Xcas au lycée

Renée De Graeve & Bernard Parisse Université de Grenoble I

Xcas, au départ un logiciel de calcul formel, permet aujourd'hui de faire de l'algorithmique, de la géométrie interactive et analytique dans le plan et l'espace et propose un petit module tableur, d'où son nom de "couteau suisse des mathématiques". Il s'agit d'un logiciel libre, disponible sous Windows, Mac OS et Linux, la version à jour se récupère en tapant xcas sur un moteur de recherche ou directement depuis le site de Xcas (adresse ci-dessous).

Ce fascicule contient des fiches de présentation rapide des différents modules de Xcas, accompagnées d'exemples ou/et de petits exercices corrigés, y compris sur les nouveaux programmes de lycée (proba-stats et spécialité Terminale S). Il est assez condensé pour tenir peu de place, de nombreux autres documents sont disponibles dans la documentation en ligne de Xcas, sur le site web de Xcas (page pédagogique en particulier), le forum de Xcas permet de poser des questions, et aussi de voir ce que des collègues ont pu réaliser en classe.

Site web, page pédagogique et forum de Xcas:

- www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html
- www-fourier.ujf-grenoble.fr/~parisse/irem.html
- http://xcas.e.ujf-grenoble.fr/XCAS

Table des matières

1	Exe	mples d'utilisation
	1.1	Les différents niveaux
	1.2	Les signes de ponctuation
	1.3	Les aides
		* 0
II		the Xcas calcul formel de base
II 2	Fic	che Xcas calcul formel de base
II 2	Fic Exer	

3	Exemples d'utilisation	13
	3.1 Bézout programmé avec le tableur	. 13
	3.2 Loi binomiale	. 13
	3.3 Simulation	. 14
	3.4 Convergence vers la loi normale	. 14
	3.5 Fluctuations à un seuil donné	. 14
IV	V Fiche Xcas Algèbre	15
4	Exemples d'utilisation	17
	4.1 Système d'équations linéaires	. 17
	4.2 Matrice et graphe	
	4.3 Interpolation et formule des 3 niveaux	
\mathbf{V}	Fiche Xcas pour la spécialité maths Terminale S.	19
5	Exemples d'utilisation	21
	5.1 Cryptographie de Hill	
	5.2 Systèmes dynamiques	
.		22
VJ	I Fiche Xcas analyse	23
6	Exercice : Nombre de chiffre de 1000!	25
VI	II Fiche Xcas la géométrie	27
7	Exemples d'utilisation	29
	7.1 Une démonstration avec Xcas	. 29
	7.1.1 La solution avec Xcas	. 29
	7.1.2 La solution sans Xcas	. 29
	7.2 Maximiser une aire	. 29
VI	III Fiche Xcas la programmation	31
8	Exemples d'utilisation	33
Ŭ	8.1 Programmer un jeu	
	8.2 Des triangles équilatéraux emboiés	
	8.3 Les nombres amiables	
IX	K Fiche Xcas la tortue	35
9	Exercices	37
	9.1 La toile d'araignée et la trigonométrie	
	9.2 Les carrés magiques	. 38

Première partie

Fiche Xcas l'interface

Description de l'interface			
Fich Edit Cfg	est une barre de menu cliquable		
session1.xws	est le nom de la session		
	(Unnamed si la session n'a pas été sauvée)		
?	ouvre l'index de l'aide		
Sauve	sauvegarde la session		
Config: exact reel	ouvre la configuration du CAS		
STOP	interrompt un calcul trop long		
Kbd	fait apparaitre un clavier scientifique		
X	ferme la session		
1	est une ligne de commande		

Chaque session est composée de niveaux numérotés qui peuvent être de différentes natures : ligne de commandes pour le calcul formel, écran de géométrie dynamique (2-d et 3-d), tableur formel, dessin tortue, éditeur de programmes etc...Alt+g signifie Alt puis g en laissant Alt enfoncé.

Les différents niveaux possibles			
Alt+c	ouvre une ligne de commentaires		
Alt+d	ouvre un niveau de dessin tortue		
Alt+e	ouvre un éditeur d'expressions		
Alt+g	ouvre un niveau de géométrie 2-d		
Alt+h	ouvre un niveau de géométrie 3-d		
Alt+n	ouvre une ligne d'entrée de commandes		
Alt+p	ouvre un éditeur de programmes		
Alt+t	ouvre un tableur		

Les commandes sont classées par thème dans les menus, on peut aussi les retrouver par ordre alphabétique dans l'index de l'aide (Aide Index). Vous avez aussi plusieurs manuels disponibles avec des exercices corrigés (Aide Manuels ...) et des exemples (Aide Exemples).

Les aides possibles			
Aide▶Manuels▶	ouvre un des manuels dans votre navigateur		
F12	recherche d'un mot-clef dans les manuels		
Cmds▶Reel▶Base▶ceil	ouvre l'index de l'aide à ceil		
Aide▶Index	ouvre l'index de l'aide des commandes		
?	ouvre l'index de l'aide des commandes		
ce?	ouvre l'index de l'aide sur ceil		
ceF1	ouvre l'index de l'aide sur ceil		
ce	ouvre l'index de l'aide sur ceil		
?ceil	ouvre l'aide détaillée sur ceil		

Xcas manipule différents types de données :les entiers (2), les fractions (3/2), les nombres flottants (2.0,1.5), les paramètres formels (x,t), les variables (a:=2), les expressions (x^2-1), les fonctions ($f(x):=x^2-1$), les listes ([1,2,3]), les séquences (1,2,3) (une matrice est une liste de listes de même longueur, une séquence ne peut pas contenir de séquences), les chaines de caractères ("na") et les objets géométriques.

Xcas peut faire du calcul formel et du calcul numérique.

Pour faire du calcul formel, on utilise les nombres exacts. Les nombres exacts sont les constantes prédéfinies comme pi,e,i,infinity, +infinity, -infinity, les entiers comme 2, les fractions d'entiers comme 1/2 et toute expression ne contenant que des entiers et des constantes comme $\operatorname{sqrt}(2) *e^{(i*pi/3)}$. Les calculs sont effectués en mode exact si tous les nombres qui interviennent sont exacts, (3/2+1 renvoie 5/2). La commande evalf renvoie la valeur approchée d'une valeur exacte (evalf (1/2) renvoie 0.5).

Pour faire du calcul numérique, on utilise les nombres approchés. Les nombres approchés sont notés avec la notation scientifique standard : partie entière suivie du point de séparation et partie fractionnaire (éventuellement suivie de e et d'un exposant) : 0.5 ou 5e-1 est la version approchée du rationnel 1/2.

Les calculs sont effectués en mode approché si un des nombres de l'expression est approché, (1.5+1 renvoie 2.5). Pour les nombres réels approchés, la précision par défaut est d'environ 15 chiffres significatifs. Elle peut être changée, en donnant le nombre de décimales désiré comme second argument de evalf, par exemple evalf (sqrt(2),50) ou en modifiant la variable Digits.par exemple, Digits:=50; evalf (sqrt(2))

Il ne faut pas confondre expression et fonction. Une expression est une combinaison de nombres et de variables reliés entre eux par des opérations alors qu'une fonction associe à une variable une expression. Par exemple, a := $x^2+2*x+1$ définit une expression et b(x):= $x^2+2*x+1$ définit une fonction. On obtient la valeur de l'expression a en 0, avec subst (a, x=0) et la valeur de la fonction b en 0, avec b(0).

Signification des signes de ponctuation

- . sépare la partie entière de la partie décimale
- , sépare les éléments d'une liste ou d'une séquence
- ; termine chaque instruction d'un programme
- :; termine les instructions lorsqu'on ne veut pas l'affichage de la réponse
- ! n! est la factorielle de n (4!= $1 \cdot 2 \cdot 3 \cdot 4 = 24$)
- := a:=2 instruction d'affectation qui stocke 2 dans la variable a
- délimiteurs d'une liste (L := [0, 2, 4] et L[1] renvoie 2)
- "" délimiteurs d'une chaine de caractères (C:="ba" et C[1] renvoie "a")

Les différentes configurations pour définir les paramètres de votre environnement

désigne un sous-menu à choisir

Cfg Configuration du CAS

Cfg Configuration graphique ouvre la configuration graphique par défaut

Cfg Configuration generale ouvre la configuration générale

bouton cfg (Graphe) ouvre la configuration du niveau graphique

bouton Config : exact... ouvre la configuration du CAS

bouton Config tableur : ouvre la configuration du tableur

1 Exemples d'utilisation

1.1 Les différents niveaux

Dans une ligne d'entrée de commande (Alt+n ou CAS Nouvelle entree), on tape : simplify (f(2)+f(3)) et on obtient : ln(108). Certaines commandes ont un résultat graphique affiché juste en-dessous, par exemple plot ($\sin(x)$, x=0..pi) trace le graphe de la fonction sinus sur $[0,\pi]$.

Dans un éditeur de **programmes** (Alt+p ou Prg►Nouveau programme), on tape

```
f(a,b,c):={
  local d; d:=b^2-4*a*c;
  si d<0 alors []; sinon
  d:=sqrt(d); [(-b-d)/(2*a),(-b+d)/(2*a)];
  fsi;
} :;</pre>
```

on appuie sur OK (ou F9). Sur une ligne de commande, on tape f(1,1,1) ou f(1,-5,6), on obtient [] ou [2,3].

Dans un niveau de **géométrie 2d** (Alt+g ou Geo►Nouvellefigure 2d), on choisit Mode►point et on clique 3 points dans l'écran. On obtient A, B, C et leurs définitions dans les lignes de commandes à gauche de l'écran.

On tape à gauche de l'écran triangle (A, B, C); mediane (A, B, C;), on choisit Mode Pointeur et on peut déplacer A avec la souris.

Dans un tableur (Alt+t ou Tableur ► Nouveau tableur), on remplit la fenêtre de configuration qui s'ouvre automatiquement et on la valide avec OK. On clique sur A0 et on tape 1 Enter et 1 s'inscrit dans la ligne de commande située sous la barre de menu du tableur. On clique sur A1 et on tape =A0+1 Enter, on clique sur B0 et on tape =A0^2 Enter.

Puis on recopie ces 2 formules vers le bas : on clique sur A1 (resp B0) puis Ctrl+d (ou menu du tableur Edit▶Remplir▶Copier vers le bas).

On obtient : dans A la liste des entiers et dans B la liste de leurs carrés.

Dans un dessin tortue (Alt+d ou Tortue Dessin tortue), on a la tortue sous la forme d'une flèche dans un écran de dessin avec une ligne de commande à gauche, un éditeur à droite et en bas des boutons qui inscrivent les principales commandes là où se trouve le curseur (soit dans l'éditeur, soit dans une ligne de commande). Attention Tout ce que l'on valide à gauche s'inscrit à droite. On peut modifier l'éditeur pour corriger une erreur puis l'exécuter avec OK

1.2 Les signes de ponctuation

```
Si on tape sqrt (2), on obtient sqrt (2)
```

Si on tape sqrt (2.), on obtient 1.41421356237. En effet, dans le deuxième cas le point après le 2 désigne un nombre approché.

