ICOM: Pràctica 3

Víctor Méndez

24-4-2024

ACTIVITAT 3.1

La potència més alta que pot ser representada és $30\,\mathrm{dBm}$. Hi ha $10\,\mathrm{dB/div}$, per tant un ratio de 10. Es representa entre $0.982\,\mathrm{GHz}$ i $1.018\,\mathrm{GHz}$.

RBW	Span	Fs	Time
$172\mathrm{kHz}$	$36\mathrm{MHz}$	$25\mathrm{kHz}$	$22\mu s$

ACTIVITAT 3.2

Figura 1: Trace sencera

Segons els marcadors, el primer sinusoide té una freqüència de 1.0009 GHz i el segon 1.0049 GHz. Les potencies son 10 dBm i 3.98 dBm respectivament. Les amplituds de les sinusoides son $\simeq 1\,\mathrm{V}$ i $\simeq 0.5\,\mathrm{V}$ respectivament. La resolució espectral val 170 kHz i la separació entre els components espectrals és de 4 MHz; la resolució és més que suficient per distinguir aquests components.

Figura 2: Dades dels marcadors

ACTIVITAT 3.3

Clarament la frequència central triada per fer el senyal passabaix no és ben bé exacte. Com $f_c \neq f_1$ el que es veu és un cosinus de freqüència $\Delta f = f_c - f_1$ molt petita.

Figura 3: Component en fase del senyal passabaix per $f_c=f_1=1.0009\,\mathrm{GHz}$

En ajustar f_c a 1.001 GHz s'obtè el resultat teòric esperat; una constant sumada a un cosinus.

Si ajustem f_c per a $f_2=1.005\,\mathrm{GHz}$ s'obtè un resultant semblant.

Figura 4: Component en fase del senyal passabaix per $f_c = f_1 =$ $1.001\,\mathrm{GHz}$

Figura 5: Component en fase del senyal passabaix per $f_c = f_2 =$

 $1.005\,\mathrm{GHz}$

A partir d'aquestes dues imatges extreure la amplitud de cada component es trivial. Es mesura $A_1 = 0.98\,\mathrm{V}$ i $A_2 = 0.52\,\mathrm{V}$.

La mesura de les fases ϕ_1 i ϕ_2 és una mica més elaborada. A partir dels calculs teòrics es sap

$$f_c = f_1 \to i_s(t) = A_1 \cos(\phi_1) + A_2 \cos(2\pi \Delta f t + \phi_2)$$
 (1)

$$f_c = f_2 \to i_s(t) = A_1 \cos(2\pi \Delta f t + \phi_1) + A_2 \cos(\phi_2)$$
 (2)

En altres paraules les components DC en cada cas depenen de una A_i coneguda i una ϕ_i desconeguda.

Extreure el component DC no és dificil. Si per treure les amplituds fem servir $A_i = \frac{1}{2} [\max(i_s) - \min(i_s)]$, per obtenir el component DC farem $DC_i = \frac{1}{2} [\max(i_s) + \min(i_s)]$. Finalment

$$DC_i = A_i \cos(\phi_i) \tag{3}$$

$$\phi_i = \arccos\left(\frac{DC_i}{A_i}\right) \tag{4}$$

Els resultats son $\phi_1 = 46.36^{\circ}$ i $\phi_2 = 109.57^{\circ}$. Els dos components tenen un desfasament de $\Delta \phi \simeq 60^{\circ}$.

Figura 6: Components en fase i quadratura