Zadanie 1.11.A

Łukasz Magnuszewski

Treść

Udowodnić żu suma dowolnej (nawet nieprzeliczalnej) rodziny przedziałów na prostej, postaci [a,b], a < b, jest zbiorem borelowskim.

Rozwiązanie

Niech $A\subset P(\mathbb{R})$ będzie rodziną z treści zadania. Zdefinijmy na A następującą relację: $a\sim b\iff a\cap b\neq\emptyset$. W sposób oczywisty jest ona symetryczna oraz zwrotna. Jak weźmiemy jej przechodnie domknięcie to będzie ona dodatkowo przechodnia. Czyli będzie relacją równoważności. Oznaczmy to domknięcie jako \smile .

Rozważmy teraz zbiór klas abstrakcji zbiora A dla relacji \smile . Oznaczmy go jako D. A dokładniej rozważmy $C = \{ \cup x : x \in D \}$ Zauważmy że jest to rodzina rozłącznych przedziałów na prostej.

Teraz jako że każda klasa abstrakcji D, ma przynajmniej jeden element będący przedziałem [a,b], a < b, czyli każdy przedział należący do C ma przynajmniej jeden punkt wymierny. Z tego faktu, oraz rozłączności elementów C, wynika przeliczalność C(Istnieje funkcja różnowartościowa z C w \mathbb{Q}). Jako żę $\cup A = \cup C$ która jest przeliczalną sumą zbiorów borelowskich, czyli $\cup A$ jest zbiorem borelowskim.