Europäisch s Patentamt

European Pat nt Offic

Office européen des brevets

EP 0 601 043 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 25.11.1998 Bulletin 1998/48
- (21) Application number: 92918688.0
- (22) Date of filing: 24.08.1992

- (51) Int CI.⁶: **C12N 15/62**, C12N 15/63, C07K 14/52, C12N 5/10, C12N 1/21, C12N 1/15, A61K 38/19, C07K 16/24
- (86) International application number: PCT/US92/07112
- (87) International publication number: WO 93/05169 (18.03.1993 Gazette 1993/08)

(54) HYBRID CYTOKINES

HYBRIDE CYTOKINE
CYTOKINES HYBRIDES

- (84) Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 SE
- (30) Priority: 30.08.1991 US 753178
- (43) Date of publication of application: 15.06.1994 Bulletin 1994/24
- (73) Proprietor: Fred Hutchinson Cancer Research Center Seattle Washington 98104 (US)
- (72) Inventors:
 - TODARO, George, J. Seattle, WA 98112 (US)
 - ROSE, Timothy, M.
 Seattle, WA 98115 (US)
- (74) Representative: Vossius, Volker, Dr. et al Dr. Volker Vossius, Patentanwaltskanzlei - Rechtsanwaltskanzlei, Holbeinstrasse 5 81679 München (DE)
- (56) References cited: WO-A-90/12877 US-A- 4 935 233

WO-A-91/02754

 International Journal of Cell Cloning, Vol. 9, issued 1991, D.E. WILLIAMS et al., "Hybrid cytokines as hematopoietic growth factors", pages 542-547, see entire document.

- Cancer, Vol. 67, issued 1991, D.E. WILLIAMS and L.S. PARK, "Hematopoietic effects of granulocyte macrophage colony-stimulating factor/interleukin-3 fusion protein", pages 2705-2707, see entire document.
- Eur. J. Biochem., Vol. 175, issued 1988, R.J.
 SIMPSON et al., "Structural characterization of murine myeloid leukemia inhibitory factor", pages 541-547, see entire document.
- EMBO J., Vol. 6, No. 10, issued October 1987, K. YASUKAWA et al., "Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene", pages 2939-2945, see entire document.
- Moi. Cell. Biol., Vol. 9, No. 7, issued July 1989, N. MALIK et al., "Molecular cloning, sequence analysis, and functional expression of a novel growth regulatory, oncostatin M", pages 2847-2853, see entire document.
- FEBS LETTERS., vol.306, no.2 3, 20 July 1992, AMSTERDAM NL pages 262 - 264 FRANK W.G. LEEBEEK ET AL. 'Construction and functional analysis of hybrid interleukin-6 variants.
 Cgaracterization of the role of the C-terminus for species specificity'

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

- 0 601 043 B1

面

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convintion).

5

10

15

20

25

35

40

45

50

55

EP 0 601 043 B1

D scripti n

Technical Field

. The invention relates to the field of cell proliferation and differentiation and to factors which regulate the composition of the blood and the viability of other tissues. More specifically, the invention concerns hybrid cytokines which have unique physiological properties derived from the cytokine family members leukemia inhibitory factor (LIF); granulocyte colony stimulating factor (G-CSF); interleukin-6 (IL-6); and oncostatin-M (OSM).

Background Art

More than two dozen cytokines that regulate blood composition by controlling the growth and differentiation of hematopoietic stem cells have been identified. The interferons, tumor necrosis factor, stem cell factor, the numbered interleukins and the various colony stimulating factors are exemplary of these proteins and glycoproteins. The invention described below focuses on four closely related cytokines whose structural similarity has been discovered by appli-

One of these factors, interleukin-6 (IL-6) was originally identified as a B-cell differentiation factor, but has subsequently been shown to induce acute phase proteins in liver cells, to inhibit growth of certain myeloid leukemia cell lines and induce their differentiation into macrophage cells, to promote IL-3 dependent colony formation of primitive blast colony forming cells, to cause differentiation of neuronal cells, to enhance keratinocyte and mesangial cell growth, to promote the maturation of megakaryocytes, and to induce the proliferation and differentiation of T cells. In vivo, IL-6 increases the hematopoietic cell count of the erythroid, myeloid, and thrombocytic lineages. Other former names for IL-6 are beta2-interferon, B-cell stimulatory factor-2, hybridoma/plasmacytoma growth factor, and monocyte granulocyte inducer type 2. The spectrum of activities attributable to IL-6 indicates that it is useful in tumor inhibition, bone remodeling, kidney development, and T- and B-cell proliferation and stimulation.

Leukemia inhibitory factor (LIF) has been demonstrated to inhibit the growth of certain myeloid leukemia cells and to induce their differentiation into macrophage cells; to enhance interleukin-3 dependent colony formation of primitive blast cells; to promote megakaryocyte growth and differentiation; to induce neuronal differentiation; to stimulate the production of acute phase proteins and hepatocytes (all properties it shares with IL-6) and to inhibit the differentiation of embryonic stem cells and kidney cells and to induce bone resorption.

Oncostatin-M (OSM) is known to be a tumor inhibitor for melanoma and certain carcinoma cells and inhibits the growth of human A375 melanoma cells but not normal human fibroblasts. It is also an inhibitor of the growth of M1 myeloid leukemic cells and induces their differentiation into macrophage-like cells as well as stimulating megakaryocyte production in the spleen. This factor was first isolated from conditioned medium of U937 human histolytic leukemia cells that had been induced with phorbol myristate acetate (PMA) and is also present in the supernatants of activated human T-cells.

Granulocyte colony stimulating factor (G-CSF) stimulates neutrophil proliferation and differentiation and induces the differentiation of M1 murine myeloid leukemic cells into macrophage-like cells as well as enhancing interleukin-3 dependent colony formation of primitive blast cells. It appears to have little effect on the hematopoietic cell lineages of megakaryocytes or platelets but enhances cytosine arabinoside-mediated cytoxicity in human myeloid leukemia cells.

The reported biological activities of the foregoing cytokine family members is summarized in the following table:

Table 1
Reported Biological Activities of Cytokine Family Members

5

10

15

20

25

30

3**5**

40

45

50

55

	TIE	MSO	G-CSF	9-TI
Endothelial Cell Proliferation	NR	+	NR	NR
Tumor Inhibition	+	+	NR	+
Embryonic Stem Cell Maintenance	+	+	NR	NR
Hematopoietic Leukemic Cell Differentiation	+	+	+	+
Melanoma Cell Inhibition	ı	+	1	+
Neutrophil Proliferation/Stimulation	NR	NR	+	+
Myoblast Proliferation	+	NR	NR	NR
Bone Remodeling	+	MR	NR	+
Kidney Development	+	NR	NR	X.
Neuronal Differentiation	+	MR	NR	+
Hepatocyte Stimulation	+	NR	NR	+
Megakaryocyte Augmentation	+	NR	ı	+
T-Cell Proliferation	NR	NR	NR	+
Keratinocyte Proliferation	NR	NR.	NR	+
B-Cell Proliferation/Stimulation	NR	NR	NR	+
Binding to Human Placental Cell Receptor	+	+	1	•

These data were obtained from multiple assay systems and few direct comparisons of вувсетв other the growth factors have been made. The table lists several biological of which one of the four growth factors shows activity, while the role family members is not yet known. NR=not reported

As shown in the foregoing table, the four related factors that are the subject of the present invention do not display identical activity patterns. Although a number of characteristics have not yet been reported for each of these factors, it is clear that at least one difference in activity spectrum exists between any two of them. For example, OSM and IL-

6 inhibit the growth of melanoma cells: LIF and G-CSF do not. However, LIF and G-CSF differ in that LIF is capable of augmenting megakaryocytes; G-CSF is not. OSM binds to human placental cell receptor; IL-6 does not.

While there have been excellent clinical successes, especially with the use of G-CSF in enhancing the health of the immune system and white blood cell replacement in patients with depleted lymphocyte populations, such as patients undergoing radiation or chemotherapy, no ideal pharmaceutical which has the desired effects, free of complications, has been discovered. Clearly this is not surprising, since normally the composition of the blood is regulated by controlling the differentiation of cells originating in the bone marrow through the interaction of a multiplicity of indigenous factors whose levels are in turn presumably controlled by mechanisms not yet understood. Thus, it is desirable to augment the repertoire of available therapeutic agents which participate in the control of blood composition. The present invention augments this repertoire by providing hybrid cytokines with unique properties characteristic of these previously unavailable therapeutic agents.

Williams et al., Int. J. Cell Cloning 9 (1991), 542-547 disclose the creation of a granulocyte-macrophage colony-stimulating factor (GM-CSF)/interleukin 3 (IL-3) fusion protein; see page 542, Abstract, lines 2 and 3. This fusion protein (PIXY321) is a combination or fusion of the two complete native cytokines GM-CSF and IL-3 which results in a recombinant polypeptide with at least eight helical regions.

