Class08 Mini Lab:

Outline

Today we will apply the machine learning methods we introduced in the last class on breast cancer biopsy data from fine needle aspiration (FNA)

Data Input

The data is supplied on CSV Format: Also omit first column (ID:

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radius	s_mean	texture_mean p	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	${\tt smoothness_mean}$	compa	ctness_mean cor	ncavity_mean co	oncave.poir	its_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean for	ractal_	_dimension_mear	n radius_se tex	kture_se pe	rimeter_se
842302	0.2419		0.07871	1 1.0950	0.9053	8.589
842517	0.1812		0.05667	7 0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585

84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smoothn	ess_se	compactness_se	concavity_se	concave.po	ints_se
842302	153.40 0.	006399	0.04904	0.05373		0.01587
842517	74.08 0.	005225	0.01308	0.01860		0.01340
84300903	94.03 0.	006150	0.04006	0.03832		0.02058
84348301	27.23 0.	009110	0.07458	0.05661		0.01867
84358402	94.44 0.	011490	0.02461	0.05688		0.01885
843786	27.19 0.	007510	0.03345	0.03672		0.01137
	symmetry_se fra	ctal_dir	mension_se rad:	ius_worst text	ture_worst	
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301	0.05963		0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165		0.005082	15.47	23.75	
	perimeter_worst	area_w	orst smoothness	s_worst compa	ctness_wors	t
842302	184.60	201	19.0	0.1622	0.665	6
842517	158.80	195	56.0	0.1238	0.186	6
84300903	152.50	170	09.0	0.1444	0.424	5
84348301	98.87	56	67.7	0.2098	0.866	3
84358402	152.20	157	75.0	0.1374	0.205	0
843786	103.40	74	41.6	0.1791	0.524	9
	concavity_worst	concave	e.points_worst	symmetry_wors	st	
842302	0.7119		0.2654	0.460	01	
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.663	38	
84358402	0.4000		0.1625	0.236	64	
843786	0.5355		0.1741	0.398	35	
	<pre>fractal_dimensi</pre>	on_worst	t			
842302		0.11890	0			
842517		0.08902	2			
84300903		0.08758	8			
84348301		0.17300	0			
84358402		0.07678	8			
843786		0.12440	0			

 $\#\#\mathrm{Create}$ Vector for Diagnosis: then omit Diagnosis:

```
diagnosis <- as.factor(wisc.df$diagnosis)
diagnosis</pre>
```

```
[75] В М В М М В В В М М В М М В В В М В В М М В В В М М В В В М В В М В В
[149] B B B B B B B B B B B B B B B B M M B B B M M B B B M M B B B B M B B M M M B M
[556] B B B B B B B M M M M M M B
Levels: B M
```

wisc.data <- wisc.df[,-1]

1. Exploratory Data Analysis:

Question 1: How many observations are in this dataset?

```
observations <- nrow(wisc.df)
observations</pre>
```

[1] 569

Question 2: How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

```
sum(wisc.df$diagnosis == "M")
```

[1] 212

Question 3: How many variables/features in the data are suffixed with _mean?

```
x <- colnames(wisc.df)
length(grep("_mean", x))</pre>
```

[1] 10

2. Principle Component Analysis:

Check the mean and standard deviations:

```
colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	${\tt smoothness_mean}$	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	fractal_dimension_mean
1.216853e+00	4.051721e-01	6.279761e-02
smoothness_se	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	${\tt fractal_dimension_se}$	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	compactness_worst	smoothness_worst
2.721885e-01	2.542650e-01	1.323686e-01
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data, 2, sd)

```
radius_mean
                                   texture_mean
                                                          perimeter_mean
          3.524049e+00
                                   4.301036e+00
                                                            2.429898e+01
             area_mean
                                smoothness_mean
                                                        compactness_mean
          3.519141e+02
                                   1.406413e-02
                                                            5.281276e-02
        concavity mean
                            concave.points mean
                                                           symmetry_mean
          7.971981e-02
                                   3.880284e-02
                                                            2.741428e-02
fractal dimension mean
                                      radius se
                                                              texture se
          7.060363e-03
                                   2.773127e-01
                                                            5.516484e-01
          perimeter_se
                                                           smoothness se
                                        area se
          2.021855e+00
                                   4.549101e+01
                                                            3.002518e-03
        compactness_se
                                   concavity_se
                                                       concave.points_se
          1.790818e-02
                                   3.018606e-02
                                                            6.170285e-03
           symmetry_se
                           fractal_dimension_se
                                                            radius_worst
          8.266372e-03
                                   2.646071e-03
                                                            4.833242e+00
         texture_worst
                                perimeter_worst
                                                              area_worst
          6.146258e+00
                                   3.360254e+01
                                                            5.693570e+02
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
          2.283243e-02
                                   1.573365e-01
                                                            2.086243e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          6.573234e-02
                                   6.186747e-02
                                                             1.806127e-02
```

Now we need to scale the input data before PCA because some of the columns are measured in different unite with different means and variances. We set scale=T in prcomp().

```
wisc.pr <- prcomp(wisc.data, scale.=T )
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                  PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                   PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
Cumulative Proportion
                           PC8
                                   PC9
                                          PC10
                                                 PC11
                                                          PC12
                                                                  PC13
                                                                          PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                           PC15
                                   PC16
                                           PC17
                                                   PC18
                                                            PC19
                                                                    PC20
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
```

```
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Question 4: From your results, what proportion of the original variance is captured by the first principal components (PC1)?

```
proportion_variance_PC1 <- (wisc.pr$sdev[1]^2) / sum(wisc.pr$sdev^2)
proportion_variance_PC1</pre>
```

[1] 0.4427203

Question 5: How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

```
cumm_variance <- cumsum(wisc.pr$sdev^2) / sum(wisc.pr$sdev^2)
sum(cumm_variance <=0.7) +1</pre>
```

[1] 3

Question 6: How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

```
cumm_variance <- cumsum(wisc.pr$sdev^2) / sum(wisc.pr$sdev^2)
sum(cumm_variance <=0.9) +1</pre>
```

[1] 7

Question 7: What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is messy, so I made my own biplot:

library(ggplot2) biplot(wisc.pr)

Question 8: Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

For Question 8, the first comparison between PC1 and PC2 had a better separation between the two groups vs PC1 and PC3. This is because PC2 explains more variance in the original data.

