Logical Group

Introduction

PTU - May 2008

7.1.1 Logic	tructions perform various logical operations with the contents of the accumulator. Any 8-bit number, or the contents of a register, or of a memory location can be logically are results are
AND, OR Exclusive-OR	Any 8-bit number, of the ANDed, Ored, or Exclusive-ORed with the contents of the accumulator.
Rotate	Each bit in the accumulator can be shifted either left of right to the last of the compared for Any 8-bit number, or the contents of a register, or a memory location can be compared for Any 8-bit number, or these stage, with the contents of the accumulator.
Treasily.	couplity greater than, or research to a second by is and an
Complement	The contents of the accumulator can be complemented. All 0s are replaced by 0s. The logical group of instructions include following instructions:
	19 gr Ab.

		10	ANA M	3.	ANI data	4.	ORA R
1.	ANA R	2.	-	_	XRA R	8.	XRA M
5.	ORA M	6.	ORA data	7.		-	STC
	XRI data	10.	CMA	11.		12.	-
13.	CMP R	14.	CMP M	15.	CPI data	16.	RLC
17.		18.		19.	RAR		

		_
Inemonic	ANA R.	
peration	A = A AND R	
o. of Bytes	1 byte.	
achine Cycles	1 (OF)	- 1

Algorithm	$A \leftarrow A \wedge R$
Flags	S. Z. P are modified to reflect the result of operation. Carry flag is reset and AC flag is set
Addr. Mode	Register addressing mode
T-states	4

escription

Logically AND register with accumulator.

- This instruction will logically AND the contents of the specified register with the contents of the accumulator and the result will be stored in the accumulator.
- The operation of ANDing is performed bit by bit. i.e. Bo bit of the accumulator is ANDed with the Bo bit of the specified register, and so on upto the B7 bit of the accumulator is ANDed with the B7 bit of the specified register.
- The register R can be any general purpose register like A, B, C, D, E, H or L. Fig. 7.2.1 shows the anding operation.

Example: ANA B • Let A=56~H and B=82~H and instruction ANA B is executed. A 0101 0110 56 H B 1000 0010 82 H A 0000 0010 02 H • So result in accumulator will be 02H and the status of flags will be CY = 0, AC = 1, Z = 0, S= 0, P = 0.

Fig. 7.2.1: ANDing operation

Fig. 7.2.2: ANA B

The timing diagram of the instruction ANA R is covered in section 7.21

The examples of instruction ANA R are:

1. ANA A	2. ANA B	3. ANA C	4. ANA D
5. ANA E	6. ANA H	7. ANA L	

ANA M

Maemonic	ANA M.
operation	A = A AND M
of Bytes	1 byte.
Machine Cycles	2 (OF + MR)

Algorithm	$A \leftarrow A \wedge M$
Flags	S, Z, P are modified to reflect the result of ANDing . Carry flag is reset and AC is set.
Addr. Mode	Indirect addressing mode
T-states	7 (4 + 3)

scription	Lo	gically AND memory with acc	umı.la	ator.		
		The contents of memory locat contents of accumulator and the pair acts as memory pointer. The operation of ANDing is per	ne reso	It is st	ored in the	
ample: A M	•	Let A = 4A H, H = 20H, L = instruction ANA M is executed		at men	nory locatio	n 20FF : EF H is stored and
1		A	0100	1010	4A H	
		M	1110	1111	EFH	
		A	0100	1010	4A H	
		The result in accumulator will l	be 4A I	I.	+	

Fig. 7.3.1: ANA M

The timing diagram of the instruction ANA M is covered in section 7.22.

ANI Data

emonic	ANI Data
eration	A = A AND data
of Bytes	2 bytes First byte : Opcode Second byte : 8 bit data
chine Cycles	2 (OF + MR)

Algorithm	A ← A ∧ Data
Flags	S, Z, P are modified to reflect the result of operation, CY is reset and AC is set.
Addr. Mode	Immediate addressing mode
	1
T-states	7 (4 + 3)

Description	Log s	rically AND immediate data was This instruction logically AN specified in the instruction. The ANDing is done bitwise.	Ds the	contents o	f accumulator with the 8 bit da
Example:		Let A = F7 and instruction AN	I OF is ex	xecuted.	
ANI OFH		A	1111	0111	F7
+1		Data	0000	1111	0F
		A	0000	0111	07
		The result in accumulator will	be 07 H	*	

Fig. 7.4.1: ANI 0F H

The timing diagram of the instruction ANI data reduce is covered in section 7.23.

