Solutions to Homework 8:

1. Proof. Relation R is symmetric and transitive

So, let $a\mathcal{R}b$ and $b\mathcal{R}a$ since R is symmetric

Now, for a relation to be transitive we know that if $x\mathcal{R}y$ and $y\mathcal{R}z \implies x\mathcal{R}z$

So, now since R is transitive, we have $a\mathcal{R}b$ and $b\mathcal{R}a \implies a\mathcal{R}a$

Hence R is reflexive

2. R is an equivalence relation

Proof. To prove that it is an equivalence relation we must show that R is reflexive, symmetric, and transitive.

- Reflexive: For any $a \in \mathbb{Z}$, we have (5a 8a) = 3(-a), which implies $3 \mid (5a 8a)$. Thus $a\mathcal{R}a$.
- Symmetric: Let $a, b \in \mathbb{Z}$ and assume $a\mathcal{R}b$. Then we see $3 \mid (5a 8b)$, and so 5a 8b = 3k for some $k \in \mathbb{Z}$. Then

$$5a + 3a + 3b - 8b = 3k + 3a + 3b \tag{1}$$

$$8a - 5b = 3(k + a + b) \tag{2}$$

$$5b - 8a = 3(-k - a - b) \tag{3}$$

$$3 \mod (5b - 8a) \tag{4}$$

Since $(-k-a-b) \in \mathbb{Z}$ we see that $3 \mid (5b-8a)$. Therefore R is symmetric.

• Transitive: Let $a, b, c \in \mathbb{Z}$ and assume $a\mathcal{R}b$ and $b\mathcal{R}c$. Then we see $3 \mid (5a - 8b)$ and $3 \mid (5b - 8c)$ So,

$$5a - 8b + 5b - 8c = 3n + 3m, \qquad \forall n, m \in \mathbb{Z}$$
 (5)

$$5a - 8c = 3(n + m + b) \tag{6}$$

$$3 \mod (5a - 8c) \tag{7}$$

Since $(n+m+b) \in \mathbb{Z}$ we see that $3 \mid (5a-8c)$. Therefore R is transitive.

Thus R is an equivalence relation.

3. (a)

• We see that by definition of the relation, it is reflexive since f(x) = f(x) so, $f\mathcal{R}f$

• If $f\mathcal{R}g$, then we know that $\exists x \in \mathbb{R}$ such that f(x) = g(x) and so this means that g(x) = f(x). Hence the relation is also symmetric i.e if $f\mathcal{R}g \implies g\mathcal{R}f$

• The relation is not transitive. Let f, g and h such that f(x) = 0, g(x) = x and h(x) = 1. We have $f\mathcal{R}g$ and $g\mathcal{R}h$ but it is not true that $f\mathcal{R}h$.

(b)

Let \mathcal{R} be a relation on \mathbb{Z} defined by:

$$x\mathcal{R}y \text{ if } xy \equiv 0 \pmod{4}.$$
 (8)

- We see that $(3,3) \notin \mathcal{R}$, since $3 \cdot 3 = 9 \not\equiv 0 \pmod{4}$. Therefore, the relation is not reflexive.
- This relation is symmetric since if $xy \equiv 0 \pmod{4}$, then $yx = xy \equiv 0 \pmod{4}$, that is, if $(x, y) \in \mathcal{R}$, then $(y, x) \in \mathcal{R}$.
- This relation is not transitive. For a counterexample, we can take, a = 3, b = 4, and c = 5. Then, we see that $(3, 4), (4, 5) \in \mathcal{R}$, whereas, $(3, 5) \notin \mathcal{R}$.
- 4. To prove that R is a partition of A, we will prove that all the sets in R are not intersecting

Proof. The sets in R are not intersecting which means

$$(U_1, U_2 \in R, U_1 \neq U_2) \implies (U_1 \cap U_2 = \phi) \tag{9}$$

Let U_1 and U_2 be sets in R

We will use contrapositive here

So, let $U_1 \cap U_2 \neq \phi$ Let $x \in U_1 \cap U_2$

By definition,

 $U_1 = S_1 \cap T_1$ and $U_2 = S_2 \cap T_2$ where $S_1, S_2 \in P, T_1$ and $T_2 \in Q$

