### How Do Agents Form Macroeconomic Expectations? Evidence from Inflation Uncertainty

Tao Wang BBL, Bank of Canada October 24, 2023

### Roadmap

#### Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

### Macroeconomic expectation formation

- Many competing models deviating from FIRE
  - Sticky expectations (SE)
  - Noisy information (NI)
  - Diagnostic expectations (DE)
  - ...

### Macroeconomic expectation formation

- Many competing models deviating from FIRE
  - Sticky expectations (SE)
  - Noisy information (NI)
  - Diagnostic expectations (DE)
  - ...
- Testing these models using survey expectations
  - e.g. (Coibion and Gorodnichenko, 2012)
    - Forecast errors (FE)
    - Disagreement (Disg)
    - This paper: +Uncertainty (Var)

### Why uncertainty?

#### Uncertainty (or higher moments) matters for both

- individual economic decisions
  - precautionary saving motives
  - portfolio investments
  - mortgage choices
  - wage bargaining
- and aggregate outcomes
  - inflation dynamics
  - asset prices

## Density forecasts: an example



### Average expectation



## Average forecast errors (FE)



# Disagreement (Disg)



# Average uncertainty (Var)



### Preview of the findings

- Competing theories have distinctive predictions about Var
  - Information rigidity  $\rightarrow$  ex-ante  $\overline{Var}$  > ex-post  $\overline{FE}^2$
- Additional evidence
  - Uncertainty revision is inefficient
  - SE more robust than NI
  - State-dependence: inflation ↑ rigidity ↓
  - Coexisting with overreaction at the individual level
- Inflation contains persistent and transitory components

#### Literature

#### Studies on expectation formation using survey data

- Structural estimation: [Giacomini, Skreta, and Turen, 2020; Xie, 2023; Bordalo, Gennaioli, Ma, et al., 2020; Farmer, Nakamura, and Steinsson, 2021; Ryngaert, 2017]
- Others: [Mankiw, Reis, and Wolfers (2003), Carroll (2003), Branch (2004), Coibion and Gorodnichenko (2015)]

Measures of uncertainty: [Bachmann, Elstner, and E. R. Sims (2013), Jurado, Ludvigson, and Ng (2015), Rossi and Sekhposyan (2015), Binder (2017), Cascaldi-Garcia et al. (2023)]

 Differentiating Disg and Var: [Rich and Tracy (2010), D'Amico and Orphanides (2008), Abel et al. (2016), Glas (2020), and Rich and Tracy (2021)]

Eliciting probabilistic/density expectations [Manski (2004), Delavande, Giné, and McKenzie (2011), Manski (2018)]

#### Data

#### **Density forecast of inflation**

|                   | SCE                     | SPF                  |  |  |
|-------------------|-------------------------|----------------------|--|--|
| Time period       | 2013-2021M7             | 2007-2022Q2          |  |  |
| Frequency         | Monthly                 | Quarterly            |  |  |
| Sample Size       | 1,300                   | 30-50                |  |  |
| Density Variables | 1 and 3-yr-ahead infla- | current-year and 1-  |  |  |
|                   | tion                    | yr-ahead q4/q4 Core  |  |  |
|                   |                         | CPI and Core PCE in- |  |  |
|                   |                         | flation              |  |  |
| Survey Structure  | fix-horizon             | fix-event            |  |  |
| Panel Structure   | unbalanced, stay up     | unbalanced, average  |  |  |
|                   | to 12 months            | stay for 5 years     |  |  |
| Individual Info   | Education, Income,      | Industry             |  |  |
|                   | Age, Location           |                      |  |  |

## Expected inflation and uncertainty





### Forecast error and uncertainty





## Disagreement and uncertainty





### Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

### FIRE predictions

### Inflation process (AR1)

$$y_t = \rho y_{t-1} + \omega_t, \quad \omega_t \sim N(0, \sigma_\omega^2)$$

#### FIRE

$$\overline{FE}_{t+1|t}^* = -\omega_{t+1} \to \overline{FE}_{\bullet+1|\bullet}^{*2} = \sigma_{\omega}^2$$

$$\overline{\text{Var}}_{\bullet+1|\bullet}^* = \sigma_{\omega}^2$$

$$\overline{Disg}_{\bullet+1|\bullet}^* = 0$$

#### A first look at the data

|        | SPF           | SCE   |
|--------|---------------|-------|
| InfAV  | 0             | 0     |
| InfVar | 0.219         | 1.282 |
| InfATV | ATV 0.194 1.2 |       |
| FE     | 0.125         | 1.812 |
| FEVar  | 0.136         | 0.935 |
| Disg   | 0.161         | 2.805 |
| Var    | 0.213         | 1.749 |
|        |               |       |

- Demeaned realized inflation and inflation expectations.
- Household fixed effects controlled.
- Before 2020.

