## Die Komplexitätsklassen P und NP

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

November 2011

# Definition von Polynomialzeitalgorithmus

### Definition (worst case Laufzeit eines Algorithmus)

Die worst case Laufzeit  $t_A(n)$ ,  $n \in \mathbb{N}$ , eines Algorithmus A entspricht den maximalen Laufzeitkosten auf Eingaben der Länge n bezüglich des logarithmischen Kostenmaßes der RAM.

# Definition von Polynomialzeitalgorithmus

### Definition (worst case Laufzeit eines Algorithmus)

Die worst case Laufzeit  $t_A(n)$ ,  $n \in \mathbb{N}$ , eines Algorithmus A entspricht den maximalen Laufzeitkosten auf Eingaben der Länge n bezüglich des logarithmischen Kostenmaßes der RAM.

### Definition (Polynomialzeitalgorithmus)

Wir sagen, die worst case Laufzeit  $t_A(n)$  eines Algorithmus A ist polynomiell beschränkt, falls gilt

$$\exists \alpha \in \mathbb{N} : t_A(n) = O(n^{\alpha})$$
.

Einen Algorithmus mit polynomiell beschränkter worst case Laufzeit bezeichnen wir als Polynomialzeitalgorithmus.



## Definition (Komplexitätsklasse P)

P ist die Klasse der Probleme, für die es einen Polynomialzeitalgorithmus gibt.

### Definition (Komplexitätsklasse P)

P ist die Klasse der Probleme, für die es einen Polynomialzeitalgorithmus gibt.

### Anmerkungen:

 Alternativ kann man sich auch auf die Laufzeit einer TM beziehen, da sich RAM und TM gegenseitig mit polynomiellen Zeitverlust simulieren können.

### Definition (Komplexitätsklasse P)

P ist die Klasse der Probleme, für die es einen Polynomialzeitalgorithmus gibt.

### Anmerkungen:

- Alternativ kann man sich auch auf die Laufzeit einer TM beziehen, da sich RAM und TM gegenseitig mit polynomiellen Zeitverlust simulieren können.
- Polynomialzeitalgorithmen werden häufig auch als "effiziente Algorithmen" bezeichnet.

### Definition (Komplexitätsklasse P)

P ist die Klasse der Probleme, für die es einen Polynomialzeitalgorithmus gibt.

### Anmerkungen:

- Alternativ kann man sich auch auf die Laufzeit einer TM beziehen, da sich RAM und TM gegenseitig mit polynomiellen Zeitverlust simulieren können.
- Polynomialzeitalgorithmen werden häufig auch als "effiziente Algorithmen" bezeichnet.
- P ist in diesem Sinne die Klasse derjenigen Probleme, die effizient gelöst werden können.

### Problem (Sortieren)

**Eingabe:** *N* Zahlen  $a_1, \ldots, a_N \in \mathbb{N}$ 

Ausgabe: aufsteigend sortierte Folge der Eingabezahlen

**Anmerkung:** Soweit wir nichts anderes sagen, nehmen wir an, dass Zahlen binär kodiert sind.

### Satz

Sortieren  $\in P$ .

### **Beweis:**

• Wir lösen das Problem beispielsweise mit Mergesort.

### Satz

Sortieren  $\in P$ .

- Wir lösen das Problem beispielsweise mit Mergesort.
- Laufzeit im uniformen Kostenmaß:

### Satz

Sortieren  $\in P$ .

- Wir lösen das Problem beispielsweise mit Mergesort.
- Laufzeit im uniformen Kostenmaß:  $O(N \log N)$ .

### Satz

Sortieren  $\in P$ .

- Wir lösen das Problem beispielsweise mit Mergesort.
- Laufzeit im uniformen Kostenmaß:  $O(N \log N)$ .
- Laufzeit im logarithmischen Kostenmaß:

### Satz

*Sortieren*  $\in$  P.

- Wir lösen das Problem beispielsweise mit Mergesort.
- Laufzeit im uniformen Kostenmaß:  $O(N \log N)$ .
- Laufzeit im logarithmischen Kostenmaß:  $O(\ell N \log N)$ , wobei  $\ell = \max_{1 \le i \le N} \log(a_i)$ .

### Satz

Sortieren  $\in P$ .

- Wir lösen das Problem beispielsweise mit Mergesort.
- Laufzeit im uniformen Kostenmaß:  $O(N \log N)$ .
- Laufzeit im logarithmischen Kostenmaß:  $O(\ell N \log N)$ , wobei  $\ell = \max_{1 \le i \le N} \log(a_i)$ .
- Sei n die Eingabelänge. Es gilt  $\ell \le n$  und  $\log N \le N \le n$ .

