ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ (Queuing Systems)

Τεχνικές Σχεδίασης και Αξιολόγησης Συστημάτων Αναμονής

ΣΧΕΔΙΑΣΗ & ΑΞΙΟΛΟΓΗΣΗ ΕΠΙΔΟΣΗΣ

Φάσεις:

- 1^η: Φύση εφαρμογών που θα εξυπηρετηθούν από το σύστημα και φόρτος εργασίας (κυκλοφοριακή κίνηση)
- 2^η: Αρχική αρχιτεκτονική του συστήματος (στοιχεία συστήματος υλικό & λογισμικό)
- > 3^η: Ποσοτικός προσδιορισμός των τμημάτων/στοιχείων του συστήματος
- 4^η: Μελέτη και μοντελοποίηση αλληλεπίδρασης τμημάτων του συστήματος
- Αξιολόγηση επίδοσης και επανεκτίμηση σχεδίασης Ανάλυση ποιοτικών και ποσοτικών επιλογών

ΜΟΝΤΕΛΟ ΣΥΣΤΗΜΑΤΟΣ – ΔΙΚΤΥΟ ΑΝΑΜΟΝΗΣ

Περιγραφή συστήματος

- Παράμετροι συστήματος και πόρων
- Παράμετροι φορτίου
 απαιτήσεις
 εξυπηρέτησης
 ένταση φορτίου

MONTEAO

Δείκτες επίδοσης

- Χρόνος απόκρισης
- Ρυθμός απόδοσης
- Βαθμός χρησιμοποίησης
- Μήκος ουρών

Είσοδος

Έξοδος

ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΠΙΔΟΣΗΣ & ΜΟΝΤΕΛΟΠΟΙΗΣΗ

Τεχνικές:

- 1η: Μετρήσεις με πραγματικές τιμές και ανάλυση αποτελεσμάτων
 - Προέκταση σε μεγαλύτερης κλίμακας συστήματα: συνήθως η συμεπτριφορά δεν είναι αναμενόμενη (π.χ. Γραμμική) σε αλλαγή φόρτου εργασίας
- Ση: Χρήση μοντέλων μοντελοποίηση Γενικευμένη αναπαράσταση του συστήματος (αφαιρετική): περιλαμβάνει τα κύρια χαρακτηριστικά και αφαιρεί λεπτομέρειες που εκτιμάται ότι δεν επηρεάζουν σημαντικά την απόδοση του συστήματος (υποθέσεις). Κυκλοφορία (απαιτήσεις) χρηστών είναι στοχαστική (τυχαιότητα).
 - Αναλυτικά μοντέλα: χρήση μαθηματικής περιγραφής του συστήματος (βασισμένα κυρίως σε θεωρία αναμονής queueing theory) και αλγορίθμων.
 - Προσομοίωση: Ανάπτυξη προγράμματος που ακολουθεί και αναπαριστά τη δυναμική εξέλιξη του συστήματος στο χρόνο.

ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΤΕΧΝΙΚΗΣ ΑΝΑΛΥΣΗΣ

Κριτήριο	Αναλυτικό Μοντέλο	Προσομοίωση	Μετρήσεις
1. Στάδιο κύκλου ζωής	Οποιοδήποτε	Οποιοδήποτε	Υπάρχον σύστημα
2. Απαιτούμενος χρόνος	Μιχρός	Μέτριος	Ποιχίλλει
3. Απαιτούμενα εργαλεία	Θεωρία	Γλώσσες	Οργανα μέτρησης
	αναμονής	προγραμματισμού	
4. Ακρίβεια	Χαμηλή	Μέτρια	Ποιχίλλει
5. Αποτίμηση	Εύκολη	Μέτρια	Δύσκολη
εναλλακτικών λύσεων	·		
6. Κόστος	Χαμηλό	Μέτριο	Υψηλό
7. Απήχηση	Χαμηλή	Μέτρια	Υψηλή

Πιθανότητες - Βασικοί Ορισμοί(1/2)

