ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

Dr. Mahmoud NabilNorth Carolina A & T State University

August 26, 2019

Overview

- Laws of propositional logic
- Predicates and quantifiers
- Quantified statements

Outline

Laws of propositional logic

- 2 Predicates and quantifiers
- Quantified statements

Laws of propositional logic

- Used to get a simplified form of a complex compoud proposition.
- Used to show logical equivalence.

Idempotent laws:	p v p ≡ p	p ∧ p ≡ p
Associative laws:	(p v q) v r≡p v (q v r)	(p ∧ q) ∧ r≡p ∧ (q ∧ r)
Commutative laws:	p v q ≡ q v p	p ∧ q ≡ q ∧ p
Distributive laws:	$p V (q \Lambda r) \equiv (p V q) \Lambda (p V r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Identity laws:	p v F ≡ p	p ∧ T ≡ p
Domination laws:	p∧F≡F	p v T ≡ T
Double negation law:	¬¬p ≡ p	
Complement laws:	p ∧ ¬p≡F ¬T≡F	p v ¬p≡T ¬F≡T
De Morgan's laws:	¬(p v q)≡ ¬p ∧ ¬q	¬(p ∧ q) ≡ ¬p ∨ ¬q
Absorption laws:	p v (p n q) ≡ p	p ∧ (p v q) ≡ p
Conditional identities:	p → q ≡ ¬p v q	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Ex. Simplify the following compoud proposition using propositional laws.

•
$$\neg(p \lor q) \lor (\neg p \land q)$$

Ex. Simplify the following compout proposition using propositional laws.

- $\bullet \neg (p \lor q) \lor (\neg p \land q)$
- $(\neg p \land \neg q) \lor (\neg p \land q)$ Demorgan

Ex. Simplify the following compout proposition using propositional laws.

- $\bullet \neg (p \lor q) \lor (\neg p \land q)$
- $(\neg p \land \neg q) \lor (\neg p \land q)$ Demorgan
- $\neg p \land (\neg q \lor q)$ Distributive

Ex. Simplify the following compound proposition using propositional laws.

- $\bullet \neg (p \lor q) \lor (\neg p \land q)$
- $(\neg p \land \neg q) \lor (\neg p \land q)$ Demorgan
- $\neg p \land (\neg q \lor q)$ Distributive
- $\neg p \land (q \lor \neg q)$ Commutative

Ex. Simplify the following compoud proposition using propositional laws.

- $\neg (p \lor q) \lor (\neg p \land q)$
- $(\neg p \land \neg q) \lor (\neg p \land q)$ Demorgan
- $\neg p \land (\neg q \lor q)$ Distributive
- $\neg p \land (q \lor \neg q)$ Commutative
- $\neg p \land T$ Complement

Ex. Simplify the following compound proposition using propositional laws.

- $\bullet \neg (p \lor q) \lor (\neg p \land q)$
- $(\neg p \land \neg q) \lor (\neg p \land q)$ Demorgan
- $\neg p \land (\neg q \lor q)$ Distributive
- $\neg p \land (q \lor \neg q)$ Commutative
- $\neg p \land T$ Complement
- ¬p Identity

Ex. Simplify the following compoud proposition using propositional laws.

•
$$(p \rightarrow q) \land (q \lor p)$$

Ex. Simplify the following compout proposition using propositional laws.

- $(p \rightarrow q) \land (q \lor p)$
- $(\neg p \lor q) \land (q \lor p)$ Conditional Identity

Ex. Simplify the following compout proposition using propositional laws.

- $(p \rightarrow q) \land (q \lor p)$
- $(\neg p \lor q) \land (q \lor p)$ Conditional Identity
- $(q \vee \neg p) \wedge (q \vee p)$ Commutative Law

Ex. Simplify the following compound proposition using propositional laws.

