Evaluation of early diagenesis in modern, shallow-water carbonate sediments by mineralogy, fabric and porewater geochemistry

by

Yoko Furukawa

Center for Marine Sciences University of Southern Mississippi Stennis Space Center, MS 39529

Quarterly Technical Report

Submitted to

Naval Research Laboratory (NRL-SSC) Code 7431 Stennis Space Center, MS 39529-5004

Grant No. N00014-95-1-G907

Approved:

Denis Wiesenburg, Principal Investigator

Technical Report No. CMS-95-02

June 30, 1995

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

1. Introduction

Early diagenesis is an important process affecting the coastal benthic boundary layer. Variation in sediment mineralogy and fabric due to the geochemical processes during early diagenesis can alter sediment physical properties and therefore have an impact on mine countermeasure systems that are of great interest to Navy.

The Naval Research Laboratory (NRL) is presently conducting a comprehensive study of the coastal benthic boundary layer. Our research is undertaken in conjunction with that NRL study known as the Coastal Benthic Boundary Layer special Research Program (CBBLSRP). Our particular study investigates the effect of geochemical processes on sediment fabric and mineralogy in a carbonate platform environment of the Key West area. Early studies indicated that shallow carbonate sediments that have been in contact only with seawater throughout their history show no evidence for diagenetic reactions (e.g., Berner 1966). However, more recent studies have revealed the possibility of volumetrically significant dissolution and recrystallization of carbonate minerals during the early diagenesis of shallow carbonate sediments (e.g., Walter and Burton, 1990).

The purpose of this study is to quantify the extent of early diagenesis in the carbonate platform sediments of the Key West area and to identify the mechanisms responsible for diagenetic reactions, such as dissolution and recrystallization of the carbonate minerals. In order to achieve these goals, mineralogy, fabric and porewater geochemistry of the sediment cores from the areas are being extensively investigated. This quarterly progress report presents the results from the investigation and indicates the plan for the rest of the grant period.

2. Methodology

The author participated in the CBBLSRP Key West Campaign that was conducted in the area of carbonate sediments of Dry Tortugas and Marquesas Keys, west of Key West, Florida, on board the German research vessel WFS *Planet* in February 1995. Sediment samples were obtained from the upper 2 m using box cores and gravity cores. Porewater samples were obtained from the upper 30 cm of sediment using Jahnke-type porewater squeezers (Jahnke, 1992). Porewater samples were collected and processed on board WFS *Planet*. Sediment samples from box cores were collected by Dennis Lavoie of Naval Research Laboratory and the author. Sediment samples from gravity cores were collected by Dawn Lavoie of Naval Research Laboratory on board R/V *Pelican* during the CBBLSRP Key West Campaign. Cores KW-PL-BC-141, 165, 194, KW-PL-DC-179 are from the Dry Tortugas area and KW-PL-BC-208 is from the Marquesas Keys area. Water depths in the study area are approximately 30 m.

Sediments from the study area are mixtures of macroscopic shells and shell pieces, and sand-, silt- and clay-sized carbonate particles (Kevin Stephens, pers. comm.). Extensive bioturbation and bioirrigation of burrow networks are present. Aragonite, Mg-

calcite and low-Mg calcite are the predominant mineral phases with minor quartz in some cores. Organic carbon content of the sediments is less than 1 weight % (Kathleen Fischer, pers. comm).

Porewater samples were drawn from a core squeezer that prevented samples from exposure to air. Porewater samples were analyzed for intermediate sulfur species and total reduced sulfur species using iodometric titration within 10 minutes of the sampling, and major and minor cation concentrations were determined using inductively coupled plasma spectroscopy (ICP) by Chuck Holmes at US Geological Survey Denver Office. The porewater samples were also analyzed for pH within 10 minutes of sampling.

Sediments from both box cores and gravity cores were sampled for the study of mineralogy and fabric. Mineralogy is studied using X-ray powder diffraction and subsequent Rietveld crystal structure refinement. Fabric is studied using petrographic microscope and scanning electron microscope (SEM).

3. Results and Progress

Porewater chemistry

Table 1 shows pH and the concentrations of reduced sulfur species for the porewater samples. Table 2 shows the results of ICP analysis. The reduced sulfur species concentrations indicate that sulfate reduction and reoxidation occur at and below 3 cm from the water-sediment interface. Major cation concentrations show little variability through the sampling depths. Variability in Ca²⁺ concentration was more pronounced and used as evidence for carbonate dissolution in studies of Florida Bay carbonate sediments (e.g., Walter and Burton, 1990).

