Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 636 - Algebraic Topology III Term: Spring 2025

Homework 6

ID: 952091294

Instructor: Dr.Daniel Dugger Due Date: 23^{th} May, 2025

Problem 1

Write down a complete description of the homology groups of $Gr_3(\mathbb{C}^5)$. Determine as many intersection products between the Schubert classes $[\underline{a}]$ as you can. At least do all cases of complementary dimensions, and compute $[1,2,2]^2$ (here $\underline{a}=(1,2,2)$ is a Schubert symbol, not a jump sequence). Try to do some others.

Solution: Let $0 \le a_1 \le a_2 \le a_3 \le 2 = 5 - 3$ be the Schubert symbol of $Gr_3(\mathbb{C}^5)$. We have ten different choices and the homology groups can be summarized as follows

degree	generators of $H_*(\operatorname{Gr}_3(\mathbb{C}^5))$
0	[0, 0, 0]
2	[0, 0, 1]
4	[0, 1, 1], [0, 0, 2]
6	[0,1,2],[1,1,1]
8	[0, 2, 2], [1, 1, 2]
10	[1, 2, 2]
12	[2, 2, 2]

Next, we are going to determine the intersection product in complementary dimension. Note the cohomology ring is Abelian because we only have cohomology in even dimensions. For simplicity, I will only write the representative matrices. We always choose the first Schubert symbol in the standard flag

$$0 \subseteq \langle e_1 \rangle \subseteq \langle e_1, e_2 \rangle \subseteq \langle e_1, e_2, e_3 \rangle \subseteq \langle e_1, e_2, e_3, e_4 \rangle \subseteq \mathbb{C}^5$$

and the second Schubert symbol in the reverse flag

$$0 \subseteq \langle e_5 \rangle \subseteq \langle e_4, e_5 \rangle \subseteq \langle e_3, e_4, e_5 \rangle \subseteq \langle e_2, e_3, e_4, e_5 \rangle \subseteq \mathbb{C}^5$$

 $(1) [0,0,1] \cdot [1,2,2]$

$$\begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & * & * & 0 \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & * & * \\ 0 & * & * & * & * \\ * & * & * & * & * \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

So the intersection has only one point and $[0,0,1] \cdot [1,2,2] = [0,0,0]$.

 $(2) \ [1,1,1] \cdot [1,1,1]$

$$\begin{pmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & * & * \\ 0 & 0 & * & * & * \\ 0 & * & * & * & * \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

1

So the intersection has only one point and $[1, 1, 1] \cdot [1, 1, 1] = [0, 0, 0]$.

 $(3) [0,1,2] \cdot [0,1,2]$

$$\begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & * \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & 0 & * \\ 0 & 0 & * & * & * \\ * & * & * & * & * \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

So the intersection has only one point and $[0,1,2] \cdot [0,1,2] = [0,0,0]$.

 $(4) [1,1,1] \cdot [0,1,2]$

$$\begin{pmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & 0 & * \\ 0 & 0 & * & * & * \\ * & * & * & * & * \end{pmatrix}$$

There does not exist a matrix satisfying the given two conditions. So the intersection has only no point and $[1, 1, 1] \cdot [0, 1, 2] = 0$.

 $(5) [0,0,2] \cdot [0,2,2]$

$$\begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & * & * & * \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & 0 & * \\ 0 & * & * & * & * \\ * & * & * & * & * \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

So the intersection has only one point and $[0,0,2] \cdot [0,2,2] = [0,0,0]$.

(6) $[0,1,1] \cdot [0,2,2]$

$$\begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & 0 & * \\ 0 & * & * & * & * \\ * & * & * & * & * \end{pmatrix} = 0$$

So the intersection has no point and $[0,1,1] \cdot [0,2,2] = 0$.

 $(7) [0,1,1] \cdot [1,1,2]$

$$\begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & * & * \\ 0 & 0 & * & * & * \\ * & * & * & * & * \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

So the intersection has only one point and $[0,1,1] \cdot [1,1,2] = [0,0,0]$.

 $(8) \ [0,0,2] \cdot [1,1,2]$

$$\begin{pmatrix} * & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 \\ * & * & * & * & * \end{pmatrix} \cap \begin{pmatrix} 0 & 0 & 0 & * & * \\ 0 & 0 & * & * & * \\ * & * & * & * & * \end{pmatrix} = 0$$

So the intersection has no point and $[0,1,1] \cdot [1,1,2] = 0$.

