- ✓ Sinal Diferencial x Sinal único
- ✓ Par Diferencial MOS
- ✓ Par Diferencial BJT
- ✓ Par Diferencial com carga ativa

Fonte: Ravazi, B., Design of Analog CMOS Integrated Circuits, McGrawHill, 2001

Fonte de ruído devido ao acoplamento

Fonte: Ravazi, B., Design of Analog CMOS Integrated Circuits, McGrawHill, 2001

Soluções para redução do acoplamento

Operação Diferencial

Sinal complementar

Fonte de ruído complementar

Interferência da fonte no sinal de saída

Solução para redução do ruído da fonte de alimentação

Operação Diferencial

Operação Diferencial

Sinais com **mesma fase** aplicados na entrada diferencial

Sinais defasados 180º aplicados na entrada diferencial

Ruído da fonte de alimentação é de modo comum!

Vantagens sobre os single-ended

Imunidade ao ruído de modo comum (sinal e fonte de alimentação)

Maior excursão do sinal

Circuito de polarização simplificado

Boa característica de linearidade

"Desvantagem" da utilização de amplificadores diferenciais integrados

Consumo de aproximadamente o dobro de área

Par diferencial MOS básico

Operação em Modo Comum

Ex. 1 - Para o par diferencial NMOS com uma tensão de modo comum v_{CM} aplicada, use:

 $V_{DD}=|V_{SS}|=1,5\,$ V, $k_n'W/L=4\,$ mA/V², $V_{tn}=0,5\,$ V, $I=0,4\,$ mA, $R_D=2,5\,$ k Ω e despreze a modulação do canal.

- a) Determine V_{OV} e V_{GS} para cada um dos transistores;
- b) Para $v_{CM} = 0$, determine v_S , i_{D1} , i_{D2} , v_{D1} e v_{D2} ;
- c) Repita b) para $v_{CM} = +1 \text{ V}$;
- d) Repita b) para $v_{CM} = -0.2 \text{ V}$;
- e) Qual o maior valor de v_{CM} que mantém Q_1 e Q_2 na saturação?
- f) Se a fonte de corrente I necessitar de tensão de 0,4 V para funcionar corretamente, qual o menor valor permitido para v_{CM} e para v_{S} ?

Operação em Modo Diferencial

Operação em Modo Diferencial

$$-\sqrt{2}Vov \le v_{id} \le \sqrt{2}Vov$$

Variação das correntes de dreno devido a tensão diferencial de entrada

Região de operação Linear

$$i_{D1} = \frac{I}{2} + \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \left(\frac{v_{id}/2}{V_{OV}}\right)^2}$$

$$i_{D2} = \frac{I}{2} - \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \left(\frac{v_{id}/2}{V_{OV}}\right)^2}$$

Aproximação por pequenos sinais

$$\frac{v_{id}}{2} \ll V_{OV}$$

$$i_{D1} = \frac{I}{2} + \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right)$$

$$i_{D2} = \frac{I}{2} - \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right)$$

$$i_d = \left(\frac{I}{V_{OV}}\right)\left(\frac{v_{id}}{2}\right)$$

$$g_{m_{DIF}} = \frac{i_d}{v_{id}} = \frac{I}{2V_{OV}}$$

Faixa Linear de operação do par diferencial MOS em relação a transcondutância

$$g_{m_{DIF}} = \frac{I}{2V_{OV}} \qquad g_{m_{MOS}} = \frac{2I_D}{V_{OV}}$$

Sugestão de Estudo:

- Sedra & Smith 5ed. Cap. 7, item 7.1
- Razavi. 2ed.

Cap. 10, item 10.1 Cap. 10, item 10.3 até 10.33

Exercícios correspondentes.

Para saber mais:

Razavi - Design of Analog CMOS Integrated Circuits, cap. 4