					•			

- a Also copper plates with round holes 1.5 mm and 1.0 mm in diameter.
- ⁶ Also, for cement sand, plate 0.25 mm thick with round holes 1.350 mm and 0.775 mm in diameter.
- For sand and pebbles, plates with round holes 60, 30, 15, 10, 5, 2, and 0.5 mm in diameter.
- 4 Also plates with round holes 2, 1.5, 1, and 0.5 mm in diameter. For other woven sieves see Table 1.
- Commercial designations recognized: meshes per inch (25.4 mm), meshes per old French inch (=pouce = 27 mm), meshes per Rhenish in. (=Zoll = 26.15 mm) and meshes per cm, as well as meshes per cm².
 - I Sieves commonly designated by meshes per inch of 26 mm.
 - French sieves are used in flour industry: British sieves, in mining industry.
 - A Sieves in common use are designated by meshes per linear inch, meshes per linear verchoc (44.45 mm), and meshes per cm².
 - ' Tidbeck sieves are designated by meshes per inch of 25 mm.
 - i For other woven sieves, see Tables 1, 3, 4. For Grit Gauze see Table 4, footnote.
- * Tolerance in mean value of $O = \pm 5\%$; max. deviation for N = 1 to 7 is $\pm 10\%$, 8 to 20 is $\pm 20\%$; 20 to 100 is $\pm 30\%$. Tolerance in mean value of D for N = 1 to 4 is $\pm 3\%$, 5 to 70 is $\pm 4\%$, 80 to 100 is $\pm 5\%$; max. deviation for same limits of N are $\pm 6\%$, $\pm 8\%$, $\pm 10\%$, respectively. Series consists of N = 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 20, 24, 30, 40, 50, 60, 70, 80, 100.

TABLE 6.-WOVEN WIRE SIEVES FOR SPECIAL PURPOSES* (INCH DESIGNATION) American and British; for pharmaceutical sieves, see Table 3

D = diameter of wire; $\delta D = \text{amount by which the average } D \text{ of all the wires in one direction may depart } (\pm) \text{ from value specified for } D = \text{diameter of wire}$; $\delta D = \text{di$ D: δn = allowable variation (±) in n per whole cm; max. [min.] = maximum [minimum] allowable value; N = approximate number of meshes per in.; n = number of meshes per cm; O = width of opening; S = specified value.

13-						Uni	t of O,	D , δD =	= 1 mm								Unit	of O, L	
120		Cement and sand														=		1 mm	
Sieve designa- tion†	U. S. ‡§	Canada§	Mexico§			Grea	at Brita	in††		¥-	Sand and fine highway material (cement con- crete excepted). U. S. A.‡			Sieve designation		Aggreg.	Stone** G. B.		
N	0	0	0	0)	1	n		$D\S$		0			7)	. 70	q		D	D
IV	0	0	0	S	Max.	Min.	Max.	S	Min.	Max.	0	n	δn	D	δD	0 1	D	D	
10	1										2.00	3.9	0.04	0.56	0.05	3	76.0	6.3	
20	0.85	0.85		0.85	1.02	7.5	8.3	0.42	0.41	0.43	0.85	8	0.2	0.40	0.015	2	50.8	4.88	
30	0.57	0.57		0.57	0.69	11.4	12.2	0.27	0.27	0.28	0.50	12	0.4	0.33	0.012	11/2	38.0	4.50	
40											0.36	16	0.6	0.26	0.010	1	25.4	4.12	3.7
50	-	1									0.29	20	0.8	0.21	0.010	3 4	19.0	3.42	3.7
76				0.224	0.28	29.1	30.7	0.112	0.107	0.117					100	1 2	12.7		3.0
80		1 -									0.17	31	1	0.15	0.008	3 8	9.5	2.33	2.6
100	0.14	1	0.14								0.14	39	1	0.116	0.008	1 4	6.4		2.3
180				0.097	0.127	69.3	72.4	0.046	0.041	0.051						1 8	3.2		1.8
200	0.074	0.074	0.066								0.074	79	3	0.053	0.005	1 16	1.6		1.4

- * Sieves selected from the series given in Table 1 are not separately considered here.
- † Designation is meshes per inch, or meshes per inch² in the form "10 × 10," etc.
- \$ Sieves specified by American Society for Testing Materials; also wire sieves of 400 meshes per cm2 are specified for certain chemical analyses of metals; for coke, sieves with openings, 2.5, 1.75, 1.25, 0.75, and 0.5 in. wide are used. See also Table 1.

 - § D + O = 25.4/N.

 | Designation is width of opening in inches; British use the form 3×3 , etc.
 - ¶ Concrete aggregates. Tolerance: average opening, $\pm 3\%$; max. O, $\pm 10\%$; D, $\pm 10\%$.

 ** Stone chippings. For broken stone, see Table 7.

 - †† British Engineering Standards Committee's sieves. Frames 203.20 mm square, at least 69.85 cm deep; cloth woven (not twilled).

TABLE 7.-GAGES FOR BROKEN STONE AND SLAG, ETC. American and British

•		Great Britain†						
Dia	meter	Diar	neter	Diar	neter	Size of stone	Diam- eter of hole	
in.	mm	in.	mm	in.	mm		mm	
4	101.6	2	50.8	0.75	19.0	3-in.	76.2	
3.5	88.9	1.5	38.1	0.5	12.7	2.5-in.	63.5	
3	76.2	1.25	31.8	0.25	6.4	2-in.	50 .8	
2.5	63.5	1	25.4			1.5-in.	38.1	

^{*} Round holes, specified by their diameters in inches. For sizing gypsum rings 76, 38, and 25 mm in diameter are used.

[†] Gages are of sheet metal at least 5 mm thick and contain both circular holes and slots.

SACCHARIMETRY, THE PROPERTIES OF COMMERCIAL SUGARS AND THEIR SOLUTIONS

FREDERICK BATES, F. P. PHELPS, C. F. SNYDER

Contents	Contents Matières		Indice				
Introduction	Introduction	Einleitung	Introduzione PAGE				
Saccharimetric methods and standards.	Méthodes saccharimétriques et standards.	Saccharimetrische Methoden und Standards.	Metodi saccarimetrici e standards				
Specific rotatory power, defi- nition.	Pouvoir rotatoire spécifique, définition.	Spezifisches Drehungsvermö- gen, Definition.	Potererotatoriospecifico, definizione				
Saccharimetric normal weights.	Poids normaux sacchari- métriques.	Normalgewichte der Sac- charimetrie.	Pesi normali saccari- metrici				
Mutarotation.	Mutarotation.	Multirotation.	Mutarotazione 335				
International sugar scale.	E c h e l l e saccharimétrique internationale.	Internationale Zuckerskale.	Scala internazionale 335				
Standardization.	Standardisation.	Normalisierung.	Standardizzazione 335				
Conversion factors.	Facteurs de conversion.	Umrechnungsfaktoren.	Fattori di conversione. 336				
Quartz control plates.	Plaques de quartz pour le contrôle.	Quarz-Kontroll Platten.	Lastre di controllo di quarzo 336				
Optical rotation for different wave lengths.	Rotation optique pour différentes longueurs d'onde.	Rotation für verschiedene Wellenlängen.	Rotazione ottica per diverse lunghezze di onda				
Comparison with sucrose solutions.	Comparaison avec des solu- tions de saccharose.	Vergleich mit Saccharose- Lösungen.	Confronto con solu-				
Properties.—Under each sugar	Propriétés.—Sous chaque	Eigenschaften.—Unter jedem	zioni di saccarosio 336				
the various properties of the	sucre on trouvera les propriétés	Zucker werden die verschiede-	ProprietàPer ogni zucchero,				
sugar and its solutions are given	variées du sucre et de ses solu-	nen Eigenschaften und die	le sue proprietà e quelle delle				
in the following order: optical	tions disposées dans l'ordre	seiner Lösungen in folgender	soluzioni sono riportate nell'-				
rotation, refractive index, den-	suivant: rotation optique, in-	Ordung angegeben: Rotation,	ordine seguente: rotazione				
sity, solubility, mutarotation,	dice de réfraction, densité,	Refraktions-Index, Dichte, Lös-	ottica, indice di rifrazione,				
hydrolysis and decomposition.	solubilité, mutarotation, hydrolyse et décomposition.	lichkeit, Multirotation, Hydrolyse und Zersetzung.	densità, solubilità, mutaro- tazione idrolisi e scomposizione.				
PAGE 226	PAGE 247	PAGE	PAGE				
$C_{12}H_{22}O_{11}$, sucrose	$C_6H_{12}O_6$, dextrose	$C_6H_{12}O_6$, mannose	$C_{\bullet}H_{10}O_{\bullet}$, xylose 352				
$C_{12}H_{22}O_{11}$, maltose 346	C ₆ H ₁₂ O ₆ , levulose 343 C ₆ H ₁₂ O ₆ , invert sugar 350	$C_5H_{10}O_5$, galactose 351	$C_{18}H_{32}O_{16}$, raffinose 352				
Systems containing more than one sugar	Systèmes contenant plus d'un sucre	Systeme mit mehr als einem Zucker	Sistemi con più diu uno zucchero 352				
Solubilities in mixtures. Solutions of invert sugar.	Solubilités dans les mélanges. Solutions de sucre interverti.	Löslichkeit in Mischungen. Lösungen von Invertzucker.	Soluzioni di zucchero				
Clerget analysis for sucrose.	Analyse Clerget pour le sac- charose.	Analyse nach Clerget.	invertito				
Reducing powers in mixtures.	Pouvoirs réducteurs dans les mélanges.	Reduktionsvermögen in Mischungen.	Potere riducente in miscugli				
Optical rotations and melting	Rotations optiques et points de	Rotation und Schmelzpunkte	Rotazioni ottiche e punti				
points of sugar derivatives	fusion des dérivés des sucres	von Zuckerderivaten	di fusione di derivati dello zucchero 353				
INTROD	UCTION	definite intervals of concentration	on. [α] for all intermediate con-				

Saccharimetric Methods and Standards

Specific Rotation.—The specific rotation $[\alpha]$ of any substance in the dissolved state is represented and defined by the equation

$$[\alpha]_X^{t^o} = \frac{\alpha}{lC} = \frac{\alpha}{l\nu d}$$

where t designates the temperature of measurement, X is a character used to identify the wave length of the light source used, a is the observed rotation in circ. deg., I the length of the solution in dm, C its concentration in g per ml at t° , p its concentration in wt. %, and d its density in g/ml at t° . [\alpha] varies with X, and to a less extent with t and C (or p). Wherever possible the values of the specific rotations of the more important sugars are given at

centrations may be found by interpolation.

Saccharimetric Method.—Since monochromatic light sources are difficult to obtain, it is frequently more convenient to use a whitelight source and a quartz-wedge saccharimeter. This saccharimeter is particularly applicable to the sugar group because the rotatory dispersions of quartz and the common sugars are very similar. The conditions for accurate observing are improved if the violet end of the spectrum is absorbed by the potassium bichromate cell. The saccharimetric scale is defined by the rotation of sucrose, its hundred point being the rotation of 26 g (in air, d = 0.0012, brass weights) in 100 ml of solution. Therefore in order to determine a sugar having a different rotatory power, the weight used must be adjusted to the sucrose scale, i.e., the sac-

charimetric normal weight of the sugar in question is that weight which, dissolved in 100 ml of solution, will give a rotation of 100° on the sucrose scale. To compute this weight use, whenever the data are available, the results of direct determinations of the values of the rotations on the sucrose scale.

In the case of the first four sugars of the following table, determinations have been made of the relation between the rotation in sucrose deg. (${}^{\circ}S$) and circ. deg. of sodium light for the same solution. If this relation is known, the saccharimetric normal weight for the saccharimeter can be computed from the known specific rotation.

In the case of many sugars no direct determinations of the relative values of the sugar deg. and circ. deg. are available, and in these instances the saccharimetric normal weight must be computed from the relative specific rotations of sucrose and of the sugar in question on the assumption that the rotation dispersion of all the sugars is the same as that of sucrose, which is not strictly true. Saccharimetric normal weights so computed must therefore be considered only as the nearest approximation at present available. The computation depends upon the assumption that the saccharimetric normal weights of the sugars vary inversely as their specific rotations.

SACCHARIMETRIC NORMAL WEIGHTS, W_N In air, d = 0.0012, brass weights

Sugar	1°S =	W_N
Dextrose	0.3448	32.248
Lactose	.3452	32.857
Maltose	. 3449	12.474
Raffinose (5H ₂ O)	.3450	16.507
Levulose	calc.	18.592
Invert sugar	calc.	86.450

Thus in the determination of these sugars it is merely necessary to weigh out the appropriate normal weight of the sugar and proceed exactly as in the analysis of sucrose. The specific rotation is in general not exactly proportional to the concentration of the sugar, and for accurate work a correction should be applied for readings which vary much from the 100° point. Many experimenters advise using a variable saccharimetric normal weight according to the concentration of the sugar taken, but this requires a previous knowledge of the quantity of sugar present or a preliminary assay of the material. It is more convenient to use a uniform saccharimetric normal weight and to apply a correction for the various parts of the sugar scale.

Mutarotation.—In a very large class of sugars a considerable lapse of time is required for the dissolved sugar to exhibit a stable rotatory power. The rotation of the freshly prepared solution in general steadily changes according to the laws of unimolecular reactions, to a steady state, where no further change occurs. This phenomenon is called "mutarotation." The specific rotation of the sugar is commonly expressed in terms of this equilibrium condition. Mutarotation has been satisfactorily explained by the discovery of two modifications of each of the sugars in which the phenomenon exists. These two modifications have been designated the α - and β -forms. When the sugar crystallizes, but one of these forms separates from solution, usually on account of a considerable difference in solubility, and, consequently, when a fresh solution is prepared the rotatory power of this form is exhibited. The most plausible explanation of the isomerism of the α - and B-forms is connected with the end carbon atom which is capable of changing its relation to the rest of the molecule. For example, in the case of dextrose the mutarotation reaction is regarded as a balanced reaction between the two forms:-

The steady state is, under this hypothesis, a state in which the reaction velocities $\alpha \to \beta$ and $\beta \to \alpha$ are equal.

As the change of one form into the other obeys the laws of mass action and appears to be a unimolecular reaction, the mutarotation constant is expressed by the formula

$$k_1 + k_2 = \frac{1}{t} \log_{10} \frac{r_0 - r_{\infty}}{r_t - r_{\infty}}$$

 r_0 and r_∞ being the initial and final rotations, and r_t the rotation at the time, t, from the start.

International Sugar Scale.—The Ventzke sugar scale, although in general use for many years, has never been fully understood by polariscopists generally. This has led to much confusion and to the use of 100 ml flasks on instruments standardized for use with the Mohr flask. In addition, 17.5°C is well below the temperature of the average laboratory. Because of these and other considerations the International Sugar Commission at the Paris meeting in 1900 recommended the use of a new definition of the 100° point based upon true ml and a standard temperature of 20°C. In order to divorce it as completely as possible from confusion with the Ventzke scale, the new scale is referred to as the international sugar scale because of its origin. The change to 20°C necessitated a change in the saccharimetric normal weight in order to keep the new scale comparable with the Ventzke. Correcting for the change in the specific rotation (-0.000184), the expansion of a glass tube (+0.000008), quartz wedge (-0.000130), and metal scale (-0.000018), the new weight becomes 26.000 + g. international sugar scale was then defined at the Paris meeting as follows: The graduation of the saccharimeter and all readings shall be made at 20°C; 26 g (in air, d = 0.0012, brass weights) of sucrose are dissolved in water and the volume made up to 100 ml at 20°C. This will determine the 100° point.

Standardization of International Sugar Scale.—The $100^{\circ}S$ point on the international sugar scale was determined by Herzfeld and Schönrock in 1900-1904 (33, 82), with the result that $100^{\circ}S=34.657^{\circ}$ ($\lambda=589.25\text{m}\mu$). In 1916 Bates and Jackson (9) of the Bureau of Standards, as the result of an elaborate investigation, found that $100^{\circ}S=34.620$ ($\lambda=589.25\text{m}\mu$). They found that the saccharimetric normal sucrose solution as defined by the International Sugar Commission did not read $100^{\circ}S$ on saccharimeters standardized on the Herzfeld-Schönrock basis. Subsequently additional investigations were carried out at the Institut für Zucker-Industrie (52) and at the Research Institute for the Czechoslovakian Sugar Industry (87). The readings of the saccharimetric normal sucrose solution on the original Herzfeld-Schönrock scale are given in the following table:

Original Herzfeld-Schön- rock determination	1900–1904	100.00°S (33, 82)
Bates and Jackson	1916	99.895 (99.870-99.91) (9)
Stanek	1921	(99.81-99.90)(⁸⁷)
Kraisy and Traegel	1924	99.834 (99.775-99.895)(52)

Saccharimetric Scale Conversion Factors.—Comparisons may be made between the readings of different scales by means of the following conversion factors: 1° International sugar scale = 0.34620° angular rotation D; 1° French sugar scale = 0.21666° angular rotation D; 1° Wild sugar scale = 0.13284° angular rotation D. (Saccharimetric normal weight = 26.00 g International scale = 16.29 g French scale = 10.00 g Wild scale.)

Quartz Control Plates.—The accuracy of the readings on the quartz wedge saccharimeter is checked by means of quartz control plates accurately standardized for the mercury line, $\lambda=546.1 \text{m}\mu$. In order to obtain a quartz rotation for $\lambda=589.25$, use the equation

$$\frac{\phi_{\lambda=589.25}}{\phi_{\lambda=546.1}}=0.85085~(6,~9)$$

where ϕ is the rotation in circ. deg. By this method the errors due to the character of the sodium source of light are eliminated and the measurements of one observer may be readily compared with those of another. The rotation of quartz in circ. deg. at a temperature t is given by:

 $\phi_t = \phi_0 (1 + 0.000144t)$, between 4 and 50°C

THICKNESS OF THE NORMAL QUARTZ PLATE (9)

Wave length of light source, Å	Rotation of normal plate (Bates and Jackson)	Rotation of 1 mm of quartz at 20°C; light parallel to optic axis			
5892.5	34.620°	21.7182° (Gumlich)	1.5940		
5892 . 5	34.620°	21.7283° (Lowry)	1.5934		
5461	40.690°	25.5371° (Lowry)	1.5934		

Rotation of Normal Quartz Plate (9). Normal quartz plate = $100^{\circ}S = 34.620^{\circ}$ ($\lambda = 5892.5 \text{ Å}$) at $20^{\circ}C$; 1° ($\lambda = 5892.5 \text{ Å}$) = $2.8885^{\circ}S$. Normal quartz plate = $100^{\circ}S = 40.690^{\circ}$ ($\lambda = 5461 \text{ Å}$) at $20^{\circ}C$; 1° ($\lambda = 5461 \text{ Å}$) = $2.4576^{\circ}S$.

Absolute Rotation of Saccharimetric Normal Sucrose Solutions (*).—The rotation of the saccharimetric normal sucrose solution for $\lambda=5461$ Å by direct measurement is: 100° sucrose = 40.763° of arc. Since the rotation ratio for the saccharimetric normal solution for $\lambda=5892.5$ Å and $\lambda=5461$ Å is 0.84922° the rotation of the saccharimetric normal solution for $\lambda=5892.5$ Å is 34.617°.

Rotation Ratios for Quartz and for Sucrose Solutions (9).—The ratios of the rotations in circ. deg. of quartz and of sucrose solutions

for two wave lengths are as follows: For quartz $\frac{\phi_{\lambda=5892.5\mathring{A}}^{20}}{\phi_{\lambda=5461\mathring{A}}^{20}}$ =

0.85085 and for sucrose
$$\frac{\phi^{20} - 5592.5\hat{K}}{\phi^{20} - 5461\hat{K}} = 0.84922.$$

Rotatory Dispersion Curves of Quartz and of Sucrose Solution (9).— The difference between the rotations of the normal quartz plate and the saccharimetric normal sucrose solution for $\lambda=589.25 \mathrm{m}\mu$ is 0.003° and for $\lambda=546.1 \mathrm{m}\mu$, 0.073°. The values indicate that the rotatory dispersion curves of plate and solution cross at about $\lambda=585 \mathrm{m}\mu$. The reading of the saccharimetric normal solution on the true saccharimeter scale with the source $\lambda=589.25 \mathrm{m}\mu$ has been calculated to be $99.99^{\circ}S$.

Rotation Difference, in Sucrose Degrees, for Saccharimetric Normal Sucrose Solution between $\lambda = 5461$ Å and $\lambda = 5892.5$ Å.—Saccharimeter reading ($\lambda = 5461$ Å) — saccharimeter reading ($\lambda = 5892.5$ Å) = $0.192^{\circ}S$ (9).

C12H22O11, SUCROSE

(Composition: Levulose < > Dextrose)

Optical Rotation

In H₂O

(p = wt. % sucrose; C = g sucrose per 100 ml solution). $[\alpha]_D^{20} = 66.386^{\circ} + 0.015035 p - 0.0003986 p^2$ [Tollens (88)]. $[\alpha]_D^{20} = 66.438^{\circ} + 0.01031_2 p - 0.0003545 p^2$ [Nasini and Villa-

vecchia (67)]. Landolt (55) has combined the above giving: $[\alpha]_D^{10} = 66.435^\circ + 0.00870C - 0.00023C^2$, (C from 0 to 65) or, $[\alpha]_D^{10} = 66.412^\circ + 0.012673p - 0.0003765p^2$ between p = 0 and 50 wt. %; all weights in vacuo.

λ , $(m\mu)$	589.2	5 (D)	54	6.1	Based on		
$[\alpha]^{20}_{\lambda}$	66.53	66.50	78.34	78.29	weights		
Lit.	(9)	(84)	(9)	(84)	in vacuo		

Specific Rotation of Sucrose in H₂O for Different Wave Lengths

λ, mμ	$[\alpha]^{18} (70)$	λ, mμ	[a] ²⁰ (59)
589	66.8	Hg, 546.1	78.16
500	99.8	Cu, 521.8	86.21
450	122.2	Cu, 515.3	88.68
400	149.9	Cu, 510.6	90.46
350	192.9	Cd, 508.6	91.16
300	297.7	Zn, 481.1	103.07
250	543 .0	Cd, 480.0	103.62
λ, mμ	$[\alpha]^{22}$ (46)	Zn, 472.2	107.38
1300	11.93	Zn, 468.0	109.49
1200	14.21	Cd, 467.8	109.69
1100	17.02	Fe, 438.4	126.5
1000	20.76	Fe, 437.6	127.2
900	26.32	Hg, 435.8	128.49
800	33.93	Fe, 435.3	128.5
700	44.68	Fe, 433.7	129.8
600	62.48	Fe, 431.5	130.7
	[\alpha]^{20} (59)	Fe, 428.2	133.6
λ, mμ		Fe, 427.2	134.2
Li, 670.8	50.51	Fe, 426.1	134.9
Cd, 643.8	55 . 04	Fe, 419.1	140.0
Zn, 636.2	56.51	Fe, 414.4	144.2
Na, 589.3	66.45	Fe, 388.9	166.7
Cu, 578.2	69.10	Fe, 383.3	171.8
Hg, 578.0	69.22	Fe, 382.6	173.1
Cu, 570.0	71.24		

Values of $[\alpha]^{20}_{\lambda}$ for Sucrose in Water and in Pyridine (30) C = moles sucrose per liter of solution

•	\overline{c}		Water		Pyridine			
_	λ , $(m\mu)$	1 6	16	1 33	1	16	372	
	656	53.18	53.32	53.48	64.86	65.44	65.98	
	589	66.5	66.71	66.81	84.37	85.10	85.89	
	535				99.22			
	508	91.53	91.79	92.59	114.37	116.15	118.01	
	479	104.24	104.67	105.42	133.67	135.5	137.23	
	447	121.63	122.80	123.80	152.25	154.38	156.57	

SUCROSE IN PYRIDINE (96)

% S	0	1	2	4	6.25
d_4^{25}	0.9735	0.9805	0.9829	0.9912	1.0010
$[\alpha]_{\mathrm{D}}^{2b}$		86.7	85.9	84.7	83.6

<i>t</i> , °C	-10	0	+10	25	45	65	85	105
d_4^t	1.034	1.0248	1.0510	1.0005	0.9811	0.9619	0.9420	0.9220
$[\alpha]_{\mathrm{D}}^{t}$	88.7	87.3	85.6	83.8	82.0	80.3	78.5	77.0

EFFECT OF SALTS ON THE ROTATION OF SUCROSE IN H2O AT 20°C

The rotation in deg. S of a saccharimetric normal sucrose solution containing m grams of salt per 100 ml of solution is expressed by the equation R = 100 - am, where a has the following values:

%H2O

80.0

79.9

79.8

79.7

79.6

79.5

79.4

79.3

79.2

79.1

79.0

78.9

78.8

78.7

78.6

78.5

78.4

78.3

78.2

78.1

78.0

77.9

77.8

 n_{D}^{20}

1.3639

1.3641

1.3642

1.3644

1.3645

1.3647

1.3649

1.3650

1.3652

1.3653

1.3655

1.3657

1.3658

1.3660

1.3662

1.3663

1.3665

1.3667

1.3669

1.3670

1.3672

1.3674

1.3675

 $n_{
m D}^{20}$

1.3464

1.3465

1.3467

1.3469

1.3470

1.3471

1.3473

1.3475

1.3476

1.3477

1.3479

1.3481

1.3482

1.3483

1.3485

1.3487

1.3488

1.3489

1.3491

1.3493

1.3494

1.3496

1.3497

%H2O

91.0

90.9

90.8

90.7

90.6

90.5

90.4

90.3

90.2

90.1

90.0

89.9

89.8

89.7

89.6

89.5

89.4

89.3

89.2

89.1

89.0

88.9

88.8

 n_{D}^{20}

1.3549

1.3551

1.3552

1.3554

1.3555

1.3557

1.3559

1.3560

1.3562

1.3563

1.3565

1.3567

1.3568

1.3570

1.3571

1.3573

1.3575

1.3576

1.3578

1.3580

1.3582

1.3583

1.3585

|%H₂O

85.5

85.4

85.3

85.2

85.1

85.0

84.9

84.8

84.7

84.6

84.5

84.4

84.3

84.2

84.1

84.0

83.9

83.8

83.7

83.6

83.5

83.4

83.3

Salt	NaCl	NH ₄ Cl	K ₂ C ₂ O	CaCl2	Pb (C ₂ H	[3O2)2; v.	Fig. 1
a	0.265	0.169	0.234	0.339	m	1.0 2.	05.0
$m_{ m max}$	3.7	6.8	4.0	3.3	R - 100	0.03 0.0	40.11

 $[\alpha]_D^{25}$ for a 9.60% sucrose solution containing NaCl is expressed by the equation $[\alpha]_D^{25} = 66.410 - 1.456r$ for values of r up to 1.3; r = ratio, g NaCl to g sugar (91, 92, 93).

Refractive Index

REFRACTIVE INDEX OF AQUEOUS SUCROSE SOLUTIONS AT 20°C (83)
Schönrock's table for determining water in sucrose solutions by

means of the Abber efractometer (83)	Schönro	ck's table for	determinir	ng water	in sucrose soluti	ons by	1.0491	00.0	1.3383	83.3	1.3075	11.8
1.3331 100.0		means o	of the Abbe	refractom	eter (83)	•	1.3499	88.7	1.3587	83 .2	1.3677	77.7
1.3330 100.0 1.3374 97.0 1.3418 94.0 1.3502 88.5 1.3590 83.0 1.3681 77.5 1.3331 99.9 1.3375 96.9 1.3419 93.8 1.3504 88.4 1.3592 82.9 1.3682 77.4 1.3333 99.6 1.3378 96.7 1.3421 93.8 1.3507 88.2 1.3596 82.7 1.3686 77.2 1.3333 99.6 1.3381 96.5 1.3424 93.6 1.3508 88.1 1.3506 82.7 1.3686 77.2 1.3337 99.5 1.3381 96.5 1.3425 93.4 1.3512 87.9 1.3600 82.4 1.3699 77.0 1.3340 99.3 1.3384 96.3 1.3429 93.4 1.3512 87.9 1.3600 82.4 1.3699 76.9 1.3341 99.2 1.3385 96.2 1.3430 93.2 1.3515 87.7 1.3600 82.3 1.3692 <t< td=""><td>20</td><td>le II O</td><td>20 1</td><td>~ II O</td><td>20 1</td><td>~ 17 0</td><td>1.3500</td><td>88.6</td><td>1.3588</td><td>83.1</td><td>1.3679</td><td>77.6</td></t<>	20	le II O	20 1	~ II O	20 1	~ 17 0	1.3500	88.6	1.3588	83.1	1.3679	77.6
1. 3331 99.8 1. 3375 96.9 1. 3419 93.9 1. 3504 88.4 1. 3592 82.9 1. 3882 77.4 1. 3333 99.8 1. 3377 96.8 1. 3421 93.8 1. 3507 88.2 1. 3598 82.8 1. 3684 77.2 1. 3336 99.6 1. 3389 96.6 1. 3424 93.6 1. 3508 88.1 1. 3598 82.6 1. 3687 77.1 1. 3337 99.5 1. 3381 96.5 1. 3425 93.5 1. 3510 88.0 1. 3598 82.5 1. 3689 77.0 1. 3334 99.3 1. 3382 96.4 1. 3427 93.4 1. 3512 87.9 1. 3600 82.4 1. 3691 76.9 1. 3341 99.2 1. 3385 96.2 1. 3430 93.2 1. 3515 87.7 1. 3603 82.2 1. 3694 76.7 1. 3344 99.1 1. 3388 96.0 1. 3433 93.1 1. 3516 87.5 1. 3604 82.2 1. 3694 76.7 1. 33445 98.9 1. 3389 95.9												
1.3333 99.8 1.3377 96.8 1.3421 93.8 1.3505 88.3 1.3593 82.8 1.3684 77.3 1.3334 99.7 1.3387 96.7 1.3423 93.7 1.3507 88.2 1.3595 82.7 1.3686 77.2 1.3337 99.5 1.3381 96.5 1.3425 93.5 1.3512 87.9 1.3600 82.5 1.3689 77.0 1.3334 99.4 1.3382 96.4 1.3427 93.4 1.3512 87.9 1.3600 82.4 1.3691 76.9 1.3340 99.3 1.3384 96.3 1.3429 93.3 1.3513 87.8 1.3601 82.2 1.3692 76.8 1.3341 99.2 1.3385 96.2 1.3430 93.2 1.3515 87.7 1.3603 82.2 1.3694 76.7 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3347 98.8 1.3391 95.8 1.34339 92.9							1.3502		1.3590	83.0	1.3681	77.5
1. 3334 69.7 1. 3378 96.7 1. 3423 93.7 1. 3508 88.2 1. 3595 82.7 1. 3686 77.2 1. 3337 99.5 1. 3381 96.5 1. 3425 93.5 1. 3510 88.0 1. 3596 82.5 1. 3687 77.0 1. 3337 99.4 1. 3382 96.4 1. 3427 93.4 1. 3512 87.9 1. 3600 82.4 1. 3691 76.9 1. 3341 99.3 1. 3385 96.2 1. 3430 93.2 1. 3515 87.7 1. 3601 82.2 1. 3694 76.9 1. 3342 99.1 1. 3385 96.2 1. 3430 93.2 1. 3515 87.7 1. 3601 82.2 1. 3694 76.7 1. 3342 99.1 1. 3388 96.0 1. 3433 93.0 1. 3516 87.6 1. 3604 82.1 1. 3698 76.5 1. 3344 99.0 1. 3388 96.0 1. 3433 93.0 1. 3518 87.5 1. 3608 82.1 1. 3698 76.5 1. 3344 99.0 1. 3688 95.9		1					1.3504	88.4	1.3592	82.9	1.3682	77.4
1.3336 99.6 1.3380 96.6 1.3424 93.6 1.3508 88.1 1.3596 82.6 1.3687 77.1 1.3337 99.5 1.3381 96.5 1.3425 93.5 1.3510 88.0 1.3598 82.5 1.3689 77.0 1.33340 99.3 1.3884 96.3 1.3429 93.3 1.3513 87.8 1.3600 82.4 1.3691 76.9 1.3341 99.2 1.3385 96.2 1.3430 93.2 1.3513 87.8 1.3601 82.2 1.3694 76.7 1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.2 1.3694 76.7 1.3342 99.1 1.3388 96.0 1.3433 93.1 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3606 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3436 92.8					1	93.8	1.3505	88.3	1.3593	82.8	1.3684	77.3
1.3337 99.5 1.3381 96.5 1.3425 93.5 1.3510 88.0 1.3598 82.5 1.3699 77.0 1.3338 99.4 1.3382 96.4 1.3427 93.4 1.3512 87.9 1.3600 82.4 1.3691 76.9 1.3340 99.3 1.3384 96.3 1.3429 93.3 1.3513 87.8 1.3601 82.3 1.3692 76.8 1.3341 99.2 1.3385 96.2 1.3430 93.2 1.3515 87.7 1.3603 82.2 1.3694 76.7 1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.1 1.3696 76.6 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.3 1.3608 81.9 1.3609 76.3 1.3348 98.7 1.3393 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3350 98.6 1.3394 95.6 1.3439 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3709 75.8 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3355 98.3 1.3399 95.1 1.3447 92.1 1.3522 86.6 1.3624 80.9 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3624 80.9 1.3711 75.7 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3624 80.9 1.3711 75.7 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3624 80.9 1.3716 75.5 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3713 75.6 1.3369 97.8 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3624 80.9 1.3716 75.3 1.3368 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3713 75.5 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3549 85.9 1.3634 80.3 1.3720 75.2 1.3368 97.4 1.3413 94.3 1.3456 91.5 1.3546 85.7 1.3634 80.3 1.3726 74.9 1.3369 97.3 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7					ı	93.7	1.3507		1.3595	82.7	1.3686	77.2
1.3338 99.4 1.3382 96.4 1.3427 93.4 1.3512 87.9 1.3600 82.4 1.3691 76.9 1.3340 99.3 1.3384 99.3 1.3431 87.8 1.3601 82.3 1.3692 76.9 1.3341 99.2 1.3385 96.1 1.3431 93.1 1.3516 87.7 1.3604 82.2 1.3694 76.7 1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.1 1.3698 76.6 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.4 1.3608 81.9 1.3699 76.4 1.3343 98.7 1.3339 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3701 76.2 1.3351 98.6 1.3399 95.5 1.3441 92.5 1.3526 87.0	1.3336	99.6	1.3380	96.6	1.3424	93.6	1.3508	88.1	1.3596	82.6	1.3687	77.1
1.3338 99.4 1.3382 96.4 1.3427 93.4 1.3512 87.9 1.3600 82.4 1.3691 76.9 1.3340 99.3 1.3384 99.3 1.3431 87.8 1.3601 82.3 1.3692 76.9 1.3341 99.2 1.3385 96.1 1.3431 93.1 1.3516 87.7 1.3604 82.2 1.3694 76.7 1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.1 1.3698 76.6 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.4 1.3608 81.9 1.3699 76.4 1.3343 98.7 1.3339 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3701 76.2 1.3351 98.6 1.3399 95.5 1.3441 92.5 1.3526 87.0			1									l
1.3340 99.3 1.3844 96.3 1.3429 93.3 1.3513 87.8 1.3601 82.3 1.3692 76.8 1.3341 99.2 1.3385 96.2 1.3430 93.2 1.3515 87.7 1.3603 82.2 1.3694 76.7 1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.1 1.3696 76.6 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3345 98.9 1.3391 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3345 98.8 1.3391 95.8 1.3436 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3350 98.6 1.3394 95.6 1.3439 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3351 98.5 1.3399 95.5 1.3441 92.5							1.3510	88.0	1.3598	82.5	1.3689	77.0
1.3341 99.2 1.3385 96.2 1.3430 93.2 1.3515 87.7 1.3603 82.2 1.3694 76.7 1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.1 1.3696 76.6 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.3 1.3608 81.9 1.3609 76.2 1.3350 98.6 1.3394 95.6 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3352 98.4 1.3397 95.4 1.3442 92.4			•		1.3427	93.4	1.3512	87.9	1.3600	82.4	1.3691	76.9
1.3342 99.1 1.3387 96.1 1.3431 93.1 1.3516 87.6 1.3604 82.1 1.3996 70.6 1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3606 82.0 1.3698 76.5 1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3348 98.7 1.3394 95.6 1.3439 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3399 95.4 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3355 98.3 1.3434 92.3 1.3529 86.9					1.3429	93.3	1.3513	87.8	1.3601	82.3	1.3692	76.8
1.3344 99.0 1.3388 96.0 1.3433 93.0 1.3518 87.5 1.3608 82.0 1.3698 76.5 1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.3 1.3609 81.8 1.3701 76.3 1.3348 98.7 1.3393 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3704 76.2 1.3350 98.6 1.3394 95.6 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2		99.2	1.3385	96.2	1.3430	93.2	1.3515	87.7	1.3603	82.2	1.3694	76.7
1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.3 1.3608 81.9 1.3609 76.4 1.3348 98.7 1.3393 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3350 98.6 1.3394 95.6 1.3439 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3529 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.2 1.3400 95.2 1.3443 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3356 98.0 1.3403 95.0 1.3448 92.0	1.3342	99.1	1.3387	96.1	1.3431	93.1	1.3516	87.6	1.3604	82.1	1.3696	76.6
1.3345 98.9 1.3389 95.9 1.3435 92.9 1.3520 87.4 1.3608 81.9 1.3699 76.4 1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.3 1.3608 81.9 1.3609 76.4 1.3348 98.7 1.3393 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3350 98.6 1.3394 95.6 1.3439 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3529 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.2 1.3400 95.2 1.3443 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3356 98.0 1.3403 95.0 1.3448 92.0					1							
1.3347 98.8 1.3391 95.8 1.3436 92.8 1.3521 87.3 1.3609 81.8 1.3701 76.3 1.3348 98.7 1.3393 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3350 98.6 1.3394 95.6 1.3441 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.0 1.3403 95.0 1.3448 92.0		-	1.3388		1.3433	93.0	1.3518	87.5	1.3606	82.0	1.3698	76.5
1.3348 98.7 1.3393 95.7 1.3437 92.7 1.3523 87.2 1.3611 81.7 1.3703 76.2 1.3350 98.6 1.3394 95.6 1.3439 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3527 86.9 1.3616 81.4 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3361 97.9 1.3403 95.0 1.3448 92.0	1.3345	98.9	1.3389	95.9	1.3435	92.9	1.3520	87.4	1.3608	81.9	1.3699	76.4
1.3350 98.6 1.3394 95.6 1.3439 92.6 1.3524 87.1 1.3612 81.6 1.3704 76.1 1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9	1.3347	98.8	1.3391	95 .8	1.3436	92.8	1.3521	87.3	1.3609	81.8	1.3701	76.3
1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8	1.3348	98.7	1.3393	95.7	1.3437	92.7	1.3523	87.2	1.3611	81.7	1.3703	76.2
1.3351 98.5 1.3395 95.5 1.3441 92.5 1.3526 87.0 1.3614 81.5 1.3706 76.0 1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8	1.3350	98.6	1.3394	95.6	1.3439	92.6	1.3524	87.1	1.3612	81.6	1.3704	76.1
1.3353 98.4 1.3397 95.4 1.3442 92.4 1.3527 86.9 1.3616 81.4 1.3708 75.9 1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3448 92.0 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3403 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7												
1.3355 98.3 1.3399 95.3 1.3443 92.3 1.3529 86.8 1.3617 81.3 1.3709 75.8 1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.5 1.3411 94.5 1.3456 91.5	1.3351	98.5	1.3395	95.5	1.3441	92.5	1.3526	87.0	1.3614	81.5	1.3706	76.0
1.3356 98.2 1.3400 95.2 1.3445 92.2 1.3531 86.7 1.3619 81.2 1.3711 75.7 1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3631 80.5 1.3721 75.1 1.3368 97.4 1.3412 94.4 1.3458 91.4	1.3353	98.4	1.3397	95 .4	1.3442	92.4	1.3527	86.9	1.3616	81.4	1.3708	75.9
1.3357 98.1 1.3401 95.1 1.3447 92.1 1.3532 86.6 1.3620 81.1 1.3713 75.6 1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3415 94.2 1.3461 <td>1.3355</td> <td>98.3</td> <td>1.3399</td> <td>95.3</td> <td>1.3443</td> <td>92.3</td> <td>1.3529</td> <td>86.8</td> <td>1.3617</td> <td>81.3</td> <td>1.3709</td> <td>75.8</td>	1.3355	98.3	1.3399	95 .3	1.3443	92.3	1.3529	86.8	1.3617	81.3	1.3709	75.8
1.3359 98.0 1.3403 95.0 1.3448 92.0 1.3533 86.5 1.3622 81.0 1.3715 75.5 1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3	1.3356	98.2	1.3400	95.2	1.3445	92.2	1.3531	86.7	1.3619	81.2	1.3711	75.7
1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2	1.3357	98.1	1.3401	95.1	1.3447	92.1	1.3532	86.6	1.3620	81.1	1.3713	75.6
1.3361 97.9 1.3405 94.9 1.3450 91.9 1.3535 86.4 1.3624 80.9 1.3716 75.4 1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2												
1.3362 97.8 1.3406 94.8 1.3451 91.8 1.3537 86.3 1.3625 80.8 1.3718 75.3 1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3627 80.7 1.3720 75.2 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3359	98.0	1.3403	95.0	1.3448	92.0	1.3533	86.5	1.3622	81.0	1.3715	75.5
1.3363 97.7 1.3407 94.7 1.3453 91.7 1.3538 86.2 1.3627 80.7 1.3720 75.2 1.3365 97.6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3361	97.9	1.3405	94.9	1.3450	91.9	1.3535	86.4	1.3624	80.9	1.3716	75.4
1.3365 97 6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3362	97.8	1.3406	94 .8	1.3451	91.8	1.3537	86.3	1.3625	80.8	1.3718	75.3
1.3365 97 6 1.3409 94.6 1.3454 91.6 1.3539 86.1 1.3629 80.6 1.3721 75.1 1.3367 97.5 1.3411 94.5 1.3456 91.5 1.3541 86.0 1.3631 80.5 1.3723 75.0 1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3363	97.7	1.3407	94.7	1.3453	91.7	1.3538	86.2	1.3627	80.7	1.3720	75.2
1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3365	97 6	1.3409	94.6	1.3454	91.6	1.3539	86.1	1.3629	80.6		
1.3368 97.4 1.3412 94.4 1.3458 91.4 1.3543 85.9 1.3632 80.4 1.3725 74.9 1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7												
1.3369 97.3 1.3413 94.3 1.3459 91.3 1.3544 85.8 1.3634 80.3 1.3726 74.8 1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3367	97.5	1.3411	94.5	1.3456	91.5	1.3541	86.0	1.3631	80.5	1.3723	75.0
1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3368	97.4	1.3412	94.4	1.3458	91.4	1.3543	85.9	1.3632	80.4		l .
1.3371 97.2 1.3415 94.2 1.3461 91.2 1.3546 85.7 1.3636 80.2 1.3728 74.7	1.3369	97.3	1.3413	94.3	1.3459	91.3	1.3544	85.8	1.3634	80.3	1.3726	74.8
	1.3371	97.2	1.3415	94.2	1.3461	91.2	1.3546	85.7		80.2	1.3728	
	1.3373	97.1	1.3417	94.1	1.3462	91.1	1.3547	85.6	1.3637		1.3730	74.6

20	1	20	l == ** 0	20	l = 17 0		l~ ** ^	20	ا معتد م	20	l~ II A
n_{D}^{20}	%H ₂ O	n_{D}^{20}	%H ₂ O	n_{D}^{20}	%H ₂ O	n_{D}^{20}	%H ₂ O	$n_{ m D}^{20}$	%H <u>.</u> O	n_{D}^{20}	%H₂O
1.3731	74.5	1.3829	69.0	1.3929	63.5	1.4036	58.0	1.4147	52.5	1.4264	1
1.3733	74.4	1.3831	68 .9	1.3 931	63.4	1.4038	57 .9	1.4150	52.4	1.4266	46.9
1.3735	74.3	1.3833	68.8	1.3933	63.3	1.4040	57 .8	1.4152	52.3	1.4268	46.8
1.3737	74.2	1.3834	68.7	1.3935	63.2	1.4042	57.7	1.4154	52.2	1.4270	46.7
1.3738	74.1	1.3836	68.6	1.3937	63.1	1.4044	57.6	1.4156	52.1	1.4272	46.6
1.3740	74.0	1.3838	68.5	1.3939	63.0	1.4046	57.5	1.4158	52.0	1.4275	46.5
1.3742	73 .9	1.3840	68.4	1.3941	62.9	1.4048	57.4	1.4160	51.9	1.4277	46.4
1.3744	73.8	1.3842	68.3	1.3943	62.8	1.4050	57.3	1.4162	51.8	1.4279	
1.3745	73.7	1.3843	68.2	1.3945	62.7	1.4052	57.2	1.4164	51.7	1.4281	46.2
1.3747	73.6	1.3845	68.1	1.3947	62.6	1.4054	57.1	1.4166	51.6	1.4283	46.1
										1 4005	40.0
1.3749	73.5	1.3847	68.0	1.3949	62.5	1.4056	57.0	1.4169	51.5	1.4285	1
1.3751	73.4	1.3849	67.9	1.3950	62.4	1.4058	56.9	1.4171	51.4	1.4287	45.9
1.3753	73.3	1.3851	67.8	1.3952	62.3	1.4060	56.8	1.4173	51.3	1.4289	45.8
1.3754	73.2	1.3852	67.7	1.3954	62.2	1.4062	56.7	1.4175	51.2	1.4292	45.7
1.3756	73.1	1.3854	67.6	1.3956	62.1	1.4064	56.6	1.4177	51.1	1.4294	45.6
4 05 00		4 00-0		4 0000		1 1000				1 4000	45.5
1.3758	73.0	1.3856	67.5	1.3958	62.0	1.4066	56.5	1.4179	51.0	1.4296	45.5
1.3760	72.9	1.3858	67.4	1.3960	61.9	1.4068	56.4	1.4181	50.9	1.4298	45.4
1.3761	72.8	1.3860	67.3	1.3962	61.8	1.4070	56.3	1.4183	50.8	1.4300	45.3
1.3763	72.7	1.3861	67.2	1.3964	61.7	1.4072	56.2	1.4185	50.7	1.4303	45.2
1.3765	72.6	1.3863	67.1	1.3966	61.6	1.4074	56.1	1.4187	50.6	1.4305	45.1
						4.40=0		1 4100		1 4007	45.0
1.3767	72.5	1.3865	67.0	1.3968	61.5	1.4076	56.0	1.4189	50.5	1.4307	45.0
1.3768	72.4	1.3867	66.9	1.3970	61.4	1.4078	55.9	1.4192	50.4	1.4309	44.9
1.3770	72.3	1.3869	66.8	1.3972	61.3	1.4080	55.8	1.4194	50.3	1.4311	44 8
1.3772	72.2	1.3870	66.7	1.3974	61.2	1.4082	55.7	1.4196	50.2	1.4313	1
1.3773	72.1	1.3872	66.6	1.3976	61.1	1.4084	55.6	1.4198	50.1	1.4316	44.6
1 0777	70.0	1 0074		1 0070	0.0			1 4000	50.0	1 4910	44.5
1.3775	72.0	1.3874	66.5	1.3978	61.0	1.4086	55.5	1.4200	50.0	1.4318	
1.3777	71.9	1.3876	66.4	1.3980	60.9	1.4088	55.4	1.4202	49.9	1.4320	44.4
1.3779	71.8	1.3878	66.3	1.3982	60.8	1.4090	55.3	1.4204	49.8	1.4322	44.3
1.3780	71.7	1.3879	66.2	1.3984	60.7	1.4092	55.2	1.4206	49.7	1.4325	4
1.3782	71.6	1.3881	66.1	1.3986	60.6	1.4094	55.1	1.4208	49.6	1.4327	44.1
1 0504				4 000=		1 4000			40.5	1 4000	1,,,
1.3784	71.5	1.3883	66.0	1.3987	60.5	1.4096	55.0	1.4211	49.5	1.4329	44.0
1.3786	71.4	1.3885	65.9	1.3989	60.4	1.4098	54.9	1.4213	49.4	1.4331	43.9
1.3788	71.3	1.3887	65.8	1.3991	60.3	1.4100	54.8	1.4215	49.3	1.4333	1
1.3789	71.2	1.3889	65.7	1.3993	60.2	1.4102	54.7	1.4217	49.2	1.4336	43.7
1.3791	71.1	1.3891	65.6	1.3995	60.1	1.4104	54.6	1.4219	49.1	1.4338	43.6
4 0000											40.5
1.3793		1.3893		1.3997		1.4107	-	1.4221		1.4340	
1.3795	70.9	1.3894	65.4	1.3999	59.9	1.4109	54.4	1.4223	48.9	1.4342	
1.3797	70.8	1.3896	65.3	1.4001	59.8	1.4111	54.3	1.4225	48.8	1.4344	
1.3798	70.7	1.3898	65.2	1.4003	59.7	1.4113	54.2	1.4227	48.7	1.4347	43.2
1.3800	70.6	1.3900	65.1	1.4005	59.6	1.4115	54.1	1.4229	48.6	1.4349	43.1
1 0000	70. 5		05.5			, ,,,-	٠		40 -	4 40-4	40.0
1.3802	70.5	1.3902	65.0	1.4007	59.5	1.4117	54.0	1.4231	48.5	1.4351	43.0
1.3804	70.4	1.3904	64.9	1.4008	59.4	1.4119	53.9	1.4234	48.4	1.4353	
1.3806	70.3	1.3906	64.8	1.4010	59.3	1.4121	53.8	1.4236	48.3	1.4355	
1.3807	70.2	1.3907	64.7	1.4012	59.2	1.4123	53.7	1.4238	48.2	1.4358	1
1.3809	70.1	1.3909	64.6	1.4014	59.1	1.4125	53.6	1.4240	48.1	1.4360	42.6
1 0011	70.0		04.5			1 450=	F0 -		40.0		1
1.3811	70.0	1.3911	64.5	1.4016	59.0	1.4127	53.5	1.4242	48.0	1.4362	42.5
1.3813	69.9	1.3913	64.4	1.4018	58.9	1.4129	53.4	1.4244	47.9	1.4364	
1.3815	69.8	1.3915	64.3	1.4020	58.8	1.4131	53.3	1.4246	47.8	1.4366	42.3
1.3816	69.7	1.3916	64.2	1.4022	58.7	1.4133	53.2	1.4249	47.7	1.4369	42.2
1.3818	69.6	1.3918	64.1	1.4024	58.6	1.4135	53.1	1.4251	47.6	1.4371	42.1
1 0000	en -	1 0000		1 4000	F0 F	1 4.0=	50.0	1 4050	47 -	1 4070	40.0
1.3820	69.5	1.3920	64.0	1.4026	58.5	1.4137	53.0	1.4253	47.5	1.4373	42.0
1.3822	69.4	1.3922	63.9	1.4028	58.4	1.4139	52.9	1.4255	47.4	1.4375	
1.3824	69.3	1.3924	63.8	1.4030	58.3	1.4141	52.8	1.4257	47.3	1.4378	41.8
1.3825	69.2	1.3926	63.7	1.4032	58.2	1.4143	52.7	1.4260	47.2	1.4380	
1.3827	1 69.1	1.3928	63.6	1.4034	58.1	1.4145	52.6	1.4262	47.1	1.4382	141.6

n_D²⁰ |%H₂O

$n_{ m D}^{20}$	%H ₂ O	$n_{ m D}^{20}$	%H₂O	$n_{ m D}^{20}$	%H ₂ O	n_{D}^{20}	%H ₂ O
1.4385	41.5	1.4509	36.0	1.4637	30.6	1.4772	25.1
1.4387	41.4	1.4511	35.9	1.4639	30.5	1.4774	25.1 25.0
1.4389	41.3	1.4514	35.8	1.4642	30.4	1.4777	24.9
1.4391	41.2		35.7	1.4644	30.4	1.4779	24.8
		1.4516					
1.4394	41.1	1.4518	35.6	1.4646	30.2	1.4782	24.7
1.4396	41.0	1.4521	35.5	1.4649	30.1	1.4784	24.6
1.4398	40.9	1.4523	35.4	1.4651	30.0	1.4787	24.5
1.4400	40.8	1.4525	35.3	1.4653	29.9	1.4789	24.4
1.4403	40.7	1.4527	35.2	1.4656	29.8	1.4792	24.3
1.4405	40.6	1.4530	35.1	1.4658	29.7	1.4794	24.2
1.1100	10.0	1.1000	00.1	1.1000	20.0	1.1.01	
1.4407	40.5	1.4532	35.0	1.4661	29.6	1.4797	24.1
1.4409	40.4	1.4534	34.9	1.4663	29.5	1.4799	24.0
1.4411	40.3	1.4537	34.8	1.4666	29.4	1.4802	23.9
1.4414	40.2	1.4539	34.7	1.4668	29.3	1.4804	23.8
1.4416	40.1	1.4541	34.6	1.4671	29.2	1.4807	23.7
1.4418	40.0	1.4544	34.5	1.4673	29.1	1.4810	23.6
1.4420	39.9	1.4546	34.4	1.4676	29.0	1.4812	23.5
1.4423	39.8	1.4548	34.3	1.4678	28.9	1.4815	23.4
1.4425	39.7	1.4550	34.2	1.4681	28.8	1.4817	23.3
1.4427	3 9. 6	1.4553	34.1	1.4683	28.7	1.4820	23.2
				4 400=		4 4000	
1.4429	39.5	1.4555	34.0* .	1.4685	28.6	1.4822	23.1
1.4432	39.4	1.4558	34.0	1.4688	28.5	1.4825	23.0
1.4434	39.3	1.4561	33.9	1.4690	28.4	1.4827	22.9
1.4436	39.2	1.4563	33.8	1.4693	28.3	1.4830	22.8
1.4439	39.1	1.4565	33.7	1.4695	28.2	1.4832	22.7
1.4441	39.0	1.4567	33.6	1.4698	28.1	1.4835	22.6
1.4443	38.9	1.4570	33.5	1.4700	28.0	1.4838	22.5
1.4446	38.8	1.4572	33.4	1.4703	27.9	1.4840	22.4
1.4448	38.7	1.4574	33.3	1.4705	27.8	1.4843	22.3
1.4450	38.6	1.4577	33.2	1.4708	27.7	1.4845	22.2
1.7700	30.0	1.4077	00.2	1.4700	21.1	1.4040	22.2
1.4453	38.5	1.4579	33.1	1.4710	27.6	1.4848	22.1
1.4455	38.4	1.4581	33.0	1.4713	27.5	1.4850	22.0
1.4457	38.3	1.4584	32.9	1.4715	27.4	1.4853	21.9
1.4459	38.2	1.4586	32.8	1.4717	27.3	1.4855	2 1.8
1.4462	38.1	1.4588	32.7	1.4720	27.2	1.4858	
							lues of the
1.4464	38.0	1.4591	32.6	1.4722	27.1		
1.4466	37.9	1.4593	32.5	1.4725	27.0	REFR	ACTIVE I
1.4468	37.8	1.4595	32.4	1.4727	26.9		Темр
1.4471	37.7	1.4598	32.3	1.4730	26 .8	_	H ₂ O 95
1.4473	37.6	1.4600	32.2	1.4732	26.7	C_	
	o= -				00.5	15	0.2
1.4475	37.5	1.4602	32.1	1.4735	26.6	16	0.2
1.4477	37.4	1.4605	32 .0	1.4737	26.5	17	0.10
1.4479	37.3	1.4607	31.9	1.4740	26 4	18	0.1
1.4482	37.2	1.4609	31.8	1.4742	26.3	19	0.0
1.4484	37.1	1.4612	31.7	1.4744	26.2		
1.4486	37.0	1.4614	31.6	1.4747	26.1	21	0.0
1.4488	36.9	1.4616	31.5	1.4749	26.0	22	0.1
1.4400	36.8	1.4619	31.4	1.4752	25.9	23	0.18
1.4491	36.7	1.4621	31.3	1.4754	25.8 25.8	24	0.2
		1.4623	31.2	1.4757	25.7	25	0.30
1.4495	36.6	1.7020	01.2	1.4101	20.1	26	0.30
1 4407	36.5	1.4625	31.1	1.4759	25.6	27	0.4
1.4497						28	0.50
1.4500	36.4	1.4628	31.0	1.4762	25.5	29	0.5
1.4502	36.3 36.2	1.4630 1.4632	30.9 30.8	1.4764 1.4767	25.4 25.3	30	0.6
1.4504 1.4507		1.4632		1.4767		% H:	O 95
1.7007	5 5. I	I. TOOO	50. I	1.1100	20.2	* These	are correcte

$n_{ m D}$	%H2U		%H2U		1%1130
1.4772	25.1	1.4860	21.6	1.4951	18.1
1.4774	25.0	1.4863	21.5	1.4954	18.0
1.4777	24.9	1.4865	21.4	1.4956	17.9
1.4779	24.8	1.4868	21.3	1.4959	17.8
1.4782	24.7	1.4871	21.2	1.4962	17.7
			i		
1.4784	24.6	1.4873	21.1	1.4964	17.6
1.4787	24.5	1.4876	21.0	1.4967	17.5
1.4789	24.4	1.4878	20.9	1.4970	17.4
1.4792	24.3	1.4881	20.8	1.4972	17.3
1.4794	24.2	1.4883	20.7	1.4975	17.2
					ł
1.4797	24.1	1.4886	20.6	1.4978	17.1
1.4799	24.0	1.4888	20.5	1.4980	17.0
1.4802	23.9	1.4891	20.4	1.4983	16.9
1.4804	23.8	1.4893	20.3	1.4985	16.8
1.4807	23.7	1.4896	20.2	1.4988	16.7
1.4810	23.6	1.4898	20.1	1.4991	16.6
1.4812	23.5	1.4901	20.0	1.4993	16.5
1.4815	23.4	1.4904	19.9	1.4996	16.4
1.4817	23.3	1.4906	19.8	1.4999	16.3
1.4820	23.2	1.4909	19.7	1.5001	16.2
1.4822	23.1	1.4912	19.6	1.5004	16.1
1.4825	23.0	1.4914		1.5007	16.0
1.4827	22.9	1.4917	19.4	1.5009	15.9
1.4830	22.8	1.4919	19.3	1.5012	15.8
1.4832	22.7	1.4922	19.2	1.5015	15.7
1.4835	22.6	1.4925	19.1	1.5017	15.6
1.4838	22.5	1.4927	19.0	1.5020	15.5
1.4840	22.4	1.4930	18.9	1.5022	15.4
1.4843	22.3	1.4933	l .	1.5025	15.3
1.4845	22.2	1.4935	18.7	1.5028	15.2
					l
1.4848	22.1	1.4938		1.5030	15.1
1.4850	22.0	1.4941	1	1.5033	15.0
1.4853	21.9	1.4943	18.4		1
1.4855	21.8	1.4946	18.3		
1.4858	21.7	1.4949	18.2		1

n_D²⁰ |%H₂O

e refractive index from 34 to 15% are taken from Main's

INDEX CORRECTION TABLE FOR READINGS AT

T	EMPE	MPERATURES OTHER THAN 20°C (86)												
%H₂O	95	90	85	80	70	60	50	40	30	25				
°C			То	be a	addec	l to	% w	ater						
15	0.25	0.27	0.31	0.31	0.34	0.35	0.36	0.37	0.36	0.36				
16	0.21	0.23	0.26	0.27	0.29	0.31	0.31	0.32	0.31	0.29				
17	0.16	0.18	0.20	0.20	0.22	0.23	0.23	0.23	0.20	0.17				
18	0.11	0.12	0.14	0.14	0.15	0.16	0.16	0.15	0.12	0.09				
19	0.06	0.07	0.08	0.08	0.08	0.09	0.09	0.08	0.07	0.05				
		Т	o be	subt	racte	d fro	m 9	6 wat	er					
21	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07				
22	0.12	0.14	0.14	0.14	0.14	0.14	0.15	0.14	0.14	0.14				
23	0.18	0.20	0.20	0.21	0.21	0.21	0.23	0.21	0.22	0.22				
24	0.24	0.26	0.26	0.27	0.28	0.28	0.30	0.28	0.29	0.29				
25	0.30	0.32	0.32	0.34	0.36	0.36	0.38	0.36	0.36	0.37				
26	0.36	0.39	0.39	0.41	0.43	0.43	0.46	0.44	0.43	0.44				
27	0.43	0.46	0.46	0.48	0.50	0.51	0.55	0.52*	0.50	0.51				
28	0.50	0.53	0.53	0.55	0.58	0.59	0.63	0.60*	0.57	0.59				
29	0.57	0.60	0.61	0.62	0.66	0.67	0.71	0.68*	0.65	0.67				
30	0.64	0.67	0.70	0.71	0.74	0.75	0.80	0.76*	0.73	0.75				
% H ₂ O	95	90	85	80	70	60	50	40	30	25				

^{*} These are corrected values. Stanek's original table gives values 0.10 higher.

Table for Use with Zeiss Immersion Refractometer (57.5) R = scale reading; % S = % sucrose

				with Zeis										se	
\boldsymbol{R}	% S	\boldsymbol{R}	% S	R	% S	R	% S	$\mid R \mid$	% S	R	% S	R	% S	\boldsymbol{R}	% S
15.0	0.00	21.0	1.58	27.0	3.16	33.0		39.0	6.31	45.0	7.84	51.0	9.32	57.0	10.78
.1	.03	. 1	. 61	. 1	. 19	. 1	.77	. 1	. 33	.1	.87	.1	.34		. 80
.2	.05	.2		.2		.2		.2	. 36	.2		.2		.1 .2	.83
.3	.08	.3		.3	.24	.3		.3	.39	.3		.3		.3	.85
.4		.4		.4	. 26	.4		.4	.41	.4		.4		.4	
. 5		.5		.5		. 5		.5	.43	.5		5		.5	.90
.6		.6		.6		.6		.6	. 46	.6		6		.6	. 92
.7	.19	.7	.77	.7	.34	.7		.7	.49	.7		.7	.49	.7	. 95
.8		.8		.8		.8		.8	. 51	.8		.8		.8	
.9	.24	.9		.9	.40	. 9		.9	. 54	.9		.9			11.00
. 9	. 24	. 9	.62	. 9	.40	. 3	. 33	'9	.04	. 9	.01	. 9	. 55	. 3	11.00
16.0	.26	22.0	.84	28.0	.42	34.0	5.00	40.0	. 56	46.0	. 10	52 .0	. 56	5 8.0	.03
.1	.29	.1	P. Control of the Con	.1	.45	.1	.03	.1	. 59	.1		.1	.58		.05
.2	.32	.2		.2		.2		.1	. 61	.2		.2		.1 .2	
.3	.34	.3		.3		.3		.3	. 64	.3		.3			
														.3	.10
.4		.4	1	.4		.4		.4	. 66	.4		.4		.4	.12
. 5		. 5		. 5		. 5		. 5	. 69	. 5		. 5		.5	.15
. 6		.6		.6		. 6		.6	.72	.6		.6		.6	.17
.7	. 45	.7		.7		.7		.7	. 74	.7	.27	.7	. 73	.7	. 19
.8		.8		.8		.8		.8	. 77	.8		.8		.8	
. 9	. 50	. 9	.08	.9	. 66	.9	.24	. 9	. 79	.9	.32	. 9	.78	.9	.24
17.0		23.0		29.0		35.0		41.0	.82	47.0		53 .0		59 .0	
. 1	. 56	.1	. 13	. 1	.71	. 1		.1	. 84	.1		.1	. 83	.1	
.2	. 58	.2		.2		.2		.2	.87	.2		.2		.2	. 32
. 3		.3		.3		. 3		.3	. 90	.3		.3		.3	
.4		.4	. 21	.4	.79	.4		.4	. 92	.4		.4		.4	
. 5		. 5		. 5	.82	. 5		. 5	. 95	. 5		. 5		. 5	.39
. 6	. 69	. 6	. 26	. 6		.6		.6	. 97	.6		. 6	. 95	.6	.41
.7	.71	.7	. 29	. 7	.87	.7	. 45	.7	7.00	.7	. 51	.7	. 97	.7	.44
.8	.74	.8	.32	.8	. 90	.8	.48	.8	.03	.8	. 53	.8	10.00	.8	
. 9	. 77	. 9	.34	.9	.92	.9	. 50	.9	. 05	.9	. 56	.9	. 03	. 9	
															i
18.0	.79	24.0		30 .0		36 .0		42.0	.08	48.0		54 .0		60 .0	
. 1	.82	. 1		. 1	.98	. 1		. 1	. 10	. 1	. 60	. 1	.07	.1	.53
.2	.84	.2		.2	4.00	.2	. 58	.2	. 13	.2		.2	. 10	.2	.56
.3	. 87	.3	. 45	. 3	.03	.3	.61	.3	. 15	.3	. 66	.3	. 12	.3	
. 4	. 90	.4	.48	.4	. 05	. 4	. 64	.4	. 18	.4	. 68	.4	. 15	.4	.60
. 5	. 92	. 5	. 50	. 5	.08	. 5	. 66	.5	. 20	. 5	.70	. 5	. 17	. 5	
. 6	. 95	. 6	. 53	.6	. 11	.6	. 69	. 6	. 23	.6	. 73	.6	. 19	.6	
.7	. 98	.7	.56	.7	. 13	.7	.71	.7	. 26	.7	.75	.7	. 22	.7	
.8	1.00	.8	. 58	.8	. 16	.8	.74	.8	.28	.8	.78	.8		.8	
.9		.9		. 9		.9		.9		.9		.9		.9	
											•				1
19.0	.05	25.0	.64	31.0	.21	37.0	.79	43.0	. 33	49.0	.83	55.0	. 29	61.0	.75
. 1	.08	. 1	. 66	. 1	.24	. 1	.82	. 1	. 36	. 1	.85	.1	. 32	.1	
.2	.11	.2	. 69	.2	.26	.2	.84	.2	. 39	.2	.88	.2		.2	
.3	. 13	.3	.71	.3		.3	.87	.3	. 41	.3	. 90	.3		.3	
.4	. 16	.4		.4		.4		.4	. 43	.4		.4		.4	
. 5		. 5		. 5		. 5		. 5	. 46	. 5		. 5		. 5	
. 6		. 6		.6		. 6		.6	. 49	. 6		.6		.6	
.7	. 24	.7	.82	.7		.7		.7	. 51	.7		.7		.7	
.8		.8		.8		.8		.8	. 54	.8		.8		.8	
. 9	.29	. 9		.9	. 45	. 9		.9	. 56	.9		.9		.9	
20.0	.32	26 .0	. 90	32.0	. 48	38.0	.05	44.0	. 59	50.0	. 07	56 .0	. 53	62.0	12.00
. 1	.34	.1				. 1		.1	.61	.1		.1		1	.03
.2	.37	.2		. 1 . 2	. 53	.2	. 10	.2	. 64	. 1 . 2	.12	.2		.1 .2	.05
.3	.40	.3	.98	.3	. 56	.3	. 13	.3	. 66	.3	. 15	.3		.3	.07
.4	.42	.4		.4		.4	. 15	.4	. 69	.4		.4		.0	.09
. 5		. 5		. 5		.5	.17	.5	.72	.5	. 19	.5	.66	.4 .5	.12
.6		.6		.6		.6		.6	.74	.6		.6		.6	. 14
.7	.50	.7		.7		.7	.23	.7	.77	.7		.7		.7	. 16
.8		.8		.8		.8		.8	.79	.8		.8		.8	
.9		.9		.9		.9				.9		.9		.9	.21
. 5		. 9	. 10	. 3	1		,		.02	. 0	20	. 3		. 9	. 41

R 63.0 .1 .2 .3 .4 .5 .6 .7 .8	.28 .30 .32 .35 .37 .39 .42	.2 .3 .4 .5 .6 .7	61 75.0 14. 63 .1 15. 66 .2 . 68 .3 . 70 .4 . 73 .5 . 75 .6 . 77 .7 .7	98 81.0	.35 .38 .40 .42 .44 .47	87.0 .1 .2 .3 .4 .5 .6 .7 .8	% S 17.66 .68 .71 .73 .75 .77 .79 .82 .84	8 92.0 .1 .2 .3 .4 .5 .6 .7 .8	.78 .80 .82 .85 .87 .89	.1 .2 .3 .4 .5 .6	% S 19.80 .82 .85 .87 .91 .93 .95 .97	102.02 .1 .2 .3 .4 .5	% S 20.87 .89 .91 .93 .95 .97 21.00 .02 .04
64.0 .1 .2 .3 .4 .5 .6 .7	.49 .51 .53 .56 .58 .60	.1 .3 .4 .5 .6 .7 14 .6 .8 .6	87 .1	20 82.0 22 .1 24 .2 26 .3 28 .4 30 .5 32 .6 34 .7 36 .8 38 .9	.56 .59 .61 .63 .65 .68 .70	88.0 .1 .2 .3 .4 .5 .6 .7 .8	.89 .91 .93 .95 .98 18.00 .02 .04 .06 .08	93.0 .1 .2 .3 .4 .5 .6 .7 .8	.97 19.00 .02 .04 .06 .08 .10	98.0 .1 .2 .3 .4 .5 .6 .7 .8	.02 .04 .06 .08 .10 .13 .15 .17 .19	103.0 .1 .2 .3 .4 .5 .6 .7 .8	.08 .10 .13 .15 .17 .19 .21 .23 .25
65.0 .1 .2 .3 .4 .5 .6 .7	.72 .74 .76 .79	.1 .0 .2 .3 .4 .5 .6 .7 .8	09 .1 11 .2 14 .3 16 .4 18 .5 20 .6 23 .7 25 .8	40 83.0 42 .1 44 .2 47 .3 49 .4 51 .5 54 .6 56 .7 59 .8 61 .9	.79 .81 .83 .85 .88 .90 .92	89.0 .1 .2 .3 .4 .5 .6 .7 .8	.10 .13 .15 .17 .19 .21 .23 .25 .27	94.0 .1 .2 .3 .4 .5 .6 .7	.19 .21 .23 .25 .27 .29 .31	99.0 .1 .2 .3 .4 .5 .6 .7 .8	. 23 . 25 . 27 . 29 . 31 . 34 . 36 . 38 . 40 . 42	104.0 .1 .2 .3 .4 .5 .6 .7 .8	29 31 34 36 38 40 42 44 47
66.0 .1 .2 .3 .4 .5 .6 .7	.93 .95 .97 13.00 .03 .05 .07 .09	.1 .2 .3 .4 .5 .6 .4 .7 .8 .4	32	63 84.0 65 .1 68 .2 70 .3 72 .4 74 .5 76 .6 79 .7 81 .8	.04 .07 .09 .11 .13 .15	90.0 .1 .2 .3 .4 .5 .6 .7 .8	.31 .34 .36 .38 .40 .42 .44 .47 .49	95.0 .1 2 .3 .4 .5 .6 .7 .8	.40 .42 .44 .47 .49 .51 .53	100.0 .1 .2 .3 .4 .5 .6 .7 .8	.44 .47 .49 .51 .53 .55 .57 .59 .61	105.0 .1 .2 .3 .4 .5 .6 .7 .8	.51 .53 .55 .57 .59 .61 .63 .66
67.0 .1 .2 .3 .4 .5 .6 .7	.16 .18 .20 .23 .25 .27 .29 .32 .34	.1 .2 .3 .4 .0 .5 .6 .6 .7 .8	54 .1 . 57 .2 . 59 .3 . 61 .4 . 63 .5 . 66 .6 16 68 .7 . 70 .8 .	85 85.0 88 .1 90 .2 92 .3 95 .4 97 .5 00 .6 03 .7 05 .8 07 .9	.24 .27 .29 .31 .33 .35 .38 .40	91.0 1 2 3 4 .5 6 7 8	.53 .55 .57 .59 .61 .63 .66 .68 .70	96.0 .1 .2 .3 .4 .5 .6 .7 .8	.61 .63 .66 .68 .70 .72 .74	101.0 .1 .2 .3 .4 .5 .6 .7 .8	.78 .80 .82	106.0	.71
68.0 .1 .2 .3 .4 .5 .6 .7 .8	.38 .40 .43 .45 .48 .50 .52 .54 .57	.1 .2345678	77	09 86.0 11 .1 13 .2 16 .3 18 .4 20 .5 22 .6 24 .7 27 .8 29 .9	. 47 . 49 . 51 . 53 . 55 . 58 . 60 . 62								

DRY SUBSTANCE (D) IN SUGAR-HOUSE PRODUCTS AT 28°C (76)

		GAR-HOUSE I RODU	
n_{D}^{28}	% D	Deci	mals
1.3335	1	0.0001 = 0.05	0.0010 = 0.75
1.3349	2	0.0002 = 0.1	0.0011 = 0.8
1.3364	3	0.0003 = 0.2	0.0012 = 0.8
1.3379	4	0.0004 = 0.25	0.0013 = 0.85
1.3394	5	0.0005 = 0.3	0.0014 = 0.9
1.3409	6	0.0006 = 0.4	0.0015 = 1.0
1.3424	7	0.0007 = 0.5	
1.3439	8	0.0008 = 0.6	
1.3454	9	0.0009 = 0.7	
	ł	0.0009-0.1	
1.3469	10		
1.3484	11	0.0001 = 0.05	
1.3500	12	0.0002 = 0.1	
1.3516	13	0.0003 = 0.2	
1.3530	14	0.0004 = 0.25	
1.3546	15	0.0005 = 0.3	
1.3562	16	0.0006 = 0.4	
	1		
1.3578	17	0.0007 = 0.45	
1.3594	18	0.0008 = 0.5	
1.3611	19	0.0009 = 0.6	
1.3627	20	0.0010 = 0.65	
		1	
1.3644	21	0.0011 = 0.7	
1.3661	22	0.0012 = 0.75	
1.3678	23	0.0013 = 0.8	
1.3695	24	0.0014 = 0.85	
	l .		
1.3712	25	0.0015 = 0.9	
1.3729	26	0.0016 = 0.95	
1.3746	27		
		į.	
1.3764	28	1	
1.3782	29	0.0001 = 0.05	0.0012 = 0.6
1.3800	30	0.0002 = 0.1	0.0013 = 0.65
1.3818	31	0.0003 = 0.15	0.0014 = 0.7
	1		
1.3836	32	0.0004 = 0.2	0.0015 = 0.75
1.3854	33	0.0005 = 0.25	0.0016 = 0.8
1.3872	34	0.0006 = 0.3	0.0017 = 0.85
1.3890	35	0.0007 = 0.35	0.0018 = 0.9
	l .		
1.3909	36	0.0008 = 0.4	0.0019 = 0.95
1.3928	37	0.0009 = 0.45	0.0020 = 1.0
1.3947	38	0.0010 = 0.5	0.0021 = 1.0
1.3966	39	0.0011 = 0.55	0.0022 200
	1	0.0011-0.55	
1.3984	40		
1.4003	41		
1.4023	42		
		0.0001 0.05	0.0010.001
1.4043	43	0.0001 = 0.05	
1.4063	44	0.0002 = 0.1	0.0013 = 0.65
1.4083	45	0.0003 = 0.15	0.0014 = 0.7
1.4104	46	0.0004 = 0.2	0.0015 = 0.75
		1	
1.4124	47	0.0005 = 0.25	0.0016 = 0.8
1.4145	48	0.0006 = 0.3	0.0017 = 0.85
1.4166	49	0.0007 = 0.35	0.0018 = 0.9
1.4186	50	0.0008 = 0.4	0.0019 = 0.95
	ł .		
1.4207	51	0.0009 = 0.45	0.0020 = 1.0
1.4228	52	0.0010 = 0.5	0.0021 = 1.0
1.4249	53	0.0011 = 0.55	
1.4270	54		
			0.0010 0.55
1.4292	55	0.0001 = 0.05	0.0013 = 0.55
1.4314	56	0.0002 = 0.1	0.0014 = 0.6
1.4337	57	0.0003 = 0.1	0.0015 = 0.65
1.4359	58	0.0004 = 0.15	0.0016 = 0.7
1.4382	59	0.0005 = 0.2	0.0017 = 0.75
1.4405	60	0.0006 = 0.25	0.0018 = 0.8
		0.0007 = 0.3	0.0019 = 0.85
1.4428	61	1	
1.4451	62	0.0008 = 0.35	0.0020 = 0.9
1.4474	63	0.0009 = 0.4	0.0021 = 0.9
	· -		

DRY SUBSTANCE (D) IN SUGAR-HOUSE PRODUCTS AT 28°C (76).—

		(Continued)	
$n_{ m D}^{78}$	% D	Deci	mals
1.4497	64	0.0010 = 0.45	0.0022 = 0.95
1.4520	65	0.0011 = 0.5	0.0023 = 1.0
1.4543	66	0.0012 = 0.5	0.0024 = 1.0
1.4567	67		
1.4591	68		
1.4615	69		
1.4639	70		
1.4663	71		
1.4687	72		
1.4711	73		
1.4736	74		
1.4761	75	0.0001 = 0.0	0.0015 = 0.55
1.4786	76	0.0002 = 0.05	0.0016 = 0.6
1.4811	77	0.0003 = 0.1	0.0017 = 0.65
1.4836	78	0.0004 = 0.15	0.0018 = 0.65
1.4862	79	0.0005 = 0.2	0.0019 = 0.7
1.4888	80	0.0006 = 0.2	0.0020 = 0.75
1.4914	81	0.0007 = 0.25	0.0021 = 0.8
1.4940	82	0.0008 = 0.3	0.0022 = 0.8
1.4966	83	0.0009 = 0.35	0.0023 = 0.85
1.4992	84	0.0010 = 0.35	0.0024 = 0.9
1.5019	85	0.0011 = 0.4	0.0025 = 0.9
1.5046	86	0.0012 = 0.45	0.0026 = 0.95
1.5073	87	0.0013 = 0.5	0.0027 = 1.0
1.5100	88	0.0014 = 0.5	0.0028 = 1.0
1.5127	89		
1.5155	90		

Corrections for the Temperature (76)

%D						Dry	subs	ance					
	0	5	10	15	20	25	30	40	50	60	70	80	90
•c \						s	ubtra	ct					
20	0.53	0.54	0.55	0.56	0.57	0.58	0.60	0.62	0.64	0.62	0.61	0.60	0.58
21	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.54	0.56	0.54	0.53	0.52	0.50
22		0.41											
23	0.33	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.39	0.38	0.38	0.38
24	0.26	0.26	0.27	0.28	0.28	0.29	0.30	0.31	0.32	0.31	0.31	0.30	0.30
25	0.20	0.20	0.21	0.21	0.22	0.22	0.23	0.23	0.24	0.23	0.23	0.23	0.22
26		0.12											
27	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.07
							Add						
29	0.07	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.07
30	0.12	0.12	0.13	0.14	0.14	0.14	0.15	0.15	0.16	0.16	0.16	0.15	0.14
31	0.20	0.20	0.21	0.21	0.22	0.22	0.23	0.23	0.24	0.23	0.23	0.23	0. 22
32	0.26	0.26	0.27	0.28	0.28	0.29	0.30	0.31	0.32	0.31	0.31	0.30	0. 30
33	0.33	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.39	0.38	0.38	0.38
34	0.40	0.41	0.42	0.42	0.43	0.44	0.45	0.47	0.48	0.47	0.46	0.45	0.44
35	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.54	0.56	0.54	0.53	0.52	0. 50

Density of Aqueous Sucrose Solutions at 20°C, g/ml

All weights in vacuo. For hydrometer conversion formulae see vol. I, p. 31 and for computed conversion tables and temperature corrections v. (17.5, 61.5, 75). For conversion table giving deg. Brix, d_4^{20} , d_{20}^{20} and deg. Baumé, based upon the formula, °Bé = 145 - 145/sp. gr., d_{20}^{20} v. (7).

SACCHARIMETRY .

DENSITY OF AQUEOUS SUCROSE SOLUTIONS AT 20°C, g/ml.

	1	DEN	sill of Aq		di di		, g/IIII.			
% sucrose	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.998234	0.998622	0.999010	0.999398	0.999786	1.000174	1.000563	1.000952	1.001342	1.001731
1	1.002120	1.002509	1.002897	1.003286	1.003675	1.004064	1.004453	1.004844	1.005234	1.005624
2	1.006015	1.006405	1.006796	1.007188	1.007580	1.007972	1.008363	1.008755	1.009148	1.009541
3	1.009934	1.010327	1.010721	1.011115	1.011510	1.011904	1.012298	1.012694	1.013089	1.013485
4	1.013881	1.014277	1.014673	1.015070	1.015467	1.015864	1.016261	1.016659	1.017058	1.017456
5	1.017854	1.018253	1.018652	1.019052	1.019451	1.019851	1.020251	1.020651	1.021053	1.021454
6	1.021855	1.022257	1.022659	1.023061	1.023463	1.023867	1.024270	1.024673	1.025077	1.025481
7	1.025885	1.026289	1.026694	1.027099	1.027504	1.027910	1.028316	1.028722	1.029128	1.029535
8	1.029942	1.030349	1.030757	1.031165	1.031573	1.031982	1.032391	1.032800	1.033209	1.033619
9	1.034029	1.034439	1.034850	1.035260	1.035671	1.036082	1.036494	1.036906	1.037318	1.037730
10	1.038143	1.038556	1.038970	1.039383	1.039797	1.040212	1.040626	1.041041	1.041456	1.041872
11	1.042288	1.042704	1.043121	1.043537	1.043954	1.044370	1.044788	1.045206	1.045625	1.046043
12	1.046462	1.046881	1.047300	1.047720	1.048140	1.048559	1.048980	1.049401	1.049822	1.050243
13	1.050665	1.051087	1.051510	1.051933	1.052356	1.052778	1.053202	1.053626	1.054050	1.054475
14	1.054900	1.055325	1.055751	1.056176	1.056602	1.057029	1.057455	1.057882	1.058310	1.058737
15	1.059165	1.059593	1.060022	1.060451	1.060880	1.061308	1.061738	1.062168	1.062598	1.063029
16	1.063460	1.063892	1.064324	1.064756	1.065188	1.065621	1.066054	1.066487	1.066921	1.067355
17	1.067789	1.068223	1.068658	1.069093	1.069529	1.069964	1.070400	1.070836	1.071273	1.071710
18	1.072147	1.072585	1.073023	1.073461	1.073900	1.074338	1.074777	1.075217	1.075657	1.076097
19	1.076537	1.076978	1.077419	1.077860	1.078302	1.078744	1.079187	1.079629	1.080072	1.080515
20	1.080959	1.081403	1.081848	1.082292	1.082737	1.083182	1.083628	1.084074	1.084520	1.084967
21	1.085414	1.085861	1.086309	1.086757	1.087205	1.087652	1.088101	1.088550	1.089000	1.089450
22	1.089900	1.090351	1.090802	1.091253	1.091704	1.092155	1.092607	1.093060	1.093513	1.093966
23	1.094420	1.094874	1.095328	1.095782	1.096236	1.096691	1.097147	1.097603	1.098058	1.098514
24	1.098971	1.099428	1.099886	1.100344	1.100802	1.101259	1.101718	1.102177	1.102637	1.103097
25	1.103557	1.104017	1.104478	1.104938	1.105400	1.105862	1.106324	1.106786	1.107248	1.107711
26	1.108175	1.108639	1.109103	1.109568	1.110033	1.110497	1.110963	1.111429	1.111895	1.112361
27	1.112828	1.113295	1.113763	1.114229	1.114697	1.115166	1.115635	1.116104	1.116572	1.117042
28	1.117512	1.117982	1.118453	1.118923	1.119395	1.119867	1.120339	1.120812	1.121284	1.121757
29	1.122231	1.122705	1.123179	1.123653	1.124128	1.124603	1.125079	1.125555	1.126030	1.126507
30	1.126984	1.127461	1.127939	1.128417	1.128896	1.129374	1.129853	1.130332	1.130812	1.131292
31	1.131773	1.132254	1.132735	1.133216	1.133698	1.134180	1.134663	1.135146	1.135628	1.136112
32	1.136596	1.137080	1.137565	1.138049	1.138534	1.139020	1.139506	1.139993	1.140479	1.140966
33	1.141453	1.141941	1.142429	1.142916	1.143405	1.143894	1.144384	1.144874	1.145363	1.145854
34	1.146345	1.146836	1.147328	1.147820	1.148313	1.148805	1.149298	1.149792	1.150286	1.150780
35	1.151275	1.151770	1.152265	1.152760	1.153256	1.153752	1.154249	1.154746	1.155242	1.155740
36	1.156238	1.156736	1.157235	1.157733	1.158233	1.158733	1.159233	1.159733	1.160233	1.160734
37	1.161236	1.161738	1.162240	1.162742	1.163245	1.163748	1.164252	1.164756	1.165259	1.165764
38	1.166269	1.166775	1.167281	1.167786	1.168293	1.168880	1.169307	1.169815	1.170322	1.170831
39	1.171340	1.171849	1.172359	1.172869	1.173379	1.173889	1.174400	1.174911	1.175423	1.175935
40	1.176447	1.176960	1.177473	1.177987	1.178501	1.179014	1.179527	1.180044	1.180560	1.181076
41	1.181592	1.182108	1.182625	1.183142	1.183660	1.184178	1.184696	1.185215	1.185734	1.186253
42	1.186773	1.187293	1.187814	1.188335	1.188856	1.189379	1.189901	1.190423	1.190946	1.191469
43	1.191993	1.192517	1.193041	1.193565	1.194090	1.194616	1.195141	1.195667	1.196193	1.196720
44	1.197247	1.197775	1.198303	1.198832	1.199360	1.199890	1.200420	1.200950	1.201480	1.202010
45	1.202540	1.203071	1.203603	1.204136	1.204668	1.205200	1.205733	1.206266	1.206801	1.207335
46	1.207870	1.208405	1.208940	1.209477	1.210013	1.210549	1.211086	1.211623	1.212162	1.212700
47	1.213238	1.213777	1.214317	1.214856	1.215395	1.215936	1.216476	1.217017	1.217559	1.218101
48	1.218643	1.219185	1.219729	1.220272	1.220815	1.221360	1.221904	1.222449	1.222995	1.223540
49	1.224086	1.224632	1.225180	1.225727	1.226274	1.226823				1.229018

Density of Aqueous Sucrose Solutions at 20°C, g/ml.—(Continued)

<i>~</i>					d_4^2	0				
% sucrose	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
50	1.229567	1.230117	1.230668	1.231219	1.231770	1.232322	1.232874	1.233426	1.233979	1.234532
51	1.235085	1.235639	1.236194	1.236748	1.237303	1.237859	1.238414	1.238970	1.239527	1.240084
52	1.240641	1.241198	1.241757	1.242315	1.242873	1.243433	1.243992	1.244552	,1.245113	1.245673
53	1.246234	1.246795	1.247358	1.247920	1.248482	1.249046	1.249609	1.250172	1.250737	1.251301
54	1.251866	1.252431	1.252997	1.253563	1.254129	1.254697	1.255264	1.255831	1.256400	1.256967
55	1.257535	1.258104	1.258674	1.259244	1.259815	1.260385	1.260955	1.261527	1.262099	1.262671
56	1.263243	1.263816	1.264390	1.264963	1.265537	1.266112	1.266686	1.267261	1.267837	1.268413
57	1.268989	1.269565	1.270143	1.270720	1.271299	1.271877	1.272455	1.273035	1.273614	1.274194
58	1.274774	1.275354	1.275936	1.276517	1.277098	1.277680	1.278262	1.278844	1.279428	1.280011
59	1.280595	1.281179	1.281764	1.282349	1.282935	1.283521	1.284107	1.284694	1.285281	1.285869
60	1.286456	1.287044	1.287633	1.288222	1.288811	1.289401	1.289991	1.290581	1.291172	1.291763
61	1.292354	1.292946	1.293539	1.294131	1.294725	1.295318	1.295911	1.296506	1.297100	1.297696
62	1.298291	1.298886	1.299483	1.300079	1.300677	1.301274	1.301871	1.302470	1.303068	1.303668
63	1.304267	1.304867	1.305467	1.306068	1.306669	1.307271	1.307872	1.308475	1.309077	1.309680
64	1.310282	1.310885	1.311489	1.312093	1.312699	1.313304	1.313909	1.314515	1.315121	1.315728
65	1.316334	1.316941	1.317549	1.318157	1.318766	1.319374	1.319983	1.320593	1.321203	1.321814
66	1.322425	1.323036	1.323648	1.324259	1.324872	1.325484	1.326097	1.326711	1.327325	1.327940
67	1.328554	1.329170	1.329785	1.330401	1.331017	1.331633	1.332250	1.332868	1.333485	1.334103
68	1.334722	1.335342	1.335961	1.336581	1.337200	1.337821	1.338441	1.339063	1.339684	1.340306
69	1.340928	1.341551	1.342174	1.342798	1.343421	1.344046	1.344671	1.345296	1.345922	1.346547
70	1.347174	1.347801	1.348427	1.349055	1.349682	1.350311	1.350939	1.351568	1.352197	1.352827
71	1.353456	1.354087	1.354717	1.355349	1.355980	1.356612	1.357245	1.357877	1.358511	1.359144
72	1.359778	1.360413	1.361047	1.361682	1.362317	1.362953	1.363590	1.364226	1.364864	1.365501
73	1.366139	1.366777	1.367415	1.368054	1.368693	1.369333	1.369973	1.370613	1.371254	1.371894
74	1.372536	1.373178	1.373820	1.374463	1.375105	1.375749	1.376392	1.377036	1.377680	1.378326
75	1.378971	1.379617	1.380262	1.380909	1.381555	1.382203	1.382851	1.383499	1.384148	1.384796
76	1.385446	1.386096	1.386745	1.387396	1.388045	1.388696	1.389347	1.389999	1.390651	1.391303
77	1.391956	1.392610	1.393263	1.393917	1.394571	1.395226	1.395881	1.396536	1.397192	1.397848
78	1.398505	1.399162	1.399819	1.400477	1.401134	1.401793	1.403452	1.403111	1.403771	1.404430
79	1.405091	1.405752	1.406412	1.407074	1.407735	1.408398	1.409061	1.409723	1.410387	1.411051
80	1.411715	1.412380	1.413044	1.413709	1.414374	1.415040	1.415706	1.416373	1.417039	1.417707
81	1.418374	1.419043	1.419711	1.420380	1.421049	1.421719	1.422390	1.423059	1.423730	1.424400
82	1.425072	1.425744	1.426416	1.427089	1.427761	1.428435	1.429109	1.429782	1.430457	1.431131
83	1.431807	1.432483	1.433158	1.433835	1.434511	1.435188	1.435866	1.436543	1.437222	1.437900
84	1.438579	1.439259	1.439938	1.440619	1.441299	1.441980	1.442661	1.443342	1.444024	1.444705
85	1.445388	1.446071	1.446754	1.447438	1.448121	1.448806	1.449491	1.450175	1.450860	1.451545
86	1.452232	1.452919	1.453605	1.454292	1.454980	1.455668	1.456357	1.457045	1.457735	1.458424
87	1.459114	1.459805	1.460495	1.461186	1.461877	1.462568	1.463260	1.463953	1.464645	1.465338
88	1.466032	1.466726	1.467420	1.468115	1.468810	1.469504	1.470200	1.470896	1.471592	1.472289
89	1.472986	1.473684	1.474381	1.475080	1.475779	1.476477	1.477176	1.477876	1.478575	1.479275

								Se	OLUBILITY	of St	CROSE IN	WATE	R (32).—	Contin	ued)
			Solul	bility			1	°C	% wt.	°C	% wt.	$^{\circ}\mathrm{C}$	% wt.	°C	% wt.
	Sor	UBILITY	of Such	OSE IN	WATER	(32)		37	69.89	49	72.06	61	74.38	73	76.85
${ m ^{\circ}C}$	% wt.	°C	% wt.	$^{\circ}\mathrm{C}$	% wt.	°C	% wt.	38	70.06	50	72.25	62	74.58	74	77.06
0	64.18	10	65.58	19	66.93	28	68.37	39	70.24	51	72.44	63	74.78	75	77.27
1	64.31	11	673	20	67.09	29	68.53	40	70.42	52	72.63	64	74.98	76	77.48
2	64.45	12	65.88	21	67.25	30	68.70	41	70.60	53	72.82	65	75.18	77	77.70
3	64.59	13	66.03	22	67.41	31	68.87	42	70.78	54	73.01	66	75.38	78	77.92
4	64.73	1	1 H			l	1	43	70.96	55	73.20	67	75.59	79	78.14
5	64.87	14	66.18	23	67.57	32	69.04	44	71.14	56	73.39	68	75.80	80	78.36
6	65.01	15	66.33	24	67.73	33	69.21	45	71.32	57	73.58	69	76.01	81	78.58
7	65.15	16	66.48	25	67.89	34	69.38	46	71.50	58	73.78	70	76.22	82	78.80
8	65.29	17	66.63	26	68.05	35	69.55	47	71.68	59	73.98	71	76.43	83	79.02
9	65.43	18	66.78	27	68.21	36	69.72	48	71.87	60	74.18	72	76.64	84	79.24

0.03791

30.093

SOLUBILITY OF SUCROSE IN WATER (32).—(Continued)

${ m ^{\circ}C}$	% wt.	$^{\circ}\mathrm{C}$	% wt.	$^{\circ}\mathrm{C}$	% wt.	$^{\circ}\mathrm{C}$	% wt.
85	79.46	89	80.38	93	81.30	97	82.25
86	79.69	90	80.61	94	81.53	98	82.49
87	79.92	91	80.84	95	81.77	99	82.73
88	80.15	92	81.07	96	82.01	100	82.97

FREEZING POINT-SOLUBILITY DATA (64)

System C₁₂H₂₂O₁₁-H₂O, E = eutectic, m = metastable

${}^{\circ}\mathrm{C}$	g/100 g H ₂ O	${ m ^{\circ}C}$	g/100 g H ₂ O			
I	ce	$Ice + C_{12}H_{22}O_{11}$				
± 0.0	0.0	-13.9 E	166.0			
- 4.03	60.0	C ₁₂ H ₂₂ O ₁₁				
-10.42	130.0	+ 0.9	180.5			
-12.68	150.0	+15.8	196.0			
-13.68	164.0	+25.6	210.5			
-17.08 m	200.0	+30.5	218.0			

Solubility of Sucrose in Aqueous Methyl Alcohol at 15°C

Vol. %CH ₃ OH in solvent	100	90	80
g sucrose per 100 cm² solution	0.3	1.6	3.8

Hydrolysis

Hydrolysis (Inversion) of Sucrose

Sucrose	Acid		°C	k	Lit.
17.1%	0.099N HCl		35	0.00161	(72)
1000 g H ₂ O	+ 0.25 g	g-mole of	sucrose	+ 1 g-mole of	acid, 25°C
HNO		HCl		H ₂ SO ₄	Lit.
k = 0.00464		0.00500		0.00549	(1)

TIME NECESSARY FOR VARYING PERCENTAGES OF HYDROLYSIS (Inversion) of Sucrose with HCL (0.01N at 20°C) as the CATALYZER (50)

°C	k .	50% inversion, min	90% inversion, min	99.9% inversion, hr
50	0.001145	262.9	873.4	43.5
60	0.003806	79.1	262.9	13.1
70	0.01182	25.5	84.6	4.2
80	0.03303	9.11	30.3	1.5
90	0.08922	3.37	11.21	33.4*
100	0.26797	1.12	3.73	11.2*

^{*} Minutes.

The reaction velocities for lower acidities may be computed without appreciable error by considering the velocity proportional to the concentration of acid. Thus, the velocities at 0.005N HCl will be very closely half those at 0.01N and the time of reaction twice as great.

REACTION VELOCITIES AT VARIOUS TEMPERATURES

$$k = \frac{1}{t} \log_{10} \frac{r_0 - r}{r_t - r'} t \text{ in min}$$

$$k_{T_2} = k_{T_1} e^x, \text{ where } x = \frac{Q}{R} \frac{T_2 - T_1}{T_2 T_1}$$
Sucrose, 50%; HCl, 0.1N at 20°C. $Q/R = 12$ 925.2 (48)

°C	k	$^{\circ}\mathrm{C}$	k
0	0.0000077	59.903	0.04003
15.098	0.000092	69.974	0.1236
30.000	(0.0008732)	80.130	0.3687
39.916	0.00334	90.292	1.033
49.840	(0.01206)	90.316	1.020

Sucrose, 50%	6; HCl, $0.01N$ at	$\sim 20^{\circ}$ C. $Q/R = 1$	12 940.05 (48)
$^{\circ}\mathrm{C}$	k	°C	k
30.00	0.0008148	69.97	0.01194
49.85	0.001122	80.10	0.03429
59.90	0.003766	90.30	0.0939
Sucrose, 60%	6; HCl, 0.7925N	at 20°C. $Q/R =$	13 087.6 (48)
20	0.002156	35.072	0.01882
30.117	0.00983	40.078	0.03780

INVERSION OF SUCROSE WITH INVERTASE (69)

40.088

0.01001

$$t = \frac{1}{n} \log_{10} \frac{100}{100 - p} + 0.002642p - 0.000008860p^2 - 0.0000001034 p^3$$
; $t = \text{minutes}$; $p = \%$ inversion; n is proportional to the amount of active invertase and depends upon the temperature.

Range of invertase concentration from 12 to 1; temperature from 15 to 35°; H-ion concentration 4×10^{-5} to 3.2×10^{-7} .

At any given temperature n may be used to measure the activity of an invertase solution.

LENGTH OF TIME REQUIRED TO FORM CARAMEL EQUIVALENT TO 0.01 % INVERT SUGAR (9)

The time, in hours, required to form caramel equivalent to 0.01% invert sugar at any temperature t (°C) between 39 and 100° may be computed from the equation:

 $\log_{10} hr = 5.0026 - 0.0595t.$

LACTOSE

C₁₂H₂₂O₁₁ (Galactose < Dextrose <)

TRANSITION TEMPERATURES AND MELTING POINTS (85)

 α -hydrate $\rightarrow \beta$ -anhydrous, 93.5°. α -anhydrous \rightarrow liquid, 222.8°. β -anhydrous \rightarrow liquid, 252.2°. α -anhydrous is metastable below its melting point. α -hydrate \rightarrow liquid, 201.6°.

Optical Rotation

In H₂O

 $\begin{array}{l} [\alpha]_{\rm D}^{\rm i} = 52.42 \, + 0.072 \, (20^{\circ} - t); \, 5 \, {\rm g}/100 \, {\rm ml} \, (4); \, [\alpha]_{\rm 546.1}^{\rm i} = 61.94 \\ + \, 0.085 \, (20^{\circ} - t); \, 5 \, {\rm g}/100 \, {\rm ml} \, (4); \, [\alpha]_{\rm D}^{\rm 20} = 52.53 \, (2^{\rm 1}); \, [\alpha]_{\rm 546}^{\rm 25} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{\rm 100} \, {\rm ml} \, (4); \, [\alpha]_{\rm 100}^{\rm 20} = 10^{$ 61.36; $[\alpha]_{589}^{25} = 51.90 (78)$.

ROTATION DISPERSION AT EQUILIBRIUM (30) Values of $[\alpha]_{\lambda}^{20}$; C = g hydrate/100 ml

	//	<u> </u>	
λ	H_2O , $C=2$	Pyridine, $C = 0.5$	Formic acid, $C = 5.9$
656	39.82	31.00	78.64
589	52.42	41.33	97.76
535	62.09	49.66	117.92
508	72.25	60.00	134.38
479	83.25	73.66	160.79
447	98.17	91.66	180.92

[α]D IN VARIOUS SOLVENTS

S-14	Anhy- drous	°C		$[\alpha]_D^t$		103/2 2	T:4	
Solvent	lactose, $g/100$ ml		α	$\alpha \rightleftharpoons \beta$	β	$10^3(k_1+k_2)$	mil.	
H ₂ O	2.316	14	84.4	55.25		3.78	(60)	
Formamide	2.27	15	82.4	51.2		0.387	(60)	
H ₂ O	2.75	17		55.23	35.97	2.97	(60)	
Formamide	1.85	17		51.22	29.11	0.4	(60)	
H ₂ O		20	86 .		34.5		(38)	
H ₂ O		20	90.0	55.3	35.0	4.65	(44)	
40%,								
C ₂ H ₆ OH		20	81.0	55.3	33.0		(44)	
H₂O		0				0.5	(35)	

 $d[\alpha]_D/dt = -0.08$ between $t = 10 - 25^{\circ}C$ (60).

Effect of H₂SO₄ (11)

N = normality

N, H ₂ SO ₄	0	10	12	14 1	8 18	20	22	24	26
$[\alpha]_{\mathrm{D}}^{2b}$	52.5	56.7	59.06	1.563	. 5 65 . 5	5* 68.5	72.5	76.0	99.0

^{*} Noticeable inversion begins.

Refractive Index and Density of Aqueous Solutions (77)

% anhydrous lac-							
tose	23	38	17.06	11.66	5.80	2.78	1.28
$\overline{d_4^{25}\ldots\ldots}$	1	0969	1.0681	1.0448	1.0204	1.0092	1.0018
$\overline{n_{\mathrm{D}}^{2\delta}}$	1	3716	1.3605	1.3517	1.3423	1.3380	1.3350

Solubility

SOLUBILITY IN WATER (38)

 S_0 = initial, S_{∞} = final solubility in millimoles of anhydrous lactose per 100 g H₂O

(a) Solid phase: the hydrate

°C								
$\overline{S_{\infty}}$	34.8	49.7	63.4	92.7	124.0	193.0	253.0	407.0
S_0	14.8	20.9	25.3	37.0*	52.0*	77.0*	101.0*	163.0*

(b) Solid phase: β-anhydrous. Final solubility: at 0°, 42.9; at 100°,
 61.2 wt. % anhydrous

(c) Solid phase: β-anhydrous

°C	0.0	0.0	100
S_0	132	(124)	227
S_{∞}	220	(extrap.)	461

^{*} Calculated from final solubility and equilibrium ratio.

Per Cent β -anhydrous at Equilibrium in a Solution Saturated with the Hydrate (38)

•	°C	0	15	25	39	49	64	74	89	_
-	07,	5.8	7 7	9.6	14 0	18.0	24 0	27.0	35.0	

Per cent hydrate at equilibrium in solution saturated with the β -anhydrous = 17 at 0°C; = 24 at 100°C (38).

SOLUBILITY IN AQUEOUS C2H6OH (44)

g anhydrous lactose in 100 cm³ 40% C₂H₅OH at 20°C = 1.1 initial; = 2.4 final.

Solubility and Freezing Point Lowering Solubility in H₂O. Solid phase: lactose hydrate

°C	% lac.	Lit.	°C	% lac.	Lit.	°C	% lac.	Lit.
0	10.6	(39)	57.1	34.9	(28)	100	60.5	(39)
15	14.4	(39)	63.9	39.1	(28)	107.0	63.9	(28)
21.5	16.7	(79)	64.0	39.7	(39)	121.5	69.4	(28)
25	17.8	(39)	73.5	45.8	(28)	133.6	73.2	(28)
28	19.4	(79)	74.0	46.2	(39)	138.8	75.2	(28)
38	23.5	(79)	79.1	49.6	(28)	158.8	81.1	(28)
39	24.0	(39)	87.2	55.1	(28)	178.8	86.7	(28)
49	29.7	(39)	88.2	56.0	(28)	200	92.5	(27)

FREEZING POINT LOWERING (38, 58)

Between 1 and 30 millimoles lactose per 100 g H₂O the molal lowering is 1.86°/mole and at 48 millimoles 1.89°/mole.

Cryohydrate Points.—Initial, -0.279° and 14.8 millimoles per 100 g H₂O; final for hydrate, -0.65° ; initial for β -anhydrous, -2.3° ; final for β -anhydrous, -4.1° .

Mutarotation

MUTAROTATION IN H.O

$^{\circ}\mathbf{C}$	0.0	15.0	25.0	0	14.0	17.0	20.0
$\overline{10^3 (k_1 + k_2)}.$	0.51	2.97	7.92		3.78	2.97	6.2
$10^3k_1\ldots\ldots$	0.29	1.55	4.65	0.24			
$10^{3}k_{2}\dots\dots$	0.21	1.08	3.08				
Lit	(35)	(35)	(35)	(38)	(60)	(60)	(11)

COMPOSITION OF AN	AQUEO	us Sol	UTION	AT EQU	ILIBRIT	M (27)
°C	0	25	50	75	92	100
% β/% α	1.65	1.58	1.51	1.45	1.39	1.33

Hydrolysis (10)

 $k_H = \frac{1}{t} \log_{10} \frac{r_0 - r_{\infty}}{r_t - r_{\infty}} \quad t \text{ in min}$

Anhydrous lactose, g/l	Acid	103k _H	°C
50	22N H ₂ SO ₄	4.4	20
50	24N H ₂ SO ₄	7.7	20
80	HCl, d = 1.185	1.1	15
80	HCl, d = 1.185	2.1	20
80	HCl, d = 1.185	4.3 •	25
80	HCl, d = 1.185	8.2	30
80	HCl, d = 1.185	17.1	35
80	HCl, d = 1.185	35 .2	40
40	HCl, d = 1.185	5.1	25
120	HCl, d = 1.185	3.4	25
200	HCl, d = 1.185	1.5	25
80	$HClO_4$, $d = 1.67$	24.2	20
	$HClO_4$, $d = 1.67$	50 .0	25

C12H22O11, MALTOSE

Composition: (Glucose < Glucose <)

Optical Rotation

In H₂O (21)

 $[\alpha]_D^{20} = 138.475 - 0.01837p$ for values of p from 5 to 35 wt. % in vacuo. $\alpha|_{144}^{24} = 153.75$. $[\alpha]_{159}^{28} = 131.25$ (78).

IN VARIOUS SOLVENTS AT 20°C

Solvent	Maltose,		$\left[\alpha\right]_{\mathrm{D}}^{20}$		$10^2(k_1+k_2)$	Lit.
Solvent	g/100 ml	α	α≓β	β	10-(11 + 1/2)	IAt.
H ₂ O		168*	136.0	118.0	7.2	(44)
60% C2H3O H		158*	128.1	111.0		(44)
H ₂ O	2.52		136.2	123	5.03	(61)
Formamide	2.12	İ	130.3	113	1.63	(61)
H ₂ O			137	119		(39)
H ₂ O			137			(81)
Pyridine			122.0			(81)
H ₂ O		i.	137			(30)
Pyridine			124			(30)
Formic acid			175			(30)

^{*} Calculated.

EFFECT OF PYRIDINE

Two g maltose in 200 cm³ of a 5% aqueous pyridine solution (34) After, days......|0| | 1 | 2 || After heating for, hr...|0| | 0.5|1.5 R, °arc.......|6.75|6.70| R, °arc.......|6.75.6|4.8

EFFECT OF H₂SO₄ Maltose 5 g/100 ml (11)

		,, <u> </u>			
$N ext{ of } H_2SO_4 \dots$	0	10	12	18	22
$[\alpha]_{\mathbf{D}}^{2\delta}$	135.5	129.0	127.5	129.5	132.0

EQUILIBRIUM ROTATION

Values of $[\alpha]_{\lambda}^{20}$ for $\alpha \rightleftharpoons \beta$ in various solvents; maltose < 5 g/100 ml

λ, mμ	656	589	535	508	479	447
H ₂ O	111	137	167	180	229	236
Pyridine	100	124	152	180	212	231
Formic acid	140	175	210	248	292	320

Refractive Index and Density of Aqueous Solutions (77) % anhydrous maltose..... 19.40 | 9.60 | 4.77 | 2.32 | 1.16

Solubility

°C	0.6	21.0	29.6	34.4	43.5	49.4
% M.	36.1	44.1	48.0	49.6	55.3	58.3
°C	54.2	59.8	66.3	74.2	87.0	96.5
% M.	60.2	63.7	66.7	72.3	79.3	85.1

IN 60% C.H.OH AT 20°C (44)

Initial, 3.0; final 4.75, g/100 cm3 of solution. Equilibrium mixture contains 64% β and 36% α .

FREEZING POINT LOWERING (29)

I II O % anh	ydrous maltose 24.0 16.7 12.4 7.16(58)
In H_2U Δt_F , °C	ydrous maltose 24.0 16.7 12.4 7.16(58) 2
ln 0.1N NH4OH	$ \frac{\text{% anhydrous maltose } 25.1 18.3 28.9 16.9 }{\Delta t_F, \text{ °C}$
aq. soln.	Δt_F , °C

C₆H₁₂O₆, DEXTROSE (d-Glucose)

Optical Rotation

The saccharimetric normal weight for dextrose is 32.231 g (in air, d = 0.0012, brass weights) (47).

Rotations for $\lambda = 546.1$ M μ , 20°C; 200 MM Tube; Aqueous SOLUTION

Saccharimetric normality	1		ŧ	Ī	8	Π	3	1
R. °arc	0.8	3 97 32.	574	24	328	16	142	8.042

CORRECTIONS TO BE ADDED TO SACCHARIMETRIC READINGS OF DEXTROSE SOLUTIONS (47)

°S	Corr.	°S	Corr.	°S	Corr.
100	0	65	0.50	30	0.46
95	0.10	60	0.52	25	0.41
90	0.20	55	0.54	20	0.35
85	0.28	50	0.55	15	0.28
80	0.35	45	0.54	10	0.20
75	0.41	40	0.53	5	0.10
70	0.46	35	0.50	2	0.05

SPECIFIC ROTATORY POWER IN H2O

 $[\alpha]_{646.1}^{20} = 62.032 + 0.04257 C$; = 62.032 + 0.0422 p + 0.0001897 p^2 . Valid from C = 6 to 32 g/100 ml soln. p = wt. %. All weights in vacuo (47). $[\alpha]_D^{20} = 52.50 + 0.0188p + 0.000517p^2$. Valid from p = 0 to 35 wt. %. All weights in vacuo (21, 89). $\alpha_{546}^{25} = 62.02; [\alpha]_{589}^{25} = 52.48 (78).$

IN WATER, IN PYRIDINE AND IN FORMIC ACID Values of $[\alpha]_{\lambda}^{20}$ (30)

λ	In H ₂ O, ½ to	In pyridine, ¹ N	In formic acid
656	41.47	60.87	96.0
589	52.52	75 .64	122.8
535	64.90	93.55	150.0
50 8	73.03	104.00	176
479	83.05	118.02	203
447	95.79	136.90	224

IN VARIOUS SOLVENTS AT 20°C

Solvent	Dextrose,		$[\alpha]_{\mathrm{D}}^{20}$		103	Lit.	
Solvent	g/100 ml	α	$\alpha \rightleftarrows \beta$	β	$ (k_1+k_2) $	Dit.	
H ₂ O	9.1	108.5	52.2	1	6.27	(60)	
Formamide	2.5	122.7	57.27		1.09	(60)	
H ₂ O	2.3	1	52.02	20.76	6.9	(61)	
Formamide	1.7	l	56.28	15.74	0.996	(61)	
H ₂ Q	1	113.4	52.2	19.7		(44)	
80%C₂H₅OH		115.2	59.0	20.3		(44)	
C ₂ H ₆ OH		121.5	70.45	16.5	ĺ	(44)	
Pyridine			75.56			(30)	
Formic acid			122.8	ļ		(30)	

EFFECT OF PROPYL ALCOHOL

Alcohol used had d_4^{10}							
Alc., g/l	100	200	300	400	500	600	700
[a] ¹⁹	52.20	52.81	53.22	53.48	55.35	55.44	56.81

EFFECT OF SALTS(66)

Salt	$[\alpha]_{\mathrm{D}}^{20}$	Salt	$[\alpha]_{\mathrm{D}}^{20}$
Nil	52.8	2N NH ₄ Cl	52.3
4N KI	47.4	2N CH₄COONH₄	52.3
4N KBr	48.5	N CH ₃ COOK	52 .3
4N KCl	49.6	4N MgCl ₂	52 .8
4N NH₄NO₃	50.6	N MgCl ₂	52 .8
2N KNO ₃	50.6	2N MgSO4	52.8
4N NH₄Cl		2N CH ₂ COONa	52 .8
2N KCl	51.2	N CH ₂ COONa	52 .8
N K₂SO₄	51.2	N CH ₃ COONH ₄	52.8
2N (NH ₄) ₂ SO ₄	51.7	2N BaCl ₂	54 .7
2N CH ₂ COOK		3N BaCl ₂	55.5
4N NaNO ₃		2N CaCl ₂	56.0
2N Na ₂ SO ₄	52.3	4N CaCl ₂	61.2

EFFECT OF HCL (97)

Dextrose concn., 5 g/100 ml

% HCl 3.65	19.25 3	0.434.437	6 39.9 4	1.4 44.5
$[\alpha]_{\mathrm{D}}^{16-17}$ +54.5	57.2 6	1.0 67.0 82	5 97.5 10	6.0 164.6
% HCl	0	42.0	46.6	46.7
°C	8	8	-12	-12
[a]b	52.2	113.3	200.0	202.0

EFFECT OF H2SO4 (11)

Dextrose concn. = 50 g/l at 25°. The table gives values of $[\alpha]_D^{25}$ in acid of the normality stated. In acid above 22N, mutarotation is found. At 20°, 50 g/l in 24N acid gives k = 0.0020.

0	10 <i>N</i>	16N	18N	20N	22N	24N	26N	28N
52.8	56.0	62.5	65.0	67.5	72.5	80.0	91.0	107 0

Refractive Index and Density of Aqueous Solutions (77)

% wt	24.03	20.14	15.72	10.20	4.36	2.11	1.00
d_4^{25}	1.0962	1.0795	1.0604	1.0370	1.0146	1.0051	1.0007
n_{D}^{25}	1.3710	1.3646	1.3575	1.3486	1.3401	1.3366	1.3351

DENSITY OF AQUEOUS SOLUTIONS (47)

 $d_4^{20} = 0.99840 + 0.003788 p + 0.00001412p^2$. Range of p, 4 to 30, wt. % dextrose. All weights in vacuo.

Solubility

System: Dextrose-Water (49); v. Fig. 2

The solid curves show the final equilibria with respect to the solid phases, ice, dextrose hydrate, and anhydrous dextrose. The dotted curve shows the instantaneous solubility before mutarotation. All data are expressed in terms of anhydrous dextrose.

System: Dextrose-Ethyl Alcohol-(Water), 20°C S_0 (resp. S_{∞}) = initial (resp. final) solubility, g anhyd. dextrose per liter of solution (44)

% wt.,	α-anhydrous		α-hy	α-hydrate		β-anhydrous	
C_2H_5OH	S_0	S _∞	S ₀	S	S_0	S _∞	
80	20	45	13	30	49	91	
100	8.5	16					

Mutarotation
Mutarotation at 20°C (24) B = moles buffer per 1 solution

pН	$\frac{10^3}{(k_1+k_2)}$	рН	$\frac{10^3}{(k_1+k_2)}$	pH	$\frac{10^3}{(k_1+k_2)}$	
B =	= 0.1	B =	= 0.1	B =	0.01	B = 0.05
4.88	13.0	3.08	7.7	4.96	7.28	4.87 10.7
4.28	9.0	2.66	8.1	3.43	6.74	B = 0.2
4.08	8.7	2.04	9.5	2.54	7.20	4.80 17.9
3.44	7.8	1.02	20.0	1.75	8.72	B=0
						4.93 7.22

Variation of pH with Temperature and Concentration of Dextrose (68)

 $[\alpha]_D = +111.2$ for α -form; = +17.5 for β -form; = 52.5 for equilibrium mixture; at all temperatures and concentrations used

pН	$\begin{vmatrix} 10^3 \\ (k_1 + k_2) \end{vmatrix}$	pН	$\frac{10^3}{(k_1+k_2)}$	рН	$\begin{array}{c c} 10^3 \\ (k_1 + k_2) \end{array}$	рН	$\frac{10^3}{(k_1+k_2)}$
α-form	, 0.15°C	3	7°C	6.50	34.3	6.43	0.78
1.33	2.42	1.0	118.6	6.55	33.0	6.70	0.80
2.38	0.91	1.72	50.0	6.75	51.7	7.51	1.86
3.05	0.79	2.06	37.6	7.27	86.7	8.00	3.30
3.98	0.79	2.53	32.6	7.55	118.1	3	7°C
5.07	0.77	2.73	32.0	8.50	220.5	1.72	48.6
5.35	0.77	3.36	30.0	β-forn	n, 0 . 15°C	2.60	31.3
6.84	0.92	3.99	29.9	1.33	2.10	2.92	30.0
7.51	2.2	5.58	30 . 5	2.02	0.93	4.82	30.0
		5.95	29.8	4.80	0.78	5.90	30.4
		6.37	32.2	6.00	0.76	6.30	32.5

$k_1 + k_2 = 0.0096 + 0.258[H^+] + 9750[OH^-]$ at 25° (36)										
HCl, m/l $0.0 0.001 $ $0.005 $ $0.01 $ $0.03 $ $0.06 $ $0.10 $ t , °C										
$10^{3} (k_{1} + k_{2}) \cdot 10.6 9.8 11.2 12.1 16.9 25.3 35.4 24.7$										
$k_1 + k_2 = 0.0167 + 0.44[H^+]$ at 30° in HCl solutions (37)										
HCl, m/l $0.0 0.0 + \text{invertase} 0.5 0.10 0.20$										
$10^3 (k_1 + k_2) \dots \parallel 16.7 \mid 16.7 \mid 38.3 \mid 62.0 \mid 10.5$										

MUTAROTATION AT 5.4°C (25)

Minimum rate occurs at pH = 5.0 which corresponds to a dissociation constant for dextrose of 5×10^{-18} . An average value for Q is 17 500

	value for \$18.17.000										
Form	Reagent	pН	$ 10^3(k_1+k_2) $								
α	1.3N HCl	-0.08	108.6								
β	1.3N HCl	-0.06	107.2								
α	0.3N HCl	+0.54	14.38								
α	0.1N HCl	1.05	4.35								
β	0.1N HCl	1.06	4.14								
α	0.03N HCl		2.26								
α	0.01N HCl		1.61								
β	0.01N HCl	1.99	1.55								
α	0.002N HCl	2.74	1.38								
β	0.045N HCl	5.13	1.19								
α	0.001N NaHCO3	7.34	1.33								
β	0.003N NaHCO3	7.84	1.46								
α	0.01N NaHCO3		1.56								
β	0.01N NaHCO3	8.25	1.90								
β	0.0015N Na ₂ CO ₃	9.13	7.82								
α	0.003N Na ₂ CO ₂	9.41	12.48								
α	0.01N Na ₂ CO ₃	10.07	41.10								
β	0.01N Na ₂ CO ₃	10.11	41.75								
α	0.003N NaOH	10.41	83.76								

Variation with Concentration and Temperature. Aqueous Solutions (42)

g/100 ml	$ 10^3 (k_1 + k_2) 25^{\circ} \text{C} $	Dext	Dextrose $< 100 \text{ g/l}$			
3	10.50	°C	10³ (k	$\frac{1+k_2}{1+k_2}$		
3	10.57		α	β		
3	10.68	0.7	0.74	0.74		
6	10.48	5	1.29	1.50		
9.6	10.59	10	2.25	2.23		
16	11.04	15	3.99	3.79		
25	11.35	20	6.35	6.54		
32	10.68	25	10.50	10.57		
37	10.60	30	1.75	1.68		
52	10.08	40	4.37	3.95		
64	9.31			<u> </u>		

 $\log_{10} (k_1 + k_2) = 11.0198 - 3873/T.$

MUTAROTATION IN METHYL ALCOHOL (5) Concentration dextrose ca. 12.3 g/l

CH ₃ OH			OH + ; H ₂ O	$\mathrm{CH_3OH} + 1\% \ \mathrm{H_2O}$		CH ₃ OH + 2 H ₂ O	
Time,	$[lpha]_{ m D}^{44.8}$	Time,	$[lpha]_{ m D}^{44.8}$	Time,	$[\alpha]_{\mathrm{D}}^{44.8}$	Time,	$[\alpha]_{\rm D}^{44.8}$
0.25	111.2	0.28	111.5	0.28	109.6	0.28	110.9
.43	110.0	.72	105.2	. 53	106.9	.52	107.5
.83	106.3	1.32	102.4	.88	104.3	.77	105.2
1.38	104.8	1.63	98.5	1.47	99.2	1.13	99.9
2.63	97.7	2.22	96.9	1.92	95.9	1.82	90.1
4.05	88.4	3.22	91.0	3.22	85.8	2.33	85.9
5.53	83.2	4.00	86.9	4.33	81.7	3.42	79.5
6.83	79.5	5.85	80.5	5.88	74.8	4.22	76.9
		6.92	76.8	8.08	69.7	5.38	72.6
		8.38	73.1	11.42	66.7	6.75	69.7

MUTAROTATION IN METHYL ALCOHOL (5).—(Continued)

СН,ОН		11	OH + . H ₂ O		H + 1%	+ 1% CH ₃ O	
Time,	$[\alpha]_{\rm D}^{44.8}$	$\left \begin{array}{c c} \text{Time,} & [\boldsymbol{\alpha}]_{\mathbf{D}}^{44.8} \end{array} \right $		Time,			[α] _D ^{44.8}
		12.05	69.9	24.0	64.0	8.93	66.1
		23.18	64.5			11.58	64.1
		25.08	64 . 5			24.25	64.1

MUTAROTATION IN ETHYL ALCOHOL OF VARYING CONCENTRATIONS AT 20°C (44)

% C.H.OH	0	20	40	60	70	80
$10^3 (k_1 + k_2) \dots$	6.5	4.8	3.0	1.82	1.56	1.14

C.H.12O6, LEVULOSE

Optical Rotation

IN WATER (90)

 $\begin{aligned} [\alpha]_{0}^{15} &= -(88.50 + 0.145p); = -(88.50 + 0.150 \ C - 0.00086 \\ C^2), & \text{from } p = 2.6 \text{ to } 18.6 \text{ wt. } \% \text{ and from } C = 2.6 \text{ to } 20 \text{ g}/100 \\ \text{ml.} \quad [\alpha]_{D}^{15} &= [\alpha]_{0}^{25} + (0.566 + 0.0028C) \ (t^\circ - 25^\circ); & \text{from } 15 \text{ to } 37^\circ\text{C.} \quad [\alpha]_{0}^{239}/[\alpha]_{0}^{246} &= 0.8467. \quad [\alpha]_{0}^{20} &= -(88.16 \ + \ 0.258p) \\ (2^1). \quad [\alpha]_{0}^{25} &= -105.30; \ [\alpha]_{0}^{25} &= -89.40 \ (7^8). \end{aligned}$

IN WATER, IN PYRIDINE AND IN FORMIC ACID AT 20° Values of $-|\alpha|_{\lambda}^{20}$ for different concentrations (C) of levulose (30)

λ		In 1	In pyridine					
	$\frac{1}{4}N$	$\frac{1}{8}N$	$ \cdot \cdot \cdot N $	1 N	₹N	₹N	$ \cdot \cdot N $	3 N
656	76.39	75.30	74.86	74.04	26.44	25.81	25.39	24.77
589	90.46	89.96	88.36	87.49	35.48	35.26	34.96	34.51
535	107.21	106.66	105.70	104.84	42.59	42.22	41.71	41.24
508	136.85	135.8	133.35	130.12	49.10	48.77	48.36	47.62
479	151.11	149.27	147.20	146.20	56.0	55.37	54.78	54.07
447	166.55	163.88	160.49	158.10	63.93	62.70	62.11	61.33

Formic acid, $C = 8.6$	λ	656	589	535	508	479	447
g/100 ml	$[\alpha]_{\lambda}^{20}$	37.25	46.77	52.83	64.66	75.54	85.84

Pyridine, $C = 1.8$	°C	22	35	45
g/100 ml	$[\alpha]_{656}^t$	26.38	24.44	22.77

IN AQUEOUS ETHYL ALCOHOL (2)

Composition: 2 moles levulose + 100 moles $H_2O + x$ moles C_2H_4OH . Values of $|\alpha|_{\lambda}^{24}$

x	578 (HgY)	546 (HgG)	436 (HgB)
0	-93.73	-106.03	-175.29
9.28	-87.08	- 98.55	-162.65
24.65	-80.13	- 90.69	-149.62
54 . 9	-73.50	- 83.17	-137.48
167.0	-64.22	- 72.52	-120.59
1724.0	-49.7	- 55.7	- 93.7

IN VARIOUS SOLVENTS

Solvent	Levu- lose, g/100			[\alpha]	20 D	$ 10^3 \\ (k_1 + k_2)$	Lit.
	ml	α*	a	$\rightleftarrows \beta$	β		
Formamide	2.26		<u> -</u> :	109.51	-151.76	8.39	(60)
H ₂ O	10		-	92.0	-133.5		(44)
80% C ₂ H ₄ OH	10	-7	_	68.6	-133.5		(44)
95% C ₂ H ₄ OH	1	0	_	52.5	-122		(44)
CH ₂ OH		-8	_	61.4	-122]	(44)

IN VARIOUS SOLVENTS.—(Continued)

Solvent	Levu- lose, g/100		$[lpha]_{ m D}^{20}$		$\begin{vmatrix} 10^3 \\ (k_1 + k_2) \end{vmatrix}$	Lit.
	ml	α*	$\alpha \leftrightarrows \beta$	β		
80% C ₂ H ₄ OH					9.1†	(44)
H ₂ O	<u></u> 1 N		- 90.5			(30)
Pyridine	<u>1</u> N		- 35.5			(30)
Formic acid	5 to 8		- 53.0	}		(30)
t,°C			[α	1546		
H ₂ O 14.3	9.942		-115.7	-161	65	(71)
H ₂ O 0.0	4.9		-123.6	-155	17	(71)
Aq., C₂H₅OH	1					
$d_4^{14} = 0.930 15.3$	10.06		- 96.4	-156	22	(71)
$d_4^{15} = 0.876 \mid 0.0$	4.9		- 96 .1	-154	1	(71)

^{*} Computed from solubilities and [a]D for β -form. $\dagger k_1 = 0.0047$.

EFFECT OF HCL IN H₂O (97)

% HCl	0	25	37.6	40.0	42.0
°C	9	8	8	8	8
[a]b	-95.1	-116	-133	-154	-180

Solubility

(51)	°C	20	25	30	35	40	45	50	55
In H ₂ O	% levulose	78.94	80.29	81.64	82.98	 84.34	85.64	86.90	88.10

Solvent	g/100 m	solution	Composition, at equilib-	Lit.	
	Initial	Final	rium		
80% C ₂ H ₅ OH	13.4	27.4	48% β, 51% α	(44)	
95% C ₂ H ₆ OH	1.8	4.2	43 % β, 57 % α	(44)	
CH ₃ OH	5.2	11.1	47% β, 53% α	(44)	

Mutarotation

WITH HCL AT 30°C (37)

HCl, mole/l	0	0.0005	0.0010	0.0040	0.0100
$10^3 (k_1 + k_2) \dots$	186	140	128	130	196

Effect of pH and Temperature (68)

0.	0.15°C		15°C	25°C		:	37°C
pН	$\begin{vmatrix} 10^3 \\ (k_1 + k_2) \end{vmatrix}$	pН	$\frac{10^3}{(k_1+k_2)}$	pН	$\frac{10^3}{(k_1+k_2)}$	рH	$\frac{10^3}{(k_1+k_2)}$
1.33	101.0	2.5	64.7	2.5	118.9	1.70	460
2.48	16.2	3.3	36.8	3.4	86.0	2.06	350
3.17	8.5	5.1	41.5	5.1	99.2	3.36	195
5.07	8.7	5.8	53.5	5.7	107.6	4.62	205
6.00	10.4	6.3	64.7	6.4	156.1	5.10	236
6.28	17.8					6.10	275
		1			1	7.67	741

$^{\circ}\mathrm{C}$	0.15	15	25	37
$[\alpha]_D^t$ initial	-130.8	-130.8	-130.8	-130.8
al final	-100	- 94	- 88	- 81

EFFECT OF BORIC ACID (12)

Levulose,	H ₃ BO ₃ , m/l	0.22 molal	0.11 molal	0
1 molal, 0°C	$10^3 (k_1 + k_2)$	40	39	12.4

Velocity of Conversion of Artichoke Juices under Varying Conditions of Acidity and Temperature (51)

$$k = \frac{1}{t} \log_{10} \frac{R_0 - R_{\infty}}{R_t - R_{\infty}}$$

 R_0 , initial rotation; R_{∞} , rotation at completion of conversion

•	t,°C	Acidity (apparent) ent) normality	k
D 1000	79.8	0.10 H ₂ SO ₄	0.0137
$R_0 = +0.08,$	79.8	.20 H ₂ SO ₄	.0788
$R_{\infty} = -26.43$	78.2	. 10 HCl	.0381
D 0.40	99.0	0.0294 HCl	0.00327
$R_0 = -2.40,$	99.0	.0516 HCl	. 02737
$R_{\infty} = -25.88$	99.0	.0667 HCl	. 1371
	99.0	0.0240 HCl	0.0010
	99.0	.0462 HCl	. 00593
$R_0 = -1.29,$	99.0	.0571 HCl	. 0163
$R_{\infty} = -34.48$	99.0	.0676 HCl	.0353
	99.0	.0773 HCl	.0707
	99.0	. 1041 HCl	.3172

The "apparent" acidities are those which would have been produced in pure water. A portion of the acid in each instance was rendered ineffective by inorganic impurities.

VELOCITY OF CONVERSION OF INULIN IN THE PRESENCE OF VARYING CONCENTRATIONS OF HYDROCHLORIC ACID AT 100°C

Normality of HCl	Velocity constant, k	k (ash-free) in 0.01N HCl
0.0095	0.00641 {	$\frac{k(3-2)}{N(3-2)} = 0.0184$
0.0199	.0394 {	$\frac{k(4-3)}{N(4-3)}=0.0212$
0.0545	1022 {	$\frac{k(4-2)}{N(4-2)} = 0.0199$
0.1034	. 2057	, ,
Mean		0.020

By taking the differences in velocity at the higher acidities the neutralizing action of inorganic impurities is arithmetically eliminated.

DECOMPOSITION OF LEVULOSE IN THE PRESENCE OF SULFURIC ACID(51)

t,°C	Time in min	Acidity normality	Polarization in saccharimeter deg.
			86.25*
100	15	0.0304	83.70
100	30	. 0304	82.90
100	15	.0584	83.30
100	30	.0584	81.16
			85.89*
70	15	. 0474	85.87
70	30	. 0474	85.63
70	15	.0891	85.79
70	30	.0891	85.26

^{*} Control solution.

INVERT SUGAR

Mixture of equal parts of dextrose and levulose obtained by hydrolysis of sucrose.

Optical Rotation

In H₂O

 $[\alpha]_{\rm D}^{10} = -19.447 - 0.06068p + 0.000221p^2$ between p = 9 and 68 wt. %. All weights in vacuo (21). $[\alpha]_{646}^{25} = -21.50$. $[\alpha]_{689}^{25} = -18.39$ (78).

Effect of Various Substances on the Rotation

R (in°S) = $-42.00^{\circ} - 10^{-3}$ am, where m = g anhyd. reagent per 100 ml of solution and R is twice the rotation (in°S) observed with 13 g of inverted sucrose per 100 ml. Ac = $C_2H_3O_2$ (48).

Reage	ent	HCI	NaCl	NH ₄ Cl	CaCl ₂	K2C2O4	HAc	H,PO
a		540.7	540	563	710	510	82.3	77.6
For $m \gg$.		9.3	3.7	3.7	7.5	12.9	41	5.5
Reagent	xPbAc	₂ ·yPbO	PbAc	NH ₄ N	O ₂ KCl	Na ₂ H		NaAc.
a	-1	430	20	399	486	161		189
At m =	2	57	3.03	2.6	3 11.8	8 12	.26	12.85

Decomposition in the Presence of HCl, 0.7925N (48)

	ompoon.				,	0		,
50°C	Min	0	3	38	78	12	8	235
	°S	33.2	5 33	.04	32.95	32.	80	32.44
60°C	Min	0	8	18	33	48	63	93
60°C	°S	33.:	25 33.1	1 32 . 9	3 32.76	32.60	32.31	32.02
	1 20				1	T		
7000	Min	ı 0	4	8	12	17	22	32
70°C	°S	33.2	25 33 . 0	0 32.6	2 32.46	32.26	31.89	31.45
				1 -				
80°C	Min	0	3	6	1	10	14	19
	°S	33.25	32.61	32.	00 31	.30 3	30.82	30.07

C₆H₁₂O₆, MANNOSE

Optical Rotation

In H₂O

C = g anhyd. mannose per 100 cm³ solution at 20°C (44)

\overline{C}	3	3.25	4.53	10.2	16.9	20.55
$[\alpha]_{\mathrm{D}}^{20}$	14	1.6	14.5	14.1	13.6	13.4
\overline{c}	30.15	39.7	50	60	70	80
$[\alpha]_D^{20}$	13.1	12.8	12.3	11.9	11.4	10.9

IN VARIOUS SOLVENTS

Solvent	Mannose,	°C			Lit.	
Solvent	g/100 ml		α	α≓β	β	ш.
H ₂ O	2.8	19		+14.40	-19.9	(61)
Formamide	2.0	20		11.84	-26.9	(61)
H ₂ O		20	+34*	14.6	-17 .	(44)
80% C ₂ H ₅ OH		20	+34*	25.7	-14.9	(44)
CH ₃ OH		20	39*	30.1	-16.5	(44)
H ₂ O		20	30			(56)
80% C ₂ H ₆ OH		20	35			(56)

^{*}Computed from initial and final solubilities and rotations of the \$-form.

EFFECT OF HCL ON d-MANNOSE

Ca. 5 g anhyd. mannose per 100 ml solution (97)

% HCl	0	8	25	31	37.6	40.0	42.0
°C	13	10	10	10	10	10	10
$[\alpha]_D^t$	+14.1	+10.5	+4.0	+3.0	+13.3	+31.3	+54.6

EFFECT OF H2SO4

Solubility

Solid phase: β-mannose; 20°C; g/100 cm ³ solution (44	Solid phase:	β-mannose;	20°C;	g/100	cm³	solution	(44
--	--------------	------------	-------	-------	-----	----------	-----

Solvent	Initial	Final	$\alpha \rightleftarrows \beta$	$\alpha \rightleftharpoons \beta$ mix.		
100% CH ₃ OH	0.78	4.4	%α	%β		
80% C ₂ H ₅ OH	2.4	13.0	82	18		

Mutarotation

In H₂O

C =	g mannose	per 100	cm3 of	solution;	19.7°C	(43)
-----	-----------	---------	--------	-----------	--------	------

\overline{c}	5.13	8.0	10.0	10.2	19.1	24.7
$10^3 (k_1 + k_2) \dots$	17 . 7	17.9	17.5	17.8	18.1	19.1
$\overline{C \dots \dots C}$	27.1	36.8	45.0	50.0	52.0	56.0
$\overline{10^3 (k_1 + k_2) \dots}$	19.2	19.7	20.0	19.2	18.9	17.9

In Dilute (≯10%) Solution (43)

Between 0 and 45°C, $k_1 + k_2$ may be computed with an accuracy of ca. 5% by means of the equation: $\log_{10} 10^3 (k_1 + k_2) =$ 13.132 - 3472/T where T is the absolute temperature.

EFFECT OF HCL AT 19.7°C (43)

HCl, N	0	0.0010	.010 0	.0125	0.0166	0.025	0.05	0.10
$\overline{10^3(k_1+k_2)\ldots}$	17.7	19.0 3	9.6	46.0	55 .8	70.8	125	238

IN VARIOUS SOLVENTS

Solvent	°C	$10^3(k_1+k_2)$		10³k,	103k2	Lit.	
Solvent		α	β	10.71	10-2	Litt.	
H ₂ O	1.5	2.9	2.9			(57)	
80% C ₂ H ₄ OH	25	5.4	5.75		}	(57)	
80% C ₂ H ₆ OH	15.0			0.41	1.93	(57)	
80% C ₂ H ₆ OH	20 .0		3.63	.77	2.86	(44)	
H ₂ O	18.0		17.			(11)	
H ₂ O	19.0		27.3			(61)	
Formamide	20.0		3.26			(61)	

C6H12O6, GALACTOSE Optical Rotation

IN VARIOUS SOLVENTS

Calaran	ctose, 00 ml			$[\alpha]_{\mathrm{D}}^{\prime}$		103	Lit.
Solvent	Galactose, g/100 ml		α	$\alpha \rightleftharpoons \beta$	β	$(k_1 + k_2)$	Lit.
H ₂ O			+139.3	+79.3		4.79	(60)
Formamide	2.01	18.0	154.5	85.45		0.84	(60)
H ₂ O	2.25	20.0	139.4	79.25		9.60	(61)
Formamide	1.75	20.0	155.3	87.77		1.98	(61)
H ₂ O	1.87	20.0		79.01	+56.51	7.22	(61)
Formamide	1.81	20.0		87.19	62.30	1.57	(61)
H ₂ O	1		144.0	80.05	47.0*		(44)
60% C2H4OH	l	20.0	140.6	72.8	33*		(44)
80% C.H.OH		20.0		73.1	34*		(44)
H ₂ O		20.0			52		(44)
H ₂ O	1.0	20.0		80.2			(30)

* Calculated from initial and final solubilities and rotations. $\frac{d[\alpha]_D'}{A_I}$ = -0.23 at 12.5°C = -0.34 at 18°C (60).

EFFECT OF	HCL IN	H ₂ O	(97
-----------	--------	------------------	-----

% HCl	0	25	37.6	40.0	42.0
°C	8	6	6	6	6
$[\alpha]_{\mathbf{D}}^{i}$	83.3	94.2	113.8	133.6	160.4

Effect of H₂SO₄ in H₂O (11)

\overline{N} of H_2SO_4	0	10	16	18	20	24	26
$[\alpha]_{\mathrm{D}}^{25}$	79.0	88.0	95.0	99.5	102.5	110.0	122.0

EQUILIBRIUM ROTATION In Aqueous C₂H₆OH (13)

% C ₂ H ₅ OH	$[\alpha]_{\mathbf{D}}^{20}$	$[\alpha]_{\mathbf{D}}^{20}$	$[\alpha]_{\mathrm{D}}^{28}$
30	71.2	66.4	63.3
60	63 . 3	60.5	57.4
80	57.0	51.0	41.6

In Aqueous n-Propyl Alcohol (13, 26)

C ₂ H ₇ OH, g/l solution	100	200	300	400	500	600
$[\alpha]_{1}^{29}$	79.66	76.13	74.04	71.56	68.97	64.96

In Various Solvents Values of $[\alpha]_{\lambda}^{20}$ (30)

Galactose, g/100 ml	1	1	2.98
λ, mμ	In H ₂ O	Pyridine	Formic acid
656	60.50	46.50	101.42
589	80.17	59.83	127.30
535	96.66	76.66	155.30
50 8	117.50	85.33	175.80
479	131.00	98.66	221.10
447	150.66	115.33	250.80

Index of Refraction and Density of Aqueous Solution (77)

% anhydrous galactose	18.24	9.12	4.60	2.30	1.15
$\overline{d_4^{2b}\ldots\ldots\ldots}$	1.0730	1.0335	1.0150	1.0058	1.0012
n_{D}^{25}	1.3620	1.3470	1.3400	1.3366	1.3349

Solubility

g α-galactose per 100 cm³ solution

Solvent	Initial	Final	Lit.
80% C ₂ H ₄ OH	0.27	0.65	(38)
60% C.H.OH.	1.1	3 1	(38)

Mutarotation (12)

Solvent	Galactose, g/100 ml	$^{\circ}\mathrm{C}$	$10^3(k_1+k_2)$
Conductivity H₂O	9.0	25.0	1.41
0.5N H ₂ BO ₃	9.0	25.0	1.45

C₆H₁₀O₅, ARABINOSE Optical Rotation and Mutarotation

IN VARIOUS SOLVENTS

Solvent	Arabi- nose,	°C	$[\alpha _{\mathbf{D}}^{t}$			102	T
g/10 ml	g/100 ml		α	α ⇌ β	β	(k_1+k_2)	Lit.
H ₂ O	2.61	12		+105.9(L)	+186(l-)	13.4	(60)
H ₂ O		20	- 54*(d-)	-105.0(d-)	-175(d-)	31	(44)
80 % C2H5OH		20	-28*(d-)	- 81.7(d-)	-173(d-)	ì	(44)
Formamide	2.40	13	1	+116.3(1-)		1.54	(60)

* Calculated from initial and final solubilities and rotations.

EFFECT OF HCL IN AQUEOUS SOLUTION Arabinose, ca. 5 g/100 ml (97)

% HCl	0	25	37.6	40	42
°C	9	8	8	8	8
$[\alpha]_{\mathrm{D}}^{\ell}$	+105.1	117.6	142.0	166.2	202.9
40% HCl	t, min	6	18	48	64
40% HCI	$[\alpha]_{\mathbf{D}}^{10}$	+166.3	167.0	167.0	167.0

Solubility (44)

In 80% aqueous C_2H_4OH : Initial $S_{\beta} = 0.74$, final $S_{\beta} = 1.94$ g per 100 cm³ solution. Equilibrium mixture = $38\% \beta$, $62\% \alpha$.

C₅H₁₀O₅, XYLOSE
Optical Rotation and Mutarotation
IN VARIOUS SOLVENTS

	Xylose,		$ \alpha _{\mathrm{D}}^{l}$ $ 10^{3}$	
Solvent	g/100 ml	°C	$\frac{\alpha \mid \alpha \rightleftharpoons \beta \mid \beta \mid (k_1 + k_2)}{\alpha \mid \alpha \rightleftharpoons \beta \mid \beta \mid (k_1 + k_2)}$	Lit.
H ₂ O		20	+ 92.0 +19.0 -20*	(44)
80%C2H4OH		20	+ 94.5 +32.1 -20*	(44)
H ₂ O		1	2.8	(44)
H ₂ O		10	7.5	(44)
H ₂ O		20	20.7	(44)
H ₂ O	ļ	30	53.2	(44)
H ₂ O		40	133	(44)
H ₂ O	2.72	20	+90.3 +19.13 18.8	(60)
Formamide	4.04	20	+109.4 +25.12 3.06	(60)
H ₂ O	1	20	+18.2	(30
Pyridine		20	+40.5	(30
Formic acid.		20	+66.6	(30

* Calculated from initial and final solubilities and rotations of the a-form. EFFECT OF HCL IN AQUEOUS SOLUTION (ca. 5 g/100 ml) (97) % HCl.... 0 40.0 8 25 37.6 °C..... 13 9 9 9 9 9 68.7 96.6

ROTATION AT EQUILIBRIUM (30) Values of $[\alpha]_{\lambda}^{20}$ for $\alpha \rightleftharpoons \beta$

Xylose, g/100 ml	0.866	1.28	5.48	
λ, mμ	In H ₂ O	Pyridine	Formic acid	
656	+13.28	32.04	55.74	
589	18.19	40.64	66.60	
535	21.08	48.64	82.66	
508	24.50	59.90	95.80	
479	27.70	68.34	116.13	
447	31.94	72.47	125.95	

Solubility

In 80% C_2H_3OH at 20°C: Initial 2.7 g, final 6.2 g per 100 cm³ solution. Equilibrium mixture, 44% α , 56% β (44).

$C_{18}H_{22}O_{16} + 5H_2O$, RAFFINOSE (MELITRIOSE, GOSSYPOSE)

(Composition: d-Galactose < d-Glucose < > d-Fructose)

Raffinose may be hydrolyzed to (1) fructose and melibiose; (2) galactose and sucrose; (3) fructose, glucose, and galactose. It is nonreducing.

Optical Rotation

In H₂O

Form	Lit.		
R·5H ₂ O	$[\alpha]_{\rm D}^{20} = 104.5$	(16, 54)	
Anhyd	$[\alpha]_{589.25}^{25} = 123.00$	(62, 91, 93)	
Anhyd	$[\alpha]_{546,1}^{25} = 144.55$	(94)	

 $\frac{\mathrm{d}[\alpha]_{\lambda}}{\mathrm{d}t} = ca. \ 0.0 \text{ between } 3^{\circ} \text{ and } 20^{\circ}\mathrm{C} \ (^{23}).$

IN VARIOUS SOLVENTS (30)

C = 3.7125 g anhyd. raffinose per 100 ml solution. Values of

			····			
$\lambda, m\mu =$	656	589	535	508	479	447
In H ₂ O	79.63	105.20	131.71	150.75	163.77	188.55
Pyridine	94.22	117.17	142.76	167.00	188.52	218.26

EFFECT OF SALTS IN H_2O (91, 92, 93, 94) 0.1 formula weight $C_{18}H_{32}O_{16}$ in 1000 g H_2O

Salt	Moles/1000 g H ₂ O	$[\alpha]_{589.25}^{25}$
	0.0	123.00
KCl	1.3	123.08
NaCl	1.71	123.12

EFFECT	OF	SALTS	IN	H ₂ O	(91,	92,	93,	94)	.—(Continued)
--------	----	-------	----	------------------	------	-----	-----	-----	---------------

Salt	Moles/1000 g H ₂ O	$[\alpha]_{589.25}^{25}$
LiCl	1.30	123.24
	<u> </u>	$[\alpha]_{645.1}^{24}$
	0.0	144.55
CsCl	1.2	144.64

Density of Aqueous Solution

 d_{19}^{20} of aqueous solution containing 28.4% raffinose = 1.12474. Since this corresponds to 29.10° sucrose Brix, 1% raffinose = 1.025° sucrose Brix (80).

 $C = \text{formula weights of raffinose} \cdot 5H_2O \text{ per liter of solution at } t^{\circ}C$, all weights in vacuo (95).

C	°C	d_i^t	C	$^{\circ}\mathrm{C}$	d'_i
0.038083	0.00	1.00796	0.102297	24.94	1.01179
.037973	24.94	1.00483	.131202	0.00	1.02752
.037615	49.87	. 99556	. 130727	24.96	1.02378
.058632	0.00	1.01218	.129787	50.12	1.01407
.058466	24.94	1.00897	. 176625	0.00	1.03645
.057925	49.87	. 99964	.175818	24.00	1.03172
. 102676	0.00	1.02147	. 174336	49.84	1.02302

Solubility

IN H2O. PER CENT ANHYD. RAFFINOSE

°C	0	10	16	24
%	6.5	10.0	14.5	28.4
Lit	(15)	(15)	(15)	(80)

IN AQUEOUS CH4OH AT 15°C

S in g anhyd, raffinose per 100 cm³ solution (31)

, in a wind at terminous per 100 cm solution ()							
Vol. % CH₃OH	100	95	90	85	80	60	20
S	10 2	7.5	2 4	1.8	1.8	2.8	5.0

Hydrolysis of Raffinose by Acids at 25°C (1)

100 g H₂O + 0.25 mole of anhyd. raffinose + 1 mole of acid

Acid	HNO:	HCl	H ₂ SO ₄
$k = \frac{1}{t} \log_{10} \frac{a}{a - x} \dots$	0.00390	0.00419	0.00446

SYSTEMS CONTAINING MORE THAN ONE SUGAR

Solubilities

System: Sucrose, Dextrose, Water, 30°C (50)

Solid phase	% sucrose	% dextrose	d_4^{20}
C ₁₂ H ₂₂ O ₁₁	68.11	0	1.3301
	64.22	4.89	1.3356
	60.40	9.70	1.3411
	53.19	18.58	1.3507
	48.60	24.61	1.3588
$C_{12}H_{22}O_{11} + C_6H_{12}O_6.H_2O$	47.10	26.59	
C ₆ H ₁₂ O ₆ .H ₂ O	33.79	33.88	1.3227
	19.66	41.97	1.2867
	7.35	50.00	1.2592
	0 .	54.64	1.2434

Solubility of Sucrose, Dextrose, and Levulose in the Presence of One Another

Solid phase sucrose (50)

23.15°C % invert sugar % sucrose 6	0	11.90	25.39	36.90
	% sucrose	67.59	57.84	47.31

At.	30	06

% invert sugar	% sucrose	d_4^{30}	invert sugar	% sucrose	% invert sugar	% sucrose
0	68.11	1.3301	24.52	48.93	47.62*	31.85
14.94	56.32	1.3485	28.01	46.36	56.37	26.03
21.86	50.97	1.3571	37.48	39.23	63.68	21.18
23.21	49.91	1.3587	47.02*	32.06	64.47	20.59
24.46	48.95	1.3608				

 $*d_4^{30} = 1.3957.$

At 50°C

% invert sugar	0	11.42	22.65	32.32	46.05	57.06
% sucrose	72.25	62.81	53 . 80	46.20	35.75	28.18
Bot	h sugar	s present	as solid	phases	(50)	

°C	0	10	15	23.15	30	40 50
% sucrose						
% invert sugar	27.2	31.8	34.8	39.9	45.4	50.7 58.0

System: Dextrose, Levulose, Water, 30°C Solid phase dextrose monohydrate (50)

% anhyd.	% levu- lose	d_4^{30}	% anhyd. dextrose	% levu- lose	d_4^{20}
54.64	0.00	1	35.76	33.09	1.3286
49.34	8.94	1.2639	34.48	35.69	1.3359
49.32	8.94	1.2650	33.67	37.10	1.3408
45.97	14.50	1.2779	32.55	39.39	1.3480
41.01	23.23	1.3000			

System: Dextrose, Levulose, Water

Solid phase, dextrose. A = % dextrose, in water alone. B = % dextrose in solution containing an equivalent amount of levulose. Saturation with crystalline dextrose in both cases (50).

°C	A	В	°C	A	В
0	35.0	50.8	30.0	54.64	69.7
10.0	40.8	56.6	35.0	58.02	72.2
15.0	44.0	59.8	40.0	61.87	74.8
20.0	47.2	62.6	45.0	65.71	78.0
25 .0	50.80	66.2	50.0	70.91	81.9

Clerget Analysis for Sucrose (48)

The estimation of sucrose in the presence of other optically active substances by the Clerget Method depends upon the change of rotation which the sugar undergoes upon inversion. The difference in saccharimeter deg. between the rotation of 26 g of pure

sucrose in 100 ml of solution observed in a 200 mm column and the rotation of invert sugar calculated to a concentration of 26 g of inverted sucrose in 100 ml is known as the Clerget Divisor. Two general methods of inversion are employed:

- (a) Inversion by the enzyme, invertase.1
- (b) Inversion by hydrochloric acid.2

VALUES OF CLERGET DIVISOR

 $(m_e$, resp. m_A , resp. m_N , resp. $m_{Na} = g$ inverted sucrose, resp. HCl, resp. NH₄Cl, resp. NaCl in 100 ml of solution. $t = {}^{\circ}C$.)

(a) Invertase inversion.

Positive constituent	Negative constituent
+100	$-42.1 - 0.0676 (m_{\bullet} - 13) + t/2$

(b) HCl inversion, 2.312 g anhyd. HCl in 100 ml of inverted solution, equivalent to 10 ml of HCl ($d_4^{20} = 1.1029$).

Positive constituent	Negative constituent					
+100	$-43.25 - 0.0676 (m_a - 13) + t/2$					

(c) HCl inversion and subsequent neutralization with NH₄OH equivalent to 10 ml HCl ($d_4^{20} = 1.1029$) in 100 ml of inverted solution.

Positive constituent	Negative constituent
+100	$ -43.91 - 0.0676 (m_a - 13) + t/2 $

(d) HCl inversion with 10 ml of HCl ($d_4^{20} = 1.1029$) in 100 ml of inverted solution; 2.315 g NaCl contained in 100 ml of solution for direct polarization (in order to equalize the effect of HCl upon invert sugar when present as an impurity).

Positive constituent	Negative constituent
+99.38	$1 - 42.1 - 0.0676 (m_{\bullet} - 13) + t/2$

(e) HCl inversion with 10 ml HCl ($d_4^{20} = 1.1029$) in 100 ml of inverted solution and subsequent neutralization with NH₄OH; 3.392 g NH₄Cl contained in 100 ml of solution for direct polarization.

Positive constituent	Negative constituent
+99.43	$-43.91 - 0.0676 (m_a - 13) + t/2$

GENERALIZED FORMULAE

Positive constituent: $R = 100 - 0.265 m_{\text{Na}} = 100 - 0.169 m_{\text{N}}$. Negative constituent: $R_{\text{HCl}} = -41.12 - 0.5407 m_{\text{A}} - 0.0676 m_{\text{e}} + 0.5 t$. $R_{\text{NH}_{\text{A}Cl}} = -41.12 - 0.563 m_{\text{N}} - 0.0676 m_{\text{e}} + 0.5 t$.

Reducing Powers toward Fehling's Solution

For Munson and Walker's table for calculating dextrose, invert sugar, in mixtures containing sucrose, lactose and maltose v. (18, 65). For Allihn's tables v. (14, 20).

- ¹ For detailed description of methods of inversion by invertase, v. (3).
- ² For detailed description of methods of inversion by hydrochloric acid, r. (48).

ROTATIONS AND MELTING POINTS OF PURE SUGARS AND SUGAR DERIVATIVES (40-5)

					, ,	
	Formula	Moļ. wt.	М. Р.	$[\alpha]_{\mathrm{D}}^{20}$	$[M]_{\mathrm{D}}^{20}$	Solvent
β-d-Arabinose	C ₅ H ₁₀ O ₅	150		-175	- 26 300	H ₂ O
α-L-Arabinose tetraacetate	C18H18O9	318	97	+ 42.5	+ 13 500	CHCl2
β-l-Arabinose tetraacetate	C13H18O9	318	86	+147.2	+ 46 800	CHCI.
L-Arabonic amide	$C_bH_{11}O_bN$	165	136	+ 37.5	+ 6 190	H ₂ O
d-Arabonic phenylhydrazide	C11H16O5N2	256		- 14.5	- 3 710	H ₂ O
β-Bromoacetyl d-arabinose	C11H15O7Br	339		-288	- 97 600	CHCl.
β-Bromoacetyl <i>L</i> -arabinose	C11H15O7Br	339		+288	+ 97 600	CHCl ₃
α-Bromoacetyl lactose	C26H26O17Br	699	145	+109	+ 76 200	CHCI.
a-Bromoacetyl d-xylose	C11H15O7Br	339	102	+212	+ 71 900	CHCl ₃
β-Cellobiose	C12H22O11	342		+ 16.0	+ 5 470	H ₂ O
a-Cellobiose octaacetate	C28H38O19	678	229	+ 41	+ 27 800	CHCl.
β-Cellobiose octaacetate	C25H38O19	678	202	- 14.6	- 9 900	CHCl,
α-Chondrosamine pentaacetate	C16H23O10N	389	183	+101.3	+ 39 400	CHCl ₃
β-Chondrosamine pentaacetate	$C_{16}H_{23}O_{10}N$	389	220 d	+ 10.5	+ 4 080	CHCl ₃
β-Chloroacetyl d-arabinose	C ₁₁ H ₁₅ O ₇ Cl	295		-244	- 72 000	CHCl.

ROTATIONS AND MELTING POINTS OF PURE SUGARS AND SUGAR DERIVATIVES (40.5).—(Continued)

		36.1			7. (
	Formula	Mol.	M. P.	$[\alpha]_{\mathrm{D}}^{20}$	$[M]_{\mathrm{D}}^{20}$	Solvent
		wt.				
β-Chloroacetyl L-arabinose	C ₁₁ H ₁₆ O ₇ Cl	295		+244	+ 72 000	CHCl:
Chloroacetyl celtrobiose(40)		655	138	+ 59.2	+ 38 800	CHCl3
Chloroacetyl d-galactose (second)		367	67	- 78	- 28 600	CHCl ₃
α-Chloroacetyl lactose		655	121	+ 84	+ 55 000	CHCl,
α-Chloroacetyl neolactose (53)		655	182	+ 71.2	+ 46 700	CHCl ₃
β -d-Fructose		180		-133.5	- 24 000	H ₂ O
α-d-Fructose pentaacetate		390	70	+ 34.7	+ 13 500	CHCl ₂
β-d-Fructose pentaacetate	1	390		-120.9	- 47 200	CHCl.
β-d-Fructose tetraacetate		348		- 91.6	- 31 900	CHCl ₃
d-Galactonic amide		195	172	+ 30.2	+ 5 890	H ₂ O
α-d-Galactose		180		+144	+ 25 900	H ₂ O
β-d-Galactose	C6H12O6	180		+ 52	+ 9 360	H ₂ O
d-Galactose pentaacetate (first)		390	142	+ 23	+ 8 970	CHCl ₃
d-Galactose pentaacetate (second)	-	390	96	+107	+ 41 700	CHCl,
d-Galactose pentaacetate (third)		390	98	- 42	- 16 400	CHCl.
d-Galactose pentaacetate (fourth)		390	87	+ 61	+ 23 800	CHCl.
d-Galactose tetraacetate (third)		348	73	- 17.8	- 6 190	CHCl ₃
d-Galactose phenylhydrazone		438	95	+ 15.5	+ 6 790	CHCl.
d-α-Galaheptonic amide		225	206	+ 14.3	+ 3 220	H ₂ O
d-α-Galaheptonic phenylhydrazide		316	100	+ 8.5*	+ 2 700*	H ₂ O
α-Gentiobiose octaacetate		678	189	+ 52.4	+ 35 500	CHCl,
β-Gentiobiose octaacetate	1	678	193	- 5.3	- 3 590	CHCl ₃
d-α-Glucoheptonic amide	1 -	225	134	+ 10.6	+ 2 390	H ₂ O
d-β-Glucoheptonic amide		225	158	- 30.2	- 6 790	H ₂ O
d-α-Glucoheptonic phenylhydrazide		316		+ 9.3	+ 2 940	H ₂ O
β-d-α-Glucoheptose		210 462	164	-28.4 + 87.0	-5960 + 40200	H ₂ O
α -d- α -Glucoheptose hexaacetate		462	135	+ 4.8	1	CHCl,
d-Gluconic amide		195	144	+31.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O
α-d-Glucosamine pentaacetate		389	140	+ 93.5	+ 36 400	CHCl ₂
β-d-Glucosamine pentaacetate		389	189	+ 33.3 + 1.2	+ 467	CHCl ₂
α-d-Glucose		180	100	+113	+ 20 300	H ₂ O
β-d-Glucose		180		+ 19	+ 3 420	H ₂ O
α-d-Glucose pentaacetate		390	113	+101.6	+ 39 600	CHCl.
β-d-Glucose pentaacetate		390	132	+ 3.8	+ 1 480	CHCl.
d-Gulonic amide	l	195	123	+ 15.2	+ 2 960	H ₂ O
α-Iodoacetyl lactose		746	145	+137	+102 000	CHCl ₃
α-Lactose	1	342		+ 90	+ 30 800	H ₂ O
β-Lactose	C12H22O11	342		+ 35	+ 12 000	H ₂ O
α-Lactose octaacetate	C28H38O19	678	152	+ 53.9	+ 36 500	CHCl:
8-Lactose octaacetate	C28H28O19	678	90	- 4.3	- 2 920	CHCl ₃
α-d-Lyxose	C6H10O5	150	ļ	+ 5.5	+ 825	H ₂ O
β-Maltose		342		+118	+ 40 400	H ₂ O
β-Maltose heptaacetate		636	181	+ 67.8	+ 43 100	CHCl:
α− Maltose octaacetate	C25H38O19	678	125	+122.4	+ 83 000	CHCl:
β-Maltose octaacetate		678	160	+62.7	+ 42 500	CHCl.
d-Mannitol hexaacetate		434	120	+ 26	+ 11 300	CHCl.
d-α-Mannoheptonic amide		225	194	+ 28	+ 6 300	H ₂ O
d-α-Mannoheptonic phenylhydrazide	l .	316		+ 21	+ 6 640	H ₂ O
d-α-Mannoheptose hexaacetate (first)		462	106	+ 24.2	+ 11 200	CHCI,
d-α-Mannoheptose hexaacetate (second)		462	140	- 31	- 14 300	CHCl,
d-Mannonic amide		195	173	- 17.3	- 3 370	H ₂ O
d-Mannonic phenylhydrazide		286	100	- 8.1* - 24.5	- 2 320*	H ₂ O
d-Mannosaccharic diamide	l	208 180	189	- 24.5 - 17	- 5 100 - 3 060	H ₂ O
β-d-Mannose		390	64		- 3 060 - 21 500	H ₂ O
α -d-Mannose pentaacetate		390	118	+55.0 -25.2	- 21 500 - 9 830	CHCl ₃
		504	148	$\frac{-25.2}{+88.2}$	-9830 + 44500	H ₂ O
Melezitose		966	148	$+88.2 \\ +103.8$	+ 44 500 + 100 000	CHCl ₂
β-Melibiose		342	***	+103.8 $+12.4$	$+42\ 400$	H ₂ O
β-Melibiose octaacetate		678	177	+102.5	+ 69 500	CHCl ₃
p-Micholose Octaacetate	281135019	010	1 ***	T102.0	1 7 00 000	CHOIS

ROTATION AND MELTING POINTS OF PURE SUGARS AND SUGAR DERIVATIVES (40.5)—(Continued)

	Formula	Mol. wt.	М. Р.	$[lpha]_{ m D}^{20}$	$[M]_{\mathrm{D}}^{20}$	Solvent
α-Methyl Larabinoside	C ₆ H ₁₂ O ₅	164	131	+ 17.3	+ 2 840	H ₂ O
β-Methyl L-arabinoside	C6H12O6	164	169	+245.5	+ 40 300	H₂O
β-Methyl <i>l</i> -arabinoside triacetate	C12H18O8	290	85	+182.0†	+ 52 800†	CHCl ₃
β-Methyl cellobioside heptaacetate		650	187	- 25.4	- 16 500	CHCl ₂
β-Methyl d-fructoside	C7H14O6	194	120	-172.1	- 33 400	H ₂ O
β-Methyl d-fructoside tetraacetate	C15H22O10	362	76	-124.6	- 45 100	CHCl,
α-Methyl d-galactoside tetraacetate	C16H22O10	362		+133.0	+ 48 100	CHCl ₂
β-Methyl d-galactoside tetraacetate	C15H22O10	362		- 13.0	- 4 710	CHCl ₃
β-Methyl gentiobioside	C12H24O11	356	98	- 36.0	- 12 800	H ₂ O
β-Methyl gentiobioside heptaacetate	C27H38O18	650	82	- 18.9	- 12 300	CHCl,
α-Methyl d-glucoside tetraacetate	C16H22O10	362	101	+130.6	+ 47 300	CHCl ₃
β-Methyl d-glucoside tetraacetate		362	105	- 18.3	- 6 620	CHCl ₂
α-Methyl d-lyxoside (73)	C6H12O5	164	109	+ 59.4		H ₂ O
β-Methyl maltoside heptaacetate	C27H28O18	650	125	+ 53.7	+ 34 900	CHCl.
α-Methyl d-xyloside	C6H12O5	164		+153.9	+ 25 200	H ₂ O
β-Methyl d-xyloside	C.H.2O.	164	157	- 65.5	- 10 700	H ₂ O
α-Methyl d-xyloside triacetate	C12H18O8	290	86	+119.6	+ 34 700	CHCl ₃
β-Methyl d-xyloside triacetate	$C_{12}H_{18}O_8$	290	115	- 60.7	- 17 600	CHCl:
α-Neolactose octaacetate (53)	C28H38O19	678	178	+ 53.4	+ 36 200	CHCl ₂
β-Neolactose octaacetate (53)	C28H38O19	678	148	- 7.1	- 4 810	CHCl.
L-Rhamnomethyltetronic amide	C ₅ H ₁₁ O ₄ N	149	135	+54.8	+ 8 170	H ₂ O
L-Rhamnomethyltetronic lactone	C ₅ H ₈ O ₄	132	123	- 44.7	- 5 900	H ₂ O
l-Rhamnonic phenylhydrazide	C12H18O5N2	270		+ 17.2	+ 4 640	H ₂ O
α-l-Rhamnose	C6H12O5	164		- 7.7	- 1 260	H ₂ O
L-Ribonic amide	C ₅ H ₁₁ O ₅ N	165	138	- 16.4	- 2 710	H₂O
d-Saccharic diamide	C6H12O6N2	208	173	+ 13.3	+ 2 770	H₂O
Sedoheptose (anhydro-)	C7H12O6	210		-146.3	- 30 720	H₂O
Sucrose octaacetate	C28H28O19	678	69	+ 59.6	+ 40 400	CHCl ₃
Trehalose octaacetate	C28H28O19	678	98	+162.3	+110 000	CHCl ₂
α-d-Xylose	C ₅ H ₁₀ O ₅	150		+ 92	+ 13 800	H ₂ O
α-d-Xylose tetraacetate	C13H18O9	318	59	+ 89.1	+ 28 300	CHCl ₃
β-d-Xylose tetraacetate	C18H18O9	318	128	- 24.9	- 7 920	CHCl.
d-Xylose triacetate	C11H16O8	276	141	+ 70†	+ 19 300†	CHCl ₃

^{*} At 80°C. † At 23°C.

LITERATURE

(For a key to the periodicals see end of volume)

- Armstrong and Glover, δB, 80: 312; 08. (2) Armstrong and Walker, δ, 88: 388; 13. (3) Association of official agricultural chemists, Official and Tentative Methods of Analysis, 2nd ed., p. 183. Washington, D. C., 1925.
 Bacharach, 173, 48: 521; 23. (5) Baker, Ingold and Thorpe, 4, 125: 268; 24. (6) Bates, 31, No. 34: 06. 31A, 2: 239: 06. (7) Bates and Bearce, 32, No. 115; 18. (8) Bates and Blake, 31A, 3: 105; 07. (9) Bates and Jackson, 31, 268; 16. 31A, 13: 67; 16.
- Bleyer and Schmidt, 205, 135: 546; 23. (11) Bleyer and Schmidt, 205, 138: 119; 23. (12) Böeseken, Kerstjens, and Klamer, 64P, 18: 1654; 16. (13) Bourquelot, 14, 7: 153; 17. (14) Browne, 1, 28: 439; 06. (15) Browne, Handbook of Sugar Analysis, p. 735. New York, Wiley, 1912. (16) Browne and Gamble, 45, 13: 793; 21. (17) Bureau of Standards, 365, No. 44: 128; 18. (17.5) Bureau of Standards, 365, No. 44: 139; 18. (18) Bureau of Standards, 365. No. 44: 139; 18. (19) Bureau of Standards, 365. No. 44: 139: 18.
- ards, 365, No. 44: 139; 18. (19) Bureau of Standards, 365, No. 44: 147; 18. (20) Bureau of Standards, 365, No. 44: 148; 18. (21) Bureau of Standards, 365, No. 44: 149; 18. (22) Bureau of Standards, 365, No. 295: 3; 26. (23) Creydt, 445, 37: 153; 87. (24) Euhler and Hedelius, 205, 107: 150; 20. (25) Euler, Ölander and Rudberg, 93, 146: 45; 25. (26) Foulkes, 49, 14: 364; 16. (27) Gillis, 70, 39: 88; 20. (28) Gillis, 70, 39: 677; 20. (29) Gillis, 70, 48: 135; 24.
- (2*) Grossman and Block, 445, 62 II: 19; 12. (31) Gunning, 445, 39: 363; 89. (32) Herzfeld, 445, 42: 147; 92. (33) Herzfeld, 445, 50 II: 826; 00. (34) Hoop and van Laer, 205, 155: 235; 25. (35) Hudson, 1, 26: 1065; 04. (36) Hudson, 1, 29: 1571; 07. (37) Hudson, 1, 30: 1564; 08. (38) Hudson, 1, 30: 1767; 08. (38) Hudson, 1, 31: 66; 09.
- (40) Hudson, 1, 48: 2002; 26. (40.5) Hudson, 31, No. 533; 26. (41) Hudson and Brown, 1, 30: 960; 08. (42) Hudson and Dale, 1, 39: 320; 17. (43) Hudson and Sawyer, 1, 39: 470; 17. (44) Hudson and Yanovsky, 1, 39: 1013; 17. (46) Ingersoll, 2, 9: 257; 17. (47) Jackson, 31, No. 293: 16.

- 51A, 13: 633; 16. (48) Jackson and Gillis, 31, No. 275: 20. 31A, 16: 125; 20. (49) Jackson and Silsbee, 31, No. 437: 22. 31A, 17: 715; 22.
- (50) Jackson and Silsbee, 32, No. 259. 31A, 18: 277; 24. (51) Jackson, Silsbee and Proffitt, 31, No. 519; 26. 31A, 20: 587; 26. (52) Kraisy and Traegel, 445, 74: 193; 24. (53) Kunz and Hudson, 1, 48: 1978; 26. (54) Landolt, 445, 38: 29; 88. (55) Landolt, Das optische Drehungsvermögen organischer Substanzen und dessen praktische Anwendungen, p. 420; 2nd ed. Braunschweig, Vieweg und Sohn, 1898. (56) Levene, 141, 57: 329; 23. (57) Levene, 141, 59: 129; 24. (57.5) Lippman, 460, 38: 106; 08. (58) Loomis, 7, 37: 407; 01. (59) Lowry and Richards, 4, 125: 2511; 24.
- (60) Mackenzie and Ghosh, 68, 35: 22; 15. (61) Mackenzie and Ghosh, 68, 36: 204; 16. (61.5) Main, 275, 9: 481; 07. (62) Meyer, 7, 62: 59; 08. (63) Meyer, 7, 72: 117; 10. (64) Mondain-Monval, 34, 181: 37; 25. (65) Munson and Walker, 1, 28: 663; 06. 29: 541; 07. (66) Murschhauser, 205, 136: 66; 23. (67) Nasini and Villavecchia, Public de lab. chim. delle pabelle Roma, 1891: 47. (68) Nelson and Beegle, 1, 41: 559; 19. (69) Nelson and Hitchcock, 1, 43: 2632; 21.
- (70) Nutting, 2, 17: 1; 03. (71) Patterson, 4, 109: 1204; 16. (72) Pennycuick, 4, 125: 2049; 24. (73) Phelps and Hudson, 1, 48: 503; 26. (74) Pionchon, 54, 124: 1523; 97. (75) Plato, Kaiserlichen Normal-Eichungs-Kommission, Wiss. Abh., 2: 153; 00. (76) Prinsen-Geerligs, 275, 10: 68; 08. (77) Pulvermacher, 93, 113: 141; 20. (78) Quisumbing and Thomas, 1, 43: 1503; 21. (79) Saillard, 378, 2: 1035; 19.
- (80) Schecker, 445, **74**: 82; 24. (81) Schliephacke, 13, **377**: 164; 10. (82) Schönrock, 445, **84** II: 521; 04. (83) Schönrock, 445, **61** II: 421; 11. (84) Schönrock, 243, **43**: 69; 23. (85) Smits and Gillis, 64P, **20**: 520; 18. (86) Staněk, 446, **35**: 57; 10. (87) Staněk, 446, **45**: 417; 21. (88) Tollens, 25, **10**: 1403; 77. (89) Tollens, 25, **17**: 2234; 84.
- (90) Vosburgh, 1, 42: 1696; 20. (91) Washburn, 1, 31: 322; 09. (92) Washburn, 7, 66: 513; 09. (93) Washburn, 445, 60 II: 381; 10. (94) Washburn and Millard, 1, 37: 694; 15. (95) Washburn and Williams, 1, 35: 750; 13. (96) Wilcox, 50, 5: 587; 01. (97) Zechmeister, 7, 103: 316; 22.

X-RAY DIFFRACTION DATA— MISCELLANEOUS NATURAL AND INDUSTRIAL MATERIALS

RALPH W. G. WYCKOFF

The following bibliography contains references to qualitative and quantitative studies by means of X-rays on various natural and industrial materials, and supplements the quantitative data on pure metals, alloys, soaps, etc., presented in vol. I, p. 338–353. The following classes of materials are covered: I. Structure of Alloys. II. Non-ferrous Metals and Alloys. III. Iron and Steel. IV. Worked Metals and Alloys. V. Orientation of Crystals in Electrodeposited Metals. VI. Fibrous or Deformed Substances. VII. Cellulose and Related Compounds. VIII. Rubber and Related Compounds. IX. Ceramic Materials and Products. X. Glass and Silica. XI. Catalysts. XII. Amorphous and Colloidal Materials. XIII. Application to the Identification of Compounds.

I. STRUCTURE OF ALLOYS

- (1) Hadfield, Main and Brooksbank, 83, 15 II: 72; 20 (steels). (2) Bain, 33, 25: 657; 21 (crystal structure). (3) Bain, 80, 65: 625; 23 (crystal structure of solid solutions). (4) Wever, Bericht No. 24 des Werkstoffausschusses der Ver. deutscher Eisenhättenleute, Oct. 5, 1922 (structure of metals). (5) Jeffries and Archer, 33, 29: 923, 966; 23 (solid solutions). (6) Rosenhain, 58, 112: 832; 23 (solid solutions and inter-metallic compounds). (7) Rosenhain, 115, 115: 591; 23 (inner structure of alloys). (8) St. John, 430, 112: 890, 908; 23 (X-rays in the steel industry). (9) Bain, 45, 16: 692; 24 (X-ray crystal analysis in metallurgy).
- Becker, Metallbörse, 14: 297, 346, 395, 442; 24 (X-rays in chemical research). (11) Andrew, J. Roy. Tech. Coll. Glasgow, No. 2: 63; 25 (crystalline structure of metals). (12) Czochralski, 218, 13: 425, 455; 25. 95, 17: 1; 25 (metallography and physical research). (13) Glöcker, 95, 16: 180; 24 (testing of materials). (14) Jeffries, 66, 25 I: 444; 25 (X-ray metallography). (15) Rosenhain, 325, 24: 361; 25 (inner structure of alloys). (16) Weiss, 198, 36: 397; 25. 74, 22: 333, 450; 25 (X-ray spectrography and the study of metals). (17) Weiss, 5, 106: 643; 25 (X-rays and the study of alloys). (18) Westgren and Phragmén, 55, Special No., April 1, 1925, p. 86 (structure of alloys). (19) Westgren, Sartryck ur Teknisk Tidsk., 1925, häft 22 (solid solutions).
- (20) Aborn and Burgmann, The Tech Engineering News, April, 1926, p. 2 (ultimate structure of metals). (21) Rinne, 95, 18: 37, 81; 26 (models for the mechanics of metals). (22) Tammann, 8, 79: 81; 26 (distribution of two kinds of atoms in mixed crystals). (23) Westgren and Phragmén, 95, 18: 279; 26 (metallic systems). (24) Westgren and Phragmén, 20, 19B: No. 12; 26 (structure analogies of alloys).

II. STRUCTURES OF NON-FERROUS METALS AND ALLOYS

- Imai, 189, 11: 313; 22 (Cu-Zn). (2) McKeehan, Ann. Postes, Télég. Téléph, 12: 1303; 23. 47, 32: 564; 24 (K, Be, BeO, and Ag-Pd and Au-Ag alloys). (3) Davey, 2, 26: 736; 25 (W). (4) Johansson and Linde, 8, 78: 439; 25 (Au-Cu and Pd-Cu). (8) Krüger and Sacklowski, 8, 78: 72; 25 (Pd-Ag alloys containing H). (6) Anderson, 143, 201: 465; 26 (duralumin and its crystal structure). (7) Bradley and Ollard, 58, 117: 122; 26 (Cr). (8) Freeman and Brandt, 31A, 20: 661, 695; 26 (Zn). (9) Friauf, 1, 48: 1906; 26 (magnesium plumbide).
- (10) Harang, 63, 27: 204; 26 (Heusler alloys).
 (11) Holgersson, 8, 79: 35; 26 (Au-Ag and Ni-Cu).
 (12) Sillers, 31A, 20: 686; 26. Cf. Pierce, Anderson and Van Dyck, 143, 200: 363; 25 (Zn).
 (13) Westgren and Phragmén, 468, 2; 1926 (Cr-C).
 (14) Westgren and Phragmén, 93, 156: 27; 26 (W-C and Mo-C).

III. CRYSTAL STRUCTURE OF IRON AND STEEL

Cf. vol. I, p. 349

- Iokibe, 169, 9: 275; 20 (graphite and temper-carbon from cast iron).
 Westgren, 220, 105: 401; 21 (steel).
 Westgren, 140, 103: 303; 21.
 116, 111: 727, 757; 21 (iron and steel).
 Westgren and Lindh, 7, 98: 181; 21 (iron and steel).
 Wever, 226, 3: 45; 21 (arrangement of iron atoms in austenitic steel).
 Bain, 33, 26: 543; 22 (martensite formed spontaneously from austenite).
 Tammann, 77, 42: 772; 22 (transformation of cementite at 210°).
 Westgren and Phragmén, 140, 105: 241; 22 (steel).
 Westgren and Phragmén, 7, 102: 1; 22 (iron and steel).
- (10) Wever, 226, 4: 67; 22 (iron carbide). (11) Wever, 226, 4: 81; 22 (graphite and temper-carbon). (12) Bain and Jeffries, 430, 112: 805; 23 (red hardness in high-speed steel). (13) Heaps, 2, 22: 486; 23 (crystal structure and

- magneto-striction). (14) Okochi, 469, 2: 13; 23 (brittleness in electrolytic iron). (15) Westgren and Phragmén, 220, 1923: 449 (steel). (16) Zorning, 471, 4: 77; 23 (examination of steel by X-ray spectrometer). (17) Bain, 80, advance copy, Feb., 1924 (martensite). (18) Greene, 430, 114: 615, 670; 24 (troostite and sorbite). (19) Heindlhofer, 2, 24: 26; 24 (martensite).
- (20) Heindhofer and Wright, 212, 7: 34; 24 (hardened ball steel). (21) Honda, 212, 6: 187; 24 (transformation in pure Fe). (22) Lucas, 212, 6: 669; 24 (austenite and martensite). (23) Westgren and Phragmén, 58, 114: 94; 24. 140, 109: 159; 24 (steel). (24) Wever, 9, 30: 376; 24 (technical iron). (28) Wever and Rütten, 226, 6: 1; 24 (solid solution \(\gamma\)-Fe-C). (26) Williams, 417, 13: 175; 24 (hardened steel). (27) Benedicks, 58, 115: 230; 25 (hardeness of Mn-steel). (28) Foley, 80, 73: 850; 26 (amorphous cement and the formation of ferrite). (29) Honda, 159, 14: 165; 25 (formation of martensite in C-steels).
- (30) Wever, 77, 45: 1208; 25 (Fe). (31) Davey, 120, 29: 440; 26 (iron and steel). (32) Fink and Campbell, 212, 9: 717; 26 (influence of heat treatment and carbon content on pure Fe-C alloys). (33) Osawa, 140, 113: 447; 26 (lattice-constant and density of Fe-Ni alloys). (34) Phragmén, 140, 1926, advance paper (Fe-Si alloys).

IV. X-RAY DIFFRACTION OF WORKED METALS AND ALLOYS

- Owen and Blake, 58, 92: 686; 14 (metallic crystals).
 Schmidt, 65, 17: 554; 16 (metals).
 Gross and Blassmann, 190B, 42: 728; 19 (wireforming W crystals).
 Nishikawa and Asahara, 2, 15: 38; 20 (metals).
 Bain and Jeffries, 53, 25: 775; 21 (mixed orientation in crystals of ductile metals).
 Ettisch, Polanyi and Weissenberg, 65, 22: 646; 21 (metals).
 Ettisch, Polanyi and Weissenberg, 96, 7: 181; 21 (fibre-structure of Cu and W-wires).
 Ettisch, Polanyi and Weissenberg, 7, 99: 332; 21 (fibrous structure of hard-drawn metals).
 Kirchner, 8, 69: 59; 22 (experiments on structure).
- (10) Mark, Polanyi and Schmid, 96, 12: 58, 78, 111; 22 (drawing Zn crystals).
 (11) Niwa and Matûra, 338, 122: 1; 22 (cold rolling of sheet steel).
 (12) Ono, 470, 2: 261; 22 (inner structure of strained metals).
 (13) Ono, 470, 22: 241; 22 (inner structure of strained Cu-wire).
 (14) Polanyi, 218, 10: 411; 22 (crystal arrangement).
 (15) Polanyi, 9, 28: 16; 22 (fixing single crystals).
 (16) van Arkel, 208, 3: 76; 23 (uni-crystalline W).
 (17) Bain, 33, 28: 65; 23 (cored crystals and metallic compounds).
 (15) Czochralski, 96, 15: 60, 126; 23 (structure hypotheses).
 (16) Kakinuma, 219, 5
 90; 23 (atomistic mechanism of metal rolling).
- (20) Mark and Polanyi, 9θ, 18: 75; 23 (space-lattice, gliding directions and gliding planes in white Sn). (21) Mark, Polanyi and Schmid, \$18, 11: 256; 23 (uni-crystalline Sn-wires). (22) Mark and Weissenberg, 9θ, 16: 314; 23 (rolled metal foils). (23) Mark and Weissenberg, 9θ, 14: 328; 23 (rolled metal foils). (24) Müller, δ, 105: 500; 24 (crystal axes in "single-crystal" Al-bars). (25) Polanyi, 9θ, 17: 42; 23 (structure changes through cold working). (26) Polanyi and Weissenberg, 97, 4: 199; 23 (worked metals). (27) Thomassen, 9δ, 15: 306; 23 (surface layer of worked metals). (28) Bragg, δ8, 113: 639; 24 (metal film). (29) Research Staff of General Electric Co., 5, 48: 800; 24 (deformation of W single crystals).
- (30) Glöcker and Kaupp, 95, 16: 377; 24 (recrystallization of Ag). (31) Gross, 95, 16: 18; 24. 47, 31: 385; 24 (deformed crystals and the process of workhardening). (32) Kakinuma, 219, 5: 150; 24 (atomistic mechanism of metal rolling). (33) Lester, 471, 5: 455; 24 (crystal deformation in coldworked steel). (34) Polanyi, 97, 5: 580; 24 (worked metals). (35) Schiebold, 95, 16: 417, 462; 24 (hardening phenomena in metals). (36) Wever, 96, 28: 69; 24 (cubically crystallising metals after rolling). (37) Anderson and Norton, 80, 71: 720; 25 (evidence versus the amorphous-metal hypothesis). (38) van Arkel, 208, 5: 208; 25. 218, 13: 662; 25 (deformation of lattice of metals). (39) Clark, Brugmann and Heath, 46, 17: 1142; 25 (ultimate structures of commercial metals).
- (40) Davey, 50, 29: 1211; 25 (plasticity of single crystals). (41) Elam, 115, 120: 368; 25 (orientation of crystals produced by heating strained Fe). (42) Fujiwara, 429, 8A: 339; 25 (arrangement of micro-crystals in Al-wire). (43) Glöcker, 96, 31: 386; 25 (deformation and recrystallization structures). (44) Glöcker, Kaupp and Widmann, 95, 17: 353; 25 (recrystallization of rolled plate Ag). (45) Leonhardt, 94, 61: 100; 25 (Laue diagrams of deformed crystals). (46) Lester and Abron, 471, 6:120, 200; 25 (Fe-crystals in steel under stress). (47) Mark, 94, 61: 75; 25 (growth and deformation structures). (48) Norton and Anderson, 2, 25: 582; 25 (cold-worked and burnished metals). (49) Ono, 470, 3: 195; 25 (Cu and Al under extension, compression and torsion).
- (50) Ono, 470, 3: 267; 25 (α-Fe plastically strained in extension, compression and torsion). (51) Ono, 470, 3: 287; 25 (crystal rearrangement and the cause of strain-hardening). (52) Polanyi, 95, 17: 94; 25 (crystal deformation).

- and hardening). (53) Polanyi, 94, 61: 49; 25 (deformation of single crystals). (54) Polanyi and Schmid, 96, 32: 684; 25 (solidification and melting of Sn). (55) Sachs and Schiebold, 98, 69: 1557, 1601; 25 (volume compression of Al). (56) Sachs and Schiebold, 218, 13: 964: 25 (lattice lengths of deformed single crystals and crystal aggregates). (57) Seidl and Schiebold, 96, 17: 221, 320, 365; 25 (inhomogeneous Al-castings on cold rolling). (58) Tanaka, 429, 8A: 319; 25 (rolled Pt-plate). (59) Taylor and Elam, 5, 103: 28; 25 (plastic extension and fracture of Al-crystals).
- (60) Carpenter, 440, 28: 543, 575; 26. 29: 31, 26 (single crystals). (61) Elam, 6, 113: 289; 26 (tensile tests of large Au, Ag and Cu-crystals). (62) Frölich, Clark and Aborn, Mass. Inst. Tech. Publications, 61: 239; 26. 78, 49: preprint; 26 (lead deposits). (63) Owen and Preston, 67, 38: 132; 26 (effect of rolling on crystal structure of Al). (64) Schiebold and Sachs, 94, 63: 34; 26 (growth of Al-crystals during recrystallization). (65) Smithells, Rooksby and Pitkin, 47, 1926: advance paper (deformation of W-crystals).

V. ORIENTATION OF CRYSTALS IN ELECTRODEPOSITED METALS

 Glöcker and Kaupp, 96, 24: 121; 24 (fibrous structure). (2) Clark and Frölich, 9, 31: 655; 25 (electrolytic Ni). (3) Bozorth, 2, 26: 390; 25 (orientation of crystals in electrodeposited metals).

VI. FIBROUS OR DEFORMED SUBSTANCES

- Friedrich, 63, 14: 317; 13 (X-ray interference in non-crystalline bodies).
 Nishikawa and Ono, 219, 7: 131; 13 (transmission of X-rays through fibrous, lamellar and granular substances).
 Nishikawa, 219, 7: 296; 14 (spectrum of X-rays obtained by lamellar or fibrous substances).
 Becker, Herzog, Jancke and Polanyi, 96, 5: 61; 21 (arrangement of crystal elements).
 Herzog, 218, 12: 955; 24 (fine structure of fibrous materials).
 Rinne, 94, 59: 230; 24 (rearrangement and decomposition of crystal structures).
 Schmid, 96, 12: 328; 24 (plastic deformation of crystals).
 Rinne, 189, 1925: 225 (optical anomalies).
- (10) Rinne, 218, 13: 690; 25 (paracrystalline and stressed substances).
 (11) Rinne, 94, 61: 389; 25 (flow of natural salts).
 (12) Sachs and Schiebold, 95, 17: 400; 25 (melting and recrystallization).
 (13) Herzog, 478, 24: 137; 26 (fibrous substances).
 (14) Levitskii, 96, 35: 850; 26 (bending of rock-salt in air and water).
 (15) Ransi, 59, 3, No. 3: 135; 26 (changes in reticular distances of rock-salt and calcite).

VII. CELLULOSE AND RELATED COMPOUNDS

- (1) Herzog and Jancke, 96, 3: 196; 20 (cellulose). (2) Herzog, Jancke and Polanyi, 96, 3: 343; 20 (cellulose). (3) Herzog, 473, 2: 101; 21 (cellulose). (4) Herzog and Jancke, 92, 34: 385; 21 (cellulose). (5) Herzog, 472, 21: 388; 23 (deformation of cellulose). (6) Heas, Weltzien and Messmer, 13, 435: 1; 23 (cellulose). (7) Sponsler, 223, 5: 757; 23 (structural units of starch). (8) Gonell, 96, 25: 118; 24 (cellulose). (9) Katz, 63, 25: 659; 24 (X-ray spectroscopy and swelling).
- (10) Katz, 63, 25: 321; 24 (swelling of substances giving fibrous diagram). (11) Katz, 63, 25: 659; 24 (X-ray methods and imbibition). (12) Katz and Mark, 64V, 33: 294; 24 (swelling). (13) Sponsler, 2, 23: 662; 24 (X-ray reflection from very thin crystals). (14) Vieweg, 25, 57B: 1917; 24 (aqueous and dilute alcoholic NaOH and cellulose). (15) Herzog, 473, 6: 39; 25 (constitution of cellulose). (16) Herzog, 478, 23: 121; 25 (significance of fine structure of cellulose fiber in purification process). (17) Katz, 473, 6: 37; 25 (celluloses of different degrees of polymerization). (18) Katz, 473, 6: 35; 25 (X-ray data and alkali adsorption of cellulose). (19) Katz and Mark, 9, 31: 105; 25 (X-ray diffraction patterns of cellulose hydrate and its reversion products).
- (20) Kats and Mark, 7, 115: 385; 25 (changes in powder pattern of cellulose due to swelling).
 (21) Kats and Vieweg, 9, 81: 157; 25 (X-ray diffraction patterns and the alkali content during swelling of cellulose).
 (22) Herzog, 79: 631; 26 (acetyl- and nitro-cellulose).
 (23) Herzog, Pulp Paper Mag. Can., 24: 699; 26 (colloidal characters of cellulose).
 (24) Herzog, 65, 39: 98; 26 (swelling of cellulose).
 (25) Herzog, Pulp Paper Mag. Can., 24: 694; 26. Paper Trade J., 83, No. 1: 51; 26 (cellulose).
 (26) Herzog, 60, 30: 457; 26 (significance of structure of cellulose in chemical transformation).
 (27) Herzog and Gonell, 92, 39: 380; 26 (weighting of silk).
 (28) Kats, 9, 32: 269; 26 (inflation and mercerisation of cellulose).
 (29) Ott, 37, 9: 378; 26 (crystalline character of acetyl-cellulose).

VIII. RUBBER AND RELATED COMPOUNDS

(1) Davey, 2, 21: 719; 23 (ZnO in vulcanised rubber). (2) Pummerer, Koch and Gross, 13, 435: 294; 24 (crystalline rubber and hydrorubber). (3) Hauser and Mark, Kautschuk, Dec., 1925 (elongated samples of rubber). (4) Kats, 56, 36: 300: 25. 37: 19; 25. 218, 30: 410; 25 (changing of X-ray spectrum of rubber on stretching). (5) Kats, 136, 49: 333; 25 (rubber under different degrees of elongation). (6) Kats and Bing, 92, 38: 439; 25 (Is raw rubber partially crystallised?). (7) Kats and Bing, 92, 38: 545; 25 (rubbers containing inorganic ingredients). (8) Clark, 46, 18: 1131; 26 (rubber and allied materials). (9) Hauser, 456, 40: 2090; 26 (origin of interference in stretching of rubber).

(10) Hauser and Mark, 287, Ambronn-Festschrift: 64: 26 (stretched rubber).
(11) Hauser and Mark, 287, 23: 63; 26 (stretched rubber).
(12) Ott, 218, 14: 320; 26 (size of rubber and gutta-percha molecules).

IX. CERAMIC MATERIALS AND PRODUCTS

- (1) Hadding, Lunds Universitets Årsskrift, 14: No. 23; 18. Mineral. Abstr., 2: 205 (feldspar). (2) Hadding, Lunds Universitets Årsskrift, 17: No. 6; 20 (feldspar). (3) Kozu and Endő, 169, 1 III: 1; 21 (andularia and moonstone). (4) Bragg, Shearer and Mellor, 82, 22: 105; 23 (china clays). (5) Schwarz and Brenner, 25, 56B: 1433; 23 (synthetic aluminum silicate). (6) Rinne, 218, 12: 244; 24 (lead-pencil marks). (7) Schwarz, 105, 8: 298; 24. 103, 32: 538; 24 (formation of kaolin). (8) Shearer, 82, 23: 314; 24 (china clays). (9) Sielakov, 74E, 21: 527; 24 (clays).
- (10) Hadding, 82, 24: 27; 25 (clays).
 (11) Research Staff of General Electric Co., 82, 24: 402; 25 (constitutional changes occurring in clays on heating).
 (12) Navias, 38, 8: 296; 25 (development of mullite in fired clays).
 (13) Navias and Davey, 38, 8: 640; 25 (mullite and sillimanite).
 (14) Norton, 58, 8: 401; 25 (natural and artificial sillimanite).
 (15) Norton, 58, 8: 630; 25 (cyanite and andalusite).
 (16) Rinne, 103, 38: 427, 459, 525; 25 (X-ray and ceramics).
 (17) Rinne, 94, 61: 113; 25 (calcined calcite, dolomite, kaolinite and mica).
 (18) Bowen and Wyckoff, 128, 16: 178; 26 (thermal dissociation of dumortierite).
 (19) Greig, 38, 8: 465; 25. 12, 11: 1; 26 (mullite from cyanite, andalusite and sillimanite).
- (20) Mark and Rosbaud, 190B, 54: 127; 26 (Al:SiO₅ and pseudobrookite).
 (21) Rosbaud, θ, 32: 317; 26 (aluminum silicate).
 (22) Wyckoff, Greig and Bowen, 12, 11: 459; 26 (mullite and sillimanite).

X. GLASS AND SILICA

Kyropoulos, 93, 99: 197, 249; 17 (various kinds of silica).
 Miller, 5, 101: 515; 22 (vitreous silica).
 Washburn and Navias, 197, 8: 1; 22 (chalcedony and other forms of silica).
 Selyakov and Strutinskii, Mitt. wiss.-tech. Arbeiten in der Republik (Russ.), 13: 18; 24 (structure of glass).
 Selyakov, Strutinskii and Krasnikov, 96, 33: 53; 25 (structure of glass).
 Wyckoff and Morey, 105, 9: 256; 25 (soda-lime-silica glasses).

XI. X-RAY DATA APPLIED TO PROBLEMS OF CATALYSIS

Clark, Asbury and Wick, 1, 47: 2661; 25 (structure of nickel catalysts).
 Levi, 22, 2: 419; 25 (thorium oxide and the dehydration of alcohol).
 Wyckoff and Crittenden, 1, 47: 2866; 25 (ammonia catalysts).
 Levi and Haardt, 36, 56: 424; 26 (catalytic action considered as that of surfaces).
 Levi and Haardt, 22, 3: 91; 26 (catalytic action of metals of the Pt group).
 Levi and Haardt, 22, 3: 215; 26 (catalytic action of metals of the Pt group).

XII. AMORPHOUS AND COLLOIDAL MATERIALS

- (1) Asahara, 210, 1: 23; 22. 209, 1: 35; 22 (graphite and amorphous C).
 (2) Haber, 25, 56B: 1717; 22 (amorphous precipitates and crystallised sols).
 (3) Kustner, 96, 10: 41; 22 (decomposition and rebuilding of gadolinites).
 (4) Mulligan, 50, 26: 247; 22 (dehydration of crystalline aluminum hydroxide).
 (5) Böhm and Niclassen, 93, 132: 1; 23 (amorphous precipitates and crystallised sols).
 (6) Fricke and Wever, 93, 136: 321; 24 (aging of precipitated metal hydroxides).
 (7) Rinne, 94, 60: 55; 24 (finely divided minerals, artificial products and dense rocks).
 (8) Baudisch and Welo, 141, 64: 753; 25 (aging of ferrous hydroxide and ferrous carbonate).
 (9) Böhm, 93, 149: 203; 25 (aluminum hydroxide and iron hydroxide).
- (10) Böhm, 93, 149: 217; 25 (glowing of oxides of certain metals).
 (11) Herzog, 55, 37: 355; 25 (colloid systems).
 (12) Herzog and Gonell, 25, 58B: 2228; 25 (collagen).
 (13) Katz and Gerngross, 218, 13: 900; 25 (gelatin and collagen).
 (14) Levi, 216, 7: 410; 25 (new chemical studies).
 (15) Ruff, Schmidt and Olbrich, 93, 148: 313; 25 (amorphous C and graphite).
 (16) Welo and Baudisch, 141, 65: 215; 25 (catalytically active and inactive forms of FerO₂).
 (17) Welo and Baudisch, 166, 62: 311; 25 (oxides of iron in new catalytic actions).
 (18) Gutbier, Hüttig and Dobling, 25, 59B: 1232; 26 (stannic oxide-water).
 (19) Herzog and Krüger, 218, 14: 599; 26 (dispersibility of organic colloids).
- (20) Posnjak, 50, 80: 1073; 26 (stannic acids).

