Game Sense: Understanding Player Sentiment Through NLP

Exploring models to predict player sentiment

Bio

- Bachelor of Computing and Information Sciences
- Experience in Customer Service,
 Customer Relations and Logistics
- Aspiring Data Analyst

Index

Overview	Page 4
Dataset	Page 5
Methods	Page 6
Results	Page 7/8
Findings	Page 9
Feature Importance	Page 10/11
Conclusion	Page 12
Future Improvements	Page 13
EDA	Page 14/15

Overview

Business Statement

- Reviews are relied on when deciding where to spend
- Misleading reviews can damage trust and game reputation
- Benefits players and developers

Data Science Statement

- Preprocessed textual review
- Testing various models
- Achieve an acceptable score between 70/80%

Dataset Overview

- Source: Kaggle
- Scrapped from backloggd.com
- 1512 Samples, 13 Features
- Features:
 - Title
 - Release Date
 - o Team
 - o <u>Rating</u>
 - Times Listed
 - o Number of Reviews
 - o Genres
 - o <u>Summary</u>
 - o <u>Reviews</u>
 - o Plays
 - o Playing
 - o Backlogs
 - Wishlist

- Feature Engineering:
 - Vader Sentiment Analysis
 - Count Vectors
 - TF-IDF Word Level
 - TF-IDF N-gram level
 - TF-IDF Character Level

Methods

Train / Test Split	70% Training Set / 30% Test Set
Logistic Regression	A simple, interpretable baseline model
Naive Bayes	A simple, easy to implement and scalable model
Support Vector Machine	Effective in high dimensional spaces while robust to noise and outliers.

Prashil Patel

Models - Baseline (without tuning)

F1-Score	Count Vectors	WordLevel TF-IDF	N-Gram Vectors	<u>CharLevel</u> <u>Vectors</u>
Logistic Regression	74.02	69.93	58.55	70.43
Naive Bayes	60.63	53.68	53.47	55.87
<u>SVM</u>	72.7	73.72	63.57	72.6

Prashil Patel

Models - Baseline (with tuning)

F1-Score	Count Vectors	WordLevel TF-IDF	N-Gram Vectors	<u>CharLevel</u> <u>Vectors</u>
Logistic Regression	74.2	74.98	65.5	73.9
Naive Bayes	69.22	67.75	62.36	70.29
SVM	74.07	74.96	64.2	73.73

Prashil Patel

Findings

Feature importance per Review

Loved the art style and the story that it told, but a lot of the puzzles were extremely confusing and took a lot of time to figure out. I'll admit, there were a few that I had to look up a guide for, because it got really annoying at a few sections, but it was decent overall and definitely a unique puzzle game. Predicted Sentiment: positive

Feature importance per Review

It must be sad being the overlooked younger brother.

Predicted Sentiment: negative

Conclusion

- Best performing model overall is SVM
- Best performing model with vectorizer is Logistic Regression with Word-Level TF-IDF
- Models meets the sentiment analysis requirement at 74.98%
- Models improvement after hyperparameter tuning

Future Improvements

- Deploy an app to predict sentiments
- Improve score
- Bigger dataset
- Deep learning or transformer-based models

Exploratory Data Analysis

Exploratory Data Analysis

Thank You! Q/A?

