Chapter 5

Eigenvalues and Eigenvectors

Contents

5 <i>A</i>	Invariant Subspaces
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

19 .															11
20 .															11
															11
22 .															12
23 .															12
24 .															13
25 .															13
26 .															14
27 .															14
28 .															14
29 .															15
30 .															15
															15
32 .															16
33 .															16
															16
35 .															17
36 .															17
37 .															17
38 .															18
39 .															19
40 .															20
															21
42 .															21
43 .															21

5A Invariant Subspaces

- 1 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V.
 - (a) Prove that if $U \subseteq \text{null } T$, then U is invariant under T.
 - (b) Prove that if range $T \subseteq U$, then U is invariant under T.

Solution:

- (a) Suppose $u \in U$, and because U is a subset of null-space of T, $u \in \text{null } T$. Tu = 0 and $0 \in U$. Thus, U is invariant under T. \square
- (b) Suppose $u \in U$. $Tu \in \operatorname{range} T$, and as $\operatorname{range} T$ is a subset of U, Tu must be an element of U, too. Hence, U is invariant under T. \square

- **2** Suppose that $T \in \mathcal{L}(V)$ and V_1, \ldots, V_m are subspaces of V invariant under T. Prove that $V_1 + \cdots + V_m$ is invariant under T.
 - Frove that $v_1 + \cdots + v_m$ is invariant u

Solution:

Suppose $v_k \in V_k$ for every $k \in \{1, ...\}$. Each V_k is invariant under T, therefore $Tv_k \in V_k$. Then, for every $v \in V_1 + \cdots + V_m$, which can be written as a linear combination of vectors v_1, \ldots, v_m , we can write:

$$Tv = T(a_1v_1 + \cdots + a_mv_m) = a_1Tv_1 + \cdots + a_mTv_m$$

So, Tv can be written as a linear combination of vectors from V_1, \ldots, V_m . Hence, $Tv \in V_1 + \cdots + V_m$, which means V_1, \ldots, V_m is invariant under T. \square

3 Suppose $T \in \mathcal{L}(V)$. Prove that the intersection of every collection of subspaces of V invariant under T is invariant under T.

Solution:

Let us denote subspaces of V invariant under T as U_i . Suppose u is a vector that belongs to the intersection of some collection of such subspaces, $u \in \bigcap_{i=1}^m U_i$. It means that $u \in U_i$ for every $i \in \{1, \ldots, m\}$.

Then, $Tu \in U_i$ for every $i \in \{1, ..., m\}$, or in other words $Tu \in \bigcap_{i=1}^m U_i$. That means, this intersection is invariant under T. This argument works for any collection of U_i , hence the intersection of every collection of subspaces of V invariant under T is invariant under T. \square

4 Prove of give a counterexample: If V is finite-dimensional and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Solution:

Suppose U is neither V, nor $\{0\}$. Let u_1, \ldots, u_m be a basis of U, and $u_1, \ldots, u_m, v_1, \ldots, v_n$ is a basis of V. Take some operator T, with its range being V, such that for every u_k :

$$Tu_k = A_{1,k}u_1 + \cdots + A_{m,k}u_m + B_{1,k}v_1 + \cdots + B_{n,k}v_n$$

with non-zero coefficients $B_{j,k}$. But if these coefficients are not zero, $Tu_k \notin U$, so U is not invariant under such T, which contradicts our initial assumption that U is invariant under every operator on V. Hence we conclude that U must be either $\{0\}$ or V. \square

5 Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is defined by T(x,y) = (-3y,x). Find the eigenvalues of T.

Solution:

Let λ be an eigenvalue of T with the eigenvector (x, y). Then:

$$T(x,y) = \lambda(x,y) = (-3y,x)$$

This is equivalent to a system of equations:

$$\lambda x = -3y$$
$$\lambda y = x$$

We can express x from the second equation and insert it into the first.

$$\lambda \cdot \lambda y = -3y$$

Hence the eigenvalue must satisfy the equation $\lambda^2 = -3$. This equation has no real roots, hence the operator T has no eigenvalues.

6 Define $T \in \mathcal{L}(\mathbb{F}^2)$ by T(w, z) = (z, w). Find all eigenvalues and eigenvectors of T.

Solution:

As in previous problem, we write a system of equations:

$$z = \lambda w$$
$$w = \lambda z$$

Expressing w from the second equation and inserting it into the first gives:

$$z = \lambda^2 z \quad \Rightarrow \quad \lambda^2 = 1$$

Thus we have two eigenvalues:

- 1. $\lambda_1 = 1$ with eigenvectors of form $v_1 = t(1, 1)$, where $t \in \mathbb{R}$;
- 2. $\lambda_2 = -1$ with eigenvectors of form $v_1 = t(1, -1)$, where $t \in \mathbb{R}$.
- 7 Define $T \in \mathcal{L}(\mathbb{F}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$. Find all eigenvalues and eigenvectors of T.

Solution:

Once again we write a system of equation that is equivalent to a condition of (z_1, z_2, z_3) being an eigenvector:

$$2z_2 = \lambda z_1$$
$$0 = \lambda z_2$$
$$5z_3 = \lambda z_3$$

Let us examine the second equation: it tell that either $\lambda = 0$ or $z_2 = 0$.

Assume $\lambda = 0$. Then the third equation tells that $z_3 = 0$, and the first equation tells that $z_2 = 0$ and z_1 is arbitrary.

