Multiple class queueing networks Mean Value Analysis

- Open queueing networks
- Closed queueing networks

Open queueing network

Closed queueing network

(finite number of users)

Incoming request class

Different kind of requests should be in a system (queueing network) that need different services by the servers, i.e:

- a database server is subject to two type of transactions:
 - simple query (that needs only read activities on the disks)
 - updating transactions (that needs read and write activities on the disks)
- a web server is subject to two type of requests:
 - Read of a little file
 - Uploading of a big file

Definitions

K: number of queues

i: queue identification

r: class identification (from 1 to R)

 λ_r : arrival rate for class r request

$$\lambda = (\lambda_1, \lambda_2, ..., \lambda_R)$$

 $V_{i,r}$: average number of visits a class r request makes to server i from its generation to its completion (request goes out from the system if open network)

Definitions

 $S_{i,r}$: average class **r** request <u>service</u> time at the server i

 $W_{i,r}$: average class r request <u>waiting</u> time in the queue i

 $\mathbf{R_{i,r}}$: average class \mathbf{r} request <u>response</u> time in the queue i $\mathbf{R_{i,r}} = \mathbf{S_{i,r}} + \mathbf{W_{i,r}}$

Definitions

 $\mathbf{R'}_{i,r}$: average class \mathbf{r} request <u>residence</u> time in the queue \mathbf{i} from its creation to its service completion time (request goes out from the system in case of open network)

$$\mathbf{R'}_{\mathbf{i},\mathbf{r}} = \mathbf{V}_{\mathbf{i},\mathbf{r}} \mathbf{R}_{\mathbf{i},\mathbf{r}}$$

 $\mathbf{D_{i,r}}$: request class \mathbf{r} service demand to a server in a queue i from its creation to its service completion time (request goes out from the system in case of open network)

$$\mathbf{D_{i,r}} = \mathbf{V_{i,r}} \, \mathbf{S_{i,r}}$$

Formulas for multiple class open QNs

Input parameters

$$D_{i,r}$$
, λ_r

Equations

$$U_{i,r}(\lambda) = \lambda_r V_{i,r} S_{i,r} = \lambda_r D_{i,r}$$

$$. \ \mathcal{U}_{i}(\lambda) = \Sigma^{R}_{r=1} U_{i,r}(\lambda)$$

total utilization factor

$$R'_{i,r}(\lambda) = D_{i,r}$$

$$R'_{i,r}(\lambda) = D_{i,r} / (1 - U_{i}(\lambda))$$

delaying resource queuing resource

Formulas for multiple class open QNs

.
$$R_{\theta,r}(\lambda) = \sum_{i=1}^{K} R'_{i,r}(\lambda)$$

$$. n_{i,r}(\lambda) = U_{i,r}(\lambda) / (1 - U_i(\lambda))$$

 $. n_i(\lambda) = \sum_{r=1}^{R} n_{i,r}(\lambda)$

NOTE: total utilization in the denominator

DB Server

(example 9.5)

Class 1 trx: query

$$\lambda_1 = 5$$
 requests per second (tps)

$$D_{DISK1} = 0.08$$
 Service demand at disk 1

$$D_{DISK2} = 0.07$$
 Service demand at disk 2

Class 1 trx: updating trx

$$\lambda_1 = 2$$
 requests per second (tps)

$$D_{CPU} = 0.15 \text{ sec}$$
 Service demand at CPU

$$D_{DISK1} = 0.20$$
 Service demand at disk 1

$$D_{DISK2} = 0.10$$
 Service demand at disk 2

DB Server

(example)

Service demand x	Query	Updates
• CPU	0,1	0,15
• DISK1	0,08	0,20
• DISK2	0,07	0,10

Utilizations (%)			
CPU	50	30	
Disk1	40	40	
Disk 2	35	20	
Residence times (sec)			
CPU	0,50	0.75	
Disk1	0,40	1,00	
Disk 2	0,016	0,22	
Response times (sec)	1,06	1,97	

Multiclass closed queue networks

(finite number of users)

Notations

 N_r : fixed number of requests in the system for each class (r)

$$N: (N_1, N_2, ..., N_R)$$

 I_r : vector where all components are zero except for the r-th component, which is equal to 1

Formulas

-> Residence Time Equation for class r

$$R'_{i,r}(N) = D_{i,r}[1 + n_i(N - I_r)]$$

-> Throughput equation for class r

$$X_{0,r} = N_r / \sum_{r=1}^{K} R'_{i,r}(N)$$

-> Queue lenght equation for class r

$$n_{i,r}(N) = X_{0,r}(N) R'_{i,r}$$

-> Queue equation

$$n_i(N) = \sum_{r=1}^{R} n_{i,r}(N)$$

Example with 2 classes

Residence Time Equation for class r

$$R'_{i,r}(N) = D_{i,r}[1 + n_i(N - \mathbf{1}_r)]$$

for example, to evaluate the formulas, when the state is N=(3,4), i.e. 3 customers of class 1 and 4 customers of class 2, we need to know:

- the average number of users in queue i when there are 2 customers of class 1 and 4 customer of class 2
- the average number of users in queue i when there are 3 customers of class 1 and 4 customer of class 3

$$R'_{i,1}(3,4) = D_{i,r}[1+n_i(2,4)]$$

$$R'_{i,2}(3,4) = D_{i,r}[1+n_i(3,3)]$$

A markov process with 2 classes and 2 users x class

