Appendix A

User Manual

A.1 Introduction

This user manual provides detailed instructions for using the Equivariant Transformer Capsule Networks (ETCaps) codebase. The codebase implements several neural network architectures, including the Equivariant Transformer (ET), ETCaps, SRCaps (Self Routing Capsules), and ResNet20.

A.2 System Requirements

A.2.1 Hardware Requirements

- High-performance computer with multiple GPUs
- At least 16GB system RAM
- 10GB free disk space for datasets and model checkpoints

A.2.2 Software Requirements

- Python 3.8
- PyTorch 1.8 with CUDA support
- Required Python packages: see req.txt file in the GitHub repository

A.3 Installation

A.3.1 Setting up the Environment for Model Training

These commands are intended to be run on an HPC environment.

Clone the repository and create a virtual environment:

```
git clone https://github.com/username/Equivariant-Transformer-
Capsule-Networks.git
cd Equivariant-Transformer-Capsule-Networks
python -m venv venv3.8
```

Warning

Ensure you use Python 3.8 for the virtual environment setup.

Activate the virtual environment:

```
source venv3.8/bin/activate
```

Install the required packages:

A.4 Dataset Preparation

The code supports the following datasets:

- CIFAR-10
- SVHN (Street View House Numbers)
- smallNORB

Datasets are automatically downloaded when training begins.

A.5 Training Models

A.5.1 Command Line Arguments

Table A.1: Command Line Arguments for Training

Parameter	Default	Description
data_dir	required	Path where datasets are stored
dataset	required	One of: cifar10, svhn, smallnorb
batch_size	64	Training batch size
random_seed	42	Seed for reproducibility
epochs	200	Number of training epochs
lr	2e-3	Learning rate

wd	1e-6	Weight decay
save_dir	models/	Directory to save model checkpoints
exp	full	Experiment type: full, azimuth, elevation
model_name	etcaps	Model architecture
encoder	resnet20	Encoder network
num_caps	8	Number of capsules
caps_size	4	Capsule size
depth	1	Network depth
num_workers	4	Data loader workers
world_size	None	GPUs for distributed training
port	52472	Communication port
exp_dir	experiments	Experiment directory

A.5.2 Basic Training Examples

Train ETCaps on CIFAR-10:

```
python main.py \
   --data_dir ./data \
   --dataset cifar10 \
   --batch_size 64 \
   --model_name etcaps \
   --epochs 150 \
   --num_caps 32 \
   --depth 1
```

Train ET on SVHN:

```
python main.py \
   --data_dir ./data \
   --dataset svhn \
   --batch_size 64 \
   --model_name et \
   --epochs 50 \
   --num_caps 32 \
   --depth 1
```

To run via Slurm:

```
#!/bin/bash
#SBATCH --job-name=etcaps_train
#SBATCH --output=logs/etcaps_%j.out
#SBATCH --error=logs/etcaps_%j.err
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --gres=gpu:7
#SBATCH --mem=32G
#SBATCH --time=24:00:00
#SBATCH --partition=gpu
```

```
source ./venv/bin/activate

python main.py \
    --data_dir ./data \
    --dataset svhn \
    --batch_size 64 \
    --model_name etcaps \
    --epochs 50 \
    --num_caps 32 \
    --depth 1
```

Submit with:

```
sbatch train.sh
```

A.6 Model Evaluation

A.6.1 Evaluating Classification Accuracy

eval_classification.py evaluates model accuracy.

Table A.2: Evaluation Arguments

Parameter	Default	Description
data_dir	required	Dataset directory
dataset	required	Dataset name
batch_size	128	Evaluation batch size
model_name	required	Model name
path_to_model	required	Path to trained model
num_caps	32	Capsule count
caps_size	4	Capsule size
depth	1	Model depth
exp	full	Evaluation mode
familiar	False	Use seen data (for smallNORB)

Example:

```
python eval_classification.py \
    --data_dir ./data \
    --dataset cifar10 \
    --model_name etcaps \
    --path_to_model ./cifar10/et/cifar10_best_32_1.pth \
    --num_caps 32 \
    --depth 1
```

A.6.2 Evaluating Equivariance Error

Use liederiv/exps_e2e.py to compute equivariance errors:

```
python -m liederiv.exps_e2e \
   --model_path ./cifar10/et/cifar10_best_32_1.pth \
   --output_dir ./equivariance_error \
   --data_dir ./data \
   --dataset cifar10 \
   --modelname et \
   --num_caps 32 \
   --depth 1 \
   --num_datapoints 100
```

Metrics computed:

- trans_x_deriv, trans_y_deriv
- rot_deriv
- shear_x_deriv, shear_y_deriv
- stretch_x_deriv, stretch_y_deriv
- saturate_err

Output is saved as a CSV in output_dir.