Cleaning von Zeitreihen

Von der Anomalienerkennung zur Anomalienreparatur

Jose Rodriguez Parra Flores Klaus-Johan Ziegert

16. September 2019

- Einführung
- Grundlagen
- Iterative Minimum Repairing
- **Evaluierung**
- Schluss

Einführung

- Einführung
 - Motivation
 - Zielsetzung

Motivation

Messgeräte liefern unzuverlässige Daten

- GPS Tracker sind nahe von Gebäuden unzuverlässig
- Sensoren sind empfindlich gegenüber äußere Einflüsse
 - Z.B. starker Fall der Temperaturen bei einem Windzug

Abbildung: GPS-Tracking auf dem Campus der Tsinghua Universität [1]

Motivation

Umgang von unzuverlässigen Daten mit Anomalienerkennung

- Unzuverlässige Datenpunkte entfernen
 - Ausreißer werden entfernt 🙂
 - Entfernen aufeinanderfolgende Fehler machen Ergebnis unbrauchbar oder werden als solche ggf. nicht entfernt
- Unzuverlässige Datenpunkte reparieren
 - Einzelne Ausreißer werden leicht korrigiert 😐
 - Aufeinanderfolgende Fehler werden zu stark verändert (In der Praxis liegen die Messungen nahe bei den korrekten Werten) (:)

Einführung

Motivation

Hinzunahme von korrekt markierten Werten

- Markierung durch den Benutzer
 - Z.B. markiert der Benutzer in beliebigen Zeitabständen seinen aktuellen Standort
- 2 Präzise Messgeräte liefern in längeren Zeitabstände korrekte Werte

į.

Zielsetzung

Ziel der Arbeit

- Berücksichtigung der markierten Werte in der Anomalienerkennung
 - Aufeinanderfolgende Fehler sollen besser abgeschätzt werden
- Anomalienreparatur mit den Minimum-Change-Prinzip vereinbaren
 - Keine drastische Veränderungen der Messwerte
- Neue Anomalienreparatur hinsichtlich Berechnungslaufzeit, Ergebnisgenauigkeit usw. optimieren
- Neue Anomalienreparatur mit unterschiedlichen Einstellungen mit den anderen Verfahren empirisch vergleichen

- Einführung
- 2 Grundlagen
 - Problemstellung
 - Anomalien
 - Reparatur durch Anomalienerkennung
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- 5 Schluss

Problemstellung

Zeitreihenreparatur

- Gegeben:
 - Eine fehlerbehafte Messung $x = x[1], \dots, x[n]$
 - Eine unvollständige, aber dafür ausschließlich korrekte Messung x^{truth}
- Gesucht:
 - Reparatur y mit minimalen RMS-Fehler $\Delta(x^{\text{truth}*}, y)$
 - $\Delta(x^{\text{truth*}}, y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i^{\text{truth*}} y_i)^2}$

Anomalien

Anomalien

- Wikipedia: Abweichung von der Regel
- Werte x_i mit Abweichung τ (Bsp. $\tau = 2\sigma$):

$$|X_{i} - X_{i}^{\text{truth*}}| > \tau$$

Reparatur durch Anomalienerkennung

Autoregressive Modell AR(p)

• Lineare Regression der letze p Werte:

$$x_t' = \sum_{i=1}^p \phi_i x_{t-i} + \epsilon_t$$

Reparatur:

$$y_t = \begin{cases} x_t' & \text{falls } kein Label \ und \ |x_t' - x_t| > \tau \\ x_t & \text{sonst} \end{cases}$$

Autoregressives exogenes Modell ARX(p)

Exogenes Variabel y

$$y'_{t} = x_{t} + \sum_{i=1}^{p} \phi_{i}(y_{t-i} - x_{t-i}) + \epsilon_{t}$$

y'_t Mögliche Reparatur:

$$y_t = egin{cases} y_t' & \text{falls kein Label und } |y_t' - x_t| > au \\ y_t & \text{sonst} \end{cases}$$

Fakten

- Iterative Minimum Repairing
 - allgemeines IMR
 - Matrix-Pruning IMR
 - Incremental-Computation IMR

Jose, Klaus

16. September 2019

13

- Fakten
- Fakten
- Fakten

- Fakten
- Fakten
- Fakten

- Fakten
- Fakten
- Fakten

ing von Zeitreihen Jose, Klaus

Evaluierung

- **Evaluierung**
 - Ordnung
 - Schwellenwert
 - maximale Anzahl von Iterationen
 - Markierungsrate

Jose, Klaus

16. September 2019

UН

Ordnung

Blank

- Fakten
- Fakten
- Fakten

Schwellenwert

Blank

- Fakten
- Fakten
- Fakten

16. September 2019

UΗ

- Fakten
- Fakten
- Fakten

16. September 2019

UΗ

Markierungsrate

Blank

- Fakten
- Fakten
- Fakten

Schluss

- Einführung
- 2 Grundlagen
- 3 Iterative Minimum Repairing
- 4 Evaluierung
- Schluss
 - Zusammenfassung und Ausblick
 - Literatur

Cleaning von Zeitreihen Jose, Klaus
16. September 2019 22

Zusammenfassung und Ausblick

Zusammenfassung

• Was wurde getan?

Zusammenfassung und Ausblick

Zusammenfassung

• Was wurde getan?

Ausblick

• Wie könnten zukünftige Arbeiten aussehen?

Literatur I

Time series data cleaning: From anomaly detection to anomaly repairing.

Proceedings of the VLDB Endowment, 10(10):1046–1057, 2017.

