Package 'cmahalanobis'

September 24, 2024

Title Calculate Distance Measures for a Given List of Data Frames with

Type Package

Version 0.4.2
Maintainer Flavio Gioia <flaviogioia.fg@gmail.com></flaviogioia.fg@gmail.com>
Description It provides functions that calculate Mahalanobis distance, Euclidean distance, Manhattan distance and Chebyshev distance between each pair of species in a list of data frames. These metrics are fundamental in various fields, such as cluster analysis, classification, and other applications of machine learning and data mining, where assessing similarity or dissimilarity between data is crucial. The package is designed to be flexible and easily integrated into data analysis workflows, providing reliable tools for evaluating distances in multidimensional contexts.
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
Imports stats, ggplot2, reshape2, mice
Suggests rmarkdown, testthat (>= 3.0.0)
NeedsCompilation no
Config/testthat/edition 3
Author Flavio Gioia [aut, cre]
Repository CRAN
Date/Publication 2024-09-23 22:00:22 UTC
Contents
cchebyshev 2 ceuclide 3 cmahalanobis 4 cmanhattan 5 generate_report_cchebyshev 6 generate_report_ceuclide 7

2 cchebyshev

ccho	hyshay	Calculate	th.	a n	11/	.1	20	100 (ı t r	ir.	for	 aol	h 0	na	oie	2.0	110	in	α.	CI	أمما	h.,	сh	<i>0</i> 11	di	ic
Index																										14
	pvaluescmanh		•		•			•		•	•	 •	•		•	•	•		•	•	•	•	•	•		13
	pvaluescmaha																									
	pvaluesceucl																									
	pvaluesccheb																									
	generate_report_cr																									
	generate_report_cr	nahalanobis																								8

cchebyshev

Calculate the p_values matrix for each species, using Chebyshev distance as a base.

Description

This function takes a dataset, a factor, a p_value method, number of bootstraps and permutation when necessary, and returns a p_values matrix between each pair of species and a plot if the user select TRUE using the Chebyshev distance for the distances calculation.

Usage

```
cchebyshev(
  dataset,
  formula,
  plot = TRUE,
  plot_title = "Chebyshev Distance Between Groups"
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate Chebyshev distance.

plot If TRUE, displays a plot of distances.

plot_title The title of plot.

Value

A matrix containing distances and, optionally, the plot.

```
# Example with iris dataset
cchebyshev(iris, ~Species, plot = TRUE, plot_title = "Chebyshev Distance Between Groups")
# Example with mtcars dataset
cchebyshev(mtcars, ~am, plot = TRUE, plot_title = "Chebyshev Distance Between Groups")
```

ceuclide 3

ceuclide

Calculate the Euclidean distance of a factor in a dataframe.

Description

This function takes a dataframe and a factor in input, and returns a matrix with the Euclidean distances about it.

Usage

```
ceuclide(
  dataset,
  formula,
  plot = TRUE,
  plot_title = "Euclidean Distance Between Groups"
)
```

Arguments

dataset A dataframe.

formula The factor which you want to calculate the Euclidean distances matrix.

plot If TRUE, shows a plot of the Euclidean distances matrix.

plot_title The title of the plot.

Details

Calculate Euclidean distance

Value

The matrix containing distances.

```
# Example with iris dataset
ceuclide(iris, ~Species, plot = TRUE, plot_title = "Euclidean Distance Between Groups")
# Example with mtcars dataset
ceuclide(mtcars, ~am, plot = TRUE, plot_title = "Euclidean Distance Between Groups")
```

4 cmahalanobis

cmahalanobis Calculate the Mahalanobis distance for each species.	
---	--

Description

This function takes a dataframe and a factor in input, and returns a matrix with the Mahalanobis distances about it.

Usage

```
cmahalanobis(
  dataset,
  formula,
  plot = TRUE,
  plot_title = "Mahalanobis Distance Between Groups"
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate the Mahalanobis distances matrix.

plot Logical, if TRUE, a plot of Mahalanobis distances matrix is displayed.

plot_title The title to be used for the plot if plot is TRUE.

Value

A matrix containing Mahalanobis distances between each pair of groups and the plot.

```
# Example with the iris dataset

data(iris)

# Calculate the Mahalanobis distance with the cmahalanobis function
cmahalanobis(iris, ~Species, plot = TRUE, plot_title = "Mahalanobis Distance Between Groups")

# Example with the mtcars dataset
data(mtcars)

# Calculate the Mahalanobis distance with the cmahalanobis function
cmahalanobis(mtcars, ~am, plot = TRUE, plot_title = "Mahalanobis Distance Between Groups")
```

cmanhattan 5

cmanhattan

Calculate a Manhattan distance of a factor in a dataframe.

Description

This function takes a dataframe and a factor in input, and returns a matrix with the Manhattan distances about it.

