

Human-Computer Interaction

- Computer outputs → human input (Senses)
- Computer inputs → human output

Output Devices for VR

- Graphics displays
 - visual feedback
- Haptic interfaces
 - force and touch feedback
- 3D audio hardware
 - localized sound
- Smell and taste feedback ???

Dr. Y. Hu

Graphics Displays Dr. Y. Hu

• A computer interface presents synthetic world images to one or several users interacting with the virtual world. Olympus Eye Trek Face Mounted Display Optics Dr. Y. Hu

Consideration - Stereo Displays

- For what purposes is a stereoscopic display suitable?
- How to present 2 images of the same VR environment?
- How to deal with image discontinuity?
- What are the cost and availability?
- How does a stereo display differ from another in quality and performance?

10

Graphics Displays - Types

- Images
 - Stereoscopic, monoscopic
- Display technology
 - LCD- and CRT-based, projector-based
- Volume
 - Personal displays
 - Large volume displays

11

Dr. Y. Hu

Personal Displays

- Definition:
 - A graphics display that outputs a virtual scene destined to be viewed by a single user
- Types (stereoscopic):
 - Head-mounted displays (HMD)
 - Hand-supported displays (HSD)
 - Floor-supported displays
 - Autostereoscopic displays

12

Head Mounted Displays (HMD)

- Project images floating some 1~ 5 m in front of the user (one)
- Display technology
 - LCD
 - CRT
 - Organic LEDs
- Resolution

13

- 800 x 600, 2400x 1729

Dr. Y. Hu

Autostereoscopic Displays

- Not need of special glasses or other viewing aids
 - Passive displays
 - Active displays
- Display technologies
 - Parallax barrier
 - Lenticular sheets
- Resolution
 - 640x1024 to 1600x1200

Holographic Displays

- Objects appears to float in space via a 9 optical layer glass panel
- Bare-hand 3D interaction
- Incorporation of IR cameras and image processing board

2/

Comparison of Displays

Table 3.1	Performance con	nparison of various p	ersonal graphi	cs displays	
Display	Туре	Resolution	FOV	Weight	Price
name		(pixels)	$(\mathbf{H} \times \mathbf{V})$	(grams)	10^{3}
Olympus	AMLCD	267×225	30°× 23°	100	.5
"Eye-treck"	FMD200				
Daeyang	LCOS LCD	800×600	60°× 43°	160	1
"Cy-visor"	FMD				
Keiser	AMLCD	1024×768	28°×21°	992	20
"ProView XL35"	HMD				
n-vision	CRT	1280×1024	78°×39°	1,587	35
"Datavisor"	HMD				
n-vision	CRT	1280×1024	42°	907	13.5
"V. Binoculars"	HSD		diagonal		
Fakespace Labs	CRT	1280×1024	85°×	N/A	up to
"Boom3C"	FSD				100
Virtual Research	Flat panel	1280×1024	21"	N/A	13.9
"WindowVR"	FSD		diagonal		
DTI	TFT LCD	1280×1024 2D	18.1"	11,250	7
"Virtual Window"	autostereo	640×1024 3D	diagonal		
Elsa	TFT LCD	1280×1024 2D	18"	17,000	15
"Ecomo4D"	autostereo	640×1024 3D	diagonal		

Large Volume Displays

- Definition
 - Graphics displays that allow several users located in close proximity to simultaneously view an image of the virtual world
- Active or passive glasses
- Classifications
 - Monitor-based
 - Projector-based (predominant)

Cave-type Displays - RAVE

- RAVE (Reconfigurable Virtual Environment)
- Various viewing
 - flat wall
 - angled theater
 - CAVE
- Several minutes to reconfigure

Dr. Y. Hu

Pros and Cons of Wall-type Displays

- Advantages:
 - Accommodate more users
 - Give users more freedom of motion
- Disadvantages:
 - Large cost
 - Much lower resolution than for CRTs
 - More projects for more numbers of pixels/unit

40

Dr. Y. Hu

Comparison of Displays

Display name	Туре	Resolution (10° pixels/m²)	limage size (m ²)	Number of users	Price ×10 ³ 5
Stereo Graphics	oottive	18.2	0.36%	4	2,6
"CrystalEyes"	glasses		0.2	approx.	
Parierum	3-panel	12.2	1.11×	3.1	23
PV290	mentor		0.29	approx.	
Barco	161	1.9	1.36×	4	36
Haron	workhouch		0.71	approx.	
Trimention	L-staped	1.0	1.76%	+	177
S-Direct	workboach		1.73	approx.	
Fakespaco	4-well	0.1	1.0 ×	12	300
Workroom	CANT		3:0004		
Fiskespace	modular	0.2	2.3%	100	500
RAVE	CAVE		2.4364		
Parisonn	Walt	0.2	7.1138	var.	300
Pano-Wall	(J proj.)		2.13		
Trimention	Dome	0.000	21	400	2,172
V-Dome	(Zpros)		diameter		

4

Consideration - Stereo Displays

- How to present 2 images of the same VR environment?
- How to deal with image discontinuity?
- For what purposes is a stereoscopic display suitable?
- What are the cost and availability?
- How does a stereo display differ from another in quality and performance?

