The Surprising Effectiveness of Infinite-Width NTKs for Characterizing and Improving Model Training

Joshua DeOliveira, Walter Gerych, Elke Rundensteiner

Background

Existing data-valuation methods rely on a suite of specially tailored methods, many **requiring expensive model training** to be conducted

We propose leveraging existing **NTK** theory to **side-step training**

Neural Tangent Kernels (NTKs)

A **similarity measure** of a neural net's sensitivity

$$\Theta(x', x''; \theta) = \langle \nabla_{\theta} f(x'; \theta), \nabla_{\theta} f(x''; \theta) \rangle$$

Can be found numerically for real, finite-sized networks, or analytically for neural nets with **infinitely many neurons in its hidden layers**

Data Set	2-L	10-L	CNN-I	CNN-2	CNN-3	Data Set	2-L	10-L	CNN-1	CNN-2	CNN-3
D-MNIST	25	56	50	89	6,067	D-MNIST	715	5,377	820	49,714	19,247
F-MNIST	25	55	60	90	5,931	F-MNIST	715	5,377	820	49,714	20,036
CIFAR10	25	46	90	153	5,390	CIFAR10	715	4,563	718	53,567	16,746
CIFAR100	25	46	86	152	5,407	CIFAR100	731	4,617	764	54,740	17,169

Table 1: Time in seconds to compute the Gram-Matrix of common benchmark image datasets using the infinite-width NTK (Θ^{∞}) across four architectures with infinite-widths.

Table 2: Time in seconds to compute 100 epochs for finite-width architectures with hidden layers of 10,000 neurons.

Surprisingly, computing the infinite-width NTK is significantly **faster** than training a large, real neural net of the exact same architecture

Proposed Solution

Infinite-Width NTKs allows for an elegant, unified way of improving model training before any real training has been conducted

Architecture Selection

The **Gram Matrix** formed by the Infinite-Width NTK describes the similarities between all pairs of points present in the training set

$$\mathbf{H}^{\infty} = \begin{bmatrix} \Theta^{\infty}(x_1, x_1) & \Theta^{\infty}(x_1, x_2) & \dots & \Theta^{\infty}(x_1, x_N) \\ \Theta^{\infty}(x_2, x_1) & \Theta^{\infty}(x_2, x_2) & \dots & \Theta^{\infty}(x_2, x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \Theta^{\infty}(x_N, x_1) & \Theta^{\infty}(x_N, x_2) & \dots & \Theta^{\infty}(x_N, x_N) \end{bmatrix}$$

The clustering of classes by **KPCA** using this Gram can inform us what architectures can naturally learn certain tasks better than others

Data Set	2-L	CNN-2
Digit MNIST	2.728 (25.274)	3.785 (33.755)
Fashion MNIST	3.488 (23.475)	5.022 (31.799)
CIFAR10	1.179 (2.234)	1.186 (2.097)
CIFAR100	1.893 (13.058)	2.550 (19.421)
Shapes	1.022 (1.400)	1.057 (1.921)
Corners	1.051 (1.259)	1.015 (1.132)

Table 3: Ratio of mean (standard deviation) between interclass distances and intra-class distances when projecting datasets into the last 4 principal components of Θ^{∞} -KPCA using different infinite-wide architectures. Larger values correspond to classes being strongly clustered by KPCA.

Pseudo-Label Verification

The matrix **Z** describes how **orthogonal each class's learning dynamics** are to each other within the context of their ground-truth labels

$$\mathbf{Z} = \mathbf{Y}^{\top} (\mathbf{H}^{\infty})^{-1} \mathbf{Y}$$

We propose a novel metric *Infinite-Width Block Diagonalization Error* using **Z** can **accurately identify which datasets** may

contain noisy or incorrect training labels

$$\mathcal{L}(\mathbf{Z}) = \frac{1}{K} \sum_{k=1}^{K} \frac{\mathbf{Z}_{kk}}{(\mathbf{Y}^{\top} \mathbf{1})_k [(\mathbf{Y}^{\top} \mathbf{1})_k - 1]}$$
$$- \frac{\beta}{K^2 - K} \sum_{k=1}^{K} \sum_{k \neq d} \left[\frac{\mathbf{Z}_{k,d}}{(\mathbf{Y}^{\top} \mathbf{1})_k (\mathbf{Y}^{\top} \mathbf{1})_d} \right]$$

