Asymptotics of Laplace Integrals, and What is a Blow-up?

Shaowei Lin (work-in-progress with Robin Pemantle)

19 July 2010, Berkeley

[213]

Problem

 $f:[-1,1]^d \to \mathbb{R}$ a real analytic function i.e. power series $f=\sum_{\alpha}c_{\alpha}x^{\alpha}\in\mathbb{R}[[x_1,\ldots,x_d]]$ convergent in $[-1,1]^d$ $\tau\in\mathbb{N}^d$ vector of nonnegative integers

Want to find asymptotics of Laplace integral

$$Z(n) = \int_{[-1,1]^d} e^{-n|f(\omega)|} |\omega^{\tau}| d\omega, \quad n \to \infty$$

(Varchenko, 1970) Laplace integrals have asymptotic expansion

$$\sum_{\alpha,i} c_{\alpha,i} n^{-\alpha} (\log n)^{i-1}$$

We are interested in first term $c_{\lambda,\theta} n^{-\lambda} (\log n)^{\theta-1}$. (λ, θ) is the real log canonical threshold (RLCT) of f.

[I will now give a theorem, and define the terms later.]

[2] **Theorem (L.)** Let $f, \tau, Z(n), \lambda, \theta, c_{\lambda,\theta}$ be as before.

If f is nondegenerate, then $(\lambda, \theta) = (1/l_{\tau}, \theta_{\tau})$ where l_{τ} is the τ -distance, and θ_{τ} its multiplicity, of the Newton polyhedron $\mathcal{P}(f)$.

Moreover, if \mathcal{F} is a unimodular refinement of the normal fan $\mathcal{N}(f)$ and σ is the τ -cone of $\mathcal{N}_{\tau}(f)$, then

$$c_{\lambda,\theta} = \frac{2^{\theta} \lambda^{\theta} \Gamma(\lambda)}{(\theta - 1)!} \sum_{v \in \mathcal{F}_{\sigma}} \frac{1}{\prod_{i=1}^{\theta} \hat{\alpha}_i} \int_{[-1,1]^{d-\theta}} \frac{1}{|\hat{\pi}_v^* f(0,\bar{\mu})|^{\lambda}} |\bar{\mu}|^{\bar{\alpha} - 1} d\bar{\mu}.$$

where α is the vector of row sums of v and $\hat{\pi}_v^* f(\mu) = \hat{\mu}^{-\hat{\alpha}/\lambda} f(\mu^v)$.

In particular, this theorem holds for $f = f_1^2 + \cdots + f_k^2$ when $\langle f_1, \dots, f_k \rangle$ is a monomial ideal.

Crash Course on Polyhedral Fans

Let $\sigma \subset \mathbb{R}^d$ be a cone

polyhedral: generated by $v_1, \ldots, v_k \in \mathbb{R}^d$, i.e. $\sigma = \{\sum_i \lambda_i v_i : \lambda_i \geq 0\}$

rational: generated by $v_1, \ldots, v_k \in \mathbb{Z}^d$

pointed: origin is a face

ray: one-dimensional and pointed

min gen of a rational ray: the generator in \mathbb{Z}^d of minimal length

min gens of a pointed rational polyhedral cone: the min gens of its edges

smooth: min gens generate all lattice points $\sigma \cap \mathbb{Z}^d$ over \mathbb{Z}

simplicial: min gens linearly independent over \mathbb{R}^d

unimodular: smooth and simplicial

(min gens form rows of matrix $v \in \mathbb{Z}^{d \times d}$ with det ± 1)

Let \mathcal{F} be a collection of pointed rational polyhedral cones in \mathbb{R}^d smooth, simplicial, unimodular: every cone is ditto

fan: 1. every face of every cone is in \mathcal{F}

2. intersection of every two cones is in \mathcal{F}

 $support\colon$ union of every cone as subset of \mathbb{R}^d

 $locally\ complete :$ support is nonnegative orthant $\mathbb{R}^d_{\geq 0}$

 \mathcal{F}_1 refinement of \mathcal{F}_2 : cones of \mathcal{F}_1 partition cones of \mathcal{F}_2

Given locally complete fan \mathcal{N} in \mathbb{R}^d , cone $\sigma \in \mathcal{N}$ of dimension θ , unimodular refinement \mathcal{F} of \mathcal{N} ,

 \mathcal{F}_{σ} : set of maximal cones of \mathcal{F} which intersect σ in dimension θ . Represent each maximal cone by matrix $v \in \mathbb{Z}^{d \times d}$ of min gens where first θ rows lie in σ , forming submatrix $\hat{v} \in \mathbb{Z}^{\theta \times d}$. Write $\mu = (\hat{\mu}, \bar{\mu}) \in \mathbb{R}^{\theta} \times \mathbb{R}^{d-\theta}$ for $\mu \in \mathbb{R}^{d}$.

Given unimodular matrix $v \in \mathbb{Z}^{d \times d}$, monomial map $\pi_v : \mathbb{R}^d \to \mathbb{R}^d$, $\mu \mapsto \mu^v = (\mu^{v_{\cdot 1}}, \dots, \mu^{v_{\cdot d}})$. (min gens form rows of v but π_v is given by columns of v) Given power series $f(x) \in \mathbb{R}[[x_1, \dots, x_d]]$, pullback $\pi_v^* f(\mu) = f \circ \pi_v(\mu) = f(\mu^v) \in \mathbb{R}[[\mu_1, \dots, \mu_d]]$

Newton Polyhedron and Nondegeneracy

Given polyhedron $\mathcal{P} \subset \mathbb{R}^d_{\geq 0}$ whose normal fan \mathcal{N} is locally complete, vector $\tau \in \mathbb{N}^d$ of nonnegative integers consider the ray generated by $(\tau + 1) = (\tau_1 + 1, \dots, \tau_d + 1)$ τ -distance l_{τ} : smallest t such that $t(\tau + 1) \in \mathcal{P}$ τ -face \mathcal{P}_{τ} : smallest face of \mathcal{P} containing $l_{\tau}(\tau + 1)$ τ -cone \mathcal{N}_{τ} : cone of \mathcal{N} corresponding to \mathcal{P}_{τ} multiplicity θ_{τ} of l_{τ} : dimension of \mathcal{N}_{τ}

[Note: Translating \mathcal{P} changes \mathcal{N}_{τ} so it is not largest cone containing $(\tau+1)$]

Given power series $f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}[[x_1, \dots, x_d]],$ $Newton \ polyhedron \ \mathcal{P}(f) = \operatorname{conv}\{\alpha + \mathbb{R}^d_{\geq 0} : c_{\alpha} \neq 0\}$ $face \ polynomial \ f_{\gamma} = \sum_{\alpha \in \gamma} c_{\alpha} x^{\alpha}, \text{ for each face } \gamma \subset \mathcal{P}(f)$ A real analytic function f is nondegenerate iff for all compact faces $\gamma \subset \mathcal{P}(f),$ f_{γ} is nonsingular in the torus $(\mathbb{R}^*)^d$ $(f_{\gamma} \text{ is } not \text{ in the } \gamma\text{-discriminantal variety})$ [Felipe]

i.e.
$$f_{\gamma} = \frac{\partial f_{\gamma}}{\partial x_1} = \dots = \frac{\partial f_{\gamma}}{\partial x_d} = 0$$
 has no roots in $(\mathbb{R}^*)^d$

Example

Find the asymptotics of

$$Z(n) = \int_{-1}^{1} \int_{-1}^{1} e^{-n|f(x,y)|} dx dy$$

$$f(x,y) = x^{8} + x^{6}y + x^{4}y^{4} + x^{4}y^{2} + x^{2}y^{5} + y^{8}, \quad \tau = (0,0)$$

[Diagram of Newton polyhedron]

[Draw t(1,1) diag, $\tau\text{-face }3x+2y=16,\,\tau\text{-dist }16/5,\,\text{mult }1]$

