

Computer Security and Cryptography

CS381

来学嘉

计算机科学与工程系 电院3-423室

34205440 13564100825 laix@sjtu.edu.cn

2016-04

Organization

- Week 1 to week 16 (2016-02-24 to 2016-06-08)
- 东上院502
- Monday 3-4节; week 9-16
- Wednesday 3-4节; week 1-16
- lecture 10 + exercise 40 + random tests 40 + other 10
- · Ask questions in class counted as points
- Turn ON your mobile phone (after lecture)
- Slides and papers:
 - http://202.120.38.185/CS381
 - · computer-security
 - http://202.120.38.185/references
- TA: '薛伟佳' icelikejia@qq.com, '黄格仕' <huang.ge.shi@foxmail.com>
- Send homework to: laix@sjtu.edu.cn and to TAs

Rule: do not disturb others!

Contents

- Introduction -- What is security?
- Cryptography
 - Classical ciphers
 - Today's ciphers
 - Public-key cryptography
 - Hash functions/MAC
 - Authentication protocols
- Applications
 - Digital certificates
 - Secure email
 - Internet security, e-banking

Network security

SSL IPSEC Firewall VPN

Computer security

Access control Malware DDos Intrusion

Examples

Bitcoin Hardware Wireless

3

References

- W. Stallings, Cryptography and network security principles and practice, Prentice Hall.
- W. Stallings, 密码学与网络安全: 原理与实践(第4版), 刘玉珍等译, 电子工业出版社, 2006
- Lidong Chen, Guang Gong, *Communication and System Security*, CRC Press, 2012.
- A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, *Handbook of Applied Cryptography*. CRC Press, 1997, ISBN: 0-8493-8523-7, http://www.cacr.math.uwaterloo.ca/hac/index.html
- B. Schneier, *Applied cryptography*. John Wiley & Sons, 1995, 2nd edition.
- 裴定一,徐祥,信息安全数学基础, ISBN 978-7-115-15662-4, 人民邮电出版社,2007.

4

contents

- Public-key cryptosystems:
 - RSA factorization
 - DH , ElGamal -discrete logarithm
 - ECC
- Math
 - Fermat's and Euler's Theorems & ø(n)
 - Group, Fields
 - Primality Testing
 - Chinese Remainder Theorem
 - Discrete Logarithms

IT-security and Cryptography

- · Issues in Information security
 - Scientific like
 - Confidentiality
 - Authentication
 - Access control
 - Integrity
 - Non-repudiation
 - More engineering
 - Virus protection
 - Intrusion prevention
 - Copyright protection
 - Content filtering

Confidentiality and authenticity are independent attributes

Only the user knowing the decryption key can recover plaintext

-"who can *read* the data"

Authenticity

- Authenticity: assurance of the claimed identity of an entity. [ISO]
- Example: ID-card, password, digital signature

Only the user knowing the secret-key can generate valid signature

"who wrote the data"

remark

- Understanding cryptography from the point of view of "read/write" is essential and useful.
- When an application or a functionality involves secret-key, it is helpful to decide whether it is a read or write problem, then pick up the correct approach: encryption or authentication.
- Example: copy-right protection, e-banking access, on-line transaction, e-voting, etc.

10

5

11

cryptosystems

- symmetric cipher, secret-key cryptosystem: encryption key and decryption key are essentially the same, it is easy to derive one from the other.
 - > Example: DES, RC2, IDEA, AES
- asymmetric cipher, public-key cryptosystem: encryption key and decryption key are different, it is difficult to derive one (private decryption key) from the other (public encryption key).
 - > Example: RSA, ElGamal, ECC
- > Symmetric --- sharing some secret
- ➤ Asymmetric --- sharing some trusted information

12

Two cryptosystems

Symmetric-key

- Advantages
 - high data throughput
 - Short size
 - primitives to construct various cryptographic mechanisms
- Disadvantages
 - the key must remain secret at both ends.
 - O(n²) keys to be managed for n users.

