MATHS

- Z_1 and Z_2 are two complex numbers represented by the points A and B in the Argand 31. plane Z_1 and Z_2 are the roots of $Z^2 + pZ + q = 0$. If $AOB = \alpha, \alpha \neq 0$ and O is origin and OA = OB, then $\frac{p^2}{q}$ is equal to
 - 1) $4\cos^2\left(\frac{\alpha}{2}\right)$ 2) $4\sin^2\left(\frac{\alpha}{2}\right)$ 3) $2\cos\alpha$
- 4) $2\sin\alpha$

32. If w is complex cube root of 1, then

$$\cos\left(\left((1-w)(1-w^2)+(2-w)(2-w^2)+\dots+(10-w)(10-w^2)\right)\frac{\pi}{900}\right)=$$

- 1) 1
- 2) 0
- 3) 1
- 4) $\frac{\sqrt{3}}{2}$
- If Z is a complex number such that $-\frac{\pi}{2} \le \operatorname{Arg} Z \le \frac{\pi}{2}$ then which of the following in 33. equality is true.
 - $1)\left|z \overline{z}\right| \le \left|z\right| \left| \operatorname{Arg} z \operatorname{Arg} \overline{z}\right|$

2) $\left|z - \overline{z}\right| \le \left|\operatorname{Arg} z - \operatorname{Arg} \overline{z}\right|$

- $|z-\overline{z}| > |z| |Argz Arg\overline{z}|$
- 4) $|z \overline{z}| = 1$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- If $\omega \neq 1$ is a cube root of 1 and $|z-1|^2 + 2|z-\omega|^2 = 3|z-\omega^2|^2$ then z lies on 34.
 - 1) a straight line

2) a parabola

3) An ellipse

- 4) a rectangular hyperbola
- The least value of $n \in N$ such that $(1+i)^n \pi = (1-i)^n 2 \operatorname{Sin}^{-1} \left(\frac{1+x^2}{2x} \right) (x>0)$ 35.
 - 1) 2
- 2)4
- 3) 8 4) 16
- If 1, w, w^2 ,... w^{n-1} are n^{th} roots of 1 then value of $\frac{1}{2-w} + \frac{1}{2-w^2} + \dots + \frac{1}{2-w^{n-1}}$ 36. equals to
 - 1) $\frac{1}{2^n-1}$

2) $\frac{n(2^n-1)}{2^n+1}$

3) $\frac{(n-2)2^{n-1}+1}{2^n-1}$

- 4) $\frac{n2^{n-1}}{2^n-1}$
- The area of the figure formed by the roots of $z^5 = (z-1)^5$ in Argand plane is 37.
 - 1) $32\cos\frac{2\pi}{5}$

2) $1-\cos^2\frac{2\pi}{5}-\sin^2\frac{2\pi}{5}$

3) $\cot \frac{\pi}{5}$

4) $2\cot\frac{\pi}{5}$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- 38. If α is non real fifth root of 1 then $\log_2 \left| 1 + \alpha + \alpha^2 + \alpha^3 \frac{1}{\alpha} \right|$
 - 1) 0

2) $\frac{1}{2}$

3) 1

- 4) 2
- 39. If 1, $\alpha_1, \alpha_2, \dots, \alpha_{99}$ are roots of $Z^{100} = 1$ then $\sum_{1 \le i < j \le 99}^{\alpha_i \alpha_j}$ equal to
 - 1)0
- 2) 1
- 3) 99
- 4) 100
- 40. If $\cos x + 2\cos y + 3\cos z = \sin x + 2\sin y + 3\sin z = 0$ then the value of $\sin 3x + 8\sin 3y + 27\sin 3z$ is
 - $1) \sin(x+y+z)$

 $2) 3\sin(x+y+z)$

3) $18 \sin (x+y+z)$

- 4) $\sin(x+2y+z)$
- 41. If $z_1, z_2 \in \mathbb{C}$, $z_1^2 + z_2^2 \in IR$, $z_1(z_1^2 3z_2^2) = 2$ and $z_2(3z_1^2 z_2^2) = 11$ then $z_1^2 + z_2^2$ is
 - 1) 10
- 2) 12
- 3)5
- 4) 8

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- Locus of z if Arg $(z-(1+i)) = \begin{cases} \frac{3\pi}{4} & \text{if } |z| \le |z-2| \\ -\frac{\pi}{4} & \text{if } |z| > |z-4| \end{cases}$ is 42.
 - 1) Straight lines passing through (2,0)
 - 2) straight lines passing through (2,0),(1,1)
 - 3) a line segment
 - 4) a set of two rays
- 43. The number of complex numbers z satisfying

$$|z-3-i| = |z-9-i|$$
 and $|z-3+3i| = 3$ are

- 1) 1
- 2) 2
- 3)4
- 4) 0
- z_1 and z_2 lie on a circle with centre at origin. The point of intersection of the tangents 44. at z_1 and z_2 is given by

 - 1) $\frac{\overline{z_1} + \overline{z_2}}{2}$ 2) $\frac{2z_1z_2(\overline{z_1} \overline{z_2})}{(z_2\overline{z_1} z_1\overline{z_2})}$ 3) $\frac{1}{2}\left(\frac{1}{z_1} + \frac{1}{z_2}\right)$ 4) $\frac{z_1 + z_2}{2\overline{z_1}\overline{z_2}}$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

Let S_1 and S_2 are concentric circles with radius 1 and 8/3 respectively, having centre at 45.

