

Komunikacijske mreže

4.

Mrežni sloj

Ak.g. 2011./2012.

Podsjetimo se

Zadaća mrežnog sloja

- omogućiti komunikaciju između dva (krajnja, korisnička)
 čvora u mreži, izravno ili preko niza međučvorova
 - adresiranje
 - usmjeravanje jedinica podataka
 - kontrola zagušenja
 - kontrola pogrešaka
 - kontrola toka
 - međusobno povezivanje mreža i podmreža

Problemi:

 znanje o topologiji, učinkovitost usmjeravanja, opterećenje poveznica, kontrola zagušenja, kvaliteta usluge

Sadržaj predavanja

- Usluge mrežnog sloja (transportnom sloju)
 - Virtualni kanal i datagram, spojna usluga i nespojna usluga
- Komutacija paketa i usmjeravanje
- Načela upravljanja zagušenjem
- Međusobno povezivanje mreža i podmreža
 - Povezivanje podmreža, primjer Internet

Usluge mrežnog sloja

- osnovna zadaća mrežnog sloja: dostaviti pakete od izvorišnog krajnjeg čvora (npr. korisničkog računala) do odredišnog krajnjeg čvora, izravno ili preko niza međučvorova
- dvije vrste usluga:
 - spojna usluga
 - nespojna usluga ← mrežni sloj u Internetu
- izvedba usmjeravanja u (pod)mrežama s komutacijom paketa:
 - virtualni kanal
 - datagramski ← mrežni sloj u Internetu

Komunikacijska mreža (1)

Komunikacijska mreža (2)

Nespojna usluga izvedena virtualnim kanalom

Svi paketi usmjeravaju se istim putem - virtualnim kanalom.

Odluke o usmjeravanju donose se samo jednom, prilikom uspostavljanja novog virtualnog kanala.

Nespojna usluga izvedena datagramski (1/2)

Svaki datagram usmjerava se zasebno kroz mrežu

Svaki usmjeritelj odluku o usmjeravanju datagrama donosi neovisno.

Moguće je da uzastopni datagrami prolaze različitim putovima

potrebni algoritmi usmjeravanja!

Nespojna usluga izvedena datagramski (2/2)

- minimalni skup funkcija za dostavu datagrama s kraja na kraj mreže
- mogući problemi:
 - povremeni gubitak paketa zbog pogreške, smetnji ili kvarova na nekoj od poveznica na putu
 - povremeni gubitak paketa zbog zagušenja u nekom od mrežnih čvorova na putu
 - povremena dostava paketa s narušenim redoslijedom u slučaju kad se izbor puta kroz mrežu promijeni tijekom komunikacije
 - veće kašnjenje u slučaju retransmisije s kraja na kraj mreže
 - pošiljatelj nema povratnu informaciju o ishodu
- rješavanje ovih problema prepušta se transportnom sloju!

Usporedba datagram – virtualni kanal

Značajka	Datagram	Virtualni kanal		
Uspostava veze	Ne treba	Treba		
Adresiranje	Svaki paket mora sadržavati potpunu adresnu informaciju (potpune mrežne adrese izvora i odredišta)	Svaki paket sadrži samo kratku oznaku virtualnog kanala		
Informacija o stanju uspostavljenih veza	Usmjeritelji ne pohranjuju podatke o uspostavljenim vezama	Svakom virtualnom kanalu odgovara jedan unos u tablici usmjeravanja u usmjeritelju		
Usmjeravanje	Svaki paket usmjerava se neovisno o drugima	Put se odabire prilikom uspostave veze, nakon toga svi paketi idu tim putem		
Utjecaj kvara na usmjeritelju	Gubitak samo onih paketa koji su taj čas u obradi	Prekid svih uspostavljenih virtualnih kanala		
Upravljanje zagušenjem Kvaliteta usluge	Složeno i teško izvedivo	Jednostavno, ako se potrebni resursi mogu unaprijed pridjeliti virtualnom kanalu		

Sadržaj predavanja

- Usluge mrežnog sloja (transportnom sloju)
 - Virtualni kanal i datagram, spojna usluga i nespojna usluga
- Komutacija paketa i usmjeravanje
- Načela upravljanja zagušenjem
- Međusobno povezivanje mreža i podmreža
 - ◆ Povezivanje podmreža, primjer Internet

