Physics 926: Homework #10

Due on April 7, 2020 at 5pm $\,$

Professor Ken Bloom

Robert Tabb

Show that:

$$\frac{\Gamma(K_L \to \pi^- e^+ \nu_e) - \Gamma(K_L \to \pi^+ e^- \bar{\nu}_e))}{\Gamma(K_L \to \pi^- e^+ \nu_e) + \Gamma(K_L \to \pi^+ e^- \bar{\nu}_e))} = 2Re(\epsilon)$$

to first order in ϵ . This asymmetry is evidence for indirect CP violation, and also allows us to unambiguously define electric charge - positive charge is assigned to the lepton that dominates in the K_L decay.

Solution

$$|K_L\rangle = \frac{1}{\sqrt{1+|\epsilon|}} \left[\frac{1+\epsilon}{\sqrt{2}} |K^0\rangle - \frac{1-\epsilon}{\sqrt{2}} |\bar{K}^0\rangle \right]$$

 $\bar{K^0} \to \pi^+ e^- \bar{\nu}_e$ and $K^0 \to \pi^- e^+ \nu_e$ (see Figure 1), therefore to get $K_L \to \pi^+ e^- \bar{\nu}_e$, take the inner product of $\bar{K^0}$ with K_L and to get $K_L \to \pi^- e^+ \nu_e$, take the inner product of K^0 with K_L .

Figure 1: The two neutral kaon decays

$$\Gamma(K_L \to \pi^+ e^- \bar{\nu}_e) \propto \left| \left\langle \bar{K}^0 | K_L \right\rangle \right|^2 \propto \left| 1 - \epsilon \right|^2 = (1 - \epsilon)(1 - \epsilon^*) = 1 - \epsilon^* - \epsilon + \left| \epsilon \right|^2 \approx 1 - 2Re(\epsilon)$$

$$\Gamma(K_L \to \pi^- e^+ \nu_e) \propto \left| \left\langle K^0 | K_L \right\rangle \right|^2 \propto \left| 1 + \epsilon \right|^2 = (1 + \epsilon)(1 + \epsilon^*) = 1 + \epsilon^* + \epsilon + \left| \epsilon \right|^2 \approx 1 + 2Re(\epsilon)$$

Here I dropped the ϵ^2 term since we are only looking to first order in ϵ . I also dropped any constants since they will be the same for each term and will divide out in the end.

$$\begin{split} \frac{\Gamma(K_L \to \pi^- e^+ \nu_e) - \Gamma(K_L \to \pi^+ e^- \bar{\nu}_e))}{\Gamma(K_L \to \pi^- e^+ \nu_e) + \Gamma(K_L \to \pi^+ e^- \bar{\nu}_e))} = & \frac{1 + 2Re(\epsilon) - (1 - 2Re(\epsilon))}{1 + 2Re(\epsilon) + (1 - 2Re(\epsilon))} \\ & = & \frac{4Re(\epsilon)}{2} = 2Re(\epsilon) \end{split}$$

Defining

$$\eta_{\pm} = |\eta_{\pm}| e^{i\phi_{\pm}} = \frac{\langle \pi^{+}\pi^{-}|K_{L}\rangle}{\langle \pi^{+}\pi^{-}|K_{S}\rangle}$$

calculate the probabilities of $\pi^+\pi^-$ decay as a function of proper time for an initial K^0 or $\bar{K^0}$ produced at t=0. Express your answer, up to common proportionality constants, in terms of ϵ , $|\eta_{\pm}|$, ϕ_{\pm} , Δm , Γ_S , and Γ_L , where $\Delta m = K_S - K_L$. Keep only leading terms in ϵ . Using the experimental values for these quantities, plot the two probabilities as a function of time in units of the K_S lifetime, going out to 30 K_S lifetimes.