WO 91/02754 discloses the construction of fusion proteins comprising GM-CSF and IL-3; see page 1, lines 11 and 12. The fusion proteins include constructs in which the C-terminal portion of GM-CSF is fused to the N-terminal portion of IL-3, and also constructs in which the C-terminal portion of IL-3 is fused to the N-terminal portion of GM-CSF. Specifically, the fusion proteins have the formula selected from the group consisting of

$$\mathsf{R_1}\text{-}\mathsf{R_2},\,\mathsf{R_2}\text{-}\mathsf{R_1},\,\mathsf{R_1}\text{-}\mathsf{L}\text{-}\mathsf{R_2}$$
 and $\mathsf{R_2}\text{-}\mathsf{L}\text{-}\mathsf{R_1}$

wherein R₁ is GM-CSF; R₂ is IL-3; and L is a linker peptide sequence.*

Williams and Park, Cancer 67 (1991), 2705-2707 disclose the production of a GM-CSF/IL-3 fusion protein (pIXY 321) in a yeast expression host and the hematopoietic effects of this fusion protein; see page 2705, Abstract, lines 4 and 5 and Headline. To produce the fusion protein an expression vector was constructed containing sequences encoding (5') GM-CSF, followed by sequences encoding a flexible synthetic linker sequence and the coding region of IL-3 (-3'); see page 2705, right column, second para, lines 3 to 6.

Disclosure of the Invention

5

10

15

20

25

30

35

40

45

55

The invention is directed to therapeutic hybrid cytokines which are composed of portions of the closely related cytokines leukemia inhibitory factor (LIF), granulocyte-colony stimulating factor (G-CSF), interleukin-6 (IL-6) and on-costatin-M (OSM). These cytokines have a high degree of sequence homology (as well as a similar genetic organization. It is disclosed in the art that IL-6 and G-CSF are comprised of four α -helical regions; applicants herein have deduced that LIF and OSM also are comprised of four α -helical regions organized in a similar manner. In each case, the four helical regions are linked by non- α helical sequences of about 5-100 amino acids, and in some cases the α -helices are maintained in the proper conformation and geometry with respect to each other through disulfide bridges. The hybrid cytokines of the invention also contain four α -helical regions, at least two of which are derived from the corresponding α -helical regions of different members of this group. The linking amino acid sequences preferably are also derived from the four factors described herein.

Thus, in one aspect, the invention is directed to a hybrid cytokine comprising a first, second, third and fourth α -helical region. Each of these regions is derived from the corresponding α -helical region of LIF, G-CSF, IL-6, or OSM. At least one of these regions is derived from a different factor of this group than at least one other.

In additional aspects, the invention is directed to DNA sequences encoding the hybrid cytokines, to expression systems capable of expressing these DNAs, to host cells transformed with these expression systems and to methods to produce the hybrid cytokines recombinantly. In still other aspects, the invention is directed to pharmaceutical compositions containing the hybrid cytokines of the inventions and to methods to effect therapies using these compositions. In addition, the invention is directed to antibodies or fragments specifically immunoreactive with these hybrid cytokines.

Brief Description of the Drawings

Figure 1 shows the complete amino acid sequences of LIF, OSM, G-CSF and IL-6 from various species--human, murine, and simian (SEQ ID NO:1), (SEQ ID NO:2), SEC ID NO:3), (SEQ ID NO:4), (SEQ ID NO:5), (SEQ ID NO:6), SEQ ID NO:7), and (SEQ ID NO:8).

Figure 2 shows the three-dimensional organization deduced for the OSM, LIF, G-CSF and IL-6 factors used to construct the hybrids of the invention. Also shown in this figure is the three-dimensional organization of growth hormone

which has been confirmed by X-ray crystallography.

Modes of Carrying Out the Invention

5

45

50

55

The availability of the DNA sequences encoding the four factors used as portions of the hybrid, LIF, G-CSF, IL-6 and OSM, makes possible the construction of recombinant DNA encoding the desired hybrid cytokine. As shown in Figure 1, the complete amino acid sequence (and corresponding DNA sequence) is available with respect to human, murine and simian forms of these cytokines. The close homology shown among species also makes possible the retrieval of the corresponding DNAs from additional species producing such cytokines, such as feline, canine, bovine, avian, and other vertebrate species. Natural allelic variants may also be retrieved. Accordingly, the hybrid cytokine encoding DNA can be constructed using DNAs of species origin appropriate for the particular hybrid desired.

The DNA encoding the amino acid sequences of the hybrid cytokines will be "derived from" the DNA encoding the relevant portions of the native cytokine. By "derived from" is meant that the amino acid sequence encoded is the same as that of the native protein--either that shown in Figure 1, a naturally-occurring allelic variant, a mutant shown to bind to the receptor of the relevant cytokine in standard in vitro assays, or that of an additional species obtainable by using the known species DNA as probes. "Derived from" does not imply any physical derivation. Typically, the portions of the protein sequence "derived from" the native cytokines are, in fact, prepared using either genomic or cDNA, synthesized DNA, or combinations of these. Of course, any DNA encoding the desired sequence can be used, not necessarily that DNA sequence which occurs natively. "Derived from," thus, has no implications that the physical embodiment of either the DNA or the protein portion is used in the hybrids of the invention, but that the information provided by the native sequences is used in the construction of suitable DNA and protein.

Exemplary amino acid sequences for the relevant cytokines of various species are shown in Figure 1. The hybrid cytokines of the invention derive amino acid sequences from at least two of the four related factors—leukemia inhibitory factor (LIF), granulocyte-colony stimulating factor (G-CSF), interleukin-6 (IL-6), and oncostatin-M (OSM). The amino acid sequences of each of these factors in human and other species is known, and the encoding genes have been cloned. Human and murine genes encoding LIF are reported by Moreau, J.F., et al., Nature (1988) 336:690-692; and by Simpson, R.J., et al., Eur J Biochem (1988) 175:541-547; for human and murine G-CSF by Nagata, S., et al., Embo J (1986) 5:575-581, and by Tsuchiya, M., et al., Proc Natl Acad Sci USA (1986) 83:7633-7637; for human and murine IL-6 by Yasukawa, K., et al., Embo J (1987) 6:2939-2945, and by Tanabe, O., et al., J Immunol (1988) 141:3875-3881; and for human OSM by Malik, N., et al., Mol Cell Biol (1989) 9:2847-2853; and for simian OSM (unpublished results).

Alignments for the amino acid sequences of these proteins are shown in Figure 1. The homology correlations, alignment, and secondary structure determinations were conducted using a number of software packages including PatMat software (Henikoff, S., et al., Methods Enzymol (1990) 183:111-132; GenPro software (Riverside Scientific, Seattle, WA)); P/C Gene Software, Intelligenetics, Inc. (Mountain View, CA); Scor Edit from J. Durand (Seattle, WA); Motif Program (Smith, H.O., Proc Natl Acad Sci USA (1990) 87:826-830) as implemented in the Protomat/Motif J software from S. Henikoff (Seattle, WA).

Application and interpretation of these programs also led to a prediction of secondary structure for the four factors which comprise the cytokines of the invention.

The results of this work are shown in Figure 2. As shown in Figure 2, each of LIF, G-CSF, IL-6, and OSM contain four α -helical regions numbered I-IV. The various factors also show disulfide bridges; OSM and LIF having similar locations for the disulfides; as shown OSM and LIF show similar genetic patterns; G-CSF and IL-6 also show similar patterns with each other. The disulfide bond linking the fourth α -helical region and the linking region between the first and second α -helices predicted in LIF and shown to be present in OSM is also found in the structure of growth hormone.

In human OSM, the α -helical region I extends approximately from amino acid 11-32; α -helical region II from 78-99; α -helical region III from 105-131; and α -helical region IV from 157-184. The locations of the various regions of α -helices for the human forms in these four factors are shown in Table 2.

Table 2

Factor	Region	ı	11	111	IV
OSM		11-32	78-99	105-131	157-184
LIF		19-46	72-97	108-133	154-180
G-CSF		12-24, 45-56	68-93	104-127	139-173
IL-6		24-41, 54-63	79-102	110-136	147-183

As implied in the table, the various helical regions in each case will be linked by nonhelical peptide sequences designated herein "linking sequences." Thus, for OSM, for example, linking sequence L/II extends from residue 33-77;

linking region II/III from position 100-104; and linking region III/IV from position 132-156. In G-CSF and IL-6, the α -helical region I is divided into two portions separated by a nonhelical portion in each case. As shown, some of the linking regions, such as OSM linking region II/III are quite short--in this case, only about 5 amino acids. In other cases, an extended linking region is found.

