A Novel Class of Globally Convergent Algorithms For Clustering Problems

Sergey Voldman

Raymond and Beverly Sackler Faculty of Exact Sciences

Tel-Aviv University

06.04.2016

Under the supervision of

Prof. Marc Teboulle (Tel Aviv University) and Prof. Shoham Sabach (Technion)

Goal and Outline

Develop and analyze two center-based clustering algorithms each with different distance-like function.

Outline

- Introduction to the clustering problem.
- Introduction to the convergence methodology.
- Clustering with the squared Euclidean norm: KPALM algorithm and its analysis.
- Clustering with the Euclidean norm: ε -KPALM algorithm and its analysis.
- Numerical results of the proposed algorithms.

The Clustering Problem

- Clustering is fundamental in fields such as machine learning, data mining, etc.
- The clustering problem focused a lot of research and there are many algorithms tackling it, such as k-means, Expectation-Maximization and others.
- It has been shown that the clustering problem is NP-hard.
- Let $\mathcal{A} = \{a^1, a^2, \dots, a^m\} \subset \mathbb{R}^n$ set of points, and 1 < k < m a given number of clusters.
- The goal is to partition the data A into k subsets $\{C^1, C^2, \dots, C^k\}$ called clusters.
- Each cluster C^l is represented by its center $x^l \in \mathbb{R}^n$.
- The clustering problem is given by

$$(P_0) \qquad \min_{\mathbf{x} \in \mathbb{R}^{nk}} \left\{ F(\mathbf{x}) := \sum_{i=1}^m \min_{1 \le l \le k} d(\mathbf{x}^l, \mathbf{a}^i) \right\},\,$$

with $d(\cdot, \cdot)$ being a distance-like function, such as the squared Euclidean norm.

Problem Reformulation

Using the fact that

$$\min_{1\leq l\leq k}u_{l}=\min\left\{\left\langle u,v\right\rangle :v\in\Delta\right\} ,$$

where Δ is the simplex in \mathbb{R}^k , problem (P_0) can be transformed into

$$(P_1) \qquad \min_{x \in \mathbb{R}^{nk}} \left\{ \sum_{i=1}^m \min_{w^i \in \Delta} \langle w^i, d^i(x) \rangle \right\},\,$$

with $d^{i}(x) = (d(x^{1}, a^{i}), d(x^{2}, a^{i}), \dots, d(x^{k}, a^{i})) \in \mathbb{R}^{k}, \quad i = 1, 2, \dots, m.$

• Replacing the constrain $w^i \in \Delta$ by adding the indicator function $\delta_{\Delta}(\cdot)$ results in

$$(P_2) \qquad \min_{\mathbf{x} \in \mathbb{R}^{nk}, \mathbf{w} \in \mathbb{R}^{km}} \left\{ \sum_{i=1}^m \left(\langle \mathbf{w}^i, \mathbf{d}^i(\mathbf{x}) \rangle + \delta_{\Delta}(\mathbf{w}^i) \right) \right\},$$

where $w = (w^1, w^2, \dots, w^m) \in \mathbb{R}^{km}$.

The final version is given by

(P)
$$\min \left\{ \Psi(z) := H(w,x) + G(w) \mid z := (w,x) \in \mathbb{R}^{km} \times \mathbb{R}^{nk} \right\},$$

with
$$H(w, x) = \sum_{i=1}^{m} H^{i}(w, x) = \sum_{i=1}^{m} \langle w^{i}, d^{i}(x) \rangle$$
 and $G(w) = \sum_{i=1}^{m} G^{i}(w^{i}) = \sum_{i=1}^{m} \delta_{\Delta}(w^{i})$.