XIII. APPLICATION TO THE IDENTIFICATION OF COMPOUNDS

- (1) Posnjak and Merwin, 1, 44: 1965; 22 (Fe₂O₃-SO₂-H₂O). (2) Schleede and Gruhl, 9, 29: 411; 23 (luminescent zinc silicate). (3) Kohlschütter and Scherrer, 37, 7: 337; 24 (polymorphism in lead oxide). (4) Levi and Quilico, 36, 54: 598; 24 (non-existence of Ag suboxide). (5) Shaxby, 34, 179: 1602; 24 (monochromatic X-rays in production of Laue diagrams and structure of mother-of-pearl). (6) Volmer, 13, 440: 200; 24 (HClO₄-H₂O and NH₄ClO₄). (7) Jung, 93, 142: 73; 25 (dehydration products of gypsum). (5) Levi, 216, 7: 410; 25 (new chemical studies). (9) Levi and Tacchini, 36, 55: 28; 25 (non-existence of Ni suboxide).
- (10) Linck and Jung. 93, 147: 288; 25 (black metallic P). (11) Shaxby, 3, 49: 1201; 25 (monochromatic X-rays in production of Laue diagrams and structure of mother-of-pearl). (12) Sosman and Posnjak, 128, 15: 329; 25 (ferromagnetic ferric oxide). (13) Ewles, Proc. Leeds Phil. Lit. Soc., 1: 6: 26 (luminescence of solids). (14) Frebold, 187, 23: 115; 26 (iron hydroxide ores).

PROPERTIES OF METALS AND ALLOYS

W. ROSENHAIN, SPECIAL EDITOR

F. P. UPTON, EDITORIAL ASSISTANT

CONTENTS Matières Inhaltsverzeichnis INDICE PAGE Einführung und Anweisung Introduzione e spiegazione Introduction and explanation of Introduction et explication pour use of finding index. l'usage de l'index de recherzum Gebrauch des Verzeichper l'uso dell'indice.... 358 nisses der Legierungen. ches. Finding index of trade names of Index de recherches et noms Nachschlage-Index der Legier-Elenco delle leghe secondo alloys. usuels des alliages. ungen nach ihren gebräuchi loro nomi usuali...... 370 lichen Namen. Abbreviations, symbols, signs Abréviations, symboles, signes Abkürzungen, Symbole, Zeichen Abbreviazioni, simboli, und Festlegungen. segni e convenzione..... 392 and conventions. et conventions. Diagrammi di equilibrio Equilibrium Diagrams Diagrammes d'équilibre Gleichgewichtsdiagrame Leghe di alluminio..... 400 Aluminium allovs. Alliages d'aluminium. Aluminium Legierungen. Lead alloys and tin alloys. Alliages de plomb et d'étain. Blei und Zinn Legierungen. Leghe di piombo e stagno. 413 Other non-ferrous alloys. Autres alliages non-ferreux. Andere eisenfreie Legierungen. Altre leghe esenti di ferro. 419 Ferrous alloys. Alliages ferreux. Eisen Legierungen. Leghe di ferro 449 Physical Properties Propriétés physiques Physikalische Eigenschaften Proprietà fisiche Punti di fusione dei metalli Melting points of pure metals. Points de fusion des métaux Schmelzpunkte der Metalle. puri..... vol. I, p. 103 Vapor pressures and boiling Tensions de vapeur et points Dampfdrucke und Siedepunkte. Tensioni di vapore e punti di ebollizione..... vol. III points. d'ébullition. Densities of pure metals. Densités des métaux purs. Dichte reiner Metalle. Densità dei metalli puri... 456 Kompressibilität reiner Metalle. Compressibilità dei metalli Compressibilities pure Compressibilités des métaux puri..... vol. III metals. purs. Surface tensions of pure metals. Tensions de surface des métaux Oberflächenspannung reiner Tensione superficiale dei Metalle metalli puri..... vol. III purs Viscosità dei metalli Viskosität reiner Metalle. Viscosities of pure metals. Viscosités des métaux purs. puri..... vol. III Latent heat of phase changes. Chaleur latente des change-Latente Wärme der Phasenän-Calori latenti dei cambiamenti di fase...... 458 ments de phases. derung. Heat capacities (specific heats). Capacités calorifiques (chaleurs Spezifische Wärme. Calori specifici..... vol. IV spécifiques). Thermal conductivities. Conducibilità termica. vol. IV Conductibilités thermiques. Wärmeleitfähigkeit. Ausdehnung durch die Wärme Dilatabilità con il calore e Thermal expansion and volume · Dilatation thermique et variation de volume accompaund Volumänderung bei der variazione di volume che changes accompanying gnant un changement de Phasenänderung. accompagnano i cambiachange of phase. phase. menti di fase...... 459 Diffusione in sistemi Diffusion in Metall-Systemen. Diffusion in metallic systems. Diffusion dans les systèmes metallici........... v. Index métalliques. Permeability to gases. Perméabilité aux gaz. Gasdurchlässigkeit. Permeabilità ai gas... v. Index Structure cristalline (rayons X). Krystallbau (Röntgendia-Struttura cristallina (raggi Crystal structure (X-rays). grame). X)..... vol. I, p. 338 Optische Eigenschaften. Proprietà ottiche.... v. Index Optical properties. Propriétés optiques.

INTRODUCTION

Propriétés électriques et ma-

gnétiques.

Données acoustiques.

Electrical and magnetic prop-

erties.

Acoustic data.

The very condensed form in which it has been necessary to present the metallurgical data in the tables, requires some explanation in regard to their use. The abbreviations and special symbols used are explained on p. 392 and some examples illustrating their interpretation in particular cases are given below.

A table of "Critical Values" of the mechanical properties of metals and alloys necessarily differs in certain important respects from the "Critical Values" given in other connections. The reason is that metallurgical products, particularly of the more complex sort, are subject to certain unavoidable variations even when produced under the best conditions. In regard to

INTRODUCTION

Elektrische und magnetische

Eigenschaften.

Akustische Daten.

Etant donné la forme très condensée dans laquelle il a été nécessaire de présenter les données métallurgiques dans les tables, il est indispensable de donner quelques explications pour leur emploi. Les abréviations et les symboles spéciaux utilisés sont expliqués à la p. 392, et quelques exemples illustrant leur interprétation dans des cas particuliers sont donnés ci-dessous.

Une table de "valeurs critiques" des propriétés mécaniques des métaux et alliages diffère nécessairement sous certains rapports importants des "valeurs critiques" données pour d'autres sujets. La raison en est que les produits métallurgiques, et plus particulièrement ceux qui sont les plus complexes, sont sujets à certaines varia-

Proprietà elettriche e ma-

gnetiche..... v. Index

Dati acustici...... v. Index

Mechanical Properties: Iron and Its Alloys

Fe, Fe-Co, Fe-Ti, and Ti-, and U-steels.

Fe-Ni and Ni-steels.

C, Cr, Cr-V, Cu, Ni-Cr, Ni-Cu, Ni-V, and V-steels and cast iron.

Mn, Mn-Si, and Si-steels and cast iron.

Al, As, B, Ce, Sb, Ta, and Zr-steels.

Other Metals and Their Alloys

Al and its alloys with Cu, Mg, Mn, and Zn containing over 50% Al and also Ni, Si, and Sn in smaller amounts than the other elements.

Alloys of Al with Fe, Mg, Mn, Ni and Si containing over 50% Al and also Cu in smaller amounts than the other elements.

Mg and its alloys containing over 50 % Mg.

Zn and its alloys containing over 50 % Zn.

Cd and its alloys.

Cu and its alloys with Ag, As, Bi, Cd, Fe, Mn, O, P, Sb, and Si containing over 50 % Cu.

Pb, Sb, Sn and brasses.

Sn-bronzes: Cu-Sn; Cu-Sn-P; Cu-Sn-Pb; Cu-Sn-Zn.

Al-bronzes: Cu-Al; Cu-Al-Fe; Cu-Al-Mn; Cu-Al-Ni.

Ag, Au, Hg, Ir, Os, Pd, Pt, Rh, Ru, and their alloys. Graphite.

Ni and its alloys not included in the foregoing.

Other metals and alloys.

All Metals and Alloys

Fatigue of metals and alloys.

Propriétés mécaniques: Fer et ses alliages

Fe, Fe-Co, Fe-Ti et aciers au Ti et à l'U.

Fe-Ni et aciers au Ni.

Aciers au C, Cr, Cr-V, Cu, Ni-Cr, Ni-Cu, Ni-V, et V et fonte.

Aciers au Mn, Mn-Si et Si et fonte.

Aciers à l'Al, As, B, Ce, Sb, Ta et Zr.

Autres métaux et leurs alliages

Al et ses alliages avec Cu, Mg, Mn et Zn contenant plus de 50% d'Al et aussi Ni, Si et Sn en plus petites quantités que les autres éléments.

Alliages d'Al avec Fe, Mg, Mn, Ni et Si contenant plus de 50 % d'Al et aussi Cu en plus petites quantités que les autres éléments.

Mg et ses alliages contenant plus de 50 % de Mg.

Zn et ses alliages contenant plus de 50 % de Zn.

Cd et ses alliages.

Cu et ses alliages avec Ag, As, Bi, Cd, Fe, Mn, O, P, Sb et Si contenant plus de 50 % de Cu.

Pb. Sb. Sn et laitons.

Bronzes de Sn: Cu-Sn; Cu-Sn-P; Cu-Sn-Pb; Cu-Sn-Zn.

Bronzes d'Al: Cu-Al; Cu-Al-Fe; Cu-Al-Mn; Cu-Al-Ni.

Ag, Au, Hg, Ir, Os, Pd, Pt, Rh, Ru, et leurs alliages. Graphite.

Ni et ses alliages autres que ceux déja mentionnés cidessus.

Autres métaux et alliages.

Tous les métaux et alliages

Fatigue des métaux et alliages.

Mechanische Eigenschaften: Eisen und seine Legierungen

Fe, Fe-Co, Fe-Ti, Ti- und U-Stähle.

Fe-Ni, und Ni-Stähle.

C, Cr, Cr-V, Cu, Ni-Cr, Ni-Cu, Ni-V und V-Stähle und Gusseisen.

Mn, Mn-Si, und Si-Stähle und Gusseisen.

Al, As, B, Ce, Sb, Ta, und Zr-Stähle.

Andere Metalle und ihre Legierungen

Al und seine Legierungen mit Cu, Mg, Mn und Zn mit mehr als 50 % Al, auch Ni, Si und Sn in geringeren Mengen als die der anderen Elemente enthaltend.

Legierungen des Al mit Fe, Mg, Mn, Ni und Si mit mehr als 50% Al, auch Cu in geringeren Mengen als die der anderen Elemente enthaltend.

Mg und seine Legierungen mit mehr als 50% Mg.

Zn und seine Legierungen mit mehr als 50 % Zn.

Cd und seine Legierungen.

Cu und seine Legierungen mit Ag, As, Bi, Cd, Fe, Mn, O, P, Sb und Si mit mehr als 50% Cu.

Pb, Sb, Sn und Messing.

Sn-Bronzen: Cu-Sn; Cu-Sn-P; Cu-Sn-Pb; Cu-Sn-Zn.

Al-Bronzen: Cu-Al; Cu-Al-Fe; Cu-Al-Mn: Cu-Al-Ni.

Ag, Au, Hg, Ir, Os, Pd, Pt, Rh, Ru und deren Legierungen.

Ni und seine Legierungen, die im vorhergehenden nicht enthalten sind.

Andere Metalle und Legierungen.

Alle Metalle und Legierungen

Ermüdung der Metalle und der Legierungen.

Proprietà meccaniche: Ferro e sue leghe

Fe, Fe-Co, Fe-Ti, ed acciai	
al Ti ed all'U	478
Fe-Ni ed acciai al Ni. 479,	528
Acciai al C, Cr, Cr-V, Cu,	
Ni-Cr, Ni-Cu, Ni-V e Ve	
ghise	483
Acciai al Mn, Mn-Si, e Si	
e ghise	519
Acciai all'Al, As, B, Ce,	
Sb, Ta ed allo Zr	528

Altri metalli e loro leghe

Al e sue leghe con Cu, Mg, Mn, Zn contenenti più del 50 % di Al, e Ni, Si e Sn in quantità più piccole degli altri elementi 532

Leghe di Al con Fe, Mg, Mn, Ni e Si contenenti più del 50 % di Al e Cu in quantità più piccole degli altri elementi..... 542 Mg e sue leghe con più del 50 % di Mg..... 544 Zn e sue leghe con più del 50 % di Zn..... 545 Cd e sue leghe..... 548 Cu e sue leghe con Ag, As, Bi, Cd, Fe, Mn, O, P, Sb e Si contenenti più del 50 % di Cu..... 552 Pb, Sb, Sn ed ottone..... 555 Bronzi allo Sn: Cu-Sn; Cu-Sn-P; Cu-Sn-Pb; Cu-Sn-Zn..... 558 Bronzi all'Al: Cu-Al; Cu-Al-Fe; Cu-Al-Mn; Cu-Al-Ni 572 Ag, Au, Hg, Ir, Os, Pd, Pt, Rh, Ru e loro leghe.... 584 Grafite..... 592 Ni e sue leghe che non comprese tra quelle che pre-

Tutti i metalli e leghe

Altri metalli e leghe..... 592

cedono..... 479

Resistenza alla fatica dei metalli e delle leghe..... 595

EINLEITUNG

Die äusserst knappe Form in welcher die Metallurgie notwendigerweise in den Tafeln dargelegt ist, erfordert für ihren Gebrauch einige Erklärungen. Die vorkommenden Abkürzungen und besondere Symbole sind Seite 392 erklärt. Einige Beispiele zu ihrer Verständnis in besonderen Fällen sind weiter unten angegeben.

Eine Tafel der "Kritischen Werte" der mechanischen Eigenschaften von Metallen und Legierungen, weicht in gewissen wichtigen Beziehungen von den "Kritischen Werten" anderer Arten ab.

Dies ruht daher dass metallurgische Produkte, besonders solche komplexerer Art, gewissen unvermeidlichen Eigenschaftsschwank-

INTRODUZIONE

La forma molto condensata in cui è stato necessario esporre i dati metallurgici richiede alcune spiegazioni circa l'uso delle tabelle. A pag. 392 sono spiegate le abbreviazioni e i simboli speciali adoperati, e più avanti sono riportati alcuni esempi illustranti la loro interpretazione in casi particolari.

Una tabella di "valori critici" delle proprietà meccaniche di metalli e leghe differisce necessariamente sotto alcuni punti di vista importanti dai "valori critici" di altre proprietà, e ciò per il fatto che i prodotti metallurgici, specie quelli più complessi, sono soggetti a variazioni inevitabili, anche se ottenuti nelle migliori condizioni. Per molti metalli e leghe i valori riportati

many of the metals and alloys mentioned in the tables the origin of the data varies widely, some being derived from numerous tests on industrial products, while others represent the results of laboratory investigation. In making use of the tables, therefore, it is necessary to ascertain the nature of the data given. This can always be done by reference to the literature quoted. While laboratory results are generally accurately determined, it must be borne in mind that they may be either higher or lower than the figures to be anticipated from a corresponding industrial product. In some instances large-scale production makes it possible to secure better results than can be obtained in relatively small laboratory experiments, while in other cases the special conditions which can be used in laboratory work cannot readily be reproduced in industrial production.

If it is desired to form an opinion of the value of a given material for constructional purposes the nature of the material must be considered. In the case of castings, wide variations in mechanical properties occur as between different parts of the same casting, as between a large and small casting, and as between actual castings and test bars prepared either at the same time or otherwise. Even in a casting of given shape and material, variations in casting conditions, such as pouring temperature, rate of pouring and mold temperature, may cause considerable differences in mechanical properties. The figures quoted in the tables must therefore be regarded as indicating the values found for cast materials under conditions specified in the corresponding literature, and cannot be used, without further consideration, for the purpose of calculating the reliable strength of a particular casting. In wrought material, variations are likely to be much smaller than in cast. However, complete uniformity cannot be relied upon, particularly as between the products of different makers. In regard to some materials which are extensively produced industrially, the data given in the tables sometimes represent the values obtained from very numerous tests. In other cases the data may represent only isolated experiments. In compiling the tables, care has been taken to incorporate as far as possible only the most reliable data of both kinds.

Another cause of considerable variation in the mechanical properties of metals and alloys, in the wrought state, arises from the effect of mass. Material in large sections is in almost every case weaker than the same material produced in small sections. This is particularly marked where heat treatment of any kind has been given. Where the data in the tables include values corresponding to materials of different sections, it will obviously be desirable to attach the greatest importance to those figures relating to materials which have a cross section similar to that which it is proposed to use, or whose properties it is desired to ascertain. It should also be borne in mind that there is a steady improvement in foundry, rolling mill, forging and heat-treating practice, so that, as a rule, the more modern methods yield values superior to those of older materials.

In the use of the tables three possibilities will arise: (I) The properties of an alloy whose composition is known are desired. (II) The properties of some commercial alloy whose composition is not known are desired. (III) An alloy having certain properties is desired.

I. Composition of Alloy Known. Properties Desired

- 1. Turn to the Table of Contents (p. 358), and ascertain the section in which this type of alloy is treated.
 - 2. Turn to the section at the page number given.
- 3. With the aid of the Table of Contents at the beginning of the section, ascertain the table containing the desired type of information and turn to it.
- 4. In each table (unless otherwise indicated) the alloys are arranged in the order of their "type formulae." The type formula

tions inévitables, même lorsqu'ils ont été fabriqués dans les meilleures conditions. L'origine des données se rapportant a plusieurs des métaux et alliages mentionnées dans les tables varie dans une large mesure; certaines données proviennent de nombreux essais sur des produits industriels alors que les autres représentent les résultats d'expériences de laboratoire. C'est pourquoi il est nécessaire pour l'emploi des tables de s'assurer de la nature des valeurs données. Ceci peut toujours être réalisé en se référant à la source bibliographique citée. Les résultats de laboratoire sont généralement déterminée avec précision; il ne faut pas cependant perdre de vue qu'ils peuvent être ou supérieurs ou inférieurs aux chiffres qu'on peut attendre d'un produit industriel correspondant. Dans certains cas une production sur une large échelle permet l'obtention de meilleurs résultats que ceux qui peuvent être obtenus dans des expériences effectuées dans le laboratoire, alors que dans d'autres cas, les conditions spéciales qui peuvent être utilisées dans le travail de laboratoire ne sont pas reproductibles facilement dans une production industrielle.

Si l'on désire se faire une opinion de la valeur d'une matière donnée et cela pour des buts de construction, il faut considérer la nature de la matière. Dans le cas des pièces fondues, il existe de grandes variations dans les propriétés mécaniques aussi bien entre les différentes parties d'une pièce donnée qu'entre une grande ou une petite pièce ou qu'entre une pièce donnée et des éprouvettes préparées au même moment ou plus tard. Même pour une pièce de dimension et d'une matière données, les variations dans les conditions de coulée, telle que la température de coulée, la vitesse de coulée et la température du moule, peuvent occasionner des différences considérables dans les propriétés mécaniques. Les chiffres cités dans les tables doivent donc être regardés comme indiquant les valeurs trouvées pour des matières coulées dans des conditions spécifiées dans la littérature correspondante, et ils ne peuvent être utilisés sans autres considérations, dans le but de calculer une valeur de résistance digne de confiance d'une pièce coulée particulière. Dans les matières travaillées, les variations sont ordinairement plus petites que dans les matières fondues. Cependant, on ne peut pas tabler sur une complète uniformité, surtout entre des produits de différents fabricants. En ce qui concerne certaines matières qui sont produites industriellement en grand, les valeurs données dans les tables représentent quelquefois les valeurs obtenues dans de très nombreux essais. Dans d'autres cas, les valeurs peuvent ne représenter que des expériences isolées. En établissant les tables, il a été pris soin de n'incorporer autant que possible que les valeurs des deux sortes les plus dignes de confiance.

Une autre cause, occasionnant une variation considérable dans les propriétés mécaniques des métaux et alliages à l'état travaillé, est produite par l'effet de la masse. Une matière de grande section est dans presque chaque cas plus faible que la même matière produite en petites sections. Ce fait est particulièrement marqué lorsqu'un traitement thermique quel qu'il soit a été effectué. Lorsque les données dans les tables comportent des valeurs correspondant à des matières de différentes sections, il sera évidemment préférable d'attacher la plus grande importance aux chiffres se rapportant aux matières avant une section similaire à celle qu'on se propose d'utiliser, ou dont on désire connaître les propriétés. Il ne faut pas oublier non plus qu'il se produit une amélioration certaine dans les opérations de fonderie, de laminage, de forgeage et par les traitements thermiques de sorte qu'en règle générale, les méthodes les plus modernes conduisent à des valeurs supérieures à celles obtenues avec des matières fabriquées moins récemment.

Trois possibilités se présentent dans l'usage des tables: (I) On désire connaître les propriétés d'un alliage, dont la composition est connue. (II) On désire connaître les propriétés d'un alliage commercial dont la composition n'est pas connue. (III) On

ungen unterworfen sind, selbst wenn die Herstellungsbedingungen die besten waren. Bezüglich der vielen in den Tabellen angeführten Metallen und Legierungen, sind die Quellen aus welchen die Daten entnommen worden sind, sehr verschieden. Einige Daten sind von vielen Materialsprüfungen an Industrieprodukten abgeleitet, andere wieder, stellen das Ergebnis von Laboratoriumsuntersuchungen dar. Beim Gebrauche der Tafeln ist daher die Feststellung der Natur der Daten notwendig, was immer an Hand der angegebenen Literatur geschehen kann. Während im allgemeinen die Laboratoriumsergebnisse genau sind, muss man bedenken, das die Zahlenwerte bald höher bald niedriger sein können als die, welche an einem Industrie-Produkt zu erwarten sind. In mancher Hinsicht gestattet die Herstellung im Grossen, ein besseres Ergebnis als es in dem verhältnismässig kleinem Masstab des Laboratoriums möglich ist. In anderen Fällen wieder können die Bedingungen im Laboratorium nicht leicht bei der industriellen Herstellung eingehalten werden.

Ist es wünschenswert, dass man sich ein Bild über die Zahlenwerte eines gegebenen Materials für Konstruktionszwecke macht. so ist es notwendig die Natur des Materials zu berücksichtigen. Beim Guss weichen die mechanischen Eigenschaften sehr weitgehend an verschiedenen Stellen desselben Gusstückes von einander ab. Unterschiede sind sowohl zwischen einem in grossen oder kleinem Gusstuck als auch zwischen dem Hauptguss und dem Probestück vorhanden, wenn beide zugleich oder auf andere Weise hergestellt wurden. Sogar beim Giessen einer gegebenen Form und gegebenen Material, zeigen sich bemerkenswerte Differenzen der mechanischen Eigenschaften, wenn die Bedingungen beim Gusse, wie Gusstemperatur, Gussgeschwindigkeit, die Temperatur der Form, u. s. w., verändert werden. Es gelten daher die in den Tafeln angegebenen Zahlenwerte für ein gegossen hergestelltes Material nur unter den Bedingungen, welche in der entsprechenden Literatur angegeben sind. Die Zahlenwerte können jedoch nicht ohne weiteres zu dem Zwecke benützt werden, um einen zuverlässlichen Eigenschaftswert eines bestimmten Gusses zu berechnen. In bearbeitetem Material sind die Unterschiede häufiger viel kleiner als im gegossenen. Auf eine vollkommene Gleichheit ist nie zu rechnen, ganz besonders bei Materialien verschiedenen Ursprunges. In Bezug auf gewisse Materialien, welche ausgedehnt industriell hergestellt werden, stellen die angegebenen Werte manchmal die Ergebnisse sehr zahlreicher Prüfungen dar. In manchen anderen Fällen beziehen sich die Daten nur auf einzelne Untersuchungen. Bei der Zusammenstellung der Tafeln wurden soweit als möglich sorgfältig nur die verlässlichsten Daten, beider aufgenommen.

Ein anderer Grund zur Änderung der mechanischen Eigenschaften von Metall und Legierung im bearbeiteten Zustand, kommt vom Einfluss der Masse her. Ein Material in grossen Stücken ist fast in allen Fällen weicher, als wenn dasselbe in kleineren Stücken hergestellt wird. Dies ist besonders bei einer Wärmebehandlung irgend welcher Art hervortretend. Wo in den Tafeln Werte vorhanden sind die sich auf Material-Stücke verschiedener Grösse beziehen, so wird es natürlich wünschenswert sein die grösste Wichtigkeit den Zahlen beizulegen, die sich auf ein herausgearbeitetes Stück beziehen, welches gleich dem Stück ist, welches benützt werden soll, oder dem Stück dessen Eigenschaften man kennen lernen will.

Man bedenke, dass in den Giessereien, Walzwerken, bei der Schmiedung und Wärmebehandlung ständig Fortschritte zu verzeichnen sind, so dass in der Regel die modernere Methoden ein Material liefern, dessen Eigenschafts-Werte den nach älteren Methoden hergestellten überlegen sind.

Beim Gebrauch der Tabellen können drei Möglichkeiten vorliegen: (I) Man sucht Eigenschaften einer Legierung bekannter Zusammensetzung. (II) Man sucht Eigenschaften einer

provengono da fonti notevolmente diverse: alcuni sono ricavati da numerosi saggi su prodotti industriali, mentre altri sono dedotti da ricerche di laboratorio. Nel servirsi delle tabelle è perciò necessario tener conto della natura dei dati, cosa che può sempre farsi riferendosi alla letteratura citata. I risultati di prove di laboratorio sono in genere accurati, e perciò essi possono essere più bassi o più alti dei valori prevedibili per un prodotto industriale corrispondente. In alcuni casi la produzione su larga scala rende possibile migliori risultati di quelli ottenibili in piccole prove di laboratorio, mentre in altri casi le condizioni speciali che si possono realizzare in laboratorio non si possono facilmente riprodurre nell'industria.

Per farsi una idea di un dato materiale a scopi costruttivi, se ne deve prendere in considerazione la natura. Nel caso di getti, ad es., si hanno ampie oscillazioni nelle proprietà meccaniche tra le diverse parti di uno stesso getto, come pure tra un getto grande e uno piccolo ed anche tra getti e provini, sia che questi vengano preparati assieme al getto sia che vengano ottenuti diversamente. Anche in un getto di forma e materiale determinati, eventuali differenze nelle condizioni di colata, come temperatura e velocità di colata, e temperatura della forma, possono produrre differenze notevoli nelle proprietà meccaniche. Perciò i valori delle tabelle indicano le proprietà del materiale quando questo sia ottenuto nelle condizioni specificate nella letteratura corrispondente ed essi non possono servire per calcolare senz'altro la resistenza probabile di un particolare getto. Nei materiali lavorati le variazioni sono spesso molto più piccole che in quelli ottenuti di getto; tuttavia non si può fare affidamento sopra una completa uniformità specie se si tratta di prodotti che hanno provenienza diversa. Per certi materiali che sono prodotti largamente nell' industria, i valori delle tabelle sono alcune volte ricavati da numerosissimi saggi; in altri casi invece essi rappresentano soltanto esperienze isolate. Nel compilare le tabelle si è avuto cura di servirsi il più che possibile solo dei valori dei due tipi che più sono degni di fiducia.

Considerevoli differenze nelle proprietà meccaniche dei metalli o leghe allo stato lavorato possono essere prodotti da effetto di massa. Un materiale in sezioni grandi è quasi sempre più debole che in sezioni piccole, e questo è particolarmente evidente nei casi in cui si è ricorso ad un trattamento termico qualunque. Quando nelle tabelle sono riportati valori corrispondenti a sezioni differenti, bisogna evidentemente attribuire la massima importanza ai numeri che si riferiscono a materiali con sezione simile a quella che si ha in animo di usare o di cui si vogliono stabilire le proprietà. Deve pure tenersi presente che vi è un continuo miglioramento nella pratica di fonderia di laminatoio, di fucina, e dei trattamenti termici per modo che, di regola, i metodi più moderni danno valori superiori a quelli dei materiali più antichi.

Nel servirsi delle tabelle tre casi si possono presentare: (I) Si può desiderare di conoscere le proprietà di una lega di cui è nota la composizione. (II) Si può desiderare di conoscere le proprietà di una lega commerciale di cui non è nota la composizione. (III) Si può desiderare di conoscere una lega che abbia determinate proprietà.

I. La composizione della lega è nota e si desidera conoscerne le proprietà

- 1. Si consulta l'indice a p. 358 e si vede quale è il capitolo in cui si parla di questo tipo di leghe.
 - 2. Si consulta il capitolo alla pagina indicata.
- 3. Dall'indice che si trova al principio del capitolo si ricava la tabella che contiene il tipo di informazione che si desidera.
- 4. In ogni tabella (tranne che non sia indicato diversamente) le leghe sono disposte nell'ordine delle loro formule tipo. La formula tipo di una lega è costituita da dei simboli chimici dei suoi costituenti essenziali scritti in ordine decrescente della proporzione

of an alloy consists of the chemical symbols of its essential constituents written in descending order of their amounts in the alloy except in the case of steels, where C is written last. (N. B.— An element once thought merely incidental or an impurity in an alloy may later be found to have an important effect on its properties; cf. the case of silicon in duralumin.) Thus Pb-Sb-Cu is the type formula of alloys whose largest constituent (by weight) is Pb, the next largest Sb, and the next Cu; while a vanadium steel has the type formula Fe-V-C, although C is generally present in larger amounts than V. The different alloys are arranged in alphabetical order according to their type formulae.

Under a given type formula the alloys are arranged in descending order of the amounts of the principal constituent in the alloy, where this is given by analysis, and, where it is not given, then in ascending order of amounts of the second largest constituent in the alloy. Under each composition the data follow approximately in order of the extent of treatment given the alloy. Thus the properties of castings (symbol = G) appear first, then those of hot-worked material, and finally those of cold-worked material. The properties of heat-treated material follow immediately after those of the material before heat treatment.

Example 1: It is desired to compare the mechanical properties of a sand-cast 10% aluminum bronze with those of the same alloy in which 3% of the Al is replaced by Fe. It is desired to ascertain the properties of the alloys at high temperatures. The first alloy, call it "A," has the type formula Cu-Al; the second, call it "B," has the type formula Cu-Al-Fe. Turning to the Table of Contents (p. 359), we find that the section containing the mechanical properties of Al bronzes, begins on p. 572. Turning here we find a Table of Contents for the section in which are listed 15 tables of properties of the type Cu-Al-Fe.

Let us first consider the Ultimate Tensile Strength (UTS) in kg/mm², % Elongation (El) and Brinell Hardness Number (BHN) of our alloy "A" in the sand-cast (G_•) condition. From the tables we find as follows:

	U	UTS		El		BHN	
Table	20	500	20	500	20	500	Lit.
1	46-53		20		90-100		(13)
2	49.9		21.7				(3)
3	29.1	18.2	9.4	3.1			(2, 15)
4					76.7	< 50	(12)
13	42.2		28.5		118		(26)
13	52.0		19.5		100		(7)

The values in Table 1 represent the average properties of alloy "A" and agree fairly well with those in the other tables excepting those in Table 3, which probably are for material cast under unsatisfactory conditions, a thing easily possible with aluminum bronze.

Considering alloy "B" in the same manner we have:

1.00	UT	S		El	BI	HN	T :4
Table	20	500	20	500	20	500	Lit.
17	52.4		38.0		80		(10)
20	(Contai	ins 7.6	% Al,	2% Fe)	125	70	(12)

Although fewer data are available, alloy "B" seems to be as strong as and more ductile than "A" at 20°C, while the presence of 2% Fe has increased the hardness of the alloy at 500°C. Hardness figures of (12), however, are inconsistent with those from other sources. On the basis of the tables then, alloy "B" is somewhat the better alloy.

The index (p. 370) shows whether any commercial alloys of the composition of "B" are included. Index numbers of aluminum bronzes are listed in one of the tables of Alloy Classes following

désire un alliage ayant certaines propriétés. Les trois cas seront considérés dans l'ordre indiqué.

I. Composition de l'alliage connue. Propriétés désirées

- 1. Consulter la table des matières p. 358 et s'informer de la section dans laquelle il est traité de ce type d'alliage.
 - 2. Consulter cette section à la page indiquée.
- 3. Au moyen de la table des matières se trouvant au commencement de la section, s'informer qu'elle est la table contenant le type d'information désiré et s'y porter.

4. Dans chaque table (à moins d'une autre indication) les alliages sont arrangés dans l'ordre de leur "formule type." La formule type d'un alliage se compose des symboles chimiques de ses constituants essentiels écrits dans l'ordre descendant de leurs proportions dans l'alliage, excepté pour le cas des aciers, où C est écrit en dernier. (N. B. Il peut se trouver qu'un élément dont la présence peut être considérée accidentelle ou une impureté dans un alliage peuvent avoir un effet important sur ses propriétés: par ex. cas du silicium dans duralumin). Ainsi Pb-Sb-Cu est la formule type des alliages dont le constituant le plus important (en poids) est Pb, celui qui vient ensuite dans le même ordre d'idée est Sb, et finalement vient Cu; un acier au vanadium aura la formule type Fe-V-C, quoique C soit généralement présent en plus grande quantité que V. Les différents alliages sont arrangés dans l'ordre alphabétique en accord avec leurs formules types.

Sous une formule type donnée, les alliages sont arrangés, lorsque ce résultat est fourni par l'analyse, dans l'ordre descendant des proportions de leur constituant principal dans l'alliage; lorsque l'analyse n'a pas été effectué, dans l'ordre ascendant des proportions du deuxième constituant en importance de l'alliage. Sous chaque composition, les données suivent approximativement dans l'ordre de la succession des traitements subis par l'alliage. Ainsi les propriétés des pièces fondues (symbole = G), sont mentionnées en premier. Ensuite viennent les propriétés de la matière travaillée à froid. Les propriétés de la matière travièle à froid. Les propriétés de la matière travièle à froid. Les propriétés de la matière avant le traitement thermique.

Exemple 1: On désire comparer les propriétés mécaniques d'un bronze d'aluminium à 10 % Al coulé en sable avec celles du même alliage dans lequel 3 % de l'Al ont été remplacés par Fe. On désire connaître les propriétés des alliages à hautes températures. Le premier alliage, désignons-le par "A," a la formule type Cu-Al; le second, désignons-le par "B" a la formule type Cu-Al-Fe. Consultant la table des matières (p. 359) on trouve que la section contenant les propriétés mécaniques des bronzes d'Al commence à p. 572. À cette page nous trouvons une table des matières pour la section, dans laquelle sont disposées en liste 15 tables des propriétés du type d'alliage Cu-Al-Fe.

Considérons d'abord: la charge de rupture (UTS) en kg/mm^2 , l'allongement en % (El) et le nombre de dureté Brinell (BHN) de notre alliage "A" dans la condition "coulé en sable" (G_a) . Des tables, on trouve:

1. °C	U'	TS	El		BHN		ł	
t, °C Table	20	500	20	500	20	500	Lit.	
1	46-53		20		90-100		(13)	
2	49,9		21,7				(3)	
3	29,1	18,2	9,4	3,1			(2, 15)	
4					76,7	< 50	(12)	
13	42,2		28,5		118		(26)	
13	52,0		19,5		100		(7)	

Les valeurs dans la Table 1 représentent les propriétés moyennes de l'alliage "A;" elles s'accordent assez bien avec celles des autres

Legierung des Handels, unbekannter Zusammensetzung. (III) Man sucht eine Legierung von bestimmten Eigenschaften.

I. Die Zusammensetzung der Legierung ist bekannt. Eigenschaften gesucht

- 1. Man sehe im Inhaltsverzeichnis (S. 358) nach und stelle den Abschnitt fest in welchem diese Legierungstype behandelt wird.
- 2. Man schlage den Abschnitt an der gegebenen Seitenzahl auf.
- 3. Mit Hilfe des Inhaltsverzeichnisses am Anfang dieses Abschnittes, stelle man die Tafel fest, welche die gewünschte Type der Eigenschaften enthält und schlage diese Tafel dann auf.
- 4. In jeder Tafel (wenn nichts anderes angegeben ist) sind die Legierungen in der Reihenfolge ihrer "Typen-Formel" angeordnet. Diese "Typen-Formel" einer Legierung besteht in der Nebeneinandersetzung der chemischen Zeichen ihrer wesentlichen Bestandteile in absteigender Ordnung ihrer Prozentgehalte Eine Ausnahme ist bei den Stählen vorhanden, wo am Ende C steht. (N. B.-Ein Element, das zuweilen nur zufällig oder als Verunreinigung in den Legierungen vorhanden angesehen wurde, kann später als ein solches von besonderem Einfluss auf die Eigenschaft derselben erkannt werden, z. B. Si in Duralumin.) So ist Pb-Sb-Cu die Typenformel von Legierungen, in welchen Pb den höchsten Prozentgehalt darstellt, den nächst niedrigeren Sb, dann folgt Cu. Ein Vanadium-Stahl hat hingegen die Typenformel Fe-V-C, obwohl im allgemeinen C in grösserer Menge als V vorhanden ist. Die verschiedenen Legierungen sind in alphabetischer Reihenfolge ihrer Typenformeln angeordnet.

Unter einer gegebenen Typenformel sind die Legierungen in absteigender Ordnung des analytisch bekannten Hauptbestandteiles in der Legierung angeordnet. Ist dieser Gehalt nicht bekannt, so sind die Legierungen in aufsteigender Ordnung des Prozentgehaltes des zweiten grössten Bestandteiles angeordnet. Unter jeder Zusammensetzung folgen die Daten ungefähr nach der Zahl der verschiedenen Behandlungen, welchen die Legierung unterworfen wurde. So erscheinen die Eigenschaften des Gusses (Zeichen = G) zuerst, dann jene des heiss bearbeiteten und zum Schluss des kalt bearbeiteten Materials. Die Eigenschaften des wärmebehandelten Materials folgen unmittelbar nach denen des Materials vor der Wärmebehandlung.

Beispiel 1: Es sollen die mechanischen Eigenschaften einer in Sandform gegossenen 10% Aluminiumbronze mit einer gleichen Legierung verglichen werden, in welcher 3% des Aluminiumgehaltes durch Fe ersetzt sind. Die Kenntnis der Eigenschaften bei hoher Temperatur ist notwendig. Die erste Legierung, wir bezeichnen sie mit "A," hat die Typenformel Cu-Al, die zweite, "B" bezeichnet, hat die Typenformel Cu-Al-Fe. Aus dem Inhaltsverzeichnis (S. 359) finden wir, dass der Abschnitt, welcher die mechanischen Eigenschaften der Al-Bronzen enthält, auf S. 572 beginnt. Hier finden wir ein Inhaltsverzeichnis für diesen Abschnitt in welchem 15 Eigenschafts-Tafeln der Type Cu-Al und 6 Eigenschafts-Tafeln für die Type Cu-Al-Fe, vorhanden sind.

Wir wollen zuerst von der Legierung "A" (in $Sandform\ gegossen$) die Zugfestigkeit (UTS) in kg/mm², Prozent Dehnung (El) und die Brinell-Härtezahl (BHN) berücksichtigen. Aus den Tafeln finden wir:

1, °C	U'	UTS		El		BHN	
Tabelle	20	500	20	500	20	500	Lit.
1	46-53		20		90-100		(13)
2	49,9		21,7	i			(3)
3	29,1	18,2	9,4	3,1			(2, 15)
4				Ì	76.7	< 50	(12)
13	42,2		28,5		118		(26)
13	52,0		19,5		100		(7)

in cui sono contenuti, eccetto nel caso degli acciai, dove C è scritto per ultimo. (N. B. Un elemento ritenuto solo accidentale oppure giudicato come impurezza può in seguito trovarsi che ha un effetto importante sulle proprietà di una lega: vedi, ad es. il caso del silicio nel duralluminio.) Così Pb-Sb-Cu è la formula tipo delle leghe nelle quali la proporzione maggiore in peso è di Pb, quella intermedia è di Sb e quella minore è di Cu; mentre un acciaio al vanadio ha la formula Fe-V-C, sebbene C, in genere, è presente in proporzione maggiore di V. Le diverse leghe sono disposte in ordine alfabetico secondo le loro formule tipo.

Sotto una certa formula tipo le leghe sono disposte in ordine decrescente della proporzione del costituente principale quando questa è nota. Se questa non è nota esse sono disposte nell' ordine crescente del contenuto del secondo componente più abbondante. Sotto ogni composizione i dati sono disposti approssimativamente nell'ordine della complessità del trattamento. Così le proprietà dei getti (simbolo = G) vengono per prime, poi quelle del materiale lavorato a caldo, e infine quelle del materiale lavorato a freddo. Le proprietà del materiale trattato a caldo seguono subito dopo quelle del materiale prima del trattamento a caldo.

Esempio 1: Si desideri confrontare le proprietà meccaniche di un bronzo d'alluminio al 10% colato in sabbia, con quelle della stessa lega nella quale 3% di alluminio è stato sostituito con ferro, e precisamente si desideri conoscere le proprietà della lega a temperature elevate. La prima lega, che indicheremo con "A," ha la formula tipo Cu-Al-Fe. Se si consulta l'indice (p. 359) si trova che il capitolo contenente le proprietà meccaniche dei bronzi di alluminio comincia a p. 572. Qui si trova un indice in cui sono riportate 15 tabelle di proprietà per il tipo Cu-Al e 6 tabelle di proprietà per il tipo Cu-Al e 6 tabelle di proprietà per il tipo Cu-Al-Fe.

Consideriamo dapprima il carico di rottura (UTS) in kg/mm², l'allungamento per cento (El) e il numero di durezza Brinell (BHN) della lega "A" colata in sabbia (G_{\bullet}) . Dalle tabelle si trova:

1 °C	UZ	UTS		El		BHN	
Tabe a	20	500	20	500	20	500	Lit.
1	46-53		20	1	90-100		(13)
2	49,9		21,7				(3)
3	29,1	18,2	9,4	3,1			(2, 15)
4	'		1	,	76,7	-50	(12)
13	42,2		28,5		118		(26)
13	52,0		19.5		100		(7)

I valori della Tabella 1 rappresentano le proprietà medie della lega "A" e si accordano bene con quelli delle altre tabelle; si eccettuano solo i valori della Tabella 3, che probabilmente si riferiscono ad un materiale gettato in condizioni non soddisfacenti, cosa questa è facilmente possibile con i bronzi d'alluminio.

Se si considera le lega "B" allo stesso modo si ha:

1. °C	V °C U		El		BH		
Tabella	20	500	20	500	20	300	Lit.
17	52,4		38,0	1	80		(10)
20	(7,	6% Al,	2% Fe)	125	70	(12)

Sebbene si disponga di pochi dati, la lega "B" sembra sia resistente quanto la "A" e persino più duttile della "A" a 20°C, mentre la presenza del 2% di ferro ha accresciuto la durezza a 500°C. I numeri di durezza riportati nella (12) non si accordano però con quelli di altre fonti. In base alle tabelle tuttavia la lega "B" è un po' migliore.

Dall'indice (p. 370) si può sapere se nelle tabelle sono riportate leghe commerciali della composizione di "B." I numeri indici dei

the Finding Index. Turning to these numbers in the Finding Index, we find No. 45, "Alcumite:" Cu; Al, 7.5; Fe, 5.5; Ni, Mn, No. 141, "Ampco bronze:" Cu; Al, 7-11; Fe, 1-5. If the alloys thus shown in the Finding Table are commercially available at the present time, reference to the firms producing them can no doubt be obtained from the advertising pages of metallurgical magazines or otherwise. It must, however, be borne in mind that other alloys, possibly of the type desired, are manufactured in various countries, without necessarily being known by a name which could be included in the Finding Index, while there are numerous manufacturers in every country having a well-developed metallurgical industry, who will be prepared to make up alloys to any desired specification, provided that patent rights do not interfere. In some instances, it may be noted that the properties of the materials as represented by data given in the corresponding table, can only be obtained by definitely stated methods of manufacture and treatment and these are, sometimes, available only at the hands of an individual manufacturing firm. Further, where alloys having trade names are given in the list, and if no definite data for these alloys as such are included, the inference that the alloy bearing the trade name will have the same properties as the alloy of similar composition listed in the detailed table, must be regarded as subject to the limitations just indicated.

Example 2: Given a Ni-Cr steel containing 3.5% Ni, 0.8% Cr and 0.25% C, to find the heat treatment giving the optimum combinations of tensile and notched-bar impact properties. From the Table of Contents, it is found that Ni-Cr steels are treated in the section beginning on p. 483. The first numbered table of this section is a table of compositions, in which No. 262 is found to correspond to the above composition. The table of contents at the beginning of the section (p. 483) shows that mechanical properties are given in Table 7, p. 510. Turning to this table, we locate alloy No. 262 (p. 511) and find that values of properties are given for 42 different conditions of this steel. Notched-bar impact test results are given under the following designations: ISu (Izod machine using B. E. S. A. standard specimen), IS_x (Charpy machine using 45° V notch specimen), IS_x (Guillery machine, Mesnager notch). The energy absorbed in fracture is given in each case as there is no satisfactory basis for comparison of results as between the different types of specimen. The largest Izod values of No. 262 are for treatments h, i, k, and z, being respectively 8.85, 9.15, 9.0, and 9.0. Of these, "h" gives a material somewhat stronger and considerably more ductile than do the others. Meanings of symbols and abbreviations used in describing treatments are given in the table on p. 392. Treatment "h" reads as it stands "Same, Tp 650° Qw." The "Same" refers to the previous treatment, i.e., condition before tempering, which is N 820°. The whole treatment interpreted is: Normalized at 820° (i.e., cooled in still air from 820°C), then tempered at 650°C and quenched in water. The other treatments which give high impact strengths, are: "1000° Qo Tp 670°/120 Qw" (i.e., quenched in oil from 1000°C, tempered at 670° for 120 min, and quenched in water); "1000° Qo Tp 650°/120 Co 650° Qw" (i.e., quenched in oil from 1000°C, tempered at 650° for 120 min, cooled slowly, retempered at 650°C and quenched in water); and "850° Qo Tp 675°/495 Qw" (i.e., quenched in oil from 850°C, tempered at 675° for 495 min, and quenched in water). These treatments give nearly as good properties, thus showing the necessity of a final water quench from 650-675°C. Consideration of some of the other treatments shows that cooling slowly from this temperature gives decidedly inferior notched-bar impact figures while not greatly affecting the tensile values. Quenching from lower temperatures gives better tensile properties, but inferior notched-bar impact figures. Inspection of values obtained on the other machines for these treatments and for others tables excepté celles de la Table 3, qui se rapportent probablement à un matériel fondu dans les conditions non satisfactoires, une circonstance qui est très possible avec le bronze d'aluminium.

Considérant l'alliage "B" de la même manière, nous avons:

√ , °C	U'	TS El		El	BH		
Table	20	500	20	500	20	300	Lit.
17	52,4		38,0		80		(10)
20	(7	.6 % Al	, 2% F	e)	125	70	(12)

Quoiqu'il y ait peu de données disponibles, l'alliage "B" paraît être aussi résistant et plus ductible que "A" à 20°C, alors que la présence de 2 % de Fe a augmenté la dureté de l'alliage à 500°C. Les chiffres de dureté de (12) cependant, ne sont pas en accord avec ceux d'autres sources. On peut déduire sur la base des tables que l'alliage "B" est sensiblement le meilleur alliage.

L'index (p. 370) montre s'il y existe un alliage commercial de la composition de "B." Les nombres index des bronzes d'aluminium sont disposés en liste dans l'une des tables des alliages types qui se trouvent à la suite de l'index de recherche. En se reportant à ces nombres dans l'index de recherche, on trouve N° 45, "Alcumite:" Cu; Al, 7,5; Fe, 5,5; Ni; Mn, et N° 141, "Ampco bronze:" Cu; Al, 7-11; Fe, 1-5. Si les alliages ainsi mentionnés dans la table de recherche sont disponibles dans le commerce actuellement, on trouvera sans doute les références des firmes qui les produisent dans les annonces des magazines métallurgiques ou autre part. Il ne faut pas oublier cependant que d'autres alliages, qui peuvent être du type désiré sont fabriqués dans des pays divers, sans être nécessairement connus par un nom qui pourrait se trouver dans l'index de recherche; il existe en effet de nombreux fabricants dans chaque pays possédant une industrie métallurgique bien développée qui peuvent fabriquer des alliages suivant les spécifications variées, à condition que les droits de patente ne s'y opposent pas. Dans certains cas, il faut remarquer que les propriétés des matières ainsi qu'elles sont représentées par les valeurs données dans les tables correspondantes, ne peuvent être obtenues que par des méthodes de fabrication et des traitements établis d'une façon définie, qui quelquefois ne sont réalisés que chez un seul fabricant. Lorsqu'il s'agit d'alliages portant des noms commerciaux mentionnés dans la liste, il n'a pas été indiqué de données définies pour ces alliages considérés comme tels, et, déduire que les alliages portant un nom commercial ont les mêmes propriétés que l'alliage de composition similaire mentionné dans la table détaillée, doit être regardé comme étant sujet aux limitations indiquées ci-dessus.

Exemple 2: Etant donné un acier au Ni-Cr contenant 3,5 % Ni, 0.8 % Cr et 0.25 % C, trouver le traitement thermique donnant la combinaison optimum relativement aux propriétés de traction et à l'essai de choc sur éprouvette entaillée. De la table des matières, on trouve que les aciers au Ni-Cr sont traités dans la section commençant à p. 483. La première table de cette section est une table de compositions, dans laquelle le N° 262 correspond à la composition donnée ci-dessus. La table des matières au commencement de la section (p. 483) montre que les propriétés mécaniques sont données dans la Table 7, p. 510; à cette table nous trouvons l'alliage N° 262 (p. 511) et constatons que les valeurs des propriétés sont données pour 42 différentes conditions de cet acier. Les résultats concernant l'essai de choc sur éprouvette entaillée sont donnés sous les désignations suivantes: ISa (Machine d'Izod, utilisant des éprouvettes types B. E. S. A.), IS, (Machine de Charpy utilisant une éprouvette avec entaille 45°V), IS_x (Machine de Guillery, éprouvette avec entaille Mesnager). L'énergie absorbée dans la rupture est donnée dans chaque cas, car il n'existe pas de base convenable pour la comparaison des résultats entre les différents types d'éprouvettes. Les valeurs Izod les plus fortes concernant le N° 262 sont obtenues avec les traitements

Der Wert in der Tabelle 1 stellt die Durchschnittseigenschaften der Legierung "A" dar, und stimmt ziemlich gut mit jenen in den anderen Tabellen überein. Ausgenommen jedoch die Werte der Tabelle 3, welche wahrscheinlich für ein Material gelten, das unter nicht befriedigenden Bedingungen gegossen worden ist. Bei Aluminiumbronzen ist ein solcher Fall sehr möglich. Nehmen wir die Legierung "B," so hat man in gleicher Weise:

t, °C	UTS		El		BHN		Lit.
Tabelle	20	500	20	500	20	500	Lit.
17	52,4		38,01		80		(10)
20	(7	.6% A	l, 2% Fe	;)	125	70	(12)

Obgleich weniger Daten vorliegen, scheint die Legierung "B" bezüglich der Zugfestigkeit ebenso gut wie "A," bezüglich der Duktilität bei 20° besser zu sein, während die Anwesenheit von 2% Fe die Härte bei 500°C erhöht. Die Härtezahlen von (12) aber stimmen mit denen aus anderen Quellen stammenden nicht überein. Auf Grund der Tafeln ist "B" eine etwas bessere Legierung als "A."

Der Index (S. 370) zeigt an, ob irgend eine Handelslegierung von der "B" Zusammensetzung gegeben ist. Die Indexzahlen der Aluminiumbronzen sind in einer der Tafeln für Legierungstypen eingetragen, die dem Nachschlage-Index folgen. Sehen wir diese Zahlen im Nachschlage-Index nach, so finden wir No. 45, "Alcumite:" Cu; Al, 7,5; Fe, 5,5; Ni, Mn; No. 141, "Ampco bronze:" Cu; Al, 7-11; Fe, 1-5. Sind diese Legierungen gegenwärtig handelsüblich, so kann vermutlich die Erzeugerfirma in dem Inseratenteil der Fachzeitschriften und auch sonst, gefunden werden. Es muss jedoch berücksichtigt werden, dass andere Legierungen, möglicherweise gerade von der gewünschten Type, in den verschiedenen Ländern erzeugt werden können, die vielleicht keinen Namen tragen, der in dem Nachschlage-Index angegeben werden konnte. Es gibt in jedem Lande mit einer gut entwickelten Metallindustrie, eine Anzahl von Fabriken die imstande sind, soweit nicht Patentrechte vorliegen, jede Legierung von besonderer Zusammensetzung herzustellen.

Es möge noch bemerkt werden, dass in mancher Beziehung, die in den entsprechenden Tabellen angegebenen Eigenschaften nur durch bestimmte Fabrikations-Methoden und Behandlungen erreicht werden können, die zuweilen nur den einzelnen Erzeugerfirmen zur Verfügung stehen. Ferner, wo in den Tabellen Legierungen mit Handelsmarken angegeben sind und keine definitive Werte für solche in den Tafeln angeführt sind, ist eine Schlussfolgerung, wie aus dem Vorhergegangenen folgt, dass eine Legierung mit Handelsmarke dieselben Eigenschaften habe als eine ähnlich zusammengesetzte Legierung die sich in der Tabelle vorfindet, sehr einzuschränken.

Beispiel 2: Gegeben ist ein Ni-Cr-Stahl mit 3,5% Ni, 0,8% Cr, und 0.25% C. Es ist die Wärmebehandlung zu finden, die ein Optimum an Zugfestigkeit und Schlagfestigkeit an einem gekerbten Probestück gibt. Aus dem Inhaltsverzeichnis findet man, dass Ni-Cr-Stähle in dem S. 483 beginnenden Abschnitt behandelt werden. Die erste Zahlentafel dieses Abschnittes gibt die Zusammensetzungen an worunter No. 262, der angegebenen Zusammensetzung entspricht. Das Inhaltsverzeichnis zu Beginn des Abschnittes (S. 483) gibt an, dass die mechanischen Eigenschaften in der Tafel 7, S. 510, zu finden sind. Hier findet man die Legierung No. 262 (S. 511) und sieht, dass die Eigenschaften für 42 verschiedene Behandlungen für diese Stahlsorte vorliegen. Die Schlagfestigkeit (Kerbeneinschnitt) ist unter der folgenden Bezeichnung angegeben: ISu (Izod Machine, B. E. S. A. standard Probe), IS_▼ (Charpy-Machine, mit 45° V-Kerbe), IS_▼ (Guillery Machine, Kerbenformstück nach Mesnager). Die beim Bruch absorbierte Energie ist in jedem Falle angegeben, da keine befriedibronzi di alluminio sono elencati in una delle tabelle dei tipi di leghe che seguono l'indice. Andando a cercare questi numeri nell'indice, si trova No. 45, "Alcumite:" Cu; Al, 7,5; Fe, 5,5; Ni; Mn; e No. 141, "Ampco Bronze:" Cu; Al, 7-11; Fe, 1-5. Se le leghe così indicate si trovano in commercio, si può sapere il nome delle ditte che le producono dalla réclame delle riviste metallurgiche o in qualche altro modo. Può darsi però che nei diversi paesi vengano fabbricate altre leghe, e che esse non siano conosciute con un nome che potrebbe essere incluso nell'indice. In ogni nazione con una industria metallurgica bene sviluppata, vi è un gran numero di produttori i quali sono in grado di fabbricare leghe con qualsiasi requisito purchè non esistano diritti di brevetti. Deve ancora osservarsi che le proprietà, quali sono rappresentate dai valori contenuti nelle tabelle, in alcuni casi possono solo ottenersi con processi di fabbricazione e trattamento ben definiti, e che questi talvolta sono a conoscenza esclusiva di una singola ditta fabbricante. Inoltre, quando nell'elenco sono contenute leghe con nomi commerciali, nessun valore definito è riportato per esse, e la deduzione che la lega con quel certo nome avrà le stesse proprietà di quella di composizione simile elencata nella tabella deve considerarsi sottoposta alle limitazioni sopraindicate.

Esempio 2: Dato un acciaio al Ni-Cr contenente 3.5% Ni. 0,8% Cr e 0,25% C, trovare qual'è il trattamento termico che dà l'optimum di carico di rottura e di resilienza. Nell'indice si trova che gli acciai al Ni-Cr sono trattati nel capitolo che comincia a p. 483. La prima tabella di questo dà le composizioni, e in essa si trova che il numero 262 corrisponde alla composizione di sopra. Dall'indice all'inizio del capitolo (p. 483) si ricava che le proprietà meccaniche sono esposte nella Tabella 7 (p. 510). Consultando questa si vede che a p. 511 sono riportati valori delle proprietà per 42 condizioni differenti dell'acciaio No. 262. I risultati delle prove di resilienza sono riportati sotto le seguenti designazioni: ISu (macchina Izod con provino B.E.S.A.), ISv (macchina Charpy con provino munito di intaglio V a 45°), IS_x (macchina Guillery con barretta Mesnager). L'energia assorbita nella rottura è data per ogni caso, giacchè non vi son elementi sufficienti per confrontare i risultati ottenuti con i diversi tipi di prove. I più grandi valori Izod del numero 262 sono per i trattamenti h, j, k, e z, e sono rispettivamente 8,85; 9,15; 9,0 e 9,0. Fra essi, "h" dà un materiale un po' più resistente e notevolmente più duttile che gli altri. I significati dei simboli e le abbreviazioni adoperate nel descrivere i trattamenti sono indicati nella tabella a p. 392. Il trattamento "h" è indicato con "Same, Tp 650° Q. "Il "Same" (lo stesso) si riferisce al trattamento precedente, e cioè alla condizione prima del rinvenimento, che è N 820°. L'intero trattamento perciò è normalizzato a 820° (e cioè raffreddato in aria calma a partire da 820°C), quindi rinvenuto a 650° e temprato in acqua. Gli altri trattamenti che danno resilienza elevata sono "1000° Q
o Tp 670°/120 Q
w" (e cioè temprato in olio a partire da 1000°C, rinvenuto a 670° per 120 min, e temprato in acqua; "1000° Qo Tp 650°/120 Co 650° Qw" (cioè temprato in olio a partire da 1000°C, rinvenuto a 650° per 120 min, raffreddato lentamente, rinvenuto di nuovo a 650°C e temprato in acqua; e "850° Q_o Tp 675°/495 Q_w" (cioè temprato in olio a partire da 850°C, rinvenuto a 675° per 495 min, e temprato in acqua). Questi trattamenti danno tutti quasi le stesse buone proprietà e mostrano così la necessità di una tempra finale in acqua a partire da 650-675°C. Se si considerano alcuni altri trattamenti, si vede che il raffreddamento lento a partire da questa temperatura dà valori di resilienza decisamente inferiori, anche se non influenza molto i valori del carico di rottura. La tempra a partire da temperature più basse dà proprietà tensorie migliori, ma valori di resilienza più bassi. L'esame dei valori ottenuti per questi trattamenti e per altri per i quali non sono dati valori Izod, mostra che il trattamento "h" dà l'optimum dei valori desiderati.

for which no Izod values are given, show that treatment "h" gives the optimum desired values.

II. Name of Alloy Is Known, Its Composition and Properties Are Desired

Refer to the Finding Index, p. 370. The first column of this index contains the Index Numbers by which commercial alloys are identified when their properties occur in the tables. The second column contains 1510 trade names of alloys included in the following classes:

- (a) Trade mark names of patented alloys, as "Alpax."
- (b) Trade mark names of alloys no longer protected by patent (cf. Duralumin in France, where name "Aldal" is used for an alloy of approximately the same composition, the name Duralumin being protected).
- (c) Names of inventor or manufacturer given to alloys, the names or compositions not necessarily being protected, as Babbitt metal.
- (d) Names generally applied to certain types of alloys, as Cartridge Brass.
- (e) Names of types of alloys including a wide range of compositions, as Chrome Nickel steel. In this case, particular alloys of this type may be found from Tables of Alloy Classes, p. 388.
- (f) Designations of standard or tentative standard alloys, and certain government-specification alloys. These will be found under the alloy type as: Brass ingots, A. S. T. M. Spec. B30-22 or Government Bronze, Spec. G.

No distinction is made in the Finding Index among the first four classes, except that in some cases it has been necessary to identify an alloy, known usually by a number, by adding the manufacturer's name, as in the case of alloy No. 193 of the Driver Harris Co. This is listed under Ferronickel, but cross-reference is given to this and similar alloys under "Numbered Alloys." In other cases the manufacturer is not mentioned.

In class (d) no attempt has been made to include all alloys to which usage has given a name, as Spring Steel, Dynamo Sheets, etc., although such alloys are useful for the purpose indicated.

With regard to class (f) it should be mentioned that specifications may be drawn up regardless of existing patents and, of course, in ignorance of pending ones.

The names of alloys are arranged alphabetically regardless of type, excepting in the case of: (1) Alloys known by a manufacturer's number. (2) Specification alloys known by number or letter. (3) Alloys, the first part of whose name is descriptive of condition (e.g., hard solder), where there are several such included in one type. Such alloys are listed under the name of the type and where commonly used, cross-references are also given under first part of name.

The third column of the Finding Index gives the compositions of the alloys. In stating the composition, the elements together with their weights % are given in descending order of amounts in the alloy. Where the % of the first, i.e., largest constituent, is not given, it has not been determined by analysis. Where the amounts of the last constituents are not given, they are only incidental or impurities. Where no percentages are given, the information has not been available.

Where the composition of an alloy varies over a range of values, the limits have been stated, as Index No. 915, MS steel: Fe; Cr, 0.8-1.1; Mo, 0.3-0.4; Mn, 0.6-0.9; C, 0.4-0.6.

The fourth column of the Finding Index contains the page numbers where values of properties of the alloy may be found; the page numbers where the values of properties of a similar alloy may be found are indicated by italic type.

The electrical, magnetic and optical properties of metals and alloys will be found in a succeeding volume of I. C. T.; no page reference to such data can therefore be given in the Finding Index.

h, j, k et z, et sont respectivement 8,85, 9,15,9,0 et 9,0. Parmi ceux-ci, "h" donne une matière un peu plus résistante et considérablement plus ductile que les autres. La signification des symboles et les abréviations utilisées pour spécifier les traitements sont données dans la table à la p. 392. Le traitement "h" représente "Same, Tp 650° Q," "Same" (c'est-à-dire le même) se rapporte au traitement antérieur, c'est-à-dire, à la condition avant le revenu, qui est N 820°. L'interprétation de tout le traitement est la suivante: Normalisé à 820° (c'est à dire refroidi dans l'air calme à partir de 820°C), ensuite revenu à 650° puis trempé à l'eau. Les autres traitements qui donnent une grande résistance au choc sont: "1000° Qo Tp 670°/120 Qw" (c'est à dire, trempé à l'huile à partir de 1000°C, revenu à 670° pendant 120 minutes, refroidi doucement, de nouveau revenu à 650°C et trempé à l'eau); et "850° Qo Tp 675°/495 Qw" (c'est-à-dire trempé à l'huile à partir de 850°C, revenu à 675°C pendant 495 min. et trempé à l'eau). Ces traitements donnent tous à peu près d'aussi bonnes propriétés montrant ainsi la nécessité d'une trempe à l'eau finale à partir de 650-675°C. L'examen de quelques autres traitements montre que le refroidissement lent à partir de cette température donne décidément des chiffres inférieurs à l'essai de choc sur éprouvette entaillée tout en n'affectant pas beaucoup les valeurs de traction. Une trempe à partir de températures plus basses donne des meilleures propriétés à la traction, mais des chiffres inférieurs à l'essai de choc sur éprouvette entaillée. L'examen des valeurs obtenues sur les autres machines pour ces traitements et pour d'autres pour lesquels il n'a pas été donné de valeurs Izod montre que le traitement "h" donne l'optimum

II. Le nom de l'alliage est connu; on désire connaître sa composition et ses propriétés

Consulter l'index de recherche, p. 370. La première colonne de cet index contient les nombres index au moyen desquels les alliages commerciaux sont identifiés lorsque leurs propriétés sont mentionnées dans les tables. La deuxième colonne contient 1510 noms commerciaux des alliages compris dans les classes suivantes:

- (a) Noms commerciaux d'alliages brevetés, comme "Alpax."
- (b) Noms commerciaux d'alliages dont le brevet est expiré; (par exemple: Duralumin en France, où le nom "Aldal" est utilisé pour un alliage ayant approximativement la même composition, le nom Duralumin étant déposé).
- (c) Noms de l'inventeur ou du fabricant donnés aux alliages, les noms ou les compositions n'étant pas nécessairement déposés, comme métal "Babbitt."
- (d) Noms généralement employés pour désigner certains types d'alliages, comme "Cartridge brass," laiton pour cartouches.
- (e) Noms de types d'alliages comportant un large intervalle de composition, comme acier en chrome nickel. Dans ce cas on peut trouver des alliages particuliers de ce type dans les "Tables of Alloy Classes," p. 388.
- (f) Désignation d'alliages standards ou alliages standards tentatifs et certains alliages suivant spécifications gouvernementales. Ceux-ci seront trouvés sous le type d'alliage comme par exemple: Brass ingots (laiton en lingots), A. S. T. M. Spec. B30-22 ou Bronze du Gouvernement, Spec. G.

Il n'a pas été fait de distinction dans l'index de recherche pour les quatre premières classes, excepté dans quelques cas où il a été nécessaire pour identifier un alliage connu ordinairement par un nombre, d'ajouter le nom du fabricant comme dans le cas de l'alliage N° 193 de la Driver Harris Co. Celui-ci est inscrit sous ferronickel, mais il y a une référence pour cet alliage et pour les alliages similaires sous "Numbered Alloys." Dans d'autres cas le fabricant n'est pas mentionné.

Dans la classe (d) on n'a pas cherché à inclure tous les alliages auxquels l'usage a donné un nom, tels que acier à ressorts, tôles

gende Basis zum Vergleich der Ergebnisse bei verschiedenen Typen der Proben vorhanden sind. Der höchste Izod-Wert für No. 262 ergibt sich für die Behandlung h, j, k und z, und beträgt der Reihe nach 8,85, 9,15, 9,0 und 9,0. Von diesen gibt "h" ein Material höherer Zugfestigkeit und ein deutlich duktileres Material als die anderen. Erklärungen der Zeichen und die Behandlung betreffenden Abkürzungen sind in der Tabelle S. 392 angegeben. Die Behandlung "h" ist durch "Same, Tp 650° Qw" in den Tafeln ausgedrückt. "Same" zeigt vorhergegangene Behandlung an, d. h. Zustand vor der Anlassung, welche "N 820°" ist. Die ganze Behandlung ist angezeigt: Normalisiert bei 820° (d. h. gekühlt in ruhender Luft von 820° herunter), dann bei 650°C angelassen und in Wasser abgeschreckt. Die anderen Behandlungen, welche eine sehr grosse Schlagfestigkeit geben, sind: 1000° Q. Tp 670°/ 120 Q_w (d. h. bei 1000° in Öl abgeschreckt bei 670°, 120 Minuten lang angelassen und in Wasser abgeschreckt); "1000° Q. Tp 650°/120 C. 650° Q." (bei 1000° in Öl abgeschreckt, für 120 Minuten lang bei 650° angelassen, langsam gekühlt, nochmals bei 650° angelassen und in Wasser abgeschreckt); ferner "850° Q. Tp 675°/495 Q." (d. h. bei 850° in Öl abgeschreckt, 495 Minuten lang bei 675° angelassen, und in Wasser abgeschreckt). Diese Behandlungen geben ungefähr gleich gute Eigenschaften und zeigen die Notwendigkeit einer am Schlusse vorgenommen Wasserabschreckung von 650-675°. Die Betrachtung einiger anderer Behandlungen zeigt, dass eine langsame Kühlung von dieser Temperatur herunter entschieden niedrigere Werte für die Schlagfestigkeit gibt, während die Zugfestigkeit und Duktilität nicht stark beeinflusst wird. Abschreckung bei tieferen Temperaturen gibt bessere Zugfestigkeit und Duktilität, aber niedrigere Werte für die Schlagfestigkeit. Eine Durchsicht der Werte die mit anderen Maschinen erhalten werden, zeigt für diese Behandlungen und andere, für welche keine Izod-Werte gegeben sind, dass die "h" Behandlung das Optimum der gewünschten Eigenschaft gibt.

II. Der Name der Legierung ist bekannt, es sind ihre Zusammensetzung und Eigenschaften zu ermitteln

Siehe im Nachschlage-Index S. 370 nach. Die erste Kolonne in diesem enthält die Index-Zahl, durch welche Handelslegierungen bezeichnet sind, wenn ihre Eigenschaften in den Tabellen vorkommen. Die zweite Kolonne enthält 1510 Handelsnamen von Legierungen die in folgende Klassen eingeteilt sind.

- (a) Handelsmarken patentierter Legierungen, wie z. B. "Alpax."
- (b) Handelsmarken von Legierungen, nicht mehr unter Patentschutz stehend (vgl. Duralumin in Frankreich, wo der Name "Aldal" für eine Legierung von ungefähr derselben Zusammensetzung benützt wird, da der Name Duralumin geschützt ist).
- (c) Die Legierung trägt den Namen des Erfinders oder des Erzeugers. Der Name selbst braucht nicht notwendig geschützt zu sein; z. B. Babbitt-Metall.
- (d) Namen die im allgemeinen gewissen Legierungstypen gegeben werden; z. B. "Cartridge brass," Patronen-Messing.
- (e) Namen von Legierungen deren Zusammensetzung in weitem Ausmasse varieren kann, z. B. Chrom-Nickel Stahl. In solchem Fall, die besondere Legierung dieser Type in "Tables of Alloy Classes," S. 388 zu finden ist.
- (f) Als Standards bestimmte Legierungen oder solche als Prüfungs-Standard geltende, ferner gewisse staatlich vorgeschriebene Legierungen. Diese werden unter folgenden Legierungstypen gefunden: Brass ingots, A. S. T. M. Spec. B30-22 Government Bronze, Spec. G.

Es ist in den ersten vier Klassen kein Unterschied im Nachschlage-Index gemacht, ausgenommen, dass es in manchen Fällen notwendig war eine, sonst nur durch eine Zahl bekannte Legierung durch Hinzufügung des Namens des Fabrikants näher zu bezeichnen, z. B. bei der Legierung No. 193 der Driver

II. Si suppone noto il nome della lega e si desidera conoscerne la composizione e le proprieta

Si consulti l'indice di ricerca a pag. 370. La prima colonna contiene i numeri indici con cui sono indicate le leghe commerciali, e la seconda 1510 nomi commerciali di leghe suddivisi nelle classi seguenti:

- (a) Nomi commerciali di leghe brevettate, come "Alpax."
- (b) Nomi commerciali di leghe non più protette da brevetti (ad es. in Francia si usa il nome "Aldal" per una lega che ha approssimativamente la stessa composizione del duralluminio, essendo il nome duralluminio protetto da brevetto).
- (c) Nomi di inventori o fabbricanti dati alle leghe. I nomi o le composizioni non sempre sono protette da brevetti, come ad es. nel caso del metallo "Babbitt."
- (d) Nomi generalmente applicati a certi tipi di leghe, come ad es. "Cartridge brass," ottone per cartucce.
- (e) Nomi di tipi di leghe che possono avere composizioni oscillanti entro limiti larghi, come ad es. acciai al cromo-nichel. In questi casi, si possono trovare leghe particolari di detto tipo nelle "Tables of Alloy Classes," p. 388.
- (f) Indicazioni di leghe standard, o tentativi standard, e di certe leghe con le caratteristiche richieste da amministrazioni governative. Queste si troveranno riportate sotto i tipi di leghe come: Brass ingots (lingotti di ottone), A. S. T. M. Spec. B30-22, oppure bronzo secondo le prescrizioni governative, Spec. 9.

Nessuna distinzione è fatta nell'indice tra le prime quattro classi eccetto che in alcuni casi è stato necessario aggiungere, al numero che ordinariamente contradistingue una lega, il nome del fabbricante, come nel caso della lega N° 193 della Driver Harris Co. Questa è elencata tra i ferro-nichel, ma sotto "Numbered Alloys" vi è un rapporto a questa ed a leghe simili al N°. 193. In altri caso non è fatta menzione del fabbricante.

Nella classe (d) non si è tentato di comprendervi tutte le leghe alle quali l'uso ha dato un nome, come acciaio per molle, lamierini per dinamo, ecc., sebbene dette leghe siano utili per gli scopi indicati.

Riguardo alla classe (f) deve ricordarsi che determinate caratteristiche possono ottenerdi indipendentemente dal brevetti esistenti e, naturalmente, nell'ignoranza di eventuali in corso.

I nomi delle leghe sono disposti per ordine alfabetico senza tener conto del loro tipo tranne il caso di: (1) Leghe indicate con il numero di un fabbricante. (2) Leghe speciali note con un numero o una lettera. (3) Leghe di cui la prima parte del nome ne descrive la natura (per es. "hard solder," saldatura forte) quando ve ne sono parecchie comprese in uno stesso tipo. Tali leghe sono elencate sotto il nome del tipo, e, quando esse sono comunemente adoperate, si trovano riportate indicazioni anche sotto la prima parte del nome.

La terza colonna dell'indice dà le composizioni delle leghe. Nell'indicare la composizione, gli elementi e le rispettive percentuali sono date in ordine decrescente del contenuto nella lega. Quando il percento del primo costituente, e cioè quello più abbondante, non è indicato, significa che esso non è stato determinato con l'analisi. Quando le proporzioni degli ultimi componenti non sono indicate, essi sono soltanto costituenti accidentali o impurezze. Se le percentuali non sono riportate, significa che non si è potuto avere l'informazione relativa.

Quando la composizione di una lega può assumere tutta una serie di valori, sono stati indicati i limiti entro i quali i valori possono oscillare, come per es. per Index No. 915, MS steel: Fe; Cr, 0,8-1,1; Mo, 0,3-0, 4; Mn, 0,6-0,9; C, 0,4-0,6.

Nella quarta colonna dell'indice sono indicate le pagine dove si possono trovare valori delle proprietà della lega (in caratteri romani) oppure dove si possono trovare i valori delle proprietà di una lega simile (in corsivo).

No data on resistance to corrosion are included in these tables. In the opinion of the most competent experts on the subject, it is not possible to give quantitative data for the corrosion resistance of metals and alloys. No page references can therefore be given in regard even to certain alloys which are chiefly valued on account of their resistance to corrosion. These, however, are listed in the tables of alloy types.

The sources of information for the Finding Index have been as follows: William Campbell's List of Names of Alloys, prepared for Committee B-2 of the A. S. T. M.; names and compositions given by the co-operating experts; and current metallurgical and technological literature.

III. It Is Desired to Find an Alloy Having Certain Desired Properties

For this purpose consult the Table of Properties on p. 610, directions being given there.

de dynamo, etc., quoique de tels alliages soient utiles pour le but indiqué.

En ce qui concerne la classe (f), il faut mentionner que des spécifications peuvent être rédigées sans tenir compte des patentes existantes et naturellement aussi dans l'ignorance des brevets demandés.

Les noms des alliages sont disposés dans l'ordre alphabétique sans tenir compte de leur type, excepté dans les cas suivants: (1) Alliages connus par un numéro de fabrique. (2) Certains alliages connus par un nombre ou une lettre. (3) Alliages dont la première partie de leurs noms est descriptive de la condition (par ex. "hard solder," soudure dure) et où il existe plusieurs variétés incluses dans un type. De tels alliages sont inscrits sous le nom du type et lorsqu'ils sont d'un usage commun, sont aussi mentionnés dans l'index par la première partie de leur nom.

La troisième colonne de l'index de recherche donne les compositions des alliages. En établissant la composition, on a inscrit les éléments avec leurs poids en % successivement dans l'ordre des proportions décroissantes dans l'alliage. Lorsque le pourcent du premier, c'est-à-dire le constituant principal, n'est pas donné, c'est qu'il n'a pas été déterminé par l'analyse. Lorsque les proportions des derniers constituants ne sont pas mentionnés, ceux-ci ne sont qu'accessoires ou bien sont des impuretés. Lorsqu'aucun pourcentage n'est donné, c'est que l'information n'a pas été disponible.

Lorsque la composition d'un alliage varie suivant un intervalle de valeurs, les limites ont été fixées: par ex. Index No. 915, MS steel: Fe; Cr, 0,8-1,1; Mo, 0,3-0,4; Mn, 0,6-0,9; C, 0,4-0,6.

La quatrième colonne de l'index de recherche contient en caractères romains les numéros des pages où l'on peut trouver les propriétés de l'alliage, ou en italique les numéros des pages, où l'on peut trouver les valeurs des propriétés d'un alliage similaire.

On trouvera les propriétés électriques, magnétiques et optiques des métaux et alliages dans un volume suivant des T. C. I.; on ne peut donc donner aucune page de référence pour de telles données dans l'index de recherche.

On ne trouvera dans ces tables aucune donnée relative à la résistance à la corrosion. D'après l'opinion des experts les plus compétents sur ce sujet, il n'est pas possible de donner des valeurs quantitatives pour la résistance à la corrosion des métaux et alliages. On ne peut donc donner aucune référence en ce qui concerne même certains alliages dont la valeur est surtout due à leur résistance à la corrosion. Ceux-ci, cependant sont mentionnés dans les tables des types d'alliages.

Les sources d'information pour l'index de recherche ont été les suivantes: List of Names of Alloys établie par William Campbell préparée pour le Comité B-2 de l'A. S. T. M.; noms et compositions données par les experts coopérants; et la littérature métallurgique et technologique courante.

III. On désire trouver un alliage ayant certaines propriétés désirées

Pour cela, consulter la Table des Propriétés à la p. 610, où les instructions sont données.

Harris Co. Sie ist unter Ferronickel mit einem entsprechenden Hinweis angeführt, der dieser und ähnlichen Legierungen unter "Numbered Alloys" beigefügt wird.

Zu (d). Es ist nicht die Absicht gewesen, alle solche Legierungen hier zu vereinigen denen der Gebrauch besondere Namen, wie Feder-Stahl, Dynamo-Lamellen, u. s. w., beigelegt hat, obgleich diese Legierungen für die angezeigte Verwendung nützlich sind.

Hinsichtlich (f) wäre zu bemerken, dass die Vorschriften ohne Rücksicht auf vorhandene und in Unkenntnis angemeldeter Patente, niedergeschrieben werden können.

Die Namen der Legierungen sind in alphabetischer Reihenfolge ohne Rücksicht auf die Type angeordnet. Ausgenommen: (1) Die Legierung hat die Nummer eines Erzeugers. (2) Besondere Legierungen die durch eine Zahl oder Buchstaben kenntlich gemacht sind. (3) Legierungen in deren Namen der erste Teil ihre Natur beschreibt (z. B. "hard solder," hart Lot). Es sind dann mehrere in einer Type vereinigt. Solche Legierungen sind unter dem Namen der Type angeführt unter welcher sie gewöhnlich gebraucht werden. Unter dem ersten Teil der Namen sind Hinweisdaten gegeben.

Die dritte Kolonne des Nachschlage-Index enthält die Zusammensetzung der Legierungen. Die Elemente, welche die Zusammensetzung ausdrücken sind zusammen mit ihrem Prozentgehalt absteigend nach diesem, angeordnet. Ist der Prozentgehalt des Hauptbestandteiles nicht angegeben, so ist er analytisch nicht bestimmt. Sind die Mengen des letzten Bestandteiles nicht angegeben, so ist dieser nur zufällig vorhanden oder nur Verunreinigung. Fehlen der Prozentzahlen bedeutet, dass keine diesbezügliche Angaben erreichbar waren.

Ändert sich die Zusammensetzung einer Legierung innerhalb einer Grenze, so werden nur die Grenzwerte angegeben, z. B. Index No. 915, MS steel: Fe; Cr, 0,8-1,1; Mo, 0,3-0,4; Mn, 0,6-0.9; C. 0.4-0.6.

Die vierte Kolonne des Nachschlage-Index enthält die Seitenzahlen, wo die Werte für die Eigenschaften gefunden werden können. Die Eigenschaften ähnlicher Legierungen sind auf den kursiv gedruckten Seitenzahlen zu finden.

Die elektrischen, magnetischen und optischen Eigenschaften der Metalle und Legierungen sind Gegenstand späterer Bände der I. C. T. Aus diesem Grunde sind keine diesbezügliche Hinweise im Nachschlage-Index angegeben.

In den Tafeln finden sich keine Angaben über Korrosion. Nach der Meinung massgebender Fachleute ist es nicht möglich quantitative Angaben über den Widerstand gegen Korrosion zu machen. Es sind daher diesbezüglich keine Angaben vorhanden, selbst in Hinblick auf gewisse Legierungen die gerade wegen ihres Widerstandes gegen Korrosion besonders geschätzt werden. Sie sind aber unter den Legierungstypen zu finden.

Für den Nachschlage-Index sind folgende Quellen massgebend gewesen: William Campbell's List of Names of Alloys, prepared for Committee B-2 of the A. S. T. M.; Namen und Zusammensetzung wie sie von den Mitarbeitern (Experten) angegeben worden sind; die vorhandene metallurgische und technologische Literatur.

III. Es ist eine Legierung mit gewünschten Eigenschaften aufzufinden

Zu diesem Zwecke benütze man die S. 610 vorhandenen Eigenschaftstafeln, wo weitere Richtlinien gegeben sind.

Le proprietà elettriche, magnetiche e ottiche dei metalli e delle leghe si troveranno in un volume successivo delle I. C. T.; non è possibile perciò fare richiami a questi valori nell'indice.

Dati sulla resistenza alla corrosione non sono inclusi nelle tabelle, giacchè, secondo i maggiori conoscitori dell'argomento, non è possibile indicare con dati quantitativi la resistenza alla corrosione. Valori numerici non sono perciò riportati neppure per certe leghe che sono sopratutto apprezzate per la loro resistenza alla corrosione. Esse tuttavia sono elencate nelle tabelle dei tipi di leghe.

Le fonti per la compilazione dell'indice sono state: William Campbell's List of Names of Alloys, preparato per il Comitato B-2 della A. S. T. M.; nomi e composizioni fornite dai collaboratori; la letteratura tecnologica e metallurgica corrente.

III. Si desideri trovare una lega che abbia certe proprietà

A questo scopo si consulti la tabella delle proprietà a p. 610 dove si troveranno indicazioni in proposito.

FINDING INDEX OF ALLOYS

Index No.	Name	Composition	Page
	A allow (forging)	Al, 77; Zn, 20; Cu, 3	1538 AOR
1 2	A alloy (forging)	Cu, 88; Zn, 11.5; Au, 0.5 (s.	538, 608
-	Abyssiman gold	also Index No. 1371)	ĺ
3	Accumulator metal	Pb, 90; Sn, 9.2; Sb, 0.8	467, 557
4	Acid bessemer pig	Fe; C, 3.5-4; Si, 1-1.5; Mn,	401,001
•	red besseller pig	0.5; P, ≯0.1; S, ≯0.05	ļ
5	Acid bronse	Cu, 88-82; Sn, 8-10; Pb, 2-8;	561.562.
	11000	Zn, 2-0; P, 0-0.2	567
6	Acid bronse	Cu, 74: Pb, 17; Sn, 8; Zn, 1.5	•
	Acid resisting alloys:	For list, v. p. 391	
7		Pb, 52; Sn, 35; Sb, 8; Cu, 5	557
8		Cu, 83; Sn, 11; Zn, 6; Pb*	569
9	U. S. patent 1 333 706	Cr, 60; Fe, 39; C, 0.3-0.8	1
10	U. S. patent 1 375 081	Fe, 56; Cr, 40; Mo, 4; C, 1.5	i
11	Can. patent 206 645	Ni, 46-38; Cu, 31-38; Fe,	ļ
		16-20; Cr, 7-5; Mn, 0.3-0.8	
12	Acid resisting steel (U. S.	Fe, 86; Cr, 13; C, 0.3; Mn;	471, 478,
	patent 1 391 450)	Si; P; S	508, 603
13	Acieral (cast)	Al; Cu, 6; Ni, 1; Si, 0.4; Fe;	Ì
		Mg; Zn	1
14	Acieral (sheet)	Al; Cu, 2.3-3.8; Mn, 1-1.5;	534
		Fe, 0.7–1.4; Mg	
15	Acme nickel steel	Fe; Ni, 30.5; Cr, 1.4-1.6; C,	1
		0.3; Mn; Si; P; S	1
16	Admiralty, A (Admiralty con-		469, 556,
	denser tube, Admiralty metal)	Cu, 70; Zn, 29; Sn, 1	600
17	Admiralty brass	Cu, 62; Zn, 37; Sn, 1.4	470, 556
18	Admiralty gun metal (Admir-		476, 565
	alty bronse)	Cu, 88; 8n, 10; Zn, 2	
19	Admiralty gun metal†	Cu, 88-86; 8n, 10; Zn, 1.1-	366 , 567,
		1.5; Pb, 0.2-1.7; As, 0.5; Fe,	570-572
		0.06-0.08	
20	Admiralty white metal	Sn; Sb, 8-9; Cu, 2-7	478, 557
21	Adnic (Admiralty nickel)	Cu, 70; Ni, 29; Sn, 1	601
22	Advance	Cu, 54-55; Ni, 44-46; Mn,	480, 601,
		0.8-1.2; Fe, 0.5	606
23	Aerolite	Al, 97; Cu, 1.2; Fe, 1; Si, 0.5;	533
	l	Mg, 0.4; Zn	
24	Aerolite pistons	Al, 86; Cu, 12; Mn, 2	467, 534
25	Aero metal (cast)	Al, 67; Zn, 28; Cu, 4.2; Fe,	537
26	Aero metal (sheet)	0.5; Si, 0.5	IRI EIO
20	Age of meren (sneet)	Al, 96; Mg, 2.1-2.9; Cu, 0.2- 0.6; Fe; Mn; Si	464, 542
27	Aeromin	Al; Mg, 6.2; Fe, 0.8; Si, 0.3	542, 608
28	Aeron (Scleron II)	Al; etc., v. Scleron	
29	Agrilite (No. 5)	Cu, 70.5; Pb, 24; Sn, 5.4; Ni,	561, 562,
		0.1; P, 0.005	567
30	Aich metal	Cu, 60; Zn, 38; Fe, 1.5	556
31	Air hardening steel (Key No.	Fe; Ni, 3.7-4.3; Cr, 1.4-1.6;	512, 513,
	267, p. 512)	Mn, 0.4; C, 0.3; Si; P; S	604
32	Ajax metal	Fe, 70-30; Ni, 25-50; Cu,	1
	-	5–20]
33	Ajaz phosphor bronse		562
34	Ajax plastic bronze	Cu, 64; Pb, 30; Sn, 5; Ni, 1	562
35	Ajax plastic bronze		
		(U. S. reissue patent 12 880)	567
36	Akrit	Co, 38; Cr, 30; W, 16; Ni, 10;	593
		Mo, 4; C, 2-5	1
37	Aladar	Name used in France for	1
		Alpax	1
38	Alargan	Ag; Al	1
39	Albata (Albatra?)	Cu, 58; Zn, 23; Ni, 19; Pb,	Ī
	1	1.3	1
40	Albidur-aluminium	Al; etc.	1
41	Albin	v. White brass	1
42	Alco bronze	Cu; Ni	١,
43	Al-Cu	Al; Cu, 7-7.6; Fe, 0.4-0.9;	467,
	1	Si; Mn; Zn	534,
44	Al-Cu, strongest	Al; Cu, 3.8	601
45	Alcumite	Cu; Al, 7.5; Fe, 3.5; Ni; Mn	578, 600
46	Al-Cu-Mg (casting)	Al; Cu, 3.4-4; Mg, 0.5; Fe;	
	l	Mn; Si	601
47	Al-Cu-Ni	Al; Cu, 2-4; Ni, 1.1-5.3	543
48	Al-Cu-Zn, strong (ingots)	Al, 83; Zn, 10-13; Cu, 3-5.5;	537
_	1	Mn, 0.2-0.4; Fe, Pb; Si; Sn	
49	Al-Cu-Zn, strong (cast)		537, 601
	<u>L </u>	3-5; Fe; Mn; Si	
* D.	eists said mine water		

^{*} Resists acid mine water.

ndex No.	Name	Composition	Page
50	Al-Cu-Zn, strong (forged)	Al, 75; Zn, 22; Cu, 3	537, 601
51	Alfénide	Nickel silver	
52	Algiera (Alassia) model	Similar to Duriron	170 555
53	Alleria model	8n, 95–75; 8b, 0.5–25; Cu, 5–0	1 -
54 55	Alkali-resisting metal	Fe, 95; Ni, 5 Cu, 70-55; Pb, 20-40; Sn, 10-	481,604 562
99	Alian red bronse	5; 8, 1	302
56	Allan red metal	Cu, 50; Pb, 50; S	562
	Alloy cast iron	r. Index Nos. 870 and 974	
	Alloy No	For certain alloys known by	Ì
		numbers, v. p. 381	
	Alloy steels	For list, v. p. 390	İ
57	Al-Ni-Ti	Al, 98; Ni, 2; Ti, 0.4	543
58	Al-Ni-Zn	Al, 85; Ni, 10; Zn, 5	
59	Alpakka	Cu, 64; Zn, 19; Ni, 15; Ag, 2;	475, 480
	,	Fe; Sn; Pb	l
60	1		468, 543
	Alpax (Pacs patents)	Na, 0.05	599, 601
61		Al; Si, 5-6; Fe, ≯ 1.0; K, or Na, 0.05	468, 043 601
62	Aludur	Al; Si, 0.7; Mg, 0.5; Fe, 0.45;	459, 478
		Cu	536. 601
63	Aluman	Al, 88; Zn, 10; Cu, 2	468, 537
64	Alumel	Ni, 94; Mn, 2.5; Al, 2; Si, 1;	
		Fe, 0.5	
65	Aluminite (cast)	Al, 73; Zn, 23; Cu, 2.7; Fe,	537, 60.
l		0.4; Si, 0.2	
	Aluminium alloys* known by		
i	letter or number:		
	Aluminum Co. of America,		1
66	casting alloys: No. 12†	Al; Cu, 8; Fe, 0.5-1.75; Si,	١,
"	110. 12	0.3-0.5	
67	No. 31	Al, 82; Zn, 15; Cu, 3	
68	No. 43	Al; Si, 5; Fe, ≯1	459,
69	No. 45	Al; Si, 10	467.
70	No. 47‡	Al; Si, 12.5	475. 533,
71	No. 100	Al, ∢ 99	534.
72	No. 106	Al; Mn, 2	537-
73	No. 109	Al; Cu, 12.5	542,
74	No. 112	Al; Cu, 6-8; Zn, ≯2.5; Fe,	601
75	No. 148	≯ 1.5	
76	No. 145 No. 195	Al; Zn, 10; Cu, 2.5; Fe, 1.25 Al; Cu, 4	
	Aluminum Co. of America,	111, 011, 1	۱′
	wrought alloys:		
77	No. 38	Al, 99; Mn, 1.5	468, 541
78	No. 58	Al, 95; Cu, 2; Zn, 2; Mn, 1.5	
79	No. 8	Al, 95; Cu, 4; Si, ≯0.5; Fe,	467, 534
		≯0.5	601
80	No. 88	Al, 67; Zn, 33	468, 537
81	No. 158	Al; Cu; Zn	
82	No. 178§	Al, ≼92; Cu, 3.5-4.5; Mn,	
83	No. A 178§	0.4-1.0; Mg, 0.2-0.75	601, 608
84	No. B 178§	Al; Cu, 2.5; Mg, 0.3; Mn, 0 Al; Cu, 3.5; Mg, 0.3; Mn, 0	534 534
85	No. 258		534, 601
		1.1; Si, 0.5–1	, 1
86	No. 518		53 6, 601
		The above alloys often con-	
		tain Fe, Mn, Ni, Si, Sn, Zn	
- 1		in subordinate amounts.	
	A. S. T. M. casting alloys,	ı	
	Spec. B26-21:		
87	A	Al; Cu, 7-8.5; impurities, ≯1.7	467.
87 88	· "	Al; Cu, 8.5-11; impurities,	554,
- 1	A		

^{*} Many of the recently developed aluminium alloys, although having very varied mechanical properties, have not yet acquired specific names, nor universally used designations. Accordingly, a list of alloys bearing manufacturers' numbers and society specification numbers is included in this table. Some consistent nomenclature is needed, as for instance, there are three alloys labeled "A," two labeled "No. 31," etc.

^{| &}quot;No. 12" alloy.

[†] Modified.

[†] Generally known and manufactured in America under this name.

[#] Modified.

[§] Duralumin.

ndex No.	Name	Composition	Page	Index No.	Name	Composition	Page
90	D	Al; Zn, 12.5-14.5; Cu, 2.5-3.0; impurities, ≥ 1.7, Pb,	1	129	Aluminum tin bronse	Cu, 86; Sn, 10; Al, 2.5; Zn, 2	
91	E	> 0.1 Al; Cu, 2-2.5; Mn, 0.75-1.25;		130	Aluminum titanium bronse	Cu, 90-89; Al, 9-10; Fe, 1; Ti, Tr.	577, 601
	A. S. T. M. casting alloys,	impurities, ≯1.0	"	131 132	Alsen (Alsene)	Al, 66.6; Zn, 33.3 s. Sibley casting alloy	468, 536
92	Spec. B26-25T: A	Al, ≪96.5 ; Cu, 1–1.5; Mn,	534	133 134	Amaloy	Ni; Cr; W Cu, 81; Sn, 11; Pb, 7.4; P, 0.3	562
93	В	0.7-2; Fe, ≯0.5; Si, ≯0.5; Mg; Zn		135 136	Ambrac (30 %)	1	480
93	В	Al, ≪92.5; Si, 4.5–6; Fe, ≥ 1.0; Cu, ≥ 0.6; Mn, ≥ 0.2; Zn, ≥ 0.2; Mg		137	American alloy (so-called in Europe)	Al, 95; Cu, 3; Mg, 1; Mn, 1	468, 534 601
94	C*	Al, <90; Cu, 7.0-8.5; Zn, >0.2; (Fe + 8i + Mn + Zn + 8n), > 1.7		138	American silver (cast)	Cu, 58-49; Zn, 21-24; Ni, 15-24; Mn, <4; Sn; Fe; Pb; Al	475, 480
95	D	Al, 88-92; Cu, 6.0-8.0; Zn, > 2.5; Fe, > 1.5; (8i + Mn + 8n), > 10	467, 537-	139 140	American silver (cast)	Cu, 59; Zn, 23; Ni, 11; P-Sn, 5; Pb, 3; Al, 1.5 Fe, 63.5; V, 35	
		This specification will super- sede B26-21, above, when		141 142	Ampeo (bronse)	Cu; Al, 7-11; Fe, 1-3 Cu, 90; Sn, 10	578, 601 559, 601
	N. P. L. alloys	adopted. For the more important of these, v. Index Nos. 1, 184,	1	143	Anatomical alloy (Fusible) Antifriction alloys (s. also p.	Bi, 54; Sn, 19; Pb, 17; Hg, 11; Cd Pb, 88-79; Sb, 12-20; Sn,	557
	S. A. E. casting alloys:	520, 611, 1490, 1491		145	372) Antimonial lead	0-10; Cu; Zn Pb, 100-75; Sb, 0-25	475, 557
96 97	No. 30* No. 31	Same as Index No. 94 Al, <81; Zn, 12.5-14.5; Cu,	637-641.	146	Apex bronse	Fe; Ni v. Sillman bronse	
	No. 32	2.25-3.25; (Si + Fe + Mn + Sn), ≯ 1.7	601	147	Aphtit	Cu, 75-70; Ni, 20-21; Zn, 2.4-5.5; Cd, 1.8-4.5	480, 601
98	No. 32	Al, <85.5; Cu, 11-13.5; Zn, >0.2; (Si + Fe + Zn + Mn + Sn), >1.7	1	148 149	Argental	Cu, 85; Sn, 10; Co, 5 Al, 75-60; Ag, 15-16; Zn, 7.5-20; Cu, 3.5-5	
99 100	No. 33 No. 34	Same as Index No. 95 Al, <87; Cu, 9.25-10.75; Fe, 0.9-1.5; Mg, 0.15-0.35;		150 151	ArgentaliumArgentan; Berlin	Al; Ag, < 5; Mg, 0.1-1 Nickel silver Cu, 56; Zn, 29; Ni, 16	480
101	No. 35	other elements, ≯0.75 Same as Index No. 93		152	Berlin castings	Cu, 48; Ni, 24; Zn, 24; Fe, 3.6	
102	For B. E. S. A. Specifications Aluminum brass	v. p. 386 Cu, 71–55; Zn, 26–42; Al, 1–6	556	153	Chinese	Cu, 40; Ni, 32; Zn, 25; Fe, 2.6	<u>.</u>
103	Aluminum bronse	Cu, 99-89; Al, 1-11 (name also used where other ele- ments are present in smaller	477, 573-	154 155	French	Cu, 50; Zn, 31; Ni, 18 Cu, 56; Ni, 26; Zn, 18; Fe, 1	480
104	Aluminum iron bronse	amounts than Al) Cu, 89–85; Al, 6–9.5; Fe, 3.5–	601, 606	156	Russian	Cu, 64; Ni, 18; Zn, 18; Fe, 0.3; Pb, 0.3	480
105	Aluminum magnesium bronze	7.5; Mn; Pb; P Cu, 95–90; Al, 5–10; Mg, 0.5		157	Russian (cast)	Cu, 58; Ni, 20; Zn, 19; Fe, 3.2	
106 107	Aluminum manganese bronze Aluminum nickel	Cu, 89; Al, 9.6; Mn, 1.2 Ni, 94; Al, 6	579, 600	158	Sheet	Cu, 65-40; Zn, 17-32; Ni, 15-20; Fe	475, 480
108 109	Aluminum nickel	Ni, 76.4; Al, 23.6 Cu, 85; Al, 5–10; Ni, 10–5	581, 600	159	Argentan solder	Zn, 57; Cu, 35; Ni, 8 v. also Mousset's silver	
110 111	Aluminum silver		534, 601	160	Odessa	Cu, 43; Ag, 33; Zn, 16; Ni, 8.5	İ
112	Aluminum solders: Bates	Al, 70; Zn, 30	468, 5 3 6	161	Rouls	Cu, 35-50; Ni, 25-30; Ag, 20-40	l
113	Bureau of Standards:	Sn, 78; Al, 9; Zn, 8; Cd, 5		162 163	Argentin	Sn, 85; Sb, 14.5; Cu, 0.5 Al, 90; Cu, 6; Si, 2; Bi, 2	475
114	SN2	Sn, 69; Zn, 26; Al, 2.4; P, 2.4		164	Argosoil (Argosie)	Cu, 54; Zn, 28; Ni, 14; Sn,	İ
115 116	SN3 SN4	Sn, 86; Zn, 9; Al, 5; P, 0.25 Sn, 86; Zn, 9; Al, 5		165	Argusoid	2; Pb, 2 Cu, 49-56; Zn, 23-31; Ni,	ł
117 118	ZN1Geophysical Laboratory, Car-		546	166	Argyroid (Argiroide)	21-13; Sn, 0-4; Pb, 0-35 Nickel silver	
	negie Institution	Zn, 90; Al, 6; Cu, 4	j -	167	Argyrolith	Nickel silver	l
119 120	Roesch Seifert	Zn, 50; Sn, 49; Sb, 0.7; Cu, 0.2 Sn, 73; Zn, 21; Pb, 5; P-Sn, 1		168	Argyrophan	Nickel silver	EEE 001
121	So-luminum	8n, 73; Zn, 21; Pb, 5; P-8n, 1 8n, 55; Zn, 33; Al, 11; Cu, 1		169 170	ArkoArmco iron	Cu, 80; Zn, 20 Fe, 99.80-99.94; (P + S +	470, 600
122	Sterling	Sn, 62; Zn, 15; Al, 11; Pb, 8.3; Cu, 2.5; Sb, 1.2		171	Armstrong (heat resisting	Si + C + Mn), < 0.14	602, 606
123 124	U. S. patent 1 332 899 U. S. patent 1 333 666	Sn, 41; Zn, 28; Cu, 3; Mn, 0.6; Al, 0.1 Pb, 92; Cd, 8	551	172	stainless steel)	Fe; Cr, 12; Si, 5; C, 0.5 Cu, 80; Sn, 10; Pb, 9.5; As, 0.8	562
		There are a host of Al solder patents, many of doubtful		173 174	Ascoloy	Fe; Cr, 14 Sn, 78-80; Sb, 14-19; Cu,	508, 600 557
125	Wüst	value or worthless. Zn, 50; Al, 30; Cu, 20	546		A S T M -U	0-3; Zn, 0-2.8	
126	Wüst No. 2	Zn, 65; Al, 20; Cu, 20 Zn, 65; Al, 20; Cu, 15	546	ļ	A. S. T. M. alloys: The American Society for Tee	ı sting Materials publishes stan-	
127	Aluminum steel	Steel deoxidized with Al (Al			dard specifications for engineeri		,
	Aluminum -41	usually less than 0.2 %).	500	1	vis., 1924, 1927, etc. Tentativ	re standards, not yet adopted	
128	o. 12" alloy.	re; Al, ≥ 15; C, ≥ 0.9	529	l	but under consideration are pu	blished yearly on Oct. 1.	ı

Digitized by Google

dex	Name	Composition	Page	Index No.	Name	Composition	Pag
J. 1	Many of these specifications	do not define composition		206	Cu-Sn-Zn-Mn	Cu, 86; Sn, 6; Zn, 5; Mn,	1
	Many of these specifications do not define composition completely, but specify limits for tensile properties, weight					2.7	
l	per unit area, microstructure, e			207	Cu-Sn-Zn-Pb	Cu, 88-75; Sn, 7-14; Zn, 2-9;	566
Ì	Specification numbers preced	led by "A" are for ferrous				Pb, 1-9	1
	materials and by "B" for non-	ferrous materials. The first		208	Cu-Sn-Zn-Pb-P	Cu, 82; Sn, 14; Zn, 2; Pb, 1;	566
i	part of number is the serial nur	nber of the specification, and				P, 1	1
Į	the second part denotes the			209	Cu-Zn-Sn	Cu, 77-75; Zn, 14-21; Sn, 4-9	
	followed by "T" denote tentati			210	Cu-Zn-Sn-Pb	Cu, 67; Zn, 28; Sn, 4.3; Pb,	1
75	Aterite (cast)					1.4	1
-a	AA	1.6; Pb; Mn; Al				Max.	1
76	Aterite (cast)	Cu, 55-36; Ni, 35-44; Zn, 5-0; Fe, 5-20			A. S. T. M. Spec. B31-21	total Max. impur-	_
77	Aterite (rolled)				Grade:	Cu Sn Pb Zn P ities	1
··	Avenue (roned)	10-12; Fe, 15-8; Mn; Pb		211		85 10 5 0.27 ₹ 0.7 0.50	562
78	Aterite (rolled)	Cu, 47; Zn, 38; Ni, 11; Mn,		212		80 10 10 0.50 ₹ 0.7 0.75	562
.	2200.000 (200.002)	2.2; Fe, 1.9		213		80 10 10 2.00 > 0.05 2.50	562
79	Atha's 2600 (v. also Rezistal)	Fe; Ni, 22; Cr, 8; Si, 1.75;		214		77 8 15 0.50 ≯ 0.25 0.75	562
	•	Cu, 1.0; C, ≯0.5; Mn, 0.7		215		73 7 20 0.50 ≯ 0.05 1.00	562
80	ATG alloy	Ni, 60; Fe, 26; Cr, 10; W, 4		216		70 5 25 0.50 0.00 1.00	562
- 1	Automotive steels:			1 !		Fe, > 0.25; Sb, > 0.50; Al, 0	i
ł		Engineers (U. S. A.) has the				for all; S, > 0.05 for 1-4 and	
	following system of numbering					≯0.25 for 5 and 6	1
	The first figure indicates the	class of steel (v. below); the		[]	A. S. T. M. Spec. B22-21:		1
	second figure in the case of alloy			217	A	Cu; Sn, ≯20;)	475,
į	percentage of the predominant	alloying element; the last two				P, ≯1.0 Impurities,	560,
	or three figures indicate the car	bon content in hundredths of		218	В	Cu; Sn, ≯17; > 0.50	476,
	1 %.					P, ≯1.0 J	560,
- [The class numbers are as followed			[[White metals, lead base:		1
Ì	1. C steels	5. Cr steels		219	Pb-Sb	Pb, 100-80; Sb, 0-20	475,
- 1	2. Ni steels	6. Cr-V steels		220	Pb-Sb-Sn	Pb, 86-60; Sb, 10-20; Sn,	557
	3. Ni-Cr steels	7. W steels		1		1-20	1
- 1	4. Mo steels	9. Si-Mn steels		221	Pb-Sb-Sn-Cu	Pb, 78-68; Sb, 17-21; Sn,	557
- 1		of ca. 3 % Ni and from 0.35-			P	7.3-9.6; Cu, 0.4-2	
۱.,	0.45 % C. SAE71360 is a W ste			222	Pb-Sn-Sb	Pb, 80-40; Sn, 10-45; Sb,	557
81	Auer metal (Pyrophoric)				D. C. C. C.	10-20	
l		3; Er, 2		223	Pb-Sn-Sb-Cu	Pb, 83-46; Sn, 7.7-40; Sb,	557
82	Auer metal, cheap					7.7-17; Cu, 0.5-8	1
	A	Misch metal, 7				(For lead hardened with	
.,	Austrian alloy	v. Spandau alloy	į	1		other elements, v. Index	1
83	Awaruite (natural)	l	500 001	1		Nos. 186, 390, 602, 867,	i
84		Al; Zn, 25; Cu, 3	637, 601	1	A C T M C D02 10T#	1433)	1
.00	Babbitt (genuine)		478, 557	1	A. S. T. M. Spec. B23-18T* Grade:	Pb Sb Sn Cu As	1
86	Bahn Metall	1	550	224	6		557
87	Bario (sheet)	Pb; Ca, 0.7; Na, 0.6; Bi, 0.04	000	225	7		557
.0.	Datio (succe)	0.3; Co; Cu; Fe		226	8	1	557
88	Bario-metal (hard)	Cr, 30; Co, 30; W, 25; Mn,		227	9		30.
~	Danio-incom (dana)	10; Ti, 5	•	228	10		
89	Bario-metal (soft)	Co, 60; Cr, 20; W, 20		229	11		557
90	Baros	Ni, 90; Cr, 10	467	230	12		
91	Basic bessemer pig	Fe; C, 3.5-4; P, 2-3; Si, ≯ 1;	476	231		Pb, ≯86; Sb, 9.25-10.75; Sn.	
		Mn, ≯0.5; S, ≯0.05	7.0	500		4.5-5.5; Cu, ≯ 0.5; As, ≯ 0.2	
192	Basic low phosphorous pig	Fe; C, 3.5-4; Mn, 1-2.5; Si,	476	232	S. A. E. Spec. 14*	Pb, ≯76; Sb, 14-16; Sn,	
_		≯ 1.25; P, 0.1–1; S, ≯ 0.05	l'''			9.25-10.75; Cu, ≯0.5; As,	
93	Bath metal	Cu, 83; Zn, 17	475, 555			> 0.2	1
94	Bath metal	Cu, 55; Zn, 45	470, 885		War Service Assn. of Mfrs. of	1	1
95	Battery copper	Cu, 94; Zn, 6	469, 555	1	Solder and Bearing Metals*		
96	Battery plates	Pb, 94; Sb, 6	557	233	Grade B	Pb, 46; Sn, 45; Sb, 7.5; Cu,	
97	Battery plates	Zn, 63; Sn, 21; Pb, 12; Cu,				1.5‡	1
		3.2		234	Grade C	Pb, 60; 8n, 30.5; Sb, 8.5; Cu,	
98	Baudrin's (Baudoin's?) alloy	Cu, 72; Ni, 17; Zn, 7.1; Sn,	İ			1‡	1
	1	2.5; Co, 1.8; Al, 0-0.5			White metals, tin base:	1	1
199	B. E. 4 alloy (Bureau of Engi-	Al; Cu, 4; Mg, 0.25; Fe,	467, 534,	235	Sn-Pb-Sb-Cu	Sn, 74-42; Pb, 12-40; Sb,	557
	neering, U. S. N.)	≯ 0.5; Si, ≯ 0.1	601	1 1		9.5-16; Cu, 1-4.7	1
	Bearing alloys:	For a list of index numbers of	1	236	Sn-Sb-Cu	Sn, 91-72; Sb, 6-26; Cu, 2-9	476,
		bearing alloys, v. p. 391.		237	Sn-Sb-Pb	Sn, 75; Sb, 15; Pb, 10	1
		The ranges of compositions	1	238	Sn-Sb-Pb-Cu	Sn, 75-70; Sb, 12-15; Pb,	476,
		of the different types are	1			9-11; Cu, 3-11; Fe; Zn	1
		given here, and also some	1	239	Sn-Zn-Cu		1
		A. S. T. M. and S. A. E.	ļ		A. S. T. M. Spec. B23-18T	Max.	1
	l _	bearing alloy specifications.	1		Grade*:	Sn Sb Pb Cu As	1.
	Bronses:			240	1		
500	Cu-Pb-(S)	Cu, 70-30; Pb, 30-70; S, ≯ 1		241	2		
201	Cu-Pb-Sn-(S)	Cu, 84-50; Pb, 8-40; Sn,	561, 562	242	3	!	
		6–10; S	1	243	4		
202	Cu-Sn-Pb-Sb	Cu, 80; Sn, 16; Pb, 2; Sb, 2		244	5 ,	65 15 18 2 0.15	557
203	Cu-Sn	Cu; Sn, ≯ 20	475, 559	* * 7	and Al, O.		
204	Cu-Sn-P	Cu; Sn, ≯20; P, ≯1	560, 601		dia Ai, O. dimum.		
05	Cu-Sn-Zn	Cu, 86-83; Sn, 8.8-15; Zn,					

Index No.	Name	Composition	Page	Index No.	Name	Composition	Page
245	S. A. E. Spec. 10*†	Sn, <90 ; Cu, 4-5; Sb, 4-5; Pb, > 0.35	557	292	Boron steel	Fe; B, 0.06-0.4; C, 0.45-0.16; Al; Si; Mn	530
246	S. A. E. Spec. 11*†	Sn, ≪86; Cu, 5–6.5; Sb, 6–7.5; Pb. ≯0.35		293	Bourbonnes	Sn, 51; Al, 49; Fe, 0.3; Cu, 0.3.	
247	S. A. E. Spec. 12*†				Brass	For list of brasses, v. p. 389	
	War Service Assn. of Mfrs. of Solder and Bearing Metals				Spec. B30-22*: No.	Max. Cu Zn Sn Pb Fe	
248	Grade A*	Sn, 61.5; Pb, 25; Sb, 10.5;	557	294	1		
		Cu, 3; As, ≯ 0.15		295	2		561
	White metals, sinc base:		1 1	296	3		561
249	Zn-Cu-Sn-Sb	Zn, 88; Cu, 8; Sn, 2; Sb, 2	1 1	297	4	1	561
250	Zn-Sn-Al-Pb-Cu	Zn, 55; Sn, 23; Al, 20; Pb, 1.3; Cu, 0.6	1	298 299	5 6		İ
251	Zn-Sn-Cu	Zn, 85-67; Sn, 10-30; Cu, 4.2-7.4		300	7. For B. E. S. A. Specifications	60 37 ≯ 1.5 3 1.00	
252 253	Becket alloyBell brass	Fe; Cr, 25-30; Si, 3; C, 1.5-3		301	Brazing brass	Cu, 80-75; Zn, 20-25; Pb;	460, <i>555</i>
255	Bell metals:	Cu, 64; Zn, 35; Sn, 0.8	556	302	Bridge bronze A	Fe Cu, 80; Sn, 20; P, 0.1	475, 559
254	Den metals.	Al, 83; Mn, 10; Cd, 7	1 1	303	Bridge bronze B	1	475, 560
255		Cu, 75–80; Sn, 25–20	559, 561	304	Bridge bronze C	1	562
256	Herbohn	Cu, 71-60; Sn, 26-35; Zn, 2.7-5.0		305	Bridge bronze D	0.7-1 Cu, 88; Sn, 10; Zn, 2; P, 0.3	476, 566
257	Japanese kara kane	Cu, 72-61; Sn, 14-25; Pb,	1 1	306	Bright cap gilding	Cu, 90; Zn, 9.9; Pb, 0.4	469, 555
		0-14; Zn, 0-9.4; Fe, 0-3.0	1 1	307	Brightray	Similar to Chromel A	
258	Musical	Cu, 84; Sn, 16	475, 559	308	Bristol brass	Cu, 76-61; Zn, 24-39	558, 601
259	Bemal	Cu, 70; Zn, 29; P, 0.45; Fe, 0.15		309	Brittania metal: Cast		476
260	Benedict metal	≮ 0.04		310	Cast	Sb, 1 Sn, 91-85; Sb, 9-11; Zn, 0-3;	476, 557
261	Benedict nickel	Cu, 79; Ni, 20; Fe, 0.36	480, 601			Cu, 0.2-1	
262 263	Benedict plate Berlin alloy	Cu, 57; Zn, 28; Ni, 15 Cu, 63-52; Zn, 31-26; Ni,	480 480, 601	311	English	Sn, 90-85; Sb, 5-10; Cu, 1-3; Zn, 0-3; Bi, 0-2	
264	Bernda metal	6–22 A high tensile brass		312	German	Sn, 94-70; Sb, 3.7-15; Cu, 1.8-5; Pb, 0-9; Zn, 0-5	557
265	Bersch bearing alloy	Al, 93; Ni, 7	543	313	Plate (Ludenscheidt)		1
266	Berthier's alloy	Cu, 68; Ni, 32	601	314	Plate		557
267	Berthier's alloyB. E. S. A. alloys	Cu, 72; Zn, 25; Pb, 2; Sn, 1.2 British Engineering Stand-	}	315	Spoons	1-5; Cu, 0.1-3.7; Zn, 0-1.5	•
	Dord house	ards Assn. Spec. v. p. 386	100 555	316	Brix		
268 269	Best bronze	Cu, 90; Zn, 10 Zn, 90-84; Cu, 6.3-11; Pb,	469, 555			Si, 4; Ti, 3; Al, 2; W, 1-4; B, 1; Mn	
		2.5-3; Sn, 0.8-1.4	1	317	Brolunick		
270	Bierman tungsten bronze	Cu, 95; Sn, 3.4; W, 1.6	550	318	Bronse		ļ
271	Bilgen-bronze	Cu, 97; Sn, 1.9; Fe, 0.5; Pb, 0.2	009	319	Bronze wire		565
272	Birmingham platinum	Zn, 79-53; Cu, 20-47; Fe, 0.3	485, 546	320	B. T. G. steel		
273	Bismuth brass	Cu, 52; Ni, 30; Zn, 12; Pb,				2; C, 0.5	
1		5; Bi, 1	1 1	321	Burr metal		469 , 555
274	Bismuth brass	Cu, 47; Ni, 31; Zn, 21; Sn, 1;]	322	Butt brass		555,602
275	Bismuth bronze	Bi, 1 Cu, 45; Ni, 33; Zn, 22; Sn,		323	Button alloy	0–10	555 , 556 , 601
970	Bismuth hyones	16; Bi, 1		324	Button brass	Cu, 90; Zn, 10; Sn, 0.5 v. Index No. 1330	465 , 555
276	Bismuth bronse	Cu, 53; Zn, 20; Sn, 15; Ni, 10; Bi, 1; Al, 0.1		325	Caedit	Similar to Stellite	1
	Black heart	v. Index No. 836		326	Calido, Elalco	Ni, 60; Fe, 24; Cr, 16	467
277	Blanko-blech	Cu, 80; Ni, 20	480, 601	327	Calido, Elalco		•
278	Blatt gold	Cu, 77; Zn, 23	555, 601	328	Calite A	Fe; Ni, 35; Cr, 15; C, 0.8	518
279	Blatt-silver	Sn, 91; Zn, 8.3; Pb, 0.4; Fe, 0.2		329	Calite B		518
280	Bloch's alloy	Co, 54; Ni, 45; Si, 0.9; C, 0.3; Mn; P; S		330	Calorite	Mn, 0-8	
281	Blue gold	Au, 75; Fe, 25	<u> </u>	331	Camelia metal		561
282 283	Böhler magnet steel	Cu, 66-58; Zn, 34-42 Fe; W, 6.3; C, 0.7; Mn; P;	555, 601 472	332	Can-metall (German)		5 58
204	Böhler rapid steel	S; Si Fe; W, 14; Cr, 3.9; C, 0.7	472	333	Cap gilding	Sr, 1; Ba, 1 Cu, 90; Zn, 10	469, 5 55
284 285	Böhler super rapid steel	Fe; W, 14; Cr, 3.9; C, 0.7 Fe; W, 15; Cr, 3.7; C, 0.8; V,	1	334	Capsule metal		467, 557
200	around super rapid steet	0.2; Mo, 0.2; Mn; P; S; Si	-	335	Carbon bronze		561
286	J (Cr, 65; Fe, 35			Carbon steels		
287	Į l	Co, 35; Ni, 35; Cr, 30		336	Carbondale silver	· · · · · · · · · · · · · · · · · · ·	480
288 289	Borcher's non-corrosive	Co, 34; Ni, 34; Cr, 30; Ag, 2 Co, 35; Ni, 35; Cr, 30; Mo,		337	Carburite (recarburizer)	C, 47-48; Fe, 28; S, 0.3; P, 0.2; binder	
- 1	alloys	0.5-5	1 1	338	Careco		
290	<u>J</u>	Fe, 60; Cr, 36; Mo, 4		339	Cartridge brass		
291	Boronised copper	Cu deoxidised with B, no	1558 I	340	Cartridge gilding	! Cu. 93: Zn. 7	469, 555

^{*}Zn and Al, 0; Fe, ≯0.08. †As, ≯0.1; Bi, ≯0.08.

^{*} S, >0.05; Al, 0 except 0.3 % allowable in 6 and 7; Sb, >0.25 in 1-3, and 5. >0.35 in 4, and >0.20 in 6 and 7; P, >0.05 in 1-5 and >0.02 in 6 and 7. ▼. also p. 372.

Index No.	Name	Composition	Page
341	Case-hardening steel	Fe; C, ≯0.20; Mn; Si; P; S	470, 488,
	Good to an	L	600, 606
	Cast iron	For list, v. p. 390 v. Index No. 1335. (The	
		name is also applied to	
249	Cons	crucible steel)	500
342	Ceco	Cu, 62.5; Pb, 32; Sn, 4.6; Ni, 0.9; Fe, < 0.03	00.8
343	Celait	Similar to Stellite	
344	Cerium steel	Fe; Ce, 0.2-0.6; C, 0.4; Mn,	531, 605
345	Chain bronse	0.7; Si, 0.4-0.8 Cu, 95; Sn, 4.9; P, 0.1	560, 601
346	Chain iron (A. S. T. M. Spec.	Grade AA: Mn, ≯0.10;	·
	A56-24)	Grade A: Mn, ≯02 (strength specified)	
347	Chain steel (A. S. T. M. Spec.	Grade BBB: P, ≯0.04; S,	
940	A56-24)	≯0.04 (strength specified)	
348 349	Chamet bronze	Cu, 62; Zn, 38 Fe; C, 3-4; Si, 0-2.6; P, 0.15-	555, 601
•••	rior)	0.25; Mn, 0.3-07; S, ≯ 0.02	
350	Charpy phosphor bronse	Cu, 85; 8n, 12-13; P, 0.4-0.5	5 60
351 352	Checo (dental)	Ag, 89; Sn, 10; Pt, 1 Pb; Cu, 0.04-0.08; Ag, 0.005-	461, 475,
		0.015; Bi, ≯0.005	556
353	Chilled cast iron wheels (A. S.		470, 476,
	T. M. Spec. A46-24) (Key No. 117, p. 497)	≯0.85; Si, 0.45-0.75; Mn, 0.5-0.75; P, ≯0.4; S, ≯0.15	101
354	China silver	Nickel silver	
355	Chinese bronse	Cu, 83-72; Pb, 10-20; Zn, 0.7-14; Sn, 1-13; Fe (v. also	<i>561</i>
		Index No. 912)	
356	Chinese silver	Cu, 58; Zn, 17.5; Ni, 11.5;	
357	Chinese speculum	Co, 11; Ag, 2 Cu, 81; Sn, 11; Sb, 8.5	
358	Chinese speculum (Elsner's)		
359	Christofle metal	Silver-plated German silver (Ag, 2)	
360	Chromal steel	Fe; Cr, 0.8; Mn, 0.8; Mo,	472, 605
361	Chromaluminium	0.8; C, 0.3 Al; Cr	
362	Chromax (Kromax?)	Ni, 75; Cr, 25	
363	Chromax bronze	Cu, 67; Ni, 15; Zn, 12; Al, 3;	
364	Chrome iron	Cr, 3 Similar to Duraloy	
365	Chromel No. 502	Fe, 55; Ni, 25; Cr, 20	
366 367	Chromel A	Ni, 80; Cr, 20	480, 608
368	Chromel C	Ni, 85; Cr, 15 Ni, 65; Fe, 24; Cr, 11	467, 480 467, 480
369	Chromel D	Fe, 66; Ni, 26; Cr, 8	
370 371	Chromel P	Ni, 90; Cr, 10 Fe; Cr, 0.5-1; Mo, 0.1-1.0;	467 472, 604,
-	Cin cinc mony buchum bloci	C, 0.1-0.5; Mn; Si; P; S	605
372	Chrome-nickel steel (ordinary		472, 510,
	range)	C, 0.2-0.6; Mn, ≯0.7; P, ≯0.04; 8, ≯0.05; Si, low	518, 600, 604–608
373	Chrome-nickel steel armor	Fe; Ni, 4; Cr, 2; C, 0.33; Mn,	472, 512
	plate (heavy) (Key No. 268,	0.32; Si, 0.06; S, 0.03; P,	
	p. 512) Chrome-tungsten steel	0.14 (v. also Projectile steel) v. High-speed steel	
374	Chrome-uranium steel	Fe; Cr, 0.8; U, 0.17-0.3; C,	478
375	Chrome-vanadium steel	0.3-0.4; Mn; Si Fe; Cr, 0.7-1.4; C, 0.15-	472, 509,
		0.6; V, 0.12-0.3; Mn, 0.3-	517, 600,
		0.9; Si, 0.2; P, ≯0.01; S, ≯0.04	604, 605
376	Chromium steel (commercial	Fe; Cr, 2-5; C, 0.2-0.8; Mn;	507-509,
	pearlitic)	Si; P; S (v. also p. 390)	517, 605
377 378	Chrysite (dental)	Cu, 63; Zn, 37; Pb, 0.24 Cu, 59; Zn, 40; Pb, 1	555, 602 60 2
379	Chrysokalk	Cu, 91; Zn, 7.9; Pb, 1.6	469
380	Chrysorin	Cu, 72-63; Zn, 28-37	555, 601
381 382	Cimet	Fe; Cr, 25 v. Index No. 1235	
383	Clark's patent	Cu, 75; Ni, 14; Zn, 7.2; Sn,	
384	Clebrium	1.9; Co, 1.9 Fe; Cr, 13; Mo, 3.6; C, 2.6;	
		Ni, 2; Si, 1.5; Mn, 0.8	
385	Clebrium	Fe; Cr, 19; Ni, 4.6; Mn, 2.8; C, 2; Cu, 2	
	•		•

No.	Name	Composition	Page
200		Pb. 40-50; Sn. 33-36; Cd.	<u> </u>
386	Clichier metal	21-14	
387	Clichier metal	Sn, 80; Bi, 15; Pb, 5	
388	Clichier metal	Sn, 48; Pb, 33; Sb, 11; Bi, 9	l
389	Climax	Fe, 73; Ni, 24; Mn, 2.6	482
390	C. M. A. bearing metal	Pb; alkaline earth metals	558
391	Cobalterome	Fe, 80; Cr, 14; Co, 3.7; C,	
392	Cobalterome	1.5; Mo, 0.8; Si, 0.8 Fe, 70–60; Cr, 30–25; Co,	
002	Cobatterome	5-10	
393	Cobalt steel	Fe; Co, 0.5-17; C, 0.15-0.9;	
		Mn; P; S	
	Coinage alloys	v. Index Nos. 975, 1249, 1250,	
		1326, 1327, 1329, 1330	
394	Coinage bronze	Cu, 95; Sn, 4; Zn, 1	561
395	Collet brass	Cu, 61; Zn, 37; Pb, 2.5	602
396 397	Colorado metal	Cu, 57; Ni, 25; Zn, 18 Fe, 70; Ni, 30; Cr, 2.2; Mn,	475, 480
301	Comet	0.8; Cu, 0.4	
	Commercial bar steel	v. Index Nos. 1336-1341	١.
398	Commercial brass, B-r	Cu, 63; Zn, 37 (rolled)	555, 601
399	Commercial brass, B-c	Cu, 62; Zn, 30; Sn, 6; Pb, 2	
[(cast)	
400	Commercial brass wire	Cu, 64; Zn, 36; Pb, 0.2; Fe	469, 601
401	Commercial bronse	Cu, 90; Zn, 10; Pb; Fe	469, 555
402	Commercial bronze rod	Cu, 86; Zn, 12.75; Pb, 0.75; Sn, 0.5	469, 555
403	Common high brass	Cu, 65; Zn, 35	555, 601
404	Complex English metal	8n, 87; 8b, 6; Ni, 2; Cu, 2;	000,001
		W, 1.5; Zn, 1; Bi, 0.5	
	Condenser foil	v. Accumulator metal	
405	Constantan		464, 480,
		0-1.4; C, 0.1; Fe	601, 606
406	Cook's alloy	Sb, 57-69; Zn, 32-43	
407	Cooperie gold	Ni, 80; W, 14; Zr, 6 Cu, 81-67; Pt, 19-30; Zn,	1
408	Cooper's gold	0-4	
409	Cooper's mirror	Cu, 58; Sn, 28; Pt, 9.5; Zn,	
		3.5; As, 1.5	ł
410	Cooper's pen metal	Cu, 50; Au, 25; Ag, 25	586
411	Cooper's pen metal	Pt, 50; Ag, 38; Cu, 12	480, 601
412	Copper (commercial):	Cu, 55; Ni, 45	1
413	Copper (commercial): Arsenical lake	Cu, 99.4; As, 0.3; O, 0.2	460, 552
414	Best select	Cu, 99.5	553, 601
415	Electrolytic	Cu, 99.90-99.993	552, 601
416	Lake	Cu, 99.9	552, 601
417	Oxygenated	Cu; O, 0.04-0.2	554, 601
	Copper-manganese	v. Cupromanganese	1
410	Copper-nickel	v. Cupronickel	509
418	Copper steel	Fe; Cu, ≯4; C, ≯1.1; Mn; Si; P; S	~ ~
419	Cornish bronse	Cu, 78; Sn, 9.6; P, 0.8	560, 601
420	Corronil	Ni, 70; Cu, 26; Mn, 4	480, 604
421	Corrosion-resisting alloy	Pb, 91; Cu, 4.5; Ni, 4.5 (for	l
	_	list v. p. 391)	
422	Corrosion-resistant steel (Car-	n o or o o :-	470, 508
400	penter)	Fe; Cr, 9.5; C, 0.45	473
423 424	Corrosiron	Fe, 85.5; Si, 13.5 Cu: Ni: Si	7,0
424	Corsonite B	Cu; Co; Si	
426	Corsonite C	Cu; Fe; Si	
427	Corsonite D	Cu; Cr; Si	
428	Corsonite E	Cu; Cr	
429	Corsonite F	Cu; Co	
	Cowles high Mn brass	Cu, 80-67; Mn, 15-18; Zn,	
430	Contacted	5-13; Al, 0-1; Si	
	Craig gold	Cu, 80; Ni, 10; Zn, 10 Al, 91-90; Cu, 7-8; Fe, 1-1.8;	187. 531.
431			
	Crank case alloy		601
431 432	Crank case alloy	Zn, 0-1.8	601
431	Crank case alloy		601
431 432	Crescent steel	Zn, 0-1.8 Fe; W, 6.7; Mn, 2.7; C, 2.1; Si, 0.1 Cr alloy plating	601
431 432 433	Crank case alloy Crescent steel	Zn, 0-1.8 Fe; W, 6.7; Mn, 2.7; C, 2.1; Si, 0.1 Cr alloy plating Ni, 60; Cr, 40	601

* Name given by Mr. Corson to these alloys which were developed at the Union Carbide and Carbon Research Laboratories, Inc. v. Metal Industry (N. Y.) Sept., 1926.

Index No.	Name	Composition	Page	Index No.	Name	Composition	Page
437	Crucible steel (also called cast steel)	Fe; C, 0.65-1.55; Mn; Si; P; S. (Graded according		493	Dowmetal D	Mg, 88; Al, 8.3; Cu, 2.0; Cd, 1.0; Zn, 0.5; Mn, 0.2	544
		to "temper," one temper		494	Dowmetal E	Mg, 94; Al, 5.8; Mn, 0.2	544, 604
		unit generally meaning		495	Dowmetal R		544
		0.1 % C. Designation varies with manufacturer.)	603, 605-	496	Dowmetal T	Mg, 92; Cu, 3.8; Cd, 2; Mn, 0.2	544
438	Cufenium	Cu, 72; Ni, 22; Fe, 6	008	497	Drawing brass		469, 555,
439	Cuivre poli	Cu, 70; Zn, 30	885, 801	1	Diaming States	Index Nos. 1409, 1486)	601
440	Cuniloy			498	Dudley's antifriction alloy	8n, 98; Cu, 1.6; Pb, 0.3	
441	Cupola malleable iron	Fe; C, 3.0; combined C, Tr.;	476, 497,	499	Dudley's bearing metals	v. Index Nos. 553, 556	
		Si, 0.9; Mn, 0.8; P, 0.2; S, 0.15	525, 526	500	Dudley's phosphor bronse	Cu, 80; Sn, 10; Pb, 9.6; P, 0.8	562
	Cupro-aluminium	v. Aluminum bronse		501	Duke's metal	Ni, 40; Cu, 30; Fe, 30	1
442	Cupromagnesium	Cu, 90; Mg, 10		502	Duke's metal	Fe, 81; Cr, 12; C, 1.5; Co, 4;	
443 444	Cupromanganese tubes	Cu, 90; Mn, 10 Cu, 96; Mn, 4	554 554, 600	503	Dumet	Si, 0.6; W, 0.4; Mn, 0.2 Fe, 54; Ni, 46; (Cu, plated)	467, 481
	Cupronickel:	Cu, 50, Man, 1	004,000	504	Dunnlevic and Jones antifric-	20,01,10,10,(04,14004,	407,400
445	Bullet jackets	Cu, 85; Ni, 15; C, <0.04	480		tion	Pb, 60; 8b, 20; Zn, 20	
446	Commercial	Cu, 98-60; Ni, 2-40	480, 601	505	Dunnlevic and Jones antifric-		
447	Driving bands	Cu, 97.5-95; Ni, 2.5-5	480		tion	Zn, 85-80; Sb, 10; Sn, 5-8	
448	Ingots		480	506	Dunnlevic and Jones antifric-	7- 10- G- 48- O- 18- Gb	478
449 450	No. 300 alloy	Cu, 97; Ni, 3	480 480	1	tion	Zn, 52; Sn, 46; Cu, 1.6; Sb, 0.4	l
451	Sheet		480, 601	507	Duraloy(Key No. 191, p. 508)		508
452	Cuprosilicon	Cu; 8i, > 55	554, 594		100,000	0.5; P (sometimes only 20 %	
453	Cupror	Cu, 94; Al, 5.8	574, 601	1		Cr)	
454	Cyclope No. 17 metal	Mn, 0.75; C, 0.45		508	Duralumin	Al; Cu, 3.5-5.5; Mg, 0.5-0.8; Mn, 0.5-0.8; Fe; Si	601, 608
455 456	Cymbal metal	Cu, 65; Pb, 30; Sn, 5	555, 601 562	509	Duralumin (imitation)	0.05	l
457	Daimler bearing			510	Duralumin, special ("Y" alloy)		
458	Damar		562	l	D	1.5	608
459 460	Damascus bronse		56 2	511	Durana metal	Cu, 65; Zn, 30; Pb, 2; Al, 1.5; Fe, 1.5	000
461	D'Arcet			512	Durana metal	Cu, 59; Zn, 40; Sn, 1; Pb,	470, 556
462	Dark red gold		586	1		0.4; Fe, 0.3	
463	Davis metal	Cu, 67; Ni, 29; Fe, 2; Mn, 1.5; (C + 8i), 0.5		513 514	Durand's alloy		468, 536
464	Degussa alloy		556, 601	ł		4.4-4.7	
465	Delatot's metal			515	Duriron		478
466	Delhi hard iron			i .		0.8-1.3; S, 0.05-0.2; P, 0.05-1	l
467	Delhi tough iron	C, 0.07		516	Duriron	Fe; Si, 14-15; Mn, 0.3-0.4;	478
468	Delta metal	, ·	464, 556,	""		C, 0.2-0.6; P, 0.2; 8, 0.05	7.0
		0.9-1.3; Mn, 0.8-1.4; Pb, 0.4-1.8; P	602	517	Dutch metal (Dutch leaf, Dutch gold)	Cu, 76; Zn, 24	555, 601
469	Demo bronze	Cu, 61; Pb, 33; Sn, 4-6; Ni, 2-1	562	518	Dynamo sheets	Fe; Si, 3-4; C, <0.1; Mn, <0.3; (P + S), <0.03	472, 524
470	Dewrance metal	8b, 45; 8n, 33; Cu, 22		519	Dysoid	Cu, 62; Pb, 18; Sn, 10; Zn,	
471 472	Diamond bronze Diaphragm brass			520	"E" alloy (rolling)	10 Al; Zn, 20; Cu, 2.5-3; 8i,	538, 601,
473	Die-casting alloys:	Al, 92-82; Cu, 8-18; Fe, 0-3;	534, 601	521	E. B. D. bearing	0.2-1; Mg, 0.5; Mn, 0.5; Fe Cu, 90-88; Sn, 10; P-Sn, 5;	
		Mg; Mn; Si; Zn		1	-	Zn, 2	
474	High grade bearings	Sn, 91-84; Sb, 2-9; Cu, 4.5-8		ŀ	Edelmessing	High tensile brass	l
475	Light duty bearings	Pb, 90-80; Sb, 10-17; Sn, 10- 0; Cu. 0-1	475, 557	522	Edelstahl Edwards speculum	Alloy steel	l
476) (8n, 80; Pb, 10; 8b, 10		322	Bawarus speculum	Cu, 70-63; Sn, 25-32; As, 2.4-1.6; Zn, 2.6-0	i
477	Light duty bearings	Sn, 61.5; Pb, 25; Sb, 10.5;		523	Ehrhardt's metal	Zn. 89; Cu. 4; Sn. 4; Pb. 3	
	j	Cu, 3	1	524	Ehrhardt's type metal	Zn, 89; Sn, 6; Cu, 3; Pb, 2]
478	Soft work	Zn, 74; Sn, 15; Al, 6; Cu, 5	l .	525	Einheitsmetall	Pb, 79; Sb, 14; Sn, 5.3; Cu, 1.5	557
479	Standard	Zn, 85; Sn, 8; Cu, 4; Al, 3		l	Eisenbronze	v. Iron bronze	
480 481	Hard Hard	Zn, 82.75; Al, 13.75; Cu, 3 Zn, 46; Sn, 31; Cu, 20;	546	526	Eislers (bronse)	Cu, 94; Sn, 5.9 v. Index Nos. 326, 717, 830	559, 601
401	11814	8b, 3		527	Electrical brass, B. E.	Cu, 84; Zn, 13; Sn, 3	
482	Strong, hard		546	528	Electrometall	Al; Mg; v. Electron	
483		Zn, 90-83; Cu, 5-11; Al, 2-5; Sn, 1-5 (v. also Index No.			Electron	Generic name of some Mg base alloys containing up	
484	Dienett's German silver	955, and white metals) Cu, 51; Zn, 32; Pb, 9.5; Ni,		529	Electron	to 12 % Al, as: Mg, 90; Al, 3-7; Zn, 2-5;	545
		6.4; Sn, 1.6		1		Mn, 0.5	
485	Diesel bearings		[530	Electron	Mg, 95; Zn, 4-5; Cu, 0-0.6	545, 604
486	Dilver	v. Platinite	EEE 00.	531	Electroplate	Cu, 50-70; Ni, 10-20; Zn,	
487 488	Dipping brass		555, 601 58 2	532	Electrotype (standard)	5-30 Pb, 93; Sb, 4; Sn, 3	601, 606
489	Doctor metal	Cu, 88; Zn, 9.5; Sn, 2.5	"	533	Electron	Cu, 52; Ni, 26; Zn, 23	475, 480
490	Downetal A		544, 604	534	Electrum	Au, 85-55; Ag, 15-45	586
491	Dowmetal B	Mg, 88; Al, 12	544	535	Elephant bronze		
492	Dowmetal C	Mg. 85: Al. 15	544	1	l		800

Similar to Duriron	Index No.	Name	Composition	Page
Elinvar (Key No. 277, p. 512)		Elianite	Similar to Duriron	
English alloy			Fe; Ni, 36; Cr, 12; C, 0.8;	512
English alloy	538	Emperor brass	Cu, 60; Al, 20; Zn, 20	
English brass Cu, 70; Zn, 29; Pb, 0.3; Sn, 20; 20; 20; 20; 20; 20; 20; 20; 20; 20;	539		Sn, 53; Pb, 33; Sb, 11; Cu,	
541 English phosphor bronse. 542 English nickel silver. 543 Engraver's brass. 544 Engraver's brass. 545 Cu, 67: Sn, 33 546 Engraver's brass. 547 M. P. 91.5°C 548 M. P. 90°C 549 M. P. 103°C 540 M. P. 103°C 541 Silveritie. 542 Everdur No. 50 metal. 543 Excello (resistance) 544 Excello (resistance) 545 Excelsior. 546 Cu, 47: Fb, 15: Sn, 8 P 547 M. P. 103°C 548 M. P. 90°C 549 M. P. 103°C 540 M. P. 103°C 541 Silveritie. 542 Everdur No. 50 metal. 545 Excello (resistance) 546 Excello (resistance) 547 M. P. 91.5°C 548 M. P. 90°C 549 M. P. 103°C 540 M. P. 103°C 541 Silveritie. 542 Everdur No. 50 metal. 545 Excello (resistance) 546 Excello (resistance) 547 M. No. 50 metal. 548 M. P. 90°C 549 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 541 Silveritie. 542 Everdur No. 50 metal. 548 M. P. 90°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 540 M. P. 145°C 541 Silveritie. 541 Cu, 90-58i, Ni, 35 542 Everdur No. 50 metal. 542 Cu, 90-58i, Ni, 35 544 Excello (resistance) 542 Everdur No. 50 metal. 543 M. P. 90°C 541 Silveritie. 544 Cu, 90-58i, Ni, 35 545 Excelsior. 544 Cu, 90-58i, Ni, 35 545 Excelsior. 545 Excelsior. 546 Cu, 91-58i, Ni, 35 547 Silveritie. 547 Silveritie. 548 M. P. 90°C 549 M. P. 103°C 540 M. P. 103°C	540	English brass	Cu, 70; Zn, 29; Pb, 0.3; Sn,	
542 English nickel silver. Cu, 70; Zn, 29; Pb, 0.3; Sn, 498, 655, 02 543 Engraver's brass Cu, 66; Zn, 33; Pb, 1 544 Engraver's brass Cu, 66; Zn, 33; Pb, 1 545 Euretic (fusible alloys) cu, 499 546 M. P. 70-74°C Bi, 50; Pb, 27; Sn, 13; Cd, 10 547 M. P. 91.5°C Bi, 53; Pb, 27; Sn, 13; Cd, 10 548 M. P. 96°C Bi, 53; Pb, 32; Sn, 15 549 M. P. 103°C Bi, 53; Pb, 32; Sn, 15 551 Everdur No. 50 metal Cu, 94.5; Si, 4.5; Mn, 1 552 Everdur No. 50 metal Cu, 94.5; Si, 4.5; Mn, 1 553 Ex. B metal Cu, 77; Pb, 15; Sn, 8; P 554 Excelior Cu, 77; Pb, 15; Sn, 8; P 555 Excelsior Cu, 77; Pb, 12.5; Sn, 10.5; P 556 Ex. K metal Cu, 77; Pb, 12.5; Sn, 10.5; P 557 Expanding alloy Pb, 67; Sn, 25; Bi, 8.3 558 Extra soft steel Fe; N, 35; Cr, 17 559 Extra soft steel Fe; N, 35; Cr, 17 560 Fahrite, C-5 Fe; Cn, 25; C 561 Fahrite, N-1 Fe; Ni, 35; Cr, 17 562 Fahrite, N-1 Fe; Ni, 35; Cr, 17 563 Ferrocarbon-titanium Fe; Ni, 35; Cr, 16, 068 564 Ferret Fe; Ni, 38; Cr, 17 565 Ferrocarbon-titanium Fe; Ni, 38; Cr, 16, 069 566 Ferrocarbon-titanium Fe; Ni, 38; Cr, 16, 069 567 Serrocarbon-titanium Fe; Ni, 38; Cr, 16, 067 568 Ferrocarbon-titanium Fe; Ni, 38; Cr, 17 579 Ferromanganese (A. S. T. M. Spec. A99-25T) 570 Ferromanganese (A. S. T. M. Spec. A99-25T) 571 Ferromiybdenum:† 572 Ferromiybdenum:† 573 Regular Fe; Mn, 38-80; C, 5-7; S, > 0.3; Si, 0.5-1; P, > 0.1-1 574 Mn, 778; Fe, balance C, > 7.5; Si, > 1.0; P, > 0.35; Si, > 0.05; v. also Index Nos. 1312-1314 575 Ferromiybdenum:† 576 Ferrocarbon-titanium Fe; Ni, 38; Cr, 2 (v. also p. 391) 577 Ferromiybdenum:† 578 Regular Fe; Mn, 38-80; C, 5-7; Si, > 1.0; P, > 0.591 579 Ferrosilicon (A. S. T. M. Spec. 102-25T) 570 Ferrocuranium Fe; Si, Si, Si, Si, Si, Si, Si, Si, Si, Si,	541	English phosphor bronze	Cu, 79; Sn, 10; Pb, 9.6; P,	
Eugraver's brass Cu. 66; Zn. 33; Pb. 1 4/9	542	English nickel silver	Cu, 70; Zn, 29; Pb, 0.3; Sn,	
Eureka		_ =	Cu, 67; Sn, 33	
Eutectic (fusible alloys) M. P. 70-74°C. Bi, 50; Pb, 27; Sn, 13; Cd, 10 M. P. 91.5°C. Bi, 53; Pb, 32; Sn, 15 Bi, 54; Sn, 26; Cd, 20 M. P. 145°C. Sn, 50; Pb, 22; Cd, 18 Everbrite. Cu, 00-58; Ni, 35 Everbrite. Ex. B metal. Cu, 77; Pb, 15; Sn, 8; P So2 Excello (resistance). Ni, 85; Cr, 14; Fe, 0.5; Mn, 1 554 Excello (resistance). Ni, 85; Cr, 14; Fe, 0.5; Mn, 1 555 Excelsior. Cu, 33; Ni, 45; Fe, 0.3 Cu, 77; Pb, 12; Sn, 10.5; P 562 Excelsior. Cu, 37; Pb, 12; Sn, 10.5; P 563 Excelsior. Cu, 37; Pb, 12; Sn, 10.5; P 564 Excelsior. Cu, 37; Pb, 12; Sn, 10.5; P 565 Excelsior. Cu, 37; Pb, 12; Sn, 10.5; P 567 Expanding alloy. Ph, 67; Sn, 25; Bi, 8.3 Fe; C, 0.2; Si, 1.3; Mn, 0.2; P; S 575 Fablun brilliants (Faluner Diamanten). Sn, 60; Pb, 40 A67, 557 568 Fahrite, N-1. Fer; Cr, 25; C Fer; Ni, 35; Cr, 17 Fenton's alloy. Sn, 80; Cu, 10 568 Ferro-carbon-titanium. Fer; Ni, 35; Cr, 17 Sn, 80; Sn, 15; Cu, 5 Fer; Ni, 18; Cr, 4; Mn, 2.2; W, 0.5-1; C, 0.4; Cu, 0.3 Ferrochromium Ferrochromium Grade Ferromanganese (A. S. T. M. Spec. A101- 572 Ferromanganese (A. S. T. M. Spec. A102- Termonolybdenum:† Regular. Fer Mn, 38-80; C, 5-7; S, > 0.3; S, > 1.12-411. Sn, 90; Cu, 10 Sn, 80; Ch, 10 Sn				4.70
M. P. 91.5°C Bi, 52; Pb, 40; Cd, 8 M. P. 103°C Bi, 53; Pb, 32; Sn, 15 Side M. P. 145°C Bi, 54; Nn, 26; Cd, 20 M. P. 145°C Sn, 50; Pb, 32; Cd, 18 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 35 Cu, 40.58; Ni, 45; Mn, 1 Cu, 77; Pb, 15; Sn, 8; P Cu, 33; Ni, 45; Fe, 0.3 Cu, 77; Pb, 12.5; Sn, 10.5; P Cu, 33; Ni, 45; Fe, 0.3 Cu, 77; Pb, 12.5; Sn, 10.5; P Cu, 33; Ni, 45; Fe, 0.3 Cu, 77; Pb, 12.5; Sn, 10.5; P Cu, 78; Pc, 78; Pc, 2-13.3; Al, 12.4-11.2 Cu, 10.5; Pc, 10.5; Sn, 10.5; Pc, 10		Eutectic (fusible alloys)	v. also p. 391	
M. P. 96°C Bi, 53; Pb, 32; Sn, 15	546	M. P. 70–74°C	Bi, 50; Pb, 27; Sn, 13; Cd, 10	
M. P. 96°C Bi, 53; Pb, 32; Sn, 15	547	M. P. 91.5°C	Bi, 52; Pb, 40; Cd, 8	
M. P. 103°C Bi, 54; Sn. 26; Cd. 20 M. P. 145°C Sn. 50; Pb, 32; Cd. 18	548	M. P. 96°C		
M. P. 145°C				
Everbrite	1			
Everdur No. 50 metal				
Excello (resistance)		_		
Excello (resistance)		_		
Description Cu, 53; Ni, 45; Fe, 0.3 480, 601				
Ex. K. metal Cu, 77; Pb, 12.5; Sn, 10.5; P 562	554	Excello (resistance)		467, 480
Expanding alloy	555	Excelsior	Cu, 53; Ni, 45; Fe, 0.3	480, 601
Expanding alloy				
Extra soft steel				
Fahlun brilliants (Faluner Diamanten)			Fe; C, 0.2; Si, 1.3; Mn, 0.2;	470, 488
Diamanten Sn, 60; Pb, 40 560 Fahrita antifriction Sn, 90; Cu, 10 561 562 563 564 565 562 563 564 566 567 568 569 560 566 567 568 569 570 566 567 568 569 570	550	Fahlun brilliants (Falunce	•=	
560 Fahrite, C-5 Fahrite, C-5 Fahrite, N-1 Ferton's alloy Zn, 80; Sn, 15; Cu, 5 562 Ferrocarbon-titanium Zn, 80; Sn, 15; Cu, 5 563 Ferrocarbon-titanium Ferromony Zn, 80; Sn, 15; Cu, 5 564 A. S. T. M. Spec. A101- Zn, 80; Sn, 15; Cu, 5 567 Ferrocarbon-titanium Ferromony Zn, 80; Sn, 15; Cu, 5 568 Ferrocarbon-titanium Ferromony Zn, 80; Sn, 15; Cu, 5 569 Ferrocupralium Ferromony Ferromony Zn, 80; Sn, 15; Cu, 5 560 Ferrocupralium Ferromony Ferromony Zn, 80; Sn, 15; Cu, 5 561 Ferromony Ferro	555		Sn 60 Ph 40	167 557
Fahrite, N-1	,,,			
562 563 564 Fahrite, N-1 Fe; Ni, 35; Cr, 17 564 564 Fernton's alloy Zn, 80; Sn, 15; Cu, 5 565 				
Ferror Salloy Series	- 1			908
564 Fermet	562		Fe; Ni, 35; Cr, 17	
564 Fermet	563	Fenton's alloy	Zn, 80; Sn, 15; Cu, 5	
Ferrocarbon-titanium			Fe; Ni, 18; Cr, 4; Mn, 2.2;	
Ferrochromium Solution Solu	565	Ferro-carbon-titanium	Fe; Ti, ∢15; C, 1.5; Si, 1.4;	
A. S. T. M. Spec. A101-		Ferrochromium		
A. S. T. M. Spec. A101- 25T C. 1-1.5 Si; S*; Fe, balance D. < 1 or S* Fe, balance D. < 1 or S* Fe, balance Cu, 81-75; Fe, 2-13.3; Al, 12.4-11.2 Ferromanganese (A. S. T. M. Spec. A99-25T) Ferromolybdenum: †		l	1 .	
A. S. 1. M. Spec. A101- 25T Si; S*; Fe, balance C. 1-1.5 D. < 1 or S* Fe, balance Cu, 81-75; Fe, 2-13.3; Al, 12.4-11.2 Ferromanganese (A. S. T. M. Spec. A99-25T) Ferromolybdenum:†		[[
See See	567	(A. S. T. M. Spec. A101-		
D C1 or S* Fe, balance	568	1 3	1 (; 1-1 b) .	[
Ferrocupralium		LJ 1	D < 1 or S* Fe, Dalance	1
571 572 Ferromanganese (A. S. T. M. Spec. A99-25T) 573 574 Ferromickel: No. 193 alloy (Driver Harris) 576 577 578 579 579 579 570 Ferrosilicon (A. S. T. M. Spec. 100-25T) 570 Ferrosilicon pig (silvery pig iron) Ferrottanium Ferrottanium Ferrotungsten Ferro-vanadium (A. S. T. M. Spec. 102-25T) Ferro-vanadium (A. S. T. M. Spec. 102-25T) Ferro-vanadium (A. S. T. M. Spec. 102-25T) Ferro-vanadium (A. S. T. M. Spec. 102-25T) Max. Max. Grade Ferromanganese (A. S. T. M. Spec. C, 5-7; S. >0.3; Si, 0.5-1; P, >0.1-1 Mn, ≪78; Fe, balance; C. >7.5; Si, >1.0; P, >0.35; Si, >1.0; P, >0.35; Si, >1.0; P, >0.35; Si, >0.05; v. also Index No. 193 alloy (Driver Harris) Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 0.5 Fe: Mo, 50-60		Ferrocupralium	Cu, 81-75; Fe, 2-13.3; Al,	
572 Ferromanganese (A. S. T. M. Spec. A99-25T)	571	Ferromanganese	Fe; Mn, 38-80; C, 5-7; S,	473
Spec. A99-25T >7.5; Si, ≥1.0; P, ≥0.35; S, ≥0.05; v also Index Nos. 1312-1314 Ferromolybdenum:† Regular Special Special Ferronickel: No. 193 alloy (Driver Harris) Fe; Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Ferronickel: No. 193 alloy (Driver Harris) Fe; Mi, 30; Cr, 2 (v. also p. 391) Grade % Si	579	Ferromanganese /A S T M		
S, > 0.05; v. also Index Nos. 1312-1314	012		1 1	1
Special Ferromolybdenum:† Fer Mo, 50-60; C, 2.0 Fer Mo, 50-60; C, 0.5		Spec. Aug-201)		I
Ferromolybdenum:† Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium Ferrotungsten Ferro-uranium Ferro-uranium Ferro-vanadium (A. S. T. M. Spec. 102-25T) Ferro-vanadium (A. S. T. M. Spec. 102-25T) Ferro-vanadium (A. S. T. M. Spec. 102-25T) Ferro-vanadium (A. S. T. M. Spec. 102-25T) Max. Max. Carbon (C. 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 2.0 Salva P: Mo, 50-60; C, 2.0 Fe: Mo, 50-60; C, 20 Fe: Mo, 50-60; C, 20 Fe: Mo, 50-60; C, 20 Fe: Mo, 50-60; C, 20 Fe:				l
Regular				1
Special				
No. 193 alloy (Driver Harris) Fe; Ni, 30; Cr, 2 (v. also p. 391) Grade % Si			1312-1314	
No. 193 alloy (Driver Harris) Fe; Ni, 30; Cr, 2 (v. also p. 391) Grade % Si		Regular	1312-1314 Fe: Mo, 50-60; C, 2.0	
Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium Ferro-ura		Regular	1312-1314 Fe: Mo, 50-60; C, 2.0	
Ferrosilicon (A. S. T. M.	574	Regular Special Ferronickel:	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p.	
Ferrosilicon (A. S. 1. M.) B 72-78 474 474 578 579 Ferrosilicon pig (silvery pig iron) Ferrotitanium	574	Regular Special Ferronickel:	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391)	
Spec. 100-25T C 85-95 474	574 575	Regular Special Ferronickel: No. 193 alloy (Driver Harris)	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474
Ferrosilicon pig (silvery pig iron) Ferrotitanium	574 575 576	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M.)	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si A 47-53	
iron No. 1238	574 575 576 577	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M.)	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si A 47-53 B 72-78	474
580 Ferrotungsten	574 575 576 577 578	Regular	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474
581 Ferro-uranium	574 575 576 577 578	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron)	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474
Ca; Mn; Cu; Al; P; S	574 575 576 577 578 579	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si A 47-53 B 72-78 C 85-95 Fe: Si, 6-16; v. also Index No. 1238 v. Index No. 565	474
Spec. 102-25T)	574 575 576 577 578 579	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium Ferrotungsten	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474
Grade V Si C P S	574 575 576 577 578 579	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium Ferrotungsten Ferro-uranium	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474
	574 575 576 577 578 579	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium Ferrotungsten Ferro-vanadium (A. S. T. M.	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474
	574 575 576 577 578 579	Regular Special Ferronickel: No. 193 alloy (Driver Harris) Ferrosilicon (A. S. T. M. Spec. 100-25T) Ferrosilicon pig (silvery pig iron) Ferrotitanium Ferrotungsten Ferro-uranium (A. S. T. M. Spec. 102-25T)	1312-1314 Fe: Mo, 50-60; C, 2.0 Fe; Mo, 50-60; C, 0.5 Fe: Ni, 30; Cr, 2 (v. also p. 391) Grade % Si	474

	As	apecified	bv	purchaser.
_	Αs	specineu	υy	purchaser.

[†] Climax Molybdenum Co.

Index No.	Name	Composition	Page
1,10.	·	Max. Max.	
	Grade V	Si C P 8	
583	B 30–40		
584	C 35-45 D 35-45		
585	D 35–45	> 2 > 0.75 0.10 0.1 Grades A-C, Al, > 2; D, Al, > 1	
586	Ferrozoid	Fe; Ni; C (Ni steel)	
587	Ferry alloy		404
588 589	File metal (file bronze)	Fe, 55; Co, 23; Cr, 21; C, 0.7 Cu, 73-51; Sn, 18-31; Pb, 8.5-7; Zn, 0-10	
590 591	Fire armor	Ni, 61; Fe, 20.5; Cr, 18.5 Fe; Cr, 14; Ni, 9.7; Mn, 0.8;	
592	Flange metal (French)	Si, 0.2; C, 0.2 Cu, 94; Sn, 5.6; Pb, 0.05	559, 601
593	Flange metal (German)	Cu, 92; Zn, 5; Sn, 2.5	
594 595	Fletcher and Emperer bearing. Fletcher's alloy	Al, 92; Cu, 7.5; Sn, 0.3 Al, 96; Cu, 3; Sn, 1; Sb, 0.5;	5 3 6, 6 01
596	Flint alloy		508, 60 3
597	Fontainmoreau's bronze	0.3 Zn, 99-90; Cu, 0-8; Fe, 0-1; Pb, 1-0	465, 546
598	Forbes metal	Zn, 54; Cu, 46	465, 546
599	Forging brass	Cu, 60-53; Zn, 40-43; Mn, 0-4.5	555, 556 602
600	Fourdrinier wire	Cu, 85-80; Zn, 15-20; Sn, 0-0.4	469, <i>555</i> ,
601	Foundry pig iron*	re; C, 3-4; Si, 1.5-3; Mn, ≥1; P, 0.5-1; S, ≥0.04- 0.06	
602	Frary metal	Pb; Ba, < 2 ; Ca, < 1 ; Hg, 0.3	556
603	Free cutting bronze		469
604 605	Free-turning rod brass French alloy	Cu, 62; Zn, 35; Pb, 2.6; Fe Cu, 58-50; Zn, 25-30; Ni,	469 480
606	French aluminium bronze (c. also Brolunick)	17-20 Cu, 82; Al, 7; Ni, 5.5; Fe, 4; Mn, 2	
607	Freund steel	Fe; Si, 0.7-1.3; Mn, 0.3-0.6; C, 0.1-0.15; Cr	472, 523
608	Frick's alloys	Cu, 69-50; Zn, 18-39; Ni, 5.5-31	475, 480. 601
609	Friction alloy (standard) Fusible alloys	Pb, 50; Sn, 40; Sb, 10 v. p. 391	567
610	Fusible tea spoons	Bi, 45; 8n, 17; Pb, 30; Hg, 5-10	
611	"G" alloy (N.P.L)	0.4; Mg, 0.3; Fe, 0.2	538
612	Gear bronze	Cu, 91-78; Sn, 8.5-13; Zn, 0-3; Pb, 0-2; P, 0-2 (r. also	560, <i>601</i>
613	Gear steel (high duty)	Index No. 1359) Fe; Ni, 3.5; Cr, 1.5; C, 0.45- 0.5	472, 512
614	Gedges (Geages?) metal	Cu, 60; Zn, 39; Fe, 1.5	556, 60£
615	Genelite	Cu; Pb; Sn; graphite, < 40	
	German silver:		l
616	German silver: Austrian (Gersdorf)	Cu. 60-50; Zn, 20-25; Ni, 20-25	475, 480
616 617	Austrian (Gersdorf)		480
	Austrian (Gersdorf)	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni,	480
617	Austrian (Gersdorf)	20-25 Cu, 46; Zn, 34; Ni, 20	480 480, 601
617 618	Austrian (Gersdorf) Best. Birmingham Common formula Gilding.	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 55; Zn, 5; Pb; Fe	480 480, 601 475, 480
617 618 619	Austrian (Gersdorf) Best. Birmingham Common formula Gilding. Gilding foil	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1	480 480, 601 475, 480 469, 555 561
617 618 619 620	Austrian (Gersdorf) Best. Birmingham Common formula Gilding.	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1 Cu, 72-64; Zn, 23-34; Sn, 0.3-2.5; Pb, 0.3(v. also Index	480 480, 601 475, 480 469, 555 561 469, 555
617 618 619 620 621	Austrian (Gersdorf) Best. Birmingham Common formula Gilding. Gilding foil Gilding metal Glass mold alloy (U. S. patent	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1 Cu, 72-64; Zn, 23-34; Sn, 0.3-2.5; Pb, 0.3(v. also Index Nos. 306, 333 and 1134) Cu, 65-55; Ni, 12-18; Zn,	480 480, 601 475, 480 469, 555 561 469, 555
617 618 619 620 621 622	Austrian (Gersdorf) Best. Birmingham Common formula Gilding. Gilding foil Gilding metal. Glass mold alloy (U. S. patent 1 360 773)	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1 Cu, 72-64; Zn, 23-34; Sn, 0.3-2.5; Pb, 0.3(v. also Index Nos. 306, 333 and 1134) Cu, 65-55; Ni, 12-18; Zn, 11-17; Fe, 8-12; Si, 0.5-1	480 480, 601 475, 480 469, 555 561 469, 555 601
617 618 619 620 621 622	Austrian (Gersdorf) Best. Birmingham Common formula Gilding. Gilding foil Gilding metal Glass mold alloy (U. S. patent	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1 Cu, 72-64; Zn, 23-34; Sn, 0.3-2.5; Pb, 0.3(v. also Index Nos. 306, 333 and 1134) Cu, 65-55; Ni, 12-18; Zn, 11-17; Fe, 8-12; Si, 0.5-1 Pb, 77; Sb, 14; Sn, 8; Fe, 1.5 Zn, 74; Sb, 9; Sn, 6.7; Pb, 5;	480 480, 601 475, 480 469, 555 561 469, 555 601
617 618 619 620 621 622 623 624 625	Austrian (Gersdorf) Best. Birmingham Common formula Gilding. Gilding foil Gilding metal Glass mold alloy (U. S. patent 1 380 773) Glievor bearing. Glievor bearing.	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1 Cu, 72-64; Zn, 23-34; Sn, 0.3-2.5; Pb, 0.3(r. also Index Nos. 306, 333 and 1134) Cu, 65-55; Ni, 12-18; Zn, 11-17; Fe, 8-12; Si, 0.5-1 Pb, 77; Sb, 14; Sn, 8; Fe, 1.5	480 480, 601 475, 480 469, 555 561 469, 555 601
617 618 619 620 621 622 623	Austrian (Gersdorf) Best Birmingham Common formula. Gilding Gilding foil. Gilding metal Glass mold alloy (U. S. patent 1 360 773) Glievor bearing	20-25 Cu, 46; Zn, 34; Ni, 20 Cu, 62-50; Zn, 32-20; Ni, 12-30 Cu, 55; Zn, 25; Ni, 20 Cu, 95; Zn, 5; Pb; Fe Sn, 98; Cu, 2.2; Fe, 0.1 Cu, 72-64; Zn, 23-34; Sn, 0.3-2.5; Pb, 0.3(v. also Index Nos. 306, 333 and 1134) Cu, 65-55; Ni, 12-18; Zn, 11-17; Fe, 8-12; Si, 0.5-1 Pb, 77; Sb, 14; Sn, 8; Fe, 1.5 Zn, 74; Sb, 9; Sn, 6.7; Pb, 5; Cu, 4.4; Cd, 1.4	480 480, 601 475, 480 489, 555 561 469, 555 601

^{*} Graded by Si content, S increases as Si decreases.

Glyco turbo. Gold: 22 carat 22 carat dental, dark 20 carat 18 carat 15 carat 15 carat 14 carat 14 carat dental 10 carat 8 carat 16 carat 16 carat 17 carat 18 carat 19 carat	Au, 92; Ag, 4.9; Cu, 3.4 Au, 84; Ag, 8.3–11; Cu, 6–8.3 Au, 75; Ag, 10–20; Cu, 5–15 Au, 67; Cu, 8–27; Ag, 6.6–26 Au, 62; Cu, 13; Ag, 11 Au, 58; Cu, 14–28; Ag, 4–28 Au, 58; Ag, 30; Cu, 12 Au, 42; Cu, 38–46; Ag, 12–20 Cu, 47; Au, 33; Ag, 20 Au, 75–63; Ag, 13–31; Cu, 6.3–12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	586	682 683 684 685 686 687 688 689	Hard sheet aluminum Hardware bronze Hard sinc (Hartsink) Harlington (Harrington?) bronze Harmonia bronze Haynes metal, soft Haynes metal, hard Haynes metal	Fe, 75-70; Cr, 20-30; Co,	470 , 8 58
22 carat dental, dark	Au, 92; Ag, 4.9; Cu, 3.4 Au, 84; Ag, 8.3–11; Cu, 6–8.3 Au, 75; Ag, 10–20; Cu, 5–15 Au, 67; Cu, 8–27; Ag, 6.6–26 Au, 62; Cu, 13; Ag, 11 Au, 58; Cu, 14–28; Ag, 4–28 Au, 58; Ag, 30; Cu, 12 Au, 42; Cu, 38–46; Ag, 12–20 Cu, 47; Au, 33; Ag, 20 Au, 75–63; Ag, 13–31; Cu, 6.3–12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	586 586	685 686 687 688	Harlington (Harrington?) bronze Harmonia bronze	Zn, 92; Fe, 5.3; Pb, 2.4; Cu, 0.1 Cu, 56; Zn, 43; Sn, 0.9; Fe, 0.6 Cu, 57-55; Zn, 40-41; Fe, 1.3-1.8; Pb, 0.4; Al; Sn Co, 62; W, 28; Cr, 10 Co, 45; W, 40; Cr, 15 Fe, 75-70; Cr, 20-30; Co,	
18 carat. 16 carat. 15 carat. 14 carat dental. 10 carat. 8 carat. 18 carat. 19 carat. 10 carat. 8 carat. 10 carat. 10 carat. 10 carat. 11 carat. 12 carat. 12 carat. 13 carat. 14 carat. 15 carat. 16 carat. 17 carat. 18 carat. 19 carat. 19 carat. 19 carat.	Au, 75; Ag, 10-20; Cu, 5-15 Au, 67; Cu, 8-27; Ag, 6.6-26 Au, 62; Cu, 13; Ag, 11 Au, 58; Cu, 14-28; Ag, 4-28 Au, 58; Ag, 30; Cu, 12 Au, 42; Cu, 38-46; Ag, 12-20 Cu, 47; Au, 33; Ag, 20 Au, 75-63; Ag, 13-31; Cu, 6.3-12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	586 586	686 687 688	bronse Harmonia bronse Haynes metal, soft Haynes metal, hard	Cu, 56; Zn, 43; Sn, 0.9; Fe, 0.6 Cu, 57-55; Zn, 40-41; Fe, 1.3-1.8; Pb, 0.4; Al; Sn Co, 62; W, 28; Cr, 10 Co, 45; W, 40; Cr, 15 Fe, 75-70; Cr, 20-30; Co,	
15 carat. 14 carat dental. 10 carat. 8 carat. Gold solder: 18 carat. 16 carat. 12 carat. 12 carat. 10 carat. 18 carat. 19 carat. 19 carat. 10 carat.	Au, 62; Cu, 13; Ag, 11 Au, 58; Cu, 14-28; Ag, 4-28 Au, 58; Ag, 30; Cu, 12 Au, 42; Cu, 38-46; Ag, 12-20 Cu, 47; Au, 33; Ag, 20 Au, 75-63; Ag, 13-31; Cu, 6.3-12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	586 586	687 688	Harmonia bronze	Cu, 57-55; Zn, 40-41; Fe, 1.3-1.8; Pb, 0.4; Al; Sn Co, 62; W, 28; Cr, 10 Co, 45; W, 40; Cr, 15 Fe, 75-70; Cr, 20-30; Co,	556
14 carat dental	Au, 58; Ag, 30; Cu, 12 Au, 42; Cu, 38-46; Ag, 12-20 Cu, 47; Au, 33; Ag, 20 Au, 75-63; Ag, 13-31; Cu, 6.3-12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	586	688	Haynes metal, hard	Co, 62; W, 28; Cr, 10 Co, 45; W, 40; Cr, 15 Fe, 75-70; Cr, 20-30; Co,	
10 carat	Au, 42; Cu, 38-46; Ag, 12-20 Cu, 47; Au, 33; Ag, 20 Au, 75-63; Ag, 13-31; Cu, 6.3-12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	1			Co, 45; W, 40; Cr, 15 Fe, 75-70; Cr, 20-30; Co,	
Gold solder: 18 carat	Au, 75-63; Ag, 13-31; Cu, 6.3-12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,			Tag need meetale		1
14 carat	6.3-12 Au, 75; Ag, 17; Cu, 8.3 Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,			Heat resistant alloys	5-25 For list, v. p. 391	
14 carat	Au, 50; Ag, 33; Cu, 17 Au, 50; Cu, 35; Ag, 15 Au, 41; Ag, 37; Cu, 21; Brass,	[]	690	Heat resistant steel (U. S. patent 1 357 549)	Fe, 70; Cr, 15; Co, 14; Mn, 0.5; Si, 0.5; C, 0.5	
10 carat	Au, 41; Ag, 37; Cu, 21; Brass,	586	691	Heavy axle bearing		
Best Easy melt			692	Heavy bearing	Sn, 85; Cu, 7.5; Sb, 7.5	
Easy melt		586	693 694	Helmet metal (helmet bronze). Hercules bronze	Cu, 72-70; Zn, 28-30 Cu, 86; Sn, 10; Al, 2.5; Zn, 2	555, 601
	Au, 63; Ag, 23; Cu, 15 Au, 55; Ag, 32; Cu, 14		695 696	Hercules metal Heusler's magnetic alloys	Cu, 54; Zn, 36; Fe, 7.5; Al, 2.5 Cu, 70-61; Mn, 18-30; Al,	
very casy ment			697	Most magnetic	8-15; Pb, 4-0 Cu, 61; Mn, 26; Al, 13	!
GoldalGold imitation (DRP 47 380).			698	High carbon steel	Fe; C, 0.65-1.55; Mn; Si; P; S	492, 493, 600-608
Gold leaf metal	Cu, 84-66; Zn, 16-34; Pb, 0-0.4	469, 555	699	High manganese bronze	v. Index Nos. 430, 842 Ni, 98-94; Mn, 2-6	473, 482
Government (U. S.) bronze: Spec. G	Cu, 88; Sn, 10; Zn, 2	565, 572	700	High speed steel: Brit. patent 139 837		
Spec. HSubstitute	Cu, 83; Sn, 14; Zn, 3; Pb, 0.8 Cu, 90; Sn, 6.5; Zn, 3; Pb, 0.5	563	701	Brit. patent 144 326	-0.6 Fe; Mo, 6-10; Cr, 3-6; Co, 0.5-2; U, 0.2-1; Mn, 0.2-	
Graney bronze			702	U. S. patent 1 337 209	0.4; Si, 0.2-0.4; C, 0.5-0.8 Fe; Mo, 6-10; Cr, 3-6; Mn, 0.2-0.4; Si, 0.2-0.4; C, 0.5-	
Graphallov	0.7-1; P, 0.45-0.6; S, 0.3 Graphite bearing-metal		703	U. S. patent 1 337 210	0.8 Fe; Mo. 3–10; Co. 1–5; V.	
Graphite metal	Pb, 80; Sb, 20	475, 557			0.2; Mn, 1-2; Si, 0.1-0.3;	
Green gold	Au, 75; Ag, 11-25; Cd, 13-0		704	High temperature bronse	Cu, 91; Zn, 6.3; Sn, 2.7; Pb,	
orey case a carrier	P; S (fracture is gray due to	497, 526,	705	High tensile brasses	For list, v. p. 389	
Grey gold	Au, 86; Fe, 5.7-17; Ag, 0-8.6		706	Hooker brass	Cu, 61; Zn, 37; Pb, 2	469, 602
Guillaume's metal	Cu, 64.3; Bi, 35.7 (name also applied to Invar type)		708	Hopkinson's alloy Hot rolling brass	Fe, 75; Ni, 24.5; Si; etc. v. Tube brass	481
Guishibuichi	v. Shibu-ichi	476 550_	709 710	Hoyle's metal	Sn, 46; Pb, 42; Sb, 12 Pb, 94-90; Sb, 6-10	557 557
	0-13; Zn, 0-5; Fe, 0-1.4	572, 601	711	Huron metal, cast	Al; Cu, 6.6; Ni, 1.3; Mg, 0.5;	5 3 6
Gurley's metal	Cu, 86.5; Zn, 5.4; Sn, 5.4; Pb, 2.7		712	Huron metal, rolled	0.5 Al; Cu, 3.5-4; Mg, 0.5; Mn,	534
For B. E. S. A. Specifications Gurney's bronze (Graney?)	r. p. 386 Cu, 76; Zn, 15; Sn, 9		713	Husmann metal	0-0.6; Cr, 0.1-0.6 8n, 74; 8b, 11; Pb, 11; Cu,	
Guthrie's alloy	Bi, 47; Sn, 20; Pb, 19; Cd, 13		714	Hydraulic bronzo	4; Fe, 0.2; Zn, 0.2 Cu 83: Sn 11: Zn 6: Ph 0.1	LTR FRE
Half hard steel (Key No. 30,	Fe; C, 0.49; Si, 0.44; Mn,	470, 491,	715	Hydrone	Pb, 67; Sb, 33	
H. A. L. H. steel	Similar to Stellite	495	717	Ideal, Elalco	Cu, 58-53; Ni, 40-45; Fe,	464, 480 464, 480 601, 606
	1.5; P-Sn, 5 (name also applied to Chrysorin)		718 719	Ignition pin alloy	Ce, 61; Fe, 37 Ce, 73-70; Zn, 17-24; Fe,	
Hammonia metal	Al, 77; Zn, 12; Mg, 4.5 (v.		720	Illium	1.6-6; Al, 0-2.4; Mn Ni, 63; Cr, 21; Cu, 6.5; Mo,	
Hard babbitt	Sn, 83; Cu, 8.4; Sb, 8.3	556	721 722	Immadium bronze	Manganese bronze with Al	480
	patent 803 920)	l l	723	Imperial steel	Fe; W, 6.4; Mn, 2.1; C, 1.6; Si	
	3.4	601	725		S; v. also Armeo iron	602, 606
Hard head	Ni, 45; Cr, 15; Fe, 13; Sb,		726	Instrument bronze	Cu, 82; Sn, 13; Zn, 5	
Hard head			727	Invar	1 E. 04. N. 00 C 0 1 C C	
	Mn, 2; Al, 0.9 Pb-Sb; Pb-As; Pb-alkali		728	Iridosmine	Fe, 64; Ni, 36; C, 0.15-0.2 v. Osmiridium For lists of ferrous alloys v.	471, 482
GGGG GG GGHEIHH HE HE	iraphite metal. ireen gold. irey cast iron irey gold. iuillaume's metal. iuishibuichi iun metal. iun mount bronse. iurley's metal. iunley's bronse (Graney?). iuthrie's alloy. Ialberland alloy. Ialberland alloy. Ialberland alloy. Ialthard steel (Key No. 30, p. 495) I. A. L. H. steel. Iamilton metal. Iard aluminum. Iard babbitt. Iard bearing. Iard drawing brass. Iard drawing brass. Iard head.	Graphite metal Pb, 80; Sb, 20 Pb, 68; Sb, 17; Sn, 15 Au, 75; Ag, 11-25; Cd, 13-0 Fe; C, 2.5-4; Si, 1.3-2; Mn; P; S (fracture is gray due to free graphite) Au, 86; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 5.7 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-8.6 Au, 80; Fe, 5.7-17; Ag, 0-5. Au, 80; Fe, 5.7-17; Ag, 0-5. Au, 80; Fe, 5.7-17; Ag, 0-5.	Graphite bearing-metal Pb, 80; Sb, 20 Pb, 80; Sb, 20 Pb, 80; Sb, 20 Pb, 80; Sb, 20 Pb, 80; Sb, 20 Pb, 80; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 68; Sb, 17; Sn, 15 Pb, 17; Sn, 18; Sb, 18; 35.7 (name also applied to Invar type) Pb, 18; Sb, 18; 35.7 (name also applied to Invar type) Pb, 18; Sb,	Graphite metal		Imphalloy Graphite bearing-metal Pb, 86; 8b, 20 Pb, 68; 8b, 17; 8n, 15 Fee, 25.4 Si, 1, 25.2 Mn; Pc; 8 (fracture is gray due to free graphite) Fe; C, 2.5 4; Si, 1, 2.2 Mn; Pc; 8 (fracture is gray due to free graphite) Fe; C, 2.5 4; Si, 1, 2.7 Mn; Pc; 8 (fracture is gray due to free graphite) Fee, 2.7 Mn; Pc; 8 (fracture is gray due to free graphite) Fee, 30, 65; Fe, 0.14 Mn; Mn; Mn; Mn; Mn; Mn; Mn; Mn; Mn; Mn;

dex	Name	Composition	Page	Index No.	Name	Composition	Page
730	Ironac	Fe; Si, 13; C, 1.1; Mn; P; S	478	785	Lead shot	Pb, 99.8; As, 0.2	i
731	Iron bronse	Cu, 82.5; Sn, 8.6; Zn, 4.4;		786	Lead tape	Pb, 95; Sb, 4.5; Sn, 0.5	557
- 1		Fe, 4	1	787	Lechesne (two patents, name	Cu, 90-60; Ni, 10-40; Al,	480
732	Ironier's bronse	Cu; Sn; Hg, 1	l I		usually applied to first com-	0.2-0.05	,
733	Iseriohn (cast)		558		position)	0.2 0.00	l
	iscitotin (cast)	0.3	1	788	position	7- 05. Ch 10. Cu E	l
734	Taralaha (ahaat)		FFF 001		Ledebur's bearing alloys	Zn, 85; Sb, 10; Cu, 5	l
	Iserlohn (sheet)	Cu, 70; Zn, 30	555, 601	789	()	Zn, 77; Sn, 18; Cu, 5.5	l
735		Pb, 70; 8b, 20; 8n, 10		790	Lemarquand's non-oxidisable		l
736	Jacoby metal	8n, 85; 8b, 10; Cu, 5	476, 557		alloy	Ni, 7	ì
737	Jalcase steel	A case hardening steel	1		Le Mat's metal	v. Lutecin	l
738	Jewelers metal	Cu, 91.5-83; Zn, 6.5-17; Sn,	469, 555	791	Liberty pistons	Al, 77; Zn, 21; Cu, 1.1; Fe,	538
		0-2			·	0.5; Pb; Sn	l
- 1	Kalchoids	Cu; Sn; Zn, alloy system	1 1	792	Lichtenberg's alloy		
739)	Sn, 85; Sb, 5; Cu, 3.6; Bi,	1 1	793	Liddel's alloys		5.48
	1	1.6; Zn, 1.4	1 1		Didde Samoys	6-5	1040
740	Kamarsch bearing alloys		i 1	704	Tin street about		
	- 1	Sn, 71; Cu, 21; Sb, 7.2	l i	794	Linotype, cheap	Pb, 85; Sb, 11; Sn, 3.5	557
741) (1	Sn, 71; Sb, 20; Cu, 9.5	1 1	795	Linotype, standard (English)		557
742	Karma	Ni, 80; Cr, 20	480, 608	796	Lipowits alloy	Bi, 50; Pb, 27; Sn, 13; Cd, 10	
743	Keene's alloy	Cu, 75; Ni, 16; Sn, 2.8; Zn,	1	797	Little's speculum	Al, 65; Sn, 31; Zn, 2.3; As,	į
		2.3; Co, 2; Fe, 1.5; Al, 0.5	j i			1.9	1
744	Kienmayer's amalgam		1 1	798	L M Steel (United Alloy Steel		172 0
			l l	100			4/2,0
745	Kelmet		002		Corp.)	Mo, 0.3-0.5; C, 0.2-0.4;	1
		8n, 6.4-6.6; 8, 0.03; Zn,	[]			Mn; Si; P; S	1
1		0.03-0.04; Ni; Fe	, I	799	Low brass	Cu, 80; Zn, 20; Pb; Fe	555, 6
746	Kemlet		546	800	Low carbon steel	Fe; C, > 0.25; Mn; Si; P; 8	487-4
747	Kern's hydraulic bronze	Cu, 78; Sn, 12; Zn, 10	570, 578	801	()	Cu, 70; Pb, 16; Sn, 13; P, 1	562
748	K. L. steel (Böhler)			802	Lowroff phosphor bronze	Cu, 90; Pb, 5.5; Sn, 4; P, 0.5	
149			1 1		lź		
19	Kneiss metal		1 1	803	Lucerno	Ni, 68; Cu, 28; Fe, 2.4; Mn,	
		15; Cu, 0-3	1 1			2.2	600, 6
750	Kochlin's bearing	Cu, 90; Sn, 10	475, 589	804	Lucero	Ni, 65; Cu, 30; Mn, 5	604
751	Koltchak (Koultchoog) alumi-	A Russian alloy similar to	1 [805	Ludlum	Fe; Cr, 13-17; Si, 1; Mo, 1;	1
	nium	duralumin				C. 0.4	1
752	Koemos	A dental alloy	1	806	Lumen (bronze)	1 7	548
753	Kromax		480, 608	807	1		1 '
				807	Lurgimetall		000
754	Kromore		467, 480			Na, 0.3	1
755	Krupp (Grosmann) bearing	Al, 87; Cu, 8; Sn, 5	1	808	Lutecin (Le Mat's Paris metal)	Cu, 80; Ni, 16; Zn, 5; Fe, 5;	1
756	Kruppin	Fe; Ni, 28; C	471, 482		1	Sn, 2; Co, 1	1
757	Krupp type metal	Pb. 60; Sb. 18; Sn. 12; Cu.	1	809	Lynite, 109	Al, 89; Cu, 12-14; other ele-	467, 5
		4.7; Ni, 4.7; Bi, 1	1		,	ments, ≯1	601
758	Krupp V1M steel		1	810	Lynite, 122		
			ł I	010	Lymice, 122		601
759	Krupp V2A steel		1			ments, ≯2	
760	K. S. magnet steel		1	811	Lynite, 146	I control of the cont	•
		1.5-3; C, 0.4-0.8	1			ments, ≯1.7	601
761	Kuhne's phosphor bronse	Cu, 78; Sn, 11; Pb, 10; P,	562, 570	812	Lynite, body alloy	Al, 95; Cu, 5	634, 60
		0.6; Ni, 0.3	l i	813	Lynite, crank case	Al, 90; Cu, 7.8; Zn, 1.5; Fe,	536
762	Kunheim metal		1		* '	1.3	ł
		12; Al, 2	1	814	Lynite, piston		i
700	T F allow		E20 E40	014	Lymee, piston	0.8; Si, 0.2; Mn, 0.01	1
763	L-5 alloy				l		l
		Fe; Si	537, 601	815	Lynite, piston		534
764	L-8 alloy		534, 601	816	Lynux bronse	Cu, 89; Fe, 7.2; Al, 3.8	İ
765	L-10 alloy	Al, 89; Cu, 10; Sn, 1: Fe; Si	I		Lyons gold	v. Tombae	1
766	L-11 alloy		467, 534.	817	Machine bronse		1
		Fe; 8i	801	818		Cu, 83; Zn, 16; Sn, 1	855
767	Laderig's speculum	Cu, 69; Sn, 29	475, 559	010	Machine steel		1
				910	Mach's alloy		101 2
768	Lafond's axle bearing	Cu, 80; Sn, 18; Zn, 2	475, 561	819	,		464, 5.
769	Lafond's heavy bearing	Cu, 83; Sn, 15; Zn, 1.5; Pb,	478, 561	820	Mach's speculum		1
		0.5	1	821	Macht's yellow metal		555, 60
770	Lafond's malleable bronse	Cu, 98; Sn, 1.9	559	822	Mackensie metal	Pb, 70-68; Sb, 17-16; Sn,	f
771	Lafond's pump bronse	Cu, 88; Sn, 10; Zn, 2	565, 572		[13–16	
772	Lancashire brass	Cu. 73; Zn. 25; Pb. 2	469	823	Magnalite		601.60
773	Latten (Laiton)	Yellow brass		0.20		0.7-2; Fe; Si; Sn; Zn	
			I	004	Manualium (art-t1)		404 5
774	Lautal			824	Magnalium (original)		464, 54
775	Law's phosphor bronze	Cu, 89-88; Sn, 9.5-11; P,		825	Magnalium, cast		464
		0.7-1.0	570-572	826	Magnalium, cast x	Al, 95; Cu, 1.8; Mg, 1.6; Ni,	601,60
776	Lead alloy (for small castings).	Sn, 75; Sb, 20; Pb, 5				1.2	1
	Lead bronzes	For list, v. p. 389	1 1	827	Magnalium, cast y	Al, 97; Cu, 1.8; Mg, 1.5; Sn	
777	Leaded brass	Cu, 88-62; Zn, 10-35; Pb,	469	<i></i> .		and Pb	1
· • •				900	Magnalium acet -		1
	V 3 . 3 L	1.7-2.6; Fe	1,00	828	Magnalium, cast z		ļ
778	Leaded bronze	1	109		1	0.2; Pb, 0.7	l
		Fe	1	829	Magnalium, sheet	Al, 95; Mg, 5	548,60
779	Leaded gun metal	Gun metal + 1 % Pb	566, 569		Magna metal		İ
780	Leaded low brass	Cu, 78; Zn, 20; Pb, 1.7; Fe	469	830	Magno, Elalco		473, 48
	Leaded monel metal		1				
781	Leaded moner metal	Ni, 60; Cu, 32; Pb, 2.2; Fe,		831	Magnolia metal		100'
	1	2.2; Mn, 2.0; Si, 0.9; C, 0.2;	1			0.6; Bi, 0-0.3	
		s	[]	832	Magno-nickel	Ni; Mn, 2-6	473, 48
782	Leaded screw wire brass	Cu, 69; Zn, 30; Pb, 1.7; Fe	469	833	Major metal	1	1
	Lead foil		1			0.4, Si; Mg; Mn	1
	Accord 1011		1 1	834	Maillechort*		LRO
783		1 10					
784	Lead foil (Calin)	1.9	} I	001		19; Fe, 0.5-3.2: Sn: Pb	1

^{*} Includes 2 % H.

^{*} French generic name.

No.	Name	Composition	Page Index No.	Name
835	Malleable casting pig	Fe; C, 3-4; Si, 0.75-1.5; Mn,		i)
- 1		≯1; P, 0.2; S, ≯0.05	875	
l	Malleable cast iron:		876	McAdams, W. A., alloys.
836	American "Black Heart"	Fe; C, 2.8-3.5; graphite, Tr.;		Michaelle, W. H., alloys.
		Si, 0.6-0.8; Mn, <0.4; P,		
837	Farmer !! Dannar!	<0.2; S, <0.07	526 879 476, 477. 880	McForland and Harden alle
۰.	European Reamur	Fe; C, 2.8-3.5; graphite, Tr.; Si, 0.6-0.8; Mn, <0.2; P,		McFarland and Harder allo
	•	<0.2; 8, <0.4	526 881	McKechnie's bronse
838	Mailet alloy		465, 546	
839	Malloydium			McKinney alloys:
		0.9	882	Cast
840	Maluminum		883	Hard forging
		1.4; Si, 0.2; Mn, 0.1; Pb,	884	Soft forging
841	Mangaloy	0.2 Ni; Fe; Mn	885	McLure alloy
842	Manganese brass		558	
Ì		1-25; Fe, 0-2.4; Ni, 0-2.5;	886	Meco
l		Al; Pb	887	Medal bronse
843	Manganese bronze	Cu, 86-82; Sn, 6-17; Mn,	888	Medal metal
		0.2-2.7; Zn, 0-5; Pb, 0-3	889	Medium steel
844 845	Mn-Bronse Mn-c (cast)		556 890	Metalline
020	Mn-Bronse Mn-r (rolled)	0.3. (The last two, like	891 892	Meteorite
		most alloys called Mn		Mild steel
- 1		bronses are really Mn	893	Minargent
- 1		brasses.)		_
846	Manganese copper	Cu, 90-56; Mn, 8.7-41; Fe,	894	Minofor
	••	0-2.7; Zn, 0-2; Sn; Si; Pb		
847	Manganese copper	,,,,,	895	Mira metal
848	Manganese nickel	6.3 Ni, 98.5–95; Mn, 1.5–5; Fe	473, 482	
849	No. 473 alloy		473, 488 896	Misch metal
		Harris)	7.0,755	
850	No. 484 alloy	Ni, 98.5; Mn, 1.5 (Hoskins)	473, 482 897	Misco metal
851	Manganese nickel	Cu, 82-52; Mn, 14-31; Ni,		
		3-16	898	Mitis iron*
852	Manganese nickel brass		899	M-M-M (modified mo metal)
		2-18; Mn, 1.5-20; Al; Fe; Sn; Pb	900	Mo-1 Steel†
853	Manganese nickel silver			
	_	10-17; Sn, 0-10; Zn, 0-8.8		
	Manganese steel:		901	Mo-2 Steel†
854	Brit. patent 131 980 (pear-		I i i i i i i i i i i i i i i i i i i i	
855	litic) Hadfield's (austenitic)	C, 0.2-0.6; P; 8	523 471, 520- 902	Mo-3 Steel†
~	madneid s (austennie)	Fe; Mn, 11-14; C, 1-1.3; Si, 0.3-0.8; P, 0.05-0.08; S,	1-1-5,	MIO-0 20001
		very low		
856	Manganin		903	Mock gold
		2.5; Mn, 1.7; Al, 0.2		
857	Manganin	Cu, 70; Mn, 25; Ni, 5	904	Mock gold
858	Manganin		905	Mock silver
859	Mangan-Neusilber	2-12; Fe		Modified Monel metal Modified "Y" alloy
	Mangar-14cushoct	Cu, 73-59; Ni, 10-18; Mn, 2.4-20; Zn, 5-20	906	Molybdenum steel
860	Manhardts alloy			•
	-	Mg, 0.1	907	Mond 70
001	Mannheim gold	Cu, 89-80; Zn, 7-12; Sn,	556, 561, 908	Monel metal (cast)
90 T			563, 565	
		0-9.3; P-Sn, 0-5		
862	Marine babbitt	Pb, 72; Sn, 21; Sb, 7	909	Monel metal (rods)
862 863	Marine babbitt	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn	909	
861 862 863 864 865	Marine babbitt	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25	909	Monotype, standard
862 863	Marine babbitt	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe,	909	
862 863 864 865	Marine babbitt	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25	909 910 911	Monotype, standard Montanium Morin's Chinese bronze Mosaic gold (Ormulu)
862 863 864 865	Marine babbitt	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10	909 910 911 912	Monotype, standard Montanium Morin's Chinese bronze
862 863 864 865	Marine babbitt	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline	909 910 911 912 492, 523, 913 602 556	Monotype, standard Montanium Morin's Chinese bronze Mosaic gold (Ormulu) Mousset's silver
862 863 864 865 866	Marine babbitt Markus alloy Marsh's patent Marties' non-oxidisable alloy Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137)	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2	909 910 911 912 492, 523, 913 602 914 556	Monotype, standard Montanium Morin's Chinese bronze Mosaic gold (Ormulu) Mousset's silver MS Steel (Climax Molybo
862 863 864 865 866 867	Marine babbitt. Markus alloy. Marsh's patent. Marties' non-oxidisable alloy. Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137) Matrix brass.	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5	909 910 911 912 492, 523, 913 602 914 556 915	Monotype, standard
862 863 864 865 866	Marine babbitt Markus alloy Marsh's patent Marties' non-oxidisable alloy Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137)	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5 z. Index Nos. 794, 795, 910,	909 910 911 912 492,525, 913 602 556 915 469,602 916	Monotype, standard
862 863 864 865 866 867 868	Marine babbitt. Markus alloy. Marsh's patent. Marties' non-oxidisable alloy. Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137) Matrix brass.	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5 v. Index Nos. 794, 795, 910, 1351-1353, 1426-1429	909 910 911 912 492, 523, 913 602 914 556 915	Monotype, standard
862 863 864 865 866 867 868	Marine babbitt Markus alloy Marsh's patent Marties' non-oxidisable alloy Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137) Matrix brass Matrix metal Mayari cast iron	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5 z. Index Nos. 794, 795, 910, 1351-1353, 1426-1429 Mayari pig recast by itself or added to gray cast iron	909 910 911 912 492,525, 913 602 556 915 469,602 916	Monotype, standard
862 863 864 865 866 867 868 869 870	Marine babbitt Markus alloy Marsh's patent Martines' non-oxidisable alloy Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137) Matrix brass Matrix metal Mayari cast iron Mayari pig	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5 v. Index Nos. 794, 795, 910, 1351-1353, 1426-1429 Mayari pig recast by itself or added to gray cast iron Fe; Cr, 2.5-3; Ni, 1.3-1.5; C	909 910 911 912 492,523, 913 602 914 556 915 469,602 916 917	Monotype, standard
862 863 864 865 866 867 868 869 870	Marine babbitt Markus alloy Marsh's patent Marties' non-oxidisable alloy Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137) Matrix brass Matrix metal Mayari cast iron	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5 v. Index Nos. 794, 795, 910, 1351-1353, 1426-1429 Mayari pig recast by itself or added to gray cast iron Fe; Cr, 2.5-3; Ni, 1.3-1.5; C Fe; Ni, 1-1.5; Cr, 0.2-0.7;	909 910 911 912 492,525, 913 602 914 556 915 469,602 916 917 918 919 510,605-	Monotype, standard
862 863 864 865 866 867	Marine babbitt Markus alloy Marsh's patent Martines' non-oxidisable alloy Martin steel (hard) (Key No. 48, p. 492) Mathesius metal (U. S. P. 1 549 137) Matrix brass Matrix metal Mayari cast iron Mayari pig	Pb, 72; Sn, 21; Sb, 7 Cu; Ni; Zn Ni, 75; Cr, 25 Ni, 35; Zn, 18; Cu, 17; Fe, 10; Sn, 10 Fe: C, 0.73; Si, 0.4; Mn; P; S Pb; Ca, 3; other alkaline earth metals, 1-2 Cu, 62; Zn, 37; Pb, 1.5 v. Index Nos. 794, 795, 910, 1351-1353, 1426-1429 Mayari pig recast by itself or added to gray cast iron Fe; Cr, 2.5-3; Ni, 1.3-1.5; C	909 910 911 912 492,525, 913 602 914 556 915 469,602 916 917 918 919 510,605- 607 920	Monotype, standard

Index No.	Name	Composition	Page
874		Al, 82; Cu, 12; Cd, 5; Ag, 1	1
875		Al, 80; Sn, 8; Cd, 8; Ag, 4	
876	Maddana W A allana	Al, 70; Zn, 22; Sb, 5; Cu, 3	
877	McAdams, W. A., alloys	Al, 70; Zn, 26; Cu, 3; Ag, 1	
878	11	Al, 69; Zn, 23; Cu, 7.7; Ni, 0.6	
879	IJ t	Al, 60; Zn, 20; Ag, 17; Cu, 5	l .
880	McFarland and Harder alloys	Ni, 59-29; Cu, 11-55; Cr,	
881	McKechnie's bronse	10-43 Cu, 57; Sn, 41; Zn, 1; Fe, 1;	1
351	McKinney alloys:	Pb, 0.5	
000	1	A1 00. Co. 0. 35- 1.5	
882 883	Cast	Al, 96; Cu, 2; Mn, 1.5	534
	Hard forging	Al, 95; Cu, 8; Mn, 2	534
884 885	McLure alloy	Al, 97; Cu, 2; Mn, 1	534
880	Medute andy	Al, 85; Cu, 8.2; Sn, 5-6; Fe, 0.9; Si, 0.3; Mn, 0.2; Mg; Ni; Zn	
886	Meco		1
887	Medal bronse	Cu, 50; Ni, 25; Zn, 20; ?, 5	850 801
888	Medal metal	Cu, 97-92; Sn, 1-8; Zn, 0-2 Cu, 84; Zn, 16	559, 601 555
	Medium steel		
889 890	Metalline	Fe; C, 0.30-0.60	489-491
891	Meteorite	Co, 35; Cu, 30; Al, 25; Fe, 10 Al, 98-94; P, 1-4; Zn, 1-2	
892	Meteor steel		
052	Mild steel	A nickel steel	1
893	Minargent	v. Low carbon steel Cu, 57-46; Ni, 40-32; Pb,	
894	Minofor	0-22; W, 2.8-0; Al Sn, 69-66; Sb, 18-20; Zn,	
895	Mira metal	9-10; Cu, 3-4 Cu, 75; Pb, 16; Sb, 6.8; Sn, 0.9; Zn, 0.6; Fe, 0.4; Co;	
896	Misch metal	Ni, 0.2 Ce, 60-50; La, 25; (Dy, Sa,	
897	Misco metal	etc.), 15; Fe, 1-2 Fe, 57.5; Ni, 25; Cr, 15; Si,	<i>604</i>
898 899	Mitis iron*	1.5; Mn, 0.5; C, 0.5 Fe; C; Al, 0.06-0.27 Ni 65-80; Cu 24-27; G	529
. 000	metal)	Ni, 65-60; Cu, 24-27; Sn,	1
900	Mo-1 Steel†	9-11; (Fe + Mn + Si), 1-3 Fe; Cr, 0.7-1; Mo, 0.25-1; C, 0.15-0.23; Mn, 0.4-0.7;	47 2, 605
901	Mo-2 Steel†	Si, 0.1-0.2 Fe; Cr, 0.8-1.1; Mo, 0.25-1;	47 2 , 605
		C, 0.23-0.3; Mn, 0.5-0.8; Si, 0.1-0.2	, ,
902	Mo-3 Steel†	Fe; Cr, 0.8-1.1; Mo, 0.25-1; C, 0.3-0.4; Mn, 0.5-0.8; Si,	47 2 , 605
903	Mock gold	0.1-0.2 Cu, 80-67; Pt, 20-29; Zn,	
004	Mach mald	0-4	
904	Mock gold	Ni, 6; Pt, 1; Ag, 1; Brass, 1	
905	Mock silver	Al, 84; Sn, 10; Cu, 5.5; P, 0.1	
	Modified Monel metal	v. M-M-M	
000	Modified "Y" alloy	1	
906	Molybdenum steel	Fe; Mo, 0.3-3; C, 0.1-0.45;	472, 605
00=	Mond 70	Mn, 0.6-1.3; Si, 0.3-0.5	100 0
907	Mond 70	Ni, 70: Cu, 26; Mn, 4	480, 604
908	Monel metal (cast)	Ni, 68; Cu, 28; Fe, 1.9; Si, 1.1; Mn, 0.3; C, 0.18; S	408, 469
909	Monel metal (rods)	Ni, 68; Cu, 28; Fe, 2.0; Si, 0.2; Mn, 1.8; C, 0.26; S	408, 469, 604, 606
910	Monotype, standard	Pb, 74; Sb, 18; Sn, 8	
911	Montanium	Al; Cu, 2.5–3.5; Mg, 0.5	534, 601
912	Morin's Chinese bronze	Cu, 83; Pb, 10; Sn, 5; Zn, 2	561 555 CO1
913 914	Mosaic gold (Ormulu) Mousset's silver	Cu, 63; Zn, 35 Cu, 60; Ag, 28; Zn, 10; Ni,	555 , 601
915	MS Steel (Climax Molybde-	3.5 Fe; Cr, 0.8–1.1; Mo, 0.3–0.4;	178 ROS
	num Co.).	Mn, 0.6-0.9; C, 0.4-0.6	41 R, UUO
916	Mudge's speculum		559, 561
917	Mumetal	Ni, 74; Fe, 20; Cu, 5.3; Mn, 0.7	JJU, 001
918	Muntz metal		555, 600
919	Muntz patents	<u> </u>	
		0-4	555 , 602
920	Murman's alloy		
* W1	ought iron, melted, deoxidized wit		adding C

* Wrought iron, melted, deoxidised with Al and cast with or without adding C.
† Climax Molybdenum Co. Made in three Mo-range classes: A: Mo, 0.250.4; B: Mo, 0.5-0.75; C: Mo, 0.75-1.