Public-key

- Advantages
 - Only the private key must be kept secret
 - Achieve nonrepudiation (digital signature)
 - O(n) keys to be managed
- Disadvantages
 - low data throughput
 - much larger key sizes

13

The usage

- Public-key cryptography
 - signatures (particularly, non-repudiation) and key management
- Symmetric-key cryptography
 - encryption and some data integrity applications
- Private keys must be larger (e.g., 1024 or 2048 bits for RSA) than secret keys (e.g., 64 or 128 bits)
 - most attack on symmetric-key systems is an exhaustive key search
 - public-key systems are subject to "short-cut" attacks (e.g., factoring)
- **Hybrid system**: Use public-key to encrypt a session-key, then use the symmetric session key to encrypt document.

14

One-way functions

- Oneway function f: X ->Y, given x, easy to compute f(x); but for given y
 in f(X), it is hard to find x, s.t., f(x)=y.
 - Prob[f(A(f(x))=f(x))] < 1/p(n) (TM definition, existence unknown)
 - · Example: hash function, discrete logarithm;
- Keyed function f(X,Z)=Y, for known key z, it is easy to compute f(.,z)
 - Block cipher (fix c, f(c,.) is a oneway function)
- Keyed oneway function: f(X,Z)=Y, for known key z, it is easy to compute f(.,z) but for given y, it is hard to x,z, s.t., f(x,z)=y.
 - MAC function: keyed hash h(z,X), block cipher CBC
- Trapdoor oneway function f_T(x): easy to compute and hard to invert, but with additional knowledge T, it is easy to invert.
 - Public-key cipher; RSA: y=x^e mod N, T: N=p*q

15

Number Theory - Divisibility

Divisibility

For any two integers a,b, a+b, a-b, a*b are all integers, but a/b may not be an integer.

a=b*q+r, where $b>r\geq 0$.

q is the quotient, and *r* is the remainder.

If r=0, we call b divides a, denoted by b|a; otherwise we call b does not divide a, denoted by b∤a。

For $a,b,c \in \mathbb{Z}$,

- If a|b, then a/(bc);
- If a/b and a/c, then a/(b+c) and a/(b-c);
- for $i,a,b \in \mathbb{Z}$, if a=bq+r, i/a and i/b, then i/r.

2016/4/5

16

Prime Numbers

- prime numbers only have divisors of 1 and self
 - they cannot be written as a product of other numbers
 - note: 1 is prime, but is generally not of interest
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not
- prime numbers are central to number theory
- list of prime number less than 200 is:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

2016/4/5

17

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: n=a × b × c
- factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes

```
- eg. 91=7\times13; 3600=2^4\times3^2\times5^2
```

• Any number can be written as a product of prime powers $a = \prod_{p \in \mathbb{P}} p^{a_p}$

18

Relatively Prime Numbers

- two numbers a, b are relatively prime if they have no common divisors apart from 1
 - eg. 8 & 15 are relatively prime since factors of 8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the only common factor
- conversely one can determine the greatest common divisor by comparing their prime factorizations and using least powers
 - eg. $300=2^1\times3^1\times5^2$ $18=2^1\times3^2$ hence GCD (18,300) $=2^1\times3^1\times5^0=6$

19

GCD and **LCM**

- d is the greatest common divisor of a and b if
 - -d/a and d/b;
 - If f/a and f/b, then f/d; denoted by $d=\gcd(a,b)$, or (a,b).
- If d/ab, and gcd(d,a)=1, then d/b.
- m is the least common multiple of a and b if
 - -a|m and b/m;
 - If a/n and b/n, then m/n;

Denoted by m = lcm(a,b), or [a,b].

20

The Euclid Algorithm

- gcd(a,b)=d
 - Fact 1: gcd(a,b) = gcd(b, a-b);
 - Fact 2: if a=qb+r, then gcd(a,b)=gcd(b,r);
 - Fact 3: there exists s,t, such that gcd(a,b)=sa+tb
- With the Euclid algorithm to determine d= gcd(a,b);
- With the extended Euclid algorithm to determine d=sa+tb;

21

The Euclid Algorithm

- The Euclid Algorithm to determine gcd(*a*,*b*)
 - $a = k_1 b + r_1 \qquad 0 < r_1 < b$
 - $b = k_2 r_1 + r_2 0 < r_2 < r_1$
 - $r_1 = k_3 r_2 + r_3 0 < r_3 < r_2$
 -
 - $r_{n-2} = k_n r_{n-1} + r_n 0 < r_n < r_{n-1}$
 - $r_{n-1} = k_{n+1} r_n + r_{n+1} r_{n+1} = 0$
- $gcd(a,b)=gcd(b, r_1)=gcd(r_1, r_2)=...=r_n$