Convergence Methodology: Definitions

Definition (Limiting Subdifferential $\partial \sigma(x)$)

Let $\sigma: \mathbb{R}^d \to (-\infty, +\infty]$ be a proper and lower semicontinuous function. The (Limiting) Subdifferential $\partial \sigma(x)$ is defined via:

$$u^* \in \partial \sigma(x)$$
 iff $(x_k, u_k^*) \to (x, u^*)$ s.t. $\sigma(x_k) \to \sigma(x)$ and $\sigma(u) \geq \sigma(x_k) + \langle u_k^*, u - x_k \rangle + o(\|u - x_k\|)$

- $x \in \mathbb{R}^d$ is a critical point of σ if $\partial \sigma(x) \ni 0$.
- The set of critical points of $\sigma \equiv \text{crit } \sigma$.
- $r \in \mathbb{R}$ is a critical value if $\exists x \in \text{crit } \sigma : \sigma(x) = r$.

KL property

Denote the following class of concave functions

$$\Phi_{\eta} = \left\{ \varphi \in C\left([0,\eta), \mathbb{R}_{+}\right): \ \varphi \in C^{1}\left((0,\eta)\right), \ \varphi' > 0, \ \varphi(0) = 0 \right\}.$$

Definition (Kurdyka-Łojasiewicz property)

Let $\sigma: \mathbb{R}^d \to (-\infty, +\infty]$ be proper and lower semicontinuous.

(i) σ admits the KL property at $\overline{u} \in dom \ \partial \sigma := \{u \in \mathbb{R}^d : \ \partial \sigma \neq \emptyset\}$ if there exist $\eta \in (0, +\infty]$, a neighborhood U of \overline{u} and a function $\varphi \in \Phi_{\eta}$, such that for all

$$u \in U \cap \left\{ x \in \mathbb{R}^d : \ \sigma(\overline{u}) < \sigma(x) < \sigma(\overline{u}) + \eta \right\},$$

the following inequality holds

$$\varphi'(\sigma(u) - \sigma(\overline{u})) \operatorname{dist}(0, \partial \sigma(u)) \ge 1,$$

where $\operatorname{dist}(x,S) := \inf \{ \|y - x\| : y \in S \}$ denotes the distance from $x \in \mathbb{R}^d$ to $S \subset \mathbb{R}^d$.

(ii) If σ satisfy the KL property at each point of $dom \sigma$ then σ is called a KL function.

Semi-Algebraic Functions

Theorem (Bolte-Daniilidis-Lewis (2006))

Let $\sigma: \mathbb{R}^d \to \overline{\mathbb{R}}$ be a proper and lsc function. If σ is semi-algebraic then it satisfy the KL property at any point of dom σ .

Definition

(i) A subset S of \mathbb{R}^n is a real semi-algebraic set if there exists a finite number of real polynomial functions g_{ij} , h_{ij} : $\mathbb{R}^n \to \mathbb{R}$ such that

$$S = \bigcup_{i=1}^{p} \bigcap_{j=1}^{q} \left\{ u \in \mathbb{R}^{n} : g_{ij}(u) = 0 \text{ and } h_{ij}(u) < 0 \right\}.$$

(ii) A function $\sigma: \mathbb{R}^n \to \overline{\mathbb{R}}$ is called semi-algebraic if its graph

$$\left\{ \left(u,t\right)\in\mathbb{R}^{n+1}:\ \sigma\left(u\right)=t\right\}$$

is a semi-algebraic subset of \mathbb{R}^{n+1} .

The Wealth of Semi-Algebraic Functions

- Real polynomial functions.
- Indicator functions of semi-algebraic sets.
- Finite sums and product of semi-algebraic functions.
- Composition of semi-algebraic functions.
- Sup/Inf type function, e.g., sup $\{g(u, v): v \in C\}$ is semi-algebraic when g is a semi-algebraic function and C a semi-algebraic set.
- The function $x \to \operatorname{dist}(x, S)^2$ is semi-algebraic whenever S is a nonempty semi-algebraic subset of \mathbb{R}^n .
- $\|\cdot\|_0$ (counts the non-zero values) is semi-algebraic.
- $\|\cdot\|_p$ is semi-algebraic whenever p > 0 is rational.

Note that for distance-like functions $d(x, y) = ||x - y||^2$ and d(x, y) = ||x - y|| the resulting clustering function defined in (P) is semi-algebraic.