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- wisc.data$diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis</pre>
```

```
PC1 <- wisc.pr$x[,1]
PC2 <- wisc.pr$x[,2]
ggplot(df$diagnosis, aes(PC1, PC2)) +
   geom_point()</pre>
```


###Variance explained:

```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

```
pve <- pr.var / sum(pr.var)

plot(pve, xlab= "Principle Component", ylab= "Proportion of Variance Explained", ylim= c(Component)</pre>
```


###Communicating PCA Results:

Question 9: For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean", 1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

```
cumm_variance <- cumsum(wisc.pr$sdev^2) / sum(wisc.pr$sdev^2)
sum(cumm_variance <=0.8) +1</pre>
```

[1] 5

3. Hierarchal Clustering

```
# distance matrix needed for hclust

data.scaled <- scale(wisc.data)

data.dist <- dist(data.scaled)
wisc.hclust <- hclust(data.dist, method= "complete")
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Question 11: Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=20, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

For question 11, the height at which the clustering model has 4 clusters is at about 20

Question 12: Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.pr.hclust <- hclust(data.dist, method="ward.D2")
wisc.hclust.clusters <- cutree(wisc.pr.hclust, k= 2:10)
wisc.hclust.clusters</pre>
```

```
2 3 4 5 6 7 8 9 10
842302
          1 1 1 1 1 1 1 1
842517
          1 1 1 2 2 2 2 2
84300903
         1 1 1 1 1 1 1 1
84348301
          1 2 2 3 3 3 3 3
84358402 1 1 1 2 2 2 2 2
843786
          1 2 2 3 3 3 3 3
844359
          1 1 1 2 2 2 2 2
84458202 1 2 2 3 3 3 3 3
844981
          1 2 2 3 3 3 3 3
84501001 1 2 2 3 3 3 3 3
845636
          2 3 3 4 4 4 4 4
84610002 2 3 3 4 4 4 4 4
```

```
846226
          1 1 1 1 1 1 1 1
846381
          2 3 3 4 4 4 4 4
84667401
         1 2 2 3 3 3 3 3
                           3
84799002 1 2 2 3 3 3 3 3
                           3
          2 3 3 4 4 4 4 4
848406
84862001
         1 2 2 3 3 3 3 3
849014
          1 1 1 2 2 2 2 2
8510426
          2 3 3 4 4 4 5 5
                           6
8510653
          2 3 3 4 4 4 5 5
                           6
8510824
          2 3 3 4 4 4 5 5
                           6
          1 2 2 3 3 3 3 3
8511133
                           3
          1 1 1 2 2 2 2 2
851509
852552
          1 1 1 1 1 1 1 1
852631
          1 1 1 1 1 1 1 1
          1 2 2 3 3 3 3 3
852763
                           3
852781
          1 1 1 2 2 2 2 2
                           2
852973
          1 2 2 3 3 3 3 3
                           3
853201
          1 1 1 2 2 2 2 2
                           2
853401
          1 1 1 1 1 1 1 1
853612
          1 2 2 3 3 3 3 3
85382601
         1 1 1 1 1 1 1 1
854002
          1 1 1 1 1 1 1 1
854039
          2 3 3 4 4 4 4 4
854253
          1 2 2 3 3 3 3 3
                           3
854268
          2 3 3 4 4 4 4 4
          2 3 3 4 5 5 6 6
854941
                           7
          2 3 3 4 4 4 4 4
855133
855138
          2 3 3 4 4 4 4 4
855167
          2 3 3 4 4 4 5 5
                           6
855563
          1 2 2 3 3 3 3 3
                           3
855625
          1 1 1 1 1 1 1 1
          2 3 3 4 4 4 4 4
856106
                           4
85638502 2 3 3 4 4 4 4 4
                           4
857010
          1 1 1 1 1 1 1 1
                            1
85713702 2 3 3 4 5 5 6 6
                           7
85715
          1 2 2 3 3 3 3 3
                           3
857155
          2 3 3 4 4 4 5 5
857156
          2 3 3 4 4 4 4 4
                           4
857343
          2 3 3 4 5 5 6 6
                           7
857373
          2 3 3 4 4 4 5 5
                           6
857374
          2 3 3 4 4 4 5 5
                           6
857392
          1 1 1 2 2 2 2 2
                           2
857438
          2 3 3 4 4 4 4 4 4
```

```
85759902 2 3 3 4 4 4 5 5
                           6
857637
          1 1 1 2 2 2 2 2
                            2
857793
          2 3 3 4 4 4 4 4
                            4
          2 3 3 4 5 5 6 6
                            7
857810
858477
          2 3 3 4 4 4 5 5
                            6
858970
          2 3 3 4 5 5 6 7
858981
          2 3 3 4 5 5 6 7
858986
          1 2 2 3 3 3 3 3
                            3
859196
          2 3 3 4 4 4 5 5
                            6
85922302 1 2 2 3 3 3 3 3
                            3
          1 2 2 3 3 3 3 3
859283
                            3
          2 3 3 4 5 5 6 7
859464
859465
          2 3 3 4 5 5 6 6
859471
          1 2 4 5 6 6 7 8
859487
          2 3 3 4 4 4 5 5
                            6
859575
          1 1 1 2 2 2 2 2
                            2
859711
          1 2 4 5 6 6 7 8
                            9
859717
          1 1 1 1 1 1 1 1
                            1
859983
          2 3 3 4 4 4 4 4
8610175
          2 3 3 4 4 4 5 5
                            6
8610404
          1 1 1 2 2 2 2 2
                            2
          2 3 3 4 5 5 6 7
