# CS 107, Probability, Spring 2019 Lecture 37

Michael Poghosyan

AUA

19 April 2019

#### Content

• Independent Random Variables

Last time we have talked about the following Proposition:

#### Independence of R.V.s

Last time we have talked about the following Proposition:

#### Independence of R.V.s

The followings are equivalent:

• X and Y are Independent,  $X \perp \!\!\! \perp Y$ , i.e.,  $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$  for any  $A, B \subset \mathbb{R}$ ;

Last time we have talked about the following Proposition:

#### Independence of R.V.s

- X and Y are Independent,  $X \perp \!\!\! \perp Y$ , i.e.,  $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$  for any  $A, B \subset \mathbb{R}$ ;
- $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$  for any  $x,y \in \mathbb{R}$ , where  $F_{X,Y}$ ,  $F_X$ ,  $F_Y$  are the Joint CDF of X, Y and the Marginal CDFs of X and Y, respectively;

Last time we have talked about the following Proposition:

#### Independence of R.V.s

- X and Y are Independent,  $X \perp \!\!\! \perp Y$ , i.e.,  $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$  for any  $A, B \subset \mathbb{R}$ ;
- $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$  for any  $x,y \in \mathbb{R}$ , where  $F_{X,Y}$ ,  $F_X$ ,  $F_Y$  are the Joint CDF of X, Y and the Marginal CDFs of X and Y, respectively;
- If X and Y are Discrete, then  $\mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i) \cdot \mathbb{P}(Y = y_j)$ , for all i, j

Last time we have talked about the following Proposition:

#### Independence of R.V.s

- X and Y are Independent,  $X \perp \!\!\! \perp Y$ , i.e.,  $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$  for any  $A, B \subset \mathbb{R}$ ;
- $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$  for any  $x,y \in \mathbb{R}$ , where  $F_{X,Y}$ ,  $F_X$ ,  $F_Y$  are the Joint CDF of X, Y and the Marginal CDFs of X and Y, respectively;
- If X and Y are Discrete, then  $\mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i) \cdot \mathbb{P}(Y = y_j)$ , for all i, j
- If X and Y are Jointly Continuous, then  $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$  for any  $f_X$ , where  $f_X$ , where  $f_X$ , where  $f_X$ ,  $f_Y$  are the Joint PDF of X, Y and the Marginal PDFs of X.

**Type 1 Examples:** Given the Joint Distribution, we study the Independence.

**Type 1 Examples:** Given the Joint Distribution, we study the Independence.

• Assume  $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$ . Are X and Y Independent?

**Type 1 Examples:** Given the Joint Distribution, we study the Independence.

- Assume  $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$ . Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?

**Type 1 Examples:** Given the Joint Distribution, we study the Independence.

- Assume  $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$ . Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?
- Assume  $(X, Y) \sim \textit{Unif}(T)$ , where T is the triangle with the vertices at (0,0), (0,1) and (1,0). Are X and Y Independent?

**Type 1 Examples:** Given the Joint Distribution, we study the Independence.

- Assume  $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$ . Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?
- Assume  $(X, Y) \sim \textit{Unif}(T)$ , where T is the triangle with the vertices at (0,0), (0,1) and (1,0). Are X and Y Independent?

**Type 2 Examples:** Given Individual Distributions of X and Y, and Independence, we form the Joint Distribution and calculate Probabilities.

**Type 1 Examples:** Given the Joint Distribution, we study the Independence.

- Assume  $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$ . Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?
- Assume  $(X, Y) \sim \textit{Unif}(T)$ , where T is the triangle with the vertices at (0,0), (0,1) and (1,0). Are X and Y Independent?

**Type 2 Examples:** Given Individual Distributions of X and Y, and Independence, we form the Joint Distribution and calculate Probabilities.

• Assume  $X \sim \textit{Unif}[0,3]$ ,  $Y \sim \textit{Exp}(2)$  and  $X \perp \!\!\! \perp Y$ . Find  $\mathbb{P}(X^2 + Y^2 \leq 1)$ .



#### Facts About Multivariate Uniform Distribution:

**Fact 1:** Assume  $X_1, ..., X_n$  are Independent and  $X_k \sim Unif(A_k)$ , k = 1, ..., n.

#### Facts About Multivariate Uniform Distribution:

**Fact 1:** Assume  $X_1, ..., X_n$  are Independent and  $X_k \sim Unif(A_k)$ , k = 1, ..., n. Then

$$(X_1,...,X_n) \sim Unif(A_1 \times A_2 \times ... \times A_n).$$

#### Facts About Multivariate Uniform Distribution:

**Fact 1:** Assume  $X_1, ..., X_n$  are Independent and  $X_k \sim \textit{Unif}(A_k)$ , k = 1, ..., n. Then

$$(X_1,...,X_n) \sim Unif(A_1 \times A_2 \times ... \times A_n).$$

**Fact 2:** Inversely, if the r.vector  $(X_1, ..., X_n)$  has a Multivariate Uniform Distribution on a set, which is a Cartesian Product of n sets  $A_1, ..., A_n \subset \mathbb{R}$ , i.e., if

$$(X_1,...,X_n) \sim Unif(A_1 \times A_2 \times ... \times A_n),$$

then  $X_1,...,X_n$  are Independent and  $X_k \sim \textit{Unif}(A_k)$ , k = 1,...,n.