The Optimization Model

(M) minimize_{x,y}
$$\Psi(x,y) := f(x) + g(y) + H(x,y)$$

Assumption

- (i) $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ and $g: \mathbb{R}^m \to \overline{\mathbb{R}}$ are proper and lsc functions.
- (ii) $H: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is a C^1 function.
- (iii) Partial gradients of H are Lipshitz continuous: $H(\cdot,y) \in C_{L(y)}^{1,1}$ and likewise $H(x,\cdot) \in C_L^{1,1}(x)$.
 - NO convexity will be assumed in the objective or/and the constraints (built-in through f and g extended valued).
 - The choice of two blocks of variables is ONLY for the sake of simplicity.
 - The optimization model (M) covers many applications: signal/image processing, machine learning, etc....

Building the Algorithm

Simplest Approach: Alternating Minimization (AM)

$$\boldsymbol{x}^{k+1} \in \operatorname{argmin}_{\boldsymbol{x}} \boldsymbol{\Psi} \left(\boldsymbol{x}, \boldsymbol{y}^k \right); \qquad \boldsymbol{y}^{k+1} \in \operatorname{argmin}_{\boldsymbol{y}} \boldsymbol{\Psi} \left(\boldsymbol{x}^{k+1}, \boldsymbol{y} \right).$$

However, this scheme does not converge, unless very restrictive assumptions are made, such as the uniqueness of the minimizer in each step

To overcome the above difficulty: Regularization with "prox"

$$\begin{split} & x^{k+1} \in \operatorname{argmin}_{x} \left\{ \Psi \left(x, y^{k} \right) + \frac{c_{k}}{2} \left\| x - x^{k} \right\|^{2} \right\}, \\ & y^{k+1} \in \operatorname{argmin}_{y} \left\{ \Psi \left(x^{k+1}, y \right) + \frac{d_{k}}{2} \left\| y - y^{k} \right\|^{2} \right\}. \end{split}$$

- However, the above scheme is only "conceptual" in the sense that
 - It requires solving excatly two nonconvex difficult problems (does not exploit special structure/data info of f, g and H.)
 - ② Involves *Nested* optimization...Needs an optimal *x* to proceed computation of *y*!

To overcome all the above difficulties, we take one further very simple step which exploits the data information on *H*.

The Proximal-Forward Backward Scheme/Proximal Gradient

Suitable for the composite smooth + nonsmooth model:

$$\min\left\{h\left(u\right)+\sigma\left(u\right):\ u\in\mathbb{R}^{d}\right\},\quad h\in C^{1,1}$$

$$u^{k+1}\in\operatorname{argmin}_{u\in\mathbb{R}^{d}}\left\{\left\langle u-u^{k},\nabla h\left(u^{k}\right)\right\rangle +\frac{t}{2}\left\Vert u-u^{k}\right\Vert ^{2}+\sigma\left(u\right)\right\}.$$

- Useful for smooth and "simple" (i.e., easy prox) nonsmooth $\sigma(\cdot)$. Convex case well studied, convergence and complexity [Lions-Mercier (79), Nesterov (07), Beck-Teboulle (09)]
- Nonconvex case: Convergence of the whole sequence to a critical point! Very recent in [Attouch-Bolte-Svaiter (11)].

Can we preserve the qualities of both building blocks: Simplicity of AM and Global Convergence of PFB to tackle our general model (M)?

The Algorithm: Proximal Altertnating Linearization Minimization (PALM)

Let $\sigma: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper and lsc function. Given $x \in \mathbb{R}^n$ and t > 0, the proximal map defined by:

$$\operatorname{prox}_{t}^{\sigma}(x) := \operatorname{argmin}\left\{\sigma\left(u\right) + \frac{t}{2}\left\|u - x\right\|^{2}: u \in \mathbb{R}^{n}\right\}.$$

Replacing Ψ in AM scheme with its first-order approximation in each block, given by:

$$\begin{split} \widehat{\Psi}(x, y^k) &= \left\langle x - x^k, \nabla_x H(x^k, y^k) \right\rangle + \frac{c_k}{2} \left\| x - x^k \right\|^2 + f(x), \\ \widetilde{\Psi}(x^{k+1}, y) &= \left\langle y - y^k, \nabla_y H(x^{k+1}, y^k) \right\rangle + \frac{c_k}{2} \left\| y - y^k \right\|^2 + g(y). \end{split}$$

