

MODEL T5 – Lista de Exercícios 1

Professor: Caio Chinelato

1 – Obtenha o modelo matemático do sistema abaixo. A massa do sistema é M, a constante elástica da mola é K e o coeficiente de atrito viscoso do amortecedor é B. x é a posição do sistema e f é a força de entrada.

2 – Obter as constantes elásticas equivalentes das molas dos sistemas mecânicos abaixo (k₁ e k₂):

3 – Obter os coeficientes de atrito viscoso equivalentes dos amortecedores dos sistemas mecânicos abaixo (b₁ e b₂):

4 – No sistema mecânico abaixo, temos um carro de massa desprezível e um sistema massa-mola-amortecedor. u é o deslocamento do carro e a entrada do sistema. O carro se move a uma velocidade constante (du/dt = constante). O deslocamento y da massa é a saída. A massa do sistema é m, a constante elástica da mola é k e o coeficiente de atrito viscoso do amortecedor é b. Obtenha o modelo matemático do sistema.

– Obtenha o modelo matemático e a função de transferência $X_1(s)/U(s)$ para o sistema mecânico abaixo. x_1 e x_2 são deslocamentos e u é a força de entrada. As massas do sistema são m_1 e m_2 , as constantes elásticas das molas são k_1 , k_2 e k_3 , e o coeficiente de atrito viscoso do amortecedor é b.

– Obtenha o modelo matemático e a função de transferência Y(s)/U(s) do sistema abaixo. x, y e u são deslocamentos. As massas do sistema são m_1 e m_2 , as constantes elásticas das molas são k_1 e k_2 , e o coeficiente de atrito viscoso do amortecedor é b. Este sistema é uma versão simplificada da suspensão de um automóvel.

7 – Obtenha o modelo matemático e a função de transferência $X_0(s)/X_i(s)$ do sistema abaixo. x_0 , x_i e y são deslocamentos. As

constantes elásticas das molas são k₁ e k₂, e os coeficientes de atrito viscoso do amortecedores são b₁ e b₂.

8 – Obtenha o modelo matemático e a função de transferência $V_1(s)/R(s)$ do sistema abaixo. As massas do sistema são m_1 e m_2 , e a constante elástica da mola é k.

9 – Um sistema de isolamento de vibrações é mostrado na figura abaixo. O amortecedor b₁ conecta a massa m à superfície horizontal superior. O suporte de vibrações que apoia a massa sobre a base móvel é modelado por uma rigidez k e um atrito viscoso b₂ concentrados. O deslocamento de base z_{ent} é a entrada do sistema e o deslocamento vertical z da massa m, medido a partir da posição de equilíbrio estático, é a saída. Desenvolva a função de transferência para esse sistema mecânico. Obtenha o modelo matemático do sistema.

10 – A figura abaixo mostra o esquema de um sistema de assento com suspensão, que é projetado para atenuar (suprimir) as vibrações do terreno transmitidas ao motorista. Obtenha o modelo matemático do sistema. As constantes elásticas das molas são k₁ e k₂, e os coeficientes de atrito viscoso do amortecedores são b₁ e b₂. Obtenha o modelo matemático do sistema.

11 — Obtenha o modelo matemático do sistema abaixo. x_1 e x_2 são deslocamentos, e f_{i1} e f_{i2} são forças de entrada. As constantes elásticas das molas são k_{s1} , k_{s2} e k_{s3} , e os coeficientes de atrito viscoso do amortecedores são B_1 , B_2 e B_3 .

12 – Obtenha o modelo matemático do sistema abaixo. θ é o deslocamento angular, T é o torque de entrada e J é momento de inércia do disco. O disco gira conectado a uma mola de rotação

com constante elástica da mola torcional K. A borda do disco gira em uma superfície com atrito viscoso dado por B.

13 – Obtenha o modelo matemático do sistema abaixo. O motor é acoplado a uma carga inercial através de um eixo com constante elástica K. T_m é o toque do motor, B_m é o coeficiente de atrito viscoso do motor, θ_m é o deslocamento angular do motor, J_m é a inércia do motor, θ_L é o deslocamento angular da carga e J_L é a inércia da carga.

14 – Obtenha o modelo matemático e a função de transferência $\theta_2(s)/T(s)$ do sistema abaixo. θ_1 e θ_2 são os deslocamentos angulares, T é o torque de entrada, D_1 e D_2 são os coeficientes de atrito viscoso dos amortecedores torcionais, K é a constante elástica da mola torcional, e J_1 e J_2 são os momentos de inércia.

