Package 'sapfluxnetr'

January 25, 2023

```
Title Working with 'Sapfluxnet' Project Data
Version 0.1.4
Description Access, modify, aggregate and plot data from the 'Sapfluxnet' project
      (<a href="http://sapfluxnet.creaf.cat">http://sapfluxnet.creaf.cat</a>), the first global database of sap flow measurements.
Depends R (>= 3.5.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports assertthat, dplyr, furrr, ggplot2, glue, lubridate, magrittr,
      methods, purrr, rlang, stats, stringr, tibble, tidyr
RoxygenNote 7.2.3
Collate 'data.R' 'getters.R' 'helpers.R' 'imports.R' 'metrics.R'
      'sfn_data_classes.R' 'sfn_data_generics.R' 'sfn_data_methods.R'
      'sfn_dplyr.R' 'visualizations.R'
Suggests future, knitr, remotes, rmarkdown, testthat, xtable
Config/testthat/edition 3
Config/testthat/parallel true
VignetteBuilder knitr
URL https://github.com/sapfluxnet/sapfluxnetr
BugReports https://github.com/sapfluxnet/sapfluxnetr/issues
NeedsCompilation no
Author Victor Granda [aut, cre] (<a href="https://orcid.org/0000-0002-0469-1991">https://orcid.org/0000-0002-0469-1991</a>),
      Rafael Poyatos [aut] (<a href="https://orcid.org/0000-0003-0521-2523">https://orcid.org/0000-0003-0521-2523</a>),
      Victor Flo [aut] (<a href="https://orcid.org/0000-0003-1908-4577">https://orcid.org/0000-0003-1908-4577</a>),
      Jacob Nelson [ctb] (<a href="https://orcid.org/0000-0002-4663-2420">https://orcid.org/0000-0002-4663-2420</a>),
      Sapfluxnet Core Team [cph]
Maintainer Victor Granda <victorgrandagarcia@gmail.com>
Repository CRAN
```

Date/Publication 2023-01-25 15:30:02 UTC

44

Index

R topics documented:

ARG_MAZ	3
ARG_TRE	3
AUS_CAN_ST2_MIX	4
data_coverage	4
describe_md_variable	5
diurnal_centroid	6
filter_sites_by_md	7
get_timezone	8
initialize,sfn_data-method	9
initialize,sfn_data_multi-method	10
metrics	11
metrics_tidyfier	16
norm_diurnal_centroid	18
read_sfn_data	19
read_sfn_metadata	20
sfn_data-class	21
sfn_data_multi-class	21
sfn_data_multi_validity	22
sfn_data_validity	22
sfn_filter	22
sfn_get_generics	24
sfn_get_methods	25
sfn_metadata_ex	26
sfn_metrics	27
sfn_multi_get_methods	30
sfn_mutate	31
sfn_mutate_at	32
sfn_plot	34
sfn_replacement_generics	36
sfn_replacement_methods	37
sfn_sites_in_folder	38
sfn_vars_to_filter	39
show,sfn_data-method	40
show,sfn_data_multi-method	40
summarise_by_period	41
%>%	42

ARG_MAZ 3

ARG_MAZ

ARG_MAZ sapfluxnet site

Description

Example site for package usage demonstration based on ARG_MAZ

Usage

ARG_MAZ

Format

An sfn_data class object with the data and metadata for ARG_MAZ site

Examples

```
data('ARG_MAZ', package = 'sapfluxnetr')
ARG_MAZ
```

ARG_TRE

ARG_TRE sapfluxnet site

Description

Example site for package usage demonstration based on ARG_TRE

Usage

ARG_TRE

Format

An sfn_data class object with the data and metadata for ARG_TRE site

```
data('ARG_TRE', package = 'sapfluxnetr')
ARG_TRE
```

4 data_coverage

AUS_CAN_ST2_MIX

AUS_CAN_ST2_MIX sapfluxnet site

Description

Example site for package usage demonstration based on AUS_CAN_ST2_MIX

Usage

```
AUS_CAN_ST2_MIX
```

Format

An sfn_data class object with the data and metadata for AUS_CAN_ST2_MIX site

Examples

```
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
AUS_CAN_ST2_MIX
```

data_coverage

data coverage

Description

```
helper for sfn_metrics
```

Usage

```
data_coverage(x, timestep, period_minutes)
```

Arguments

x a vector, usually a variable in the sapflow or environmental data.

timestep numeric value with the timestep in minutes period_minutes numeric value with the period in minutes

Details

This helper function calculates the coverage percentage in a vector, and is designed to be used inside a dplyr summarise statement. It calculates the coverage as the percentage of no NAs in the expected length of the summarising period stated by the timestep.

describe_md_variable 5

Value

a single value (numeric) with the percentage of coverage for that variable

Examples

```
# data for one day, 60 minutes timestep (24 values) with a 75% of coberture x \leftarrow rep(c(1,2,3,NA), 6) data_coverage(x, 60, 1440) # 75
```

Description

describe_md_variable prints in console a detailed description for the requested variable. Useful to know which values to filter or in which units the variables are.

Usage

```
describe_md_variable(variable)
```

Arguments

variable

A character with the name of the variable

Value

Nothing, prints information to console

```
# info about the method used to measure sapflow (pl_sens_meth)
describe_md_variable('pl_sens_meth')
```

6 diurnal_centroid

diurnal_centroid

Diurnal centroid calculation

Description

Calculate the diurnal centroid for sapflow variables

Usage

diurnal_centroid(variable)

Arguments

variable

A numeric vector containing the sapflow values for a day at a regular intervals. Missing values are allowed but not recommended

Details

The code for this function has been kindly provided by Jacob Nelson in python (see https://github.com/jnelson18/FluxnetTools and has been translated to a tidy data philosophy in R to be used inside a summarise statement.

Value

A numeric value with the diurnal centroid value (0 to 24 h)

Diurnal centroid algorithm

Given a continuous subdaily sapflow values at regular intervals $V = x_1, ..., x_n$ to obtain the diurnal centroid each value is multiplied by its interval index and summed up and divided by the sum of the values for the day and finally the value is normalized to 24h:

$$\sum x_1 * 1, x_2 * 2, ..., x_n * n / \sum x_1, x_2, ..., x_n * (24/n)$$

With even values for all the intervals (i.e. 100 for all), centroid converges to 12h at more than 1000 intervals per day. With only 48 (half hourly measurements) centroid converges to 12.25h and with 24 intervals (hourly measurements) centroid converges to 12.5h. So, using diurnal centroid value in half hourly datasets or above can have a considerable error associated.

