

Intro to Graph Theory Seminar 12.

Basic Definitions

- Graph: pair of (V, E)
- Degree: how many edges does vertex contain
- Complete: all vertices are adjacent
- Component: fully path-connected subgraph

Basic Definitions

Adjacency matrix

- square matrix of N x N size where N is the number of nodes in the graph
- it is used to represent the connections between the edges of a graph

	0	1	2	3	4
0	0	1	1	0	0
1	0	0	1	0	1
2	0	0	0	1	0
3	0	0	0	0	1
4	0	0	0	0	0

Basic Definitions

Strong Components

- Strong connection: equivalence relation between nodes
- Strongly connected component: every vertex is reachable from every other
- directed graphs only!

Kosaraju's algorithm

Kosaraju's algorithm

Dijkstra algorithm

