FACULTAD DE CIENCIAS – E.P. CIENCIA DE LA COMPUTACIÓN INTRODUCCIÓN A LA CIENCIA DE LA COMPUTACIÓN (CC101) EXAMEN FINAL 2011-I

NOMBRE:	CÓDIGO:
SECCIÓN:	FIRMA:

- 1- Usar la operación de desplazamiento para multiplicar por ocho el entero negativo obtenido por la suma de los digitos de su código UNI (Ej: cod.UNI 20117809K. Entonces la suma es 2+0+1+1+7+8+0+9=28 y el número a multiplicar por 8 será -28). Nota: al cambiar el entero a sistema binario (escoger el formato de acuerdo a la operacion), este sera de 8 bits.
- 1- Usar la operación de desplazamiento para dividir entre ocho el entero negativo obtenido por la suma de los digitos de su código UNI (Ej: cod.UNI 20117809K. Entonces la suma es 2+0+1+1+7+8+0+9=28 y el número a dividir entre 8 será -28). Nota: al cambiar el entero a sistema binario (escoger el formato de acuerdo a la operacion), este sera de 8 bits.
- 2- Realizar la siguiente operación usando formato IEEE 127: -12.625 + 451.00
- 2- Realizar la siguiente operación usando formato IEEE_127: 33.1875 0.4375
- 3- Usando las intrucciones de un computador "sencillo" ideal (ver tabla al final), cual es el código (hexadecimal) para realizar el siguiente calculo: D <- A + B C, donde los valores de A, B, y C, son enteros en complemento a dos, son ingresados por el teclado, y el resultado se muestra en el monitor. La posición de memoria para el teclado es FE y para el monitor es FF.
- 3- Usando las intrucciones de un computador "sencillo" ideal (ver tabla al final), cual es el código (hexadecimal) para realizar el siguiente calculo: D < -A B + C, donde los valores de A, B, y C, on enteros en complemento a dos, son ingresados por el teclado, y el resultado se muestra en el monitor. La posición de memoria para el teclado es FE y para el monitor es FF.
- 4- Usando el algoritmo de ordenamiento por selección, manualmente ordenar esta lista y mostrar tu trabajo en cada paso. Los últimos 4 números corresponden a los formados por cada par de digitos de su código UNI (Ej: cod.UNI 20117809K. Entonces los útimos cuatro números serán 20 11 78 y 09) 7 8 26 44

Repetir el proceso usando algoritmo de ordenamiento de burbuja y de inserción.

4- Usando el algoritmo de ordenamiento por selección, manualmente ordenar esta lista y mostrar tu trabajo en cada paso. Los primeros 4 números corresponden a los formados por cada par de digitos de su código UNI (Ej: cod.UNI 20117809K. Entonces los primeros cuatro números serán 20 11 78 y 09)

__ _ _ _ 13 23 57 98

Repetir el proceso usando algoritmo de ordenamiento de burbuja y de inserción.

5- Escribir un algoritmo recursivo en pseudocodigo para hallar el valor de Fibonacci(n). Donde Fibonacci(n) = 0 (si n = 0), 1 (si n = 1), y Fibonacci(n-1)+Fibonacci(n-2) si n>1. Usando dicho algoritmo calcular Fibonacci(6) mostrando cada paso, con sus valores correspondientes.

6- Encontrar cuantas veces la declaración, en el siguiente segmento de código en C, es ejecutada:

```
\label{eq:continuity} \begin{split} &\text{for(int i; i < 20; i++)} \\ &\{ & & \text{declaración;} \\ & & i = i+1; \\ \endaligned \end{split}
```

6- Encontrar cuantas veces la declaración, en el siguiente segmento de código en C, es ejecutada:

Instruction	Code	Operands			
	d ₁	d ₂	d ₃	d₄	Action
HALT	0				Stops the execution of the program
LOAD	1	R _D M _S		M _S	$R_D \leftarrow M_S$
STORE	2	M _D R _S		R ₅	$M_D \leftarrow R_S$
ADDI	3	RD	R ₅₁	R _{S2}	R _D ← R ₅₁ + R ₅₂
ADDF	4	R _D	R ₅₁	R _{S2}	R _D ← R _{S1} + R _{S2}
MOVE	5	R _D	R _S		$R_D \leftarrow R_S$
по⊤	5	RD	R _S		$R_D \leftarrow \overline{R}_S$
AND	7	R _D	R ₅₁	R _{S2}	$R_D \leftarrow R_{51}$ AND R_{52}
OR	8	R _D	R _{S1}	R ₅₂	$R_D \leftarrow R_{S1} \text{ OR } R_{S2}$
XOR	9	R _D	R _{S1}	R _{S2}	$R_D \leftarrow R_{S1} \text{ XOR } R_{S2}$
INC	А	R			R ← R + 1
DEC	В	R			R ← R – 1
ROTATE	С	R	n	0 or 1	Rot _n R
JUMP	D	R		n	IF $R_0 \neq R$ then $PC = n$, otherwise continue

Key: R_S, R_{S1}, R_{S2}: Hexadecimal address of source registers

RD: Hexadecimal address of destination register

Ms: Hexadecimal address of source memory location

M_C: Hexadecimal address of destination memory location

n: hexadecimal number

d₁, d₂, d₃, d₄: First, second, third, and fourth hexadecimal digits