Exercice 1

- 1) Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ en fonction de la valeur de α .
- 2) Étudier la nature de l'intégrale $\int_{0}^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}}$ en fonction des valeurs de α et β .
- 3) Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{\sqrt{t}\sin(1/t^2)}{\ln(1+t)} dt$
- 4) Étudier la nature de l'intégrale $\int_{2/\pi}^{+\infty} \ln\left(\cos\frac{1}{t}\right) dt$

Soit $\alpha \geq 1$. On pose pour tout $n \in \mathbb{N}$: $I_n = \int_0^{+\infty} e^{-\alpha t} t^n dt$

- 1) Calculer I_0
- 2) Soit $n \geq 1$. On suppose que I_{n-1} est convergente. Montrer que I_n est convergente à l'aide d'une intégration par partie et établir une relation entre I_{n-1} et I_n .
- 3) En déduire la convergence de l'intégrale I_n et la valeur de I_n en fonction de n et α pour tout $n \in \mathbb{N}$.

 \star \star \star Exercice 3 — Voir correction —

- 1) Montrer que pour tout réel x, l'intégrale $\int_x^{+\infty} e^{-t^2} dt$ est convergente. Dans la suite, on notera f(x)= $e^{x^2} \int_{-\infty}^{+\infty} e^{-t^2} dt$
- 2) Justifier que f est de classe \mathcal{C}^1 sur \mathbb{R} , et montrer que sa dérivée f' vérifie $\forall x \in \mathbb{R}$, f'(x) = -1 + 2xf(x)
- 3) Établir pour tout réel x > 0 l'inégalité 2x f(x) < 1
- 4) En déduire la limite de f(x) lorsque x tend vers $+\infty$

— Exercice 4 — Voir correction —

(ENSAE 2021) Pour tout $n \in \mathbb{N}$, on pose :

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^n)}$$
 et $J_n = \int_0^{+\infty} \frac{x^n \,\mathrm{d}x}{(1+x^2)(1+x^n)}$

- 1) Justifier, pour tout $n \in \mathbb{N}$, la convergence des intégrales I_n et J_n .
- 2) Calculer, pour tout $n \in \mathbb{N}$, la somme $I_n + J_n$
- 3) Au moyen du changement de variable $u=\frac{1}{r}$, calculer, pour tout $n\in\mathbb{N}$, les intégrales I_n et J_n
- 4) La suite $\left(\int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}\right)_{n \in \mathbb{N}}$ est-elle convergente? La série $\sum \int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}$ est-elle convergente?

— * * * *

Exercice 5 — Voir correction —

Soit f une fonction continue, positive et décroissante sur $[0; +\infty[$ telle que $\int_0^{+\infty} f(t) dt$ converge. Montrer que $f(x) \underset{x \to +\infty}{=} o\left(\frac{1}{x}\right).$

Le résultat est-il encore vrai si f n'est pas décroissante?

Exercice 6

Le but de cet exercice est de déterminer la valeur de l'intégrale de Gauss $\int_{1}^{+\infty} e^{-t^2} dt$.

On pose pour tout réel x, $f(x) = \int_0^1 \frac{\mathrm{e}^{-x(1+t^2)}}{1+t^2} \,\mathrm{d}t$.

- 1) Pour tout réel $t \in [0; 1]$, on note g_t la fonction définie pour tout réel $x \in \mathbb{R}$ par $g_t(x) = e^{-x(1+t^2)}$.
 - a) Montrer que pour tout $x \in [-\ln 2; \ln 2], |e^x 1| \leq 2|x|$
 - b) En déduire que la fonction f est continue sur \mathbb{R} Indice : étudier la limite de f(x+h) f(x) lorsque h tend vers 0.
 - c) Montrer que pour tout x > 0, on a $e^{-2x} \int_0^1 \frac{dt}{1+t^2} \le f(x) \le e^{-x} \int_0^1 \frac{dt}{1+t^2}$. En déduire $\lim_{x \to +\infty} f(x)$

On admet dans la suite que f est dérivable sur \mathbb{R} et que $f'(x) = -\int_0^1 e^{-x(1+t^2)} dt$

- 2) Pour tout réel x, on pose $u(x) = f(x^2)$ et $\varphi(x) = u(x) + \left(\int_0^x e^{-t^2} dt\right)^2$ Montrer que φ est constante sur \mathbb{R} et déterminer sa valeur.
- 3) En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Montrer que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ converge mais que $\int_0^{+\infty} \left| \frac{\sin(t)}{t} \right| dt$ diverge.

Le coin de Khûbes

(ENS 2024) Soit f la fonction définie sur \mathbb{R} par la formule $f(x) = \exp\left(x - \frac{x^2}{2}\right)$.

- 1) Dresser le tableau de variations de f. On y indiquera notamment les limites de f en $-\infty$ et en $+\infty$.
- 2) Montrer qu'on a l'égalité $\int_0^{+\infty} x f(x) dx = 1 + \int_0^{+\infty} f(x) dx$.
- 3) Calculer $\int_{-\infty}^{+\infty} f(x) dx$. On pourra effectuer un changement de variable y = x + a pour un a bien choisi et admettre la valeur de l'intégrale de Gauss : $\int_{-\infty}^{+\infty} e^{-y^2/2} dx = \sqrt{2\pi}$
- 4) Calculer le développement limité de f(x) à l'ordre 3 pour x proche de 0. En déduire l'allure locale du graphe de f au voisinage de 0.

Exercice 9 — Voir correction —

(ENS 2013) Pour tout réel $r \geq 1$, soit f_r la fonction définie sur [0,1] par :

$$f_r(x) = \frac{\exp(-rx)}{\sqrt{1-x}}$$

et l'on pose :

$$I(r) = \int_0^1 f_r(x) \, \mathrm{d}x$$

- 1) Dresser le tableau de variation complet de la fonction f_r .
- 2) Montrer que I(r) est une intégrale convergente pour tout réel $r \geq 1$.
- 3) On écrit dans la suite $I(r) = I_1(r) + I_2(r) + I_3(r)$, avec :

$$I_1(r) = \int_0^{r^{-2/3}} \exp(-rx) \, \mathrm{d}x \quad ; \quad I_2(r) = \int_0^{r^{-2/3}} \left(\frac{1}{\sqrt{1-x}} - 1\right) \exp(-rx) \, \mathrm{d}x \quad ; \quad I_3(r) = \int_{r^{-2/3}}^1 \frac{\exp(-rx)}{\sqrt{1-x}} \, \mathrm{d}x$$

4) Montrer que quand r tend vers $+\infty$ on a :

$$I_1(r) = \frac{1}{r} (1 + o(1))$$

5) Montrer que pour tout réel y strictement compris entre 0 et 1, on peut écrire :

$$1 \le \frac{1}{\sqrt{1-y}} \le 1 + \frac{y}{2(1-y)^{3/2}}$$

6) Montrer que pour tout $r \geq 1$, on a :

$$0 \le I_2(r) \le c_2 \left(1 - r^{-2/3}\right)^{-3/2} \frac{1}{r^{4/3}}$$

où c_2 est une constante dont on précisera la valeur.

