矩阵的相似对角化

Dezeming Family

2021年7月20日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

20210720: 完成第一版。

目录

二 实对称矩阵相似对角化 2 1 性质一:特征值都是实数 2 2 性质二:相异特征值对应特征向量正交 2 3 性质三: k 重特征值对应 k 个特征向量 2 4 正交相似对角化	2																		化	りなけ	日化	派车柜	称铂	立动	_
2 2 性质二: 相异特征值对应特征向量正交	4																		ľ	^^J _	H 12	-17-11	ハシン	~^1	_
23 性质三: k 重特征值对应 k 个特征向量																	数	是实	直都,	寺征任	: !	5一:	性质	2 1	
						 							交	む正?	向量	身征	应华	直对	宇征化	相异物	; 7	5二:	性质	2 2	
24 正交相似对角化						 							量	E向i	特征	: 个	应1	直对	手征 位	x 重幣	: 1	5三:	性质	2 3	
																			匕	付角化	似	を相付	正交	2 4	
参考文献																									

一 相似对角化

矩阵的相似对角化就是,对于方阵 A,存在相似变换矩阵 P,使得 $P^{-1}AP = \Lambda$, Λ 是对角矩阵。 我们变换一下公式:

$$P^{-1}AP = \Lambda \tag{--.1}$$

$$AP = P\Lambda \tag{--.2}$$

设 P 的第 i 列的列向量为 P_i :

$$A \begin{bmatrix} P_1 & P_2 & \dots & P_n \end{bmatrix} = \begin{bmatrix} P_1 & P_2 & \dots & P_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
 (-.3)

$$= \begin{bmatrix} \lambda_1 P_1 & \lambda_2 P_2 & \dots & \lambda_n P_n \end{bmatrix} \tag{--.4}$$

也就是说, $AP_i = \lambda_i P_i$,现在我们可以去联想一下矩阵的特征值和特征向量了,即 λ_i 为矩阵 A 的第 i 个特征值, P_i 为对应于 λ_i 的特征向量。

P 需要是一个可逆矩阵,也就是说 A 的特征向量需要是线性无关的,即,n 阶方阵 A 与对角矩阵相似的充分必要条件是 A 有 n 个线性无关的特征向量。

我们可以知道,矩阵要想可以与对角阵相似,它的相异特征值数量不一定等于阶数,例如我们已知某个对角阵为:

$$\Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(-.5)

我们随便找一个可逆矩阵 P,令 $P\Lambda P^{-1} = A$,矩阵 A 的相似对角矩阵就是 Λ 了。

令 $\lambda_1, \lambda_2, ..., \lambda_m$ 是矩阵 A 的互异特征值,重数分别为 $r_1, r_2, ..., r_m$,且 $\sum_{i=1}^m r_i = n$ 。A 与对角矩阵相似的充要条件为:

$$r(A - \lambda_i E) = n - r_i, \quad i = 1, 2, ..., m$$
 (-.6)

在《矩阵与方程组的解》中, $(A - \lambda_i E)X = 0$ 的基础解系的个数为 $n - r_i$ 。对于 $AP_i = \lambda_i P_i$,可以得到 $(A - \lambda_i E)P_i = 0$,要想解出的 P_i 有 r_i 个线性无关的向量,也就是说要满足上面对秩的条件。

我们解出的向量 P_i 顺序不唯一,因此矩阵 A 的相似对角阵也不唯一,对于多重特征值,可选的特征向量不唯一,但对应的特征值是唯一的,所以说,当矩阵 A 确定了以后,如果不计顺序,对角阵 A 的对角线上的值也都是确定的。

有的矩阵可能会有复数特征值和特征向量,而我们接下来介绍的矩阵的特征值将都是实数。

二 实对称矩阵相似对角化

所谓实对称矩阵 A,其元素 $a_{i,j} = a_{j,i}$ 。

21 性质一:特征值都是实数

实对称矩阵有一个很重要的性质,即特征值都是实数,证明如下:

对于任意特征值 λ_i 对应的特征向量 α_i ,首先取共轭:

$$\overline{A}\overline{\alpha}_i = \overline{\lambda}_i \overline{\alpha}_i \tag{\Box.1}$$

其中, \overline{A} 表示对矩阵 A 的每个元素都取共轭, $\overline{\alpha}_i$ 表示对向量 α_i 的每个元素都取共轭。

因为是实对称矩阵,因此上式的两端都取转置:

$$(\overline{A}\overline{\alpha}_i)^T = (\overline{\lambda}_i\overline{\alpha}_i)^T \tag{1.2}$$

$$(A\overline{\alpha}_i)^T = (\overline{\lambda}_i \overline{\alpha}_i)^T \tag{-.3}$$

$$\overline{\alpha}_i^T A^T = \overline{\lambda}_i \overline{\alpha}_i^T \Longrightarrow \overline{\alpha}_i^T A = \overline{\lambda}_i \overline{\alpha}_i^T \tag{-.4}$$

两边同时右乘 α_i :

$$\overline{\alpha}_i^T A \alpha_i = \overline{\lambda}_i \overline{\alpha}_i^T \alpha_i \tag{\Xi.5}$$

$$\lambda_i \overline{\alpha}_i^T \alpha_i = \overline{\lambda}_i \overline{\alpha}_i^T \alpha_i \tag{\Box.6}$$

因为 α_i 是非 **0** 向量,所以 $\overline{\alpha}_i^T \alpha_i \neq 0$,所以 $\overline{\lambda}_i = \lambda_i$,因此这是一个实数。

2 2 性质二:相异特征值对应特征向量正交

设 $i \neq j$, 两个相异特征值 λ_i 和 λ_i 对应于特征向量 α_i 和 α_i ,我们对其中一个取转置,就能推出:

$$(A\alpha_i)^T = (\lambda_i \alpha_i)^T \tag{1.7}$$

$$\alpha_i^T A^T = \lambda_i \alpha_i^T = \alpha_i^T A \tag{1.8}$$

$$\alpha_i^T A \alpha_j = \lambda_i \alpha_i^T \alpha_j \tag{1.9}$$

$$\lambda_i \alpha_i^T \alpha_i = \lambda_i \alpha_i^T \alpha_i \tag{\Xi.10}$$

$$(\lambda_i - \lambda_i)\alpha_i^T \alpha_i = 0 \tag{-.11}$$

因为相异,所以 $\alpha_i^T \alpha_j = 0$,因此是正交的。

2 3 性质三: k 重特征值对应 k 个特征向量

对于一般矩阵,k 重特征值不一定有 k 个线性无关的特征向量(如果所有多重特征值都有对应重数的线性无关特征向量,则可以进行相似对角化),但实对称矩阵的 k 重特征值一定有 k 个线性无关的特征向量。即实对称矩阵一定可以进行相似对角化。

这个性质的证明涉及线性空间和不变子空间等一些理论知识,我会在矩阵分析中进行更详细的介绍,因此这里就不再证明了,但要注意的是这个性质非常重要!我们知道协方差矩阵(见 DezemingFamily 的《协方差与相关系数》)就是实对称矩阵,也就是说可以进行相似对角化,且相异特征值对应的特征向量相互正交。

2 4 正交相似对角化

对于 n 阶实对称矩阵,一定会有正交矩阵 Q(见 DezemingFamily 的《向量组和矩阵的正交性》),使得:

$$Q^{-1}AQ = Q^TAQ = \Lambda \tag{\Box.12}$$

令 $\lambda_1, \lambda_2, ..., \lambda_m$ 是实对称矩阵 A 的互异特征值,重数分别为 $r_1, r_2, ..., r_m$,且 $\sum_{i=1}^m r_i = n$ 。对于相异特征值,它们是相互正交的;对于 t 重特征值,对应的 t 个线性无关特征向量可以转化为单位正交向量,因此它们就可以构成单位正交矩阵。

使用正交矩阵对实对称矩阵的对角化又叫正交相似对角化。

参考文献

[1] 吴臻, 刘建亚. 线性代数 [M]. 山东大学出版社, 2004.