8610629
8610637
          1 1 1 1 1 1 1 1
                            1
8610862
          1 1 1 1 1 1 1 1
                            5
8610908
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 5 5 6 7
861103
8611161
          2 3 3 4 4 4 4 4
                            4
8611555
          1 1 1 1 1 1 1 1
8611792
          1 1 1 1 1 1 1 1
                            1
8612080
          2 3 3 4 4 4 5 5
                            6
8612399
          1 1 1 2 2 2 2 2
                            2
86135501
          2 3 3 4 4 4 4 4
                            4
86135502 1 1 1 1 1 1 1 1
861597
          2 3 3 4 4 4 4 4
                            4
          1 2 2 3 3 3 3 3
861598
                            3
861648
          2 3 3 4 4 4 4 4
861799
          2 3 3 4 4 4 4 4
861853
          2 3 3 4 4 4 5 5
                            6
862009
          2 3 3 4 4 4 5 5
                            6
862028
          1 2 2 3 3 3 3 3
                            3
86208
          1 1 1 2 2 2 2 2 2
                            2
          2 3 3 4 4 4 5 5
86211
862261
          2 3 3 4 4 4 5 5
```

```
862485
          2 3 3 4 4 4 5 5
                            6
862548
          2 3 3 4 4 4 4 4
                            4
862717
          2 3 3 4 4 4 4 4
                            4
862722
          2 3 3 4 5 5 6 7
                            8
          2 3 3 4 5 5 6 6
862965
                            7
862980
          2 3 3 4 4 4 5 5
                            6
862989
          2 3 3 4 5 5 6 6
                            7
863030
          1 2 2 3 3 3 3 3
                            3
863031
          1 2 2 3 3 3 3 3
                            3
863270
          2 3 3 4 4 4 5 5
                            6
86355
          1 1 1 1 1 1 1 1
                            5
          2 3 3 4 5 5 6 6
864018
                            7
864033
          2 3 3 4 5 5 6 7
86408
          2 3 3 4 5 5 6 7
86409
          1 2 4 5 6 6 7 8
                            9
864292
          2 3 3 4 5 5 6 7
                            8
864496
          2 3 3 4 4 4 5 5
                            6
864685
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 5 5 6 7
864726
                            8
864729
          1 2 2 3 3 3 3 3
                            3
864877
          1 2 2 3 3 3 3 3
                            3
865128
          2 3 3 4 4 4 4 4
865137
          2 3 3 4 4 4 5 5
                            6
86517
          1 1 1 2 2 2 2 2
                            2
865423
          1 1 1 1 1 1 1 1
                            5
          2 3 3 4 4 4 5 5
865432
                            6
          2 3 3 4 4 4 5 5
865468
                            6
86561
          2 3 3 4 4 4 5 5
          2 3 3 4 4 4 4 4
866083
                            4
866203
          2 3 3 4 4 4 4 4
                            4
866458
          1 2 2 3 3 3 3 3
                            3
866674
          1 1 1 1 1 1 1 1
                            1
866714
          2 3 3 4 4 4 5 5
                            6
8670
          1 2 2 3 3 3 3 3
                            3
86730502 2 3 3 4 4 4 4 4
867387
          2 3 3 4 4 4 5 5
                            6
          1 1 1 2 2 2 2 2
867739
868202
          2 3 3 4 5 5 6 6
                            7
868223
          2 3 3 4 4 4 5 5
                            6
868682
          2 3 3 4 4 4 5 5
                            6
868826
          1 1 1 2 2 2 2 2 2
                            2
          2 3 3 4 4 4 5 5
868871
868999
          2 3 3 4 5 5 6 6
```

```
869104
          1 1 1 2 2 2 2 2
                           2
          2 3 3 4 4 4 5 5
869218
                           6
869224
          2 3 3 4 4 4 5 5
                           6
869254
          2 3 3 4 4 4 5 5
                           6
869476
          2 3 3 4 5 5 6 7
869691
          1 2 2 3 3 3 3 3
                           3
86973701 2 3 3 4 4 4 5 5
86973702 2 3 3 4 4 4 5 5
                           6
869931
          2 3 3 4 4 4 5 5
                           6
871001501 2 3 3 4 5 5 6 7
                           8
871001502 1 2 4 5 6 6 7 8
                           9
          1 2 4 5 6 6 7 8
8710441
87106
          2 3 3 4 4 4 5 5
          2 3 3 4 4 4 5 5
8711002
8711003
          2 3 3 4 4 4 5 5
                           6
8711202
          1 1 1 2 2 2 2 2
                           2
8711216
          2 3 3 4 4 4 4 4
                           4
871122
          2 3 3 4 4 4 5 5
                           6
871149
          2 3 3 4 4 4 5 5
                           6
          2 3 3 4 5 5 6 7
8711561
8711803
          1 1 1 2 2 2 2 2
871201
          1 1 1 1 1 1 1 1
8712064
          2 3 3 4 4 4 4 4
8712289
          1 1 1 2 2 2 2 2
                           2
8712291
          2 3 3 4 4 4 5 5
                           6
          2 3 3 4 4 4 5 5
87127
                           6
8712729
          1 1 1 2 2 2 2 2
                           2
8712766
          1 1 1 1 1 1 1 1
                           1
8712853
          2 3 3 4 4 4 5 5
                           6
