EXO-12-041 Approval

E. Berry¹, S. Cooper², P. Rumerio², F. Santanastasio³

¹Brown University

²University of Alabama

 3 Rome

Tuesday, June 24, 2014

Analysis documentation

- CADI: EXO-12-041
- Q/A twiki: LQ1-EXO-12-041-QuestionsBeforePreapproval
- Targets:
 - Approval for ICHEP
 - Combined paper with EXO-12-042, approved using same ntuples and similar methods

Introduction

Theory

- Search for a scalar boson carrying both baryon and lepton number and fractional charge
- Leptoquark searches are traditionally grouped into generations
- This search is for pair-production of first generation leptoquarks
- $\beta = BR(LQ \rightarrow e^{\pm}q)$ is treated as a free parameter, leading to two separate analyses:
 - lacksquare eejj : opt. for $\beta=1.0$
 - $e\nu jj$: opt for $\beta = 0.5$

Analysis strategy

- Define SM-dominated preselection for each analysis
- Optimize final selection using $S/\sqrt{S} + B$
 - Optimize a different selection for each LQ mass
- For eejj ($\beta = 1.0$) analysis, optimize cuts on:

- m_{ei}min
- \mathbf{m}_{ee}
- For $e\nu ii$ ($\beta = 0.5$) analysis, optimize cuts on:

$$S_T = p_T(e) + \not\!\!E_T + p_T(j_1) + p_T(j_2)$$

- m_{ei}
- m_{T. eν}
- ₽
- Set limit in plane of M_{LQ} vs. β

Run era	Run range	$\mathcal{L}_{int}(pb^{-1})$
/Run2012A-recover-06Aug2012-v1/	190782 - 190949	82
/Run2012A-13Jul2012-v1/	190645 - 193621	808
/Run2012B-13Jul2012-v1/	193834 - 196531	4430
/Run2012C-24Aug2012-v1/	198049 - 198522	495
/Run2012C-EcalRecover_11Dec2012-v1/	201191	134
/Run2012C-PromptReco-v2/	198941 - 203002	6390
/Run2012D-PromptReco-v1/	203894 - 208686	7270
Total integrated	19.6 fb ⁻¹	

Primary datasets include:

- /ElectronHad/ for LQ search
- /SingleMu/ for $t\bar{t}$ bkgd in eejj analysis only
- /Photon/ + /SinglePhoton/ for QCD bkgd

Introduction

OOOOOO

Datasets

Introduction

Datasets: background Monte Carlo

(B	
Dataset name	cross section [pb]
/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/	666.30
/DY2JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/	214.97
/DY3JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/	60.69
/DY4JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/	27.36
/W1JetsToLNu_TuneZ2Star_8TeV-madgraph/	6663.
/W2JetsToLNu_TuneZ2Star_8TeV-madgraph/	2159.
/W3JetsToLNu_TuneZ2Star_8TeV-madgraph/	640.
/W4JetsToLNu_TuneZ2Star_8TeV-madgraph/	264.
/TTJets_FullLeptMGDecays_8TeV-madgraph/	26.18
/TTJets_SemiLeptMGDecays_8TeV-madgraph/	103.71
/TTJets_HadronicMGDecays_8TeV-madgraph/	104.10
/WW_TuneZ2star_8TeV_pythia6_tauola/	57.1
/WZ_TuneZ2star_8TeV_pythia6_tauola/	32.3
/ZZ_TuneZ2star_8TeV_pythia6_tauola/	8.26
/Tbar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola/	11.1
/Tbar_t-channel_TuneZ2star_8TeV-powheg-tauola/	30.7
/Tbar_s-channel_TuneZ2star_8TeV-powheg-tauola/	1.76
/T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola/	11.1
/T_t-channel_TuneZ2star_8TeV-powheg-tauola/	56.4
/T_s-channel_TuneZ2star_8TeV-powheg-tauola/	3.79
/G_Pt-XtoY_TuneZ2star_8TeV_pythia6/	Various

- From Summer12 MC production campaign
- Reweighted to model PU_S10
- Various generators (see dataset name), CTEQ6L1 PDFs