Author(s)

Jacob Nelson & Víctor Granda

filter_sites_by_md 7

Examples

filter_sites_by_md

Filter the sites by metadata variable values

Description

filter_sites_by_md function takes logical expressions for the metadata variables (i.e. pl_sens_meth == 'HR'), and list the sites that met the criteria from those supplied

Usage

```
filter_sites_by_md(sites, metadata, ..., .join = c("and", "or"))
```

Arguments

```
character vector with the sites codes to filter, generally the result of sfn_sites_in_folder
metadata metadata tbl object, usually the result of read_sfn_metadata
... Logical expressions for the metadata variables, as in filter.
.join Character indicating how to filter the sites, see details.
```

Details

. join argument indicates how sites must be filtered between metadata classes. 'and' indicates only sites meeting all conditions for all metadata classes are returned. 'or' indicates all sites meeting any condition between classes are returned. For two or more filters of the same metadata class, they are combined as 'and'.

get_timezone

Value

A character vector with the sites fulfilling the premises

Examples

```
# Let's access the data in "folder". This typically is the folder where the
# sapflow data at the desired unit level is (i.e. "RData/plant"), but in this
# example we will create a temporal folder with some data to test the function
folder <- tempdir()</pre>
save(ARG_TRE, file = file.path(folder, 'ARG_TRE.RData'))
save(ARG_MAZ, file = file.path(folder, 'ARG_MAZ.RData'))
save(AUS_CAN_ST2_MIX, file = file.path(folder, 'AUS_CAN_ST2_MIX.RData'))
# we need the metadata and the site names
metadata <- read_sfn_metadata(folder = folder, .write_cache = TRUE)</pre>
sites <- sfn_sites_in_folder(folder)</pre>
# Filter by Heat Ratio method
filter_sites_by_md(
  pl\_sens\_meth == 'HR', sites = sites, metadata = metadata
# Both, Heat Ratio and Heat Dissipation
filter_sites_by_md(
  pl_sens_meth %in% c('HR', 'HD'),
  sites = sites, metadata = metadata
)
# more complex, Heat Ratio method AND Woodland/Shrubland biome
filter_sites_by_md(
  pl_sens_meth == 'HR',
  si_biome == 'Woodland/Shrubland',
  sites = sites, metadata = metadata,
  .join = 'and' # default
# join = 'or' returns sites that meet any condition
filter_sites_by_md(
  pl_sens_meth == 'HR',
  si_biome == 'Woodland/Shrubland',
  sites = sites, metadata = metadata,
  .join = 'or'
)
```

get_timezone

get the timezone of the site

Description

Obtain the site timezone from a sfn_data/sfn_data_multi object

Usage

```
get_timezone(sfn_data)
```

Arguments

sfn_data

An sfn_data or sfn_data_multi object

Value

a character with the site timezone

Examples

```
# timezone of ARG_TRE site
get_timezone(ARG_TRE)
```

initialize, sfn_data-method

 $Initialize\ method\ for\ sfn_data$

Description

Initialize an sfn_data object

Usage

```
## S4 method for signature 'sfn_data'
initialize(
  .Object,
  sapf_data,
 env_data,
  sapf_flags,
  env_flags,
  si\_code,
  timestamp,
  solar_timestamp,
  site_md,
  stand_md,
  species_md,
  plant_md,
  env_md
)
```

Arguments

.Object	sfn_data object to create
sapf_data	A tibble (or any object coercible to one) with the sapf_data (without the TIMES-TAMP variable)
env_data	A tibble (or any object coercible to one) with the env_data (without the TIMES-TAMP variable)
sapf_flags	A tibble (or any object coercible to one) with the same dimensions of sapf_data with the flag info for each tree/TIMESTAMP combination
env_flags	A tibble (or any object coercible to one) with the same dimensions of env_data with the flag info for each env_var/TIMESTAMP combination
si_code	A character vector of length one indicating the site code
timestamp	A POSIXct vector of length nrow(sapf_data) with the timestamp
solar_timestam	р
	A POSIXct vector of length nrow(sapf_data) with the solar timestamp
site_md	A tibble (or any object coercible to one) containing the site metadata
stand_md	A tibble (or any object coercible to one) containing the stand metadata
species_md	A tibble (or any object coercible to one) containing the species metadata
plant_md	A tibble (or any object coercible to one) containing the plant metadata
env_md	A tibble (or any object coercible to one) containing the env metadata

 $initialize, sfn_data_multi-method$

Initialize method for sfn_data multi

Description

Initialize an sfn_data_multi object

Usage

```
## S4 method for signature 'sfn_data_multi'
initialize(.Object, ...)
```

Arguments

 $. Object \hspace{30mm} sfn_data_multi\ object\ to\ create$

... sfn_data elements

metrics

Complete metrics wrappers

Description

This set of functions returns a complete set of statistics for a site (using sfn_data) or several sites (using sfn_data_multi)

Usage

```
daily_metrics(
  sfn_data,
  solar = TRUE,
 probs = c(0.95),
  tidy = FALSE,
 metadata = NULL,
)
monthly_metrics(
  sfn_data,
  solar = TRUE,
  probs = c(0.95),
  tidy = FALSE,
 metadata = NULL,
)
nightly_metrics(
  sfn_data,
  period = c("1 day", "1 month"),
  solar = TRUE,
  int_start = 20,
  int_end = 6,
  probs = c(0.95),
  tidy = FALSE,
 metadata = NULL,
)
daylight_metrics(
  sfn_data,
  period = c("1 day", "1 month"),
  solar = TRUE,
  int_start = 6,
  int\_end = 20,
  probs = c(0.95),
```

```
tidy = FALSE,
 metadata = NULL,
)
predawn_metrics(
 sfn_data,
 period = c("1 day", "1 month"),
  solar = TRUE,
 int_start = 4,
 int\_end = 6,
 probs = c(0.95),
  tidy = FALSE,
 metadata = NULL,
)
midday_metrics(
  sfn_data,
 period = c("1 day", "1 month"),
  solar = TRUE,
  int_start = 11,
  int\_end = 13,
 probs = c(0.95),
 tidy = FALSE,
 metadata = NULL,
)
```

Arguments

sfn_data	sfn_data or sfn_data_multi object to obtain the metrics from
solar	Logical indicating if the solarTIMESTAMP must be used instead of the site local TIMESTAMP. Default to TRUE (use solarTIMESTAMP).
probs	numeric vector of probabilities for quantile
tidy	Logical indicating if the metrics must be returned in a tidy format (a long tibble, each observation in its own row)
metadata	metadata object, usually the result of read_sfn_metadata. Only used if tidy is TRUE.
•••	additional arguments to be passed to .collapse_timestamp or floor_date or ceiling_date.
period	Time period to aggregate data by. See period section for an explanation about the periods ('3 hours', '1 day', '1 month', '1 year',)
int_start	Integer value indicating the starting hour of the special interval in 24h format. See Interval section in details.
int_end	Integer value indicating the ending hour of the special interval in 24h format. See Interval section in details.

Details

*_metrics functions are wrappers for sfn_metrics with a set of fixed arguments.

*_metrics functions return all or some of the following statistics:

- mean: mean of variable (tree or environmental variable) for the given period. NAs are removed
- sd: standard deviation of the variable for the given period. NAs are removed
- coverage: Data coverage percentage (percentage of measures without NAs)
- q_XX: 0.XX quantile value for the period
- centroid: Diurnal centroid value (hours passed until the half of the summed daily value was reached). Only returned for sapflow measures when period is '1 day'
- accumulated: Accumulated values for precipitation only

Value

If tidy is TRUE, a tibble with the metrics for sapflow and environmental data, with all the metadata included. If tidy is FALSE (default), a list of tibbles with the calculated metrics.

daily metrics

daily_metrics summarise daily data for all hours in the day

monthly_metrics

monthly_metrics summarise monthly data for all hours in the day.

nightly_metrics

nightly_metrics will return the metrics for night periods, summarised daily or monthly

Night for daily period starts in DOY x and ends in DOY x+1 (i.e. if night_start = 20, night_end = 6 values for the night starting at 2018-03-28 20:00:00 and ending at 2018-03-29 06:00:00 are summarised).

Night for monthly period summarises all night periods in the month, that includes from 00:00:00 of the first month night to 23:59:59 of the last month night.

daylight_metrics

daylight_metrics will return the metrics for daylight periods, summarised daily or monthly. Daylight interval is selected by start and end hours.

predawn_metrics

predawn_metrics will always return the metrics for predawn period, summarised daily or monthly. Predawn interval is selected by start and end hours.

