

# Learning Discriminative Features from Spectrograms using Center Loss for Speech Emotion Recognition

Dongyang Dai<sup>1,2</sup>, Zhiyong Wu<sup>1,2,3</sup>, Runnan Li<sup>1,2</sup>, Xixin Wu<sup>3</sup>, Jia Jia<sup>1,2</sup>, Helen Meng<sup>1,3</sup>

<sup>1</sup>Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China <sup>2</sup> Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Computer Science and Technology, Tsinghua University, Beijing, China <sup>3</sup> Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

Loss \_

entropy Loss



#### 1. Introduction

#### > Motivation

- Identify emotions directly from raw data (spectrograms), getting rid of feature engineering
- Extract discriminative features with larger inter-class variance and smaller intra-class variance to improve performance



#### Challenge

- Design suitable model architecture processing variable length spectrograms
- Adopt appropriate methods to extract discriminative features

#### **Contribution**

- Apply CNN + Bi-RNN to extract features directly from spectrograms with variable length
- Introduce center loss together with softmax cross-entropy loss in SER task to learn discriminative features
- Separable inter-class features
- More compact intra-class features

# 2. Proposed Method

#### Model Architecture

- Input: variable length spectrograms
- CNN layers: extract spatial information from input, and produce a variable length feature map sequence
- Bi-RNN: compresses the variable length sequence down to a fixed-length vector, by concatenating the last output of forward RNN and backward RNN
- FC1: outputs  $z \in \mathbb{R}^d$  as the learned feature, from which center loss is calculated
- FC2: outputs posterior class probabilities, from which softmax cross-entropy loss is computed
- Softmax Cross-entropy Loss: enables the network to learn separable features
- Center Loss: pulls the features belonging to the same emotion category to their center

### Center Loss

$$L_c = rac{1}{\sum_{i=1}^m \omega_{y_i}} \sum_{i=1}^m \omega_{y_i} ||z_i - c_{y_i}||^2$$
 ,  $\dot{c}_j = rac{\sum_{i=1}^m \delta(y_i = j) z_i}{\sum_{i=1}^m \delta(y_i = j)}$ 

$$c_j^{t+1} = \begin{cases} (1-\alpha)c_j^t + \alpha \dot{c}_j^t & \sum_{i=1}^m \delta(y_i = j) > 0\\ c_j^t & \sum_{i=1}^m \delta(y_i = j) = 0 \end{cases}$$

- $c_i$ : the global class center of features corresponding to the j-th emotion class, updated per mini-batch iteration
- $\dot{c}_i$ : the j-th class center of features from a mini-batch
- $\alpha$ : controls the update rate of  $c_i$

## > Softmax Cross-entropy Loss

$$L_s = -rac{1}{\sum_{i=1}^m \omega_{y_i}} \sum_{i=1}^m \omega_{y_i} log(rac{e^{W_{y_i}^{
m T} z_i + b_{y_i}}}{\sum_{j=1}^n e^{W_j^{
m T} z_i + b_j}})$$
 we in inverse proportion to the sample number of the sample num

•  $\omega_i$ : in inverse proportion to the sample number of the j-th class in training set

#### > Joint Loss

$$L = L_s + \lambda L_c$$

 $\bullet$   $\lambda$ : trades off center loss against softmax cross-entropy loss

# > Experimental Setup

- Dataset: IEMOCAP
- ✓ 4 emotion categories: neutral, angry, happy and sad (happy and excited merged as happy)
- 5 subsets
- Randomly divided the total 5531 utterances into 5 subsets, keeping the distribution portion of emotion categories
- 4 subsets for training, half of the last subset as development set and half as test set
- Settings of spectrograms
- Model input: log scale STFT spectrogram or Mel-spectrogram
- Hamming window: 40ms window length and 10ms shift
- Sample rate: 16KHz
- DTF length: 1024
- Mel bands number: 128
- Evaluation metrics
- ✓ Unweighted Accuracy (UA): the mean value of the recall for each class
- Weighed Accuracy (WA): the number of correctly classified samples divided by the total amount of samples

# 3. Experiments and Results

# > Experiments

- Effect of hyperparameter  $\alpha$  and  $\lambda$  on Melspectrogram
- ✓ (*left*) fixing  $\lambda = 0.3$ , (*right*) fixing  $\alpha = 0.5$
- $\checkmark$  Performance not sensitive to  $\alpha$