7) Montrer que pour tout $r \ge 1$ on a :

$$0 \le I_3(r) \le c_3 \exp(-r^{1/3})$$

où c_3 est une constante dont on précisera la valeur.

8) En déduire que I(r) est équivalent à 1/r quand r tend vers $+\infty$.

Correction des exercice

Correction de l'exercice 1 :

1) Si $\alpha > 0$ il y a deux impropriétés en 0 et en $+\infty$.

En 0, on a $\frac{\sin t}{t^{\alpha}} \sim \frac{t}{t^{\alpha}} \sim \frac{1}{t^{\alpha-1}}$, l'intégrale converge si et seulement si $\alpha-1<1$, si et seulement si $\alpha<2$. Soit X>0, par intégration par partie on a

$$\int_0^X \frac{\sin t}{t^{\alpha}} = \left[-\frac{\cos t}{t^{\alpha}} \right]_0^X + \int_0^X \frac{\alpha \cos t}{t^{\alpha+1}} dt$$
$$= 1 - \frac{\cos X}{X^{\alpha}} + \alpha \int_0^X \frac{\cos t}{t^{\alpha+1}} dt$$

Or $\lim_{X\to +\infty}\frac{\cos X}{X^{\alpha}}=0$ car $\cos X$ est borné, et pour tout $t\in [0;+\infty[,\left|\frac{\cos t}{t^{\alpha+1}}\right|\leq \frac{1}{t^{\alpha+1}}$ donc converge si $\alpha+1>1$ donc si $\alpha>0$ ce qui est déjà supposé.

On a donc prouvé que pour $\alpha>0,$ l'intégrale converge si et seulement si $\alpha<2$

Il reste à étudier le cas $\alpha \leq 0$: On a pour tout $n \in \mathbb{N}$, $\left| \int_{n\pi}^{(n+1)\pi} \frac{\sin t}{t^{\alpha}} \right| \geq (n\pi)^{-\alpha} \int_{n\pi}^{(n+1)\pi} \sin t \, \mathrm{d}t \geq 2(n\pi)^{-\alpha}$

Ainsi, si on pose $u_n = \int_0^{n\pi} \frac{\sin t}{t^{\alpha}} dt$, on a $\forall n \in \mathbb{N}, |u_{n+1} - u_n| \ge 2(n\pi)^{-\alpha}$. La suite (u_n) ne peut donc pas converger sinon on aurait $\lim_{n \to +\infty} (u_{n+1} - u_n) = 0$, or $2(n\pi)^{-\alpha}$ ne tend pas vers 0.

Si l'intégrale $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ convergeait, alors la suite (u_n) convergerait. Ce n'est pas le cas donc l'intégrale diverge. Finalement, l'intégrale converge si et seulement si $0 < \alpha < 2$.

- 2) Il y a une impropriété en 0 et une impropriété en $+\infty$. On étudie la convergence de $\int_0^1 \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ et $\int_1^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$
 - En 0, on étudie la convergence de $\int_0^1 \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$:
 - $> \text{Si } \alpha > 0 \text{ on a } \frac{\ln(1+t^{\alpha})}{t^{\beta}} \sim t^{\alpha-\beta}, \text{ l'intégrale converge si et seulement si } \beta \alpha < 1, \text{ si et seulement si } \beta < 1+\alpha.$
 - ${\rm \triangleright} \ {\rm Si} \ \alpha = 0, \, {\rm on} \ {\rm a} \ \frac{\ln(1+t^\alpha)}{t^\beta} \sim \frac{\ln(2)}{t^\beta}, \ {\rm l'int\'egrale} \ {\rm converge} \ {\rm si} \ {\rm et} \ {\rm seulement} \ {\rm si} \ \beta < 1.$
 - $\text{Si } \alpha < 0, \text{ on a } \ln(1+t^{\alpha}) = \ln(t^{\alpha}) + \ln(1+t^{-\alpha}) = \alpha \ln(t) + \ln(1+t^{-\alpha}).$ $\ln(1+t^{\alpha}) \quad \ln t \quad \ln(1+t^{-\alpha}) \quad \alpha \ln t$

Ainsi,
$$\frac{\ln(1+t^{\alpha})}{t^{\beta}} = \alpha \frac{\ln t}{t^{\beta}} + \frac{\ln(1+t^{-\alpha})}{t^{\beta}} \sim \frac{\alpha \ln t}{t^{\beta}}$$

Si $\beta < 0$, on a une fausse impropriété en 0 car $\frac{\ln(t)}{t^{\beta}} \xrightarrow{t \to 0} = 0$ donc la fonction se prolonge par continuité en 0.

Si
$$0 \le \beta < 1$$
, soit $\gamma \in]\beta; 1[$ (par exemple $\gamma = \frac{1+\beta}{2}$), alors $t^{\gamma} \times \frac{\ln t}{t^{\beta}} = t^{\gamma-\beta} \ln(t) \xrightarrow{t \to 0} 0$ donc $\frac{\ln t}{t^{\beta}} = o\left(\frac{1}{t^{\gamma}}\right)$,

et comme $\gamma < 1$ l'intégrale $\int_0^1 \frac{1}{t^{\gamma}} dt$ converge, donc par comparaison l'intégrale $\int_0^1 \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ converge.

Si
$$\beta \ge 1$$
, alors $t \times \frac{\ln t}{t^{\beta}} = t^{1-\beta} \ln(t) \xrightarrow{t \to 0} +\infty$ donc $\frac{t^{\beta}}{t \ln(t)} \xrightarrow{t \to 0} 0$, ainsi $\frac{1}{t} = o\left(\frac{\ln t}{t^{\beta}}\right)$ donc par comparaison

l'intégrale $\int_0^1 \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ diverge.

Finalement, lorsque $\alpha<0,$ l'intégrale converge si et seulement si $\beta<1$

Finalement, l'intégrale $\int_0^1 \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ converge si et seulement si $\alpha \ge 0$ et $\beta < 1+\alpha$, ou si $\alpha < 0$ et $\beta < 1$, donc elle converge si et seulement si $\beta < \max(1,1+\alpha)$.

• En $+\infty$, on étudie la convergence de $\int_1^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$:

$$\begin{split} & \rhd \text{ Si } \alpha > 0, \text{ on a } \frac{\ln(1+t^\alpha)}{t^\beta} \sim \frac{\ln(t^\alpha)}{t^\beta} \sim \alpha \frac{\ln t}{t^\beta}. \\ & \text{ Si } \beta > 1, \text{ soit } \gamma \in]1; \beta[, \text{ alors } t^\gamma \times \frac{\ln t}{t^\beta} = \frac{\ln t}{t^{\beta-\gamma}} \xrightarrow{t \to +\infty} 0 \text{ donc } \frac{\ln t}{t^\beta} = o\left(\frac{1}{t^\gamma}\right) \text{ avec } \gamma > 1 \text{ donc par comparaison} \\ & \int_1^{+\infty} \frac{\ln(1+t^\alpha)}{t^\beta} \, \mathrm{d}t \text{ converge.} \end{split}$$

De même, si $\beta \leq 1$, alors $t \times \frac{\ln t}{t^{\beta}} = \frac{\ln t}{t^{\beta-1}} \xrightarrow{t \to +\infty} = +\infty$ donc $\frac{1}{t} = o\left(\frac{\ln t}{t^{\beta}}\right)$ et ainsi l'intégrale $\int_{1}^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ diverge par comparaison.

Finalement, l'intégrale converge si et seulement si $\beta > 1$

- $\,\,>\,$ Si $\alpha=0,$ on a $\frac{\ln(1+t^\alpha)}{t^\beta}\sim\frac{\ln 2}{t^\beta},$ l'intégrale converge si et seulement si $\beta>1$
- ightharpoonup Si $\alpha < 0$, on a $\frac{\ln(1+t^{\alpha})}{t^{\beta}} \sim t^{\alpha-\beta}$, donc l'intégrale converge si et seulement si $\beta \alpha > 1$, si et seulement si $\beta > 1 + \alpha$.

<u>Conclusion</u>: Lorsque $\alpha=0$, les intégrales $\int_0^1 \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ et $\int_1^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ ne peuvent pas converger simultanément car on ne peut pas avoir à la fois $\beta>1$ et $\beta<1$.

Lorsque $\alpha > 0$, ces deux intégrales convergent simultanément si et seulement si $\beta > 1$ et $\beta < 1 + \alpha$.

Lorsque $\alpha < 0$, ces deux intégrales convergent simultanément si et seulement si $\beta < 1$ et $\beta > 1 + \alpha$.

Finalement, l'intégrale $\int_0^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt$ converge si et seulement si $\alpha>0$ et $1<\beta<1+\alpha$ ou $\alpha<0$ et $1+\alpha<\beta<1$.

- 3) Il y a deux impropriétés : en 0 et en $+\infty$.
 - Étudions la convergence de $\int_0^1 \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} \, \mathrm{d}t.$ Au voisinage de 0 on a $\left| \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} \right| \leq \frac{\sqrt{t}}{\ln(1+t)} \underset{t \to 0}{\sim} \frac{\sqrt{t}}{t} \underset{t \to 0}{\sim} \frac{1}{\sqrt{t}}. \text{ Or } \int_0^1 \frac{1}{\sqrt{t}} \, \mathrm{d}t \text{ est une intégrale de Riemann}$ convergente donc par comparaison $\int_0^1 \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} \, \mathrm{d}t \text{ converge}.$
 - Étudions la convergence de $\int_{1}^{+\infty} \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} dt$ En $+\infty$, on a $\frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} \sim \frac{\sqrt{t} \times \frac{1}{t^2}}{\ln(1+t)} \sim \frac{1}{t^{3/2} \ln(1+t)} \leq \frac{1}{\ln(2)t^{3/2}}$

Par comparaison avec l'intégrale de Riemann convergente $\int_1^{+\infty} \frac{1}{t^{3/2}} dt$, on en conclut que $\int_1^{+\infty} \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} dt$ converge.

Finalement, $\int_0^{+\infty} \frac{\sqrt{t}\sin(1/t^2)}{\ln(1+t)} dt$ converge.

4) Lorsque $t \in [\frac{2}{\pi}; +\infty[, \frac{1}{t} \in [0; \frac{\pi}{2}], \text{ donc } \cos\left(\frac{1}{t}\right) = 0 \iff t = \frac{2}{\pi} \text{ et } \cos\frac{1}{t} > 0 \text{ sinon.}$

Il y a donc deux impropriétés, en $\frac{2}{\pi}$ et en $+\infty$.

• Au voisinage de 0, on étudie la convergence de $\int_{2/\pi}^{4/\pi} \ln\left(\cos\frac{1}{t}\right) dt$ (le choix de 4π est arbitraire, c'est juste pour fixer un nombre entre $2/\pi$ et $+\infty$.

On a
$$\cos\left(\frac{1}{t}\right) = \cos\left(\frac{\pi}{2} - \left(\frac{\pi}{2} - \frac{1}{t}\right)\right) = \sin\left(\frac{\pi}{2} - \frac{1}{t}\right)$$

Or, lorsque
$$t \to \frac{2}{\pi}$$
 on a $\frac{\pi}{2} - \frac{1}{t} \to 0$ donc $\sin\left(\frac{\pi}{2} - \frac{1}{t}\right) \sim \frac{\pi}{t \to \frac{2}{\pi}} \frac{\pi}{2} - \frac{1}{t}$

Ainsi,
$$\ln\left(\cos\frac{1}{t}\right) \sim \ln\left(\frac{\pi}{2} - \frac{1}{t}\right)$$

On a donc $\int_{2/\pi}^{4/\pi} \ln\left(\cos\frac{1}{t}\right) dt$ qui converge si et seulement si $\int_{\pi/2}^{\pi/4} \ln\left(\frac{\pi}{2} - \frac{1}{t}\right) dt$ converge, si et seulement si $\int_{0}^{\pi/4} \frac{\ln u}{(\pi/2 - u)^2} du$ converge grâce au changement de variable $u = \frac{\pi}{2} - \frac{1}{t}$, $du = \frac{1}{t^2} dt$.

Or,
$$\frac{\ln u}{(\pi/2 - u)^2} \sim \frac{4 \ln u}{\pi^2}$$
 et l'intégrale $\int_0^1 \ln(u) \, \mathrm{d}u$ converge. Finalement, l'intégrale $\int_{2/\pi}^{4/\pi} \ln \left(\cos \frac{1}{t}\right)$ converge.

• Au voisinage de $+\infty$, on étudie la convergence de $\int_{4/\pi}^{+\infty} \ln\left(\cos\frac{1}{t}\right) dt$. On a $\cos\frac{1}{t} = 1 - \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right)$ car $\frac{1}{t} \xrightarrow{t \to +\infty} 0$, donc $\ln\left(\cos\frac{1}{t}\right) = \ln\left(1 - \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right)\right) \sim -\frac{1}{2t^2}$, ainsi l'intégrale converge par comparaison avec une intégrale de Riemann convergente.

Conclusion : l'intégrale $\int_{2/\pi}^{+\infty} \ln\left(\cos\frac{1}{t}\right) dt$ converge.

Correction de l'exercice 2 :

1)
$$I_0 = \int_0^{+\infty} e^{-\alpha t} dt$$
.

Montrons que cette intégrale converge et calculons-la.

Soit
$$X > 0$$
, $\int_0^X e^{-\alpha t} dt = \left[\frac{-e^{-\alpha t}}{\alpha} \right]_0^X = \frac{1}{\alpha} (1 - e^{-\alpha X})$.

