

Product Specification

- **❖** Product Name: AMOLED
- ❖ Model Name: DO0143FMST10
- **Description:** 1.43 inch (466 x 466)

Proposed by			Customer's Approval
Designed	Checked	Approved	

Document Revision History

Rev. No.	Date	Contents	Remark
0.0	2025-01-13	Initial issue	Preliminary

1.General Description:

Driving Mode: Active Matrix.

■ Color Mode: Full Color (65K/262K/16.7M color)

■ Display Format: 1.43" (466 x 466)

■ Display Driver IC : CO5300 or Compatible

■ Touch Driver IC : FT3168 or Compatible

■ Display Interface: SPI 3-wire/SPI 4-wire/QSPI /MIPI-DSI 1Lane

■ Touch Interface: IIC [Slave Addr A[6:0]---0X38]

■ Application: Handheld & PDA

■ RoHS Compatible

2.Mechanical Data

Item	Specification	unit
Display Mode	AMOLED	-
Dimensional outline	39.15(W) x 39.35(H) x0.8 (T)	mm
[Without Cover Lens]		
Number of dots	466(W) x RGB x 466(H)	dots
Active area	36.35(W) x 36.35(H)	mm
Diagonal Inch	1.43	inch
Pixel pitch	78*78	μm
Weight	TBD	g

^{*}See attached drawing for details.

3.Block Diagram

DO0143FMST10 support various interfaces, and interfaces are selected by the **IM[1:0]** pins. **A:** If IM1=GND,IM0=GND, **D00143FMST10** set to **spi-3wire interface**

B: If IM1=GND,IM0=IOVCC, D00143FMST10 set to spi-4wire interface

C: If IM1=IOVCC, IM0=GND, D00143FMST10 set to QSPI interface

D: If IM1=GND, IM0=GND, CS=IOVCC, DO0143FMST10 set to MIPI-DSI interface

4.Dimension

5.Pin Description

Recomend Connector: AXE530-124.(AXE630-127 on AMOLED)

NO.	Pin Name	1/0	Description
1	GND	Р	Ground Terminal
3	TP_SCL	I	Touch Panel Clock Input. Communication Voltage follow IOVCC If not used, please open this pin.
5	TP_SDA	I/O	Touch Panel Data Input and output. Communication Voltage follow IOVCC If not used, , please open this pin.
7	TP_INT	0	Touch Panel Interrupt Output. If not used, please open this pin.
9	TP_RESET	I	TP Reset signal Input.Communication Voltage follow IOVCC If not used, , please open this pin.
11	TP_VCC	Р	Analog Voltage for TP Driver (2.7~3.4V)
13	VPP(NC)	Р	OTP Power Supply(Let it open).
15	IM1	1	Interface type selection
17	IM0	1	Interface type selection
19	RESET	I	AMOLED Reset signal Input
21	PWR_EN	I	Power IC enable control pin.
23	VCI_IN(NC)	Р	No connect,Let it open(note1)
25	VDDIO(IOVCC)	Р	Driver IC(Touch + Display) Digital I/O Power Supply(1.72~3.4V)
27	TE	0	Tearing Effect
29	VBAT	Р	Battery Voltage 3.8V TYP. (2.9-4.5V)
NO.	Pin Name	1/0	Description
2	-	I	No connect
4	SPI_CLK	I	SCL: A synchronous clock signal in SPI I/F.
6	CS	I	Chip select input pin ("Low" enable) SPI I/F. If not used(MIPI Interface), please connect these pin to IOVCC.
8	SDI3	I	Serial Data Input in QSPI,data Lane 3. If not used, please open this pin.
10	SDI2	I	Serial Data Input in QSPI,data Lane 2. If not used, please open this pin.
12	DCX_SDI1	I/O	Serial Data Input in QSPI,data Lane 2. This pin is used to select "Data or Command" in the 4-wire 8-bit serial data interface(spi-4wire). When DCX = '1', data is selected. When DCX = '0', command is selected Data Input Signal at Dual Input Mode. If not used, please connect these pins to GND.

