## Statistics – Central Limit Theorem



## **Sampling Distribution**



## Sampling Distribution is (approx.) a Normal Distribution...

### **Populations**





...if sample size > 30...



### **Sampling Distributions**





## Why is this useful?

# Sampling Distributions (Normal Distributions)





Normal Distributions are fully described by  $\mu$  and  $\sigma$ 



$$\sigma(\text{standard error}) = \frac{\text{population std}}{\sqrt{\text{sample size (n)}}}$$

#### **Point Estimate**

"The true population mean is approx. 2.85m (sample mean)"



### Confidence Interval Estimate

"With 90% confidence, the true population mean lies in the interval between 2.70m and 3.0m (confidence interval)"

# a simple shift...

### Sampling Distribution



### ...and we create a Confidence Interval Estimate

Sampling Distribution



Is there still a problem...?

To estimate the population mean, we require the population standard deviation / variance?

There is a solution for it...!