Predawn metrics did not return the centroid metric.

midday_metrics

midday_metrics will always return the metrics for midday period, summarised daily or monthly. midday interval is selected by start and end hours.

Midday metrics did not return the centroid metric.

See Also

```
Other metrics: sfn_metrics()
```

```
## daily_metrics
# data load
data('ARG_TRE', package = 'sapfluxnetr')
data('sfn_metadata_ex', package = 'sapfluxnetr')
# non tidy raw metrics (default)
ARG_TRE_raw_daily <- daily_metrics(ARG_TRE)
str(ARG_TRE_raw_daily)
# tidy daily metrics
ARG_TRE_daily <- daily_metrics(
  ARG_TRE, tidy = TRUE, metadata = sfn_metadata_ex
)
ARG_TRE_daily
## monthly_metrics
# data load
data('ARG_TRE', package = 'sapfluxnetr')
data('sfn_metadata_ex', package = 'sapfluxnetr')
# non tidy raw metrics (default)
ARG_TRE_raw_monthly <- monthly_metrics(ARG_TRE)</pre>
str(ARG_TRE_raw_monthly)
# tidy monthly metrics
ARG_TRE_monthly <- monthly_metrics(
  ARG_TRE, tidy = TRUE, metadata = sfn_metadata_ex
ARG_TRE_monthly
## nightly_metrics
# data load
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
# non tidy daily night metrics (default)
```

```
AUS_CAN_ST2_MIX_night <- nightly_metrics(AUS_CAN_ST2_MIX)
str(AUS_CAN_ST2_MIX_night)
AUS_CAN_ST2_MIX_night[['sapf']]
AUS_CAN_ST2_MIX_night[['env']]
# change the night interval
AUS_CAN_ST2_MIX_night_short <- nightly_metrics(
  AUS_CAN_ST2_MIX, int_start = 21, int_end = 4 # night starting and ending hour
AUS_CAN_ST2_MIX_night_short[['env']]
# tidy nightly metrics
data('sfn_metadata_ex', package = 'sapfluxnetr')
AUS_CAN_ST2_MIX_night_tidy <- nightly_metrics(
  AUS_CAN_ST2_MIX,
  tidy = TRUE, metadata = sfn_metadata_ex
)
AUS_CAN_ST2_MIX_night_tidy
## daylight_metrics
# data load
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
# non tidy daily daylight metrics (default)
AUS_CAN_ST2_MIX_daylight <- daylight_metrics(AUS_CAN_ST2_MIX)
str(AUS_CAN_ST2_MIX_daylight)
AUS_CAN_ST2_MIX_daylight[['sapf']]
AUS_CAN_ST2_MIX_daylight[['env']]
# change the daylight interval
AUS_CAN_ST2_MIX_daylight_short <- daylight_metrics(
  AUS_CAN_ST2_MIX, int_start = 8, int_end = 18 # night starting and ending hour
AUS_CAN_ST2_MIX_daylight_short[['env']]
# tidy daylight metrics
data('sfn_metadata_ex', package = 'sapfluxnetr')
AUS_CAN_ST2_MIX_daylight_tidy <- daylight_metrics(
  AUS_CAN_ST2_MIX,
  tidy = TRUE, metadata = sfn_metadata_ex
AUS_CAN_ST2_MIX_daylight_tidy
## predawn_metrics
# data load
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
```

16 metrics_tidyfier

```
# non tidy daily predawn metrics (default)
AUS_CAN_ST2_MIX_predawn <- predawn_metrics(AUS_CAN_ST2_MIX)</pre>
str(AUS_CAN_ST2_MIX_predawn)
AUS_CAN_ST2_MIX_predawn[['sapf']]
AUS_CAN_ST2_MIX_predawn[['env']]
# change the predawn interval
AUS_CAN_ST2_MIX_predawn_short <- predawn_metrics(
  AUS_CAN_ST2_MIX, int_start = 8, int_end = 18 # night starting and ending hour
AUS_CAN_ST2_MIX_predawn_short[['env']]
# tidy daylight metrics
data('sfn_metadata_ex', package = 'sapfluxnetr')
AUS_CAN_ST2_MIX_predawn_tidy <- predawn_metrics(
  AUS_CAN_ST2_MIX,
  tidy = TRUE, metadata = sfn_metadata_ex
)
AUS_CAN_ST2_MIX_predawn_tidy
## midday_metrics
# data load
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
# non tidy daily midday metrics (default)
AUS_CAN_ST2_MIX_midday <- midday_metrics(AUS_CAN_ST2_MIX)
str(AUS_CAN_ST2_MIX_midday)
AUS_CAN_ST2_MIX_midday[['sapf']]
AUS_CAN_ST2_MIX_midday[['env']]
# change the midday interval
AUS_CAN_ST2_MIX_midday_short <- midday_metrics(
  AUS_CAN_ST2_MIX, int_start = 8, int_end = 18 # night starting and ending hour
AUS_CAN_ST2_MIX_midday_short[['env']]
# tidy daylight metrics
data('sfn_metadata_ex', package = 'sapfluxnetr')
AUS_CAN_ST2_MIX_midday_tidy <- midday_metrics(
  AUS_CAN_ST2_MIX,
  tidy = TRUE, metadata = sfn_metadata_ex
)
AUS_CAN_ST2_MIX_midday_tidy
```

metrics_tidyfier 17

metrics_tidyfier

Build a tidy data frame from the metrics results nested list

Description

Transform the nested list of metrics in a tidy tibble where each observation has its own row

Usage

```
metrics_tidyfier(
  metrics_res,
  metadata,
  interval = c("general", "predawn", "midday", "night", "daylight")
)
```

Arguments

metrics_res Nested list containing the metrics results as obtained from metrics

metadata List containing the metadata nested list, as obtained from read_sfn_metadata

interval Interval to return, it depends on the metrics_res and can be "gen" for the
general metrics, "md" for midday metrics, "pd" for predawn metrics, "night"
for night metrics or "day" for diurnal metrics.

Value

a tibble with the following columns:

- TIMESTAMP: POSIXct vector with the date-time of the observation
- si_code: Character vector with the site codes
- pl_code: Character vector with the plant codes
- sapflow_*: Variables containing the different metrics for the sapflow measurements (i.e. sapflow_mean, sapflow_q_95)
- ta_*; rh_*; vpd_*; ...: Variables containing the different metrics for environmental variables (i.e. ta_mean, ta_q_95)
- pl_*: plant metadata variables (i.e. pl_sapw_area, pl_sens_meth)
- si_*: site metadata variables (i.e. si_biome, si_contact_firstname)
- st_*: stand metadata variables (i.e. st_aspect, st_lai)
- sp_*: species metadata variables (i.e. sp_basal_area_perc)
- env_*: environmental metadata variables (i.e. env_timezone)

Examples

```
# data
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)
data('sfn_metadata_ex', package = 'sapfluxnetr')

# metrics
multi_metrics <- daily_metrics(multi_sfn)

# tidyfing
multi_tidy <- metrics_tidyfier(
    multi_metrics, sfn_metadata_ex, interval = 'general'
)
multi_tidy

# A really easier way of doing the same
multi_tidy_easy <- daily_metrics(multi_sfn, tidy = TRUE, metadata = sfn_metadata_ex)</pre>
```

norm_diurnal_centroid Normalized diurnal centroid calculation

Description

Calculate the normalized diurnal centroid for sapflow variables

Usage

```
norm_diurnal_centroid(sapf_var, rad_var)
```

Arguments

sapf_var A numeric vector containing the sapflow values for a day at a regular intervals.

Missing values are allowed but not recommended.

rad_var A numeric vector containing the incoming radiation for a day at a regular in-

tervals. Missing values are allowed but not recommended. Must be the same

length as sapf_var.

