R.E.C.A.R

Recursive Explore and Check Abstraction Refinement

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and <u>Valentin Montmirail</u>

CRIL-CNRS UMR 8188, F62300 Lens, France

Séminaire LINKS INRIA - Lille - June 9th 2017

Table of contents

Introduction

Propositional Logic
The SATisfiability problem
What is a SAT solver?
SAT solver: its limitations

R.E.C.A.R

Modal Logic K
Kripke Structure
Satisfaction Relation

MoSaiC: RECAR for Modal Logic K

Conclusion

Introduction: Abstraction

Abstraction: Idea & Motivation

Comes from: Mathematical Modeling

- Works for theoretical problems
- ► But what about practice?

Introduction: Abstraction via SAT

Modeling: Propositional Formula

► For many **NP** problems: Encoding into SAT

▶ What is a SAT problem? a SAT solver?

The SATisfiability problem

The SAT problem

- Variables: w, x, y, z, ..., a, b, c, ...
- Literals: w, y, a, ..., but also $\neg a$, $\neg c$, $\neg y$, ...
- Clauses: disjunction of literals or set of literals
- Formula: conjunction of clauses or set of clauses (CNF)
- Model: Mapping from variables to {0, 1} that satisfies the SAT formula
- a Formula can be SAT or UNSAT.
- ► The SAT problem is NP-complete [Coo71]

The SATisfiability problem

The SAT problem

Example: $\psi = (a) \land (\neg a \lor b) \land (c \lor a) \land (\neg c \lor \neg b)$ One possible model M, s.t. $M \models \psi$

$$M = \{a = 1, b = 1, c = 0\}$$

The SATisfiability problem

The SAT problem

Example: $\psi = (a) \land (\neg a \lor b) \land (c \lor a) \land (\neg c \lor \neg b)$ One possible model M, s.t. $M \models \psi$

$$M = \{a = 1, b = 1, c = 0\}$$

- How to find quickly an M?
- ► How to prove that no such M exists?

With a SAT solver!

SAT solver

SAT solver

- Extremely efficient software
- ► Based on CDCL approach [SS99, MMZ⁺01]
- ► One of the current best is: Glucose [ES03a, AS09] ©
- ▶ Able to solve efficiently problems with $\approx 10^8$ clauses

SAT solver: Disclaimer!

Disclaimer SAT is still NP-complete...

Name	sgen1-unsat-121-100.cnf			
Category	CRAFTED			
#Vars	121			
#Clauses	252			
Clause length	3			

Solver Name		Answer	CPU time	Wall clock time
SAT07 reference solver: SATzilla CRAFTED (complete)		? (exit code)	4998.65	5001.1
SATzilla2009_C 2009-03-22 (complete)	1825787	? (exit code)	4998.65	5000.32
VARSAT-industrial 2009-03-22 (complete)	1785604	? (TO)	5000.04	5001.91
glucose 1.0 (complete)	1784160	? (TO)	5000.04	5002.51
IUT_BMB_SAT 1.0 (complete)	1785601	? (TO)	5000.05	5002.21
MXC 2009-03-10 (complete)	1784161	? (TO)	5000.06	5001.81
SApperIoT base (complete)	1785605	? (TO)	5000.06	5001.51
MiniSat 2.1 (Sat-race'08 Edition) (complete)		? (TO)	5000.1	5002.21
clasp 1.2.0-SAT09-32 (complete)		? (TO)	5000.1	5013.71
precosat 236 (complete)		? (TO)	5000.1	5002.11
SAT07 reference solver: minisat SAT 2007 (complete)		? (TO)	5000.11	5002.11
LySAT c/2009-03-20 (complete)	1825454	? (TO)	5000.11	5002.61

http://www.cril.fr/SAT09/results/bench.php?idev=29&
idbench=71111

SAT solver: Additional features

SAT solver: Additional features

- ► Answer SAT and a model when the formula is satisfiable
- Answer UNSAT:
 - with a proof of unsatisfiability if asked [Gel02]
 - **.** . . .

