Graph Theory Fundamentals

Graph

Notation: G = (V, E)

Where G is the graph, V represents the set of vertices and E represents the set of edges.

Simple Graph

A simple graph has no loops or multiple edges.

Neighborhood

A set of all vertices adjacent to a vertex.

Using the simple graph above:

$$N(b) = \{a, d, c\}$$

$$N(a) = \{b\}$$

Degree

Cardinality (count) of a neighborhood.

Using the simple graph shown earlier:

$$deg(b) = |N(b)| = 3$$

$$deg(a) = 1$$

Handshaking Theorem

The sum of the degrees of a graph is equal to twice the the number of edges.

Using the simple graph shown earlier:

$$2|E| = \sum_{v \in V} deg(v)$$

$$2 \times 3 = deg(a) + deg(b) + deg(c) + deg(d)$$

$$2 \times 3 = 1 + 3 + 1 + 1$$

Complete Graph

Contains exactly one edge between every pair of different vertices.

Notation: K_n where n is the number of vertices.

Cycles

Every vertex must have a degree of two, and the graph must be closed. Spread vertices out to a circle for best image as done below.

${\bf Wheels}$

Like a cycle, but with a central vertex that connects to all other vertices.

Bipartite Graph

For sets of vertices v_1 and v_2 , every edge connects a vertex in v_1 to v_2 . The following graph is bipartite:

Figure 1:

It can be partitioned into the following sets:

$$v_1 = \{a, c\}$$

$$v_2 = \{\mathbf{b}, \, \mathbf{d}\}$$

Note: triangles and wheels are not bipartite.

Coloring/Color Theory

Coloring can be used to determine if a graph is bipartite. A graph's vertices can be colored with two alternating colors if it is bipartite:

Figure 2:

The following graph can not be colored using two alternating colors:

Figure 3:

Adjacency Matrix

A square $n \times n$ matrix for n vertices that counts number of edges in between vertices. It will always be symmetrical.

Figure 4:

The adjacency matrix for the graph above:

Figure 5: