ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 2.1.1 ИЗМЕРЕНИЕ УДЕЛЬНОЙ ТЕПЛОЁМКОСТИ ВОЗДУХА ПРИ ПОСТОЯННОМ ДАВЛЕНИИ.

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

Теоретические сведения:

Измерение теплоёмкости тел обычно производится в калориметрах, т. е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры dT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT}. (1)$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно — масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент. Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm=qdt, где q— массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости $\delta Q=cdm\Delta T$, где $\Delta T=T_2-T_1$ — приращение температуры газа, c— удельная теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, потому можно принять, что $P_1\approx P_2=P_0$, где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_p . Таким образом, получаем

$$c_p = \frac{N - N_{\text{пот}}}{q\Delta T} \tag{2}$$

 $Tevenue\ rasa\ no\ mpybe:$ В общем случае давление на входе может заметно превышать таковое на выходе (например, если труба достаточно узкая и длинная). Рассмотрим течение газа более детально, чтобы выяснить пределы применимости P=const. Обозначим индексом 1 параметры газа на входе в трубку, индексом 2— на выходе из неё. Рассмотрим область, мысленно ограниченную двумя неподвижными плоскостями слева и справа от нагревателя и применим к ней закон сохранения энергии.

Пусть за время dt газ сместился слева направо на малое расстояние вдоль трубки, такое что через левую границу прошёл газ объёмом dV_1 т а через правую — dV_2 . В силу закона сохранения массы имеем

$$m = \rho_1 dV_1 = \rho_2 dV_2,$$

где dm=qdt — масса газа, прошедшего через некоторое сечение трубки. Изменение внутренней энергия газа в рассматриваемой области за счет переноса вещества составило $dU=(u_2-u_1)dm$, где $u_{1,2}$ — удельные внутренние энергии. Внешние силы совершили работу по перемещению газа $\partial A=P_1dV_1-P_2dV_2$, или с учётом предыдущей формулы:

$$\partial A = -(\frac{P_2}{\rho_2} - \frac{P_1}{\rho_1})dm.$$

Учтем также изменение кинетической энергии течения газа, равное $dK = \frac{1}{2}(v_2^2 - v_1^2)dm$, где $v_{1,2}$ — скорости течения. Наконец, пусть ∂Q — количество тепла, суммарно полученное газом в рассматриваемой области — включая тепло от нагревателя, теплопередачу через стенки и торцы, тепловыделение при трении и т. д. В стационарном состоянии энергия газа, заполняющего калориметр, неизменна, поэтому

$$dU - dA + dK = \partial Q$$

Полученное удобно записать в виде

$$(i_2 - i_1 + \frac{v_2^2}{2} - \frac{v_1^2}{2})dm = \partial Q,$$

где $i=u+\frac{P}{\rho}$ — удельная энтальпия газа. Это соотношение справедливо для любой стационарно текущей непрерывной среды и представляет собой обобщение известного уравнения Бернулли, учитывающее выделение и потери тепла. Оно справедливо при условии, что в системе устанавливается не только стационарное течение, но и стационарное распределение температуры. Последнее весьма важно для нашего опыта, поскольку время установления может быть довольно велико.

Если предположить, что кинетическая энергия течения мала по сравнению с энергией нагрева $(dK \ll \partial Q)$, то получим

$$(i_2 - i_1)dm = \partial Q$$
,

то есть полученное газом тепло идёт на приращение его энтальпии.

В условиях опыта газ с хорошей точностью можно считать идеальным: $P/\rho = RT/\mu$, а теплоёмкость c_p (или c_v) не зависящей от температуры. Тогда энальпия (и внутренняя энергия) газа зависит только от температуры и равна $\Delta i = c_p \Delta T$ (т. к. $\Delta u = c_V \Delta T$ и $c_p = c_v + \frac{R}{\mu}$).

Методика измерений:

Рис. 1: Схема экспериментальной установки

Схема установки изображена на рис. 1. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума (10^{-5} торр) для минимизации потерь тепла, обусловленных теплопроводностью. Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI. (3)$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволока термопары расположена вдоль калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС пропорциональна разности температур ΔT спаев:

$$\mathcal{E} = \beta \Delta T$$
,

где $\beta = 40.7 \frac{\text{мкB}}{K}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур. ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки служит кран K. Время Δt прохождения некоторого объёма ΔV воздуха измеряется секундомером. Объёмный расход может быть найден как

$$q = \rho \frac{\Delta V}{\Delta t},$$

где ρ — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева-Клапейрона:

$$\rho_0 = \frac{\mu P_0}{RT_0},$$

где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29,0\frac{\Gamma}{\text{моль}}$ — средняя молярная масса (сухого) воздуха.

