Andy Liang

 $\ensuremath{\mathsf{CSE}}$ 150 - Foundations of Computer Science: Honors

Professor Bender

Homework 1A

Problem 1

 $\overline{\text{Write P}} \Longrightarrow Q \text{ using } \land \text{ and } \lnot. \text{ Show that your two representation are equivalent.}$

Response

$$\overrightarrow{P \Longrightarrow Q} \iff \neg (P \land \neg Q)$$

Р	Q	$P \implies Q$		Р	Q	$P \wedge Q$	$P \wedge \neg Q$	$\neg (P \land \neg Q)$
Т	Т	${f T}$	_	Τ	Т	Т	F	${f T}$
Τ	\mathbf{F}	${f F}$		Τ	F	F	${ m T}$	${f F}$
F	Τ	${f T}$		F	Τ	F	\mathbf{F}	\mathbf{T}
F	F	${f T}$		F	F	F	\mathbf{F}	\mathbf{T}

Problem 2

Prove that the prepositional formulas

$$\mathbf{P}\,\vee\,\mathbf{Q}\,\vee\,\mathbf{R}$$

and

$$(P \land \neg Q) \lor (Q \land \neg R) \lor (R \land \neg P) \lor (P \land Q \land R)$$

are equivalent.

Response

Р	Q	R	$P \lor Q \lor R$
Т	Т	Т	${f T}$
Τ	Τ	F	${f T}$
Τ	F	Т	${f T}$
Τ	F	F	${f T}$
\mathbf{F}	Τ	Т	${f T}$
F	Τ	F	${f T}$
\mathbf{F}	F	Т	${f T}$
\mathbf{F}	F	F	${f F}$
	ļi.	'	ı

Р	Q	R	$P \wedge \neg Q$	$Q \wedge \neg R$	$R \wedge \neg P$	$P \wedge Q \wedge R$	$(P \land \neg Q) \lor (Q \land \neg R) \lor (R \land \neg P) \lor (P \land Q \land R)$
$\overline{\mathrm{T}}$	Т	Т	F	F	F	Т	T
T	Т	F	F	T	F	${ m F}$	${f T}$
T	F	Т	Τ	F	F	${ m F}$	${f T}$
T	F	F	Τ	F	F	${ m F}$	${f T}$
F	Т	Τ	F	F	Τ	${ m F}$	${f T}$
F	Т	F	F	T	F	${ m F}$	${f T}$
F	F	Τ	F	F	Τ	${ m F}$	${f T}$
F	F	F	F	F	F	F	F

Problem 3

- (a) Write the biconditional (\iff) using only implies (\implies) and and (\land). Prove that the new version is equivalent.
- (b) Write it using only \vee and \neg . Show your derivation.

Response

(a)
$$(P \iff Q) \iff ((P \implies Q) \land (Q \implies P))$$

P	Q	$P \iff Q$	Р	Q	$P \implies Q$	$Q \implies P$	$(P \implies Q) \land (Q \implies P)$
T	Τ	${f T}$	\overline{T}	Τ	T	Τ	${f T}$
$T \mid$	F	${f F}$	T	F	F	${ m T}$	${f F}$
\mathbf{F}	Τ	${f F}$	F	Τ	${ m T}$	${ m F}$	${f F}$
$F \mid$	F	${f T}$	F	F	Τ	Т	${f T}$

(b)
$$(P \iff Q) \iff \neg(\neg(\neg P \lor Q) \lor \neg(\neg Q \lor P)$$

Proven Equivalence in Class:

$$(P \Longrightarrow Q) \iff (\neg P \lor Q) \qquad \& \qquad (Q \Longrightarrow P) \iff (\neg Q \lor P)$$

From 3a:

$$(P \iff Q) \iff ((P \implies Q) \land (Q \implies P))$$

Using DeMorgan's Law:

$$((P \implies Q) \land (Q \implies P)) \iff \neg(\neg(\neg P \lor Q) \lor \neg(\neg Q \lor P))$$

Р	Q	$\neg P \lor Q$	$\neg Q \lor P$	$\neg(\neg P \lor Q)$	$\neg(\neg Q \lor P)$	$\neg(\neg P \lor Q) \lor \neg(\neg Q \lor P)$
T	Т	Т	Т	F	F	F
\mathbf{T}	F	F	Τ	T	\mathbf{F}	${ m T}$
F	Γ	Т	F	F	${ m T}$	${ m T}$
F	F	T	T	F	${ m F}$	F

$$\frac{\neg(\neg(\neg P\vee Q)\vee\neg(\neg Q\vee P))}{\mathbf{T}}$$

$$\mathbf{F}$$

$$\mathbf{F}$$

$$\mathbf{T}$$