Towards Explainable Collaborative Filtering with Taste Clusters Learning

Yuntao Du¹, Jianxun Lian ², Jing Yao ², Xiting Wang ², Mingqi Wu³, Lu Chen ¹, Yunjun Gao ¹ and Xing Xie ²

¹College of Computer Science, Zhejiang University, China ² Microsoft Research Asia, China ³Microsoft Gaming, USA

Motivations

□ Recommender Systems

- Help billions of users to make decisions related to their personal lives
- Collaborative filtering (CF) is the main approach for recommendation

> A growing need to ensure that the users understand and trust the system

Motivations

□ Explainable Recommendation

- A growing need to ensure that the users understand and trust the system
- Explanations serve as a bridge between recommender systems and users
 - Increase user trust
 - Help users make better decisions (satisfactions)
 - Persuade users to try or buy an item (persuasiveness)
 - Assisting developers in model debugging and abnormal case studies

Explanations: why the items are recommended

Existing Methods – Post Hoc

Desirable Properties for Explainable CF

Flexibility

➤ The dimension of latent embeddings and the number of interpretable features/topics do not necessarily match (RecSys'13 fails on this)

Coherence

A model's interpretable modules and predictive modules should be aligned during predictive decision making rather than being decoupled as independent modules (SIGIR'15 fails on this)

Intrinsic explainability

A model can provide interpretable clues that truly reveal the model's running logic, instead of learning a post-hoc model for explanation (IJCAI'18 fails on this)

Our Method

■ Explainable Collaborative Filtering (ECF)

- The first framework that satisfy all three properties
- Core idea: mining various taste clusters, and map users/items to corresponding clusters
- ➤ A group of items which are not only similar in users' latent interest space, but also explicitly share some common tags

Recommendation process of ECF

Item recommendation

 \triangleright Prediction score of user u and item i can be calculated by multiplying their affiliations with taste clusters

$$\hat{y}_{ui} = \text{sparse_dot}(\mathbf{a}_u, \mathbf{x}_i),$$

Personalized explanation

For each prediction \hat{y}_{ui} , ECF is able to generate explanation by measuring the coherence between users' and items' taste cluster affiliations:

$$C_{ui} = S(\mathbf{a}_u) \cap S(\mathbf{x}_i),$$

 \triangleright And importance score w_{ui}^c is introduced to quantify the contribution of each taste cluster in C_{ui} :

$$w_{ui}^c = a_{uc} \times x_{ic}.$$

Learning Sparse Affiliation

- Directly learning the affiliation matrix from data is hard
 - Due to its sparsity nature for readability
- Initialize the users/items and taste clusters with embedding

$$\tilde{x}_{ic} = \cos(\mathbf{v}_i, \mathbf{h}_c),$$

$$m_{ic} = \begin{cases} 1 & \text{if } c \in \operatorname{argTopm}(\tilde{\mathbf{x}}_i) \\ 0 & \text{otherwise} \end{cases}$$
$$\mathbf{x}_i = \sigma(\tilde{\mathbf{x}}_i) \odot \mathbf{m}_i,$$

Learn it with reparameterized trick

$$m_{ic} \approx \tilde{m}_{ic} = \frac{\exp(\cos(\mathbf{v}_i, \mathbf{h}_c)/T)}{\sum_c \exp(\cos(\mathbf{v}_i, \mathbf{h}_c)/T)},$$

$$\hat{m}_{ic} = \tilde{m}_{ic} + \text{detach_gradient}(m_{ic} - \tilde{m}_{ic}),$$

Optimization of ECF

□ Reconstruction Loss

Using user/item-cluster affiliations for prediction:

$$\mathcal{L}_{\text{CS}} = \sum\nolimits_{(u,i,j) \in O} -\ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}),$$

■ Tag Similarity Loss

- The items in the same taste clusters should share the similar tags
- Using TF-IDF style to select informative tags for taste clusters:

$$d_{ct} = \tilde{d}_{ct} \times \log(\frac{N}{f_t + \epsilon}), \qquad \beta_{ct} = \frac{\exp(d_{ct}/\tau)}{\sum_{c_j \in \mathcal{T}} \exp(d_{ct}/\tau)},$$

Maximizing the likelihood of the probabilities of Top-P tags so that the taste clusters can be easily interpreted by those tags:

$$\mathcal{L}_{\text{TS}} = \sum\nolimits_{c \in C} \sum\nolimits_{t \in \text{argTopP}(\beta_c)} -\log \beta_{ct},$$

■ Independence Loss

Taste clusters should be different to present different user interest space:

$$\mathcal{L}_{\text{IND}} = \sum_{c \in C} -\log \frac{\exp(s(\mathbf{h}_c, \mathbf{h}_c))}{\sum_{c' \in C} \exp(s(\mathbf{h}_c, \mathbf{h}_{c'}))},$$

Metrics for Explainability

■ In-cluster item coverage

The proportion of items in the taste cluster that the selected tags can cover

Cov. =
$$\frac{1}{Z} \sum_{c \in C} \sum_{i \in c} \frac{\mathbb{1}(\mathcal{T}_i \cap \mathcal{T}_c)}{|c|}$$
,