14	SDI_SDIO0	I/O	Serial Data Input in QSPI,data Lane 0. Serial Data intput in SPI_3Wire/ SPI_4Wire Data Input Signal at Dual Input Mode. If not used, please connect these pins to GND.
16	GND	Р	Ground Terminal
18	MIPI_CLKP	I	Differential clock signals if MIPI interface. If not used, please connect these pins to GND.
20	MIPI_CLKN	I	Differential clock signals if MIPI interface. If not used, please connect these pins to GND.
22	GND	Р	Ground Terminal
24	MIPI_DOP	1/0	Differential data signals if MIPI interface. If not used, please connect these pins to GND.
26	MIPI_DON	1/0	Differential data signals if MIPI interface. If not used, please connect these pins to GND.
28	GND	Р	Ground Terminal
30	VBAT	Р	Battery Voltage 3.8V TYP. (2.9-4.5V)

Note1: VCI is generated by the screen's own PMIC.

6. DC Characteristics

Test Conditions: Voltage Referenced to VSS(GND)=0V, IOVCC = 1.8V, VBAT=3.8V, TA = 25°C

Power IC enable. VCI is generated by the screen's own PMIC.

VCI=3.3V(IF VBAT>3.4V), VCI=VBAT-0.1V(IF VBAT<=3.3V)

IOVCC<=VCI.

Unless otherwise specified

Parame	ter	Symbol	Condition	Min	Тур	Max	Unit
		IOVCC		1.65	1.8	3.35	V
		VBAT	-	2.9	3.8	4.5	V
Input voltage	'L' level	VIL	IOVCC=1.65V	GND	ı	0.2*IOVCC	V
Input voltage	'H' level	VIH	~3.3V	0.8*IOVCC	-	IOVCC	V
Output voltage 'L' lev		VOL	I(OH)=-1mA I(OL)=+1mA	GND	-	0.2*IOVCC	V
	'H' level	VOH		0.8*IOVCC	-	IOVCC	V
	Sleep out Mode	liovcc		-	4.0	5.1	mA
		IVBAT	Full white display, 450nits,	-	71.5	80	mA
	Sleep out	liovcc	Full black		3.8	5.0	mA
	Mode	IVBAT			2.7	3.0	mA
	Sleep in	liovcc		-	89	100	uA
	Mode	IVBAT			35	50	uA
	Deep Standby Mode	liovcc		-	2	3	uA
		IVBAT			15	30	uA
Frame Fred	quency	f _{FRM}		-	45	=	Hz

7.AC characteristics

7-1 Reset Timing

Reset timing characteristic

VSS=0V, VDDIO=1.7V to 3.3V, VCI=2.5V to 3.3V, Ta = -30 to 70° C

Parameter	Symbol	Pad	Min.	Тур.	Max.	Unit	Note
Reset low pulse width	tRW	RESX	10	-	1	μS	-
Secure reset completion	tSRT	RESX	-	ı	5	ms	Reset during Sleep In mode
time	ISKI	RESX	_	_	150		Reset during Sleep Out mode
Reset un-reacted pulse width	tET	RESX			5	μS	-

7-2 SPI Timing

SPI-3Wire/SPI-4Wire Interface Characteristics

3/4-wire SPI

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock evelo		Write	20			ns
Clock cycle	t _{scyc}	Read	300			ns
Clask high pulse width	t _{sch}	Write	6.5			ns
Clock high pulse width	t _{sch}	Read	140			ns
Clask law pulse width	t _{SCL}	Write	6.5			ns
Clock low pulse width	t _{SCL}	Read	140			ns
Clock rise time	t _{scr}	0.2*VDDI -> 0.8*VDDI			3.5	ns
Clock fall time	t _{SCF}	0.8*VDDI -> 0.2*VDDI			3.5	ns
Chip select setup time	t _{csu}		10			ns
Chip select hold time	t _{ch}		10			ns
Data input setup time	t _{SISU}	To V _{IL} of SCL's rising edge	5			ns
Data input hold time	t _{siH}		5			ns
Access time of output data	t _{sod}	From V _{IL} of SCL's falling edge			120	ns
Hold time of output data	t _{soн}	From V _{IH} of SCL's rising edge	5			ns
Transition time from Write cycle to Read cycle	t _{CHWR}	From V _{IH} of SCL's rising edge	150			ns

