Towards Machine Learning for Quantification

Mikoláš Janota

AITP, 28 March 2018

IST/INESC-ID, University of Lisbon, Portugal

Outline

Intro: QBF, Expansion, Games, Careful expansion

Solving QBF

Learning in QBF

Bernays–Schönfinkel ("Effectively Propositional Logic") — Finite Models

Careful expansion

Intro: QBF, Expansion, Games,

• SAT — for a Boolean formula, determine if it is satisfiable

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a *Quantified* Boolean formula

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a *Quantified* Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a Quantified Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives

 $(\forall = \land, \exists = \lor)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a Quantified Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives

$$(\forall = \land, \exists = \lor)$$

(1)
$$\forall x \exists y. (x \leftrightarrow y)$$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a Quantified Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives

$$(\forall = \land, \exists = \lor)$$

- (1) $\forall x \exists y. (x \leftrightarrow y)$
- (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a Quantified Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives

$$(\forall = \land, \exists = \lor)$$

- (1) $\forall x \exists y. (x \leftrightarrow y)$
- (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$
- $(3) \ ((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$

- SAT for a Boolean formula, determine if it is satisfiable
- Example: $\{x = 1, y = 0\} \models (x \lor y) \land (x \lor \neg y)$
- · QBF for a Quantified Boolean formula
- Example: $\forall x \exists y. (x \leftrightarrow y)$
- Quantifications as shorthands for connectives

$$(\forall = \land, \exists = \lor)$$

- (1) $\forall x \exists y. (x \leftrightarrow y)$
- (2) $\forall x. (x \leftrightarrow 0) \lor (x \leftrightarrow 1)$
- (3) $((0 \leftrightarrow 0) \lor (0 \leftrightarrow 1)) \land ((1 \leftrightarrow 0) \lor (1 \leftrightarrow 1))$
- (4) 1 (True)

· Consider the QBF:

 $\forall u \exists e. \ u \leftrightarrow e$

· Consider the QBF:

 $\forall u \exists e. \ u \leftrightarrow e$

1. Introduce a predicate for truth,

· Consider the QBF:

 $\forall u \exists e. \ u \leftrightarrow e$

- 1. Introduce a predicate for truth,
- 2. each existential variable replace by a predicate,

· Consider the QBF:

$$\forall u \exists e. \ u \leftrightarrow e$$

- 1. Introduce a predicate for truth,
- 2. each existential variable replace by a predicate,
- 3. universal variables wrapped by the truth predicate:

is-true(t)
$$\land \neg$$
is-true(f) \land ($\forall X_u$. is-true(X_u) $\leftrightarrow p_e(X_u)$)

· Consider the QBF:

$$\forall u \exists e. \ u \leftrightarrow e$$

- 1. Introduce a predicate for truth,
- 2. each existential variable replace by a predicate,
- 3. universal variables wrapped by the truth predicate:

is-true(t)
$$\land \neg$$
is-true(f) \land ($\forall X_u$. is-true(X_u) $\leftrightarrow p_e(X_u)$)

· Alternatively, use equality:

$$t \neq f \land (\forall X_u. (X_u = t) \leftrightarrow p_e(X_u))$$

• In this talk we consider prenex form: Quantifier-prefix. Matrix

In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)

- In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and \exists .

- In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and \exists .
- \forall wins a game if the matrix becomes false.

- In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and \exists .
- ∀ wins a game if the matrix becomes false.
- $\cdot \exists$ wins a game if the matrix becomes true.

- In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between ∀ and ∃.
- \forall wins a game if the matrix becomes false.
- $\cdot \exists$ wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for ∀.

- In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and \exists .
- ∀ wins a game if the matrix becomes false.
- $\cdot \exists$ wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for ∀.
- A QBF is true iff there exists a winning strategy for \exists .

