নির্বাচনি পরীক্ষার প্রশ্নপত্র ও উত্তরমালা

সকল বোর্ডের জন্য গুর—ত্বপূর্ণ কলেজসমূহের প্রশ্নপত্র ও উত্তরমালা

৬৫. রাজউক উত্তরা মডেল কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

& × 2 = 30

ক.
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ এবং $C = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ হলে প্রমাণ কর যে, $(AB)C = A(BC)$.

খ.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 হলে $A^2 - 4A - 5I$ নির্ণয় কর, েষখানে $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

গ. প্রমাণ কর থে,
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 - 1 & y^3 - 1 & z^3 - 1 \end{vmatrix} = (xyz - 1)(x - y)$$
$$(y - z)(z - x).$$

২. যে কোনো একটি প্রশ্নের উত্তর দাও:

 $\alpha \times \lambda = 0$

- ক. Mathematics শব্দটির বর্ণগুলোকে কত প্রকারে সাজানো যায় তা বের কর এবং এদের কতগুলোতে স্বরবর্ণগুলো একত্রে থাকবে?
- খ. ৯ ব্যক্তির একটি দল দুইটি যানবাহনে ভ্রমণ করবে, যার একটিতে সাতজনের বেশি এবং অন্যটিতে চার জনের বেশি ধরে না। দলটি কত প্রকারে ভ্রমণ করতে পারবে?

খ-বিভাগ: জ্যামিতি ও ভেক্টর

৩. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

& × > = &

- ক. ABC ত্রিভুজের BC বাহুর মধ্যবিন্দু M. ভেক্টর পদ্ধতিতে প্রমাণ কর যে, $AB^2 + AC^2 = 2$ $(AM^2 + BM^2)$.
- খ. $\vec{A}=\hat{i}-2\hat{j}-2\hat{k}$ এবং $\vec{B}=6\hat{i}+3\hat{j}+2\hat{k}$ ভেক্টর দুইটির অন্তর্গত কোণ নির্ণয় কর। \vec{A} ভেক্টর বরাবর \vec{B} ভেক্টরের উপাংশ এবং অভিক্ষেপ নির্ণয় কর এবং দেখাও যে, এদের সাংখ্যিক মান সমান।
- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

% < ७ = ७ × ७

- ক. একটি সরলরেখার সমীকরণ নির্ণয় কর, যার অক্ষদ্বয়ের মধ্যবর্তী খণ্ডিত অংশ (-4, 3) বিন্দুতে 5 % 3 অনুপাতে অন্তর্বিভক্ত হয়।
- খ. দুটি সরলরেখা (6, 7) বিন্দু দিয়ে যায় এবং 3x + 4y = 11 রেখার সাথে 45° কোণ উৎপন্ন করে। রেখা দুটির সমীকরণ নির্ণয় কর এবং তাদের সমীকরণ থেকে দেখাও যে, তারা পরস্পার লম্ভাবে অবস্থান করে।
- গ. x=0, y=0 এবং x=a রেখা তিনটিকে স্পর্শ করে এরূপ বৃত্তের সমীকরণ নির্ণয় কর।

ঘ. $x^2 + y^2 + 4x - 8y + 2 = 0$ বৃত্তের স্পর্শক অক্ষ দুটি হতে একই চিহ্নবিশিষ্ট সমমানের অংশ ছেদ করে। স্পর্শকের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

৫. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $o \ell = \xi \times 3$

- ক. $v = cos^2x$ এর লেখচিত্র অংকন কর. যেখানে $-180^\circ \le x \le 180^\circ$
- খ. $\cot A + \cot B + \cot C = 0$ হলে প্রমাণ কর যে, $(\Sigma \tan A)^2 = \Sigma \tan^2 \Delta$
- গ. $\tan\theta+\sin\theta=m$ এবং $\tan\theta-\sin\theta=n$ হলে প্রমাণ কর যে, $m^2-n^2=4\sqrt{mn}.$

৬. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × ₹ = **\$**0

- ক. যদি $\cot \alpha + \cot \beta = a$, $\tan \alpha + \tan \beta = b$ এবং $\alpha + \beta = \theta$ হয়, তবে প্রমাণ কর যে, $(a-b)\tan \theta = ab$
- খ. যদি $A+B+C=\pi$ হয়, তবে প্রমাণ কর যে,

$$\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.$$

গ. ABC ত্রিভুজে প্রমাণ কর যে, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

ঘ-বিভাগ: ক্যালকুলাস

যে কোনো একটি প্রশ্নের উত্তর দাও:

3 = 4 × 3

ক.
$$f(x) = \cot^{-1} (1 + x + x^2)$$
 হলে প্রমাণ কর যে,

$$f(0) + 2f(1) + f(2) = \frac{\pi}{2}.$$

খ.
$$A = R - \left\{-\frac{1}{2}\right\}, B = R - \left\{\frac{1}{2}\right\}, f : A \to B$$
 এবং

 $f({\bf x})=rac{{f x}-3}{2{f x}+1}$ দ্বারা সংজ্ঞায়িত করা হয় তবে, ফাংশনটি এক-এক এবং সার্বিক কিনা কারণসহ উল্লেখ কর। f^{-1} নির্ণয় কর।

৮. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

 $\mathfrak{d} \boldsymbol{\zeta} = \boldsymbol{c} \times \mathfrak{d}$

- ক. মান নির্ণয় কর : $\frac{\lim_{\theta \to \frac{\pi}{2}} \frac{\sec^3 \theta \tan^3 \theta}{\tan \theta}}{\tan \theta}$
- খ. x এর প্রেক্ষিতে অস্তরজ সহগ নির্ণয় কর (যে কোন **দুইটি**) ঃ

$$(i) \, \frac{\cos x - \cos 2x}{1 - \cos x} \, \, (ii) \, e^{\sqrt{\ln(\sin x)}} \, (iii) \, \cos^{-1} \, (2x\sqrt{1 - x^2})$$

- গ. $y=(p+qx)e^{-2x}$ হলে প্রমাণ কর যে, $\frac{d^2y}{dx^2}+4\,\frac{dy}{dx}+4y=0$
- ঘ. যে কোন দুইটির সমাকলন কর:

$$(i) \int \frac{1}{1+tanx} dx (ii) \int \frac{dx}{(x-3)\sqrt{x+1}} (iii) \int \frac{xe^x dx}{(1+x)^2}$$

১. খে)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

২. (ক) 4989600, 120960 (খ) 246

9. (**4**)
$$\cos^{-1}\left(\frac{-4}{21}\right), -\frac{4}{3}\hat{A}, -\frac{4}{3}$$

8. (
$$\mathbf{\overline{\Phi}}$$
) $9x - 20y + 96 = 0$ ($\mathbf{\overline{Y}}$) $x - 7y + 43 = 0$, $7x + y - 49 = 0$

(1)
$$x^2 + y^2 - ax \pm ay + \frac{1}{4}a^2 = 0$$

(
$$\P$$
) $x + y + 4 = 0$, $x + y - 8 = 0$

৭. (খ)
$$f^{-1}(x) = \frac{x+3}{1-2x}$$

b. (**a**)
$$\frac{3}{2}$$
 (**b**) (i) $-2 \sin x$ (ii) $\frac{e^{\sqrt{\ln(\sin x)}}}{2\sqrt{\ln(\sin x)}} \cot x$ (iii) $-\frac{2}{\sqrt{1-x^2}}$

(
$$\P$$
) (i) $\frac{1}{2}x + \frac{1}{2}\ln|\cos x + \sin x| + c$ (ii) $\frac{1}{2}\ln\left|\frac{\sqrt{x+1}-2}{\sqrt{x+1}+2}\right| + c$

$$(iii)\,\frac{e^x}{x+1}+c.$$

৬৬. রাজউক উত্তরা মডেল কলেজ ঢাকা

বিষয় কোড : ২ ৬ ৬ পর্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

0 **₹** = **\$** ∨ **3**

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

- ১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
 - ক. (i) a, b বাস্তব সংখ্যা হলে, দেখাও যে, |a − b| ≤ |a| + |b|

 (ii) সমাধান কর এবং সমাধান সেট সংখ্যারেখায় দেখাও :

 1
 - $\frac{1}{|3x-5|} \ge 2$
 - খ. এককের জটিল ঘনমূল ω এবং x+y+z=0 হলে প্রমাণ কর যে $(x+y\omega+z\omega^2)^3+(x+y\omega^2+z\omega)^3=27xyz$
 - গ. (i) $(x+iy)^{\frac{1}{3}}=p+qi$ হলে প্রমাণ কর যে $(x-iy)^{\frac{1}{3}}=p-qi$ (ii) প্রমাণ কর $\sqrt{3}$ অমূলদ সংখ্যা।
- ২. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:

& × ₹ = **?**o

- ক. দেখাও যে, a=b না হলে $2x^2-2(a+b)x+a^2+b^2=0$ সমীকরণটির মূলগুলো বাস্তব হতে পারে না।
- খ. দেখাও যে, $\left(1-4x\right)^{-\frac{1}{2}}$ এর বিস্তৃতিতে x^{r} এর সহগ $\frac{(2r)!}{(r!)^{2}}$
- গ. $ax^2+bx+c=0$ সমীকরণের মূলদ্বয় α এবং β হলে $\alpha^2+\beta$ এবং $\beta^2+\alpha$ মূলবিশিষ্ট সমীকরণটি নির্ণয় কর।
- একটি পানীয় তৈরি কারখানায় দুইটি শাখা I এবং II এর উভয়ই A, B
 এবং C তিন ধরনের পানীয় বোতলজাত করে। শাখা দুইটির দৈনিক
 উৎপাদন ক্ষমতা কিরপ:

শাখা	A প্রকারের পানীয়	B প্রকারের পানীয়	C প্রকারের পানীয়
I	3000	1000	2000
II	1000	1000	6000

A প্রকারের পানীয়ের মাসিক চাহিদা 24000 বোতল, B প্রকারের 16000 বোতল এবং C প্রকারের 48000 বোতল। I এবং II শাখার দৈনিক কার্যপরিচালনায় ব্যয় যথাক্রমে 600 টাকা ও 400 টাকা। মাসে কারখানার কোন শাখা কত দিন চালু রাখলে তা সর্বন্দি কার্যপরিচালন ব্যয়ে পানীয়ের মাসিক চাহিদা পূরণ করতে পারবে?

অথবা, লেখচিত্রের সাহায্যে z = 2x - y এর সর্বন্দি মান নির্ণয় কর।

যার সীমাবদ্ধতা ঃ
$$x + y \le 5$$

 $x + 2y \ge 8$
 $x + y > 0$

8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × \ = 30

ক. $5x^2 + 15x - 10y - 4 = 0$ পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্র, উপকেন্দ্র, উপকেন্দ্রের দৈর্ঘ্য এবং অক্ষরেখার সমীকরণ নির্ণয় কর।

- খ. একটি উপবৃত্তের উৎকেন্দ্রিকতা $\frac{4}{5}$ এবং তা $\left(\frac{10}{3},\sqrt{5}\right)$ বিন্দু দিয়ে গমন করে। উপবৃত্তের অক্ষ দুইটিকে x ও y অক্ষ বরাবর হলে উপবৃত্তির সমীকরণ নির্ণয় কর।
- গ. একটি অধিবৃত্তের উপকেন্দ্র দুইটির দূরত্ব 16 একক এবং উৎকেন্দ্রিকতা √2 এবং এর অক্ষ দুইটি স্থানাস্কের অক্ষ বরাবর। অধিবৃত্তের সমীকরণ নির্ণয় কর।
- **৫.** যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × ≥ = >c

- ক. প্রমাণ কর যে, $\sin^{-1}\frac{3}{5} + \frac{1}{2}\cos^{-1}\frac{5}{13} \cot^{-1}2 = \tan^{-1}\frac{28}{29}$
- খ. সমাধান কর: $2\sin x \sin 3x = 1$; যখন $0 \le x \le 2\pi$
- গ. (i) সমাধান কর: $\tan x + \tan 2x + \sqrt{3} \tan x \tan 2x = \sqrt{3}$ (ii) প্রমাণ কর: $\cot \cos^{-1} \sin \tan^{-1} \frac{3}{4} = \frac{3}{4}$
- ৬. ক. লম্বাংশের উপপাদ্যটির বর্ণনা ও প্রমাণ দাও।
 - খ. ACB একটি রশ্মির দুই প্রান্ত একই অনুভূমিক রেখার A এবং B বিন্দুতে আবদ্ধ আছে। রাশিটির C বিন্দুতে W ওজনের একটি বস্তুকে গিট দিয়ে বাঁধা আছে। ACB ত্রিভূজের ক্ষেত্রফল ∆ দ্বারা সূচিত হলে

দেখাও যে, রশ্মিটির CA অংশের টান $\dfrac{wb}{4c\Delta}\,(c^2+a^2-b^2)$ ে

- ক. কোন দৃঢ় বস্তুর উপর একই সময় কার্যরত দুইটি সদৃশ সমান্তরাল বলের লব্ধির মান, দিক ও প্রয়োগ বিন্দুর অবস্থান নির্ণয় কর।
- খ. ABC ত্রিভুজের BC, CA ও AB বাহু বরাবর যথাক্রমে l.BC, m.CA, n.AB মানের বলত্রয় ক্রিয়া করে। যদি l+m+n=0 হলে দেখাও যে এদের লব্ধি ত্রিভুজটির ভরকেন্দ্রগামী।
- ৭. ক. সচরাচর সংকেতমালায় প্রমাণ কর যে, v = u ft
 - খ. একটি বস্তুকণা স্থিরাবস্থা থেকে একটি সরলরেখা বরাবর যাত্রা করে প্রথমে $_{\rm X}$ সুষম ত্বনে এবং পরে $_{\rm Y}$ সুষম মন্দনে চলে। যদি তা $_{\rm A}$ মিনিট সময়ে যাত্রা বিন্দু থেকে $_{\rm C}$ কি.মি. দূরত্বে গিয়ে থামে, তবে প্রমাণ কর যে, $\frac{1}{\rm x}+\frac{1}{\rm y}=4$.

ত্যথকা

ক. একটি বস্তু u আদিবেগে ভূমির সহিত α কোণে নিক্ষিপ্ত হলে উহার দীর্ঘতম পাল্লা এবং সর্বোচ্চ উচ্চতা নির্ণয় কর। একটি পাথর কুয়ার ভিতর ফেলার t সময় পরে পানিতে এর পতন শব্দ শোনা গেল। শব্দের বেগ v এবং কুয়ার গভীরতা h হলে,

প্রমাণ কর যে, $h = \frac{gt^2}{2\left(1 + \frac{gt}{v}\right)}$, যখন v >> h

৮. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

ক. নিশ্রেক্ত উপাত্তের জন্য পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় কর।

প্রাপ্ত নম্বর	31-40	41-50	51-60	61-70	71-80	81-90	91- 100
							100
ছাত্ৰ	6	8	10	12	5	7	2
সংখ্যা							

- খ. একটি বাক্সে 3টি সাদা ও 2টি কালো বল আছে। অপর একটি বারে 2টি সাদা ও 5টি কালো বল আছে। নিরপেক্ষভাবে প্রত্যেক বাক্স হতে একটি করে বল তোলা হলে দুইটি বলের মধ্যে অন্ততঃ একটি সাদা হওয়ার সম্ভাব্যতা নির্ণয় কর।
- গ. 10 থেকে 30 পর্যন্ত সংখ্যাগুলি হতে যে কোন একটিকে ইচ্ছামত নিলে সেই সংখ্যাটি মৌলিক অথবা 5 এর গুণিতক হওয়ার সম্ভাব্যতা নির্ণয় কর।

১. (ক) (ii) $\frac{3}{2} \le x \le \frac{11}{6}$ এবং $x \ne \frac{5}{3}$,

$$S = \{x \in \nabla : \frac{3}{2} \le x \le \frac{11}{6}$$
 এবং $x \ne \frac{5}{3}\},$

- **২.** (গ) $a^3 x^2 a(b^2 2ac ab)x + ac^2 + a^2c b^3 + 3abc = 0$
- ৩. I -শাখা মাসে 4 দিন, II-শাখা মাসে 12 দিন। অথবা, Z_{min} = - 5

8. $(\mathbf{\overline{\Phi}})\left(-\frac{3}{2}, -\frac{61}{40}\right); \left(-\frac{3}{2}, -\frac{41}{40}\right); 2; 2x + 3 = 0$

(খ)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 (গ) $x^2 - y^2 = 32$

- **6.** (4) $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$, $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$
 - (গ) (i) $x=\frac{n\pi}{3}+\frac{\pi}{9}$, যখন n এর মান শূন্য বা যেকোনো পূর্ণ সংখ্যা।
- ৮. (ক) 16.72; 279.56; (খ) $\frac{5}{7}$ (গ) $\frac{11}{21}$

৬৭. ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা

বিষয় কোড : | ২ | ৬ | ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তন্ত্রীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

যে কোনো **দুইটি** প্রশ্নের উত্তর দাও: ١.

6 × 2 = 30

ক. শূন্য ম্যাট্রিক্স কাকে বলে?

 $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$ হলে, দেখাও যে, $A^2 + 2A - 11I$ একটি শূন্য

- খ. দেখাও যে, $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 1 & y^3 1 & z^3 1 \end{vmatrix} = (xyz 1)(x y)$
- গ. যদি $A = \begin{bmatrix} 1 & 4 & 0 \\ -1 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ হয়, তবে A এর বিপরীত ম্যাট্রিক্স নির্ণয়

- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, যে কোন ত্রিভুজ ABC তে
- যে কোনো তিনটি প্রশ্নের উত্তর দাও:

36 = C × 3

- ক. একটি সরলরেখা (-2, -5) বিন্দু দিয়ে অতিক্রম করে এবং x ও y অক্ষদ্বয়কে যথাক্রমে A ও B বিন্দুতে ছেদ করে যেন OA + 2.OB = 0.
 - O মূলবিন্দু **হলে**, সরলরেখাটির সমীকরণ নির্ণয় কর।
- খ. দুটি সরলরেখা (3, 2) বিন্দু দিয়ে যায় এবং x 2y = 3 রেখার সাথে 45° কোণ উৎপন্ন করে। রেখা দুটির সমীকরণ নির্ণয় কর।
- গ. একটি বত্তের সমীকরণ নির্ণয় করো যা v অক্ষকে $(0,\sqrt{3})$ বিন্দুতে স্পর্শ করে এবং (-1, 0) বিন্দু দিয়ে অতিক্রম করে। বৃত্তটির কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর।
- ঘ. 3x + by 1 = 0 রেখাটি $x^2 + y^2 8x 2y + 4 = 0$ বৃত্তকে স্পর্শ করে। b এর মান নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. যদি $\cos\theta \sin\theta = \sqrt{2} \sin\theta$ হয়, তবে প্রমাণ কর যে, $\cos\theta + \sin\theta = \sqrt{2}\cos\theta.$
- খ. প্রমাণ কর যে, $\frac{1}{\sin 10^{\circ}} \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$.
- গ. লেখচিত্র, $y = \sin 2x$, $0 \le x \le \pi$.
- যে কোনো দুইটি প্রশ্নের উত্তর দাও:

 $6 \times 2 = 20$

ক. যদি $A + B + C = \pi$ হয়, প্রমাণ কর যে, $\sin(B + C - A) + B$ sin(C + A - B) + sin(A + B - C) = 4sinAsinBsinC.

- যে কোনো **একটি** প্রশ্নের উত্তর দাও:
 - - ক. একজন সংকেত দাতার ছয়টি পতাকা আছে, যাদের 1টি সাদা, 2টি সবুজ ও 3টি লাল।
 - (i) তিনি একসঙ্গে 6টি পতাকা ব্যবহার করে।
 - (ii) একসঙ্গে 5টি পতাকা ব্যবহার করে কয়টি বিভিন্ন সংকেত দিতে পারবেন?
 - খ. «Degree" অক্ষরগুলো থেকে যেকোন 4টি অক্ষর প্রত্যেকবার নিয়ে কত প্রকারে বাছাই করা যেতে পারে?

খ-বিভাগঃ জ্যামিতি ও ভেক্টর

যে কোনো একটি প্রশ্নের উত্তর দাও: **9**.

 $\mathfrak{d} = \boldsymbol{\zeta} \times \mathfrak{d}$

6 × 3 = 6

ক. $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}, \vec{b} = -\hat{i} + 2\hat{j} - \hat{k}$ হলে \vec{b} ভেক্টরের উপর \vec{a} এর অভিক্ষেপ ও $\stackrel{
ightarrow}{a}$ ভেক্টরের উপর $\stackrel{
ightarrow}{b}$ এর অভিক্ষেপ নির্ণয় কর।

- খ. প্রমাণ কর যে, $16\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}\cos\frac{14\pi}{15} = 1$.
- গ. যদি একটি ত্রিভুজে $a^4+b^4+c^4=2c^2(a^2+b^2)$ হয়, তবে প্রমাণ কর যে, $c=45^\circ$ বা, 135° .

ঘ-বিভাগ: ক্যালকুলাস

৭. যে কোনো একটি প্রশ্নের উত্তর দাও:

6 × 2 = 6

- ক. (i) $A=\{-4,-2,0,2,4\}$ ও $f\colon A\to R$ ফাংশনটি $f(x)=x^2+2x+3$ দ্বারা সূচিত হলে f এর রেঞ্জ নির্ণয় কর।
 - (ii) $f: R \to R$ ফাংশনটির সংজ্ঞা নিংরূপ:

$$f(x) = \begin{cases} 3x - 1; & x > 3 \\ x^2 - 2; & -2 \le x \le 3 \\ 2x + 3; & x < -2 \end{cases}$$

মান নির্ণয় কর: (i) f(2), (ii) f(4), (iii) f(-3)

- খ. (i) $f(x)=rac{1-x}{1+x}$ হলে প্রমাণ কর যে, $f(\cos\theta)= anrac{2 heta}{2}$
 - (ii) $y=f(x)=\dfrac{ax+b}{cx-a}$ হলে $f^{-1}(y)$ নির্ণয় কর। প্রমাণ কর যে, $f^{-1}(x)=f(x)$.

৮. যে কোনো তিনটি প্রশ্নের উত্তর দাও:

36 = 0 × 3

- ক. মূল নিয়মে $_{X}$ এর সাপেক্ষে e^{mx} এর অন্তরক সহগ নির্ণয় কর। ৫
- খ. x এর সাপেক্ষে অন্তরক সহগ নির্ণয় কর। (যে কোন ২টি)

$$2 \times 2 = 6$$

- (i) $\sin^2(\ln x^2)$; (ii) $\tan^{-1}\frac{a+bx}{a-bx}$; (iii) $\tan(\sin^{-1}x)$
- গ. $y = x^2 + \sqrt{1-x^2}$ বক্ররেখাটি উপর যে সব বিন্দুতে স্পর্শক xঅক্ষের উপর লম্ব তাদের স্থানান্ধ নির্ণয় কর।
- ঘ. যে কোন ২টি যোগজ নির্ণয় কর। ২ × ২:
 - $\begin{array}{ll} \text{(i)} \int \frac{x^2 t a n^{-1} x^3}{1+x^6} \, dx; & \text{(ii)} \int \frac{1}{1+3 cos^2 \theta} \, d\theta; \\ \text{(iii)} \int^1 x^3 \sqrt{1+3x^4} \, dx & \end{array}$

- $\mathbf{3.} \quad (\mathfrak{N}) \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{1}{6} & \frac{1}{6} & -\frac{1}{6} \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$
- ২. (ক) (i) 60 (ii) 60 (খ) 7
- **৩.** (ক) ণ্ট $\frac{9}{\sqrt{6}}$, $-\frac{9}{\sqrt{14}}$
- **8.** (**a**) x 2y = 8 (**a**) 3x y 7 = 0, x + 3y 9 = 0

- (গ) $x^2 + y^2 + 4x 2\sqrt{3}y + 3 = 0$; $(-2, \sqrt{3})$; 2 একক।
- (ঘ) 2 অথবা, $-\frac{1}{6}$
- **9.** ($\overline{\Phi}$) (i) {3, 11, 27} (ii) i. f(2) = 2, ii. f(4) = 11, iii. f(-3) = -3
 - (খ) (ii) $f^{-1}(y) = \frac{ay + b}{cy a}$
- ৮. (ক) me^{mx} (খ) $(i)\frac{2}{x}\sin(4\ln x)$ $(ii)\frac{ab}{a^2+b^2x^2}$ $(iii)(1-x^2)^{-3/2}$
 - (গ) (-1, 1), (1, 1)
 - (\P) (i) $\frac{1}{6} (\tan^{-1} x^3)^2 + c$ (ii) $\frac{1}{2} \tan^{-1} \left(\frac{\tan \theta}{2} \right) + c$ (iii) $\frac{7}{18}$

৬৮. ভিকারুননিসা নূন স্কুল এন্ড কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:

& × \$ = \$0

- ক. প্রমাণ কর : |a| + |b| ≥ |a + b|
- খ. যদি হয়, $(aw^2+b+cw)^3+(aw+b+cw^2)^3=0$ হয়, তবে প্রমাণ কর যে, $a=\frac{1}{2}(b+c)$ বা $b=\frac{1}{2}(c+a)$, বা $c=\frac{1}{2}(a+b)$
- গ. যদি $(1+x)^n=a_0+a_1x+a_2x^2+....+a_nx^n$ হয়, তবে দেখাও যে, $(a_0-a_2+a_4....)^2+(a_1-a_3+a_5...)^2=a_0+a_1+a_2+....\,a_n$
- ২. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:

& × \ = \ >0

- ক. যদি $px^2+qx+r=0$ এর একটি মূল $rx^2+qx+p=0$ এর একটি মূলের দ্বিঙণ হয়, তাহলে দেখাও যে, 2p=r অথবা, $(2p+r)^2=2q^2$
- খ. $27x^2 + 6x (m+2) = 0$ সমীকরণটির একটির মূল অপরটির বর্গ হলে, m এর মান নির্ণয় কর।
- গ. যদি $(a+3x)^n$ এর বিস্কৃতিতে প্রথম তিনটি পদ যথাক্রমে $b, \frac{21}{2}bx$ এবং $\frac{189}{4}\,bx^2$ হয় তাহলে a,b এবং n এর মান বের কর।

খ-বিভাগ: জ্যামিতি

- ৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- & × 2 = 30

- ক. উপকেন্দ্র (0,0) এবং শীর্ষ (-2,-1) বিন্দুতে। নিয়ামক রেখা ও পরাবত্তটির সমীকরণ নির্ণয় কর।
- খ. $\frac{4}{5}$ উৎকেন্দ্রিকতা বিশিষ্ট ও $\left(\frac{10}{3}, \sqrt{5}\right)$ বিন্দু দিয়ে অতিক্রমকারী উপবৃত্তের অক্ষ দুইটি স্থানাংকের অক্ষদ্বয়ের উপর অবস্থিত। উপবৃত্তটির সমীকরণ নির্ণয় কর।
- গ. দেখাও যে, $x^2-8y^2=2$ অধিবৃত্তের নিয়ামকের সমীকরণ $3x=\pm 4$ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য $\frac{1}{2\sqrt{2}}$.