7.5 ORA R

Mnemonic	ORA R
Operation	A = A OR R
No. of Bytes	1 byte
Machine Cycles	1 (OF)

Algorithm	$A \leftarrow A \lor R$
Flags ·	S, Z, P are modified to reflect the res of operation AC and CY are reset.
Addr. Mode	Register addressing mode
T-states	4

Description	 Logically OR contents of specified register with accumulator. This instruction will logically OR the contents of specified register with accumulator and the result is stored in the accumulator. The ORing is done bit by bit i.e. B₀ bit of register with B₀ bit of accumulator, B₁ is register with B₁ bit of accumulator and so on upto D₇ bit. Fig. 7.5.1 shows how O is done. The register R can be any general purpose register like A, B, C, D, E, H or L.
Example ORA C	Let A = A2 H and C = B5 H and instruction ORA B is executed
	A 1010 0010 A2H
1. 25	B 1011 0101 B5H
100	A 1011 0111 B7H
3/10	• So result is accumulator will be B7 H and flag status will be as follows : $CY = 0$, $AC = 0$, $P = 1$, $S = 1$, $Z = 0$

Fig.7.5.1: ORing operation

Fig. 7.5.2: ORA C

The timing diagram of the instruction ORA R is covered in section 7.21 The examples of the instruction ORA R are

1. ORA A	2. ORA B	3. ORA C	4. ORA D
5. ORA E	6. ORA H	7. ORA L	0.00

ORA M

monic	ORA M	Algorithm	$A \leftarrow A \lor M \text{ or }$
ation	A. AODAE	-	$A \leftarrow A \lor (HL)$
	A ← A OR M	Flags	S, Z, P are modified to reflect the result of operation $AC = 0$ and $CY = 0$.

No. of Bytes	1 byte	Addr. Mode	Indirect addressing mode
	2 (OF + MR)	T-states	7 (4 + 3)

Description	This instruction will logically OR the contents of accumulator with the content memory location and the result is stored in the accumulator. The address of memory location is given by the HL register pair. The ORing operation is done bitwise.		
Example: ORA M	 Let A = AA H, H = AA H, L = AB H, at memory location AAAB : 55 H data is sto and the instruction ORM is executed. 		
ORAM	A 1010 1010 AAH		
	(HL) 0101 0101 55H		
	Δ 1111 1111 FF!f		
8	• The result in accumulator will be FFH. The status of the flags will be as follows, $S=1, Z=0, AC=0, P=1, CY=0.$		

Fig. 7.6.1: ORA M

The timing diagram of the instruction ORA M is covered in section 7.22

7.7 ORI Data

ORI Data
A = A OR Data
2 bytes .
2 (OF + MR)

Algorithm	A ← A ∨ Data	
Flags	S, Z, P are modified to reflect the result operation, AC = reset and CY = Reset	
Addr. Mode	Immediate addressing mode	
T-states	7 (4 + 3)	

Description Logically OR immediate data with accumulator.

The contents of accumulator are ORed with 8 bit data specified along with instruction and the result is stored in the accumulator

* Let A = 55 and instruction ORI 20 H is executed.

A 0 1 0 1 0 1 0 1 5 5

Data 0 0 1 0 1 0 1 0 1 7 5H

* The result in accumulator will be 75H and flag status will be as follows. CY = 0, S = 0, Z = 0, AC = 0, P = 0.

Fig. 7.7.1: ORI 20 H

The timing diagram of the instruction ORI data is covered in section 7.23

8 XRAR

Mnemonic	XRA R	Algorithm	$A \leftarrow A EX$
Operation	$A = A \oplus R$	Flags	S, Z, P are of operation
lo. of Bytes	1 byte	Addr. Mode	Register a
Machine Cycles	1 (OF)	T-states	4
		. States	-

Algorithm	$A \leftarrow A \text{ EX-OR } R \text{ or } A \leftarrow A \oplus R$
Flags	S, Z, P are modified to reflect the result of operation, AC and CY are reset.
Addr. Mode	Register addressing mode
T-states	4

Description

Exclusive-OR register with accumulator.

- This instruction will EX-OR the contents of the accumulator with the contents of the register specified and the result will be stored in the accumulator.
- The EX-OR ing operation is done bit by bit. i.e. B₀ bit of the register is EX-ORed with the B₀ bit of the accumulator, B₁ bit of the register is EX-ORed with B₁ bit of accumulator and so on upto B₇ bit as shown in Fig. 7.8.1.
- R may be any general purpose register like A, B, C, D, E, H or L.

xample:

Let A = 77H and D = 06H and instruction XRA D is executed.