Now assume $z_2 = 0$ and $\lambda \neq 0$. Then the first equation tells that $z_1 = 0$ and the third equation tells that $\lambda = 5$ and z_3 is arbitrary.

Thus, there are two eigenvalues:

- 1. $\lambda_1 = 0$ with an eigenvectors of form $v_1 = t(1,0,0)$, where $t \in \mathbb{F}$;
- 2. $\lambda_2 = 5$ with an eigenvectors of form $v_2 = t(0,0,1)$, where $t \in \mathbb{F}$.
- 8 Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that if λ is an eigenvalue of P, then $\lambda = 0$ or $\lambda = 1$.

Solution:

Suppose λ is an eigenvalue of P with the corresponding eigenvector u. Then we can write:

$$Pv = \lambda v$$
 and $Pv = P^2v = P(\lambda v) = \lambda^2 v$

So we have $(\lambda^2 v - \lambda v) = 0$ or $(\lambda^2 - \lambda)v = 0$. This equality can hold if either v = 0, or $(\lambda^2 - \lambda) = 0$. The first option is not the case as we supposed that v is an eigenvector. The second option gives the result that $\lambda = 0$ or $\lambda = 1$. \square

9 Define $T: \mathcal{P}(\mathbb{R}) \mapsto \mathcal{P}(\mathbb{R})$ by Tp = p'. Find all eigenvalues and eigenvectors of T.

Solution:

Suppose λ is an eigenvalue of T with corresponding eigenvector p. Then:

$$Tp = \lambda p = p'$$

Write the polynomial p as:

$$p = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Its derivative is:

$$p' = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$

Note that from inspection of x^n terms in $p' = \lambda p$ we can get a condition that $\lambda a_n = 0$. Then we do the same for x^{n-1} terms to get $\lambda a_{n-1} = na_n$. And so on until $\lambda a_0 = a_1$.

Assume $\lambda \neq 0$, so from $\lambda a_n = 0$ we conclude that $a_n = 0$. Then from $\lambda a_{n-1} = na_n$ we conclude that $a_{n-1} = 0$. And we thus continue until $a_0 = 0$.

Thus, $\lambda \neq 0$ means that p = 0, but we assumed that p is eigenvector so it cannot be the case.

Assume $\lambda = 0$. Then from $\lambda a_{n-1} = na_n$ we see that $a_n = 0$. And thus we continue for every equation $\lambda a_{k-1} = ka_k$ until $\lambda a_0 = a_1$. The coefficient a_0 is here arbitrary, and $p = a_0$.

Hence, the eigenvalue of T is $\lambda = 0$ with eigenvectors of form $p = a_0$, where $a_0 \in \mathbb{R}$.

10 Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbb{R}))$ by (Tp)(x) = xp'(x) for all $x \in \mathbb{R}$. Find all eigenvalues and eigenvectors of T.

Solution:

Let λ be an eigenvalue of T with the corresponding eigenvector p. Let p(x) has a form: $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$. Then:

$$(Tp)(x) = (\lambda p)(x) = \lambda(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4)$$

 $(Tp)(x) = xp'(x) = a_1x + 2a_2x^2 + 3a_3x^3 + 4a_4x^4$

Thus the following equations must be satisfied:

$$\lambda a_0 = 0,$$
 $\lambda a_1 = a_1,$
 $\lambda a_2 = 2a_2,$
 $\lambda a_3 = 3a_3,$
 $\lambda a_4 = 4a_4.$

Suppose in the first equation $a_0 \neq 0$, then $\lambda = 0$ and all other coefficients of p(x) are zero.

If $a_0 = 0$, then other coefficients can be non-zero. Suppose $a_1 \neq 0$, then from the second equation we conclude that $\lambda = 1$. Other equations can thus be satisfied only if $a_2 = a_3 = a_4 = 0$.

Similar reasoning can be applied to all subsequent equations. In the end we have five eigenvalues:

- 1. $\lambda = 0$ with eigenvectors p(x) = a, where $a_0 \in \mathbb{R}$;
- 2. $\lambda = 1$ with eigenvectors p(x) = ax, where $a \in \mathbb{R}$;
- 3. $\lambda = 2$ with eigenvectors $p(x) = ax^2$, where $a \in \mathbb{R}$;
- 4. $\lambda = 3$ with eigenvectors $p(x) = ax^3$, where $a \in \mathbb{R}$;
- 5. $\lambda = 4$ with eigenvectors $p(x) = ax^4$, where $a \in \mathbb{R}$.

11 Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\alpha \in \mathbb{F}$. Prove that there exists $\delta \geq 0$ such that $T - \lambda I$ is invertible for all $\lambda \in \mathbb{F}$ such that $0 < |\alpha - \lambda| < \delta$.

Solution:

V is finite-dimensional, so by 5.12, there is a finite number of eigenvalues of T.

For a given α , pick the closest to it eigenvalue of T, μ . Then, choose δ such that $\delta = |\alpha - \mu|$. By construction, there is no other eigenvalue between α and μ , hence any λ such that $0 < |\alpha - \lambda| < \delta$ is not an eigenvalue of T, so $T - \lambda I$ is invertible. \square

12 Suppose $V = U \oplus W$, where U and W are nonzero subspaces of V. Define $P \in \mathcal{L}(V)$ by P(u+w) = u for each $u \in U$ and each $w \in W$. Find all eigenvalues and eigenvectors of P.