SAT solver: Additional features

Information

- Published in SAT'16 [HKM16]
- Size of the proof of unsatisfiability: 200 Terabyte
- ▶ 16,000 CPU hours to check the proof

SAT solver: Additional features

SAT solver: Additional features

- Answer SAT and a model when the formula is satisfiable
- Answer UNSAT:
 - with a proof of unsatisfiability if asked [Gel02]
 - ► A unsatisfiable core if asked [ES03a]
- Can work in an incremental way [ES03b, ES03a, ALS13]
- Can work under assumptions [ES03a]

Unsatisfiable core

Basically the "reason" why a formula is UNSAT (subset of clauses)

SAT solver

SAT solver: One limitation

- What happen when the encoding of the problem is too big?
- Could be solved 'easily' but will not because of memory...

HCP via SAT: does not scale

- ► Ex. The Hamiltonian Cycle Problem (HCP)
- ► HCP: $O(n^3)$ clauses [Pre03]
- Transitive relations for any three nodes
- ► HCP via SAT: hard to solve HCP of over 1000 nodes
- ► HCP solver 'LKH' scales up to 10,000 nodes

We need a SAT solver in a more complex procedure...

SAT solver: how to solve HCP efficiently?

V is a set of *n* nodes, *A* is a set of vertexes, and G = (V,A) is a digraph. $x_{ij} = 1 \leftrightarrow (i,j) \in A$ is used in a solution cycle.

$$\sum_{(i,j)\in A} x_{ij} = 1$$
 for each i = 1,...,n (out-degree)
$$\sum_{(i,j)\in A} x_{ij} = 1$$
 for each j = 1,...,n (in-degree)
$$\sum_{(i,j)\in S} x_{ij} \le |S| - 1$$
 $S \subset V, 2 \le |S| \le n - 2$ (connectivity)

- ► in/out-degree constraints ensure that in/out-degrees are respectively exact one for each node in solution cycles
- connectivity constraint prohibits the formulation of sub-cycles

SAT solver: how to solve HCP efficiently?

- With only in/out-degree constraints, we have cycles but they may not be connected (Case A)
- ► With all constraints, we can find a Hamiltonian cycle (Case B)

in/out-degree + connectivity

SAT solver

HCP via SAT: no need to generate connectivity constraints

- Refine overall constraints by adding blocking clauses generated from counter examples [SLR+14].
- We can get lucky and find a Hamiltonian Cycle quickly

Blocking Clauses

$$C_1 \neg x_{12} \lor \neg x_{23} \lor \neg x_{37} \lor \neg x_{78} \lor \neg x_{81}$$

$$C_1' \neg x_{87} \lor \neg x_{73} \lor \neg x_{32} \lor \neg x_{21} \lor \neg x_{18}$$

$$C_2 \neg x_{46} \lor \neg x_{65} \lor \neg x_{54}$$

$$C_2' \neg x_{45} \lor \neg x_{56} \lor \neg x_{64}$$

SAT solver

HCP via SAT: no need to generate connectivity constraints

- Refine overall constraints by adding blocking clauses generated from counter examples [SLR+14].
- We can get lucky and find a Hamiltonian Cycle quickly

Blocking Clauses

$$C_1 \neg x_{12} \lor \neg x_{23} \lor \neg x_{37} \lor \neg x_{78} \lor \neg x_{81}$$

 $C'_1 \neg x_{87} \lor \neg x_{73} \lor \neg x_{32} \lor \neg x_{21} \lor \neg x_{18}$

$$C_2 \neg x_{46} \lor \neg x_{65} \lor \neg x_{54}$$

$$C_2' \neg x_{45} \lor \neg x_{56} \lor \neg x_{64}$$

This idea of going step by step and refining each step is called:

CEGAR: CounterExample Guided Abstraction Refinement

CounterExample Guided Abstraction Refinement

CEGAR: CounterExample Guided Abstraction Refinement To solve a problem, we may need to consider only a small part of it [CGJ+03]