Osnovni pojmovi kod komutacije paketa

- usmjeravanje (engl. routing) određivanje puta kroz mrežu kojim će proći paket na putu od izvora do odredišta
 - algoritmi kojima se računa taj put nazivaju se algoritmima usmjeravanja (engl. routing algorithm)
 - problem usmjeravanja se formulira pomoću grafa u kojem čvorovi predstavljaju usmjeritelje, a grane grafa veze među njima

prosljeđivanje (engl. forwarding) – odluka unutar čvora: određivanje na koje odlazno sučelje proslijediti paket

Načelo optimalnosti

- ♦ Ako je usmjeritelj J na optimalnom putu od usmjeritelja I prema usmjeritelju K, onda je optimalni put od J do K dionica tog puta.
- jednostavni dokaz (kontradikcijom):
 - \blacksquare nazovimo dionicu puta od I do J r_I i ostatak puta r_2

$$(I)$$
---... r_1 ...--- (J) ---... r_2 ... --- (K)

ako bi postojao bolji put od r_2 za dionicu od J do K, onda bi se taj put mogao nadovezati na r_1 da bi poboljšao put od I do K, što je u kontradikciji s pretpostavkom da je J na optimalnom putu od I do K

Primjena načela optimalnosti na usmjeravanje

- za graf koji predstavlja mrežu i za zadano odredište, može se naći skup optimalnih puteva od svih izvora prema zadanom odredištu
- svi ti putevi čine stablo s korijenom u odredištu (engl. sink tree)
 - takvo stablo ne mora biti jedinstveno
 - cilj algoritama usmjeravanja: pronaći takvo stablo za sve usmjeritelje i iskoristiti ga za usmjeravanje (u praksi nije lako!)

graf koji predstavlja mrežu

stablo optimalnih puteva prema čvoru B

Klasifikacija algoritama usmjeravanja

- neadaptivni (statički) algoritmi
 - unaprijed izračunati putevi na temelju nekog(ih) kriterija (npr. udaljenost, cijena, ...)
 - putevi se postavljaju prilikom prvog pokretanja čvora i više se ne mijenjaju; ne uzimaju u obzir trenutno stanje
- adaptivni (dinamički) algoritmi
 - donose odluke o usmjeravanju temelje na mjerenjima ili procjeni važećeg stanja u mreži (npr. aktualna topologija, opterećenje, ...)
 - pitanja "skupljanja znanja" o stanju u mreži i prilagodbe:
 - što pratiti? (udaljenost, broj skokova, opterećenje, cijenu,...?)
 - koga pitati? (samo susjedne čvorove, sve čvorove, ...?)
 - kada reagirati? (periodički, na promjenu topologije-opterećenja, ...?)

Algoritmi usmjeravanja

- Usmjeravanje najkraćim putem
- Preplavljivanje
- Usmjeravanje prema vektoru udaljenosti
- Usmjeravanje prema stanju poveznice

neadaptivni algoritmi

adaptivni algoritmi

- Posebni slučajevi:
 - hijerarhijsko usmjeravanje
 - opće razašiljanje, difuzija (engl. broadcast)
 - višeodredišno razašiljanje (engl. multicast)
 - kada su krajnji čvorovi u pokretu (pristup Internetu u pokretu)
 - kada nema infrastrukture (ad-hoc mreže)

Usmjeravanje najkraćim putem

 statički; algoritam računa najkraći put od svih čvorova prema zadanom čvoru u grafu - poznati algoritam: Dijkstra (na slici prvih 5.

koraka)

Primjer: dijkstra.ppt

Preplavljivanje

- statički; algoritam prosljeđuje sve dolazne pakete na svako svoje odlazno sučelje, osim onog po kojem je primio paket
- paketi se označavaju i već viđeni paketi se odbacuju
- uvijek daje najkraći put!