- $(p \rightarrow q) \land (q \lor p)$
- $(\neg p \lor q) \land (q \lor p)$ Conditional Identity
- $(q \lor \neg p) \land (q \lor p)$ Commutative Law
- $q \lor (\neg p \land p)$ Distributive Law

Ex. Simplify the following compound proposition using propositional laws.

- $(p \rightarrow q) \land (q \lor p)$
- $(\neg p \lor q) \land (q \lor p)$ Conditional Identity
- $(q \vee \neg p) \wedge (q \vee p)$ Commutative Law
- $q \lor (\neg p \land p)$ Distributive Law
- $q \lor (p \land \neg p)$ Commutative Law

Ex. Simplify the following compoud proposition using propositional laws.

- $(p \rightarrow q) \land (q \lor p)$
- $(\neg p \lor q) \land (q \lor p)$ Conditional Identity
- $(q \lor \neg p) \land (q \lor p)$ Commutative Law
- $q \lor (\neg p \land p)$ Distributive Law
- $q \lor (p \land \neg p)$ Commutative Law
- $q \vee F$ Complement Law

Ex. Simplify the following compound proposition using propositional laws.

- $(p \rightarrow q) \land (q \lor p)$
- $(\neg p \lor q) \land (q \lor p)$ Conditional Identity
- $(q \lor \neg p) \land (q \lor p)$ Commutative Law
- $q \lor (\neg p \land p)$ Distributive Law
- $q \lor (p \land \neg p)$ Commutative Law
- $q \vee F$ Complement Law
- q Identity Law

•
$$(p \rightarrow q) \land (p \rightarrow r)$$

- $(p \rightarrow q) \land (p \rightarrow r)$
- $(\neg p \lor q) \land (p \to r)$ Conditional Law

- $(p \rightarrow q) \land (p \rightarrow r)$
- $(\neg p \lor q) \land (p \to r)$ Conditional Law
- $(\neg p \lor q) \land (\neg p \lor r)$ Conditional Law

- $(p \rightarrow q) \land (p \rightarrow r)$
- $(\neg p \lor q) \land (p \to r)$ Conditional Law
- $(\neg p \lor q) \land (\neg p \lor r)$ Conditional Law
- $\neg p \lor (q \land r)$ Distributive Law
- $p \rightarrow (q \land r)$ Conditional Law

$$\bullet \ (p \to r) \lor (q \to r)$$

- $(p \rightarrow r) \lor (q \rightarrow r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity

- $(p \rightarrow r) \lor (q \rightarrow r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity

- $\bullet \ (p \to r) \lor (q \to r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law

- $\bullet \ (p \to r) \lor (q \to r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law

- $(p \rightarrow r) \lor (q \rightarrow r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law
- $\neg p \lor ((\neg q \lor r) \lor r)$ Commutative law

- $(p \rightarrow r) \lor (q \rightarrow r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law
- $\neg p \lor ((\neg q \lor r) \lor r)$ Commutative law
- $\neg p \lor (\neg q \lor (r \lor r))$ Associative law

- $(p \rightarrow r) \lor (q \rightarrow r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law
- $\neg p \lor ((\neg q \lor r) \lor r)$ Commutative law
- $\neg p \lor (\neg q \lor (r \lor r))$ Associative law
- $\neg p \lor (\neg q \lor r)$ Idempotent law

- $\bullet \ (p \to r) \lor (q \to r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law
- $\neg p \lor ((\neg q \lor r) \lor r)$ Commutative law
- $\neg p \lor (\neg q \lor (r \lor r))$ Associative law
- $\neg p \lor (\neg q \lor r)$ Idempotent law
- $(\neg p \lor \neg q) \lor r$ Associative law

- $(p \rightarrow r) \lor (q \rightarrow r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law
- $\neg p \lor ((\neg q \lor r) \lor r)$ Commutative law
- $\neg p \lor (\neg q \lor (r \lor r))$ Associative law
- $\neg p \lor (\neg q \lor r)$ Idempotent law
- $(\neg p \lor \neg q) \lor r$ Associative law
- $\neg(p \land q) \lor r$ De Morgan's law