Index	<u> </u>		
No.	Name	Composition	Page
921	Murman's alloy	Al, 92; Zn, 4.4; Mg, 3.6	
922	Mushet steel	Fe; W, 6-8.2; Mn, 0.2-2.6;	
923	M. W. metal	Si, 0.1-1.6; C, 2.0-2.3 Similar to Electron	
924	Mystic metal	Pb, 89; Sn, 11; Bi, 0.1	
925	Naval aluminum	Al; Cu, 1.5; Mn, 0.9; Ni, 0.4; Fe; Si	
926	Naval brass	Cu, 66-59; Zn, 32-40; Sn, 1.2-0.5; Fe; Pb (s. also Tobin bronze)	470, 556, 602
927	Naval brass, N-c		556, 602
928	Naval bronze, No. 4 Naval journal bearing:	Pb, 44; Sn, 36; Sb, 16; Cu, 4	
929 930	Spec. HX	1 - 1	561
931	Naval phosphor bronze: P-c (cast)	Cu, 88; Sn, 8; Zn, 2.5; P,	56 3
022	B = (rolled)	0.5	
932 933	P-r (rolled) Naval valve bronze, M		560, 601 565
934	Navy aluminum bronze	1	578, 601,
935	Navy bearing	4.5	606
		Sn, 91-80; Sb, 4.5-15; Cu, 3.7-5	557
936	Needle metal,	Cu, 85; Sn, 8; Zn, 5.3; Pb,	565
937	Neogen	Cu, 58; Zn, 27; Ni, 12; Sn, 2; Al, 0.5; Bi, 0.5	
938	Nergandin	Cu, 70; Zn, 28; Pb, 2	469
939 940	Neusilber	Nickel silver Nickel silver	
941	Nevastain	Fe; Cr, 9.5; Si, 3.8; C, 0.4	
942	New capital steel	Fe; W, 14; Cr, 3.7; V, 0.1; C, 0.6; Mn; Si; P; S	472
943	Newloy	Cu, 64; Ni, 35; Sn, 1	
944	Newton's alloy (fusible)	Bi, 50; Sn, 19; Pb, 31	
945	N. G. F. alloy (U. S. Naval gun factory).	Al; Cu, 1-1.5; Mn, 0.75-2; Fe, ≯0.5; Si, ≯0.1	534
946	Nichroloy I	Ni, 75; Cr, 16; Fe, 8; Mn, 3	
947	Nichroloy II	Fe, 50; Ni, 40; Cr, 7; Mn, 3 (Index Nos. 946 and 947 for	
948	Nichroloy (cast)	wire or ribbon) Fe, 50; Ni, 23; Cr, 20; Mn,	
949	Nichrome	1; C, 1; V, 1; Si; Al Ni, 80-54; Cr, 10-22; Fe, 4.8-	467
		27; Cu, 0-11; Mn, 0-2; C; Si; Ti; Mo	
950	Nichrome I	Ni, 60: Fe, 25: Cr, 11: Mn, 4	480
951	Nichrome II (wire or ribbon)	Ni, 75; Fe, 12; Cr, 11; Mn, 2	
952	Nichrome II (cast)	Ni, 67-65; Cr, 20-22; Fe,	
953	Nichrome III	12-14; Mn, 1.5-2 Ni, 85; Cr, 15	467, 480
954	Nichrome IV	Ni, 80; Cr, 20	480,608
955	Ni-chro-zink	A die-casting alloy Hundredths of %	
	Nickel (commercial): Ni	+ Co Cu C Fe Si S	1
956 957	Electrolytic 99	0.80 4 Tr. 15 0 Tr. 0.20 30 3 45 3 3.5	473,
		Mn	480, 482,
958		0.00 15 15 55 10 2.5	600,
959 960		3.75 175 15 50 20 2.5 3.75 175 15 75 20 3	604,
		Cu	606
961	Shot:	7.80 26	J
962	A (for anodes) 98	0.15 18 12 38 10 2.5 3.75 18 45 38 22 2.5	
		1.75 20 30 185 575 2.5	
	D nickel	,	
963	Nickel-aluminum bronge		
964	Nickel-aluminum bronze	Ni, 40; Al, 30: Sn, 20; Cu, 10	
965	Nickel bearing	Cu, 50; Ni, 25; Sn, 25	
966	Nickel brass	Cu, 50-54; Zn, 35-44; Ni, 1.5-15; Al; Fe	
967	Nickel boron steel		530
968	Nickel bronze	Cu, 62-47; Ni, 12-31; Zn, 11-21; Pb, 0-18; Sn, 1-8; Bi, 0-0.1	
		,	

Index No.	Name	Composition	Page
969	Nickel bronze		i i
970	Nickel cerium steel	1.0 Fe; Ni, 2.2-3; Ce, 0.1-0.9; C, 0.4-0.75; Mn; Si	531, 605
971	superior	l	480
972	Nickel-chrome peerless	Ni; Cr, 16.5; Fe, 3.0; Mn, 2; C, 0.1	480
973		Ni; Fe, 25; Cr, 11; Mn, 3 v. Chrome-nickel steel	480
974	Nickel-chromium cast iron	Fe; C, 3-4; Ni, 0.4-5; Cr, 0- 0.5; Si; Mn; P; S	
975 976	Nickel coinage* (U. S. A.) Nickel-copper steel	Cu, 75; Ni, 25 Fe; Ni, 1-25; Cu, 0.4-10; C,	480 513
977	Nickelene	0.15-0.8; Mn; Si; P; S Cu, 55; Zn, 21; Ni, 13; Pb,	
978	Nickeline		475, 480,
979	Nickel-manganese bronze	20; Fe; Pb Cu, 53; Zn, 39; Sn, 2.6; Ni,	601, 606 656
980	Nickel-molybdenum steel	2.5; Mn, 1.7; Al; Pb (v. also Index No. 842)	804 605
		C, 0.4; Mn; Si; P; S	002,000
981	Nickel oreide	Cu, 63-66; Zn, 31-33; Ni, 2-6	
982 983	Nickel oreide		534
984	Nickel-silicon steel	Fe; Ni, 2.8-3.3; Si, 0.5-2.2; C, 0.35-0.5; Mn; P; S; Al	
	Nickel silver:		
985	10 %	10	480, 601
986 987	15 %	Cu, 60-56; Zn, 26-28; Ni, 14 Cu, 64-57; Zn, 21-28; Ni,	480 475, 480
988	18 %	15 Cu, 65–55; Zn, 17–27; Ni, 18	
989	20 %	Cu, 64-53; Zn, 16-27; Ni, 20	475, 480
990	25 %	Cu, 55; Ni, 25; Zn, 20	475, 480
991	30 %	Cu, 65-47; Zn, 5-23; Ni, 30 Cu, 70-56; Ni, 13-20; Zn,	
992	Casting	5.6-24; Sn, 0-4; Pb, 0-3.5	475, 480, 601
993	Cupping, drawing, milling, spinning	Cu, 59-54; Zn, 22-31; Ni, 12-20; Pb, 0-1	480
994	Rolling	Cu, 49; Zn, 39; Ni, 12	480
995	Turning	Cu, 65-59; Zn, 22-29; Ni, 12; Pb, 0-5	480
000	Nickel steel: Austenitic, above	Ni, 29; C, 0 to Ni, 0; C, 1.65	1 471
996 997	Martensitic, between	Ni, 29; C, 0 to Ni, 0; C, 1.65 Ni, 29; C, 0 to Ni, 0; C, 1.65 Ni, 13; C, 0 to Ni, 0; C, 1.65	471, 481, 482,
998	Pearlitic, between	Ni, 13; C, 0 to Ni, 0; C, 1.65 Ni, 0; C, 0 to Ni, 0; C, 1.65	600-
999	Cementitic	$C_{*} > 1.65$	ľ
1000	Brit. patent 133 069	Fe; Ni, 2.8; Mn, 0.9; Cr, 0.4; Mo, 0.3; Si, 0.3; Ti, 0.1; C,	
1001	Carpenter high Ni	0.2 Fe; Ni, 23–30	471, 482
1002 1003	Nickel-tungsten Nickel-uranium steel	W, 75-50; Ni, 25-50 Fe; Ni, 0.3-0.4; U, 0.2-0.4;	478
1004	Nickel-vanadium steel	C, 0.2–0.8 Fe; Ni, 3–3.3; V, 0.1–0.45;	513, 605
1005 1006	Nickel-sirconium	C, 0, 36; Si, 2.4; Mn; P; S Ni, 86; Si, 6; Zr, 1.5; C, 0.1 Fe; Ni, 3; Zr, 0.24; C, 0.4; Si,	532, 605
		2.4; Mn; P; S	302, 000
1007 1008	Ni-Cr-Al Ni-Cr-Cu	Ni, 88; Al, 12; Cr, 8 Ni, 85-80; Cr, 20-25; Cu,	
1009	Nicu steel	15-20 Fe; Ni, 2.2; Mn, 0.6; Cu, 0.5; C, 0.3	61 3
1010	NM steel†	Fe; Ni, 3-5; Mo, 0.3-0.7; C, 0.2-0.4; Mn, 0.3-0.5; Si,	605
1011	Noheet	0.1-0.2 Pb, 98; Na, 1.4; Sb, 0.11; Sn, 0.1	55B
* Car	tain European coins are made of		

^{*} Certain European coins are made of commercially pure Ni. † Carbon Steel Co. and Climax Molybdenum Co.

No.	Name	Composition	Page
1012 1013	Nongran. Non-oxidizable (U. S. patent 1 333 151)	Cu, 87; Sn, 11; Zn, 2-3; P Fe, 62; Cr, 25; Mn, 10; C, 1.1; Si, 0.95	56 5
1014	Non-pareil	Pb, 78; Sb, 17; Sn, 5	557
1015	Novo steel	Fe; W, 19; Cr, 2.9; C, 0.6	472
1016	N. P. L. alloy ("Y" alloy)		534, 601
1017	Non-shrinking (patent)	Pb, 87; Sb, 6; Sn, 6; Cd, 1.3.	1
	Numbered alloys	For the following alloys	ĺ
		known by a number (No.	1
	· ·	12, No. 193, No. 300, No.	
		473, No. 484), v. Index Nos.	
		66, 450, 575, 849, 850, respt.	
1018	Nürnberger gold	Cu; Al, 2-7.5; Au, 0.2-2.5	
1019	Oil hardening steel	Fe; Mn, 1.3-1.8; C, 0.8-1;	1
1000	Ober (seek)	Si, 0.3-0.4	522
1020	Oker (cast)	Cu, 72; Zn, 24; Fe, 2.3; Pb,	
1021	Oker (sheet)	1.1	170 550
1022	Oker I (sheet)	Cu, 55; Zn, 45; Sn, 0.5	470, 556
1023	Onion's alloy		469
1024	Optical bronze		476
025	Optical wire		480
026	Oranium bronze H		575, 601
1027	Oranium bronze M		574, 800
1028	Oranium bronse MH		574, 600
1029	Oranium bronze 8		574, 600
1030	Orëide (French gold)		555
		0-4.9; Pb	1
1031	Orëide, Brunswick		556
1032	Ormulu* (Or moulu)		ŀ
1033	Ormulu, large		476 , 563
1034	Ormulu, small	Cu, 94; Sn, 5.9	559, 601
	Osmiridium (natural):		
1035	Nevyanskite	Ir, 58-44; Os, 27-49; Pt, 0-10; Ru, 0-6; Rh, 1.5-3; Pd;	i.
1036	Siserskite	Fe; Cu Os, 57; (Rh + Ir), 34; Ru,	
		8; Pt; Pd; Au; Fe; Cu	
1037	Otto's speculum		559, 561
1038	Ounce metal		561
1039	"P" alloy		533, 599
1040	Packfong	l =	
1040	Packing	Pb, 82; Sn, 4.8 (v. also Index No. 56)	467, 567
l041	Packing, piston	Pb, 73–76; Sn, 12–14; Sb, 10–15	
1042	Packing, valve	Sn, 71; Sb, 24; Cu, 5	
1043	Packing, valve rod	Sn, 82; Sb, 10; Cu, 8	Į
044	Packing (Russian)	Zn, 99; Sn, 0.9; Pb, 0.3; Fe,	462. 545.
		0.2	546
l045	Paktong (Pai t'ung or white	Ni, 41-32; Cu, 26-40; Zn,	480
	copper)	16-37; Fe, 0-2.6	
046	Palau	Au, 80; Pd, 20	
047	Palau	Ni, 60; Pt, 20; Pd, 10; V, 10]
048	Palau	Au; Ir	
049	Pale yellow gold		1
050	Palladium alloy		
051	Palladium alloy		585
052	Palladium gold		1
053	Palladium gold	Cu, 40; Au, 31; Ag, 19; Pd,	
054	Parisian alloy	Cu, 69; Ni, 19.5; Zn, 6.5; Cd,	
	Paris metal	5	
055	Parker's chrome alloy	7. Lutecin	1
		Cu, 60; Zn, 20; Ni, 10; Cr, 10 Ni, 80; Cr, 15; Cu, 5	
056		Ni, 67; Cr, 18; Cu, 8.5; W,	
056 057	Parr		ĺ
1055 1056 1057 1058		3.3; Al, 2; Mn, 1; Ti, 0.2;	
056 057	Parr		556
056 057 058	Parr Parr	3.3; Al, 2; Mn, 1; Ti, 0.2; B, 0.2	85 6
056 057 058 059	Parr Parr	3.3; Al, 2; Mn, 1; Ti, 0.2; B, 0.2 Cu, 60; Zn, 35; Mn, 2-3; Fe,	<i>556</i>
056 057 058	Parr Parr	3.3; Al, 2; Mn, 1; Ti, 0.2; B, 0.2 Cu, 60; Zn, 35; Mn, 2-3; Fe, 1.2; Sn, 0.9; Pb, 0.4; Al, 0.2 Sn, 81-76; Sb, 6-11; Cu, 4.5-5; Pb, 3.5-13	858
056 057 058 059 060	Parr Parron's manganese bronse	3.3; Al, 2; Mn, 1; Ti, 0.2; B, 0.2 Cu, 60; Zn, 35; Mn, 2-3; Fe, 1.2; Sn, 0.9; Pb, 0.4; Al, 0.2 Sn, 81-76; Sb, 6-11; Cu,	858
056 057 058 059	Parr Parron's manganese bronse	3.3; Al, 2; Mn, 1; Ti, 0.2; B, 0.2 Cu, 60; Zn, 35; Mn, 2-3; Fe, 1.2; Sn, 0.9; Pb, 0.4; Al, 0.2 Sn, 81-76; Sb, 6-11; Cu, 4.5-5; Pb, 3.5-13 Sn, 65-60; Zn, 30-35; Cu, 5 Al, 96; Sb, 2.4; W, 0.8; Cu,	<i>858</i>
056 057 058 059 060	Parr Parson's manganese bronse Parson's white brass	3.3; Al, 2; Mn, 1; Ti, 0.2; B, 0.2 Cu, 60; Zn, 35; Mn, 2-3; Fe, 1.2; Sn, 0.9; Pb, 0.4; Al, 0.2 Sn, 81-76; Sb, 6-11; Cu, 4.5-5; Pb, 3.5-13 Sn, 65-60; Zn, 30-35; Cu, 5	<i>556</i>

^{*} Also gilded bronze, brass or copper.

	 		
Index No.	Name	Composition	Page
1064	Pattern alloy	Al, 90; Cu, 8; Sn, 2	536
1065	Pattern alloy	Pb, 87; Sb, 13	475, 557
	Pearlitic cast iron	v. Index Nos. 1071, 1072	
1066	Pen metal	Au, 67; Cu, 25; Ag, 8; v. also	58 6
		Index Nos. 410, 411, 1317	
1067	Pen metal	Cu, 85; Zn, 13; Sn, 2	555
1068	Percit	Similar to Stellite	
1069	Percussion cap brass	Cu, 95; Zn, 5	469, 555
1070	Percy Al bronze	Cu, 90-86; Al, 7.5-13; Pb,	
1071	Perlit cast iron (Perlitguss)	0-2; Mn, 0-1.5 Fe; (C + Si), 3.4-4.6; Mn;	
1070		P; S*	
1072	Perlit nickel cast iron	Fe; C, 1.7-3; Si, < 1; Ni; Mn; P; S†	
1073	Permalloy ,	Ni, 78; Fe, 21; Co, 0.4; Mn,	İ
		0.2; Cu, 0.1; C, 0.04; S, 0.04; Si, 0.03	}
1074	Permanite	A cobalt steel	
1075	Pewter	Sn, 89-74; Pb, 0-20; Sb, 0-	557
10.0	1 Cwtel	7.6; Cu, 0-3.5; Zn	100,
1076	Pewter (v. also Berthier's alloy)	Sn, 85; Cu, 6.8; Bi, 6; Sb, 1.7	1
1077	Pewter, cast gilt	Cu, 65-64; Zn, 32-34; Pb,	556, 600
	S	0.3-2.9; Sn, 0.2-2.5	
1078	Pewter, for clock work	Cu, 61-60; Zn, 31-37; Sn,	556, 602
		1.4; Pb, 0.7-0.9	
1079	Phenix	Fe, 75; Ni, 25	471, 481
1080	Phono-electric wire	Cu, 98.55; Sn, 1.40; Si, 0.05	
	Phosphor bronse:		١.
1081	Rolling	Cu, 96; Sn, 4.5; P, 0.1	464,
1082	Sheet	Cu, 95; Sn, 4-5; P, 0.5-1.0	560,
1083	Wire	Cu, 99; Sn, 1.2; P, 0.05 (v. also p. 389)	565, 601
	For B. E. S. A. Specifications	v. p. 386	, ***
1084	Phosphor copper A. S. T. M.	P + Cu, ₹99.75 ; P, ₹14	l
	Spec. B52-24T	(grade A) or <10 (grade B);	1
	-	Fe, ≯0.15	
1085	Phosphor tin A. S. T. M. Spec.	Sn, 90-95; P, 5-10; P + Sn,	
	B51-24T	≪99.50; P, ≪3.5	
1086	Pierrot metal, Beugnot	Zn, 83; Cu, 8.3; Sn, 7.6; Sb,	
		3.5; Pb, 3	ļ
1087	Pinchbeck	Cu, 83-94; Zn, 6.4-17	469, 555
1088	Pin wire brass	Cu, 61; Zn, 39	555, 601
1089	Pioneer metal	Fe; Ni, 35; Cu, 25; Mo, <5;	
1000	District Comments of the state	C, 0.2-0.5	
1090	Pirsch's German silver (v. also	Cu, 80-71; Ni, 16-17; Zn,	l
	Index No. 198)	1-7.5; Sb, 1-2.8; Co, 1-2;	Ì
1001	Distance of the Constitute	Fe, 1-1.5; Al, 0-0.5	555
1091 1092	Piston rings, Seraing	Cu, 89; Zn, 9; Sn, 2 Cu, 84; Zn, 8.3; Pb, 4.3; Sn,	555
1082	Piston rings, Stephenson	2.9; Fe, 0.4	ļ
1093	Placet	Ni, 60; Fe, 20; Cr, 15; Mn, 5	1
1083	Plastic bronse	v. Ajax plastic bronse (name	i
	Timetic bronse	also generally applied to	
		Cu; Pb; Sn alloys)	}
1094	Plastic metal	Sn, 81; Cu, 9.5; Sb, 8.6; Fe,	
		1.4	
1095	Platalargan	Pt; Al; Ag	
1096	Platine	Zn, 57; Cu, 43	465, 546
1097	Platine-au-titre	Ag, 83-65; Pt, 17-35	474, 588
1098	Platiniridium (natural)	Pt, 55; Ir, 28; Rh, 7; Cu, 3;	
	The state is	Fe, 4; Pd; As	105 100
1099	Platinite	Fe, 54-58; Ni, 46-42; C, 0.15	465, 482
1100	Platinoid	Cu, 60; Zn, 24; Ni, 14; W, 1-2	175 190
1101	Platinoid	Cu, 54; Ni, 25; Zn, 20; Fe,	410, 400
1102	Platinor	0.5; Mn, 0.2 Cu, 45; Pt, 18; Brass, 18; Ag,	
1104	A AUGULUI	9; Ni, 9	
1103	Platinum alloy	Ag, 2-5 parts; Pt, 1 part;	
		Cu, ≯1 part	
1104	\	Au, 70; Pt, 30	585
1105	Platinum gold, almost white	Pt, 58; Ag, 25; Au, 17	
1106	Platinum gold, white	Au, 60; Pt, 40	585
1107	Platinum-iridium	Pt, 100-80; Ir, 0-20	467, 588
		v. Birmingham platinum	
1108	Platinum lead	v. Dirimingham platinadi	
	Platinum lead Platinum-rhodium for thermo-	v. Di minguani piavinasi	467, 588

^{*}Pearlitic structure produced by using preheated molds according to U. S. P. 1 544 562.
†Sufficient Ni to precipitate graphite according to U. S. P. 1 564 284.

dex Io.	Name	Composition	Page	Index No.	Name	Composition	Pa
110	Platinum silver	Ag, 66.7; Pt, 33.3	474, 588	1162	Regulus of Venus	Cu, 50; 8b, 50	464
111		Ag, 73; Pt, 27	1	1163	Reichs bronze	Cu, 85; Fe, 7.5; Al, 0.6; Mn,	
112		Bi, 72; Al, 24; Bi, 3.7; Au,				0.5	
- 1	Index Nos. 1046-1048, 1177)	0.7		1164	Reith's alloy	Cu, 74.5; Sn, 11.6; Pb, 9; Sb,	ł
	Platinum substitutes:					4.9	
13		Ag, 70; Pd, 25; Co, 5		1165	Recetene	Ni; Fe	
14	-	Ag, 70; Pt, 25; Ni, 5		1166	Resistance	Cu, 57; Zn, 26; Ni, 18	480
15	Electrical			1167	Resistance	Cu, 85; Mn, 12; Fe, 3	١
16		Au, 68; Ag, 25; Pt, 7.5		1168	Resistance	Ag, 67; Pt, 33	474
17	Platnam	Ni, 54; Cu, 33; Sn, 13; Fe,		1169	Resistance, high, non-magnetic		
		0.5; Al, 0.3		1170	Resistance, Lunge	Cu, 87-84; Mn, 12-14; Fe,	l
18	Platnik	Pt; Ni				1.8-1.9 (for list of resistance	1
19	Plow steel	Fe; C, 0.6-0.9; S, 0.03; P,		l l		alloys v. p. 391)	i
- 1		0.02-0.03; Mn, 0.4-0.5; Si,		1171	Resistin (resistance)	Cu, 87-85; Mn, 12; Fe, 1.8-3	1
		0.15-0.17	600, 602	1172	Rezistal	Fe; Ni, 22; Cr, 5.5; Si, 1.25	1
20	Plumber's white, No. 1	Cu, 54; Zn, 27; Ni, 17; Pb, 2			D 14-1/77 C 1 400 707	C, 0.15	1
21	Plumber's white, No. 2	Cu, 54; Zn, 25; Ni, 13; Pb,		1173	Rezistal (U. S. patents 1 420 707		l
l		7; Sn, 1		l i	and 1 420 708)	C, 0.7 (v. also Index No.	1
22	Plumber's white, No. 3	Cu, 58; Zn, 25; Ni, 15; Fe,				179)	1
		1; Pb, 1; Mn, 0.3		1174	Rheotan	Cu, 84; Fe, 12; Zn, 4; Mn,	1
23	Plumbic bronse	Cu, 69; Pb, 26; Mn, 1.7; Sn,	ļ.			2	ł
		1.5; Fe, 1.2		1175	Rheotan	Cu, 84; Mn, 12; Zn, 4	l
24	Ponsard's high Mn brass	Cu, 75-50; Mn, 20-25; Zn,		1176	Rheotan II	Cu, 53; Ni, 25; Zn, 18; Fe, 5	
!		2-15; Fe, 0-16	l l	1177	Rhotanium	Au, 90-60; Pd, 10-40	١
25	Popes Island metal*	Cu, 70; Zn, 15; Ni, 14; ?, 1	480	1178	Richards alloy	Zn, 96; Al, 4	466
26	Poro-bronze	Sn, 80; Sb, 13; Cu, 7	476	1179	Richards bronze	Cu, 55; Zn, 42-43; Fe, 1;	556
27	Poterie d'étain	Sn, 90; Sb, 9; Cu, 1	476			Al, 2-1	1
28	Potingris	Potinjaune plus Pb and Sn	1	1180	Richardson's speculum	Cu, 65; Sn, 30; As, 2; Si, 2;	1
29	Potiniaune (French yellow					Zn, 0.7	1
	brass)	Cu, 72; Zn, 25; Pb, 2; Sn, 1.2		1181	Rich gold metal	Cu, 90; Zn, 10	666
30	Pot metal	Cu, 80-67; Pb, 20-33	567	1182	Rich low brass	Cu, 85; Zn, 15; Pb; Fe	556
31	Potosi silver	Nickel silver		1183	Roberts-Austen (purple gold)	Au, 79; Al, 21	i i
32	Presto steel (Carpenter)	Fe; Cr, 1.4; C, 1.1		1184	Rod brass	v. Index Nos. 603, 604	1
33	Preuss' alloy	Fe; Co, 34; Si, 0.2-1.5; C,	1	1185	Romanium	Al, 97; Ni, 1.8; Cu, 0.3; Sb,	ł
		0.04-0.06				0.8; W, 0.2; Sn, 0.2	l
34	Primer gilding	Cu, 97; Zn, 3; Pb; Fe	469, 555	1186	Roma bronze	Cu, 59; Zn, 41; Pb, 0.4; Al,	556
35	Prince's metal	Cu, 83-61; Zn, 17-39	555, 601			0.2; Fe	1
36	Prince's metal	Sn, 85; Sb, 15	557	1187	Ronia metal	Brass + Co; Mn; P	1
37	Projectile steel (v. also Index	Fe; Cr, 2.4; C, 0.8; Mn, 0.4;	507	1188	Rosein	Ni, 40; Al, 30; Sn, 20; Ag, 10	
	No. 1142)	8i, 0.2; P; 8		1189	Rosenhain and Archbutt alloy	l	537
38	Promethium	Cu, 67.5-67; Zn, 30; Al, 2.5-3	556		(forging)	Al, 72; Zn, 25; Cu, 3	1
39	Propeller bushing	Zn, 69; Sn, 19; Sb, 7; Cu, 5		1190	Rose's alloy	Bi, 50; Pb, 28; Sn, 22	1
40	Propeller bushing	Bronse + Hg		1191	Rose's alloy	Bi, 35; Pb, 35; 8n, 30	
41	Proplatinum	Ni, 72; Ag, 24; Bi, 3.7; Au,		1192	Ross' alloy	Cu, 68; Sn, 32	550
40	75	0.7		1100	Rotguss	v. red bronze	1
42	Protective deck plate	Fe; Ni, 3.5; Cr, 1.5; C, 0.2-0.3	1 .	1193	Rotoxit	Cu; Si (non-corrosive)	
43	Protective (torpedo defense)	T 37 070 C 04	471, 482	1194	Rübel bronze (Rübel metal)	Cu, 57-55; Zn, 39-40; Fe,	1000
	netting	Fe; Ni, 27.8; C, 0.4	ļ		Dated because	1.5-2; Ni, 1-3; Al, 0.5	
44	Pyros	A heat resisting alloy	i	1195	Rübel bronze	Cu, 39; Fe, 34; Ni, 18; Al, 8.4	
45	Q-alloy (cast, grade K-1)	Ni, 68; Cr, 20; Si, 2; Al, 1;	1	1196	Rübel bronze	Cu, 80; Al, 10; Fe, 4.5; Ni,	1
	١, , ,	(Fe, etc.), 10		1		4.5; Mn, 1	1
46	Queen's metal	Sn, 73-51; Pb, 8.8-17; Sb,			Ruols alloys. (Ruols silver)		
	0	9-17; Zn, 8.9-13			Rupert's metal	v. Prince's metal	
47	Queen's metal	Sn, 89; Sb, 7; Cr, 3.5; Bi, 1		1197	Rustless sheets	Fe; Cu, ≯0.2; C	470
48	Queen's metal	Sn, 89-87; Sb, 7-8.5; Cu, 3.5;	1	1198	Rustless steel (Carpenter)	Fe; Cr, 20; Cu, 1; C, 0.3	60.
	Dell'arel (et es) + 2 m es	Zn, 1	1	1199	Salge metal (antifriction)	Zn, 86; Sn, 9.9; Cu, 4; Pb, 1.1	4
	Rail steel (carbon) A. S. T. M.			1200	Sallit's speculum	Cu, 65; Sn, 31; Ni, 4	1
40	Spec. A1-24:	C/0.27 0.5514: 35 0.0.11	470 465	1201	Samlegierung	Fe; Mn, 13; Si, 10.2; Al, 5.8;	
49	Bessemer	C(0.37-0.55)†; Mn, 0.8-1.1;			8	C, 2.5; Cu, 0.3	
	0	P, ≯0.1; Si, ≯0.2	516, 600	1202	Sceptre brass	Cu, 62; Zn, 36; Fe, 1.4; Al,	056
50	Open hearth	C(0.5-0.75)†; Mn, 0.6-0.9;			0.1	1.1; Pb, 0.07	
	Ball steel (See See S	P, ≯ 0.04; Si, ≯ 0.2	492, 600	1203	Schomberg alloy	Zn, 87; Sn, 10; Cu, 3	
	Rail steel (manganese)	v. Index No. 855	1	1204	Schomberg bearing	Zn, 59; Sn, 40; Cu, 0.4; Pb,	470
51	Rakel's metal			1	0.3	0.2; Fe, 0.2	J
52	Randolf metal			1205	Schulz alloy	Zn, 91; Cu, 6; Al, 3	546
53	Raymur	Cu; Ni	102 100	1206	Scleron (Aeron)	Al, 98-85; Cu; Ni; Zn; Li; Si;	
54	Rayo	Ni, 85; Cr, 15	467, 480	100*	S b	Mn	601
55	Reactal		1	1207	Screw brass	Cu, 78; Zn, 16; Sn, 4.5; Pb,	1
**	Reamur	v. Malleable cast iron		,,,,,	g	1.5	
56	Red brass (v. Tombac)	Cu, 89-83; Zn, 5-12; Pb, 3-	1	1208	Screw bronze	Cu, 94; Zn, 5; Sn, 1; Pb, 0.5	
	Dallan (D.)	10; Sn, 2-5	700	1209	Screw-nut bronze	Cu, 86; Sn, 11; Zn, 2.3	584
57	Red bronze (Rotguss)	Cu, 93-82; Sn, 4-10; (Zn +	569	1210	Screw wire brass	Cu, 62; Zn, 38	656
	la	Pb), 3-10		1211	Sea water alloy	Fe; Ni, 17; Mn, 5; C; 0.7; Si	J
58	Red gold	Au, 75; Cu, 25	586	1212	Sea water alloy	1	511
59	Red metal (v.also Index No. 56)		1			C, 0.5; Si, 0.4; Co; Cu	1
60	Red ray	Similar to Chromel B	1	1213	Sea water bronze		1
61	Regel-metall	sn, 83.3; Sb, 11.1; Cu, 5.6	557	1	l	5.5; Bi, 1	1
				1214	Secretan	Cu, 95-91; Al, 9-5; Mg, 1.5;	

^{*} Generic name for a series of French alloys.
† Content increases with weight per unit length.

ndex No.	Name	Composition	Page	Index No.	Name	Composition	Pa
1215	Selva metal	A high topoile hear-	i	1266	Pure silver	Ag, 72; Cu, 28	.
1215	Semiplastic bronze		562, 567	1267	Quick		
1217	Semi steel		181 178	1268	Sterling		ł
	Semi steel				Similargent		ì
		bined C, 0.5-0.81; Si, 1.4-	497	1269	, -	Nickel silver	1
		1.8; Mn; P; S	l	1270	Similor		1
1218	Shaku-do (Shakdo)	Cu, 96-94; Au, 3.7-4.2; Ag,		1271	Sin-chu (Japanese brass)	Cu, 66.5; Zn, 33.4; Fe, 0.1	469,
		1.6-0.1; Pb; Fe; As		1272	S-less steel (Brearly)	Fe; Cr, 13; C, 0.3	508,
219	Sheathing bronze	Cu, 45; Ni, 32.5; Sn, 16; Zn, 5.5; Bi, 1.5		1273	Smitter Lenian	Cu, 72; Ni, 13; Zn, 9.8; Sn, 2.3; Fe, 2; Bi, 1	
1220	Sheet brass		469, <i>556</i>	1274	S. M. L. alloy (Monel)	Ni, 68; Cu, 28; Fe, 2.5; Mn, 1.5	469, 604,
1221	Sheet bronze	Cu, 100-90; Zn, 0-10	469, 555	1275	S. M. steel (Carpenter)	Fe; Si, 2; Mn, 0.8; C, 0.5-0.6	525,
222	Sheffield (Ni silver)		480, 601	1276	Soft gun metal (No. 11 alloy)	Cu, 90; Sn, 6.5; Zn, 2; Pb, 1.5	566
223	Sheffield, hard alloy		475, 480	1 1	Solder (A. S. T. M. Spec. B32-	1.0	1
224	Shell head brass				31):	Annua Man Man	1
			555, 601			Approx. Max. Max.	ĺ
225	Shibu-ichi				Class A, Grade	Sn Pb Sb Cu	١.
		Fe		1277	0	63 37 0.12 0.08	1)
226	Ship nail alloy			1278	1	50 50 .12 .08	11
227	Ship nail brass	Cu, 64; Zn, 25; Pb, 8.5; Sn,	Į	1279	2	45 55 .12 .08	4
		2.5	1	1280	3	40 60 .12 .08	(5.
228	Sibley alloy	Al, 67; Zn, 33	468, 536	1281	4	37.5 62.5 .12 .08	11
229	Sibley casting alloy		468, 536	1282	5		11
230	Sideraphite		1	"	Class B, Grade	1	1'
		W, 4	1	1283	1	49.25 50 0.75 0.15	
231	Siemens Heleka		I	1284	2		007
	Siemens Halske		l			la contraction of the contractio	1
232	Silchrome		i	1285	3		1
!		6.1; Mn, 0.8; C, 0.14	l	1286	4	1	1
233	Silchrome wire	Fe; Cr, 18; Si, 3; W, 3; C, 0.3	I	1287	5	31 67 2 .15	1
234	Silcrome	Fe; Cr, 3.2-8.3; Si, 3.5; C, 0.4	l			All grades: $Zn + Al = 0$;	1
235	Silico-chromium steel	Fe; Cr, 9-12; Si,≯5; C, ≯1.2		1		other impurities, ≯0.1	1
236	Silico-manganese brass		558	1288 1289	Solder, S. A. E. Specs. 1, 2, 3	Practically same as 1, 2, 3,	
237	Silico-manganese steel		472, 525	1290 1291	Solder, S. A. E. Spec. 4	above. Pb, 75; Sn, 24.5-25.5; Sb,	187
238	Silico-spiegel				Class A	> 0.12; Cu, $> 0.08Zn + Al = 0; other impuri-$	1
239	Silicon bronze	Cu, 98-91; 8n, 1.5-9; 8i, 0.05	559			ties, ≯0.1	1
240	Silicon-copper A. S. T. M. Spec.	Cu; Si, 10-12; Fe, > 0.75; Al,		ļ	Solder:		
	B53-24T	Sn, Zn, each > 0.25; Cu + Fe + Si, <99.4 (v. also Cuprosilicon)		1292	For B. E. S. A. Specifications Bismuth	Sn, 50-20; Pb, 25-40; Bi, 25-40	
241	Silicon-ferro-chrome		473	1293	Brazing		
242	Sillman bronze		578	1294	Half and half		467,
243	Silicon-nickel	Ni, 80-40; Si, 16-18; Fe, 2.5-		1295	Hard	Cu, 57-50; Zn, 43-50	470.
	art.	30		1296	nard yellow	Cu, 53; Zn, 43; Sn, 1.3; Pb,	470,
244	Silicon-manganese		473	1		0.3	1
245	Silicon-steel			1297	Plumber's		467,
i			525	1298	Readily fusible		465
246	Silumin*		543, 601	1299	Refractory		465,
247	Silvel	Cu, 73; Mn, 12; Sn, 12; Fe.	1	1300	Soft, nearly white	Zn, 50; Cu, 44; Sn, 3.3; Pb,	1
l		1.8; Pb, 0.5; Al, C.3	1			1.2	
248	Silvel		Ī	1301	Tinman's	Sn, 67; Pb, 33	487.
		6.5; Fe, 2.2; Pb, 0.5; Al, 0.1	l	1302	Very refractory	Cu, 58; Zn, 42	465
49	Silver (Rupee)		584, 587	1303	Very soft, white	Cu, 57; Zn, 28; Sn, 15	1700
50	Silver (U. S. coins)			1304	White	Zn. 60; Cu. 40	10-
- 1	Cilver bronze	Ag, 90; Cu, 10	584, 587	****		211, 00; Cu, 10	465
51	Silver bronze	2; Sn, 1			Solders for various metals and alloys, v. under their names		
52	Silver bronze	Cu, 68; Mn, 18; Zn, 13; Al, 1.3; Si, 0.3			Sondermessing	Special (alloy or high tensile) brass	
53	Silver bronze		464, 585	1305	Sorel's alloy	Zn, 80; Cu, 10; Fe, 10	1
54	Silver foil		-0., 500	1307	Spandau alloy (Austrian alloy)	Zn; Cu, 4-6; Al, 2-3.5	546
55	Silver foil	Sn 08: Cu 9 8	561	1308	Speculum	Cu, 69-67; Sn, 31-33 (i.e.,	
56	Silver foil	Sn 91 Zn 92 Dt 04	1			alloys of the approximate	"
57	Silverine	Cu, 80-71; Ni, 16-17; Zn, 1-8; Sn, 1-2.8; Co, 1-2; Fe,				composition CusSn and known by various names.	
1		1-1.5	l	1		For other speculum alloys,	1
58	Silverite		l	1		v. p. 391. Other intermetal-	l
59 60	Silver metal	Zn, 67; Ag, 33				lic compounds as Mg:Al: are often suitable (v. equilibrium	
	Silver solder:		l	1		diagrams).	l
ا بھ		Am 40: Sp. 40: Co. 14: 7: 2	l	1309	Snark nlug wire		470
61	Bureau of Standards			1 1	Spark plug wire	Ni; Mn, 2-6; Fe; Cu	473,
	Common		1	1310	Spelter wire	Cu, 64; Zn, 36; Pb, 0.4; Fe,	555
62	French	Ag, 66; Cu, 23; Zn, 10		l l		0.2	l
63				1311	Spiauter (hard sinc)	Zn, 90; Sb, 8; Cu, 2	1
63 64	Hard	Ag, 80; Cu, 13; Zn, 6.8		1			l
	Hard Medium	Ag, 80; Cu, 13; Zn, 6.8 Ag, 75-70; Cu, 20-23; Zn.		1312	Spiegeleisen (A. S. T. M. Spec. A98-25T):	Fe; Mn, 15-30; C, 5-6; Si,	

Name

Composition

Soft (B)*..... Fe; C, ≥0.15; Mn, ≥0.7; P, 470, 487, ≯0.115

Soft (O. H.)*..... Fe; C, 0.08-0.18; Mn, > 0.55; 470, 487,

Page

600, 602

Index No.	Name	Composition	Page	Ind No
1313	Grade A	Fe; Mn, 19-21; C, 6.5; P,		133
1314	Grade B	0.15; S, 0.04; Si; S* Fe; Mn, 16-19; C, 6.5; P,		13-
		0.25; S, 0.05; Si; S*		
315	Spoon metal	Nickel silver		13
316 317	Spring brass	Cu, 72-67; Zn, 28-33; Pb, Fe Cu, 50; Au, 25; Ag, 25 (r.	586	
	Spring gold	also Index Nos. 410, 1066)	000	
1319	Spring steel: A. S. T. M. Spec. Carbon, A14-16, grade A	Fe; C, 0.9-1.1; Mn, ≯0.5;	470, 492,	
		P, ≯0.05; S, ≯0.05	602, 608	
1320	Special carbon, A68-18	Same, but Si, 0.25-0.50	492, 493	13
1321	Cr-V, A60-16, grade A	Fe; Cr, 0.8–1.1; V, 0.15; C, 0.45–0.55; Mn, 0.5–0.8; P, > 0.05† or 0.04; S, > 0.05	472, 509, 603, 606	13
1322	Si-Mn, A59-16, grade A	I =	472, 523,	13
		0.8; P, ≯0.05† or 0.045;‡ S, ≯0.045; Si, 1.8-2.1		13
	For B. E. S. A. Specifications	v. p. 386		
1323	Stainless iron	Fe; Cr, 12-14; Mn, 0.1; C, 0.1; Si; P; S	508, 603, 606	13
1324	Stainless steel	Fe; Cr, 11-14; Mn, 0-0.5; C, 0.3-0.5; Si; P; S	471, 508, 600, 603	13
1325	Stalloy	Fe; Si, ca. 2.5; C		13
1200	Standard gold:	A., 00, Cr. 0	E00 E00	١.,
1326 1327	Great Britain	Au, 92; Cu, 8 Au, 90; Cu, 10	586, 589 586, 590	13
1328	Standard phosphor bronze "S" (Pa. R. R.)	Cu, 79.7; Sn, 10; Pb, 9.5; P, ≥ 0.8	562	13 13
1329	Standard silver	Ag, 92.5; Cu, 7.5	584, 589	
1330	Standard (cadmium) silver	Ag, 92.5; Cu, 5.75; Cd, 1.75	584	13
1331	Stanniol	Sn, 96; Pb, 2.4; Cu, 1; Ni, 0.3; Fe, 0.1		13 13
1332	Statuary bronze	Cu, 95-88; Sn, 1.4-10; Zn, 0-9.5; Pb, 0-6; P; Ni	475, 476, 559-572	13
1333	Steam bronze	Cu, 88; Sn, 8.1; Pb, 2; Zn, 2 For a list of steels, v. p. 390	567	13
1334		r. pp. 372, 387 Classified into types as fol-		13
	hearth or electric steel for forging (A. S. T. M. Spec.	lows: A: C steel		13
	A17-21)	B: Ni steel (Ni, ≥3) C: Cr-Ni steel (Ni, 1-1.5;		13
		Cr, 0.45-0.75)	i	13
		D: Cr-Ni steel (Ni, 1.5-2; Cr, 0.9-1.25)		
		E: Cr-Ni steel (Ni, 2.75-3.25; Cr, 0.6-0.95)		13
		F: Cr-Ni steel (Ni, ≯3; Cr, ≯1)		13
		G: Cr steel (Cr, 0.6-0.9) H: Cr-V steel (Cr, 0.8-1.1;		
		V, 0.15)	1	13
		Specifications also limit im-		
		purities in each type		
		Each type subdivided into grades according to carbon content		13
		For C steel; grade 1 = C,		-0
		0.05-0.15; grade $8 = C$,		13
		0.45-0.60		13
		For alloy steels, same range is covered by grades 11 to 17.		13
	For B. E. S. A. Specifications		480 405	13
1335	Castings (A. S. T. M. Spec.	C, ≯0.45; P, ≯0.07† or 0.06‡	470, 487- 491	13
	Commercial bars (A. S. T. M. Spec. A80-24):	•		13
1336	Dead soft (O. H.)§	Fe; C, 0.05-0.12; Mn, ≯ 0.55;	l .	
1337	Screw (B)§	P, ≯0.05; S, ≯0.06	488, 600	13
-001	Sciew (D/g	Fe; C, 0.08-0.16; Mn, 0.6- 0.8; P, 0.09-0.13; S, 0.075- 0.15		13 13
1990	Screw (O. H.)§	l .	488, 489,	13
1338	Deter (O. 11.78	1 - 0, 0, 0, 100	1000, 1000,	

1340	Soft (O. H.)*		
1341	Welding (B)*	P, ≥ 0.05 ; S, ≥ 0.06 Fe; C, ≥ 0.12 ; Mn, ≥ 0.6 ; P,	600, 602 470, 487.
.011	wording (2)	≯0.115; S, ≯0.08	600, 602
		Other grades specified by	
		points of carbon, thus: O. H. 25-40 carbon (1 point =	
		0.01 %)	
	For B. E. S. A. Specifications	r. p. 386	
1342 1343	Steel bronze (Stahl bronze)	Cu; Al, 8.5; Pb, 1-2 Cu, 59-52; Zn, 36-43; Mn,	556
1010	name also applied to Uchatius	2.5-3; Fe, 1; Al, 1	
	bronze		
1344	Stellite	Co, 80-55; Cr, 20-35; W, 0-10	468, 593
1345	Stellite (No. 2)	Co, 56; Cr, 34-40; W, 9.2; C,	468, 593
		1.5-2; Fe, 0-1	
1346	Stellite (No. 3)	Co, 55; Cr, 20-23; W, 20-15; Fe, 5-3; C, 1.5-4	593
1347	Stellite	Co, 35; Cr, 26; W, 13; Fe,	59 3
	g. w.	10; Mo, 10; C, 1.8	
1348	Stellite	Co, 61-45; Mo, 24-40; Cr, 13-15; Fe	093
1349	Stellite	Co, 60-55; W, 25; Cr, 15;	
		Mo, 0-5	ł
1350 1351	Stephenson's alloy	Sn, 31; Fe, 31; Cu, 19; Zn, 19 Pb, 82-70; Sb, 12-23; Sn,	
		3.2-17	1
1352	Stereotype metal	Sn, 60; Pb, 35; Sb, 5	
1353 1354	Stereotype, standard (English) Sterlin	Pb, 83; Sb, 13; Sn, 4.5 Cu, 69; Ni, 18; Zn, 13; Pb,	557 480
1001		0.8	
1355	Sterline	Cu, 68; Ni, 18; Zn, 13; Fe, 0.8	480
1356	Sterro metal	Cu, 60-55; Zn, 38-42; Fe, 1.8-4.7; Sn	556
1357	Sterling metal	Cu, 66; Zn, 33-27; Fe, 0.7;	556
1358	Stone bronze	Sn; Pb, 0-2 Cu, 58; Zn, 39; Fe, 1.5; Al,	556
1250	Standa English and harms	0.8; Mn, 0.5; Sn	500 601
1359 1360	Stone's English gear bronze Structural steel† (for bridges)	Cu, 89; Sn, 11; P Fe; C; P, ≯0.06‡ or 0.04;§	560, 601
	A. S. T. M. A7-24	S, ≯0.05 (tensile properties	
	F D F G A Gi6i	specified)	ł
1361	For B. E. S. A. Specifications Structural nickel† steel A. S.	r. p. 386 Fe; Ni, ≰3.25; C, ≯0.45;	1 472,
	T. M. A8-24	Mn, ≯ 0.7; P,≯ 0.05; S,≯ 0.05	
1362	Structural nickel† steel rivets,	Fe; Ni, ≪3.25 ; C, ≯0.30;	
	same spec.	Mn, ≯0.6; P, ≯0.04‡ or	602,
1363	Structural silicon steel, A. S.	0.03;§ S, ≯ 0.05 Fe; C, ≯ 0.40; Si, <0.2; P,	607 487–491
1000	T. M. A94-25T	≯0.06‡ or 0.04;§ S, ≯0.05	
		(ladle analysis)	602, 606
1364	Stuffing box alloy	Cu, 61.5; Ni, 15.5; Zn, 11;	
1365	Suhler white copper	Pb, 10; Sn, 2 Cu, 40; Ni, 32; Zn, 25; Pb,	
		2.6	
1366 1367	Sun bronze	Co, 60-40; Cu, 30-50; Al, 10 Cu, 95; Al, 5	674,600
1368	Superbronze	Cu, 57-69; Zn, 21-38; Mn,	556
		3-3.2; Fe, 1.3-2; Al, 1.2-5	
1369	Susini	Al; Cu, 1.5-4.5; Mn, 1-8; Zn,	534
1370	T. metal	0.5-1.5 Al, 95; Mg, 3.8; Fe, 0.5; Si,	161, 542
		0.5; Cu, 0.1	
1371	Talmi gold	Cu, 90; Zn, 8.9; Au, 0.9 (Au welded on by rolling)	1
1372	Talmi gold	Cu,86; Zn, 12; Sn, 1. 1; Fe, 0.3	556
1373	Tandem	Pb, 78; Sb, 17; Sn, 5.9	557
1374	Tantiron	Fe, 83.5; Si, 15; C, 1	475
1000	Tarnac	r. Manganin	
1:475	m 1 . 1		
1375	Taylor white	Fe; W, 8.5; Cr, 3; C, 0.75-1	
1376	Taylor white		
1376		For list v. p. 390	

^{*} As specified.

[†] Acid.

[‡] Basic.

[§] B = Bessemer; O. H. = Open hearth.

[†] Must be open hearth.

[‡] Acid. § Basic.

Index No.	Name	Composition	Page	Index No.	Name	Composition	Page
1377	Telegraph bronze	Cu, 80; Pb, 7.5; Zn, 7.5; Sn, 5	561	1424	Tutenag	Commercial Zn, incorrectly	
1378	Tenax metal	Pb, ≯ 1.2; Fe, ≯ 0.35	1			applied to Paktong, i.e., Ni silver	1
1379	Tensilite	Cu, 67-64; Zn, 24-29; Al, 3.1-4.4; Mn, 2.5-3.8; Fe,		1425 1426	Two to one	Cu, 66.7; Zn, 33.3 Pb, 70; Sb, 18; Sn, 10; Cu, 2	555, 60
		0-1.2; Sn					
1380 1381	Terne metal Tetmajer Al bronze	Pb, 88; Sn, 18; Sb, 1.8 Cu, 93-86; Al, 4.6-10; Si,		1427	(Common)	Pb, 60-56; Sn, 10-40; Sb, 4.5-30	
1382	Therlo	1-2.7; Fe, 0.7-1 Cu, 85; Mn, 13; Al, 2		1428	(English, French, German)	Pb, 78-55; Sb, 5-30; Sn, 2-35; Cu, 0-1	
1383	Thermalloy	Fe, 72; Cr, 25; Mn, 2; Ni, 0.1; C, 0.1	,	1429 1430	(Standard)	Pb, 58; Sn, 26; Sb, 15; Cu, 1 Cu, 57; Ni, 20; Zn, 20; Al, 3	
1384	Thermit (bearing)			1431	Uchatius (Uchatins?) bronze	Cu, 92; Sn, 8	559, 60
1385	Thoran	W: W*C	ł	1432	Udylite	Cd plating	
1386	Three-twenty (3/20)	Al, 77; Zn, 20; Cu, 3	538, 601	1433	Ulcometal (Frary)	Pb; (Ba + Ca), 1-2	556
1387	Thurston's brass	Cu, 55; Zn, 44.5; Sn, 0.5	470, 556	1434	Ulcony	Cu, 65; Pb, 35	567
1388	Tico	Fe, 67; Ni, 30; Mn, 1.1; Cu, 1.1	482	1435	Ultra capital steel	Fe; W, 17; Cr, 3.4; V, 0.1; C, 0.7; Mn; Si; P; S	472
1389	Tiers argent	Al, 66; Ag, 33 For list v. p. 389		1436	Unmagnetizable watch wheels	Pt, 62.75; Ni, 18; Cu, 18;	
1390	Tinfoil	Sn, 88; Pb, 8; Cu, 4; Sb, 0.5		1437	Uranium steel	Cd, 1.25 Fe; U, ≯3; C, 0.2-0.7; Mn;	479
1391 1392	Tinsel	Sn, 60; Pb, 40 Cu, 97; Zn, 2; As, 0-1; Sn,		1438	U. S. N. brass	Si; V Cu, 80-78; Zn, 13-16; Sn, 4;	
1393	Titan bronse	0.5-0 Cu, 56; Zn, 46; Fe, 0.3; Al,	558	1400	U. S. N. gun bronze	Pb, 3; Fe	
		0.2		1439	U. S. N. valve bronze		567
1394	Titanium steel	Fe; Ti, 0.3-9; C, 0.1-0.8; Mn; Si; P; S	478	1440	Va alloy		
1395	Titan metal	v. Promethium		1441	Valve bronze		563, 56
1396	Tobin bronze (American Brass Co.)	Cu, 60-59; Zn, 38-39; Sn, 2; Pb; Fe	556		Valve steel:	0-9; Pb, 0-6; P	
1397	Tombac	Cu, 92-82; Zn, 8-18	469, 555	1442	Brit, patent 131 492	Fe; Si, 5.8; Ti, 1.5; V, 1.5	1
1398	Tombac (common)	Cu, 72; Zn, 28	555, 600	1443	Chrome		470, 50
1399	Tombac (French)	Cu, 80; Zn, 17-20; Sn, 0-3	555, 556			Si, 0.1-0.2; S; P	603, 60
1400	Tombac (red Vienna) Tool steel:	Cu, 98; Zn, 2	469, 555	1444	Chrome	0.1-0.3; Mn, 0-0.1; S; P	470, 50
	Carbon	v. High carbon steel		1445	Tungsten	Fe; W, 14; Cr, 3; C, 0.6	478
1401	High speed	Fe; W, 12-14; Cr, 3-4; V, 1.5-2; C, 0.6-0.8 (v. also p. 390)		1446	Very hard (Brit. patent 320 996)	C, 3; Ce, 2	
1402	Tophet	Ni, 61; Fe, 26; Cr, 10; Mn, 3	100	1447	For B. E. S. A. Specifications Vanadium brass		
1403	Torpedo bronze	Cu, 62-59; Zn, bal.; Sn, 0.5-	470, 556,	1448	Vanadium bronse	1	İ
1404	Toucas (Toncas?)	1.5; Pb; Fe Cu, 36; Ni, 29; Fe, Pb, Sn,	602	1449	Vanadium steel*	Mn; Si; P; S	472, 51 604–60
1405	Tarana and an atal	Sb, Zn, each 7.1	100 555	1450	Vanalium	Al; V	
1406	Tournay's metal Tourun Leonard's metal	Cu, 82.5; Zn, 17.5 Sn, 90; Cu, 10	469, 555 561	1451	Vaucher's alloy	Zn, 75; Sn, 18; Pb, 4.5; Sb,	rl
1407	Trabuk metal	Sn, 88; Ni, 5.5; Sb, 5; Bi, 2	001	1452	Verilite	2.5 Al, 96; Ni, 1.5; Cr, 1.5; Cu,	104
1408	Trojan steel (Carpenter)	Fe; Ni, 2; Cr, 1; C as desired	A72. 510	1402	Veriate	1-0; Mn, 0.1	202
1409	Tube brass	Cu, 70-60; Zn, 30-40; Pb; Fe	469, 555,	1453	Verilite	Al, 96; Cu, 2.5; Fe, 0.7; Si,	633, 60
1410	Tue-Tur	Cu, 61-59; Zn, 21-29; Ni, 13-	600, 602 475, 480	1454	Vestalin	0.4; Mn, 0.3 Fe; Ni, 28; C	471, 48
		18; Fe, 0.3	i	1455	Victor bronse	Cu, 59; Zn, 39; Al, 1.5; Fe,	
1411	Tuls	Ag with a small amount of Cu and Pb			Victoria aluminium	1.0; V, 0.03 v. Partinium	
1412	Tungsten brass	Cu, 60; Zn, 34; Al, 2.8; W, 2; Ni, 0.75; Mn, 0.7; Sn, 0.2		1456	Victor metal	Cu, 50; Zn, 34; Ni, 15; Fe, 0.3; Al, 0.1	480
1413	Tungsten brass	Cu, 60; Zn, 22; Ni, 14; W, 4		1457	Virginia silver	Nickel silver	
1414	Tungsten filaments	W; ThO2, 0.5-0.75	462, 592	1458	VM steel (Crucible Steel Co.	Fe; Cr, 0.7-1; Mo, 0.35-0.85;	472.60
1415	Tungsten powder (A. S. T. M.	W, ∢95; maximum amounts		İ	of America)	V, ≯0.17; Mn, 0.4-0.6	' '
	Spec. A97-25T)	of other elements; O, 1.0; Si, 0.75; C, 0.5; P, 0.05; S,		1459 1460	Volomit Vulcan-hardite	Similar to Stellite Ni; etc. (v. also Index No.	
		0.05; As; Bi; Cu; Sb; Sn, each 0.03		1461	"W" Alloy	679) Al, 82; Cu, 12; Zn, 4.5; W,	
1416	Tungsten steel	Fe; W, 1.7-2.2; C, 0.3-0.45;	472		•	1	
1417	Turbadium bronse	Mn; Si; P; S Cu, 48; Zn, 46; Al, 2; Ni, 2;	556	1462 1463	W. 0.33		584
	a me works the VIIBC	Mn, 1-8; Fe, 1; Sn, 0.5; Pb, 0.1		1464	Warne's metal	Cu, 51; Zn, 19; Ni, 13 Sn, 37; Ni, 26; Bi, 26; Co,	480
1418	Turbine brass	Cu, 76-67; Zn, 24-32; Pb; Fe	1 .	1465	Watch alloy	11 Cu, 50; Ni, 47.2; Cd, 2.8	
1419	Turbine material	Cu, 81-79; Ni, 19-21; Fe, 0.8 max.	480, 601	1466	Watch alloy	Au, 37.5; Cu, 27; Ag, 23; Pd, 12.5	
1420	Turbiston's brass	Cu, 55; Zn, 41; Ni, 2; Al, 1;	558	1467	Watch alloy	Pd, 70; Cu, 25; Ag, 4; Ni, 1	
421	Tutania (cast)	Fe, 0.8; Mn, 0.2 Sn, 92; Sb, 4.7; Cu, 2.5; Pb,	557	1468 1469	Watchmakers' alloy	Cu, 59; Zn, 40; Pb, 1.2 Sn, 80; Zn, 20	
		0.3	1	1470	Welch's alloy (dental)	Sn, 52; Ag, 48	585
1422	Tutania (cast, plate)	Sn, 91-90; Pb, 8-6; Cu, 0.7- 2.7; Zn, 0.3-1.3	557	1471	Wessel's silver	Cu, 66-51; Ni, 19-32; Zn, 12.5-17; Fe, 0-0.5; Ag, 0-2	480
423	Tutania (English)	Sn, 80; Sb, 16; Cu, 2.7; Zn,	ı l		ount of V is usually under 0.4 %		

Index No.	Name	Composition	Page		Engineering Standa	rds Association Specificatio	ns —
1472	White alloy	Cu, 64.5; Sn, 32; As, 3.5	' 	B. S. S.	Description	Composition	Pag
1473	White alloy	Cu, 53-49; Zn, 23-25; Ni,	480	No.		· Composition	1
1474	White brass	22-25; Fe, 2-2.4 Zn, 66; Cu, 34	465, 546		ALUMINI	UM ALLOYS	
1475	White brass	1	1	2 T 4	Wrought light Al	1 A1. C., 25 45. Ma 0.4	1460
1476	White bronze	Fe; Pb Cu, 54; Zn, 42; Ni, 4; (Fe +		214	alloy tubes (dura-	1	
		A1), 0.3		1	lumin)	>0.5	601
1477	White cast iron	Fe; C, \geq 4; Si, 0.5-0.9; Mn, \geq 0.8; P, \geq 0.8; S. 0.1-0.25	1	2 L 1	Wrought light Al		468
1478	White copper	Cu, 70; Zn, 18; Ni, 12 (v.			alloy bar (dura-		534,
1479	White gold	also Index No. 1045) Au, 90; Pd, 10		1	lumin)		601
1480	White gold	Au, 85-75; Ni, 10-8; Zn, 2-9		2 L 4	Hard Al sheets	, , , , , , , , , , , , , , , , , ,	
1481	White metal	Sn, 53-49; Pb, 33-34; Sb, 11-14; Cu, 2.4-3.3; Zn, 1-0		İ		≥1.0; other impurities, ≥0.25	601
1482	White metal			2 L 5	Al alloy castings	· · · · · · · · · · · · · · · · · · ·	
	White metals	Generic name for various Pb-, Sn-, and Zn- base al-				3.0; Fe, ≯0.8; Si, ≯0.7;	
		loys as babbitts, Brittania		1		Pb, ≯0.1	1
		etc. Also applied to Al- or		2 L 8	12% Cu-Al alloy	1 ' ' '	
		Mg- light alloys and nicked silver.	1	1	castings	>0.8; Si, >0.7; Zn,	
1483	White nickel brass (S. A. E	Cu, 64-55; Zn, bal.; Ni, ∢18		3 L 11	7/1 Al alloy cast-	>0.1; Pb, >0.1 Al; Cu, 6.0-8.0; Sn, >1.0;	601
	Spec. No. 42)	Fe, ≯0.35; Al, 0; other impurities, ≯0.25		0211	ings	Fe, $\geqslant 0.8$; Si, $\geqslant 0.7$; Zn,	
1484	Wiegold (dental)	Cu, 68; Zn, 32; Al, 0.3; Pb,	489, 556		6-	≯0.1; Pb, ≯0.1	601
1485	Wilmott's aluminium	0.3-0.5 Sn, 86; Bi, 14		L 24	"Y" Al alloy cast-	Al; Cu, 3.5-4.5; Ni, 1.8-	534,
1486	Wire brass	Cu, 72-65; Zn, 27-35; Sn;	1		ings	2.3; Mg, 1.2-1.7; Zn, 0.1;	
1487	Wolframium	Pb Al, 98; Sb, 1.4; Sn, 1-0; Cu,	801			Sn, 0.1; Fe, ≯0.8; Si,	1 '
- 1		0.4; Fe, 0-0.2; W, 0.04-0.05	ļ			≯0.7; Pb, ≯0.1	608
1488 1489	Wood's alloy	Bi, 50; Pb, 25; Sn, 13; Cd, 13 Fe; C, 0.03-0.2; Mn; Si; P; S			В	RASS	
1490	"Y" alloy (casting)			207	Special brass in-	1	
1491	"Y" alloy, modified	1.5 Same, plus Mn, 0.5; Si, 0.2-	601, 608 556, 601,	201	gots for castings:		
	anoy, mounea	0.8	608		Class 1	Zn; Cu, ≮54; Pb, ≯0.5;	1
1492	Yale bronze	Cu, 92.5-90; Zn, 7.5-8; Sn, 0.5-1.5; Pb, 0.7-1.5	556	İ		other metals, ≯5.0	
1493	Yellow brass (Latten, Laiton)	Cu, 70-60; Zn, 27-40; Pb,	469, 470,		Class 2	,	1
1494	Yellow gold	5.3-0; Sn, 0-1; Fe Au, 53; Ag, 25; Cu, 22	555, 556 586		Cl 2	other metals, ≯5.0	
1101	Yellow metal	v. Index Nos. 918, 919	000	į	Class 3	Zn; Cu, $\angle 54$; Pb, ≥ 0.5 ; other metals, ≥ 8.0	
1495	Zelco	Zn, 73; Al, 15; Cu, 2	546	1	Class 4	1	
1496	(Angles)	Al, 90; Zn, 7.8; Cu, 0.7; Fe,	468, 536,			other metals, ≯10.0	1
1497	(Braces)	0.5; Si, 0.4; Mn, 0.3; Sn, 0.1	600		Class 5	,,, . , ,	
1407	(Braces)	Al, 99; Fe, 0.4; Si, 0.4; Zn, 0.1; Cu, 0.06	599]_ ,	other metals, ≯13.0	
1498	(Channels)	Al, 89; Zn, 9; Cu, 0.7; Si, 0.5;		218		Zn; Cu, 58; Pb, ≯2.0;	
1499	(Rod)	Mn, 0.5; Fe, 0.4; Sn, 0.2 Al, 95; Cu, 4.2; Mn, 0.6; Si,	600 534, 535.		sections suitable for forgings and	total impurities, ≯0.75	555, 602
		0.5; Fe, 0.4	601		drop forgings		002
1500	Zimalium	Al, 94-89; Mg, 3.7-7.1; Zn, 2.8-4.5		249	High speed, screw-	Zn; Cu, 56-60; Pb, 1.75-	602
1501	Zimalium	Al, 74; Zn, 15; Mg, 11			ing and turning	3.0; total impurities,	1
	Zinc, commercial Max. Max. No. (spelter) Pb	$\begin{array}{cccc} \textbf{Max.} & \textbf{Max.} & \textbf{Max.} \\ \textbf{Fe} & \textbf{Cd} & \textbf{Pb} + \textbf{Fe} + \textbf{Cd} \end{array}$	462,		brass bars	≯ 0.75	
1502	High grade 0.07	0.03 0.07 0.10	845,	250	High tensile brass	Zn; Cu, 54-62; other met-	1
1503 1504	Intermediate 0.20 Prime Western 1.60	0.03 0.50 0.50 0.08	548		bars and sections, grades A and B	als, ≯5.0	556
1001	For B. E. S. A. Specifications			264	Hot rolled yellow	Zn; Cu, ≮59; total im-	555,
1505	Zine babbitt		[metal plates,		601,
1506	Zinc bronze	For a list v. p. 389 Al; Zn, 20; Cu, 2.5; Mg, 0.5;	538-542	·	sheet and strip		602
150-	· · ·	Mn, 0.5		265	Brass sheet and	Zn; Cu, <61 ; Pb, > 0.6;	
1507 1508	Zinkalium Zirconium steel	A1; Mg, 0.8-8.3; Zn, 0.8-8.3 Fe; Zr, 0.1-0.6; C, 0.2-0.6;	532	900	strip		601 555
		Mn; Si; P; S		266	Best brass sheet and strip	Zn; Cu, $\langle 65; Pb, \rangle 0.35;$ Fe, $\rangle 0.15;$ total impuri-	1
1509	Zisium	Al, 83-82; Zn, 15; Cu, 1-3; Sn, 0-1	537, 601		and swip	ties, ≥ 0.75	
1510	Ziskon		468, 546	267	Cartridge brass	Zn; Cu, 68-74; Ni, ≯0.1;	469,
				[sheet and strip	Pb, ≯0.07; Fe, ≯0.05;	<i>555</i> ,
					ĺ	Bi, ≯0.006; Sn, 0; Sb, 0;	601
						other metals, ≯0.005	

B. S. S. No.	Description	Composition	Page	B. S. S. No.	Description	Composition	Page
	Brazin	G SOLDER			Aircra	FT STEELS!	
062			1420	S 2		Fe	600
263	Grade A	Zn; Cu, 53-55; Pb, ≯0.3; Fe, ≯0.15; Bi, ≯0.05; Sn, ≯0.05; As, ≯0.05;		S 6 S 11		Fe; Mn, 0.40-0.80; C, 0.35-0.45 Fe; Ni, 3.0-3.75; Cr, 0.50-	491
	Grade B					1.00; Mn, 0.45-0.70; C 0.25-0.35; W, ≯1.0; Mo ≯0.65; V, ≯0.25	
		as in grade A above	555	8 14		Fe; Mn, 0.60-0.90; C,	1
	SILVER	Solder		S 15		0.10-0.18 Fe; Ni, 2.75-3.5; Mn,	488
206	Grade A	Ag, 60.0-62.0; Cu, 27.5- 29.5; Zn, 9.0-11.0; impurities, ≯0.5				0.20-0.60; C, 0.10-0.15; Cr, ≯0.30	481, 603
	Grade B	Ag, 42.0-44.0; Cu, 36.0-38.0; Zn, 18.5-20.5; impurities, ≯0.5		S 28		Fe; Ni, 3.75–4.50; Cr, 1.00–1.50; Mn, 0.35–0.60; C, 0.25–0.32; W, ≯1.0; Mo, ≯0.65; V, ≯0.25	512,
	Soft	Solder*		S 61		Fe; Cr, <12.0; Si, 0.50; Ni, ≯1.00; C, ≯0.15	471, 603
219	Grade A	Pb; Sn, 64.0-66.0; Sb, ≯1.0; As, ≯0.05; Fe,		S 62		Fe; Cr, <12.0; Si, 0.50; C, 0.15–0.35; Ni, ≯1.00	471, 508
	Grade B	>0.02 Pb; Sn, 49.0-51.0; Sb, 2.5-3.0; As, >0.05; Fe, >0.02	557	S 65		Fe; Ni, 2.75–3.5; Cr, 1.0– 1.4; Mn, 0.35–0.65; C, 0.22–0.28; W, ≯1.0; Mo, ≯0.65; V, ≯0.25	508,
	Grade C	Pb; Sn, 39.0-41.0; Sb, 2.0-2.4; As, ≯0.05; Fe,		8 67		Fe; Ni, 4.6-5.2; C, 0.08- 0.14; Mn, >0.35; Cr, >0.1	604
	Grade D	>0.02 Pb; Sn, 29.0-31.0; Sb, 1.0-1.7; As, >0.05; Fe,		S 68 S 69		Fe; W, <14.0; Cr, <3.5; C, 0.55-0.70; Mn, ≯0.40 Fe; Ni, 3.25-3.75; Mn,	
	Grade E	>0.02 Pb; Sn, 94.5-95.5; Sb, >0.50	467	S 70		0.50-0.80; C, 0.35-0.45; Cr, 0.30	
	Grade F	Pb; Sn, 49.0-51.0; Sb, ≯0.50; As, ≯0.05; Fe,		871		Fe; C, 0.50-0.60; Mn, 0.40-0.75 Fe; Mn, 0.40-0.80; C,	491
	Grade G	>0.02 Pb; Sn, 41.0-43.0; Sb, >0.40; As, >0.05; Fe, >0.02	467	S 76		0.25-0.35 Fe; Mn, 0.50-0.80; C, 0.30-0.45; Ni, ≯1.0; Cr,	489-
	Grade H	Pb; Sn, 34.0-36.0; Sb, >0.30; As, >0.05; Fe, >0.02		‡ All steels		>0.5 8 68 contain Si, 0.30; S, 0.05; P, 0. TIVE STEELS	05.
	Grade J	Pb; Sn, 29.0-31.0; Sb, >0.30; As, >0.05; Fe, >0.02	467	5005/101	Wrought steels for forging	Fe; Mn, 0.40-1.00; Si, >0.30; C, >0.20; S, >0.07; P, >0.07	
* All grades 0.25.	contain: ZnO, 0; Al, 0	; total impurities, including As	and Fe,	5005/102		Fe; Ni, 1.50-2.25; Mn, >0.60; Cr, >0.30; Si, >0.30; C, >0.15; S,	
	Gun	METAL				>0.05; P, >0.05	
B2	Gunmetal castings	Cu, ≪86; Sn, 10-12; Zn, ≯2.5; Pb must be 0	476, 565	5005/103		Fe; Ni, 2.50-3.5; Mn, 0.20-0.60; Cr, ≯0.30;	480,
	Рноврно	or Bronze				Si, ≯0.30; C, ≯0.15; S, ≯0.05; P, ≯0.05	481, 603
В8	Phosphor bronze castings for bearings:†			5005/104		Fe; Ni, 4.50-6.0; Mn, >0.40; Cr, >0.30; Si, >0.30; C, >0.15; S,	471, 481,
•	For castings For ingots for	Cu, 85-89; Sn, 10-13; P, 0.5-1.0 Cu, 85-89; Sn, 10-13; P,		5005/201		>0.05; P, >0.05 Fe; Mn, 0.40-0.80; C, 0.15-0.25; Si, >0.30; S,	489,
	making cast- ings	0.8-1.2		5005/202		≯0.06; P, ≯0.06 Fe; Mn, 0.40-0.80; C,	602

No. B. S. S.	Description	Composition	Pag
	AUTOMOTIVE ST	EELS.—(Continued)	
5005/203		Fe; Mn, 0.40-0.80; C,	471.
0000,200		0.35-0.45; Ni, ≯1.0; Si,	
ľ			600,
1		≯0.06	602
5005/204			481
0000,201		0.30-1.0; C, 0.35-0.45; Si,	701
		>0.30; S, >0.06; P,>0.06	
5005/301		Fe; S, ≯0.05; P, ≯0.05	
5005/302		Fe; S, ≯0.05; P, ≯0.05	
5005/401		Fe; Ni, 2.75-3.50; Mn,	179
0000/101		0.35-0.75; C, 0.25-0.35;	
ľ		Cr, ≯0.30; Si, ≯0.30; S,	
		>0.05; P, >0.05	603
5005 /402		Fe; Ni, 3.25-3.75; Mn,	
5005/402		0.50-0.80; C, 0.35-0.45;	
1		Cr, ≯0.30; Si, ≯0.30;	600
i		Cr, 20.30, 51, 20.30,	
E005 /501		S, ≯0.05; P, ≯0.05	603
5005/501		Fe; Ni, 3.00-3.75; Cr,	
		0.50-1.00; Mn, 0.45-0.70;	
		C, 0.28–0.34; Si, ≯0.30;	
		S, ≯0.05; P, ≯0.05	604
5005/502		Fe; Ni, 3.75-4.75; Cr,	
	·	1.00-1.50; Mn, 0.35-0.60;	
		C, $0.25-0.35$; Si, > 0.30 ;	
			604
5005/503		Fe; Ni, 1.25-1.75; Cr,	
		0.75–1.25; Mn, 0.45–0.65;	
		C, $0.35-0.42$; Si, >0.30 ;	600,
		S, ≯0.05; P, ≯0.05	604
5005/601		Fe; Cr, 1.00-1.50; Mn,	
		0.50-0.80; C, 0.35-0.45;	509,
		Si, >0.30 ; V, >0.25 ; S,	600,
		≯0.05; P, ≯0.05	603
5028	Castings:		487-
	Grade 1	Fe; Mn, < 0.4; S, 0.06; P,	490
		0.05; C, ≯ 0.30	
	Grade 2	Fe; Mn, ≮0.6 ; S, 0.08;	
		P, 0.07	
	For cold working:	, , , , , ,	
5006/105	Bars and strip	Fe; Mn, 0.40-0.80; Si,	488.
5006/205-9	}		489
0000,200 0		0.04-0.06; P, 0.04-0.06	1
5006/210	Wire	Fe; Mn, 0.5-0.9; C, 0.40-	491
0000, 210	****	0.60; Si, ≯0.20; S, ≯0.05;	
		P, ≯0.05	
			1
	Conver		
7010 (010		Steels§	1,01
5010/218	Spring Laminated springs	STEELS§ Fe; Mn, 0.60-1.0; C, 0.50-	1''
•		STEELS§ Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, >0.50	602
5010/218 5010/219		STEELS§ Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, >0.50 Fe; C, 0.75-0.90; Mn,	602 492,
5010/219		STEELS§ Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40	602 492, 602
•		STEELS§ Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn,	602 492, 602
5010/219		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70;	602 492, 602
5010/219		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50	602 492, 602 506
5010/219		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70;	602 492, 602 506
5010/219 5010/603		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50	602 492, 602 506
5010/219 5010/603		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50 Fe; Cr, 1.00-1.40; Mn,	602 492, 602 506
5010/219 5010/603 5010/604		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50 Fe; Cr, 1.00-1.40; Mn, 0.50-0.80; C, 0.45-0.55;	602 492, 602 506 506,
5010/219 5010/603		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50 Fe; Cr, 1.00-1.40; Mn, 0.50-0.80; C, 0.45-0.55; Si, ≯0.50 Fe; Cr, 0.80-1.20; Mn,	602 492, 602 506 506, 605
5010/219 5010/603 5010/604		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50 Fe; Cr, 1.00-1.40; Mn, 0.50-0.80; C, 0.45-0.55; Si, ≯0.50 Fe; Cr, 0.80-1.20; Mn, 0.50-0.80; C, 0.45-0.55;	602 492, 602 506 506, 605
5010/219 5010/603 5010/604		Fe; Mn, 0.60-1.0; C, 0.50- 0.65; Si, ≯0.50 Fe; C, 0.75-0.90; Mn, 0.35-0.70; Si, ≯0.40 Fe; C, 0.55-0.65; Mn, 0.50-0.80; Cr, 0.45-0.70; Si, ≯0.50 Fe; Cr, 1.00-1.40; Mn, 0.50-0.80; C, 0.45-0.55; Si, ≯0.50 Fe; Cr, 0.80-1.20; Mn,	602 492, 602 506 506, 605

§ All	these	steels	contain:	8,	≯0.05;	Ρ,	≯ 0.05.	

B. S. S. No.	Description	Composition	Page
	STRUCTURAL ST	EEL FOR BRIDGES	<u></u>
15	1	Fe; P, ≯0.08; S, ≯0.06	
	Valve	Steels	
114/K10		Fe; Ni, 2.75-3.50; Mn,	
		0.35-0.75; C, 0.25-0.35;	600,
		Cr, ≯0.3; Si, ≯0.30; S,	603
114/210		≯0.05; P, ≯0.05	500
114/S19		Fe; Cr, 8.0–12.0; C, 0.40– 0.70; Si, 0.30–0.60; Ni,	600.
		≥1.00	60 3
5008/403		Fe; Ni, 2.75-3.50; Mn,	
•		0.35-0.75; C, 0.25-0.35;	
		Cr, ≯0.30; Si, ≯0.30; S,	
		≯0.05; P, ≯0.05	603
5008/602		Fe; Cr, 10.0-14.0; Mn,	
		0.30-0.60; C, 0.30-0.50;	
500 0 /000		Ni, ≯1.00	603
5008/603		Fe; Cr, 6.5–8.5; C, 0.50– 0.70; Mn, 0.30–0.60; Ni,	
		0.70, Min, 0.50-0.00, Mi, ≥1.00	003
5008/701		Fe; W, <14.0; Cr, <3.5;	472
0000,101		C, 0.55–0.70; Mn, ≯0.40	
	Zinc	ALLOYS	
220	Fine zinc (or		
	spelter):		١.
	Grade A	Zn, ≮99.95; Cd, ≯0.02;	
		Pb, ≯0.02; Fe, ≯0.01;	H
	C. I. D	As, 0; Sb, 0; Al, 0; Sn, 0	
	Grade B	Zn, <99.90; Pb, >0.08;	
		Cd, >0.03; Fe, >0.01; As, 0; Sb, 0; Al, 0; Sn, 0	11
221	Special zinc (or		46
	spelter)	Pb, ≯0.20; Fe, ≯0.05;	544
	' '	As + Sb, >0.02 ; Al, 0;	54
		Sn, 0	[]
222	Foundry zinc (or		\parallel
	spelter)	Cd, ≯0.25; Fe, ≯0.07;	

TABLES OF ALLOY CLASSES

Sn, ≯0.02;

≯.0.02; Al. 0

As + Sb,

In these tables most of the alloys listed in the finding index above, are classified according to composition and according to some of their more important uses. If the alloy class contains many alloys it is broken up into sub-classes according to the type formulae of the alloys comprised in it. Thus the class "Cast Light Alloys" is divided into the sub-classes: Al-Cu; Al-Mg; etc., each containing alloys, the first two symbols of whose type formulae are the same.

In these tables the alloys are identified by their index numbers in the finding index.

Light Alloys

(Al- or Mg-base alloys) Cast Light Alloys

Al-Ag: 149, 1389; Al-Cr: 361; Al-Cu: 13, 24, 28, 43, 44, 46, 47, 66, 73, 74, 76, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 100, 110, 163, 199, 432, 473, 594, 595, 711, 755, 764, 765, 766, 774, 809, 810, 811, 813, 814, 815, 823, 826, 827, 833, 840, 874, 882, 885, 945, 983, 1063, 1064, 1206, 1453, 1461, 1462, 1490, 1491; Al-Mg: 27, 819, 820, 824,

825, 1370, 1500; Al-Mn: 72, 254; Al-Ni: 57, 58, 265, 1185, 1452, Al-Sb: 1062, 1487; Al-Si: 37, 60, 61, 68, 69, 70, 93, 101, 1246; Al-Sn: 797, 828, 860, 875, 905; Al-V: 1450; Al-Zn: 25, 48, 49, 63, 65, 67, 75, 90, 97, 112, 131, 132, 513, 674, 763, 791, 876, 877, 878, 879, 891, 920, 921, 1228, 1229, 1440, 1501, 1509, Mg-Al: 490, 491, 492, 493, 494, 495, 528, 529, 923; Mg-Cu: 496; Mg-Zn: 530.

WROUGHT LIGHT ALLOYS

Al-Ag: 150; Al-Cu: 14, 23, 40, 44, 78, 79, 81, 82, 83, 84, 85, 110, 137, 508, 510, 712, 751, 774, 812, 833, 883, 884, 911, 925, 1369, 1499; Al-Mg: 26, 509, 824, 829, 1507; Al-Mn: 77, 682; Al-Ni: 57, 1016; Al-Si: 62, 86, 1039, 1497; Al-Zn: 1, 50, 80, 184, 520, 611, 873, 1189, 1386, 1496, 1498, 1506, 1507; Mg-Al: 528, 529, 923; Mg-Zn: 530.

Copper Alloys

SIMPLE BRASSES

Type formula: Cu-Zn

Zn, 1–10%: 195, 268, 321, 333, 340, 401, 620, 683, 738, 861, 1069, 1087, 1134, 1181, 1221, 1270, 1371, 1392, 1397, 1400; **Zn, 11–20**%: 169, 193, 318, 600, 651, 669, 683, 738, 799, 861, 888, 1030, 1087, 1182, 1270, 1397, 1399, 1405; **Zn, 21–30**%: 259, 278, 301, 308, 380, 439, 455, 517, 651, 693, 734, 773, 1220, 1224, 1316, 1398, 1418, 1486, 1493; **Zn, 31–40**%: 282, 308, 323, 339, 380, 398, 400, 403, 464, 487, 497, 651, 773, 913, 918, 919, 1088, 1135, 1210, 1220, 1271, 1316, 1409, 1418, 1425, 1486, 1493; **Zn, 41–50**%: 194, 282, 599, 821, 919, 1220, 1295, 1299, 1302.

LEADED BRASSES

Type formula: Cu-Zn-Pb

Zn, 1-10%: 306, 379, 603, 683, 778; **Zn, 11-20**%: 651, 683, 777, 780; **Zn, 21-30**%: 651, 772, 773, 777, 782, 938, 1022, 1220, 1493; **Zn, 31-40**%: 322, 377, 378, 395, 604, 651, 677, 683, 706, 773, 777, 868, 919, 1220, 1310, 1468, 1493; **Zn, 40-50**%: 919, 1220.

TIN BRASSES, INCLUDING NAVAL BRASS

Type formula: Cu-Zn-Sn

Sn, <4 %: Zn, 1-10 %: 489, 593, 683, 738, 861, 1091, 1270, 1392; Zn, 11-20 %: 2, 324, 527, 600, 665, 683, 738, 818, 861, 1030, 1067, 1270, 1372, 1399; Zn, 21-30 %: 16, 622, 773, 1220, 1303, 1493; Zn, 31-40 %: 17, 253, 323, 622, 773, 926, 927, 1031, 1220, 1396, 1403, 1493; Zn, 41-50 %: 1021, 1220, 1387.

Sn, >4%: Zn, 1-10%: 861, 1270; Zn, 11-20%: 209, 667, 861, 1024, 1030, 1270; Zn, 21-30%: 209, 1032.

LEADED TIN BRASSES Type Formula: Cu-Zn-Sn-Pb

Sn, <4%: Zn, 1-10%: 297, 683, 704, 1092, 1156, 1208, 1492; Zn, 11-20%: 298, 402, 457, 683, 1156, 1159, 1207; Zn, 21-30%: 267, 540, 542, 622, 773, 1128, 1129, 1220, 1227, 1493; Zn, 31-40%: 299, 300, 622, 733, 773, 1077, 1078, 1220, 1493; Zn, 41-50%: 1220, 1296.

Sn, >4 %: Zn, 1-10 %: 295, 296, 666, 1156; Zn, 11-20 %: 1156, 1159, 1207, 1438; Zn, 21-30 %: 210, 399, 1493; Zn, 31-40 %: 1493.

HIGH TENSILE BRASSES (EXCLUDING MANGANESE BRONZES)

Type formulae: Cu-Zn-Al; Cu-Zn-Fe; etc.

30, 102, 264, 468, 511, 512, 538, 614, 685, 686, 695, 705, 966, 979, 1020, 1138, 1179, 1186, 1187, 1194, 1202, 1215, 1236, 1356, 1357, 1358, 1368, 1379, 1393, 1395, 1412, 1417, 1420, 1447, 1448, 1455, 1484.

MANGANESE BRASSES (SO-CALLED MANGANESE BRONZES)

Low manganese (type formula: Cu-Zn-Mn): 465, 599, 721, 842, 844, 845, 852, 979, 1059, 1187, 1343, 1368, 1379. High manganese (type formula: Cu-Mn-Zn): 430, 842, 846, 852, 1124, 1248, 1252.

Tin (Ordinary) Bronzes Type formula: Cu-Sn

Sn, 1-10%: 142, 526, 592, 612, 664, 750, 770, 843, 887, 1034, 1332, 1431; Sn, 11-20%: 203, 257, 258, 612, 664, 843, 1359; Sn, 21-30%: 255, 257, 767; Sn, 31-40%: 543, 916, 1037, 1192, 1308.

PHOSPHOR BRONZES

Type formula: Cu-Sn-P

Sn, 1-10 %: 319, 345, 419, 535, 612, 681, 775, 932, 1081, 1082, 1083, 1332, 1441; Sn, 11-20 %: 204, 217, 218, 302, 303, 350, 612, 775.

ZINC BRONZES

Type formula: Cu-Sn-Zn-(P)

Sn, 1-10%: 18, 129, 205, 206, 305, 394, 472, 612, 652, 664, 694, 731, 771, 843, 887, 931, 933, 1033, 1332, 1441. Sn, 11-20%: 8, 205, 257, 521, 612, 664, 726, 747, 768, 843, 929, 1012, 1209. Sn, 21-30%: 256, 257. Sn, 31-40%: 256.

LEADED ZINC BRONZES Type formula: Cu-Sn-Zn-Pb

Sn, 1-10%: 19, 207, 294, 295, 612, 654, 664, 725, 779, 843, 936, 1157, 1276, 1332, 1333, 1439, 1441. Sn, 11-20%: 207, 208, 257, 589, 612, 653, 664, 714, 767, 843. Sn, 21-30%: 257, 589. Sn, 31-40%: 589. Sn, 41-50%: 881.

LEAD BRONZES

Type formula: Cu-Sn-Pb-(Zn), Pb < 15%

Sn, 1-10%: 5, 172, 211, 212, 271, 304, 500, 541, 664, 843, 1157, 1328, 1441; Sn, 11-20%: 134, 202, 257, 589, 664, 761, 843, 930; Sn, 21-30%: 257, 589; Sn, 31-40%: 589.

Type formula: Cu-Pb-Sn-(Zn), Sn < 15%

Pb, 1–10%: 201, 212, 213, 355, 664, 802, 912, 1038, 1332, 1377, 1441; **Pb, 11–20**%: 6, 35, 55, 201, 214, 215, 331, 335, 458, 459, 519, 553, 556, 801, 1216; **Pb, 21–30**%: 29, 34, 35, 55, 216, 456, 745, 1123; **Pb, 31–40**%: 55, 342, 469.

SPECIAL BRONZES

Type formula: Cu-Sn-X

148, 270, 337, 514, 615, 694, 732, 1080, 1238.

ALUMINUM BRONZES

Cu-Al: 103, 453, 488, 1026, 1027, 1028, 1029, 1070, 1367; Cu-Al-Au: 650, 1018; Cu-Al-Fe: 45, 104, 130, 141, 570, 934, 1242; Cu-Al-Mg: 105, 1214; Cu-Al-Mn: 106, 1070; Cu-Al-Ni: 109, 317, 488; Cu-Al-Ni-Fe: 606, 1196; Cu-Al-Pb: 1070, 1342; Cu-Al-Si: 471, 1381.

Nickel Silvers

Type formulae, Cu-Ni-Zn and Cu-Zn-Ni

Generic names: 51, 166, 167, 168, 354, 834, 939, 940, 1125, 1131, 1258, 1260, 1269, 1315, 1457.

Ni, 1-10%: 263, 431, 531, 608, 966, 981, 982, 985, 1476; Ni, 11-20%: 151, 154, 156, 158, 165, 263, 336, 396, 531, 605, 608, 617, 618, 619, 834, 853, 966, 978, 986, 987, 988, 989, 992, 993, 994, 995, 1025, 1166, 1222, 1410, 1456, 1463, 1478, 1483; Ni, 21-30%: 135, 165, 262, 263, 533, 608, 616, 618, 978, 990, 991, 1101; Ni, 31-40%: 978, 1045, 1223; Ni, 41-50%: 1045.

SPECIAL NICKEL SILVERS

Nickel silver plus additional elements: this class is divided into sub-classes according to added elements

Ag: 59, 1471; Al: 111, 1430; Al-Cr: 363; Cd: 147, 1054; Co-Ag: 356; Cr: 1056; Fe: 152, 153, 155, 157, 175, 176, 177, 178, 839, 1045, 1176, 1355, 1473; Fe-Pb: 1122, 1404; Fe-Si: 623; Fe-Sn-Co: 808, 1055; Mn: 136, 138, 852, 859, 1248; Mn-Sn: 853, 979; Pb: 39, 993, 995, 1120, 1222, 1354, 1365; Pb-Sn: 139, 164, 165, 484, 968, 977, 992, 1121, 1251, 1364; Sb-Co-Fe: 1090; Sn-Bi: 274, 275, 276, 937, 968; Sn-Co: 198, 382, 1257; Sn-Fe-Bi: 1273; W: 1100, 1413.

Lead Base Alloys

As: 785; Ba: 602, 807; Ca: 186, 332, 390, 867, 1433; Cd: 124; Cu: 50, 421; Fe: 783; Mg: 676; Na: 1011; Sb: 144, 145, 196, 219-221, 225-232, 460, 475, 525, 532, 624, 627, 629, 657, 658, 659, 710, 715, 735, 757, 786, 794, 795, 822, 831, 910, 1014, 1017, 1065, 1351,1353, 1373, 1384, 1426, 1427, 1428, 1482; Sn: 3, 7, 222, 223, 224, 233, 334, 386, 557, 609, 784, 862, 924, 928, 1040, 1041, 1278-1287, 1291, 1294, 1297, 1380, 1427, 1428, 1429.

Tin Base Alloys

Al: 113, 293; Bi: 387, 1485; Cu: 498, 560, 621, 675, 692, 740, 1076, 1094, 1255, 1406; Fe: 1350; Ni: 1407, 1464; P: 1085; Pb: 235, 247, 248, 388, 476, 477, 539, 550, 559, 709, 869, 1045, 1075, 1146, 1226, 1277, 1278, 1292, 1294, 1301, 1331, 1352, 1390, 1391, 1422, 1481; Sb: 20, 53, 162, 174, 185, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 310, 311, 312, 313, 314, 315, 404, 474, 485, 678, 713, 736, 739, 741, 776, 894, 935, 1042, 1043, 1060, 1126, 1127, 1136, 1147, 1148, 1161, 1421, 1423; Zn: 41, 114, 115, 116, 120, 121, 122, 123, 239, 279, 673, 1061, 1254, 1256, 1469, 1475.

Zinc Base Alloys

Ag: 1259; Al: 118, 125, 126, 480, 746, 1178, 1378, 1495, 1510; Cd: 117, 1231; Cu: 41, 159, 249, 269, 272, 482, 483, 523, 597, 598, 672, 793, 806, 838, 1086, 1096, 1108, 1205, 1293, 1298, 1300, 1304, 1305, 1306, 1307, 1474; Fe: 684; Pb: 749; Sb: 505, 625, 788, 1311; Sn: 119, 197, 250, 251, 309, 478, 479, 481, 506, 524, 563, 628, 691, 789, 1044, 1139, 1199, 1203, 1204, 1451, 1505.

Alloys Containing the Precious Metals

SILVER ALLOYS

Ag, < 20 %: 149, 288, 534, 630-636, 638-641, 643, 660, 662, 874, 875, 877, 879, 904, 1049, 1053, 1066, 1188, 1467, 1471; Ag, 20-30 %: 160, 161, 410, 534, 634, 636, 637, 640, 646, 660, 914, 1105, 1116, 1141, 1317, 1466, 1494; Ag, 31-40 %: 161, 411, 534, 640, 642, 644, 645, 647, 1051, 1225, 1259, 1261, 1389; Ag, 41-50 %: 534, 1225, 1470; Ag, 51-60 %: 648, 1103, 1267; Ag, 61-70 %: 1097, 1103, 1110, 1113, 1114, 1168, 1262, 1263, 1267; Ag, 71-80 %: 1097, 1103, 1111, 1253, 1264, 1265, 1266, 1268; Ag, 81-90 %: 351, 1097, 1250, 1329; Ag, 91-100 %: 1249, 1330, 1411.

GOLD ALLOYS

Au, < 20%: 648, 650, 1018, 1105, 1112, 1141, 1218; Au, 21-30%: 410, 660, 1317; Au, 31-40%: 639, 645, 1053, 1466; Au, 41-50%:

462, 638, 642, 643, 644; Au, 51-60%: 534, 636, 637, 647, 1106, 1494; Au, 61-70%: 534, 634, 635, 640, 646, 1066, 1104, 1115, 1116, 1177; Au, 71-80%: 281, 534, 633, 640, 641, 660, 1046, 1158, 1177, 1183, 1480; Au, 81-90%: 534, 632, 662, 1052, 1177, 1327, 1479, 1480; Au, 91-100%: 630, 631, 1049, 1326.

ALLOYS CONTAINING METALS OF THE PLATINUM GROUP

Pt, < 20%: 351, 408, 409, 904, 1035, 1102, 1103, 1116; Pt, 20-30%: 408, 903, 1047, 1097, 1103, 1104, 1111, 1114; Pt, 31-40%: 1097, 1106, 1110, 1168; Pt, 41-50%: 411; Pt, 51-60%: 1098, 1105; Pt, 91-100%: 1107, 1109.

Pd, < 20%: 1047, 1052, 1177, 1466, 1479; Pd, 20-30%: 1046, 1113, 1177; Pd, 31-40%: 1177; Pd, 61-70%: 1051, 1436, 1467; Pd, 81-90%: 1050, 1107, 1109.

Ir: 1035, 1036, 1098, 1107. Rh: 1035, 1036, 1109.

Os: 1035, 1036. Ru: 1035, 1036.

Irons

CAST IRONS AND PIG IRONS

4, 191, 192, 349, 353, 441, 536, 579, 601, 656, 661, 835–837, 1071, 1217, 1477.

HIGH SILICON CAST IRONS

52, 423, 515, 516, 730, 1374.

ALLOY CAST IRONS

870, 871, 974.

RECARBURIZERS AND STEEL MILL ALLOYS

337, 565–569, 571–574, 576–585, 1238, 1239, 1241, 1244, 1312–1314.

Commercially Pure, Ingot and Wrought Irons 170, 346, 724, 729, 1489.

Steels

CARBON STEELS

341, 347, 437, 558, 607, 670, 698, 737, 800, 866, 889, 898, 1019, 1119, 1149, 1150, 1319, 1320, 1334–1341, 1360.

ALLOY STEELS

Classified by alloying elements

Al: 127, 128; B: 292; Ce: 344; Co: 393, 1074, 1133; Co-W-Cr: 760; Cr: 12, 376, 422, 596, 1132, 1137, 1272, 1323, 1324, 1443, 1444; Cr-Co: 502, 690; Cr-Cu: 1198; Cr-Mo: 360, 371, 805, 900, 901, 902, 915; Cr-Ni: 329, 591, 758, 759; Cr-Si: 171, 466, 467, 941, 1235; Cr-Si-W: 1233; Cr-U: 374; Cr-V: 375, 1321; Cu: 418, 1197; Mn: 854, 855, 1019; Mn-Si: 1236; Mo: 906; Mo-Co-Cr: 700; Mo-Co-V: 703; Mo-Cr: 702; Mo-Cr-Co-U: 701; Mo-V: 1458; Ni: 586, 727, 756, 892, 996–1001, 1099, 1143, 1361, 1362, 1454; Ni-B: 967; Ni-Ce: 970; Ni-Cr: 31, 328, 372, 373, 564, 613, 872, 1142, 1212, 1408; Ni-Cr-Mo: 798; Ni-Cr-Si: 179, 454, 897, 1172, 1173, 1232; Ni-Cu: 976, 1009, 1388; Ni-Mn: 1211; Ni-Mo: 980, 1010; Ni-Si: 984; Ni-U: 1003; Ni-V: 1004; Ni-Zr: 1006; Si: 518, 607, 1245, 1325, 1363; Si-Mn: 1237, 1275, 1322; Si-Ti-V: 1442; Ti: 1394; U: 1437; V: 1449; W: 283, 433, 723, 922, 1416; W-Cr: 284, 748, 1045, 1375, 1445; W-Cr-V: 285, 942, 1401, 1435; Zr: 1508.

Other Ferrous Alloys

With or without carbon and including some of the high alloy steels

Cr-Fe: 286; Cu-Fe: 570, 1174, 1195; Fe-Al: 128; Fe-Co: 1133; Fe-Co-Cr: 588; Fe-Cr: 9, 173, 364, 381, 507, 561, 596; Fe-Cr-Co: 391, 392, 502, 689, 690; Fe-Cr-Mn: 1013, 1383; Fe-Cr-Mo: 10, 290, 384; Fe-Cr-Ni: 329, 385, 591; Fe-Cr-Si: 252, 466, 467, 1233, 1234; Fe-Cu-Al: 570; Fe-Mn-Si: 1201; Fe-Ni: 54, 146, 486, 503, 707, 727, 756, 1079, 1099, 1454; Fe-Ni-Al: 1230; Fe-Ni-Cr: 307, 328, 365, 369, 454, 537, 562, 564, 575, 897, 947, 948, 1172, 1173, 1212, 1232; Fe-Ni-Cu: 32, 917, 1089; Fe-Ni-Mn: 389, 1211, 1388; Fe-Si: 9(v. high Si cast iron); Fe-V: 140; Ni-Cr-Fe: 679, 946, 952, 949, 973; Ni-Cu-Fe: 501; Ni-Fe: 183, 1072, 1165; Ni-Fe-Co: 1073; Ni-Fe-Cr: 180, 320, 326, 327, 330, 368, 590, 626, 950, 951, 1093; Ni-Si-Fe: 1243; Sn-Fe-Cu: 1350.

Electrical Alloys

Alloys having high resistance, or low temperature coefficient of resistance, v. also heat resisting alloys

Ag-Pt: 1168; Cr-Ni: 1169; Cu-Fe: 1174; Cu-Mn: 857, 858, 1167, 1170, 1171, 1174, 1175; Cu-Ni: 22, 405, 412, 555, 716, 717, 722, 1176; Cu-Zn: 545, 856, 1166; Fe-Cr: 173, 1013, 1233, 1383; Fe-Ni: 146, 389, 397, 486, 503, 564, 575, 707, 947, 948, 1079, 1232, 1388; Ni-Al: 1007; Ni-Cr: 307, 362, 366, 367, 370, 554, 742, 753, 754, 864, 946, 949, 952, 953, 954, 971, 972, 1008, 1145, 1154, 1160; Ni-Cu: 803, 804: Ni-Fe: 180, 326, 327, 368, 626, 841, 950, 951, 973, 1093, 1165, 1402; Ni-Mn: 64, 699, 830, 832, 848, 849, 850, 1309.

Corrosion Resisting Alloys

Co-Ni: 287, 288, 289; Co-Cr: 189; Co-W: 687, 688; Cr-Co: 188; Cr-Fe: 9, 286; Cu-Al: 45, 104, 141; Cu-Ni: 136, 176, 260, 261, 266, 280, 438, 463, 551, 787, 1213; Cu-Pb: 6, 895; Cu-Si: 552; Cu-Sn: 5, 8, 732; Cu-Zn: 175, 259, 790, 1227; Fe-Cu: 1197; Fe-Cr: 10, 12, 15, 171, 252, 290, 364, 381, 391, 392, 422, 502, 507, 689, 758, 759, 941, 1013, 1198, 1272, 1323, 1324; Fe-Ni: 32, 54, 179, 328, 365, 397, 454, 756, 897, 1089, 1172, 1173, 1211, 1212, 1230; Fe-Si: 52, 423, 515, 516, 536, 730, 1374; Ni-Cr: 187, 316, 720, 953, 954, 1155; Ni-Cu: 11, 420, 501, 781, 880, 899, 907, 908, 909, 1057, 1058; Ni-Fe: 368; Ni-Mn: 440; Ni-Zn: 865; Pb-Cu: 421; Pb-Sn: 7; Sn-Pb: 1226.

Heat Resisting Alloys

Co-Ni: 287, 288, 289; Co-W: 687, 688; Cr-Co: 188, 189; Cr-Fe: 286; Cu-Al: 45, 104; Cu-Mn: 436, 545, 851, 857, 858; Cu-Ni: 20, 22, 405, 412, 463, 551, 555, 623, 716, 717, 880; Cu-Si: 552; Cu-Zn: 704, 852, 856; Fe-Cr: 171, 173, 252, 290, 329, 364, 381, 384, 385, 466, 467, 507, 561, 591, 689, 690, 805, 1013, 1233, 1234, 1383; Fe-Ni: 146, 179, 328, 365, 369, 397, 454, 562, 564, 707, 756, 947, 948, 1079, 1172, 1173, 1232, 1384, 1454; Ni-Cr: 133,

187, 190, 307, 316, 362, 366, 367, 370, 435, 554, 679, 720, 742, 753, 754, 864, 946, 949, 952, 953, 954, 971, 972, 1008, 1057, 1058, 1145, 1154, 1155, 1160; Ni-Cu: 880, 899, 908, 909; Ni-Fe: 180, 183, 326, 327, 330, 368, 626, 841, 950, 951, 973, 1093, 1402; Ni-Mn: 64, 699, 848, 849, 850, 1309.

Fusible Alloys

143, 461, 546-550, 610, 668, 792, 796, 944, 1023, 1190-1191, 1488.

Pyrophoric Alloys

181, 182, 718, 719, 762, 896.

Stellite and Similar Alloys

36, 325, 343, 407, 588, 671, 687, 688, 689, 1068, 1344–1349, 1459.

Speculums

357, 358, 409, 522, 543, 767, 797, 820, 916, 1037, 1180, 1201, 1308

Dental Alloys

351, 377, 464, 649, 752, 1152, 1470, 1484.

Bearing Alloys

COPPER BASE

29, 34, 35, 55, 56, 141, 200–218, 331, 335, 342, 456, 457, 458, 459, 469, 500, 514, 519, 521, 541, 553, 556, 615, 745, 761, 768, 769, 965, 1123, 1130, 1328, 1434.

White Metals Aluminum base

Cu: 594; Ni: 265.

Lead base

Ba: 602, 807; Ca: 186, 332, 390, 867, 1433; Mg: 676; Na: 1011; Sb: 144, 145, 219-221, 225-232, 460, 475, 525, 624, 627, 629, 657, 658, 659, 831, 1482; Sn: 222, 223, 224, 233, 234, 862, 928, 1040, 1041, 1384.

Tin base

Cu: 498, 560, 675, 692, 740, 1094; Pb: 235, 247, 248, 476, 477; Sb: 20, 174, 185, 236, 238, 240-246, 474, 485, 739, 935, 1060, 1126; Zn: 239.

Zinc base

Cu: 249, 806; Sb: 625, 788; Sn: 250, 251, 691, 789, 1139, 1204, 1505.

¹ Low temperature coefficient of resistance.

² Low thermal expansion coefficient.

Gr_w

Η

Broyé, humide

Durci

MEANINGS OF SYMBOLS DENOTING TREATMENTS

Note: Treatments are denoted by capital letters, with subscripts to indicate modifications. Thus " R_c " means "cold rolled."

A commonly occurring abbreviation is t°/m , where t° is the temperature at which a particular specimen is held for m units of time (minutes unless otherwise specified).

Care must be used in interpreting some of the data. The effect of heat treatment on properties often varies with the size of the specimen; and although sizes of the test specimens are usually given, it is not always clear whether these have been machined before or after the heat treatment. Where known, dimensions of specimens when heat treated are given in the "Treatment" column.

If symbol is enclosed in a square bracket, [], treatment is done in mass, i.e., before machining, but dimensions are not specified.

m mass,	i.e., before machining, but dimensions are not specific
A	Annealed
\boldsymbol{A}	Annealed drastically
A_b	Box annealed
$\mathbf{A}_{\mathbf{o}}$	Close annealed
A _N ,	Annealed in nitrogen
$\mathbf{A}_{\mathbf{v}}$	Annealed in vacuo
A ₂	Re-annealed
В	Blued
\mathbf{C}	Cooled
\mathbf{C}_{\bullet}	Cooled in air
$C_{C \bullet O}$	Cooled in lime
$\mathbf{C_f}$	Cooled in furnace
\mathbf{C}_{fo}	Cooled in furnace with door open
C_{gm}	Cooled in gas muffle
$C_{\mathbf{m}}$	Cooled in muffle
$\mathbf{C}_{\mathbf{o}}$	Cooled in oil
$\mathbf{C}_{\mathbf{q}}$	Cooled quickly
$\mathbf{C_r}$	Cooled at moderate rate
\mathbf{C}_{ullet}	Cooled slowly
C_{t}	Cooled in fireclay tube
Ct_c°/m	Cooled through critical range at rate of t° per min
$\mathbf{C}_{\mathbf{s}}$	Cooled in sand
CR	Cherry red heat
Crys.	Single crystal
D	Drawn
$\mathbf{D}_{\mathbf{o}}$	Drawn, cold
$\mathbf{D_d}$	Drawn, hard
D _b	Drawn, hot
DA	Drawn, with annealing
Do	The same
Dp	As deposited
DR	Dark red heat
E	Extruded
F	Forged
F _m	Forged on mandrel
G	Cast, or as cast
G _o	Cast, centrifugal
Ggt	Cast in glass tube
G _{hm}	Cast in preheated mold
G _m	Cast, chill
G _{m/2}	Cast, semi-chill
G _{phm}	Pressure cast in preheated mold
G₀	Cast, sand
Gr	Ground
Gr _₩	Ground, wet
H	Hardened
H.	Hardened, air

Hardened in oil

Half-hard

H. H.

SIGNIFICATION DES SYMBOLES INDIQUANT LES TRAITE-MENTS

Note: Les traitements sont mentionnés par des lettres majuscules, avec des indices pour indiquer les modifications. Ainsi " R_o " signifie "laminé à froid."

Une abréviation qui se présente souvent est t°/m où t° est la température à laquelle une éprouvette particulière est maintenue pendant m unités de temps (minutes, à moins d'une indication).

Une certaine attention est nécessaire dans l'interprétation de quelques-unes des données. L'effect du traitement thermique sur les propriétés varie souvent avec les dimensions de l'éprouvette; et quoique les dimensions des éprouvettes essayées soient ordinairement données, il n'est pas toujours évident si celles-ci ont été fabriquées avant ou après le traitement thermique. Les dimensions des éprouvettes traitées thermiquement sont données, lorsqu'elles sont connues, dans la colonne "Treatment."

Si le symbole est compris entre crochets [], le traitement est fait en masse, c'est-à-dire avant l'usinage, mais les dimensions ne sont pas spécifiées.

	masse, c'est-à-dire avant l'usinage, mais les dimensions ne s spécifiées.
A	Recuit
Ā	Recuit brutalement
A _b	Recuit en botte
A _o	Recuit en vase clos
A _N :	Recuit dans l'azote
A	Recuit dans le vide
A,	Double recuit
В	Bleui
C	Refroidi
\mathbf{C}_{lack}	Refroidi dans l'air
$C_{C \bullet O}$	Refroidi dans la chaux
C_t	Refroidi dans le four
Cto	Refroidi dans le four, la porte étant ouverte
Cem	Refroidi dans le moufle à gaz
C _m	Refroidi dans le moufle
C_{0}	Refroidi dans l'huile
$C_{\mathbf{q}}$	Refroidi rapidement
$C_{\mathbf{r}}$	Refroidi d'une façon modérée
C.	Refroidi lentement
$C_{\mathbf{t}}$	Refroidi dans un tube d'argile réfractaire
$\frac{\mathrm{C_t}}{\mathrm{C}t_c^{\circ}/\mathrm{m}}$	Refroidi dans l'intervalle critique à raison de to par minute
C.	Refroidi dans le sable
CR	Chaleur rouge cerise
Crys.	Cristal unique
D	Étiré
$\mathbf{D_c}$	Étiré à froid
$\mathbf{D_d}$	Étiré dur
$D_{\mathbf{h}}$	Étiré à chaud
DA	Étiré avec recuit
Do	Le même
$\mathbf{D}\mathbf{p}$	Comme déposé
DR	Chaleur rouge sombre
${f E}$	Matricé
\mathbf{F}	Forgé
$\mathbf{F}_{\mathbf{m}}$	Forgé sur mandrin
G	Coulé, ou comme coulé
G_{\circ}	Coulé, centrifugé
G_{gt}	Coulé en tube de verre
G_{hm}	Coulé en coquille préalablement chauffé
$G_{\mathbf{m}}$	Coulé, en coquille
$G_{m/2}$	Coulé, demi-coquille
G_{phm}	Coulé sous pression en coquille préalablement chauffé
G_{\bullet}	Coulé en sable
Gr	Broyé
~	B - 4 1 11

SYMBOLS 393

BEDEUTUNG DER DIE BEHANDLUNG ANGEBENDEN ZEICHEN

Bemerkung: Die Behandlungen sind durch grosse Buchstaben gekennzeichnet, der Index zeigt dann ihre Modifikation an. Es bedeutet z.B. " R_e " kalt gewalzt.

Eine häufig vorkommende Abkürzung ist t°/m , in welcher t° die Temperatur bedeutet bei welcher ein bestimmtes Materialstück m Zeiteinheiten gehalten wurde (Zeit in Minuten, wenn nichts anderes angegeben).

Die Bedeutung einiger Zahlen muss mit Vorsicht gewertet werden. Der Einfluss der Erwärmung auf die Eigenschaft des Materials ändert sich oft mit dessen Ausmessung. Obgleich die letztere meist angegeben ist, ist es nicht immer klar ob die Prüfung vor oder nach der Wärmebehandlung ausgeführt wurde. Wo bekannt, sind die Dimensionen des Materials sobald es in der Hitze behandelt wurde, in der Kolonne unter "Treatment" angegeben.

Ist das Zeichen in einer eckigen Klammer [] so bedeutet dies, dass die Behandlung vor der Prüfung ausgeführt wurde, aber die Ausmessung ist nicht näher angegeben.

A	Ausgeglüht
\boldsymbol{A}	Gründlich ausgeglüht
A_b	In Glühkiste geglüht
A_{σ}	Unter Luftabschluss geglüht
A _N 2	In Stickstoff geglüht
\mathbf{A}_{ullet}	In Luftleere geglüht
A ₂	Nochmals geglüht
В	Blau angelassen
C	Erkaltet
\mathbf{C}_{ullet}	An Luft erkaltet
C_{CaO}	In Kalk erkaltet
$\mathbf{C}_{\mathbf{f}}$	Im Ofen erkaltet
\mathbf{C}_{fo}	Dito bei geöffneter Tür
$\mathbf{C}_{\mathbf{gm}}$	Im Gasmuffelofen erkaltet
$\mathbf{C}_{\mathbf{m}}$	Im Muffelofen erkaltet
\mathbf{C}_{ullet}	Im Ölbad erkaltet
$\mathbf{C}_{\mathtt{q}}$	Rasch erkaltet
$\mathbf{C_r}$	Verzögert erkaltet (mässig rasch)
\mathbf{C}_{ullet}	Langsam erkaltet
$\mathbf{C_t}$	Im Chamotterohr erkaltet
C‰°/m	Erkaltet mit einer Durchlaufgeschwindigkeit durch die
	kritischen Punkte von t°/min
C.	Erkaltet im Sand
CR	Kirschrotwärme
Crys.	Einzelkristall
D	Gezogen
$\mathbf{D}_{\mathbf{c}}$	Kalt gezogen
$\mathbf{D}_{\mathbf{d}}$	Hart gezogen
$\mathbf{D_h}$	Heiss gezogen
DA	Gezogen mit Ausglühen
Do	Dasgl.
Dp	Wie niedergeschlagen
DR	Dunkelrothitze
E	Ausgestossen
F	Geschmiedet
F _m	Auf dem Dorn geschmiedet
G	Gegossen oder in gegossenem Zustand
G _e	Zentrifugalguss
Ggt	In ein Glasrohr gegossen
Ghm	In vorgewärmter Gussform vergossen
G _m	Gegossen in Kokille
$G_{m/2}$	Hartguss

In vorgewärmter Gussform nach dem Pressverfahren

 G_{phn}

G.

vergossen

In Sand vergossen

SIGNIFICATO DI SIMBOLI INDICANTI TRATTAMENTI

Nota: I trattamenti sono designati con lettere maiuscole munite di indice in basso per indicare le modificazioni. Così "R_o" significa laminato a freddo.

Una abbreviazione frequente è t°/m dove t° è la temperatura alla quale un dato campione è mantenuto per m unità di tempo (minuti, quando non è diversamente specificato).

Si deve fare attenzione a interpetrare alcuni dati. L'effetto del trattamento termico sulle proprietà spesso varia con le dimensioni del provino; e sebbene le dimensioni siano in genere indicate, non sempre è chiaro se i provini sono stati portati a quelle dimensioni dopo o prima il trattamento termico. In quest'ultimo caso le dimensioni del provino sono riportate nella colonna "Treatment."

Quando il simbolo è racchiuso fra parentesi quadra [], il trattamento s'intende fatto sul pezzo prima di lavorarlo, e le dimensioni non sono indicate.

dimensi	oni non sono indicate.
A	Ricotto
\boldsymbol{A}	Ricotto a fondo
$A_{\mathbf{b}}$	Ricotto in cassetta
$\mathbf{A}_{\mathbf{c}}$	Ricotto in ambiente chiuso
A _N ,	Ricotto in azoto
A _v	Ricotto nel vuoto
A ₂	Ricotto una seconda volta
В	Rinvenuto in modo da assumere il color blu
Ċ	Raffreddato
C.	Raffreddato all'aria
Ccao	Raffreddato in calce
Cr	Raffreddato in forno
Cro	Raffreddato in forno con porta aperta
Cgm	Raffreddato in muffola a gas
C _m	Raffreddato in muffola
C _o	Raffreddato in olio
C _a	Raffreddato rapidamente
C _r	Raffreddato a velocità moderata
C.	Raffreddato lentamente
C,	Raffreddato in tubo di refrattario
Ct_{c}°/m	Raffreddato attraverso l'intervallo critico con una
- 167	velocità di t° al minuto
\mathbf{C}_{\bullet}	Raffreddato in sabbia
CR	Temperatura del rosso-ciliegia
Crys.	Cristallo singolo
D	Trafilato
$\mathbf{D_o}$	Trafilato a freddo
D_d	Trafilato duro
$D_{\mathbf{h}}$	Trafilato a caldo
DA	Trafilato con ricottura
Do	Lo stesso
$\mathbf{D}\mathbf{p}$	Come si deposita
DR	Temperatura del rosso-scuro
\mathbf{E}	Fatto passare sotto pressione attraverso a una matrice
F	Fucinato
$\mathbf{F_m}$	Fucinato su mandrino
G	Getto
G_{\circ}	Getto centrifugato
$G_{\mathbf{gt}}$	Colato in tubo di vetro
G_{bm}	Colato in forma preriscaldata
$G_{\mathbf{m}}$	Colato in conchiglia
$G_{m/2}$	Colato in semiconchiglia
$G_{\mathtt{phm}}$	Colato sotto pressione in forma preriscaldata
G_{\bullet}	Colato in sabbia
Gr	Smerigliato

Gr.

Η

 H_{\bullet}

H.

Smerigliato alla mola

Temprato in aria

Temprato in olio

Temprato

H_{wk}	Hardened, work	H _a	Durci à l'air
Hm	Hammered	Ho	Durci à l'huile
J	Tested (at t°C) or (immediately)	H34	Demi dur
J.	Tested in air	H_{wk}	E eroui
J _{CO} ,	Tested in CO ₂	Hm	Martelé
J _H ,	Tested in H ₂	J	Essayé à (t°C) ou (immédiatement)
J _{le}	Tested in liquid air	J.	Essayé dans l'air
J_N ,	Tested in N ₂	J _{CO} ,	Essayé dans CO ₂
K	Carburized	J _H ,	Essayé dans H ₂
M	Modified	Jia	Essayé dans l'air liquide
Ml	Melted	J _{N2}	Essayé dans N ₂
Ml ₂	Remelted	K	Carburé
Ml _▼	Melted in vacuo	M	Modifié
N	Normalized	Ml	Fondu
N.	Normalized in air	Ml ₂	Refondu
N _v	Normalized in vacuo	Ml√ N	Fondu dans le vide Normalisé
Nat O	Natural state As received	N _a	Normalisé dans l'air
P	Pickled	N _*	Normalisé dans le vide
P _w	Pickled and washed	Nat	Etat naturel
Pl	Plate	O	Comme reçu
Pr	Pressed	P	Décapé à l'acide
Q	Quenched	$P_{\mathbf{w}}$	Décapé et lavé
$\mathbf{Q_b}$	Quenched in boiling water	Pl	Tôle
Q _h	Quenched in hot water	Pr	Pressé
Qi.	Quenched in iced brine	Q	Trempé
Qia	Quenched in liquid air	Q_b	Trempé dans l'eau bouillante
Q.	Quenched in oil	Q _h	Trempé dans l'eau chaude
Q.	Quenched in water	Q _i	Trempé dans saumure glacée
Q _{Pb}	Quenched in lead bath	Qia	Trempé dans l'air liquide
Qualt	Quenched in salt bath	Q.	Trempé dans l'huile
Q ₂	Double quenched	Qw	Trempé dans l'eau
Ř	Rolled	QPb	Trempé dans un bain de plomb
R_{o}	Rolled, cold	Qualt	Trempé dans un bain de sel
R_d	Rolled, hard	Q_2	Double trempe
Rh	Rolled hot	R	Laminé
R_{\bullet}	Rolled, soft	R_{o}	Laminé, froid
\mathbf{s}	Soaked	R_d	Laminé, dur
$S_{\mathbf{h}}$	Soaked in hot bath	$R_{\mathbf{h}}$	Laminé, chaud
Str	Struck (in coin press)	R_{ullet}	Laminé, mou
Sv	As for service	\mathbf{s}	Bien recuit
Sw	Swaged	S_{b}	Bien recuit dans un bain chaud
Тp	Tempered	Str	Frappé (dans matrice à monnaies)
Tp_{o}	Tempered in oil	Sv	Comme utilisé
Tp_2	Retempered	Sw	Étampé
Trt	Heat treated	Тp	Revenu
U	Refined	Tp_o	Revenu à l'huile
V	Aged	Tp ₂	Revenu deux fois
W	Heated to	Trt	Traité thermiquement
Wef	Heated in gas furnace	U	Raffiné
W.	Heated slowly	V	Vieilli
W ₂	Reheated	W	Chauffé à
Wt°/x	Heated to t°C and held there for x min	Wef	Chauffé dans un four à gaz
-	Heated to t°C and held there for x hr	W.	Chauffé lentement
W_{-}	White heat	W_2 Wt°/x	Rechauffé Chauffé à t°C et maintenu à cette température pendant
Wk Wk.	Worked (Wrought)	Wi /x	x minutes
-	Worked, cold	Wtº /rh	Chauffé à t°C et maintenu à cette température pendant
Wk _d Wk _b	Worked, hard Worked, hot	11.6 / 2.11	x heures
Wk _s	Worked, soft	w	Chaleur rouge blanc
W K ₃	Yellow heat	Wk	Travaillé
	dition to the above, the following signs are used to denote	Wk.	Travaillé, froid
	of test specimen in the original ingot, casting, or rolled bar	Wkd	Travaillé, dur
or plate		Wk _h	Travaillé, chaud
-	rgitudinal	Wk.	Travaillé, mou
	nsverse	Y	Chaleur rouge jaune
			

Gr	Geschliffen
Gr _₩	Nass geschliffen
H	Gehärtet
H _a	Luftgehärtet
H₀ H⅓	Ölgehärtet Halb gehärtet
H _{wk}	Kalt gehärtet
Hm	Gehämmert
J	Geprüft (bei t°C) oder (gleich)
J.	Geprüft in Luft
J _{CO 2} J _H ,	Geprüft in CO ₂ Geprüft in H ₂
J _{ia}	Geprüft in flüssiger Luft
J_{N_2}	Geprüft in N ₂
K	Gekohlt
M Ml	Geändert Geschmolzen
Ml ₂	Umgeschmolzen
Ml⋆	In Luftleere geschmolzen
N	Normalisiert
N _a	In Luft normalisiert
N _▼ Nat	In Luftleere normalisiert Natürlicher Zustand
O	Wie erhalten
P	Abgebeizt
$\mathbf{P}_{\mathbf{w}}$	Dito und gewaschen
Pl	Blech
Pr Q	Gepresst Abgeschreckt
Q _b	Dito in kochendem Wasser
$\widetilde{\mathbf{Q}_{\mathbf{k}}}$	Dito in heissem Wasser
Q_i	Abgelöscht in Eislake
Q ₁	Dito in flüssiger Luft
Q. Q.,	Dito in Öl Dito in Wasser
Q _{Pb}	Dito im Bleibad
Qualt	Dito im Salzbad
Q ₂	Zweimal abgeschreckt
R R.	Gewalzt
R₀ R₀	Kalt gewalzt Hart gewalzt
R _b	Heiss gewalzt
\mathbf{R}_{ullet}	Weich gewalzt
S	Geweicht
S _h Str	Geweicht in heissem Bad Ins Münzgesenk geschlagen
Sv	Wie zum Gebrauch
Sw	Im Gesenk nachgeschmiedet
Tp	Angelassen
Tp.	In Öl angelassen
Tp ₂ Trt	Nochmals angelassen Wärmebehandelt
U	Raffiniert
V	Gealtert
W	Erhitzt auf
W _{gf}	Im Gasofen erhitzt Langsam erhitzt
W _a W ₂	Wiederholt erhitzt
Wt°/x	Erhitzt auf t° u. x Min. lang
Wt°/xh	Erhitzt auf to u. x Std. lang
W	Weissglut
Wk Wl	Bearbeitet (geschmiedet) Kalt geschmiedet
Wk _e Wk _d	Hart geschmiedet
Wk _b	Heiss geschmiedet
¥\$71.	Weigh geschmiedet

Weich geschmiedet

Wk.

Semiduro Hig H_k Incrudito Lavorato al maglio Hm Provato (a t°C) oppure (immediatemente) J J. Provato in aria J_{CO1} Provato in CO. Provato in H2 J_H, J_{la} Provato in aria liquida J_N Provato in N₂ K Carburazzato M Modificato Ml Fuso Ml₂ Rifuso Ml-Fuso nel vuoto N Normalizzato N. Normalizzato all'aria Normalizzato nel vuoto $N_{\mathbf{v}}$ Nat Stato naturale 0 Nelle condizioni in cui è stato ricevuto P Pulito con acido P_ Pulito e lavato Pl Lamiera Pr Pressato Temprato in un liquido Q Temprato in acqua bollente $\dot{Q_b}$ Qh Qi Qia Qo Temprato in acqua calda Temprato in acqua salata ghiacciata Temprato in aria liquida Temprato in olio Temprato in acqua Q" Temprato in bagno di piombo Q_{Pb} Qualt Temprato in bagno di sali Doppia tempra Q2 Ŕ Laminato R_{o} Laminato a freddo Laminato duro R_d R_b Laminato a caldo R. Laminato dolce Ricotto a fondo \mathbf{S} Ricotto a fondo in bagno caldo $\mathbf{S_h}$ Stampato con pressa a coniare Str SvCome per servizio SwForgiato su stampo Rinvenuto Tp Rinvenuto in olio Tp_o Tp_2 Rinvenuto due volte Trattato termicamente Trt U Affinato Invecchiato V w Riscaldato a $W_{\mathbf{gf}}$ Riscaldato in un forno a gas Riscaldato lentemente W_{\bullet} Riscaldato due volte W, Riscaldato a t°C e mantenuto a questa temperatura per Wt°/x x minuti Wt°/xh Riscaldato a t°C e mantenuto a questa temperatura per Temperatura del bianco Wk Lavorato (grezzo) Lavorato a freddo Wk_{c} Lavorato duro Wk_d Lavorato a caldo Wk_h Wk_{\bullet} Lavorato dolce Y Temperatura del color giallo

Tangential Radial

In the case of single crystals, the following are used:

Parallel to crystal axis Crys. Crys. 1 Perpendicular to crystal axis

ABBREVIATIONS AND SYMBOLS DENOTING VARIABLES DEFINING A SYSTEM AND THEIR UNITS

Area of cross section CS Compressive stress Ga Gage Length (gage length in case of tensile specimens) l l_0 Original length Δl Increment of length Pressure p P Load **SWG** Steel wire gage Tr. Trace (in analysis) VVolume ΔV Increment of volume Original volume V_{o} d Diameter Δd Increment of diameter Original diameter d_0

MEANINGS OF SYMBOLS DENOTING PROPERTIES

Note: Some of these properties are defined on p. viii, and the definitions are here referred to by number as Def. 1, Def. 2, etc. A, B, C, D, etc. Thermal coefficients of volume expansion; v.

vol. I. p. 36. Capillary constant; v. vol. I, p. 35 Ac1, Ac2, Ac2 Critical temperatures or ranges of steels Arı, Arz, Ara BHNBrinell hardness number (Def. 12) BMRBending modulus of rupture, kg/mm² (Def. 5) $C_{t_1}^{t_2}$ Mean specific heat between t_1^o and t_2^o C, joule/g d_4^{20} Specific gravity at 20° referred to water at 4° $DL_{\mathbf{C}}$ Deformation limit in compression, kg/mm² \boldsymbol{E} Young's modulus, kg/mm² (Def. 10) ElElongation, % (Def. 7), gage lengths indicated by subscripts as follows: a = 2 in., b = 3 in., c = 4 in., d = 100 mm, f = 180 mm, g = 200mm, k = 20 in., $l = 66.67 \times (cross section)$ $area)^{\frac{1}{2}}$, $s = 4 \times (cross section area)^{\frac{1}{2}}$ ELElastic limit in tension, kg/mm² (Def. 2) $EL_{\mathbf{C}}$ Elastic limit in compression, kg/mm² (Def. 2) EL_8 Elastic limit in shear (or torsion), kg/mm² (Def. EPExtrusion pressure, kg/mm² FL_0 Endurance limit to fatigue, kg/mm² (Def. 17b) F. P. Freezing point, °C Modulus of elasticity in shear, kg/mm² (Def. 11) G IHNImpact hardness number IS Impact strength, kg-m, machines and specimen type indicated by subscripts as follows: u = Izod, B. E. S. A. Std. specimen; v = Charpy, 45°V notch; w = Charpy, keyhole notch; x = Charpy, Mesnager notch; y = FremontSquare notch; z = U. S. N. Bureau of Aeronautics specimen (Def. 16) IS'Impact strength, kg-m/cm², on cross section at K Bulk modulus of elasticity, kg/mm²

En plus des signes ci-dessus, les signes suivants sont utilisés pour indiquer la position de l'éprouvette dans le lingot original, dans la gueuse, dans la barre laminée ou la tôle:

Longitudinal Tangentiel Transversal Radial

Dans le cas des cristaux isolés, les signes suivants sont utilisés: Parallèle à l'axe du cristal

Crys. | Crys. 1 Perpendiculaire à l'axe du cristal

ABRÉVIATIONS ET SYMBOLES INDIQUANT LES VARI-ABLES DÉFINISSANT UN SYSTÈME ET LEURS UNITÉS

a	Surface de la section	\boldsymbol{p}	Pression
	transversale	P	Charge
\mathbf{CS}	Effort de compression	SWG	Jauge en fil d'acier
Ga	Jauge	Tr.	Traces (en analyse)
l	Longueur (longueur entre	V	Volume
	repères dans le cas	ΔV	Accroissement de volume
	d'éprouvettes de trac-	V_{o}	Volume initial
	tion)	d	Diamètre
lo	Longueur initiale	Δd	Accroissement du dia-
Δl	Accroissement de lon-		mètre
	gueur	d_0	Diamètre initial

SIGNIFICATION DES SYMBOLES INDIQUANT LES PROPRIÉTÉS

Note: Quelques-unes de ces propriétés sont définies à page viii et les définitions sont référées ici par un nombre comme suit: Def. 1. Def. 2, etc.

A, B, C, D, etc. Coéfficients thermiques de dilatation cubique; v. vol. I, p. 36

Constante capillaire; v. vol. I, p. 35 Acı, Acz, Acz Températures ou intervalles critiques des aciers Arı, Arı, Arı BHNNombre de dureté Brinell (Def. 12) Module de rupture à la flexion, kg/mm² (Def. 5) BMRChaleur spécifique moyenne entre t_1° et t_2° C, C_{t1}^{t2} joules/g d_4^{20} Densité à 20° par rapport à l'eau à 4° $DL_{\mathbf{C}}$ Limite de déformation à la compression, kg/mm² \boldsymbol{E} Module de Young, kg/mm² (Def. 10) ElAllongement en pourcent (Def. 7), longueur entre repères indiquée par indices comme suit: a = 2 in.; b = 3 in., c = 4 in., d = 100mm, f = 180 mm, g = 200 mm, k = 20 in., $1 = 66,67 \times (section transversale)^{\frac{1}{2}}, s =$ $4 \times (\text{section transversale})^{\frac{1}{2}}$ Limite élastique à la traction, kg/mm² (Def. 2) ELLimite élastique à la compression, kg/mm² (Def. $El_{\mathbf{C}}$

2) Limite élastique au cisaillement (ou torsion), EL_8 kg/mm^2 (Def. 2)

ΕP Pression de matrice, kg/mm²

Limite d'endurance à la fatigue, kg/mm² FL_0 (Def. 17b)

Point de congélation, °C F. P.

Module d'élasticité de glissement, kg/mm² (Def. G 11)

IHNNombre de dureté au choc

Résistance au choc, kg-m. Machines et éprou-ISvettes types indiquées par des indices comme suit: u = Izod, B. E. S. A. Std. éprouvette type; v = Charpy, entaille en V 45°; w = Charpy, entaille en trou de clé; x = Charpy, entaille Mesnager; y = entaille ca rrée, Fremont; z = éprouvette type du U. S : N. Bureau

SYMBOLS 397

Y Gelbhitze

In dem Vorangegangenen werden nach die folgenden Zeichen hinzugefügt, welche die Stellung des Originalblockes, des gegossenen oder gewalzten Stückes, oder der Platte, angegeben:

Längs \mathbf{T} Quer

Tangential

Radial

Bei Einkristallen bedeuten die Zeichen: Gleichgerichtet zur Kristallachse Crys. |

Crys.

Senrecht zur Kristallachse

ABKÜRZUNGEN UND ZEICHEN DER SYSTEMVARIABLEN UND DEREN EINHEITEN

Querschnitt (fläche) CS

(Druck-) (Press-) spannung

Ga Lehre

l Messlänge im Falle der Zerreissproben

lo Ursprüngliche Länge

 Δl Zunahme der Länge

Druck

Belastung

SWG Stahldrahtlehre

Tr. Spuren (in Analyse)

 \boldsymbol{V} Volumen

 ΔV Volumzunahme

 V_{0} Ausgangs- oder Ursprungsvolumen

d Durchmesser

 Δd Zunahme des Durchmessers

 d_0 Ursprünglicher Durchmesser

ZEICHEN FÜR EIGENSCHAFTEN

Bemerkung: Einige dieser Eigenschaften sind definiert p. viii. Sie sind unten noch durch die Bemerkung Def. 1, Def. 2, u.s.w. näher angegeben.

A, B, C, D, etc. Koeff, der Wärmeausdehnung des Volumens; siehe vol. I, p. 36

Kapillaritätskonstante; siehe vol. I, p. 35

Ae1, Ae2, Ac1 Kritische Temperaturen oder Umwandlungs-

Ar1, Ar2, Ar2 punkte der Stähle BHNBrinellhärte (Kugeldruckhärte) (Def. 12)

BMRBiegefestigkeit, kg/mm² (Def. 5)

 $C_{t_1}^{t_2}$ Mittlere spez. Wärme zwischen t_1° und t_2° C,

Joule/g

El

 $EL_{\rm B}$

 d_4^{20} Spezifisches Gewicht

 $DL_{\mathbf{C}}$ Elastizitätsgrenze beim Druckversuch, kg/mm² \boldsymbol{E}

Young'scher Modul, kg/mm² (Def. 10) Bruchdehnung in Prozenten der Messlänge (Def.

7), Lehren sind durch Indices angegeben und zwar: a = 2 in., b = 3 in., c = 4 in., d = 100mm, f = 180 mm, g = 200 mm, k = 20 in.

 $1 = 66,67 \times \text{Querschnitt}^{\frac{1}{2}}, s = 4 \times \text{Querschnitt}^{\frac{1}{2}}$

ELElastizitätsgrenze beim Zugversuch, kg/mm²

 $EL_{\mathbf{C}}$ Dito beim Druckversuch, kg/mm² (Def. 2)

Schubelastizitätsgrenze (oder Drehung), kg/mm²

(Def. 2)

EP Ausstossdruck, kg/mm²

 FL_0 Dauerbruchgrenze, kg/mm², (Def. 17b)

Erstarrungspunkt, °C F. P.

Elastizitätsmodul für Scherbeanspruchung, kg/

mm² (Def. 11)

IHN Schlaghärte

IS Schlagfestigkeit, kg-m. Maschinen und Materialprobe sind durch Indices angegeben, und zwar:

u = Izod, B. E. S. A. Std. Probeform; v =

Oltre a queste indicazioni sono pure adoperati i segni seguenti a indicare la posizione dei provini nel lingotto nel getto o nella barra o lamiera originarii:

Longitudinale

Tangenziale

Trasversale

Radiale

Nel caso dei singoli cristalli si usano i seguenti:

Parallelo all'asse del cristallo Crvs. II

Crys.

Perpendicolare all'asse del cristallo

ABBREVIAZIONI E SIMBOLI INDICANTI VARIABILI CHE DEFINISCONO UN SISTEMA E LORO UNITÀ

a	Area della sezione tras-	P	Carico
	versale	SWG	Calibro per fili
CS	Sforzo di compressione	Tr.	Traccia (in analisi)
Ga	Calibro	\boldsymbol{V}	Volume
l	Lunghezza (calibro di	ΔV	Aumento di volume
	lunghezza nel caso di	V_{o}	Volume originale
	provini di trazione)	\boldsymbol{d}	Diametro
lo	Lunghezza originaria	Δd	Aumento di diametro
Δl	Aumento di lunghezza	d_0	Diametro originario
p	Pressione		J

SIGNIFICATO DI SIMBOLI INDICANTI PROPRIETÀ

Nota: Alcune di queste proprietà sono definite nella p. viii, e alle definizioni è qui fatto riferimento con numeri: Def. 1, Def. 2. ecc.

A, B, C, D, ecc. Coefficiente di temperatura della dilatazione

cubica; v., vol. I, p. 36

Costante di capillarità; v. vol. I, p. 35 Temperature critiche o intervalli critici degli Acı, Acz, Acz

BMR

E

 FL_0

IHN

IS

Arı, Ara, Ara BHNNumero di durezza Brinell (Def. 12)

Modulo di rottura alla flessione, kg/mm² (Def.

 $C_{t_1}^{t_2} \ d_4^{20} \ DL_{\mathbf{C}}$ Calore specifico medio tra t_1° , e t_2° C, joule/g

Peso specifico a 20° riferito all'acqua a 4°

Limite di snervamento alla compressione.

 kg/mm^2

Modulo di Young, kg/mm² (Def. 10) El

Allungamento percentuale (Def. 7), i calibri sono indicati a mezzo di indici scritti di sotto a questo modo: a = 2 in., b = 3 in., c = 4 in., d = 100 mm, f = 180 mm, g = 200 mm, k= 20 in., $l = 66,67 \times (l'area della sezione$ trasversale) $\frac{1}{2}$, = 4 × (l'area della sezione

trasversale)1/2

ELLimite elastico alla trazione, kg/mm² (Def. 2) EL_{C}

Limite elastico alla compressione, kg/mm² (Def.

 $EL_{\mathbf{S}}$ Limite elastico al taglio (o torsione), kg/mm² (Def. 2)

EPPressione di matrice, kg/mm²

Limite di durata alla fatica, kg/mm² (Def. 17b)

F. P. Punto di congelamento, °C

Modulo di elasticità al taglio, kg/mm² (Def. 11)

Numero di durezza di resistenza all' urto

Resistenza all' urto, kg-m. Macchina e tipo del provino sono indicati con indici scritti di sotto nella maniera che segue: u = Izod, provino B. E. S. A. Std.; v = Charpy, con intaglio V a 45°; w = Charpy, con intaglio buco della serratura; x = Charpy, con intaglio Mesnager; y = intaglio quadrato di Fremont; z = provino dello U.S. N. Bureau of Aeronautics

(Def. 16) Resistenza all' urto, kg/cm², sulla sezione utile

$k_{t_1}^{t_2}$	Mean thermal conductivity between t_1° and		of Aeronautics (Def. 16)
~*1	f_2^* C, joules cm ⁻² sec ⁻¹ (°C, cm ⁻¹)	IS'	Résistance au choc, kg-m/cm² sur la section à
7		.~	l'entaille
$L_{\mathbf{F}}$	Latent heat of fusion, kilojoule/g-atom	K	Module d'élasticité apparent, kg/mm²
L _V	Latent heat of vaporization, kilojoule/g-atom		· · · - · · - · · - · · - · · · - · · · · - ·
lv	Latent heat of vaporization, kilojoule/g	$k_{t_1}^{t_2}$	Conductibilité thermique moyenne entre ti et
$L_{\mathbf{T}}$	Latent heat of transformation, kilojoule/g-atom		t_2° C, joules cm ⁻² sec ⁻¹ (°C, cm ⁻¹)
<i>LCH</i>	Ludwik cone hardness	$\mid L_{ extsf{F}}$	Chaleur latente de fusion, kilojoules/g-atome
M	Molecular weight	$L_{\rm V}$	Chaleur latente de vaporisation, kilojoules/g-
M. P.	Melting point, °C		atome
MS	Mean stress	$l_{ m V}$	Chaleur latente de vaporisation, kilojoules/g
MSH	Martens scratch hardness	$L_{\mathbf{T}}$	Chaleur latente de transformation, kilojoules/g-
No. B	Number of bends to fracture (Def. 15)	-•	atome
PL	Proportional limit in tension, kg/mm ² (Def. 1)	LCH	Dureté Ludwik cone
$PL_{\mathbf{C}}$	Proportional limit in compression, kg/mm² (Def.	M	Poids moléculaire
. 20	1)	M. P.	Point de fusion, °C
PL_8	Proportional limit in shear (or torsion), kg/mm ²		
I Lig	· · ·	MS	Effort moyen
DØ	(Def. 1)	MSH	Dureté Martens rayure
PS	Proof stress, kg/mm²	No. B	Nombre de pliages jusqu'à rupture (Def. 15)
R	Endurance range, kg/mm ² (Def. 17e)	PL PL	Limite de proportionnalité à la traction, kg/mm ²
RA	Reduction in area, % (Def. 8)	ł	(Def. 1)
RHN	Rockwell hardness number	$PL_{\mathbf{C}}$	Limite de proportionnalité à la compression,
ScH	Scleroscope hardness (Def. 13)		kg/mm^2 (Def. 1)
Shr.	Mold shrinkage, %	PL_{Θ}	Limite de proportionnalité au cisaillement (ou
TMR	Torsional modulus of rupture, kg/mm ² (Def. 6)		torsion), kg/mm ² (Def. 1)
TSH	Turner scratch hardness	PS	Effort d'épreuve, kg/mm²
Tw	Twist in torsion test, °/cm, unless total twist is	R	Amplitude d'endurance, kg/mm² (Def. 17e)
	given	RA	Striction, % (Def. 8)
UBM	Ultimate bending moment	RHN	Nombre de dureté Rockwell
UCS	Ultimate compressive strength, kg/mm ² (Def. 4)	ScH ScH	Dureté au scléroscope (Def. 13)
USS	Ultimate shearing strength (measured directly),	Shr.	Retrait au moulage, %
0.55			
1100	kg/mm² (Def. 4)	TMR	Module de torsion à la rupture, kg/mm² (Def. 6)
$USS_{\mathbf{C}}$	Ultimate shearing strength, (computed from	TSH	Dureté Turner à la rayure
	torsion test), kg/mm ² (Def. 6, second equation)	Tw .	Torsion dans l'essai de torsion °/cm, à moins
UTS	Ultimate tensile strength, kg/mm ² (Def. 4)	'	que la torsion totale ne soit donnée
UWB	Ultimate work of bending, kg-m	UBM	Moment de flexion ultime
v	Specific volume, g ⁻¹	UCS	Résistance à la compression, kg/mm² (Def. 4)
V. P.	Vapor pressure	USS	Résistance au cisaillement (mesurée directe-
YP	Yield point in tension, kg/mm ² (Def. 3)		ment), kg/mm² (Def. 4)
$YP_{\mathbf{C}}$	Yield point in compression, kg/mm ² (Def. 3)	USSc	Résistance au cisaillement (déduite de l'essai de
YP_{8}	Yield point in shear (or torsion), kg/mm ² (Def.	i	torsion), kg/mm² (Def. 6, deuxième équation)
	3)	UTS	Résistance à la traction, kg/mm² (Def. 4)
α , β , γ , δ , etc.	Thermal coefficients of linear expansion; v. p. 459	UWB	Travail ultime de flexion, kg-m
γ	Surface tension; v. vol. I, p. 42.	v	Volume spécifique, g ⁻¹
ė	Per cent compression (under stated load)	V. P.	Pression de vapeur
η	Tangential or fluid coefficient of viscosity; v.	YP	Limite d'étirage ou d'écoulement à la traction,
•	vol. I, p. 42	**	kg/mm^2 (Def. 3)
¢	Normal coefficient of viscosity	YP _C	Limite d'étirage à la compression, kg/mm² (Def.
λ	Poisson's ratio (Def. 9)	116	3)
^		YP ₈	Limite de cisaillement (ou de torsion), kg/mm²
ψ_{P}	$\frac{1}{x} \left(\frac{\mathrm{d}x}{\mathrm{d}p} \right)_{\iota}$ (Temperature constant)	IFs	(Def. 3)
ψ.	$\frac{1}{x} \left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)_n$ (Pressure constant)	α , β , γ , δ , etc.	Coéfficients thermiques de dilatation linéaire; v. p. 459
		1~	Tension de surface; v. vol. I, p. 42
X	Compressibility (atmospheres) ⁻¹	Y	Pourcent de compression (sous une charge don-
		·	
			née)
		η	Coefficient de viscosité, tangentiel ou fluide; r.
		1.	vol. I, p. 42
		ξ.	Coefficient de viscosité normal
		λ	Coéfficient de Poisson (Def. 9)
		14-	$\frac{1}{x} \left(\frac{\mathrm{d}x}{\mathrm{d}p} \right)$, (Température constante)
		Ψ _p	$\chi(\mathrm{d}p)_i$
			$\frac{1}{2} \left(\frac{d\chi}{d\chi} \right)$ (Pression constants)
		¥:	$\frac{1}{\chi} \left(\frac{\mathrm{d}\chi}{\mathrm{d}t} \right)_{r}$ (Pression constante)
		x	Compressibilité (atmosphères)-1
		1	· · ·

	01 77.77 1 470 01 01.10	l ve	38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Charpy, V-Kerbe, 45°; w = Charpy, Schlüss-	K_{t}	Modulo di elasticità alla compressione, kg/mm²
	loch-Rille; x = Charpy, Mesnager-Rille; y =	$k_{t_1}^{t_2}$	Conducibilità termica media tra t_1° e t_2° C,
	Fremont-Rille mit quadratischen Querschnitt;	,	joule cm ⁻² sec ⁻¹ (°C, cm ⁻¹)
	z = Probeform des U. S. N. Bureau of Aero-	$L_{\mathbf{F}}$	Calore latente di fusione, kilojoule/g-atomo
IS'	nautics (Def. 16)	L_{V}	Calore latente di evaporazione, kilojoule/g-
K	Schlagfestigkeit, kg-m/cm ² Durchschnittlicher Elastizitätsmodul, kg/mm ²	1,	atomo Calore latente di evaporizione, kilojoule/g
$k_{t_1}^{t_2}$	Mittlere Wärmeleitfähigkeit zwischen t_1^o und t_2^o	$egin{array}{c} l_{ m V} \ L_{ m T} \end{array}$	Calore latente di trasformazione, kilojoule/g-
~t1	C, Joule cm ⁻² sec ⁻¹ (°C, cm ⁻¹)	LT	atomo
$L_{\mathbf{F}}$	Schmelzwärme, Kilojoule/g-atom.	LCH	Durezza al cono Ludwik
$L_{ m V}$	Verdampfungswärme, Kilojoule/g-atom.	M	Peso molecolare
$l_{\mathbf{v}}$	Verdampfungswärme, Kilojoule/g	M. P.	Punto di fusione, °C
$L_{\mathbf{T}}$	Umwandlungswärme, Kilojoule/g-atom.	MS	Sforzo medio
LCH	Kegelhärte nach Ludwik	MSH	Durezza alla scalfittura secondo Martens
M	Molekulargewicht	No. B	Numero di piegature per arrivare a frattura
M. P.	Schmelzpunkt, °C		(Def. 15)
MS	Mittlerer Druck	PL	Limite di proporzionalità alla tensione, kg/mm²
MSH	Ritzhärte nach Martens		(Def. 1)
No. B	Zahl der Biegungen (Def. 15)	$PL_{\mathbf{C}}$	Limite di proporzionalità alla compressione,
PL	Proportionalitätsgrenze beim Zugversuch, kg/		kg/mm^2 (Def. 1)
•	mm ² (Def. 1)	PL_8	Limite di proporzionalità al taglio (o torsione),
$PL_{\mathbf{C}}$	Dito beim Druckversuch, kg/mm² (Def. 1)	İ	kg/mm² (Def. 1)
PL_{6}	Dito beim Schubversuch (oder Drehung), kg/	PS	Carico di prova, kg/mm²
	mm ² (Def. 1)	R	Ampiezza di durata alla fatica, kg/mm² (Def. 17e)
PS	Prüfspannung, kg/mm²	RA	Riduzione di area percentuale (Def. 8)
R	Dauerbruchfestigkeit für bestimmte Spannungs-	RHN	Numeri di durezza Rockwell
	wechsel, kg/mm^2 (Def. 17e)	ScH .	Durezza scleroscopica (Def. 13)
RA	Brucheinschnürung in % (Def. 8)	Shr.	Ritiro percentuale nella forma
RHN	Rockwellhärtezahl	TMR	Modulo di rottura alla torsione, kg/mm² (Def. 6)
ScH	Skleroskophärte (Def. 13)	TSH	Durezza alla scalfittura secondo Turner
Shr.	Schwindung in %	Tw	Angolo di torsione espresso in gradi per centi-
TMR	Drehfestigkeit, kg/mm ² (Def. 6)		metro, a meno che non sia data la torsione
TSH	Ritzhärte nach Turner	77016	totale
Tw	Verdrehung in °/cm beim Drehversuch	UBM	Carico di rottura alla flessione
UBM	Biegungshöchstmoment	UCS	Carico di rottura per compressione, kg/mm²
UCS	Druckfestigkeit, kg/mm² (Def. 4)	TIGG	(Def. 4)
USS	Scherfestigkeit, kg/mm² (Def. 4)	USS	Carico di rottura per taglio (misura diretta- mente), kg/mm² (Def. 4)
$USS_{\mathbf{C}}$	Dito durch Drehversuch bestimmt, kg/mm ² (Def. 6, zweite Gleichung)	USSc	Carico di rottura per taglio (calcolato dal
UTS	Zugfestigkeit, kg/mm² (Def. 4)	Cope	saggio di torsione), kg/mm² (Def. 6, equa-
UWB	Grösstbiegearbeit, kg-m		zione secondo)
v	Spez. Volumen, g ⁻¹	UTS	Carico di rottura alla trazione, kg/mm² (Def. 4)
V. P.	Dampfdruck	UWB	Lavoro di rottura per flessione, kg-m
YP	Fliessgrenze, kg/mm² (Def. 3)	v	Volume specifico, g ⁻¹
YP _C	Quetschgrenze, kg/mm² (Def. 3)	V. P.	Tensione di vapore
YP _s	Fliessgrenze beim Scher- (Dreh-) versuch, kg/	YP	Limite di snervamento alla trazione, kg/mm²
	mm ² (Def. 3)		(Def. 3)
α , β , γ , δ , etc.	Linearer Wärmeausdehnungskoeffizient; siehe,	$YP_{\mathbf{S}}$	Limite di snervamento alla compressione, kg/
	p. 459		mm ² (Def. 3)
γ	Oberflächenspannung; siehe vol. I, p. 42	YP ₈	Limite di snervamento al taglio (o torsione),
€	Prozent Zusammenpressung unter statischer		kg/mm^2 (Def. 3)
	Belastung	α , β , γ , δ , ecc.	Coefficienti di temperatura della dilatazione
η	Tangential- oder Viskositäts-Koeffizient; siehe		lineare; v. p. 459
	vol. I, p. 42	γ	Tensione superficiale; v. vol. I, p. 42
Ę	Normaler Viskositätskoeffizient	e e	Compressione percentuale (sotto un carico
λ	Verhältnis nach Poisson (Def. 9)		statico)
√ _P	$\frac{1}{x} \left(\frac{\mathrm{d}x}{\mathrm{d}p} \right)_{i}$ (Temp. Konst.)	η	Coefficiente tangenziale o fluido di viscosità; v.
Ψp	$\chi(\mathrm{d}p)$, (10mp. 110ms.)	l .	vol. I, p. 42
ψ:	$\frac{1}{x} \left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)_{z}$ (Druck Konst.)	<u>ξ</u>	Coefficiente normale di viscosità
·	A (/)	λ	Rapporto di Poisson (Def. 9)
x	Kompressibilität (atmosph.)	$ \psi_p $	$\frac{1}{\chi} \left(\frac{\mathrm{d}\chi}{\mathrm{d}p} \right)_{\iota}$ (Costante di temperatura)
		ψ.	$\frac{1}{\chi} \left(\frac{\mathrm{d}\chi}{\mathrm{d}t} \right)_p$ (Costante di pressione)
		x	Compressibilità (atmosfere) ⁻¹
		, ~	•

EQUILIBRIUM DIAGRAMS

CONTENTS

	AGE
Introduction	400
Aluminium alloys. M. L. V. GAYLER	400
Lead alloys and tin alloys. O. F. Hudson	413
Other non-ferrous alloys (including Cu-Fe). J. L. HAUGHTON	419
Ferrous alloys. C. H. Desch	449

INTRODUCTION

The vapor phase is not considered, vapor pressure being very small with respect to atmospheric pressure with few exceptions, such as As.

The liquid phase is denoted by Liq., or if more than one liquid phase exists, by Liq. I, Liq. II, etc.

Crystal phases are designated as follows:

A metal or intermetallic compound by its chemical formula.

A solid solution of A in B by (A, B).

If A is a compound, this does not mean necessarily that molecules of A exist in solution; most X-rays data are to the contrary. Crystals of the composition A, however, do separate from the solid solution.

A solid solution of A and B in all proportions by [A, B].

A solid solution of A or B in the compound A_xB_y by (A_xB_y) .

A series of different solid solutions by α , β , γ , δ , etc., their composition being stated if known.

A mixture of A and B by A + B.

A binary eutectic in a ternary system by e.

A ternary eutectic by E.

The eutectic temperature of binary alloys is indicated by a dot and dash line.

All temperatures are in °C, and unless otherwise indicated all compositions are in weight %.

ALUMINIUM ALLOYS

M. L. V. GAYLER

INDEX OF SYSTEMS

PAGE	Page
Al-Ag (36) 401	Al-Sb (5) 403
Al-Au (27, 28, 29) 402	Al-Se (8) 403
Al-Be (35) 402	Al-Si (14, 17, 37) 404
Al-Bi (21)	Al-Sn (21)
Al-Ca (13) 401	Al-Te (9) 404
Al-Cd* (22)	Al-Ti (16) 405
Al-Ce (46) 401	Al-Tl* (12)
Al-Co (22) 401	Al-Zn (25, 30.1, 30.2, 38,
Al-Cr (30) 402	39)
Al-Cu (6, 11, 11.1, 22, 45). 401	Al-Cd-Zn (4) 409
Al-Fe (32, 40)	Al-Cu-Mg (19, 47)405, 406
Al-Hg (43) 403	Al-Cu-Mn (41) 406
Al-K* (42)	Al-Cu-Ni (2, 3)406, 407
Al-Li (1.1)	Al-Cu-Sn (1)
Al-Mg (23) 403	Al-Cu-Zn (7, 26, 31, 40).407, 408
Al-Mn (30) 403	Al-Mg-Si (24)408, 410
Al-Na* (34)	Al-Mg-Zn (15.1)
Al-Ni (22) 404	Al-Sn-Zn (33) 410
Al-Pb* (22)	Al-Cu-Mg-Si (18, 20) 409, 410,
Al-Pt (10) 404	411, 412

* Two immiscible liquid phases.

LITERATURE

(For a key to the periodicals see end of volume)

Andrews and Edwards, 5, 82: 568; 09.
 Assmann, 95, 18: 51; 26.
 Austin and Murphy, 47, 29: 327; 23.
 Bingham and Haughton, 47, 29: 71; 23.
 Budgen, 4, 125: 1642; 24.
 Campbell and Matthews, 1, 24: 253; 02.
 Carpenter and Edwards, 403, 1907 I: 204.
 Carpenter and Edwards, 95, 2: 209; 12.
 Chikashige and Aoki, 429, 2: 249; 17.
 Chikashige and Nosé, 429, 2: 227; 17.

(10) Chouriguine, 74, 9: 874; 12. (11) Curry, 50, 11: 425; 07. (11-1) Dix and Richardson, 80, Preprint 1534-E; 26. (12) Doerinckel, 93, 48: 185; 06. (13) Donski, 93, 57: 185; 08. (14) Edwards, 33, 28: 165; 23. (15) Eger, 95, 4: 29; 13. (15-1) Eger, 95, 83: 545; 23. (16) Erckelens, 187, 20: 206; 23. (17) Fraenkel, 93, 58: 154; 08. (18) Gayler, 47, 28: 213; 22. (19) Gayler, 47, 29: 507; 23.

(20) Gayler, 47, 30: 139; 23. (21) Gwyer, 93, 49: 311; 06. (22) Gwyer, 93, 57: 113; 08. (23) Hanson and Gayler, 47, 24: 201; 20. (24) Hanson and Gayler, 47, 26: 321; 21. (25) Hanson and Gayler, 47, 27: 267; 26. (26) Haughton and Bingham, 6, 99: 47; 21. (27) Heycock and Neville, 63, 194: 201; 00. (23) Heycock and Neville, 62, 214: 267; 14. (29) Heycock

cock and Neville, 5, 90: 560; 14.

(30) Hindricks, 93, 59: 414; 08. (30.1) Honda and Ishigaki, 159, 14: 219; 25. (30.2) Isihara, 159, 18: 209; 26. (31) von Jares, 95, 10: 1; 19. (32) Kurnakov, Urasov and Grigorjev, 93, 125: 207; 22. (33) Losana and Carozzi, 36, 53: 546; 23. (34) Mathewson, 93, 48: 191; 06. (25) Oesterheld, 93, 97: 6; 16. (35) Petrenko, 93, 46: 49; 05. (37) Roberts, 4, 105: 1383; 14. (38) Rosenhain and Archbutt, 62, 211 A: 315; 11. (39) Rosenhain and Archbutt, 5, 85: 389; 11.

(40) Rosenhain, Archbutt and Hanson, 403, 1921 II: 699. (41) Rosenhain and Lantsberry, 403, 1910 I: 119. (42) Smith, 93, 56: 109; 07. (43) Smits and de Gruyter, Univ. of Amsterdam, O. (44) Stockdale, 47, 28: 273: 22. (45) Stockdale, 47, 31: 275; 24. (46) Vogel, 93, 75: 41; 12. (47)

Vogel, 93, 107: 265; 19.

Digitized by Google

Nore:-Point J' is at 4 % Mg.

Note:-Point B should be at 4 % Cu.

LEAD ALLOYS AND TIN ALLOYS

O. F. Hudson

INDEX OF SYSTEMS

Dħ Sn PAGE PAGE Pb-Ag (9, 20)..... 414 Pb-Al...... 400 Sn-Al..... 404 Pb-As (15)...... 414 Sn-Au (44)...... 416 Pb-Au (43)..... 414 Sn-Bi (23)...... 416 Pb-Bi (14, 16, 20)..... 414 Sn-Cd (20, 29)..... 416 Pb-Ca (1)..... 414 Sn-Ce (45)...... 416 Pb-Cd (3, 14, 20, 23)..... 414 Sn-Cu 433 Pb-Co (26)...... 414 Sn-Fe...... 452 Pb-Cr (19)..... 414 Sn-Hg (17). 416 Sn-K (40) 417 Pb-Cu 434 Sn-Li (30)..... 417 Pb-Fe..... 449 Pb-Hg (20, 22)..... 414 Sn-Mg (13)..... 417 Sn-Pb (20) Pb-K (40)..... 415 Sn-Tl (10)...... 416 Pb-Mg (12)..... 415 Pb-Mn (46)..... 415 Sn-Zn (18)...... 417 Pb-Na (31)..... 415 Ternary Systems Pb-Pd (38)..... 415 Pb-Ag-Zn (2)...... 418 Pb-Pt (6)...... 415 Pb-Bi-Sn (32, 39) 418 Pb-Sb (4, 8, 11)..... 415 Pb-Cd-Tl (5) Pb-Sn (20, 37)..... 415 Pb-Cu-Zn (34, 35)..... 418 Pb-Te (7, 24)..... 416 Pb-Sb-Sn (28)...... 418 Pb-Tl (14, 25)...... 416 Pb-Sb-Zn (42)...... 417 Pb-Zn (14, 41)..... 416 Sn-Bi-Zn (33)..... 418

LITERATURE

(For key to the periodicals see end of volume)

- Baar, 93, 70: 352; 11.
 Bogitch, 34, 189: 178; 15.
 Budgen, Cadmium, Its Metallurgy, Properties and Uses. London, Griffin, 1924.
 Dean, Hudson and Fogler, 45, 17: 1246; 25.
 Doerinckel, 93, 54: 333; 07.
 Fay and Gillson, 80, 31: 527; 01.
 Fischer, 97, 6: 146; 25.
 Friedrich, 192, 3: 396; 06.
- (10) Fuchs, 93, 107: 308; 19.
 (11) Gontermann, 93, 55: 419; 07.
 (12) Grube, 93, 44: 117; 05.
 (13) Grube, 93, 46: 76; 05.
 (14) Guertler, Metallography.
 Berlin, Gebröder Borntraeger, 1910.
 (15) Heike, 95, 6: 49; 14.
 (16) Herold, 93, 112: 131; 20.
 (17) van Heteren, 95, 42: 129; 04.
 (18) Heycock and Neville, 4, 72: 383; 97.
 (19) Hindricks, 93, 59: 414; 08.
- (20) Honda and Ishigaki, 159, 14: 219; 25. (22) Janecke, 7, 60: 399; 07. (23) Kapp, 8, 6: 754; 01. (24) Kimura, 429, 1: 149; 15. (25) Kurnakov and Pushin, 93, 52: 430; 07. (26) Lewkonja, 93, 59: 293; 08. (27) van Liempt, 70, 45: 203; 26. (28) Loebe, 192, 8: 7, 33; 11. (29) Lorens and Plumbridge, 93, 85: 228; 13.
- (30) Masing and Tammann, 93, 67: 183; 10. (31) Mathewson, 93, 50: 171; 06. (32) Mazzotto, 95, 4: 273; 13. (33) Muzaffar, 4, 123: 2341; 23. (34) Niclassen, Forschungsarbeiten zur Metallkunde, 7: 9; 22. (35) Parravano, Mazzetti and Moretti, 36, 44 II: 475; 14. (36) Petrenko, 93, 53: 200; 07. (37) Rosenhain and Tucker, 5, 81: 331; 08. (38) Ruer, 93, 52: 345; 07. (39) Shepherd, 50, 6: 519; 02.
- (40) Smith, 93, 56: 109; 08. (41) Spring and Romanov, 93, 13: 29; 97. (42)
 Tammann and Dahl, 93, 144: 1; 25. (43) Vogel, 93, 45: 11; 05. (44) Vogel, 93, 46: 60; 05. (45) Vogel, 93, 72: 319; 11. (46) Williams, 93, 55: 1; 07.

60

TI-Sn

Liq.+βT1

70

227°

(Sn,BTI)

(Sn.aTI)

90

80

Liq.

Sn + BTI

30 Sn+ aTI50

250°

.150°

%T1 10-

200° Liq+Sn

·167°

Zn-Sn

Zn-Pb-Sb

early coincident with

E (Pb-Zn,Sb,-Zn)

g is on intersection of primary crystallization surfaces of Zn₃Sb₂ and Zn Sb

Pb corner of diagram to larger scale.

Liq.+B

Liq.

 β -(Mg₂Sn)

Mg-Sn

Liq.+ B

7911 B+ 5210° Lig+

Sn-Sb

400°

300

√600.C

500.

Liq+∝

OTHER NON-FERROUS ALLOYS (INCLUDING CU-FE)

J. L. HAUGHTON

INDEX OF SYSTEMS			
	PAGE	1	PAGE
Ag		Bi-Ni (141)	428
Ag-As (51)	421	Bi-Pb (58)	
Ag-Au (61, 80.1, 106)	421	Bi-Sb (24)	428
Ag-Be (90)	421	Bi-Se (92)	428
Ag-Bi (100)	421	Bi-Si (143)	428
Ag-Ca (3)	421	Bi-Sn (58)	
Ag-Cd (58, 102)	421	Bi-Te (89)	428
Ag-Cr (53)	421	Bi-Tl (75)	428
Ag-Cu (76)	421	Bi-Zn (25, 58, 88)	428
Ag-Mg (146)	422	Ca Cd (29)	400
Ag-Mn (124)	421	Ca-Cd (29) Ca-Cu (3)	428
Ag-Na (86)	422	Ca-Hg (31)	429
Ag-Ni (101)	422	Ca-Mg (3)	429
Ag-Pd (80.1, 111)	422 422	Ca-Sb (29)	428
Ag-Pt (28)	422	Ca-Si (144)	120
Ag-Se (98)	422	Ca-Tl (3)	429
Ag-Si (1)	422	Ca-Zn (29)	429
Ag-Tl (100)	423	Cd	
Ag-Zn (15, 58)	423	Cd-Cu (63)	429
As		Cd-Hg (9, 58)	429
As-Au (121)	423	Cd-K (127)	429
As-Cd (147)	423	Cd-Li (83)	429
As-Co (35)	423	Cd-Mg (3)	429
As-Cu (36)	423	Cd-Na (70, 85)	430
As-Mn (122)	424	Cd-Ni (141)	430
As-Pt (34)	424	Cd-Pb (58)	414
As-Tl (82)	424	Cd-Sb (69)	430
As-Zn (37, 50)	424	Cd-Sn (58)	416
Au D: (134)	404	Cd-Tl (71)	430 430
Au-Bi (134) Au-Cd (117)	424 424	Cd-Zn (88)	430
Au-Co (142)	424	Ce	100
Au-Cr (140)	424	Ce-Cu (45)	430
Au-Cu (74)	425	Ce-Mg (138)	430
Au-Mg (130, 131, 136)	425	Ce-Si (137)	430
Au-Mn (94)	425	Со	
Au-Na (87)	425	Co-Cr (80)	431
Au-Ni (⁷⁹)	425	Co-Cu (116)	431
Au-Pd (80.1, 112)	425	Co-Mn (48, 80.1)	431
Au-Pt (28)	425	Co-Mo (107)	431
Au-Sb (134)	425	Co-Ni (80.1, 115) Co-Sb (81)	431
Au-Si (13)		Co-Si (80)	
Au-Tl (⁷⁸)		Co-Zn (80)	432
B	420	Cr	102
B-Ni (40)	426	Cr-Cu (53)	432
Ве		Cr-Ni (141)	
Be-Cu (90)	426	Cr-Sb (143)	432
Bi		Cs	
Bi-Ca (29)	426	Cs-Hg (73)	432
Bi-Cd (33, 103)	426	Cu	
Bi-Ce (137)	427	Cu-Fe (113, 114)	432
Bi-Co (80)	427	Cu-Mg (116)	432
Bi-Cu (64)	427	Cu-Mn (116) Cu-Ni (43, 58, 80.1)	432
Bi-Hg (105)	427	Cu-N1 (43, 36, 50.1)	433 433
Bi-K (127) Bi-Mg (42)	427 427	Cu-Pb (55)	434
Bi-Mn (96)	428	Cu-Pd (110)	434
Bi-Na (85)	427	Cu-Pt (28)	434
			

Page (.Page
Cu-S (8) 433	Na-Tl (71) 438
Cu-Sb (14, 55, 108) 434	Na-Zn (84)
Cu-Se (38)	Ni Ni
Cu-Si (120)	Ni-P (68) 440
Cu-Sn (5, 46, 56, 58, 60,	Ni-Pd (52, 80.1)
60.1)	Ni-Sb (77) 440
Cu-Te (18)	Ni-Si (43)
Cu-Tl (26)	Ni-Tl (141) 439
Cu-Zn (4, 47, 123, 128) 435	Ni-V (40)
Hg	Ni-W (139)
Hg-Li (149) 435	Ni-Zn (141)
Hg-Mg (12)	Pd
Hg-Na (132)	
Hg-Pb (58)	Pd-Pt (80.1)
Hg-Te (97) 435	Pd-Sb (119) 439
Hg-Tl (109)	Pt
Hg-Zn (105)	Pt-Sb (39) 441
In	Sb
In-Tl (72) 436	Sb-Se (20) 441
K	Sb-Si (143) 441
K-Li (83) 436	Sb-Tl (143) 441
K-Na (6)	Sb-Zn (145) 441
K-Rb (80.1)	Se
K-Tl (71)	Se-Zn (22) 441
K-Zn (127)	Te
Li	Te-S (19) 441
Li-Na (83) 437	Te-Zn (67) 441
Mg	Tl
Mg-Na (84) 437	Tl-Zn (133)
Mg-Ni (141) 437	V
Mg-Sb (42) 437	V-Si (40) 441
Mg-Si (135, 144) 437	Ternary Systems
Mg-Tl (41) 437	Ag-Au-Cu (61) 446
Mg-Zn (42) 437	Ag-Au-Ni (16) 442
Mn	Au-Cu-Ni (17) 443
Mn-Ni (91, 148) 438	Cd-Bi-Zn (88) 447, 448
Mn-Sb (143) 438	Cd-Mg-Zn (11) 447, 448
Mn-Si (27) 438	Cr-Cu-Mo (125) 444
Mn-Tl (3) 438	Cr-Cu-Ni (125) 443
Mo	Cr-Mo-Ni (126)
Mo-Ni (30) 438	Cu-Mn-Ni (93) 445, 446
Mo-W (62, 80.1) 438	Cu-Mo-Ni (30) 444
Na	Cu-Ni-Zn (129) 445
Na-Sb (85) 438	Mo-Ni-Si (104)

LITERATURE

(For a key to the periodicals see end of volume)

Arrivaut, 34, 147: 859; 08.
 Asahara, £10, 2: 253; 25.
 Baar, 93, 70: 352; 11.
 Bailey and Genders, 47, 38: 191; 25.
 Bauer and Vollenbruck, 95, 15: 119, 191; 23.
 Bleiswijk, 93, 74: 152; 12.
 Bogitch, 34, 159: 178; 15.
 Boremann and Wagemann, 139, 11: 276, 289, 330; 14.
 Brijl, 7, 41: 641; 02.

229, 330; 14. (*) Briji, 7, 41: 041; 02.
[10] Bruni and Sandonnini, 93, 78: 275; 12. (11) Bruni, Sandonnini and Quercigh, 93, 68: 73; 10. (12) Cambi and Speroni, 22, 24 I: 734; 15. (13) di Capua, 22, 29 I: 111; 20. (14) Carpenter, 95, 4: 300; 13. (15) Carpenter and Whiteley, 95, 3: 145; 12. (16) de Cesaris, 36, 43 II: 365, 609; 13. (17) de Cesaris, 36, 44 I: 27; 14. (18) Chikashige, 93, 54: 50; 07. (19) Chikashige, 93, 72: 109; 12.

(2°) Chikashige and Fujita, 429, 2: 233; 17.
 (21) Chikashige and Hikosaka, 429, 2: 239; 17.
 (21) Chikashige and Kurosawa, 429, 2: 245; 17.
 (23) Clotofski, 93, 114: 1; 20.
 (24) Cook, 47, 28: 421; 22.
 (25) Curry, 60, 18: 589; 09.
 (2°) Doerinckel, 93, 48: 185; 06.
 (27) Doerinckel, 93, 50: 117; 06.
 (28) Doerinckel, 93, 54: 333; 07.
 (29) Donski, 93, 57: 185; 08.

- (30) Dreibhols, 7, 108: 1; 24. (31) Eilert, 93, 151: 96; 25. (32) Fay and Gillson, 80, 31: 527; 01. (33) Fischer, 97, 6: 146; 25. (34) Friedrich, 192, 5: 148; 08. (35) Friedrich, 192, 5: 150; 08. (36) Friedrich, 192, 5: 529; 08. (37) Friedrich and Leroux, 192, 3: 477; 06. (38) Friedrich and Leroux, 192, 5: 355; 08. (39) Friedrich and Leroux, 192, 6: 1; 09.
- (40) Giebelhausen, 93, 91: 250; 15. (41) Grube, 93, 46: 76; 05. (42) Grube, 93, 49: 72; 06. (43) Guertler and Tammann, 93, 49: 93; 06. (44) Guertler and Tammann, 93, 52: 25; 07. (45) Hanaman, 95, 7: 174; 15. (46) Haughton, 47, 25: 309, 326; 21. (47) Haughton and Bingham, 5, 99: 47; 21. (43) Hiege, 93, 83: 253; 13. (43) Heike, 95, 6: 209; 14.
- (50) Heike, 95, 118: 264; 21. (51) Heike and Leroux, 93, 92: 119; 15. (52) Heinrich, 95, 83: 322; 13. (53) Hendrichs, 95, 89: 414; 08. (54) Heycock and Neville, 4, 72: 383, 1241; 97. (55) Heycock and Neville, 62, 189A: 25; 97. (56) Heycock and Neville, 62, 202A: 1; 03. (57) Heyn and Bauer, 93, 52: 129; 07. (58) Honda and Ishigaki, 169, 14: 219; 25. (58) Iitsuka, 429, 8: 179; 25.
- (60) Isihara, 47, 31: 315; 24. (60.1) Isihara, 159, 18: 225; 26. (61) Jänecke, 192, 8: 597; 11. (62) Jeffries, 80, 56: 600; 16. (63) Jenkins and Hanson, 47, 31: 257; 24. (64) Jeriomin, 93, 55: 412; 07. (65) Joyner, 4, 99: 195: 11. (66) Kobayashi, 93, 69: 1; 10. (67) Kobayashi, 95, 2: 65; 12. (63) Konstantinov, 93, 60: 405; 08. (69) Kurnakov and Konstantinov, 93, 55: 1: 08.
- (70) Kurnakov and Kusnetsov, 93, 82: 173; 07.
 (71) Kurnakov and Pushin, 93, 82: 430; 07.
 (72) Kurnakov and Pushin, 93, 82: 430; 07.
 (73) Kurnakov and Shukovskii, 93, 82: 416; 07.
 (74) Kurnakov and Zhemchushnui, 93, 84: 149; 07.
 (74) Kurnakov, Zhemchushnui and Tararin, 93, 83: 200; 14.
 (76) Lepkowski, 93, 89: 285; 08.
 (77) Lessew, 93, 49: 58; 06.
 (78) Levin, 93, 45: 31; 05.
- (80) Lewkonja, 93, 59: 293; 08. (80.1) van Liempt, 70, 45: 203; 26. (81)
 Losev, 53, 43: 375; 11. (82) Mansuri, 47, 28: 453; 22. (83) Masing and
 Tammann, 93, 67: 183; 10. (84) Mathewson, 95, 48: 191; 06. (85)
 Mathewson, 93, 50: 171; 06. (86) Mathewson, 95, 1:51; 11. (87) Mathewson

- son, 95, 1: 81; 11. (88) Mathewson and Scott, 95, 5: 1; 14. (88) Monkemeyer, 93, 46: 415: 05.
- (90) Oesterheld, 93, 97: 6; 16. (91) Parravano, 36, 42 II: 367; 12. (92) Parravano, 36, 43 II: 201; 13. (93) Parravano, 96, 4: 171; 13. (94) Parravano, 36, 45 II: 293; 15. (95) Parravano and de Cesaris, 96, 2: 70; 12. (84) Parravano and Perret, 36, 45 II: 390; 15. (97) Pellini, 36, 40 II: 42; 10. (98) Pellini, 36, 45 II: 535; 15. (99) Pellini and Quercigh, 22, 19 II: 445; 10.
- (100) Petrenko, 93, 50: 133; 06. (101) Petrenko, 93, 53: 212; 07. (101) Petrenko and Fedorov, 93, 70: 156; 11. (103) Petrenko and Fedorov, 96, 6: 212; 14. (104) Pfautsch, 95, 17: 48; 25. (105) Pushin, 95, 36: 201; 03. (106) Raydt, 93, 75: 59; 12. (107) Raydt and Tammann, 93, 83: 246; 13. (108) Reimann, 95, 12: 321; 20. (109) Roos, 95, 94: 358; 16.
- (110) Ruer, 93, 51: 223; 06. (111) Ruer, 93, 51: 315; 06. (112) Ruer, 93, 51: 391; 06. (113) Ruer and Frick, 139, 11: 39; 13. (114) Ruer and Goerens, 139, 14: 49; 17. (115) Ruer and Kaneko, 192, 9: 419; 12. (115) Sahmen, 93, 57: 1; 08. (117) Saldau, 96, 7: 3; 14. (118) Saldau, 96, 93; 351; 23. (119) Sander, 93, 75: 97; 12.
- (120) Sanfourche, 74, 16: 246; 19. (121) Schleicher, 95, 6: 18; 14. (121) Schoen, 192, 8: 737; 11. (123) Shepherd, 50, 8: 421; 04. (124) Siebe, 93, 106: 161; 19. (125) Siedachlag, 93, 131: 191; 23. (126) Siedachlag, 95, 17: 53; 25. (127) Smith, 93, 56: 109; 08. (128) Tafel, 192, 5: 342; 08. (128) Tafel, 192, 5: 375; 08.
- (130) Urasov, 93, 64: 375; 09. (131) Urasov and Vogel, 93, 67: 442; 10. (132) Vanstone, 83, 7: 42; 11. (133) von Vegesack, 93, 82: 30; 07. (134) Vogel, 93, 80: 145; 06. (135) Vogel, 93, 81: 46; 09. (136) Vogel, 93, 83: 169; 09. (137) Vogel, 93, 84: 323; 14. (138) Vogel, 93, 91: 277; 15. (138) Vogel, 93, 116: 231: 21.
- (140) Vogel and Trilling, 93, 129: 276; 23. (141) Voss, 93, 57: 34; 08. (142)
 Wahl, 93, 66: 60; 10. (143) Williams, 93, 55: 1; 07. (144) Wohler and Schliephake, 93, 151: 1; 26. (145) Zhemchushnui, 93, 49: 384; 06. (144)
 Zhemchushnui, 93, 49: 400; 06. (147) Zhemchushnui, 95, 4: 228; 13. (144)
 Zhemchushnui, Urasov and Rikouskov, 93, 57: 253; 08. (149)
 Zukowski, 93, 71: 403; 11.

20

%Mo

1420°

Si+Liq.

FERROUS ALLOYS

C. H. Desch

INDEX OF SYSTEMS

PA	GE		PAGE
Fe-Ag* (39)		Fe-Sb (25)	452
Fe-Al 4	.03	Fe-Si (1, 12, 30, 32, 40)	
Fe-As (9) 4	50	Fe-Sn (21, 60)	452
Fe-Au (21) 4	50	Fe-Ti (26, 41)	453
	50	Fe-Tl* (22)	
Fe-Be (34) 4	150	Fe-V (27, 58)	453
Fe-Bi* (22)		Fe-W (36)	453
Fe-C (3, 4, 6, 13, 31, 45, 47) 4	50	Fe-Zn (42, 55)	454
Fe-Ce (57) 4	51	Fe-B-C (59)	454
Fe-Co (27, 46)	50	Fe-C-Cr (28.1, 29, 33, 48)	455
Fe-Cr (29, 37, 56) 4	51	Fe-C-Ni (23)	
Fe-Mn (27, 43) 4	50	Fe-C-P (11, 51)	454
Fe-N (10) 4	51	Fe-C-Si (19, 20)	
Fe-Ni (2, 15, 16, 27, 35) 4	51	Fe-C-Ti (53)	455
Fe-O (50, 54)	51	Fe-C-W (33, 36)	455
Fe-P (17, 24, 49, 52) 4	52	Fe-Cr-Si (7)	455
Fe-Pb* (22)		Fe-Mn-Ni (38)	
Fe-Pt (22) 4	52	Fe-X (18)	
Fe-S (28) 4			

^{*} Two immiscible liquid phases.

LITERATURE

(For a key to the periodicals see end of volume)

Banberger, Einerl and Nussbaum, 77, 45: 141; 25. (2) Benedicks, δδ, 7: 290; 11. (3) Bureau of Standards, Washington, D. C., O. (4) Carpenter

and Keeling, 140, **65**: 224; 04. (*) Chiyevskii and Herdt, 451, I: 353; 15. 430, **98**: 396; 16. (*) Chiyevskii and Schulgin, 140, **98**: 189; 17. (*) Denecke, 93, **154**: 180; 26. (*) Desch, O. (*) Friedrich, 192, 4: 129; 07.

(10) Fry, 77, 43: 1271; 23. (11) Goerens, 192, 6: 537; 09. (12) Guertler and Tammann, 93, 47: 163; 05. (13) Gutowsky, 192, 6: 731; 09. (14) Hannesen, 93, 89: 257; 14. (15) Hanson and Freeman, 140, 107: 301; 23. (15) Hanson and Hanson, 140, 102: 39; 20. (17) Haughton and Hanson, 140, 197: 413; 18. (16) Honda, 169, 18: 363; 25. (19) Honda and Murakami, 140, 107: 545; 23.

(20) Honda and Murakami, 159, 12: 1; 24. (21) Isaac and Tammann, 93, 58: 281; 07. (22) Isaac and Tammann, 93, 55: 58; 07. (23) Kase, 159, 14: 173; 25. (24) Konstantinov, 93, 66: 209; 09. (28) Kurnakov and Konstantinov, 93, 58: 1; 08. (28) Lamort, 159, 11: 225; 14. (27) van Liempt, 70, 45: 203; 26. (26) Loebe and Becker, 93, 77: 301; 12. (28-1) Meierling and Denecker, 93, 151: 113: 26. (28) Murakami, 169, 7: 217: 18.

and Denecke, 93, 181: 113; 26. (29) Murakami, 169, 7: 217; 18. (30) Murakami, 169, 10: 79; 21. (21) National Physical Laboratory, England, O. (32) Oberhoffer, 77, 44: 979; 24. (23) Oberhoffer, Daeves and Rapats, 77, 44: 432; 24. (34) Oesterheld, 93, 97: 36; 16. (28) Osmond, 74, 2: 798; 05. (36) Osawa, 169, 11: 333; 22. (37) Pakulla and Oberhoffer, Ver. deutscher Eisenhüttenleute, Werkstoffausschuss, No. 68; 1925. (28) Parravano, 36, 42 II: 367; 12. 95, 4: 171; 13. (29) Petrenko, 93, 88: 212; 07.

(40) Phragmén, 880, 1923: 121. (40.1) Phragmén, 115, 122: 370; 26. (41) Portevin, 74, 6: 1264; 09. (42) Raydt and Tammann, 93, 83: 257; 13. (42) Rümelin and Fick, 159, 12: 41; 15. (44) Rümelin and Maire, 139, 12: 141; 15. (48) Ruer and Biren, 93, 112: 98; 20. (46) Ruer and Kaneko. 159, 11: 33; 13. (47) Ruer and Klesper, 159, 11: 257; 14. (48) Russell, 140, 104: 247; 21. (49) Saklatwalla, 140, 77: 92; 08.

(50) Schönert, 95, 154: 224; 26.
 (51) Stead, 140, 91: 140; 15.
 (52) Stead, 140, 97: 389; 18.
 (53) Tamaru, 159, 14: 25; 25.
 (54) Tritton and Hanson, 140, 110: 90; 24.
 (55) von Vegesack, 95, 52: 30; 07.
 (56) von Vegesack, 95, 154: 30; 26.
 (57) Vogel, 95, 99: 25; 17.
 (58) Vogel and Tammann, 95, 123: 225; 22.

(60) Wever and Reinecken, 226, 7: 21; 25.

DENSITY OF THE METALLIC ELEMENTS

S. L. Archbutt (SLA); C. Benedicks (CB); C. H. Desch (CHD); D. Hanson (DH); O. F. Hudson (OFH); C. H. M. Jenkins (CHMJ); P. D. Merica (PDM); A. Portevin (AP); THOMAS K. ROSE (TKR); V. H. STOTT (VHS)

For values of density deduced from X-ray diffraction data, v. vol. I, p. 340

D	T 0	METALS
PART	1.—801.0	D METALS

PART I.—Solid Metals.—(Continued)

Coop.

exp.

CHD

CHD CHD

AP

CHD

CHD

CHD

CHD

PDM

TKR

OFH

TKR

CHD

TKR

CHD

TKR

TKR

CHD

OFH

CHD

OFH

CHD

CHD

CHD

CHD

TKR

CHD

CHD

CHD

CB

CHD

	1 ARI 1.	COLID	MIEIALD				TART I. SOLID	MEIAL	<i>b</i> . (00%	
Metal	Condition	Temp.,	ď.	Lit.	Coop.	Metal	Condition	Temp.,	d ^t 4	Lit.
Ag*	Cast or cast and com-	0	10.50	(1, 54, 55, 59,	TKR	Ir	Cast, hammered, slightly	ĺ		
	pressed	1		65, 56, 93)			impure	0	22.4	(55, 63, 89)
	Electrolytic	25	10.4914	(94)		K		20	0.86	(31, 75, 76)
	Cast, compressed and heat-					La		15	6.16	(48, 82)
	ed to redness in vacuo	0	10.55	(93)		Li	i	20	0.53	(75)
	Drawn, annealed	20	10.4475	(44)		Mg	Filings		1.7429	(84, 65)
	Hard drawn	20	10.4410	(44)			1	20	1.738	} (19)
	Distilled (in vacuo)	20	10.4923	(43)				650	1.642	
	Cast disc heated to redness	0	10.4624	(93)		Mn	i		7.2	(79)
	Same, struck	0	10.5028	(93)		Mo	i		10.2	(23)
	Reheated red	0	10.4894	(93)		Na	1	20	0.97	(28, 31, 78)
	Struck again	0	10.5104	(93)		Nd		20	6.9	(82)
	Reheated (in racuo)	0	10.4977	(93)		Ni	1	İ	8.90±	(13, 25, 39)
	Fine powder by precipi-	1)	9.945 to	(46)		l	i		0.05	
	tation or decomposition	}	10,499	(44)		Os	Crystals	[22.48	(42, 90)
	of AgrO and AgrCOs	J	10.488			Pb		20	11.3475	(20)
Al	Cold rolled (99.97% Al)	20	2.699	(17)	SLA	1	Ordinary	19.94	11.337	(50)
	Cast, pig (99.75% Al)	İ	2.684†	(18)		1	Radioactive	19.94	11.289	(33)
	Cold rolled i-i in		2.703†	(15)			Ordinary	16.34	11.3475)
	Cast (99.75% Al)**	20	2.703†	(15)			From Australian uranium		İ	(20)
As	Metallic	15	5.73	(49, 100)	CHD		mineral	16.34	11.296	
	Yellowi	18	2.0	(21, 47)		Pd	Cast		11.87	(88)
	Amorphous‡	15	3.69	(49)			Cast, hammered	0	12.1	(54, 83, 65,
	Black or gray	20	4.7	(21, 47)				1	1	73, 78)
Au	Cast or cast and com-			` '		Pr	1	20	6.5	(62)
	pressed	0	19.30	(53, 55, 86)	TKR	Pt	Cast and hammered or	ō	21.46	(58, 83, 75,
	Distilled, compressed by	1	1 -0.00	` ' '		"	struck	•	1	89, 92)
	104 atm	20	19.2685	(43)			In mass	0	21.3351	(54, 65)
	Drawn, annealed	20	19.2601	(44)			Filings	1 -	21.3705	(54, 65)
	Hard drawn	20	19.2504	(44)			Annealed wire	20	21.4408	(44)
	Precipitated from soln. by		10.2000	` ′		l	Hard drawn wire		21.4188	(44)
	CH ₂ O	20	19.3966	(*)		Rb	Haid diawn whe	20	1.53	(75)
	80:	15	19.3587	(65)		Rh	Cast	1	12.1	(88)
	Cold rolled sheet	0	19.296s	(86)		100	Hard drawn wire	II.	12.23	(30)
	Same, annealed	0	19.285	(\$6)			Cast and forged	1	12.5	(83, 103)
В	Same, annealed	20	2.3	(73)	CHD	Ru	Cast, pulverised	0	12.2	(41, 91)
Ba.	i	25	3.5	(1)	CHD	Sa	Cast, parverseu	20	7.7?	(62)
Be		20	1.84	(22)	CHD	8b		20	6.620	(42)
Bi	i	20	9.80	(40)	OFH	1 50	Pressed		6.69	(43)
C	Carabina	20	2.25 to	(4)	VHS		Rhombohedral	ļ	6.71	(83)
C	Graphite	20	2.26	()	VIIS	Si¶	Crystalline	20		(79, 97)
	0 10 0		2.20			_	White	20	2.4	
	Graphite after compression	1	0.000	(50)	l	8n		20	7.30	(**)
	to 5000 atm	15	2.255	(50)		g_	Gray		5.85	(00)
_	Graphite, fused in arc	16	2.232	(51)	G*** D	Sr		i	2.6	(27)
Ca		20	1.58	(7, 52, 60)	CHD	Ta		į.	16.6	(*)
Cd	Cast	20	8.648	(20, 43)	CHMJ	Th	1	ĺ	11.7	(72)
	Cast, compressed	20	8.647	(54)		Ti		000	4.8	(35)
_	(Computed value)	-273	9.65	(32)		Tl		20	11.849	(164)
Ce		20	6.9	(62)	CHD	U	i	l	18.7	(101)
Co		i	8.9	(14, 45)	CHD	v		20	5.96	(37, 61)
Cr		l	7.1	(79)	CHD	w			19.3	(24)
Cs		20	1.90	(31, 75)	CHD	Zn	l	20	7.130	(20)
Cu	Impurities negligible	20	8.94	(26, 43, 64)	DH		Different distillation frac-		7.1381	(29, t. also 2,
		l	±0.01			1	tions, variable isotopic	l	to	12, 43, 102)
Fe	Electrolytic: O ₂ , 0.08 %;	l	1				proportion	1	7.1420	
	P, 0.007%; melted in					Zr_		20	6.4	(95)
	vacuo, rolled down 80 %;					* For	effect of annealing, v. (56).			
	normalised 1000°C	20	7.90	(95)	DH		luced ad vacuum.			
Ga	1	29.65	5.91	(74)	CHD	احنا		ma.		
Ge	1	20	5.36	(18, 37)	CHD	[]	ΔV		moo	
Hf		20	11.4	(33)	Ed.	V.,	$\frac{\Delta V}{P_{c}} = 0.000123 \text{ per }^{\circ}\text{C b}$	etween -	- /U and th	ne M. P.
Hg		M.P.	14.43	(16, 29, 86,	Ed.	II No	satisfactory determination of	n the ho	mogeneous	metal.
-			1	96)			bably the only true form.			
In	1	20	7.31	(77).	CHD		responding to values given	helow for	r density ~	f liquid metal.
-	•	•								· ···derre me.

P.

^{**} Corresponding to values given below for density of liquid metal.

PART II.-LIQUID METALS

		. Liquid Min		
Metal	Temp.,	d_4^t	Lit.	Coop.
Metal	°C	4	Litt.	exp.
Ag	M. P.	9.46	(82)	TKR
J	M. P.	9.51	(70, 84)	
	1000	9.653	(34)	
	1025	9.633	(34)	
	1050	9.613	(34)	
Al*	659	2.382	(18)	SLA
	1000	2.289	(18)	
Bi	271	10.24	(69)	OFH
Cd		(t-320)	(36)	СНМЈ
	δ = 11	× 10 ⁻⁴	(30)	CHMJ
	349	7.94	(3)	
	406	7.88	(3)	-
	466	7.82	(3)	
	506	7.78	(3)	
	550	7.74	(3)	
	603	7.69	(3)	
Cs	28	1.84	(31)	CHD
Ga	29.8	6.09	(74)	CHD
$\mathbf{H}\mathbf{g}$		nfra.		
K	62 . 4	0.83	(31)	CHD
$\mathbf{M}\mathbf{g}$	650	1.572	(19)	AP
	667	1.560 to	(19)	
		1.565	1	İ
Na	97.5	0.93	(28, 31)	CHD
	В. Р.	0.74	(71)	
$\mathbf{P}\mathbf{b}$	327	10.88	(66)	OFH
Rb	38.5	1.47	(31)	CHD
Sb	631	6.55	(66)	OFH
Sn	232	6.97	(66)	OFH
Zn	418	6.92	(67)	CB
	455	6.87	(67)	
	510	6.79	(67)	
	574	6.72	(67)	
	661	6.65	(67)	
	800	6.57	(67)	
	918	6.53	(67)	

*99.75% Al. Corresponding value for d at 20°, 2.703.