M_{LQ}	$\sigma(\mu = M_{LQ})$	$\delta(PDF)$	$\sigma(\mu = M_{LQ}/2)$	$\sigma(\mu = M_{LQ} \times 2)$
(GeV)	[pb]	[pb]	[pb]	[pb]
300	1.89	0.214	1.63	2.13
350	0.77	0.102	0.663	0.866
400	0.342	0.052	0.295	0.385
450	0.163	0.0278	0.14	0.183
500	0.082	0.0155	0.0704	0.0922
550	0.0431	0.00893	0.037	0.0485
600	0.0235	0.0053	0.0201	0.0265
650	0.0132	0.00322	0.0113	0.0149
700	0.00761	0.002	0.00648	0.00858
750	0.00448	0.00126	0.00381	0.00506
800	0.00269	0.00081	0.00228	0.00304
850	0.00164	0.000527	0.00139	0.00186
900	0.00101	0.000347	0.000856	0.00115
950	0.000634	0.000231	0.000534	0.000722
1000	0.000401	0.000155	0.000337	0.000458
1050	0.000256	0.000105	0.000214	0.000293
1100	0.000165	7.18e-05	0.000138	0.000189
1150	0.000107	4.92e-05	8.88e-05	0.000123
1200	6.96e-05	3.4e-05	5.77e-05	8.04e-05

- From Summer12 MC production campaign
- Reweighted to model PU_S10
- Generated with Pythia, CTEQ6L1 PDFs, rescaled to NLO

Introduction ○○○○○

Datasets

Object selection

- Electrons:
 - HEEP v4.1 ID
- Muons:
 - Tight ID
- Jets:
 - Particle flow jets
 - Anti- k_T , R = 0.5
 - Particle flow loose ID

- **■** $\not\!\!E_{T}$:
 - Particle flow #_T
 - Recommended filters
 - Corrections:
 - Type-0 correction
 - Type-1 correction
 - xy-shift correction

eejj preselection definition

- **Exactly two electrons:** $p_{\rm T} >$ 45 GeV and $|\eta| < 2.5$
- At least two jets
- $p_T(j_1) > 125 \text{ GeV and } |\eta| < 2.4$
- $p_{T}(j_2) > 45$ GeV and $|\eta| < 2.4$
- m_{ee} > 50 GeV
- $S_T = p_T(e_1) + p_T(e_2) + p_T(j_1) + p_T(j_2) > 300 \text{ GeV}$
- Muon veto
- Trigger (efficiency, below, applied as scale factor to signal): $97.4 \pm 0.56\%$ ($95.8 \pm 1.35\%$) efficient on HEEP electrons in barrel (endcap)

HLT path	Run range
HLT_Ele30_CaloIdVT_TrkIdT_PFJet100_PFJet25_v3	190456 - 190738
HLT_Ele30_CaloIdVT_TrkIdT_PFJet100_PFJet25_v4	190782 - 191419
HLT_Ele30_CaloIdVT_TrkIdT_PFNoPUJet100_PFNoPUJet25_v4	191691 - 194225
HLT_Ele30_CaloIdVT_TrkIdT_PFNoPUJet100_PFNoPUJet25_v5	194270 - 196531
HLT_Ele30_CaloIdVT_TrkIdT_PFNoPUJet100_PFNoPUJet25_v6	198022 - 199608
HLT_Ele30_CaloIdVT_TrkIdT_PFNoPUJet100_PFNoPUJet25_v7	199698 - 202504
HLT_Ele30_CaloIdVT_TrkIdT_PFNoPUJet100_PFNoPUJet25_v8	202970 - 208686

◆ロ > ◆回 > ◆ 直 > ◆ 直 > り へ で

eejj preselection: m_{ee}

eeji analysis 000000000000

ee inv. mass, for approval

Electron pair inv. mass (zoomed)

eejj preselection: S_T and m_{ej}

S_{T} , for approval

eeji analysis 000000000000

$m_{\rm ei}$, for approval

eeii backgrounds

Backgrounds include:

- \blacksquare Z⁰+jets: shape from MC, normalization from data (dominant background)
- \blacksquare $t\bar{t}$: shape and normalization from data
- QCD multijets: shape and normalization from data
- Other backgrounds: shape and normalization from MC