(3,0), on the Argand plane. If z satisfies the in equality $\log_{\frac{1}{3}} \left(\frac{|z-3|^2+2}{11|z-3|-2} \right) > 1$ then

- 1) z lies outside S_1 but inside S_2
- 2) z lies inside of both S_1 and S_2
- 3) z lies outside both of S_1 and S_2 4) z lies on S_1
- If (a,b) lies on $x^2 + y^2 = 100$ and z_1, z_2 lies on curve $z^2 + z^{-2} = 12$ then 46.

 $\frac{\left|az_{1}-bz_{2}\right|^{2}+\left|bz_{1}+az_{2}\right|^{2}}{10\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)}=$

- 1) 1
- 2) 10
- 3) 100

4) $\sqrt{10}$

The locus of z such that $Arg\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$ where $z_1 = 10 + 6i, z_2 = 4 + 6i$ is part of a 47. circle whose radius is

1) $\sqrt{2}$

2) $2\sqrt{2}$

3) $3\sqrt{2}$

4) 1

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

If |z|=1 and $w=\frac{z-1}{z+1}$, $(z \neq -1)$ then Re(w) is 48.

- 1)0
- 2) $\frac{1}{|z+1|^2}$ 3) $\frac{z}{|z+1|} \frac{1}{|z+1|^2}$ 4) $\frac{\sqrt{2}}{|z+1|^2}$

49. $P = \{z : \text{Im } z \ge 1\}$ $Q = \{z : |z - 2 - i| = 3\}$ $R = \{z : \text{Re}(1 - i)z = \sqrt{2}\}$ If $Z \in P \cap Q \cap R$ then

$$|z+1-i|^2 + |z-5-i|^2 =$$

- 1) 23 2) 36
- 3)72
- 4) 34

50. Let a, b be complex numbers and $b \neq 0$. If α and β are roots of the equation

 $x^2 + ax + b^2 = 0$ such that $|\alpha| = |\beta| = r$, then the value of $\frac{a^2}{h^2}$ is

1) $2 + \frac{2}{r^2} \operatorname{Re} \left(\alpha \overline{\beta} \right)$

2)2

3) $2 + \frac{2}{r^2} I_m \left(\alpha \overline{\beta} \right)$

4) $2 + \frac{2}{r^2} \operatorname{Re}(\alpha \beta)$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

51. Let a,b,c be distinct complex numbers with |a|=|b|=|c|. If a root of the equation

 $aZ^2 + bZ + c = 0$ has modulus equal to 1, then

 $1) b^2 = ac$

2) $b^2 = 2ac$

3) $b^2 = 4ac$

- 4) $a^2 = 4bc$
- 52. If r_1 and r_2 are the distances of points on the curve $10(Z\overline{Z}) 3i(Z^2 (\overline{Z})^2) 16 = 0$ which are at maximum and minimum distance from the origin then the value of $r_1 + r_2 =$
 - 1) 1

2) 2

3)3

- 4) 4
- 53. If $A(z_1), B(\overline{z_1})$ are the vertices of a regular polygon whose centre at origin and if

 $\frac{\operatorname{Im}(\overline{z}_1)}{\operatorname{Re}(z_1)} = 1 - \sqrt{2}$ then the number of sides of the polygon is

- 1)6
- 2)8
- 3) 12
- 4) 10

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

If z_1 is a complex numbers satisfying |z+1| = z+2+2i then the value of $|z_1| + \text{Arg}(z_1)$ 54.

equals

1) $2 + \frac{\pi}{4}$

2) $\frac{\sqrt{17}}{2}$ - tan⁻¹(4)

3) $\frac{\sqrt{3}}{2}$ - tan⁻¹(4)

- 4) $\frac{1}{2}$ tan⁻¹ 2
- 55. If the complex numbers z_1, z_2, z_3 represent the vertices of an equilateral triangle such

that $|z_1 - 1| = |z_2 - 1| = |z_3 - 1|$ then the value of $\frac{9 - z_1^2 - z_2^2 - z_3^2}{z_1 z_2 + z_2 z_3 + z_3 z_1}$ equals

- 1)0
- 2) 1
- 3) 2 4) 3
- 56. Let z_1, z_2, z_3 and z_4 be the roots of the equation $z^4 + z^3 + 2 = 0$ then the values of

 $\frac{4}{\pi} \left(2z_r + 1\right)$ equals

- 1) 28
- 3) 30

4) 31

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- If z is a complex number such that $|z-2i| \le \sqrt{2}$ then the maximum value of 57. $\lceil |3+i(z-i)| \rceil$ equals (where [] is GIF)
- 2) 2
- 3)3
- 4)4
- If a,b,c are complex numbers such that |a|=2,|b|=3,|c|=4 then maximum value of 58. $|a-b|^2 + |b-c|^2 + |c-a|^2$ equals
 - 1) 58
- 2) 29
- 3) 42
- 4) 87
- Let z = x + iy where $x, y \in I$. Area of the octagon whose vertices are the roots of the 59. equation $(z\overline{z})|z^2 - \overline{z}^2| = 1200$ equals
 - 1) 14
- 3) 17
- 4) 62
- Let a complex number z, with minimum argument is lying on the cure |z+4i|=2 then 60.

$$\left| \arg\left(z\right) + \sum_{r=0}^{17} \left(\frac{z}{2\sqrt{3}} \right)^r \right| =$$

- 1) $5 \frac{\pi}{3}$ 2) $3 \frac{\pi}{3}$ 3) $\frac{\pi}{3}$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work