Logical aspects of the lexicographic order on 1-counter languages

Dietrich Kuske Ilmenau, Germany 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\mathrm{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages:
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)

Caucal's result does not extend to 1-counter languages

1. there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ 1CA} \mid (L(M), \leq_{\text{lex}}) \models \varphi\}$ undecidable

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)
 - 2.2 there is a PDA M s.t. $\{\varphi \in \mathsf{FO} \mid (\mathit{L}(\mathit{M}), \leqslant_{\mathrm{lex}}) \models \varphi\}$ undecidable (Carayol & Ésik '12)

Caucal's result does not extend to 1-counter languages

1. there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ 1CA} \mid (L(M), \leq_{\text{lex}}) \models \varphi\}$ undecidable

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)
 - 2.2 there is a PDA M s.t. $\{\varphi \in \mathsf{FO} \mid (\mathit{L}(M), \leqslant_{\mathrm{lex}}) \models \varphi\}$ undecidable (Carayol & Ésik '12)

- 1. there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ 1CA} \mid (L(M), \leq_{\text{lex}}) \models \varphi\}$ undecidable
- 2. \exists a 1CA M s.t. $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{lex}) \models \varphi\}$ undec.

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)
 - 2.2 there is a PDA M s.t. $\{\varphi \in \mathsf{FO} \mid (\mathit{L}(M), \leqslant_{\mathrm{lex}}) \models \varphi\}$ undecidable (Carayol & Ésik '12)

- 1. there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ 1CA} \mid (L(M), \leq_{\text{lex}}) \models \varphi\}$ undecidable
- 2. \exists a 1CA M s.t. $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{\operatorname{lex}}) \models \varphi\}$ undec. but $\{\varphi \in \Sigma_2 \mid \mathcal{L} \models \varphi\}$ decidable f.a. linear orders \mathcal{L}

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)
 - 2.2 there is a PDA M s.t. $\{\varphi \in \mathsf{FO} \mid (\mathit{L}(M), \leqslant_{\mathrm{lex}}) \models \varphi\}$ undecidable (Carayol & Ésik '12)

- 1. there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ 1CA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable
- 2. \exists a 1CA M s.t. $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undec. but $\{\varphi \in \Sigma_2 \mid \mathcal{L} \models \varphi\}$ decidable f.a. linear orders \mathcal{L}
- 3. there is a 1CA M s.t. $\{\varphi \in \mathsf{FO} \mid (L(M), \leqslant_{\mathrm{lex}}) \models \varphi\}$ not arithmetical

- 1. Caucal '02: validity of MSO-sentences on lexicographic order of deterministic context-free languages is uniformly decidable: $\{(M,\varphi)\mid M \text{ DPDA}, \varphi\in \text{MSO}, (L(M),\leqslant_{\text{lex}})\models\varphi\}$ decidable
- 2. Ésik et al.: Caucal's result does not extend to context-free languages
 - 2.1 there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ PDA} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Ésik '11)
 - 2.2 there is a PDA M s.t. $\{\varphi \in \text{FO} \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undecidable (Carayol & Ésik '12)

- 1. there is $\varphi \in \Sigma_2$ s.t. $\{M \text{ 1CA} \mid (L(M), \leq_{\text{lex}}) \models \varphi\}$ undecidable
- 2. \exists a 1CA M s.t. $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ undec. but $\{\varphi \in \Sigma_2 \mid \mathcal{L} \models \varphi\}$ decidable f.a. linear orders \mathcal{L}
- 3. there is a 1CA M s.t. $\{\varphi \in \mathsf{FO} \mid (L(M), \leqslant_{\mathrm{lex}}) \models \varphi\}$ not arithmetical

What proof whould you like to see?

What proof whould you like to see?

Option 1 There exists a 1CA M such that $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ is undecidable.

What proof whould you like to see?

Option 1 There exists a 1CA M such that $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ is undecidable.

Option 2 $\{\varphi \in \Sigma_2 \mid \mathcal{L} \models \varphi\}$ is decidable for all linear orders \mathcal{L} .