Usage

```
cmanhattan(
  dataset,
  formula,
  plot = TRUE,
  plot_title = "Manhattan Distance Between Groups"
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate Manhattan distance.

plot If TRUE, show a plot of distances.

plot_title The title of plot.

Details

Calculate Manhattan distance

Value

A matrix containing distances.

```
# Example with iris dataset
cmanhattan(iris, ~Species, plot = TRUE, plot_title = "Manhattan Distance Between Groups")
# Example with mtcars dataset
cmanhattan(mtcars, ~am, plot = TRUE, plot_title = "Manhattan Distance Between Groups")
```

```
generate_report_cchebyshev
```

Generate a Microsoft Word document about the Chebyshev distance matrix and the p-values matrix with corresponding plots.

Description

This function takes a dataframe, a factor and returns a Microsoft Word document about the Chebyshev distance matrix and the p-values matrix with corresponding plots.

Usage

```
generate_report_cchebyshev(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 10,
  num.bootstraps = 10
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate the Chebyshev distance matrix and the

p_values matrix.

pvalue.method A p_value method used to calculate the matrix, the default value is "chisq".

Other methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method".

The default value is 100.

num.bootstraps Number of bootstrap to specify if you select "bootstrap" in "p_value method".

The default value is 10.

Value

A Microsoft Word document about the Chebyshev distance matrix and the p_values matrix.

```
# Generate a report about "Species" factor in iris dataset
generate_report_cchebyshev(iris, ~Species)
# Generate a report about "am" factor in mtcars dataset
generate_report_cchebyshev(mtcars, ~am)
```

```
generate_report_ceuclide
```

Generate a Microsoft Word document about the Euclidean distance matrix and the p-values matrix with relative plots.

Description

This function takes a dataframe, a factor and returns a Microsoft Word document about the Euclidean distance matrix and the p-values matrix with relative plots.

Usage

```
generate_report_ceuclide(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 10,
  num.bootstraps = 10
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate the Euclidean distance matrix and the

p_values matrix.

pvalue method A p_value method used to calculate the matrix, the default value is "chisq". Other

methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method".

The default value is 100.

num.bootstraps Number of bootstrap to specify if you select "bootstrap" in "p_value method".

The default value is 10.

Value

A Microsoft Word document about the Euclidean distance matrix and the p_values matrix.

```
# Generate a report about "Species" factor in iris dataset
generate_report_ceuclide(iris, ~Species)

# Generate a report about "am" factor in mtcars dataset
generate_report_ceuclide(mtcars, ~am)
```

```
generate_report_cmahalanobis
```

Generate a Microsoft Word document about Mahalanobis distance matrix and p-values matrix with corresponding plots.

Description

This function takes a dataframe, a factor and returns a Microsoft Word document about Mahalanobis distance matrix and p-values matrix with corresponding plots.

Usage

```
generate_report_cmahalanobis(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 10,
  num.bootstraps = 10
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate Mahalanobis distances matrix and p_values

matrix.

pvalue.method A method with which you want to calculate pvalue matrix. The default method

is "chisq". Other methods are "permutation" and "bootstrap".

num.permutations

A number of permutations to define if you choose "permutation".

num.bootstraps A number of bootstrap to define if you choose "bootstrap".

Value

A Microsoft Word document about Mahalanobis distances matrix and p_values matrix.

```
# Generate a report about "Species" factor in iris dataset
generate_report_cmahalanobis(iris, ~Species)
# Generate a report about "am" factor in mtcars dataset
generate_report_cmahalanobis(mtcars, ~am)
```

```
generate_report_cmanhattan
```

Generate a Microsoft Word document about the Manhattan distance and the p-values matrices with corresponding plots.

Description

This function takes a dataframe, a factor and returns a Microsoft Word document about the Manhattan distance matrix and the p-values matrix with corresponding plots.

Usage

```
generate_report_cmanhattan(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 10,
  num.bootstraps = 10
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate the Manhattan distance matrix and the

p_values matrix.

pvalue method A p_value method used to calculate the matrix, the default value is "chisq". Other

methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method".

The default value is 100.

num.bootstraps Number of bootstrap to specify if you select "bootstrap" in "p_value method".

The default value is 10.

Value

A Microsoft Word document about the Manhattan distance matrix and the p_values matrix.

```
# Generate a report about "Species" factor in iris dataset
generate_report_cmanhattan(iris, ~Species)
# Generate a report about "am" factor in mtcars dataset
generate_report_cmanhattan(mtcars, ~am)
```

10 pvaluesccheb

pvaluesccheb	Calculate the p_values matrix for each species, using Chebyshev dis-
praraeseemes	tance as a base.

Description

This function takes a dataset, a factor, a p_value method, number of bootstraps and permutation when necessary, and returns a p_values matrix between each pair of species and a plot if the user select TRUE using Chebyshev distance for the distances calculation.

Usage

```
pvaluesccheb(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 100,
  num.bootstraps = 10,
  plot = TRUE
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate Chebyshev distance.

pvalue.method A p_value method used to calculate the matrix, the default value is "chisq".