LITERATURE

(For a key to the periodicals see end of volume)

Adams, Williamson and Johnston, 1, 41: 12; 19. (2) Arnold, 93, 30: 209;
 17. (3) Arpi, 95, 5: 142; 14. (4) Arsem, 78, 20: 105; 11. (5) Averkieff, 93, 35: 329; 03. (6) Beilby and Beilby, 5, 76: 462; 05. (7) Bilts and

- Hohorst, 93, 121: 1; 22. (8) Bilts and Hüttig, 93, 114: 241; 20. (8) von Bolton, 9, 11: 45: 05.
- (1*) Bureau of Standards, 365, No. 100; 21. (11) Burger, 208, 2: 114; 22. (12) Cohen and Helderman, 64P, 16: 565; 13. (13) Copaux, 6, 6: 508; 05. (14) Copaux, 34, 140: 657; 05. (15) Dennis, Tressler and Hance, 1, 45: 2033; 23. (16) Dewar, 135, 91: 216; 05. (17) Edwards, 78, 47: 287; 25. (18) Edwards and Moorman, 33, 24: 61; 21. (19) Edwards and Taylor, 80, 68: 1070: 23.
- (20) Egerton and Lee, δ, 103: 487; 23.
 (21) Erdmann and Reppert, iS, 361: 1; 08.
 (22) Fichter and Jablezynski, 25, 46: 1604; 13.
 (23) Fink, 78, 17: 229; 10.
 (24) Fink, 78, 22: 499; 12.
 (25) Fleming, δ, 68: 50; 99.
 (24) Gaby-Aché, 6, 30: 326; 03.
 (27) Glascock, 1, 32: 1222; 10.
 (28) Griffiths and Griffiths, 67, 27: 477; 15.
 (29) Grunmach, 63, 3: 134; 02.
- (20) Grüneisen, 8, 22: 801; 07. (31) Hackspill, 34, 182: 259; 11. (32) Hers, 93, 105: 171; 19. (32) Hevesy, 187, 6, No. 7: 51; 26. (34) Hoffmann and Stahl, 187, 19: 357; 22. (35) Hoffmann and Stahl, 187, 21: 22; 24. (36) Hogness, 1, 43: 1621; 21. (37) Hull, 2, 20: 113; 22. (38) Hunter, 1, 32: 330; 10. (38) International Nickel Co., New York, O.
- (40) Johnston and Adams, 1, 34: 563; 12. (41) Joly, 34, 116: 430; 93. (42) Joly and Vèses, 34, 116: 577; 93. (43) Kahlbaum, Roth and Siedler, 93, 29: 177; 02. (44) Kahlbaum and Sturm, 93, 48: 217; 05. (45) Kalmus and Harper, 45, 7: 6; 15. (46) Kohlschütter and Eydmann, 13, 398: 1; 13. (47) Kohlschütter, Frank and Ehlers, 13, 400: 268; 13. (48) Kremers and Stevens, 1, 48: 614; 23. (48) Lashchenko, 4, 121: 972; 22.
- (50) Le Chatelier and Wologdine, 34, 145: 49; 08. (*1) Lely and Hamburger, 93, 87: 209; 14. (*52) Lengyel, Math. Naturw. Ber. Ungarn, 14, 180; 98. (*52) Linck, 93, 56: 393; 08. (*4) Lowry and Parker, 4, 107: 1005; 15. (*54) McKeehn, 2, 20: 424; 22. (*56) Mallet, 3, 4: 145; 77. (*57) Manchot, 93, 124: 333; 22. (*58) Matthey, 5, 28: 463; 79. (*59) Matthiessen, 62, 150: 177; 60.
- (60) Moissan and Chavanne, 34, 140: 122; 05. (61) Muthmann and Riedelbauch, 13, 355: 59; 07. (62) Muthmann and Weiss, 13, 331: 1; 04. (63) Mylius and Diets, 25, 31: 3187; 99. (64) National Physical Laboratory, England, O. (65) Parker and Lowry, 4, 107: 1160; 15. (66) Pascal and Jouniaux, 34, 158: 414; 14. (67) Pascal and Jouniaux, 74, 11: 469; 14. (65) Phelps, Royal Mint Laboratory, London, O. (65) Pluss, 25, 38: 1; 15.
- (70) Quincke, 8, 135: 621; 68. (71) Ramsay, 25, 13: 2145; 80. (72) Rentschler and Marden, Westinghouse Lamp Co., Bloomfield, N. J., O. (73) Richards, 1, 37: 1643; 15. (74) Richards and Boyer, 1, 43: 274; 21. (78) Richards and Brink, 1, 39: 117; 07. (76) Richards and Daniels, 1, 41: 1732; 19. (77) Richards and Sameshima, 1, 42: 49: 20. (78) Richards and Stull, 152, 76: 55; 07. (79) Richards, Stull and Brink, 152, 76: 29; 07.
- (80) Richards and Wadsworth, 1, 38: 221; 16. (81) Rishkevich and Köstermann, 9, 30: 86; 24. (82) Roberts, 5, 23: 481; 75. (83) Roberts-Austen and Rigg, 7th Annual Report, Royal Mint, London, 44; 76. 8th Annual Report (recalculated), 44; 77. 9th Annual Report, 38; 78. (84) Roberts-Austen and Wrightson, 3, 13: 360; 82. (85) Rose, 8, 75: 403; 48. (88) Rose, 47, 8: 86; 12. (87) Rose, Royal Mint Laboratory, London, 0. (82) Sainte-Claire Deville and Debray, 6, 56: 385; 59. (89) Sainte-Claire Deville and Debray, 54, 81: 839; 75.
- (**) Sainte-Claire Deville and Debray, \$4, \$2: 1076; 76.
 (**) Sainte-Claire Deville and Debray, \$4, \$3: 926; 76.
 (**) Stas, Oeuvres complètes, II: 719, 742; 94.
 (**) Stas, Oeuvres complètes (Oeuvres Posthumus) III: 153; 94.
 (**) Timofeiev, 7, \$6: 113; 13.
 (**) Tritton and Hanson, 140, 110: 90; 24.
 (**) Vicentini and Omodei, \$2, 23: 38; 87.
 (**) Weiss and Engelhardt, \$3, \$5: 248; 10.
 (**) Wigand, \$5, \$7: 64, 99; 07.
- (100) Zhemchuzhnui, 95, 4: 228; 13. (101) Zimmermann, 25, 17: 2739; 84.
 (102) Freeman and Brandt, 31, No. 522; 26. (103) Rose, 47, 33: 109; 25.
 (104) Richards and Smith, 1, 44: 524; 22.

H_G, DENSITY OF LIQUID MERCURY

V. STOTT AND PHILIP H. BIGG

The density of mercury at 0°C given in the table below is based on the following values: 13.59547 g/ml (Guye and Batuecas, 42, 20: 308; 23); 13.5956 g/ml (Marek, 238, 2: D; 83); 13.59545 g/ml (Thiesen and Scheel, 243, 18: 138; 98).

Densities at other temperatures were calculated by means of

the formula: $V_t = V_0[1 + 10^{-6}\{181.456t + 0.009\ 205t^2 + 0.000\ 006\ 608t^3 + 0.000\ 006\ 7\ 320t^4\}]$ (Sears, 67, 26: 95; 13).

Chappuis' formula for the expansion of mercury between 0 and 100°C (Chappuis, 238, 16: 17) would give the same values between these temperatures as those tabulated on p. 458.

DENSITY AND SPECIFIC VOLUME IN MILLILITERS PER GRAM

t, °C	Density	Volume	t, °C	Density	Volume	t, °C	Density	Volume	t, °C	Density	Volume
(F. P.)						110	13.3278	0.075031	240	13.0176	0.076819
-38.87	13.6919	0.073036	45	13.4851	0.074156	120	13.3037	75167	250	12.9938	7696 0
-30	13.6698	73154	50	13.4729	74223	130	13.2797	7530s			
-20	13.6450	73287				140	13.2558	75439	260	12.970o	0.077101
-10	13.6202	73420	55	13.4608	0.074290	150	13.2319	75575	270	12.9462	77243
± 0	13.5955	73554	60	13.4486	74357				280	12.9224	77385
			65	13.4365	74424	160	13.208o	0.075712	290	12.8986	77528
5	13.5832	0.07362o	70	13.4243	74492	170	13.1841	75849	300	12.8747	77672
10	13.5709	73687	75	13.4122	74559	180	13.1603	75986]
15	13.5586	73754		i		190	13.1365	76124	310	12.8508	0.077816
20	13.5468	73821	80	13.4001	0.074626	200	13.1127	76262	320	12.8268	77962
25	13.5340	73888	- 85	13.3880	74694	1	1		330	12.8028	78108
			90	13.3759	74761	210	13.0889	0.076400	340	12.7787	78255
30	13.5218	0.073955	95	13.3639	74829	220	13.0651	76540	350	12.7546	7840a
35	13.5096	74022	100	13.3518	74896	230	13.0414	76679	357.1	12.7374	0.078509
40	13.4973	74089							(B. P.)		

LATENT HEAT OF PHASE CHANGES OF PURE METALS AND ALLOYS

M L GAYLER

	MI. D. (JAILER	
Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Latent heat of fusion of pure metals.	Chaleur latente de fusion des métaux purs.	Schmelzwärme reiner Metalle.	Calore latente di fusione di metalli puri 458
Latent heat of vaporization of pure metals.	Chaleur latente de vaporisation des métaux purs.	Verdampfungswärme reiner Metalle.	Calore latente di evapora- zione dei metalli puri 458
Latent heat of transformation of pure metals.	Chaleur latente de transfor- mation des métaux purs.	Umwandlungswärme reiner Metalle.	Calore latente di trasfor- mazione di metalli puri. 458
Latent heat of fusion of alloys.	Chaleur latente de fusion des alliages.	Schmelzwärme der Legie- rungen.	Calore latente di fusione di leghe 459

Conversion Factors: 1 kilojoule per $g = 238.9 \text{ cal}_{16} \text{ g}^{-1} = 430.1 \text{ BTU}_{60} \text{ lb}^{-1} = 9.869 \text{ l-atm. } \text{g}^{-1} = 2.778 \times 10^{-4} \text{ kw hr g}^{-1}.$ For other factors, v. vol. 1, p. 16.

TABLE 1.—LATENT HEAT OF FUSION OF PURE METALS

Metal	$L_{ m F}$, kilojoule per g-atom	Approx. error, %	M. P., °C	Lit.
Ag	11.7	5	961	(23)
Al	9.82	3	657	(6, 8, 17)
Au	13.1	5	1064	(23)
Bi	8.93	5	270	(8, 23)
Cd	5.21	3	321	(8, 23)
Cs	2.09	2	28.5	(14)
Cu	11.1	3	1084	(6, 15, 23)
Fe*	11.5	5		(23)
Ga	5.56†	2	30	(1)
Hg	2.34	3	-38.7	(10, 13)
K	2.40	2	63.5	(14)
Mg	7.3	7	650	(8, 17)
Na	2.63	1	97.61	(7, 14)
Ni	17.9	1	1450	(22)
Pb	4.86	3	327	(8, 23)
Pd	16.1	10		(20)
Pt	22.0	10		(19)
$\mathbf{R}\mathbf{b}$	2.18	1	38.7	(14)
$\mathbf{S}\mathbf{b}$	19.8	3	630	(8, 23)
Sn	6.67	2	232	(6, 8, 23)
Tl	6.15‡			(16)
$\mathbf{Z}\mathbf{n}$	6.97	5	419	(8, 23)

^{*} Electrolytic Fe.

TABLE 2.—LATENT HEAT OF VAPORIZATION AT p MM HG

Metal	$L_{ m V}$, kilojoule per g-atom	Approx. error, %	p, mm Hg	Lit.
Bi	141		2 × 10 ⁻¹	(21)
Cd	84.7		2 × 10 ⁻³	(21)
Hg	53.3		2 × 10 ⁻³	(21)
Hg	57	4	760	(11)
Mg	172.7		2×10^{-3}	(21)
Zn	99.8		2 × 10 ⁻³	(21)

TABLE 3.—LATENT HEAT OF TRANSFORMATION

Metal	Transformation	L _T , kilo- joule per g-atom	t _T ,°C	Lit.
Ag	β (octohedral) $\rightarrow \alpha$	13.7*		(12)
As	$\begin{array}{l} \alpha \; (\text{rhombohedral}) \! \to \! \beta \; (\text{amorphous gray}) \\ \gamma \; (\text{amorphous brown}) \; \to \; \alpha \; (\text{rhombohedral}) \\ \land \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$	4.18* 14.0* 4.2*		(12) (12) (3)
Au	β (dark) $\rightarrow \alpha$ (bright)	13.4* 19.6*		(12) (12)
Fe†	$\begin{array}{c} \alpha \to \beta \\ \beta \to \gamma \\ \gamma \to \delta \end{array}$	1.53 1.56 0.45	725–785 919 1404	(23) (23) (23)
Mn	$\alpha \rightarrow \beta$	5.55	1070-1130	(23)
Ni	$\alpha \to \beta$	0.326	320-330	(23)
Sb	α (explosive) \rightarrow ordinary	9.97*		(5)
Se	$\begin{array}{l} \alpha \ (\text{amorphous}) \to \beta \ (\text{monoclinic}) \dots \dots \\ \alpha \ (\text{amorphous}) \to \gamma \ (\text{crystalline}) \dots \dots \\ \text{Amorphous} \to \text{metallic} \dots \dots \dots \dots \end{array}$	4.39* 5.98* 23.7*		(12) (12) (2)
Sn	White \rightarrow gray	2.22	0	(4)
Te	Crystalline (sublimed) → amorphous	101*		(2)

^{*} Difference between heats of oxidation.

[†] LF determined on super-cooled liquid at 13 and 14°C. The mean of these determinations is given and the author states that there is practically no difference in LF between 0 and 30°C.

[‡] Method not stated.

[†] Electrolytic Fe.

TABLE	4.—LATENT	HEAT O	FUSION	OF ALLOY	R

Alloy	LF, kilo- joule per g	Approx. error, %	M. P., °C	Lit.
AlaCu	0.31	7	590	(17)
MgZn1	0.26	7	595	(17)
Monel metal (Ni, 68; Cu, 28; Fe, 2; Mn,		!	l l	
1.5)	0.284	1	1 1	(22)
Pig iron, 4.34 % C	0.246			(18)
Gray cast iron	0.095	12	1350-1400	(9)
White cast iron	0.14	12	1050-1100	(9)

LITERATURE

(For a key to the periodicals see end of volume)

Berthelot, 34, 36: 786; 78.
 Berthelot, B73, 2: 63; 97.
 Berthelot and Engel, 14, 21: 284; 90.
 Brönsted, 7, 38: 479; 14.
 Cohen and Strengers, 7, 52: 129; 05.
 Glaser, 192, 1: 103; 04.
 Griffiths, δ, 39: 561; 14.
 Awbery and Griffiths, 67, 38: 378; 26.
 Gruner, 16, 4: 224; 73.
 112, 212: 527; 74.

(10) Koref, 8, 36: 49; 11.
 (11) Kurbatov, 7, 43: 104; 03.
 (12) Petersen, 7, 8: 601; 91.
 (13) Pollitser, 95, 17: 10; 11.
 (14) Rengade, 34, 156: 1897; 13.
 (15) Richards, 135, 68: 82; 93.
 (16) Robertson, 182, 18: 131; 02.
 (17) Roos, 95, 94: 329; 16.
 (18) Schmidt, 192, 7: 164; 10.
 (19) Violle, 34, 85: 543: 77.

(2°) Violle, 34, 87: 981; 78. (21) Wehnelt and Musceleanu, 88, 14: 1032; 12. (22) White, 35, 25: 17; 21. (23) Wüst, Meuthen and Durrer, 414, No. 204: 18,

THERMAL EXPANSION INCLUDING VOLUME CHANGE ON FUSION, SOLIDIFICATION AND TEMPERING

J. S. CLARK

CONTENTS	Matières	Inhaltsverzeichnis	INDICE PAGE
Pure metals.	Métaux purs.	Reine Metalle.	Metalli puri
Solid alloys.	Alliages solides.	Feste Legierungen.	Leghe solide 463
Liquid alloys and amalgams.	Alliages liquides et amalgames.	Flüssige Legierungen und Amalgame.	Leghe liquided amalgame. 474
Volume change on fusion and solidification. "Mold shrinkage."	Changement de volume par fusion et par solidification. (Contraction dans le châssis de moulage.)	Volumänderung beim Schmel- zen und Festwerden (Schwin- dung.)	Variazione di volume nella fusione e nella solidifica- zione. (Contrazione di volume nella forma) 474
Volume change with tempering.	Changement de volume par revenu.	Volumänderung bei der Anlassung.	Variazione di volume nel rinvenimento 477

COEFFICIENTS OF EXPANSION OF PURE METALS

Definitions

			LINEAR	CUBICAL	
l = length; V = volume	ne; $t = \text{temperature}, $	C.	$\alpha_{i} = \frac{\mathrm{d}l}{l}$	$A_t = \frac{\mathrm{d}v}{V\mathrm{d}t}$	(True
LINEAR	CUBICAL		$\alpha_t = \frac{1}{l dt};$	$A_t = \frac{Vdt}{V}$	coefficients)
$\alpha \frac{t_2}{t_1} = \frac{l_2 - l_1}{l_1(t_2 - t_1)};$	$A_{1}^{t_{2}} = \frac{V_{1} - V_{1}}{V_{1} + V_{1}}$	(Mean	$l_t = l_0(1 + \alpha t + \beta t^2 +$	$\gamma t^3 + \delta t^4 + \ldots);$	·
$u_1 = l_1(t_2 - t_1),$	$A_{t_1} = \overline{V_1(t_2 - t_1)}$	coefficients)		$V_t = V_0(1 + At +$	$Bt^2 + Ct^2 + \dots$

TABLE 1.—THERMAL COEFFICIENT OF LINEAR EXPANSION OF METALS

Metal	Range,	°C	10 ⁶ α*	10°β	1012γ and 1015δ	Probable error of $10^6\alpha$	Lit.
Ag	-200 to	300	18.7	5.9	$\left \left\{\begin{array}{c} -25.33_{\gamma} \\ 53.3_{\delta} \end{array}\right.\right $	{ ±0.5	(68, 88) (50, 74, 123)
	-200 to	0	16.1		[]	•	Comp.†
	0 to	300	19.6				Comp. †
	-170 to	0	19.5	3.7	-37_{γ}		(1)
	0 to	900	20.5	İ	·		(84)
Al	-200 to	0	22.65	16.75	-36.67 ₇	±0.03, 0°	(1, 68)
	-200		11.55		'	·	Comp. †
	-100		18.2				Comp.†
	0.40	600	00.65	9.5		$\int \pm 0.03, 0^{\circ}$	(37, 50, 80, 84, 91, 125,
	0 to	000	22.65	8.5		$\pm 0.8,600^{\circ}$	129)
99.95	0 to	600	22.5 8	9.89		•	(70)
99.74	0 to	600	21.90	12.0	İ	± 0.2	(129)
()	20 to	200	25.9				(70)
99.15	20 to	400	27.2				(70)
	20 to	600	28.7				(70)
Hard drawn	0 to	100	24.32				(17)
Annealed	0 to	100	24.54				(17)
As	10 to	90	3.86	21.6	Sublimed;	mixed crystals	(50)
Au	-100 to	500	14.13	2.768	-0.911 ₇	±0.1	(39, 40, 50, 56, 98)
	-100 to	0	13.84		'		Comp.†
	0 to	100	14.40				Comp. †
	100 to	300	15.1				Comp.†
	300 to	500	15.9		1		Comp. †

TABLE 1.—THERMAL COEFFICIENT OF LINEAR EXPANSION OF METALS.—(Continued)

Metal	Range,	°C	10 ⁶ α*	10°β	1018γ and 1018δ	Probable error of $10^6\alpha$	Lit.
3i	-183 to	15	12.98		İ		(56)
	-183 to	15	12.24				(39)
	19 to	101	13.45				(56)
	16 to	35	13.43				(139)
	0 to	270	14.6				(138)
	8 to	180	15.7				(91)
1	10 to	90	15.37	10.45			(50)
	20	0.40	13.96				(16)
.!!	20 to	240	16.2‡			±0.1	(116)
1	10 to	90	10.84	15.55			(50)
<u> </u>	20	040	10.36			±0.1	(16)
<u></u>	20 to 0 to	240	$\frac{12.0\ddagger}{25}$	Calc	ulated from cubic		$\frac{(116)}{(15)}$
			Graphite, v.				
d	-160		59.0			v. also Fig. 1	(57)
Ï	60		52.5			· ·	(57)
Ţ	-160		12.2				(57)
1	60		21.8		1		(57)
Mean (calc.)	-160		27.8	Mean (as	$lc.) \frac{\alpha \ + 2\alpha \bot}{3}$		(57)
Mean (calc.)	60		32.0	1 (3	•	(57)
Mean (obs.)	-170 to	200	29.1	17.9			(39, 50)
Mean (obs.)	0 to	315	38				(138)
Co	6 to 25 to	120 350	12.08 18.1	6.4			(136) (108)
Or	0 to	500	8.11	3.23			(36)
2	- 78 to	0	7.31	0.20			(36)
1	0	•	6.8				(24)
	200		9.0	1			(24)
98.3 (+Al, Fe, etc.)	300		9.8	1			(24)
,0,0 (12, 2 0, 3 00.)	600		12.3				(24)
	900		14.7				(24)
Cs	0 to	26	97	Calc	ulated from cubic	cal coefficients	(64)
Cu	-100 to	400	16.2	9.5	$igg \left\{egin{array}{c} -20_{m{\gamma}} \ 23_{m{\delta}} \end{array} ight.$	±0.2, 0° ±0.4, 400°	(50, 68) (37, 69)
	-250 to	-193	3.9		(2012, 200	(88)
		-183	6.8			also Fig. 2	(88)
	-187 to	19	12.3	1			(88)
	0 to	1000	20.0				(84)
Cu, 99.6; Ni, 0.35	25 to	300	16.7	3.3	Idem. for C	cu, 99.4; As, 0.54	(69)
Fe	0 to	700	11.45	7.0	$\left\{ egin{array}{c} -3.63_{\gamma} \ 1.2_{\delta} \end{array} ight\}$	±0.3	(41, 63, 74, 130)
	0 to	100	12.1				Comp.†
	0 to	300	13.2	1			Comp. †
	0 to	500	14.2				Comp.†
	0 to	700	15.0				Comp. †
	-190 to	20	9.18				(39, 68)
	>890§		ca. 23				(63)
Ga	0 to	30	18.3		ulated from cubi	cal coefficients	(114)
In	10 to	90	24.75	211.9	(4 222	±0.2, -150°	(50)
[r	-150 to	800	6.41	3.197	$\left\{\begin{array}{c} -4.333_{\gamma} \\ 2.629_{\delta} \end{array}\right.$	±0.2, -130° ±0.1, 600°	(5, 50, 76)
	-150 to	-50	5.64				Comp.†
	- 50 to	50	6.40				Comp.†
	50 to	150	6.92				Comp.†
	150 to	300	7.3				Comp.†
	300 to	800	7.8				Comp.†
	1000		9.02				(76)
		1	9.60	1	1		
	1250 1500		10.18	1			(76) (76)

Table 1.—Thermal Coefficient of Linear Expansion of Metals.—(Continued)

<u> </u>	TABLE 1.—1	HERMAL	COEFFICIENT O	F LINEAR E	XPANSION OF M	TETALS.—(Continued)
Metal	Range,	$^{\circ}\mathrm{C}$	106α*	109β	$10^{12}\gamma$ and $10^{15}\delta$	Probable error of $10^6\alpha$	Lit.
K	0 to	50	83.3]	1.		(65)
	0 to	56	79.7	69.7	Calculated fro	om cubical	(65)
	0 to	. 58	70.4	51.7	coefficients	om cubicai	(6)
	0 to	58	72.0		Coemcients		(64)
Li	0 to	178	51.2	31	Calculated from	cubical coefficients	(6)
Mg	-150 to	500	25.0	15.0	-11.6γ	$\begin{cases} \pm 1.0, -100^{\circ} \\ \pm 0.5 \text{ from } 0 \text{ to} \\ 500^{\circ} \end{cases}$	(50, 72) (56, 123)
	-100 to	0	23.4	1		(333	Comp.†
	0 to	100	26.4		1		Comp. †
	0 to	300	28.5	•	1		Comp.†
	0 to	500	29.6				Comp. †
Mn	-190 to	20	23.03	37.2			(36)
	0 to	300	21.61	12.1			(36)
Мо	-190 to	20	5.1	5.7 1.3			(36, 120) (36, 120)
(0 to	400 100	5.1 5.2	1.3			(71)
	25 to 25 to	100 250	5.4				(71)
W, 1.85% (v. also)	25 to	500	5.6	1			(71)
Table 34)	500 to	600	6.2	1			(71)
14010 01)	600 to	700	6.4				(71)
	500 to	750	6.3				(71)
00.00	25 to	100	3.7 to 5.0		}		(71)
99.86 to 99.98	25 to	250	4.4 to 5.1	1	l i		(71)
(+Fe, Si, Cu)	25 to	500	4.7 to 5.7				(71)
Na	-191 to	17	62.2	1	1		(35)
	0 to	50	72.1				(65)
	0.4-	00	69	07	0-11-4-46		(13, 14)
	0 to	90	64	87	Calculated from	cubical coefficients	(6, 55, 64, 65)
>	000.4	050	10.54	0.75	$\int -7.5_{\gamma}$	1.0, -200°	(58, 63, 136) (30, 36, 74)
Ni	-200 to	350	12.54	8.75	6.25	{ ±0.1, 0° ±0.4, 300°	(66, 112)
	-100 to	0	11.6			(10.4, 300	Comp. †
	0 to	100	13.3				Comp. †
(v. also Table 35)	100 to	200	14.7				Comp.†
(0, 0000 1000 00)	200 to	300	15.9		1		Comp. †
	350 to	550	ca. 19.0	Critical reg	ion		(66)
	500 to	1000	13.46	3.31	1		(74)
	0 to	1000	18.2	1	1		(84)
Commercial, 94 to	25 to	100	12.9 to 13.5	1			(129)
99 %	25 to	300	13.8 to 14.6				(129)
	25 to	600	14.9 to 15.7		<u> </u>		(129)
Os	10 to	90	5.70	10.9			(50)
Pb	-200 to	150	28.3	12	$ \begin{vmatrix} -13.3_{\gamma} \\ 75_{\delta} \end{vmatrix} $	±1.0 }	(39, 40, 50, 56, 88, 113)
	-200		19.5	1			Comp.†
	-100		25.2	1			Comp.†
	100	000	30.6	1		•	Comp.†
	0 to	320	33			(+0.9 1000)	(138)
Pd	-200 to	100	11.60	4.15	-8.67γ	$\left\{\begin{array}{l} \pm 0.3, -100^{\circ} \\ \pm 0.1, 0^{\circ} \end{array}\right\}$	(50, 68, 74, 121)
	-200 to	-100	9.75	1	1		Comp.†
	-100 to	0	11.10	1			Comp. †
	0 to	100	11.93		.		Comp.†
	0 to	1000	11.67	2.19	.	((74)
				1	(= 0	±0.1, -100°	(5, 50, 68, 74, 103, 121,
Pt	-150 to	600	8.786	3.118	$\left\{\begin{array}{c} -5.2_{\gamma} \\ 4.095_{\delta} \end{array}\right.$	±0.05, 0°	124, 137)
	1			1	4.0908	±0.1 from 100 to 600°	
	-150 to	50	7.97	1		(20 000	Comp.†
	1000	- 00	1 .01	1			- comp. (

TABLE 1.—THERMAL COEFFICIENT OF LINEAR EXPANSION OF METALS.—(Continued)

Metal	Range,	℃	10°α*	10°β	1013γ and 1015δ	Probable error of $10^6\alpha$	Lit.
t.—(Continued)	50 to	50	8.76				Comp.†
	50 to	150	9.26				Comp.†
	150 to	300	9.6				Comp.†
	300 to	600	10.0				Comp. †
	800		10.98	Ì			(74)
	1000		11.51		1		(15)
	0 to	1670	9.75				(126)
lb	. 0 to	38	90	Calc	ulated from cubic		(64)
th	180 to	100	8.19	4.217	$ \begin{vmatrix} -7.0_{\gamma} \\ 51.67_{\delta} \end{vmatrix} $	$\pm 0.1, < -100^{\circ}$ $\pm 0.05, > -100^{\circ}$	(50, 137) (50, 137)
	-180 to	-100	6.5				Comp. †
	-100 to	0	7.65				Comp.†
	0 to	100	8.59				Comp.†
u	. 10 to	90	8.51	14.05			(50)
o	190 to	17	10.22				(56, 137)
	17 to	100	10.88				(56, 137)
	9 to	72	11.77				(91)
	10 to	90	11.29	2.9			(50)
	10 to	90	17.3	-4.7	l		(50)
Ï	20		15.56				(16)
Ţ	-180 to	20	8.2				(39)
1	10 to	90	8.28	6.7			(50)
1	20		7.96				(16)
Ţ	100 to	30 0	10 .0				(12)
l	191 to	18	2.5	7.7			(137)
7	0 to	100	6.95	8.5	v. als	o Table 37	(50)
n, 99.9%	-163 to	18	16				(29)
White	10 to	90	20.9	17.5			(50)
w mite	20 to	232	23 to 24				(29, 138)
Gray	163 to	18	5.3				(29)
Q:1	20		3 0.5				(16)
Single crystals $\left\{\begin{array}{c} \parallel \\ \perp \end{array}\right\}$	20		15.45	ļ			(16)
a	78 to	0	5.9				(36)
	0 to	400	6.46	0.9			(36)
1	. 10 to	90	25.65	57.0			(50)
	0 to	294	33	0			(102)
,	-190 to	0	3.8	_			(36)
	0 to	400	4.46	0.73			(36)
1	17 to	577	4.5				(53)
99.99	577 to	1377	5.71	l			(53)
	1377 to	2227	7.27	1			(53)
W, 99; Th, 1		675	4.56				(38)
· · ·	27		4.44				(141)
	1027		5.19				(141)
	2027		7.26				(141)
	-150 to	502	4.28	0.58		1	(71.2)
	30 to	63 0	4.67**		1)		(52)
	630 to	830	4.00**		$\left \begin{array}{c} l_i = l_{i_1} [1 + \alpha \end{array} \right $	$(t-t_1)+\beta$	(52)
	830 to	2430	4.87**	9.45	$\left \int_{0}^{\infty} (t-t_1)^2 \right $. 7 ((52)
n	170 to	60	29.5	21.6	-40 ₇		(39, 40, 50, 57)
	0 to	3 00	35.4	10	'		(125)
99.99	. 20 to	250	39.5	(Cast)			(70)
	-160 to	60	57 to 64		1		(16, 57)
, L	-160		. 6.6			v. also Fig. 1	(57)
Ţ	20		12.6			J	(16)
Ī	60		15.6]		(57)
	-220 to	60	13.5	2.37	1		(56, 57, 88)

[•] If only α is given and only one temperature, $\alpha = \alpha t$; if only α and a temperature range, $\alpha = \alpha t$;

[†] Computed, using the above values of α , β , γ , δ . ‡ Practically constant between 20 and 240°C.

[¶] Probable error of $l_t = \pm 8 \times 10^{-6}$ %** Aged lamp filaments.
§ Critical temperature.

(84)

Table 2.—Thermal Coefficient of Cubical Expansion of Metals (Solid) $V_t = V_0 \ (1 + \mathrm{A}t + \mathrm{B}t^2)$

Metal	Rang	e	106A	10 ° B	Lit.
Ca	0 to 2	21°C	75		(15)
Ca	0 to 2	26°C	291		(64)
Ga	0 to 3	30°C	55		(114)
Hg; v. p. 456					
	0 to 8	50°C	239	209	(65)
к	0 to 8	56°C	211.2	155	(*)
	0 to 8	58°C	250		(64)
Li	0 to 17	78°C	153.5	92	(6)
	-191 to	l6°C	186.5		(35)
	0 to 7	78 ° C	181.6	280	(•)
Na	0 to 9	95°C	204	242	(65)
	0 to 8	30°C	216		(64)
	25 to 10	00°C	226		(55)
Rh.	0 to 3	8°C	270		(64)

268.6

1.6 to 17.5℃

Table 3.—Specific Gravity and Thermal Coefficient of Cubical Expansion of Liquid Metals $V_{\bullet} = V_{\bullet} \left[1 + A(t - \theta) + B(t - \theta)^2 + C(t - \theta)^2 + \dots \right]. \quad ^{\circ}\text{C}$

Metal	Approx. M. P.,	d_4^{θ}	10 ⁶ A	10°B	Range, °C	Lit.
Ag	960	9.51			· · · · · · · · · · · · · · · · · · ·	(117)
$d_4^{18.5} = 10.33$		9.32	111		960 to 1100	(118)
Al 99.8	658	2.382	114	l i	650 to 1100	(43)
99.4	658	2.384		1 1	650 to 1100	(43)
98.3	658	2.405		i I	650 to 1100	(43)
99.4	658	2.41	142		658 to 1000	(105)
98.7 to 99.2	658	2.399	125		658 to 882	(°)
Au	1063	(17.1)	1		ı	(109)
Bi	275	10.07	124	1	269 to 472	(73)
		10.00	120	1	270 to 300	(135)
		10.055		1		(117)
		10.03	121	1	360 to 630	(11)
Cd, electrolytic	320	7.99	170		318 to 351	(135)
	}	8.02	137		320 to 544	(73)
Su 99.9	1083	8.40	62 1012℃	$\begin{vmatrix} -560 \\ -5600 \end{vmatrix}$	1083 to 1295	(105)
	1	8.22	`	1		(117)
	ł	7.99	199	1 1	1083 to 1200	(9)
3	26	1.836	379		27 to 40	(42)
			395		27 to 100	(42)
	l		341		28 to 50	(64)
			348		50 to 123	(64)
(C, 0.1%	1530	7.0				(117)
% C, 0.2-0.25%	1540	6.92±0.07				(4)
C, 3.3; Si, 2.76%*	1150	6.97			l	(119)
Hg; s. p. 457			l			
K	62	0.8298	299		62 to 100	(05)
	l		280		70 to 100	(64)
			285		100 to 150	(64)
	l		268	210	78 to 235	(6)

Table 3.—Specific Gravity and Thermal Coefficient of Cubical Expansion of Liquid Metals.—(Continued) $V_t = V_\theta \left[1 + A(t - \theta) + B(t - \theta)^2 + C(t - \theta)^3 + \dots \right]. ^{\circ}C$

Metal	Approx. M. P., &C	d_4^{θ}	10°A	10 ⁸ B	Range, °C	Lit.
Li	185		174	106	185 to 235	(*)
Mg	650	1.572 (1.545 at 780°)	(380)		650 to 800	(44) (118)
Na	98	0.9287	278 275 260 390†	286	98 to 170 100 to 180 100 to 235 98 to 750	(65) (64) (6) (110, 111)
Pb	327	10.65 10.69	129 120		325 to 357 327 to 825	(135) (33)
Pb, electrolytic		10.71 (10.47 at	130 500±5°)		327 to 522	(73) (4)
Pd	1550	(10.8)	<u> </u>	1 1		(109)
Pt	1755	(18.9)	l	1		(109)
Rb	38	1.472	339		40 to 140	(64)
Sb, 99.9%	630	6.55 6.49	41 104	120	631 to 1074 700 to 1040	(105) (10)
Sn, electrolytic 99.9%.	232	6.97 7.01	105 106 ∫ 126	-171)	400 to 700 232 to 396	(11) (73)
		6.98 6.98		= 146	232 to 988 232 to 1600	(102) (33)
		6.99	114		202 10 1000	(138)
		7.025 (6.95 at	 320 ± 5°)			(117) (4)
TI	300	11.032	150	1 1	302 to 351	(102)
Zn, electrolytic 99.9%.	419	6.59 6.92	147 217	-198	419 to 543 419 to 918	(73) (105)

The values in parentheses in the d_4^θ column are very old single determinations and are probably only approximate.

* Gray pig iron.
† Based on Ramsay's value of density at B. P.

COEFFICIENTS OF EXPANSION OF SOLID ALLOYS

First consult Table 4, which is a complete index of the section. The arrangement is alphabetical under the chemical symbol of the major constituent, as explained above, p. 360.

For definitions and symbols, v. p. 392.

A. A	Table	4.—Gen	ERA	L TABLE		
Ag-Au; v. Table 38.		Ag-C	u			
% composition	Ind. No.	Range,	,c	106α	10% and 1012γ	Lit.
Ag, 77; Cu, 23	. 1253	0 to	800	18.0		(84)
Ag-Hg-Zn; v. Table	32.					
Ag-Pt; v. Table 38.		Al-Cr-Ni-C	Cu-M	n		
Al, 95.5; Ni, 1.5; Cr, 1.5; Cu, 1.0; Mn, 0.5	1452	14 to	302	21.05	14.73 ₈	(70)
	Al-Cu;	v. also Tabl	e 5 s	nd Fig. 3		
Al, 95; Cu, 5 to Al,	1	20 to	100	22.2-24.6		(70)
87; Cu, 13		20 to	200	23.6-26.8		(70)
Al, 82; Cu, 18		20 to 15 to	300 100	26.4-29.2 21.9		(70) (85)
Al, 70; Cu, 30		15 to	100	20.0		(85)
Al, 67; Cu, 33	. [15 to	100	16.2		(85)
Al, 50-0; Cu, 50-100.		15 to		15.7-16.5		(85)
	Al-Cu	-Mg-Si; v.		Table 6		1
Al, 94.4-94.8; Cu,	1	20 to 20 to	100 200	21.9-23.8 22.9-26.0		(70) (70)
3.66-3.74; Mg,	508	20 to	300	24.7-26.9		(70)
0.36-1.08; (Mn,		20 to	400	25.7-27.3		(70)
Fe, Si)		20 to	500	25.4-27.6		(70)
		Al-M	8			
Al, 96; Mg, 3 (Fe, Sb)		0 to	13	22.0		(01)
Al, 85.9; Mg, 17.7 (Si,	1	12 4-	39	92.0		(132)
Fe, Cu)		12 to	98	23.8	-	1 ()
Al-Mn-X; v. Table Al-Cu-Si; Al-Mn;		u; v. Table	7.			
, ,		l-Si; v. alsa		le 8		
A1 05: S: E A- A1	í I	20 to	100	19.2-22.2		(70)
Al, 95; Si, 5 to Al, } 87; Si, 13		20 to	200	20.2-23.2		(70)
· · · · · · · · · · · · · · · · · · ·		20 to	300	22.2-24.8	<u> </u>	(70)
Al-Si-Cu; Al-Si-M				10 1 77		
A1-	Zn; r. al	so Tables 9			;. 4	1.70
Al, 86; Zn, 14 to Al,	ŀ	20 to 20 to	100 200	24.3-33.3 27.3-37.2		(70) (70)
5; Zn, 95; v.	ì	20 to	300	28.3-40.7		(70)
Al, 100; Zn, 0 to Al,		25 to	250	27.1-32.6		(128)
0, Zn, 100	<u> </u>	20 to	250	27.7-38.2		(125)
Al-Cu-Fe-Mn-Si; r Au-Ag; r. Table 38.		7.				
nu ng, n rubic oci		ı-Cu; r. alse	Tab	le 38		
Au, 91.66; Cu, 8.33	.	0 to	85	14.57	3.19 ₆	(5)
Bi-Pb; r. Table 38.				·		
Bi-Sn; r. Table 38.						
C (Graphite); v. T						
Cd-Pb; v. Table 38.	_	o-Cr; v. also	Tah	le 12		
Co, 55-80; Cr, 20-40		1				1
+ C, W	. 1344	20 to	600	13.6-16.5		(129)
Co, 55; Cr, 35; W, 10		-94 to	19	10.2		(129)
Co-Cr-W-C (Stellit						
Cr-Fe-C-Si; Cr-Fe-		r. also Al-	Cure	nd Fig 3		
Cu, 92.2; Al, 7.3; Zn,		, saas Al-	- u a	148. 0		<u> </u>
0.4 (R _h)		20 to	300	15.57	8.05 ₈	(69)
Same, Do		20 to	300	15.79	6.45 ⁶	(69)
		Cu-N	Ti			
Cu, 60; Ni, 40		-191 to	16	12.22		(68)
Cu, 60; Ni, 40	. 405	0 to	500	14.81	4.02 _β	(74)
	С	u-Sb; r. al	so Fi	g. 3		
Cu, 100; Sb, 0	1	25 to	100	16.3		(85)
Cu, 95; Sb, 5	1	25 to	100	19.2		(55)
Cu, 90; Sb, 10	1	25 to	100	20.2		(85)
Cu, 85; Sb, 15 Cu, 80; Sb, 20		25 to 25 to	100 100	20.0 19.2		(85)
Cu, 57; Sb, 43		25 to	100	14.5		(85)
Cu, 33; Sb, 67	1	25 to	100	11.5		(85)
Cu, 10; 8b, 90	.	25 to	100	9.1		(85)
Cu, 0; Sb, 100	į.	25 to	100	10.0		(85)
Cu, 100; Sb, 0	• 1	160 to	300	16.4		(12)

% composition	Ind. No.	Range,	°C	104a	10°β and 10¹²γ	Lit
u, 96; Sb, 4		100 to	300	17.9		(12)
u, 93; Sb, 7		100 to	300	19.1		(12)
u, 85; Sb, 15		100 to	300	20.0-20.5		(12)
u, 68; Sb, 32		100 to	300	23.3-23.8		(12)
u, 61.4; Sb, 38.6		100 to	300	23.4-24.2	CusSb	(12)
u, 60; Sb, 40 u, 55; Sb, 45		100 to	300	23.3-24.2 23.0-23.8		(12)
u, 50; Sb, 50	j	100 to 100 to	300 300	21.6-22.5		(12)
u, 45; Sb, 55	- 1	100 to	300	20.0-21.6		(12)
u, 28; Sb, 72		100 to	300	17.4		(12)
u, 3; Sb, 97	- 1	100 to	300	11.2		(12)
u, 1; Sb, 99		100 to	300	9.3		(12)
u, 0; Sb, 100 cast		100 to	300	10.0		(12)
ame, agglomerate		100 to	300	8.3		(12)
		-Si; r. also				1
u-Si, 3	452	15 to	900	17.88		(2)
u-Si, 6		15 to	900	17.83		(2)
u-Si, 10		15 to 15 to	700	16.08 3.87		(2)
u-Si, 55		10 10	1000	3.61		(2)
Cu-Si-Fe, v. Table		Cu-S	Sn			
u, 95.4; Sn, 4.25; P, 0.37	1082	20 to	300	16.81	3.59g	(69)
Cu, 94.9; Sn, 4.88; P,						(69)
0.12 Su, 92.0; Sn, 7.67; P,	345	20 to	300	16.63	3.67β	(60)
0.11	664	20 to	300	16.82	4.25g	(69)
(R _e)	664	20 to	300	17.13	3.70€	(69)
Cu-Zn;	v. also		, 17 a	nd 38 and 1	Fig. 6	
Cu. 97-65; Zn, 3-35	0.0	25 to	300	17.7-20.8		(69)
Cu, 60; Zn, 40 Cu, 88–62; Zn, 35–10;	918	25 to	300	20.7-21.2		(69)
Pb, 1.65-2.57	777	25 to	300	18.3-20.4		(69)
Cu, 56.39; Zn, 40.59;						İ
Sn, 1.52; Fe, 0.96;	842,			i i		
Mn, 0.09; Pb, 0.09	845	05.4-	200	01 5 00 7		/495
(R _h)		25 to	300	21.5-22.7		(69)
Cu-Zn-Pb; v. Table Cu-Zn-Sn; v. Table						
Fe-C; v. als		s 18, 19, 20	0, 23,	28 and 31	and Fig. 7	
e with C, 3-4	661	- 191 to	16	8.5		(68)
e with C, 3.12; Si,	552			0.0		` '
3.37	661	0 to	700	8.3	8.36	(83)
		25 to	100	8.4	_	(130
o with C 2.08, Si		100 to	200	11.7		(130)
'e with C, 3.08; Si,	661	200 to	300	14.2		(130
1,00		300 to	400	15.6		(130
		(400 to	500	14.3		(130
e with C, 3.04; Si,	601	15 4-	1000	12 24		(2)
1.65; P, 1.3; Mn, 0.2 ame, Tp, 1000°; Qw	661	15 to	1000	13.34		(-,
15°		15 to	1000	14.02		(2)
e with <1.4 C		- 200		5.8- 8.4		(23)
· (2.12 0		20 to		13.1-19.6		(21)
e with < 3.8 C		25 to		14.3-14.6		(22)
		> Crit.	temp.	. ca. 23		(22)
e with C<1.5; Mn,						
0.27-0.67		15 to		10.8-12.1		(20)
		Fe-Co-				
1		20 to	100	15.6		(129
553, Co 00 E.		100 to	200 300	16.7		(139
e, 55.3; Co, 22.5; Cr, 21.2; C, 0.7.	588	200 to 300 to	400	17.6 17.8		(129
C1, 21.2, O, U.1.		400 to	500	17.6		(120
11		500 to	600	17.0		(120
Fe-Cr-C	C; v. als			22, 28, 29	and 31	
c-Cr, 13, etc		20 to	600	11.2-12.1		(22)
n: 1 = 3 1 = / 4: Si		l		1	1	۱
e; Cr, 3.1-7.4; Si, .5-2.4		15 to	900	12.6-14.9		(2)

Lit.

(81)

(84)

(77)

10% and

10127

22.9₈

104α

19.6-23.8

14.97

TABLE 4.—GENERAL	Table.—(Continued)
Fe-Mn-C: v. also	Tables 24 and 31

Range, °C

800

0 to 38

Fe-Mo-C; v. also Table 30

906 | 100 to 700 |11.8-16.3|

0 to 1000 24.5

Ind.

No.

855

855

855

% composition

Fe with Mn, < 10....

Fe with Mn, 11.2....

Fe with Mn, 14.....

Fe with Mo, ≯1.58...

Fe with Mo, ≯1.58	906	100 to	700	11.8–16.3		(77)
Fe-1	Ni; v. ale	o Tables 2	5, 27	and Figs. 8	-13	
Fe with Ni, < 35	1	20 to		11.3-16.9		
	1	0 to		1		
Fe with Ni, 35-100				1	$\int -4.97\beta$	(137)
Fe with Ni, 36.1;		-200 to	-20	0.25	-6.13 ₇	(***)
made by Societé					` ',	١
Genevoise; v. <	727	-200		1.53		Comp.*
Table 27 ("In-		– 100		1.06		Comp.*
var'')		- 50		0.70		Comp.*
, , () – 20		0.44		Comp.
ſ) 0 to	100	1.5		(20, 127
i		100 to	200	2.8		(127)
		200 to	250	4.8		(127)
Fe with Ni, 36.1;		250 to	300	9.6		(127)
Mn, 0.39; Cu, 0.39	727	300 to	400	13.7		(127)
("Invar")		400 to	500	16.1		(127)
,		500 to	600	17.7		(127)
i		600 to	700	19.1		(127)
f		750		20.3		(127)
	<u>'</u>	,		, 20.0		()
 Computed, using a 	bove va	lues of α, β	β, γ.			
	1			3 205	1 0 05	(58, 63)
Fe with Ni, 31.4	1	0 to	38	3.395	8.85	
Fe with Ni, 34.6		0 to	38	1.373	2.37 _β	(58, 63)
Fe with Ni, 35.6		0 to	38	0.877	1.27	(58, 63)
Fe with Ni, 37.3	727) 0 to	38	3.457	-6.47 ₈	(58, 63)
Fe-Ni, 34.8; Cr, 1.5.	1	0 to	38	3.580	-1.32 ₈	(58, 63)
Fe-Ni, 35.7; Cr, 1.7.	i .	0 to	38	3.373	1.65 ₈	(55, 63)
Fe-Ni, 36.4; Cr, 0.9.	1		38	4.433	-3.92^{β}_{β}	(58, 63)
Fe-Si; v. Table 31. Fe-V-C; v. Table 28 Fe-X-Y-C (Alloy Ste	eels); v.				,	
Fo with W 17-22		W-C; v. al			·	1 (77)
Fe with W, 1.7-2.2				12.0-16.2		(77)
Fe-W-Cr-C; Fe-W- Hg-Ag-Sn-Cu-(Zn);	v. Tabl	e 33.); ». Table 3	0.
	Mn-	Si-Fe; v. al	80 I B	Die 31		
Mn, 68; Si, 19.55; Fe,	1			1		
11.6	1	15 to	900	18.27		(2)
Same, Tp 600° Qw 15°.	.	· 15 to	900	16.75		(2)
Ma (Commercial):	Table	24				
Mo (Commercial);						
Ni (Commercial); v.	1 able 3	Ю.				
	1	Ni-Cr; v. al	so Fig	g. 5		
Nii 00 G 10					4.00-	
Ni, 90; Cr, 10		0 to		12.80	4.33₿	(27)
Ni, ₹ 85; Cr, > 15		0 to	900	12.8-20.8		
Ni, 87; Cr, 9; Fe, 1.5;	ľ					
etc	949	0 to	38	12.34	6.02 <i>p</i>	(01)
Ni, 85; Cr, 10; Fe, 3;	1			1		
etc	949	0 to	38	12.63	8.77β	(61)
			Cr		<u>-</u>	
		Ni-Fe	-Cr			
Ni, 60; Fe, 26; Cr, 12;				1		
C, 0.6; Si, 0.4; Mn,				1		1
1.0 (cast)	949	20 to	100	12.1		(67)
Ni, 60; Fe, 25; Cr, 12	1	20.00		l		\ <i>'</i>
				1	l	
	040	20 +^	100	1 11 K		(67)
(D _c)	949	20 to	100	11.6		(67)
		20 to	100	11.6		(67)
(D _c)	36.				<u> </u>	(67)
(D _c)	36.	-Fe-Mn; v.	also	Table 14		
(D _c)	36.	-Fe-Mn; v. 25 to	also	Table 14	<u> </u>	(129)
Ni-Fe-Si; v. Table 3	36.	-Fe-Mn; v. 25 to 25 to	also 100 300	Table 14 13.7-14.5 14.9-15.2		(129) (129)
Ni-Fe-Si; v. Table S	36. Ni-Cu	-Fe-Mn; v. 25 to	also 100 300 600	Table 14		(129)

TABLE 4.—GENERAL TABLE.—(Continued) Ni-Cu-Fe-Mn.—(Continued)

% composition	Ind. No.	Range, ℃	10⁴α	10% and 1018γ	Lit.
Ni, 66.58; Cu, 29.57; Fe, 1.79; Mn,		0 to 600	13.8	$\left\{ \begin{array}{l} 3.375\beta \\ 0.83\gamma \end{array} \right\}$	(129)
1.78; C, 0.15; Si,	1 1	0 to 100	14.1		Comp. *
0.09; S, 0.03; R _h	909	100 to 200	14.8		Comp.*
wire, typical sam- ple		200 to 300	15.6	1	Comp.
	1 1	300 to 400	16.5		Comp.*
		300 to 600	17.3		Comp.*

*Computed, using above values of α , β , γ .

Ni-Cu-Mn; v. Table 14. Ni-Fe; v. Fe-Ni.

Ni-Si; v. also Table 3	Ni-Si;	7.	also	Table	36
------------------------	--------	----	------	-------	----

Ni, 80.6; Si, 16.2; Fe,			1	ì
2.5	1243	15 to 1000	12.20	(2)
Same, Tp 1000° Qw 15°	1	15 to 1000	13.37	(2)
Ni, 75; Si, 17.01; Fe,				1
7.6	1243	15 to 1000	12.35	(2)
Same, Tp as above		15 to 1000	13.20	(2)
Ni, 39; Si, 17.86; Fe,				1
28.3	1243	15 to 1000	16.88	(2)
Same, Tp 600° Q _w 15°		15 to 1000	12.39	(2)

Ni-Si-Fe; v. Table 36. Pb-Bi; r. Table 38.

Pb-Cd; v. Table 38.

Pb-Sn;	v.	also	Table	38
I U-UH,	٠.	mean	Laute	90

	Pt-Ir			
Pb, 0; 8n, 100	15 to 110	21.8		(113)
Pb, 8.72; Sn, 91.28	15 to 110	20.6		(113)
Pb, 22.53; 8n, 77.47	15 to 110	21.4	1	(113)
Pb, 30.5; Sn, 69.5	15 to 110	21.6	8n ₄ Pb	(113)
Pb, 32.82; Sn, 67.18	15 to 110	21.6		(113)
Pb, 42.07; Sn, 57.93	15 to 110	21.7		(113)
Pb, 52.09; 8n, 47.91	15 to 110	23.8		(113)
Pb, 61.98; Sn, 38.02	15 to 110	24.7		(113)
Pb, 71.64; 8n, 28.36	15 to 110	25.8		(113)
Pb, 81.64; Sn, 18.36	15 to 110	26.6		(113)
Pb, 87.5; Sn, 12.5	15 to 110	27.45	8nPb4	(113)
Pb, 90.29; 8n, 9.71	15 to 110	27.9		(113)
Pb, 100; Sn, 0	15 to 110	29.3		(113)

Pt-Ir										
P+ 00: I= 10	0 to 38	8.651	1.00₿	(5, 58)						
Pt, 90; Ir, 10	0 to 1000	8.841	1.00 த 1.306 த	(31)						
Th. 80. 7- 00	-190 to 16	7.502	•	(65)						
Pt, 80; Ir, 20 {	0 to 1000	8.198	1.428	(74)						
	D. D.									

Pt, 80; Rh, 20..... 0 to 1500 | 8.79 | 1.618 (31)

Sb-Cu; v. Cu-Sb and Fig. 3.

Si-Cu; v. Cu-Si and Table 15. Si-Fe (Industrial Perro-silicon): n also Table 37

DI-TO (ILGUS	DI-10 (Industrial Felio-sincon), v. diso Table 37										
Si, 75; Fe	15 to 1000	5.45	(²)								
Si, 50; Fe	15 to 1000	16.23	(2)								
Si, 32; Fe	15 to 1000	13.97	(2)								
Si, 17.02; Fe	15 to 1000	14.45	(2)								

Sn-Au; v. Table 38.

Sn-Bi; v. Table 38.

Sn-Pb; v. Pb-Sn; v. also Table 38.

Sn-Zn; v. Table 38.

Zn-Al; v. also Tables 9 and 10, and Fig. 4

7- 05- 41 5 4- 7-	20 to 100 24.3-33.3	(70)
Zn, 95; Al, 5 to Zn. 14; Al, 86	20 to 200 27.3-37.2	(70)
14; Ai, 80	20 to 300 28.3-40.7	(70)
Zn, 100-0; Al, 0-100	25 to 250 27.1-32.6	(128)
211, 100-0; A1, 0-100	20 to 250 27.7-38.2	(125)

Zn-Cu; v. Fig. 6.

TABLE 5.—AL-CU (70)

	% cor	nposi	tion				$100 \frac{\Delta l}{l}$			
Al	Cu	Si	Fe	Mn	20 to 100°C	20 to 200°C	20 to 300°C	20 to 400°C	20 to 500°C	after test
95.4	3.75	0.30	0.36	0.18	23.7	24.6	27.2	26.7	27.5	0.02
93.4	5.81	0.36	0.42		23.8	24.9	27.8	27.8	28.0	0.07
91.1	7.68	0.39	0.46	0.33	23.7	26.3	28.0	26.6	27.4	0.05
91.1	7.87	0.33	0.45	0.22	23.4	26.8	28.0	26.6	27.2	0.04
89.2	9.95	0.39	0.44		22.4	24.2	28.3	27.3	27.7	0.11
87.3	11.88	0.39	0.43		22 4	24.1	28.6	27.5	27.6	0.11

TABLE 6.—AL-CU-MG-SI (DURALUMIN) (70)

		%	comp	positi	on				106	α_{i1}^{i2}			$100\frac{\Delta l}{l}$
Treatment		Cu	Mg	Mn	Fe	Si	20 to 100°C	20 to 200°C	20 to 250°C	20 to 300°C	20 to 400°C	20 to 500°C	after test
Sand cast	94.8	3.68	0.36	0.57	0.35	0.25	23.4	24.7	25.7	26.0	26.7	27.5	+0.02
Rh (ca. 410°) 3.5 to 0.25 in. thick	94.4	3.74	1.08		0.52	0.30	23 .8	24.7	25.3	25.7	26.3	27.2	+0.03
R _e W 520° Q _w V 120°/2 d	94.4	3.74	1.08		0.52	0.30	23.7	25.2	25.8	26.4	27.3	27.3	-0 .01
R _d (contains 0.20 % Ca)	04 6	2 66	A E0	A E1	0 27	0.16	∫ 23 .1	26.0	26.6	26 .8			+0.06
Same, reheated	94.0	3.00	0.52	0.51	0.37	0.10	22.3	24.0	24.4	25.0	25.9	25.7	+0.02
Same, Tp 500°, Q	04.6	2 66	A E9	0 51	0 27	0.16	∫ 23 .2	24.1	25.3	26.0			+0.03
Same, reheated and quenched	94.0	J.00	0.52	0.51	0.37	0.10	22.2	23.5	24.3	25.1	26.1	26.6	+0.05

Table 7.—Al-Cu-Mn; Al-Cu-Si; Al-Mn; Al-Mn-Cu; Al-Si-Cu; Al-Si-Cu-Mn (70)

	% com	positi	on		$10^4 \alpha_{i_1}^{i_2}$					
Al	Mn	Cu	Si	Fe	20 to 100°C	20 to 200°C	20 to 250°C	20 to 300°C	20 to 400°C	20 to 500°C
97.8	1.05	0.19	0.41	0.57	23.7	25.6	26.0	25.7	26.3	${f 27.4} \ {f 28.5}$
96.7	1.80	0.23	0.40	0.84	23.1	24.3	24.9	25.6	26.1	{27.2 27.9*
96.2	1.08	1.91	0.30	0.51	23.6	25.2	26.7	26.9	26.8	27.5
93.9	0.01	2.20	3.33	0.55	23.4	23.9	24.2	24.4		
89.6	1	2.43	7.42	0.53	21.7	22.5	23.0	23.4		
87.1	1	2.33	9.96	0.60	20.7	21.7	22.2	22.7		
91.3		4.41	3.75	0.57	22.4	23.4	23.8	24.1		
88.3		4.53	6.61	0.57	21.5	22.3	22.8	23.1		
88.7	j	6.62	4.08	0.64	21.8	22.9	23.4	23.6		
83.7		6.29	9.45	0.53	20.6	21.6	22.0	22.2		
84.6	1	4.58	10.28	0.54	20.4	21.3	21.8	22.1		
93.0	0.93	2.40	3,12	0.55	22.2	23.4	23.7	23.8		
86.4	0.82	2.32	9.97	0.50	20.4	21.5	22.0	22.4		
85.8	0.89	2.49	10.22	0.56	20.8	21.5	22.0	22.3		
85.6	1.17	2.47	10.18	0.70	20.4	21.5	22.0	22.3	1	

^{* 20} to 600°.

TABLE 8.—AL-SI (70)

%	compo	sitio	n.		$10^4 \alpha_{\ell_1}^{\ell_2}$								
Al	Si	Fe	Cu	20 to 100°C	20 to 200°C	20 to 300°C	20 to 400°C		300 to 600°C	after test			
95.0	4.15	0.52	0.33	22.2	23.2	24.1				-0.01			
92.0	7.28	0.47	0.27	21.8	22.8	23.5				0.00			
89.5	9.81	0.50	0.22	21.1	21.9	22.9				0.00			
86.8	12.55	0.56	0.08	${19.4} \ 21.1*$	21.2 21.7	24.6 22.4	24.5 22.9	24.4 23.0	24.3 23.9	$+0.09 \\ +0.02$			
86.81	12.55	0.56	0.08	19.5	20.5	22.2	22.9	23.0	24.1	-0.01			

^{*} The values in this horizontal row were obtained on a second heating.

TABLE 9.—AL-ZN (70)

	% co	mpos	sition				100 ^{∆l}			
Al	Zn	Cu	Si	Fe	Mn	20 to 100°C	20 to 200°C	20 to 250°C	20 to 300°C	after test
85.83	12.17	1.47	0.21	0.31	0.01	$\left\{egin{array}{c c} 24.3 & \\ 25.5 & \\ \end{array}\right.$	28.1 27.3	28.3 28.5	27.9* 28.3	+0.01
22.57	77.22	0.05	0.05	0.11	Nil	27.5 26.0†	29.6 28.3	30.5		+0.02 -0.01
5.29	94.66	0.02	0.01	0.02	Nil	33.3 32.0†	35.7 37.2	40.7		$+0.02 \\ +0.02$

^{*} From 20 to 400°, 104\alpha is 27.6; from 20 to 500°, 104\alpha is 28.6.

Table 10.—Al-Zn; $10^6 a_{t_1}^{t_2}$, between 20 and t° C (125)

Al-Zn alloys having 37.5-87.5% Zn exhibit anomalous expansion above 250°C. The italicized values indicate results obtained on cooling, where different from those on heating.

For 100% Al,
$$\alpha_t = (23.0 + 0.014t) \cdot 10^{-6}$$

For 100% Zn, $\alpha_t = (35.4 + 0.020t) \cdot 10^{-6}$ cf. Table 1.

Table 10.—Al-Zn; $10^{6}\alpha_{t_1}^{t_2}$, between 20 and t° C (125) (Continued)

t,°C	% Zn	0		12.	. 5	25	37	. 5	50	62 . 5	75	87.5	100
100)	23	6	23	. 9	26.1	26	. 6	26.5	26.1	27.1	26.4	36.
200)	24.	. 5	24	. 8	27.0	27	. 5	27.6	27.4	28.5	29.1	37.6
230)			ľ		27.6	ł				29.6	;	1
240)			1		27.6	ł				29.7	'	i
250)		$\left\{ \right.$	27 27			1			1	30.4 38.0	1	38.5
260)		`				29	.0	29.4	30.1		1	38.
26 4	ļ						30	. 6	33.4				l
266	3										{	31.5 36.9	
270)				{	27.7			ı	1	30.6 38.6		
280)				$\left\{ \right.$	-	1		1		37.3 38.6	1	38 .
285	5	1		ĺ	•		l				1	37.9	ı
290)					27.8			33.6	36.8	39.0	38.7	38 .
300)	25	. 2	25	. 9	28.0	30	. 3	33.7	36.8	39.0		38.
400)	25	. 9	27	. 1	29.1					İ	1	1

TABLE 11.—C (GRAPHITE)

The most reliable determinations of the expansion of graphite give results differing widely, probably owing to the differences in physical condition of the specimens used in the determinations.

Description of sample	Composition and treatment	Range,	•c	104α	10°\$	Lit.
Electric-arc carbon from H. Moissan.	99.97 % C $d_4^{18} = 2.216$ a f t e r being compressed to $(5-10)10^3$ kg/cm ²	- 163 to				(29)
Acheson graphite	Longitudinal Transverse	0 to	400	0.55 2.4* 3.5*	1.6	(33) (71.1) (71.1)
Earlier determinations: Batongol graphite Siberian graphite		10 to	90	7.5	5	(50) (99)

^{*} Partial report on research in progress (1926).

Table 12.—Co-CR-W-C (STELLITE) (129)

	Approximate	$10^4 \alpha_{t_1}^{t_2}$												
No.*	composition, %	20 to	100 to	200 to	300 to	400 to	500 to	20 to	300 to	20 to				
	Co-Cr-W								600°C					
1	80-20	14.1	15.1	16.2	15.9	16.0	18.9	15.2	16.9	16.1				
2	55-40-3†	13.4	15.2	16.0	16.3	17.5	20.2	15.0	18.0	16 3				
3	55-40-3†	12.2	13.1	14.0	14.3	15.4	17.9	13.2	15.8	14 6				
4	55-35-10	11.0	12.3	13.6	13.8	13.3	16.9	12.4	14.7	13.6				
4	55-35-10		Bet	ween -	94 and	+19°C,	$\alpha_{t_2}^{l_1} = 1$	0.2 ×	10-4					

^{*} Description: 1. Soft, malleable. 2. Hard, malleable. 3. Hard malleable. hammered. 4. Stellite No. 2.

[†] This alloy, containing 86.81 % Al, etc., is modified by the addition, just before casting, of 0.1 % metallic sodium, in accordance with the process described by J. D. Edwards in U. S. Patent No. 1 410 461.

[†] The values given in this horizontal row were obtained on a second heating.

[†] Alloy contains 2 % C.

TABLE 13.—CR-FE-C-SI AND CR-FE-SI-C (2)

Composition and treatment	No.	$10^{4} lpha_{t_1}^{t_2}$							
Composition and violation	Range, °C	1	2	2a	3	3a	4	4a	
1. Industrial Cr, 48; Fe, 30; Si, 17; C, 5	15 to 100	10.23	8.00	9.17	7.52	9.29	7.52	7.17	
2. Industrial Cr, 47.6; Fe, 47.1; C, 2.84; Si, 2.2	100 to 200	8.89	8.49	8.68	7.79	7.88	6.49	6.28	
2a. Same Tp at 1000° in H ₂ O at 15°C	200 to 300	9.58	8.38	9.18	7.68	8.58	7.29	6.88	
3. Industrial Fe, 46.5; Cr, 45.9; C, 6.67; Si, 0.95	300 to 400	11.17	10.07	9.87	10.37	9.87	8.18	8.38	
3a. Same Tp at 1000° in H ₂ O at 15°C	400 to 500	11.85	11.36	11.95	10.06	9.46	9.37	9.37	
4. Cr, 53.3; Fe, 39.1; C, 6.21; Si, 0.93	500 to 600	12.43	11.94	10.94	10.55	9.75	10.46	8.96	
4a. Same Tp at 1000° in H ₂ O at 15°C	600 to 700	12.91	12.82	13.42	11.83	10.74	10.94	8.16	
	700 to 800	13.49	13.30	12.90	11.92	10.42	11.43	10.24	
	800 to 900	13.18	11.80	10.31	11.21	8.93	10.12	8.63	
	900 to 1000	13.46	11.58	11.78	11.89	8.82	11.10	9.82	
	15 to 1000	11.75	10.62	10.86	10.12	9.39	9.32	8.41	

TABLE	14NI	-Cu-Fe-N	N (MONEL	METAL)	(129)
-------	------	----------	----------	--------	-------

			% con	nposi	tion						106	$\alpha_{t_1}^{t_2}$		
Ni	Cu	Fe	Mn	С	Si	s	Pb	Treatment			200 to 300°C			
60.05	32.46	2.21	2.00	0.15	0.87	0.035	2.22	Cast. Heated to 900°C.	13.9 14.3	15.0 15.0		16.8 16.7		
66.18	28.42	2.37	2.10	0.18	0.70	0.038		Cast		15.1 15.0				18.5 18.7
66.58	29.57	1.79	1.78	0.15	0.09	0.030		Hot rolledSame, heated to 870°C	100	$14.9 \\ 15.3$			17.0 17.4	
67.32	28.73	1.74	1.66	0.31	0.19	0.035		Hot rolled					7,17	$16.2 \\ 17.7$
68.87	29.03	1.60	0.18	0.13	0.15	0.027		Hot rolled		14.7 15.0		$16.4 \\ 16.4$		17.9 18.1

Table 15.	—Cυ-Sı;	Cu-	SI-FE	(2)			
% composition and treatment	No.				$10^4\alpha_{t_1}^{t_2}$		
78 composition and oreasment	Range, °C		1	2	3	4	5
1. Cu, 93.5; Si, 3.3; Fe, 2.6 2. Cu, 89.6; Si, 6.17; Fe, 3.7 3. Same Tp at 780°C 4. Cu-Si with Si, 10 5. Cu-Si with Si, 55	15 to 100 to 200 to 300 to 400 to 500 to	200 300 400 500	12.19 14.07 14.65 17.71	12.88 14.56 18.83 21.18	15.08 17.15 18.52 20.77	15.46 16.73	4.49 4.39 4.39 4.09

1; Cu-Si-]	Fe ((2).—	(Con	tinue	d)	
No.				10¢α ^{ℓ2} _{ℓ1}		
Range, °C	<u> </u>	1	2	3	4	5
700 to 8 800 to 9 900 to 10 15 to 10 15 to 9	300 300 300 300 300	21.86 23.19	20.15 17.55	22.03 19.51	32.9 4	
	No. Range, °C 600 to 7 700 to 8 800 to 6 900 to 10 15 to 10 15 to 8	No. Range, °C 600 to 700 700 to 800 800 to 900 900 to 1000 15 to 1000 15 to 900	No. Range, °C 1 600 to 700 20.72 700 to 800 21.86 800 to 900 23.19 900 to 1000 15 to 1000 15 to 900 17.88	No. Range, °C 1 2 600 to 700 20.72 21.88 700 to 800 21.86 20.15 800 to 900 23.19 17.55 900 to 1000 15 to 1000 15 to 900 17.88 17.83	No. 104a\(\frac{t_1}{t_1}\) Range, \(^{\text{oC}}\) 1 2 3 600 to 700 20.72 21.88 20.29 700 to 800 21.86 20.15 22.03 800 to 900 23.19 17.55 19.51 900 to 1000 15 to 1000 15 to 900 17.88 17.83 18.49	Range, °C 1 2 3 4

Table 16.—Cu-Zn (Cold Rolled Brasses) (69)

Matallumical subdivision	Ind. No.		% com	posi	tion	1	Paras °C	106α	10°β			106α, ε	ıt	
Metallurgical subdivision	Ind. No.	Cu	Zn	Sn	Pb	Fe	Range, °C	10-α	Ιυσ	50°	100°	150°	200°	250°
	1134	97.0	2.97		0.01	0.02	-49 to 301	16.48	3.63	16.84	17.21	17.57	17.9	18.30
	620	94.9	5.11		.01	.01	28 to 305	16.81	3.89	17.20	17.59	17.98	18.3	7 18.76
	401	90.3	9.70		.01	.03	26 to 302	17.01	3.79	17.39	17.77	18.15	18.5	18.90
Person	1182	85.2	14.76		.01	.02	-50 to 300	17.03	5.12	17.54	18.05	18.57	19.0	19.59
œ-Brass	799	80.0	19.89		.05	.03	28 to 302	17.22	5.90	17.81	18.40	18.99	19.5	8 20.17
	301	75.3	24.64		.02	.03	28 to 300	17.58	6.24	18.20	18.83	19.45	20.0	8 20.70
	1316	72.0	27.95		.01	.02	25 to 306	17.73	6.52	18.38	19.03	19.69	20.3	4 20.99
Į	336	70.3	29.66		.03	.03	19 to 301	17.75	6.53	18.40	19.06	19.71	20.3	6 21.02
	339	66.5	33.43		.04	.03	-50 to 301	18.26	5.61	18.82	19.38	19.94	20.5	21.06
. a Brass		64.8	34.92		.24	.03	20 to 299	18.15	6.45	18.80	19.44	20.08	20.7	3 21.38
αβ-Brass	400	63.6	36.17	nce	.17	.03	21 to 299	18.11	7.25	18.84	19.56	20.28	21.0	1 21.74
	1409	62.1	37.71		.17	.02	23 to 308	18.05	8.55	18.90	19.76	20.62	21.4	7 22 . 32
	778	88.3	10.00	diffe	1.68	.02	21 to 301	17.06	3.89	17.45	17.84	18.23	18.6	2 19.00
Too dod huses a on an	780	78.3	20.01	×	1.68	.03	22 to 301	17.48	5.24	18.00	18.53	19.05	19.5	20.10
Leaded brass α or $\alpha\beta$	782	68.7	29.67	Ä	1.65	.03	20 to 304	17.91	6.52	18.56	19.21	19.87	20.5	2 21 . 17
	604	62.3	35.04		2.57	.06	21 to 302	18.26	6.56	18.92	19.57	20.03	20.8	8 21 . 54
α-Brass containing Sn	600	81.7	17.94	0.31	0.04	0.01	19 to 301	17.31	5.80	17.89	18.47	19.05	19.63	3 20.21
a-Drass containing Sit	16	70.6	28.21	1.10	.04	.01	20 to 301	17.94	6.93	18.63	19.33	20.02	20.7	l 21 . 40

Table 17.—Cu-Zn (Muntz Metal Type) (96)

	% cc	mpo	sition		$10^{4}\alpha_{\ell_1}^{\ell_2}$									
Cu*	Zn	8n	Pb	Fe	20 to 100°C		200 to 300°C		400 to 450°C	500 to				
65.6A	32.9	1.3	0.2	0.1	19.2	20.0	22.0	22.5	23.5	24.5				
54.5B	43.9	1.3	0.1	0.2	21.6	21.8	22.8	29.6	35.0	30.5				
54.7в	44.5	0.7	0.1	0.1	22.8	19.4	23.5	27.5	39.2	26.9				
65.3A	34.5	0.23	0.2	Tr.	18.7	20.0	22.0	22.5	23.0	23.7				
64.6A	35.4	0.06	0.04	< 0.04	22.8	22.2	21.9	22.2	23.4	23.6				
55.5в	44.5	0.07	0.05	< 0.04	20.0	21.0	23.6	28.0	35.0	27.0				

The transformation point, at which abnormal expansion of these brasees occurs, is about $460^{\circ}\mathrm{C}.$

* A = α -Brass; B = β -Brass.

Table 18.—Fe-C (Ingot Iron, Cast Iron and C-Steel) (37)

		%	comp	oritio	9	Ind.	10 4 a f 2						
С	Si	P	Mn	8	Ni + Co Cu	No.	0 to 250°C	0 to 375°C	0 to 500°C	0 to 625°C	0 to 750°C		
0.14	0.07	0.42	0.44	0.03	0.53	1341	12.84	13.41	13.99		14.74		
0.16	1	0.25	0.61	0.05	0.03 0.07	724	12.72	13.53	14.05		14.70		
0.55	0.31	0.44	0.60	0.05	0.54	889*	12.48	13.17	13.79	14.37	13.29		
3.22	1.68	0.46	0.71	0.08	0.48	661	11.18	11.98	12.58	13.93	Ι.		
3.19	1.67	0.32	0.64	0.10	0.10 0.16	661	11.30	12.21	12.80		l		
3.59	1.18	0.04	0.46	0.06	0.04 0.13	661	11.34	12.12	12.88	13.35	14.22		
									0 to	875°C =	- 14.93		

• Cast

TABLE 19.—FE-C (C STEELS) (41)

PERCENTAGE COMPOSITION OF ALLOYS

Sample	C	Mn	Si	P	S	Cu	Sample	C	Mn	Si	P	8	Cu
A	0.05-0.06	0.08	Tr.	Tr.	0.023	0.03	I	1.25	0.12	0.07	Tr.	0.019	0.02
В	0.09	0.08	0.02	0.01	0.01	0.01	J	1.45	0.14	0.10	0.01	0.013	0.04
\mathbf{C}	0.22	0.12	0.01	0.01	0.03	0.04	K	1.67	0.17	0.11	0.01	0.013	0.04
D	0.33	0.12	0.03	0.01	0.03	0.03	L	1.97	0.15	0.08	Tr.	0.015	Tr.
${f E}$	0.40	0.11	0.07	0.01	0.03	0.03	M	2.24	0.15	0.08	Tr.	0.015	Tr.
F	0.56	0.09	0.04	Tr.	0.023	0.02	N	3.66	0.14	0.09	0.015	0.012	Tr.
G	0.65	0.12	0.09	0.01	0.03	0.03	0	3.80	0.16	0.05	0.015	0.01	Tr.
H	0.81	0.10	0.06	Tr.	0.025	0.02					1		

VALUES OF 106at.

						1 1	LUES U	r IU·α _l	ı							
Range, °C	Sample	A	В	С	D	Е	F	G	Н	I	J	К	L	М	N	0
20 to	50	11.49	11.16	11.22	10.92	10.73	10.17	10.74	10.17	10.58	9.67	10.02	9.72	9.03	8.57	8.43
20 to	100	11.66	11.58	11.66	11.09	11.29	10.98	11.04	11.04	10.87	10.13	10.44	9.94	9.61	8.59	8.71
20 to	150	12.06	12.06	11.96	11.70	11.45	11.44	11.34	11.43	11.14	10.38	10.51	10.02		8.75	8.76
20 to	200	12.32	12.61	12.12	11.89	11.99	11.85	11.57	11.56	11.08	10.58	10.28	9.96	9.64	8.83	8.49
20 to	250	12.56	12.72	12.49	12.38	12.07	12.27	11.88	11.93	11.46	11.16	10.83	10.52	10.25	9.04	9.35
20 to	300	13.02	13.01	12.78	12.72	12.47	12.65	12.31	12.43	11.87	11.67	11.38	11.14	10.96	9.88	10.11
20 to	350	13.34	13.36	13.12	13.09	12.86	13.08	12.74	12.84	12.33	12.18	11.88	11.72	11.59	10.63	10.92
20 to	400	13.65	13.63	13.38	13.42	13.26	13.40	13.16	13.21	12.75	12.68	12.34	12.21	12.15	11.35	11.52
20 to	450	13.98	13.93	13.68	13.88	13.66	13.74	13.42	13.55	13.16	13.13	12.82	12.68	12.72	11.96	12.12
20 to	500	14.22	14.18	13.93	14.02	13.90	14.02	13.84	13.82	13.36	13.48	13.15	13.12	13.16	12.50	12.62
20 to	550	14.33	14.38	14.17	14.20	14.17	14.27	13.93	14.08	13.78	13.78	13.38			12.91	
20 to	600	14.64	14.64	14.38	14.43	14.36	14.50	14.20	14.22	13.99	14.04	13.66			13.23	
20 to	650	14.85	14.86	14.66	14.59	14.61	14.67	14.52	14.50	14.22	14.24	13.93		-	13.70	
20 to	700	15.01	15.03	14.81	14.76	14.76	14.81	14.65	14.67	14.41	14.42	14.24			13.92	
20 to	750	14.84	14.93					1							1000000	
20 to	800	14.67	14.61	12.93	11.33	11.72	12.46	12.68	14.22	14.78	15.13	15.02			14.13	
20 to	900	13.14	12.34	12.48	11.53	12.35	2.20				100000				15.04	
20 to	1000	13.35	13.32	13.16	13.08			14.76	10.3	100000000000000000000000000000000000000					15.86	
700 to	1000	9.50	9.42	400	100		100000000000000000000000000000000000000	1000		24.10		2000			20.24	

Table 20.—Fe-C (C-Steel Rails) (18)

				-							
Besseme	r rails		Open hearth rails								
% composition	104a	l t,°C	% composition	104a	l t,°C						
C, 0.50 -0.39	14.2	500	C, 0.66 -0.70	14.4	500						
S, 0.042-0.071	15.0	600	S, 0.033-0.057	14.7	600						
P, 0.081-0.067	15.2	700	P. 0.028-0.025	14.9	700						
Mn, 0.93 -0.90	13.3	800	Mn, 0.66 -0.72	14.3	800						
Si, 0.101-0.035	14.0	900	Si. 0.160-0.079	15.0	900						
Cu, 0.007-0.105	14.6	1000	Cu, 0.016-0.026	15.7	1000						
Ni, 0.06 -0.12	15.1	1100	Ni. 0.00	16.2	1100						
Cr, 0.00 -0.17			Cr. 0.01								

Abnormal expansion occurs between 700 and 800°C.

Table 21.—Fe-Cr-C (94) Containing 0.6% C

% Cr	Trans- formation temp., °C	10 ⁶ α ₁₀₀	106α,,,,
0	790	11.5	15.9
0.5	785	11.9	15.6
1	777	11.3	14.8
2	787	11.8	14.3
3	802	12.1	14.8
5	830	11.0	13.9
10	837	10.1	13.1
20	845	10.0	12.0

Table 22.—Fe-Cr-C (Stainless Steel) (129)

Range, °C	10	$0^6 \alpha_{i_1}^{i_2}$					
Mange, C	Hard	Annealed	- Composition				
20 to 100	9.6	10.3	Cr,	13.1			
20 to 200	9.8	10.7	C,	0.3			
200 to 400	9.9	12.3	Mn,	0.18			
400 to 600	13.8	13.3	Si,	0.11			
600 to 800	13.4	13.6	P,	0.02			
20 to 600	11.2	12.1	s,	0.011			

Abnormal expansion occurs between 825 and 855°C. The hardened steel also exhibits irregular expansion between 200 and 400°C.

Table 23.—Fe-Mn-C (Krupp's Carbon Steels) (77)

% comp	osition	10 ⁶ α ₁ ,
C	Mn	10°α18
0.14	0.39	11.88
0.18	0.34	12.11
0.31	0.65	11.73
0.44	0.67	11.65
0.56	0.30	12.08
0.64	0.27	11.79
0.75	0.35	11.55
0.80	0.30	11.70
0.94	0.35	11.50
1.02	0.36	11.49
1.30	0.40	10.94
1.50	0.36	10.83

Table 24.—Fe-Mn-C (Mn Steels) (93)

% Mn	α_{10}	0	αιο	0	α ₈₀₀
0.11	12.6		15.4		19.9
0.31	12.3	. <u>၁</u>	14.8	<u>و.</u>	19.6
0.6	.≌11.5	sit	.≌14.8	sit	20.1
0.8	.511.5 11.6	,en	· 囊 14.7	en	19.6
1.1	₽11.8	Austenito-martensitie	.914.8 .914.7 .915.2 .815.3 	Austenito-martensitic	20.4 ی
1.6	#12.8 #13.4	Ę	ਛੂ 15.3	Ę	₹21.0
2.0		<u>i</u> .	E 15.7	<u>ş</u> .	\$21.2
3.0	° 13.5	en	5 15.7 5 15.7	- Gu	21.9
5.0	:≟12.9	ust	<u>:</u> ≦15.5	ust	₹22.6
6.9	or 12.9 12.5	¥	15.6	₹	23.5
7.9	a a	14.7	Pearlitic 5 15.7 15.6 15.6	18.0	23.5
8.8	' '	16.2	1	21.9	23.4
9.8	12.0	16.8	15.8	22.0	23.8

Anomalous expansion of these Mn steels begins at about 650°C.

TABLE 25.—FE-NI-C (NI STEELS INCLUDING INVAR)

% N	i	$10^6 \alpha_0^t$ (8	106at (82)			
ι,°C	5	25	33	% Ni	106a20	
50	9.44	14.72	-0.18	0	11.0	
100	10.03	15.86	+0.09	10	13.0	
150	10.59	16.75	0.80	20	19.5	
200	11.01	17.40	1.93	30	12.0	
250	11.33	17.81	3.50	36	0.9	
300	11.55	17.98	5.50	40	6.0	
				50	9.7	
				80	12.5	
	1		1	100	12.8	

Table 26.—Fe-Ni-C (Nickel Steels Containing 0.9% C) (134)

			$10^6 \alpha_{t_1}^{t_2}$		
% Ni	20 to 100°C	20 to 300°C	20 to 500°C	20 to 700°C	20 to 900°C
3	13	11.1	10.7	11.1	11.4
4	12	11.1	10.5	10.5	11.3
6	11	11.8	10.8	8.2	13.7
10	9	9.6	9.3	7.1	12.9
12	8	8.5	8.2	7.7	14.2
15	8	9.3	9.0	8.6	14.6
20	8	10.4	9.4	8.8	14.4
25	11	11.2	10.6	8.5	13. 6
30	9	12.4	9.4	11.4	14.8
35	1.2	7.7	12.0	13.8	16.9

TABLE 27.—FE-NI-C (INVAR STEELS) (58,63)

% Ni	Range, °C	10 ⁶ αι =	a + bt
% NI	range, C	а.	b
30.4	0 to 110	4.570	0.0235
	110 to 164	- 4.29	0.104
	164 to 220	11.3	0.008
31.4	0 to 122	3.395	0.015
	122 to 182	-10.37	0.128
	182 to 220	6.44	0.036
34.6	0 to 142	1.373	0.0047
	142 to 220	- 7.18	0.065
37.3	0 to 150	3.457	-0.0072
	150 to 220	0.72	0.011

Table 28. See p. 472.

Table 28A.—Steel and Irons of Table 28 above the Critical Region (130)

		ILEGI	ON ()		
		10	$\alpha_{t_1}^{t_2}$		Increase in length
No.	Heating	Temp.	Cooling	Temp.	at 25°C,
	"	range, °C		range, °C	μ/m
1	23.4	825 to 900	22.7	900 to 725	-1202
2			22.7	900 to 700	- 462
3	22.7	800 to 900	22.7	900 to 800	- 110
4	22.8	800 to 900	22.8	900 to 800	- 82
5	24.0	800 to 900	23.1	900 to 725	- 400
6	24.1	825 to 900	22.8	900 to 800	- 270
7	24.0	825 to 900	22.6	900 to 800	- 90
8			22.3	900 to 550	- 680
9	i		21.9	900 to 800	- 198
10	1		22.0	900 to 805	+ 343
11			23.0	895 to 820	- 593
12	1			ļ	+ 98
13					+ 346
14	22.2	800 to 900	22.8	900 to 700	- 727
15	1		}		+ 335
16	}				+ 18
17	1		22.7	900 to 800	- 200
18	22.6	800 to 900	21.1	900 to 600	- 920
19	23.0	800 to 900	23.0	900 to 800	- 148
20					- 63
21	22.6	800 to 900	23.1	900 to 800	- 366
22	23.4	906 to 945	23.4	945 to 917	- 120
23	34.0	750 to 875	28.6	875 to 713	
24	23.4	833 to 950	21.6	950 to 760	- 430
25	37.0	815 to 900	25.0	900 to 775	+9040
27					0

TABLE 28.—FE-C; FE-CR-C; FE-NI-C; FE-SI-C; FE-V-C (CARBON AND ALLOY STEELS, CAST IRON AND ELECTROLYTIC IRON) (130)

					% c	omposi	tion							106	$\alpha_{t_1}^{t_2}$				
No.	C	Mn	P	s	Si	Cr	v	Ni	Miscellaneous	25 to 100°C	100 to 200°C	200 to 300°C			500 to 600°C		25 to 300°C		
1	0.35	1.42	0.013	0.05	7 0.20	1.00	0.11			12.4	12.8	14.4	15.1	15.9	15.9	16.2	13.3	15.6	14.5
2	0.49	1.21	0.05	0.05	0 0.12					11.3	12.2	14.2	16.3	17.7	15.4	16.7	12.7	16.5	14.7
3	0.41	0.64	0.052	0.06	1 0.086					11.1	12.2	14.3	15.8	15.7	16.0	16.6	12.7	15.8	14.3
4	0.44	0.57	0.013	0.03	3 0.161		0.14			11.2	12.4	14.3	15.4	16.4	16.5	16.8	12.7	16.1	14.5
5	0.59	0.92	0.024	10.03	3 0.25					11.1	12.5	14.6	15.4	16.1	16.8	16.6	12.9	16.1	14.6
6	0.35	0.08	0.010	0.02	7 0.110	1.17	0.14			11.0	12.3	14.8	15.6	15.9	16.5	16.2	12.9	16.0	14.5
7	0.36	0.46	0.011	0.02	9 0.09	0.57	0.12			11.8	12.6	14.4	15.1	16.0	16.6	16.8	13.1	15.9	14.5
8	0.168	0.01	0.010	0.02	6 0.135	2.50	0.39	3.94		10.8	11.7	13.5	14.0	14.5	14.4		12.1	14.3	13.3
9	0.410	1.11	0.053	0.04	9 0.118			2.00		11.6	11.9	14.0	16.2	15.7	16.5	16.4	12.6	16.1	14.4
10	0.144	0.10	0.03	0.03	5 0.034	1.15	0.21		Cu, 1.85	11.2	12.6	13.8	15.6	15.6	16.0	16.7	12.7	15.7	14.3
11	0.252	0.06	0.012	0.03	5 0.007					11.1	12.0	14.2	15.5	15.9	16.6	16.9	12.5	16.0	14.3
12	0.168	0.08	0.010	0.02	9 0.038	0.92	0.24		Mo, 0.64	11.3	11.8	13.9	15.3	15.7	16.6	16.1	12.5	15.9	14.2
13	0.122	0.05	0.020	0.04	0 0.846	0.85	0.23			11.6	12.5	13.7	14.6	15.2	16.0	15.8	12.7	15.2	14.0
14	0.326	0.78	0.014	10.03	5 0.094			3.59		10.9	11.5	13.6	15.2	15.1	15.7		12.1	15.3	13.8
15	0.342	0.28	0.01	0.04	3 0.094	0.82	0.26		Cu, 2.70	11.6	12.6	14.2	16.0	15.9	16.4	16.9	12.9	16.1	14.6
16	0.396	0.25	0.012	0.02	3 0.098	5			W, 3.96	11.1	12.0	14.0	15.1	15.7	16.4	16.5	12.5	15.7	14.2
17	0.380	1.17	0.05	0.06	7 0.10			0.81		11.2	12.7	14.3	15.2	16.2	16.7	16.4	12.9	16.1	14.5
18	0.388	1.21	0.010	0.04	3 1.04			3.67		11.6	12.0	13.2	14.2	15.2	15.6	1	12.3	15.0	13.7
19	0.512	0.42	0.016	0.02	1 1.45				W, 1.58	10.4	12.1	13.7	15.9	15.7	16.1		12.2	15.9	14.2
20	0.30-0.40	0	1	1		13.00				10.0	10.6	12.0	12.6	13.5	13.9	13.7	11.0	13.3	12.2
21	0.418	0.68	0.012	20.02	50.23					9.4	12.0	14.3	15.3	16.4	17.1	16.8	12.1	16.2	14.3
22*	0.02	Nil	Nil	0.00	7 0.000	(Co, C	Cu, Ni, to	tal 0.014)		12.0	13.0	14.5	15.3	15.9	16.8	17.4	13.3	15.9	14.7
23	1.28	0.37			1	0.19	1			11.0	11.6	13.6	15.1	16.3	16.1	17.0	12.0	15.9	14.1
24	0.20	1.10	0.05	0.05		0.5		0.5		12.3	12.9	14.2	15.9	16.2	16.5	16.8	13.2	16.5	14.9
25	3.08				1.68					8.4	11.7	14.2	15.6	14.3	Gro	wing	11.6	Gro	
26	0.14						11 12 1	34.52		3.7	8.4	14.1	16.6	18.4	18.8	19.1	9.2	18.2	13.6
27	0.09	0.19			3.70	0.176	0.005-	0.05-		11.1	12.4	13.3	14.0	15.6	16.0	16.9	12.6	15.3	

^{*} Vacuum electrolytic iron.

Table 29.—Fe-Cr-C; Fe-Cr-V-C; Fe-Ni-Cr-C(Alloy STEELS) (92)

	%	com	positio	n			10	$^6\alpha_{t_1}^{t_2}$
C	Si	Mn	P	s	Cr	Ni	25 to 100°C	25 to 270°C
0.34	0.10	0.64	0.012	0.023	0.76	3.43	11.37	12.49
0.30*	0.11	0.66	0.025	0.005	0.86	3.05	11.67	12.57
0.50	0.15	0.64	0.015	0.031	0.88	1.90	11.72	12.70
0.32†	0.23	0.53	0.013	0.015	1.37	3.53	11.83	12.78
0.35	0.0	0.65	0.008	0.045	0.80	3.14	11.73	12.79
0.43	0.0	0.78	0.015	0.027	0.75	1.87	12.00	12.87
0.43‡	0.18	0.81	0.031	0.032	0.88	2.55	11.65	12.89
0.40§	0.14	0.76	0.006	0.012	1.20		11.60	13.04
0.34 ¶	0.17	0.72	0.009	0.010	0.96		11.76	13.10
0.44**	2.07	0.81	0.012	0.010			12.52	13.51
0.40††	0.57	0.78	0.011	0.015	0.78		12.76	13.83

^{*} Contains 0.53 % Mo.

TABLE 32.—Ag-Hg-Zn (131) Ag-Zn amalgam

% Ag	% Zn	106020	% Ag	% Zn	10 ⁶ α ₂₀ ⁶⁶
68	0	25.4	67	2	28.0
68	1	25.9	60	5	24.5
67	1	26.4	54	0	23.4

TABLE 33.—Hg-Ag-Sn-Cu-(Zn), Ag-Sn-Cu Amalgams (54)

Comp	ositio	n of a	malga	m allo	ys	Alloy	Hg- allov	10 ⁶ α27.5
	A	В	C	D	E		ratio	
Ag	68	68	70	70	54	B	2.00	25.2-26.8
Sn	27	26	27	27	30	В	1.60	24.8-25.2
Cu	5	5	3	3	16	D	2.00	27.7
Zn	0	1	0	1	0	C	2.00	27.8-28.5
Total	100	100	100	101	100	A	1.60	26.0-29.3
						E	1.60	24.3-26.8

Alloy D was made by the addition of 1% Zn to the alloy of composition C.

Table 30.—Fe-Mo-C; Fe-W-C; Fe-W-Cr-C (Alloy Steels) (77)

			%	composi	tion				Ind.				106α, at			
C	Si	Mn	P	S	Cr	W	Mo	<u> </u>	No.	100°C	200°C	300°C	400°C	500°C	600°C	700°C
0.82	0.18	0.26	0.003	0.016	3.71	14.63	0.17	0.20	285	10.0	11.6	12.5	13.2	13.75	14.2	14.4
. 47	. 56	. 16	.014		1.03	1.17			748	11.5	12.3	13.2	14.25	15.25	16.4	17.75
. 64	.05	.01	.015	.012	3.73	14.06		0.11	942	11.1	11.9	12.6	13.2	13.65	13.9	14.0
. 66	.08	.08	.018	.016	3.43	16.81		0.11	1435		10.8	11.7	12.4	13.1	13.6	
.73		l		1	3.90	13.50			284	10.7	11.75	12.75	13.5	14.1	14.25	
. 69	.24	.20	.016	.016	1	6.31			283	9.8	12.65	14.5	15.5	16.1	16.55	
. 59	.22	.06	.028	.023	2.86	18.81			1015	1	12.15	13.2	13.75	14.3	14.75	
.63	. 58	.22	.009	.024		1	0.69		906	ļ	11.8	12.8	13.75	14.6	15.4	
. 55	.25	.71	. 036	.003	Ì		1.58		906		12.2	13.6	14.6	15.5		
. 33	. 13	.23	.038	.011	ĺ	1.71			1416	ŀ	12.4	13.3	14.1	15.0	16.0	17.2
.45	. 15	.22	.022	.011		2.20			1416		12.3	13.1	14.0	15.0	16.2	17.55
.38	.13	.24	.022	.011	1	2.07			1416		12.35	13.1	13.8	14.75	15.7	16.85
. 36	. 19	. 26	.023	.013	1	1.84			1416	1	12.0	12.9	13.8	14.8	16.0	

^{† 830°} Q_o Tp 570°. ‡ Contains 0.07 % V.

^{§ 930°} Qo Tp 650°.

^{||} Contains 0.17 % V.

^{¶ 930°} Q_o Tp 620°. ** 930° Q_o Tp 590°.

^{†† 830°} Qo Tp 590°.

Table 31.—Fe-Cr-Si; Fe-Mn-Si; Fe-Ni-Si; Fe-Si (Steels Containing Si, and Ferro-Silicon) (2) (v. also Tables 36, 37)

		% co	mpos	ition		-	D 00						106	$lpha_{l_1}^{t_2}$					
							Range, °C	15	100	200	300	400	500	600	700	800	900	15	15
Fe	Cr	Mn	Ni	Si	C	P	Ind. No.	to 100°	to 200°	to 300°	to 400°	to 500°	to 600°	to 700°	to 800°	to 900°	to 1000°	to 900°	to 1000°
92.4	3 12	0.0	0.0	0.56	2 66		1235	10.23	10.89	13.57	14.65	16.02	15.99	15.37	10.10	23.25	27.24	14.53	
			0.0	0.00	2.00	-	1200	* 9.52	8.78	13.67	21.03	4.57	11.83	16.38	8.42	18.92	28.97	12.61	
89.5	7.4	0.0	0.0	2.38	1.62		1235	10.94 * 9.41	10.49 10.29		7.37.37	100000000000000000000000000000000000000	12.5			1000		14.90 14.40	
85†	0.0	9.33	0.0	1.91	3.63		{	16.00 *12.70	11.89 14.28			-					177		16.53 16.54
11.6	0.0	68	0.0	19.6	0.65		{	13.05	13.48 15.58							100000		18.27 16.75	
85†	0.0	0.0	9.9	4.27	0.58		{	10.82 §10.47	11.98 11.89		7			77.000				15.41 13.29	
59†	0.0	0.2	22.6	6.93	0.35	0.9	{	11.05 §11.17	11.78 12.58								1	16.15 14.95	
93.7†	0.0	0.2	0.0	1.65	3.04	1.3	661 {	8.47 *10.00	9.29 7.39	1000	1000								13.34 14.02
83†				17			{	8.82 *10.35	10.19 10.89										14.45 14.49
68†				32			,	12.11	11.18	12.87	13.45	15.02	14.70	14.48	15.06	14.24	16.00		13.97

^{*} Values on this line for alloy: Tp 1000° Q_w 15°. † By difference. ‡ Tp 600° Q_w 15°. § Tp 900° Q_w 15°.

Table 34.—Mo (Commercially Pure) (71)

			% con	npositi	on				$10^4 lpha_{t_1}^{t_2}$ (heating))			10%	$t_{t_1}^{t_2}$ (cool	ing)	$100\frac{\Delta l}{l}$
No.	Description	Fe	Si	Ca	w	25 to 100°C				400 to 500°C		250 to 500°C			500 to 250°C		after test
1	Ingot, from fine powder					5.4	5.1	5.2	5.6	5.7	5.3	5.5	5.4	5.6	5.8	5.3	-0.010
2	No. 1 swaged to 0.25 in. diam	0.03	0.03	Ì	1.85	4.9	5.1	5.4	5.7	7.4	5.1	6.3	5.8	5.8	5.9	5.6	-0.001
3	No. 2 swaged to 0.175 in. diam	0.05	0.014	0.005	1.80	4.9	5.1	5.2	5.4	6.2	5.1	5.7	5.4	5.5	5.8	5.3	-0.007
4	No. 3 swaged to 0.1 in. diam		1	ŀ		4.6	4.8	5.2	5.9	6.4	4.8	6.0	5.4	5.0	5.3	4.6	+0.022
5	Ingot, from coarse powder	0.04	0.003	1		3.7	5.5	4.8	5.8	5.8	4.6	5.7	5.2	5.4	5.7	5.1	-0.009
6	Similar ingot to No. 5			1		5.0	5.0	5.2	5.0	3.4	5.1	4.4	4.7	5.5	6.0	4.9	-0.036
7	No. 6 swaged to 0.25 in. diam				Cu	4.8	4.8	5.2	6.4	7.0	4.9	6.4	5.7	5.5	5.7	5.3	+0.009
8	No. 7 swaged to 0.175 in. diam	0.11	0.003	:[0.014	4.5	4.6	5.1	5.1	6.5	4.7	5.6	5.2	4.8	5.5	4.1	0.017
9	No. 8 swaged to 0.1 in. diam	0.03	0.004		0.006	4.5	4.3	4.4	6.1	7.2	4.4	6.2	5.3	5.1	5.3	4.8	0.012
10	Ingot, from coarse powder and		l		1												
	swaged to 0.25 in. diam	0.10	0.017	0.005	,	4.6	4.9	5.2	6.5	7.0	4.8	6.5	5.7	5.2	5.3	4.9	0.026
11	No. 10 swaged to 0.175 in. diam					4.8	5.1	5.4	5.9	6.7	5.0	6.1	5.6	5.6	6.0	5.1	0.002
12	No. 11 swaged to 0.1 in. diam	0.11	0.007	0.010	0.005	3.7	4.7	4.9	4.9	5.8	4.5	5.2	4.9	4.0	3.8	4.2	0.043

Table 35.—NI (Commercially Pure) (130)

	- 1	% con	mpos	ition								$10^6 lpha_{t_1}^{t_2}$				
Ni	Cu	Fe	Mn	C	Si	S	Treatment	25 to 100°C	100 to 200°C		300 to 400°C	400 to 500°C			300 to 600°C	
99.06	0.12	0.37	0.19	0.12	0.12	0.027	Hot rolled	13.2 13.3	14.4 14.5	15.3 15.4	16.8 16.4	15.5 16.6	16.9 16.3	14.4 14.5	16.4 16.5	15.4 15.5
99.02	. 12	.37	.22	.08	.16	. 020	Hot rolled	12.9 13.3	14.5 14.5	15.4 15.5	16.9 16.7	16.5 16.3	16.8 16.9	14.4 14.5	16.7 16.6	15.6 15.6
98.76	.17	.38	.18	.22	.26	. 020	Hot rolled	13.0 13.3	14.2 14.2	15.7 15.6	15.9 16.3	15.7 16.2	14.4 16.3	14.4 14.5	15.3 16.3	14.9 15.4
97.05	.15	.44	2.08	.09	.15	. 029	Hot rolled	13.1 13.5	13.5 14.3	14.8 15.8	17.2 16.0	16.6 16.6	17.1 17.3	13.8 14.6	17.0 16.6	15.5 15.7
94.21	.14	.46	4.92	.12 Co	.10	. 030	Hot rolled	13.2 13.3	14.1 14.1	15.4 15.4	15.9 15.9	16.7 16.6	17.3 17.6	14.3 14.3	16.7 16.7	15.5 15.6
97.0*	.3	.8	1.6	<1			$lpha_{25}^{20}$	⁰ , 14; α	400, 16;	α ₄₀₀ , 16;	α_{600}^{840} , 20	; α_{25}^{840} , 1	7†			

No marked abnormality is shown between 300 and 400°C by first 5 samples; cf. pure Ni in Table 1.

^{*} Spark plug electrodes (133). † These values are for $10^4 \alpha_{t_1}^{t_2}$.

TABLE 36.—NI-FE-SI; NI-SI-FE (2)

Composition and	\	No.			106	$\alpha_{t_1}^{t_2}$		
treatment	Range	e, °C	1	la	2	2a	3	3a
Mn,	15 to	100	8.58	8.82	8.58	8.82	11.29	9.17
M	100 to	200	9.09	11.19	9.19	10.29	12.18	9.08
5.00	200 to	300	9.58	9.88	9.98	11.37	15.46	8.18
e, 2 w 15 w 15 17.	300 to	400	11.37	11.77	11.56	12.36	17.03	9.77
TOTON &	400 to	500	13.25	13.95	12.76	13.74	17.70	12.95
16.7 1000 7.01 1000 28.3 600°	500 to	600	14.22	15.12	15.12	14.22	19.16	13.23
9 2 2 171	600 to	700	14.10	16.09	14.6	14.00	20.71	16.40
HOHHOH	700 to	800	13.49	16.66	14.68	14.08	21.75	16.86
39 39 me	800 to	900	12.48	15.34	13.47	14.06	17.66	15.05
S.Z.S.Z.S.	900 to	1000	15.33	14.93	13.05	18.39	14.87	12.66
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 to	1000	12.20	13.37	12.35	13.20	16.88	12.39

TABLE 37.—SI-FE-C (2)

Composition and	\	No.		10	$\alpha_{t_1}^{t_2}$	
treatment	Range,	C	1	2	3	4
1. Cast Si with ca. 2 % of	15 to	100	6.00	6.58	6.94	9.17
SiC + Tr. Fe-Si. Sud-	100 to	200	5.18	5.39	4.79	8.78
den increase in α between	200 to	300	4.69	4.59	4.99	9.18
700 and 805°; anomaly	300 to	400	4.29	4.19	4.89	10.07
between 700 and 1000°	400 to	500	3.89	4.39	4.99	10.46
2. Industrial SiC (crystal-	500 to	600	3.99	4.28	4.98	11.84
lized)	600 to	700	4.88	4.18	5.68	13.52
3. Industrial Fe-Si with	700 to	800	10.46	4.38	6.67	47.36
75 % Si	800 to	900	3.28	2.98	5.27	24.90
4. Industrial Fe-Si with	900 to	1000	0.19	2.68	4.27	15.96
50 % Si	15 to	1000	4.68	4.35	5.45	16.23

Table 38.—Coefficient of Cubical Expansion of Alloys in the Range 0 to 100° C $V_t = V_0[1 + At + Bt^2]$ (95)

Composition	10 ⁶ A	10ºB	Composition	106A	$10^9 \mathrm{B}$
Ag, 4; Au	51.66		Bi, 44; Sn	37.93	27.1
Ag, 71.6; Au, 28.4.	44.13	13.0	Sn, 2; Bi	49.97	10.1
Ag; Au	49.16		Cd; Pb	90.05	13.3
Ag, 36.1; Au, 63.9.	48.84	55.2	Cu, 71; Zn, 29	51.61	55.8
Ag; Au, 4	31.15	118.5	Pb, 4; Sn	80.87	33.2
Ag, 2; Pt	42.46	32.2	Sn, 4; Pb	62.0	98.8
Au, 2; Cu	40.15	64.2	Sn, 7; Au, 2	41.65	26.3
Bi, 24; Pb	38.68	21.8	Sn, 2; Au	39.44	28.9
Pb, 2; Bi					82.2
		5	Sn, 4; Zn		

COEFFICIENTS OF EXPANSION OF LIQUID ALLOYS AND AMALGAMS

See also Tables 41-45; for definitions, v. p. 459.

TABLE 39.—CUBICAL EXPANSION OF LIQUID ALLOYS AND AMALGAMS

% composition	Approx. M. P., °C	10 ⁶ A*	Range, °C	Lit.
Bi, 50; Hg, 50	162.7	134	163 to 280	(19.1)
Bi, 67; Pb, 33		138	130	(138)
Bi, 57; Sn, 43		122	140	(138)
Bi, 70; Tl, 30		131	212-325	(102)
Cd, 90; Zn, 10		153	265	(138)
Hg, 80; Pb, 20	102	161	250 to 300	(19.1)
Hg, 66; Pb, 34		143	250 to 300	(19.1)
Hg, 40; Pb, 60		139	250 to 300	(19.1)
Hg, 25; Pb, 75		135	250 to 300	(19.1)

Table 39.—Cubical Expansion of Liquid Alloys and Amalgams (Continued)

(0.	orecoroucus,			
% composition	Approx. M. P., °C	10 ⁶ A*	Range, °C	Lit.
Hg, 77.3; Sn, 22.7	103.5	125	200 to 300	(19.1)
Hg, 63; Sn, 37	131	121	200 to 300	(19.1)
Hg, 46; Sn, 54	166	117	200 to 300	(19.1)
Hg, 29.8; Sn, 70.2	193	113	200 to 300	(19.1)
$ ext{Hg; Sn} \left\{ egin{array}{c ccc} d_4' & t^\circ \ 13.3835 & 14.6 \ 13.1807 & 20.2 \end{array} ight.$		174.5 161.9	18 to 101 20 to 98	(91) (91)
Hg, 95.1; Tl, 4.9		179	20 to 30	(115)
Hg, 83.0; Tl, 17.0		175	20 to 30	(115)
Hg, 79.0; Tl, 21.0		161	20 to 30	(115)
Hg, 66.0; Tl, 34.0		140	20 to 30	(115)
Hg, 58.1; Tl, 42.9		157	20 to 30	(115)
Hg, 86; Zn, 14	152	184	300 to 350	(19.1)
Hg, 80; Zn, 20	200	181	300 to 350	(19.1
Hg, 77; Zn, 23	217	153	300 to 350	(19.1
Hg, 60.6; Zn, 39.4	288	146	300 to 350	(19.1)
Hg, 50.7; Zn, 49.3	316.5	ca. 200	330 to 360	(19.1
K, 39; Na, 23†	4.5	286	10 to 100	(65)
Pb, 90; Sb, 10		123	250	(138)
Pb, 64; Sn, 36		127	262 to 356	(138)
Pb, 13; Sn, 87		112	249 to 355	(138)
Sn, 68; Cd, 32		123	175	(138)
Sn, 70; Tl, 30		118	200 to 300	(102)
Tl, 80; Sb, 20		227	200 to 225	(102)

^{*} If only one temperature is given, $A = A_{f}$; if a temperature range, $A = A_{f_{i}}^{f_{i}}$; Equal atomic weights of each.

VOLUME CHANGE ON FUSION AND SOLIDIFICATION, "MOLD SHRINKAGE"

Arrangement.—No definite arrangement is strictly followed in this section. Its scope and content will be seen by inspection.

Table 40.—Fusion of Pure Metals ($V_{\rm S}=$ Volume of Solid at M. P.)

		AI .	v1. 1 ./	
Metal	Approx. M. P., °C	$100 \frac{\Delta V}{V_8}$	P. E.	Lit.
Ag	960	4.5	±0.5	(45, 118)
Al, 99	658	6.7		(9, 43)
Al, 99.65		6.3		(45)
Au	1063	5.2	-	(45)
Bi	270	-3.3	±0.1	(11, 45, 135, 138)
Cd	321	4.7	±0.1	(45, 138)
Cs	26	2.5	±0.2	(42, 64)
Cu	1083	4.1		(9, 10, 45)
K	62.5	2.5	±0.3	(13, 45, 64, 65)
Li	185	1.5		(138)
Mg	650	4.2		(44)
Na		2.5	±0.1	(6, 13, 14, 45, 65, 135)
Pb	325	3.4	±0.1	(46)
Rb	38	2.5	±0.2	(45, 64)
Sb	630	1.4		(135)
Sn	232	2.7	±0.1	(11, 45, 135, 138)
(300	3.1	000	(135)
Tl		3.2	-	(45)
		4.3		(102)
Zn	420	6.5	±0.5	(135)

Table 41.—Solidification of Pure Metals (143)

				$-100\frac{\Delta l}{l}$!
% metal	Casting temp., °C	F. P., °C	At F. P.	In solid state*	Total
Al, 99.2	800 to 850	683			1.78
Bi, 99.8	500	261		0.29	
Cu, 99.16	1250	1060		1.40	1.42
Pb, 98.2	500 to 600	326	0.075	0.75	0.825
Sn, 99.8 to 100	500 to 550	225	0.01 to 0.15		0.44 to 0.55
Zn, 97.3	650 to 750	416	0.08	1.32	1.40

^{*} Final temperature is 15 to 20°C.

TABLE 42.—Solidification of Bi-Sn (9, 10)

	-1			-10	$00\frac{\Delta V}{V_{800}}$		
% Bi	A, for liquid	Range, °C	800°C to F. P.	At F. P.	F. P. to 20°	800 to to 20°C	
100	0.00012	267.5 to 800	6.2	-3.01	1.32	4.51	
90	0.00014	233 to 800	7.1			4.10	
75	0.00014	185 to 800	7.6			7.17	
58	0.00012	136.5 to 800	7.35	-1.12	1.36	7.58	
40	0.00011	173 to 800	6.5			8.12	
25	0.00011	199 to 800	5.95			8. 32	
15	0.00014	215 to 800	7.5			10.85	
10	0.000135	220 to 800	7.4			13.4	
0	0.000104	360 to 630	5.6	+2.7	1.64	9.99	

Table 43.—Solidification of Cu-Al (9, 10)

% Cu	A, for	A. for		$-100 \frac{\Delta V}{V_{1200^{\circ}}}$				
	liquid	Range, °C	1200°C to F. P.	At F. P.	F. P. to 20°C	Total		
93	0.00014	1070 to 1200	1.73	4.25	5.08	11.06		
85	0.00012	1035 to 1200	2.04	3.85	5.80	11.7		
77.5	0.00013	950 to 1200	3.24	4.06	4.51	11.8		
65	0.00012	725 to 1200	5.43			9.63		
54	0.00013	585 to 1200	7.6			11.3		
18	0.00013	543 to 1200	6.7			16.1		
0	0.000125	657 to 1200	6.5	(5.8)	(4.3)	16.5		

TABLE 44.—Solidification of Cu-Sn (9, 10)

	At for		$-100\frac{\Delta V}{V_{1200}}$				
% Cu	liquid	Range, °C	1200°C to F. P.	At F. P.	F. P. to 20°C	Total	
100	0.00020	1084 to 1200	2.19	3.91	6.4	12.5	
92	0.00015	1018 to 1200	2.57	5.06	5.52	12.85	
82	0.00016	920 to 1200	4.25	4.25	4.79	13.28	
, 71	0.00014	780 to 1200	5 .53	3.61	4.68	13.83	
62	0.00011	724 to 1200	5.58	3.28	5.88	14.76	
35	0.00011	600 to 1200	6.18			13.35	

Table 45.—Solidification of Cu-Sb (9, 10)

% Cu	A for liquid	Panna °C	$-100\frac{\Delta V}{V_{1100}}$		
% Cu	A, for liquid	Range, °C	1100°C to F. P.	1100 to 17°C	
85	0.00016	940 to 1100	2.67	10.4	
72	0.00012	646 to 1100	5.26	11.8	
61	0.00011	670 to 1100	4.45	12.6	
51.5	0.000115	665 to 1100	4.75	13.8	
30	0.00012	550 to 1100	4.85	10.1	
10	0.000115	580 to 1100	4.55	7.9	
0	0.000104	630 to 1100	4.45	7.32	

Table 46.—Specific Volume of Sb, 81.6; Al, 18.4 (118)

Temp., °C	$\frac{1}{d_4^t}$
700	0.240
800	0.241
900	0.241
1000	0.230
1025	0.221
1100	0.213
1135	0.211
1200	0.215

TABLE 47.—Solidification of Miscellaneous Alloys (143)

% composition	Casting temp., °C	Arrest temp., °C	$-100\frac{\Delta l}{l}$
Pb, 80.82; Sn, 18.27	650	251	0.56
Pb, 29.1; Sn, 70.01		174	0.44
Pb, 18.39; Sn, 80.99	550	180	0.50
Pb, 80.61; Sb, 19.2	560 to 750	239	0.54
Pb, 85.2; Sb, 14.68			0.56
Sn, 50.83; Zn, 49.04	550	200	0.50
Sn, 85.4; Zn, 14.52	500	195	0.46
Sn, 95.15; Zn, 4.81	500	190	0.49

% composition	Casting temp., °C.	meno of se	† com- ement olidifi- tion	T _E °C‡	100 <u>Å</u>	T _S ,℃§	$-100\frac{\Delta l}{l}$
Cu, 83.45; Zn, 16.24	1000 to 1050	9	93	1000	0.3	973	2.17
Cu, 66.6; Zn, 32.9	950	9	02	904	0.03	870	1.98
Cu, 63.1; Zn, 36.24	870 to 950	874		928	0.03	877	1.97
Cu, 63.93; Zn, 35.25	900 to 1000	8	81	990	0.033	879	1.9
		Ti°C †	T2°C†				
Cu, 94.7; Sn 5.08	1050	1035		1032	0.085	786	1.66
Cu, 89.65; Sn, 10.23	995 to 1150	996		980	0.122	706	1.44
Cu, 80.66; Sn, 19.08	900	1	760	835	0.01	752	1.52
Cu, 61.57; Ni, 16.1; Zn, 22.16	1100	1020	955	1068	0.045	917	2.025
Cu, 56.2; Ni, 20.4; Zn, 23.36	1065 to 1090	1060	1025	1049	0.039	924	2.06
Cu, 51.4; Ni, 26.22; Zn, 22.3	1150	1087	890	1080	0.027	949	2.03
Ou, 46.1; Ni, 35.8; Zn, 18.0.	1170 to 1200	1085		1090	0.032	1010	1.935

% composition	Casting temp.	Arrest points,	T _E ,°C‡	$100\frac{\Delta l}{l}$	Tg.°C§	-100 d
Cu, 87.1; Sn, 2.68; Zn, 8.05; Pb, 2.28	1000°C	992, 895, 825, 685	973	0.025	840	1.76
Cu, 81.06; Sn, 17.5; Zn, 1.53	950 to 1000°C	873, 775, 737, 603	854	.024	756	1.50
Cu, 88.75; Sn, 9.65; Zn, 1.6	950 to 1020°C	977, 890, 824, 745	955	.058	726	1.47
Cu, 86.65; Sn, 9.84; Zn, 2.0; Pb, 1.44	1000°C	965, 840, 778, (848)	944	.075	750	1.47
Zn, 79.44; Sn, 14.48; Cu, 4.35; Pb, 1.66	500 to 500°C	379			374	1.02

(Continued)

% composition	Casting temp.	Arrest points, t°C	TE. °C‡	$100 \frac{\Delta l}{l}$	Tg, °C§	$-100\frac{\Delta l}{l}$
Zn, 51.22; Sn, 45.84; Cu, 1.9;	1					
Pb, 0.94	550 to 560°C	340			334	0.73
Pb, 78.89; Sb, 12.5; Cu, 8.45.	600 to 650°C	250, 230			266	0.55
Sn, 19.8; Pb, 58.84; Sb, 21.4.	600°C	263, 238			247	0.49
Sn, 85.42; Sb, 9.45; Cu, 5.1	500 to 550°C	225			225	0.51
Sn, 90.2; Sb, 8.0; Cu, 1.85	600 to 700°C	228			226	0.555
Sn, 70.83; Pb, 9.21; Sb, 15.1;						
Cu, 4.94	550 to 600°C	259, 187		ĺ	228	0.425

^{*} The total linear shrinkages given above take place during cooling from the temperatures indicated in the table to atmospheric temperature (15 to 20°C).

Table 48.—Solidification of Cu-Sn-X (Bronzes) (97)

1 ABLE 40.—30	LIDIFICA	TION O	F CU-8.	N-A (D	RONZES)	(5.)
	Casting		Final	Mold	Expansion	
% composition	temp., °C	F. P., *C	temp., °C	temp., °C	$100 \frac{\Delta l}{l}$	$-100\frac{\Delta l}{l}$
(990	960	300	250	0.04	1.54
Cu, 92; Sn, 8	970	960	500	200	.06	1.56
00,00,00,000	980	960	500	200	.05	1.51
						
Cu, 92; Sn, 4; Al, 4	1170	1010	500	200	.05	1.88
	1080	1010	500	200	.04	1.86
Cu, 92; Sn, 7; Bi, 1	990	980	500	200	.065	1.41
	1030	980	500	250	05	1.46
Cu, 92; Sn, 8; Bi, 0.5	1020	980	500	150	.05	1.47
Ou, 62, 51, 6, 51, 6.6	1000	980	500	200	.06	1.42
Cu, 90; Sn, 8; Co, 2	1000	970	400	250	.05	1.63
Cu, 90; Sn, 6; Co, 4	1080		400	300	.05	1.58
Cu, 90; Sn, 4; Co, 6	1040		400	300	.03	1.70
Cu, 90; Sn, 2; Co, 8	1030		300	150	.05	1.69
Cu, 90; Co, 10	1080		350	300	.05	
	990	990	500	250	.03	1.67
Cu, 92; Sn, 7; Fe, 1	1030	1010	500	250	.035	1.72
Cu, 92; Sn, 6; Fe, 2	1050	1010	500	200	.04	1.60
	1050	1010	500	250	.04	1.63
Cu, 92; Sn, 5; Mn, 3	1130	990	600	250	.03	1.54
	1100	990	550	200	.035	1.54
Cu, 92; Sn, 3; Mn, 5	1160	1010	600	200	.02	1.50
Cu, 52 , 50, 5, 1411, 5	1140	1000	500	250	.025	1.53
2 2 2 2 2 2	1070	1040	480	250	.03	1.71
Cu, 92; Sn, 5; Ni, 3	1050	1040	500	200	.04	1.71
				250	.035	1.70
Cu, 90; Sn, 5; Ni, 5	1070	1040	550	200	.04	1.76
	1160	970	500	200	.015	1.43
Cu, 92; Sn, 8; P, 2	1080	960	500	200	.013	1.45
Cu, 92; Sn, 7; Pb, 1	1010	970	500	250	.06	1.58
	990	970		200	.05	1.50
Cu, 92; Sn, 6; Pb, 2	970	965	500	100	.05	1.48
	1050	980	500	250	.055	1.54
C., 00. S. E. Dh 2	985	980	500	300	.035	1.685
Cu, 92; Sn, 5; Pb, 3	990	980	500	200	.04	1.69
	1020	990	500	200	.04	1.58
Cu, 92; Sn, 7; Sb, 1	1000	985	500	150	.05	1.54
	1020	980	550	250	.05	1.53
Cu, 92; Sn, 6; Sb, 2	980	970	500	250	.035	1.47
	1010	970	530	200	. 025	1.45
Cu, 92; Sn, 5; Sb, 3	995	970	500	100	.023	1.43
Cu, 92; Sn, 5; Si, 3	1020	970	500	250	.02	1.71
	1010	960	500	200	.01	1.75
Cu, 92; Sn, 8; W, 0.12	1140	1080	600	200	.025	1.52
24,02,02,0,11,012111	1150	1080	500	100	.04	1.49
O. 00. 0. 0. W 0.15	1160	1010	600	200	.035	1.52
Cu, 92; Sn, 8; W, 0.15	1090	1020	500	200	.02	1.50
7	1080	970	500	200	.07	1.56
Cu, 90; Sn, 8; Zn, 2	990	960	500	300	.048	1.51
 }	1000	970	500	200	.04	1.57
Cu, 90; Sn, 6; Zn, 4	980	970	550	150	.05	1.64
				200	.05	1.59
Cu, 90; Sn, 4; Zn, 6	1080	1000	500 500	350	.035	1.66
(1010	995	1 300	. 550	000	. 1.00

Table 47.—Solidification of Miscellaneous Alloys (143).— Table 48.—Solidification of Cu-Sn-X (Bronzes) (97).— (Continued)

° composition	Casting temp., °C	F. P., ℃	Final temp., °C	Mold temp., °C	Expansion $100\frac{\Delta l}{l}$	Shrinkage $-100\frac{\Delta l}{l}$
Cu, 80; Sn, 10; Zn, 10	1060	975	500	200	0.03	1.34
Cu, co, bu, 10, 211, 10	1080	975	500	350	.025	1.33
Cu, 82; Sn, 10; Zn, 8	1020	920	500	200	.025	1.35
	1040	910	500	400	.04	1 39
Cu, 84; Sn, 10; Zn, 6	1060	930	500	200	.03	1.38
	1090	940	500	300	.03	1.43
Cu, 86; Sn, 10; Zn, 4 {	1030	950	500	250	.03	1.47
	1020	940	500	250	.03	1.45
Cu. 88; Sn. 10; Zn. 2	1020	960	500	300	.03	1.49
Cu, 88; Sn, 10; 2n, 2	990	960	500	250	.052	1.51
Cu, 80; Sn, 8; Zn, 12	1040	940	500	250	.03	1.43
	1000	930	500	150	.04	1.46
Cu, 80; Sn, 6; Zn, 14	1000	870	500	250	.04	1.47
	1040	890	500	250	.025	1.54

^{*} In all the above alloys a slight increase in length always occurred before the commencement of the shrinkage.

TABLE 49.—Effect of Mn Content on Shrinkage of Gray Cast Iron (28)

% Mn	$-100\frac{\Delta l}{l}$ *	% Mn	$-100\frac{\Delta l}{l}$
1.00	0.90	6.62	1.42
1.61	1.02	9.89	1. 52
2.65	1.07	11.15	1.74
3.45	1.01	17.51	1.74
4.19	1.26	30.30	1.96
5.15	1.31		

^{*} Total shrinkage from F. P. to 20°C.

TABLE 50.—EFFECT OF MN CONTENT ON EXPANSION DURING SOLIDIFICATION OF GRAY CAST IRON (28)

% composition			۸Ì		
C		Mn	Si	$100 rac{\Delta l}{l}$	
Total	Graphite				
3.56	2.87	0.55	2.45	0.161	
3.70	3.39	1.00	2.46	. 219	
3.63	3.16	1.61	2.35	. 116	
3.60	3.25	2.23	2.35	. 152	
3.60	3.33	2.65	2.39	. 159	
3.70	3.12	3.45	2.48	. 162	
3.80	2.94	4.19	2.44	. 178	
3.12	2.69	5.15	2.40	. 155	
3.40	2.65	5 .83	2.34	. 161	
3 .24	2.60	6.62	2.40	. 190	
3.85	2.15	8.35	2.38	. 165	
3.85	2.10	9.89	2.45	. 257	
3.95	1.98	10.30	2.41	. 241	
4.00	1.85	11.15	2.48	. 188	
4.25	1.14	17.57	2.54	. 281	
3.89		3 0. 3 0	2.96	. 097	

TABLE 51.—EFFECT OF MN CONTENT ON EXPANSION DURING Solidification of White Cast Iron (28)

% composition			$100\frac{\Delta l}{l}$
C	Mn	Si	1007
3.19	0.43	0.053	0.022
3.24	0.82		. 032
3.28	1.48		. 058
3.05	1.67	0.055	. 068
3.09	2.37		. 066
3.19	2.82		. 049
3.12	3.50	0.050	. 034

[†] T₁, T₂, arrest points. ‡ T_E, expansion begins. § T_S, shrinkage begins.

SOLIDIFICATION OF WHITE CAST IRON (28).—(Continued)

	% composition		
C	Mn	Si	$100\frac{\Delta l}{l}$
3.14	4.42		0.019
3.19	5.25	0.061	. 015
3.45	5.40	0.083	. 039
3.43	6.30		. 058
3 . 3 9	7.20	0.081	. 082
3.36	9.00	0.068	. 058
3.45	9.12		.068
3.50	10.40		. 058
3.46	10.67	0.072	.078
3.50	12.35		. 087
3.49	13.50		.068
3.65	13.70	0.085	. 053
3.41	14.84		. 024
3.80	16.00		.068
3.45	16.20	0.100	. 058
3.76	17.05		. 339
3.91	18.65		.008
3.81	19.65		.029
3.85	23.30	0.120	.097
3.95	30.50	0.173	. 097
3.85	34.10	0.156	. 097
3.93	38.55	0.155	. 102

CHANGES IN VOLUME DUE TO TEMPERING

TABLE 52.—CHANGES IN VOLUME OF ALLOYS DUE TO TEMPERING (101)

W composition	Heated	Tempered	$100 \frac{\Delta V}{V}$
% composition	to °C	at °C	100 V
	1000	400	-0.03
Cu, 90.5; Al, 9.5	1000	900	-0.08
	1000	1000	-0.16
	1000	650	-0.55
Cu, 86.5; Al, 13.5	1000	900	-0.42
	1000	1000	-0.58
	1000	400	-0.06
Cu, 83.4; Al, 16.6	1000	650	-0.15
	1000	1000	-0.15
Cu, 74.1; Al, 25.9	700	700	0.08
Cu, 74.9; Sn, 25.1	700	700	-0.10
Cu, 72.7; Sn, 28.1	700	700	-0.30
	700	700	-0.22
Cu, 71.9; Sn, 28.1	700	600	-0.27
1	1000	700	0.46
	1000	750	0.46
Fe with 0.58 C	1000	800	0.47
	1000	900	0.47
	1000	1000	0.46
()	1000	700	0.67
	1000	750	0.73
Fe with 0.70 C	1000	800	0.75
1	1000	900	0.82
	1000	1000	0.85
Fe with 0.83 C	1000	650	0.17
	1000	700	0.23
	1000	750	0.96
	1000	800	0.99
	1000	900	1.10
	1000	1000	1.13

Table 51.—Effect of Mn Content on Expansion During | Table 52.—Changes in Volume of Alloys Due to Tempering (101).—(Continued)

% composition	Heated to °C	Tempered at °C	$100 \frac{\Delta V}{V}$
Zn, 80.3; Cu, 19.7	600	600	-0.08
Zn, 75.5; Cu, 24.5	600	600	-0.32
Zn, 74.5; Cu, 25.5	600	600	-0.40
Zn, 57.8; Cu, 42.2	800	750	0.24
Same (reheated)	800	750	0.40
Zn, 47.4; Cu, 52.6	800	750	0.16

See also Table 12, p. 516.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Ayres, 2, 20: 38; 05. (2) Baraduc-Muller, 74, 7: 657; 10. (3) Bein, 88, 14: 1097; 12. (4) Benedicks, 34, 179: 389; 24. (5) Benott, 238, 6; 1888. (6) Bernini and Cantoni, 59, 8: 241; 14. (7) Bernini and Cantoni, 72, 47: 630; 14. (*) Borelius and Johansson, 8, 75: 23; 24. (*) Bornemann and Sauerwald, 95, 14: 145; 22,
- (10) Bornemann and Sauerwald, 95, 14: 254; 22. (11) Bornemann and Siebe, 95, 14: 329; 22. (12) Braesco, 34, 170: 103; 20. (13) Bridgman, 2, 3: 153; 14. (14) Bridgman, 2, 6: 1; 15. (15) Bridgman, 65, 56: 61; 20. (16) Bridgman, 197, 10: 411; 24. (17) Brislee, 155, 105: 3; 12. (18) Burgess, Crowe, Rawdon, and Waltenberg, 32, No. 38; 14. (19) Cattaneo, 22, 7 I: 88; 91. (19.1) Cattaneo, 23, 25: 492; 89.
- (20) Charpy and Grenet, 34, 184: 540; 02. (21) Charpy and Grenet, 34, 186: 92; 03. (22) Chevenard, 34, 159: 53; 14. (23) Chevenard, 34, 164: 916; 17. (24) Chevenard, 34, 174: 109; 22. (25) Chevenard, 34, 180: 1927; 25. (26) Chevenard, 74, 11: 841; 14. (27) Chevenard, 74, 14: 610; 17. (28) Coe, 115, 90: 581; 10. (29) Cohen and Olie, 7, 71: 385; 10.
- (30) Colby, £, 30: 506; 10. (31) Day and Sosman, 12, 29: 93; 10. (32) Day and Sosman, 45, 4: 490; 12. 128, 2: 284; 12. (33) Day, Sosman and Hostetter, 12, 37: 1; 14. (34) Deuss, 242, 56: 15; 11. (35) Dewar, 5, 70: 237; 02. (36) Disch, 96, 5: 173; 21. (37) Dittenberger, 98, 46: 1532; 02. (38) Dodge, 2, 11: 311; 18. (39) Dorsey, 2, 25: 88; 07.
- (40) Dorsey, 2, 27: 1; 08. (41) Driesen, 139, 11: 129; 14. (42) Eckhardt and Graefe, 93, 23: 378; 00. (43) Edwards and Moorman, 33, 24: 61; 21. (44) Edwards and Taylor, 80, 69: 1070; 23. (45) Endo, 47, 30: 121; 23. (46) Endo, 159, 13: 219; 24. (47) Fizeau, 34, 62: 1101; 66. (48) Fizeau, 34, 64: 314; 67. (49) Fizeau, 54, 66: 1072; 68.
- (50) Fiseau, 34, 68: 1125; 69. (51) Fontana, 22, 3: 129; 94. (52) Forsythe, Nela Park Laboratory, Cleveland, Ohio, O. (53) Goucher, S, 48: 229; 24. (54) Gray, 80, 64: 488; 21. (55) Griffiths and Griffiths, 67, 27: 477; 15. (56) Grüneisen, 8, 33: 33, 65; 10. (57) Grüneisen and Goens, 63, 24: 506; 23. (58) Guillaume, La Convention du Metre. Paris, Gauthier, 1902. (59) Guillaume, Les Applications des Aciers au Nickel. Paris, Gauthier, 1904.
- (60) Guillaume, 34, 152: 189; 11. (61) Guillaume, in Recueil de Constantes Physiques. Paris, Gauthier-Villars, 1913. (62) Guillaume, 34, 170: 1433; (63) Guillaume, 67, 32: 374; 20. (64) Hackspill, 34, 152: 259; 11. (65) Hagen, 8, 19: 436; 83. (66) Harrison, 3, 7: 626; 04. (67) Hart, 80, 64: 554; 21. (68) Henning, 8, 22: 631; 07. (69) Hidnert, 31, No. 410; 22.
- (70) Hidnert, 31, No. 497; 25. (71) Hidnert and Gero, 31, No. 488; 24. (71.1) Hidnert and Sweeney, U. S. Bur. Standards, O. (71-2) Hidnert and Sweeney, 31, No. 515; 25. (72) Hodgman, 2, 15: 218; 20. (73) Hogness, 1, 43: 1621; 21. (74) Holborn and Day, 8, 4: 104; 01. (75) Holborn and Grüneisen, 8, 6: 136; 01. (76) Holborn and Valentiner, 8, 22: 1; 07. (77) Honda, 159, 6: 203; 17. (78) Honda, 159, 7: 59; 18. (79) Honda and Matsushita, 159. 8: 89: 19.
- (80) Jaeger and Scheel, 101, 40: 150; 19. (81) Johansson, 8, 76: 445; 25. (82) Kaye, 5, 85: 430; 11. (83) Kikuta, 74E, 19: 579; 22. (84) Le Chatelier, 34, 108: 1096; 89. (85) Le Chatelier, 34, 128: 1444; 99. (86) Le Chatelier, 34, 129: 331; 99. (87) Leman, Blaschke and Werner, 243, 32: 155; 12. (88) Lindemann, 63, 12: 1197; 11. (89) Lüdeking, 8, 34: 21; 88.
- (90) Lussana, 59, 2: 233; 95. (91) Lussana, 59, 19: 182; 10. (92) Mathews. 80, 67: 133; 22. (93) Matsushita, 159, 8: 79; 19. (94) Matsushita, 159, 9: 143; 20. (98) Matthiessen, 5, 15: 220; 66. (96) Merica and Schad, 31A, 14: 571; 19. (97) Miller, 192, 9: 63; 12. (98) Müller, 63, 17: 29; 16. (99) Muraoka, 8, 13: 307; 81.
- (100) Murray, 47, 2: 101; 09. (101) Oknoff, 74E, 14: 85; 17. (102) Omodei, 427, 16: 67; 92. (103) Onnes and Clay, 168, No. 95b; 06. 64V, 1906: 159. (104) Onnes and Clay, 168, Supp. No. 17: 07. 64V, 1907; 243. (105) Pascal and Jouniaux, 34, 158: 414; 14. (106) Petruschevskii and Alexiev, 427, 6: 145; 82. (107) Playfair and Joule, 4, 3: 57; 46. (108) Quadrio-Cursio, Bull. Acad. Gioenia, Catania, 49: 16; 97. (109) Quincke, 8, 135: 621: 68,

(110) Ramsay, 25, 13: 2145; 80. (111) Ramsay, 487, 5: 163; 81. (112) Randall, 2, 20: 85; 05. (113) Rauramo and Sasrialho, 60, 54A: No. 24; 12. (114) Richards and Boyer, 1, 48: 274; 21. (118) Richards and Daniels, 1, 41: 1732; 19. (116) Roberts, 5, 106: 385; 24. (117) Roberts and Wrightson, 3, 11: 295; 81. 58, 24: 470; 81. (118) Sauerwald, 95, 14: 457; 22. (119) Sauerwald, Allendorf and Landschütz, 93, 135: 327; 24.

(120) Schad and Hidnert, 2, 13: 148; 19. 31, No. 332; 19. (121) Scheel, 88, 9: 3: 07. (122) Scheel, 243, 23: 106: 08. (123) Scheel, 96, 5: 167; 21. (124) Scheel and Heuse, 88, 9: 449; 07. (125) Schulze, 63, 22: 403; 21. (126) Selivanov, 53, 23: 152; 91. (127) Sieglerschmidt, 312, 38: 182; 20. (128) Smirnov, 34, 185; 351; 12, (129) Souder and Hidnert, 31, No. 426; 21.

(130) Souder and Hidnert, 31, No. 488; 21. (131) Souder and Peters, 38, No. 157; 20. (132) Stadthagen, 425, No. 3: 21; 01. (133) Staley, 32, No. 155; 20. (134) Sutoki, 159, 10: 93; 21. (135) Toepler, 8, 53: 343; 94. (136) Tutton, 5, 65: 161, 306; 99. (137) Valentiner and Wallot, 88. 16: 757; 14. (138) Vincentini and Omodei, 22, 8 I: 235, 294, 321; 87. 23, 23: 38; 87. 22, 4 II: 19, 39, 75; 88. (139) Voigt, 8, 49: 697; 93. (140) Werner, 243, 44: 315; 24. (141) Worthing, 2, 10: 638; 17. (142) Wright-

son and Roberts, 135, 43; 81; 81. (143) Wüst, 192, 6; 769; 09.

MECHANICAL PROPERTIES OF IRON, FE-Co, FE-TI, AND TITANIUM AND URANIUM STEELS

D. HANSON

CONTENTS Electrolytic iron.

MATIÈRES Fer électrolytique.

Module Young de Fe-Co.

Brinell hardness of Fe-Ti. Titanium and uranium steels.

Young's modulus of Fe-Co.

Dureté Brinell de Fe-Ti. Aciers au Ti et à l'U.

Droppostro	O.17	ELECTROLYTIC	Inox	

% composition	Treat- ment	E	BHN	10 × UTS	10 × YP	10 × PL	10 × El ₀	RA	Lit
C, 0.029; Si,	Dp			800 440	780 364		30 188		(1)
0.004; S, 0.048; P, 0.0037; Mn,	A 600°			372	312		280		
P, 0.0037; Mn,	A 950°		{	299	178		427		
	(A 300		l	296	187		373		
C, 0.031; Mn,			77	295	143	43			(5)
0.02; (Si. S, P), Tr.; Cu, 0.0	A 1000°		77	295	137	68			(5)
O, 0.08; P,	N A	∫ 21 000	66	239	131	39	500	80	(8)
0.007*	Nat	20 700	69	255	146	68	70	10	(8)
O, 0.23; P, 0.007*	N _v †	20 700		295	109	58	20	4	(8)

- * Other elements absent or trace.
- † Previous treatment: Mly Rh 80 % N.

Young's Modulus (Tension) of Fe-Co (4)

% Co	E/10	% Co	E/10		of com- alloy				
	·			Fe Co					
0	2129	40	2109	C	0.09	0.24			
5	2101	70	1873	Si	.11	0.14			
10	2071	80	1737	Mn	.31	Ni, 1.1			
15	2132	90	1973	P	.03	Fe, 1.4			
20	2161	100	2079	$\overline{\mathbf{s}}$.026				
3 0	2175			Cu	.288				

HARDNESS OF FE-TI (6)

% Ti	BHN*	% Ti	BHN*
0.00	96	11.73	327
0.75	144	14.51	350
3.33	214	15.56	360
4.50	242	19.42	405
7.30	312	19.90	472
8.92	373	21.50	484

* Ball diam. = 5 mm; 500 kg applied ½ min.

TITANIUM AND URANIUM STEELS Fe-Cr-U-C, Cr-U Steel (7)

		iposit lredth			Treatment	UTS	YP	El.	RA
Cr	U	C	Mn	Si		<u> </u>			<u> </u>
78	17	36	53	25	835° Q _o 300°/30 C _a	. 170	143.4	9.0	37.2
81	31	30	57	57	850° Q _w 250°/2 h C _a 875° Q _w 250°/2 h C _a 875° Q _w 350°/2 h C _a 900° Q _w 250°/2 h C _a	157.5 130.6	107 113.5	10.5 14	

Inhaltsverzeichnis INDICE Elektrolytisches Eisen. Ferro elettrolitico...... 478 Young'scher Modulo Young del Fe-Co.. 478 Modulus von

PAGE

Fe-Co.

Brinell-Härte von Fe-Ti. Durezza Brinell del Fe-Ti. 478 Titan- und Uran-Stähle. Acciai al Ti e all'U..... 478

Fe-Ni-Cr-U-C, Ni-Cr-U Steel (7)

% composition		UTS YP	
Fe; Ni, 1.63; Cr, 0.61; U, 0.20; C, 0.36; Mn, 0.78; Si, 0.47	$ \left(\begin{array}{c} 825^{\circ} \ Q_{o} \\ 850^{\circ} \ Q_{o} \\ \end{array}\right) 200^{\circ}/2 \ h \ C_{a} \dots \left\{ \begin{array}{c} 770^{\circ} \\ 200^{\circ}/2 \ h \ C_{a} \dots \end{array}\right. $	175 150 175 140 150 117.3 134 106.3	11 38.2 13 47.2 13 50.6 13 60.2

Fe-Ni-U-C, Ni-U Steel (7)

		iposit lredtl			Treatment	UTS	ΥP	EL	RA
Ni	U	C	Mn	Si				l	
307	26	83	74	58	775°. Qo 300°/2 h Ca	172	148	2.5	4.7
313	36	25	46	20	775° Q _w 250°/2 h C _a	134	121	11.5	43.4
315	22	43	54	60	790° Q _o 775° Q _o 775° Q _o 250°/2 h C _a {	191 191 186	158 162 148	13	48.8 44.8 47
315	40	57	62	58	790° Q _o 250°/2 h C _s	209	183	8.5	32.0
322	32	30	48	64	780° Q _o 250°/2 h C _a 780° Q _o 250°/2 h C _s	183 181	159 161		34.1 34.1
367	36	45	72	68	775° Q _o 775° Q _o 800° Q _o 250°/2 h C _a	197 206 209	187 170 175		31.1 30.8

Fe-Ti-C, Ti Steels (3)

88	Con	mposi	tion, t	house	ndth	8 %	77-4	DILL	rima	ven	127	R
Class	Ti	C	Mn	P	S	Si	Trt	BHN	UTS	YP	El	It.
_	415	122	180	18	15	47	{ F	99 114	40.7 51.0	0.000		68
1 steel	879	106	140	20	15	163	{ F	105 153	45.2 58.0		12020113	6
00n 11	1398	137	170	20	7	105	F	101 126	48.2	36.1	19	62
Low carbon	2570	135	310	10	17	140	F	90 143	45.2	34.6	17.5	
Lo	325	760	230	15	15	292	F	207 455	94.1		-	19
10	640	695	240	25	24	256	{ F	207 412	94.1	52.6	9	28
11 steel	720	624	230	21	11	350	{ F	212 387	87.7	53.3	10	37
carbon	2575	611	270	15	25	411	{ F	212 340	90.4			35 4
rign car	4630	635	315	13	18	346	{ F	212 366	89.8		-	34
111	8710	650	450	16	11	163	F	248	117.5 132.5			30

* Quenched from 850°C in cold water.

Fe-U-C, U Steel(7*)

		positi			Treatment	UTS	YP	El.	RA
U	С	Mn	Si	v					
28	25	80	39	Tr.	850° Q _w 300°/2 h C _a	130.4	114	13.5	54.4
45	28	66	47	0	850° Q _w 300°/2 h C _a 850° Q _w 350°/2 h C _a		90.2 84.3	11 14.5	53 55.5
50	17	25	30	Tr.	880° Q _w 250°/1 h C _a 880° Q _w 400°/1 h C _a				61.8 66.4
85	21	65	36	Tr.	A	56.1 121.3 124.4 94.2	109.5 112	10.5	61 47.2 47.2 53.6
220	25	65	30 	Tr.	$ \begin{cases} 925^{\circ} \ Q_{\mathbf{W}} \ \ 250^{\circ} / 2 \ h \ C_{\mathbf{a}} \\ 900^{\circ} \ Q_{\mathbf{W}} \ \ \\ 900^{\circ} \ Q_{\mathbf{W}} \ \ 250^{\circ} / 2 \ h \ C_{\mathbf{a}} \end{cases} $	144.4 160.6 144.9	145	9 3.0 8	35.4 7.3 31.5
2	46	33	41		850° Q _w 400°/1 h C _a	96.8	67.1	16.5	37.3
2	51	24	18		$\left\{ \begin{array}{c} 875^{\circ} \\ 825^{\circ} \end{array} \right\} \mathbf{Q_w} \ 400^{\circ}/1 \ \mathbf{h} \ \mathbf{C_a} \left\{ \right.$	119.6	1	I -	16 28.5
12	46	34	63	Tr.	850° Q _w 400°/1 h C _a 900° Q _w 300°/2 h C _a 825° Q _w 400°/1 h C _a	89.1	71.2	23	39.5 53.7 54.7
13	36	23	10	Tr.	875° Qw 400°/2 h Cf	76.1	59.1	22.5	58.1
13	55	21	20	4	875° 880° 825° Qw 400°/1 h Ca	104.0 104.7 98.3 98.3	75.1 78.1	11.5 17.5	
22	32	66	23 (²)		843° Q _w T _p 260°	136.2	148 132.6 126.7 118.7	12.0 13.5	52.0
29	54	61	28 (2)		802° Q _w T _p { 260°	197 175 144.4	181 160 131.5	8 10 11	34.0 40.3 43.3

Fe-U-C, U Steel (7*).—(Continued)

		positi redth			Treatment	UTS	ΥP	El.	RA
U	C	Mn	Si	v				_	
31	45	68	33 (2)		816° Q _w T _p { 260°	153	141	12.5	48.1
152	43	55	56	Tr.	815° Qo 300°/2 h Ca	66.1	45.0	11.5	44.6
312	47	80	80	Tr.	815° Qo 400°/2 h Ca	130.2	107	10.5	34.7
6	63	34	64	87	5° Q _o 500°/2 h C	118	83.2	14	40.1
53	72	54	75	87 85 87 85	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205 202 167 154.5 173 170 125.1	149.5 128 157.5	14 14.5 17.5 10 7 10 12.5	31.1 24.7 31.5 33.1
190	63	77	75	Tr.	875° 800° 800° 850° 850° 875° 900° 400°/2 h C _a	189 197 96.2 130.7	174.8 148 69.1 117.4 92.3 120.5	6 8.5 10 11	22.3 18.1 21.6 30.8 32.5 30.2

^{*} Except where noted.

LITERATURE

(For a key to the periodicals see end of volume)

Bouchayer, 430, 1923: 557.
 Foote, 33, 25: 789; 21.
 Guillet, 74, 1: 506; 04.
 Honda, 159, 8: 51: 19.
 Hutchins, Trans. First World Power Conference, 4: 704; 24.
 Lamort, 139, 11: 225; 14.
 Polushkin, 74, 17: 421; 20.
 Tritton and Hanson, 140, 110: 90; 24.

NI AND ITS ALLOYS WITH C, CR, CU, FE, AND MN

	P. D. 1	Merica	
Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Ni.	Ni.	Ni.	Ni 480
Ni-Cr-Fe.	Ni-Cr-Fe.	Ni-Cr-Fe.	Ni-Cr-Fe 480
Ni-Cu-X.	Ni-Cu-X.	Ni-Cu-X.	Ni-Cu-X 480
Cupro-nickel, nickel-silver, etc.	Cupro-nickel, maillechort, etc.	Kupfer-Nickel, Neusilber, etc.	Rame-nichel, argentana, ecc 480
Tensile properties and hardness of Ni-Fe alloys. ¹	Résistance à la traction et dureté des alliages Ni-Fe.	Festigkeitseigenschaften und Härte der Ni-Fe-Legierungen.	Comportamento alla tra- zione e durezza della leghe di Ni-Fe 480
Compression tests on Ni-Fe alloys. ¹	Essais de compression sur des alliages Ni-Fe.	Druckproben an Ni-Fe-Legie- rungen.	Prove di compressione sulle leghe di Ni-Fe 481
Elastic properties of Ni-Fe and Ni-Fe-Cr alloys. ¹	Propriétés élastiques des alliages Ni-Fe et Ni-Fe-Cr.	Elastizität von Ni-Fe und Ni- Fe-Cr-Legierungen.	Elasticità delle leghe di Ni-Fe e di Ni-Fe-Cr 481
Density of Ni-Fe alloys. ¹	Densité des alliages Ni-Fe.	Dichte der Ni-Fe-Legierungen.	Densità delle leghe di Ni- Fe481
Tensile, hardness and impact tests on Ni-steels, Ni less than 6%.1	Essais de traction, de dureté et de choc sur des aciers au Ni (Ni moins de 6 %).	Festigkeits- Härte- und Kerbzähigkeitsprüfung an Ni-Stahl, Ni unter 6 %.	Prove alla trazione, prove di durezza e prove all' urto sugli acciai al Ni con meno del 6 % di Ni 481
Torsion tests on Ni-steel. ¹	Essais de torsion sur l'acier au Ni.	Drehversuche mit Ni-Stahl.	Prove di torsione sull' acciaio al Ni 482
Impact strength of Ni-steels.	Résistance au choc des aciers au Ni.	Schlagversuche mit Ni-Stahl.	Resistenza all'urto degli acciaio al Ni 482
High-Ni-steels.	Aciers à forte teneur en Ni.	Hochwertige Ni-Stahlsorten.	Acciaiadelevatotenorein Ni 482
Ni-Mn alloys.	Alliages Ni-Mn.	Ni-Mn-Legierungen.	Leghe di Ni-Mn 482
Annealing and forging ranges.	Intervalles de recuit et de for- geage.	Anlass- und Schmiede-Grenz- temperaturen.	Temperature di ricottura e di fucinatura 482
Critical ranges of Ni-steels.1	Intervalles critiques des aciers au Ni.	Kritische Punkte der Ni-Stahl- sorten.	Intervalli critici degli acciai al Ni 483

¹ Furnished by T. H. Wickenden.

MECHANICAL AND ELASTIC PROPERTIES

TABLE 1.-NI

Standard 99% commercially pure "malleable" Ni* containing Co, 0.40; Fe, 0.40; Cu, 0.15; Mn, 0.15; C, 0.10; Si, 0.10 (5, 8, 19, 29); v. also references under separate items.

Shape	Trt¶	UTS	YP‡	PL§	El.	RA
	Rh	46-56	18-28	11-21	40-60††	50-70
Bars	RA	42-53	14-25	11-18	40-60††	50-70
	R.**	53-120	25-105	18–70	40-1††	50-5
C1	RA	42-53	14-25	11-18	30-45†	
Sheet or strip	R.**	53-120	25-105	18–70	30–1†	
	DA	42-53	14-25	11-18	20-40†	
Wire	De**	53-120	25-105	18-70	20–1†	1
Castings	G.	35-49	14-21		20-35††	20-50

 $d_{\star}^{20} = 8.80 - 8.90 \ (11,13,22).$

Compressibility same as pure Ni (v. vol. III).

Load	BHN, 1	10 mm	ScH			Elastic	constants
	ba	11	universal	RHN		• • •	7.,
Trt	3000 kg	500 kg	hammer		10	kg/mm²	Lit.
A	90-110	70-90					(12, 15, 17, 21, 22)
$\mathbf{R}_{\mathbf{c}}$	110-300	90-300	12-50	50-110	G	7.2-7.7	(20)
G_{\bullet}	90-110	70-90	8-12		λ	0.33	(4)

^{*} Indications of a few tests are that data apply equally well to pure Ni, but data on pure Ni are too scanty to be useful. For specific gravity v. p. 456; compressibility v. vol. III; viscosity v. vol. III; surface tension v. vol. III.

- † Depends on gage of metal, larger for heavier gages.
- ‡ By drop of beam or at $\Delta l = \frac{1}{2} \% l_0$.
- & By extensometer.
- | May be regarded as the normal or standard state.
- ¶ See p. 392.
- ** Ranges are large and depend on amount of cold work which varies from 5-95 % reduction of section.
- †† Diam. = 0.505 in.

TABLE 2.—NI-CR-FE AND NI-FE-CR, "CHROMEL," Etc. (19)

% Ni	% Cr	% Fe	Ind. No.						BHN	d ₄ ²⁰
82.5 77.5	15 20	1* 1*	366 367	R _b	74-88 77-91	42-56 49-63	25-45 25-40	50-65 50-65	175-210 180-220	8.30-8.50
61.0	12	25†	368 {	Rh		35-49	25-45	50-70	180-200 130-180	8 10-8 20

^{*} Alloy contains also Mn, 1; C, 0.4; Si, 0.1.

TABLE 3.—NI-CU-X

No satisfactory systematic data exist on the mechanical properties of the Ni-Cu series. The available data on certain well known commercial alloys are tabulated below.

There exist some data on Ni-Cu which indicate: (1) E is a linear function of % Cu. (2) Hardness is a maximum between 35 and 50% Cu, its value at the maximum being a little greater than that of pure Ni.

Ni, 68.4; Cu, 29.0; Fe, 2.0; Mn, 0.3; C, 0.2; Si, 0.1 "Monel metal" (7, 19)

		` '				
Shape	Trt¶	UTS	YP‡	PL§	El.	RA
	R _h	60- 67	25- 32	18-28	35-50††	45-65
Bars	RA	46- 53	18- 28	14-21	35-50††	i
	R.**	53-120	28-105	21-70	35- 1††	45-50
Ohast an atrin	RA	46- 53	18- 28	14-21	30-45†	1
Sheet or strip {	R.**	53-120	28-105	21-70	30- 1†	!
Wire	DA	46- 53	18- 28	14-21	20-40†	j
wire	De**	53-120	28-105	21-70	20- 1†	
Castings	G.	46- 56	21- 28		25-35††	I

^{*†! § || ** ††} For meanings v. footnotes to Table 1.

UCS: Flattens, does not fracture.

 $YP_{C} = 42-49 \ (\Delta l = -\frac{1}{2}\% \ l_{0}).$

 $PL_{C} = 25-32.$

BHN, 10	BHN, 10 mm ball						
Load	3000 kg	500 kg	universal hammer	RHN			
A	. 110–130	90-110	15–20	65- 75			
R_h,\dots,\dots	. 140–160	110-130	22-28	75- 85			
R ₀	. 130–300	110-300	20-55	90-110			
$G_{s},\dots\dots\dots\dots\dots$. 110–130	90-110	15–20	60- 70			

 $10^{-3} E = 16.8-18.3.$

 $10^{-3} G = 6.3-7.0.$

USS (to punch sheet or shear rod) = 35-46.

TMR = 39-46.

 $PL_8 = 14-21.$

IS Standard Izod: Specimens merely bend over. Standard Charpy: Specimens fracture; IS = 14-28 kg-m. Twist: $\pi \times \text{diam.} \times \text{no.}$ of turns = 2.5-3.0 in. (for hot rolled

Ni, 55; Cu, 43.9; Mn, 1.00; C, 0.10 "Constantan" (7, 19)

BHN, 10 mm ball ScH RHN Trt UTSYPELRA3000 kg | 500 kg A......|42-49|14-21|40-60|50-70| 100-120 80-100 12-16 55-65 $R_e = \frac{49-99}{21-88} \frac{40-1}{50-5} \frac{120-300}{120-300} \frac{16-50}{16-50}$ $d_A^{20} = 8.85 \pm 0.05$, $10^{-3} E = 14.8-16.2$.

TABLE 4.-Cu-NI, Cu-NI-ZN, AND Cu-ZN-NI* (Cupro-nickel, Nickel-silver, Ambrac) (2)

					ition	Cond						com-	%
ا,رم	200		oft	8			ard	H		Ind. No	M. P., °C	ition	ров
		BHN	El.	YP‡	UTS	BHN \$	El.	YP‡	UTS	No	١	Zn	Ni
21.1	8.95	1	30		32		3		49	446	1170†	T	15
	П		30	1	35		2		60	446	1190†	- 1	20
			38	13	37					446	1220†	İ	25
26.6	8.84	70	35	15	35	160	5	53	60	136	1150	5**	20
30.8	8.75	77	33	1	41	158	2	İ	67	988	1110†	17	18
	1 1	85	28	20	46	190	2	67	74	135	1220	5	30
43.1	8.73	89	30		51	208	4		77	990	1130†	20	25
48.2	8.74		35	1	51		2		91	991	1140†	23	30
	8.66		45		35		3		63	985	1010†	25	10
	1 1	1	40	l	35		5		63	987	1080†	21	15
			35		39		2		67	987	1030†	28	15
20.9	8.66		40		42		1		77	988	1055†	27	18

^{*} For annealing ranges, v. Table 14.

† (28).

‡ Stress at which $\Delta l = 1/2 \%$ lo.

§ 10 mm, 500 kg.

|| Electrical resistivity, microhm-cm.

¶ $E = 8.4 \times 10^2 \text{ kg/mm}^2$. ** $E = 13.4 \times 10^3 \text{ kg/mm}^2$.

TABLE 5.—TENSILE PROPERTIES AND HARDNESS OF NI-FE ALLOYS (9, 25) v. also Table 12

These alloys made out of 99.97% pure electrolytic Fe and electrolytic Ni. Analyses showed: C well under 0.01%, S, Si, P and Mn negligible.

A charge of electrolytic Fe was melted into an ingot and forged under same conditions employed in preparation of alloys. Analysis of this gave: C, 0.047; Mn, 0.0; Si, 0.062; P, 0.016; S, 0.005.

All except last three compositions were annealed at 900°C.

% Ni	UTS	YP	El.	RA	ScH
0.25	35.4	26.7	35.0	69.7	14.5
0.50	39.0	28.5	36.5	70.2	14
1.00	42.1	30.8	33.7	6 8.8	14
2.00	45.3	34.3	34.2	65.4	14
3.00	49.7	38.9	27.5	67.6	14.5
4 00	493	36.6	28.4	66.7	14

[†] Alloy contains also Mn, 1; C, 0.5; Si, 0.5.

 $d_{4}^{20} = 8.80 - 8.90.$

Table 5.—Tensile Properties and Hardness of Ni-Fe Alloys (9, 25) v. also Table 12.—(Continued)

			•	•	
% Ni	UTS	YP	El.	RA	ScH
5.00	51.5	41.0	31.4	68.1	15.5
6.00	52.9	39.7	29.5	64.2	
7.00	51.3	40.9	26.7	58.5	16
8.00	55.2	44.5	30.2	64.4	16
9.00	63.2	50.7	25.1	60.2	17
10.0	62.8	5 0.5	22.3	59.1	18
10.5	62.9	48.6	24.2	57.2	20
11.0	85.6	69.7	11.6	34.6	21
12.0	85.6	68.7	14.5	35.8	25
13.0	113.4	90.0	6.8	18.2	31.5
15.0	107.8	88.8	10.5	3 5.8	34
18.0	127.7	96.8	10.0	34.4	34
19.0	127.0	81.7	10.7	38.7	31
20 .0	87.8	78.0	21.5	62.5	34 . 5
21.0	136.2	86.2	4.0	4.2	31
25	73.3	3 9. 6	45.0	68.3	21
45	57.6	38.4	32.5	65.0	17
50	76.3	53.2	26.5	63.7	

Table	6.—Compri	ESSION TEST	s on Ni-F	E ALLOYS'	* (18)
% Ni	% C	% Mn	% Si	EL _C	e †
0.27	0.19	0.79	0.31	35	50
0.51	.14	.75	.20	35	50
0.95	.13	.72	.23	32	49
1.92	.14	.72	.21	43	47
3.82	.19	.65	.20	44	41
5.81	.18	.65	.31	63	37
7.65	.17	.68	. 2 8	63	33
9.51	.16	.86	.20	110	3
11.39	.18	.93	.22	158	1
15. 4 8	.23	.93	.24	126	1
19.64	.19	.93	.27	126	3
24.51	.16	1.00	.30	79	16
29.07	.14	0.86	.38	38	41

^{*} Specimens 1 in. × 0.798 in. diam. (forged, unannealed).

TABLE 7.—ELASTIC PROPERTIES OF NI-FE AND NI-FE-CR ALLOYS (10, 17)

				` /				
% Ni	10 ⁻³ E	% Ni	$ 10^{-3}E $	% Ni	10 ⁻³ E	% Ni	% Cr	10 ⁻³ E
5.0	21.7	27.9	18.1	39.4	15.1	12.2	1	19.0
				44.3				
19.0	17.7	31.4	15.5	70.0	19.8	16.8	1	18.3
24.1*	19.3	34.6	15.4	100.0	21.6	34.8	1.5	15.5
24.1†	17.4	35.2	14.9			35.7	1.7	15.7
26 .2	18.5	37.2	14.6			36.4	0.9	15.7

^{*} Non-magnetic.

[†] Magnetic, transformation probably incomplete.

TABLE 8.—D	Ensity	r (gr	n/c	m³)	of N	II-F	е А	LLO.	rs*	(7)	
% Ni	0	10	20	30	40	50	60	70	80	90	100
100 d	787.5	789	802	806	763?	805	829	839	852	860	886

^{*} Fairly pure Ni-Fe.

TABLE 9.—TENSILE, HARDNESS AND IMPACT TESTS ON NI-STEELS (Ni < 6%)*

Treatment	UTS	$E = EL\dagger$ $P = PL$ $Y = YP$	$El_{\mathbf{a}}$	RA	BHN	IS'‡ , kg-m per cm²
Ni, 1.76; C, 0.2	6 ; Mn, 0.	90; Si, 0.18;	8, 0.02;	P, 0.04	(14)	
G. W 800°/4 h C. 1 h	67.5	39.4 E	15§	14	1	5.1 _▼
Same, Tp 700°/1 h C 6 h	61.0	36.9 E	21	22.5		7.5
G. W 800°/4 h Cf 18 h	64.8	36.6 E	28.5	39.8	1	8.2
Same, Tp 700°/1 h C 6 h	64.5	37.0 E	33	52.8	1	33ᢏ

TABLE 9.—TENSILE, HARDNESS AND IMPACT TESTS ON NI-STEELS (No second) + (Continued)

Trestment	UTS	$E = EL\dagger$ $P = PL$ $Y = YP$	Ela.	RA	BHN	IS,‡ kg-m
Ni, 2.73; C, 0.87; Mn,	0.54; Si,	0.18; 8, 0.0	2; P, 0.01	5; Cu, (0.042 (2	3)¶
Go A** tangential	56.9	34.3 Y	19.4	29.0	1	1.87
Ge A** longitudinal	56.8	34.6 Y	21.0	23.9	}	2.34
Gc Fm tangential	66.2	38.7 Y	21.8	44.7	1	2.90
Ge Fm longitudinal	66.3	38.2 Y	23.6	49.8	ŀ	2.67
Ge F Trt†† tangential	62.4	45.2 Y	25.5	64.6	1	4.36
Ge F Trt†† longitudinal	64.3	45.5 Y	26.2	65.7	ł	3.51
Ge Trt†† tangential	59.2	41.1 Y	24.2	48.9		2.98
Ge Trt†† longitudinal	64.3	46.9 Y	24.7	53.2		2.74
Ni, 2.30; C, 0.44; Mn,	0.43; Si, C	0.48; 8, 0.01	6; P, 0.01	7; Cu, (0.062 (2	P(E
Gc A** tangential	65.3	39.2 Y	12.1	14.2	1	0.69
Go A** longitudinal	65.7	39.7 Y	12.0	13.2	1	0.74
Ni, 3.59; C, 0.20	Mn, 0.69	9; Si, 0.18;	P, 0.007;	S, 0.013	3 (27)	_
A (0.505 in. diam.)	55.5	39 E	31.0	64.7	143	10.42
[100°	138	112 E	12.5	41.5	354	6.78
843° Qo Tp (} in. 205°	136	102 E	11.0	45.6	356	6.42
	105	88 E	15.5	68	264	9.74
diam.) 427°	100					

A (3-1.5 in. diam.)		55	- 69.5	39	- 4211	31	-26.5	56-55	160-170
	650°	76	- 81.5	59	- 67.5	26.	5-22	69-60	200-225
								67-60	226-248
788-860° Qw Tp	500°	96	-112.5	85	- 99	20	-17	61-57	290-302
	400°	118	-134	105	-119	15	-12	57-50	340-360
	300°	146	-156	129	-135	13	-12	54-48	370-444

943° Qo Tp 427°	$\{ \overline{\cdot} $	130 155		120 · 141	14.5 12.0	61.2 57.5	342 429	11.1 _u 4.6 _u
-----------------	------------------------	------------	--	--------------	--------------	--------------	------------	---------------------------------------

Ni, 4.6-5.8; C, 0.12-0.17	7; Mn, 0.30)-0.62; P, 0.0	08-0.046; 8, 0	0.018-0.045 (92)
A	50.5- 59	35 - 4111 34	-25.5 60-48	149-170 10.7 _u

	`					<u> </u>	ScH
	100°	121 –135	96 -112	15 -11.5	55-38	330-365	3.6 _u 4.5 _v
	400°	91 -115	72 - 93	23 -14	68-47	257-318	
760-900° Q _o Tp	500°	74.5- 93	55 - 81	28 -18	70-58	215-260	
	600°	64 - 82	43.5- 72	32.5-22	70-62	180-230	13.8 _u
	650°	62 - 77	41 - 66	34 -22.5	71-66	172-217	
***************************************	• • • • •	1	00 - 4144	20.0	00 30	140 110	10.5 _v

Ni, 3.31-3.75; C, 0.15-0.20; Mn, 0.34-0.60; P, 0.006-0.023; S, 0.025-0.033 (3, 29)

A (1-1.5 in. diam.)					
	650°	53 - 57.5	33 - 42.5	33 -28	76-67 150-178 26-31
	600°	55 - 67	37 - 47	32 -26	73-68 170-200 29-34
802-848° Qo Tp	500°	65 - 86	48 - 66	27 -22	68-62 187-277 38-47
	400°	79.5- 97	60 - 82	22.5-15	65-53 190-325 43-48
	300°	83 -115	60.5- 93	22 -13	59-48 192-358 46-53

Ni, 3.16-3.65; C, 0.35-0.39; Mn, 0.48-0.65; Si, 0.10-0.22; P, 0.009-0.041; S, 0.020-0.036 (3, 6, 28, 29)

A (1-1.5 in. diam.)		67 ·	- 70	42- 43.	5‡‡ 28	-25	56-4 8	183-200	26-35
1	650°	73 ·	- 81	43- 68	28	-22	67-62	217-230	34-41
	600°	74.5	- 88	51- 72	28	-21	65-62	229-244	36-42
773-860° Q _o Tp	500°	86.5	-101	76- 88	20	-17	60-54	265-296	48-52
l I	400° 10	09 -	-134	91-112	16	-12.5	50-47	325-349	57-62
	300° 1	35 -	-165	112-151	13	-11	45-43	385-420	65-67

- * The average effect of Ni up to 8 % upon an Fe-C alloy in the fully annealed condition is as follows: 0.01 % Ni increases EL by 28 g/mm², UTS by 29.5 g/mm², RA by 0.005 %, decreases El by 0.010 % (1).
 - † Some data not clear as to whether PL, EL, or YP is measured.
 - ‡ Subscripts to values of IS: u = Izod machine, v = Charpy machine.
 - § Specimens 50 mm × 13.8 mm diam.
- || Specimens 30 mm sq. × 160 mm long, notch 2 mm radius.
- ¶ Taken from ring-casting 71.5 in. long by 10.9 in. diam.
- ** $A = A 950^{\circ}/4 h C_a$, W 600°/6 h.
- †† Trt = 800°/1 h Q, Tp 675°.
- ‡‡ Data not clear as to method, lower figure generally reported as EL, higher as YP.

 $t_0 = -100 \frac{\Delta l}{l_0}$ for 158 kg/mm² load.

Table 10.—Torsion Tests on Ni-Steels (27)

Treatment (in 1 in. diam.)	UTS	EL	Ela*	RA	TMR	EL _S	Tw (°/cm)	$\left rac{TMR}{UTS} \right $	$\frac{EL_8}{EL}$
Ni	, 3.48;	C, 0.1	9; Mn,	0.70;	Si, 0.10	0; P, 0,0	009; 8, 0.0	19	
843° Q _o Tp {	85.7 90.3	58.7 60.8		56.7 47.4		28.6 28.6	35.9 28.7	97	48
843° Q _o Tp {	92.9 88.2	65.3 62.5		49.1 53.5		28.6 28.6	32.0 42.8	88	45
A	53.2 52.2	34.4 35.1	23.5 23.0	67.0 65.1	51.9 53.3	21.4 25.2	64.3 51.9	99	67
K (1/32) 815° Q _o Tp 315°	83.1 83.3	63.2 63.2		63.7 63.5		34.8 34.0	7.9 8.5	96	55
Ni	, 3.66;	C, 0.8	0; Mn	0.70	8i, 0.1	8; P, 0.0	011; 8, 0.0	10	
845° Q _o Tp {	80.1 77.3	61.1 60.4		66.0 67.5		39.4 43.0	54.5 63.4	90	69
845° Q _o Tp {	92.8 93.3	71.7 72.7	16.5 18.0	59.2 58.2		45.9 46.5	79.6 76.8	87	64
A	65.4 64.5	36.2 35.5		50.7 52.7		17.9 16.2	39.4 39.6	93	47

^{*} Diam. = 0.505 in.

† Broke near end.

Table 11.—Effect of Heat Treatment on Impact Strength of Ni-Steels (3)

Composition A = Ni, 2.9; C, 0.17; $\dot{M}n$, 0.34; Si, 0.05; P, 0.023; S. 0.033.

Composition B = Ni, 3.65; C, 0.37; Mn, 0.65; Si, 0.17; P, 0.030; 0.020

Composition C = Ni, 6.00; C, 0.17; Mn, 0.34; Si, 0.39; P, 0.014; S, 0.014.

		Com	position	Com	position	Com	position	
T4			A		В	C		
Treatme	nt	IS	IS	IS	IS	IS	IS	
		Izod	Charpy	Izod	Charpy	Izod	Charpy	
N 860°		12.3	14.7	5.0	4.5	10.7	10.5	
860° Q		4.0	3.9	0.6	0.8	4.3	4.6	
	(300°	4.8	5.8	0.6	1.0	4.6	4.5	
	400°	7.5	7.2	1.1	1.3	6.6	5.9	
	500°	10.4	11.7	7.2	8.0	9.4	10.9	
Same, Tp	600°	14.3	16.7	10.0	13.0	13.7	15.2	
	650°	15.6	20.4	11.2	14.3	14.1	15.2	
	700°					9.8	10.6	
	725°					8.6	9.8	
860° Q		8.9	10.1	0.8	1.0	3.6	4.5	
	(300°	10.2	12.9	0.7	0.8	}		
	400°	11.6	14.5	1.5	2.0			
Same, Tp	500°	13.3	16.8	6.9	8.7			
	600°	14.5	18.2	10.1	12.3	13.8	16.2	
	650°	15.1	20.4	11.3	13.6			

For Ni, 3.5; C, 0.17 (845° Q_o 760° Q_o Tp 232°) IS (Izod) = 4.8. For Ni, 5; C, 0.16 (845° Q_o 730° Q_o Tp 232°) IS (Izod) = 10.5.

TABLE 12.—HIGH NI-STEELS

% com	position	1	Trt	UTS	YP	El.	RA	Lit.
Ni	C	Mn	111	013	11	Dia	ILA	1110.
25-28	0.30			60-65	25–35	30-35	50-60	(6)
30-35	} to			60-67	28-35	30-40	40-60	(6)
35-38	0.50			70-81	45–55	25-35	50	(6)
26	0.20	1.50	Rh	55.2	8.4	50	71	(8)
30	0.15	1.50	A*	59.4	19.7	47	69	(8)
32 .3	0.12	2.30	A*	54.5	15.5	43	66	(8)
35.1	0.22	1.50	A*	59.7	21.1	42	67	(8)
36	0.08	0.50	A*	50.9	16.9	39	68	(8)
45	0.37	1.50	A*	66.4	24.6	44	51	(8)
50.7	0.17	1.25	Rh	69.6	34.1	39	68	(8)

^{*} Annealed from above 790°C.

Data on hardness of Ni-Fe alloys are unsatisfactory.

Approximate values are, for Ni, 10-20%: BHN = 200-350, ScH = 20-35; for Ni, 28-60%: BHN = 160-190, ScH = 16-24. For Ni, 60-100%, hardness decreases continuously to that for pure Ni.

TABLE 13.—NI-MN ALLOYS* (7, 19)

	% co1	composition			UTS	YP	PL	El.	RA
Mn	C	Fe	Si	s	013	11	12	D'4	МА
3.00	0.06	0.62	0.22	0.018	52.1	16.5	14.1	51	60
3.58	.06	.62	.23	.018	52.3	16.7	15.8	50	62
4.40	.06	.73	.27	.021	53.1	19.3	17.6	43	63
5.06	.06	.72	.28	.020	54.5	18.8	15.8	48	62
6.78	.07	.89	.34	.020	57.6	21.8	21.4	50	66
6.84	.08	.91	.35	.020	57.1	22.1	21.9	36	50
9.18	.10	.95	.42	.021	59.1	23.1	22.5	48	62
9.24	.10	.94	.41	.020	58.9	23.0	21.8	48	64

*For alloys of the typical composition: Mn, 0.3 to 10; Fe, 0.4; Co, 0.4; C, 0.1; Si, 0.1 the values of *UTS*, *YP*, and *PL* increase approximately 0.7 kg/mm² for each additional 1% Mn, while *El* and *RA* are not changed appreciably. Although no data are available, the other properties may be accepted as substantially the same as for 99% nickel if Mn content is not over 10%. Alloys containing 2-6% Mn have tensile properties practically identical with those of Ni containing 0.3% Mn. These are commercially known as high Mn nickel, spark plug wire nickel, magno-nickel, etc.

THERMAL PROPERTIES

Mold shrinkage = 2% of length for Ni, "Chromel," "Monel metal," and "Constantan" (5, 7, 19, 29).

TABLE 14.—ANNEALING AND FORGING RANGES (5, 7, 19, 29)

Metal	Ni	"Chro- mel"	"Monel metal"	"Con- stantan"
Annealing range, °C Forging range, °C	500-700 975-120	600- 925 0 975-1150	500- 700 975-1150	500- 700 925-1100
ANNEALING RAN		L SILVERS	(Cu-N1-Z	N) (2)
% Ni % Zn Ind. No.	Annealing range, °C	Ni % Zn	Ind. A	nnealing ange, °C
15 1 0 1 446 1	600 900 11 2	0 5	125 4	250 900

% Ni	% Z n	Ind. No.	Annealing range, °C	% Ni	% Zn	Ind. No.	Annealing range, °C
15	0	446	600-800	30	5	135	650-800
20	0	446	600-800	25	20	990	550-800
25	0	446	650-800	30	23	991	600-800
20	5	136	650-800	10	25	985	550-800
18	17	988	600-800	18	27	998	550-800

Annealing range depends on time and previous treatment, especially cold work. Ranges given above for Ni and Monel metal are the active annealing (softening) ranges. For R_b or mildly R_o metal: A 800–900°C; while for R_o over 20%: A 700–800°. Neither Ni nor Monel metal is subject to heat treatment in the usual sense.

LITERATURE

(For key to the periodicals see end of volume)

Abbott, 66, 17 II: 11; 17.
 W. H. Bassett, American Brass Co., Waterbury, Conn., O.
 Benton, Z., 12: 36; 01.
 British Engineering Standards Assoc., (Automobile Steel Research) Rep. No. 75; 1920.
 Browne and Thompson, 80, 64: 387; 20.
 Bullens, Steel and Its Heat Treatment. New York, Wiley, 1918.
 Bureau of Standards, 365, No. 100; 21.
 Bureau of Standards, 366, No. 58: 23.
 Burgess and Aston, Bull. Unit. Wisconsin, No. 246; 10.

(10) Colby, 66, 3: 141; 03. (11) Copaux, 6, 6: 508; 05. (12) Del Regno, 2t.
 31 II: 105; 22. (13) Fleming, 5, 66: 52; 99. (14) Giolitti, 33, 24: 117: 2l.
 (15) Grüneisen, 8, 22: 801; 07. (16) Guillaume, 149, 5: 255; 98. (17)
 Guillaume, Congrès international des methodes d'essai des mattriaux de construction. Paris, 1900. (18) Hadfield, 153, 138: 1; 99. (19) International Nickel Co., New York City, O.

(20) Koch and Dannecker, 8, 47: 197; 15. (21) Koch and Dieterie, 8, 68: 441; 22. (22) Quoted from Landolt-Börnstein, B5: 288; 23. (23) Langeberg, 55, 25: 910; 21. (24) Parker, 430, 99: 1380; 17. (28) Roush, 55. 8: 468; 10. (26) Scott, 51, 16: 195; 20. (27) Stagg, Impact Testa. Halcomb Steel Co., Syracuse, N. Y. (28) Tafel, 192, 5: 375; 08. (29) O; from various steel and automobile companies.

		% compo	osition			Heating rate,		Ac1, °	С	Ac ₂ Max.	Aca	, °C	Cool- ing, rate,	Ara	, °C		Arı, °C	,	Lit.
Ni	1 C	Mn	Si	P	1 8	Range Av	. Beg	. Max	. End		Max.	End	°/sec	Beg.	Max.	Beg.	Max.	End	
0.00	0.40	0.00	0.008	0.00	0.00	0.09- 0.21 0.18 0.075-0.30 .10			746 748	767 759	788 783	809 802	0.16	767 743	745 729	708 681	704 672	694 654	(26)
2.00 2.04	.38	.66	.16	.017	.011	0.10 -0.23 .18 0.044-0.19 .13	2 10000	710 709	723 721		738 742	758 758	.16	691 697	670 678	642 644	630 634	599 608	(26)
2,68 2,90	.35	.64	. 24	.014	.022	0.10 -0.30 .19 0.16 -0.20 .18	4	704 701	716 714		737 726	758 743	.18	672 670	654 644	621 617	611 606	576 572	(26)
3.00 3.46	.37	.71	.22	.012	.010	0.11 -0.26 .19 0.052-0.16 .09		703 695	717 710	+	729 730	750 750	.18	668 677	641 648	616 610	609 598	567 576	(26)
3.31 - 3.75	.15-	.34-		.006-	.025 -	} Case (0.80 C	678-	-701 (n	nax.)	722 – 738	}732-79	94(max.)				583-	631 (n	nax.)	(3, 29)
3.35- 3.70	.30-	.57-		.008-	.020 -		677-	-710 (n	nax.)	710 — 745	}710-7	45(max.)				584	610 (r	nax.)	(3, 6, 24, 29)
3.16- 3.65	.35-	.48-	0.10- 0.22	.009 -	.020 -		699-	-707 (n	nax.)	716 — 729	716-7	29(max.)				588-	592 (r	nax.)	(3, 6,
4.61- 5.32	.12-	.30 -		.008-	.018-			-692 (n	. <	713 — 725	}740-7	60(max.)				555-	576 (r	nax.)	(29)

TABLE 15.—CRITICAL RANGES OF NI-STEELS

MECHANICAL AND THERMAL PROPERTIES OF CAST IRON AND OF STEELS CONTAINING C, CR, CR-V, CU, NI-CR, NI-CU, NI-V AND V

W. H. HATFIELD, J. WOOLMAN AND O. PRIEST

CONTENTS	Matières	Inhaltsverzeichnis .	Indice	Page
Chemical analyses.	Analyses chimiques.	Chemische Analysen.	Analisi chimica	484
Carbon steels.	Aciers au carbone.	Kohlenstoffstähle.	Acciai al carbonio	487
Cast iron.	Fonte.	Eisenguss.	Ghisa	497
Cr steels.	Aciers au Cr.	Cr-Stähle.	Acciai al Cr	506
Cr-V steels.	Aciers au Cr-V.	Cr-V-Stähle.	Acciai al Cr-V	509
Cu steels.	Aciers au Cu.	Cu-Stähle.	Acciai al Cu	509
Ni-Cr steels.	Aciers au Ni-Cr.	Ni-Cr-Stähle.	Acciai al Ni-Cr	510
Ni-Cu steels.	Aciers au Ni-Cu.	Ni-Cu-Stähle.	Acciai al Ni-Cu	513
Ni-V steels.	Aciers au Ni-V.	Ni-V-Stähle.	Acciai al Ni-V	513
V steels.	Aciers au V.	V-Stähle.	Acciai al V	514
Elastic properties.	Propriétés élastiques.	Elastizität.	Proprietà elastiche	515
Specific gravity.	Poids spécifique.	Spezifisches Gewicht.	Peso specifico	516
Specific heat and thermal con-	Chaleur spécifique et conduc-	Spezifische Wärme und Wärme-	Calore specifico e con-	
ductivity.	tibilité thermique.	leitfähigkeit.	ducibilità termica	518

INTRODUCTION

Order of Accuracy of Results Quoted.—The term "order of accuracy" refers to the variations which are likely to arise from the method of testing per se. These variations may be due to slight changes in the apparatus, to the limits within which the observations may be read, to the sensitiveness of the apparatus, and to personal error. These do not affect the results in the same way, some giving a constant error and others a proportionate error.

Variability of Results.—It has not been possible to quote results with the order of accuracy attainable for the various tests. Variations in data arise not so much from errors of observation, but rather from slight differences in composition or small differences in heat treatment. Differences in heat treatment may be due to errors in temperature measurement or to varying rates of cooling. The size of the sample treated is in many cases of utmost importance. In the data given all test pieces, except where otherwise stated or indicated, were treated in the form of bars of about 1.5

in. diameter or of square section. Other variations in the rate of cooling may be due to the following causes:

In water quenching, to the temperature of the water.

In oil quenching, to different oils used, to their temperature and condition.

In air cooling, to the conditions of the atmosphere (temperature and nature of the draughts).

In furnace or slow cooling, to differences in the lagging.

In consequence of such possible variations, results by different observers on the same type of material often vary by considerable amounts, and for the same reasons in applying the results, one has to bear in mind the variations that may occur due to the above causes. The order of accuracy of the determinations and the variability of the results are tabulated below. The latter are quoted with a certain amount of reserve, but in most cases may be depended on as being of the right order. The term "Variability of Results" is not intended to apply to those cases of brittle steels where the test piece breaks prematurely.

ACCURACY AND VARIABILITY OF RESULTS

- e = Probable order of accuracy of determination.
- η = Approximate variability of results.

Property	±e	± η
· · · · · · · · · · · · · · · · · · ·		
UTS, UCS	1 %	5 kg/mm ²
$YP, YP_{\mathbf{C}}$	1 %	5 kg/mm ²
PL, EL	5%	10 kg/mm ²
PL _C , EL _C	2%	10 kg/mm ²
EL, RA	2	4
USS	1 %	
TMR	1 %	5 kg/mm ²
YP ₈	2%	7 kg/mm^2
PL ₈ , EL ₈	5 %	10 kg/mm ²
Tw	1 %	
E, G	2%	2 %
BHN, LCH	1 %	5 %
ScH	5%	5 %
d420	0.1%	0.5%
k	. 2%	4 %
\boldsymbol{c}	2 %	2 %

Torsion Test Data.—The maximum shearing strength is obtained from tests on hollow specimens. In other cases, it has been calculated from results obtained on solid test pieces on the assumption that at the breaking point, the stresses are uniform across the section.

Bend Tests on Cast Iron.—Owing to the nature of this material, results of tests are very erratic, and the results quoted can only be taken as typical of the corresponding analysis.

Impact Tests.—In all cases, the actual energy to fracture the test piece is given. In the case of many observers, the results are quoted in energy units per unit area at the notch, but as results on different sizes of test pieces are not strictly comparable, nothing is gained by so reducing the results.

The different types of test pieces are indicated by subscripts, for meaning of which see p. 396.

Approximate Variability of Results.—Considerable variations are obtained, in many cases even in the same test piece, on material of similar composition and heat treatment. It is difficult, therefore, to give an estimate of the reliability of application in this case. The values quoted are, however, typical of the results to be obtained.

Physical Data.—Specific Gravity.—With great care in observation, density measurements can be made to an accuracy of below 0.01 %. It would appear, however, that most of the data available have been determined with an accuracy not greater than 0.1 %.

TABLE 1.—CHEMICAL ANALYSES

The analysis quoted for any given material, refers in most cases to the type of that material, and the range of composition covering that type has been given. It is to be understood that the actual amounts of any element may vary within small limits from the value quoted. In many cases where little published work is available, the actual analysis of the steel has been given.

Carbon Steels
All these steels contain traces of S and P

Key		Ind.		
No.	C	Mn	Si	No.
1	<0.07	0-0.2	Tr.	
2	0.08	0.4-0.6	Tr.	
3	0.09	0.1-0.4	Tr.	
4	0.14	0.1-0.3	0-0.3	
5	0.14	0.3-0.7	0-0.3	341

Carbon Steels.—(Continued)

		1		
Key		% composition		Ind.
No.	С	Mn	Si	No.
6	0.18	0.7-0.8	0.1-0.2	341
7	0.18	0.1-0.6	0-0.4	
8	0.23	0.4-0.6	0.3	
9	0.25	0.4-0.6	Tr.	
10	0.25	0.1-0.2	Tr. 0.03-0.04	ł
11	0.28	0.17-0.26	0.03-0.04	1
12 13	0.28 0.30	0.75-0.95 0.4-0.6	0.10-0.3	ĺ
14	0.30	0.4-0.6	<0.3	1
15	0.32	0.7-0.8	<0.4	
16	0.35	<0.4	0.15	
17	0.37	0.71	0.19	
18	0.38	0.2-0.25	<0.1	
19	0.38	0.4-0.6	<0.2	
20	0.40	0.43	0.33	1
21	0.44	0.1-0.3	0.03-0.07	
22	0.44	0.46	0.275	
23	0.44	0.49	0.052	
24	0.45	0.7-0.9	0.12	
25	0.45	0.7-0.8	0.3-0.4	
26	0.45	0.35	0.65	
27	0.48	0.4-0.6	0.12-0.15	
28*	0.48	0.8-0.9	0.06-0.1	
29	0.49	0.1-0.2 0.70	<0.10 0.34	
30 31	0.49 0.50	0.43	0.34	
32 *	0.52	0.5-0.7	0.2-0.3	
33	0.53	0.48	0.12	
34	0.54	0.1-0.2	0.03-0.08	
35	0.55	0.8-0.9	0.2-0.3	
36	0.55	0.44	0.86	
37	0.58	0.1-0.3	<0.2	
3 8	0.59	0.4-0.6	<0.49	
39†	0.60	0.7-0.8	0.20	
40	0.63	0.8-0.9	0.1-0.2	
41	0.63	0.4-0.65	<0.3	
42	0.64	0.18	0.336	1
43	0.65	0.26	<0.06	1
44	0.65	0.48 0.66	0.08	
45 46	0.67 0.70	0.12-0.26	0.07 <0.3	
47	0.70	0.12-0.20	0.147	
48‡	0.73	0.74	0.313	
49	0.75	0.1-0.35	<0.100	
50§	0.78	0.71	0.322	
51	0.79	0.2-0.4	<0.38	
52	0.81	0.87	0.22	
53	0.84	<0.3	<0.3	
54	0.84	0.5-0.65	<0.2	
55	0.86	0.07	0.056	
56	0.87	0.7-0.8	0.06-0.07	
57	0.89	0.19	0.34	
58 50	0.90	0.3-0.5	<0.3	
59	0.93 0.94	0.45-0.6 0.2-0.4	<0.3	
60 61	0.94	0.2-0.4	<0.3 0.158	
62	1.00	0.4-0.6	0.138	
63	1.00	0.2-0.35	<0.2	
64	1.00	0.2-0.4	<0.3	
65	1.10	0.35	0.059	
66	1.11	0.23	0.27	
-	•	'		

Carbon	Steels.—	Continued	ľ١
--------	----------	-----------	----

Key		% composition	1	Ind.
No.	C	Mn	Si	No.
67	1.18	0.050	0.094	
68	1.20	0.2-0.44	0.2-0.3	
69	1.22	0.1-0.3	<0.2	
70	1.25	0.62	0.46	
71	1.26			
72	1.28	0.8	0.06	
73	1.29	0.22	0.31	
74	1.30	0.3-0.4	<0.1	
75	1.35	0.54	0.26	
76	1.40	0.2-0.45	Up to 0.2	
77	1.50	0	.64	
78	1.50	0.2-0.3	0.1-0.2	
79	1.60	0.55	0.085	
80	1.70	0.29	0.08	
81	1.76	0.07	0.058	1
82	1.95	0.02	0.034	
83	2.10	0.58	0.078	

* Rails. † Tram rails. ‡ R. R. tire. § Tram tire.

Cast Iron

Key		10	× % c	ompositio	on		
No.	Total	Graph-	Mn	Si	s	P	Ind.
	C	ite				<u> </u>	No.
84	23	9–11		20-25	1	18-22	
85	24	13		20	1	29	
86	24-25	9–10		10-16		17-20	
87	25	19	3	10	Tr.	3.0	
88	26-27	14–16		20-23		10–11	
89	27	8.5		20	4.5		
90	27-29	16–20		11-14	l	<12	
91	27-29	16–18		20-24	<1.8	<5	
92	29–30	4-7		12-15	<1.5	1	
93	29	24	5	29	1.5	1.8	
94	29	29	5	15		Tr.	
95	30–31	2.5-4.5		6–8	<1.0		
96	29–31	17-21	1	8–19	1.1	1 1	
97	30–31	26-28	6–10	15–23			
98	31	11	20	10		1	
99	32	15		13.5	0.5		
100	30–32	21-24	4-8	13-20	1–2	1–9	
101	28-35		<1.5	6–8	<3.5	<2	837
102	28-35		<4	6–8	<0.7	<2	836
103	32	Tr.		4	Tr.	Tr.	1477
104	32	11	3.5	8			
105	30–32	23-24	20-22	17-24			
106	30–33	27	2-9	11-20	1–2	<15	
107	32–33	27-29	5–7	22-27	1.0	2-8	
108	32–34	20-25	0–9	10–14	0.5-1.7		
109	33-34	25–26	5–6	20-22	1-1.3	8-11	661
110	33.5	29–30	6	24–28	1.0	2.0	
111	34–35	27-29	6	14–15	<1.4	1-4	
112	34–35	28–31	6–7	19–25		1.5-5.5	
113	35	33	6.5	22-26	<1.0	3–5	
114	36-36.5		6–9	12–15	1-1.6	1–4	
115	36.5	35	5	29	6.2	13	
116	37.5	27.3	5	16	1.0	4.9	
117*	35–38	30–32	6–7	5–6		3.4-3.7	
118	35–38	32–33	8	13–15	1.4-1.9	1.3-1.6	
119	45.7	<u> </u>				l	

Chilled iron car wheels.

Chromium Steels

Analyses show traces of S and P in all these Cr steels excepting

		% com	position		Ind
Key No.	Cr	C	Mn	Si	No
120	0.25	0.36	0.34	0.15	
121	0.35	1.46	0.2	0.13	
122	0.5	0.36	0.32	0.19	
123	0.6	0.64	0.10	0.04	
124	0.6	0.86	0.03	0.24	
125	0.70	0.04	Tr.	0.97	
126	0.76	0.35	0.3	0.15	
127	0.9	0.47	0.72		
128	1.0	0.34	0.32	0.05	
129	1.0	0.6			
130	1.0	0.84	0.1	0.06	
131	1.0	0.97	0.24	0.22	
132	1.2	0.06	Tr.	0.7	
133 .	1.3	0.45	0.72	0.12	•
134	1.3	0.75	0.34	0.16	
135	1.4	0.31	0.75	0.14	
136	1.5	0.35	0.25	0.1	
137	2.0	0.22	0.2	Tr.	i
138	2.0	0.33	0.2	0.05	
139	2.0	0.50	0.24	Tr.	
140	2.0	0.65	0.2	Tr.	
141	2.0	0.95	0.2	0.18	
142	2.35	0.83	0.35	0.2	113
143	2.6	0.39	0.18	0.07	
144	2.7	0.25	0.2	0.05	ŀ
145	3.0	0.4	0.2	0.1	
146	3.0	0.6			
147	4.0	0.31	0.2	0.2	
148	4.0	0.40	0.2	0.08	
149	4.0	1.00	0.1	0.22	
150	4.5	0.21	Tr.	0.23	
151	4.6	0.79	Tr.	0.42	
152	5.0	0.34	0.43	Tr.	
153	5.0	0.46	0.18	0.11	
154	5.0	0.83	0.10	0.08	
155	5.0	1.07	0.21	0.19	
156	5.4	0.25	0.19	0.19	
157	5.8	0.57	0.22	0.12	
158	6.3	0.26	0.16	0.20	
159	6.3	0.40	0.3	0.25	
160	6.3	0.54		0.14	144
161	6.3	1.00	0.14	0.3	144
162	7.3	0.84	0.06	0.41	
163	7.8	0.07	Tr.	0.12	
164	8.1	0.43	0.25	0.43	i
165	8.1	1.02	0.1	0.37	
166	9.1	0.14	Tr.	0.34	
167	9.4	0.75	Tr.	0.88	
168	9.5	0.44		0.24	
169	9.5	1.09	0.1	0.45	
170	10	0.6	1	1	
171	10.15	0.15	Tr.	0.2	
172	10.15	0.85	<0.1	0.11	
173	10.4	0.37	0.19	0.50	
174	10.4	1.14	0.07	0.46	}
175	11.2	0.36		0.16	144
176	11.8	1.01	0.28	0.06	
177	12-14	0.08	0.1	1	132

Chromium Steels.—(Continued)

Key No.		% composition						
Rey No.	Cr	C	Mn	Si	No.			
178	12-14	0.12	0.13	0.16				
179	12-14	0.28	0.22	0.1	324			
180	12-14	0.34	0.24	0.5	IJ			
181	12-14	0.39	0.24	0.5	1)			
182	12-14	0.12	0.26	1.31	324			
183	12-14	0.32	0.22	1.19]]			
184	12-14	1.18		0.1	1443			
185	15.0	0.6						
186	15.0	0.88	<0.1	0.03	1			
187	16.0	0.47	0.64	0.24				
188	19.5	0.85	<0.1	0.1				
189	20	0.6			1			
190	23.7	0.85	<0.1	0.20				
191	29.5				507			

Chrome Vanadium Steels											
Key		% composition									
No.	Cr	v	l c	Mn	Si	s	P	No.			
192	0.30	0.11	0.20	0.25	Tr.	Tr.	Tr.				
193	0.5	0.15	0.72		l	1					
194	0.6	0.16	0.23	0.36	Tr.	Tr.	Tr.				
195*	0.9	0.17	0.35	0.78		Tr.	Tr.				
196	1.0	0.17	0.22	0.29	0.1	Tr.	Tr.				
197	1.0	0.17	0.37	0.74	0.21	Tr.	Tr.				
198	1.0	0.19	0.44	0.84	0.17	Tr.	Tr.				
199	1.1	0.17	0.30	0.39	0.06						
200	1.3	0.19	0.38	0.47	0.06	Tr.	Tr.				
201	1.2-1.4	0.16-0.20	0.37-0.42	0.60-0.85	< 0.3	<0.05	< 0.05				
202	1.45	0.19	0.46	0.45	0.18						
203	1.5	0.33	0.46	0.64	0.19	Tr.	Tr.				

^{*} Connecting rod.

Copper Steels

Analyses show traces of S in all these excepting Nos. 217, 219, 223, 235-237, 239, 240.