গ-বিভাগঃ ত্রিকোণমিতি

8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

◊ × ≥ = > 0

- ক. প্রমাণ কর যে,
 - (i) $\sin^{-1}(\sqrt{2}\sin\theta) + \sin^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2}$
 - (ii) $\sin^2\left(\cos^{-1}\frac{1}{3}\right) \cos^2\left(\sin^{-1}\frac{1}{\sqrt{3}}\right) = \frac{2}{9}$
- খ. সমাধান নির্ণয় কর: $4\sin\theta\cos\theta=1-2\sin\theta+2\cos\theta$; $0<\theta<\pi$
- গ. সমাধান কর : $4\cos x \cos 2x \cos 3x = 1$; যখন $0 < x < \pi$

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- বলের ত্রিভুজ সূত্র বর্ণনাসহ প্রমাণ কর। ক.
 - কোন বিন্দুতে ক্রিয়ারত P ও Q মানের দুইটি বলের লব্ধি তাদের অন্তর্গত কোণকে এক তৃতীয়াংশে বিভক্ত করে। দেখাও যে, তাদের অন্তর্গত কোণের পরিমাণ $3\cos^{-1}rac{P}{2Q}$ এবং লব্ধির মান $rac{P^2-Q^2}{Q},$ P>Q

- ক. দুইটি অসদৃশ, অসমান সমান্তরাল বলের লব্ধির মান, দিক ও ক্রিয়ারেখা নির্ণয় কর।
- খ. ABC ত্রিভুজের পরিকেন্দ্র O একটি বল P, AO বরাবর ক্রিয়ারত। দেখাও যে, B ও C বিন্দুতে P এর সমান্তরাল উপাংশদ্বয়ের অনুপাত sin2B 8 sin2C
- ক. সচরাচর সংকেতমালায় প্রমাণ কর যে, $v^2 = u^2 + 2fs$.
 - খ. দুইটি কণা একই সরলরেখায় যথাক্রমে a এবং b সমত্বরণে চলছে। ঐ সরলরেখার কোনো নির্দিষ্ট বিন্দু হতে যখন তাদের দূরতু x এবং y, তখন তাদের বেগ যথাক্রমে u এবং v, দেখাও যে, তারা দুইবারের অধিক মিলিত হতে পারে না। যদি তারা দুইবার মিলিত হয়, তবে মিলিত $\sqrt{(u-v)^2-2(x-y)(a-b)}$.
 - ক. প্রমাণ কর যে, উলম্ব তলে প্রক্ষিপ্ত কোনো কণার গতিপথের সমীকরণ $y = x \tan \alpha \left(1 - \frac{x}{R}\right)$
 - খ. একটি টাওয়ারের চূড়া হতে একখণ্ড পাথর x মিটার নিচে নামার পর অপর একখণ্ড পাথর চূড়ার y মিটার নিচ হতে ফেলে দেয়া হল। যদি উভয়েই স্থিরাবস্থা হতে পড়ে এবং একই সঙ্গে ভূমিতে পতিত হয়, তবে দেখাও যে, টাওয়ারের উচ্চতা $\dfrac{(x+y)^2}{4x}$ মিটার।

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

- নিত্তর যোগাশ্রয়ী প্রোগ্রামকে লেখচিত্রের সাহায্যে সমাধান কর: সর্বোচ্চকরণ কর : Z = 2x + y
 - যেখানে $x + 2y \le 10$, $x + y \le 6$, $x y \le 2$, $x 2y \le 10$, $x \ge 0$, $y \ge 0$

একজন লোক সর্বাধিক 2000 টাকা ব্যয়ে কয়েকটি কাপ ও প্লেট কিনতে চান। প্রতি কাপের দাম 120 টাকা ও প্লেটের দাম 80 টাকা। অন্যুন 3টি প্লেট ও অনধিক 6টি কাপ কেনার শর্তে ঐ টাকায় কোন প্রকারের কতগুলো জিনিস কিনলে তিনি মোট সর্বাধিক জিনিস কিনতে পারবেন?

চ-বিভাগ: পরিসংখ্যান

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

& × ≥ = >0

ক. নিহুর তথ্য হতেণ্ড

সাপ্তাহিক আয় (টাকায়)	10-20	20-30	30-40	40-50	50-60	60-70
শ্রমিকদের সংখ্যা	5	10	15	20	10	5

পরিমিত ব্যবধান এবং ভেদাংক নির্ণয় কর।

- খ. 800 জন পরীক্ষার্থীর মধ্যে 160 জন ইংরেজীতে, 80 জন পরিসংখ্যানে এবং 40 জন উভয় বিষয়ে ফেল করে। একজন পরীক্ষার্থী দৈবভাবে নেয়া হলো। সম্ভাবনা নির্ণয় কর যে, পরীক্ষার্থী
 - (i) ইংরেজীতে ফেল কিন্তু পরিসংখ্যানে পাশ
 - (ii) কেবল এক বিষয়ে পাশ
 - (iii) বড়জোর এক বিষয়ে পাশ
- একটি পাত্রে 4টি লাল বল ও 6টি কালো বল আছে। পাত্র হতে দুইটি বল দৈবভাবে উঠানো হলে বল দুইটিণ্ড
 - (i) কালো
 - (ii) একই রঙের
 - (iii) ভিন্ন রঙের হওয়ার সম্ভাবনা কত?

- **২.** (*) m = 6, -1 (*) a = 2, b = 128, n = 7
- ৩. (ক) 2x + y + 10 = 0; $(x 2y)^2 40x 20y 100 = 0$ (খ) $\frac{x^2}{25} + \frac{y^2}{9} = 1$

 - **8.** (*) $\frac{\pi}{6}$, $\frac{2\pi}{3}$, $\frac{5\pi}{6}$ (*) $\frac{\pi}{8}$, $\frac{\pi}{3}$, $\frac{3\pi}{8}$, $\frac{2\pi}{3}$, $\frac{5\pi}{8}$, $\frac{7\pi}{8}$

- 9. $Z_{\text{max}} = 10$ অথবা, 2টি কাপ ও 22টি প্লেট
- **৮. (ক)** পরিমিত ব্যবধান = 13.3678, ভেদাঙ্ক = 178.70
 - (খ) (i) $\frac{3}{20}$ (ii) $\frac{1}{5}$ (iii) $\frac{1}{4}$
 - (\mathfrak{N}) (i) $\frac{1}{3}$ (ii) $\frac{7}{15}$ (iii) $\frac{8}{15}$

৬৯. নটর ডেম কলেজ, ঢাকা

বিষয় কোড : | ২ | ৬ | ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.
- 0**८** = ⋟ × Ֆ
- ক. A^3 নির্ণয় কর, যেখানে, $A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$
- খ. প্রমাণ কর যে, $\begin{vmatrix} b^2+c^2 & ab & ca\\ ab & c^2+a^2 & bc\\ ca & bc & a^2+b^2 \end{vmatrix} = 4a^2b^2c^2$ গ. প্রমাণ কর যে, $\begin{vmatrix} (b+c)^2 & a^2 & a^2\\ b^2 & (c+a)^2 & b^2\\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc (a+b+c)^3$
- যে কোনো একটি প্রশ্নের উত্তর দাও:

- ক. গণিতের 5 খানা, পদার্থ বিজ্ঞানের 3 খানা ও রসায়ন বিজ্ঞানের 2 খানা পুস্তককে একটি তাকে কত প্রকারে সাজানো যেতে পারে যাতে একই বিষয়ের পুস্তকগুলো একত্রে থাকে?
- খ. 'DEGREE' শব্দটির বর্ণগুলো হতে 4টি বর্ণের কতগুলো শব্দ গঠন করা যাবে?

খ-বিভাগ: জ্যামিতি ও ভেক্টর

যে কোনো **একটি** প্রশ্নের উত্তর দাও:

ক. কোন ত্রিভুজের শীর্ষ বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে

 $\delta = \zeta \times \delta$

 $\hat{i}+2\hat{j}-3\hat{k},\ 2\hat{i}-\hat{j}+\hat{k},\ 3\hat{i}+\hat{j}+2\hat{k}$ হলে ত্রিভুজটির বাহুগুলোর দৈর্ঘ্য নির্ণয় কর।

- খ. ভেক্টরের সাহায্যে দেখাও যে, ত্রিভুজ ABC-এ, $a = b \cos C + c \cos B$.
- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

 $0 \times 0 = 0 \times 0$

- ক. ABC ত্রিভূজের BC, CA, AB বাহুত্রয়ের মধ্যবিন্দু যথাক্রমে (1, 2), (4, 4), (2, 8)। বাহুগুলোর সমীকরণ নির্ণয় কর।
- খ. y = 2x + 1 এবং 2y x = 4 রেখাদ্বয়ের অন্তর্গত সূক্ষ্ম কোণের সমদ্বিখণ্ডকের সমীকরণ নির্ণয় কর।
- গ. একটি ত্রিভুজের দুইটি শীর্ষ A(3, -1) ও B (-2, 3)। ত্রিভুজটির লম্বকেন্দ্র মূলবিন্দু হলে, তৃতীয় শীর্ষের স্থানাংক নির্ণয় কর।
- ঘ. $\frac{1}{2}\sqrt{10}$ ব্যাসার্ধ বিশিষ্ট একটি বৃত্ত, $(1,\,1)$ বিন্দু দিয়ে অতিক্রম করে এবং বৃত্তটির কেন্দ্র y=3x-7 রেখার উপর অবস্থিত। বৃত্তটির সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

৫. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

& × \$ = \$0

- ক. $\csc A + \csc B + \csc C = 0$ হলে দেখাও যে, $(\Sigma \sin A)^2 = \Sigma \sin^2 A$
- খ. লেখচিত্র অঙ্কন কর : $y=sin^2 \ x$ যেখানে, $-\pi \le x \le \pi$
- গ. একটি গাড়ির চাকা 200 বার আবর্তিত হয়ে 800 মিটার অতিক্রম করে। চাকার ব্যাসার্ধ নির্ণয় কর।
- **৬.** যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $\alpha \times \beta = 3\alpha$

- ক. প্রমাণ কর যে, $\sin 5\theta = 16 \sin^5 \theta 20 \sin^3 \theta + 5 \sin \theta$
- খ. দেখাও যে, $\sin^3 A \sin 3A + \cos^3 A \cos 3A = \cos^3 2A$
- গ. যে কোন ত্রিভুজ ABC-এ প্রমাণ কর যে, $b=c\cos A+a\cos C$

ঘ-বিভাগ: ক্যালকুলাস

খ. (i) $f(x) = \sqrt{9-x^2}$, f এর ডোমেন ও রেঞ্জ নির্ণয় কর। (ii) $f(x) = x^2 + 3x + 1$ এবং g(x) = 2x - 3 হলে, (gof) (2) এবং (fog)(2) নির্ণয় কর।

ক. (i) $f: \nabla \to \nabla$ ফাংশনটি $f(\mathbf{x}) = \mathbf{x}^2 + 1$ দ্বারা সংজ্ঞায়িত হলে

(ii) $A = \nabla \setminus \{3\}$ এবং $B = \nabla \setminus \{1\}$; $f: A \to B$ $f(x) = \frac{x-2}{x-3}$ সূত্র

দ্বারা সংজ্ঞায়িত। দেখাও যে, ফাংশনটি এক-এক ও সার্বিক।

৮. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

যে কোনো একটি প্রশ্নের উত্তর দাও:

f⁻¹ [5, 26] নির্ণয় কর।

3/ - C X

- ক. (i) মূল নিয়মে x এর সাপেক্ষে cot 3x এর অন্তরীকরণ কর।
 - $(ii) \ \text{মান নির্ণয় কর} \ \frac{\lim_{x \to \frac{\pi}{2}} \frac{\sec^3 \theta \tan^3 \theta}{\tan \theta} }{ \tan \theta}$
- খ. (i) প্রমাণ কর যে, $\frac{x}{\ln x}$ এর লঘুমান e
 - (ii) y = (x + 1) (x 1) (x 3) বক্ররেখাটি যে যে বিন্দুতে xঅক্ষকে ছেদ করে সেই বিন্দুতে অংকিত স্পর্শকের ঢাল নির্ণয় কর।
- গ. (i) যদি $y = \sin (m \sin^{-1} x)$ হয় তবে, প্রমাণ কর যে,

$$(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + m^2y = 0$$

- (ii) $y=(p+qx)e^{-2x}$ হলে প্রমাণ কর যে, $\frac{d^2y}{dx^2}+4\left(\frac{dy}{dx}\right)+4y=0$
- ঘ. (i) যোগজ নির্ণয় কর : $\int \sqrt{\frac{5-x}{5+x}} \, dx$, $\int \frac{1}{(a^2+x^2)^{\frac{3}{2}}} \, dx$
 - (ii) $x^2 = 4ay$ ও $y^2 = 4ax$ বক্ররেখাদ্বয়ের অন্তর্গত ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।

- ১. (ক) $\begin{bmatrix} -11 & -4 \\ 12 & -7 \end{bmatrix}$
- ২. (ক) 8640 (খ) 7
- **9.** $(\overline{\Phi}) \sqrt{26}, \sqrt{6}, \sqrt{30}$
- 8. ($\overline{\Phi}$) 2x + y 4 = 0, 6x y 20 = 0, 2x 3y + 20 = 0
 - (약) x + y 3 = 0, 3x 3y + 5 = 0
 - $(9) \left(-\frac{36}{7}, -\frac{45}{7}\right)$
 - $(\P) x^2 + y^2 5x y + 4 = 0.$

- ৫. (গ) 0.636 মিটার (প্রায়)
- ৭. (ক) (i) $f^{-1}[5,26] = \{x: -5 \le x \le -2$ অথবা, $2 \le x \le 5\}$
 - (খ) (i) ডোম f = [-3, 3] এবং রেঞ্জ f = [0, 3]
 - (ii) (gof)(2) = 19, (fog)(2) = 5
- $rac{1}{2}$ (i) $-3 \csc^2 3x$ (ii) $\frac{3}{2}$ (*) (ii) 8, -4, 8
 - $(\overline{4})$ (i) $5 \sin^{-1} \frac{x}{5} + \sqrt{25 x^2} + c$, $\frac{x}{a^2 \sqrt{a^2 + x^2}} + c$
 - (ii) $\frac{16a^2}{3}$ বৰ্গ একক।

৭০. নটর ডেম কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- ১. নিচের প্রশ্নগুলোর উত্তর দাও:
- & × ₹ = **>**0
- ক. বলের লম্বাংশ উপপাদ্যটি বর্ণনাসহ প্রমাণ কর।
- খ. কোন বিন্দুতে ক্রিয়ারত P এবং Q মানের দুইটি বলের লব্ধি তাদের অন্তর্গত কোণকে এক তৃতীয়াংশে বিভক্ত করে। দেখাও
- যে, বলদ্বয়ের অন্তর্গত কোণের পরিমাণ $3 cos^{-1} \frac{P}{2Q}$ এবং লব্ধির

মান
$$\frac{P^2-Q^2}{Q}$$
, $(P>Q)$

অথবা,

ক. সাম্যাবস্থার ক্ষেত্রে বলের ত্রিভুজ সূত্রটি বিবৃত ও প্রমাণ কর।

- গ. কোন বিন্দুতে কার্যরত $P,\ Q,\ R$ মানের তিনটি বল সাম্যাবস্থায় আছে। P ও Q বলের মধ্যবর্তী কোণ P ও R এর মধ্যবর্তী কোণের দ্বিগুণ হলে, দেখাও যে, $R^2=Q(Q-P)$.
- ২. নিচের প্রশ্নগুলোর উত্তর দাও:

× 2 = 30

- ক. সচরাচর সংকেতমালায় $\mathbf{v}^2 = \mathbf{u}^2 + 2 f_{\mathbf{S}}$ সূত্রটি প্রতিষ্ঠা কর।
- খ. একটি ট্রেন দুটি স্টেশনের মধ্যবর্তী দূরত্বের প্রথম $\frac{1}{m}$ অংশ সমত্বরণে ও শেষ $\frac{1}{n}$ অংশ সমমন্দনে চলে। অবশিষ্ট অংশ সমবেগে চললে এবং গতিস্থির হতে স্থির হলে, দেখাও যে এর সর্বোচ্চ বেগ ও গড় বেগের অনুপাত $\left\{1+\frac{1}{m}+\frac{1}{n}\right\}$ % 1।

অথবা,

- ক. প্রমাণ কর যে, বায়ুহীন অবস্থায় অনুভূমিকের সাথে α কোণে শূন্যে প্রক্ষিপ্ত বস্তুর অনুভূমিক পাল্লা R হলে, ইহার গতিপথের সমীকরণ $y=x \tan \alpha \left(1-\frac{x}{R}\right)$.
- খ. h উচ্চতা বিশিষ্ট একটি টাওয়ারের শীর্ষবিন্দু হতে অবাধে পড়ন্ত একখণ্ড পাথর x মিটার দূরত্বে নীচে পৌঁছিলে টাওয়ারের শীর্ষবিন্দুর y মিটার নিচে কোন বিন্দু থেকে আর একখণ্ড পাথর নিচে ফেলা হল। এরা একই সাথে ভূমিতে পড়লে দেখাও যে, $h = \frac{(x+y)^2}{4x}$ মিটার।

খ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

৩. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

6 × 1 - 6

ক. যোগাশ্রয়ী প্রোগ্রামটিকে লেখচিত্রের সাহায্যে সমাধান কর এবং z=2x-y কে সর্বন্দি কর।

শৈতিগুলোঃ $x + 2y \le 8$, $4x + 3y \ge 12$, $x + y \le 5$, $x \ge 0$, $y \ge 0$.

খ. একজন ফল বিক্রেতা আম ও পেয়ারা বিক্রি করে। প্রতি ঝুড়ি আম ও পেয়ারার মূল্য যথাক্রমে 50 টাকা ও 25 টাকা। ঐ বিক্রেতা তার দোকানে 12টির বেশী ঝুড়ি রাখতে পারে না। প্রতি ঝুড়ি আম ও পেয়ারা বিক্রয়ে লাভ যথাক্রমে 10 টাকা ও 6 টাকা হলে 500 টাকা মূলধন ব্যয়ে কত ঝুড়ি আম ও পেয়ারা ক্রয় করলে ঐ বিক্রেতা সর্বোচ্চ লাভ করতে পারবে?

গ-বিভাগঃ পরিসংখ্যান

8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × ≥ = >0

- ক. একটি কলেজের একাদশ শ্রেণীর 40 জন ছাত্রের মধ্যে 20 জন ফুটবল খেলে, 25 জন ক্রিকেট খেলে এবং 10 জন ফুটবল ও ক্রিকেট খেলে। তাদের মধ্য থেকে একজনকে দৈবায়িত উপায়ে নির্বাচন করা হল। যদি ছেলেটি ফুটবল খেলে তবে তার ক্রিকেট খেলার সম্ভাবনা কত?
- খ. দুইটি অবর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার সংযোগ সূত্রটি লিখ ও প্রমাণ কর।
- গ. নিচের তথ্যসারি থেকে পরিমিত ব্যবধান ও ভেদাংক নির্ণয় কর:

শ্রেণিব্যাপ্তি 20-24 25-29 30-34 35-39 40-44 45-49 গণসংখ্যা 7 10 15 13 9 6

ঘ-বিভাগ: বীজগণিত

৫. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

 $e \times 2 = 20$

- ক. প্রমাণ কর, $|a+b| \le |a| + |b|$ যেখানে $a, b \in \nabla$.
- খ. $-8-6\sqrt{-1}$ এর বর্গমূল নির্ণয় কর।
- গ. প্রমাণ কর যে, $\left\{\frac{-1+\sqrt{-3}}{2}\right\}^n+\left\{\frac{-1-\sqrt{-3}}{2}\right\}^n=2$ যখন n এর মান 3 দ্বারা বিভাজ্য এবং -1, যখন n অপর কোন পূর্ব সংখ্যা হয়।
- ৬. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × \ = \ > 0

- ক. $27x^2 + 6x (p+2) = 0$ সমীকরণটির একটি মূল অপরটির বর্গের সমান হলে p এর মান নির্ণয় কর।
- খ. যদি $4x^2-6x+1=0$ সমীকরণের মূল দুটি α ও β হলে, $\alpha+\frac{1}{\beta}$ এবং $\beta+\frac{1}{\alpha}$ মূল বিশিষ্ট সমীকরণটি নির্ণয় কর।
- গ. যদি $(a+3x)^n$ এর বিস্তৃতিতে প্রথম তিনটি পদ যথাক্রমে $b, \frac{21}{2}\,bx$ ও $\frac{189}{4}\,bx^2$ হয়, তাহলে a,b এবং n এর মান বের কর।

ঙ-বিভাগঃ জ্যামিতি

৭. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × \ = \ >0

- ক. $y = ax^2 + bx + c$ পরাবৃত্তির শীর্ষ (-2, 3) বিন্দুতে অবস্থিত এবং এটি (0, 5) বিন্দু দিয়ে অতিক্রম করে। a, b, c এর মান নির্ণয় কর।
- খ. কোন উপবৃত্তের একটি উপকেন্দ্র ও অনুরূপ দিকাক্ষের মধ্যকার দূরত্ব 16 ইঞ্চি এবং তার উৎকেন্দ্রিকতা $\frac{3}{5}$; উপবৃত্তের প্রধান অক্ষদুইটির দৈর্ঘ্য নির্ণয় কর।
- গ. অধিবৃত্তের অক্ষ দুইটিকে স্থানাংকের অক্ষ ধরে এমন একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার অনুবন্ধী অক্ষের দৈর্ঘ্য 24 এবং উপকেন্দ্রের স্থানান্ধ $(0,\pm 13)$ ।

চ-বিভাগ: ত্রিকোণমিতি

b. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $6 \times 5 = 20$

- ক. প্রমাণ করঃ $\cos^{-1}\frac{1}{\sqrt{5}}-\frac{1}{2}\sin^{-1}\frac{3}{5}+\tan^{-1}\frac{1}{3}=\tan^{-1}2$.
- খ. যদি $\sin(\pi \cos\theta) = \cos(\pi \sin\theta)$ হয়, তবে দেখাও যে,
 - $\theta = \pm \frac{\pi}{4} + \cos^{-1} \frac{1}{2\sqrt{2}}$
- গ. সমাধান কর $84 \cos x \cos 2x \cos 3x = 1$. যখন $0 < x < \pi$.

9. ($\overline{\Phi}$) x = 0, y = 4. $Z_{min} = -4$

- (খ) আম ৪ ঝুড়ি, পেয়ারা 4 ঝুড়ি।
- **8.** $(\overline{\bullet})$ $\frac{1}{2}$ $(\overline{\bullet})$ 7.38; 54.50
- **৫.** (₹) ± (1 − 3i)

- **७.** (क) 6, -1 (খ) $4x^2 30x + 25 = 0$ (গ) $2, 128 \le 7$
- ৭. (ক) $\frac{1}{2}$, 2, 5 (খ) 30 ইঞ্চি ও 24 ইঞ্চি (গ) $\frac{y^2}{25} \frac{x^2}{144} = 1$
- **৮.** (গ) $\frac{\pi}{8}$, $\frac{\pi}{3}$, $\frac{3\pi}{8}$, $\frac{2\pi}{3}$, $\frac{5\pi}{8}$, $\frac{7\pi}{8}$

৭১. ঢাকা কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫ পূৰ্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- ১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- $6 \times 4 = 20$
- ক. $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$ হলে, $A^3 2A^2 + A 2I$ নির্ণয় কর যেখানে $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ ।
- খ. প্রমাণ কর যে, $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3 \mid$
- ২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- $\delta \times \lambda = \delta$
- প্রত্যেক অঙ্ককে প্রত্যেকসংখ্যায় একবার মাত্র ব্যবহার করে 6, 5,
 ২, 3, 0 অঙ্কগুলো দ্বারা পাঁচ অঙ্কের কতকগুলো অর্থপূর্ণ বিজ্ঞোড় সংখ্যা গঠন করা যায়?
- খ. Degree শব্দটির অক্ষরগুলি থেকে যে কোনো 4টি অক্ষর প্রত্যেক বার নিয়ে কত প্রকারে বাছাই করা যেতে পারে?