QCD background: overview

- Similar to method used by EXO-12-061 ($Z' \rightarrow ee$)
- Events are selected within the Photon primary dataset
 - Prescaled single photon triggers select events online
 - *eejj* sample: two loose electrons, two jets
 - \bullet $e\nu jj$ sample: one loose electron, large $\not\!E_T$, two jets
- Selected events are weighted to estimate QCD bkgd:

$$N_{eejj}^{QCD} = \sum_{\substack{\text{loose} \ eejj \text{ events}}} P(e_{1, \text{ tight}}|e_{1, \text{ loose}}: p_{T}, \eta) \cdot P(e_{2, \text{ tight}}|e_{2, \text{ loose}}: p_{T}, \eta)$$
 $N_{eejj}^{QCD} = \sum_{\substack{\text{loose} \ eejj \text{ events}}} P(e_{1, \text{ tight}}|e_{1, \text{ loose}}: p_{T}, \eta)$

$$N_{enujj}^{QCD} = \sum_{\substack{\mathsf{loose} \ ev ji \; \mathsf{events}}} P(e_{\mathsf{1, tight}} | e_{\mathsf{1, loose}} : p_{\mathsf{T}}, \eta)$$

イロト イ倒り イヨト イヨト

QCD background: fake rate calculation

- Define fake rate calculation sample:
 - Single photon trigger (see backup)
 - Exactly one loose electron
 - N(jets) with $p_T > 40$ GeV, where $N(\text{jets}) = \{0, 1, 2, 3\}$
- Fake rate = fraction of events with HEEP electron
 - Non-QCD events subtracted using MC
- Fake rate depends on: $p_T(e)$, $\eta(e)$, and N(jets)
 - Bin results in $p_T(e)$ and fit (see plot at right)
 - Repeat study for $N(\text{jets}) = \{0, 1, 2, 3\}$
 - Repeat study for barrel electrons, inner endcap electrons ($|\eta| < 2.0$), and outer endcap electrons ($|\eta| > 2.0$)
- Closure test suggests uncertainty of 60% (30%) in the *eejj* (*evjj*) analysis
- Contribution from QCD is 1% (3%) of total background in the *eejj* (*evjj*) analysis

14 / 44

$t\bar{t}$ background in *eejj* analysis: overview

- \blacksquare $t\bar{t}$ background estimated using $e\mu jj$ events in data
- Selected using single muon trigger (see backup)
- Events are scaled:

$$N_{\mathrm{ee}jj}^{\mathrm{data}} = \mathcal{C} imes N_{e\mu jj}^{\mathrm{data}} = rac{1}{2} imes rac{\epsilon_{\mathrm{ee}}^{\mathrm{trigger}}}{\epsilon_{e\mu}^{\mathrm{trigger}}} imes rac{\epsilon_{\mathrm{e}}^{\mathrm{reco/ID/Iso}}}{\epsilon_{\mu}^{\mathrm{reco/ID/Iso}}} imes N_{e\mu jj}^{\mathrm{data}}$$

- \bullet $\epsilon_{ee}^{\text{trigger}} > 99.8\%$, taken as 1.0
- \bullet $\epsilon_{e\mu}^{\text{trigger}}$ varies with $|\eta(\mu)|$:
 - \bullet 0.94 for $0.0 < |\eta(\mu)| \le 0.9$
 - \bullet 0.84 for 0.9 < $|\eta(\mu)|$ < 1.2
 - \bullet 0.82 for 1.2 < $|\eta(\mu)|$ < 2.1
- reco/ID/Iso $\frac{\epsilon_e^{\rm cov/ID/Iso}}{\epsilon_\mu^{\rm reco/ID/Iso}}=0.974\pm0.011$ (stat), taken from MC

m_{ee} , for approval

- $e\mu jj$ data events predict 1579.6 \pm 29.3 $t\bar{t}$ events at preselection
- eejj MC events predicts $1582.2 \pm 13.8 \ t\bar{t}$ events at preselection

eeii backgrounds

Z^0 +jets background in *eejj* analysis

Z^0+ jets control region Z^0+ jets MC rescaled to fit data Z^0+ iets MC rescaled to fit data

- Select events passing eejj preselection and $70 < m_{\rm ee} < 110$
- Hold all backgrounds fixed, except Z⁰+jets
- Rescale Z⁰+jets MC so that N(data) and N(MC) agree:

CMS Preliminary — Data, 19,6 fb⁻¹ — September 10⁷ — September

$$\mathcal{R}_{Z^0} = rac{N_{
m data} - (N_{
m Others} + N_{
m QCD})}{N_{
m z0}} = 0.97 \pm 0.01$$
 (stat)