87139402 2 3 3 4 4 4 5 5
                           6
87163
          2 3 3 4 4 4 4 4
                           4
87164
          1 2 2 3 3 3 3 3
                           3
871641
          2 3 3 4 5 5 6 7
                           8
871642
          2 3 3 4 5 5 6 6
                           7
          2 3 3 4 5 5 6 6
872113
                           7
872608
          1 2 4 5 6 6 7 8
                           9
87281702 1 2 2 3 3 3 3 3
873357
          2 3 3 4 4 4 5 5
                           6
873586
          2 3 3 4 4 4 5 5
                           6
873592
          1 1 1 1 1 1 1 1
                           1
873593
          1 1 1 1 1 1 1 1
873701
          2 3 3 4 4 4 4 4
873843
          2 3 3 4 4 4 5 5 6
```

```
873885
          2 3 3 4 4 4 4 4 4
874158
          2 3 3 4 5 5 6 6
                           7
874217
          1 1 1 2 2 2 2 2
                           2
874373
          2 3 3 4 4 4 5 5
                           6
874662
          2 3 3 4 5 5 6 6
874839
          2 3 3 4 4 4 5 5
874858
          1 2 2 3 3 3 3 3
875093
          2 3 3 4 4 4 5 5
                           6
875099
          2 3 3 4 5 5 6 6
                           7
875263
          1 2 2 3 3 3 3 3
                           3
87556202 1 2 2 3 3 3 3 3
                           3
          2 3 3 4 4 4 5 5
875878
875938
          2 3 3 4 4 4 4 4
877159
          2 3 3 4 4 4 4 4
877486
          1 1 1 1 1 1 1 1
                           1
877500
          2 3 3 4 4 4 4 4
877501
          2 3 3 4 4 4 4 4
                           4
877989
          1 1 1 2 2 2 2 2
                           2
          1 1 1 1 1 1 1 1
878796
87880
          1 2 2 3 3 3 3 3
87930
          2 3 3 4 4 4 4 4
879523
          2 3 3 4 4 4 5 5
                           6
879804
          2 3 3 4 4 4 5 5
                           6
879830
          2 3 3 4 4 4 4 4
                           4
8810158
          2 3 3 4 4 4 4 4
                           4
          2 3 3 4 4 4 5 5
8810436
881046502 1 1 1 2 2 2 2 2
8810528
          2 3 3 4 4 4 5 5
          1 1 1 1 1 7 8 9 10
8810703
881094802 1 2 4 5 6 6 7 8
8810955
          1 2 2 3 3 3 3 3
                           3
8810987
          2 3 3 4 4 4 4 4
                           4
8811523
          2 3 3 4 5 5 6 7
                           8
8811779
          2 3 3 4 4 4 5 5
                           6
          1 1 1 2 2 2 2 2
8811842
88119002
         1 1 1 1 1 1 1 1
8812816
          2 3 3 4 4 4 5 5
8812818
          2 3 3 4 4 4 5 5
                           6
8812844
          2 3 3 4 4 4 5 5
                           6
8812877
          2 3 3 4 4 4 4 4
                           4
8813129
          2 3 3 4 4 4 5 5
                           6
88143502 2 3 3 4 4 4 5 5
88147101 2 3 3 4 4 4 5 5
```

```
88147102 2 3 3 4 4 4 5 5
                           6
88147202 2 3 3 4 4 4 4 4
                           4
881861
          1 2 2 3 3 3 3 3
                           3
881972
          1 2 2 3 3 3 3 3
                           3
88199202 2 3 3 4 5 5 6 6
88203002 2 3 3 4 5 5 6 6
88206102 1 1 1 2 2 2 2 2
882488
          2 3 3 4 5 5 6 6
                           7
88249602 2 3 3 4 4 4 4 4
88299702 1 1 1 1 1 1 1 1
          1 1 1 2 2 2 2 2
                           2
883263
          2 3 3 4 5 5 6 6
                           7
883270
88330202 1 1 1 2 2 2 2 2
88350402 2 3 3 4 4 4 5 5
                           6
883539
          2 3 3 4 4 4 5 5
                           6
883852
          1 2 4 5 6 6 7 8
                           9
88411702 2 3 3 4 4 4 5 5
                           6
884180
          1 1 1 2 2 2 2 2
                           2
          2 3 3 4 5 5 6 7
884437
                           8
884448
          2 3 3 4 4 4 5 5
                           6
884626
          2 3 3 4 4 4 5 5
88466802 2 3 3 4 5 5 6 6
                           7
884689
          2 3 3 4 4 4 5 5
                           6
884948
          1 1 1 1 1 1 1 1
88518501 2 3 3 4 4 4 5 5
                           6
885429
          1 1 1 1 1 1 1 1
                           1
          1 1 1 2 2 2 2 2
                           2
8860702
886226
          1 1 1 2 2 2 2 2
                           2
          2 3 3 4 4 4 5 5
886452
88649001 1 1 1 1 1 1 1 1
                           1
886776
          1 2 2 3 3 3 3 3
                           3
887181
          1 1 1 1 1 1 1 1
                           5
88725602 1 2 2 3 3 3 3 3
                           3
887549
          1 1 1 2 2 2 2 2
                           2
888264
          2 3 3 4 4 4 4 4
888570
          1 1 1 2 2 2 2 2
                           2
889403
          2 3 3 4 4 4 5 5
889719
          1 1 1 2 2 2 2 2
88995002 1 1 1 1 1 1 1 1
                           1
8910251
          2 3 3 4 4 4 5 5
                           6
8910499
          2 3 3 4 4 4 4 4
                           4
          2 3 3 4 4 4 5 5
8910506
                           6
8910720
          2 3 3 4 5 5 6 7
```

```
8910721
          2 3 3 4 4 4 5 5
                           6
8910748