Or
$$\lim_{X \to +\infty} \frac{1}{\alpha} (1 - e^{-\alpha X}) = \frac{1}{\alpha} \operatorname{car} \alpha > 0$$
, donc l'intégrale I_0 est convergente et $I_0 = \frac{1}{\alpha}$.

2) Soit $n \ge 1$ et X > 0. En intégrant par partie sur [0; X], on obtient :

$$\int_0^X e^{-\alpha t} t^n dt = \left[\frac{-e^{-\alpha t} t^n}{\alpha} \right]_0^X - \int_0^X -\frac{n e^{-\alpha t} t^{n-1}}{\alpha} dt$$
$$= \frac{-e^{-\alpha X} X^n}{\alpha} + \frac{n}{\alpha} \int_0^X e^{-\alpha t} t^{n-1} dt$$

Or par hypothèse, I_{n-1} converge donc $\lim_{X\to +\infty} \int_0^X \mathrm{e}^{-\alpha t} \, t^{n-1} \, \mathrm{d}t = I_{n-1}$ et $\lim_{X\to +\infty} \frac{-\,\mathrm{e}^{-\alpha X} \, X^n}{\alpha} = 0$ par croissance comparée.

Ainsi,
$$I_n$$
 converge et $I_n = \frac{n}{\alpha}I_{n-1}$

3) On raisonne par récurrence.

Pour tout $n \in \mathbb{N}$, notons $\mathcal{P}(n)$: " I_n converge et $I_n = \frac{n!}{\alpha^{n+1}}$.

- <u>Initialisation</u>: D'après la question 1, I_0 converge et $I_0 = \frac{1}{\alpha} = \frac{0!}{\alpha^{0+1}}$, donc $\mathcal{P}(0)$ est vraie.
- <u>Hérédité</u>: Supposons que $\mathcal{P}(n)$ soit vraie pour un certain rang $n \in \mathbb{N}$, c'est à dire que I_n converge et que $I_n = \frac{n!}{\alpha^{n+1}}$.

D'après la question 2, on sait que cela implique que I_{n+1} converge et que $I_{n+1} = \frac{n+1}{\alpha}I_n = \frac{(n+1)!}{\alpha^{n+2}}$. Ainsi, $\mathcal{P}(n+1)$ est vraie.

• <u>Conclusion</u>: $\mathcal{P}(0)$ est vraie, et on a montré pour tout $n \in \mathbb{N}$ que si $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ est vraie aussi. Par principe de récurrence, on en conclut que $\mathcal{P}(n)$ est vraie pour tout entier $n \in \mathbb{N}$.

Correction de l'exercice 3:

1) Soit $x \in \mathbb{R}$. On sait que $\lim_{X \to +\infty} X e^{-X} = 0$. En faisant le changement de variable $X = t^2$ dans l'expression $t^2 e^{-t^2}$, on en déduit que $\lim_{t \to +\infty} t^2 e^{-t^2} = 0$. Ainsi, $e^{-t^2} = o\left(\frac{1}{t^2}\right)$.

Comme $\int_x^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann convergente, on conclut grâce au théorème de comparaison pour les intégrales de fonctions positives que $\int_x^{+\infty} e^{-t^2} dt$ est convergente.

2) Remarque : on ne peut pas appliquer directement le théorème fondamental de l'analyse car ce n'est pas une intégrale sur un intervalle fermé borné. Cependant, on peut se ramener facilement à ce cas.
Soit A ∈ ℝ, montrons que f est C¹ sur] − ∞; A[.

Pour tout $x \in]-\infty; A[, \int_{-\infty}^{+\infty} e^{-t^2} dt = \int_{-\infty}^{A} e^{-t^2} dt + \int_{-\infty}^{+\infty} e^{-t^2} dt$

La fonction $t \mapsto e^{-t^2}$ est continue, donc la fonction $x \mapsto \int_{-\infty}^{A} e^{-t^2} dt$ est de classe \mathcal{C}^1 sur $]-\infty; A[$ et sa dérivée est $x \mapsto -e^{-x^2}$ (en effet, si F est une primitive de $t \mapsto e^{-t^2}$ on a $\int_x^A e^{-t^2} dt = F(A) - F(x)$, en dérivant par rapport à x on obtient -F'(x) c'est à dire $-e^{-x^2}$)

Le terme $\int_A^{+\infty} e^{-t^2} dt$ est constant. Donc finalement la fonction $x \mapsto \int_x^{+\infty} e^{-t^2} dt$ est \mathcal{C}^1 sur $]-\infty; A[$ est \mathcal{C}^1 et sa

f est le produit de deux fonctions \mathcal{C}^1 sur $]-\infty;A[$, donc f est \mathcal{C}^1 et

$$f'(x) = 2x e^{2x^2} \int_x^{+\infty} e^{-t^2} dt + e^{x^2} (-e^{-x^2})$$
$$= -1 + 2x f(x)$$

Ceci est valable quel que soit $A \in \mathbb{R}$, donc finalement f est \mathcal{C}^1 sur \mathbb{R} et f'(x) = -1 + 2xf(x).

3) Soit $x \ge 0$.

$$2xf(x) = e^{x^2} \int_{x}^{+\infty} 2x e^{-t^2} dt$$

Pour tout $t \in [x; +\infty[, 2x \le 2t \text{ donc}]$

$$2xf(x) \leqslant e^{x^2} \int_x^{+\infty} 2t e^{-t^2} dt$$

 $\text{Pour } X > 0, \int_{x}^{X} 2t \, \mathrm{e}^{-t^{2}} \, \mathrm{d}t = \left[-\, \mathrm{e}^{-t^{2}} \right]_{x}^{X} = \mathrm{e}^{-x^{2}} - \mathrm{e}^{-X^{2}} \xrightarrow[X \to +\infty]{} \mathrm{e}^{-x^{2}} \, \mathrm{donc} \int_{x}^{+\infty} 2t \, \mathrm{e}^{-t^{2}} \, \mathrm{d}t \, \mathrm{converge} \, \mathrm{et} \, \int_{x}^{+\infty} 2t \, \mathrm{e}^{-t^{2}} \, \mathrm{d}t = \left[-\, \mathrm{e}^{-t^{2}} \right]_{x}^{X} = \mathrm{e}^{-x^{2}} - \mathrm{e}^{-X^{2}} \, \mathrm{donc} \int_{x}^{+\infty} 2t \, \mathrm{e}^{-t^{2}} \, \mathrm{d}t \, \mathrm{converge} \, \mathrm{et} \, \int_{x}^{+\infty} 2t \, \mathrm{e}^{-t^{2}} \, \mathrm{d}t = \left[-\, \mathrm{e}^{-t^{2}} \right]_{x}^{X} = \mathrm{e}^{-t^{2}} \, \mathrm{et} \, \mathrm{et$ Ainsi, $2xf(x) \le e^{x^2} e^{-x^2} = 1$.