On tape pour avoir la valeur approchèe avec 20 décimales :

```
evalf(sqrt(2), 20)
```

On obtient:

1.41421356237309504880

```
On tape:
a:=20!;b:=string(a);dim(b)
On obtient factorielle 20, sa valeur convertie en chaine de caractères et la longueur
de cette chaine c'est à dire le nombre de chiffres de 20!:
2432902008176640000, "2432902008176640000", 19
On tape:
a:=20!:;b:=string(a):;dim(b)
On obtient car :; indique qu'il ne faut pas afficher le résultat :
"Done", "Done", 19
On tape:
v1 := [1, 2, 3]; v2 := [-1, 2, -3]; v1 * v2
```

On obtient le produit scalaire de v1 et v2 (-1+4-9:

[1,2,3],[-1,2,-3],-6

On tape:

M1 := [[1,2],[3,4]]; M22 := [[1,3],[2,4]]; M1 * M2

On obtient le produit des matrices M1 et M2 :

[[1,2],[3,4]],[[1,3],[2,4]],[[5,11],[11,25]]

1.3 Les aides

Si on connait le nom de la commande, on clique : Aide▶Index

On obtient : la liste des commandes par ordre alphabétique, un curseur permet de parcourir cette liste et une ligne d'entée permet d'ouvrir l'index à la demande

Ou bien, on tape:

le début d'un nom puis sur le point d'interrogation (sur fond cyan) ou sur la touche de tabulation

On obtient:

l'ouverture de l'index à l'endroit indiqué

Ou bien on utilise les menus qui classent les commandes par thème, par exemple, on clique: Cmds ▶ Entier ▶ iegcd

On obtient si dans Cfg▶Configuration generale on n'a pas coché Aide automatique:

l'aide sur cette commande dans la fenêtre des messages (|kbd| ▶ msg|) et si on a coché Aide automatique, on obtient en plus : l'ouverture de l'index à iegcd

1.4 Les configurations

En plus des différentes configurations, il faut penser à utiliser :

- dans un niveau de géométrie ou un graphe 2d (resp 3d) : le menu M situé dans le pavé des boutons à droite de l'écran. Il permet de gérer des animations ou des traces (resp de gérer les vues d'une figure 3d). de cocher ou décocher la case \sum selon que l'on veut des points à coordonnées flottantes ou exactes.
- dans un niveau de dessin tortue, utiliser le menu M situé sous l'écran de dessin, à droite : vous pouvez ainsi faire apparaître (ou non) un maillage et cacher le carré jaune en hautà droite qui donne la position de la tortue.

Deuxième partie

Fiche Xcas calcul formel de base

L'exécution d'une ligne de commandes se fait par la touche "Entrée". Les nombres peuvent être exacts ou approchés (flottants). Les nombres exacts sont les constantes prédéfinies, les entiers, les fractions d'entiers et toutes expressions ne contenant que des entiers et des constantes. Les nombres approchés sont notés avec la notation scientifique standard : partie entière suivie du point de séparation et partie fractionnaire optionnellement suivie de e et d'un exposant.

Opérations+ addition- soustraction* mutiplication

division puissance

on |

Constantes prédéfinies			
pi	$\pi \simeq 3.14159265359$		
е	$e \simeq 2.71828182846$		
i	$i = \sqrt{-1}$		
infinity	∞		
+infinity ou inf	$+\infty$		
-infinity ou -inf	$-\infty$		
euler_gamma	constante d'Euler		

Séquences et listes ou vecteurs			
S:=a,b,c S est une séquence de 3 élements			
S:=[a,b,c] S est une liste de 3 élements			
op([a,b,c])	renvoie la séquence (a,b,c)		
S:=NULL	S est une séquence de 0 élement		
S:=[] S est une liste de 0 élement			
dim(S) renvoie le nombre d'éléments de S			
S[0] renvoie le premier élément de S			
S [n] renvoie le $n+1$ unième élément de S			
S[dim(S)-1] renvoie le dernier élément de S			
S:=S, d	ajoute l'élément d à la fin de la séquence S		
S:=append(S,d)	ajoute l'élément d à la fin de la liste S		

Chaînes de caractères		
S:="abc"	S est une chaîne de 3 caractères	
dim(S)	renvoie le nombre de caractères de S	
S[0]	renvoie le premier caractère de S (par ex "a")	
S[n]	renvoie le $n+1$ unième caractère de S	
S[dim(S)-1]	renvoie le dernier caractère de S	
S:=""	S est une chaîne de 0 caractère	
"ab"+"def"	concaténe les deux chaînes et renvoie "abdef"	

Fractions			
propfrac	partie entière + partie fractionnaire		
getNum [numer]	numérateur de la fraction [simplifiée]		
getDenom [denom]	dénominateur de la fraction [simplifiée]		
f2nd	[numer, denom] de la fraction simplifiée		
simp2	simplification d'un couple		
dfc	développe en fraction continue un réel		
dfc2f	transforme une fraction continue en réel		

Fonctions classiques			
evalf(t,n)	évalue t avec n décimales	sign	signe (-1,0,+1)
max	maximum	min	minimum
round	arrondi	frac	partie fractionnaire
floor	plus grand entier \leq	ceil	plus petit entier \geq
re	partie réelle	im	partie imaginaire
abs	module ou valeur absolue	arg	argument
conj	conjugué	affixe	affixe
factorial !	factorielle	binomial	coefficients binomiaux
exp	exponentielle	sqrt	racine carrée
ln log	logarithme naturel	log10	logarithme en base 10
sin	sinus	cos	cosinus
tan	tangente	cot	cotangente
asin	arc sinus	acos	arc cosinus
atan	arc tangente	acot	arc cotangente
sinh	sinus hyperbolique	cosh	cosinus hyperbolique
asinh	arc sinus hyperbolique	acosh	arc cosinus hyperbolique
tanh	tangente hyperbolique	atanh	arc tangente hyperbolique

Fonctions d'arithmétique			
a%pl	a modulo p est un élément de $\mathbb{Z}/p\mathbb{Z}$		
smod(a,b) (a%b)%0	reste symétrique de la division euclidienn		
powmod(a,n,p)	est l'entier égal à a^n modulo p		
irem	reste de la division euclidienne		
iquo	quotient de la division euclidienne		
iquorem	quotient et reste		
ifactor	décomposition en facteurs premiers		
ifactors	liste des facteurs premiers		
idivis	liste des diviseurs		
gcd	plus grand diviseur commun		
lcm	plus petit multiple commun		
iegcd	identité de Bezout		
iabcuv	renvoie $[u, v]$ tels que $au + bv = c$		
ichinrem	restes chinois		
is_prime	teste si l'entier est premier		
nextprime	prochain entier pseudo-premier		
previousprime	entier pseudo-premier précédent		

Transformations					
simplify	simplifie	tsimplify	simplifie (- puissant)		
normal	forme normale	ratnormal	forme normale (- puissant)		
expand	développe	partfrac	décompose en éléments simples		
factor	factorise	convert	transforme en le format spécifié		
	Transformations en trigonométrie				
tlin	linéarise	tcollect	linéarise et regroupe		
texpand	développe exp, ln et trig	trig2exp	trig vers exp		
hyp2exp	hyperbolique vers exp	exp2trig	exp vers trig		

2 Exemples d'utilisation

2.1 Transformations

```
Développer
On tape: expand ((1+2x)^2)
on obtient: 4 \times x^2 + 4 \times x + 1
On tape: expand ((x+1+i)*(x+i))
on obtient: x^2+(1+2*i)*x-1+i
Factoriser
Des entiers: ifactor(10^10+1)
renvoie: 101 * 3541 * 27961,
Des polynômes: factor (x^5+9*x^4+30*x^3+46*x^2+33*x+9)
renvoie: (x+1)^3 * (x+3)^2
Simplifier
Des fractions: normal (1/(2-x)+2/(5-2x))
renvoie: (-4 * x + 9) / (2 * x^2 - 9 * x + 10),
ou simplify (1/(2-x)+1/(2+x)) qui renvoie (-4)/(x^2-4)
Des racines carrées :
simplify(2*sqrt(45)+3*sqrt(12)-sqrt(20)-sqrt(3))
renvoie: 5*sqrt(3)+4*sqrt(5)
Trigonométrie
Linéariser: tlin (2*cos(x)*cos(y))
renvoie: cos(x-y) + cos(x+y),
Développer: texpand(sin(x+y))
renvoie: sin(y+x)
Convertir en exponentielles: normal (trig2exp(3*(cos(x)-i*sin(x))))
renvoie: 3/\exp((i) *x)
ou: simplify(trig2exp(-sin(2x)+2i*cos(x)^2))
renvoie: (i) \times \exp((i) \times x)^2 + i
Conversion inverse: exp2trig(exp(i*x))
renvoie: cos(x) + (i) * sin(x)
Regrouper sin et cos: tcollect (sqrt (3) *sin (x) +cos (x))
renvoie: 2*\cos(x-1/3*pi)
Exponentielle et Logarithme
Linéariser: lin(1/exp(i*x))
renvoie: exp(-(i)*x)
Regrouper les logs : lncollect (ln(2) + ln(3))
renvoie: ln(6)
Développer les logs : lnexpand (ln ((x+2)^2))
renvoie: 2 \times \ln(x+2)
```

2.2 Arithmétique

Un exercice sur des nombres de $\mathbb{Z}/p\mathbb{Z}$

Trouver les 2 derniers chiffres de 19969¹⁹⁹⁶⁹. On tape: powmod (19969, 19969, 100)

On obtient: 29

Un exercice sur le nombre de diviseurs d'un entier

Quel est, parmi les entiers naturels de 1 à 2012, celui qui admet le plus de diviseurs ? Quel est ce nombre de diviseurs ?

On tape: 2*3*5*7On obtient: 210

On tape: 2 * 3 * 5 * 7 * 11

On obtient: 2310

Cela nous dit que le nombre est de la forme :

 $n = 2^a * 3^b * 5^c * 7^d \text{ avec } a \ge b \ge c \ge d \ge 0$

et alors son nombre de diviseurs est : (a+1)(b+1)(c+1)(d+1)

On fait une recherche systématique en tapant size (idivis (n)) et on trouve :

 $2^{10} = 1024$ a 11 diviseurs, $2^9 * 3 = 1536$ a 20 diviseurs,

 $2^7 * 3^2 = 1116$ a 24 diviseurs, $2^6 * 3^3 = 1728$ a 28 diviseurs,

 $2^4 * 3^4 = 1296$ a 25 diviseurs, $2^7 * 3 * 5 = 1920$ a 32 diviseurs,

 $2^5 * 3^2 * 5 = 1440$ a 36 diviseurs, $2^4 * 3 * 5 * 7 = 1680$ a 40 diviseurs.

 $2^4 * 3 * 5 * 7 = 1680$ a 40 diviseurs.

Un exercice sur l'identité de Bézout

Quel est le plus petit nombre entier avec lequel il faut multiplier 49 pour obtenir un nombre se terminant par 99999999 (9 neufs)?

Donc un nombre se terminant par 999999999 (9 neufs) s'écrit : $k * 10^n + 10^9 - 1$ avec n > 9 c'est à dire $10^9(k * 10^{n-9}) - 1 = a * 10^9 - 1$).

On cherche p pour avoir : $p * 49 = a * 10^9 - 1$ c'est à dire $1 = a * 10^9 - p * 49$.

Réponse niveau primaire

Réponse niveau TS

Avec Xcas on tape : bezout_entiers (49,10^9)

On obtient: [306122449, -15, 1]

Donc: $49 * 306122449 - 15 * 10^9 = 1$ et puisque $49 * 10^9 - 49 * 10^9 = 0$, on a :

 $49 * (10^9 - 306122449) + (15 - 49) * 10^9 = -1.$

Puisque $10^9 - 306122449 = 693877551$ et (49 - 15) = 34, on a :

Un exercice sur les congruences et les restes chinois

Trouver un nombre entier n, 4 < n < 10000 vérifiant :

n est divisible par 2, n-1 est divisible par 3, n-2 est divisible par 5, n-3 est divisible par 7, n-4 est divisible par 11.

