CMPSC 138 SUMMER 2018

Homework IV: Due Wednesday, August 29, during the discussion session.

- 1. Do Problem 19, Section 4.3 of the text.
- 2. Do Problem 20, Section 4.3 of the text.
- 3. Decide whether each statement below is true or false. If it is true, prove it. If not, give a counterexample. The alphabet is $\{a, b\}$.
 - (a) If $\mathcal{L}_1 \subseteq \mathcal{L}_2$ and \mathcal{L}_1 is not regular, then \mathcal{L}_2 is not regular.
 - (b) If $\mathcal{L}_1 \subseteq \mathcal{L}_2$ and \mathcal{L}_2 is not regular, then \mathcal{L}_1 is not regular.
 - (c) If \mathcal{L}_1 and \mathcal{L}_2 are nonregular, then $\mathcal{L}_1 \cup \mathcal{L}_2$ is nonregular.
 - (d) If \mathcal{L}_1 and \mathcal{L}_2 are nonregular, then $\mathcal{L}_1 \cap \mathcal{L}_2$ is nonregular.
 - (e) If \mathcal{L}_1 is regular and \mathcal{L}_2 is nonregular, then $\mathcal{L}_1 \cap \mathcal{L}_2$ is nonregular.
 - (f) If $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \ldots$ are all regular, then $\bigcup_{n=1}^{\infty} \mathcal{L}_n$ is regular.
 - (g) If \mathcal{L}_2 is regular and \mathcal{L}_1 is finite, then $\mathcal{L}_1\mathcal{L}_2$ is regular.
 - (h) If $\mathcal{L}_1 \cup \mathcal{L}_2$ is regular and \mathcal{L}_1 is finite, then \mathcal{L}_2 is regular.
 - (i) If $\mathcal{L}_1\mathcal{L}_2$ is regular and \mathcal{L}_1 is finite, then \mathcal{L}_2 is regular.
- 4. Is the language $\{a^ib^j \mid i+j \text{ is even }\}$ regular? If so, construct the transition diagram of a DFA accepting it. If not, use the pumping lemma for regular languages to show that it is not regular.
- 5. Suppose all the productions of a CFG G are of the form

$$A \rightarrow a B$$
 , $A \rightarrow B a$, $A \rightarrow a$.

Does it follow that $\mathcal{L}(G)$ is regular? Prove or give a counterexample.

- 6. Let \mathcal{L} be the language denoted by the regular expression a^*b .
 - (a) Find a right-linear grammar for \mathcal{L} .
 - (b) Find a left-linear grammar for \mathcal{L} .
- 7. Let $\mathcal{L} = \{a^m b \mid m \ge 0\} \cup \{b^m a \mid m \ge 1\}.$
 - (a) Find the 9-th word in \mathcal{L} in lexicographic order
 - (b) Find the 9-th word in \mathcal{L}^R in canonical order.
 - (c) Find a regular expression for \mathcal{L} .
 - (d) Construct the minimum state DFA M_{min} for \mathcal{L} .
- 8. Describe a decision algorithm to answer the following question:

Given a DFA M accepting \mathcal{L} , and a string w, is w a substring of an element of \mathcal{L} ?

- 9. Use the pumping lemma to show that the language $\mathcal{L} = \{a^m b^k \mid m > k\} \cup \{a^m b^k \mid m \neq k 1\}$ is nonregular.
- 10. Consider the grammar $G = (\{S, A\}, \{a, b\}, S, P)$ where P is the set of productions

$$\begin{array}{ccc} S & \to & aA \\ A & \to & abS \mid b \end{array}$$

- (a) Construct a DFA that accepts $\mathcal{L} = \mathcal{L}(G)$.
- (b) Construct a regular expression denoting \mathcal{L} .
- (c) Construct a left-linear grammar for \mathcal{L} .