- 1. Initialization: start with any $(x^0, y^0) \in \mathbb{R}^n \times \mathbb{R}^m$.
- 2. For each k = 0, 1, ... generate a sequence $\{(x^k, y^k)\}_{k \in \mathbb{N}}$:
 - 2.1. Take $\gamma_1 > 1$, set $c_k = \gamma_1 L_1(y^k)$ and compute

$$x^{k+1} \in \operatorname{argmin}\left\{\widehat{\Psi}(x,y^k): \ x \in \mathbb{R}^n\right\} = \operatorname{prox}_{c_k}^f\left(x^k - c_k^{-1}\nabla_x H\left(x^k,y^k\right)\right).$$

2.2. Take $\gamma_2 > 1$, set $d_k = \gamma_2 L_2 \left(x^{k+1} \right)$ and compute

$$y^{k+1} \in \operatorname{argmin}\left\{\widetilde{\Psi}(x^{k+1},y): \ y \in \mathbb{R}^m\right\} = \operatorname{prox}_{d_k}^g\left(y^k - d_k^{-1}\nabla_y H\left(x^{k+1},y^k\right)\right).$$

Main computational step: Computing prox of a nonconvex function.

Proximal Map for Nonconvex Functions

Let $\sigma: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper and lsc function. Given $x \in \mathbb{R}^n$ and t > 0, the proximal map defined by:

$$\operatorname{prox}_{t}^{\sigma}\left(x\right):=\operatorname{argmin}\left\{ \sigma\left(u\right)+\frac{t}{2}\left\Vert u-x\right\Vert ^{2}:\ u\in\mathbb{R}^{n}
ight\} .$$

Proposition (Rockafellar and Wets)

If $\inf_{\mathbb{R}^n} \sigma > -\infty$, then, for every $t \in (0, \infty)$, the set $\operatorname{prox}_{1/t}^{\sigma}(x)$ is nonempty and compact.

- Here $prox_t^{\sigma}$ is a set-valued map.
- When $\sigma := \delta_X$, the indicator function of a nonempty and closed set X, the proximal map reduces to the set-valued projection operator onto X.

PALM is Well Defined

Thanks to the prox properties, since PALM is defined by two proximal computations, all we need is:

$$\text{Assume:} \quad \inf_{\mathbb{R}^n \times \mathbb{R}^m} \Psi > -\infty, \quad \inf_{\mathbb{R}^n} f > -\infty \quad \text{and} \quad \inf_{\mathbb{R}^m} g > -\infty.$$

Thus Problem (M) is inf-bounded and PALM is well defined!!!

Quick Recall on Nonsmooth Analysis - [Rockafellar-Wets (98)]

Let $\sigma: \mathbb{R}^d \to (-\infty, +\infty]$ be a proper and lower semicontinuous function.

• (Limiting) Subdifferential $\partial \sigma(x)$:

$$u^* \in \partial \sigma(x)$$
 iff $(x_k, x_k^*) \to (x, x^*)$ s.t. $\sigma(x_k) \to \sigma(x)$ and $\sigma(u) \geq \sigma(x_k) + \langle x_k^*, u - x_k \rangle + o(\|u - x_k\|)$

- $x \in \mathbb{R}^d$ is a critical point of σ if $\partial \sigma(x) \ni 0$.
- The set of critical points of $\sigma \equiv \text{crit } \sigma$.
- $r \in \mathbb{R}$ is a critical value if $\exists x \in \text{crit } \sigma : \sigma(x) = r$.

An Informal General Convergence Proof Procedure

Given: Let $\Psi : \mathbb{R}^N \to \overline{\mathbb{R}}$ be a proper, lsc and bounded from below function.

(P) inf
$$\left\{ \Psi \left(z\right) :\ z\in \mathbb{R}^{N}\right\} .$$

Suppose A is a generic algorithm which generates a sequence $\{z^k\}_{k\in\mathbb{N}}$ via:

$$z^{0} \in \mathbb{R}^{N}, z^{k+1} \in \mathcal{A}\left(z^{k}\right), \ k = 0, 1, \dots$$

Goal: To prove that whole $\{z^k\}_{k\in\mathbb{N}}$ converges to a critical point of Ψ .