On tape: ichinrem([0%2,1%3,2%5,3%7,4%11]))

On obtient: -788 % 2310

On veut que 4 < n < 10000 donc :

 $n = (2310 - 788) + 2310 * k = 1522 + 2310 * k \text{ avec } k \le \text{iquo}((10000 - 10000))$

1522), 2310) donc on tape: iquo ((10000-1522), 2310) qui renvoie 3

On tape: (1522+2310*k) \$ (k=0..3)

On obtient: 1522, 3832, 6142, 8452

Décomposition en facteurs premiers

Exposant de 17 dans la décomposition en facteurs premiers de 500!

On tape: iquo (500, 17), iquo (500, 17^2), iquo (500, 17^3)

On obtient: 29, 1, 0

L'exposant de 17 dans la décomposition en facteurs premiers de 500! est 29+1=30.

Troisième partie

Fiche Xcas les proba-stats et le tableur

Probabilités			
comb(n,k)	nombre de combinaisons de p objets pris parmi n		
perm(n,p)	nombre d'arrangements de p objets pris parmi n		
factorial(n), n!	n!		
rand(n) ou alea(n)	entier aléatoire uniformément distribué dans $0 n-1$		
rand(p,q) ou alea(p,q)	réel aléatoire uniformément distribué dans $[p,q]$		
randnorm(mu,sigma)	réel aléatoirement distribué selon la loi normale $N(\mu, \sigma)$		
randexp(a)	renvoie un réel aléatoire selon la loi exponentielle		

S	Statistiques 1-d
moyenne	moyenne d'une liste pondérée par le second argument
median	médiane d'une liste pondérée par le second argument
quartiles	[min,quartile1, médiane,quartile3,max]
moustache	boite à moustache d'une série statistique
variance	variance d'une liste pondérée par le second argument
ecart_type	écart-type d'une liste pondérée par le second argument
histogramme	trace l'histogramme de l'argument
	Distributiuons
binomial(n,k,p)	probabilité d'obtenir k succès avec n tirages
	(où p est la probabilité de succès par tirage)
binomial_cdf(n,p,n1,n2)	probabilité d'obtenir entre $n1$ et $n2$ succès
binomial_cdf(n,p,n1)	probabilité d'obtenir au plus $n1$ succès
<pre>binomial_icdf(n,p,t)</pre>	renvoie le plus grand entier k tel que
	la probabilité d'obtenir au plus k succès soit $\leq t$
normald(x)	densité de la loi normale de moyenne 0 et écart-type 1
normald(mu, sigma, x)	densité de la loi normale de moyenne μ et écart-type σ
normald_cdf(mu,sigma,x1)	probabilité que x soit $\leq x1$
normald_cdf(mu,sigma,x1,x2)	probabilité que x soit entre $x1$ et $x2$
	selon la loi normale de moyenne μ et écart-type σ
normald_icdf(mu,sigma,t)	renvoie x tel que la probabilité d'être $\leq x$ soit $\leq t$
	(selon la loi normale de moyenne μ et écart-type σ)

Les commandes de statistiques s'utilisent :

- dans le tableur avec le menu Maths: le tableur se remplit automatiquement grâce à une boite de dialogue qui demande de préciser les paramètres de la commande choisie (le curseur doit être dans un niveau de type tableur qui s'obtient avec Alt+t).
- dans des lignes de commandes : soit on les tape, soit on les sélectionne dans le menu Cmds▶Proba_stats, soit on utilise le menu Graphic▶Stats et ses boites de dialogues.

Statistiques 2-d		
polygonplot	ligne polygonale	
scatterplot	nuage de points	
polygonscatterplot	ligne polygonale pointée	
covariance	covariance des éléments de l'argument	
correlation	corrélation des éléments de l'argument	
exponential_regression	(m,b) où $y=be^{mx}$ approche l'argument	
exponential_regression_plot	graphe de $y = be^{mx}$ approchant l'argument	
linear_regression	(a,b) où $y=ax+b$ approche l'argument	
linear_regression_plot	graphe de $y = ax + b$ approchant l'argument	
logarithmic_regression	(m,b) où $y=m\ln(x)+b$ approche l'argument	
logarithmic_regression_plot	graphe de $y = m \ln(x) + b$, approchant l'argument	
polynomial_regression	(a_n,a_0) où $y = a_n x^n +a_0$ approche l'argument	
polynomial_regression_plot	graphe de $y = a_n x^n + a_0$ approchant l'argument	
power_regression	(m,b) où $y=bx^m$ approche l'argument	
power_regression_plot	graphe de $y = bx^m$ approchant l'argument	

Le tableur de Xcas est un tableur formel dans lequel on peut utiliser toutes les commandes de Xcas ainsi que les variables définies auparavant. Il a :

- ses menus Table Edit Maths (un click droit et on obtient ses menus),
- ses boutons eval val init 2-d 3-d,
- sa case de sélection qui est une case interactive : soit on sélectionne à la souris une cellule ou une plage et son nom s'y inscrit (par exemple A0 : B3), soit on y tape le nom des cellules à sélectionner, (par exemple A0 . . 3, C),
- sa ligne de commande qui permet de remplir les cellules,
- un bouton pour configurer le tableur et qui rappelle cette configuration.

Au tableur est associé un écran graphique 2D visible si on a coché Graphe dans la configuration du tableur (visible en dessous du tableur ou à droite selon que Paysage est coché ou non). On peut aussi utiliser le bouton 2-d (ou 3-d). Le tableur est une matrice dont on numérote les lignes par des nombres (0,1...) et les colonnes par une ou plusieurs lettres (A,B...). Le nom d'une cellule se fait par référence relative (C2) ou absolue (\$C\$2) ou mixte (\$C2 ou C\$2). Dans une cellule, on met soit une liste ou une formule de calcul commencant par =, soit une constante, soit une chaine de caractères entourées de guillemets ("essai").

Exemple : tableau de valeurs d'une fonction Dans le tableur, on ouvre une boite de dialogue avec le menu Maths \blacktriangleright Function. On met : expression x*ln(x), variable x de 1 à 4, xstep= 0.25, colonne A. On obtient, si Paysage est décoché :

3 Exemples d'utilisation

3.1 Bézout programmé avec le tableur

- Dans une ligne de commande, on met a:=78;b:=6 on valide puis on ouvre un niveau tableur.
- La colonne A est "la suites des restes" r_n . On met =a dans A0, =b dans A1, =irem (A0, A1) dans A2 et on remplit vers le bas (Ctrl+d),
- La colonne E est "la suites des quotients" q_n . On met =iquo (A0, A1) dans E2 et on remplit vers le bas,
- Les colonnes B et C, sont les deux suites u_n et v_n de façon qu'à chaque étape on ait : $r_n = u_n a + v_n b$. On met 1 dans B0, 0 dans C0, 0 dans B1, 1 dans C1, B0-E2*B1 dans B2, C0-E2*C1 dans C2 et on remplit vers le bas,
- La colonne D est $u_na + v_nb$ (D =A). On met =B0 * \$A\$0+C0 * \$A\$1 dans D0 et on remplit vers le bas
- La colonne F est la réponse $[u,v,\operatorname{pgcd}(a,b)]$. On met =si A0==0 alors [B0,C0,D0]; sinon 0;fsi dans F0 et on remplit vers le bas.

On vérifie avec iegcd (78, 56) et on obtient :

_	ich Jnnan	Edit Cfg		S Express		s Prg Gr	aphic Ge	o Tableur	Phys S	colaire	Tortue
	? Sauve Config : exact real RAD 12 xcas 14.969M STOP Kbd X										
_	Tabl		Maths		val val	init 2-d	3-d		Save B.tab		
i	D0	<u> </u>		=\$A\$0*B0+		2 0	100		<u> </u>		
					Spreadshe	et B R40C1	0 auto dov	vn fill			
		Α	В	С	D	Е	F	G	Н	1	
	0	78	1	0	78	0	0	0	0	0	
	1	56	0	1	56	0	0	0	0	0	()
	2	22	1	-1	22	1	0	0	0	0	
	3	12	-2	3	12	2	0	0	0	0	
	4	10	3	-4	10	1	0	0	0	0	(
	5	2	-5	7	2	1	[-5,7,2]	0	0	0	()
	6	0	28	-39	0	5	0	0	0	0	()
	7	2	-5	7	2	0	[-5,7,2]	0	0	0	(
	8	0	28	-39	0	0	0	0	0	0	(
	9	2	-5	7	2	0	[-5,7,2]	0	0	0	(
	10	0	28	-39	0	0	0	0	0	0	
	11	2	-5	7	2	0	[-5,7,2]	0	0	0	
	12	0	28	-39	0	0	0	0	0	0	
		0	1	2	3	4	5	6	7	8	
	r management of the second of										
2	2 iegcd(78,56)										
		·	·		[-5	, 7, 2					M

3.2 Loi binomiale

On tire une pièce à pile ou face 100 fois de suite. La probabilité d'obtenir 40 piles si la pièce est bien équilibrée est de binomial (100, 40, 0.5) (valeur approchée) ou binomial (100, 40, 1/2) (valeur exacte).

La probabilité que le nombre de piles soit inférieure ou égal à 40 vaut :

binomial_cdf(100,0.5,40) (attention l'ordre des paramètres est inversé par rapport à binomial).

On a une probabilité d'être dans l'intervalle de confiance $[50 - 1/\sqrt{100}, 50 + 1/\sqrt{100}]$ valant binomial_cdf (100, 0.5, 40, 60) (ici environ 0.965).

Pour avoir un intervalle de confiance de 99% centré, on calcule

binomial_icdf(100,0.5,0.995) qui renvoie 63 et

binomial_icdf(100,0.5,0.005) qui renvoie 37 (symétrique de 63).

Si la pièce n'est pas équilibrée, remplacer 0.5 par la probabilité d'obtenir pile.

3.3 Simulation

On peut simuler un pile ou face par alea (2), une série de 100 par seq(alea(2), j, 1, 100), sa somme par sum(alea(2), j, 1, 100) et l'histogramme de 1000 séries de 100 tirs par histogram(seq(sum(alea(2), j, 1, 100), k, 1, 1000)); On superpose la loi binomiale au graphe en rajoutant à la commande précédente plotlist (seq(binomial(100, k, 0.5), k, 0, 100)), couleur=rouge) On simule 100 lancers d'une pièce non équilibrée où la probabilité d'obtenir pile est p, par seq(alea(0, 1) < p, j, 1, 100), (le résultat du test alea(0, 1) < p est de probabilité p car il vaut 1 si le nombre généré est plus petit que p et 0 sinon). Pour simuler par exemple 100 tirages selon la loi normale, faire seq(randnorm(0, 1), j, 1, 100).