What proof whould you like to see?

Option 1 There exists a 1CA M such that $\{\varphi \in \Sigma_3 \mid (L(M), \leqslant_{\text{lex}}) \models \varphi\}$ is undecidable.

▶ Proof

Option 2 $\{\varphi \in \Sigma_2 \mid \mathcal{L} \models \varphi\}$ is decidable for all linear orders \mathcal{L} .

A simple Ehrenfeucht-Fra \ddot{s} sé-game for Σ_2

board: two linear orders \mathcal{L}_0 and \mathcal{L}_1

A simple Ehrenfeucht-Fraissé-game for Σ_2

board: two linear orders \mathcal{L}_0 and \mathcal{L}_1 1st round:

- spoiler chooses $i \in \{0,1\}$ and arbitrary number m of elements $a_1 < a_2 < \cdots < a_m$ in \mathcal{L}_i
- duplicator answers with same number m of elements $b_1 < b_2 < \cdots < b_m$ in \mathcal{L}_{1-i}

A simple Ehrenfeucht-Fraissé-game for Σ_2

board: two linear orders \mathcal{L}_0 and \mathcal{L}_1 1st round:

- spoiler chooses $i \in \{0,1\}$ and arbitrary number m of elements $a_1 < a_2 < \cdots < a_m$ in \mathcal{L}_i
- duplicator answers with same number m of elements $b_1 < b_2 < \cdots < b_m$ in \mathcal{L}_{1-i}

2nd round:

- spoiler chooses arbitrary number n of unchosen elements $b_{m+1} < b_{m+2} < \cdots < b_{m+n}$ in $\mathcal{L}_{1-i} \setminus \{b_1, \dots, b_n\}$
- duplicator answers with same number n of unchosen elements $a_{m+1} < a_{m+2} < \cdots < a_{m+n}$ in $\mathcal{L}_i \setminus \{a_1, \ldots, a_n\}$

A simple Ehrenfeucht-Fraissé-game for Σ_2

board: two linear orders \mathcal{L}_0 and \mathcal{L}_1 1st round:

- spoiler chooses $i \in \{0,1\}$ and arbitrary number m of elements $a_1 < a_2 < \cdots < a_m$ in \mathcal{L}_i
- duplicator answers with same number m of elements $b_1 < b_2 < \cdots < b_m$ in \mathcal{L}_{1-i}

2nd round:

- spoiler chooses arbitrary number n of unchosen elements $b_{m+1} < b_{m+2} < \cdots < b_{m+n}$ in $\mathcal{L}_{1-i} \setminus \{b_1, \dots, b_n\}$
- duplicator answers with same number n of unchosen elements $a_{m+1} < a_{m+2} < \cdots < a_{m+n}$ in $\mathcal{L}_i \setminus \{a_1, \ldots, a_n\}$

duplicator wins if tuples (a_1, \ldots, a_{m+n}) and (b_1, \ldots, b_{m+n}) are ordered in the same way

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 $\mathcal L$ linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb Z,\leqslant)\equiv_{\Sigma_2}\mathcal L.$

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 \mathcal{L} linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb{Z}, \leqslant) \equiv_{\Sigma_2} \mathcal{L}$.

Proof

Spoiler chooses $a_1 < a_2 < \cdots < a_m$ in \mathbb{Z} .

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 \mathcal{L} linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb{Z}, \leqslant) \equiv_{\Sigma_2} \mathcal{L}$.

Proof

Spoiler chooses $a_1 < a_2 < \cdots < a_m$ in \mathbb{Z} .

Duplicator chooses m consecutive elements $b_1 \lessdot b_2 \lessdot \cdots \lessdot b_m$ in \mathcal{L} .

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 \mathcal{L} linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb{Z}, \leqslant) \equiv_{\Sigma_2} \mathcal{L}$.

Proof

Spoiler chooses $a_1 < a_2 < \cdots < a_m$ in \mathbb{Z} .

