STRAUB STAT511HW7

Ben Straub

November 18, 2015

Severe wildfires in southern California in 2009 present a rare opportunity to study which factors influence whether a house near a forest is burned in a wildfire. I will examine the data set, Fire, paying particular attention to six predictor variables that are under the control of the homeowner: planted, buildings, perc.woody, perc.cleared, distance2bush and distance2tree. I will attempt to make recommendations to homeowners, based on my analysis of the Fire data, to mitigate their chance of their home being burned down.

(1) EXPLORATORY AND VARIABLE SELECTION

EXPLORATORY DATA ANALYSIS

GENERAL OBSERVATIONS OF FIRE DATA

- The Total Data Set has 487 observations with 21 variables
- There are 274 homes that burned from this Survey
- The Variables planted, adj.for.type are factor variables with two levels and 3 levels

OBSERVATIONS OF VARIABLES TO BE ADDRESSED IN STUDY

- The homeowners have control over the following variables for this study: planted, buildings, perc.woody, perc.cleared, distance2bush and distance2tree.
- These six variables will receive the most attention in the following analysis.
- I looked at boxplots for each of the six variables, but found only Distance to Bushes and Distance to Trees to have any interesting features.
- The boxplots show that the houses have a lot of bushes and trees around them, i.e. the distance is close to zero, but there are a significant amount of houses that have outliers associated with them.
- I believe there is some sort of quadratic relationship between some of the variables in the data sets. I am making this ovservations form subsetting the data and looking at its pairs plots.

Distance to Bushes Distance to Trees 00 0 100 0 80 9 20 0 0 40 80 2 4 6 8 0 3000 7000 burnt 90 distance2tree pooooo planted 0. baaaaaa **06600000**0 buildings perc.woody

MODEL SELECTION USING AIC

1.0 1.4 1.8

0.0 0.4 0.8

Table 1: Full Data Set

distance2bush

40

80

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-3.0707155	0.6195446	-4.9564077	0.0000007
ffdi	0.0069344	0.0029740	2.3316683	0.0197181
topo	-0.1186014	0.0807015	-1.4696310	0.1416617

	Estimate	Std. Error	z value	$\Pr(> z)$
perc.cleared	0.0081901	0.0054250	1.5096833	0.1311243
perc.burntless5yrs	0.0350144	0.0192007	1.8236024	0.0682122
amt.not.NP	0.0000337	0.0000181	1.8612503	0.0627088
adj.for.typeOPEN FOREST	-0.1825636	0.4076048	-0.4478936	0.6542300
adj.for.typeWOODLAND	0.4763813	0.4462029	1.0676337	0.2856858
distance2tree	0.0221118	0.0130313	1.6968279	0.0897292
plantedr	1.8977666	0.2444425	7.7636516	0.0000000
perc.woody	0.0604026	0.0077366	7.8073677	0.0000000

Table 2: Subsetted Data

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.2490079	0.2452104	-9.171746	0
plantedr	1.8649140	0.2318778	8.042657	0
perc.woody	0.0539866	0.0070599	7.646980	0

OBSERVATIONS ON AIC MODEL SELECTION

- The first table shows the AIC technique on the entire data set and it produces the following model.
- Model Equation:

$$burnt = ffdi + slope + topo + distance2tree + planted + perc.woody$$

- The only coefficients in this model that are significant are plantedr and perc.woody
- The second table shows the results from running the AIC technique on subsetted data that only includes the variables that homeowners control.
- Model Equation:

$$burnt = planted + perc.woody$$

• The 2nd table shows that plantedr and perc.woody as being significant, i.e. the likelihood of your house being burnt increases by the log-odds of plantedr and perc.woody. Still unclear how to best interpret my cofficients with GLM.

CONCLUSION: Using the AIC techinque over the entire data set or the subsetted data set produces models with the same coefficients being significant, i.e. plantedr and perc.wood. I decided that subsetting the data was a bad move and will not doing it for the following model selection techniques: LASSO, Ridge and p-value.

MODEL SELECTION USING LASSO

Loading required package: Matrix
Loading required package: foreach

Loaded glmnet 2.0-2

OBSERVATIONS:

- Using the LASSSO technique I found the following two variables to be of significance: planted and perc.woody. The two graphs show how the tuning parameter lamba zeroes out everything except for planted and perc.woody.
- Model Equation:

burnt = planted + perc.woody

MODEL SELECTION USING P-VALUE BASED VARIABLE SELECTION

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.7235281	0.8067310	-3.3760052	0.0007355
ffdi	0.0077290	0.0031355	2.4650002	0.0137013
slope	-0.0181923	0.0331793	-0.5483018	0.5834847
aspect	-0.0002497	0.0016381	-0.1524095	0.8788640
topo	-0.1629255	0.0867009	-1.8791660	0.0602218
perc.cleared	0.0073718	0.0060430	1.2198868	0.2225078
amt.burntless5yrs	0.0000220	0.0000295	0.7474128	0.4548144
perc.burntless5yrs	0.0423145	0.0285653	1.4813246	0.1385201
amt.not.burnt5to10yrs	-0.0000258	0.0000276	-0.9340735	0.3502660
perc.burnt5to10yrs	-0.0382417	0.0512884	-0.7456193	0.4558974
amt.unlogged	-0.0000170	0.0000292	-0.5815504	0.5608696
perc.logged	0.0232785	0.0373098	0.6239263	0.5326760
amt.not.NP	0.0000287	0.0000268	1.0678320	0.2855963
amt.not.SF	-0.0000071	0.0000321	-0.2219233	0.8243736
adj.for.typeOPEN FOREST	-0.0731776	0.4530346	-0.1615276	0.8716778

	Estimate	Std. Error	z value	$\Pr(> z)$
adj.for.typeWOODLAND	0.5733010	0.4952105	1.1576916	0.2469899
edge	0.0000126	0.0000299	0.4222116	0.6728706
distance2tree	0.0208118	0.0441411	0.4714839	0.6372952
plantedr	2.2105287	0.2730149	8.0967331	0.0000000
buildings	-0.0362674	0.0924090	-0.3924660	0.6947140
perc.woody	0.0545751	0.0080568	6.7737525	0.0000000
distance2bush	0.0002001	0.0002049	0.9766909	0.3287222
poly(distance2tree, 2)2	12.5454263	5.8810531	2.1331938	0.0329088

OBSERVATIONS:

• In my exploratory data analysis I thought I noticed some of the data having a quadratic pattern, particularly the distance2tree variable. I decided to try a GLM with a distance2tree as a polynomial and it turned out to be significant.

CONCLUSION: The glm model has plantedr, perc.woody and distance2tree as being significant. I think trees are very important! If the tree is tall and it is burning, then its integrity could be at issue and fall and destroy/burn the hosue.

Ridge Regression Betas for Different Values of the Tuning Paramete

• OBSERVATION: I'm unsure how to pull out the ridge regression coefficients, but I was able to calculate the mspe and cvmspe to make comparison of all the models.

(2) MODEL PREDICTION

	CVMSPE-Train	MSPE-Test
AIC	0.1608434	2.9781598
RR	0.1684203	0.1534715
Lasso	0.1643892	0.1583821
GLM	0.1560194	0.1787714

• I compared four techniques: Lasso, AIC, Ridge and p-value selection, to arrive at proper parameters. Running through the Test and Train sets I found that the Lasso Model had the best predicting power of the fours models. I will use my Lasso model with perc.woody and planted as my predictor variables to investigate the three proposals to deal with mitigating houses lost to fires.

(3) THREE PROPOSALS

Proposal A

Remove all Trees within 10 meters of the house

Method:

I took the entire fire data set and found the variable distance2tree and recoded anything that was less than 10 as 10. I ran the lasso through the cross validation again with the new fire data set

Results:

I found the mean squared prediction error to be 0.1854609, which is slighly worse than our previous model's prediction error of 0.1583821. The new Proposal tells us that 218 Houses will burn and 269 will not burn. Therefore, we will save 56 houses from wildfire with this Proposal.

Proposal B:

Require any home with at least 50% woody vegetation within 40m of the house to remove vegetation until they only have 50% woody vegetation within 40m of their house.

Method:

I took the entire fire data set and found the variable perc.woody and recoded anything that had perc.woody greater than 50% as just 50%. I then ran the lasso model through the cross validation again with the new fire data set.

Results:

I found the mean squared prediction error to be 0.1906117, which is slighly worse than our previous model's prediction error of 0.1583821. The new Proposal tells us that 217 Houses will burn and 270 will not burn. Therefore, we will save 57 houses from wildfire with this Proposal.

Proposal C:

Replant any "remnant" vegetation within 40m of all houses with identical "planted" vegetation.

Method:

I took the entire fire data set and found the variable planted and recoded anything that had planted as r and replaced with a p. I then ran the lasso model through the cross validation again with the new fire data set.

Results:

I found the mean squared prediction error to be 0.1854609, which is much worse than our previous model's prediction error of 0.1583821. The new Proposal tells us that 162 Houses will burn and 325 will not burn. Therefore, we will save 112 houses from wildfire with this Proposal.

	Proposal A	Proposal B	Proposal C
Houses Burned	228	227	53
Houses Not Burned	259	260	434
Houses Saved	46	47	221

CONCLUSION: I found the Lasso model with perc.woody and planted as predictor variables to be the best predictive model when compared to other models using the AIC technique, Ridge Regression and p-value variable selection. I used the Lasso model to make predictions based on the 3 Proposals. The above table gives us number of houses saved based on the Proposal A, B, C. I found that Proposal C to have the most number of houses saved. Therefore, I recommend that California implement Proposal C and remove any 'remnant' vegetation around houses.

• I think there is something wrong with my MSPE for each proposal. I thought I would get less error with the changing of the data set.