#### Satz

*Sortieren*  $\in P$ .

- Wir lösen das Problem beispielsweise mit Mergesort.
- Laufzeit im uniformen Kostenmaß:  $O(N \log N)$ .
- Laufzeit im logarithmischen Kostenmaß:  $O(\ell N \log N)$ , wobei  $\ell = \max_{1 \le i \le N} \log(a_i)$ .
- Sei n die Eingabelänge. Es gilt  $\ell \le n$  und  $\log N \le N \le n$ .
- Somit ist die Laufzeit beschränkt durch  $\ell N \log N \le n^3$ .

## Problem (Graphzusammenhang)

**Eingabe:** *Graph* G = (V, E)

**Frage:** *Ist G zusammenhängend?* 

**Anmerkung:** Bei Graphproblemen gehen wir grundsätzlich davon aus, dass der Graph in Form einer Adjazenzmatrix eingegeben wird.

### Satz

 $\textit{Graphzusammenhang} \in \mathsf{P}.$ 

- Wir lösen das Problem mit einer Tiefensuche.
- Laufzeit im uniformen Kostenmaß:

### Satz

 $Graphzusammenhang \in P.$ 

- Wir lösen das Problem mit einer Tiefensuche.
- Laufzeit im uniformen Kostenmaß: O(|V| + |E|)

### Satz

 $Graphzusammenhang \in P$ .

- Wir lösen das Problem mit einer Tiefensuche.
- Laufzeit im uniformen Kostenmaß: O(|V| + |E|)
- Laufzeit im logarithmischen Kostenmaß:

### Satz

 $Graphzusammenhang \in P$ .

- Wir lösen das Problem mit einer Tiefensuche.
- Laufzeit im uniformen Kostenmaß: O(|V| + |E|)
- Laufzeit im logarithmischen Kostenmaß:

$$O((|V| + |E|) \cdot \log |V|)$$

### Satz

 $Graphzusammenhang \in P$ .

- Wir lösen das Problem mit einer Tiefensuche.
- Laufzeit im uniformen Kostenmaß: O(|V| + |E|)
- Laufzeit im logarithmischen Kostenmaß:  $O((|V| + |E|) \cdot \log |V|)$
- Die Eingabelänge ist  $n = |V|^2 \ge |E|$ .

#### Satz

 $Graphzusammenhang \in P$ .

- Wir lösen das Problem mit einer Tiefensuche.
- Laufzeit im uniformen Kostenmaß: O(|V| + |E|)
- Laufzeit im logarithmischen Kostenmaß:  $O((|V|+|E|) \cdot \log |V|)$
- Die Eingabelänge ist  $n = |V|^2 > |E|$ .
- Die Gesamtlaufzeit ist somit

$$O((|V| + |E|) \log |V|) = O(n \log n) = O(n^2)$$
.



Kürzester Weg

- Kürzester Weg
- Minimaler Spannbaum

- Kürzester Weg
- Minimaler Spannbaum
- Maximaler Fluss

- Kürzester Weg
- Minimaler Spannbaum
- Maximaler Fluss
- Maximum Matching

- Kürzester Weg
- Minimaler Spannbaum
- Maximaler Fluss
- Maximum Matching
- Lineare Programmierung

- Kürzester Weg
- Minimaler Spannbaum
- Maximaler Fluss
- Maximum Matching
- Lineare Programmierung
- Größter Gemeinsamer Teiler

- Kürzester Weg
- Minimaler Spannbaum
- Maximaler Fluss
- Maximum Matching
- Lineare Programmierung
- Größter Gemeinsamer Teiler
- Primzahltest ("PRIMES is in P" [Agrawal, Kayal, Saxena, 2002])

### Definition von NTM

## Definition (Nichtdeterministische Turingmaschine – NTM)

Eine nichtdeterministische Turingmaschine (NTM) ist definiert wie eine deterministische Turingmaschine (TM), nur die Zustandsüberführungsfunktion wird zu einer Relation

$$\delta \subseteq ((Q \setminus \{\bar{q}\}) \times \Gamma) \times (Q \times \Gamma \times \{L, R, N\}) .$$

• Eine Konfiguration K' ist direkter Nachfolger einer Konfiguration K, falls K' durch einen der in  $\delta$  beschriebenen Übergänge aus K hervorgeht.