Duplicator chooses m consecutive elements $b_1 \lessdot b_2 \lessdot \cdots \lessdot b_m$ in \mathcal{L} .

Spoiler chooses n elements from $\mathcal{L} \setminus \{b_1, \ldots, b_m\}$.

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 \mathcal{L} linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb{Z}, \leqslant) \equiv_{\Sigma_2} \mathcal{L}$.

Proof

Spoiler chooses $a_1 < a_2 < \cdots < a_m$ in \mathbb{Z} .

Duplicator chooses m consecutive elements $b_1 \lessdot b_2 \lessdot \cdots \lessdot b_m$ in \mathcal{L} .

Spoiler chooses n elements from $\mathcal{L} \setminus \{b_1, \ldots, b_m\}$. Some of these elements lie to the left, some to the right of interval $[b_1, b_m]$, but none in this interval.

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 \mathcal{L} linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb{Z}, \leqslant) \equiv_{\Sigma_2} \mathcal{L}$.

Proof

Spoiler chooses $a_1 < a_2 < \cdots < a_m$ in \mathbb{Z} .

Duplicator chooses m consecutive elements $b_1 \lessdot b_2 \lessdot \cdots \lessdot b_m$ in \mathcal{L} .

Spoiler chooses n elements from $\mathcal{L} \setminus \{b_1, \ldots, b_m\}$. Some of these elements lie to the left, some to the right of interval $[b_1, b_m]$, but none in this interval.

Duplicator chooses corresponding elements in $\mathbb{Z} \setminus [a_1, a_m]$

Duplicator has a winning strategy on $(\mathcal{L}_0, \mathcal{L}_1)$ iff $\mathcal{L}_1 \equiv_{\Sigma_2} \mathcal{L}_2$.

Application

 \mathcal{L} linear order without endpoints s.t. size of finite intervals is not finitely bounded. Then $(\mathbb{Z}, \leqslant) \equiv_{\Sigma_2} \mathcal{L}$.

Proof

Spoiler chooses $a_1 < a_2 < \cdots < a_m$ in \mathbb{Z} .

Duplicator chooses m consecutive elements $b_1 \lessdot b_2 \lessdot \cdots \lessdot b_m$ in \mathcal{L} .

Spoiler chooses n elements from $\mathcal{L} \setminus \{b_1, \ldots, b_m\}$. Some of these elements lie to the left, some to the right of interval $[b_1, b_m]$, but none in this interval.

Duplicator chooses corresponding elements in $\mathbb{Z}\setminus [a_1,a_m]$ – and wins.

Lemma

 ${\cal L}$ linear order without endpoints.

1. If the size of finite intervals in \mathcal{L} is not finitely bounded, then $\mathcal{L} \equiv_{\Sigma_2} (\mathbb{Z}, \leqslant)$.

Lemma

 ${\cal L}$ linear order without endpoints.

- 1. If the size of finite intervals in \mathcal{L} is not finitely bounded, then $\mathcal{L} \equiv_{\Sigma_2} (\mathbb{Z}, \leqslant)$.
- 2. If there are infinitely many finite intervals of size N, but none of size N+1, then $\mathcal{L} \equiv_{\Sigma_2} \mathbf{N} \cdot (\mathbb{Q}, \leqslant)$.

Lemma

 ${\cal L}$ linear order without endpoints.

- 1. If the size of finite intervals in \mathcal{L} is not finitely bounded, then $\mathcal{L} \equiv_{\Sigma_2} (\mathbb{Z}, \leqslant)$.
- 2. If there are infinitely many finite intervals of size N, but none of size N+1, then $\mathcal{L} \equiv_{\Sigma_2} \mathbf{N} \cdot (\mathbb{Q}, \leqslant)$.

Proof of 2nd statement as for 1st on previous slide.

Lemma and observation

 ${\cal L}$ linear order without endpoints.

