Bibliographie I

Matthieu Falce

GIL

Parallélisation Bibliograpgie

► GIL

http:

//www.dabeaz.com/python/UnderstandingGIL.pdf

https:

//en.wikipedia.org/wiki/Preemption_(computing)

https://lwn.net/Articles/612483/

Python scientifique

Matthieu Falce

Python scientifique

Numpy

Scipy

Pandas

Sympy

Analyse de réseaux Machine learning / statistiques

Graphiques

Écosystème

- écosystème très riche
- utilisé aussi bien par les scientifiques que les entreprises
- origine : développeurs et scientifiques
- sponsorisé par de grandes entreprises (google, facebook, Enthought, Anaconda Inc)
- tout ce que vous cherchez existe probablement déjà

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Pandas

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Performance

Dask

Bibliographie

Écosystème

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter Numpy

cipy

Pandas

nalyse de réseaux

Machine learning /

Graphiques

Performano

Dask

Écosystème

Calculs:

- ► numpy ⁵⁴
- ► scipy ⁵⁵
- ▶ pandas ⁵⁶
- **...**

Plotting:

- ► matplotlib ⁵⁷
- ▶ seaborn ⁵⁸
- ▶ bokeh ⁵⁹

54.http://www.numpy.org/

55.https://www.scipy.org/

56.https://pandas.pydata.org/

57.https://matplotlib.org/

58.https://seaborn.pydata.org/

59.https://bokeh.pydata.org/en/latest/

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy Scipy

Pandas

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Danfarmana

Dask

Bibliographie

Python scientifique

import numpy as np

```
xs = np.arange(-2*np.pi, 2*np.pi, 100)

ys = np.sin(xs) - 3*xs + 2
```



```
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print(A.dot(B))
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Écosystème scientifique

Jupyto

Numpy

Pandas

Sympy

Machine learning /

Graphiques

Performa

Dask

IPython - Jupyter

- ▶ shell interactif avec auto-complétion
- ▶ fonctions *magique* (mesure du temps, infos shell...)
- notebook (et maintenant lab) \rightarrow programmation littérale, IDE en ligne
- utilisation d'autres "noyaux" (R, Julia, C, Haskell...)
- calcul parallèle
- présentation des résultats
- **...**

Matthieu Falce

Vuo d'oncomble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Performances

Dask

Bibliographie

Présentation

Paquet fondateur de la stack scientifique Python.

- propose un type de tableaux multidimensionnels
- met les performances au premier plan
- ► manipulation vectorielles / matricielles faciles
- outils pour manipuler ces tableaux (algèbre linéaire, traitement du signal, ...)

Utilise des bibliothèques Fortran ou C/C++ \rightarrow bonnes performances

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Écosystème scientifiqu Jupyter

Numpy Présentation

Tableaux

Structure des tableaux

Création des tableaux

Manipulations usuelles

Broadcasting

Scipy Pandas

Analyse de réseaux

dialyse de reseat

Tableaux numpy

- tableaux multidimensionnels (NDarray)
- facilement indexable
- vectorisation du code (UFunc et broadcasting)

Même manipulation que Matlab

```
import numpy as np

xs = np.arange(-2*np.pi, 2*np.pi, 100)
ys = np.sin(xs) - 3*xs + 2

############################

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print(A.dot(B))
```

4]]) Tableaux 8]]) Structure Création

Structure des tableaux Création des tableaux

Numpy Présentation

Matthieu Falce

Création des tableaux Manipulations usuelles Broadcasting Fonctions universelles Scipy Pandas Sympy Analyse de réseaux

Structure

- un seul type de données par tableau (ou objet python)
- métadonnées + données linéaires
- ightharpoonup orientation (C ou Fortran) ightharpoonup important pour les performances

https:

//www.slideshare.net/enthought/numpy-talk-at-siam

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Jupyter Numpy

Présentation

Tableaux

Structure des tableaux

Création des tableaux Manipulations usuelles

Broadcasting

Fonctions univers

Scipy

Pandas

Analyse de réseaux

ialyse de rese

Structure

- un seul type de données par tableau (ou objet python)
- métadonnées + données linéaires
- ▶ orientation (C ou Fortran) → important pour les performances

Row-major order

Column-major order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=65107030

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Présentation

Tableaux

Structure des tableaux

Création des tableaux

Manipulations usuelles

Broadcasting
Fonctions universelles

Scipy

Pandas

Symny

Analyse de réseaux

Structure

- un seul type de données par tableau (ou objet python)
- métadonnées + données linéaires
- ightharpoonup orientation (C ou Fortran) ightharpoonup important pour les performances

https://jakevdp.github.io/PythonDataScienceHandb ook/02.01-understanding-data-types.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Lundan

Numpy

Présentati

Structure des tableaux

Création des tableaux

Manipulations usuelles

Broadcasting

Scipy

Pandas

Analyse de réseaux

Allalyse de reseaux

Création des tableaux

```
import numpy as np

# à partir d'une liste / liste de liste...

xs = np.array([i for i in range(10)])
A = np.array([[1, 2], [3, 4]])

# équivalent de range
rs = np.arange(10, 50, 2)

# valeurs régulièrement espacées
es = np.linspace(-3.65, np.pi, 100)

# forcer les types
ts = np.linspace(-3.65, np.pi, 100, dtype=np.int)
ts2 = np.linspace(-3.65, np.pi, 100, dtype=np.complex) + 2j

# tous les utilitaires classiques
ones = np.ones((3, 1))
diag = np.eye(3)
full = np.full((3, 2), np.pi)
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

cosystème scientifique

Jupyter

Numpy

Présentation

Tableaux

Structure des tableaux

Création des tableaux

Manipulations usuelles Broadcasting

Fonctions universelles

Scipy

Pandas

Analyse de réseaux

Création des tableaux

Creation Code Result Code Result Z = zeros(9) Z = zeros((5,9)) Z = ones(9) Z = ones((5,9)) $Z = array(\\ [[0,0,0,0,0,0,0,0,0,0], \\ [0,0,0,0,0,0,0,0], \\ [0,0,0,0,0,0,0,0], \\ [0,0,0,0,0,0,0,0], \\ [0,0,0,0,0,0,0,0]])$ Z = array([0,0,0,0,0,0,0,0,0]) Z = arange(9) Z = arange(5*9).reshape(5,9)Z = random.uniform(0,1,9)Z = random.uniform(0,1,(5,9))

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation

Python scientifique

Jupyter Numpy

Présentation

Tableaux

Structure des tableaux

Création des tableaux

Manipulations usuelles Broadcasting

Fonctions ur

Scipy Pandas

ympy

Changements de forme / dimensions

Certaines opérations vont s'opérer sur certaines dimensions. On peut les visualiser comme étant des projections.

