

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta057

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- a) Să se calculeze modulul numărului complex $z = \frac{3}{5} + i \cdot \frac{4}{5}$. (4p)
- **b**) Să se calculeze distanța de la punctul O(0,0) la punctul $A\left(\frac{3}{5},\frac{4}{5}\right)$. (4p)
- c) Să se arate că punctul $A\left(\frac{3}{5}, \frac{4}{5}\right)$ este situat pe cercul de ecuație $x^2 + y^2 = 1$. (4p)
- **d**) Să se determine ecuația tangentei în punctul $A\left(\frac{3}{5}, \frac{4}{5}\right)$ la cercul de ecuație $x^2 + y^2 = 1$. (4p)
- e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(0,1,2), B(1,0,2), (2p)C(2,1,0) și O(0,0,0).
- f) Să se determine $a,b \in \mathbb{R}$, astfel încât punctele P(2,3) și Q(3,2) să fie situate pe dreapta (2p)x + ay + b = 0.

SUBIECTUL II (30p)

- (3p)a) Să se rezolve ecuația $\hat{x}^3 = \hat{x}, \hat{x} \in \mathbf{Z}_4$.
- **b)** Să se determine $n \in \mathbb{N}$, $n \ge 2$, astfel încât $C_n^2 = 2n$. (3p)
- c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^7 + 1$ are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(1).
- d) Să se rezolve în mulțimea numerelor reale ecuația $\log_2(x^2+7) = \log_2(2x^2+3x+7)$. (3p)
- e) Să se calculeze suma rădăcinilor polinomului $f = 3X^3 6X^2 + 24X + 1$. (3p)
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \ln(x^2 + 9) \ln(x^2 + 4)$.
- a) Să se calculeze $f'(x), x \in \mathbf{R}$ (3p)
- **b**) Să se calculeze $\int_{0}^{1} f'(x) dx$.
- c) Să se arate că funcția f este strict crescătoare pe intervalul $(-\infty,0]$ și strict descrescătoare (3p)pe intervalul $[0, \infty)$.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$.
- (3p) $| \mathbf{e} |$ Să se arate că $0 < f(x) \le \ln \frac{9}{4}$, $\forall x \in \mathbf{R}$.

SUBIECTUL III (20p)

În mulțimea $M_2(\mathbf{C})$ se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

precum și submulțimea $G = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \middle| z, w \in \mathbf{C} \right\}$, unde prin \overline{z} am notat

conjugatul numărului complex z.

- (4p) a) Să se verifice că $I_2 \in G$ și $O_2 \in G$.
- (4p) b) Să se demonstreze că dacă z = a + bi, $a,b \in \mathbb{R}$, atunci $z \cdot \overline{z}$ este un număr real.
- (4p) c) Să se arate că determinantul $\begin{vmatrix} z & w \\ -\overline{w} & \overline{z} \end{vmatrix}$ este un număr real.
- (2p) d) Să se găsească o matrice $X \in G$, cu proprietatea că $X \cdot J \neq J \cdot X$, unde $J = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.
- (2p) e) Să se arate că dacă $A \in G$ şi $A \neq O_2$, atunci A este matrice inversabilă şi $A^{-1} \in G$.
- (2p) f) Să se arate că ecuația $X^2 = -I_2$ are o infinitate de soluții în mulțimea G.
- (2p) g) Să se dea un exemplu de corp necomutativ.

SUBIECTUL IV (20p)

Se consideră funcția $f: (-1, \infty) \to \mathbf{R}$, $f(x) = \ln(1+x) - x$ și șirul $(I_n)_{n \ge 1}$, cu termenul general $I_n = n \int_0^1 \frac{x^n}{a+x^n} dx$, $\forall n \ge 1$, unde a este o constantă reală strict pozitivă.

- (4p) a) Să se calculeze f'(x), x > -1.
- (4p) b) Să se calculeze f(0) şi f'(0).
- (4p) c) Să se determine intervalele de monotonie ale funcției f.
- (2p) d) Să se deducă inegalitatea $\ln(1+x) \le x$, $\forall x > -1$.
- (2p) e) Să se demonstreze că $\frac{x}{a+x} \le \frac{x}{a}$, $\forall x \ge 0$ și apoi să se calculeze $\lim_{n \to \infty} \frac{I_n}{n}$
- (2p) f) Utilizând metoda integrării prin părți, să se arate că

$$I_n = \ln \frac{a+1}{a} - \int_0^1 \ln \left(1 + \frac{x^n}{a}\right) dx \quad , \quad \forall n \ge 1.$$

(2p) g) Să se calculeze $\lim_{n\to\infty} I_n$.

2