Other methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method".

The default value is 100.

num.bootstraps Number of bootstrap to specify if you select "bootstrap" in "p_value method".

The default value is 10.

plot if TRUE, plot the p_values heatmap. The default value is TRUE.

Value

A list containing a matrix of p_values and, optionally, the plot.

```
# Calculate p_values of "Species" variable in iris dataset
pvaluesccheb(iris,~Species, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
# Calculate p_values of "am" variable in mtcars dataset
pvaluesccheb(mtcars,~am, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
```

pvaluesceucl 11

pvaluesceucl	Calculate the p_values matrix for each species, using the Euclidean distance as a base.

Description

This function takes a dataset, a factor, a p_value method, number of bootstraps and permutation when necessary, and returns a p_values matrix between each pair of species and a plot if the user select TRUE using Euclidean distance for the distances calculation.

Usage

```
pvaluesceucl(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 100,
  num.bootstraps = 10,
  plot = TRUE
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate the Euclidean distances.

pvalue.method A p_value method used to calculate the matrix, the default value is "chisq". Other methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method". The default value is 100.

num.bootstraps Number of bootstrap to specify if you select "bootstrap" in "p_value method". The default value is 10.

plot if TRUE, plot the p_values heatmap. The default value is TRUE.

Value

A list containing the p_values matrix and, optionally, the plot. #' @examples # Calculate p_values of "Species" variable in iris dataset pvaluesceucl(iris,~Species, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10) # Calculate p_values of "am" variable in mtcars dataset pvaluesceucl(mtcars,~am, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)

12 pvaluescmaha

pvaluescmaha	Calculate p_values matrix for each species, using Mahalanobis distance as a base.

Description

This function takes a dataset, a factor, a p_value method, number of bootstraps and permutation when necessary, and returns a p_values matrix between each pair of the species and a plot if the user select TRUE using Mahalanobis distance for distances calculation.

Usage

```
pvaluescmaha(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 100,
  num.bootstraps = 10,
  plot = TRUE
)
```

Arguments

dataset A dataframe.

formula A factor which you want to calculate the Mahalanobis distances matrix.

pvalue.method A p_value method used to calculate the matrix, the default value is "chisq".Other methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method". The default value is 100.

num.bootstraps

Number of bootstrap to specify if you select "bootstrap" in "p_value method". The default value is 10.

plot if TRUE, plot a p_values heatmap. The default value is TRUE.

Value

A list containing the p-values matrix and, optionally, the plot.

```
# Calculate p_values of "Species" variable in iris dataset
pvaluescmaha(iris,~Species, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
# Calculate p_values of "am" variable in mtcars dataset
pvaluescmaha(mtcars,~am, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
```

pvaluescmanh 13

pvaluescmanh	Calculate the p_values matrix for each species, using Manhattan distance as a base.
	tunce as a vase.

Description

This function takes a dataset, a factor, a p_value method, number of bootstraps and permutation when necessary, and returns a p_values matrix between each pair of species and a plot if the user select TRUE using Manhattan distance for the distances calculation.

Usage

```
pvaluescmanh(
  dataset,
  formula,
  pvalue.method = "chisq",
  num.permutations = 100,
  num.bootstraps = 10,
  plot = TRUE
)
```

Arguments

dataset A dataframe

formula A factor which you want to calculate Manhattan distances.

pvalue.method A p_value method used to calculate the matrix, the default value is "chisq".

Other methods are "permutation" and "bootstrap".

num.permutations

Number of permutation to specify if you select "permutation" in "pvalue.method".

The default value is 100.

num.bootstraps Number of bootstrap to specify if you select "bootstrap" in "p_value method".

The default value is 10.

plot if TRUE, plot the p_values heatmap. The default value is TRUE.

Value

A matrix containing a matrix of p_values and, optionally, the plot.

```
# Calculate p_values of "Species" variable in iris dataset
pvaluescmanh(iris,~Species, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
# Calculate p_values of "am" variable in mtcars dataset
pvaluescmanh(mtcars,~am, pvalue.method = "chisq", num.permutations = 100, num.bootstraps = 10)
```

Index

```
cchebyshev, 2
ceuclide, 3
cmahalanobis, 4
cmanhattan, 5

generate_report_cchebyshev, 6
generate_report_ceuclide, 7
generate_report_cmahalanobis, 8
generate_report_cmanhattan, 9

pvaluesccheb, 10
pvaluesceucl, 11
pvaluescmaha, 12
pvaluescmanh, 13
```