5

10

15

20

25

30

40

45

50

The hybrid cytokines of the invention contain four helical regions each derived from the "corr sponding" helical region in one of the four factors described above. As used herein, derived from the "corresponding" α -helical region means that the first α -helical region (I) of the hybrid cytokine contains the same or substantially identical amino acid sequence as α -helical region I of either OSM, LIF, G-CSF or IL-6; the second α -helical region (II) of the hybrid cytokine has the same or substantially identical amino acid sequence as that of α -helical region II of one of these factors, and so forth. The four α -helical regions of the hybrid cytokines are connected by additional nonhelical linking regions ranging from about 4 to about 100 amino acids. In addition, each of the helical regions may be interrupted by one or more nonhelical sequences containing about 8-30 amino acids, analogous to the situation for the first helical regions of the native forms of G-CSF and IL-6.

It is preferred that the helical regions in the hybrid be derived from the cytokine characteristic of the species for which the use is intended. Thus, for human therapy, it is preferred that all four of the regions be derived from the human forms of the cytokines. For veterinary use, for example, in dogs, it is preferred that all of the helical regions derive from the dog corresponding regions. However, in view of the homology exhibited among species with respect to these cytokines, it is within the scope of the invention to combine regions derived from various species.

It is also preferred that the nonhelical linking regions be derived from the corresponding linking regions in the native cytokines. Thus, it is preferred that linking region I/II in the hybrid be derived from linking region I/II of one of the G-CSF, OSM, LIF and IL-6. Derivation from the species for which use is intended is also preferred. However, included within the scope of the invention are hybrid molecules which have arbitrarily chosen linking regions selected to keep the conformation of the three-dimensional molecules similar to those of the native cytokines.

In preferred embodiments, either helical regions I, II, and III are derived from the same factor and IV from a different factor or, conversely, regions II, III and IV are from the same factor and region I is from a different one. In general, it is preferred that regions II and III derive from the same source.

Also preferred are embodiments wherein the relative polarity orientation of regions I-IV is undisturbed from a natural pattern, in particular, regions I and IV with respect to each other. It will be noted that in all four factors the N→C directions of regions I and IV are opposite. Similarly, the N→C orientations of regions II and III are of opposite polarity. In OSM and LIF, the lengths of the linking region I/II and of linking region IIII/IV permit regions I and IV to be oriented N→C in the same orientation as regions II and III, respectively. The short segments in the linking regions I/II and IIII/IV in G-CSF and IL-6 force regions I and II and IV to be in opposite orientations N→C, respectively. However, the "double negative" for G-CSF and IL-6 results in the same relative orientations with respect to regions I and IV in G-CSF and IL-6 as is the case in OSM and LIF.

Thus, in preferred embodiments, either both of linking regions I/II and III/IV will be of about 20-100 amino acids to allow for the parallel orientation of joined helical regions as in LIF and OSM, or both should be relatively short of less than 20 amino acids to force antiparallel orientation in both cases as in G-CSF and IL-6. Thus, the linking regions should be selected so as to assure antiparallel orientation of regions I and IV in all cases.

Also particularly preferred embodiments are those wherein the first and second α -helical regions are derived from G-CSF or wherein at least one region is derived from IL-6. Particularly preferred embodiments with respect to the origin of the α -helical regions are as follows, wherein the α -helical regions I-IV are ordered as shown, and wherein G represents G-CSF; L represents LIF; I represents IL-6; and O represents OSM: GGGI; OOOI; LLLI; IIIO; GGGO; OOOG; LLLO; IIIG; GGGL; OOOL; LLLG; IIIL; IGGG; IOOO; ILLL; OIII; OGGG; GOOO; OLLL; GIII; LGGG; LOOO; GLLL; LIII; GGLL; GGII; GGOO; GILO; LOGI; LLII: LLGG; IIGG; and OOGG.

The α -helical regions shown are, then, linked through nonhelical linking regions of 4-100 amino acids, preferably derived from the linking regions of the native cytokines. Thus, preferred embodiments of the foregoing are those wherein the linking regions are as indicated derived from the corresponding linking region of the native cytokine. In the abbreviations used in the following, g represents a linking region from G-CSF; 1 represents a linking region from LIF; i represents a linking region from IL-6; and o represents a linking region from OSM. In each case, the indicated linking region is derived from the corresponding linking region of the indicated cytokine; thus that shown between α -helical sequence I and II is derived from the linking region I/II.

Thus, especially preferred are the following: GIGILIL; GIGgIII; GgGgOgO; GIGiGoI; IiGgGgG; GgliLiO; LgOgGgI; LoLlioI; GgGgGgO; GgGgGgL; OoOoOoG; LILILIG; GoOoOoO; OgGgGgG; LgGgGgG; GiGgGiI.

As it is believed that the disulfid linkages shown in Figure 2 ar helpful in maintaining conformation, choic of the suitable linking region or α helpful linking region derived linking or helpful linking linking

Synthesis of the Hybrid Cytokines

15

20

35

40

45

The hybrid cytokines, in principle, could be made using standard solid-phase peptide synthesis techniques, in combination with linking technology. How ver, synthesis of peptides of the appropriate length is laborious and difficult. Conditions would need to be provided subsequent to the synthesis to effect the three-dimensional folding required for the molecules to assume the α -helical and tertiary conformations shown. A more practical approach to the preparation of the hybrid cytokines of the invention is the recombinant production thereof.

Use of recombinant technology to produce any desired protein is by now well established in the art. The requirements for such recombinant production are well known-the provision of a coding sequence for the desired protein, which coding sequence will be operably linked to additional DNA sequences capable of effecting its expression. It may be desirable to produce the hybrid cytokines as fusion proteins which can be freed from upstream or downstream (or intermediate) regions or to produce them linked to leader sequences capable of effecting the secretion of the desired cytokines into the cell culture medium.

The DNA-based expression system will also contain "control sequences" which are necessary for the transcription and translation of the message. Known components required for expression include promoter systems which may be constitutive or inducible, translational initiation signals, in eucaryotic expression, polyadenylation translation termination sites, and transcription terminating sequences. Host vectors containing these controls which permit desired coding sequences to be operably linked to the required control systems are by now well established in the art, and such vectors operable in a variety of hosts can be found.

Thus, the hybrid cytokines of the invention may be produced in procaryotic cells using appropriate controls, such as the trp or lac promoter, or in eucaryotic host cells which are capable of effecting the post-translational processing that permits that protein to assume the desired three-dimensional conformation. Eucaryotic control systems and host vectors are also well known; including the leu and glycolytic promoters useful in yeast, the viral SV40 and adenovirus promoters in mammalian cells, inducible promoters such as the metallothionein promoter also suitable for mammalian cells, and the baculovirus system which is operable in insect cells. Plant vectors with suitable promoters, such as the nos promoter are also well known.

The hybrid cytokines of the invention can be prepared conveniently in procaryotic as well as eucaryotic hosts since, although generally glycosylated in their native forms, glycosylation is known not to be essential for their activity. Suitable conditions for refolding can also be provided as is understood in the art.

Standard techniques for expression of DNAs encoding any desired protein and techniques and methodologies for culturing the appropriate cells, providing the conditions suitable for expression, and recovering the protein from the culture are summarized, for example, in standard laboratory manuals, such as those published by Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.

Thus, for recombinant production of the hybrid cytokines, suitably constructed DNA encoding the desired hybrid is operably linked to control sequences in a suitable expression system which is then transformed or transfected into a compatible host. The host cells are cultured using conditions appropriate to their growth, and expression is preferably induced after some growth has occurred. Production of the hybrid cytokine is then monitored and the cytokine collected from the culture either from the supernatant or by lysing the cells.

Purification procedures analogous to those known in the art for the native cytokines can be used to effect purification of the cytokine to a form suitable for therapeutic or diagnostic use.

Preparation of Antibodies

Antibodies specifically reactive with the hybrid cytokines of the invention or immunoreactive fragments of these antibodies may be prepared using standard immunization protocols. These may be utilized as polyclonal antisera or the spleen cells or peripheral blood lymphocytes of the immunized animals may be immortalized to obtain isolated cell cultures which produce monoclonal antibodies specific for these hybrids. The antibodies may be used intact, or as fragments such as Fab, Fab' or F(ab')₂ fragments. As the hybrid cytokines are relatively large proteins, it should not be necessary to enhance their immunogenicity by conjugation to carrier, however, such enhancement is possible and construction of such conjugates is well known in the art.

Thus, the hybrid cytokine, optionally conjugated to an immunological carrier, is administered in a standard immunization protocol with or without the use of adjuvant to a suitable subject, usually rats, sheep, or rabbits. Antibody formation is monitored by titrating the serum using the cytokine as antigen and employing standard immunoassay techniques. When high titers are achieved, the sera can be used per se or the spleen cells or peripheral blood lymphocyt is isolated and immortalized, for example, using the fusion technique of Kohler and Millstein to provide immortalized cells capable of a creting the desired monoclonal antibodies. Individual clones of these immortalized cells are then screened, again using standard immunological techniques, for thos colonies which secrete antibodies specifically immunoreactive with the hybrid cytokin immunogen.

The antibodies prepared in the foregoing manner or fragments thereof are useful in diagnostic assays for monitoring the pharmacokinetics and progress of therapeutic regimens using the hybrid cytokines of the invention. Thus, the dosage levels of the hybrid cytokines in the therapeutic applications set forth below can be regulated according to the metabolic fate of the pr viously administered dosages.

