Recitation 4

Norms

Definition (Norm)

A norm $\|\cdot\|$ on V is a function $\|\cdot\|:V\to\mathbb{R}_{>0}$ that verifies

- 1. Positive definiteness: if $||v|| = 0 \implies v = 0$.
- 2. Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$
- 3. Triangle inequality: $||u+v|| \le ||u|| + ||v||$

A norm defines a distance $d(x,y) = \|x-y\|$ on the vector space V. Definition (Distance)

A distance d on a set S (not necessarily a vector space) is a function $d:S\times S\to \mathbb{R}$.

- 1. Positive definiteness: if $d(x,y) \ge 0$ for all $x,y \in S$ and $d(x,y) \ge 0$ iff x=y.
- 2. Symmetry: d(x,y) = d(y,x) for all $x, y \in S$.
- 3. Triangle inequality: $d(x,y) \le d(x,z) + d(z,y)$

Inner Products

Definition (Inner product)

Let V be a vector space. An inner product on V is a function $\langle \cdot, \cdot \rangle$ from $V \times V$ to $\mathbb R$ that verifies the following points:

- 1. Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$.
- 2. Linearity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \alpha v,w\rangle=\alpha\langle v,w\rangle$ for all $u,v,w\in V$ and $\alpha\in\mathbb{R}$.
- 3. Positive definiteness: $\langle v,v\rangle \geq 0$ with equality if and only if v=0.
- Important: An inner product defines a norm $\|u\| = \sqrt{\langle u,u \rangle}$.
- Most used inner product: the Euclidean inner product: $\langle u,v\rangle=u^{\top}v.$ The corresponding norm is $\|u\|=\sqrt{u^{\top}u}=\sqrt{\sum_{i=1}^n u_i^2}.$
- Given an inner product, we can define the angle between two vectors: $cos(\theta) = \frac{\langle u,v \rangle}{\|u\| \|v\|}$.

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

- i. $f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$
- ii. $f(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_1^2 y_1^2$
- iii. $f(x,y) = x_1y_1 + x_3y_3$

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

- i. $f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$
- ii. $f(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_1^2 y_1^2$
- iii. $f(x,y) = x_1y_1 + x_3y_3$

1. Which of the following functions are inner products for $x, y \in \mathbb{R}^3$?

- i. $f(x,y) = x_1y_2 + x_2y_3 + x_3y_1$
- ii. $f(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_1^2 y_1^2$
- iii. $f(x,y) = x_1y_1 + x_3y_3$

2. For $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, prove that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}^2}$$

2. For $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, prove that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}^2}$$

Recall from the lecture:

- 1. Two vectors u, v are orthogonal if $\langle u, v \rangle = 0$.
- 2. If U is a subspace of of a vector space V with inner product \langle, \rangle , the orthogonal projection $P_U : V \to U$ is defined as $x \mapsto \arg\min_{u \in U} \|x u\|$.

Exercises:

- 1. Let $v_1, ..., v_k$ be a list of orthogonal vectors. Show that $v_1, ..., v_k$ are linearly independent.
- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R}).
 - ii. Prove that $P_U(v) \leq ||v||$.
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$.

1. Let $v_1,...,v_k$ be a list of orthogonal vectors. Show that $v_1,...,v_k$ are linearly independent.

1. Let $v_1,...,v_k$ be a list of orthogonal vectors. Show that $v_1,...,v_k$ are linearly independent.

- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R}).
 - ii. Prove that $P_U(v) \leq ||v||$.
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$.

- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R}).
 - ii. Prove that $P_U(v) \leq ||v||$.
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$.

- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R}).
 - ii. Prove that $P_U(v) \leq ||v||$.
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$.

- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R}).
 - ii. Prove that $P_U(v) \leq ||v||$.
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$.

- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
 - i. Prove that the orthogonal projection of $v \in \mathbb{R}^n$ onto U can be expressed as $P_U = \sum_{i=0}^k \langle v, u_i \rangle u_i$. (Use the fact that the orthonormal basis for a subspace of \mathbb{R} can be extended to obtain an orthonormal basis for \mathbb{R}).
 - ii. Prove that $P_U(v) \leq ||v||$.
 - iii. Prove that $v P_U(v)$ is orthogonal to $P_U(v)$.

- 1. Let S,U be subspaces of a vector space V. Prove the following statement: $S\subset U\implies S^\perp\supset U^\perp$
- 2. Let $A \in \mathbb{R}^{n \times m}$. Assume the Euclidean inner product. Prove that $Im(A^T) = Ker(A)^{\perp}$. (Hint: \implies is easy. Use (1) for \iff)

1. Let S,U be subspaces of a vector space V. Prove the following statement: $S\subset U\implies S^\perp\supset U^\perp$

2. Let $A \in \mathbb{R}^{n \times m}$. Assume the Euclidean inner product. Prove that $Im(A^T) = Ker(A)^{\perp}$. (Hint: \implies is easy. Use (1) for \iff)

2. Let $A \in \mathbb{R}^{n \times m}$. Assume the Euclidean inner product. Prove that $Im(A^T) = Ker(A)^{\perp}$. (Hint: \implies is easy. Use (1) for \iff)

Definition (Idempotence)

An matrix P is idempotent when $P^2 = P$.

- 1. Show that $X(X^TX)^{-1}X^T$ is idempotent.
- 2. Show that all orthogonal projections are idempotent.
- Give an example of an idempotent matrix that is not an orthogonal projection.
 (Hint: Show that your matrix does not minimize the distance to subspace it projects onto.)

- 1. Show that $X(X^TX)^{-1}X^T$ is idempotent.
- 2. Show that all orthogonal projections are idempotent.

- 1. Show that $X(X^TX)^{-1}X^T$ is idempotent.
- 2. Show that all orthogonal projections are idempotent.

3. Give an example of an idempotent matrix that is not an orthogonal projection.

(Hint: Show that your matrix does not minimize the distance to subspace it projects onto.)

3. Give an example of an idempotent matrix that is not an orthogonal projection.

(Hint: Show that your matrix does not minimize the distance to subspace it projects onto.)