Exercise solutions for

CATEGORICAL REALIZABILITY

MIDLANDS GRADUATE SCHOOL (MGS) 8–12 April 2024, Leicester, UK

Joshua Chen $\mathring{\sigma}$ Tom de Jong

School of Computer Science University of Nottingham April 2024

Solutions to Chapter 2

Exercise 2.11. Each of the properties (i)–(iii) are proved by induction on the structure of the body term t.

(i) The claim holds when t = x, when t = y is a variable distinct from x, and when $t = a \in A$.

Finally, by the induction hypothesis the set of variables in the term

$$\langle x \rangle$$
. $(t_1 t_2) = S(\langle x \rangle, t_1)(\langle x \rangle, t_2)$

is exactly $(\mathcal{V}(t_1) \setminus x) \cup (\mathcal{V}(t_2) \setminus x)$, where $\mathcal{V}(t)$ denotes the set of variables in the term t. The result in this case now follows since

$$\mathcal{V}(t_1 t_2) \setminus x = (\mathcal{V}(t_1) \setminus x) \cup (\mathcal{V}(t_2) \setminus x).$$

(ii) The term $\langle x \rangle$. t is defined when t is a variable or an element of \mathcal{A} since, by Definition 2.1, \mathbf{K} a and \mathbf{S} a \mathbf{b} are defined for any $\mathbf{a}, \mathbf{b} \in \mathcal{A}$.

Finally, if $\langle x \rangle$. t_1 and $\langle x \rangle$. t_2 are defined then any substitution into the variables of

$$\langle x \rangle$$
. $(t_1 t_2) = S(\langle x \rangle, t_1)(\langle x \rangle, t_2)$

yields an element of A of the form S a b for some $a, b \in A$.

(iii) By straightforward computation in the case where t is not an application. When $t = t_1 t_2$,

$$(\langle x \rangle, (t_1 t_2)) a$$

$$= S(\langle x \rangle, t_1) (\langle x \rangle, t_2) a$$

$$\simeq ((\langle x \rangle, t_1) a) ((\langle x \rangle, t_2) a)$$

$$\simeq (t_1[a/x]) (t_2[a/x]) \qquad \text{(by the induction hypothesis)}$$

$$\simeq (t_1 t_2)[a/x].$$

Exercise 2.14.

- (i) **pair** a b = $(\langle xyz \rangle, zxy)$ a b = $\langle z \rangle$. z a b is defined by Exercise 2.11.
- (ii) By computation, taking care to note throughout that all applications are defined in A.

Exercise 2.15. A possible set of definitions is

iszero := fst
succ := pair false
pred :=
$$\langle n \rangle$$
. if (iszero n) $\overline{0}$ (snd n)

(check that these satisfy the required equations).

Exercise 2.16. From the specification of **primrec**, we would like our definition to satisfy the equation

primrec a f
$$\simeq \langle n \rangle$$
. (if (iszero n) a (f (pred n) (primrec a f (pred n))))

for any $a, f \in A$.

This suggests that the term **primrec** a f should be constructed as a fixed point of the abstraction

$$\langle r \rangle$$
. ($\langle n \rangle$. (if (iszero n) a (f (pred n) (r (pred n))))), (1)

and so we might try to define

$$\operatorname{spec}' := \langle af \rangle. \langle rn \rangle. \text{ if (iszero } n) \ a \ (f \ (\operatorname{pred} n) \ (r \ (\operatorname{pred} n)))$$

and

$$primrec' := \langle af \rangle$$
. $Z (spec' af)$.

However, this definition does not satisfy the requirement that **primrec'** a f $\overline{0}$ is always defined (expand the definition and check!).

Instead, we tweak the abstraction (1) whose fixed point we take, and define

spec :=
$$\langle af \rangle$$
. $\langle rn \rangle$. if (iszero n) (K a) (S fr)(pred n), primrec := $\langle af \rangle$. Z (spec af).

We can then check (do so!) that the required equations are satisfied.

Exercise 2.17.

(i) \Longrightarrow (ii): Assuming true \neq false, we show that $\overline{m} \neq \overline{n}$ for all $n \in \mathbb{N}$ and m < n, by case distinction on n and then induction on m < n. This is trivial for n = 0.

Assume that n = n' + 1. For m = 0,

iszero
$$\overline{m}$$
 = true \neq false = iszero \overline{n}

and so $\overline{m} \neq \overline{n}$. If m + 1 < n then m < n' and

$$\operatorname{pred} \overline{m+1} = \overline{m} \neq \overline{n'} = \operatorname{pred} \overline{n}$$

by induction, so $\overline{m+1} \neq \overline{n}$.

- (ii) ⇒ (iii): Immediate.
- (iii) \Longrightarrow (i): Because if **true** = **false** then

$$a = if true a b = if false a b = b$$

for all a, b $\in \mathcal{A}$.