3.4 Convergence vers la loi normale

On peut tracer le diagramme en batons de la loi binomiale de paramètres par exemple n=100 et p=0.4 en tapant : n:=100; p:=0.4; diagramme_batons (seq (binomial (n, k, p), k, 0, n)); Cliquer plusieurs fois sur le bouton bleu flèche vers le bas pour voir tout le diagramme. Pour superposer la loi normale qui approche ce diagramme, ajouter la commande graphe (normald (n*p, sqrt (n*p*(1-p)), x), x=0..100) Pour faire observer le théorème de Moivre-Laplace tel qu'il est énoncé, les commandes sont plus complexes. Il faut générer un histogramme avec en abscisse des intervalles de valeurs succesives (ici centrés) que prend $(X_n - np)/\sqrt{np(1-p)}$ et en ordonnée la loi binomiale, on tapera les commandes S:=seq([(k-n*p)/sqrt (n*p*(1-p)), binomial (n, k, p)], k, 0, n); $H:=histogram(S, affichage=nom_cache);$ graphe (normald (x), x=-10..10, couleur=rouge) On calcule l'aire d'une partie de l'histogramme avec : aire (H[a..b-1]) (rectangles d'indices $a \nmid b$) ou binomial cdf(n, p, a, b-1), que l'on peut com-

On calcule l'aire d'une partie de l'histogramme avec : aire (H[a..b-1]) (rectangles d'indices a à b) ou binomial_cdf (n, p, a, b-1), que l'on peut comparer avec l'aire sous la courbe int (normald (x), x=a..b). On peut reprendre les commandes précédentes en faisant varier n et p de manière interactive en définissant les paramètres n et p (menu Edit->New parameter, prendre garde de décocher la case symb pour avoir un curseur numérique et définir la plage de n et p ainsi que le pas).

3.5 Fluctuations à un seuil donné

 Visualisation de la partie hors de l'intervalle de confiance. Commencer par tracer la loi normale

```
graphe (normald(x), x=-10..10); puis valider, puis ajouter à la fin de la commande plotarea (normald(x), x=-6..-2); plotarea (normald(x), x=2..6) Faire de même en remplaçant 2 et -2 par 3 et -3.
```

 Calcul de l'intervalle de confiance centré au seuil de 1% pour la loi normale centrée réduite :

```
[normal_icdf(0,1,0.005),normal_icdf(0,1,0.995)]
```

Quatrième partie

Fiche Xcas Algèbre

	Polynômes
normal	forme normale (développée et réduite)
expand	forme développée
ptayl	changement d'origine
peval horner	évaluation en un point par l'algorithme de Horner
genpoly	polynôme défini par sa valeur en un point
canonical_form	trinôme sous forme canonique
coeff	coefficient ou liste des coefficients
poly2symb	du polynôme au format Xcas à la forme symbolique
symb2poly	de la forme symbolique à un polynôme au format Xcas
pcoeff	polynôme décrit par ses racines
degree	degré
lcoeff	coefficient du terme de plus haut degré
valuation	degré du monôme de plus bas degré
tcoeff	coefficient du monôme de plus bas degré
factor	décomposition en facteurs irréductibles sur Q
cfactor	décomposition en facteurs irréductibles sur $\mathbb{Q}[i]$
factors	liste des facteurs irréductibles
divis	liste des diviseurs
collect	factorisation sur le corps des coefficients
froot	racines avec leurs multiplicités
proot	valeurs approchées des racines
sturmab	nombre de racines dans un intervalle
getNum	numérateur d'une fraction rationnelle non simplifiée
getDenom	dénominateur d'une fraction rationnelle non simplifiée
propfrac	isole partie entière et fraction propre
partfrac	décomposition en éléments simples
quo	quotient de la division euclidienne
rem	reste de la division euclidienne
gcd	plus grand diviseur commun
lcm	plus petit multiple commun
egcd	identité de Bezout
chinrem	restes chinois
randpoly	polynôme aléatoire
cyclotomic	polynômes cyclotomiques
lagrange	polynômes de Lagrange
hermite	polynômes de Hermite
laguerre	polynômes de Laguerre
tchebyshev1	polynômes de Tchebyshev 1ère espèce
tchebyshev2	polynômes de Tchebyshev 2nde espèce

	Matrices
M:=[[a,b,c],[f,g,h]]	M est une matrice de 2 lignes et 3 colonnes
dim(M)	est la liste [nbre_lignes, nbre_colonnes]
nrows(M), ncols(M)	nombre de lignes, colonnes
M[0]	renvoie la première ligne de M
M[n] ou row(M, n)	renvoie la $n+1$ unième ligne de M
col(M,n)	renvoie la $n+1$ unième colonne de M
M[nrows(M)-1]	renvoie la dernière ligne de M
M[np]	renvoie la sous matrice de M de lignes [np]
M:=append(M,[d,k,1])	ajoute la ligne [d,k,l] à la fin de M
M[nrows(M)] := [d, k, l]	ajoute la ligne [d,k,l] à la fin de M
M:=border(M,[d,k])	ajoute la colonne [d,k] à la fin de M

Opérations sur les vecteurs et matrices			
V * W	produit scalaire		
cross(v,w)	produit vectoriel		
A*B	produit matriciel		
A.*B	produit terme à terme		
1/A	inverse		
tran	transposée		
rank	rang		
det	déterminant		
ker	base du noyau		
image	base de l'image		
idn	matrice identité		
ranm	matrice à coefficients aléatoires		

Systèmes linéaires		
linsolve	résolution d'un système	
rref	réduction de Gauss-Jordan	
rank	rang	
det	déterminant du système	

Réduction des matrices		
jordan	diagonalisation ou réduction de Jordan	
pcar	coefficients du polynôme caractéristique	
pmin	coefficients du polynôme minimal	
eigenvals	valeurs propres	
eigenvects	vecteurs propres	

4 Exemples d'utilisation

4.1 Système d'équations linéaires

Résoudre le système linéaire en x, y, z de paramètre a:

$$\begin{cases} a*x + y + z &= 1\\ x + a*y - z &= 2\\ 2*x - z &= 3 \end{cases}$$

4.2 Matrice et graphe

Dans une ville les lignes de bus vont : de la Gare au Centre, du Centre à la Gare, de la Gare au Lycée, du Lycée à la Gare, de la Gare à la Mairie, de la Mairie à la Gare, du Lycée au Centre, du Centre au Lycée, et de la Mairie au Centre.

Donner la matrice A associée au graphe GLCM.

Un voyageur a pris un billet de 5 trajets.

Combien y-a-t-il de possibilités pour faire ces 5 trajets : si il part de la Gare et retourne à la Gare ou si il part du Lycée et doit arriver à la Gare.

On tape:

```
A:=[[0,1,1,1],[1,0,1,0],[1,1,0,0],[1,0,1,0]]; B:=A^5
On obtient:
[[21,23,22,12],[19,14,19,7],[19,15,18,7],[19,14,19,7]]
Lorsqu'il part de la Gare et retourne à la Gare, il y a B[0,0]=21 possibilités et lorsqu'il part du Lycée et doit arriver à la Gare il y a B[1,0]=14 possibilités.
```

4.3 Interpolation et formule des 3 niveaux

Polynôme d'interpolation (de Lagrange) en 3 points :

On considère 3 couples de réels ou complexes $(x_j, y_j)_{j=0..2}$, les x_j étant 2 à 2 distincts. On montre qu'il existe un polynôme P unique de degré inférieur ou égal à 2 tel que pour j=0..2 on ait $P(x_j)=y_j$. Trouver P lorsque $x_1=(x_0+x_2)/2$.

Solution : On pose $P(x) = Ax^2 + Bx + C$, il faut résoudre :

$$\begin{cases} P(x_0) = Ax_0^2 + Bx_0 + C = y_0 \\ P(x_1) = Ax_1^2 + Bx_1 + C = y_1 \\ P(x_2) = Ax_2^2 + Bx_2 + C = y_2 \end{cases}$$

On tape : $\mathbb{N} := [[x0^2, x0, 1], [x1^2, x1, 1], [x2^2, x2, 1]];$ x1 := (x0+x2)/2 factor(linsolve([N*[A,B,C]-[y0,y1,y2]],[A,B,C]))

Ou directement lagrange ([x0,x1,x2],[y0,y1,y2]), lagrange renvoie le polynôme construit degré par degré dans la base 1, x-x0, (x-x0)(x-x1)(méthode des différences divisées), les algébristes utilisent fréquemment :

$$y_0 \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$
 Calcul d'une intégrale par la méthode de Simpson :

On approche une fonction continue f sur l'intervalle $I = [x_0, x_2]$ par une parabole qui coïncide avec la fonction en $x_0, x_1 = (x_0 + x_2)/2, x_2$. On cherche donc comme précédemment P(x) un polynôme de degré inférieur ou égal à 2 tel que $P(x_i)$ $f(x_i) = y_i$ pour j = 0, 1, 2. Calculons la valeur approchée de l'intégrale de f sur I obtenue en remplaçant f par le polynôme P. On tape :

$$x1 := (x0+x2)/2;$$

factor (int (lagrange ([x0, x1, x2], [y0, y1, y2]), x=x0..x2))

On obtient: ((-y2-y0-4*y1)*(x0-x2))/6

Donc

$$\int_{x_0}^{x_2} f(x)dx \simeq \frac{x_2 - x_0}{6} (f(x_2) + 4f(\frac{x_2 + x_0}{2}) + f(x_0))$$

Si f est un polynôme de degré 0, 1 ou 2, alors bien sûr P = f et la formule obtenue n'est pas seulement approchée mais est exacte. Il se trouve que c'est encore vrai si f est un polynôme de degré 3, en effet, on peut se ramener à $f(x) = x^3$ (puisque la formule est exacte en degré plus petit que 2), on calcule alors :

r:=int(
$$x^3$$
-lagrange([$x0$, $x1$, $x2$],[$x0^3$, $x1^3$, $x2^3$]), x , $x0$, $x2$) puis normal(r) qui donne 0.

La formule des 3 niveaux :

Soit un solide de volume : $V=\int_a^b S(z)dz$ où S(z) est la surface de la section par le plan de cote z. Si S(z) est un polynôme en z de degré au plus 3 alors :

$$V = \frac{(b-a)}{6}(S(a) + 4S(\frac{a+b}{2}) + S(b))$$

Ceci résulte du résultat précédent en prenant comme fonction f la fonction S.

Cette formule est en fait la formule de Simpson pour le calcul de l'aire sous une courbe, formule qui est exacte pour les polynômes de degré inférieur ou égal à 3, et sinon donne une bonne approximation de l'intégrale lorsque f est suffisamment régulière (pour améliorer on découpe l'intervalle [a, b] en plusieurs subdivisions et on applique la formule de Simpson sur chaque subdivision).

Remarque 1

Dans le commerce les flacons ont souvent la taille fine : c'est pour les avoir bien en main mais aussi pour donner l'illusion d'un grand volume, puisque la section médiane compte 4 fois!!!

Remarque 2

On en déduit facilement le volume du tonneau de hauteur 2d (sphère de rayon Rsans ses 2 calottes), en effet $S(z) = \pi(R^2 - z^2)$ d'où :

$$V = \frac{2d}{6}(\pi(R^2-d^2)+4\pi R^2+\pi(R^2-d^2)) = \frac{\pi}{3}d(6R^2-2d^2)$$
 On retrouve bien :

$$V = \frac{2\pi}{3}d(3R^2 - d^2)$$

et le volume de la sphère $(\frac{4\pi R^3}{3})$ lorsque d=R.

Cinquième partie

Fiche Xcas pour la spécialité maths Terminale S.

Ces commandes se trouvent dans le menu Cmds.

