Архитектура ВС

Архитектура ВС. Уровень системы команд

Архитектура ВС. Уровень системы команд.

Побайтное хранение кодов

Размер стандартных машинных элементов данных кратен степеням двойки:

```
• 1 6aŭm

    2 байта – слово
```

• 4 байта – двойное слово

• 8 байт — учетверённое слово 2^3 байт = 64 бит

```
2^{0} \, 6a\ddot{u}m = 8 \, 6um
```

 $2^{1} \, \delta a \tilde{u} m = 16 \, \delta u m$

 $2^{2} \ 6a\ddot{u}m = 32 \ 6um$

Двоичное представление числа 15 732 73510 в четырёх байтах

00	F0	OF	FF
----	----	----	----

Самостоятельно повторить

двоичную и шестнадцатеричную систему счисления, правила

перевода целых и дробных чисел.

Основные размеры данных

СПОСОБЫ ХРАНЕНИЯ МНОГОБАЙТОВЫХ ЭЛЕМЕНТОВ ДАННЫХ В ПАМЯТИ КОМПЬЮТЕРА

Прямой: от старшего к младшему *IBM*, *Motorola*, *SPARC*, *MIPS*

Обратный: от младшего к старшему *Intel*, *MIPS*

Порядок следования байтов числа в памяти

Типы данных (операнды)

- биты (одна двоичная цифра)
- символьные (единичные символы или строки символов),
- натуральные двоичные числа (целые без знака),
- целые двоичные числа со знаком,
- дробные двоичные числа,
- десятичные цифры (из которых можно программно сформировать число),
- вектора из нескольких целых или нескольких дробных двоичных чисел,
- указатели (ближние и дальние) адреса,
- теги признаки,
- дескрипторы описатели (составные из нескольких типов).

СИМВОЛЬНЫЕ ДАННЫЕ

в виде двоичных кодов символов (целое число без знака)

• ASCII (каждый символ кодируется однобайтовым двоичным числом)

Address	Hex	k du	qmp					ASCII	
00403000	28	41	29	3D 33	38	20	21	(A)=38	†

• Unicode (каждый символ кодируется двухбайтовым двоичным числом)

Используется формат unsigned char (символ/байт без знака), в котором могут быть записаны коды от (00000000) до (111111111) $(0\div255)$ или $00\div FF$).

СИМВОЛЬНЫЕ ДАННЫЕ

ASCII-символ (Байт без знака)

Описание для Intel

Simbol db "A" или Simbol db 41

		_							
Address	Hex	Hex dump				ASCII			
00403000	41	00	14	00	F0	E5	E7	F3	A.¶.ðåçó

Описание для MIPS

Simbol db 'A' или Simbol db 41

СИМВОЛЬНЫЕ СТРОКИ=одномерные массивы

Адреса элементов Адрес начала k+1k+ik+N-10-й элемент 1-й элемент і-й элемент N-й элемент Строка байт 1 байт 1 байт 1 байт 1 байт kk+2 $k+i\times 2$ $k+(N-1)\times 2$ N-й элемент 0-й элемент 1-й элемент і-й элемент Строка слов 2 байт 2 байт 2 байт 2 байт kk+4 $k+i\times 4$ $k+(N-1)\times 4$ Строка N-й элемент 0-й элемент 1-й элемент і-й элемент двойных слов 4 байт 4 байт 4 байт 4 байт

 $adr(i^{\text{го}})$ элемента) = adr(начала строки/массива) + $i \times ($ размер элемента)

СИМВОЛЬНЫЕ СТРОКИ

- имя (адрес начала),
- размер элемента,
- длина (количество БАЙТОВ),
- конец (завершающий символ «NULL» с кодом 00).

Минимальная длина строки - ноль байт (пустая строка: "",0),

Максимальная длина строки ограничена максимальным адресом элемента строки, который может быть запрограммирован в данной ВС. Для 32-разрядных процессоров можно задать адрес от 0 до 2^{32} –1 (32 единицы), значит максимальный размер строки в этом случае = 2^{32} байт = 4 Гбайт.