- Τυχαίο πείραμα (random experiment) με πιθανά ενδεχόμενα (outcomes) που ανήκουν στο υπερσύνολο ενδεχομένων S
- Αντιστοίχηση ενδεχομένων σε δείγματα (sample points) s_k του χώρου δειγμάτων (sample space) $S, s_k \in S$
- Συμβάν (event): Υποσύνολο δειγμάτων $A = \{s_1, s_2 ...\}, A \subseteq S$
- Σχετική συχνότητα δείγματος ή συμβάντος (relative frequency): Αριθμός εμφανίσεων m δείγματος s_k ή του υποσυνόλου δειγμάτων ενός συμβάντος A σε n επαναλήψεις του τυχαίου πειράματος
- Μέτρο Πιθανότητας (probability measure):
 - \triangleright Συνάρτηση $A \rightarrow P[A], 0 \le P[A] \le 1$
 - ightharpoonup Στοιχειώδες γεγονός (elementary event) αποτελούμενο από ένα απλό δείγμα $A=\{s_k\}$, $\mathbf{P}[A]=\lim_{n\to\infty}\frac{m}{n}$ (σχετική συχνότητα δείγματος s_k)
 - \triangleright Βέβαιο γεγονός (certain event) E = S, P[S] = 1
 - ightharpoonup Μηδενικό γεγονός (null event) $E = \emptyset$, $P[\emptyset] = 0$
 - Alpha Αμοιβαία αποκλειόμενα γεγονότα (mutually exclusive events) $A \subset S, B \subset S, A \cap B = \emptyset$, $P[A \cup B] = P[A] + P[B]$ Sample space Events C

Πιθανότητες - Βασικοί Ορισμοί(2/2)

- Συμβάν (event): Υποσύνολο δειγμάτων $A = \{s_1, s_2 ...\}, A \subseteq S, s_k \in S$ (sample space)
- Μέτρο Πιθανότητας (probability measure): Συνάρτηση $A \to \mathbf{P}[A] \ge 0$ που ικανοποιεί τα τρία αξιώματα του Kolmogorov:
 - 1. $0 \le \mathbf{P}[A] \le 1$
 - 2. P[S] = 1
 - 3. Av $A \subset S$, $B \subset S$ kal $A \cap B = \emptyset$ (mutually exclusive events) $\Rightarrow \mathbf{P}[A \cup B] = \mathbf{P}[A] + \mathbf{P}[B]$
- Συνεπαγόμενες ιδιότητες:
 - 1. $\mathbf{P}[\overline{A}] = 1 \mathbf{P}[A], \overline{A} \cup A = S, \overline{A} \cap A = \emptyset$
 - 2. $P[A \cup B] = P[A] + P[B] P[A \cap B]$
 - 3. An $A_1 \cup A_2 \cup \cdots \cup A_m = S$, $A_i \cap A_j = \emptyset \ \forall (i,j) \ τότε <math>\mathbf{P}[A_1] + \mathbf{P}[A_2] + \cdots + \mathbf{P}[A_m] = 1$

Τα εξαγόμενα ενός πειράματος, π.χ. της ρίψης ενός ζευγαριού ζαριών

```
S=
{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
```

Οποιοδήποτε υποσύνολο E του δειγματοχώρου S είναι γεγονός. Π.χ. $E = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1)\}$ ή ισοδύναμα $E = \{$ το άθροισμα των δύο ζαριών να είναι μικρότερο του $5\}$.

```
Αν τα ζάρια είναι δίκαια και P(i,j)=1/36 για οποιαδήποτε i,j, P\{το άθροισμα των δύο ζαριών να είναι μικρότερο του 5\}==P\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\} =P\{(1,1)\}+P\{(1,2)\}+P\{(1,3)\}+P\{(2,1)\}+P\{(2,2)\}+P\{(3,1)\}=6/36.
```

Πιθανότητες υπό συνθήκη

- Πιθανότητα B υπό την συνθήκη A: $P[B|A] = \frac{P[A \cap B]}{P[A]}$ και $P[A \cap B] = P[B|A]P[A] = P[A|B]P[B]$
- $P[B|A] = \frac{P[A|B]P[B]}{P[A]}$ Kανόνας Bayes
- Αν P[B|A] = P[B] τότε τα γεγονότα A και B είναι στατιστικά ανεξάρτητα (independent) και $P[A \cap B] = P[A]P[B]$
- Αν οι συνθήκες A_i είναι γεγονότα ξένα μεταξύ τους και καλύπτουν τον χώρο $S = A_1 \cup A_2 \cup \cdots \cup A_m$ τότε $\mathbf{P}[B] = \sum_{i=1}^m \mathbf{P}[B|A_i]\mathbf{P}[A_i]$ (Νόμος Συνολικής Πιθανότητας)