Notes:

- (1) Logic high and low levels are specified as 80% and 20% of VDDI for Input signals.
- (2) For the 4-wire SPI, the DCX's timing is the same as input data.
- (3) Ta = -30°C to 70°C, VDDI=1.65V to 3.3V, VCI=2.7V to 3.6V, and VSS=0V

7-3 QSPI Interface Characteristics

Note: The max SCL frequency for each pixel data format is specified as the below table.

Note: Logic high and low levels are specified as 20% and 80% of VDDI for Input signals.

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.7V to 3.6V, GND=0V

QSPI Timing

Quad SPI Interface Protocol - Register Read and Write

Quad SPI Interface Protocol – Pixel Interface

SPI-4Lanes Pixel Write Data Waveform

RGB888 - 4-Lanes

RGB666 - 4-Lanes

RGB565 - 4-Lanes

7-4 MIPI-DSI 1 lane Interface Characteristics

Timing Parameters:

Parameter	Description	Min	Тур	Max	Unit
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of $T_{\text{HS-TRAIL}}$ to the beginning of $T_{\text{CLK-TRAIL}}$.	60ns + 52*UI			ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60			ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	300			ns
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{IL,MAX} .	Time for Dn to reach V _{TERM-EN}		38	ns
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38		95	ns
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8			UI
T _{CLK-PREPARE} + T _{CLK-ZERO}	T _{CLK-PREPARE} + time that the transmitter drives the HS-0 state prior to starting the Clock.	300			ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses V _{ILMAX} .	Time for Dn to reach V _{TERM-EN}		35 ns +4*UI	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40ns + 4*UI		85 ns + 6*UI	ns
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145ns + 10*UI			ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	60ns + 4*UI			ns

Turnaround Procedure

Bus turnaround (BAT) from MPU to display module timing

Bus turnaround (BAT) from display module to MPU timing

Low Power Mode:

Parameter	Description	Min	Тур	Max	Unit	Notes
$T_{LPX(M)}$	Transmitted length of any Low-Power state period of MCU to display module	50		150	ns	1,2
T _{TA-SURE(M)}	Time that the display module waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX(M)}		2*T _{LPX(M)}	ns	2
$T_{LPX(D)}$	Transmitted length of any Low-Power state period of display module to MCU	50		150	ns	1,2
$T_{TA-GET(D)}$	Time that the display module drives the Bridge state (LP-00) after accepting control during a Link Turnaround.		5*T _{LPX(D)}		ns	2
T _{TA-GO(D)}	Time that the display module drives the Bridge state (LP-00) before releasing control during a Link Turnaround.		4*T _{LPX(D)}		ns	2
T _{TA-SURE(D)}	Time that the MPU waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	$T_{LPX(D)}$		2*T _{LPX(D)}	ns	2

NOTE:

1. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from

the specified values due to asymmetrical rise and fall times.

2. Transmitter-specific parameter

7-5 Touch Panel(TP) IIC Timing Characteristics

The TP driver communicates to the host through the IIC interface and follows the IIC protocol. IIC bus utilize the SCL and SDA, a two-wire synchronous communication interface and can operate at a maximum bit rate of 400kbps.

IIC Serial Data Transfer Format

IIC Interface Timing

IIC Master Write, Slave Read

IIC Master Read, Slave Write

TP Driver IC Slave Addr A[6:0]---0X38

Mnemonics	Description
S	I ² C Start or I ² C Restart
A[6:0]	Slave address
R/W	READ/WRITE bit, '1' for read, '0'for write
A(N)	ACK(NACK)
Р	STOP: the indication of the end of a packet (if this bit is missing, S will indicate the end of the current packet and the beginning of the next packet)