Administration and Utility

5

20

25

30

35

45

50

55

The hybrid cytokines of the invention are useful in treating the indications for which their native counterparts are often employed. However, the hybrid forms of the cytokines possess unique properties which make them suitable alternatives in the methods and procedures commonly employed with respect to the native molecules.

In addition, some of the hybrid cytokines are capable of binding the receptors ordinarily bound by the native molecules but fail to activate these receptors. These forms of the hybrid cytokines are, thus, antagonists. These may be useful in treating conditions where presence of the parent factor that ordinarily binds to the receptor is responsible for undesired cell proliferation. For example, IL-6 and OSM are known to be associated in high levels with Kaposi's sarcoma. These are found also in high concentrations in the synovial fluid from patients suffering from rheumatoid arthritis. In these conditions, the hybrid cytokine antagonists are particularly useful.

Conversely, the hybrid cytokines which are agonists can be employed in circumstances wherein the native cytokines are often used. For instance, these agonist hybrid cytokines may be used in liver cell regeneration and in in vitro fertilization procedures to enhance these processes.

The hybrid cytokine may possess properties exhibited by neither of its components taken alone. It is known, for example, that coadministration of LIE and G-CSF results in a synergistic effect in inhibiting colony formation and inducing differentiation of human U937 and HL60 myelocytic leukemia cell lines although neither alone has this effect (Maekawa, T., and Metcalf, D., <u>Leukemia</u> (1989) 3:270-276.) Similarly, applicants have found that although neither LIP nor OSM inhibit colony formation of U937, when supplied in combination, at 10 ng/ml using 300 cells in soft agar, more than 60% inhibition of colony formation is obtained.

Thus, combination of the α -helical regions from more than one growth factor results in hybrid cytokines with a unique spectrum of properties. These hybrid cytokines are useful generally in inhibiting tumor proliferation, in bone remodeling, in stimulating the differentiation and growth of desired cells, such as neurons or T-cells, and in enhancing the differentiation of hematopoietic cells. These factors are therefore highly useful in the direct treatment in the malignancies. They are especially useful in maintaining the general health and immune capacity of a subject undergoing radiation therapy or chemotherapy for such indications.

The selection of particular conditions or procedures suitable for the hybrid cytokine in question depends, of course, on its particular spectrum of agonist or antagonist activities.

The properties of a particular hybrid can be ascertained through standard in vitro tests well known in the art. Such tests include those, for example, which show induction of differentiation into macrophages (Tomita, M., et al., J Biol Chem (1984) 259:10978-10982); ability to enhance interleukin-3-dependent colony formation of primitive blast cells (Leary, A.G., et al., Blood (1990) 75:1960-1964); promotion of megakaryocyte growth and differentiation (Metcalf, D., et al., Blood (1990) 76:50-56); induction of neuronal differentiation (Yamamuri, T., et al., Science (1989) 246: 1412-1416); and induction of bone resorption (Ishimi, Y., et al., J Immunol (1990) 145:3297-3303). A large number of indicators in vitro of the ability of these factors to stimulate growth and differentiation of desired cells and inhibit the growth of undesired malignant cells is known in the art. Animal model systems can also be used to verify the unique spectrum of properties associated with each hybrid cytokine.

Particularly useful <u>in vitro</u> tests which can be used to confirm the spectrum of activity of the hybrid cytokines are as follows:

The inhibition of DNA synthesis in M-1 myeloid leukemic cells can be measured; the effect on growth of human A-375 melanoma cells (Zarling, J.M. et al., <u>Proc Natl Acad Sci USA</u> (1986) <u>83</u>:9739-9743) may be measured, or the effect of these factors on embryonic stem cells cultured in <u>vitro</u> as described by Smith, A.G. et al., <u>Devel Biol</u> (1987) <u>121</u>:1-9; Williams, R.L. et al., <u>Nature</u> (1988) <u>336</u>:684-687, can be determined.

The foregoing procedures can be adapted to assess both agonist and antagonist behavior. In assessing antagonist behavior, the candidate hybrid cytokine is used in the presence of a known agonist and its effect on the activity of the known agonist is assessed.

As set forth above, the hybrid cytokines of the invention are applicable to <u>in vivo</u> and <u>in vitro</u> procedures involving both human and animal cells. They are suitable for both medical and veterinary use.

For therapeutic use, the hybrid cytokines of the invention are formulated into standard pharmaceutical compositions suitable for the administration of proteins. Suitable formulations can be found, for example, in Reministration of proteins. Suitable formulations can be found, for example, in Reministration of proteins. Suitable formulations can be found, for example, in Reministration of proteins. Suitable formulations for veterinary use are also known in the art. Generally, administration is systemic, usually by injection, such as intravenous or intramuscular injection or can be affected by transdermal or preferably transmucosal delivery. Suitable formulations for effecting

transmucosal delivery include, for example, various detergents and bile salts or fusidic acid derivatives. Enteric compositions which permit oral administration may also be employed.

The dosage levels of the hybrid cytokines of the invention are comparable to those useful for the native molecules. These levels are understood in the art, and the precise dosage can be adjusted according to the condition of the patient, the mode of administration, and the judgment of the attending physician.

The hybrid cytokines of the invention may also be labeled using suitable fluorometric, colorimetric, enzymic, or radioactive labels for use in assays to ascertain the formation of antibodies in patients being treated.

SEQUENCE LISTING

- 10
- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Todaro, George J. Rose, Timothy M.

15

- (ii) TITLE OF INVENTION: HYBRID CYTOKINES
- (iii) NUMBER OF SEQUENCES: 8

20

- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Dr. Volker Vossius et al.
 - (B) STREET: Holbein str. 5
 - (C) CITY: Munich,
 - (E) COUNTRY: germany
 - (F) ZIP: 81679
- (v) COMPUTER READABLE FORM:

30

25

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: Patentin Release #1.0, Version #1.25

35

- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/753.178
 - (B) FILING DATE: 30-AUG-1991
 - (C) CLASSIFICATION:

40

- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Dr. Volker Vossius

45

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 49-89-9984796 (B) TELEFAX: 49-89-99847979
- (2) INFORMATION FOR SEQ ID NO:1:

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 202 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

		Met 1	Lys	Val	Leu	Ala 5	Ala	Gly	/ Val	. Val	. Pro	Leu	Leu	Lev	val	. Le:	His
5		Trp	Lys	His	Gly 20	Ala	Gly	Ser	Pr	Leu 25	Pro	Ile	Thr	Pro	Val 30	. Asr	Ala
10		Thr	Суз	Ala 35	Ile	Arg	His	Pro	Cys 40	His	Asn	Asn	Leu	Met 45	Asn	Gln	Ile
		Arg	Ser 50	Gln	Leu	Ala	Gln	Leu 55	Asn	Gly	Ser	Ala	Asn 60	Ala	Leu	Phe	Ile
15		Leu 65	Tyr	Tyr	Thr	Ala	Gln 70	Gly	Glu	Pro	Phe	Pro 75	Asn	Asn	Leu	Asp	Lys 80
		Leu	Cys	Gly	Pro	Asn 85	Val	Thr	Asp	Phe	Pro 90	Pro	Phe	His	Ala	Asn 95	Gly
20		Thr	Glu	Lys	Ala 100	Lys	Leu	Val	Glu	Leu 105	Tyr	Arg	Ile	Val	Val 110	Tyr	Leu
25		Gly	Thr	Ser 115	Leu	Gly	Asn	Ile	Thr 120	Arg	Авр	Gln	Lys	Ile 125	Leu	Asn	Pro
		Ser	Ala 130	Leu	Ser	Leu	His	Ser 135	Lys	Leu	Asn	Ala	Thr 140	Ala	Asp	Ile	Leu
30		Arg 145	Gly	Leu	Leu	Ser	Asn 150	Val-	Leu	Сув	Arg	Leu 155	Сув	Ser	Lys	Tyr	His 160
25		Val	Gly	His	Val	Asp 165	Val	Thr	Tyr	Gly	Pro 170	Asp	Thr	Ser		Lys 175	Asp
35		Val	Phe	Gln	Lys 180	Lys	Lys	Leu	Gly	Cys 185	Gln	Leu	Leu		Lys 190	Tyr	Lys
40		Gln		lle 195	Ala '	Val :	Leu		Gln 200	Ala	Phe						
	(2) INFO	RMATI	ON F	OR SE	EQ ID	NO:2:											
45		EQUEN											٠				
	((A) LEN (B) TYN (C) STI	PE: an	nino a	cid												
50	((D) TO	POLO	GY: lir	near		SEQ II	O NO::	2 :								