Δυαδικός συμμετρικός δίαυλος (Memoryless Binary Symmetric Channel) A_0

Ο πομπός στέλνει σειριακά και χωρίς μνήμη δυαδικά ψηφία 0,1 (γεγονότα A_0,A_1) με εκ των προτέρων πιθανότητες (a priori probabilities) $\mathbf{P}[A_0]=p_0,\mathbf{P}[A_1]=p_1=1-p_0$

- ightharpoonup Ο δέκτης ερμηνεύει λήψεις ψηφίων 0,1 (γεγονότα B_0, B_1) με πιθανότητα λάθους λόγω παραμορφώσεων του διαύλου ίση με $\mathbf{P}[B_1|A_0] = \mathbf{P}[B_0|A_1] = p$
- ightharpoonup Οι πιθανότητες ορθής μετάδοσης είναι $\mathbf{P}[B_0|A_0]=\mathbf{P}[B_1|A_1]=1-p$
- ho Η πιθανότητα λήψης ψηφίου 0 είναι $\mathbf{P}[B_0] = \mathbf{P}[B_0|A_0]\mathbf{P}[A_0] + \mathbf{P}[B_0|A_1]\mathbf{P}[A_1] = (1-p)p_0 + pp_1$
- ightharpoonup Ομοίως $\mathbf{P}[B_1] = \mathbf{P}[B_1|A_0]\mathbf{P}[A_0] + \mathbf{P}[B_1|A_1]\mathbf{P}[A_1] = pp_0 + (1-p)p_1$
- Από τον κανόνα του Bayes προκύπτουν οι εκ των υστέρων πιθανότητες (a posteriori probabilities) ορθής μετάδοσης όταν ο δέκτης ερμηνεύει 0 ή 1 (γεγονότα B₀, B₁) είναι:

$$\mathbf{P}[A_0|B_0] = \frac{\mathbf{P}[B_0|A_0]\mathbf{P}[A_0]}{\mathbf{P}[B_0]} = \frac{(1-p)p_0}{(1-p)p_0 + pp_1}, \qquad \mathbf{P}[A_1|B_1] = \frac{\mathbf{P}[B_1|A_1]\mathbf{P}[A_1]}{\mathbf{P}[B_1]} = \frac{(1-p)p_1}{pp_0 + (1-p)p_1}$$

Aν $\mathbf{P}[A_0] = p_0 \rightarrow 1$ (ο δέκτης ξέρει πως ο πομπός στέλνει συνήθως 0), $\mathbf{P}[A_0|B_0] \rightarrow 1$, $\mathbf{P}[A_1|B_0] \rightarrow 0 \ \forall p$

Τυχαίες Μεταβλητές (1/3)

Ορισμοί

Τυχαία Μεταβλητή (Random Variable - RV): Αντιστοίχηση (συνάρτηση) ενδεχομένων $s_k \in S$ σε πραγματικούς αριθμούς (παραμέτρου) x: $X(s_k) = x \in (-\infty, \infty)$

Συνάρτηση Αθροιστικής Κατανομής (Cumulative Distribution Function, CDF) $F_X(x) = P[X \le x]$

- $\Gamma \iota \alpha \infty < x < \infty, \ 0 \le F_X(x) \le 1$
- Μονότονη μη φθίνουσα συνάρτηση της παραμέτρου x: $F_X(x_1) \le F_X(x_2)$ αν $x_1 < x_2$
- Ισχύει $\lim_{\chi \to -\infty} F_X(x) = 0$, $\lim_{\chi \to \infty} F_X(x) = 1$

Συνάρτηση Πυκνότητας Πιθανότητας (Probability Density Function, PDF):

$$f_X(x) = \frac{d}{dx}F_X(x), \qquad F_X(x) = \int_{-\infty}^x f_X(y)dy$$

- Ισχύει $\mathbf{P}[x_1 < X \le x_2] = \mathbf{P}[X \le x_2] \mathbf{P}[X \le x_1] = F_X(x_2) F_X(x_1)$ $\mathbf{P}[x_1 < X \le x_2] = \int_{x_1}^{x_2} f_X(y) dy$
- Ισχύει για PDF, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Συνάρτηση Μάζας Πιθανότητας (Probability Mass Function)

