

Unit 3 **Analysis of Algorithms**

Data Structures and Algorithms

- An algorithm is a set of steps (instructions) for solving a problem.
- A problem can have several different solutions algorithms

Sorting Algorithms:

- Bubble Sort
- Quick sort
- Insertion Sort
- Selection Sort
- Goal: choose the most efficient algorithm

- Study the efficiency of algorithms:
 - time complexity.
 - space complexity.

 Focus on time: How to estimate the time required for an algorithm?

to estimate the required time:

- Empirical Analysis of Algorithms
- Theoretical Analysis of Algorithms

- 1. Write the program
- 2. Include instructions to measure the execution time
- 3. Run the program with inputs of different sizes
- 4. Plot the results

Example: Given a number n, develop a method to sum from 1 to n.

1. Write the program:

```
def sumOfN (n):
    theSum = 0
    for i in range(1,n+1):
        theSum = theSum + i
```

2. Include instructions to measure the execution time

```
import time
def sumOfN (n):
  start = time.time()
  theSum = 0
  for i in range(1,n+1):
    theSum = theSum + i
  end = time.time()
  return theSum, end-start
```

- 3. Run the program with inputs of different sizes
- 4. Plot the results

8

- When you need to show very large ranges (like in the previous example), use a Log-log plot
- Log-log plot uses logarithmic scales on both the horizontal and vertical axes.
- How can you make a log-log graph in excel?
 - In your XY (scatter)
 graph, double-click the
 scale of each axis.
 - In the Format Axis,
 Options, select
 Logarithmic scale

Given a number n, develop a method to sum from 1 to n.

Is there another algorithm to solve the same problem?

$$1+2+3+4+5=15$$

 The Gauss's solution for adding numbers from 1 to n

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{5} k = \frac{5(5+1)}{2} = \frac{30}{2} = 15$$

Nota: You can find an easy explication at: http://mathandmultimedia.com/2010/09/15/sum-first-n-positive-integers/

- Now, you can implement the Gauss's solution
- Run the program for different values of n and measure the running time...

```
import time

def sumOfN2(n):
    start = time.time()
    theSum = (n*(n+1))/2
    end = time.time()
    return theSum, end-start
```

n	time (ns)
100	436
1.000	371
10.000	259
100.000	298
1.000.000	290
10.000.000	250
100.000.000	233
1.000.000.000	222

Then, plot the result and compare it with the previous solution

Disadvantages:

- You need to implement the algorithms.
- Same environment to compare two algorithms.
- You can not conclude the time for other inputs not included in the experiment.

to estimate the required time:

- Empirical Analysis of Algorithms
- Theoretical Analysis of Algorithms
 - Running Time function.
 - Big-O notation

T(n) is the **number of operations executed by an algorithm** to process an input of size n.

Examples: $T_1(n) = 3n+5$, $T_2(n) = n^2-4n+6$

- Pseudocode
- Independent of the hardware/software environment
- Takes into account all possible inputs, whatever is the size of n.

Primitive operations take constant time (1 nanoseconds)

Examples:

— Assigning a value to a variable: x=2

Indexing into an array: vector[3]

Returning from a method: return x

Evaluating an arith. expression: x+3

Evaluating a logical expression: i<size

Consecutive statements:

Just add the running times of those consecutive statements.
 T(n)=T(S1)+T(S2)+...+T(Sn)

Algorithm swap(a,b)	<u># operations</u>
temp=a	1
a=b	1
b=temp	1

Loop statements

• The running time of a **loop** is the running time of the statements inside of that loop times the number of iterations.

T (n) = (n+2n) = 3n The loop requires 3n Nanoseconds, for an input of size n

Nested loops

 Time complexity of nested loops is equal to the number of iterations of the outer loop times the number of iterations of the inner loop.

```
# operations
for i=1 to n
    for j=1 to n
        print(i*j)

T(n) = n + n^2 + 2n^2 = 3n^2 + n
```

If/else statements

As only one of the statements (S1,S2,...Sn) will be executed, we must consider the worst case (the most costly in time)

if opc=0: x=0 else: x=0 for i=1 to n x=x+i

operations

return n*(n+1)/2

T(n) allows to compare algorithms without implementing them

```
Algorithm sumN(n)

total=0

for i=1 to n

total=total+i

return total

Algorithm sumNGauss(n)

# operations

1

1

3n+2
```

1+1+1+1

Time requirements as a function of the problem size n

T(n) depends on: size of data, But also on the value of x

```
Algorithm contains(data,x)

for c in data

if (c==x)

return True

1

return False
```

- Best case: x is the first element
- Worst case: x is the last or does not exist

- Big O is used to describe the runtime tendency of an algorithm (growth rate)
- Different functions with the same growth rate may be represented using the same O notation.

Efficient orders-of-growth (Big O):

Order	Name	Description	Example
1	Constant	Independent of the input size	Remove the first element from a queue
Log ₂ (n)	Logarithmic	Divide in half	Binary search
N	Linear	Loop	Sum of array elements
$nLog_2(n)$	Linearithmic	Divide and conquer	Mergesort, quicksort
N^2	Quadratic	Double loop	Add two matrices; bubble sort
N^3	Cubic	Triple loop	Multiply two matrices
k ⁿ	Exponential	Exhaustive search	Guess a password,
n!	Factorial	Brute-force search	Enumerate all partitions of a set

T(n)	Big-O
n + 2	O(?)
(n+1)(n-1)	O(?)
3n+log(n)	O(?)
n(n-1)	O(?)
7n ⁴ +5n ² +1	O(?)

T(n)	Big-O
n + 2	O(n)
(n+1)(n-1)	O(n ²)
3n+log(n)	O(n)
n(n-1)	O(n ²)
7n ⁴ +5n ² +1	O(n ⁴)

T(n)	BigO
4	O(?)
3n+4	O(?)
5n ² + 27n + 1005	O(?)
$10n^3 + 2n^2 + 7n + 1$	O(?)
n!+ n ⁵	O(?)

T(n)	BigO
4	O(1)
3n+4	O(n)
5n ² + 27n + 1005	O(n ²)
$10n^3 + 2n^2 + 7n + 1$	$O(n^3)$
n!+ n⁵	O(n!)

Calculate its T(n) and BigO functions, discuss the worst and best cases.

```
      Algorithm findMax(data)

      max=-999999
      1

      for c in data:
      n

      if c>max:
      1*n

      max=c
      1*n

      return max
      1
```