图形反走样的理论与方法初步

冯结青

浙江大学 CAD&CG国家重点实验室

主要内容

- 光栅图形中的走样现象
- 走样的分析和反走样的理论基础
- 图形反走样

主要内容

- 光栅图形中的走样现象
- 走样的分析和反走样的理论基础
- 图形反走样

走样(Aliasing)

- 走样(Aliasing)
 - 连续信号的离散采样:当信号的采样过于稀疏时,所得结果为一个低频信号的错觉

原始信号(黑线)

$$f(t) = \sin 1.9\pi t$$
$$t \in [1,20]$$

在整数 t 处采样,重建信号表现为(蓝线):

 $f(t) = \sin 0.1\pi t$

输入信号的采样与走样

四个信号: 用六个不同频率采样

图形中的走样

- 颜色空间
- 物体空间、视点空间、屏幕空间等
- 动画中时间

图形的走样现象

- 锯齿/阶梯现象
- 细节失真
- 狭小图形的遗失
- 动态图形的闪烁
- Moiré模式 //莫列波纹
- 车轮运动错觉

锯齿/阶梯现象

细节失真

细节失真

狭小图形遗失

狭小图形遗失

动态图形的闪烁

物体的真实运动

物体运动光栅化后的闪烁现象

Moiré模式 / 'mwa:rei /

在欠采样的高频区域重复出现低频特征

车轮运动错觉

旋转角度采样频率的不足

主要内容

- 光栅图形中的走样现象
- 走样的分析和反走样的理论基础
- 图形反走样

图形绘制与显示:信号角度

信号的采样与重构

1-D Fourier变换

- Fourier变换将信号I(x)从 空域变换到频域
- 得到关于频率u的频谱函数F(u)
 - u 是复数
 - 只关注复数的模: |u|
- 直流项(DC Term): F(0) = I(x)的均值
- 対称性: F(-u) = F(u)

$$F(u) = \frac{1}{2\pi} \int I(x) \exp(-jux) dx$$

$$I(x) = \frac{1}{2\pi} \int F(u) \exp(jux) du$$

其中:

$$j^{2} = -1$$

$$\exp(-jux) = \cos ux - j\sin ux$$

$$|a+bj| = \sqrt{a^{2} + b^{2}}$$

$$\arg(a+bj) = \arctan(b/a)$$

1-D Fourier变换

频域

乘积与卷积(Convolution)

- 两个函数的乘积就是函数在对 应点处的乘积
- 两个函数的卷积是函数乘积的 和,其中一个函数取固定点的 值,另一个函数取区间中所有 点的值
 - 盒函数与盒函数的卷积为 三角形帽子函数
- 空域中卷积等于频域中乘积, 反之亦然
 - f*g ⇔ FG
 - fg ⇔ F*G

采样函数

- 采样:连续函数的离散取值
 - 采样函数: s(x)
 - 函数采样: f(x)s(x)
- 采样函数s(x)
 - 一组离散峰值(函数)
 - 采样频率反比于峰值间距离 (采样分辨率)
- 采样函数s(x)的Fourier变换S(u)
 - 仍然是一组离散峰值(函数)
 - 峰值间距离对应于采样频率

空域

频域

1-D信号采样示意图

Nyquist-Shannon采样定理

- 对于带宽有限的原始信号, 采样频率至少是原始信号 最高频率的两倍,才能实 现原始信号的重构
 - 否则,第一个频谱会与原始 频谱产生干涉
- 低于Nyquist 极限的采样会 导致重构信号的走样
 - 直观上:相邻的峰和谷都有 采样!

输入信号的采样与走样

输入信号的采样与重构

预滤波(Prefiltering)

- 走样通常发生在高频部分
 - 尖锐特征、边
 - 条带特征、栅栏特征、棋盘格特征
- <u>预滤波</u>:在图像采样之前,将高频部 分去除
- 频域中的盒滤波器(Box filter)是理想 低通滤波器
 - 保存低频分量
 - 高频分量为零
- 盒滤波器Fourier逆变换是 sinc 函数 sinc(x) = sin(x)/x
- 信号与sinc 函数卷积:去除高频部分

预滤波可以防止走样

点采样

- 走样的根源:对于高频信息的低频点采样
- 只能得到精确点处的原始信号信息,如像素像 素中心
- 能否采集到连续的原始信号?