ЦЕЛЫЕ ДВОИЧНЫЕ ЧИСЛА (БЕЗ ЗНАКА)

Если на число отводится n бит, то диапазон представимых чисел будет $[0; 2^n-1]$ n=8, 16, 32, 64, 128...

Название формата	Количество байт	Количество разрядов	Диапазон представимых чисел
unsigned byte integer	1	8	[0; 2 ⁸ –1] или 0 ÷ 255
unsigned word integer	2	16	[0; 2 ¹⁶ –1]
unsigned doubleword integer	4	32	[0; 2 ³² –1]
unsigned quadword integer	8	64	[0; 2 ⁶⁴ –1]

Форматы некоторых беззнаковых чисел

ЦЕЛЫЕ ДВОИЧНЫЕ ЧИСЛА (БЕЗ ЗНАКА)

Описание для Intel

```
A DB 1,2,3,4,5,6,7,8 ;массив из 8 однобайтовых элементов (byte) В DW 1,8,1024,4095 ;массив из 4 двухбайтовых элементов (word)
```

C DD 255,15732735 ;массив из 2 четырёхбайтовых элементов (doubleword)

D DQ 266 ;одно восьмибайтовое число (quadword)

ı	Address	Hex dump	1
ı	00403000	01 02 03 04 05 06 07 08	1, 2, 3, 4, 5, 6, 7, 8
ı		01 00 08 00 00 04 EF 0F	1, 8, 1024, 4095
ı	00403010	FF 00 00 00 FF 0F F0 001	255, 15732735
	00403018	0A 01 00 00 00 00 00 00	266 ₁₀ (=10A ₁₆)

Пример хранения кодов целых беззнаковых чисел перевёрнуто сомасно little-endian

ЦЕЛЫЕ ДВОИЧНЫЕ ЧИСЛА (БЕЗ ЗНАКА)

Описание для MIPS

.data

MEM1: .byte 0x12

MEM2: .half 0x3456

MEM4: .word 0x789abcde

Labels		7
Label	Address ▲	
define.asm	4	_
MEM1	0x10010000	
MEM2	0x10010002	
MEM4	0x10010004	

Data Segment		
Address	Value (+0)	Value (+4)
0x10010000	0x34560012	0x789abcde

Если оставить только один код нуля (0.00...0), то можно использовать второй код для хранения дополнительного отрицательного значения.

Если на число отводится **n** бит, из которых один — для хранения знака числа, то диапазон представимых чисел будет

$$[-(2^{n-1}-1); -0; +0; 2^{n-1}-1] \longrightarrow [-2^{n-1}; -(2^{n-1}-1); +0; 2^{n-1}-1]$$

$$[-2^{n-1}; 2^{n-1}-1]$$
 $n=8, 16, 32, 64, 128...$

Название формата	Количество байт	Количество разрядов	Диапазон представимых чисел
signed byte integer	1	8	[-2 ⁷ ; 2 ⁷ -1] или [-128; +127]
signed word integer	2	16	[-2 ¹⁵ ; 2 ¹⁵ -1]
signed doubleword integer	4	32	[-2 ³¹ ; 2 ³¹ -1]
signed quadword integer	8	64	$[-2^{63}; 2^{63}-1]$

Форматы некоторых чисел со знаком

Особенности кодирования отрицательных чисел

Число со знаком:

$$+ A \rightarrow$$
 прямой код $[+7_{10}]_{\rm пp} = 111_2 = 0000\ 0111\ (в\ формате\ signed\ byte\ integer)$ знак числа

 $-A \rightarrow$ инверсный код (как правило дополнительный код)

$$[-7_{10}]_{\text{пр}} = [-000\ 0111_2 (в формате signed byte integer)]_{\text{Доп}} = 1111\ 1001$$

Самостоятельно

повторить правила получения дополнительного кода целых двоичных чисел.