- 1. If the size of finite intervals in \mathcal{L} is not finitely bounded, then $\mathcal{L} \equiv_{\Sigma_2} (\mathbb{Z}, \leqslant) \cong (1^*2 \cup 2^*, \leqslant_{\operatorname{lex}}).$
- 2. If there are infinitely many finite intervals of size N, but none of size N+1, then $\mathcal{L} \equiv_{\Sigma_2} \mathbf{N} \cdot (\mathbb{Q}, \leqslant)$.

Proof of 2nd statement as for 1st on previous slide.

Lemma and observation

 ${\cal L}$ linear order without endpoints.

- 1. If the size of finite intervals in \mathcal{L} is not finitely bounded, then $\mathcal{L} \equiv_{\Sigma_2} (\mathbb{Z}, \leqslant) \cong (1^*2 \cup 2^*, \leqslant_{\operatorname{lex}}).$
- 2. If there are infinitely many finite intervals of size N, but none of size N+1, then $\mathcal{L} \equiv_{\Sigma_2} \mathbf{N} \cdot (\mathbb{Q}, \leqslant) \cong (\{0,2\}^*\{1,11,\ldots,1^{N-1},2\}), \leqslant_{\mathrm{lex}}).$

Proof of 2nd statement as for 1st on previous slide.

more generally ...

Proposition

If \mathcal{L} is a linear order, then there exists a regular language L such that $\mathcal{L} \equiv_{\Sigma_2} (L, \leqslant_{\mathrm{lex}})$.

more generally . . .

Proposition

If \mathcal{L} is a linear order, then there exists a regular language L such that $\mathcal{L} \equiv_{\Sigma_2} (L, \leqslant_{\mathrm{lex}})$.

Theorem

For every linear order \mathcal{L} , the Σ_2 -theory is decidable

more generally . . .

Proposition

If \mathcal{L} is a linear order, then there exists a regular language L such that $\mathcal{L} \equiv_{\Sigma_2} (L, \leqslant_{\mathrm{lex}})$.

Theorem

For every linear order \mathcal{L} , the Σ_2 -theory is decidable . . .

... since it equals the Σ_2 -theory of $(L,\leqslant_{\mathrm{lex}})$ for some regular language L

more generally . . .

Proposition

If \mathcal{L} is a linear order, then there exists a regular language L such that $\mathcal{L} \equiv_{\Sigma_2} (L, \leqslant_{\mathrm{lex}})$.

Theorem

For every linear order \mathcal{L} , the Σ_2 -theory is decidable . . .

... since it equals the Σ_2 -theory of (L, \leqslant_{lex}) for some regular language L which is decidable by Caucal's result.

more generally . . .

Proposition

If \mathcal{L} is a linear order, then there exists a regular language L such that $\mathcal{L} \equiv_{\Sigma_2} (L, \leqslant_{\mathrm{lex}})$.

Theorem

For every linear order \mathcal{L} , the Σ_2 -theory is decidable . . .

... since it equals the Σ_2 -theory of (L, \leq_{lex}) for some regular language L which is decidable by Caucal's result.

▶ goto summary

There exists a one-counter language L s.t. the Σ_3 -theory of $(L, \leqslant_{\mathrm{lex}})$ is undecidable.

There exists a one-counter language L s.t. the Σ_3 -theory of $(L,\leqslant_{\mathrm{lex}})$ is undecidable.

Proof strategy

There exists a one-counter language L s.t. the Σ_3 -theory of $(L,\leqslant_{\mathrm{lex}})$ is undecidable.

Proof strategy

Let $A \subseteq \mathbb{N}$ be computably enumerable, but not computable.

There exists a one-counter language L s.t. the Σ_3 -theory of $(L, \leqslant_{\mathrm{lex}})$ is undecidable.

Proof strategy

Let $A \subseteq \mathbb{N}$ be computably enumerable, but not computable.

There exists a two-counter machine M that halts from (n,0) iff $n \in A$.

There exists a one-counter language L s.t. the Σ_3 -theory of $(L, \leqslant_{\mathrm{lex}})$ is undecidable.