RLCT $(\lambda, \theta) = (5/16, 1)$, asymptotics $Z(n) \approx c \, n^{-5/16}$

$$\mathcal{F}_{\sigma} = \left\{ \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

$$v = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}, \quad f(a^3b, a^2b) = a^{16}b^6(1+b+b^2+a^8b^2+a^4v+a^4b^2)$$

$$\hat{\pi}_v^* f(0, b) = b^6(1+b+b^2)$$

$$c = \frac{2 \cdot \frac{5}{16} \cdot \Gamma(\frac{5}{16})}{0!} \left(\frac{1}{5} \int_{-1}^{1} \frac{b}{(b^6(1+b+b^2))^{5/16}} db + \frac{1}{5} \int_{-1}^{1} \frac{b^2}{(b^8(1+b+b^2))^{5/16}} db \right)$$

$$= 7.0781612919 \; (\texttt{Maple})$$

$/n = 10^k$	actual	estimate	estimate/actual
1	1.854933489	3.446834688	1.858198533
2	1.007139893	1.678496558	1.666597232
3	0.5360445536	0.8173733149	1.524823467
4	0.2799653636	0.3980342602	1.421726799
5	0.1441396519	0.1938297586	1.344735859
6	0.07344558094	0.09438879785	1.285152853
7	0.03713263466	0.04596427930	1.237840507
8	0.01865838290	0.02238311133	1.199627612
9	0.009328949800	0.01089984833	1.168389643
\setminus 10	0.004645366734	0.005307872167	1.142616390

Incidentally, $2f(x,y) = f_1^2 + f_2^2 + f_3^2 = (x^4 + x^2y)^2 + (x^4 + y^4)^2 + (y^4 + x^2y)^2$, where $\langle f_1, f_2, f_3 \rangle = \langle x^4, y^4, x^2y \rangle$. Thus, f is nondegenerate.

Proof Idea:

1. Asymptotics of Laplace integral \leftrightarrow Poles of zeta function (Arnold et al.)

$$\zeta(z) = \int_{[-1,1]^d} |f(\omega)|^{-z} |\omega^{\tau}| d\omega$$

The RLCT (λ, θ) is the smallest pole and its multiplicity of $\zeta(n)$, and

$$c_{\lambda,\theta} = \frac{\Gamma(\lambda)}{(\theta - 1)!} d_{\lambda,\theta}$$

where $d_{\lambda,\theta}$ is coefficient of $(\lambda - z)^{-\theta}$ in Laurent expansion of $\zeta(n)$.

2. If f is nondegenerate, then $\pi: \mathbb{P}(\mathcal{N}(f)) \to \mathbb{R}^d$ resolves f (Varchenko)

What is a Blow-up?

1. Blow-up of the origin

Consider $\mathbb{R}^n \times \mathbb{P}^{n-1}$ with coords $((x_1, x_2, \dots, x_n), (\xi_1 : \xi_2 : \dots : \xi_n))$. Let V be subset of points $((x_1, x_2, \dots, x_n), (x_1 : x_2 : \dots : x_n)), x \in \mathbb{R}^n \setminus \{0\}$. Then, $X = \overline{V} \subset \mathbb{R}^d \times \mathbb{P}^{n-1}$ is the blow-up of the origin in \mathbb{R}^n . The projection $\pi : X \to \mathbb{R}^n, (x, \xi) \mapsto x$, is the blow-up map.

- 1. $X = V \cup E$ where $E = \{0\} \times \mathbb{P}^{n-1}$ is the exceptional divisor. π is an isomorphism from V to $\mathbb{R}^n \setminus \{0\}$, while $\pi^{-1}(0) = E$.
- 2. X is a toric variety (defined by binomials).

$$X = \{(x, \xi) \in \mathbb{R}^n \times \mathbb{P}^{n-1} \mid x_i \xi_j = x_j \xi_i \text{ for all } i, j\}$$

3. X covered by affine charts $U_i = \{(x, \xi) \in X \mid \xi_i \neq 0\} \simeq \mathbb{R}^n$ with coords

$$\{(y_1,\ldots,y_n)=(\frac{\xi_1}{\xi_i},\ldots,x_i,\ldots,\frac{\xi_n}{\xi_i}\}$$

so π is given by affine maps $\pi_i: U_i \to \mathbb{R}^n$

$$(y_1,\ldots,y_n)\mapsto (y_1y_i,\ldots,y_i,\ldots,y_ny_i)$$

2. Blow-up of a linear subspace

 $\pi \times id: X \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m$ is the blowing-up of $\{0\} \times \mathbb{R}^m$ in \mathbb{R}^{n+m} .