- In this talk we consider prenex form:
 Quantifier-prefix. Matrix
 Example ∀u₁u₂∃e₁e₂. (¬u₁ ∨ e₁) ∧ (u₂ ∨ ¬e₂)
- A QBF represents a two-player game between \forall and \exists .
- ∀ wins a game if the matrix becomes false.
- $\cdot \exists$ wins a game if the matrix becomes true.
- A QBF is false iff there exists a winning strategy for ∀.
- A QBF is true iff there exists a winning strategy for ∃.
 Example

$$\forall u \exists e. (u \leftrightarrow e)$$

 \exists -player wins by playing $e \triangleq u$.

Solving QBF

Solving by CEGAR Expansion

$$\exists \mathcal{E} \, \forall \mathcal{U}. \, \phi \equiv \exists \mathcal{E}. \, \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Solving by CEGAR Expansion

$$\exists \mathcal{E} \, \forall \mathcal{U}. \, \phi \equiv \exists \mathcal{E}. \, \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Can be solved by SAT $(\bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu])$. Impractical!

Solving by CEGAR Expansion

$$\exists \mathcal{E} \, \forall \mathcal{U}. \, \phi \equiv \exists \mathcal{E}. \, \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Can be solved by SAT $\left(\bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu] \right)$. Impractical! Observe:

$$\exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu] \Rightarrow \exists \mathcal{E}. \ \bigwedge_{\mu \in \omega} \phi[\mu]$$
 for some $\omega \subseteq 2^{\mathcal{U}}$

What is a good ω ?

$$\exists \mathcal{E} \, \forall \mathcal{U}. \, \phi \equiv \exists \mathcal{E}. \, \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

Expand gradually instead: [Janota and Marques-Silva, 2011]

 \cdot Pick au_0 arbitrary assignment to ${\mathcal E}$

$$\exists \mathcal{E} \ \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- · Pick au_0 arbitrary assignment to ${\mathcal E}$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}

$$\exists \mathcal{E} \ \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- · Pick au_0 arbitrary assignment to $\mathcal E$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}

$$\exists \mathcal{E} \ \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- · Pick au_0 arbitrary assignment to $\mathcal E$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}
- SAT $(\neg \phi[\tau_1]) = \mu_2$ assignment to \mathcal{U}

$$\exists \mathcal{E} \ \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- · Pick au_0 arbitrary assignment to $\mathcal E$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}
- SAT $(\neg \phi[\tau_1]) = \mu_2$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0] \land \phi[\mu_1]) = \tau_2$ assignment to \mathcal{E}

$$\exists \mathcal{E} \ \forall \mathcal{U}. \ \phi \equiv \exists \mathcal{E}. \ \bigwedge_{\mu \in 2^{\mathcal{U}}} \phi[\mu]$$

- · Pick au_0 arbitrary assignment to $\mathcal E$
- SAT $(\neg \phi[\tau_0]) = \mu_0$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0]) = \tau_1$ assignment to \mathcal{E}
- SAT $(\neg \phi[\tau_1]) = \mu_2$ assignment to \mathcal{U}
- SAT $(\phi[\mu_0] \land \phi[\mu_1]) = \tau_2$ assignment to \mathcal{E}
- After n iterations

$$\exists \mathcal{E}. \bigwedge_{i \in 1...n} \phi[\tau_i]$$

Abstraction-Based Algorithm for a Winning Move

Algorithm for $\exists \forall$. Generalize to arbitrary number of alternations using recursion. [Janota et al., 2012].

1 Function Solve($\exists X \forall Y. \phi$)

Results, QBF-Gallery '14, Application Track

$$\exists x \dots \forall y \dots \phi \land y$$

Setting countermove $y \leftarrow 0$ yields false. Stop.

$$\exists x \dots \forall y \dots \phi \land y$$

Setting countermove $y \leftarrow 0$ yields false. Stop.

$$\exists x \dots \forall y \dots x \lor \phi$$

Setting candidate $x \leftarrow 1$ yields true (impossible to falsify). Stop.

