

Intervalo de Confiança

Um intervalo de confiança para um parâmetro θ , a um grau de confiança $1-\alpha$, é um intervalo aleatório (L_{inf} , L_{sup}) tal que:

$$P(L_{inf} < \theta < L_{sup}) = 1-\alpha, \ \alpha \in (0,1)$$

onde α deve ser um valor muito reduzido por forma a temos confianças elevadas

Valores usuais para o grau de confiança: 95%, 99% e 90%

Intervalo de Confiança (IC)

- IC para a média μ com variância conhecida
 - <u>Caso 1</u>: população Normal
 - <u>Caso 2</u>: população qualquer (n>>30) aproximada pela Normal
- II. IC para a média μ com variância desconhecida
 - Caso 1: população Normal
 - <u>Caso 2</u>: população qualquer (n>>30) aproximada pela Normal
- III. IC para a diferença de médias de duas populações Normais
 - Caso 1: duas amostras independentes, variâncias conhecidas
 - Caso 2: duas amostras independentes, variâncias desconhecidas
 - <u>Caso 3</u>: amostras emparelhadas, variâncias desconhecidas
- IV. IC para uma proporção

IC para μ com variância conhecida Caso 1: População Normal N(0,1) $X \sim N(\mu, \sigma^2)$ μ desconhecido, mas σ^2 con $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ $(\overline{X} - \mu) \sim N(0,1)$ (Normal Padrão) $P(-z < Z < z) = 1 - \alpha$ $P(-z < \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < z) = 1 - \alpha$ $P(-z \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu < z \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ quantil de ordem $\alpha/2$ quantil de ordem $1-\alpha/2$ IC para μ a grau de confiança 1- α $P(\overline{X} - z \frac{\sigma}{\sqrt{n}}) < \mu < \overline{X} + z \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $IC_{(1-\alpha)}(\mu) = \left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$ acetato adaptado de referencia

Interpretação do IC para µ

Para uma amostra aleatória de tamanho 50 seguindo uma distribuição Normal com média μ = 10 e variância σ^2 = 4 $\rightarrow X \sim N(10,4)$, determinamos o IC para μ com 95% de grau confiança:

$$P(\overline{X} - 1,96\frac{2}{\sqrt{50}} < \mu < \overline{X} + 1,96\frac{2}{\sqrt{50}}) = 95\%$$

$$P(\overline{X} - 0.5544 < \mu < \overline{X} + 0.5544) = 95\%$$

$$IC_{95\%}(\mu) = (\overline{X} - 0.5544, \overline{X} + 0.5544)$$

Interpretação: 95% dos possíveis ICs obtidos a partir de uma amostra de tamanho 50, conterão de facto o verdadeiro valor da média μ=10

IC para μ com variância conhecida Caso 1: População Normal

Exemplo: Uma v.a. qualquer tem uma distribuição Normal com média μ desconhecida e variância σ^2 = 16. Retira-se uma amostra de 25 valores e calcula-se a média amostral. Construa um IC de 95% para μ supondo que $\overline{X}=12,7.$

$$IC_{(1-\alpha)}(\mu) = \left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

$$IC_{95\%}(\mu) = \left(\overline{X} - z_{0.9750} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{0.9750} \frac{\sigma}{\sqrt{n}}\right)$$
$$= \left(12,7 - 1,96 \frac{4}{\sqrt{25}}, 12,7 + 1.96 \frac{4}{\sqrt{25}}\right)$$
$$= \left(12,7 - 1,568, 12,7 + 1,568\right)$$

 $IC_{95\%}(\mu) = (11.132, 14.268)$

 $P(11,132 < \mu < 14,268) = 0,95$

http://psych.colorado.edu/~mcclella/java/normal/normz.html

Determinando o Quantil de Ordem $1-\alpha/2$ Distribuição Normal Padronizada

Tabela 3.a. Normal Distribution

Para grau de confiança $(1-\alpha)x100 = 95\%$ \Rightarrow nível de significância α =0.05

$$\Rightarrow \phi(z) = P(Z < z) = 1 - \alpha/2 \Leftrightarrow z = z_{1-\alpha/2}$$
quantil de ordem 1-\alpha/2

$$\phi(z) = P(Z < z) = 1 - (0.05/2) = 0.975$$

 $\Phi(z)$ D(z)