- ► To abstract problems: hoping it will be easier to solve
- Two variants of abstraction:
 - Under-abstraction: abstraction has more solutions
 - Over-abstraction: abstraction has less solutions
- CEGAR-over: CEGAR approach using over-abstractions
- ► CEGAR-under: CEGAR approach using under-abstractions

CEGAR using under-abstractions

Example

SAT problem, by increasing step by step, the number of clauses

CEGAR using over-abstractions

Example

Planification problem, by increasing step by step, the horizon

CounterExample Guided Abstraction Refinement

Advantages

- If problem mainly satisfiable: CEGAR-over
- If problem mainly unsatisfiable: CEGAR-under
- ► Everytime check improves, CEGAR improves
- Many applications already use CEGAR

Drawbacks

- ▶ Not efficient when 50/50 chances of being SAT/UNSAT
- ▶ Not efficient when we need many refinement steps

Recursive Explore and Check Abstraction Refinement

- Called RECAR [LLdLM17]
- ▶ Inspired by CEGAR [CGJ+03]
- Rely on 5 very important assumptions

RECAR Assumptions

- Function 'check' is sound, complete and terminates
- 2. $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- 3. $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi.$
- 4. isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- 5. $\exists n \in \mathbb{N} \text{ s.t. } RC(under^n(\phi), under^{n+1}(\phi)) \text{ is false.}$

 $\exists n \in \mathbb{N} \text{ s.t. } RC(under^n(\phi), under^{n+1}(\phi)) \text{ is false.}$

RC function

- 'true' if we can do a recursive call, 'false' otherwise
- ▶ It compares $under^{i}(\phi)$ and $under^{i+1}(\phi)$
- It checks if $under^{i+1}(\phi)$ will be "easier to solve" than $under^{i}(\phi)$

RECAR

- 2 levels of abstractions
 - One at the Oracle level (check(ψ))
 - One at the Domain level (recursive call)
- Efficient even when 50/50 chance of being SAT/UNSAT
- Everytime check improves, RECAR improves
- The return of the recursive call can reduce the number of refinement
- ► Totally generic, can change SAT solver → FO solver?

RECAR: Instanciation for Modal Logic K

RECAR for Modal Logic K

- Modal Logic K is PSPACE-complete [Lad77, Hal95]
- What is Modal Logic K?
- How we over-approximate a formula φ?
- How we under-approximate a formula φ?
- Is it competitive against a CEGAR approach?
- Is it competitive against the state-of-the-art approaches?

Preliminaries: Modal Logic

Modal Logic = Propositional Logic + \square and \diamondsuit

Modal Logic

- $ightharpoonup \Box \phi$ means ϕ is necessarily true
- $\triangleright \diamond \phi$ means ϕ is possibly true

$$\Diamond \phi \leftrightarrow \neg \Box \neg \phi$$
$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

Preliminaries: Kripke Structure

P finite non-empty set of propositional variables

Kripke Structure [Kri59]

 $M = \langle W, R, V \rangle$ with:

- ▶ W, a non-empty set of possible worlds
- ► R, a binary relation on W
- ▶ V, a function that associate to each $p \in \mathbb{P}$, the set of possible worlds where p is true

Pointed Kripke Structure: $\langle \mathcal{K}, w \rangle$

- ► K: Kripke Structure
- ▶ w: a possible world in W

Preliminaries: Satisfaction Relation

Definition (Satisfaction Relation)

The relation ⊨ between Kripke Structures and formulae is recursively defined as follows:

$$\begin{split} \langle \mathcal{K}, w \rangle &\models p & \text{iff} & w \in V(p) \\ \langle \mathcal{K}, w \rangle &\models \neg \phi & \text{iff} & \langle \mathcal{K}, w \rangle \not\models \phi \\ \langle \mathcal{K}, w \rangle &\models \phi_1 \land \phi_2 & \text{iff} & \langle \mathcal{K}, w \rangle \models \phi_1 \text{ and } \langle \mathcal{K}, w \rangle \models \phi_2 \\ \langle \mathcal{K}, w \rangle &\models \phi_1 \lor \phi_2 & \text{iff} & \langle \mathcal{K}, w \rangle \models \phi_1 \text{ or } \langle \mathcal{K}, w \rangle \models \phi_2 \\ \langle \mathcal{K}, w \rangle &\models \Box \phi & \text{iff} & (w, w') \in R \text{ implies } \langle \mathcal{K}, w' \rangle \models \phi \\ \langle \mathcal{K}, w \rangle &\models \Diamond \phi & \text{iff} & (w, w') \in R \text{ and } \langle \mathcal{K}, w' \rangle \models \phi \end{split}$$