$$\exists x \forall y. \ x \Leftrightarrow y$$

1. $x \leftarrow 1$

candidate

$$\exists x \forall y. \ x \Leftrightarrow y$$

- 1. $x \leftarrow 1$
- 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$

candidate countermove

$\exists x \forall y. \ x \Leftrightarrow y$

- 1. $x \leftarrow 1$
- 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$
- 3. $SAT(x \Leftrightarrow 0) \dots x \leftarrow 0$

candidate countermove

candidate

$\exists x \forall y. \ x \Leftrightarrow y$

- 1. $x \leftarrow 1$
- 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$
- 3. $SAT(x \Leftrightarrow 0) \dots x \leftarrow 0$
- 4. $SAT(\neg(0 \Leftrightarrow y)) \dots y \leftarrow 1$

candidate

countermove

candidate

countermove

$\exists x \forall y. \ x \Leftrightarrow y$

- 1. $x \leftarrow 1$
- 2. $SAT(\neg(1 \Leftrightarrow y)) \dots y \leftarrow 0$
- 3. $SAT(x \Leftrightarrow 0) \dots x \leftarrow 0$
- 4. $SAT(\neg(0 \Leftrightarrow y)) \dots y \leftarrow 1$
- 5. **SAT**($x \Leftrightarrow 0 \land x \Leftrightarrow 1$)... **UNSAT**

candidate

countermove

candidate

countermove

Stop

$$\exists x_1x_2 \forall y_1y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$$

1. $x_1, x_2 \leftarrow 0, 0$

$$\exists x_1x_2 \forall y_1y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. $SAT(\neg(0 \Leftrightarrow y_1 \lor \neg 0 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 1$

$$\exists x_1x_2 \forall y_1y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT(\neg (0 \Leftrightarrow $y_1 \lor \neg 0 \Leftrightarrow y_2$))... $y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. $SAT(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \dots x_1, x_2 \leftarrow 0, 1$

$$\exists x_1x_2 \forall y_1y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT(\neg (0 \Leftrightarrow $y_1 \lor \neg 0 \Leftrightarrow y_2$))... $y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. SAT $(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \ldots x_1, x_2 \leftarrow 0, 1$
- 4. SAT $(\neg(0 \Leftrightarrow y_1 \lor 1 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 0$

$$\exists x_1x_2 \forall y_1y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT(\neg (0 \Leftrightarrow $y_1 \lor \neg 0 \Leftrightarrow y_2$))... $y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. SAT $(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \ldots x_1, x_2 \leftarrow 0, 1$
- 4. $SAT(\neg(0 \Leftrightarrow y_1 \lor 1 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 0$
- 5. $SAT((x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \land (x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 0)) \dots$

$\exists x_1x_2 \forall y_1y_2. \ x_1 \Leftrightarrow y_1 \lor x_2 \Leftrightarrow y_2$

- 1. $x_1, x_2 \leftarrow 0, 0$
- 2. SAT(\neg (0 \Leftrightarrow $y_1 \lor \neg 0 \Leftrightarrow y_2$))... $y_1 \leftarrow 1, y_2 \leftarrow 1$
- 3. SAT $(x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \ldots x_1, x_2 \leftarrow 0, 1$
- 4. $SAT(\neg(0 \Leftrightarrow y_1 \lor 1 \Leftrightarrow y_2)) \dots y_1 \leftarrow 1, y_2 \leftarrow 0$
- 5. SAT $((x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 1) \land (x_1 \Leftrightarrow 1 \lor x_2 \Leftrightarrow 0)) \dots$
- 6. ...

Learning in QBF

$$\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1 \dots n} x_i \Leftrightarrow y_i$$

$$\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1 \dots n} x_i \Leftrightarrow y_i$$

• BUT: We know that the formula is immediately false if we set $y_i \leftarrow \neg x_i$.

$$\left(\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1...n} x_i \Leftrightarrow \neg x_i\right) \equiv \left(\exists x_1 \dots x_n. \ 0\right)$$

$$\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1 \dots n} x_i \Leftrightarrow y_i$$

• BUT: We know that the formula is immediately false if we set $y_i \leftarrow \neg x_i$.

$$\left(\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1...n} x_i \Leftrightarrow \neg x_i\right) \equiv \left(\exists x_1 \dots x_n. \ 0\right)$$

· Idea: instead of plugging in constants, plug in functions.

$$\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1 \dots n} x_i \Leftrightarrow y_i$$

• BUT: We know that the formula is immediately false if we set $y_i \leftarrow \neg x_i$.

$$\left(\exists x_1 \dots x_n \forall y_1 \dots y_n. \bigvee_{i \in 1...n} x_i \Leftrightarrow \neg x_i\right) \equiv \left(\exists x_1 \dots x_n. \ 0\right)$$

- · Idea: instead of plugging in constants, plug in functions.
- · Where do we get the functions?