- $\bullet \ (p \to r) \lor (q \to r)$
- $(\neg p \lor r) \lor (q \to r)$ Conditional identity
- $(\neg p \lor r) \lor (\neg q \lor r)$ Conditional identity
- $\neg p \lor (r \lor (\neg q \lor r))$ Associative law
- $\neg p \lor ((r \lor \neg q) \lor r)$ Associative law
- $\neg p \lor ((\neg q \lor r) \lor r)$ Commutative law
- $\neg p \lor (\neg q \lor (r \lor r))$ Associative law
- $\neg p \lor (\neg q \lor r)$ Idempotent law
- $(\neg p \lor \neg q) \lor r$ Associative law
- $\neg(p \land q) \lor r$ De Morgan's law
- $(p \land q) \rightarrow r$ Conditional identity

Outline

- Laws of propositional logic
- Predicates and quantifiers

Quantified statements

Predicates and quantifiers

Consider the following logical statment:

x is an odd number

- If x = 5, then the truth value is True.
- If x = 4, then the truth value is False.
- Hence, this statment is function of x. It can be denoted as P(x).
- We call it a predicate.

Predicates and quantifiers

Predicate

Predicate is a logical statement whose truth value is a function of one or more variables.

Ex.
$$Q(x,y): x^2 = y$$
 $Q(5,25)$ is true because $5^2 = 25$ $Q(7,51)$ is false because $7^2 \neq 51$

Predicates and quantifiers

Predicate Domain

It is the set of all possible values for the variable in the logical statement.

Ex.

- P(x): x+1>1 Domain(x) :all integers.
 - P(5) is True
 - P(-5) is False
- P(city) : city has a population over 5,000,000 Domain(x): US cities
 - P(New York) is True
 - P(Greensboro) is False

Predicates and quantifiers

Predicate Domain

It is the set of all possible values for the variable in the logical statement.

Ex.

- P(x): x+1>1 Domain(x) :all integers.
 - P(5) is True
 - P(-5) is False
- P(city): city has a population over 5,000,000 Domain(x): US cities
 - P(New York) is True
 - P(Greensboro) is False

Note That: Once all the variables within the predicate are assigned values from the domain, then the predicate is truned to a proposition.

Predicates and quantifiers

Quantifiers

It is another way to turn a predicate into a proposition.

- Two types of quantifiers:
 - Universal Quantifiers
 - Existential Quantifiers

• The logical statement $\forall x \ P(x)$ is read "for all $x \ P(x)$ is true".

- The logical statement $\forall x \ P(x)$ is read "for all $x \ P(x)$ is true".
- It asserts that that P(x) is true for every possible value for x in its domain.

- The logical statement $\forall x \ P(x)$ is read "for all $x \ P(x)$ is true".
- It asserts that that P(x) is true for every possible value for x in its domain.
- $\forall x \ P(x)$ is a proposition.

- The logical statement $\forall x \ P(x)$ is read "for all $x \ P(x)$ is true".
- It asserts that that P(x) is true for every possible value for x in its domain.
- $\forall x \ P(x)$ is a proposition.

$$\forall x \ P(x) \equiv P(a_1) \land P(a_2) \land \cdots \land P(a_k)$$
 Domain $\{a_1 \dots a_k\}$

- P(x): Student x in the class completed the assignment.
- $\forall x P(x)$: Every student in the class completed the assignment

• To show a statment with universal quatifier is false only a counter example is needed.

Ex.
$$\forall x (x+1) > 0$$
 Domain is all integers. $P(-5)$ is false.

 To show a statment with universal quatifier is false only a counter example is needed.

Ex.
$$\forall x (x+1) > 0$$
 Domain is all integers. $P(-5)$ is false.

To show a statment with universal quatifier is true a proof is needed.
 (OR show that it true for every value in the domain)

 To show a statment with universal quatifier is false only a counter example is needed.

