Permit Number 106921

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission F	Rates
(1)			lbs/hour	TPY (4)
ENG-01	Control Room Emergency	voc	0.41	0.02
	Generator	NO _x	0.78	0.04
		СО	1.60	0.08
		SO ₂	<0.01	<0.01
		РМ	0.02	<0.01
		PM ₁₀	0.02	<0.01
		PM _{2.5}	0.02	<0.01
ENG-02	Flare Blower Emergency Generator	voc	0.88	0.05
		NO _x	1.70	0.09
		со	3.30	0.17
		SO ₂	<0.01	<0.01
		РМ	0.05	<0.01
		PM ₁₀	0.05	<0.01
		PM _{2.5}	0.05	<0.01
ENG-03	Emergency Air Compressor	voc	3.70	0.19
	Compressor.	NO _x	3.70	0.19
		СО	3.20	0.16
		SO ₂	<0.01	<0.01
		РМ	0.19	<0.01
		PM ₁₀	0.19	<0.01

		PM _{2.5}	0.19	<0.01
ENG-04	Emergency Firewater Pump	voc	3.60	0.18
	i newater i ump	NO _x	3.60	0.18
		со	3.10	0.16
		SO ₂	<0.01	<0.01
		РМ	0.18	0.01
		PM ₁₀	0.18	0.01
		PM _{2.5}	0.18	0.01
ENG-07	Frac-3 & 4 Emergency Air	voc	3.70	0.19
	Compressor	NO _x	3.70	0.19
		со	3.20	0.16
		SO ₂	<0.01	<0.01
		РМ	0.19	0.01
		PM ₁₀	0.19	0.01
		PM _{2.5}	0.19	0.01
ENG-08	Frac-3 & 4 Firewater Pump	voc	3.60	0.18
	, amp	NO _x	3.60	0.18
		со	3.10	0.16
		SO ₂	<0.01	<0.01
		РМ	0.18	<0.01
		PM ₁₀	0.18	<0.01
		PM _{2.5}	0.18	<0.01

ENG-09	Frac-3 & 4	VOC	0.86	0.04
	Emergency Generator	NO _x	1.60	0.08
		со	3.20	0.16
		SO ₂	<0.01	<0.01
		РМ	0.05	<0.01
		PM ₁₀	0.05	<0.01
		PM _{2.5}	0.05	<0.01
H-5500	Hot Oil Heater H- 5500	voc	0.72	
		NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions (6)	NO _x	7.68	
	Emissions (o)	со	46.10	
H-5501	Hot Oil Heater H- 5501	voc	0.72	
	3301	NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		РМ	0.77	

		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS	NO _x	7.68	
	Emissions (6)	СО	46.10	
H-5502	Hot Oil Heater H- 5502	VOC	0.72	
	3302	NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		PM	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions (6)	NO _x	7.68	
	Emissions (6)	со	46.10	
H-7500	Hot Oil Heater H- 7500	voc	0.72	
	(6)	NO _x	1.54	
		СО	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions (6)	NO _x	7.68	-

		со	46.10	-
H-7501	Hot Oil Heater H- 7501	voc	0.72	
	(6)	NO _x	1.54	
		СО	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		PM	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions (6)	NO _x	7.68	-
	Limissions (o)	со	46.10	-
H-7502	Hot Oil Heater H- 7502	voc	0.72	
(6)		NO _x	1.54	
		СО	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		PM	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions (6)	NO _x	7.68	-
	(U)	СО	46.10	-
H-5500/H-5501/H- 5502/H-7500/H-	Hot Oil Heater Cap	voc	-	8.82
7501/H-7502		NO _x	-	35.13

	СО	-	93.09
	SO ₂	-	104.71
	H₂S	-	0.29
	NH ₃	-	11.25
	PM	-	17.55
	PM ₁₀	-	17.55
	PM _{2.5}	-	17.55
Heater MSS Emissions (6)	NO _x	-	0.74
E11113310113 (0)	со	-	4.42
	Heater MSS Emissions (6)	SO_2 H_2S NH_3 PM PM_{10} $PM_{2.5}$ Heater MSS $Emissions (6)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hot Oil Heater	VOC	0.65	
	NO _x	1.54	
	СО	5.76	
	SO ₂	20.51	
	H ₂ S	0.04	
	NH ₃	0.71	
	РМ	0.77	
	PM ₁₀	0.77	
	PM _{2.5}	0.77	
Heater MSS	NO _x	7.68	
Emissions (6)	СО	46.10	
	VOC	0.65	
	NOx	1.54	
	СО	5.76	
	SO2	20.51	
	H2S	0.04	
(6)	NH3	0.71	
	PM	0.77	
	PM10	0.77	
	PM2.5	0.77	
Heater MSS	NOx	7.68	
Emissions (6)	СО	46.10	
	VOC	0.65	
	NOx	1.54	
	Heater MSS Emissions (6) Hot Oil Heater 8 (6)	NOx CO SO2 H ₂ S NH ₃ PM PM ₁₀ PM _{2.5} Heater MSS Emissions (6) CO SO2 H2S NOx CO SO2 H2S NH3 PM PM10 PM2.5 Heater MSS Emissions (6) CO SO2 H2S NH3 PM PM10 PM2.5 Heater MSS Emissions (6) CO VOC CO CO CO CO CO C	NOx 1.54 CO 5.76 SO2 20.51 H ₂ S 0.04 NH ₃ 0.71 PM 0.77 PM ₁₀ 0.77 PM ₂₅ 0.77 Heater MSS Emissions (6) VOC 0.65 NOx 1.54 CO 5.76 SO2 20.51 H2S 0.04 NH3 0.71 PM 0.77 PM 0.77

