Revisiting derived crystalline cohomology

BY ZHOUHANG MAO

1 Surjections of animated rings

Apps: classical objs w/ acyclicity conds w/o finiteness:

Definition. (Quillen) (A, I) is quasiregular (abbrev. quasireg.) $\stackrel{\triangle}{\Longleftrightarrow} \mathbb{L}_{(A/I)/A}[-1]$ is A/I-flat.

Theorem 1. (ans. to Illusie's Q; M.)

- (A, I) a quasireg. pair;
- $(B, J, \gamma) := the PD-env. of (A, I).$

 \implies the canon. map $\Gamma^*_{A/I}(I/I^2) \rightarrow J^{[*]}/J^{[*+1]}$ is an equiv.

Definition. A map $R \to S$ in Ani(Ring) is surj. $\iff \pi_0(R) \to \pi_0(S)$ is surj.

Notation. An := $\{Kan\ complexes\}[(homotopy\ equivs)^{-1}].$

Definition. (Quillen, Lurie) \mathcal{C} — a small ∞ -cat. w/ fin. coprods. The nonab. deriv. cat. $\mathcal{P}_{\Sigma}(\mathcal{C}) := \{F : \mathcal{C}^{\mathrm{op}} \to \operatorname{An} | F(\varnothing) \simeq \{*\} \text{ and } F(X \coprod Y) \simeq F(X) \times F(Y)\}^{1}$.

Proposition. (Quillen, Lurie)

- $C a \text{ small } \infty\text{-cat. } w/\text{ fin. coprods};$
- \mathcal{D} a cocpl. ∞ -cat.
- $\implies \exists \ an \ equiv.$

$$\{G: \mathcal{P}_{\Sigma}(\mathcal{C}) \to \mathcal{D} \mid G \text{ preserves fil. colims. & geom. reals}\} \xrightarrow{\operatorname{res}} \{F: \mathcal{C} \to \mathcal{D}\}$$

of ∞ -cats. $\mathbb{L}F$ — the left deriv. fun. of F.

Definition. (Lurie) $An \propto -cat. \mathcal{D}$ is proj. gen. $\stackrel{\triangle}{\iff} \exists \mathcal{C} \subseteq_{\text{full}} \mathcal{D} : \mathcal{P}_{\Sigma}(\mathcal{C}) \xrightarrow{\simeq} \mathcal{D}.$

^{1.} In the talk, the condition $F(\emptyset) = \{*\}$ was mistakenly omitted. Thanks for Ofer Gabber for pointing out this.

Section 1

Example. Proj. gen.

1. Ani(Ring) = $\mathcal{P}_{\Sigma}(\text{Poly})$;

2. $\forall Z \in \mathcal{P}_{\Sigma}(\mathcal{C}) : \mathcal{P}_{\Sigma}(\mathcal{C})_{Z/} \simeq \mathcal{P}_{\Sigma}(\{Z \to Z \coprod X \mid X \in \mathcal{C}\}).$

Theorem 2. (M.) AniPair := $\{A \rightarrow A'' \mid A, A'' \in \text{Ani}(\text{Ring})\} \simeq \mathcal{P}_{\Sigma}(\text{StPair})$ where StPair := $\{\mathbb{Z}[X, Y] \rightarrow \mathbb{Z}[X] \mid X, Y \in \text{Fin}\}.$

Definition.

- $1. \ \, \mathrm{AniPDPair} := \mathcal{P}_{\Sigma}(\mathrm{StPDPair}) \ \, where \ \, \mathrm{StPDPair} := \{(\Gamma_{\mathbb{Z}[X]}(Y) \twoheadrightarrow \mathbb{Z}[X], \gamma) \, | \, X, Y \in \mathrm{Fin}\}.$
- 2. AniPDEnv := $\mathbb{L}(StPair \rightarrow AniPDPair, (A, I) \mapsto D_A(I))$.
- 3. Forgetful: $\mathbb{L}(StPDPair \rightarrow AniPair, (A, I, \gamma) \mapsto (A, I))$.

Facts.

1. Pair ⊆_{full} AniPair, PDPair ⊆_{full} AniPDPair.

2.