Самостоятельно изучить правила представления и порядок перевода целых чисел для всех размеров чисел

ЦЕЛЫЕ ДВОИЧНЫЕ ЧИСЛА

Основная сложность работы с целыми числами — возможное переполнение разрядной сетки.

Например (беззнаковые числа):

$$A = 255_{10} = 1111 \ 1111_2 = FF_{16}$$
.

$$B = 255_{10} = 1111 \ 1111_2 = FF_{16}.$$

Должны получить:

$$A+B=1FE$$
 (510)

Но после операции сложения

MOV AL,255 ADD AL,255

имеем неверный результат:

ЦЕЛЫЕ ДВОИЧНЫЕ ЧИСЛА

Основная сложность работы с целыми числами — возможное переполнение разрядной сетки.

Например (знаковые числа):

$$A = -128_{10} = 1000\ 0000_2 = 80_{16}$$
.

$$B = -8_{10} = 1111 \ 1000_2 = F8_{16}$$
.

Должны получить:

$$A+B=178_{16}(-136_{10})$$

Но после операции сложения

MOV AL, –128 ADD AL, –8

имеем неверный результат:

ДРОБНЫЕ ЧИСЛА В ФОРМАТЕ С ПЛАВАЮЩЕЙ ЗАПЯТОЙ (ЧПЗ) или FLOAT

$$A_{10} = \pm m \cdot \alpha^{\pm P}$$

zде m — мантисса, записанная c основанием α ; P — порядок числа.

Формат ЧПЗ:
$$-273.9 = -2739 \cdot 10^{-1} = -2.739 \cdot 10^{2} = -0.2739 \cdot 10^{3}$$

Для машинной арифметики α =2

$$A_{10} = \pm m \cdot 2^{\pm P}$$

Нормальная форма: мантисса (без учёта знака) находится на полуинтервале [0;1].

$$-0.2739\times10^{3}$$

$$-0.02739 \times 10^{4}$$

$$-0.2739\times10^{3}$$
, -0.02739×10^{4} , -0.002739×10^{5} , ...

Нормализованная форма (мантисса десятичного числа принимает значения от 1 (включительно) до 10 (не включительно), а мантисса двоичного числа принимает значения от 1(включительно) до 2 (не включительно).

В такой форме любое число (кроме 0) записывается единственным образом

$$-2,739\times10^{2}$$
.

Недостаток заключается в том, что в таком виде невозможно представить 0, это особый случай машинной арифметики.

СТАНДАРТЫ ПРЕДСТАВЛЕНИЯ ЧПЗ В КОМПЬЮТЕРЕ

Каждая ячейка памяти с числом соответствующего типа в бинарном виде содержит (последовательно):

- 1 бит знака (**S**),
- •р бит, выделяемых на хранение порядка числа,
- т бит для хранения мантиссы.

СТАНДАРТЫ ПРЕДСТАВЛЕНИЯ ЧПЗ В КОМПЬЮТЕРЕ

IEEE 754-2008 http://ali.ayad.free.fr/IEEE_2008.pdf

<u></u>	PS		Donuen			Разрядн	ость (бит)	
Intel	MIPS	Тип данных	Размер (байт)	Точность	S	p	m	всег
		binary16	2	половинная	знак 1	порядок 5	мантисса 10	0 16
V		binary32 (float)	4	одинарная	1	8	23	32
V	V	binary64 (double)	8	двойная	1	11	52	64
v v	V	Не стандартизованный формат Intel	10	расширенна	1	15	64	80
v		binary128 (long double)	16	учетверённа я	1	15	112	128
			Sign	Sign 15 14	9 (Half Precis Floating Po		
			31 30	23 22	0	Single Prec Floating Po		
		Sign 63 62 52 51			0	Double Pred Floating Poi		
		Sign Integer Bit 79 78 64 63 62			0	Double Exte Floating Poi	ended Precision int	