4) Pour tout $t \in \mathbb{R}$, $e^{-t^2} \ge 0$ donc pour tout $x \in \mathbb{R}$, $\int_{-t^2}^{+\infty} e^{-t^2} dt \ge 0$.

On en déduit que pour tout $x \ge 0$, $0 \le 2xf(x) \le 1$ et donc que $0 \le f(x) \le \frac{1}{2x}$ D'après le théorème des gendarmes, on en conclut que $\lim_{x \to +\infty} f(x) = 0$.

Correction de l'exercice 4:

1) Soit $n \in \mathbb{N}$. Les fonctions $x \mapsto \frac{1}{(1+x^2)(1+x^n)}$ et $x \mapsto \frac{x^n}{(1+x^2)(1+x^n)}$ sont continues sur $[0; +\infty[$ comme quotients de fonctions continues dont le dénominateur ne s'annule pas. On étudie l'impropriété en $+\infty$: $\frac{1}{(1+x^2)(1+x^n)} \sim \frac{1}{x^{2+n}}$ et $\frac{x^n}{(1+x^2)(1+x^n)} \sim \frac{1}{x^2}$. Les intégrales de Riemann

 $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{2+n}}$ et $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ sont convergentes car 2+n>1 et 2>1, donc d'après le théorème de comparaison pour les

intégrales de fonctions positives, $\int_{1}^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^n)}$ et $\int_{1}^{+\infty} \frac{x^n \, \mathrm{d}x}{(1+x^2)(1+x^n)}$ sont convergentes, donc finalement I_n et J_n sont convergentes.

- 2) Pour tout $n \in \mathbb{N}$, $I_n + J_n = \int_0^{+\infty} \frac{(1+x^n) dx}{(1+x^2)(1+x^n)} = \int_0^{+\infty} \frac{dx}{1+x^2} = \lim_{A \to +\infty} \int_0^A \frac{dx}{1+x^2} = \lim_{A \to +\infty} (\arctan(A) 1) = \lim_{A \to +\infty} (\arctan($ $\arctan(0) = \frac{\pi}{2}$
- 3) On pose $u = \frac{1}{r}$, $du = -\frac{1}{x^2} dx = -u^2 dx$.

Remarque : on ne fait pas de changement de variable ni d'intégration par partie sur une intégrale impropre, on doit donc d'abord se ramener à une intégrale sur un segment.

Pour tout réel A > 0 on a

$$\int_{1/A}^A \frac{\mathrm{d}x}{(1+x^2)(1+x^n)} = \int_A^{1/A} \frac{-1/u^2}{(1+1/u^2)(1+1/u^n)} \, \mathrm{d}u = \int_{1/A}^A \frac{u^n \, \mathrm{d}u}{(1+u^2)(1+u^n)} \, \mathrm{d}u$$

En faisant tendre A vers $+\infty$ on obtient $\int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^n)} = \int_0^{+\infty} \frac{u^n \, \mathrm{d}u}{(1+u^2)(1+u^n)} = J_n$ car ces deux intégrales convergent.

Donc pour tout $n \in \mathbb{N}$, $I_n = J_n$. Puisque $I_n + J_n = \frac{\pi}{2}$ on en déduit que $\forall n \in \mathbb{N}$, $I_n = J_n = \frac{\pi}{4}$.

4) Pour tout $n \in \mathbb{N}$ et tout $x \in [0; 1]$, on a $1 \le 1 + x^2 \le 2$ et $1 \le 1 + x^n \le 2$ donc $1 \le (1 + x^2)(1 + x^n) \le 4$.

$$\forall n \in \mathbb{N}, \forall x \in [0; 1], \quad \frac{x^n}{4} \le \frac{x^n}{(1+x^2)(1+x^n)} \le x^n$$

donc en intégrant sur [0;1]:

$$\forall n \in \mathbb{N}, \quad \frac{1}{4(n+1)} \le \int_0^1 \frac{x^n \, \mathrm{d}x}{(1+x^2)(1+x^n)} \le \frac{1}{n+1}$$

$$\operatorname{car} \int_0^1 x^n \, \mathrm{d}x = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$$

On déduit de cet encadrement que la suite $\left(\int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}\right)_{n \in \mathbb{N}}$ converge vers 0. De plus, la série $\sum \frac{1}{4(n+1)}$ diverge car $\frac{1}{4(n+1)} \sim \frac{1}{4n}$ et la série harmonique $\sum \frac{1}{n}$ diverge, donc par comparaison la série $\sum \int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}$

Correction de l'exercice 5 : Commençons par montrer que $\lim_{x\to +\infty} f(x) = 0$.

f est positive donc minorée, et décroissante sur $]0; +\infty[$ donc f admet une limite en $+\infty$. Supposons que cette limite soit un réel ℓ strictement positif, alors $\forall t \in \mathbb{R}, f(t) \geq \ell$ donc $\int_0^x f(t) dt \geq x\ell$ et $x\ell \xrightarrow{x \to +\infty} +\infty$ car $\ell > 0$, donc l'intégrale

Montrons maintenant que $\lim_{x\to +\infty} xf(x) = 0$. Soit $\varepsilon > 0$, posons $\varepsilon' = \frac{\varepsilon}{2}$. Puisque $\lim_{x\to +\infty} \int_0^x f(t) \, dt$ admet une limite lorsque xtend vers $+\infty$, il existe un réel $x_0 > 0$ tel que, $\left| \int_0^{x_0} f(t) dt - \int_0^{+\infty} f(t) dt \right| < \varepsilon'$, donc :

$$\left| \int_{x_0}^{+\infty} f(t) \, \mathrm{d}t \right| < \varepsilon'$$

Ainsi, pour tout $x \ge x_0$, comme f est positive on a $\left| \int_{x_0}^x f(t) dt \right| \le \left| \int_{x_0}^{+\infty} f(t) dt \right| < \varepsilon'$. Or f est décroissante donc $\forall t \le x$, $f(t) \ge f(x)$. On a donc

$$\left| \int_{x_0}^x f(x) \, \mathrm{d}t \right| \le \left| \int_{x_0}^x f(t) \, \mathrm{d}t \right| < \varepsilon'$$

donc

$$(x-x_0)f(x) < \varepsilon'$$

et ainsi

$$xf(x) < \varepsilon' + x_0 f(x)$$

Puisque $\lim_{x\to +\infty} f(x)=0$, il existe $x_1>0$ tel que $\forall x\geq x_1, f(x)<\frac{\varepsilon'}{x_0}$. Ainsi, en posant $x_2=\max(x_0,x_1)$, pour tout $x\geq x_2$ on a $x\geq x_1$ et $x\geq x_0$ donc on a $xf(x)<2\varepsilon'$ donc $xf(x)<\varepsilon$.

On a montré que $\forall \varepsilon > 0$, il existe $x_2 > 0$ tel que $\forall x \ge x_2$, $0 \le x f(x) < \varepsilon$, ainsi $\lim_{x \to +\infty} x f(x) = 0$ et donc $f(x) = o\left(\frac{1}{r}\right)$.