		Met 1	Lys	Val	Leu	Ala 5	Ala	Gly	Ile	Val	Pro 10	Leu	Leu	Leu	Leu	Val	Leu
5		His	îrp	Lys	His 20	Gly	Ala	Gly	s r	Pro 25	Leu	Pro	Ile	Thr	Pro 30		Asn
10		Ala	Thr	Cys 35	Ala	Ile	Arg	His	Pro 40	Сув	His	Gly	Asn	Leu 45	Het	Asn	Gln
		Ile	Lys 50	Asn	Gln	Leu	Ala	Gln 55	Leu	Asn	Gly	Ser	Ala 60	Asn	Ala	Leu	Phe
15		Ile 65	Ser	Tyr	Tyr	Thr	Ala 70	Gln	Gly	Glu	Pro	Phe 75	Pro	Asn	Asn	Val	Glu 80
20		Lys	Leu	Cys	Ala	Pro 85	Asn	Met	Thr	Asp	Phe 90	Pro	Ser	Phe	His	Gly 95	Aan
20		Gly	Thr	Glu	Lys 100	Thr	Lys	Leu	Val	Glu 105	Leu	Tyr	Arg	Met	Val 110	Ala	Tyr
25		Leu	Ser	Ala 115	Ser	Leu	Thr	Asn	Ile 120	Thr	Arg	Авр	Gln	Lys 125	Val	Leu	Asn
		Pro	Thr 130	Ala	Val	Ser	Leu	Gln 135	Val	Lys	Leu	Asn	Ala 140	Thr	Ile	Asp	Val
30		Met 145	Arg	Gly	Leu	Leu	Ser 150	Asn	Val	Leu	Cys	Arg 155	Leu	Сув	Asn	Lys	Tyr 160
35		Arg	Val	Gly	His	Val 165	Asp	Val	Pro	Pro	Val 170	Pro	Asp	His	Ser	Asp 175	Lys
		Glu	Ala	Phe	Gln 180	Arg	Lys	Lys	Leu	Gly 185	Cys	Gln	Leu	Leu	Gly 190	Thr	Tyr
40		Lys	Gln	Val 195	Ile	Ser	Val	Val	Val 200	Gln	Ala	Phe					
	(2) INFOR	TAMF	ON F	OR SE	EQ ID	NO:3:											
45	(i) SE	QUEN	ICE C	HARA	ACTER	RISTIC	S:										
	(,	A) LEN	IGTH:	252 a	amino	acids											

50

55

(B) TYPE: amino acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	H 1	et	Gly	Val	Leu	Leu 5	Thr	Gln	Arg	Thr	Leu 10	Leu	Ser	Leu	Val	Leu 15	Ala
5	L	eu .	Leu	Phe	Pro 20	Ser	Met	Ala	Ser	Met 25	Ala	Ala	Ile	Gly	Ser 30	Cys	Ser
10	Ly	ys (Glu	Tyr 35	Arg	Val	Leu	Leu	Gly 40	Gln	Leu	Gln	Lys	Gln 45	Thr	Asp	Leu
	же	et (Gln 50	Asp	Thr	Ser	Arg	Leu 55	Leu	Asp	Pro	Tyr	Il e 60	Arg	Ile	Gln	Gly
15	Le 65	eu i	Asp	Val	Pro	Lys	Leu 70	Arg	Glu	His	Сув	Arg 75	Glu	Arg	Pro	Gly	Ala 80
	Př	ne l	Pro	Ser	Glu	Glu 85	Thr	Leu	Arg	Gly	L eu 90	Gly	Arg	Arg	Gly	Phe 95	Leu
20	G1	ln 1	Thr	Leu	Asn 100	Ala	Thr	Leu	Gly	Cys 105	Val	Leu	His	Arg	Leu 110	Ala	Asp
25	Le	eu C	Glu	Gln 115	Arg	Leu	Pro	Lys	Ala 120	Gln	λsp	Leu	Glu	Arg 125	Ser	Gly	Leu
	As	n 1	11 e 130	Glu	Asp	Leu	Glu	Ly s 135	Leu	Gln	Xet	Ala	Arg 140	Pro	Asn	Ile	Leu
30	G1 14	у I 5	Leu	Arg	Asn	Asn	Ile 150	Tyr	Cys	Het	Ala	Gln 155	Leu	Leu	Asp	Asn	S er 160
	As	p I	The	Ala	Glu	Pro 165	Thr	Lys	Ala	Gly	Arg 170	Gly	Ala	Ser	Gln	Pro 175	Pro
35	Th	r P	Pro		Pro 180	Ala	Ser	Asp	Ala	Phe 185	Gln	Arg	Lys	Leu	Glu 190	Gly	Сув
40	Ar	g P		Leu 195	His	Gly	Tyr		Arg 200	Phe	Met	His	Ser	Val 205	Gly	Arg	Val
	Ph	e S 2	er :	Lys	Trp	Gly		Ser 215	Pro	Asn	Arg	Ser	Arg 220	Arg	His	Ser	Pro
45	Hi 22	s G 5	ln i	Ala	Leu .		Lys 230	Gly	Val	Arg		Thr 235	Arg	Pro	Ser		Lys 240
50	G1:	y L	ys i	Arg :		Met 245	Thr .	Arg	Gly (Leu 250	Pro	Arg				
J	(2) INFORMATI	ON	FOR	SEQ	ID NC):4:											
	(3) 6501/5					T100											

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 206 amino acids (B) TYPE: amino acid

- (C) STRANDEDNESS: singl (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

5	Glr 1	Thr	. Asp	Leu	Met 5	Gln	, Yab	Thr	Ser	Arg 10	, Leu	Let	ı Asp	Pro) Tyr 15	Ile
	Arç	, Ile	Gln	Gly 20	Leu	Asp	Ile	Pro	25	Leu	Arg	Glu	His	Cys 30	Arg	Glu
10	Arg	Pro	Gly 35	Ala	Phe	Pro	Ser	Glu 40	Glu	Thr	Leu	Arg	Gly 45	Leu	Gly	Arg
15	Arg	Gly 50	Phe	Leu	Gln	Thr	Leu 55	Asn	Авр	Thr	Leu	Gly 60	Сув	Val	Leu	His
	Arg 65	Leu	Ala	Asp	Leu	Glu 70	Gln	His	Leu	Pro	Lys 75	Ala	Gln	Двр	Leu	Glu 80
20	Arg	Ser	Gly	Leu	Asn 85	Ile	Glu	Aap	Leu	Glu 90	Lys	Leu	Gln	Met	Ala 95	
25	Pro	Asn	Val	Leu 100	Gly	Leu	Arg	Asn	Asn 105	Ile	Tyr	Cys	Met	Ala 110	Gln	Leu
23	Leu	Asp	Asn 115	Ser	Asp	Met	Thr	Glu 120	Pro	Thr	Lys	Ala	Gly 125	Arg	Gly	Ala
30	Ser	Gln 130	Pro	Pro	Thr	Pro	Thr 135	Pro	Thr	Ser	qeA	Val 140	Phe	Gln	Arg	Lys
	Leu 145	Glu	Gly	Суз	Ser	Phe 150	Leu	His	Gly	Tyr	His 155	Arg	Phe	Ket	His	Ser 160
35	Val	Gly	Gln	Val	Phe 165	Ser	Lys	Trp	Gly	Glu 170	Ser	Pro	Asn	Arg	Ser 175	Arg
40	Arg	His	Ser	Pro 180	His	Gln	Ala	Leu	Arg 185	Lys	Gly	Val	Arg	Arg 190	Thr	Arg
	Pro	Ser	Arg 195	Lys	Gly	Asn		Leu 200	Met	Thr	Arg	Gly	Gln 205	Lеи		
45	(2) INFORMAT	10N F	OR SE	EQ ID	NO:5:											

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 204 amino acids
 - (B) TYPE: amino acid

50

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

		Met 1	Ala	Gly	Pro	Ala 5	Thr	Gln	Ser	Pr	Met 10	Lys	Leu	Met	Ala	Leu 15	Gln
5		Leu	Leu	Leu	Trp 20	His	Ser	Ala	Leu	Trp 25	Thr	Val	Gln	Glu	Ala 30	Thr	Pro
10		Leu	Gly	Pro 35	Ala	Ser	Ser	Leu	Pro 40	Gln	Ser	Phe	Leu	Leu 45	Lys	Суз	Leu
		Glu	Gln 50	Val	Arg	Lys	Ile	Gln 55	Gly	yab	Gly	Ala	Ala 60	Leu	Gln	Glu	Lys
15		Leu 65	Cys	Ala	Thr	Tyr	Lys 70	Leu	Суз	His	Pro	Glu 75	Glu	Leu	Val	Leu	Leu 80
		Gly	His	Ser	Leu	Gly 85	Ile	Pro	Trp	Ala	Pro 90	Leu	Ser	Ser	Сув	Pro 95	Ser
20		Gln	Ala	Leu	Gln 100	Leu	Ala	Gly	Cys	Leu 105	Ser	Gln	Leu	His	Ser 110	Gly	Leu
25		Phe	Leu	Tyr 115	Gln	Gly	Leu	Leu	Gln 120	Ala	Leu	Glu	Gly	Ile 125	Ser	Pro	Glu
		Leu	Gly 130	Pro	Thr	Leu	Asp	Thr 135	Leu	Gln	Leu	Asp	Val 140	Ala	Asp	Phe	Ala
30		Thr 145	Thr	Ile	Trp	Gln	Gln 150	Met	Glu	Glu	Leu	Gly 155	Met	Ala	Pro	λla	Leu 160
		Gln	Pro	Thr	Gln	Gly 165	Ala	Xet	Pro	Ala	Phe 170	Ala	Ser	Ala	Phe	Gln 175	Arg
35		Arg	Ala	Gly	Gly 180	Val	Leu	Val	Ala	Ser 185	His	Leu	Gln	Ser	Phe 190	Leu	Glu
40		Val		Tyr 195	Arg	Val	Leu		His 200	Leu	Ala	Gln	Pro				
•	(2) INFOR	MATIC	N FO	A SE	א סו ב	O:6:											
45	(i) SEC	UEN	CE CH	ARAC	CTERI	STICS	3:										
	•	•	GTH: : E: ami			cids											
			ANDE OLOG			gle											
50	(xi) SE	QUEN	ICE D	ESCF	IIPTIO	N: SE	Q ID I	NO:6:									