[Janota, 2018]

 Enumerate some number of candidate-countermove pairs.

- Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.

- 1. Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.
- 3. Strengthen abstraction with the functions.

- 1. Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.
- 3. Strengthen abstraction with the functions.
- 4. Repeat.

- Enumerate some number of candidate-countermove pairs.
- 2. Run a machine learning algorithm to learn a Boolean function for each variable in the inner quantifier.
- 3. Strengthen abstraction with the functions.
- 4. Repeat.
- 5. Additional heuristic: If a learned function still works, keep it. "Don't fix what ain't broke."

<i>X</i> ₁	<i>X</i> ₂	 Xn	<i>y</i> ₁	<i>y</i> ₂	 Уn
0	0	 0	1	1	 1
1	0	 0	0	1	 1
0	0	 1	1	1	 0
0	1	 1	1	0	 0

<i>X</i> ₁	<i>X</i> ₂	 Xn	<i>y</i> ₁	<i>y</i> ₂	 Уn
0	0	 0	1	1	 1
1	0	 0	0	1	 1
0	0	 1	1	1	 0
0	1	 1	1	0	 0

• After 2 steps: $y_1 \leftarrow \neg x_1, y_i \leftarrow 1$ for $i \in 2..n$.

<i>X</i> ₁	<i>X</i> ₂	 Xn	<i>y</i> ₁	y ₂	 Уn
0	0	 0	1	1	 1
1	0	 0	0	1	 1
0	0	 1	1	1	 0
0	1	 1	1	0	 0

- After 2 steps: $y_1 \leftarrow \neg x_1, y_i \leftarrow 1$ for $i \in 2..n$.
- $SAT(x_1 \Leftrightarrow \neg x_1 \lor \bigvee_{i \in 2...n} x_2 \Leftrightarrow 1)$

<i>X</i> ₁	<i>X</i> ₂	 Xn	<i>y</i> ₁	y ₂	 Уn
0	0	 0	1	1	 1
1	0	 0	0	1	 1
0	0	 1	1	1	 0
0	1	 1	1	0	 0

- After 2 steps: $y_1 \leftarrow \neg x_1, y_i \leftarrow 1$ for $i \in 2..n$.
- $SAT(x_1 \Leftrightarrow \neg x_1 \lor \bigvee_{i \in 2...n} x_2 \Leftrightarrow 1)$
- After 4 steps: $y_1 \leftarrow \neg x_1 \ y_2 \leftarrow \neg x_2 \dots$

<i>X</i> ₁	<i>X</i> ₂	 Xn	<i>y</i> ₁	<i>y</i> ₂	 Уn
0	0	 0	1	1	 1
1	0	 0	0	1	 1
0	0	 1	1	1	 0
0	1	 1	1	0	 0

- After 2 steps: $y_1 \leftarrow \neg x_1, y_i \leftarrow 1$ for $i \in 2..n$.
- $SAT(x_1 \Leftrightarrow \neg x_1 \lor \bigvee_{i \in 2...n} x_2 \Leftrightarrow 1)$
- After 4 steps: $y_1 \leftarrow \neg x_1 \ y_2 \leftarrow \neg x_2 \dots$
- Eventually we learn the right functions.

· Use CEGAR as before.

- · Use CEGAR as before.
- · Recursion to generalize to multiple levels as before.

- · Use CEGAR as before.
- Recursion to generalize to multiple levels as before.
- · Refinement as before.

- Use CEGAR as before.
- · Recursion to generalize to multiple levels as before.
- · Refinement as before.
- Every K refinements, learn new functions from last K samples. Refine with them.

