h. La nutricionista recomendó a una persona que en su alimentación diraria consumiera no más de 2000kcal y no menos de 1800kcal/Durante la jornada a consumido 1400kcal y como ultima comida ingerirá galletitas, tiene 2 variedades cuya información esta abajo; cuantas galletas de cada tipo debe consumir para cumplir con la dieta? TIPO 2 TIPO 1 INFORMACIÓN NUTRICIONAL INFORMACIÓN NUTRICIONAL Porción 5 unidades (25 g) Porción: 4 unidades (40 g) Porciones por envase: 4 Porciones por envase: 7 100 g 1 porción 100 g 1 porción Energía Kcal 500 200 Energía Kcal 600 150 5B = 150 (Kcal) 4A = 200 (Kal) 1800 \le 1400 + lo que va a comer \le 2000 /-1400 1400+C 1800 - 1400 ≤ lo que va a comer ≤ 2000 - 1400 400 ≤ $c = \chi \cdot A + y B$ 5B = 150 (Kcal) 4A = 200 (Kal) B = 30 [kan]. A = 50 [(cal)

$$8 \cdot A = 400 \text{ (tal)}$$

 $Y \cdot B = 200 \text{ [kal]}$
 $6 \cdot B = 180 \text{ [kal]}$
 $C = 8A + 6B = 500 \text{ (kal)}$
 $C = 12A = 600 \text{ (kal)}$
 $C = 20B = 600 \text{ (kal)}$
 $C = 6A + 10B$

- 3. Algebra, raíces y soluciones a ecuaciones
 - a. Factorice: $x^9 + x^6 + x^3$
 - b. Simplifique: $m^2 a^2 + 6a 9 + (3 a)^2$
 - c. Que condición hay para p y q ; dado que para todo numero real x se cumple que: $(x+p)(x-q)=x^2-8x+r$; donde r>0
 - d. Valor de x para la ecuación: 0.3 + 10x = 0.5
 - e. Valor de x para la ecaución: 7x + 250 = 5x + 350

a)
$$X^{4} = X^{3 \cdot 3} = X^{3 + 3 + 3} = X^{3} \times X^{3} = X^{3} \times X^{4} = X^{4} \times X^{4} = X^{4}$$

$$(x^{9}+x^{6}+x^{3}) = (x^{3} x^{6} + x^{3} x^{3} + x^{3})$$

$$x^{3} (x^{6} + x^{3} + 1)$$

$$100 = 2.50$$

$$100 + 50 = 2.50 + 1.50$$

$$= 50 (2+1)$$

$$10x + 2x + x^{2} = x (10 + 2 + x)$$

$$b) m^{2} - a^{2} + 6a - 9 + (3 - a)^{2} = I$$

$$(3-a)^{2} = (3-a)(3-a) = (9-3a-3a+a^{2})$$

$$I = m^{2} - a^{2} + 6a - 9 + 9 + 9 - 3a - 3a + a^{2}$$

$$= m^{2} - a^{2} + 6a - 9 + 9 + 9 - 3a - 3a + a^{2}$$

$$= m^{2} - a^{2} + 6a - 9 + 9 + 9 - 3a - 3a + a^{2}$$

$$= m^{2} - a^{2} + 6a - 9 + 9 + 9 - 3a - 3a + a^{2}$$

$$m^{2} - a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + 6a - 9 + (3 - a)^{2} = m^{2}$$

$$\sqrt{2} = a^{2} + a^{2} = a^{2} + a^{2} = a^{2}$$

$$\sqrt{2} = a^{2} + a^{2} = a^{2} = a^{2} + a^{2} = a^{$$

25		- 250		
	X = 3	352 - 250		
4	$0 \times = 10$	70		
	2x = 10 $x = 50$			
(x-p)	(x+q)=x	2-8x+r		
	iz)(X-Vaizz			
r-0	2			
	$\chi^2 - 9\chi =$	$X \left(\chi - \beta \right) \ge$	0	
		(=0) N	=8]	
α γ ² 1.6				
OCA +0/	<tc (x<="" =="" td=""><td>-r)(x-</td><td>$\left(\begin{array}{c} \gamma \\ \gamma \end{array}\right)$</td><td></td></tc>	-r)(x-	$\left(\begin{array}{c} \gamma \\ \gamma \end{array}\right)$	