• Σε περίπτωση διακριτών ενδεχομένων s_k , k ακέραιος αριθμός: $\mathbf{P}[X=x_k] \triangleq \mathbf{P}_k$, και $F_X(x) = \mathbf{P}[X \leq x] = \sum_{k=-\infty}^n \mathbf{P}_k$ για όλα τα $k \leq n$ που ικανοποιούν την ανισότητα $x_k \leq x$

Τυχαίες Μεταβλητές (2/3)

Ομοιόμορφη Κατανομή (Uniform Distribution)

$$f_X(x) = \begin{cases} 0, & x \le a \\ \frac{1}{b-a}, & a < x \le b \\ 0, & x > b \end{cases}$$

$$f_X(x) = \begin{cases} 0, & x \le a \\ \frac{1}{b-a}, & a < x \le b \\ 0, & x > b \end{cases} \qquad F_X(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 0, & x > b \end{cases}$$

Πολλές Τυχαίες Μεταβλητές

Joint CDF:
$$F_{X,Y}(x,y) = \mathbf{P}[X \le x, Y \le y], (-\infty < X \le x, -\infty < Y \le y)$$

Joint PDF:
$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y} \ge 0$$

οπότε
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(\xi,\eta) \ d\xi \ d\eta = 1$$

Για Ανεξάρτητες Τυχαίες Μεταβλητές:
$$F_{X,Y}(x,y) = \mathbf{P}[X \le x]\mathbf{P}[Y \le y] = F_X(x)F_Y(y)$$
 $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Οριακές – Marginal CDF, PDF:
$$F_X(x) = F_{X,Y}(x,\infty) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{x} f_{X,Y}(\xi,\eta) d\xi \right] d\eta$$
, $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,\eta) d\eta$

Υπό Συνθήκη – Conditional PDF:
$$f_Y(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$
, $\int_{-\infty}^{\infty} f_Y(y|x) dx = 1$
Αν οι X , Y είναι ανεξάρτητες R.V. $f_Y(y|x) = f_Y(y)$ και $f_{X,Y}(x,y) = f_X(x)$ $f_Y(y)$

Τυχαίες Μεταβλητές (3/3)

Διωνυμική Τυχαία Μεταβλητή (Binomial R.V.)

Θεωρούμε τυχαίο πείραμα N ανεξαρτήτων επαναλαμβανόμενων δοκιμών Bernoulli Trials π.χ. ρίψεις νομισμάτων με δύο ενδεχόμενα: Η (Heads, κορώνα) και T (Tails, γράμματα).

Έστω X_n τυχαία μεταβλητή με δύο δυνατές τιμές στα ενδεχόμενα $H \to 1$ και $T \to 0$ κατά την δοκιμή n, n = 1, 2, ..., N

$$P[H] = p, P[T] = 1 - p$$

Διωνυμική Τυχαία Μεταβλητή (Binomial R.V.): $Y = \sum_{n=1}^{N} X_n$ (αριθμός από ενδεχόμενα H σε N ανεξάρτητες δοκιμές Bernoulli)

Πιθανότητα καταγραφής γεγονότος με Y = y ενδεχόμενα **Heads** και N - y ενδεχόμενα **Tails** σε N ανεξάρτητες δοκιμές **Bernoulli** με συγκεκριμένη σειρά εμφάνισης: $p^y(1-p)^{N-y}$

Συνάρτηση Μάζας Πιθανότητας Διωνυμικής Κατανομής, N=20, p=0. 5

Αριθμός συνδυασμών y Heads, (N-y) Tails ανεξάρτητα από σειρά εμφάνισης: $\binom{N}{y} = \frac{N!}{y!(N-y)!}$

Πιθανότητα εμφάνισης y Heads σε N ανεξάρτητες δοκιμές Bernoulli:

$$\mathbf{P}[y] = \binom{N}{y} p^y (1-p)^{N-y}$$

Η y ακολουθεί τη Διωνυμική Κατανομή, Binomial Distribution

Στατιστικοί Μέσοι Όροι (1/3)

Μέση Τιμή (Expected Value, Mean): $\mu_X \triangleq \mathbf{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$ (κέντρο βάρους της PDF)

Γενίκευση: Μέση Τιμή Συνάρτησης Τυχαίας Μεταβλητής - RV (Random Variable)

$$Y = g(X)$$

$$\mathbf{E}[Y] = \int_{-\infty}^{\infty} \tau f_Y(\tau) d\tau, \ \mathbf{E}[g(X)] = \int_{-\infty}^{\infty} g(\tau) f_X(\tau) d\tau$$

Παράδειγμα: $Y = g(X) = \sin(X + \theta), X$ ομοιόμορφη RV: $f_X(x) = \begin{cases} \frac{1}{2\pi}, & -\pi < x < \pi \\ 0, & |x| \ge \pi \end{cases}$

$$\mathbf{E}[Y] = \int_{-\pi}^{\pi} \sin(\tau + \theta) \frac{1}{2\pi} d\tau = 0$$

Μέση Τιμή Γραμμικού Μετασχηματισμού RV: $Z = aX + bY + c \Rightarrow \mathbf{E}[Z] = a\mathbf{E}[X] + b\mathbf{E}[Y] + c$

Στατιστικοί Μέσοι Όροι (2/3)

Poπές (Moments):

$$\mathbf{E}[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$$

Κεντρικές Ροπές (Central Moments): $\mathbf{E}[(X - \mu_X)^n] = \int_{-\infty}^{\infty} (x - \mu_X)^n f_X(x) dx$

Διασπορά (Variance): $\sigma_X^2 = \mathbf{E}[(X - \mu_X)^2] = \mathbf{E}[X^2] - 2\mathbf{E}[X]\mu_X + \mu_X^2 \Rightarrow \sigma_X^2 = \mathbf{E}[X^2] - \mu_X^2 \ge 0$ Av $\mu_X = 0 \Rightarrow \sigma_X^2 = \mathbf{E}[X^2]$, av $\sigma_X^2 = 0 \Rightarrow \mathbf{E}[X^2] = \mu_X^2$

Τυπική Απόκλιση (Standard Deviation): σ_X

Διασπορά Γραμμικού Μετασχηματισμού RV: $Z = aX + c \Rightarrow \sigma_Z^2 = a^2 \sigma_X^2$ $Z = aX + bY + c \Rightarrow \mathbf{E}[Z^2] = a^2 \mathbf{E}[X^2] + b^2 \mathbf{E}[Y^2] + c^2 + 2ab \mathbf{E}[X \cdot Y] + 2ac \mathbf{E}[X] + 2bc \mathbf{E}[Y]$

Aν X, Y ανεζάρτητες RV, $\mathbf{E}[X \cdot Y] = \mathbf{E}[X]\mathbf{E}[Y]$ και $\sigma_Z^2 = a^2\sigma_X^2 + b^2\sigma_Y^2$

Στατιστικοί Μέσοι Όροι (3/3)

Συνδυασμένες Poπές (Joint Moments): $\mathbf{E}[X^iY^k] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^i y^k f_{X,Y}(x,y) dx dy$

Συσχέτιση (Correlation): E[XY]

Συνδιακύμανση (Covariance): $cov[X,Y] = \mathbf{E}[(X-\mu_X)(Y-\mu_Y)] = \mathbf{E}[XY] - \mu_X\mu_Y$

Συντελεστής Συσχέτισης (Correlation Coefficient): $\rho = \frac{cov[X,Y]}{\sigma_X \sigma_Y}$

Ασυσχέτιστες (Uncorrelated) RV X, Y: cov[X, Y] = 0

Ανεξάρτητες (Independent) RV X,Y: $cov[X,Y] = \mathbf{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbf{E}[X - \mu_X]\mathbf{E}[Y - \mu_Y] = 0$ INDEPENDENT \Rightarrow UNCORRELATED (το ανάστροφο δεν ισχύει)

Ορθογώνιες (Orthogonal) RV X, Y: $\mathbf{E}[XY] = 0$ {ORTHOGONAL & $\mu_X \mu_y = 0$ } \Rightarrow UNCORRELATED {UNCORRELATED & $\mu_X \mu_Y = 0$ } \Rightarrow ORTHOGONAL

