Algebra 2 Homework 5

March 29, 2024

Solution of problem 1: \bullet BIT \Longrightarrow OMT: We first need to show that $\pi: X \to X/M$ is an open map, where M is a closed subspace. Let U be open in X. Then we want to understand q(U). Let $x \in U$. Then there must be r > 0 such that $B(x,r) \subsetneq U$. Let x' + M be such that ||(x + M) - (x' + M)|| < r, that is, $\inf_{m \in M} ||(x - x') + m|| < r$. We must obtain some $m \in M$, where ||(x - x') + m|| < r, since the inequality is strict. But now $x' - m \in B(x,r) \subset U$, and so $q(x' - m) \in q(U)$, and note that q(x' - m) = x' + M, which lies in B(x' + M, r), a ball in q(U). Thus we have an open map.

Now we assume that bounded inverse theorem. Let $T: X \to Y$ be a bounded surjective map. Then let $M = \ker T$. Then we have the map $\bar{T}: X/M \to Y$ where $x + M \mapsto T(x)$. This map is clearly well-defined since if x + M = x' + M then $x - x' \in M$. Then T(x) = T(x'). This is clearly a bijection by the first isomorphism theorem. Now by the Bounded Inverse Theorem, we have that $S = \bar{T}^{-1}: Y \to X/M$ exists and is a bounded and linear map. Hence it is also continuous.

Solution of problem 2: Let $T: C^1[-1,1] \to \mathbb{R}$, where T(f) = f'. This is clearly linear. Note that $||f|| := \sup_{x \in [-1,1]} |f(x)|$. Then see that $||T|| = \sup_{||f||=1} |Tf|$, which is unbounded. Then note for (u_n) , a sequence of differentiable functions that converge uniformly to u, and $Tu_n = u'_n$ converges to f, then we have Tu = u' = f. Thus this a discontinuous linear operator than has closed graph.

Solution of problem 3: Take ℓ_{00}^1 . This is the subspace of ℓ^1 which have only finitely many non-zero terms. Consider $\Lambda_n(x) = \sum_{k=0}^n k \cdot x_k$. Then $\{\Lambda_n : n \in \mathbb{N}\}$, is a finite set for all $x \in \ell_{00}^1$, but since $||Lambda_n|| = n$, this is not uniformly bounded. This is easy to see, since $\Lambda_n(e_n) = n$, hence it See that the uniform boundedness principle does not apply here that ℓ_{00}^1 is not complete, since the sequence $\{y_n\}$ where $y_n = (1, 1/2, \dots, 1/n, 0, \dots)$, does not converge in the space.

Solution of problem 4: 1. Let X be a Banach space, and $p: X \to [0, \infty)$ is a semi-norm (a norm, but without the rule that $p(x) = 0 \implies x = 0$). If we take any absolutely convergent series $\sum_{n=1}^{\infty} x_n \in X$, we have

$$p\left(\sum_{n=1}^{\infty} x_n\right) \le \sum_{n=1}^{\infty} p(x_n) \in [0, \infty],$$

then p is continuous. To prove this, we let $A_n = p^{-1}([0,n])$ and $F_n = \overline{A_n}$. See that A_n and F_n are symmetric convex sets since p is a seminorm. We have $X = \bigcup_{n=1}^{\infty} F_n$, and by Baire's theorem there must be some N such that F_N has non-empty interior. Therefore, there exist $x_0 \in X$, and R > 0 such that $B_R(x_0) \subset F_n$. By symmetry of $F_N, B_R(-x_0) = -B_R(x_0) \subset F_N$. If ||x|| < R, then $x + x_0 \in B_R(x_0), x - x_0 \in B_R(-x_0)$, so we have $x \pm x_0 \in F_N$. Since F_N is convex, we have $\frac{1}{2}(x_0 + (-x_0)) = 0 \in F_N$. Then we have $B_R(0) \subset F_N$. We want to show that $B_R(0) \subset A_N$. Suppose ||x|| < r < R. Fix $0 < q < 1 - \frac{r}{R}$, so that $\frac{1}{1-q} \cdot \frac{r}{R} < 1$. Then $y = \frac{R}{r}x \in B_R(0) \subset F_N = \overline{A_N}$. Thus there is $y_0 \in A_N$ such that $||y - y_0|| < qR$, so $q^{-1}(y - y_0) \in B_R$. Choose a $y_1 \in A_N$ such that $||q^{-1}(y - y_0) - y_1|| < qR$, so $||y - y_0 - qy_1|| < q^2R$. By induction we have (y_n) such that

$$\left| \left| y - \sum_{k=0}^{n} q^k y_k \right| \right| < q^n R,$$

for all $n \ge 0$, thus we have $y = \sum_{k=0}^{\infty} q^k y_k$. We see that $||y_k|| \le R + qR$ for all k, so y as a series exists since the constructed series is absolutely convergent. Now, using the subadditivity that was given in the hypothesis, we have

$$p(y) = p\left(\sum_{k=0}^{\infty} q^k y_k\right) \le \sum_{k=0}^{\infty} q^k p(y_k) \le \frac{1}{1-q} N,$$

and hence $p(x) \leq \frac{N(1+\varepsilon)}{R} ||x||$, which proves the continuity.

2. (a) $T:\to Y$ is a bounded linear operator. Then suppose the T(U), where U is the open unit ball, is open. In that case, let V be some open neighbourhood of X. Then for $x\in V$, we have that some ball of radius r centered at x is in V. We can then see that $T(rU+x)\subset V$, which means that we only need to see that T(U) is open.