Now, $x \in U_1$ and $x \in U_2$

Therefore, $x \in S_1, T_1$ and $x \in S_2, T_2$

Now, S_1, S_2 and T_1, T_2 are disjoint sets

Thus, for the x to be in all the sets, $S_1 = S_2$ and $T_1 = T_2$

Therefore, $U_1 = U_2$

- 5. Proof. We want to prove that the relation R is an equivalent realation
 - Reflexive: Let $A \in \mathcal{P}(E)$. Then $(x \in A) \lor (x \in \bar{A})$ And so , $(x \in A \cap A) \lor (x \in \bar{A} \cap \bar{A})$ Hence, $A\mathcal{R}A$.

- Symmetry: Let ARB This implies $(x \in A \cap B) \lor (x \in \overline{A} \cap \overline{B})$ And so , $(x \in B \cap A) \lor (x \in \overline{B} \cap \overline{A})$ Therefore, $ARB \implies BRA$ So, R is symmetric
- Transitive: Let $A, B, C \in \mathcal{P}(E)$ and assume that $A\mathcal{R}B$ and $B\mathcal{R}C$

$$((x \in A \cap B) \lor (x \in \bar{A} \cap \bar{B})) \land ((x \in B \cap C) \lor (x \in \bar{B} \cap \bar{C})). \tag{10}$$

So,

- Case 1: $(x \in A \cap B) \land (x \in B \cap C)$. Then $x \in A$ and $x \in C$ or $x \in A \cap C$

which implies ARC and R is transitive

- Case 2: $(x \in A \cap B) \land (x \in \overline{B} \cap \overline{C})$

that is $x \in B \cap \bar{B}$

But this case never happens

- Case 3: $(x \in \bar{A} \cap \bar{B}) \wedge (x \in B \cap C)$

that is $x \in A \cap \bar{A}$

But this case never happens

- Case 4: $(x \in \bar{A} \cap \bar{B}) \wedge (x \in \bar{B} \cap \bar{C})$. Which means $x \in \bar{A} \cap \bar{C}$

So, ARC and R is transitive

Therefore it is an equivalence relation since R is reflexive, symmetric and transitive. \Box

- 6. (a) To prove that $S = \{X_0, ..., X_{n-1} \text{ forms a partition of } \mathbb{Z} \text{ we need to prove that } :$
 - i. $\bigcup_{X \in \mathcal{S}} X = \mathbb{Z}$

Any element $x \in X_i$ can be written as x = nk + i

Also, by division algorithm, any integer x can be written as nk + i where $0 \le i < n - 1$

Therefore, $x \in \mathbb{Z}$ which implies

$$\bigcup_{X \in \mathcal{S}} X = \mathbb{Z}$$

ii. $X \cap Y = \phi$ or X = Y

Let $X, Y \in \mathcal{S}$ and so,

$$x \in X, y \in Y$$

Here let $X = X_i, Y = X_j$ and so x = nk + i and y = nk + j

So when i > j we let $x \in X_i$ and $x \notin X_j$

So,
$$x \in X_i - X_i$$

So,
$$X_i - X_j \subseteq X_i$$

Now let, $x \in X_i - X_j$ and so $x \in X_i \land x \notin X_j$

So,
$$X_i \subseteq X_i - X_i$$

Therefore $Xi - X_j = X_i$ or $X_i \cap X_j = \phi$ or $X \cap Y = \phi$ Consider i = j so in this case we will have $X_i = X_j$ or X = Y