40 1 40 1 4 2 1 4 2 1 9 9 9

M(ee) [70, 110] (GeV) [Preselection]

eejj final selection optimization table

- lacktriangle Optimize S_{T} , $m_{\mathsf{e}\mathsf{i}}^{\mathsf{min}}$, $m_{\mathsf{e}\mathsf{e}}$ after eejj preselection
 - e-j pairs are chosen to minimize the difference between the mass of each pair
 - lacksquare $m_{\rm ej}^{\rm min}$ is the smallest of the two mass pairs
- Optimization figure of merit is $S/\sqrt{S+B}$
- Results:

		LQ mass (eejj)													
	300	350	400	450	500	550	600	650	700	750	800	850	900	950	≥ 1000
S _T [GeV]	435	485	535	595	650	715	780	850	920	1000	1075	1160	1245	1330	1425
m _{ee} [GeV]	110	110	115	125	130	140	145	155	160	170	175	180	190	195	205
$m_{\rm ej}^{\rm min}$ [GeV]	50	105	160	205	250	290	325	360	390	415	435	450	465	470	475

eejj final selection table

eeji analysis

M_{LQ}	LQ Signal	Z ⁰ +jets	$t\bar{t}$ (from data)	QCD (from data)	Other	Data	Total background
Presel	-	10538.4 ± 35.8	1566.6 ± 29.2	10.87 ± 0.10	303.8 ± 7.4	12442	12419.6 ± 46.8
300	13560.2 ± 80.1	462.2 ± 7.4	724.3 ± 19.8	5.282 ± 0.052	62.1 ± 4.6	1244	1253.94 ± 21.67 ± 30.08 (syst)
350	6473.9 ± 33.3	332.1 ± 6.2	352.0 ± 13.8	3.215 ± 0.036	37.7 ± 3.6	736	725.10 ± 15.57 ± 24.99 (syst)
400	3089.3 ± 15.0	203.2 ± 4.8	153.7 ± 9.1	1.696 ± 0.023	23.8 ± 2.9	389	382.40 ± 10.72 ± 15.00 (syst)
450	1508.1 ± 7.2	112.9 ± 3.5	86.9 ± 6.9	0.890 ± 0.016	11.8 ± 2.0	233	212.44 ± 7.99 ± 13.33 (syst)
500	767.4 ± 3.6	66.5 ± 2.7	47.2 ± 5.1	0.485 ± 0.011	7.4 ± 1.6	148	121.61 ± 5.96 ± 6.03 (syst)
550	410.5 ± 1.9	37.4 ± 2.1	25.8 ± 3.7	0.2758 ± 0.0084	3.7 ± 1.1	81	67.24 ± 4.40 ± 3.39 (syst)
600	225.7 ± 1.0	22.2 ± 1.6	14.2 ± 2.8	0.1527 ± 0.0065	3.12 ± 1.00	57	39.66 ± 3.35 ± 2.42 (syst)
650	125.85 ± 0.58	14.0 ± 1.2	5.4 ± 1.7	0.0760 ± 0.0040	1.05 ± 0.47	36	20.49 ± 2.14 ± 2.45 (syst)
700	72.88 ± 0.33	8.16 ± 0.93	4.3 ± 1.5	0.0448 ± 0.0029	0.21 ± 0.12	17	12.74 ± 1.80 ± 2.15 (syst)
750	43.10 ± 0.20	4.88 ± 0.69	1.55 ± 0.90	0.0258 ± 0.0023	0.078 ± 0.038	12	$6.53 \pm 1.13 \pm 1.09 \text{ (syst)}$
800	26.17 ± 0.12	2.93 ± 0.52	1.04 ± 0.73	0.0193 ± 0.0022	0.078 ± 0.038	7	4.06 ± 0.90 ± 0.89 (syst)
850	15.978 ± 0.072	2.34 ± 0.48	0.52 ± 0.52	0.0111 ± 0.0015	0.042 ± 0.028	5	2.91 ± 0.71 ± 0.71 (syst)
900	9.813 ± 0.044	1.23 ± 0.36	0.52 ± 0.52	0.0069 ± 0.0012	0.022 ± 0.020	3	1.77 ± 0.63 ± 0.37 (syst)
950	6.086 ± 0.028	0.89 ± 0.29	$0.00000^{+1.14000}_{-0.00}$	0.00451 ± 0.00085	0.022 ± 0.020	1	$0.912^{+1.178}_{-0.295} \pm 0.27 \text{ (syst)}$
1000	3.860 ± 0.018	0.56 ± 0.22	$0.00000^{+1.14000}_{-0.00}$	0.00374 ± 0.00082	0.0025 ± 0.0025	1	$0.567^{+1.162}_{-0.223} \pm 0.17 \text{ (syst)}$
1050	2.576 ± 0.011	0.56 ± 0.22	$0.00000^{+1.14000}_{-0.00}$	0.00374 ± 0.00082	0.0025 ± 0.0025	1	$0.567^{+1.162}_{-0.223} \pm 0.17 \text{ (syst)}$
1100	1.6936 ± 0.0072	0.56 ± 0.22	$0.00000^{+1.14000}_{-0.00}$	0.00374 ± 0.00082	0.0025 ± 0.0025	1	$0.567^{+1.162}_{-0.223} \pm 0.17 \text{ (syst)}$
1150	1.1272 ± 0.0047	0.56 ± 0.22	0.00000+1.14000	0.00374 ± 0.00082	0.0025 ± 0.0025	1	$0.567^{+1.162}_{-0.223} \pm 0.17 \text{ (syst)}$
1200	0.7498 ± 0.0030	0.56 ± 0.22	$0.00000^{+1.14000}_{-0.00}$	0.00374 ± 0.00082	0.0025 ± 0.0025	1	$0.567^{+1.162}_{-0.223} \pm 0.17 \text{ (syst)}$

