

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 🖫 : 6932327283 - 6955058444

ΔΙΑΓΩΝΙΣΜΑΤΑ - 11 Ιουλίου 2019

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ/ΤΡΙΑ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Όρια - Συνέχεια

ΟΡΙΟ ΣΕ ΣΗΜΕΙΟ - ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ - ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ

ΘΕΜΑ Α

A.1 Δίνεται ένα πολυώνυμο $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ και $x_{0} \in \mathbb{R}$. Να αποδείξετε ότι $\lim_{x \to x_{0}} P(x) = P(x_{0}).$ Μονάδες 8

A.2 Έστω $f:A\to\mathbb{R}$ μια ρητή συνάρτηση με $f(x)=\frac{P(x)}{Q(x)}$ όπου $P(x)=a_{\nu}x^{\nu}+a_{\nu-1}x^{\nu-1}+\ldots+a_{1}x+a_{0}$ και $Q(x)=\beta_{\mu}x^{\mu}+\beta_{\mu-1}x^{\mu-1}+\ldots+\beta_{1}x+\beta_{0}$ πολυώνυμα βαθμών ν και μ αντίστοιχα. Να υπολογίσετε το όριο

$$\lim_{x \to +\infty} f(x)$$

εξετάζοντας περιπτώσεις για τη σχέση μεταξύ των βαθμών ν και μ των δύο πολυωνύμων. **Μονάδες 7 A.3** Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως **Σωστή** ή **Λανθασμένη**.

α. Αν υπάρχει το όριο μιας συνάρτησης f σε ένα σημείο x_0 τότε τα πλευρικά όρια $\lim_{x\to x_0^-} f(x)$ και $\lim_{x\to x_0^+} f(x)$ θα είναι μεταξύ τους ίσα.

β. Αν για δύο συναρτήσεις f,g ισχύουν οι σχέσεις $\lim_{x\to x_0}f(x)=0$ και $\lim_{x\to x_0}g(x)=+\infty$ τότε παίρνουμε ότι $\lim_{x\to x_0}f(x)\cdot g(x)=0$.

γ. Αν για μια συνάρτηση f, με πεδίο ορισμού ένα σύνολο A, ισχύει ότι $\lim_{x\to x_0} f(x)>0$ τότε προκύπτει f(x)>0 για κάθε $x\in A$.

δ. Δίνεται μια συνάρτηση $f:A\to\mathbb{R}$ και $x_0\in\mathbb{R}$. Αν ισχύουν οι σχέσεις $\lim_{x\to x_0}f(x)=0$ και f(x)>0 κοντά στο x_0 τότε $\lim_{x\to x_0}\frac{1}{f(x)}=+\infty$.

ε. Έστω μια εκθετική συνάρτηση $f(x) = a^x$ με a > 1. Τότε θα ισχύει ότι $\lim_{x \to -\infty} f(x) = 0$.

Μονάδες 10

ΘΕΜΑ Β

Δίνεται η συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ για την οποία ισχύει:

$$4\sqrt{x+1} - 3 \le f(x) \le x^2 + x + 1$$

για κάθε $x \in \mathbb{R}$. Να βρείτε τα όρια:

B.1
$$\lim_{x\to 0} f(x)$$
 Μονάδες 5

B.2
$$\lim_{x\to 0} \frac{f(x)-f(0)}{x}$$
 Μονάδες 8

B.3
$$\lim_{x \to 1} \frac{f(x-1)(1-\sigma vv^2(x-1))}{x^2-x}$$

B.4 $\lim_{x \to 0} \frac{f^2(x) + f(x) - 2}{f^2(x) - f(x)}$

Moνάδες 7

B.4
$$\lim_{x\to 0} \frac{f^2(x) + f(x) - 2}{f^2(x) - f(x)}$$
 Μονάδες 7

ΘΕΜΑ Γ

Δίνεται η συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ με

$$f(x) = \begin{cases} \sqrt{9x^2 + x + 6} - \beta x, & \text{av } x \le 1\\ \frac{ax^2 + \beta x + 5}{x - x^2}, & \text{av } x > 1 \end{cases}$$

για την οποία υπάρχει το όριο $\lim_{x\to 1} f(x)$.

$$\Gamma$$
.1 Να αποδείξετε ότι $a=-2$ και $\beta=-3$.

$$\Gamma.2$$
 Να βρείτε τα όρια $\lim_{x\to +\infty} f(x)$ και $\lim_{x\to -\infty} f(x)$.

$$\Gamma.3$$
 Να υπολογίσετε το όριο $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$. Μονάδες 8

ΘΕΜΑ Δ

Δίνεται η συνάρτηση $f: \mathbb{R} \to \mathbb{R}$, για την οποία ισχύει:

$$\lim_{x \to 0} \frac{x(f(x) + 2) + \eta \mu 3x}{\sqrt{x + 4} - 2} = 24$$

Να βρείτε τα όρια:

$$\Delta.1 \lim_{x\to 0} f(x)$$
 Μονάδες 7

$$\Delta.2 \lim_{x\to 0} \frac{f(x)-4}{|f(x)+1|-|f^2(x)-3f(x)|}$$
 Μονάδες 8

Δ.3 Θεωρούμε τη συνάρτησι

$$g(x) = \ln \left(f^2(x) - 2f(x) + \sigma v v^2(f(x) - 1) \right) - \ln \left(f^2(x) - 2f(x) + 1 \right)$$

Aν η f είναι 1 - 1 και f(0) = 1, να βρείτε

i. το πεδίο ορισμού της g,

ii. το όριο $\lim_{x\to 0} g(x)$.

Μονάδες 4+6

Καλή Επιτυχία!