2016/4/5

22

2016/4/5

11

The extended Euclid algorithm

determine gcd(a,b)=sa+tb

- Input *b*≥ *a*>0;
- Initialize $s_0=b$; $s_1=a$; $u_0=0$; $u_1=1$; $v_0=1$; $v_1=0$; n=1
- While $s_n>0$ do put n=n+1; write $s_{n-2}=q_ns_{n-1}+s_n$, $0 \le s_n < s_{n-1}$ put $u_n=q_nu_{n-1}+u_{n-2}$; put $v_n=q_nv_{n-1}+v_{n-2}$
- Put $s=(-1)^n u_{n-1}$; $t=(-1)^{n-1} v_{n-1}$;

23

Congruence

- If a and b are integers, we say that a is congruent to b modulo m if m|(a-b).
 - We write $a \equiv b \mod n$
- $a \equiv a' \pmod{m} \Leftrightarrow m \mid (a-a')$
- $ka \equiv kb \pmod{m}$ not $\Rightarrow a \equiv b \pmod{m}$
- If $ka \equiv kb \pmod{m}$ and gcd(k,m)=d, then $a \equiv b \pmod{m/d}$

24

Euler Totient Function

Euler Totient Function

$$\phi(m) = \#\{j, \gcd(j, m) = 1, 0 \le j \le m-1\}$$

Exa. $\phi(15)=\#\{1,2,4,7,8,11,13,14\}=8$

- for p prime, $\varphi(p) = p-1$, $\varphi(p^k) = p^k p^{k-1}$
- $-\gcd(a,b)=1$, $\varphi(ab)=\varphi(a)\varphi(b)$
- •Euler's Theorem: if gcd(a,m)=1then $a^{\phi(m)} \equiv 1 \pmod{m}$
- •Fermat's Theorem : for a prime p,
 - if gcd(p,a)=1, then $a^{p-1}\equiv 1 \pmod{p}$
 - $-a^p \equiv a \pmod{p}$

25

RSA Public Key Cryptosystem

- · The Inventors
 - R Ron Rivest
 - S Adi Shamir
 - A Leonard Adleman
 - (2002 Turing Award)
- The Trap-Door One-Way Function
 - The exponentiation function $y = f(x) = x^e \mod n$ can be computed with reasonable effort.
 - Its inverse $x = f^{-1}(y)$ is difficult to compute.
- The Hard Problem Securing the Trap Door
 - based on the hard problem of factoring a large number into its prime factors.

RSA Key Setup

- each user generates a public/private key pair:
 - selecting two large primes at random p, q
 - computing their system modulus n=p.q
 - note $\phi(n)=(p-1)(q-1)$
 - selecting at random the encryption key e
 - where $1 < e < \phi(n)$, $gcd(e, \phi(n)) = 1$
 - solve following equation to find decryption key d
 - e.d \equiv 1 mod ϕ (N) and 0 \leq d \leq n
- publish their public encryption key: PK={e,n}
- keep secret private decryption key: SK={d,p,q}

27

RSA public-key encryption

- Encrypt with (e, n)
 - ciphertext: 0 < M < n, ciphertext $C \equiv M^e \pmod{n}$.
- Decrpt with (d, n)
 - ciphertext: C ciphertext: $M \equiv C^d \pmod{n}$

Alice $PK_A = (n_A, e_A)$ $SK_A = (p_A, q_A, d_A)$ Bob $PK_B = (n_B, e_B)$ $SK_B = (p_B, q_B, d_B)$

Get PK_{B,} Compute C C=E_{PKB}[M]=(M)^{eB} mod n_B

 $C^d = (M^e)^d = \mathbf{M}^{\mathbf{k}\phi(n)+I} = M^{\mathbf{k}\phi(n)} M = M$

 $M=E_{SKB}[C]=(C)^{dB} \mod n_B$

Only the user knowing the decryption key can recover plaintext

-"who can *read* the data"