(9) In this part we will determine the intersection product $[1,2,2]^2$. Note that $[1,2,2] \in H_{10}$, so $[1,2,2]^2 \in H_{10+10-12} = H_8$. Suppose

$$[1, 2, 2]^2 = A[0, 2, 2] + B[1, 1, 2]$$

for some $A, B \in \mathbb{Z}$. We have

$$[1, 2, 2]^2[0, 1, 1] = A[0, 2, 2][0, 1, 1] + B[1, 1, 2][0, 1, 1] = B,$$

 $[1, 2, 2]^2[0, 0, 2] = A[0, 2, 2][0, 0, 2] + B[1, 1, 2][0, 0, 2] = A.$

Suppose W is a 3-plane in the intersection $[1,2,2]^2[0,1,1]$, note that for all the 2's in the Schubert symbol, the condition is automatically satisfied. W needs to satisfy the following condition:

- (i) dim $W \cap F_2 \ge 1$ for some 2-plane F_2 .
- (ii) dim $W \cap F_2' \ge 1$ for some 2-plane F_2' .
- (iii) dim $W \cap F_1' \ge 1$ for some 1-line F_1'' .
- (iv) dim $W \cap F_3' \ge 2$ for some 3-plane F_3'' .
- (v) dim $W \cap F'_4 \ge 3$ for some 4-plane F''_4 .

Here $F_1'' \subseteq F_3'' \subseteq F_4''$. The condition (iii) implies W contains a vector e_1 where $\langle e_1 \rangle = F_1''$. The condition (v) implies that W is contained in a 4-plane F_4'' . For any generic 3-plane $F_3'' \subseteq F_4''$, we have

$$\dim W \cap F_3'' = \dim W + \dim F_3'' - \dim F_4'' = 3 + 3 - 4 = 2.$$

This implies that the condition (iv) is automatically satisfied.

We can see that W is uniquely determined by three lines: F_1'' , $W \cap F_2$, $W \cap F_2'$. Thus, B = 1.

On the other hand, suppose W is a 3-plane in the intersection $[1, 2, 2]^2[0, 0, 2]$. W needs to satisfy the following conditions:

- (i) dim $W \cap F_2 \ge 1$ for some 2-plane F_2 .
- (ii) dim $W \cap F_2' \ge 1$ for some 2-plane F_2' .
- (iii) dim $W \cap F_1'' \ge 1$ for some 1-line F_1'' .
- (iv) dim $W \cap F_2'' \ge 2$ for some 2-plane F_2'' .

The condition (iv) implies that W contains a 2-plane F_2'' , and the condition (iii) is automatically true because $F_1'' \subseteq F_2''$. If F_2 intersects with F_2' , then W is uniquely determined by $F_2 \cap F_2'$ and F_2'' . If F_2 has no intersection with F_2' , in this case one of them must intersect F_2'' because we are in \mathbb{C}^5 , suppose it is F_2 , then dim $W \cap F_2 \geq 1$ is automatically satisfied, this means W is uniquely determined by F_2'' and $W \cap F_2'$. In both cases, W is unique. Thus, A = 1.

We can conclude that $[1, 2, 2]^2 = [0, 2, 2] + [1, 1, 2]$.

Problem 2

Compute $H_*(\Omega_{\underline{a}})$ where \underline{a} is the Schubert symbol 012, and $\Omega_{\underline{a}} \hookrightarrow Gr_3(\mathbb{C}^5)$. Observe that $\Omega_{\underline{a}}$ cannot be a manifold, as this would violate Poincaré Duality.

Solution: From the cellular structure of $Gr_3(\mathbb{C}^5)$, we know that $\Omega_{\underline{a}}$ is of dimension 6, and has 2 4-dimensional cells [0,1,1] and [0,0,2], but only 1 2-dimensional cell [0,0,1]. If $\Omega_{\overline{a}}$ is a manifold, then this will violate Poincaré duality as H_2 and H_4 have different ranks.

Problem 3

Fix $n \geq 1$ and $k \leq n$. Let $\eta_k \subseteq \operatorname{Gr}_k(\mathbb{R}^n) \times \mathbb{R}^n$ be the subspace of pairs (W, v) where $v \in W$. Let $p: \eta_K \to \operatorname{Gr}_k(\mathbb{R}^n)$ be the map sending (W, v) to W. Prove that p is a fiber bundle with fiber \mathbb{R}^k .