	1001252333			
1.91	0281	9719	9439	
1.92	0274	9726	9451	
1.93	0268	9732	9464	
1.94	0262	9738	9476	
1.95	0256	9744	9488	
1.96	0250	9750	9500	
1.97	0244	9756	9512	
1.98	0239	9761	9523	
1.99	0233	9767	9534	
	0228	9772	9545	

<u>buscar valor de z na tabela:</u>

$$\phi(z) = 0.9750 \Leftrightarrow z = 1.96$$

Grau de Confiança	Valor z		
90%	1.65		
95%	1.96		
99%	2.58		

90% grau de confiança – existem 10 possibilidades de 100 que o IC não contenha a média populacional 95% grau de confiança – existem 5 possibilidades de 100 que o IC não contenha a média populacional 99% grau de confiança – existe 1 possibilidade de 100 que o IC não contenha a média populacional

IC & Grau de Confiança

Como poderia obter intervalos de confiança mais estreitos, ou seja, com limites mais próximos a média verdadeira?

Diminuindo o grau de confiança

Diminuindo o grau de confiança de 99% a 95%, aumentamos o risco de estar errados: de 1% de risco passamos a 5% de risco, ou seja temos mais possibilidades (5/100 em vez de 1/100) de que o IC não contenha a média populacional. Ao aumentar o risco, o intervalo deve ser mais preciso

IC & Dimensão da Amostra

Como poderia obter intervalos de confiança mais estreitos, ou seja, com limites mais próximos a média verdadeira?

Aumentando a dimensão da amostra

Table 12.2	95 Percent Confidence Interval and Width for Mean Income for Three Different Sample Sizes						
	Sample Size	Confidence Interval	Interval Width	5 _Y	S _₹		
	N = 472	\$27,259-\$31,421	\$4,162	\$23,067	1061.53		
	N = 945	\$27,869-\$30,811	\$2,942	\$23,067	750.39		
	N = 1,890	\$28,300-\$30,380	\$2,080	\$23,067	530.64		

Tabela extraída da <u>referência 2</u>

IC para μ com variância conhecida

Caso 2: População Genérica aproximada pela Normal

Se uma distribuição qualquer tiver média μ (desconhecida) e variância σ^2 (conhecida) e se forem validas as condições do TLC (n>>30) podemos obter um IC <u>aproximado</u> para a média μ

 $\underline{\text{IC}}$ para μ a grau de confiança 1-lpha

$$IC_{1-\alpha}(\mu) \approx \left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

IC para μ com variância conhecida Resumo

μ desconhecido, mas ♂ conhecido

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \left\langle \begin{array}{c} \sim & N(0,1) \text{ se } X \sim N(\mu, \sigma^2) \\ \sim & N(0,1) \text{ se } X \neq 0 \text{ q. q. e. } n \geq 30 \end{array} \right.$$

IC para μ a grau de confiança 1-α

$$IC_{\alpha}(\mu) = \overline{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 $IC_{\alpha}(\mu) \approx \overline{X} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$

quanto **maior z** ⇒ IC menos preciso

quanto **maior n**

⇒ menor o erro padrão ⇒ IC mais preciso

A expressão $\frac{\sigma}{\sqrt{n}}$ é chamada erro padrão (standard error)

Se aumentarmos o grau de confiança

 \Rightarrow a precisão diminui porque aumenta o valor z se 90% \Rightarrow z = 1.65

se $90\% \Rightarrow z = 1.65$ se $95\% \Rightarrow z = 1.96$

se 99% \Rightarrow z = 2.58

IC para μ com variância desconhecida

Se o valor de σ^2 é desconhecido \Rightarrow substituir por uma estimativa

Estimadores pontuais para o desvio padrão σ :

desvio padrão amostral não-corrigido

$$\widehat{\sigma} = S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

desvio padrão amostral corrigido

$$\widehat{\sigma} = S_c = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Se σ^2 desconhecida podemos distinguir dois casos:

Caso1. população Normal ⇒ usar distr.t de Student

$$X \sim N(\mu, \sigma^{2}) \Leftrightarrow T = \frac{\overline{X} - \mu}{S_{c} / \sqrt{n}} \sim t_{n-1} \Rightarrow IC_{1-\alpha}(\mu) = \left(\overline{X} - t_{1-\alpha/2}, -1, \frac{S_{c}}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2}, -1, \frac{S_{c}}{\sqrt{n}}\right)$$

<u>Caso2</u>. q.q. distribuição aproximada pela Normal, amostras grandes ⇒ usar distribuição Normal padronizada

$$X \text{ q.q.com } n \gg 30 \Leftrightarrow Z = \frac{\overline{X} - \mu}{S_c / \sqrt{n}} \sim N(0,1) \Rightarrow IC_{1-\alpha}(\mu) \approx \left(\overline{X} - z_{1-\alpha/2} \frac{S_c}{\sqrt{n}}, \overline{X} + z_{1-\alpha/2} \frac{S_c}{\sqrt{n}}\right)$$

IC para μ com variância desconhecida Caso 1: População Normal

Exemplo:

Uma v.a. qualquer tem uma distribuição Normal com média μ e variância σ^2 desconhecidas. Retira-se uma amostra de **25** valores e calcula-se a média amostral e variância amostral . Construa um IC de 95% para μ supondo que $\overline{X}=12,7~{\rm e}~{\rm S}^2={\rm 16}$

$$IC_{(1-\alpha)}(\mu) = \left(\overline{X} - t_{1-\alpha/2},_{n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2,n-1} \frac{S}{\sqrt{n}}\right)$$

$$\begin{split} IC_{95\%}(\mu) = & \left(\overline{X} - t_{0.9750,24} \frac{S}{\sqrt{n}}, \overline{X} + t_{0.9750,24} \frac{S}{\sqrt{n}} \right) \\ = & \left(12,7 - 2,06 \frac{4}{\sqrt{25}}, 12,7 + 2,06 \frac{4}{\sqrt{25}} \right) \\ = & \left(12,7 - 1,648, 12,7 + 1,648 \right) \end{split}$$

 $IC_{95\%}(\mu) = (11.052, 13.648)$

IC para μ com variância desconhecida

Caso 1: População Normal

exercício 5, capítulo 4

Uma amostra aleatória de 20 cigarros foi analisada para estimar a quantidade de nicotina por cigarro, observando-se a média de 1,2 mg e variância amostral corrigida de 0.04. Pressupondo que as observações têm distribuição Normal, determine um IC para o valor médio da quantidade de nicotina por cigarro, grau de confiança de 99%

Usando esta amostra determinamos um IC aproximado para μ a 99%:

$$IC_{(1-\alpha)}(\mu) = \left(\overline{X} - t_{1-\alpha/2, n-1} \frac{S_c}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2, n-1} \frac{S_c}{\sqrt{n}}\right)$$

$$IC_{99\%}(\mu) = \left(\overline{X} - t_{0.995,19} \frac{S_C}{\sqrt{n}}, \overline{X} + t_{0.995,19} \frac{S_C}{\sqrt{n}}\right)$$

Determinar $t_{0.995, 19}$ usando Tabela 8

t_{0.995, 19} = 2.86

$$IC_{99\%}(\mu) = \left(1,2-2,86\frac{\sqrt{0,04}}{\sqrt{20}},1,2+2,86\frac{\sqrt{0,04}}{\sqrt{20}}\right)$$

