Data Analysis: COVID-19 Worldwide between 2020 and 2021

Team 9: Nathan Castle, Shanshan Chen and Fangyi Wang

Introduction: Understanding the Impact of COVID-19

- COVID-19 Global Pandemic
 - WHO declared COVID-19 a global pandemic in March 2020
 - Months prior, COVID-19 had never been detected in humans before
- World Health Organization, or WHO
 - Works within the United Nations to help coordinate international health
 - Data collected from censuses, healthcare systems, etc.
- Combating COVID-19
 - Lockdown orders, social distancing, facial coverings
 - Different policies for different regions and countries

Q1: Why did this analysis only involve WHO's COVID-19 dataset and not other sources?

Potential Questions and Hypotheses

- 1. Are the different World Health Organization regions associated with different daily average number of new cases and deaths from COVID-19?
- H1: We predict WHO regions will be associated with average new daily cases and deaths of COVID-19
- If so, is there a WHO region that's associated with the highest average daily number of new cases and deaths of COVID-19?
- H2: We predict a highly populated WHO region will be associated with highest average daily new cases and deaths of COVID-19.

Descriptive Analysis

- The dataset included over 100 thousand observations from January 3rd 2020 to March 5th 2021.
- Each observation was composed of date, country, region, the daily new cases, daily cumulative cases, daily new death, and daily cumulative death.
- 856 observations with missing values, and 100 observations with negative values.
- Removed missing values and negative values observations.

Descriptive Analysis

	Daily new cases	Daily new death
Mean	1147	25
Max	402270	6409

Daily new cases & World maps of cumulative cases

World maps of cumulative cases by country

Cumulative Cases in Feb2021

Q2: Why did you include world maps of monthly cumulative cases by country and by region? What information can they provide in addition to your longitudinal plot?

Proposed Model: Mixed Effect Model

$$Y_{ijk} = \mu_{..} + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}, \ k = 1, ..., n_{ij}, j = 1, ..., b, i = 1, ..., a$$

Model Explanation:

- Alpha i are fixed effects of Region
- Beta j are random effects of Month to reduce the variance

Strong Assumption:

Beta j are i.i.d normal distribution (Month is newly introduced covariate variable)

Transformation Data

- Sum up daily new cases/death of all countries in each region
- Introduce new variable Month from Date_reported

Q3:Why did you choose to use a mixed-effects model for analyzing this particular COVID-19 dataset?

Interaction Plots

Unparallel lines indicates interaction term are involved.

Fit the proposed model

	New Cases	New Deaths
Random Effects	Std.Dev	Std.Dev
Month	26018	435.4
Month:Region	47078	943.7
Residual	16316	498.1
Fixed Effects		
Intercept(AFRO)	6732	172.0
AMRO	113547	2767.7
EMRO	9512	172.7
EURO	88487	1932.5
Other	-6718	-171.4
SEARO	24405	307.0
WPRO	-2781	-101.3

F test for the interested question

Null Hypothesis $H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_7$

Alternative Hypothesis H_a : not all α_i are the same.

Reject Rule: Reject Null Hypothesis at level 0.05 if the p-Value less than 0.05

Statistics F: p-value of new cases 7.927e-13 p-value of new deaths 2.2e-16

Conclusion: the region effects are significant.

Sensitivity Analysis

New Cases Normal Q-Q plot

Q4: Why did your team choose to stay with the original model instead of choosing to use the log-transformation model after doing the transformation and comparing their diagnostic plots?

New Deaths Normal Q-Q plot

After log transformation

Conclusions and Caveats

From the analysis, questions of interest can be answered:

- WHO regions associated with average new daily COVID-19 case and death numbers
- 2. Region of the Americas associated with the highest average number of daily new cases and deaths

There are several possible concerns of the analysis:

- Model assumption violations, no "good" transformation identified
- Dataset contained possible errors in recorded values
- Observational study, unknown data collection specifics, and potential outcome assumptions violated ⇒ difficult to ascertain causal inference

Questions for our project

- 1. Why did your team choose to only analyzing the COVID-19 dataset from WHO versus combining multiple similar COVID-19 datasets?
- 2. Why did you include world maps of monthly cumulative cases by country and by region? What information can they provide in addition to your longitudinal plot?
- 3. Why did your team choose to stay with the original model instead of choosing to use the log-transformation model after doing the transformation and comparing their diagnostic plots?
- 4. Why did you choose to use a mixed-effects model for analyzing this particular COVID-19 dataset?
- 5. The covid cases data are essentially counts data, and a good way to analyze count data is using Poisson regression (log transformation). However, your log-transformed model didn't seem to improve compared to the original model, what could be the reason for that?

Citations

About WHO. Retrieved March 05, 2021, from https://www.who.int/about

 CDC COVID Data Tracker. (2021). Retrieved March 05, 2021, from https://covid.cdc.gov/covid-data-tracker/#trends_dailytrendscases

 WHO | Health Statistics. (2014, May 15). Retrieved March 05, 2021, from https://www.who.int/features/qa/73/en/