AniPair
$$| (A \twoheadrightarrow A'') \in \text{Pair} \iff \pi_i(A) = \pi_i(A'') = 0 \quad i \neq 0$$

3.

Ani
PDPair
$$| \\ (A \twoheadrightarrow A'', \gamma) \in \text{PDPair} \iff (A \twoheadrightarrow A'') \in \text{Pair}$$

Outline of pf. of $\Gamma_{A/I}^*(I/I^2) \xrightarrow{\sim} J^{[*]}/J^{[*+1]}$.

- 1. Animated version:
 - a. Ani. Rees alg. := $\mathbb{L}(\operatorname{StPair} \to \operatorname{Gr}(\operatorname{Ani}(\operatorname{Ring})), (A, I) \mapsto (I^n)_{n \in \mathbb{N}}).$
 - b. PD-variant: $\mathbb{L}(\text{StPDPair} \to \text{Gr}(\text{Ani}(\text{Ring})), (A, I, \gamma) \mapsto (I^{[n]})_{n \in \mathbb{N}}).$
 - c. Assoc. gr.: $\mathbb{L}(\operatorname{StPDPair} \to \operatorname{Gr}(\operatorname{Ani}(\operatorname{Ring})), (A, I, \gamma) \mapsto (I^{[n]}/I^{[n+1]})_{n \in \mathbb{N}}).$ \Longleftarrow thm on StPair.

- 2. \mathbb{L} " $J^{[n]}/J^{[n+1]}$ " are static by acyclicity \Longrightarrow so are " $B/J^{[n]}$ ".
- 3. Initiality of $B \rightarrow B/J^{[*]}$.

Theorem 3. (M.) (A, I) — quasireg. \mathbb{F}_p -pair s.t. $(A/I) \otimes_{A, \varphi}^{\mathbb{L}} A$ is static. \Longrightarrow AniPDEnv $(A, I) \simeq D_A(I)$.

Notation. char $p: \mathbb{F}_p$ in place of \mathbb{Z} . e.g. $\operatorname{StPair}_{\mathbb{F}_p} := \{\mathbb{F}_p[X,Y] \twoheadrightarrow \mathbb{F}_p[X] \mid X,Y \in \operatorname{Fin}\}$, $\operatorname{StPDPair}_{\mathbb{F}_p}$, $\operatorname{AniPDPair}_{\mathbb{F}_p} := \mathcal{P}_{\Sigma}(\operatorname{StPDPair}_{\mathbb{F}_p})$.

Remark. $(A, I) \in \text{StPair}_{\mathbb{F}_p} \leadsto (A/I) \otimes_{A, \varphi}^{\mathbb{L}} A \circlearrowleft D_A(I)$.

Definition. $(A, I) \in \text{StPair}_{\mathbb{F}_n}$. The conj. fil. on $D_A(I)$:

$$\operatorname{Fil}_{\operatorname{conj}}^{-n}(D_A(I)) := \sum_{\substack{i_1 + \dots + i_m \le n \\ f_1, \dots, f_m \in I}} ((A/I) \otimes_{A, \varphi}^{\mathbb{L}} A) \gamma_{i_1 p}(f_1) \cdots \gamma_{i_m p}(f_m) \subseteq D_A(I)$$

 $\rightsquigarrow a \ functor \ StPair_{\mathbb{F}_p} \rightarrow Fil^{\leq 0}(Ani(Ring)) \rightsquigarrow \mathbb{L}(\cdots) : AniPair_{\mathbb{F}_p} \rightarrow Fil^{\leq 0}(Ani(Ring)), \ also \ the \ conj.$ fil. Fil_{conj}.

Lemma. (Bhatt) $\forall (A, I) \in \text{StPair}_{\mathbb{F}_p}, \ \exists \ a \ comp. \ isom. \ \Gamma_{A/I}^*(I/I^2) \otimes_{A,\varphi}^{\mathbb{L}} A \to \operatorname{gr}_{\operatorname{conj}}^{-*}(D_A(I)) \ of \ (A/I) \otimes_{A,\varphi}^{\mathbb{L}} A \operatorname{-mods}, \ functorial \ in \ (A,I).$

Outline of proof of AniPDEnv $(A, I) \simeq D_A(I)$.