### Uncertainty revision

More certain when getting closer to realization?





# Efficiency tests with uncertainty

Do revisions reflect only common resolution of uncertainty?

$$\mathsf{Var}_{i,t|t} - \mathsf{Var}_{i,t|t-1} = \alpha^{\mathsf{var}} + \underline{\beta}^{\mathsf{Var}}(\mathsf{Var}_{i,t-1|t-1} - \mathsf{Var}_{i,t-1|t-2}) + \psi_t^{var} + \zeta_{i,t}^{var}$$

- $\beta^{var} = 0$  under FIRE
- $\alpha^{var} < 0$  time-invariant uncertainty reduction
- $\psi_t^{var}$ : time-varying innovations

# Efficiency tests: professionals

|                  | Mean revision | 4q before | 4q before | 5q before |
|------------------|---------------|-----------|-----------|-----------|
| L4.InfExp_Var_rv |               | 0.448***  | 0.456***  |           |
|                  |               | (0.056)   | (0.058)   |           |
| L5.InfExp_Var_rv |               |           |           | 0.440***  |
|                  |               |           |           | (0.053)   |
| Constant         | -0.091***     | -0.049*** | -0.048*** | -0.049*** |
|                  | (0.000)       | (800.0)   | (0.005)   | (0.005)   |
|                  |               |           |           |           |
| R2               | 0.047         | 0.196     | 0.248     | 0.249     |
| Ν                | 1529          | 1157      | 1157      | 1021      |
| Time FE          | Yes           | No        | Yes       | Yes       |

## Taking stock

- Evidence rejecting FIRE
  - Inefficient revisions in Var
  - $\blacksquare$  Disg > 0
  - $Var \neq \sigma_{\omega}^2 \neq FE^2$

## Taking stock

- Evidence rejecting FIRE
  - Inefficient revisions in Var
  - $\blacksquare$  Disg > 0
  - $\blacksquare$  Var  $\neq \sigma_{\omega}^2 \neq FE^2$
- Also, observed rankings help identify theories
  - SE> NI, DE, DENI $\leftarrow$  Var >  $\sigma_{\omega}^2$  > FE<sup>2</sup>

### Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

# Sticky expectations (SE)

[Mankiw and Reis, 2002, Carroll, 2003, etc]

#### With an updating rate of $\lambda$ (FIRE when $\lambda = 1$ )

$$\begin{split} \overline{FE}_{t+1|t}^{se} &= (1-\lambda)\rho \overline{FE}_{t|t-1}^{se} - \lambda \omega_{t+1} \\ &\to \overline{FE}_{\bullet+1|\bullet}^{se2} = \frac{\lambda^2}{1-(1-\lambda)^2\rho^2} \sigma_\omega^2 \leq \overline{FE}_{\bullet+t|\bullet}^{*2} = \sigma_\omega^2 \\ \overline{\operatorname{Var}}_{\bullet+1|\bullet}^{se} &= \sum_{\tau=0}^{+\infty} \lambda (1-\lambda)^\tau \overline{\operatorname{Var}}_{t+1|t-\tau}^* = \frac{1}{1-(1-\lambda)\rho^2} \sigma_\omega^2 \geq \overline{\operatorname{Var}}_{\bullet+1|\bullet}^* = \sigma_\omega^2 \\ \overline{Disg}_{\bullet+1|\bullet}^{se} &\geq 0 \end{split}$$

### Noisy information (NI)

[Lucas, 1972, Woodford, 2001, C. A. Sims, 2003 and Maćkowiak and Wiederholt, 2009, etc]