		Met 1	Ala	Gln	Leu	Ser 5	Ala	Gln	Arg	Arg	Met 10	Lys	Leu	Het	Ala	Leu 15	Gln
5		Leu	Leu	Leu	Trp 20	Gln	Ser	Ala	Leu	Trp 25	Ser	Gly	Arg	Glu	Ala 30	Val	Pro
10		Leu	Val	Thr 35	Val	Ser	Ala	Leu	Pro 40	Pro	Ser	Leu	Pro	Leu 45	Pro	Arg	Ser
		Phe	Leu 50	Leu	Lys	Ser	Leu	Glu 55	Gln	Val	Arg	Lys	Ile 60	Gln	Ala	Ser	Gly
15		Ser 65	Val	Leu	Leu	Glu	Gln 70	Leu	Сув	Ala	Thr	Tyr 75	Lys	Leu	Cys	His	Pro 80
		Glu	Glu	Leu	Val	Leu 85	Leu	Gly	His	Ser	Leu 90	Gly	Ile	Pro	Lys	Ala 95	Ser
20		Leu	Ser	Gly	Cys 100	Ser	Ser	Gln	Ala	Leu 105	Gln	Gln	Thr	Gln	Cys 110	Leu	Ser
25		Gln	Leu	His 115	Ser	Gly	Leu	Cys	Leu 120	Tyr	Gln	Gly	Leu	Leu 125	Gln	Ala	Leu
		Ser	Gly 130	Ile	Ser	Pro	Ala	Leu 135	Ala	Pro	Thr	Leu	Asp 140	Leu	Leu	Gln	Leu
30		Asp 145	Val	Ala	Asn	Phe	Ala 150	Thr	Thr	Ile	Trp	Gln 155	Gln	Met	Glu	Asn	Leu 160
i <i>5</i>		Gly	Val	Ala	Pro	Thr 165	Val	Gln	Pro	Thr	Gln 170	Ser	Ala	Met	Pro	Ala 175	Phe
		Thr	Ser	Ala	Phe 180	Gln	Arg	Arg	Ala	Gly 185	Gly	Val	Leu	Ala	Ile 190	Ser	Tyr
0		Leu	Gln	Gly 195	Phe	Leu	Glu	Thr	Ala 200	Arg	Leu	Ala	Leu	His 205	His	Leu	Ala
	(2) INFORM	OITAN	N FO	R SEQ	ID NO	D:7:											
5	(i) SEC	UENC	E CH	ARAC	TERIS	TICS	:										
	(B)	TYPE	: amir	112 am no acid DNES	į												
o	(C) (D)	TOPO	OLOG	Y: linea	ar ar	μe											
	(xi) SE	QUEN	CE DE	ESCRI	PTION	l: SEC	א סו ב	0:7:									

		Met 1	Asn	Ser	Phe	Ser 5	Thr	Ser	Ala	Phe	Gly 10	Pro	Val	Ala	Phe	Ser 15	
5		Gly	Leu	Leu	Leu 20	Val	Leu	Pro	Ala	Ala 25	Phe	Pro	Ala	Pro	Val 30	Pro	Pro
10		Gly	Glu	Asp 35	Ser	Lys	Asp	Val	Ala 40	Ala	Pro	His	Arg	Gln 45	Pro	Leu	Thr
		Ser	Ser 50	Glu	Arg	Ile	Asp	Lys 55	Gln	Ile	Arg	Tyr	Ile 60	Leu	Двр	Gly	Ile
15		Ser 65	Ala	Leu	Arg	Lys	Glu 70	Thr	Сув	Asn	Lys	Ser 75	Asn	Met	Сув	Glu	Ser 80
		Ser	Lys	Glu	Ala	Leu 85	Ala	Glu	Asn	Asn	Leu 90	Asn	Leu	Pro	Lys	Met 95	Ala
		Glu	Lys	Asp	Gly 100	Cys	Phe	Gln	Ser	Gly 105	Phe	Asn	Glu	Glu	Thr 110	Cys	Leu
25		Val	Lys	Ile 115	Ile	Thr	Gly	Leu	Leu 120	Glu	Phe	Glu	Val	Tyr 125	Leu	Glu	Tyr
		Leu	Gln 130	Asn	Arg	Phe	Glu	Ser 135	Ser	Glu	Glu	Gln	Ala 140	Arg	Ala	Val	Gln
30		Met 145	Ser	Thr	Lys	Val	Leu 150	Ile	Gln	Phe	Leu	Gln 155	Lys	Lys	Ala	Lys	Asn 160
25		Leu	Asp	Ala	Ile	Thr 165	Thr	Pro	Asp	Pro	Thr 170	Thr	Asn	Ala	Ser	Leu 175	Leu
35		Thr	Lys	Leu	Gln 180	Ala	Gln	Asn	Gln	Trp 185	Leu	Gln	Asp	Met	Thr 190	Thr	His
40		Leu	Ile	Leu 195	Arg	Ser	Phe	Lys	Glu 200	Phe	Leu	Gln	Ser	Ser 205	Leu	Arg	Ala
		Leu	Arg 210	Gln	Met												
45	(2) INFO	RMAT	TION F	OR S	EQ ID	NO:8	:										
	(i) Si	EQUE	NCE	CHAR	ACTE	RISTI	CS:										
50	((B) TY (C) S1	PE: a	mino a	ESS: s												
	(xi) S	SEQU	ENCE	DESC	CRIPT	ION: S	SEQ 10) NO:8	3:								

	Met 1	Lys	Phe	Leu	Ser 5	Ala	Arg	Asp	Phe	His 10	Pro	Val	Ala	Phe	Leu 15	Gly
5	Leu	Met	Leu	Val 20	Thr	Thr	Thr	Ala	Phe 25	Pro	Thr	Ser	Gln	Val 30	Arg	Arg
10	Gly	Asp	Phe 35	Thr	Glu	Asp	Thr	Thr 40	Pro	Asn	Arg	Pro	Val 45	Tyr	Thr	Thr
	Ser	Gln 50	Val	Gly	Gly	Leu	Ile 55	Thr	His	Val	Leu	Trp 60	Glu	Ile	Val	Glu
15	Met 65	Arg	Lys	Glu	Leu	Cys 70	Asn	Gly	Asn	Ser	Asp 75	Суз	Met	Asn	Asn	Asp 80
		Ala			85					90					95	
20		Gly		100					105					110		•
25		Ser	115					120					125			
		Asn 130					135					140				
30	145	Thr				150					155					160
35		Lys			165					170					175	
35	Lys			180					185					190		
40			195	Ser	Leu	Glu		Phe 200	Leu	Lys	Val		Leu 205	Arg	Ser	Thr
	Arg	Gln 210	Thr				٠									

Claims

45

50

 A hybrid cytokine comprising a first, second, third and fourth α-helical region wherein each of said first, second, third and fourth α-helical regions is derived from the corresponding α-helical region of a factor selected from the group consisting of leukemia inhibitory factor (LIF or L), granulocyte-colony stimulating factor (G-CSF or G), interleukin-6 (IL-6 or I), and oncostatin-M (OSM or O); and

wherein at least one said α -helical region of said cytokine is derived from a factor different from that from which at least one additional region of said cytokine is derived.

2. The hybrid cytokin of claim 1 which is GGLL; GGII; GGOO; GILO, LOGI, LLGG; IIGG; OOGG; LLII; GGGI; OOOI; LLLI; IIIO; GGGO; OOOG; LLLO; IIIG; GGGL; OOOL; LLLG; IIIL; IGGG; IOOO; ILLL; OIII; OGGG; or GOOO; or which further contains, between each of said first, s cond, third and fourth α-h lical r gions linking regions of 5-100 amino acids.