খ-বিভাগ: জ্যামিতি ও ভেক্টর

- ৩. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- 8 × 3 = 6
- ক. একটি একক ভেক্টর নির্ণয় করা যা $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ এবং $\vec{b}=\hat{i}-\hat{j}-\hat{k}$ ভেক্টরের সমতলীয় এবং \vec{a} ভেক্টরের উপর লম্ব ।
- খ. ABC গ্রিভুজের BC বাহুর মধ্যবিন্দু D হলে ভেক্টর পদ্ধতিতে দেখাও যে, $AB^2 + AC^2 = 2(AD^2 + BD^2)$ |
- 8. যে কোন তিনটি প্রশ্নের উত্তর দাও:
- = **e** × **9**
- ক. দুইটি সরলরেখা (-1, 2) বিন্দু দিয়ে যায় এবং 3x y + 7 = 0 রেখার সাথে 45° কোণ উৎপন্ন করে; রেখাদুইটির সমীকরণ নির্ণয় কর এবং দেখাও যে, এরা পরস্পর লম।
- খ. দেখাও যে, $(\sqrt{5},0)$ এবং $(-\sqrt{5},0)$ বিন্দু থেকে $2x\cos\alpha-3y\sin\alpha=6$ এর উপর লম্ম দুরত্নের গুণফল α মুক্ত হবে।
- গ. x অক্ষকে (4, 0) বিন্দুতে স্পর্শ করে এবং y অক্ষ থেকে 6 একক দীর্ঘ জ্যা ছেদকারী বৃত্তের সমীকরণ নির্ণয় কর।
- ঘ. $x^2 + y^2 + 4x 8y + 2 = 0$ বৃত্তের স্পর্শক অক্ষ দুইটি হতে একই চিহ্নবিশিষ্ট সমমানের অংশ ছেদ করে। স্পর্শকের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- **৫.** যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- 0**८** = ۶ × ϑ

- ক. একটি গাড়ি বৃত্তাকার পথে প্রতি সেকেন্ডে একটি বৃত্তচাপ অতিক্রম করে। যদি চাপটি কেন্দ্রে 28° কোণ উৎপন্ন করে এবং বৃত্তের ব্যাস 60 মিটার হয়, তবে গাড়িটির গতিবেগ নির্ণয় কর।
- খ. যদি $\cos\alpha+\sec\alpha=\frac{5}{2}$ হয়, তবে প্রমাণ কর যে, $\cos^n\alpha+\sec^n\alpha$ = 2^n+2^{-n} |
- গ. $y = \cos 2x, \ 0 \le x \le 2\pi$ এর লেখচিত্র অংকন করে এর বৈশিষ্ট্যগুলি লিখ।
- ৬. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- $6 \times 5 = 50$
- খ. A+B+C= π হলে, প্রমাণ কর যে, sin(B+C-A)+sin (C+A-B)+sin (A+B-C) = 4sin A sin B sin C |
- গ. ABC ত্রিভুজের ক্ষেত্রে প্রমাণ কর যে, $a(\cos B + \cos C)$ $= 2(b+c)\sin^2\frac{A}{2}$

ঘ-বিভাগ: ক্যালকুলাস

- ৭. যে কোন **একটি** প্রশ্নের উত্তর দাও:
- $\delta = \zeta \times \delta$
- ক. $f: \nabla \to \nabla$ ফাংশনটি $f(\mathbf{x}) = \mathbf{x}^2$ দ্বারা সংজ্ঞায়িত । $f^{-1}((-\infty, 0])$ ও $f^{-1}([4, 25])$ নির্ণয় কর ।
- খ. যদি $f(x)=\ln\sin x$ এবং $\phi(x)=\ln\cos x$ হয়, তবে প্রমাণ কর যে, $e^{2\phi(a)}-e^{2f(a)}=e^{\phi(2a)}$ ।
- ৮. যে কোন তিনটি প্রশ্নের উত্তর দাও:
- % × ७ = ১৫
- ক. মূল নিয়মে x- এর সাপেক্ষে cot ax এর অন্তরজ নির্ণয় কর।
- খ. y(x-2)(x-3)-x+7=0 বক্ররেখাটি যে বিন্দুতে x- অক্ষকে ছেদ করে ঐ বিন্দুতে বক্ররেখাটির স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর।
- গ. $_{
 m X}$ এর সাপেক্ষে অন্তরজ নির্ণয় কর: (যে কোন দুইটি)২ $\frac{
 m S}{2}$ imes2 = ৫

(i)
$$\frac{\cos x - \cos 2x}{1 - \cos x}$$
, (ii) x^x , (iii) $\tan (\sin^{-1} x) - x$

(ঘ) যোগজীকরণ কর (যে কোন দুইটি) ঃ $2\frac{1}{2} \times 2 = 0$

(i)
$$\int \frac{xe^{x}dx}{(1+x)^{2}}$$
 (ii) $\int \frac{dx}{1+\tan x}$ (iii) $\int_{0}^{1} x^{3} \sqrt{1+3x^{4} dx}$ (iv) $\int_{0}^{4} y\sqrt{4-y} dy$

অথবা, $x^2+y^2=a^2$ বক্ররেখাটি দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।

২. (ক) 36 (খ) 7

ত ৩. (ক)
$$\pm \frac{\hat{-i} \pm 2\hat{j} - 2\hat{k}}{\sqrt{6}}$$

8. (
$$\overline{\Phi}$$
) $2x + y = 0$, $x - 2y + 5 = 0$

(1)
$$x^2 + y^2 - 8x \pm 10y + 16 = 0$$

(
$$\mathbf{V}$$
) $x + y + 4 = 0$, $x + y - 8 = 0$

৫. (ক) প্রতি ঘণ্টায় 26.39 কিলোমিটার (প্রায়)।

9. ($\overline{\Phi}$) {0}; {x: 2 \le x \le 5, -5 \le x \le -2}

b. $(\overline{\Phi})$ - a cosec² ax $(\overline{\Psi})$ x - 20y = 7, 20x + y = 140

(1) (i) - 2 sin x (ii)
$$x^x$$
. $x^x [(1 + \ln x) \ln x + \frac{1}{x}]$

(iii)
$$(1-x^2)^{-3/2}-1$$

(
$$\sqrt[4]{1}$$
) (i) $\frac{e^x}{x+1} + c$ (ii) $\frac{x}{2} + \frac{1}{2} \ln|\cos x + \sin x| + c$

(iii)
$$\frac{7}{18}$$
 (iv) $\frac{128}{15}$ অথবা, πa^2

৭২. ঢাকা কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৬ পূৰ্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

0**८** = ⋟ × Ֆ

ক. প্রমাণ কর যে, $|a+b| \le |a| + |b|$; $\forall a, b \in \nabla$

খ.
$$x$$
 % $y=a+ib$ % $c+id$ ইলে দেখাও যে,
$$(c^2+d^2)\ x^2-2(ac+db)\ xy+(a^2+b^2)\ y^2=0$$

- গ. $-8-6\sqrt{-1}$ এর বর্গমূল নির্ণয় কর।
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × ≥ = >0

ক. যদি $px^2+qx+q=0$ সমীকরণের মূলদ্বয়ের অনুপাত m % n হয়, তবে দেখাও যে, $\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}+\sqrt{\frac{q}{p}}=0$ ।

খ. প্রমাণ কর যে, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদটি $\frac{1.3.5.....\left(2n-1\right)}{n!}\left(-2\right)^{n}$

গ. $(1-5x+6x^2)^{-1}$ এর বিস্তৃতিতে x^n এর সহগ নির্ণয় কর।

খ-বিভাগঃ জ্যামিতি

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $6 \times 5 = 50$

- ক. (-1,1) উপকেন্দ্র এবং x+y+1=0 দিকাক্ষবিশিষ্ট পরাবৃত্তের সমীকরণ নির্ণয় কর। উহার অক্ষের সমীকরণ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও এর সমীকরণ নির্ণয় কর।
- খ. $4x^2 + 5y^2 16x + 10y + 1 = 0$ উপবৃত্তির উপকেন্দ্র দুইটি, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, উৎকেন্দ্রিকতা ও নিয়ামকের সমীকরণ নির্ণয় কর।
- গ. একটি অধিবৃত্ত (6,4) ও (-3,1) বিন্দু দিয়ে যায়। এর কেন্দ্র মূলবিন্দু এবং আড় অক্ষ x অক্ষ বরাবর হলে অধিবৃত্তটির সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

8. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

৫ × ২ = 1

œ

ক. প্রমাণ কর যে,
$$2\tan^{-1}\left\{\sqrt{\frac{a-b}{a+b}}\tan\frac{\theta}{2}\right\}=\cos^{-1}\frac{b+a\cos\theta}{a+b\cos\theta}$$

- খ. সমাধান কর : $\sin x + \cos x = \sin 2x + \cos 2x$
- গ. সমাধান কর : $4 \cos x \cos 2x \cos 3x = 1$, যখন $0 < x < \pi$

ঘ-বিভাগ: বলবিদ্যা

ক. বলের লম্বাংশ উপপাদ্যটি বর্ণনা ও প্রমাণ কর।

খ. একটি হেলানো সমতলের ভূমি ও দৈর্ঘ্যের সমান্তরালে ক্রিয়াশীল যথাক্রমে P এবং Q মানের দুইটি পৃথক বল প্রত্যেকে W ওজনের কোন বস্তুকে তলের উপর স্থির রাখতে পারে। দেখাও যে,

$$W = \frac{PQ}{\sqrt{P^2 - Q^2}}, P > Q$$

অথবা, ক. কোন কঠিন বস্তুর উপর ক্রিয়াশীল দুইটি বিসদৃশ ও অসমান সমান্তরাল বলের লব্ধির মান ও প্রয়োগ বিন্দু নির্ণয় কর।

খ. দুইটি সদৃশ সমান্তরাল বল P, Q এর লব্ধি O বিন্দুতে ক্রিয়া করে। এদেরকে যথাক্রমে R ও S পরিমাণে বৃদ্ধি করলেও বলদ্বয়ের লব্ধি একই বিন্দুতে ক্রিয়া করে। বল দুইটিকে যথাক্রমে Q, R বল দ্বারা প্রতিস্থাপন করলেও লব্ধির অবস্থান অপরিবর্তিত থাকে। দেখাও যে, $S=R-\frac{(Q-R)^2}{P-Q}$

ঙ. ক. প্রমাণ কর যে,
$$\mathbf{v}^2=\mathbf{u}^2+2f\mathbf{s}$$
, যেখানে $\mathbf{u},\,\mathbf{v},\,f$ ও \mathbf{s} প্রচলিত অর্থ বহন করে।

খ. একটি বস্তুকণা স্থিরাবস্থা থেকে একটি সরলরেখা বরাবর যাত্রা করে প্রথমে f_1 সুষম ত্বরণে এবং পরে f_2 সুষম মন্দনে চলে। যদি তা t সময়ে যাত্রাবিন্দু থেকে s দূরত্বে গিয়ে থামে, তবে দেখাও

বে,
$$t = \sqrt{\frac{2(f_1 + f_2)s}{f_1 f_2}}$$

অথবা, ক. একটি পাথর কুয়ার ভিতর ফেলার t সময় পরে পানিতে এর পতন শব্দ শোনা গেল। শব্দের বেগ v এবং কুয়ার উচ্চতা h। বাতাসের বাধা অগ্রাহ্য করে, প্রমাণ কর যে, (2h – gt²) v² + 2ghvt = gh²।

খ. দেখাও যে, নির্দিষ্ট বেগে শূন্যে নিক্ষিপ্ত বস্তুর গতিপথের সমীকরণ $y=x\ \tan\alpha\ \left(1-\frac{x}{R}\right)\!,\$ যেখানে নিক্ষেপণ কোণ α এবং পাল্লা R ।

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

৭. লেখচিত্রের সাহায্যে z = 2y - x এর সর্বন্দি মান নির্ণয় কর:

সীমাবদ্ধতাণ্ডলো : $3y - x \le 10$ $x + y \le 6$ $x - y \le 2$ এবং $x \ge 0, y \ge 0$

অথবা, এক ব্যক্তি 500 টাকার মধ্যে কমপক্ষে 6 খানা গামছা এবং 4 খানা তোয়ালে কিনতে চায়। প্রতিখানা গামছার দাম 30 টাকা এবং প্রতিখানা তোয়ালের দাম 40 টাকা। প্রত্যেক প্রকারের কতখানা জিনিস কিনলে সে প্রদত্ত শর্তাধীনে সর্বাপেক্ষা বেশি সংখ্যক জিনিস কিনতে পারবে?

চ-বিভাগ: পরিসংখ্যান

৮. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

٥٤ = ۶ × ع

ক. দুইজন ক্রিকেট খেলোয়াড়ের 10 ইনিংসের স্কোর দেয়া হলো। তাদের দক্ষতা তুলনা কর।

ক্রিকেটার A	110	45	0	31	70	100	130	8	0	10
ক্রিকেটার B	16	25	18	30	10	50	24	21	32	20

- দুইটি বর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার সংযোগ সূত্রটি বর্ণনা ও প্রমাণ কর।
- গ. অমলের বাংলা পরীক্ষায় ফেল করার সম্ভাবনা $\frac{1}{5}$, বাংলা এবং ইংরেজী দুইটিতেই পাসের সম্ভাবনা $\frac{3}{4}$ এবং দুইটির যে কোন একটিতে পাসের সম্ভাবনা $\frac{7}{8}$ হলে, তার কেবল ইংরেজীতে পাসের সম্ভাবনা কত?

- **১. (গ)** ± (1 3i)
- ২. (গ) 3ⁿ⁺¹ 2ⁿ⁺¹
- **9.** ($\overline{\Phi}$) $(x-y)^2 + 2x 6y + 3 = 0$, x y + 2 = 0, $\sqrt{2}$, x + y = 0

(*)
$$(3,-1), (1,-1); \frac{8}{\sqrt{5}}, \frac{1}{\sqrt{5}}, x-7=0, x+3=0$$

(1) $\frac{5x^2}{36} - \frac{y^2}{4} = 1$.

- 8. (খ) $2n\pi$, $\frac{2}{3}(n\pi + \frac{\pi}{4})$
 - (1) $\frac{\pi}{8}$, $\frac{\pi}{3}$, $\frac{3\pi}{8}$, $\frac{2\pi}{3}$, $\frac{5\pi}{8}$, $\frac{7\pi}{8}$
- **9.** $(\overline{\Phi})$ $Z_{\min} = -2$ অথবা, গামছার সংখ্যা = 11, তোয়ালের সংখ্যা = 4.
- **৮. (क)** ক্রিকেটার В এর রানের বিভেদাঙ্ক কম অর্থাৎ তার ব্যাটিং দক্ষতা বেশি। (গ) $\frac{3}{40}$

৭৩. আইডিয়াল স্কুল এন্ড কলেজ, মতিঝিল, ঢাকা

বিষয় কোড : | ২ | ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.

ক. $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$ ও $B = \begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$ হলে AB ও BA

- শ. প্রমাণ কর যে, $\begin{vmatrix} b^2+c^2 & ab & ca \\ ab & c^2+a^2 & bc \\ ca & bc & a^2+b^2 \end{vmatrix} = 4a^2b^2c^2.$
- গ. $A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ হলে A^{-1} নির্ণয় কর।
- যে কোনো **একটি** প্রশ্নের উত্তর দাও:

 $\delta = \zeta \times \delta$

- ক. Postage শব্দটির অক্ষরগুলি কত রকমে সাজানো যায় যেন স্বরবর্ণগুলি জোড স্থান দখল করে? শব্দটির অক্ষরগুলি কত প্রকারে সাজানো যায় যাতে ব্যঞ্জনবর্ণগুলি একত্রে থাকবে?
- খ. দেখাও যে, 1, 2, 3, 4, 5, 6, 7 সে.মি. দীর্ঘ সাতটি সরলরেখা থেকে চারটি করে নিয়ে 32টি চতুর্ভুজ তৈরি করা যাবে।

খ-বিভাগ: জ্যামিতি ও ভেক্টর

যে কোনো একটি প্রশ্নের উত্তর দাও: **9**.

 $\delta = \zeta \times \delta$

- ক. ভেক্টরের সাহায্যে প্রমাণ কর যে, অর্ধবৃত্তস্থ কোণ এক সমকোণ।
- খ. দুইটি ভেক্টর $\vec{A}=2\hat{i}-6\hat{j}-3\hat{k}$ এবং $B=4\hat{i}+3\hat{j}-\hat{k}$ দারা গঠিত সমতলের ওপর একটি একক লম্ব ভেক্টর নির্ণয় কর।
- যে কোনো তিনটি প্রশ্নের উত্তর দাও: 8.

 $\mathfrak{d} \boldsymbol{\zeta} = \mathfrak{C} \times \mathfrak{d}$

ক. ΔΟΑΒ এর শীর্ষত্রয় যথাক্রমে (0, 0), (a cos β, – a sinβ) এবং $(a\sin\alpha, a\cos\alpha)$ দেখাও যে, $\alpha=\beta$ হলে, ত্রিভুজটির ক্ষেত্রফলের মান বৃহত্তম হবে। বৃহত্তম মানটি নির্ণয় কর।

- খ. একটি সরলরেখার সমীকরণ নির্ণয় কর যা অক্ষদ্বয়ের সাথে ৪ বর্গ একক ক্ষেত্রফল বিশিষ্ট ত্রিভূজ উৎপন্ন করে এবং মূলবিন্দু হতে উক্ত রেখার উপর অংকিত লম্ব x অক্ষের ধন্ডাক দিকের সাথে 45° কোণ উৎপন্ন করে।
- গ. এরূপ বৃত্তের সমীকরণ নির্ণয় কর যা y অক্ষকে (0, $\sqrt{3}$) বিন্দুতে স্পর্শ করে এবং (-1, 0) বিন্দু দিয়ে অতিক্রম করে। এর কেন্দ্র ও ব্যাসার্ধ নির্ণয় কর।
- ঘ. (-5, 4) বিন্দু হতে $x^2 + y^2 2x 4y + 1 = 0$ বৃত্তের ওপর অংকিত স্পর্শকের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: Œ.
- & × 2 = 30
- ক. একটি ত্রিভূজের কোণগুলি সমান্তর প্রগমণ শ্রেণিভূক্ত। এর বৃহত্তম ও ক্ষুদ্রতম কোণ দুইটিকে যথাক্রমে রেডিয়ানে ও ডিগ্রীতে প্রকাশ করলে এদের অনুপাত হয় $\pi:90$; কোণগুলির পরিমাপকে রেডিয়ানে নির্ণয় কর।
- খ. যদি $tan^2\theta = 1 e^2$ হয়, তবে দেখাও যে,

 $\sec\theta + \tan^3\theta \csc\theta = (2 - e^2)^{\frac{1}{2}}$

- গ. লেখচিত্র অংকন কর: $y = \sin 3x$; (x = 0 হতে $x = 2\pi$ পর্যন্ত)
- যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. যদি $A \neq B$ এবং sinA + cosA = sinB + cosB হয়, তবে প্রমাণ কর যে, $A + B = \frac{\pi}{2}$.
- খ. প্রমাণ কর যে, $\sec x = \frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 4x}}}$

গ. ABC ত্রিভূজের বাহুগুলি a, b, c এবং (a + b + c)(b + c - a) =3bc হলে A কোণের মান নির্ণয় কর।

ঘ-বিভাগ: ক্যালকুলাস

যে কোনো একটি প্রশ্নের উত্তর দাও: ٩.

- ক. যদি $f(x) = \cos(\ln x)$ হয়, তবে f(x) $f(y) \frac{1}{2} \left\{ f\left(\frac{x}{y}\right) + f(xy) \right\}$ এর মান নির্ণয় কর।
- খ. মনে কর, বাস্তব সংখ্যার সেট R এবং $f: R \to R$ কে নীচের সূত্র দ্বারা সংজ্ঞায়িত করা হলো:

$$f(x) = \begin{cases} 3x - 1 & \text{hw} \ x > 3 \\ x^2 - 2 & \text{hw} \ -2 \le x \le 3; \\ 2x + 3 & \text{hw} \ x < -2 \end{cases}$$

মান নির্ণয় কর ঃ

ず) f(2) ♥) f(4) が) f(−1) ♥) f(−3) ७) f(0)

চ-বিভাগ: পরিসংখ্যান

যে কোনো তিনটি প্রশ্নের উত্তর দাও: b

02 = 0 × 0

ক. মান নির্ণয় করঃ $\lim_{x \to a} \frac{x^{\frac{7}{2}} - a^{\frac{7}{2}}}{\sqrt{x} - \sqrt{a}}$

মূল নিয়মে ax এর অন্তরজ নির্ণয় কর। অথবা.

- খ. x এর প্রেক্ষিতে অস্তরজ সহগ নির্ণয় করঃ (যে কোন ২টি)২×২ = ৫
- ii) 2x° cos 3x°
- iii) $e^{x^2} + x^{x^2}$
- $iv) x^y = e^{x+y}$
- গ. $y = \sqrt{4 + 3 \sin x}$ হলে দেখাও যে, $2y \frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + y^2 = 0$

অথবা. $x^3 + xy^2 - 3x^2 + 4x + 5y + 2 = 0$ বক্রবেখার (1, -1) বিন্দুতে স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর।

ঘ. যে কোন ২টি প্রশ্নের উত্তর দাও ঃ

 $4 \times 4 \frac{2}{3} = 6$

- (i) $\int \sin^2 x \cos^2 x \, dx$
- (ii) $\int \frac{x.dx}{\sqrt{1-x}}$
- (iii) $\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$ (iv) $\int_{0}^{1} \frac{1+x}{1+x^{2}} dx$

অথবা. $y^2=4ax\,$ এবং $x^2=4ay\,$ পরাবৃত্ত দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।

5. (**T**) AB = BA = I_3 (**T**) $\begin{bmatrix} -\frac{5}{13} & \frac{2}{13} & \frac{6}{13} \\ \frac{7}{13} & \frac{5}{13} & -\frac{11}{13} \\ \frac{1}{13} & \frac{-3}{13} & \frac{4}{13} \end{bmatrix}$

২. (ক) 144, 576

- ৩. (খ) $\pm \frac{1}{7} (3\hat{i} 2\hat{j} + 6\hat{k})$
- 8. (ক) $\frac{1}{2}$ a^2 বৰ্গ একক (খ) x + y = 4
 - (গ) $x^2 + y^2 + 4x 2\sqrt{3}y + 3 = 0$; (-2, $\sqrt{3}$); 2 একক
 - (\forall) y = 4, 3x + 4y = 1.

- $\epsilon. \frac{2\pi^{c}}{9}, \frac{\pi}{3}$ এবং $\frac{4\pi^{c}}{9}$
- **৭. (ক)** 0 (খ) ক. 2 খ. 11 গ. -1 ঘ. -3 ঙ. -2
- ৮. (ক) $5a^2$ অথবা, $a^x \ln(a)$ (i) $-\frac{\log a}{x (\log x)^2}$
 - $\text{(ii)}\ \frac{\pi}{90} \left(\cos\frac{\pi x}{60} \frac{\pi x}{60}\sin\frac{\pi x}{60}\right)\ \text{(iii)}\ 2x\ e^{x^2} + x^{x^2+1}(1+2\ lnx)$
 - $(iv) \frac{x-y}{x(lnx-1)}$ (গ) অথবা, 2x+3y+1=0, 3x-2y-5=0
 - (\triangledown) (i) $\frac{1}{8}$ $\left(x \frac{1}{4}\sin 4x\right) + c$ (ii) $-\frac{2}{3}(x + 2)\sqrt{1 x} + c$
 - (iii) $8 \ln 2 4$ (iv) $\frac{\pi}{4} + \frac{1}{2} \ln 2$ অথবা, $\frac{16}{3} a^2$

৭৪. আইডিয়াল স্কুল এন্ড কলেজ, মতিঝিল, ঢাকা

বিষয় কোড : ২ ৬ ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.

 $6 \times 4 = 50$

- ক. $|x-1| < \frac{1}{10}$ হলে, দেখাও যে, $|x^2-1| < \frac{21}{100}$
- খ. z = x + iy, এবং |2z 1| = |z 2| হল, প্রমাণ কর যে, $x^2 + y^2 = 1$.
- গ. যদি $x_1: x_2 = (a+ib): (c+id)$ হয়, তবে প্রমাণ কর যে, $(c^2+d^2)\,{x_1}^2-2(ac+bd)x_1x_2+(a^2+b^2){x_2}^2=0.$
- যে কোনো দুইটি প্রশ্নের উত্তর দাও:

€ × ≥ = 30

ক. $ax^2 + bx + c = 0$ সমীকরণের মূলদ্বয় α ও β এবং অশূন্য হলে, প্রমাণ কর যে, $(a\alpha + b)^{-2} + (a\beta + b)^{-2} = \frac{b^2 - 2ac}{a^2c^2}$

- খ. যদি $(a+3x)^n$ এর বিস্তৃতিতে প্রথম তিনটি পদ যথাক্রমে b, $\frac{21}{2}$ bx ও $\frac{189}{4}\,bx^2$ হয়, তাহলে a,b এবং n এর মান বের কর।
- গ. $\frac{x}{(1-4x)(1-5x)}$ এর বিস্তৃতিতে x^n এর সহগ নির্ণয় কর।

খ-বিভাগ: জ্যামিতি

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. (-1, 1) উপকেন্দ্র এবং x + y + 1 = 0 দিকাক্ষবিশিষ্ট পরাবৃত্তের সমীকরণ নির্ণয় কর। পরাবৃত্তের অক্ষের সমীকরণ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও এর সমীকরণ নির্ণয় কর।
- খ. উপবৃত্তের অক্ষদ্বয়কে x ও y অক্ষরেখা ধরে উপবৃত্তের সমীকরণ নির্ণয় কর, যার উৎকেন্দ্রিকতা $\frac{1}{3}$ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য $\frac{1}{8}$ ।

গ. $x^2 - 3y^2 - 2x = 8$ অধিবৃত্তের উৎকেন্দ্রিকতা অক্ষের দৈর্ঘ্য এবং কেন্দ্রের স্থানাঙ্ক নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: 8.
- প্রমাণ কর যে, $2\tan^{-1}\left\{\sqrt{\frac{a-b}{a+b}}\tan\frac{\theta}{2}\right\} = \cos^{-1}\frac{b+a\cos\theta}{a+b\cos\theta}$
- খ. সমাধন কর : $\sqrt{3} \cos x + \sin x = 1$, যখন $-2\pi < x < 2\pi$.
- সমাধান কর : $\cos 7\theta = \cos 3\theta + \sin 5\theta$, যখন $-90^{\circ} < \theta < 90^{\circ}$.

ঘ-বিভাগ (স্থিতিবিদ্যা ও গতিবিদ্যা)

বলের ত্রিভুজ সূত্র বর্ণনাসহ প্রমাণ কর।

অথবা, দুইটি বিসদৃশ অসমান সমান্তরাল বলের লব্ধির মান ও ক্রিয়াবিন্দু নির্ণয়

একই অনুভূমিক রেখায় c একক দূরত্বে অবস্থিত দুইটি বিন্দুতে 1 ৬. একক দীর্ঘ একটি সরু রশির প্রান্তদ্বয় বাঁধা আছে। অবাধে ঝুলানো w একক ওজনবিশিষ্ট একটি বস্তুকে বহন করে এমন একটি মসৃণ **७** जनविशेन **चार्** वे तिश्व हे अति क्रिया शिक्ष वार्ष्ट । तिथा विश्व वि রশির টান $\frac{l w}{2 \sqrt{l^2 - c^2}}$.

অথবা, O বিন্দুটি ABC ত্রিভুজের পরিকেন্দ্র এবং AO বরাবর P মানের বলটি ক্রিয়া করেছে। দেখাও যে, B ও C বিন্দুতে ক্রিয়ারত P বলের সমান্তরাল অংশদ্বয়ের অনুপাত sin 2B. sin2C.

সচরাচর সংকেতমালায় ক্যালকুলাস পদ্ধতিতে প্রমাণ কর যে, ٩. $\mathbf{v}^2 = \mathbf{u}^2 + 2f\mathbf{s}.$

অথবা, প্রমাণ কর যে, বায়ুহীন অবস্থায় শূন্যে নিক্ষিপ্ত বস্তুকণার গতিপথ একটি

দুইটি রেলগাড়ি একই সরল রেলপথে \mathbf{u}_1 এবং \mathbf{u}_2 গতিবেগে পরস্পরের দিকে অগ্রসর হচ্ছে। এদের মধ্যবর্তী দূরত্ব যখন x তখন পরস্পরকে দেখতে পায়। ব্রেক প্রয়োগ করে রেলগাড়ী দুইটি যদি যথাক্রমে সর্বোচ্চ f_1 এবং f_2 মন্দন সৃষ্টি করে, তবে প্রমাণ কর যে, কোনো রকমে সংঘর্ষ এড়ানো সম্ভব যদি $\mathbf{u}_1^2 f_2 + \mathbf{u}_2^2 f_1 = 2 f_1 f_2 \mathbf{x}$ হয়। ৫ অথবা, একজন খেলোয়াড় 3.5 মিটার উচ্চতা হতে ভূমির সাথে 30° কোণে 9.8 মিটার/সেকেন্ড বেগে একটি বল নিক্ষেপ করে এবং অপর একজন খেলোয়াড় 2.1 মিটার উচ্চতায় বলটি ধরে ফেলে। খেলোয়াড় দু'জন পরস্পর কত দূরে ছিল?