## With noisiness of public and private signals $\sigma_{pb}^2$ and $\sigma_{pr}^2$

$$\begin{split} \overline{FE}_{t+1|t}^{ni} &= (1-PH)\rho\overline{FE}_{t|t-1}^{ni} + \rho P_{\epsilon}\epsilon_{t} + \overline{FE}_{t+1|t}^{*} \\ &\rightarrow \overline{FE}_{\bullet+1|\bullet}^{ni2} = \frac{\rho^{2}P_{\epsilon}^{2}\sigma_{pb}^{2} + \sigma_{\omega}^{2}}{(PH)^{2}} \geq \overline{FE}_{\bullet+1|\bullet}^{*2} = \sigma_{\omega}^{2} \\ \operatorname{Var}_{\bullet+1|\bullet}^{ni} &= \rho^{2}\operatorname{Var}_{\bullet|\bullet}^{ni} + \sigma_{\omega}^{2} \geq \operatorname{Var}_{\bullet+1|\bullet}^{*} = \sigma_{\omega}^{2} \\ \overline{Disg}_{\bullet+1|\bullet}^{ni} &= \frac{\rho^{2}P_{\xi}^{2}}{1 - (1-PH)^{2}\rho^{2}}\sigma_{pr}^{2} \geq 0 \end{split}$$

Kalman gain:  $P = [P_{\epsilon}, P_{\xi}] = \overline{\mathrm{Var}}_{\bullet|\bullet-1}^{ni} H(H' \overline{\mathrm{Var}}_{\bullet|\bullet-1}^{ni} H + \Sigma^{v})^{-1}$ 

# Diagnostic expectations (DE)

[Bordalo, Gennaioli, and Shleifer, 2018, Bordalo, Gennaioli, Ma, et al., 2020, etc]

## With overreaction parameter $\hat{\theta}(>0)$ and dispersion $\sigma_{\theta}^2$

$$\begin{split} &\overline{FE}_{t+1|t}^{de} = \overline{FE}_{t+1|t}^* - \hat{\boldsymbol{\theta}} \rho \mathrm{FE}_{t|t-1}^{de} \\ &\rightarrow \overline{FE}_{\bullet+1|\bullet}^{de2} = \frac{1}{1 + \hat{\boldsymbol{\theta}}^2 \rho^2} \sigma_\omega^2 \leq \overline{FE}_{\bullet+1|\bullet}^{*2} = \sigma_\omega^2 \\ &\overline{\mathrm{Var}}_{\bullet+1|\bullet}^{de} = \overline{Var}_{\bullet+1|\bullet}^* = \sigma_\omega^2 \\ &\overline{Disg}_{\bullet+1|\bullet}^{de} \geq 0 \end{split}$$

Table: Model-implied ranking of moments

| Model | Predictions                                                                      |
|-------|----------------------------------------------------------------------------------|
| FIRE  | $\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$ |

Table: Model-implied ranking of moments

| Model | Predictions                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------|
| FIRE  | $\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$                                  |
| SE    | $\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_\omega^2 < \overline{Var}; \overline{Disg} > 0$ |

Table: Model-implied ranking of moments

| Model | Predictions                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------|
| FIRE  | $\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$                                    |
| SE    | $\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_{\omega}^2 < \overline{Var}; \overline{Disg} > 0$ |
| NI    | $\overline{FE}^2 > \overline{FE}^{*2}; \overline{Var} > \overline{Var}^*; \overline{Disg} > 0$                      |

Table: Model-implied ranking of moments

| Model | Predictions                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------|
| FIRE  | $\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$                                  |
| SE    | $\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_\omega^2 < \overline{Var}; \overline{Disg} > 0$ |
| NI    | $\overline{FE}^2 > \overline{FE}^{*2}; \overline{Var} > \overline{Var}^*; \overline{Disg} > 0$                    |
| DE    | $\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \overline{Var}; \overline{Disg} > 0$                   |

