Mathématiques I

Application de la dérivée: approximation de fonctions

Dr. Mucyo Karemera (enseignant), Prof. Stéphane Guerrier

Matériel disponible en ligne: https://math1-gsi.netlify.app

Licence: CC BY-NC-SA 4.0

L'idée de base!

Soit $f: A \to B$ une fonction, où $A, B \subset \mathbb{R}$, dérivable en $x_0 \in A$.

On remarque que la droite t_{x_0} est une bonne approximation de f au (ou dans un petit) voisinage de x_0 . En d'autres termes, on a

$$t_{x_0}(x_0 + h) \approx f(x_0 + h)$$
, pour h petit,
 $t_{x_0}(x) \approx f(x)$, pour x proche de x_0 .

Rappelons que la fonction $t_{\mathsf{x}_0}:\mathbb{R}\to\mathbb{R}$ est définie par

$$t_{x_0}(x) = \underbrace{f'(x_0) \cdot x}_{\text{pente}} \cdot x + \underbrace{(f(x_0) - f'(x_0) \cdot x_0)}_{\text{ordonn\'ee \`a l'origine}} = f(x_0) + f'(x_0)(x - x_0).$$

Approximation linéaire de f

Définition (Approximation linéaire de f).

Soit f est une fonction dérivable en $x_0 \in \mathbb{R}$ et soit $h \in \mathbb{R}$ une valeur proche de 0. Alors

$$f(x_0 + h) \approx t_{x_0}(x_0 + h) = f(x_0) + f'(x_0) \cdot h$$

 \Leftrightarrow
 $f(x) \approx t_{x_0}(x) = f(x_0) + f'(x_0) \cdot (x - x_0)$

On déduit facilement de la définition que

1)
$$t_{x_0}(x_0) = f(x_0)$$
, puisque $t_{x_0}(x_0) = f(x_0) + f'(x_0)(x_0 - x_0) = f(x_0)$.

2)
$$t'_{x_0}(x_0) = f'(x_0)$$
, car $\forall x \in \mathbb{R}$ on a

$$t'_{x_0}(x) = (f'(x_0) \cdot x + f(x_0) - f'(x_0) \cdot x_0)'$$

= $f'(x_0) \cdot 1 + 0 - 0 = f'(x_0).$

Approximation linéaire: exemples

Déterminer l'approximation linéaire de $f(x) = \sqrt[3]{x}$ au voisinage de $x_0 = 27$.

D'une part, on a $f(x) = \sqrt[3]{x} = x^{1/3}$ et $f(x_0) = f(27) = 27^{1/3} = 3$. D'autre part, $f'(x) = \frac{1}{3}x^{-2/3}$ et donc

$$f'(27) = \frac{1}{3}27^{-2/3} = \frac{1}{3} \cdot \frac{1}{27^{2/3}} = \frac{1}{3} \cdot \frac{1}{3^2} = \frac{1}{27}$$

On obtient donc, pour x proche de 27

$$\sqrt[3]{x} \approx t_{27}(x) = f(27) + f'(27)(x - 27) = 3 + \frac{x - 27}{27}.$$

Par exemple, $\sqrt[3]{30} \approx t_{27}(30) = 3 + \frac{30-27}{27} = 3.111... = 3.\overline{1}$. La valeur correcte à trois décimales est 3.107.

Plus x est proche de x_0 , meilleur est l'approximation linéaire. Par exemple on a $t_{27}(28) = 3.\overline{037}$ et $\sqrt[3]{28} = 3.036...$

Faites le lien entre l'approximation linéaire et la formule de la vidéo ici.

Approximation linéaire: exemples

Déterminer l'approximation linéaire de $f(x) = \ln(1+x)$ au voisinage de $x_0 = 0$.

On a d'une part, $f(0) = \ln(1+0) = 0$ et f'(x) = 1/(1+x), d'où f'(0) = 1. Ainsi, pour x proche de 0, on obtient

$$\ln(1+x) \approx t_0(x) = f(0) + f'(0)(x-0) = x.$$

Application: la règle des 70 ou 72

Supposons que l'on déposé un capital $C_0=200 {\rm CHF}$ dans un compte au taux t=4% (intérêts composés). Combien d'années environ faut-il attendre pour voir le capital initial doublé?

Ce problème revient à trouver l'année n telle que $C_n=2\,C_0$. En calculant on a

$$C_n = C_0(1+t)^n = 2C_0 \Leftrightarrow 2 = (1+t)^n \Leftrightarrow \ln(2) = \ln\left((1+t)^n\right)$$

$$\Leftrightarrow \ln(2) = n\ln(1+t) \Leftrightarrow n = \frac{\ln(2)}{\ln(1+t)} \approx \frac{0.7}{t} \Leftrightarrow n \approx \frac{0.7}{4/100} = \frac{7}{10} \cdot \frac{100}{4} = \frac{70}{4}$$

Le capital double donc environ à $\frac{70}{4} = 17.5$ années. La période exacte à une décimale est 17.6.

Accroissements et différentielle

Grâce à $t_{x_0}(x)$ on peut aussi estimer l'écart $\Delta y = f(x) - f(x_0)$ par la quantité notée dy et donnée par $dy = f'(x_0) \cdot (x - x_0)$. En effet, on a

$$dy = f'(x_0) \cdot (x - x_0) = t_{x_0}(x) - f(x_0) \approx f(x) - f(x_0)$$

Accroissements et différentielle

Définition (Accroissements et différentielle de f).

- $\Delta x = h = x x_0$ est **l'accroissement de** x
- $\Delta y = f(x) f(x_0)$ est l'accroissement de y ou f
- $dy = f'(x_0) \cdot (x x_0)$ est appelée **différentielle**

Si x est proche de x_0 , alors dy $\approx \Delta y$.