- Broad excess of data w.r.t. total background
- Most significant for $M_{LQ} = 650$ GeV selection

19 / 44

\overline{eejj} final selection (450): S_{T} and $m_{\mathsf{ej}}^{\mathsf{min}}$ (eta=1.0)

S_{T} , for approval

$m_{\rm ei}^{\rm min}$, for approval

\overline{eejj} final selection (650): S_{T} and $m_{\mathsf{ei}}^{\mathsf{min}}$ (eta=1.0)

$m_{\rm ei}^{\rm min}$, for approval

$e\nu ii$ preselection definition

- **Exactly one electron:** $p_T > 45$ GeV and $|\eta| < 2.2$
- $E_T > 55$ GeV
- At least two jets
- $p_T(j_1) > 125 \text{ GeV and } |\eta| < 2.4$
- $p_T(j_2) > 45$ GeV and $|\eta| < 2.4$
- $|\Delta\phi(e, \not\!\!E_{\rm T})| > 0.5$
- $\blacksquare |\Delta \phi(j_1, \not\!\!E_T)| > 0.5$
- $m_{\rm T}$ e_V > 50 GeV
- $\blacksquare S_T = p_T(e_1) + \not\!\!E_T + p_T(j_1) + p_T(j_2) > 300 \text{ GeV}$
- Muon veto
- Same trigger as *eejj* analysis

eνjj analysis

$e\nu jj$ preselection: $\not\!E_T$

$\not\!\!E_T$ (after reweighting)

Reweighting investigated but not used in main analysis (backup)

eνjj analysis

e u jj preselection: $\phi(ot\!\!\!/ _{ m T})$

Reweighting investigated but not used in main analysis (backup)

eνjj analysis

$e\nu jj$ preselection: $m_{T, e\nu}$

Electron- $\not\!E_T$ transverse mass (as in analysis, app. plot in PAS)

Electron-∉_T transverse mass (after reweighting)

Reweighting investigated but not used in main analysis (backup)

$e\nu jj$ preselection: S_T and $m_{\rm ej}$

S_{T} , for approval

$m_{\rm ei}$, for approval

$e\nu jj$ backgrounds

Backgrounds include:

■ $t\bar{t}$: shape from MC, normalization from data (dominant background)

evii analysis

- W[±]+jets : shape from MC, normalization from data
- QCD multijets: shape and normalization from data (same as eejj)
- Other backgrounds: shape and normalization from MC

W^{\pm} +jets and $t\bar{t}$ backgrounds in $e\nu jj$ analysis

- MC is rescaled to fit data
- Two selections:
 - Sel. 1: W^{\pm} +jets dominates
 - *eνjj* preselection
 - $50 < m_{\text{T, e}\nu} < 110 \text{ GeV}$
 - N(jets) < 4
 - Sel. 2: $t\bar{t}$ dominates
 - evjj preselection
 - $50 < m_{\rm T, \ e\nu} < 110 \ {\rm GeV}$
 - N(jets) ≥ 4
- Solve system of equations:

$$\begin{array}{l} \textit{N}_{\text{data}}^{1} = \mathcal{R}_{t\bar{t}} \textit{N}_{t\bar{t}}^{1} + \mathcal{R}_{\textit{W}} \textit{N}_{\textit{W}}^{1} + \textit{N}_{\text{QCD}}^{1} + \textit{N}_{\text{Others}}^{1} \\ \textit{N}_{\text{data}}^{2} = \mathcal{R}_{t\bar{t}} \textit{N}_{t\bar{t}}^{2} + \mathcal{R}_{\textit{W}} \textit{N}_{\textit{W}}^{2} + \textit{N}_{\text{QCD}}^{2} + \textit{N}_{\text{Others}}^{2} \end{array}$$

