EE263 Autumn 2015 S. Boyd and S. Lall

Orthogonality

Inner product

$$\langle x,y\rangle := x_1y_1 + x_2y_2 + \dots + x_ny_n = x^{\mathsf{T}}y$$

important properties:

- $\langle x, y \rangle = \langle y, x \rangle$
- $\blacktriangleright \langle x, x \rangle \ge 0$

 $f(y) = \langle x, y \rangle$ is linear function : $\mathbb{R}^n \to \mathbb{R}$, with linear map defined by row vector x^T

Cauchy-Schwarz inequality and angle between vectors

for any $x,y\in\mathbb{R}^n$

$$|x^\mathsf{T} y| \le \|x\| \|y\|$$

ightharpoonup (unsigned) angle between vectors in \mathbb{R}^n defined as

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^{\mathsf{T}} y}{\|x\| \|y\|}$$

Special cases

- ▶ x and y are aligned: $\theta = 0$; $x^T y = ||x|| ||y||$; (if $x \neq 0$) $y = \alpha x$ for some $\alpha \geq 0$
- ▶ x and y are opposed: $\theta = \pi$; $x^{\mathsf{T}}y = -\|x\|\|y\|$ (if $x \neq 0$) $y = -\alpha x$ for some $\alpha \geq 0$
- ▶ x and y are orthogonal: $\theta = \pi/2$ or $-\pi/2$; $x^{\mathsf{T}}y = 0$ denoted $x \perp y$

Angles

interpretation of $x^{\mathsf{T}}y > 0$ and $x^{\mathsf{T}}y < 0$

- $ightharpoonup x^{\mathsf{T}}y > 0$ means $\angle(x,y)$ is acute
- $ightharpoonup x^{\mathsf{T}}y < 0$ means $\angle(x,y)$ is obtuse

Halfspaces

a *halfspace* with outward normal vector y, and boundary passing through 0

$$H = \{ x \mid x^\mathsf{T} y \le 0 \}$$

Orthogonal complements

for any set $S \subset \mathbb{R}^n$, the *orthogonal complement* is

$$S^{\perp} = \{ x \mid x^{\mathsf{T}} y = 0 \text{ for all } y \in S \}$$

- $ightharpoonup S^{\perp}$ is always a subspace
- $ightharpoonup S^{\perp}$ is the set of all vectors x, each of which is orthogonal to every vector in S

Orthonormal set of vectors

set of vectors $\{u_1,\ldots,u_k\}\subset\mathbb{R}^n$ is

- ▶ normalized if $||u_i|| = 1$, i = 1, ..., k(u_i are called *unit vectors* or *direction vectors*)
- ▶ orthogonal if $u_i \perp u_j$ for $i \neq j$
- orthonormal if both

slang: we say ' u_1,\ldots,u_k are orthonormal vectors' but orthonormality (like independence) is a property of a *set* of vectors, not vectors individually

in terms of $U=[u_1 \ \cdots \ u_k]$, orthonormal means

$$U^{\mathsf{T}}U = I_k$$

Orthonormality

an orthonormal set of vectors is independent

- ▶ to see this, multiply Ux = 0 by U^{T}
- ightharpoonup hence $\{u_1,\ldots,u_k\}$ is an *orthonormal basis* for

$$\operatorname{span}(u_1,\dots,u_k)=\operatorname{range}(U)$$

▶ warning: if k < n then $UU^{\mathsf{T}} \neq I$ (since its rank is at most k) (more on this matrix later . . .)

Orthonormal basis for \mathbb{R}^n

A matrix U is called *orthogonal* if

U is square and $U^{\mathsf{T}}U = I$

- \blacktriangleright the set of columns u_1, \ldots, u_n is an orthonormal *basis* for \mathbb{R}^n
- ▶ (you'd think such matrices would be called *orthonormal*, not *orthogonal*)
- lacktriangle it follows that $U^{-1}=U^{\mathsf{T}}$, and hence also $UU^{\mathsf{T}}=I$, *i.e.*,

$$\sum_{i=1}^{n} u_i u_i^{\mathsf{T}} = I$$

Expansion in orthonormal basis

suppose U is orthogonal, so $x = UU^{\mathsf{T}}x$, *i.e.*,

$$x = \sum_{i=1}^{n} (u_i^\mathsf{T} x) u_i$$

- $lackbox{} u_i^\mathsf{T} x$ is called the *component* of x in the direction u_i
- $ightharpoonup a = U^{\mathsf{T}} x \text{ resolves } x \text{ into the vector of its } u_i \text{ components}$
- ightharpoonup x = Ua reconstitutes x from its u_i components
- $\blacktriangleright x = Ua = \sum_{i=1}^{n} a_i u_i$ is called the $(u_i$ -) expansion of x

Geometric interpretation

if U has orthonormal columns then transformation w = Uz

- ▶ preserves *norm* of vectors, *i.e.*, ||Uz|| = ||z||
- lacktriangle preserves angles between vectors, i.e., $\angle(Uz,U\tilde{z})=\angle(z,\tilde{z})$
- lacktriangle we say U is *isometric*, it preserves distances

Example: Rotation

rotation by θ in \mathbb{R}^2 is given by

$$y = U_{\theta} x$$
, $U_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

since $e_1 \mapsto (\cos \theta, \sin \theta)$, $e_2 \mapsto (-\sin \theta, \cos \theta)$

Example: Reflection

reflection across line $x_2 = x_1 \tan(\theta/2)$ is given by

$$y = R_{\theta} x$$
, $R_{\theta} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$

since $e_1 \to (\cos \theta, \sin \theta)$, $e_2 \to (\sin \theta, -\cos \theta)$