Table: Model-implied ranking of moments

| Model | Predictions                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------|
| FIRE  | $\overline{Var}^* = \overline{FE}^{*2} = \sigma_\omega^2; \overline{Disg}^* = 0$                                  |
| SE    | $\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \sigma_\omega^2 < \overline{Var}; \overline{Disg} > 0$ |
| NI    | $\overline{FE}^2 > \overline{FE}^{*2}; \overline{Var} > \overline{Var}^*; \overline{Disg} > 0$                    |
| DE    | $\overline{FE}^2 < \overline{FE}^{*2} = \overline{Var}^* = \overline{Var}; \overline{Disg} > 0$                   |
| DENI  | $\overline{FE}^2 > < \overline{FE}^{*2}, \overline{Var} > \overline{Var}^*, \overline{Disg} > 0$                  |

#### Structural Estimation: SMM

$$\widehat{\Omega}^o = \underset{\{\Omega^o \in \Gamma^o\}}{argmin} (M_{\text{data}} - F^o(\Omega^o, H)) W(M_{\text{data}} - F^o(\Omega^o, H))'$$

- $o \in \{se, ni, de, deni\} \times \{ar, sv\}$
- $\Gamma^o$ : parameter space
- H: real-time historical realizations
- W: weighting matrix

### Model estimates for professionals

SE as an example

| SE                           |                 |      |                   |  |  |
|------------------------------|-----------------|------|-------------------|--|--|
| Moments Used 2-Step Estimate |                 |      |                   |  |  |
|                              | $\hat{\lambda}$ | ρ    | $\sigma_{\omega}$ |  |  |
| FE                           | 0.36            | 0.99 | 0.23              |  |  |
| FE+Disg                      | 0.28            | 0.99 | 0.23              |  |  |
| FE+Disg+Var                  | 0.26            | 0.99 | 0.23              |  |  |
|                              |                 |      |                   |  |  |

### Evidence for subjective models

[Jain, 2019, Macaulay and Moberly, 2022, Farmer, Nakamura, and Steinsson, 2021]

| SE           |                 |        |                   |                 |        |                   |
|--------------|-----------------|--------|-------------------|-----------------|--------|-------------------|
| Moments Used | 2-Step Estimate |        | Joint             | te              |        |                   |
|              | $\hat{\lambda}$ | $\rho$ | $\sigma_{\omega}$ | $\hat{\lambda}$ | $\rho$ | $\sigma_{\omega}$ |
| FE           | 0.36            | 0.99   | 0.23              | 0.18            | 0.97   | 0.11              |
| FE+Disg      | 0.28            | 0.99   | 0.23              | 0.22            | 0.95   | 0.14              |
| FE+Disg+Var  | 0.26            | 0.99   | 0.23              | 0.32            | 0.9    | 0.22              |

## NI requires highly noisy signals

| NI           |                           |                                |      |                   |                           |                      |      |                   |
|--------------|---------------------------|--------------------------------|------|-------------------|---------------------------|----------------------|------|-------------------|
| Moments Used | 2-Ste                     | 2-Step Estimate Joint Estimate |      |                   |                           |                      |      |                   |
|              | $\hat{\sigma}_{\epsilon}$ | $\hat{\sigma}_{\xi}$           | ρ    | $\sigma_{\omega}$ | $\hat{\sigma}_{\epsilon}$ | $\hat{\sigma}_{\xi}$ | ρ    | $\sigma_{\omega}$ |
| FE           | 0                         | 0.87                           | 0.99 | 0.23              | 0                         | 0.15                 | 0.97 | 0.11              |
| FE+Disg      | 1.5                       | 2.26                           | 0.99 | 0.23              | 1.48                      | 2.33                 | 0.97 | 0.11              |
| FE+Disg+Var  | 2.64                      | 3                              | 0.99 | 0.23              | 3                         | 3                    | 0.94 | 0.16              |

