

INR - Introduction aux Réseaux INT1GIR

Année 2016-2017 PMA

Octobre 2016

4. Eléments de base de la transmission

- La liaison de données
- Modes de contrôle de l'échange
- Modes de transmission

La liaison de données

Le modèle élémentaire du canal de transmission

- E/R : source et destination
- Canal de transmission : guide d'onde ou vide (air)
- Signal: porteur d'information
- Environnement du canal : bruit
- Rapport S/B

Schématisation d'un système de transmission élémentaire

La liaison de données

Eléments constitutifs d'une liaison de données

Spécialisation des tâches

• DTE: Data Terminal Equipment

terminaux de traitement des données (source et destination)

Exemples?

• DCE: Data Communication Equipment

codage du signal sur la ligne, gestion du canal

Exemples?

Organisation des échanges

- 2 fonctions : émetteur (E) et récepteur (R)
- Sens de la liaison (exploitation du canal)
 - Simplex : $E \rightarrow R$ toujours
 - Half duplex : $E/R \leftarrow \rightarrow R/E$ mais en alternance
 - Full duplex : 2 canaux en parallèle et paire E/R

2 technologies de transmission sur un canal

- Canal en mode « point à point »
 - ex. ligne de télécommunication (RTC) utilisée en WAN

- Canal en mode « diffusion »
 - ex. segment de réseau LAN
 - Politique ou méthode de partage du canal nécessaire

Partage efficace d'un canal en mode point à point

- 2 DCE contrôlent le canal à longue distance
- et relaient les flux entre paires de DTE

Partage efficace d'un canal à diffusion LAN entre n communicants

• Responsabilité collective des DCE : algorithme de partage d'égal à égal

- Parallèle / série
- > Asynchrone / synchrone

Transmission parallèle ou série des bits

- Information élémentaire
 - bit, byte, word (mot), trame ou paquet
- Bus électronique
 - Horloge interne : temps discrétisé en « temps bit »
 - ex. horloge à 1 GHz \rightarrow 1 bit dure 1 ns
 - Architecture informatique
 - Transmission des bits d'un mot en parallèle sur 1 temps bit
 - Chaque bit circule sur un fil du bus
- Performances comparées parallèle versus série ?

Figure 3.8 Transmission parallèle, transmission série.

Transmission parallèle ou série des bits

- Mode de transmission sur un bus de périphérique ?
 - Ex. disque dur?
- Liaison entre 2 PC?

- Transmission série préférée sur « longue distance »
 - Coût \ distance
- Conversions : parallèle → série → parallèle

Transmission série asynchrone ou synchrone?

- Cadence E définie par horloge de E
- Cadence R définie par horloge de R
- Décodage correct → R synchrone avec E!
- Méthode de synchronisation entre E et R?
 - Pas de synchronisation → asynchrone

Transmission série : asynchrone ou synchrone

- Dérive d'horloges entre E et R
- 1 bit est perdu
- Taux d'erreur actuels sont surtout dus à cette dérive

Figure 3.11 La dérive de l'horloge réception occasionne la perte d'un bit.

Transmission série asynchrone

- Horloges E et R indépendantes
- Emission des bits d'un caractère encadrés par des signaux-bits de synchronisation

Transmission série synchrone

- Synchronisation permanente E / R
- ➤ blocs de taille importante
- Délimitation du bloc par un fanion
- Silence d'émission → bourrage de la ligne avec des fanions

Synchronisation	Commande	Blocs de n caractères de données	Contrôle
8 bits	8 bits		8 bits

Figure 3.16 Structure type d'un bloc de données en transmission synchrone.

Principaux protocoles synchrones

- BSC : Binary Synchronous Communication (BULL)
- SDLC : Synchronous Data Link Control (IBM)
- HDLC : Synchronous Data Link Control (ISO)
- PPP : Point To Point Protocol (Internet)