X-ray powder diffraction mineralogy

The X-ray powder diffraction indicated that the sediment samples are composed of calcite of various Mg contents and aragonite, with occasional minor quartz. Figure 1 is a part of the X-ray diffractograms of samples from the box core KW-PL-BC-194 that shows peaks of aragonite and high- and low-Mg calcite. Quantitative phase analysis is underway on the diffractograms by Rietveld crystal structure refinement. Rietveld refinement will also yield accurate cell constants for calcite that can be used to determine mole % MgCO₃ in calcite (Reid et al., 1992; Goldsmith and Graf, 1958).

Optical microscopy

The optical microscope observation of a gravity core from Dry Tortugas revealed a bimodal distribution of carbonate grains within the cores from both Marquesas and Dry Tortugas. Large grains (>1 mm) are mostly shells and shell fragments whereas matrix (50

 $\sim 300~\mu m)$ are mostly algae fragments. Grains to matrix ratio is approximately 1 to 4 throughout the observed depths (0 to 130 cm below seafloor).

SEM

SEM photographs of gravity core samples indicate the presence of micritic cement in the samples from Dry Tortugas at the depth of 130 cm (Figure 2). A cloudy mass that looks like an aggregate of fine grain material is present among grains in the samples from 130 cm below seafloor whereas such mass is absent in the samples from near water-sediment interface. Further SEM analysis is planned in order to estimate the amount of micritic cement.

4. Discussion and Plans

Estimation of the extent of diagenetic reactions

The porewater data indicate that the concentrations of major solutes such as Ca²⁺ and Mg²⁺ are nearly constant within the top 30 cm of the sediments. The constant depth profile of porewater chemistry in carbonate sediments was originally interpreted as one of the evidences for the lack of diagenetic reactions in shelf carbonate sediments of Bahamas (Berner, 1966). However, the SEM image of the sample from 130 cm below seafloor (Figure 2) indicates the presence of micritic cement in the present study, suggesting that the major element chemistry in porewater may not be a sensitive indicator of the extent of diagenesis. This lack of sensitivity is probably due to the extensive bioturbation and bioirrigation observed in the study area.

Therefore in the present study, the extent of diagenesis will be estimated using the Mg content of calcite, that should differ between the primary biogenic calcite and recrystallized diagenetic calcite. Recrystallized diagenetic calcite should be in kinetic equilibrium with the porewater (Walter and Morse, 1984), whereas the biogenic calcite is not. Accurate Mg content of calcite can be calculated using the cell constants of calcite, which is derived using Rietveld crystal structure refinement method (e.g., Bish and Post, 1993).

5. Summary

SEM observations suggest fairly extensive recrystallization of carbonate minerals within the upper 130 cm of the sediments in the study area. Major cation concentrations such as [Ca²⁺] are insensitive to the early diagenesis and cannot be used as the measure of the extent of diagenesis in the study area. Rietveld crystal structure refinement will be used in the present study to quantify the extent of phase transformation in terms of mineralogy.

ncentrations
ne measure of
ent will be
rms of

Codes

Dist Availand/or
Special

6. References

- Berner, R. A. (1966) Chemical diagenesis of some modern carbonate sediments. *Amer. J. Sci.* **264**, 1-36.
- Bish, D. L. and Post, J. E. (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. *Amer. Mineral.* **78**, 932-940.
- Goldsmith, J. R. and Graf, D. L. (1958) Relation between lattice constants and composition of the Ca-Mg carbonates. *Amer. Mineral.* 43, 84-101.
- Jahnke R. A. (1992) A simple, reliable, and inexpensive pore-water sampler. *Limnol. Oceanogr.* 33, 483-487.
- Reid, R. P., MacIntyre, I. G. and Post, J. E. (1992) Micritized skeletal grains in northern Belize Lagoon: A major source of Mg-calcite mud. J. Sed. Petrol. 62, 145-156.
- Walter, L. M. and Morse, J. W. (1984) Magnesian calcite stabilities: A reevaluation. *Geochim. Cosmochim. Acta* 48, 1059-1069.
- Walter, L. M. and Burton, E. A. (1990) Dissolution of recent platform carbonate sediments in marine pore fluids. *Amer. J. Sci.* **290**, 601-643.
- Walter, L. M., Bischof, S. A., Patterson, W. P. and Lyons, T. W. (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. *Phil. Trans. R. Soc. Lond.* A 344, 27-36.