Пример определения ЧПЗ для Intel

	Danson		Разрядность (бит)			
Тип данных	Размер (байт)	Точность	<i>s</i> знак	<i>р</i> порядок	<i>т</i> мантисса	всего
binary16	2	половинная	1	5	10	16
binary32 (float)	4	одинарная	1	8	23	32
binary64 (double)	8	двойная	1	11	52	64
Не стандартизованный формат Intel	10	расширенная	1	15	64	80
binary128 (long double)	16	учетверённая	1	15	112	128

Пример определения ЧПЗ для MIPS

	Dansan		Разрядность (бит)				
Тип данных	Размер (байт)	Точность	<i>s</i> знак	<i>р</i> порядок	<i>т</i> мантисса	всего	
binary16	2	половинная	1	5	10	16	
binary32 (float)	4	одинарная	1	8	23	32	
binary64 (double)	8	двойная	1	11	52	64	
Не стандартизованный формат Intel	10	расширенная	1	15	64	80	
binary128 (long double)	16	учетверённая	1	15	112	128	

aa: .float 22.01

bb: .double -33.7

СТАНДАРТЫ ХРАНЕНИЯ ЧПЗ В ПАМЯТИ КОМПЬЮТЕРА

- знак числа: 0, (+) число > 0
 - 1, (-) число < 0
- мантисса, представлена в прямом коде; причём, как правило храниться только дробная часть мантиссы, а целая часть=1 не храниться.
- порядок храниться в смещенном виде (без знака): экспонента=порядок+смещение. Значение смещения равно $2^{p-1}-1$

минимальный порядок P=- смещение+1 (экспонента E=000..01) максимальный порядок P=+смещение (экспонента E=11...10) не число (экспонента E=11...11) денормализованное число = мантисса без целой части и экспонента E=00...0, но порядок считается минимальным (т.е. $-2^{p-1}-1$)

Число
$$\Psi\Pi 3 = (-1)^S \times 1, M \times 2^E$$

Диапазоны представления ЧИСЕЛ С ПЛАВАЮЩЕЙ ЗАПЯТОЙ

Числа с плавающей запятой с половинной точностью:

Диапазоны представления чисел с плавающей запятой

Числа с плавающей запятой одинарной точности могут хранить значение в диапазоне

Для чисел с половинной точностью: $[-65504; -2.98 \cdot 10^{-8}]$ U $[2.98 \cdot 10^{-8}; 65504]$.

Для чисел с двойной точностью: $[-1,8\cdot10^{308}; -2,2\cdot10^{-308}]$ U $[2,2\cdot10^{-308}; 1,8\cdot10^{308}]$.

Для чисел с расшир. точностью: $[-1,18\cdot10^{4932}; -3,37\cdot10^{-4932}]$ U $[3.37\cdot10^{-4932}; 1,18\cdot10^{4932}]$.

Для чисел с учетверенной точностью – рассчитать самостоятельно

Отдельно рассматривается число ноль (положительный и отрицательный).

Пример перевода дроби в формат ЧПЗ одинарной точности (из руководства Intel)

Notation	Value					
Ordinary Decimal	178.125	178.125				
Scientific Decimal	1.78125E ₁₀ 2					
Scientific Binary	1.0110010001E ₂ 111					
Scientific Binary (Biased Exponent)	1.0110010001E ₂ 10000110					
IEEE Single-Precision Format	Sign	Biased Exponent	Normalized Significand			
	0	10000110	011001000100000000000 1. (Implied)			

Самостоятельно изучить правила представления и порядок перевода чисел в формате ЧПЗ

Источники

- http://ali.ayad.free.fr/IEEE 2008.pdf
- http://www.softelectro.ru/ieee754.html
- Материалы ЛР№3 (FPU)

ТОЧНОСТЬ ПРЕДСТАВЛЕНИЯ ЧИСЕЛ В КОМПЬЮТЕРЕ

Все целые числа представлены без погрешности.

