Tableau de synthèse des tests sur une moyenne

Conditions d'application:

Echantillon prélevé au hasard d'une population normale de variance connue

Hypothèse nulle : H_0 : $\mu = \mu_0$

Seuil de signification : α

Ecart réduit et sa distribution :

en supposant H₀ vraie et selon les conditions d'application, l'écart réduit :

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

est distribué selon la loi normale centrée réduite

On calcule une valeur de Z : z_{obs} à partir de la valeur \bar{x} mesurée sur l'échantillon.

Conditions d'application:

Echantillon de grande taille (n≥30) prélevé au hasard

Hypothèse nulle : H_0 : $\mu = \mu_0$

Seuil de signification : α

Ecart réduit et sa distribution :

en supposant H₀ vraie et selon les conditions d'application, l'écart réduit :

$$Z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

est distribué selon la loi normale centrée réduite

On calcule une valeur de Z : z_{obs} à partir de la valeur \bar{x} mesurée sur l'échantillon.

Conditions d'application:

Echantillon de petite taille (n<30) prélevé au hasard d'une population supposée normale de variance inconnue

Hypothèse nulle : H_0 : $\mu = \mu_0$

Seuil de signification : α

Ecart réduit et sa distribution : en supposant H_0 vraie et selon les conditions d'application, l'écart

réduit :

$$T = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

est distribué selon la loi de Student avec v = n - 1 degrés de liberté.

On calcule une valeur de T : t_{obs} à partir de la valeur x mesurée sur l'échantillon.

Hypthèses alternatives	Règles de décision	Hypthèses alternatives	Règles de décision	Hypthèses alternatives	Règles de décision
	Rejeter H ₀ si		Rejeter H ₀ si		Rejeter H ₀ si
$H_1: \mu \neq \mu_0$	$z_{obs} > z_{\alpha \over 2}$ ou $z_{obs} < -z_{\alpha \over 2}$	$H_1: \mu \neq \mu_0$	$z_{obs} > z_{\underline{\alpha}} \text{ ou } z_{obs} < -z_{\underline{\alpha}}$	$H_1: \mu \neq \mu_0$	$t_{obs} > t_{\underline{\alpha}_{2};v} \text{ ou } t_{obs} < -t_{\underline{\alpha}_{2};v}$
	Rejeter H ₀ si		Rejeter H ₀ si		Rejeter H ₀ si
$H_1: \mu > \mu_0$	$z_{obs} > z_{\alpha}$	$H_1: \mu > \mu_0$	$z_{obs} > z_{\alpha}$	$H_1: \mu > \mu_0$	$t_{obs} > t_{\alpha;\nu}$
	Rejeter H ₀ si		Rejeter H ₀ si		Rejeter H ₀ si
$H_1: \mu < \mu_0$	$z_{obs} < -z_{\alpha}$	$H_1: \mu < \mu_0$	$z_{obs} < -z_{\alpha}$	$H_1: \mu < \mu_0$	$t_{obs} < -t_{\alpha;\nu}$

Test de comparaison d'une proportion à une norme

Soit p une proportion théorique Soit f la proportion de ce caractère mesurée à partir d'un échantillon de taille n

Hypothèse nulle : H_0 : $p = p_0$

Conditions d'application : Echantillon prélevé au hasard $n p_0 > 5$ et $n(1-p_0) > 5$

Seuil de signification : $\boldsymbol{\alpha}$

Ecart réduit et sa distribution : en supposant H_0 vraie et selon les conditions d'application, l'écart réduit :

$$Z = \frac{F - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

est distribué selon la loi normale centrée réduite.

On calcule une valeur de Z : z_{obs} à partir de la valeur \overline{x} mesurée sur l'échantillon.

Hypthèses alternatives	Règles de décision
	Rejeter H ₀ si
$H_1: p \neq p_0$	$z_{obs} > z_{\underline{\alpha}} \text{ ou } z_{obs} < -z_{\underline{\alpha}}$
	Rejeter H ₀ si
$\mathbf{H}_1: p > p_0$	$z_{obs} > z_{\alpha}$
	Rejeter H ₀ si
$H_1: p < p_0$	$z_{obs} < -z_{\alpha}$

Tableau de synthèse des tests de comparaison sur deux moyennes

Conditions d'application:

Echantillons prélevés au hasard et indépendamment de populations normales de variances connues σ_1^2 et σ_2^2

Hypothèse nulle : H_0 : $\mu_1 = \mu_2$

Seuil de signification : α

Ecart réduit et sa distribution : en supposant H₀ vraie et selon les conditions d'application, l'écart réduit :

$$Z = \frac{\left(\bar{X}_{1} - \bar{X}_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

est distribué selon la loi normale centrée réduite.

