A Process-based Tide-induced Sediment Transport Capacity Formula

Tian Zhao¹
jdzhaotian@msn.com

Qian Yu¹, Shu Gao²

- 1. School of Geographic and Oceanographic Sciences, Nanjing University, China
 - 2. State Key Laboratory of Estuarine and Coastal Research, ECNU, China

A crucial source-to-sink process

Source Suspended sediment transport

Sink

Transport capacity

$$S_* = \overline{c_z} = \frac{1}{h} \int_{z_a}^h c(z) dz$$

Mountains...

Coastal ocean, deep sea...

Blackbox: Semi-empirical, semi-theoretical

$$S_{*} = \alpha \frac{\gamma \gamma_{S}}{\gamma_{S} - \gamma} \frac{U^{3}}{C^{2}hw_{S}} \longrightarrow S_{*} = k_{1} \frac{U^{3}}{ghw_{S}}$$

$$(Dou, 1995)$$

$$S_{*} = 0.045 \frac{\gamma \gamma_{S}}{\gamma_{S} - \gamma} \frac{(|V_{1}| + |V_{2}|)^{2}}{gd_{1}} F^{\frac{1}{F}} \longrightarrow S_{*} = k_{2} \frac{U^{2}}{gh} \longrightarrow S_{*} = f(U, h, w_{S})$$

$$(Liu, 2012)$$

$$S_{*} = K_{0} \left(0.1 + 90 \frac{w_{S}}{U}\right) \frac{U^{3}}{ghw_{S}} \longrightarrow S_{*} = k_{1} \frac{U^{3}}{ghw_{S}} \longrightarrow S_{*} = k_{2} \frac{U^{2}}{gh} \longrightarrow S_{*} = f(U, h, w_{S})$$

(Li, 1988)

How to open???

Spinning machine x Sediment dynamics

Spinning machine: Basic assumptions

- Steady-uniform flow: $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} = 0$
- Logarithmic horizontal velocity profile: $u = \frac{u_*}{\kappa} ln(\frac{z}{z_0})$
- Rouse (1937) profile of SSC: $\begin{cases} c_z = c_a \left(\frac{z}{z_a} \frac{h z_a}{h z}\right)^{-b} \\ b = \frac{w_s}{\kappa u_*} \end{cases}$

(SSC = Suspended Sediment Concentration)

Find c_a , z_a , h, w_s , and u_* to solve the SSC profile!

Spinning machine: Cohesive sediment

d ≤ 62.5 µm. No bedform formation.

- Erosion rate: $E = M \left(\frac{\tau_0}{\tau_{cr}} 1 \right)$ (Partheniades, 1965)
- **Deposition rate**: $D = w_s c_b$ (Partheniades, 1965)
- Boundary condition: $c_b = c_a$, $z_0 = z_a$

$E = D \rightarrow c_b \rightarrow Solution to the Rouse Profile$

Variable /Parameter	Source	Value	Unit
w_s	Gibbs et al. (1971); Hill & McCave (2001)	$(\sqrt{2})^{t}$, $t = -4, -3, \dots 2$	mm/s
h	Pinet (2016)	2.50, 3.75, 5.00, 20.00	m
$ au_{cr}$	van Ledden et al. (2004)	0.10, 0.15, 0.20, 0.25, 0.30	Pa
U	Yu et al. (2014)	$0.5, 0.6, \dots 1.5$	m/s
C_D $\int \frac{ au_0}{ au_0}$	Soulsby (1997)	$(1.50, 1.75, \dots 3.00) \times 10^{-3}$	
M	Amos et al. (1992)	10^{-5} , 10^{-4}	$kg/(m^2s)$
z_a	van Rijn (2007)	0.05	m

Spinning machine: Non-cohesive sediment

62.5 μ m $< d \le 250 \mu$ m (van Rijn, 2007). Formation of bedform.

