Report on the LVD Experiment

C. Vigorito on behalf of the LVD Collaboration

1000 tons liquid scintillator neutrino observatory

(a)
INFN
Laboratori
Nazionali
del Gran Sasso
(Italy)

In operation since June 1992 20 years on line

Designed to look for v bursts from gravitational stellar collapses in our Galaxy

Feb-May 2012
Hardware upgrades
to measure the v
speed in the CNGS
beam

EFFECTIVE DUTY CYCLE & ACTIVE MASS

SENSITIVITY TO NEUTRINO BURSTS

Distance (kpc)

Triggers above 7 MeV

Triggers above 10 MeV

Full efficiency for supernova neutrino burst detection up to 30 kpc @ M=1 kton

Full efficiency for Milky Way SN Monitoring @ M>300 ton

For details see Ref.. AstroParticle Physics 28 (2008) 516-522

PUBLISHED RESULTS

RUN	Since:	То:	Uptime [days]	Duty Cycle	Mass [tonn]	PUBLISHED
RUN 1	Jun 6 st 92	May 31 st 93	285	60%	310	23 rd ICRC 1993
RUN 2	Aug 4 th 93	Mar 11 st 93	397	74%	390	24th ICRC 1995
RUN 3	Mar 11 th 95	Apr 30 th 97	627	90%	400	25th ICRC 1997
RUN 4	Apr 30 th 97	Mar 15 st 99	685	94%	415	26th ICRC 1999
RUN 5	Mar 16 st 99	Dec 11 th 00	592	95%	580	27th ICRC 2001
RUN 6	Dec 12st 00	Mar 24 th 03	821	98%	842	28th ICRC 2003
RUN 7	Mar 25st 03	Feb 4 th 05	666	>99%	881	29th ICRC 2005
RUN 8	Feb 5 th 05	May 31st 07	846	>99%	936	30th ICRC 2007
RUN 9	Jun 1 st 07	Apr 30 th 09	699	>99%	967	31st ICRC 2009
RUN 10	May 1 st 09	Mar 27 th 11	696	>99%	981	32 nd ICRC 2011
Σ	Jun 6 1992	Mar 27 2011	6314		721	All Data

90% C.L. Upper Limit to gravitational stellar collapses in the Galaxy is
0.13 /year

Whole data set reprocessing & refined analysis on going a summary paper of LVD results in SN monitoring

MEASURING THE NEUTRINO TOF WITH LVD

On the ΔS CERN-LNGS EXP.Ts Distance

New independent measurement in cooperation with Borexino & Icarus groups

On the ΔT measurements

Absolute Timing

- •Upgrade of LVD present system (New 40 MHz oscillator / New Syncronism)
- •A new system (at LNGS site) developed in collaboration with Borexino & Icarus Experiments fully independent from OPERA one
- •White Rabbit System -> Finally installed @ LNGS in May 2012

Transit Time & Fluctuation

- •Upgrade of LVD present system (counter transit time by atmospheric & CNGS muon analysis)
- •The LVD SUPER-SET

THE LVD SUPERSET

- 58 Counters equipped with a calibrated fast LED / Almost a full wall in Tower 3
- •Delayed Central PMTs (+20 m cable) to generate the 3-fold coincidence
- •A new trigger has been realized in parallel with the standard one
- •Better time performance → External TIC (Time Interval Counter)
- •Direct measurement of the transit time and its dependence on the amplitude of the signal
- •Partially independent and faster electronics

7% of the whole array 40% geometrical efficiency on CNGS muon

THE LED SYSTEM

LED Cable Distribution

LED Driver Box Timing Spread of 64 flasher channels ~500ps

Measured Trigger-Light Emission Delay <= 2 ns

SUPERSET-RELATIVE TIME RESOLUTION

Subset response (LED,58 Counters) by LVD standard electronics Relative Resolution r.m.s. ~ 7 ns

SUPERSET - SINGLE COUNTER TRANSIT TIME

Transit time as a function of the released energy.

Typical CNGS muon range (100-200 MeV energy release)

ADC saturation effect

C. Vigorito, University & INFN Torino, Italy

THAT'S ALL!

THANKS