Axiomas de cuerpo/campo

Sea $\mathbb R$ un conjunto. Supongamos que en $\mathbb R$ definimos dos operaciones + y \cdot que cumplen los siguientes axiomas:

A_0	$\forall x,y \in \mathbb{R}$	$x+y\in\mathbb{R}\wedge xy\in\mathbb{Z}$	P. Clausurativa
A_1	$\forall x,y \in \mathbb{R}$	$x+y=y+x\wedge xy=yx$	P. Conmutativa
A_2	$\forall x,y,z \in \mathbb{R}$	$x + (y + z) = (x + y) + z$ $\wedge x(yz) = (xy)z$	P. Asociativa
A_3	$\forall x,y,z\in\mathbb{R}$	x(y+z) = xy + xz	P. Distributiva
A_4	$\exists 0 \in \mathbb{R} \land \exists 1 \in \mathbb{R}$	$x+0=x\wedge x\cdot 1=x$	P. Modulativa
A_5	$\forall x \in \mathbb{R} \land \exists y \in \mathbb{R}$	x + y = 0	P. Inv. Aditivo
A_6	$\forall x \in \mathbb{R} \land x \neq 0 \land \exists z \in \mathbb{R}$	xz = 1	P. Inv. Multiplicativo

Decimos que $(\mathbb{R}, +, \cdot)$ tiene estructura de cuerpo

Teoremas

- $\forall a, b, c \in \mathbb{R} \land a + b = a + c \Longrightarrow b = c$
- $\forall a, b \in \mathbb{R} \Longrightarrow \exists! x \in \mathbb{R} \land a + x = b$

Definición Inverso Aditivo

Al numero x solución de la ecuación a+x=b lo notaremos por b-a. En particular, si b=0 (A_5), entonces a+x=0 y así x=0-a=-a, al cual llamaremos el inverso aditivo de a o el opuesto de a.

Teoremas

- $\forall a, b \in \mathbb{R} \Longrightarrow a b = a + (-b)$
- $\forall a \in \mathbb{R} \Longrightarrow -(-a) = a$
- $\forall a \in \mathbb{R} \Longrightarrow a \cdot 0 = 0$
- $\forall a, b \in \mathbb{R} \Longrightarrow -(ab) = (-a) \cdot b$
- $\forall a, b, c \in \mathbb{R} \Longrightarrow (a+b)c = ac + bc$
- $\forall a, b, c \in \mathbb{R} \Longrightarrow a(b-c) = ab ac$
- $\forall a, b, c \in \mathbb{R} \land a \neq 0 \land ab = ac \Longrightarrow b = c$
- $\forall a, b \in \mathbb{R} \land a \neq 0 \Longrightarrow \exists! x \in \mathbb{R} \land ax = b$

Definición Inverso Multiplicativo

Al numero x solución de la ecuación $ax=b, a\neq 0$ lo notaremos por $\frac{b}{a}$. En particular, si b=1 (A_6) , entonces ax=1 y así $x=\frac{1}{a}$ que notaremos por a^{-1} y lo llamaremos el inverso multiplicativo de a o el reciproco de a.

Teoremas

- $\bullet \ \forall a,b \in \mathbb{R} \wedge a \neq 0 \Longrightarrow \tfrac{b}{a} = ba^{\{-1\}}$
- $\forall a \in \mathbb{R} \land a \neq 0 \land a^{-1}$ es inversible $\Longrightarrow (a^{-1})^{-1} = a$
- $\forall a, b \in \mathbb{R} \land ab = 0 \Longrightarrow a = 0 \lor b = 0$
- $\forall a, b \in \mathbb{R} \Longrightarrow (-a)(-b) = ab$
- $\bullet \ \forall a,b \in \mathbb{R} \wedge ab \neq 0 \Longrightarrow (ab)^{-1} = a^{-1}b^{-1}$
- $\forall a, b, c, d \in \mathbb{R} \land b \neq 0 \land d \neq 0 \Longrightarrow \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$
- $\forall a, b, c, d \in \mathbb{R} \land b \neq 0 \land d \neq 0 \Longrightarrow \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

Ejercicios