A = 0111 0111 77 H

D = 0000 0110 06 H

A = 0111 0001 71 H

So, result in accumulator will be 71 H and status of the flags will be as follows:
 CY = 0, AC = 0, Z = 0, S= 0, P = 1

Fig. 7.8.1 : EX-ORing operation

Fig. 7.8.2: XRA D

The timing diagram of the instruction XRA D is covered in section 7.21

7.9 XRA M

Mnemonic	XRA M
Operation	A = A EX-OR M
No. of Bytes	1 byte
Machine Cycles	2 (OF + MR)

Algorithm	$A = A \oplus M$
Flags Hexust	S, Z, P are modified to reflect the of operation AC = 0 and CY = 0.
Addr. Mode	Indirect addressing mode
T-states	7 (4+3)

pescription	Lo	This instruction contents of accur memory location The operation of	will log mulator is given	gica and by t	lly EX-O the resu he HL re	R the con It is stored gister pair	tents of memory location with the fin the accumulator. The address of
Example: XRA M	•	Let A = A5 H, H instruction XRA	= 50 H.	L =	05 H. at	memory l	ocation 5005 : 50 H is stored and the
		4	Α	=	1010	0101	A5H
			(HL)	=	0101	0000	50H
			A	=	1111	0101	F5H
	٠	The result in accuracy $S = 1$ $Z = 0$					is of the flags will be as follows :

Fig. 7.9.1 : XRA M

The timing diagram of the instruction XRA M is covered in section 7.22.

140 XRI Data

Hnemonic	XRI Data	
Operation	A = A EX-OR data	
10. of Bytes	2 bytes First byte : Opcode Second byte : 8-bit data.	
Achine Cycles	2 (OF + MR)	
		_

Algorithm	$A \leftarrow A \oplus data$
Flags	S, Z, P are modified to reflect the result of operation AC = 0 and CY = 0
Addr. Mode	Immediate addressing mode
T-states	7 (4 + 3)

Scription	Lo	This instruction specified along t The EX-ORing o	will logic he instruc	ally	EX-OR to	the contensult is stor	ts of accumul	ator with t umulator.	he 8 bit data
mple: 12FH	•	This instruction will be stored in Let A = 75 H	will EX-0	OR nula	the conte	nts of acc	umulator wit	h data 2F	H and result
			Α	=	0111	0 10 1	75H	1.50	
			Data	=	0010	1111	2 F H		
	Į.		A	=	0101	1010	5 A H		165
	•	The result in according $S = 0$, $Z = 0$	umulator	will P=	be 5A H	. The stat	tus of the flag	s will be as	follows:

Fig. 7.10.1: XRI 2FH

The timing diagram of the instruction XRI 2F H is covered in section 7.23.

7.11 CMA

Mnemonic	CMA
Operation	A = A
No. of Bytes	1 byte.
Machine Cycles	1 (OF)

Algorithm	$A \leftarrow \vec{A}$	
Flags	No flags are modified	
Addr. Mode	Implied addressing mode.	
T-states	4	

This instruction the accum	ulator. lement is perfo	rmi	ng an inve				energia interes	
	Annual Control of the			s executed				
	A	=	1010	1011	=	AB		
	Ā	=	0101	0100	=	5 4	51	
	This instruction the accumning the the accumning the tenth of the computation of the tenth of th	This instruction completed the accumulator. The complement is performed by 1 and 1 will be replaced. If A = ABH and the instruction complete.	This instruction complement the accumulator. The complement is performing by 1 and 1 will be replaced by 1 and 1	This instruction complements the continue the accumulator. The complement is performing an invenced by 1 and 1 will be replaced by 0. If A = ABH and the instruction CMA is A = 1010	This instruction complements the contents of account the accumulator. The complement is performing an inversion operated by 1 and 1 will be replaced by 0. If A = ABH and the instruction CMA is executed A = 1010 1011	This instruction complements the contents of accumulator. The complement is performing an inversion operation by 1 and 1 will be replaced by 0. If A = ABH and the instruction CMA is executed A = 1010 1011 =	 This instruction complements the contents of accumulator and the accumulator. The complement is performing an inversion operation of each to by 1 and 1 will be replaced by 0. If A = ABH and the instruction CMA is executed A = 1010 1011 = AB 	This instruction complements the contents of accumulator and the result. The accumulator. The complement is performing an inversion operation of each bit i.e 0 will be 1 and 1 will be replaced by 0. If A = ABH and the instruction CMA is executed A = 1010 1011 = AB

Fig. 7.11.1: CMA

The timing diagram of the instruction CMA is covered in section 7.21

no change in the flag status.

