定理 2.21 f を代数系 < A .* > から < B . > への準同型写像とする。

- (1) $\langle A, * \rangle$ が半群であるとき, $\langle f(A), \rangle >$ も半群である。
- (2) < A, * > がモノイドであるとき , < f(A) , > もモノイドである。
- (3) < A,*>が群であるとき,< f(A), >も群である。

【証明】

(1): f(A) の任意の要素 f(a) と f(b) に対して, $a \in A$ かつ $b \in A$ である。 A 、 * > が半群であるから, * が A 上の閉じた演算である。すなわち, $a*b \in A$ である。よって, $f(a*b) \in f(A)$ である。 f が A 、 * > から A 、 * > への準同型写像であるから,A (A) A (A) である。 ゆえに, は A (A) 上の閉じた演算である。

一方 , * は結合的な演算であるから , f(A) の任意の要素 f(a) と f(b) と f(c) に対して , (f(a) - f(b)) - f(c) = f(a*b) - f(c)

$$= f((a*b)*c)$$

$$= f(a*(b*c))$$

$$= f(a) f(b*c)$$

$$= f(a) (f(b) f(c))$$

ゆえに , はf(A) 上の結合的な演算である。 よって , < f(A) , > も半群である。

- (2): e をモノイド < A ,* > の単位元とする。f(A) の任意の要素 f(a) に対して , f(e) f(a) = f(e*a) = f(a) , f(a) f(e) = f(a*e) = f(a) である。ゆ えに , f(e) は < f(A) , > の単位元である。 よって , < f(A) , > もモノイドである。
- (3): f(A) の任意の要素 f(a) に対して, a^{-1} を群 < A,* >の要素 a の逆元とする。よって,f(a) $f(a^{-1}) = f(a*a^{-1}) = f(e)$ と $f(a^{-1})$ $f(a) = f(a^{-1}*a) = f(e)$ が成り立つ。

ゆえに , $f(a^{-1})$ は f(a) の逆元である。

(1)と(2)と(3)により,< f(A), >も群である。