Finite temperature results, comparison between bare and renormalized mass

Jaime Fabián Nieto Castellanos

April 29, 2021

The input mass of the simulations (bare mass) can be calculated by using kappa critical k_c and the following expression for the hopping parameter

$$\kappa = \frac{1}{2(am+4)},\tag{1}$$

where a is the lattice constant. In lattice units, we can compute the bare mass as

$$m = \frac{1}{2\kappa} - \frac{1}{2\kappa_c}. (2)$$

Previous simulations confirm that for $L_t = 10, 12, 16$, kappa critical is approximately 0.26273. We show a comparison of the finite temperature results with the bare and PCAC mass.

Figure 1: m_{π} and m_{η} as a function of the bare mass and the PCAC mass. $L_t = 10$.

Figure 2: m_{π} and m_{η} as a function of the bare mass and the PCAC mass. $L_t = 12$.

Figure 3: m_{π} and m_{η} as a function of the bare mass and the PCAC mass. $L_t = 16$.