Matthieu Falce

/ue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Présentation

Tableaux

Structure des tableaux

Création des tableaux

Manipulations usuelles

Broadcasting

Fonctions universelles

Scipy Pandas

6

Analyse de réseaux

Changements de forme / dimensions

```
# changement du nombre de dimensions
A = np.arange(1, 3 * 4 + 1).reshape((3, 4))
print(A)
# [[ 1 2 3 4]
# [ 5 6 7 8]
```

on peut effectuer des actions selon
certaines dimensions
B = np.arange(1, (3 * 4 * 5) + 1).reshape((3, 4, 5))

B.mean(axis=0)
B.mean(axis=1)

[9 10 11 12]]

import numpy as np

B.mean(axis=2)

 $\texttt{B.sum(axis}{=}1)$

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de modules

Programmation

Python scientifique

upyter

Numpy

Présentatio

Tableaux

Structure des tableaux

Manipulations usuelles

Broadcasting

Fonctions universalle

Scipy

Pandas

Changements de forme / dimensions

Reshaping

http://www.labri.fr/perso/nrougier/teaching/numpy /numpy.html

Matthieu Falce

Jupyter

Numpy

Présentation

Création des tableaux

Manipulations usuelles

Fonctions universelles

Scipy

Pandas Sympy

Analyse de réseaux

Indexing

```
import numpy as np
```

```
# découpage
```

```
D = np.arange((100 * 5)).reshape((100, 5))
split = 30
test, train = D[:split, :], D[split:, :]
```

indéxing booléen # on met toutes les valeurs paires à 0

A[pairs] = 0

```
A = np.arange(1, 3 * 4 + 1).reshape((3, 4))
pairs = (A \% 2 == 0)
pairs = pairs.astype(bool)
```

slicing et réassignation partielle

```
B = np.arange(100, dtype=np.uint8).reshape((10, 10))
B[::2, ::2] = B[1::2, 1::2] / 2
```

Matthieu Falce

Jupyter

Numpy

Structure des tableaux

Manipulations usuelles

Broadcasting

Pandas

Indexing Matthieu Falce Slicing Code Result Code Result Z Z[...] = 1 Z[1,1] = 1 Z[:,0] = 1 Z[0,:] = 1 Z[2:,2:] = 1 Z[:,::2] = 1 Z[::2,:] = 1Jupyter Z[:-2,:-2] = 1 Z[2:4,2:4] = 1Numpy Présentation Z[::2,::2] = 1 Z[3::2,3::2] = 1 Structure des tableaux Création des tableaux Manipulations usuelles http://www.labri.fr/perso/nrougier/teaching/numpy Fonctions universelles Scipy /numpy.html Pandas

Broadcasting

Le broadcasting permet de manipuler entre eux des tableaux de tailles différentes.

http://www.labri.fr/perso/nrougier/teaching/numpy /numpy.html

Matthieu Falce

Analyse de réseaux

Numpy Présentation

Structure des tableaux

Manipulations usuelles

Broadcasting

Scipy Pandas

Broadcasting

Le broadcasting permet de manipuler entre eux des tableaux de tailles différentes.

Ce n'est pas magique

```
In [10]: A = np.arange(9).reshape((3, 3))
In [11]: B = np.arange(4)
In [12]: A + B
-----
ValueError
              Traceback (most recent call last)
<ipython-input-12-151064de832d> in <module>()
----> 1 A + B
ValueError: operands could not be broadcast
together with shapes (3,3) (4,)
```

Matthieu Falce

Numpy

Présentation

Structure des tableaux

Création des tableaux

Manipulations usuelles

Broadcasting

Fonctions universelles

Pandas

Analyse de réseaux

Fonctions universelles

Fonctions universelles s'appliquent sur les éléments d'un tableau de façon vectorisée (sans boucles apparentes).

Exemple: y = np.sin(x)

On peut créer ses propres fonctions vectorisées avec np.frompyfunc ou np.vectorize.

Ce n'est pas pour ça qu'elles seront plus rapides.

Matthieu Falce

Jupyter Numpy

Structure des tableaux

Manipulations usuelles Broadcasting

Fonctions universelles

Pandas

Présentation

Méthodes additionnelles à Numpy pour le calcul scientifique.

- fonctions spéciales
- intégration
- optimisation
- équations différentielles
- traitement du signal
- algèbre linéaire
- **.**..

Si des routines sont partagées avec Numpy \rightarrow plus complètes dans Scipy 60

Scipy utilise LAPACK, Numpy pas forcément ⁶¹

60.https://docs.scipy.org/doc/numpy/reference/routines.dual.html 61.https://www.scipy.org/scipylib/faq.html#what-is-the-difference-between-numpy-and-scipy

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifiqu

Jupyter Numpy

Numpy

Présentation

Scikits Fonctionnalités

Pandas

Sympy Analyse de réseaux

Machine learning /

Graphiques

arapniques Performances

Dask

Scikits

 $\textit{SciPy Toolkits} \rightarrow \text{extensions pour Scipy indépendantes}$

Liste non exhaustive 62

- scikit-learn
- scikit-image
- scikit-bio

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmation

Dython scientifique

Écosystème scie

Jupyter Numpy

Scipy

Présentation

Scikits

Dandas

Sympy Analyse de réseaux

Machine learning / statistiques

statistiques

araphiques

Perior

62.liste complète : https://scikits.appspot.com/scikits

FFT 63 Matthieu Falce import numpy as np import matplotlib.pyplot as plt t = np.arange(256)sig = np.sin(t)# sp est un tableau de complexes sp1 = np.fft.fft(sig) freq1 = np.fft.fftfreq(t.shape[-1]) plt.plot(freq1, sp1.real, freq1, sp1.imag) # comparaisons fréquences sig2 = np.sin(2 * t)sp2 = np.fft.fft(sig2)freq2 = np.fft.fftfreq(t.shape[-1])Écosystème scientifique plt.plot(freq2, sp2.real, label="F2") Numpy plt.plot(freq1, sp1.real, label="F1") Scipy plt.legend() plt.show() Fonctionnalités Analyse de réseaux Machine learning / Graphiques

