	Theoretical	Computer Science Cheat Sheet
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ In general:
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n + \sum_{n=1}^{n} 1$ $n(n+1)$ $n(n-1)$
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$, 3. $\binom{n}{k} = \binom{n}{n-k}$,
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \ \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \ \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \ \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \ \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1,2,,n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n} {r \choose k} {s \choose n-k} = {r+s \choose n},$
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$
		1)! H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	(1) $\begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$, 19. $\begin{cases} n-1 \\ n-1 \end{cases}$	
		$\binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
		$\binom{n}{2} = 2^n - n - 1,$ $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$
28. $x^n = \sum_{k=0}^n \binom{n}{k}$	$\left. \left\langle {x+k \atop n} \right\rangle, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^m$	$\sum_{k=0}^{n} {n+1 \choose k} (m+1-k)^n (-1)^k, 30. m! {n \choose m} = \sum_{k=0}^{n} {n \choose k} {k \choose n-m},$
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n}$	$ {n \brace k} {n-k \brack m} (-1)^{n-k-m} k!, $	32. $\left\langle \left\langle n \atop 0 \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle n \atop n \right\rangle \right\rangle = 0$ for $n \neq 0,$
$34. \left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (k + 1)^{n-1}$	$+1$) $\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle +(2n-1-k)\left\langle \left\langle {n-1\atop k-1}\right\rangle \right\rangle$	$ 35. \sum_{k=0}^{n} \left\langle \!\! \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle = \frac{(2n)^{\underline{n}}}{2^{n}}, $
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{k}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $ $2n$	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n-1} {k \choose m} (m+1)^{n-k},$

Identities Cont.

$$38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{m}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \binom{x+k}{2n},$$

$$40. \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k}, \qquad 41. \begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$

$$\mathbf{42.} \ \left\{ \begin{array}{l} m+n+1 \\ m \end{array} \right\} = \sum_{k=0}^{m} k \begin{Bmatrix} n+k \\ k \end{Bmatrix}, \qquad \qquad \mathbf{43.} \ \left[\begin{array}{l} m+n+1 \\ m \end{array} \right] = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

$$46. \begin{cases} n \\ n-m \end{cases} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad 47. \begin{bmatrix} n \\ n-m \end{bmatrix} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k},$$

$$\begin{array}{ccc}
 \left[n-m\right] & \stackrel{\longleftarrow}{\underset{k}} \left(m+k\right) \left(n+k\right) \left(k\right) \\
\mathbf{49.} & \begin{bmatrix} n \\ \ell+m \end{bmatrix} \binom{\ell+m}{\ell} = \sum_{k} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} \binom{n}{k}.
\end{array}$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n:$$

$$\sum_{i=1}^n 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then
$$T(n) = \Theta(n^{\log_b a} \log_2 n).$$

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
$$\vdots \qquad \vdots$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

 $3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^{i} = n \left(\frac{c^{m} - 1}{c - 1} \right)$$
$$= 2n(c^{\log_{2} n} - 1)$$
$$= 2n(c^{(k-1)\log_{c} n} - 1)$$
$$= 2n^{k} - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:

$$\sum_{i>0}^{1} g_{i+1} x^i = \sum_{i>0} 2g_i x^i + \sum_{i>0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$
$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$
$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