 $=(1,2-2,86\times0,044721, 1,2+2,86\times0,044721)$

Para grau de confiança 99%: $(1-\alpha) \times 100\% = 99\% \Rightarrow (1-\alpha) = 0.99 \Rightarrow \alpha = 0.01$ Por definição de quantil de ordem 1- α /2: $F(z) = P(Z < z) = 1 - (0.01/2) = 0.995 \Rightarrow F(z) = 0.995$ Para n=20 \Rightarrow 19 graus de liberdade

| Number of Degrees of Freedom | Feet | Number of Degrees of Freedom | Feet | Number of Degrees of Freedom | Number of Degrees of Degrees of Freedom | Number of Degrees of Page | Number of Degrees of Page | Number of Degrees of Freedom | Number of Degrees of Page | Number of Degrees of Degrees of Page | Number of Degrees of Degrees of Degrees of Page | Number of Degrees of Degre

 $IC_{99\%}(\mu) = (1.0721, 1.3279)$

Inferência entre parâmetros de duas populações

$$E(X) = \mu_X$$

$$E(Y) = \mu_{v}$$

Mesmo não se conhecendo as médias μ_1 e μ_2 , seria possível verificar se elas são iguais a partir de seus valores amostrais?

Se μ_1 e μ_2 são iguais, então μ_1 - μ_2 = 0.

Podemos a partir da diferença das médias amostrais $\,\overline{X}-\overline{Y}\,\,$ inferir o valor da diferença das médias de duas populações

acetato adaptado de referencia 3

Intervalo de Confiança para μ_1 - μ_2 Duas populações Normais. Amostras independentes

Sejam $X_1,...,X_n$ e Y_1 , ..., Y_m duas amostras aleatórias constituídas por observações independentes e provenientes de duas populações Normais $N(\mu_X, \sigma_X^2)$ e $N(\mu_Y, \sigma_Y^2)$, respectivamente

IC para $\mu_1 - \mu_2$ a grau de confiança $1-\alpha$

Caso 1: variâncias conhecidas

$$\bar{X} - \bar{Y} \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

Caso 2: variâncias desconhecidas mas iguais

$$\bar{X} - \bar{Y} \pm t_{1 - \frac{\alpha}{2}, n + m - 2} S_p$$

$$S_p = \sqrt{\frac{1}{n} + \frac{1}{m}} \sqrt{\frac{(n-1)S_{cX}^2 + (m-1)S_{cY}^2}{n+m-2}}$$

Intervalo de Confiança para μ_1 - μ_2 Populações Normais. Amostras emparelhadas

Sejam $X_1, ..., X_n$ e $Y_1, ..., Y_n$ duas amostras provenientes de populações Normais

Amostras emparelhadas: se pares de observações (X_i, Y_i) são dependentes sendo todos os restantes pares (X_i, Y_i) , $i \neq j$ independentes

Consideram-se as diferenças: $D_i = (X_i - Y_i) \sim N(\mu_D, \sigma_D^2)$

- $\checkmark \mu_D = \mu_{X^-} \mu_{Y^-}$ diferença das médias populacionais
- √ σ_D desvio padrão das diferenças desconhecido mas pode ser estimado através das diferenças $D_1, ..., D_n$
- \Rightarrow D_1 , D_2 , ... D_n a.a. com população Normal e variância desconhecida

$$\boxed{D \sim N(\mu_D, \sigma_{\scriptscriptstyle D}^2) \Leftrightarrow T = \frac{\overline{D} - \mu_D}{S_{\scriptscriptstyle c_D} / \sqrt{n}} \sim t_{\scriptscriptstyle n-1}} \quad \begin{array}{c} \textbf{S}_{\scriptscriptstyle c_D} \text{ - desvio padrão amostral} \\ \text{corrigido das diferenças} \end{array}}$$

IC para μ_D = μ_X - μ_Y a grau de confiança 1- α

$$IC_{1-\alpha}(\mu_D) = \left(\overline{D} - t_{1-\alpha/2},_{n-1} \frac{S_{c_D}}{\sqrt{n}}, \overline{D} + t_{1-\alpha/2},_{n-1} \frac{S_{C_D}}{\sqrt{n}}\right)$$