Usmjeravanje vektorom udaljenosti (1/2)

New estimated

 dinamički; svaki usmjeritelj ima tablicu (vektor) koji daje najbolju "poznatu udaljenost" za svako odredište i prvi korak ka njemu

poznati algoritmi: Bellman-Ford i Ford-Fulkerson

graf mreže

Usmjeravanje vektorom udaljenosti (2/2)

- algoritam konvergira prema pravom stanju, ali to čini sporo
- brzo reagira na dobre vijesti
 - npr. ako susjed A javi da ima kraći put do odredišta X, tablica se osvježava i promet za X se odmah počinje usmjeravati preko A
 - svaka sljedeća razmjena vektora propagira dobru vijest dalje
- sporo reagira na loše vijesti
 - npr. ako neki čvor ispadne, prvi susjed to zna, ali ne i drugi; nakon prve razmjene vektora, zna drugi susjed, ali ne i treći, itd. u svakom slučaju razlika je uvijek jedan više
 - postoje neka rješenja, ali nijedno nije univerzalno učinkovito

Primjer: vektorudaljenosti.doc

Usmjeravanje stanjem poveznice (1/2)

- dinamički; temelji se na razmjeni podataka o topologiji i stvarno izmjerenih podataka o stanju poveznice (kašnjenje) među čvorovima i zatim primjeni Dijkstrinog algoritma za izračun najkraćeg puta prema svim ostalim čvorovima
- algoritam uzima u obzir stvarno stanje bolja prilagodljivost, ali uz povećanu složenost
 - kada, odn. kako često slati podatke susjedima i osvježavati stanje?
 - periodički
 - u slučaju značajnih događaja kao npr. ispad ili dodavanje čvora
 - kako pouzdano distribuirati poruke sa stanjem poveznice?
 - numerirati pakete, uvesti potvrde, uvesti oznaku starosti poruke, poslužiti se preplavljivanjem (uz neka proširenja)

Usmjeravanje stanjem poveznice (2/2)

- Svaki čvor mora:
 - otkriti svoje susjede i saznati njihove mrežne adrese
 - izmjeriti kašnjenje (ili drugi dogovoreni parametar) prema svakom od njih
 - stvoriti paket kojim javlja što je sve upravo saznao

poruke o stanju poveznice

P	١	В			(D		Е		F	
Se	q.	Seq.			Se	q.	Seq.		Seq.		Seq.	
Age		Age		Age		Age		Age		Age		
В	4	Α	4		В	2	С	3	Α	5	В	6
Е	5	С	2		D	3	F	7	С	1	D	7
		F	6		Е	1			F	8	Е	8

- razaslati paket svim ostalim čvorovima (ne samo susjedima!)
- izračunati najkraći put do svih ostalih čvorova (cijela topologija!)

Sadržaj predavanja

- Usluge mrežnog sloja (transportnom sloju)
 - Virtualni kanal i datagram, spojna usluga i nespojna usluga
- Komutacija paketa i usmjeravanje
- Načela upravljanja zagušenjem
- Međusobno povezivanje mreža i podmreža
 - ◆ Povezivanje podmreža, primjer Internet

Zagušenje

- zagušenje (engl. congestion) je degradacija performansi mreže uzrokovana prevelikim brojem paketa u mreži
 - opterećenje je trenutno veće od onog koje je mrežna infrastruktura (čvorovi, poveznice) ili njen dio trenutno u stanju obraditi
- za razliku od kontrole toka, ovo je globalni problem!

Uzroci zagušenja

- razni uzroci i razna rješenja, npr:
 prometni tokovi iz raznih, neovisnih izvora u mreži mogu biti takvi da
 unutar nekog usmjeritelja konvergiraju na isto izlazno sučelje stvara
 se rep čekanja:
 - nedovoljna količina memorije: odbacivanje paketa
 - više memorije sprečava odbacivanje, ali povećava kašnjenje zbog čekanja na obradu
 - povećano kašnjenje može uzrokovati istek vremenske kontrole i retransmisiju
- ◆ općenito, teži se ka smanjenju opterećenja (odbijanje/ograničavanje zahtjeva, smanjenje kvalitete, uvođenje prioriteta) i/ili povećanju resursa (brzina,...), ali to ne rješava sve probleme (npr. povećanje brzine neće nužno smanjiti kašnjenje!) → upravljanje zagušenjem

Upravljanje zagušenjem (1/2)

