List 9

Michał Balcerek Computer Simulations of Stochastic Processes

05.2022

Definition 1 (Fractional Brownian motion, FBM). [Samorodnitsky, Taqqu 1994] Let $H \in (0,1)$. Then standard fractional Brownian motion $\{B_H(t), t \in \mathbb{R}\}$ has the integral representation

$$B_H(t) = \frac{1}{C_H} \int_{-\infty}^{\infty} \left((t - x)_+^{H - 1/2} - (-x)_+^{H - 1/2} \right) Z_2(\mathrm{d}x), \quad t \in \mathbb{R},$$
where
$$C_H = \left\{ \int_0^{\infty} \left((1 + x)_-^{H - 1/2} - x_-^{H - 1/2} \right)^2 \mathrm{d}x + \frac{1}{2H} \right\}^{1/2}.$$

When H = 1/2, $C_{1/2} = 1$ and such representation is to be interpreted $\int_0^t Z_2(dx)$ if $t \ge 0$ or $-\int_t^0 Z_2(dx)$ if t < 0, that is as a integral representation of Brownian motion.

Definition 2 (Fractional α -stable motion, FSM). Let $H \in (0,1), \alpha \in (0,2]$. Then fractional α -stable motion $\{L_H(t), t \in \mathbb{R}\}$ has the integral representation

$$L_H(t) = \int_{-\infty}^{\infty} \left((t - x)_+^{H - 1/\alpha} - (-x)_+^{H - 1/\alpha} \right) Z_{\alpha}(\mathrm{d}x), \quad t \in \mathbb{R}.$$

Note that for $\alpha = 2$ you obtain fractional Brownian motion (up to a constant).

Definition 3 (Ornstein-Uhlenbeck process). Process $\{X(t), t \in \mathbb{R}\}$ is called α -stable Ornstein-Uhlenbeck is it has the following representation

$$X(t) = \int_{-\infty}^{t} e^{-\lambda(t-x)} dZ_{\alpha}(x), \text{ or equivalently}$$

$$X(t) - X(s)e^{-\lambda(t-s)} = \int_{s}^{t} e^{-\lambda(t-x)} dZ_{\alpha}(x)$$

Your task is to simulate $\{X(t)\}\ for\ t \geq 0$ assuming some $X(0) = X_0 \in \mathbb{R}$.

Problem 1 (Integral representation of stable process). Using integral representation simulate (approximate) the following processes:

- fractional Brownian motion;
- fractional α -stable motion;
- Ornstein-Uhlenbeck process.

Problem 2. Apply previously considered estimators:

- quantile lines,
- ullet characteristic function,

and consider estimation of autocorrelation function (or autocodifference). Apply them to either process or its increments (whichever is more appropriate).