Details

The code for this function has been kindly provided by Jacob Nelson in python (see https://github.com/jnelson18/FluxnetTools and has been translated to a tidy data philosophy in R to be used inside a summarise statement.

Value

A numeric value with the normalized diurnal centroid value

read_sfn_data 19

Normalized diurnal centroid algorithm

This function calculates the diurnal centroid of sapflow measures *relative* to the diurnal centroid of incoming radiation (in any units). For that the incoming radiation diurnal centroid is substracted from the sapflow diurnal centroid:

 $Sapf_cent-IncomingRad_cent$

Author(s)

Jacob Nelson & Víctor Granda

read_sfn_data

Read sfn_data from disk

Description

Given a site code and a route, read_sfn_data will return the selected sfn_data object

Usage

```
read_sfn_data(site_codes, folder = ".")
```

Arguments

site_codes A character vector with the site code/s

folder Route to the folder containing the .RData file. Default to working directory.

Value

If site_codes is a vector of length 1, an sfn_data object with the selected site data. If site_codes is a vector of length > 1, then a sfn_data_multi object containing all selected sites.

20 read_sfn_metadata

```
)
multi_sfn
```

read_sfn_metadata

Read and combine all metadata

Description

Read metadata from all sites in folder and write it to disk to cache the info for easy and fast access

Usage

```
read_sfn_metadata(folder = ".", .write_cache = FALSE)
```

Arguments

folder Route to the folder containing the data. Default to working directory

.write_cache Logical indicating if a cached copy of the metadata must be written in folder.

Details

Load all data in memory to collect metadata info can be resource limiting. For easy and quick access to metadata, this function stores an .RData file in the specified folder along the data with all the metadata preloaded. Also it return it as an object to use in filtering and selecting sites.

Value

A list of tibbles with the five metadata classes (site, stand, species, plant and environmental)

```
# Let's access the data in "folder". This typically is the folder where the
# sapflow data at the desired unit level is (i.e. "RData/plant"), but in this
# example we will create a temporal folder with some data to test the function
folder <- tempdir()
save(ARG_TRE, file = file.path(folder, 'ARG_TRE.RData'))
save(ARG_MAZ, file = file.path(folder, 'ARG_MAZ.RData'))

# create and load the metadata. The first time we use .write_cache = TRUE,
# to ensure creating a file containing the metadata for speed the process
# for the next times
read_sfn_metadata(
   folder = folder, .write_cache = TRUE
)
# a cached copy must have been written to "folder"
file.exists(paste0(folder, '.metadata_cache.RData')) # TRUE</pre>
# after that, we only need to especify the folder
```

sfn_data-class 21

```
sites\_metadata <- \ read\_sfn\_metadata (folder = folder) \ \# \ quicker \ than \ before \\ sites\_metadata
```

sfn_data-class

S4 class for sapfluxnet site data

Description

Main class for storing sapfluxnet project site data and metadata

Details

This class allows to store all the data and metadata for a sapfluxnet site in one single object, to easily work with it. See vignette('sfn-data-classes', package = 'sapfluxnetr') for more info.

Slots

sapf_data A data frame with the sapf data

env_data A data frame with the env data

sapf_flags A data frame with the same dimensions of sapf_data with the flag info for each tree/TIMESTAMP combination

env_flags A data frame with the same dimensions of env_data with the flag info for each env_var/TIMESTAMP combination

si_code A character vector of length one indicating the site code

 ${\tt timestamp}\ A\ POSIXct\ vector\ of\ length\ nrow({\tt sapf_data})\ with\ the\ timestamp$

solar_timestamp A POSIXct vector of length nrow(sapf_data) with the solar timestamp

site_md A data frame containing the site metadata

stand_md A data frame containing the stand metadata

species_md A data frame containing the species metadata

plant_md A data frame containing the plant metadata

env_md A data frame containing the env metadata

Description

Multi sfn data class, derived from list

Details

This class inherits from list, but modified to contain sfn_data objects as elements. This will allow to work with several sites at the same time obtaining results for all of them combined or individually as elements of the resulting list (with lapply or purrr::map)

sfn_filter

```
sfn_data_multi_validity
```

Validity method for sfn_data_multi class

Description

Validation checks for generating sfn_data_multi class objects

Details

This method is used internally to ensure the correctness of the sfn_data_multi object. Basically ensures that the object returned is a list of sfn_data class objects

sfn_data_validity

Validity method for sfn_data class

Description

Validation checks for generating sfn_data class objects

Details

This method is used internally when creating and/or modifying sfn_data class objects to ensure that the object returned is correct in terms of content classes and dimensions (i.e. sapflow data and environmental data has the same length)

sfn_filter

Filter sfn_data by variable/s value

Description

```
Port of filter for sfn_data and sfn_data_multi objects
```

Usage

```
sfn_filter(sfn_data, ..., solar = FALSE)
```

Arguments

sfn_data	sfn_data or sfn_data_multi object to subset
	expressions to pass to the filter function

solar Logical indicating if solar timestamp must used to subset

sfn_filter 23

Details

'sfn_filter' will remove the rows not matching the logical expression/s provided. So, it will remove cases and will create TIMESTAMP gaps, so its use is not recommended except in the case of filtering by TIMESTAMP (i.e. to set several sites (sfn_data_multi) in the same time frame). For other scenarios (removing extreme environmental conditions values or strange sapflow measures patterns) see sfn_mutate and sfn_mutate_at

Value

For sfn_data objects, a filtered sfn_data or NULL if no data meet the criteria. For sfn_data_multi another sfn_data_multi with the sites filtered, and an empty sfn_data_multi if any sites met the criteria

```
library(dplyr)
library(lubridate)
# data
data('ARG_TRE', package = 'sapfluxnetr')
# by timestamp
foo_timestamp <- get_timestamp(ARG_TRE)</pre>
foo_timestamp_trimmed <- foo_timestamp[1:100]</pre>
sfn_filter(
  ARG_TRE,
  TIMESTAMP %in% foo_timestamp_trimmed
)
# by wind speed value
ws_threshold <- 25
sfn_filter(
  ARG_TRE,
  ws <= ws_threshold
)
## multi
data('ARG_MAZ', package = 'sapfluxnetr')
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ)</pre>
# by timestamp
sfn_filter(
  multi_sfn,
  between(day(TIMESTAMP), 18, 22)
# by wind speed value
sfn_filter(
```

24 sfn_get_generics

```
multi_sfn,
  ws <= ws_threshold
)</pre>
```

sfn_get_generics

sfn_data custom get generics

Description

Generics for getting the info in the slots of SfnData

Usage

```
get_sapf_data(object, ...)
get_env_data(object, ...)
get_sapf_flags(object, ...)
get_env_flags(object, ...)
get_timestamp(object, ...)
get_solar_timestamp(object, ...)
get_si_code(object, ...)
get_site_md(object, ...)
get_stand_md(object, ...)
get_species_md(object, ...)
get_plant_md(object, ...)
get_env_md(object, ...)
```

Arguments

object Object to get data from

Further arguments to pass to the corresponding get method

Details

see sfn_get_methods for detailed info about using the get methods in sfn_data class objects and sfn_multi_get_methods for detailed info about using the get methods in sfn_data_multi class objects.