- Use CEGAR as before.
- · Recursion to generalize to multiple levels as before.
- · Refinement as before.
- Every K refinements, learn new functions from last K samples. Refine with them.
- Learning using decision trees by ID3 algorithm.

Current Implementation: Experiments

Bernays–Schönfinkel ("Effectively

Propositional Logic") — Finite

Models

 $\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)

 $\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)
- ϕ uses predicates p_1, \ldots, p_m and constants c_1, \ldots, c_n .

 $\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)
- ϕ uses predicates p_1, \ldots, p_m and constants c_1, \ldots, c_n .
- Finite model property: formulas has a model iff it has a model of size $\leq n$.

 $\forall X. \phi$

- ϕ has no further quantifiers and no functions (just predicates and constants)
- ϕ uses predicates p_1, \ldots, p_m and constants c_1, \ldots, c_n .
- Finite model property: formulas has a model iff it has a model of size $\leq n$.
- Therefore we can look for a model with the universe $*_1, \dots, *_{n'}, n' \le n$.

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \forall X. \phi$$

 p_i predicates, c_i constants, X variables

1. $\alpha \leftarrow \mathsf{true}$

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \forall X. \ \phi$$

 p_i predicates, c_i constants, X variables

- 1. $\alpha \leftarrow \texttt{true}$
- 2. Find interpretation for α : $\mathcal{I} \leftarrow \mathsf{SAT}(\alpha)$

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \forall X. \ \phi$$

 p_i predicates, c_i constants, X variables

- 1. $\alpha \leftarrow \texttt{true}$
- 2. Find interpretation for α : $\mathcal{I} \leftarrow \mathsf{SAT}(\alpha)$
- 3. Test interpretation: $\mu \leftarrow \mathsf{SAT}(\exists X. \neg \phi[\mathcal{I}])$

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \forall X. \phi$$

 p_i predicates, c_i constants, X variables

- 1. $\alpha \leftarrow \texttt{true}$
- 2. Find interpretation for α : $\mathcal{I} \leftarrow \mathsf{SAT}(\alpha)$
- 3. Test interpretation: $\mu \leftarrow \mathsf{SAT}(\exists X. \neg \phi[\mathcal{I}])$
- 4. If no counterexample, formula is true. STOP.

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \forall X. \phi$$

 p_i predicates, c_i constants, X variables

- 1. $\alpha \leftarrow \mathsf{true}$
- 2. Find interpretation for α : $\mathcal{I} \leftarrow \mathsf{SAT}(\alpha)$
- 3. Test interpretation: $\mu \leftarrow \mathsf{SAT}(\exists X. \neg \phi[\mathcal{I}])$
- 4. If no counterexample, formula is true. STOP.
- 5. Strengthen abstraction: $\alpha \leftarrow \alpha \land \phi[\mu/X]$

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \forall X. \ \phi$$

 p_i predicates, c_i constants, X variables

- 1. $\alpha \leftarrow \texttt{true}$
- 2. Find interpretation for α : $\mathcal{I} \leftarrow \mathsf{SAT}(\alpha)$
- 3. Test interpretation: $\mu \leftarrow \mathsf{SAT}(\exists X. \neg \phi[\mathcal{I}])$
- 4. If no counterexample, formula is true. STOP.
- 5. Strengthen abstraction: $\alpha \leftarrow \alpha \land \phi[\mu/X]$
- 6. GOTO 2

1. Consider some finite grounding:

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \cdot \phi[\mu]$$

 p_i predicates, c_i constants,

1. Consider some finite grounding:

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \cdot \phi[\mu]$$

 p_i predicates, c_i constants,

2. Calculate interpretation by e.g. Ackermanization.

1. Consider some finite grounding:

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \cdot \phi[\mu]$$

 p_i predicates, c_i constants,

- 2. Calculate interpretation by e.g. Ackermanization.
- 3. The interpretation only matters on the existing ground terms.