Proof strategy

Let $A \subseteq \mathbb{N}$ be computably enumerable, but not computable.

There exists a two-counter machine M that halts from (n,0) iff $n \in A$.

Build, from M, a one-counter language L such that "M halts from (n,0)" is a Σ_3 -statement on $(L,\leqslant_{\mathrm{lex}})$.

A two-counter machine M

 $n \in A$ iff M halts from (n, 0)

The two-counter automaton 2CA

 $n \in A$ iff M halts from (n, 0)

The two-counter automaton 2CA

 $n \in A$ iff M halts from (n,0) iff some word from L(2CA) starts with $+_1^n \#$

The one-counter automaton $1CA_1$

tests and manipulates only first counter

 $n \in A$ iff M halts from (n,0) iff some word from L(2CA) starts with $+_1^n \#$

The one-counter automaton $1CA_2$

tests and manipulates only second counter

 $n \in A$ iff M halts from (n,0) iff some word from L(2CA) starts with $+_1^n \#$

The one-counter automaton $1CA_2$

tests and manipulates only second counter

 $n \in A$ iff M halts from (n,0) iff some word from L(2CA) starts with $+_1^n \#$ iff some word from $L(1CA_1) \cap L(1CA_2)$ starts with $+_1^n \#$.

$$< +_1 \# < +_1^2 \# < \dots < +_1^n \# < \dots$$

$$+_1^n \# s_1 < +_1^n \# s_2 < +_1^n \# s_3 < \{ +_1^n \# v \# \mid v \in \Delta^* \}$$

$$+_1^n \# v \# 0 \{ 0, 1 \}^* 1 < +_1^n \# v \# 1 \{ 0, 1 \}^* 1$$

$$\# < +_{1}\# < +_{1}^{2}\# < \dots < +_{1}^{n}\# < \dots$$

$$+_{1}^{n}\#s_{1} < +_{1}^{n}\#s_{2} < +_{1}^{n}\#s_{3} < \{+_{1}^{n}\#v\# \mid v \in \Delta^{*}\}$$

$$+_{1}^{n}\#v\#0\{0,1\}*1 < +_{1}^{n}\#v\#1\{0,1\}*1$$

$$\cong (\mathbb{Q}, \leqslant) = \eta$$

$$\cong (\mathbb{Q}, \leqslant)$$

$$< +_1 \# < +_1^2 \# < \dots < +_1^n \# < \dots$$

$$+_1^n \# s_1 < +_1^n \# s_2 < +_1^n \# s_3 < \{ +_1^n \# v \# \mid v \in \Delta^* \}$$

$$+_1^n \# v \# 0 \{ 0, 1 \}^* 1 < +_1^n \# v \# m_1 < +_1^n \# v \# 1 \{ 0, 1 \}^* 1$$

$$\cong (\mathbb{Q}, \leqslant) = \eta$$

$$\text{if } +_1^n \# v \in L(1CA_1)$$

$$< +_1 \# < +_1^2 \# < \dots < +_1^n \# < \dots$$

$$+_1^n \# s_1 < +_1^n \# s_2 < +_1^n \# s_3 < \{ +_1^n \# v \# \mid v \in \Delta^* \}$$

$$+_1^n \# v \# 0 \{ 0, 1 \}^* 1 < +_1^n \# v \# m_1 < +_1^n \# v \# m_2 < +_1^n \# v \# 1 \{ 0, 1 \}^* 1$$

$$\cong (\mathbb{Q}, \leqslant) = \eta$$

$$\cong (\mathbb{Q}, \leqslant)$$
if $+_1^n \# v \in L(1CA_1)$
if $+_1^n \# v \in L(1CA_2)$

$$< +_1 \# < +_1^2 \# < \dots < +_1^n \# < \dots$$

$$+_1^n \# s_1 < +_1^n \# s_2 < +_1^n \# s_3 < \{ +_1^n \# v \# \mid v \in \Delta^* \}$$