	Theoretical Computer Science Cheat Sheet			
	$\pi \approx 3.14159,$	$e \approx 2.7$	1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$
i	2^i	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{-b}^{b} p(x) dx,$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	J_a then p is the probability density function of
4	16	7	Change of base, quadratic formula:	X. If
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$
6	64	13	$\log_a b$ 2a Euler's number e :	then P is the distribution function of X . If
7	128	17	Euler's number e . $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then
8	256	19	2 0 21 120	$P(a) = \int_{-a}^{a} p(x) dx.$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J_{-\infty}$ Expectation: If X is discrete
10	1,024	29	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	_
11	2,048	31	(167	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then
13 14	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
$\begin{array}{ c c c c }\hline & 14 \\ 15 \end{array}$	16,384 32,768	43 47	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	Variance, standard deviation:
16	65,536	53	$\ln n < U < \ln n + 1$	variance, standard deviation: $VAR[X] = E[X^2] - E[X]^2,$
17	131,072	59	$ \ln n < H_n < \ln n + 1, $	$\sigma = \sqrt{\text{VAR}[X]}.$
18	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{VAR[A]}.$ For events A and B:
19	524,288	67	Factorial, Stirling's approximation:	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$
21	2,097,152	73	() n () ())	iff A and B are independent.
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	
23	8,388,608	83	Ackermann's function and inverse:	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$
24	16,777,216	89	(0 i	For random variables X and Y :
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$
26	67,108,864	101		if X and Y are independent.
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],
28	268,435,456	107	Binomial distribution:	E[cX] = c E[X]. Bayes' theorem:
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	· ·
30	1,073,741,824	113	(**)	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$	Inclusion-exclusion:
32	4,294,967,296 Pascal's Triangle	131	k=1 Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$
Pascar's Triangle			$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	t=1 t=1
11			k!, $k! = kNormal (Gaussian) distribution:$	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$
1 2 1			,	
1 3 3 1			$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:
1 4 6 4 1			The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$
1 5 10 10 5 1			random coupon each day, and there are n different types of coupons. The distribu-	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\sqrt{2}}.$
1 6 15 20 15 6 1			tion of coupons is uniform. The expected	Geometric distribution:
1 7 21 35 35 21 7 1			number of days to pass before we to col-	$\Pr[X=k] = pq^{k-1}, \qquad q=1-p,$
1 8 28 56 70 56 28 8 1			lect all n types is	∞
1 9 36 84 126 126 84 36 9 1			nH_n .	$E[X] = \sum_{k=1}^{n} kpq^{k-1} = \frac{1}{p}.$
1 10 45 120 210 252 210 120 45 10 1				k=1 **

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2.$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:

$$\sin x = \frac{1}{\csc x},$$

$$\tan x = \frac{1}{\cot x},$$

$$1 + \tan^2 x = \sec^2 x,$$

$$\cos x = \frac{1}{\sec x},$$

$$\sin^2 x + \cos^2 x = 1,$$

$$1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x),$$
 $\tan x = \cot(\frac{\pi}{2} - x),$

$$\cot x = -\cot(\pi - x),$$
 $\csc x = \cot \frac{x}{2} - \cot x,$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot x \cot y \mp 1$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x,$$
 $\sin 2x = \frac{2\tan x}{1 + \tan^2 x},$
 $\cos 2x = \cos^2 x - \sin^2 x,$ $\cos 2x = 2\cos^2 x - 1.$

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i \sin x, \qquad e^{i\pi} = -1.$$

v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants: $\det A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B$,

$$\det A = \sum_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$aei + bfg + cdh$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

 $\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$ $\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$ $\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$ $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$ $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$ $\sinh 2x = 2 \sinh x \cosh x,$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	
0	0	1	0	y s
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	
$\frac{\pi}{6}$ $\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	t
	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	_
$\frac{\pi}{3}$	1	$\overset{2}{0}$	∞	

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

Law of cosines: $c^2 = a^2 + b^2 - 2ab \cos C$. Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2 \sin A \sin B}{2 \sin C}.$$

Heron's formula:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}},$$

$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x = \frac{\sinh ix}{i},$$

$$\cos x = \cosh ix,$$

$$\tan x = \frac{\tanh ix}{i}.$$

Theoretical Computer Science Cheat Sheet Number Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: Loop $C \equiv r_1 \mod m_1$ Directed Simple: : : $C \equiv r_n \bmod m_n$ WalkTrailif m_i and m_j are relatively prime for $i \neq j$. PathEuler's function: $\phi(x)$ is the number of positive integers less than x relatively Connectedprime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ Euler's theorem: If a and b are relatively prime then $1 \equiv a^{\phi(b)} \bmod b$. Fermat's theorem: $1 \equiv a^{p-1} \bmod p$. The Euclidean algorithm: if a > b are integers then $gcd(a, b) = gcd(a \mod b, b).$ If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x $S(x) = \sum_{i=1}^{n} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime. Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ If $G(a) = \sum_{d \mid a} F(d),$ then $F(a) = \sum_{d} \mu(d) G\left(\frac{a}{d}\right).$ Prime numbers:

 $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$

 $+O\left(\frac{n}{\ln n}\right)$

 $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$

 $+O\left(\frac{n}{(\ln n)^4}\right).$

	a path between any t vertices.
Component	A maximal connect subgraph.
Tree	A connected acyclic grap
Free tree	A tree with no root.
DAG	Directed acyclic graph.
Eulerian	Graph with a trail visiti
Ешенин	each edge exactly once.
Hamiltonian	Graph with a cycle visiti each vertex exactly once
Cut	A set of edges whose
Cat	moval increases the nu
<i>α</i> , ,	ber of components.
Cut-set	A minimal cut.
Cut edge	A size 1 cut.
k- $Connected$	0 1
	the removal of any k –
	vertices.
$k ext{-} Tough$	$\forall S \subseteq V, S \neq \emptyset \text{ we ha}$ $k \cdot c(G - S) \leq S .$
k-Regular	A graph where all vertice have degree k .
$k ext{-}Factor$	A k-regular spanni subgraph.
Matching	A set of edges, no two which are adjacent.
Clique	A set of vertices, all which are adjacent.
Ind. set	A set of vertices, none
17	which are adjacent. A set of vertices whi
vertex cover	cover all edges.
Planar graph	A graph which can be e beded in the plane.
Plane graph	An embedding of a plar graph.
$\sum_{v \in \mathcal{V}}$	$\sum_{v \in V} \deg(v) = 2m.$
If G is planar	then $n - m + f = 2$, so
	$n-4, m \le 3n-6.$
Any planar g gree ≤ 5 .	raph has a vertex with d

Graph Th	neory
	Notation:
An edge connecting a ver-	E(G) Edge set
tex to itself.	V(G) Vertex set
Each edge has a direction.	c(G) Number of composition
	G[S] Induced subgraph
Graph with no loops or	deg(v) Degree of v
multi-edges.	$\Delta(G)$ Maximum degree
A sequence $v_0e_1v_1 \dots e_\ell v_\ell$.	$\delta(G)$ Minimum degree
A walk with distinct edges.	$\chi(G)$ Chromatic number
A trail with distinct	$\chi_E(G)$ Edge chromatic nu
vertices.	G^c Complement graph
A graph where there exists	K_n Complete graph
a path between any two	K_{n_1,n_2} Complete bipartite
vertices.	$r(k,\ell)$ Ramsey number
A maximal connected	(,)
subgraph.	Geometry
A connected acyclic graph.	Projective coordinates:
A tree with no root.	(x, y, z), not all x, y and z
Directed acyclic graph.	$(x, y, z) = (cx, cy, cz) \forall c$
Graph with a trail visiting	
each edge exactly once.	Cartesian Projective
Graph with a cycle visiting	$(x,y) \qquad (x,y,1)$
each vertex exactly once.	y = mx + b (m, -1, b)
A set of edges whose re-	x = c (1, 0, -c)
moval increases the num-	Distance formula, L_p an
ber of components.	metric:
A minimal cut.	$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$
A size 1 cut.	$\begin{bmatrix} x_1 - x_2 ^p + y_1 - y_2 ^p \end{bmatrix}$
A graph connected with	$[x_1 - x_0 ^p + y_1 - y_0 ^p]$
the removal of any $k-1$	$\lim_{p \to \infty} \left[x_1 - x_0 ^p + y_1 - y_0 \right]$
vertices.	1
$\forall S \subseteq V, S \neq \emptyset$ we have	Area of triangle (x_0, y_0) , (
$k \cdot c(G - S) \le S .$	and (x_2, y_2) :
A graph where all vertices	$\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$
have degree k .	
A k-regular spanning	Angle formed by three points
subgraph.	a
A set of edges, no two of	$/(x_2, y_2)$
which are adjacent.	(x_2, y_2) $(0, 0)$ ℓ_1 (x_1, y_2)
A set of vertices, all of	Δ 2
which are adjacent.	$(0,0)$ ℓ_1 (r_1)
A set of vertices, none of	$(0,0)$ v_1 $(x_1,$
which are adjacent.	$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}$
A set of vertices which	
cover all edges.	Line through two points (
A graph which can be em-	and (x_1, y_1) :
beded in the plane.	$\begin{bmatrix} x & y & 1 \end{bmatrix}$
An embedding of a planar	$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \end{vmatrix} = 0.$
1	