 ${\mathcal K}$ that satisfied a formula ϕ will be called "Kripke model of ϕ "

Preliminaries: Example of a Kripke Structure

$$\checkmark \phi_1 = \Box(\bullet)$$

$$\times \phi_2 = \Box \diamondsuit (\bullet)$$

$$\checkmark \phi_3 = \diamondsuit(\bullet \land \diamondsuit \neg \bullet)$$

$$\checkmark \phi_4 = (\bullet \lor \bullet \lor \bullet)$$

$$\times \phi_5 = \Diamond \Diamond (\bullet \land \Box \neg \bullet)$$

Figure: Example K

MoSaiC

MoSaiC

- Open-Source Modal Logic K solver
- Uses Glucose as internal SAT solver
- Uses a RECAR approach

MoSaiC

MoSaiC

- Open-Source Modal Logic K solver
- Uses Glucose as internal SAT solver
- Uses a RECAR approach

RECAR Assumptions: Reminder

- √1 Function 'check' is sound, complete and terminates
- ?2 $isSAT(\hat{\phi})$ implies $isSAT(refine(\hat{\phi}))$
- ?3 $\exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
 - 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
 - **5** ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: Over-Approximation

 ϕ always in NNF and over (ϕ, i) in CNF thanks to Tseitin

$$\begin{aligned} &\operatorname{over}(\phi,n) = \operatorname{over}'(\phi,0,n) \\ &\operatorname{over}'(p_k,i,n) = p_{k,i} \\ &\operatorname{over}'(\neg p_k,i,n) = \neg p_{k,i} \\ &\operatorname{over}'(\Box \phi,i,n) = \bigwedge_{j=0}^n (r_{i,j} \to \operatorname{over}'(\phi,j,n)) \\ &\operatorname{over}'(\diamondsuit \phi,i,n) = \bigvee_{i=0}^n (r_{i,j} \land \operatorname{over}'(\phi,j,n)) \end{aligned}$$

- \triangleright $p_{k,i}$ means p_k is true in the world w_i
- $ightharpoonup r_{i,j}$ means that there is a relation between worlds w_i and w_j

MoSaiC

RECAR Assumptions: Reminder

- √1 Function 'check' is sound, complete and terminates
- \checkmark 2 $isSAT(\hat{\phi})$ implies $isSAT(refine(\hat{\phi}))$
- $\sqrt{3} \ \exists .n \in \mathbb{N} \text{ s.t. refine}^n(\hat{\phi}) \equiv_{\mathsf{sat}}^? \phi$
- ?4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- ?5 $\exists n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: Under-Approximation

Let's take an example, with χ huge but satisfiable...

Worst case for CEGAR using our 'over' function

MoSaiC: Under-Approximation

Modern SAT solvers returns 'the reason' why a formula with n worlds is unsatisfiable ($core = \{s_1, s_2\}$)

MoSaiC: Under-Approximation

We want to cut what is not part of the 'unsatisfiability' ($s_i \notin core$)

We just create $\check{\phi}$ smaller than ϕ and easier to solve. The function RC from RECAR just says here: did we cut something ?

