Analysis2

siriehn_nx Tsinghua University siriehn_nx@outlook.com February 26, 2024

7 多变量函数的连续性

7.1 ℝ 中的拓扑

Definition 7.1.1 $\mathbb{R}^n = \{x = (x^1, ...x^n) \mid x^i \in \mathbb{R}, i = 1, ..., n\}$, 称 x 为 n 元有序数组,为 \mathbb{R}^n 中的点, 通常的加法和数乘、 \mathbb{R}^n 为线性空间.

7.1.1 度量

Definition 7.1.1.2 映射
$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}(x,y) \mapsto d(x,y)$$
,其中 $d(x,y) = \left[\sum_{i=1}^n \left(x^i - y^i\right)^2\right]^{\frac{1}{2}}$.

则 d 满足:

- 1. 正定性, $\forall x, y \in \mathbb{R}^n, d(x, y) \geq 0$, " = " $\iff x = y$.
- 2. 对称性, d(x, y) = d(y, x).
- 3. 三角不等式, $\forall x, y, z \in \mathbb{R}^n, d(x, y) \leq d(x, z) + d(z, y)$

若 d 满足三条性质,称 d 为 \mathbb{R}^n 的度量.

Remark-

Definition 7.1.1.3

$$\begin{split} p &\geq 1, d_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+, (x,y) \mapsto d_p(x,y) = \left(\sum_{i=1}^n |x^i - y^i|^p\right)^{\frac{1}{p}}, \\ d_\infty: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+, (x,y) \mapsto d_\infty(x,y) = \max_{1 \leq i \leq n} |x^i - y^i| \end{split}$$

可以验证, d_p , d_∞ 均为 \mathbb{R}^n 上的度量.

Proposition 7.1.1.4 (Minkowski 不等式) $d_{\infty}(x,y) \leq d(x,y) \leq nd_{\infty}(x,y)$ $C_{p,1}d(x,y) \leq d_{p}(x,y) \leq C_{p,2}d(x,y)$,其中 $C_{p,1},C_{p,2}$ 均为依赖 p 的常数.

7.1.2 开集,闭集,拓扑空间

Definition 7.1.2.5 设 $a \in \mathbb{R}^n$, $\delta > 0$, $B(a; \delta) = \{x \in \mathbb{R}^n \mid d(a, x) < \delta\}$ 称为以 a 为中心, δ 为半径的球 / δ 邻域.

Definition 7.1.2.6 设 $U \subset \mathbb{R}^n, \forall a \in U, \exists \delta > 0, s,t. \ B(a; \delta) \subset U, 则称 U 为开集.$

Example 7.1.2.7 B(a;r) 为开集(r > 0).

Proposition 7.1.2.8

- 1. ℝⁿ, ∅ 为开集.
- 2. 无穷多个开集的并还是开集.

3. 有限多个开集的交还是开集.

Definition 7.1.2.9 \mathbb{R}^n 中的开集满足以上三条性质.那么称 \mathbb{R}^n 为拓扑空间.

 \mathbb{R}^n 中的拓扑空间是由 d 诱导的.

一般而言.有以下定义.

Definition 7.1.2.10 (拓扑空间) 设 X 为集合, τ 为 X 的子集簇,满足:

- 1. $\varphi, X \in \tau$

那么称 (X,τ) 为拓扑空间.

Definition 7.1.2.11 设 $A \subset \mathbb{R}^n$,若 $A^c = \mathbb{R}^n \setminus A$ 为开集,那么称 A 为闭集.

Example 7.1.2.12

- $\forall x, y \in \mathbb{R}^n, A = \{x, y\}$ 闭集
- $\overline{B}(a;r) = \{x \in \mathbb{R}^n \mid d(a;x) \le r\}$ 闭集
- $S^{n-1}(a,r) = \{x \in \mathbb{R}^n \mid d(a;x) = r\}$ 为闭集

ਪੋਟੀ
$$\mathcal{S}^{n-1} = \mathcal{S}^{n-1}(0,1)$$

由 De Morgan 定理可知:

Proposition 7.1.2.13

- 1. ℝⁿ, Ø 是闭集
- 2. 无穷多个闭集的交仍然是闭集
- 3. 有限多个闭集的并仍然是闭集

7.1.3 邻域,内点,边界点,聚点

Definition 7.1.3.14 (邻域,内点,边界点)