IIC Timing Characteristics

Parameter	Standar	rd Mode	Fast I	Unit	
Farameter	Min	Max	Min	Max	Offic
SCL frequency (fast mode support)	0	100	0	400	KHz
Clock low period	4.7	-	1.3	-	us
Clock high period	4.0	-	0.6	-	us
Bus free time between a STOP and START condition	4.7	-	1.3	-	us
Hold time (repeated) START condition	4.0	-	0.6	-	us
Data setup time	250	-	100	-	ns
Setup time for a repeated START condition	4.7	-	0.6	-	us
Setup Time for STOP condition	4.0	-	0.6	-	us

TP I/O Communication Voltage follow IOVCC

TP DC Characteristics

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit	Note
Input high-level voltage	VIH		0.7 × IOVCC	-	IOVCC	V	
Input low -level voltage	VIL		-0.3	-	0.3 × IOVCC	V	
Output high -level voltage	VOH	IOH=-0.1mA	0.7 × IOVCC	-	-	V	
Output low -level voltage	VOL	IOH=0.1mA	-	-	0.3 × IOVCC	V	
I/O leakage current	ILI	Vin=0~AVDD	-1	-	1	μA	
Current consumption (Normal operation mode)	lopr	AVDD=2.8V Ta=25°C MCLK=15MHz	-	1.5	-	mA	
Current consumption (Monitor mode)	Imon	AVDD=2.8V Ta=25°C MCLK=15MHz	-	30	-	μА	
Current consumption (Sleep mode)	Islp	AVDD=2.8V Ta=25°C	-	10	-	μΑ	
Power Supply voltage	AVDD		2.8	1	3.6	V	

8. Recommended Operating Sequence

8.1 Power on/off sequence and timing

Power On sequence

Power Off sequence

Power On sequence

SPI Interface

9. Electro-optical characteristics

Item Sy		Symbol	Temp	Condition	Min.	Тур.	Max.	Unit	Note	
Brightness		25°C	Normal (White Mode)	400	450	500	cd/m²	Center brightnes s		
Uniformity			25°C	Normal (White Mode)	85	90	ı	%	(1)	
Contrast ratio		К	25°C	Ф=0°,θ=0°	60,000		-	-	(1),(2)	
	White	х		Ф=0° Ө=0°	0.285	0.295	0.305	-	(1),(2),(3)	
		у	- 25°C		0.305	0.315	0.325	-		
Color	Red	х			0.630	0.660	0.690	-		
of CIE		У			0.310	0.340	0.370	-		
coordinate	Green	х			0.170	0.220	0.270	-		
		у			0.680	0.730	0.780	-		
	Blue	х			0.115	0.140	0.165	-		
		У			0.025	0.050	0.075	-		
Color Gamut		25°C	vs. NTSC	85	100	-	%			
Life Time(5)		25°C	50% Brightness drop @250cd/m², Full White	-	30,000	-	Hr	(4)		

Note 1): Uniformity Measuring Point

Uniformity = Lmin / Lmax * 100 [%]

Note 2): Definition of contrast ratio (K)

Contrast Ratio(K) =

Brightness of selected dot
(White patterned area) at 250cd/m²

Brightness of non-selected dot
(Black patterned area) at 250cd/m²

Note 3): Optical measuring system: temperature regulated chamber

Note 4): Life Time

The elapsed time that the full white brightness decreases to the half of initial value

10. Standard Specification For Reliability

No	Item	Condition	Cycles	Judgment Criterion
1	High Temperature Operation	80°C/ 240hours	10	No clearly visible defects or remarkable
2	Low Temperature Operation	-30°C/ 240hours	10	deterioration of display quality.However, any polarizer's deteriorations by the high temperature/ High humidity Storage test
3	High Temperature Storage	85°C/ 240hours	5	and the High temperature/ High humidity Operation test are permitted.
4	Low Temperature Storage	-40°C/ 240hours	5	2. No function-related abnormalities.
5	High Temperature Humidity Operation	60°C/90%RH/ 240hours	5	
6	Thermal Shock	-40°C~85°C / 100cycles	5	

Note: The results must be measured after 2 hours later under room temperature keeping.