### Patterns of households

### Sticky, underreactive and widely dispersed

| SE           |                           |                                         |      |                   |  |
|--------------|---------------------------|-----------------------------------------|------|-------------------|--|
| Moments Used | nts Used 2-Step Estimate  |                                         |      |                   |  |
|              | $\hat{\lambda}$           | $\hat{\lambda}$ $ ho$ $\sigma_{\omega}$ |      |                   |  |
| FE           | 0.36                      | 0.98                                    | 0.45 |                   |  |
| FE+Disg      | 0.36                      | 0.98                                    | 0.45 |                   |  |
| FE+Disg+Var  | 0.36                      | 0.98                                    | 0.45 |                   |  |
| NI           |                           |                                         |      |                   |  |
| Moments Used | 2-Step Estimate           |                                         |      |                   |  |
|              | $\hat{\sigma}_{\epsilon}$ | $\hat{\sigma}_{\xi}$                    | ρ    | $\sigma_{\omega}$ |  |
| FE           | 0                         | 1                                       | 0.98 | 0.45              |  |
| FE+Disg      | 3                         | 1.18                                    | 0.98 | 0.45              |  |
| FE+Disg+Var  | 2.06                      | 3                                       | 0.98 | 0.45              |  |
| DENI         |                           |                                         |      |                   |  |
| Moments Used | 2-Step Estimate           |                                         |      |                   |  |
|              | $\hat{	heta}$             | $\hat{\sigma}_{\xi}$                    | ρ    | $\sigma_{\omega}$ |  |
| FE           | N/A                       | N/A                                     | 0.98 | 0.45              |  |
| FE+Disg      | -0.54                     | 3                                       | 0.98 | 0.45              |  |
| FE+Disg+Var  | -0.35                     | 2.43                                    | 0.98 | 0.45              |  |
|              |                           |                                         |      |                   |  |

### Roadmap

Motivations

FIRE benchmark v.s. data

Differentiating non-FIRE models

The role of stochastic volatility

## Stochastic volatility (SV)

[Stock and Watson, 2007]

### Process of inflation

Permanent component Transitory 
$$y_t = \overbrace{\zeta_t} + \overbrace{\eta_t}$$
 
$$\zeta_t = \zeta_{t-1} + z_t$$
 
$$z_t = \sigma_{z,t} \xi_{z,t}, \quad \eta_t = \sigma_{\eta,t} \xi_{\eta,t}, \quad \xi_t = [\xi_{\eta,t}, \xi_{\epsilon,t}] \sim N(0,I)$$
 
$$\log \sigma_{\eta,t}^2 = \log \sigma_{\eta,t-1}^2 + \mu_{\eta,t}, \qquad \log \sigma_{z,t}^2 = \log \sigma_{z,t-1}^2 + \mu_{z,t}$$
 
$$\mu_t = [\mu_{\eta,t}, \mu_{z,t}]' \sim N(0,\gamma I)$$

### Estimated SV





## More sensible est of NI for professionals

| Before March 2020 |                     |                     | Till March 2023     |                     |
|-------------------|---------------------|---------------------|---------------------|---------------------|
| SE                |                     |                     |                     |                     |
| Moments Used      | 2-Step Estimate     |                     | 2-Step Estimate     |                     |
|                   | $\hat{\lambda}$     |                     | $\hat{\lambda}$     |                     |
| FE                | 0.2                 |                     | 0.3                 |                     |
| FE+Disg           | 0.25                |                     | 0.36                |                     |
| FE+Disg+Var       | 0.36                |                     | 0.36                |                     |
| NI                |                     |                     |                     |                     |
| Moments Used      | 2-Step Estimate     |                     | 2-Step Estimate     |                     |
|                   | $\hat{\sigma}_{pb}$ | $\hat{\sigma}_{pr}$ | $\hat{\sigma}_{pb}$ | $\hat{\sigma}_{pr}$ |
| FE                | 0.68                | 0.24                | 2.3                 | 3                   |
| FE+Disg           | 0.67                | 0.24                | 2.3                 | 3                   |
| FE+Disg+Var       | 0.64                | 0.21                | 2.3                 | 3                   |

## NI remains a poor fit of households

| Before March 2020 |                           |                      | Till March 2023           |                      |  |
|-------------------|---------------------------|----------------------|---------------------------|----------------------|--|
| SE                | SE                        |                      |                           |                      |  |
| Moments Used      | 2-Step Estimate           |                      | 2-Step Estimate           |                      |  |
|                   | $\hat{\lambda}$           |                      | $\hat{\lambda}$           |                      |  |
| FE                | 0.27                      |                      | 0.36                      |                      |  |
| FE+Disg           | 0.2                       |                      | 0.27                      |                      |  |
| FE+Disg+Var       | 0.26                      |                      | 0.26                      |                      |  |
| NI                |                           |                      |                           |                      |  |
| Moments Used      | 2-Step Estimate           |                      | 2-Step Estimate           |                      |  |
|                   | $\hat{\sigma}_{\epsilon}$ | $\hat{\sigma}_{\xi}$ | $\hat{\sigma}_{\epsilon}$ | $\hat{\sigma}_{\xi}$ |  |
| FE                | N/A                       | N/A                  | N/A                       | N/A                  |  |
| FE+Disg           | N/A                       | N/A                  | N/A                       | N/A                  |  |
| FE+Disg+Var       | N/A                       | N/A                  | N/A                       | N/A                  |  |