Solving the Rouse Profile:

(1) **Bedform roughness**:
$$z_{0f} = \frac{\Delta^2}{\lambda}$$
 (Soulsby, 1997) $\Delta = 0.11h \left(\frac{d_{50}}{h}\right)^{0.3} (1 - e^{-0.5T_S})(25 - T_S), \lambda = 7.3h, T_S = \frac{\tau_{0S}}{\tau} - 1$

(van Rijn, 1984)

(2) Reference height & reference concentration:

$$z_a = \frac{\Delta}{2}$$
, $c_a = \rho_s \frac{0.015 dT_s^{1.5}}{z_a D_*^{0.3}}$ (van Rijn, 1984)

(3) Settling velocity:

$$w_s = \frac{v}{d} \left(\sqrt{10.36^2 + 1.049D_*^3} - 10.36 \right)$$
 (Soulsby, 1997)

Variable	Source	Value	Unit
h	Pinet (2016)	2.50, 3.75, 5.00, 20.00	m
d or d_{50}	van Rijn (2007)	$4.0, 3.8, \dots 2.2$	φ
$oldsymbol{U}$	Yu et al. (2014)	$0.5, 0.6, \dots 1.5$	m

Spinning machine x Sediment dynamics

Cohesive sediment: Role of τ_{cr}

Cohesive sediment: Verification

 $2a \in (2.4, 2.9)$

Non-cohesive sediment: Verification

62.5
$$\mu m < d \le 200 \ \mu m$$

$$(van Rijn, 2007)$$

$$\begin{cases} S_* = \alpha K \frac{U^a}{h^b w_s^c} \\ \alpha = 0.8107 \\ K = 0.01107 \\ a = 5.14 \\ b = 1.24 \\ c = 0.884 \end{cases}$$

Open the blackbox

$$S_* = f(U, h, w_s, \tau_{cr})$$

$$\begin{cases} S_* = \alpha M K \rho^a C_D^a \frac{U^{2a}}{h^b w_s^c} \\ \alpha = 0.8709 \\ K = 0.0585 \tau_{cr}^{-1.297} \\ a = 1.138 \tau_{cr} + 1.093 \\ b = 0.0517 \\ c = 1.25 \end{cases}$$

$$2a \in (2.4, 2.9)$$

$$S_* = f(U, h, w_s)$$

$$\begin{cases} S_* = \alpha K \frac{U^a}{h^b w_s^c} \\ \alpha = 0.8107 \\ K = 0.01107 \\ a = 5.14 \\ b = 1.24 \end{cases}$$

Non-cohesive

Spinning machine: interlocking gears

Cohesive

$$S_* = \alpha \frac{\gamma \gamma_S}{\gamma_S - \gamma} \frac{U^3}{C^2 h w_S} \xrightarrow{\text{(Dou, 1995)}} S_* = k_1 \frac{U^3}{g h w_S} \leftarrow$$

$$S_* = 0.045 \frac{\gamma \gamma_s}{\gamma_s - \gamma} \frac{(|V_1| + |V_2|)^2}{g d_1} F_F^{\frac{1}{F}} \longrightarrow S_* = k_2 \frac{\textbf{\textit{U}}^2}{g \textbf{\textit{h}}} \longleftrightarrow \begin{array}{c} \text{Blackbox:} \\ \text{semi-empirical,} \\ \text{semi-theoretical} \end{array}$$

$$S_* = K_0 \left(0.1 + 90 \frac{w_s}{U} \right) \frac{U^3}{ghw_s}$$
 (Li, 1988)

Blackbox:

In-situ observation: General information

Water sampling: 3 depths, every hour, in a 12.5-hour tidal cycle;

Flow measurement: ADCP, ship-mounted

In-situ observation: Bed property

Cohesive bed

Cohesive fraction ($<8 \mu m$ i.e. $>7 \phi$) over 5% (van Rijn, 2007)

In-situ observation: Results

Observed flow & SSC

In-situ observation: Results

Observed flow & SSC

Fine sediment: dominated by advection

- Primary participant of vertical exchange
- Good indicator of local resuspension and settling (therefore local SSC)

Recall that $2a \in (2.4, 2.9)!$

Further work

- Non-cohesive bed: Request for flume or in-situ data
- Density (salinity & SSC) gradient: Dampen turbulence and vertical mixing, change the Rouse Profile

Conclusion

- A process-based tide-induced sediment transport capacity formula is derived from numerical experiment by separating cohesive and non-cohesive sediments.
- (Depth-averaged) Horizontal flow speed plays the dominant role in STC formulae; the power of flow speed increases linearly with τ_{cr} for the cohesive sediment.
- In-situ observation in middle Jiangsu coast has validated our derived formula.

Thank you!

Tian Zhao

Nanjing University, China

jdzhaotian@msn.com