盒采样(Box Sampling)

• 对图像的盒采样(盒滤波, box filter): 每个 三角形对于像素颜色的贡献与三角形覆盖 像素面积成比例,即采样是以面积加权的

金字塔采样(Pyramid Sampling)

金字塔采样(金字塔滤波, pyramid filter):
 另一种加权采样方法,权因子不仅与三角形覆盖像素面积相关,而且与三角形和像素中心距离相关

采样滤波

- 采样信号重建可采用如下低通滤波器:点滤波器、盒 滤波器、金字塔滤波器、圆锥滤波器、高斯滤波器
- 不同的滤波器具有不同的特点和适用环境:最佳低通滤波器(sinc滤波器)具有类似于高斯滤波器的形状
- 滤波器不仅可以覆盖一个像素,也可以覆盖当前像素及其邻近像素。如果一个滤波器的覆盖范围小于一个像素,则可能产生类似于点采样的走样问题。

图形学中各种走样现象分析

闪烁/噪点(Shimmering / Buzzing)
 细节丰富的纹理或几何导致像素颜色快速改变(flickering),本质是高频的颜色变化在低频像素区间上的采样

阶梯/锯齿(Stairstepping / Jaggies)
 在几乎水平或垂直的高对比度边上,表现出明显的阶梯状边,本质是由于对具有无限频率的颜色变化进行点采样产生的。

图形学中各种走样现象分析

Moiré模式(Moiré Pattern)

在规则模式上表现出的同心曲线特征,本质是由于在规则像素网格上对规则高频模式进行(低频)采样造成的

● 运动闪烁(Strobing)

快速运动的动态物体中表现出的不正确的或不连续的运动,本质是由于在规则时间区间上对规则运动进行低频采样造成的

空间/时间走样

- 图形学的各种走样可以归纳为:空间走样 (spatial aliasing)和时间走样(temporal aliasing)
 - 空间走样:在空间域上规则采样所导致,如 设备空间、颜色空间等
 - 时间走样: 在时间域上规则采样所导致
- 各种反走样技术可以减弱、但不能消除图 形走样现象

主要内容

- 光栅图形中的走样现象
- 走样的分析和反走样的理论基础
- 图形反走样

图形反走样

- 提高屏幕分辨率
- 预滤波(Pre-filtering)
- 后滤波(Post-filtering) / 超采样(Super-Sampling)
- 时间反走样
- 半色调(Half-tone)技术

硬件方法: 提高分辨率

- 显示器分辨率提高一倍: 代价高!
 - 每个阶梯的宽度也减小一倍,直线段平直光滑一些
 - 降低走样现象,不能消除
- 人眼分辨率的极限:
 - 0.5 arcminute = (1/120)°
 - 1~2英尺观察屏幕: 600 pixels per inch!

预滤波

- 在(显示)采样前,低通滤波信号
 - 未加权的区域采样: 盒滤波器;
 - 加权的区域采样:金字塔滤波器、圆锥滤波器或高斯滤波器

未加权的区域采样

- 以直线段为例
 - 理想直线段宽度为零
 - 光栅上最细直线段为一个像素宽度
 - 部分像素?
- 反走样直线段
 - 将直线段看作具有一定宽度的狭长矩形
 - 当直线段与某像素有交时,求出两者相交区 域的面积
 - 根据相交区域的面积,确定该像素的亮度值

直线段反走样

直线段反走样

三角片反走样 [Catmull1978]

- 解析面积采样:消除边的 走样
 - 根据像素裁剪多边形;
 - 在像素内对多边形片元进 行深度排序
 - 多边形片元相互裁剪
 - 片元颜色进行面积加权
 - 面积加权颜色求和
- 计算代价非常高!

三角片反走样 [Carpenter1984]

- A-Buffer
 - 将像素剖分为4x4的位 掩码(bitmasks)
 - 将裁剪转化为位掩码的 逻辑运算
 - 位掩码同时用作索引查 找表

加权区域采样

- 简单区域采样
 - 权值处处相同,与片元之像素中心距离无关
 - 本质: 盒滤波器(box filter), 与sinc滤波器差距大!
 - 问题: 仍可能导致锯齿或闪烁
- 加权的区域采样:考虑片元到像素中心的距离
 - 采用金字塔、圆锥或高斯滤波器;更接近sinc滤波器;
 - 直线段反走样的Gupta-Sproul算法:将采样的滤波器的值存在查找表中

纹理预滤波方法

$$\sum_{\substack{x0 < x \le x1 \\ y0 < y \le y1}} i(x,y) = I(B) - I(A) - I(C) + I(D).$$

纹理的Mip-Mapping [Williams, 1983] 纹理的区域求和表(Summed Area Table) [Crow 1984]

预滤波方法总结

- 优势
 - 可以保证消除走样(无高频信息)
 - 保留了所需频率
- 缺点
 - 代价较高
 - 会引入Moiré模式
 - 与大部分绘制算法不相容: z-buffer

后滤波/超采样

后滤波(Post-filtering) / 超采样(Super-Sampling): 在一个像素内的不同位置采样多个值,对多个采样进行滤波,得到反走样结果

正确的超采样 (像素内部)

错误的超采样(像素角点)

均匀采样(Uniform Sampling)