Ex.
$$\forall x (x+1) > 0$$
 Domain is all integers. $P(-5)$ is false.

To show a statment with universal quatifier is true a proof is needed.
 (OR show that it true for every value in the domain)

 To show a statment with universal quatifier is false only a counter example is needed.

Ex.
$$\forall x (x+1) > 0$$
 Domain is all integers. $P(-5)$ is false.

 To show a statment with universal quatifier is true a proof is needed. (OR show that it true for every value in the domain)

Ex.
$$\forall x \frac{1}{x+1} < 1$$
 Domain is positive integers.

Proof.

$$0 < x$$
 $1 < x+1$ divided both sides by x+1 $\dfrac{1}{x+1} < 1$

• The logical statement $\exists x \ P(x)$ is read "There exists an x, such that P(x) is true".

- The logical statement $\exists x \ P(x)$ is read "There exists an x, such that P(x) is true".
- $\exists x \ P(x)$ is a proposition.

- The logical statement $\exists x \ P(x)$ is read "There exists an x, such that P(x) is true".
- $\exists x \ P(x)$ is a proposition.

- The logical statement $\exists x \ P(x)$ is read "There exists an x, such that P(x) is true".
- $\exists x \ P(x)$ is a proposition.

$$\exists x \ P(x) \equiv P(a_1) \lor P(a_2) \lor \cdots \lor P(a_k)$$
 Domain $\{a_1 \dots a_k\}$

- P(x): Student x in the class completed the assignment.
- $\exists x P(x)$: There is a student in the class completed the assignment

 To show a statment with existential quatifier is true only one counter example is needed.

Ex.
$$\exists x x + 1 > 0$$
 Domain is all integers. $P(5)$ is true.

 To show a statment with existential quatifier is true only one counter example is needed.

Ex.
$$\exists x x + 1 > 0$$
 Domain is all integers. $P(5)$ is true.

 To show a statment with existential quatifier is false a proof is needed. (OR show that it false for every value in the domain)

 To show a statment with existential quatifier is true only one counter example is needed.

Ex.
$$\exists x x + 1 > 0$$
 Domain is all integers. $P(5)$ is true.

 To show a statment with existential quatifier is false a proof is needed. (OR show that it false for every value in the domain)

 To show a statment with existential quatifier is true only one counter example is needed.

Ex.
$$\exists x x + 1 > 0$$
 Domain is all integers. $P(5)$ is true.

 To show a statment with existential quatifier is false a proof is needed. (OR show that it false for every value in the domain)

Ex.
$$P(x)$$
: $\exists x x + 1 < x$ Domain is positive integers.

Proof.

$$x + 1 < x$$
 $1 < 0$ both minus x

Outline

Laws of propositional logic

- 2 Predicates and quantifiers
- Quantified statements

Quantified statements

 Logical operators ¬, ∧, ∨ can be used to bind universally and existentially quantified statements.

$$P(x)$$
: x is prime. $O(x)$: x is odd.

Quantified statements

 Logical operators ¬, ∧, ∨ can be used to bind universally and existentially quantified statements.

$$P(x)$$
: x is prime. $O(x)$: x is odd.

Quantified statements

 Logical operators ¬, ∧, ∨ can be used to bind universally and existentially quantified statements.

$$P(x)$$
: x is prime. $O(x)$: x is odd.

- **1** $\exists x(P(x) \land \neg O(x))$ True x = 2
- $\forall x (P(x) \rightarrow O(x)) \text{ False } x = 2$

Free and Bounded Variables

- A variable x in the predicate P(x) is called a free variable.
- A variable x in the statement $\forall x \ P(x)$ is called a bounded variable.
- If all the variables in a statement are bounded, then a predicate is truned to a proposition.

$$\forall x (P(x) \land Q(x))$$
 Proposition $\forall x (P(x)) \land Q(x)$ Not a Proposition

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

Ex.