		СО	5.76	
		SO2	20.51	
		H2S	0.04	
		NH3	0.71	
		РМ	0.77	
		PM10	0.77	
		PM2.5	0.77	
	Heater MSS	NOx	7.68	
	Emissions (6)	СО	46.10	
H-10		VOC	0.65	
		NOx	1.54	
		СО	5.76	
		SO2	20.51	
	Hot Oil Heater 10	H2S	0.04	
	(6)	NH3	0.71	
		РМ	0.77	
		PM10	0.77	
		PM2.5	0.77	
	Heater MSS	NOx	7.68	
	Emissions (6)	СО	46.10	

H-11		VOC	0.65	
		NOx	1.54	
		СО	5.76	
		SO2	20.51	
	Hot Oil Heater 11	H2S	0.04	
	(6)	NH3	0.71	
		РМ	0.77	
		PM10	0.77	
		PM2.5	0.77	
	Heater MSS	NOx	7.68	
	Emissions (6)	СО	46.10	
H-12	Hot Oil Heater 12 (6)	VOC	0.65	
		NOx	1.54	
		СО	5.76	
		SO2	20.51	
		H2S	0.04	
		NH3	0.71	
		РМ	0.77	
		PM10	0.77	
		PM2.5	0.77	
	Heater MSS Emissions (6)	NOx	7q.68	
	Liniosions (0)	СО	46.10	
H-07/H-08/H-09/H- 10/H-11/H-12		VOC		8.88
TO!! !-TT!! ! - TC		NOx		22.14
	Hot Oil Heater Cap	СО		97.74

		SO2		69.44
		H2S		0.19
		NH3		16.98
		PM		18.42
		PM10		18.42
		PM2.5		18.42
	Hot Oil Heater MSS Emissions	NOx		0.67
	EIIIISSIOIIS	СО		4.04
FI-5600	Flare	VOC	0.01	0.06
		NO _x	0.35	1.50
		со	1.40	6.10
		SO ₂	<0.01	0.02
FL-02	Flare (Frac-3 & Frac-4)	VOC	0.01	0.06
	(4)	NOx	0.35	1.50
		СО	1.40	6.10
		SO2	<0.01	0.01
CT-5601	Cooling Tower CT- 5601	VOC	2.52	3.15
	3001	PM	1.50	6.57
		PM ₁₀	0.60	2.63
		PM _{2.5}	0.15	0.66
CT-7601	Cooling Tower CT- 7601	VOC	2.53	4.71
	1,001	PM	1.50	6.57
		PM ₁₀	0.60	2.63
		PM _{2.5}	0.15	0.66
CT-05	Frac-3 Cooling Tower	voc	2.01	3.76

		РМ	1.20	5.26
		PM ₁₀	0.48	2.10
		PM _{2.5}	0.12	0.53
CT-06	Frac-4 Cooling Tower	voc	2.01	3.76
	Tower	РМ	1.20	5.26
		PM ₁₀	0.48	2.10
		PM _{2.5}	0.12	0.53
T-2421	Spent Caustic Tank T-2421	voc	0.99	0.01
		H ₂ S	<0.01	<0.001
T-3421	Spent Caustic Tank T-3421	voc	0.99	0.01
	3421	H ₂ S	<0.01	<0.001
T-5631	Wastewater Tank T- 5631	voc	1.69	0.02
T-7631	Wastewater Tank T- 7631	voc	1.69	0.02
CAS-2421	Controlled Emissions from Spent Caustic Tank (EPN T-2421)	VOC	0.05	<0.01
CAS-3421	Controlled Emissions from Spent Caustic Tank (EPN T-3421)	voc	0.05	<0.01
LOAD-2421	Spent Caustic Loading (T-2421)	voc	0.09	<0.01
LOAD-5631	Wastewater Loading (T-5631)	VOC	0.09	<0.01
LOAD-3421	Spent Caustic Loading (T-3421)	voc	0.09	<0.01
LOAD-7631	Wastewater Loading (T-7631)	voc	0.09	<0.01
LOAD-SC-3	Spent Caustic Loading (Frac-3, -4)	voc	0.09	<0.01
FUG-01	EPS and Frac-1 Equipment Leak	VOC	2.18	9.53
Project Numbers: 237424, 289	046	<u>I</u>	1	<u> </u>

		NH ₃	0.13	0.55
FUG-02	Frac-2 Equipment Leak Fugitives (5)	voc	1.19	5.22
FUG-03	Frac-3 Equipment Leak Fugitives (5)	voc	0.71	3.12
FUG-04	Frac-4 Equipment Leak Fugitives (5)	voc	0.71	3.12
FL-5600	MSS Flaring	voc	263.87	4.24
		NO _x	78.33	1.49
		со	450.40	8.66
		SO ₂	<0.01	0.02
FL-02	MSS-Flaring (Frac-3 & -4 Contribution)	voc	350.01	8.41
	4 Contribution)	NO _x	117.35	2.80
		со	672.40	16.12
MSS-FUG	MSS Degassing	voc	176.80	3.43
		NH₃	0.47	<0.01
MSS-FUG-3	MSS De-gassing (Frac-3 & 4	voc	92.50	6.50
	Contribution)	NH₃	0.47	<0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

H₂S - Hydrogen Sulfide

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$, as

represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

NH₃ - ammonia

(4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Permit	Number	106921
Page		

(6)	Annual Emissions represent combined annual er	missions from heaters H-5	5500, H-5501,	H-5502,	H-7500, H-
	7501, and H-7502.				

Date:	November 9, 2018