- Eine Konfiguration K' ist direkter Nachfolger einer Konfiguration K, falls K' durch einen der in  $\delta$  beschriebenen Übergänge aus K hervorgeht.
- Rechenweg = Konfigurationsfolge, die mit Startkonfiguration beginnt und mit Nachfolgekonfigurationen fortgesetzt wird bis sie eine Endkonfiguration im Zustand  $\bar{q}$  erreicht.

- Eine Konfiguration K' ist direkter Nachfolger einer Konfiguration K, falls K' durch einen der in  $\delta$  beschriebenen Übergänge aus K hervorgeht.
- Rechenweg = Konfigurationsfolge, die mit Startkonfiguration beginnt und mit Nachfolgekonfigurationen fortgesetzt wird bis sie eine Endkonfiguration im Zustand  $\bar{q}$  erreicht.
- Der Verlauf der Rechnung ist also nicht deterministisch, d.h., zu einer Konfiguration kann es mehrere direkte Nachfolgekonfigurationen geben.

Die möglichen Rechenwege von M für eine Eingabe  $w \in \Sigma^*$  können in Form eines *Berechnungsbaumes* beschrieben werden:

- Die Knoten des Baumes entsprechen Konfigurationen.
- Die Wurzel des Baumes entspricht der Startkonfiguration.
- Die Kinder einer Konfiguration entsprechen den möglichen Nachfolgekonfigurationen.

Die möglichen Rechenwege von M für eine Eingabe  $w \in \Sigma^*$  können in Form eines *Berechnungsbaumes* beschrieben werden:

- Die Knoten des Baumes entsprechen Konfigurationen.
- Die Wurzel des Baumes entspricht der Startkonfiguration.
- Die Kinder einer Konfiguration entsprechen den möglichen Nachfolgekonfigurationen.

Der maximale Verzweigungsgrad des Berechnungsbaumes ist

$$\Delta = \max\{|\delta(q, a)| \mid q \in Q \setminus \{\bar{q}\}, a \in \Gamma\}.$$

Beachte, dass  $\Delta$  nicht von der Eingabe abhängt, also konstant ist.



# Definition des Akzeptanzverhaltens

## Definition (Akzeptanzverhalten der NTM)

Eine NTM M akzeptiert die Eingabe  $x \in \Sigma^*$ , falls es mindestens einen Rechenweg von M gibt, der in eine akzeptierende Endkonfiguration führt.

Die von M erkannte Sprache L(M) besteht aus allen von M akzeptierten Wörtern.

## Definition der Laufzeit

### Definition (Laufzeit der NTM)

Sei M eine NTM. Die Laufzeit von M auf einer Eingabe  $x \in L(M)$  ist definiert als

 $T_M(x) :=$ Länge des kürzesten akzeptierenden Rechenweges von M auf x.

## Definition der Laufzeit

### Definition (Laufzeit der NTM)

Sei M eine NTM. Die Laufzeit von M auf einer Eingabe  $x \in L(M)$  ist definiert als

 $T_M(x) :=$ Länge des kürzesten akzeptierenden Rechenweges von M auf x.

Für  $x \notin L(M)$  definieren wir  $T_M(x) = 0$ .

## Definition der Laufzeit

### Definition (Laufzeit der NTM)

Sei M eine NTM. Die Laufzeit von M auf einer Eingabe  $x \in L(M)$ ist definiert als

 $T_M(x) := L$ änge des kürzesten akzeptierenden Rechenweges von M auf x.

Für  $x \notin L(M)$  definieren wir  $T_M(x) = 0$ .

Die worst case Laufzeit  $t_M(n)$  für M auf Eingaben der Länge  $n \in \mathbb{N}$  ist definiert durch

$$t_M(n) := \max\{T_M(x) \mid x \in \Sigma^n\}$$
.



### Definition der Klasse NP

### Definition (Komplexitätsklasse NP)

NP ist die Klasse der Entscheidungsprobleme, die durch eine NTM M erkannt werden, deren worst case Laufzeit  $t_M(n)$  polynomiell beschränkt ist.

NP steht dabei für nichtdeterministisch polynomiell.

### Problem (Cliquenproblem – CLIQUE)

**Eingabe:** *Graph*  $G = (V, E), k \in \{1, ..., |V|\}$ 

**Frage:** *Gibt es eine k-Clique?* 

### Problem (Cliquenproblem – CLIQUE)

**Eingabe:** *Graph*  $G = (V, E), k \in \{1, ..., |V|\}$ 

**Frage:** *Gibt es eine k-Clique?* 

- Für das Cliquenproblem ist kein Polynomialzeitalgorithmus bekannt.
- Die besten bekannten Algorithmen haben eine exponentielle Laufzeit.