• There is a new employee who met the deadline.

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- There is a new employee who met the deadline.
 - $\exists x (N(x) \land \neg D(x)) \equiv True (Sam)$

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- There is a new employee who met the deadline.
 - $\exists x (N(x) \land \neg D(x)) \equiv True (Sam)$
- Everyone missed the deadline or is a new employee.

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- There is a new employee who met the deadline.
 - $\exists x (N(x) \land \neg D(x)) \equiv True (Sam)$
- Everyone missed the deadline or is a new employee.
 - $\forall x(D(x) \lor N(x)) \equiv True$ (Prove for every one)

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- There is a new employee who met the deadline.
 - $\exists x (N(x) \land \neg D(x)) \equiv True (Sam)$
- Everyone missed the deadline or is a new employee.
 - $\forall x(D(x) \lor N(x)) \equiv True$ (Prove for every one)
- $\forall x ((x \neq \mathsf{Sam} \to N(x))).$

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- There is a new employee who met the deadline.
 - $\exists x (N(x) \land \neg D(x)) \equiv True (Sam)$
- Everyone missed the deadline or is a new employee.
 - $\forall x(D(x) \lor N(x)) \equiv True$ (Prove for every one)
- $\forall x ((x \neq \mathsf{Sam} \to N(x))).$
 - Everyone except Sam is a new employee. False (Melanie, Bert)

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

Ex.

• Someone did not miss the deadline and is a new employee.

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- Someone did not miss the deadline and is a new employee.
 - $\exists x (\neg D(x) \land N(x)) \equiv True (Sam)$

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- Someone did not miss the deadline and is a new employee.
 - $\exists x (\neg D(x) \land N(x)) \equiv True (Sam)$
- $\forall x (\neg D(x) \rightarrow \neg N(x))$

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- Someone did not miss the deadline and is a new employee.
 - $\exists x (\neg D(x) \land N(x)) \equiv True (Sam)$
- $\forall x (\neg D(x) \rightarrow \neg N(x))$
 - Everyone who did not miss the deadline is not a new employee. False (Sam)

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- Someone did not miss the deadline and is a new employee.
 - $\exists x (\neg D(x) \land N(x)) \equiv True (Sam)$
- $\forall x(\neg D(x) \rightarrow \neg N(x))$
 - Everyone who did not miss the deadline is not a new employee. False (Sam)
- $N(Bert) \rightarrow D(Bert)$.

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Ť	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- Someone did not miss the deadline and is a new employee.
 - $\exists x (\neg D(x) \land N(x)) \equiv True (Sam)$
- $\forall x (\neg D(x) \rightarrow \neg N(x))$
 - Everyone who did not miss the deadline is not a new employee. False (Sam)
- N(Bert) → D(Bert).
 - If Bert is a new employee then he missed the deadline. True

For a group of employees

D(x): x missed the deadline. N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

•
$$\forall x (D(x) \leftrightarrow N(x))$$

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- $\forall x (D(x) \leftrightarrow N(x))$
 - Everyone who missed the deadline is a new employee and vice versa. False (Melanie and Bert)

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- $\forall x(D(x) \leftrightarrow N(x))$
 - Everyone who missed the deadline is a new employee and vice versa. False (Melanie and Bert)
- If there is a new employee except Sam, then he missed the deadline.

For a group of employees

D(x): x missed the deadline.

N(x): x is a new employee.

Name	N(x)	D(x)
Sam	Т	F
Beth	Т	Т
Melanie	F	Т
Al	Т	Т
Bert	F	Т

- $\forall x(D(x) \leftrightarrow N(x))$
 - Everyone who missed the deadline is a new employee and vice versa. False (Melanie and Bert)
- If there is a new employee except Sam, then he missed the deadline.
 - $\exists x (N(x) \land (x \neq Sam)) \rightarrow D(x)$. True. (Beth and Al)

Questions &