- 均匀采样: 一个像素被均匀地剖分为子像素网格
- 均匀超采样的反走样图像质量一定优于单个点采样的图像质量
- 均匀超采样可以过滤掉部分高频信息,但是由于重复的规则采样,仍然可能产生Moiré模式

随机采样(Random Sampling)

- 随机采样: 在一个像素内部, 随机采样多个位置的值
- 随机采样克服了规则采样模式,避免了Moiré模式。
- 以随机采样代替均匀采样的代价是可能在图像中产生随机噪声,通常这个噪声可以接受
- 随机采样潜在地存在采样点聚集或空隙的问题

抖动采样(Jittered Sampling)

- 抖动采样也称分层采样(stratified sampling): 一个像素均匀剖分为多个子像素,每个子像素的采样位置在对应子像素内随机选取
- 结合了均匀采样与随机采样的优势

半抖动采样(Semi-Jittered Sampling)

- 半抖动采样:对每一个像素的超采样,采用同样的抖动 采样模式
- 优势: 算法效率高, 降低了噪音, 直线边缘更清晰
- 不足:有可能产生轻微的Moiré模式

• • • • • • • • • • • • • • • • • • • •
• • •
• • • • •

	• • •
• `	·· ·· · ·
• • • • •	\cdot \mid \cdot \cdot \mid
.	. • • . • •
• • • • •	` . .
· · · · · · · · · · · · · · · · · · ·	• • • •
. . . • .	·
l' 'l' 'l .'	•• •••
•	. . *.
	`. • •
' , ' • • ' , • • •	`. . ` <u>.</u> '
	• • •
· · . · ·. .·	• . . • .
• • • • • • •	' · •
	• • • • • • • • • • • • • • • • • • • •
	· • • •
	<u> </u>
`	۱ ، ۱ ، ۱ ، ۱
l• • • • • • • • • • • • • • • • • • •	. '••'' ••
	· . . · .
• • • • • • • • • • •	. ' ' . ' '

加权采样(Weighted Sampling)

- 所有采样点取平均作为像素的最终颜色:对应 于盒滤波器
- 加权采样:均匀、随机或抖动采样
 - 子采样具有相应的权值
 - 权值: 金字塔、圆锥或高斯滤波器

加权超采样分布(Weighted Distribution)

- 16x超采样:子采样的重要性不同,但是计算代价一样。
- 一般说来,中心4个采样的权值之和大于周围12个采样 的权值之和
- 加权超采样分布:根据权值大小,确定超采样的分布。即权值大的地方采样密集,权值小的地方采样稀疏。

自适应采样(Adaptive Sampling)

- 自适应超采样:一个递归 过程
 - 采样较少的点,分析采 样点之间的颜色变化
 - 如果颜色变化较小,则 接受当前的采样
 - 如果颜色变化较大,则 加密采样,至子采样之 间的颜色变化小于阈值
- 自适应采样的滤波:权值 的递归计算

后滤波

- 后滤波/超采样:在更高的分辨率上采样, 然后将其滤波为低分辨率结果
 - 优势
 - 概念上简单
 - 易于集成入现有绘制方法
 - 大部分情形下反走样效果较好
 - 不足
 - 计算和存储代价高
 - 不能消除走样,只更趋近于Nyquist采样极限结果

时间反走样(Temporal Antialiasing)

• 时间反走样: 帧间像素的滤波

• 空间反走样: 帧内像素的滤波

• 效果: 运动模糊

运动模糊

无运动模糊

运动模糊(Motion Blur)

- 基于时间空间的超采样实现运动模糊
- 模拟 1/30秒内的运动模糊:在1/30 秒内均匀采样多个时间点,绘制对 应的图像,并将图像进行时间轴的 滤波,得到运动模糊图像
- 如果在一幅图像内,一个物体移动 了16个像素,那么采样16个或更少 的图像,就足以产生运动模糊

软件方法反走样

- 软件方法
 - 在高分辨率模式下计算像素的颜色值
 - 计算非加权(/加权)平均的颜色值
 - 在较低分辨率模式下显示
- 单一灰度下的图形反走样: 半色调

半色调(halftone)

- 简单区域取样和加权区域取样技术的前提 是多级灰度,利用多级灰度来提高视觉分 辨率,进行图形反走样
- 对于单一灰度显示(黑白),采用半色调技术进行反走样(基于人眼的综合能力)
 - 对于给定的分辨率,将几个像素组合成一个单元来获得多级灰度

半色调技术举例

单一灰度的半色调

彩色的半色调

主要内容

- 光栅图形中的走样现象
- 走样的分析和反走样的理论基础
- 图形走样

http://www.cad.zju.edu.cn/home/jqfeng/CG/CG14.zip

致谢

谢谢各位同学

欢迎同学们提出宝贵意见和建议,以便在将来的教学中进一步改进:

Email: jqfeng@cad.zju.edu.cn

微信: 13588104842