# Higher inflation, less rigidity

[Coibion and Gorodnichenko, 2015, Weber et al., 2023]

| Before March 20 | 20              |                      | Till March 2023 |                      |  |
|-----------------|-----------------|----------------------|-----------------|----------------------|--|
| SE              |                 |                      |                 |                      |  |
| Moments Used    | 2-Step Estimate |                      | 2-Step Estimate |                      |  |
|                 | $\hat{\lambda}$ |                      | $\hat{\lambda}$ |                      |  |
| FE              | 0.27            |                      | 0.36            |                      |  |
| FE+Disg         | 0.2             |                      | 0.27            |                      |  |
| FE+Disg+Var     | 0.26            |                      | 0.26            |                      |  |
| DENI            |                 |                      |                 |                      |  |
| Moments Used    | 2-Step Estimate |                      | 2-Step Estimate |                      |  |
|                 | $\hat{	heta}$   | $\hat{\sigma}_{\xi}$ | $\hat{	heta}$   | $\hat{\sigma}_{\xi}$ |  |
| FE              | -0.48           | 0.64                 | 0.43            | 0.26                 |  |
| FE+Disg         | -0.48           | 0.64                 | 0.43            | 0.26                 |  |
| FE+Disg+Var     | -0.48           | 0.64                 | 0.43            | 0.26                 |  |
|                 | ·               |                      | ·               |                      |  |

## Scoring card of model robustness

| Criteria                                  | SE | NI  | DE  | DENI |
|-------------------------------------------|----|-----|-----|------|
| Sensitive to moments used for estimation? |    | Yes | Yes | No   |
| Sensitive to the assumed process?         |    | Yes | Yes | No   |
| Sensitive to two-step or joint estimate?  |    | No  | No  | Yes  |
| Sensitive to the type of agents?          |    | Yes | Yes | Yes  |
|                                           |    |     |     |      |

• But no single model explains all aspects of survey expectations

| Conclusion                                                                             |
|----------------------------------------------------------------------------------------|
|                                                                                        |
|                                                                                        |
| <ul> <li>Belief is not just expectations, but also second or higher moments</li> </ul> |

### References I

- Abel, Joshua et al. (Apr. 2016). "The measurement and behavior of uncertainty: Evidence from the ECB survey of professional forecasters". en. *J. Appl. Econ.* 31.3, pp. 533–550.
- Bachmann, Rüdiger, Steffen Elstner, and Eric R Sims (2013). "Uncertainty and economic activity: Evidence from business survey data". *American Economic Journal: Macroeconomics* 5.2, pp. 217–49.
- Binder, Carola C (2017). "Measuring uncertainty based on rounding: New method and application to inflation expectations". *Journal of Monetary Economics* 90, pp. 1–12.
- Bordalo, Pedro, Nicola Gennaioli, Yueran Ma, et al. (2020). "Overreaction in Macroeconomic Expectations". *American Economic Review*.
- Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer (2018). "Diagnostic expectations and credit cycles". *The Journal of Finance* 73.1, pp. 199–227.

### References II

- Branch, William A (2004). "The theory of rationally heterogeneous expectations: evidence from survey data on inflation expectations". *The Economic Journal* 114.497, pp. 592–621.
- Carroll, Christopher D (2003). "Macroeconomic expectations of households and professional forecasters". *the Quarterly Journal of economics* 118.1, pp. 269–298.
- Cascaldi-Garcia, Danilo et al. (June 2023). "What Is Certain about Uncertainty?" *J. Econ. Lit.* 61.2, pp. 624–654.
- Coibion, Olivier and Yuriy Gorodnichenko (2012). "What can survey forecasts tell us about information rigidities?" *Journal of Political Economy* 120.1, pp. 116–159.
- (2015). "Information rigidity and the expectations formation process: A simple framework and new facts". American Economic Review 105.8, pp. 2644–78.