          2 3 3 4 4 4 5 5
                            6
8910988
          1 1 1 1 1 1 1 1
          2 3 3 4 5 5 6 6
8910996
8911163
          2 3 3 4 4 4 4 4
          2 3 3 4 5 5 6 7
8911164
8911230
          2 3 3 4 4 4 5 5
8911670
          2 3 3 4 4 4 4 4
                            4
8911800
          2 3 3 4 4 4 5 5
                            6
8911834
          2 3 3 4 4 4 5 5
                            6
8912049
          1 1 1 1 1 1 1 1
                            1
8912055
          2 3 3 4 4 4 5 5
89122
          1 1 1 2 2 2 2 2
8912280
          1 2 2 3 3 3 3 3
                            3
8912284
          2 3 3 4 4 4 5 5
                            6
8912521
          2 3 3 4 5 5 6 6
                            7
8912909
          2 3 3 4 4 4 5 5
                            6
8913
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 5 5 6 7
8913049
89143601
         2 3 3 4 5 5 6 6
89143602
         1 2 4 5 6 6 7 8
          2 3 3 4 4 4 4 4
8915
891670
          2 3 3 4 4 4 5 5
                            6
891703
          2 3 3 4 4 4 5 5
                            6
891716
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 4 4 5 5
891923
                            6
891936
          2 3 3 4 5 5 6 6
                            7
892189
          2 3 3 4 4 4 5 5
          2 3 3 4 4 4 5 5
892214
                            6
892399
          2 3 3 4 5 5 6 6
                            7
892438
          1 1 1 1 1 1 1 1
892604
          2 3 3 4 4 4 5 5
                            6
89263202 1 1 1 1 1 1 1 1
                            1
892657
          2 3 3 4 4 4 5 5
                            6
89296
          2 3 3 4 4 4 5 5
893061
          2 3 3 4 5 5 6 6
                            7
89344
          2 3 3 4 4 4 5 5
89346
          2 3 3 4 5 5 6 6
                            7
893526
          2 3 3 4 4 4 5 5
                            6
893548
          2 3 3 4 4 4 5 5
                            6
893783
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 4 4 5 5
89382601
89382602 2 3 3 4 4 4 5 5
```

```
893988
          2 3 3 4 4 4 5 5
                            6
894047
          2 3 3 4 5 5 6 7
                            8
894089
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 4 4 5 5
894090
                            6
          1 1 1 2 2 2 2 2
894326
                            2
          1 2 4 5 6 6 7 8
894329
894335
          2 3 3 4 5 5 6 6
                            7
894604
          2 3 3 4 5 5 6 7
                            8
894618
          2 3 3 4 4 4 4 4
                            4
894855
          2 3 3 4 4 4 5 5
                            6
895100
          1 1 1 1 1 1 1 1
                            1
89511501
          2 3 3 4 4 4 5 5
89511502
         2 3 3 4 4 4 5 5
                            6
89524
          2 3 3 4 4 4 5 5
                            6
895299
          2 3 3 4 4 4 5 5
                            6
8953902
          1 2 2 3 3 3 3 3
                            3
895633
          2 3 3 4 4 4 4 4
                            4
896839
          1 2 2 3 3 3 3 3
                            3
          2 3 3 4 4 4 5 5
                            6
896864
897132
          2 3 3 4 5 5 6 6
                            7
897137
          2 3 3 4 4 4 5 5
          2 3 3 4 5 5 6 6
897374
                            7
89742801
         1 1 1 2 2 2 2 2
                            2
897604
          2 3 3 4 4 4 5 5
                            6
897630
          1 1 1 1 1 1 1 1
                            1
897880
          2 3 3 4 4 4 5 5
                            6
89812
          1 1 1 1 1 1 1 1
                            1
89813
          2 3 3 4 4 4 5 5
                            6
898143
          2 3 3 4 4 4 5 5
                            6
89827
          2 3 3 4 4 4 5 5
                            6
898431
          1 1 1 2 2 2 2 2
                            2
89864002 2 3 3 4 4 4 5 5
                            6
898677
          2 3 3 4 5 5 6 7
                            8
          2 3 3 4 5 5 6 6
                            7
898678
89869
          2 3 3 4 4 4 5 5
                            6
898690
          2 3 3 4 5 5 6 6
                            7
899147
          2 3 3 4 5 5 6 7
899187
          2 3 3 4 4 4 5 5
                            6
899667
          1 2 2 3 3 3 3 3
                            3
899987
          1 1 1 1 1 1 1 1
                            1
9010018
          2 3 3 4 4 4 4 4
                            4
          2 3 3 4 4 4 5 5
901011
                            6
9010258
          2 3 3 4 4 4 5 5
```

```
9010259
          2 3 3 4 5 5 6 7
                           8
901028
          2 3 3 4 4 4 5 5
                           6
9010333
          2 3 3 4 4 4 5 5
                            6
901034301 2 3 3 4 4 4 5 5
                           6
901034302 2 3 3 4 4 4 5 5
          2 3 3 4 4 4 4 4
901041
9010598
          2 3 3 4 4 4 5 5
9010872
          2 3 3 4 4 4 4 4
                           4
9010877
          2 3 3 4 4 4 5 5
                           6