3. The cytokine of claims 2 or 14 wherein each of said linking regions is independently derived from a corresponding linking region of LIF, G-CSF, IL-6 or OSM, or

wherein each of said linking regions between said first and second, and between said third and fourth α -helical region is selected so as to result in an anti-polar orientation of said first and fourth α -helical region.

- 4. The hybrid cytokine of claim 3 wherein the linking regions between said first and second and said third and fourth α-helical regions are each 20-100 amino acids, or
 - wherein each of the linking regions between said first and second and said third and fourth α -helical regions are each less than 20 amino acids; or
 - wherein each of said linking regions between said first and second and said third and fourth α -helical regions are either both derived from OSM and/or LIF or both derived from G-CSF and/or IL-6.
- 5. The cytokine of claim 3 which is selected from the group consisting of GIGILIL; GIGgIII; GgGgOgO; GIGiGoI; IiGgGgG; GgIiLiO; LgOgGgI; GgGgGgO; GgGgGgL; OoOoOoG; LILILIG; GoOoOoO; OgGgGgG; LgGgGgG; GiGgGiI; and LoLllol.
 - The cytokine of anyone of claims 1 to 5 or 14, wherein each said corresponding region is human, or which is conjugated to label.
 - 7. A recombinant DNA that encodes the hybrid cytokine of anyone of claims 1 to 6 or 14.
 - 8. An expression system capable, when contained in a recombinant host cell, of effecting the expression of a DNA encoding the hybrid cytokine of anyone of claims 1 to 6 or 14, wherein said expression system comprises said encoding DNA operably linked to control sequences compatible with said host.
 - 9. Recombinant host cells transformed with the expression system of claim 8.
 - 10. A method to produce a hybrid cytokine protein comprising a first, second, third and fourth α-helical region wherein each of said first, second, third and fourth α-helical regions is derived from the corresponding α-helical region of a factor selected from the group consisting of leukemia inhibitory factor (LIF), granulocyte-colony stimulating factor (G-CSF), interleukin-6 (IL-6), and oncostatin-M (OSM); and
 - wherein at least one said α -helical region of said cytokine is derived from a factor different from that from which at least one additional region of said cytokine is derived,
 - which method comprises culturing the recombinant host cells of claim 9 under conditions which effect the expression of said encoding DNA; and
 - recovering said hybrid cytokine from the culture.

5

10

20

25

30

35

45

50

- 11. A pharmaceutical or veterinary composition useful in affecting the proliferation and/or differentiation of target cells which composition comprises an effective amount of the hybrid cytokine of anyone of claims 1 to 6 or 14 in a mixture with at least one pharmaceutically acceptable excipient.
 - 12. Antibodies or fragments thereof specifically immunoreactive with the hybrid cytokine of anyone of claims 1 to 6 or 14
 - 13. A method to prepare a hybrid cytokine useful in therapy which method comprises:
 - preparing a candidate cytokine comprising a first, second, third and fourth α -helical region wherein each of said first, second, third and fourth α -helical regions is derived from the corresponding α -helical region of a factor selected from the group consisting of LIF, G-CSF, IL-6 and OSM;
 - wherein at least one said α -helical region of said cytokine is derived from a factor different from that from which at least one additional region of the cytokine is derived, to obtain a candidate hybrid cytokine; and testing said candidate cytokine in an in vitro assay system for ability to affect the growth of target cells; and selecting a cytokine which provides the desired effect.
 - 14. The cytokine of claim 1 which is GGGI; OOOI; LLLI; IIIO; GGGO; OOOG; LLLO; IIIG; GGGL; OOOL; LLLG; IIIL; IGGG; IOOO; ILLL; OIII; OGGG; GOOO; OLLL; GIII; LGGG; LOOO; GLLL: LIII; GGLL; GGII; GGOO; GILO; LOGI; LLII; LLGG; IIGG; and OOGG

which further contains, between each of said first, second, third and fourth α -helical regions linking regions of 5-100 amino acids.

5 Patentansprüche

10

30

45

- 1. Ein hybrides Cytokin, umfassend einen ersten, zweiten, dritten und vierten α-helikalen Bereich, wobei jeder der ersten, zweiten, dritten und vierten α-helikalen Bereiche von dem entsprechenden α-helikalen Bereich eines Faktors abgeleitet ist, der ausgewählt ist aus der Gruppe bestehend aus Leukärnie-inhibierender Faktor (LIF oder L), Granulozyten-Kolonie-stimulierender Faktor (G-CSF oder G, Interleukin-6 (IL-6 oder I) und Onkostatin-M (OSM oder O), und wobei mindestens ein α-helikaler Bereich des Cytokins von einem Faktor abgeleitet ist, der von dem Faktor verschieden ist, von dem mindestens ein zusätzlicher Bereich des Cytokins abgeleitet ist.
- Das hybride Cytokin nach Anspruch 1, das GGLL, GGII, GGOO, GILO, LOGI, LLGG, IIGG, OOGG, LLII, GGGI, OOOI, LLLI, IIIO, GGGO, OOOG, LLLO, IIIG, GGGL, OOOL, LLLG, IIIL, IGGG, IOOO, ILLL, OIII, OGGG oder GOOO ist, oder das ferner zwischen jedem der ersten, zweiten, dritten und vierten α-helikalen Bereiche Verbindungsbereiche von 5 bis 100 Aminosäuren enthält.
- 3. Das Cytokin nach Anspruch 2 oder 14, wobei jeder der Verbindungsbereiche unabhängig voneinander von einem entsprechenden Verbindungsbereich von LIF, G-CSF, IL-6 oder OSM abgeleitet ist, oder wobei jeder der Verbindungsbereiche zwischen dem ersten und zweiten und zwischen dem dritten und vierten α-helikalen Bereich so ausgewählt ist, daß sich eine antipolare Orientierung des ersten und vierten α-helikalen Bereichs ergibt.
- 4. Das hybride Cytokin nach Anspruch 3, wobei die Verbindungsbereiche zwischen dem ersten und zweiten und dem dritten und vierten α-helikalen Bereich jeweils 20 bis 100 Aminosäuren betragen oder wobei jeder der Verbindungsbereiche zwischen den ersten und zweiten und den dritten und vierten α-helikalen Bereichen jeweils weniger als 20 Aminosäuren beträgt, oder wobei jeder der Verbindungsbereiche zwischen den ersten und zweiten und den dritten und vierten α-helikalen Bereichen entweder jeweils von OSM und/oder LIF oder von G-CSF und/oder IL-6 abgeleitet ist.
 - 5. Das Cytokin nach Anspruch 3, das aus der Gruppe ausgewählt ist bestehend aus GIGILIL, GIGgIII. GGGgOgO, GIGiGol, IiGgGgG, GgliLiO, LgOgGgI, GgGgGgO, GgGgGgL, OoOoOoG, LILILIG, GoOoOoO, OgGgGgG, LgGgGgG, GiGgGil und LoLllol.
- 55 6. Das Cytokin nach einem der Ansprüche 1 bis 5 oder 14, wobei jeder entsprechende Bereich vom Menschen abgeleitet ist oder an eine Markierung gekoppelt ist.
 - 7. Eine rekombinante DNA, die das hybride Cytokin nach einem der Ansprüche 1 bis 6 oder 14 kodiert.
- 8. Ein Expressionssystem, das in einer rekombinanten Wirtszelle f\u00e4hig ist, die Expression einer DNA zu bewirken, die das hybride Cytokin nach einem der Anspr\u00fcche 1 bis 6 oder 14 kodiert, wobei das Expressionssystem die kodierende DNA umfa\u00dft, die operativ mit Kontroll-sequenzen verbunden ist, die mit dem Wirt kompatibel sind.
 - 9. Rekombinante Wirtszellen, die mit dem Expressionssystem nach Anspruch 8 transformiert sind.
 - 10. Ein Verfahren zur Herstellung eines hybriden Cytokin-Proteins, umfassend einen ersten, zweiten, dritten und vierten α-helikalen Bereich, wobei jeder der ersten, zweiten, dritten und vierten α-helikalen Bereiche von dem entsprechenden α-helikalen Bereich eines Faktors abgeleitet ist, der ausgewählt ist aus der Gruppe bestehend aus Leukämie-inhibierender Faktor (LIF), Granulozyten-Kolonie-stimulierender Faktor (G-CSF), Interleukin 6 (IL-6) und Onkostatin-M (OSM), und wobei mindestens ein α-helikaler Bereich des Cytokins von einem Faktor abgeleitet ist, der von dem Faktor verschieden ist, von dem mindestens ein zusätzlicher Bereich des Cytokins abgeleitet ist, wobei das Verfahren das Kultivieren der rekombinanten Wirtszellen nach Anspruch 9 unter Bedingungen umfaßt, die die Expression der kodierenden DNA bewirken, und das hybride Cytokin aus der Kultur isoliert wird.
- 11. Eine pharmazeutische oder v terinärmedizinisch Zusammensetzung, verwendbar zur Beeinflussung der Proliferation und/oder Differenzierung von Zielzellen, wobei die Zusammensetzung eine wirksame Meng des hybriden Cytokins nach ein m der Ansprüche 1 bis 6 oder 14 in inem G misch mit mindestens iner pharmazeutisch verträglichen Trägersubstanz umfaßt.

