Symbolic powers of prime ideals

Eloísa Grifo

University of Virginia

AMS Sectional Meeting in Salt Lake City, Utah

April 10, 2016

Symbolic Power

The n-th symbolic power of a prime ideal P is the ideal given by

$$P^{(n)} = P^n R_P \cap R = \{ f \in R : sf \in P^n \text{ for some } s \notin P \}.$$

For any ideal I, the n-th symbolic power of I is given by

$$I^{(n)} = \bigcap_{Q \in \mathsf{Ass}(R/I)} I^n R_Q \cap R.$$

How do symbolic powers compare to ordinary powers?

- (1) $I^n \subseteq I^{(n)}$ for all $n \ge 1$.
- (2) If I is generated by a regular sequence in a Cohen-Macaulay ring, then $I^n = I^{(n)}$.
- (3) In general, $I^n \neq I^{(n)}$.

How do symbolic powers compare to ordinary powers?

- (1) $I^n \subseteq I^{(n)}$ for all $n \ge 1$.
- (2) If I is generated by a regular sequence in a Cohen-Macaulay ring, then $I^n = I^{(n)}$.
- (3) In general, $I^n \neq I^{(n)}$.

How do symbolic powers compare to ordinary powers?

- (1) $I^n \subseteq I^{(n)}$ for all $n \ge 1$.
- (2) If I is generated by a regular sequence in a Cohen-Macaulay ring, then $I^n = I^{(n)}$.
- (3) In general, $I^n \neq I^{(n)}$.

Example: $I = (y^2 - xz, x^2y - z^2, x^3 - yz)$ in $R = \mathbb{C}[x, y, z]$, which is the kernel of the map

$$\mathbb{C}[x, y, z] \longrightarrow \mathbb{C}[t]$$

$$x \longmapsto t^{3}$$

$$y \longmapsto t^{4}$$

$$z \longmapsto t^{5}$$

For this prime ideal, $I^{(2)} \neq I^2$. However, $I^{(3)} \subseteq I^2$.

Main question

When is $I^{(b)} \subseteq I^a$?

We could also study

$$\rho(I) = \sup\left\{\frac{b}{a} : I^{(b)} \nsubseteq I^{a}\right\} < \infty$$

Main question

When is $I^{(b)} \subseteq I^a$?

We could also study

$$\rho(I) = \sup \left\{ \frac{b}{a} : I^{(b)} \nsubseteq I^a \right\} < \infty.$$

Theorem (Ein-Lazersfeld-Smith, 2001)

Let P be a prime ideal in a smooth algebraic variety over $\mathbb C$ of dimension d, and $c=\max\{1,\dim(R)-1\}$. Then for all $n\geqslant 1$,

$$P^{(cn)}\subseteq P^n$$
.

Theorem (Hochster-Huneke, 2002)

Let P be a prime in a RLR containing a field, R, and $c = \max\{1, \dim(R) - 1\}$. Then for all $n \ge 1$,

$$P^{(cn)} \subseteq P^n$$

Theorem (Ein-Lazersfeld-Smith, 2001)

Let P be a prime ideal in a smooth algebraic variety over $\mathbb C$ of dimension d, and $c=\max\{1,\dim(R)-1\}$. Then for all $n\geqslant 1$,

$$P^{(cn)}\subseteq P^n$$
.

Theorem (Hochster-Huneke, 2002)

Let P be a prime in a RLR containing a field, R, and $c = \max\{1, \dim(R) - 1\}$. Then for all $n \ge 1$,

$$P^{(cn)} \subseteq P^n$$
.

What do these theorems say for a polynomial ring in 3 variables?

Let R = k[x, y, z], k a field, and P be a prime ideal in R. Then for all $n \ge 1$

$$P^{(2n)}\subseteq P^n$$
.

In particular, $P^{(4)} \subseteq P^2$.

Question (Huneke, 2000)

Let P be a codimension 2 prime in a RLR. Is

$$P^{(3)} \subseteq P^2$$
?

Question (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, \ldots, x_N]$. Is

$$I^{(Nk-(N-1))} \subseteq I^k$$

for all $k \geqslant 1$?

Question (Huneke, 2000)

Let P be a codimension 2 prime in a RLR. Is

$$P^{(3)} \subseteq P^2$$
?

Question (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, \ldots, x_N]$. Is

$$I^{(Nk-(N-1))} \subseteq I^k$$

for all $k \ge 1$?

Question (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, ..., x_N]$. Then for all $k \ge 1$, is

$$I^{(Nk-(N-1))} \subseteq I^k$$
?

The question has a positive answer for

- Arbitrary ideals in characteristic 2. (Huneke)
- Monomial ideals in arbitrary characteristic.
- General points in \mathbb{P}^2 (Harbourne–Huneke) and \mathbb{P}^3 (Dumnicki).

If $I \subseteq R = k[x_1, \dots, x_n]$ is such that R/I is F-pure, then $I^{(3)} \subseteq I^2$.