63.https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html#numpy.fft.fft

Optimisation 64 Matthieu Falce from scipy.optimize import minimize minimize(lambda x: x^{**2} , $x^{0}=1000$) fun: 5.713415792109052e-17 # # hess inv: array([[0.50000012]]) jac: array([-2.16266884e-10]) message: 'Optimization terminated successfully.' # nfev: 24 # nit: 3 # njev: 8 Numpy status: 0 # Scikits success: True Fonctionnalités x: array([-7.55871404e-09]) Sympy Analyse de réseaux Machine learning / statistiques 64.https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

Dask

Optimisation ⁶⁴

from scipy.optimize import minimize

```
minimize(lambda x: x[0]**2 + x[1] ** 2, x0=(1000, 33))

#     fun: 1.3011523813214424e-13
# hess_inv: array([[0.54198343, 0.00254437],
#        [0.00254437, 0.5001542 ]])
#        jac: array([7.35719908e-07, 4.45876263e-08])
#        message: 'Optimization terminated successfully.'
#        nfev: 40
#        nit: 5
#        njev: 10
#        status: 0
#        success: True
#        x: array([3.60409374e-07, 1.48432326e-08])
```

On peut mettre des contraintes sur les paramètres et changer de méthode d'optimisation aussi.

64.https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmatio

D .1 . .10

Écosystème scientifique

Jupyter Numpy

Scipy

Présentation Scikits

Fonctionnalités

Pandas Sympy Analyse de réseaux Machine learning /

Graphiques
Performances
Dask

Interpolation 65

- ► en 2D
- splines et courbes paramétrées

```
import numpy as np
from scipy.interpolate import interpld
import matplotlib.pyplot as plt

x = np.linspace(0, 10, num=11, endpoint=True)
y = np.cos(-x ** 2 / 9.0)
f = interpld(x, y)
f2 = interpld(x, y, kind='cubic')

xnew = np.linspace(0, 10, num=41, endpoint=True)
plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--')
plt.legend(['data', 'linear', 'cubic'], loc='best')
plt.show()
```

65.https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation
Orientée objet

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Numpy Scipy

Scikits Fonctionnalités

Pandas Sympy Analyse de réseaux

Machine learning / statistiques
Graphiques

Dask

Intégration – équations différentielles 66 67

en 1D

► en 2D

... jusqu'à N dimensions

paramétrages complexes

- Matthieu Falce
- /ue d'ensemble
- Langage Python
- Programmation Orientée objet (POO)
- Bonnes pratiques
- Bibliothèque standard
- Création de
- Programmation
- Python scientifique
- cosystème scientific
- Jupyter
- Numpy
- Scipy
- Scikits
- Fonctionnalités
- Pandas
- Analyse de réseaux
- Machine learning /
- Graphiques
- Performances
- Performa

66.https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html 67.https://docs.scipy.org/doc/scipy/reference/integrate.html

ODE non stiff et stiff, pas adaptatif...

Intégration – équations différentielles 66 67

```
from scipy.integrate import quad
```

def fonction a integrer(x, a, b):

66.https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html 67.https://docs.scipy.org/doc/scipy/reference/integrate.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation
Orientée objet

Bonnes pratiques

Bibliothèque

Création de

Programmation

Python scientifique

Écosystème scientifique Jupyter Numpy

Présentation

Scikits Fonctionnalités

Pandas Sympy

Analyse de réseaux Machine learning / statistiques

Graphiques
Performances

Intégration – équations différentielles 66 67

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
def carre_der(t, x):
    return 2*x
ts = np.arange(10)
ys = odeint(carre_der, 2, ts)
plt.plot(ts, ys)
plt.show()
```

66.https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html 67.https://docs.scipy.org/doc/scipy/reference/integrate.html

Matthieu Falce

Numpy

Scipy

Scikits

Fonctionnalités

Analyse de réseaux

Machine learning /

Graphiques

Dask

Traitement signal 69

"Tout" pour le traitement du signal :68

- convolutions
- conceptions / analyses de filtres (FIR, FII) / analyse réponse
- analyses de spectres
- détections de pics

Matthieu Falce

Jupyter

Numpy

Scikits Fonctionnalités

Sympy

Analyse de réseaux Machine learning / statistiques

68.https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal 69.https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html

Algebre linéaire 70

Fonctions potentiellement légèrement différentes de celles de Numpy Compilées avec BLAS et LAPACK Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de modules

Programmation

Duthan adaptifian

Écosystème scientifique

Jupyter

Numpy Scipy

Précentatio

Scikits

Fonctionnalités

Pandas

Sympy Analyse de réseaux

Machine learning /

Graphiques

Performances

Dask

Matrices creuses 71 72

Numpy supporte les matrices creuses de différents types :

csc matrix: Compressed Sparse Column format

csr_matrix: Compressed Sparse Row format

70.https://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html

bsr_matrix: Block Sparse Row format

► lil_matrix: List of Lists format

dok_matrix: Dictionary of Keys format

coo_matrix: COOrdinate format (aka IJV, triplet format)

▶ dia_matrix: DIAgonal format

Utiliser les méthodes de scipy.sparse.linalg pour faire des opérations et garder des matrices creuses. Selon le type de matrices utilisées ; différentes possibilités (perte du slicing...)

71.https://docs.scipy.org/doc/scipy-0.14.0/reference/sparse.html 72.https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

ıpyter

Numpy

Présentation

Scikits

Fonctionnalités

Sympy

Analyse de réseaux

Machine learning / statistiques

aphiques

Lois statistiques 73 74

- distributions discrètes et continues
- analyses de données statistiques (kurtosis, zscores...)
- tests statistiques
- **.**..

73.https://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html

74.https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Scipy

Scikits

Fonctionnalités

Pandas

ympy

Analyse de réseaux

Machine learning /

Graphiques

Performances

Dask

Manipulation d'images

Les images (rasterisées ou pixelisées) sont des tableaux numpy classiques.

Voici les principales bibliothèques pour en faire :

- Pillow 75 : plutôt utilisée pour les manipulations classiques (redimensionnement, rotation, changement de format, ...)
- numpy / scipy classique ⁷⁶: permet de manipuler les tableaux de données de pixels directement
- scikit image ^{77 78}: Propose de nombreux algorithmes pour faire du traitement d'images
- openCV⁷⁹: le port de la Bibliothèque d'analyse d'image openCV. Permet de travailler en temps réel (à partir d'une caméra par exemple)

75.https://pillow.readthedocs.io/en/stable/

76.Plus d'infos ici : http://scipy-lectures.org/advanced/image_processing/

77.https://scikit-image.org/

78.https://scipy-lectures.org/packages/scikit-image/index.html 79.https://docs.opencv.org/master/d6/d00/tutorial_py_root.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation
Orientée objet

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

ıpyter

Numpy

Scipy

Présentation Scikits

Fonctionnalités

Pandas

Sympy Analyse de réseaux

Machine learning / statistiques

Graphiques

Performance

Dask

Manipulation d'images