	Arithmétique		
iquo(a,b), irem(a,b)	quotient et reste de la division euclidienne de a par b		
isprime(p)	Test de primalité		
gcd(a,b), lcm(a,b)	PGCD, PPCM de 2 entiers		
iabcuv(a,b,c)	Renvoie u et v tels que $au + bv = c$		
powmod(a,n,m)	Renvoie $a^n \pmod{m}$		
L:=convert(a,base,b)	conversion de a en base b		
a:=convert(L,base,b)	conversion inverse		
n:=a % b; A:=n % 0	$n \in \mathbb{Z}/b\mathbb{Z}$ congru à a ; $A \in \mathbb{Z}, \ A = a \pmod{b}$		
N	latrices et vecteurs		
$M:=\max(3,4,(j,k)->j+k)$	matrice définie par une formule		
M := [[1,2,3],[4,5,6]]	matrice définie par des coefficients (ou bien créer un		
	tableur Xcas en lui donnant un nom de variable)		
v:=[0,1,0]	vecteur défini par ses coordonnées		
M[0,1] ou M(1,2)	élément de M ligne 1 colonne 2		
	les indices commencent à 0 ou à 1 selon la notation		
M[j,k]:=a	modifie l'élément d'indice j, k (copie M)		
M[j,k] = < a ou M(j,k) = < a	modifie en place l'élément d'indice j, k		
+,-,*	addition, soustraction, multiplication de matrices/vecteurs		
inv(M)	inverse d'une matrice carrée M		
M^4	puissance entière d'une matrice		
matpow(M,n)	puissance (symbolique) d'une matrice		
	faire supposons (n>0) si M n'est pas inversible		
P,D:=jordan(M)	diagonalisation de la matrice M (hors programme)		
Autres			
asc("chaine")	renvoie la liste des codes ASCII d'une chaine		
char(L)	renvoie la chaine de caractères à partir d'une liste		
rsolve()	résolution de suites récurrentes		
L:=readrgb("fichier")	lecture du fichier image (jpg, png) dans \mathbb{L}		
writergb("fichier.png",L)	stocke et affiche l'image contenue dans $\mbox{$\mathbb{L}$}$		
rectangle(dx,0,dy/dx,	affiche l'image de taille dx, dy contenue dans		
<pre>gl_texture="fichier")</pre>	le fichier "fichier"		

Attention: la notation M(j,k):=a est interprétée comme une définition de fonction si j, k est symbolique (non entier) et non comme une affectation de l'indice j,k de M. On peut utiliser la notation M(j,k)=<a qui modifie toutes les matrices partageant la représentation de M, est donc beaucoup plus rapide pour de grosses matrices, mais peut avoir des effets surprenants.

N.B. : il peut être nécessaire d'utiliser la version 0.9.6 ou ultérieure de Xcas.

Cryptographie

```
s:="un message a coder"; L:=asc(s), la liste L contient une suite d'entiers compris entre 0 et 255. Pour le système RSA, on peut générer une paire de premiers et n
```

```
p:=nextprime(10^30); q:=nextprime(10^15); n:=p*q;
(on peut aussi utiliser de l'aléatoire) puis une paire de clefs,
n1:=euler(n); c:=rand(); d:=inv(c % n1) % 0
puis coder et décoder avec N:=powmod(L,c,n); char (powmod(N,d,n));
Pour éviter des attaques évidentes, on peut créer des regroupements de 8 par deux conversions en base
```

```
l:=convert (L, base, 256); M:=convert (1, base, 256^8)

Pour le système de Hill, on crée par exemple une matrice aléatoire 2,2

n:=nextprime (512); M:=ranm (2,2) % n; Minv:=inv (M);

(on recommence si M n'est pas inversible), puis on calcule les produits par paire d'éléments de L (ajouter un espace dans s en fin de chaine si le nombre d'éléments est impair)
```

```
N:=seq(M*[L[2*j],L[2*j+1]],j,0,size(L)/2-1)
Le décodage en utilisant:O:=seq(Minv*N[j],j,0,size(N)-1)
puis il faut aplatir O avant d'appeler char:
P:=[];
pour j de 0 jusque size(O)-1 faire P:=concat(P,O[j]);
fpour; P
```

Systèmes dynamiques, graphes probabilistes

Ouvrir un tableur (menu Tableur), indiquez par exemple 4 lignes et 4 colonnes et choisissez un nom de matrice, par exemple M puis remplissez-le par exemple avec

$$\begin{pmatrix}
\frac{1}{3} & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{pmatrix}$$

Si vous n'avez pas le bon nombre de lignes ou de colonnes ou oublié le nom de variable, cliquez sur la ligne Sheet config... du tableur. On a ici la somme des **colonnes** de M égales à 1. Donc si V0 est le vecteur initial, pour avoir la probabilité de la cinquième étape, on écrira V5:=M^5*V0. Vous pouvez faire une étude formelle supposons (n>0); Mn:=matpow (M, n); limit (Mn, n=inf) ou numérique avec v:=seq(1./nrows(M),j,1,nrows(M)); pour j de 1 jusque 100 faire v:=M*v; fpour;

Attention, les probabilistes codent habituellement par une matrice A dont les sommes des **lignes** sont égales à 1, transposée de M ci-dessus. Donc si V0 est le vecteur initial, pour avoir la probabilité de la cinquième étape, on écrira V5 := V0 *A^5.

Un exemple de modèle proie-prédateur se trouve sur le site pédagogique de Xcas: www-fourier.ujf-grenoble.fr/~parisse/irem.html

Images

Voir la session image. xws sur le site de Xcas (cf. ci-dessus).

Autres

Cherchez le mot-clef fougere (F12 dans Xcas), ou fraction continue (en lien avec l'identité de Bézout, les réduites successives sont les coefficients de Bézout de $au_n - bv_n = (-1)^n r_n$), ...

5 Exemples d'utilisation

5.1 Cryptographie de Hill

```
On associe aux nombres 0,..9,10 les caractères "0",.."9"," :" et aux nombres
11,..36 les lettres "A",.."Z" (cf co (nbre)) et réciproquement (cf cod (lettre)).
On utilise asc, char, op et op (asc("09:AZ")) = (48, 57, 58, 65, 90).
Le texte T à coder, (complété éventuellement avec ":") est découpé en p blocs
successifs de 2 lettres. À ces blocs on associe une matrice à coefficients entiers B
de 2 lignes et p colonnes (cf B:=coda (T)).
La matrice de codage M est une matrice carrée d'ordre 2 à coefficients entiers,
connue de l'expéditeur et du destinataire du message (ici M:=irem (ranm (2,2),37) =
[[7,11],[8,11]] et N:=irem (Inverse (M), 37) = [[-1,1],[-6,-4]]).
Le produit C = M * B est une matrice colonne que l'on transforme modulo 37 en
le texte codé TC (cf TC:=codag (C) et TC:=codage (T, M)).
Pour décoder, il faudra faire le chemin inverse : codage (TC, N).
co(c):={
  local n;
  si c<0 alors c:=c+37; fsi;
  si c<=10 alors c:=c+48; sinon c:=c+54; fsi;
  return char(c);
}:;
cod(1) := {
  local n;
  n:=op(asc(1));
  si 48 \le n and n \le 58 alors n := n-48; sinon n := n-54 fsi;
  return n;
}:;
coda(s) := {
  local j,n,B,p;
  n := dim(s);
  si odd(n) alors s:=s+":"; n:=n+1;fsi;
  p:=n/2;B:=makemat(0,2,p);
  pour j de 0 jusque p-1 faire
   B[0,j] := cod(s[2*j]); B[1,j] := cod(s[2*j+1]);
  fpour;
  return B;
}:;
codag(B):={
  local s,n,j,k;
  n:=coldim(B);s:="";
  pour j de 0 jusque n-1 faire
   pour k de 0 jusque 1 faire
      s:=s+co(B[k,j]);
   fpour;
  fpour;
  return s;
```

}:;

```
codage(s, M) := {
  local B,C;
  B:=coda(s);
  C := irem(M*B, 37);
  return codag(C);
}:;
On tape: M := [[7, 11], [8, 11]]
N:=irem(Inverse(M), 37) renvoie[[-1, 1], [-6, -4]]
codage ("ABCD012", M) renvoie "NYMZAACE"
codage("NYMZAACE", N) renvoie "ABCD012:"
Mon message à décoder "RJPAT8KWKLKUASZZ".
```

Systèmes dynamiques

On considère 2 urnes A et B, et 3 boules numérotées de 0 a 3. Au début, toutes les boules se trouvent dans l'urne A. Aux étapes 1, 2,...n, on tire au hasard de façon équiprobable, un nombre entre 0 et 3, et on change d'urne la boule correspondante. Déterminer la matrice de transition M et trouver la probabilité de chacun des ètats lorsque n=5 puis lorsque n=10. Trouver la probabilité de chacun des ètats losque lorsque n tend vers l'infini?

On appelle état j lorsqu'il y a 3-j boules en A et j boules en B. La probabilité de passer à chaque étape de l'état j à l'état k est donné par M[j,k], avec

$$M = \left(\begin{array}{cccc} 0 & 1 & 0 & 0\\ \frac{1}{3} & 0 & \frac{2}{3} & 0\\ 0 & \frac{2}{3} & 0 & \frac{1}{3}\\ 0 & 0 & 1 & 0 \end{array}\right)$$

On tape (M^5) [0]

On obtient lorsque n=5: [0,61/81,0,20/81] (2 boules en A et 1 boule en B avec une probabilité de 61/81 ou 3 boules en B avec une probabilité de 20/81) On tape (M^10) [0]

On obtient lorsque n = 10: [4921/19683, 0, 14762/19683, 0] (3 boules en A avec une probabilité de 4921/19683 ou 1 boule en A et 2 boules en B avec une probabilité de 14762/19683)

On tape:

```
supposons (n, integer) :; M0 := matpow(M, 2*n) :; limit(M0, n=inf)
On obtient lorsque n est pair et tend vers +\infty : \begin{pmatrix} \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ 0 & \frac{3}{2} & 0 & \frac{1}{2} \end{pmatrix}
```

$$: \begin{pmatrix} \frac{4}{4} & 0 & \frac{4}{4} & 0 \\ 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ 0 & \frac{3}{4} & 0 & \frac{1}{4} \end{pmatrix}$$

On tape:

supposons(n,integer):;M1:=matpow(M,2*n+1):;limit(M1,n=inf)

On obtient lorsque n est impair et tend vers $+\infty$: $\begin{pmatrix} 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{3}{2} & 0 \end{pmatrix}$

Sixième partie

Fiche Xcas analyse

Dérivées		
diff(E) ou E'	expression de la dérivée de l'expression E par rapport à x	
diff(E,t) ou (E,t)'	expression de la dérivée de l'expression E par rapport à t	
diff(f) ou f'	fonction dérivée de la fonction f	
diff(E,x\$n,y\$m)	expression de la dérivée partielle $\frac{\partial E}{\partial x^n \partial y^m}$ de l'expression E	
grad	gradient	
divergence	divergence	
curl	rotationnel	
laplacian	laplacien	
hessian	matrice hessienne	

Limites et développements limités		
limite(E,x,a)	limite en a d'une expression E	
limite(E,x,a,1)	limite à droite en a de E	
limite $(E, x, a, -1)$	limite à gauche en a de E	
taylor(E,a)	développement limité de E en $x=a$ ordre 5	
series(E, x=a, n)	développement limité de E en $x=a$ ordre n entier	

Intégrales	
int(E,x)	primitive d'une expression E
int(f)	fonction primitive d'une fonction f
int(E,x,a,b)	intégrale exacte de E
romberg(E,x,a,b)	intégrale approchée de ${\cal E}$

Équations		
solve(eq,x)	solution exacte dans $\mathbb R$ d'une équation polynomiale	
solve([eq1,eq2],[x,y])	solution exacte dans $\mathbb R$ d'un système polynomial	
csolve(eq,x)	solution exacte dans $\mathbb C$ d'une équation polynomiale	
csolve([eq1,eq2],[x,y])	solution exacte dans $\mathbb C$ d'un système polynomial	
fsolve(eq,x=x0)	solution approchée d'une équation (x0=x estimé)	
fsolve([eq],[var],[val])	solution approchée d'un système (val=estimation)	
newton	méthode de Newton	
linsolve	système linéaire	
proot	racines approchées d'un polynôme	

Équations différentielles	
desolve	résolution exacte
odesolve	résolution approchée
plotode	tracé d'une solution
plotfield	tracé du champ de vecteurs
interactive_plotode	tracé de solutions définies à la souris

Tracés de courbes		
plot ou graphe	graphe d'une expression d'une variable	
tangente	tangente à une courbe	
pente	pente d'une droite	
plotfunc	graphe d'une expression d'1 ou 2 variable(s)	
, couleur=)	choisir la couleur d'un tracé	
plotarea	affiche l'aire sous une courbe	
plotparam	courbe paramétrique	
plotpolar	courbe en polaires	
plotimplicit(f(x,y),x,y)	courbe implicite de $f(x, y) = 0$	

Un exemple : étude de la fonction f définie par : $f(x) = \frac{\ln(|2-x|)}{\ln(|x|)}$.