Ce résultat n'est plus vrai si f n'est pas décroissante, par exemple avec une fonction qui vaut 1 pour chaque valeur entière de x et affine par morceau avec une courbe triangulaire autour de chaque entier k de sorte que l'aire de chaque triangle soit $\overline{k^2}$

$$f: x \longmapsto \begin{cases} k^2 \left(x - k + \frac{1}{k^2} \right) & \text{si } x \in [k - \frac{1}{k^2} ; k] \\ k^2 \left(-x + k + \frac{1}{k^2} \right) & \text{si } x \in [k ; k + \frac{1}{k^2}] \\ 0 & \text{sinon} \end{cases}$$

La somme $\sum_{k=2}^{+\infty} \frac{1}{k^2}$ converge donc l'intégrale $\int_0^{+\infty} f(t) dt$ converge, pourtant on n'a pas $\lim_{x \to +\infty} x f(x) = 0$ (on n'a même pas $\lim_{x \to +\infty} f(x) = 0$!).

Correction de l'exercice 6:

1) a) La fonction $x \mapsto e^x$ est \mathcal{C}^1 sur $[-\ln 2; \ln 2]$ et sa dérivée est $x \mapsto e^x$. On a $\sup_{y \in [-\ln 2; \ln 2]} e^y = e^{\ln 2} = 2$, donc d'après l'inégalité de Taylor à l'ordre 1 (c'est à dire l'inégalité des accroissements finis), on a

$$\forall x \in [-\ln 2; \ln 2], \quad |e^x - e^0| \le 2|x - 0|$$

autrement dit

$$\forall x \in [-2 \ln 2; \ln 2], \quad |e^x - 1| \le 2|x|$$

b) Soit $x \in \mathbb{R}$ fixé. Suivant l'indication de l'énoncé, étudions la limite de f(x+h) - f(x) lorsque h tend vers 0.

$$\forall h \in \mathbb{R}, \quad |f(x+h) - f(x)| = \left| \int_0^1 \frac{e^{-(x+h)(1+t^2)}}{1+t^2} dt - \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt \right|$$

$$= \left| \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} \times \left(e^{-h(1+t^2)} - 1 \right) dt \right|$$

$$\leq \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} \left| e^{-h(1+t^2)} - 1 \right| dt$$

Or $\forall t \in [0,1], \forall h \in \left[-\frac{\ln 2}{2}; \frac{\ln 2}{2}\right], -\ln 2 \le -h(1+t^2) \le \ln 2$ donc $|e^{-h(1+t^2)}-1| \le |h| \times (1+t^2)$ d'après la question précédente

$$. \le \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} \times |h| \times (1+t^2) dt$$
$$\le |h| \times \int_0^1 e^{-x(1+t^2)} dt$$

Pour x fixé, $\int_0^1 e^{-x(1+t^2)} dt$ est une constante, donc $\lim_{h\to 0} |h| \times \int_0^1 e^{-x(1+t^2)} dt = 0$, on en déduit donc que $\lim_{h\to 0} |f(x+t)| = 0$, ainsi f est continue en x. Ceci est valable quel que soit $x \in \mathbb{R}$, donc f est continue sur \mathbb{R} .

c) Pour tout x > 0, pour tout $t \in [0; 1]$, on a $1 \le 1 + t^2 \le 2$ donc $-2x \le -x(1+t^2) \le -x$, et ainsi $e^{-2x} \le e^{-x(1+t^2)} \le e^{-x}$ et donc $\frac{e^{-2x}}{1+t^2} \le \frac{e^{-x(1+t^2)}}{1+t^2} \le \frac{e^{-x}}{1+t^2}$.

Ces inégalités sont valables pour tout $t \in [0; 1]$, on peut donc intégrer par rapport à la variable t sur l'intervalle [0; 1] et on obtient

$$\int_0^1 \frac{e^{-2x}}{1+t^2} dt \le \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt \le \int_0^1 \frac{e^{-x}}{1+t^2} dt$$

d'où

$$e^{-2x} \int_0^1 \frac{1}{1+t^2} dt \le \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt \le e^{-x} \int_0^1 \frac{1}{1+t^2} dt$$

Puisque $\int_0^1 \frac{1}{1+t^2} dt$ est une constante, on a $\lim_{x\to +\infty} e^{-2x} \int_0^1 \frac{1}{1+t^2} dt = \lim_{x\to +\infty} e^{-x} \int_0^1 \frac{1}{1+t^2} dt = 0$ donc par encadrement $\lim_{x\to +\infty} f(x) = 0$.

2) On admet que f est dérivable sur \mathbb{R} d'après l'énoncé, et $x \mapsto x^2$ est dérivable sur \mathbb{R} donc u est dérivable sur \mathbb{R} comme composition de fonctions dérivables.

De plus, $x \mapsto \int_0^x e^{-t^2} dt$ est dérivable sur \mathbb{R} d'après le théorème fondamental, et sa dérivée est $x \mapsto e^{-x^2}$.

Ainsi, $x \mapsto \left(\int_0^x \mathrm{e}^{-t^2} \,\mathrm{d}t\right)^2$ est dérivable sur $\mathbb R$ et sa dérivée est $x \mapsto 2\,\mathrm{e}^{-x^2}\int_0^x \mathrm{e}^{-t^2} \,\mathrm{d}t.$

Finalement, φ est dérivable sur $\mathbb R$ comme somme de fonctions dérivables, et

$$\forall x \in \mathbb{R}, \quad \varphi'(x) = u'(x) + 2 e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= 2xf'(x^2) + 2 e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= -2x \int_0^1 e^{-x^2(1+t^2)} dt + 2 e^{-x^2} \int_0^x e^{-t^2} dt$$

$$= -2x e^{-x^2} \int_0^1 e^{-x^2t^2} dt + 2 e^{-x^2} \int_0^x e^{-t^2} dt$$

Pour un $x \in \mathbb{R}$ quel conque fixé, on pose le changement de variable $u = \frac{t}{x}$, $\mathrm{d}u = \frac{\mathrm{d}t}{x}$, et on obtient

$$\int_0^x e^{-t^2} dt = \int_0^1 x e^{-u^2 x^2} du = x \int_0^1 e^{-x^2 t^2} dt$$

d'où finalement

$$\forall x \in \mathbb{R}, \quad \varphi'(x) = 0$$

Ainsi, φ est constante sur \mathbb{R} donc pour tout $x \in \mathbb{R}$, $\varphi(x) = \varphi(0) = u(0) + 0 = f(0) = \int_0^1 \frac{1}{1+t^2} dt = [\arctan(t)]_0^1 = \frac{\pi}{4}$. On en conclut que $\forall x \in \mathbb{R}, \varphi(x) = \frac{\pi}{4}$.

3) Lorsque x tend vers $+\infty$, $\lim_{x\to +\infty} x^{2} = +\infty$ donc $\lim_{x\to +\infty} f(x^{2}) = \lim_{X\to +\infty} f(X) = 0$. Puisque φ est constante, on a $\lim_{x\to +\infty} \varphi(x) = \frac{\pi}{4}$.

D'après l'égalité $\varphi(x) = f(x^2) + \left(\int_0^x \mathrm{e}^{-t^2} \,\mathrm{d}t\right)^2$ et par somme de limites , on en déduit que $\left(\int_0^x \mathrm{e}^{-t^2} \,\mathrm{d}t\right)^2$ admet une limite lorsque x tend vers $+\infty$ et que cette limite est $\frac{\pi}{4}$

Si on admet la convergence de $\int_0^{+\infty} e^{-t^2} dt$, on a donc $\int_0^{+\infty} e^{-t^2} dt = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2}$.

Correction de l'exercice 7 : Voir l'exercice 1 pour prouver que $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.

Raisonnons par l'absurde et supposons que $\int_0^{+\infty} \left| \frac{\sin(t)}{t} \right| dt$ converge.

Alors la suite (I_n) définie pour tout entier n par $I_n = \int_0^{n\pi} \left| \frac{\sin t}{t} \right| dt$ converge.

Or, pour tout $n \in \mathbb{N}$, on a

$$I_{n+1} - I_n = \int_{n\pi}^{(n+1)\pi} \left| \frac{\sin t}{t} \right| \ge \int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{(n+1)\pi} dt \qquad \text{car } \forall t \in [n\pi, (n+1)\pi], \frac{1}{t} \in [\frac{1}{(n+1)\pi}, \frac{1}{n\pi}]$$

$$\ge \frac{1}{(n+1)\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt$$

$$\ge \frac{2}{(n+1)\pi}$$

 $\operatorname{par} 2\pi \ \operatorname{p\'eriodicit\'e} \ \operatorname{de} \sin \operatorname{et} \ \operatorname{car} \int_0^\pi \sin t \, \mathrm{d}t = \cos(0) - \cos(\pi) = 2 \ \operatorname{et} \int_\pi^{2\pi} \sin t = \cos(\pi) - \cos(2\pi) = -2 \ \operatorname{donc} \ \operatorname{pour} \ \operatorname{tout} \ k \in \mathbb{N},$ $\int_{k\pi}^{(k+1)\pi} |\sin t| \, \mathrm{d}t = 2.$

Ainsi, pour tout $n \in \mathbb{N}$, $I_n - I_0 = \sum_{k=0}^{n-1} (I_{k+1} - I_k) \ge \sum_{k=0}^{n-1} \frac{2}{(k+1)\pi}$. Or cette somme diverge par équivalence avec la série harmonique, donc par comparaison (I_n) diverge, contradiction.

harmonique, donc par comparaison (I_n) diverge, contradiction On en conclut que $\int_0^{+\infty} \left| \frac{\sin t}{t} \right| dt$ diverge.

Correction de l'exercice 8 :

1) f est dérivable sur $\mathbb R$ comme composée de fonctions dérivables sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \ f'(x) = (1-x) \exp\left(x - \frac{x^2}{2}\right)$$

donc f' est du signe de 1-x. De plus, $\lim_{x\to -\infty} \left(x-\frac{x^2}{2}\right) = \lim_{x\to +\infty} \left(x-\frac{x^2}{2}\right) = -\infty$, donc par composition $\lim_{x\to -\infty} f(x) = \lim_{x\to +\infty} f(x) = 0$. Finalement :

x	$-\infty$		1		$+\infty$
f'(x)		+	0	_	
f	0		$e^{1/2}$, 0

2) Comme $\lim_{X\to -\infty} X e^X = 0$, on peut écrire : $\lim_{x\to +\infty} \left(x-\frac{x^2}{2}\right) f(x) = 0$. Or $\left(\frac{x^2}{2}-x\right) f(x) \sim \frac{x^2}{2} f(x)$ donc $f(x) = o\left(\frac{1}{x^2}\right)$ et l'intégrale $\int_1^{+\infty} \frac{1}{x^2} \, \mathrm{d}x$ est une intégrale de Riemann convergente, donc d'après le théorème de comparaison pour les intégrales de fonctions positives, $\int_1^{+\infty} f(x) \, \mathrm{d}x$ converge. De plus f est continue sur [0,1] donc $\int_0^1 f(x) \, \mathrm{d}x$ est bien définie (donc converge), finalement $\int_0^{+\infty} f(x) \, \mathrm{d}x$ converge. Pour tout réel A>0 on a :

$$\int_0^A x f(x) dx = \int_0^A (x - 1) f(x) dx + \int_0^A f(x) dx$$

$$= -\int_0^A f'(x) dx + \int_0^A f(x) dx$$

$$= f(0) - f(A) + \int_0^A f(x) dx \qquad \xrightarrow{A \to +\infty} f(0) + \int_0^{+\infty} f(x) dx$$

or f(0) = 1 d'où le résultat.

3) Posons y = x - 1, alors $y^2 = x^2 - 2x + 1$, donc $\exp\left(x - \frac{x^2}{2}\right) = \exp\left(\frac{1 - y^2}{2}\right)$. Comme dy = dx, on a $\int_A^B f(x) dx = \int_{A-1}^{B-1} \exp\left(\frac{1 - y^2}{2}\right) dy = e^{1/2} \int_{A-1}^{B-1} e^{-y^2/2} dy$. En faisant tendre A vers $-\infty$ puis en faisant tendre B vers $+\infty$ on obtient:

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \mathrm{e}^{1/2} \int_{-\infty}^{+\infty} \mathrm{e}^{-y^2/2} \, \mathrm{d}y = \mathrm{e}^{1/2} \sqrt{2\pi} = \sqrt{2 \, \mathrm{e} \, \pi}$$

4) $\lim_{x\to 0} \left(x-\frac{x^2}{2}\right) = 0$ donc on peut utiliser le DL de exp :

$$\exp(u) = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + o(u^4)$$

en posant $u = x - \frac{x^2}{2}$ et en tronquant les termes de degré ≥ 3 on obtient :

$$\exp\left(x - \frac{x^2}{2}\right) = 1 + \left(x - \frac{x^2}{2}\right) + \frac{1}{2}\left(x - \frac{x^2}{2}\right)^2 + \frac{1}{6}\left(x - \frac{x^2}{2}\right)^3 + o\left(\left(x - \frac{x^2}{2}\right)^3\right) = 1 + x - \frac{x^2}{2} + \frac{1}{2}x^2 - \frac{1}{2}x^3 + \frac{1}{6}x^3 + o\left(x^3\right)$$

$$= 1 + x - \frac{1}{2}x^3 + o\left(x^3\right)$$

On en déduit que la droite d'équation y = x + 1 est tangente à la courbe représentative de f au voisinage de 0 et que cette dernière est au dessus de la tangente pour x < 0 et en dessous de la tangente pour x > 0 dans un voisinage de 0.