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

নিল্লিখিত যোগাশ্রয়ী প্রোগ্রামটি লেখচিত্তের সাহায্যে সমাধান কর: F = 12x + 10y এর সর্বোচ্চকরণ কর।

সীমাবদ্ধতাঃ $2x + y \le 90$, $x + 2y \le 80$, $x + y \le 50$, $x \ge 0$, $y \ge 0$.

অথবা,

এক ব্যক্তি 1200 টাকা দিয়ে মাছের পোনা কিনতে চায়। 100 রুই মাছের পোনার দাম 60 টাকা এবং 100 কাতল মাছের পোনার দাম 30 টাকা হলে, তিনি কোন মাছের কত পোনা কিনতে পারবেন যার মোট সংখ্যা সর্বাধিক 3000 হবে।

চ-বিভাগ: পরিসংখ্যান

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. অবর্জনশীল ঘটনার ক্ষেত্রে সম্ভাবনার সংযোগসূত্র লিখ এবং
- খ. আলমের বাংলা পরীক্ষায় ফেল করার সম্ভাবনা I, বাংলা এবং ইংরেজিতে দুইটিতেই পাসের সম্ভাবনা $\frac{3}{4}$ এবং দুইটির যে কোনো একটিতে পাশের সম্ভাবনা $\frac{7}{8}$ হলে, তার কেবল ইংরেজিতে পাশের সম্ভাবনা কত?
- গ. নিচের তথ্য হতে পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় করঃ

শ্রেণি ব্যাপ্তি	100-150	150-200	200-250	250-300	300-350	350-400
গণসংখ্যা	7	10	15	13	9	6

- ২. (খ) 2, 128 ও 7 (গ) 5ⁿ 4ⁿ

9. (a)
$$(x-y)^2 + 2x - 6y + 3 = 0$$
, $x-y+2=0$, $\sqrt{2}$, $x+y=0$
(b) $\frac{16384}{81}x^2 + \frac{2048}{9}y^2 = 1$ (b) $e = \frac{2}{\sqrt{3}}$, $2a = 6$, $2b = 2\sqrt{3}$, $(1,0)$

- 8. (*) $-\frac{3\pi}{2}$, $-\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{11\pi}{6}$
 - (গ) 75°, 72°, 36°, 15°, 0°, 36° এবং 72°

- ৮. অথবা, 10.44 মিটার (প্রায়)
- **৯.** $x=40,\,y=10,\,Z_{max}=580$ অথবা, রুই মাছের পোনা 1000, কাতল মাছের পোনা 2000
- ১০. (খ) $\frac{3}{40}$ (গ) 73.77; 5442.013

৭৫. ন্যাশনাল আইডিয়াল কলেজ, খিলগাঁও, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.
- ক. উলম্ব ম্যাট্রিক্সের সংজ্ঞা দাও। দেখাও যে,
 - $\frac{1}{3}\begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}$ একটি উলম্ব ম্যাট্রিক্স।

খ. নির্ণায়কের দুইটি ধর্ম লিখ। প্রমাণ কর যে,

$$\begin{bmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+b & c+b & -2c \end{bmatrix} = 4(a+b)(b+c)(c+a).$$

- গ. A = $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 9 & 3 \\ 1 & 2 & 2 \end{bmatrix}$ এবং B = $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ হলে প্রমাণ কর যে,
- যে কোনো **একটি** প্রশ্নের উত্তর দাও:

 $\delta \times \lambda = \delta$

- ক. বিন্যাস কাকে বলে? EXAMINATION শব্দটির বর্ণগুলি থেকে প্রতিবার চারটি করে বর্ণ নিয়ে বিন্যাস ও সমাবেশ সংখ্যা নির্ণয় কর।
- খ. একজন লোকের দুইটি সাদা. তিনটি লাল এবং চারটি সবুজ পতাকা আছে। একটির উপর আরেকটি সাজানো ছয়টি পতাকা নিয়ে সে কতগুলি বিভিন্ন সংকেত তৈরী করতে পারবে?

খ-বিভাগ: জ্যামিতি ও ভেক্টর

- যে কোনো একটি প্রশ্নের উত্তর দাও: **o**.
- $6 \times 5 = 6$
- ক. অংশক ও অভিক্ষেপের সংজ্ঞা দাও । $\vec{A} = 6\hat{i} + 3\hat{j} + 2\hat{k}$ এবং $\vec{B}=\hat{i}-2\hat{j}-2\hat{k}$ ভেক্টর দুইটির অন্তর্গত কোণ নির্ণয় কর। \vec{A} ভেক্টর বরাবর B ভেক্টরের অংশক এবং অভিক্ষেপ নির্ণয় কর এবং দেখাও যে, এদের সাংখ্যিক মান সমান।
- খ. ভেক্টর পদ্ধতিতে দেখাও যে. রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করে।
- যে কোনো তিনটি প্রশ্নের উত্তর দাও: 8.
- $\mathfrak{d} \boldsymbol{\zeta} = \mathfrak{C} \times \mathfrak{d}$
- क. पूरेंि সরলরেখা (3, 4) विन्तू मिरा या धवर x y + 4 = 0রেখার সাথে 60° কোণ উৎপন্ন করে। রেখা দুইটির সমীকরণ নির্ণয় কর।
- খ. y = 1, 3x 4y 5 = 0, 5x + 12y + 13 = 0 সরলরেখা তিনটি দ্বারা গঠিত ত্রিভূজের অন্ত:কেন্দ্র নির্ণয় কর।
- গ. $\frac{1}{2}\sqrt{10}$ ব্যাসার্ধবিশিষ্ট একটি বৃত্ত (1,1) বিন্দু দিয়ে অতিক্রম করে এবং বৃত্তটি y=3x-7 রেখার উপর অবস্থিত। বৃত্তটির সমীকরণ
- ঘ. স্পর্শকের সংজ্ঞা দাও। x = 0, y = 0, x = k রেখা তিনটিকে স্পর্শ করে এরূপ বৃত্তের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- Œ. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- € × ≥ = 30
- ক. $(a^2 b^2)\sin\theta + 2ab\cos\theta = a^2 + b^2$ এবং θ সূক্ষ ও ধন্তক কোণ হলে tan heta ও cosec heta এর মান নির্ণয় কর।
- খ. লেখচিত্রের সাহায্যে সমাধান কর: $\sin x \sin 2x = 0$, $0 \le x \le 2\pi$.

- গ. লেখচিত্র অঙ্কন কর: $x \tan x = 0$, $0 \le x \le \frac{\pi}{2}$.
- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- ক. $\cos 18^\circ$ এর মান নির্ণয় কর। প্রমাণ কর যে, $\tan \left(7\frac{1}{2}\right)^\circ =$ $\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$.
- খ. যদি $\alpha+\beta+\gamma=0$ হয় তবে প্রমাণ কর যে, $\cos\alpha+\cos\beta+$ $\cos\gamma + 1 = 4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}.$
- গ. $\triangle ABC$ এ $C=60^\circ$ হলে দেখাও যে, $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$

ঘ-বিভাগ: ক্যালকুলাস

- যে কোনো একটি প্রশ্নের উত্তর দাও: ٩.
- ক. সংযোজিত ফাংশনের সংজ্ঞা দাও। যদি $f(x) = a\left(\frac{x-b}{a-b}\right) +$
 - $\mathbf{b}\left(\frac{\mathbf{x}-\mathbf{a}}{\mathbf{b}-\mathbf{a}}\right)$ হয়, তবে দেখাও যে, $f(\mathbf{m})+f(\mathbf{n})=f(\mathbf{m}+\mathbf{n})$.
- খ. বিপরীত ফাংশনের সংজ্ঞা দাও । $f(x) = \cos^{-1}(1 + x + x^2)$ হলে দেখাও যে, $f(0) + 2f(1) + f(2) = \frac{\pi}{2}$.
- যে কোনো তিনটি প্রশ্নের উত্তর দাও: ъ.
- ক. $\lim_{x\to\infty} \frac{3x^2-\sin 2x}{x^2+5}$ এর মান নির্ণয় কর।
- খ. \sqrt{x} y = sinx হলে দেখাও যে, $x^2y_2 + xy_1 + \left(x^2 \frac{1}{4}\right)y = 0$.
- গ. $x^2 + xy^2 3x^2 + 4x + 5y 2 = 0$ বক্রবেখায় (1, -1) বিন্দুতে স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর।
- ঘ. যে কোন ২টি প্রশ্নের উত্তর দাও:
- (i) $\int x \sin^{-1} x \, dx$; (ii) $\int_{0}^{1} x^{2} \sqrt{4 x^{2}} \, dx$
- (iii) দেখাও যে, $y^2=4ax$ এবং $x^2=4ay$ পরাবৃত্ত দুইটি দারা সীমাবদ্ধ সমতল ক্ষেত্রের ক্ষেত্রফল $\frac{16}{3}$ a^2 .

- **২. (ক)** 2454, 136 ; **(খ)** 410
- **v.** $(\mathbf{\overline{\Phi}}) \cos^{-1} \left(-\frac{4}{21} \right); \frac{-4}{49} \left(6\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}} \right); \frac{-4}{7}$
- **8.** (Φ) $(2 + \sqrt{3})x + y = 10 + 3\sqrt{3}$; $(2 \sqrt{3})x + y = 10 3\sqrt{3}$
 - (*) (0,0) (*) $x^2 + y^2 5x y + 4 = 0$
 - (**T**) $x^2 + y^2 kx \pm ky + \frac{1}{4}k^2 = 0$

- **6.** (**a**) $\frac{a^2-b^2}{2ab}$, $\frac{a^2+b^2}{a^2-b^2}$ (**b**) $0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}, 2\pi$
- **b.** $(\mathbf{\overline{\Phi}}) \frac{1}{4} \sqrt{10 + 2\sqrt{5}}$
- **৮.** (ক) 0 (গ) স্পার্শক, 2x + 3y + 1 = 0
 - (\forall) (i) $\frac{1}{2}$ x² sin⁻¹x + $\frac{1}{4}$ x $\sqrt{1-x^2}$ $\frac{1}{4}$ sin⁻¹x + c, (ii) $\frac{2\pi}{3}$ $\frac{\sqrt{3}}{2}$

৭৬. মতিঝিল মডেল স্কুল এন্ড কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

ক-বিভাগ: বীজগণিত

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

- ১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- **◊** × **২** = **১**0
- ক. (i) $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$ এবং $C = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ হলে, প্রমাণ কর বে, (AB) C = A(BC)
- $= (a+b+c)^3$

- ২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- $\delta = \zeta \times \delta$
- প্রত্যেক অংককে প্রত্যেক সংখ্যায় কেবল একবার ব্যবহার করে 6. 5, 2, 3, 0 দ্বারা পাঁচ অংক বিশিষ্ট কতগুলি অর্থপূর্ণ বিজ্ঞোড় সংখ্যা
- দেখাও যে, n সংখ্যক বাহু বিশিষ্ট একটি বহুভুজের $\frac{1}{2}$ n(n-3)সংখ্যক কর্ণ আছে। আরও দেখাও যে, এর কৌণিক বিন্দুগুলির সংযোগ রেখা দ্বারা $\frac{1}{6}$ n (n-1) (n-2) সংখ্যক বিভিন্ন ত্রিভুজ গঠন করা যেতে পারে।

খ-বিভাগ: জ্যামিতি ও ভেক্টর

- ৩. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- $\delta = \zeta \times \delta$
- দেখাও যে, $a = 3\hat{i} 2\hat{j} + \hat{k}$, $b = \hat{i} 3\hat{j} + 5\hat{k}$, $c = 2\hat{i} + \hat{j} 4\hat{k}$ ভেক্টরগুলি একটি সমকোণী ত্রিভুজ গঠন করে।
- $2\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ ভেক্টরটি অক্ষত্রয়ের সাথে যে কোণ উৎপন্ন করে তা নির্ণয় কর।
- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:
- কোন ত্রিভুজের শীর্ষবিন্দু (2, -1), (a + 1, a 3) ও (a + 2, a) হলে তার ক্ষেত্রফল নির্ণয় কর। a এর মান কত হলে বিন্দুগুলি
- ii. A(h, k) বিন্দুটি 6x y = 1 রেখার উপর অবস্থিত এবং B(k, h)বিন্দুটি 2x - 5y = 5 রেখার উপর অবস্থিত AB সরলরেখাটির সমীকরণ নির্ণয় কর।
- iii. দুইটি সরলরেখা (6, -7) বিন্দু দিয়ে যায় এবং $y + x \sqrt{3} 1 = 0$ রেখার সাথে 60° কোণ উৎপন্ন করে। এদের সমীকরণ নির্ণয়
- iv. x=0, y=0 এবং x=a রেখা তিনটিকে স্পর্শ করে এরূপ বৃত্তের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- **৫.** যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:
- $\delta \zeta = \mathcal{O} \times \delta$
- y = sinx এর লেখচিত্র অংকন কর : -2π<x<2π ব্যবধিতে।
- যদি $\sin^2 A + \sin^4 A = 1$ হয়, তবে প্রমাণ কর যে,

- $tan^4 A tan^2 A = 1$
- iii. $\sin^3 x + \sin^3 (120^\circ + x) + \sin^3 (240^\circ + x) = \frac{-3}{4} \sin^3 x$
- iv. $\frac{1}{\sin 10^{\circ}} \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$ প্রমাণ কর।
- v. $\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\phi}{2}$ হয় তবে প্রমাণ কর যে,
 - $\cos\phi = \frac{\cos\theta e}{1 e\cos\theta}$
- vi. যে কোন ত্রিভুজ ABC এ $\angle A = 60^\circ$ হলে, দেখাও যে,

$$b + c = 2a\cos\frac{B - C}{2}$$

ঘ-বিভাগ: ক্যালকুলাস

- ৬.(i) যে কোনো একটি প্রশ্নের উত্তর দাও:
- & × > = &
- ক. যদি $f(x) = \cos(\ln x)$ হয় তবে $f(x) f(y) \frac{1}{2}$
 - $\left(f\left(\frac{\mathbf{x}}{\mathbf{y}}\right) + f\left(\mathbf{x}\mathbf{y}\right)\right)$ এর মান নির্ণয় কর।
- খ. f:
 abla
 ightarrow কে $f(\mathbf{x}) = \mathbf{x}^2 + 1$ দ্বারা সংজ্ঞায়িত করা হলো। মান নির্ণয় কর।
- (ii) যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:
- 36 = 0 × 3
- (a) ক. মান নির্ণয় কর : $\lim_{x \to 0} \frac{\tan x \sin x}{\sin^3 x}$ খ. মূল নিয়মে অন্তরীকরণ কর $\log_a x$
- (b) অন্তরীকরণ নির্ণয় কর ঃ
 - $(\overline{\Phi}) \tan^{-1} \sqrt{\frac{1-x}{1+x}}; \ (\overline{\Psi}) e^{x^2} + x^{x^2}$
- (c) $y = (x + \sqrt{1 + x^2})^m$ হলে প্রমাণ কর যে,
 - $(1 + x^2) \frac{d^2y}{dx^2} + x \frac{dy}{dx} m^2y = 0$
- - (i) $\int \frac{1}{1 + 3\cos^2 x} dx$ (ii) $\int \frac{dx}{(x 3)\sqrt{x + 1}}$ (iii) $\int x \cos^{-1} x dx$

- **v.** (ii) $\cos^{-1}\left(\frac{2}{3}\right)$, $\cos^{-1}\left(-\frac{1}{3}\right)$, $\cos^{-1}\left(\frac{2}{3}\right)$
- 8. (i) $\frac{1}{2}$ (2a -1) বৰ্গ একক, $\frac{1}{2}$; (ii) x + y 6 = 0
 - (iii) y + 7 = 0, $\sqrt{3}x y 7 6\sqrt{3} = 0$
 - (iv) $x^2 + y^2 ax \pm ay + \frac{1}{4}a^2 = 0$

- **9.** (i) ($\overline{\phi}$) 0 ($\overline{\psi}$) {-2, 2}, φ , {3, -3} (ii) (a) ($\overline{\phi}$) $\frac{1}{2}$ ($\overline{\psi}$) $\frac{1}{x} \log_{3}e$
 - (b) $(\mathbf{\overline{\Phi}}) \frac{-1}{2\sqrt{1-x^2}} (\mathbf{\forall}) 2xe^{x^2} + x^{x^2+1} (1+2 \ln x)$
 - (d) (i) $\frac{1}{2} \tan^{-1} \left(\frac{\tan x}{2} \right) + c$ (ii) $\frac{1}{2} \ln \left| \frac{\sqrt{x+1-2}}{\sqrt{x+1}+2} \right| + c$
 - (iii) $\frac{1}{2} x^2 \cos^{-1} x + \frac{1}{4} \sin^{-1} x \frac{1}{4} x \sqrt{1 x^2} + c$

৭৭. ঢাকা সিটি কলেজ

বিষয় কোড : 2 ৬ ৫ পূৰ্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- ১. যে কোন **দুইটি** প্রশ্নের উত্তর দাও ঃ
- (ক) $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix}$ হলে $A^3 2A^2 + A 2I$ এর মান নির্ণয় কর।
- ে $\langle x \rangle = 0$ (খ) দেখাও যে, $\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix} = 2abc (a+b+c)^3$ ন নির্বয় করে :

যদি $A = \begin{pmatrix} 2 & -3 & 5 \\ 0 & 1 & 1 \\ 1 & -2 & 3 \end{pmatrix}$ হয় তবে, দেখাও যে A একটি অব্যতিক্রমী ম্যাটিক্স এবং A⁻¹ নির্ণয় কর।

২. যে কোন **একটি** প্রশ্নের উত্তর দাও ঃ

 $6 \times 5 = 6$

- (ক) প্রমাণ কর $8 \, {}^n C_r + {}^n C_{r-1} = {}^{n+1} C_r$ এবং এর সাহায্যে দেখাও যে, ${}^{n}C_{r} + {}^{n-1}C_{r-1} + {}^{n-1}C_{r-2} = {}^{n+1}C_{r}$
- (খ) MATHEMATICS শব্দটির সবগুলো অক্ষর কত প্রকারে সাজানো যায় তা বের কর এবং এদের কতগুলোতে স্বরবর্ণগুলো একত্রে থাকবে? কতগুলি বিন্যাসে শুরুতে এবং শেষ M থাকবে?

খ-বিভাগ: ত্রিকোণমিতি

৩. যে কোন **দুইটি** প্রশ্নের উত্তর দাওঃ

- (ক) লেখচিত্র অংকন কর $y = \cos 2x, 0 \le x \le 2\pi$.
- (খ) θ সুক্ষকোণ এবং $an \theta = rac{X}{V}$ হলে $\sin \theta$ ও $\cos \theta$ এর মান নির্ণয়
- (গ) বৃত্তকলা বলতে কি বুঝ? 10 সে.মি. ব্যাসার্ধবিশিষ্ট বৃত্তের 14 সে.মি. দৈর্ঘ্যের একটি জ্যা বৃত্তের কেন্দ্রে কী পরিমাণ কোণ উৎপন্ন করে? জ্যাটি দারা বৃত্তের ক্ষুদ্রতর অংশের সাথে আবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- 8. যে কোন **দুইটি** প্রশ্নের উত্তর দাওঃ

- (ক) যে কোন ত্রিভূজে প্রমাণ কর যে, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, যেখানে R ত্রিভুজের পরিবৃত্তের ব্যাসার্ধ।
- (খ) $\sqrt{2} \cos A = \cos B + \cos^3 B$ এবং $\sqrt{2} \sin A = \sin B \sin^3 B$ হলে প্রমাণ কর যে, $\sin(A - B) = \pm \frac{1}{3}$
- (গ) $\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}}$ হলে, প্রমাণ কর যে, $\cos \theta = \frac{\cos \theta e}{1-e \cos \theta}$.

গ-বিভাগ: ক্যালকুলাস

৫. যে কোন **একটি** প্রশ্নের উত্তর দাও ঃ

- (ক) $f: \nabla \to \nabla$ কিন্তু $(x \neq -\frac{1}{2})$ এবং $f(x) = \frac{x-3}{2x+1}$ হলে $f^{-1}(x)$
- (খ) $f(x) = e^x + e^{-x}$ হলে প্রমাণ কর যে, f(x + y) f(x y)= f(2x) + f(2y)

যে কোন **তিনটি** প্রশ্নের উত্তর দাও ঃ

 $0 \times 0 = 0 \times 0$

- (Φ) $y^2 = 4ax$ এবং $x^2 = 4ay$ পরাবৃত্ত দুইটি দ্বারা আবদ্ধ সমতল ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- (খ) x এর সাপেক্ষে অন্তরজ নির্ণয় কর ঃ (যে কোন ২টি)
 - (ii) $\tan^{-1} \frac{a + bx}{a bx}$
- - (iii) $\sin^2(\operatorname{In}(x^2))$.
- (গ) যোজিত ফল নির্ণয় কর ঃ (যে কোন ২টি)

 $\text{(i)} \int \frac{tanx}{ln(cosx)} \, dx \ \ \text{(ii)} \ \int \frac{x-1}{(x-2)(x-3)} \, dx \ \ \text{(iii)} \int \frac{xe^x}{(x+1)^2} \, dx$

(ঘ) $f(x) = 2x^3 - 21x^2 + 36x - 20$ এর গুরুমান ও লঘুমান নির্ণয়

ঙ-বিভাগঃ জ্যামিতি ও ভেক্টর

৭. যে কোন **একটি** প্রশ্নের উত্তর দাও ঃ

- (ক) দেখাও যে, $\vec{a} = 3\hat{i} 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} 3\hat{j} + 5\hat{k}$, $\vec{c} = 2\hat{i} + \hat{j} + 4\hat{k}$ এই তিনটি ভেক্টর একই সমতলে থাকে এবং তারা একটি সমকোণী ত্রিভুজ গঠন করে।
- (খ) ভেক্টরের সাহায্যে প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করে।
- b. যে কোন **তিনটি** প্রশ্নের উত্তর দাও ঃ

 $0 \times 0 = 0 \times 0$

- (ক) একটি সরলরেখা (-2, -5) বিন্দুগামী এবং x ও y অক্ষের সাথে A ও B বিন্দুতে ছেদ করে যখন OA + 2.OB = O এবং O মু লবিন্দু। সরল রেখাটির সমীকরণ এবং রেখাটি অক্ষদ্বয়ের সাথে যে ত্রিভুজ উৎপন্ন করে তা নির্ণয় কর। মূলবিন্দু থেকে রেখাটির লম্ব দূরত্ব কত?
- (খ) একটি বৃত্ত (3, -2) ও (-2, 0) বিন্দুদ্বয় দিয়ে অতিক্রম করে যার কেন্দ্র 2x - y = 3 রেখার উপর অবস্থিত। বৃত্তটির সমীকরণ নির্ণয় কর। বৃত্তটি x অক্ষ হতে যে অংশ খন্তিত করে তার দৈর্ঘ্য নির্ণয়
- (গ) দুইটি সরলরেখা (-1, 2) বিন্দু দিয়ে গমন করে এবং 3x y + 7 = 0রেখার সাথে 45° কোণ তৈরি করে। রেখা দুইটির সমীকরণ নির্ণয় কর এবং তাদের সমীকরণ থেকে দেখাও যে, তারা পরস্পর লম্বভাবে
- (ঘ) $x^2 + y^2 2ax = 0$ একটি বৃত্তের সমীকরণ। বৃত্তটির পোলার সমীকরণ নির্ণয় কর? lx + my = 1 রেখাটি বৃত্তকে স্পর্শ করলে a, l, m এর সম্পর্ক নির্ণয় কর।

- **3.** (a) $\begin{bmatrix} 5 & 15 & 10 \\ 10 & 0 & 15 \\ 5 & -5 & 5 \end{bmatrix}$ (c) $\frac{1}{2} \begin{bmatrix} 5 & -1 & -8 \\ -1 & 1 & -2 \\ -1 & 1 & 2 \end{bmatrix}$
- ২. (b) 4989600; 120960; 90720 ৩. (b) $\frac{x}{\sqrt{x^2 + y^2}}$, $\frac{y}{\sqrt{x^2 + y^2}}$ (c) 1.55 রেডিয়ান, 77.5 বর্গ সে.মি.
 - $(a) \frac{x+3}{1-2x}$

- **৬.** (a) $\frac{16a^2}{3}$ বর্গ একক (b) (i) $x^x(1 + \ln x)$ (ii) $\frac{ab}{a^2 + b^2 x^2}$ (iii) $\frac{2}{x} \sin(4 \ln x)$
 - $\textbf{(c) (i)} ln \left[ln \left| cos \, x \right| \right] + c \, \textbf{(ii)} \, 2 ln \left| x 3 \right| ln \left| x 2 \right| + c$
 - (iii) $\frac{e^x}{x+1} + c$ (d) -3; -128
- **৮.** (a) x 2y = 8 (b) x² + y² + 3x + 12y + 2 = 0 (c) 2x + y = 0 এবং x - 2y + 5 = 0 (d) $r = 2a \cos\theta$ এবং $a^2m^2 + 2a\ell = 1$.