### Satz

 $CLIQUE \in NP.$ 

**Beweis:** Wir beschreiben eine NTM M mit L(M) = CLIQUE:

### Satz

 $CLIQUE \in NP.$ 

**Beweis:** Wir beschreiben eine NTM M mit L(M) = CLIQUE:

Syntaktisch inkorrekte Eingaben werden verworfen.

### Satz

 $CLIQUE \in NP.$ 

**Beweis:** Wir beschreiben eine NTM M mit L(M) = CLIQUE:

- Syntaktisch inkorrekte Eingaben werden verworfen.
- ② M "rät" einen 0-1-String y der Länge |V|.

#### Satz

 $CLIQUE \in NP.$ 

**Beweis:** Wir beschreiben eine NTM M mit L(M) = CLIQUE:

- Syntaktisch inkorrekte Eingaben werden verworfen.
- ② M "rät" einen 0-1-String y der Länge |V|.
- M akzeptiert, falls
  - der String y genau k viele Einsen enthält und
  - die Knotenmenge  $C = \{i \in V \mid y_i = 1\}$  eine Clique ist.

#### Satz

 $CLIQUE \in NP.$ 

**Beweis:** Wir beschreiben eine NTM M mit L(M) = CLIQUE:

- Syntaktisch inkorrekte Eingaben werden verworfen.
- 2 M "rät" einen 0-1-String y der Länge |V|.
- M akzeptiert, falls
  - der String y genau k viele Einsen enthält und
  - die Knotenmenge  $C = \{i \in V \mid y_i = 1\}$  eine Clique ist.

Korrektheit: Es gibt genau dann einen akzeptierenden Rechenweg, wenn G eine k-Clique enthält.

#### Satz

 $CLIQUE \in NP.$ 

**Beweis:** Wir beschreiben eine NTM M mit L(M) = CLIQUE:

- Syntaktisch inkorrekte Eingaben werden verworfen.
- 2 M "rät" einen 0-1-String y der Länge |V|.
- M akzeptiert, falls
  - der String y genau k viele Einsen enthält und
  - die Knotenmenge  $C = \{i \in V \mid y_i = 1\}$  eine Clique ist.

Korrektheit: Es gibt genau dann einen akzeptierenden Rechenweg, wenn G eine k-Clique enthält.

Laufzeit: Alle Schritte haben polynomielle Laufzeit.

# Die Komplexitätsklasse EXPTIME

### Definition (Komplexitätsklasse EXPTIME)

EXPTIME ist die Klasse der Probleme, die sich auf einer DTM mit Laufzeitschranke  $2^{q(n)}$  berechnen lassen, wobei q ein geeignetes Polynom ist.

# Die Komplexitätsklasse EXPTIME

### Definition (Komplexitätsklasse EXPTIME)

EXPTIME ist die Klasse der Probleme, die sich auf einer DTM mit Laufzeitschranke  $2^{q(n)}$  berechnen lassen, wobei q ein geeignetes Polynom ist.

Wie verhält sich NP zu P und EXPTIME?

Im Folgenden schränken wir die Klassen P und EXPTIME auf Entscheidungsprobleme ein, um sie mit der Klasse NP in Beziehung setzen zu können.

Im Folgenden schränken wir die Klassen P und EXPTIME auf Entscheidungsprobleme ein, um sie mit der Klasse NP in Beziehung setzen zu können.

### Satz

 $\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{EXPTIME}$ 

Im Folgenden schränken wir die Klassen P und EXPTIME auf Entscheidungsprobleme ein, um sie mit der Klasse NP in Beziehung setzen zu können.

### Satz

 $P \subseteq NP \subseteq EXPTIME$ 

#### **Beweis:**

Offensichtlich gilt  $P \subseteq NP$ , weil eine DTM als eine spezielle NTM aufgefasst werden kann.

Im Folgenden schränken wir die Klassen P und EXPTIME auf Entscheidungsprobleme ein, um sie mit der Klasse NP in Beziehung setzen zu können.

### Satz

 $P \subseteq NP \subseteq EXPTIME$ 

#### **Beweis:**

Offensichtlich gilt  $P \subseteq NP$ , weil eine DTM als eine spezielle NTM aufgefasst werden kann.

Wir müssen noch zeigen NP ⊆ EXPTIME.

Sei  $L \in NP$ . Sei M eine NTM mit polynomiell beschränkter Laufzeitschranke p(n), die L erkennt.