	,					
Key		%	composit	ion		Ind.
No.	Cu	C	Mn	Si	P	No.
204	0.1	0.78	0.52	0.07	Tr.	
205	0.2	0.13	0.50	0.25	Tr.	l
206	0.2	0.30	0.30	0.26	0.08	
207	0.2	0.49	0.43	0.07	Tr.	
208	0.2	0.50	0.02	0.07	0.20	
209	0.2	0.50	0.79	0.27	Tr.	
210	0.3	0.72	0.83	0.03	Tr.	
211	0.4	0.29	0.34	0.26	0.08	1
212	0.4	0.49	0.46	0.08	Tr.	Ì
213	0.4	0.72	0.46	0.05	Tr.	
214	0.5	0.16	0.09	0.22	Tr.	
215	0.5	0.39	0.14	0.32	Tr.	
216	0.5	0.42	0.93	0.06	0.07	ł
217	0.5	0.57	0.02	0.31		
218	0.5	0.97	0.49	0.18	Tr.	
219	0.5	1.03	0.06	0.32		
220	0.6	0.28	0.30	0.21	0.07	ł
221	0.6	0.52	0.43	0.07	Tr.	
222	0.7	0.28	0.26	0.27	Tr.	
223	0.85	0.10			•	1
224	0.9	0.48	0.7	0.07	Tr.	l
225	1.0	0.16	0.07	0.21	Tr.	
226	1.0	0.40	0.16	0.31	Tr.	
227	1.0	0.54	0.32	<0.26	Tr.	
228	1.0	1.00	0.30	0.29	Tr.	
229	1.3	0.32	0.64	Tr.	Tr.	1
230	1.6	0.68	0.36	Tr.	Tr.	
231	1.8	0.10	0.08	0.04	Tr.	l

Copper Steels.—(Continued)

Kon No		% (om positio	on		Ind.
Key. No.	Cu	C	Mn	Si	P	No.
232	2.0	0.17	0.11	0.21	Tr.	
233	2.0	0.29	0.68	0.08	0.08	
234	2.0	0.39	0.18	0.24	Tr.	
235	2.1	0.22				
236	2.5	0.59	0.32	0.07		
237	2.9	0.17	1.04	0.15		
238	3.0	1.07	0.31	0.34	Tr.	
239	3.7	0.04	0.16			
240	3.7	0.38				
241	4.0	0.16	0.11	0.19	Tr.	
242	4.0	0.37	0.14	0.22	Tr.	

Nickel Chromium Steels

All these Ni-Cr steels contain traces of P and S.

All these	Ni-Cr stee	els conta	in traces o	f P and	S .	
Key No.	1	9	compositi	on		Ind.
Key No.	Ni	Cr	C	Mn	Si	No.
243	0.73	0.17	0.19	0.48		i
244	1.5-1.8	0.6	0.30	0.5	0.2	
245	1.5-1.8	0.8	0.28	0.4	0.1	
246	1.5-1.8	1.6	0.38	0.6	0.33	
247	1.9-2.1	0.6	0.37	0.7	0.18	
248	1.9-2.1	1.0	0.21	0.4	0.20	
249	1.9-2.1	1.0	0.36	0.4	0.47	
250	1.9-2.1	1.0	0.42	0.84	0.26	
251	1.9-2.1	2.2	0.44	0.67	0.14	l
252	2.1-2.4	0.5	0.30	0.4	0.1-0.25	
253	2.1-2.4	1.45	0.30	0.45	0.24	l
254	2.8-3.2	0.45	0.17	0.4	0.15	l
255	2.8-3.2	0.34	0.37	0.4	0.12	1
256	2.8-3.2	0.9	0.39	0.6	0.23	Ì
257	2.8-3.2	1.4	0.30	0.6	0.14	
258	2.8-3.2	1.5	0.35	0.4	0.25	
259	2.8-3.2	2.0	0.35	0.3	0.3	
260	2.8-3.2	1.7	0.5	0.3	0.3	
261	3.7	0.6	0.17	0.3	0.1	
262	3.3-3.7	0.6-1.0	0.23-0.27	0.4-0.6	0.1-0.2	
263	3.3-3.7	0.7-1.0	0.3 - 0.34	0.4-0.7	0.1-0.14	
264	3.3-3.7	1.4-1.6	0.26	0.3	0.1	
265	3.7-4.1	0.9	0.38	0.7	0.15	
266	3.7-4.1			0.4	0.1	
267	3.7-4.1	1.4-1.6	0.31	0.4	0.1	31
268	4.0	2.0	0.27	0.5	0.13	
269	4.7	1.5	0.35	0.6	0.2	
270	5	1	0.2	0.3	0.06	
271	5	20	0.3	0.1	0.08	
272	9.6	23	0.40			
273	16	3	0.5	0.8	0.4	
274	23-25	1.3-1.5	0.9-1.0	1.7 - 2.0	0.4	
275	l l	1.3-1.5	0.5	0.24	0.4	
276	30–33	2–3	0.6	0.04	0.25	
	_					
277	36	12	0.75	1	-2	537

Nickel Copper Steels

Key			%	compos	ition			Ind.
No.	Ni	Cu	C	Mn	Si	8	P	No.
279	1.0	0.4	0.45		1	Tr.		1.
280	2.3	26				Tr.	ł	1
281	1.7	0.7	0.43		Ì	Tr.		l
282	1.8	1.7	0.63		0.30	0.06		ł
283	1.9	1.35	0.45	0.84	1.10	Tr.	Tr.	

Nickel Copper Steels.—(Continued)

Key			%	compo	sition			Ind
No.	Ni	Cu	C	Mn	Si	S	P	No
284	2.0	1.3	0.76			1	1	
285	2.1	0.17	0.15	0.91	0.15	Tr.	Tr.	
286	2.1	1.2	0.43		ļ			
287	2.3	1.0	0.56	0.48	0.37	0.07		
288	2.4	0.20	0.16	0.77	0.14	Tr.	Tr.	
289	2.45	0.55	0.49	1.03	1.25	Tr.	Tr.	
290	2.45	0.6	0.58	0.90	0.23	Tr.	Tr.	
291	2.45	0.8	0.53	Ì	0.21	Tr.		ļ.
292	2.5	0.19	0.17	1.07	0.18	Tr.	Tr.	
293	2.5	0.9	0.57	0.33	0.07	0.07		
294	2.5	1.0	0.45	1	l	Tr.		
295	2.55	0.6	0.46	0.82	1.30	Tr.	Tr.	
296	2.6	0.36	0.50	0.78	1.25	Tr.	Tr.	
297	2.7	0.6	0.57		0.44	Tr.		
298	2.9	0.5	0.38	İ	0.28	Tr.	1	
299	2.9	0.6	0.51	1.04	1.35	Tr.	Tr.	
300	3.0	0.7	0.76		0.24		0.1	
301	3.45	0.27	0.43	0.27		Tr.	Tr.	
302	3.6	0.5	0.44	0.50	0.03	Tr.	Tr.	
303	3.9	0.30	0.53	0.79		0.06	Tr.	
304	22.0	9.0	0.22					
305	25	10	0.2				1	

Iron and Monel Metal (M. M.)

Monel metal contains Ni, 67-68%; Cu, 24-26; Fe, 28-5; Mn, 1.6-2.2.

17		c.	% compos	sition		
Key No.	C	М. М.	Key No.	М. М.	Key No.	М. М.
306		2	311	6	316	16
307	0.15	2	312	8	317	18
308	0.10	3	313	10	318	20
309		4	314	12		
310	0.67	4	315	14		

Nickel Vanadium Steels

All these Ni-V steels have traces of P and S except No. 323 which has $0.111\,\%$ S.

Van Na		%	composit	ion	
Key No.	Ni	l V	l C	Mn	Si
319	2.0	0.60	0.15	0.45	0.22
320	2.1	0.30	0.72	0.53	0.41
321	2.2	0.17	0.37	1.4	0.16
322	2.2	7.5	1.25	0.70	0.61
323	2.3	0.35	0.26	0.45	0.54
324	2.3	3.1	0.47	0.54	0.29
325	2.4	0.23	0.45	1.3	0.23
326	2.6	0.68	0.44	0.42	0.22
327	2.6	1.45	0.86	0.65	0.36
328	2.6	6.9	0.38	0.57	0.53
329	2.7	2.9	0.89	0.61	0.40
330	2.9	0.34	0.41	0.25	0.35
331	3.0	0.30	0.38	0.79	1.35
332	3.1	0.21	0.56	1.14	1.09
333	3.15	0.32	0.60	0.79	1.30
334	3.4	0.28	0.24	0.48	0.1
335	3.4	0.60	0.33	0.1	0.12
336	3.6	0.13	0.40	0.1	0.40
337	5.5	0.35	0.19	0.16	0.07
338	6.1	0.60	0.17	0.15	0.07
339	6.2	0.12	0.16	0.13	0.06

Vanadium Steels

V N			% com	position			Ind.
Key No.	v	C	Mn	Si	S	P	No.
340	0.12	0.22	0.72		Tr.	Tr.	
341	0.14	1.06	0.05	0.1	Tr.	Tr.	
342	0.16	0.09	0.21	0.1	Tr.	Tr.	
343	0.16	0.23	0.16	0.1	Tr.	Tr.	
344	0.18	0.33	0.77	0.32	Tr.	Tr.	
345	0.20	1.32	0.33	0.1	Tr.	Tr.	
346	0.21	0.56	0.30	0.1	Tr.	Tr.	
347	0.21	0.98	0.38	0.1	Tr.	Tr.	
348	0.22	0.71	0.31	0.1	Tr.	Tr.	
349	0.23	0.40	0.30	0.1	Tr.	Tr.	
350	0.25	0.82	0.45	0.33	Tr.	Tr.	
351	0.27	0.20	0.48	0.1	Tr.	Tr.	
352	0.3	0.11	0.12	0.11	Tr.	Tr.	i
353	0.3	0.45	0.46	0.38			ŀ
354	0.3	1.02	0.05	0.1	Tr.	Tr.	}
355	0.35	0.74					
356	0.6	0.13	0.36	0.19	Tr.	Tr.	
357	0.6	0.18	0.43	0.15	Tr.	Tr.	
358	0.6	0.72	0.56	0.41	Tr.	Tr.	
359	0.6	1.00	0.05	0.1	Tr.	Tr.	
360	0.7	0.60	0.06	0.05	Tr.	Tr.	
361	0.75	0.14	0.45	0.30	Tr.	Tr.	
362	0.8	0.89	0.33	0.30	Tr.	Tr.	
363	0.8	1.04	0.05	0.1	Tr.	Tr.	
364	0.85	0.05	0.05	0.1	Tr.	Tr.	
365	1.0	0.11	0.38	0.26	Tr.	Tr.	
366	1.1	0.80	0.05	0.1	Tr.	Tr.	
367	1.2	0.67	0.50	0.25	Tr.	Tr.	1
368	1.5	0.13	0.30	0.25	Tr.	Tr.	İ
369	1.6	0.62	0.34	0.29	Tr.	Tr.	İ
370	2.1	0.20	Tr.	0.22	Tr.	Tr.	
371	2.3	0.63	0.07	0.09	Tr.	Tr.	ì
372	2.9	0.95	0.22	0.42	Tr.	Tr.	
373	3.0	0.19	0.86	0.29	Tr.	0.08	
374	3.0	0.67	0.70	0.36	Tr.	Tr.	ļ
375	5.0	1.08	0.45	0.46	Tr.	Tr.	ľ
376	5.4	0.38	0.20	0.61	Tr.	0.07	
377	5.8	0.93	0.11	0.21	Tr.	Tr.	ľ
378	7.4	0.13	Tr.	0.41	Tr.	0.11	
379	7.8	0.74	0.31	0.74	Tr	0.12	
380	10.25	0.12	Tr.	0.54	Tr.	Tr.	
381	10.25	0.86	0.56	0.99	Tr.	Tr.	•
382	10.25	1.07	0.12	0.32	Tr.	Tr.	
383	13.5	1.10	0.12	0.47	Tr.	Tr.	

Table 2, Part I.—Carbon Steels (Tensile Properties)

Key No.		Treatment	UTS	YP	PL	EL	El	RA	Lit.
1		cast	29.4 28.4	17.7 14.3			24.5 32	33 48	(7, 18, 68, 118,
	Be	fore D ₆	39.6 55.4	26.7 51.0	20.5 31.6		36.5 17	69 54	122)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100° 200°	56.6 56.0	50.3 50.3	34.7 33.0		21 20	59 57	
	Same,	300° 450° 60 m	55.4 56.0	50.3 43.5	39.4 36.2		21 26 28	55 66 66	
		550° 600° 650°	47.9 43.5 37.2	42.2 35.2 19.8	34.6 17.3 11.0		30 42	69 73	
		ormalized in. ∫ 920° Q _w	34.5 55.0	22.5	11.3	10.1	37 30	73	
		iam. 920° Qo					35	69	

Kev

TABLE 2, PART I.—CARBON STEELS (TENSILE PROPERTIES).— (Continued)

Key Treatment UTSYP PLELRALit. No. (46, 64, 2 Rh 14.3 mm diam. 59.5 38.3 27.5 |25.3 |27.1 29 **is**) 13.0 mm 30.0 32.5 diam . . . 51.0 9.5 54 12.0 mm diam.... 59.4 35.0 39.5 7 46 10.8 mm 62.2 37.6 43.0 6 32 diam.... 9.7 mm 40.0 43.8 23 diam 65.0 73 Rh 5.2 mm diam. 41.8 28.3 26.0 26.5 31 3.97 mm 45 diam.... 66.0 39.5 44.5 8.5 2.83 mm 83.5 61.5 63.0 6 31 diam 2.37 mm 92 0 73.0 70.0 29 diam . . . ĸ 2.00 mm 95.0 83.0 78.5 30 diam.... 6 1.70 mm diam 100.9 84.5 77.5 6 25 1.37 mm diam.... 104.0 87.581.5 5 20 1.18 mm 108.1 91.5 85.0 diam 5 25 A 800-900°... 32.5 28 80 750° 49.0 13 78.5 850° 67 43.5 16.5 950° 48.0 61 13 (97, 128, 73 35.9 19.4 14.8 38 350° 32.2 19.7 17.7 36_f-44_d 75 141) 750° 20.0 16.7 34f-42d 32.9 850° 33.9 20.8 14.6 34f-41d 74 1000° 23.9 21.9 36f-43d 77 33.3 33.5 13.8 16_f-20_d 750° Q 56.4 350°. 77 34.0 20.8 11.8 31f-39d 550° 32.5 19.7 17.7 35f-43d 77 Тp 650° 33.4 19.7 15.7 78 35f-44d 750° Q_o 80° 26.0 20.6 22f-28d 65 44.3 Same, ∫ 350° 17.3 15.8 33f-41.5d 77 32.8 550° 78 $T_{\mathbf{p}}$ 32.3 21.7 19.7 35_{f} -44_d 850° Qw 61.8 41.9 17.9 16_f-20_d 65.5 350° 25r-32d 80 41.5 24.7 11.9 550° 23.0 21.7 31f-40d 75 35.8 $T_{\mathbf{p}}$ 650° 33.4 21.3 17.8 33_{f} - 42_{d} 76 850° Qo 80°. 42.7 25.6 17.7 23_f-29_d 66 Same, { 350° 19.7 19.7 32f-41d 78 35.5 550° 35.5 75 Тp 21.7 19.7 351-43d 1000° Qw 45.4 34.5 15.8 17_f-25_d 72 350°.. 30.6 13.8 41.5 24f-31d 78 Same, 550°.... 30.8 34r-36d 79 40.7 21.9 Тp 77 650°. 29.8 21.9 38.8

31f-41d

Table 2, Part I.—Carbon Steels (Tensile Properties).— (Continued)

No.	Treatment	UTS	YP	PL	EL	El	RA	Lit.
3	1000° Q _o 80° Same, ∫ 350°	39.5 37.9	31.8 31.6	21.9 28.6		31 _f -39 _d 30 _f -38 _d	72 69	
	Тр \ 550°	37.6	33.7	29.7		33 _f -43 _d	80	
4	N 900°	33.7	22.1	22.1		45	73.5	(65, 128)
	R _h	38.6	23.6	23.1		44	68	
5	Rh	42.6	30.7	25.5		32	66.5	(18, 46,
	38.5%	43.0	41.5			15	20	65, 91,
	Rc 64.6%	46.8	v. also	Fig. 1		13	15	104,
	74.5%	57.5				12	3	111,
	670° 760°	43.0	25.2	23.4		28 _e -30 _b	72	123)
	A 866°	47.6 38.3	21.8	24.9		39.5	68 67	
	1010°	41.5	20.4	17.0		35.5	65	
	N 900°	43.7	28.9	22.4	-	38	64	
	/ 1	44.2	30.1	27.4		38	69	
	760° Qw	47.3	26.8	18.9		33	63	
	$\begin{bmatrix} \tilde{\mathbf{a}} & 700^{\circ} \\ \tilde{\mathbf{B}} & 760^{\circ} \\ \tilde{\mathbf{g}} & 820^{\circ} \end{bmatrix} Q_{\mathbf{w}} \left\{ \begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} $	49.4	28.7	17.5		32	62	
	900° Qw	64.2			_	28	59	
	300°	62.1				26	58	
	Same, 400°	60.5	43.9	30.7		27	57	
	Tp 500°	59.2	44.1	34.9		28	58	
	600°	55.2	40.7	37.0		32	62	
	900° (11 in. diam.	64.5				28	62	
	Qw in diam.	61.4				31	64	
	Tp { 1 in. diam.	58.3				31	65	
	760° 1 in. diam.	55.1				32	65.5	
	Qw 21 in. diam.	55.1				32	-	
	790° (260°	52.8	32.2			31	62	
	Qo 540°	50.7	32.2			30	65	
	Тр (650°	48.7	30.0			32	70	
	866° Qo	50.3	39.8			34	75.5	
	375°	48.2	34.5			38	75.5	
	Same, 460°	48.2	37.3			36	75.5	
	Тр 560°	46.4	34.5			35	75.5	
	650°	45.0	32.7			38.5	79.5	
	900° Qo	51.9			rs 1		67	
	Same, Tp 600°	51.9	39.4	1	diam.	(34.5)	66	
6	N 920°	48.7	31.5			38	64	(18, 89)
	920° Qw	72.7		Ba	rs 1 1	in. 22	51	
	Same, Tp 760° Qw	63.0		1	diam.	32	64	
	920° Qo	56.6				31	65	
	A 925°	35.3	17.9			38	63	
	900° Qo 760° Qo,							
	260° Ca	40.3	23.2			36	69	
7	Cast	31.6	18.6			19.5	21	(7, 26,
	R _h	43.3	27.0	22.3	27.8	39	68	41, 61,
	Rh to 0.48 in.		1191				100	88, 104,
	diam	46.7	44.5	42.1	42.2	22	68	110,
	R _h to 0.44 in.	***		100			00	120,
	diam	50.8	None	148.9	49.5	14	63	144

Table 2, Part I.—Carbon Steels (Tensile Properties).— (Continued)

Key No.							- 1	
	Treatment	UTS	YP	PL	EL	El	RA	Lit.
7	350°	42.6	25.7	24.6		30f-37d	61.5	141)
	500-540°	40.9	22.6			48a-35o	63	
	A 680°	39.7	21.1	97 5		47 _a -33 _c	66	
	800-820°	48.5 39.8	27.4 22.2	27.5		31 _f -38.5 _d 46 _a -33 _o	62 64.5	
	850°	41.5	26.0	21.8		30t-37d	60.5	
	Cast A 950°	30.7	14.7	_		31.	47	
	A 1000°	44.6	33.1	26.7		31r-38d	64	
	750° Q	56.3	33.0	12.5	-	16 _f -19 _d	52	
	(350°	43.2	25.8	16.8		26.5f-33d	62	
	Same, 550°	41.9	25.7	26.6	i	29f-36d	63	
	1P (650°	42.8	25.6	21.1		30.5f-37d	60.5	
	750° Q _o ,80°	49.3	29.5	24.6		21.5f-26d	58	
	Same, 350°	42.0	24.5	21.1		28.5f-35d	63	
	Tp \ 550°	41.0	25.8	$\frac{21.1}{24.0}$		30f-37.5d	62	
	790° { 260° Q _o { 540°	65.2 62.0		34.0 42.2		26 28	57 60.5	
	Tp 650°	59.4		37.6	l	34	65	
	1000° Qw	61.8	44.5	16.3		11f-17.5d	65.5	
	(350°	57.4	39.1	19.8		14f-20.5d	66	
	Same, 550°	58.1	42.2	25.9		16.5f-21d	66.5	
	Tp 650°	52.4	39.6	36.6		20.5f-32d	69	
	1000° Q ₀ 80°	51.3	37.8	25.3		25f-33d	65	
	Same, 350°	53.8	38.6	30.7		21 _f -27.5 _d 21.5 _f -29 _d	67.5	
	Tp \ 550°	51.9 61.0	37.1 None	25.7	36.6	21.5(-29d 14a	67.5 49	
	D ₀ A 705°	39.8	20.7	18.8	18.2	41.	65.5	
	De A 845°	40.5	21.1			41.	63	
	l		v. also	Fig. 2	<u> </u>			
8	Cast (v. also Fig.						ا۔ ۔ا	
	(1	38.9	16.2 21.6	9.0		12 31	13.5 49	(41,67, 141)
	Cast, A Large	44.4	25.2	17.1 21.5		35.5	53	,
	R _h	52.0	27.6	20.7		25f-30d	51	
	(350°	49.6	27.5	25.6		26;-33d	58	
	A 750°	47.7	26.3	23.7		28 _f -35 _d	59	
	1 850	49.6	27.7	20.8		27f-33d	51	
	1000°	53.3	34.2	30.1		26t-32d	51	
	750° Q _w	58.8 49.2	36.2 28.2	15.7 15.8		20r-22d 25r-31d	53 58	
	Same, 550°	48.5	27.0	23.6		27.5f-35d	59	
	Tp 650°	50.8	27.6	17.7	L	27f-33.5d	56	
	750 ° Qo 80°	51.2	29.8	23.6		21.5f-27d	58	
	Same, ∫ 350°	48.2	27.9	25.6	1	27f-33d	59	
	Tp \ 550°	50.0	26.8	21.7	_	27t-34d	57	
	850° Q _w	73.4	41.6	15.8	1	6 1- 8.5a		
			101 0		1		14	
	Same, 350°	119.8 78.9	101.0	29.7	1	41-6d	27	i
	Same, 550° Tp 650°	78.9 65.2	101.0 61.3 45.4					
	Same, 550°	78.9	61.3	29.7 49.4		4f-6d 10f-15d	27 50	
	Same, 550° Tp 650° 850° Q ₀ 80° Same, 5350°	78.9 65.2 66.0 68.0	61.3 45.4 43.3 42.4	29.7 49.4 35.6 15.7 21.7		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d	27 50 58 51 57	
	Same, 550° Tp 650°	78.9 65.2 66.0	61.3 45.4 43.3	29.7 49.4 35.6 15.7		4r-6a 10r-15a 15r-20a 14r-20a 16r-21a 17r-23a	27 50 58 51 57 55	
	Same, 550°	78.9 65.2 66.0 68.0 64.0 76.0	61.3 45.4 43.3 42.4 39.3 48.4	29.7 49.4 35.6 15.7 21.7 31.4 16.8		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d	27 50 58 51 57 55 49	
	Same, 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2	61.3 45.4 43.3 42.4 39.3 48.4 83.4	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d	27 50 58 51 57 55 49 36	
	Same, 550° 550° 550° 550° 550° 550° 1000° Qw 550° 550° 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d	27 50 58 51 57 55 49 36 62	
	Same, 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 650° 550° 650° 550° 650° 550° 550° 650° 550° 550° 650° 550° 650° 550° 550° 650° 550° 550° 550° 650° 550° 550° 550° 650° 550° 550° 550° 650° 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d	27 50 58 51 57 55 49 36 62 65	
	Same, 550° 550° 550° 550° 550° 550° 1000° Qw 550° 550° 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d	27 50 58 51 57 55 49 36 62	
	Same, 550° 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d	27 50 58 51 57 55 49 36 62 65 56.5	
	Same, 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6 37.7 37.5		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d	27 50 58 51 57 55 49 36 62 65 56.5	(26)
9	Same, 550° 5	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6 37.7 37.5		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43g-38b-32o 42g-37b-32o	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58	(26)
9	Same, 550°	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9 43.1 41.9 42.6	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4 20.6 21.8 21.3	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6 37.7 37.5		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43a-38b-32o 44a-38b-33o	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58	(26)
9	Same, 550° 550° 550° 550° 550° 550° 1000° Qw 550° 550° 7p 550° 550° 7p 550° 7p 550° 7p 550° 7p 550° 700°/30 Ct 700°/30 Ca 700°/30 Ca 500°/30 Ca 700°/30 Ca 700°/30 Ca	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9 43.1 41.9 42.6 40.3	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6 37.7 37.5		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43a-38b-32o 44a-38b-33o 45a-41b-35o	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58 57	(26)
	Same, 550° 550° 550° 6	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 68.6 67.4 68.6 71.1 66.9 43.1 41.9 42.6 40.3	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4 20.6 21.8 21.3	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.9.7 41.6 37.7 37.7 37.4 41.4		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43a-38b-32a 42a-37b-32a 44a-38b-33a 45a-41b-35a	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58	(26)
9	Same, 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 7p 550° 550° 7p 550° 550° 7p 550° 550° 7p 550° 65	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9 43.1 41.9 42.6 40.3 45.7 61.2	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4 20.6 21.8 21.3	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6 37.7 37.5 41.4		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43a-38b-33c 44a-38b-33c 44a-38b-33c 44a-38b-33c 44b-35c 29 4.5	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58 57	(26)
9	Same, 550° 650° 550° 550° 650° 550° 550° 650° 550° 650° 550° 650° 550° 6	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9 43.1 41.9 42.6 40.3 45.7 61.2 72	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4 20.6 21.8 21.3	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.9.7 41.6 37.7 37.7 37.4 41.4		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43a-38b-32a 42a-37b-32a 44a-38b-33a 45a-41b-35a	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58 57	(26)
9	Same, 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 550° 650° 550° 650° 550° 6	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9 43.1 41.9 42.6 40.3 45.7 61.2 72 71.2	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4 20.6 21.8 21.3	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 53.6 41.4 28.2 45.3 53.6 46		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 14r-19d 43a-38b-32o 42a-37b-32o 44a-38b-33o 45a-41b-35o 29 4.5 2.5	27 50 58 51 57 55 49 36 62 65 56.5 52 57 58 57	(26)
9	Same, 550° 650° 550° 550° 650° 550° 550° 650° 550° 650° 550° 650° 550° 6	78.9 65.2 66.0 68.0 64.0 76.0 116.2 73.4 67.4 68.6 71.1 66.9 43.1 41.9 42.6 40.3 45.7 61.2 72 71.2	61.3 45.4 43.3 42.4 39.3 48.4 83.4 50.6 49.5 46.7 47.4 45.4 20.6 21.8 21.3	29.7 49.4 35.6 15.7 21.7 31.4 16.8 33.8 39.7 41.6 37.7 37.5 41.4		4r-6d 10r-15d 15r-20d 14r-20d 16r-21d 17r-23d 11r-15d 4r-7d 14r-18d 15r-20d 16.5r-22d 15r-20d 14r-19d 43g-38b-32o 42g-37b-32o 44g-38b-33o 45g-41b-35o 29 4.5 2.5 2	27 50 58 51 57 55 49 36 62 62 65 55 55 57 59 63	(26)

Table 2, Part I.—Carbon Steels (Tensile Properties).— (Continued)

Key No.	Treatment	UTS	YP	PL	EL	El	RA	Lit.
10	As received	46.5		28.1		24	53	(120)
	800°/2 Q	58		34.3		16	57	
	800°/20 Q	62		39		16.5	57	
	800°/60 Q	58.6		36.2		18.5	60	
11	R 5 SWG	48.8				39	58	(97)
	Same, A	37.8		'		37	73	
	25 SWG wire	72.8				4	_	
12	R (v. also Fig. 4).	51.9	23.0			15g	30	(113,
	∫ 750°	51.6		l		26g	51	114)
	800°	53.2				22 g	52	
	A 850°	50.5	28.2	ļ		21g	50	
	950°	53.2		1	1	20g	46	
	1000°	53.9				19.5 _€	44	
	N 900°	55.9	38.6		1	32	59]
	900° Q				i	11.	30	1
	∫ 300°				🙀	120	32	
	Same, 400°		59.8	1] .ã	15 _a	44	
	Tp 500°	.]	56.6		٦	23.	58	
	600°	67.7	48.8		.=	28a	64	
	900° Q ₀	69.3			Bars 14 in. diam	25 _a	55	
	∫ 300°	69.3	l		1 2	26 _a	57	
	Same, 400°	69.3			P P	26a	59	
	Tp \ 500°	67.7	48.8			· 27a	60	
	600°	63.0	44.1		1	29a	64	
13	N 870°	53.5	34.6		1	34	58	(46, 6
	870° Q _w	69.2				24	56	67, 7
	∫ 300°	67.7				24	57	
	Same, 400°				Ė	25	58	1
	Tp 500°	66.1	50.4		#	27	60	1
	600°	63.0	45.6	ļ .	۱ă	29	64	
	(700°	58.2	40.8	<u> </u>		33	68	
	870° Q ₀	64.5			Bars 14 in. diam.	28	60	
	Same, ∫ 300°		1		g	28	60	
	Tp \400°	64.5	l	1	17	28	61	

Table 2, Part I.— Carbon Steels (Tensile Properties).—
(Continued)

Key	<u> </u>	1	(Conti		1	1	1 1	
No.	Treatment	UTS	YP	PL	EL	El	RA	Lit.
13	Same, 500°		45.6		$ \ \ $	29	61	
	Tp 600°	61.4	42.5			31	63	
	Cont'd. (700°	56.6	39.4	-		34	68	
	Rh 15 mm diam.	48.7	32.8	25.7	26.2	30	59.5	
	diam	62.8		26.5	26.2	13	49	
	13.8 mm diam	68.0		29.5	31.4	9	43	
	D ₆ 13.2 mm	73.0		33.7	34.0	4.5	39	
	diam	74.6		39.0	38.8	4.5	35	
	11.2 mm diam	86.4		48.9	46.0	3	25	
	8.2 mm diam	ı		1	55.4	3	23	
	F, longitudinal			18.6	1	33.5	53	
	F, transverse		. also F		1	22.5	33.5	
14	R _h	55.1		18.7		24f-30d	53	(49, 91,
-	350°	55.0		25.6		26f-31.5d	55	111,
	750°	52.6	•	24.6		25 _f -31 _d	55	141,
	A 850°	53.1	26.5	21.8		26t-32d	54	146)
	900°	48.7	21.3	15.7		33 _a	51	
	1000°	57.3	34.2	30.1		26f-32d	57.5	
	750° Q _w	61.8		15.7		19f-23d	52	
	Same, 350°	54.7		17.7		25 _f -30 _d	55	
	Tn \ 300	53.7	27.5	21.6		24f-30.5d	55	
	(650	54.1		21.7	1	25 _f -31 _d	52	
	750° Q ₀ 80°	54.8	28.1	22.3		34 _a	55	
	350° 550°	53.7 53.3	28.2 26.6	21.7 25.6		26f-32d 2 4f-31d	55 55	
	Same, 650° Cr	00.3	20.0	20.0		Pre-las	00	
	Tp 1°/m	47.7	22.2	17.3		38 ₈	63	
	650° Qw.	49.6	24.5	17.3		35 _a	62	
	850° Qw	95.2		Ι		88	17	
	850° Qo 80°	74.5	50.2	31.5		23.5 ₈	62	
	∫ 350°	72.8	49.5	29.5		22.5 ₈	62	
	Same, 460°	69.6	47.1	1		23.	62	
	Tp 550°	68.9	47.0	43.3		26.5 _a	65	
	(650°	59.0	43.2	- 	<u> </u>	30.	71	
	870° Q	141.0 103.9	128.3 90.0	87.3 74.1		3 ₈ 7.5 ₈	2.5 27	
	Same, 500°	99.5	86.6	67.0	1	17.5a	18	
	Tp 600°	79.0	57.1	54.3		13	26	
	900° Q _o 650°/120 Q _w	55.4	32.4	25.2		33,	64	
	Same, but Cr	52.4	28.9	25.2		33,	65	
	1020° Q _o , Tp 650°/120 Q _w		28.9	22.1	'	35 ₈	64	
	1250° Qo, Tp 650°/120 Qw	55.2	33.7	22.1		30	61	
	Same, but C ₁	49.7	28.7	18.9	1	38	63	
15	As cast	53.6	23.6	14.0	=	26	34	(65, 88,
10	A 925° C _f	56.1	29.0	26.1		26 27	39.5	95,
	N 925° Ca	59.7	32.2	28.5	1	28	46	146)
	N 850°	55.8	32.9	31.8	1	30.5	55	-
	A 816°	40.5	21.7			15	27	
	A 893° Qw,	61.7	43.5			4 12	8	
	482°	65.2	43.1					
	Wire 5 mm diam.	1				6	12	
	A 800-900°	47.9				18	60	
	750° Q ₀	74.4				7	48	
	850° Q _w			·	-			
	0.00.0	145.3	1	1	1	0	0	
	950° Q _w	1	ŀ	1	1		12 27.5	
	∫ 100°	168.6				3 6	1 1	
		168.6 155.6				3 6 8.5	1 1	

(Continued)

Key UTS ΥP PLELEI Treatment RALit. No. 16 A 675°/30..... 40.1 21.0 19.7 (123) A 1150°/30..... 41.7 15.0 11.2 54 A 1115°/120.... 40.6 13.8 11.8 55 46.2 27.4 61 26.3 A 900°..... 50.3 25.0 39 (67, 89) 850° Qw 600° Ct. 57.3 33.4 61 longitudinal. 57.8 26.7 22.1 27 42 25.7 20.2 31 transverse... radial..... 55.3 27.0 23.5 36 (7, 81) As cast..... 6 35.4 24.2 5.5 A 950°..... 34.0 15.2 16 21 900°, 600°/2h Ca 60.5 38.7 34.6 29 64 Qo, { 650°/211 Tp (650°/2h Cs 650°/2h Qw 55.1 37.4 28.4 32 68 54.1 37.2 29.9 32 69 53.2 25.5 31 49 (49. 68. Rolled 21.1 72. 94. N 850°..... 52.7 29.7 27.4 30 53 50.6 110) A 850°..... 28.1 24.4 32 50 900°/60 Ca, 61.4 760°/60 Qo 30.8 23.6 29 50 Same, \ Qw... 54.3 28.7 20.4 Ę C(1°/m 52.1 24.4 18.7 58 /120 900°, 60 Qo, C_l 1°/m 62.4 32.0 25.2 59.6 30 56 900°/60C₁.... 54.3 23.9 12 6 20 43 900° (600° 54.0 32.3 31.1 32 57 680° 5h, 49.6 /30 28 5 26 6 30 83 C. W 750° C. 27.8 48.0 27.1 40 65 54.8 32.2 31.6 33.5 58 (128) R_h..... As cast..... 34.3 24.0 7.5 10 37.4 17.6 65.1 (141) $R_h \ldots \ldots \ldots$ 30.5 25.6 19_f-23_d 43 350°..... 69.0 33.4 29.5 20r-24d 39 750°..... 21e-26d 64.5 32.5 26.6 48 850°..... 64.4 35.6 83.7 241-28d 46 1000° 65.8 36.1 34.1 22f-27d 48 750° Qw. 55 S 35.4 19.7 17.5f-21d 41 350°. 65.9 32.5 19.7 20t-24d 44 Same. 550° 64.1 31.8 25.6 20r-25.5d 44 Tp 650° 67.4 32.5 28.6 21.5f-27d 750° Qo 80°. 66 6 33.5 25.6 18r-22d 44 Same, ∫ 350° 63.7 30.2 25.6 20_f-25_d 62.2 22f-26.5d Tр 30.4 25.6 57 850° Q. .. 87.9 57.4 13.8 0.3f-0.6d 2.1 350°. 169.6 31-3.5d 17 33.3 Same, 550°. 109.6 10r-14d 65.2 55 Tρ 650° 82.3 67.2 13_f-19_d 59 49.4 850° Q_o 80°.... 96.5 68.9 12g-15d 39 46.3 Same, ∫ 350°.... 97.5 65.0 12f-14d 46 45.3 Tp 550°... 88.5 61.0 51.1 13f-17d 49 (88) Wire 5 mm diam 63.1 12 A 800-900°.... 57.3 19 60 750° Q..... 107.6 5 37 850° Q...... 149.3 0 0 950° Q..... 139.0 0 0 o 0 80.0 Q. 950° 0 56.5 0 N 820°..... (67, 72) 65.4 36.4 25 47 Tangential.... 61.5 31.0 20.2 22 29 Longitudinal.... 25 38 61.7 29.5 64.6 33.2 18.5 12 69.4 N 870°..... 42.5 27 54.5 Bars 1; in. diam. (v. also Figs. 4, 31, 50 and 51) (72, 110, As received..... 63.5 37.2 21.5 125 111) 68.2 35.9 32.3 23 42 A 816-819°..... 57.9 33.2 28.5 46 816-819° Qw..... 141.1 0.5 0

TABLE 2, PART I.—CARBON STEELS (TENSILE PROPERTIES).— TABLE 2, PART I.—CARBON STEELS (TENSILE PROPERTIES).— (Continued)

			(0000					
Key No.	Treatment	UTS	YP	PL	EL	El	RA	Lit.
27	816-819° Q	90.1	61.6			19	52	
	∫ 375°	91.0	61.8			20	52	1
	Same, 460° Tp 560°	87.9 79.6	60.0 55.6			19 24	52 57	
	650°	71.9	52.3			26	61	
	775° Q _w 650° C ₁		48.3	47.6		23.5	58	
28	N	71.2		_	_	18.5	31.5	(97,144)
	A 5 SWG rod					17	55	` '
	15 8WG wire					2	20	
	17 SWG wire	157.5		<u> </u>		1.5	5	
29	As cast	28.9	28.9			3	3	(7)
===	A 950°		16.9	=		20.5	16	(146)
30	A 840°	49.0	===	29.4	_	5	6	(46, 66,
32	A 840° N 875°	55.2 69.4	33.7	25.4 31.4		6 25	4.5 40	110,
	790° Q _w Tp 650°	00.1	00.1				"	146)
	Ca		59.3	56.4		22	57	
	Rh 5.37 mm diam.	65.5	36.9	26.0	25 .0	23	38	
	4.37 mm	98.5		45.0	52.5	7	19	
	3.60 mm	1		1				
	diam D _e { 3.00 mm	111.3		48.0	54.0	6	15	
	diam	119.5		57.0	61.5	6.5	14	
	2.48 mm diam	199 4			74.5	6	14	
	1.98 mm	100.4		00.0	12.0		**	
	diam	142.2		68.0	92.0	6	13	
33			(v. F)	g. 32)			
34	As cast		26.4			3	3	(7)
	A 950°		18.0	!		13	14	
35	As received 850° Qo Tp 710°	83.6 77.3	46.4 56.8		est p 160 m		34 47	(45)
	300 Q ₆ 1 p 7 10	77.3	00.8	Ш.	long		7	
37	As cast	29.6	19.6	ī	i	1.5	2	(7)
	A 950°	25.9	15.5			2	2	•
39	As received	74.5	39.9			19	27	(67, 111)
	N 810°	76.5	45.8	42.4		22	38	
	A 809°	66.5 150.5	35.0			25 0	40 0	
	809 Qo	106.4	73.5			16.5	40	
	375°		74.5			16	43	
	Same, 460°		68.2			16	46	
	Tp \ 560°	1	65.4			20.5	52	ı
	(650°	79.4	55.6	_		24	62	
40	FW ₂ C ₈	84.0 57.96				19	34.5	(112, 142)
	700°	1				6	8	,
	730°	54.3				5	4	
	760°					6	8	
	A 775°					5 8	5 13	
	820°	1				7	7	
	850°	62.1				7	7	
	900°					7 5	7	
	(1000°		200 m	m X	20 m	m diam.	'	
41	Rh 15 mm diam.			27.4			26	(46)
	∫ 14.3 mm	Ì						
	diam	97.0		31.0	30.0	3	15	
	diam	101.4		31.7	31.9	3	7	
	De lam	105 9		30 2	39.0	2	8	
	12.7 mm							
	diam	111.5		39.0	39.8	2.5	8	
	diam	122.0		50.7	49.6	2.5	6	

Table 2, Part I.—Carbon Steels (Tensile Properties).— Table 2, Part I.—Carbon Steels (Tensile Properties).— (Continued)

Key No.	Treatment	UTS	YP	PL	EL	El	RA	Lit.
42	Rh	77.1		25.6		13 _f -15.5 _d	22	(141)
	Same, 350°	80.4 73.8	36.4	31.5		13 _f -16 _d	20	
	Same, 750° A 850°	73.6 77.9	33.6 41.7	23.7 38.6		16f-19d 16f-19d	27 31	
	1000°	77.1	44.1	38.1		12f-20d	30	
	750° Q _w	79.6	37.4	17.7		14r-16d	26	
	(3500	72.9	35.4	15.8		15 _f -17 _d	22	
	Same, 550°	74.7	34.4	29.5		16f-19d	27	
	Tp (650°	73.2	34.4	31.5		15 _f -18 _d	26	
	750° Qo 80°	74.2	34.4	28.6		17 _f -21 _d	30	
	Same, ∫ 350°	86.0	33.5	29.5		17f-20.5d	30	
	Tp \ 550°	71.6	33.4	28.5		17f-21d	29	
	850°, 350°	155.3		55.8		0r–0d	0	1
	O_ Tn \ 550°		94.5	78.8		9r-13d	30	\
	(000		72.9	63.1		11f-15.5d	33	
	850° Q ₀ 80°		78.8	55.1		8.5f-10d	35	
	Same, { 350°		82.7 70.9	55.1 59.1		8f-11d	38 44	
	1p (800				<u> </u>	11f-16d	144	
45			(v. Fig.	24)				
47	As received		46.2			15	21	(111)
	A 800°		32.6	 —	 	17	24	
	800° Q ₀		70.0	}		2	0	1
	Same, 375°	ı	85.0			10	34	i
	Tp 560°		80.8 74.2	ł		10 17	43	1
	650°	87.5	63.7	1		20	57	
48	Sandberg Trt.*	===	92.8		_	14	16	(5)
48	CaW: 850°		92.8			13	18	(3)
	Ca	90.1				11	10	
				=			:	(7. 97)
49	5 SWG rod $\begin{Bmatrix} \mathbf{R} \dots \\ \mathbf{A} \dots \end{Bmatrix}$	79.5 50.5				17 26	37 60	(7, 97)
	25 SWG wire				1	5	00	i
	As cast	31.7	29.2			2	2	
	A 950°	47.7	21.9		1	6	5	
50	Sandberg Trt.*	127 9	81.6	=	=	13	20	(5)
•	C.W. 840°		01.0			15	23	` '
	C	97.8				Broke off clos		
51	Rh 5.3 mm diam	81.2	52.3	24.5	26.0	19	36	(46, 14)
-	(4.58 mm	322	52.5			"		` '
	diam	101.4		38.5	36.0	8	24	
	4.22 mm		1	l				
	diam	109.0		38.5	43.0	7	20	
	D ₀ 3.84 mm	101 0	1		44.0		00	
	diam	121.0		45.5	44.0	6	20	ł
	diam	126.2		48.5	46.5	6	18	1
	3.03 mm						٦	1
	diam	128.0	<u></u>	48.0	46.0	6	16	1
	350°	94.8	45.3	38.4		11 _f -11 _d	15	ł
	A 750°	87.2		34.5		12f-15d	21	
	850	91.9	45.4	39.5		13f-15d	25	
	(1000°	94.3	48.2	44.2		12f-15d	21	
	750° Q	91.6	43.3	17.8		12f-13d	17	l
	Same, 350°	90.2	45.3	27.6		11 _f -13 _d	18	
	Tp { 550° 650°	87.9 89.1	39.3 40.4	33.4 31.5		13 _f -15 _d 13 _f -15 _d	30 21	
	750° Q _o 80°			1			-1]
	Same, ∫ 350°	89.6 88.5	41.4	34.5 31.5		12f-14d 12f-15d	19 21	
	Tp \ 550°	89.3	39.3	34.4		13f-15d	19	
	850° \ 550°		106.6	98.7		7f-11d	27	
	Qw Tp 650°	95.6	81.8	69.0		11f-14d	53	
	850° Q ₀ 80°	140.8	82.4	74.8		7f-9d	30	
	Same, ∫ 350°		94.6	63.1		9 _f -12 _d	50	
	Tp \ 550°	126.0	86.6	75.5		81-9d	29	
52	N 825°	95.6	51.2	32.9		13 _a	23	(66)
53				-			ľ	
	As received	68.4	l	36.8		10	0.5	(120)
00		70 0	1	744				
00	800°/2 Q 800°/20 Q	70.2 65.3		36.1 35.1		13 4	25 3	

(Continued)

Key No.	Treatment	UTS	YP	PL	EL	El	RA	Lit.
54	A 845°	70.3	25.2			13 _a	13	(89. 111
	800° Qo 450° Cf		65.7	39.4		12.	26	122)
	Before D ₀ D ₀ 8.1 %	97.7 111.8	48.8 87.9	34.6		15 _a . 6 _a .	22 18	
	(100°) (113.1	96.0	37.8		5.	17	ŀ
	200°	118.1	105.5	75.6		5 _a	14	
	A 300° 1 h	118.1	102.3	77.3		5 _a	14	ŀ
	450	110.2	81.8	69.2		9.	17	
	650° 700°	91.4 81.8	56.7 39.4	50.3 28.3		14 _a 24 _a	29 38	
	795° Q _w	65.1	38.4	20.3		0	0	Ì
	795° Q	129.1	96.9			4	6	l
	∫ 375°		55.15			12	34	
	Same, 460°	ı	93.8			14	37	
	Tp 560°			1		19	40	
	(650°	90.3	68.2	_	_	19	46	
56	A 5 SWG rod	80.0				17.	46	(97)
	15 SWG wire	164.0				1.5	3	
58	N 850°	93.5	51.0	36.4	l	11.	16	(67)
60	790° C ₁	59.1	23.5	19.7	17.9	25.	37	(110,
	790° Qo 650° Ca	80.3	47.5	42.4	42.6	23.	40	141)
	(400 Ca	128.5		·	71.8	10a	29	1
	Rh	98.1	46.1	34.5		7;-7.5d	8.5	
	350°	102.3	47.2	43.3		8.5 _f -9 _d	10.5	
	A 750° 850°	94.2 91.8	43.4 45.5	31.5 40.5		10.5;-13d 13.5;-15.5d	15.5 23.5	•
	1000°		56.1	48.1		8.5r-8.5d	11	
	750° Qw	99.4	49.2	31.5		6r-10d	12.5	
	Same, 350°	96.8	45.3	23.7		10r-11.5d	14.5	
	Tn \ 550°		43.3	33.5		10.5r-11.5d	12.5	
	(650	96.6	51.3	33.5		10.5r-11.5d	13.5	l
	750° Q _o 80°		45.3	35.4		10r-11.5d	16	ĺ
	Same, 350° Tp 550°	92.8 92.8	43.7	38.4 39.3		11g-12d	15 16	ł
	850° Q _w		40.0	35.5		10r-12d	-	l
	Same, ∫ 550°	96.1	96.3	62.9		6 1-0 d	0 15	ŀ
	Tp 650°	100.2	84.5	76.6		10:-13d	35	1
	850° Q	146.7	106.2	72.8	_	6r-8d	25	
	Same, ∫ 350°	147.8	100.5	71.0		6 <u>r</u> -8 <u>a</u>	28	
	Tp \ 550°	135.7	90.5	51.7		6t-8d	13	
61	15.0 mm							(44)
	diam	103.0	54.5	27.2	27.5	7	8	
	14.3 mm			20.0	20.7			
	diam 13.9 mm	116.0	l	32.3	32.7	1	3	
	diam	121.0		37.9	36.9	1 .	3	
	13.2 mm		1	ļ		_		
	diam	126.5		38.0	37.5	1	3	1
	12.7 mm	191 4		44.0	40.0			
==	diam	131.0		34.2	43.3		2.8	_
62	815° Qo Tp 455°	140.2	79.8			7	8	(36)
	825° Q ₀ ∫ 1 P 433 815° Q ₀ , ∫ 585°	150.0 110.1	79.8 72.1	1		6 7	13	
	Tp \655°	89.9	49.2			12	22	(A)
	815° Q _w Tp 700°	74.5	56.3	L		14	34	3 -
63	As cast	51.0	35.0	_		2	2	(4.0)
-	A 950°	45.7	29.2			4	9	
	875° Q _w Tp 450°	142.0	106.1	1		9	20	8
	875° Qo Tp 450°	140.6	118.7	_		8		
64	N 815°	91.4		38.7		14.		1
	780°/30	80.8		70.3		14.5 ₆		
	Q _w Tp 538°	98.4		61 0		7	- 4	
	Q _w 15	70.4		61.2		7.	5	
	788°/30 min	110.0		64.1		116		
	Q _o)							_
	788° Qaalt†	100.5		55.9		8.1	ام چارهان ارجوان	
	788° QPb‡	92.1	1	49.4		16. 44		
	843° QPb1	96.0	i .	50.1			1877	

Table 2, Part I.—Carbon Steels (Tensile Properties).—
(Continued)

Key	Treatment	UTS	ΥP	PL	EL	El	RA	Lit.
No. 64	843°/30)	135.0	•••	84.4		11.	29.5	
	843°/300 (Tn)	139.0		86.5		9.5 _a	23	
	760°/30 (538°)	123.3		79.4		11.	40	
	760°/300)	135.2 ecimen	wo.	93.8	4 064	8a ter treatment	22.4	
	780°/30)	113.1	s wet	96.7	J 8/1	12a	31	
	Qw Tp			İ				
	843°/30 538°	116.8	_	89.7		10 _a	31	
	Qw 15 788°/30 min Qo	125.5	Fig. 33)	78.6		13 _a	39	
		100.9 105.5	also F	60.1 58.0		14.5 _a 15 _a	35.5 37	
	760°) 30 Qo. (110.0	ف	71.0		13.5a	44	
	788° Tp 538°, 816° 20 m Co	125.5		78.6 83.6		13 _a	39 30	
	816° 20 m C _o	131.9 124.9		82.9		11a 12a	30	
	840° ∫ 704°/1 h	82.7		56.3	_	19	48	
	Q _o Tp \ 704°/5 h	63.3		44.4		33	61	
65	5 8WG rod R.	98.8				10	15	(97)
	25 SWG wire	62.6 94.5				25 5	52	
68	N	81.9	42.5	41.0	41.4	88	11.5	(110,
	790° Qo Tp 460°.		91.4		84.3		15	141)
	Rh	88.6	51.2	35.4		2.5f-2.5d	4	
	350°	101.3 95.6	53.1 49.3	49.2 46.3		3.5f-4.5d 10f-10.5d	4 12.5	
	A 850°	87.9		40.3		15f-18d	25	
	(1000°	103.8		55.8		41-4d	4	
	750° Q _w	100.4 97.7	53.2 47.3	25.6 29.6		51~5d 61~6 . 5d	6	
	Same, 550°	98.5	49.2	41.4		5.5 _f -5.5 _d	6	
	Tp (650°	98.4	51.2	43.3		8r-10d	8.5	
	750° Q ₀ 80° Same, ∫ 350°	98.3 98.5	51.1 49.2	45.2 45.3		91-9.5d 81-9d	11 7.5	
	Tp \ 550°	98.1	49.2	43.3		8.5;-10d	9.5	
	9509 O (350°			77.8		0t-0d	0	
	Tp 550°		113.8 82.1	64.8 77.3		61-6.5d 81-11d	11 30	
	850° Q ₀ 80°		108.4	78.9		8f-9d	15	
	Same, ∫ 350°	143.8	92.6	70.1		61-8d	20	
	Tp \ 550°	131.0	85.2	54.3 ===	_	4f-5d	11.5	
69	R 5 8WG rod 25 8WG wire	84.7 94.5				14 6	15	(97, 111)
	As received	106.0	54.2	\vdash		3	_	,
	A 790°	70.0	34.3			24.5	40	
	790° Q _w	116.2	OE :7			9	$\frac{2}{17}$	
	375°	141.0 142.1	85.7 91.7			8	13	
	Same, 460°	139.5	85.7			8.5	13	
	Tp 560° 650°	120.0 97.6	74.2 61.6			11.5 15.5	20.5 34	
72	Normalised	78.7		34.6	=	4.5h	4	(27)
	F 900-800° A			Ì			.	` ′
	750°/300, A ₂ 670°/180	62.2	30.7	28.3		20.5⊾	25	
	F 750-700° A		-	_				
	As 670°/240	58.3	26.8	19.7		26.0h	30	
78	As cast	34.8 47.2	34.8 26.1			0 2.5	0 3.5	(7)
76	As received	97.3	52.1			2	2	(111)
	A 790°	68.6	36.0			15.5	20.5	
	790° Q _w	98.3 131.9	68.2			2.5	5.5	
	₹875*	110.9	87.5			2.5	5.5	
	Same, 460°	93.8	86.4			3.5		
		112.7 92.0	71.0 59.8			4 11	5.5 17	
		•		•	. '			•

Table 2, Part I.—Carbon Steels (Tensile Properties).—
(Continued)

Key No.	Treatment	UTS	ΥP	PL	EL	El	RA	Lit
78	5 SWG rod R	88.8				4	15	(97)
	[A	65.9			1 1	11	15	
	25 SWG wire	94.5	v. als	o Fig	6	7.5	_	
81	As cast	32.0	32.0			0	0	(7)
	A 950°	22.2	18.4			0	0	
82	As cast	20.7	20.7			0	0	(7)
	A 950°	20.2	20.2	l	1 1	0	0	

^{*} Sandberg treatment consists of cooling the tire at a certain rate through the critical range of temperature, by subjecting it as it slowly revolves, to the blast of a large quantity of moist air.

Table 2, Part II.—Compression Tests on Carbon Steels*
v. also Figs. 14, 15, 16, and 27

	Specimen lo	aded t	o failu	ıre				npressive 57.5 kg/	
Key No.	Treatment	ucs	YPC	$PL_{\mathbf{C}}$	$EL_{\mathbf{C}}$	Lit.	No.	Treat- ment	-100
1	Before D ₀ D ₀ 14.8 % N	22	25 48 14.5	20.5 30 13.5	13.5	(110) 122)	7	Cast A 950° Cast	62.5 63.5
3	R _h	37	19.5	19		(128)	'	A 950°	62
4	R _h	40.5	25	24.5		(128)	18	Cast	56
19	N 815°	41.5	26.5	25.5	26	(110)		A 950°	58.5
20	R _h	57	32.5	29		(128)	21	Cast	51.5
27	775° Qw 650° Cf	54	42	39	40.5	(110)		A 950°	56
32	N 845°	55.5 68.5	ı	33.5 59.5		(110)	29	Cast A 950°	52.5 56.5
53	As cast†	85			-	(7)	34	Cast A 950°	50 54.5
54	Before Do	-	52.5	36		(122)	37	Cast	
	De 8.1 %		63	33			31	A 950°	51 55
60	790° C _f	48.5 68.5	None	1	74	(110)	49	Cast A 950°	47 51.5
63		141	-51	45.5	47	(7)	53	A 950°	45.5
68	N 860°	41	37.5	30		(110)	63	A 950°	51
00	790° Qo 460° Ca	78.5		73.5		(333)	73	Cast	33
82	As cast†	156.5				(7)		A 950°	41
Key	-100			aa	-100		81	Cast A 950°	17 53
No.	$\left \left \frac{\text{Trt.}}{l_0} \right \times \frac{\Delta l}{l_0} \right $	Treat	ment	CS	$\times \frac{\Delta l}{l_0}$	Lit.	82	A 950°	58.5
9	R 35 3 R 70 20 R 105 39	500°/3 Same Same.	30 Ca	70	3 21 39.5	(26)			

^{*} For analyses v. p. 484.

TABLE 2, PART III.-TORSION TESTS ON CARBON STEELS

Key No.	Treatment	Dimensions, inches (d = diameter)	USS*	TMR	YP8	PLs	EL ₈	Twist, degrees (total)	Lit
1	N	2 × 0.5 d 12.06 × 2.95 d			9.5 12	9 8	8.5		(90, 110)
3	R _h	2 × ½ d 5 × 1.75 d	32 _e 31 _e	43 41.5	12.5 13.5	10 11.5			(128)
4	R _h N 900°	2 × 1 d 1.75 × 1 d	32.5 _c	43.5 44	17 12	16		1070	(65, 128)
5	N 900°	1.75 × ‡ d 1.75 × ‡ d	36 _e 39 _e	48 52	17.5 18.5			913 971	(65)
	Same { 760° Qw 820° Qw	1.75 × ‡ d 1.75 × ‡ d	41.5 _c 42.5 _c	55.5 57	15.5 15.5			1028 1050	
6	8▼	1.75 × ‡ d	35.5 _e	47	14			551	(67)
7	8▼	1.75 × ‡ d	40	53.5	18	,		585	(67)
-8	G, Large Same, A G, Small, A		32 _e 33.5 _e 34.5 _e	43 44.5 46		9 17 15.5		350 650 700	(67)

^{† 788°/30} Qualt 538°/15 Co.

^{‡ 788°/30} Q_{Pb} 538°/15 C_o.

^{§ 843°/60} Q_{Pb} 538°/30 C_o.

[†] Test piece 1.12 in. × 0.584 in. diam.

Table 2, Part III.—Torsion Tests on Carbon Steels.—
(Continued)

Key No.	Treatment	Dimensions, inches (d = .diameter)	USS*	TMR	YP8	PLs	ELB	Twist, degrees (total)	Lit.
13	F 8v F 8v	1.75 × ‡ d 1.75 × ‡ d	37 _e 38 _e	50 51	14.5 15			508 533	(67, 72)
14	A 760° Ca	$8.5 \times 0.33 d$				17			(140)
15	G cast		42.5 42 44 43.5 ₀	58	24.5 18 20 22.5	17 18 17		460 840 1025 548	(68, 95)
19	N 815° 845° Q _w Tp 565° C _n	2 × 0.5 d	20.00		16	14	14 36		(110)
20	R _h	2 × 1 d	420	56	24	22			(128)
24	R. N 820° Sv — Sv Sv Sv	1.75 × † d 1.75 × † d 1.75 × † d 1.75 × † d 1.75 × † d 1.75 × † d	46 ₀ 46 ₀ 44 ₀ 44.5 ₀ 45.5 ₀	61.5 61.5 58.5 59.5 60.5	21.5 24.5			518 434 256 346 300	(67, 72)
27	N	1.75 × 1 d	47.5c	63.5		26.5		300	(72)
32	N 845° 790° Q _w T _p 650° C _a	1.75 × ‡ d 1.75 × ‡ d			24 None		21 37.5		(110)
39	R N 810°	1.75 × § d 1.75 × § d	58.5 ₀ 52.5 ₀	78.5 70	27.5 26			182 320	(67)
58	N 850°	1.75 × 1 d	56e	75.5	29.5	_		184	(67)
68	790° C _f	$ \begin{cases} 2 \times 0.5 d \\ 2 \times 0.5 d \\ 2 \times 0.5 d \end{cases} $ $ 2 \times 0.5 d $			16 None None	11 53 29.5	12 54.5 29.5 25.5		(110)
70	790° Q _o W ₂ 460° C _f	3.5 × 0.33 d			None	ł			(140)

^{*} Subscript c, Calculated on assumption of uniform stress throughout cross-section.

TABLE 2, PART IV.—HARDNESS OF CARBON STEELS*

Key No.	Treatment	BHN†	ScH	Lit.
1	Before D _c			(18, 62, 110, 118,
	D ₀ 14.8%	149	37	122)
	Normalized	69–121 167		
	(1) in. diam.) W 920° $\left\{\begin{array}{c} Q_w \\ Q_o \end{array}\right\}$	137		
2	As received (v. also Fig. 53)	120‡	21	(46)
3	$\left[\begin{array}{c} \mathbf{R} \\ \mathbf{A} \end{array}\right]$ (v. also Fig. 6)	112 110		(57, 76)
4	N 900°	95	21	(65)

TABLE 2, PART IV.—HARDNESS OF CARBON STEELS.*—(Continued)

Key No.	Treatment	BHN†	ScH	Lit.
5	900° Q	143-156		(18, 65,
	Same, Tp 600°	156	(v. also	111)
	866° Q	170	Figs.	
	A 866°	107	41, 52)	
	N 900°	122	20	
	∫ 700° }	125	22	
	Same, Tp { 760° } Q_w {	146	25	
	(820°)	143	24	
6	As received	96-144‡	22	(14, 18, 67
	N 920°	137		139)
	920° Q	223	'	
	Same, Tp 760° Q	183		
_	920° Q	170		
7	As received	118-121‡		(67, 111)
	A 858°	111	(v. also	
	858° Q.	228	Fig. 41)	
8	Large casting	116		(67)
-	Same, A	118		` '
	Small casting, A	127		
12	Rolled	158		(18, 114)
	A 850°	150	(v. also	, ,
	N 900°	159	Fig. 41)	
13	N 870°)	143		(18, 67)
10	870° Q _w 11 in. diam.	196		(,,
	870° Q.	179		
	F Sv	128	20-21	
	F Sv 1	1	19–20	
	v. Figs. 41 and 53	1 200		
		1 111		(49 111)
14	As received	144		(49, 111)
	A 836–900°	134		
	836° Q _w	255		
	836° Q	207	(v. also	
	$900^{\circ} \mathrm{Q_o} 650^{\circ} / 120 \dots \left\{ egin{array}{c} \mathrm{Q_w} \\ \mathrm{C}_f \$ \end{array} \right.$	169	Fig. 41)	
	1020° Q. 650° Q	161		
		161 174		
	$1250^{\circ} \mathrm{Q_o} 650/120 \left\{ egin{array}{c} \mathrm{Q_w} \\ \mathrm{C_f \$} \end{array} \right.$	157		
		l 		(57, 65,
15	As cast	141	/1	•
	A 925° C _f	143	(v. also	95)
	N 925° C _a	163	Fig. 6)	
	N 850°	156	27	
10	Sv	163		(169)
16	A (v. Fig. 41)	161		(103)
17	F Sv	147	27	(67)
	F Sv ⊥	143	28	
	F Sv /	143	28	
18	(600° C _a	173		(81)
	900° Q _o Tp 2 h { 650° Q _w	161		
	650° C.	158		
19	N 815°	132		(49, 68, 7
	N 850°	156		`110)
	A 850°	145		
	900°/60 C _f	157		
	0000 (00 0			
	760°/60 Q	180		
	$ \begin{cases} 900^{\circ}/60 \ \text{Q}_{\bullet} & \dots \\ 760^{\circ}/60 \ \text{Q}_{\bullet} & \dots \\ \text{Same, Tp} & \frac{650^{\circ}/120 \ \text{Q}_{w}}{650^{\circ}/120 \ \text{C}_{f}} & \end{cases} $	162		
	Same, 1p 650°/120 Cr \$	150		
	900° Q _o , 650°/2 h $\begin{cases} Q_w \\ C_f \end{cases}$	192		
	0000 0 0 000 00 1 WW	102		

Key No.	Treatment	BHN†	ScH	Lit.
19	900°/30, C _a Tp 5 h	134–160 135 137		
24	N 820° Sv → Sv	170 170 179 174	29	(67, 72)
25	N 870° (v. Figs. 42 and 52)	192		(18)
27	As received	170 158 655 261 197	(v. also Fig. 42)	(110, 111)
30	R	228	36	(62)
32	As received	179‡ 193 227	24 30	(92, 110)
33	v. Fig. 42			
39	R	252 223 183 578	40 35 27 (v. also	(59, 62, 67, 111, 139)
40	809° Q	311	Fig. 42)	(140)
40	F W ₂ C _a	241		(142)
46	R	226 174 418 430	(v. also Figs. 6, 29)	(76, 103)
47	887° Q Tp 420° R A 800°	437 240 217	(v. also Fig. 42)	(111)
50	R	273	50	(62)
51	As received	255‡ } 230 }	(v. also Fig. 42)	(25, 57)
54	Before D _e D _e 8.1%	268 293	(v. also Fig. 44)	(111, 122)
56	A 717° Q _₩	181 217	(v. also Fig. 29)	(103)
58	N 850°	286	40	(67)
59	N	286		(68)
60	790° C ₁	162 227 380	23 31 51	(110)
61	v. Fig. 53			
63	875° Q _w Tp 450°	402 402		(65)
64	N 815°	217 258 290 321 286 233	32 42 46 48 40 34	(44)
	843° Qrb†† 843°/30 843°/300 760°/30 760°/300	263 376 421 313 387	34 53 58 43 58	

Table 2, Part IV.—Hardness of Carbon Steels. *—(Continued)

Key No.	Treatment	BHN†	ScH .	Lit.
64	780°/30 Q _w)	340	54	
	843°/30 Q _w Tp 538°/15	340	48	
	788°/30 Q _o	329	48	
	788° Qualt ¶	291	41	
	788° Qрь	266	37	
	760°	288	43	
	788° \ 30 min Q _o Tp	329	48	
	816° (538°/20 C.)	364	52	
	871°)	350	48	
	Last 9 samples wet ground	after trea	tment (v.	also Fig.
65	800° Q _w	600		(120)
66	As received	277‡		(92)
67	A (v. Fig. 29)	176		(103)
68	N	224	31	(110)
	790° Q. 460° Ca	369	45	, ,
69	As received	288		(111)
	A 790°	196		
	790° Q _w	555		
	790° Q	402		
72	N	286		(37)
	F 900–800° A‡‡	189		
	F 750-700° A§§	179		
76	As received	321	(v. also	(25, 111
	A 790°	202	Fig. 44)	
	790° Q	460	18. ±1)	
78	R (v. Fig. 6)	285		(76)

[‡] Ludwik cone hardness (90° cone, 3000 kg load): specimens as received.

	Key No.	2	6,	6 _b	7	32	51	66	(92)
•	LCH	130	101	131	140	195	290	330	ĺ

a, Calculated from diameter of impression. b, Calculated from depth.

§§ A 670°/4 h.

Table 2, Part V.—Impact Strength of Carbon Steels*

Key No.	Treatment	IS (Izod)	(other methods)	Lit.
1	N	3.9	\begin{cases} 16.6 \\ 2.7 \\ \ 2.7 \\ \end{cases}	(18, 68, 110, 118)
	920° Q _w †	7.0	,	l
	920° Q _o †	12.4		
2	As received	6.9	$ \begin{cases} 2.9_{\text{w}} \\ 23_{\text{y}} \end{cases} $	(64)
3	A		8.5 _w	(33)
4	N 900°	11.2		(65)
5	(v. Figs. 47 and 52)		IS _v	(18, 65)
	N 900°	11.6	17.0	1
	900° Q _w †	10.4	21.5	
	900° Q _o †	13.0	18.0	
	Same, Tp 600°	13.3	17.5	[

^{*} For analyses v. p. 484. † 10 mm ball; 3000 kg load.

Turner Scratch Test: No. 6 (as received) = 21; No. 39 (A 809°) = 24 (139), 4788°/30 Q_{pb} 538°/15 C_o.

** 788°/30 Q_{pb} 538°/15 C_o.

^{†† 843°/30} Q_{Pb} 538°/30 C_o.

^{‡‡} A 750°/5 h 670°/3 h.

TABLE 2, PART V.—IMPACT STRENGTH OF CARBON STEELS.*— | TABLE 2, PART V.—IMPACT STRENGTH OF CARBON STEELS.*-(Continued)

	(Cont	inued)		
Key		IS	IS	
No.	Treatment		(other	Lit.
140.		(Izod)	methods)	
6	As received	4.8	IS _v	(67, 89)
	N 920°†	11.1	14.3	(, , , ,
	920° Q _w †	3.3	4.4	
	920 🚓			
	Same, Tp 760° Qw	5.9	5.7	
	920° Q.†	12.7	16.3	
	v. also Fig. 17		$IS_{\mathbf{w}}$	
	A 925°		8.5‡	
	900° Q. 760°, Q.,		100 51	[
	Tp 260° C		123.5‡	l .
7	As received	3.5		(67)
				l ``
8	Castings (large)	0.9		(67)
	Same, A	2 . 9	l	1
	Small, A	2 .6	1.2	
12	(v. also Fig. 47)		IS _v	(18)
	N 900°†	6.3	6	1 '
	900° Q _w †	1.8	1.9	
			1	
	900° Q _o †	4.3	3.5	
13	(v. also Fig. 48)			(18, 67)
	N 870°†	3.6	3.1	i
	870° Q _w †	2.2	2.5	ĺ
	870° Q.,†	2.8	3.2	1
	1		0.8	
	F Sv	${f 2}$. ${f 5}$	7 _y	1
	F Sv ⊥	1.8	1.1 _w	
	100 1			
			IS _x §	
14	900° C _f	1.5	4.7	(49)
	900°/1 h C _a , 760°/1 h Q _o	5.1	7.4	
	Same, 650°/2 h $\left\{ \begin{array}{l} Q_w \parallel \dots \\ C \end{array} \right\}$	${f 5}$. ${f 2}$.12.3	
	Same, $650^{\circ}/2 \text{ h} \left\{ \begin{array}{c} C_{\text{f}} & \text{odd} \\ C_{\text{f}} & \text{odd} \end{array} \right\}$	5.9	9.6	
	900°/1h Q _o , 650°/2h Q _w	5.1	8.5	i
	Same, but Cf	5.4	9.0	·
	1020° Qo, 650°/2 h Qw	1.7	3.3	
	1 / ~ 1	0.8	1.9	
	1250° Qo, 650°/2 h $\left\{ egin{array}{c} \mathbf{Q_w} \\ \mathbf{C_f} \end{array} \right\}$	0.5	1.8	
			1.8	
15	As cast	0.8		(33, 65, 95)
	N 925° C _▶	${f 2}$. ${f 5}$		
	A 925° C _f	1.8		
	N 850°	4.5	IS _₩	
	A		5.1	
17	A 900° (v. Fig. 18)		4.3	(89)
18	900° Q _o Tp:	0.0		(81)
	600°/2 h C _a	3.3		
	650°/2 h Q _w	4.4		
	650°/2 h C	4.0		
19	N	4.3	IS _x §	(49, 68, 72)
	900°/1 h C _f	1.8	4.0	·
	900°/1 h C _a , 760°/1 h Q _o	3.3		
			5.9	
	Same, $650^{\circ}/2 \mathrm{h} \left\{ \begin{array}{l} \mathrm{Q_w \cdot \cdot \cdot \cdot} \\ \mathrm{C_f} \ \cdot \cdot \cdot \end{array} \right.$	2.9	6.4	
	C _f	3.3	7.0	
	000° O 650° /2 h Q	2.5	6.9	
	900° Q _o , 650°/2 h { Q _w C _f	2.1	5.6	
	900°/30 Ca:		.	
	(600°)	4.3		
	Tp { 680° } 5 h C {	4.7	İ	
	750° 5 H C ₁			
		5.0		
24	N 820°	3.9	IS_w	(67, 72)
	Sv =	0.8	0.4	
	Sv	0.5	0.4	
	Sv /	0.8	0.4	
		0.0	U. I	

	(Cont	inued)		
Key No.	Treatment	IS (Izod)	IS (other methods)	Lit.
25	N 870°†	4.3 and 52	3.5▼	(18)
27	N	2.0	IS.	(72, 110)
	775° Q _w 650° C _f		3.1	
32	N 845		1.8 3.0	(110)
33	790° Q ₀		1.6 1.2 2.0 1.6 3.1 4.2 2.7	(109)
39	As received	0.7	IS _w	(67)
	A 845°		3.3‡	(89)
0.	800° Q _o 450° C _f	σ. 19	9.0‡	
58	N 850°	0.3		(67)
59	N	0.3		(68)
			IS.	
60	790° C _f		0.3	(110)
	790°Q ₀ , Tp $\begin{cases} 650^{\circ} C_{a} \\ 455^{\circ} C_{a} \end{cases}$		0.5 0.6	
63	975° ()	1.5		(65)
	875° Q. Tp 450°	1.7		` ′
			IS _▼	
64	780°/30 Q _w , Tp 538°/15	0.3	0.4	(44)
	788°/30 Q _o , Tp 538°/15	$0.3 \\ 0.5$	0.4 0.5	
	II	0.4	0.4	
	843°/30)	0.4	0.4	
	$\begin{bmatrix} 843^{\circ}/5 \text{ h} \\ 760^{\circ}/30 \end{bmatrix}$ Q _o , Tp 538° $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	0.4 0.4	0.5	
	Above samples no		0.4	
	780°/30 Q _w , Tp 538°/15		0.4	
	788°/30 Q _o , Tp 538°/15	0.3	0.4	
	I¶	0.5	0.5	
	760°)	$\frac{0.4}{0.3}$	0.4	
	2160	0.5	0.4	
	843° 30 Q ₀ , Tp 538° {	0.4	0.4	
	871°)	0.4	0.5	
	538°	0.3 0.3	0.4 0.4	
	788 Qw, 1p 704°	0.7	0.8	
		0.3	0.4	
	316° 538°	$0.4 \\ 0.3$	0.6 0.5	
	788° Q., Tp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.3	0.5	
	(704°	0.4	0.4	
	(316°	0.5	0.5	
	843° Q _o , Tp 649°	0.5 0.6	0.6 0.8	
	760°	0.6	0.8	
	,		•	

TABLE 2, PART V.—IMPACT STRENGTH OF CARBON STEELS.*-(Continued)

Key No.	Treatment	IS (Izod)	(other methods)	Lit.
64	843° Q _o , Tp 704° $\left\{\begin{array}{l} 30 \text{ m} \\ 5 \text{ h} \end{array}\right\}$	0.6 0.4	0.4 _v 0.6 _v	
	Above samples wet grou	ınd after	treatment	
68	N 860°		0.3 _s 0.3 _s	(110)
72	N F 900–800°, A 750°/5 h,	0.2		(37)
	A ₂ 670°/3 h	$egin{array}{c} {\bf 0.2} \ {\bf 0.2} \end{array}$		

- * For meaning of subscripts v. p. 396.
- † Bars 11/8 in. diam.
- ‡ Test piece 30 mm², diam. of bottom of notch = 4 mm.
- I Tested in the Guillery machine.
- || Cooled at 1° per minute.
- ¶ I = 788°/30 Qsalt 538°/15 Qo.
- $II = 788^{\circ}/30 \text{ QPb } 538^{\circ}/15 \text{ Qo}$

TABLE 3.—MECHANICAL PROPERTIES OF CAST IRON*† v. also Figs. 7, 7a, 8, and 20

Key No.	ScH	UTS	BMR;	Lit.	Key No.	ScH	UTS	BMR‡	Lit.
84	52-58	17	28 _l	(32)	92	56-61	20	43-591	(32)
85	62	12.5	28.51	(32)	93	1 11	26.5	41 _m	(137)
86	54-62	18.5	291	(32)	94	31	23.5	34 ₁	(32)
87		19	39.5 _m	(135)	95	56-60	18.5	42-561	(32)
88	40-43	9-19	34 ₁	(32)	96	40-60	14-29	38 _l	(32)
89	63	26	451	(32)	97	31-40	22.5	341	(32)
90	48-53	26§	34.5	(32)	98	65	26	471	(32)
91	40-45	20-31	28-50 ₁	(32)	99	50	21	46 ₁	(32)

Key No.	Hard	ness	Ten	sile prope	erties	Comp	ression erties	Bend- ing	Lit.
140.	BHN	ScH	UTS	El	RA	UCS	PL _C	BMR‡	
100	187	37-50	245			100¶	50	34-47	(27, 32, 124, 135)
101**			30-46	6 _m -	2 a ††				(63)
102**	101-145		25-415	15.0 _a -	4.5. ††	I	$S_{\rm u}$ - (0.1	(63, 68)
103		57	20.5		l		1	41.51	(32)
104		58	24.5		ŀ			49 ₁	(32)
105		43	26.5				1	401	(32)
106	160-220	38	16–28§	ca. 0	##	63-105		36	(21, 78, 124, 145)
107	192-200		23.5		1	ł		35 _m	(130, 137)
108	203-213	40-50	\ `		1	Mach	ined	32.5 ₀	(32, 135,
i	TSH -		21			Unma	chined	45m	139)
109	207-217	33-36	16.5	0.2	0.0	1	l l	31	(68, 145)
110	180		22		ł	İ		33.5m	(137)
111	149-207		18			64.5	34.5	33.5 _n	(21, 124)
112	160-217		21			1		27-47 _m	(137)
113	192		22.5			l		37.5 _m	(137)
114	131-176		16			68	27	31.5 _n	(21, 124)
115			195						(130)
116			27					54 _m	(135)
117	110-151	30-40	16-21			44-58			(131)
118	105-143	2455	15	(PL	- 7)	61¶	32.5	30 _n	(124)

- * For analyses v. p. 485. For effect of Mn and Si content on cast iron v. p. 525.
 - † All specimens "as cast" except where noted.
- ‡ Meaning of subscripts to values of BMR: l = 1 in. sq., span 12 in.; $m = 1\frac{1}{4}$ in. diam., span 12 in.; $n = 10 \times 10 \times 65$ mm, span 30 mm; o = 0.862 in. sq., span 12 in.
 - § For high temperature tests, v. Figs. 7, 7a, 8 and 20.
 - || BHN = 175.
- # 16 mm × 16 mm diam. ** No. 101, Trt = A 840-880°; YP = 19-28; No. 102, Trt = A 770-840°, YP = 16-31.5.
 - †† For both El and RA.
 - \ddagger Torsion tests: Soft, (BHN = 92), USS = 14.5 Fine grained (BHN = 150), USS = 24Hard fine grained (BHN = 217), USS = 28 $\} TMR = 24.5 (78).$

§§ TSH = 21-23.

EFFECT OF ANNEALING ON TENSILE STRENGTH OF CAST IRON (27)

A, t° C	100 200 250	300 3	50 400	500 600	700
K. No. 90, $UTS = $	26 25 24 .	5 25 2	26 27	25	
K. No. 106, $UTS = $	16.5 16.5	17	17	17 15	13

	K. No. 90	K. No. 100	K. No. 106
W 25 times to $450^{\circ} \mid UTS =$	23.5	21	15
W 25 times to 550° UTS =	22	20.5	12

*T.C. = total carbon; G. = graphite.

Diameter, mm.

13

114

110

TABLE 4, PART I.—CR STEELS (TENSILE, HARDNESS AND IMPACT Tests) For compression tests v. Fig. 40 Subscript , indicates rate of cooling through critical range Key BHNUTSISt. Lit Treatment* No. (108) 120 931 C. 0.70°/m. 52.1 28 6 31 IS_xt $\left. egin{array}{c} 700^{\circ} \\ 600^{\circ} \end{array} \right\}$ 60 $\mathrm{C_{\bullet}}$ [58.2 36.3 35 68 15.9 161 64.6 47.6 31 64 13.2 II { 735°/140 Ca § . 139 550°/20 Qw... 184 54 R 38 K 37 AR. 15.0 67.8 50.3 28 57 7.5 1070° C. 4°/m... 51.7 31.8 5.5 (111) 121 A 790°..... 20.5 74.5 212 18.5 36.5 790° Q₩..... 627 127.5 790° Q₀..... 418 141.6 86 2 3.5 6 375°..... 387 137 7 93.5 3.5 Same 460°.... 430 138 4 97.7 2.5 560°..... $T_{\mathbf{p}}$ 375 125.4 77.9 4 650°.... 321 112.1 67.1 13.3 (108) 122 931° C. 0.7°/m .. 56.0 33.4 31 47 I 700°/60 Ca ... 165 63 0 25 42 4 RR 12 3 600°/60 Ca.... 178 67.1 45.3 31 64 10.3 735°/140 C. 152 59 0 41 8 37 68 12.5 550°/20 Qw .. 194 69.4 57 49 8 28 7.7 1070° C. 40°/m... 133 54.5 32.7 34 51 4.25 A 800°/1.5 d Cr 3 d 123 68.0 32.2 24.5 40.5 (*) (119) 124 109.1 PL -16.5 79.1 (119) 125 35.4 PL =22.5 931° C₀ 0.7° /m... (81, 79, 126 53.6 33 53.5 33.9 I 700°/60 Ca ... 167 60.8 45.0 32 70 19.0 106) 600°/60 Ca.... 180 65.8 27 85 49 0 16.2 735°/140 Ca 157 58.3 40.7 34 69 20.0 II 550°/20 Qw... 214 72.5 52.5 25 58 7.5 1070° C. 40°/m... 126 34 52.7 31.0 53.5 6.25 PL IS_n 66.6 43.0 28 6.35 28.3 63.9 41.7 28 34.6 67 5.5 60 Ca 193 66.8 45.2 27 69 7.35 34.6 900° Q 120 Qw 194 42.3 30 70 7.35 **3**1.5 Tp 650° 120 C. 192 63.5 42.3 30 70 6.8 34.6 27 9009 8009 199 67.7 45.2 65 5.5 26.2 120 5500 215 50.2 42.5 C_a Тp 500° 216 71.8 49.4 23 3.9 44.1 6500 185 63.6 41.4 31 70 6.65 36.2 8209 600° 120 193 5.7 ۵. 550° 210 66.8 42.0 28 4.3 37.8 C. Тp 500° 70.6 46.4 30.4 (87) 127 A 850°/60 Cf.... 210 ScH = 32850° ∫ 500° 350 ScH = 5460 { Q₀ Tp \ 275° 515 ScH = 70I8xt 931° C, 0.7°/m or 128 (87, 188) VI ... 125 54 4 28 0 32 8.5 I { 700°/60 C_n §... 167 600°/60 C_n ... 196 63.6 48.8 21 16.4 70.5 55.3 27 66 18.1 III§ or V§....... 151 47.8 33 70 18.0 61.7 Sell IV 5 or Va5..... 209 74.9 57.9 26 63 13.6 R (v. Figs. 34 and 87 R 40 7 24.5 54.5 3 64.9 39.2 28 59.5 RW 815° Cf..... 146 57.1 32.7 26 50 A 800°/1.5 d C_f 3 d 68.2 22.5 (1 29.6 20 131 132 PL = 132 7.8 T 132 56.5 PL = 4358 133v. Figs. 35, 36 and 49 135 136 931° C, 0.7°/m or VI§..... 124 54.4 28.0 32 66 66 700° 189 63.6 48.8 31 18.0 60 Ca §

27

33

600°

IV or Vas.

III or V§.....

211

163

240

70.5

61.7

55.8

47.9

TESTS).—(Continued)

For compression tests v. Fig. 40 Key BHN UTS RAIS† Treatment* Lit. No. 136 900°/30 Ca...... 183 PI. $IS_{\mathbf{u}}$ $\begin{array}{c} 1000^{\circ}/Q_{o} & Tp \begin{cases} Q_{w} \\ 650^{\circ}/120 \end{cases} \begin{pmatrix} 210 \\ C_{s} \end{pmatrix}$ 37.8 71 3 53.8 25 R4 8.2 69.9 52.4 25 64 5.7 45.7 650°/60 Ca 225| 73.5 25 69 9.3 50.4 56.4 69 650°/120 Qw 205 69.9 52 7 26 9.1 40 9 900° 650°/120 C. 200 67.7 51.5 25 69 8.6 45.7 Q. Tp 600°/120 Ca 229 78.7 60.5 23 65 7.6 52.0 550°/120 Ca 257 84.2 68.1 21 58 5.0 58.3 500°/360 Ca 20 57 3.5 59.8 255 84.3 67.7 820° 650° 198 67.2 49.4 26 70 9.3 44.1 120 600° 73.8 57.0 23 64 7.5 48.8 223 Q. Ca. 550° 244 81.4 64.3 61 56.7 Tυ 137 (105, As received..... 150 950° Ca..... 150 52.6 33.0 `107) A 950° 35 h Cf... 115 52.0 25.2 850° (400° 375 107.9 105.4 550° 305 91.4 86.6 Q, 700° 195 64.9 50.4 Tp (11, 105, 179 As received 73.8 26 5 805° 205 As received, 850° 195 960° 146 108) 71.1 39.4 26.5 A ISx‡ 54.8 28.3 23.5 931° C, 0.7°/m or VI§..... 57.3 23.0 28 4.5 $I \left\{ \begin{array}{c} 700^{\circ} \\ 600^{\circ} \end{array} \right\} 60 C_{a}$ 200 73.8 60.1 27 69 15.0 88.1 76.6 22 62 12.0 72 III or V 170 65 5 53.5 31 17.5 IV 4 or V.4..... 88.7 78.7 19 57 11.0 253 950° Ca..... 71.8 44.1 26 62.5 22.7 A 950°/35 h Ct.. 116 47.8 37 70.5 850° 400° 418 157.4 144.8 9.5 37 550° 125.4 119.4 15 52 Q. 347 700° 241 86.3 74.0 22.5 67 Tp (105, 198 139 As received..... 107) 900° Ca.... 242 96.1 66.1 20 55.5 55.5 A 950°/35 h Ct.. 149 59.3 20.2 28 400° 176.6 164.2 g 30 800° 454 42.5 C. Q, 550° 382 141.1 133 9 13 700° 98.3 89.8 21 61.5 (105, 140 As received..... 290 40 107) 88.2 16 298 107.0 900° Ca..... 62 226 50.5 21.5 A 950°/35 h C1.. 78.5 800° 10 ·550° 151.8 148.0 32.5 700° 265 98.4 89.4 21 56 Tp (11, 105, 141 319 As received..... 900° C..... 107, 112.0 81.8 10 18 262 108, 805° 205 73.0 39.4 23 As received, 119) 31 850° 200 70.3 42.0 A 960° 270 55.0 9 96.0 600 135.0 6 960° Q_o Tp 650 477 A 950°/35 h Ct.. 205 29.6 63.5 63.2 32 550° 402 150.6 145.6 8.5 28 800° C. Q, 700° 20 52 99.3 90.5 Τ̈́D (35) 142 FA ||..... 77 33-56 18.5 20.5 63 30-53 13-21 FA⊥ (108) 981° C, 0.7°/m or VII..... 162 4.0 67.0 29.8 $I \begin{Bmatrix} 700^o \\ 600^o \end{Bmatrix} 60 C_n \S$ 12.0 212 75.8 65.0 270 100.2 85.5 9.2 16.5 III or V 172 66.1 56.0 IV or Va..... 300 96.4 85.0 7.5 $IS_{\mathbf{u}}$ PL

8.15

3.7

48.8

145

84.7

80.7 65.5

69.4

TABLE 4, PART I.—CR STEELS (TENSILE, HARDNESS AND IMPACT | TABLE 4, PART I.—CR STEELS (TENSILE, HARDNESS AND IMPACT TESTS).—(Continued) For compression tests v. Fig. 40

	FOR	comp	ressioi	i tests v.	rıg.	40		
Key No.	Treatment*.	BHN	UTS	YP	El _a	RA	IS _u	PL
145	900° 690°/120 C	209		58.1	27	70	10.4	47.2
	Q _o 650°/60 Ca 650°/120 Q _w	\ 255 246		70.1 63.8	23 25	69 70	9.0	53.6 39.4
	Tp (650°/120 Cs.	236		61.2	25	70	4.55	48.8
	900°(600°/120)	296		81.7	20	61	3.3	64.5
	Q _o { 550°/120 } C _a		116.0 130.7	102.0	16 14	56 47	1.8	77.2
	T _p (500°/360)	225	77.3	63.3	25	65	$\frac{0.7}{12.7}$	93.0 52.0
	820° 600° Ca	281	95.6	84.4	20	60	3.9	61.5
	Q _o { 550° } (325	110.3	100.2	18	59		77.2
	Tp 700°	1	78.1 69.3	64.7 59.0	25 29	68 71	13.6	1
	(750°		08.3	38.0	20	 	15.4 IS _x ‡	Lit.
	931° C, 0.7°/m or		1		1		1011	
	VI	162	67.3	29.2	24	45	4.5	(2, 51,
	I 5700° or V \$		71.5	63.5	27	67	15.5	79,
	1 \ 600° or Val	<i>287</i> ∫ 182	101.2 66.0	80.9 53.4	18 29	57 69	8.1 17.8	108)
	$I_a \begin{Bmatrix} 600^{\circ} \\ 600^{\circ} \end{Bmatrix} 60C_a \S$	252		68.9	19	58	5.9	
147	As received, ∫ 850°	137	50.6	23.6	35	_	==	(11, 108
	A \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		61.1	29.9	26]`
	960° Q _o Tp					ļ		}
	610°/60 931° C _a 0.7 ₆ °/m		88.6 55.2	26.1	19 32	67		ł
	(7000)		65.9	53.5	29	72		1
	I {600° (60		87.1	79.4	19	61.5		Ì
	La {700° (Cai	191	65.4	51.4	28	72	17.4	ŀ
	(000)	254	83.9	70.5	22	65	$\frac{8.9}{22.0}$	İ
	II 780°/120 C _s § 1070° C _s 4 _c °/m	163 142	59.0 46.7	52.0 28.5	35 36	73.5 67	6.5	1
148	931° C ₈ 0.7°/m	166	57.8	27.6	31	67	4.5	(108)
	or VI §		70.7	57.8	26	66		}
	I { 600° 60		95.1	87.9	18	56		1
	I. (700° Cat	186	70.3	56.5	26	66	16.2	1
	(800-)	261	93.5	78.3	20	56	5.7	ļ
	III§ or V	176 281	68.1 94.8	58.0 85.0	30 18	68 55	15.0 8.1	Ì
149	(805°	192	78	37	25	_		(11)
	As received, 850°		80	37.8	22			` ′
	(960-	228	84	42	15	<u> </u>		ł
	960° Q _o Tp 650° 960° Q _o 500°/60	1	120	ł	10		l	
	C, Tp ₂ 650°	311		ŀ	ł	i		ŀ
150	C ₆	==	60.3	PL =	56.5	62		(119)
151	C		133.3	PL = 8		7.5	IS _u	(119)
152	850° Q _o Tp 700°		70.3	51.3	15	57	9.25	(2)
153	931° C _s 0.7 _o °/m or				====			
	VI	165	54.8	24.6	36	73	5.1	(108)
	I { 700° } 60 C.		71.7	58.0	28	65	IS _z ;	
	(700°)	190	93.9 71.8	83.6 55.9	18 25	56 66	14.0	
	$I_{\mathbf{a}} \begin{Bmatrix} 700^{\circ} \\ 600^{\circ} \end{Bmatrix} 60 C_{\mathbf{a}} \begin{Bmatrix} 1 \\ 600^{\circ} \end{Bmatrix}$	270	88.1	76.7	20	57	5.9	
	IIIa or V	180	68.6	50.4	31	68.5	15.1	
	IV§ or Va	278	100.8	89.4	18	55	7.1	
154	A		59.4	25.4	31.5	64		. (*)
155	As received, $\begin{cases} 805^{\circ} \\ 850^{\circ} \end{cases}$		74.4 68.5	41.0 37.8	26 30.5			(11)
	A \ 960°		82.9	41.0	19			
	960° Q _o Tp 650°/60		119.2		12.5			
	960° Q _o 500°/60 C Tp ₂ 650°			V = 340				
156	931° C _s 0.7°°/m		52.8	21.3	 34	67		(108)
	T 5 700° \ 60 C-4		65 7	55.2	29	72		•
	- \ 700° \ 60	187	87.1 66.4	79.2 54.2	21 28	63 71	18.7	
	1	187 24 8	88.1		22 22	63	8.1	

TABLE 4, PART I.—CR STEELS (TENSILE, HARDNESS AND IMPACT | TABLE 4, PART I.—CR STEELS (TENSILE, HARDNESS AND IMPACT TESTS).—(Continued)

For compression tests v. Fig. 40

Key No.	Treatment	•	BHN	UTS	ΥP	El.	RA	IS _z ‡	Lit.
156	780° \ 120	1	154	56.6	45.2	36	74.5	23.5	
100	11 740° C		173	60.1	45.2	30	73	19.2	
	550°/120		I	129.4	105.5	15	46	5.1	
						34	63		
157	1070° C _a 4 _c °/	==	135	53.6	25.2	=	03	1.5	
101		VI.	192	59.7	31.1	32	69	3.5	(108)
	- (700°)	7		76.6	61.1	26	60.5		
	I 600° 60		ĺ	96.5	87.9	18	52		
	, }700° C	45	205	77.3	59.4	25	61.5	8.9	
	In (600°)		263	90.7	72.7	19	53.5	5.1	
	III or V		203	74.3	53.6	29	63	10.2	
	IV or Va		287	101.8	91.9	18	50	5.05	
158	931° C _a 0.7 ₆ °/		_	51.7	23.4	36	70		(108)
	(7000)	$\overline{}$	-	65.1	52.8	29	72		•
	1 { 6000 } 60 €	7 .1 {		83.8	74.8	20	64		
	. \ 700° \ 60	<u> </u>	187	66.9	54.4	28	72	18.7	
		. 5 (240	84.7	76.0	21	66	10.3	
	(780°) 120	0 1	158	58.0	42.6	34	73	20.7	
	II { 740° } C	. 1	166	59.0	45.5	30	72	21.1	
	\ 550°/20 (⊋₩	348	130.0	94.0	14	46	5.05	
	1070° C _a 4c°/	m	136	52.7	24.2	34	65	1.7	
159		500°		144.7	130.0	10	30.5	IS _u	(2, 11)
	850° Q, Tp	600°	1	92.1	77.3	18	50	2.1	
		700°		76.6	55.5	23	60.5	10.4	
	(805°	200	69.1	59.8	25			
	As received,	850°	160	57.6	25.2	34			
		960°	170	63.3	33.0	25			
	960° Q _o Tp 6		ĺ	95.0		17	l		
	960° Q ₀ 500°		200						
	Tp: 650°		200						====
160	820° Q, Tp 6		1	103.3	93.7	15.5	54.5		(1)
	Same, { tested at	700° 900°		26.8 11.0					
=							==		
161		05° } 50° }	223	ı	42.5	32.5	l		(1, 11)
		60°∫	202		37.8 37.8	26.5 26.5			
	820° Q _o Tp 6	<u> </u>		122.4	114.2	11.5	28.5		
		700°	ł	29.0		11.0			
	tested at \	900°	İ	11.80		}			
	960° Qo Tp 6	50°	350						
162	C ₈		===	124.3	PL =	60	17.6		(119)
163	C _a		===	150.6	PL =		7.5	=	(119)
==			175	===		==	=		(11)
164	As	805° 850°		64.3 62.1	56.7 33.0	30 32	1		()
	received, A	960°		69.0	31.5	23.5			
	960° Q _o 500								
	Tp: 650°		255						
165	As (80	05°)	223	83.1	53.5	18			(11)
		50° }	207	73.8	37.8	23.5			
	(96	60° J	196	68.3	37.8	25			
166	C _a			143.0	PL = 1	30.0	4.5		(110)
167	C			94.1?	PL =	79	0	IS _u	(119)
168		500°		149.0	132.8	9	 25		(2)
109	875° Qo Tp	600°		89.3	73.1	18	50	4.0	()
	"-"	700°		72.4	52.7	22	57	11.4	
171	C			139.3	PL =	102	0		(119)
=		=	===			==	===		
172	<u>A</u>			58.5	26.0	29	56.5		(9)
173	As received,	805°		54.8	33.0	34.4			(11)
	A 1	850° 960°		52.4 50.9	25.1 28.4	32.0 28.9			
			==			==	_		
174	As received,	805°		65.0	28.3	31			(11)
	A	850° 960°		67.2 67.1	31.5 37.8	27 26			
	, (800	170	01		100	,	'	

Tests).—(Continued)

For compression tests v. Fig. 40

		оор	1000101		8.		_	
Key No.	Treatment*	BHN	UTS	YP	Ela	RA	IS _u t	Lit.
175	900° Ha Tp 700°		67.7	50.4	21	48	6.8¶	(1)
176	(650°		93.5	72.4	19	41	1.65	(2)
	900° HaTp { 700°		83.6	70.3	21	56	2.8	
	₹750°		78.7	57.7	24	47	3.2	
177	A 1000°		48.8	26.8	40	74.5		(40, 71)
	Ac 850°	143		v. also F		1		
	[(830"	143		37, and	1 49		8.85	
	1000° Q _o 750°/6 h				i		13.85	
	C _f	165						
178			7.	Fig. 25				
179	950° Q _o ∫ 650° Q _w	217**	77.2	62.7††	22	55	6.65	(68, 71)
	Tp \ 250° Q _w	444‡‡	168.0	149.5	7	59.5	1.1	
180		I====	v. Figs	37, 45,	49	ı 	·	
181	As received, Do		80.1	61.455	21	50		(2, 11,
	(805°	185	69.2	34.6	33			122)
	A 850°	190	66.8	33.0	30	v. als	o Figs.	•
	960°	192	68.6	31.5	23		nd 25	
182			. Figs.	11, 38, 4	5, 49	·====		
183	975° Qo Tp 700°	255	88.1	70.399	21.5	53.0	2.8	(65)
		r. als	Figs. 1	1, 38, 45,	19			
			l	l	<u> </u>	1	IS _v ¶	
184	900° Ha Tp 700°	l	91.6	64.3	15.5	30.5	1.0	(1)
101	700°		20.8	02.5	13.5	30.5	2.5	(-)
	Same. 800°		12.4				8.5	
	tested at 900°		11.8		ļ	1 1	5.0	
	1000°		6.0			1 1	6.1	
186	A		69.2	32.8	20	36	IS _u	(*)
187	(500°	==	132.9	106.2	1	5		(²)
•••	8000		92.8	69.6	13.5	37.5	5.1	\ =7
	875° Q _o Tp { 700°		71.0	45.7	20	40.5	9.7	
	750°		74.5	49.9	23	50	8.0	
188	A		89.5	76.7	16	26.5		(*)
190	A	_	77.3	54.8	12.0	21.5		(e)
191	As cast	==	28-63	21-56	2-0	3-0		(34)
	R or F		56-91	46-78		50-10	i i	` '

^{*} Italicized numerical values are for the alternative treatments (as indicated by footnotes).

TABLE 4, PART II.—SHEAR AND TORSION TESTS ON CR STEELS Tests on air cooled specimens on Fremont shear machine (119)

Key No	124	131	132	141	144	151	162	163	167	171
USS	49	57	19	56	36 .	5 56	40	51.5	39.5	67.5

[†] For meaning of subscripts v. p. 396.

[‡] Tested on the Guillery machine.

[§] Meanings of treatments denoted by Roman numerals are: I = 950°/30 Ca 860°/30 Qo Tp; Ia = 950°/30 Ca 870°/30 Ca Tp; II = 1065°/30 Ca 850°/60 Qo Tp; III = 950°/60 Ca, 825°/30 Qo 735°/255 Ca 630°/120 Ca; IIIa = 915°/60 C_a 820°/30 Q_o 750°/255 C_a, 620°/140 C_a; IV = 950°/60 C_a 825°/30 Q_o 625°/30 C_a; V = 1000°/20 C_a, 830°/30 Q_o 745°/60 C_a; V_a = 1000°/20 $C_a 830^{\circ}/30 Q_o 600^{\circ}/20 Q_w$; VI = $1020^{\circ} C_a 2_o^{\circ}/m$; VI_a = $1070^{\circ} C_a 4_o^{\circ}/m$.

[¶] Charpy machine, type of specimen not stated.

^{**} ScH = 35. $\dagger\dagger PL = 47.2.$

 $[\]ddagger \$ScH = 64.$

^{§§} PL = 14.2 on 2 in., 11.0 on 8 in., EL = 11.0 on 8 in. $\P\P PL = 53.2.$

^{|| || 900°} H_o Tp 500°, $IS_u = 1.1$.

^{900°} H_o Tp 600°, $IS_u = 2.1$. 900° H_o Tp 700°, $IS_u = 4.15$.

TABLE 4, PART II.—SHEAR AND TORSION TESTS ON CR STEELS.— (Continued)

Torsion tests

Key No.	Treatment	USS _C *	TMR^{\dagger}	YPs	PL_8	<i>Tw</i> , °/cm	Lit.
127‡	A 850°/60 C _f 850° Q _o \ 500°/60 T _D 275°/60		65 94 138		29 72 90	33.8 17.7 4.7	(87)
128‡	A 850°/60 C ₁ 850° / 515° C _w / 570° 600	44 61.5 59 56.5	58.5 82 79 75.5		25 63.5 57	50.4	(87)
179§	950° 650° Q _w Q _o Tp 250° Q _w		69 120	41 79.5		107.5 15.3	(65)

- * Stress assumed uniform throughout cross-section.
- $\dagger TMR = 1.333 USS_C.$
- ‡ Size of specimen unknown.
- § Specimen 1% in. × 5% in. diam.

TABLE 5.—CR-V STEELS See also Figs. 12, 26, 28, and 39

Treatment	BHN	ScH	UTS	ΥP	El₃*	RA	Lit.
As rolled			43.5	34.3	38	63	(126)
As rolled			56.7 56.1	37.0 35.9	28 30.5	45 55.5	(126)
As received 927° Qo 870° Qo	302	42	96.1	59.9	15.5	45.5	(\$3)
	300	48		94.9		62	
				57.0		56.5	(126)
			79.1	60.2	23	56.4	
A 850°/30			61.1	44.1	26	65	
A 800-900°		İ	114.2	71.7	9	44	(126)
Q _o Tp		l	126.5	84.9	12.5	46	
8 1200°/12h 750°			65.4	42.5	23	38	(126)
C _m W ₂ \ 950°		ł	88.7	59.2		49.5	
500° Qo Tp 350°		[84.6	61.3	26	51	
690° Qo Tp 350°		l	82.8	59.8	26	51	
690° Qo Tp 600°		l	83.5	60.3	25	50	
		1		78.4	23	51	
		ļ		1 1			
1000° Q _o Tp 350°.			92.1	79.5	20	37.5	
As rolled			104.2	66.9	16.5	40.5	(126)
A 800°/30			83.6	61.9	23.5	52	
850° Qo Tp 650°			93.5	70.9	18	50	(71)
850° Qo Tp 420°	444	63	169.0	140.9	8.5	24	(65)
850° Q _o Tp 650° C _a	255	41	89.0	76.51	22	60.5	(65)
	As rolled	As rolled	As rolled	As rolled	As rolled	As rolled	As rolled

From torsion tests: No. 193 $\begin{cases} (As \text{ received}): USS_{C} = 72.5, TMR = 97 \\ (A): USS_{C} = 51.5, TMR = 69 \end{cases}$ (16). No. 203, (850° Qo Tp 650° Ca): $USS_{C} = 61.5, TMR = 82, YP_{S} = 58, \text{ Total } Tw = 532° (88).$

 $w = 0.82^{-1}$ (15). Impact strength: No. 202, IS(Isod) = 1.9, $IS_w = 0.8$ (65). No. 203, IS(Isod) = 4.8

* For key Nos. 192, 194, 196, 199, 200 specimens are 2 in. × 0.75 in. diam. and for key No. 198 specimens are 2 in. \times 0.375 in. diam. † PL = 60.8.

Table 6.—Copper Steels Cold drawn copper steels (133, 134, 143)

Key No.	Treatment	Diam. mm	UTS	El
204	D ₀		129.1 158.0 194.5	5 _k 5.5 _k 5 _k
207	A D _o D _e	1, ,	83.8 69.5 93.5	18 _k
210	D ₀	1 1	128.0 165.4 207.6	5 _k 4.5 3.5

TABLE 6.—COPPER STEELS.—(Continued)

77	TABLE O.—COPPER STEE			1
Key No.	Treatment	Diam. mm	UTS	El
212	A	(5 SWG)	74.8	15_k
	$\mathbf{D}_{\mathbf{c}}$	3.25	66.6	
	D _e	1.85	112.2	
213	D₀ 4 SWG	5.21	93.7	3.5_k
	D ₀	2.92	141.9	3
	D _c	1.30	205.4	2
216	AC > 24 h	(5 SWG)	64.9	11
	D _c	4.70	86.4	2
	D ₀	3.81	99.2	3
	D ₀	3.07	113.5	2.5
	$A_2 D_0 \dots$	2.77	75.9	3
	D_{\bullet}	2.13	91.4	2
	D ₀	1.83	103.9	3.5
	A ₂ D ₀	1.65	67.8	2
	D _c	1.02	98.4	1.5
218	AC > 24 h	(5 SWG)	89.9	8
	D_{\bullet}	4.70	114.2	3
	-•	3.81 3.07	128.2 151.3	3 4
	D ₀	2.77	91.4	3.5
	D_{α}	2.13	111.5	2.5
	A ₂ D _c	1.83	125.2	3
	A ₂ D _c	1.42	146.8	3
	A ₂ D ₀	0.99	154.4	2
221	A	5.44	86.1	15 _k
	D ₀	3.25	71.7	
	D ₀	1.85	105.5	
224	AC > 24 h	(5 SWG)	64.5	14
	D ₆	4.70	86.0	3
	D ₀	3.81	100.0	3
	D ₀	3.07	107.3	4
	A ₂ D ₀	2.77	81.3	3
	D ₆	2.13	101.7	2
	D ₀	1.83	104.7	3
	A ₂ D ₆	1.65	72.7	2
227	A.	5.49	92.1	12.5k
	D ₀	3.25	66.7	
	<u>D</u> ₆	1.88	100.8	
233	AC > 24 h	(5 SWG)	65.5	12
	D ₀	4.70	82.4	2
	D_{\bullet}	3.81	94.5	3
	D ₀	3.07	103.1	3.5
	A ₂ D ₀	2.77	88.2	2.5
	D ₆	2.13	105.8	2.5
	D ₀	1.83 1.65	107.3 76.0	$egin{array}{c} 2.5 \\ 2 \end{array}$
	A ₂ D _c	1.05	76.0 106.6	
	A2 D0	1.02	100.0	1.5

Cast, rolled and forged copper steels

Key No.	Treatment	Diam.*	BHN†	UTS	YP	El‡	RA	Torsion data §	Lit.
205	As cast	A		36.8	18.3	24 _d	53	Specimens 100	(\$2)
	A 800°	A		37.4	17.9	22 _d	59.5	mm× 18 mm	
	A 1000°	A		39.0	24.7	28 _d	67	diam. (as rolled)	
	A 1200°	A		38.1	20.2	28.5d	64		
206	F	В		60.0		13 _d	48.5		(17)
	CR Qw Tp DR	В		103.0		16 _d	45		
	CR Qo Tp DR	В		82.5		23 _d	48.5		
208	R	D	120	39.2	28.4	25 _f	42		(83)
209	G	A	170	61.2	31.5	17a	20		(82)

Table 6.—Copper Steels.—(Continued)
Cast, rolled and forged copper steels

Key	1	ronec	_			СРР	-	1	
No.	Treatment	Diam.*	BHN†	UTS	ΥP	Etţ	RA	Torsion data§	Lit
211	F	В		62.0		23 _d	48.5		(17)
	Q _w Tp	B		97.9 75.7		10.5 _ਦ 15 _ਦ	58 56	İ	
214	R		146	47.1	1	25.5d	_	USSC = 39.5	(17)
	A 900°	В	143	41.5	1		60	TMR = 52.5	` ′
	870° Q	В	311	67.0	1		53	$YP_8 = 31$	
215	Same, Tp 300-350°.	B	202	72.2 65.5		8.5d	48.5	$Tw = 77$ $USS_{C} = 43$	(17)
210	R	B	166	54.7		23.5 _d		TMR = 57.5	(,
	870° Q	В	627	76.5	76.5	1.5d		$YP_{\mathbf{S}} = 33$	
	Same, Tp 300°	B	460			1.5d	_	Tw = 19.6	43.33
216	R	В	255	73.3 83.5			20.5		$\frac{(133)}{(17)}$
411	R	В	228	72.3	1	16.5d		$USS_{C} = 68.5$ TMR = 91.5	(,
	830° Q	В	817					$YP_{\mathbf{B}} = 54.5$	İ
	Same, T _D 300-350°.	B_	555		158.0		0	Tw = 27.2	
219	R[В	286	102.8	71.7	5.54	4	$USS_{\mathbf{C}} = 76.5$ $TMR = 102$	(17)
	₩2 825° C	В	235	79.4	48.0	16 _d	34	$YP_8 = 51$	
	825° Qh	_ <u>B</u>	332	108.0			27	Tw = 13	
220	CR Q Tp DR	B B		66.3 103.8	ı	20 _d 11 _d	55 57		(17)
	CR Qo Tp DR	В		83.6	ı	15d	55		ľ
222	F	В		68.2		17.5d			(17)
	CR Qw Tp DR	B B		112.2 81.5		9d	66 62		
223	As cast			28.8		13 _d 10 _b	-		(12)
225	R	В	146	49.5		26.5d	60	USSC = 41.5	(17)
	A 900°	В	146	49.0	38.6	26 _d	57	TMR = 55	
	870° Q	B B	311 277	92.8 69.0		5.5d 11.5d		YP = 29 $Tw = 92.5$	
226	R	B	207	64.5		20.5d		USSC = 48	(17)
	A 900°	В	196	60.6	40.9	20 _d	40	TMR = 64	` '
	870° Q	B B	600 495			1.5 _d 3.5 _d		$YP_8 = 40.5$ Tw = 44.6	
227	Same, Tp 300°	B	418	96.0	_	3.5d 12.5d	_	$\frac{1w = 44.6}{USS_C = 71}$	(17)
	A 830°	В	223	75.5	ı	8.5d		TMR = 94.5	` ′
	830° Q		800 600					$YP_8 = 59$	
228	R	В	364	110.0	69.3	6 _d	7	$Tw = 24.8$ $USS_{\mathbf{C}} = 69$	(17)
	,				İ	-	l	TMR = 92	` ′
	A 825°	B B	277	80.0		16.5d	1	$YP_8 = 54.5$	
229	R		311	92.5 66.4	70.0 44.1		31 35	Tw = 10.8	(134)
231	1000° Ca	- <u>c</u>		34.8	_	30.5 _a	62		(6)
232	R	B	202	62.5			58.5	USSC = 47	(17)
	A 900°	В	174	49.5	41.3	25 _d	58	TMR = 62.5	•
	870° Q Same, Tp 300°	B B	311	112.0 111 0	106.0 102.4	⁵ ત 6.5ત	25.5 34	$YP_8 = 44$ $Tw = 70.2$	
233	R			78.2		21.5	35		(134)
	A			74.3		20	36		
234	R	В	269	79.6	68.5		31.5	$USS_{\mathbf{C}} = 55.5$	(17)
	A 900° 870° Q	B B	207 800	61.5 75.0			40	$TMR = 74$ $YP_8 = 49$	
	Same, Tp 300°	B	495		155.0		1.5	Tw = 29.6	
235	As cast			57.6		5ь			(12)
238	R	В	375	117.0	97.5	1.5 _d	1.0		(17)
	W ₂ 825° C	В	277	84.0	63.7	144	43	TMR = 98.5 $YP_8 = 66.5$	
	825° Qh	_B	311	107.5	86.9		17	Tw = 16.2	
240	As cast			72.0		5 _b			(12)
241	R	B B	255	77.1	69.5		46.5	$USS_{\mathbf{C}} = 58$ $TMP = 77.5$	(17)
	870° Q	В	183 351	50.3 137.9	46.0 106.0		63 29.5	$TMR = 77.5$ $YP_8 = 61.5$	
	Same, Tp 300°	B_	325	100.0	85.5		52	Tw = 18.3	
242	R	В	302	97.1	81.8		23.5	$USS_{\mathbf{C}} = 68.5$	(17)
	A 900° 870° Q	B B	212 782	68.5 100.2	56.5 100.2		42	$TMR = 91.5$ $YP_8 = 65$	
	Same, Tp 300°	В				1.5d	1.0		
* D	Diameters of tensil	e speci						13.8 mm, C =	14.33

^{*} Diameters of tensile specimens: A = 10 mm, B = 13.8 mm, C = 14.33 mm, D = 20 mm.

† 10 mm ball, 3000 kg load. ‡ a = 2 in., d = 100 mm, f = 200 mm, k = 20 in., b = 1 in. ‡ TMR = 1.333 $USS_{\rm C}$. || Broke near head.

Compression Test on Cylinder 28.47×14.33 mm Diam. $(1000^{\circ} C_{a})$

Key No.	Compressive stress kg/mm²	31.5	63	94.5	126	157.5	Lit.
231	% compression	1.5	8	22	38.5	49.5	(6)

Table 7, Part I.—Nickel Chromium Steels* (Tensile, Hardness and Impact Tests)

Key No.		Treatm	ent	BHN	UTS	YP	El	RA	ISu†	IS _v 1	Lit.
243	Rh			.1	46	26‡	37.5	61.5	I	1	(128)
244					85.5	76.5	13	56			(71)
245	850°	C _{a}		174	63	45.5	33	65	10.3	11.6	(18)
			500° Q _w	-	101	88	18	58	6.9	8.1	1
	850° (Qw Tp	600° Q _w		80	71	25	66	11.6	13.3	
			650° Q _w		74	63	27	69	12.9	15.0	
	850°			302	101	71	16	34	2.4	2.3	
		300		302	97.5		16	47	3.2	3.0	
	0	400		291	94.5		17	54	4.4	4.8	
	Same	500		262 223	85 72.4	69 58	21 27	62 68	9.7	10.0 14.0	
	10	650	0°	212	69	55	29	70	12.9	15.5	
246	850° (/	444	157	110	12	38	0.7	0.9	(18)
210	000	all	500° Q _w		134		12	39	-	-	()
	850° C	Toll	600° Qw		110	116.5 102.5	100	45	0.7	1.1	
	1	- P/II	650° Q _w		101	90	18	50	5.0	3.9	
	850° (201		532	204.5		2	5	0.55	0.8	
	795.4	300) (477	181	128	11	36	0.4	.7	
	Same.	400	1 1	444	162	135	11	36	.3	.6	
	Tp	3 500	1 -11	401	137	124.5	12	39	.4	.9	
		600	- 1	321	112	101	17	47	1.0	1.6	
	DECO	(650	, (293	102	91	20	52	5.4	5.3	
	850° (500°	512 364	192 129	183 115	5 13	8	0.55		
	Same,		650° Q _w		89.5			59	5.65		
Key No.		Treatme	ent	BHN	UTS	YP	PL	El	RA	IS _u †	Lit.
247			{ Qw	241	80.5	63	50.5	21	51	10000	(80)
	650°	/120	(C8	234	79.5	63	55	20	46	8.3	
			120 Ca	238	80	63.5	53.5	21	45	6.8	
	900°		120 Qw	245	82	67.5	53.5	19	46	6.8	
	Qo '		120 C _s 360 C _a **	242 227	81 76.5	65 60	58 52	19 21	46	7.2	
	Tp		120 Ca	270	91	77	63	18	39	4.85	
			120 Ca	300	99.5	86.5	69	14	39	1.95	
		(850	°/120 Ca	244	81	65	58	21	47	6.8	
	820° (°/120 Ca		90	75.5	63	18	41	4.7	
	Тр	550	°/120 Ca		100	86.5	71	15	37	1.95	
		50° Qo	Tp 660°	224	75.5	56	49	20	51	4.3 ISw11	
248	A 000	°/90 C		v. also	46	28		30.5	59	61.0	(89)
-10	Same,	870°	Qo 760°	Fig.					1		,
_	=		°/60 C _a .	21	57.3	35.5		21	67	95.0	
249			O Tr	v. also	62.5	30		21	41	13.6	(89)
	Same, 825° Qo Tp 600°/60 Cf		Fig. 22	86.2	71		20	58	34.2 18u		
250	1000°	Qo Tp	∫ Q _w	262	89	72.5	58	21	50		(80)
	650°		(C8	257	87.5	70.5	63	21	50	0.4	
		675°/1	20 Ca	243	84	69	63	22	55	7.35	
	900°		20 Qw	258	87.5	72.5	58	20	50	7.9	
	Qo {		20 C ₈ **	252	84.5	70	66	20	50	0.55	
	Tp	650°/3		236	80	65.5	61.5	22	47	7.9	
		600°/1 550°/1		289 325	96.5 109	1000000	72.5 86.5	17	49 39	2.35	
		000 / L	wo Ug	ORU	100	01	30.0	10	00	0,4	

Table 7, Part I.—Nickel Chromium Steels* (Tensile, Hardness and Impact Tests).—(Continued)

Key								1	
No.	Treatment	BHN	UTS	YP	PL	El	RA	ISut	Lit.
250	$\begin{vmatrix} 820^{\circ} & 650^{\circ} \\ \mathbf{Q_o} & 600^{\circ} \end{vmatrix}$ 120 $\mathbf{C_o}$	255 296	85 96.5	73.5 84.5	69 74	22 18	54 47	7.2 2.6	
	Tp \ 550° \ \	323	108	97	86.5	9	23	1.0	
	900° Ca 650°/2 h Qw	248	83	64	50.5	21	56	8.15	
251	1000° Q _o Tp ∫ Q _w	263	89	72.5	56.5	18	43	6.2	(80)
	650°/120 \ C _s	255	87	$\frac{71}{80}$	64.5	15	37	0.3	
	900° 675°/120 C _a 650°/120 Q _w	243 258	83.5 87	69 71	64.5 57	13 20	37 50	5.1 6.4	
	O 1 850°/120 C.	1	84	71	66	6	15	0.4	
	Tp 650°/360 Ca 600°/120 Ca	236 304	80 102	66.5 88	63 77	20 10	40 19	6.4 1.0	
	550°/120 Ca	342	115.5		88	_5	9	0.4	
	820° 650° Qo 600° 120 Ca	255 300	84.5 100	73 87	68 80	20 10	46 25	5.4 1.1	
	Tp (550°)	338	114	103	91	6	19	0.7	
	F A 900°, 850° Q _o Tp 660° C _a	235	79	65	62	20	47	1.95	
252	1200° Q₀ Tp∫Q₩	228	75.5	59.5	41	19	43	6.5	(81, 80)
	650°/120 Cs		72.5	56	44	20	43	8.3	·
	1000° Q _o Tp { Q _w 650°/120 { C _s	200 195	64 63.5	46 47.5	31.5 36	24 23	63 63	7.6 3.05	
	∫ 650°/120 Q _w	205	67	49	38	24	65	8.3	
	900° 650°/120 C _s ** Q _o 675°/120 C _s		65 76.5	48.5 60.5	39.5 50.5	24 19	65 39	4.4 6.1	
	Tp 650°/360 Ca**		72.5		49	22	55	6.8	
	(600°/120 Ca	256	84	70	55	17	42	3.6	
	F A 815°, 525° C. 805° Q. Tp 680° C.		69 62.5	52.5 45	42.5 36	20 24	49 56	3.75 5.65	
253	900° Q _o Tp { Q _w 650°/120 { C _s	1	83 81.5	66 64.5	53 53.5	21.5 21	55 51	4.9	(51)
	1000° Qo Tp { Qw	259	85	68.5	53.5	20	49	4.6	
	650°/120 \ Cs	250 265	82	66	35	20	51	0.6	
	650°/120 Cf	258			I8 _v †			4.2 0.4	
254	820° Ca	163††	56.5		12.3	32	65	11.8	(18, 62)
	820° Q _o	262 255	88 85	607	6.3 7.2	20	53 60	5.8 6.9	
	Same, 400° Qw	241 223	80 72.5	61.5	ı	21 24	63 67	8.3	
	Tp 600° "	192	64.5		ì	28	71	10.25 13.0	
	(650°) (179	60	45.5	17.3 PL	31	72	14.1	
255	1200° Q _o Tp \ Q _w		70.5	52	34	19	47	6.35	(80)
	650°/120 C _s **.		68.5		39	21	45	5.25	
	900° Q _o T _p Q _w 650°/120 C _a **	1	74 71	51 53	36 44	22 23	51 51	6.35 5.8	
	F 815° Qo Tp 650° C		66.5	39.5	31.5	22	44		
	F A 815°, 815° Q _o Tp 650° C _a					1		4.4	
256				2. F	ig. 13			•	
257	825° {600° } Q _w {	286	102	95.5		18.5	54	9.4	(28)
	Q ₀ T _D \ 650° \ \ 845° \ \ 600° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	269 311	93	77.5		22	61	11.1	
	Q _o T _D {650° } C _w {	262	91.5			16.5 23	55 61.5	8.6 10.5	
268	1000° Qo Tp \ Qw	253	84.5		55	19	43	5.55	(80)
	650°/120 \ C ₈ **.	247	78.5		61.5	17	15	5.25	
	900° 650°/120 Qw	253	84.5	67.5	56.5	18	45	5.95	
	Qo 650°/120 C _s **. Tp 650°/380 C _s	249 239	84 82	67.5 65.5		10 19	14 46	0.3 4.85	
	600°/120 Ca	280	94	80	69.5	13	26	0.8	
	550°/120 Ca 850° Qo 660°/2 h Ca	313	104.5	63	55	13	38	0.55	
	880° O. (650°)	258	86.5	72	67.5	18	41	5.4	
	Tp 2 h (550°) Ca	289 314	94.5 105	83 94.5	72.5 85	13 14	24 37	1.0 0.55	
	FA 900°, 850° Qo. Tp							1.95	
	660° Ca	1001	ı	ı	•	•	ı	1.90	I

Table 7, Part I.—Nickel Chromium Steels* (Tensile, Hardness and Impact Tests).—(Continued)

No. Treatment SHN OTS TP PL St RA ISuT IAT IAT		H.	ARDNESS	AND	Імр	ACT	Tests)).—(<i>C</i>	ontinu	ed)	
S60° Ca	Key No.	Treat	ment	BHN	UTS	ΥP	PL	Bl	RA	IS _u t	Lit
A 950° Q ₀ Tp 300° 177 170 111 43.5 180° 250° 172 166 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 186 10 39 122.5 187	259	1						l .	1		(71)
S80° Q ₀ Tp S80° 177 170 170 170 300° 172 168 110 39 390° 300° 172 168 110 39 370° 300° 175 360° 1802.5 148 111 41.						1		I .	l		
S80° Q ₀ Tp S80° Q ₀ Tp Q _w 297 605 76 655 17 37 4.85 (51)		A 950°									
		850° Q _o T		ĺ		1				ļ	
Sob Foot Q								l	L		
Sob Foot Q	260	F 900° Q	Tp / Qw	297	96.5	76	55	17	37	4.85	(51)
Soft					93.1	75.5	66	15	31	2.9	
262a	261	F 900° Qo	Tp∫Q _w	209	67.5	52.5	36	21	56	5.7	(51)
b N 820°		650°/120	\C _s	200	65	51	42.5	21	55	5.4	
b N 820°	262a	850° Ca		321	113	86.5		15	41	0.8	(4,18,47
e f f Tp 600° Qw 800°	b			321	113	86.5	48	15	41	0.8	50, 51,
e f f Tp 600° Qw 800°				1	I		foo	1	1		80, 109,
h				ı			‡: 4		i .		,
h		Same,			1		S.H.		ı		
i		1 1170 1			1 .	71	1 0 - 0		1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				ı				ŧ	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- (1			1	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(0			1—				·I	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			m / · ·				ı				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	650-/120	(C ₈ 00	237	77	61.5	50	20	47	0.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	(l) Tp ₂ 650)° C ₈ **	235	75	59	49	22.5	52	0.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P								l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			• •		4				l .		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
v w 900° Q₀ 600°/2 h Ca 284 88 76 63 18 42 1.8 88 76 69 900° Q₀ 550°/2 h Ca 286 94 84.5 69 15 37 1.0 8850° Q₀ Tp {Qw 245 76.5 61 49 21 56 8.3 1.25 850° Qw Tp {Qw 240 76 60.5 52 22.5 56 1.25 8 850° Qw Tp {Qw 230 73 49 30.5 24 48 9.0 675°/495 {Ca** 220 71 48 33 25 52 52 5.1 850° Qw 331 115 105.5 18 54 2.8 850° Qw 285 97.5 89 81 \$\$\$ 20 61 6.5 650° Ca 270 88 77 64.5 12 25 1.9 650° Ca 243 80.5 67.5 65.5 18 43 5.7 650° Ca 243 80.5 67.5 65.5 18 43 5.7 650° Ca 243 80.5 67.5 56.5 18 43 5.7 16 600° Ca 243 80.5 67.5 56.5 18 43 5.7 18 18 54 2.8 18 18 18 18 18 18 18 18 18 18 18 18 18					1					1 1	
w 900° Q₀ 550°/2 h Ca 288 94 84.5 69 15 37 1.0 x 850° Q₀ Tp ∫ Qw 245 76.5 61 49 21 56 8.3 y 650° ⟨ Ca** 240 76 60.5 52 22.5 56 1.25 s 550° Qw Tp ∫ Qw 230 73 49 30.5 24 48 9.0 aa 675°/495 ⟨ Ca** 220 71 48 33 25 52 5.1 bb ⟨ 400° Qw 388 135 122.5 14 50 0.8 500° Qw 285 97.5 89 81 § § 20 61 6.5 ff Tp 2 h 600° Ca 287 94 85 69.5 4 7 1.1 gg 650° Ca 287 94 85 69.5 4 7 1.1 gg 650° Ca 287 94 85 69.5 4 7 1.1 gg 650° Ca 243 80.5 67.5 56.5 18 43 5.7 650° Ca 243 80.5 67.5 56.5 18 43 5.7 ii (hh) Tp₂ 650° Qo 218 72 57.5 47 19 49 5.95 jj 820° Q₀ 705°, Qw 220 75 53.5 31.5 21 43 2.2 ll 820° Q₀ 705°, Qw 223 76.5 58 39.5 21 51 5.7 mm 75 Q₀ 600° ⟨ Ca** 214 73.5 54.5 42.5 19 45 2.35 pp 820° Q₀ 788 Ca** 229 78.5 45.5 42.5 19 45 2.35 263a 1000° ⟨ Ca 0.3° /m 229 78.5 45.5 42.5 19 45 2.35 263a b 800° ⟨ Ca 0.3° /m 229 77.5 41.5 34.5 27 61 5.8 1000° ⟨ Ca 0.3° /m 229 77.5 41.5 34.5 27 61 5.8 27 61 5.8 47.8 47.8 28 47.8 47.8 47.8 47.8 28 47.8 47.8 47.8 47.8 28 47.8 47.8 47.8 47.8 28 48 48 48 48 48 48 48											1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		286	94	84.5	69	15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	850° Q _o 1	[p { Q _w	245	76.5	61	49		56	8.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	у				76	60.5	.52		56		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1		1		1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0/5-/495	,			I	-33				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1					I		
$ \begin{array}{c} \textbf{ee} \\ \textbf{ff} \\ \textbf{gg} \\ \textbf{hh} \\ & \begin{array}{c} 600^{\circ} \text{Ca} \\ 650^{\circ} \text{Ca} \\ 243 \\ \hline \end{array} \\ \begin{array}{c} 243 \\ 80.5 \\ 67.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 \\ 65.5 \\ \hline \end{array} \\ \begin{array}{c} 87 $		9909 ()		l	1		69.5				
Second Column Second Colum								l			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1			ı	ľ		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								1	l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(hh) Tp2 6								I	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ii				75		31.5	21	50	5.1	
mm 75 Q ₀ 600° C _u *° 214 73.5 54.5 42.5 19 45 2.35				217	74	50	31.5	21	43	2.2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		820° Q _o 70	05°, √ Q _w			1					
00 Pp 820° Qo 788 Ca** 246 80 70.5 ¶ 23 69 33 67 263a 1000° Cs 0.3c°/m { 229 78.5 45. 30 22 51 2.8 47.8 47.8 27.5 61.5 8.8 47.8 27.5 61.5 8.8 47.8 28.8 47.8 28.8 47.8 47.8 47.8 48.8 48.8 47.8 47.8 4										2.35	
pp 820° Q ₀ 788 C ₈ °°···· 61.5 42 40 33 67			s. σ [∞] { C [∞]		1				l		
263a b 000° C 0 0 3 000° C 0 0 3 000° C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ľ										
263a b 1000° C 0.3c°/m { 229 78.5 45 30 22 51 2.8 (18, 2 20) 72.5 41.5 34.5 27 61 5.8 47, 8	עע	- 40 IC	~ v g		1	ا سد .			. ••		
b 800° C ₈ 0.3° m 209 72.5 41.5 34.5 27 61 5.8 47, 5	2630	1000°)		229	78 K	45			51	2.8	(18, 28,
		800° C	0.3°/m {	1				1	1		47, 80,
1 0 12000 CE	С			296	99.5		16	16	41	1.8	81, 65 ,
d 900° C _a Tp \ Q _w 220 74 55.5 41 25 66 9.4 69, 7	d			220	74	55.5	41	25	66	9.4	69, 71,
e 650°/120 C _a 217 73.5 56 45.5 25 66 9.4 80, 1	e	650°/120	(C _●	217	73.5	56		25	66	9.4	80, 109,
f 800° Ca 296 100 64 20.5 18 43 2.35 110)	f	800° Ca		296	100	64	20.5				110)
g 1000° Q ₀ Tp Q _w 267 90 50.5 23.5 19 47 6.1					•					1 1	
h 700°/120 Cg** 237 78 50 20.5 26 62 9.4											
i 1000° Q _o Tp { Q _w 310 99 88 71 20 56 6.35 j 550°/120 C _g •• . 311 100.5 88 67.5 15 28 1.8			4		1						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l		i I				
m 900° Q ₀ 675°/2 h C _a 242 82 .5 54 .5 33 24 55 6 .25											
n 900° Q ₀ Tp \ Q _w 247 83 67 47 25 66 10.25											
o 650°/120 (C _a ** 245 82.5 67 58 25 65 3.45					82.5		58	25	65		
p 900° Q _o 650°/6 h C _a 244 82 65.5 53.5 25 65 9.95	l p	900° Q _o 65	60°/6 h Ca	244	82	65.5	53.5	25	65	9.95	

HARDNESS AND IMPACT TESTS).—(Continued)

Key	Tre	atment	BHN	UTS	YP	· PL	El	RA	IS _u †	Lit.
No. 263	I				<u> </u>	1	<u> </u>	1		
203 Q	900° Qo	600°/2 h Ca	262	90.5	77.5	66	23	66	7.9	
- 1		530°) ***	321	110	100	90	18	54	3.6	
	Tnah	600° Qwttt		98	88	74	21	62	6.8	
t			248	89	78	60.5	24	66	9.0	
u v	820° Qo.	(200°) (495 469	182.5 168.5			14 14.5	37 50	1.5 2.8	
*		300°	436	152.5	126		14.5	53	0.55	
x	Same,	400°	388	134	118	ì	16	54	1.1	
У	To (500° Q _w { 600°	331 285	112 94.5	102	1	19 22.5	56 62	3.9 8.15	
3.3		650°	269	89.5			24	65	10.25	
bb		700°) \	240	85	51	25	18	45	5.0	
oc		(700° C _a **	236	78	50	33	20	37	9.55	
264		$\operatorname{Tp}\left\{ \operatorname{Q}_{\mathbf{w}}\ldots\right\}$	247	81	67.5	53.5	26	70	8.6	(51)
	650°/12		234	78	64.5	56.5	26	69	5.0	
265	830° Qo.			194	106.5	42				(3, 28, 71)
		100°		190.5 174	121.5 136	52 90				,
ı	Same, T	^p ∫ 300°		158	129	111				
		₹400°		145	121	102				
	825° Qo	Tp \ 600°	1	105	90		21.5 19	54.5	6.9	
		(600°	293 300	104	87		19	47 54	7.5	
	845° Qo	Tp \ 650°	293	103	93 88.5		18	49	7.2	
=	====			=		ISv				
267	850° Ca.		477	180.5	133	2.3	13	40	2.5	(18, 30,
	820° Ca		477555		139	2.3	10	39	2.35	62, 68,
	(200°	477	174.5	1	2.6	11	44	2.35	71)
	Same,	300° 400°	444 418	162.5 141.5		2.0 2.1	12 14	48 52	1.65 1.95	
	Tp	500° Qw {	351		105.5	3.7	18	56	4.7	
		600°	277	94.5	82	11.7	23	65	10.4	
		650°) (262	85	72.5	14.6	25	67	11.5	
	0000	500°	418 364	143 123	137 112	2.8 5.8	13 16	52 56	2.35 5.1	
	820° Q _o Tp	620° Qw {	269		= 44	0.0			•••	
	1 1	650°	262	90	74	13.8	24	57	11.9	
	i`									l
	A		255	ScH	= 45					Į.
268	====			-		2,4	11	38	2.0	(28)
268	Wgf 795 Wsalt 79	° C _a	430 444	ScH 183 186	= 45 144.5 141	2.4 2.55	13	34	2.0 2.0	(28)
268	Wgf 795 Wsalt 79	° C	430 444	183	144.5	1				(28)
268	Wgf 795 Wsalt 79	° C _a	430 444	183 186 183	144.5 141 143.5	2.55	13	34	2.0	
268	Wgf 795 Wsalt 79 Wgf 825	° Ca 95° Ca ° Ca	430 444 430	183 186 183 ———————————————————————————————————	144.5 141 143.5 ====================================	2.55 2.65 PL 38	13	34	2.0	(28)
==	Wgf 795 Wsalt 79 Wgf 825	° C _a	430 444 430	183 186 183 173.5 161.0	144.5 141 143.5 103 109	2.55 2.65 PL 38 55.5	13	34	2.0	
==	Wgf 795 Wsalt 79 Wgf 825	° C _a	430	183 186 183 173 .5 161 .0 152 .0	144.5 141 143.5 103 109	2.55 2.65 PL 38 55.5 93.5	13	34	2.0	
==	Wgf 795 Wsalt 79 Wgf 825	° C _a	430	183 186 183 173.5 161.0 152.0 145.0 132.5	144.5 141 143.5 103 109 128 140.5 115.5	2.55 2.65 PL 38 55.5 93.5 104 91.5	13	34	2.0	
==	Wgf 795 Wsalt 79 Wgf 825	° C _a	430	183 186 183 173 . 5 161 . 0 152 . 0 145 . 0 132 . 5 110 . 0	144.5 141 143.5 103 109 128 140.5 115.5 102.5	2.55 2.65 PL 38 55.5 93.5 104 91.5	13	34	2.0	
269	Wgf 795 Wsalt 79 Wgf 825 830° Ca.	° C _h	430	183 186 183 161 .0 152 .0 145 .0 132 .5 110 .0 95 .5	144.5 141 143.5 103 109 128 140.5 115.5 102.5 75.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61	13 12.5	34 39	2.0 2.15	(3)
==	Wgf 795 Wsalt 79 Wgf 825 830° Ca. Same, T	° C _a	430	183 186 183 173 . 5 161 . 0 152 . 0 145 . 0 132 . 5 110 . 0	144.5 141 143.5 103 109 128 140.5 115.5 102.5	2.55 2.65 PL 38 55.5 93.5 104 91.5	13	34	2.0	
269	Wgf 795 Wsalt 79 Wgf 825 830° Ca. Same, T	° C _h	430 444 430 	183 186 183 173.5 161.0 152.0 145.0 132.5 110.0 95.5 81 80	103 109 128 140.5 115.5 102.5 75.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61	13 12.5	34 39 62	8.2	(3)
269	Wgf 795 Wealt 77 Wgf 825 830° Ca. Same, T 900° Qo 650°/1: As forge	° C _h	430 444 430	183 186 183 173.5 161.0 152.0 145.0 132.5 110.0 95.5	103 109 128 140.5 115.5 102.5 75.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61	13 12.5	34 39 62	8.2 6.1 ISyt	(3)
269 270 271	Wgf 795 Walt 78 Walt 78 Wgf 825 830° Ca. Same, T 900° Qo 650°/12 As force 1150° Q.	° C _h	430 444 430 	183 186 183 173 .5 161 .0 152 .0 145 .0 132 .5 110 .0 95 .5 81 80	144.5 141 143.5 103 109 128 140.5 115.5 75.5 75.5 35	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61	13 12.5 24 24 7	34 39 62 65	8.2 6.1 ISyt	(3)
269 270	Wgf 795 Waalt 79 Wgf 825 830° Ca. Same, T 900° Qo 650°/12 As forge 1150° Q. 1000° 1100°	° C _h	245 245 239 279	183 186 183 173 .5 161 .0 152 .0 145 .0 132 .5 110 .0 95 .5 80 80 82 83 .5 80	103 109 128 140.5 15.5 102.5 75.5 58 55 49 45.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52 22 35	62 65 52¶¶¶ 37 42.5	8.2 6.1 ISyt	(3) (28, 51) (136)
269 270 271	Wgf 795 Waalt 79 Wgf 825 830° Ca. Same, T 900° Qo 650°/12 As forge 1150° Q. 1000°	° C _h	430 444 430 	183 186 183 173.5 161.0 152.0 145.0 132.5 110.0 95.5 81 80 80 82 83.5	103 109 128 140.5 115.5 102.5 75.5 58 55 49	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52	62 65 52¶¶¶	8.2 6.1 ISyt 24.5	(3) (28, 51) (136)
269 270 271	Wgf 795 Wsalt 79 Wsalt 79 Wsalt 79 Same, T 900° Qo 650°/12 As forge 1150° Q. 1000° 1100° 1200°	° C _h	245 245 239 279	183 186 183 173 .5 161 .0 152 .0 145 .0 132 .5 110 .0 95 .5 80 80 82 83 .5 80	103 109 128 140.5 15.5 102.5 75.5 58 55 49 45.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52 22 35	62 65 52¶¶¶ 37 42.5	8.2 6.1 ISyt	(3) (28, 51) (136)
269 270 271 273	Wgf 795 Wsalt 79 Wsalt 79 Wsalt 79 Same, T 900° Qo 650°/1: As forge 1150° Q 1100° 1200° 1000° Q	° C _h	245 245 239 279 237 214 203	183 186 188 173.5 161.0 152.0 132.5 110.0 95.5 81 80 80 82 83.5 80 75	144.5 103 109 128 140.5 115.5 102.5 75.5 58 35 49 45.5,3 36.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52 22 35 47	62 65 52¶¶¶ 37 42.5 48.5	8.2 6.1 1Syt 24.5	(3) (28, 51) (136)
270 271 273	Wgf 795 Wsalt 79 Wsalt 79 Wsalt 79 Same, T 900° Qo 650°/12 As forge 1150° Q 1100° 1200° 1000° Q As received	° C _h	245 245 239 279 237 214 203	183 186 188 173.5 161.0 145.0 132.5 110.0 95.5 80 80 82 83.5 75	144.5 103 109 128 140.5 15.5 102.5 75.5 58 55 49 45.5 36.5 33	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52 22 35 47	62 65 52¶¶¶ 37 42.5 48.5	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)
270 271 273	Wgf 795 Wasle 76 Wgf 825 830° Ca. Same, T 900° Qo. 650°/12 As forge 1150°° 1100° 1200° 1000° Q. As received as the second secon	Ca	245 239 279 237 214 203	183 186 183 173.5 161.0 152.0 145.0 132.5 80 80 82 83.5 80 75 77 70 63	144.5 141 143.5 103 109 128 140.5 151.5 55 55 35 49 45.5 36.5 38 29 27	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 24 7 52 22 35 47 73 45 to 25 57 48.5	62 65 52¶¶¶ 37 42.5 48.5 68 57 to 46 58 51	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)
270 271 273	Wgf 795 Wasle 76 Wgf 825 830° Ca. Same, T 900° Qo. 650°/1: As forge 1150°° 1100° 1200° 1000° Q. As recei 950° Ca. 950° Cf.	Ca	245 239 279 237 214 203	183 186 183 173.5 161.0 152.0 145.0 132.5 81 80 82 83.5 80 75 77 70 63 74.5	144.5 141 143.5 103 109 128 140.5 1102.5 75.5 58 55 49 45.5 36.5 33 38 29 27	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 24 7 52 22 35 47 73 45 to 25 57 48.5 62	62 65 52¶¶¶ 37 42.5 48.5 68 57 to 46 58 51 59	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)
270 271 273	Wgf 795 Wasle 76 Wgf 825 830° Ca. Same, T 900° Qo. 650°/12 As force 1150° Q. 1100° Q. 1100° Q. As recei 950° Ca. 950° Ca. 950° Ca.	Ca	245 239 279 237 214 203	183 186 183 173.5 161.0 152.0 95.5 81 80 82 83.5 80 75 77 70 63 74.5 79	144.5 141 143.5 103 109 128 140.5 115.5 102.5 75.5 58 55 49 45.5 36.5 33 38 29 27 30 42	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 24 7 52 22 35 47 73 45 to 25 57 48.5 62 40.5	62 65 52¶¶¶ 37 42.5 48.5 68 57 to 46 58 51 59 51	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)
270 271 273	W _{sf} 795 W _{salt} 795 W _{salt} 795 W _{st} 825 830° C _a . Same, T 900° Q _o 650°/1: As forge 1150° Q. 1100° Q. 1200° Q. As receir 950° C _a . 950° C _a .	Ca	245 239 279 237 214 203	183 186 183 173.5 161.0 152.0 145.0 132.5 81 80 82 83.5 80 75 77 70 63 74.5	144.5 141 143.5 103 109 128 140.5 115.5 102.5 75.5 35 36.5 33 38 29 27 30 42 49.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 24 7 52 22 35 47 73 45 to 25 57 48.5 62	62 65 52¶¶¶ 37 42.5 48.5 68 57 to 46 58 51 59 51 51 43	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)
270 271 273	Wgf 795 Wsalt 795 Wsalt 795 Wsalt 795 Wsalt 795 Same, T 900° Qo 650°/12 As forge 1150° Q 1000° 1200° 1000° Q As recei 950° Ca 950° Cf 900° Qw As (3 recei- 950° Cs	Ca	245 239 279 237 214 203	183 186 183 173.5 161.0 152.0 145.0 152.0 95.5 81 80 80 82 83.5 77 70 70 63 74.5 79 80.5	144.5 144.5 103 109 128 140.5 102.5 75.5 58 55 49 45.5 33 38 29 27 30 42 49.5 36.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52 22 35 47 73 45 to 25 57 48.5 62 40.5 35	62 65 52¶¶¶ 37 42.5 48.5 68 57 to 46 58 51 59 51	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)
270 271 273	Wgf 795 Wasle 76 Wgf 825 830° Ca. Same, T 900° Qo. 650°/1: As forge 1150° Q. 1100° 1200° 1000° Q. As recei 950° Ca. 950° Cf. 900° Qw As (3) recei-4 ved, 5 Tp (6) Tp 400°	Ca	245 239 279 237 214 203	183 186 183 173.5 161.0 152.0 145.0 145.0 152.0 95.5 110.0 95.5 80 80 82 83.5 77 70 70 63 74.5 79 80.5	144.5 144.5 103 109 128 140.5 102.5 75.5 58 55 49 45.5 33 38 29 27 30 42 49.5 36.5	2.55 2.65 PL 38 55.5 93.5 104 91.5 89 61 36 36	24 24 27 52 22 35 47 73 45 to 25 57 48 .5 62 40 .5 35 29 .5	62 65 52¶¶¶ 37 42.5 48.5 68 57 to 46 58 51 59 51 51 43	8.2 6.1 1Syt 24.5	(3) (28, 51) (136) (136)

TABLE 7, PART I.-NICKEL CHROMIUM STEELS* (TENSILE, | TABLE 7, PART I.-NICKEL CHROMIUM STEELS* (TENSILE, HARDNESS AND IMPACT TESTS).—(Continued)

Key No.	Treatment	BHN	UTS	ΥP	PL	El	RA	IS _w t	Lit
276	BHN: 900° Q _w = 187; 1000° Q _w = 187: 1100° Q _w = 293								(71)
277	950° Q _w		75	45		30	1	7.5	(71)
278	As for service	ca. 160		Sciero	scope har	dness =	ca. 19		(20)

- * See Table of Chemical Analyses, p. 486
- † For meaning of subscripts, r. p. 396.
- PL = 23.5.
- $\frac{1}{2}$ ScH = 40.
- ¶ Bars 3 in. diam.
- ** C_a = Cooled at 0.3° per min. between 600 and 400°. †† ScH = 28.
- ‡‡ Large size Charpy test piece.
- §§ ScH = 36; EL = 82.5. || || ScH = 28; EL = 70.
- $\P\P$ ScH = 29; EL = 60.5.
- *** ScH = 50.
- $\dagger\dagger\dagger$ ScH = 45.
- $\ddagger \ddagger ScH = 38.$
- \$\$\$ ScH = 69. || || || On 75 mm diam.
- ¶¶¶ 15 mm diam. **** ScH = 22.
- †††† Additional values of impact strength for steels Nos. 262 and 263.

IZ N	Trt	1 -	b		d				- L	bb	
KN		8		c		e	1 1	g	h	00	cc ee
262	$IS_{\mathbf{v}}$	1.3	1.2	1.3	0.6	0.8	2.4	6.1	10.1	1.1	2.5 6.9
Trt	1	m	n	0	p	Trt	: j		k 1	m	I.L.
$IS_{\mathbf{v}}$	7.6	2.5	0.55	0.4	7.1	IS,	12	0 5.	0 11.	0 5.3	
Trt	n	0	p	r	8	t	×	у	5	88	ee
$IS_{\mathbf{x}}$	0.8	0.6	9.8	7.8	2 5	8.9	10.2	1.8	12.0	7.6	6.3
Trt	ii	kk	11	mm	Trt	nn	00	pp	Nos. 2	62j to 2	262aa testeo
IS _x	7.6	4.2	8.2	4.3	IS _z	7.5	7.8	6.9	on th	e Guil	lery Mach.
KN	Trt	u	v	w	x	у	5	88			
263	IS.	1.6	2.9	0.7	1.7	3.5	8.9	12.8	l		

TABLE 7, PART II.—COMPRESSION TESTS ON NI-CR STEELS

Key No.	Treatment	l, in.	Diam., in.	UCS	YPC	PLC	<i>EL</i> _C	Lit.
243	Hot rolled	3.5	0.75	45	28	26.5		(125)
262	830° C _a A 788°/30 C _f 830° Q _o 600° Q _o 830° Q _o 788° Q _o { C _f 650°/60 Q _w	3 3 3 3	0.75 0.75 0.75 0.75	93.5 70.5 70	91.5	68.7	87 69	(109, 110)

Specimens 0.564 in. \times 0.564 in. diam. Loaded to 315 kg/mm² (28)

				0.	
Key No	257	257	263	263	265
Treatment	825° Q.	845° Q.	824° Q.	845° Q.	824° Q.
Permanent set	23%	25%	12.7%	10.2%	2.8%

Table 7, Part III.—Torsion Tests on Ni-Cr Steels

Key No.	Treatment	USS*	TMR	YPS	$PL_{\mathbb{S}}$	ELs	Total twist	Lit.
243	Rh (2 in. × 1 in. diam.).	32.5e	43.5	19.5	17			(128)
	R _h (2 in. × ½ in. outside diam. × ½ in. inside diam.)			17	16	W. "		
257	825° Qo Tp $\begin{cases} 600^{\circ} \\ 650^{\circ}$	61.5 _c 59.5 _c	82.5 79	64.5 50.5			884° 886°	(28)
	845° Qo Tp $\begin{cases} 600^{\circ} \\ 650^{\circ}$	66.5 _c 59 _c	89 79	67.5 50			1094° 1104°	
262	830° C _a 788°/30 C _f † 830° Q _o 788°/30 Q _o 650°			25.5	24			(109, 110)
	C _f †					44.5		
	Same, but 650° Q _w † 830° Q _o 600° Q _o †		-	59.5		51.5		

Table 7, Part III.—Torsion Tests on Ni-Cr Steels.—
(Continued)

Key No.	Trea	tment	USS*	TMR	YPS	PLs	EL_S	Total twist	Lit.
263	Tn 850° Qo	530° 600° 650° Qw‡	67.5 ₀ 62.5 ₀ 57.5 ₆		61.5 58.5 51			310° 440° 600°	(28, 65)
265	825° Q _o Tp	/a	69.5 ₀ 70 ₀ 65.5 ₀	1	58.5 66.5 58			1050° 954° 886°	(28)
267	830° Qo Tp 820° Ha‡	620°	61.5 ₀ 106 ₀	82.5 141	51.5 88			399° 27°	(65)

- * Subscript c calculated on assumption of uniform stress throughout section.
- † Specimen 21/4 in. × 1/2 in. diam.
- ‡ Specimen 134 in. × 56 in. diam.

TABLE 8.-NI-CH STEELS*

		LE 8	-N	-Cυ S	TEEL	s*			
Key No.		BHN	ScH	UTS	YP	PL	El	RA	Lit.
279	As cast	139	<u> </u>	60.2	42.9		25	42.	5 (84)
280	As received			67.7	37.1			57	(93)
281	As cast	149		64.5	43.0		28	47	(84)
282	As forged			99.0	69.0		11.5	18	(54)
283	800° C ₈	320	37	105.5	90.1	56.2	11†	27	(23)
	800° Q _o Tp‡	546	57	220.3	192.2			36.5	
284	As forged	 -		104.8	79.9	ļ	_ 11	24.5	<u> </u>
285	As rolled	307		61.1	40.7		20.5	45	(58)
286	As forged			77.6	58.1		22	48	(54)
287	As forged			92.9	60.5		11.5	23	(54)
289	As rolled	300	<u> </u>	54.5	36.5		25	54	(58)
289	780° Ca	326 550	35 60	122.0 142.1?	120.8	38.7 105.5	6†	15	(23)
290	760° C	279	37	98.2	92.5	49.9	11.51	.	(23)
	760° Qo Tp‡	642	70	176.9?	02.0	98.4	20†	1	(33)
291	As forged			79.2	56.2		19	38	(54)
	850° Q _w Tp 400°			- 5	88.6		<u> </u>		
292	As rolled			62.4	39.1		20	47	(58)
293	As forged			90.1	56.0		12.5	17	(54)
294	As cast	166		70.3	53.8		20	33	(84)
295	800° Ca	292	38	101.0	94.4	49.2	12†	38	(23)
296	800° Qo Tp‡	555	63	230.5		130.7	4.51	8	
290	780° Ca	285 578	38 68	103.7 209.4	92.5 183.8	59.8	12†	45 2	(23)
297	As forged			88.9	56.7		14	28.5	(54)
298	As forged		—	70.7	49.5		18.5	33	(54)
	850° Q _w Tp 400°	- 1		5	129.6		1.0.0		()
299	780° Ca	396	40	108.4		49.2	1†		(23)
	780° Qo Tp‡	530	52	176.9		98.4	1†	14	
300	As forged		I	93.6	93.6		1	0	(54)
301	As received		- 1	62.4	41.6	30.8	16.5	29	(132)
	Tpo			61.6 70.3	40.5 49.2	34.5 43.2	21.5 19.5	33 36	
302	As rolled			81.0	50.9		22	51	(101)
	Annealed			75.4	44.8		25	48	()
	815° Q _o Tp { 425°				108.3	•	13	49	
	(315*		—		130.1		12	46	
303	As received	ı		85.1 83.7	60.8 58.0	35.6 46.9	3 14.5	5 39	(132)
	Тро	İ	- 1	60.6	00.0	59.4	0	0	
304	As received		_	71.0	40.3		42.5	61.5	(31)
305	As received			67.5	36.4		42	54	(31)
306	As forged		16	49.9	34.6		22.5	62.5	(22)
	Annealed		17	44.3	28.3		30	64	
307	As received			53.1	44.7		28	65.5	(31)
306	As received	.	.	52.8	45.4			71.5	(31)
309	As forged		18	57.8	44.7			65	(22,
210	Annealed	-	21	61.6	50.1			60	31)
310	As received	-		50.0	84.4			16	(31)
311	As forged	- 1	22 24	59.0 75.5	50.9 63.9			54 49.5	(22)
312	As forged	 -	27	75.6	64.5			53	(22)
	Annealed	l	26	72.4	61.9			62.5	ν,,

TABLE	8.— N 1-Сп	STEELS.*-	(Continued)

Key No.	Trt	ScH	UTS	YP	El	RA	Lit.
313	F	37	104.5	98.1	13	37	(22)
	A	33	105.4	101.1	16	52	` ´
314	F	39	130.1	110.6	13	40.5	(22)
	A	33	106.4	102.5	12	39	` ′
315	F	40	117.1	101.4	7	16.5	(22)
	A	34	106.5	103.1	10	38	` ´
316	F	41	129.3	114.2	10	27	(22)
	A	33	107.5	96.8	11	40.5	` `
317	F	41	144.0	119.5	7.5	17.5	(22)
	A	38	114.0	91.2	10.5	16	` '
318	F	42	143.0	131.3	6	7	(22)
ł	A	42	108.9	89.0	4	1	, ,

Key No.		Treatment	IS
283	800° Q.		1.0
289	780° Q.		0.8
290	760° Q.	The 1779/01	0.5
295	800° Q.	$\left. \left. \right. \right. \left. \right. \left. \right. \left. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \right. \right. \right. \left. \left. \left. \left. \right. \right. \right. \left. \left. \left. \left. \right. \right. \right. \right. \left. \left. \left. \left. \left. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \right. \right. \right. \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left. \left.$	1.1
296	780° Q.		0.4
299	780° Q.		0.5

- * For analyses v. p. 486.
- † Dimensions of test piece = 2 in. × 0.3 in. diam.
- ‡ Tp 175°/3 h.
- Broke in thread.
- | Isod machine. Specimens 0.45 in. diam. Area of notch 0.12 in. 2 (23).

Table 9.—Nickel Vanadium Steels* (Tensile, Hardness and Impact Tests)

		IMP	ACT	LEST	5)				
Key No.	Treatment	BHA	UTS	YP	PL.	El†	RA	Is:	Lit.
319	N 900° C ₈		60.3 115.3		96.6		70 43.5	ISy	(55)
320	N 900° C	235	95.7	1	48.0	7	8	6	(55)
321	850° C _a 850° Q _o T _p { 600° 700°	235	89.5 94.2 91.0	55.6 70.0	47.1	12 16	32 21.5 29	l	(71)
	v. Figs. 29 and 46. B.							255	
322	N 900° C _B		89.6		46.1	-	25.5		(55)
323	N 900° C ₈ 850° Q _w		66.3 117.0	1	55.2 97.0		57 44	31 11	(55)
324	N 900° C _a 850° Q _w		72.3 137.0	1	64.0 132.2		48 16.5	16 6	(85)
325	1 950° C		101.5	'	44.7				(71)
	850° Q _o Tp $\begin{cases} 650^{\circ} \dots \\ 700^{\circ} \dots \end{cases}$	302 241	104.0 97.2	61.9	38.8 52.6	10	21.5		` ,
	v. Figs. 29 and 46. Bi		600 (); 265	(Cm)
326	N 900° C 850° Q				56.2)		61	6 3	(56)
327	N 900° C		96.2		55.4	5	8.5		(55)
328	N 900° C		60.8		44.8			5	(55)
	850° Q _w		54.9		40.3		40	9	` ,
329	N 900° Ca	235	84.8		54.8	7	12	5	(55)
330	N 950° C	196	69.2	(EL =	52.0)	20	46	6	(56)
	850° Q _w	460	<u> </u>					2	
331	840° C. §		102.1	61.4	35.9	16	47	IS _u	(²³)
	840° Qo Tp¶	**	202.8		91.4	9	37.5	1.2	
332	827° Qo Tp 205°						3.5	1.2	(23)
333	800° C _a					19.5 5	48.5 8	0.8	(23)
334	R‡ in. diam		107.3 85.6			17a 22a			(8)
	R 3 × † in. plate		111.6	64.5	EL	10 _c	} 12	IS _y	
335	N 900° C ₈		73.0 129.0				44	8 3	(56)

Table 9.—Nickel Vanadium Steels* (Tensile, Hardness and | Table 10.—Vanadium Steels (Tensile, Hardness and Impact Tests).—(Continued) IMPACT TESTS).—(Continued)

Key No.	Treatment	BHN	UTS	ΥP	PL	El†	RA	IS _y ‡	Lit.
336	N 900° C _a		67.8		49.0	21	44	8 3	(56)
337	N 900° C ₈ 850° Q _w		76.0 157.0		57.6 148	18 11	48 48	10 8	(56)
338	N 900° C _a 850° Q _w		78.2 151.2		61.8		45 46.5	8 5	(56)
339	N 900° C ₈		61.0 154.0		49.0 146		44	20	(56)

^{*} For analyses v. p. 487.

TABLE 10.—VANADIUM STEELS (TENSILE, HARDNESS AND IMPACT Tests)

Key No.	Treatment	Hard- ness ScH	UTS	YP	PL	El	RA	IS	Lit.
340	815° Q ₀	44	97.7	79.4		3			(53)
	870° Q	55	137.2	118.2		4.5			` ′
	925° Q	58	142.0	121.0		7			
1	(540°	38	87.1	80.6		14			
	595°	37	83.3	74.1		15			
	Same, Tp { 650°	35	74.5	68.9		15			
	705°	32	61.9	53.6		18	1		
	760°	28	53.1	42.8		20			
341	R 1 in.*	BHN	106.9	67.7		6.5	7		(8)
342	As received	166	60.0	52.8		24.	70		(106,
	900° Ca	104	39.5	27.7		36	74.5		107)
	A 950° C _f †	82	36.2	20.8		39.	73		
	400° C.	116	42.6	28.9		33.	79		
	850° 500° Ca	121	48.5	30.5		35.5a	77.5		
	Qw Tp 700° C.	116	44.2	32.1		35 ₈	75		
343	As received	143	63.7	46.4		23,	55		(106,
	900° C	126	50.4	33.4		32	62		107)
	A 950° Cft	94	40.0	19.5		37.5	62		· '
	(400° C	157	59.8	40.9		31.5	67		
	850° ↓ 500° C-	159	61.8	41.5		29.5	66		
	Qw Tp 700° C	145	56.2	39.0		31.	69		
=					===		=	70	==
	l							IS _u	
344	As cast	156	56.8	26.2	15.8	23.5	29.5	0.9	(95)
	A 925° C _f 925° C _A	152 162	55.9 62.3	28.1 36.9	22.5 35.5	27.5 26.4	43 47	2.1 2.6	
===		102	02.3	30.9	===	20.4	=	===	
345	As received		104.5	59.8		4.5 _a	3.5		(106)
	900° C		83.1	45.3		17.	32		İ
	A 950° C(†		59.4	25.2		28.	44.5		
	850° (400° Ca	1	146.4	119.6		4.5	9		1
	0 Tm { 500° Ca		134.4	89.8		9.5	23		ļ
	Q₩ 10 (700° Ca		95.9	63.0		17a	35		<u> </u>
346	As received	252	93.7	61.4		10.5	17		(106,
	900° Ca	202	72.4	46.0		23.	45.5	1	107)
	A 950° C ₁ †	136	55.2	22.7		26.	43		
	850° (400° Ca	286	105.0	80.2		16.5	44.5		1
	O To 5000 Ca		95.6	74.0		18.	51		1
	₩ 1 (700° C.	212	79.1	56.7		24.5	57.5		
347	As received		109.9	61.4		9.5	18		(106)
	900° Ca		100.8	48.8		11.5	20.5		` <i>`</i>
	A 950° C1†	i	63.2	25.2		18.	27.5		
	950° 400° Ca		146.4	112.0		11.5	33.5		İ
	10 Tm 1 300° Ca		142.2	100.8		13.	35.5		l
	(100° C _a	1	95.0	66.1		19.5	44		1
348	As received	1	110.8	69.3		13.	23		(106)
	900° Ca		86.1	47.2		19.5 _a	32		
	A 950° C ₁ †	I	65.2	26.7		20.	28		l

Key No.	Treatment	BHN	UTS	YP	PL	El	RA	IS_y	Lit.
348	850° (400° Ca		131.0	103.9		14a	41		
	O Tp 500° Ca		125.2	90.7		16a	39.5		
-	(700° Ca		88.8	64.5		21a	50	_	
349	As received 900° Ca	228 196	84.5 66.8	61.4 45.8		18a 23a	41.5		(106,
	A 950° Cf†	120	48.5	25.8		32a	39		
	850° (400° Ca	236							
	$Q_{\mathbf{w}} \operatorname{Tp} \begin{cases} 500^{\circ} \ \mathrm{C_a} \\ 700^{\circ} \ \mathrm{C_a} \end{cases}$	227 195							
350				=	42 0	8	20	3	(55,
300	N 900° C ₈ ‡ 850° Q _w	286 600	88.5 115.3		43.8 103.0	6	12	0	119
351	R (bar)		75.4	58.9	36.9	23a	51		(8,
	800° Ca		57.1	44.4		29.5a	59.5		128
	R 3 × 1 in		69.7	53.1		$\left\{ \begin{array}{c} 19_{\mathbf{a}} \\ 31_{\mathbf{c}} \end{array} \right\}$	51.5		
352	N 900° Ca‡	140	43.8	=	30.2	24	62.5	30	(55,
	850° Q _w	156	54.6		49.2	22.5	66.5		(119
353	820° Ca§	208	75.3	55.7	49.9	22	52		(23)
	820° Qo Tp¶	196**	81.1	67.0	59.7	12	45	4.3††	_
354	R 4 in.*		120.0	68.0		8.5a	10		(8)
355	780° Ca	217‡‡	82.0	54.5	42.1	7.5	21		(23)
	780° Q₀ Tp¶	340 § §	106.1	_	77.3	2.5	31	1.4	_
356	N 900° C ₈ ‡	159 163	52.9 68.5		41.1	20 20	69 63	20 13	(55,
957	850° Qw	100			41.4		=	10	_
357	R 3 × ∦ in		85.9	65.9		15e	34.5		(8)
358	N 900° C ₈ ‡ 850° Q _w	286 512	92.3 118.2		47.4 105.1	8	20 20	3	(55,
359	R 4 in	=	134.6	102.1	===		7.5	_	(8)
360		=		===	-	7 _a	=	=	(9)
	950°/6 h C 12 h	017	56.5	18.9		22a	41.5		(55,
361	N 900° C _s ‡ 850° Q _w	217 217	57.7 73.1		43.4	15.5 17.5	58 61	19 11	111
362	N 900° Cs‡	332	96.2	=	56.2	4	19	4	(55,
	850° Qw	555	130.1		112.2	3	10	0	111
363	R 4 in.*		132.2	92.6		7.5a	9		(8)
364	R 3 in.*		41.1	32.1		37 _a	72		(8)
365	N 900° Cs‡	217	61.1		45.4	15	71	20	(55,
	850° Q _w	207	95.6		61.8	12	60	12	111
366	R ¾ in.*		128.4	85.0		10a	17.5		(8)
367	N 900° C ₈ ‡	286	87.5		58.3	8	26	3	(55,
	850° Q _w	532	121.3		101.3	5	6.5	0	111
368	N 900° C ₈ ‡	159	56.4		44.8	19	72.5		(55,
	850° Qw	156	71.7?	_	52.1	14	67	18	/55
369	N 900° C ₈ 850° Q _w	262 321	94.9 112.2		64.1 101.1	9	31 13	3	(55,
370	N 900° C ₈ ‡	159	50.4	=	39.4	15	68	25	(55,
0.0	850° Qw	156	55.4		42.3	12	60	25	115
371	950°/6 h C 12 h		55.1	22.1		24.5a	52		(9)
372	N 900° Cs	286	91.4		48.1	9	34	2	(55,
	850° Q _w	652	105.3		75.6	11.5	18.5	0	119
373	N 900° Cs‡	99	47.1	1	26.8	26	74	22	(55,
	850° Q _w		45.6	_	29.5	21	61		115
374	N 900° Cs‡	262	85.2		58.2	16	28.5	3	(55,
	850° Q _w	321	99.7	_	67.7	3	6.5	0	_
375	N 900° C _s ‡ 850° Q _w	255 578	98.9 95.3		55.3 58.7	14 11	25 41	5	(55)
	N 900° C _s ‡		-	-			=	6	(55,
376	850° Q _w	143 121	46.5		25.5 26.3	17 26.5	61 58.5	3	115
376				00.0		25 _a	53	-	(9)
			52.6	20 8					
377	950°/6 h C 12 h	109	52.6	26.8	24 8		=	2	-
		109 99	52.6 43.8 42.5	26.8	24.8 25.9	30 30	63 65	2 3	(55,

[†] Dimensions of test pieces; 100 mm × 13.8 mm diam. except for Nos. 331-333 where they are 2 in. \times 0.300 in. diam. and for Nos. 321, 325, 334, dimensions 2 in. × 0.564 in. diam.

[‡] For meaning of subscripts v. p. 396.

ScH = 38.

^{||} Test piece 0.35 in. diam. Area of notch = 0.074 in.

[¶] Tp $175^{\circ}/180$. ** ScH = 43. †† ScH = 69. \$1\$ ScH = 26. \$5 ScH = 60.

TABLE 10.—VANADIUM STEELS (TENSILE, HARDNESS AND IMPACT Tests).—(Continued)

Key No.	Treatment	BHN	UTS	YP	PL	El	RA	IS _y	Lit.
380	N 900° C _s ‡ 850° Q _w	118 124	46.5 46.9		25.3 26.2	1	53 56	4 2	(55, 119)
381	N 900° C _a ‡ 850° Q _w	179 187	62.5 58.2		31.6 42.3	_	37.5 33	0	(55, 119)
382	950°/6 h C 12 h		53.1	23.6		23.	31.5		(9)
383	Same		58.3	28.3		10.	10		(9)

Compression test on No. 351 (hot rolled):

 $UCS = 71, YP_C = 45, PL_C = 38 \, \text{kg/mm}^2 (128).$

- * Diameter.
- † A 950°/18 h C_f.
- ‡ Tensile specimen 100 mm \times 13.8 mm diam.
- § Tensile specimen 2 in. \times 0.300 in. diam.
- $\parallel ScH = 24.$
- ¶ Tp 175°/3 h.
- ** ScH = 27.
- †† ISu: Specimen 10.09 mm diam., area at notch = 52.6 mm².
- $\ddagger ScH = 22.$ $\S ScH = 40.$
- III IS_u : Specimen 11.4 mm diam., area at notch = 77.8 mm².

TABLE 10A.—SHEAR AND TORSION TESTS ON VANADIUM STEELS

		~			720020	., 22,	J. J.			~~~	
Key N	٠	350	352	358	361	362	365	367	368	369	372
USS.		55.5	23	50.5	30	52	29	43	24	38	44
Key N	٠	373	374	376	378	379	380	381		900°	
USS.		24	40	24	24	27	27	31	rrem	ed (11	9)
Key No.	Trea	tment		uss	YPs	PL8	Tw	Lit.			
344	As cast			40	16	11.5	697°	(95)			
	A 925° C	f		44.5	24	21.5	694°		ĺ		
	925° Ca.			48	27	24.5	1045°		1		
351	Hot rolle	d*		56 _c †	31.5	24		(128)			

^{* 2} in. × 5% in. diam.

TABLE 11.—ELASTIC PROPERTIES

Key No.	Treatment	10 ⁻² E	10 ⁻² G	Lit.
	Carbon St	eels		
1	Normalized		83 79.5	(90, 110)
2	$\begin{array}{c} R_h \ 14.3 \ mm^* \\ D \\ 13.0 \ mm \\ 12.0 \ mm \\ 10.8 \ mm \\ 9.7 \ mm \\ \end{array}$	190 196 192 190 187 200		(46)
	D 3.97 mm	215 210 210 200 198 200 201 200		
3	Forged	208 206 211 206 207 207 208	79†	(15, 34, 141)
5	Rolled	210 209		(123)

Table 11.—Elastic Properties.—(Continued)

No.	Treatment	10 ⁻² E	10 ⁻² G	Lit.
	Carbon St	eels		
7	A 900°	206	82‡	(29,74,
	850° Q _w	200		141
	Same, Tp 550°	199		
	850° Q _o 80°	206		
	Same, Tp 550°	200		
	900° Q	199	82	
8	850° Q.	210		(141)
	Same, $\operatorname{Tp} \left\{ \begin{array}{l} 550^{\circ} \dots \\ 650^{\circ} \dots \end{array} \right.$	207	1	
		207	 	
	850° Q. 80°	206		
	Same, Tp 550°	205		
13	R _h 15.0 mm*	202		(46)
	(14.3 mm	198	1	
	13.8 mm	199		
	D 13.2 mm	200		
	12.7 mm	200	k	
	11.2 mm	201 199		
	8.2 mm		=	(1.40)
14	A 760° C _f	204	83	(140)
16	Rolled	218	1	(86, 12
	675°	213	(v. also	
	A { 1150° } 30	220	Fig. 23)	
	(900°)		82	
19	Annealed	204	82.7	(74, 11
	N 815°		83	
	845° Q _w 565° C _a		84	
22	R _h	198		(141)
	A 850°	199		
	850° Q _w Tp 550°	197		
	850° Q _o Tp 550°	198		
26	Forged	226		(15)
	Annealed	213	1	
	Hardened	211		
27	775° Q _w 650° C _f		85.5	(110)
32	N 845°		82	(46, 11
	790° Q _w Tp 650°		85	
	R _h 5.37 mm*	205		
	4.36 mm	202		
	3.60 mm	193		
	D 3.00 mm	208 199		
	1.98 mm	200		
			=	(15)
36	Forged	230 214		(13)
	Hardened	208		
			-	/46 14
41	R _h 15.0 mm*	209 207		(46, 14
	14.3 mm	207		
	D 13.9 mm	205 205		
	12.7 mm	201		
	11.2 mm	200		
	750° Q	205		
	Same, Tp 350°			
	Same, 1p 500			

[†] Calculated on assumption of uniform stress throughout section.

Key No.	Treatment	10 ⁻² E	10 ⁻² G	Lit.
	Carbon St	eels		
42	R _h	209		(141)
	750° Q	204		
	Same, Tp 350°	214		ĺ
	750° Q _o 80°	204		
45	A 900°	200	82	(74)
	900° Q	192	78	
51	A 850°	209	İ	(46, 141
	750° Q _w Tp 650°	200		
	R _h 5.30 mm*	219		.
	4.58 mm	212		
	D 4.22 mm	205 197	İ	
	3.43 mm	200		
56	A 900° (v. also Fig. 23)		80.5	(86)
				(15)
58	F	211		(13)
	H	217 203		
				(7.4)
59	A 900°	206 193	82.7 78.7	(74)
	900° Q ₀		10.1	
60	R _h	208	00.7	(110,
	A 790° C _f	905	83.5	141)
	750° Q _w	205 199		
	850° Q	197	-	
	(4500	-01	84.0	
	790° Q _o Tp { 450		86.5	
61	R _h 15.0 mm*	201		(46)
	14.3 mm	199	1	` '
	13.9 mm	199		
	D{ 13.2 mm	200		
	12.7 mm	197		
	12.3 mm	198	-	
64	A 900°	204	83.8	(74)
	900° Q	193	80.0	
68	F	200		(15, 74
	A	209	83.5	110,
	N 860°	202	82.0	141)
	Same, Tp 650°	202		
	850° Q _w Tp 650°	199		
	900° Q	192	80.0	
	Same, Tp 460°		84.0	
70	A 760° Ct	215	82.0	(140)
75	F	208		(15)
	A	200		` ′
77	A 900°	201	79	(74)
••	900° Q	189	75	` ′
78	F	206		(15)
• 0	A	208		
90	F		-	(15)
80	A	213 207		()
		201	1	I

	Table 11.—Elastic Propi	erties.—	(Contin	ued)
Key No.	Treatment	10 ⁻² E	10-1	G Lit.
	Cast Iron	Ω		
100	As cast	83		(124)
102	A 770–840°	17.6		(63)
106	As cast	84.3-105	. 5 45-57	7.7 (21)
111	As cast	85		(21, 124
114	As cast	64.5		(124)
118	As cast	71		(124)
Key	Table 12.—Speciffor changes in volume due to		ng, see p	o. 477
No.	Treatment		d40	Lit.
	Carbon Ste	els		
3	Normalized		7.87	(15, 115)
	900° Q _w		7.866	
4	Annealed		7.871	(15)
5	Cold worked		7.855	(19, 71,
	Same, Tp 600°		7.857	103, 116
	R _b or 900° Q _w		7.86 ₂ 7.87 ₄	
7	A or 850° Qw		7.861	(15)
8	N 1000°		7.856	(115)
0	800–1000° Q _w		7.849	'
9	Annealed		7.858	(15)
v	850° Q _w		7.841	` _
10	Annealed	,	7.863	(15)
11	Annealed		7.854	(15)
13	Normalized		7.854	(71)
	850° Q。		7.842	
15	N 1000°		7.840	(115)
	750–1000° Q _w		7.821	
16	Annealed		7.867	(15, 103)
10	850-1000° Q _w		$\frac{7.836}{7.834}$	(15)
18	Annealed		7.853	(15)
19	Annealed		7.831	(33)
20	1000° Q _w		7.840	(102)
20	(200°/4 h		7.850	` '
	Same, Tp $\begin{cases} 200 / 4 \text{ i} \\ 450 - 600^{\circ} \dots \end{cases}$		7.860	
21	N 1000°		7.839	(15, 96,
	700° Q.		7.838	115)
	900° Q _w		7.833 7.822	1
	Annealed		7.822 7.855	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	N 1000°		7.837	(115)
24	750–1000° Q _w		7.789	` ′
26	F or A		7.817	(15)
	800° Q _w		7.786	
29	Annealed		7.857	(15)
32	Cold worked		7.799	(46)
	Same, annealed	<u></u>	7.824	
33	N 1000°		7.822	(115)
	750-1000° Q _w		7.797	(3.6)
34	Annealed	·····	7.860	(15)

800° Q_w...... 7.757

36

(15)

 $[\]uparrow \lambda \text{ (obs.)} = 0.314.$ $\downarrow \lambda \text{ (obs.)} = 0.265-0.275.$

TABLE 12.—SPECIFIC G	RAVITY(Continued)
----------------------	---------	------------

Key No	Treatment	d_4^{20}	Lit.
	Carbon Steels		<u>-!</u>
37	Annealed	7.860	(15)
38	Hardened	7.81	(19)
39	Normalized	7.843	(115)
-	750–1000° Q _w	7.805	'
41	Annealed	7.829	(15)
	850° Q _₩	7.777	
43	Annealed	7.854	(15)
45	850° Q _w	7.789	(3, 71)
	Ro greatly	7.830	
	Same, A 600° or N	7.836	
46	Normalized	7.843	(15, 103,
	Annealed	7.85 ₂ 7.78 ₄	115)
	750° Q _w	7.784	
49	Annealed	7.851	(15)
-49 51	Annealed	7.84	(15, 46)
01	Cold worked	7.835	(***,,
53	Normalized	7.839	(19, 192,
•	Annealed	7.849	115)
	750° Q _w	7.765	'
	1000° Q.	7.752	
56	765° Q	7.74	(103)
	900–1000° Q _w	7.73	
58	F or A	7.833	(15)
	800° Q	7.749	<u> </u>
60	Annealed	7.82	(15, 115)
	850° Q _w	7.75	
- 20	1000° Qw		/19\
62	Hardened	7.76	(19)
63	Annealed	7.840	(15)
65	Annealed	7.838	(15)
66	N 1000°	7.79 7.71	(115)
	750° Q _w	7.71	
67	Annealed	7.82	(103)
U .	765° Q _w	7.76	()
	900° Q	7.71	
68	F or A	7.826	(15, 102)
	800° Q	7.773	,
	200°/4 h		
	(000 /1 11	7.824	
	1000° Q ₀	7.821 7.831	
	Same, Tp { 200°/4 h	7.831	
	1100 %	7.729	
	Same Tp 200°/4 h	7.759	
	<u> </u>	7.796	
69	Hardened	7.79	(19)
70	Hardened	7.75	(19)
73	Annealed	7.837	(15)
75	F or A	7.819	(15)
	800° Q	7.740	
	Hardened*	7.718	
76	Annealed	7.831	(15)

Table 12.—Specific Gravity.—(Continued)

Key No.	Treatment	d_4^{20} .	Lit.
78	As forged	7.82	(15, 71)
	Annealed	7.825	
	800° Q	7.73	
79	Annealed	7.823	(15)
80	As forged	7.798	(15, 115
	Annealed	7.80s	
	750° Q _w	7.439	
	1000° Q _w	7.378	
83	Annealed	7.802	(15)
	Cast Iron		
101	A 840–880°	7.6	(63)
102	A 770–840°	7.6	(63)
103	As cast	7.58-	(78)
		7.73	
106	As cast	7.03-	(21,78)
		7.20	
	Chromium Steels		
141		7.76	(19)
145	Heated to cherry red, and $Q_{\overline{w}}$	7.76	•
169)	7.70	ļ
178	1000° Q	7.73	(71)
100	Same, Tp 820° Qw		
180	950° Q _o Tp { 250° Q _w	7.755	(71)
100	950 Q ₀ 1p \ 750° Q _w	7.77	
182	1000° Q	7.68	(71)
100	Same, Tp 820° Qw	7.70	(71)
183	1000° Q Same, Tp 820° Q	7.72 7.74	(71)
191	As received	7.60	(36)
	Chrome-Vanadium Stee	<u> </u>	1 ()
203	850° Q	7.817	(71)
203	Same, Tp 650° Q _w		(**)
	Copper Steels		·
230	Hardened	7.835	(19)
231	As rolled	7.87	(6)
236	Hardened	7.84	(19)
237	Hardened	7.85	(19)
239	Hardened	7.75	(19)
208			1 (20)
	Nickel-Chromium Steel	S	
262	<u>I</u> †	7.846	(51)
	II† I Tp 600° Q _w †	7.846	
	II Tp 600° C _f †	7.849 7.850	
263	830° Q ₀	7.83	(51, 71)
200	Same, Tp 600°	7.85	(,)
	I Q _w 600° Q _w , 600° C _f †	7.8475	ĺ
	I C _t 600° C _t , 600° Q _w †	7.8469]
	II Q _w 600° Q _w , 600° C _f †	7.8470	
	II C _t 600° C _t , 600° Q _w †	7.8466]
267	820° C _a	7.82	(71)

^{*} From a very high temperature. † I = 1000° Q_0 650°/2 h Q_w . II = 1000° Q_0 650°/2 h C_f .

TABLE 13.—THERMAL PROPERTIES

= mean specific heat between 0 and 100°C, joules g⁻¹

mean thermal conductivity between 0 and 100°C, joules cm-2 sec-1 (°C, cm-1)

Key No.	Treatment	C100	k_0^{100}	Lit.

	Carbon Steels	3	
1	A 778° Hardened 0.475 Normalized	0.598 0.577	(13, 19, 24)
3	As forged 0.473 Annealed 0.473	0.598	(71, 73)
4	Normalized	0.460	
5	Annealed 900° Q 0.477	$\begin{bmatrix} 0.43_1 \\ 0.42_2 \end{bmatrix}$	(19, 129)
7	$\begin{array}{ccc} \textbf{As forged.} & \dots & 0.477 \\ \textbf{Annealed.} & \dots & 0.472 \\ \textbf{900}^{\circ} & \textbf{Q}_{\textbf{w}} & \dots & \end{array}$	0.448 0.448	(73, 129)
13	As forged 0.485 A 650° or N 0.481		(73)
14	As forged A 900° 900° Q	$0.356 \\ 0.393 \\ 0.310$	(129)
20	As forged 0.489	1 1	(73)
25	As forged A 900° 900° Q	$egin{pmatrix} 0.339 \ 0.372 \ 0.322 \end{pmatrix}$	(129)
31	As forged 0.494 Normalized 0.485 A 650° 0.477		(73)
37	As forged Annealed 900° Q	$0.419 \\ 0.439 \\ 0.315$	129)
38	As forged 0.498 Annealed 0.489 Hardened 0.489		(19, 73)
43	Annealed	0.431	(129)
46	As forged 0.498 Normalized 0.494 Annealed 0.489		(73)
49	Annealed $ 0.393$	3]	(129)

TABLE 13.—THERMAL PROPERTIES.-(Continued)

	(Conti	nued)		
Key No.	Treatment	C_0^{100}	k_0^{100}	Lit.
51	As forged		$\begin{matrix} 0.422\\ 0.422\end{matrix}$	(129)
53	As forged Normalized 750° Q		0.431	(13, 19, 73)
57	As forged A 650° or N			(73)
60	As forged Annealed $830^{\circ} Q_{w}, 0^{\circ}$		$\begin{array}{c} 0.393 \\ 0.402 \\ 0.201 \end{array}$	(24, 129)
62	Hardened	0.510	<u> </u>	(73)
64	As forged	$0.510 \\ 0.502$	0.381	(73, 129)
66	As forged A 650°			(73)
68	As forged A 960°, C _f 24h 830° Q _w , 0°		0.435 0.184	(24, 73)
69	Normalized Hardened	i	0.410	(13,19)
70	Normalized Hardened	0.510	0.343	(13,19)
73	Annealed	l	10.356	
74	As forged A 650°			(73)
78	As forged	0.510 0.510		(73, 129)
	Cast	Iron		
109	As cast A 650°/24 h			(73)
111	As cast		0.623	(85)
113	As castA 5 min 10 min 60 min	0.578 0.560 0.552 0.488		(73)
119	As cast A 650°/24 h			(73)
	Chromiu	m Ste	els	
123	A 900°	1	0.414	(100)

H 1100°.....

0.372

TABLE 13.—THERMAL PROPERTIES.— (Continued)

Key No.	Treatment	$C_0^{1\ 00}$	k_0^{100}	Lit.
129	A 900° H 1100°		0.40 ₂ 0.36 ₈	
140	A 900° H 1100°		0.397	(100)
141	W CR Qw	0.540	-	(19)
145	$ \mathbf{C_a} \dots \mathbf{C_R} \mathbf{Q_w} \dots $		i	(19)
146	A 900° H 1100°		$\begin{vmatrix} 0.372 \\ 0.238 \end{vmatrix}$	
153	A 900° H 1100°		0.305	(100)
169	W CR Qw	0.502		(19)
170	A 900° H 1100°		0.218 0.163	(100)
178	1000° Q ₀ Same, Tp 820°		0.184	
	Qw	0.481		
180	$ \begin{vmatrix} 950^{\circ} \\ Q_{o} \end{vmatrix} \begin{cases} 250^{\circ} \ Q_{w} \\ 750^{\circ} \ Q_{w} \end{cases} $		0.167	
182	1000° Q ₀ Same, Tp 820°		0.130	(71)
	Q	0.489	0.180	
183	1000° Q ₀ Same, Tp 820°	0.481		
	Q	0.50	0.151	
	1 QW	10.000	,0.101	·1

Copper Steels

230	Hardened 0 . 535 Air cooled 0	.494 (13, 19)
236	Hardened 0.535 Air cooled 0	.528 (13, 19)
	Hardened 0.531	(19)
239	Hardened 0.489	(19)

Nickel Chromium Steels

266	A 718° Same, W 830°	0.251 (24)
	Q,, 0°	0.222
276	1000° Q _w	0.117 (71)
278	As received 0.	514 0.105 (20)

LITERATURE

(For key to the periodicals see end of volume)

(1) Aitchison, 368, 14: 31; 20. (2) Aitchison, 115, 112: 805; 21. (3) Aitchison, 417, 12: 113; 23. (4) Andrews, Greenwood and Green, 140, 100: 231; 19. (5) Anon., 355, 132: 656; 21. (6) Arnold, 140, 47: 107; 94. (7) Arnold, 140, 59: 175; 01. (8) Arnold, 140, 91: 442; 15. (9) Arnold and Read, 140, 83: 249; 11.

(10) Arnold and Read, 140, 85: 215; 12. (11) Austin, 140, 107: 419; 23. (12) Ball and Wigham, 140, 37: 123; 89. (13) Barrett, Brown and Hadfield, 434, 8: 109; 04. (14) Batson, 403, 1923: 401. (15) Benedicks, Thesis, Upsala; 1904. (16) Bregowsky and Spring, Proceedings of the International Association for Testing Materials, 7: 1; 12. (17) Breuil, 140, 72: 1; 07. (18) British Engineering Standards Assoc. (Automobile Steel Research), Rept. No. 75; 1920. (19) Brown, 434, 9: 59; 09.

(20) Bureau of Standards, 365, No. 58; 1923. (21) Bureau of Standards, 365, No. 101; 1924. (22) Burgess and Aston, 33, 8: 452; 10. (23) Burgess and Woodward, 32, No. 207; 1922. (24) Campbell and Dowd, 140, 96: 251; 17. (25) Campbell and Johnson, 140, 106: 201; 22. (26) Campion, 140, 63: 378; 03. (27) Campion and Donaldson, 435, 15: 211; 22. (28) Carlisle, 140, 102: 115; 20. (29) Carrington, 115, 117: 69; 24.

(30) Charpy and Grenet, 34, 174: 1273; 22. (31) Clamer, 66, 10: 267; 10. 33, 8: 527; 10. (32) Coe, 140, 87: 361; 13. (33) Cornu-Thénard, 34. 169: 272; 19. (34) Crawford, 68, 32: 348; 12. (35) Cubillo, 140, 88: 248; 13. (36) Cutler Steel Co., Pittsburgh, Pa., Bull. No. 221. (37) Desch and Roberts, 140, 107: 249; 23. (38) Devries, 66, 18 II: 554; 13. (38) Dickenson, 140, 106: 103; 22.

(40) Firth-Brearley Stainless Steel Syndicate. (41) Flinterman, 78, 31: 69; 17. (42) French, 212, 2: 409; 22. 32, No. 205; 21. (43) French, 35, 26: 1207; 22. 27: 211; 22. (44) French and Johnson, 32, No. 206; 22. (45) Gessner, 77, 40: 781; 20. (46) Goerens, 417, 3: 320; 11. (47) Greaves, 140, 100: 329; 19. (48) Greaves, 436, No. 45; 20. (49) Greaves and Coc. 436, No. 48; 20.

(50) Greaves, Fell and Hadfield, 140, 100: 340; 19. (51) Greaves and Jones, 140, 102: 171; 20. (52) Greenwood and Sexton, Iron, Its Sources, Properties and Manufacture. London, Griffin, 1920. (53) Grotts, 33, 19: 241; 18. (54) Guess, in Rep. Royal Ontario Nickel Comm., 414; 1917. (55) Guillet, 146,

- 68: 118; 05. (56) Guillet, 140, 70: 71; 06. (57) Guillet and Cournot, 34, 174: 384; 22. (58) Haberkalt, Oester Woch. Offentl. Baudienst, 20: 815, 828, 843; 14. 10, 4: 1338; 22. (59) Hadfield, 140, 107; 170; 23.
- (60) Hall, 438, 42: 160; 20. (61) Hanemann and Kühnel, 77, 33: 1686; 13. (62) Hardness Tests Research Comm., 403, 1916: 677. (63) Hatfield, Cast Iron in the Light of Recent Research. London, Griffin, 1918. 140, 96: 307; 17. (64) Hatfield, 403, 1919: 347. (65) Hatfield, 368, 14: 503; 20. (66) Hatfield, 368, 15: 465; 21. (67) Hatfield, 421, 28: 52; 21. (68) Hatfield, 355, 134: 639; 22. (69) Hatfield, Dictionary of Applied Physics, 5: 542: 23.
- (70) Hatfield, Dictionary of Applied Physics, 5: 554; 23. (71) Hatfield, Brown-Firth Research Laboratories, Sheffield; O. (72) Hatfield and Duncan, 411, 36: 321; 20. (73) Honda, 437, 1: 71; 22. (74) Honda and Hasimoto, 159, 10: 75; 21. (75) Illmer, 438, 42: 487; 20. (76) Ito, 159, 12: 137; 23. (77) Jäger and Diesselhorst, in Taschenbuch für Eisenhüttenleute; 1922. (78) Johnson, Materials of Construction, p. 688. New York, Wiley, 1918. (79) Jones, 436, No. 51; 1921.
- (80) Jones, 436, No. 55; 1922. (81) Jones, 436, No. 61; 1923. (82) Junkers, 77, 41: 677; 21. (83) Kaiser, 77, 41: 333; 21. (84) Kalmus, Canada Mines Branch, Summary Rep., 1912: 17. (85) Kaye and Laby, Table of Physical and Chemical Constants. New York, Longmans, 1921. (86) Kikuta, 159, 10: 139; 21. (87) Kottman, Central Steel Co., Masillon, Ohio; O. (88)

- (100) Matsushita, 159, 9: 243; 20. (101) Matthews, 68, 10: 274; 10. (102) Maurer, 74, 5: 11; 08. (103) M'Canee, 140, 89: 192; 14. (104) McKinney, 33, 23: 294; 20. (105) McWilliam and Barnes, 140, 81: 246; 10. (106) McWilliam and Barnes, 140, 83: 294; 11. (107) McWilliam and Barnes, 140, 91: 125; 15. (108) Moore, 436, No. 35; 1920. (109) Moore and Jasper, 86, No. 136: 1923,
- (110) Moore and Kommers, 86, No. 124; 21. (111) Nead, 80, 38: 2341; 16. (112) Oberhoffer, 77, 17: 891; 97. (113) Oberhoffer, 93, 81: 156; 13. (114) Oberhoffer and Weisgerber, 77, 40: 1433; 20. (115) Oknof, 139, 11: 1; 13. (116) Paglianti, 192, 9: 217; 12. (117) Perrine and Spencer, Columbia School of Mines Quarterly, 35: 194; 14. (118) Pomp, 77, 40: 1403; 20. (119) Portevin, 417, 1: 230; 09.
- (120) Portevin, 34, 159: 51; 14. 420, 122: 206; 14. 74, 14: 9; 16. (121) Primrose, 507, 110: 18; 25. (122) Rees, 140, 108: 273; 23. (123) Rogers, 140, 67: 484; 05. (124) Ronceray, 436, 15: 26; 21-22. (125) Roush, 33, 8: 468; 10. (126) Sankey and Smith, 403, 1904; 1235. (127) Schwartz, Nat. Malleable Casting Co., Cleveland, Ohio; O. (128) Seely and Putnam, 86, No. 115; 1920. (129) Simidu, 159, 6: 111; 17.
- (130) Smalley, 456, 15: 688; 21-22. (131) Snodgrass and Guldner, 86, No. 129; 1922. (132) Stansfield, in Rep. Royal Ontario Nickel Comm., 43A; 17. (133) Stead and Evans, 140, 59: 89; 01. (134) Stead and Wigham, 140, 60: 122; 01. (135) Strand, 32, No. 172; 1920. (136) Strauss and 23, 31: 82; 24. (138) Sykes,
- erg, 140, 60: 234; 01. (142) (143) Wigham, 140, 69: 23. (145) Young, 435, 16: 142; . 86: 227: 14.

ECT

hecker, in Taschenbuch für Eisenh. 87: 93; 13. (98) Lynch, 212, 2: 12;	2, 5: 144; 24. (96) Levin and Dorn- uttenleute, 1922. (97) Longmuir, 140, 19. (99) Malcolm, 212, 5: 256; 24. 7, AND Mn-SI-STEELS	Whiteley and Braithwaite, 140, 10 222; 06. (144) Yaneske, 140, 107: 18-19. (146) Young, Pease and Str FE-SI-ALLOYS; AND	173; 23. and, 255,
		ON CAST IRON	
	Robert A	A. HADFIELD	
Contents	Matières	Inhaltsverzeichnis	
Tensile, hardness, and impact tests on rolled or forged Mn- steels.	Résistance à la traction des aciers au Mn laminés et forgés.	Festigkeitseigenschaften von gewalzten oder geschmiede- ten Mn-Stählen.	Compo zione lami
Effect of cooling medium on properties of Mn-steel.	Effet du milieu refroidissant sur les propriétés de l'acier au Mn.	Einfluss des Mediums, in dem die Erkaltung vor sich geht, auf die Eigenschaften von Mn-Stahl.	Influen fredo dell's
Effect of liquid air temperature on Mn-steel.	Effet de la température de l'air liquide sur l'acier au Mn.	Einfluss der Temperatur der flüssigen Luft auf Mn-Stahl.	Influen tura accis
Compression tests on forged Mn-steel.	Essais de compression sur l'acier au Mn forgé.	Druckversuch mit geschmiedetem Mn-Stahl.	Prove accia
Tensile properties of cast Mn- steel.	Résistance à la traction de l'acier moulé au Mn.	Festigkeitseigenschaften von gegossenem Mn-Stahl.	Compo zione al M
Transverse tests on cast Mn-steel.	Essais de flexion transversale sur l'acier moulé au Mn.	Querproben bei gegossenem Mn-Stahl.	Prove di ac
Tensile properties of Fe-Si.	Résistance à la traction de Fe-Si.	Festigkeitseigenschaften von Fe-Si.	Compo zione
Specific gravity of Fe-Si. Tensile properties of rolled or forged Si-steels.	Poids spécifique de Fe-Si. Résistance à la traction des aciers au Si laminés ou forgés.	Dichte von Fe-Si. Festigkeitseigenschaften von gewalzten oder geschmiedeten Si-Stählen.	Peso sp Compo zione lami
Effect of liquid air temperature on Si-steel.	Effet de la température de l'air liquide sur l'acier au Si.	Einfluss der Temperatur der flüssigen Luft auf Si-Stahl.	Influer tura accia
Compression tests on forged Si-steel.	Essais de compression sur l'acier au Si forgé.	Druckversuche mit geschmiedetem Si-Stahl.	Prove accia
Properties of cast Si-steel.	Propriétés de l'acier moulé au Si.	Eigenschaften von gegossenem Si-Stahl.	Proprie accia
Properties of Si-Mn-steel.	Propriétés de l'acier au Si-Mn.	Eigenschaften von Si-Mn-Stahl.	Proprie Si-M
Effect of Mn content on malle- able cast iron.	Effet de la teneur en Mn sur la fonte malléable.	Einfluss des Mn auf schmied- barem Guss.	Influen Mn bile

Indice	Page
Comportamento alla tra-	
zione degli acciai al Mn	
laminati o fucinati	
Influenza del mezzo raf-	
freddante sulle proprietà	
dell'acciaio al Mn	52 Z
Influenza della tempera-	
tura dell'aria liquida sull'	
acciaio al Mn	522
Prove di compressione sull'	
acciaio al Mn fucinato.	522
Comportamento alla tra-	
zione dei getti di acciaio	
al Mn	522
Prove di traverso su getti	
di acciaio al Mn	
Comportamento alla tra-	
zione del Fe-Si	523
Peso specifico del Fe-Si	
Comportamento alla tra-	
zione degli acciai al Si	
laminati o fucinati	523
Influenza della tempera-	
tura dell'aria liquida sull'	
acciaio al Si	524
Prove di compressione sull'	
acciaio al Si fucinato	524
Proprietà dei getti di	
acciaio al Si	524
Proprietà dell'acciaio al	
Si-Mn	525
Influenza del contenuto di	
Mn sulla ghisa mallea-	
bile	525
,	

CONTENTS.—(Continued)

Effect of Si content on malleable cast iron.

Effect of Mn content on properties of cast iron.

Effect of Mn content on hardness of cast iron.

Effect of Si content on properties of cast iron.

Effect of casting temperature and annealing on cast irons of different Si content.

MATIÈRES.—(Suite)

Effet de la teneur en Si sur la fonte malléable.

Effet de la teneur en Mn sur les propriétés de la fonte.