So ,
$$X \cap Y = \phi$$
 or $X = Y$

So, S is a partition of \mathbb{Z}

(b) Proof. $R = \{(a, b) \mathbb{Z} X \mathbb{Z} | a, b \in X_i \}$

Reflexive: Let, $a \in X_i$

Hence, $(a, a) \in \mathbb{Z}X\mathbb{Z}$ since $a \in \mathbb{Z}$

And so \mathcal{R} is reflexive

Symmetric: Let $(a, b) \in R$

This implies $a, b \in X_i$

Since, $a, b \in Z$

So, $(b, a) \in \mathbb{Z}X\mathbb{Z}$

Therefore, $(a,b) \in R \implies (b,a) \in R$

So, R is symmetric

Transitive: Let $(a,b) \in R$ and $(b,c) \in R$

This implies, $a, b \in X_i$ $b, c \in X_i$

Now, $b \in X_i$ and $b \in X_j$

Since X_i and X_j are disjoint sets we have i = j

Therefore, $a \in Xi$ and $c \in Xi$

Therefore, $(a, c) \in R$

Thus, $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$

Hence, R is transitive

And so R is an equivalence relation since it is reflexive, symmetric and transitive

(c) Let Q denote the set of equivalence classes of R.

For any $X_i \in \mathcal{S}, X_i = \{x \in \mathbb{Z} | x = nk + i\}$

Now we know that , $[i] = \{x \in \mathbb{Z} | x \in X_i\} = \{x \in \mathbb{Z} | x \in X_i\} = X_i$

Therefore $S \subseteq Q$.

Also, for any $Y \in Q, Y = [x], \forall x \in \mathbb{Z}$

So, by the Euclidean division algorithm we have, x = nk + i, $\forall k \in \mathbb{Z}$ and

 $0 \le i < n - 1$

So, $Y = [x] = X_i$

And hence, $Q \subseteq S$

So, since $S \subseteq Q$ and $Q \subseteq S$ we have Q = S

7. (a) **Reflexive:** $\forall [a]_n \in \mathbb{Z}_n$ we know that, $[a]_n = [a \cdot 1]_n$

Kashish Joshipura Page 4 27745629

 $[a]_n = [a]_n \cdot [1]_n$ Hence R is reflexive

Symmetric: Let $[a]_n, [b]_n \in \mathbb{Z}_n$ and consequently let aRb be true,

Homework 8

So, for some invertible class $[u]_n, [v]_n \mathbb{Z}_n$ where $[v]_n$ is the inverse of $[u]_n$ we have

$$[a]_n \cdot [u]_n = [b]_n \tag{11}$$

$$[a]_n \cdot [u]_n \cdot [v]_n = [b]_n \cdot [v]_n \tag{12}$$

$$[a]_n \cdot 1 = [b]_n \cdot [v]_n \tag{13}$$

(14)

So, bRa is true

and hence R is symmetric

Transitive: Let $[a]_n, [b]_n, [c]_n \in \mathbb{Z}_n$ and let aRb and bRc be true.

So, for some invertible $[u]_n$, $[v]_n$, $[p]_n$, $[q]_n\mathbb{Z}_n$ where $[v]_n$ is the multiplicative inverse of $[u]_n$ and $[q]_n$ is the multiplicative inverse of $[p]_n$

So,
$$[c]_n = [a]_n \cdot [u]_n \cdot [p]_n$$

$$[c]_n = [a]_n \cdot [u \cdot p]_n$$

Now, we know that $[u \cdot p]_n = [u]_n \cdot [p]_n$

$$[u \cdot p]_n \cdot [v \cdot q]_n = [u]_n \cdot [p]_n \cdot [v]_n \cdot [q]_n \tag{15}$$

$$[u \cdot p]_n \cdot [v \cdot q]_n = [1]_n \tag{16}$$

Hence $[u \cdot p]_n$ is invertible and so

$$[c]_n = [a]_n \cdot [u \cdot p]_n$$

And so aRc is true

Hence R is transitive

So R is an equivalence relation since it is reflexive, symmetric and transitive.

(b) For n = 6,

$$R = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 5), (2, 4), (4, 2), (5, 1)$$

The equivalence classes are:-

$$[0] = {\phi}$$

$$[1] = \{1, 5\}$$

$$[2] = \{2, 4\}$$

$$[3] = \{3\}$$

$$[4] = \{2, 4\}$$

$$[5] = \{1, 5\}$$

$$[6] = \{6\}$$