৭৮. ঢাকা সিটি কলেজ

বিষয় কোড:

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $6 \times 2 = 20$

- ক. প্রমাণ কর যে, |a b| ≤ | a | + | b |
- খ. z = x + iy এবং |2z 1| = |z 2| হলে, প্রমাণ কর যে, $x^2 + y^2 = 1$
- গ. প্রমাণ কর যে, $\left(\frac{-1+\sqrt{-3}}{2}\right)^n+\left(\frac{-1-\sqrt{-3}}{2}\right)^n=2$ বা -1, যখন n এর মান যথাক্রমে 3 দ্বারা বিভাজ্য বা n এর মান অপর কোন পূর্ব সংখ্যা হয়।
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $e \times 2 = 20$

- ক. $(a+3x)^n$ এর বিস্তৃতিতে প্রথম তিনটি পদ যথাক্রমে $b, \frac{21}{2} bx$ ও $\frac{189}{4} bx^2$ হলে, a, b এবং n এর মান নির্ণয় কর।
- খ. প্রমাণ কর যে, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদ $\frac{1.3.5.....\left(2n-1\right)}{n!}(-2)^n$
- গ. প্রমাণ কর যে, $(1-2x)^{\frac{1}{2}}$ এর বিস্তৃতিতে (r+1) তম পদের সহগ $\frac{(2r)!}{(r!)^2.2^r}$; যেখানে |x|<1।

খ-বিভাগ: ত্রিকোণমিতি

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × \$ = \$0

- ক. (i) দেখাও যে, $\sin^2\left(\cos^{-1}\frac{1}{3}\right) \cos^2\left(\sin^{-1}\frac{1}{\sqrt{3}}\right) = \frac{2}{9}$ (ii) দেখাও যে, $4\left(\sin^{-1}\frac{1}{\sqrt{5}} + \cot^{-1}3\right) = \pi$
- খ. সমাধান কর $\sin\theta + \cos\theta = \sqrt{2\sin 2\theta}$
- গ. সমাধান করঃ $4\cos x \cos 2x \cos 3x = 1$, $0 < x < \pi$

গ-বিভাগঃ স্থিতিবিদ্যা ও গতিবিদ্যা

- ক. প্রমাণ কর যে, কোন নির্দিষ্ট দিকে দুইটি বলের লম্বাংশের বীজগণিতীয় য়োগফল ঐ দিকে লব্ধির লম্বাংশের সমান।
 - খ. কোন বিন্দুতে ক্রিয়ারত P ও Q বল দুইটির লব্ধি তাদের অন্তর্গত কোণকে এক-তৃতীয়াংশে বিভক্ত করে। দেখাও যে, কোণের পরিমাণ $3\cos^{-1}\!\left(\frac{P}{2Q}\right)$ এবং এর লব্ধির মান $\frac{P^2-Q^2}{Q}$, (P>Q) ৫

অথবা.

- ক. দুইটি অসদৃশ, অসমান সমান্তরাল বলের লব্ধির মান, দিক ও
 ক্রিয়ারেখা নির্ণয় কর।
- খ. P ও Q দুইটি সমমুখী সমান্তরাল বল। P বলটির ক্রিয়ারেখা সমান্তরাল রেখে এর ক্রিয়াবিন্দুকে x দূরত্বে সরালে দেখাও যে, এদের লব্ধি $\frac{Px}{P+Q}$ দূরে সরে যাবে।
- ৫. ক. সচরাচর সংকেত মালায় $\mathbf{v}^2 = \mathbf{u}^2 + 2f\mathbf{s}$ এর প্রমাণ কর।
 - খ. দুইটি বেগের সম্ভবপর বৃহত্তম লব্ধি ক্ষুদ্রতম লব্ধির n গুণ এবং যখন বেগ দুইটির লব্ধি তাদের যোগফলের অর্ধেক তখন তাদের অর্প্জভুক্ত কোণ α হলে প্রমান করে যে, $\cos\alpha = \frac{n^2+2}{2(1-n^2)}$

অথবা,

ক. প্রমাণ কর যে, বায়ুশূণ্য স্থানে কোন প্রক্ষিপ্ত বস্তুর গমনপথ একটি পরাবৃত্ত। খ. H উচ্চতা বিশিষ্ট একটি টাওয়ারের শীর্ষবিন্দু হতে অবাধে পড়ন্ড একটি পাথর খন্ড x মিটার দূরত্বে পৌছিলে উক্ত টাওয়ারের শীর্ষ বিন্দুর y মিটার নিচে অবস্থিত কোন বিন্দু হতে আর একটি পাথর খন্ড নিচে ফেলে দেওয়া হল । পাথরখন্ডদ্বয় একই সাথে ভূমিতে পড়লে দেখাও যে, $H = \frac{(x+y)^2}{4y}$

ঘ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

৬. যে কোন একটি প্রশ্নের উত্তর দাও :

 $e \times \lambda = 0$

ক. মনে করি A ও B দুই ধরনের খাবার আছে যার প্রোটিন ও স্টার্চ এর পরিমাণ নিম্নে ছকে দেয়া আছে ।

খাদ্য	প্রোটিন	স্টার্চ	কিলো প্ৰতি
			মূল
			J
A	8	10	40 টাকা
В	12	6	50 টাকা
প্রত্যহ প্রয়োজন	32	22	

সবচেয়ে কম খরচে প্রত্যেকের প্রয়োজন কিভাবে মেটানো যাবে তা নির্ণয় কর। সমস্যাটিকে যোগাশ্রয়ী প্রোগ্রাম সমস্যায় প্রকাশ কর ও লেখচিত্র পদ্ধতিতে এর সমাধান কর।

খ. লেখচিত্রের সাহায্যে নিম্নলিখিত শর্তানুসারে Z=2x-y এর γ সর্বনিম্নকরণ কর ঃ শর্তঃ $x+y\leq 5,\ x+2y\leq 8,\ 4x+3y\geq 12,\ x\geq 0,\ y\geq 0$

ঙ-বিভাগ: জ্যামিতি

৭. যে কোন **দুইটি** প্রশ্নের উত্তর দাও:

& × 2 = 30

- ক. $x^2 + 2y 8x + 7 = 0$ পরাবৃত্তটির শীর্ষবিন্দু, উপকেন্দ্র, উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর।
- খ. উপবৃত্তের অক্ষদ্বয়কে x ও y-অক্ষ ধরে উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 8 ও $\frac{1}{3}$ উৎকেন্দ্রতা বিশিষ্ট উপবৃত্তের সমীকরণ নির্ণয় কর।
- গ. যে অধিবৃত্তের নিয়ামক 2x + y = 1, উপকেন্দ্র (1, 1) এবং উৎকেন্দ্রকতা $\sqrt{3}$;তার সমীকরণ নির্ণয় কর।

চ-বিভাগঃ পরিসংখ্যান

৮. যে কোন **দুইটি** প্রশ্নের উত্তর দাও:

◊ × ≥ = > 0

ক. নিচের নিবেশনটির পরিমিত ব্যবধান ও ভেদাংক নির্ণয় কর।

শ্ৰেণী	30-40	40-50	50-70	70-90	90-120	120-150	150-200
গণ সংখ্যা	10	22	28	35	25	15	5

- খ. দোলন ও গন্ধা একটি অঙ্কের সমাধান করতে পারার সম্ভাবনা যথাক্রমে $\frac{1}{3}$ এবং $\frac{1}{4}$ । তারা একত্রে অঙ্কটি করার চেষ্টা করলে অঙ্কটির সমাধান করার সম্ভাবনা নির্ণয় কর
- গ. একটি ব্যাগে 5টি সাদা, 7 টি লাল এবং ৪টি কালো বল আছে। যদি বিনিময় না করে একটি একটি করে পর পর চারটি বল তুলে নেওয়া হয়, তবে সবগুলো বল সাদা হওয়ার সম্ভাব্যতা কত ?

২. (ক) 2, 128, 7

৩. (খ) $\theta = n\pi + \frac{\pi}{4}$ যখন $n \in \wedge$ (গ) $\frac{\pi}{8}, \frac{\pi}{3}, \frac{3\pi}{8}, \frac{2\pi}{3}, \frac{5\pi}{8}, \frac{7\pi}{8}$

৬. (ক) A প্রকার খাদ্য 1 কেজি, B প্রকার খাদ্য 2 কেজি; খরচ 140 টাকা । $Z_{\min} = 40x + 50y$

ক-বিভাগ: বীজগণিত

ক. $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ হলে $A^2 - 4A - 5I$ এর মান নির্ণয় কর।

খ. প্রমাণ কর যে, $\begin{vmatrix} (b+c)^2 & a^2 & 1 \\ (c+a)^2 & b^2 & 1 \\ (a+b)^2 & c^2 & 1 \end{vmatrix} = -2 (a+b+c) (b-c)$

ক. প্রত্যেক অঙ্ককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে 6.5.

খ. দেখাও যে, n বাহু বিশিষ্ট একটি বহুভূজের $\frac{1}{2}$ n (n-3) সংখ্যক

2, 3, 0 অঙ্কগুলি দ্বারা পাঁচ অঙ্কের কতগুলি অর্থপূর্ণ বিজ্ঞাড় সংখ্যা

কর্ণ আছে। আরও দেখাও যে, এর কৌণিক বিন্দুগুলোর সংযোগ

রেখা দ্বারা $\frac{1}{6}$ n (n - 1) (n - 2) সংখ্যক বিভিন্ন ত্রিভুজ গঠন করা

গ. $A = \begin{bmatrix} 2 & 5 \\ 3 & 10 \end{bmatrix}$ হলে দেখাও যে, $AA^{-1} = I_2$ ৷

গঠন করা যায় তা নির্ণয় কর।

শর্তসমূহ: $2x + 3y \ge 8$

$$5x + 3y \ge 11$$

 $x, y \ge 0$

(খ) $Z_{min} = -4$

9. $(\overline{\Phi})$ $(4, \frac{9}{2})$; (4, 4); 2. (4) $\frac{4x^2}{81} + \frac{y^2}{18} = 1$

(1) $7x^2 - 2y^2 + 12xy - 2x + 4y - 7 = 0$

৮. (ক) 34.26 টাকা; 1174.1059 টাকা (খ) $\frac{1}{2}$ (গ) $\frac{1}{969}$

করে। b-এর মান নির্ণয় কর।

৭৯. মাইলস্টোন কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

& × \$ = \$0

 $6 \times 5 = 6$

য. 3x + by - 1 = 0 রেখাটি $x^2 + y^2 - 8x - 2y + 4 = 0$ বৃত্তকে স্পর্শ

গ-বিভাগঃ ত্রিকোণমিতি

৫. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

& × ≤ = >0

ক. (i) যদি $\cos\alpha+\sec\alpha=\frac{5}{2}$ হয়, তবে প্রমাণ কর যে, $\cos^n\alpha+\sec^n\alpha=2^n+2^{-n}$

(ii) যদি $7\sin^2\theta+3\cos^2\theta=4$ হয়, তবে প্রমাণ কর যে, $\tan\theta=\pm\frac{1}{\sqrt{3}}$

খ. যদি $\cot \alpha + \cos \beta = \alpha$, $\tan \alpha + \tan \beta = b$ এবং $\alpha + \beta = \theta$ হয়, তবে প্রমাণ কর যে, $(a-b)\tan \theta = ab$.

গ. লেখচিত্র অংকন কর : $y = \cos 2x$; $0 \le x \le \pi$

৬. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও: ৫ × ২ = ১০

ক. প্রমাণ কর যে, $\sin^3 x + \sin^3 (120^\circ + x) + \sin^3 (240^\circ + x)$ $= -\frac{3}{4} \sin 3x$

খ. $A + B + C = \pi$ হলে, প্রমাণ কর যে, $\cos^2 A + \cos^2 B - \cos^2 C = 1 - 2 \sin A \sin B \cos C$

গ. যদি ABC ত্রিভুজে $\cos A = \sin B - \cos C$ হয়, তবে দেখাও যে, ত্রিভুজটি সমকোণী।

খ-বিভাগঃ জ্যামিতি ও ভেক্টর

৩. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

 $@ \times 2 = @$

- ক. তিনটি বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\hat{i}+2\hat{j}+3\hat{k}, -\hat{i}-\hat{j}+8\hat{k},$ এবং $-4\hat{i}+4\hat{j}+6\hat{k}$ হলে, দেখাও যে, বিন্দু তিনটি একটি সমবাহু গ্রিভুজ গঠন করে।
- খ. ABC ত্রিভুজের BC বাহুর মধ্যবিন্দু D হলে, ভেক্টর পদ্ধতিতে দেখাও যে, $AB^2 + AC^2 = 2(AD^2 + BD^2)$

8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

১ × ৩ = :

- ক. একটি সরলরেখা (-2, -5) বিন্দু দিয়ে অতিক্রম করে এবং x ও y-অক্ষ দুইটিকে যথাক্রমে A ও B বিন্দুতে ছেদ করে, যেখানে OA OB = 0 হয় এবং O মূলবিন্দু। সরলরেখার সমীকরণ নির্ণয় কর।
- খ. 4x 3y = 8 সরলরেখার সমান্তরাল এবং তা থেকে 2 একক দূরে অবস্থিত সরলরেখাগুলির সমীকরণ নির্ণয় কর।
- গ. $\frac{1}{2}\sqrt{10}$ ব্যাসার্ধবিশিষ্ট একটি বৃত্ত $(1,\ 1)$ বিন্দু দিয়ে যায় এবং বৃত্তটির কেন্দ্র y=3x-7 রেখার উপর অবস্থিত। বৃত্তটির সমীকরণ নির্ণয় কর।

ঘ-বিভাগ: ক্যালকুলাস

A. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

 $@ \times 2 = @$

ক. $f: \nabla - \{3\} \to \nabla - \{1\}$ ফাংশনটি $f(\mathbf{x}) = \frac{\mathbf{x}-2}{\mathbf{x}-3}$ দ্বারা সংজ্ঞায়িত । প্রমাণ কর যে, ফাংশনটি এক-এক এবং সার্বিক । $f^{-1}(\mathbf{x})$ নির্ণয় কর ।

খ. $f: \nabla \to \nabla$ কে $f(\mathbf{x}) = \mathbf{x}^2 + 1$ দ্বারা সংজ্ঞায়িত করা হল । মান নির্ণয় কর : (i) $f^{-1}(10)$ (ii) $f^{-1}([2,10])$

৮. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

 $\delta \zeta = \mathcal{O} \times \delta$

ক. x এর সাপেক্ষে অন্তরজ নির্ণয় কর : (যে কোন দুইটি)

(i)
$$\frac{x \sin x}{1 + \cos x}$$
 (ii) x^{x^x} (iii) $2x^{\circ} \cos 3x^{\circ}$

- খ. $y = \sin(\sin x)$ হলে, প্রমাণ কর যে, $\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + y \cos^2 x$ = 0
- গ. $y = 4e^x + 9e^{-x}$ এর লঘুমান নির্ণয় কর।
- ঘ. যে কোন দুইটি প্রশ্নের উত্তর দাও:

(i)
$$\int \frac{dx}{1 + \tan x}$$
 (ii) $\int x \tan^{-1} x \, dx$ (iii) $\int_{0}^{4} \sqrt{16 - x^2} \, dx$

- **3.** (季) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- ২. **(ক)** 36
- - (*) 4x 3y + 2 = 0, 4x 3y 18 = 0
 - (1) $x^2 + y^2 5x y + 4 = 0$
 - (ঘ) 2 বা, $-\frac{1}{6}$

- 9. ($\overline{\Phi}$) $f^{-1}(x) = \frac{3x-2}{x-1}$
 - (খ) (i) {-3, 3} (ii) {x : 1 \le x \le 3 অথবা -3 \le x \le -1}
- $\forall r. \quad (\mathbf{\Phi}) (i) \frac{x + sinx}{1 + cosx}; (ii) x^{x^x}.x^x [\ell n(x) \{(\ell n(x) + 1\} + \frac{1}{x}];$
 - (iii) $\frac{\pi}{90} \left(\cos \frac{\pi x}{60} \frac{\pi x}{60} \sin \frac{\pi x}{60} \right)$ (1) 12
 - (\P) (i) $\frac{1}{2}$ [x + ℓ n | sinx + cosx|] + c; (ii) $\frac{1}{2}$ (x² + 1) tan⁻¹x $\frac{1}{2}$ x + c;

৮০. ঢাকা রেসিডেন্সিয়াল মডেল কলেজ, ঢাকা

বিষয় কোড : | ২ | ৬ | ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়): প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- ১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- **&** × **₹** = **\$** ∞
- ক. যদি $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ হলে, $A^2 4A 5I$ এর মান নির্ণয় কর। e. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- খ. প্রমাণ কর : $\begin{bmatrix} (b+c)^2 & a^2 & 1 \\ (c+a)^2 & b^2 & 1 \\ (a+b)^2 & c^2 & 1 \end{bmatrix} = -2(a+b+c)(a-b)(b-c)$
- গ. ম্যাট্রিক্সের সাহায্যে সমাধান কর : 5x + 2y = 11, 3x + 4y = 1
- ক. স্বরবর্ণগুলিকে পাশাপাশি না রেখে 'TRIANGLE' শব্দটির অক্ষরগুলো কত সংখ্যক উপায়ে সাজানো যায় তা নির্ণয় কর। ৫

প্রমাণ কর: ${}^{p}C_{q} + {}^{p}C_{q-1} = {}^{p+1}C_{q}$

খ-বিভাগ: জ্যামিতি ও ভেক্টর

৩. ক. $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ এবং $\vec{b} = 2\hat{i} - 6\hat{j} + \hat{k}$ দুইটি ভেক্টর হলে, \vec{a} ভেক্টরের উপর \vec{b} ভেক্টরের অভিক্ষেপ এবং \vec{a} ভেক্টর বরাবর \vec{b} ভেক্টরের উপাংশ নির্ণয় কর।

অথবা.

ভেক্টরের সাহায্যে প্রমাণ কর যে, কোন ত্রিভুজ ABC-তে $cosC = \frac{a^2 + b^2 - c^2}{2ab}$

- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:
- ক. একটি ত্রিভুজের শীর্ষ বিন্দুগুলোর স্থানাংক $(at^2_1, 2at_1), (at^2_2, 2at_2)$ এবং $(at^2_3, 2at_3)$, যদি এর ভরকেন্দ্র X অক্ষের উপর অবস্থিত হয় তবে দেখাও যে, $t_1 + t_2 + t_3 = 0$
- খ. একটি সরলরেখা অক্ষদ্বয়ের সাথে $\frac{50}{\sqrt{3}}$ বর্গ একক ক্ষেত্রফল বিশিষ্ট একটি ত্রিভুজ গঠন করে এবং মূল মধ্যবিন্দু হতে রেখাটির উপর অংকিত লম্ব X অক্ষের সাথে 30° কোণ উৎপন্ন করে। রেখাটির সমীকরণ নির্ণয় কর।
- গ. মূল বিন্দু এবং $x^2 + y^2 2x 4y 4 = 0$ বৃত্ত ও 2x + 3y + 1 = 00 রেখার ছেদ বিন্দু দিয়ে অতিক্রমকারী বৃত্তের সমীকরণ নির্ণয় কর। বত্তটি অক্ষদ্বয় হতে কি পরিমাণ অংশ ছেদ করে তাও নির্ণয় কর।

ঘ. $x^2 + y^2 - 4x - 6y + c = 0$ বৃত্তটির x-অক্ষকে স্পর্শ করে। c এর মান এবং স্পর্শ বিন্দুর স্থানাংক নির্ণয়।

গ-বিভাগ: ত্রিকোণমিতি

- & × 2 = 30
- ক. যদি $\cos\alpha + \sec\alpha = \frac{5}{2}$ হয় তবে প্রমাণ কর যে, $cos^n\alpha + sec^n\alpha = 2^n + 2^{-n}$
- খ. যদি $\tan\theta=\frac{5}{12}$ এবং $\cos\theta$ ঋগ্ধক হয়, তবে $\frac{\sin\theta+\cos(-\theta)}{\sec(-\theta)+\tan\theta}$ এর
- গ. $x=-\pi$ হতে $x=\pi$ ব্যবধিতে $y=\sin 2x$ এর লেখচিত্র অংকন
- যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- & × 2 = 30
- ক. প্রমাণ কর : $\tan 20^\circ \tan 40^\circ \tan 80^\circ = \sqrt{3}$
- খ. যদি $A + B + C = \pi$ এবং $cotA + cotB + cotC = \sqrt{3}$ হয়, তবে দেখাও যে. A = B = C
- গ. ΔABC এ $\cos A = \sin B \cos C$ তবে দেখাও যে, ত্রিভূজটি সমকোণী।

ঘ-বিভাগ: ক্যালকুলাস

৭. ক. X, Y বাস্তব সংখ্যার সেট R এর দুইটি উপসেট এবং $f: X \to Y,$ যেখানে $f(x) = \frac{x-3}{2x+1}$, ফাংশন f এর ডোমেন ও রেঞ্জ নির্ণয়

যদি $f(x) = \ln(\sin x)$ এবং $\varphi(x) = \ln(\cos x)$ হলে, প্রমাণ কর যে, $e^{2\phi(a)} - e^{2\ln(a)} = e^{\phi(2a)}$

- যে কোনো তিনটি প্রশ্নের উত্তর দাও:
- 6 × 0 = 36
- ক. মান নির্ণয় কর : $\lim_{x\to 0} \frac{\cos 7x \cos 9x}{\cos 3x \cos 5x}$
- খ. মূল নিয়মে log_ax/sin2x এর অন্তরক সহগ নির্ণয় কর।
- $y = x^3 3x^2 2x + 1$ বক্ররেখার যে সকল বিন্দুতে স্পর্শকগুলো অক্ষদ্বয়ের সাথে সমান সমান কোণ উৎপন্ন করে তাদের ভুজ নির্ণয়
- ঘ. ২টি প্রশ্নের উত্তর দাওঃ

 - (i) $\int \cos^4 x dx$ (ii) $\int \frac{dx}{1 + \tan x}$

(iii)
$$\int_{0}^{\pi/2} e^{x} (\sin x + \cos x) dx$$
 (iv) $\int_{1}^{e^{2}} \frac{dx}{x(1 + \ln x)^{2}}$

5. $(\mathbf{\overline{7}})$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $(\mathbf{\overline{7}})$ (3, -2)

২. 36000

9. 4, 4a

8. (*) $\sqrt{3}x + y - 10 = 0$ (*) $x^2 + y^2 + 6x + 8y = 0$; 6, 8 (*) 4; (2, 0)

৫. (খ) $\frac{51}{26}$

 $\mathbf{9.} \quad \nabla - \left\{ -\frac{1}{2} \right\}, \nabla - \left\{ \begin{array}{c} \frac{1}{2} \end{array} \right\}$

৮. (ক) 2 (খ) $\frac{1}{x} \log_{3} e$ অথবা, $2 \cos 2x$ (গ) $1 \pm \sqrt{2}, 1 \pm \frac{2}{\sqrt{3}}$

(\P) (i) $\frac{1}{4} \left[\frac{3x}{2} + \sin 2x + \frac{1}{8} \sin 4x \right] + c$

(ii) $\frac{x}{2} + \frac{1}{2} \ln|\cos x + \sin x| + c$ (iii) $e^{\frac{\pi}{2}}$ (iv) $\frac{2}{3}$

৮১. ঢাকা রেসিডেন্সিয়াল মডেল কলেজ, ঢাকা

বিষয় কোড:

: ২ ৬ ৬ পর্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- ৫. ক. প্রমাণ কর যে, কোন নির্দিষ্ট দিকে এক বিন্দুগামী দুইটি বলের লম্বাংশের বীজগণিতীয় সমষ্টি একই দিকে এদের লব্ধির লম্বাংশের সমান।
 - খ. P ও Q বলদ্বয় যথাক্রমে একটি হেলানো তলের দৈর্ঘ্য ও ভূমির সমান্তরালে ক্রিয়ারত থেকে প্রত্যেকে এককভাবে তলের উপরস্থ W ওজনের একটি বস্তুকে ধরে রাখতে পারে। প্রমাণ কর যে, $\frac{1}{P^2}$ $-\frac{1}{O^2}=\frac{1}{W^2}$
- অথবা, ক. দুইটি অসদৃশ অসমান সমান্তরাল বলের লব্ধি ও এর প্রয়োগ বিন্দু নির্ণয় কর।
 - খ. ABC ত্রিভুজের পরিকেন্দ্র O। একটি বল P, AO বরাবর ক্রিয়ারত। দেখাও যে, B ও C বিন্দুতে P এর সমান্তরাল উপাংশদ্বয়ের অনুপাত sin2B % sin2C।

 $\bullet. \qquad \qquad \bullet \times \lambda = \lambda \circ$

- ক. সচরাচর সংকেতমালায় প্রমাণ কর যে, $v^2 = u^2 + 2 f s$
- খ. দুইটি বেগের বৃহত্তম লব্ধি এদের ক্ষুদ্রতম লব্ধির n গুণ। বেগদ্বয়ের মধ্যবর্তী কোণ α হলে, লব্ধি বেগের মান এদের সমষ্টির অর্ধেক হয়। প্রমাণ কর যে,

$$\cos\alpha = \frac{n^2 + 2}{2(1 - n^2)}$$

- - খ. h উচ্চতা বিশিষ্ট একটি টাওয়ারের শীর্ষবিন্দু হতে অবাধে পড়স্ত একখণ্ড পাথর x মিটার দূরত্বে পৌছালে টাওয়ারের শীর্ষ বিন্দুর y মিটার নিচে কোন বিন্দু থেকে আর একখণ্ড পাথর নিচে ফেলা হল। এরা একই সাথে ভূমিতে পড়লে দেখাও যে, $h = \frac{(x+y)^2}{4x}$ মিটার।

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

ক-বিভাগ: বীজগণিত

- ১. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:
- & × \delta = \delta 0
- ক. $a, b \in \nabla$ ইলে দেখাও যে, $|a+b| \le |a| + |b|$
- খ. $\sqrt[3]{x+iy} = a+ib$ হলে, প্রমাণ কর যে, $\frac{x}{a} + \frac{y}{b} = 4(a^2 b^2)$
- গ. এককের একটি জটিল ঘনমূল ω হলে, প্রমাণ কর যে, $(-1+\sqrt{-3})^4 + (-1-\sqrt{-3})^4 = -16$
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- & × ₹ = **?**o
- ক. এমন একটি সমীকরণ নির্ণয় কর যার মূল দুইটি যথাক্রমে $x^2-2ax+a^2-b^2=0$ সমীকরণের মূলদ্বয়ের সমষ্টি এবং অন্তরফলের যোগবোধক মান হবে।
- খ. প্রমাণ কর যে, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদটি $\frac{1.3.5.....(2n-1)}{n!}(-2)^n$ যেখানে $n\in$
- গ. $y=x-x^2+x^3-x^4+\ldots$ ত হলে, দেখাও যে, $x=y+y^2+y^3+y^4+\ldots$

খ-বিভাগ: জ্যামিতি

- থে কোনো দুইটি প্রশ্নের উত্তর দাও:
- & × ₹ = **3**0
- ক. $5x^2 + 30x + 2y + 59 = 0$ পরাবৃত্তের শীর্ষবিন্দু, ফোকাস, উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং এর অক্ষরেখা ও নিয়ামক রেখার সমীকরণ নির্ণয় কর।
- খ. $\frac{x^2}{p} + \frac{y^2}{5^2} = 1$ উপবৃত্তটি (6, 4) বিন্দু দিয়ে অতিক্রম করে। P এর মান, উপবৃত্তের উৎকেন্দ্রিকতা এবং উপকেন্দ্রের স্থানাংক নির্ণয় কর।
- গ. একটি অধিবৃত্তের সমীকরণ নির্ণয় কর, যার উৎকেন্দ্রিকতা $\sqrt{5}$; উপকেন্দ্র (1, -8) এবং নিয়ামক রেখার সমীকরণ 3x-4y=10.