Basically, the methodology consists of three main steps.

(i) Sufficient decrease property: Find a positive constant ρ_1 such that

$$\rho_1 \left\| \boldsymbol{z}^{k+1} - \boldsymbol{z}^k \right\|^2 \leq \Psi \left(\boldsymbol{z}^k \right) - \Psi \left(\boldsymbol{z}^{k+1} \right), \quad \forall k = 0, 1, \dots.$$

(ii) A subgradient lower bound for the iterates gap: Assume that $\{z^k\}_{k\in\mathbb{N}}$ is bounded. Find another positive constant ρ_2 , such that

$$\|w^k\| \le \rho_2 \|z^k - z^{k-1}\|, \quad w^k \in \partial \Psi(z^k), \quad \forall k = 0, 1, \dots$$

These two steps are typical for *any descent* type algorithms but lead ONLY to convergence of limit points.

PALM: First Convergence Properties

From now on we assume that the generated sequence is bounded. Let $\{z^k\}_{k\in\mathbb{N}}$ $(z^k=(x^k,y^k))$ be a sequence generated by PALM.

The set of all limit points is denoted by $\omega(z^0)$, where z^0 is the starting point.

Lemma (Properties of the limit point set $\omega\left(z^{0}\right)$)

Let $\{z^k\}_{k\in\mathbb{N}}$ be a sequence generated by PALM. Then

- (i) $\emptyset \neq \omega(z^0) \subset \operatorname{crit} \Psi$.
- (ii) We have

$$\lim_{k\to\infty}\operatorname{dist}\left(z^{k},\omega\left(z^{0}\right)\right)=0.$$

- (iii) $\omega(z^0)$ is a nonempty, compact and connected set.
- (iv) The objective function Ψ is finite and constant on ω (z^0).

Does the whole $\{z^k\}_{k\in\mathbb{N}}$ converge to a critical point of Problem (*M*)?

YES! Using the Kurdyka-Łojasiewicz Property (Third Step)

(iii) Using the KL property: Assume that Ψ is a KL function and show that the generated sequence $\{z^k\}_{k\in\mathbb{N}}$ is a *Cauchy sequence*.

If, Ψ is a KL function, we get:

Theorem (A finite length property)

Let $\{z^k\}_{k\in\mathbb{N}}$ be a sequence generated by PALM. The following assertions hold.

(i) The sequence $\{z^k\}_{k\in\mathbb{N}}$ has finite length, that is,

$$\sum_{k=1}^{\infty} \left\| z^{k+1} - z^k \right\| < \infty.$$

(ii) The sequence $\{z^k\}_{k\in\mathbb{N}}$ converges to a critical point $z^*=(x^*,y^*)$.

Proof of Theorem

For simplicity, assume $\Psi^*=0$ and that Ψ is smooth. From sufficient decease and subgradient bound for iterates gaps properties we have

$$\exists \rho_1 > 0: \ \rho_1 \left\| z^{k+1} - z^k \right\|^2 \le \Psi\left(z^k\right) - \Psi\left(z^{k+1}\right)$$
 (1)

$$\exists \rho_2 > 0: \ \rho_2 \left\| \nabla \Psi \left(z^k \right) \right\| \le \left\| z^{k+1} - z^k \right\| \tag{2}$$

Combining (1) with (2) yields

$$\rho_{1}\rho_{2}\left\|z^{k+1}-z^{k}\right\|\cdot\left\|\nabla\Psi\left(z^{k}\right)\right\|\leq\Psi\left(z^{k}\right)-\Psi\left(z^{k+1}\right).\tag{3}$$

Since Ψ is a KL-function there exists a concave desingularizing function φ such that

$$\varphi'\left(\Psi\left(z^{k}\right)\right)\left\|\nabla\Psi\left(z^{k}\right)\right\|\geq1$$
 (4)

