BASIC PHD WRITTEN EXAMINATION IN BIOSTATISTICS

THEORY, SECTION 1

(9:00 AM- 1:00 PM Wednesday, August 10, 2011)

INSTRUCTIONS:

- a) This is a **CLOSED-BOOK** examination.
- b) The time limit for this Examination is four hours.
- c) Answer any TWO (2) (BUT ONLY TWO) of the THREE (3) questions that follow.
- d) Put the answers to different questions on separate sets of paper.
- e) Put your exam code, **NOT YOUR NAME**, on each page. The same code will be used for Section 1 and Section 2 of the PhD Theory Exam. Please keep the code confidential and do not share this information with any students or faculty.
- f) Return the examination with a signed statement of the UNC honor pledge, separately from your answers. The pledge statement is given on the last page of the exam handout.
- g) In the questions to follow, you are required to answer only what is asked, and not to tell all you know about the topics involved.

- 1. Let X_1, X_2, \ldots , be a sequence of i.i.d. real random variables with $EX_1 = 0$. Let N be a Poisson random variable with parameter $\lambda \geq 0$ and independent of X_1, X_2, \ldots . For each integer $m \geq 0$, let $\overline{X}_m = m^{-1} \sum_{i=1}^m X_i$, where we define $\overline{X}_0 = 0$.
 - (a) Assume $\sigma^2 = EX_1^2 < \infty$ and do the following:
 - (i) Show that $\operatorname{var}(\overline{X}_N) \leq \sigma^2 \left[P(N < \lambda^{1/3}) + \frac{P(N \geq \lambda^{1/3})}{\lambda} \right]$.
 - (ii) Show that $P(N < \lambda^{1/3}) \to 0$, as $\lambda \to \infty$. Hint: Use Chebyshev's inequality.
 - (iii) Show that $\lim_{\lambda\to\infty} P(|\overline{X}_N| \ge \epsilon) = 0$ for every $\epsilon > 0$.
 - (b) Let $\psi(t)$ be the characteristic function of a standard normal random variable, and define $Z_m = m^{1/2} \overline{X}_m / \sigma$. Continue to assume $\sigma^2 < \infty$. Do the following:
 - (i) Show that for any real t,

$$|E(e^{itZ_N}) - \psi(t)| \le 2P(N < \lambda^{1/3}) + \max_{m \ge \lambda^{1/3}} |E(e^{itZ_m}) - \psi(t)|.$$

- (ii) Show that for any real t, $|E(e^{itZ_N}) \psi(t)| \to 0$, as $\lambda \to \infty$.
- (c) Now do not assume $\sigma^2 < \infty$. Do the following:
 - (i) Show that for each $\epsilon > 0$,

$$P(|\overline{X}_N| \ge \epsilon) \le P(N < \lambda^{1/3}) + P\left(\max_{m \ge \lambda^{1/3}} |\overline{X}_m| \ge \epsilon\right).$$

(ii) Show that $\overline{X}_N \to 0$, in probability, as $\lambda \to \infty$. Hint: Use the strong law of large numbers.

2. (a) Let X be a random variable and let ν be a parameter of interest in the distribution of X. Suppose that T(X) is an unbiased estimator of ν . Show that any unbiased estimator of ν is of the form T(X) - U(X), where $E\{U(X)\} = 0$.

In the sequel, let X be a discrete random variable with $P(X=-1)=p, P(X=k)=(1-p)^2p^k, k=0,1,2,\ldots$, where $p\in(0,1)$ is unknown.

- (b) Show that $E\{U(X)\}=0$ if and only if U(k)=ak for all $k=-1,0,1,2,\ldots$ and some a.
- (c) Using the results in (a) and (b), show that I(X=0) is the unique admissible estimator under squared error loss amongst all unbiased estimators of $(1-p)^2$, where $I(\cdot)$ is the indicator function.
- (d) Show that no unique admissible estimator exists for p under squared error loss amongst unbiased estimators for p.
- (e) Prove whether there exist unbiased estimators of p^{-1} . If so, then determine whether a unique admissible estimator exists under squared error loss amongst unbiased estimators for p^{-1} .

3. Consider a sequence of numbers x_1, x_2, \ldots and place vertical lines before x_1 and between x_j and x_{j+1} whenever $x_j > x_{j+1}$. We say that the runs are the segments between pairs of lines. Thus, each run is an increasing segment of the sequence x_1, x_2, \ldots

Suppose that $X_1, X_2, ...$ are independent and indentically distributed uniform (0,1) random variables and that we are interested in the lengths of the successive runs. Let L_j denote the length of the jth run.

- (a) Compute $P(L_1 \ge m), m = 1, 2, ...$
- (b) Suppose we know that the jth run starts with the value x. Compute $P(L_j \ge m|x)$.
- (c) Let I_j denote the initial value of the jth run. Show that $p_n(y|x)$, the probability density that the n+1st run has $I_{n+1}=y$ given that the nth run has just begun with $I_n=x$, equals e^{1-x} if y < x and $e^{1-x}-e^{y-x}$ if y > x.
- (d) Demonstrate that $\pi(y)$, the probability density function for I_n as $n \to \infty$, satisfies $\pi(y) = 2(1-y), 0 < y < 1$. You may do this by verifying the continuous state equilibrium equations for discrete time Markov chains: $\pi(y) = \int_0^1 \pi(x) p(y|x)$.
- (e) Find $\lim_{n\to\infty} P(L_n \ge m)$.
- (f) What is the average length of a run as $n \to \infty$, that is, $\lim_{n \to \infty} E(L_n)$?

$2011\ \mathrm{PhD}$ Theory Exam, Section 1

Statement of the UNC honor pledge:		
"In recognition of and in the spirit of received aid on this examination and the	•	
(Signed)	NAME	
(Printed)		

NAME