3. Blow-up of a smooth center C

Cover C with affine charts such that in each chart, C is a linear subspace of a nbd of the origin. Restrict blow-up maps to nbds. Glue maps together.

4. **Theorem** (Hironaka): Every variety is birational to a smooth variety via a sequence of blow-ups along smooth centers.

Toric Blow-ups

Given unimodular locally complete fan \mathcal{F} in \mathbb{R}^d , we have smooth toric variety $\mathbb{P}(\mathcal{F})$ covered with affine charts $U_{\sigma} \simeq \mathbb{R}^d$, one for each max cone $\sigma \in \mathcal{F}$.

We also have the toric blow-up $\pi_{\mathcal{F}}: \mathbb{P}(\mathcal{F}) \to \mathbb{R}^d$ defined on affine charts by monomial maps

$$\pi_v: U_\sigma \to \mathbb{R}^d, \quad \mu \mapsto \mu^v$$

where min gens of σ form rows of the matrix v. Every ray (except e_1, \ldots, e_d) gives an exceptional divisor.

e.g. Blow-up of a point in R^d comes from fan given by standard bases e_1, \ldots, e_d and $e_0 = e_1 + \ldots + e_d$.

(0,1)

Conjecture: every toric blow-up is a seq of blow-ups along linear subspaces? [Example from asymptotics]

Theorem (Varchenko) If f is nondegenerate, then the toric blow-up coming from its normal fan $\mathcal{N}(f)$ resolves f.

2 and Som

[End with this example, for Melody] Example (Tropical Implicitization)

Let $\mathbb{T}^r = (\mathbb{C}^*)^r$ be the torus.

Given rational map $f = (f_1, \ldots, f_s) : \mathbb{T}^r \to \mathbb{T}^s, f_i \in \mathbb{C}[t_1^{\pm}, \ldots, t_r^{\pm}]$ Want tropicalization of the image Y of f.

Let $X = \mathbb{T}^r \setminus \{f_1 \cdots f_r = 0\}$ so morphism $f: X \to Y$. Need compactification \bar{X} of X.

Method 1: Embed $X \hookrightarrow \mathbb{P}^r$, resolve singularities of boundary divisor $\mathbb{P}^r \setminus X$

Method 2: Resolve singularities of $\mathbb{T}^r \setminus X = \{f_1 \cdots f_r = 0\}.$

e.g. $f_1 \cdots f_r = (1-y)(x-y)(x^2-y)(x^3-y)(x^4-y)$. [Picture of boundary divisors]

x^y-y

Normal fan is Minkowski sum of normal fans.

[Picture of normal fan]

Nondegenerate?

e.g. in dir (1,2), face poly $(1)(x)(x^2-y)(-y)(-y)$ nonsingular in \mathbb{T}^2 .

(1,4) E4 (1,3) E3 (1,2) E2

[Refinement \mathcal{F} of normal fan]

Blow-up $\pi_{\mathcal{F}}: \mathbb{P}(\mathcal{F}) \to \mathbb{T}^r$.

Compute pullbacks of divisors.

Let $D = (x^2 - y)$. Let $\Phi(x, y) = \min(2x, y)$.

In chart $(1,1), (1,2), x^2 - y = (uv)^2 - u^1v^2 = uv^2(u-1).$

So E_1 has mult $1 = \Phi(1,1)$, E_2 has mult $2 = \Phi(1,2)$.

 $\pi_{\mathcal{F}}^*(D) = D' + E_1 + 2E_2 + 2E_3 + 2E_4 - 2\bar{E}_0 - 2\bar{E}_1 - 2\bar{E}_2 - 3\bar{E}_3 - 4\bar{E}_4 - \bar{E}_{\infty}.$