Correction de l'exercice 9 :

1) $x \mapsto 1 - x$ est dérivable et ne s'annule pas sur [0,1[donc $x \mapsto \sqrt{1-x}$ aussi. Par opérations usuelles, f_r est ensuite dérivables sur [0,1[.

$$\forall x \in [0, 1[, f'_r(x)] = \frac{-r e^{-rx} \sqrt{1 - x} + \frac{e^{-rx}}{2\sqrt{1 - x}}}{1 - x}$$
$$= \frac{e^{-rx} \left[-2r(1 - x) + 1 \right]}{2(1 - x)\sqrt{1 - x}}$$
$$= \frac{e^{-rx} (2rx + 1 - 2r)}{2(1 - x)\sqrt{1 - x}}$$

donc pour tout $x \in [0,1[,f'_r(x)]$ est du signe de 2rx+1-2r, d'où le tableau suivant :

x	0		$\frac{2r-1}{2r}$		1
$f_r'(x)$		_	0	+	
f_r	1 _	$\sqrt{2}$	$r e^{(1-2r)}$	·)/2	$+\infty$

2) f_r est continue sur [0,1[et $f_r(x)$ tend vers $+\infty$ lorsque $x\to 1$, donc I_r a une seule impropriété en x=1.

$$f_r(x) \underset{x \to 1}{\sim} \frac{\mathrm{e}^{-r}}{\sqrt{1-x}}$$

avec e^{-r} constante, donc avec le changement de variable u = 1 - x, I_r a la même nature que l'intégrale $\int_0^1 \frac{1}{\sqrt{u}} du$. Cette intégrale est une intégrale de Riemann convergente (car $\sqrt{u} = u^{1/2}$), donc I_r converge pour tout $r \ge 1$.

3) On peut calculer explicitement $I_1(r)$:

$$\forall r \ge 1, \quad I_1(r) = \left[\frac{-e^{-rx}}{r}\right]_0^{r^{-2/3}} = \frac{1}{r}\left(1 - e^{-r^{1/3}}\right)$$

et $\lim_{r \to +\infty} e^{-r^{1/3}} = 0$ d'où le résultat.

4) Posons $g(x) = \frac{1}{\sqrt{1-x}} = (1-x)^{-1/2}$. g est dérivable sur]0,1[et $g'(x) = \frac{1}{2}(1-x)^{-3/2} = \frac{1}{2(1-x)^{3/2}}$. g est strictement croissante sur]0,1[comme inverse d'une fonction décroissante. Soit $g \in]0,1[$ fixé. Par croissance de g' on a :

$$\forall x \in [0, y[, \quad g'(0) \le g'(x) \le g'(y)$$

donc

$$\forall x \in [0, y], \quad \frac{1}{2} \le g'(x) \le \frac{1}{2(1-u)^{3/2}}$$

On peut appliquer l'inégalité des accroissements finis à g sur [0,y] et on obtient :

$$\frac{1}{2} \times y \le g(y) - g(0) \le \frac{y}{2(1-y)^{3/2}}$$

d'où

$$\frac{1}{2} \times y \le \frac{1}{\sqrt{1-y}} - 1 \le \frac{y}{2(1-y)^{3/2}}$$

et finalement:

$$1 \le 1 + \frac{1}{2} \times y \le \frac{1}{\sqrt{1 - y}} \le 1 + \frac{y}{2(1 - y)^{3/2}}$$

5) L'inégalité précédente est équivalente à :

$$0 \le \frac{1}{\sqrt{1-y}} - 1 \le \frac{y}{2(1-y)^{3/2}}$$

donc en multipliant par $e^{-ry} \ge 0$:

$$0 \le \left(\frac{1}{\sqrt{1-y}} - 1\right) e^{-ry} \le \frac{y e^{-ry}}{2(1-y)^{3/2}}$$

puis en intégrant ces inégalités sur $[0, r^{-2/3}]$ par rapport à y on obtient :

$$0 \le I_2(r) \le \int_0^{r^{-2/3}} \frac{y e^{-ry}}{2(1-y)^{3/2}} dy$$

Or pour tout $y \in [0, r^{-2/3}[$, $0 \le y e^{-ry} \le y \le r^{-2/3}$ et $0 \le \frac{1}{2(1-y)^{3/2}} leq \frac{1}{2} (1-r^{-2/3})^{-3/2}$ donc par produit :

$$\forall y \in [0, r^{-2/3}], \quad \frac{y e^{-ry}}{2(1-y)^{3/2}} \le \frac{1}{2} r^{-2/3} (1 - r^{-2/3})^{-3/2}$$

Ce majorant est une constante donc en intégrant sur $[0, r^{-2/3}]$ on obtient :

$$\int_0^{r^{-2/3}} \frac{y e^{-ry}}{2(1-y)^{3/2}} \le r^{-2/3} \times \frac{1}{2} r^{-2/3} (1-r^{-2/3})^{-3/2} \le \frac{1}{2} (1-r^{-2/3})^{-3/2} \frac{1}{r^{4/3}}$$

 $(\text{donc } c_2 = \frac{1}{2})$

6) Pour tout $x \in [r^{-2/3}, 1], 0 \le e^{-rx} \le e^{-r \times r^{-2/3}} \le e^{-r^{1/3}}$. On a donc :

$$I_3(r) \le e^{-r^{1/3}} \int_{r^{-2/3}}^1 \frac{\mathrm{d}x}{\sqrt{1-x}}$$

Or $0 \le \int_{r^{-2/3}}^{1} \frac{\mathrm{d}x}{\sqrt{1-r}} \, \mathrm{d}x \le \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{1-r}} \le 2(\sqrt{1}-\sqrt{0}) \, \mathrm{donc}$:

$$I_3 \le 2 e^{-r^{1/3}}$$

 $(donc c_3 = 2).$

7) On a $I_1(r) \underset{r \to +\infty}{\sim} \frac{1}{r}$ et $0 \le rI_2(r) \le c_2 \left(1 - r^{-2/3}\right)^{-3/2} \frac{1}{r^{1/3}}$ donc $\lim_{r \to +\infty} rI_2(r) = 0$ par encadrement d'où $I_2(r) = o\left(\frac{1}{r}\right)$. Enfin, $r e^{-r^{1/3}} = (r^{1/3})^3 e^{-r^{1/3}}$ et $\lim_{X \to +\infty} X e^{-X} = 0$ par croissance comparée donc $\lim_{r \to +\infty} r e^{-r^{1/3}} = 0$ donc par encadrement $I_3(r) = o\left(\frac{1}{r}\right)$.

On a donc
$$I(r) = \frac{1}{r} (1 + o(1)) + o\left(\frac{1}{r}\right) + o\left(\frac{1}{r}\right) \operatorname{donc} I(r) \underset{r \to +\infty}{\sim} \frac{1}{r}$$
.