From the concavity of φ it follows that

$$\varphi(u) - \varphi(v) \le (u - v)\varphi'(v)$$

Substituting $u = \Psi(z^{k+1})$ and $v = \Psi(z^k)$ in the last equation yields

$$\left(\Psi\left(z^{k}\right) - \Psi\left(z^{k+1}\right)\right)\varphi'\left(\Psi\left(z^{k}\right)\right) \leq \varphi\left(\Psi\left(z^{k}\right)\right) - \varphi\left(\Psi\left(z^{k+1}\right)\right). \tag{5}$$

Combining (3) with (5) and applying (4) yields

$$\rho_{1}\rho_{2}\left\Vert z^{k+1}-z^{k}\right\Vert \leq\rho_{1}\rho_{2}\left\Vert z^{k+1}-z^{k}\right\Vert \cdot\left\Vert \nabla\Psi\left(z^{k}\right)\right\Vert \varphi'\left(\Psi\left(z^{k}\right)\right)\leq\varphi\left(\Psi\left(z^{k}\right)\right)-\varphi\left(\Psi\left(z^{k+1}\right)\right).$$

Proof of Theorem-Contd.

Summing the last inequality over all $k \in \mathbb{N}$ yields part (i). Now, take q > p > l we have

$$z^{q} - z^{p} = \sum_{k=p}^{q-1} \left(z^{k+1} - z^{k} \right)$$

hence

$$||z^{q}-z^{p}|| = \left|\left|\sum_{k=p}^{q-1} \left(z^{k+1}-z^{k}\right)\right|\right| \leq \sum_{k=p}^{q-1} ||z^{k+1}-z^{k}|| \leq \sum_{k=l}^{\infty} ||z^{k+1}-z^{k}|| \xrightarrow[l\to\infty]{} 0,$$

implying that $\{z^k\}$ is a Cauchy sequence and hence a convergent sequence. The fact that $\emptyset \neq \omega$ $(z^0) \subset crit\Psi$ yields part (ii).

KL property ensures us that $\{z^k\}_{k\in\mathbb{N}}$ is a Cauchy sequence! Thus converges!

The main question now is: Are there many KL functions?

KPALM Algorithm For The Squared Euclidean Norm

We devise a PALM-like algorithm, exploiting the specific structure of H, namely

• The function $w \mapsto H(w, x)$, for fixed x, is linear and therefore there is no need to linearize it as suggested in PALM.

$$w^{i}(t+1) = \arg\min_{w^{i} \in \Delta} \left\{ \langle w^{i}, \sigma^{i}(x(t)) \rangle + \frac{\alpha_{i}(t)}{2} \|w^{i} - w^{i}(t)\|^{2} \right\}.$$

 The function x → H(w, x), for fixed w, is quadratic and convex. Hence, there is no need to add a proximal term as suggested in PALM.

$$x(t+1) = \operatorname{argmin} \left\{ H(w(t+1), x) \mid x \in \mathbb{R}^{nk} \right\}.$$

- (1) Initialization: $z(0) = (w(0), x(0)) \in \Delta^m \times \mathbb{R}^{nk}$.
- (2) General step (t = 0, 1, ...):
 - (2.1) Cluster assignment: choose certain $\alpha_i(t)>0,\,i=1,2,\ldots,m$, and compute

$$w^{i}(t+1) = P_{\Delta}\left(w^{i}(t) - \frac{d^{i}(x(t))}{\alpha_{i}(t)}\right).$$

(2.2) Centers update: for each l = 1, 2, ..., k compute

$$x^{i}(t+1) = \frac{\sum_{i=1}^{m} w_{i}^{i}(t+1)a^{i}}{\sum_{i=1}^{m} w_{i}^{i}(t+1)}.$$

KPALM Analysis

In order to prove the convergence of the sequence that is generated by KPALM, $\{z(t):=(w(t),x(t))\}_{n\in\mathbb{N}}$, to a critical point, we need to show the properties required by PALM theory.