901088
          1 1 1 2 2 2 2 2
                           2
                           2
9011494
          1 1 1 2 2 2 2 2
9011495
          2 3 3 4 4 4 5 5
9011971
          1 1 1 1 1 1 1 1
9012000
          1 1 1 1 1 1 1 1
                            1
9012315
          1 2 2 3 3 3 3 3
                           3
9012568
          2 3 3 4 4 4 5 5
                           6
9012795
          1 1 1 1 1 1 1 1
                            1
901288
          1 1 1 2 2 2 2 2
                           2
9013005
          2 3 3 4 4 4 5 5
                           6
901303
          2 3 3 4 4 4 5 5
                           6
901315
          1 2 4 5 6 6 7 8
          2 3 3 4 5 5 6 6
9013579
                           7
9013594
          2 3 3 4 4 4 5 5
                           6
9013838
          1 2 2 3 3 3 3 3
                           3
901549
          2 3 3 4 4 4 5 5
                           6
          2 3 3 4 4 4 5 5
901836
                           6
90250
          2 3 3 4 4 4 5 5
                           6
90251
          2 3 3 4 4 4 5 5
          2 3 3 4 4 4 5 5
902727
                           6
90291
          2 3 3 4 4 4 4 4
                           4
902975
          2 3 3 4 4 4 5 5
                           6
902976
          2 3 3 4 4 4 5 5
                           6
903011
          2 3 3 4 5 5 6 7
                           8
90312
          1 1 1 2 2 2 2 2
                           2
90317302 2 3 3 4 4 4 5 5
                            6
903483
          2 3 3 4 5 5 6 7
          1 2 2 3 3 3 3 3
903507
                           3
903516
          1 1 1 1 1 1 1 1
903554
          2 3 3 4 4 4 5 5
                           6
903811
          2 3 3 4 4 4 5 5
                           6
90401601 2 3 3 4 4 4 4 4
                           4
90401602 2 3 3 4 4 4 5 5
904302
          2 3 3 4 4 4 5 5
```

```
904357
          2 3 3 4 4 4 5 5
                            6
90439701
         1 1 1 1 1 1 1 1
                            1
904647
          2 3 3 4 4 4 5 5
                            6
904689
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 4 4 5 5
9047
904969
          2 3 3 4 5 5 6 6
904971
          2 3 3 4 4 4 5 5
905189
          2 3 3 4 4 4 5 5
                            6
905190
          2 3 3 4 4 4 5 5
                            6
90524101
         1 1 1 2 2 2 2 2
                            2
          2 3 3 4 5 5 6 6
                            7
905501
905502
          2 3 3 4 5 5 6 6
                            7
905520
          2 3 3 4 4 4 5 5
                            6
          2 3 3 4 5 5 6 6
905539
                            7
905557
          2 3 3 4 4 4 4 4
                            4
905680
          2 3 3 4 5 5 6 6
                            7
905686
          2 3 3 4 4 4 5 5
                            6
905978
          2 3 3 4 5 5 6 7
                            8
90602302
         1 1 1 1 1 1 1 1
906024
          2 3 3 4 4 4 5 5
                            6
906290
          2 3 3 4 5 5 6 6
                            7
          2 3 3 4 5 5 6 6
906539
906564
          1 2 2 3 3 3 3 3
                            3
906616
          2 3 3 4 4 4 5 5
                            6
906878
          2 3 3 4 4 4 4 4
                            4
          2 3 3 4 5 5 6 7
907145
          2 3 3 4 5 5 6 6
                            7
907367
907409
          2 3 3 4 4 4 5 5
90745
          2 3 3 4 5 5 6 6
                            7
90769601
          2 3 3 4 4 4 5 5
                            6
90769602 2 3 3 4 4 4 5 5
                            6
907914
          1 2 2 3 3 3 3 3
                            3
907915
          2 3 3 4 5 5 6 7
                            8
908194
          1 1 1 1 1 1 1 1
                            1
          1 1 1 2 2 2 2 2
908445
                            2
908469
          2 3 3 4 4 4 5 5
908489
          2 3 3 4 4 4 4 4
908916
          2 3 3 4 4 4 5 5
                            6
909220
          2 3 3 4 4 4 5 5
                            6
909231
          2 3 3 4 4 4 5 5
                            6
909410
          2 3 3 4 4 4 5 5
                            6
909411
          2 3 3 4 4 4 5 5
                            6
909445
          1 1 1 2 2 2 2 2
```

```
90944601 2 3 3 4 4 4 5 5
                           6
          2 3 3 4 5 5 6 6
909777
                           7
9110127
          1 1 1 2 2 2 2 2
                           2
9110720
          2 3 3 4 4 4 4 4
                           4
          1 1 1 2 2 2 2 2
9110732
9110944
          2 3 3 4 4 4 5 5
911150
          2 3 3 4 4 4 4 4
911157302 1 1 1 2 2 2 2 2
          2 3 3 4 4 4 5 5
9111596
                           6
9111805
          1 1 1 2 2 2 2 2
                           2
                           7
9111843
          2 3 3 4 5 5 6 6
          2 3 3 4 4 4 5 5
911201
911202
          2 3 3 4 4 4 5 5
                           6
9112085
          2 3 3 4 5 5 6 6
                           7
9112366
          2 3 3 4 5 5 6 6
                           7
9112367