Remarque sur différentes notations

L'accroissement de x peut aussi s'écrire dx au lieu de Δx et la différentielle de f peut s'écrire df au lieu de dy. Avec ces notations, on obtient l'égalité suivante

$$df = f'(x)dx \Leftrightarrow \frac{df}{dx} = f'(x)$$

Accroissements et différentielle: exemple

On considère $f(x) = \sqrt{x}$. Estimer la différence entre $\sqrt{256} = 16$ et $\sqrt{254}$.

D'une part on a $f(x) = x^{1/2}$ et $f'(x) = \frac{1}{2}x^{-1/2}$. On pose alors $x_0 = 256$ et h = -2 et on estime l'accroissement

$$\Delta y = f(x_0 + h) - f(x_0) = \sqrt{254} - \sqrt{256}$$

avec la différentielle

$$dy = f'(x_0)h = \frac{1}{2} \cdot 256^{-1/2} \cdot (-2) = -\frac{1}{\sqrt{256}} = -\frac{1}{16} = -0.0625.$$

La valeur de Δy a quatre décimales est -0.0626.

Peut-on faire mieux que l'approximation linéaire?

Oui, grâce, entres autres, au théorème des accroissements finis.

Théorème (Théorème des accroissements finis).

Soit f une fonction dérivable sur un intervalle ouvert]a, b[et $x, x_0 \in$]a, b[, alors il existe $c \in \mathbb{R}$ entre x et x_0 (i.e. $c \in$] $x_0, x[$ si $x_0 < x$ et $c \in$] $x, x_0[$ si $x < x_0$) vérifiant :

$$f(x) - f(x_0) = f'(c)(x - x_0)$$

En supposant que f est deux fois différentiable en x_0 , on a

$$f(x) = f(x_0) + f'(c)(x - x_0)$$

$$= \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{t_{x_0}(x)} + \underbrace{[f'(c) - f'(x_0)]}_{\approx df' = f''(x_0)(x - x_0)} (x - x_0)$$

$$\approx t_{x_0}(x) + f''(x_0)(x - x_0)^2$$

$$= f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2.$$

Peut-on faire mieux que l'approximation linéaire?

En apportant une petite correction au deuxième terme on obtient l'approximation de f d'ordre 2, aussi nommée le développement limité d'ordre 2 de f, notée $p_{x_0}(x)$ et donnée par

$$p_{x_0}(x) = t_{x_0}(x) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

= $f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$

Ce facteur $\frac{1}{2}$ assure que l'on a les égalités suivantes

$$p_{x_0}(x_0) = f(x_0), \quad p'_{x_0}(x_0) = f'(x_0), \quad p''_{x_0}(x_0) = f''(x_0).$$

Peut-on faire mieux ?

Oui, grâce à la formule de Taylor.

Théorème (Approx. de Taylor de f d'ordre n au vge de x_0).

Soit $n \in \mathbb{N}$ et f une fonction n fois dérivable sur un intervalle ouvert]a,b[et $x,x_0 \in]a,b[$. Alors, si x est (suffisamment) proche de x_0 on a

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

On calcule les approximations d'ordre 1, 2 et 5 de la fonction $f(x) = \frac{1}{\sqrt{1+x}}$ au voisinage de $x_0 = 0$. On calcule d'abord les termes suivants jusqu'à l'ordre 5

$$f(x_0) = \frac{1}{(1+x_0)^{1/2}} = 1$$

$$\frac{f''(x_0)}{1!} = -\frac{1}{2(1+x_0)^{3/2}} = -\frac{1}{2}$$

$$\frac{f''(x_0)}{2!} = \frac{3}{8(1+x_0)^{5/2}} = \frac{3}{8}$$

$$f^{(3)}(x_0) = -\frac{5}{16(1+x_0)^{7/2}} = -\frac{5}{16}$$

$$f^{(4)}(x_0) = \frac{35}{128(1+x_0)^{9/2}} = \frac{35}{128}$$

$$f^{(5)}(x_0) = -\frac{63}{256(1+x_0)^{11/2}} = -\frac{63}{256}$$

Peut-on faire mieux ?

Oui, grâce à la formule de Taylor.

Théorème (Approx. de Taylor de f d'ordre n au vge de x_0).

Soit $n \in \mathbb{N}$ et f une fonction n fois dérivable sur un intervalle ouvert]a,b[et $x,x_0 \in]a,b[$. Alors, si x est (suffisamment) proche de x_0 on a

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

On calcule les approximations d'ordre 1, 2 et 5 de la fonction $f(x) = \frac{1}{\sqrt{1+x}}$ au voisinage de 0. On obtient donc les approximations d'ordre 1, 2 et 5 suivantes au voisinage de $x_0 = 0$:

$$f(x) \approx 1 - \frac{x}{2}$$

$$f(x) \approx 1 - \frac{x}{2} + \frac{3x^2}{8}$$

$$f(x) \approx 1 - \frac{x}{2} + \frac{3x^2}{8} - \frac{5x^3}{16} + \frac{35x^4}{128} - \frac{63x^5}{256}$$

On compare ces approximations avec f sur le site geogebra.

Séries de Taylor et Maclaurin

Lorsque f est infiniment différentiable (en un point x_0), comme la fonction $f(x) = e^x$, on peut définir sa série de Taylor développée en x_0 qui est

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Lorsque $x_0 = 0$, on nomme cette expression série de Maclaurin.

La convergence de ces séries dépend de f et de la distance entre x et x_0 .

Par exemple, pour $x_0 = 0$, on a les égalités suivantes

1)
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$
, $|x| < 1$ 2) $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $\forall x \in \mathbb{R}$

3)
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \ \forall x \in \mathbb{R}$$
 4) $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \ \forall x \in \mathbb{R}$