Effet de la teneur en Mn sur la dureté de la fonte.

Effet de la teneur en Si sur les propriétés de la fonte.

Effet de la température coulée et du recuit sur les fontes de différentes teneurs en Si.

INHALTSVERZEICHNIS.— (Fortsetzung)

Einfluss des Si auf schmiedbarem Guss.

Einfluss des Mn-Gehaltes auf die Eigenschaften des Gusses.

Einfluss des Mn-Gehaltes auf die Härte des Gusses.

Einfluss des Si-Gehaltes auf die Eigenschaften des Gusses.

Einwirkung der Giesstemperatur und des Ausglühens auf Guss verschiedenen Si-Gehaltes.

INDICE.—(Continuazione) PAGE Influenza del contenuto di Si sulla ghisa malleabile. 525 Influenza del contenuto di

Table 1.—Tensile, Hardness, and Impact Tests on Rolled and Forged Mn-Steels*

Comp	osition,	hundre	dths o	f %	Treatment, v. p. 392	$10 \times UTS$	10 ×	$\left\{ \begin{array}{l} \mathbf{Y} = \mathbf{Y}\mathbf{P} \\ \mathbf{E} = \mathbf{E}\mathbf{L} \end{array} \right\}$	$10 \times El^{\dagger}$	$10 \times RA$	Lit.‡
Mn	C	Si	P	S	Treatment, v. p. 552	10 × 015	10 ^	P = PL	10 1 201	10 / 11/1	1116.4
					C	< 0.3 %		,			
39 48	8 8	0.5		3.4		346 358	1		365 360	720 720	(29) (29)
50 58 §	12 13	0.8	2.7	3.0	F, A 750°/3 h C _z	386 402			330 320	620 640	(29) (29)
58 § 60	14 8	0.9	2.6	3.5	1, 11 100 /0 11 02	436 367			300 350	610 700	(29) (29)
69§	13	0.9		2.4		424			320	680	(29)
83 §	20	3			F	528	:	339 E	315	457	(14, 17
110 § 129 §	<10 10	<21 37	<7 2	<4 2	R, A 860° F, N 1000°	386¶ 507		299 Y 358 E	435 350	797 650	(2) (1)
130 170§ 210§	7.3 10.4 23.6				F	425 498 558	1	282 E 287 E 408 E	IS = 3	39.0** 36.0** 28.1**	(10) (10) (10)
313 410	<10 <10	<21 <21	<7 <7	<4 <4	R, A 860° R, A 860°	652¶ 842¶	1	545 Y 324 Y	250 250	632 424	(2) (2)
540 550	15 <10	3.7	<7	<4	F, WY Q _w	622 1040¶		310 Y	50 285	0 381	(13) (2)
560	27.6				$F.\dots\dots\dots\dots\dots$	720		720 E	IS = 3	3.05**	(10)
588	3	11	<3	<5	$\{F, A 926^{\circ}/15$ Same, W ₂ 955° Q _w ††	808 1008	1	158 P 317 P	13 121	13 420	(30)
610	3.4				F	1183	8	343 E	IS = 3	3.05**	(10)
861	4	16	<3	<5	$\begin{cases} F, A 926^{\circ}/15\\ Same, W_2 955^{\circ} Q_w^{\dagger}^{\dagger} + \end{cases}$	1059 1074		318 P 396 P	17 20	26 33	(30)
887	81	22	<3	< 5	F, A 870°/15, W ₂ 900° Q _w ††	651	2	298 P	121	202	(30)
1050 1290	<10 <10	<21 <21	<7 <7	<4 <4	R, A 860° R, A 860°	912¶ 884¶		185 Y 312 Y	10 65	0 46	(2) (2)
290	15.6				F	650	2	299 E	IS =	12**	(10)
1570	<10	<21	<7	<4	F, A 860°	1004 ¶		596 Y	175	206	(2)
1635	5	38	<3	<5	$\begin{cases} F, A 927^{\circ}\\ Same, W_2 955^{\circ} Q_w \dagger^{\dagger} \end{cases}$	736 840		198 P 239 P	166 400	135 495	(30)
1985 3350	<10 29.6	<21	<7	<4	R, A 860°	866 614		351 Y 342 E	$\frac{300}{IS = 2}$	335	(2) (10)
0000	29.0					0.3-0.6 %	1 0	74 E	15 = 2	0.1	()
98	50	9.4		8	∫ F, W 659° Q _w	753		171 E	152	502	(6)
	v. also		and 2		F, W 700° Qw	878	- 4	43 E		85	
230§	40	15			F	890			65	70	(14, 17
358	45	5	<3	<5	$\begin{cases} F, A 870^{\circ}/15\\ Same, W_2 816^{\circ} Q_{\circ} \dagger \dagger \end{cases}$	865 1104		138 P 054 P	204 170	443 466	(30)

TABLE 1.—TENSILE, HARDNESS, AND IMPACT TESTS ON ROLLED AND FORGED MN-STEELS.*—(Continued)

Comp	osition, l	nundre	edths o	of %	Treatment, v. p. 392	$10 \times UTS$		$10 \times El^{\dagger}$	$10 \times RA$	Lit.‡
Mn	C	Si	P	S	1 reatment, v. p. 392	10 × 015	$\begin{bmatrix} 10 \times \\ P = PL \end{bmatrix}$	10 X Et	10 X NA	140.1
389	40	9			F	598		5		(14, 17)
872	48	8	<3	<5	$\begin{cases} F, A 870^{\circ}/15\\ Same, W_2 900^{\circ} Q_w \dagger \dagger \end{cases}$	900 274 P 520 260 P		17 17	26 20	(30)
1439	46	10	<3	<5	$F, A 870^{\circ}/15$ Same, $W_2 900^{\circ} Q_w \dagger \dagger$	710 770	219 P 219 P	163 183	190 226	(30)
			-			0.6-0.9%				
41	78	6	2	3	R, A 860°	672	425 Y	150	205	(3)
50	87.3				F	1150	595 E	IS =	3.05**	(10)
83	78	8	2	4	R, A 860°	778	548 Y	150	160	(3)
116	85	9	2	4	R, A 860°	832 ¶	406 Y	105	117	(2)
186	78	16	<3	<5	F, A 870°/15	906	378 P	108	135	(30)
180	18	10	<0	<0.	Same, W ₂ 788°†† ‡‡	1195	1014 P	142	333	
200	80.4				F	1054	791 E	IS =	3.05**	(10)
221	86	11	2	3	R, A 860°	901	476 Y	80	107	(3)
310	85	13	2	2	R, A 860°	939 ¶	622 Y	50	52	(2)
385	81	9	2	2	R, A 860°	753	533 Y	20	21	(3)
440	78	18	<3	<5	∫ F, A 870°/15	980	417 P	54	66	(30)
440	-10	10	7.0	70	Same, W ₂ 788°†† ‡‡	1252	894 P	33	40	
498	87	18	2	2	R, A 860°	860 ¶	535 Y	20.	20	(2)
510	76.2				F	866	602 E		1	(9)
720	70				F	566	414 E	IS =	10**	(10)
937	61	30	7	7	F	514	394 E	55		(14, 17)
1229	85	37	9	6	F	619	440 E	35	80	(14, 17)
1511	82	19	5	3	R, A 860°	786 ¶	441 Y	5	7	(2)
					C	> 0.9%				
300	93.4			_	<u> F</u>	1010	827 E	IS =	3.05**	(10)
462	120	31	<3	<5	F, A 870°/15	910	378 P	46	53	(30)
				-	$\frac{\begin{array}{ c c c c c c c c c c c c c c c c c c $	473	298 P	33	85	(30)
86 8	127	19	<3	<5	Same, W_2 900° $Q_w \dagger \dagger \dots$	1234 677	676 P 318 P	13 79	13 141	(30)
1007§	95	17	4	3	R, A 860°	665¶	474 Y	10	14	(2)
1121§	100	19	4	3	R, A 860°	703 "	547 Y	10	8	(3)
1200§	96				F	896	618 E	IS =	28.1**	(10)
1268§	94	14	<3	<5	F, A 870°/15	786	240 Y	17	27	(30)
				.	Same, W_2 900° $Q_w \dagger \dagger \dots$	1024	318 Y	471	392	
1338§	107		4	2	R, A 860°	730	438 Y	30	31	(3)
					(F	693		10		(13)
1522	150	14			F, WW Q	701		120		
					$\mathbf{F}, \mathbf{W} \mathbf{W} \mathbf{C}_{\mathbf{a}} \dots \dots$	622 638		10	1	1
1959	93		7		Same		200 37	40	107	(2)
1999	্ ৪৩	21	1 1	3	R, A 860°	822¶	389 Y	235	195	(2)

^{*} v. also Tables 2-6.

[¶] Brinell hardness number given in this table: (Treatment = 1000° Q_w).

Mn	l C	BHN	Mn	C	BHN	Mn	С	BHN
110	<10	143	1290	<10	302	498	87	286
313	<10	430	1570	<10	192	1511	82	196
410	<10	418	1985	<10	235	1007	95	179
550	<10	418	1160	85	650	1959	93	192
1050	<10	444	310	85	600			

^{**} Impact test on Fremont machine.

[†] Dimensions of test pieces: (1, 2, 3) 2 in. × 0.564 in. diam.; (6) 8 in. × 0.5 in. diam.; (3, 10) not stated; (13) 2 in. × 0.798 in. diam.; (14, 17) 8 in. × 0.75 in. diam.; (29) 10 cm × 2 cm diam.; (30) 1.2 in. × 0.30 in. ‡ See also (16, 18, 19, 27, 34).

[§] Steels of commercial importance.

^{||} R, A 860°/36 h C 3 days.

^{††} For 30 min. ‡‡ Qo Wa 594°/30 Ca.

Table 2.—Effect of Cooling Medium on Properties of Forged Mn-Steel (14, 17)

Test pieces, 8 in. × ¾ in. diam.

		7	reatr	nent	,	,	F W	Y Q.	F, W	v 0	F. W	v C
Hundredt	hs of 9	70	_		'	,	F, W	, A.	F, W	, 4 0	r, "	. Ca
Mn	C	Si	P	s	10 × UTS	10 × El	10 × UTS	10 X El	10 × UTS	10 × El	10 × UTS	10 × El
695	52	37	8	7	400	15	365	16	296	16	332	23
722	47	44			432	16	387	16	392	31	421	47
790	50	28							466	70	447	78
937	61	30	7	7	514	55	613	148	602	148	594	156
1060	85	28			529	39	644	172	663	188	644	172
1401*	85	28			573	16	1057	444	865	266	755	141
915	100	42							665	172		
1011*	95	21			605	55	1		646	195	619	141
1260°	110	16			619	23	849	273	792	281	584	109
1281*	92	42	l		616	55	958	367	908	328	761	195
1998	190	32	_	_					359	Nil		
2169	210	46	1		567	86	H		525	109	531	117

=	Tr	eatment		F		F.	WY		E	WY	,
Hundredths of	7%		ll .	r		Г,	W 7 (' **	, r,	WI	- a
Mn	C	Si	10 ×	10 × EL	10 ×	10 X UTS		10 ×	10 X UTS		10 ×
1448*	110	32	620	509	8	999	353	375	769	446	47
1506	124	16	776	514	23	954	351	312	739	381	23
1840	154	16	807	509	8	838	367	101	611	414	8
1855	183	26	669	559	4	875	399	54	i		Ì
1910	160	26	811	558	8	922	558	46	641	451	8

^{*} Steels of commercial importance.

Table 3.—Effect of Liquid Air Temperature on Forged Mn-Steels (13)

Hundre	dths of	1 %			Tensil	e tests	•		2.64; C, 48° Q _w)
Mn	С	Si	Treatment, r. p. 392	At ca	. 20°C	-18	t 2°C†	p.	BHN at ca.
		٠.		UTS	El	UTS	El	atm.	20°C
350	8	13	∫ 1102° Ca 777° Cf	104	7.5	139	Nil		
330	_°	13	Same, Qla	109	9			10	194
540	15	3.7	1102° Ca 777° Cf	104	Nil	96	Nil	20	191
1008	16	63	1048° Q _w	93	1	82	Nil	40	205
1527	15		1048° Q _w	61	5	72	2.5	p.	BHN†
223‡	41	7	1102° Ca. 777° Cf	80	17	106	2.5	atm.	-182°C
381	78		1102° Ca 777° Cf	104	10	118	Nil	10	341
468	36	10	Same, W2 614° Cf	117	10	129	Nil	20	363
700	100		1048° Q	66	15	84	Nil	_40	372
1153	166		1048° Q	88	10	120	2.5		
	1		994° Qw	102	40	101	Nil		
		1]	1048° Q _w	88	30	96	2.5		
1264‡	123	{	620° Q _{1a}	88	1.3			1	
			831° Q _{1a}	91	11				
			994° Q _{la}	104	38				
1522	150	14	1048° Qw	93	25	101	2.5		

^{*} Test bars, 2.00 in. \times 0.180 in. diam.

Table 4.—Compression Tests on Forged Mn-Steels (17)*

Composi	tion,	hund	redths	s of %	T	121	$100^{\Delta l \dagger}$
Mn	C	Si	P	8	Treatment	EL _C	$ -100_{l_0}^{-1}$
937	61	31	7	7	F	39.5	20.10
1229	85	37	9	6	$F, WY Q_w$	53.5	17.05
1375	85	23	9	8	$\mathbf{F}, \mathbf{W} \mathbf{Y} \mathbf{Q}_{\mathbf{w}}$	70	16.65

^{*} v. also (1, 18).

Table 5.—Tensile Properties and Hardness of Cast Ma-Steel (22)*

Treatments: $\alpha = G$; $\beta = G$, A 900°/60; $\gamma = G$, A 900°/60 Q_v 15°.

N 1 m	10 ×	10 ×	10 X	10 ×	BHN
No. and Trt	UTS	YP	El	RA	DAN
α	439	325	279	535	119
$1 \mid \beta \dots \dots$	400	304	315	700	113
γ	554	302	196	610	147
α	457	335	292	625	115
2 {β	405	307	305	668	116
γ	580	324	192	620	165
α	466	350	294	639	115
3 † { β	418	312	303	700	115
γ	592	342	160	622	154
α	454	347	279	659	119
4 † { β	421	317	303	701	118
γ	594	350	141	561	157
α	479	362	287	642	123
$5\dagger$ β	430	320	308	718	123
γ	680	350	155	530	179
α	503	383	279	681	132
$6\dagger$ β	457	328	302	726	132
γ	758	443	152	482	230
α	503	380	280	677	134
$7\dagger \left\{eta \ldots \ldots $	463	335	298	703	135
(γ	783	465	163	478	237_
α	580	408	259	547	156
8† { β	520	340	274	723	159
γ	1090	603	90	446	274
α	597	411	260	468	162
9† { β	551	347	262	667	165
(γ	1106	627	67	417	289
α	652	428	212	434	197
10 { <i>β</i>	647	351	188	606	198
(γ	1158	639	49	266	326
α	725	446	188	394	211
11 $\{\beta,\ldots,\beta\}$	761	367	154	531	218
(γ	1171	649	31	189	

No.		Tho	ousandths	of %	
No.	Mn	C	Si	P	8
1	285	109	319	63	46
2	440	125	286	67	50
3†	675	126	303	67	46
4†	785	99	311	40	52
5†	1020	98	316	41	49
6†	1270	100	313	99	45
7†	1315	101	303	102	47
8†	1765	102	309	103	
9†	1835	99	324	108	
10	2230	90	301	102	88
11	2470	92	294	110	-

^{*} Specimens 20 cm × 2 cm diam. † Steels of commercial importance.

Table 6.—Transverse Tests on Cast Mn-Steel* (17); cf. (18)

BME		ths of %	n, hundred	Compositio	-
DMA	S	P	Si	C	Mn
49	11	9	1	15	32
84	7	9	4	23	76
122	7	7	15	40	231

^{*} Test bars 25% in. square, loaded at center, bearings 2 ft. apart.

[†] Tests carried out in liquid air.

[‡] Steels of commercial importance.

[†] Reduction in length due to applied stress of 157.5 kg/mm².

Table 6.—Transverse Tests on Cast Mn-Steel* (17); cf. (18) | Table 8.—Specific Gravity of Pure Fe-Si-Alloys (28); v. also (Continued)

	Compositi	on, hundre	dths of %		BMR	
Mn	C	Si	P	S		
389	35	9	6	7	18	
643	34	30	11	11	30	
695	52	37	8	7	54	
830	62	35	10	4	71	
1476	115	25	12	7	72	
1762	140	91	10	6	92.5	
2345	215	65	9	2	106.5	

^{*} Test bars 25% in. square, loaded at center, bearings 2 ft. apart.

Table 7.—Tensile Properties of Fe*-Si-Alloys (38); cf. (31)

Trt	As fo	orged	A _v 970°	C 30°/h
% Si	UTS	YP	UTS	YP
0.001	31.5	25.2		
.001	32 .8	31.2	25.4	11.5
.001	28.7	26.8		
. 010	31.8	29.5	24.6	11.3
.048	32 .9	30.1	24.6	14.2
.068	30 .9	25.8	24.6	14.3
.091	30 .7	25.0	24.9	10.1
. 148	31.7	27.1	24.7	11.2
. 205	35.0	29.9	27.3	17.6
. 230	33.4	29.0		
. 242			26.9	12.8
. 309		ĺ	28.4	15.3
. 400			29.6	18.3
. 472			30.1	12.1
. 563	35.9	28.7		
. 673	40.8		31.8	18.7
. 698			30.2	16.2
. 822	39.2	31.8	31.8	18.4
1.71	53.7	47.9	38.1	25.2
1.741			38.8	32.1
2.73			47.7	34.8
3.40	60.6	52.5	54.5	40.2
3.55	69 .8	58.6		
4.39	73.9	66.2	59.7†	59.7
4.44			64.5	51.2
4.92	35.3	35.3		
6.57	3.6	3.6	9.1	9.1

^{*} Pure electrolytic Fe, melted in vacuo, % C = ca. 0.01. Test pieces ca. 2.5 in. × 0.5 in. diam.

(9, 15, 21)

Prepared from pure soft wrought Fe and pure Fe-Si, only very small amounts of impurities present. Determination by pycnometer.

Si, %	d_4^{20}	Si, %	d_4^{20}	Si, %	d_4^{20}
0.2	7.883	24.8	6.432	65.9	3.367
2.0	7.784	27.2	6.248	79.4	2.787
7.5	7.352	29.3	6.198	93.4	2.363
15.0	7.032	40.2	5.378	95.0	2.322
20.0	6.696	46.8	4.876	100.0	2.309
21.9	6.546	51.8	4.406	1	

TABLE 9.—TENSILE PROPERTIES AND HARDNESS OF ROLLED AND FORGED SI-STEELS

v. also Tables 10-12

	v. 0460 1abi	CO 10					
Thousandths of %	Treatment.		Tensil	e tests		Hardness	
Si-C-Mn-P-S	r. p. 392	10 X	10 X	10 X	10 X	T = TSH	Lit.
G-C-MIPI -G	v. p. 382	UTS	EL	El	RA	B = BHN	
	(R, N 1000° Ca		183	430	670		(4, 5)
24-44-36-14-30	R, A 950°†		313	470	715		
	(F	386	317	402	683		
180-140-140-50-80	F	520	346	301	545		(15)
200-140-140-51-80	F, A (180)¶	394	239	376	607	20 T	
409-208-717-117-61	∫ F	602	452			153 B	(12)
409-208-717-117-01	} F, W 850° Q₩	838	509			223 B	
400 000 000 00 10	∫ F	1152	625			302 B	(12)
433-878-730-57-13	∫ F, W 850° Q _₩	1219	976	ł		555 B	
700-180-210	F	536	394	295	545		(15)
730-180-210	F, A (180)¶	465	299	340	527	20 T	
870-180-210	F, A (180)¶	449	299	255	426		(15)
	(F	586	377			146 B	(12)
932-209-Tr24-20	F, W 850° Q	739	416			262 B	•
	F, W 950°/4 h	473	334				
	R, N 1000° Ca	482	334	355	668		(4, 5)
1020-38-79-19-38	R, A 950°†	429	317	403	763		l
	(F	485	427	368	674		
11/0 007 570 01 17	∫F	1040	625			293 B	(12)
1156-835-570-21-17	∫ F, W 850° Q _w	1414	1414			555 B	
1600-190-280‡	F	591	441	311	506		(15)
1520-190-280‡	F, A (180)¶	520	394	351	545	24 T	
	(F	566	452			159 B	(12)
1600-117-275-32-121	F, W 850° Q _w	731	640			196 B	
1000-117-275-32-124	F, W 950°/4 h	452	303				
	F, W 950°/8 d	534	433				
1940-80-110-20-20‡	F, N ca. 1000°	500	321	360	624		(1)
0000 000 407 20 00	∫ F	1054	769			277 B	(12)
2090-968-407-32-22	∫ F, W 850° Q _w	1328	1328			578 B	
2110-200-250-40-60‡	F	622	488	185	280		(15)
2130-200-250-40-60‡	F, A (180)¶	536	402	365	600	24 T	

[†]AN2 1030°.

FORGED SI-STEELS.—(Continued)

Managed at a second	T		Tensil	e testa		Hard	ness	
Thousandths of % Si-C-Mn-P-S	Treatment,	10 ×	10 ×	10 X	10 X	T =	TSH	Lit.*
SI-C-MII-P-S	s. p. 392	UTS	EL	El	RA	B =	BHN	
	R, N 1000° C			245	288			(4, 5)
2125-(C-Mn, etc. 176)	R, A 950°†	473	312	398	659			
	(F	558	440	280	454			
2690-200-250	F	670	504	176	244			(15)
2670-200-250	F, A (180)¶ **	504	378	61	66	26	T	
2903-38-61-18-41	R, N 1000° Ca	493	432	42	42			(4, 5)
2903-38-79-19-38	∫ R, A 950°†	534	345	355	600			1
2903-30-19-19-30	F	586	462	155	146			
3390-210-290‡	F		552	111	142			(15)
3360-210-290‡	F, A (45)¶	614	473	89	93	30	T	
	R, N 1000° Ca	575		Nil	Nil			(4, 5)
4026-(C, Mn, etc. 242)	R, A 950°†	687		22	28			
	F	659		Nil	Nil			
4180-250-3601	F	772	709	0	2			(15)
4230-250-360‡	F, A (15)¶	599		6.4	9.8	33	T	
4900-260-290-40-60	F	756		3	7			(15)
4800-260-290-40-60	F, A (0)¶	394	394	4		36	T	
	R, N 1000° C	572		Nil	Nil			(4, 5)
4885-40-72-21-27	R, A 950°†	654		Nil	Nil			ŀ
	{F	657		Nil	Nil			
	∫ F	618	526			248	В	(12)
5120-277-380-34-9	∫ F, W 850° Q _w	627	528			311	В	·
5530-260-290	F, A	394	394	5	Nil			(13)
	(R, N 1000° Ca	254		Nil	Nil			(4, 5)
5998-(C, Mn, etc. 249)	R, A 950°†	419		Nil	Nil			l
,-,,,	F	315		Nil	Nil			
	R, N 1000° Ca	326	_	Nil	Nil			(4, 5)
7470-(-)-210-19-11	R, A 950°†	332		Nil	Nil			
• •	F	377		Nil	Nil			!

^{*} Dimensions of test pieces: (1) 2 in. × 0.564 in. diam.; (4, 5) 2 in. × 0.580 in. diam.; (12) not stated; (13, 15) 2 in. × 0.798 in. diam.; v. also (22, 34, 35). † Annealed for 40 h and cooled over 170 h.

|| Bar 5 in. long × % in. diam. bent 180°, radius = 5/16 in.

TABLE 10.-EFFECT OF LIQUID AIR TEMPERATURE ON FORGED SI-STEEL (13)

Tensile tests* (bars 2.00 in. × 0.18 in. diam.)

composition		t°,C	ca.	20	-182		
Si	C	Mn	UTS	El	$\parallel UTS \mid$	El	
2.28	0.67	0.50	97.6	15	97.6	0	
2.67	0.20	0.25	67.7	17	92.9	0	
2.77	0.34		81.9	17	92.9	0	
3.03	0.07	0.064	61.4	22	67.7	0	
3.89	0.11	0.02	69.3	2.5	39.4	0	

^{*} Treatment: W 1102° Ca W 2 777° Cf.

Brinell hardness number

No. I: Si, 2.28; C, 0.67; Mn, 0.5.

No. II: Si, 3.05; C, 0.11; Mn, 0.08.

	No.		I		II
p, atm.		At ca. 20°C	At -182°C	At ca. 20°C	At -182°C
10		305	374	187	328
20		299	396	197	305
40		307	401	206	343

Table 9.—Tensile Properties and Hardness of Rolled and | Table 11.—Compression Tests on Forged Si-Steels (15); r. also (1)

	% composition	Si, 0.79;	Mn, 0.21;	Si, 2.67;	Mn, 0.25;
		С,	0.18	C,	0.20
CS		<i>l</i> , in.*	d, in.†	<i>l</i> , in.*	d, in.†
	0	1.0	0.798	1.009	0.798
	15.8	0.996	0.799	1.009	0.798
	31.5	0.992	0.800	1.008	0.800
	47.3	0.947	0.822	0.992	0.808
	63 .0	0.853	0.890		ĺ
	78.8	0.814	0.894	0.901	0.850
	94.5	0.731	0.950		
	110.3	0.658	1.002		
	126.0	0.598	1.056		ì
	141.8	0.547	1.115		}
	157.5	0.503	1.153	0.622	1.035

% composition	Si, 3.46;	Mn, 0.29;	Si, 4.49;	Mn, 0.36;
	C, (0.21	C, (0.25
cs	<i>l</i> , in.*	d, in.†	<i>l</i> , in.*	d, in.†
0	1.009	0.799	1.008	0.799
15.8	1.009	0.799	1.008	0.799
31.5	1.009	0.799	1.008	0.799
47.3	1.005	0.800	1.005	0.800
63.0	i		0.990	0.806
157.5	0.646	1.012	0.683	1.003

 $[*]l = length. \dagger d = diameter.$

Table 12.—Properties of Cast Si-Steels (25)

Treatments: $\alpha = G$; $\beta = G$, A $1100^{\circ}/10$ h; $\gamma = \beta$, C_a 900- $1000^{\circ} Q_{w}$; $\delta = G$, A $900^{\circ}/1 h Q_{w}$.

	NT 1 70 4	10 ×	10 ×	10 ×	10 ×	BHN†
	No. and Trt	UTS	YP.	El*	RA	BHN
	α	443	320	300	575	130
	β	392	269	275	675	118
1	γ	524	345	110	570	160
	δ	573	365	175	652	162
	α	430	335	295	670	131
_	β	398	287	273	695	122
2	γ	554	354	106	540	200
	δ	625	450	156	576	205
	α	457	346	283	580	144
3	β	432	318	260	687	126
3	γ	616	384	100	470	203
	δ	679	450	156	576.	205
	α	485	378	282	550	150
4	β	443	318	215	645	136
4	γ	660	400	97	331	216
	δ	699	450	148	550	210
	α	551	420	277	450	168
-	β	513	324	190	560	152
5	γ	756	406	75	162	258
	δ	724	452	132	440	230
	α	562	446	262	400	180
6‡	$\mid oldsymbol{eta} \ldots \ldots \mid$	524	336	185	500	174
0*	γ	814	524	22	39	269
	δ	776	455	120	335	250
	α	587	469	232	395	182
7‡	β	545	335	182	490	176
1+	γ	820	540	22	32	278
	δ	820	457	112	320	258

[‡] Steels of commercial importance.

 $[\]P(x) = \text{bars } \frac{1}{2} \text{ in. } \times \frac{1}{4} \text{ in. cross section bent cold through } x^{\bullet}, \text{ radius } =$ 3á in.

^{**} Broke at end in bend test.

TABLE 12.—Properties of Cast Si-Steels (25).—(Continued)

N-		Tho	usandths o	of %	
No.	Si	C	Mn	P	S
1	240	120	410	33	64
2	370	100	300	41	49
3	670	110	230	44	44
4	950	110	360	40	43
5	1250	150	500	43	42
6‡.	1730	150	560	45	40
7‡	2350	120	290	40	58
No.	1	2	3 4	5	6 7
ζ°§	7.86	1 7 . 853 7	.835 7.810	7.7747	.733 7.70

^{*} Test pieces 20 cm \times 2 cm diam.

Table 13.—Properties of Forged Si-Mn-Steels (11)

Compo	sition, tl	ousan	dths	of %	T-4	BHN•	10 X	10 ×	10 ×	10 ×	704
C	Mn	Si	P	8	Trt	BHN	UTS	EL	El†	RA	IS‡
104	1 728	457	32	8	A§	101 107 234	476 498 655	274 287 444	145 175 35	305 582 396	32 36 16
210	2 072	1 352	19	8	A§	126 153 269	583 602 1 155	448 465 1 155	130 140 0	342 572 0	4 6 0
224	14 400	911	24	Tr.	A\$	202 212 196	747 791 706	227 233 205	120 100 150	172 147 186	30 27 30
237	2 150	781	32	10	A§	107 107 248	559 558 1 070	405 407 1 070	147 155 10	305 572 50	18 28 4
240	14 760	1 880	29	Tr.	A§	269 248 300	1 032 945 1 078	695 498 925	0 50 0	0 60 0	0 7 1
490	11 940	2 310	32	Tr.	A§ N 900°	196 202	698 799	443 492	190 100	146 125	19 15
520	11 840	432	17	Tr.	A§ N 900°	153 196	704 725	405 482	200 190	248 223	27 25
565	450	960	37	Tr.	A§ N 900°	244 248	725 765	528 503	80 120	60 145	6
572	12 007	1 210	28	15	A§ N 900°	153 202	717 758	421 465	190 150	175 146	22 20
620	525	1 840	25	12	A§ N 900°	269 293	805 832	539 544	60 100	53 87	2 6

	Thou	sandths	of %		Treatment (26); cf.	10 ×	10 ×	10 X	10 ×
C	Mn	Si	P	8	(17)	UTS	EL	USS	ELS
700	7 200	745	21	10	A 850°/180	566	414	490	142
762	5 112	1 118	11	13	A 850°/180	866	602	608	460
840	1 031	573	15	24	A 850°/180	1 183	685	454	340
873	461	1 351	24	20	A 850°/180	1 150	595	430	298
922	10 080	721	16	13	A 850°/180	978	482	490	139
930	1 972	1 028	11	18	A 850°/180	1 054	791	460	309
934	3 084	1 446	10	15	A 850°/180	1 010	829	485	334
960	12 096	876	13	11	A 850°/180	896	618	482	156

^{* 10} mm ball, 3000 kg load.

Table 14.—Effect of Mn Content on Tensile Strength and Elongation of Malleable Cast Iron (24)

%	-	sition nealir	n (befo	ore	UTS*	El*	Anneal- ing time,
Mn	C	Si	P	8			hr†
0.13	3.06	0.45	0.071	0.041	$ \left\{ \begin{array}{l} 41.3 \\ 36.1 \\ 32.5 \end{array} \right. $	3.5 5.0 13.0	95 130 260
0.26	2.60	0.41	0.078	0.042	45.1	4.5 6.0 14.5	95 130 260
0.38	3.18	0.32	0.089	0.042	44.6	3.0 4.8 14.0	95 130 260
0.66	2.58	0.44	0.075	0.044	$ \begin{cases} 44.8 \\ 40.8 \\ 34.7 \end{cases} $	3.0 6.5 15.5	95 130 260
0.78	3.11	0.44	0.078	0.054	46.5 40.5 34.5	2.5 5.5 13.5	95 130 260
0.80	2.76	0.47	0.068	0.044	46.9 41.6 34.7	2.7 6.5 15.0	95 130 260
0.94	2.76	0.39	0.068	0.050	48.4 42.4 35.6	3.0 6.0 13.5	95 130 260
1.05	2.58	0.51	0.056	0.054	50.9 45.1 38.0	2.3 6.0 14.5	95 130 260
1.12	2.90	0.41	0.087	0.038	50.4 45.7 38.4	2.0 5.0 15.5	95 130 260
1.32	2.82	0.33	0.072	0.038	48.5 46.6 40.7	1.5 3.0 16.0	95 130 260
1.52	2.99	0.45	0.076	0.044	53.1 50.3 43.2	2.0 3.0 14.3	95 130 260
1.74	3.30	0.36	0.097	0.040	$ \left\{ \begin{array}{l} 52.1 \\ 48.1 \\ 43.2 \end{array} \right. $	1.5 2.0 11.0	95 130 260

^{*} Test pieces 100 mm × 12 mm diam.

TABLE 15.—Effect of SI CONTENT ON GENERAL MECHANICAL PROPERTIES OF MALLEABLE CAST IRON (23)

Co	mposi	of %		dths	10 ² d ₄ ²⁰ before anneal- ing	Anneal- ing time, hr*	10 ³ d ₄ ²⁰ after anneal-	10 × UTS		10 ×	10 × 18‡	BHN
	-	1 14111	 	1	1 mg	1/ 07	ing	1 000		<u> </u>		1
	İ			1		95	7786	398	40		24	107
				1	_	130		378	100	240		1
17	325	11	6.5	5.2	Porous	175	7761	362	108	260	40	90
	1					225		350	184	370	80	92
	<u> </u>			1		260	7770	328	191	415	105	84
						95	7785	402	39		24	120
			l			130		377	94	225		99
23	332	12	6.1	5.4	7745	175	7767	364	99	245	36	96
					l	225		348	161	350	75	1
						260	7766	331	180	380	98	87
						95	7699	444	40		25	123
			l		1	130		372	94	220	ĺ	101
30	309	12	6.0	5.0	7746	175	7683	364	98	240	36	96
			l		1	225		350	162	345	72	94
	1			!]	260	7676	336	174	355	79	88

^{† 10} mm ball, 2000 kg load.

[‡] Steels of commercial importance.

As cast (G).

 $[\]dagger$ Tensile specimens, 10 cm \times 1.38 cm diam.

[‡] Guillery machine, Fremont test piece $8 \times 10 \times 10$ mm.

[§] Forged and annealed at 950° and 1200°.

^{||} Fremont machine, test pieces 6 mm × 8 mm cross section.

[†] Annealed with forge, scale at 980°C.

Table 15.—Effect of SI Content on General Mechanical Properties of Malleable Cast Iron (23).—(Continued)

_	ROP	ERT	TES (OF N		BLE CA) N (-		-(00)	umu	
Cor	mpositi	ion, i		dths	10 ² d ₄ ²⁰ before	Anneal- ing time,	103d40 after	10 ×			10 X	BHNS
Si	C	Mn	P	S	anneal- ing	hr*	anneal- ing	UTS	Bl†	RA	IS‡	
						95 130	7633	425 372	31 80	210	24	125 106
38	306	12	5.7	4.9	7742	175	7614	366	88	225	36	102
						225 260	7594	353 332	140 161	300 340	72 84	94 91
—		-				95	7625	436	31	310	26	127
						130		388	71	185		107
44	316	12	6.2	5.8	7730	175 225	7607	373 351	84 140	190 260	35 69	104
						260	7607	342	161	315	72	92
						95	7632	443	31		22	128
50	297	12	6.6	6.7	7727	130 175	7606	394 377	72 79	190 190	33	111 104
						225	****	358	139	265	65	100
—	 	<u> </u>				260	7602 7601	343 413	157 28	310	22	131
			ŀ			130	7001	377	58	130	""	113
55	312	12	6.2	6.8	7709	175	7566	372	66	145	33	104
						225 260	7546	353 342	126 148	210 250	58 64	101 96
		-				95	7484	425	29		21	129
58	311	13	6.1	5.9	7716	130 175	7502	385 369	58 68	130 150	33	112 129
•	"		0.1	0.5	1110	225	1002	355	123	240	55	102
_		_				260	7460	344	149	270	58	96
						95 130	7440	432 373	25 47	115	22	133 113
67	327	12	6.8	5.6	7705	175	7384	366	57	125	32	133
						225 260	7357	344 339	123 138	220 240	46 53	97 93
—	_	_				95	7473	407	22	240	19	136
			}			130		378	47	130	Į	117
71	316	13	5.7	6.4	7701	175 225	7497	377 351	62 118	135 230	33 47	111
						260	7435	339	134	245	57	99
_						95	7441	424	25		22	133
75	325	14	5.6	5.7	7700	130 175	7463	377 373	45 58	125 135	33	117 112
	"		0.0	0.1		225		355	110	230	47	101
_		_				(260	7398	342	128	235	55	101
						95 130	7343	432 364	20 39		19	137 110
81	317	13	6.8	5.4	7689	175	7268	366	57	135	33	108
						225 260	7299	353 339	108 123	190 213	46 51	99 96
						95	7364	416	18		22	139
01	20.4				7000	130	7200	372	40 52	110 130		
81	324	13	5.8	6.0	7686	175 225	7386	369 353	52 111	210		100
		<u> </u>				260	7328	339	126	215		100
						95 130	7384	409 361	22 39	105	21	130 111
83	332	14	5.3	6.7	7687	175	7356	361	56	125	32	112
						225 260	7328	350 337	108 127	190 220	47 48	101 98
—						95	7353	419	22	220	19	138
						130		374	39	100		113
94	334	14	5.6	5.6	7682	175 225	7339	376 355	51 110	105 200	33 47	116 103
						260	7299	344	123	220	71	99
		_				95	7291	429	22		19	133
105	324	14	6.0	5.7	7675	130 175	7267	373 373	36 50	80 95	35	114 116
			0.0	.		225		348	100	165	47	104
						(260	7257	336	108	170	50	101
						95 130	7248	425 356	25 33	50	21	132 111
108	319	14	6.6	5.2	7664	175	7190	350	45	90	33	107
						225 260		344 317	96 98	130	43 46	103 98
						mperetur						

^{*} Annealed with forge, scale temperature = 980°C.

- † Test pieces 100 mm × 12 mm diam.
- ‡ Small Charpy machine (25 kg-m max. energy), specimens $80 \times 10 \times 10$ mm; impact length 60 mm notch, 2 mm deep \times 3 mm wide.
 - 10 mm ball, 1000 kg load.

TABLE 16.—Effect of Mn on Properties of Cast Iron

		.			~						
	Composit	C C	ndredtha	101	<u>%</u> I						
Mn	Graph- ite	Com- bined	Total	Si	P	s	UTS*	BMR*	BHN†	ScH	Lit
-	100	Dinea		Gre	nhite	<u>' '</u>	L.4 %				<u> </u>
25	100	012	322	82	_	1	24.4	49.2		58	(7)
35 200	109 107	213 201	308	103			25.8	46.8		65.5	
				-ran	hite.	1.4	-1.8 %				
1.6	173	106	279			1.6	15.6	28.4		45	(7)
9.3	156	116	272			0.3	26.0	45.8	183	40	(37)
16	169	78	247	150	2.2	0.6	25.8	44.6	178		(37)
			(}rap	hite,	1.8-	2.2 %				
1.4	215	113	328	1	9.0	. 1	20.0	34.7		47	(7)
4	210	92	302 321			1.5	15.9 25.7	33.7 43.2	188	43	(7) (37)
23 56	183 194	138 69	263			0.5	33.1	53.4	215		(37)
71	215	65	280	1	1	0.3	32.8	58.0	213		(37)
79	195	79	274	1	1	0.6	32.5	58.2	214		(37)
93	212	78	290	ı	1	0.3	32.0	60.1	225		(37)
96 171	215 210	64 88	279 298			0.7 1.0	33.1 29.3	59.6 47.3	221 240		(37)
		!	'	•			2.6 %				<u></u>
-5	225	105	330	100		1	20.9	45.4		50	(7)
17	225	98	323		1	1.0	21.7	38.3	175		(37)
31	238	74	312	1	1	1.0	32.0	50.6	176		(37)
49	259	66	325	1	1	1.4	26.8	48.5	175		(37)
55 65	243	71 58	314 298			0.8	32.5 35.0	53.6 60.2	180 200		(37)
78	240 252	62	314			1.0	34.2	59.4	203		(37)
80	236	65	301	1	1	1.3	34.8	60.2	202		(37)
84.6	233	82	315	102	1		26.2	43.8		51.5	
98	230	77	307		1	0.8	34.5	61.0	209		(37)
106 120	258 228	80 80	338 308			0.6 1.4	26.8 35.6	48.0 62.4	187 215		(37)
134	225	72	297		1	0.5	32.0	57.1	217		(37)
141	233	78	311		5.7	1	36.2	56.6	222		(37)
155	222	70	292			0.4	26.6	52.5	227		(37)
193	259	81	340			0.9	22.8	45.1	197	40	(37)
196 222	234 242	69 78	303 320	242 169			24.4 28.7	40.5 40.0		43 42.5	(7) (7)
		1 10		•	<u> </u>	9.6	-3.0 %	10.0	· · · · · ·		
37	263	61	324			0.5	23.3	46.2	173		(37)
54	289	30	319		2.7		23.5	34.0		31	(7)
61.1	283	22	305	225	1		19.1	29.5		31	(7)
63	276	54	330			1.2	26.2	47.3	173		(37)
90	270	56	326	162 229	3.3	1.0	27.7 24.4	47.7 34.8	184	38	(⁷)
102.3 103	264 261	47 43	311 304	150			23.8	38.4	1	40	(7)
124	260	67	327		3.8	1.2	27.6	47.5	190		(37)
146	271	73	344	155	3.4	1.0	27.3	48.7	188		(37)
173	261	83	344	159	3.8	1.1	28.1	46.9	191		(37)
			G	rap	hite,	>3.	.0 %				
32	302	84	386			1.1		26.8	127		(37)
52	312	91	403 387			1.0	13.5 12.4	28.2 26.9	132 126		(37) (37)
83 100	310 310	55	365			0.9		27.3	125		(37)
136	344	59	403		1	0.9	12.4	26.0	128		(37)
148	312	94	406			1.2	13.2	28.0	132		(37)
172	329	63	392			0.8	13.1	30.4	137		(37)
188	338	36	374			1.4	12.8	29.5	140		(37) (37)
209 246	335 328	51 57	386 385			1.4 1.0	14.8 15.0	30.1 32.8	146 158		(31)
240	-4 minos							·	ng. 15		

^{*}Test pieces: Tensile, 6 in. \times 3/4 in. diam.; bending, 15 \times 1 in. sq., tested on 12 in. span (7). Tensile, 10 cm \times 2 cm diam.; bending, 60 cm \times 3 cm diam. (37).

^{† 10} mm ball, 3000 kg load.

TABLE 17.—EFFECT OF MN CONTENT ON HARDNESS OF CAST IRON (8)

	White cast iron									
	ScH									
Mn	Si	C	SCII							
0.03	0.040	3.15	58							
1.48		3.28	60							
2.82		3.19	65							
4.40		3.14	70							
5.40	0.083	3.45	73							
6.30		3.43	80							
7.20	0.081	3.39	59							
9.12	i	3.45	58							
10.67	0.072	3.46	54							
12.35		3.50	52							
13.50		3.49	58							
16.00		3.80	67							
16.20	0.100	3.45	64							
18.65		3.91	60							
23.30	0.120	3.85	70							
30.50	0.173	3.95	70							
34.10	0.156	3.85	71							
38.55	0.155	3.93	72							

Gray cast iron

	% co	mposition			
Mn		C	-	0:	ScH
IVIII	Total	Graphite	Combined	Si	
0.55	3.66	2.87	0.79	2.45	20
1.00	3.70	3.39	0.31	2.46	37
1.61	3.63	3.16	0.47	2.35	40
2.23	3.60	3.25	0.35	2.35	38
2.65	3.60	3.33	0.27	2.39	33
3.45	3.70	3.12	0.58	2.48	42
4.19	3.80	2.94	0.86	2.44	53
5.15	3.12	2.69	0.43	2.40	55
5.83	3.40	2.65	0.75	2.34	56
6.62	3.24	2.60	0.64	2.40	58
8.35	3.85	2.15	1.70	2.38	63
9.89	3.83	2.10	1.73	2.45	66
10.30	3.95	1.98	1.97	2.41	67
11.15	4.00	1.85	2.15	2.48	65
17.57	4.25	1.14	3.11	2.54	87

TABLE 18.—EFFECT OF SI CONTENT ON CAST IRON C, 1.8 to 2.2% (33)

	ompositi	ion, hundre	dths	of %		10	² d 4	1		i	<u> </u>
Si		C	Mn P		PS	Cylin-	Turn-	E/10	TSH	UTS	UCS
51	Total	Graphite	WIII	r	3	ders	ings				
19	198	38	14	32	5	7560	7719	1814	72	15.9	118.6
45	200	10	21	33	5	7510	7670	2017	52	19.4	144.0
96	209	24	26	33	4	7641	7630	2192	42	20.0	144.0
196	218	162	60	28	3	7518	7350	1657	22	24.7	96.6
251	187	119	75	26	5	7422	7388	1791	22	23.0	121.6
296	223	143	70	34	4	7258	7279	1487	22	19.2	90.6
392	201	181	84	33	3	7183	7218	1100	27	17.8	75.1
474	203	166	95	30	5	7167	7170	1316	32	16.1	72.8
733	186	148	136	29	3	7128	7138	1036	42	8.3	78.1
980	181	112	195	21	4	6978	6924	980	57	7.6	53.7

Test bars 16 in. X 11/2 in. diam.; cast upright, cooled in molds, tested with skin on.

TABLE 18.—Effect of SI Content on Cast Iron.—(Continued) C, 2.8 to 8.2% (7)

- 0	omposit	ion, hundr	of %					
Si	C		C		$ \mathbf{s} $	ScH	UTS*	$BMR\dagger$
SI	Total	Graphite	Mn	P	"			
40	322	3		1.8	1.1	57	20.5	41.8
50	312	25				56 .5	21.6	41.3
80	304	177			1.3	58	15.9	35.9
100	328	215	1.4	9		47	20.0	34.7
111	280	161				49	14.2	31.2
131	305	195			1.1	47	14.2	33.4
162	302	210	4	9.3	1.5	43	15.9	33.7
203	288	180	2			40.5	22.5	32.6
224	279	173	1.6	2.7	1.6	45	15.6	28.4

^{*6} in. × 34 in. diam.

C, 2.9 to 8.25 %; Mn, < 0.2 %; P, < 0.05 %; S, < 0.05 % (20)

Hun	dredths	of %		Hun	dredths	of %	
		C	UTS			C	UTS
Si	Total	Graph- ite	015	Si	Total	Graph- ite	015
53	290	Tr.	35.9	196	323	268	23.5
63	290	Tr.	22.8	197	297	147	19.5
66	290	Tr.	21.1	205	312	250	23.6
88	290	Tr.	27.4	207	325	275	13.4
99	290	Tr.	28.5	219	325	275	24.6
110	300	Tr.	25.2	231	310	255	13.2
143	298	28	17.6	236	329	280	15.4
151	300	Tr.	18.3	241	313	240	22.7
168	295	65	18.0	250	305	230	20.6
171	300	Tr.	14.8	250	325	285	14.3
172	307	247	20.0	267	290	250	16.7
173	300	10	18.9	282	306	255	12.9
180	302	11	17.3	294	307	255	12.9
180	315	260	16.9	305	307	260	13.7
195	298	120	30.9				

C, 2.56% to 4.05%* (36)

	٠, -	.00 /0 10 2.0	0 /0 ()		
Hun	dredths of	%			
a.		C	$BHN\dagger$	UTS;	BMR
Si	Total	Graphite			
54	405	229	166	12.8	29.9
80	340	185	206	20.2	40.6
85	319	177	211	21.3	46.5
95	395	263	116	7.2	19.8
118	290	125	244	29.9	53.4
12 2	322	172	216	23.5	49.0
130	336	228	187	16.2	35.8
137¶	399	260	114	7.7	18.0
155	286	146	236	24.7	45.8
168	342	196	201	18.6	35.1
178	323	199	202	20.3	43.0
183	397	259	111	8.2	18.4
217	340	214	183	15.1	34.0
225	256	145	246	23.5	53.4
225**	320	281	124	14.2	28.4
241	290	228	161	19.5	36.7
282††	263	159	235	20 .5	42.5
323‡‡	263	236	130	18.0	35.3

^{*} Mn, P, S content low except where noted.

† 10 mm ball, 3000 kg load.

¶ Mn, 12; P, 2.7; S, 1.1.

10 cm × 2 cm diam. 60 cm × 3 cm diam.

** Mn, 12; P, 4.5; S, 1.

†† Mn, 12; P, 6.3; S, 0.7.

\$\$ Mn, 11; P, 7; S, 0.7 (hundredths of %).

^{† 15} in. × 1 in. sq., 12 in. between supports.

[|] Mn, 17; P, 2; S, 1.6.

Table 19.—Effect of Casting Temperature and Annealing on Cast Irons of Different Si Content (Mn, <0.2%; P, <0.03%; S, < 0.04%) (20)

Н	undredths of	· %		
Si	1	C	t _g : t _n , °C*	UTS
	Total	Graphite		
1	325	Tr.	1250	19.4
129	328	321	1250:1000	21.4
)	325	Tr.	1403	21.1
	326	320	1403:1000	31.0
	326	26	1201	11.8
1	326	16	1300	17.0
152 {	326	10	1403	18.6
I	327	320	1300:1000	19.4
	331	323	1403:1000	22.1
1	323	223	1180	17.8
	333	325	1180:1000	16.1
170	329	219	1250	16.9
)	327	321	1250:1000	12.6
	330	180	1403	16.9
\	330	324	1403:1000	17.8
	331	251	1154	13.2
1	332	261	1215	14.5
200 {	332	326	1215:1000	15.8
1	330	250	1366	14.3
l	329	320	1366:1000	10.6
	330	257	1135	12.0
	327	321	1135:1000	16.7
230	329	255	1215	16.2
1	335	328	1215:1000	11.0
	330	260	1300	15.6
[334	327	1306:1000	15.1

Table 19.—Effect of Casting Temperature and Annealing on Cast Irons of Different Si Content (Mn, <0.2%; P, <0.03%; S, <0.04%) (20).—(Continued)

Н	undredths of				
Si		C	$t_g: t_a, {^{\circ}C^*}$	UT S	
101	Total	Graphite			
1	320	240	1210	13.4	
1	332	324	1201:1000	8.7	
250	327	245	1243	11.8	
)	331	325	1243:1000	5.8	
	320	240	1290	14.8	
	329	324	1290:1000	6.5	

^{*} t_z = casting temperature, t_a = annealing temperature.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Arnold, 140, (I): 107; 94. (2) Arnold and Knowles, 140, (II): 76; 11. (3) Arnold and Read, 140, (I): 169; 10. (4) Baker, 46, 34: 498; 05. (5) Baker, 140, (II): 312; 03. (6) Campbell, 140, (II): 359; 03. (7) Coc. 140, (I): 361; 13. (8) Coc, 140, (II): 105; 10. (9) Frilley, 74, 8: 457; 11. (10) Guillet, 34, 137: 480; 03. (11) Guillet, 140, (II): 1; 06. (12) Guillet,
- (10) Guillet, 34, 127: 480; 03. (11) Guillet, 140, (II): 1; 06. (12) Guillet, 74, 1: 46; 04. (13) Hadfield, 140, (I): 147; 05. (14) Hadfield, 140, (II): 41; 88. (15) Hadfield, 140, (II): 222: 89. (16) Hadfield, 153, 93: 77; 87. (17) Hadfield, 153, 93: 1; 88. (15) Hadfield, 80, 23: 148; 94. (19) Hadfield, 80, 23: 148; 94. (19)
- (20) Hatfield, 140, (II): 157; 06. (21) Hengstenberg, 77, 44: 914; 24. (21) Lang, 192, 8: 15; 11. (23) Leuenberger, 77, 37: 513, 601; 17. (24) Leuenberger, 77, 41: 285; 21. (25) Paglianti, 192, 9: 217; 12. (26) Portevin, 417, (I): 230; 09. (27) Potter, 80, 50: 437; 14. (28) von Schwarz, 139, 11: 80; 13. (29) Stateler, 93, 81: 61; 13.
- (30) Strauss, 212, 4: 665; 23.
 (31) Turner, 4, 51: 122; 87.
 (32) Turner, 133, 1888: 69.
 (33) Turner, 4, 47: 577, 902; 85.
 (34) Wahlberg, 140, (I): 243; 01.
 (38) Wahlberg, 77, 21: 460; 01.
 (36) Wüst and Kettenbach, 139, 11: 65; 13.
 (37) Wüst and Meissner, 139, 11: 97; 13.
 (38) Yensen, 119, 24: 2455; 15.

STEELS CONTAINING AL, AS, B, CE, SB, TA, OR ZR

W. ROSENHAIN AND EDITH OWER

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Tensile properties and hardness of Al-steels.	Résistance à la traction et dureté des aciers à l'Al.	Festigkeitseigenschaften und Härte der Al-Stahlsorten.	Comportamento alla tra- zione e durezza degli acciai all'Al
Compression tests on Al-steels.	Essais de compression sur des aciers à l'Al.	Druckversuche mit Al-Stahl- sorten.	Prove di compressione sugli acciai all'Al 529
Specific gravity of Al-steels.	Poids spécifique des aciers à l'Al.	Spezifisches Gewicht der Al- Stahlsorten.	Peso specifico degli acciai all'Al
Mechanical properties of Assteels.	Propriétés mécaniques des aciers à l'As.	Mechanische Eigenschaften der As-Stahlsorten.	Proprietà meccaniche degli acciai all'As 529
Mechanical properties of B-steels.	Propriétés mécaniques des aciers au B.	Mechanische Eigenschaften von B-Stählen.	Proprietà meccaniche degli acciai al B 530
Hardness of B-steels.	Dureté des aciers au B.	Härte von B-Stählen.	Durezza degli acciai al B. 531
Mechanical properties of Cesteels.	Propriétés mécaniques des aciers au Ce.	Mechanische Eigenschaften von Ce-Stählen.	Proprietà meccaniche degli acciai al Ce 531
Mechanical properties of Sb-steels.	Propriétés mécaniques des aciers au Sb.	Mechanische Eigenschaften von Sb-Stählen.	Proprietà meccaniche degli acciai all'Sb
Specific gravity of Fe-Sb-alloys.	Poids spécifique des alliages Fe-Sb.	Spezifisches Gewicht von Fe-Sb- Legierungen.	Peso specifico delle leghe di Fe-Sb
Mechanical properties of Tasteels.	Propriétés mécaniques des aciers au Ta.	Mechanische Eigenschaften von Ta-Stählen.	Proprietà meccaniche degli acciai al Ta 531
Mechanical properties of Zr- steels.	Propriétés mécaniques des aciers au Zr.	Mechanische Eigenschaften von Zr-Stählen.	Proprietà meccaniche degli acciai allo Zr 532

Pari	Е 1.	т—.	'ENS	HLE	Pro	PERTIES AN	D HARD	NESS			JEL St	
	000 >				1110	1	BHN	1	EL	El*	1	1
Al	C	Mn	Si	P	S	Trt, s. p. 392	BHN	UIR	EL	Bi	KA	Li
						C, < 0.10%						
507	85	Tr.	Tr.	29	13	₹	81	37.1			68.0	(4
	<u> </u>					<u> Q†</u>	143	46.2		22	64.1	
7180	83	57	117	20	15	{ F	159 192	46.1 45.3		0	0	(4
						C, 0.10-0.15%						
	1	1				F	105	40.8	33.6	30	65.2	(4
1083	113	Tr.	70	16	14	{ Q†	159		40.8		20.8	
	 —			—		(A ‡	131	39.8	$\frac{31.5}{27.4}$		60.1 32.9	-(4
3050	134	Tr.	105	16	13	Q+	163		28.3		1.4	
						C, 0.15-0.20%						
380	150	180	180	40	10o	{F			36.2			(7
	_	-				$\frac{\mathbf{A} 1 \dots}{\mathbf{F} \dots}$			$\frac{31.5}{32.3}$			<u></u>
66 0	180	140	160	30	90	{ A ‡			28.3			(7
72 o	170	180	100			∫F			34.6			(7
						\(\frac{\lambda \pmath{\pma} \pmath{\pma} \pmath{\pma} \pmath{\pma}}{\pmath{\pma}}\)			28.3			
2045	168	Tr.	Tr.	8	22	{F	118 143		27.9 31.3		66.7 4.3	(4
	_	-	-			F	143	_	34.4		45.9	(4
3077	168	83	140	24	17	{ Q†	192 131		33.5 33.5		0	
						(A‡		44.3	33.0		0	_
	1					C, 0.20-0.25%	<u> </u>	1 45 5	20.0			
15 o	220	70	90			{F			33.0 31.5			(7
	-		-			∫ F			33.9			(7
61 0	200	110	120			<u> </u>			28.3			
160e	210	180	180		1	{F			31.5 20.5			(7
	_	_				∫F			33.0			(7
220o	210	180	180	30	90	<u> </u>		44.1	29.9	34.9	47.1	_
2240	240	320	180			F			33.9			(7
	 	-				$\frac{\left \begin{array}{c} \mathbf{A} 1 & \cdots & \\ \mathbf{F} & \cdots & \end{array}\right }{\left \begin{array}{c} \mathbf{F} & \cdots & \\ \mathbf{F} & \cdots & \end{array}\right }$		59.8	29.1	3.7		-(1
5 6 0o	220	220	200	30	80	A ‡			42.5		1	`
					C,	0.20-0 25% (ca	stings)					
							Diam.,					
	101	1.	1 10	1 00	100	104	mm	1	104 7	1:0.0	1.7.0	1 (1
45o 180o	240				25 22	GA	22.9 16.3				17.0 17.0	
275o	200				20	GA	16.3				0.0	
360o 460o		47 o			20	GA	14.7 22.9		26.8 25.2		0.0	
			•		•	C, 0.25-0.30°						<u>' ` </u>
114.	ا مو	110	12.	4:	۱ ۵۰	\(\mathbb{F} \cdot \c	<u> </u>	51.9	36.2	32.1	51.5	(
1160	 	 	 		80	<u> </u>				_	53.0	_
23 e 95 e	30o 28o		10o 15o		22 20	GA	16.3 16.3				13.5 15.0	
270e		1250	220		23	GA	21.1				0.0	
						C, 0.30-0 75%	•					
							BHN					
45	736	100	140	15	8	<u>F</u>	228		45.7		17.3	(4
1052	669	141	198	8	12	F	212		46.6		20.5	_(
2800	691	152	186	6	18	{F	228 269		43.6 58.4		4.5 4.5	(4
	-	-	-	-		<u> F</u>	217		68.4	1	0	(4
700•	663	140	256	50	25	{Q†	255	102.5			ō	Ľ
C. >0.75%												
1094	796	208	362	13	14	<u> </u>	228		45.2			_(4
4650	815	122	221	24	24	F	277		46.7	_	15.4	(4
	1	1	i -	1 -		(F	277	101.9	اه ما		42	

* Test pieces (*) are 2 in. \times 0.7979 in. diam.; dimensions of others not stated. † 850° Q. . ‡ A 900° /4 h.

Table 2.—Compression Tests on Al-Steels (7)
Test pieces (as forged) subjected to compressive stress of 157.5 kg/mm².

100	× %	comp	ositi	on		l ₀ *		$100^{\Delta l}$	$100^{\Delta d}$	
Al	C	Mn	Si	P	S	10.	d_0^*	$-100\frac{\Delta t}{l_0}$	$100\frac{1}{d_0}$	
15	22	7	9	1		0.9970	0.7970	51.00	1.24	
66	18	14	16	3	9	1.0025	0.7965	49.08	1.17	
116	26	11	15	4	8	0.9985	0.7960	47.22	1.13	
160	21	18	18		İ	1.000	0.7972	48.10	1.14	
224	24	32	18			1.0011	0.7969	45.40	1.11	
560	22	22	20	3	8	0.9992	0. 7966	36 .57	1.04	

^{*} l_0 = original length, d_0 = original diameter.

TABLE 3.—Specific Gravity of AL-Steels

% comp	osition*	· ·	1420	Lit.
Al	C	Cast	Forged	Lit.
0.72	0.17		7.755	(7)
0.61	0.20		7.781	(7)
1.60	0.21		7.6237	(7)
2.24	0.24		7.554	(7)
5.6	0.22		6.6726	(7)
0.45	0.24	7.73	7.77	(11)
1.80	0.20	7.62	7.67	(11)
2.75	0.20	7.44	7.58	(11)
3.60	0.23	7.35	7.48	(11)
4.6	0.20	7.27	7.40	(11)
0.23	0.30	7.78	7.79	(11)
0.95	0.28	7.70	7.72	(11)
2.70	0.30	7.45	ļ	(11)

^{*} For complete analyses, v. Table 1.

TABLE 4.—MECHANICAL PROPERTIES OF AS-STEELS

		× %					Trt, * v. p. 392	IIT'S	V.D	ויפו	RA	T :+
As	CI	Mn	Si	Cul	P	8	11c, v. p. 552	0.7.5	- 1 1	Z.	"A	DI6.
							C, <0.3 %					
123	1 77	436	58	168	17	54	A				55.3	(8)
	<u></u>			_			<u> </u>		27.4	27.9	52.2	
277	76	440	54	196	20	60	{ A		26.9	26.9	55.4	(8)
	<u> </u>		<u> </u>	_			<u>(Q</u>		29.2	24.0	51.6	
405	78	431	57	182	17	57	{ A		27.1		55.8	(8)
	 —		<u> </u>	<u> </u>			<u> </u>		31.7†		46.2	
549	77	448	52	192	18	52	\{ A		27.3	25.9	55.1	(8)
	. -	l—	<u> </u>	<u> </u>			<u> Q</u>		31.9	23.0	45.4	
691	75	439	62	200	16	60	{ A		30.1	25.6	53.0	(8)
	. —		l—	 _		_	<u> </u>		32.2	22.7	43.4	
880	76	435	54	207	20	55	{ A		31.6	25.6	52.4	(8)
	. _	 	l—	<u> </u>	—		<u> </u>		34.9	21.7	39.2	
1172	81	433	49	198	23	55	A		33.8	25.3	51.2	(8)
	. _		_		_		<u> </u>		35.8	22.8	42.8	
1425	80	429	49	192	26	51	A		34.3	20.8	42.3	(8)
	.	l		<u> </u>			<u> </u>	47.9	34.8	21.6	33.3	
1570	40	10	30	1	30	20	C	42.6	27.9t	28.5	34.1	(1)
1621		434	48	188	26	55	∫ A	48.8	36.1	20.2	34.1	(8)
1021		101	1_		20		<u> </u>	48.8	34.7	18.6	27.5	
1943	70	434	47	184	21	56	∫ A	47.5	36.7	8.9	15.5	(8)
1940	19	202	1	104	21	36	<u>} Q</u>	50.4	35.2	11.9	9.8	
2240		429	E-0	187	24	55	∫ A	42.5	36.6	5.15	9.1	(8)
2240	_ 00	429	32	101	24	55	<u> </u>	49.4	34.3	10.0	2.8	
2534	-	446	-	192	19	52	∫ A	41.0	36.9	4.55	1.1	(8)
2004	80	110	_ 55	192	19	32	Q	49.8	38.6	9.10	1.7	
2841	-	440		189	21	50	∫ A	36.5	35.5	1.88	0.0	(8)
2011	04	110	88	198	21	30	₹ Q	44.1	39.2	4.14	1.1	
0100	-	446	-	193	17	57	∫ A	35.7	35.7	0.0	0.0	(8)
3130		770	23	193	11	31	₹Q	44.4	44.0	1.97	0.0	
3284	0.5	442	50	186	17	51	J A	35.1	35.1	0.0	0.0	(8)
3284	00	774	28	100	17	91	∫ Q	39.5	38.8	1.10	0.0	
3515		352	40	152	13	40	∫ A	35.8	38.8	0.0	0.0	(8)
9019	08	302	10	102	10	40	\ Q	38.8	38.8	0.0	0.0	

TABLE 4.—MECHANICAL PROPERTIES OF As-STEELS.— (Continued)

1	000 X	% co	mposi	tion		Trt,* v. p. 392	UTS	ΥP	El	D.	7 %
As	ГС	Mn	Si	P	B	11tt, + v. p. 392	UIS	IP	E.	RA	Lit.
					C,	0.30-0.45 %					
93	360	1140	115	89	26	R	72.4	22.7	17	43	(10)
178	360	1020	123	55	40	R	57.5		20		(10)
185	355	100 o	122	68	36	R	57.5		18.5		(10)
193	405	1170	147	74	26	R	78.7	28.5	13	28	(10)
197	365	120o	109	64	34	R	72.9	21.0	19	47	(10)
208	360	1010	125	55	40	R	58.3		19.5		(10)
266	400	1110	168	77	34	R	80.2	27.5	13	33	(10)
272	360	120o	103	88	36	R	72.4	21.5	17	41	(10)
274	395	1120	150	87	46	R	72.4	24.0	17	32	(10)
278	425	1210	153	83	36	R	77.3	28.5	22	29	(10)
293	355	940	127	62	36	R	60.4		14		(10)
301	365	1120	94	94	40	R	72.4	26.5	16	43	(10)
328	365	1000	131	77	38	R	59.9		15.5		(10)
334	356	120o	109	97	36	R	74.5	22.0	16	36	(10)
340	400	1160	141	99	40	R	78.7	29.0	15	35	(10)
367	395	110o	141	97	34	R	80.0	32.0	15	27	(10)
618	355	100 o	125	72	40	R	59.5		16		(10)
672	1	930	94	84	44	R	62.5		20		(10)

TABLE 4.—MECHANICAL PROPERTIES OF AS-STEELS.— (Continued)

14	000 X	% ∞	mposi	tion		T-1 1 200	TI ST C	V D	191	124	
As	C	Mn	Si	P	s	Trt, * r. p. 392	UTS	YP	Bl	RA	Lit.
					(C, > 0.45 %					
243	495	110o	177	63	50	R	89.3	32.0	12	25	(10)
278	490	1110	156	77	40	R	83.6	31.0	10	12	(10)
278	500	109o	156	63	46	R	84.4	30.0	12	20	(10)
296	500	1080	195	87	34	R	88.6	33.5	11	19	(10)
317	515	109o	141	91	40	R	87.2	35.0	11	16	(10)
329	505	1170	125	86	44	R	85.8	32.0	13	20	(10)

* A = A 880°/90 C_0 (in absence of air); Q = 910°/40 Q_w ; C_0 = R (1 in diam.), W > 1000°, C_0 ; R = from head of a rail.

† These values are for elastic limit. ‡ Contains 0.003 % Al. $d_4^{20} = 7.8690$.

§ Test pieces from rolled bars, 2 in. × 0.564 in. diam.

Compression Test of 0.04 % C-Steels Containing As (1)

	100	× %	com	positi	on		Cs	% compression
As	C	Mn	Si	Al	P	8	Trt*	31.5 63.0 94.5 126.0 157.5
157	4	1	3	3	3	2	{ N	3.0 15.5 31.4 44.6 53.0 0.9 12.3 27.0 40.3 49.1

* N = normalized; H = W > 1000° Q_w (test pieces 28.7 mm × 14.32 mm

TABLE 5.-MECHANICAL PROPERTIES OF B- AND NI-B-STEELS

Boron steels difficult to roll at ordinary rolling temperature (1100°C). Ingots for (2): specimens rolled at 960°, but some plates showed cracks.

			9	o co	mpos	ition			T-4 200	UTS	YP	DI	E77 *	DA	BHN	C.II	IS†	IS'‡	L
В	C	Ni	A	11	Mn	Si	P	S	Trt, v. p. 392	UIS	IP	PL	E la	MA	DHN	SCH	kg/m	kg-m/cm ²	1
									B-Ste	els									
0.215	0.180				0.076	0.232	0.023	0.012	$\begin{cases} N \\ 850^{\circ} Q_{w} \end{cases}$	37.4 68.4	1			57.5 36.5			3.05 5.95		(
0.39	0.16		0.	.06	0.68	0.24	<0.015	<0.035	N 880° 880° Q. Tp	49.1 67.5	32.5			$23.8 \\ 19.1$		15 30		0.79	(
0.462	0.224				0.292	0.163	0.015	0.015	$\begin{cases} N \\ 850^{\circ} Q_{w} \end{cases}$	39.6 147.5	1			55.0 30.6			3.05 5.95		(
0.57	0.21		0	.02	0.80	1.50	<0.015	<0.035	N 880° 880° Q _o Tp		40.8 103.6			25.6 9.8		43		1.03	(
0.844	0.207				0.600	0.792	0.013	0.014	N 850° Q _w	50.1 174.9		29.8 129.9	1	26.8 10.6			3.05 5.95		(
1.514	0.281				0.600	0.641	0.018	0.005	$\begin{cases} N \\ 850^{\circ} Q_{w} \end{cases}$	51.7 126.0		31.5 120.0		4.5 0.0			1.94 3.05		(
0.06	0.45		0	.03	0.69	0.33	<0.015	<0.035	N 820° 820° Q _o Tp§	70.6 60.0	59.6			41.7		23 52		0.77	(
0.155	0.475				0.370	0.283	0.020	0.020	N	50.9		34.5	17.0	27.0			1.94		(
0.406	0.595				0.295	0.292	0.023	0.016	N	54.0	~	39.0	18.0	22.8			3.05		(
									Ni-B-St	eels									
0.09	0.16	3.00	0.0	.02	0.84	1.20	<0.015	<0.035	$\begin{cases} N 850^{\circ} \\ 850^{\circ} Q_{o} \text{ Tp} \end{cases}$	77.5 120.0			100	10.6		22 38		3.45	(
0.30	0.18	3.00	00.	.02	0.77	1.30	<0.015	<0.035	N 880° 880° Q _o Tp§	46.2 146.4			14.0	5.4		21		1.03	(:
0.50	0.19	3.0	5 7	۲r.	0.67	0.41	<0.015	<0.035	N 820° 820° Q _o Tp§	63.7 150.7	45.7 119.3			20.8 5.9	47.0 KM	52		0.99	(:
0.10	0.26	3.5	5		0.58	0.36	<0.015	<0.035	N 800° 800° Q _o Tp§	113.0 159.3	100			46.8 7.9		24 60		2.34	(3
0.10	0.47	2.80	00.	.02	0.67	1.25	<0.015	<0.035	N 760° 760° Q _o Tp§	84.8 180.0	172.0			31.1 7.9		35 55		0.75	(3
0.08	0.69	2.90	0 0	.01	0.50	0.36	<0.015	<0.035	N 840° 840° Qo Tp§	98.3 227.1	93.4	40.1 119.5				34 68		0.88	(3

^{*} In (2) specimens are 2 in. × 0.3 in. diam. PL by Berry strain gage.

[†] Machine and type of specimens not stated.

[‡] Tests made on Izod machine. Specimens: 0.35-0.45 notch, 0.13 in. deep, bottom radius = 0.01 in.

 $[\]S Tp = Tp_0 175^{\circ}/3 h, C_0$

TABLE 7.—MECHANICAL PROPERTIES OF CE- AND NI-CE-STEELS (2)

	% com	positio	n*		/D. 4 2000	77770	ΥP	DI	E77 ±	D.4	DIIN	ScH	IS'§
Cet	C	Ni	Mn	Si	Trt, v. p. 392	UTS	IP	PL	El‡	RA	BHN	SCH	kg-m/cm ²
						Ce-Steels							
0.20	0.39		0.68	0.75	{ N 840° 840° Q₀ Tp∥	65.8 90.1	39.8	26.0 59.7	6.3	54 0.7	163 418	17 32	1.54
0.35	0.40		0.69	0.27	∫ N 820° 820° Q₀ Tp	59.5 132.7	50.0	19.0 84.3	8.5	31.1 10.0	185 248	25 128	2.75
						-Ce-Steels							
0.01	0.45	2.95	0.71	1.30	{ N 820° 820° Q₀ Tp∥	101.1 218.8	94.4 145.1		15.6 8.5	40.8 37.2	269 555	24 52	1.54
0.06	0.41	2.80	0.73	1.70	{ N 840° 840° Q₀ Tp∥	100.8 209.3	172.0	42.2 123.0	7.5 7.5	37.6 7.2	285 555	39 58	3.73
0.10	0.46	2.90	0.98	1.55	∫ N 840° 840° Q₀ Tp∥	123.9 219.5	72.6 165.2	38.0 129.3	9.5 4.6	5.4 7.3	321	41 66	1.54
0.31 _T 0.19 _B	0.42	2.95	1.15	0.80	{ N 780° 780° Q₀ Tp∥	89.4 142.3	56.2 104.7	37.2 45.7	21.0 8.6	17.8 10.4	217 222	37 57	2.08
0.55 _T 0.35 _B	0.44	3.00	0.91	1.30	{ N 800° 800° Q₀ Tp∥	111.5 228.2	100.3 203.0	58.3	5.5 5.5	17.3 11.0	302 600	36 51	5.41
1.35 _T 0.66 _B	0.39	2.65	0.90	0.25	{ N 780° 780° Q₀ Tp∥	76.7 124.8	52.0 108.6	35.2 64.0	7.6 2.5	16.0 2.1	187	34	1.46
0.03		2.90 -Cu 0.6	1.04	1.35	{ N 780° 780° Q₀ Tp∥	108.4 176.8		49.2 98.4	1.0	14.1	396 530	40 52	1.01
$\begin{array}{c} 0.22_{\mathrm{T}} \\ 0.07_{\mathrm{B}} \end{array}$	80.74	2.25	0.82	1.25	{ N 805° 805° Q₀ Tp∥	120.2	81.0	70.3 (Broke	10.5 in sho	36.1 ulder)	359	48	1.01

^{*} These steels contain <0.015 % P, <0.035 % S.

Table 6.—Hardness of B-Steels* (3)

% B	% Ni	BHN†	% B	% Ni	BHN	% B	% Ni	BHN†
0.4		108.5	0.78	4.75	242.5	2.1	10.7	435
0.73		175	0.85	4.72	242.5	2.51	10.0	454
1.21	i	227	1.32	4.80	341.5	3.38	10.4	571.5
1.93		242.5	2.18	5.0	521.5	4.24	10.0	712
2.41		214	2.52	4.7	356	0.69	20.0	385.5
3.26		318	3.15	4.93	521.5	2.17	19.81	400.0
4.32		560	4.41	4.81	521.5	1.04	22.0	208?
2.3	1.3	227	2.39	7.0	418	1.42	25.0	400
4.27	1	571.5	0.71	10.2	355	3.9	25	296
2.76	2.1	250	0.84	10.2	370			
4.32	2	712	1.31	10.25	419			

^{*} Prepared from Swedish iron containing: C, 0.1; Mn, 0.14; Si, 0.014; P, 0.08; S, 0.012; ferroboron containing B, 19.56; C, 0.17; and pure Ni. † 10 mm, 3000 kg.

TABLE 9.—Specific Gravity of Fe-Sb-Alloys (9)

% Sb 18.80 38.80 44.98 56.88 6	0.80 64.58 74.31 81.52
$d_4^0 \dots 7.800 8.120 8.159 8.298 $	8.071 8.300 7.912 7.211

Table 8.—Properties of Sb-Steels (12)

	100) X (% con	ıposit	ion		UTS	VD	E11±	D 4	J20
Sb	C	Cu	Mn	Si	P	<u>s</u>	013	IF	Eil	nA	4
2	10	6	37	4	Tr.	7	35.4	20.0	33.5	75.0	
5	11	16	56	4	Tr.	5	35.4 34.4	20.5	30.1	75.0	8.2

[†] Test pieces 56 mm \times 5.65 mm.

TABLE 10.—MECHANICAL PROPERTIES OF TA-STEELS (6)

%	comp	ositio	n*	Trt, v. p. 392	UTS	FI.	E1+	R A	BHN
Ta	C	Mn	Si	116, t. p. 352	013	EL	Di	ил	DIII
0.00	0 12	0 10	0.12	∫ N	41.5	29.8	33	67.4	107
0.08	0.12	0.19	0.12	\ 875° Q _w 20°	65.0	46.9	14.5	71	159
0.15	0 17	0 15	0.19	∫ N	42.6	30.4	31	68.8	107
0.15	0.17	0.10	0.19	\ 875° Q _₩ 20°	62.1	45.7	15	73	153
0.80	0 10	0.00	0.24	√ N	45.3	31.1	28	67.4	112
0.00	0.18	0.22	0.24	\ 875° Q _₩ 20°	65.8	46.6	13	74.9	155
1 05	0 10	0.00	0.16	∫ N	47.8	31.5	28	62.3	116
1.05	0.10	0.23	0.10	\ 875° Q _₩ 20°	70.0	49.1	10	55 .8	169

^{*} All contain traces of P and S.

[†] Where two values are given for % Ce, subscripts T and B refer to samples taken from top and bottom of ingot respectively (in amounts over 0.30 %, Ce segregates very badly).

[‡] Tensile specimens 2 in. × 0.30 in. diam.

[§] Izod machine used. Specimens 0.30 in. to 0.45 in. diam., 45° V notch, 0.13 in. deep, bottom radius = 0.01 in.

Tp - Tpo 175°/3 h Ca.

[†] Dimensions of test pieces not stated.

TABLE 11.—PROPERTIES OF ZR- AND NI-ZR-STEELS (2)

		% cor	nposit	ion*			T 4 200	UTS	YP	PL	F: 1	RA	BHN	ScH	IS'‡
Zr	C	Ni	Mn	Si	Al	Ti	Trt, v. p. 392	013	IF	FL	$El_{ullet}\dagger$	n A	BHN	Sch	kg-m/cm
								Zr-Steels							
0.25	0.23		0.61	1.30	Tr.	0.05	N 900° 900° Q _o Tp§	55.7 69.7	31.6 43.8	$19.7 \\ 16.2$	28.5 23.5	60.8 55.0	179 187	24 22	5.08
0.20	0.37		0.50	0.73	0.02	0.03	N 860° 860° Q _o Tp§	66.8 69.9	35.5	21.1 16.9	10.0 9.5	22.8 21.3	179 196	27 25	
0.22	0.36		0.77	1.70	Tr.	0.06	N 860° 860° Q _o Tp§	75.0 135.4		30.2 63.2	24.5 5.0	53.0 19.8	206 286	17 35	1.76
0.50	0.33		0.63	1.5	Tr.	0.10	N 860° \ 860° Q _o Tp§	65.0 95.3	33.7	22.5 24.6	22.5 9.0	51.5 30.1	189 228	27 27	2.49
0.60	0.34		0.69	1.70	Tr.	0.07	\[\text{N 860°} \\ 860° \text{Qo Tp} \}	70.8 98.6	43.6 64.6		24.5 12.5	53.7 26.8	207 187	30 31	2.66
0.03	0.45		0.67	0.50	0.02	0.02	N 825° 825° Q _o Tp§	69.6 115.6		29.5 38.0	19.5 5.0	39.8 8.5	185 241	27 27	
0.03	0.42		0.76	1.55	Tr.	0.03	N 860° 860° Q _o Tp§	81.1 104.5	53.8 90.2	33.0 52.7	19.0 1.5	52.3 32.0	212 269	29 31	2.70
0.11	0.47		0.78	0.85	0.15	0.02	\[\text{N 800°} \\ 800° \text{Qo Tp} \\ \}	77.8 103.6		21.8 35.1	16.0 0.5	22.7 2.2	207 292	31 28	
0.15	0.42		0.55	0.44	0.13	0.01	N 860° 860° Qo Tp§	71.0 165.9	37.4 144.8	27.4 88.6	8.0 1.5	20.3 4.5	186 509	25 54	
0.09	0.56		0.75	0.54	0.07	0.02	N 810° 810° Q _o Tp§	70.8 142.5	39.3	35.1	11.0 0.25	18.7	197 454	27 43	
0.10	0.51		0.80	1.15	0.09	0.04	N 840° 840° Q _o Tp§	81.0 184.1		37.2 56.2	16.0 1.5	38.6 2.0	228 520	29 44	
								Ni-Zr-Steels							
0.12	0.39	3.15	0.90	1.05	0.01	0.02	\begin{cases} N 830° \\ 830° \Q_o \text{Tp} \cdot \end{cases}	182.0 188.0		37.9 95.6	4.0 1.0	5.2 4.5	375 512	32 39	
0.13	0.43	2.00	0.87	1.10	0.17	0.11	N 820° 820° Qo Tp§	98.2 206.3	61.1	42.9 116.6	19.5 7.0	44.9 24.1	255 477	31 37	2.32
0.25	0.51	3.00	0.72	1.20	0.04	0.01	\[\text{N 780°} \\ 780° \ \ Q_o \text{Tp}\{ \}	137.1 204.7		42.2 81.9	4.0	11.6 4.0	255 440	20 36	

^{*} All steels contain < 0.015 % P and < 0.035 % S.

LITERATURE

(For a key to the periodicals see end of volume)

(1) Arnold, 140, 45: 107; 94. (2) Burgess and Woodward, 32, No. 207; (10) Mitinsky, 431, 1: 650; 13. 10, 4: 1324. (11) Riley, 140, 36: 161; 90. 22. (3) Chiyevskii and Mikhailovskii, 74, 14: 16; 17. 431, 1: 547; 15.

- (4) Guillet, 74, 2: 312; 05. (5) Guillet, 34, 144: 1049; 07. (6) Guillet 54, 146: 327; 07. (7) Hadfield, 140, 37: 161; 90. (8) Liedgens, 77, 33: 2109; 12. (9) Maey, 7, 38: 292; 01.
- (12) Schleicher, 77, 42: 781; 22.

PROPERTIES OF ALUMINIUM AND ITS ALLOYS WITH Cu, Mg, Mn, NI, SI, Sn, AND Zn CONTAINING MORE THAN 50% Al (v. also p. 542)

S. L. ARCHBUTT

Contents	Matières	Inhaltsverzeichnis	Indice Page
Tensile properties.	Résistance à la traction.	Festigkeitseigenschaften.	Proprietà alla trazione 533
Compression tests.	Essais de compression.	Druckproben.	Prove di compressione 538
Shear and torsion tests.	Essais de cisaillement et de tor- sion.	Dreh- und Scherversuche.	Prove di taglio e di torsione 538
Hardness.	Dureté.	Härte.	Durezza
Impact hardness.	Dureté au choc.	Schlaghärte.	Durezza all'urto 539
Impact strength.	Résistance au choc.	Schlagprobe.	Resistenza all'urto 540
Elastic properties.	Propriétés élastiques.	Elastische Eigenschaften.	Proprietà elastiche 540
Specific gravity.	Poids spécifique.	Spezifisches Gewicht.	Peso specifico 541
Mold shrinkage.	Retrait au moulage.	Schwindung.	Ritiro nella forma 542

[†] Tensile specimens, 2 in. × 0.3 in. diam.

[‡] Isod machine specimens 0.30-0.45 in. diam., 45° V notch, depth = 0.13 in., radius of bottom = 0.01 in.

f Tp = Tp 175°/3 h Ca.

The following properties of pure Al are given elsewhere: specific gravity, p. 456; compressibility, vol. III; viscosity, vol. III; surface tension, vol. III.

TABLE 1.—TENSILE PROPERTIES

% composition*	Treatment	UTS	ΥP	PL	El	RA	Lit.
Al, 99.97	Wk, A	5.96			60 _m	95	(10
Al, 99.6;Fe, 0.14; Si, 0.19	R, 1 in. thick†	4.41-6.43 4.7-6.3			34-86 _b 55-87 _b		(8)
Al, 99.54; Fe, 0.14; Si, 0.25; Na, 0.07	G ₈ , 0.56 in. § G ₈ , 450° C ₈ G ₈ , 450° Q _W G _m , 1 in. R _h , § in. § R _h , H in. § D _A , H in. § ½ in. thick	7.72 7.21 7.95 8.23 10.24 11.34 11.69 13.70	3.9 3.8 3.6 6.9 10.2 11.0 13.4		24 _a 19.0 _a 22.0 _a 37.0 _a 35.5 _a 30.5 _a 23.0 _a 19.5 _a	39.4 27.4 33.8 60.7 79.4 81.2 82.1 73.3	
Re sheet	Same, A 500° in thick Same, A 500° in thick Same, A 500°	9.31 14.45 9.29 14.71 9.18	4.2s 13.5 4.7 13.2 4.0		41.0 _b 6.3 _b 31.0 _b 3.7 _b 36.3 _b		
Al, 99.30	Rd sheet Rd bars Dd wire	15.5-24.6 19.7-24.6 17.6-38.7	ł		1-7	20-30 30-40 40-50	
Al, 99.24; Fe, 0.49; Si, 0.15	R, ‡ in. diam.	15.90		7.92	16 _m	65.4	(22)
Al, 99.20	G _s , j in. Wkd, 75 % Same, A	9.5 15.8 9.5	2.8¶ 12.7 3.2	0.7 7.0 1.4	24** 13 40		(11)
Al, 99.07 -98.46; Fe, 0.70-0.98; Si, 0.23-0.56	Strip, A†† R _c , 50 % R _c , 200-300 % Same, A 400°‡‡	9.0-10.1 14.2 15.0-18.1 10.99		4.6-3.9 11.5-12.0 14.2-17.6 5.0	-		(14)

- * Al content by difference.
- † Single crystal, test piece 1 × 1/8 in. cross-section.
- 1 Single crystal, test piece 0.564 in. diam.
- Dimensions are for diam. after indicated mechanical treatment, test piece, 0.564 in. diam.
 - [Contains 0.12 % Cu.
 - ¶ Stress at Δl = 32 % le.
 - ** Gage length = $4 \times \text{diam}$.
 - †† 0.5-10 mm thick from 40 mm slabs.
 - \$\$ Optimum conditions for completely annealed product (Grard).

Al-Cu* (7)

Treatment	UTS	YP	El₄†	RA	UTS	YP	El. †	RA
		Cu, 0.	86 %		C	u, 1.	90%	
G, to shape	8.06	4.1	12.5	12.1	7.20	5.2	5.5	18.4
$\mathbf{Same} \left\{ \begin{array}{l} 450 \mathbf{C_s} \dots \dots \\ 450^{\circ} \mathbf{Q_w} \dots \dots \end{array} \right.$	8.24	3.9 4.4	10.5	11.8 21.5	7.32	5.2 5.7	6.0 7.0	22.7
G_{m} , 1 in. diam								
Rh { in. diam								
(т. шаш								
DA, 11 in								
	Cu, (0.93%	% (sh	eet)	Cu,	1.57%	% (she	et)
R _c , ½ in. thick					21.72 15.78			
R _c , 1 in. thick		l .	1		25.5 16.42			
R _c , ½ in. thick					23.89 16.70			

Al-Cu* (7).—(Continued)

Au	-Cu	(). –	-(0011	i i i ueu	•)		
Treatment	UTS	YP	El. †	RA	UTS	YP	$El_{\bullet} \dagger RA $
		Cu, 2	.77%			Cu, 3.7	6%
G _a , to shape	8.22	5.8	4.5	11.0	11.80	7.7	5.0 7.3
Same \ 450° C	8.76	6.8	1	1	11.84	1 1	4.0 12.0
450° Q _₩	8.41	<u></u>			11.10		4.0 12.2
G _m , 1 in. diam							0.5 21.5
$R_h \begin{cases} \frac{\pi}{4} \text{ in. diam.} \dots \end{cases}$							0.038.2
1 in. diam	26.1	19.7	16.0	44.6	26.8	18.3 2	1.049.8
DA , $\frac{13}{16}$ in			hollow		26.6		8.0 21.8
D_c , $\frac{13}{16}$ in.§					31.5	29.1	7.5 20.8
	Cu,	2.36	% (sh	eet)	Cu,	3.74%	(sheet)
	22.24				II	23.5	- 1
Same, A 500°						6.82	
	23.37				H	26.5	l l
Same, A 500°						8.0 2	
R_c , $\frac{1}{20}$ in. thick	26.54				11	25.0	
Same, A 500°						$\frac{3 7.7 2}{2}$	
0 1			1.97%			Cu, 6.1	
G_0 , to shape	10.60	1)	!!	9.6	3.5
Same $\begin{cases} 450^{\circ} \ \mathbf{Q_w} \dots \\ \end{cases}$	12.36 11.5		7 4.0 3 4.0			3 10.2	3.0 5.0 3.5 1.5
G_m , 1 in. diam	15.18						5.0 10.6
							8.0 33.8
							5.5 33.6
	27.9						
						5.34 %	(sheet)
Re, in thick					. 1	3 19.7	
	23.89				:	19.4	ii i
Same, A 500° (?)					11	19.5	2.0
Re, 10 in. thick ¶	26.40	23.	2 4.0		26.02	22.5	
Same, A 500°				•	19.16	8.82	
		Cu, 6	3.91%			Cu, 8.0	18%
G _e , to shape	9.67	7 8.	2 2.0	1.6	11.6	5 10.2	2.0
Same \(\frac{450^{\circ} \text{C}_{\text{\circ}} \cdots \text{C}_{\text{\circ}} \cdots \text{C}_{\text{\circ}} \cdots \text{C}_{\text{\circ}} \cdots \text{C}_{\text{\circ}}		1		1	11.1	1 1	1.6
450° Q _w				`	··	5 12.0	3.0 1.7
G _m , 1 in. diam							1.6
R _h , ½ in. diam	24.2	1 14.	2 13.5	11.5	23.0	13.21	7.5 23.3
$\frac{R_h, \frac{7}{6} \text{ in. diam.}}{D_o, \frac{9}{6} \text{ in. diam.}}$		19.	14.0				
	<u> </u>	 _	<u> </u>	1	1,25.9	[24.3]	5.5 15.0
% Cu**	10.	7	16.0	10	9.9	29.0	31.7
Treatment	. 10.	'	10.0	1		<i>20</i> . ∪	51.7
	2 10	51	11.5	2 10	0.61	9.92	9.45
G _s , to shape	13	68	9.80		.64	14.86	14.26
					<u>'</u>		

^{*} Prepared from notch bar Al of analysis: Al (by diff.), 99.54; Si, 0.25; Fe, 0.14; Na, 0.07.

- § For 3.76 % Cu, De to \$2 in. diam.
- Broke outside gage marks. The Extra annealing at 0.07 in, thickness. $El_a = 0.0$ for all.

[†] Test pieces, 2 in. × 0.564 in. diam. for rounds and 3 in. × 1 in. wide for sheet.

[‡] Also true for alloys containing >3.76 % Cu.

EFFECT OF HEAT TREATMENT AND AGING ON AL-Cu (16)

% Cu*	Treatment	UTS	El.
1	G _m , 1 in. diam	16.8	12
3.95	W 500°/24 h Q V20° 6 d	24.9	13
	W 300 /24 n & V100° 1 h	25 .0	18
4.04	Strip† W 500° C1	19.4	30
4.04	Strip W 300 Q V 5 d	3 0 . 4	22
1	G _m , 1 in. diam	18.4	14.5
4.38	W 500°/24 h Q { V20° 6 d	26.4	17
	V100° 1 h	27.2	25
4.53	Strip† W 500° Ct	18.9	23
4.00	Strip W 500 Q V 5 d	32.6	21
	G _m , 1 in. diam	18.6	9
4.91	W 500°/24 h Q { V20° 6 d	23 .4	7‡
	W 300 /24 h Q V 100° 1 h	22.5	9
4.00	Strip W 500° Cf	19.4	28
4.98	QV 5 d	35 .8	25

^{*} Alloys prepared from notch bar Al of analysis: Al (by diff.), 99.62; Si, 0.19; Fe, 0.19.

COMMERCIAL AL-CU

% Cu	Name	Treatment	UTS	YP	PL	Ela	Lit.
4.0	Cu, 4 %	G _s (0.5 in. dism.) Trt	23	12.7*	7.0	7.0	(11)
4.5† nom.	Cu, 4.5 % {	Gm, 1 in. diam. Same, Trt, V	17.3 26.8		-	14.0 25.0	(16)
4.98†		R W 500°/1 h Q V	35.8 (stri	ip 0.1	in. th.)	25	(16)
5.7†	Cu, 6% {	$\begin{pmatrix} G_0 \\ G_m \end{pmatrix}$ 1 in. diam. $\left\{ \begin{pmatrix} G_m \end{pmatrix} \right\}$	11.5 13.7			3 5	(1)
7.75†	L 11 (Gr.	$\begin{pmatrix} G_s \\ G_m \end{pmatrix}$ 1 in. diam. $\left\{ \right.$	10.7 13.8s	3.9 6.1		3 2	(1)
8.00	Brit.) or No. 12	G., 0.5 in. diam.	13.4	7.1*	4.25	1.0	(11)
8.08†	(U. S. A.)	G _s , 0.6 in. diam. G _m , 1 in. diam.	11.6s 16.8s	10.2 11.3		:	(7)
12† nom.	L 8 {	$\left[\begin{array}{c} G_{0} \\ G_{m} \end{array} \right]$ 1 in. diam. $\left\{ \begin{array}{c} \end{array} \right.$	12.6 13.4–15.3	7.9		1 1-1.5	(23)
11-136	L 8	G _s , 1 in. diam. {	13.5 mean 11.6–14.3		2.2-3.5	1	(1)
		G_{m} , 1 in. diam. $\left\{\right.$	19.1 mean 17.5–20.8		2.5-4.4	1 1-2.5	
12.48†	L 8	$G_{\mathbf{s}}$ 1 in. diam. $G_{\mathbf{m}}$ (max. IS)	12.4 13.4			1 1.5	(1)

^{*} Proof stress, max. $\Delta l = \frac{1}{2}\% l_0$.

Al-Cu-Mg-Si and Al-Cu-Fe-Mg

Tre	eatment	UTS Y	P PL El	RA Lit.
Al; C	u, 3.25; Mg, 0.70;	Mn, Tr.;	Fe, 0.28; Si,	0.28
R ½ in. and 1 in. diam.	(495° Q	35.3	15.9 16 13.1 29 4.7 25	50 (21) 48 61
	Al; Cu, 4.0;	Fe, 2.0; N	Mg, 0.50	
$\begin{pmatrix} G_s \\ G_m \end{pmatrix}$ 1 in. dia	ım. bar{	17.2 14 21.7 16		1 ' '

Al-Cu-Mn (27)

Trt*	% composition	UTS	YP	El.
G₀ Gm	Cu, 1.27; Mn, 2.06	10.76	8.9	4.7
G _m	Cu, 1.27, Will, 2.00	9.73	9.7	6
G_{\bullet}	Cu, 2.15; Mn, 0.88	9.70	7.4	5
G _m	Cu, 2.15; Min, 0.88	13.44	8.7	6
G₀ Gm	Cv. 202. Mr. 100	10.05	9.3	3
G _m	Cu, 2.02; Mn, 1.90	15.37	9.8	7

Al-Cu-Mn (27).—(Continued)

Trt*	% composition	UTS	YP	El.
G_{\bullet}	Cu, 2.15; Mn, 1.91	12.75	10.5	5
G _m _∫	Cu, 2:10, 1:11, 1:01	15.75	12.3	_ 5
G_{\bullet} $)$	Cu, 2.06; Mn, 1.94	13.35	9.1	4.0
G _m ∫	Cu, 2.00, Mili, 1.54	14.26	10.1	5.0
G . (Cu, 3.11; Mn, 0.57	10.85	7.9	4
G _m ∫	Cu, 3.11, Mii, 0.37	13.00	7.9	5.5
G_{\bullet}	Cu, 2.89; Mn, 0.94	11.78	9.5	5.0
G _m ∫	Cu, 2.09, Mil, 0.94	18.97	11.4	13.5
G_{\bullet}	Cu, 3.28; Mn, 0.98	9.86	8.0	4
G _m ∫	Cu, 3.28; Will, 0.98	13.2	9.95	5
G _o	Cv. 280: Mp. 176	12.0s	10.1	3.5
$G_{\mathbf{m}}$ \int	Cu, 2.89; Mn, 1.76	10.71	9.6	5
G _o	Cv. 412. Mr. 109	2.27	2.27	2.5
$G_{\mathbf{m}}$ \int	Cu, 4.13; Mn, 1.92	13.04	10.04	3.5

* G_s = Cast to shape. G_m = 1 in. diam. Test piece diam. = 0.564 in.

% Cu	% Mn	Treatment	UTS	YP	PL	El.	RA	Lit.
2.06	1.94	Rh, 11 in. diam	26.8	19.1	,	18.5 16.0 6.0	1	
2.89	0.94	R _h , 1½ in. diam	26.0	20.2	11.3			
	0.70 80 % Si	Wk, A		5 23	-	24.0* 22.0*		(11)
14.13	0.90† {	$\begin{pmatrix} G_{e} \\ G_{m} \end{pmatrix}$ 1 in. diam	12.1 15.6	7.9 8.3s		1.0		(1)
14.0‡	1.01	Gm, 1 in. diam	14.65		6.3			(1)

^{*} Gage length = 4 × diam.

Al-Cu-Mn-Mg-Si; Duralumin

Treatment	UTS	YP	PS*	El	RA	Lit
Al; Cu, 3.5-5.5;						
Sheet, 7 mm thick Alloy H Alloy 681 D	36.0	19.1		25a 17.5a		(*)
Other alloys giv			values	11.00		<u>' </u>
Sheet, Re, 7-2 mm (681 D)	62.0	54.0		3.0a		(9)
Al; Cu, 3.5-4;	Mn, 0.	5–1; Mg	g, 0.5			
Sheet, 10 mm thick	20.0	20.0 6.9 23.0		20d 14d 22d		(14)
Rod, 5.1-12.7 mm diam		27-31	<u> </u>	14-24		(13)
Al; Cu, 3.5-4.5; Mn, 0.4-0.	7; Mg.	0.4-0.7	Fe, 0.7	5; Si, 0.	50	
Rod < 21 in. diam			23.6 21.3	15 _a	20 18	(4)1
Sheet < 0.02 in. thick	39.4 39.4 39.4		23.6 23.6 23.6	8 _a 12 _a 15 _a		
Forged connecting rods:	40.8 46.0		33.4 30.2	16a 14a		(23)
R (rod) C(-80°/10 m) J	41.1	21.5		26.5		٤

^{*} Stress at $\Delta l = 32 \%$ le.

Al-Cu-Ni-Mg-Si

Treatment	UTS	YP	PL	Ela	RA	Lit.
Al, 92; Cu, 4.0; Ni, 2.0; Mg	g, 1.5; F	e, 0.20*	; Si, 0.2	0* "Y	'alloy	
G _s , 1 in. diam. bars	16.5			0.5		(23)
G_8 , W 500-520° $\begin{cases} Q_b \text{ V 10 da} \\ C_a \text{ V 10 da} \end{cases}$	25.2 22.8	21.3		0.5 1.0		
Gm, 1 in. diam. bars	22.8	17.3		2.5		
G_{m} , W 500-520° $\begin{cases} Q_{b} \text{ V 10 da} \\ C_{a} \text{ V 10 da} \end{cases}$	31.5 29.9	25.2 23.6	11.0	5.0 2.0		

^{† 0.10} in, thick from 1 in. diam. cast bars. ‡ On 1 inch.

[†] Nominal Fe and Si content each 0.20 %.

[‡] Broke outside gage marks.

[§] Fe and Si content each ≯1 %.

[†] Contains Si, 0.20; Fe, 0.20 (nominal).

[‡] Nominal content, max. allowable Fe and Si, each 1 %.

[†] British Standard Specifications, minimum values.

[‡] Test pieces from web.

Treatment	UTS	YP	PL	El _a	RA	Lit.
Rh, I in. diam	27.7	18.9		20	30	(23)
Same, Trt 530°	38.6	24.3	12.1	25	33	
Rivet, in. diam., Trt 520°	40.3	24.7		25†	26	
Sheet: 0.05 in. / Trt 520°	41.0	27.1		19	PS:	
thick R _c , Trt 520°	42.4	25.2	15.4	18	27.6	ı
0.018 in. thick, Re, Trt 520°	44.1	33.1		17	29.9	
0.064 in. Trt, A 350-400°	25.2	12.6		16		ļ
Al, 90.9; Cu, 4.0; Ni, 2.12;	Mg, 1.56	; Fe, 0.	42; Si, 1	.03 "Y	'' alloy	
G.),	17.3		7.9	1.0		(1)
$\binom{G_n}{G_m}$ 1 in. diam. bars	20.3	1	8.3	1.0		
Al, 92.3; Cu, 4.04; Ni,	1.77; M	z, 1.47;	Fe, 0.20); Si, 0.:	20	
Gs \	17.3	1	1	2		(1)
G _m } 1 in. diam	21.8	1		2		
Al, 88; Cu, 8.02; Ni, 1	.98; Mg	, 1.46; I	e, 0.20	Si, 0.2	0	
G,), , }	16.85	1		0.5		(1)
G _m 1 in, diam	18.9		1	0.5	1	1

- * Nominal content. † On 1 in. ‡ Stress at Δl = ½ % lo.

Al-Cu-Zn-Sn

% composition	Trt*	UTS	YP	PL	El.	Lit.
Cu, 6.79; Zn, 0.96; Sn, 0.83; Fe, 0.25; Si,	G.	11.0	5.5		3.0	(1)
Cu, 6.79; Zn, 0.96; Sn, 0.83; Fe, 0.25; Si, 0.20 "L 11"	Gm	9.3	6.3	İ	3.0 2.0	ļ
Cu, 6-8; Zn, \geq 1.0; Sn, 0.5 -2.0; Fe, \geq 1;	G _e	13.1		1.9	3.0	(1)
Cu, 6-8; Zn, ≯ 1.0; Sn,0.5-2.0; Fe, ≯ 1; { Si, ≯ 1 "L 11"	Gm	13.1		2.4	3.0	1
O. O. S. O.O. 7- 15 P. 31 S. 31	G.	11.2		1	1	(1)
Cu. 9; Sn. 2.0; Zn, 1.5; Fe, ≥ 1; Si, ≥ 1	Gm	17.3		ļ	3	ļ

^{*} Bars 1 in. diam.

Al-Mg-Si and Al-Mn

Nominal % composition	Treatment		UTS	ΥP	PL	El*	RA	Lit
Mg, 0.60; Si, 1.0	R, 75 % reduc- tion	A Trt	10.90 34.50	3.5 24.6	2.1 11.2	30.0 18.0		(11)
Mn, 1.2	R, 75 % reduc- tion	A H	12.30 20.38	4.9 16.2	2.1 8.4	40.0 10.0		(11)

^{*} Gage length = 4 × diam.

A1-Zn(25)

Treatment* (diam. in.)	UTS	YP	$El_{\mathbf{a}}$	RA
	Zn	, 5.21 %		
G., 1	8.2	4.25	16.0	
G _m , 1	10.4	4.4	29.0	
R _h , 5	11.8	6.8	33	67
R _h , 7	14.1	11.65†	26	66
A 400°	10.0	4.1	43	77
D _d , 13	15.4	14.3†	19.5	65.8
	Zn	, 9.27%		
G., 1	13.4	7.9	9.0	
G _m , 1	12.3	6.1	11.0	
R _h , #	14.8	7.7	36	70
R _h , 7	16.35	10.1	33	67
R _h , ½	17.6	11.0	38‡	68.3
D_d , $\frac{13}{16}$	17.5	15.4	19.0	56 . 5
Dd, 3,5	25 .7	23.1	7.5	
	Zr	n, 11.0%		
G., 1	14.8	10.1	8.0	
G _m , 1	16.1	7.9	16.0	
R_h , $\frac{\pi}{8}$	17.85	8.2	3 8	64
R _h , ½	21.7	14.8	33‡	63.7
Dd, 50	29 .8	26.5	13.0	
	Zn	, 13.69 %		
G _m , 1	16.85	7.7	10.5	

	Al-Zn(25)	.—(Con	linued)							
Treatment* (diam. in.)	UTS	YP		El _a	RA					
Zn, 13.24%										
G, 1	16.7	13.4		4.0						
R _b , 5	21.5	9.6	i _	35	59					
R _h , 5	22.6	11.0		31	52					
A 400°	17.8	5.6	8	37	63 .7					
D_d , $\frac{13}{16}$	23.2	20.2	† 1	19.0	43.5					
	Zn,	14.29%								
$G_m, 1 \dots \dots$	18.4	9.1		8.5						
	Zn,	15.05 %								
G _s , 1	17.5	15.1		2.0						
R _h , 5	25 .8	10.7	- 1	33	53					
R _b , §	26.05	13.4		32	54					
A 400°	21.0	6.7	_	37	60.4					
$R_h, \frac{1}{2}$	28.2	18.3		31‡	58.5					
D _d , \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26.0	17.5		20	42.1					
0.1		16.08 %		0.5						
$G_s, 1, \ldots$	20.0	17.3		3.5						
G _m , 1	18.0	8.3		6.5	58					
R _h , \(\frac{1}{6}\)	$\frac{25.2}{7n}$	11.6	'	31						
C 1				10						
$G_{\mathbf{a}}, 1, \ldots, G_{\mathbf{c}}$	19.1	16.1	- 1	1.0 5.0						
G _m , 1	21.4 31.3	9.1 20.8		22	36					
R _h , 1	28.5	17.8		25	45					
D _d , ½	30.9	27.4	•	13	24.5					
		18.39 %								
G_{m} , 1	21.6	13.9		7.0						
	Zn	, 19.67 %								
G, 1	20.8	19.5		2.5						
R _b , \(\frac{7}{3}\)	31.9	19.5		21	47					
$R_h, \frac{1}{2} \dots$	34.4	25.6		30‡	54.7					
$\mathbf{D_d}, \ \mathfrak{z}^{7_0} \ldots \ldots$	40.4	24.8		9.0						
	Zn	20.15 %)							
G, 1	20.6	15.7	5	1.0						
G _m , 1	21.7	12.3	;	4.0						
R _h , 5	35 . 7	27.3	: 1	20	36					
R _h , §	33.7	19.5		26	46					
A 400°	29.5	18.6	•	22	27.5					
$D_d, \frac{13}{16} \dots \dots$	35.1	31.4		13	26.5					
<u> </u>		22.74 %		2 # 1						
G _m , 1	21.3	14.3		3.5						
<u> </u>		24.50 %	1	10 '						
G _s , 1	25.7	21 0	. .	1.0	20					
$R_h, \frac{7}{8}, \dots$	39.0 37.8	31.2 32.0	1	20 27‡	39 46.6					
$\mathbf{D_d}, \frac{7}{90}, \dots$	42.4	38.1	l l	7.0	10.0					
- 47 70		26.05%								
G, 1	27.3	17.6		2.0						
G _m , 1	27.9	16.7		4.0						
R _h , 5/4	42.7	39.4		16	28					
R _h , $\frac{7}{8}$	37.6	31.8	I .	20	41					
$\mathbf{D}_{\mathbf{d}}, \overline{\mathfrak{g}'_0} \dots \dots$	42.2	34.7		8.0						
Ç. Zn T	reatment		UTS	YP	Bl.					
(\mathbf{G})			26.1	12.8	1.5					
$30.23 \left\{ \begin{vmatrix} G_m \\ G_m \end{vmatrix} \right\} 1 $ i	n. diam	{	28.2	16.2	8.0					
$\begin{array}{c c} \hline 36.02 & \left\langle \begin{bmatrix} \mathbf{G_n} \\ \mathbf{G_m} \end{bmatrix} 1 \right. \mathbf{i} \\ \end{array}$	n. diam	{	27.9 27.6	18.4 21.4	9.5 0.5					

Al-Zn	(25)	—(Conti	rued)
-------	------	---------	-------

% Zn	Treatment	UTS	YP	El.
40.27 { G.	} 1 in. diam	28.8	18.3	1.0
$\int \mathbf{G}_{\mathbf{r}} $		25.7	17.5	0.5
44.75 { G.	1 in. diam	29.1	14.2	5.0
11.13 \ G _n		30.1	15.3	1.0
49.66 { G ₀	1 in. diam	29.5	20.5	4.0
G_n	$\left(G_{\mathbf{m}} \right)^{-1} \text{ in. diam.} $	34.0	8.0	1.0

^{*} Diameters after specified mechanical treatment given, test pieces 0.564 in.

$\dagger PL$'s of specimens are as follows:

7rt Zn	5.21	13.24	15.05	16.85	20.15	26.05
Rh, in Dd, in		9.4 13.4	11.0 15.8	12.6	15.8 25.2	24.4

[‡] El on 1 in.

Al-Zn (24)

	Sand cast 2 cm diam.								
% Zn	UTS	PL	El						
10	11.0	4.4	7.5						
20	14.2	5.0	2						
31.6	17.8	5.0	1						
40.6	21.4	12.9	1						
50.7	19.5	13.7	0.5						

Forged 2	\mathbf{cm}	diam.	from	5 cm	diam.	G_m billets	

		As forged			Annealed 300°/1 h			
% Zn	UTS	PL	El	RA	UTS	PL	El	RA
5.3	12.9	10.9	19	64	9.1	2.4	30	74
10 . 2 ·	17.2	10.1	34	55	14.0	4.3	3 8	65
16	23.9	17.2	23	47	21.9	7.1	28	41
21	29.6	21.1	14	27	29.8	10.7	15	37

Al-Zn-Cu (26)

Treatment	UTS	YP	El _a	RA
Zn,	3.50; Cu	, 2.31		
Gs, 0.56 in. diam	13.7	6.3	12	
G _m , 1 in. diam	15.0	2.8	23	
R _h , ¼ in. diam	18.9	12.0	27	56 .8
R _h , 7 in. diam		10.4	29	61.6
Zn,	4.76; Cu,	0.87		
C 0.56 in diam	11.0	1 4 1	12	

G., 0.56 in. diam	11.0	4.1	13	
G _m , 1 in. diam	12.6	4.25	25	
R _h , \frac{1}{2} in. diam	16.4	9.9	29	64.0
R _h , $\frac{7}{8}$ in. diam	18.9	14.2	22	61.6

Zn, 4.71; Cu, 2.67					
G., 0.56 in. diam	13.5	3.9	7		
G _m , 1 in. diam	16.2	7.4	14		
R _h , § in. diam	20 .8	11.5	25	44.8	
R. 7 in diam	18.6	11.5	26	50.8	

Zn, 4.64; Cu, 3.92†

G., 0.56 in. diam	12.9	7.25	4	
G _m , 1 in. diam	18.4	4.6	14	
R _b , \(\frac{5}{4} \) in. diam	22 . 2	11.7	23	39.2
R _h , $\frac{7}{8}$ in. diam	20.9	13.2	20	42

211, 1.00, Cu, 1.70						
G., 0.56 in. diam	15.6	7.9	10			
G _m , 1 in. diam	15.9	5.2	19			
R _h , 5 in. diam	20.5	12.8	25	64.0		
R _h , $\frac{7}{8}$ in. diam	20.6	12.3*	30	57 .2		

Al-Zn-Cu (26).—(Continued)

Treatment	UTS	YP	El _a	RA
Zn, s	9.91; Cu,	0.94		
G., 0.56 in. diam	16.2	9.1	8	
G _m , 1 in. diam	16.9	7.4	19	
Rh, 4 in. diam	20.5	9.5	29	59.2
R_h , $\frac{7}{8}$ in. diam	21.4	12.4*	24	50 .8
Zn, S	9.96; Cu,	2.75		
G _s , 0.56 in. diam	18.0	10.2	6	
G _m , 1 in. diam	20.2	7.6	11	
R _h , ⁵ in. diam	26.3	15.0	23	39.2
R_h , $\frac{7}{8}$ in. diam	26.8	15.1*	24	42
Zn, 1	3.99; Cu	, 1.64		
G., 0.56 in. diam	22.7	9.8	4	
G _m , 1 in. diam	23.9	9.9	16	
Rh, 4 in. diam	33.7	17.0	23	36.4
Rh, i in. diam	32.8	19.8	24	54.8
Zn, 1	4.74; Cu	, 2.50		
G _s , 0.56 in. diam	22.2	15.3	3	
G _m , 1 in. diam	21.6	9.3	6.5	
R _h , ⁵ / ₄ in. diam	37.3	23.3	21	33.6
R _h , $\frac{7}{8}$ in. diam	33.1	19.8*	20	36.4
Zn, 19	3.45; Cu,	0.80‡		
G., 0.56 in. diam	23.1	11.7	4	-
G _m , 1 in. diam	22.4	13.1	2	
R _h , ₹ in. diam	3 8.9	30.1	22	39.2
R_h , $\frac{7}{8}$ in. diam	38.1	26.0*	24	39.2
Zn, 1	8.95; Cu	, 1.66		
G., 0.56 in. diam	25.4	18.3	3	
G _m , 1 in. diam	29.1	12.8	11	
R _h , ⁵ / ₄ in. diam	39.9	32.9	21	39.2
Rh, 7 in. diam	38.1	25.8*	24	36 . 4
Zn, 2	3.48; Cu	, 2.67		
G., 0.56 in. diam	28.7	8.8	2	
G _m , 1 in. diam	31.8	10.1	4	
R_h , $\frac{5}{4}$ in. diam				
Rh, 7 in. diam	46.6	31.7	18	33.5
* Values of PL are:				
% Zn 7.38 9.91	9.96	14.74	18.45	18.95
% Cu 1.76 0.94	2.75	2.50	0.80	1.66

% Zn	7.38	9.91	9.96	14.74	18.45	18.95
% Cu	1.76	0.94	2.75	2.50	0.80	1.66
PL	8.7	12.6	13.7	18.9	20.6	1.92
† Contains also						

Commercial Al-Zn-Cu

% composition	Treatment	UTS	YP	PL	Ela	Lit.
Al,	80.5-85; Zn, 12.5-14.5;	Cu, 2.5-3, "I	. 5" ε	lloy		
Zn, 12.5-14.5;	G _s , 1 in. diam. G _s new, in. diam. ∫	16.5 17.3–23.3		2.8	2 2–4	(1) (5)
Cu, 2.5-3; Fe, > 1; Si, > 1 (v.	22 tests (12 melts)	20.6 (mean)		4.4	3	(5) (1)
Fig. 5)	G _m , 1 in. diam. G _m new, ∦ in. diam. ∫	19.4 18.3–23.3		4.4	4-7	(5)
	24 tests (12 melts)	20.8 (mean)			5.0	(5)
Zn, 12.58; Cu, { 2.69*	G new, 1 in. diam.	19.1			5	(1)
Zn, 13.5; Cu,	$G_{\mathbf{m}}$ (for max. IS)	18.7	7.1		4.0	(23)
2.5*†	$G_{\mathbf{m}}$ new, 1 in. diam.	20.5	7.1		5.0	(,

Commercial Al-Zn-Cu.—(Continued)

% composition	Treatment	UTS	YP PL	Ela	Lit.
	Al, 77; Zn, 20; Cu,	3 "A" allo	у		
Zn, 20; Cu, 3; Fe, 0.20; Si, 0.20 Fe, 0.20; Si, 0.20 D, 0.0125 in, diam.	42.5 39.1 42.5 42.8 35.0 46.8 43.8 32.6 43.0	28.4 19.5 23.6 28.8 26.6 PS = 28-33 19.4 41.0	21 21 19	(23)	
Zn, 20.52; Cu, {	Same, A 250° Ge, 5 in. diam. diam. E, 1½ in. diam. Rh, ¼ in. diam. R(rod) C(-80°/10 m)	32.6 43.6 41.1 43.0 46.2	28.8 24.9 	19 22 17 13.0	(26)

- * Contains Fe, 0.20; Si, 0.20.
- † Nominal composition.
- $\ddagger RA = 30 \%.$ $\ddagger RA = 36 \%.$
- | \(\Delta l = \) \(\frac{1}{2} \% \) \(\lambda \).

Al-Zn-Cu-Fe and Al-Zn-Cu-Mg-Mn

UTS	YP	PL	El.	RA	Lit
, 2.0; F	e, 1.5	(nominal)			
19.1	8.5*	4.9	4.0		(11
0.35; M	n, 0.351	Ի "G" ով]	oy		
54.5	48.2	38-39.51	19	1	(23
52.0	40.2	l	17		<u> </u>
0.5; M	n, 0.5	"E" alloy	7\$		
46.8	37.3		15		(23
59.6	51.8	34.8	12	13.4	
64.1	34.0		9		
51.0	38.6		18		
39.8	22.8	1	20		
60.2	46.2	44-49*	15		
61.4	31.5		12		
69.0	55.8		13.0		(27
56.7	38.9		16	21.4	(24
55.8	47.9	39-44*	19		
52.8	45.7		15		
	2.0; F 19.1 0.35; M 54.5 52.0 0.5; M 46.8 59.6 64.1 51.0 39.8 60.2 61.4 69.0 56.7 55.8	1, 2.0; Fe, 1.5 19.1 8.5* 0.35; Mn, 0.35; 54.5 48.2 52.0 40.2 , 0.5; Mn, 0.5 46.8 37.3 59.6 51.8 64.1 34.0 51.0 38.6 39.8 22.8 60.2 46.2 61.4 31.5 69.0 55.8 56.7 38.9 55.8 47.9	2.0; Fe, 1.5 (nominal) 19.1 8.5* 4.9 0.35; Mn, 0.35† "G" all 54.5 48.2 38-39.5* 52.0 40.2 0.5; Mn, 0.5 "E" alloy 46.8 37.3 59.6 51.8 64.1 34.0 51.0 38.6 39.8 22.8 60.2 46.2 61.4 31.5 69.0 55.8 56.7 38.9 55.8 47.9 39-44*	2.0; Fe, 1.5 (nominal) 19.1 8.5* 4.9 4.0 0.35; Mn, 0.35† "G" alloy 54.5 48.2 38-39.5* 19 17 17 17 17 17 17 17	19.1 8.5* 4.9 4.0

- * Stress to produce set of 1/2 % lo.
- † Contains also Fe, 0.20; Si, 0.75, otherwise similar to "E" alloy.
- ‡ Contains Fe, 0.20; Si, 0.20.

TABLE 2.—Compression Tests

% composition*	Treat- ment†	UCS	PL _C	Lit.
Al, 99.24	R, 3 in.	18.00	8.0	(22)
Al, 99.20	R _d , 75% A	ca. 16 ca. 10	YP ca. 13 YP ca. 3	(11)
$\overline{\text{Al}(\% = ?)}$	G	47		(6)
Cu, 8 "L 11"	G	49		(11)
Cu, 3.25; Mg,	R, 1-1, N	35.2	14.66	(21)
0.7; Mn, Tr.; Fe, 0.28; Si,	Same, 495° QV I	35.2	12.15	
0.28	370°/20 C _f	18.7	4.82	
Duralumin§	R, 1 in. sq.	$\begin{cases} CS = 50.4 \\ \Delta l = -14\% l_0 \end{cases}$		(23)

% composition*	Treatment	UCS	$YP_{\mathbf{C}}$	Lit.
Zn, 9.27	Rh, I in.	13.95	11.5	(25)
	G. 1 in.		12.6	(25)
Zn, 11.0	Rh, in.	14.5	10.2	

Table 2.—Compression Tests.—(Continued)

% composition*	Treatment †	UCS	YP _C	Lit.
Zn, 14.29	G., 1 in.		16.1	(25)
Zn, 15.05	Rh, 7 in.	19.4	14.3	(25)
1	G., 1 in.	25.5	21.7	(25)
Zn, 16.08	G _m , 1 in.	18.9	14.0	
	R _h , 7 in.	24.3	17.2	
Zn, 19.67	G _m , 1 in.	28.5	23.9	(25)
211, 10:01	R _h , 7 in.	28.9	25.7	
Zn, 20.15	G ₀ , 1 in.	28.7	26.2	(25)
Zn, 22.74	G _m , 1 in.	26.8	23.3	(25)
Zn. 24.50	G, 1 in.	31.0	28.2	(25)
ZII, 24.50	R _h , $\frac{7}{6}$ in.	36.7	33.2	
Zn, 30.23	G _m , 1 in.	31.3	26.6	(25)
Zn, 40.27	G _m , 1 in.	32.9	31.8	(25)
Zn, 44.75	G _m , 1 in.	38.0	29.8	(25)
7- 55 07	G _s , 1 in.	30.9	29.8	(25)
Zn, 55.07	G _m , 1 in.	37.2	36.2	
Zn, 10; Cu, 2; Fe, 1.5	G _s (new)	66		(11)
			$PL_{\mathbf{C}}$	
	R _b , 1 in.	20.8	15.0	(23)
Zn, 20; Cu, 3; Fe,	E, 🖁, R _h , 🚦 in.	23.0∥	18.1	
0.20; Si, 0.20 "A"	E, 11 in.	19.5	14.2	
	E, 2 in.	¶	14.9	

- * % Al by difference.
- † Dimensions are diameters, unless marked otherwise. ‡ W 495°/30 Qb V.
- § Cu, 3.5-4.5; Mn, 0.4-0.7; Mg, 0.4-0.7; Fe, 0.75, Si, 0.60.
- || Test pieces 2.75 in. × 0.5 in. diam.
- ¶ Length ≯ 4 × diam.

TABLE 3.—SHEAR AND TORSION TESTS

% composition*	Treatment †	USS	PLst	Lit.
Al, 99.24	R, 1 in.	9.7		(22)
11 00 00	Wk _d , 75%	7.7		(11)
Al, 99.20	Same, A	7.0		
41 (~ 0)	G	8.4		(6)
Al $(\% = ?)$	R	11.2		
	DIN	20.5		(21)
C. 205. Ma 0.70.	$R, \frac{1}{2}-1, N$	30.45	13.3	
Cu, 3.25; Mg, 0.70;	RW 495°/30 Q _b ∫	18.7		
Mn, Tr.; Fe, 0.28;	2 h V	33.25	9.9	ŀ
Si, 0.28	RW 370°/20 C ₁	11.4		
	10W 370 /20 CF	19.0 § _	5.5	
Cu, 4.5; Mn, 0.70;	Wk, A	11.2		(11)
Si, 0.80	Wk, Trt	25.3		
Cu, 3.85; Mg, 0.8;	G _m , 3.5 mm	15.4		(15)
Mn, 0.4; Fe, 0.5;	Same, Trt	22.4		
Si, 0.9; Zn, 0.04	G, 42 mm Trt	24.3		
Duralumin ¶	Wk	30.0		(*)
Duralumin**	D, 1 in.	25.9		(23)
	Wk, A	7.7		(11)
Mg, 0.60; Si, 1.0 {	Wk, Trt	23.2		
	Wk, A	9.1		(11)
Mn, 1.2	Wk, H	10.5		
$\overline{Zn, 9.27}$	1	16.31	•	(24)
11.0	l	19.51	j	•
15.05	R_h , $1\frac{1}{4}$ in.	22.81	ł	•
16.08		82.5‡	1	W.
Zn, 24.50	R _h , 1½ in.	32.5‡		1

TABLE 3.—SHEAR AND TORSION TESTS.—(Continued)

% composition*	Treatment †	USS	PL ₈ ‡	Lit.
Zn, 10	1	6.05		(24)
20		9.0		
31.6	G, 2 cm	10.1		
40.6		10.4		
50.7)	1	9.9		
Zn, 13.5; Cu, 2.5††	G _m , 1 in.	20.2‡‡		(23)
	Rh, 15 in.	34.2‡	9.46	(23)
Zn, 20; Cu, 3; Fe,	R _h , 0.046 in.	34.5‡‡		
0.20; Si, 0.20;	R _h , 0.061 in.	36.7‡‡		
"A" alloy	D _d , 0.063 in.	27.3		
	Same, A 250°	27.7		

- * % Al by difference.
- † Dimensions are diameters unless marked otherwise.
- 1 From torsion test.
- | Thickness. § Torsional modulus of rupture.
- ¶ Alloy 681 A: Cu, 3.5-5.5; Mn, 0.5-0.8; Mg, 0.5.
- ** Rivet wire: Cu, 3.92; Mn, 0.51; Mg, 0.37; Fe, 0.36; Si, 0.41.
- †† Contains Fe, 0.2; Si, 0.2. 0.2. ## Punching test.

	Table 4.—Hardni	288			
% composition *	Treatment†	BHN	d-P‡	ScH §	Lit.
Al, 99.97	Wk, A	16	В		(10)
Al, 99.24; Fe, 0.5; Cu; Si	R, ‡ in.	45	В		(22)
	G ₀ , ½ in.	23	В		(11)
Al, 99.20	Wkd, 75 %	39	В	17	
	Same, A	25	<u>B</u>	6	
Al, ∢ 99.00	G _s Sheet, A	21-24 22-26	B	6-9 4-6	(6)
	10 mm A	25	В		(14)
	Same, Wke 150-200 %	41	В		` ,
Al, 99.07-98.46; Fe,	1 mm A			4.5	
0.70-0.98; Si, 0.23-	Same, Wkc 50 %			16	
0.56	(300 %			28	
	2 mm A			5.5 11.5	
Į	Same, Wkc 300 %			16	
Cu, 4.0 (nom.)	G., 1 in.	70-75	В		(11)
Cu, 4.5; Fe, 0.20; Si,	G ₀ } 1 in. V 8 mo. {	46	В		(23)
0.20 (nominal)	(Gm.)	49	В		(23)
0 000 "7 11"	RW 510° Q Tp 160°¶	100	$\frac{B}{B}$		(16)
Cu, 8.00 "L 11"	G ₈ , ½ in.	65	<u>B</u>		(11)
Cu, 11-13 "L 8"** {	G ₀ , 1 in. G _m , 1 in.	67-91 80-84	B		(1)
}	Ga. 1 in.	81		LCH	(1)
Cu, 12.48 "L 8" †† {	Gm, 1 in.	67, 74	В	87, 94	` .
Cu, 4.0; Mg, 0.5					
(nom); Fe, 0.20	G _a , 1 in.	55	В		(1)
 7	D 1 1 N			ScH §	(91)
Cu, 3.5; Mg, 0.7; Mn,	R ½-1, N 495° Q _b V	100 100	B	19 22	(21)
Tr.; Fe, 0.28; Si, 0.28	370° Cr	50	В	12	
Cu, 4.5; Mn, 0.7; Si,	Wk, A	43	В	15	(11)
0.8	Wk, Trt	95	B	30	
Duralumin‡‡	7 mm "H"	98	D	1 1	(*)
	Same, "681 D"	125	<u>D</u>	ll	
Duralumin 🛊 🖟	10 mm { 475° Q A 350°	85 45	A B		(14)
(G ₀ , 1 in.	88, 91			(23)
	Same, Trt	107	В		` '
Cu, 4.0; Ni, 2.0; Mg,	Gm, 1 in.	83, 88	В		
1.5; Fe, 0.20; Si, 0.20 { "Y" alloy	Same, Trt	102-	В		
" У " апоу	Rh, I in., Trt	106 96∥∥	В		
	in.∥, Trt	109	Ē		
1	G ₀ , 1 in.	70, 73			(1)
	200°	60, 62		1 1	
Cu, 4.0; Ni, 2.12; Mg, 1.56; Fe, 0.42; Si,	Same, J { 300° 400°	45, 47			
1.08 "Y" alloy	G _m , 1 in.	17, 17 76		1	
		65, 70			
Į	Same, J { 200° 300°	49, 57		!!	

TABLE 4.—HARDNESS.—(Continued)

TABLE 4.—HARDNESS.—(Communes)							
% composition*		Treatment†	BHN	d-P‡	LCH	Lit.	
Cu, 6.8; Zn, 1.0; Sn,		Gs, 1 in.	60	В	65	(1)	
0.8†† "L 11"		Gm, 1 in.	44	В			
Cu, 6-8; Zn,	≯ 1; Sn, ∫	Ga, 1 in.	50-55	B		(1)	
- 2** "L 1	11"	Gm, 1 in.	48-60	В	ScH §		
Mg, 0.6;	Si, 1.0	5 (A	27.0	В	9	(11)	
(nominal)	{	R, 75 % { Trt	96.0	В	33	` '	
	<u>`</u>	- A	32.0	В	10	(11)	
Mn, 1.2 (nor	ninal)	R, 75 % { H	50.0	В	20		
Zn. 5.21		Rh, 1lin.	35	C	5.0	(28)	
•		Rh, 11in.	56	Č	6.7	` '	
		Rh. 11in.	62	Č	9.1		
Zn, 15.05		Rh, 1lin.	88	C		(25)	
		Rh, 11in.	105	Č	15.0	` '	
20.15		Rh. 11in.	162	C	18.0		
		Rh, 1lin.	156	Č	25.0		
Zn, 10		G _a , 20 cm	40	A	10.3	(24)	
20		G _a , 20 cm	81	Ā	32	` '	
		G. 20 cm	85	Ā	30.5		
40.6		G. 20 cm	85	A	34.8		
50.7		G ₂ , 20 cm	78	A	36.8		
Zn	Cu						
3.5	2.31	Rh, 1 1 in.	53.1	С	6.2	(26)	
4.76	0.87	Rh, 1 ½ in.	48.3	Ċ	6.3	` ′	
4.71	2.67	Rh, 1 i in.	62.2	Č	9.5		
4.64	3.92	Rh, 1 1 in.	65.2	Ċ	7.6		
7.38	1.76	Rh, 1 1 in.	63.5	Ċ	6.5		
9.91	0.94	Rh, 1 1 in.	51.5	C	7.3		
9.96	2.75	Rh, 1 1 in.	87.8	С	10.7		
14.0	1.64	Rh, 1 1 in.	91.7	C	12.3		
14.74	2.5	Rh, 1 1 in.	98.4	C	16.5		
18.45	0.8	Rh, 1 1 in.	118.7	C	18.7		
18.95 1.66		R _h , 1 ½ in.	120.0	С	19.6		
Zn, 12.5-14	.5; Cu,	Ga. 1 in.	70, 80	В		(1)	
2.5-3** "L	5"	Gm, 1 in.	60-85	В	LCH	, ,	
		Gm, 1 in.	68	В	77	(1)	
Zn, 12.58; Cu, 2.69††]		Ga, V 7 yr¶¶	88	В	1	(23)	
"L 5"		Same, Tp 350°	64	В		(23)	
Zn, 13.5; Cu, 3.5†† \(\)		G	68	В		(23)	
"L 5"		$G_{\mathbf{m}}$ 1 in. new	64	В		` '	
Zn, 20; Cu, 3	: ++	R _h , 1 ³ in.	114			(23)	
Zn, 10; Cu,			1 ***			()	
(nom.)		G _n , } in.	70	В		(11)	

- * % Al by difference.
- † Dimensions are diameters unless otherwise indicated.
- ‡ Ball diameters and loads are as follows: A = 10 mm, 1000 kg; B = 10 mm, 500 kg; C = 9.52 mm, 1000 kg; D = 2.5 mm, 62.5 kg; E = 2 mm, 40 kg.
 - Magnifier hammer used.
 - || Thickness.
- ¶ R_{h.} 1¾ in. diam., W 510°/1 da, Q V 2 d, Tp 160°/20 h. ** Contains Fe, ≯1; Si, ≯1. †† Contains Fe, 0.2; Si, 0.2.

- ‡‡ Cu, 3.5-5.5; Mn, 0.5-0.8; Mg, 0.5.
- §§ Cu, 3.5-4; Mn, 0.5-1; Mg, 0.5.
- Treated at 520°.
- ¶¶ ½ in. sq. Tp = W $350^{\circ}/30$ C_s.

TABLE 5.—IMPACT HARDNESS (1)

			IHN*			
% composition	Name	Trt	Cone	10 mm ball		
Cu, 12.48; Fe, 0.20; Si, 0.20	L 8	$\begin{cases} G_{\bullet} \\ G_{m} \end{cases}$	98–101 100	103-107 105-118		
Cu, 4.0; Fe, 2.0; Mg, 1.5†		G _•	113	117		
Cu, 6.79; Zn, 0.96; Sn, 0.83; Fe, 0.20; Si, 0.20	L 11	$\begin{cases} \mathbf{G_o} \\ \mathbf{G_m} \end{cases}$	70–79 73	69–72 69		
Zn, 12.58; Cu, 2.69; Fe, 0.20; Si, 0.20	L 5	$\begin{cases} \mathbf{G_o} \\ \mathbf{G_m} \end{cases}$	99 91	103 81		

^{*} IHN = energy of blow (kg-m) + volume of indentation (cm³).

[†] Nominal.

TABLE 6.-IMPACT STRENGTH

67 composition\$	T		T = :
% composition*	Treatment†	IS‡ (kg-m)	Lit.
A1 00 67. Fo 0.04. 0: 0.07	J - 20°	11.2 _y , 10.6 _y ,	(6)
Al, 99.67; Fe, 0.06; Si, 0.25) - 80°	11.2 _{y'}	
	(-182°	13. 1 _{y'}	
Al, 99.24	R, ‡ in.	32.3 _u	(22)
Al, 99.1-98.4; Fe, 0.7-1;	10 mm thick A	8-8.5 _y	(14)
Si, 0.2-0.56	Same, Wkc \ \ \frac{50 \%}{300 \%}	5.2 _y 5.0 _y	l
C 17 P 00 Si 00	G _e , 1 in.	0.058 _v	(1)
Cu, 5.7; Fe, 0.2; Si, 0.2	Gm, 1 in.	. 146 _v	` ′
Cu, 7.75; Fe, 0.2; Si, 0.2	G ₈ , 1 in.	0.028 _v	(1)
"L 11" \	G _m , 1 in.	. 095₹	
Cu, 11-13; Fe, ≯ 1; Si, ≯ 1 "L 8"	G _m , 1 in. G _m , 1 in.	0.087 _u .090 _u	(1)
Cu, 12.5; Fe, 0.2; Si, 0.2	Ga, 1 in.	0.012 _v	(1)
"L 8"	Gm, 1 in.	033 _v	
Cu, 3.25; Mg, 0.7; Mn,	R j-1, N	1.92	(21)
Tr.; Fe, 0.28; Si, 0.28	495°, 100° Q 370°/20 C _f	2.68	l
Cu, 2.1; Mn, 1.9	`	2.39 ₈	(27)
Cu, 2.9; Mn, 0.9	Rh, in.	0.76 _u	(27)
Cu, 14.1; Mn, 0.9; Fe,	G _s , 1 in.	0.008	(1)
0.2; Si, 0.2	G _s , 1 in.	.016 _v	` ′
Cu, 3.5-4; Mg, 0.5; Mn,	10 mm 475° Q	3.2 _y	(14)
0.5-1 "Duralumin"	thick 1475 Q:	3.6 _y	}
	(A 350°	4.0y	1 (4)
Cu, 3.6; Mg, 0.5; Mn,	20° - 20°	5.0 _y , 5.6 _y ,	(6)
0.5; Fe, 0.6; Si, 0.6 "Duralumin"	J = 80°	5.0 _y ,	
Duraidinin	- 182°	5.6 _y ,	
Cu, 3; Mn, 1; Mg, 0.5; Fe ; Si, 1§	R, $\frac{1}{4}$ in. Trt $J \begin{cases} 20^{\circ} \\ 150^{\circ} \end{cases}$	0.76 _v -0.70 _w 0.67 _v -0.68 _w	(23)
	20°	0.43v-0.33w-1.78x	(23)
Cu, 5.08; Mn, 0.4; Mg, 0.85; Fe, 0.2; Si, 0.89 §	R _h , I in. Trt J 150° 240°	0.37 _w -0.30 _w 0.20 _v -0.15 _w	, ,
Cu. 6 95. Mr. 0 47. Mr.	(20°	0.32v-0.23w-1.24x	(23)
Cu, 6.25; Mn, 0.47; Mg, 0.79; Fe ; Si, 1.17§	R_h , I in. Trt J 150° 240°	0.30 _V -0.24 _W 0.16 _V -0.11 _W	, ,
Cu, 2; Ni, 1.47; Mg,	200	0.39 _v -0.27 _w -1.65 _x	(23)
0.95; Mn, 0.4; Fe ; Si,	Rh, I in. Trt J 150°	0.35 _v -0.25 _w	()
0.75¶	240°	0.17 _v -0.13 _w	
Cu, 4.0; Ni, 1.77; Mg,	Ga, 1 in.	0.017₩	(1)
1.47** "Y"	G _m , 1 in.	0.042 _v	
Cu, 4; Ni, 2; Mg, 1.5**		0.50 _u	(23)
Cu, 4.08; Ni, 2.03; Mg,	R _h , I in. Trt J 150°	$0.26_{V}-0.22_{W}-1.20_{X}$	(23)
1.60; Fe ; Si, 0.25 "Y"	240°	0.24 _V -0.17 _W 0.15 _V -0.11 _W	
Cu 4 22. Ni 2 07. Nr.	(20°	0.26v-0.20w-1.16x	(23)
Cu, 4.22; Ni, 2.05; Mg, 0.52; Mn, 0.4; Fe; Si††	Rh, i in. Trt J { 150°	0.27v-0.18w	. ,
, , , , , , , , , , , , , , , , , , , ,	240°	0.21 _v -0.16 _w	
Cu, 4.35; Ni, 1.77; Mg,	R_{h} , $\frac{1}{4}$ in. Trt $J \begin{cases} 20^{\circ} \\ 150^{\circ} \end{cases}$	0.24-0.18-1.05x	(23)
1.59; Mn, 0.4; Fe; Si‡‡	R_b , $\frac{1}{4}$ in. Trt J 150° 240°	0.19 _V -0.16 _W 0.13 _V -0.09 _W	
Cn 8: Ni 2: Ma 1 40**	G _a , 1 in.	0.009 _¥	(1)
Cu, 8; Ni, 2; Mg, 1.46**	Gm, 1 in.	0.013 _v	
Cu, 9; Sn, 2; Zn, 1.5§§ {	G _s , 1 in.	0.18 _u	(1)
Cu, 6.8; Zn, 0.96; Sn,	G _m , 1 in.	0.25 _u	(1)
0.83** "L 11"	Gm, 1 in.	0.082 _v	(1)
Cu, 6-8; Zn, ≯ 1; Sn, { 0.5-2 "L 11"	G ₀ , 1 in. G _m , 1 in.	0.28 _u 0.29 _u	(1)
Zn, 5.21	Rh, in.	0.56 _u	(25)
9.27	Rh, I in.	. 60 _u	
13.24	Rh, i in.	. 75 _u	
15.05 16.85	Rh, in.	.80 _u	
20.15	R _h , ; in. R _h , ; in.	. 80u . 80u	
26.05	Rh, i in.	. 57 _u	
	20°	11.2 _y ,	(6)
Zn, 15	J - 20°	11.2 _y ,	
	- 80° - 180°	10.0 _y ,	
ı	(-180°	9.3 _y ,	

TABLE 6.—IMPACT STRENGTH.—(Continued)

% composition*	Treatment†	IS‡ (kg-m)	Lit.
Zn, 30	20° - 20°	$2.5_{y'}$ $2.5_{y'}$	(6)
	- 80° -180°	$rac{1.9_{\mathbf{y'}}}{1.8_{\mathbf{y'}}}$	
Zn, 12.6; Cu, 2.7; Fe; Si** "L 5"	G ₈ , 1 in. G _m , 1 in.	0.146 _♥ 0.200 _♥	(1)
Zn, 12.5-14.5; Cu, 2.5- 3§§ "L 5."	G ₈ , 1 in. G _m , 1 in.	0.43 _u 0.57 _u	(1)
Zn, 20.3; Cu, 2.9; Fe- Si** "A"	R, $\frac{1}{4}$ in. Trt J $\left\{ \begin{array}{c} 20^{\circ} \\ 150^{\circ} \end{array} \right\}$	0.53 _v -0.47 _w 0.66 _v	(23)
Zn, 20; Cu, 2.5; Mg, 0.5; Mn, 0.5 "E"	R, $\frac{1}{4}$ in. Trt J $\left\{ \begin{array}{c} 20^{\circ} \\ 150^{\circ} \end{array} \right.$	0.31 _v -0.30 _w 0.44 _v -0.36 _w	(23)
Zn, 15.0; Pb, 1.5	J = 20° - 20° - 80°	10.0 _y , 10.0 _y , 10.0 _y ,	(6)
	│ │ 182°	8.1 _y ,	_

^{* %} Al by difference.

[‡] Meaning of subscripts (C. S. = Cross section of specimens):

Subscript	Machine	C. S., mm	Notch	Depth, mm	Radius, mm
u	Izod				
v	Charpy	5 × 5	90° V	1	2.3
w	Charpy	5 × 5	45° V	1	0.25
x	Charpy	10 × 10	45° V	2	0.25
y	Charpy	10 × 10	Mesnager	2	1
y'	Guillery	10 × 10	Mesnager	2	1
2	Charpy	10 × 10	USN	5	1 1

[§] Duralumin type. || Fe 0.2.

TABLE 7.—ELASTIC PROPERTIES

% composition	Treatment*	10 ⁻² E	Lit
Al, 99.24	R, ‡ in.	71	(22)
Al, 99.20	R _d , 75%	70	(11)
III, 00.20	Same, A	70	
Al (% = ?)	R or D	68.9	(6)
(G., 1 in.	75-83	(1)
Cu, 11-13† "L 8"	Same, J 250°	57-64	
	G _m , 1 in.	75-84	1
Cu, 3.25; Mg, 0.7; Mn,	R, 1 -1, N	71.2	(19)
Tr.; Fe, 0.18; Si, 0.28	495° Q _b V	76.9	
11., Fe, 0.18, SI, 0.28	370° C ₁	75.5	
Cu, 2.1; Mn, 1.9	Rh, in.	73.1	(27)
Cu, 2.9; Mn, 0.9	Rb, I in.	75.6	(27)
Cu, 4.5; Mn, 0.7; Si, 0.8	Wk	70	(11)
Cu-Mn-Mg‡" Duralumin"	Wk	70.8	(23)
C. 4. N. 9. M. 1.55	G _m	76	(23)
Cu, 4; Ni, 2; Mg, 1.5§	Rb Trt 520°	749	
	R _h	75‡‡	
	Ga, 1 in.	74.5	(1)
Cu, 4; Ni, 2.1; Mg, 1.56;	Same, J 250°	71	
Fe, 0.4; Si, 1.0 "Y"	G _m , 1 in.	76.6	
()	Same, J 250°	74.8	
Cu, 6-8; Zn, >1 ; Sn, 0.5- \int	G., 1 in.	68	(1)
2.0† "L 11"	G _m , 1 in.	64	* 3 ¹
Zn, 5.21	Rh, 7 in.	63.7	
Zii, 0.21	D _c , 13 in.	68.7	

[†] Dimensions are diameters unless otherwise marked.

[¶] Magnalite type. ** Fe, 0.2; Si, 0.2.

^{††} Fe, 0.2; Si, 0.79.

^{‡‡} Fe, 0.2; Si, 0.25. §§ Fe, ≯1; Si, ≯1.

II Unbroken.

	•	TABLE	7	.—ELASTIC		Properties.—	((Continued	١	1
--	---	-------	---	-----------	--	--------------	----	-----------	---	---

% composition	Treatment*	10 ⁻² E	Lit.
Zn, 13.24	R _b , 7 in.	63.7	(25)
211, 13.24	$D_0, \frac{13}{16}$ in.	63 .5	
7n 15.05	R _b , 7/8 in.	69.4	(25)
Zn, 15.05	D., 13 in.	62 .1	
Zn, 16.85	Rh, 7 in.	63.1	(25)
(R _h , 7 in.	63.1	(25)
Zn, 20.15	D., 13 in.	63 . 1	
Zn, 26.05	R _b , 7 in.	61.9	(25)
7- 728. Cu 176	R _h , 7 in.	70.3	(26)
Zn, 7.38; Cu, 1.76	De, 13 in.	69.4	
75 001: Cu 004	R _b , 7 in.	67.9	(26)
Zn, 9.91; Cu, 0.94	Do, 13 in.	68.4	
7 008 Cu 275	Rh, 7 in.	68.4	(26)
Zn, 9.96; Cu, 2.75	De, 13 in.	66.4	
Zn, 12.5–14.5; Cu, $2.5-3\dagger$	G, 1 in.	68	(1)
"L 5"	G _m , 1 in.	68	
Zn, 14.74; Cu, 2.50	R _h , 7 in.	68.4	(26)
Zn, 18.45; Cu, 0.80	R _h , 7 in.	67.2	(26)
bii, 18.45, Cu, 0.80	De, 13 in.	66 .8	
Zn, 18.95; Cu, 1.66	R _b , $\frac{7}{8}$ in.	67.9	(26)
Zn, 20; Cu, 3† "A"	R _h , 1 f in.	68	(23)
Zn, 20; Cu, 2.5§; Mn, { Mg†† "E"	ER _b , ¼ in. 350° Q V	69	(23)

% composition	Treatment*	10 ⁻² G	Lit.
Al, 99.24	R, 1 in.	24.2	(22)
Al (% = ?)	G	25.8	(6)
Cu-Mn-Mg,** "Dura- { lumin"	Bar, 1 in. sq.	28	(23)
Cu, 3.25; Mg, 0.7; Mn, Tr.; Fe, 0.28; Si, 0.28.	R, ½— 1, N 495° Q _o V 370° C _f	27.0 27.0 27.0	(19)
Zn, 20; Cu, 3§ "A"	R _b , 1 ½ in.	26.4	(24)

- * Dimensions are diameters.

- † Contains Fe, ≥1; Si, ≥1. ‡ Cu, 3.5–5.5; Mn, 0.5–0.8; Mg, 0.5. § Contains Fe, 0.20; Si, 0.20 (nominal).
- 1 in. diam.

- ¶ 1/6 in. diam. ** Cu, 3.5-4.5; Mn, 0.4-0.7; Mg, 0.4-0.7.
- †† Each 0.5 %. ‡‡ Sheet, ½ in. thick.

TABLE 8.—Specific Gravity Al (Commercial)*

	<u> </u>		
% composition†	Treatment ‡	d_4^t	Lit.
	Gm, 4 in. sq.	2.703	(3)
A1 00 04. To 015. St	R _o , 2-0.02 in.§	2.709	
Al, 99.64; Fe, 0.15; Si, 0.21	Same, A 450°/14 h	2.710	
0.21	D _c , wire	2.703	
(Same, A	2.706	
11 00 50	D _d , No. 10 SWG	2.703	(12)
Al, 99.50 {	Same, A	2.705	
Al, 99.37; Fe, 0.28; Si, S	D _c , 0.064 in.	2.702	(3)
0.35	D _c , A	2.705	
Al, 99.33; Fe, 0.38; Si, S	Re, 0.080 in. thick	2.708	(3)
0.29	Same, A	2.709	
	G	2.727	(12)
Al, 99.25	Liq., 658.7°C	2.405	
	Liq., 1000°C	2.311	
Al, 99.11; Fe, 0.56; Si, 0.33	G _m , 4 in. sq.	2.706	(3)

Chill Cast¶ Commercial Alloys (18, 23)

% composition	Name	d ₄ 0
Cu, 11–13; Fe, ≯ 1; Si, ≯ 1	L 8	2.83-2.94
Cu, 4; Fe, 2; Mg, 0.5 (nominal)		2.80
Cu, 14; Mn, 1.0; Fe, 0.2; Si, 0.2 (nominal)		2.98
Cu, 4; Ni, 2; Mg, 1.5; Fe, 0.2; Si, 0.2		2.79
Cu, 6-8; Zn, \geq 1; Sn, 0.5-2**		2.87-2.93
Zn, 12.5-14.5; Cu, 2.5-3**	L 5	3.0

Al-Cu (7)

7 Trt	G.¶	G _m ¶	R _b ††	$D_{\circ}\dagger\dagger$
0.86	2.72	2.73	2.73	2.73
1.90	2.73	2.75	2.75	2.75
2.77	2.75	2.77	2.77	2.77
3.76	2.77	2.79	2.79	2.79
4.97	2.78	2.81	2.81	ŀ
6.15	2.81	2.83	2.83	,
6.91	2.82	2.85	2.85	v. also p.
8.08	2.85	2.88	2.88	576.

Al-Zn (25)

% Z n	Γrt G•‡‡	$G_{\mathbf{m}}\P$	Rass	Datt
5.21	2.737	2.783	2.800	2.800
9.27	2.810	2.848	2.867	2.868
13.69		2.910	2.944	2.940
13.24	2.914		İ	}
14.29		2.956	2.987	2.985
15.05	2.956			
16.85	2.973	3.017	3.029	3.035
20.15	3.061	3.082	3.093	3.088
26.05	3.176	3.208	3.241	
30.23	3.283	3.352		
36 . 02	3.325	3.424		
40.27	3.414	3.627		
44.75	3.621	3.753		
49.66	3.906	3.920		

Al-Cu-Mn (27)

% Cu	7rt % Mn	G.‡‡	$G_m\P$	R_h §§	D _o ††
2.06	1.94	2.71	2.72	2.80	2.77
2.89	0.94	2.67	2.74	2.79	2.79

Al-Zn-Cu (26)

% Zn	Trt	G. ; ;	G _m ¶	Rh§§
	% Cu	<u> </u>	1	
3.50	2.31	2.80	2.81	2.83
4.76	0.87	2.77	2.79	2.80
4.71	2.67	2.82	2.83	2.85
4.64	3.92	2.84	2.84	2.87
7.38	1.76	2.85	2.86	2.88
9.91	0.94	2.86	2.88	2.90
9.96	2.75	2.92	2.94	2.96
13.99	1.64	2.99	3.00	3.02
14.74	2.50	3.02	3.03	3.06
18.45	0.80	3.08	3.09	3.11
18.95	1.66	3.08	3.10	3.12
23.48	2.67	3.22	3.21	3.26

Wrought Commercial Alloys

% composition	Name	d_4^{2v}	Lit.
Cu, 3.5-4.5; Mn, 0.5-0.8; Mg, 0.5	1111	2.75-2.83	(9)
Cu, 4; Ni, 2; Mg, 1.5¶¶	Y	2.80	(23)
Zn, 20; Cu, 3¶¶	A	3.10	(23)
Zn, 20; Cu, 2.5; Mg, 0.5; Mn, 0.5	\mathbf{E}	3.10	(23)
Cu, 3.25; Mg, 0.70; Mn, Tr.***		2.80	(21)

- * For specific gravity of pure aluminium, r. p. 456.
- † % Al by difference.
- ‡ Dimensions are diameters unless otherwise indicated.
- & Thickness.
- # Corrected to in vacuo.
- ¶ G, 1 in. diam.
- ** Contains Fe, ≯1; Si, ≯1.
- †† To 13/16 in. diam.
- \$\$ G to shape (0.56 in. diam.).
- §§ To ¾ in. diam.
- III Duralumin.
- ¶¶ Contains Fe, 0.2; Si, 0.2.
- *** Contains Fe, 0.28; Si, 0.28.

TABLE 9.—MOLD SHRINKAGE (26)

% composition*	$-100\frac{\Delta l \dagger}{l_0}$
Cu, 12, L 8	1.25
Cu, 14; Mn, 1	1.21
Cu, 7; Zn, 1; Sn, 1, L 11	1.19
Cu, 4; Ni, 2; Mg, 1.5, "Y" alloy (23)	1.29
Zn, 13.5; Cu, 2.5, L 5	1.27

^{*} Nominal composition, all contain Fe, 0.20 and Si, 0.20 (nominal).

LITERATURE

(For a key to the periodicals see end of volume)

- Aeronautical Research Committee. Reports of the light alloys sub-committee. London, H. M. Stat. Off., 1921.
 Aitchison, 368, 18: 557; 24. 440, 24: 424, 447, 470, 494; 24.
 Brislee, 83, 9: 162; 13.
 British Engineering Standards Association, British Standard Specifications.
 British Gov't. Airship Works, O.
 Bureau of Standards, 366, No. 101; 24.
 Carpenter and Edwards, 403, 1907: 57.
 Carpenter and Elam, 5, 100: 329; 21.
 Cohn, 372, 89: 643; 10.
- Edwards, 78, 47: 287; 25. (11) Edwards, J. D., Aluminum Co. of America, N. Y. C., O. (12) Edwards and Moorman, 35, 24: 61; 21. (13) Escard, L'Aluminium dans l'industrie, p. 260. Paris, Dunot et Pinat, 1921. (14) Grard, Aluminium and its Alloys. New York, Van Nostrand, 1922. (15) Guillet, 74, 21: 734; 24. (16) Hanson and Gayler, 47, 29: 491; 23. (15) Ito, 159, 12: 137; 23. (15) Jenkin, Report on Materials of Construction used in Aircraft and Aircraft Engines. London, H. M. Stat. Off., 1920. (19) Merica and Karr, 32, No. 129; 19.
- (20) Martin, 47, 31: 121; 24. (21) Moore, 66, 23 II: 106; 23. (22) Moore, 66, 23 II: 66; 25. (23) National Physical Laboratory, Teddington, England, O. (24) Portevin, 74, 8: 721; 11. (23) Rosenhain and Archbutt, 403, 1912: 319. (24) Rosenhain, Archbutt and Hanson, 403, 1921: 699. (27) Rosenhain and Lantsberry, 403, 1910: 119.

PROPERTIES OF ALLOYS OF ALUMINIUM WITH

FE, MG, MN, NI, NI-CU, SI, AND SI-CU

L. AITCHISON

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Density.	Densité.	Dichte.	Densità 542
Tensile properties.	Résistance à la traction.	Zugfestigkeit.	Comportamento alla tra- zione 542
Annealing temperature. Mold shrinkage.	Température de recuit. Retrait au moulage.	Anlass-Temperatur. Schwindung.	Temperatura di ricottura 543 Ritiro nella forma 543

MECHANICAL PROPERTIES

Wt. %	d420	BHN	UTS	10 ⁻² E	El		
. 70		e (R, A)		1 20 2 .			
Fe 1	2.73	29	10.7	66	34		
2	2.76	33	11.8	66	3 3		
4	2.80	37	12.6	66	29		
7	2.85	38	12.6	68	18		
11	2.93	44	12.6	68	8		
	Al-Mg ((R, A) (1-	3, 13, 14)	·			
Mg 0.5	2.69	30	10.2	66	36		
1.0	2.69	33	12.6	66	35		
2.0	2.68	39	15.8	65	33		
4.0	2.65	54	18.9	64.5	22		
6.0	2.63	69	28.4	63	20		
	Al-Mg (G _s) (1-3, 13, 14)						
Mg 2	2.68	34	12.6	64.5	3		
4	2.65	35	12.6	63	3		
5	2.63	36	14	63	3		
10	2.57	40	16	61.5	3		

MECHANICAL PROPERTIES.—(Continued)

Wt. %	d_4^{20}	BHN	UTS	10 ⁻² E	Bl			
	$Al-Mg(G_m)(1-3, 13, 14)$							
Mg 2	2.68	40	19	64.5	2			
4	2.65	60	19.5	63	2			
5	2.63	65	19.5	63	2			
10	2.57	80	22	61.5	2			
	Al-M	In (R, A)	(3, 13)					
Mn 0.5	2.71	30	11	66	33			
1.0	2.73	33	12.5	66	30			
1.5	2.75	35	12.5	66	28			
$oldsymbol{2}$. $oldsymbol{5}$	2.78	39	13.5	66	22			
5.0	2.82	46	14	66	18			
8.0	2.86	50	15	66	17			

[†] Bars cast in sand between faces of steel template and measured when cold.

MECHANICAL PROPERTIES.—(Continued)

% Ni	$ d_4^{20} $	BHN	UTS	10 ⁻² E	El	RA
	Al-	-Ni (R, A) (3, 8, 11	1, 13)		
1	2.72	34	11.8	66	32	52
2	2.75	38	12.5	66	30	50
3	2.77	44	14	66	27	45
4.5	2.80	44	15	66	25	42
6	2.82	45	15	66	22	35
8	2.85	47	15	66	16	24
10	2.91	53	16.5	66	8	12
% Ni	d_4^{20}	BHN	UTS	YP	El	RA
	Al-	Ni* (G _m)	(3, 8, 11	, 13)		
1	2.71	34	10	4	9	21
5	2.80	45	15	6.3	11	36
8	2.86			1		
	A1-1	Ni-Cu* (G	_m) 1% C	u (11)		
1	2.73	37	13.4	4.7	19	29
5	2.83	45	17	7	6	8
	Al-N	Vi-Cu* (R	A) 2% C	u (11)		
1	2.77	53	16.5	6.3	30	57
5	2.82	60	19	7	25	36
% Si	d_4^{20}	BHN	UTS	PL	10 ⁻² E	El
	A1-S	i (G ₀) (1-	3, 5-7, 9,	10, 12)		
5	2.65	40	12.6	2.4	63	5.5
8	2.63	44	12.6	2.4	63	5.5
13	2.60	50	14.5	3.2	60	2
	Al-Si	$(G_{\bullet}M)$ (1-	3, 5-7, 9,	10, 12)		
8	2.63	47	15.7	3	63	9
10	2.62	50	15.9	4.7	61	8
13	2.60	50	18.9	4.7	60	8
	Al-Si	(R, A) (1-	3, 5-7, 9,	10, 12)		
% Si		BHN	UI	rs I	El	
1	i	28		.5	45	
1.5		30	1	.9	43	
2		30		.3	41	
5		35	11		35	
10		40	12	.6	27	
15		47	14	.2	17	
* 10-* P 00						

^{*} $10^{-2} E = 66$.

THERMAL PROPERTIES

ANNEALING TEMPERATURES

250°C for Al-Mg (R, A). 275°C for Al-Fe, Al-Mn, Al-Ni (R, A), Al-Ni-Cu (R, A). 300° for Al-Mg (G_o and G_m), Al-Ni (G_m), Al-Ni-Cu (G_m), Al-Si.

MOLD SHRINKAGE

Al-Mg (1-3, 13, 14)

	AI-ME	(1-3,	13, 14)				
Trt	% Mg	2	4	5	8	10	
$-100 \frac{\Delta l}{l_0} \left\{ \left \frac{G_0}{G_{\mathrm{m}}} \right \right.$	• • • • • • • • • • • • • • • • • • • •	18.2	17.6	16.5	14.7	14.5	
$l_0 \mid G_m$.		17.2	16.6	15.5	13.8	13.5	
Al-Mn (3, 13)							
	[rt			% Mr	1	.5	
$-100\frac{\Delta l}{l_0}\left\{ \left \frac{0}{l_0} \right \right\}$	G				21	.0	
$\frac{-100 \tilde{l_o} }{100 }$	3 _m				19	.3	
	Al-Ni (G	m) (3, 8	, 11, 13)			
% Ni	1		5		8		
$-100\frac{\Delta l}{l_0}$	17.2					0	
	Al-Ni-Cu	(G _m) 1	% Cu (1	11)			
% Ni		1		1	5		
$-100\frac{\Delta l}{l_0}$ 17.2 17.0				17.0			
	Al-Si (G _s) (1-3, 5-	7, 9, 10,	12)			
% Si	3	1 5	5	8		13	
$-100\frac{\Delta l}{l_0}$	16.9	16	.6	16.3	3 16.0		
	Al-Si $(G_{\bullet}M)$	(1-3, 5-	7, 9, 10	, 12)			
% Si	8		10		13		
$-100\frac{\Delta l}{l_0}$	16.3		16.0		16.	0 .	
	Al-Si (Gm) (1-3, 5-	7, 9, 10	, 12)			
% Si	3		8				
$-100\frac{\Delta l}{l_0}$	15.2		14.4			3	
	Al-Si-Cu (G _e) 2% Cu (4)						
% Si	3		6		9		
$-100\frac{\Delta l}{l_0}$	17.1		15.8		16.	0	

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Aitchison, 0. (2) Alloys Research Committee, Inst. Mech. Eng., 11th Report, 1921. Abstract 403, 1921: 699. (3) Anderson, 423, 30: 562; 23. (4) Dix and Lyon, 47, 32: 27; 24. (5) Edwards, 33, 27: 654; 22. (6) Fraenkel, 93, 58: 154; 08. (7) Frilley, 74, 8: 457; 11. (8) Gwyer, 93, 57: 113; 08. (9) Jeffries, 33, 26: 750; 22.
- (10) Portevin, 74, 6: 951: 09. (11) Read and Greaves, 47, 13: 100; 15. (12)
 Roberts, 4, 105: 1383; 14. (13) Schirmeister, 77, 35: 649; 15. (14) Wilm, 192, 8: 225; 11.

PROPERTIES OF MAGNESIUM AND OF ITS ALLOYS WITH MORE THAN 50% MAGNESIUM

ALBERT M. PORTEVIN

Mg

Treatment	UTS	YP	El	RA	Lit.
F	23.6				(2)
DA	18-22	8-13	8-12 ₁		(21, 22)
G. {	14.1		8,		(2)
\ \(\)	10.7	v. also	5		(18)
G _m	12.4	under Mg-Al	4		(18)
R/83°		Mig-Ai	101	13	(16)

 $UCS = 27.1 \text{ kg/mm}^2 (3).$

 $EL_{\rm C} = 1.18 - 5.80 \; ({\rm metal} \; {\rm W_{H_2}} \; 600^{\circ}/60)^{*}(11).$

 $E = 4260 \text{ kg/mm}^2 (28).$

 $G = 1700 \text{ kg/mm}^2 (19).$

 $K = 2800 \text{ kg/mm}^2 (19).$

 $ScH = 18 \text{ for } G_a$ (8).

 $BHN\dagger = 29.4_{BV} (25); 28.6_{CX} (27); 22-25_{C(V-Z)} (15).$

 $Log BHN_1 - log BHN_2 = 0.0012 (t_2 - t_1) (14); v. also Fig. 1.$

From experiments at B. P. of air at 10°, 15°, 50° and 70° C, $\frac{E_0^{\circ}}{E_0^{\circ}} = 1.57$ (17).

For specific gravity, v. p. 456; for compressibility, v. vol. III; for viscosity, v. vol. III; for surface tension, v. vol. III.

		Mg-Ag			
% Ag	3.4	9.8	36.0	41.5	Lit.
BHN _{BV} †	40.1	48.5	104.7	136.2	(25)

Mg-Al

			Sand	cast (8)				
	100 ×	Hardn	1088	Tensi	le p rop	erties	10.7	10 X
% Al	d 20°	BHNCz†	ScH	10 × UTS	10 X PL	10 × Ela	10 × UCS	BMR
0	174	60	28	100	14	54	175	225
2	174	45	19	169	35	101	250	301
4	175	50	22	184	44	84	289	336
5.8	176	53	22	197	56	74	293	360
6	176	53	24	197	56	74	293	360
8	177	60	28	178	63	40	299	344
10	179	66	32	161	77	20	314	324
12	180	71	34	148	91	10	315	304
15	182	75	38	117	112	5	319	311

Al, 8 (Downetal A): UTS = 21.8, UCS = 31.1; BMR = 432, E = 4260 kg/mm² (*).

Sand cast; annealed 2 hr at 800° (8).

% Al	Treatment	10 × UTS	10 X YP	10 × El	10 × 1	PL	$10 \times RA$	Lit.
2.5	DA	231	133	1501	Al, 0	-5,	sp. vol. =	(21, 22)
3	FA 450°	231 85	105–148 82	95-150 10	(23)		0.0026 Al	(26) (26)
4.5	DA	248	150	173 _l	∫ Al, 6-	-11,	E = 4400	(21, 22)
5	DA	254	142	180 ₁	\ kg/ı	mm	2 (1)	(21, 22)
6.12	D	295-309 290 143-154 181 100	262-270	75- 80 ₁ 45- 50 ₁ 50 70	88-12 28 % Al ((QA	46) LCH (16)) .0-71 .0	(1) (1) (1, 5) (18) (18)
8	{ G _m	235 200	133 150	5–10 20	8 15		3.0-84.8 .0-91.8	(26) (26)
11	DA	280	220	80 ₁				(20)
11.18	Ghm	134-146	130-135	10s	31	_	3.4	(1, 5)
15	G _m	119	119	0				(26)
28	G _m	55	55	0	Al, 7;	BH	$N_{\rm CZ} = 50$	(21, 22, 26)

Mg-Al-Cu

% Al	% Cu	Treat- ment	UTS	YP	El_{l}	Lit.	Treat- ment	UTS	Lit.
10.7	1	DA	30.5	20	8.5	(14)	De 20 %	30	(21, 22)
8	9		28	20	- 5	(15)	1 1		

Mg-Al-Cu-Cd, Etc., Downetals D, R and T (G_s) (8)

	% с	ompos	ition		Name	, die	czt		vrs	PL	El.	vcs
Al	Cu	Cd	Zn	Mn	Name	8	BHN	ScH.	S S	×	S S	5 X
8.3	2.0	1.0	0.5	0.2	D	184	58	29	155	98	20	299
8.0	1.0	1.0	l		R	181	54	23	165	67	45	302
2.0	3.8	2.0		0.2	T	184	45	24	145	98	37	239

Mg-Al-Ni

% Al	% Ni	Trt	$10 \times UTS$	$ 10 \times YP $	10 × El	Lit.
8.6	0.7	DA	295	165	130	(20)

Mg-Cd

% Cq	Trt	10 × UTS	$10 \times YP$	$10 \times PL$	10 × E1	10 × RA	77	20 %	BHN† (87)
(F	222	177		50 _s	69	(1)	16.1	\$1.9cx
1.1	R	180-183	176	91	7.5-10		(1)	19.6	34.9CX
•••	D	152-181	176		1		(1)		46csi
(Ghm	70	44	19	35 _e	31	(1)	23.71	18.5CW
4	DA	206	118		75 ₁		(21, 22)	84.1	42.6cx
5.5	DA	206	124		113 ₁		(21, 22)	45.1	51.9cx
								53.7	64.1cx

Cd, 0-6: sp. vol. = 0.575-0.0047 Cd (23), Cd, 1: $E = 4400 \text{ kg/mm}^2$ (1).

Mg-Mn

Mn, 0-4; specific volume = 0.575-0.0043 Mn (23).

Mg, 98.8; Si, 1.2 (DA)

 $UTS = 29 \text{ kg/mm}^2$; $YP = 22.2 \text{ kg/mm}^2$; $El_1 = 5\%$ (20).

Mg-Sn (QA)

Sn, 4: LCH = 57.0-60.0; Sn, 8: LCH = 68.0-70.0; Sn, 15: LCH = 79.0-79.5 (16).

					Mg-C	u					
% Cr	Treatment	$100 \times d_4^{20}$	BHN	ScH	$10 \times UTS$	$10 \times YP$	$10 \times PL$	10 × El	$100 \times RA$	10 × <i>vcs</i>	Lit.
3.02	RA 300°			l .	171-189	162		10			(1)
. 1	G _e	179	43	26	109	\Box	35	15 _m		211	(8)
4 {	QA	LCH	- 62	.0-64.5	Cu 4 (G	。) is	Do	wmete	เร		(16)
4.5	DA				209	146		451	-		(21, 22)
8	QA	LCH	7 - 77	7.0-80.3						Cu, 3-14,	(16)
9	DA	C	u 0-13	3. sp.	234	200		30 _l		E = 4400	(21, 22)
12.7	DA	1 -	l. = 0		246	219		20 ₁		kg/mm^2	(21, 22)
13.64	Ghm	0.0	052 C	u (23)	120	116	31	7.5 _n	36	(1)	(21, 22)

		Mg-Zn			
% Zn	Trt	UTS	YP	$ 10 \times El $	Lit.
2.5	DA	23.0	11	170 ₁	(21, 22)
3 .8	DA	23.7	12	145 ₁	(21, 22)
5	G_{\bullet}	18		74.	(8)
•	$\int \mathbf{G_m} $	17		30	(18)
8 (G _a	14.3		40	(18)

% Zn	Trt	BHN†	ScH	Lit.
5	$\begin{array}{ c c }\hline DA \\ D_d \\ \parallel \\ G_\bullet \end{array} \Big\{$	45 _{CZ} 67 _{CY} 47 _{CY} 41 _{CZ}	23	(21.22) (8) (8) (8) (8) (8)

% Zn	<i>LCH</i> for (QA) (16)
4	62.0-65.8
8	77.0-78.7
15	103-104

Zn, 5-15, is "electron;" Zn, 0-5: sp. vol. = 0.575-0.0043 Zn (23); Zn, 4: $E = 4400 \text{ kg/mm}^2$ (1).

Mg-Zn-Al (21, 22)								Mg-Zn, 4.3; Al, 1.6; Cu, 0.74 (D) "Elec- tron" Metal (1)				ec-
Compo- sition	Treatment	UTS	El _l	Zn	ΨI	Treatment	BHNczt	urs	YP	PL	Et.	RA
Zn, 3; {	D _o 30 % D _o 10 % DA	32 27 23	3.5 8 17	$\frac{\frac{3}{1.8}}{5}$	$\frac{2}{\frac{5}{2}}$	DA DA DA	50 50	25.3 to 27.7	23 {	7 to 10	11.0 to 12.5	to

Mg-Zn-Cu, "Electron" Metal

cor posi	n-	100 ×	+		Ten	sion		Com	pres- n¶	IS Charpy	Lit.
Zn	Cu	d20	BHNAUT	10 × UTS	10 × YP	El.	RA.	10 × UCS		kg-m/cm ²	
4.24	0.42	179	51-48**	283	119	19	1	352	95		(4)
4.62	.20	178	51-50**	253	189	19		363	47		(4)
4.37	. 62	179	63-59**	289	189	13		377	132	l	(4)
"Elect	ron"	181-183		232	13	15	16	1		0-1.0	(6,7)

^{*} Heated in hydrogen.

[†] Subscripts to Brinell hardness Nos.:

Subscripts	Ball diam., mm	Subscripts	Load, kg	Subscripts	Load, kg
A	1	U	10	X	200
В	5.564	v	50	Y	250
C	10	w	116	Z	500

I Tested at 300°C (8).

LITERATURE

(For a key to the periodicals see end of volume)

- Aitchison, 47, 29: 17; 23. (2) Anon., 115, 127: 402; 19. (3) Anon., Hutte, 1: 496; 20. (4) Beckinsale, 47, 26: 375; 21. (5) Bureau of Standards, Tests Tn 1027/20. (6) Bureau of Standards, Tests Tn 1109/20. (7) Bureau of Standards, Tests Tn 0504/21. (6) Dow Chemical Co., Midland, Mich., O. (9) Edwards and Taylor, 80, 69: 1070; 23.
- (10) Ewald, 8, 44: 1213; 14. (11) Faust and Tammann, 7, 75: 108; 10. (12) Guillet, 74, 19: 359; 22. (13) Hanssel, 98, 65: 925; 21. (14) Ito, 159, 12: 137; 23. (15) Kurnakov and Zhemchushnui, 53, 45: 1004; 13. (16) Ludwik, 187, 13: 156; 16. (17) Mallock, 5, 95: 429; 19. (18) Maybrey, Congrès international de fonderie, Paris, Sept., 1923. (19) Recueil de constantes physiques, p. 171. Paris, Gauthier-Villars, 1913.
- (20) Portevin, O. (21) Portevin, 459, 76: 486; 23. (22) Portevin and de Fleury, International Air Congress, London, June, 1923. (23) Portevin and Le Chatelier, O. (24) Schübel, 95, 87: 81; 14. (25) Smirnov and Kurnakov, 169, 14: 678; 11. 10, 2: 750; 13. (26) Thorne, 47, 29: 26; 23. (27) Urasov, 169, 14; 11. 10, 2: 750; 13. (28) Winkelmann, B76, I: 557; 08.

ZINC AND ITS ALLOYS CONTAINING MORE THAN 50% ZN

C. Benedicks

CONTENTS MATIÈRES INHALTSVERZEICHNIS INDICE Propriétés mécaniques. Mechanische Eigenschaften. Mechanical properties. Proprietà meccaniche.... 545 Elastic properties. Propriétés élastiques. Elastische Eigenschaften. Proprietà elastiche..... 546 Compressibility of Zn alloys. Compressibilité des alliages de Kompressibilität der Zn-Legier-Compressibilità delle leghe Zn. di Zn..... 548 Density of Zn alloys. Densité des alliages de Zn. Densità delle leghe di Zn. 548 Dichte der Zn-Legierungen.

TABLE 1.—MECHANICAL PROPERTIES

Zn

m. 1		B			Tes		G	Single		
Trt		ĸ			A 100°	6	Single crystal			
UTS	12-26	17	15-30	27	15*	14†	6-16*	5*	3	2.2-2.5
Lit.	(40)	(41)	(38)			(36, 3	7)		(48)	(35)

^{*}A 30 m. †A 5 m.

[§] G,Q₩

^{||} Round bars, 7-6 mm diam.

[¶] Cylinders, 7.85 mm × 7.85 mm diam.

^{**} Exterior and transverse section, respectively.

TABLE 1.—MECHANICAL PROPERTIES.—(Continued)

	A at: t, °C		70	100	150	200	250	300	350	380
(45)	UTS	17.6	15.7	15.7	15.4	17.0	12.4	10.2	5.5	5.2
	El	30	41	42	38	13	11	9		3

Obs. BHN H	Red. BHN H_r	Ball diam. mm	Load, kg	Lit.
46	46	10	500	(12)
31*	35	10	50-100	(29)
40	40	10?	500	(31)
61†	52	5	500	(7)

^{*} Rate of indentation = 0.25 mm/min. † Rolled.

 $H_r = BHN$ reduced to 10 mm, 500 kg by formula: $H_r = H \frac{x + P_0}{x + P} \sqrt[5]{\frac{\rho}{\rho_0}}$ (8), where $\rho = \text{radius of ball}$, P = load (kg), x = 3700 for 140 < P < 500. Reduction to 10 mm, 3000 kg not performed as being uncertain. Concerning reduction, v. also (3).

Trt	G	Wk_{e}	A 80°	A 100	° A 125°	A 250°
BHN*	38	64	64	51	43	43
Temp., °C	-50	-25	0	25 50	0 75	100 125
BHN†	88	78	69	61 5	4 47	41 36

^{*1} mm ball; 5 kg load (39).

† Faired values (24).

 $LCH = 62 \pm 2 \ (31).$

ScH = 10 (31); 11 (42); 10.8 (9); v. also Fig. 2.

For some typical hysteresis diagrams, v. Fig. 3.

For: specific gravity, v. p. 456; compressibility, v. vol. III; viscosity, v. vol. III; surface tension, v. vol. III.

Zn-Al; v. also (20, 21, 25, 26, 43)

Zn, 94; Al	, 6 (A, t,°	C)	Trt	G	s (44)		Gm (44)		
ℓ,°C	UTS	El_{\bullet}	% Al	UTS	ΥP	Ela	UTS	YP	El _a
	23.2	66	10	24.3	16.7	10.3	22.3	17.8	1.9
70	27.5	60	20	29.1	26.6	6.7	29.3	22.5	1.5
100	22.3	54	25	29.0	12.7	10.1	31.7	21.3	2.2
150	22.2	49	30	27.9	16.9	4.3	28.3	13.5	2.7
200	25.0	24	35	26.5	11.8	3.5	26.3	16.0	0.6
250	28.3	21	40	28.3	16.6	2.6	26.7	9.4	1.6
300	23.8	43	45	28.3	15.0	2.7	24.4	10.7	1.1
350	22.7	43	50	29.2	20.3	4.1	34.0	8.0	1.1
380	22.3	42	Al. 0-50: F	or IS	of (G.) or	(Gm), 1	. Fig.	5.
- (45)		For BHN o						
			6 and 7.						
LCH of Z	n-Al, Q,	or A	Trt % A	0.	5	1	2		4
360°/2-3 h (Q	61-	64	82-85	86-9	91 7	4-80
			A 360°	64-	-66	78-83	88-9	90 7	4-76

Zn-Al-Cu; v. also (20, 21, 25, 26, 43)

	Hot rolled (45)						Chill cast (45)				
%Cu	1			3		9		1	3	9	
	UTS	El.	BHN	UTS	El _a	BHN	UTS	BHN	UTS	UTS	UTS
0	30.7	39	66	31.5	31	83	47.3	99	8.7	11.5	20.7
2	33.2	37	103	İ					18.9		
4	34.1	28	104	33.0	51	115	56.0	129	22.0	24.7	28.0
6	38.2	50	1	36.5	57	107	45.0	134	22.3	28.4	26.6
8	33.2	38	110	35.2	50	123		i	27.8	28.3	
15	37.3	47	103	34.0	44	129	43.4	146	30.2	30.8	34.1

Co	old rolle	ed		Zn, 97	'; Al,2;	Cu,	l (anne	ealedat	t°C)
% Al	% Cu	UTS	El.	<i>t</i> ,°C	UTS	El.	t,°C	UTS	El_{\bullet}
2	1	30.8	39	1	29.0	45	250	28.0	6
4	1	35.7	32	70	27.5	40	300	25.3	
4	3	31.3	17	100	29.2	35	350	27.6	8
6	1	35.3	4	150	27.3	39	380	22.8	5
	(45)			200	29.3	15		(45)	

TABLE 1.—MECHANICAL PROPERTIES.—(Continued)
For UTS, YP_C, BHN of Al, 0-11; Cu, 0-10; v. Figs. 6 and 7.

Values of LCH (30); v. also Figs. 5, 6,p. 549, 550; (17) and (49)

7rt Cd	0.25	0.5	1	2	4	8
Q	63-65	74-75	89-91	94-95	85-89	78- 79
A 260°/2-3 h	65-73	79-85	94-100	98-103	96-98	85-89
7 1100 71 1						

For USS, v. Fig. 8, p. 550.

Zn-Cu; v. also (20, 21, 25, 26, 43)

% Cu	UTS	YP _C	BHN	'	97; C A, <i>t</i> ,°C	•	% Cu	Trt G	A
0	3.4	0.0	40	t,°C	UTS	El.		BHN	BHN
1.75	4.3	22.5	60		28.8	36	0	35	35
4.1	13.9	22.5	75	70	28.6	34	3.5	64	56
6.7	18.2	23.7	82	100	27.4	35	5.0	74	61
8	21.0	23.2	85	150	27.2	38	8.7	57	65
10.5	22.7	30.0	100	200	29.2	35	14.3	64	73
	(4	18)		250	21.5		19.4	102	102
_% C	u*	$UTS \mid$	El.	300	21.7	37	25.0	189	143
0		9.1	0	350	22.5	40	44.7	188	174
1	2	24.8	54	380	21.7	33	49.5	93	93
3		34.0	13		(45)			(26)	

^{*} Cold rolled alloys (45)

Zn, 51.97; Cu, 48.03 (15)

Temp., °C	16	300	450	500	600	700	760	820
<i>IHN</i> *	166	174	169	132	62	38	26	22

^{*} For method, r. (14).

LUDWIK CONE HARDNESS OF ZN-MG, ZN-SB, AND ZN-SN (30)

Trt Wt.%	Q	${ m A} \over 350^{\circ}/2$ –3h	Trt Wt.%	Q	A t°/2-3 h	t,°C
Mg 0.25 0.5	87-90 92-99	76–79 87–97	Sb 1 2	47–50 51–52.5	51-53 } 54-55 }	390
1 2	101-103 111-116		Sn 4 8	42-43 40-41	40-42 38-39	150

TABLE 2.—ELASTIC PROPERTIES OF ZN

\overline{E}	10 480	10 300	9 600	8 000	⊢13 0	00 8	090			
\overline{G}	3 800	3 880						3 100	1 600	2 990
Lit.	(28)	(52)	(40)	((18)	(4	11)	(50)	(47)	(23)
Temp.	, °C	18	21	48	52	63	67	82	97	
\overline{G}		3110	0 3100	2980	2890	2810	2790	2620	2440	(50)*

 $[\]frac{1}{E}\frac{\mathrm{d}E}{\mathrm{d}t}=0.0035~\mathrm{per}~^{\mathrm{o}}\mathrm{C}~(^{53})~\mathrm{(very~uncertain~extrapolation).}\dagger$

ELASTIC CONSTANTS OF A SINGLE CRYSTAL (19) φ = angle between axis of tension and hexagonal axis.

φ	3.6	4.7	22	23	30	37	48	56	81	81	88
$10^{-1}E\dots$	359	356		472	539	675	878	1162	1230	1267	1178
$10^{-1}G\dots$	374	377	350	328	333	324	289	315	464	473	479

 $K = \text{bulk modulus} = 10\ 100\ \text{kg/mm}^2\ (52).$ $\lambda = 0.3\ (52); \lambda = 0.33\ (\text{calc. from } G \text{ and } E)\ (47).$

[†] v. also (34).

Table 3.—Compressibility of Zn Alloys* (32)

Wt. %	Temp., °C	Range, atm.	$10^6 \chi$ per atm.
Al 5	19.0	1-1050	1.9
25	15.4	1-1050	2.3
50	18.0	1-1050	1.8
Cd 10	21.5	1-1050	1.7
40	22.5	1-1050	2.8
Cu 10	6.0	1-1050	1.8
30	25.2	1-1050	1.5
50	20.5	1-1050	1.9
Pb 20	9	1-2100	1.6
FD 20 {	104	1-2100	3.3

^{*} For compressibility of pure Zn, v. vol. III.

Table 4.—Specific Gravity of Zn Alloys For specific gravity of pure Zn, v. p. 456

Zn-Al (44)			Zn-Cu						
Chill	cast	Sand	cast	v. Fig	z. 8.	The lo	w val	res op	tained
% Al	d_4^{20}	% Al	d_4^{20}		•	nvesti	_		-
9.59	6.120	9.69	6.182			u are			_
19.40	5.380	20.03	5.458	cracks and porosity. Values of (55) are checked by X-ray analysis					
25.37	5.008	24.98	5.043	(33)	are cn	ескеа	by A-	ray an	alysis.
30.78	4.768	30.58	4.707						
34.65	4.383	35.20	4.487		7-	er. OL	054	/48\	
40.80		40.37			Zn,	65; Sb	, 35	(*0)	
44.85	4.103	45.02	3.992	t,°C	20	600	700	800	900
50.30		50.38		d	6.56	6.20	6.14	6.07	6.01

^{*} M. P. = 510°C.

LITERATURE

(For a key to the periodicals see end of volume)

- Arnold, 92, 30: 209; 17.
 Bamford, 47, 36: 155; 21.
 Batson, 405,
 463; 18.
 Bauer and Heidenhain, 95, 16: 221; 24.
 Bauer and Vogel, 95, 8: 101; 16.
 Bauschinger, 161, 20: 1; 91.
 Poiss, Upsala, 1904.
 Benedicks, Dies., Upsala, 1904.
 Benedicks and Westgren, Metallografiska Institutet, Stockholm, O.
- (10) Bingham, 47, 24: 333; 20.
 (11) Bresina, 63, 24: 338; 23.
 (12) Brinell, Tekn. Tidskrift and. f. mek. o. elektroteknik, 30: 69; 00.
 (13) Dalby, 62, 221: 117; 20.
 (14) Edwards, 47, 20: 61; 18.
 (15) Edwards and Herbert, 47, 25: 183; 21.
 (16) Faust and Tammann, 7, 75: 108; 11.
 (17) Glasunov and Matveev, 95, 5: 113; 14.
 (18) Grüneisen, 8, 22: 801; 07.
 (19) Grüneisen and Goens, 96, 26: 235; 24.
- (20) Guillet and Bernard, 47, 15: 407; 18. (21) Hanson and Gayler, 47, 27: 267; 22. (22) Hoffmann and Stahl, 187, 21: 22; 24. (22) Iokibe and Sakai, 3, 42, 937; 21. 159, 10: 1; 21. (24) Itô, 159, 12: 137; 23. (25) Jarei, 95, 10: 1; 19. (26) Johnson, 47, 20: 233; 18. (27) Katsenelsohn, Diss., Berlin, 1887. (22) Kiewit, Diss., Göttingen, 1886. (29) Kurnakov and Zhemchushnui, 53, 45: 1004; 13.
- (30) Ludwik, 93, 94: 161; 16.
 (21) Ludwik, 77, 40: 1547; 20.
 (22) Lussana, 69, 19: 182; 10.
 (33) Maey, 7, 38: 289; 01.
 (34) Mallock, 5, 95: 429; 19.
 (35) Mark, Polanyi and Schmid, 96, 12: 58; 23.
 (36) Martens, Mitt. aus den kgl. techn. Versuchsanstalten zu Berlin Ergänzungsheft, 4: 1; 89.
 (37) Masing and Polanyi, 96, 28: 169; 24.
 (38) Mathewson, Trewin and Finkeldey, 80, 64: 305; 21.
 (39) Matveev, 74, 8: 708; 11.
- (40) Meyer, 424, 53: 538; 05. (41) Moore, 86, No. 52; 11. (42) O'Neill, 58, 111: 430; 23. (43) Portevin, 74, 8: 720; 11. (44) Rosenhain and Archbutt, 403, 2: 319; 12. (48) Rosenhain, Haughton and Bingham, 47, 23: 261; 20. (48) Sauerwald, 95, 14: 457; 22. (47) Schaefer, 8, 5: 220; 01. (48) Schuls and Waehlert, 187, 16: 195; 19. (48) Stone, 40, 12: 11; 18. 80, 60: 303; 19.
- (80) Sutherland, 3, 32: 31; 91. (81) Tomlinson, 5, 40: 343; 86. (82) Voigt, 8, 45: 674; 93. (83) Wahlberg, 220, 56: 79; 01. (84) Wassmuth, 75, 115: 223; 06. (85) Weber, 8, 62: 666; 20. (86) Westgren and Phragmén, 5, 50: 311; 25.

CADMIUM AND ITS ALLOYS WITH AG, As, Au, BI, Cu, HG, MG, PB, SN, TL, AND ZN

C. H. M. JENKINS

Cd (v. also Fig. 1)

Treatment	UTS	El	RA	Lit.
G _m , 1 in. diam	8.5	52	80	(7.3)
R _c , V 12 mo	7	95	>90	(7.3)
R _e , V 12 mo, 300°/1 d	6.1	64	85	(7.3)

 $\begin{cases}
 10^{-3} E = 7.070 \\
 10^{-3} G = 2.450
 \end{cases}
 (17).$

 $E_{0^{\circ}C}/E_{0^{\circ}abs.} = 2.50$ (by damping of wires) (13).

 $BHN = \begin{cases} 21-24 \text{ (as cast)} \\ 21 \text{ (worked, aged 1 mo)} \end{cases} 10 \text{ mm ball, 500 kg.}$

Changes in hardness occur at atmospheric temperatures. Present values of BHN of worked material are unsatisfactory (2.6).

Log $BHN_1 - \log BHN_2 = 0.00295$ $(t_2 - t_1)$; between -45° C and $+142^{\circ}$ C (10 mm ball, 500 kg) (7).

For effect of temperature on properties, v. Fig. 1.

For: density, v. p. 456; compressibility v. vol. III; viscosity, v. vol. III; surface tension v. vol. III.

Cd-Ag

Compound Cd-Ag: BHN = 74 (10 mm ball, 200 kg) (12).

Cd-As

For density v. Fig. 7.

Cd-Au

For hardness v. Fig. 2.

Cd-Bi

For hardness v. Fig. 3.

Cd-Cu Cast material (7.1)

% Cu	UTS	El	RA
Nil	8.75	65	80
Nil	8.35	38	58
0.52	11.4	48	76
0.54	12.2	44	66
1.00	13.7	19	51
1.03	13.25	42	76
1.95	14.6	21	3
2.00	15.2	18	13
2.86	15.45	3	2
2.90	14.9	4	3
4.83	15.5	0	0

Rolled material, aged 3 mo at room temperature (*)

Nil	8.8	58	>90
Nil	9.0	59	>90
0.54	10.4	50	>90
0.54	10.5	90	>90
1.00	11.8	44	>90
1.00	11.8	67	>90
2.00	13.7	50	68
2.00	13.1	38	64
2.86	13.85	21	10

Fig. 14
Hardness of Zn-Cd

(7.4)

As cast
A

As cast
A

Alloy in Cast State.

o Alloy Annealed.

Alloy Aged for 8 months.
after casting.

Cd-Cu.—(Continued)

% Cu	BHN*				
% Cu	Max.	Min.	Mean		
	Cast m	aterial			
0	25	24	24.5		
0.52	36	32	34		
1.03	39	36	38		
1.95	42	38	41		
2.90	46	44	45		
4.83	57	51	54		

0	26	25	25.5
0.54	33	32	33
1.00	36	34	35
2.00	39	38	38.5
2.86	44	40	41.5
4.81	52	49	50

^{* 10} mm ball, 500 kg applied 3 min.

Cd-Hg

For density v. Fig. 10, p. 590.

Cd-Mg

Compound Cd-Mg: $BHN=52~(12)~(10~\mathrm{mm}$ ball, 200 kg); v. also Fig. 4.

Cd-Pb-Sn*

% P b	% Cd	% Sn	d_4^{20}	UTS	El	Lit.
90	10	0	11.09	3.51	37.5	(1)
85	10	5	10.67			(1)
80	10	10	10.35	4.03	52 .3	(1)
75	10	15	10.26	4.14	41.7	(1)

* Solders.

Cd-Tl

For hardness v. Fig. 3.

45

17.5

24.0

Cd-Zn (7.2); v. also Figs. 5, 6, 8-14.

% Cd	UTS	El	RA	Treatment
82.6	15.75	30	35	As cast*
82.6	11.6	68	90	A 250°/6 w†
94.0	9.45	5	5	As cast*
94.0	11.4	60	90	A 250°/6 w†

^{*} Casting conditions: Poured at 270°C into cold cast iron mold 1 in. diam.

LITERATURE

(For a key to the periodicals see end of the volume)

Burgess and Woodward, 32, 109: 8; 19. (2) Cook, 47, 29: 119; 23. (3) Deeley, 47, 34: 193; 25. (3.1) di Capua, 22, 32 II: 343; 23. (4) di Capua and Arnone, 22, 33 I: 28; 24. (5) Glasunov and Matveev, 95, 5: 113; 14. (4) Greenwood, 83, 17: 681; 21. (7) Ito, 159, 12: 137; 23. (7.1) Jenkins, 47, 34: 103; 25. (7.2) Jenkins, 47, 34: 204; 25. (7.3) Jenkins, National Physical Laboratory, England, O. (7.4) Jenkins; 47, 36: Preprint, 26. (5) Ludwik, 98, 59; 657; 15. (6) Ludwik, 93, 94; 161; 16.
 Ludwik, 7, 91; 232; 16. (11) Koch and Dannecker, 8, 47; 197; 15. (12)

(10) Ludwik, 7, 91; 232; 16. (11) Koch and Dannecker, 8, 47; 197; 15. (12) Kurnakov and Zhemchushnui, 53, 45; 1004; 13. (13) Mallock, 5, 95; 429; 19. (15) Zhemchushnui, 95, 4; 228; 13. (16) Urasov, 169, 14; 675; 11. (17)

Voigt, 8, 49: 717; 40. (18) Soldau, 53, 46: 1011; 14.

MECHANICAL PROPERTIES OF COPPER AND ITS ALLOYS WITH AG, As, Bi, Cd, Fe, Mn, O, P, Sb, AND Si

D. Hanson

			D. H.	ANSON						
Contents	M	[atières		In	HALTSVER	ZEICHNIS			Indice	PAG
Tensile (compressive) and elas- tic properties. Hardness. Density.			ion (com- iétés élas-		and Zug-l sche Eiger	Festigkeit nschaften.	\mathbf{D}_{t}	omportamo zione (co proprietà urezza ensità	mpression elastich	one) e 55
Tensile (Compressive) Cu (v. also Figs. 1 Tensile properties of electrons	-4 and pp. 558	-560)			Composition of the Composition o	% // Ag	UTS	YP	El	RA
Wt. % composition t,	°C 10°UTS		RA				Cu-As-O	` 	1 40	
O ₂ , 0.015; Si, Tr	50 2277 1631	50.8	72.7 65.1	26 94 194	12 15 20	0.7 0.8 0.5	24.4 25.4 26.0	14.8 13.6 9.8	40 54 62	79 70 80
O ₂ , 0.016: Si. Tr	bom 2273 1566 1566	53.6	76.8 69.4	Co As	mposition	, hundred	ths %	_ UT	'8	El
Compression of Cu cylinder 5	$4.07 \text{ mm} \times 27.$	73 mm d	liam. (25)		C	u-As-Bi-C	O (ReA D	$R/30 \mathrm{Q})$ (13)	
$P = \text{Load}$, kg; $A = \text{cross-section area, mm}^2$.	ion area, mm²;	A ₀ = orig	ginal cross	42 40 39	6	.5 .8 .4	Bi 5.1 7.3 9.7	23 22 22	.8	42 ₆ 40 ₆
P/A ₀				47		.3	9.7 12.4	23		33 ₆ 35 ₆
	3.41 20.6 30.6							°/15) (14)	<u>_</u>	
P/A	0.8 33.4 35.0 3	35.9 36.2	36.637.1	36	6		b 20	23		486
USS = UTS, same variation	s (24).	•				Cu	-As-Si-Fe	(15)		
Electrolytic, annealed, 10 ⁻² E				34	Fe 3	.5	Si 2	24	.4	43
$E = E_0 (1 + \alpha t), \text{ where } \alpha$	$= -3.59 \times 10^{-3}$	-4 (6 , 2 6)	•	36	6		20	24		50
Pure, $10^{-2} G = 43.2 (16)$.				35	7		15	25		40
$\lambda = 0.31 - 0.34 (1, 8, 20).$				39	13		22	25		87
Composition,		1	1	38 35	13 24		36 80	25		41
11	$TTS \mid YP$	El	RA	37	5	}	0.0	28 25		87 46
As O Ag			1011	69	43		0.0	27		48
	(in diam 0) (17)	<u> </u>		length = 1	in.		_'		
Cu-As (R _h to ½					Composition	on,		1		1
1 1 11	3.6 14.2	27*		h	undredths	%	UTS	YP	Bl	C8*
1 1 1	5.2 13.4	29*	v. also	Cd	Fe	0			ŀ	
1 1 11	$\begin{array}{c ccccc} 4.9 & 12.6 \\ 4.4 & 12.6 \end{array}$	21* 25*	Figs.	· · · · ·		C	u-Cd (G)	(5)	<u></u>	
1 1 11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28*	1 and 4	50		<u>_</u>	17.0	2.4	14	
1 1	1.4 16.1	20*		100			20.5	2.4	13	1,50%
				200			22.1	1.81	13	1
Cu-As-Ag-O (F	L _c A <i>DR</i> /30 Q) (300			22.1	2.44	11	5
30 5.6 4.2 2	2.7	35₀	n also	400			21.3	2.44	10	1
42 6.3 9.4 2	2.9	35₀	v. also	700			15.8	2.5		

[†] Material reduced 70 % by cold rolling and annealed for 6 wk at 250°C.

Composition hundredths %			UTS		El	RA
		Cu-Fe	(RA 700°,	/30) (10)	·	
	6	1.4	22.8 16.5	(A) (B)	57. 51.7.	73 63
	20	0.3	22.4	(A)	60 _s	73
	40	0.4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(A) (B)	60 _s 50.8 _s	80 68
v. also	73	0.8	$ \begin{array}{ c c } \hline $	(A) (B)	51.7 _• 51.4 _•	80 83
Fig. 5	96	0.5	$egin{cases} 25.2 \ 19.1 \end{cases}$	(A) (B)	45, 42.5,	82 88
	138	0.4	$\begin{bmatrix} 30.4 \\ 23.2 \end{bmatrix}$	(A) (B)	29.6 _s 20 _s	79 81
-	180	0.7	${f 31.2} \ {f 25.7}$	(A) (B)	29.0 _s 24.6 _s	79 82
	209	0.8		(A) (B)	33.7. 27.	79 80

- $*\Delta l = -\frac{1}{2}l_0.$
- (A) Tested at room temp.
- (B) Tested at 250°C.