```
from skimage import data, io, filters
image = data.coins()
edges = filters.sobel(image)
io.imshow(edges)
io.show()
```


Manipulation d'images avec scikit image. Source : https://scikit-image.org/

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Écosystème scien

Jupyter

Numpy

Scipy

Scikits

Fonctionnalités

Pandas

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Performance

Dask

Manipulation d'images

```
import cv2 as cv
# Read image from your local file system
original_image = cv.imread("path/to/your-image.jpg")
# Convert color image to grayscale for Viola-Jones
grayscale_image = cv.cvtColor(original_image, cv.COLOR_BGR2GRAY)
# Load the classifier and create a cascade object for face detection
face_cascade = cv.CascadeClassifier("path/to/haarcascade_frontalface_alt.xml")

detected_faces = face_cascade.detectMultiScale(grayscale_image)
for (column, row, width, height) in detected_faces:
    cv.rectangle(
        original_image, (column, row), (column + width, row + height), (0, 255, 0), 2
    )

cv.imshow("Image", original_image)
cv.waitKey(0)
cv.destroyAllWindows()
```

Détection de visages avec openCV.
Source : https://realpython.com/traditional-face-de

tection-python/

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation
Orientée objet
(POO)

Bonnes pratiques

Bibliothèque

Création de modules

Programmation

Python scientifique

cosystème :

Numpy

Scipy

Présentation Scikits

Fonctionnalités

Pandas

Sympy

Analyse de réseaux

Machine learning / statistiques

raphiques

Performai

Présentation

Bibliothèque essentielle à l'analyse de données.

Données structurées (lignes / colonnes à la SQL) et séries temporelles.

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Scipy

Présentation

Dataframes

Manipulations de dataframes

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Performances

Dataframes et séries

- series : suite de données à 1 dimension (comme un tableau numpy avec d'autres fonctionnalités)
- dataframes : regroupement de plusieurs séries de même taille (comme un tableur)

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Dython scientifique

Écosystème scientifiqu

Jupyter Numpy

Scipy

Pandas

Présentation Dataframes

Manipulations de dataframes

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Création de dataframes et de séries

```
import numpy as np
import pandas as pd

# créer une série
s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

# créer un dataframe
d = {
    "one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]),
    "two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"]),
}
df = pd.DataFrame(d)
df["three"] = s

print("description de df :")
df.describe()
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque

Création de

Programmation

Python scientifique

Jupyter

Numpy

Scipy

Présentation

Dataframes

Manipulations de

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Manipulations de dataframes

Indexation et accès aux données

```
# https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
import numpy as np
import pandas as pd
# créer une série
s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])
df = pd.DataFrame({"one": s, "two": s[1:], "three": s[2:]})
# accès aux colonnes
one, two = df["one"], df.two
df[["one", "two"]]
# accès aux lignes
df[:1] # slicing
a, bcd, adb = df.loc["a"], df.loc["b":], df.loc[["a", "b", "d"]]
df.iloc[2:1
type(df[1:2]) # pandas.core.frame.DataFrame
type(df.iloc[1]) # pandas.core.series.Series
# accès aux éléments
df.loc["a", "one"] # index ligne, colonne
# échantillonage
df.sample(n=3, replace=True, random state=seed)
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet

Bonnes pratiques

Bibliothèque

Création de modules

Programmation

Python scientifique

Écosystème scien Jupyter

Numpy

Scipy

Présentation

Presentation

Manipulations de

Sympy

Analyse de réseau

Machine learning /

Graphiques

Aparté sur les performances d'indexation

```
## vitesse
# # bad practice
# In [89]: %timeit df["one"]["a"]
# 8.9 \( \mu \times \text{ 107 ns per loop (mean \times \times \text{td. dev. of 7 runs, 100000 loops each)}

# # high level loc
# In [90]: %timeit df.loc["a", "one"]
# 6.6 \( \mu \times \times
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

É.....

Jupyter

Numpy

Scipy

Présentation

Dataframes

Manipulations de

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Dorformance

Manipulations de dataframes

Lecture de CSV et nettoyage de données

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

cosystème sc

Jupyter Numpy

Sciny

Pandas

Présentation

Manipulations de

Sympy

Analyse de réseaux

Machine learning /

Graphique

Exemples de graphiques possibles

```
import numpy as np
import pandas as pd
from pandas.plotting import lag_plot
from pandas.plotting import autocorrelation_plot
from matplotlib import pyplot as plt
xs = np.linspace(-1, 1, 100)
ys = np.cos(xs)
ys2 = np.random.random(100)
df = pd.DataFrame({"cos": ys, "rand": ys2})
lag_plot(df.cos)
plt.show()
lag_plot(df.rand)
plt.show()
autocorrelation_plot(df.rand)
autocorrelation_plot(df.cos)
plt.show()
ax = df.cos.plot()
fig = ax.get_figure()
fig.savefig("cos.png")
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

£......

upyter

Numpy

Scipy

Présentation

Dataframes

Manipulations de

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

D. . C.

Manipulations de dataframes

Opération sur des groupes de données

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmation

Python scientifique

cosystème scie

Numpy

Scipy

Présentation

Presentation

Manipulations de

Sympy

Analyse de réseaux

Machine learning /

Graphique

Manipulation de séries temporelles