Solution:

Every $v \in V$ can be written uniquely as v = u + w where $u \in U$ and $w \in W$. Suppose some v is an eigenvector with eigenvalue λ . Then

$$Tv = \lambda v = \lambda u + \lambda w = T(u + w) = u$$

This equation can be satisfied if either $\lambda=1$ and w=0, or $\lambda=0$ and u=0. Thus eigenvalues of P are:

- 1. $\lambda_1 = 1$ with eigenvectors $v_1 = u$, where $u \in U$;
- 2. $\lambda_2 = 0$ with eigenvectors $v_2 = w$, where $w \in W$.
- 13 Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible.
 - (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
- (b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS$?

Solution:

(a) Assume λ is an eigenvalue of T. That means operator $(T-\lambda I)$ is not invertible. Then note that:

$$T - \lambda I = SS^{-1}T - \lambda SS^{-1} = S(S^{-1}T - \lambda S^{-1})$$

= $S(S^{-1}TSS^{-1} - \lambda S^{-1})$
= $S(S^{-1}TS - \lambda I)S^{-1}$

As S is invertible, we conclude that $(S^{-1}TS - \lambda I)$ is not invertible. Hence, λ is also an eigenvalue of $S^{-1}TS$.

Now suppose μ is an eigenvalue of $S^{-1}TS$. Applying the same logic to non-invertible operator $(S^{-1}TS - \mu I)$, we get:

$$S^{-1}TS - \mu I = S^{-1}TS - \mu S^{-1}S = S^{-1}(TS - \mu S) = S^{-1}(T - \mu I)S$$

So $T - \mu I$ is not invertible, so μ is also an eigenvalue of T.

Thus we have shown that T and $S^{-1}TS$ have the same eigenvalues. \square

- (b) If u is an eigenvector of $S^{-1}TS$, then the eigenvector of T with the same eigenvalue is Su.
- 14 Give and example of an operator on \mathbb{R}^4 that has no (real) eigenvalues. Solution:

Let us define an operator $T \in \mathcal{L}(\mathbb{R}^4)$ as:

$$T(x_1, x_2, x_3, x_4) = (x_2, -2x_1, 3x_4, -4x_3).$$

Indeed, if λ were an eigenvalue of T, then the following system would have solution for at leat one non-zero x_i :

$$x_2 = \lambda x_1$$
$$-2x_1 = \lambda x_2$$
$$3x_4 = \lambda x_3$$
$$-4x_3 = \lambda x_4$$

It follows from the first two equations that $\lambda^2 = -2$ (if x_1 and x_2 are not zero). From the last two equations, it follows that $\lambda^2 = -12$ (if x_3 and x_4 are not zero). Thus $\lambda \notin \mathbb{R}$ and T is the desired operator. \square

15 Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of the dual operator $T' \in \mathcal{L}(V')$.

Solution:

We conclude from propositions 3.129 and 3.131 that $S \in \mathcal{L}(V)$ is injective if and only if $S' \in \mathcal{L}(V')$ is injective. This property can be reformulated as: S is not injective if and only if S' is not injective.

Suppose λ is an eigenvalue of T. By 5.7, it is equivalent to $T - \lambda I$ being not injective. As stated above, $T - \lambda I$ is not injective if and only if $(T - \lambda I)'$

is not injective. Using properties of dual maps, we get:

$$(T - \lambda I)' = T' - \lambda I'$$

where I' is an identity operator on dual space. Hence, $T' - \lambda I'$ is not injective and λ is an eigenvalue of T'.

Thus, λ is an eigenvalue of T is and only if it is an eigenvalue of T'. \square

16 Suppose v_1, \ldots, v_n is a basis of V and $T \in \mathcal{L}(V)$. Prove that if λ is an eigenvalue of T, then

$$|\lambda| \le n \max\{|\mathcal{M}(T)_{j,k}| : 1 \le j, k \le n\},\$$

where $\mathcal{M}(T)_{j,k}$ denotes the entry in row j, column k of the matrix of T with respect to the basis v_1, \ldots, v_n .

Solution:

Let v be an eigenvector of T with eigenvalue λ . v can be written in the given basis as:

$$v = a_1 v_1 + \dots + a_n v_n = \sum_{k=1}^{n} a_k v_k$$

Then we will act on it by the operator T:

$$Tv = T(\sum_{k=1}^{n} a_k v_k) = \sum_{k=1}^{n} a_k \sum_{j=1}^{n} \mathcal{M}(T)_{j,k} v_j = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} a_k \mathcal{M}(T)_{j,k}\right) v_j$$

and also:

$$Tv = \lambda v = \sum_{j=1}^{n} \lambda a_j v_j$$

From these two equations we conclude that:

$$\lambda a_j = \sum_{k=1}^n a_k \mathcal{M}(T)_{j,k}$$

Take the largest coefficient a_j . Then:

$$\lambda = \sum_{k=1}^{n} \frac{a_k}{a_j} \mathcal{M}(T)_{j,k}$$

Then we examine the absolute value of λ :

$$|\lambda| = \left| \sum_{k=1}^{n} \frac{a_k}{a_j} \mathcal{M}(T)_{j,k} \right| \le \sum_{k=1}^{n} \left| \frac{a_k}{a_j} \mathcal{M}(T)_{j,k} \right| \le \sum_{k=1}^{n} |\mathcal{M}(T)_{j,k}| \le n \max\{|\mathcal{M}(T)_{j,k}|\}$$

where the first inequality comes from properties of absolute value, second inequality from the fact that a_j is largest coefficient, so that $a_k/a_j \leq 1$, and in the third inequality we replaced matrix elements with the largest matrix element.

