Graph Neural Networks

Felix Becker

University of Greifswald

May 29, 2021

Graphs are everywhere

traffic/road networks dynamic physics systems citation networks chemical molecules visual scene understanding protein 3D structure TSP, Vertex-Cover, CLIQUE, SAT...

• Often, data does not come as individual objects...

Often, data does not come as individual objects...

• ... but rather in sets of objects and rules on how they interact.

Often, data does not come as individual objects...

- ... but rather in sets of objects and rules on how they interact.
- Inductive bias: constraints imposed on the set of possible pairwise interactions (represented as a graph).

Often, data does not come as individual objects...

- ... but rather in sets of objects and rules on how they interact.
- Inductive bias: constraints imposed on the set of possible pairwise interactions (represented as a graph).
- Making predictions requires 'relational reasoning' based on the graph structure.

Inductive biases can be well defined independent of the data examples:

Inductive biases can be well defined independent of the data examples:

Inductive biases can be well defined independent of the data examples:

Images

■ We have dedicated models for some cases:

- We have dedicated models for some cases:
 - Recurrent architectures for sequences.

- We have dedicated models for some cases:
 - Recurrent architectures for sequences.
 - Convolutional neural networks for images.

- We have dedicated models for some cases:
 - Recurrent architectures for sequences.
 - Convolutional neural networks for images.
- But how to handle data with less well defined inductive biases?
 (e.g. chemical molecules, road networks, citation networks...)

Graph Neural Networks (GNNs)

Definition: Feature graph

A (directed) feature graph is a 3-tuple G = (u, V, E) with a global attribute u, nodes $V = \{v_i\}_{i=1,\dots,n}$ where v_i are the attributes of the node at index i and edges $E = \{(e_j, s_j, r_j)\}_{j=1,\dots,m}$ with edge attributes e_j , a sender node index s_j and a receiver node index r_j .

Graph Neural Networks (GNNs)

Definition: Feature graph

A (directed) feature graph is a 3-tuple G = (u, V, E) with a global attribute u, nodes $V = \{v_i\}_{i=1,\dots,n}$ where v_i are the attributes of the node at index i and edges $E = \{(e_j, s_j, r_j)\}_{j=1,\dots,m}$ with edge attributes e_j , a sender node index s_j and a receiver node index r_j .

Definition: Graph neural network

A graph neural network (GNN) is a mapping $\omega: G \mapsto G'$ that maps a feature graph G = (u, V, E) to another feature graph G' = (u', V', E') with $V' = \{v'_i\}_{i=1,\dots,n}$ and $E' = \{(e'_j, s_j, r_j)\}_{j=1,\dots,m}$.

Let ϕ_{ν} , ϕ_{e} , ϕ_{u} be learnable non-linear functions (e.g. multilayer perceptrons).

Update all edges

Let ϕ_{ν} , ϕ_{e} , ϕ_{u} be learnable non-linear functions (e.g. multilayer perceptrons).

- Update all edges
- 2 Aggregate neighborhoods

Let ϕ_{ν} , ϕ_{e} , ϕ_{u} be learnable non-linear functions (e.g. multilayer perceptrons).

- 1 Update all edges
- 2 Aggregate neighborhoods
- 3 Update all nodes

Let ϕ_v , ϕ_e , ϕ_u be learnable non-linear functions (e.g. multilayer perceptrons).

- Update all edges
- 2 Aggregate neighborhoods
- 3 Update all nodes
- 4 Aggregate nodes

Let ϕ_{ν} , ϕ_{e} , ϕ_{u} be learnable non-linear functions (e.g. multilayer perceptrons).

- Update all edges
- 2 Aggregate neighborhoods
- 3 Update all nodes
- 4 Aggregate nodes
- 5 Update global attribute

A GNN is invariant to graph isomorphism, if the aggregation operations are symmetric functions (sum, average...)

■ A GNN is differentiable, if ϕ_{v} , ϕ_{e} , ϕ_{u} are (w.r.t. their weights θ).

- A GNN is differentiable, if ϕ_{ν} , ϕ_{e} , ϕ_{u} are (w.r.t. their weights θ).
- Therefore, we can backpropagate a loss signal in order to update θ .

- A GNN is differentiable, if ϕ_{v} , ϕ_{e} , ϕ_{u} are (w.r.t. their weights θ).
- Therefore, we can backpropagate a loss signal in order to update θ .
- The loss may depend on u' (graph focused), V' (node focused) or E' (edge focused) or all of these.

Message passing

Message passing: a composition of a GNN ω with itself for a fixed number of iterations: $\omega(\omega(\ldots\omega(G)))$

Message passing

Message passing: a composition of a GNN ω with itself for a fixed number of iterations: $\omega(\omega(\ldots\omega(G)))$

• If the global attribute u is excluded, the output of a node v after N iterations is conditioned on all nodes with a distance of at most N to v.

A brief history of GNNs

The Graph Neural Network Model Scarselli et al., 2009

Neural Message Passing

- Gilmer et al., 2017

Relational inductive biases, deep learning, and graph networks - Battaglia et al., 2018

Spectral Networks

Bruna et al., 2014

Graph Convolutional Networks

- Kipf et al., 2017

What do the learned representations v_i , e_j and u mean?

What do the learned representations v_i , e_j and u mean? Short answer: We do not know.

What do the learned representations v_i , e_j and u mean? Short answer: We do not know. But we can have an idea:

What do the learned representations v_i , e_j and u mean? Short answer: We do not know. But we can have an idea:

We use a *D* dimensional latent space where each neuron could represent a rather simple, independent property. Some of these properties, we can try to interpret as a human.

⇒ Empirical: A shallow model on top (e.g. a linear combination) could make accurate predictions.

Some GNN applications

Predict properties of chemical molecules

Neural Message Passing for Quantum Chemistry – Gilmer et al., 2017

Solve SAT

Learning a SAT solver from single-bit supervision
– Selsam et al., 2019

Timesteps in a dynamic physics system

Relational inductive biases, deep learning, and graph networks

– Battaglia et al., 2018

GNN: A practical example