```
import pandas as pd
import numpy as np
# time index
dti = pd.date_range("2018-01-13", periods=3, freq="H")
dti = dti.tz_localize("UTC")
dti.tz_convert("US/Pacific")
# https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
start, end = "2019-01-12", "2019-12-25"
pd.date_range(start, end, freq="BM")
## https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
pd.to_datetime("12-11-2010 00:00", format="%d-%m-%Y %H:%M")
                                                                                                        Numpy
# resampling
                                                                                                        Scipy
idx = pd.date_range("2018-01-01", periods=48, freq="H")
ts = pd.Series(range(len(idx)), index=idx)
                                                                                                        Présentation
ts.resample("2H").mean()
                                                                                                        Manipulations de
s = pd.Series(range(len(idx)), index=idx)
for i in s.resample("6H"):
    print(i)
                                                                                                        Analyse de réseaux
                                                                                                        Machine learning / statistiques
```

Indexation (représentation graphique)

Plus d'informations sur les différents modes d'accès ici : https://stackoverflow.com/questions/28757389/pan das-loc-vs-iloc-vs-at-vs-iat

Python Pandas Selections and Indexing

.iloc selections - position based selection

data.iloc[<row selection], <column selection>]

Integer list of rows: [0,1,2] Slice of rows: [4:7] Single values: 1

Integer list of columns: [0,1,2] Slice of columns: [4:7] Single column selections: 1

loc selections - position based selection

data.loc[<row selection], <column selection>]

Index/Label value: 'iohn' List of labels: ['john', 'sarah'] Logical/Boolean index: data['age'] == 10

Named column: 'first_name' List of column names: ['first_name', 'age'] Slice of columns: 'first_name':'address'

Source: https://www.shanelynn.ie/select-pandas-dat aframe-rows-and-columns-using-iloc-loc-and-ix/

Matthieu Falce

Matthieu Falce

Numpy

Présentation

Manipulations de

Analyse de réseaux

Machine learning /

Indexation (représentation graphique)

Plus d'informations sur les différents modes d'accès ici : https://stackoverflow.com/questions/28757389/pan das-loc-vs-iloc-vs-at-vs-iat

Pandas Select Row

© Matt Harasymczuk, 2020, CC-BY-SA-4.0

Source: https:

//python.astrotech.io/pandas/dataframe/loc.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque

Création de

Programmation

Python scientifiqu

Écosystème scientifique

Jupyter Numpy

Scipy

Présentation

Dataframes

Manipulations de

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Indexation (représentation graphique)

Plus d'informations sur les différents modes d'accès ici : https://stackoverflow.com/questions/28757389/pan das-loc-vs-iloc-vs-at-vs-iat

Pandas Select Column

				4
	Morning	Noon	Evening	Midnight
1999-12-30	1.764052	0.400157	0.978738	2.240893
1999-12-31	1.867558	-0.977278	0.950088	-0.151357
2000-01-01	-0.103219	0.410599	0.144044	1.454274
2000-01-02	0.761038	0.121675	0.443863	0.333674
2000-01-03	1.494079	-0.205158	0.313068	-0.854096
2000-01-04	-2.552990	0.653619	0.864436	-0.742165
2000-01-05	2.269755	-1.454366	0.045759	-0.187184

© Matt Harasymczuk, 2020, CC-BY-SA-4.0

df.Evening df.loc[:, 'Evening']

Source: https:

//python.astrotech.io/pandas/dataframe/loc.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Écosystème so Jupyter Numpy

Pandas

Présentation Dataframes

Manipulations de dataframes

Sympy Analyse de réseaux

Machine learning / statistiques

Présentation

 Sympy^{75} est une bibliothèque permettant le calcul symbolique :

- simplification d'expression
- analyse (dérivation, intégration)
- ▶ affichage des sorties en LATEX

75.http://www.sympy.org

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

upyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Dask

Bibliographie

Calcul symbolique

```
# permet l'affichage des formules
init_session()

# on déclare des variables
x, a, b = symbols("x a b")

# on défini une intégrale
a = Integral(cos(x) * exp(x), x)
print(a)
latex(a) # on affiche son code latex

# on va simplifier des expressions
simplify(sin(x) ** 2 + cos(x) ** 2)
simplify(x ** a * x ** b)
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

cosystème sci

Jupyter Numpy

Scipy

Pandas Sympy

Analyse de réseaux

Machine learning /

Graphique

Performance

Dask

Présentation

Il existe plusieurs bibliothèques pour manipuler des graphes (réseaux) en python :

- ► igraph ⁷⁶
- ► networkx ⁷⁷
- ▶ graph-tool ⁷⁸

La plus connue est networkX mais peut être lente (codée en pur python), les autres sont potentiellement plus rapide.

Matthieu Falce

Vuo d'ancomble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation

Pvthon scientifique

cosystème scientif

Jupyter Numpy

Scipy

Pandas

Sympy

Analyse de réseaux

Machine learning / statistiques
Graphiques

Dask

Bibliographie

76.http://igraph.org
77.http://networkx.github.io
78.http://graph-tool.skewed.de

Manipulation de graphes

import networkx as nx

```
# on crée un graphe en 2 parties
G = nx.Graph()
G.add_edges_from([(1, 2), (1, 3)])
G.add_node(4)

# on calcule des propriétés du graphe
nx.connected_components(G)
list(nx.connected_components(G))
sorted(d for n, d in G.degree)
nx.clustering(G)
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

cosysteme

Numpy

Scipy

Pandas

Analyse de réseaux

Machine learning / statistiques Graphiques Performances

Etat des lieux

Il existe plusieurs bibliothèques dédiées apprentissage :

- modèles statistiques (régressions, tests statistiques, méthodes sur séries temporelles): statsmodels ⁷⁹
- ▶ algorithmes de *machine learning* : scikit-learn ⁸⁰
- curve feating : prophet⁸¹ (analyse de séries temporelles)
- deep learning: tensorflow⁸², keras⁸³

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter

Numpy Scipy

Pandas

Symny

ушру

Analyse de réseaux Machine learning /

tatistiques

Graphiques

Performances

Dask

Bibliographie

79.https://www.statsmodels.org/stable/index.html

80.https://scikit-learn.org/stable/

81.https://facebook.github.io/prophet/

82.https://www.tensorflow.org/

83.https://keras.io/

Graphiques

- 1. amélioration et diversification des outils
- 2. réalisation de graphiques de qualité
- 3. écosystème riche (seuls R et Javascript ont de meilleures bibliothèques à mon avis)

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

cosystème scientific

Jupyter

Numpy

Pandas

Sympy

Machine learning /

Graphiques

Matplotlib

Personnalisatio

Seaporn

oncurrents 2L

Matplotlib

Bibliothèques de plot la plus célèbre

API inspirée de Matlab