Thus we have arrived at the desired inequality. \square

17 Suppose $\mathbb{F} = \mathbb{R}$, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{R}$. Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of the complexification $T_{\mathbb{C}}$.

Solution:

Let λ be an eigenvalue of T. That means $T - \lambda I$ is not injective. From *Problem 3B.33* we know that $(T - \lambda I)_{\mathbb{C}}$ is not injective if and only if $T - \lambda I$ is not injective. Notice that for any $u, v \in V$:

$$(T - \lambda I)_{\mathbb{C}}(u + iv) = (T - \lambda I)u + i(T - \lambda I)v = (Tu + iTv) - \lambda(Iu + iIv)$$
$$= T_{\mathbb{C}}(u + iv) - \lambda I_{\mathbb{C}}(u + iv) = (T_{\mathbb{C}} - \lambda I_{\mathbb{C}})(u + iv)$$

So, $(T - \lambda I)_{\mathbb{C}} = T_{\mathbb{C}} - \lambda I_{\mathbb{C}}$ and thus $T_{\mathbb{C}} - \lambda I_{\mathbb{C}}$ is not injective, which means λ is an eigenvalue of $T_{\mathbb{C}}$. \square

18 Suppose $\mathbb{F} = \mathbb{R}$, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{C}$. Prove that λ is an eigenvalue of the complexification $T_{\mathbb{C}}$ if and only if $\overline{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$.

Solution:

Suppose $\lambda = a + ib$ is an eigenvalue of $T_{\mathbb{C}}$ with eigenvector v + iu. Then:

$$T_{\mathbb{C}}(v+iu) = \lambda(v+iu) = (av+bu) + i(bv+au) = T(v) + iT(u)$$

Thus, T(v) = av + bu and T(u) = bv + au. Now examine the combination $\overline{\lambda}(v - iu)$:

$$\overline{\lambda}(v-iu) = (a-ib)(v-iu) = (av+bu) - i(bv+au) = Tu - iTv = T_{\mathbb{C}}(u-iv)$$

Thus, if λ is an eigenvalue of $T_{\mathbb{C}}$ with eigenvector u+iv, then $\overline{\lambda}$ is also an eigenvalue of $T_{\mathbb{C}}$ but with eigenvector u-iv. Reverse statement is obtained if we change the roles of λ and $\overline{\lambda}$. \square

19 Show that the forward shift operator $T \in \mathcal{L}(\mathbb{F}^{\infty})$ defined by

$$T(z_1, z_2, \ldots) = (0, z_1, z_2, \ldots)$$

has no eigenvalues.

Solution:

Suppose λ is an eigenvalue of T. Then:

$$T(z_1, z_2, z_3, \ldots) = \lambda(z_1, z_2, z_3, \ldots) = (0, z_1, z_2, \ldots)$$

So, $\lambda z_1 = 0$, $\lambda z_2 = z_1$, etc. If $z_1 \neq 0$, then from the first equation $\lambda = 0$. But it contradicts the second equation as $0 \cdot z_2$ cannot be equal to nonzero number like z_1 . Thus we conclude that $z_1 = 0$, and then the second equation turns to $\lambda z_2 = 0$. Repeating the same argument, we arrive at $z_2 = 0$ and $\lambda z_3 = 0$. Continuing this leads to $\lambda z_k = 0$ for every $k \in \mathbb{N}$, which means that the supposed eigenvector is a zero-vector. By definition, 0 is not an eigenvector, hence T has no eigenvectors and no eigenvalues. \square

20 Define the backward shift operator $S \in \mathcal{L}(\mathbb{F}^{\infty})$ defined by:

$$S(z_1, z_2, z_3, \ldots) = (z_2, z_3, \ldots)$$

- (a) Show that every element of \mathbb{F} is an eigenvalue of S.
- (b) Find all eigenvectors of S.

Solution:

Take some $\lambda \in \mathbb{F}$ and suppose it is an eigenvalue of S.

$$S(z_1, z_2, z_3, \ldots) = (z_2, z_3, \ldots) = \lambda(z_1, z_2, z_3, \ldots)$$

Hence, $\lambda z_k = z_{k+1}$ for every $k \in \mathbb{N}$.

If $\lambda = 0$, then we can take $z_1 = 0$ and arbitrary z_2, z_3 , etc. So, for $\lambda = 0$, eigenvectors are $(0, z_1, z_2, \ldots)$, where $z_k \in \mathbb{F}$.

If $\lambda \neq 0$, then we choose nonzero z_k such that $z_{k+1} = \lambda z_k$. So, for $\lambda \neq 0$, eigenvectors are $(1, \lambda, \lambda^2, \ldots)$.

Thus, every $\lambda \in \mathbb{F}$ is an eigenvalue. \square

- **21** Suppose $T \in \mathcal{L}(V)$ is invertible.
 - (a) Suppose $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

(b) Prove that T and T^{-1} have the same eigenvectors.