$m_{\rm ej}$ in selection 2

$${\cal R}_{t\bar{t}} = 0.97 \pm 0.02 \; (\text{stat}) \pm 0.01 \; (\text{syst}) \ {\cal R}_W = 0.85 \pm 0.01 \; (\text{stat}) \pm 0.01 \; (\text{syst})$$

$e\nu jj$ final selection optimization table

evii analysis

- lacktriangle Optimize S_{T} , $m_{\mathsf{e} \mathsf{j}}$, $m_{\mathsf{T}_{\mathsf{j}}}$ e $_{\nu}$, and E_{T} after eejj preselection
 - *e-j* and \(\bar{E}_T-j\) pairs are chosen to minimize the difference between the transverse mass of each pair
 - m_{ej} is the mass of the e-j pair
 - \blacksquare $\not\!\!E_T$ is optimized to reduce QCD background
- Optimization figure of merit is $S/\sqrt{S+B}$
- Results:

			LQ Mass (evjj)												
		300	350	400	450	500	550	600	650	700	750	800	850	900	≥ 950
ſ	S _T [GeV]	495	570	645	720	800	880	960	1040	1120	1205	1290	1375	1460	1545
İ	₽ _T [GeV]	90	95	100	110	115	125	135	145	155	170	180	195	210	220
İ	$m_{\rm ej}$ [GeV]	195	250	300	355	405	455	505	555	600	645	695	740	780	825
	$m_{T, e\nu}$ [GeV]	125	150	175	200	220	240	255	270	280	290	295	300	300	300

$e\nu ii$ final selection table

						$\overline{}$	
M_{LQ}	LQ Signal	W [±] +jets	tŧ	QCD	Other	Data	Total background
Presel	-	58284.8 ± 197.0	32196.7 ± 69.8	5950.5 ± 20.1	6590.8 ± 231.6	105164	103022.8 ± 312.6
300	4765.5 ± 51.1	822.1 ± 22.4	1191.3 ± 12.0	117.9 ± 1.5	210.5 ± 7.7	2455	2341.90 ± 26.58 ± 329.79 (syst)
350	2168.4 ± 21.6	275.9 ± 14.5	441.4 ± 7.2	59.11 ± 0.97	102.1 ± 5.4	908	878.55 ± 17.08 ± 122.13 (syst)
400	971.1 ± 9.6	110.4 ± 7.8	184.2 ± 4.7	32.88 ± 0.69	51.5 ± 3.8	413	$378.98 \pm 9.91 \pm 51.38 \text{ (syst)}$
450	469.7 ± 4.6	53.1 ± 5.8	74.7 ± 3.0	14.13 ± 0.42	25.7 ± 2.7	192	$167.64 \pm 7.06 \pm 21.33 \text{ (syst)}$
500	232.7 ± 2.3	20.5 ± 3.3	34.4 ± 2.0	7.76 ± 0.30	15.3 ± 2.1	83	$77.99 \pm 4.41 \pm 9.77 \text{ (syst)}$
550	121.4 ± 1.2	8.6 ± 1.8	14.9 ± 1.4	3.89 ± 0.21	7.8 ± 1.6	44	35.24 ± 2.76 ± 4.31 (syst)
600	66.37 ± 0.66	2.3 ± 1.0	7.08 ± 0.93	2.29 ± 0.17	4.6 ± 1.2	28	$16.27 \pm 1.84 \pm 2.03 \text{ (syst)}$
650	37.22 ± 0.37	0.41 ± 0.29	3.82 ± 0.70	1.18 ± 0.12	2.13 ± 0.92	18	$7.54 \pm 1.20 \pm 1.07 \text{ (syst)}$
700	21.74 ± 0.21	0.41 ± 0.29	2.61 ± 0.60	0.85 ± 0.10	0.58 ± 0.24	6	$4.45 \pm 0.71 \pm 0.74 \text{ (syst)}$
750	12.90 ± 0.13	$0.00^{+0.94}_{-0.00}$	1.75 ± 0.47	0.514 ± 0.091	0.27 ± 0.15	4	$2.535^{+1.062}_{-0.504} \pm 0.49 \text{ (syst)}$
800	7.610 ± 0.075	$0.00^{+0.94}_{-0.00}$	1.10 ± 0.37	0.317 ± 0.067	0.27 ± 0.15	3	$1.696^{+1.019}_{-0.404} \pm 0.31 \text{ (syst)}$
850	4.713 ± 0.046	$0.00^{+0.94}_{-0.00}$	0.90 ± 0.34	0.117 ± 0.029	0.140 ± 0.087	2	$1.153^{+0.999}_{-0.353}\pm0.24$ (syst)
900	2.929 ± 0.028	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.076 ± 0.024	0.084 ± 0.069	1	$0.530^{+0.962}_{-0.226} \pm 0.10 \text{ (syst)}$
950	1.839 ± 0.018	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.10 \text{ (syst)}$
1000	1.306 ± 0.012	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226}\pm0.10$ (syst)
1050	0.9022 ± 0.0076	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.10 \text{ (syst)}$
1100	0.6225 ± 0.0050	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.10 \text{ (syst)}$
1150	0.4308 ± 0.0032	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226} \pm 0.10 \text{ (syst)}$
1200	0.2971 ± 0.0022	$0.00^{+0.94}_{-0.00}$	0.37 ± 0.21	0.069 ± 0.023	0.084 ± 0.069	1	$0.524^{+0.962}_{-0.226}\pm0.10$ (syst)