গ-বিভাগ: ত্রিকোণমিতি

- 8. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- $\mathfrak{C} \times \mathbf{4} = \mathbf{2}$
- ক. প্রমাণ কর যে, $\cos^{-1}\frac{1}{\sqrt{5}} \frac{1}{2}\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{3} = \tan^{-1}2$
- খ. যদি $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$ হয় তবে প্রমাণ কর যে, $x^2 + y^2 = 1$
- গ. সমাধান কর: $\sin x + \cos x = \sin 2x + \cos 2x$

91-100

ব. যোগাশ্রয়ী প্রোগ্রামিং কাকে বলে? যোগাশ্রয়ী প্রোগ্রামিং-এর শর্ত এবং
সুবিধাগুলি কি কি?

অথবা, এক ব্যক্তি 500 টাকার মধ্যে কমপক্ষে 6খানা গামছা ও 4খানা তোয়ালে কিনতে চায়। প্রতিখানা গামছার দাম 30 টাকা এবং প্রতিখানা তোয়ালের দাম 40 টাকা। প্রত্যেক প্রকারের কতখানা জিনিস কিনলে সে সর্বাপেক্ষা বেশি সংখ্যকে জিনিস কিনতে পারবে?

চ-বিভাগ: পরিসংখ্যান

\$ জা নস	।ক ন তে	পারবে?	

৮. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

€ × ₹ = \$0

ক. নিতে দ্বাদশ শ্রেণির 60 জন ছাত্রের গণিতে প্রাপ্ত নম্বর দেওয়া হলো। প্রাপ্ত নম্বরের গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় কর।

8.	(গ) 2nπ	$\frac{2}{3}$	nπ +	$\frac{\pi}{4}$
----	---------	---------------	------	-----------------

নম্বর

চাত্র

- **v.** ($\overline{\bullet}$) (-3, -7), $\left(-3, -\frac{71}{10}\right)$, $\frac{2}{5}$, x + 3 = 0, 10y + 69 = 0.
 - (*) $P = 100, \frac{\sqrt{3}}{2}, (\pm 5\sqrt{3}, 0)$

২. ($\overline{\Phi}$) $x^2 - 2(a+b)x + 4ab = 0$

(\mathfrak{A}) $4x^2 + 11y^2 - 24xy - 50x - 225 = 0$

3. (4) 2mi, 3 (mi + 4)

করার সম্ভাবনা নির্ণয় কর।

৭. অথবা, গামছার সংখ্যা = 11, তোয়ালের সংখ্যা = 4

51-60

10

61-70

20

দুইটি বর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার যোগ সূত্রটি বর্ণনা ও

200 জন পরীক্ষার্থীর 40 জন গণিতে. 20 জন পরিসংখ্যানে ফেল

করে। উভয় বিষয়ে 10 জন ফেল করে। একজন পরীক্ষার্থী দৈবভাবে নেয়া হল। সে গণিতে ফেল কিন্তু পরিসংখ্যানে পাশ

71-80

15

81-90

10

৮. (ক) 10, 11.78 (গ) $\frac{3}{20}$

৮২. বীরশ্রেষ্ঠ নূর মোহাম্মদ পাবলিক কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

পূৰ্ণমান — ৭৫

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

œ

ক-বিভাগঃ বীজগণিত

১. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:

€×**২=**\$0

- ক. $A = \begin{bmatrix} 3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ হলে, AB এবং BA নির্ণয়
- খ. প্রমাণ কর যে, $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3-1 & y^3-1 & z^3-1 \end{vmatrix} = (xyz-1)(x-y)(y-z)(z-x)$
- গ. নির্ণায়কের সাহায্যে সমাধান কর:

$$2x + 3y - 2z - 2 = 0$$

$$3x + 4y - 3z - 2 = 0$$

$$5x - 3y + 2z - 5 = 0$$

 স্বরবর্ণগুলাকে পাশাপাশি না রেখে triangle শব্দের বর্ণগুলোকে কতভাবে বিন্যাস করা যায়।

অথবা.

9 জন ব্যক্তির একটি দল দুইটি যানবাহনে শ্রমন করবে, যার একটিতে সাতজনের বেশি এবং অন্যটিতে চারজনের বেশি ধরে না। দলটি কত প্রকারে শ্রমন করতে পারবে?

খ-বিভাগ: জ্যামিতি ও ভেঙ্গর

৩. $\overrightarrow{A} = 3\hat{i} + 2\hat{j} - 2\hat{k}$ এবং $\overrightarrow{B} = -\hat{i} + \hat{j} - 4\hat{k}$ হলে \overrightarrow{A} ও \overrightarrow{B} এর লব্ধিভেক্টরের সমান্তরাল একক ভেক্টর নির্ণয় কর।

অথবা.

ABC ত্রিভুজের BC, CA এবং AB বাহু তিনটির মধ্যবিন্দু যথাক্রমে D, E, F হলে প্রমাণ কর যে, $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0$

8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

%∠=©×**%**

- ক. দেখাও যে, x 2y + 5 = 0 রেখাটি (–3, 6) বিন্দু থেকে x 2y 5 = 0 রেখার উপর অন্ধিত সকল সরলরেখাকে সমদ্বিখন্ডিত করে।
- খ. 12x 5y = 7 রেখার 2 একক দূরবর্তী সমান্তরাল রেখার সমীকরণ নির্ণয় কর।
- গ. 2x-y=3 রেখার উপর কেন্দ্রবিশিষ্ট একটি বৃত্ত (3,-2) ও (-2,0) বিন্দু দিয়ে অতিক্রম করে। বৃত্তটির সমীকরণ নির্ণয় কর।
- ঘ. $x^2 + y^2 = 144$ বৃত্তের একটি জ্যা এর সমীকরণ নির্ণয় কর যার মধ্যবিন্দুর স্থানান্ধ (4, -6)

গ-বিভাগ: ত্রিকোণমিতি

৫. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

€×**২=**\$0

- ক. $y = \sin 2x$ এর লেখচিত্র অংকন কর, যখন $-\pi \le x \le \pi$
- খ. $\sin x + \csc x = 2$ হলে প্রমাণ কর যে, $(\sin x)^n + (\csc x)^n = 2$
- গ. $\cot A + \cot B + \cot C = 0$ হলে প্রমাণ কর যে, $\sum (\tan A)^2 = (\sum \tan A)^2$
- ৬. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও: ৫×২=১০
 - ক. প্রমাণ কর যে, $\tan \frac{45^\circ + \theta}{2} \tan \frac{45^\circ \theta}{2} = \frac{\sqrt{2} \cos \theta 1}{\sqrt{2} \cos \theta + 1}$
 - খ. $\tan \beta = \frac{n \sin \alpha \, \cos \alpha}{1 n \sin^2 \! \alpha}$ হলে, প্রমাণ কর যে, $\tan (\alpha \beta) = (1 n) \tan \alpha$
 - গ. $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$ হলে দেখাও যে, ΔABC এ $C=60^\circ$

ঘ-বিভাগ: ক্যালকুলাস

৭. $f(x)=\ln(\sin x)$ এবং $\phi(x)=\ln(\cos x)$ হলে দেখাও যে, $e^{2\phi(a)}-e^{2f(a)}=e^{\phi(2a)}$

অথবা.

œ

 $f(x) = \left\{ \begin{array}{l} x^2 + 3x : x \geq 2 \\ x + 2 : x < 2 \end{array} \right.$ হলে F(5), F(0), F(-2), F(-4) ও F(2) নির্ণয়

৮. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

 $3\ell = 0 \times 3$

- ক. মূল নিয়মে e^{-mx} এর অন্তরক সহগ নির্ণয় কর।
- খ. $y = \sin(\sin x)$ হলে, দেখাও যে, $\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + y \cos^2 x = 0$
- গ. y(x-1)(x-3) x + 7 = 0 বক্ররেখাটি যে বিন্দুতে x-অক্ষকে ছেদ করে ঐ বিন্দুতে বক্ররেখাটির স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর।
- ঘ. যোজিত ফল নির্ণয় কর: (i) $\int_{a}^{a} \sqrt{a^2 x^2} dx$; (ii) $\int_{a}^{2} \cos x \sin^3 x dx$
- **১.** (ক) $AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ এবং $BA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (গ) x = 1, y = 2, z = 3
- ২. 36000 অথবা, 246
- **9.** $\frac{1}{7}(2\hat{i} + 3\hat{j} 6\hat{k})$
- **8.** (খ) 12x 5y + 19 = 0; 12x 5y 33 = 0
 - (†) $x^2 + y^2 + 3x + 12y + 2 = 0$
 - (\P) 2x 3y 26 = 0

- **৭.** অথবা, F(5) = 40, F(0) = 2, F(-2) = 0, F(-4) = -2, F(2) = 10
- **b.** ($\overline{\Phi}$) $-me^{-mx}$
 - (1) x 24y 7 = 0; 24x + y 168 = 0
 - **(** \P **)** (i) $\frac{\pi a^2}{4}$ (ii) $\frac{1}{4}$

৮৩. বীরশ্রেষ্ঠ নূর মোহাম্মদ পাবলিক কলেজ, ঢাকা

বিষয় কোড:

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

গ-বিভাগ: ত্রিকোণমিতি

১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

€×₹=\$0 8.

- - ক. $|x-1| < \frac{1}{10}$ হলে, দেখাও যে, $|x^2-1| < \frac{21}{100}$
 - খ. $7-30\sqrt{-2}$ এর বর্গমূল নির্ণয় কর।
 - গ. a ও b বাস্তব সংখ্যা এবং $a^2 + b^2 = 1$ হলে, প্রমাণ কর যে, x এর একটি বাস্তব মান $\frac{1-ix}{1+ix} = a-ib$ সমীকরণকে সিদ্ধ করে।

ক-বিভাগ: বীজগণিত

যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

- ক. $px^2 + qx + 1 = 0$ ও $qx^2 + px + 1 = 0$ সমীকরণদ্বয়ের একটি মাত্র সাধারণ মূল থাকলে, প্রমাণ কর যে, p+q+1=0
- খ. $x^3 5x^2 + 17x 13 = 0$ সমীকরণের একটি মূল 1 হলে, অপর মূল দুইটি নির্ণয় কর।
- গ. $\left(3+\frac{x}{2}\right)^n$ -এর বিস্তৃতিতে x^7 এবং x^8 সহগদ্ধয় সমান হলে, n এর মান নির্ণয় কর। যেখানে $n \in \ |$

খ-বিভাগ: জ্যামিতি

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

€×≥=50

- ক. $5x^2 + 30x + 2y + 59 = 0$ পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্র, অক্ষরেখা ও দিকাক্ষ রেখার সমীকরণ নির্ণয় কর।
- খ. p এর মান কত হলে $\frac{x^2}{p} + \frac{y^2}{25} = 1$ উপবৃত্তটি (6,4) বিন্দু অতিক্রম করবে। উপবৃত্তটির উৎকেন্দ্রিকতা এবং উপকেন্দ্রের অবস্থান নির্ণয়
- একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1, 1), দিকাক্ষ রেখার সমীকরণ 2x + y = 1 এবং উৎকেন্দ্রিকতা √3

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. প্রমাণ কর যে, $\cos^{-1}\frac{1}{\sqrt{5}} \frac{1}{2}\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{3} = \tan^{-1}2$
 - খ. $\cos^{-1}\frac{x}{a}+\cos^{-1}\frac{y}{b}=\theta$ হলে, দেখাও যে, $\frac{x^2}{a^2}-\frac{2xy}{ab}\cos\theta+\frac{y^2}{b^2}=\sin^2\theta$
 - গ. সমাধান কর: $\cos\theta \cos 7\theta = \sin 4\theta$

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- & + & = 20
- ক. i. প্রমাণ কর যে, কোনো নির্দিষ্ট দিকে এক বিন্দুগামী দুইটি বলের লম্বাংশের বীজগাণিতীয় সমষ্টি একই দিকে এদের লব্ধির লম্বাংশের সমান।
 - ii. একটি হেলানো সমতলের ভূমির ও দৈর্ঘ্যের সমান্তরালে ক্রিয়াশীল যথাক্রমে P এবং Q মানের দুইটি পৃথক বল প্রত্যেকে W ওজনের কোনো বস্তুকে তলের উপর স্থির রাখতে পারে। প্রমাণ কর যে, $W = \frac{PQ}{\sqrt{P^2 - Q^2}}, P > Q$
- (i) দুইটি সদৃশ সমান্তরাল বলের লব্ধি ও তার প্রয়োগ বিন্দু নির্ণয় কর।
 - (ii) P ও Q বল দুইটি পরস্পর α কোণে ক্রিয়ারত। এদের অবস্থান বিনিময় করলে লব্ধি কোণে ঘুরে যায় θ । প্রমাণ কর যে,
- যে কোনো একটি প্রশ্নের উত্তর দাও:

 $\alpha + \alpha = 20$

(i) প্রমাণ কর যে, বায়ুশূন্য স্থানে প্রক্ষিপ্ত বস্তুকণার গতিপথ একটি পরাবৃত্ত।

 $6 \times 5 = 5 \times 3$

- (ii) দুইটি বেগের বৃহস্তম লব্ধি এদের ক্ষুদ্রতম লব্ধির n গুণ। বেগদ্বয়ের মধ্যবর্তী কোণ α হলে, লব্ধি বেগের মান এদের সমষ্টির অর্ধেক হয়। প্রমাণ কর যে, $\cos\alpha = \frac{n^2+2}{2(1-n^2)}$
- খ. (i) প্রমাণ কর যে, $v^2 = u^2 + 2fs$
 - (ii) একটি কণা u আদিবেগে প্রক্ষিপ্ত হল। যদি কণাটির বৃহত্তম উচ্চতা H হয়, তবে প্রমাণ কর যে, অনুভূমিক পাল্লা

$$R=4\sqrt{H{\left(\frac{u^2}{2g}-H\right)}}$$

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

- ৭. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- %×۷=6
- ক. লেখচিত্রের সাহায্যে z=2x+3y এর সর্বোচ্চ মান নির্ণয় কর: সীমাবদ্ধতা: $x+2y\leq 10, x+y\leq 6, x\leq 4, x,y\geq 0$
- খ. এক ব্যক্তি 500 টাকার মধ্যে কমপক্ষে 6 খানা গামছা এবং 4 খানা তোয়ালে কিনতে চান। প্রতিখানা গামছার দাম 30 টাকা এবং
- 8. (গ) $\frac{n\pi}{4}$, $\frac{n\pi}{3}$ + $(-1)^n \frac{\pi}{18}$ যথন $n \in A$

জিনিস কিনতে পারবেন?

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

6, 10, 9, 12, 21, 24, 25, 15, 16, 22

- **9.** ($\overline{\Phi}$) $Z_{max} = 16$
 - (খ) গামছার সংখ্যা = 11 এবং তোয়ালের সংখ্যা = 4
- **৮. (ক)** 6.39; 40.8
 - $(9)\frac{3}{40}$

- **১.** (খ) $\pm (5 3\sqrt{-2})$
- ২. (খ) 2 ± 3i (গ) n = 55
- **v.** $(\overline{\Phi})$ (-3, -7); $(-3, -\frac{71}{10})$; x + 3 = 0; 10y + 69 = 0
 - (খ) $P = 100; \frac{\sqrt{3}}{2}; (\pm 5\sqrt{3}, 0)$
 - (1) $7x^2 2y^2 + 12xy 2x + 4y 7 = 0$

৮৪. বীরশ্রেষ্ঠ মুঙ্গী আব্দুর রউফ পাবলিক কলেজ, ঢাকা

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

পূৰ্ণমান — ৭

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- ১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- **◊** × **২** = **১**0
- ক. $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$ হলে, তবে $A^3 2A^2 + A$ —2I এর মান নির্ণয় কর।
- খ. প্রমাণ কর যে, $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 1 & y^3 1 & z^3 1 \end{vmatrix} = (xyz 1)(x y)$ (y z)(z x)
- গ. $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ হলে, A^{-1} এর মান নির্ণয় কর।
- ২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- $\delta = \zeta \times \delta$
- ক. স্বরবর্ণগুলিকে পাশাপাশি না রেখে 'Daughter' শব্দটির অক্ষরগুলি কত সংখ্যক উপায়ে সাজানো যায়?
- খ. প্রমাণ কর যে, ${}^{n}C_{r-1} + {}^{n}C_{r-2} = {}^{n+1}C_{r-1}$

খ-বিভাগঃ জ্যামিতি ও ভেক্টর

- ৩. যে কোনো একটি প্রশ্নের উত্তর দাও:
- $e \times 2 = e$
- ক. দেখাও যে, $\overrightarrow{a}=3\hat{i}-2\hat{j}+\hat{k}, \overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}$ এবং $\overrightarrow{c}=2\hat{i}+\hat{j}-4\hat{k}$ ভেক্টর তিনটি একটি সমকোণী ত্রিভুজ গঠন করে।
- খ. ABC ত্রিভুজের BC, CA, AB বাহু তিনটির মধ্যবিন্দু যথাক্রমে D, E, F হলে প্রমাণ কর যে, $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = 0$

- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:
- 06 × 0 = 36
- ক. (7,7) এবং (-5,-10) বিন্দু দুইটি সংযোগ রেখাংশকে $_{X^{-}}$ অক্ষ যে অনুপাতে ছেদ করে তা নির্ণয় কর। ছেদবিন্দুর ভুজ কত?

প্রতিখানা তোয়ালের দাম 40 টাকা। প্রত্যেক প্রকারের কতখানা

জিনিস কিনলে সে প্রদত্ত শর্তাধীনে সর্বাপেক্ষা বেশি সংখ্যক

নিচের সংখ্যাগুলির পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় কর।

বর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার সংযোগসূত্র লিখ এবং প্রমাণ

আলমের বাংলা পরীক্ষায় ফেল করার সম্ভাবনা $\frac{1}{5}$, বাংলা এবং

ইংরেজিতে পাসের সম্ভাবনা $\frac{3}{4}$ এবং দুইটির যে কোনো একটিতে

পাসের সম্ভাবনা $\frac{7}{8}$ হলে, তার কেবল ইংরেজিতে পাসের সম্ভাবনা

চ-বিভাগ: পরিসংখ্যান

- খ. OABC একটি সামান্তরিক। x-অক্ষ বরাবর OA অবস্থিত। OC রেখার সমীকরণ y=2x এবং B বিন্দুর স্থানাংক (4, 2)। A, C বিন্দুর স্থানাংক এবং AC কর্ণের সমীকরণ বাহির কর।
- গ. এমন বৃত্তের সমীকরণ নির্ণয় কর যা x-অক্ষকে (4, 0) বিন্দুতে স্পর্শ করে এবং যার দ্বারা y-অক্ষ ছেদাংশের পরিমাণ 6 একক।
- ঘ. (-5, 4) বিন্দু থেকে $x^2 + y^2 2x 4y + 1 = 0$ বৃত্তের উপর অংকিত স্পর্শকের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- & × ≤ = >0
- ক. যদি $\tan^2\theta+e^2=1$ হয়, তবে প্রমাণ কর রে, $\sec\theta+\tan^3\theta$

 $\csc \theta = (2 - e^2)^{\frac{3}{2}}$

- খ. যদি $x \sin \alpha + y \cos \alpha = \sin \alpha \cos \alpha$ এবং $x \sin \alpha y \cos \alpha$ = 0 হয়, তবে প্রমাণ কর যে, $x^2 + y^2 = 1$
- গ. $y = \sin 2x$ এর লেখচিত্র অংকন কর যখন $0 \le x \le 2\pi$.
- ৬. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- ক. দেখাও যে, $16\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}\cos\frac{14\pi}{15}=1$
- খ. প্রমাণ কর যে, $\frac{1}{\sin 10^{\circ}} \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$

গ. $A + B + C = \pi$ হলে প্রমাণ কর যে, $\cos A + \cos B + \cos C =$ $1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$

ঘ-বিভাগ: ক্যালকুলাস

যে কোনো একটি প্রশ্নের উত্তর দাও: ٩.

- ক. $f: \nabla \rightarrow \nabla, \ f(\mathbf{x}) = 2\mathbf{x} 3$ ফাংশনটি এক-এক এবং সার্বিক কিনা কারণসহ উল্লেখ কর। এক-এক এবং সার্বিক ফাংশন হলে, f⁻¹ নির্ণয় কর।
- খ. $f: |\nabla \rightarrow |\nabla$ ফাংশনটি $f(\mathbf{x}) = \mathbf{x}^2 + 1$ দ্বারা সংজ্ঞায়িত। f⁻¹([10, 26]) নির্ণয় কর।

যে কোনো তিনটি প্রশ্নের উত্তর দাও:

 $0 \times 0 = 0$

- ক. মূল নিয়মে xⁿ এর অন্তর সহগ বাহির কর।
- খ. y = sin (msin⁻¹x) হলে প্রমাণ কর যে, $(1 - x^2) y_2 - xy_1 + m^2 y = 0$
- $y(x-2)\;(x-3)-x+7=0\;$ বক্রবেখার x-অক্ষের ছেদ বিন্দুতে স্পর্শক, অভিলম্বের সমীকরণ বাহির কর।
- ঘ. মান নির্ণয় কর ঃ (যে কোন ২টি)
 - (i) $\int \frac{1}{1 + \tan x} dx$ (ii) $\int e^x \sin 2x dx$ (iii) $\int_{-\infty}^{\infty} y \sqrt{4 y} dy$

১. কি) $\begin{bmatrix} 5 & 15 & 10^{-1} \\ 10 & 0 & 15 \\ 5 & -5 & 5 \end{bmatrix}$

$$(\mathfrak{F}) \ \mathbf{A}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 1 \end{bmatrix}$$

- ২. (ক) 36000
- 8. $(\overline{\Phi})$ 7 % 10, $\frac{35}{17}$
 - (\forall) (3, 0), (1, 2); x + y 3 = 0
 - (গ) $x^2 + y^2 8x \pm 10y + 16 = 0$
 - $(\P) y = 4, 3x + 4y 1 = 0$

- ৭. (Φ) ফাংশনটি এক-এক ও সার্বিক । $f^{-1}(x) = \frac{x+3}{2}$
 - (খ) $f^{-1}([10, 26]) = \{x : -5 \le x \le -3$ অথবা, $3 \le x \le 5\}$
- ৮. (ক) nxⁿ⁻¹
 - (গ) x 20y = 7, 20x + y = 140
 - $(\overline{4})$ (i) $\frac{x}{2} + \frac{1}{2} \ln|\cos x + \sin x| + c$
 - (ii) $\frac{1}{5}e^{x} (\sin 2x 2\cos 2x) + c$
 - (iii) $\frac{128}{15}$

৮৫. শহীদ বীর উত্তম লেঃ আনোয়ার গার্লস কলেজ, ঢাকা বিষয় কোড : হ ৬ ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

পৰ্ণমান — ৭৫

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

0€ × ≥ = 30

- ক. $|x-1| < \frac{1}{10}$ হলে দেখাও যে, $|x^2-1| < \frac{21}{100}$
- খ. $7-30\sqrt{-2}$ এর বর্গমূল নির্ণয় কর।
- গ. $\sqrt[3]{x+i y} = a+ib$ হলে প্রমাণ কর যে, $\frac{x}{a} + \frac{y}{b} = 4 (a^2 b^2)$.
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

- ক. $ax^2 + bx + c = 0$ এর একটি মূল $cx^2 + bx + a = 0$ এর একটি মূলের দ্বিগুণ হলে দেখাও যে, 2a = cঅথবা $(2a + c)^2 = 2b^2$.
- খ. $(1+x)^{44}$ এর বিস্তৃতিতে 21-তম এবং 22-তম পদ দুইটি সমান হলে, x-এর মান নির্ণয় কর।
- গ. $(1-5x+6x^2)^{-1}$ এর বিস্তৃতিতে x^n এর সহগ নির্ণয় কর।

খ-বিভাগ: জ্যামিতি

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × **₹** = **3**0

- ক. $y = ax^2 + bx + c$ পরাবৃত্তটির শীর্ষ (-2, 3) বিন্দুতে এবং এটি (0, -2, 3)5) বিন্দুগামী হলে a, b, c-এর মান নির্ণয় কর।
- খ. এমন একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উৎকেন্দ্রিকতা $\frac{4}{5}$ এবং যা $\left(\frac{10}{3}, \sqrt{5}\right)$ বিন্দুগামী।

- গ. এমন একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1, 8), উৎকেন্দ্রিকতা $\sqrt{5}$ এবং নিয়ামকের সমীকরণ 3x - 4y = 10গ-বিভাগ: ত্রিকোণমিতি
- যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

- ক. প্রমাণ কর যে, $\cos^{-1}\frac{1}{\sqrt{5}} \frac{1}{2}\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{3} = \tan^{-1}2$.
- সমাধান কর: $\sin x + \cos x = \sin 2x + \cos 2x$
- সমাধান কর : $2 \sin x \sin 3x = 1$, যখন $0 < x < 2\pi$

ঘ-বিভাগ: বলবিদ্যা

- ক. বলের লম্বাংশ উপপাদ্য বর্ণনা কর এবং প্রমাণ কর।
 - খ. কোন মসৃণ আনত তলের দৈর্ঘ্য বরাবর P বল এবং ইহার ভূমির সমান্তরাল রেখা বরাবর Q বল দুইটি পৃথক পৃথক ভাবে W ওজনের কোন বস্তুকে উক্ত তলের উপর সুস্থিত রাখে। প্রমাণ কর

- অথবা, ক. দুইটি অসদৃশ অসমান সমান্তরাল বলের লব্ধি এবং এর প্রয়োগ বিন্দু নির্ণয় কর।
 - খ. ABC ত্রিভুজের পরিকেন্দ্র O। একটি বল P, AO বরাবর ক্রিয়াকৃত। দেখাও যে, B এবং C বিন্দুতে P এর সমান্তরাল উপাংশদ্বয়ের অনুপাত sin 2B % sin 2C. œ
- প্রমাণ কর যে, $v^2 = u^2 + 2fs$.
 - একই বেগে নিক্ষিপ্ত একটি প্রক্ষেপকের একই অনুভূমিক পাল্লা R এর জন্য দুইটি বিচরণ পথের সর্বাধিক উচ্চতা H এবং H₁ হলে
 - দেখাও যে, $R = 4\sqrt{HH_1}$.