Solution:

Suppose λ is an eigenvalue of T with eigenvector v: $Tv = \lambda v$. As T is an invertible operator, we write:

$$T^{-1}(\lambda v) = T^{-1}Tv = v = \lambda T^{-1}v$$

Thus, we have $T^{-1}v=(1/\lambda)v$. This shows both required points: λ and $1/\lambda$ are eigenvalues of T and T^{-1} with the same eigenvector v. As $(T^{-1})^{-1}=T$, the argument works in the opposite direction too. \square

22 Suppose $T \in \mathcal{L}(V)$ and there exist nonzero vectors u and w in V such that

$$Tu = 3w$$
 and $Tw = 3u$

Prove that 3 or -3 is an eigenvalue of T.

Solution:

Take a linear combination u + w. If $u + w \neq 0$, then

$$T(u+w) = Tu + Tw = 3w + 3u = 3(u+w)$$

Thus, 3 is an eigenvalue of T.

If u + w = 0, then take u - w, which in that case is nonzero. Then:

$$T(u-w) = Tu - Tw = 3w - 3u = -3(u-w)$$

Thus, -3 is an eigenvalue of T.

So we have shown that indeed 3 or -3 is an eigenvalue of T. \Box

23 Suppose V is finite-dimensional and $S,T\in\mathcal{L}(V)$. Prove that ST and TS have the same eigenvalues.

Solution:

Assume λ is an eigenvalue of ST with eigenvector v: $STv = \lambda v$. It can be thought as $S(Tv) = \lambda v$. Now examine the following:

$$TS(Tv) = T(STv) = T(\lambda v) = \lambda Tv$$

Hence, Tv is an eigenvector of TS that has eigenvalue λ . Tv is nonzero, otherwise S(Tv) must be zero, but it is not.

Similar argument (changing roles of S and T) gives that every eigenvalue of TS is also an eigenvalue of ST.

Thus, ST and TS has the same eigenvalues. \square

- **24** Suppose A is an n-by-n matrix with entries in \mathbb{F} . Define $T \in \mathcal{L}(\mathbb{F}^n)$ by Tx = Ax, where elements of \mathbb{F}^n are thought of as n-by-1 column vectors.
 - (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigenvalue of T.
 - (b) Suppose the sum of the entries of each column of A equals 1. Prove that 1 is an eigenvalue of T.

Solution:

(a) Take $x = (1, 1, ..., 1)^t$, i.e. column vector with all entries equal to 1. Then:

$$Ax = \begin{pmatrix} \sum_{i}^{n} A_{1,i} x_{i} \\ \sum_{i}^{n} A_{2,i} x_{i} \\ \vdots \\ \sum_{i}^{n} A_{n,i} x_{i} \end{pmatrix} = \begin{pmatrix} \sum_{i}^{n} A_{1,i} \\ \sum_{i}^{n} A_{2,i} \\ \vdots \\ \sum_{i}^{n} A_{n,i} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

where in the second equals sign we used that every $x_i = 1$ and in the third equals sign we used that the sum of entries in each row equals 1. Thus, x is an eigenvector of T with an eigenvalue 1. \square

(b) Let T' be a dual map of T. Then, matrix of T' is a transpose of matrix of T (proposition 3.132), so $\mathcal{M}(T') = A^t$.

As sum of all entries in each column of A equals 1, the sum of all entries in each row of A^t therefore equals 1. We know from the part (a) of this problem that the operator corresponding to A^t (that is, T') has eigenvalue 1. And by $Problem \ 5A.15$, the operator T must also have this eigenvalue. \square

25 Suppose $T \in \mathcal{L}(V)$ and u, w are eigenvectors of T such that u + w is also an eigenvector of T. Prove that u and w are eigenvectors of T corresponding to the same eigenvalue.

Solution:

Assume that u and w are eigenvectors with distinct eigenvalues λ and μ . Let κ be an eigenvalue of T corresponding to u+w. κ may be distinct from λ or μ or equal to one of them. Examine the expression T(u+w)-T(u+w)=0:

$$T(u+w) - Tu - Tw = 0$$

$$\kappa(u+w) - \lambda u - \mu w = 0$$

$$(\kappa - \lambda)u + (\kappa - \mu)w = 0$$

Thus, we have a linear combination of u and w that is equal to 0. Note, that $\kappa - \lambda$ and $\kappa - \mu$ cannot be equal to zero simultaneously, as $\lambda \neq \mu$.

Hence, u and w are linearly dependent. But we have assumed that these vectors correspond to different eigenvalues, so by Theorem 5.11, they must be linearly independent. That is a contradiction.

Thus, u and w are eigenvectors corresponding to the same eigenvalue. \square

26 Suppose $T \in \mathcal{L}$ is such that every nonzero vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.

Solution:

Take any nonzero $v, w \in V$. These two vectors are eigenvectors of T, and so is their linear combination u + w. By the result of the previous problem, v and w correspond to the same eigenvalue.

This argument applies to all vectors in V, hence we have $Tv = \lambda v$ for all $v \in V$. At the same time $\lambda Iv = \lambda v$ for all $v \in V$. Thus $T = \lambda I$. \square

27 Suppose that V is finite-dimensional and $k \in \{1, ..., \dim V - 1\}$. Suppose $T \in \mathcal{L}$ is such that every subspace of V of dimension k is invariant under T. Prove that T is a scalar multiple of the identity operator.

Solution:

If k = 1, then every vector in V is an eigenvector. By the result of the previous problem, it means that T is a scalar multiple of the identity operator.