eν jj analysis 00000000000

- Broad excess of data w.r.t. total background (as in eejj)
- Most significant for $M_{LO} = 650$ GeV selection (as in *eejj*)

$e\nu jj$ final selection (450): $S_{\rm T}$ and $m_{\rm ej}$ ($\beta=0.5$)

 S_T , for approval

 $m_{\rm ei}$, for approval

$e\nu jj$ final selection (650): $S_{\rm T}$ and $m_{\rm ej}$ ($\beta=0.5$)

 S_T , for approval

$m_{\rm ei}$, for approval

Systematic uncertainties

- Background MC shape (varies):
 - W[±]+jets and $t\bar{t}$ in $e\nu jj$
 - \blacksquare Z⁰+jets in *eejj*
- PDF (varies)
- Jet energy scale: taken from GlobalTag
- Jet energy resolution: eta-dependent, 5-30%
- Electron energy scale: 0.4% barrel, 4.1% endcap
- Electron energy resolution: 0.6% barrel, 1.5% endcap

- Background MC normalization:
 - W[±]+jets (2%) in $e\nu jj$
 - \bullet $t\bar{t}$ (2%) in $e\nu jj$
 - \blacksquare Z⁰+jets (1%) in *eejj*
- QCD normalization: 60% (30%) in eejj (evjj)
- \blacksquare $t\bar{t}$ normalization in eejj: 2%
- Electron reco/ID/Iso effi: 4% (2%) in eejj (evjj) signal
- Pileup
- Luminosity: 2.6%
- MC statistics: Dominates

Systematic uncertainties: eejj

Systematic uncertainties: *eejj* for $M_{LQ} = 650$ GeV

Systematic	Signal (%)	Background (%)
Electron efficiency	4.00%	0.00%
Electron energy scale	0.33%	1.45%
Electron energy resolution	0.02%	0.04%
Jet energy scale	0.30%	0.52%
Jet energy resolution	0.01%	0.23%
Pileup	0.04%	0.38%
Luminosity	2.60%	0.10%
Z normalization	0.00%	0.75%
Z shape	0.00%	11.62%
$t \bar{t}$ estimate	0.00%	0.52%
QCD multijet estimate	0.00%	0.11%
PDF uncertainty	2.00%	2.05%
Total	5.19%	11.94%

Systematic uncertainties: $e\nu jj$ for $M_{LQ}=650$ GeV

Systematic	Signal (%)	Background (%)
Electron efficiency	2.00%	0.00%
Electron energy scale	1.09%	1.38%
Electron energy resolution	0.08%	0.68%
Jet energy scale	1.56%	2.15%
Jet energy resolution	0.09%	0.46%
Pileup	0.14%	1.18%
Luminosity	2.60%	0.47%
W normalization	0.00%	0.12%
W shape	0.00%	0.87%
$t\overline{t}$ normalization	0.00%	1.50%
$t\overline{t}$ shape	0.00%	3.00%
QCD multijet estimate	0.00%	4.71%
PDF uncertainty	3.00%	12.65%
Total	4.84%	14.25%