15 — Obtenha o modelo matemático do sistema abaixo. θ_1 , θ_2 e θ_3 são os deslocamentos angulares, T é o torque de entrada, D_1 , D_2 e D_3 são os coeficientes de atrito viscoso dos amortecedores torcionais, K é a constante elástica da mola torcional, e J_1 , J_2 e J_3 são os momentos de inércia.

16 – A figura abaixo mostra um sistema mecânico com um único disco, no qual o rotor é suportado por rolamentos com atrito viscoso b, e um motor fornece o torque T_{ent} diretamente à inércia do rotor J. θ é o deslocamento angular. Obtenha o modelo matemático do sistema.

17 - A figura abaixo mostra um sistema mecânico que consiste em uma polia. A polia possui momento de inércia J e raio r. Um torque externo T_{ent} é aplicado diretamente na polia. θ é o deslocamento angular. A polia levanta uma carga de massa m e o eixo da polia é suportado por rolamentos com atrito viscoso b. Obtenha o modelo matemático do sistema.

18 - O sistema mostrado na figura abaixo consiste de um momento de inércia J_1 , correspondendo ao rotor de um motor ou uma turbina, o qual está acoplado ao momento de inércia J_2 representando um propulsor. Potência é transmitida através de um acoplamento com coeficiente de atrito viscoso B e um eixo de torção com constante de elástica torcional K. Um torque acionador $T_a(t)$ é exercido em J_1 e um torque de carga $T_c(t)$ é exercido em J_2 . Obtenha o modelo matemático do sistema.

19 – O sistema abaixo converte o movimento rotacional em translacional. O momento de inércia J representa o rotor de um motor em que um torque aplicado T_a é exercido. O rotor é acoplado ao pinhão através de um eixo flexível de raio R. A cremalheira está rigidamente acoplada à massa M. A constante elástica torcional do eixo é K, o sistema possui coeficientes de atrito viscosos B_1 e B_2 , θ e ω são o deslocamento e velocidade angular do eixo respectivamente e x e v são o deslocamento e velocidade linear da cremalheira respectivamente. Obtenha o modelo matemático do sistema.

– A figura abaixo mostra um sistema mecânico rotacional com engrenagens. θ_1 e θ_2 são os deslocamentos angulares, T_1 é o torque de entrada, D_1 e D_2 são os coeficientes de atrito viscoso dos amortecedores torcionais, K_2 é a constante elástica das mola torcional, J_1 e J_2 são os momentos de inércia, e N_1 e N_2 são os dentes das engrenagens. Obtenha o modelo matemático e a função de transferência $\theta_2(s)/T_1(s)$ do sistema.

21-Na prática, engrenagens tem inércia e atrito entre os acoplamentos dos dentes que em alguns casos não podem ser desprezados. A figura abaixo mostra um sistema mecânico rotacional com engrenagens, onde θ_1 e θ_2 são os deslocamentos angulares, T_1 e T_2 são os torques, B_1 e B_2 são os coeficientes de atrito viscoso, J_1 e J_2 são os momentos de inércia, N_1 e N_2 são os dentes das engrenagens, e F_{c1} e F_{c2} são os coeficientes de atrito de Coulomb. Obtenha o modelo matemático do sistema abaixo. Observação:

O atrito de Coulomb é dado por $T_c = F_c \cdot \omega / |\omega|$;

22 – Obtenha o modelo matemático do sistema abaixo. ω_1 e ω_2 são os deslocamentos angulares, T_m é o torque de entrada, K é a constante elástica das molas torcional, J_1 e J_2 são os momentos de inércia, e n_1 e n_2 são os dentes das engrenagens.

23 – Obtenha o modelo matemático do sistema abaixo. A massa do corpo é m, k é a constante elástica da mola, b é o coeficiente de

atrito viscoso, y é o deslocamento linear do sistema, l_1 e l_2 são comprimentos da barra, α é o ângulo da barra e a força de entrada F_1 é conhecida. Considere α pequeno e assuma que com F_1 = 0, tem-se o equilíbrio estático com y = 0.

24 - A figura abaixo mostra um sistema com uma única alavanca comandada por uma força externa f_a . A alavanca possui momento de inércia J em torno do eixo do pino. Quando o ângulo da alavanca $\theta = 0$, a mola de constante elástica k não está deformada. b é o coeficiente de atrito viscoso e d_1 , d_2 e d_3 são as dimensões da alavanca. Obtenha o modelo matemático do sistema.

25 – Um pêndulo invertido montado em um carro motorizado é mostrado na figura abaixo. Vamos considerar aqui somente o problema bidimensional, em que o movimento do pêndulo fica restrito ao plano da página. A força de controle u é aplicada ao carro de massa M. Considere que o centro de gravidade da haste do pêndulo esteja situado no centro geométrico dele. O ângulo da haste a partir da linha vertical é definido como θ .