Suppose $k \geq 1$. Then take k distinct subspaces of V and construct their intersection. This intersection is either $\{0\}$ or a one-dimensional vector (sub)space. From $Problem\ 5A.3$ we know that such intersection is also invariant under T. Taking arbitrary k-dimensional subspaces we can construct every one-dimensional subspace of V, thus returning to the k=1 case. Hence T is a scalar multiple of the identity operator. \square

28 Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that T has at most $1 + \dim \operatorname{range} T$ distinct eigenvalues.

Solution:

range T is a subspace of V invariant under T. A maximum number of eigenvectors, that are elements of range T, is dim range T (5.12).

If $u \in V$ is an eigenvector of T, such that $u \notin \operatorname{range} T$, then the equality:

$$Tu = \lambda u$$

can be satisfied only if $\lambda = 0$. This value of λ is the corresponding eigenvalue. Thus, there are at most $1 + \dim \operatorname{range} T$ distinct eigenvalues of T. \square

29 Suppose $T \in \mathcal{L}(\mathbb{R}^3)$ and -4, 5 and $\sqrt{7}$ are eigenvalues of T. Prove that there exists $x \in \mathbb{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$.

Solution:

We know three eigenvalues of T and the dimension of the vector space (\mathbb{R}^3) is 3, hence there is no other eigenvalue.

An operator (T-9I) is invertible, otherwise 9 would have been an eigenvalue of T, which it cannot be. Hence, there exists $x \in \mathbb{R}^3$ such that $Tx - 9x = (T - 9I)x = (-4, 5, \sqrt{7})$. \square

30 Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I)=0. Suppose λ is an eigenvalue of T. Prove that $\lambda=2$ or $\lambda=3$ or $\lambda=4$.

Solution:

Take nonzero $v \in V$. If (T-4I)v = 0, then Tv = 4v, so v is an eigenvector and the eigenvalue (λ) is 4.

If $(T-4I)v \neq 0$, then denote w = (T-4I)v. If (T-3I)w = 0, then Tw = 3w, so w is an eigenvector of T and $\lambda = 3$.

If $(T-3I)2 \neq 0$, then denote u = (T-3I)w. Then necessarily (T-2I)u = 0, hence Tu = 2u, so u is an eigenvector of T and $\lambda = 2$.

Thus we have shown that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$. \square

31 Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

Solution:

Take (1,0),(0,1) as a basis of \mathbb{R}^2 . The desired operator T is "rotation by $\pi/4$ " and it is represented by the matrix:

$$\mathcal{M}(T) = \begin{pmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{pmatrix}$$

Indeed:

$$\mathcal{M}(T^4) = (\mathcal{M}(T))^4 = \begin{pmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{pmatrix}^4$$

$$\begin{pmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{pmatrix}^2 = \begin{pmatrix} \cos\left(\frac{\pi}{4}\right)^2 - \sin\left(\frac{\pi}{4}\right)^2 & -2\cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) \\ 2\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right)^2 - \sin\left(\frac{\pi}{4}\right)^2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{pmatrix}^4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \mathcal{M}(-I)$$

Thus, $T^4 = -I$.

32 Suppose $T \in \mathcal{L}(V)$ has no eigenvalues and $T^4 = I$. Prove that $T^2 = -I$. Solution:

Comment: Here we assume that the vector space is over real numbers. Otherwise, every operator would have an eigenvalue, as is proven later in Theorem 5.19.

Rewrite $T^4 = I$ as: $T^4 - I = 0$. We factorize this polynomial applied to an operator to get:

$$(T^2 + I)(T - I)(T + I) = 0$$

1 and -1 are not eigenvalues of T, so (T-I) and (T+I) are injective operators. That means $(T-I)v \neq 0$ and $(T+I)v \neq 0$ for every nonzero $v \in V$. Hence we conclude that $T^2 + I = 0$, or if rewrite, $T^2 = -I$. \square

- **33** Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is injective if and only if T^m is injective.
 - (b) Prove that T is surjective is and only if T^m is surjective.

Solution:

(a) If T is injective, then T^m is injective as a composition of operators.

If T^m is injective, then we prove by contradiction. Suppose T is not injective and $v \neq 0, v \in T$. Then:

$$T^m v = T^{m-1}(Tv) = T^{m-1}(0) = 0$$

so T^m is also not injective, contrary to our initial assumption.

Hence, T is injective if and only if T^m is injective. \square

(b) If T is surjective, then T^m is surjective as a composition of operators.

If T^m is surjective, then we prove by contradiction. Suppose T is not surjective. Take $w \in V$ such that $w \notin \text{range } T$. As T^m is surjective, there exists such $v \in V$ that $T^m v = w$. Then:

$$T^m v = T(T^{m-1}v) = w$$

so $w \in \operatorname{range} T$, contrary to our initial assumption.

Hence, T is surjective if and only if T^m is surjective. \square

34 Suppose V is finite-dimensional and $v_1, \ldots, v_m \in V$. Prove that the list v_1, \ldots, v_m is linearly independent if and only if there exists $T \in \mathcal{L}(V)$ such that v_1, \ldots, v_m are eigenvectors of T corresponding to distinct eigenvalues.

Solution:

Implication from the 'necessary condition' is just Theorem 5.11. So will show only implication from the 'sufficient condition'.

Assume v_1, \ldots, v_m is linearly independent list. Extend this list to the basis of $V: v_1, \ldots, v_m, u_1, \ldots, u_n$. Take an operator $T \in \mathcal{L}(V)$ such that

$$Tv_i = \lambda_i v_i$$
$$Tu_j = 0$$

for every $i \in \{1, ..., m\}$ and every $j \in \{1, ..., n\}$ with λ_i being distinct numbers in \mathbb{F} .