Only the user knowing the secret-key can generate valid signature

"who wrote the data"

RSA digital signature

- Parameters PK={e,n}, SK={d,p,q} as before.
- The signature of the message M is S
 - $S \equiv M^d \pmod{n}$ (signing)
- · receiver recover the message
 - $-M \equiv S^e \pmod{n}$ (verification)

Alice S =
$$M^{dA} \pmod{n_A}$$
 S $M = S^{eA} \pmod{n_A}$

Bob verify that only Alice can generate S
--M must be redundant (has clear structure)

31

RSA digital signature


```
Alice PK_A = (n_A, e_A)
SK_A = (p_A, q_A, d_A)
SK_B = (p_B, q_B, d_B)
Compute H(M)
Compute the signature S = H(M)^{dA} \mod nA
Get PK_{A,}
(1) From M, compute <math>H(M)
(2) From S, recover <math display="block">H(M) = E_{PKA}[S] = (S)^{eA} \mod n_A
(3) Check if <math>H(M) = H(M)
```

In real use, a hash function is used to •prevent S(xy)=S(x)S(y) •provide redundancy

32

RSA digital signature

- M_7 a public hash function H with domain of $\{0,1,...,n-1\}$
- Signature

Compute the hash value of M, and get $H(M) \in \{0,1,...,n-1\}$ The input of hash function is of arbitrary length.

Sign H(M) with the private key d, and get $S \equiv H(M)^d \pmod{n}$

Send (M, S) to the receiver

Verification
After getting (M,S), recover V ≡ Se(mod n), and verify V=H(M)

33

The trap-door

- For an integer n=pq, given M and e, modular exponentiation C ≡ M^e (mod n) is a simple operation;
- Given $C \equiv M^e \pmod{n}$, to find $M \equiv C^{1/e} \pmod{n}$ is a difficult problem;
- When the prime factorization of n is known (trapdoor), to find $M \equiv C^{1/e} \pmod{n}$ is easy.

Knowing d ⇔ knowing the factorization

34

Cost of factorization

 For currently known algorithms, to complexity of factoring large number n is about

$$\exp(b^{1/3} \log^{2/3}(b))$$
 b= $\log(n)$

- · Record:
 - RSA: 768-bit modulo (2010), RSA 640-bit (2005)
 - Special Numbers: 2¹⁰³⁹-1 (2007), 6³⁵³-1 (2006)
- Question: Integer factorization ⇔ Breaking RSA (?)
- Size of n: now 1024-bit (5year?); recommended: 2048-bit

35

RSA module Length (EMV)

Length	Current Expiry Date
1024 bits	31 Dec 2009
1152 bits	31 Dec 2017
1408 bits	31 Dec 2023
1984 bits	31 Dec 2023

2014 recommendation

36

Parameters of RSA

- length of n is at least 1024 bits
- p and q are large.
- |p-q| is large
- p,q should be random/strong prime numbers. p=2p'+1, q=2q'+1, where p' q' are both primes
- $d > n^{1/4}$
- Public-key e: can be small for efficiency
 - ISO9796 allows 3, (problems?)
 - EDI $2^{16}+1=65537$

37

Exercise 7 - RSA

- 1. PayTV systems require that only the paid customers can watch the program, which of the 5 security services can be used to achieve this goal?
- 2. Determine the complexity (number of arithmetic operations) of
 - computing gcd(a,b);
 - computing RSA encryption C=Me mod n
- 3. Limitation of raw RSA signature: Only when M has redundancy structure, can the signature be securely verified. Why?
- 4. For RSA, it requires |p-q| should not be small. Task: design an attack if |p-q| is smaller than 10000.
- 5. Show that in RSA, knowing $\phi(n)$ is equivalent to knowing the factorization of n
 - · Deadline: before next lecture
 - Format: Subject: CS381-某某某-EX.#

Summary

- Public-key cryptosystems:
 - RSA factorization
 - DH, ElGamal -discrete logarithm
 - ECC
- Math
 - Fermat's and Euler's Theorems & ø(n)
 - Group, Fields
 - Primality Testing
 - Chinese Remainder Theorem
 - Discrete Logarithms