42

Dr. Y. Hu

Haptic Displays Dr. Y. Hu

Haptic Displays

- Haptics:
 - the sense of touch (from Greek Hapthai)
- Tactile feedback:
 - conveys real-time information on surface geometry, surface roughness, slippage, and temperature
- Force feedback:
 - provides real-time information on surface compliance, object weight, and inertia

44

Dr. Y. Hu

Human Touch

- The hand:
 - Most touch sensors
- Four primary sensors:
 - Meissner's corpuscles
 - Merkel's disks
 - Pacinian corpuscles
 - Rufini corpuscles

45

Skin Sensors

	Table 3.3 Con	nparison of various skir	mechanoreceptors	4
Receptor Type	Rate of Adaptation	Stimulus frequency (Hz)	Receptive Field	Function
Merkel Disks	SA-I	0-10	Small, well defined	Edges, intensity
Ruffini Corpuscles	SA-II	0-10	Large, indistinct	Static force, skin stretch
Meissner Comuscles	FA-I	20-50	Small, well defined	Velocity, edges
Pacinian	EA-II	100-300	Large,	Acceleration.

Based on Seow [1988], Cholewiak and Collins [1991], and Kalawsky [1993]

SA-I: Slow adaptation, high spatial resolution; SA-II: Slow adaptation, low spatial resolution FA-I: Fast adaptation, high spatial resolution; FA-II: Fast adaptation, low spatial resolution

Dr. Y. Hu

Maximum and Sustained Force

- Maximum force
 - in "power" grasp
 - 400 N (male), 225 N (female)
 - 50 N (finger joint),100 N (shoulder)
- Sustained force
 - much smaller than maximum

47

Haptic Feedback Actuators

- Good power/weight ratio;
- High power/volume ratio;
- High bandwidth;
- High dynamic range (fidelity);
- Safe for the user
- → None actuator technology satisfies all requirements

48

Consideration – Haptic Displays

- How to differentiate tactile feedback from force feedback?
- For what purposes is a haptic display suitable?
- What are the cost and availability?
- How does a haptic display differ from another in quality and performance?

49

Tactile Feedback Interfaces

- Desk-top or wearable (gloves);
 - Touch feedback mouse;
 - CyberTouch glove;
 - Temperature feedback actuators;

50

Consideration – Haptic Displays

- How to differentiate tactile feedback from force feedback?
- For what purposes is a haptic display suitable?
- What are the cost and availability?
- How does a haptic display differ from another in quality and performance?

62 Dr. Y. Hu

Sound Displays Dr. Y. Hu

Sound Displays

- Synthetic sound feedback to users interacting with the virtual world
- Sound types
 - Monoraural
 - Binaural → Stereo
- Increase the simulation realism
- → Reading

64

Commercial 3D Sound Cards

- What they have to offer:
 - Digital output
 - Multi-speaker compatibility → 7.1 channel format allows for 8 speakers
 - Positional audio → offers 3D dimensions of sound
- Two main audio APIs
 - DirectSound 3D (DS3D) → Microsoft 's DirectX component
 - Aureal 3D (A3D) → An extension of DS3D

69

Comparison of 3D Sound Cards

Name	Chip/3Dsound engine/API	In/Out	SR
Creative Sound Blaster Audigy 4 Pro	CA10200 ICT DSP/CreativeWar e/A3D 1.0, EAX Advanced HD 4	7.1-analog out; 5.1-digital out (DIN); 2-digital in/out (coaxial); 2-digital in/out optical ac3/dts pass-thru	\$299
Philips Acoustic Edge	ThunderBird Avenger/QSound/ A3D 1.0/EAX 2.0	5.1-analog out; 2-digital in/out (coaxial); ac3/dtz pass-thru	\$100
Turtle Beach Montego DDL 7.1	EAX 1 and 2, A3D, I3DL2 and DirectSound 3D	7.1-analog out; Optical S/PDIF In/Out; audio resolutions 24 bit (out) 16 (in); sample rates 96kHz (out) and 48kHz (in).	\$80

Conclusion + Recap

- All output devices aim at stimulating the user's senses in real time.
- Graphics displays
- Haptic feedback
- 3D audio feedback (reading)
- No smell and taste feedback

72