Intervalo de Confiança para Proporção

Considere que uma urna contêm bolas vermelhas e azúis e que *n* bolas são escolhidas ao acaso (com reposição), definindo-se

X como o número de bolas vermelhas entre as n seleccionadas

$$X = \sum_{i=1}^{n} Y_i$$
, $Y_i \sim \text{Bernoulli sendo } p = P(X_i = 1)$, a probabilidade de se seleccionar um bola vermelha $X \sim \text{Binomial}(n,p)$

Se p- desconhecido, um <u>estimador pontual</u> para $p \notin a$ proporção amostral:

$$\hat{p} = \frac{X}{n} \qquad \hat{p} \sim N(p, \frac{p(1-p)}{n}) \quad \text{(se } n \text{ \'e grande, pelo TLC)}$$

$$\frac{\hat{p} - p}{(p(1-p)/n)} = \frac{\frac{X}{n} - p}{\sqrt{p(1-p)/n}} \sim N(0, 1)$$

I.C. para Z com grau de confiança $1-\alpha$

$$P(-z < Z < z) = 1 - \alpha$$

$$P(\hat{p} - z\sqrt{\hat{p}(1-\hat{p})/n}, \hat{p} + z\sqrt{\hat{p}(1-\hat{p})/n}) = 1 - \alpha$$

Intervalo de Confiança para Proporção

Seja $\hat{p} = \frac{X}{n}$ a proporção de indivíduos com uma certa característica de interesse numa amostra aleatória de dimensão n, e p a proporção de indivíduos com essa característica na população.

Um intervalo de confiança aproximado para p, a um grau de confiança 1- α , é dado por:

$$IC_{(1-\alpha)}(p) \approx \left(\hat{p} - z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

IC para uma proporção

Exemplo: Proporção de acessos a páginas de Internet nacionais

Em 100 acessos a páginas de internet escolhidos ao acaso 30 são as páginas nacionais. Determine um IC a 95% para a proporção de acessos a páginas nacionais

X - número de acessos á páginas de internet nacionais $X \sim \text{Binomial}(100,p)$

p - proporção de acessos a páginas nacionais (em geral) p - desconhecido

Usando esta amostra determinamos um IC aproximado para p a 95%:

$$IC_{(1-\alpha)}(p) \approx \left(\hat{p} - z_{1-\alpha/2}S_p, \hat{p} + z_{1-\alpha/2}S_p\right) \quad \text{com} \quad \hat{p} = \frac{X}{n} \quad \text{e} \quad S_p = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$1^{\circ}. \text{ Determinar } z_{1-\alpha/2} \text{ para } \alpha = 0,05$$

$$IC_{(95\%)}(p) \approx \left(\hat{p} - z_{0.9750}S_p, \hat{p} + z_{0.9750}S_p\right)$$

$$IC_{(95\%)}(p) \approx \left(\hat{p} - z_{0.9750}S_p, \hat{p} + z_{0.9750}S_p\right)$$

$$IC_{(95\%)}(p) \approx \left(\hat{p} - z_{0.9750}S_p, \hat{p} + z_{0.9750}S_p\right)$$

$$\alpha = 0,05$$
 $z_{0,9750} = 1,96$

$$IC_{(95\%)}(p) \approx (\hat{p} - 1.96 \times S_p, \hat{p} + 1.96 \times S_p)$$

2°. Determinar as estimativas $\stackrel{\smallfrown}{p}$ e S_p

$$\hat{p} = \frac{X}{n} = \frac{30}{100} = 0.3$$
 $S_p = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.3 \times 0.7}{100}} = 0.04582$

3°. Substituir na fórmula:

$$IC_{(95\%)}(p) \approx (0.3 - 1.96 \times 0.04582, 0.3 + 1.96 \times 0.04582)$$

$$= (0.3 - 0.089818, 0.3 + 0.089818)$$

$$IC_{95\%}(p) \approx (0.2102, 0.3898)$$