- 12. Antikörper oder deren Fragmente, die spezifisch mit dem hybriden Cytokin nach einem der Ansprüche 1 bis 6 oder 14 immunreaktiv sind.
- 13. Ein Verfahren zur Herstellung eines hybriden Cytokins zur Therapie, wobei das Verfahren umfaßt:

Herstellen eines Cytokins als Kandidat, umfassend einen ersten, zweiten, dritten und vierten α -helikalen Bereich, wobei jeder der ersten, zweiten, dritten und vierten α -helikalen Bereiche abgeleitet ist von dem entsprechenden α -helikalen Bereich eines Faktors, ausgewählt aus der Gruppe bestehend aus LIF, F-CSF, IL-6 und OSM, wobei mindestens ein α -helikaler Bereich des Cytokins von einem Faktor abgeleitet ist, der unterschiedlich von einem Faktor ist, von dem mindestens ein weiterer Bereich des Cytokins abgeleitet ist, und

Testen des erhaltenen hybriden Cytokins als Kandidat in einem in vitro-Nachweissystem auf die Fähigkeit, das Wachstum von Zielzellen zu beeinflussen, und

- Auswählen eines Cytokins, das die gewünschte Wirkung liefert.
- 14. Das Cytokin nach Anspruch 1, das GGGI, OOOI, LLLI, IIIO, GGGO, OOOG, LLLO, IIIG, GGGL, OOOL, LLLG, IIIL, IGGG, IOOO, ILLL, OIII, OGGG, GOOO, OLLL, GIII, LGGG, LOOO, GLLL, LIII, GGLL, GGII, GGOO, GILO, LOGI, LLII, LLGG, IIGG und OOGG ist, und das ferner zwischen jedem der ersten, zweiten, dritten und vierten α-helikalen Bereiche Verbindungsbereiche von 5 bis 100 Aminosäuren enthält.

Revendications

5

10

15

20

35

40

- Cytokine hybride comprenant une première, une seconde, une troisième et une quatrième région α-hélicoïdale, dans laquelle chacune desdites première, deuxième, troisième et quatrième régions α-hélicoïdales est dérivée de la région α-hélicoïdale correspondante d'un facteur choisi dans le groupe consistant en le facteur inhibiteur de leucémie (LIF ou L), le facteur de stimulation de colonie de granulocytes (G-CSF ou G), l'interleukine-6 (IL-6 ou l) et l'oncostatine-M (OSM ou O); et
- où au moins l'une desdites régions α-hélicoïdales de ladite cytokine est dérivée d'un facteur différent de celui à partir duquel est dérivée au moins une région additionnelle de ladite cytokine.
 - Cytokine hybride selon la revendication 1, qui est GGLL; GGII; GGOO; GILO; LOGI; LLGG; IIGG; OOGG; LLII; GGGI; OOOI; LLLI; IIIO; GGGO; OOOG; LLLO; IIIG; GGGL; OOOL; LLLG; IIIL; IGGG; IOOO; ILLL; OIII; OGGG ou GOOO, ou
 - qui contient en outre, entre chacune desdites première, deuxième, troisième et quatrième régions α -hélicoïdales, des régions de liaison de 5-100 acides aminés.
 - Cytokine selon les revendications 2 ou 14, dans laquelle chacune desdites régions de liaison est dérivée indépendamment d'une région de liaison correspondante de LIF, G-CSF, IL-6 ou OSM, ou
 - dans laquelle chacune desdites régions de liaison entre lesdites première et deuxième et entre lesdites troisième et quatrième régions α -hélicoïdales est choisie de façon à fournir une orientation anti-polaire desdites première et quatrième régions α -hélicoïdales.
 - Cytokine hybride selon la revendication 3, dans laquelle les régions de liaison entre lesdites première et deuxième et lesdites troisième et quatrième régions α-hélicoïdales comportent chacune 20-100 acides aminés; ou
- dans laquelle chacune des régions de liaison entre lesdites première et deuxième et lesdites troisième et quatrième régions α-hélicoidales ont chacune moins de 20 acides aminés; ou dans laquelle chacune desdites régions de liaison entre lesdites première et deuxième et lesdites troisième et quatrième régions α-hélicoïdales sont soit toutes deux dérivées d'OSM et/ou de LIF, soit toutes deux dérivées de G-CSF et/ou d'IL-6.
- 55 5. Cytokine selon la revendication 3, qui est choisi dans I groupe consistant en GIGILIL; GIGgIII; GgGgOgO; GI-GiGol; IiGgGgG; GgIiLiO; LgOgGgI; GgGgGgO; GgGgGgL; OoOoOoG; LILILIG; GoOoOoO; OgGgGgG; LgGgGgG; GiGgGil; et LoUlol.

- Cytokine selon l'une quelconque des revendications 1 à 5 ou 14, dans laquelle chacune desdites régions correspondantes est humaine, ou qui est conjuguée avec un marqueur.
- 7. ADN recombinant qui code pour la cytokine hybride selon l'un quelconque des revendications 1 à 6 ou 14.
- 8. Système d'expression apte, lorsqu'il est contenu dans une cellule hôte recombinante, à effectuer l'expression d'un ADN codant pour la cytokine hybride selon l'une quelconque des revendications 1 à 6 ou 14, dans lequel ledit système d'expression comprend ledit ADN codant lié de façon opérationnelle aux séquences de contrôle compatibles avec ledit hôte.
- Cellules hôtes recombinantes transformées avec le système d'expression selon la revendication 8.
- 10. Procédé pour la production d'une protéine de cytokine hybride comprenant une première, une deuxième, une troisième et une quatrième régions α-hélicoïdales, dans lequel chacune desdites première, deuxième, troisième et quatrième régions α-hélicoïdales est dérivée de la région α-hélicoïdale correspondante du facteur inhibiteur de leucémie (LIF), du facteur stimulant les colonies de granulocytes (G-CSF), de l'interleukine-6 (IL-6) et de l'oncostatine-M (OSM); et

dans lequel au moins l'une desdites régions α-hélicoïdales de ladite cytokine est dérivée d'un facteur différent de celui d'où est dérivée au moins une région additionnelle de ladite cytokine,

lequel procédé comprend la mise en culture des cellules hôtes recombinantes selon la revendication 9 dans des conditions qui réalisent l'expression dudit ADN de codage; et

la récupération de ladite cytokine hybride à partir de la culture.

11. Composition pharmaceutique ou vétérinaire utile pour affecter la prolifération et/ou la différenciation de cellules cibles, laquelle composition comprend une quantité efficace de la cytokine hybride selon l'une quelconque des revendications 1 à 6 ou 14 en mélange avec au moins un excipient pharmaceutiquement acceptable.

- 12. Anticorps ou fragments d'anticorps spécifiquement immunoréactifs avec la cytokine hybride selon l'une quelconque des revendications 1 à 6 ou 14.
 - 13. Procédé pour la préparation d'une cytokine hybride utile en thérapie, lequel procédé comprend:

la préparation d'une cytokine candidate comprenant une première, une deuxième, une troisième et une quatrième régions α -hélicoïdales, où chacune des première, deuxième, troisième et quatrième régions α -hélicoïdales est dérivée de la région α -hélicoïdale correspondante d'un facteur choisi dans le groupe consistant en LIF, G-CSF, IL-6 et OSM;

où au moins l'une desdites régions α-hélicoïdales de ladite cytokine est dérivée d'un facteur différent de celui duquel est dérivée au moins une région additionnelle de la cytokine, pour obtenir une cytokine hybride candidate; et

le test de ladite cytokine candidate dans un système de test <u>in vitro</u> de l'aptitude à influer sur la croissance de cellules cibles; et

la sélection d'une cytokine qui procure l'effet désiré.

14. Cytokine selon la revendication 1, qui est GGGI; OOOI; LLLI; IIIO; GGGO; OOOG; LLLO; IIIG; GGGL; OOOL; LLLG; IIIL: IGGG; IOOO; ILLL; OIII; OGGG; GOOO; OLLL; GIII; LGGG; LOOO; GLLL; LIII; GGLL; GGII; GGOO; GILO; LOGI; LLII; LLGG; IIGG; et OOGG, qui contient en outre, entre chacune desdites première, deuxième, troisième et quatrième régions α-hélicoidales, des régions de liaison de 5-100 acides aminés.

21

10

5

20

15

25

35

30

40

45

50

F1G 1-1

FIG. 1-2

	,	÷ .	,		the many design of the				· ` :
* "								,	
		J							
•						•			
			X						
			•						
						* * * * * * * * * * * * * * * * * * *	,		
				17.		•			
		e e e e e e e e e e e e e e e e e e e				4 - 1			
		-							
				•		•			
								. *	
						2			
				5.					
						, , , , , , , , , , , , , , , , , , ,			
							V		*
F-e						. * *\			
						,			