On va montrer que f est définie sur $\mathbb{R} - \{-1, 0, 1, 2\}$ et peut être prolongée sur $\mathbb{R} - \{-1, 2\}$. Puis on fera le graphe de f, on tracera les tangentes en x = -1/2, x = 0 et x = 1, on donnera une valeur approchée à 10^{-3} près de l'aire comprise entre x = 3, x = 5, y = 0 et la courbe avec une subdivision en 4 trapèzes.

On tape: f(x) := ln(abs(x-2))/ln(abs(x))

limite (f(x), x, 1) renvoie -1 et limite ((f(x)+1)/(x-1), x, 1) renvoie -1, donc la pente de la tangente au point (1,-1) vaut -1.

limite (f(x),x,0) renvoie 0, limite (f(x)/x,x,0,1) renvoie $-\infty$ et limite (f(x)/x,x,0,-1) renvoie $+\infty$. Donc Oy est tangent en (0,0).

limite (f (x), x, -1) renvoie ∞ , donc x = -1 est asymptote.

limite (f (x), x, 2) renvoie $-\infty$, donc x = 2 est asymptote.

limite (f(x),x,inf), limite (f(x),x,-inf) renvoie (1,1), y=1 est donc asymptote.

Pour prolonger f par continuité en x=0 et x=1, on tape :

g:=when (x==0,0, when (x==1,-1, f(x)))

On tape: G:=plotfunc(g(x), x=-5..8, couleur=rouge), droite(y=1), tangente(G, -1/2), droite(1-i, pente=-1),

areaplot (g(x), x=3...5, 4, trapeze) et on obtient :

Si on approche l'aire avec 4 trapèzes, on peut aussi taper : Digits:=3; puis : 0.5*(f(3)/2+f(3.5)+f(4)+f(4.5)+f(5)/2) et cela renvoie 0.887. Avec areaplot (g(x), x=3..5) l'aire est calculée par la méthode de Romberg et affichée avec 3 décimales. Pour en savoir plus, tapez romberg (g(x), x, 3, 5), cela renvoie 0.903226168665 avec Digits:=12;. La méthode de Romberg est une accélération de la convergence de la méthode des trapèzes.

6 Exercice: Nombre de chiffre de 1000!

Prérequis Si f est concave $(f''(x) \neq 0)$ ou convexe $(f''(x) \geq 0)$ la méthode des trapèzes et la méthode du point milieu encadrent l'intégrale en effet :

si f est concave, la courbe est située sous la tangente au point milieu et les 2 triangles noir sont égaux.

Soient $S_n = \ln(n!) = \sum_{k=1}^n \ln(k)$ pour $n \in \mathbb{N}^*$ et $I_n = \int_1^n \ln(x) dx$.

- En faisant une intégration par parties calculer I_n .
- En utilisant la méthode des rectangles montrer que : $S_{n-1} < I_n < S_n$.
- En déduire que : $I_n < S_n < I_n + \ln(n)$ et donner un encadrement de I_n en fonction de n.
- Utilisez la méthode des trapèzes et du point milieu pour trouver un meilleur encadrement de I_n .
- En déduire $p \in \mathbb{N}$ tel que : $10^{p-1} < 1000! < 10^p$. Quel est le nombre de chiffre de 1000! ?

La solution avec Xcas

- Calcul de I_n

On tape: ibpu (ln(x), ln(x), x, 1, n)

On obtient: [n*ln(n), -1]

On tape: ibpu ([n*ln(n), -1], 0, x, 1, n)

On obtient : -n+1+n*ln(n)

Donc $I_n = -n + 1 + n * \ln(n)$

- On approche l'aire sous la courbe de $y = \ln(x)$. La somme des aires des rectangles gauches (inférieurs) est S_{n_1} et la somme des aires des rectangles droits (supérieurs) est S_n . Donc $S_{n-1} < I_n < S_n$.

On visualise les rectangles gauches lorsque n = 10:

 $plotarea(ln(x), x=1...10, 10, rectangle_gauche),$

On visualise les rectangles droits lorsque n = 10:

plotarea(ln(x), x=1..10, 10, rectangle_droit),

- $\begin{array}{l} \ {\rm Puisque} \ S_{n-1} + \ln(n) = S_n \ {\rm et} \ {\rm que} \ S_{n-1} < I_n < S_n, \ {\rm on} \ {\rm en} \ {\rm d\'eduit} \ {\rm que} : \\ I_n < S_{n-1} + \ln(n) = S_n < I_n + \ln(n) \\ {\rm et} \ {\rm donc} \ {\rm puisque} \ I_n = -n+1+n*\ln(n) : \\ -n+1+n*\ln(n) < S_n = \ln(n!) < -n+1+n*\ln(n) + \ln(n) \end{array}$
- La somme des aires des trapèzes T_n est inférieure à I_n et on a : $T_n = \ln(2) + ... \ln(n-1) + \ln(n)/2 = \ln(n!) \ln(n)/2 < I_n$ On prend comme point milieu 2, 3..n 1 et on rajoute l'aire de 2 rectangles (pour majorer l'aire entre 1 et 3/2 et pour majorer l'aire entre n 1/2 et n). On visualise les rectangles de la méthode du point milieu lorsque n = 10: plotarea ($\ln(x)$, x=3/2...19/2, 8, point_milieu); rectangle ($1, 1.5, \ln(1.5) *2$), rectangle ($9.5, 10, \ln(10) *2$) plotfunc ($\ln(x)$, x=1...10, affichage=1+epaisseur_ligne_3))

On a : $I_n < M_n = \ln(3/2)/2 + \ln(2) + ... \ln(n-1) + \ln(n)/2$ Puisque $I_n = -n+1+n*\ln(n)$, on obtient comme encadrement : $-n+1+n*\ln(n)+\ln(n)/2 - \ln(3/2)/2 < \ln(n!) < -n+1+n*\ln(n) + \ln(n)/2$

- On cherche p le nombre de chiffres de 1000 ! c'est á dire $p \in \mathbb{N}$ tel que $10^{p-1} < 1000$! $< 10^p$ ou tel que $p-1 \le \ln(1000!)/\ln(10) < p$ On tape puisque $\ln(1000) = 3\ln(10)$:

 $-999/\ln(10.) + 3000 + 1.5 - \ln(1.5) / \ln(100), -999/\ln(10.) + 3000 + 1.5$ On obtain:

On obtient:

2567.55176695,2567.63981258

Donc p = 2568 et le nombre de chiffres de 1000 ! est 2568.

On tape dim(string(1000!)) et on obtient: 2568

Septième partie

Fiche Xcas la géométrie

Fonctions de géométrie 2-d		
point	point donné par ses coordonnées ou son affixe	
affichage=	dernier argument de point pour l'afficher selon	
legend	met du texte à partir d'un point donné	
segment	segment donné par 2 points	
droite(A,B)	droite pssant par A, B	
droite(a*x+b*y+c=0)	droite d'équation $ax + by + c = 0$	
triangle(A,B,C)	triangle de sommets A, B, C	
bissectrice(A,B,C)	bissectrice issue de A du triangle ABC	
angle(A,B,C)	mesure (en radians ou degrés) de \widehat{BAC}	
mediane(A,B,C)	médiane issue de A du triangle ABC	
hauteur(A,B,C)	hauteur issue de A du triangle ABC	
mediatrice(A,B)	médiatrice de AB	
carre(A,B)	carré direct de côté AB	
cercle(A,r)	cercle de centre A , rayon r	
cercle(A,B)	cercle de diamètre AB	
rayon(c)	longueur du rayon du cercle c	
centre(c)	le centre du cercle c	
distance(A,B)	distance de A à B (point ou courbe)	
inter(G1,G2)	liste des points de $G1 \cap G2$	
inter_unique(G1,G2)	un des points de $G1 \cap G2$	
supposons	rajout d'un paramètre symbolique ou d'hypothèses	
element	rajout d'un paramètre numérique	
polygone	polygone fermé	
polygone_ouvert	polygone ouvert	
coordonees	coordonnées d'un point	
equation	équation cartésienne	
parameq	équation paramétrique	
symetrie(A,M)	image de M par la symétrie point (ou droite) A	
translation(B-A,M)	image de M par la translation \overrightarrow{AB}	
rotation(A,t,M)	image de M par la rotation de centre A et d'angle t	
homothetie(A,k,M)	image de M par l'homothétie de centre A et rapport k	
similitude(A,k,t,M)	image de M par la similitude de centre A , rapport k	
	et d'angle t	

Pour construire un nouvel objet géométrique dans une figure :

- on sélectionne un $\boxed{\texttt{Mode}}$ à la souris puis on clique les objets définissant le nouvel objet. Si $\boxed{\sim}$ est décoché, les points cliqués sont à coordonnées exactes et si $\boxed{\sim}$ est coché, les points cliqués sont à coordonnées décimales.
- ou on remplit les lignes de commande, situées à gauche de la figure, en tapant la commande ou en s'aidant du menu Geo. L'exécution d'une ligne de commande par Entrée entraine l'exécution des lignes suivantes.

En cochant Landscape, l'écran graphique est plus large et les lignes de com-

mandes sont en dessous.

Par exemple, pour tracer un triangle ABC, la médiatrice de AB et le cercle circonscrit à ABC, on ouvre un niveau de géométrie 2d (Alt+q) et avec la souris :

- On choisit comme mode : Mode▶Polygones▶triangle
 On clique pour désigner le premier point, puis on déplace la souris. Le segment AS où S est le point pointé par la souris, se dessine en pointillé. On clique pour désigner le 2-ième point, puis on déplace la souris un triangle en pointillé se dessine. On clique pour désigner le 3-ième point. On obtient un triangle et des lignes de commandes apparaissent (A:=point(...),...).
- On choisit comme mode: Mode ➤ Lignes ➤ mediatrice
 On clique sur le point A, puis on déplace la souris: la médiatrice de AS, où S est le point pointé par la souris, se dessine en pointillé. On clique sur B.
 On obtient la médiatrice de AB et dans la ligne de commandes on a:
 E:=mediatrice (A, B, 'affichage'=0)
- On choisit comme mode :Mode ► Cercles ► circonscrit
 On clique successivement sur les points A, B : le cercle circonscrit à ABS, où S est le point pointé par la souris, se dessine en pointillé. On clique sur C.
 On obtient le cercle circonscrit à ABC et dans la ligne de commandes on a : F:=circonscrit (A, B, C, 'affichage'=0)
- On choisit Mode \blacktriangleright Pointeur pour pouvoir déplacer le point A, B ou C. On peut aussi taper directement les commandes dans les lignes de commandes :

```
A:=point(-1,2);
B:=point(1,0);
C:=point(-3,-2);
D:=triangle(A,B,C);
E:=mediatrice(A,B);
F:=circonscrit(A,B,C);
```

	Objets graphiques 3-d
plotfunc	surface par équation
plotparam	surface ou courbe paramétrique
point	point donné par la liste de ses 3 coordonnées
droite	droite donnée par 2 équations ou 2 points
inter	intersection
plan	plan donné par 1 équation ou 3 points
sphere	sphère donnée par centre et rayon
cone	cône donné par sommet, axe, demi-angle d'ouverture
cylindre	cylindre donné par axe,rayon,[hauteur]
polyedre	polyèdre
tetraedre	tétraèdre régulier direct ou pyramide
tetraedre_centre	tétraèdre régulier direct
cube	cube
cube_centre	cube
parallelepipede	parallélépipede
octaedre	octaèdre
dodecaedre	dodécaèdre
icosaedre	icosaèdre

7 Exemples d'utilisation

7.1 Une démonstration avec Xcas

Soient 3 points A, B, C d'affixe a, b, c. Montrer que le triangle ABC est équilatéral direct si et seulement si $a + b * j + c * j^2 = 0$ où $j = \exp(2i\pi/3)$.