On calcule une valeur de Z : z_{obs} à partir des valeurs x_1 et x_2 mesurées sur les 2 échantillons.

Conditions d'application:

Echantillons prélevés au hasard et indépendamment dont les tailles sont ≥30.

Hypothèse nulle : H_0 : $\mu_1 = \mu_2$

Seuil de signification : α

Ecart réduit et sa distribution : en supposant H₀ vraie et selon les conditions d'application, l'écart

réduit :

$$Z = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right)}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$

est distribué selon la loi normale centrée réduite.

On calcule une valeur de Z : z_{obs} à partir des valeurs x_1 et x_2 mesurées sur les 2 échantillons.

Conditions d'application:

Echantillons de petite taille (n₁<30 et/ou n₂<30) prélevés au hasard et indépendamment de populations normales de variances inconnues mais supposées égales à une valeur commune.

Hypothèse nulle : H_0 : $\mu_1 = \mu_2$

Seuil de signification : α

Ecart réduit et sa distribution : en supposant H₀ vraie et selon les conditions d'application, l'écart réduit :

$$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right)}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

est distribué selon la loi de Student avec $v = n_1 + n_2 - 2$ degrés de liberté.

On calcule une valeur de T : t_{obs} à partir des valeurs x_1 et x_2 mesurées sur les 2 échantillons.

Hypthèses alternatives	Règles de décision	Hypthèses alternatives	Règles de décision	Hypthèses alternatives	Règles de décision
	Rejeter H ₀ si		Rejeter H ₀ si		Rejeter H ₀ si
$H_1: \mu_1 \neq \mu_2$	$z_{obs} > z_{\underline{\alpha}}$ ou $z_{obs} < -z_{\underline{\alpha}}$	$H_1: \mu_1 \neq \mu_2$	$z_{obs} > z_{\underline{\alpha}}$ ou $z_{obs} < -z_{\underline{\alpha}}$	$H_1: \mu_1 \neq \mu_2$	$t_{obs} > t_{\underline{\alpha};\nu}$ ou $t_{obs} < -t_{\underline{\alpha};\nu}$
	Rejeter H ₀ si		Rejeter H ₀ si		Rejeter H ₀ si
$H_1: \mu_1 > \mu_2$	$z_{obs} > z_{\alpha}$	$ H_1: \mu_1 > \mu_2$	$z_{obs} > z_{\alpha}$	$ H_1: \mu_1 > \mu_2 $	$t_{obs} > t_{\alpha;\nu}$
	Rejeter H ₀ si		Rejeter H ₀ si		Rejeter H ₀ si
$H_1: \mu_1 < \mu_2$	$z_{obs} < -z_{\alpha}$	$H_1: \mu_1 < \mu_2$	$z_{obs} < -z_{\alpha}$	$H_1: \mu_1 < \mu_2$	$t_{obs} < -t_{\alpha;\nu}$

Test de comparaison de deux proportions

Hypothèse nulle : $H_0: p_1 = p_2 = f$

Avec
$$f = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2}$$

f est l'estimation de la proportion du caractère étudié indépendemment du groupe 1 ou 2. Cette estimation est faite à partir des proportions f_1 et f_2 du caractère mesurées sur les écahntillons 1 et 2 respectivement.

Conditions d'application:

Echantillons prélevés au hasard et indépendamment dont les tailles sont telles que $n_1 f > 5$ et $n_1(1-f) > 5$ et $n_2(1-f) > 5$

Seuil de signification : α

Ecart réduit et sa distribution : en supposant H_0 vraie et selon les conditions d'application, l'écart réduit :

$$Z = \frac{(F_1 - F_2)}{\sqrt{f(1 - f)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

est distribué selon la loi normale centrée réduite.

On calcule une valeur de Z : z_{obs} à partir des valeurs f_1 et f_2 mesurées sur les échantillons 1 et z_0

Hypthèses alternatives	Règles de décision
	Rejeter H ₀ si
$\mathbf{H}_1: p_1 \neq p_2$	$Z > z_{\frac{\alpha}{2}}$ ou $Z < -z_{\frac{\alpha}{2}}$
	Rejeter H ₀ si
$\mathbf{H}_1: p_1 > p_2$	$Z > z_{\alpha}$
	Rejeter H ₀ si
$\mathbf{H}_1: p_1 < p_2$	$Z < -z_{\alpha}$