Solution: Given any k-plane $W \in Gr_k(\mathbb{R}^n)$, we can view W as a $k \times n$ matrix, where each row in this matrix is a basis of the k-plane W in \mathbb{R}^n . Without loss of generality, we may assume the $k \times k$ -minor from the first k columns is non-degenerate. In this case, we can choose the basis of W in the following way such that W can be viewed as a matrix

$$W = [I_k \mid A]$$

Consider the following subset $U \subseteq Gr_k(\mathbb{R}^n)$: if we view k-planes as $k \times n$ matrix, then the set U is the set of all k-planes $V \in Gr_k(\mathbb{R}^n)$ satisfying the first $k \times k$ -minor is non-degenerate. Equivalently, U is the following set

$$U = \{ V \in \operatorname{Gr}_k(\mathbb{R}^n) \mid V = [I_k \mid A] \text{ where } A \in M_{k \times (n-k)}(\mathbb{R}) \} \cong \mathbb{R}^{k(n-k)}.$$

We need to construct a homeomorphism $p^{-1}(U) \cong U \times \mathbb{R}^k$. For any $(V, v) \in p^{-1}(U)$, the matrix form gives a basis of V

$$v_1 = (1, 0, \dots, 0, *, \dots, *)$$

 $v_2 = (0, 1, \dots, 0, *, \dots, *)$
 \dots
 $v_k = (0, 0, \dots, 1, *, \dots, *)$

v can be written uniquely as

$$v = a_1 v_1 + \dots + a_k v_k$$

for some $a_1, \ldots, a_k \in \mathbb{R}$. Define the map

$$f: p^{-1}(U) \to U \times \mathbb{R}^k,$$

 $(V, v) \mapsto (V, (a_1, \dots, a_k))$

Conversely, given any $(a_1, \ldots, a_k) \in \mathbb{R}^k$, there exists

$$v = a_1 v_1 + \dots + a_k v_k \in V.$$

This gives an inverse map $f^{-1}: U \times \mathbb{R}^k \to p^{-1}(U)$. It is easy to see that f and f^{-1} are compatible with the projection map, and it remains to prove both f and f^{-1} are continuous. Consider the

following commutative diagram

$$p^{-1}(U) \xrightarrow{f} U \times \mathbb{R}^k$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

The map

$$\tilde{f}: \operatorname{Gr}_k(\mathbb{R}^n) \times \mathbb{R}^n \to U \times \mathbb{R}^k$$

is sending V to V and $v \in V \subseteq \mathbb{R}^n$ to (a_1, \ldots, a_k) . Under the basis we choose previously, we can write

$$v = a_1 v_1 + \dots + a_k v_k$$

$$= a_1 (1, 0, \dots, 0, *, \dots, *)$$

$$+ a_2 (0, 1, \dots, 0, *, \dots, *)$$

$$+ \dots$$

$$+ a_k (0, 0, \dots, 1, *, \dots, *)$$

$$= (a_1, \dots, a_k, *, \dots, *)$$

So the map \tilde{f} is just a projection map on \mathbb{R}^n and thus continuous. The map f is the composition of an inclusion and a projection, therefore also continuous. Similarly, consider the commutative diagram

$$U \times \mathbb{R}^k \xrightarrow{f^{-1}} p^{-1}(U)$$

$$Gr_k(\mathbb{R}^n) \times \mathbb{R}^n$$

The same argument implies that the map $\widetilde{f^{-1}}$ is an inclusion, and thus continuous. The right vertical map is an inclusion of open set, so it is an open map. This implies f^{-1} is also continuous.

Problem 4

Let $q: X \to Q$ be a surjection. Say that a map of spaces $f: X \to Z$ is "q-compatible" if whenever q(x) = q(y) we have f(x) = f(y) (this says that the identifications made by q are also made by f). The map q is a quotient map if and only if for every space Z and every map $f: X \to Z$ that is q-compatible, there is a map $\tilde{f}: Q \to Z$ such that $\tilde{f} \circ q = f$.

Prove that if $q: X \to Q$ is a quotient map and A is locally compact and Hausdoff, then

$$q \times id : X \times A \rightarrow Q \times A$$

is also a quotient map.