Results: standalone limits, including systematics

 $\beta = 1.0$, for approval

$\beta = 0.5$, for approval

- Expected limits: $M_{LQ} < 1030$ (890) GeV for eejj ($e\nu jj$)
- Observed limits: $M_{IO} < 1005$ (845) GeV for eejj ($e\nu jj$)

Edmund Berry

Results: standalone limits, without systematics

$$\beta=1.0$$
: *eejj* analysis, no syst.

 $\beta = 0.5$: $e\nu ii$ analysis, no syst.

- Expected limits: $M_{LQ} < 1030$ (895) GeV for eejj ($e\nu jj$)
- Observed limits: $M_{IO} < 1010$ (850) GeV for eejj ($e\nu jj$)

37 / 44

Results: combined limits, including systematics

- Made with asymptotic CLs
- Obs. limits unchanged
- evjj excess has strongest effect on combined limit discrepancy
- Limits at $\beta = 0.15$:
 - Exp.: *M_{LQ}* < 790 GeV
 - Obs.: *M_{LQ}* < 635 GeV

for approval

Results: significance (no look-elsewhere applied)

- Currently in PAS
- Considering removing and putting numbers in table

Significance

Beta = 0.15 N-1 plots

Results: $\beta = 0.15$, $M_{LQ} = 650 (1/3)$

 $\mathsf{Beta} = \mathsf{0.15}\;\mathsf{N-1}\;\mathsf{plots}$

Results: $\beta = 0.15$, $M_{LQ} = 650 (2/3)$

 $m_{\mathsf{T.~e}\nu}$

 $\mathsf{Beta} = \mathsf{0.15}\;\mathsf{N-1}\;\mathsf{plots}$

Results: $\beta = 0.15$, $M_{LQ} = 650 (3/3)$

Overview of checks

Overview of checks

- Problem with analysis code? No WR analysis (eejj final state) reproduced the excess (J. Pastika, B. Dahmes)
- Problem with ECAL? No ECAL DPG says these events are ok. Electrons are spread in n and ϕ . See backup.
- Problem with unstable running conditions? No Excesses are flat vs run period. See backup.
- Problem with signal trigger? No eeii excess persists with HLT DoubleEle33 CaolIdL GsfTrkIdVL.
- Problem with single object mis-measurement (eejj analysis only)? No Events in eejj excess do not have an excess of single objects (electrons, jets) aligned with E_T.
- Problem modeling $\not\vdash_T$ and $m_{T,e\nu}$ ($e\nu ii$ analysis only)? ... Discrepancy between data and MC in $\not \! E_T$ and $m_{T,e\nu}$ distributions at $e\nu jj$ preselection, but reweighting $m_{T,e\nu}$ and E_T at preselection increases the final selection discrepancy. See backup.
- Problem with electrons from pileup? No Electrons in excess have low d_7 w.r.t. primary vertex
- Problem with data-driven $t\bar{t}$ background estimate? No Results with $t\bar{t} \rightarrow eejj$ MC agree within statistics
- Problem with your data-driven QCD background estimate? No Excess is almost entirely OS electron pairs. Contribution from QCD is predicted to be « 1 event.
- Problem with your various MC background estimates? No Background for final selection optimized for $M_{IQ} = 650$ GeV is cross-checked using only data. See backup.

Conclusion

Conclusion

- A search was carried out for first generation LQs in two channels:
 - LQLQ \rightarrow *eejj* (optimized for $\beta = 1.0$)
 - LQ $\overline{\mathsf{LQ}} \to e\nu jj$ (optimized for $\beta = 0.5$)
- Combination of the channels sets world's best limits on leptoquarks at 95% CL:
 - Exp. limits: $M_{LQ} < 1030$ (890) GeV for $\beta = 1.0$ (0.5)
 - Obs. limits: $M_{LQ} < 1005$ (845) GeV for $\beta = 1.0$ (0.5)
- With current data:
 - We observe an excess of 3σ
 - We cannot exclude an LQ of mass 650 GeV with $\beta = 0.15$
- Results have been extensively cross checked
- We ask for the approval of this analysis