30 Fig4 Effect of	Copper %0 ₂ %As %Ag • Electrolytic 0.07I nil 0.0005 o Mohawk 0.050 0.096 0.069 x Copper Range 0.055 0.296 0.052 A All three Material rolled 50% before annealing
Annealing Temperature (19) Annealing Annealing Annealing 300 400	Temperature C , 1700 , 1800 , 1900

	osition, edths %	Trt	UTS	El
Mn	P			
	Cu-Mn (RA 500° C _e or Q) (2	1)	
4	1.2	$\left\ \left\{ egin{array}{ll} \mathbf{C_{\bullet}}, \ldots, \\ \mathbf{Q}, \ldots \end{array} \right. \right\ $	32.6 34.2	45.5 45
7	1.5	$C_{\mathbf{Q}}$	33.2 34.4	45 44.5
12	1.4	C_0	33.9 34.4	44.5
19	2.1	$\left\{egin{array}{c} \mathbf{C_s} \dots \\ \mathbf{Q} \end{array}\right.$	33.6 34.7	44
29	2.2	$C_{\mathbf{Q}}$	34.5 34.8	44.5
40	2.0	{C ₁	34.7 35.5	44.5
61	2.4	{C₃	34.8 35.8	44.5
98	2.1	C	36.7	44.5 43
134	2.3	$\begin{bmatrix} \mathbf{Q} & & & & \\ \mathbf{C}_{\bullet} & & & & \\ \end{bmatrix}$	37.8 38.6 40.0	42.5 40.5
149	2.6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	39.1 40.8	40.5

Cu-O	(RA	700°	/30)	(11)

% O	t,°C	UTS	El.	RA
0.04	∫ 20	22.57	50	71.4
0.04	25 0	15.86	58	69.5
0.06	20	22.7	56	70.2
0.00	250	16.27	50.8	65.1
0.09	20	23.2	52.5a	64.7
0.09	250	17.05	56.4	67.8
0.17	20	24.20	49.2	56.4
0.17	250	17.2	52	66
0.28	20	24.53	38	42.5
0.28	250	17.0	48.8	58
0.36	<u> </u>	26.2	34	38
0.30	250	17.8	47.2	62.8

Cu-P (21)

m D	(R)		(RA 500° C₀)		(RA 500° Q)	
% P	UTS	El	UTS	El	UTS	El
0.014	36.1	4.3	23.0	46.5	24.6	45
.042	38.6	3.9	23.0	46	25.1	44
.092	39 . 5	3.0	23.5	45	25.1	43
.173	39 .6	2.8	24.3	42	25.7	41.5
.399	42.7	3.0	25.4	41	26.2	40
. 563	46.4	2.3	26.9	40	28.8	40
1.062	53 . 4	2.0	28.7	40	31.8	38

Hardness of Cu and Its Alloys with Ag, Cd, Fe, Mn, O, P $$_{\mbox{\scriptsize AND}}$\,Si}$

% composition	BHN	% composition	BHN	
Cu (elec	trolytic)	Cu-Mn-P†.—(Continued)		
(G) (11)	28-30*	RA 5	00° C₅	
(Dp) (11)	58-66	Mn 0.04	74	
		- .19	74	
	g (22)	.29	77	
	70°/24 h	.40	77	
Ag 4.2	63	.61	81	
5.5	72	.98	84	
Cu-Cd	(G) (5)	1.34	84	
Cd 0.5	55	1.49	88	
1.0	65	Cu-O (G) (11)	
2–14	66	O 0.015	30	
		- .036	33	
Cu-Fe (G) (10)	.06	34	
Fe 0.06	28	.08	3 6	
.2	28.2	.17	43	
.4	35	.28	53	
. 73	44	.36	57	
. 96	45	Cu-P	(21) R	
1.38	45	P 0.014	96	
1.80	49.5	.042	101	
2.09	49	_ .092	112	
Cu- M n	(A) (22)	.173	118	
Mn 7.2	71.5	.399	130	
15.3	108	. 563	141	
31.1	140	1.06	160	
Cu-Mn		- RA 50	00° C.	
		P 0.014	63	
RA 5	00° Q	.042	65	
Mn 0.04	77	.092	6 8	
.29	84	.173	70	
.40	77	.399	74	
.61	81	. 563	77	
1.34	88	1.06	84	

HARDNESS OF CU AND ITS ALLOYS WITH AG, CD, FE, MN, O, P AND SI.—(Continued)

% composition	BHN	% composition BH			
RA 500	° Q	Cu-Si (22)		
P 0.014	74	A 800-900	°/1 h		
.042	74	Si 1.7	59 .		
.092	74	2.2	71.5		
. 173	74	2.6	73		
.399	77	2.7	82		
. 563	77	3.8	120		
1.06	96				

Scleroscope hardness of pure Cu (A), 6-8; (R_e 66%), 22-24 (4, 7).

Specific Gravity* of Copper and Its Alloys with Fe, Mn, P and O

Annealed high conductivity Cu, $d_{\bullet}^{10} = 8.86-8.92$ (variable with oxygen content and soundness of ingot) (6, 9, 11, 12). For density of pure Cu, v. p. 456.

Cu-Fe (11)

ov Es	d	20
% Fe	R	RA†
0.06	8.92	8.90
. 2	8.92	8.92
.4	8.92	8.92
. 73	8.92	8.91
.96	8.92	8.91
1.38	8.91	8.91
1.8	8.90	8.91
2.09	8.90	8.90

$\left.\begin{array}{c} \mathbf{Cu-Mn-P} \\ \mathbf{Cu-P} \end{array}\right\} (^{21})$

% Mn	% P	d_4^4
0.04	0.012	8.905
. 19	.021	8.903
.98	.021	8.860
1.49	0.026	8.820
	0.04	8.945
	.173	8.938
	.399	8.903
	1.062	8.758

Cu-O (11)

% O	d'a	0
% U	R	RA†
0.015	8.917	8.912
.016	8.92	8.91
.04	8.907	8.905
.06	8.910	8.901
.09	8.884	8.882
. 17	8.825	8.842
. 28	8.8	8.8
.36	8.75	8.76

^{*} All specific gravity values for alloys refer to rolled or worked material. Densities of castings mainly unreliable owing to irregular unsoundness. \uparrow R, A 700°/30.

^{* 10} mm ball/500 kg load; others 5 mm/500 kg.

[†] Contains 0.12-0.2 % P.

LITERATURE

(For a key to the periodicals see end of volume)

- Amagat, 34, 108: 1199; 89.
 Bengough, 47, 7: 123; 12.
 Bengough and Hanson, 47, 12: 56; 14.
 Bengough and Hill, 47, 3: 34; 10.
 Budgen, Cadmium and Its Alloys. London, Griffin and Co., 1924.
 Bureau of Standards, 365, 73: 32, 38; 18.
 Caesar and Gerner, 40, 10: 208; 16.
 Carrington, 3, 41: 206; 21.
 Dellinger, 459, 53: 889; 11.
- (10) Hanson and Ford, 47, 32: 335; 24. (11) Hanson, Marryat and Ford, 47, 30: 197; 23. (12) International Electrotechnical Commission, Publication No. 28: 4; 14. (13) Johnson, 47, 4: 183; 10. (14) Johnson, 47, 7: 240; 12. (15) Johnson, 47, 10: 275; 13. (14) Koch and Dannecker, 8, 47: 197; 15. (17) Lewis, 135, 83: 3; 01. (12) Macnaughton, 140, 109: 409; 24. (12) Mathewson and Thalheimer, 80, 85: 446; 16.
- (20) Morrow, 3, 6: 417; 03. (21) Münker, 192, 9: 185; 12. (22) Norbury, 47,
 29: 423; 23. (23) Searle, 3, 49: 193; 00. (24) Thurston, Materials of Engineering, Part III. New York, Wiley, 1910. (28) Unwin, Testing of Materials of Construction. London, Longmans, Green and Co., 1910. (26) Wassmuth, 75, 115, II A: 223; 06.

PROPERTIES OF BRASSES AND OF PB, SB, SN AND THEIR ALLOYS

O. F. Hudson

For specific gravities of the pure metals v. p. 456; for compressibilities, v. vol. III; for viscosities, v. vol. III; for surface tension, v. vol. III.

CU-ZN, SIMPLE BRASSES*

%		d18+	BHN	8cH	UTS	YP	PL	El _a	RA	UCS	IS‡ (Isod)	Shr.
Cu	Lit	(1)	(12, 13)	(13)	(5, 6, 13-17)	(13)	(13)	(6, 13- 17)	(13- 15)	(5)	(4)	(18)
90	G ₀	8.75	45	12	22			25		21	5.5	2.1
	Rd		120	41	39			5				
	R _e		43	11	25	_		45			-	
80	G	8.62	45	12	25	_		30	30	27	6.9	1.87
	R _d	_	145	50	47			10	30	Г		
	R		45	12	28	_		50	85			
70	G	8.50	45	12	28	16		35	35	42	6.2	1.79
	Rd		145	50	47	47	24	15	50			
	R		45	12	28	9	6	70	75	_		_
66	G		48	13	28	_		30	30		7.6	2.29
	Rd		145	50	50			15	50			
	R _e		43	16	31			60	70	_		
65	As re	olled,	ELs -	20; a	nnealed,	BL 8	- 6 (from tors	ion test	s) (13		
60	G.§	8.40	70	20	36	20		20	25	53	6.2	2.34
	Rd		150	55	47	39	19	35	45			_
	R		60	16	39	17	6	55	60			_
56	G ₀	_	80		47			20				2.37
	G _m		95				_					
52	G	_	90		31			10			6.2	2.50
	G _m		85									
50	G _e		95		16			5		77		2.50
	G _m	8.30	90				-					_

Elastic properties of brass, composition not stated: $10^{-2}E = 79-92$ (G_a); = 92 (R_d); = 100(R_a)(⁵); $10^{-2}G = 36$; $\lambda = 0.327(^{22})$.

- * Mechanical properties of brasses vary widely with condition. Data given are typical of alloys in the indicated conditions.
 - † For chill castings.
 - ‡ Standard 120 ft. lb. specimens with 11, 23, and 46 ft. lb. tups.
 - § USS = 24(G) (*); $EL_8 = 8.5(R_s)$ (13).

Effect of Rolling on Hardness of Brass Cu, 66.65; Pb, 0.3; Fe, 0.08 (24)

γ*	2	4	8	12	15	25 5	50
ScH	9.7	12.7	15.2	17.3	21.5	27.4 3	8.2

^{* ~} Per cent reduction in rolling.

Effect of Annealing on α-Brass

% composition	$ t_A,^{\circ}C^* $	YP	UTS	El.	RA
İ	(20)	33.9	39.4	35	65
	285	32.9	40.3	35	66
Cu, 71; Zn, 28.53; Pb, 0.25;	350	28.8	39.7	38.5	53
Fe, 0.20; Sn, 0.02 ($\frac{1}{2}$ in.	400	25.5	38.7	46	53.5
diam.)† (15)	500	9.1	32.9	67.5	74.5
	725	6.8	29.1	80	75
	920	5.8	28.7	78	63
	(20)	49.6	49.9	19.0	65
	320	43.1	51.8	19.5	65.5
	405	17.8	39.5	55	75.5
	500	19.5	36.5		72
Cu, 69.4; Zn, 30.44; Fe, 0.15;	570	15.1	36.9	60	77
Pb, 0.005; Sn, trace (1/2 in.	630	10.2	33.1	65	75
diam.)† (15)	660	10.1	32.3	76.5	80
	702	8.0	31.5	76	77
	765	6.5	31.2	79	70
	808	5.4	29.0	81	75
	900	5.2	27.9	83.5	70

% composition	$t_{\mathbf{A}},^{\circ}\mathbf{C}^{*}$	ScH	UTS	El.	$\mid RA$
Cu, 66.65; Zn, 23.97; Pb, 0.3; Fe, 0.08 (cross-section 0.5 in. × 0.1 in.) ‡ (24)	(20)	34.5 19.5 16.3 12.8 9.5 7.5	62.5 40.6 37.5 34.5 31.6 29.7	6 38 48 58 68 67	34.8 54.4 60 61.4 58.4 56.7

 α -Brass (24), composition not stated. R_d, 40%: UTS = 53.9; El = 11.1. A 200°/30: UTS = 55.1; El = 10.0.

- * Annealed 30 min. at tA,°C.
- † Rd.
- ‡ 50% reduction.

Annealing Temperatures for Simple Brasses

For 70/30 Brass: A 650 \pm 10° gives complete softening and moderate grain size (13).

For 60/40 Brass: A 650° for final treatment but for subsequent hot working, reheat up to ca. 800° (13).

For 70/30 or 60/40 Brass: To remove dangerous internal stress, A 250° (28, 29).

Effect of Annealing on BHN of R_d α -Brass (2) Cu, 68.48; Zn, 31.47; Pb, 0.02; Fe, 0.03, annealed 30 min at t_{A_s} °C

		, ,	•	,
t_{A} ,°C γ^*	20.2	36.6	50.9	59.1
20	110	142	158	163
200	109	148	169	172
250	106	143	166	171
275	104	140	155	154
300	103	137	130	124
325	102	106	93.3	93.3
350	102	100	91.2	91.9
375	88.3	88.8	86.4	88. 6
400	82.6	74.6	79.6	83.8
425	75.2	71.2	76.5	79.0
450	75.0	70.5	74.1	77.4
500	70.4	66.2	69.1	69.1
550	65.9	61.3	62.0	62.0
600	61.7	55.4	56.8	57.2
650	55 .8	51.5	52.1	52.4
700	50 . 6	48.9	49.7	49.2
750	46.0	45.9	46.4	46.4
800	43.9	43.1	43.1	44.1
850	41.3	41.1	42.0	41.7

^{*} γ = Per cent reduction in rolling.

PHYSICAL PROPERTIES OF VARIOUS BRASSES

Composition and treatment	BHN	UTS	YP	El.	RA	Lit.
Cu-Zn-Al, Al-	brasses					
Cu, 70.5; Zn, 26.4; Al, 3.1		33.0	1	50		(⁵)
Cu, 69.79; Zn, 26.67; Al, 3.54 G	104 143	39.0 58.2			27.6 41.9	(32)
Cu, 69.42; Zn, 24.68; Al, 5.90 G	185 193	59.8 66.6	44.1 51.2	1	1.5 8.4	(32)
Cu, 69.13; Zn, 26.32; Al, 4.55 G	134	50.2 60.8	27.7 31.9		11.7 20.0	(32)
Cu, 62.9; Zn, 33.3; Al, 3.8		56.2		_		(5)
Cu, 59.85; Zn, 37.13; Al, 3.02 G	159 154	66.1 63.4	1		21.5 30.6	(32)
Cu, 59.48; Zn, 39.52; Al, 1.00 G	114 104	50.4 49.3	23.3 17.5		33.5 44.6	
Cu, 58.26; Zn, 38.56; Al, 2.18 G	138 143	57.3 58.2		1	21.5 33.5	(32)
Cu, 57; Zn, 42; Al, 1 G		40.0	_	50		(5)
Cu, 55; Zn, 41; Al, 4		60.0		16.5		(5)
Cu-Zn-Fe Fe	hresee					

•						
Cu, 60; Zn, 38.2; Fe, 1.8 G		40.3	"Aic	h's n	netal''	(5)
Cu, 59.37; Zn, 39.68; Fe, 0.95 G	90 107	42.2 45.3	14.8 21.9	1	44.6 63.7	(32)
Cu, 59.12; Zn, 38.36; Fe, 2.52 G	92 110	41.7 44.1	15.7 24.9		49.7 54.6	(32)
Cu, 59.04; Zn, 30.95; Fe, 1.56 G	85 98	42.2 42.6	15.7 21.4		30.6 59.3	(32)
Cu, 55.04; Zn, 42.36; Fe, 0.83; Sn, 0.83; GF Do		42.5 53.5 59.8				(20)
	ELC	10-	4E	10)-4G	
Cu, 73.85; Zn, 25.90; Fe, 0.25 $ \begin{cases} H_{\frac{1}{2}} \dots \\ H_{\frac{1}{2}} A 610^{\circ} \end{cases} $		1.1		1	387 408	(21)
Cu, 67.08; Zn, 32.45; Fe, 0.44 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.0		1	381	(21)

Cu-Zn-Mn, Mn-brass

Composition and treatment		BHN	UTS	YP	El _a	RA	Lit.
Cu, 59.6; Zn, 38.0; Mn, 2.1	G		41	14	50		(13)
Cu, 57.6; Zn, 41.0; Mn, 1.16	G		42.5	16	50		(12)
Cu, 58.95; Zn, 39.92; Mn, 1.01; Fe, 0.24;	∫G	80	39.4	15.9	51	49.7	(32)
Si, 0.05	Ì F		41.6	15.9	47	57	

PHYSICAL PROPERTIES OF VARIOUS BRASSES.—(Continued)

BHN UTS | YP | Ela | RA | Lit.

Composition and treatment

			·			
Cu, 58.42; Zn, 39.25; Mn, 2.0; Fe, 0.25; Si, 0.05	90	40.8	14.3	45	52.7	(32)
Cu, 58.42; Zn, 39.8; Mn, 1.48; Fe, 0.25; Si, 0.05	90	40.9	14.0	49	61.5	(32)
Cu-Zn-Mn-Al, etc., Hi	gh te	nsile bras	18 0 8			
Cu, 59.45; Zn, 35.85; Mn, 3.49; Al, C	114	50	28	25	25	(32)
0 98; Fe, 0.22; P, 0.01	134	55	33	36	47	
Cu, 59.45; Zn, 36.6; Mn, 1.97; Al, 1.56; C	138	57	27	22	20	(32)
Fe, 0.40; P, 0.02	148	58	27	28	30	
Cu, 58.6; Zn, 38.5; Al, 1.5; Mn, 0.5; V, D	00	57.3	35.6	12	14	(20)
Cu, 58.15; Zn, 35.18; Mn, 4.10; Al, 2.24; C	165	63	38	14	15	(32)
Fe, 0.25; P, 0.08	159	68	39	18	21	
Cu, 57.23; Zn, 37.9: Al, 2.59; Mn, 2.08; C	165	65	30	18	20	(32)
Fe, 0.20	159	66	31.5	24	25	
Cu, 55.02; Zn, 41.9; Mn, 2.04; Fe, 0.75; Sn	,					
0.15; Al, 0.09	. 143	21	53.5	16		(13)

Cu-Zn-Sn-(Fe), Sn-brasses

Cu, 70; Zn, 29; Sn, 1; "Admiralty condenses tube brass"		Mechanical properties substantially those of 70/30 brass				
G. 60. 72 37. Sa 1. "Namel beauty B	19*	39 50	19 39	15 20	25 30	(13)
Cu, 62; Zn, 37; Sn, 1; "Naval brase" Re	8*	44	19		40	
Cu, 60; Zn, 40; Sn, 0.7-1.1	E =	10 500	13 40	0 kg/	mm²	(27)
Cu, 59.95; Zn, 39.38; Sn, 0.47; Fe, 0.20	87 107	41 46	17 25	44 38	42 60	(32)
Cu, 59.17; Zn, 37.63; Sn, 2.98; Fe, 0.22C	136	33.4	26.0	1.5	3.2	(32)
Cu, 58.9; Zn, 40.1; Sn, 1.0	98 107	42.5 45.5	16 22	32 38	34 45	(32)
Cu, 58.82; Zn, 38.76; Sn, 2.11; Fe, 0.31C	114	41	19	13	15	(32)
Cu, 58.7; Zn, 39.6; Sn, 10; Fe, 0.34; Pb, 0.4; "Durana"		40.8 B = 74		•	36	(16)

^{*} These values are for PL.

Рв

Treatment	UTS	Lit.	BHN	10 ⁻³ E	10-2G	\lambda	Lit.
Cast	1.25	(23)	4.2	1			(7)
Rolled	2.1	(19)		1.5-1.7	0.55	0.43	(5)
Annealed	1.8	(19)		1.80		_	(35)
Drawn wire Soft Hard	1.70 2.20	(22) (22)		1.73			(35)
Pr, A 100°	1.7*	(5)	3.8				(7)

ScH = 2 (ordinary hammer); ScH = 3 (magnifier hammer) (31),

For CS = 1.5 kg/mm², $\Delta l = -32\% l_0$ $EL_C = 0.07 \text{ kg/mm}^2$. * $El_a = 67\%$.

Рв-Вл-Сл

(Ba + Ca) 1-2%; "Ulco metal"
$$\begin{cases} UTS = 9.1 \text{ kg/mm}^2 \\ El = 5\% \text{ on 1 in.} \end{cases}$$
 (9). Ba, 1.30; Ca, 0.79
$$\begin{cases} BHN = 31.2_{\text{u}}; 26.5_{\text{v}} \\ ScH = 7.5; 13.5_{\text{m}} \end{cases}$$
 (31), where u = 500 kg; v = 1000 kg; m = magnifier hammer.

Pb, ca. 97.5; Ba, <2; Ca, <1; Hg, 0.5	PD, ca.	ca. 97.5; Ba	. <2; Ca,	. < 1; mg.	0.25
---------------------------------------	---------	--------------	-----------	------------	------

<i>t</i> ,°C					"Frary metal" (8)
<i>BHN</i>	29.6	27.2	20.9	14.0	Frary metal (*)

PB-SB	CART	١ (1	1	١
I D OD 1	CABI	, ,	_	-	,

% Sb	UTS	El _a	RA							
0.0	1.25*									
2.6	3.16	15	21.6							
3.9	3.71	19	25.0							
4.5†	4.36	35.5	34.5							
5.0	4.42	28.5	27.5							
6.1	4.75	21.8	23 .3							
7.4	4.96	19.3	21.0							
8.1	5.24	21.5	22.1							
9.9	5.39	15.5	13.6							
12.6	5.17	11.0	10.6							
14.0	4.94	8.8	9.3							
19.6	4.40	1.8	1.5							
24.7	4.26	1.3	0.4							

^{* (23).}

PB, 92; SB, 8,* HARD PB (R) (5)

Thickness, mm	UTS	El	ScH
0.89	3.89	14.8	3-4
1.07	3.82	15.2	3-4
1.27	4.16	19.0	3-4

^{*} Density = 10.71 (5).

 $P_{B}-S_{B}-S_{N}$ (33) v. also Pb-Sn-Sb-Cu

Pb,	88.8; Sb,	7.5; Sn,	3.7	UTS = 5.7
	83.3	9.8	6.9	8.7
	78	7	15	6.23

PR-SN Trt UTSBHN Lit. % Sn $\overline{\mathbf{G}}$ (6) 0 1.25* 4.2 (34)10.1 10 12.2 (34) 20 (34)30 14.5 33.3 7.63 (33)(34)40 15.8 (33, 34) 50 7.1 18.0

PB-SN-SB-CU, BEARING ALLOYS (30) v. also Pb-Sb-Sn

%	ositio	n	מ פונ	DHM	77770	וים	UCS*	VD *	
Pb	Sn	Sb	Cu	d_4^{12}	a ₄ BHN	013	E la	UCS-	IP _C *
80	5	15		10.04	25†	7.4	2.8	21.1	5.7
63 .5	20	15	1.5	9.33	25‡	8.7	0.0	19.2	6.3
48.5	40	10	1.5		22	7.2	0.0	17.8	5.8

^{*} YPC at $\Delta l = -0.2 \%$ le, UCS at $\Delta l = -0.5$ le.

SR

 $UTS = 1.1 \text{ kg/mm}^2 \text{ (wire 0.36 mm diam.) (3)}.$

 $E = 7950 \text{ kg/mm}^2$, $G = 2020 \text{ kg/mm}^2$ (from bending tests on wires) (3).

~	

Treatment	UTS	El,	BHN	CS*	EL _C	Lit.
Rolled						(19)
Pr, A 100°		86	5.0 5.2	${f 3.6 \ 2.8}$	0.08	(7)

 $E = 4000 - 5500 \text{ kg/mm}^2$. $G = 1700 \text{ kg/mm}^2$ (19). * $\Delta l = -32 \% l_0$

S_N-P_B (23, 33, 34)

	S	n-Pb-	Sb-C	u, be	aring	alloys	3 (30)			
(Compos	ition			BHN	UTS	El.	UC	S*	YP _C *
BHN	5.2	13.3	15.2	15.8	16.7	14.6	U'	rs_	2.	46 7.6
% Pb_	0	10	20	30	34	40	%	Pb_	(37

Sn, 80; P	b, 6; Sb,	11; Cu	3	32	9.0	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	5.7
60	28.5	10	1.5	27	7.9	0.0 20.2	6.3

11.5 0.0 18.0

Sn-Sb-Cu, bearing alloys (30)										
Sn, 93; Sb, 3.5; Cu, 3.5	25	3.0	11.6	23.1	5.7					
86 10 5 3 5	22	10 9	7	28 8	80					

37

Sn, 91; Sb, 4.5; Cu, 4.5: $d_4^{18} = 7.34$; Sn, 89; Sb, 7.5; Cu, 3.5: $d_4^{18} = 7.39.$

86

LITERATURE

(For a key to the periodicals see end of volume)

- Bamford, 47, 26: 155; 21.
 Bassett and Davis, 80, 60: 428; 19.
 Bridgman, 2, 9: 138; 17.
 Bunting, 47, 31: 47; 24.
 Bureau of Standards, Test Tn 0217 b22; 1922.
 Charpy, 420, 1: 180; 96.
 (7) Coe, 47, 30: 309; 23. (8) Cowan, Simpkins and Hiers, 78, 40: 27; 21. (9) Frary and Temple, 33, 19: 523; 18.
- (10) Frye, C. E. Pocket Book, p. 496. N. Y., Van Nostrand, 1918. (11) Gurevitch and Hromatko, 33, 25: 62; 21. (12) Harris, 47, 23: 327; 22. (13) Hudson, O. (14) Hudson and Bengough, 54, 27: 43, 654; 08. (15) Hudson and Bengough, 47, 4: 92; 10. (16) Hatte, 1, p. 495. Berlin, Ernst und Sohn, 1920. (17) Johnson, 47, 20: 233; 18. (18) Johnson and Jones, 47, 28: 299; 22. (19) B3, 1: 81, 87.
- (20) Law, Alloys. London, Griffin, 1919. (21) Lea, Collins and Reeve, 47, 29: 217; 23. (22) Love, Treatise on the Mathematical Theory of Elasticity. Cambridge, Cambridge University Press, 1892-93. (23) Marks, B77, p. 551. (24) Mathewson and Philips, 80, 54: 608; 17. (25) Matsuda, 159, 13: 401, 419; 25. (26) Matsuda and Shiba, 159, 13: 413; 25. (27) Merica and Woodward, 32, No. 82; 17. (28) Moore and Beckinsale, 47, 28: 225; 20. 27: 149; 22. (29) Moore, Beckinsale and Mallinson, 47, 25: 35; 21.
- (30) Mundey, Bissett and Cartland, 47, 28: 141; 22. (31) Rolfe, 47, 25: 171; 21. (32) Smalley, 440, 21: 56, 75, 101, 124, 149, 173; 22. (33) Sterner-Rainer, 95, 13: 368; 21. (34) Vickers, Metals and their Alloys, p. 664. N. Y., Baird and Co., 1923. (38) Winkelmann, B76, I, Pt. 1: 557; 08.

[†] Density = 10.5 (8).

^{* (23).}

[†] BHN = 10 at 100°C.

¹ BHN = 11 at 100°C.

^{*} YPC at $\Delta l = -0.2$ % l_{0} , UCS at $\Delta l = -0.5 l_{0}$.

PROPERTIES OF COMMERCIAL COPPER, ORDINARY, PHOSPHOR, AND ZINC BRONZES AND COPPER-BASE BEARING ALLOYS

S. L. HOYT

Contents	Matières	Inhaltsverzeichnis	INDICE PAGE
Mechanical properties:	Propriétés mécanique:	Mechanische Eigenschaften:	Proprietà meccaniche:
Commercial copper.	Cuivre de commerce.	Handelskupfer.	Rame di commercio 558
Cast tin bronzes.	Bronzes d'étain coulés.	Zinnbronze, gegossen.	Bronzi allo stagno colato 559
Phosphor bronze.	Bronze de phosphore.	Phosphorbronze.	Bronzo al fosforo 560
Bearing alloys.	Alliages à coussinets.	Lagermetall-Legierungen.	Leghe per cuscinetti 561
Zinc bronzes.	Bronzes de zinc.	Zinkbronzen.	Bronzi di zinco 563
Admiralty gun metal:	Bronze à canon américain:	Schiffsgeschützmetall:	Bronzo da cannoni (Ad- miralty):
Effect of arsenic.	Influence d'arsenic.	Arsen hältig.	Effetto di arsenico 566
Effect of lead and arsenic.	Influence d'arsenic et de plomb.	Arsen und Blei hältig.	Effetto di arsenico e di piombo 566
Effect of antimony.	Influence d'antimoine.	Antimon hältig.	Effetto di antimonio 568
Red bronze:	Bronze rouge:	Rotguss:	Bronzo rosso:
Effect of antimony.	Influence d'antimoine.	Einfluss des Antimonge-	Effetto di antimonio 568
Effect of lead.	Influence de plomb.	haltes. Einfluss des Bleigehaltes.	Effetto di piombo 569
Impact strength.	Résistance au choc.	Schlagfestigkeit.	Resistenza all' urto 570
Other properties:	Autres propriétés:	Andere Eigenschaften:	Altre proprietà:
Specific gravity.	Poids spécifique.	Spezifisches Gewicht.	Peso specifico 570
Elastic properties.	Propriétés élastique.	Elastische Eigenschaften.	Proprietà elastiche 571
Mold shrinkage.	Retrait au moulage.	Schwindung.	Ritiro nella forma 572
Thermal conductivity.	Conductibilité thermique.	Wärmeleitfähigkeit.	Conducibilità termica 572

CU, COMMERCIAL COPPER

See also Figs. 1 and 2 and p. 552

		1 444 2	and p. ooz					
% Cu	Description and treatment	UTS	PL	El	RA	BHN	ScH	Lit.
99.9	Normalized* pure copper	21-28	†	40-60	40-60	30-40		(13)
	$\begin{array}{c} \text{Cast.} \\ \text{Same} \left\{ \begin{array}{l} \text{A 540}^{\circ} / 1 \text{ w } \text{Q}_{\text{w}}. \\ \text{W } R \text{ Q}_{\text{w}}. \end{array} \right. \end{array}$	16.6		17.2 _b 22.6 _b 28.5 _b				(45)
≮99.5	Pure sheet copper. Soft, 0.13-0.79 mm thick. Soft, 0.81-9.51 mm thick. Hard, 1.83-9.51 mm thick. Hard, >9.51 mm thick.	26.0‡ 25.3‡ 28.1∥		20.0 25.0 8.0 15.0				(44)
99.6	Cast	17.6 35.2 24.6	7.0 14.1 26.0	20 5 50 9	60 8 60	40 94 42	8 6 18	(14)
	Cast boronized copper		8.0	48.5	74.5			(64)
	Fire-box copper, R, A			35–38 35–38	45-50 45-50			(35)

^{*} Best normalised by casting, rolling, drawing, followed by annealing at 500°. † No definite PL. ‡ Maximum. | Minimum.

For properties of cold drawn copper wire, v. Fig. 2.

For tensile requirements of copper wire, v. Fig. 1.

% Sn	Treatment	UTS	Elb
2	G _{hm}	19.4	21.8
	A 540°/1 w Q _w	20.3	31.0
4	G _{hm}	22.9	20.5
	A 540°/1 w Q _w	25 . 2	23.2
	W R Q,	22.6	18.5
6	G _{hm}	24.1	15.3
	A 540°/1 w Q _w	23.8	21.8
	W R Q _w	${f 23}$. ${f 9}$	20.0
8	G _{hm}	28.8	11.5
	A 540°/1 w Q _w	24.9	25.1
	W R Q	25.9	20.5
10	G _{hm}	29.5	12.7
	A 540°/1 w Q,	30.4	36.4
	A 400°/1 w C _f	28.6	24.7
	W R Qw	31.4	21.o
13	G _{hm}	29 .0	5.1
	A 540°/1 w Q _w	31.7	32.8
	A 400°/1 w C _f	26 .8	10.o
	W R Q	29.5	8.3
	W 620° Q _w	33.3	17.5
16	G _{hm}	27.8	1.5
	A 540°/1 w Q _w	35.2	19.6
	A 400°/1 w C _f	28.6	2.0
	W R Q	41.4	9.5
	W 620° Q,	38 .3	9.0

Cu-Sn, Bronze.—(Continued)

% Sn	Treatment	UTS	Еlь
19	G _{hm}	37.7	2.9
	G C	26.3	0.3
	G _m (cold)	23.0	0.2
	A 540°/1 w Q		
	A 400°/1 w C ₁	28.5	0.5
	W R Q	44.1	6.3
	W 620° Q,	47.0	6.5
	W 720°/45 Q _w	45.7	5.0
22	G _{hm}	31.6	0.4
	A 540°/1 w Q _w	39.1	
	A 610°/1 h Q _w	40.0	5.3
	A 400°/1 w C _f	17.6	
	A 400°/1 h C _a	Cracked	
	W 700° C _a	12.4	0.05
	W R Q _w	44.5	1.3
	W 700° Q,	39.9	1.0
25	G _{hm}	9.9	Nil
	A 540°/1 w Q _w	17.7	
	A 400°/1 w C _f	11.7	
	W 630°/1 h Q _w	22.2	0.8
	W 600°/1 h Q _w	25.8	0.4
	W 700°/1 h Q	23.6	1.1
30	G _{hm}	11.1*	
	A 400°/1 w C _f	2.5*	

^{*} Some specimens of this composition broke while being gripped.

For properties of cold drawn bronze, v. Fig. 2.

Cu-Sn-P, Phosphor Bronze See also Figs. 9 and 10

% Sn	% P	Index No.	Treatment	UTS	Y = YP $P = PL$	El	RA	BHN	ScH	Lit.
3.77	0.16	1	D (rod)	56.0	41.7 _Y	17.5	57	1		(42)
4	Tr.		G	23	11 y	15-20		50-60]
	İ	ł	Wk	39]				İ
	į		Wk, A	31.5						l
		1	R _e , A	32			80			
		1	D	84-112						
		1	D, A	28-35						
4.7*	Tr.		G ₀	24.3	$5.7_{ m P}$	22	18.2	56.8	20.4	(42)
	1.2		G _m	34.1	$6.0_{ m P}$	12.75	12.4	69.1	16.2	
4.9	0.1	İ	R	45.7	$28.2_{ m P}$	30.0			37	(14)
6	Tr.	ŀ	G	23	11 y	15-20				İ
			D	84-112		}				
			D, A	28-35		1				
10†	0.4		G ₀	20.9	6.3 _P	6.0	8.5	70	21	(42)
		!	G _m	23.8	$5.0_{ m P}$	4.0	4.9	84	20	
10	Tr.		G	23	$12.5-14_{ m P}$	15-20	10–17			(18)
	ļ		G _{am}	30		ł				
10-12	0.1-0.3	612	G	24.6	14.1 _Y §	10§]		(47)
11	0.3	1359	G	24.6-28.4	15.8-17.3 _Y	6–10	7–9	80		(56)
15‡	0.6		$\mid \mathbf{G_0}, \ldots \rangle$	17.6	8.5_{Y}	3.0	1.8	80	25	(42)
			G _m	23.6	$9.5_{ m Y}$	1.0	1.5	94	24	<u>-</u>

^{*} Malleable, typical analysis: Cu, 94.0; Sn, 4.7; P, 1.17; As, 0.15; Pb, 0.11; (Sb, Fe, Al, Zn), Tr.

[†] Typical analysis: Cu, 89.8; Sn, 9.3; P, 0.44; As, 0.39; Pb, 0.03; (Sb, Fe, Zn),

Tr.; Al, 0.

† Typical analysis: Cu, 84.8; Sn, 14.3; P, 0.6; Sb, 0.15; Fe, 0.1; Pb, 0.08; As, 0.06.

Minimum.

MECHANICAL PROPERTIES OF COPPER-BASE BEARING ALLOYS AS CAST (CAR JOURNAL BEARINGS) (16)

	% com	positon		UTS	Ela	PLC	e at	ScH
Cu	Sn	Pb	Zn	013	Bia.	120	70.3 kg/mm ²	J. J.
95	5			29.4	34.5	12.7	31	23
90	5	5		28.5	34.5	13.4	32	15
	10			27.4	15	17.6	26	23
85	5	5	5	26.8	36	12.7	33	14
	5	10		22.0	19.5	12.7	36	14
	10	5		23.0	9.5	15.5	26	19
80	5	5	10	19.8	15	12.7	32	16
	5	10	5	24.4	23	11.3	34	18
	5	15		16.4	15.5	11.3	39	14
	10	5	5	23.6	3.5	19.0	21	21
	10	10	ł	22.4	8.5	16.2	29	21
75	5	5	15	19.0	10	12.0	28	18
	5	15	5	22.0	19	13.0		19
	5	10	10	21.0	13	13.4	32	18
	5	20		16.4	15.5	10.5		12
	10	5	10	17.2	1.0	19.0	19.5	25
	10	10	5	22.0	2.5	20.0	22	21
	10	15	ŀ	19.0	6	16.2	32	15
70	5	25	l	17.4	14	11.6		12
	5	10	15	20.0	10	13.0	30	20
	5	20	5	19.8	20	12.3		15

MECHANICAL PROPERTIES OF COPPER-BASE BEARING ALLOYS AS CAST (CAR JOURNAL BEARINGS) (16).—(Continued)

	% comp	osition		UTS	E71	D.	e at	ScH	
Cu	Sn	Pb	Zn	013	El _a	PLC	70.3 kg/mm ²	Sen	
70	10	20		19.0	6	14.8		19	
	10	5	15	19.3	1.5	28.1	17	28	
	10	15	5	19.8	1.5	18.3		23	
	10	10	10	21.1	4.7	20.4	17	22	
65	5	30		13.9	12	10.5		10	

WEAR AND FRICTIONAL PROPERTIES OF COPPER-BASE BEARING
ALLOYS

Mean values from service tests on the Pennsylvania R. R. (21.1)

	% co	mpositio		Index	Relative	
Cu	Pb	Sn	P	As	No.	wear
89.2	1	10.0		0.8		1.42
87.5		12.5				1.47-1.53
79.7	9.5	10.0	0.8		1326	1.00
79.7	9.5	10.0		0.8	1	1.01
79.2	7.0	10.0		0.8		1.15
77.0	12.5	10.5			556	0.92-0.93
77 .0	15.0	8.0			553	0.865

LABORATORY TESTS ON THE CARPENTER MACHINE* (16)

	% comp	position		fric- tion,	Temp.	Wear	Rela- tive	
Cu	Pb	Sn	Zn	kg	°C	in mg	weart	
95.0		4.95		7.3	29	4.96	0.49	
90.7		9.45		5.9	28.5	11.45	1.13	
85.8		14.9		5.9	28	18.14	1.79	
90.8	4.8	4.6		6.4	29.5	3.51	0.35`	
85.1	10.6	4.6		8.4	31	2.46	.24	
81.3	14.1	5.2		8.4	32	2.12	.21	
75?	20?	5?		8.4	32	1.80	. 18	
68.7	26.7	5.2		8.2	32	1.32	. 13	
64.3	31.2	4.7		8.2	35.5	0.84	.08	
83.3	10.3	5.3	2.1	8.4	38	2.69	0.27	
79.8	10.3	4.7	5.4	8.4	36.5	3.02	.30	
77.4	11.4	5.6	6.5	8.4	38	3.06	.30	
74.3	10.5	4.7	11.0	8.4	38.5	5.48	.54	

^{*}Total number of revolutions = 100 000; speed = 525 r.p.m.; bearing 3% in. diam. \times 3% in. long; load = 0.7 kg/mm²; lubrication, Galena coach oil fed by cotton waste.

Cu-Pb-Sn, Mechanical Properties of Bearing Bronzes (As Cast)

See also Fig. 11

	%	composit	ion			Index	UTS	El	RA	BHN†	UCS	$DL_{\mathbf{C}}$	cs		Lit.
Cu	Pb	Sn	Zn*	P	S*	No.	013	Et	ILA	BIIN	003	DDC	CS	•	146.
85	5	10	0.25	0.70‡	0.05	211	19.7	12.5		60		12.6§	70.3	26	(6,33)
80	10	10	0.50	0.70‡	0.05	212	17.6	8.		55		10.5	70.3	29	(6,33)
80	10	10	2.00	0.05*	0.05	213	15.5	8.		50		8.8	ĺ		(6)
79.7	9.5	10		Tr.			16.8	2.9		55.0					(21.1)
79.7	9.5	10		0.8		1326	21.1	6					1	1	(33)
77	15	8	0.50	0.25*	0.05	214	14.1	10.		48		8.4			(6)
77	15	8	0.2			553	16.9	11				14.8			(21.1,33)
73	20	7	0.50	0.05*	0.25	215	12.7	7.		45		7.7§			(6)
70	20	10			ca. 1	55					64.6	16.2			(3.1)
70	25	5	0.50	Nil	0.25	216	10.5	5.		40		7.0			(6)
67	24	9			ca. 1	55					56.8	21.8			(3.1)
64.75	30	5				456	12.2	6.5		41.3					(33)
64	30	5		Ni, 1	.0	34	15.0	10.1	8.20	40.0			45.3	44	(33)
62.5	30	7.5	l	S, ca.	1	55					53.7	13.7			(3.1)
60.67	32.97	4.60		Ni, 2	. 1	469	12.8	3.0 _a	0.35	52.0			39.5	30.4	(33)
58.5	35	6.5	1	S, ca.	1	55					45.0	10.5			(3.1)
55	40	5		S, ca.	1	55					31.9	9.8			(3.2)
50	50			·		1				21.8					(33)

^{*} Maximum in the alloys of (6), also: Fe, ≯0.25; Sb, ≯0.50; Al, 0.

[§] Load producing $\epsilon = 0.1 \%$ in specimen 1 in. cross-section by 1 in. long.

[†] Comparison with above results on basis of ($^{38.1}$) according to which wear of Cu-Sn is approximately proportional to Sn content, more exactly to % of δ constituent.

^{† 10} mm, 500 kg; r. also infra.

[‡] Minimum.

^{||} On 8 in.

Cu-Sn-Zn, Zinc Bronze See also Fig. 12

% (composi	tion	Treatment	UTS	YP	PL	El	RA	BHN	ScH	Lit.
Cu	Sn	Zn	Treatment	015	11	I L	Et	пл	BHN	Bell	1Mt.
90	6	4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57.3 53.1 38.4 32.7 52.3 39.3 34.0			9.5 17.3 51.8 51.3 22.0 51.3 51.0				(53)
90	9.5	0.5		22.5			01.0		1		
88	8	4	G _a at 1100-1140°	30.4		8.4	36 _a	28.0			(49)
88	8	4*	G	23-26	14-17.5		25-30		55-75		(18)

Continued on p. 565.

Cu-Sn-Zn, Zinc Bronze.—(Continued) See also Fig. 12

07	compos	tion	1		1					1	т——
			Treatment	UTS	YP	PL	El	RA	BHN	ScH	Lit.
Cu	Sn	Zn						<u> </u>	<u> </u>	<u> </u>	<u> </u>
88	10	2	G _s at 1200°	26.8	16.4	l	14.0		77	16	(40)
	i.		Ml ₂ , G _s at 1200°	26.8	14.0		17.2		79	14	
	1	1	G. at 1060°†	24.6			28.0		62		(39)
		1	Gm at 1060°	23.6			4.0		86		
	İ	1	G ₀	30	11-12.5					1	(46)
			G (U. S. N. Spec. G)	24.7	13.7	7.4	22.5	23.1			(17)
	[G (U. S. N. Spec. Pc-2)		12.5	7.2	25.5	31.7		l	
			For effect of heat treatme	nt on th	is alloy v.	infra	•	•	•	•	•
87	8	5	G _a at 1200°	26.5	13.1		18.7		80	18	(41)
			Ml ₂ , G _e at 1200°	24.4	13.1		15.6		83	19	` `
86	9	5	G ₀	16-24			2.5-8		55-75		(20, 21)
			G _m	16-22			2.5-8		75–90		<u> </u> `
86	13	1*	G	26	14-17.5		4-8	İ	85-120		(18)
85	5	10	G _s at 1200°	25.2	12.3		25.0	I	69	15	(41)
			Ml ₂ , G _s at 1200°	24.4	12.1		23.4		69	15	

* Contains trace of P. † In dry sand.

Effect of Casting Temperature and Heat Treatment of Cu, 88; Sn, 10; Zn, 2

"Admiralty bronze," "U. S. Government bronze Spec. G;"*
v. also Fig. 12

	v. a	tso rig.	12			
Treatment		UTS	El _a	RA	BHN	Lit.
Cast in dry sand at:	1050° 1120° 1220° 1255°	29.7 30.9 28.1 28.0	20.5 20.5 17.0 15.5	13.5 14.0 16.2 13.0		(29)
Chill cast at:	1120° 1220° 1255°	34.7 34.9 23.9	5.5 6 0 15.0	4.0 7.0 12.1		(29)

	100	1200		00 7—.	لخمنا	
Treatmen	nt	UTS	El.	RA	BHN	Lit.
Ga (dry sand) † at	ca. 1060	° 24.6	28.0	l .	62	(39)
Same heated slowly	(500°) [12.9	12.0	İ	77	
to	600° ()	10.2	7.5	İ	65	
ì	700° \ Qw {	7.7	3.0	ļ	61	
	(800°)	14.2	5.5		74	
Ga to size		. 30.2	11-12.5			(46)
	(495°)	31.2	9.4			-
	540°	31.7	15.6			
Same heated 30 min	595° Qw	33.7	20-22		1 1	
at:	000-	13-16.6	4.7-11			
	705°	13-17.5	8-11			
	[760°]	11.7	6.5-7.5			
1	(495°) (26.1	9.4			(46)
Gs, heated 30 min	540°	31.3	18.8			
at:	595° Qo	33.5	28.0			
	(650°) (26.7	28.0			
	(495°) (29.3	9.4			(46)
Gs, heated 30 min	5400	33.7	26.5		1 1	` '
at:	595° C	35.8	53.0		1	
	(650°)	30-35.5	25-50			

EFFECT OF CASTING TEMPERATURE AND HEAT TREATMENT OF Cu. 88; Sn. 10: Zn. 2.—(Continued)

Treatment		UTS	El _a	RA	BHN	Lit.
G ₀ †		27.1	24.0		63	(39)
	∫ 500°	23.8	26.5		65	
Same annealed 30 min at:	∫ 600°	25.7	28.5		61	
Same annealed 30 mm at.g	700°	28.4	37.5		60	
	800° (24.4	31.0		60	
	495°	26-29	12.5-15.5			(46)
	540°	32.0	18.8			
Sand cast, annealed 30 min	595°	31.0	37.5-81			
at: (C _f > 24 h)	650°	29.8	28.0		1 1	
	705°	32.5-35	37.5-50			
	760°	29.5-31	32.9			
Chill cast		23.6	4.0		86	(29)
	500°	19.4	7.5		80	
Same annealed 30 min at:	600°	30.9	25.0		75	
same annealed so min at:	700°	31.5	30.0		74	
	800°	27.1	22.5		70	
Chill cast		25.2	6	7		(39)
	∫ 500°	24	7.5	16		
Same annealed 30 min at:	600°	27	19	19		
same annealed 30 min at:	700°	28-35	26	22		
	800°	19	17	18		

^{*} For effect of other casting conditions, v. (4).

Cu-Sn-Zn-As, Effect of Adding As to Admiralty Gun Metal (17)

	% co	mpos	ition			t _e , °C*	Trt†	UTS	YPI	El.
Cu	Sn	Zn	As	Pb	Fe	Ze, 'C'	Irti	013	IF	Eta 3
88.14	9.97	1.67	0.04	0.08	0.07	1220	G.	27.3	15.4	16.7
	l					1250	Gm	22.8	18.7	4.5
88.20	10.28	1.34	.04	.08	.05	1240	Ml ₂ G	23.8	15.8	11.0
			j .		1	1280	Ml ₂ G _m	23.0	16.5	4.3
87.74	10.30	1.39	.42	.08	.05	1220	G.	26.3	15.0	9.0
	ŀ					1250	Gm	23.8	18.3	4.5
87.98	10.35	1.08	.42	.08	.08	1250	Ml:G.	23.9	15.1	11.0
	1					1280	MlzGm	23.2	17.0	3.4
88.20	9.89	0.58	1.01	.12	.12	1220	G ₆	23.5	15.5	7.8
						1240	Gm	23.9	18.7	5.0
88.35	9.86	0.49	1.01	.12	.12	1240	Ml ₂ G _a	24.2	15.5	10.1
						1280	Ml ₂ G _m	23.6	17.6	3.8

^{*} t_c = casting temperature.

Cu-Sn-Zn-Pb, Effect of Adding Lead to Zinc Bronzes (49)

- %	com	posi	tion	t _e , °C*	Trt	UTS	PL	El†	RA
Cu	Sn	Zn	Pb	ι _e , Ο	110	013	1 1	Bei	I AA
88	10.0	2	0	1100-1140	G _e	30.3	9.2	29.7	24.3
88	8.0	4	0	1100-1140	G.	30.4	8.4	36.0	28.0
90	6.5	3	0.5	1090-1125	G _•	28.6	9.6	37.6	34.1
				1170-1200	G_{\bullet}	26.4	9.1	28.1	29.7
				1090-1200	A‡	25.1	9.3	24.9	23.2
90	6.5	2	1.5	1080-1136	G _•	28.6	8.6	35.3	31.8
				1170	G_{\bullet}	25.2	7.3	25.5	32.5
				1080-1170	A‡_	29.0	9.6	37.2	33.6
90	6.5	1	2.5	1100-1140	G _o	27.8	9.3	27.2	27.7
				1150-1200	G_{\bullet}	23.6	8.7	18.6	19.7
				1100-1200	A‡_	24.4	9.8	20.1	23.5
90	5.5	4	0.5	1060-1120	G _o	26.6	8.7	29.3	30.4
				1160-1180	G_{\bullet}	26.5	8.1	31.6	32.4
				1060-1180	A‡	26.1	9.3	24.2	27.3
90	5.5	3	1.5	1060-1140	G _s	25.4	7.5	31.4	28.4
				1160-1180	G_{\bullet}	21.7	6.8	22.8	18.6
				1060-1180	A ‡	25.7	8.4	28.5	26.7
90	5.5	2	2.5	1100-1120	G_{\bullet}	25.2	7.6	23.9	22.6
				1160-1180	G_{\bullet}	23.7	7.0	23.3	23.4
				1240-1260	G_{\bullet}	20.9	6.7	15.5	16.6
	!			1100-1260	A‡	23.5	7.3	22.2	22.8
90	4.5	5	0.5	1100-1140	G _e	24.4	6.4	29.4	25.3
				1150-1180	G_{\bullet}	23.0	6.5	27.4	24.4
				1100-1180	A‡	22.6	6.7	28.8	21.9
90	4.5	4	1.5	1100-1140	G _e	23.6	6.3	26.5	22.9
				1180	G_{\bullet}	20.2	5.8	18.3	18.8
				1100-1180	A‡	22.3	7.2	24.2	20.6
**		. eina	tompo	******					

^{*} to = casting temperature.

Cu-Sn-Zn-Pb-As, Effect of Adding Pb to Arsenical Admiralty Gun Metal (41)

_		% cc	ompositio	n.*		L₀, °C†	Trt‡	UTS	YP §	El.	$BHN\P$	ScH
Cu	Sn	Zn	As	Pb	Fe	40, CI	1104	013	118	Dia	BH.V	Sen
87.72	9.97	1.54	0.48	0.17	0.08	1210	G	23.3	16.4	11.5	74	8.5
						1210	G _m	26.9	16.7	5.0	91.0	9.0
88.23	10.04	0.98	.47	.18	.05	1220	Ml ₂ G ₆	26.8	13.7	15.0	74	8.5
						1220	Ml ₂ G _m	24.7	17.5	5.0	92.0	9.0
87.30	10.05	1.16	. 50	.86	.07	1220	G	24.7	15.2	12.5	70	7.0
						1220	G _m	24.7	18.0	4.5	87.6	8.0
87.84	10.00	0.72	. 47	.91	.04	1210	Ml ₂ G _•	27 .6	15.9	16.5	71	7.5
				į		1210	Ml ₂ G _m	25.0	16.8	5.5	91.0	8.0
86.58	10.04	1.33	.48	1.46	.06	1220	G	25.0	15.4	15.0	66	6.0
				: [i	1220	Gm	22 . 5	16.0	3.5	82.6	7.0
87.39	9.95	0.62	.48	1.48	. 0.5	1210	Ml ₂ G _a	27 .6	14.6	19.5	69	7.0
					1	1210	Ml ₂ G _m	21.9	15.4	3.5	85.0	7.0
86.23	10.12	1.42	.47	1.68	.06	1200	G	24.9	14.8	10.5	69	7.0
				t t		1200	Gm	22.5	17.2	2.5	89.0	7.5
86.27	10.17	1.30	. 49	1.67	.06	1230	Ml ₂ G _a	25.5	12.9	13.5	69	8.0
						1230	Ml ₂ G _m	23.3	15.1	3.0	89.0	8.0

^{*} All alloys contain traces of Sb and Ni.

[†] Specimens 56 in. diam. × 2 in. gage length, machined before heat treatment.

Gaged portion: 0.5 in. diam.

[§] Gradually heated to t,°C, cooled at moderate rate to 400°C, then cooled slowly.

[†] Bars cast vertically 1 in. diam. × 15 in. long; sand cast ones in green sand. All molds preheated.
‡ By dividers.

[§] Test piece diameter = 0.798 in. All values in this table are means from two test pieces.

[†] Shoulder type test piece 0.505 in. diam. \times 2 in. gage length.

[‡] W 600°/30 $C_1 > 12 h$.

 $[\]dagger t_c = casting temperature.$

[‡] Gs in green sand, all molds preheated. Castings 1 in. diam.

[§] By dividers (extension = 0.01 in.).

Test piece diameter, 0.798 in.

 $[\]P$ 10 mm, 500 kg.

Test Temperature, °C 100 1200

CU-SN-ZN-SB, Effect of Adding SB to Admiralty Gun Metal (40)

		% ∞	mpositi	on*			الم, °C†	Trtİ	UTS	YP§	וויי	BHN¶	ScH**
Cu	Sn	Zn	Sb	Ni	Fe	Pb	<i>L</i> c, C1	1rt	015	11.8	$El_{\bullet} $	DIM	SCH
87.85	10.34	1.46	0.08	0.11	0.02	0.10	1240	G ₀	26.9	16.4	12.8	71	15.4
							1280	G _m	23.8	16.1	2.4	81	14.8
89.44	9.55	0.55	.09	.11	.08	.11	1225	Ml_2G_6	26.0	14.6	17.0	77	14.7
	ļ						1250	Ml ₂ G _m	24.7	15.9	4.5	76	14.9
88.38	9.74	1.08	. 50	.11	.02	.11	1220	G	23.9	17.3	9.2	73	15.6
							1250	G _m	23.8	16.7	2.0	82	15.5
88.38	9.73	0.93	.49	.12	.09	.07	1215	Ml ₂ G _a	26.0	15.1	13.8	79	15.8
					1		1240	Ml ₂ G _m	23.7	16.5	3.4	80	15.8
87.96	9.43	1.31	1.00	.10	.02	.08	1240	G _•	23.8	16.9	6.8	82	16.5
						ļ	1270	G _m	21.5	17.8	2.3	86	15.8
88.10	9.43	1.17	0.96	.10	.07	.10	1220	Ml ₂ G ₀	21.9	14.7	6.9	81	16.5
							1245	Ml ₂ G _m	21.4	19.5	2.0	85	16.2
87.88	8.74	1.50	1.53	.09	.03	.07	1270	G	18.9	14.1	3.6	79	16.7
		!					1310	G _m	21.1	18.2	1.3	95	16.6
88.39	8.80	0.89	1.58	. 10	.08	.07	1230	Ml ₂ G ₀	18.3	14.9	3.8	81	16.6
				İ			1270	Ml ₂ G _m	20.3	17.0	2.0	93	17.1

^{*} All alloys contain trace of As.

CU-SN-ZN-SB, Effect of Adding SB to 86:9:5 Red Bronze (21)

	% comp	osition*		Treatment	Part of	UTS	El	DIINA	77+	Number
Cu	Sn	Zn	Sb	reatment	casting	015	Ei	BHN†	Tw‡	of blows
86	9	5	0		Core	15.5	2.5	58	470	
					Shell	18.5	4.0			
86	9	5	0.1		Core	17.0	3.0	61	505	
	}		1		Shell	17.4	3.0		l	
85.25	* 8.50*	5.62*	0.4*		Core	18.5	3.0	63	390	
	ins 0.2			Cast in green sand, 30 mm diam. × 160	Shell	16.8	2.0			
86	9	5	0.5	mm long	Core	19.0	2.0	71	235	
			ı		Shell	21.0	3.0			
86	9	5	1.0		Core	13.0	2.0	70	125	
					Shell	13.0	2.0			
86	9	5	3.0		Core	17.5	1.0	97	95	
)	Shell	13 0	1.0			
86	9	5	0			24.0	7.5	65	500	230
86	9	5	0.1			25.5	7.0	73	450	325
Bal.	11.6*	4.0*	0.2*	Chill cast, then recast in green sand, 18	1	23.3	4.5	78	540	230
Bal.	11.3*	4.5*	0.43*	mm diam. × 180 mm long ¶	Core only	24.3	7.0	74	465	470
Bal.	11.0*	4.7*	0.8*	min diam. × 100 mm long	1			80	280	42
86	9	5	1.0			25.3	5.5	73	340	35
86	9	5	3.0)		16.5	<2	77		10
86	9	5	0			20.5	4.0	81	330	3227++
86	9	5	0.1			24.5	4.5	77	350	2328††
86	9	5	0.3	Chill sout 18 mm diam × 180 mm lang##	Core only	20.5	2-3	75	550	830††
86	9	5	0.5	Chill cast, 18 mm diam. × 180 mm long**	Core only)	1.5	89		50††
86	9	5	1.0			22.3	2.5	84	360	60††
86	9	5	3.0	J		13.3		94	. 90	

^{*} By analysis, other values nominal.

[†] to = casting temperature.

[‡] Bars cast 1 in. diam. × 15 in., sand cast ones being in green sand. Molds were vertical and preheated.

[§] By dividers.

Test piece diameter = 0.798 in. Each value mean from 2 test pieces.

^{¶ 10} mm, 500 kg; mean of 6 determinations.

^{**} Each value mean of 14 determinations.

^{† 10} mm, 500 kg. ‡ Twist in degrees.

[§] Energy of blow = 12.5 kg-cm.

 $[\]parallel$ Tensile specimens 8 mm diam., torsion specimens 7 mm diam. imes 140 mm long.

[¶] Tensile specimens 15 mm diam., torsion specimens 15 mm diam. × 100 mm long. ** Tensile specimens 16 mm diam., torsion specimens 16 mm diam. × 120 mm long.

^{††} Bad break.

COPPER AND BRONZES

Cu-Sn-Zn-PB, Effect of Adding PB to 86:9:5 Red Bronze (20). See also Figs. 13 and 14

	% comp			Treatment	Part of	UTS	El	BHN†	Twt	No. of
Cu	Sn	Zn	Pb	· · ·	casting				1	blows§
84.40*	8.63*	6.50*	0.17*		Core	. 18.0	4.0	57.8	110**	
				1	Shell	19.6	6.0	62.7		
84.14	8.91	4.95	1.0	1	Core	13.8	2.7	60.5	220	
				}	Shell	17.0	4.0	63.0		
82.9*	8.65*	6.76*	1.71*		Core	15.2	1.5	62.5	270	
					Shell	18.0	3.0	61.5	1	
82.13*	8.17*	6.60*	2.84*	Cost in seed 20 mm diam × 160 mm langly	Core	17.0	5.2	63.0	285	
				Cast in sand, 30 mm diam. \times 160 mm long \parallel	Shell	19.2	6.5	65.5		
81.53*	8.54*	6.42*	3.52*		Core	14.2	2.2	59.0	235	
				1	Shell	18.0	5.0	60.5		
81.70	8.55	4.75	5.0	·	Core	15.0	3.0	65.0	320	
020					Shell	19.5	5.2	62.0		
79.5*	8.18*	6.35*	5.89*		Core	14.3	2.0	62.5	185	
	0.10	0.00	0.00		Shell	16.8	3.3	61.5		
86	9	5	0			22.0	7.8	77	200	3070
84.28	8.82	4.90	2			20.9	2.5	76	250	2380
82.56	8.64	4.80	4	¶	Core only	14.9**	2.5	73	295	
80.84	8.46	4.70	6			13.5**	0.7	74	390	
	·	((0.28*			23.0	<3	82	260	360
o: :1	701	1:	2.22*	CI 11 4 10 11 14 100 1 1 14		21.5	<3	89	325	122**
Similar,	Pb =	···· { :	3.44*	Chill cast, 18 mm diam. \times 160 mm long††	Core only	14.3**	<3	81	285	160**
		- (6	3.23*		ł	[16.4**	<3	83	340	34**
	-	(0	0.49*			21.4	<3	83		
0::1	DL		2.19*	Domestad and abill and an abound	C	20.0	<3	80		
Similar,	Po =	···· };	3 . 57* (Remelted and chill cast as above †	Core only	22.0	<3	84		
		- (0	3.23*		1	19.8	<3	82		
			(0)			23.1	<3	80		322
Similar,	Dh -] 2 (Melted third time and chill cast as above † †	. Core only	21.4	<3	80		78**
Simuar,	ru =	• • • • • •	`` \ 4 [wieten omra ome and com cast as above []	. Core only	15.0**	<3	82		315
			[6]			17.1**	<3	81		260
			(0)			16.6	<3	87	295	53**
Similar	Ph -		$\left. \begin{array}{c} 2 \\ 4 \end{array} \right\}$	Chill cast, 18 mm diam. × 160 mm longtt	. Core only	22.8	<3	89	325	173
Similar	, ru =	• • • • • •	, ,	Cind case, 18 mm dism. A 100 mm longit	. Core only	21.8	<3	82	285	103
			(6)			20.0	<3	84	320	260

^{*} By analysis, other values nominal.

Cu-Sn-Zn-Pb-Sb, Effect of Adding Sb to Leaded 86:9:5 Red Bronze (21)

	% co	mposi	tion*			Part of	TIMO	721	DILL	m +	Number
Cu	Sn	Zn	Pb	Sb	Treatment	casting	UTS	El	$BHN\dagger$	Tw‡	of blows§
86	9	5	2.0	0		Core Shell	20.7 21.0	13 7.5	80	315	
86	9	5	2.0	0.1		Core Shell	21.5 23.0	7 6.5	62	390	
84.55*	8.25*	4.74*	2.05	0.4*		Core Shell	21.5 22.5	13 10.5	}70	395	
86	9	5	2.0	0.5	mm long	Core Shell	17.0 19.3	2.5	65	355	
86	9	5	2.0	1.0		Core Shell	17.5 19.0	2.5	}70	270	
82.20*	8.00*	4.58*	2.08	2.90*		Core Shell	16.1 16.0	3.0 1.5	80	150	

^{† 10} mm, 500 kg.

Twist in degrees.

[§] Energy of blow = 12.5 kg-cm.

 $[\]parallel$ Tensile specimens 8 mm diam., torsion specimens 8 $~\times~5~\times~40~\mathrm{mm}.$

[¶] Tensile specimens 16 mm diam., torsion specimens 8 \times 5 \times 40 mm. ¶ Tensile specimens 16 mm diam., torsion specimens 10 mm diam. \times 80 mm long. **Bad break.

^{††} Tensile specimens 16 mm diam., torsion specimens 16 mm diam. \times 120 mm long.

^{‡‡} Tensile specimens 16 mm diam., torsion specimens 16 mm diam. × 20 mm long.

CU-SN-ZN-PB-SB, EFFECT OF ADDING SB TO LEADED 86:9:5 RED BRONZE (21).—(Continued)

Cu	% co Sn	mposi Zn	tion*	Sb	Treatment	Part of casting	UTS	El	BHN†	Tw‡	Number of blows§
Bal.	8.7	5	2.1* 2.1* 2.0	0 0.2* 0.4* 0.75* 3.0	Cast in dry sand, 18 mm diam. × 160 mm long ¶	Core only	16.2 19.0 18.7 18.7 13.5	4.0 4.0 3.0 2.0 1.0	62.5 67 59 72.5 72.5	550 620 470 515 60	35-45 75 145-220 22 1
86	9	5 {	5.5* 5.5* 5.5*	0 0.2* 0.42* 0.74* 3.0	Cast in dry sand, 18 mm diam. × 160 mm long**	Core only	$ \begin{cases} 21.7 \\ 22.2 \\ 18.4 \\ 18.4 \\ 17.6 \end{cases} $	7.6 4.7 3.5 1.8	65 64 68.5 74 70	570 570 450 340 195	383 584 163–455 143 54

^{*} By analysis, other values nominal.

[§] Energy of blow = 12.5 kg-cm.

% cor	nposi	tion	Description	on and	IS,	Machine	Test	Lit.
Cu	Sn	Zn	treatme	ent	kg-m	Machine	piece*	L 311.
99.9			Tested at	$ \begin{array}{c} 20^{\circ} \\ -20^{\circ} \\ -80^{\circ} \\ -182^{\circ} \end{array} $	18.7† 20.6†	Guillery	A	(24
99.8			Fire box plater	3				
			Longitudinal. Transverse		$\left. egin{array}{c} 10.4-19 \ 5.3-6.6 \end{array} ight. ight.$	Fremont	В	(*)
84	16		A 650° or 650°	Q	†			
			Sand cast at	1140	3.5	Izod	С	
			Cast, test- { - ed at { 4	–80 to 375° 170°	$\left. egin{array}{ll} 0.21 & \ 0.35 & \ \end{array} ight\}$	Charpy	D	
94.5	4	1.5	Annealed, tested at	\[\begin{array}{c} -80° \\ 350-850° \end{array}	$\begin{bmatrix} 0.7 \\ 0.1 \end{bmatrix}$	Charpy	D	
88	10	2	Casting					
			temperature	Diameter		1		
			1100-1200°	$\begin{cases} 0.5 \text{ in.} \\ 1.0 \text{ in.} \end{cases}$	0.7-0.8 1.4-1.5	i		
			1100°	2.0 in.	0.4-0.8	Isod	C	
			1100°	2.0 in.	1.9-2.5			
	i	1	1200°	2.0 in.	1.4-1.7		1 1	

^{*}A = Mesnager specimen; B = bars 10 mm² cross-section, with saw cut, 3 mm deep; C = standard B. E. S. A. specimen; D = small Charpy test piece. † Unbroken.

SPECIFIC GRAVITY*

	% com	position	ı	T-4	d420	Lit.
Cu	Sn	Pb	Zn	Trt	a4	Lit.
100	1	1		D, A 500°	8.89	(13)
99.6				G	8.85	(14)
			l	R _d , 40 %	8.89	
				A 500°	8.90	
90	10			G	8.78	(14)
80	20			G	8.81	(14)
70	30			G	8.84	(14)
95	4.9	Р,	0.1	R	8.6	(14)
89	11	Р,	0.3	G	8.5	(56)
80	10	10†		G	9.1	(14)
88	10		2	G	8.4-8.8	(29)
				G _m	8.6	
88	8		4	G	8.5	(14)
_80	10		10	G	8.85	(39.1)

^{*} v. also Fig. 2 and 16 and pp. 456, 554.

^{||} Tensile specimens 8 mm diam., torsion specimens 7 mm diam. X 40 mm long.

^{† 10} mm, 500 kg.

Tensile specimens 15 mm diam., torsion specimens 16 mm diam. X 160 mm long.

[‡] Twist in degrees.

^{**} Tensile specimens 16 mm diam., torsion specimens 16 mm diam. \times 120 mm long.

[†] Phosphor bronze.

ELASTIC PROPERTIES

See also Fig. 15

	% compo	sition		Description and treatment	10 ⁻³ E	10 ⁻² G	10-17		T :4
Cu	Sn	Pb	Zn	Description and treatment	10 -E	10 %	10-*K	λ	Lit.
100 No	100 Nominal*			Electrolytic Cu	12.1-12.3				(13)
				Cast)	(57)
				Drawn	12.65	3.96		0.60	(44)
				Annealed	13.19	13.2]	(44)
				Hard drawn	9.8			,	(7)
						4.24	12.0	0.33	(30, 57
93	7			Cast	9.8	3.7			(30, 50
88	12			Cast	10.6	4.06			(57)
89	4	Ni, 4	3	·	10.5				(12)
88	5	Ni, 5	2		12.2				(12)
88	10	2		G G	8.9				(17)
				Gov. bronze specification $\left\{ \begin{array}{l} G \\ Pc2 \end{array} \right\}$	8.8				' '
86.5	10.2	0.1	3.3	`	9.1				(31)
85.4	12.6	0.6	1.0†		10.4				(31)

For Cu: $E = E_0 (1 - 3.59 \times 10^{-4} t)$ at ordinary temperatures (51). $G = G_0 (1 + 2.3 \times 10^{-4} t)$ from 0 to 15° (13). $E_{\phi^0 abs} / E_{\phi^0 C} = 1.37$ (32).

[†] Phosphor bronze.

MOLD SHRINKAGE; v. also p. 475

	% comp	osition		T-4	$-100 \frac{\Delta l}{l}$	Lit.	
Cu	Sn	Pb	Zn	Trt	-100l	LAU.	
94.7	5.1			G	1.66	(58)	
92	8*			G	1.54	(37)	
89.7	10.2			G	1.44	(58)	
89	11†			G	1.04	(56)	
80.7	19.1			G	1.52	(58)	
85-70	10-5	5.25		G	2.08	(6)	
88.8	9.7		1.6	G	1.47	(58)	
88	10		2	G	1.50	(37)	
				G	1.08	(39.1)	
80	10		10	G	1.34	(37)	
				G	1.03	(39.1)	
86.7	9.8	1.4	2	G	1.47	(58)	

^{*} Phosphor bronse.

THERMAL CONDUCTIVITY

% con	nposi	tion	Treatment	t, °C	k
Cu	Sn	As	restment	ι, υ	
100			Annealed (electrolytic Cu)	∫ 96	3.77
100		Annealed (electrolytic Cu)		625	3.52
99.6		0.39	Annealed	∫ 90	2.14
38.0		0.55	Amiealeu	₹420	2.22
88	12		A	∫ 94.5	0.539
		Zn	As cast (phosphor bronze)	\ 431	0.728
88	10	2	As cast (Gov. bronze)	∫ 83.5	0.573
	10		As cast (Gov. biolize)	1418.5	0.720
86	9	5	As cast	∫ 88	0.715
		J	Als Cast	118.5	0.808

LITERATURE

(For a key to the periodicals see end of volume)

- Addicks, 80, 36: 18; 05. (2) Alkins, 47, 23: 381; 20. (3) Alkins and Cartwright, 47, 26: 203; 21. (2-1) Allan, Metal Ind. (N. Y.), 8: 67, 10. (3-2) Allan, Metal Ind. (N. Y.), 9: 295; 11. (4) American Society for Testing Materials, Spec. B1-15. (4) American Society for Testing Materials, Spec. B2-15. (5) American Society for Testing Materials, Spec. B31-21. (7) American Steel and Wire Co., Chicago, Ill., O. (4) Arnott, 83, 17 I: 209; 22. (4) Baucke, 95, 3: 195; 12.
- Bauer and Vollenbruck, 95, 16: 426; 24. (11) Bregowsky and Spring, Valve World, 10: 3; 13. (12) Bureau of Standards, TN 0805 f 18; 18. (12) Bureau of Standards, 365, No. 73; 22. (14) Bureau of Standards, 365, No. 101; 24. (16) Clamer, 40, 9: 241; 15. (17) Comstock, 37, 23: 1113; 20. (18) Corse, Research Service, Inc. Washington, D. C., O. (19) Corse and Comstock, Trans. Soc. Automotive Eng., 11 II: 271; 16.
- (20) Czochralski, 95, 13: 171; 21. (21) Czochralski, 95, 13: 276; 21. (21.1) Dudley, 143, 123: 81, 161; 92. (22) Giolliti and Marantonio, 36, 40 I: 51; 10. (22) Guillet, 74, 21: 295; 24. (24) Guillet and Cournot, 74, 18: 215; 22. (24) Heape, 47, 29: 467; 23. (27) Isihara, 159, 11: 207; 22. (22) Ito, 159, 13: 137; 23. (23) Karr and Rawdon, 52, No. 59; 16.
 (30) Koch and Dannecker, 8, 47: 197; 15. (31) Lea, 153, 209: 394; 20. (32)
- (30) Koch and Dannecker, 8, 47: 197; 15. (31) Lea, 153, 209: 394; 20. (32) Mallock, 5, 95: 429; 19. (33) Marks, B77. (33-1) Martens, 312, 8: 236; 90. (34) Matsuda, 159, 13: 401; 25. (35) Matsuda and Shiba, 159, 13: 413; 25. (36) Matthewson and Thalheimer, 80, 55: 446; 16. (37) von Miller, 192, 9: 63; 12. (38) Münker, 192, 9: 185; 12. (38-1) Portevin and Nusbaumer, 423, 21: 517; 12. (39) Primrose and Primrose, 47, 9: 158; 13. (39-1) Patch, 66, 17 I: 182; 17.
- (40) Rolfe, 47, 24: 233; 20.
 (41) Rolfe, 47, 26: 85; 21.
 (42) Rolfe, 440, 20: 413, 437; 22.
 (43) Rudeloff, 312, 16: 117; 98.
 (44) Searle, 3, 48: 193; 00.
 (46) Shepherd and Upton, 50, 9: 441; 05.
 (47) Society of Automotive Engineers, Spec. 64; 22.
 (48) Society of Automotive Engineers, Spec. 68; 22.
 (48) Society of Automotive Engineers, Spec. 68; 22.
 (48) Society of Automotive Engineers, Spec. 68, 69; 22.
 (49) Staley and Karr, 80, 64: 420; 19.
- (80) Thurston, Materials of Engineering, Part III, p. 342. New York, Wiley, 1907-10.
 (81) Wassmuth, 75, 118: 223; 06.
 (82) Webbert, 440, 11: 189; 17.
 (82) Weidig, Verh. d. Vereins zur Beförderung des Gewerbsteisses.
 90: 455, 525; 11.
 (84) Weintraub, 53, 8: 629; 10.
 (85) Weintraub, 40, 6: 138; 12.
 (88) Wilson, Foundry, 48: 915; 20.
 (87) Winkelmann, B76.
 (88) Wast, 192, 6: 769; 09.

PROPERTIES OF ALUMINUM BRONZES

W. M. Corse

Contents	Matières	Inhaltsverzeichnis	Indice
Cu-Al	Cu-Al	Cu-Al	Cu-Al Page
Average properties. Tensile properties (Al $< 14\%$).	Propriétés moyennes. Résistance à la traction (Al <14%).	Durchschnittseigenschaften. Festigkeitseigenschaften (Al < 14%).	Proprietà medie
Tensile properties at high temperatures.	Résistance à la traction à hautes températures.	Festigkeitseigenschaften bei hohen Temperaturen.	Proprietà alla trazione a temperature elevate 575
Brinell hardness at high temperatures.	Dureté Brinell à hautes tem- pératures.	Brinell-Härte bei hohen Temperaturen.	Durezza Brinell a temperature elevate 576
Brinell hardness.	Dureté Brinell.	Brinell-Härte.	Durezza Brinell 576
Torsional strength.	Résistance à la torsion.	Torsionsfestigkeit.	Resistenza alla torsione 576
Dynamic strength.	Résistance dynamique.	Festigkeit bei dynamischer Beanspruchung.	Resistenza dinamica 576
Specific gravity (Al < 14 %).	Poids spécifique (Al < 14%).	Spezifisches Gewicht (Al <14%).	Peso specifico (Al < 14%) 576
Specific gravity and compressibility.	Poids spécifique et compres- sibilité.	Spezifisches Gewicht und Kompressibilität.	Peso specifico e comprimibilità 576
Specific gravity (Al, 0-100%).	Poids spécifique (Al, 0-100%).	Spezifisches Gewicht (Al, 0-100%).	Peso specifico (Al, 0-100%) 576
Effect of cold rolling and annealing on Cu, 93; Al, 7.	Effet du laminage à froid et du recuit sur Cu, 93; A, 7.	Einfluss des Kaltwalzens und Ausglühens auf Cu, 93; Al, 7.	Effetto della laminazione a freddo e della ricottura sulla lega Cu, 93; Al, 7. 576
Effect of heat treatment on rolled Cu, 90; Al, 10.	Effet du traitement thermique sur Cu, 90; Al, 10 laminé.	Einfluss der Wärmebehandlung auf gewalztes Cu, 90; Al, 10.	Effetto del trattamento termico sui prodotti laminati di lega Cu, 90;
Effect of heat treatment on cast Cu, 90; Al, 10.	Effet du traitement thermique sur Cu, 90; Al, 10 coulé.	Einfluss der Wärmebehandlung auf gegossenes Cu, 90; Al, 10.	Effetto del trattamento termico su getti di lega Cu, 90; Al, 10 577

[†] Stone's English gear bronse, contains 0.3% P.

INDICE.—(Continuazione)

Effetto del trattamento

termico sulla durezza di

getti di lega Cu, 90; Al,

termico sulla durezza e

sulla resistenza alla

piegatura di getti di lega

10 577 Effetto del trattamento

Cu. 90; Al. 10..... 578

Cu-Al-Fe

Proprietà medie..... 578

durezza..... 578

getto 578

modulo di Young..... 578

vate..... 579

Proprietà alla trazione.... 579

elevate 580

torsione 580

Resistenza dinamica..... 580

Proprietà elastiche..... 580

Peso specifico...... 580

lamiere laminate a freddo 580

barre tirate a freddo.... 581

89; Al, 10; Mn, 1..... 581

peso specifico..... 581

sulla

Cu-Al-Ni

Effetto della ricottura su

Effetto della ricottura su

Effetto del trattamento

Proprietà meccaniche e

Durezza a temperature elevate................................ 583

Effetto della velocità di

termico sulla lega Cu.

Proprietà alla trazione e

Effetto delle dimensioni del

Proprietà alla trazione e

Durezza a temperature ele-

Proprietà a temperature

Durezza e resistenza alla

CONTENTS.—(Continued)

Effect of heat treatment on hardness of cast Cu, 90; Al, 10.

Effect of heat treatment on hardness and resistance to bending of cast Cu, 90; Al, 10.

Cu-Al-Fe

Average properties.
Tensile properties and hardness.

Effect of size of casting.

Tensile properties and Young's modulus.

Hardness at high temperatures.

Effect of heat treatment.

Cu-Al-Mn

Tensile properties.

Tensile properties at high temperatures.

Hardness and torsional

strength.

Dynamic strength.

Elastic properties. Specific gravity.

Effect of annealing cold rolled sheet.

Effect of annealing cold drawn bars.

Effect of heat treatment on Cu, 89; Al, 10; Mn, 1.

Cu-Al-Ni

Mechanical properties and specific gravity.

Hardness at high temperatures.

Effect of rate of cooling on hardness.

Cu-Al-P

Mechanical properties.

Cu-Al-Si

Hardness at high temperatures.

MATIÈRES,—(Suite)

Effet du traitement thermique sur la dureté de Cu, 90; Al, 10 coulé.

Effet du traitement thermique sur la dureté et la résistance à la flexion de Cu, 90; Al, 10 coulé.

Cu-Al-Fe

Propriétés moyennes. Résistance à la traction et dureté.

Effet de la dimension de la pièce moulée.

Résistance à la traction et module de Young.

Dureté à hautes températures.

Effet du traitement thermique.

Cu-Al-Mn

Résistance à la traction.
Résistance à la traction à hautes
températures.

Dureté et résistance à la torsion.

Résistance dynamique.

Propriétés élastiques. Poids spécifique.

Effet du recuit sur des feuilles laminées à froid.

Effet du recuit sur des barres étirées à froid.

Effet du traitement thermique sur Cu, 89; Al, 10; Mn, 1.

Cu-Al-Ni

Propriétés mécaniques et poids spécifique.

Dureté à hautes températures.

Effet de la vitesse de refroidissement sur la dureté.

Cu-Al-P

Propriétés mécaniques.

Cu-Al-Si

Dureté à hautes températures.

Cu-Al

Properties of Cu-Al, Al > 15%

The alloys of this series between 15 and 90% Al do not appear to be of any technical value. From 15 to 18% Al they are very hard and very brittle. From 20 to 65% Al they diminish in hardness, but are so brittle they can be powdered easily in a mortar, which makes them of some use in weighing out quantities to make up alloys. This excessive brittleness ceases at about 67% Al (3).

Inhaltsverzeichnis.— (Fortsetzung)

Einfluss der Wärmebehandlung auf die Härte von gegossenem Cu. 90: Al. 10

Einfluss der Wärmebehandlung auf die Härte und Widerstand gegen Biegung von gegossenem Cu, 90; Al, 10.

Cu-Al-Fe

Durchschnittseigenschaften. Festigkeitseigenschaften und Härte.

Einfluss der Ausmasse der Gusstücke.

Festigkeitseigenschaften und Young'scher Modulus. Härte bei hohen Temperaturen.

Einfluss der Wärmebehandlung.

Cu-Al-Mn

Festigkeitseigenschaften.
Festigkeitseigenschaften bei
hohen Temperaturen.
Härte und Drehfestigkeit.

Festigkeit bei dynamischer Beanspruchung.

Elastische Eigenschaften. Spezifisches Gewicht.

Einfluss des Ausglühens auf kalt gewalztes Blech.

Einfluss des Ausglühens auf kalt gezogene Stangen. Einfluss der Wärmebehandlung

auf Cu, 89; Al, 10; Mn, 1.

Cu-Al-Ni

Mechanische Eigenschaften und spezifisches Gewicht. Härte bei hoher Temperatur.

Einfluss des Kühlungsgrades auf die Härte.

Cu-Al-P

Mechanische Eigenschaften.

Cu-Al-Si

Härte bei hohen Temperaturen.

durezza..... 583

raffreddamento

Cu-Al-P
Proprietà meccaniche..... 583

Cu-Al-Si

Durezza a temperature elevate 583

Table 1.—Average Properties (13)

% Cu	% Al	Treatment	UTS	YP	El	RA	BHN	d420
95	5	R_d sheet	70 39		10 75			8.18
92	8	R _d sheet	91 42		4 60			7.80
90	10	G _s	46–53 88	14-21	20 5	21	90-100	$DL_{\rm C} = 13-14$
		Wk. rod	55		36			

Table 2.—Tensile Properties* (AL < 14%) (3).—(Continued)									
Treatment†	10 × UTS	10 × YP‡	El.§	RA					
Cu, 99.86; Al, 0.10; Si,		Fe, 0.00	0						
G	181	60	46.0						
G _s , W 800° C _s	179	66 46	40.0						
G _m	$\frac{168}{182}$	65	$\frac{40.0}{46.0}$						
G _m , W 800° C _s	174	77	44.0						
G _m , W 800° Q _w	178	63	47.5						
Rh 13 in. diam	228	109	65.5	90.7					
Same, W $\begin{cases} 800^{\circ} \mathrm{C_a} \dots \\ 900^{\circ} \mathrm{C_b} \end{cases}$	223	69	62.0	92.5					
(800° Q _w		69	65.0	91.8					
Cu, 98.95; Al, 1.06; Si)						
G. W 2002 C	211	47	52.0						
G _s , W 800° C _s	203	$\frac{50}{20}$	46.0						
G _m	186 203	82 71	53.0 57.0						
G _m , W 800° Q _w	199	'1	53.5						
R _h 1½ in. diam	247	106	59.0	90.9					
$R_h \stackrel{11}{16}$ in. diam	250	109	61.0	88.6					
Same, W $\begin{cases} 800^{\circ} \text{ C}_{\bullet} \dots \end{cases}$	240	69	67.0	91.9					
(800 Qw	240	68	63.5	90.8					
D _c 18 in. diam		273	42.0	88.8					
Cu, 97.88; Al, 2.10; Si,									
Ga, Ga, W 800° Ca	213 221	54 55	53.5						
G _a , W 800° Q _w	221	68	46.5 47.0						
G _m	216	71	54.5						
G _m , W 800° C _s	219	76	56.0						
G _m , W 800° Q _w	219	68	55.0						
Rh 1½ in. diam	271	101	61.0	90.0					
Rh 18 in. diam	275	136	56.5	89.7					
Same, W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	262 264	69 68	66.0 63.5	90.0 88.8					
Cu, 96.98; Al, 2.99; Si,		<u> </u>							
G	229	60	60.0						
G _s , W 800° C _s	233	58	60.5						
G _s , W 800° Q _w	233		58.5						
G	217	107	60.0						
G _m , W 800° C _s	230 235	69 74	73.0 53.0						
R _h 1½ in. diam	299	124	67.0	88.8					
R _b 13 in. diam	312	183	57.3	86.1					
(800° C _n	284	76	73.0	90.0					
Same, W 800° Q _w	285	87	69.0	88.8					
600° C _f	292	109	66.0	89.8					
900° C _f	311	91	82.5	83.6					
D ₀ 13 in. diam		331 F- 00	44.0	86.1					
Cu, 95.92; Al, 4.05; Si, G _s									
G _s , W 800° C _s	263 268	55 62	83.0 68.5						
G _a , W 800° Q _w	260	79	60.0						
G _m	269	77	82.0						
G _m , W 800° C _s	258	68	89.0						
G _m , W 800° Q _w	279	80	81.0						
R _h 1½ in. diam	346	115	71.0	81.8					
R _h 13 in. diam	375	178	67.0	83.3					
Same, W { 800° C _s	339 335	96	73.0 79.0	85.7 84.8					
(000 &	1 000	101	1 0 .U	U12.0					

Treatment†	10 X	10 × YPt	El.§	RA
Cu, 94.90; Al, 5.07; Si,	UTS	<u> </u>		
G		68	75.0	
G _a , W 800° C _a	296	57	65.5	
G _s , W 800° Q _w	293	79	66.5	ĺ
$\overline{G_m}$	285	112	60.5	
G _m , W 800° C _*	284	80	61.0	
G _m , W 800° Q _w	301	90	80.0	
R _b 1½ in. diam	387	107	79.0	77.0
R _h 13 in. diam	416	180	69.2	77.8
Same, W \ \begin{cases} 800° \cdot \	373 371	82 98	79.0 83.0	82.0 78.8
D _c 13/16 in. diam		375	- 50.0	10.0
Cu, 94.20; Al, 5.76; Si,			· 	
G _a	280	76	67.0	
Ga, W 800° Ca	306	60	65.0	•
G_a , W 800° Q_w	285	85	52.5	
G _m	296	95	61.0	
G _m , W 800° C _s	307	88	74.0	
G _m , W 800° Q _w	323	129	49.0	
R _h 13/16 in. diam	448 419	186 124	74.2	76.9 71.0
9000	393	109	84.5	75.6
Same, W 600° C _f	429	148	77.0	75.0
900° C _f	373	95	86.0	70.0
Cu, 93.23; Al, 6.73; Si,	0.026;	Fe, 0.0	16	
G	294	76		1
G, W 800° C	297 313	76 99	64.0	İ
G _s , W 800° Q _w	315	-99	69.0	
G _m	298	82	42.0	l
R _h 1½ in. diam.	412	118	82.0	75.4
P. 11 in diam	455	164	71.0	75.0
Same, W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	418	112	82.5	73.5
(000 &		117	83.0	72.0
Cu, 92.61; Al, 7.35; Si,				
G _a , W 800° C _a	336	104	71.0	
G _a , W 800° C _a	317 315	93 106	81.0 70.0	
G _m	340	100	84.0	
G _m , W 800° C _s	318	95	80.0	
G _m , W 800° Q _w	312	115	79.0	
R _h 1½ in. diam	432	147	80.0	75.3
R _h 13 in. diam	468	167	72.5	74.3
Same, W { 800° C₃	401	117	80.5	74.8
Same, W { 800° Q _w	402 376	126 112	82.0 92.0	74.8 72.0
D _c 13/16 in. diam		388	48.0	58.8
Cu, 91.85; Al, 8.12; Si,				•
G _a	393	121	58.0	
G _s , W 800° C _s	349	109	60.0	
G _s , W 800° Q _w	410	124	62.5	*
G _m	433	153	62.0	1
G _m , W 800° C _a	350	115	50.0	1
	******	132	61.04	
G _m , W 800° Q _w	393		- 2	3000
$\frac{G_m, \ W \ 800^{\circ} \ Q_w \dots \dots }{R_h \ 1_4^1 \ \text{in. diam.} \dots }.$	487	154	70.0	**
G _m , W 800° Q _w	487 524		70.8 12.4 10.4	

Table 2.—Tensile Properties* (AL < 14%) (3).—(Continued) | Table 2.—Tensile Properties* (AL < 14%) (3).—(Continued)

TABLE 2.— TENSILE PROPERTIES (F	11 \ 19		(000	in ueu)
Treatment†	10 × UTS	10 × YP‡	El.§	RA
Cu, 91.28; Al, 8.67; Si,	0.032;	Fe, 0.02	21	
$G_{f 0}$	443	154	48.0	
G _s , W 800° C _s	370	139	48.0	
G _a , W 800° Q _w	484	184	35.0	
G _m	485		55.0	
G _m , W 800° C _a	427	139	63.0	
G _m , W 800° Q _w	470	153	54.0	
R _h 11 in. diam	578	175	38.0	50.7
800° C _a	473	180	65.0	64.9
600° Q _w	596		48.0	61.2
Same, W { 700° Q _w	554 551	199	54.0 51.0	66.7 59.6
900° Q***********************************		199	40.0	51.7
Cu, 90.58; Al, 9.38; Si,		Fe, 0.01		
G	479	153	36.3	47.2
G, W 900° C	369	169	17.3	31.9
Ga, W 800° Qw	601	328	9.5	20.0
G _m	536	165	43.5	50.0
G _m , W 800° C _s	433	178	27.0	30.5
G _m , W 800° Q _w	561	295	28.0	46.3
R _h 1½ in. diam	589	233	40.0	41.4
R _h 11 in. diam	599	279	34.0	33.6
600° Q _w	614	251	38.5	50.8
Same, W 700° Q	607	262	35.5	42.9
800° Q _w	615 668	301 292	32.0 25.5	42.7 39.3
D _o 18 in. diam		457	$\frac{23.3}{32.0}$	46.3
Cu, 90.06; Al, 9.90; Si,				10.0
G _a	499	178	21.7	
G., W 800° C		210	11	
G _s , W 800° Q _w	788	353	3.0	
G _m	582	195	30.5	
G _m , W 800° C _n	416	260	5.0	
G _m , W 700° Q _w	601	200	25.0	32.0
G _m , W 800° Q _w	607	217	22.0	28.5
	608 709	279 577	22.0 3.0	10.9
G _m , W 900° Q _w			$\frac{3.0}{31.5}$	10.8
R _b 13 in. diam	552 600	214 233	28.8	30.5 30.8
(800° C	449	247	6.5	10.2
300° Cf	600	230	27.0	33.1
400° C ₁	499	369	2.5	2.9
500° C _f	537	323	9.5	13.1
600° C _f	500	247	9.0	14.5
Same, $W \begin{cases} 700^{\circ} C_1 \dots \\ 900^{\circ} C_1 \end{cases}$	502	238	9.0	11.3
800° C _f	413 346	200 210	13.5 6.0	21.6 8.8
600° Q	608	268	29.0	35.7
700° Q	585	246	20.5	27.0
800° Q _w	717	413	11.0	16.8
900° Q _w	854	659	2.5	7.0
600° Q _w	602	268	22.2	30.0
R _b ¶, W 700° Q _w	626	285	15.4	20.6
800 Q	686	511	7.0	14.3
(900° Q _w	812	627	$\frac{3.0}{10.0}$	4.8
D _c 13/16 in. diam	692	637	13.0	22.2

Treatment†	10 × UTS	10 × YP‡	El _a §	RA
Cu, 89.17; Al, 10.78; Si,	0.031;	Fe, 0.0	15	
G	465	222	9.0	
G ₀ , W 800° C ₁	460	425	2.0	
G_{e} , W 800° Q_{w}	559	468	2.5	
G _m	579	266	9.0	
G_m , W 800° C_a	453	372	0.0	
G _m , W 800° Q _w	510	421	3.0	
R _b 1½ in. diam	551	284	12.5	12.1
Rh 13 in. diam	609	243	14.0	18.6
Same, W { 800° C	479	291	1.5	4.0
Same, W \ 800° Q	569	189	5.0	13.3
Cu, 88.32; Al, 11.73; Si,	0.028;	Fe, 0.0	10	
G	401	221	5.0	
G., W 800° C	305	305	1.0	
Ga, W 800° Qw	391	265	5.0	
G_m	482	233	6.0	
G _m , W 800° Q _w	395	197	5.0	
R _h 1½ in. diam	506	299	5.5	4.2
Rh 18 in. diam	533	199	8.5	15.4
Same, W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	385		1.0	2.7
Same, ₩ \ 800° Q _w	401	189	6.0	10.6
Cu, 86.92; Al, 13.02; Si,	0.043;	Fe, 0.01	13	
G	311	311	1.0	
G _a , W 800° C _a		249	2.0	
Gs, W 800° Qw	365	220	4.5	
G _m	395	395	0.0	
G _m , W 800° C _s	260	260	0.0	
G _m , W 800° Q _w	409	186	4.0	
Rh 13 in. diam			2.0	1.9

* The alloys in this table were made up of 99.98-99.99 % pure Cu and 99.70 % pure Al. A specimen of 99.96 % pure Cu, Rh to 13 /16 in and C₆ from 800°C had the following properties: UTS = 22.3, YP = 7.9, El = 56.0, RA = 67.8. The ductility is greatly increased by adding only 0.1 % Al. Additional properties of the commercially important Al bronses are given in the following tables.

 \dagger Treatments in detail are: $G_{a},$ in small test piece size; $G_{m},$ in 1 in. diam. size and machined down. The mechanically worked specimens are from a G_m 20 \times 3 in. diam. ingot. This was machined to $2^{1\frac{3}{2}}$ 16 in. diam., W 800° R to 114 in. diam. One portion Rh to 13/6 in. diam.

§ Test piece 0.564 in. diam., 2 in. gage length except where noted.

Broke in threads, fracture coarsely crystalline.

These specimens were machined to test piece size (12 in. diam.) before heat treatment.

TABLE 3.—TENSILE PROPERTIES AT HIGH TEMPERATURES

t,°C	Cu, 95; Al, 5 Cast (2, 15)			Cu, 90; Al, 10 Cast (2, 15)			
	UTS	YP	El.	RA	UTS	El.	RA
20	24.7	19.5	56.3	46.9	29.1	9.4	13.1
150	22.7		78.1	31.4			
230	25.2	11.0	65.7	61.7	29.7	12.5	4.8
315	17.3	12.9	45.3	38.4	27.0	11.5	11.6
400	4.5	4.5	0.0	0.0	18.8	1.6	2.9
510					18.2	3.1	6.7
540	4.4	4.4	0.0	0.0			

Table 3.—Tensile Properties at High Temperatures.—
(Continued):

ι,°C		Al, 6.7 (R _h)*; cf. 27)	Cu, 90; Al, 10 (R _h)* (23)		
	UTS†	El_{ullet}	UTS†	El.	
20	45.5	71.0	60.0	28.8	
200	1	į	57.4	35.0-38.0	
250	37.3	25.5-29.0	50.0	21.5	
300	32.6	24.5-25.0	52 .6	18.5-40.0	
350	30.3	17.5	51.7	27.5-33.0	
400	28.2	14.0-18.0	37.8	29.0-48.0	
450	21.0	9.0-10.0	35.1	30.5-32.5	
500	17.2	14.0	19.1	42.0-92.5	
550			14.3	10.2	

^{*} For exact composition r. Table 2. Specimens hot rolled to 1916 in. diam. † Mean values.

TABLE 4.—Brinell Hardness at High Temperatures (12)

% Al	Impurities	20	250	350	450	550	650	750	850	950
3.82	Si, 0.09	39.4	33.8	31.4	31.4	31.4	22.4	17.6	13.2	
4.07	Si, 0.08	38.1	29 .6	28.4	29.2	29	27.4	17.2		
6.75	Sn, 0.27	34.9	34.4	31.4	31.4	31.8	29.7	16.5	8.2	
9.76	Fe, 0.22	76.7	71.1	65.1	61	40.5	25.4	14.2	7	2.9

TABLE 5.—BRINELL HARDNESS (3)

% Al	Trt*	1034	3000	UTS
0.10	R _h	78	66	22.8
2.99	R _h	109	102	31.2
5.07	R _h	113	124	41.6
7.35	R _h	123	134	46.8
9.90	R _h	180	210	6 0.0
11.73	R _h	213	269	53.3
13.02	R _h	332	349	58.5
13.50	G ₈	372	437	
15.38	G _s	411	539	

^{*} Tests, except last two, made on 1 9₁₆ in. diam. hot rolled bars. Ball diam. = 9.516 mm.

Table 6.—Torsional Strength* (3)

% Al	USS _C	TMR	UTS	Twist, °/cm
0.00	19.8	26.4		359
0.10	25.2	33.7	22.4	681
1.06	26.0	34.7	24.7	570
2.10	27.2	36.3	27.1	506
4.05	31.0	41.4	34.6	304
6.73	36.4	48.6	41.2	213
7.35	37.2	49.6	43.2	180
9.90	36.8	49.3	55.2	31
11.73	39.5	52 .7	50.6	6.7

^{*} Specimens machined from 1½ in. bar, hot rolled to 0.624 in. diam. \times 3.0 in. long, except for 2.1 % Al which is 2.8 in. long.

TABLE 7.—DYNAMIC TESTS (3)

	No. of l	bends*		Condition after Izod test	
% Al	₹ in. diam.	in. sq.	IS† (Izod)		
0.10	287	443	1.23		
2.99	332	456	1.70	IImbaskan	
5.07	632	814	1.96	Unbroken	
7.35	1395	1373	2.13		

TABLE 7.—DYNAMIC TESTS (3).—(Continued)

	No. of	bends*	1	Condition n'ter Izod test	
% Al	in. diam.	3 in. sq.	IS† (Izod)		
9.90	657	783	0.62		
11.73			0.54	Broken	
13.02			0.12	J	

^{*} Tests made on Arnold machine, bars 5.5 in. long.

TABLE 8.—Specific Gravity of AL-Bronzes (3)

T Al	rt G.	G _m	R*
0.10	8.90	8.90	8.92
1.06	8.79	8.77	8.78
2.10	8.54	8.61	8. 62
2.99	8.44 .	8.47	8.47
4.05	8.29	8.31	8.31
5.07	8.16	8.18	8.18
5.76	8.04	8.07	8.07
6.73	7.94	7.96	7.95
7.35	7.85	7.86	7.85
8.12	7.79	7.78	7.78
8.67	7.73	7.69	7.69
9.38	7.64	7.61	7.61
9.90	7.60	7.56	7.56
10.78	7.45	7.45	7.45
11.73	7.19	7.34	7.35
13.02	6.98	7.23	7.23

^{*} Rolled to 13/16 in. diam.

Table 9.—Compressibility and Specific Gravity of Cu-Al Alloys (14)

% Al ca.	t,°C	10 ⁸ χ*	t,°C	d,*
5	16	103	17.4	8.16
7	15	119	14.7	7.95
13	20.5	81	20.4	7.29
20	19	118	19	5.61
43	19	160	18.2	4.40
50	20.5	250	23	4.06
63	26	231	25.2	3.57
90	26	210	25.2	2.83

^{*} Average between 1 and 1000 atm.

TABLE 10.—Specific Gravity (1)

% Al	d420	% Al		% Al	d40
0	8.92	15.0	6.93	64	3.68
7	7.83	22.5	6.08	82	3.09
12.5	7.30	35	4.88	100	2.69
14.7	6.97	46	4.26		1

Table 11.—Effect of Cold Rolling and Annealing on Mechanical Properties of Cu, 92.99; Al, 7.03 (17)

TD 4 (11-11-4-)	UTS		El*		BHN	
Treatment (rolled plate)	L†	T†	L†	T †	BH.V+	
R _h 16 mm, R _c 8 mm	74.0	74.4	10	9	183	
R _h 20 mm, R _e 8 mm	79.6	80.2	9	4	205	
R _h R _e A 500°			46	111	111	
R _h R _e A 600°			57	75	75	

^{*} On 50 mm.

[†] Tests bars $2 \times \frac{5}{16} \times \frac{5}{16}$ in. For both tests, bars were machined from hot rolled $1\frac{5}{16}$ in. diam. bars.

[†] L. T specimens taken parallel and perpendicular to direction of rolling. respectively.

‡ 10 mm ball, 500 kg load.

Table 11.—Effect of Cold Rolling and Annealing on | Table 13.—Effect of Heat Treatment on Cast Cu, 90; Al, 10 MECHANICAL PROPERTIES OF Cu, 92.99; AL, 7.03 (17).— (Continued)

	(Constitued)									
Ann. temp., °C	UTS*	El*	Ann. temp., °C	UTS*	El*					
(R _b)	75.8	8	305	79.0	6					
100	76.3	7	335	76.9	6					
155	77.2	8	360	67.4	13					
180	77.2	7	385	62.7	17					
210	78 .6	6	410	55.4	30					
230	79.7	6	460	52.3	40					
260	79.7	6	510	51.1	40					
285	79.7	5								

^{*} R_h 16 mm, R_c 8 mm (||).

Ann. temp., °C	$BHN\dagger$	Ann. temp., °C	BHN†
(R _h)	205	290	222
70	204	315	218
120	206	340	192
170	209	365	152
195	210	390	138
215	209	415	123
240	216	465	114
265	217	515	111

[†] Rh 20 mm, Rc 8 mm (||).

TABLE 12.—Effect of Heat Treatment on Rolled Cu, 90; AL, 10* (19)

Treatr	nent	UTS	YP	E4†	BHN	ScH‡	IS§
R A 750°/90		49		14	125¶	19.2	3.5**
R W 500°)	48		13	125¶	18	3.2**	
R W 600°	61		20.5	121¶	27	7**	
R W 700° 5 m	60		22	122¶	26.5	8**	
R W 800°	72		9	148¶	46.7	6.1**	
R 800°/10 Q _w		69.2	23.3	8	184††	49	6.2‡‡
	400°	73.9	23.4	2.5	205††	55	3.8‡‡
Come W 10	500°	62	29.5	12	162††	42.5	4.611
Same, W 10 m	600°	59.2	22.3	21.7	144††	38	8.6‡‡
	700°	51.2		13.5	120††	32	10.5‡‡
R 900°/20 Q _w .		67.7	39.7	3.5	223††	44	4‡‡
	{ 400°	64.1	45.5	2.2	208††	69.7	5.7‡‡
Same, W 10 m	500°	60.6	34.4	12.0	152††	46	8.6‡‡
Same, w 10 m	600°	60.7	27.7	26.5	133††	41.6	12.5‡‡
	700°	57.6	29	22.7	129††	40.1	14.4;;

^{*} Cu, 89.84; Al, 9.95; Zn, 0.11; (Si, Fe), Tr.

TABLE 13.—Effect of Heat Treatment on Cast Cu, 90; AL, 10

t,°C	Trt A* BHN	Trt B*	t,°C	Trt A* BHN	Trt B*
(G ₀)	118	1	705	133	115
370		230	760	163	110
425	121	178	815	205	108
480		157	870	240	
540	128	140	925	240	
595	112	133	980	200	
650	121	125			

^{*} Trt A = W t° Q_w; Trt B = W 870° Q_w Tp t° ; BHN: 10 mm, 1000 kg.

(7, 26).—(Continued)

Trea	tment	UTS	TS EL			El		
G_{\bullet}		42.2		10.5	1 2	28.5		
800° Q _w		68.9	21.8			8.0		
		66.8		38.7		3.5		
Same, Tp	500°	60.5	İ	34.4	1 1	12.0		
Same, 1p	705°	56.2		28.8		22.7		
Tı	reatment	UTS	EL	El.	RA	BHN		
$\overline{G_{\bullet} \dots \dots}$		52.0	13.9	19.5	23.7	100		
900° Q _₩		74.0	28.5	1.0	0.8	262		
Same, Trt		68-64	40-27.5	5.5-14	9-18.5	158-140		

TABLE 14.—Effect of Heat Treatment on Hardness of Cast Cu, 90; Al, 10* (6)

	8	cН	BHN	BHN† (heat A),			BHN† (heat H),		
Tempering			at:			at:			
temp., °C	Heat	Heat	3000	1000	500	3000	1000	500	
	A	H	kg	kg	kg	kg	kg	kg	
None	43-54	46-55	248	249	206	248	244		
150	48-55	56–58	241	249		235	238		
205	50-55	52-56	241	238		241	249		
260	53-57	53-58	262	260		255	249		
315	46-53	57-61	262	260		269	260		
400	49-60	56-62	262	260		269	260		
480	30-32	34-36	170	165		179	171		
565	23-27	23-26	163	159	136		159	143	
650	21-22	22-24		133	124		138	130	
760	19-20	19-20		121	100	1	121	109	
870	18-19	20-21	131	113	100	134	117	109	

* Diaks 1/4 in. thick cut from tensile test stubs of cast alloy having: UTS = 45-53; YP = 15-18; El = 17-23%; RA = 16-26%. Stube W 900°/20-30 Qw Tp to CCaO. † 10 mm ball.

A Heat 59 58-6 57 55-5 57 56-6 58 59-6	1 255 9 248	269 277 269
57 55–59 57 56–6	9 248	277
57 56-6	-	
	1 241	280
50_R		1 209
יטייפט ן טכ	1 269	277
55 57-6	1 262	286
57 58-69	2 262	286
52 55-58	8 277	286
50 50-5	3 269	269
39 42-44	196	255
27 38-43	2 183	223
24 29-3	1 179	202
22 26-28	8 170	196
	555 57-6 57 58-65 52 55-55 50 50-53 39 42-4 27 38-45 24 29-3	55 57-61 262 57 58-62 262 52 55-58 277 50 50-53 269 39 42-44 196 27 38-42 183 24 29-31 179

Tempering temp., °C	Air co	ooled §	Cooled in CaO§		
Tempering temp., C	ScH	BHN	ScH	BHN	
None	60-65		59-66		
150	62-66	249			
205		1	61-63	260	
230	62 - 67	260		ļ	
260			60-63	244	
315	62-66	285	65-70	278	
345	63-70	279	60-64	272	
370	60-66	255			
400	59–62	255			
425	48-55	205			

^{*} Same treatment as above except where air cooled.

[†] Test pieces 10 mm square cross-section.

[‡] Hardened steel point.

[§] Guillery machine.

^{||} Heated in salt bath.

^{¶ 10} mm, 1000 kg.

^{**} Copenhagen test piece.

^{†† 10} mm, 2000 kg.

^{‡‡} Mesnager test piece.

[†] On flattened surface of edge of disks 34 in. thick.

[†] On faces of same disks.

on flats filed on tensile test stubs.

[|] Load = 1000 kg.

Table 15.—Effect of Heat Treatment on Hardness and Endurance to Reversed Bending of Cast Cu, 90; Al, 10
(22)

Cu, 90.5; Al, 9.5

Quench temp., °C*									
No. bends†									200
BHN (10 mm, 500 kg)	86	89	80	74	67	65	66	63	70

^{* 900°} C_0 W t° Q_w . † Arnold machine.

Cu, 90; Al, 10

Treatment	No. bends	BHN
G	650	
(300°	600	
400°	550	
G, A { 500°	130	
650°	630	
800°	1050	
900° Q _w	5	130
(400°		123
Same, A { 500°	50	119
600°	300	100
700°		93
900° Q _w A { 800°	470	80
800° Q		
400°	2	143
500°	10	100
Same, A 600°	270	80
700°	355	86
700° Q		100
400°	150	93
Same, A { 500°		86
(600°	400	74
600° Q _w		86
(400°		80
Same, A 500°	84	86
500° Q		84
Same, A 400°		86

Cu-Al-Fe
Table 16.—Average Properties (13)

% Al	% Fe	Treatment	UTS	YP	El	RA	DLc	BHN
10	1	G	46-53	14-21	24	27	13-14	92-96
10	3	Wkd rod			5			
		Wka rod	63		30			
9	3	G	46-56	25–32	20-40	20-40	10-13	95-120
8	3	Wkd rod	88		5			
		Wk. rod	51		50		l	

U. S. master specification (No. 173) for Al-bronze ingots: Cu, 85–89; Al, 7.0–9.0; Fe, 2.5–4.5; Sn, <0.5; other elements, <0.25. $UTS \le 52.7 \text{ kg/mm}^2$; $YP \le 21.1 \text{ kg/mm}^2$; $El_a \le 30\%$.

Proposed U. S. master specification for Al-bronze castings: Desired: Cu, 88; Al, 9.0; Fe, 3.0; Sn, 0; other elements, 0. Permissible: Composition, *UTS*, and *El*_a as for ingots.

TABLE 17.—Tensile Properties and Hardness of Sand Cast Alloys* (10)

	ALLOIS (.V)										
% Al	% Fe	UTS	YP†	PL	El.	RA	BHN;				
	1	37.4	11.0	10.1	56.0	54.2	70				
	2	44.3	13.3	12.2	39.0	35.6	70				
	3	52.4	16.4	15.0	38.0	32.2	80				
7	4	53.7	16.6	15.5	38.5	35.7	89				
	5	51.7	17.4	15.2	29.0	26.9					
	6	54.5	17.8	15.1	31.5	27.6					
	\ 8	52.4	18.0	16.6	27.5	27.6					
	1	40.1	13.7	11.5	45.0	43.4	70				
0	2	44.8	14.5	12.8	39.0	39.2	80				
8	3	57.0	18.3	17.0	36.5	32.9	109				
	4	57.7	18.5	17.4	35.0	32.0	109				
	1	48.8	16.4	13.0	43.0	35.7	77				
•	2	55.0	18.1	15.7	30.5	27.4	109				
9	3	57.4	19.9	18.0	26.0	26.9	109				
	4	58.3	20.0	18.6	23.0	23.8	109				
	1	54.1	16.9	13.9	24.5	25.2	94				
	2	58.1	18.8	16.0	21.0	19.2	100				
	3	60.7	20.2	18.3	20.0	20.5	109				
10	{ 4	62.3	21.1	19.3	17.0	18.5	119				
	5	56.6	23.2	20.7	12.5	16.9					
	6	60.1	23.5	21.8	13.0	14.7					
	8	60.8	25.2	22.4	11.5	12.4					

^{*} All specimens ½ in. diam., sand cast.

Table 18.—Properties of Large and Small Castings (8)

v. also Table 21

Treatment and description	UTS	YP	El	RA
Cu, 89.0–89.	5; Al, 9.5-1	0.0; Fe, 1.0		
G (semi-chill) 1.25 in. diam.	53.4-55.5	13.4-14.1*	28-30	27-31
Large gear	45.1	18.1	12.0	14.7
Small bars cast with large	37.9-49.2	17.6-21.1	10-20	12-23
Machined from same large			l	
casting	36.5-40.1	16.2-18.3	12-14	14-20
G 1 in. sq. unmachined	53.1	14.5	24	22.4
G 1 in. diam. unmachined				
(av.)	54.1	16.9	24.5	25.2
Cu,	88; Al, 9; I	Fe 3		
	49.2	21.1	20	

^{*} PL.

TABLE 19.—Tensile Properties and Young's Modulus (5)

Treatment and test method*	UTS	YP	PL	EL	El.	RA	10 ⁻² E
Cu	ı, 89; A	l, 10	; Fe,	1			
G _s , method A	51.2	18.8	8.9	7.9	22.0	22.7	
G, method B	51.1		9.1		29.0	26.1	102
G, method C	51.6	18.7	7.7	6.0	20.5	21.6	109
Ga, Trt, method A							
G _a , Trt, method C	57.5	36.3	23.9	21.1	9.0	16.5	105
Cu	ı, 86; A	l, 10	; Fe,	4			
G, method A	56.7	22.6	12.4	11.2	18.0	18.6	
G _s , method B			14.4			10.4	
G., Trt, method A	1		25.4	20.5	16.0	17.2	

^{*} Method A: Berry strain gage used for E, EL, PL and YP, in one position only. Method B: Mean of three strain gage readings taken, gages 120° apart. Method C: Special extensometer giving mean of strains on opposite sides used.

[†] By dividers

^{‡ 10} mm ball, 500 kg load applied 30 sec.

TABLE 20.—Brinell Hardness Number* at High TEMPERATURES (12)

No. t,°C	20	250	350	450	550	600	650	700	800	900	950
1†	125	84.5	82.5	80	69.8	54		34 .5	20	11.5	10.5
2†	131.5	125.2	117.5	96.6	79.6		14.5	9.8			

^{* 10} mm, 500 kg.

Table 21.—Effect of Heat Treatment on Sand Cast Alloys* (4, 9)

	Trea	tment	Sizet	UTS	PL	El	RA	BHN‡
G_{\bullet}			A	52.0	13.9	19.5	23.7	100
600° Q			A	55.9	10.8	21.0	22.2	
850° Q	§		A	68.4	28.0	1.0	0.0	240
		Q	A	73.9	${28.5}$	1.0	0.8	262
		Q	A	64.3	23.3	2.0	5.7	229
850° C.	30s	$\mathbf{Q_w}$	A	51.4	16.6	5.0	9.4	150
850° C.	45s	$\mathbf{Q_w}\dots\dots$	A	50 .9	11.0	7.0	12.2	
850° Q _w	337 4	C	A	60.9	24.7	13.0	14.9	130
990 Q*	, w	050°/15 (Ct	A	66 .0	30.2	12.5	12.3	143
	500	°/30 C ₁	A	67.5	39.8	5.5	9.1	158
	575	°/20 C ₁	A	66.1	32.4	8.0	11.2	143
850°		°/15 C ₁	A	68.0	30.4	10.5	12.6	140
Q_{w}, W		°/15 C ₁	A	64.1	27.6	14.0	18.5	143
		$\left\{ \begin{array}{ll} 0^{\circ}/15 & \mathrm{C}_{1} & \mathrm{to} \\ 0^{\circ}, \ \mathrm{C}_{\bullet} \end{array} \right\}$	A	56.2	16.4	23.0	21.7	104
$G_{\bullet}\dots$			В	40.3	12.7	12.5	15.0	
		600° C ₁	D	65.6	37.7	10.0	13.5	
		630° C ₁	D	62.2	30.4	13.0	14.2	
850° Q _w	w	650° C _f	C	52 .0	24.3	14.5	17.6	
000 6/W	, "	650° C ₁	В	59 .8	28.7	12.5	15.7	
		650° C ₁		55.0	27.9	1	15.0	
		650° C ₁	_B_	52.5	28.3¶	9.0	13.5	
G. A			В	38.8	16.0	9.0	11.2	109

^{*} Cu, 88.63; Al, 10.67; Fe, 0.91.

Rh 11 in. diam.

Rh 👫 in. diam.....

Cu-Al-Mn

TABLE 22.—TENSILE PROPERTIES* (25) v. also Table 26

v. we	O TADIC 20			
Treatment†	$ 10 \times UTS $	$ 10 \times YP $	‡ El.	$\overline{\mid RA}$
Cu, 89.54; A	l, 10.03; N	In, 0.43		
G ₀	517	225	24	1
G _m	567	251	24	
R _h 1½ in. diam	635	294	24.5	
Rh 11 in. diam	621	309	31	29.2
De 18 in. diam	728	662	13	18.8
Cu, 89.10; Al, 9.89; Mn, 1.01	and (Cu, 89	0.06; Al, 10	0.02; Mn	, 0.92) §
G ₀	563	221	22.5	1
A 550°/1 h	446	200	15.0	
A 800°/1 h	459	208	17.0	
550°/1 h Q _w	501	214	18.5	1
800°/1 h Q _w	650	205	6.0	
800°/15 Q _w	599	208	7	
GII	620	252	25.0	

600

658

270

291

26.5

30

32.4

Table 22.—Tensile Properties* (25).—(Continued)

Treatment †	$ 10 \times UTS $	$10 \times YP$	El _a	RA
R _b 13 in. diam.	675	363	22.5	33.6
A 550°/1 h	589	340	5.0	
A 800°/1 h			31.0	
	545	241		
A 900°/6 h	501	203	29	
550°/1 h Q _₩	621	321	16.0	
880°/1 h Q _w	717	381	11.5	
De 13 in. diam.	788	662	16.0	
			'	
Cu, 88.00; Al, 9.99; Mn, 2.01	and (Cu, 8	8.30; Al, 9	.82; Mn	, 1.88) §
$\overline{G_{\bullet}\dots$	542	208	24	
A 550°/1 h	507	173	15	
	i	i	I .	
A 850°/1 h	630	205	12	
550°/1 h Q _w	534	195	11	
850°/1 h Q _w	647	284	5	
850°/15 Q _w	646	208	7	
G _m	583	265	25	
			ļ	
R _h 1½ in. diam	637	287	35.0	31.3
$R_h \stackrel{12}{12}$ in. diam. $\ \dots \ $	659	284	24	
R _h 13 in. diam	642	337	29.0	32.0
A 550°/1 h	614	350	7.5	
A 850°/1 h	559	230	26.5	
A 900°/6 h	536	195	24	
550°/1 h Q _w	1	301	25.0	
	662		1	
850°/1 h Q _w	819	397	3.5	
D _c 13 in. diam	820	644	10.0	
C. 80.01.	A1 0 10. N	(n 0 02		
Cu, 89.91;	A1, 9.10, IV.	in, 0.95		
G _•	484	176	46.5¶	
G _m	534	205	46.0	
R _h 1½ in. diam	572	257	45.0	46.0
R_h $\frac{12}{16}$ in. diam	603	335	41.5	54.0
2011 16 1111 (111111111111111111111111111	1 000	1 555	41.0	04.0
	<u>'</u>		141.0	01.0
Cu, 88.99;	Al, 9.06; M	In, 1.95		1 01.0
Cu, 88.99;	Al, 9.06; M	In, 1.95	40.0¶	
Cu, 88.99; G _s	Al, 9.06; M 494 523	In, 1.95 167 223	40.0¶ 30.0	
Cu, 88.99; G _s	Al, 9.06; M 494 523	In, 1.95	40.0¶	47.2
Cu, 88.99; G _s	Al, 9.06; M 494 523	In, 1.95 167 223	40.0¶ 30.0	
Cu, 88.99; G _a	Al, 9.06; M 494 523 585 613	167 223 265 321	40.0¶ 30.0 43.5 42.0	47.2 48.0
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam.	Al, 9.06; M 494 523 585 613 667	In, 1.95 167 223 265 321 581	40.0¶ 30.0 43.5 42.0 23.5	47.2 48.0 40.8
Cu, 88.99; G _a	Al, 9.06; M 494 523 585 613 667 and (Cu, 8	167 223 265 321 581 8.11; Al, 8	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn	47.2 48.0 40.8
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam.	Al, 9.06; M 494 523 585 613 667	In, 1.95 167 223 265 321 581	40.0¶ 30.0 43.5 42.0 23.5	47.2 48.0 40.8
Cu, 88.99; G _s G _m R _h 1½ in. diam R _h ½ in. diam D _o ½ in. diam Cu, 88.06; Al, 9.10; Mn, 2.84 G _s	Al, 9.06; M 494 523 585 613 667 and (Cu, 8	167 223 265 321 581 8.11; Al, 8	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn	47.2 48.0 40.8
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498	167 223 265 321 581 8.11; Al, 8	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35	47.2 48.0 40.8
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426	167 223 265 321 581 8.11; Al, 8 170 204 164	40.0¶ 30.0 43.5 42.0 23.5 -91; Mn 24** 35 49	47.2 48.0 40.8
Cu, 88.99; G _s G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _s A 550°/1 h. A 900°/1 h. 550°/1 h Q _w .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501	167 223 265 321 581 8.11; Al, 8 170 204 164 227	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5	47.2 48.0 40.8
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h 550°/1 h Q _w . 900°/1 h Q _w .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9	47.2 48.0 40.8
Cu, 88.99; G _s G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _s A 550°/1 h. A 900°/1 h. 550°/1 h Q _w . 900°/15 Q _w .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5	47.2 48.0 40.8
Cu, 88.99; G _s G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _s A 550°/1 h. A 900°/1 h. 550°/1 h Q _w . 900°/15 Q _w .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9	47.2 48.0 40.8
Cu, 88.99; G _a G _m R _h 1½ in. diam R _h ½ in. diam D _o ½ in. diam Cu, 88.06; Al, 9.10; Mn, 2.84 G _o A 550°/1 h A 900°/1 h 550°/1 h Q _w 900°/15 Q _w G _m	Al, 9.06; M 494 523 585 613 667 and (Cu, 8) 498 492 426 501 620 567 542	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26	47.2 48.0 40.8 , 2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _o A 550°/1 h A 900°/1 h S50°/1 h Q _w . 900°/15 Q _w . G _m R _h 1½ in. diam. .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8) 498 492 426 501 620 567 542 609	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26 43.5	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h 550°/1 h Q _w . 900°/15 Q _w . G _m R _h 1½ in. diam. . R _h ½ in. diam. .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8) 498 492 426 501 620 567 542 609 630	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0	47.2 48.0 40.8 , 2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h. 550°/1 h Q _w . 900°/15 Q _w . G _m . R _h 1½ in. diam. . R _h ½ in. diam. . R _h ½ in. diam. .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8) 498 492 426 501 620 567 542 609 630 649	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h. 550°/1 h Q _w . 900°/15 Q _w . G _m R _h 1½ in. diam. . R _h ½ in. diam. . R _h 1½ in. diam. . R _h A 550°/1 h.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646	167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h 1½ in. diam. . R _h ½ in. diam. . R _h 1½ in. diam. . R _h 13 in. diam. . R _h 14 1 A 900°/1 h.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h ½ in. diam. . R _h ½ in. diam. . R _h 1½ in. diam. . R _h A 550°/1 h. A 900°/1 h. A 900°/1 h.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0 37.5	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h 1½ in. diam. . R _h ½ in. diam. . R _h 1½ in. diam. . R _h 13 in. diam. . R _h 14 1 A 900°/1 h.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h ½ in. diam. . R _h ½ in. diam. . R _h A 550°/1 h. A 900°/1 h. Soo'/1 h. A 900°/1 h. A 900°/1 h. Cu, 88.99; A 550°/1 h. A 900°/6 h. Cu, 88.99; A 550°/1 h. A 900°/6 h. Cu, 88.99; A 550°/1 h. A 900°/6 h. Cu, 88.99; A 550°/1 h. A 900°/6 h. Cu, 88.99; Bu, 1½ in. diam. . Bu, 1½ in. diam. . Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Cu, 88.99; Bu, 1½ in. diam. . Bu, 1½ in. diam. . Cu, 88.96; Bu, 1½ in. diam. .	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0 37.5 39.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h 1½ in. diam. . R _h ½ in. diam. . R _h 1½ in. diam. . R _h 550°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. A 900°/1 h. Cu, 88.99; Cu, 88.90; Cu, 88.90	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0 37.5 39.0 23.0	47.2 48.0 40.8 , 2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h Complete the diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0 37.5 39.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h Complete the diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam. R _h 1½ in. diam.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613	40.0¶ 30.0 43.5 42.0 23.5 .91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 40.0 27.0 43.0 37.5 39.0 23.0	47.2 48.0 40.8 , 2.98)§
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h Q _w 900°/15 Q _w G _m R _b 1½ in. diam. . R _h ½ in. diam. . R _h ½ in. diam. . A 550°/1 h A 900°/1 h A 900°/1 h A 900°/1 h Cu, 86.89;	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693 Al, 9.33; M	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613 In, 3.78	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 27.0 43.0 37.5 39.0 22.0	47.2 48.0 40.8 , 2.98)§
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h 550°/1 h Q _w 900°/15 Q _w G _m R _b 1½ in. diam. . R _b ½ in. diam. . R _b 1½ in. diam. . R _b 1½ in. diam. . Cu, 86.89; G _a Cu, 86.89;	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693 Al, 9.33; M	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613 In, 3.78	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 43.0 37.5 39.0 22.0 20.0	47.2 48.0 40.8 , 2.98)§
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h 1½ in. diam. . R _h ½ in. diam. . R _h ½ in. diam. . A 550°/1 h. A 900°/1 h. A 900°/1 h. Cu, 86.89; G _a Cu, 86.89; G _m	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693 Al, 9.33; M 506 624	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613 In, 3.78 193 238	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 43.0 37.5 39.0 22.0 22.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h 550°/1 h Q _w 900°/15 Q _w G _m R _b 1½ in. diam. . R _h 1½ in. diam. . R _h 550°/1 h A 900°/1 h A 900°/1 h Cu, 86.89; G _a G _m Cu, 86.89; G _m R _b 1½ in. diam.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693 Al, 9.33; M 506 624 601	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613 In, 3.78	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 27.0 43.0 37.5 39.0 22.0 22.0	47.2 48.0 40.8 ,2.98)§ 46.0 43.6
Cu, 88.99; G _a G _m R _h 1½ in. diam. R _h ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h. A 900°/1 h Q _w . 900°/15 Q _w . G _m . R _h 1½ in. diam. . R _h ½ in. diam. . R _h ½ in. diam. . A 550°/1 h. A 900°/1 h. A 900°/1 h. Cu, 86.89; G _a Cu, 86.89; G _m	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693 Al, 9.33; M 506 624	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613 In, 3.78 193 238	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 43.0 37.5 39.0 22.0 22.0	47.2 48.0 40.8 ,2.98)§
Cu, 88.99; G _a G _m R _b 1½ in. diam. R _b ½ in. diam. D _o ½ in. diam. Cu, 88.06; Al, 9.10; Mn, 2.84 G _a A 550°/1 h A 900°/1 h 550°/1 h Q _w 900°/15 Q _w G _m R _b 1½ in. diam. . R _h 1½ in. diam. . R _h 550°/1 h A 900°/1 h A 900°/1 h Cu, 86.89; G _a G _m Cu, 86.89; G _m R _b 1½ in. diam.	Al, 9.06; M 494 523 585 613 667 and (Cu, 8 498 492 426 501 620 567 542 609 630 649 646 501 487 492 689 693 Al, 9.33; M 506 624 601 639	In, 1.95 167 223 265 321 581 8.11; Al, 8 170 204 164 227 271 249 233 284 315 303 350 199 196 320 314 613 In, 3.78 193 238 265	40.0¶ 30.0 43.5 42.0 23.5 91; Mn 24** 35 49 31.5 9 11.5 26 43.5 39.0 27.0 43.0 37.5 39.0 22.0 22.0	47.2 48.0 40.8 ,2.98)§ 46.0 43.6

[†] No. 1: Al, 7.64; Fe, 2.12; Mn, 0.49. No. 2: Al, 10.55; Fe, 4.22; Mn, 0.74.

 $[\]dagger$ A = cast to size 0.493-0.521 in. diam., 2 in. gage length. B = Trt in $2 \times 4 \times 9$ in. block size. C = Trt in $2\frac{1}{4}$ in. dism. size. D = Trt in $1\frac{1}{2}$ in. diam. size.

^{‡ 10} mm, 500 kg except those marked ||. || 10 mm, 3000 kg.

[§] Adopted as proper quenching temperature.

[¶] This value is a YP.

Table 22.—Tensile Properties* (25).—(Continued)

Treatment†	$ 10 \times UTS $	$10 \times YP$	t Ela	$\mid RA$
Cu, 88.04;	Al, 8.02; M	n, 3.94		
G	454	180¶	31.5	
G_m	521	208	50.0	
Rh 11 in. diam	561	257	49.0	56.0
R _h 13 in. diam	590	295	45.0	54.0
Do 11 in. diam	624	549	35.0	55.2
Cu, 87.16;	Al, 7.92; M	n, 4.92		
G	441	177	30.0	
G _m	479	195	28.0	ł
Rh 11 in. diam	571	277	52.0	54.8
Rh 13 in. diam	577	304	45.0	51.2
D. 18 in. diam	649	548	30.0	49.2

^{*} Alloys contained small amounts of Fe and Si which should be deducted from figures for Al; amounts are given for only three alloys in original paper.

TABLE 23.—TENSILE PROPERTIES AT HIGH TEMPERATURES (25)

100*	1	Al, 9.89; Mn, 1.01	
t,°C*	UTS	YP	El.
200	62.4	24.1	36.5
250	62.2	29.6	43.0
300	57.3	30.7	47.0
350	51.9	30.6	40.0
400	35.8	21.8	57.0
450	27.2	18.4	51.0
	1	Al, 9.99; Mn, 2.01	
200	62.3	30.3	28.0
250	61.6	31.6	35.0
300	58.3	26.3	45.0
350	49.3	26.8	45.0
400	31.8	22.1	41.5
450	22.0	15.6	35.5
		Al, 9.10; Mn, 2.84	
200	62.4	29.8	40.5
250	62.0	32.8	47.0
300	56.1	31.0	37 .0
350	46.8	29.3	36.0
400	32.2	21.3	39.5
450	20.4	14.4	56 .0
500	14.5		38.0

^{*} Held at this temperature 30 min before testing.

Table 24.—Hardness and Torsional Strength of Hot Rolled Alloys* (5)

% Al	% Mn	BHN† (A)	(B)	ScH	UTS	USSc	TMR	Twist,
10.03	0.43	170	199	27	63.5	35.7	47.6	26.3
10.02	0.92	158	190	27	60.0	34.6	46.2	26.6
9.82	1.88	164	193	27	63.7	37.6	50.2	35.8
9.16	0.93	146	171	23	57.2	34.6	46.2	40.3
9.06	1.95	165	184	24	58.5	37.5	50.1	46.3
8.91	2.98	158	187	25	60.9	37.5	50.1	43.9
9.33	3.78	165	186	25	60.1	35.7	47.6	33.4
8.02	3.94	159	170	22	56.1	37.5	50.1	66.6
7.92	4.92	149	169	22	57.1	38.5	51.4	72.4

^{*} From 1½ in. diam. bars, torsion pieces 3 \times 0.624 in. diam.

Table 25.—Dynamic Stress Tests on Hot Rolled Alloys* (25)

Reversed bend test					
% Al	% Mn	No. bends†			
10.03	0.43	877			
10.02	0.92	1104			
9.82	1.88	933			
9.16	0.93	741			
9.06	1.95	738			
8.91	2.98	680			
9.33	3.78	694			
8.02	3.94	441			
7.92	4.92	423			

Sin	gle blow	impact	Imp	act bending	test
% Al	% Mn	IS‡ (Izod)	Wt. of Tup, kg	Ht. of Fall, cm	No. blows§
10.02	0.92	1.37	2.79 2.14	5.11 2.57	918 10 006
9.82	1.88	1.37	2.79 2.14	5.11 2.57	762 12 713
8.91	2.98	1.44	2.79 2.14	5.11 2.57	600 11 396

^{*} Test pieces taken from hot rolled bars 13/4 in. diam. For fatigue endurance limits v. p. 595.

Table 26.—Elastic Properties* (25)

% Al	% Mn	10⁻³ E	PL
	R _h , to 13/16	in. diam.	
10.02	0.92	9.56	12.8
9.82	1.88	9.77	14.5
8.91	2.98	10.47	19.2
	De, to 13/16	in. diam.	
9.89	1.01	9.49	19.4
9.99	2.01	9.28	19.4
8.91	2.98	10.40	24.1

^{*} By Ewing extensometer.

Table 27.—Specific Gravity (d_4^{20}) (25)

% Al	7rt Mn	G _s	G _m	Rh	D_{o}
10.03	0.43	7.62	7.55	7.54	
10.02	0.92	7.53	7.51	7.52	7.56
9.82	1.88	7.62	7.51	7.53	7.52
9.16	0.93	7.64	7.55	7.61	İ
9.06	1.85	7.57	7.63	7.60	1
8.91	2.98	7.57	7.57	7.59	7.59
9.33	3.78	7.52	7.63	7.56	
8.02	3.94	7.64	7.73	7.67	1
7.92	4.92	7.65	7.76	7.63	7.60

TABLE 28.—Effect of Annealing on Properties of Cold ROLLED SHEET (24)

% Al	% Mn	Trt*	UTS	YP	El†	BHN‡
2	5	$\left\{egin{array}{ll} \mathbf{R} \\ \mathbf{A} \end{array}\right.$	47.1 35.3	46.6 16.4	9 45	145 83
3	0	{ R	42.2 27.9	41.9 9.1	9 55	137.5 60
3	1	\[\begin{pmatrix} \mathbb{R} \\ \mathbb{A} \\ \mathbb{A} \\ \mathbb{C}	42.2 31.8	41.3 15.8	11.5 50	141.5 72.5
3	3	R A	43.6 33.7	43.0 16.1	12 48	140 78.5

[†] For more detailed statement of treatments v. footnote to Table 2. There was no material difference between G_s to shape and G_s machined.

[‡] By dividers.

[§] Tests on alloy in parentheses, are indicated by || in column 1 of this section.

[¶] Discrepancy between two tests of ca. 13 %.

^{**} Broke outside gage marks.

 $[\]dagger$ A = 1034 kg, B = 3000 kg, ball diam. = 9.52 mm.

[†] Test piece % in. diam., Arnold machine.

¹ Notchod specimen 2 × 3/2 × 3/2 in.

§ Test piece 1/2 in. diam., V notch, bottom diam. = 0.4 in., Bairstow machine.

TABLE 28.—Effect of Annealing on Properties of Cold | Table 31.—Properties of Alloys Containing up to 10% AL, ROLLED SHEET (24).—(Continued)

% Al	% Mn	Trt*	UTS	YP	El†	BHN‡
4	5	R	56.2 42.1	55.1 17.8	15.5 55	182 95
5	0	R A	55.3 40.2	54.0 13.1	16.5 70	174.5 84.5
5	1	R	49.0 41.4	45.2 18.9	27 57	162.5 89.5
6	3	{ R	61.4 46.9	60.2 21.6	12 58	
7	0	{ R	62.7 43.3	61.0 11.0	17.5 71	195 75.5
7	1	R	55.9 46.1	53.7 18.1	28 65	184 99.5

^{*} R = G_{phm} R_h (1.5-3% in.) P_wR_0 0.14 in. A = A 650°/30 C_a.

TABLE 29.—EFFECT OF ANNEALING ON SCLEROSCOPE HARDNESS OF COLD DRAWN BARS* (22)

% Al	% Mn Ann. t,°C	20	250	400	550	700	900
10.02	0.92	34.5	34.5	34.5	25	20	16
9.82	1.88	34	33.5	33	25	19	18
8.91	2.98	29	29	29	21.5	16	15

^{*} Specimens exposed 30 min to each temperature in succession.

TABLE 30.—EFFECT OF HEAT TREATMENT ON PROPERTIES OF ROLLED CU, 88.80; AL, 10.02; Mn, 1.11; Zn, 0.05; (Si, Fe), Tr. (19)

Treatme	ent	UTS	YP	El ₁ *	BHN	ScH†	IS‡
R A		48.5		13	120 §	37.2	3.6¶
R W 500°)		47.1		11	122§	38	2.5¶
R W 600° (57		13	128§	35	6.8¶
R W 700° (5 11	1 Q _w	59		16	123 §	28	8¶
R W 800°		64.2		2.2	187§	53	5¶
R 800°/10 Qw		68.7	23.9	2.2	222	58.2	5**
	(400°	80.1	23.3	1	231	69.5	3.8**
Same, W 10 m	500°	61.1	24	12	162	41.7	6.2**
Same, W 10 m	600°	61.4	22.5	31.7	138	35.0	15.6**
	700°	48.4	21.5	32	124	35.2	16.8**
R 900°/20 Qw		66.1		0	203	40.2	9.7**
	400°	65.8	42	1	228	84.6	4**
Same W 10 m	500°	59.1	32.3	12	167	49.5	9.7**
Same, W 10 m	600°	62.6	29	21.2	140	45	14.9**
	700°	60	27	25.1	128	39.4	17.7**

^{*} Test pieces 10 mm square.

Cu-Al-Ni

TABLE 31.—PROPERTIES OF ALLOYS CONTAINING UP TO 10% AL, 15% NI (21)

Treatment	UTS	YP	PL	Ela*	RA	BHN	ScH	d 20	No. bends†
Cu,	94.98;	Al, 5.02	and	(Cu, 9	4.88; A	l, 5.12)‡		
G _m	29.5	7.95		68.06	58.25	58	9.0		1
R A 900°	34.9	8.2		82.5	58.2§ 78.9	61	8.5	8.18	741
R, W 900° Q _w ¶	35.9	10.1**		78.6	73.3	52††	11.0	8.18	1045
$R_{\text{c}},\dots\dots\dots$	42.8	27.4		64.0	75.1	114	17.0	8.17	773

15% NI (21).—(Continued)

	15%	Nr (21)	—(Co	ntinue	d)			
Treatment	UTS	YP	PL	Ela*	RA.	BHN	ScH	d 40	No.
Cu, 93.96; A	5 10	N; OO	4	l (C)	03 04 - 4	11 5 06	· Ni		bendst
Gm				92.15	69.1	59	10.5	1.0074	·
R A 900°		8.3		94.6	76.1	64	10.5		746
R, W 900° Q _w ¶		10.4**		85.6	73.8	56††			862
R _c				63.1	78.1	113	18.5		580
	Cı	u, 92.68	; Al,	4.94; N	7i, 2.38				
Gm					0	59	1	8.14	071
R A 900°		8.7 11.3		90.2 77.8	71.0 71.4	66 62††	11.0 11.5	8.17 8.16	671 738
Re		35.4		55.0				8.16	354
Cu, 89.84; Al,		Ni, 4.84	and	(Cu, 9	0.04; A	l, 4.91;	Ni, 5.	05)‡	
G _m				86.54	73.45	60		8.15	
R A 900°	40.3	14.8		70.0	60.2	80	12.5	8.18	445
R, W 900° C _a		12.0		81.0	68.7			ł	
R A 900°	38.1	16.5 11.9	9.5	86.8	52 72.4				
R, W 900° Q _w ¶ {	38.0	12.0**		85	71	61††	12.0	8.18	
R _e	49.0	37.0		50.0	72.3	136	23.0	8.17	229
Cu, 87.48; Al	, 5.21;	Ni, 7.31	and	(Cu, 8	7.30; A	1, 5.39	Ni, 7	.31)‡	
G _m				79 §	59 §	77	13.5	8.15	
Gm A 900°‡‡				10.5	19 \$	171 \$	07. ^		100
R A 900°		37.8 18.3		25.6 63.9	26.8 69.9	167	27.0	8.19	193
		39.4	25.2		21				
	46.9	17.9**		52.1	65.1				
	43.2	12.9	6.3		69	92†† 156	17.0 27.5	8.18 8.18	
R ₀		49.0		28.8		1130	121.0	10.10	100
D 11 11		u, 87.32							
R _e ½ in. diam		81.1	9.5		43				
A 100°/30 m A 200°/30 m	76.4	77.7 74.8	14.2 23.6	l .	41	Ì			1
A 300° { 30 m	75.0	72.9	42.5	1	48				
(08 n	73.1	69.0	45.7		58	1			l
A 420°/30 m		67.4	50.4		47				
15 m 30 m		72.9 73.2	58.3 52.0		45 41				
A 500° { 1 h	1	76.4	55.1		49				
4 h		69.6	47.3		36				Ì
(6 h		67.7	36.2		35			 	
A { 700° } 30 m	68.8 61.9	55.6 46.5	37.8 31.5		38 51				ĺ
800°	52.5	26.5	23.6	l	64				l
P. I. in diam Qw.	41.0	12.6	6.3	72	69				
R in. diam. Catt.	65.1	39.4	26.8	22	23				
R in. diam.	45.2	13.9	6.3		70			1	
((())	60.3	30.7	18.9		70				
900° Q _w (½ in. diam.) 600°/30	45.2 61.2	13.9 36.5	6.3 25.2		25				ļ
	64.2	40.9	28.4	1	20				
C - 1 /00 / 30 E		35.4	23.6		32			i	
800°/30 815°/30	51.6 46.8	20.3 15.1	13.4 9.5	1	43 67			ļ	
Re in. diam	61.5	57.9	28.3		43	177		-	
		63.5	47.3		52	235		1	i
Ro in. diam	84.1	81.1	9.5	12	38	234	_	<u> </u>	<u> </u>
		u, 85.03					l. e		
G _m				39.7			17.0	8.13	
	,	1, 79.90					107.0	10 • •	
G _m	65.4		<u> </u>	4.7			37.0	8.14	
		1, 87.16	; Al,						
	ı	10.1 25.2		77 19.5	70 25	69 147			
G _m , W 900° Q _w Tp		29.8		8.5	17				
		1, 87.45	; Al,		Ni, 5.62	?			
Re in diam	89.0	87.2	18.9	9	32				
(100°)	85.2	82.8	22.1		38				
A { 200° } 30 {	84.3	83.1	31.5	1	38 43				1
A 300°/68 h	83.3 82.7	82.2 80.0	53.6 56.7		47			1	1
						·	`		·

[†] On 23% in.

^{\$5} mm, 300 kg.

[†] Hardened steel point.

[‡] Guillery machine.

^{||10} mm, 2000 kg.

[¶] Copenhagen test piece. ** Mesnager test piece.

^{§ 10} mm, 1000 kg.

15% NI (21).—(Continued)

	10 %	0 111 (-(0	ittitue	·)			
Treatment	UTS	YP	PL	Ela*	RA	BHN	ScH	d;0	No.
	10.00		<u> </u>		1				bends†
Cu,	87.45;	Al, 6.9	3 Ni	, 5.62.	(Con	tinued.)		
(420°)	81.0	78.9	48.9	14	47			1	
500°	83.8	79.5	39.4	17	38				
A { 600° } 30 {	70.9	57.3	25.2	28	40				
700°	63.6	44.1	23.6	33	53				
800°	59.4	32.4	23.6		60				
D. 1 in dia Qw	42.6	13.2		80.5	75			_	
R I in. diam. C. II	59.1	28.4		29.5	35				
R in. diam.	46.0	13.6	6.3	,	69	ŀ			
(C. 55	60.5	25.7	16.5		34				
900° Q _w (1 in. diam.)	46.0	13.6	6.3		69	i .			
600°/30	62.5	29.0	18.9		32	ł			
Same, Tp 600°/2 h	i	35.4	22.8	1	20	ŀ			
	68.1	35.8	20.5	26	25				
(700°/30	61.0	24.3	15.8	36	33				
Re in diam	60.0	54.5	20.5	27	47	176			
Rh i in. diam	77.3	72.6	47.3	20	47	241			
Re in diam	89.0	87.2	18.9	9	32	237			
Re in diam., W			1	1			1		
300° Ca	59.7	53.2	36.2	22	51			_	
		, 87.58	; Al.	7.39: 1	Ni, 5.03				
G		12.9	ı	50	56	84			
G A 900° C-tt		20.8		24.5	34	132			
G _m A 900° C _s ‡‡ G _m , W 900° Q _w Tp			l	8	15	102			
Gm. W 800 Qw IP			'	<u> </u>		<u> </u>		·	<u> </u>
	Cu	, 85.18	; Al,	7.88;	N1, 6.94				
$G_m\ldots\ldots\ldots\ldots$		15.1	l	69	56	87			i
Gm A 900° Catt		26.2		17.5	28	150	ŀ		
G _m , W 900° Q _w Tp	49.3	36.9		4	9	l			
	Cu	, 87.45	; Al,	7.91;	Ni, 4.64				_
Re in. diam	85.2	82.7	9.5		36			1	
(100°)	84.3	81.1	14.2		36				
A 200° 30	88.7	86.6	15.8	1	29				
300°	88.5	87.6	42.5		35				
A.300°/68 h	88.4	87.4			38	l			
			47.3					-	
(420°)	85.4	84.3	52.0		38				!
500°	83.2	80.0	48.8	1	38		l		i
A { 600° } 30 {	70.6	55.5	33.1		47				
700°	67.2	42.7	31.5	1	47		1	1	
(800°)	64.1	35.5	29.9	46	47				
D 1 in diam ∫ Qw	42.5	13.9	7.1	75	70		1		
R in. diam. Catt	56.3	22.7	13.4	33	37	1	l		
D. 1 :- J:- \(\int \text{Qw} \cdots \)	47.7	14.3	7.1	74	59				
$R \neq \text{in. diam.} \left\{ \begin{array}{c} C_n \S \S \end{array} \right\}$	59.6	22.7	12.6		38				
			1						
900° Q _w (1 in. diam.)	47.7	14.3	7.1	1	59		1		ŀ
600°/30	62.2	26.2	15.8	1	34	1			l
Same, Tp 600°/2 h	1	31.5	17.3		22	1			
Ca 700°/30	67.4	31.8	17.3		25	1	ł		
(800°/30	62.5	25.0	12.6		31				
• •	64.0	58.4	25.2	1	42	189		1	1
Rh in diam		73.2	50.4		47	231	1		1
Re in diam	85.2	82.7	9.5	15	36	249		i	
Cu, 8	9.94;	Al, 10.0	6 and	(Cu, 9	00.00; A	l, 10.0	0)‡		
G _m	T	18.35	1	19.46			20.0	7.54	
R A 900°		22.7	1	9.0	10.4	127	20.5	7.54	1
R, W 900° Q _w ¶		55.1**		2.3	3.9	257	62.0	7.54	"
Re	1	66.1	1	9.0	12.4	186	33.0		231
			4 0 = .3		<u></u>			061+	
Cu, 89.14; A			4 and					A011	
G _m	55.9	20.2	1	20.25	21.5		33.0	1	1
R A 900°			1	İ	l	139	22.0		
R, W 900° Q _w ¶	1	1	ļ	1	1	211	56.0	[1
R _c	<u> </u>	<u> </u>	1	<u> </u>		214	39.0	<u> </u>	
	Cı	1, 87.66	; Al,	9.88;	Ni, 2.46	3			
G _m	1	1	ī	ī		176	36.5	7.55	
R A 900°	50.2	28.5	1	12.3	13.0	158	27.0	7.54	1
R 900° Q _w ¶	1	20.0	1	5.4	5.4	206	49.0	7.54	
R _c		58.1	1	13.0	11.0	207	38.0	7.56	
			<u> </u>						100
Cu, 85.11; A	1, 9.94;	Ni, 4.9	o and	(Cu, 8	55.26; A	1, 9.56;	N1, 5.		
G _m		31.35		7.2	10.1	199	41.0	7.56	1
R A 900°	54.5	28.4	1	16.2	17.4	151	25.0	7.63	147
R, W 900° C _a		28.5	1	12.9	10.0	1		1	1
R, W 900° Q _w ¶		28.4**	1	4.2	5.5	251	53.0	7.63	1
		63.3	1	12.1	8.4	216	40.0	7.63	
Re	81.0	100.0	•	1.2.	,		,		

Table 31.—Properties of Alloys Containing up to 10% AL, | Table 31.—Properties of Alloys Containing up to 10% AL, 15% N1 (21).—(Continued)

Treatment	UTS	YP	PL	Ela*	RA	BHN	Sc H	d420	No. bends
	Cı	1, 82.82;	Al,	9.70;	Vi. 7.48				
G _m	.]	1				179	35.0	7.60	
R A 900°	. 61.3	29.6		13.1	15.1	162	26.0	7.57	54
R, W 900° C	. 67.2	26.8		15.2	14.1	i			
R, W 900° Qw¶	. 78.1	31.5**		6.3	5.5	209	40.0	7.58	
$R_{\boldsymbol{e}},\dots\dots$. 82.0	75.3		12.3	16.3	231	43.0	7.57	54
Cu, 79.94; Al	, 9.92;	Ni, 10.14	and	(Cu, 8	0.39; A	1, 9.61	; Ni, 1	0.00);	:
G _m	60.6	39.5		2.8	4.6	182	35.0	7.53	
Gm A	. 58.6	30.45	Ì	15.0	17.8				
R A 900°						173	28.0		ł
R, W 900° Q _w ¶	.]	1				214	45.0		ŀ
Cu, 75.34; Al,	10.04;	Ni, 14.62	and	(Cu, 74	1.26; Al	, 9.99;	Ni, 15	.75)‡	
Gm	46.0	26.0	1	3.2	5.5	1825	32.0	7.60	
R, W 900° Qw¶						2054	45.0	, i	}

- * Diam. = 0.564 in.
- † No. of bends, Arnold machine.
- ‡ Data for the alloy in parentheses are marked § in this section.
- || A 900°/15 C_f, (900-450°/90 m).
- ¶ Trt 1 in. diam. W 900°/15 Qw.
- ** By extensometer, all others by autographic recorder.
- †† Load = 1000 kg.
- 11 C 900-700°/35 m.
- §§ C 900-700°/200 m.
- [] Tp 700°/30 Ca.

Table 32.—Brinell Hardness Number* at High Temperatures (12)

% Al	% Nit	t,°C 20 250	350 450 5	50 600 700	800 900 950
7.22	4.01	89 83.8	81.9 79 76	3.5 65 39	21.5 12.5 9

^{* 10} m, 500 kg.

[†] Trace of Fe present.

Table 33.—Brinell Hardness Number of Specimens Cooled at Different Rates (21)

% Al	% Ni	Qw	2	10	35	50	95	145	200
5.32	4.84	73	71	77	97	116	117	129	120
5.21	7.31	87	84	154	176	168	148	159	145
5.34	7.34	88	83	156	180	167	156	152	148
6.93	5.62	91	90	148	152	152	140	139	137
7.91	4.64	91	87	129	129	131	137	146	125

 $[\]tau$ = Time in minutes taken to cool from 900 to 700°.

Cu-Al-P
TABLE 34.—Cu-Al-P Alloys (20)

Wt.	%	M. P.,	Trt*	UTS	YP†	El.	RA.	BHNt	ScH	No.
Al	P	°C	110	013	•••	2.6	10.11	D	5022	bends
5.12			Gm	29.5	7.9	68.0	58.2		8.5	
5.02		1054	A D _c	38.5 42.9		79.1 64.0		77 114	9.0 17.0	741 773
4.97	0.06		$\begin{cases} G_{\mathbf{m}} \dots \\ A \dots \\ D_{\mathbf{c}} \dots \end{cases}$	39.1 49.3		75.9 45.4		75 149	9.0 9.0 27.0	736
5.20	0.25	1045								
4.96	0.25		G _m	28.5	8.5	35.2	31.5	74	9.0	
5.14	0.52	1042	G _m	33.8	9.9	35.2	37.8	79	10.0	
5.30	0.75		G _m	31.5	10.7	19.6	20.8	89	12.5	
5.28	1.02	1030	G _m	24.7	14.5	9.7	13.0	94	13.7	
10.06		1038	$\begin{cases} G_m, \dots, \\ A, \dots, \\ D_c, \dots \end{cases}$	48.5 69.6			7.0 12.4		20.0 21.5 33.0	38
10.07	0.03		$\begin{cases} G_{\mathbf{m}}, \dots, \\ A, \dots, \\ D_{\mathbf{c}}, \dots \end{cases}$	51.4 71.8	26.0 69.9				19.5 23.0 35.0	36
10.27	0.18	1025	G _m	42.8	8.8	8.3	13.4	156	24.5	
9.95	0.40		G _m	40.8	12.6	11.1	17.0	130	20.0	
9.70	0.50	1019	Gm	29.5	9.1	3.9	9.2	133	22.5	

 $[*] A = A 800^{\circ}/10 C_{gm}$

Cu-Al-Si
Table 35.—Hardness (BHN) of Cu-Al-Si Alloys (12)

% Al	% Si	20	250	350	450	550	650	750	850	900
2.54	2.59	59.4	51	48.4 23.6	40.2	32.4	20	15	10.6	
5.61	1.31	34.4	25.8	23.6	29.4	26.1	28	17.2	14.5	6.3

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Bornemann and Sauerwald, 96, 14: 145; 22. (2) Bregowsky and Spring, Valve World, 10: 3; 13. (3) Carpenter and Edwards, 403, 1907: 57. (4) Comstock, Foundry, 47: 189; 19. (5) Comstock, 33, 22: 1113; 20. (6) Comstock, 80, 71: 806; 25. (7) Corse, 80, 9: 194; 15. (6) Corse, 0. (7) Corse and Comstock, 66, 16 II: 118; 16.
- Corse and Comstock, 40, 10: 119; 16. (11) Greaves and Jones, 47, 34: 85; 25. (12) Guillet, 74, 21: 295; 24. (13) Kent, Mech. Eng. Handbook, 10th ed., p. 500. N. Y., Wiley, 1923. (14) Lussana, 59, 19: 182; 10. (15) Marks, Mech. Eng. Handbook, 2nd ed., p. 574. N. Y., McGraw-Hill Book Company, Inc., 1924. (16) Matsuda, 169, 13: 401; 25. (17) Matsuda, 169, 14: 343; 25. (18) Matsuda and Shiba, 169, 13: 413; 25. (19) Portevin and Arnou, 74, 13: 101; 16.
- (20) Read, 47, 10: 344; 13. (21) Read and Greaves, 47, 11: 169; 14. 26: 57; 21. (22) Reader, 47, 29: 297; 23. (23) Rosenhain, 403, 1907; 290. (24) Rosenhain and Hanson, 47, 21: 253; 19. (25) Rosenhain and Lantsberry, 403, 1910: 119. (26) Seidell and Horowitz, 53, 21: 179; 19. (27) Upthegrove and White, 66, 24 II: 88; 24.

[†] By autographic recorder.

^{‡ 10} mm, 300 kg.

[§] Distinct smell of PH₂ on turning down.

CONTENTS

BHN§....

Ag-Al; for BHN v. Fig. 2

Ag, Au, Hg, Ir, Os, Pd, Pt, Rh, Ru, AND THEIR ALLOYS

THOMAS K. ROSE

Matières

CONTENTS		•	IAIIEMES		LAHADI
Mechanical propertie	s.	Propriétés 1			Mechanische
Elastic properties.		Propriétés é		_	Elastische Ei
Effect of temperature	on elastic	Effet de la			Temperature
properties.		propriete	s élastiques.		stischen Ei
Compressibility of	Ag-Au al-	Compressib	ilité des alli	ages Ag-	Kompressibil
loys.	-B	Au.		-BB	Legierunge
Specific volume of all	oys.	Volume spo	cifique des	alliages.	Spezifisches
			•		gierungen.
Specific gravity of all	oys.	Poids spéci	fique des al	liages.	Spezifisches
~					gierungen.
Surface tension of an	nalgams.	Tension su	perficielle d	es amal-	Oberflächens
Annualing and arran	.h:	games.			game.
Annealing and quence peratures.	ening tem-	Températu	re de recui	it et de	Anlassungs- kungs-Tem
peratures.		trempe.			Kungs-Ten
TABLE	1МЕСНА	NICAL PROPE	RTIES		Table
	Aį	ζ			
(D _d) (2, 6, 14, 18, 5	0. 74. 101)	(A,R) BH	IN 12513	8 51 68	% Au
. 00 000 000	2 15 100 200	**	'S 8.5 10		$\frac{\sqrt{6}}{MSH}$
	- — — — — — —	-11 1			
UTS 64 53	3 31 23 18.5) Et.	31 1	2 4 4	For LCH v
(DA) $t,^{\circ}$ C	15 100 150	200 250	300 350	400 460	
$(2, 48, 101) \overline{UTS} $	17 16 13.	6 11.4 8.9	7.1 6.0	5.2 4.8	Ag, 9
Trt	TIMO L VD	l Dr (E	1.04.1	7.,	
	$\frac{UTS + YP}{10 + 0 + 1}$	PL El		Lit.	$\overline{G_{f s},\ldots\ldots}$
-	10.8 2.4	0.74 41		(87, 91)	
G _m	11.5 3.3	1.8 59.	5 66.7		G _m
Trt UB	M* No. B*	UWB* I	S† YPc	Lit.	Trt
G 1.	91 11.8	30.4	2.4	(87)	G
	99 17.1		.74 1.9	- ` 	G _m
		00.0 2			
Trt -1	$00\frac{\Delta l}{l_0}$ 5	10 00		.	Trt
111	$\frac{100\overline{l_0}}{l_0}$ 5	10 20	40	Lit.	
$G_{\mathbf{G}} = \int G_{\bullet}, \dots, G_{\bullet} $	5.8	10.2 18.	7 33.9	(87)	$ \operatorname{CS} \left\{ \left \frac{G_{\bullet \cdots}}{G_{\bullet \cdots}} \right \right\} \right\}$
$\operatorname{CS} \left\{ \frac{\operatorname{G}_{\mathtt{m}}}{\operatorname{G}_{\mathtt{m}}} \right\}$		11.5 20.		` ′	(G _m
		1 1			T
<u>Trt</u>		G. Rd			G
ScH ‡	7–12	8 48	MSH v.	Ag-Au	$G_{\mathbf{m}} \dots \dots$
<u>Lit</u>	(7	8, 87)			
A at:	1050 1 150	9 2009	1000 1050	1 7::	1011
	125° 150		160° 105°	Lit.	10 ³ b
For:	30 m 1 l		0 m 120 h	(78)	ScH‡
ScH ‡	31 16		7 16.5	<u> </u>	BHN¶
$(G) BHN\S = 30 (2)$				7).	
$(R, A) BHN \S = 30$		15, 24, 42, 8	⁵).	}	
$(R_d) BHN = 89.7$	(24).				$\overline{\mathbf{G_s} \dots \dots \dots}$
t, °C	-38 0	40	80 140	Lit.	G _m
$\overline{BHN} \parallel \dots \dots$	37.5 36.		33.5 32.0	(29)	эш
•00		1			Tri
t, °C		18	200	Lit.	Trt
APRIL ALK		1 00 0			

Inhaltsverzeichnis	INDICE PAGE
hanische Eigenschaften.	Proprietà meccaniche 584
tische Eigenschaften.	Proprietà elastiche 588
peratureinfluss auf die ela- ischen Eigenschaften.	Influenza della tempera- tura sulle proprietà ela-
	stiche 588
npressibilität von Ag-Au-	Compressibilità delle leghe
egierungen.	di Ag-Au 589
zifisches Volumen von Le- erungen.	Volume specifico delle leghe 589
zifisches Gewicht von Le- erungen.	Peso specifico delle leghe. 589
rflächenspannung der Amal- ame.	Tensione superficiale degli amalgame
assungs- und Abschrek- ungs-Temperaturen.	Temperature di ricottura e di immerzione 591

						-	ntinu	•	
			g-Au			,			
% Au	0		15		80		0	Lit.	
<i>MSH</i>	50.8	7:	2.8	90).9	97	.4	(44)	
For LCH v. Fig. 5	•								
Ag	-Cu ; v.	also	Fig.	3 for	r BH	'N			
Ag, 92.5; Cu	, 7.5 (s	tand	lard o	r ste	rling	silve	r) (8	7)	
Trt			UTS	Y	$P \mid$	PL	El.	RA	
G ₈			22.2	12	.8	7.4	41	54.0	
G _m		-	17.2	13	.4	6.2	6.7	75 15.8	
Trt	-UB	M*	No.	B*	UV	VB*	IS	YPe	
G ₈			10).4	1.8		
G _m	_	37	3	. 4		2.21		_	
		_							
Trt	$100_{l_{\circ}}^{\Delta l}$		5]	10	2	90	40	
$\operatorname{CS} \left\{ \left \begin{array}{c} G_{\bullet} \dots \end{array} \right. \right. \right\}$		19	9.8	25	5.7	37	.5	49.9	
CS \ G _m		2	7.4	33	3.2	41	.1	53.5	
Trt	1	Sc	H	ВН	$N\P$	Lit.		$(\mathbf{D_d})$	
G		1	8	6	0	(87)	U1	CS = 43	
G _m		21-24		63			(74)		
GmR	(1.125	in. t	o b in	ı. thi	ick)	(87)			
10³ b	50	00	250	0	125	5	53	42	
ScH ‡		54	60	o T	68	3		83	
BHN¶		35	15'	7	170)	181	183	
Ag,	92.5; C	Cu, 5	.75; (2d, 1	.75 (87)		· <u>·</u>	
Trt	· · ·		T	Sc	H	1	B	HN¶	
G			.i	2	2	寸		73	
G _m			_	2	3	_ -		74	
Trt -10	$00\frac{\Delta l}{l_{\bullet}}$		5	1	10	2	10	40	
	_								

Table 1.—Mechanical Properties.—(Continued)
G_mR (1.125 in. to b in. thick)

10 ⁸ b		500	250	125	53	42	
ScH‡		53	57	67		75	
$BHN\P$		134	150	164	173	173	
Trt	U7	rs	YP	PL	El _a	RA	
G	20	.7	9.9	3.6	4.0	49.7	
G_{m}	13	.3	8.9	2.5	9.0	21.4	
Trt	UBM*	No.	$B^* \mid U$	/WB*	IS†	YP _C	
G	3.25	12.	1	59.4	2.40	10.7	
G _m	3.58	25	1 1	38.3	2.74	11.0	

Ag-Cu (G), $10 \times BHN$ (9.5 mm Ball); Effect of Rate of Cooling (42)

% Cu Load	5.2	2 13.	0	23.	0		28	. 2		33 .	0	50)
100 kg													
500 kg	356	A 763	Cq	945	Cq	618	$C_{\mathbf{r}}$	425	A	1005	$C_{\mathbf{q}}$	725	$C_{\mathbf{q}}$

	7 Cu	7.5	8.3	10.0	16.5	20.0	28.0	Lit.
ScH‡{	$egin{array}{c} \mathbf{R_d}, \dots, \\ \mathbf{A}, \dots \end{array}$	$\frac{56}{20}$	$\frac{71}{23}$	$\frac{73}{23.5}$	$\frac{75}{28.5}$	76 31	$\frac{77}{28.5}$	(78)

Ag, 83.5; Cu, 16.5 (G), BHN = 68; (10 mm, 1000 kg) (24) Ag-Cd; Ag-Mg; Ag₂Te

Compound	BHN	Lit.
Ag-Cd	74.1	(45)
Ag-Mg v. also Fig. 2	68-76	7
Ag:-Te	25.8	_

Ag-Pd; for UTS v. Fig. 1

A = S = (10 ball)	<i>P</i> , kg	50	100	200	Lit.
Ag ₃ -Sn (10 mm ball)	<i>BHN</i>	47.8	62.5	73.1	(45)

UCS of Ag-Sn amalgams v. (19).

Table 1.—Mechanical Properties.—(Continued)
Au, Pure

$(\mathrm{D_d}) \ (2,6,14,101)$					Trt		UTS Lit.		
<i>t</i> , °C	. -	18	2 1	5 100	200	DA.		10	(101)
\overline{UTS}	. 3	1.7	2	5 15.	8 13.1	G		11.0	(2, 73)
Trt		G	R _d	RA, 107°	RA, 115°	RA, 122°	RA, 129°	RA, 150°	Lit.
ScH*‡									

 (G_{ns}) $El_b = 30.8$ (73); for LCH, v. Fig. 5. (RA) BHN = 25 (13.6-33) (15.24, 42, 46, 64); (R_d) LCH = 61 (79).

Au (impure) (G_m) (73); v. also Fig. 5 for LCH

Au (impure	(Cm)	(·•), v.	mso Life	5. 9 101 1	DOM	
100 × %	20 Ag	19 Al	21 Bi	20 Cd	19 Cu	29 In
UTS	11.2	13.9	0.8	10.8	12.9	12.55
El _b	33.3	25.5	ca. 0	44.0	43.5	26.5
RA		46	0			72
100 × %	20 K	20 Li	20 Mn	24 Pb	20 Pd	20 Rh
UTS	<0.8	13.9	12.55	6.5	11.2	12.2
El _b	ca. 0	21.0	29.7	4.9	32.6	25.0
RA	0	60		ca. 0	75	
100 × %	20 Sb	20 Sn	19 Te	19 Tl	20 Zn	20 Zr
<i>UTS</i>	9.0	9.75	6.1	9.75	11.8	
El _b		12.3	ca. 0	8.6	28.4	12
$\overline{RA}\dots\dots\dots\dots$	54		0	15	74	

Au-Ag

% Ag	0	15	35	50	Lit.
MSH	44.5	78.1	88.7	97.4	(44)

For effect on scleroscope hardness of small amounts of Ag, Cu, H, v. (79).

ScH (79)

% Ag	Trt	R _d	A 250°	A 450°
8.3		41	41	7
25 .0		49	43	10
50.0		47		10
62.5		49	39	11.5

Au-Ag-Cu (nuggets) (104)

	compositio	n	BHN				
Au	Ag	Cu	Natural	(A)	(Pr)		
92.46	6.82	0.23	33.0	19.2			
89.25	9.30	0.50	44.5	19.5	38-42		
79.3	17.3	3.4	34.0	20.8	1		

Au-Cd

For BHN v. Fig. 2, p. 549.

Au-Cu

% Cu	0	10	20	30	40	50	60	70	80	90	Lit.
IS**	11.5††	16.5	2	3	4.5	9.5	8	11.5	9.5	7	(64
% Cu		0	1	15		35		50	<u> </u>	L	it.
MSH		44.5	i	65.	5	93.	<u>o i</u>	107	. 1	(4	14)

TABLE 1.—MECHANICAL PROPERTIES.—(Continued)

(4, 35, 75)			ScH (78)			
% Cu	UTS	Trt	G	Rd	A	
8.3	28.3	G	23	65	23	
10.0	45.8	D_d		69	29	
16.6	35.1	G	For	BHN; v. Fi	g. 4	

Au-Cu-Ag (99)

% composition	Trt	G	AQ	Rd	G	AQ	R_d
Cu	Ag		ScH‡			BHN	
27.5	10	48	44	75	160		
25	25	66	48	73	205	159	
40	10	36		75	123		245

Au-Cu-X (G) (99)

% composition	ScH	BHN
Au, 50; Cu, 48; Al, 2	20	88
Au, 50; Cu, 48; Ni, 2	22	91

Au, 58; Cu, 30; Ag, 12, (D_d) UTS = 102.0 (9)

Au-Ni (42)

% Ni	Trt	BHN	% Ni	Trt	BHN‡‡
0	\mathbf{C}_{ullet}	13.6	23.5	C _q	235
9.5	\mathbf{C}_{ullet}	84.0	23.5	Q, A 72 h	140
20	\mathbf{C}_{ullet}	191.5	30	C _•	183
23.5	\mathbf{C}_{ullet}	205	40	C.	159
23.5	$\mathbf{C_r}$	150			

Au-Pt

For UTS v. Fig. 1.

Cu-Au-X (80)

% Cor	Trt np.	G	R _d	A 650°	% Com	Trt p.	G	R _d	A 650°
Au	Ag		ScH :		Au	Al		ScH ‡	
20 25	50 20	36 31	86 81		40 40	6	22 26	90	
25 25	15 10	29 25	78 71		Au	Ni			
25	988	28	72		25 25	5 2.5	22 23	66 63	
40 40	30 10	65 34	94	46	30 40	5 2.5	26 23	70 72	
40	0	21	84	38	40 40	5	25 32	83	43 40

Hg-X (amalgams)

Effect of time on hardness || || (90)

TT		BHN	799				
Hours after mixing	92.5 % Cd	95.0 % Pb	94.8 % Sm	75.0 % Z n			
0.25	23.9	12.1	15.4	25.5			
6			21.3				
24	31.2	13.6	22.6	76.0			
48	31.2	13.6	23.2	76.0			

TABLE 1.—MECHANICAL PROPERTIES.—(Continued)
Hardness of Tl-Hg

BHN*** (68)								
% Hg	50 kg	100 kg						
0	1.57							
1	3.19							
3	4.15	4.85						
5	4.99	5.12						
7	3.60	3.85						
9	3.66	3.93						
11	3.18	3.36						

TABLE 1.—MECHANICAL PROPERTIES.—(Continued)

For effect of time on hardness of other, less hard amalgams of Cd, Pb, Sn, Zn; also for hardness of amalgams of Cu $(BHN, \max.$ at 35% Cu) and Ag-Sn amalgams $(BHN, \max.$ at 60% Ag, 22% Sn), v. (90).

For UCS of Ag-Sn amalgams, v. (19).

Tr

BHN of cast Ir = 172 (10).

Pd

UTS of hard drawn wire = 38 (18); = 27.4 (9).

BHN of cast Pd = 49 (10).

For UTS of Pd-Ag, Pd-Pt, v. Fig. 1.

Pt BHN (103)

Load, kg		1
Source or Trt	100	200
Heraeus	31	34
Russian	40	46
Pure (Hm)	60	64
Pure (A)	24	26

UTS of D_d wire = 34 (9, 18, 47, 56, 101); of A wire = 24.5 (9, 47, 101).

Trt	G	A 300°	A 650°	Lit.
BHN	117	121	46	(10)

Nuggets: Natural state, BHN = 105-108; annealed, BHN = 86-88 (104).

Pt-Ir (BHN)

Trt	% Ir	5	10‡‡‡	15	20	25	30	Lit.
$\overline{H_{wk} \dots \dots}$	117	170	220	280	330	370	400	(10)
A 1150°	47‡‡	110;;;	150	190	230	270	310	

Load, kg	100	200	Lit.
1	25	27	(103)
2.5	32	35	

For UTS of Pt-Ir, Pt-Pd, v. Fig. 1.

Pt-Os

Os has about 2.5 times the hardening effect of Ir (10).

Pt-Rh

Pt, 90; Rh, 10 (A); BHN = 90 (10).

Dh

BHN of cast Rh = 139 (10).

Ru

BHN of impure cast Ru = 220 (10).

- *Sankey machine: Test piece, $\frac{3}{6}$ in. diam; length between jaws = 1.75 in.; angle of bending = $45\frac{3}{4}$ deg. No. B = Number of bends.
- † Charpy machine: Standard 10 \times 10 mm specimen, 40 mm span, 5 mm keyhole notch.
 - ‡ Magnifier hammer.
- § BHN determined with 10 mm ball, 400-100 kg load, or with smaller ball and equivalent loads. In all cases loads are less than the standard $P=30~\mathrm{D}^2$.
 - || 10 mm; 500 kg. || 3.96 mm, 210 kg.
 - ** Guillery machine.
 - †† Test piece bent, no sign of fracture.
 - \$\$ 9.52 mm ball, 500 kg load.
 - §§ Contains 1 % Ni.
 - || || At 20°C.
 - ¶¶ 2 mm ball, 8.7 kg load.
 - *** 10 mm ball, BHN = load + area of impression.
 - ††† 10 % Ir (G) BHN = 170.
 - ‡‡‡ A 1000°.

Table 2.—Elastic Properties Ag; v. also Fig. 6

Trt	D_d	DA	Lit.	Trt = D	Lit.
		200 15 6374 730	(20, 21, 93, 95, 101)	G = 2650 $(2470-2940)$	(21, 27, 28, 33, 38, 41, 63, 82, 89, 94)

 $\lambda = 0.37 \text{ (DA) (1, 7, 22, 34, 47, 81, 83, 93); } \lambda = 0.39 \text{ (Dd) (93)}.$

Ag, 66.6; Pt, 33.3 (93, 95)

 (D_d) : E = 10000, G = 3023. (A): E = 10510, G = 3699, $\lambda = 0.42$.

Au; v. also Fig. 6

Trt G Dd	A	Lit.	II	Trt = D	Lit.
t, °C 15 E 7580 8000 * 5584	100 5408	200 (20, 21, 5482 60, 93, 101)	59,	G = 2600 (2495-3950)	(20, 27, 28, 33, 38, 41, 89, 96)

 $\lambda = 0.42 (34, 47).$

Ir

 $E = 52700 \, (\mathrm{D_d}) \, (20).$

Pd; v. also Fig. 6

Trt	D_d	A	Lit.	11	G	Lit.
$E \dots$	12000		(20, 21, 37, 82,			(21, 37, 38, 82,
		1	98, 101, 102)	# (4000-5210)	101)

 $\lambda = 0.39 (33, 47).$

Pd saturated with H₂

E = 13.2% (10-21%) < E for pure Pd. G = 12.7% (10.0-16.5%) < G for pure Pd (37).

Pt; v. also Fig. 6

Trt	Dd		A	Ī	Lit.	11 .	lrt = D	1	Lit.
t, °C	l	ca. 15	100	200	(20, 22, 55,	1	G = 65so	(21,	27, 28,
E	17000‡	15200	14178	12964	59, 82, 93, 95, 101, 102	(6	15o-693o	38,	41, 63,
	1	l			95, 101, 102) ^į i		82.	94)

 $\lambda = 0.38 (22, 33, 47).$

Pt, 85; Rh, 15

G = 6600 (28); v. also Fig. 6.

Rh

 $E = 30000 \, (\mathrm{D_d}) \, (^{20}).$

- * (778o-863o).
- † (10000-14300).
- 1 (16080-17900).
- § (14900-15600).

Table 3.—Effect of Temperature on Elastic Properties

See also Fig. 6

	Metal	Ag	Au	Pd Pt	Rh	Lit.
$E_{0 \text{ abs}}$	$/E_0^{\circ}_{\mathbf{C}}$	1.3		1.27 1.27	1.18	(55)
Metal	$100\frac{E_0 - E_{100}}{E_0}$	Lit.	$100\frac{G_0-G_{100}}{G_0}$	Lit.	$100 \frac{\lambda_0 - \lambda_{10}}{\lambda_0}$	Lit.
Ag	$\frac{3.97}{-\Delta E \text{ for } 100}$		7	(20, 27, 28, 33, 38)	14	(7, 23)
Au	3.6 (2.92-4.09)	(33, 97,	3	(27, 28, 32, 38, 82)	25	(33)
Ir			4	(20)		
Pd	2	(33, 52)	3	(20, 37, 38, 82, 101)	•	
Pt	$-\Delta E \text{ for } 100^{\circ} = 0.73\%$	(62)	(0.14-1.78)	(27, 28, 38, 82)	5.5	(88)
Rh			3.7	(20, 21, 22, 82, 82)		

TABLE 4.—COMPRESSIBILITY OF AG-AU (4) For compressibility of pure metals, v. vol. III.

100 × % Ag	0	116	586	1415	2317	3399	4773	6771	8555	9649
10 ⁸ x	155	140	160	126	111	113	113	130	134	146

 $\chi = \frac{1}{V_0} \frac{\Delta V}{\Delta p}$ where $\Delta p = 1$ atm.

TABLE 5.—Specific Volume of Alloys

System	10 ⁵ a*	10ъ*	Range† of ob- serva- tions, %	Max. error, %	Inter- sec- tion‡	Lit.
Ag-Au	9500	-4309	0–100	+0.2		(53)
Ag-Bi	9550	630	0-100	-0.4		(53)
Ag-Cd	9700	1034	17-46	-0.4		(54)
Ag-Cu	9480	1760	0-100	+0.7		(53)
Ag-Pb	9551	-760	0-100	+0.7		(53)
Ag-Pd {	9533 9244	-1386 -844	0-40 60-100	$\left.\begin{array}{c} +0.7 \\ \pm 0.2 \end{array}\right\}$	52	(58) §
Au-Cu	5191	6050	0-100	+0.7		(53)
Au-Pb	5191	3599	0-100	-1.0		(53, 57)
Au-Sn	5191	8520	0-100	-1.5		(53)
Hg-In	7385	5830	0.4-1.9	±0.04		(70) §
Hg-Pb	7368	1422	0-100	-1.0		(53)
Hg-Sn {	7368 7368	6345 6212	0-100 0-100	-0.9 +0.8		(53) (10, 26, 40) §
Hg-T1	7368 7674	1238 772		$\begin{bmatrix} \pm 0.1 \\ -0.2 \end{bmatrix}$	66 {	(66, 70) (68) §
Hg-Zn {	7368 7006	6556 7212		$\left.\begin{array}{c} +0.5 \\ +0.1 \end{array}\right\}$	56	(12, 54) §
Ir-Pt	4461	190	0-100	±0.2		(53)

^{*} Specific vol. = a + bx, where x = %by weight of second metal in formula of the alloy system.

Table 6.—Specific Gravities of Alloys For specific gravities of pure metals, v. p. 456

% composition	Treatment, description	Test temp., °C	Ref. temp., °C	d*	Lit.
Ag-Au	r. Fig. 8 and Table	5			
Ag, 67.5; Bi, 32.5	G \ v. also Table \	15.1	15.1	10.323	(26)
51 49	G) 5	13.2	13.2	10.197	(26)
Ag-Cd	v. Table 5				
Ag, 92.5; Cu, 7.5	Rd	15	4	10.3485	(78)
	A 700°	15	4	10.2469	(⁷⁸)
	Coin	13	l	10.37	(77, 86)
Ag, 83.5; Cu, 16.5	G	18.5	18.5	9.99932	(61)
(v. also Fig. 7 and	A	18.5	18.5	10.00206	
Table 5).	AR	18.5	18.5	10.20244	
	ARA	18.5	18.5	10.20251	
	ARAR	18.5	18.5	10.20759	
	ARARA	18.5	18.5	10.21648	
	Same, struck	18.5	18.5	10.21636	
	French coin	15		10.16-10.20	(86)
Ag. 80.0; Cu, 20.0.	Canadian coin	15		10.13	(86)
A = 71 0. Cm 00 1	Molten			9.0554	(71)
Ag, 71.9; Cu, 28.1	Netherlands gulden			10.011	(86)
Ag, 50.0; Cu, 50.0.	English coin	13		9.640-9.642	(86)
Ag, 50; Cu, 41; Ni, 9	English coin	13		9.60-9.61	(86)

Table 6.—Specific Gravities of Alloys.—(Continued)
For specific gravities of pure metals, v. p. 456

ror spe	ecific gravities of	bare ir	ietais,	v. p. 400	
	T	Test	Ref.		
% composition	Treatment,	temp.,	temp.,	d*	Lit.
	description	°C	. °C		
Ag, 67.6; Pb, 32.4	G v. also Table	13.5		10.800	(57)
51.1 48.9	G 5	13.8		10.925	, ,
Ag-Pd	v. Table 5				
				10.40	(54)
Ag, 100; Sb, 0 85.4 14.6	All alloys show expansion, max.			10.49	(54)
74.6 25.4	being at 25.4 %			10.017 9.682	
69.5 30.5	Sb			9.082	
Ag, 78.8; Sn, 21.2	G	14.8		9.953	(26)
Ag, 73.16; Sn, 26.84	Filings	25	4	9.80	(16, 36,
(AgaSn) Contrac-					51)
tion of sp. vol. =	Same, A 100°	25	4	9.89	(36)
5 % (19).	In mass	0	4	9.8690	(51)
	Filings	0	4	9.7772	(51)
'	Same, A 100°/2 h	0	4	9.8088	(51)
	Same, A 350°/5 h		4	9.8441	(51)
Ag, 70.8; Sn, 29.2	Maximum contraction	on of sp	ecific v	ol.	(53)
Ag, 65; Sn, 35	G	12.9		9.507	(26)
Ag, 54.7; Zn, 45.3	G			8.744	(54)
Au-Ag	v. Fig. 8 and Table	5			
Au Ag Cu					
87.5 7.5 5.0	Struck in coin press		l '	17.14	(86)
62.5	15 carat gold waret			13.22-14.08	(86)
	G	10			
Au, 65.4; Bi, 34.6		16		14.844	(26)
Au, 91.6; Cu, 8.3	British coin	15		17.48	(8, 76,
		_			56)
90 10	Scandinavian coin	0	4	17.1711	(8)
87.5 12.5	Egyptian coin	 		16.794	(86)
	v. also Fig. 8 a		e 5	16.794	(86)
Au-Pb and Au-Sn	v. also Fig. 8 a		le 5	16.794	(86)
	v. also Fig. 8 a		le 5	16.794	(56)
Au-Pb and Au-Sn	v. also Fig. 8 a		e 5	15.412	(13)
Au-Pb and Au-Sn	v. also Fig. 8 a		le 5	15.412	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9 Hg, 32.5; Bi, 67.5	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19)		e 5		
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5 Hg-Cd	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10		e 5	15.412	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5 Hg-Cd	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19)		le 5	15.412	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Fig. 10 r. Table 5		le 5	15.412	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a		le 5	15.412	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and	20	e 5	15.412	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5 Hg-Cd	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a	20 20	4 4	15.412 10.45 13.536 13.539	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and	20	4	15.412 10.45	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and	20 20	4 4	15.412 10.45 13.536 13.539	(13)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30.	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) z. Fig. 10 c. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12	20 20 20 20 20 20 20	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519	(12)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30. 99.55 0.45	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 v. also Table 5	5 20 20 20 20 20	4 4 4 4 4	13.536 13.539 13.541 13.529	(12)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30.	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 v. also Table 5	20 20 20 20 20 20 20	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519	(12)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30. 99.55 0.45	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5	20 20 20 20 20 20 20	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519 13.513	(87)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30. 99.55 0.45	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5	20 20 20 20 20 20 20 20 20	4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519	(12)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30. 99.55 0.45 Hg-T1 Hg, 99.02; Zn, 0.980	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5	20 20 20 20 20 20 20 25	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519 13.513	(87)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30. 99.55 0.45 Hg-T1 Hg, 99.02; Zn, 0.980 98.544 1.456 98.083 1.917	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1*) z. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5 r. Table 5 r. Table 5 r. Table 5	20 20 20 20 20 20 20 20 20 25 25	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519 13.513	(87)
Au-Pb and Au-Sn Hg-Ag Hg, 67. 1; Au, 31. 9. Hg, 32. 5; Bi, 67. 5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98. 98; Pb, 1. 02. 99. 316 0.684 99.603 0.397 Hg, 99. 79; Sn, 0. 21. 99. 70 0. 30. 99. 55 0. 45 Hg-T1 Hg, 99. 02; Zn, 0. 980 98. 544 1. 456 98. 083 1. 917 Ir-Pt	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (19) r. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5	20 20 20 20 20 20 20 20 20 25 25	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519 13.513 13.4490 13.4054 13.3628	(87) (70)
Au-Pb and Au-Sn Hg-Ag Hg, 67 1; Au, 31 9 Hg, 32 5; Bi, 67 5 Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98 98; Pb, 1 02 99 316 0.684 99 603 0.397 Hg, 99 79; Sn, 0.21 99 70 0.30 99 55 0.45 Hg-T1 Hg, 99 02; Zn, 0.980 98 544 1.456 98 083 1.917 Ir-Pt Pd, 60 7; Pb, 39 3.	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1°) v. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12 v. also Table 5 v. also Table 5 v. also Table 5	20 20 20 20 20 20 20 20 25 25 25	4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.513 13.4490 13.4054 13.3628	(13) (13) (67) (70)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21. 99.70 0.30. 99.55 0.45 Hg-T1 Hg, 99.02; Zn, 0.980 98.544 1.456 98.083 1.917 Ir-Pt Pd, 60.7; Pb, 39.3 Pt, 95; Ir, 5	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1*) z. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5 r. Table 5 r. Table 5 r. Table 5	20 20 20 20 20 20 20 25 25 25	4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.513 13.4490 13.4054 13.3628 11.225 21.474	(13) (13) (67) (70) (12) (8) (81)
Au-Pb and Au-Sn Hg-Ag Hg, 67.1; Au, 31.9. Hg, 32.5; Bi, 67.5 Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98.98; Pb, 1.02. 99.316 0.684 99.603 0.397 Hg, 99.79; Sn, 0.21 99.70 0.30 99.55 0.45 Hg-T1 Hg, 99.02; Zn, 0.980 98.544 1.456 98.083 1.917 Ir-Pt Pd, 60.7; Pb, 39.3 Pt, 95; Ir, 5 90. 10	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1*) v. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12 v. also Table 5 v. Table 5 v. Table 5 v. Table 5 v. Table 5 v. Table 5 v. Also Table 5	20 20 20 20 20 20 20 25 25 25	4 4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519 13.4490 13.4054 13.3628	(87) (70) (83) (83) (81) (81, 88)
Au-Pb and Au-Sn Hg-Ag	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1°) v. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12 v. also Table 5 v. also Table 5 v. also Table 5	20 20 20 20 20 20 20 25 25 25 25	4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.519 13.513 13.4490 13.4054 13.3628 11.225 21.474 21.55 21.594	(13) (13) (67) (70) (12) (81) (81, 88) (81)
Au-Pb and Au-Sn Hg-Ag Hg, 67. 1; Au, 31. 9. Hg, 32. 5; Bi, 67. 5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98. 98; Pb, 1. 02. 99. 316 0.684 99.603 0.397 Hg, 99. 79; Sn, 0. 21. 99. 70 0.30. 99. 55 0. 45 Hg-T1 Hg, 99. 02; Zn, 0. 980 98. 544 1. 456 98. 083 1. 917 Ir-Pt Pd, 60. 7; Pb, 39. 3. Pt, 95; Ir, 5 90. 10. 85. 15. 66. 67. 33. 33	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1*) z. Fig. 10 r. Table 5 r. Figs. 11 and 11a r. also Table 5 and Fig. 12 r. also Table 5 r. Table 5 r. Table 5 r. Also Table 5 r. Also Table 5	20 20 20 20 20 20 20 20 20 20 10	4 4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.513 13.4490 13.4054 13.3628 11.225 21.474 21.55 21.594 21.874	(13) (13) (67) (70) (12) (2) (81) (81, 88) (81) (81) (81)
Au-Pb and Au-Sn Hg-Ag Hg, 67. 1; Au, 31. 9. Hg, 32. 5; Bi, 67. 5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98. 98; Pb, 1. 02. 99. 316 0. 684 99. 603 0. 397 Hg, 99. 79; Sn, 0. 21 99. 70 0. 30. 99. 55 0. 45 Hg-T1 Hg, 99. 02; Zn, 0. 980 98. 544 1. 456 98. 083 1. 917 Ir-Pt Pd, 60. 7; Pb, 39. 3. Pt, 95; Ir, 5 90 10 85 15 66. 67 33. 33 5 95	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1*) v. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12 v. also Table 5 v. Table 5 v. Table 5 v. Table 5 v. Table 5 v. Table 5 v. Also Table 5	20 20 20 20 20 20 20 25 25 25 25	4 4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.513 13.4490 13.4054 13.3628 11.225 21.474 21.55 21.594 21.874 22.384	(13) (13) (67) (70) (12) (2) (81) (81) (81) (81) (81) (81)
Au-Pb and Au-Sn Hg-Ag Hg, 67. 1; Au, 31. 9. Hg, 32. 5; Bi, 67. 5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98. 98; Pb, 1. 02. 99. 316 0. 684 99. 603 0. 397 Hg, 99. 79; Sn, 0. 21. 99. 70 0. 30. 99. 55 0. 45. Hg-T1 Hg, 99. 02; Zn, 0. 980 98. 544 1. 456 98. 083 1. 917 Ir-Pt Pd, 60. 7; Pb, 39. 3. Pt, 95; Ir, 5 90 10 85 15 66. 67 33. 33 5 95 Pt, 48. 5; Pb, 51. 5	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1°) z. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12 v. also Table 5 r. Table 5 v. also Table 5 v. Also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5	20 20 20 20 20 20 20 20 20 20 10	4 4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.513 13.4490 13.4054 13.3628 11.225 21.474 21.55 21.594 21.874	(13) (13) (13) (67) (70) (12) (2) (81) (81, 88) (81) (81) (81)
Au-Pb and Au-Sn Hg-Ag Hg, 67. 1; Au, 31. 9. Hg, 32. 5; Bi, 67. 5. Hg-Cd Hg-In Hg-K, Hg-Li, Hg-Na Hg, 98. 98; Pb, 1. 02. 99. 316 0. 684 99. 603 0. 397 Hg, 99. 79; Sn, 0. 21 99. 70 0. 30. 99. 55 0. 45 Hg-T1 Hg, 99. 02; Zn, 0. 980 98. 544 1. 456 98. 083 1. 917 Ir-Pt Pd, 60. 7; Pb, 39. 3. Pt, 95; Ir, 5 90 10 85 15 66. 67 33. 33 5 95	v. also Fig. 8 a r. Fig. 9 and Table v. Fig. 10 and (1°) z. Fig. 10 r. Table 5 r. Figs. 11 and 11a v. also Table 5 and Fig. 12 v. also Table 5 r. Table 5 v. also Table 5 v. Also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5 v. also Table 5	20 20 20 20 20 20 20 20 20 20 10	4 4 4 4 4 4 4 4 4	13.536 13.539 13.541 13.529 13.513 13.4490 13.4054 13.3628 11.225 21.474 21.55 21.594 21.874 22.384	(13) (13) (67) (70) (12) (2) (81) (81) (81) (81) (81) (81)

^{*} If test temp. only is given, d is mass-density g/cm²; if ref. temp. is given also d is specific gravity, referred to H₂O at this ref. temp.

† See Index No. 635.

Digitized by Google

[†] Per cent of second metal.

[‡] Where the results are best represented by two straight lines, the point of intersection is given.

[§] Line determined from data given in literature reference.

Table 7.—Surface Tension of Amalgams in Saturated Water Vapor at $\it ca.$ 18°C (84)

For surface tensions of pure metals v. vol. III

Wt., %	a²-em²	γ dyne/ cm	Wt., %	a2-cm2	γ dyne/ cm
Au, 0.0153	0.0656	435.5	Na, 0.00015	0.0655	435.5
0.0838	. 0639	424.7	0.00067	. 0639	424.2
0.122	. 0639	424.7	0.00222	.0631	418.8
Ba, 0.00045	. 0694	461.0	0.0490	. 0596	393.3
0.0022	.0728	483.5	0.0670	. 0594	391.3
0.0074	. 0742	492.3	0.1240	.0591	386.4
Ca, 0.00020	. 0659	436.5	Pb, 0.226	. 0639	424.7
0.00100	.0689	458.0	0.936	.0626	415.9
0.00154	. 0709	471.8	1.410	. 0625	414.9
0.00274	.0713	473.7	Rb, 0.00157	.0654	434.5
0.00851	.0733	490.4	0.00313	. 0651	432.5
Cd, 0.559	.0664	440.4	0.00778	. 0555	36 8.8
1.204	.0675	446.3	0.04660	. 0504	334.5
2.376	.068	447.2	Sn, 0.176	.0656	435.5
Cs, 0.00083	.0644	427.6	0.412	. 0642	425.7
0.00160	.0607	403.1	0.868	.0644	425.7
0.00280	.0577	383.5	Sr, 0.00027	.0680	452.2
0.01310	. 0505	335.4	0.00162	.0713	470.8
K, 0.00071	.0657	436.0	0.00372	. 0725	481.6
0.00184	.0610	405.1	0.0153	.0753	500.2
0.00680	.0591	392.3	Tl, 0.0238	.0660	438.1
0.01350	.0586	388.4	0.0986	.0680	451.2
0.01500	. 0577	382.5	0.490	.0683	453.1
Li, 0.0002	. 0657	436.0	Zn, 0.661	.0660	437.1
0.0019	. 0665	441.4	1.221	. 0669	440.4
0.0056	.0678	450.2	1.750	.0671	440.4
0.0140	. 0678	450.2			

TABLE 8.—ANNEALING AND QUENCHING TEMPERATURES

% composition	to*	130	Lit.
Ag	. 100	150	(78)
Ag‡	. 230	265	(5)
Au, 37.5	. 250	450	(79)
Cu, 7.5	. 230	550	(78)
Cu, 8.3	. 230	600	(78)
Cu, 10.0	. 230	650	(78)
Cu, 16.5		650	(78)
Cu, 20.0		700	(78)
Cu, 28.1		700	(78)
Au		120	(78)
Ag (etc.), 0.03‡	. 200	280	(5, 79)
Ag, 0.004	. 150	200	(79)
Ag, 0.25		225	(79)
Ag, 8.3	. 275	450	(79)
Ag, 25.0	. 275	450	(79)
Ag, 50.0	. 300	450	(79)
Cu, 0.01	. 140	150	(79)
Cu, 0.25		300	(79)
Cu, 8.3§		500	(78)
Cu, 10.0	. 300	700	(78)
H ₂ , 0.002		300	(62, 79)
Pt		650	(10)
Ir, 0.1		1000	(10)
Ir, 10		1150	(10)
Ir, 20		1150	(10)
Ir, 25		1150	(10)

Au, 80; Cu, 20 to Au, 70; Cu, 30: Quench from 600° (46). (Au + Ag), 80; Cu, 20 to (Au + Ag), 60; Cu, 40: Quench from 500° (99).

- * to, °C of beginning of softening.
- † t20, °C of completion of softening in 30 minutes.
- ‡ Pure commercial.
- § Softens completely at 300° in 384 hr.

LITERATURE

(For key to the periodicals see end of volume)

- Angenheister, 8, 11: 188; 03. (2) Baudrimont, 34, 31: 115; 50. (3) Bauer, 112, 200: 285; 71. (4) Beckmann, Diss., Upsala; 10. 10, 2: 1; 11. (4) Beilby, 33, 3: 806; 04. (6) Beilby and Beilby, 5, 76: 462; 05. (7) Bock, 8, 52: 609; 94. (4) Broch, Norwegian Nyt. Mag. für Natursk, Christiana; 1876. 10th Ann. Rept. Warden of Standards, London, 1876. 433, 8: 42; 77. (6) Bureau of Standards, 365, No. 101: 72, 128; 24.
- (10) Carter, 78, 48: 397; 23.
 (11) Crace, Calvert and Johnson, 3, 18: 354; 59.
 (12) Crenshaw, 50, 14: 158; 10.
 (13) Crookewit, 13, 68: 289; 48.
 (14) Dewar, 135, 71: 199; 95.
 (15) Edwards, 47, 20: 86; 18.
 (16) Fenchal, Dental Cosmos, 52: 30; 10.
 (17) Frilley, Thesis, Paris, 1910.
 (18) Geibel, 93, 70: 240; 11.
 (19) Gray, 47, 29: 139; 23.
- (20) Grüneisen, 8, 22:801; 07. (21) Grüneisen, 8, 25:825; 08. (22) Grüneisen, 8, 38: 1239; 10. (23) Hackspill, 34, 146: 820; 08. (24) Hanriot, 74, 10: 595; 13. (25) Hoisema, 93, 41:63; 04. (26) Hoiseman, 62, 150:177; 60. (27) Horton, 62, 204: 1; 05. (28) Iokibé and Sakai, 159, 10: 1; 21. (29) Ito. 159, 12: 137; 23.
- (30) Jones, 204, 35: 164; 11. (31) Kahlbaum, Roth and Siedler, 93, 29: 177; 02. (32) Karmarsch, 112, 226: 335, 441, 561; 77. (33) Katzenelsohn, Diss., Berlin, 1887. (34) Kaye and Laby, Table of Physical and Chemical Constants. Longmans, New York, 1921. (35) Kempe and Smith, Engineering Year Book, 31: 258; 24. (36) Knight, 4, 105: 639; 14. (37) Koch, 8, 54: 1; 17. (38) Koch and Dannecker, 8, 47: 197; 15. (39) Kürth, 63, 8: 417; 07.
- (40) Kupffer, 13, 40: 285; 1829. (41) Kupffer, Mem. l'Acad. St. Petersb. 5: 233; 53. (42) Kurnakov and Achnasarov, 169, 24: 129; 15. 10, 4: 1356; 22. (43) Kurnakov, Pushin and Senkovskii, 93, 68: 123; 10. (44) Kurnakov and Zhemchushnui, 93, 60: 1; 08. (45) Kurnakov and Zhemchushnui, 93, 60: 1; 08. (45) Kurnakov and Zhemchushnui, 65, 45: 1004; 13. (46) Kurnakov, Zhemchushnui and Zasedatelev, 47, 15: 305; 16. (47) Landolt-Börnstein, B3, Berlin; 23, (48) Le Chatelier, 34, 109: 24; 89. (49) Le Grix and Broniewski, 74, 10: 1055; 13.
- (50) Lindemann, Nernst's Pestschrift, 1912: 258. (51) Lowry and Parker, 4, 107: 1160; 15. (52) Maey, 7, 29: 119; 99. (53) Maey, 7, 28: 289; 01. (54) Maey, 7, 50: 200; 05. (55) Mallock, 5, 95: 429; 19. (56) Marks, Mechan.

ical Engineers' Handbook. McGraw-Hill Book Company, Inc., New York, 1916. (57) Matthiessen, 62, 150: 177; 60. (58) McKeehan, 2, 20: 424; 22. (58) McKeehan, 34, 108: 344; 89.

