1. This question is about the equation

$$-\nabla^2 u = f \text{ on } \Omega, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega, \tag{1}$$

where Ω is a polygonal domain with boundary $\partial\Omega$.

(a) Let V be a continuous Lagrange finite element space defined on a triangulation of Ω . Describe how the finite element discretisation of (1) using V results in a matrix-vector equation

$$A\mathbf{u} = \mathbf{b}.\tag{2}$$

[10 marks]

(b) (i) Show that the matrix A satisfies

$$A1 = 0, (3)$$

where 1 is the vector with all entries equal to 1, and 0 is the zero vector.

[2 marks]

(ii) Explain why this means that A is not invertible.

[1 marks]

(c) (i) Describe how to add an extra condition to Equation 1, and correspondingly to your finite element formulation, so that this issue is removed.

[2 marks]

(ii) Using the "mean estimate",

$$||u - \bar{u}||_{L^2(\Omega)} \le C|u|_{H^1(\Omega)},$$

where $u \in V$ and \bar{u} is the mean value of u, explain why Equation (3) cannot hold after modification.

[5 marks]

- 2. (a) Consider the finite element (K, P, N), where
 - * K is a triangle with vertices (z_1, z_2, z_3) .
 - * P is the space of polynomials of degree 1 or less,
 - * $N = (N_1, N_2, N_3)$, where $N_i(p) = p(z_i)$, i = 1, 2, 3.

Show that N determines P.

[10 marks]

- (a) Consider the finite element (K',Q,N'), where
 - * K' is a square with vertices (z_1, z_2, z_3, z_4) (enumerated clockwise around the square, starting at the bottom left).
 - $*~Q = \operatorname{Span}\{P, xy\}$, where P is the space of polynomials of degree 1 or less.
 - * $N'=(N_1,N_2,N_3,N_4)$, where $N_i(p)=p(z_i)$, i=1,2,3,4.

Show that N' determines Q.

[10 marks]

- 3. Consider the interval [a,b], with points $a=x_0,x_1,x_2,\ldots,x_{n-1},x_n=b$. Let $\mathcal T$ be a subdivision (i.e. a 1D mesh) of the interval [a,b] into subintervals $I_k=[x_k,x_{k+1}]$, $k=0,\ldots,N-1$. Consider the following three elements.
 - 1. (K, P, N) where $K = I_k$, P are polynomials of degree ≤ 3 , and $N = (N_1, N_2, N_3, N_4)$ with $N_1[u] = u(x_k)$, $N_2[u] = u(x_{k+1})$, $N_3[u] = \int_{x_k}^{x_{k+1}} u \, \mathrm{d} \, x$, $N_4[u] = u'((x_{k+1} + x_k)/2)$.
 - 2. (K, P, N) where $K = I_k$, P are polynomials of degree ≤ 3 , and $N = (N_1, N_2, N_3, N_4)$ with $N_1[u] = u(x_k)$, $N_2[u] = u(x_{k+1})$, $N_3[u] = u'(x_k)$, $N_4[u] = u'(x_{k+1})$.
 - 3. (K, P, N) where $K = I_k$, P are polynomials of degree ≤ 3 , and $N = (N_1, N_2, N_3, N_4)$ with $N_1[u] = u((x_{k+1} + x_k)/2)$, $N_2[u] = u'((x_{k+1} + x_k)/2)$, $N_3[u] = u''((x_{k+1} + x_k)/2)$, $N_4[u] = u'''((x_{k+1} + x_k)/2)$.
 - (a) Which of the three elements above are suitable for the following variational problem? Find $u \in H^1([a,b])$ such that

$$\int_a^b uv + u'v' \, \mathrm{d} \, x = \int_a^b fv \, \mathrm{d} \, x, \quad \forall v \in H^1([a, b]).$$

Justify your answer.

[10 marks]

(b) Which of the three elements above are suitable for the following variational problem? Find $u \in H^2([a,b])$ such that

$$\int_{a}^{b} uv + u'v' + u''v'' \, dx = \int_{a}^{b} fv \, dx, \quad \forall v \in H^{2}([a, b]).$$

Justify your answer.

[10 marks]

4. (a) For $f \in L^2(\Omega)$, where Ω is some convex polygonal domain, the L^2 projection of f into a degree k Lagrange finite element space V is the function $u \in V$ such that

$$\int_{\Omega} uv \, \mathrm{d} x = \int_{\Omega} vf \, \mathrm{d} x, \quad \forall v \in V.$$

Show that u exists and is unique from this definition, with

$$||u||_{L^2} \le ||f||_{L^2}.$$

[5 marks]

(b) Show that the L^2 projection is mean-preserving, i.e.

$$\int_{\Omega} u \, \mathrm{d} \, x = \int_{\Omega} f \, \mathrm{d} \, x.$$

[5 marks]

(c) Show that the L^2 projection u into V of f is the minimiser over $v \in V$ of the functional

$$J[v] = \int_{\Omega} (v - f)^2 dx.$$

[5 marks]

(d) Hence, show that

$$||u - f||_{L^2(\Omega)} < Ch|f|_{H^1(\Omega)},$$

where h is the maximum triangle diameter in the triangulation used to construct V.

[5 marks]

Mastery). We quote the following result from lectures. Let K_1 be a triangle with diameter 1, containing a ball B. There exists a constant C such that for $0 \le |\beta| \le k+1$ and all $f \in H^{k+1}(\Omega)$,

$$||D^{\beta}(f - Q_{k,B}f)||_{L^{2}(K_{1})} \le C||\nabla^{k+1}f||_{L^{2}(K_{1})},\tag{4}$$

where $Q_{k,B}$ is the degree-k ball-averaged Taylor polynomial of f.

(a) Let \mathcal{I}_{K_1} be the nodal interpolation operator on K_1 for the Lagrange finite element of degree k. Using the following stability estimate

$$\|\mathcal{I}_K u\|_{H^k(K_1)} \le C \|u\|_{H^k(K_1)},$$

when k > 1, together with the estimate in Equation (4), show that when $i \leq k$, we have

$$|\mathcal{I}_{K_1}u - u|_{H^i(K_1)} \le C_1|u|_{H^{k+1}(K_1)}.$$

[5 marks]

(b) Let K be a triangle with diameter d. When k > 1 and $i \le k$, show that

$$|\mathcal{I}_K u - u|_{H^i(K)} \le d^{k+1-i} C_1 |u|_{H^{k+1}(K)},$$

where C_1 is a constant that depends on the shape of K but not the size.

[5 marks]

(c) Let $\mathcal T$ be a triangulation such that the minimum aspect ratio r of the triangles K_i satisfies r>0. Let V be the degree k Lagrange finite element space. Let $u\in H^{k+1}(\Omega)$. Let h be the maximum over all of the triangle diameters, assuming that with $0\leq h<1$. Show that for $i\leq k$ and i<2, the global interpolation operator satisfies

$$\|\mathcal{I}_h u - u\|_{H^i(\Omega)} \le C h^{k+1-i} |u|_{H^{k+1}(\Omega)}.$$
 (5)

[5 marks]

(d) Why does this estimate not hold for $i \geq 2$?

[5 marks]