- upravljanje zagušenjem obuhvaća dva osnovna pristupa iz teorije regulacije (engl. control theory):
 - 1. rješenja s otvorenom petljom
 - 2. rješenja sa zatvorenom petljom
- <u>rješenja s otvorenom petljom</u> temelje se na dobrom oblikovanju sustava s ciljem izbjegavanja zagušenja:
 - ograničeni prihvat novih zahtjeva/prometnih tokova
 - odbacivanje paketa po potrebi (i odluka kojih)
 - oblikovanje prometa
 - raspoređivanje unutar mreže

Upravljanje zagušenjem (2/2)

- rješenja sa zatvorenom petljom temelje na stalnom praćenju ponašanja mreže i povratnoj vezi:
 - ponašanje
 - 1. nadziraj sustav i detektiraj pojavu i mjesto zagušenja
 - 2. proslijedi tu informaciju na mjesto ili mjesta gdje se može djelovati
 - 3. prilagodi način rada sustava radi ispravljanja problema
 - izravne indikacije zagušenja pomoću upravljačkih paketa, npr. zahtjev pošiljatelju da smanji brzinu slanja
 - neizravne indikacije zagušenja na temelju praćenja ponašanja, npr. povećano prosječno kašnjenje, gomilanje u usmjeriteljima, učestali gubici i retransmisije, povećan % izgubljenih paketa i sl.

→ Teorija informacije, Informacijske mreže, Teorija prometa

Sadržaj predavanja

- Usluge mrežnog sloja (transportnom sloju)
 - Virtualni kanal i datagram, spojna usluga i nespojna usluga
- Komutacija paketa i usmjeravanje
- Načela upravljanja zagušenjem
- Međusobno povezivanje mreža i podmreža
 - ◆ Povezivanje podmreža, primjer Internet

Arhitektura mreže

Svaku mrežu obilježava:

- Organizacija:
 - struktura (spajanje korisničke opreme na mrežu, međusobna povezanost komunikacijskih sustava, povezivanje s drugim mrežama) korisnika
- Adresiranje:
 - mrežnih sustava i umreženih resursa
 - korisnika
- Mrežni protokol (komunikacijski protokol mrežnog sloja)

Pozor:

Načela slična (ista) – terminologija različita za različite mreže!

Mrežni sloj – OSI model

- 7 Aplikacijski sloj, sloj primjene
- 6 Prezentacijski sloj
- 5 Sloj sesije/sjednice
- 4 Transportni sloj
- 3 Mrežni sloj
- 2 Sloj podatkovnog linka/veze
- 1 Fizikalni/fizički sloj

- Prijenos informacije između dva čvora u mreži, izravno ili preko međučvorova
- Jedinica podataka: ovisna o vrsti mreže, npr. paket
- Usmjeravanje jedinica podataka
- Kontrola pogrešaka
- Kontrola toka
- Međusobno povezivanje mreža i podmreža

Mrežni sloj – internetski (TCP/IP) model

TCP

4	Aplikaci	jski slo	oj, sloj	prim	jene
•	, .p	, • • • • • • • • • • • • • • • • • • •	-,,,	P ····	, • •

3 Transportni sloj

2 Mrežni/Internetski sloj IP

1 (sloj podatkovne poveznice i fizički sloj)

- Internetski protokol (Internet Protocol, IP) i dodatni protokoli za usmjeravanje, kontrolu komunikacije i komunikaciju u skupini
- Međusobno povezivanje mreža/podrmreža (engl. internetworking)
- Mreža s komutacijom paketa, svaki se paket usmjerava zasebno - datagram

Oznake:

IP - Internet Protocol

TCP - Transmission Control Protocol

Uloga mrežnog sloja u mrežnoj arhitekturi

- mrežni sloj pruža uslugu transportnom sloju na sučelju između ta dva sloja
 - mrežni sloj daje transportnom sloju jedinstveni adresni plan (neovisno o broju podmreža, fizikalnom mediju, topologiji povezivanja i sl.) → adresiranje
 - mrežni sloj čini slojeve iznad, počevši od transportnog sloja, potpuno odvojenima i neovisnima o izvedbenoj tehnologiji mreže (protokol sloja podatkovne poveznice i prijenosni medij)
 → pitanje fragmentacije
 - sučelje mreža/transport je ujedno i granica podmreže prema krajnjim računalima (engl. host) → povezivanje podmreža
 - usmjeritelji imaju izvedene slojeve do (uključivo) mrežnog sloja
 - krajnja računala imaju izvedene sve slojeve