Для действительных чисел:

- вычислительная погрешность
- необходимость перевода дробей из десятичной системы счисления в двоичную.

$$\frac{1}{5}=0,2.$$

Двоичное представление:

- 4 разрядами после запятой 0.0011_2 , что соответствует десятичному числу 0.1875_{10}
- 8 разрядами 0.00110011_2 , что соответствует десятичному числу 0.19921875_{10}
- 12 разрядами 0.001100110011_2 , что соответствует десятичному числу 0.199951171875_{10}
- 28 разрядами 0.0011001100110011001100110011 $_2$, что соответствует 0.1999999925494_{10}

Отсюда видим, что точность представления повышается с увеличением разрядной сетки. Кроме того, в формате ЧПЗ не могут быть представлены как очень большие числа, так и очень маленькие.

ДИСКРЕТНОСТЬ И НЕРАВНОМЕРНОСТЬ ПРЕДСТАВЛЕНИЯ ДРОБЕЙ В ВС

Представимые числа на числовой оси расположены дискретно и неравномерно: плотность их возрастает при приближении к нулю и падает при удалении от нуля. Это связано с изменением веса/значимости разрядов мантиссы при изменении порядка Р. Чем больше значение порядка, тем больше значимость младшего разряда, равная 2^P.

Дискретность представления дробей в ВС

S -знак	<i>P</i> - порядок	М - мантисса	
1	5	10	

Рассмотрим два <u>соседних</u> ЧПЗ числа половинной точности:

$$A = 0.01111.1000\ 0000\ 00 = 1,1 \times 2^{1} = (3_{10})$$

 $B = 0.01111.1000\ 0000\ 01 = 1,10000\ 0000\ 01 \times 2^{1} \approx 3.001$

Непрерывные вещественные значения

Дискретные приближенные ЧПЗ

НЕРАВНОМЕРНОСТЬ ПРЕДСТАВЛЕНИЯ ДРОБЕЙ В ВС

двоичное число	$A = 0,0000 \ 0000 \ 01 \cdot 2^{-15}$	Б=1,0·20	B=1,0·2 ⁺¹⁵
запись в формате ЧПЗ	$0 \ 2^{-15} \ 0,0000 \dots 01$	0 20 1,0000	0 215 1,0000
ближайшее большее	0,0000 0000 0001 0	1,0000 0000 01	1,0000 0000 01
число	$=1,0\cdot 2^{-14}$	$=1,0000\ 0000\ 01\cdot 2^{0}$	$=1,0000\ 0000\ 01\cdot 2^{15}$
минимальный шаг	2^{-15}	$0,0000\ 0000\ 01\cdot 2^0$	$0,0000\ 0000\ 01\cdot 2^{15}$
представления		$=2^{-10}$	$=2^{+5}$

ДВОИЧНО-ДЕСЯТИЧНЫЕ ДАННЫЕ BCD – binary coded decimal

Одна десятичная цифра BCD-числа кодируется четырьмя двоичными разрядами (тетрадой).

Десятичн	BCD-код	BCD-код	BCD-код	BCD-код
ая цифра	8-4-2-1	2-4-2-1	5-4-2-1	8-4-2-1+3
0	0000	0000	0000	0011
1	0001	0001	0001	0100
2	0010	0010	0010	0101
3	0011	0011	0011	0110
4	0100	0100	0100	0111
5	0101	0101	1000	1000
6	0110	0110	1001	1001
7	0111	0111	1010	1010
8	1000	1110	1011	1011
9	1001	1 1 1 1	1100	1100

