Math 484 QZ Duality and Rates of Change

LP₁ where

$$\min z = c \cdot x$$
 $c = (-3, 4)$ $x = (x_1, x_2)$
 $g_1(x) \ge b_1$ $g_1(x) = 3x_1 - 4x_2$ $b_1 = -12$
 $g_2(x) \ge b_2$ $g_2(x) = -5x_1 + 2x_2$ $b_2 = -20$
 $g_3(x) \ge b_3$ $g_3(x) = x1 + x2$ $b_3 = 10$
 $x \ge 0$

- 1. Solve LP_1 & its dual by pivoting in Mathematica and plot also the feasible set.
- 2. For each constraint *i* active in the solution, verify that $y_i^* = \frac{\partial z^*}{\partial b_i}$ by explicitly computing Afgrence that $z_i^* = \frac{\partial z^*}{\partial b_i}$ by explicitly
- a) By putting the new b, value in the tableau and resolving https://powcoder.com
- b) Using the fact the new optimal x^* will be at the intersection of the same constraint boundaries, and therefore a function of b_i ; i.e. $z^* = z(x^*) = z(x^*(b_i)) = z^*(b_i)$.

Use the formulation of $z^*(b_i)$ to compute $\frac{\partial z^*}{\partial b_i}$

c) Use the dual solution $y^* = (y_1^*, y_2^*, y_3^*)$ to express

$$\Delta z = \nabla z \cdot \Delta x = \left(\sum_{i} y_{i}^{*} \nabla g_{i}\right) \cdot \Delta x = \sum_{i} y_{i}^{*} \left(\nabla g_{i} \cdot \Delta x\right) = \sum_{i} y_{i}^{*} \left(\Delta g_{i}\right) = \sum_{i} y_{i}^{*} \Delta b_{i}$$

At each step of this derivation, plug in the numerical values of ∇g_i , Δx , Δg_i

3.

- a) If b_2 remains fixed at -20, in what range of values (min and max) for b_3 does $y_3^* = \frac{\partial Z^*}{\partial b_3}$?
- b) If b_3 remains fixed at 10, in what range of values (min and max) for b_2 does $y_2^* = \frac{\partial Z^*}{\partial b_3}$?