sfn_get_methods 25

sfn_get_methods

sfn_data get methods

Description

Methods to get the data and metadata from the sfn_data class slots

Usage

```
## S4 method for signature 'sfn_data'
get_sapf_data(object, solar = FALSE)
## S4 method for signature 'sfn_data'
get_env_data(object, solar = FALSE)
## S4 method for signature 'sfn_data'
get_sapf_flags(object, solar = FALSE)
## S4 method for signature 'sfn_data'
get_env_flags(object, solar = FALSE)
## S4 method for signature 'sfn_data'
get_timestamp(object)
## S4 method for signature 'sfn_data'
get_solar_timestamp(object)
## S4 method for signature 'sfn_data'
get_si_code(object)
## S4 method for signature 'sfn_data'
get_site_md(object)
## S4 method for signature 'sfn_data'
get_stand_md(object)
## S4 method for signature 'sfn_data'
get_species_md(object)
## S4 method for signature 'sfn_data'
get_plant_md(object)
## S4 method for signature 'sfn_data'
get_env_md(object)
```

Arguments

object

Object of class sfn_data from which data is retrieved

26 sfn_metadata_ex

solar

Logical indicating if the timestamp to return in the get_sapf_data, get_env_data, get_sapf_flags and get_env_flags methods is the solarTIMESTAMP (TRUE) or the contributors provided TIMESTAMP (FALSE)

Details

get_sapf_data and get_env_data methods retrieve sapflow or environmental tibbles to create a functional dataset to work with.

get_sapf_flags and get_env_flags methods retrieve sapflow or environmental flags as tibbles.

get_timestamp and get_solar_timestamp methods retrieve only the timestamp as POSIXct vector.

get_si_code method retrieve a character vector with length(timestamp) containing the site code.

get_site_md, get_stand_md, get_species_md, get_plant_md and get_env_md methods retrieve
the corresponding metadata.

Examples

```
library(dplyr)

data('ARG_TRE', package = 'sapfluxnetr')
sapf_data <- get_sapf_data(ARG_TRE, solar = TRUE)
env_data_no_solar <- get_env_data(ARG_TRE, solar = FALSE)
plant_md <- get_plant_md(ARG_TRE)

# dplyr pipe to get the mean dbh for a site
ARG_TRE %>%
    get_plant_md() %>%
    summarise(dbh_mean = mean(pl_dbh, na.rm = TRUE)) %>%
    pull(dbh_mean)
```

sfn_metadata_ex

sfn_metadata cache file for example data (ARG_MAZ, ARG_TRE and AUS_CAN_ST2_MIX)

Description

Example metadata cache file content for package usage demonstration

Usage

```
sfn_metadata_ex
```

Format

A list with five elements, each of one a metadata type.

sfn_metrics 27

Examples

```
data('sfn_metadata_ex', package = 'sapfluxnetr')
sfn_metadata_ex
```

sfn_metrics

Metrics summary function

Description

Generate metrics from a site/s data for the period indicated

Usage

```
sfn_metrics(
    sfn_data,
    period,
    .funs,
    solar,
    interval = c("general", "predawn", "midday", "night", "daylight"),
    int_start = NULL,
    int_end = NULL,
    ...
)
```

Arguments

sfn_data	sfn_data or sfn_data_multi object to obtain the metrics from
period	Time period to aggregate data by. See period section for an explanation about the periods ('3 hours', '1 day', '1 month', '1 year',)
.funs	List of function calls to summarise the data by, see .funs section for more details.
solar	Logical indicating if the solarTIMESTAMP must be used instead of the site local TIMESTAMP. Default to TRUE (use solarTIMESTAMP).
interval	Character vector indicating if the metrics must be filtered by an special hour interval. See Interval section in details.
int_start	Integer value indicating the starting hour of the special interval in 24h format. See Interval section in details.
int_end	Integer value indicating the ending hour of the special interval in 24h format. See Interval section in details.
• • •	optional arguments to pass to methods used (i.e. $.collapse_timestamp$ or summarise funs extra arguments)

28 sfn_metrics

Value

For sfn_data objects, a list of tbl_df objects with the following structure:

- \$sapf: metrics for the sapflow data
- \$env: metrics for the environmental data

For sfn_data_multi objects, a list of lists of tbl df objects with the metrics for each site:

- \$SITE_CODE
 - \$sapf: metrics for the sapflow data
 - \$env: metrics for the environmental data
- \$NEXT_SITE_CODE...

Period

period argument is used by internal function .collapse_timestamp and it can be stated in two ways:

- frequency period format: "3 hours", "1 day", "7 days", "1 month"
- As a *custom function*. This will be the name of a function, without quotes, that accepts as the first argument the timestamp to collapse. The result of the function must be a vector of collapsed TIMESTAMPs of the same length than the original TIMESTAMP which will be used to group by and summarise the data. Additional arguments to this function, if needed, can be passed in the . . . argument.

.collapse_timestamp also accepts the side argument to collapse by the starting timestamp or the ending timestamp of each group. This can be supplied in the . . . argument.

.funs

. funs argument uses the same method as the .funs argument in the summarise_all function of dplyr package. Basically it accepts a list of function calls generated by list(). If you want to pass on a custom function you can specify it here. See details in summarise_by_period for more complex summarising functions declaration.

Interval

Previously to the metrics summary, data can be filtered by an special interval (i.e. predawn or nightly). This filtering can be specified with the interval argument as this:

- "general" (default). No special interval is used, and metrics are performed with all the data.
- "predawn". Data is filtered for predawn interval. In this case int_start and int_end must be specified as 24h value
- "midday". Data is filtered for midday interval. In this case int_start and int_end must be specified as 24h value
- "night". Data is filtered for night interval. In this case int_start and int_end must be specified as 24h value
- "daylight". Data is filtered for daylight interval. In this case int_start and int_end must be specified as 24h value

sfn_metrics 29

See Also

Other metrics: metrics

```
library(dplyr)
### general metrics
## sfn_data
data('ARG_TRE', package = 'sapfluxnetr')
ARG_TRE_metrics <- sfn_metrics(
  ARG_TRE,
  period = '7 days',
  .funs = list(\sim mean(., na.rm = TRUE), \sim sd(., na.rm = TRUE), \sim n()),
  solar = FALSE,
  interval = 'general'
)
str(ARG_TRE_metrics)
ARG_TRE_metrics[['sapf']]
ARG_TRE_metrics[['env']]
## sfn_data_multi
data('ARG_MAZ', package = 'sapfluxnetr')
data('AUS_CAN_ST2_MIX', package = 'sapfluxnetr')
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)</pre>
multi_metrics <- sfn_metrics(</pre>
  multi_sfn,
  period = '7 days',
  .funs = list(~ mean(., na.rm = TRUE), ~ sd(., na.rm = TRUE), ~ n()),
  solar = FALSE,
  interval = 'general'
)
str(multi_metrics)
multi_metrics[['ARG_TRE']][['sapf']]
### midday metrics
ARG_TRE_midday <- sfn_metrics(
  ARG_TRE,
  period = '1 day',
  .funs = list(~ mean(., na.rm = TRUE), ~ sd(., na.rm = TRUE), ~ n()),
  solar = TRUE,
  interval = 'midday', int_start = 11, int_end = 13
)
str(ARG_TRE_midday)
ARG_TRE_midday[['sapf']]
```

```
{\tt sfn\_multi\_get\_methods} \ \ \textit{sfn\_data\_multi get methods}
```

