Chương 3

Tích phân phụ thuộc tham số

Bài 40. Xét tính liên tục của hàm số $I(y) = \int_{0}^{1} \frac{y^2 - x^2}{(x^2 + y^2)^2} dx$.

Bài 41. Tìm $\lim_{y \to 1} \int_{0}^{y} \frac{\arctan x}{x^2 + y^2} dx$.

Bài 42. Khảo sát sự liên tục của tích phân $I(y)=\int\limits_0^1 \frac{yf(x)}{x^2+y^2}dx$ với f(x) là hàm số dương, liên tục trên đoạn [0,1].

Bài 43. Cho hàm số $f(y) = \int_{0}^{\frac{\pi}{2}} \ln{(\sin^2{x} + y^2\cos^2{x})} dx$. Tính f'(1).

Bài 44. Chứng minh rằng tích phân phụ thuộc tham số $I(y) = \int_{-\infty}^{+\infty} \frac{\arctan(x+y)}{1+x^2} dx$ là một hàm số liên tục, khả vi đối với biến y. Tính I'(y) rồi suy ra biểu thức của I(y).

Bài 45. Tính các tích phân sau, (với a, b, α, β là các số dương, n là số nguyên dương):

a)
$$\int_{0}^{1} \frac{x^b - x^a}{\ln x} dx$$

d)
$$\int_{0}^{1} x^{\alpha} (\ln x)^{n} dx$$

b)
$$\int_{0}^{\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$

e)
$$\int_{0}^{+\infty} \frac{dx}{(x^2+y)^{n+1}}$$

c)
$$\int_{0}^{+\infty} e^{-ax} \frac{\sin(bx) - \sin(cx)}{x} dx$$

f)
$$\int_{0}^{\frac{\pi}{2}} ln(1 + y \sin^2 x) dx$$
, với $y > -1$

Bài 46. Tính các tích phân sau:

a)
$$\int_{0}^{\frac{\pi}{2}} \sin^6 x \cos^4 x dx$$

$$d) \int_{0}^{+\infty} \frac{\sqrt{x}}{(1+x^2)^2} dx$$

b)
$$\int_{1}^{+\infty} \frac{(\ln x)^4}{x^2} dx$$

e)
$$\int_{0}^{+\infty} \frac{1}{1+x^3} dx$$

c)
$$\int_{0}^{+\infty} x^{10} e^{-x^2} dx$$

f)
$$\int_{0}^{+\infty} \frac{x^{n+1}}{(1+x^n)^2} dx, (2 < n \in \mathbb{N})$$

g)
$$\int_{-\infty}^{0} e^{2x} \sqrt[3]{1 - e^{3x}} dx$$

i)
$$\int_{0}^{1} \frac{1}{\sqrt[n]{1-x^n}} dx, (2 \le n \in \mathbb{N})$$

h)
$$\int_{0}^{a} x^{2n} \sqrt{a^{2} - x^{2}} dx$$
, $(a > 0, n \in \mathbb{N})$