- 1. 设 $x \in \mathbb{R}^n$,任一包含 x 的开集 U 称为 x 的邻域, $\mathring{U} = U \setminus \{x\}$ 称为 x 的去心邻域
- 2. 设 $D \subset \mathbb{R}^n$, 若 $x \in D$, $\exists x$ 的邻域 U, s.t. $U \subset D$, 称 $x \to D$ 的内点.对应的, 若 $x \not\in D^c$ 的内点,则 x为 D 的内点.
- 3. 设 $D \subset \mathbb{R}^n$, x 即非内点也非外点,则 x 为 D 的边界点. $\partial D = \{x \in \mathbb{R}^n \mid x \to D \text{ 的边界点}\}$,称 ∂D 为 D 的边界,也可定义为 $\partial D = \{x \in \mathbb{R}^n \mid x \text{ 的任} -$ 领域 $U, U \cap D \neq \emptyset, U \cap D^c \neq \emptyset\}$

Definition 7.1.3.15 (聚点) 设 $D \subset \mathbb{R}^n$,若 D 的任一邻域均含有 D 中的无穷多个点, 称 x 为 D 的一 个聚点. $\iff x$ 的任意邻域 $U, \mathring{U} \cup D \neq \emptyset$

 $D' = \{x \in \mathbb{R}^n \mid x \to D \ \mathbb{R} \}$,称其为 D 的导集

称 $\overline{D} = D \cup D'$ 为 D 的闭包.

Theorem 7.1.3.16 $D \subset \mathbb{R}^n$ 为闭集 \iff $D' \subset D$.

⊂ Proof =

"⇒" $\forall a \in D'$ 要证明 $a \in D$.

(反证法): 若 $a \notin D$ 则 $a \in D^c$, 由于 D 闭集,则 D^c 开集, $\exists \delta > 0$, $B(a; \delta) \subset D^c$, $B(a; \delta) \cap D = \emptyset$,这 与 a 为聚点矛盾,则 $a \in D$, i.e. $D' \subset D$.

"=" $D' \subset D$ 要证明 D^c 为开集.

 $\forall a \in D^c, a$ 不是聚点,则 $\exists \delta > 0$, s.t. $B(a; \delta) \cap D = \emptyset$,则 $B(a; \delta) \subset D^c$,从而 D^c 为开集.

7.2 \mathbb{R}^n 中的紧(致)集

Definition 7.2.1 (紧集) 设 $A \subset \mathbb{R}^n$ 若 A 的任意开覆盖都有有限字符该,称 A 为 \mathbb{R}^n 的紧集(compet set).

由 Heine-Bored 定理可知 ℝ 中闭区间为紧集.

Definition 7.2.2 (长方体) 设

 $a,b\in\mathbb{R}^n, a=\big(a^1,...,a^n\big), b=\big(b^1,...,b^n\big), a^i\leq b^i, i=1,...,n, I_{a,b}=\big\{x\in\mathbb{R}^n\ \big|\ a^i\leq x^i\leq b^i\big\}$ 其为长方体.

Proposition 7.2.3 $I_{a,b}$ 为 \mathbb{R}^n 中的紧集.

Proof

(反证法): 设 $\{U_{\alpha}\}_{\alpha\in\Lambda}$ 为 $I_{a,b}$ 的开覆盖,不存在其的有限子覆盖,令 I_1 分成 2^n 个长方体,则至少有一个长方体没有有限子覆盖,记为 I_2 .继续其过程,记为 $I_3,...,I_n,...$ 满足 I_1 \supset I_2 \supset ... \supset I_k \supset

$$I_k = \{ x \in \mathbb{R}^n \mid a_k^i \le x^i \le b_k^i, i = 1, ..., n \}$$

由 Cauchy-Cantor 闭 区 间 套 定 理 , $\exists ! x_0^i \in \bigcap_{\{k=1\}}^\infty [a_k^i, b_k^i]$,令 $x_0 = (x_0^1, ...x_0^n)$,则

$$\exists \alpha_0 \in \Lambda, \text{s.t. } x_0 \in U_{\alpha_0} , \diamondsuit \text{ diam } I_k = \sup_{\{x,y \in I_k\}} d(x,y)$$

则 $\lim_{k \to \infty}$ diam $I_k = 0$, $\exists k \in \mathbb{N}^*$,s.t. $k \geq K, x_0 \in I_k \subset U_{\alpha_0}$,从而与构造矛盾! \square