Description

Methods to get the data and metadata from the sfn_data class slots

Usage

```
## S4 method for signature 'sfn_data_multi'
get_sapf_data(object, solar = FALSE)
## S4 method for signature 'sfn_data_multi'
get_env_data(object, solar = FALSE)
## S4 method for signature 'sfn_data_multi'
get_sapf_flags(object, solar = FALSE)
## S4 method for signature 'sfn_data_multi'
get_env_flags(object, solar = FALSE)
## S4 method for signature 'sfn_data_multi'
get_timestamp(object)
## S4 method for signature 'sfn_data_multi'
get_solar_timestamp(object)
## S4 method for signature 'sfn_data_multi'
get_si_code(object)
## S4 method for signature 'sfn_data_multi'
get_site_md(object, collapse = FALSE)
## S4 method for signature 'sfn_data_multi'
get_stand_md(object, collapse = FALSE)
## S4 method for signature 'sfn_data_multi'
get_species_md(object, collapse = FALSE)
## S4 method for signature 'sfn_data_multi'
get_plant_md(object, collapse = FALSE)
## S4 method for signature 'sfn_data_multi'
get_env_md(object, collapse = FALSE)
```

sfn_mutate 31

Arguments

object	Object of class sfn_data_multi from which data or metadata is retrieved
solar	Logical indicating if the timestamp to return in the get_sapf_data, get_env_data, get_sapf_flags and get_env_flags methods is the solarTIMESTAMP (TRUE) or the contributors provided TIMESTAMP (FALSE)
collapse	Logical indicating if the metadata get methods must collapse the returning list to a data frame with all sites

Details

get_sapf_data and get_env_data methods retrieve sapflow or environmental tibbles from the sfn_data objects contained in the sfn_data_multi and return them in a list.

get_sapf_flags and get_env_flags methods retrieve sapflow or environmental flags tibbles from the sfn_data objects contained in the sfn_data_multi and return them in a list.

get_timestamp and get_solar_timestamp methods retrieve only the timestamps as POSIXct vectors and return them as a list (each element corresponding to a site in the sfn_data_multi object).

get_si_code method retrieve a character vector with length(timestamp) containing the site code for each site, returning them as a list.

get_site_md, get_stand_md, get_species_md, get_plant_md and get_env_md methods retrieve the corresponding metadata objects for each site returning them as a list, unless collapse is TRUE, then the list collapses to a tibble.

Examples

library(dplyr)

sfn_mutate	Mutate variables by function

Description

Port of mutate for sfn_data and sfn_data_multi objects

Usage

```
sfn_mutate(sfn_data, ..., solar = FALSE)
```

Arguments

sfn_data	sfn_data or sfn_data_multi object to subset
	Name-value pairs of expressions to pass to the mutate function.
solar	Logical indicating if solar timestamp must used to subset

32 sfn_mutate_at

Details

'sfn_mutate' function will maintain the same number of rows before and after the modification, so it is well suited to modify variables without creating TIMESTAMP gaps (i.e. to change variable units). For mutating groups of variables at the same time see sfn_mutate_at.

Value

For sfn_data objects, a mutated sfn_data. For sfn_data_multi another sfn_data_multi with the sites mutated

Sapflow and environmental variables

'sfn_mutate' internally joins the sapflow and environmental datasets by the TIMESTAMP, so it is possible to mutate variables conditionally between sapflow and environmental measures (i.e. mutate sapflow when wind is high or radiation is zero). Due to this, at the moment any new variable is dropped when building the final results, so this is ONLY intended to mutate existing variables without changing the names.

Examples

```
library(dplyr)
library(lubridate)

# data
data('ARG_TRE', package = 'sapfluxnetr')

# transform to NAs any wind value above 25
ws_threshold <- 25
sfn_mutate(ARG_TRE, ws = if_else(ws > 25, NA_real_, ws))

## multi
data(ARG_MAZ, package = 'sapfluxnetr')
data(AUS_CAN_ST2_MIX, package = 'sapfluxnetr')
multi_sfn <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)

multi_sfn_mutated <- sfn_mutate(
    multi_sfn, ws = if_else(ws > 25, NA_real_, ws)
)

multi_sfn_mutated[['ARG_TRE']]
```

sfn_mutate_at

Mutate selected columns by function

Description

Port of mutate_at for sfn_data and sfn_data_multi objects

sfn_mutate_at 33

Usage

```
sfn_mutate_at(sfn_data, .vars, .funs, ..., solar = FALSE)
```

Arguments

sfn_data	sfn_data or sfn_data_multi object to subset
.vars	Variables to mutate. Passed to mutate_at
.funs	Function/s for mutate, passed to mutate_at
	Extra arguments to pass to the functions in .funs, passed to ${\tt mutate_at.}$
solar	Logical indicating if solar timestamp must used to subset

Details

'sfn_mutate_at' function will maintain the same number of rows before and after the modification, so it is well suited to modify variables without creating TIMESTAMP gaps (i.e. to change variable units). For mutating individual variables see sfn_mutate.

Value

For sfn_{data} objects, a mutated sfn_{data} . For sfn_{data} multi another sfn_{data} multi with the sites mutated

```
library(dplyr)
library(lubridate)
data('ARG_TRE', package = 'sapfluxnetr')
# transform to NAs any sapflow value occured with wind speed above 25
ws_threshold <- 25
# get the names of the variables to mutate (tree names)
vars_to_mutate <- names(get_sapf_data(ARG_TRE)[,-1]) # no TIMESTAMP</pre>
sfn_mutate_at(
  ARG_TRE,
  .vars = vars(one_of(vars_to_mutate)),
  .funs = list(
    ~ case_when(
     ws > ws_threshold ~ NA_real_,
      TRUE \sim .
## multi
data(ARG_MAZ, package = 'sapfluxnetr')
data(AUS_CAN_ST2_MIX, package = 'sapfluxnetr')
\verb|multi_sfn| <- sfn_data_multi(ARG_TRE, ARG_MAZ, AUS_CAN_ST2_MIX)| \\
```

sfn_plot

sfn_plot

plot method for sfn_data class

Description

Plot the desired data from a site object

Usage

```
sfn_plot(
    sfn_data,
    type = c("sapf", "env", "ta", "rh", "vpd", "ppfd_in", "netrad", "sw_in", "ext_rad",
        "ws", "precip", "swc_shallow", "swc_deep"),
    formula_env = NULL,
    solar = TRUE,
    ...
)
```

Arguments

sfn_data	sfn_data object to plot. It can be also an sfn_data_multi object.
type	Character indicating which data to plot. See Type section for detailed information about the available values. Ignored if formula is provided
formula_env	Right side formula indicating an environmental variable to plot vs. the sapflow values. If NULL (default), sfn_plot will use "type" to guess which plot show.
solar	Logical indicating if the solar timestamp must be used instead of the site timestamp
•••	Further arguments to be passed on <code>geom_point</code> or <code>geom_col</code> to modify geometry aesthetics.

sfn_plot 35

Value

A ggplot object that can be called to see the plot. If input is an sfn_data_multi object, a list with the plots

ggplot plotting system

plot is a base R function which uses the base R plotting system to show the plot. We prefer the ggplot plotting system, which allow for storing the plots in objects and can be subjected to further modifications. This allow the package users to generate rather simple plots that can be fine tuned afterwards to the user taste. Generating a plot method for the sfn_data class returning a ggplot object is not desired (it change the way plot works and can be misleading about the plot general usage). So, instead, we offer this function, sfn_plot.

Type

type argument controls what is going to be plotted. It accepts the following:

- "sapf": It will plot sapflow data vs. TIMESTAMP
- "env": It will plot environmental variables vs. TIMESTMAP
- "ta", "rh", "vpd", "ppfd_in", "netrad", "sw_in", "ext_rad", "ws", "precip", "swc_shallow" and "swc_deep": They will plot the corresponding variable vs. TIMESTAMP

Formula

formula argument can be used to select an environmental variable to plot versus all the sapflow measurements. Any environmental variable is allowed, if it exist in the site provided.