Adresiranje (1)

Jednoznačno označavanje komunicirajućih entiteta:

- Fizička adresa (mjesto priključka, pristupna točka)
- Mrežna adresa (točka u mreži) logička adresa
- Adresa mrežnog/umreženog resursa:
 - Uslužna pristupna točka
 - Web stranica
 - ...
- Korisnička adresa:
 - Pozivni broj
 - Adresa elektroničke pošte
 - **...**

Adresiranje (2)

Dinamička adresa:

- dodijeljena privremeno, tijekom pružanja usluge
- primjer: mrežna adresa (IP) kod pristupa Internetu preko ADSL-a, odn. telefonske mreže

Statička adresa:

- dodijeljena trajno
- primjer: mrežna adresa Web poslužitelja i jedinstveni identifikator stranice

Fizički priključak
Mrežna adresa
Adresa elektroničke pošte

Primjer: adresiranje u Internetu

IP-adresa - 32 bita (IPv4):

- identifikator koji globalno i jednoznačno određuje mrežno sučelje
 - krajnji sustav (npr. računalo priključeno na mrežu) obično ima jedno sučelje i jednu IP-adresu
 - mrežni čvor (npr. usmjeritelj) priključen na više (pod)mreža ima više sučelja i isto toliko IP-adresa
- način zapisa:
 - numerički zapis: binarni i dekadski

simbolički zapis: lakše pamtljiv (npr. www.fer.hr) – veza: DNS

Povezivanje mreža i podmreža

Obrada u krajnjem čvoru, protokolni složaj

Izravno usmjeravanje paketa

Primjer: Izvorišni i odredišni čvor spojeni na istu podatkovnu poveznicu u lokalnoj mreži (Ethernet)

nema potrebe za usmjeriteljem!

Usmjeravanje paketa preko usmjeritelja

Primjer: Izvorišni i odredišni čvor spojeni na poveznice međusobno odvojene usmjeriteljem ili u lokalnim mrežama različite izvedbe (Ethernet, Token Ring)

Pojam fragmentacije

- PDU mrežnog sloja (paket) smješta se u podatkovno polje PDU sloja podatkovne poveznice (okvir)
 - pojam MTU Maximum Transmission Unit
 - ovisi o tehnologiji izvedene mreže, npr. Ethernet/IEEE 802.3: MTU=1500 byte

ako je veličina PDU veća od MTU, PDU se mora podijeliti na dijelove odgovarajuće veličine – fragmente (→ pitanje: tko i gdje?)

- transparentna fragmentacija
 - na ulazu/izlazu iz podmreže
- netransparentna fragmentacija
 - fragmenti se sastavljaju tek na odredišnom računalu

Transparentna fragmentacija

- tko: usmjeritelj
- gdje: fragmentacija i sastavljanje fragmenata obavlja se na ulazu/izlazu iz svake podmreže

Netransparentna fragmentacija

- tko: usmjeritelj
- gdje: fragmenti se šalju u novim, međusobno neovisnim datagramima i sastavljaju u originalni datagram na odredištu

Sadržaj predavanja

- Usluge mrežnog sloja (transportnom sloju)
 - Virtualni kanal i datagram, spojna usluga i nespojna usluga
- Komutacija paketa i usmjeravanje
- Načela upravljanja zagušenjem
- Međusobno povezivanje mreža i podmreža
 - ◆ Povezivanje podmreža, primjer Internet

Jedinstveni adresni prostor uz logičku podjelu na podmreže

Izvedba mrežnog sloja u krajnjim računalima i usmjeriteljima

Usmjeravanje paketa s kraja na kraj mreže

Diskusija - aktivnost na satu

- ♦ sl. 45
 - jedinstveni adresni prostor, hijerarhija adresa
 - što je zajedničko adresama unutar podmreže?
- ♦ sl. 46
 - veza IP-adrese i mrežnog sučelja?
 - veza IP i MAC-adrese?
- ♦ sl. 47
 - gdje se donosi odluka o usmjeravanju?
 - gdje bi moglo doći do fragmentacije?
 - kako izbjeći fragmentaciju?
- koji su mogući problemi?
 - zagušenje (gubici, kašnjenje...)?
 - prekidi u fizičkoj vezi?
 - problemi u usmjeravanju?
 - **♦** ...