Sulfur*1 (mM) (mM)	Table 1. Sulfur speciation and pH of porewater samples.					
KW-PL-BC-141 1 <0.1	Core	Depth (cm)	Total Aqueous Reduced Sulfur*1 (mM)	Intermediate aqueous Sulfur *2 (mM)	pН	
Color	KW-PI -BC-141	1				
6 7 0.1 10 7 13 < 0.2 14 7 18 0.4 22 0.8 26 0.2 30 0.9 KW-PL-BC-165 3 < 0.02 11 < 0.02 11 < 0.02 15 < 0.02 19 0.04 28 0.02 KW-PL-DC-179 1 3 0.01 5 7 0.04 9 11 0.05 13 15 0.11 0.06 17 19 0.07 22 24 0.04 KW-PL-BC-194 3 < 0.02 KW-PL-BC-194 3 < 0.02 KW-PL-BC-194 3 0.04 KW-PL-BC-194 3 0.03 15 0.04 17 0.04 0.03 18 19 0.03 19 0.03 KW-PL-BC-194 0.03 19 0.03 18 0.003 KW-PL-BC-208 1 5	RW-12 20 111				7.63	
7 0.1 10 7 110 7 13					7.69	
10 13 3			0.1			
13					7.66	
14			<0.2			
18 0.4 7 22 0.8 7 26 0.2 30 0.9 KW-PL-BC-165 3 <0.02 7 7 <0.02 7 11 <0.02 7 11 <0.02 7 15 <0.02 7 19 0.04 7 28 0.02 KW-PL-DC-179 1					7.74	
22			0.4		7.79	
26 0.2 30 0.9 KW-PL-BC-165 3 <0.02 7					7.76	
SW-PL-BC-165 3						
TW-PL-BC-103 7						
7	KW-PI -BC-165	3	<0.02		7.63	
11	KW 1B BC 105				7.88	
15					7.77	
19 0.04 28 0.02 KW-PL-DC-179 1 3 0.01 5 7 7 0.04 9 11 0.05 13 15 0.11 0.06 17 19 0.07 22 24 0.04 KW-PL-BC-194 3 <0.02 0.01 7 0.04 0.03 11 0.04 0.03 11 0.04 0.03 15 0.03 18 0.03 19 0.03 22 23 0.10 26 28 <0.03 KW-PL-BC-208 1 5						
KW-PL-DC-179 1					7.84	
NW-PL-BC-194 3 0.01 0.05 0.07 0.04 0.07 0.04 0.07 0.04 0.03 0.				•		
3	KW-PL-DC-179	1			7.53	
7 9 0.04 9 11 0.05 13 15 0.11 0.06 17 19 0.07 22 2 2 4 0.04 KW-PL-BC-194 3 <0.02 0.01 7 0.04 0.03 11 0.04 0.03 15 0.03 18 0.03 18 0.03 22 2 2 3 0.10 26 28 <0.03 KW-PL-BC-208 1 5	11/1/12/2011	3		0.01		
7 9 0.04 9 11 0.05 13 15 0.11 0.06 17 19 0.07 22 2 2 4 0.04 KW-PL-BC-194 3 <0.02 0.01 7 0.04 0.03 11 0.04 0.03 15 0.03 18 0.03 18 0.03 22 2 2 3 0.10 26 28 <0.03 KW-PL-BC-208 1 5		5			7.67	
9 11 13 15 0.11 0.06 17 19 22 24 0.04 KW-PL-BC-194 3 <a href="https://www.new.new.new.new.new.new.new.new.new.</td><td></td><td>7</td><td></td><td>0.04</td><td></td></tr><tr><td>13 15 15 0.11 0.06 17 19 0.07 22 24 0.04 KW-PL-BC-194 3 < 0.02 0.01 7 0.04 0.03 11 0.04 0.03 15 0.03 18 19 22 23 0.10 26 28 < 0.02 0.01 7 0.04 0.03 0.03 KW-PL-BC-208 1 5		9			7.68	
15 0.11 0.06 17 19 0.07 22 24 0.04 KW-PL-BC-194 3 <0.02 0.01 7 0.04 0.03 11 0.04 0.03 15 0.03 18 19 0.03 19 22 23 0.10 26 28 <0.03 KW-PL-BC-208 1 5		11		0.05		
17 19 22 24 0.04 KW-PL-BC-194 3						

 $[\]frac{\Sigma^{2}}{*^{1} = 2\Sigma[S^{2}] + 2[SO_{3}^{2}] + [S_{2}O_{3}^{2}]}$ $*^{2} = 2[SO_{3}^{2}] + [S_{2}O_{3}^{2}]$