These values of Tv_i and Tu_j uniquely define T (by lemma 3.4). Note, that by construction, v_1, \ldots, v_m are eigenvectors of T with distinct eigenvalues, hence the desired operator exists. \square

35 Suppose $\lambda_1, \ldots, \lambda_n$ is a list of distinct real numbers. Prove that the list $e^{\lambda_1 x}, \ldots, e^{\lambda_n x}$ is linearly independent in the vector space of real-valued functions on \mathbb{R} .

Solution:

Take differentiation operator D(f) = f'. Note that for every $k \in \{1, \dots, n\}$:

$$D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$$

We see that $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$ is a list of eigenvectors of D with distinct eigenvalues, hence it is linearly independent. \square

36 Suppose that $\lambda_1, \ldots, \lambda_n$ is a list of distinct positive numbers. Prove that the list $\cos(\lambda_1 x), \ldots, \cos(\lambda_n x)$ is linearly independent in the vector space of real-valued functions on \mathbb{R} .

Solution:

Take operator $D^2(f) = f''$. Note that for every $k \in \{1, ..., n\}$:

$$D^{2}(\cos(\lambda_{k}x)) = -\lambda_{k}^{2}\cos(\lambda_{k}x)$$

We see that $\cos(\lambda_1 x), \ldots, \cos(\lambda_n x)$ is a list of eigenvectors of D^2 with distinct eigenvalues, hence it is linearly independent. \square

37 Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by

$$\mathcal{A}(S) = TS$$

for each $S \in \mathcal{L}(V)$. Prove that the set of eigenvalues of T equals the set of eigenvalues of A.

Solution:

A number λ is an eigenvalue of \mathcal{A} if and only if $(\mathcal{A} - \lambda \mathcal{I})$ is not invertible (here \mathcal{I} is identity operator in $\mathcal{L}(\mathcal{L}(V))$).

Let $S \in \text{null}(A - \lambda I)$. It means:

$$(A - \lambda I)S = 0$$
$$A(S) - \lambda I(S) = 0$$
$$TS - \lambda S = 0$$
$$(T - \lambda I)S = 0$$

 $S \neq 0$, hence for the last equality to hold, it must be that null $(T - \lambda I) = \text{range } S \neq \{0\}$. Hence, $(T - \lambda I)$ is not injective. Thus we see that λ is an eigenvalue of \mathcal{A} is and only if λ is an eigenvalue of T. \square

38 Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and U is a subspace of V invariant under T. The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by

$$(T/U)(v+U) = Tv + U$$

for each $v \in V$.

- (a) Show that the definition of T/U makes sense (which requires using the condition that U is invariant under T) and show that T/U is an operator on V/U.
- (b) Show that each eigenvalue of T/U is an eigenvalue of T.

Solution:

(a) By definition $v+U=\{v+u:u\in U\}$. So if we act on a linear combination v+u by T we get:

$$T(v+u) = Tv + Tu$$

U is invariant under T: $Tu \in U$. So $(Tv + Tu) \in \{Tv + u : u \in U\}$ and the definition makes sense.

Let us check that T/U is a linear map.

Additivity: Suppose $v, w \in V$. Then:

$$(T/U) ((v + U) + (w + U)) = (T/U)(v + w + U) = T(v + w) + U$$

$$= Tv + Tw + U = (Tv + U) + (Tw + U)$$

$$= (T/U)(v + U) + (T/U)(w + U) \quad \checkmark$$

Homogeneity: Suppose $v \in V$ and $\lambda \in \mathbb{F}$.

$$(T/U) (\lambda(v+U)) = (T/U)(\lambda v + U)$$

$$= T(\lambda v) + U = \lambda Tv + U = \lambda (Tv + U)$$

$$= \lambda (T/U)(v + U) \quad \checkmark$$

(b) Suppose λ is an eigenvalue of (T/U) with eigenvector v+U.

$$(T/U)(v+U) = Tv + U$$
$$= \lambda v + U$$

Hence $(Tv - \lambda v) \in U$ by lemma 3.101. Denote $u = Tv - \lambda v$, so $Tv = \lambda v + u$. Take $w \in V$, then:

$$T(v+w) = Tv + Tw = \lambda v + u + Tw$$

We would like to find w such that v+w is an eigenvector of T with eigenvalue λ . For that we need $u+Tw=\lambda w$. Rewriting it, we get:

$$(\lambda I - T)w = u$$

If $(\lambda I - T)$ is not invertible, then $(T - \lambda I)$ is not invertible and hence λ is an eigenvalue of T.

If $(\lambda I - T)$ is invertible, then:

$$w = (\lambda I - T)^{-1}u$$

Which is the sought vector and thus λ is an eigenvalue of T. \square

39 Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that T has an eigenvalue if and only if there exists a subspace of V of dimension dim V-1 that is invariant under T.

Solution:

 \longrightarrow Assume T has an eigenvalue. We need the following identity (from Fundamental Theorem of linear maps:

$$\dim \operatorname{range} (T - \lambda I) = \dim V - \dim \operatorname{null} (T - \lambda I)$$

Note, that $T - \lambda I$ is a polynomial $p(z) = z - \lambda$ applied to T. By proposition 5.18, range $(T - \lambda I)$ is invariant under T.