7.1.1 La solution avec Xcas

On tape dans un niveau de géométrie :

```
supposons(b1=[1.3,-5,5,0.1]);
supposons(b2=[2.3,-5,5,0.1]);
B:=point(b1+i*b2);
supposons(c1=[-2.2,-5,5,0.1]);
supposons(c2=[3.5,-5,5,0.1]);
C:=point(c1+i*c2);
j:=exp(2*i*pi/3);
a:=-b*j-c*j^2;
A:=point(a);
est_equilateral(A,B,C);
```

La réponse pour est_equilateral (A, B, C); est 1 et comme tout les calculs sont faits avec des paramètres formels cela vaut une démonstration.

Pour la réciproque, on remplace les 3 dernières lignes par :

```
triangle_equilateral(B,C,A);
a:=affixe(A)
normal(a+b*j+c*j^2);
```

la réponse pour normal ($a+b*j+c*j^2$); est 0 et comme tout les calculs sont faits avec des paramètres formels cela vaut une démonstration.

7.1.2 La solution sans Xcas

```
On a j^2=\exp(4i\pi/3), -j^2=\exp(i\pi/3) et 1+j+j^2=0 ABC est équilatéral direct est équivalent à (a-b)=-j^2(c-b) donc a : a-b(1+j^2)+cj^2=a+bj+cj^2=0.
```

7.2 Maximiser une aire

Soient un segment AB de longueur 10 unités et un point C de ce segment. On pose AC = t. On construit du même côté de AB les triangles équilatéraux ACD et CBE tel que $((\overrightarrow{AC}, \overrightarrow{AD}) = (\overrightarrow{CB}, \overrightarrow{CE}) = \pi/3)$.

Pour quelles valeurs de t l'aire a(t) du triangle CED est-elle maximale? Avec Xcas, on choisit A de coordonnées (0,-4) et B de coordonnées (10,-4). C est alors de coordonnées (t,-4). On tape dans un niveau de géométrie 2d :

```
A:=point([0,-4,'affichage'=0]);
B:=point([10,-4,'affichage'=0]);
supposons(t=[2.9,0,10,0.1]);
```

```
C:=point(t-4*i);
triangle_equilateral(A,C,D);
triangle_equilateral(C,B,E);
segment(D,E);
triangle_equilateral(A,B,F);
triangle(C,D,E,affichage=1+rempli);
a(t):=aire(triangle(C,E,D));
plotfunc(a(t),t=0..10,affichage=1);
M:=point(t,a(t),affichage=1);
segment(C,M,affichage=1+ligne_tiret_point);
```


La parabole en rouge est la représentation graphique de l'aire a(t) du triangle CDE (en rouge). Lorsque C d'abscisse t se déplace sur AB à l'aide du curseur t, le point M de coordonnées (t,a(t)) décrit cette parabole.

Attention aire renvoie une aire algébrique. aire (triangle (C, E, D)) est positive car le triangle CED est direct et on a :

aire(triangle(
$$C, E, D$$
)) =-aire(triangle(C, D, E)).

Dans la mesure où les coordonnées des points A et B sont des nombres exacts (par exemple (10, -4) et non (10.0, -4.0)), l'instruction de Xcas:

supposons (t=[2.9,0,10,0.1]); a pour effet de faire le dessin avec la valeur de t donné par le curseur (ici t=2.9), mais de faire tous les calculs en fonction de la variable symbolique t.

Au niveau 2, a (t) renvoie (sqrt (3)) $/4*t^2+(-5*sqrt(3))/2*t$

On peut facilement calculer cette aire qui est la moitié de l'aire du parallélogramme DCEF avec CE=10-t DC=t et $(\overrightarrow{AC},\overrightarrow{AD})=\pi/3$ donc ce parallélogramme

a pour hauteur
$$CH = t\sqrt{3}/2$$
. Donc $a(t) = \frac{\sqrt{3}}{4}t(10 - t) = \frac{-\sqrt{3}}{4}t^2 + \frac{5\sqrt{3}}{2}t$.

On tape pour calculer a'(t): factor (diff(a(t),t))

On obtient: ((-(sqrt(3)))*t+5*sqrt(3))/2

donc a(t) a un maximum pour t=5 (i.e. lorsque C est le milieu de AB). Ce

maximum vaut $\frac{25\sqrt{3}}{4}$ (i.e. l'aire d'un triangle équilatéral de côté $5=\frac{AB}{2}$).

Huitième partie

Fiche Xcas la programmation

- 1. Pour écrire une fonction ou un programme, il faut :
 - choisir une syntaxe, on décrit ici la syntaxe Xcas,
 - soit avec le menu Cfg►Mode (syntax) ►xcas,
 - soit en ouvrant la fenêtre de configuration du CAS en appuyant sur le bouton Config:... et choisir Xcas dans Prog style,
 - ouvrir un niveau éditeur de programme soit en tapant Alt+p, soit avec le menu Prg►Nouveau programme. Il contient déjà le :; qui termine le programme.
 - taper la fonction ou le script (suite de commandes) en terminant chaque instruction par ;. Le nom de cette fonction et de ses arguments ne doit pas être un mot-clef ou un nom de commande de Xcas, ceux-ci apparaissent en bleu et brun dans l'éditeur de programmes. On peut commencer le nom des fonctions par une Majuscule pour diminuer le risque.
 - cliquer sur OK ou appuyer sur F9, pour compiler le programme (ou exécuter le script si on n'a pas terminé son écriture par :;).
 - pour exécuter le programme, il suffit de se placer dans une ligne de commandes vide, taper le nom du programme suivi entre parenthèses par les valeurs des paramètres séparées par des virgules.

2. Le menu Ajouter d'un niveau éditeur de programme

Ce menu vous permet d'avoir la syntaxe d'une fonction, d'un test et des boucles.

Euclide et l'identité de Bézout :

Syntaxe d'une fonction:

```
f(x,y):={
  local z,a,...,val;
  instruction1;
  instruction2;
  val:=...;
  ....
  instructionk;
  retourne val;
}:;
```

```
Bezout (a,b) :={
  local la,lb,lr,q;
  la:=[1,0,a];
  lb:=[0,1,b];
  tantque b!=0 faire
   q:=iquo(la[2],b)
  lr:=la+(-q)*lb;
  la:=lb; lb:=lr;
  b:=lb[2];
  ftantque
  retourne la;
}:;
```

3. Compilation La réponse à une compilation reussie sera Done si on met :; à la fin ou sera la traduction du programme si on met ; à la fin.

Pour Bezout (a,b), on clique sur OK (ou touche F9) et on obtient // Parsing Bezout // Success compiling Bezout puis Done. Puis, on tape: Bezout (78,56) et on obtient [-5,7,2] (car -5*78+7*56=2=pgcd(78,56)).

4. Pas à pas Vous pouvez exécuter un programme commandes par commandes ou le mettre au point grâce au débugueur. Pour cela on tape :

```
debug(Bezout(78,56))
```

Une fenêtre s'ouvre et on appuie sur sst pour une exécution au pas à pas.

Instructions en fançais		
affectation	a:=2; (a prend la valeur 2) et purge (a); (a redevient formelle)	
entrée expression	<pre>saisir("a=",a);</pre>	
entrée chaine	<pre>saisir_chaine("a=",a);</pre>	
sortie	afficher("a=",a);	
valeur retournée	retourne a;	
arrêt	break;	
alternative	si <condition> alors <inst> fsi;</inst></condition>	
	<pre>si <condition> alors <inst1> sinon <inst2> fsi;</inst2></inst1></condition></pre>	
boucle pour	pour j de a jusque b faire <inst> fpour;</inst>	
	pour j de a jusque b pas p faire <inst> fpour;</inst>	
boucle répéter	repeter <inst> jusqua <condition>;</condition></inst>	
boucle tantque	tantque <condition> faire <inst> ftantque;</inst></condition>	
boucle faire	<pre>faire <inst1> si(<condition>)break;<inst2>ffaire;</inst2></condition></inst1></pre>	

Instructions comme en C++

affectation	a:=2; (a prend la valeur 2) et purge (a); (a redevient formelle)
entrée expression	input("a=",a);
entrée chaine	textinput("a=",a);
sortie	print("a=",a);
valeur retournée	return(a);
arrêt	break;
alternative	<pre>if (<condition>) {<inst>};</inst></condition></pre>
	<pre>if (<condition>) {<inst1>} else {<inst2>};</inst2></inst1></condition></pre>
boucle pour	for (j:= a; j<=b; j++) { <inst>};</inst>
	for (j:= a; j<=b; j:=j+p) { <inst>};</inst>
boucle répéter	repeat <inst> until <condition>;</condition></inst>
boucle tantque	<pre>while (<condition>) {<inst>};</inst></condition></pre>
boucle faire	<pre>do <inst1> if (<condition>) break;<inst2> od;</inst2></condition></inst1></pre>
debug	lance le debugueur pour une exécution au pas à pas de l'argument

Signification des signes de ponctuation

- . sépare la partie entière de la partie décimale
- , sépare les éléments d'une liste ou d'une séquence
- ; termine chaque instruction d'un programme
- :; termine les instructions lorsqu'on ne veut pas l'affichage de la réponse

Opérateurs			
+	addition	_	soustraction
*	mutiplication	/	division
^	puissance	a mod p	a modulo p
==	teste l'égalité	! =	teste la différence
<	teste la stricte infériorité	<=	teste l'infériorité ou l'égalité
>	teste la stricte supériorité	>=	teste la supériorité ou l'égalité
, ou	opérateur booléen infixé	&&, et	opérateur booléen infixé
non	inverse logique de l'argument	! ()	inverse logique de l'argument
vrai	est le booléen vrai ou true ou 1	faux	est le booléen faux ou false ou 0
=	permet de définir une équation	n!	n! est la factorielle de n

8 Exemples d'utilisation

8.1 Programmer un jeu

On considère le jeu suivant :

