SYDE 556/750

Simulating Neurobiological Systems Lecture 11: The Semantic Pointer Architecture

Chris Eliasmith

November 13 & 18, 2024

- ► Slide design: Andreas Stöckel
- Content: Terry Stewart, Andreas Stöckel, Chris Eliasmith

Administrative Notes - Remaining Deadlines

- ► Assignment 4 Due Nov. 18*
- ► Assignment 5 Due Dec. 2*
- Project Presentations Nov. 27 & Dec. 2
 - ► 5-10 min. presentation (see the 'project summary document' on the website for instructions)
 - ► Worth 3 marks of the final project
- ► **Final Project** Due Dec. 18*
 - ▶ Worth 30% of the final mark for 556
 - ▶ Worth 20% of the final mark for 750

^{*} All deadlines are 11:59pm EDT

The Semantic Pointer Architecture (SPA)

- ► SPA
 - Semantics
 - Syntax
 - Control
 - ► Learning and memory

The Semantic Pointer Hypothesis

The Semantic Pointer Hypothesis states:

Higher-level cognitive functions in biological systems are made possible by semantic pointers. Semantic pointers are neural representations that carry partial semantic content and are composable into the representational structures necessary to support complex cognition.

Shallow Versus Deep Semantics

TREE

0x54 0x52 0x45 0x45

Shallow semantics (relational)

```
\forall x is_{\mathbf{a}}(x, PINE) \rightarrow is_{\mathbf{a}}(x, TREE) \land has(x, NEEDLES) \land is(x, EVERGREEN),

\forall x is_{\mathbf{a}}(x, TREE) \rightarrow is_{\mathbf{a}}(x, PLANT),

\forall x is_{\mathbf{a}}(x, PLANT) \rightarrow is(x, ALIVE).
```

Deep semantics ("modal experience")

Deep Semantic in Perception: Dereferencing

Perception vs. Action

Nengo SPA Example (I)

Nengo SPA Example (II)

Basal Ganglia (BG)

Clinical Evidence for the Role of the BG in Action Selection

Parkinson's disease

- ► Neurons in the substantia nigra die off
- Difficult to trigger actions to start
- Usually physical actions
- Cognitive effects in later stages

Huntingtons's disease

- ► Neurons in the striatum die off
- ► Actions triggered inappropriately
- ► Small uncontrollable movements
- ► Trouble sequencing cognitive actions

Neurophysiological Evidence for the Role of the BG in Action Selection

► Role in reinforcement learning

► Dopamine levels map onto reward prediction error

Microcircuitry of the Basal Ganglia

Simplified Model

Image Sources. Gurney, Prescott, and Redgrave, Model of Action Selection in the Basal Ganglia, 2001

The Cortex-Basal Ganglia-Thalamus loop

Recency and Primacy Experiment

Experiment: Remember this list (presented one at a time)

- 1. robot
- 2. teflon
- 3. kettlemaking
 - 4. big-league
- 5. troubleshooter

- 6. conglomerates
 - 7. waxberries
 - 8. electrograph
 - 9. overjoyous
 - 10. unquailing

Recency and Primacy Data

Ordinal Serial Encoding (OSE) Model

Ordinal Serial Encoding (OSE) Model: Experiment

Spaun – Semantic Pointer Architecture Unified Network (I)

Spaun – Semantic Pointer Architecture Unified Network (II)

Image sources

Title slide

Librarian (In a library), between 1850 and 1866, Georg Reimer Wikimedia.