Κατανομή Δοκιμής Bernoulli με παράμετρο p

PDF: P(X = 0) = 1 - p, P(X = 1) = p

Moments: $\mu_X = 0 \cdot (1-p) + 1 \cdot p = p$, $\mathbf{E}[X^2] = p$, $\sigma_X^2 = \mathbf{E}[X^2] - \mu_X^2 = p - p^2$

Η εκθετική κατανομή-(exponential distribution)

- Μια τυχαία μεταβλητή (τ.μ.) random variable X ακολουθεί Εκθετική
 Κατανομή (Exponential Distribution) με παράμετρο λ όταν:
- CDF: $F_X(t) = P[X \le t] = \begin{cases} 1 e^{-\lambda t}, t \ge 0 \\ 0, & t < 0 \end{cases}$ KQL PDF: $f_X(t) = \frac{dF_X(t)}{dt} = \begin{cases} \lambda e^{-\lambda t}, t \ge 0 \\ 0, & t < 0 \end{cases}$
- $E[X] = \int_{t=0}^{\infty} \lambda t e^{-\lambda t} dt = 1/\lambda$
- $E[X^2] = \int_{t=0}^{\infty} \lambda t^2 e^{-\lambda t} dt = 2/\lambda^2$, $\sigma_X^2 = E[X] (E[X])^2 = 1/\lambda^2$
- Ιδιότητα έλλειψης μνήμης:
 - $P[X > t + s \mid X > s] = \frac{P[X > t + s, X > s]}{P[X > s]} = \frac{P[X > t + s]}{P[X > s]} = e^{-\lambda t} = P[X > t] = 1 F_X(t)$

Η εκθετική κατανομή είναι η **μόνη κατανομή συνεχούς μεταβλητής** με την ιδιότητα αυτή (Memoryless, Markov Property).

• Κατανομή ελαχίστου μεταξύ ανεξάρτητων τ.μ. εκθετικά κατανεμημένων

X1: με παράμετρο λ1 $X = \min(X1, X2)$, $F_X(\tau) = P\{X \le \tau\} = 1 - P\{X > \tau\} = 1 - e^{-(\lambda_1 + \lambda_2)\tau}$ διότι X2: με παράμετρο λ2 $P\{X > \tau\} = P\{X1 > \tau, X2 > \tau\} = P\{X1 > \tau\}P\{X2 > \tau\} = e^{-\lambda_1 \tau}e^{-\lambda_2 \tau} = e^{-(\lambda_1 + \lambda_2)\tau}$

 $X = min{X1,X2}$ είναι εκθετικά κατανεμημένη με παράμετρο: $\lambda = \lambda 1 + \lambda 2$

Στοχαστικές Ανελίξεις (Stochastic Processes)

Στοχαστική ή Τυχαία Διαδικασία - Ανέλιξη (Stochastic Process - SP ή Random Process) Τυχαίο πείραμα με Υλοποιήσεις (Δείγματα) s_j Χρονικές Συναρτήσεις ή Χρονοσειρές (Time-Series), στοιχεία Δειγματικού Χώρου S

Παραδείγματα:

- Τυχαίες παρεμβολές, Θόρυβος, σε επικοινωνιακά συστήματα
- Αφίξεις πελατών/πακέτων σε συστήματα αναμονής

Ορισμός: Η Στοχαστική Ανέλιξη (SP) X(t) ορίζεται σαν ένα σύνολο χρονικών συναρτήσεων (κυματομορφών) που αντιστοιχούν σε τυχαίες υλοποιήσεις (δείγματα) ενός τυχαίου πειράματος

- Υλοποιήσεις (δείγματα) του SP $\{X(t,s)\} \triangleq X(t)$: $s_j \to X(t,s_j) \triangleq x_j(t), \ -T \le t \le T$
- Τιμές δειγμάτων s_j κατά τη χρονική στιγμή t_k : Τυχαίες Μεταβλητές (Random Variables, RV) $X(t_k, s_j)$ $\{x_1(t_k), x_2(t_k), \cdots, x_n(t_k)\} = \{X(t_k, s_1), X(t_k, s_2), \cdots, X(t_k, s_n)\}$