$$+_1^n \# v \# 0 \{ 0, 1 \}^* 1 < +_1^n \# v \# m_1 < +_1^n \# v \# m_2 < +_1^n \# v \# 1 \{ 0, 1 \}^* 1$$

$$\cong (\mathbb{Q}, \leqslant) = \eta \qquad \qquad \cong (\mathbb{Q}, \leqslant)$$
if $+_1^n \# v \in L(1CA_1)$ if $+_1^n \# v \in L(1CA_2)$

consequences

$$< +_1 \# < +_1^2 \# < \dots < +_1^n \# < \dots$$

$$+_1^n \# s_1 < +_1^n \# s_2 < +_1^n \# s_3 < \{ +_1^n \# v \# \mid v \in \Delta^* \}$$

$$+_1^n \# v \# 0 \{0, 1\}^* 1 < +_1^n \# v \# m_1 < +_1^n \# v \# m_2 < +_1^n \# v \# 1 \{0, 1\}^* 1$$

$$\cong (\mathbb{Q}, \leqslant) = \eta \qquad \qquad \cong (\mathbb{Q}, \leqslant)$$
if $+_1^n \# v \in L(1CA_1)$ if $+_1^n \# v \in L(1CA_2)$

consequences

• $+\frac{n}{1}\#\nu\#$ is replaced by $\eta + 2 + \eta$ if ν encodes halting computation from (n,0), and by $\eta + \eta = \eta = \eta + 1 + \eta$ otherwise

$$< +_1 \# < +_1^2 \# < \dots < +_1^n \# < \dots$$

$$+_1^n \# s_1 < +_1^n \# s_2 < +_1^n \# s_3 < \{ +_1^n \# v \# \mid v \in \Delta^* \}$$

$$+_1^n \# v \# 0 \{ 0, 1 \}^* 1 < +_1^n \# v \# m_1 < +_1^n \# v \# m_2 < +_1^n \# v \# 1 \{ 0, 1 \}^* 1$$

$$\cong (\mathbb{Q}, \leqslant) = \eta \qquad \qquad \cong (\mathbb{Q}, \leqslant)$$
if $+_1^n \# v \in L(1CA_1)$ if $+_1^n \# v \in L(1CA_2)$

consequences

- $+_1^n \# v \#$ is replaced by $\eta + 2 + \eta$ if v encodes halting computation from (n,0), and by $\eta + \eta = \eta = \eta + 1 + \eta$ otherwise
- $+_1^n \#$ is replaced by $\mathbf{3} + \eta + \mathbf{2} + \eta$ if there is halting computation from (n, 0), and by $\mathbf{3} + \eta$ otherwise

There exists a one-counter language L s.t. the Σ_3 -theory of $(L, \leqslant_{\mathrm{lex}})$ is undecidable.

There exists a one-counter language L s.t. the Σ_3 -theory of $(L, \leqslant_{\mathrm{lex}})$ is undecidable.

Proof.

with
$$(L, \leqslant_{\text{lex}}) \cong \sum_{n \in \mathbb{N}} \left(\mathbf{3} + \begin{cases} \eta + \mathbf{2} + \eta & (n \in A) \\ \eta & (n \notin A) \end{cases} \right)$$

There exists a one-counter language L s.t. the Σ_3 -theory of $(L, \leqslant_{\mathrm{lex}})$ is undecidable.

Proof.

with
$$(L, \leqslant_{\operatorname{lex}}) \cong \sum_{n \in \mathbb{N}} \left(\mathbf{3} + \begin{cases} \eta + \mathbf{2} + \eta & (n \in A) \\ \eta & (n \notin A) \end{cases} \right)$$
 we get

 $n \in A \iff (L, \leq_{\text{lex}}) \models$ between intervals of size 3 no. n and n+1, there is some finite interval of size 2

There exists a one-counter language L s.t. the Σ_3 -theory of (L, \leq_{lex}) is undecidable.