- 1. $\mathbb{L}(\text{the lemma above}) + \text{quasireg.} \Longrightarrow \text{the canon.} (A/I) \otimes_{A,\varphi}^{\mathbb{L}} A \to \text{AniPDEnv}(A, I) \text{ is faithfully flat.}$
- $2. \ (A/I) \otimes_{A,\varphi}^{\mathbb{L}} A \text{ static} \Longrightarrow \text{so is AniPDEnv}(A,I) \Longrightarrow \in \text{PDPair} \xrightarrow{\text{initiality}} \text{result}.$

2 Derived crystalline cohomology and prisms

Theorem. (Bhatt) $A \to B$ — a l.c.i. map of flat \mathbb{Z}/p^n -algs. \Longrightarrow the comp. map $dR_{B/A} \longrightarrow R\Gamma((B/A)_{cris}, \mathcal{O}_{cris})$

 $is\ an\ equiv.$

Definition. (BMS2) $A \to R$ quasisyntomic (abbrev. quasisyn.) \iff flat $+ \mathbb{L}_{R/A}$ has Tor-ampl. in [0,1].

Theorem 4. (M.)

- (A, I, γ) a PD-pair s.t. $p \in A$ is nilp.
- R a quasisyn. A/I-alg.

 \implies derived crys. coh. of $R/(A,I,\gamma) \simeq crys.$ coh. of $R/(A,I,\gamma)$.

4 Section 2

Lemma. $C - a \ small \ \infty \text{-}cat. \ w / \ fin. \ coprods \Longrightarrow \operatorname{Fun}(\Delta^1, \mathcal{P}_{\Sigma}(\mathcal{C})) \simeq \mathcal{P}_{\Sigma}(\{X \to X \coprod Y \mid X, Y \in \mathcal{C}\}).$

Corollary. dRCon := Fun(Δ^1 , AniPDPair) $\simeq \mathcal{P}_{\Sigma}(dRCon^0)$ where $dRCon^0 := \{(\Gamma_{\mathbb{Z}[X]}(Y) \twoheadrightarrow \mathbb{Z}[X], \gamma) \rightarrow (\Gamma_{\mathbb{Z}[X,X']}(Y,Y') \twoheadrightarrow \mathbb{Z}[X,X'], \tilde{\gamma}) \mid X, X', Y, Y' \in Fin\}.$

Definition. The deriv. dR cohom. $dR_{\cdot/\cdot}: dRCon \to CAlg_{\mathbb{Z}} := \mathbb{L}(dR_{\cdot/\cdot}: dRCon^0 \to CAlg_{\mathbb{Z}})$ — for

$$\begin{array}{ccc}
A \longrightarrow B \\
\downarrow & \downarrow \\
A'' \longrightarrow B''
\end{array}$$

Definition. CrysCoh_{B"/(A→A", γ_A)} := dR_{(id_{B"},0)/(A→A", γ_A)}.

Strategy of pf. of derived crys. comp.

- 1. Derived sites out of animated PD-pairs.
- 2. Site coh. \simeq derived site coh., via Čech-Alex.
- 3. Suffices to show: derived site cohom. \simeq derived crys. coh.
 - a. When $A/I \to R$ is surj.: reduces to (Bhatt) $dR_{\mathbb{F}_p/\mathbb{F}_p[x]} \simeq \Gamma_{\mathbb{F}_p}(x)$
 - b. Conj. fil. \Longrightarrow desc. w.r.t. base $\stackrel{\check{\text{Cech-Alex}}}{\Longrightarrow}$ result.

Theorem 5. (M.) (generalizes results in [Morrow-Tsuji], [Chatzistamation] & [Tian])

$$\begin{array}{ccc} A & \longrightarrow P \\ \downarrow & & \downarrow \\ A/d & \longrightarrow R \end{array}$$

- (A,d) a bnd oriented prism.
- \bullet R a p-complete, p-completely quaisyn. A/d-alg.
- P-a (p,d)-complete δ -A-alg, (p,d)-completely quasismooth over A
- $P \rightarrow R a$ surj. of A-algs.
- \implies The prism. env. of $P \rightarrow R$ is a flat cover of the final obj. in $\Delta(R/A)$.