MoSaiC: Under-Approximation

```
under(p, core) = p
under(\neg p, core) = \neg p
under(\Box \phi, core) = \Box(under(\phi, core))
under(\Diamond \phi, core) = \Diamond (under(\phi, core))
under((\phi \land \psi), core) = under(\phi, core) \land under(\psi, core)
\mathsf{under}((\psi \lor \chi), \mathit{core}) = egin{cases} \mathsf{under}(\chi, \mathit{core}) & \mathsf{if} \ \psi = \neg s_i, s_i \in \mathit{core} \\ \top & \mathsf{if} \ \psi = \neg s_i, s_i \notin \mathit{core} \\ (\mathsf{under}(\psi, \mathit{core}) & \mathsf{vunder}(\chi, \mathit{core})) & \mathsf{otherwise} \end{cases}
```

Unsatisfiable-cores: To create our under-approximations

MoSaiC

RECAR Assumptions: Reminder

- 1 Function 'check' is sound, complete and terminates
- \checkmark 2 $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- $\sqrt{3} \ \exists .n \in \mathbb{N} \ \text{s.t. refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi$
- \checkmark 4 isUNSAT($\check{\phi}$) implies isUNSAT(ϕ)
- \checkmark 5 ∃ $n \in \mathbb{N}$ s.t. $RC(under^n(\phi), under^{n+1}(\phi))$ is false

MoSaiC: RECAR for Modal Logic K

MoSaiC: RECAR for Modal Logic K

MoSaiC: RECAR for Modal Logic K

Conclusion

Abstractions according to complexity

► **PSPACE**: RECAR

► **NP**: CEGAR (over/under)

What is next?

- ► RECAR for QBF (PSPACE)?
- ► RECAR for other modal logic?

Perspective: Other modal logics

Sum-up of complexities in modal logics

NP
K5
K45
KB45
KD5
KD45
KT5

•
PSPACE
K
KT
KT4
KB
KD4
KD
K4
KDB
KBT

R.E.C.A.R

Recursive Explore and Check Abstraction Refinement

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima and <u>Valentin Montmirail</u>

CRIL-CNRS UMR 8188, F62300 Lens, France

Séminaire LINKS INRIA - Lille - June 9th 2017

Bibliography I

Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose for incremental SAT solving with assumptions: Application to MUS extraction. In *Proc. of SAT'13*, pages 309–317, 2013.

Gilles Audemard and Laurent Simon.

Predicting learnt clauses quality in modern SAT solvers.

In *Proc. of IJCAI'09*, pages 399–404, 2009.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of the ACM, 50(5):752-794, 2003.

Bibliography II

The complexity of theorem-proving procedures.

In *Proceedings of the Third Annual ACM Symposium on Theory of Computing*, STOC '71, pages 151–158. ACM, 1971.

Niklas Eén and Niklas Sörensson.

An extensible sat-solver.

In *Proc. of SAT'03*, pages 502–518, 2003.

Niklas Eén and Niklas Sörensson.

Temporal induction by incremental SAT solving.

Electr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.

Bibliography III

Extracting (easily) checkable proofs from a satisfiability solver that employs both preorder and postorder resolution. In *International Symposium on Artificial Intelligence and Mathematics*, 2002.

Joseph Y. Halpern.

The Effect of Bounding the Number of Primitive Propositions and the Depth of Nesting on the Complexity of Modal Logic. *Artificial Intelligence*, 75(2):361–372, 1995.

Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean pythagorean triples problem via cube-and-conquer.

In Proc. of SAT'16, pages 228-245, 2016.

Bibliography IV

A completeness theorem in modal logic.

J. Symb. Log., 24(1):1-14, 1959.

Richard E. Ladner.

The Computational Complexity of Provability in Systems of Modal Propositional Logic.

SIAM J. Comput., 6(3):467-480, 1977.

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail.

A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem.

In Proc. of IJCAI'17, 2017.

Bibliography V

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver.

In *Proc. of DAC'01*, pages 530–535, 2001.

Steven David Prestwich.

SAT problems with chains of dependent variables.

Discrete Applied Mathematics, 130(2):329–350, 2003.

Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, and Naoyuki Tamura.

Incremental sat-based method with native boolean cardinality handling for the hamiltonian cycle problem.

In Proc of JELIA'14, pages 684-693, 2014.

Bibliography VI

João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional satisfiability. *IEEE Transactions on Computers*, 48(5):506–521, 1999.