#### Facts About Multivariate Normal Distribution:

**Fact 1:** Assume  $X_1, ..., X_n$  are Independent and  $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ , k = 1, ..., n.

#### Facts About Multivariate Normal Distribution:

**Fact 1:** Assume  $X_1, ..., X_n$  are Independent and  $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ , k = 1, ..., n. Then

$$(X_1,...,X_n) \sim \mathcal{N}(\mu,\Sigma),$$

where

$$\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix}, \quad \text{and} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}.$$

#### Facts About Multivariate Normal Distribution:

**Fact 1:** Assume  $X_1, ..., X_n$  are Independent and  $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ , k = 1, ..., n. Then

$$(X_1,...,X_n) \sim \mathcal{N}(\mu,\Sigma),$$

where

$$\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix}, \quad \text{and} \quad \Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}.$$

**Fact 2:** If we have a r.vector  $(X_1,...,X_n)$  with  $(X_1,...,X_n) \sim \mathcal{N}(\mu,\Sigma)$ , where  $\mu$  and  $\Sigma$  are as above, then  $X_1,...,X_n$  are Independent, and

$$X_k \sim \mathcal{N}(\mu_k, \sigma_k^2), \qquad k = 1, ..., n.$$

## Distribution of the Sum of Independent R.V.s

Now, assume Z = X + Y, and assume that now  $X \perp \!\!\! \perp Y$ .

## Distribution of the Sum of Independent R.V.s.

Now, assume Z = X + Y, and assume that now  $X \perp \!\!\! \perp Y$ .

• If X and Y are **Discrete** and Independent, then

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_i=x} \mathbb{P}(X=x_i, Y=y_j) =$$

## Distribution of the Sum of Independent R.V.s.

Now, assume Z = X + Y, and assume that now  $X \perp\!\!\!\perp Y$ .

• If X and Y are **Discrete** and Independent, then

$$\mathbb{P}(Z = x) = \mathbb{P}(X + Y = x) = \sum_{x_i + y_j = x} \mathbb{P}(X = x_i, Y = y_j) =$$

$$= \sum_{x_i + y_j = x} \mathbb{P}(X = x_i) \cdot \mathbb{P}(Y = y_j)$$

 $x_i + v_i = x$ 

## Distribution of the Sum of Independent R.V.s

Now, assume Z = X + Y, and assume that now  $X \perp\!\!\!\perp Y$ .

• If X and Y are **Discrete** and Independent, then

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j) =$$

$$=\sum_{x_i+y_j=x}\mathbb{P}(X=x_i)\cdot\mathbb{P}(Y=y_j)=\sum_{x_i}\mathbb{P}(X=x_i)\cdot\mathbb{P}(Y=x-x_i).$$

## Distribution of the Sum of Independent R.V.s.

Now, assume Z = X + Y, and assume that now  $X \perp \!\!\! \perp Y$ .

• If X and Y are **Discrete** and Independent, then

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j) =$$

$$\sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_i) = \sum_{x_i+y_i=x} \mathbb{P}(X=x_i, Y=x_i) = \sum_{x_i+y_i=x} \mathbb{P}(X=$$

$$=\sum_{x_i+y_j=x}\mathbb{P}(X=x_i)\cdot\mathbb{P}(Y=y_j)=\sum_{x_i}\mathbb{P}(X=x_i)\cdot\mathbb{P}(Y=x-x_i).$$

• If X and Y are **Jointly Continuous** with the Joint PDF  $f_{X,Y}(x,y)$  and Independent, then, for any  $x \in \mathbb{R}$ ,

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_{X,Y}(t, x-t) dt =$$



## Distribution of the Sum of Independent R.V.s.

Now, assume Z = X + Y, and assume that now  $X \perp \!\!\! \perp Y$ .

• If X and Y are **Discrete** and Independent, then

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j) =$$

$$= \sum_{x_i+y_j=x} \mathbb{P}(X=x_i) \cdot \mathbb{P}(Y=y_j) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i) \cdot \mathbb{P}(Y=x-x_i).$$

$$\sum_{x_i+y_j=x} \mathbb{E}(x_i \times x_i) \mathbb{E}(x_i \times x_j) \mathbb{E}(x_j \times x_j$$

• If X and Y are **Jointly Continuous** with the Joint PDF  $f_{X,Y}(x,y)$  and Independent, then, for any  $x \in \mathbb{R}$ ,

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_{X,Y}(t,x-t) dt = \int_{-\infty}^{\infty} f_X(t) \cdot f_Y(x-t) dt.$$