- অথবা, ক. প্রমাণ কর যে, বায়ুশূন্যস্থানে প্রক্ষিপ্ত বস্তুর গতিপথ একটি পরাবৃত্ত। ৫
 - খ. সোজাসুজি একটি নদী পার হতে একজন সাঁতারুর $t_1 \sec$ সময় লাগে। সোতের অনুকুলে তীর বরাবর একই দূরত্ব অতিক্রম করতে তার $t_2 \sec$ সময় লাগে। সাঁতারুর গতিবেগ U ms^{-1} এবং সোতের গতিবেগ V ms^{-1} . (U > V) হলে, দেখাও যে,

$$t_1 \, \$ \, t_2 = \sqrt{U+V} \, \$ \, \sqrt{U-V}.$$

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

 বে যোগাশ্রয়ী প্রোগ্রামিং এর সংজ্ঞা দাও। যোগাশ্রয়ী প্রোগ্রামিং এর সুবিধাগুলো লিখ।

অথবা, সর্বোচ্চকরণ কর : Z = 2x + 3y

সীমাবদ্ধতা :

$$x + 2y \le 10$$

- ১. (খ) $\pm (5-3\sqrt{-2})$
- ২. (খ) $\frac{7}{8}$ (গ) $3^{n+1} 2^{n+1}$
- **৩.** (ক) $\frac{1}{2}$, 2, 5
 - (খ) $\frac{x^2}{25} + \frac{y^2}{9} = 1$
 - (1) $4x^2 + 11y^2 24xy 50x 225 = 0$

$x + y \le 6$ $x \le 4, x, y \ge 0$

Œ

চ-বিভাগ: পরিসংখ্যান

- ৮. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- & × \ = \ >0
- ক. প্রমাণ কর যে, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- খ. একটি ব্যাগে 5টি লাল এবং 4টি সাদা বল আছে এবং অপর একটি ব্যাগে 3টি লাল এবং 6টি সাদা বল আছে। প্রত্যেক ব্যাগ হতে একটি করে বল তোলা হলে দুইটি বলের মধ্যে কমপক্ষে একটি লাল হওয়ার সম্ভাব্যতা নির্ণয় কর।
- গ. নিচের তথ্য থেকে পরিমিত ব্যবধান এবং ভেদাঙ্ক নির্ণয় কর:

মাসিক আয় টাকা (য	হাজারে) : 5-9	10-14	15-19	20-24	25-29	30-34
কর্মচারীর সংখ্যা	15	30	55	17	10	3

- 8. (খ) $2n\pi, \frac{2}{3}\left(n\pi + \frac{\pi}{4}\right)$; যখন $n \in \wedge$ (গ) $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- **৭.** অথবা, $Z_{max} = 16$
- ৮. (খ) $\frac{19}{27}$
 - (গ) 5.76, 33.178

৮৬. ইঞ্জিনিয়ারিং ইউনিভার্সিটি স্কুল এন্ড কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

পূৰ্ণমান — ৭৫

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগঃ বীজগণিত

- ১. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:
- & × ≤ = ?o
- ক. প্রমাণ করঃ $\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3.$
- খ. প্রমাণ করঃ $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3-1 & y^3-1 & z^3-1 \end{vmatrix}$
 - = (xyz 1) (x y) (y z) (z x).
- গ. অভেদক ম্যাট্রিক্স কাকে বলে? $A = \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix}$ হলে,

 $A^2 - 5A + 6I$ এর মান নির্ণয় কর।

- ২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- $e \times \lambda = e$
- ক. PARALLEL শব্দটির অক্ষরগুলো কত রকমে সাজানো যায় তা বের কর। স্বরবর্ণগুলোকে পৃথক রেখে অক্ষরগুলি কত রকমে সাজানো যায় তা নির্ণয় কর। স্বরবর্ণগুলোর স্থান পরিবর্তন না করে বর্ণগুলোকে কত রকমে পুনরায় সাজানো যায় তাও নির্ণয় কর।
- খ. 9 জন লোকের একটি দল দুটি যানবাহনে ভ্রমণ করবে। যানবাহন দু'টির একটিতে 7 জনের বেশী এবং অন্যটিতে 4 জনের বেশি ধরে না। দলটি কত রকমে ভ্রমণ করতে পারবে?

খ-বিভাগঃ জ্যামিতি ও ভেক্টর

- যে কোনো একটি প্রশ্নের উত্তর দাও:
- $e \times 2 = e$
- ক. $2\hat{\mathbf{i}} + \hat{\mathbf{j}} 2\hat{\mathbf{k}}$ ভেক্টরটির দিক কোসাইন নির্ণয় কর।

- খ. $\vec{A}=2\hat{i}+\hat{j}-2\hat{k}$ ভেক্টর বরাবর $\vec{B}=5\hat{i}-3\hat{j}+2\hat{k}$ ভেক্টরের উপাংশ নির্ণয় কর।
- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:
- $\alpha \times \mathfrak{G} = \mathfrak{G} \times \mathfrak{H}$
- ক. A, B, C এবং D বিন্দু চারটির স্থানাঙ্ক যথাক্রমে (0, 1), (15, 2), (–1, 2) এবং (4, –5). CD কে AB রেখাটি যে অনুপাতে বিভক্ত করে তা নির্ণয় কর।
- খ. $\frac{x}{a}+\frac{y}{b}=1$ সরলরেখাটি 2x-y=1 এবং 3x-4y+6=0 রেখাদ্বয়ের ছেদবিন্দু দিয়ে যায় এবং 4x+3y-6=0 রেখার সমান্তরাল হলে, a এবং b এর মান নির্ণয় কর।
- গ. একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র y অক্ষের উপর অবস্থিত এবং যা মূলবিন্দু ও (p,q) বিন্দু দিয়ে যায়।
- ঘ. মূলবিন্দু হতে (1, 2) কেন্দ্রবিশিষ্ট বৃত্তে অঙ্কিত স্পর্শকের দৈর্ঘ্য 2, বৃত্তিটির সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- ৫. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- $6 \times 5 = 20$
- ক. একটি ত্রিভুজের কোণগুলি সমান্তর প্রগমন শ্রেণিভুক্ত। এর বৃহত্তম ও ক্ষুদ্রতম কোণ দুটিকে যথাক্রমে রেডিয়ান ও ডিগ্রীতে প্রকাশ করলে এদের অনুপাত হয় π % 90; কোণগুলির পরিমাপকে রেডিয়ানে নির্ণয় কর।
- খ. $\tan\theta + \sin\theta = m$, $\tan\theta \sin\theta = n$ হলে, প্রমাণ কর যে, $4\sqrt{mn}$ $= m^2 n^2$.
- গ. $y = \sin x$ ফাংশনটির লেখচিত্র অংকন কর। $(-\pi < x < \pi)$

যে কোনো দুইটি প্রশ্নের উত্তর দাও: ৬.

- ক. প্রমাণ কর যে, $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{14\pi}{15} = \frac{1}{16}$
- প্রমাণ কর যে, $\frac{\sqrt{3}}{\sin 20^{\circ}} \frac{1}{\cos 20^{\circ}} = 4$.
- গ. ABC ত্রিভুজে $\cos A = \sin B \cos C$ হলে, প্রমাণ কর যে, ত্রিভুজটি সমকোণী।

ঘ-বিভাগ: ক্যালকুলাস

যে কোনো একটি প্রশ্নের উত্তর দাও: ٩.

- ক. $f: R \to R$ এবং $g: R \to R$, $f(x) = x^2 2|x|$ এবং $g(x) = x^2 + 1$ হলে, fog(-2) এবং gof(-3) এর মান নির্ণয় কর।
- খ. $f(x) = ln(sinx), \ \phi(x) = ln(cosx)$ হলে, দেখাও যে, $e^{2\phi(a)}$ $e^{2f(a)} = e^{\phi(2a)}.$

যে কোনো তিনটি প্রশ্নের উত্তর দাও: ъ.

 $\mathfrak{d} \boldsymbol{\zeta} = \boldsymbol{c} \times \mathfrak{d}$

- ক. মূল নিয়মে অন্তরীকরণ করঃ emx অথবা cos 2x.
- খ. $\mathbf{y}=\mathbf{x}^2+\sqrt{1-\mathbf{x}^2}$ বক্ররেখার উপর যে সব বিন্দুতে স্পর্শক \mathbf{y} অক্ষের সমান্তরাল তাদের স্থানাঙ্ক নির্ণয় কর।
- গ. $y = px^2 + \frac{q}{\sqrt{x}}$ হলে, দেখাও যে, $2x^2y_2 xy_1 2y = 0$.

দেখাও যে, $\frac{x}{\ln(x)}$ এর লঘুমান e.

ঘ. যে কোন দুটির মান নির্ণয় করঃ

(i)
$$\int \frac{\cos^3 x}{\sqrt{\sin x}} \, dx$$
; (ii) $\int_0^1 \frac{dx}{e^x + e^{-x}}$; (iii) $\int_0^4 y \sqrt{4 - y} \, dy$.

- ৩. (ক) $\frac{2}{3}$, $\frac{1}{3}$, $-\frac{2}{3}$; (খ) $\frac{1}{3}$ (2 \hat{i} + \hat{j} 2 \hat{k}) 8. (ক) 2 % 3 (খ) $a = \frac{17}{4}$, $b = \frac{13}{3}$
 - - (গ) $q(x^2 + y^2) = (p^2 + q^2) y$ (\P) $x^2 + y^2 - 2x - 4y + 4 = 0$

- $(a. (\mathbf{\overline{\Phi}}) \frac{2\pi^{c}}{9}, \frac{\pi^{c}}{3}, \frac{4\pi^{c}}{9})$
- ৭. $(\mathbf{\overline{\Phi}}) \log(-2) = 15$ এবং $\gcd(-3) = 10$
- ৮. **(ক)** me^{mx} অথবা, –2sin2x
 - **(**খ**)** (-1, 1), (1, 1)
 - (\P) (i) $2\sqrt{\sin x} \frac{2}{5}\sqrt{\sin^5 x}$ (ii) $\tan^{-1} e \frac{\pi}{4}$ (iii) $\frac{128}{15}$

৮৭. ইঞ্জিনিয়ারিং ইউনিভার্সিটি স্কুল এন্ড কলেজ, ঢাকা

বিষয় কোড : | ২ | ৬ | ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.

- ক. a এবং b বাস্তব সংখ্যা হলে, প্রমাণ কর যে, |a + b| ≤ |a| + |b|.
- খ. $(x + iy)^{\frac{1}{3}} = p + iq$ হলে, প্রমাণ কর যে, $(x iy)^{\frac{1}{3}} = p iq$
- গ. যদি a+b+c=0 এবং এককের একটি কাল্পনিক ঘনমূল ω হয়, তবে দেখাও যে, $(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega)^3 = 27$ abc
- যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

- ক. $ax^2 + bx + c = 0$ এর একটি মূল $cx^2 + bx + a = 0$ সমীকরণের একটি মূলের দিগুণ হলে, প্রমাণ কর যে, 2a = c. অথবা (2a + c)² = 2b²
- খ. প্রমাণ কর যে, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদটি
- গ. $y = x x^2 + x^3 x^4 +$ হলে, দেখাও যে, $x = y + y^2 + y^3 + y^4 + \dots$

খ-বিভাগ: জ্যামিতি

৩. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

%×**≥=**>∘

- ক. এমন একটি পরাবৃত্তের সমীকরণ নির্ণয় কর, যার ফোকাস (-1, 3) বিন্দুতে এবং শীর্ষ (4, 3) বিন্দুতে অবস্থিত।
- খ. একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্রদ্বয় (±1, 0) বিন্দুতে অবস্থিত এবং যার উপকেন্দ্রিক লম্বের দৈর্ঘ্য 3.

গ. $x^2-3y^2-2x=8$ অধিবৃত্তের অক্ষের দৈর্ঘ্য, উৎকেন্দ্রিকতা এবং কেন্দ্রের স্থানাঙ্ক নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

8. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

 $6 \times 5 = 50$

যদি $\sin(\pi \cos\theta) = \cos(\pi \sin\theta)$ হয়, তবে দেখাও যে,

$$\theta = \pm \frac{\pi}{4} + \cos^{-1} \frac{1}{2\sqrt{2}}$$
.

- সমাধান কর: $\cos x + \cos 2x + \cos 3x = 0$.
- সমাধান কর: $\sqrt{3}\sin\theta \cos\theta = 2$ যখন $-2\pi < \theta < 2\pi$.

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- ক. লম্বাংশের উপপাদ্যটি বর্ণনা কর এবং প্রমাণ কর।
 - একটি হেলানো সমতলের ভূমি ও দৈর্ঘ্যের সমান্তরালে ক্রিয়াশীল যথাক্রমে P এবং Q মানের পৃথক বল প্রত্যেকে W ওজনের কোন বস্তুকে তলের উপর স্থির রাখতে পারে। প্রমাণ কর যে,

$$W = \frac{PQ}{\sqrt{P^2 - Q^2}};$$
 বেখানে $P > Q$.

কোন কঠিন বস্তুর উপর ক্রিয়ারত দুইটি অসদৃশ ও অসমান সমান্তরাল বলের লব্ধির মান ও ক্রিয়াবিন্দু নির্ণয় কর।

€×≥=50

- খ. P ও O দুইটি সমমুখী সমান্তরাল বল। P বলটির ক্রিয়ারেখা সমান্তরাল রেখে তার ক্রিয়াবিন্দুকে x দূরত্বে সরালে দেখাও যে, এদের লব্ধি $\frac{Px}{P+O}$ দূরত্বে সরে যাবে।
- ক. সচরাচর সংকেতমালায় প্রমাণ কর যে, $v^2 = u^2 + 2fs$ ৫+৫=১০
 - একটি বস্তুকণা f সম্ভূরণে একটি সরলরেখা বরাবর চলে t সময়ে s দূরত্ব এবং পরবর্তী t₁ সময়ে s₁ দূরত্ব অতিক্রম করে। দেখাও

$$f = 2\left(\frac{s_1}{t_1} - \frac{s}{t}\right)/(t + t_1)$$

- ক. প্রমাণ কর যে, বায়ুহীন অবস্থায় আনুভূমিকের সাথে lpha কোণে শন্যে নিক্ষিপ্ত প্রক্ষেপকের আনুভূমিক পাল্লা R হলে. উহার গতির পথে সমীকরণ $y = x \tan \alpha \left(1 - \frac{x}{R}\right)$
- খ. একই গতিতে নিক্ষিপ্ত একটি প্রক্ষেপকের নির্দিষ্ট পাল্লা R এর জন্য দুইটি বিচরণ পথের সর্বাধিক উচ্চতা h, h' হলে, দেখাও যে, $R = 4\sqrt{hh'}$

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

- **৭.** লেখচিত্রের সাহায্যে Z = 2x v এর সর্বনিষ্মান নির্ণয় করঃ শর্তসমূহ: $x + y \le 5$, $x + 2y \ge 8$, $x \ge 0$, $y \ge 0$
- একটি বাক্সে 6টি সাদা, 7টি লাল এবং 9টি কালো বল আছে। এলোমেলোভাবে 3টি বল তুলে নেয়া হলো। বলগুলি সাদা বা লাল হওয়ার সম্ভাবনা নির্ণয় কর।

শ্রেণি ব্যাপ্তি 200-300 300-400 400-500 500-600 600-700 700-800

দুইটি পরস্পর অবর্জনশীল ঘটনার ক্ষেত্রে সম্ভাবনার যোগসূত্রটি

অথবা

একটি ব্যবসায় প্রতিষ্ঠান A ও B দুইটি পণ্য তৈরি করে এবং যথাক্রমে প্রতি একক পণ্যে 3 টাকা ও 4 টাকা লাভ করে। প্রতিটি পণ্য M1 ও M2

মেশিনে তৈরি হয়। A পণ্যটি M, ও M, মেশিনে তৈরি করতে যথাক্রমে

1 মিনিট ও 2 মিনিট সময় লাগে এবং B পণ্যটি M_1 ও M_2 মেশিনে

যথাক্রমে 1 মিনিট ও 1 মিনিটে তৈরি হয়। প্রতি কাজের দিনে Mı

মেশিন সর্বাধিক $7\frac{1}{2}$ ঘণ্টা ও M_2 মেশিন সর্বাধিক 10 ঘণ্টা ব্যবহার করা যাবে । A ও B পণ্য কি পরিমাণ তৈরি করলে সর্বাধিক লাভ হবে?

চ-বিভাগ: পরিসংখ্যান

যোগাশ্রয়ী প্রোগ্রামের একটি মডেল তৈরি কর।

ক. নিচের উপাত্ত থেকে পরিমিত ব্যবধান নির্ণয় কর:

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

বর্ণনা কর এবং প্রমাণ কর।

- **9.** ($\overline{\phi}$) $y^2 6y + 20x 71 = 0$
 - (খ) $3x^2 + 4y^2 = 12$ (গ) 6 এবং $2\sqrt{3}$; $\frac{2}{\sqrt{3}}$; (1, 0)
- 8. (খ) $(2n+1)\frac{\pi}{4}$, $2n\pi \pm \frac{2\pi}{3}$, যেখানে, $n \in \land$.

9. $Z_{min} = -5$

অথবা, A = 150 টি ও B = 300টি।

 $Z_{\text{max}} = 3x + 4y$

শতসমূহ: $x + y \le 450$, $2x + y \le 600$; $x \ge 0$, $y \ge 0$

৮. (**ক**) 134.63 (গ) $\frac{11}{308}$

৮৮. ড.মাহবুবুর রহমান মোল্লা কলেজ, ঢাকা

বিষয় কোড : | ২ | ৬ | ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : দ্বিতীয় পত্র

œ

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- ক. সকল $a, b \in \nabla$ এর জন্য প্রমাণ কর যে, $|a+b| \le |a| + |b|$.
- খ. $\sqrt[3]{a+ib} = x + iy$ হলে, প্রমাণ কর যে, $\sqrt[3]{a-ib} = x iy$.
- গ. এককের একটি কাল্পনিক ঘনমূল ω হলে দেখাও যে, $(-1 + \sqrt{-3})^4 + (-1 - \sqrt{-3})^4 = -16.$
- যে কোনো দুইটি প্রশ্নের উত্তর দাও: ર.
- € × ≥ = 30
- ক. $27x^2 + 6x (P + 2) = 0$ সমীকরণটির একটি মূল অপরটির বর্গ হলে P এর মান নির্ণয় কর।
- খ. দেখাও যে, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদ $\frac{1.3.5.....(2n-1)}{n!}$ $(-2)^n$; যেখানে $n\in \subseteq$.
- গ. দেখাও যে, $(1-5x+6x^2)^{-1}$ এর বিস্তৃতিতে x^r এর সহগ $3^{r+1}-2^{r+1}$.

খ-বিভাগ: জ্যামিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- $\mathfrak{E} \times \mathfrak{Z} = \mathfrak{Z} \circ \ | \ \mathfrak{E}.$

- ক. $5x^2 + 30x + 2y + 59 = 0$ পরাবৃত্তের শীর্ষ বিন্দু, উপকেন্দ্র, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, অক্ষরেখা ও নিয়ামক রেখার সমীকরণ নির্ণয় কর।
- খ. এরূপ উপবৃত্তের সমীকরণ নির্ণয় কর যার অক্ষদ্বয় যথাক্রমে স্থানাংকের অক্ষদ্বয়, কেন্দ্র মূলবিন্দুতে এবং যার উপকেন্দ্রিক লম্বের দৈর্ঘ্য ৪ একক এবং উৎকেন্দ্রিকতা 🗓।
- গ. একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1, 1), উৎকেন্দ্রিকতা $\sqrt{3}$ এবং নিয়ামক রেখার সমীকরণ 2x + y = 1.

গ-বিভাগ: ত্রিকোণমিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- & × 2 = 30
- ক. $\sin(\pi \cos\theta) = \cos(\pi \sin\theta)$ হলে দেখাও যে, $\theta = \pm \frac{1}{2} \sin^{-1} \frac{3}{4}$.
- খ. সমাধান কর: $\sin x + \cos x = \sin 2x + \cos 2x$.
- সমাধান কর: 2sinx sin3x = 1; যখন 0 < x < 2π.

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

বলের লম্বাংশ বলতে কী বুঝ? বলের লম্বাংশের উপপাদ্য বর্ণনা ও প্রমাণ কর।

- খ. ABC গ্রিভুজের অন্ত:কেন্দ্র I-তে IA, IB, IC বরাবর যথাক্রমে, $P,\ Q,\ R\ \hbox{মানের বল তিনটি ক্রিয়ারত থেকে ভারসাম্য সৃষ্টি }$ করছে। প্রমাণ কর যে, $P:Q:R=\cos\frac{A}{2}:\cos\frac{B}{2}:\cos\frac{C}{2}.$ ৫ অথবা,
- ক. দুইটি অসদৃশ অসমান সমান্তরাল বলের লব্ধির মান, দিক ও ক্রিয়া বিন্দু নির্ণয় কর।
- খ. ΔABC এর পরিকেন্দ্র O। একটি বল, P, AO বরাবর কার্যরত। দেখাও যে, B ও C বিন্দুতে কার্যরত P এর সমান্তরাল উপাংশদ্বয়ের অনুপাত sin2B: sin2C।
- ৬. ক. সচরাচর সংকেত মালায় প্রমাণ কর $v^2 = u^2 + 2fs$.
 - খ. নির্দিষ্ট বেগে উল্লম্বভাবে ভূমি থেকে নিক্ষিপ্ত একটি বস্তুকণা t সেকেন্ড সময়ে h উচ্চতায় উঠে এবং আরও t' সেকেন্ড সময় পরে এটা ভূমিতে ফিরে আসে। কণাটির আদিবেগ u হলে দেখাও যে, (i) $u=\frac{1}{2}\,g\;(t+t')\;;\;(ii)\;h=\frac{1}{2}\,gtt'.$

অথবা.

- ক. প্রমাণ কর যে, শৃন্যে প্রক্ষিপ্ত বস্তুর গতিপথ একটি পরাবৃত্ত।
- খ. একটি সরলরেখায় সমত্বেগে চলমান কোন বিন্দুর ধারাবাহিক t_1 , t_2 ও t_3 সময়ে গড়বেগ যথাক্রমে $v_1,\,v_2$ ও v_3 হলে, দেখাও যে, $\frac{v_1-v_2}{v_2-v_3}\!=\!\frac{t_1+t_2}{t_2+t_3}\,.$

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

৭. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

 $\delta = \zeta \times \delta$

- ক. যোগাশ্রয়ী প্রোগ্রাম কাকে বলে? এর শর্ত ও সুবিধাসমূহ আলোচনা কর।
- খ. লেখচিত্রের সাহায্যে z = 2y − x এর সর্বন্দিকরণ কর, যখন সীমাবদ্ধতাগুলি: 3y − x ≤ 10, x + y ≤ 6, x − y ≤ 2; x, y ≥ 0.

চ-বিভাগ: পরিসংখ্যান

৮. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × 2 = 30

- কুইটি বর্জনশীল ঘটনার জন্য সম্ভাব্যতার সংযোগ সূত্রটি লিখ
 এবং প্রমাণ কর।
- খ. নিচের উপাত্ত হতে পরিমিত ব্যবধান নির্ণয় করঃ

শ্রেণিব্যাপ্তি	200-300	300-400	400-500	500-600	600-700	700-800
গণসংখ্যা	12	18	36	24	10	8

গ. একটি বাক্সে 5টি লাল ও 4টি সাদা বল এবং অপর বাক্সে 3টি লাল ও 6টি সাদা বল আছে। প্রতি বাক্স হতে একটি বল উঠানো হলে দুইটি বলের মধ্যে কমপক্ষে একটি লাল হবার সম্ভাবনা কত?

২. (ক) 6, –1

v.
$$(\overline{\bullet})$$
 $(-3, -7)$, $(-3, -\frac{71}{10})$, $\frac{2}{5}$, $x + 3 = 0$, $10y + 69 = 0$

(*)
$$\frac{4x^2}{81} + \frac{y^2}{18} = 1$$

(
$†$
) $7x^2 - 2y^2 + 12xy - 2x + 4y - 7 = 0$

- 8. (খ) $2n\pi$, $\frac{2}{3}\left(n\pi + \frac{\pi}{4}\right)$, যখন $n \in \land$
 - (η) $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$, $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$
- 9. (약) $Z_{min} = -2$
- ৮. (খ) 134.63 (গ) $\frac{19}{27}$

৮৯. এস ও এস হারম্যান মেইনার কলেজ, ঢাকা

বিষয় কোড : ২

পৰ্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগঃ বীজগণিত

- ১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- & × \delta = \delta 0
- ক. $A = \begin{bmatrix} 3 & -4 & 2 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$ এবং $B = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ হলে দেখাও যে,
- খ. $A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ এর বিপরীত ম্যাট্রিক্স নির্ণয় কর।
- গ. শ্রমাণ কর যে, $\begin{vmatrix} x^2 & yz & zx+z^2 \\ x^2+xy & y^2 & zx \\ xy & y^2+yz & z^2 \end{vmatrix} = 4x^2y^2z^2.$
- ২. যে কোনো একটি প্রশ্নের উত্তর দাও:
- 6 × 7 =
- ক. দেখাও যে, America শব্দটির বর্ণগুলোকে একত্রে নিয়ে যত প্রকারে সাজানো যায়, Calcutta শব্দটির বর্ণগুলোকে একত্রে নিয়ে তার দ্বিগুণ উপায়ে সাজানো যায়।
- খ. সাতটি সরল রেখার দৈর্ঘ্য যথাক্রমে 1, 2, 3, 4, 5, 6 ও 7 সে.মি.; দেখাও যে, একটি চতুর্ভুজ গঠন করার জন্য, চারটি সরলরেখা যত প্রকারে বাছাই করা যায়, তার সংখ্যা 32।

খ-বিভাগঃ জ্যামিতি ও ভেক্টর

- . যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- ক. দেখাও যে, $\vec{a}=3\hat{i}-2\hat{j}+\hat{k}$, $\vec{b}=\hat{i}-3\hat{j}+5\hat{k}$, $\vec{c}=2\hat{i}+\hat{j}-4\hat{k}$ ভেন্তুরগুলি একটি সমকোণী ত্রিভুজ গঠন কর।
- খ. দুটি ভেক্টর $\vec{A}=2\hat{i}-6\hat{j}-3\hat{k}$ এবং $\vec{B}=4\hat{i}+3\hat{j}-\hat{k}$ দ্বারা গঠিত সমতলের উপর একটি একক লম্ব ভেক্টর নির্ণয় কর।
- 8. যে কোনো **তিনটি** প্রশ্নের উত্তর দাও: ৫ × ৩ = ১৫
 - ক. x + 2y + 7 = 0 রেখাটির অক্ষ দুইটির মধ্যবর্তী খণ্ডিত অংশের মধ্যবিন্দুর স্থানাঙ্ক নির্ণয় কর। উপরোক্ত খণ্ডিত অংশ কোন বর্গের বাহু হলে, তার ক্ষেত্রফল নির্ণয় কর।
 - খ. A(h, k) বিন্দুটি 6x y = 1 রেখার উপর অবস্থিত এবং B(k, h) বিন্দুটি 2x 5y = 5 রেখার উপর অবস্থিত। AB এর সমীকরণ নির্ণয় কর।
 - গ. মূল বিন্দু থেকে $x^2 + y^2 10x 4y + 20 = 0$ বৃত্তের উপর অংকিত স্পর্শক দুইটির সমীকরণ নির্ণয় কর।

ঘ. এরূপ একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্রের স্থানাঙ্ক (4. 3) এবং যা $x^2 + y^2 = 4$ বৃত্তকে বহি:স্থভাবে স্পর্শ করে।

গ-বিভাগ: ত্রিকোণমিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: Œ.
- ক. রেডিয়ান কোণ কাকে বলে? প্রমাণ কর যে, রেডিয়ান একটি ধ্রুব
- খ. যদি $\cos\theta + \sec\theta = \frac{5}{2}$ হয় তবে প্রমাণ কর যে, $\cos^n\theta + \sec^n\theta = 2^n + 2^{-n}$.
- গ. $Y = \sin 2x$ এর লেখচিত্র অংকন কর যেখানে, $-\pi \le x \le \pi$.
- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- ক. যদি $\sin\alpha + \sin\beta = a$ এবং $\cos\alpha + \cos\beta = b$ হয়, তবে প্রমাণ কর যে, $\cos(\alpha + \beta) = \frac{b^2 - a^2}{b^2 + a^2}$.
- খ. $\sec x = \frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 4x}}}.$
- গ. যদি একটি ত্রিভুজে $a^4 + b^4 + c^4 = 2c^2(a^2 + b^2)$ হয়, তবে প্রমাণ কর যে, c = 45° অথবা, 135°.