12 CMC

nemonic	CMC		
operation	$CY = \overline{CY}$		
No. of Bytes	1 byte		
Nachine Cycles	1 (OF)		

Algorithm	$CY \leftarrow \overline{CY}$	
Flags	Only carry flag is complimented. other flags are affected.	No
Addr. Mode	Implied addressing mode	
T-states	4	

pescription	 Complement the carry flag. This instruction complements the carry flag i.e. if carry flag = 1 the instruction will reset it and if CY flag = 0 the instruction will set it. 				
xample: MC	Before Execution Flag S Z AC P CY register X X X X 0 Flag X X X X 11 register Carry flag is				
	Fig. 7.12.1 : CMC				

The timing diagram of the instruction CMC is covered in section 7.21

13 STC

memonic	STC			
peration	CY = 1			
o. of Bytes	1 byte			
Ochine Cycles	1 (OF)			

Algorithm	CY ← 1
Flags	Only carry flag is set. No other flags are modified.
Addr. Mode	Implied addressing mode
T-states	4

scription	Set carry flag This instruction sets the carry flag.		
ample:	Before Execution S Z AC P CY Flag X X X X X X X X X X X X X X X X X X X		
	Fig. 7.13.1 : STC		

The timing diagram of the instruction STC is covered in section 7.21

4 CMP R

monic	CMP R
ation	(A – R) A compare R
f Bytes	1 byte
ine Cycles	1 (OF)

Algorithm	A compare R
Flags	S, Z, P are modified to reflect the status of subtraction and Z, CY are used to indicate the result of comparison
Addr. Mode	Register addressing mode
T-states	4

Description	Compare register with accumulator.			
escription	- This instruction compares the			
	specified. The operation of comparing is performed by subtracting the register contents from accumulator contents.			
	 The contents of register or accumulated. The result of comparision is indicated by setting the flags follows: If A > R; CY = 0 and Z = 0 If A = R; Z = 1, CY = 0 If A < R; CY = 1, Z = 0 The S P AC flags are modified to reflect the status of subtraction or Z, CY are used. 			
	indicate the result of comparison. The perjeter R is any general purpose register like A, B, C, D, E, H or L.			
Example: (i) CMP B	Let A = 20H, B = 10H and instruction is executed. A			
	Before Execution After Execution			
	SZACPCY SZACPCY A 20			
(ii) CMB B	Fig. 7.14.1 : CMP B If $A = 10H$ and $B = 10H$. Now if the instruction CMP B is executed. Then the status of flags will be $CY = 0$, $Z = 1$ to indicate that $A = B$.			
(iii) CMP B	If A = 10H and B = 20H. Now if the instruction CMP is executed, then the status of the timing diagram of the instruction CMP B is governed to			

The timing diagram of the instruction CMP B is covered in section 7.21

The examples of the instruction CMP R are:

1. CMP A	9 CMPP		
E Chen -	2. CMP B	3. CMP C	4. CMP D
5. CMP E	6. CMP H	7 0150 -	4. CMP D
	THE AL	1. CMP L	Andrew American

7,15 CMP M

Mnemonic	CMP M	
Operation	A-M	
		100
		facility 1

Algorithm	A compare M
Flags	Z and CY flag are used to proper S. P.
	flags are modified to reflect

No. of Bytes	1 byte	Addr. Mode	Indirect addressing mode.
Machine Cycles	2 (OF + MR)	T-states	7 (4 + 3)

Description	 Compare memory with accumulator. This instruction compares the accumulator and memory location contents. The address of memory location is given by the HL register pair. The contents of accumulator and memory location are not altered. The result of comparison is indicated by setting the flags as follows: A > M ; CY = 0, Z = 0 A = M ; Z = 1, CY = 0 A < M ; CY = 1, Z = 0 The S, P, AC flags are modified to reflect the status of subtraction and Z, CY are use to indicate the result of comparison. 			
Example	 Let A = 20H, H = CoH, L = 02H, at memory location C002: 10H is stored and the instruction CMP M is executed. 			
	A 0010 0000 20H			
	C002H 0001 0000 10 H			
	0001 0000 10H			
	The flag status will be as follows: CY = 0, Z= 0, P = 0, S = 0, AC = 0			

Fig. 7.15.1 : CMP M

The timing diagram of the instruction CMP M is covered in section 7.22.

CPI Data

monic	CPI Data
ation	A - data
Bytes	2 bytes First byte : Opcode Second byte : 8-bit data
Cycles	2 (OF + MR)

Algorithm	A compare data	
Flags	Z and CY are used to indicate the result of comparison. S, P, AC are modified to reflect the status of subtraction.	
Addr. Mode	Immediate addressing mode	
T-states	7 (4 + 3)	

Description	 Compare immediate data with accumulator. This instruction subtracts the 8-bit data given in the instruction from the contents of the accumulator and sets the condition flags as a result of subtraction. It sets the zero flag if A = data and sets the carry flag if A < data. The contents of accumulator and data are unchanged, as the result of comparison is indicated by the flags.
Example: CPI 30H	• Let $A=10$ H and the instruction is executed. A 0001 0000

Fig. 7.16.1 : CPI 30H

The timing diagram of the instruction CPI data is covered in section 7.23

7.17 RLC

Mnemonic	RLC
Operation	For $n = 0$ to 6, $B_{n+1} = B_n$ $B_0 = CY = B_7$
No. of Bytes	1 byte
Machine Cycles	1 (OF)

Algorithm	$B_{n+1} \leftarrow B_n$ (for $n = 0$ to	0 6)	温
	$\mathbf{B}_0 \leftarrow \mathbf{B}_7$		133
	$CY \leftarrow B_7$	· ·	
Flags By is Yngs			25299
Addr. Mode	Implied addressing n	node	
T-states	4		福

Description

Rotate Accumulator left.

This instruction will rotate the contents of accumulator to the left by 1 bit i.e. it shifts
the bits left by one position. B₀ will be transferred to B₁, B₁ to B₂ and so on B₆ to B₇,
B₇ to B₀ as well as carry flag. The operation is shown in Fig. 7.17.1 below.

Fig. 7.17.1: RLC operation

x.ample

Let A = 1FH and instruction RLC is executed. The contents of accumulator will be rotated by 1 bit to the left and result will be stored in the accumulator i.e. A = 3EH

Fig. 7.17.2 : RLC

The timing diagram of the instruction RLC is covered in section 7.21.

8 RRC

lemonic	RRC
ration	$B_n = B_{n+1}$ (for $n = 0$ to 6) $B_7 = CY = B_0$
Bytes	1 byte
ine Cycles	1 (OF)

Algorithm	$B_n \leftarrow B_{n+1}$ (for $n = 0$ to 6) $B_7 \leftarrow B_0$, $CY \leftarrow B_0$
Flags	Only the carry flag is affected. All other flags are unmodified.
Addr. Mode	Implied Addressing Mode
T-states	4

Fig. 7.18.2 : RRC

The timing diagram of the instruction RRC is covered in section 7.21.

7.19 RAL

Mnemonic	RAL
Operation	For n = 0 to 6 $B_{n+1} = B_n$ $CY = B_7$ $B_0 = CY$
No. of Bytes	1 byte
Machine Cycles	1 (OF)

Algorithm	$B_{n+1} \leftarrow B_n \text{ (for } n = 0 \text{ to } 6)$ $CY \leftarrow B_T$ $B_0 \leftarrow CY$
Flags 유턴	Only the carry flag is affected other flags are unmodified.
Addr. Mode	Implied addressing mode.
T-states	4

Description

Rotate Accumulator left through carry.

This instruction will rotate the contents of the accumulator left by 1 bit position olders with carry. Bit B₇ is placed in CY and CY is placed in bit B₀. Fig. 7.19.1 shows operation.

Fig. 7.19.1: RAL operation

Example

Let A = 0EH, CY = 1. Then after execution of the instruction the of accumulator will be 1D H and CY = 0.

Fig. 7.19.2 : RAL

The timing diagram of the instruction RAL is covered in section 7.21

emonic	RAR
eration	For $n = 0$ to 6 $B_n = B_{n+1}$ $CY = B_0$ $B_7 = CY$
of Bytes	1 byte
whine Cycles	1 (OF)

Algorithm	$B_n \leftarrow B_{n+1}$ (for $n = 0$ to 6) $CY \leftarrow B_0$ $B_7 \leftarrow CY$ and in modified. All
Flags	B ₇ ← CY Only the carry flag is modified. All other flags are unaffected.
Addr. Mode	Implied addressing mode
T-states	4

Rotate Accumulator right through earry. cription

This instruction rotates the contents of the accumulator right by one position with carry. Bit B₀ is placed in CY and CY is placed in B₇ as shown in Fig. 7,20.1.

Fig. 7.20.1 : RAR operation

RAR!

Let A = 0E H and CY = 1 and the instruction RAR is executed. After execution of the instruction accumulator contents will be (1000 0111) 87H and carry flag will be reset.

Fig. 7.20.2

diagram of the instruction RAR is covered in section 7.21