- Le joueur tire au hasard un nombre entre 1 et 10. Ce nombre est son gain, il peut le garder et la partie est finie.
- Le joueur peut choisir d'abandonner ce gain et de recommencer. Il lui est permis de tirer ainsi au plus 5 fois et son gain est le résultat du dernier tirage lorsqu'il a abandonné les gains des 4 tirages précédents.
- 1. Écrire un programme qui réalise ce jeu,
- 2. Le joueur choisit 4 nombres n_1, n_2, n_3, n_4 compris entre 1 et 10 et choisit comme stratégie de garder son gain du *j*ième essai si celui-ci est supérieur ou égal à n_j sinon il recommence (si n_1 =9, n_2 =8, n_3 =6, n_4 =5 avec le tirage 2,7,8, le gain est 8 mais avec le tirage 8,7,5,4,2 le gain est 2).
 - Il joue 100 parties selon cette stratégie avec les mêmes n_j . Écrire un programme donnant la moyenne des gains obtenus. A vous de jouer!.

```
jeu1():={
 //repondre o pour dire oui
 local j,g,rep;
 pour j de 1 jusque 4 faire
   q:=alea(10)+1; afficher(q);
   lis_phrase(rep);
   si rep=="o" alors retourne g; fsi;
 fpour;
 retourne alea(10)+1;
}:;
jeu2 a comme paramètre L qui est la séquence n_1, n_2, n_3, n_4 puis LL est la suite
n_1, n_2, n_3, n_4, 0 de façon à ce que LL[j] soit définie pour j = 0..4 (LL[0] = n_1).
jeu102 est la moyenne des gains de 100 parties faites avec jeu2.
jeu2(L) := {
 local j,g,LL;
 LL:=append(L,0);
 pour j de 0 jusque 4 faire
   q:=alea(10)+1; afficher(q);
   si g>=LL[j] alors break fsi;
 fpour;
 retourne q;
}:;
jeu102(L) := {
 local q, j;
 q := 0;
 pour j de 1 jusque 100 faire
   g:=g+jeu2(L);
 fpour;
 retourne evalf (q/100);
```

}:;

8.2 Des triangles équilatéraux emboiés

À partir d'un triangle équilatéral direct ABC on construit les points A_1, B_1, C_1 vérifiant : $\overrightarrow{AA_1} = \frac{4}{3}\overrightarrow{AB}, \overrightarrow{BB_1} = \frac{4}{3}\overrightarrow{BC}, \overrightarrow{CC_1} = \frac{4}{3}\overrightarrow{CA}$.

Interprétez A_1 comme le barycentre de (A, a) et (B, b).

Montrer que le triangle $A_1B_1C_1$ est équilatéral.

On recommence la même construction à partir de $A_1B_1C_1$. Écrire la procédure récursive qui réalise le dessin des n triangles obtenus par cette construction.

On a : $\overrightarrow{AA_1} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AA}$. Donc A_1 est le barycentre de (A, -1) et (B, 4). B_1 est le barycentre de (B, -1) et (C, 4). C_1 est le barycentre de (C, -1) et (A, 4).

La rotation r de centre O, le centre de ABC, et d'angle $\frac{2\pi}{3}$ transforme A en B, B en C et C en A donc r transforme le barycentre de (A,-1) et (B,4) en le barycentre de (B,-1) et (C,4) c'est à dire transforme A_1 en B_1 et r transforme le barycentre de (B,-1) et (C,4) en le barycentre de (C,-1) et (A,4) i.e. transforme B_1 en C_1 . Donc le triangle $A_1B_1C_1$ est équilatéral.

On tape dans l'éditeur de programmes :

```
triangles(A,B,n):={
  local L,C;
  L:=triangle_equilateral(A,B,C);
  si n>0 alors
    A:=barycentre([A,B],[-1,4]);
    B:=barycentre([B,C],[-1,4]);
    L:=L,triangles(A,B,n-1);
  fsi;
```

On compile (F9) et dans une ligne d'entrée, on tape : triangles (0,1,5)

On obtient:

8.3 Les nombres amiables

return L;

}:;

Écrire un programme qui pour un entier n, donne la suite des couples amiables (a,b) $(a \le b \le n)$. Deux nombres a et b sont **amiables**, si l'un est égal à la somme des diviseurs propres de l'autre (sauf lui-même) et inversement.

On tape (on utilise l'instruction idivis (a) qui renvoie la liste des diviseurs de l'entier a et l'instruction sum(L) qui renvoie la somme de la liste L):

```
amiable(n):={
  local j,a,b,L:=NULL;
  pour j de 2 jusque n faire
    a:=sum(idivis(j))-j;
    b:=sum(idivis(a))-a;
    si b==j et j<=a alors L:=L,[j,a]; fsi;
  fpour;
  retourne L;
}:;
amiable(500) renvoie[6,6],[28,28],[220,284],[496,496]
Les nombres parfaits a sont les nombres amiables (a,a).</pre>
```

Neuvième partie

Fiche Xcas la tortue

Déplacements	
efface	pour effacer
avance	pour avancer
recule	pour reculer
saute	pour avancer ou reculer sans tracer
pas_de_cote	pour faire des pas de coté à gauche (ou à droite) sans tracer
tourne_gauche	pour tourner à gauche
tourne_droite	pour tourner à droite

Les couleurs et la tortue	
crayon	pour connaitre ou changer la couleur du crayon
cache_tortue	cache la tortue
montre_tortue	montre la tortue
dessine_tortue(n)	dessine la tortue en une forme pleine (n=0) ou non (n=1)

Les formes	
rond	dessine un cercle ou un arc de cercle
triangle_plein	dessine un triangle plein
rectangle_plein	dessine un carré, rectangle, losange ou parallélogramme plein
disque	dessine un disque ou un secteur angulaire tangent à la tortue
disque_centre	dessine un disque ou un secteur angulaire de centre la tortue
polygone_rempli	remplit le polygône dessiné juste avant

Les légendes		
ecris	pour écrire là où se trouve la tortue ou en un point	
signe	pour signer, en bas à gauche, son dessin	

La programmation et la tortue			
si <c> alors <inst> fsi</inst></c>	fait < inst > si la condition $< c > est$ vraie		
si <c> alors <inst1></inst1></c>	fait < inst1 > si la condition $< c > est$ vraie		
sinon <inst2> fsi</inst2>	ou fait $< inst2 > si < c > est fausse$		
repete n, <i1>, <i2></i2></i1>	repète n fois les instructions $< i1>, < i2>$		
pour j de j1 jusque j2	fait $< inst >$ en itérant la variable j avec		
faire <inst> fpour</inst>	un pas=1		
pour j de j1 jusque j2 pas	fait $< inst >$ en itérant la variable j avec		
p faire <inst> fpour</inst>	$un\;pas=p$		
tantque <c> faire <inst></inst></c>	$\mbox{fait} < inst > \mbox{tant que la condition} < c > \mbox{est}$		
ftantque	vraie		
retourne <obj></obj>	définit la valeur de la fonction par $< obj >$		
lis(a)	met dans a , une expression lue au clavier		
lis_phrase(a)	met dans a , une phrase lue au clavier		
sauve("toto",a,b)	sauve dans le fichier $toto$ les fonctions a, b		
ramene("toto")	ramène les fonctions du fichier $toto$		

Positionnement		
position	pour avoir la position de la tortue ou pour changer sa position	
cap	pour avoir le cap de la tortue ou pour changer son cap	
vers	pour diriger la tortue selon un point	

Il ne doit y avoir qu'un seul écran de dessin tortue par session.

Pour piloter la tortue, on met des commandes à gauche du dessin : soit on les tape en toutes lettres, soit on les sélectionne dans le menu Tortue, soit on clique sur leurs abréviations situées sur la barre des boutons (le bouton or affiche en plus la palette des couleurs du crayon), soit on réutilise une commande déjà tapée. À droite de l'écran se trouve l'enregistreur qui enregistre toutes les commandes utilisées : en cas d'erreur, il est facile de le modifier, puis d'exécuter toutes les commandes depuis le début en appuyant sur F7.

Cette frise est la répétition d'un même motif, isolé ci-dessus avec en jaune la position de départ de la tortue. On réalise d'abord le dessin du motif : on ouvre un niveau de dessin tortue (Alt+d) et on met dans les lignes de commandes :

```
crayon 1;
rectangle_plein ;
saute ;
tourne_droite ;
crayon 4;
rectangle_plein ;
tourne_gauche ;
saute ;
```

Pour cela on appuie successivement sur les boutons cr, rp, sa, td, Ces commandes se mettent automatiquement à droite dans l'enregistreur (une erreur se corrige directement dans l'enregistreur et on réexécute celui-ci avec F7).

On ouvre un éditeur de programme (Alt+p) et d'un coup de souris on recopie les commandes de l'enregistreur dans l'éditeur : on remplace alors efface; par motif():={, puis on rajoute } avant :; et on appuie sur F9.

On tape ensuite à gauche, dans les lignes de commandes : repete 10, motif () Vous pouvez zoomer le dessin, en avant ou en arrière, avec la molette de la souris et déplacer la fenêtre visible en la translatant avec la souris.

Cet exemple vous montre comment on réalise un dessin complexe en le décomposant et aussi comment on utilise l'enregistreur pour écrire facilement une procédure à partir d'un dessin exécuté en pas à pas.

9 Exercices

9.1 La toile d'araignée et la trigonométrie

La procédure polyg(1, k) trace un polygone régulier direct de k côtés de longueur 1. La tortue part d'un sommet et est dirigée vers un sommet et revient à son point de départ. On tape dans l'éditeur de programme :

```
polyg(1,k):={
  repete(k,avance l,tourne_gauche 360/k);
}:;
```

La procédure araignee (k, p, n) trace n polygones emboités, réguliers, directs et de k côtés où le plus petit polygone P a des côtés de longueur p. La distance du centre de P a un de ces sommets donne l'espacement entre les différents polygones. La tortue part du centre et est dirigée vers un sommet et revient à son point de départ. On tape dans l'èditeur de programme :

```
araignee(k,p,n):={
local r, j;
r:=p/sin(pi/k)/2;
repete(k,avance n*r,recule n*r,tourne_gauche 360/k);
pour j de 1 jusque n faire
    saute r;
    tourne_gauche 90+180/k;
    crayon rouge;
    polyg(j*p,k);
    tourne_droite 90+180/k;
fpour;
saute -n*r;
}:;
Puis, on tape dans un niveau dessin tortue:
efface;
```

```
cfface ;
crayon jaune;
dessine_tortue;
crayon noir;
araignee(9,10,8);
```

On obtient:

9.2 Les carrés magiques

Le départ de cette activité est un tableau de Richard Paul Lohse vu au musée de Grenoble. En voici une reproduction faite avec la tortue : les couleurs ne sont pas respectées...Ici, les couleurs ont comme code [40,54,46,52,43,49].

On remarque que la permutation p := [3, 4, 5, 1, 2, 0] effectue le passage des couleurs d'une ligne à la suivante (traduit par coul :=passage (coul, p); ou par coul :=coul [p[j]] \$ (j=0..5);). On tape dans l'éditeur de programmes :

```
ligne(coul):={
local j;
pour j de 0 jusque 5 faire
  crayon coul[j];rectangle_plein(30);saute(30);
 fpour
 saute -180;
}:;
passage(l,p) := {
 local n, j, lp;
n:=size(l); lp:=1;
pour j de 0 jusque n-1 faire
  lp[j]:=l[p[j]];
 fpour
 retourne lp;
}:;
lohse():={
 local j,p,coul;
 coul:=[40,43,46,49,52,54];//[180,168,3,136,93,78];
pour j de 0 jusque 5 faire
  ligne(coul);p := [3, 4, 5, 1, 2, 0];
  coul:=passage(coul,p);pas_de_cote -30;
 fpour;
pas_de_cote 180; cache_tortue;
}:;
```

On tape dans un niveau de dessin tortue lohse() et on obtient le dessin ci-dessus.