### References III

- D'Amico, Stefania and Athanasios Orphanides (July 2008). "Uncertainty and disagreement in economic forecasting". *Fin. Econ. Discuss. Ser.* 2008.56, pp. 1–38.
- Delavande, Adeline, Xavier Giné, and David McKenzie (2011). "Measuring subjective expectations in developing countries: A critical review and new evidence". *Journal of development economics* 94.2, pp. 151–163.
- Farmer, Leland, Emi Nakamura, and Jón Steinsson (2021). *Learning about the long run*. Tech. rep. National Bureau of Economic Research.
- Giacomini, Raffaella, Vasiliki Skreta, and Javier Turen (2020). "Heterogeneity, Inattention, and Bayesian Updates". *American Economic Journal:*Macroeconomics 12.1, pp. 282–309.
- Glas, Alexander (Apr. 2020). "Five dimensions of the uncertainty-disagreement linkage". *Int. J. Forecast.* 36.2, pp. 607–627.

### References IV

- Jain, Monica (2019). "Perceived inflation persistence". *Journal of Business & Economic Statistics* 37.1, pp. 110–120.
- Jurado, Kyle, Sydney C Ludvigson, and Serena Ng (2015). "Measuring uncertainty". *American Economic Review* 105.3, pp. 1177–1216.
- Lucas, Robert E (1972). "Expectations and the Neutrality of Money". *Journal of economic theory* 4.2, pp. 103–124.
- Macaulay, Alistair and James Moberly (2022). "Heterogeneity in imperfect inflation expectations: theory and evidence from a novel survey".
- Maćkowiak, Bartosz and Mirko Wiederholt (2009). "Optimal sticky prices under rational inattention". *American Economic Review* 99.3, pp. 769–803.
- Mankiw, N Gregory and Ricardo Reis (2002). "Sticky information versus sticky prices: a proposal to replace the New Keynesian Phillips curve". *The Quarterly Journal of Economics* 117.4, pp. 1295–1328.

### References V

- Mankiw, N Gregory, Ricardo Reis, and Justin Wolfers (2003). "Disagreement about inflation expectations". *NBER macroeconomics annual* 18, pp. 209–248.
- Manski, Charles F (2004). "Measuring expectations". *Econometrica* 72.5, pp. 1329–1376.
- (2018). "Survey measurement of probabilistic macroeconomic expectations: progress and promise". NBER Macroeconomics Annual 32.1, pp. 411–471.
- Rich, Robert and Joseph Tracy (Feb. 2010). "The relationships among expected inflation, disagreement, and uncertainty: Evidence from matched point and density forecasts". en. *Rev. Econ. Stat.* 92.1, pp. 200–207.
- (Feb. 2021). "A closer look at the behavior of uncertainty and disagreement: Micro evidence from the euro area". en. *J. Money Credit Bank*. 53.1, pp. 233–253.

### References VI

- Rossi, Barbara and Tatevik Sekhposyan (2015). "Macroeconomic uncertainty indices based on nowcast and forecast error distributions". *American Economic Review* 105.5, pp. 650–655.
- Ryngaert, Jane (2017). "What do (and don't) forecasters know about US inflation?"
- Sims, Christopher A (2003). "Implications of rational inattention". *Journal of monetary Economics* 50.3, pp. 665–690.
- Stock, James H and Mark W Watson (2007). "Why has US inflation become harder to forecast?" *Journal of Money, Credit and banking* 39, pp. 3–33.
- Weber, Michael et al. (2023). *Tell me something i don't already know: Learning in low and high-inflation settings*. Tech. rep. National Bureau of Economic Research.
- Woodford, Michael (2001). *Imperfect common knowledge and the effects of monetary policy*. Tech. rep. National Bureau of Economic Research.

### References VII

Xie, Shihan (2023). "An Estimated Model of Household Inflation Expectations: Information Frictions and Implications". *Review of Economics and Statistics*, pp. 1–45.