Solution

Here are the definitions of K_L and K_S in terms of K^0 and $\bar{K^0}$:

$$|K_L\rangle = \frac{1}{\sqrt{1+|\epsilon|}} \left[\frac{1+\epsilon}{\sqrt{2}} |K^0\rangle - \frac{1-\epsilon}{\sqrt{2}} |\bar{K}^0\rangle \right]$$
$$|K_S\rangle = \frac{1}{\sqrt{1+|\epsilon|}} \left[\frac{1+\epsilon}{\sqrt{2}} |K^0\rangle + \frac{1-\epsilon}{\sqrt{2}} |\bar{K}^0\rangle \right]$$

And here they are in terms of the CP eigenstates:

$$|K_L\rangle = \frac{1}{\sqrt{1+|\epsilon|}} [|K_2\rangle + \epsilon |K_1\rangle]$$
$$|K_S\rangle = \frac{1}{\sqrt{1+|\epsilon|}} [|K_1\rangle + \epsilon |K_2\rangle]$$

First, define the time-evolution of the wave function in the same way it was done in the lecture notes:

$$|K_S(t)\rangle = |K_S\rangle e^{im_S t - \Gamma_S t/2}$$

 $|K_L(t)\rangle = |K_L\rangle e^{im_L t - \Gamma_L t/2}$

Here I will write the total wave function as a function of time but in the CP basis since we know that the $\pi^+\pi^-$ system is a CP eigenstate with an eigenvalue of +1. This will be helpful because we know the eigenvalues of $|K_1\rangle$ and $|K_2\rangle$

$$\begin{split} |\psi_{K^0}(t)\rangle &= \frac{1}{\sqrt{2}} \left[|K_S(t)\rangle + |K_L(t)\rangle \right] \\ &= \frac{1}{\sqrt{2}} \left[|K_S\rangle \, e^{im_S t - \Gamma_S t/2} + |K_L\rangle \, e^{im_L t - \Gamma_L t/2} \right] \\ |\psi_{\bar{K^0}}(t)\rangle &= \frac{1}{\sqrt{2}} \left[|K_S\rangle \, e^{im_S t - \Gamma_S t/2} - |K_L\rangle \, e^{im_L t - \Gamma_L t/2} \right] \\ |\psi_{K^0}(t)\rangle &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 + |\epsilon|}} \left[(|K_1\rangle + \epsilon \, |K_2\rangle) e^{im_S t - \Gamma_S t/2} + (|K_2\rangle + \epsilon \, |K_1\rangle) e^{im_L t - \Gamma_L t/2} \right] \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 + |\epsilon|}} \left[(e^{im_S t - \Gamma_S t/2} + \epsilon e^{im_L t - \Gamma_L t/2}) \, |K_1\rangle + (e^{im_L t - \Gamma_L t/2} + \epsilon e^{im_S t - \Gamma_S t/2}) \, |K_2\rangle \right] \\ |\psi_{\bar{K^0}}(t)\rangle &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 + |\epsilon|}} \left[(e^{im_S t - \Gamma_S t/2} - \epsilon e^{im_L t - \Gamma_L t/2}) \, |K_1\rangle + (-e^{im_L t - \Gamma_L t/2} + \epsilon e^{im_S t - \Gamma_S t/2}) \, |K_2\rangle \right] \end{split}$$

The subscript on the wave function state refers to the initial beam being either purely K^0 or purely $\bar{K^0}$.

The probability to find the system in the state $|\pi^+\pi^-\rangle$ can be found like this:

$$\begin{split} \left| \left\langle K_1 | \psi_{K^0}(t) \right\rangle \right|^2 &= \frac{1}{2+2|\epsilon|} \left[\left(e^{im_S t - \Gamma_S t/2} + \epsilon e^{im_L t - \Gamma_L t/2} \right) \left(e^{im_S t - \Gamma_S t/2} + \epsilon e^{im_L t - \Gamma_L t/2} \right)^* \right] \\ &= \frac{1}{2+2|\epsilon|} \left[e^{-\Gamma_S t} + |\epsilon|^2 e^{-\Gamma_L t} + \epsilon^* e^{i(m_S - m_L)t} e^{-(\Gamma_S + \Gamma_L)t/2} + \epsilon e^{-i(m_S - m_L)t} e^{-(\Gamma_S + \Gamma_L)t/2} \right] \\ &\approx \frac{1}{2+2|\epsilon|} \left[e^{-\Gamma_S t} + 2Re(\epsilon e^{i\Delta m t} e^{-(\Gamma_S + \Gamma_L)t/2}) \right] \\ &\left| \left\langle K_1 | \psi_{\bar{K^0}}(t) \right\rangle \right|^2 \approx \frac{1}{2+2|\epsilon|} \left[e^{-\Gamma_S t} - 2Re(\epsilon e^{i\Delta m t} e^{-(\Gamma_S + \Gamma_L)t/2}) \right] \end{split}$$

Figure 2: Probability for K^0 and $\bar{K^0}$ to decay to $\pi^+\pi^-$ as a function of K_S lifetime.