Seminární úlohy 10

1. V experimentu byla měřena závislost napětí na prodloužení při tahové deformaci kovového drátu. Byly zjištěny následující hodnoty relativního prodloužení ε a napětí σ . Chyba určení ε byla minimálně o řád menší než chyba určení σ a proto ji zanedbáváme.

ε(%)	σ (GPa)
0.10	0.11 ± 0.03
0.20	0.16 ± 0.02
0.30	0.18 ± 0.02
0.40	0.22 ± 0.03
0.50	0.33 ± 0.03
0.60	0.39 ± 0.02
0.70	0.42 ± 0.03
0.80	0.51 ± 0.02
0.90	0.63 ± 0.03
1.00	0.65 ± 0.02

Vyneste do grafu závislost σ na ε a proveďte lineární fit této závislosti metodou nejmenších čtverců. Z lineárního fitu určete Youngův modul pružnosti měřeného vzorku a jeho chybu.

Řešení:

[Youngův modul pružnosti $E = (65 \pm 1)$ GPa]

2. Niob je kov s kubickou prostorově centrovanou strukturou. Při teoretických výpočtech elektronové struktury Nb byly zjištěny následující hodnoty energie připadající na 1 atom pro různé hodnoty mřížové konstanty *a*. Relativní chyba vypočítaných hodnot energie je 0.1%.

a (A)	E(eV)
3.4000	-11.090
3.3000	-11.271
3.2500	-11.313
3.2000	-11.306
3.1000	-11.172
3.0000	-10.817

Proveďte parabolický fit této závislosti metodou nejmenších čtverců a z fitu najděte rovnovážnou mřížovou konstantu Nb, tj. hodnotu *a* pro kterou má systém nejnižší energii. *Řešení:*

 $[a=81.11-57.12 E+8.823 E^2$, rovnovážná hodnota mřížové konstanty je a=3.237 Å]