          2 3 3 4 5 5 6 6
                           7
9112594
          2 3 3 4 5 5 6 6
                           7
9112712
          2 3 3 4 5 5 6 6
                           7
911296201 1 1 1 1 1 1 1 1
911296202 1 1 1 1 1 7 8 9 10
9113156
          2 3 3 4 5 5 6 6
911320501 2 3 3 4 4 4 5 5
911320502 2 3 3 4 4 4 5 5
9113239
          2 3 3 4 4 4 5 5
                           6
9113455
          2 3 3 4 4 4 4 4
                           4
          2 3 3 4 5 5 6 6
9113514
9113538
          1 1 1 1 1 1 1 1
911366
          1 2 2 3 3 3 3 3
                           3
9113778
          2 3 3 4 5 5 6 6
                           7
9113816
          2 3 3 4 5 5 6 6
                           7
911384
          2 3 3 4 4 4 5 5
                           6
9113846
          2 3 3 4 5 5 6 6
                           7
911391
          2 3 3 4 4 4 5 5
                           6
911408
          2 3 3 4 4 4 5 5
                           6
911654
          2 3 3 4 4 4 4 4
911673
          2 3 3 4 4 4 5 5
911685
          2 3 3 4 4 4 5 5
911916
          1 2 2 3 3 3 3 3
                           3
912193
          2 3 3 4 4 4 5 5
                           6
91227
          2 3 3 4 4 4 5 5
                           6
912519
          2 3 3 4 4 4 5 5
                           6
912558
          2 3 3 4 4 4 5 5
912600
          2 3 3 4 4 4 5 5
```

```
913063
          1 2 4 5 6 6 7 8 9
          2 3 3 4 4 4 5 5
913102
                           6
913505
          1 1 1 1 1 1 1 1
          2 3 3 4 4 4 5 5
913512
913535
          2 3 3 4 4 4 4 4
91376701 2 3 3 4 5 5 6 6
91376702 2 3 3 4 4 4 5 5
914062
          1 1 1 2 2 2 2 2
                           2
914101
          2 3 3 4 5 5 6 6
                           7
914102
          2 3 3 4 4 4 4 4
                           4
914333
          2 3 3 4 4 4 4 4
                           4
          2 3 3 4 4 4 4 4
914366
914580
          2 3 3 4 4 4 5 5
                           6
914769
          1 1 1 2 2 2 2 2
91485
          1 1 1 1 1 1 1 1
                           1
914862
          2 3 3 4 4 4 5 5
                           6
91504
          1 2 2 3 3 3 3 3
                           3
91505
          2 3 3 4 4 4 5 5
                           6
          1 1 1 1 1 1 1 1
915143
                           1
915186
          1 2 4 5 6 6 7 8
915276
          1 2 4 5 6 6 7 8
91544001 2 3 3 4 4 4 4 4
91544002 2 3 3 4 5 5 6 7
915452
          2 3 3 4 4 4 5 5
                           6
915460
          1 2 2 3 3 3 3 3
                           3
91550
          2 3 3 4 4 4 5 5
                           6
915664
          2 3 3 4 4 4 5 5
                           6
915691
          1 2 2 3 3 3 3 3
                           3
915940
          2 3 3 4 4 4 5 5
                           6
91594602 2 3 3 4 4 4 4 4
916221
          2 3 3 4 4 4 5 5
                           6
916799
          1 1 1 2 2 2 2 2
                           2
916838
          1 1 1 2 2 2 2 2
                           2
917062
          2 3 3 4 4 4 5 5
                           6
917080
          2 3 3 4 4 4 5 5
917092
          2 3 3 4 5 5 6 7
91762702 1 1 1 1 1 1 1 1
91789
          2 3 3 4 5 5 6 6
                           7
917896
          2 3 3 4 4 4 4 4
                           4
917897
          2 3 3 4 4 4 5 5
                           6
91805
          2 3 3 4 4 4 5 5
                           6
91813701 2 3 3 4 4 4 4 4
                           4
91813702 2 3 3 4 4 4 5 5
```

```
918192
         2 3 3 4 5 5 6 7
918465
          2 3 3 4 4 4 5 5
91858
          2 3 3 4 4 4 5 5
91903901 2 3 3 4 4 4 4 4
91903902 2 3 3 4 4 4 5 5
91930402 1 1 1 2 2 2 2 2
919537
          2 3 3 4 4 4 5 5
919555
          1 1 1 1 1 1 1 1
91979701 2 3 3 4 4 4 4 4
919812
          1 2 2 3 3 3 3 3
                           3
          2 3 3 4 5 5 6 6
921092
          1 2 4 5 6 6 7 8
921362
921385
          2 3 3 4 5 5 6 7
921386
          2 3 3 4 4 4 4 4
921644
          2 3 3 4 4 4 4 4
922296
          2 3 3 4 5 5 6 6
                           7
922297
          2 3 3 4 4 4 5 5
922576
          2 3 3 4 4 4 4 4
922577
          2 3 3 4 4 4 5 5
922840
          2 3 3 4 4 4 5 5
923169
          2 3 3 4 5 5 6 6
                           7
          2 3 3 4 5 5 6 6
923465
923748
          2 3 3 4 5 5 6 6
                           7
923780
          2 3 3 4 4 4 5 5
924084
          2 3 3 4 5 5 6 6
                           7
          2 3 3 4 5 5 6 6
924342
                           7
924632
          2 3 3 4 5 5 6 6
924934
          2 3 3 4 5 5 6 6
                           7
924964
          2 3 3 4 5 5 6 6
925236
          2 3 3 4 5 5 6 6
925277
          2 3 3 4 4 4 4 4
925291
          2 3 3 4 5 5 6 6
                           7
925292
          2 3 3 4 4 4 4 4
                           4
925311
          2 3 3 4 5 5 6 6
925622
          1 2 2 3 3 3 3 3
926125
          1 1 1 1 1 1 1 1
926424
          1 1 1 1 1 1 1 1
926682
          1 1 1 2 2 2 2 2
926954
          1 1 1 2 2 2 2 2
927241
          1 1 1 1 1 1 1 1
92751
          2 3 3 4 5 5 6 6
```