Geometry

By default sfn_plot generates plots using geom_point geometry, except in the case of type = "ws" and type = "precip" where geom_col is used. These geometries can be modified with the ... argument.

```
library(ggplot2)

# data
data('ARG_TRE', package = 'sapfluxnetr')

# plotting directly
sfn_plot(ARG_TRE, type = 'sapf')

# this could be noisy, you can facet by "Tree" (for sapflow) or by
# "Variable" (for environmental data):
sfn_plot(ARG_TRE, type = 'sapf') +
  facet_wrap(~ Tree)

sfn_plot(ARG_TRE, type = 'env') +
  facet_wrap(~ Variable, scales = 'free_y')
```

```
# saving and modifying:
env_plot <- sfn_plot(ARG_TRE, type = 'env', solar = FALSE) +
  facet_wrap(~ Variable, scales = 'free_y')
env_plot + labs(title = 'Environmental variables facet plot')
# formula
sfn_plot(ARG_TRE, formula_env = ~ vpd)</pre>
```

Description

Generic functions for replacement functions for sfn_data

Usage

```
get_sapf_data(object) <- value
get_env_data(object) <- value
get_sapf_flags(object) <- value
get_env_flags(object) <- value
get_timestamp(object) <- value
get_solar_timestamp(object) <- value
get_si_code(object) <- value
get_site_md(object) <- value
get_stand_md(object) <- value
get_species_md(object) <- value
get_plant_md(object) <- value
get_env_md(object) <- value</pre>
```

Arguments

object Object to replace value Object to replace with

Details

see sfn_replacement_methods for more info about using the replacement methods in sfn_data objects

```
{\tt sfn\_replacement\_methods}
```

sfn_data replacement methods

Description

Methods to replace the data and metadata from the sfn_data class slots

Usage

```
## S4 replacement method for signature 'sfn_data'
get_sapf_data(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_env_data(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_sapf_flags(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_env_flags(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_timestamp(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_solar_timestamp(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_si_code(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_site_md(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_stand_md(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_species_md(object) <- value</pre>
## S4 replacement method for signature 'sfn_data'
get_plant_md(object) <- value</pre>
```

38 sfn_sites_in_folder

```
## S4 replacement method for signature 'sfn_data'
get_env_md(object) <- value</pre>
```

Arguments

object sfn_data containing the slot to replace

value object with the data to replace sfn_data slot with

Details

The replacement object must be a valid object for that slot:

- For get_sapf_data, get_env_data, get_sapf_flags and get_env_flags a data.frame or tibble without the TIMESTAMP variable
- For get_*_md a data.frame or tibble
- For get_timestamp and get_solar_timestamp a POSIXct vector of length == nrow(sapf/env_data)
- For get_si_code a character vector

Validity is automatically checked before modifying the sfn_data object, and an error is raised if not valid

Examples

```
# preparation
data('ARG_TRE', package = 'sapfluxnetr')
sapf_data <- get_sapf_data(ARG_TRE, solar = TRUE)

# modifying the slot data
sapf_data[1:10, 2] <- NA

# replacement. Remember, the sfn_data slot does not contain a TIMESTAMP
# variable, it must be removed
get_sapf_data(ARG_TRE) <- sapf_data[,-1]</pre>
```

Description

Retrieves the site codes in the specified folder

Usage

```
sfn_sites_in_folder(folder = ".")
```

sfn_vars_to_filter 39

Arguments

folder

Character vector of length 1 indicating the route to the db folder

Details

If folder

Value

A character vector with the site codes present in the folder, an error if the folder is not valid or does not contain any site data file.

Examples

```
# Let's access the data in "folder". This typically is the folder where the
# sapflow data at the desired unit level is (i.e. "RData/plant"), but in this
# example we will create a temporal folder with some data to test the function
folder <- tempdir()
save(ARG_TRE, file = file.path(folder, 'ARG_TRE.RData'))
save(ARG_MAZ, file = file.path(folder, 'ARG_MAZ.RData'))
save(AUS_CAN_ST2_MIX, file = file.path(folder, 'AUS_EUC_ST2_MIX.RData'))
# lets see the sites
sites <- sfn_sites_in_folder(folder)</pre>
```

sfn_vars_to_filter

List all variables that can be used to filter sites

Description

sfn_vars_to_filter() returns a list with the variables for each kind of metadata that can be used to select and filter sites

Usage

```
sfn_vars_to_filter()
```

Value

A list with five elements, site_md, stand_md, species_md, plant_md and env_md

```
# all variables
sfn_vars_to_filter()

# by some metadata
sfn_vars_to_filter()$site_md
```

```
show, sfn\_data-method \hspace{0.2in} \textit{Show method for sfn\_data}
```

Description

```
print a summary for sfn_data objects
```

Usage

```
## S4 method for signature 'sfn_data'
show(object)
```

Arguments

```
object sfn_data object to show
```

```
show, \verb|sfn_data_multi-method| \\ Show \ method \ for \ sfn_data\_multi
```

Description

```
print a summary for sfn_data_multi objects
```

Usage

```
## S4 method for signature 'sfn_data_multi'
show(object)
```

Arguments

```
object sfn_data_multi object to show
```

summarise_by_period

```
summarise_by_period Summaries by period
```

Description

This function collapse the TIMESTAMP to the desired period (day, month...) by setting the same value to all timestamps within the period. This modified TIMESTAMP is used to group by and summarise the data.

Usage

```
summarise_by_period(data, period, .funs, ...)
```

Arguments

```
data sapflow or environmental data as obtained by get_sapf_data and get_env_data.

Must have a column named TIMESTAMP

period period to collapse by. See sfn_metrics for details.

.funs funs to summarise the data. See details.

... optional arguments. See details
```

Details

This function uses internally .collapse_timestamp and summarise_all. Arguments to control these functions can be passed as '...'. Arguments for each function are spliced and applied when needed. Be advised that all arguments passed to the summarise_all function will be applied to all the summarising functions used, so it will fail if any of that functions does not accept that argument. To complex function-argument relationships, indicate each summary function call within the .funs argument as explained here summarise_all:

```
# This will fail beacuse na.rm argument will be also passed to the n function,
# which does not accept any argument:
summarise_by_period(
  data = get_sapf_data(ARG_TRE),
  period = '7 days',
    .funs = list(mean, sd, n()),
    na.rm = TRUE
)

# to solve this is better to use the .funs argument:
summarise_by_period(
  data = get_sapf_data(ARG_TRE),
  period = '7 days',
    .funs = list(~ mean(., na.rm = TRUE), ~ sd(., na.rm = TRUE), ~ n())
)
```

42 %>%

Value

A 'tbl_df' object with the metrics results. The names of the columns indicate the original variable (tree or environmental variable) and the metric calculated (i.e. 'vpd_mean'), separated by underscore

TIMESTAMP_coll

Previously to the collapsing step, a temporal variable called TIMESTAMP_coll is created to be able to catch the real timestamp when some events happens, for example to use the min_time function. If your custom summarise function needs to get the time at which some event happens, use TIMESTAMP_coll instead of TIMESTAMP for that:

```
min_time <- function(x, time) {
   time[which.min(x)]
}
summarise_by_period(
   data = get_sapf_data(ARG_TRE),
   period = '1 day',
   .funs = list(~ min_time(., time = TIMESTAMP_coll)) # Not TIMESTAMP)</pre>
```

Examples

```
library(dplyr)

# data
data('ARG_TRE', package = 'sapfluxnetr')

# simple summary
summarise_by_period(
   data = get_sapf_data(ARG_TRE),
   period = '7 days',
   .funs = list(~ mean(., na.rm = TRUE), ~ sd(., na.rm = TRUE), ~ n())
)
```