1. Consider some finite grounding:

$$\exists p_1 \dots p_m \exists c_1 \dots c_n \bigwedge_{\mu \in \omega} \cdot \phi[\mu]$$

 p_i predicates, c_i constants,

- 2. Calculate interpretation by e.g. Ackermanization.
- 3. The interpretation only matters on the existing ground terms.
- 4. *Learn* entire interpretation from observing values of existing terms.

1.
$$\forall X. p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$$

- 1. $\forall X. p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:

- 1. $\forall X. p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:
- 3. $(p(*_0,\ldots,*_0) \Leftrightarrow *_0 = t) \land (p(*_1,\ldots,*_0) \Leftrightarrow *_1 = t)$

- 1. $\forall X. p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:
- 3. $(p(*_0,\ldots,*_0) \Leftrightarrow *_0 = t) \land (p(*_1,\ldots,*_0) \Leftrightarrow *_1 = t)$
- 4. Partial interpretation:

$$t \triangleq *_1, p(*_0 \dots, *_0) \triangleq \mathsf{False}, p(*_1 \dots, *_0) \triangleq \mathsf{True}$$

- 1. $\forall X. p(X_1, \ldots, X_n) \Leftrightarrow (X_1 = t)$
- 2. Ground by $\{X_i \triangleq *_0\}$ and $\{X_1 \triangleq *_1, X_1 \triangleq *_0 \dots X_n \triangleq *_0\}$:
- 3. $(p(*_0,\ldots,*_0) \Leftrightarrow *_0 = t) \land (p(*_1,\ldots,*_0) \Leftrightarrow *_1 = t)$
- 4. Partial interpretation:

$$t \triangleq *_1, p(*_0 \dots, *_0) \triangleq \mathsf{False}, p(*_1 \dots, *_0) \triangleq \mathsf{True}$$

5. Learn: $t \triangleq *_1, p(X_1, ..., X_n) \triangleq (X_1 = *_1),$

Preliminary Results

Preliminary Results

Preliminary Results (Hard) - more then 1 sec

Learn vs. CEGAR, Iterations

Learn vs. CEGAR, Iterations — Only True

· Observing a formula while solving, learn from that.

- · Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)

- · Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- · Learning from Booleans:

```
For ... \exists \mathbb{B}^n \forall \mathbb{B}^m ..., learning \mathbb{B}^n \to \mathbb{B}
```


- · Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- · Learning from Booleans:

For ...,
$$\exists \mathbb{B}^n \forall \mathbb{B}^m ...$$
, learning $\mathbb{B}^n \to \mathbb{B}$

 Learning interpretations in finite models from partial interpretations:

For
$$\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$$
, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

- · Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- · Learning from Booleans:

For ...,
$$\exists \mathbb{B}^n \forall \mathbb{B}^m ...$$
, learning $\mathbb{B}^n \to \mathbb{B}$

 Learning interpretations in finite models from partial interpretations:

For
$$\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$$
, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

· How can we learn strategies based on functions?

- · Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- Learning from Booleans:

For ...,
$$\exists \mathbb{B}^n \forall \mathbb{B}^m ...$$
, learning $\mathbb{B}^n \to \mathbb{B}$

 Learning interpretations in finite models from partial interpretations:

For
$$\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$$
, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

- · How can we learn strategies based on functions?
- Infinite domains?

- · Observing a formula while solving, learn from that.
- Learning objects in the considered theory. (rather than strategies, etc.)
- · Learning from Booleans:

For ...
$$\exists \mathbb{B}^n \forall \mathbb{B}^m ...$$
, learning $\mathbb{B}^n \to \mathbb{B}$

 Learning interpretations in finite models from partial interpretations:

For
$$\exists (D_1 \times \cdots \times D_k \mapsto \mathbb{B}) \forall F_1 \times \cdots \times F_l \dots$$
, learning $D_1 \times \cdots \times D_k \to \mathbb{B}$

- · How can we learn strategies based on functions?
- · Infinite domains?
- · Learning in the presence of theories?

Thank You for Your Attention!

Questions?

Towards generalization in QBF solving via machine learning.

In AAAI Conference on Artificial Intelligence.

Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M. (2012).

Solving QBF with counterexample guided refinement. In *SAT*, pages 114–128.