```
from matplotlib import pyplot as plt
import numpy as np

xs = np.linspace(-2*np.pi, 2*np.pi, 100)
ys1 = np.sinc(xs)
ys2 = np.sin(xs)

plt.plot(ys1, c="r", label="Sinc")
plt.plot(ys2, c="b", label="Sin")
plt.xlabel("X")
plt.xlabel("X")
plt.ylabel("f(x)")
plt.legend()
plt.show()
```

plt agit comme une machine à état

Matthieu Falce

lue d'encemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

£......

Jupyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Matplotlib

Personnalisation

Seaborn

Concurrents 2D

Matplotlib

Bibliothèques de plot la plus célèbre

API inspirée de Matlab Le style aussi

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmation

Python scientifique

Écosystème scient

Numpy

Scipy

Pandas

Analyse de réseaux

Machine learning / statistiques

Graphiques

Matplotlib

Personnalisati Seaborn

Concurrents 20

Matplotlib – types de plots

 $\label{eq:matplotlib} \mbox{Matplotlib est une biblioth\`eque graphique} \rightarrow \mbox{peut tout faire}.$

Si l'on s'en donne la peine

- lineplot
- scatterplot
- cartographie
- hexbin
- nuages de mots
- ▶ 3D
- animations
- ...

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Matplotlib

Personnalisation

Concurrents 2D

Anatomie d'une figure

https://matplotlib.org/faq/usage_faq.html

Matthieu Falce

Vue d'ensemble

Langage Pythor

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Écosystème sci

Numpy

Scipy

Pandas

Analyse de réseaux

Machine learning / statistiques

Graphiques

Matplotlib

Personnalisat

Seaborn

Concurrents 21

Personnalisation

Vous pouvez surcharger la configuration de Matplolib :

- passer des paramètres à la fonction de dessin
- ► changer de style
- modifier le pyplot.rcParams

Thème: bmh

Matthieu Falce

Vue d'ensemble

Langage Pythol

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter

Numpy Scipy

Panda

Sympy

Analyse de réseaux Machine learning /

statistiques

Graphiques Matplotlib

Personnalisation

Seaborn

Concurrents 2I

Personnalisation

Vous pouvez surcharger la configuration de Matplolib :

- passer des paramètres à la fonction de dessin
- ► changer de style
- modifier le pyplot.rcParams

Thème: seaborn-dark-palette

Matthieu Falce

Vue d'ensemble

Langage Pythor

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifiqu

Jupyter Numpy

Scipy

Pandas

Sympy

Machine learning / statistiques

Graphiques

Matplotlib Personnalisation

Personnalisatio

Concurrents ZL

Personnalisation

Vous pouvez surcharger la configuration de Matplolib :

- passer des paramètres à la fonction de dessin
- changer de style
- modifier le pyplot.rcParams

Thème: Solarize_Light2

Matthieu Falce

Vue d'ensemble

Langage Pytho

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

É.....

Jupyter

Numpy Scipy

Panda

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Matplotlib

Personnalisation

Concurrents 2D

Personnalisation

Vous pouvez surcharger la configuration de Matplolib :

- passer des paramètres à la fonction de dessin
- changer de style
- modifier le pyplot.rcParams

```
from matplotlib import pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = 'Ubuntu'
plt.rcParams['ytick.labelsize'] = 8
plt.rcParams['legend.fontsize'] = 10
plt.rcParams['figure.titlesize'] = 20
plt.rcParams['lines.linewidth'] = 10
xs = np.linspace(-15, 15, 1000)
ys1 = 20 * np.sin(xs) / xs
ys2 = 10 * np.sinc(xs / 2)
plt.plot(xs, ys1, label=r"\$\frac{\sin(x)}{10 * x}$")
plt.plot(xs, ys2, label=r"\$\frac{\sin(x/10)}{x/10}$")
plt.title("Courbes")
plt.legend()
plt.xlabel("X")
plt.ylabel("$f(x)$")
plt.title("Surcharge rcParams")
plt.savefig("styles/rcParams.png")
plt.show()
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation
Orientée objet
(POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Jupyter Numpy

Scipy Pandas

Sympy

Machine learning / statistiques

Graphiques Matplotlib

Personnalisation

Seaborn Concurrents 2E

Personnalisation

Vous pouvez surcharger la configuration de Matplolib :

- passer des paramètres à la fonction de dessin
- changer de style
- modifier le pyplot.rcParams

Surcharge de rcParams

Matthieu Falce

Jupyter

Numpy

Scipy

Analyse de réseaux

Machine learning /

Graphiques Matplotlib

Personnalisation

Seaborn

Seaborn se base sur matplotlib.

Il rajoute des styles et des fonctionnalités (surtout utile en statistiques).

```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
R = np.random.random((5, 5))
sns.heatmap(R)
plt.savefig("sns_heatmap.png")
plt.clf()
A = np.random.normal(10, 1, 100)
B = \text{np.random.normal}(6, 5, 100)

\text{sns.boxplot}(x=[\text{"A", "B"}], y=[\text{A, B}])
plt.savefig("sns_boxplot.png")
plt.clf()
sns.kdeplot(A, shade=True, label="A")
sns.distplot(B, label="B")
plt.legend()
plt.savefig("sns_distplot.png")
```

Matthieu Falce

Numpy

Machine learning /

Matplotlib

Seaborn

Seaborn

Seaborn se base sur matplotlib.

Il rajoute des styles et des fonctionnalités (surtout utile en statistiques).

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation
Orientée objet
(POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

,

Jupyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Matplotlib Personnalisation

Seaborn

Concurrents 2D

Seaborn

Seaborn se base sur matplotlib.

Il rajoute des styles et des fonctionnalités (surtout utile en statistiques).