Table 2. Results of ICP analysis.*

Core	Depth	В	Ca	K	Li	Mg	Na	Si	Sr
	(cm)	(ppb)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppb)
P.G.141	2	3700	460	410	<200	1300	9800	5.0	8400
KW-PL-BC-141	2 6	4600	520	470	200	1400	11000	4.9	9500
	10	3900	470	420	210	1300	10000	4.1	8400
	14	4000	470	420	<200	1300	10000	4.9	8500
	18	3900	470	420	<200	1300	10000	4.7	8200
	22	4100	490	450	210	1400	11000	5.3	8500
		4000	500	450	230	1400	11000	5.7	8900
KW-PL-BC-165	3	4000	500	450 490	270	1500	12000	5.1	9300
	7	4500 4200	540 510	470	<200	1400	11000	4.3	8900
	11	3500	470	430	240	1300	10000	4.5	7800
	15	4100	510	460	220	1500	11000	4.2	8700
	19 24	4000	500	450	<200	1400	11000	3.3	8300
					•••	1.00	11000	4.2	8800
KW-PL-DC-179	1	3600	520	440	220	1400	11000	4.3	8700
	5	4000	510	450	220	1400	11000	5.8 5.1	8000
	9	3600	470	410	200	1300	10000 10000	3.5	7900
	13	3500	470	410	<200	1300	10000	3.8	7900
	17 22	3700 3900	470 500	430 450	200 <200	1400 1400	11000	3.7	8500
								4.0	0000
KW-PL-BC-194	3	3900	520	450	200	1400	11000	4.8	8900
	7	3800	510	440	260	1400	11000	8.3	8600 8600
	11	3900		440	200	1400	11000	4.8	7800
	15	3500		410	200	1300	9800 11000	3.6 3.2	9300
	18			480	<200	1500	10000	3.0	8200
	22			420	<200	1400			7600
	26	3300	450	400	210	1300	9600	2.9	7000
KW-PL-BC-208	1	3700		430	<200	1400	10000	4.6	
	5	3200	440	390	<200	1200	9300	9.0	
	13	3200	440	410	<200	1300	9600	5.1	7400
	17		470	410	200	1300	10000	4.9	7700
	22	3900	520	470	220	1500	11000	4.6	8600

^{*}The following elements were analyzed for, but below detection limits (detection limit); Al (10 ppm), Ba (400 ppb), Be (400 ppb), Cd (400 ppb), Co (800 ppb), Cr (800 ppb), Cu (2000 ppb), Fe (10 ppm), Mn (800 ppb), Mo (2000 ppb), Ni (2000 ppb), P (10000 ppb), Pb (2000 ppb), Ti (4000 ppb), V (800 ppb), Zn (800 ppb).

Figure 1. Portions of the X-ray diffractograms of core KW-PL-BC-194 showing aragonite and high- and low-Mg calcite peaks. Numbers on the right indicate the sample depths in cm.

Figure 2a. Polished section of a surface sediment sample from Dry Tortugas. Cement is absent. SEM.

Figure 2b. Polished section of a sediment sample at 130 cm below seafloor. Cloudy aggregates of fine grain material are filling the pore splace among grains and intimately attached to the grain surfaces. SEM.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

and Reports, 1215 Jefferson Davis Flighway, Solice 1204, Armiglon, VA 2222 552, 210 550, 210 560, 210						
1. Agency Use Only (Leave blank).	2. Report Date.	3. Report Type and Dates Covered.				
	June 1995	Technical Report 4/95-6/95				
4. Title and Subtitle.		5. Funding Numbers.				
Evaluation of early diagenesis in mod-	Program Element No.					
by mineralogy, fabric and porewater g						
		Project No.				
6. Author(s)		Task No.				
Yoko Furukawa	Accession No.					
		Accession				
7. Performing Organization Name(s) and Address	ss(es).	8. Performing Organization				
Center for Marine Sciences		Report Number				
The University of Southern Mississipp	oi	CMS-95-2				
Building 1103, Room 102						
Stennis Space Center, MS						
9. Sponsoring/Monitoring Agency Name(s) and	10. Sponsoring/Monitoring Agency					
Department of The Navy	Report Number.					
Naval Research Laboratory (NRL-SS	NRL/CR/743195-0036					
CODE 3250: BJO						
Stennis Space Center, MS 39529						
11. Supplementary Notes.						
ONR Research Grant No. N00014-9:	5-1-G907					
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		12b. Distribution Code.				
12a. Distribution/Availability Statement.						
A dear public releases: distribu	ution is unlimited					
Approved for public releases; distribution is unlimited.						
13. Abstract (Maximum 200 words).						
Mineralogy, fabric and porewater geo	ochemistry were examined in order to s	study early diagenesis in modern,				
0,	CTC YY	v diagonacie ie vicible as micritic				

Mineralogy, fabric and porewater geochemistry were examined in order to study early diagenesis in modern, shallow-water carbonate sediments of Key West area. The evidence for early diagenesis is visible as micritic cement in SEM images of sediment samples. Because the major cation concentrations are found to be insensitive to the diagenetic reactions in the study area, mineralogy instead of porewater geochemistry will be used to quantify the extent of early diagenesis. Rietveld crystal structure refinement method will be used for the accurate quantification of phase transformations.

14. Subject Terms. Early diagenesis, carbonate refinement	15. Number of Pages. 10 16. Price Code.		
17. Security Classification of Report Unclassified	18. Security Classification of This Page. Unclassified	19. Security Classification of Abstract. Unclassified	20. Limitation of Abstract. SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102