ДВОИЧНО-ДЕСЯТИЧНЫЕ ДАННЫЕ BCD – binary coded decimal

```
\begin{array}{c} \textbf{10} \rightarrow \textbf{BCD} \\ \textbf{9024,19} = \textbf{1001 0000 0010 0100, 0001 1001}_{BCD} \\ \textbf{9} \quad \textbf{0} \quad \textbf{2} \quad \textbf{4} \quad \textbf{,} \quad \textbf{1} \quad \textbf{9} \\ \textbf{BCD} \rightarrow \textbf{10} \\ & \textbf{1} \quad \textbf{0101 0011, 0111 1}_{BCD} = \\ \textbf{0001 0101 0011, 0111 1000}_{BCD} = \textbf{153,78} \end{array}
```

Запись числа в BCD не совпадает с двоичной!

$$10101,1_{BCD} = 15,8$$

 $10101,1_{2} = 16 + 4 + 1 + 0,5 = 21,5$

двоично-десятичные данные

Позволяют оперировать любыми типами и размерами чисел без погрешности (т.к. это формат представления не целого числа, а лишь одного десятичного разряда).

Необходимое количество десятичных разрядов определяет пользователь при написании кода программы, т.е. он сам выбирает точность представления.

Var DB 6, 2, 4, 5, 3 ; = число 35 426

двоично-десятичные данные

Неупакованное ВСD-число.

Var DB 6, 2, 4, 5, 3 ; = число 35 426

В памяти: 06 02 04 05 03

двоично-десятичные данные

Упакованное ВСД-число.

старшая тетрада младшая тетрада

Var DB 26, 12, 54, 50 ; = число 50 541 226

В памяти: 26 12 54 50

ДВОИЧНО-ДЕСЯТИЧНЫЕ ДАННЫЕ

Ошибки вычислений над ВСД

Для вычислений над *BCD* используются обычные арифметические команды (ADD, SUB, MUL, DIV) и дополнительные команды двоично-десятичной коррекции:

AAA

DAA

AAS . . .

BEKTOPA (PACKED SIMD DATA TYPES)

Аппаратная поддержка *векторных операций* и *векторного типа данных* появилась в процессорах, использующих потоковое расширение архитектуры системы команд.

Intel:

- технологии MMX (MultiMedia Extensions)
- технологии SSE (англ. Streaming SIMD Extensions)

одновременная обработка нескольких данных целочисленного (для MMX) или ЧПЗ (для SSE) типа за одну машинную инструкцию.


```
Registers (3DNow!)
                                 00000000
              00000000
                        00000000
     00000000
                        00000000
              00000000
                                 00000000
     00000000
              ааааааааа
                        00000000
                                 ааааааааа
     00000000
              ааааааааа
                        ааааааааа
     00000000
              00000000
     00000000
              00000000
                        00000000
     00000000 000000000
                        00000000
                                 00000000
              00000000
                        00000000
                                 00000000
```

BEKTOPA

INTEL® 64 AND IA-32 ARCHITECTURES ctp.46 (46 / 3439)

Figure 2-4. SIMD Extensions, Register Layouts, and Data Types

ДАННЫЕ ТИПА УКАЗАТЕЛЬ

= адрес фрагмента кода/данных.

ТЕГИ

может определять:

- тип данных (целое двоичное число, число с плавающей запятой, десятичное число, адрес, строка символов, дескриптор и т.д.)
- формат,
- размер,
- местоположение,
- способы обработки/доступа

Теги регистров блока FPU

- 00 (valid) регистр содержит конечное число (достоверное значение),
- 01 (zero) регистр содержит нулевое значение (±ноль),
- 10 (bad) не число (неопределенное значение, ненормализованное число, бесконечность, неподдерживаемый формат...),
- 11 (empty) пустой (незаполненный) регистр.

ДЕСКРИПТОРЫ

описатели (составные из нескольких типов данных).

Например, дескриптор сегмента

- Базовый адрес сегмента (тип ближний указатель),
- Размер сегмента (тип целое беззнаковое),
- Атрибуты сегмента: несколько полей разного размера и назначения.

• Добавить про типы инструкций и режимы адресации