For Question 12, I think I can not find a better cluster vs diagnoses match by cutting into

different clusters.

Question 13: Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
d <- dist(wisc.pr$x[,2:10])
  wisc.pr.hclust <- hclust(d, method="ward.D2")
  wisc.pr.hclust

Call:
hclust(d = d, method = "ward.D2")

Cluster method : ward.D2
Distance : euclidean
Number of objects: 569</pre>
```

For Question 13, ward.d2 is the best method because it makes clusters with smaller variance.

5. Combining Methods:

This approach will take PCA results and not our original data.

```
d <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(d, method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

grps
1  2
216 353

plot(wisc.pr$x[,1], wisc.pr$x[,2], col=grps )</pre>
```

```
wisc.pr$x[, 1]
```

```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```


Question 15: How well does the newly created model with four clusters separate out the two diagnoses?

```
wisc.pr.hclust.S <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(wisc.pr.hclust.S, method="ward.D2")
wisc.pr.hclust</pre>
```

Call:

hclust(d = wisc.pr.hclust.S, method = "ward.D2")

 $\begin{array}{lll} \hbox{\tt Cluster method} & : \ \hbox{\tt ward.D2} \\ \hbox{\tt Distance} & : \ \hbox{\tt euclidean} \end{array}$

Number of objects: 569

```
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
wisc.pr.hclust.clusters</pre>
```

842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1	1	1	1	1	1	1

044004	04504004	045696	04640000	0.4.6.0.0.6	046204	04667404	04700000
						84667401	
1	1			1			1
848406						8511133	
1	1	1		2	2		
852552	852631				853201	853401	853612
1	1	1	1	1	_		_
85382601	854002	854039	854253	854268	854941	855133	855138
1	1	1	1	2	2	1	2
855167	855563	855625	856106	85638502	857010	85713702	85715
2	1	1	1	2	1	2	1
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2	2	2	1	2	2
857637	857793	857810	858477	858970	858981	858986	859196
1	1	2	2	2	2	1	2
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	2	2	1	2	1	1
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
1	2	2		2	1	1	2
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	1	1			1		
861597						862028	
2	1	2		2			
86211	_					862965	_
2	2	2	2	2	2		
862989		863031		86355			86408
2	1	2	2	1			
86409			864685	_	_	_	
1	2	2	2	1			
865137		865423		865468			_
	1	1					
2	=	_	8670		_	_	_
866458				1			
1	1	2	1	_	2		
868223	868682			868999	869104		869224
2	2	1	2	2	1		_
							871001502
2	2	1					
						871122	
1	2	2		1			
						87127	
2	1	1	_	1	2		
8712766						871642	
1	2	2					
872608	87281702	873357	873586	873592	873593	873701	873843

1	1	2	2	1	1	1	2
873885	874158	874217	874373	874662	874839	874858	875093
2	2	1	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	1	2	2	2	1
8810158	8810436	881046502	8810528	8810703	881094802	8810955	8810987
1	2	1	2	1	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	1	1	2	2	2	1
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
2	2	2	2	2	1	1	2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2	1	2	1	2	2	1
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	1	2	1	1	1	2
88649001	886776	887181	88725602	887549	888264	888570	889403
1	1	1	1	1	2	1	2
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
1	1	2	2	2	2	2	2
8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
1	2	2	2	2	1	2	2
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
1	2	1	1	2	2	2	2
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	2	1	2	2	2	2	2
891936	892189	892214	892399	892438	892604	89263202	892657
2	2	2	2	1	2	1	2
89296	893061	89344	89346	893526	893548	893783	89382601
2	2	2	2	2	2	2	2
89382602	893988	894047	894089	894090	894326	894329	894335
2	2	2	2	2	1	1	2
894604	894618	894855	895100	89511501	89511502	89524	895299
2	1	2	1	2	2	2	2
8953902	895633	896839	896864	897132	897137	897374	89742801
1	1	1	2	2	2	2	1
897604	897630	897880	89812	89813	898143	89827	898431
2	1						
89864002	898677	898678	89869	898690	899147	899187	899667
2	2	2	2	2	2	2	1

000007	0010010	001011	0010050	0010050	001000	0010333	001001001
899987					901028		
1	_	2		2			_
	901041	9010598					
2		2	2			1	
9011971		9012315		9012795			901303
1	1	1	_	1		2	-
901315	9013579	9013594	9013838		901836	90250	
1	2	2	1	_			
902727	90291		902976	903011	90312	90317302	903483
2	2	2	2	1	1	2	2
903507	903516	903554	903811		90401602	904302	904357
1	1	2	2	2	2	2	2
90439701	904647	904689	9047	904969	904971	905189	905190
1	2	2	2	2	2	2	2
90524101	905501	905502	905520	905539	905557	905680	905686
1	2	2	2	2	2	2	2
905978	90602302	906024	906290	906539	906564	906616	906878
2	1	2	2	2	1	2	2
907145	907367	907409	90745	90769601	90769602	907914	907915
2	2	2	2	2	2	1	2
908194	908445	908469	908489	908916	909220	909231	909410
1		2		2			2
909411		90944601			9110720		
2		2	2			1	
					911201		
2		2		2			
9112366	_		_	_	911296202		-
2		2			1		
911320502					911366		_
2		2		1			2
911384	_				911673		
2		911391	2			2	
912193	91227		912558			_	
		912319	912556				
013510					1 914101	2	
2		2					
					91504		
2					1		1
	915276						915664
1	_						
					916838		
1					1		
917092	91762702	91789	917896	917897	91805	91813701	91813702

2	1	2	2	2	2	2	2
918192	918465	91858	91903901	91903902	91930402	919537	919555
2	2	2	2	2	1	2	1
91979701	919812	921092	921362	921385	921386	921644	922296
2	1	2	1	2	2	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	1	1	1	1	1	1
92751							
2							

For Qestion 15, I think the newly created model with four clusters helps with visualization with better separation of the two diagnoses.