CNN-layers

Reshape output:  $L'_T \times d_{cnn} \ (d_{cnn} = 96 \cdot d'_T)$ 

Reshape(Keep time axis)

2D convolutions output:  $L'_T \times L'_F \times 96$ 

Max-pooling:  $2 \times 2$ , strides [2, 2]

Convolution: 96 filters of  $3 \times 3$ , strides [1, 1]

Max-pooling:  $2 \times 2$ , strides [2, 2]

Convolution: 80 filters of  $3 \times 3$ , strides[1, 1]

Max-pooling:  $2 \times 2$ , strides [2, 2]

Convolution: 64 filters of  $3 \times 3$ , strides [1, 1]

Convolution: 48 filters of  $7 \times 7$ , strides [2, 2]

Input: spectrogram  $L_{\tau} \times L_{F}$ 

CNN layers

- Performance can be significantly improved with proper value of  $\lambda$
- Experiments with different  $\lambda$  on Mel and STFT
- ✓ UA and WA (%) on setting  $1 \sim 4$

|          | $\lambda$ , $\alpha$          | Input | UA    | WA    |  |  |
|----------|-------------------------------|-------|-------|-------|--|--|
| Setting1 | λ=0                           | Mel   | 63.80 | 61.83 |  |  |
| Setting2 | $\lambda$ =0.3, $\alpha$ =0.5 | Mel   | 66.86 | 65.40 |  |  |
| Setting3 | λ=0                           | STFT  | 60.97 | 58.93 |  |  |
| Setting4 | $\lambda$ =0.3, $\alpha$ =0.5 | STFT  | 65.13 | 62.96 |  |  |

# ■ UA ■ WA ■ UA ■ WA 0.7

Confusion matrix (%) on setting1|setting2|setting3|setting4

|     |      |      |      |      |      |      |      | $\mathcal{C}$ 1 |      | $\mathcal{O}$ 1 |      |      |      |      |      |      |
|-----|------|------|------|------|------|------|------|-----------------|------|-----------------|------|------|------|------|------|------|
|     | neu  | ang  | hap  | sad  | neu  | ang  | hap  | sad             | neu  | ang             | hap  | sad  | neu  | ang  | hap  | sad  |
| neu | 57.5 | 9.5  | 16.4 | 16.6 | 63.7 | 6.7  | 16.7 | 12.7            | 54.4 | 9.3             | 18.5 | 17.7 | 57.3 | 7.3  | 19.6 | 15.7 |
| ang | 11.9 | 69.1 | 15.5 | 3.5  | 10.8 | 70.5 | 16.7 | 2.0             | 12.7 | 68.1            | 16.7 | 2.5  | 10.3 | 72.0 | 15.3 | 2.2  |
| hap | 21.1 | 16.2 | 51.1 | 11.5 | 21.9 | 13.1 | 55.6 | 9.4             | 21.6 | 18.6            | 47.6 | 12.2 | 20.5 | 16.1 | 51.8 | 11.4 |
| sad | 13.8 | 2.6  | 6.0  | 77.6 | 12.8 | 2.5  | 7.0  | 77.7            | 16.1 | 3.9             | 6.2  | 73.7 | 12.5 | 2.8  | 5.3  | 79.3 |

• PCA embedding of z: (a) training set on setting 1, (b) training set on setting 2, (c) test set on setting 1, (d) test set on setting 2





Bi-RNN





## 4. Conclusion

#### Conclusion

- Introducing center loss with proper  $\lambda$  can effectively improve the SER performance on both STFT spectrogram and Mel-spectrogram input
- The Mel-spectrogram input, which reduces the dimension based on the characteristics of human hearing, outperforms the STFT spectrogram input
- The 2-D PCA embedding of the learned features illustrates the discriminative power of using center loss, which enables the neural network to learn more effective features for SER

# 5. Acknowledgment

This work is supported by National Natural Science Foundation of China (NSFC) (61433018, 61375027), joint research fund of NSFC-RGC (Research Grant Council of Hong Kong) (61531166002, N\_CUHK404/15) and National Social Science Foundation of China (13&ZD189)