There is at least eigenvector of T, hence $\dim \operatorname{null}(T - \lambda I) \geq 1$ and therefore $\dim \operatorname{range} T - \lambda I \leq \dim V - 1$.

If it is equality, then range $(T - \lambda I)$ is the desired subspace of V.

If it is less than $\dim V - 1$, then we extend a basis of range $(T - \lambda I)$ until we get $\dim V - 1$ vectors in the basis and thus a subspace (let us denote it W) of the desired dimension. W is invariant under $(T - \lambda I)$ by $Problem \ 5A.1b$. To show that W is also invariant under T, suppose $w_1, w_2 \in W$ are such that $(T - \lambda I)w_1 = w_2$. Then, rearranging the terms, we get:

$$Tw_1 = w_2 + \lambda w_1$$

 $(w_2 + \lambda w_2) \in W$, hence $Tw_1 \in W$ and thus we have shown that W is a subspace of V invariant under T with dimension dim V - 1, as desired.

 \leftarrow Assume U is a subspace of V of dimension dim V-1 that is invariant under T. Examine the operator (T/U) (as in *Problem 5A.38*). It is an operator on V/U — a vector space with dimension (proposition 3.105):

$$\dim V/U = \dim V - \dim U = 1$$

By Problem 3A.7, the operator (T/U) is a scalar multiple of identity:

$$(T/U)(v+U) = \lambda(v+U) = \lambda v + U$$

Thus, by definition, λ is an eigenvalue of (T/U) and from *Problem 5A.38* we know that T has the same eigenvalues as (T/U) does. Thus, T has an eigenvalue. \square

40 Suppose $S, T \in \mathcal{L}(V)$ and S is invertible. Suppose $p \in \mathcal{P}(\mathbb{F})$ is a polynomial. Prove that:

$$p(STS^{-1}) = Sp(T)S^{-1}.$$

Solution:

$$p = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$
$$p(STS^{-1}) = a_0 + a_1 STS^{-1} + a_2 (STS^{-1})^2 + \dots + a_n (STS^{-1})^n$$

Notice that:

$$(STS^{-1})^2 = STS^{-1}STS^{-1} = ST^2S^{-1}$$

 $(STS^{-1})^3 = STS^{-1}STS^{-1}STS^{-1} = ST^3S^{-1}$

And so on. Hence:

$$p(STS^{-1}) = a_0 + a_1STS^{-1} + a_2ST^2S^{-1} + \dots + a_nST^nS^{-1}$$

= $S(a_0 + a_1T + a_2T^2 + \dots + a_nT^n)S^{-1} = Sp(T)S^{-1}$ \square

41 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V invariant under T. Prove that U is invariant under p(T) for every polynomial $p \in \mathcal{P}(\mathbb{F})$.

Solution:

Consider p(T)u for any $u \in U$.

$$p(T)u = (a_0 + a_1T + \dots + a_nT^n)u = a_0u + a_1Tu + \dots + a_nT^nu$$

As U is invariant under T, any T^ku is in U, so as any scalar multiple of T^ku . Thus $p(T)u \in U$, which means U is invariant p(T) for any $p \in \mathcal{P}(\mathbb{F})$. \square

- **42** Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$.
 - (a) Find all eigenvalues and eigenvectors of T.
 - (b) Find all subspaces of \mathbb{F}^n that are invariant under T.

Solution:

(a) Eigenvalues are: 1, 2, ..., n. Corresponding eigenvectors are: a_1e_1 , a_2e_2 , ..., a_ne_n , where $a_1, \ldots, a_n \in \mathbb{F}$ and e_1, \ldots, e_n is the standard basis of \mathbb{F}^n . Indeed:

$$T(\ldots,0,x_k,0,\ldots) = (\ldots,0,kx_k,0,\ldots) = k(\ldots,0,x_k,0,\ldots)$$

The dimension of \mathbb{F}^n is n, so there are no more eigenvalues.

- (b) Define $U_k = \operatorname{span}(e_k)$. Then the subspaces of \mathbb{F}^n invariant under T are: $\{0\}$, every U_k and every direct sum of any combination of U_k 's.
- **43** Suppose V is finite-dimensional, dim V>1 and $T\in\mathcal{L}(V)$. Prove that $\{p(T): p\in\mathcal{P}(\mathbb{F})\}\neq\mathcal{L}(V)$.

Solution:

Denote a set of all p(T) as W. Suppose $W = \mathcal{L}(V)$.

Note, that Tp(T) = p(T)T for every $p(T) \in W$. Denote invertible polynomials of T as q(T). For every such polynomial it is true that q(T)T = Tq(T). And hence $T = q^{-1}(T)Tq(T)$. Examining the matrix representation of the last equality, we see that

$$\mathcal{M}(T) = \mathcal{M}(q^{-1}Tq) = \mathcal{M}(q(T))^{-1}\mathcal{M}(T)\mathcal{M}(q(T))$$

for every q(T). We supposed that polynomials of T can represent every linear operator on V, hence every invertible polynomial of T represent every invertible linear operator on V. That means the the obtained equality is equivalent to a proposition that matrix representation of T is the same in every basis of V. Thus T is a scalar multiple of identity, by $Problem\ 3D.19$.

But in the formulation of a problem we didn't restrict the choice of T and for every V with dim > 1, not every T is a scalar multiple of identity. Thus $W \neq \mathcal{L}(V)$. \square