(60) Meyer, 8, 59: 668; 96. (61) Pannain, 36, 40 I: 431; 10. (62) Phelps, 47, 12: 125; 14. (63) Pisati, 59, 1: 181; 77. 2: 137; 77. 4: 152; 78. 5: 34, 135; 79. (64) Portevin and Durand, 74, 16: 150; 19. (65) Richards and Bartlett, 1, 37: 470; 15. (66) Richards and Daniells, 1, 41: 1732; 19. (67) Richards and Garrod-Thomas, 7, 72: 165; 10. (68) Richards and Smyth, 1, 44: 524; 22. (69) Richards, Stull, Brink and Bonnet, 152, No. 76: 56; 07.

(7e) Richards and Wilson, 7, 72: 129; 10. (71) Roberts, δ, 23: 481; 75. (72) Roberts-Austen, 433, 7: 44; 76. (73) Roberts-Austen, 62, 179: 339; 88. (74) Roberts-Austen, 403, 1897: 31. (75) Roberts-Austen and Hill, 433, 16: 51; 85. (76) Roberts-Austen and Rigg, 433, 7: 44; 76. (recalculated) 8: 44; 77. 9: 38; 78. (77) Rose, Precious Metals, p. 129. Constable, London, 09. (78) Rose, 47, 8: 86; 12. (79) Rose, 47, 10: 150; 13.

(**0) Rose, Royal Mint Laboratory, 1916, O. (**1) St. Deville and Debray, 34, \$1: 839; 75. (**2) Schaefer, 8, 5: 220; 01. 7, 17: 153; 23. (**3) Schaefer, 8, 9: 665, 1124; 02. (**4) Schmidt, Diss., Freiburg, 1911. (**5) Smirnov and Kurnakov, 169, 14: 623; 11. 10, 2: 751; 13. (**6) Smith, Royal Mint Laboratory, O. (**7) Smith and Turner, 47, 22: 149; 19. (**8) Stas, Ocurres Complètes, 2: 719, 742; 94. (**8) Sutherland, 3, 32: 31; 91.

(**0) Tammann and Mansuri, 93, 132: 65; 23. (**1) Thompson, 83, 11: 104; 15. (**2) Timofeiev, 7, 78: 299; 10. (**3) Tomlinson, 62, 174: 1; 84. (**4) Tomlinson, 5, 40: 343; 86. (**5) Tomlinson, 6, 42: 362; 87. 43: 88; 88. (**6) Voigt, 8, 43: 674; 93. (**7) Wassmuth, 8, 13: 182; 04. (**8) Wassmuth, 76, 115 IIA: 223; 06. (***9) Watson, Royal Mint Laboratory, 1924, 0.

(100) Weiss, Zeit. deutsch. Geol. Ges., 34: 817; 83. (101) Wertheim, 6, 12: 385; 44. 23: 52; 49. (102) Winkelmann, Handbuch der Physik, I-1: 1908. (103) Zhemchushnui, 154, 13: 14; 16. 10, 4: 1357; 22. (104) Zhemchushnui, 53, 51: 417; 19.

GRAPHITE (v. also p. 468)

V. Н. Sтотт

Ultimate tensile strength = 2 kg/mm^2 (4, 5). Young's modulus = 836 kg/mm^2 (4, 5).

SPECIFIC GRAVITY

 $d_4^{20} = 2.25 \text{ to } 2.26 (1).$

 $d_4^{15} = 2.255$ (after compression to 5000 atm.) (3).

 $d_{2}^{16} = 2.232$ (after fusion in arc) (6).

M. P. = $3500^{\circ} \pm 100^{\circ}$ C (2).

V. P. at triple point = 0.25 atm. (2).

LITERATURE

(For a key to the periodicals see end of volume)

Arsem, 78, 20: 105; 11. (2) Fajans and Rishkevich, 218, 12: 304; 24. (3)
 Le Chatelier and Wologdine, 54, 146: 49; 08. (4) Pirani and Alterthum,
 9, 29: 4; 23. (5) Pirani and Fehse, 9, 29: 168; 23. (6) Rishkevich and
 Köstermann, 9, 30: 86; 24.

MECHANICAL PROPERTIES OF As, B, Ca, Ce, Co, Cr, Ge, In, K, La, Mo, Na, Pr, Ta, Th, AND W AND THEIR ALLOYS, AND OF ALLOYS CONTAINING Ba, Ga, Li, Mn, Rb, Si, Sr, Ti AND V

C. H. Desch

For specific gravity of the pure metals, v. p. 456; surface tension, v. vol. III; viscosity, v. vol. III; compressibility, v. vol. III.

TABLE 1.—TENSILE PROPERTIES OF CA, CO, MO, TA, TH AND W

Metal	Treatment	UTS	El	RA	Lit.
Ca	Cast	6.12*	6†		(19)
Co	Cast‡				(34)
!	Annealed §	1			, .
	Drawn wire		5	8	
Mo	Drawn wire (v. also Figs. 1,				
	2, 3)	180-220			(15)
	Sheet	70∥	43		(68)
Ta	Hard drawn wire	93			(61)
Th	Drawn wire	56.3			(55)
W	Hammered	150	4	28	(16)
	Drawn wire	420			(32)
	Drawn to mm diam.:				(16)
	0.45	186			
i	0.18	240			
	0.145	256	v. also		
	0.10	339	Fig. 4		
	0.028	411			
	Rolled sheet	335			
	Single crystal wires			100	

^{*} Probably too high due to impurity.

TABLE 2.—HARDNESS OF AS, B, CA, CE, CO, CR, GE, IN, K, LA, MO, NA AND PR

Metal	Treatment	BHN	Ball diam. mm	Load, kg	ScH	EP, kg/mm²	Lit.
As	Metallic	147	10	1000			(14
В	Usually described as	nearly as	hard a	a diamo	ond.		
Ca		42*	10	500	19-20		(5)
Ce		28.0	5	90	26 (rolled) 9 (fresh cut)		(27 (23
Со	Cast	124 86	10 10	1600 1000			(34 (14
	Electrolytic†	270-311					(44
Cr		91	10	500			(14
Ge	Between 6 and 6.5 on	Mohs' s	cale of	hardnes			(8)
In		1.0	10	50		3.1	(14 39
K		0.037	10	1.6		0.25	(14 39
La	,	37	10	500			(36
Мо		147			12 (rod) 35 (sheet)		(68 (68
Na		0.07	10	3.2		0.3	(14 39
Pr	Electrolytic‡	25	10	500			(71

^{*} v. also (14).

[†] On 5 cm.

 $[\]ddagger UCS = 87; YP_{C} = 30 \text{ kg/mm}^2.$

[§] $YP_C = 39 \text{ kg/mm}^2$.

 $[\]parallel YP$ just below UTS; PL = 46.

[†] Probably contained Ha.

[‡] About 99.7 % pure.

Table 3.—Properties of Co-Cr and Stellite
Typical compositions of stellite

Co Cr W Mo Fe Si Mn V C Remarks L										Lit.
34.6 26.3 12.7 9.4 10.1 0.78 0.72 1.0 1.79 (1914) (2										
55.6	33.6	9.1		Tr.	0.17	0	0	1.48	(1917)	(21)
54.9	32.9	9.1		1.0	0.29	1			Stellite 2	(54)
										(54)
59.5	10.8	0	22.5	3.1	0.77	2.04		0.87		(26)
3 8	30	16	4	(Ni,	10)			2-5	"Akrite"	(59)
			В	rinell	hard	ness	of st	tellite		

t, °C 15 100 200 350 475 630 700 800 L BHN* 512 495 430 430 387 364 351 332 (2										
BHN* 512 495 430 430 387 364 351 332 (2	<i>t</i> , °C	15	100	200	350	475	630	700	800	Lit.
	BHN*	512	495	430	430	387	364	351	332	(21)

	As received	Quenched 1300°	Quenched 1000°	Lit.
Stellite 2	545	495	564	(26)
Stellite 3	590	594		

Co, 75; Cr, 25: $UTS = 67 \text{ kg/mm}^2$; $EL = 56 \text{ kg/mm}^2$; El = 3% (14).

^{*} These data apparently for second alloy in above table.

TABLE 4.—HARDNESS OF ALLOYS

% composition	t, °C	Hardness, Mohs' scale	Lit.
As, 57; Cd, 43	20	3.5-4	(73)
Mn, 80; Si, 20		6.5	(43)
Mn, 66; Si, 34		8.5	(43)
Mo, 88.9; C, 11.1		7-8	(51)
Si, 54; Ti, 46	22	4–5	(29)
Zr, 61.5; Si, 38.5	22	6	(29)

% composition	BHN	Lit.
Ce, 87; Cu, 13	61*	(23)
Ce, 54; Cu, 46	152*	(23)
Ce, 87; Cu, 13	282†	(35)

^{*5} mm ball, 110 kg load.

Table 5.—Extrusion Pressure of In-Pb and K-Rb In-Pb (aperture 2.81 mm diam.) (38)

% In									
<i>EP</i>	10.6	14.7	18.2	21.0	23.7	21.0	18.2	11.5	3.1
K	-Rb (t	= 22	C, ap	erture	2.86 n	nm dia	m) (37	7)	
% Rb 0	9.4	12.8 2	26.7 3	1.2 5	5.7 6	7.2 85	6.6 90	96	100
10 EP 0.9	2.2	2.4	2.8	2.6	2.4 2	2.1 1	.9 1.	5 1.1	0.8

[†] Maximum hardness for 25 % Co.

TABLE 6.—ELASTIC PROPERTIES OF TA AND W

Ta	$E = 1.9 \times 10^4 \text{kg/mm}^2 (4)$
W	$E = 3.62 \times 10^4 \text{ kg/mm}^2 \text{ at } 20^{\circ}\text{C}$ $dE/dt = \text{constant}$
	$= 3.31 \times 10^4 \text{kg/mm}^2 \text{ at } 1000^{\circ}\text{C} \right) (10)$
	Nearly same value v. (16, 18, 72).
	$G = 1.51 \times 10^4 \text{kg/mm}^2 \text{at } 20^{\circ} \text{C}$
	dG/dt is negative, amount varying with recrystallization of the wire (18, 31, 58, 72).
	$K = 2.82 \times 10^4 \text{ kg/mm}^2 \text{ at } 27^{\circ}\text{C}$
	= $3.62 \times 10^4 \text{ kg/mm}^2 \text{ at } 642^{\circ}\text{C}$
	$\lambda = 0.17$ (independent of temperature) (18).

TABLE 7.—Specific Gravities of Alloys

% composition	t, °C	d_{\bullet}^{l}	Lit.
As, 55.5; Ca, 44.5	15	2.5	(41)
As, 62.8; Cd, 37.2	20	5.85	(73)
57 43	20	5.86	
55.7 44.3	20	5.92	
49.5 50.5		5.97	
As, 71.4; Co, 28.6	0	7.0	(11)
65.6 34.4	0	7.3	
56.0 44.0	0	7.6	
45.9 54.1	0	7.8	(0)
As, 68.4; Cr, 31.6	22	6.2	(9)
59.0 41.0	16	$\frac{6.3}{2.3}$	(53)
B, 62; Ca, 38	15	2.2	(53)
B, 57; Sr, 43	15	3.3	(53)
Ba, 73; As, 27	15	4.1	(41)
Ba, 67.7; B, 32.3	15	4.36	(53)
Ca, 55.3; Mg, 44.7	25	1.7	(2)
Co, 91.5; B, 8.5	20	7.9	(13)
Co, 89.27; Ni, 10.73		8.87	(3)
79.54 20.46		8.75	
69.77 30.23		8.77	
60.43 39.57		8.72	
Co, 79.2; P, 20.8		6.6	(74)
Co, 80.8; Si, 19.2		7.3	(42)
67.6 32.4		6.3	(66)
51 49		5.3	
Cr, 82.5; B, 17.5	15	6.1	(12)
87.7 12.3		6.7	(50)
Cr, 91.4; C, 8.6		6.9	(56)
86.7; 13.3		6.68	(50)
Cr, 50.8; W, 40.1; C, 9.1		8.4	(52)
Ga, 90; In, 10		5.95	(6)
K, 68.3; Na, 31.7	4.5	0.890	(22)
La, 85.3; C, 14.7		5.0	(46)
Mn, 97.0; C, 3.0		6.98	(62)
93.28 6.72		6.89	
Mn, 77.4; Mo, 22.6	. 0	7.3	(1)
69.5 30.5	. 0	7.8	
53.4 46.6	. 0	8.4	
36.4 63.6	. 0	8.6	
22.3 77.7		8.7	/42
Mn, 80; Si, 20	. 15	6.2	(43)
66 34	. 15	5.9	
49.3 50.7	. 13	$-\frac{6.2}{9.0}$	(47)
Mo, 94.1; C, 5.9	. 00	8.9	(51)
88.9 11.1	. 20	8.4	(0-)

TABLE 7.—Specific Gravities of Alloys.—(Continued)

TABLE 7.—SPECIFIC GRAVITI		J15.—(CUM	react)
% composition	t, °C	d_{\bullet}^{t}	Lit.
Mo, 77; Fe, 23	0	9.4	(67)
63 37	0	9.0	
53 47	0	9.2	
46 54	0	8.9	
Mo, 62.8; Si, 37.2	0	5.9	(30)
Na, 85.78; Hg, 14.22	17	1.125	(65)
79.9 20.1	110	1.17	• •
77.73 22.27	17	1.235	
71.0 29.0	110	1.28	
58.7 41.3	110	1.57	
56.35 43.65	17	1.716	
51.0 49.0	110	1.79	
Si, 96.5; Al, 3.5		2.4	(17)
85 15		2.4	
57 43		2.5	
Si, 58.7; Ca, 41.3		2.5	(49)
Si, 89.1; Cr, 10.9		2.6	(17)
75.8 24.2		2.9	` .
70 30		3.1	
65.3 34.7		3.3	
62 38		3.5	
57.8 42.2		4.0	
52.4 47.6		4.7	
51 49		4.8	
Si, 90.5; Cu, 9.5		2.5	(17)
69.6 30.4		3.0	
68 32		3.1	
51.6 48.4	1	3.6	
50.4 49.6		3.9	
Si, 95.0; Fe, 5.0		2.4	(25, 60)
79.4 20.6	18	2.75	
61.5 38.5		3.9	
51.8 48.2	1	4.4	
50.1 49.9	18	4.7	
Si, 71.8; Li, 28.2		1.1	(48)
Si, 66.8; Ni, 33.2		3.5	(17)
57.3 42.7		3.9	ł
52.6 47.4		4.2	
Si, 54; Ti, 46	22	4.0	(29)
Sr, 54; As, 46		3.6	(41)
Ta, 80.4; Si, 19.6	0	8.8	(30)
Th, 90.6; C, 9.4		9.0	(50)
Th, 80.5; Si, 19.5		7.95	(28)
V, 81; C, 19		5.4	(46)
W, 93.88; C, 6.12		15.6	(67, 69)
W, 73.6; Fe, 22.4; C, 4.0		13.4	(70)
W, 76.5; Si, 23.5		9.4	(7)
Zr, 61.5; Si, 38.5	-	4.9	(29)
=-/			

LITERATURE

(For key to the periodicals see end of volume)

- Arrivaut, 54, 143: 285, 465; 06. (2) Bilts and Hohorst, 95, 121: 1; 22.
 Bloch, 6, 26: 5; 12. (4) van Bolton, 9, 11: 45; 05. (5) Brace, 47, 25: 153; 21. (6) Browning and Uhler, 12, 41: 351; 16. (7) Defracqs, 34, 144: 848; 07. (8) Dennis, Tressler and Hance, 1, 45: 2033; 23. (9) Dieckmann and Hanf, 93, 86: 291; 14.
- and riani, 85, 86: 281; 14.

 (10) Dodge, 2, 11: 311; 18. (11) Ducellies, 54, 147: 424; 08. (12) Edwards, 47, 20: 61; 18. (13) Fink, 78, 17: 229; 10. (14) Fink, 78, 22: 499; 12. (15) Frilley, 74, 8: 457; 11. (16) Giess, 208, 3: 322; 23. (17) Goodwin, 1, 27:

1403; 05. (18) Goucher, 5, 48: 229; 24. (19) Guillet and Godfroid, 74, 15: 339; 18.

(20) Hagen, 8, 19: 436; 83. (21) Hanaman, 95, 7: 174; 15. (22) Haynes, 45, 2: 397; 10. (23) Hengstenberg, 77, 44: 914; 24. (24) Hibbard, 29, No. 100: 61; 15. (25) Hirsch, 78, 20: 57; 11. (26) Hönigschmid, 34, 143: 157; 06. (27) Hönigschmid, 34, 143: 224; 06. (28) Hönigschmid, 57, 28: 1017; 07. (29) Iokibé and Sakai, 5, 43: 397; 21.

(30) du Jassoneix, 34, 143: 1149; 06. (31) du Jassoneix, 34, 145: 240; 07. (32) Jeffries, 80, 60: 588; 19. (33) Jones, 33, 22: 9; 20. (34) Kalmus and Harper, 45, 7: 6; 15. (35) Kreits, 187, 19: 137; 22. (36) Kremers and Stevens, 1, 48: 614; 23. (37) Kurnakov and Nikitinskii, 93, 88: 151; 14. (38) Kurnakov and Zhemchushnui, 93, 64: 149; 09. (39) Kurnakov and Zhemchushnui, 200, 11: 1: 14.

(40) Lebeau, 34, 128: 95; 99. (41) Lebeau, 34, 129: 47; 99. (42) Lebeau, 34, 128: 556; 01. (43) Lebeau, 34, 128: 89, 231; 03. (44) Macnaughtan, 140, 109: 409; 24. (45) Moissan, 34, 122: 1297; 96. (46) Moissan, 34,

Co

En

123: 148; 96. (47) Moissan, 34, 125: 839; 97. (48) Moissan, 34, 124: 1083; 02. (49) Moissan and Dilthey, 34, 124: 503; 02.

(50) Moissan and Etard, 34, 122: 573; 96. (51) Moissan and Hoffman, 34, 138: 1558; 04. (52) Moissan and Kousnetsov, 34, 137: 292; 03. (52) Moissan and Williams, 34, 126: 629; 97. (54) National Physical Laboratory, England, O. (55) Rentschler and Marden, 2, 25: 589; 25. (56) Ruff and Foehr, 93, 104: 27; 18. (57) Ruff and Wunsch, 93, 85: 292; 14. (58) Schriever. 2, 23: 255: 24. (59) Schulz, 95, 16: 337: 24.

Schriever, 2, 23: 255; 24. (59) Schulz, 95, 16: 337; 24. (60) Schwarz, 139, 11: 80; 13. (61) Siemens, 525, 19: 590; 09. (62) Stadeler, 192, 5: 260; 08. (63) Sykes, 80, 64: 780; 20. (64) Tajime, Nagaoka Annie. Vol., 1925: p. 413. (65) Vanstone, 83, 7: 42; 11. (66) Vigouroux, 34, 142: 635; 06. (67) Vigouroux, 34, 143: 889, 928; 06. (68) Western Electric. Co., O. (69) Williams, 34, 126: 1722; 98.

(70) Williams, 34, 127: 410; 98. (71) Wierda and Kremers, 78, preprint; 25. (72) Worthing, 2, 12: 199; 18. (73) Zhemchuzhnui, 95, 4: 228; 13. (74) Zhemchuzhnui and Schepelev, 93, 64: 245; 09.

FATIGUE OF METALS AND ALLOYS

H. J. Gough

	22. 0.	000011	
CONTENTS	M atières	Inhaltsverzeichnis	INDICE PAGE
omposition of alloy.	Composition des alliages.	Zusammensetzung der Legie- rungen.	Composizione delle leghe 595
ndurance limits.	Limites d'endurance.	Ermüdungsfestigkeit.	Limiti di durata 599
Reversed direct stresses.	Efforts direct alternatifs.	(Zug-bezw. Druck)-Wechsel- spannungen.	Sforzi assiali invertiti 599
Reversed bending stresses (rotating beam).	Efforts de flexion alternatifs (arbre rotatif).	Wechselbiegespannungen.	Sollecitazioni per fles- sione rotante 601
Reversed plane bending stresses.	Efforts de flexion plane alter- natifs.	Wechselbiegespannungen (in gleicher Ebene).	Sollecitazioni per piega- tura invertita 605
Reversed torsional stresses.	Efforts de torsion alternatifs.	Wechseldrehspannungen.	Sollecitazioni di torsione, invertite 606
Direct stress, various mean stresses.	Effort direct, efforts moyens variés.	(Zug-bezw. Druck)-Wechsel- spannungen mit verschie- denen Mittelwert.	Sforzo assiale, valori varii medi delle sollecita- zioni
Torsional stress, various mean stresses.	Effort de torsion, efforts moyens variés.	Drehspannungen mit ver- schiedenem Mittelwert.	Sforzo di torsione, valori varii medi delle solle-
			citazioni 607
Direct stress at various temperatures.	Effort direct à des tempéra- tures variées.	(Zug- bezw. Druck)-Wechsel- spannungen bei verschie- dener Temperatur.	Sforzi assiali a varie temperature 608
Reversed bending stress at various temperatures.	Effort de flexion plane à des températures variées.	Ebenengleiche Biegespannungen bei verschiedener Temperatur.	Sollecitazioni per piega- mento a varie tempe- rature
The data on fatigue of metals	and alloys are arranged accord-	TABLE 1.—COMPO	SITION OF ALLOYS

8

5.0

6.0

.75 .5

.75

The data on fatigue of metals and alloys are arranged according to the following scheme:

1. The chemical symbols of the principal constituents of each non-ferrous alloy are arranged in order of descending magnitude of their proportions in the alloy. Thus section 3 (Al-Cu-Mg-Si) contains alloys whose largest constituent is Al; the next largest Cu and the third largest is Mg, any other elements present having minor effect on the properties (v. also Introduction, p. 358). The sections are numbered consecutively.

2. The steels are arranged in the same manner except that C is written last in the type formula.

3. The different sections, each containing alloys of the same type formula are arranged in alphabetical order.

4. The alloys within each section are arranged in descending magnitude of proportion of largest constituent if this is given by analysis, if not, in order of ascending magnitude of proportion of second constituent; they are numbered consecutively in each section.

5. In the figures, the composition number of any alloy is the combination of its section number and number within the section. Thus the Al-Cu alloy containing 12% Cu has the composition number 2:4.

6. In Tables 2-9, the alloys follow the same arrangement as in Table 1, which should be consulted for exact composition.

Table 1.—Composition of Alloys Comp. % composition, Al+ Table Zn Cu | Fe | Mg | Mn | Ni No. 1. Al 1 0.120.49 0.15 3 2 (99.6% Al) Single crystals* 2, 5 2. Al-Cu 3 1 2.0 1.0 2 4.550.56 0.82 0.82 3 3 8.0 3 12.0 0.69 0.38 0.05 4 3 12.6 0.82 0.37 Tr. 3 5 3. Al-Cu-Mg-Si 1 3.250.280.70 Tr. 3 0.28.700.60 3 2 3.61 .74 .48 3 3.75 .60 .26 .69 .40 3 Dur-4 3.88 .45 .78 .64 .26 3 alumins .50|1.03, 9 5 4.0 1.0 3 6 4.18 66 0.197 4.28 .54 .42 0.62 .34 3

3, 9

.75

 $1\,.\,0$

	ABLE	1.—(s.—(Cont	inued)						
Comp.				o comp					Table					
No.	Cu	Fe	Mg		Ni	Si	Zn							
				4. Al-	Cu-Ni	-Mg								
1	2.0		1.0		1.5	0.6	"Magna	lite"	3, 9					
2	4.0		1.0		1.0				3					
3	4.0		1.5	-i <i></i> -	1.0				3					
4	4.0			0.50	2.0		Ind. No.		3, 9					
5	4.0	0.20	1.5	0.50	2.0	.20	Modified		3, 9					
				-			allo							
6	4.0	. 20	1.5		2.0	. 20	" Y		3, 9					
7	4.0		1.5		2.0		allo	y	3					
				5. A	l-Cu-2	Zn								
1	1	0.57				0.33	5.3		3					
2	9.5	.75			ļ	. 35	5.5		3					
					Al-Mg									
1	L	0.8	6.2	"Aer	omin''	0.30			3, 9					
	7. Al-Mg-Si													
1	0.15	0.54	0.5			0.56			3					
	8. Al-Si													
1						5.0			3					
2						8.0			3					
3		0.30		1		8.5			3					
4	1	0.45				11.04			3 3					
5 6		0 5	(C-	 .,0.05;Na	0.000	12.65 12.7								
7		0.5	(Ca	.,U.U3;188 	.,u.uua) 	13.0			2, 8 3					
8		0.35		1		13.75			3					
		0.00		<u> </u>	Al-Zn		<u> </u>	'						
				1	1	· 	5.0	1						
1 2							5.2 9.2		2 2					
3							11.0	0	2					
4							16.8	5	2					
5				ı		l	26.0		2					
	ı <u> </u>		!	10	Al-Zn-	C11								
	3.04	1 02		1	Sn	0.29	7.7	2						
$egin{array}{c} 1 \\ 2 \end{array}$	2.07			ļ	0.05	ı	11.4	-	3 3					
3	2.17			ŀ	0.06	1			3					
4	3.0	0.75			0.00	0.30	15.9		3					
5	, ,	0.20	0.5	0.5	"E"	1.0	20.0		3, 9					
•	0	J. 20	3.3	0.0	alloy		 0.0		<u> </u>					
6		0.20				0.25	20.3		3, 9					
7				"alloy		0.25			3					
Comp.				% 00	mposi	tion								
No.	Cu	4	1	Fe	Ni	Pb	Sn	Zn	Table					
	<u>' </u>						cially Pu							
	99.99								5					
$rac{1}{2}$	99.99		ا	.0052	l	<0.00			5 5					
3	99.99	- 1		.008		< 0.00			5 3					
4	99.98	• '	1	.02		\U.U	"		3					
5	99.96			Tr.	Tr.	Tr.			3					
6	99.89	5				-••			3					
Comp.	<u> </u>		<u></u>	C7 00	mposi	tion								
No.	Cu		0		Ni		1		Table					
10.	ı cu			Fe Con	<u> </u>	S			<u> </u>					
	100				Oxyg									
1	99.95			0.002	0.001		1		3					
2	99.94		049	.002	.001				3					
3	99.90	- 1	094	.002	.001		1	1 Ag,	3					
4	99.75	.	240	. 002	.001	5 .00	1	15 As,	3					
							0.00	4 0D						

Comp.			%	comp	osition			- Table
No.	Cu	Al	Fe	Mn	ı Ni	Si	Zn	Table
			13. Ct	ı-Al,	Al-Bror	ızes		
1	99.86	0.10						2
2	96.98		0.008		-	0.0)24	2
3	94.90		. 006) . (018	2
4	1	5.62	. 065			1 .		3, 5
5	92.61		.017). (027	2
6	90.91	1 I	.002				ł	3, 5
7 8	1	10.01 9.78	.002			1	1	3, 5
9	1	7.35	.017			1	027	2
10		10.06	.01.			.,		3
11		10.0	1.0					3
12	87.12	10.4	2.92					3, 5
	<u> </u>		14	. Cu-	Al-Mn			
1	89.06	10.2	0.01	0.9	2	0.0	01	2
2	88.30	9.82	.03	1.8			34	2
3	88.11		.02	2.9	8	_ .0	02	2
			10	5. Cu	-Al-Ni			
1	87.45	7.91			4.6	4		2
2	87.45				5.6	i		2
3	87.32	5.34			7.3	4		2
			1	16. C	u-Mn			
1	96.2		0.18	3.5	8			2
Comp.			- C/2	comi	osition			
No.	Cu	Fe]	Mn N			Sn	Zn	- Tabl
	Cu	10 12		17. C		<u> </u>	211	
1	100 24	0 270	. 12 19 .					1 9
1 2	80.03		12 19.		03			3
3	78.92		0.26_{20}^{13}			Cupm	-nickel	3
4	53.77		. 14 44 .		11	-	antan	3, 5
5	53.71		. 89 44 .		078			3
					-Ni-Cr			
1	58.93	1.04 1	.61 34	15	+(Cr,	4.14;	Si, 0.13)	3, 5
	<u>'</u>	<u></u>	<u></u>	_ <u>-</u> -	-Ni-Sn	`	<u> </u>	
1	69.82	0.27		080		0.95		3
	700.02	10.211			-Ni-Zn			
1	74 01	0 340	75 19				5 17	
		JO . 03 P						
	460.08					silver	5.17 29.05	3, 5
2	60.08		10	. 89 C	erman		29.05	3, 5
2 Comp.		. 20	10 	com	erman position		29.05	3
2	60.08	. 20	10 	comp	erman position Pb	Sn		
Comp.	Cu	.20 Fe	10 Mn 21 . (comp P	erman position	Sn	29.05 Zn	Tabl
2 Comp. No.	Cu 96.12	Fe	10	comp P Cu-Sr	erman position Pb	Sn es 3.54	29.05 Zn Phos.	3 Tabl
2 Comp. No.	Cu 96.12 95.74	.20	10	comp P Cu-Sr .32 .048	position Pb	Sn zes 3.54 4.20	29.05 Zn	$\begin{array}{c c} & 3 \\ \hline - & Tabl \\ \hline & & \\ \hline & & \\ & & \\ \end{array}$
2 Comp. No.	Cu 96.12 95.74 95.61	Fe 0.031	10	comp P Cu-Sr .32 .048	position Pb n, Bronz	Sn zes 3.54 4.20	Zn Phos. bronze	3 - Tabl
2 Comp. No.	Cu 96.12 95.74	Fe 0.031	10	comp P Cu-Sr .32 .048	position Pb	Sn zes 3.54 4.20	Zn Phos. bronze Phos.	3 - Tabl
2 Comp. No.	Cu 96.12 95.74 95.61	0.031	10	comp P Cu-Sr .32 .048	position Pb n, Bronz	Sn	Zn Phos. bronze	3 Tabl
2 Comp. No.	Cu 96.12 95.74 95.61 95.57	0.031	10	comp P Cu-Sr .32 .048	position Pb n, Bronz	Sn 3.54 4.20 4.66 4.05	Zn Phos. bronze Phos.	3 - Tabl
2 Comp. No. 1 2 3 4 5 6	Cu 96.12 95.74 95.61 95.57 94.96 95.0	0.031	10	comp P Cu-Sr .32 .048 .056 .39	position Pb 1, Bronz 0.002 <0.01	Sn 3.54 4.20 4.66 4.05 4.89 5.06	Zn Phos. bronze Phos.	3
2 Comp. No.	Cu 96.12 95.74 95.61 95.57 94.96	0.031	10	comp P Cu-Sr .32 .048 .056 .39	osition Pb n, Bronz 0.002 <0.01	Sn 3.54 4.20 4.66 4.05 4.89	Zn Phos. bronze { Phos. bronze	3 - Tabl
2 Comp. No. 1 2 3 4 5 6	Cu 96.12 95.74 95.61 95.57 94.96 95.0	0.031	10 % Mn 21. (S9 C Comp P	position Pb 1, Bronz 0.002 <0.01	Sn 3.54 4.20 4.66 4.05 4.89 5.06 10.6	Zn Phos. bronze Phos. bronze Phos.	3 - Tabl
2 Comp. No. 1 2 3 4 5 6 7	Cu 96. 12 95.74 95.61 95.57 94.96 95.0 89.39	0.031 .09	10 % Mn 21. (comp P Cu-Sr 32 048 056 39 .026 .13 Cu-Zr	0.002 0.01 0.01	Sn 3.54 4.20 4.66 4.05 4.89 5.06 10.6	Zn Phos. bronze { Phos. bronze 19.06	3 - Tabl
2 Comp. No. 1 2 3 4 5 6 7	Cu 96.12 95.74 95.61 95.57 94.96 95.0 89.39	.20 Fe 0.031 .09 .08	10 % Mn 21. (c) 0	comp P Cu-Sr .048 .056 .39 .026 .13	0.002 0.001 0.01 0.01 0.01 0.01 0.01 0.0	Sn 3.54 4.20 4.66 4.05 5.06 10.6 sees	Zn Phos. bronze { Phos. bronze { Phos. bronze 19.06 26.61	3
2 Comp. No. 1 2 3 4 5 6 7	Cu 96. 12 95.74 95.61 95.57 94.96 95.0 89.39	.20 Fe 0.031 .09 .08	10 % Mn 21. (S = (S =	89 C comp P P 1 1 1 1 1 1 1 1	0.002 0.01 0.01 0.01 0.01 0.01	Sn 3.54 4.20 4.66 4.05 5.06 10.6 sees	Zn Phos. bronze { Phos. bronze 19.06	3
2 Comp. No. 1 2 3 4 5 6 7	Cu 96.12 95.74 95.61 95.57 94.96 95.0 89.39	.20 Fe 0.031 .09 .08	10 % Mn 21. (c) 0	89 C comp P P 1 1 1 1 1 1 1 1	0.002 0.001 0.01 0.01 0.01 0.01 0.01 0.0	Sn 3.54 4.20 4.66 4.05 5.06 10.6 sees	Zn Phos. bronze { Phos. bronze { Phos. bronze 19.06 26.61	3

7	[able	1.—C	OMPOSIT	rion	OF	ALI	OY8	.—	(Con	tinued))
Comp.			%	com	ipos	sition	1				T-LL.
No.	Cu	Fe	Mn	P		Pb	S	n	7	Zn	Table
		22.	Cu-Zn,	Bras	sses	s.—(Cont	linu	ed)		
6	69.85	0.04	ĺ				T	r.	30	.11	3
7	66.3	(Nav	al brass	ι, α)	C	. 25	1.	20	32	.2	2
8	65.0						1		34	. 6	3
9	61.20		val bra		(10	0.	43	38	. 27	3
10	60.81	.002				.002	2 0.	85	38	. 32	3
			bras	s)	1						
11	60.25					.02				.61	3
12	59.78					.08				. 11	3
13	59.65	. 164	(Mur meta			. 20	0.	. 10	40	.11	3, 5
14	58.5	.87	(Nava		188.	α. β)	0.	50	40	. 1	2, 6
15	58.19	.65	(Mı			0.02		04		. 10	3
			bronz	ze)			1	- 1			
16	58.0	.80	(Mu	ntz	met	al)	T	r.	41	.2	2
17	56.85	1.50	0.20 (Mn	bro	nze)	0.	32	40	. 90	3
		22.5	. Cu-Z	n-Pt	, L	eade	d B	rass	es		
1	61.60					0.06				. 31	3
2	61.54	.04				53 .		l		. 89	3
3	61.03					. 58				. 89	3
4	59.58					.61				.78	3
	59.40	. 03			3	3.43	1		37	. 14	3
Comp.	I		% co	mpo	siti	on, I	re+				
No.	$\overline{\mathbf{c}}$	1			_	ín i	P	$\overline{1}$	8	Si	Table
		2:	3. Fe, (Com	<u>-</u>			ire			
1	0.012		mco iro		0.		<u> </u>		017	0.017	2, 3, 5
2	.02	1		7	· I	03	.00	-	042	.02	2, 3, 4, 5
3	.023	$\mid \; \rangle$ In	igot iro	n {		037	.00		031	.005	3
4	.029	1		ì	١	07	.21	9	024	.127	
5	. 039	,	17	. 1	1	r.	.01	- 1		Tr.	2
6	.045		Vrought iron	٠ {	0.	024	. 24	6 .	017	0.234	2, 3
7	.06		поп	- 1	.	12	.25	١.	023	. 13	3
8	. 195	<u> </u>		\		005	. 05	4	011	. 086	2
Comp.			% co:	mpo	sitio	on, F	re+				5 11
No.	C	Cr	Mn	N		P		8	T	Si	Table
	•		24. Fe-	-C, (Cart	on S	Steel	ls			
1	0.065		0.04	1		0.1	35		010	0.148	2
2	.11	80	.73	0.	12	.0)2		18	. 10	3
8	.13	are	.70	1		.0)46)42	.18	2, 3, 5
4	.13	14 (8)	.30)2 8)17	.028	2, 6
5	.14	nd Fee	.68				145		14	. 19	3
6	.14	11, and 14 ning steels)	. 53			.0	008	.0)56	.17	3
7 8	.15	np. Nos. 2, 11, case-hardening	20				110	,		م	2, 3
9	.16	(Comp. Nos. 2, case-harden	.30			٠. ر)18	. (34	.06	3 2
10	.17	os.	.10			()13	r	12	.021	2
11	.17	2 3	.46)23		32	.12	3
12	.18	du can	.37)13		39	.06	3
13	.19	ું ક	.60)52		147	.024	2
14	.19	ی	.65				25)49	.05	3
15	.20		.67	1		.0	25	.0	90	. 03	3
16		0.06	.58	0.)44)34	.18	3
17	.21	.017	1	.	206)6		8	.08	3
18	.24		.83)33)43	.33	2, 6
19 20	.24		.45				009)51	.007	3, 5
20 21	.25 .25		.65 1.18)5		13	.06	2, 3, 5
21 22	.26		0.54)31)27)4)31	.25 .05	3, 5 3
23	.27		.58	1)55		38	.065	
	!			•				. (,	. 500	2, 0

7	TABLE	1.—	Сом	POSI	TION	OF	Allo	¥s.—(Co	ntinued)
Comp.							n, Fe				Table
No.	C	Cr		Mn	N:		P	S		Si	
		4. F			bon	Ste		(Contin	_		
24	0.29		0	. 52			0.01	0.0	- 1	0.17	3
25	.29		İ	.75			.05		- 1	. 037	2, 6
26 27	.30			47			.05			16	3 3
27 28	.31			.47 .67			.01	1		.16 .14	3
29	.31		İ	.86			.07				3
30	.32		1	.58			.04			.22	3
31	.33			. 59			.04	1		.22	2, 3, 5
32	.34			.68			.04	5 . 02	23	. 055	
33	.34			. 56			.02	6 .02	21	. 072	2
34	.35				1						2
35	.36			.66			.02	.0	11	. 25	3
36	.37			F O				0 0		10	2, 3
37 38	.37			.58			.03		- 1	. 16 . 066	2, 3, 4, 5
39	.38			.69 .57	1		.02			.04	2, 6 3, 5
40	.40			.77	1			.0		.01	4
41	.40			•••	1		.05		- 1		3
42	.41			. 54	İ		.01		- 1	. 14	5
43	.42			. 62			.02	.03	3	. 17	3
44	.44			. 05					-	. 30	4
45	.446		0	.47			.06	7 .0-	14	. 063	2
46	.45			- 4	١.,	_		_	ا		2
47	.45			.54	0.1		.01			.15	3
48 49	.46 .48			.68 .60	.1	.0	.01	1		.11 .19	5, 7 3
50	.49		Ì	.46	1		.01	,		.12	2-5, 7, 9
51	.51			.59	1		.05			.083	
52	. 52			. 56			.03			. 24	3, 4, 5
53	. 53			. 48			.01	7 .0	37	.12	2, 3
54	. 57			.60			.05			. 121	2, 6
55	.60	0.09)	.77).)3	.01	l l		.21	3
56	.60	점	'	.69			.03			.20	3
5 7	.62	Comp. Nos. 55 and 68 are spring steels		.23	1		.01			.186	
58 59	.63 .645	ing.		.56 .26			.05			.111 .062	1 '
60	.65	Z		.11			.03				2, 3, 5, 8
61	.71	m a		.72	1.1	1	.02			.44	3
62	.72	೧೩		.26			.01	4		. 163	
63	.77	. 2.	9	. 55			.03	7 .0			3
64	.79	Nos. 68 are	ğ	.30			.01	5 .0		.182	, ,
65	.81	g g	•	.32	1		.01			.16	3, 5
66 67	.93	Comp.		.38	1.		.01	,		.03	2, 3, 4, 5
67 68	.97 1.02		-	.31 .24	1.1	ō	.01			. 13 . 145	3 3, 9
69	1.20		ı	.25			.02		- 1	. 19	2-5, 7
		_	_		-				- 4		
Comp.				<u>⁄₀ co</u>	mpos	1710	on, Fe		_		
No.	C,	_	C,		Mn	1	P	ន		Si	Table
110.	grapl ite		com bine		TATTI		T.	ت		101	
			_		Fe-C	C	ast Iro	n.	!		
1	1.70		0.50		0.95		.045	0.03	7	2.49	2, 8
2	1.97	1	.40		.27		.48	.069		2.07	2
3	2.10		. 4		.77		.060	. 02	- 1	2.30	2
Comp.			9	% co	mpos	itic	on, Fe	+			m ::
No.	Се	(2	M		Ni	P	8	٦	Si	Table
			26	. Fe	-Ce-	c,	Ce-Ste	els			
1 {	0.41-	- / / "	.38	0.6	38]			0.35	4
• }	0.61			J. (~					0.00	-

7	TABLE :	1.—Cc	MPOSI'	rion of	ALLOY	s.—(Co	ntinued))	т	ABLE	1.—Cc	MPOSIT	ION OF	ALLOY	в.—(Со	ntinued))
Comp.			% co	mpositio	n, Fe+			Table	Comp.			% cor	npositi	on, Fe+			Table
No.	Cr	C	Mn	Ni	P	8	Si		No.	Ni	C	Cr	Mn	P	8	Si	
				-Cr-C,					ļ 					i-Steels			
	1 0 04			teels, ex	cepting	No. 1	10.05		1 1	2.93	0.38	0.23	0.62	0.032		0.19	2, 8
1 2	0.94 11.71	.085	0.62 .32	0.13	0.01	90.042	0.35	4 2	$\begin{vmatrix} 2\\3 \end{vmatrix}$	2.96 3.00	.39		. 55 . 70	.031	. 039	0.11 2.47	3 4
3	11.78	.08	.07	Cu, 0.0	l l		1 1	3	4	3.06	.39		.61	.024	.019		3, 5
4	12.33	.247	.36	,	.01	1	1 1	2, 3	5	3.12	. 12		. 30	.022	. 022	. 037	2, 6
5‡	12.26	.42	.27	0.20				3, 5	6	3.25	. 38		.28	.027	. 024	. 063	2, 6
6	12.9	.32	.30	.3	.02	1	1 1	3	7	3.35	.31	0.10	. 64	.026	.028	. 13	3, 5, 7
7 8	13.18 13.34	.09	.03	0.12	ess iron) 0.0	1	0.06	3, 5 3	8 9	3.41 3.56	.41 .14	0.18 9 ys	.75 .50	.02	. 02 . 021	.25 .19	2-7 2, 6
9	13.31	.21	.59	. 13		1	1	3	10	3.60	42	vos. 14–16 hardening	.70	.017	.016		3, 5
10	14.31	. 104	.447	Tr.	.00		.935	2	11	3.70	. 29		.66	.005	.046	.14	3
11‡	14.99	.85	.39	. 26			1	3, 5	12	3.74	.28	<i>~</i>	. 578		. 047	. 195	5, 7
12	15.21	.40	.28	.18			1	3, 5	13	4.70	. 50 . 14 . 13	np. l case	.32	.023	.027	.233	2, 6
13‡	15.81	. 61	. 39	. 24	.0	.03	5 .03	3, 5	14 15	4.84 5.10	. 14	Compare car	. 29 . 16	.009	.018 .038		3
Comp.			% со	mpositio	on, Fe+			m-11-	16	5.76	.11	0.10	.20	.033	.031	.18	3
No.	Cr	C	e .	C	Mn	Ni	Si	Table									
				r-Ce-C,	Cr-Ce-	Steels			Comp.	NT: I				on, Fe		Si	Table
1	0.98	0.41-	-0.50	0.41	0.64		0.27	4	No.	Ni		Pe-Ni	C	Mn Ni-Ce-	Steels	81	
Comp.			% co	mpositi	on, Fe+			Table	1	2.86			0.43		·	2.54	4
No.	Cr	Mo	C	Mn	P	<u>s</u>	Si		Carra								
	1 0 551			-Mo-C,	Cr-Mo-	Steels			Comp.	Ni	Cr	C C	Mn	on, Fe P	- S	Si	Table
1	0.55	0.39 .28	0.42	0.55			0.19	4	No.	NI			<u>'</u>			101	<u> </u>
2 3	.73	.18		.49	0.034	0.035		3	<u> </u>	0.47				Ni-Cr-S		0.22	
4	.79	.34		.59	0.001		. 14	4	1 2	0.47 1.23	1.10 0.65	0.43 .47	0.63	0.012	0.038	.36	3 4
5	.85	. 20	.31	.44	. 034	. 035	.22	3	3	1.36	.65	.368	I	.012	.013	1	5, 7
6	.88	. 30	.40	.65			. 12	4	4	1.41	.81	.46	.82	.015			3
7	.89	.36	.41	.63	033	004	.28	4 3	5	1.45	1.10	.41	.64	.009	. 033	.20	3
8 9	.95 .95	.10 .39	.40 .52	.52	.033	. 024	.26	4	6	1.75	0.99	.49		1	10, 11		3
10	.95	.68	.40	.62			.40	4	7	2.49	.83	.37	.63	are cas		.28	4
11	.95	.73	.25	.48			. 19	4	8	2.56	. 83	. 36	.65	ening	steels	.33	4 2
12	1.03	. 19		.48	.030	. 039	ı	3	9	2.93 3.00	. 69 . 48	. 19	.45	0.021	0.028	.32	3
13	1.04	. 09	.42	. 53	. 032	. 023	. 25	3	11	3.15	. 58	.20	.39	.022			3
Comp.	<u> </u>		% co	mpositi	on, Fe+			T-11-	12	3.18	.96	.33	.47	.007	.052		8
No.	Cr	$\overline{\mathbf{v}}$	C	Mn	P	S	Si	Table	13	3.33				İ			2
		30). Fe-(Cr-V-C,	Cr-V-S	teels			14	3.33		.24	.37	.019			3, 4, 5, 7
1	0.93	0.16	0.41	0.67	C. No.	Ni	0.13	4	15	3.33			.65	.018	.025 .03	1	3, 9
2	.93	.20		. 64	5	0.20	.31	4	16 17	3.45		.32	.60	.03	.03	.12	3
3	.95	.20		.49	6	. 173		3	18	3.6	.6	.30	.40	.02	.02	.17	2, 6
4	.99	. 19		1	8	. 19		3	19¶	4.30	1.40		. 56	.015	.041	.22	3
5	1.00	. 16			0.016		. 13	3, 5	20	4.65	0.29	. 16	.43	.033		.11	3
6	1.16	.23		,	. 046	. 044		3						11	nless		
7	1.46	. 23		1	.005	.038		3	21	19.70	8.31	. 33	.49		eel clops	1.16	3, 5, 9
8 9	1.48 13.47				.31	.28 .01	. 19	3							tal"		1
	113.47	.21						-				67		F- 1			1
Comp.	1		% co	mpositi			Si	Table	Comp.	Ni	Cr	% co		on, Fe⊣ Mn∣ I		Si	Table
No.	Mo	C	l Fe-	Mo-C, I	P No-Stee	S le	51					<u></u>		u-Steels			els)
1	0.34			1.29		<u></u>	0.33	4		12.19				0.86 0.0			
2	.37	.38	l	0.71			.35	4	2	15.88	15.95	.38	.08	.71 .0	20 .04	8 2.36	3 .
3	. 67	.41	1	0.72			.42	4		22.90		.24	.78		10 .02		1 '
4	.73		1	1.24			.46	4		25.27		.39	.12		18 .03	- 1	1
5 8	1.05 3.00		1	0.75 0.65			.43	4		25.81 28.20		.70 .45	. 05 . 67		18 .06 12 .02	3.08 2 1.39	1
6	1 3.00	. 30	<u> </u>	0.00	<u> </u>	!	. 30	1 1	l ——	20.20	0.00	. 70	. 561	. 201 .0	, .02	_, I.US	1 5, 5

Comp.			% cc	mposi	tion.	Fe+			<u> </u>
No.	Ni	Cr	Ce	C	Mn	P		Si	Table
			<u>'</u>	r-Ce-C		Cr-C	e-Stee		<u> </u>
1	1.02	0.84	0.12	0.54	0.84		1	0.48	4
2	1.17	.77	.25	.41	. 63		i	.33	4
3	2.46	. 92	. 19	.36	. 66			.34	4
4	2.47	. 95	. 24	. 43	. 58			.35	4
Comp.	1		% co	mposi	tion,	Fe+			
No.	Ni	Cr	Mo	C	Mn	P	S	Si	Table
	3	7. Fe-	-Ni-Cr	-Mo-C	, Ni-	Cr-1	Io-Stee	els	
1	1.27	0.67	0.83	0.41	0.64			0.41	4
2	1.28	.68	.31	.39	.66		ĺ	. 27	4
3 4	2.39	.86	.75	. 50	.63			.44	4
5	2.44 2.45	.82 .88	.37	.44	. 66 . 61		}	.43	4
6	2.49	.79	.76	.41	.60			.31	4
7	2.52	.83	.34	. 53	. 65			.36	4
8	2.53	.78	.75	.38	.61			.48	4
9	4.83	. 96	.89	. 27	. 35	0.0	50.02	. 13	3
Comp.			% co	mposi	tion.	Fe+			
No.	Ni	Cr	V	C	Mn	P		Si	Table
	<u>''</u>		e-Ni-C				-Steels		
1	1.20	0.75	0.24	0.39	0.71		1	0.28	4
2	2.52	.84	.20	.40	.61			.28	4
3	3.30	. 60	. 10	.30		0.03	34 0.02	.31	2, 3
Comp.			% co	mposi	tion.	Fe +			
No.	Ni	Mo	70 00	C	Mn	P	S	Si	Table
			Fe-Ni-			<u>. </u>		1 52	
1	1.70	0.12	1	0.41			37 0.020	0 0.22	3
2	2.95	. 70		.37	. 52			2.50	4
Comp.			97 oc	mposi	tion	Fo.1			
No.	Ni	V	70 66	C	Mn	P		Si	Table
). Fe-I			1		1 0.	
1	2.94	0.12	1	0.36			1	2.42	4
Comp.	Ni	7-	% co	mposi				1 6:	Table
No.	INI	Zr	Fe-N	C	Mn	P		Si	
1	2 00	0.24	FE-N	0.43			feers	2.40	4
-	3.00	0.21						1 2.40	
Comp.				mposi	tion,	Fe+			Table
No.	Si	Mn	C	1			P	S	
	1 1 07	42.		-Mn-C				0.00=	
1	1.97	0.65					0.024	0.037	3
Comp.			% co	mposi	tion,	Fe+			Table
No.	V	Cr	<u>C</u>	Mn	1	P	<u>s</u>	Si	TADIC
			43. F	`e-V-C	, V-S	teel	3		
1	0.16	0.12	ľ	0.74		04	0.03		3
2	.16		. 504			017	. 031	0.23	5, 7
3	. 20		. 50	.84				. 16	4
Comp.				comp	ositio	n			Table
No.	Mg	Al	Cu	Zn		e	Mn	Si	
	122		44.	Mg, Co					
1	99.96	T-	0.00		1	02		0.02	3
2	99.89	Tr.	0.02	<u> </u>	0.	03		0.06	3

TABLE 1.—Composition of Alloys.—(Continued)

Comp.			%	compo	sition			m 1 '						
No.	Mg	Al	Cu	Zn	Fe	Mn	Si	Table						
			-	45. Mg	-Al									
1	95.77	4.20		1	0.03			3						
2	95.31	4.40		i i	.03	0.26		3						
3	94.0	6.0		ľ				3						
4	93.26	6.70			.04			3						
5	92.90	6.80			.04	0.26		3						
6	91.23	8.68	0.026		.041		0.023	3						
46. Mg-Cu														
1	90.31		9.65		0.04			3						
	47. Mg-Zn													
1§	94.72	Tr.	0.41	4.38	0.25		0.24	3						
Comp.	1		07	compos	eition									
No.	Ni	Cu	Fe	Mn	C	S	Si	Table						
110.	Ni	Cu		<u> </u>			51							
				Vi, Com	mercial									
1	99.32		0.32		0.15	0.016		2, 3						
2		0.159	. 59	0.184	. 044	. 025	.008	3, 5						
3	99+							3						
4	98.95		. 50	.10	.25	. 175	.06	3, 5						
5	98.70	.23	.74	. 16	. 099	. 16	.06	3						
	-			49. Ni-	Cr									
1	79.7		0.88		0.09	0.012	0.10	2, 8						
		+0	Cr, 19.0	4; Mg,	0.05									
				50. Ni-	Cu									
1	76.66	21.28	1.40	0.26	0.26	0.006	0.065	3						
2	72.91	23.56	1.73	1.94	.216	.007	.075	3						
3	69.08	28.07	1.56	1.01	.18	.005	.02	3						
4	68.95	27.29	2.22	1.38	.20	.019	.08	3, 5						
5		28.64	1.75	1.62	.21	.019	.01	3						
6	66.81	29.65	1.53	1.79	.18	.015	.02	3						
7	66.78	29.54	2.10	1.44	.16	.039	.02	3, 5						
8	66.0	30.0	2.10	1.30	. 19	.03		3						
9	65.28	30.53	2.12	1.53		.027	.14	2						
•														

4 has trace Al; 1 has 0.023 P; 4 has 0.19 P; 5 has 0.014 P; 7 has 0.019 P; 8 has 0.04 P; 10 has 0.006 P. 1-7 are Monel metals.

		51	. Ni-Ct	ı-Mn			
1	68.74 28.16	0.56	2.35	0.10	0.008	Tr.	2, 8
2	67.51 26.23	1.39	4.31	0.20	0.028	0.40	3

^{*} The mechanical properties depend to some extent on the relative positions of the specimen and crystallographic axes.

TABLE 2.—ENDURANCE LIMITS UNDER REVERSED DIRECT STRESSES

Key No.	Treatment	Approximate composition	Millions of	reversals, 10-6n	Endurance limit, kg/mm ² -FL ₂ [Def. 17(b)]	Endurance limit Tensile strength	Lit.
		1. Al					
2	A, single crystal§	Al, 99.6	6 I	‡	2.52	0.38	(9.5)
		8. Al-Si					
6A B	G _m M G _m M, 250°/180 C _a G _m M	Si, 12.7	10 I	Ħ‡	6.0	0.27	(22)
C	G ₈ M		10 I	нŢ	7.1	0.36	(22)

[†] By difference.

^{‡ 5} has 0.04 Cu, 11 has 0.03 Cu, 13 has 1.10 Cu.
¶ Air hardening steel.

[§] Electron metal.

Contains 0.024 P.

Table 2.—Endurance Limits Under Reversed Direct Stresses.—(Continued)

		STR	esses.—(Continued)				
Key No.*	Tre	atment	Approximate composition	10-en	FL ₀	$\frac{FL_0}{UTS}$	Lit.
			9. Al-Zn				
1	R _h		Zn, 5	1	3.9	0.28	(23)
2	R _b		9	1	5.3	.32	(23)
3	R _b		11	1	6.8	.37	(23)
4 5	R _h		17	1 1	7.9	.28	(23)
-	гц		26	1 1	9.4	.24	(23)
_			8. Cu-Al, Al-Bronzes				
1 2	_		Al, 0.1 3.0	1 1	7.3 13.4	0.32	(4) (4)
3	R _h		5.1	li	16.2	.39	(4)
5			9.9	1	16.2	.35	(4)
9	R _h		10.0	1	22.3	.37	(4)
-			14. Cu-Al-Mn				
1 2	R _h		Al, 10; Mn, 1 Al, 10; Mn, 2	1	19.5 19.5	0.29	(24) (24)
3			Al, 9; Mn, 3	i	19.5	.31	(24)
			15. Cu-Al-Ni	•			
1A	900° Q		Al, 7.9; Ni, 4.6	Ht	17.7		(2)
В		°/30 Ca			19.7		' '
2A			Al, 6.9; Ni, 5.6	H‡	16.9		(2)
_B		⊢700° in 200 m.)			20.4		
3	900° Q _w 700	°/30 C _a	Ni, 7.3; Al, 5.3	H‡	23.2		(2)_
			16. Cu-Mn				
1	A		Mn, 3.6	10 H‡	11.8	0.42	(27)
			21. Cu-Sn, Bronzes				
1	As received,	R (P-bronze)	Sn, 3.5; P, 0.032	10 H‡	19.2	0.47	(27)
			22. Cu-Zn, Brasses				
3	As received,	R	Zn, 27.5	10 H‡	13.2	0.35	(27)
7		R (naval brass,				1	
			32.2	2 H‡	13.8	38	(12)
14A B		$(\text{naval brass}, \alpha \beta)$	Zn, 40.1	2 H‡	18.9	.42	(12)
16A		(Munts metal)	Zn, 41.2	2 H‡	$\frac{18.5}{19.7}$.38	(12)
В					17.3	.42	(12)
			Fe, Commercially Pure				
1A	A 1000°/30 (Cf } Armoo iron	Fe, 99.87; C, 0.012 {	10 H‡		0.53	(9)
B		<u> </u>		10 H‡	18.7	.54	(27)
2A		Ab (ingot iron)	Fe, 99.88; C, 0.02	10	11.9	.40	(20)
4 5	As received		C, 0.03	2 774	17.0	.45	(26)
6	F	Wrought iron	.04	10 H‡	15.2 11.2	.50 .34	(12) (20)
8	As received		. 195	1	15.1	.37	(26)
		24	. Fe-C, Carbon Steels				
1	As received.		C, 0.07	2	14.9	0.43	(26)
3			C, 0.13	10 H‡	21.7	.45	(9)
4	_		.13	8 H‡	20.5	.51	(12)
9		R	. 15	H‡	17.2	.50	(29)
10		R	. 16 . 17	10 H‡	21.1	.44 .46	(27) (26)
13A	As received,	R _h	C, 0.19	1	18.5	.41	(25)
В	Rh A 900°		. 19	1	17.1	.40	` ′
18A			C, 0.24	1	22.7	.38	(25)
_B			.24	1	20.7	.36	
20 23		R R	C, 0.25	8 H‡		.42	(9)
25 25		R	.27 .29	1 1	21.2 21.6	.41 .40	(25) (25)
31			.33	10 H‡	22.1	.27	(11)
32	As received.		C. 0.34	1	22.8	.39	(25)
33			.34	2	16.2	.35	(26)
34 36			.35	3 H‡		.41	(12)
37A			.37	H‡	23.2		(29)
3/A B			C, 0.37 .37	10 10	17.6 14.8	.34	(20)
c	845°/15 Q _w ,	570° Ca (sor-		**	17.0	.28	
	bitic)		.37	10	23.2	.32	

Table 2.—Endurance Limits Under Reversed Direct Stresses.—(Continued)

	STI	resses(Continued)				
Key No.*	Treatment	Approximate composition	10-en	PL ₀	FL _o UTS	Lit.
	24. Fe-C	Carbon Steels.—(Contin	rued)			
38	As received, R	C, 0.38	1	23.3	0.38	(25)
45	As received	.44	2	22.4	.32	(26)
46 50B	As received	.45	10 H‡	23.3		(27)
50B	925°/20 Ca	C, 0.49 .51	10	14.1 20.3	.22	(20) (25)
53A	925°/20 Ca	.53	10	16.9		(20)
54	As received	C, 0.57	1	26.8	.36	(25)
57	As received	.62	1	22.4	.81	(25)
58 59	As received	.63	1	28.0 24.9	.39	(25)
60	N 800°	C, 0.64 .65	2 10H‡	30.2	.33	(9)
62	As received	.72	1	21.2	.24	(25)
64	As received	.79	1	23.6	.38	(25)
66 69	As received	.93 1.20	10 10	24.6 19.3	.26	(20) (20)
-		25. Fe-C, Cast Irons	110	120.0		(3.7)
1 1			1 0 ***	1	10.0	(1.5)
2	As cast	Graph- $\begin{bmatrix} 1.70 \\ 1.97 \end{bmatrix}$ Comb. $\begin{bmatrix} 0.56 \\ .46 \end{bmatrix}$	6 H;	15.0 7.9	0.48	(12) (12)
3	As cast	ite 2.10 C .47			.41	(12)
	27. Fe-Cr	-C, Cr-Steels (Stainless	Steels)			
2	N	Cr, 11.7; C, 0.09	10 H‡	32.0	0.53	(27)
4	As received	Cr, 12.3; C, 0.25	10 H‡	36.2	.46	(22)
10	As received, R	Cr, 14.3; C, 0.1	10 H‡	32.4	.53	(27)
		2. Fe-Ni-C, Ni-Steels				
1	As received	Ni, 2.93; C, 0.37	10 H‡		0.48	(27)
5 6	As received, R	Ni, 3.12; C, 0.12	1	22.8	.50	(25)
8A	830°/30 Cf. 590°/120 Cf	Ni, 3.25; C, 0.38	10	30.9	.61	(25)
В	830°/15 Qo 650°/120 Cf	Ni, 3.41; C, 0.41 {	10	26.0	.31	(-0)
C	830°/30/C _f , 810°/15 Q _w (500°); S _h W _s 590°/60 C _f	}	10	29.6	.36	(20)
D	785°/60 Cf		10	25.7	.36	(25)
9.4	As received, R	Ni, 3.56; C, 0.14	1	27.0	.54	(26)
B	A 750°		1_	26.5	.54	(25)
13	As received, R	Ni, 4.70; C, 0.50	2	29.8	.47	(25)
	34. 1	Fe-Ni-Cr-C, Ni-Cr-Steel	В			
9	Not stated		8 H.‡		0.42	(29)
13 18	Not stated	Ni, 3.33; Cr, 0.84; C (-)	8 H‡		.49	(29)
10	Not stated		8 H‡	150.2	.45	(15)
		Ni-Cr-V-C, Ni-Cr-V-Ste	els			
3	"Spec. S2 British Air Ministry"	Ni, 3.3; Cr, 0.6; V, 0.1; C, 0.3	10 H‡	42.8	0.45	(22)
		48. Ni, Commercial	_			
1	R _h	Ni, 99.32	3 H‡	20.5	0.40	(13)
		49. Ni-Cr				
1	R _h	Cr, 19.04	10 H‡	23.6	0.29	(27)
		50. Ni-Cu				
9	As received, R	Cu, 30.5	10 H‡	21.2	0.38	(27)
		51. Ni-Cu-Mn				

* The key number is the same as the composition number where data are given for only one condition or treatment; while if data are given for more than one, the letters A, B, C, . . . are added to the composition numbers to distinguish the different treatments given.

Cu, 28; Mn, 2.4

10 H‡ 25.1 | 0.40 | (22)

1 As received, R....

† The number given in this column denotes the maximum number of millions of reversals of stress for which the fatigue stress was investigated. It does not denote the number of reversals at which the curve Fatigue Strength vs. Number of Reversals becomes parallel to N axis, although in many cases this has occurred at a smaller number of reversals.

‡ The H in column 4 denotes results obtained on the Haigh electromagnetic machine; in other cases the stresses are produced by inertia of unbalanced rotating weights or by calibrated springs.

§ Values will depend to some extent on the relative positions of the specimen and crystallographic axis.

Table 3.—Endurance Limits Under Reversed Bending Stresses (Rotating Beam Machines)*

Key No.†	Treatment	Approximate composition	Millions of reversals, 10-ent	Endurance limit, kg/mm*.FL ₀ [Def. 17(b)]*	Endurance limit Tensile strength	Lit.
		1. Al				
1	R	Al, 99.24	170	7.4	0.47	(19)
		2. Al-Cu				<u></u>
	700° C		1 40	1 2 .	0.01	(17)
1 2	700° G _s	Cu, 2.0	100	3.5	0.21	(17) (16)
3	Tp	Cu, 4.6	100 100	11.3	.27 .31	(17)
4	G _m	Cu, 8.0 Cu, 12.0	7	4.2	.21	(15)
5	G _a	Cu, 12.6	15	5.1	.42?	
				1 3.1		· · · · ·
	E050/7 EO	8. Al-Cu-Mg-Si	1 400	1	0.07	(1.0)
1A B	505°/7.5Qb	Cu, 3.25; Mg, 0.7	400	9.8	0.27	(19)
Č	Same, Tp \ \ \frac{495°/30 Qb (2 h)}{270°/30 Cc}	}	400 200	8.4	.23	
_	370°/20 C _f	<u> </u>	200	7.7	.43	
2	F, W 500°/60 (niter) Qw	0. 0.0.37 0.7	1,,,			
_	150°/60 (oil) Ca	Cu, 3.6; Mg, 0.7	100	10.6	31	<u>(7)</u>
3	F	Cu, 3.75; Mg, 0.26	10	8.5	.31	(7)
4	F, 500°/60 Qw, 100°/6 d	Cu, 3.88; Mg, 0.78	10	14.0	.38	(7)
5	R _h , ‡ 480°/Q _w , V	Cu, 4.0; Mg, 0.50	2	16.6	.41	(13)
6	As received	Cu, 4.18; Mg, 0.66	12	14.9	.32	(14)
7 8	Tp, "duralumin"	Cu, 4.8; Mg, 0.42	200	12.0	.28	(16)
9	R _h ,‡ 480° Q _w , V	Cu, 5.0; Mg, 0.75	3	16.6 16.1	.40 .36	(13) (13)
-		Cu, 6.0; Mg, 0.75		10.1	00	()
	12	4. Al-Cu-Ni-Mg				
1	Rh. ‡ "magnalite"	Cu, 2; Ni, 1.5; Mg, 1	4	14.2		(13)
2	R _h , 480° Q _w	Cu, 4; Ni, 1; Mg, 1	10	15.5	0.43	(22)
3 4	R _h , 480° Q _w	Cu, 4; Ni, 1; Mg, 1.5	10	16.0	.45	(22)
5	R _b ,‡ 480° Q _b , V	Cu 4. Ni 9. M- 1.	3	14.2	.40	(13)
6	R _{h.} ‡ 480° Q _b , V R _{h.} ‡ 520° Q _b , V	Cu, 4; Ni, 2; Mg, 1.5	3	16.3	.45	(13)
7	520°/360 Qb, V 5 d	1 anoy	10 20	16.0 11.0	.41	(13)
·	/ 000 q 0, 1 0 u	8 Al-Cr 7-		11.0		(3)
_	10	5. Al-Cu-Zn	1	T - :		
1 2	G _m	Cu, 8.7; Zn, 5.3	6	7.1	0.37	(15)
	G ₈	Cu, 9.5; Zn, 5.5	6	3.7	.26	(15)
_	(= 1	6. Al-Mg				
1	R _h ,‡ ("aeromin")	Mg, 6.2	3	10.3	0.30	(13)
		7. Al-Mg-Si				
1	Tp	Mg, 0.55; Si, 0.56	50	8.5	0.28	(16)
		8. Al-Si				
1	G _a	Si, 5.0	50	4.2	0.32	(3)
2	G _B M	Si, 8.0	50	5.6	.35	(3)
3	G _m M	Si, 8 5	10	6.6	.34	(22)
4	G _m M	Si, 11.0	10	6.7	.31	(22)
5	G ₀ M	Si, 12.7	10	5.0	.29	(22)
7	G ₀ M	Si, 13.0	50	5.8	.33	(3)
8	G _m M	Si, 13.8	10	7.7	.42	(22)
		10. Al-Zn-Cu				
1	706° G	Zn, 7.7; Cu, 3	10	6.0	0.29	(7)
2	G	Zn, 11.4; Cu, 2	8	3.7	.19	(15)
3	G _{ma}	Zn, 12.1; Cu, 2	8	4.7	.23	(15)
4	G ₀	Zn, 16.9; Cu, 3	70	4.1	. 17	(17)
- 5	Rh, \$ 350°/Q, V ("E" alloy)		2	15.3	.26	(13)
6	R _h ‡ ("A" alloy)	Zn, 20.3; Cu, 3	2	13.7	.33	(13)
7	R _h ‡ ("B" alloy)		2	16.5	.35	(13)
	11. Cu, Ele	ectrolytic or Commerciall	y Pure	•		
3A B	As received R _o W 650°/60 C _f	Cu, 99.99	100 100	11.3	0.31	(16)
44	As received, Do	Cu, 99.98	68	8.8	.31	(16)
$\frac{B}{5}$	Do 650°/60 Cf	Cu, 99.96	C§	6.7	.31	<u></u>
			30	8.2	.36	(9)
6A B	E W 520°/30 C _f	Cu, 99.90	100	7.1	.31	(20)
C	E W 700°/30 P _w E W 700°/30 P _w D _c (0.5 in.		400	7.0	.31	
J	diam.)		300	7.0	1.0	
			. 000	1 7.0	. 18	

TABLE 3.—ENDURANCE LIMITS UNDER REVERSED BENDING STRESSES (ROTATING BEAM MACHINES).*—(Continued)

	STRESSES (ROTATIN	G BEAM MACHINES). * —(Conti	nued)	
Key No. †	Treatment	Approximate composition	10 ^{-e} n†	FLo*	$\frac{FL_c}{UTS}$	Lit
		12. Cu, Oxygenated				
1)		0.04% 0	50	12.9	0.49	(8)
2	Rh, D (4 stages) inter-	.05	50	12.3	.47	(8)
3	mediate anneals at 600°C	.09	50	13.0	.49	(8)
4		.24	50	11.6		(8)
	1	S. Cu-Al, Al-Bronzes				` -
4A			1 70			(3.5)
	As received, R	Al, 5.6	70	13.4	0.26	(16)
_B	R, 650°/60 C _f		C§	10.7	.26	
6A	As received, R	Al, 9.1	70	17.2	.28	(16)
_В	R, 705°/60 C _f		C§	12.9	.28	
7A	As received, R	Al, 10.0	50	20.7	.35	(16)
В	R, 650°/60 Ca	•	50	14.1	.32	` ′
8A	G	Al, 9.8	60	15.5	.37	(19)
В	G, 900° Q _w 650°/30 C _f	111, 0.0	70	18.3	.34	(**)
		47.10.1	I			
10	E W 900° Q _w 620°/30 C _f	Al, 10.1	60_	23.9	.44	(19)
11A	G ₀	Al, 10.0	10	19.0	.35	(8)
_B	G _a , Q 850°, Tp 630°		10	23.2	.37	1
12A	As received, R	Al, 10.4	60	24.6	.35	(16)
В		•	C	22.1	.35	
		17. Cu-Ni				
14	D			10.5	1 0 00	(1.4)
IA B		Ni, 19.2	50	12.7	0.36	(16)
<u>B</u>	R ₀ , 760°/60 C _f		C§	11.2	36	
2	As received, R	Ni, 19.4	75	16.2	.34	(2°)
3	As received ("cupro-nickel")	Ni, 20.6	40	16.4	.46	(*)
4A	As received, Rh	Ni, 44.7	50	24.3	.49	(16)
В	785°/60 Cf ("constantan")	•	C§	24.3	.49	` ′
5A	(R.	Ni, 44.8	40	30.3		(16)
В	As received Ro, 790°/60 Cf	11, 11.0	10	19.7	.42	()
	(10, 100 / 00 0)	40 0 71 0	. 10	18.7	.40	
		18. Cu-Ni-Cr				
1A	As received, F	Ni, 34; Cr, 4	50	23.9	0.35	(16)
_ B	815°/60 Cf		C§	24.6	.35	
		19. Cu-Ni-Sn				
1.4	As received, Do	Ni, 29; Sn, 1	50	23.6	0.38	(16)
	815°/60 Cf	111, 20, 511, 1	Ci	15.8	.38	(,
	, ,	00 C W 7	108	10.0		
		20. Cu-Ni-Zn				
1A		Ni, 20; Zn, 5	30	16.2	0.40	(16)
_B	760°/60 Cf		C§	14.6	.40	
2	As received, Do ("German					
	silver'')	Ni, 11; Zn, 29	60	12.0	.29	(16)
		21. Cu-Sn, Bronzes				
2	As received, R(P-bronse)	Sn, 4.2	, KO	20.4	. 0.44	(14)
	/ n / n		50	20.4	0.44	(16)
4A	As received Re	Sn. 4	30	15.9	.40	(16)
B			30	15.9	.47	(16)
5A	Pw, D (f in. diam.) 700°/30				1	
	Pw, D (1 in. diam.) 700°/30					
	Ρ₩	Sn, 4.9	1000	16.2	.50	(20)
В	Same, Do. 1 in. diam		400	19.0	.32	_
6A	As received, Do	Sn. 5.1	70	19.0	.43	(16)
В	650°/60 C _f	, •	C§	14.6	.43	` ',
7A		Qn 10 c				(14)
В	As received R. 500°/60 C.	Sn, 10.6	30	19.0	.33	(16)
	R _o , 590°/60 C _f		30	19.0	.40	
		22. Cu-Za, Brasses				
1A	(D _o	Zn, 19	100	16.2	0.29	1
В	As received Do 235°/60 Cf		100	18.3	.32	(16)
_ <u>c</u>	D _o 540°/60 C _f		100	12.3	.40	
2A	As received, Do	Zn, 26.6	20	12.0	.34	(16)
В	650°/60 C _f		C§	11.1	.34	` '
5A	(R ₀	Zn, 30	100	12.3	.24	(16)
В	R _o 230°/90 C _f	211,00	100	14.1	.27	\ ``` ,
č	As received Re 235°/90 C		100	14.1	.27	
Ď	R _o 260°/90 C _t		100	15.2	.29	
E	R _c 650°/90 C ₄					
_	1 (16 000 / 80 C)	7	100	22.1	.33	
6	A	Zn, 30.1	60	14.2	.45	(9)
8	As received, Ro	Zn, 34.6	12	16.5	.43	(14)
9	R Naval brass	Zn, 38.27	600	14.8	.31	(19)
10	Rh / Navan brass	Zn. 38.3	60	13.0	.31	(16)
11	G, W 780°, E 700° (1 in.) W					
	550°/30 Pw, D (1 in.) W					
	550°/30 P _w	Zn. 39 6	400	20.4	.41	(20)
	***************************************		-00		21	

TABLE 3.—ENDURANCE LIMITS UNDER REVERSED BENDING STRESSES (ROTATING BEAM MACHINES).*—(Continued)

_						
No.	Treatment	Approximate composition	10-ent	FL.+	PL ₀	Lit.
ΖŻ		.,			UTS	
	22. Cu-	Zn, Brasses.—(Continue	d)			
12A	G W 780° E 700° (<u> </u>		1	
В	(1 in.), 550°/30 \ D, 7 in.	Zn, 40.1	500	15.5	0.41	(20)
_	P _w D _c , ½ in.		500	18.3	.27	
13A	(250°)	Zn, 40.1	60	11.3	.21	(16)
В	Qi Tp { 344° } Munts metal	mu, IV. I	100	13.0	.23	(-)
Č	425°		100	12.7	.27	
15A	As received, Rh	Zn, 40.1	70	13.0	.24	(16)
В	650°/60 C _f , (Mn bronse)	, sv. 1	C§	11.6	.24	` '
17	960° G (Mn bronse)	Zn, 40.9	150	12.0	.24	(19)
<u>:-</u>		Cu-Zn-Pb, Leaded Brass		12.0	.47	()
1 2	Dd	Zn, 38.3; Pb, 0.06	50	14.4	0.35	(8)
3	D _d	Zn, 37.9; Pb, 0.53 Zn, 37.9; Pb, 1.58	50 50	16.2 16.2	.40	(8) (8)
4	D _d	Zn, 37.8; Pb, 2.61	50	15.1	.37	(8)
5	D _d		50	13.7	.34	(8)
	23.					- ` ´
1A	A 1000°/30 Cf (Armco iron).	C, 0.012	100	19.8	0.67	(°)
24		C, 0.02	100	18.3	.61	(20)
B	As received, Ab Ab W815°/15Q	C, U.U2	100	23.2	.66	(-0)
3A	Ab, W815°/15Qw	C 0 000	100	16.5		(16)
aa B	R _h	С, 0.023	100	17.6	.53	()
_		7 0004		i——	i ——	(20)
6 7	F	C, 0.045 C, 0.06	100	16.2 18.4	.49	(20) (14)
÷			. 14	10.7	.01	()
	·	Fe-C, Carbon Steels	1 10	10.	1044	(1.4)
2A B	N 900° N 900°, W 760° Q _w	C, 0.11	10	18.4 27.8	0.44	(14)
		(1.0.12				<u> </u>
3	N 850°	C, 0.13	250	25.7	.53	(9)
5A	R _h 890° Q _o	C, 0.14	10	34.4	.45	(15)
B	200° 300°		10	33.6 32.7	.44	1
D	Same, Tp { 400°		10	29.6	.44	
E	500°		10	29.6	.45	
F	600°		10	25.4	.43	
6	As received	C, 0.14	100	17.4	.43	(16)
7	A	.15	-	18.0	.52	(29)
8	N 900°	.15	10	18.4	. 55	(14)
11	R 900°, H 770°	C, 0.17	12	29.4	.47	(9)
12	R _h	. 18	100	19.7	.46	(21)
14_	R 880°, H 770°	. 19	12	28.0	.46	(9)
15A	As received, Do	C, 0.20	100	28.8	.47	(21)
В	Dc. 845°/15 Cf		100	17.6	.43	i .
_ <u>C</u>	De, 700°/15 Cf		100	20.4	.51	l
16	As received	C, 0.20	12	22.1	.45	(14)
17	R _h	C, 0.21	100	23.4	.47	(16)
19A	As received	C, 0.24	10	17.9	.42	(16)
В	870°/30 Cf (r. also Figs. 1 and					1`′
	2)		10	15.8	.41	1
C	870°/30 Ca		10	17.2	. 40	1
D	(700°/30 C _f		10	17.9	.42	
E	870°/30 Qo 590°/30 Cf		10	17.9	. 39	
F	100 / 00 01		10	20.7	.44	
G	370°/30 C _f		10	19.3	.40	İ
Н	670°/60 C _f		10	21.4	.46	•
J	900°/60 Q _w { 540°/60 C _f		10	22.2	.40	
<u>K</u>	(430°/60 Cf	0.000	10	20.7	.37	
20	As received, R	C, 0.25		19.5	. 43	(9)
21	<u>F</u>	C, 0.25	10	25.0	.47	(16)
22A	D _c	C, 0.26	12	30.1	.47	(1)
22B	B 250°	C, 0.26	12	29.0	.46	(1)
C	D _c { B 400°		12	29.9	.48	
_D	B 550°		12	28.4	. 49	
24	A 650°	C, 0.29	100	21.1	.43	(16)
26	As received, Rh	.30	12	26.3	.45	(9)
27	830°/Qo, A 650°	.31	100	21.1	.42	(16)
28	N 850°	.31	12	20.2	.36	(14)
29	As received, Rh	.31	12	33.9	.51	(9)

Table 3.—Endurance Limits Under Reversed Bending Stresses (Rotating Beam Machines).*—(Continued)

Key No. †	Treatme	ent	Approximate composition	10-4m†	FLo*	FL. UTS	Lit.
_		24. Fe-C,	Carbon Steels.—(Conti	nued)			
30A	Rh 870° Qw		C, 0.32	10	58.5	0.41	(15)
B C				10 10	41.4 39.9	.43 .46	
Ď	Same, Tp 400°			10	45.5	.44	
E	500°			10	42.1	.42	
_F				10	39.3	.50	
31	850°/15 Ca		C, 0.33	250	27.6	47	(11)
35A B	N 850° 850°/Q _o , Tp 600		С, 0.36	12 12	26.8 29.9	.45 .41	(9)
36	A		C, 0.37		21.1	.37	(29)
37B	810°/15 Cfo		C, 0.37	100	23.2	.46	(20)
C	845°/15 Qw, 570	0° Ca (sor-	-,				` `
	bitic)			100	40.1	56	
39A	845°/30 Cf (v. als		4.000	ا ا			
В	2) 845°/30 C _a		С, 0.38	10 10	21.4 22.5	.44 .41	(20)
Č	930°/120 Qo, 84			10	20.7	.41	
D	∫ 670)°/30 C(10	23.6	.42	
E	845°/30 Q _o { 540)°/30 C _f)°/30 C _f		10 10	23.6 23.6	.39 .37	
F G	980°/300 Q _o , 84			10	20.7	.42	
н		0°/60 Ct		10	25.0	.43	
J	8450/60 0 59	0°/60 Cf		10	27.8	.46	
K	1 1	0°/60 C ₁		10	29.2	.43	
<u></u>		0°/60 C _f	0.040	10	27.1	.40	/8 \
41 43	As received		· ·	12 12	29.1 27.3	.46	(°) (°)
47A	N		C, 0.45	12	28.8	.44	(9)
В	Ho 850°, Tpo 60	0°	5,5155	12	34.9	.46	` '
49	A 870°		.48	100	24.6	.43	(16)
50A	815°/30 Ca		C, 0.49	100	22.5	.42	(20)
B C	925°/20 Ca 925°/20 Ca, 775°			100	23.2 33.8	.36 .50	
D	925°/20 Ca, 790°			100	45.7	.51	
E		/30 C _a		100	26.0	.43	
F	1 1	/30 Ca		100	35.2	.58	
G H	Same, Tp { 540°	/30 C _a /30 C _a		100	40.0 45.0	.53 .53	ł
J		/30 Ca		100	47.8	.54	
52A	845°/15 Ca		C, 0.52	100	29.5	.42	(20)
В	Same, 790°/15 Q			100	38.7	.49	
-53B		760°/30 Ca	C, 0.53	100	27.4	.44	(20)
C D	925°/20 Ca,	650°/30 Ca 540°/30 Ca		100	37.3 41.5	.54	1
E	790°/15 Qo	425°/30 Ca		100	45.7	.50	l
F		315°/30 Ca		100	47.1	.52	1
G H	l .	\ 205°/30 C _a °/15 O-		100	47.8 47.1	.51 .52	1
55A	400°	, 10 %	C, 0 60	100	74.0	.43	(32)
В	450°		0,000	10	65.4	.46	`-'
C	Qo. 1p 500°			10	59.7	.48	l
D				10	50.2	.50	=
56	N 810°		C, 0.60	10	28.4	.87	(14)
60 61	N 800° Not stated		C, 0.65	12 10	32.3 30.2	.41	(49)
63	A 730°		.77	100	27.4	.25	(19)
65A	790°/30 Ct		C, 0.81	10	22.2	.25	(10)
_B	800°/120 Ca			10	27.1	.25	
66B	870°/ 790°/15Ct		C, 0.93	100	31.4	.30	(50)
C D	15Ca 790°/15Qo	/650°/30Ca /\455°/30Ca		100 100	89.4 68.9	.49	
67	790°/60 Cf		C, 0.97	100	22.9	.87	712
68	790°/30 Cf, 790°		C, 1.02	10	73.9	 -	*
69A	795°/15 \ 860°/15		C, 1.20	100	85.3		置
		, 460°/15 Ca		100	64:7		

TABLE 3.—ENDURANCE LIMITS UNDER REVERSED BENDING STRESSES (ROTATING BEAM MACHINES).*—(Continued)

No.	Treatment	Approximate composition	10 ⁻⁶ n†	FL ₀ *	PL₀ ŪTS	Lit.
	24. Fe-C	Carbon Steels (Contin	nued)			
69C	795°/20 Cf, 885°/15 Qo	(r. also Figs. 1 and 2)	100	73.9	0.48	(20)
D	{ 205°/30 C _a		100	75.2	.48	
E	345°/30 C _■		100	76.0	.48	
F	Same, Tp { 495°/30 C _a		100	71.7	.47	
G	650°/30 Ca		100	47.8	.49	
H	760°/30 C _a		100	37.6	.45	
J	795°/15 Cf. 770°/30 Qa.		1			
	430°/30 C _a		100	60.1	.47	
		7. Fe-Cr-C, Cr-Steels				
3A	480°/120 Ca	Cr, 12; C, 0.08 (v. also Figs.	10	52.0	0.44	(16)
В	980°/90 Qo 540°/120 Ca	3 and 4)	10	54.1	.47	
C	080 / 120 Ca		10	42.9	.56	
D	(705°/120 C _a		10	30.7	.54	
E	980°/120 Cf		10	21.8	.49	
4	As received	Cr, 12; C, 0.25	12	37.8	.48	(22)
5A	540°/60 Ca	Cr, 12; C, 0.42	10	61.9	.51	(16)
В	900°/60 Qw 650°/60 Ca		10	43.9	.51	
6	As received	Cr. 13; C. 0.32	12	33.8	.44	(14)
7	As received, Rh	Cr, 13.2; C, 0.1	100	34.5	.44	(20)
8	As received	Cr, 13; C, 0.08	12	21.2	.45	(14)
9	To PL № 42	Cr, 13; C, 0.2	100	33.0	.48	(16)
11A	(480°/60 C _a	Cr, 15; C, 0.85	10	73.1	.45	(16)
В	900°/60 Q 565°/60 C		10	63.4	.54	
C	650°/60 C		10	51.0	.55	
D	As received, A		10	35.1	.45	
12A	480°/60 C _a	Cr, 15; C, 0.4	10	59.4	.51	(16)
В	900°/60 Q _w { 565°/60 C _a		10	43.9	.51	
C	650°/60 Ca		10	41.8	. 52	
D	As received, A		10	34.8	.45	l

TABLE 3.—ENDURANCE LIMITS UNDER REVERSED BENDING STRESSES (ROTATING BEAM MACHINES).*—(Continued)

27. Fe-Cr-C, Cr-Steels.—(Continued) 13A 900°/60 Q _w , 480°/60 C _a Cr, 16; C, 0.6 10 80.5 B As received, A 10 38.3 29. Fe-Cr-Mo-C, Cr-Mo-Steels 3A 870°/60 C _f Cr, 0.76; Mo, 0.18; C, 0.39 10 27.1 B 870°/60 Q _w 480°/60 C _f 10 47.9 C 870°/60 Q _w 480°/60 C _f 10 48.1	0.57 .55 0.45 .56 .50	
13A 900°/60 Q _w , 480°/60 C _a Cr, 16; C, 0.6 10 80.5 B As received, A 29. Fe-Cr-Mo-C, Cr-Mo-Steels 3A 870°/60 C _f Cr, 0.76; Mo, 0.18; C, 0.39 10 27.1 B 870°/60 Q _w { 480°/60 C _f 10 47.9 C 870°/60 Q _w { 480°/60 C _f 10 48.1	.55 0.45 .56	
B As received, A	.55 0.45 .56	(16)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.45	(16)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.56	(16)
B 870°/60 Qw \{ \frac{480°/60 Cf}{590°/60 Ci} 10 47.9 10 48.1 48.1	.56	(16)
C 870°/60 Qw 590°/60 Cf 10 48.1		
C 590°/00 Cf	.50 l	
EL 0709/40 C. C. 0 CE. Mr. 0 00. C 0 21 10 25 7		
	.44	(16)
B 870°/60 Qw 480°/60 Cf 10 51.0	.44	
C 8/0-/00 Qw 590°/60 Cf 10 44.6	.45	
8 To PL \(\text{\$\tilnet{1\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tilnet{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tilnet{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tinx{\$\text{\$\$\text{\$\exitin}\$}}}}}}}}}} \endernightiles \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} \end{tindex{tinity}}}} \end{tiketa}}}} \end{tiketa}}} \end{tiketa}}} \end{tiketa}}} ti	.51	(16)
12A 870°/60 Cf Cr, 1.0; Mo, 0.2; C, 0.50 10 34.8	.45	(16)
B 870°/60 Q 480°/60 Cf 10 61.9	.51	
C 370 / 500 Qw 590°/60 Cf 10 53.1	.49	
13 To PL № 77 Cr,1; Mo, 0.1; C, 0.4 100 47.5	.48	(16)
30. Fe-Cr-V-C, Cr-V-Steels		
3 H, Tp Cr, 0.95; V, 0.2; C, 0.44 10 51.7	0.52	(1)
4A 900°/60 Cf	.44	(16)
B 900°/60 Q 480°/60 Cf 10 66.4	.47	
C 900°/80 Qw 590°/60 Cf 10 64.7	.56	
5 Sv Cr, 1.0; V, 0.16; C, 0.45 10 32.0	.44	(16)
6 To PL № 42 Cr, 1.2; V, 0.2; C, 0.24 100 25.4	.45	(16)
7 To PL \$\to 77	.46	(16)
8 850° Q ₀ , 650° C ₂ ,	.49	(14)
9 As received, Rh	.49	(19)
32. Fe-Ni-C, Ni-Steels		
2A N 810° Ni, 3.0; C, 0.4 10 33.9	0.43	(14)
B 850° Qo, 620° Qw	.44	
4 As taken from service \(\) Ni, 3.1; C, 0.4 10 31.3	.47	(16)

TABLE 3.—ENDURANCE LIMITS UNDER REVERSED BENDING STRESSES (ROTATING BEAM MACHINES).*—(Continued)

_	STRESSES (ROTATING B	EAM .	MACH	IINES,) (Conu	nuea)	
Key No. t	Treatment Appe	roximate	compo	sition	10 ⁻⁶ n†	FLo*	FL ₀ UTS	Lit.
	32. Fe-Ni-C, 1	Ni-Ste	els.—(Contin	ued)			
7A	900°/120 Qo, 800°/30 Cf	Ni, 3.4	4; C, 0.3	3				
					10	28.5	0.48	(16)
C	800°/60 Cf				10	34.8	.48	
D	800°/30 Ca				10	29.9	.47	
E	800°/30 Q _o { 650°/30 C _f (s. 620°/30 C _f (s. 620°/30 C _f	also Fig	es. 3 and	14)	10	33.4	.49	
F	620°/30 C ₁			,	10	38.0	.47	
G	000 /00 40, 000 /00 C1				10	33.7	.49	
H	$800^{\circ}/30 \ Q_{o} \begin{cases} 570^{\circ}/30 \ C_{f} \dots \\ 510^{\circ}/30 \ C_{f} \dots \end{cases}$				10	41.8	.38	
J K					10 10	44.6 38.3	.41	
	800°/60 Qo 480°/30 Cf						.46	
L	650°/60 Cf				10	38.7	.56	
M	800°/60 Q _w { 590°/60 C _f				10	41.5	.51	
N	(480°/60 Cf				10	45.3	45	
8.4	830°/30 C _f , 590°/120 C _f	Ni, 3.4	i; C, 0.4	ŀ	100	45.0	.52	(20)
В	830°/15 Qo \ 650°/120 Cf				100	44.3	53	
С	830°/30 Ct, 810°/15, C to							
	500°, Qw, Sh, Ws 590°/60 Cf				100	45.0	55	
D	785°/60 Cf				100	38.0	53	
E	830°/30 Cf, 790°/15 Qo (v.	also Figs	s. 3 and	4)	100	84.4	.41	
F	(205°/30 Ca	_			100	78.8	.40	
G	315°/30 Ca				100	68.9	.43	
H	Same, Tp 430°/30 Ca				100	62.6	.52	
J	540°/30 Ca				100	54.8	.53	
_K	650°/30 C _a				100	45.7	.54	
10A	1	Ni, 3.6	3; C, 0.4	l	10	35.9	.45	(16)
В	790°/30 Q ₀ , 620°/30 C _f				10	41.8	.48	
С	790°/60 Qo, 480°/60 Cf				10	46.7	.56	
D	∫ 590°/60 C _f				10	50.6	.54	
E	790°/60 Qw { 540°/60 C _f				10	52.4	.50	
F	480°/60 Ct				10	52.0	.48	
11	To PL ≌ 42	Ni, 3.7	; C, 0.3		100	32.4	.50	(16)
14_	N 860°, 760° Qw	Ni, 4.8			10	41.8	.44	(14)
15	N 860°	Ni, 5.10	D; C, 0.1	3	6	37.7	.66	(28)
16	R, H 730°	Ni, 5.76			12	41.5	.51	(1)
	34. Fe-Ni	-Cr-C	Ni-C-	-Steel	8			
	22. 7.6-141							
	m. pr 93 40	Ni O 47	Cr	<u>C</u>			ا ـ . ـ ا	.,
1	To PL ≌ 42	1	1.10	0.43	100	27.6	0.42	(16)
4	Sv		0.81	.46	100	44.6	.45	(16)
5	To PL ≌ 77		1.10	.41	100	38.6	41	(16)
6A	845°/60 Cf	1.75	0.99	.49	10	35.1	.43	(16)
В		1			10	50.6	.50	
c			<u> </u>		10	59.4	.51	
10	R 850°, H 770°	1	.48	.19	12	48.8	.47	(9)
11	R 840°, H 770°		.58	. 20	12	46.5	38	(9)
12A	To PL № 42		.96	.33	100	28.1	.39	(16)
_В					100	42.2	.45	
14A	1	3.33	.87	.24	100	47.8	.49	(20)
В					100	45.7	.57	
C	1 ,	·			100	47.1	.59	
_D	A 830°/30 C _a , 790°/30 C _f				100	34.4	.56	
15A	830°/30 Cf, 790°/15 Qo		. 18	.41	10	53.5	.46	(20)
_B	350 /30 Cf, 790 /15 Qo 650°/30 Ca				10	52.1	.59	
16	850° Qo Tp 600°	3.45	.76	.32	12	44.2	.45	(14)
17	Н, Тр	3.48	.78	.32	12	52.0	.50	(9)
19A	Ha (fully)	4.30	1.40	.30	12	71.6	.42	(9)
В	(2000)			-	12	81.2	.51	• •
C	Same, Tp (s. also Figs. 3 and 4) "Air-				12	74.8	.49	
D	Same, Tp 500° and 4) "Air-hardening steel"				12	65.3	.50	
_E	600°) nardening steet				12	55.6	.50	
20	R 820°, H 760°	4.65	0.29	.16	12	47.2	.50	(22)
21A	Rh (2 passes); Ro	19.7	8.31	.33	10	38.7	.48	(20)
В	Same, W 940°/30 Cf (stainless steel,					••••		` ′
Б	cyclops metal)				8v	30 4	.50	
		0.5	. 0:	1- (2:	80	39.4	<u> </u>	<u>'</u>
	35. Fe-Ni-Cr-Cu-C, Ni				inless	Steels)	
1		12; Cr,			10	46.0	0.53	(16)
2		16; Cr,			10	45.0	.49	(16)
3		23; Cr,			10	35.2	.52	(16)
4	l	25; Cr,			10	38.0	.46	(16)
5	I . I	26; Cr,			10	39.0	.52	(16)
6	As received, A Ni,	28; Cr,	8.4; C,	U.45	10	41.1	.53	(16)

TABLE 3.—ENDURANCE LIMITS UNDER REVERSED BENDING STRESSES (ROTATING BEAM MACHINES).*—(Continued)

5.51		AG REYM					
No.	Treatment	Approxima	ate composition	10-en†	PL ₀ *	FL ₀ UTS	Lit.
	37. Fe-N	i-Cr-Mo-C	, Ni-Cr-Mo-S	teels			
Note	stated				51.2	0.42	(14)
1.1001					01.2	0.22	
- Im a			, Ni-Cr-V-Ste	, ere			
	ecification S2, British						
Air	Ministry				53.5	0.56	(22)
		e-Ni-Mo-C	, Ni-Mo-Stee	ls			
1A To F	L ≌ 42	Ni, 1.70; N	do, 0.12; C, 0.4	100	32.8	0.44	(16)
B To P	า∟≌ 77	!		100	40.1	.43	
	42. F	e-Si-Mn-C	, Si-Mn-Stee	ls .			
IA To F	°L ≌ 42			100	34.5	0.44	(16)
	?L≌77			100	43.6	.39	l` ′
D 10 /				1 100	40.0	.05	<u>'</u>
		LS. Fe-V-C	C, V-Steels				
1A 870°/	60 C _a , 840°/45 Q _w ,						
650	7/60, C to 480° Ca	V, 0.	16; C, 0.57	100	40.1	0.53	(19)
B 870°/	60 Ca, 650°/30 Ca,						
870	7/120 Qw, 700°/60 Ca	l		100	36.6	.51	1
C 870°	/60 Ca, 650°/60 Ca			50	43.0	.54	1
- (/		44. Mg, C	ommercial				•
. 15				1 100		1 0 04	1 (10)
1 -		1	g, 99.96	150	5.5	0.24	(19)
2 R _h			g, 99.89	90	7.1	.30	(22)
		45. M	[g-Al				
ι E		A	Al, 4.2	600	8.4	0.34	(19)
2 E		/	11, 4.4	100	10.6	.39	(19)
		1	M, 6.0	20	11.8	.36	(22)
I E) A	M, 6.70	600	9.2	.31	(19)
5 E		1	M, 6.80	80	10.6	.35	(19)
BA F. lo	ngitudinal	1	Al, 8.7	60	10.5	.36	(19)
B F, tr	ansverse			60	9.1	.43	1
	⊾at			60	8.8	.45	
		46. M	g-Cu				<u> </u>
1 E				600	7.7	0.28	(19)
1 15	••••••		u, 9.65	1 000	• • • •	0.20	(00)
		47. M	g-Zn				
1 As re	eceived, electron metal	Z	n, 4.38	200	12.0	0.47	(19)
		48. Ni, Co	mmercial				
1 R _h		N	i, 99.32				
				12	20.5	0.40	(13)
				I——	20.5	0.40	(13)
2A As re	ceived, Rh	N	i, 99.07	400	16.9	.40	
2A As re 2B 760°	ceived, R _h /60 C _f	N	i , 99 .07	400 300	16.9 22.2	.40 .41	(16)
2A As re 2B 760°, 3 Dd 8	coeived, R _h	N	i, 99.07 i, 99+	400 300 200	16.9 22.2 19.7	.40 .41 .41	(20)
2A As re 2B 760°, 3 Dd 8	coeived, R _h	N N	i , 99 .07	400 300 200 100	16.9 22.2 19.7 28.1	.40 .41 .41	(20)
2A As re 2B 760°, 3 D _d 8 4A As re	cocived, R _h	N N	i, 99.07 i, 99+	400 300 200 100 60	16.9 22.2 19.7 28.1 28.1	.40 .41 .41 .24	(20)
2A As re 2B 760°, 3 Dd 8 4A As re B	coeived, R _h	N N	i, 99.07 i, 99+	400 300 200 100 60 70	16.9 22.2 19.7 28.1 28.1 28.1	.40 .41 .41 .24 .24	(20)
2A As re 2B 760°, 3 Dd 8 4A As re B C D R ₀ W	cocived, R _h	N N	i, 99.07 i, 99+	400 300 200 100 60 70 70	16.9 22.2 19.7 28.1 28.1 28.1 34.4	.40 .41 .41 .24 .24 .25	(16)
As re 2B 760°, B Dd 8 As re B C D R _o W	cocived, R _h	N N	i, 99.07 i, 99+	400 300 200 100 60 70 70 39	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0	.40 .41 .41 .24 .24 .25 .34 .37	(20)
2A As re 2B 760°, B As re B C D R _o W	cocived, R _h	N N	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9	.40 .41 .41 .24 .24 .25 .36 .37	(16) (29) (19)
2A As re 760°, 3 Dd 8 As re B C D R _o W E F	cocived, R _h	N N N	i, 99.07 i, 99+	400 300 200 100 60 70 70 39 50	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4	.40 .41 .41 .24 .25 .34 .35 .36	(20)
As re 2B 760°, Dd 8 As re C D R o W E F	cocived, R _h	N N N	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9	.40 .41 .41 .24 .24 .25 .36 .37	(16) (29) (19)
As re 2B 760°, Dd 8 As re B C D R _o W E F	cocived, R _h	N N N	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4	.40 .41 .41 .24 .25 .34 .35 .36	(16) (29) (19)
2A As re 2B As re 6 As re 6 As re 6 As re 6 As re 6 As re 6 As re 7 As	cocived, R _h	N N N	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4	.40 .41 .41 .24 .24 .25 .35 .37 .37	(10) (20) (10)
2A As re 2B 760°, Dd 8 As re 6 B C D E F F As re 1A As re	cocived, R _h	N N N	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50 60	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4 20.4	.40 .41 .41 .24 .24 .25 .35 .37 .37	(16) (20) (16)
2A As re 2B As re B Ro. 8	cocived, R _h	N N N N N Cu, 21.3	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50 60 60	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4 20.4	.40 .41 .41 .24 .24 .25 .34 .37 .37	(10) (10) (10)
22A	cocived, Rh	N N N	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50 60 60 60 70 70 39 50	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4 20.4	.40 .41 .41 .24 .24 .25 .24 .25 .27 .27	(16) (20) (16)
2A As re 2B As re 3B C D RoW As re 5A As re 8B As re 8B As re 8B Ro. 8	cocived, Rh	N N N N N Cu, 21.3	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 39 50 60 60 50 100 C\$	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 23.9 20.7	.40 .41 .41 .24 .25 .36 .37 .37	(10) (10) (10)
2A As re 760°, Dd 8 As re B C D RoW 1A As re B As re B As re B Ro. 8 As re B Ro. 8	cocived, Rh	N N N N N Cu, 21.3	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 80 80 60 60 80 100 C§	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 23.9 20.7 26.4	.40 .41 .41 .24 .24 .25 .24 .25 .27 .27	(10) (10) (10)
22A As re 22B As re 22B As re 22B As re 22B As re 22B As re 22A As re 2A As re	cocived, Rh	N N N N N Cu, 21.3	i, 99.07 i, 99+ i, 98.95 i, 98.7	400 300 200 100 60 70 70 39 50 60 60 50 100 C\$	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 23.9 20.7	.40 .41 .41 .24 .25 .36 .37 .37	(10) (10) (10)
2A As re 2B As re 2B As re 2B As re 2B As re 2B As re 2A As re 3B Ro. 8 As re 3B	cocived, Rh	N N N N N Soo. N Cu, 21.3 Cu, 23.6 Cu, 28	i, 99.07 i, 99+ i, 98.95	400 300 200 100 60 70 70 80 80 60 60 80 100 C§	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 23.9 20.7 26.4	.40 .41 .41 .24 .25 .36 .37 .37 .37	(10) (10) (10)
2A As re 2B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8	cocived, Rh	N N N N N N N N Cu, 23.6 Cu, 23.6 Cu, 28 Cu, 27.3 Cu, 28.6 Cu, 28.	i, 99.07 i, 99+ i, 98.95 i, 98.7	400 300 200 100 60 70 70 89 50 60 60 50 100 C1 70	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 23.9 20.7 26.4 22.5	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A As re 2B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8 As re B Ro. 8	cocived, Rh	N N N N N N N N N Cu, 23.6 Cu, 23.6 Cu, 28.6 Cu, 27.3 Cu, 28.6	i, 99.07 i, 99+ i, 98.95 i, 98.7	400 300 200 100 60 70 39 50 60 60 500 500 70 500 60 70 500 60 70 60 70 70 70 70 70 70 70 7	16.9 22.2 19.7 28.1 28.1 28.1 34.4 19.0 26.4 20.4 21.1 18.3 23.9 20.7 26.4 22.5 24.3	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A	ceeived, R _h	N N N N N N N N N Cu, 23.6 Cu, 23.6 Cu, 28.6 Cu, 27.3 Cu, 28.6	i, 99.07 i, 99+ i, 98.95 i, 98.7	400 300 200 100 60 70 70 39 50 60 60 60 60 60 60 60 6	16.9 22.2 19.7 28.1 28.1 19.0 17.9 26.4 20.4 21.1 18.3 25.9 20.7 24.4 22.8 24.3 25.3 19.7	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(1.6) (1.6)
2A As re 2B As re 2B As re 2B As re 2B As re 2B As re 2B As re 3B	cecived, Rh	N N N N N N N N N N N Cu, 23.6 Cu, 23.6 Cu, 28.6 Cu, 27.3 Cu, 28.6 Cu, 27.3 Cu, 28.6	i, 99.07 i, 99+ i, 98.95 i, 98.7	400 300 200 100 60 70 70 80 60 60 60 60 60 60 60 6	16.9 22.2 19.7 28.1 28.1 19.0 17.9 26.4 20.4 21.1 18.3 23.9 20.7 24.4 25.3 19.7 29.5	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A As re 2B As re 2B As re 2B As re 2B As re 2B As re 2B As re 3B	cocived, Rh. //60 Cf. //	N N N N N N N N S	i, 99.07 i, 99+ i, 98.95 i, 98.7	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 20.7 24.4 22.8 25.9 20.7 26.4 22.8 26.3 27.9 28.1 28.1 28.1 28.1 28.1 28.1 28.1 28.1	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A As re 760°, As	cocived, Rh. //60 Cf.	N N N N N N N So. F Cu, 21.3 Cu, 23.6 Cu, 28.6 Cu, 29.7 Cu, 29.5	i, 99.07 i, 99+ i, 98.95 i, 98.7	\$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 22.9 24.3 25.3 25.3 25.3 26.4 27.9 28.1	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A	cocived, Rh. //60 Cf.	N N N N N N N N N N N N N N N N N N N	i, 99.07 i, 99+ i, 98.95 i, 98.7	\$00 \$00	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 22.9 24.3 25.3	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A As re 2B As re 6 As re 6 As re 7A Rh 8 870° 8 Rh. As re 7A Rh 8 870° 8 8 Rh. As re 7A Rh 8 870° 8 8 Rh. As re 7A Rh 8 870° 8 8 Rh. As re 7A Rh 8 870° 8 8 Rh. As re 7A Rh 8 870° 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8 8 Rh 8	cocived, Rh	N N N N N N N N N N N N N N N N N N N	i, 99.07 i, 99+ i, 98.95 i, 98.7	400 300 200 100 60 70 39 50 60 60 60 60 60 60 60 6	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 22.9 24.3 25.3 25.3 25.3 26.4 27.9 28.1	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (10) (10)
2A	cocived, Rh. //60 Cf.	N N N N N N N N N N N N N N N N N N N	i, 99.07 i, 99+ i, 98.95 i, 98.7	\$00 \$00	16.9 22.2 19.7 28.1 28.1 34.4 19.0 17.9 26.4 20.4 21.1 18.3 22.9 24.3 25.3	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(1.6) (1.6)
A As re A A	cocived, Rh	N N N N N N N N N N N N N N N N N N N	i, 99.07 i, 99+ i, 98.95 ii, 98.7 fi-Cu	400 300 200 100 60 70 39 50 60 60 60 60 60 60 60 6	16.9 22.2 19.7 28.1 28.1 19.0 17.9 26.4 19.0 20.4 21.1 18.3 22.9 24.3 25.3	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(10) (20) (10)
2A	cocived, Rh	N N N N N N N N N N N N N N N N N N N	i, 99.07 i, 99+ i, 98.95 ii, 98.7 fi-Cu	400 300 200 100 60 70 39 50 60 60 60 60 60 60 60 6	16.9 22.2 19.7 28.1 28.1 19.0 17.9 26.4 19.0 20.4 21.1 18.3 22.9 24.3 25.3	.40 .41 .41 .24 .24 .25 .37 .37 .37 .37 .38 .38 .38 .38 .38	(19)
2A	cocived, Rh	N N N N N N N N N N N N N N N N N N N	i, 99.07 i, 99+ i, 98.95 i, 98.7 fi-Cu Monel metals {	\$00 \$00	16.9 22.2 19.7 28.1 28.1 19.0 17.9 20.4 20.4 21.1 18.3 23.9 20.7 26.4 22.5 26.3 27.9 28.7 28.7 28.8 28.8 28.8 28.8 28.8 28.8	.40 .41 .44 .44 .45 .46 .47 .47 .48 .48 .48 .48 .48 .48 .48 .48 .48 .48	(1.6) (1.6)

TABLE 4.—ENDURANCE LIMITS UNDER REVERSED PLANE BEND- | TABLE 4.—ENDURANCE LIMITS UNDER REVERSED PLANE BEND-ING STRESSES (UPTON-LEWIS MACHINE)*

	ING STRESSE	s (Upton-Lewis M.	ACHI	ME) *		
Key Na.t	Treatment	Approximate composition	Millions of reversals, 10-ent	Endurance limit, kg/mm ² -FLo [Def. 17(b)]*	Endurance limit Tensile strength	Lit.
	23.	Fe, Commercially Pure				
2A	As received, Ab (ingot iron)	C, 0.02	2	16.2	0.54	(20)
		24. Fe-C, C-Steels				
	Loron in F. Cl		1 0	1 00 0	0.40	(20)
37B	810°/15 C _{fo}	C, 0.37	2	21.0	0.42	(20)
40	870° Qw, 420°/60 Ca	C, 0.40	_2_	48.0	40	(8)
44A B	875° Q _o { 400°/60 C _a	C, 0.44	2 2	62.5 60.0	.48 .50	(8)
50B C	925°/20 Ca Same, 775° Qw, 650° Cf	C, 0.49	2 2	19.5 27.5	.31 .40	(20)
52A	845°/15 C _a	C, 0.52	2	22.5	.33	(20)
_B	Same, 790°/15 Qw, 650° Ca		2	31.0	40	
66B	ಲ್ಡ್ (790°/15 Cf	C, 0.93	2	20.0	.34	(20)
C	790°/15 O. (650°/30 Ca		2	31.0	.38	
D	$ \frac{1}{2} \left\{ 790^{\circ}/15 Q_{o} \left\{ \begin{array}{l} 650^{\circ}/30 C_{a} \\ 455^{\circ}/30 C_{a} \end{array} \right. \right. \right. $		2	48.5	.37	
69A	795°/15 C _f , 860°/15 C _{fo}	C, 1.20	2	31.5	.38	(20)
		·	·			
	/ **** ***	B. Fe-Ce-C, Ce-Steels	1 -	1		
1A	870° Qw { 360°/60 Ca		2	56.0	0.44	(*)
_ <u>B</u>	420°/60 Ca		2	49.5	.45	
	2	7. Fe-Cr-C, Cr-Steels				
1.4	425°/60 Ca	Cr, 0.94; C, 0.35	2	55.0	0.40	(8)
В	900° Qo 525°/60 Ca		2	56.0	.51	` ′
С	625°/60 Ca		2	40.0	.45	
	98 1	e-Cr-Ce-C, Cr-Ce-Steel				
-				1 80 0	0.20	(8)
1A B		Cr, 0.98; Ce, 0.41-0.50;	2 2	59.0 50.5	0.39	(*)
Č	900° Qo { 525°/60 Ca	C, 0.41	2	41.5	.48 .49	
			·	1 41.0	. 10	
		e-Cr-Mo-C, Cr-Mo-Stee				
1.4		Cr, 0.55; Mo, 0.39; C, 0.42	2	67.0	0.46	(8)
В	925° Q _o { 525°/60 C _a		2	64.5	.53	
<u>_c</u>	630°/60 Ca		2	55.5	61	
2A		Cr, 0.73; Mo, 0.28; C, 0.15	2	43.0	.39	(8)
В	925° Q _w { 525°/60 C _a		2	48.5	.55	
<u>c</u>	625°/60 C _a		2	36.5	.54	
4.4	425°/60 Ca	Cr, 0.79; Mo, 0.34; C, 0.22	2	56.2	.58	(8)
В	850° Q _w { 525°/60 C _a		2	52.5	.55	
<u>c</u>	625°/60 Ca		2_	40.0	.49	
6A	1 1 1 1 1	Cr, 0.88; Mo, 0.30; C, 0.40	2	69.0	.48	(8)
В	820° Q _o { 525°/60 C _a		2	61.1	.52	
_ <u>c</u>	625°/60 Ca		2	49.0	52	
7A		Cr, 0.89; Mo, 0.36; C, 0.41	2	60.0	.48	(8)
<u>B</u>	840° Ca		2	45.5	.50	
9A	425°/60 C _a	Cr, 0.95; Mo, 0.39; C, 0.52	2	70.5	.48	(8)
В	815° Qo { 525°/60 Ca		2	64.5	.49	
<u>c</u>	625°/60 Ca	0.00.14.00.00.00	2	42.0	.45	
10A	425°/60 Ca	Cr, 0.95; Mo, 0.68; C, 0.40	2	68.0	.44	(8)
B C	900° Q _o { 525°/60 C _a		2 2	60.0 62.5	.42 .51	
Ď	820° Ca		2	47.0	.45	
_		Cr, 0.95; Mo, 0.73; C, 0.25				(8)
IIA B	925° Qo { 525°/60 Ca	O., v. sv., Mo, v. 13; C, v. 23	2 2	60.5 57.0	.46 .46	(8)
č	600°/60 Ca		2	50.5	.48	
<u> </u>		Fe-Cr-V-C, Cr-V-Steels	<u> </u>			
14	425°/60 Ca			1 80 0	0.40	/81
1A B	900° Q _o { 525°/60 C _a	Cr, 0.93; V, 0.16; C, 0.41	2 2	62.0 52.0	0.42 .40	(8)
Č	625°/60 Ca		2	52.0	.48	
Ď	900° Ca		2	46.0	.52	
2A	425°/60 C	Cr, 0.93; V, 0.20; C, 0.40	2	69.0	.51	(8)
В	900° Qo { 525°/60 Ca	5., 5.50, 1, 5.20, C, 5.20	2	55.5	.48	()
č	625°/60 Ca		2	43.5	.43	
		. Fe-Mo-C, Mo-Steels				
1	875° Qo. 450°/60 Ca	Mo, 0.34; C, 0.44	2	1 80 0	n Kn	(8)
	(2008 /00 C			69.0	0.50	(8)
2A	870° Q _w { 360°/60 C _a	Mo, 0.37; C, 0.38	2	67.5	.46	(*)
B	840° C _n		2 2	59.5 35.0	.45	
_	(4000/00 0	W. 0.07. O 0.44		35.0	-48	<u> </u>
SA B	870° Q _w { 420°/60 C _a	Mo, 0.67; C, 0.41	2	64.0	.46	(8)
B	840° Ca		2 2	84.5	.52	
U	OND V&			38.0	.45	

		on-Lewis Machine	, 	COM		
No.	Treatment	Approximate composition	10 ⁻⁶ n†	FL ₀ *	FL ₀ UTS	Lit.
	31. Fe-M	o-C, Mo-Steels.—(Conti	nued)			
4A	875° Qo \	Mo, 0.73; C, 0.4	2	67.5	0.50	(8)
В	(300 /00 Ca			60.0	.47	
5A B	900° Q _o { 425°/60 C _a	Ma, 1.05; C, 0.46	2 2	69.0	.45	(5)
C	900° Q _o { 500°/60 C _a		2 2	67.5 67.5	.48 .49	
Ď	900° Ca		2	52.0	.53	
6A	425°/60 Ca	Mo, 3.0; C, 0.36	2	73.0	.48	(*)
В	900° Qo { 500°/60 Ca		2	76.0	.55	
_C	575°/60 Ca		2	81.0	.65	<u> </u>
		2. Fe-Ni-C, Ni-Steels				
3A B	415°/60 Ca	Ni, 3.0; C, 0.41	2	77.5	0.43	(\$)
C	860° Qo { 510°/60 Ca		2 2	63.5 60.0	.47	
8A	830°/30 Cf, 590°/120 Cf	Ni, 3.4; C, 0.41	-	37.0	.43	(20
В	830°/15 Qo (650°/120 Cf	3.1, 0.2, 0, 0.2	2	32.5	.39	`
D	785°/60 Cf		2	31.5	.44	
	33. I	e-Ni-Ce-C, Ni-Ce-Steel	8			
1A	595°/60 Ca		2	53.5	0.45	(8)
B C	860° Q _o { 455°/60 C _a	C, 0.43	2 2	58.5	.42	
	425°/60 C _n	e-Ni-Cr-C, Ni-Cr-Steels	. 4	67.5	.40	
2			2	58.5	0 40	/#\
7	825° Q _o , 525°/60 C _a		2		.50	(8) (8)
	(PAPO /OA CI	Ni, 2.49; Cr, 0.83; C, 0.37 Ni, 2.56; Cr, 0.83; C, 0.36	$\frac{2}{2}$	48.0	.45	(8)
В	810° Q _o { 625°/60 C _a	M1, 2.30; Cr, U.33; C, U.30	2	46.0	.52	(-)
14A	A 830° O. 330° O.	Ni, 3.33; Cr, 0.87; C, 0.24		36.5	.37	(20
В	A, 830°/30 Qo, ∫Cf	, 0.00, 0., 0.01, 0, 0.02	2	32.5	.41	`
C	790° Q ₀ , 650°/60 \ Q _w		2	35.0	.44	
	36. Fe-1	Vi-Cr-Ce-C, Ni-Cr-Ce-St	eels			
1Å	810° Q. 525°/60 Ca	For compositions s. Table 1	2	53.0	0.46	(8)
<u>B</u>	810° Q _o { 525°/60 C _a		2	68.0	.45	
2	825° Q _o , 525°/60 C _a		2	58.0	.55	(8)
3	805° Q _o , 500°/60 C _f 810° Q _o , 525°/60 C _a		2 2	56.5 54.0	.50 .50	(8) (8)
		i-Cr-Mo-C, Ni-Cr-Mo-S		01.0		(-)
1A	(2020.00.0		2	52.0	0.41	(8)
В	825° Q _o { 625°/60 C _a	rot compositions & rable r	2	70.5	.45	(-)
2	825° Qo, 525°/60 Ca		2	62.0	. 52	(8)
3A	630°/60 Ca		2	49.5	.43	(8)
В	790° Qo { 525°/60 Ca		2	61.0	.42	
<u>c</u>	430°/60 Ca		2	72.0	.43	
4	865° Qo, 625°/60 Cf		2	48.5	.43	(8)
5	810° Qo, 625°/60 Ca		2	56.0	.51	(8)
6A	650°/60 C _n		2	50.5	.46	(8)
В	625°/60 C _a		2	58.5 70.5	.49 .49	
D	810° Qo 325°/60 Ca		2 2	70.5 67.5	.44	
E	325°/60 Ca		2	70.5	.41	
_F	150°/60 Ca			95.0	.43	
7	790° Qo, 610°/60 Ca		2	47.0	.40	(8)
8	790° Qo, 635°/60 Ca	W. O. T. O. T. O. T. T.	1 2 1	50.5	.44	(8)
_		Ni-Cr-V-C, Ni-Cr-V-Ste				,
1	825° Qo. 525°/60 Ca	For compositions s. Table 1	2	62.0	0.55	(8)
	0100 0 0000 000 00		2 1	53.0	.49	(8)
2A R	810° Qo, 625°/60 Ca			50 0	44 '	
2A B C	805° Qo. 560°/60 Cf		2 2	50.0 70.5	.44 .48	
В	805° Qo, 560°/60 Cf 810° Qo, 425°/60 Ca	e-Ni-Mo-C, Ni-Mo-Stee	2 2	50.0 70.5	.48	
B	805° Qo, 560°/60 Cf 810° Qo, 425°/60 Ca 89. Fo		2 2 is	70.5	.48	(8)
В	805° Qo, 560°/60 Cf 810° Qo, 425°/60 Ca	e-Ni-Mo-C, Ni-Mo-Stee Ni, 2.95; Mo, 0.70; C, 0.37	2 2			(8)
B C	805° Q _o , 560°/60 C _f 810° Q _o , 425°/60 C _a 89. Fo 860° Q _o $\begin{cases} 620^\circ/60 \text{ C}_a\\ 595^\circ/60 \text{ C}_a$		2 2 is	70.5 65.0	0.52	(*)
B C	805° Qo. 560°/60 Cf 810° Qo. 425°/60 Ca 89. F 860° Qo. 620°/60 Ca 40.	Ni, 2.95; Mo, 0.70; C, 0.37	2 2 is	70.5 65.0	0.52	
ZA B	800° Q _o , 560°/60 C _f	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels	2 2 1s 2 2 2 2	65.0 65.0 67.5 74.0	0.52 .50 0.52 .51	
B C 2A B	806° Q _o , 560°/60 C _f	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels Ni, 2.94; V, 0.12; C, 0.36	2 2	70.5 65.0 65.0	0.52 .50	
ZA B	806° Qo. 560°/60 Cf	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels Ni, 2.94; V, 0.12; C, 0.36 Fe-Ni-Zr-C, Ni-Zr-Steels	2 2	65.0 65.0 67.5 74.0	0.52 .50 0.52 .51	(8)
ZA B	806° Q _o , 560°/60 C _f	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels Ni, 2.94; V, 0.12; C, 0.36 Fe-Ni-Zr-C, Ni-Zr-Steels Ni, 3.00; Zr, 0.24; C, 0.43	2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2	65.0 65.0 67.5 74.0	0.52 .50 0.52 .51 .38	(8)
ZA B IA B C	806° Qo. 560°/60 Cf	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels Ni, 2.94; V, 0.12; C, 0.36 Fe-Ni-Zr-C, Ni-Zr-Steels Ni, 3.00; Zr, 0.24; C, 0.43 13. Fe-V-C, V-Steels	2 2 2 2 2 2 2 1	65.0 65.0 67.5 74.0 70.5	0.52 .50 0.52 .51 .38	(8)
2A B 1A B C 1	806° Qo. 560°/60 Cf	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels Ni, 2.94; V, 0.12; C, 0.36 Fe-Ni-Zr-C, Ni-Zr-Steels Ni, 3.00; Zr, 0.24; C, 0.43	2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1	70.5 65.0 65.0 67.5 74.0 70.5	0.52 .50 0.52 .51 .38 0.39	(8) (8)
ZA B IA B C	806° Qo. 560°/60 Cf	Ni, 2.95; Mo, 0.70; C, 0.37 Fe-Ni-V-C, Ni-V-Steels Ni, 2.94; V, 0.12; C, 0.36 Fe-Ni-Zr-C, Ni-Zr-Steels Ni, 3.00; Zr, 0.24; C, 0.43 13. Fe-V-C, V-Steels	2 2 2 2 2 2 2 1	65.0 65.0 67.5 74.0 70.5	0.52 .50 0.52 .51 .38 0.39	(8)

* See footnote to Table 3.

† See footnotes to Table 2.

STRESSES*

		8	TRESSES*												
Key No.†	Treatment	Treatment Approximate composition													
			1. Al												
2	A, single crystal‡			15	1.17	0.22	(9.5)								
	11. Cu. Ele	ctrol	ytic or Commercial	ly Pure											
1	, , ∫ R _c		Cu, 99.993	30	4.2	0.15	(16)								
2	As received Rh		Cu, 99.992	10	2.8	. 13	(16)								
		8. C1	ı-Al, Al-Bronzes												
4.4	As received		Al, 5.6	30	7.9	0.16	(16)								
6A	As received Rh		Al. 9.1	20	7.0	.11	(16)								
7A	As received		Al, 10.0	40	9.1	.16	(16)								
12A	As received		Al, 10.4	60	12.0	.17	(16)								
	(p		17. Cu-Ni	1 20	10.0	0.01	(16)								
4A B	As received $ \begin{cases} R_h \dots \\ R_h, 790^\circ/60 C_f \end{cases} $	N	i, 44.7 (constantan)	30	10.2 12.0	0.21 .24	()								
	(16, 100 / 00 0)	15	3. Cu-Ni-Cr	1 20	122.0										
1.4	As received, F		Ni, 34.2; Cr, 4.1	60	1 13 7	0.20	(16)								
		90). Cu-Ni-Zn	, 00		J.20	· · ·								
1A	As received Rh		Ni, 20; Zn, 5	1 30	9.1	0.22	(16)								
В	As received Rh. 760°/60 Cf		.11, av, au, u	30	9.1	.25	` ′								
	<u> </u>	21. (Cu-Sn, Bronzes	<u> </u>											
3	As received, Ro		Sn, 4.66	70	8.4	0.21	(16)								
			Cu-Zn, Brasses	·											
4	As received, Rc		Zn, 28.2	20	6.3	0.19	(16)								
13A	250°	Zn	40.1 (Munts metal)	6	3.9	.07	(16)								
В	Qi, Tp { 344°		,	20	5.3	.09									
C	425°			30	6.0	.12									
	23.	Fe,	Commercially Pure												
1A	A 1000°/30 Cf, Armco iron		C, 0.012	10	11.0	0.38	(9)								
2A	As received, Ab, ingot iron	L	C, 0.02	10	8.8	.30	(20)								
		24.	Fe-C, C-Steels												
3	N 850°	1	0.13	10	16.5	0.34	(9) (16)								
19A 20	As received		.24 .25	10	9.8 11.0	.23 .24	(°°)								
21	F	ŀ	.25	10	11.6	.22	(16)								
31	850°/15 Ca		.33	10	15.9	.27	(11)								
37B	810°/15 C _{fo}	l	.37	10	11.2	.22	(20)								
39A	845°/30 C _f		.38	10	12.7	.26	(20)								
B	845°/30 C _a 930°/120 Q _o , 845°/30 C _f			10	12.3	.23									
D	670°/30 Cf			10	15.1	.26									
E	845°/30 Qo 540°/30 Cf			10	11.6	. 19									
F	430°/30 C _f			10	14.4	.22									
42	As taken from services	%C	.41	10	10.2	.18	(16)								
48	850°/60 Q _w , 480°/120 C _f	ⁿ U	.46	10	20.0	.22	(16)								
50B	925°/20 Ca		.49	10	14.1 18.3	.22 .27	(20)								
52A	Same, 775° Qw, 650° Cf		.52	10	15.5	.22	(20)								
52A B			.Uŭ	10	22.2	.28	(-)								
	845°/15 C _a			1 40			(9)								
. 60	Same, 790°/15 Qw, 650° Ca		.65	10	15.2	.19	(9)								
			.65 .81	-		.19	(16)								
60 65A	Same, 790°/15 Q _w , 650° C _a N 800°		.81	10 10	15.2 13.4		(16)								
60	Same, 790°/15 Q _w , 650° C _a N 800° 790°/30 C _f \$\frac{\mathcal{C}}{\sqrt{90}\circ{15}} \left(790°/15 C_f			10	15.2	1	1 1								
60 65A 66B	Same, 790°/15 Q _w , 650° C _a N 800°		.81	10 10	15.2 13.4 11.5	.19	(16)								
66B C D	Same, 790°/15 Qw, 650° Ca N 800° 790°/30 Cf \$\frac{\mathcal{O}}{2}\{ 790°/15 Cf 790°/30 Ca \$\frac{650°/30 Ca.}{455°/30 Ca}\$.81	10 10 10 10 10	15.2 13.4 11.5 20.4 36.5	.21 .19 .25 .28	(20)								
60 65A 66B C	Same, 790°/15 Q _w , 650° C _a N 800° 790°/30 C _f \$\frac{\mathcal{C}}{\sqrt{90}\circ{15}} \left(790°/15 C_f		.81	10 10 10 10	15.2 13.4 11.5 20.4	.19 .25	(16)								
66B C D	Same, 790°/15 Qw, 650° Ca N 800° 790°/30 Cf \$\frac{\mathcal{C}}{2} \frac{790°/15 Cf}{455°/30 Ca} \$\frac{650°/30 Ca}{455°/30 Ca} \$\frac{790°/15 \frac{650°/30 Ca}{455°/30 Ca} \$\frac{795°/15 \frac{860°/15 Cfo}{800° Qo, 460°/15 Ca}	-c, c	.81	10 10 10 10 10 10	15.2 13.4 11.5 20.4 36.5 17.2 33.7	.19 .25 .28	(20)								
66B C D	Same, 790°/15 Qw, 650° Ca N 800° 790°/30 Cf 2	-C, C	.81	10 10 10 10 10 10	15.2 13.4 11.5 20.4 36.5 17.2 33.7	.19 .25 .28	(20)								
66B C D 69A B	Same, 790°/15 Qw, 650° Ca N 800° 790°/30 Cf \$\frac{\mathcal{C}}{2} \frac{790°/15 Cf}{455°/30 Ca} \frac{650°/30 Ca}{455°/30 Ca} \frac{650°/30 Ca}{455°/35 Cfo} \text{Cf} \frac{800° Qo, 460°/15 Ca}{27. Fe-Cr.}	-C, C	.81 .93 1.20 r-Steels (Stainless	10 10 10 10 10 10 10 Steels	15.2 13.4 11.5 20.4 36.5 17.2 33.7	.21 .19 .25 .28 .21 .27	(20)								
60 65A 66B C D 69A B	Same, 790°/15 Q _w , 650° C _a N 800° 790°/30 C _f \[\frac{3}{5}\{ 790°/15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-с, с	.81 .93 1.20 r-Steels (Stainless	10 10 10 10 10 10 10 10 Steels	15.2 13.4 11.5 20.4 36.5 17.2 33.7	.21 .19 .25 .28 .21 .27	(20)								
60 65A 66B C D 69A B 5A B 7	Same, 790°/15 Qw, 650° Ca N 800°. 790°/30 Cf	-с, с	.81 .93 1.20 r-Steels (Stainless Cr, 12; C, 0.42	10 10 10 10 10 10 10 Steels 10 40	15.2 13.4 11.5 20.4 36.5 17.2 33.7) 30.2 26.0 18.3 45.7	.21 .19 .25 .28 .21 .27 0.39 .31 .23	(20)								
60 65A 66B C D 69A B 5A B 7 11A B	Same, 790°/15 Qw, 650° Ca N 800° 790°/30 Cf 790°/15 Cg 790°/15 Cg 650°/30 Ca 795°/15 860°/15 Cfo Cf 800° Qo, 460°/15 Ca 900°/60 Qw 540°/60 Ca As received, Rb 900°/60 Qw 480°/60 Ca 565°/60 Ca 565°/60 Ca 565°/60 Ca 565°/60 Ca 900°/60 Qw 565°/60 Ca 565°/60 Ca	-C, C	.81 .93 1.20 r-Steels (Stainless Cr, 12; C, 0.42 Cr, 13; C, 0.1	10 10 10 10 10 10 10 Steels 10 10 40	15.2 13.4 11.5 20.4 36.5 17.2 33.7) 30.2 26.0 18.3 45.7 41.5	.21 .19 .25 .28 .21 .27 0.39 .31 .23 .28 .35	(16) (20) (20) (16) (20)								
60 65A 66B C D 69A B 7 11A B C	Same, 790°/15 Qw, 650° Ca N 800°. 790°/30 Cf		.81 .93 1.20 r-Steels (Stainless Cr, 12; C, 0.42 Cr, 13; C, 0.1	10 10 10 10 10 10 10 Steels 10 40	15.2 13.4 11.5 20.4 36.5 17.2 33.7) 30.2 26.0 18.3 45.7	.21 .19 .25 .28 .21 .27 0.39 .31 .23	(16) (20) (20) (16) (20)								

TABLE 5.—ENDURANCE LIMITS UNDER REVERSED TORSIONAL | TABLE 5.—ENDURANCE LIMITS UNDER REVERSED TORSIONAL

	STR	Esses. *—(Continued))			
No.	Treatment	Approximate composition	10 ^{-e} n†	FL ₀ *	FL ₀ UTS	Lit
2A	∫ 480°/60 Ca	Cr, 15; C, 0.4	10	28.2	0.24	(16)
В	900°/60 Q _w { 565°/60 C _a		10	21.1	.24	
C	650°/60 Ca		10	21.1	.26	
D	As received, A		10	16.9	.22	
3A	900°/60 Qw, 480°/60 Ca	Cr, 16; C, 0.6	10	33.0	.24	(16)
В	As received, A		10	15.5	.21	
		Fe-Cr-V-C, Cr-V-Steels	1 10	15 1	0.21	/1.6
5	Sv	Cr, 1.0; V, 0.16; C, 0.45 R. Fo-Ni-C, Ni-Steels	10	15.1	iU.21	()
4	As taken from service¶	Ni, 3.05; C, 0.4	10	16.5	0.25	(16)
7A	900°/120 Qo, 800°/30 Cf	Ni, 3.35; C, 0.3	10	14.4	.24	(16)
В	840°/60 Q _w , 485°/60 C _f	Mi, 5.55, C, 0.5	10	37.2	.36	(,
č	800°/60 C1		10	19.7	.27	
F	620°/30 C ₁		10	26.4	.33	
Н	880°/30 Qo 570°/30 Cf		10	33.7	.30	
J	510°/30 Cf		10	31.6	.29	
K	800°/60 Qo, 480°/30 Cf		10	24.6	.30	
8A	830°/30 Cf. 590°/120 Cf	Ni, 3.4; C, 0.4	10	26.0	.30	(20)
В	830°/15 Qo 650°/120 Cf		10	25.3	.31	
С	830°/30 Cf. 810°/15 Qw.					
-	C to 500°, Sh 590°/60 Cf		10	23.2	.28	
D	785°/60 Cf		10	20.4	.29	
0A	790°/60 Cf	Ni, 3.6; C, 0.42	10	15.8	.20	(16)
c	790°/60 Qo, 480°/60 Cf	212, 010, 0, 0122	10	26.7	.32	` '
Ď			10	32.7	.35	
F	790°/60 Qw { 590°/60 C _f 480°/60 C _f		10	33 .0	.31	
2	840°/60 Qw, 480°/120 Cf	Ni, 3.7; C, 0.3	10	25.3	.24	(16)
	84. F	e-Ni-Cr-C, Ni-Cr-Steel				
3	840°/60 Qw, 480°/120 Cf	Ni, 1.36; Cr, 0.65; C, 0.37	10	32.3	0.29	(16)
4.A	A 830° Qo, 330° Qo	Ni, 3.3; Cr, 0.87; C, 0.24	10	26.7	.27	(20)
В	A 830°/30 Qo, ∫ 650°/60 Cf		10	22.1	.28	
C	790° Qo \ 650°/60Qw		10	23.9	.30	
D	A, 830°/30 C _a , 790°/30 C _f		_10_	17.6	. 29	
1 A	Rh (2 passes), Rc (cyclops	Ni, 19.7; Cr, 8.3; C, 0.33	10	26.1	.23	(20)
	metal)	C, Ni-Cr-Cu-Steels (Sta	inless	Stoole	<u> </u>	<u> </u>
3	As received, A	Ni, 23; Cr, 5.4; C, 0.24	10	14.8	0.22	(16
6	As received, A	Ni, 28; Cr, 8.4; C, 0.45	10	15.5	.20	(16
_	`	3. Fe-V-C, V-Steels				
2	795°/60 Qw, 480°/120 Cf		10	30.2	0.30	(16
-		Ni, Commercially Pure		00.2	1 0.00	1
2A	As received, Rh	N1, 99.07	70	14.1	0.33	(16
4B	R _c , 288°/60 C _f	Ni, 98.95	20	13.0	.11	(16
	Rc, 870°/60 C1	2, 30.00	20	12.0	.24	` `
		50. Ni-Cu				
	As received	Cu, 27.3	10	14.0	0.22	(20
4	As received					1

- † See footnotes to Table 2.
- ‡ The mechanical properties depend to some extent on the relative positions of the specimen and crystallographic axis.
- § Submarine crank-shaft.
- || Stainless iron.
 || Battleship propeller shaft.

TABLE 6.—ENDURANCE LIMITS UNDER CYCLES OF DIRECT STRESS | TABLE 6.—ENDURANCE LIMITS UNDER CYCLES OF DIRECT STRESS WITH VARIOUS MEAN STRESSES

	Win	TH VARIOUS MEAN	N STI	ESSE	8			
Key No.	Treatment	Approximate composition	10-4 × number of reversals*	M. mean unit stree, kg/mm²	R/2, endurance half range [Def. 17(e)]	UTS, ultimate tensile strength	R/UTS	Tit.
		22. Cu-Zn, Bra	8808					
14A		. Cu, 58.5; Zn, 40.1	2 H 2 H				1.01	(12)
	Naval brass, αβ	- 5.1 0.0		45.3	0.955 .825			
			2 H 2 H	+ 6.3		45.3 45.3	ı	
_			2 H		1	45.3		
		24. Fe-C, C-St	eels					
4	R _b	C, 0.13	8 H 8 H	-19.2 -14.7	1	39.7 39.7		(12)
			8 H	- 8.2	18.5	39.7	.93	
			8 H 8 H	0.0 + 7.8		39.7 39.7		
			8 H	15.5	16.9	39.7	.85	
18A	As received	C, 0.24	8 H	20.1	1	39.7	.695 .765	(2.5)
IOA	As received	C, U.24	i	0.0 15.1	ſ	59.2 59.2		(,
В	A	C, 0.24	1 1	0.0	1	57.6		(25)
23	As received, R	C, 0.27	<u></u>	0.0	·	57.6	.825	(25)
			11	16.2		51.5	1	
25	As received, R	C, 0.29	1 1	0.0 16.7		54.7 54.7	.79 .61	(25)
32	As received	C, 0.34	1	0.0	22.8	58.5	.78	(25)
38	As received, R	C, 0.38	1	17.1	-	62.0		(25)
			1	17.0	17.6	62.0	.57	
5 1	As received	C, 0.51	1 1	15.2	1	70.4 70.4	.585 .43	(25)
54	As received	C, 0.57	1	0.0 20.2		73.6 73.6	.73 .55	(25)
57	As received	. C, 0.62	1 1	0.0 17.0	1	72.6 72.6	.62	(25)
58	As received	C, 0.63	1 1	0.0	1	81.0 81.0	.69	(25)
62	As received	C, 0.72	1 1	0.0	21.2	89.0 89.0	.475	(25)
64	As received	C, 0.79	1 1	0.6	1	63.1 63.1	.75	(25)
		32. Fe-Ni-C, Ni-	Steels					
5	As received, R	Ni, 3.1; C, 0.12	1 1	18.3			0.955 .795	(25)
6	As received, R	Ni, 3.25; C, 0.38	1	0.0				(25)
			1	14.2 22.1			1.10 0.875	
			i	27.3	1	50.4		
8A	830°/30 C _f , 830°/15 Q 590°/120 C _f	9	10 10	0.6 3.4		87.0 87.0		(20)
8B	830°/30 Cf, 830°/15 Q		10	0.0	1	78.6		(20)
	650°/120 C _f	•	10 10	3.4 11.0		78.6 78.6		
8D	785°/60 C _f		10 10	9.3	25.7	71.5	.72	(20)
9A	As received, R	Ni, 3.56; C, 0.14	1 1		27.0	50.0	1.08 0.69	(25)
13	As received, R	Ni, 4.7; C, 0.50	1 1	0.0	29.7 21.6	63.4 63.4	.94	(25)
					. 21.0	, 00.1	020	-

WITH VARIOUS MEAN STRESSES.—(Continued)

Key No.*	Treatment	Approximate composition	10-6 X number of reversals	M, mean unit stress, kg/mm²	R/2, endurance half range [Def. 17(e)]	UTS, ultimate tensile strength	R/UTS	Lit
		34. Fe-Ni-Cr-C, Ni-	Cr-Ste	els				
18	Treatment not stated	Ni, 3.6; Cr, 0.6; C, 0.30	8 H	-15.8	42.2	80.9	1.04	(15)
			8 H	0.0	36.2	80.9	0.895	
			8 H	+23.8	27.6	80.9	. 685	
			8 H	28.3	26.8	80.9	.665	
	į.		8 H	31.5	20.0	80.9	.495	
			8 H	39.4	14.6	80.9	.36	
		l	8 H	47.3	15.7	80.9	.39	
			8 H	53.9	11.8	80.9	.28	
	1	1	8 H	66.3	6.1	80.9	. 15	

TABLE 7.—ENDURANCE LIMITS UNDER CYCLES OF TORSIONAL STRESS WITH VARIOUS MEAN STRESSES

Stress Wit	TH VARIOUS	MEAN	DT1	Kess es	,									
Treatment	Approximate composition	Millions of reversals, 10-6n*	M, mean unit stress, kg/mm²	R/2, endurance half range, kg/mm² [Def. 17(e)]	UTS, ultimate tensile strength, kg/mm ²	R/UTS	Lit							
	24. Fe-C, C-S	eels												
805°/60 Qw, 480°/120 Cf	C, 0.46	10	0.0	20.0	92.7	0.43	(16)							
		10	14.1	21.1	92.7	.455	1							
		10	20.4	20.4	92.7	.44	1							
925°/20 Ca	C, 0.49	10	0.0	14.0	64.3	.435	(20)							
		10	3.4	13.5	64.3		i .							
		10	13.0	13.0	64.3	.405	l							
925°/20 Ca, 775° Qw, 650°		10	0.0	18.3	68.1	.54	(20)							
Cf (sorbitic).		10	17.6	17.6	68.1	.52								
795°/15 Cf, 860°/15 Cfo	C, 1.20	10	0.0	17.2	82.2	.42	(20)							
		10	17.2	17.2	82.2	.42	1							
795°/15 Cf, 800° Qo, 460°/		10	0.0	33.7	126.5	.53	(20)							
15 Ca		20	31.3	31.3	126.5	.50								
15 C _s 20 81.3 31.3 126.5 .50														
			0.0	37.3	102.5	0.73	(16)							
					1		١` :							
		10	33.4	33.4			1							
		10	44.6	23.6	102.5	.46	l							
830°/30 C _f , 830°/15 Q _o ,	Ni, 3.4; C, 0.4	10	0.0	26.0	86.9	.60	(20)							
590°/120 C _f		10	24.6	24.7	86.9	.57	1							
830°/30 Cf, 830°/15 Qo,		10	0.0	25.3	78.8	.645								
650°/120 C _f		10	5.5	21.9	78.8	.555								
785°/60 Cf		10	0.0	20.4	71.4	.57								
		10	4.9	19.7	1		ļ							
		10	20.0	20.0	71.4	.56								
840°/60 Qw, 480°/120 Cf	Ni, 3.74; C, 0.28	10	0.0	25.3	103.5	.49	(16)							
		10	23.9	23.9	103.5	.46								
34.	Fe-Ni-Cr-C. Ni-	Cr-Ste	els											
			11	32 3	1112 6	0 575	/1 6 V							
010 / 00 4W , 100 / 120 C((,							
As received A 830°/20 C		· ——	II		 		(20)							
	1				I	1	,,							
, , , , , , , , , , , , , , , , , ,	0,0.22		1 1											
	48. Fe-V-C. V-		,,				<u> </u>							
			ام ما	30.2	100.0	10.00	/16							
795°/60 () 490°/190 (^-														
795°/60 Q _w , 480°/120 C _f	V, 0.16; C, 0.50	10	0.0 28.5	28.5	100.9	0.60 .565	(,							
	Treatment 805°/60 Q _w , 480°/120 C _f 925°/20 C _a . 775° Q _w , 650° C _f (sorbitic). 795°/15 C _f , 880°/15 C _f 840°/60 Q _w , 485°/60 C _f 830°/30 C _f , 830°/15 Q _o , 590°/120 C _f 830°/30 C _f , 830°/15 Q _o , 650°/120 C _f 830°/30 C _f , 830°/15 Q _o , 650°/120 C _f 840°/60 Q _w , 480°/120 C _f	Treatment Approximate composition 24. Fe-C, C-St 805°/60 Qw, 480°/120 Ct C, 0.46 925°/20 Ca C, 0.49 925°/20 Ca., 775° Qw, 650° Cf (sorbitic). 795°/15 Cf, 880°/15 Cfo C, 1.20 795°/15 Cf, 880°/15 Cfo Ni, 3.35; C, 0.31 840°/60 Qw, 485°/60 Cf Ni, 3.35; C, 0.31 830°/30 Cf, 830°/15 Qo, 590°/120 Cf 830°/30 Cf, 830°/15 Qo, 650°/120 Cf 785°/60 Cf	Treatment Approximate composition 24. Fe-C, C-Steels 805°/60 Qw, 480°/120 Cf C, 0.46 10 10 925°/20 Ca, C, 0.49 10 10 925°/20 Ca, C, 0.49 10 10 925°/20 Ca, C, 0.49 10 10 925°/15 Cf, 860°/15 Cfo C, 1.20 10 10 795°/15 Cf, 800° Qo, 460°/ 15 Ca 23. Fe-Ni-C, Ni-Steels 840°/60 Qw, 485°/60 Cf Ni, 3.35; C, 0.31 10 10 10 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 830°/30 Cf, 830°/15 Qo, 10 840°/60 Qw, 480°/120 Cf Ni, 3.74; C, 0.28 10 10 840°/60 Qw, 480°/120 Cf Ni, 3.74; C, 0.28 10 10 840°/60 Qw, 480°/120 Cf Ni, 1.4; Cr, 0.65; 10 C, 0.37 10 As received, A, 830°/30 Ca, Ni, 3.3; Cr, 0.87; 10 C, 0.24	Restment Approximate composition Restriction Restr	Treatment Approximate composition Treatment Approximate composition Treatment Approximate composition Treatment	Residence Resi	Reserved A							

TABLE 8.—ENDURANCE LIMITS AT VARIOUS TEMPERATURES, REVERSED DIRECT STRESSES

	Н	REVERSED DIRECT S	TRES	SES			
Key No.	Treatment	Approximate composition	Temp., °C	Mullions of reversals, 10-6n	kg/mm ² . FLo [Def. 17 (b)]	(FLo) 10/(FLo) 20	Lit.
		8. A1-Si					
6A	G ₂₀₂ M	Si, 12.7	15 180	10 H 10 H	6.0 4.4	1.00 0.735	(22)
		24. Fe-C, Carbon St	eels				
60	N 800°	C, 0.65	20 305	10 H 10 H	30.7 23.5	1.00 0.765	(*)
		25. Fe-C, Cast Iro	ns				
1	As cast	Graphite, 1.70; combined C, 0.56, "granfin"	20 350 500	6 H 6 H 6 H	15.0 13.4 14.2	1.00 0.895 .945	(12)
		32. Fe-Ni-C, Ni-St	eels				
1	As received	Ni, 2.9; C, 0.4	20 370	10 H 10 H	31.7 25.9	1.00	(27)
		49. Ni-Cr					
1	As received, Rh	Ni, 80; Cr, 19	18 200 300 400 600 700	10 H 10 H 10 H 10 H 10 H 10 H	23.6 24.8 27.9 27.9 24.8 24.0	1.00 1.05 1.18 1.18 1.05 1.01	(22)
		51. Ni-Cu-Mn		-			
1	As received, R	Ni, 69; Cu, 28; Mn, 2.4	15 100 200 300 500 600	10 H 10 H 10 H 10 H 10 H 10 H	25.1 21.0 20.0 20.0 18.4 14.1	1.00 0.84 .80 .80 .73	(22)

^{*} See footnotes to Table 2.

TABLE 9.—ENDURANCE LIMITS AT VARIOUS TEMPERATURES. REVERSED BENDING STRESSES (ROTATING BEAM MACHINES)

Key No.*	Treatment	Approximate composition	Temp., °C	Millions of reversals, 10-6n	Endurance limit kg/mm ² -FLo [Def. 17(b)]†	(FLo) 3/(FLo)20	Lit								
	3. Al-Cu-Mg														
5	R _h , 480° Q _w V	Cu, 4.0; Mg, 0.5	20 150	2 2	16.6 11.3	1.00 0.68	(13)								
8	R _h , 480° Q _w V	Cu, 5.0; Mg, 0.75	20 150	2 3	16.6 12.5	1.00 0.75	(13)								
9	R _b , 480° Q _w V	Cu, 6.0; Mg, 0.75	20 150	3 3	16.1 7.9	1.00 0.49	(13)								
		4. Al-Cu-Ni-Mg													
1	Rh ("magnalite")	Cu, 2.0; Ni, 1.5; Mg, 1.0	20 150	4	14.2 11.0	1.00 0.78	(13)								
4	480° Qh V		20 150	3	14.2 10.3	1.00 0.73	(13)								
5	480° Q _h V	"Y" alloys, Cu, 4; Ni, 2.0; Mg, 1.5	20 150	3	16.3 12.9	1.00 0.79	(13)								
6	520° Q _h V		20 150	10	16.1 13.2	1.00 0.82	(13)								
		6. A1-Mg													
1	Rh ("seromin")	Mg, 6.2	20 150	3	10.3	1.00	(13)								

TABLE 9.—ENDURANCE LIMITS AT VARIOUS TEMPERATURES. REVERSED BENDING STRESSES (ROTATING BEAM MACHINES) .-(Continued)

10-6n Fimit 720 1)|† 100 po

Key No.*	Treatment	Approximate composition	Temp., °C	Millions of reversals, 1	Endurance kg/mm ² /F [Def. 17(b	(FL0)10/(F	Lit
		10. Al-Zn-Cu					
5	Rh, 350° Q V, "E" alloy	Zn, 20; Cu, 2.5	20	2	15.3	1.00	(13)
			150	2	8.0	0.52	.
6	Rh "A" alloy	Zn, 20.3; Cu, 2.9	20	2	13.7	1.00	(13)
			150	2	7.1	0.52	<u> </u>
	•	24. Fe-C, C-Steels					
50 B	925°/20 Ca	C, 0.49	21	18	25.3	1.00	(20)
			290	20	27.4	1.08	
			380	10	29.5	1.17	
			425	10	31.0	1.22	1
			470	10	29.6	1.77	
			540	12	23.9	0.94	
			620	_15	16.9	. 67	
68	790°/30 Cf. 790°/30 Qo	C, 1.02	21	10	73.8	1.00	(20)
	("spring steel")		165	10	68.4	0.93	1
			305	10	60.5	.82	1
			480	10	52.8	.72	1
		l	565	12	38.0	.52	<u> </u>
	34.	Fe-Ni-Cr-C, Ni-Cr-St	eels				
15A	830°/30 Cf, 790°/15 Qo,	Ni, 3.3; Cr, 0.18; C, 0.41	20	10	53.5	1.00	(20)
	425°/30 C	, , , , ,	240	10	57.7	1.08	1
	_		345	10	52.9	0.99	1
			470	10	47.9	.90	
			540	10	40.9	.76	1
15B	830°/30 Cf. 790°/15 Qo.		20	10	52.1	1.00	(20)
	650°/30 C		240	10	52.7	1.01	1
	_		345	10	47.1	0.90	ļ
			470	10	43.6	.84	
			540	10	38.7	.74	
21B	Rb (2 passes), Rc, 940°/30 C	Ni, 19.7; Cr. 8.3; C. 0.33	20	80	39.4	1.00	(20)
	("cyclops metal")		260	13	36.6	0.93	Ι΄ ΄
			470	20	32.4	.82	1
	1		565	10	26.1	.66	1

^{*} See footnotes to Table 2. † See footnote to Table 3.

LITERATURE

(For a key to the periodicals see end of volume)

- (1) Aitchison, Engineering Steels. London, Macdonald and Evans, 1921. (2) Aitchison and Barclay, Engineering Non-ferrous Metals and Alloys. London. Frowde, Hodder and Stoughton, 1923. (3) Basch and Sayre, 423, 32 I: 350; 25. (4) Carpenter and Edwards, 403, 1: 57; 07. 115, 83: 253; 07. (5) Corse, 66, 17 I: 190; 17. (6) Elmendorf, 422, 41 II: 811; 14. (7) Gibson, 66, 20 II: 115; 21. (8) Gillett and Mack, 66, 24 II: 476, 609, 760; 24. (9) Gough, Fatigue of Metals. London, Scott, Greenwood and Son, 1924. 115, 114: 291; 22. 299, No. 748; 21. 299, No. 864; 25. Gough, National Physical Laboratory, England, O. (9.8) Gough, Hanson and Wright, 62. 226: 1: 26. 299. No. 1024: 26.
- (10) Gough and Hanson, 6, 104: 538; 23.
 (11) Gough and Tapsell, National Physical Laboratory, England, O.
 (12) Haigh, 421, 23: 17; 15. 47, 18: 55; 17. Aero. Res. Comm. Rept. No. E. F., 78; 23.
 (13) Hankins, 299, No. 789; 21. Aero. Res. Comm. Light Alloys Subcomm. Rept., 274; 17. (14) Hatfield, 421, 28: 52; 21. 368, 15: 465; 21. (15) Lea, 413, 23: 545; 19. 403, 2: 762; 21. Lea and Budgen, 299, No. 920; 24. (16) McAdam, 33, 25: 1081; 21. 66, 28 II: 56; 23. 212, 6: 393; 24. 66, 24 II: 273, 574; 24. 212, 7: 54, 217, 581; 25. 80, preprint, Oct., 1925; preprint, Feb., 1926. (17) Merica and Karr, 66, 19 II: 297; 19. (18) Merica, Waltenburg and McCabe, 66, 21: 922; 21. (19) Moore, 66, 28 II: 106; 23. 25 II: 66; 25. 24 II: 547; 24.
- (20) Moore and Jasper, 86, No. 136; 23. No. 142; 24. No. 152; 25. (21) Moore and Kommers, 86, No. 124; 21. (22) National Physical Laboratory, England, 354, and O. (23) Rosenhain and Archbutt, 403, 2: 319: 12. (24) Rosenhain and Lantsberry, 403, 1: 119; 10. (25) Smith, 140, 2: 246; (26) Stanton and Bairstow, 153, 186: 78; 05. (27) H. J. Tapsell,
 National Physical Laboratory, England, O. (28) Woodvine, 417, 18: 197; 24.

SPECIAL PROPERTY-TABLE

The following tables are arranged to facilitate the selection of a metal or alloy having an extreme (high or low) value of a given mechanical property at room temperature. The bold-face numbers represent a scale of values of the property in question. The numbers in the interval between any two scale values are page numbers by means of which the reader may locate an alloy having a value (of the property in question) which lies within this interval.

ULTIMATE TENSILE STRENGTH, UTS, kg/mm² (DEF. 4)

Ferrous: 241: 479, 513. 230: 513, 530, 531. 220: 478, 479, 509, 510, 513, 531, 532. 200: 478, 479, 502, 503, 505, 509, 510, 512, 532. 180: 479, 507, 511, 512, 513, 530, 531. 175: . . . 20: 488, 497, 498, 508, 526, 527. 10: 488, 490, 497, 498, 508, 523, 527. 3. Non-ferrous: 420: 592. 160: 585, 592. 112: 560, 573, 575, 576, 578, 579, 581, 582. 80: 481, 560, 575-579, 581, 582, 583, 585, 592. 70: 534, 538, 555, 556, 575-585, 592. 60: 538, 546, 554, 555, 556, 560, 563, 574-585, 592. 50: 5: 533, 535, 545, 546, 547, 549, 551, 553, 556, 557, 567, 570, 584, 592, 593. 1: 586, 593. 0.

YIELD POINT IN TENSION, YP, kg/mm2 (DEF. 3)

Ferrous: 203: 479, 513, 531. 190: 478, 479, 510, 513. 180: 478, 479, 511, 530, 531. 170: 478, 479, 503, 507, 511, 531. 160: 478, 479, 481, 510, 513. 151: . . . 20: 478, 480, 482, 488, 489, 490, 491, 493, 508, 514, 523. 10: 482, 523. 3.6.

Non-ferrous: **88**: 581, 582. **70**: 575, 579, 581-583. **60**: 481, 534, 538, 555, 556, 560, 575, 577-582. **40**: . . . **3.9**: 533, 534, 536, 537, 543, 552. **1.8**.

REDUCTION IN AREA, RA, % (DEF. 8)

Ferrous: 100: 488, 490, 498. 80: 478, 481, 488, 498, 523. 75: . . . 2.2: 491, 492, 493, 510, 513, 521, 529, 530, 531, 532. 1.0: 479, 510, 513, 521, 524, 531. 0.0: 490, 491, 492, 493, 497, 508, 510, 513, 520, 524, 529, 530, 532.

Non-ferrous: 100: 592, 593. 95: 533, 548, 549, 553, 574. 80: 533, 536, 548, 549, 552, 553, 555, 560, 574, 581, 583. 77: . . . 2.0: 533, 545, 556, 557, 560, 562, 575, 579. 0.4: 575, 579, 586, 593. 0.0.

PER CENT ELONGATION, El (DEF. 7)

Ferrous: **76**: 488, 498, 512. **60**: 478, 482, 488, 490, 498, 512. **50**: . . . **1.0**: 491, 492, 493, 501, 503, 510, 513, 520, 521, 523, 524, 525, 530, 531, 532. **0.5**: 478, 490, 491, 492, 493, 508, 513, 521, 522, 523, 524, 525, 529, 530, 532. **0.0**.

Non-ferrous: 160: 547, 576. 95: 533, 535, 548, 551, 555, 557, 573-576, 581-583. 70: . . . 1.0:480, 533, 534, 536, 537, 544, 545, 546, 551, 559-561, 565, 567, 568, 570, 575-577, 579, 581, 586. 0.0.

BRINELL HARDNESS NUMBER, BHN (DEF. 12)

Ferrous: **817**: 495, 510, 514, 531. **600**: 495, 506, 510, 513, 514, 521, 523, 530, 531. **570**: 495, 503, 510, 513, 514, 523, 530, 531. **550**: 513, 514, 531. **520**: 506, 510, 513, 514, 532. **509**: . . . **99**: 478, 494, 525, 526. **90**: 478, 514, 525, 529. **80**: 478, 494, 529. **51**

Non-ferrous: **540**: 576, 588. **390**: 561, 576, 588. **300**: 480, 567, 576, 577, 579, 581, 582, 586–588, 592, 593. **220**: 480, 556, 576, 577, 581–583, 586, 588. **190**: 480, 546, 556, 576, 577, 581–584, 586. **175**: 480, 539, 546, 556, 577, 580–582, 584, 585, 588. **160**: 480, 539, 554, 556, 577, 579–587. **154**: . . . **10**: 556, 557, 561, 576. **30**

LITERATURE REFERENCES

LITERATURE REFERENCES

In all literature references cited in International Critical Tables the name of the journal or publication is indicated by means of a Key Number corresponding to the list given below. The numbers which follow this key number in a literature citation are, in the order named: (1) the volume, (2) the page, and (3) the last two figures of the year. Thus 64V, 31: 253; 22, indicates Verslag Koninklijke Akademie van Wetenschappen te Amsterdam, Vol. 31, page 253, 1922. Series numbers are not given. Key Numbers referring to books and other non-serial publications are preceded by the letter B, and the volume number is given in Roman numerals. Thus, B10, IV: 191; 18 indicates Doelter, Handbuch der Mineralchemie, page 191 of Vol. 4 of the 1918 edition. The Key Number O is used to indicate "private communication from."

DAS LITERATURVERZEICHNIS

In allen Literaturstellen, die in I. C. T. verzeichnet sind, ist der Name der Zeitschrift oder der Publikation mit Hilfe einer Schlüsselnummer, entsprechend der unten folgenden Liste, angegeben. Die Zahlen, welche diesen Schlüsselnummern bei einem Literaturzitat folgen, bedeuten der Reihe nach: (1) der Band, (2) die Seite und (3), die letzten zwei Zahlen des Jahrganges. So bedeutet z. B. 64V, 31: 253; 22, Verslag Koninklijke Akademie van Wetenschappen te Amsterdam, Band 31, Seite 253, 1922. Serien-Nummern werden nicht angegeben. Der Schlüsselzahl wird ein B vorausgesetzt, wenn sie Bücher, oder eine andre nicht periodische Veröffentlichung bezeichnet. Die Bandnummer wird durch römische Ziffern angegeben. Es bedeutet z. B. also B10, IV: 191; 18, Doelter, Handbuch der Mineralchemie, Seite 191, des 4 Bandes, der Auflage des Jahres 1918. Die Schlüsselzahl O wird gebraucht, um anzuzeigen, dass es eine "private Mitteilung" ist.

RÉFÉRENCES BIBLIOGRAPHIQUES

Le nom du journal ou de la publication de toutes les références bibliographiques citées dans les Tables Critiques Internationales est indiqué au moyen d'un nombre-clé correspondant à la liste donnée ci-dessous. Les nombres qui suivent ce nombre-clé dans un renvoi bibliographique indiquent dans l'ordre suivant: (1) le volume, (2) la page, et (3) les deux derniers chiffres de l'année. Ainsi 64V, 31: 253; 22, indique Verslag Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 31, page 253, 1922. Les numeros des séries ne sont pas donnés. Les nombres-clés se rapportant à des livres ou à des publications non périodiques sont précédés de la lettre B et le numéro du volume est donné en chiffres romains. Ainsi, B10, IV: 191; 18 indique Doelter, Handbuch der Mineralchemie, page 191 du volume 4 de l'édition de 1918. Le nombre-clé O est employé pour indiquer "communication privée de."

INDICAZIONI BIBLIOGRAFICHE

In tutte le indicazioni bibliografiche che si incontrano nelle "Tabelle Critiche Internazionali" il nome del giornale o della pubblicazione è espresso con un numero chiave riportato nell'elenco dato più oltre. I numeri che, nella citazione, vengono dopo il numero chiave sono disposti con l'ordine seguente: (1) il volume, (2) la pagina, e (3) le ultime due cifre del millesimo. Cosi 64V, 31: 253; 22, indica la Verslag Koninklijke Akademie van Wetenschappen te Amsterdam, Vol. 31, pagina 253, 1922. I numeri di serie non vengono dati. Quando un numero chiave è preceduto dalla lettera B si riferisce a libri o ad altre pubblicazioni non periodiche, e il numero del volume viene allora scritto in cifre romane. Cosi B10, IV: 191; 18 indica Doelter, Handbuch der Mineralchemie, pagina 191 del IV° volume dell'edizione 1918. Il numero chiave O indica "Comunicazione privata da "

KEY TO THE PERIODICALS

Data regarding the libraries which receive many of these periodicals may be found through the following sources:

United States and Canada: "Periodicals Abstracted by Chemical Abstracts, 1926" (Chemical Abstracts, Ohio State Univ., Columbus, Ohio); "Union List of Serials in the Libraries of the United States and Canada, 1925–1927" (H. W. Wilson & Co., New York City); "A Catalogue of Scientific Periodicals in Canadian Libraries, 1924" (McGill Univ., Montreal, Canada).

Great Britain: "A World List of Scientific Periodicals Published in the Years 1900-1921" (Oxford Univ. Press, London, 1925-).

Holland: "Chemisch Jaarboekje tevens Jaarboekje der Nederlandsche Chemische Vereeniging, Vol. 3." (Amsterdam, D. B. Centen, 1920.)

- 1. Journal of the American Chemical Society.
- 2. Physical Review.
- London, Edinburgh and Dublin Philosophical Magazine and Journal of Science.
- Journal of the Chemical Society, London. (Memoirs of the Chemical Society; continued as Quarterly Journal; later Journal.)

- Proceedings of the Royal Society (London). A. Mathematical and Physical Sciences.
- 5B. Proceedings of the Royal Society (London). B. Biological Sciences.
- 6. Annales de chimie et de physique. See also Nos. 14 and 16.
- Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschaftslehre.
- Annalen der Physik. [Journal der Physik, 1790-1794. Neues Journal der Physik, 1795-1796. Annalen der Physik, 1799-1819; Annalen der Physik und der physikalische Chemie, 1819-1824 (Gilbert). Annalen der Physik und Chemie, 1824-1899 (Poggendorff, Wiedemann). Annalen der Physik, 1900- (Drude, Wien and Planck).]
- Zeitschrift für Elektrochemie und angewandte physikalische Chemie.
- Tables annuelles internationales de constantes et données numériques.
- 11. American Chemical Journal. (Combined with No. 1 in 1914.)
- American Journal of Science. (American Journal of Science and Arts, 1820-79; known also as Silliman's Journal of Science.)

- 13. Annalen der Chemie, Justus Liebig's.
- 14. Annales de chimie.
- 15. Annales des mines ou receuil de mémoires sur l'exploitation des mines et sur les sciences et les arts qui s'y rattachent.
- 16. Annales de physique.
- 20. Arkiv för Matematik, Astronomi och Fysik.
- 22. Atti della reale accademia nazionale dei Lincei. (Rendiconti classe di scienze fisiche, matematiche e naturali.)
- 23. Atti della reale accademia delle scienze di Torino.
- 24. Atti del reale istituto Veneto di scienze, lettere ed arti.
- 25. Berichte der deutschen chemischen Gesellschaft.
- Bulletin de la société chimique de France. (Before 1908 was Bulletin de la société chimique de Paris.)
- 28. Bulletin de la société chimique de Belgique. (Before 1904 was Bulletin de l'association belge des chimistes.)
- 29. Bureau of Mines, Bulletins.
- 30. Bureau of Mines, Technical Papers.
- 31. Bureau of Standards, Scientific Papers.
- 31A. Bureau of Standards, Bulletin.
- 32. Bureau of Standards, Technologic Papers.
- 33. Chemical and Metallurgical Engineering. (Name changed July, 1918 from Metallurgical and Chemical Engineering.)
- Comptes rendus hebdomadaires des séances de l'académie des sciences, de l'institut de France.
- 36. Gazetta chimica italiana.
- 37. Helvetica Chimica Acta.
- Journal of the American Ceramic Society. (Continues No. 81.)
- 40. Journal of the American Institute of Metals. See No. 329.
- 42. Journal de chimie physique.
- Journal of the Faculty of Engineering, Tokyo Imperial University.
- 45. Industrial and Engineering Chemistry. (Name changed Jan. 1923 from Journal of Industrial and Engineering Chemistry.)
- 46. Journal of the Institution of Electrical Engineers (London).
- 47. Journal of the Institute of Metals (London).
- 49. Journal de pharmacie et de chimie.
- 50. Journal of Physical Chemistry.
- Journal de physique et le radium. (Formed from Le radium and Journal de physique, théorique et appliquée.)
- 52. Journal für praktische Chemie.
- Journal of the Russian Physico-Chemical Society. (Chemical part.)
- 54. Journal of the Society of Chemical Industry.
- 55. Kolloid-Zeitschrift. (Formerly Zeitschrift für Chemie und Industrie der Kolloide.)
- Mechanical Engineering. (Formerly Journal of the American Society of Mechanical Engineers.)
- Monatshefte für Chemie und verwandte Teile anderer Wissenschaften.
- 58. Nature, London.
- 59. Nuovo Cimento.
- Översikt av Finska Vetenskaps-Societetens Förhandlingar. (Discontinued with Vol. 64, 1921-22.)
- Philosophical Transactions of the Royal Society of London. Series A, Physical and Mathematical.
- Physikalische Zeitschrift, vereinigt mit dem Jahrbuch der Radioaktivität und Elektronik. See also No. 200.
- 64P. Proceedings of the Royal Academy of Sciences of Amsterdam.
- 64V. Verslag koninklijke Akademie van Wetenschappen te
- 65. Proceedings of the American Academy of Arts and Sciences.
- 66. Proceedings of the American Society for Testing Materials.

- 67. Proceedings of the Physical Society of London.
- 68. Proceedings of the Royal Society of Edinburgh.
- Proceedings and Transactions of the Royal Society of Canada.
- 70. Recueil des travaux chimiques des Pays-Bas.
- Rendiconti dell'accademia dell scienze fisiche e matematiche.
 (Classe della società reale di Napoli.)
- 72. Rendiconti reale istituto Lombardo di scienze e lettere.
- 74. Revue de métallurgie.
- 74E. Revue de métallurgie, Extraits.
- Sitzungsberichte Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse.
- Sitzungsberichte der preussischen Akademie der Wissenschaften.
- 77. Stahl und Eisen.
- 78. Transactions of the American Electrochemical Society.
- Transactions of the American Institute of Mining and Metallurgical Engineers.
- 81. Transactions of the American Ceramic Society. (Continued in 1917 by No. 38.)
- 82. Transactions of the Ceramic Society (England).
- 83. Transactions of the Faraday Society.
- 85. Transactions of the Optical Society (London).
- University of Illinois, Engineering Experiment Station, Bulletins.
- Verhandlungen der physikalischen Gesellschaft zu Berlin. See also No. 96.
- Wissenschaftliche Abhandlungen der physikalisch-technischen Reichsanstalt.
- 91. Zeitschrift für analytische Chemie.
- 92. Zeitschrift für angewandte Chemie.
- 93. Zeitschrift für anorganische und allgemeine Chemie. (Name changed in 1915 from Zeitschrift für anorganische Chemie.)
- 94. Zeitschrift für Krystallographie. (Name changed in 1921 from Zeitschrift für Krystallographie und Mineralogie.)
- 95. Zeitschrift für Metallkunde. (Formerly Internationale Zeitschrift für Metallographie.)
- Zeitschrift für Physik. (Verhandlungen der physikalischen Gesellschaft zu Berlin, 1882–1898; Verhandlungen der deutschen physikalischen Gesellschaft, 1899–1902; Berichte der deutschen physikalischen Gesellschaft, 1903–1919; Zeitschrift für Physik, 1920– .)
- 97. Zeitschrift für technische Physik.
- 98. Zeitschrift des Vereines deutscher Ingenieure.
- Sprechsaal, Zeitschrift für die keramischen, Glas- und verwandten Industrien.
- 101. Elektrotechnische Zeitschrift.
- 102. Ceramique.
- 103. Keramische Rundschau.
- 104. Berichte der deutschen keramischen Gesellschaft.
- 105. Journal of the Society of Glass Technology.
- 106. Revue générale de l'électricité.
- 107. Electrical World.
- 109. National Advisory Committee for Aeronautics, Annual Reports.
- 112. Dinglers polytechnisches Journal.
- 114. Electric Journal.
- 115. Engineering.
- 117. Scientific Proceedings of the Royal Dublin Society.
- Proceedings of the American Institution of Electrical Engineers. (Discontinued in 1919.)
- 120. General Electric Review.
- 121. Electrician.
- 122. Journal of the American Society of Mechanical Engineers. See No. 56.

- 124. Silikat-Zeitschrift.
- 125. Archiv für Elektrotechnik. (Supplement to No. 101.)
- 128. Journal of the Washington Academy of Sciences.
- 129. Transactions of the American Institute of Electrical Engineers
- 133. British Association for the Advancement of Science, Reports.
- 134. Bulletin de l'académie des sciences de l'union des republiques sovietiques socialistes. (Formerly Bulletin de l'académie imperial des sciences de St. Petersburgh; name changed in 1917 to Bulletin de l'académie des sciences de Russie; present name dates from 1925.)
- 135. Chemical News and Journal of Industrial Science. (Name changed in 1921 from Chemical News and Journal of Physical Science.)
- 136. Chemiker Zeitung.
- Kongelige Danske Videnskabernes Selskab, Mathematiskfysiske Meddelelser.
- Societas scientiarum fennica. Commentationes physicomathematicae.
- 139. Ferrum.
- 140. Journal of the Iron and Steel Institute, London.
- 141. Journal of Biological Chemistry.
- Journal of the Society of Chemical Industry, Japan. (Formerly Journal of Chemical Industry, Japan.)
- 143. Journal of the Franklin Institute.
- 148. Zeitschrift für die gesamte Kälte-Industrie.
- 149. Archives des sciences physiques et naturelles. (Bibliothèque brittanique, 1796–1815; Bibliothèque universelle des sciences, belles-lettres et arts, 1816–1835; Bibliothèque universelle de Genève, 1836–1845; Supplément à la bibliothèque universelle de Genève. Archives des sciences physiques et naturelles, 1846–1847; Bibliothèque universelle de Genève. Archives des sciences physiques et naturelles, 1848–1857; Bibliothèque universelle, revue suisse et étrangère. Archives des sciences physiques et naturelles, 1858–1861; Bibliothèque universelle et revue suisse. Archives des sciences physiques et naturelles, 1862–1877; Bibliothèque universelle. Archives des sciences physiques et naturelles, 1878– .)
- 152. Carnegie Institution of Washington Publications.
- 153. Minutes of Proceedings of the Institution of Civil Engineers.
- 154. Iowa Geological Survey, Bulletin.
- 155. Missouri Bureau of Geology and Mines.
- 156. U. S. Geological Survey, Bulletin.
- 157. U. S. Department of Agriculture, Bulletin.
- 158. New York State Museum, Bulletin.
- 159. Science Reports of the Tôhoku Imperial University. Series I, Mathematics, Physics and Chemistry.
- 160. Arkansas Geological Survey, Annual Reports.
- Mitteilungen aus dem königlichen technischen Versuchsanstalten zu Berlin. See also No. 312.
- 162. Mitteilungen aus dem mech.-tech. Laboratorium der technischen Hochschule in München.
- 163. Minnesota, Geological and Natural History Survey.
- 164. Colorado, Biennial Report Capitol Managers.
- 166. Science.
- 168. Communications from the Physical Laboratory at the University of Leiden.
- 169. Annales de l'Institut Polytechnique Pierre-le-Grand, Petrograd
- 172. International Congress of Applied Chemistry.
- 173. Analyst, London.
- 174. Transactions of the Royal Society of Edinburgh.
- 176. Chemisch Weekblad, Amsterdam.
- Proceedings of the Chemical Society, London. (Continued as No. 4.)

- 184. American Journal of Pharmacy.
- 185. Chemisches Centralblatt.
- 186. Bulletin de la classe des sciences, académie royale de Belgique.
- Metall und Erz, Zeitschrift für Metalhüttenwesen und Erzbergbau, einschl. Aufbereitung.
- 188. Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen. Geschaftliche Mitteilungen; mathematisch-physikalische Klasse.
- 189. Centralblatt für Mineralogie, Geologie und Paläontologie.
- 190B. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage Band.
- 192. Metallurgie. (Divided into Nos. 139 and 187.)
- 197. Proceedings of the National Academy of Sciences.
- 198. Revue générale des sciences pures et appliquées.
- 199. Le Radium. (Merged into No. 51 in 1920.)
- Jahrbuch der Radioaktivität und Elektronik. (Combined with Physikalische Zeitschrift in 1924.)
- 201. Proceedings of the Cambridge Philosophical Society.
- 204. Photographic Journal.
- 205. Biochemische Zeitschrift.
- 208. Physica, Nederlandsch Tijdschrift voor Natuurkunde.
- 209. Japanese Journal of Chemistry.
- Scientific Papers, Institute of Physical-Chemical Research, Tokyo.
- 212. Transactions of the American Society for Steel Treating.
- 216. Giornale di chimica industriale ed applicata. (Annali di chimica applicata, 1914; continued as Giornale di chimica applicata; combined with Giornale di chimica industriale, March, 1920, to form Giornale di chimica industriale ed applicata.)
- 218. Naturwissenschaften.
- 219. Proceedings of the Physico-Mathematical Society of Japan.
- 220. Jern-Kontorets Annaler, Stockholm.
- 223. Journal of General Physiology.
- 226. Mitteilungen aus dem Kaiser-Wilhelm-Institut für Eisenforschung zu Düsseldorf.
- 227. Proceedings of the Society for Experimental Biology and Medicine.
- 230. Biochemical Journal.
- 231. U. S. Public Health Service, Public Health Reports.
- Travaux et mémoires du bureau international des poids et mésures.
- 242. Vierteljahrsschrift der naturforschenden Gesellschaft, Zürich.
- 243. Zeitschrift für Instrumentenkunde.
- 244. Journal of the Society of Automotive Engineers.
- 248. Proceedings of the University of Durham Philosophical Society.
- 251. Proceedings of the Royal Society of Victoria, Melbourne.
- 252. Chemische Umschau auf dem Gebiete der Fette, Oele, Wachse und Harze. (Before 1916 Chemische Revue über die Fett- und Harz Industrie.)
- 253. Lubrication.
- 255. Bulletin of the American Institute of Mining and Metallurgical Engineers. (Continued as No. 329.)
- 257. Bulletin of the Imperial Institute, London. (Before 1903, Imperial Institute Journal.)
- 258. Le cuir. Edition technique. (Name changed Nov., 1923 to Le cuir technique.)
- 259. Collegium.
- 260. Indian Forest Records.
- 261. Journal of the American Leather Chemists' Association.
- 262. Journal of the International Society of Leather Trades' Chemists. (Before Oct., 1925, Journal of the Society of Leather Trades' Chemists.)
- 263. Leather Trades' Review.

- 264. Ledertechnische Rundschau. (Technical supplement of Der Lederindustrie.)
- 265. Queensland Agricultural Journal.
- 267. Philippine Journal of Science.
- 273. Berichte der pharmazeutischen Gesellschaft. See No. 293.
- 275. International Sugar Journal.
- 276. Chemical Age, London.
- 279. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel sowie der Gebrauchsgegenstande. Zeitschrift für Untersuchung der Lebensmittel.
- 285. Journal of Mathematics and Physics.
- 287. Kolloidchemische Beihefte.
- 290. Journal of the Society of Dyers and Colourists.
- 291. Arbeiten aus dem Reichsgesundheitsamte.
- 293. Archiv der Pharmazie. (Combined with No. 273 in 1924 to form Archiv der Pharmazie und Berichte der deutschen pharmazeutischen Gesellschaft.)
- 295. Proceedings of the American Wood-Preservers' Association.
- 296. Kunststoffe, Zeitschrift für Erzeugung und Verwendung veredelter oder chemisch hergestellter Stoffe.
- 299. British Aeronautical Research Committee. Reports and Memoranda.
- 306. Journal of the American Society of Naval Engineers.
- 307. Iron and Coal Trades Review.
- Fortschritte der Mineralogie, Kristallographie und Petrographie.
- Bulletin of the Lewis Institute, Structural Materials Research Laboratory, Chicago.
- 310. Transactions of the National Lime Manufacturers' Association.
- 311. France-Belgique. (Revue de l'ingénieur et index technique merged with this in 1922.)
- 312. Mitteilungen aus dem Materialprüfungsamt und dem Kaiser-Wilhelm-Institut für Metallforschung zu Berlin-Dahlem. (Mitteilungen aus dem königlichen technischen Versuchsanstalten zu Berlin, 1883-1903; in 1904 became Mitteilungen aus dem königlichen Materialprüfungsamt zu Gross-Lichterfelde West; later becoming Mitteilungen aus dem königlichen Materialprüfungsamt zu Berlin-Lichterfelde West; name changed in 1919 to Mitteilungen aus dem Materialprüfungsamt zu Berlin-Lichterfelde West; name changed in 1920 to Mitteilungen aus dem Materialprüfungsamt zu Berlin-Dahlem; present name dates from 1923.)
- 313. U. S. Bureau of Mines, Reports of Investigations.
- 314. Tonindustrie-Zeitung.
- 315. Memorial des poudres. (Formerly Memorial des poudres et salpetres.)
- 317. Chemische Industrie. (Combined with No. 92 in 1921; separated again in 1923.)
- 324. Canadian Chemistry and Metallurgy.
- 325. Proceedings of the Royal Institution of Great Britain.
- 329. Mining and Metallurgy. (Transactions of the American Brass Founders' Association, 1908-11; Transactions of the American Institute of Metals, 1912-16; Journal of the American Institute of Metals, 1917-18; discontinued in 1918 and incorporated with Bulletin of the American Institute of Mining Engineers; with No. 148, 1919, this Bulletin became Bulletin of the American Institute of Mining and Metallurgical Engineers; with No. 154, 1919, name changed again to Mining and Metallurgy.)
- 338. Researches of the Electro-technical Laboratory, Tokyo.
- 340. Philippine Agriculturist.
- 341. Journal of Agricultural Research.
- 342. Annales de chimie analytique et de chimie appliquée et revue de chimie analytique réunies.

- 343. Zeitschrift für öffentliche Chemie. (Suspended at end of 1922.)
- 344. Apotheker Zeitung.
- 345. Bulletin des sciences pharmacologiques.
- 346. Malayan Agricultural Journal. (Formerly Bulletin of the Department of Agriculture, Federated Malay States.)
- 347. Pharmaceutical Journal and Pharmacist.
- 348. Cotton Oil Press.
- 349. Seifensieder-Zeitung und Rundschau über die Harz-, Fettund Ölindustrie mit dem Bleiblatt: Der chem.-techn. Fabrikant.
- 350. Les matières grasses.
- 351. Journal of State Medicine, London.
- 352. Milchwirtschaftliche Zentralblatt. (Name changed in 1912 from Milch-Zeitung.)
- 353. Academia Caesarea Leopoldino Carolina Germanica naturae curiosorum.
- 354. National Physical Laboratory, Collected Researches and Reports, London.
- 355. The Engineer, London.
- 356. Journal of the Royal Society of Arts.
- 357. Anales de la associación química Argentina. (Name changed Jan., 1921 from Anales de la sociedad química Argentina.)
- 358. Journal of the Institution of Petroleum Technologists and Record of Transactions.
- 359. Petroleum Age. (Petroleum; name changed to Petroleum Magazine, and then back to Petroleum; in Sept., 1921 combined with Petroleum Age to form Petroleum Age including Petroleum; name changed back to Petroleum Age, Dec., 1925.)
- 360. National Petroleum News.
- 361. Petroleum, Zeitschrift für die gesamten Interessen der Mineralöl-Industrie und des Mineralöl-Handels. (Formerly Petroleum, Zeitschrift für die gesamten Interessen der Petroleum-Industrie und des Petroleum-Handels.)
- 362. Chemické Listy pro vedu a prumysl.
- 363. Petroleum Review. (Replaced by No. 364.)
- 364. Petroleum Times. See No. 363.
- 365. Bureau of Standards, Circulars.
- 366. Feuerungstechnik.
- 367. Oesterreichische Chemiker-Zeitung.
- 368. Proceedings of the Institution of Automobile Engineers, London.
- 369. Gornyi zhurnal.
- Memoirs of the American Academy of Arts and Sciences, Boston.
- 371. University Geological Survey of Kansas, Reports.
- 372. Verein zur Beforderung des Gewerbefleisses, Verhandlungen.
- 373. Chemisch-technisches Repertorium. (Supplement to No. 136.)
- 374. Oil and Colourman's Journal.
- 375. Polytechnisches Centralblatt.
- 376. Automotive Industries.
- 377. Bulletin de la section scientifique de l'académie Roumaine.
- 378. Chimie et industrie.
- 379. Journal of the Japanese Ceramic Society.
- 380. Gesundheits-Ingenieur.
- 381. Automobile Engineer and Internal Combustion Engineering. (Automobile Engineer, London, 1910 to Oct., 1912; Internal Combustion Engineering, Oct., 1912 to Jan., 1914; present name since Jan., 1914.)
- 382. Refrigerating Engineering. (Transactions of the American Society of Refrigerating Engineers, 1905-13; American Society of Refrigerating Engineers Journal; present name dates from July, 1922.)

- 383. Revue générale du froid et des industries frigorifiques.
- 384. Le génie civil, Paris.
- 385. Journal of the American Society of Heating and Ventilating Engineers,
- 386. Canada Department of Mines.
- 387. Mineral Industry.
- 388. Översigt av Förhandlingar kongl. Svenska Vetenkaps-Akademien.
- 389. South African Journal of Industries. (United with the Official Labour Gazette of the Union of South Africa in 1925 to form the South African Journal of Industries and Labour Gazette.)
- 390. Indian Forest Bulletin.
- 391. Indian Forester.
- 392. Indian Forest Pamphlet.
- 393. American Society for Testing Materials Standards.
- 394. Fuel in Science and Practice.
- 395. Engineering and Mining Journal-Press. (Formed in April, 1922 by the combining of Engineering and Mining Journal with Mining and Scientific Press; name changed July, 1926 to Engineering and Mining Journal.)
- Gas Journal. (Formerly Journal of Gas Lighting and Water Supply.)
- 397. Gas- und Wasserfach. (Name changed Jan., 1922 from Journal für Gasbeleuchtung und verwandte Beleuchtungsarten sowie für Wasserversorgung.)
- 398. Memoirs and Proceedings of the Manchester Literary and Philosophical Society.
- 399. Colliery Guardian and Journal of the Coal and Iron Trades.
- 400. Beama.
- 401. Revue de l'industrie minérale. (Bulletin de la société de l'industrie minérale; name changed Jan., 1921 to Revue de la société de l'industrie minérale; name changed to Revue de l'industrie minérale.)
- 402. Technique moderne.
- 403. Proceedings of the Institution of Mechanical Engineers.
- 404. Engineering News-Record. (Formed by the combining of Engineering News with Engineering Record.)
- 405. Glückauf, Berg- und Hüttenmännische Zeitschrift.
- Jornal de Sciencias Matematicas, Physicas e Naturaes, Lisbon.
- 408. Journal de mathématiques pures et appliquées (Paris). (Continues Annales de mathématiques pures et appliquées; present name dates from 1836.)
- 409. Bayerisches Industrie- und Gewerbe-Blatt. (Kunst- und Gewerbe-Blatt, 1815-68; present name dates from 1869.)
- 410. Edinburgh Philosophical Journal, 1819–26; Edinburgh New Philosophical Journal, 1826–64; Quarterly Journal of Science, 1864–70; Quarterly Journal of Science and Annals of Mining, Metallurgy, Engineering, Industrial Arts, Manufactures and Technology, 1871–79; Monthly Journal of Science and Annals of Astronomy, Biology, Geology, Industrial Arts, Manufactures and Technology, 1879–85.
- Proceedings of the North East Coast Institute of Engineers and Shipbuilders.
- 412. Horseless Age. (Merged into Motor Age in 1918.)
- 413. Journal of the Royal Aeronautical Society. (Annual Report of the Royal Aeronautical Society, 1866-96; superseded by Aeronautical Journal; later Journal of the Royal Aeronautical Society.)
- 414. Mitteilungen über Forschungsarbeiten auf den Gebiete des Ingenieurwesens hrsg. vom Vereine deutscher Ingenieure.
- 415. Journal of the Textile Industry.
- 416. Brennstoff-Chemie.
- 417. Iron and Steel Institute Carnegie Scholarship Memoirs.

- 418. Pottery Gazette and Glass Trade Review.
- 419. Ohio Journal of Science. (Name changed Nov., 1915 from Ohio Naturalist.)
- 420. Bulletin de la société d'encouragement pour l'industrie nationale.
- 421. Journal of West Scotland Iron and Steel Institute.
- 422. American Machinist.
- 423. Transactions of the American Foundrymen's Association.
 (Journal of the American Foundrymen's Association, 1896–1904.)
- 424. Oesterreichische Zeitschrift für Berg- und Hüttenwesen. (Merged into Montanistische Rundschau.)
- Deutsche Mechaniker-Zeitung. (Beiblatt zur Zeitschrift für Instrumentenkunde.)
- 427. Physikalische Berichte. (Beiblätter zu den Annalen der Physik und Chemie; Beiblätter united with Fortschritte der Physik and Halbmonatliches Literaturverzeichnis to form Physikalische Berichte.)
- 428. Repertorium für Experimental-Physik für physikalische Technik für mathematische und astronomische Instrumentenkunde. (Before 1867 was Repertorium für physikalische Technik für mathematische und astronomische Instrumentenkunde; also known as Carl's Repertorium.)
- 429. Memoirs of the College of Science, Kyoto Imperial University. (Before 1914 was part of Memoirs of the College of Science and Engineering, Kyoto Imperial University.)
- 430. Iron Age.
- 431. Revue de la société russe de métallurgie.
- 433. Annual Report of the Royal Mint, London.
- 434. Scientific Transactions of the Royal Dublin Society.
- 435. Proceedings of the Institution of British Foundrymen.
- Reports of the Research Department, Royal Arsenal, Woolwich.
- 437. Japanese Journal of Physics.
- Transactions of the American Society of Mechanical Engineers.
- 439. Mémoires et compte rendu des travaux de la société ingénieurs civils de France.
- 440. Metal Industry and the Iron Foundry (London).
- 441. India Rubber Journal.
- 442. Annals of Botany.
- 443. Archief voor Rubbercultuur in Nederlandsch-Indië.
- 445. Zeitschrift des Vereins der deutschen Zucker-Industrie.
 (Before 1898 was Zeitschrift des Vereins für die Rubenzuckerindustrie)
- 446. Zeitschrift für die Zuckerindustrie der Cechoslovakischen Republik. (Formerly Zeitschrift für die Zuckerindustrie in Böhmen.)
- 447. India Rubber World.
- 449. Caoutchouc et gutta percha.
- 450. Transactions of the Institution of the Rubber Industry.
- 456. Gummi-Zeitung.
- 459. Electrical Review and Industrial Engineer. (Formerly Electrical Review and Western Electrician.)
- 460. Deutsche Zuckerindustrie, Wochenblatt für Landwirtschaft, Fabrikation und Handel.
- 468. Kongliga Svenska Vetenskaps-Akademien, Handlingar.
- Bulletin of the Institute of Physical and Chemical Research (Tokyo).
- 470. Memoirs of the College of Engineering, Kyushu Imperial University.
- 471. Army Ordnance.
- 472. Papier-Fabrikant (Tech.-Wiss. Teil).
- 473. Cellulosechemie.

- B3. Landolt-Börnstein, Physikalisch-chemische Tabellen. 5th ed. Berlin, Springer, 1923.
- B4. Singer, Die Keramik im Dienste von Industrie und Volkswirtschaft. Braunschweig, Vieweg, 1923.
- B5. Rieke and Gary, Die Prüfung von Porzellan, 1922. Reprinted from 104, 3: 5; 22.
- B6. Gilchrist and Klinefelter, High Voltage Porcelain Insulators. Westinghouse Electric and Manufacturing Company, Special Pub. 1690, 1925.
- B7. Peek, Dielectric Phenomena in High Voltage Engineering. New York, McGraw-Hill Book Company, Inc., 1915.
- B8. Rziha and Seidener, Starkstromtechnik. Taschenbuch für Elektrotechniker. 5th ed. Berlin, Ernst, 1922.
- B10. Doelter, Handbuch der Mineralchemie. Leipzig, Steinkopff, 1912-
- B12. Friese, Das Porzellan als Isolier- und Konstruktions-Material in der Elektrotechnik. Klosterlausnitz, 1904.
- B26. Hirschwald, Handbuch der bautechnischen Gesteinprüfung. Berlin, Borntraeger, 1912.
- B27. Hermann, Gesteine für Architektür und Sculptur. Berlin, Borntraeger, 1914.
- B28. Johnson, Comparison of Experiments on American and Foreign Building Stones. New Haven, Hamlen. Reprinted from American Journal of Science and Arts, 11: 1: 51.
- B29. Merrill, Stones for Building and Decoration. 3rd ed. New York, Wiley, 1903.
- B30. Popplewell and Carrington, Properties of Engineering Materials. London, Methuen, 1923.

- B31. Schweizerische Geotechnische Kommission, Die naturlichen Bausteine und Dachschiefer der Schweiz. Berne, 1915.
- B32. U. S. Ordnance Department, Tests of Metals and Other Materials. Washington, Government Printing Office, 1894.
- B33. U. S. Geological Survey, The Stone Industry in 1903. Washington, Government Printing Office, 1903.
- B61. Ullmann, Encyclopädie der techn. Chemie. Wien, Urban and Schwarzenberg, 1914–23.
- B68. Abraham, Asphalt and Allied Substances, Their Occurrence, Mode of Production, Uses in the Arts and Methods of Testing. New York, Van Nostrand, 1920.
- B71. Mellor, Treatise on Inorganic and Theoretical Chemistry. London, Longmans, 1922-
- B72. Bunsen, Gasometrische Methoden. 2nd ed. Braunschweig, 1877.
- B73. Berthelot, Thermochimie. Paris, Gauthier-Villars, 1897.
- B74. Rieke, Das Porzellan. Hannover, 1910.
- B75. Société d'encouragement pour l'industrie nationale, Contribution à l'étude des argiles et da la céramique. Paris, Chapuy, 1906.
- B76. Winkelmann, Handbuch der Physik. Leipzig, Barth, 1905–
- B77. Marks, Mechanical Engineers' Handbook. 2nd ed. New York, McGraw-Hill Book Company, Inc., 1914.
- B79. de Vries, Estate Rubber. Batavia, Drukkerijen Ruycrok, 1920.

IMPORTANT NOTICE

ANNUAL TABLES OF CONSTANTS AND NUMERICAL DATA CHEMICAL, PHYSICAL, BIOLOGICAL, AND TECHNOLOGICAL

Published by an International Committee, under the authority of the International
Research Council and the International Union of
Pure and Applied Chemistry

THE data given in International Critical Tables are based upon determinations published previous to January 1924.

In order to keep always up to date with future progress in physical measurements, the purchaser of International Critical Tables should become a regular subscriber to International Annual Tables, which will bring to his desk each year a volume in which he will find assembled and classified all of the data which has appeared in the world's literature, for the year covered by the volume.

Thus, Annual Tables, Volume VI, will contain all the data published in the literature of 1923-1924; Volume VII will contain the data published in the literature of 1925-1926; Volume VIII, the data to be found in the literature of 1927, etc. . . .

The older volumes of Annual Tables go back to 1910 and contain all of the original determinations published during that period and which served as all or part of the basis of selection of the "best" values recorded in International Critical Tables. These older volumes thus constitute a handy and

accessible source of reference to the original determinations.

Through special arrangements made with the International Commission in charge of Annual Tables, all purchasers of International Critical Tables will be given special discounts on all purchases of International Annual Tables, as follows:

- Volumes I, II, III, IV, V (data for 1910-1922), cloth, \$52.50 (regular price, \$71.00). This reduction will be valid only till June 30th, 1928.
- 25% discount on Volumes VI to X inclusive, covering the period 1923-1929. This reduction will only be valid for each volume during the period known as the subscription period.
- 3. 25% discount on the index to Volumes I-V, which will be published in 1928.

These discounts apply only on subscriptions addressed to—For United States and Canada, McGraw-Hill Book Company, Inc., 370 Seventh Avenue, New York City, For all other countries, Dr. C. Marie, 9 rue de Bagneux, Paris VI, France.

All subscriptions should be accompanied by draft or money order payable at New York or Paris.

SPECIMEN SECTIONS

A free copy of any one of the following specimen sections may be obtained on application to Dr. C. Marie.

A: Spectroscopy. B: Electricity, Magnetism, Electrochemistry. C: Radioactivity. D: Crystallography, Mineralogy. E: Biology. F: Engineering, Metallurgy. G: Colloids.

The following identification form should be filled out and transmitted with the first subscription.

Name	 	•	 •	•		•	•	•	•	• •	•	•	•	 	•	•	•	 	•	•	 	•	•	•	•		•		
Address																					 								