□ Tag utilization

how many unique tags are used for interpreting taste clusters

Util. =
$$\frac{1}{|\mathcal{T}|} \bigcup_{c \in C} \mathcal{T}_c$$
,

Silhouette

Similarity difference between intra-cluster items and inter-cluster items

$$Sil. = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{b(i) - a(i)}{\max\{a(i), b(i)\}},$$

■ Informativeness

Distinctiveness of selected tags to represent the items in the taste cluster

Info. =
$$\frac{1}{|C|} \sum_{c_i \in C} \frac{|R(\mathcal{T}_c) \cap c|}{|c|},$$

Experimental Evaluation

Datasets

Industrial datasets (Xbox) and real-world datasets (MovieLens and Last-FM)

Dataset	#Users	#Items	#Interactions	#Tags
Xbox	465,258	330	6,240,251	115
MovieLens	6,033	3,378	836,434	18
Last-FM	53,486	2,062	2,228,949	54

■ Recommendation performance

- Achieve excellent accuracy performance while providing interpretability
- Our method greatly outperforms the baseline in all metrics across all datasets

	Xbox		Movi	eLens	Last-FM	
	Recall	NDCG	Recall	NDCG	Recall	NDCG
MF	0.5048	0.3268	0.1603	0.2416	0.0658	0.0506
NCF	0.4746	0.2931	0.1606	0.2406	0.0618	0.0401
CDAE	0.5192	0.3286	0.1627	0.2499	0.0589	0.0534
LightGCN	0.4933	0.3261	0.1854	0.2698	0.0788	0.0675
EFM	0.5070	0.3312	0.1702	0.2525	0.0703	0.0549
AMCF	0.5036	0.3217	0.1604	0.2405	0.0675	0.0516
ECF _{single}	0.4231	0.2331	0.1068	0.1501	0.0467	0.0380
ECF	0.5922^{\dagger}	0.3721^{\dagger}	0.2124^\dagger	0.2903^{\dagger}	0.0851^{\dagger}	0.0773 [†]

Experimental Evaluation

Explainability

- K-means: similarity-oriented method which utilizes item embedding from FM to perform K-means algorithm
- TagCluster: tag-oriented method which collects items with the same tags

Method	Method Cov.		Sil.	Info.	Overall			
Xbox								
ECF	0.8002	0.7052	0.2604	0.3162	1.7463			
TagCluster	0.9950	0.2878	-0.1788	0.1579	0.9262			
K-means	0.5710	0.3739	0.4286	0.0185	1.0563			
Random	0.5396	0.1450	-0.3614	0.0125	0.0000			
MovieLens								
ECF	0.7992	0.7778	0.1964	0.3131	1.5651			
TagCluster	0.991	0.5259	-0.2573	0.1517	0.8898			
K-means	0.6877	0.4478	0.3265	0.0168	0.9573			
Random	0.5933	0.3672	-0.4452	0.0061	0.0000			
Last-FM								
ECF	0.7648	0.6259	0.1584	0.2996	1.5352			
TagCluster	0.9880	0.3703	-0.2511	0.1206	0.9143			
K-means	0.5667	0.4841	0.3197	0.0182	1.0752			
Random	0.5385	0.2275	-0.4673	0.0148	0.0000			

➤ ECF takes all aspects into consideration so that it can avoid obvious shortcomings on a certain metric

Case Study

- Learned Taste Clusters
 - Can be used to correct tags

Explanations of the recommendation

More Potentials of ECF

■ Taste Cluster Recommendation

A new but ubiquitous recommendation task like playlist recommendation in Spotify or gamelist recommendation in Xbox

User Profiling

- User-cluster affiliations discovered by ECF can also be used as user profiles directly
- ➤ Can be used for user-level predictive tasks, ad audience targeting and lookalike audience extension, etc.

Flexibility

Applied with other popular embedding-based methods like LightGCN

_		Performance		Explainability				
		R@20	N@20	Cov.	Util.	Sil.	Info.	Overall
	ECF	0.0851	0.0773	0.7648	0.6259	0.1584	0.2996	1.5352
	ECF_{LGN}	0.0876	0.0792	0.7831	0.6430	0.1590	0.3042	1.5758

Conclusions

- A neat yet effective explainable framework. ECF leverages interpretable taste clusters and sparse user- and item-cluster affiliations for recommendation in a flexible, coherent, and Intrinsic explainability way
- Optimization for ECF. We present a method ECF to learn high quality taste clusters with informative tags and sparse affiliations simultaneously in an end-to-end manner.
- Quantitative metrics. Comprehensive analysis on the explainability quality of taste clusters.
- Extensive experiments. Considerable experimental results demonstrate the superiority of ECF, and it has been deployed into real recommendation scenarios in Xbox[1].

Thank you!

Questions?

ytdu@zju.edu.cn

Towards Explainable Collaborative Filtering with Taste Clusters Learning

https://github.com/zealscott/ECF

WWW 2023