CS 465

January 31st, 2020

Homework #3

- 1. a) This will produce a relation of hotel ID numbers (hotelNo) where the price for a room from the Room table is greater than 50 pounds. Essentially this produce a relation of hotelNo's with a room price greater than 50 pounds.
 - c) This will produce a natural join of Hotel and Room with a price of a room being greater than 50 pounds. This will produce a relation containing all hotel names with a room price greater than 50 pounds.
 - f) This will produce a join of Booking and Guest and will essentially produce a relation containing the names of guests and hotel ID's for all tuples of guests with hotels booked in London.
- 2. b. Relational Algebra: $\Pi_{\text{roomNo}}(\sigma_{\text{price}} < 20 \ \land \ \sigma_{\text{type}} = '\text{single'})$ Tuple Relational Calculus: {R | Room(R) \ \lambda \ R. price < 20 \ \lambda R. type = 'single'}
 - c. Relational Algebra: Π_{guestName,guestAddress}(Guest)
 Tuple Relational Calculus: {G. guestName, G. guestAddress | Guest(G)}
 - d. Relational Algebra:

```
\Pi_{price,type}(Room \bowtie_{Room.hotelNo=Hotel.hotelNo} (\sigma_{hotelName='GrosvenorHotel'}(Hotel)))
```

Tuple Relational Calculus:

{R. price, R. type | Room(R)
$$\land$$
 (\exists H)(Hotel H) \land (R. hotelNo
= H. hotelNo) \land (H. hotelName = 'GrosvenorHotel')}

e. Relational Algebra:

Guest
$$\bowtie_{Guest.guestNo=Booking.guestNo}$$
 ($\sigma_{dateFrom \leq CURDATE()} \land \sigma_{dateTo > CURDATE()}$ (Booking $\bowtie_{Booking.hotelNo=Hotel.hotelNo}$ ($\sigma_{hotelName} = 'Grosvenor Hotel'(Hotel)$))

Tuple Relational Calculus:

```
 \left\{ G \mid Guest(G) \ ((\exists B)(\exists H) \ \Big( Booking(B) \land \ Hotel(H) \land (B. \, dateFrom \leq CURDATE()) \\ \land \ (B. \, dateTo > CURDATE()) \land (G. \, guestNo = B. \, guestNo) \\ \land \ (B. \, hotelNo = H. \, hotelNo) \land \big( H. \, hotelName = \ Grosvenor \, Hotel \ \big) \big) \right)
```

f. Relational Algebra:

```
\begin{aligned} \text{Room} &\bowtie \left(\sigma_{hotelName} = 'Grosvenor \ Hotel'(Hotel)\right) \bowtie \Pi_{guestName,hotelNo} \\ & \left(Guest \bowtie_{Guest.guestNo=Booking.guestNo} \left(\sigma_{dateFrom} \leq_{CURDATE()} \right) \\ &\land & \sigma_{dateTo>CURDATE()} \left(Booking \bowtie_{Booking.hotelNo=Hotel.hotelNo} \left(\sigma_{hotelName='Grosvenor \ Hotel'}(Hotel)\right)\right) \end{aligned}
```

Note to TA: ⋈ was the closest symbol to the textbooks LEFT OUTER JOIN as I could find.

Tuple Relational Calculus:

```
 \left\{ R, G. \, guestName \mid Room(R) \, \left( (\exists H) \left( Hotel(H) \wedge (H. \, hotelNo = R. \, hotelNo) \right. \right. \right. \\ \left. \wedge \left( H. \, hotelName = 'Grosvenor \, Hotel') \right) ) \vee \left( Guest(G)((\exists B)(\exists H)(Booking(B) \wedge (H. \, hotelNo) \right) \right. \\ \left. \wedge \left( H. \, hotelNo \right) \wedge \left( H. \, hotelNo \right) \\ \left. = B. \, hotelNo) \wedge \left( H. \, hotelName = 'Grosvenor \, Hotel') \right. \\ \left. \wedge \left( G. \, guestNo = B. \, guestNo \right) \wedge \left( B. \, dateFrom \, \leq \, CURDATE() \, \wedge B. \, dateTo \right. \\ \left. > CURDATE() \right\}
```

- 3. a. This would produce a relation containing all hotel names in the city of London.
 - b. This would produce a relation containing all hotel names with room prices greater than 50 pounds.
 - c. This would produce a relation containing all of the hotel names where guest John Smith has stayed. This would essentially return all hotel names where guest John Smith has had bookings.
 - d. This would produce a relation containing the hotel name and guest name where there exist two bookings for the guest at the same hotel.

4.

- a. Main Entity Types:
 - i. Instructor
 - ii. Trainee
 - iii. Advanced Technology Course
 - iv. Training Session
 - v. Course Development
 - vi. Teaching Team

b.

Relationship Types and Multiplicity

Treationship Types and Transpirity				
LHS	LHS Entity	Relationship	RHS Entity	RHS
Multiplicity				Multiplicity
1*	Trainee	Attends	Training	1*
			Session	
11	Instructor	Put On	Teaching Team	02
11	Instructor	Assigned	Course	0*
		_	Development	
11	Advanced Course	Offers	Training	1*
			Session	
11	Teaching Team	Teaches	Advanced	1*
			Course	

c. (Made on draw.io)

a. (Made on draw.io)

b. Red denotes primary keys

- i. Branch (branchNo, address, phoneNumber, manager)
- ii. Staff (staffNo, name, position, salary)
 - Name contains first name and last name
- iii. VideoTitle (catalogNo, title, category, dailyRentFee, purchaseCost, actorNames, directorName)
- iv. VideoRental (videoNum, category, rentalStatus, catalogNo, title, dailyRentFee, purhcaseCost, actorNames, directorName)
- v. Member (memberNo, firstName, lastName, address, registrationDate, branchRegistered)
- vi. Registration (memberNo, branchNo)
- vii. RentalAgreement(rentalNo, firstName, lastName, memberNo, videoTitle, dailyRental, dateFrom, dateTo)

c. Primary Keys:

- i. Branch Entity
 - Primary Key: branchNo
 - Candidate Key: branchNo, address
- ii. Staff Entity

- Primary Key: staffNo
- Candidate Key: staffNo, name

iii. VideoTitle

- Primary Key: catalogNo
- Candidate Key: catalogNo, {title, category}

iv. VideoRental

- Primary Key: videoNum
- Candidate Key: videoNum, {catalogNo, title}

v. Member

- Primary Key: memberNo
- Candidate Key: memberNo, {firstName, lastName}

vi. Registration

- Primary Key: None, this is a weak entity type.
- Candidate Key {memberNo, branchNo}

vii. RentalAgreement

- Primary Key: rentalNo
- Candidate Key: rentalNo, {firstName, lastName, memberNo}