• Boundedness: $w^i(t) \in \Delta$ and

$$x^{l}(t) = \frac{\sum_{i=1}^{m} w_{i}^{l}(t)a^{i}}{\sum_{i=1}^{m} w_{i}^{l}(t)} = \sum_{i=1}^{m} \left(\frac{w_{i}^{l}(t)}{\sum_{j=1}^{m} w_{i}^{l}(t)}\right)a^{i} \in Conv(\mathcal{A}).$$

• KL Property: H is a weighted sum of squared Euclidean norms hence semi-algebraic, and Δ is semi-algebraic set, thus $\delta_{\Delta}(\cdot)$ is semi-algebraic, and in turn Ψ since it is sum of these functions.

Assumption

- (i) The chosen sequences of parameters $\{\alpha_i(t)\}_{t\in\mathbb{N}}$, $1 \leq i \leq m$, are bounded: $0 < \underline{\alpha_i} \leq \alpha_i(t) \leq \overline{\alpha_i} < \infty$, $\forall \ t \in \mathbb{N}$.
- (ii) For all $t \in \mathbb{N}$ there exists $\underline{\beta} > 0$ such that $2 \min_{1 \le l \le k} \sum_{i=1}^m w_i^i(t) := \beta(w(t)) \ge \underline{\beta}$.

Denote $\underline{\alpha} = \min_{1 \leq i \leq m} \underline{\alpha_i}$ and $\overline{\alpha} = \max_{1 \leq i \leq m} \overline{\alpha_i}$.

Sufficient Decrease Proof

Since $x \mapsto H(w, x) = \sum_{l=1}^{k} \sum_{i=1}^{m} w_i^l ||x^l - a^i||^2$ is C^2 , and it Hessian is given by

$$\nabla_{x^j}\nabla_{x^l}H(w,x)=\begin{cases} 0 & \text{if } j\neq l, \quad 1\leq j,l\leq k,\\ 2\sum\limits_{i=1}^m w^i_l & \text{if } j=l, \quad 1\leq j,l\leq k, \end{cases}$$

then it is strongly convex with parameter $\beta(w)$, whenever $\beta(w) = 2 \min_{1 \le l \le k} \sum_{i=1}^m w_l^i > 0$.

Assumption 2(ii) ensures that $x \mapsto H(w(t), x)$ is strongly convex with parameter $\beta(w(t))$, hence

$$H(w(t+1), x(t)) - H(w(t+1), x(t+1)) \ge$$

$$\ge \langle \nabla_x H(w(t+1), x(t+1)), x(t) - x(t+1) \rangle + \frac{\beta(w(t))}{2} ||x(t) - x(t+1)||^2$$

$$= \frac{\beta(w(t))}{2} ||x(t+1) - x(t)||^2$$

$$\ge \frac{\beta}{2} ||x(t+1) - x(t)||^2,$$

where the equality follows from $\nabla_x H(w(t+1), x(t+1)) = 0$.

Sufficient Decrease Proof-Contd.

From the w update step we derive

$$H^{i}(w(t+1),x(t)) + \frac{\alpha_{i}(t)}{2} \|w^{i}(t+1) - w^{i}(t)\|^{2} =$$

$$= \langle w^{i}(t+1), d^{i}(x(t)) \rangle + \frac{\alpha_{i}(t)}{2} \|w^{i}(t+1) - w^{i}(t)\|^{2}$$

$$\leq \langle w^{i}(t), d^{i}(x(t)) \rangle + \frac{\alpha_{i}(t)}{2} \|w^{i}(t) - w^{i}(t)\|^{2}$$

$$= \langle w^{i}(t), d^{i}(x(t)) \rangle = H^{i}(w(t), x(t)).$$

Summing the last inequality over all $1 \le i \le m$ yields

$$\frac{\alpha}{2} \|w(t+1) - w(t)\|^2 \le H(w(t), x(t)) - H(w(t+1), x(t))$$

Set $\rho_1 = \frac{1}{2} \min \left\{ \underline{\alpha}, \underline{\beta} \right\}$, by combining the sufficient decrease in x and w variables we get

$$\begin{split} &\rho_1 \left\| z(t+1) - z(t) \right\|^2 = \rho_1 \left(\left\| w(t+1) - w(t) \right\|^2 + \left\| x(t+1) - x(t) \right\|^2 \right) \leq \\ &\leq \left[H(w(t), x(t)) - H(w(t+1), x(t)) \right] + \left[H(w(t+1), x(t)) - H(w(t+1), x(t+1)) \right] \\ &= H(z(t)) - H(z(t+1)) = \Psi(z(t)) - \Psi(z(t+1)). \end{split}$$