Учитывая особенности калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счёт нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{not}} = \alpha \ \Delta T$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N))$ — линейная функция).

$$N = (c_P q + \alpha) \Delta T$$

Используемое оборудование:

Теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

Результаты измерений и обработка данных:

- 1. Запишем начальные данные: $t_0=20,7^{\circ}C$ температура в кабинете, $P_0=102,05$ к Π давление, $\phi_0=15,3\%$ влажность, R=35 Ом сопротивление проволоки. $\sigma_V=\pm 0,01\pi$, $\sigma_{\Delta t}=0,1$ с, $\sigma_{\varepsilon}=\pm 1\cdot 10^{-6}$ В, $\sigma_U=\pm 0,01$ В, $\sigma_I=\pm 1\cdot 10^{-5}$ А
- 2. С помощью газового счетчика и секундомера измерим максимальный расход воздуха, определим среднее значение и вычислим массовый расход. Данные занесем в таблицу.

ΔV ,л	Δt , c	q, л/с	
1	5,2	0,192	
2	9,8	0, 204	
3	15,2	0,197	
4	20,3	0,197	
5 25,3 0,197			
$q_{max} = 0,197 \pm 0,003$ л/с			
$q_{max}^{ ext{ iny Macc}} = 0,236 \pm 0,006$ г/с			

Таблица 1: Результаты вычислений для q_{max} и $q_{max}^{\text{\tiny Macc}}$.

3. Оценим величину тока нагревателя I_0 требуемого для нагрева воздуха на $\Delta T_0=1^\circ C$. Для этого оценим минимальную мощность N_0 , необходимую для нагрева газа при максимальном расходе q_{max} на $\Delta T_0=1^\circ C$, тогда $I_0=\sqrt{\frac{N_0}{R}}$

$$N_0 = c_p q \Delta T = (0, 236 \pm 0, 006) \text{Bt} => I_0 = (0, 082 \pm 0, 002) \text{A}$$

4. . Проведем измерение зависимости разности температур от мощности нагрева T(N) при максимальном расходе воздуха. Данные занесем в таблицу.

I,MA	U,B	ε ,мB	ΔT ,K	N , B_{T}	R,OM
82,5	2,91	0.34	0.835	0,239	35,15
116,1	4,14	0.68	1,67	0,476	35,31
145,3	5,18	0.106	2,60	0,741	35,1
165,4	5,82	0.140	3,44	0,959	35,06

 $ag{Tаблица}$ 2: Измерение $\Delta T(N)$ для q_{max}

5. Повторим пункты 1-4 для 2-х других значений q. Получим Результаты вычислений для q_i и $q_i^{\mathrm{macc}},\ i=1,2$

ΔV ,л	Δt , c	q, л/с
1	5,4	0,183
2	10,8	0, 184
3	15,9	0,188
4	21,3	0,187
5	26,5	0,188
$q_1=0,186\pm0,003~\pi/{ m c}$		
$q_1^{ ext{macc}} = 0,223 \pm 0,005 \; ext{r/c}$		

ΔV ,л	Δt , c	q, л/с	
1	5,9	0,167	
2	11,6	0,171	
3	17,9	0,167	
4	23,6	0,169	
5	259,6	0,168	
$q_2 = 0,168 \pm 0,003$ л/с			
$q_2^{ ext{macc}} = 0,202 \pm 0,005 \; ext{r/c}$			

I,MA	U,B	ε ,мB	ΔT ,K	N , B_{T}	R, Om
81,2	2,86	0.33	0.81	0,232	35,22
112,2	3,94	0.65	1,6	0,442	35,11
139,7	4,91	0.102	2,5	0,686	35,14
160,7	5,65	0.137	3,36	0,907	35,15

Таблица 5: Измерение $\Delta T(N)$ для q_1

I,MA	U,B	ε ,MB	ΔT ,K	N , B_{T}	R, Om
78	2,76	0.31	0.76	0,215	35,38
109,7	3,88	0.65	1,6	0,425	35,36
129	4,55	0.093	2,28	0,587	35,27
149,8	5,29	0.128	3,14	0,792	35,31

Таблица 6: Измерение $\Delta T(N)$ для q_2

6. Построим графики зависимости $\Delta T(N)$ для каждого расхода q, найдем угловые коэффициенты, полученных прямых.

7. Построим график зависимости 1/k(q) и по наклону прямой определим теплоёмкость воздуха c_p

- 8. Таким образом $C_p = 30 \pm 1 \; \text{Дж/K-моль}$
- 9. Определим доли тепловых потерь: $\frac{N_{\text{пот}}}{N} = \alpha \cdot k$

q, г/с	$\frac{N_{\text{пот}}}{N}$
0,236	$0,11 \pm 0.01$
0,223	$0,12 \pm 0.01$
0,202	$0,129 \pm 0.014$

Обсуждение результатов:

Мы определили молярную теплоемкость воздуха при постоянном давлении, которая составляет $C_p = 30 \pm 1~\rm Дж/K\cdot моль$, что в пределах погрешности совпадает с табличным значением ($C_p = 29, 2~\rm Дж/K\cdot моль$). Также мы оценили с хорошей точностью отношения $\frac{N_{\rm nor}}{N}~(\varepsilon \approx 10\%$).

Выводы:

В ходе данной работы мы измерили повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключили тепловые потери и по результатам измерений определили теплоёмкость воздуха при постоянном давлении.