Solution: Let Z be any space and $f: X \times A \to Z$ be a $(q \times id)$ -compatible map, namely for all $a \in A$, if $(q \times id)(x, a) = (q \times id)(y, a)$ for some $x, y \in X$, then $f(x, a) = f(y, a) \in Z$. Note that A

is locally compact and Hausdoff, we have a bijection

$$\mathcal{T}op(X \times A, Z) \cong \mathcal{T}op(X, Z^A).$$

The map f is equivalent to a continuous map $g: X \to Z^A$ sending $x \in X$ to the map $a \mapsto f(x, a)$. We claim that the map g is q-compatible. Indeed, suppose q(x) = q(y) for some $x, y \in X$, then $(q \times id)(x, a) = (q \times id)(y, a)$ for all $a \in A$. Since the map f is $(q \times id)$ -compatible, we have f(x, a) = f(y, a) for all $a \in A$. This implies the two maps $a \mapsto f(x, a)$ and $a \mapsto f(y, a)$ are the same map. So g is q-compatible. We know that $q: X \to Q$ is a quotient map, so there exists $\tilde{g}: Q \to Z^A$ such that $\tilde{g} \circ q = g$.

The map $\tilde{g}: Q \to Z^A$ is equivalent to a continuous map $\tilde{f}: Q \times A \to Z$ sending $(p, a) \in Q \times A$ to $\tilde{g}(p)(a)$. We check that $\tilde{f} \circ (q \times id) = f$, namely the following diagram commutes.

$$X \times A \xrightarrow{f} Z$$

$$q \times id \downarrow \qquad \qquad \tilde{f}$$

$$Q \times A$$

For any $(x, a) \in X \times A$, we have

$$(\tilde{f} \circ (q \times id))(x, a) = \tilde{f}(q(x), a) = \tilde{g}(q(x))(a) = (\tilde{g} \circ q)(x)(a) = g(x)(a).$$

Note that g(x) is an element in Z^A , and $g(x)(a) = f(x,a) \in Z$ because f and g is equivalent under the bijection

$$\mathcal{T}op(X \times A, Z) \cong \mathcal{T}op(X, Z^A).$$

This proves that the diagram commutes and $q \times id$ is a quotient map.

Problem 5

Let (X, x) be a pointed space. Recall that $PX \subseteq X'$ is the subspace of paths that end at x. Said differently, PX is defined by the pullback diagram

$$PX \longrightarrow X^{I}$$

$$\downarrow \qquad \qquad \downarrow^{ev_1}$$

$$* \xrightarrow{x} X$$

Convince yourself that maps $W \to PX$ are in bijective correspondence with maps $CW \to X$ sending the cone point to x (here CW is the cone on W).

If A is a CW-complex, prove that $ev_0: PX \to X$ has the homotopy lifting property with respect to A. In particular, the fact that this holds whenever A is I^n (any $n \ge 0$) implies that $PX \to X$ is a Serre fibration.

Solution: Suppose we have a commutative diagram

$$\begin{array}{ccc}
A \times \{0\} & \xrightarrow{f} PX \\
\downarrow & & \downarrow^{ev_0} \\
A \times I & \xrightarrow{g} X
\end{array}$$

For all $a \in A$, the map $f: A \times \{0\} \to PX$ sends a to a path $f(a): I \to X$. This is equivalent to a map $\tilde{f}: CA \times \{0\} \to X$ sending (a,t) to f(a)(t). This is well-defined because all different paths ends at the same point $x \in X$. We know that A is a CW complex, so $A \times I$ and $C(A \times I)$ are also CW complexes, and $A \times I$ and $C(A \times \{0\})$ are subcomplexes of $C(A \times I)$. The inclusion of the subcomplex

$$C(A \times \{0\}) \cup A \times I \to C(A \times I)$$

is a homotopy equivalence because $A \times I$ is homotopy equivalent to $A \times \{0\} \subseteq C(A \times \{0\})$, and both cones are contractible. Consider the solid-arrow diagram

$$C(A \times \{0\}) \cup A \times I \xrightarrow{\tilde{f} \cup g} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C(A \times I) \xrightarrow{F} \qquad \qquad \downarrow$$

 \tilde{f} restricting to $A \times \{0\}$ can be viewed as the composition of the map

$$A \times \{0\} \xrightarrow{f} PX \xrightarrow{ev_0} X.$$

By commutativity of the original diagram, this is equal to the map

$$g|_{A\times\{0\}}:A\times\{0\}\to X.$$

By GLP, we have a lifting $F: C(A \times I) \to X$ such that $F|_{C(A \times \{0\})} = \tilde{f}$ and $F|_{A \times I} = g$. We know that F is equivalent to a map $\tilde{F}: A \times I \to PX$ satisfying the following two diagrams

This proves that original diagram has a lifting. Thus, we can conclude that $ev_0: PX \to X$ has the homotopy lifting property with respect to any CW complex A.