Notation: E(G)Edge set V(G)Vertex set c(G)Number of components G[S]Induced subgraph Degree of v $\deg(v)$ $\Delta(G)$ Maximum degree $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number $\chi_E(G)$ Edge chromatic number G^c Complement graph K_n Complete graph K_{n_1,n_2} Complete bipartite graph $r(k,\ell)$ Ramsey number

Geometry

triples

(x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$ Cartesian Projective (x,y)(x, y, 1)y = mx + b(m, -1, b)x = c(1,0,-c)Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$

$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{n \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2}$$
 abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A=\pi r^2, \qquad V=\tfrac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

with de-

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} \qquad = 1+x+x^2+x^3+x^4+\cdots \qquad = \sum_{i=0}^{\infty} x^i, \\ \frac{1}{1-cx} \qquad = 1+cx+c^2x^2+c^3x^3+\cdots \qquad = \sum_{i=0}^{\infty} c^ix^i, \\ \frac{1}{1-x^n} \qquad = 1+x^n+x^{2n}+x^{3n}+\cdots \qquad = \sum_{i=0}^{\infty} x^{ni}, \\ \frac{x}{(1-x)^2} \qquad = x+2x^2+3x^3+4x^4+\cdots \qquad = \sum_{i=0}^{\infty} i^nx^i, \\ x^k\frac{d^n}{dx^n}\left(\frac{1}{1-x}\right) \qquad = x+2^nx^2+3^nx^3+4^nx^4+\cdots \qquad = \sum_{i=0}^{\infty} i^nx^i, \\ e^x \qquad = 1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots \qquad = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \ln(1+x) \qquad = x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots \qquad = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \ln\frac{1}{1-x} \qquad = x+\frac{1}{2}x^2+\frac{1}{3}x^3+\frac{1}{4}x^4+\cdots \qquad = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \sin x \qquad = x-\frac{1}{3}x^3+\frac{1}{3}x^5-\frac{1}{17}x^7+\cdots \qquad = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ \cos x \qquad = 1-\frac{1}{2}x^2+\frac{1}{4}x^4-\frac{1}{6!}x^6+\cdots \qquad = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ \tan^{-1}x \qquad = x-\frac{1}{3}x^3+\frac{1}{5}x^5-\frac{1}{7}x^7+\cdots \qquad = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ (1+x)^n \qquad = 1+nx+\frac{n(n-1)}{2}x^2+\cdots \qquad = \sum_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{1}{(1-x)^{n+1}} \qquad = 1+(n+1)x+\binom{n+2}{2}x^2+\cdots \qquad = \sum_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{x}{e^x-1} \qquad = 1-\frac{1}{2}x+\frac{1}{12}x^2-\frac{1}{720}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \frac{B_ix^i}{i!}, \\ \frac{1}{\sqrt{1-4x}} \qquad = 1+x+2x^2+5x^3+\cdots \qquad = \sum_{i=0}^{\infty} \frac{(2i+n)}{i!}x^i, \\ \frac{1}{\sqrt{1-4x}} \qquad = 1+x+2x^2+6x^3+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i}{i}x^i, \\ \frac{1}{\sqrt{1-4x}} \qquad = 1+(2+n)x+\binom{4+n}{2}x^2+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{24}x^4+\cdots \qquad = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-1}} \ln\frac{1}{1-x} \qquad = \frac{x+\frac{3}{2}$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

 $\frac{A(x) - A(-x)}{2} = \sum_{i=1}^{\infty} a_{2i+1} x^{2i+1}.$

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers; all the rest is the work of man.

- Leopold Kronecker