Proof.

with
$$(L, \leqslant_{\operatorname{lex}}) \cong \sum_{n \in \mathbb{N}} \left(\mathbf{3} + \begin{cases} \eta + \mathbf{2} + \eta & (n \in A) \\ \eta & (n \notin A) \end{cases} \right)$$
 we get

$$n \in A \iff (L, \leq_{\text{lex}}) \models$$
 between intervals of size 3 no. n and $n+1$, there is some finite interval of size 2

which is a Σ_3 -statement.

- 1. There exists
 - 1.1 $\varphi \in \Sigma_2$ such that the set of pairs of disjoint deterministic real-time 1-counter languages L_1 and L_2 with $(L_1 \cup L_2, \leqslant_{\operatorname{lex}}) \models \varphi$ is undecidable.

- 1. There exist
 - 1.1 $\varphi \in \Sigma_2$ such that the set of pairs of disjoint deterministic real-time 1-counter languages L_1 and L_2 with $(L_1 \cup L_2, \leqslant_{\operatorname{lex}}) \models \varphi$ is undecidable,
 - 1.2 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the Σ_3 -theory of $(L_1 \cup L_2, \leqslant_{\operatorname{lex}})$ is undecidable.

- 1. There exist
 - 1.1 $\varphi \in \Sigma_2$ such that the set of pairs of disjoint deterministic real-time 1-counter languages L_1 and L_2 with $(L_1 \cup L_2, \leqslant_{\operatorname{lex}}) \models \varphi$ is undecidable,
 - 1.2 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the Σ_3 -theory of $(L_1 \cup L_2, \leqslant_{\operatorname{lex}})$ is undecidable.

2. There is no linear order $\mathcal L$ such that the Σ_2 -theory of $\mathcal L$ is undecidable.

- 1. There exist
 - 1.1 $\varphi \in \Sigma_2$ such that the set of pairs of disjoint deterministic real-time 1-counter languages L_1 and L_2 with $(L_1 \cup L_2, \leqslant_{\operatorname{lex}}) \models \varphi$ is undecidable,
 - 1.2 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the Σ_3 -theory of $(L_1 \cup L_2, \leqslant_{\operatorname{lex}})$ is undecidable, and
 - 1.3 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the FO-theory of $(L_1 \cup L_2, \leqslant_{\text{lex}})$ is not arithmetical.
- 2. There is no linear order $\mathcal L$ such that the Σ_2 -theory of $\mathcal L$ is undecidable.

- 1. There exist
 - 1.1 $\varphi \in \Sigma_2$ such that the set of pairs of disjoint deterministic real-time 1-counter languages L_1 and L_2 with $(L_1 \cup L_2, \leqslant_{\operatorname{lex}}) \models \varphi$ is undecidable,
 - 1.2 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the Σ_3 -theory of $(L_1 \cup L_2, \leqslant_{\mathrm{lex}})$ is undecidable, and
 - 1.3 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the FO-theory of $(L_1 \cup L_2, \leqslant_{\mathrm{lex}})$ is not arithmetical.
- 2. There is no linear order $\mathcal L$ such that the Σ_2 -theory of $\mathcal L$ is undecidable.

A non-modest summary

These results cannot be improved any further.

- 1. There exist
 - 1.1 $\varphi \in \Sigma_2$ such that the set of pairs of disjoint deterministic real-time 1-counter languages L_1 and L_2 with $(L_1 \cup L_2, \leqslant_{\text{lex}}) \models \varphi$ is undecidable,
 - 1.2 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the Σ_3 -theory of $(L_1 \cup L_2, \leqslant_{\mathrm{lex}})$ is undecidable, and
 - 1.3 a pair of disjoint deterministic real-time 1-counter languages L_1 and L_2 such that the FO-theory of $(L_1 \cup L_2, \leqslant_{\mathrm{lex}})$ is not arithmetical.
- 2. There is no linear order $\mathcal L$ such that the Σ_2 -theory of $\mathcal L$ is undecidable.

A non-modest summary

These results cannot be improved any further (if you hesitate to consider blind one-counter automata ...).