预习报告		实验记录		分析讨论		总成绩	
25		30		25		80	

专业:	物理学	年级:	2022 级
姓名:	戴鹏辉	学号:	2344016
日期:	2024/9/23	教师签名:	

D3 量子密钥分发

【实验报告注意事项】

- (1) 实验报告由三部分组成:
 - (1) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(第一循环实验已由教师提供模板,可以打印)。预习成绩低于 10 分(共 20 分)者不能做实验。
 - (2) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
 - (3) 分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。

实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

(2) 实验报告注意事项

- i. 系统工作温度在 15° 30°的环境中,尤其避免过高温度下使用本系统。
- ii. 实验元件会单独给出,实验前检查是否完整。除给出的元件外,整体密钥分发系统不要触碰。
- iii. 镜筒等光机械安装时,螺丝拧紧避免晃动。光机械元件的调节旋钮,安装前,将螺丝行程旋至中间位置,方便实验过程中调节。
- iv. 所有镜片避免用手接触光学面,拿捏过程中,光学面垂直于平台,避免灰尘,使用完收入对应的 盒子中。安装镜片需靠近台面,避免镜片跌落摔碎。
- v. 请不要打开单光子探测器的黑色遮盖物。
- vi. 不要使眼睛与光路处于同一水平面,不要用手直接接触激光,激光为 30mw 紫外激光,必须戴好护目镜。

目录

1	$\mathbf{D3}$	量子密钥分发 预习报告
	1.1	实验目的
	1.2	仪器用具
	1.3	原理概述
	1.4	实验前思考题
2	D1	锁相放大器与弱信号测量 实验记录
	2.1	实验内容和步骤
		2.1.1 实验一 选择合适电流量程,设置氩管工作电压
	2.2	实验数据记录
	2.3	实验过程中遇到的问题记录
2	D1	锁相放大器与弱信号测量 分析与讨论
J	DI	······································
	3.1	实验数据分析
		3.1.1 实验一 选择合适电流量程,设置氩管工作电压

D3 量子密钥分发 预习报告

1.1 实验目的

- (1) 掌握控制和测量光子的偏振;
- (2) 掌握单光子的标定;
- (3) 掌握单光子的探测及相应探测器效率的测量;
- (4) 掌握 BB84 量子密钥分发过程的数据处理。

1.2 仪器用具

表 1: 偏振测量实验

-				
编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)	
1	准直激光器	1	波长: 404nm, 最大功率: 150mW	
2	偏振分光棱镜	2	波长: 404nm,消光比> 500	
3	半波片	2	波长: 404nm, 零级	
4	小型磁性底座		MB105	
5	PH 系列杆架	6	PH102	
6	SP 系列接杆	6	SP104	
7	激光器镜架	6	OM311	
8	精密棱镜台	2	PPM101	
9	偏光镜架	2	PM101	
10	可见光功率计	2	PM100、S120VC	
11	直流稳压电源	1	GPD-3303D	

表 2: 单光子标定的用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)	
1	密钥分发系统	1	波长: 404nm	
2	可见光功率计	1	PM100、S120VC	

表 3: 单光子的探测及相应探测器探测效率测量的用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)	
1	反射镜	1	波长: 404nm, 45 度入射	
2	滤波片	1	波长: 405nm, 带宽: 3nm	
3	光纤准直器	1	F671FC-405	
4	反射镜折叠架	1	OM402	
5	透镜固定架	1	LH102	
6	光纤耦合架	1	PFC201	
7	小型磁性底座	3	MB105	
8	PH 系列杆架	3	PH102	
9	SP 系列接杆	1	SP104	
10	SP 系列接杆	2	SP134	
11	可见光功率计	1	PM100、S120VC	
12	直流稳压电源	1	GPD-3303D	

表 4: 密钥分发过程数据处理的用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	密钥分发系统	1	波长: 404nm

1.3 原理概述

1.4 实验前思考题

思考题 1.1: 回顾偏振光实验,说明 $\lambda/2$ 波片, $\lambda/4$ 波片的工作原理;

思考题 1.2: 如何检测一个任意方向的线偏振光?

思考题 1.3: 单光子为什么不能直接用普通功率计测量?

思考题 1.4: 检验单光子探测器的探测效率可以用强光吗?

思考题 1.5: BB84 协议的原理和步骤。

思考题 1.6: 密钥分发过程中,为什么需要有同步信号?

专业:	物理学	年级:	2022 级
姓名:	戴鹏辉	学号:	22344016
室温:	26°C	实验地点:	A509
学生签名:		评分:	
实验时间:	2024/5/9	教师签名:	

D1 锁相放大器与弱信号测量 实验记录

- 2.1 实验内容和步骤
- 2.1.1 实验一 选择合适电流量程,设置氩管工作电压
- 2.2 实验数据记录
- 2.3 实验过程中遇到的问题记录

(1)

专业:	物理学	年级:	2022 级
姓名:	戴鹏辉	学号:	22344016
日期:	2024/5/12	评分:	

D1 锁相放大器与弱信号测量 **分析与讨论**

- 3.1 实验数据分析
- 3.1.1 实验一 选择合适电流量程,设置氩管工作电压