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmation

Duthon scientifique

ython scient

Jupyter Numpy

Scipy

Pandas

Analyse de réseau

Machine learning / statistiques

Graphiques

Matplotlib

Seaborn Seaborn

Seaborn

Concurrents 21

Seaborn

Seaborn se base sur matplotlib.

Il rajoute des styles et des fonctionnalités (surtout utile en statistiques).

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter Numpy

Scipy

Pandae

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Matplotlib Personnalisation

Seaborn

Concurrents 21

Concurrents 2D

Matplotlib n'est pas la seule bibliothèque de graphiques pour Python :

- (seaborn)
- plotly (figures web interactives)
- mpld3 (transforme une figure mpl en Javascript)
- bokeh (figures web interactive)
- plotly (figures web interactive)
- ggplot (port de la bibliothèque ggplot2 de R)

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

Écosystème scienti

Numpy

Scipy

Pandas

Sympy

Machine learning /

Graphiques

Matplotlib

Personnalisatio

eaporn

Concurrents 2D

Graphiques 3[

Concurrent : plotly

- interactive
- web charts

```
import plotly.express as px
```

```
xs = [i for i in range(100)]
fig = px.scatter(x=xs, y=[i ** 2 for i in xs])
fig.show()
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmatio

Python scientifique

Écosystème scientifique

Jupyter Numpy

Scipy Pandas

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Matplotlib

Personnalisation

Concurrents 2D

Concurrent : plotly

import plotly.graph_objects as go

```
fig = go.Figure(
    data=go.Scatter(
        x=[1, 2, 3, 4],
        y=[10, 11, 12, 13],
        mode="markers",
        marker=dict(
            size=[40, 60, 80, 100],
            color=[0, 1, 2, 3]),
    )
)
fig.show()
```

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmation

Dython scientifique

Écosystème scienti Jupyter Numpy

Scipy Pandas

Sympy

Analyse de réseaux

Machine learning /
statistiques

Matplotlib

Personnalisation

Concurrents 2D

Graphiques 3D

Concurrent: plotly import matplotlib.pyplot as plt import plotly from plotly.tools import mpl_to_plotly fig, ax = plt.subplots() ax.plot([1, 2, 3], [1, 4, 9], "o") plotly_fig = mpl_to_plotly(fig) Matthieu Falce Vue d'ensemble Langage Python Programmation Orientée objet (POO) Bonnes pratiques Bibliothèque standard Création de modules Programmation concurrente Python scientifique Ecosystème scientifique Ecosystème scientifique Ecosystème scientifique Sympy Pandas Sympy Analyse de réseaux Machine learning / statistiques Graphiques

Dashboards

On peut utiliser Dash 84

- utilise plotly
- basé sur le framework web flask
- permet de créer des dashboards web interactifs sans faire de HTML / JS
- bindings en R et Python
- exemples : https://dash-gallery.plotly.host/Portal/

Matthieu Falce

Vue d'ensemble

Matplotlib
Personnalisation
Seaborn
Concurrents 2D

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

Jupyter Numpy

Scipy

Sympy

Machine learning / statistiques

Matplotlib Personnalisati

Seaborn Concurrents 2D

Concurrents 2D

84.https://plot.ly/dash/

Graphiques 3D

```
# source
# https://matplotlib.org/examples/mplot3d/lines3d_demo.html
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z^{**}2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax legend()
plt.savefig("test_3d.png")
plt.show()
```

Matthieu Falce

Vue d'encemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation

D. who are a standard in ...

Jupyter

Numpy

Scipy

Panda

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Matplotlib

Personnalisation

Seaborn

Graphiques 3D

Graphiques 3D

Résultat graphique 3D

Ce n'est pas de la "vraie" 3D... (pas de notion de volumes)

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

upyter

Numpy

Scipy

Pandas

Sympy Analyse de réseaux

Machine learning / statistiques

Graphiques

Graphiques Matplotlib

Personnalisatio

Seaborn

Concurrents 2

Graphiques 3D

Graphiques 3D

Pour faire de la vraie 3d :

- mayavi
- https://lorensen.github.io/VTKExamples/site/Python/
- ► (ParaView)
- moteurs de jeu 3D

Matthieu Falce

/us d'ancomble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de

Programmation concurrente

Python scientifique

Écosystème scientifique

Jupyter Numpy

Numpy

Panda

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Matplotlib

Personnalisation

Concurrents 2D

Graphiques 3D

Avant-propos

N'optimisez que ce qui est nécessaire

- faîtes des tests de performances ("profiling")
- n'optimisez que ce qui est nécessaire
- ne commencez que quand tout fonctionne et est testé
- évitez les copies et les mauvaises structures mémoires
- utilisez de bons algorithmes
- préférez les méthodes de Scipy souvent plus rapide que celles de Numpy
- zen of Numpy

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

cosystème scier

Numpy

cipy

Pandas

Analyse de réseaux

Machine learning / statistiques

Graphiques

Performances

Numexpr

Dask Bibliographie

Numexpr 85

Les calculs Numpy se font en générant des tableaux intermédiaires. Numexpr permet de les supprimer en effectuant les calculs directement

```
import numpy as np
import numexpr as ne
a = np.arange(1e6)
b = np.arange(1e6)
c = ne.evaluate("a + 1")
# %timeit c = ne.evaluate("a + 1")
# 866 μs ± 74.6 μs per loop
# (mean ± std. dev. of 7 runs, 1000 loops each)
# %timeit c = a + 1
# 845 \mu s \pm 37.2 \mu s per loop
# (mean ± std. dev. of 7 runs, 1000 loops each)
d = ne.evaluate("sin(a) + arcsinh(a/b)")
# %timeit np.sin(a) + np.arcsinh(a/b)
# The slowest run took 6.65 times longer than the fastest.
# This could mean that an intermediate result is being cached.
# 154 \text{ ms} \pm 139 \text{ ms} per loop (mean \pm \text{ std.} dev. of 7 runs, 1 loop each)
# %timeit ne.evaluate("sin(a) + arcsinh(a/b)")
# 66.2 \text{ ms} \pm 2.11 \text{ ms} \text{ per loop}
# (mean ± std. dev. of 7 runs, 10 loops each)
```

Matthieu Falce

/ue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de

Programmation

Python scientifique

É.....

Jupyter Numpy

Scipy Pandas

Sympy

Analyse de réseaux

Machine learning / statistiques

Graphiques

Numexpr

TVUITICX.

Bibliographie

Dask 86

85.https://github.com/pydata/numexpr

Framework de parallélisme.

Pour les medium data (ne tient plus en RAM mais sur un SSD)

S'intègre avec (en réutilisant les mêmes API) :

- numpy
- pandas
- scikit learn

2 concepts:

- scheduler : exécute des graphes de calculs (comme make, luigi, celery...)
- big data collections : partitionnement des données ne tenant pas en RAM

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

standard

Création de modules

Programmation

Python scientifique

upyter

Numpy

Pandas

Sympy

Machine learning / statistiques

Dask

Autres Bibliographie

86.https://dask.org/

Dask