Subgradient Lower Bound The Iterates Gap Proof

$$H(w,x) = \sum_{i=1}^{m} H^{i}(w,x) = \sum_{i=1}^{m} \langle w^{i}, d^{i}(x) \rangle, \quad G(w) = \sum_{i=1}^{m} G^{i}(w^{i}) = \sum_{i=1}^{m} \delta_{\Delta}(w^{i})$$

$$w^{i}(t+1) = \underset{w^{i} \in \Delta}{\operatorname{argmin}} \left\{ \langle w^{i}, d^{i}(x(t)) \rangle + \frac{\alpha_{i}(t)}{2} ||w^{i} - w^{i}(t)||^{2} \right\}$$

$$x(t+1) = \underset{w^{i} \in \Delta}{\operatorname{argmin}} \left\{ H(w(t+1), x) \mid x \in \mathbb{R}^{nk} \right\}$$
(7)

$$\partial \Psi = \nabla H + \partial G = \left(\left(\nabla_{w^i} H^i + \partial_{w^i} \delta_{\Delta} \right)_{i=1,2,\ldots,m}, \nabla_x H \right).$$

Evaluating the last relation at z(t+1) and using (7)

$$\partial \Psi(z(t+1)) = \left(\left(d^i(x(t+1)) + \partial_{w^i} \delta_{\Delta}(w^i(t+1)) \right)_{i=1,2,\ldots,m}, \nabla_x H(w(t+1), x(t+1)) \right)$$
$$= \left(\left(d^i(x(t+1)) + \partial_{w^i} \delta_{\Delta}(w^i(t+1)) \right)_{i=1,2,\ldots,m}, \mathbf{0} \right).$$

The optimality condition of $w^i(t+1)$ (see (6)), implies that there exists $u^i(t+1) \in \partial \delta_{\Delta}(w^i(t+1))$ such that

$$d^{i}(x(t)) + \alpha_{i}(t) \left(w^{i}(t+1) - w^{i}(t) \right) + u^{i}(t+1) = \mathbf{0}.$$

Subgradient Lower Bound The Iterates Gap Proof-Contd.

Setting
$$\gamma(t+1) := \left(\left(d^{i}(x(t+1)) + u^{i}(t+1) \right)_{i=1,2,...,m}, \mathbf{0} \right) \in \partial \Psi(z(t+1)).$$

$$\|\gamma(t+1)\| \leq \sum_{i=1}^{m} \left\| d^{i}(x(t+1)) - d^{i}(x(t)) - \alpha_{i}(t) \left(w^{i}(t+1) - w^{i}(t) \right) \right\|$$

$$\leq \sum_{i=1}^{m} \left\| d^{i}(x(t+1)) - d^{i}(x(t)) \right\| + \sum_{i=1}^{m} \alpha_{i}(t) \left\| w^{i}(t+1) - w^{i}(t) \right\|$$

$$\leq \sum_{i=1}^{m} 4M \|x(t+1) - x(t)\| + m\overline{\alpha} \|z(t+1) - z(t)\|$$

$$\leq m(4M + \overline{\alpha}) \|z(t+1) - z(t)\|,$$

where the third inequality follows from the inequality

$$\|d^{i}(x(t+1)-d^{i}(x(t)))\| \leq 4M\|x(t+1)-x(t)\|, \quad \forall i=1,2,\ldots,m,\ t\in\mathbb{N},$$

with $M = \max_{1 \le i \le m} \|a^i\|$ and the result follows with $\rho_2 = m(4M + \overline{\alpha})$.

Some Graphics

Below is a comparison of the objective function values performed on the Iris data-set for KMEANS, KMEANS++, KPALM and KMEANS++ algorithms.

Some Graphics

Below is a comparison of the objective function values performed on the Iris data-set for KPALM algorithm with different α parameter updates.

