EXERCISE - III

SUBJECTIVE QUESTIONS

- **1.** The angle of a $\triangle ABC$ are in A.P. and it is being given that b : c = $\sqrt{3}$: $\sqrt{2}$, then find $\angle A$.
- **2.** In a triangle ABC, prove that for any angle θ , b cos $(A \theta)$ + a cos $(B + \theta)$ = c cos θ .
- **3.** If $\cos A + \cos B = 4 \sin^2 \left(\frac{C}{2}\right)$, prove that sides a, c, b of the triangle ABC are in A.P.
- **4.** If in a $\triangle ABC \frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, then prove that a^2 , b^2 , c^2 are in A.P.
- **5.** Let a, b and c be the sides of $\triangle ABC$. If a^2 , b^2 and c^2 are the roots of the equation $x^3 Px^2 + Qx R = 0$, where P, Q & R are constants, then find the value of

$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$
, in terms of P, Q and R.

- **6.** If the sides a, b, c of a triangle are in AP then find the value $\tan \frac{A}{2} + \tan \frac{C}{2}$ in terms of cot (B/2).
- **7.** If D is the mid point of CA in triangle ABC and Δ is the area of triangle, then show that

$$\tan \left(\angle ADB \right) = \frac{4\Delta}{a^2 - c^2}.$$

- **8.** If in a $\triangle ABC$, a = 6, b = 3 and $\cos (A B) = 4/5$ then find its area.
- **9.** If in a triangle ABC $\angle A=30^{\circ}$ and the area of triangle if $\frac{\sqrt{3}a^2}{4}$. then prove that either B = 4 C or C = 4 B.
- **10.** Show that the radii of the three escribed circles of a triangle are roots of the equation, $x^3 x^2 (4R + r) + x s^2 r s^2 = 0$.

- **11.** If in a triangle ABC, the altitude AM be the bisector of \angle BAD, where D is the mid point of side BC, then prove that $(b^2-c^2)=a^2/2$
- **12.** In a triangle ABC, if a tan A + b tan B
- = (a + b) $\tan \left(\frac{A+B}{2}\right)$ prove that triangle is isosceles.
- **13.** In a \triangle ABC, \angle C = 60° & \angle A = 75°. If D is a point on AC such that the area of the \triangle BAD is $\sqrt{3}$ times the area of the \triangle BCD find the \angle ABD.
- **14.** In triangle ABC, prove that the area of the incircle is to the area of triangle itself as,

$$\pi \,:\, \mathsf{cot}\,\left(\frac{\mathsf{A}}{2}\right).\,\, \mathsf{cot}\!\left(\frac{\mathsf{B}}{2}\right).\,\, \mathsf{cot}\!\left(\frac{\mathsf{C}}{2}\right).$$

- **15.** DEF is the triangle formed by joining the points of contact of the incircle with the sides of the triangle ABC : prove that
- (i) its sides are $2r \cos \frac{A}{2}$, $2r \cos \frac{B}{2}$, and $2r \cos \frac{C}{2}$,
- (ii) its angles are $\frac{\pi}{2} \frac{A}{2}$, $\frac{\pi}{2} \frac{B}{2}$, and $\frac{\pi}{2} \frac{C}{2}$
- (iii) its area is $\frac{2\Delta^3}{\text{abcs}}$, i.e. $\frac{1}{2}\frac{\text{r}}{\text{R}}$ Δ .
- **16.** If the circumcentre of the \triangle ABC lies on its incircle then prove that, $\cos A + \cos B + \cos C = \sqrt{2}$
- **17.** A cyclic quadrilateral ABCD of area $\frac{3\sqrt{3}}{4}$ is inscribed a unit circle. If one of its sides AB = 1 & the diagonal BD = $\sqrt{3}$, find lengths of the other sides.

18. Perpendicular are drawn from the angles A, B, C of an acute anlged triangle on the opposite sides and produced to meet the circumscribing circle. If these produced parts be α , β , γ respectively, show that

$$\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 2 \text{ (tan A + tan B + tan C)}$$

19. The product of the sines of the angles of a triangle is p and the product of their cosines is q. Show that the tangents of the angles are the roots of the equation $qx^3 - px^2 + (1 + q)x - p = 0$

Prove that:

20.
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$

21. a cot A + b cot B + c cot C = 2(R + r)

22.
$$\frac{r_1}{(s-b)(s-c)} + \frac{r_2}{(s-c)(s-a)} + \frac{r_3}{(s-a)(s-b)} = \frac{3}{r}$$

23.
$$\frac{r_1 - r}{a} + \frac{r_2 - r}{b} = \frac{c}{r_3}$$

24.
$$\frac{abc}{s} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \Delta$$

25.
$$(r_1 + r_2) \tan \frac{C}{2} = (r_3 - r) \cot \frac{C}{2} = c$$