离散数学 (CS201) 2024 春期末考试

共 10 道大题, 总分 100 分 (无 bonus), 时间 120 分钟

- Q1. (10分,逻辑)
- a) 已知 $\forall x(P(x) \to Q(x))$, $\forall x(Q(x) \to R(x))$, $\neg R(a)$, 其中 a 是变量定义域内的一个元素,使用 rules of inference 证明 $\neg P(a)$ 是 true
- b) 用逻辑语言翻译: "每一位在这个班上的学生都学习了离散数学", 其中变量定义域为所有学生
- **Q2.** (10分,集合与函数) 证明或反证 $(-\infty,1]$ 和 (-1,1] 的 cardinality 相等
- Q3. (15分,数论)
- a) 计算 $3^{644} \, mod \, 80$
- **b)** p 是奇质数,整数 a 不能被 p 整除. 证明,如果同余方程 $x^2 \equiv a \pmod{p}$ 有解,那么一定有且仅有两个 $mod\ p$ 不同余的解
- **Q4.** (5分,计数) $f: S \to T$ 是个函数,S 和 T 都是有限集, $m = \lceil |S|/|T| \rceil$,证明 S 中存在 s_1, s_2, \ldots, s_m ,使得 $f(s_1) = f(s_2) = \ldots = f(s_m)$
- **Q5.** (8分,计数) 要在自动售货机买 r \$ 的东西,现在有 1\$, 5\$, 10\$ 面值的钱,使用生成函数计算以下两问,直接写出答案,答案写出生成函数和项,比如 "本问的答案是生成函数 G(x) 的 x^2 项的系数 "
- a) 往售货机中投入的钱的顺序无关,有多少种购买 r \$ 的东西的方法
- b) 往售货机中投入的钱的顺序有关,有多少种购买 r \$ 的东西的方法
- **Q6.** (12分,递归) R_n 表示 n 条直线把平面切割成的区域数,这些直线两两之间都不平行且没有任何三线共点
- a) 初值 R_0 是多少
- b) 写出 R_n 的递推式并说明理由
- c) 使用解递推式通项的方法解出 R_n 的通项公式,注意不可以使用数学归纳法
- **Q7.** (10分,关系) S 是一个集合, R(S) 是 S 的所有子集构成的集合, 对于 R(S) 中的元素 R_1 , R_2 , 定义偏序关系 $R_1 \leq R_2$ 为 $R_1 \subseteq R_2$
- a) 证明 $(R(S), \prec)$ 是一个偏序集合 (poset)
- **b)** $(R(S), \preceq)$ 是良序集吗,说明理由

- **Q8.** (5分,关系) 关系 $R = \{(1,2), (1,4), (4,1), (3,3)\}$,以下两问直接写出答案即可
- a) 写出 R 的传递闭包
- **b)** 写出 R 的 connectivity relation R^*

Q9. (10分,图论) 证明 K_5 (点的个数为 5 的完全图) 不是平面图,提示:可以参考证明 $K_{3,3}$ 不是平面图的方法

Q10. (15分,图论) 定义集合 S_1,\ldots,S_k 有 SDR: $\exists a_1\in S_1,\ldots,a_k\in S_k$,使得 $\forall i\neq j,a_i\neq a_j$. 证明,若 $|\bigcup_{i\in I}S_i|\geq |I|$ 对 $\{1,2,\ldots,n\}$ 的任意子集 I 成立,那么 S_1,\ldots,S_k 有 SDR. 请模仿霍尔 结婚定律的证明,用数学归纳法证明此题,而不要将问题转化为图论问题而直接使用霍尔结婚定律.