Question (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, ..., x_N]$. Then for all $k \ge 1$, is

$$I^{(Nk-(N-1))} \subseteq I^k$$
?

The question has a positive answer for

- Arbitrary ideals in characteristic 2. (Huneke)
- Monomial ideals in arbitrary characteristic.
- General points in \mathbb{P}^2 (Harbourne–Huneke) and \mathbb{P}^3 (Dumnicki).

If $I \subseteq R = k[x_1, \dots, x_n]$ is such that R/I is F-pure, then $I^{(3)} \subseteq I^2$.

Question (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, \ldots, x_N]$. Is

$$I^{(Nk-(N-1))} \subseteq I^k$$

for all $k \geqslant 1$?

Counterexample (Dumnicki, Szemberg, Tutaj-Gasińska, 2015

There exists a radical ideal in $\mathbb{C}[x,y,z]$ such that $I^{(3)}
otin I^2$

$$I = (z(x^3 - y^3), x(y^3 - z^3), y(z^3 - x^3)).$$

Question (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, \ldots, x_N]$. Is

$$I^{(Nk-(N-1))} \subseteq I^k$$

for all $k \ge 1$?

Counterexample (Dumnicki, Szemberg, Tutaj-Gasińska, 2015)

There exists a radical ideal in $\mathbb{C}[x,y,z]$ such that $I^{(3)} \nsubseteq I^2$:

$$I = (z(x^3 - y^3), x(y^3 - z^3), y(z^3 - x^3)).$$

Conjecture (Harbourne, ≤ 2008)

Let I be a radical ideal in $K[x_0, ..., x_N]$. Then for all $k \ge 1$,

$$I^{(Nk-(N-1))} \subseteq I^k$$
.

Is all lost?

- The conjecture could still hold for $k \ge 3$.
- There are no known counterexamples for prime ideals.

Theorem (Seceleanu, 2015)

Let I be a quasihomogeneous ideal of height 2 in R = k[x, y, z], and $b \geqslant a$. Consider the natural inclusion $\iota : I^b \hookrightarrow I^a$. The following are equivalent:

- (1) $I^{(b)} \subseteq I^a$.
- (2) The induced map $\operatorname{Ext}_R^2(\iota) \colon \operatorname{Ext}_R^2(I^a,R) \to \operatorname{Ext}_R^2(I^b,R)$ is 0.

How can we study $\operatorname{Ext}_R^2(\iota) : \operatorname{Ext}_R^2(I^a, R) \to \operatorname{Ext}_R^2(I^b, R)$?

We have two problems to solve:

- We need to find free resolutions for the powers of *I*.
- Given resolutions for I^a and I^b , we need to find extensions of the inclusion map:

A nice class of primes

We will focus on the primes defining monomial curves as follows: we are looking at the kernels of maps of the form

$$K[x, y, z] \longrightarrow K[t]$$

$$x \longmapsto t^{a}$$

$$y \longmapsto t^{b}$$

$$z \longmapsto t^{c}$$

A nice class of primes

We are looking at height 2 primes of the form $P = \ker f$, where $f: K[x, y, z] \longrightarrow K[t]$ is given by

$$f(x) = t^a, f(y) = t^b, f(z) = t^c.$$

If P is not generated by a regular sequence, then P is the ideal of 2×2 minors of

$$\left[\begin{array}{ccc} x^{\alpha} & y^{\beta} & z^{\gamma} \\ z^{\gamma'} & x^{\alpha'} & y^{\beta'} \end{array}\right].$$

Rees Algebra

The Rees algebra of P is given by $\mathcal{R}(P) = \bigoplus_{n \geqslant 0} P^n t^n$. This is a quotient of $S = R[T_1, T_2, T_3]$.

When P is the ideal of 2×2 minors of a 2×3 matrix, we can resolve $\mathcal{R}(P)$ over S, and by restricting to degree n, we get a free resolution for P^n .

Rees Algebra

The Rees algebra of P is given by $\mathcal{R}(P) = \bigoplus_{n \geqslant 0} P^n t^n$. This is a quotient of $S = R[T_1, T_2, T_3]$.

When P is the ideal of 2×2 minors of a 2×3 matrix, we can resolve $\mathcal{R}(P)$ over S, and by restricting to degree n, we get a free resolution for P^n .

Theorem (–)

Let R = K[x, y, z], where K is a field of characteristic not 3, and P be a prime defining a monomial curve as before. Then $P^{(3)} \subseteq P^2$.

What else can we say about these primes?

Questions:

- (1) Harbourne's question: $P^{(2k-1)} \subseteq P^k$?
- (2) Is $P^{(5)} \subseteq P^3$? In general, $P^{(4)} \nsubseteq P^3$.
- (3) What is

$$\rho(P) = \sup \left\{ \frac{b}{a} : P^{(b)} \nsubseteq P^a \right\}$$

for these primes?

Thank you!