```
from dask.distributed import Client, progress

Client = Client(
    n_workers=2,
    threads_per_worker=2,
    memory_limit="1GB"

# workers configuration

# we can change for process workers

# to deal with GIL perf issues

# go to: http://127.0.0.1:8787

Programmatic concurrente

Python sciente

Ecosystème scientif
Jupyter
Numpy
Scipy
Pandas
Sympy
Analyse de réseaux
Machine learning /
statistiques

Graphiques
```

Dask

```
# source : https://examples.dask.org/dataframe.html
import dask
import dask.dataframe as dd

# lazy operation, they are only performed when we need the result
df = dask.datasets.timeseries()
df.head()

df2 = df[df.y > 0]
df3 = df2.groupby("name").x.std()

computed_df = df3.compute()
type(computed_df)

df[["x", "y"]].resample("24h").mean().compute().plot()
df[["x", "y"]].rolling(window="24h").mean().head()

# display the call graph
df[["x", "y"]].resample("24h").mean().visualize()

# store in RAM for faster computation
df = df.persist()
```

Matthieu Falce

Matthieu Falce

Vue d'ensemble

Dask Autres Bibliographie

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

Jupyter Numpy

Scipy Pandas

Sympy

Analyse de réseaux

Machine learning / statistiques
Graphiques

Dask

Autres Bibliographie

Autres techniques

D'autres techniques, plus ou moins matures permettent d'améliorer les temps de calculs également :

- Numba
- Pythran
- ► (Theano)
- distribution python par Intel

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque standard

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning /

.atistiques

Danfarmana

Autres

Bibliographie

Bibliographie I

- graphiques
 - http://www.labri.fr/perso/nrougier/teaching/m atplotlib/matplotlib.html#id8
 - ► https://python-graph-gallery.com/matplotlib/
 - https://matplotlib.org/gallery.html
 - ► http://pbpython.com/effective-matplotlib.html
 - https://matplotlib.org/faq/usage faq.html
 - http://futurile.net/2016/02/27/matplotlib-bea utiful-plots-with-style/#id16
- numpy
 - http:

//www.scipy-lectures.org/numpy/numpy.html

- http://www.scipy-lectures.org/advanced/advanc ed_numpy/#block-of-memory
- https://docs.scipy.org/doc/numpy/reference/i nternals.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation

Python scientifique

ıpyter

Numpy

Scipy

Pandas

Analyse de réseaux

Machine learning /

Graphique

Perform: Dask

Bibliographie II

- https://jakevdp.github.io/PythonDataScienceH andbook/02.01-understanding-data-types.html
- http://www.labri.fr/perso/nrougier/teaching/n umpy/numpy.html
- http://www.labri.fr/perso/nrougier/teaching/n umpy.100/index.html

scipy

- https://scipy-cookbook.readthedocs.io/
- https://docs.scipy.org/doc/scipy/reference/t utorial/index.html
- https://docs.scipy.org/doc/scipy/reference/i ndex.html
- https:
 //makina-corpus.com/blog/metier/2017/present
 ation-de-lecosysteme-python-scientifique

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

Écosystème scientific

Jupyter Numpy

Scipy

Panda

Sympy

Analyse de réseaux Machine learning /

statistiques

Grapfilques

Dask Bibliographie

Bibliographie III

pandas

- ▶ la feuille de triche pandas officielle : https://github.com/pandas-dev/pandas/blob/ma ster/doc/cheatsheet/Pandas_Cheat_Sheet.pdf
- inline vs copy operations : https:
 //pandas.pydata.org/pandas-docs/stable/user_g
 uide/indexing.html#indexing-view-versus-copy
- les explications sur les différentes méthodes d'indexation : https://stackoverflow.com/questions/28757389 /pandas-loc-vs-iloc-vs-at-vs-iat
- https://pandas.pydata.org/pandas-docs/stable /dsintro.html
- https://pandas.pydata.org/pandas-docs/stable /visualization.html
- http://falce.net/presentation/python_pandas_m onaco_parking
- https://pandas.pydata.org/pandas-docs/stable /user_guide/cookbook.html#cookbook-resample

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque standard

Création de modules

Programmation concurrente

Python scientifique

upyter

Numpy

icipy

Pandas

Analyse de réseaux

Machine learning /

Graphiques

Performance

Dask

Bibliographie IV

dask

tutoriel sur comment charger de grandes quantités de données : https:

//blog.dask.org/2019/06/20/load-image-data

notebooks d'exemples / tutos en lignes :
https://hub-binder.mybinder.ovh/user/dask-da
sk-examples-irbwzcml/lab

cas d'usages réels :
 https://stories.dask.org/en/latest/

spark vs dask vs base de données : https://docs.dask.org/en/latest/spark.html

mise en place + vidéo :
https://docs.dask.org/en/latest/setup.html

manipulation d'images

documentation d'openCV : https://docs.opencv.or g/master/d7/d4d/tutorial_py_thresholding.html

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratique

Bibliothèque

Création de

Programmation

Python scientifique

Écosystème scientifique

Jupyter

Numpy

Scipy

Sympy

Analyse de réseaux

Machine learning /

Graphiques

Performance

Dask

Bibliographie

Bibliographie V

les exemples sur scipy-lectures : https://scipy-lectures.org/packages/scikit-image/index.html et http://scipy-lectures.org/advanced/image_processing/

Matthieu Falce

Vue d'ensemble

Langage Python

Programmation Orientée objet (POO)

Bonnes pratiques

Bibliothèque

Création de modules

Programmation

Python scientifique

Écosystème scientifiqu

upyter

Numpy Scipy

Pandas

sympy

Machine learning /

Graphiques

Performance

Dask