Dataset	Label Scheme	$\mathcal{L}(\mathbf{Z})$	Trained Rank
	70% Noise	29662.4	5 √
5	30% Noise	20401.4	4 ✓
Digit	10% Noise	11784.6	3 ✓
MNIST	Clean	6702.7	2 ✓
	1 Class	1.3	1 ✓
	70% Noise	30889.0	5 √
Parking.	30% Noise	21433.0	4 ✓
Fashion	10% Noise	13248.3	3 ✓
MNIST	Clean	8558.3	2 ✓
	1 Class	1.8	1 ✓
	70% Noise	1387.0	5 √
	30% Noise	1269.4	4 ✓
CIFAR-10	10% Noise	1159.7	3 ✓
	Clean	1109.8	2 ✓
	1 Class	0.2	1 ✓
	70% Noise	19907.0	5 √
	30% Noise	19166.1	4 ✓
CIFAR-100	10% Noise	18732.8	3 ✓
	Clean	18456.4	2 ✓
	1 Class	0.2	1 ✓

Table 6: The infinite-width block-diagonalization error $\mathcal{L}(\mathbf{Z})$ computed without training, and the ranking of lowest training loss after a large but finite-width deep CNN trained for 250 epochs (Trained Rank) using different labeling schemes. $\mathcal{L}(\mathbf{Z})$ perfectly predicts the real ranking.

Inherent Bias Detection

We can additionally leverage ${f Z}$ to find what classes are highly entangled with others during

L		 	
	Inti Relat	 	_

Dataset	Ranking	RBO Score	
Digit	Intra-Class	0.962	
MNIST	Inter-Class	0.904	
Fashion	Intra-Class	0.963	
MNIST	Inter-Class	0.915	
CIFAR-10	Intra-Class	0.734	
CITAR-10	Inter-Class	0.916	
CIFAR-100	Intra-Class	0.557	
CITAR-100	Inter-Class	0.688	

Table 7: The predicted rankings computed without training using the magnitudes of off-diagonal elements of the infinite-width Gram-Label product, and the rankings produced after training a large but finite-width deep CNN trained for 250 epochs. Our proposed technique strongly predicts the ranking.

Label Refurbishment

Infinite-Width Block Diagonalization Error can help with

Alg	orithm 1: Label Refurbishment Using $(\mathbf{H}^{\infty})^{-1}$
Reg	quire: Total iterations L ; initial one-hot label matrix vector initial positions of 1's in each row of \mathbf{Y} : a
1:	for L Iterations do
2:	Compute $-\nabla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})$ according to Eq. 12
3:	$\mathbf{b} \leftarrow - abla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})_{i, \mathbf{a}_i} \bigg _{i \in \{1,, N\}}$
4:	$\mathbf{c} \leftarrow \max_{j \in \{1, \dots, K\}} -\nabla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})_{i, j} \bigg _{i \in \{1, \dots, N\}}$
5:	$\mathbf{d} \leftarrow \mathbf{c} - \mathbf{b}$
6:	$I = \arg \max \mathbf{d}$
7:	$J = \arg \max -\nabla_{\mathbf{Y}} \mathcal{L}(\mathbf{Y})_{I,:}$
	$\mathbf{Y}_{I,:} \leftarrow \mathbf{e}_J$
9:	end for
10:	return Y

	Dataset	Noise Added	Ours	BARE
		70%	25.21%	79.61%
	Digit	30%	85.66%	95.73%
	MNIST	20%	85.00%	93.65%
		10%	83.50%	87.50%
		70%	13.36%	-
	Fashion	30%	65.67%	-
	MNIST	20%	64.25%	-
		10%	57.00%	-
-		70%	11.50%	-
	CIFAR-10	30%	16.16%	-
		20%	13.00%	-
		10%	9.00%	-

Table 8: After infecting datasets with different amounts of random label noise, the percentage of noise correctly refurbished (top) according to our method (Algorithm 1), compared to BARE, a noisy label learning algorithm, after 200 epochs of model learning. Entries with "-" indicate that after 400 epochs, BARE's model performance still did not achieve better training than naively training with label noise.

By altering labels to minimize *Infinite-Width Block Diagonalization Error*, incorrect labels can be **identified and refurbish** to the correct class

Takeaways

Relationships

Infinite-width NTKs provide a rich signal that expands the predictability of model training behavior fora given neural net architecture

Infinite-width NTKs are applicable as a low-cost yet powerful signal that can single-handedly realize various data valuation tasks

Funding Acknowledgement

DMS-1337943

References

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in neural networks. *Advances in neural information processing systems*, 31.

Seleznova, M., & Kutyniok, G. (2022, June). Neural tangent kernel beyond the infinite-width limit: Effects of depth and initialization. In *International Conference on Machine Learning* (pp. 19522-19560). PMLR.