Sei  $L \in NP$ . Sei M eine NTM mit polynomiell beschränkter Laufzeitschranke p(n), die L erkennt.

Sei  $w \in \Sigma^*$ . Wir konstruieren eine DTM M', die die NTM M mit Eingabe w simuliert:

Sei  $L \in NP$ . Sei M eine NTM mit polynomiell beschränkter Laufzeitschranke p(n), die L erkennt.

Sei  $w \in \Sigma^*$ . Wir konstruieren eine DTM M', die die NTM M mit Eingabe w simuliert:

- In einer Breitensuche generiert M' den Berechnungsbaum von M bis zu einer Tiefe von p(|w|).
- Falls dabei eine akzeptierende Konfiguration gefunden wird, so akzeptiert M' die Eingabe; sonst verwirft M' die Eingabe.

#### Korrektheit:

- Falls  $w \in L$  ist, so gibt es einen akzeptierenden Rechenweg von M der Länge p(|w|). M' generiert diesen Weg und akzeptiert w.
- Falls  $w \notin L$  ist, so gibt es keinen akzeptierenden Rechenweg von M der Länge p(|w|). In diesem Fall wird w von M' verworfen.

#### Korrektheit:

- Falls  $w \in L$  ist, so gibt es einen akzeptierenden Rechenweg von M der Länge p(|w|). M' generiert diesen Weg und akzeptiert w.
- Falls  $w \notin L$  ist, so gibt es keinen akzeptierenden Rechenweg von M der Länge p(|w|). In diesem Fall wird w von M' verworfen.

### Laufzeit:

Sei  $\Delta \geq 2$  der maximale Verzweigungsgrad der Rechung.

Die Laufzeit von M' auf w ist proportional zur Anzahl der Knoten im Berechnungsbaum bis zur Tiefe p(|w|). Diese Anzahl ist beschränkt durch

#### Korrektheit:

- Falls  $w \in L$  ist, so gibt es einen akzeptierenden Rechenweg von M der Länge p(|w|). M' generiert diesen Weg und akzeptiert w.
- Falls  $w \notin L$  ist, so gibt es keinen akzeptierenden Rechenweg von M der Länge p(|w|). In diesem Fall wird w von M' verworfen.

### Laufzeit:

Sei  $\Delta \geq 2$  der maximale Verzweigungsgrad der Rechung.

Die Laufzeit von M' auf w ist proportional zur Anzahl der Knoten im Berechnungsbaum bis zur Tiefe p(|w|). Diese Anzahl ist beschränkt durch

$$\Delta^{p(|w|)+1}$$



#### Korrektheit:

- Falls  $w \in L$  ist, so gibt es einen akzeptierenden Rechenweg von M der Länge p(|w|). M' generiert diesen Weg und akzeptiert w.
- Falls  $w \notin L$  ist, so gibt es keinen akzeptierenden Rechenweg von M der Länge p(|w|). In diesem Fall wird w von M' verworfen.

### Laufzeit:

Sei  $\Delta \geq 2$  der maximale Verzweigungsgrad der Rechung.

Die Laufzeit von M' auf w ist proportional zur Anzahl der Knoten im Berechnungsbaum bis zur Tiefe p(|w|). Diese Anzahl ist beschränkt durch

$$\Delta^{p(|w|)+1} = 2^{(p(|w|)+1)\cdot\log_2\Delta}$$



#### Korrektheit:

- Falls  $w \in L$  ist, so gibt es einen akzeptierenden Rechenweg von M der Länge p(|w|). M' generiert diesen Weg und akzeptiert w.
- Falls  $w \notin L$  ist, so gibt es keinen akzeptierenden Rechenweg von M der Länge p(|w|). In diesem Fall wird w von M'verworfen.

### Laufzeit:

Sei  $\Delta > 2$  der maximale Verzweigungsgrad der Rechung.

Die Laufzeit von M' auf w ist proportional zur Anzahl der Knoten im Berechnungsbaum bis zur Tiefe p(|w|). Diese Anzahl ist beschränkt durch

$$\Delta^{p(|w|)+1} = 2^{(p(|w|)+1)\cdot\log_2\Delta} = 2^{O(p(|w|))}$$
.



# Die große offene Frage der Informatik lautet

$$P = NP$$
?

Diese Frage ist so bedeutend, weil sehr viele wichtige Probleme in NP enthalten sind, für die kein Polynomialzeitalgorithmus bekannt ist. Einige dieser Problem lernen wir in der nächsten Vorlesung kennen.