%>%

Reexporting the pipe operator

Description

Imported from magrittr package

%>%

```
# piping sites
ARG_TRE %>% daily_metrics()
```

Index

* datasets	get_env_flags,sfn_data-method
ARG_MAZ, 3	(sfn_get_methods), 25
ARG_TRE, 3	<pre>get_env_flags,sfn_data_multi-method</pre>
AUS_CAN_ST2_MIX, 4	$(sfn_multi_get_methods), 30$
sfn_metadata_ex, 26	get_env_flags<-
* metrics	<pre>(sfn_replacement_generics), 36</pre>
metrics, 11	<pre>get_env_flags<-,sfn_data-method</pre>
sfn_metrics,27	(sfn_replacement_methods), 37
.collapse_timestamp, 12, 28, 41	<pre>get_env_md (sfn_get_generics), 24</pre>
%>%, 42	<pre>get_env_md,sfn_data-method</pre>
	(sfn_get_methods), 25
ARG_MAZ, 3	get_env_md,sfn_data_multi-method
ARG_TRE, 3	(sfn_multi_get_methods), 30
AUS_CAN_ST2_MIX, 4	get_env_md<-
	(sfn_replacement_generics), 36
ceiling_date, <i>12</i>	get_env_md<-,sfn_data-method
	(sfn_replacement_methods), 37
daily_metrics (metrics), 11	get_plant_md (sfn_get_generics), 24
data_coverage, 4	
daylight_metrics(metrics), 11	get_plant_md, sfn_data-method
describe_md_variable,5	(sfn_get_methods), 25
diurnal_centroid, 6	get_plant_md, sfn_data_multi-method
	(sfn_multi_get_methods), 30
filter, 7, 22	<pre>get_plant_md<-</pre>
<pre>filter_sites_by_md, 7</pre>	(sfn_replacement_generics), 36
floor_date, 12	<pre>get_plant_md<-,sfn_data-method</pre>
	(sfn_replacement_methods), 37
geom_col, <i>34</i> , <i>35</i>	get_sapf_data, 41
geom_point, <i>34</i> , <i>35</i>	<pre>get_sapf_data(sfn_get_generics), 24</pre>
get_env_data, 41	<pre>get_sapf_data,sfn_data-method</pre>
<pre>get_env_data(sfn_get_generics), 24</pre>	(sfn_get_methods), 25
<pre>get_env_data,sfn_data-method</pre>	<pre>get_sapf_data,sfn_data_multi-method</pre>
(sfn_get_methods), 25	<pre>(sfn_multi_get_methods), 30</pre>
<pre>get_env_data,sfn_data_multi-method</pre>	get_sapf_data<-
<pre>(sfn_multi_get_methods), 30</pre>	<pre>(sfn_replacement_generics), 36</pre>
get_env_data<-	<pre>get_sapf_data<-,sfn_data-method</pre>
(sfn_replacement_generics), 36	(sfn_replacement_methods), 37
<pre>get_env_data<-,sfn_data-method</pre>	<pre>get_sapf_flags(sfn_get_generics), 24</pre>
<pre>(sfn_replacement_methods), 37</pre>	<pre>get_sapf_flags,sfn_data-method</pre>
<pre>get_env_flags (sfn_get_generics), 24</pre>	(sfn_get_methods), 25

INDEX 45

get_sapf_flags,sfn_data_multi-method	get_stand_md<-
(sfn_multi_get_methods), 30	<pre>(sfn_replacement_generics), 36</pre>
get_sapf_flags<-	<pre>get_stand_md<-,sfn_data-method</pre>
(sfn_replacement_generics), 36	<pre>(sfn_replacement_methods), 37</pre>
get_sapf_flags<-,sfn_data-method	<pre>get_timestamp(sfn_get_generics), 24</pre>
(sfn_replacement_methods), 37	get_timestamp,sfn_data-method
get_si_code(sfn_get_generics),24	(sfn_get_methods), 25
get_si_code,sfn_data-method	<pre>get_timestamp,sfn_data_multi-method</pre>
(sfn_get_methods), 25	(sfn_multi_get_methods), 30
get_si_code,sfn_data_multi-method	<pre>get_timestamp<-</pre>
(sfn_multi_get_methods), 30	(sfn_replacement_generics), 36
get_si_code<-	<pre>get_timestamp<-,sfn_data-method</pre>
(sfn_replacement_generics), 36	<pre>(sfn_replacement_methods), 37</pre>
get_si_code<-,sfn_data-method	<pre>get_timezone, 8</pre>
(sfn_replacement_methods), 37	
get_site_md (sfn_get_generics), 24	initialize,sfn_data-method,9
get_site_md,sfn_data-method	<pre>initialize,sfn_data_multi-method, 10</pre>
(sfn_get_methods), 25	
get_site_md,sfn_data_multi-method	metrics, 11, 17, 29
(sfn_multi_get_methods), 30	metrics_tidyfier, 16
get_site_md<-	midday_metrics (metrics), 11
(sfn_replacement_generics), 36	monthly_metrics (metrics), 11
get_site_md<-,sfn_data-method	mutate, <i>31</i>
(sfn_replacement_methods), 37	mutate_at, <i>32</i> , <i>33</i>
get_solar_timestamp(sfn_get_generics),	minhtly materias (materias) 11
24	nightly_metrics (metrics), 11
	norm_diurnal_centroid, 18
get_solar_timestamp,sfn_data-method	plot, 35
(sfn_get_methods), 25	predawn_metrics(metrics), 11
get_solar_timestamp, sfn_data_multi-method	predami_meer res (meer res), rr
(sfn_multi_get_methods), 30	quantile, <i>12</i>
get_solar_timestamp<-	•
(sfn_replacement_generics), 36	read_sfn_data, 19
get_solar_timestamp<-,sfn_data-method	read_sfn_metadata, 7, 12, 17, 20
(sfn_replacement_methods), 37	
get_species_md(sfn_get_generics), 24	sfn_data, <i>11</i> , <i>12</i> , <i>27</i> , <i>28</i>
get_species_md,sfn_data-method	sfn_data(sfn_data-class), 21
(sfn_get_methods), 25	sfn_data-class, 21
get_species_md,sfn_data_multi-method	sfn_data_multi, <i>11</i> , <i>12</i> , <i>27</i> , <i>28</i>
(sfn_multi_get_methods), 30	sfn_data_multi(sfn_data_multi-class)
get_species_md<-	21
(sfn_replacement_generics), 36	sfn_data_multi-class, 21
get_species_md<-,sfn_data-method	sfn_data_multi_validity, 22
(sfn_replacement_methods), 37	sfn_data_validity, 22
get_stand_md(sfn_get_generics),24	sfn_filter, 22
get_stand_md,sfn_data-method	sfn_get_generics, 24
(sfn_get_methods), 25	sfn_get_methods, 24, 25
get_stand_md,sfn_data_multi-method	sfn_metadata_ex, 26
(sfn_multi_get_methods), 30	sfn_metrics, <i>13</i> , <i>14</i> , 27, <i>41</i>

46 INDEX

```
sfn_multi_get_methods, 24, 30

sfn_mutate, 23, 31, 33

sfn_mutate_at, 23, 32, 32

sfn_plot, 34

sfn_replacement_generics, 36

sfn_replacement_methods, 37, 37

sfn_sites_in_folder, 7, 38

sfn_vars_to_filter, 39

show, sfn_data-method, 40

show, sfn_data_multi-method, 40

summarise, 6, 18

summarise_all, 28, 41

summarise_by_period, 28, 41
```