Define $p(y) := \inf\{||x|| \mid Tx = y\}$. We need to show that this is a seminorm with countable subadditivity. Let $\alpha \neq 0$ be a scalar. Then we have $\{x \mid x \in X, Tx = \alpha y\} = \{\alpha x \mid x \in X, Tx = y\}$, and taking infimums, we have $p(\alpha y) = |\alpha| p(y)$. For $\alpha = 0$, this can be easily checked. Let $\sum_n y_n$ be a convergent series. We need to show that $p(\sum_n y_n) \leq \sum_n p(y_n)$, so we assume $\sum_n p(y_n)$ is finite, since if it was infinite there would be nothing to prove. Fixing some $\varepsilon > 0$, we take a sequence (x_n) in X such that $Tx_n = y_n$, and $||x_n|| < p(y_n) + 2^{-n}\varepsilon$. Then we have $\sum_n ||x_n|| < \sum_n p(y_n) + \varepsilon$, which is finite. Since in Banach spaces absolutely convergent series are also convergent, we have $\sum_n x_n$ converges. Then $T(\sum_n x_n) = \sum_n Tx_n = \sum_n y_n$, so

$$p\left(\sum_{n} y_{n}\right) \leq \left\|\sum_{n} x_{n}\right\| \leq \sum_{n} ||x_{n}|| < \sum_{n} p(x_{n}) + \varepsilon.$$

Therefore subadditivity is confirmed, so by Zabreiko's lemma, we have

$$T(U) = \{y : y \in Y, Tx = y \text{ for some } x \in U\} = \{y : y \in Y, p(y) = 1\},\$$

which is open. This proves the open mapping theorem.

- (b) If we have a one-one onto linear mapping from a topological space to another is a homeomorphism if and only if it is continuous and open. Using the open mapping theorem, we have that this map is open, and continuous. Thus T^{-1} exists and must be bounded, as it is a homeomorphism too. This proves the bounded inverse theorem.
- (c) Let \mathcal{F} be a non-empty family of bounded linear operators from a Banach space X to a normed space Y, where $\sup\{||Tx|| \mid T \in \mathcal{F}\}$. Now, let $p(x) := \sup\{||Tx|| \mid T \in \mathcal{F}\}$. See that $p(\alpha x) = |\alpha| p(x)$ from definition. For $\sum_n x_n$ a convergent series, we have

$$\left\| T\left(\sum_{n} x_{n}\right) \right\| = \left\| \sum_{n} x_{n} \right\| \leq \sum_{n} ||Tx_{n}|| \leq \sum_{n} p(x_{n}),$$

which implies that $p(\sum_n x_n) \leq \sum_n p(x_n)$. In particular, we have $p(x_1 + x_2) \leq p(x_1) + p(x_2)$. Now, since p is continuous, we have $\delta > 0$ such that $p(x) \leq 1$ for $||x|| \leq \delta$. Whenever $x \in X, ||x|| = 1$ we have $p(x) \leq \delta^{-1}$, which means that $||T|| \leq \delta^{-1}$ for each $T \in \mathcal{F}$.

(d) Let, $T: X \to Y$. Now pick p(x) = ||Tx||. If p was continuous, then there would be a neighbourhood U of 0 such that the set p(U) is bounded, which implies that T(U) is bounded, and this implies continuity of T. p is a semi-norm, so we need to check its continuity. We only need to check that this has countable subadditivity. Take $\sum_n x_n$, a convergent series, then we can assume that $\sum_n ||Tx_n||$ is finite without loss of generality. Now see that if $\sum_n ||Tx_n||$ is convergent, then so is $\sum_n Tx_n$ is convergent in Y, as it is complete. Since $\sum_{k=1}^n x_k \to \sum_n x_n$, then we have $T(\sum_{k=1}^n x_k) \to T(\sum_n x_n)$. Then, from hypothesis we have $T(\sum_n x_n) = \sum_n Tx_n$. Taking norm, we have the norm subadditivity. Since p is continuous by Zabreiko's lemma, we have proven the closed graph theorem.

Solution of problem 5: We know that $x_n \xrightarrow{w} x$, so for any $f \in X^*$, we have $f(x_n) \to f(x)$. Using the Hahn-Banach theorem, we can find a linear functional f where ||f|| = 1, and f(x) = ||x||. Then we have

$$||x|| = \lim_{n \to \infty} |f(x_n)| \le \liminf_{n \to \infty} ||f|| \, ||x_n|| = \liminf_{n \to \infty} ||x_n||,$$

as desired. \Box

Solution of problem 6: X is a normed linear space. We say that (x_n) , a sequence in X is weakly Cauchy if the sequence (fx_n) converges for all $f \in X^*$. X is weakly complete if all weakly Cauchy sequences converge weakly.

Let X be reflexive. Let (x_n) be a weakly Cauchy sequence in X. Pick $f \in X^*$. Then since $(f(x_n))$ is a Cauchy sequence in \mathbb{C} , we have that $f(x_n) \to \alpha(f)$, where $\alpha \in X^{**}$. We do not know what element in X this element corresponds to, but we know that since X is reflexive we can think of it as an element of the bidual acting on f. For any $f \in X^*$ we have $E_{x_n}(f) = f(x_n) \to \alpha(f)$. We define α as the element of X^{**} , as the limit of $(f(x_n))$ as $n \to \infty$. Now see that $|\alpha(f)|$ is bounded as for each $f \in X^*$, we have that pointwise the set $(f(x_n))$ is bounded for each $f \in X^*$. Then by the Uniform Bounded Principle, we have

 (x_n) must be bounded in X^{**} . Since $||x_n||_{X^{**}} = ||x_n||$, we know that (x_n) is bounded in X by M > 0. Then,

$$|f(x_n)| \le M ||f|| \implies \alpha(f) \le M ||f||.$$

Since X is reflexive, $\alpha \in X$. Then by definition for each $f \in X^*$ we have $f(x_n) \to \alpha(f) = f(\alpha)$, which confirms weak converges.