ঘ-বিভাগ: ক্যালকলাস

- যে কোনো একটি প্রশ্নের উত্তর দাও: ٩.

- ক. যদি $f(x) = e^x + e^{-x}$ হয় তবে প্রমাণ কর যে, f(x + y)f(x - y) = f(2x) + f(2y).
- খ. $f: \nabla \to \nabla$ ফাংশনটি $f(\mathbf{x}) = \left\{ egin{array}{ll} \mathbf{x}^2 3\mathbf{x}, \, \mathbf{x} \geq 2 \\ \mathbf{x} + 2, \, \mathbf{x} < 2 \end{array}
 ight.$ দ্বারা প্রকাশিত। f(5), f(0), f(−2) নির্ণয় কর।
- যে কোনো তিনটি প্রশ্নের উত্তর দাও:
- ক. মূল নিয়মে x এর সাপেক্ষে sinx এর অন্তরীকরণ কর।
- খ. x এর সাপেক্ষে অন্তরীকরণ কর (যে কোন ২টি):

 - (i) $2x^{\circ}\cos 3x^{\circ}$; (ii) $\tan^{-1}\frac{4\sqrt{x}}{1-\Delta x}$;

 - (iii) $x^{\cos^{-1}x}$; (iv) $\frac{\cos x \cos 2x}{1 \cos x}$;
- গ. $y = \sin(\sin x)$ হলে প্রমাণ কর যে, $\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + y\cos^2 x = 0$
- ঘ. যোগজ নির্ণয় কর: (যে কোন ২টি)
 - (i) $\int \frac{dx}{(1+x^2)\sqrt{\tan^{-1}x+3}}$ (ii) $\int \frac{dx}{\sqrt{2-3x^2}}$

 - (iii) $\int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \sin x} dx$ (iv) $\int_{0}^{\frac{\pi}{2}} \sin^{2}x \sin 3x dx$.

- **3.** (খ) $\frac{1}{21}\begin{bmatrix} 2 & 3 & -13\\ -3 & 6 & 9\\ 5 & -3 & -1 \end{bmatrix}$
- **৩.** (খ) $\pm \frac{1}{7} (3\hat{i} 2\hat{j} + 6\hat{k})$
- 8. (ক) $\left(-\frac{7}{2}, -\frac{7}{4}\right)$; $61\frac{1}{4}$ বৰ্গ একক

 - (1) $8y = (5 + 3\sqrt{5})x$, $8y = (5 3\sqrt{5})x$
 - (∇) $(x-4)^2 + (y-3)^2 = 9$

- **9.** (খ) f(5) = 10, f(0) = 2, f(-2) = 0
- **b.** (**本**) cos x
 - (*) (i) $\frac{\pi}{90} \left(\cos \frac{\pi x}{60} \frac{\pi x}{60} \sin \frac{\pi x}{60} \right)$
 - (ii) $\frac{2}{\sqrt{x}(1+4x)}$ (iii) $x^{\cos^{-1}x} \left[\frac{\cos^{-1}x}{x} \frac{\ln x}{\sqrt{1-x^2}} \right]$

 - (\P) (i) $2\sqrt{\tan^{-1}x + 3} + c$ (ii) $\frac{1}{\sqrt{3}}\sin^{-1}\left(\sqrt{\frac{3}{2}x}\right) + c$
 - (iii) $2 \sqrt{2}$ (iv) $-\frac{2}{15}$

৯০. মনিপুর উচ্চ বিদ্যালয় ও কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- ক. ম্যাট্রিক্স কাকে বলে? $A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 0 & 6 \\ -1 & -1 & 1 \end{bmatrix}$ হলে, $A^3 - 2A^2 + A - 2.1_3$ নির্ণয় কর
- খ. $A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & -1 & 6 \\ -1 & 5 & 1 \end{bmatrix}$ হলে এমন একটি ম্যাট্রিক্স B নির্ণয় কর যেন AB = BA = 1₃ **হ**য় ।
- গ. প্রমাণ কর যে, $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3-1 & y^3-1 & z^3-1 \end{vmatrix}$

= (xyz - 1)(x - y)(y - z)(z - x).

- যে কোনো একটি প্রশ্নের উত্তর দাও:
- **◊** × **>** = **◊**

- ক. 'MATHEMATICS' শব্দটির বর্ণগুলোকে কত প্রকারে সাজানো যায় তা নির্ণয় কর এবং এদের কতগুলোতে স্বরবর্ণগুলো একত্রে
- খ. 9 জন লোকের একটি দল দুইটি যানবাহনে ভ্রমণ করবে যার একটিতে 7 জনের বেশি এবং অপরটিতে 4 জনের বেশি ধরে না। দলটি কত প্রকারে ভ্রমণ করতে পারবে?

খ-বিভাগ: জ্যামিতি ও ভেঙ্গর

- যে কোনো একটি প্রশ্নের উত্তর দাও:
- ক. $\vec{A} = \hat{i} 2\hat{j} 2\hat{k}$ এবং $\vec{B} = 6\hat{i} + 3\hat{j} + 2\hat{k}$ ভেক্টরম্বয়ের ক্ষেত্রে \vec{A} ভেক্টর বরাবর B ভেক্টরের উপাংশ এবং \overrightarrow{A} এর উপর \overrightarrow{B} এর অভিক্ষেপের সাংখ্যিক মান সমান— প্রমাণ কর।
- খ. 🛮 🗚 🗚 এর BC বাহুর মধ্যবিন্দু D হলে, ভেক্টর পদ্ধতিতে প্রমাণ কর যে, $AB^2 + AC^2 = 2(AD^2 + BD^2)$
- যে কোনো তিনটি প্রশ্নের উত্তর দাও:

- a এর মান কত হলে (a, 2 2a), (1 a, 2a) এবং (–4 a, 6 2a) বিন্দুগুলো সমরেখ হবে?
- খ. একটি সরলরেখা (-2, -5) বিন্দু দিয়ে যায় এবং x ও yঅক্ষদ্বয়কে যথাক্রমে A ও B বিন্দুতে ছেদ করে যেন, OA + 2.OB = 0 হয় যখন, O মূল বিন্দু।
- গ. একটি বৃত্ত x অক্ষকে স্পর্শ করে এবং (1, 2) ও (3, 2) বিন্দু দিয়ে যায়। বৃত্তটির সমীকরণ নির্ণয় কর।
- ঘ. $x^2 + y^2 2x 4y 4 = 0$ বুত্তে অংকিত যে স্পূৰ্শক 3x - 4y + 5 = 0 রেখার উপর লম্ব তার সমীকরণ নির্ণয় কর। গ-বিভাগ: ত্রিকোণমিতি
- যে কোনো দুইটি প্রশ্নের উত্তর দাও: Œ.

€ × ≥ = 30

- ক. একটি বৃত্তচাপ বৃত্তের কেন্দ্রে 60° কোণ উৎপন্ন করে। যদি বৃত্তচাপের উপর দন্ডায়মান বৃত্তকলার ক্ষেত্রফল 13.09 বর্গ সে.মি. হয়, তবে বৃত্তের ব্যাসার্ধ নির্ণয় কর।
- খ. যদি $\cos\alpha+\sec\alpha=\frac{5}{2}$ হয়, তবে প্রমাণ কর যে, $\cos^n\alpha+\sec^n\alpha$
- গ. $y = \sin 2x$ ফাংশনের লেখচিত্র অংকন কর যখন, $0 \le x \le 2\pi$.
- ৬. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

ক. যদি $tan\theta=\frac{5}{12}$ এবং $\pi<\theta<\frac{3\pi}{2}$ হয়, তবে $\frac{sin\theta+cos(-\theta)}{sec(-\theta)+tan\theta}$ এর মান নির্ণয় কর।

- খ. যদি $\cot \alpha + \cot \beta = a$, $\tan \alpha + \tan \beta = b$ এবং $\alpha + \beta = \theta$ হয়, তবে প্রমাণ কর যে, $(a - b)\tan\theta = ab$.
- গ. $\triangle ABC$ এ $\cos B = \sin C \cos A$ হলে দেখাও যে, $\triangle ABC$ সমকোণী ৷

ঘ-বিভাগ: ক্যালকুলাস

যে কোনো একটি প্রশ্নের উত্তর দাও:

 $\alpha \times \lambda = \alpha$

- ক. ফাংশনের সংজ্ঞা দাও $+ f(x) = e^x + e^{-x}$ হলে প্রমাণ কর যে, f(x + y)f(x - y) = f(2x) + f(2y).
- খ. $f(x) = \frac{4x-7}{2x-4}$ হলে দেখাও যে, $f^{-1}(x) = f(x)$.
- যে কোনো তিনটি প্রশ্নের উত্তর দাও:

- ক. মূল নিয়মে x এর সাপেক্ষে $\log_a x$ এর অন্তরজ নির্ণয় কর।
 - খ. স্ব-স্ব চলরাশির প্রেক্ষিতে অন্তরজ নির্ণয় কর (যে কোন ২টি):
 - $(i) \ log_x a \ ; (ii) \ 2x^{\circ} cos 3x^{\circ} \ ; (iii) \ tan^{-i} \frac{a+by}{a-by} \ ; (iv) \ (x^{x})^{x}$
 - গ. যোগজ নির্ণয় কর (যে কোন ২টি):

$$(i) \int \frac{dx}{1 + tanx};$$

(ii)
$$\int \frac{dx}{1 + 3\cos^2 x}$$

(iii)
$$\int_{0}^{\pi/3} \frac{dx}{1 - \sin x}$$
; (iv) $\int_{0}^{4} y \sqrt{4 - y} \ dy$.

(iv)
$$\int_0^4 y \sqrt{4-y} \, dy.$$

- ঘ. $y^2 = 4ax$ এবং $x^2 = 4ay$ পরাবৃত্ত দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
- **3.** (क) $\begin{bmatrix} -36 & -3 & -4 \\ -3 & -35 & -6 \\ 1 & 1 & -36 \end{bmatrix}$ (1) $\begin{bmatrix} \frac{31}{2} & -\frac{17}{2} & -11 \\ -\frac{9}{2} & -\frac{5}{2} & -3 \end{bmatrix}$
- **২. (ক)** 4989600; 120960 **(খ)** 246
- **8.** ($\mathbf{\overline{\Phi}}$) $-1, \frac{1}{2}$ ($\mathbf{\overline{\Psi}}$) x 2y = 8
 - (1) $2x^2 + 2y^2 8x 5y + 8 = 0$
 - (**T**) 4x + 3y + 5 = 0; 4x 3y 25 = 0
- ৫. (a) 5 সে.মি.

- **9.** (i) $\frac{51}{26}$
- **b.** (a) $\frac{1}{x} \log_a e$ (b) (i) $\frac{-1}{x \log_a e(\ln x)^2}$ (ii) $\frac{\pi}{90} \left(\cos \frac{\pi x}{60} \frac{\pi x}{60} \sin \frac{\pi x}{60} \right)$
 - $(iii)\,\frac{ab}{a^2+b^2y^2}\,(iv)\,\,{x^x}^2\,\,.\,\,x\,\,(2\,\,ln\,\,x+\,1)$
 - $\textbf{(c) (i)} \ \frac{x}{2} + \frac{1}{2} \ln \left| \cos x + \sin x \right| + c \ \textbf{(ii)} \ \frac{1}{2} \tan^{-1} \left(\frac{\tan x}{2} \right) + c$
 - (iii) $\sqrt{3} + 1$ (iv) $\frac{128}{15}$
 - (d) $\frac{16a^2}{3}$ বৰ্গ একক।

৯১. সেন্ট যোসেফ উচ্চ মাধ্যমিক বিদ্যালয়, ঢাকা

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

বিষয় কোড : | ২ | ৬ | ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : দ্বিতীয় পত্র

- ১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- ক. প্রমাণ কর যে, |a + b| ≤ |a| + |b|
- খ. মান নির্ণয় কর : $\sqrt[6]{-64}$
- গ. যদি (x, y) = (a + ib) % (c + id) হয় তাহলে দেখাও, $(c^2 + d^2) x^2 - 2(ac + bd) xy + (a^2 + b^2)y^2 = 0$
- ২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

3 = 4 × 3

- $\overline{\Phi}$. Maximize: z = 4x + 6y, *তি: x + 2y \le 10, x + y \le 6, x - y \le 2, x, y \ge 0
- খ. জনৈক ভদ্রলোক সর্বোচ্চ 100 টাকা ব্যয় করে কিছুসংখ্যক কলম ও পেন্সিল কিনতে চান। প্রতিটি কলম ও পেন্সিলের ক্রয়মূল্য

যথাক্রমে 12 টাকা ও ৪ টাকা। তিনি অন্তত 1টি কলম কিনবেন কিন্তু ৪টির অধিক পেন্সিল কিন্বেন না। ঐ ভদ্রলোক কোন প্রকারের কতগুলি জিনিস কিনলে একত্রে সর্বাধিক সংখ্যক জিনিস কিনতে পারবেন?

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

0**८** = ⋟ × ₺

- ক. $x^2 + ax + b = 0$ সমীকরণের মূলদ্বয় α , β হলে $(\alpha + \beta)^2$ এবং $(\alpha - \beta)^2$ মূলবিশিষ্ট সমীকরণ নির্ণয় কর ।
- খ. $27x^2 + 6x (p+2) = 0$ সমীকরণটির একটি মূল অপরটির বর্গ হলে P এর মান নির্ণয় কর।

& × 2 = 30

- গ. প্রমাণ কর, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদটি $rac{1.3.5}{n!} \left(-2
 ight)^n$ [মেখানে $n \in \left[\right]$
- 8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

€×≥ = >0

- ক. $y = ax^2 + bx + c$ পরাবৃত্তির শীর্ষ (-2, 3) বিন্দুতে অবস্থিত এবং এটি (0,5) বিন্দু দিয়ে অতিক্রম করে a, b, c এর মান নির্ণয় কর।
- খ. p এর মান কত হলে $px^2 + 4y^2 = 1$ উপবৃত্তটি $(\pm 1, 0)$ বিন্দু দিয়ে যাবে? উপবৃত্তটির উৎকেন্দ্রিকতা ও অক্ষ দুইটির দৈর্ঘ্য নির্ণয় কর।
- গ. এরূপ অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1, -8), উৎকেন্দ্রিকতা $\sqrt{5}$ এবং নিয়ামকের সমীকরণ 3x - 4y = 10
- c. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. প্রমাণ কর : $\sin^{-1}(\sqrt{2}\sin\theta) + \sin^{-1}(\sqrt{\cos 2\theta}) = \frac{\pi}{2}$
- খ. প্রমাণ কর : $\sin \cos^{-1} \tan \sec^{-1} \frac{x}{y} = \frac{\sqrt{2y^2 x^2}}{y}$
- গ. সমাধান কর : $4\cos\theta\cos 2\theta\cos 3\theta = 1, 0 < \theta < \pi$
- ৬. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

৮. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও: $\mathfrak{d} = \boldsymbol{\zeta} \times \mathfrak{d}$

- ক. লম্বাংশ সূত্রটি লিখ ও প্রমাণ কর:
- খ. θ কোণে ক্রিয়ারত P, Q বলদ্বয়ের লব্ধি $(2m+1)\sqrt{P^2+Q^2}$; উক্ত কোণটি $(90^\circ-\theta)$ হলে লব্ধির মান $(2m-1)\sqrt{P^2+Q^2}$ হয়। প্রমাণ কর যে, $\tan \theta = \frac{m-1}{m+1}$

অথবা, ক. দুইটি অসদৃশ সমান্তরাল বলের লব্ধির মান ও দিক নির্ণয় কর।

ক. A, B দুইটি পরস্পর বর্জনশীল ঘটনা হলে প্রমাণ কর যে, $P(A \cup A)$

অথবা, ক. দেখাও যে, বায়ুশূন্য স্থানে কোন প্রক্ষিপ্ত বস্তুর গতিপথ একটি

খ. একটি শূন্য কুপের মধ্যে একটি ঢিল ফেলার t সে. পরে কুপের

তলদেশে ঢিল পড়ার শব্দ শোনা গেল। যদি শব্দের বেগ v এবং

কুপের গভীরতা h হয়, তবে প্রমাণ কর যে, (2h - gt²) v² +

B) = P(A) + P(B)

খ. P, O, R বল তিনটি কোন ত্রিভুজের A, B, C শীর্ষবিন্দু হতে

যথাক্রমে তাদের বিপরীত বাহুর লম্বাভিমুখী দিকে ক্রিয়ারত থেকে

সচরাচর সংকেতে ক্যালকুলাস পদ্ধতিতে প্রমাণ কর, $\mathbf{v}^2 = \mathbf{u}^2$ +

কোন সরলরেখায় f সমত্বরনে চলস্ত একটি কণা $\mathbf t$ সময়ে $\mathbf s$ দূরত্ব

ও পরবর্তী \mathbf{t}_1 সময়ে \mathbf{s}_1 দূরত্ব অতিক্রম করে। দেখাও যে, f=2

ভারসাম্য সৃষ্টি করেছে। প্রমাণ কর যে, P % Q % R = a % b % c

- খ. 52 খানা তাসের প্যাকেট হতে যেমন খুশি টেনে পরপর চারটি টেক্কা পাওয়ার সম্ভাবনা নির্ণয় কর। পরপর তিনটি সাহেব পাওয়ার সম্ভাবনা নির্ণয় কর।
- গ. 1, 2, 5, 9, 10, 15, 17, 19, 21 সংখ্যাগুলোর পরিমিত ব্যবধান, ভেদাংক, পরিমিত ব্যবধানাংক ও বিভেদাংক নির্ণয় কর।

- **১.** (খ) $\pm 2i$, $\pm (\sqrt{3} \pm i)$
- $2. \ (\overline{\Phi}) Z_{\text{max}} = 32$
 - (খ) 3টি কলম ও ৪টি পেন্সিল।
- **9.** $(\mathbf{\overline{\Phi}}) x^2 2 (a^2 2b)x + a^2 (a^2 4b) = 0$
 - **(**খ**)** 6, -1.

8. (**a**) $\frac{1}{2}$, 2, 5 (**a**) $p = 1, \frac{\sqrt{3}}{2}$, 2, 1.

৭. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

 $\left(\frac{\underline{s_1}}{t_1} - \frac{\underline{s}}{t}\right) / \left(t + t_1\right)$

 $2hgtv = h^2g$

- ($^{\circ}$) $4x^2 + 11y^2 24xy 50x 225 = 0$
- **៤.** (গ) $\frac{\pi}{8}$, $\frac{\pi}{3}$, $\frac{3\pi}{8}$, $\frac{2\pi}{3}$, $\frac{5\pi}{8}$, $\frac{7\pi}{8}$
- ৮. খে) $\frac{4!}{52.51.50.49}$, $\frac{1}{5525}$
 - (1) 6.976, 48.66, 0.634, 63.4%

৯২. বি এ এফ শাহীন কলেজ, তেজগাঁও, ঢাকা

বিষয় কোড : | ২ | ৬ | ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:

- ক. $A = \begin{bmatrix} 8 & 4 & -1 \\ 0 & 1 & 3 \\ 5 & 4 & 8 \end{bmatrix}$ এবং $B = \begin{bmatrix} -4 & 6 & 2 \\ 1 & 3 & 7 \\ 5 & 4 & 1 \end{bmatrix}$ হলে, A + B, A B এবং
- খ. প্রমাণ কর : $\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (a+a^2+b^2)$
- গ. বিপরীত মেট্রিক্স নির্ণয় কর: $A = \begin{bmatrix} 11 & 3 & 2 \\ 3 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
- ২. যে কোনো **একটি** প্রশ্নের উত্তর দাও:
- 3 = <×3

- ক. দুই জন কলা বিভাগের ছাত্রকে পাশাপাশি না বসিয়ে 5 জন বিজ্ঞানের ও 5 জন কলা বিভাগের ছাত্র কত রকমের একটি গোল টেবিলের পাশে আসন নিতে পারে।
- খ. 9 জন লোকের একটি দল দুইটি যানবাহনে ভ্রমণ করবে। এ যানবাহনের একটিতে 7 জনের বেশি এবং অপরটিতে 4 জনের বেশি ধরে না। দলটি কত রকমে ভ্রমণ করতে পারবে?

খ-বিভাগ: জ্যামিতি ও ভেক্টর

৩. যে কোনো **একটি** প্রশ্নের উত্তর দাও:

%×3=€

- ক. ABC ত্রিভূজের BC বাহুর মধ্যবিন্দু D হলে দেখাও যে, $AB^2 + AC^2 = 2(AD^2 + BD^2)$
- খ. $\overrightarrow{B} = 2\hat{i} + 10\hat{j} 11\hat{k}$ ভেক্টর বরাবর $\overrightarrow{A} = 2\hat{i} + 2\hat{j} + \hat{k}$ ভেক্টরের উপাংশ নির্ণয় কর।

যে কোনো **তিনটি** প্রশ্নের উত্তর দাও:

- ক. A(h, k) বিন্দুটি 6x y = 1 রেখার উপর অবস্থিত এবং B(k, h)বিন্দুটি 2x-5y=5 রেখার উপর অবস্থিত। AB এর সমীকরণ
- খ. (1, -2) বিন্দু থেকে $7\frac{1}{2}$ একক দূরবর্তী এবং 3x + 4y = 7 রেখাটির সমান্তরাল রেখাসমূহের সমীকরণ নির্ণয় কর।
- গ্. এরূপ বত্তের সমীকরণ নির্ণয় কর যা মল বিন্দু থেকে -4 একক দরতে v অক্ষকে স্পর্শ করে এবং x অক্ষ থেকে 6 একক দীর্ঘ একটি জ্যা খন্ডন করে।
- ঘ. $x^2 + y^2 8x 10y = 8$ বৃত্তে অঙ্কিত স্পর্শক, 5x 12y 9 = 0রেখার সমান্তরাল। স্পর্শকের সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

৫. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- ক. যদি $x\sin^3\alpha + y\cos^3\alpha = \sin\alpha\cos\alpha$ এবং $x\sin\alpha y\cos\alpha = 0$ হয় তবে প্রমাণ কর $x^2 + y^2 = 1$
- গ্রাফের সাহায্যে সমাধান করঃ

 $\sin x - \cos x = 0, 0 \le x \le \frac{\pi}{2}$

- গ. যদি $(a^2 b^2)\sin\theta + 2ab\cos\theta = a^2 + b^2$ এবং θ ধন্দক সম্মাকোণ হয় তাহলে tanθ এবং cosecθ এর মান বের কর।
- যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

- ক. যদি $\sqrt{2}\cos A = \cos B + \cos^3 B$ এবং $\sqrt{2}\sin A = \sin B \sin^3 B$ হয় তবে দেখাও যে $\sin(A-B)=\pm\frac{1}{3}$
- খ. যদি $A + B + C = \frac{\pi}{2}$ হয় তবে দেখাও যে, $\cos^2 A + \cos^2 B - \cos^2 C = 2\cos A \cos B \sin C$

গ. যদি $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ তবে দেখাও যে, $C = 60^{\circ}$

ঘ-বিভাগ: ক্যালকুলাস

৭. যে কোনো একটি প্রশ্নের উত্তর দাও:

6×3=6

- ক. যদি f(2x-1)=x+2 হয় তবে f(x+3) এবং $f^{-1}(x)$ নির্ণয়
- খ. যদি $\varphi(x) = \cot^{-1}(1 + x + x^2)$ হয় তবে দেখাও যে, $\varphi(0) + 2\varphi(1) + \varphi(2) = \frac{\pi}{2}$
- যে কোনো তিনটি প্রশ্নের উত্তর দাও:

 $0 \le 0 \times 0$

অন্তরজ নির্ণয় কর x এর সাপেক্ষে

(i) $tan^{-1} \left(\frac{a+bx}{b-ax}\right)$ (ii) $\frac{xsinx}{1+cosx}$

(ii)
$$x^x + x^{\frac{1}{x}}$$
; (iv) $\sin \left(2 \tan^{-1} \sqrt{\frac{1-x}{1+x}} \right)$

- খ. যদি $y=(e^x+e^{-x})sinx$ হয় তবে প্রমাণ কর যে, $\frac{d^4y}{dx^4}+4y=0$
- গ. $1+2\sin x+3\cos^2 x,$ $\left(0\leq x\leq \frac{\pi}{2}\right)$ এর লঘিষ্ঠ ও গরিষ্ঠ মান নির্ণয় কর।
- ঘ মান নির্ণয় কর:

$$i. \, \int_0^{ln2} \!\! \frac{e^x}{1+e^x} dx; \ \ ii. \, \int_0^a \!\! \sqrt{a^2-x^2} dx;$$

- iii. $\int_{1}^{\sqrt{3}} x \tan^{-1} x dx$; iv. $\int_{0}^{\frac{\pi}{2}} \cos^{3} x \sqrt{\sin x} dx$

(†) $A^{-1} = \begin{bmatrix} \frac{2}{9} & -\frac{1}{3} & -\frac{4}{9} \\ -\frac{1}{3} & 1 & \frac{2}{3} \\ -\frac{2}{9} & \frac{1}{3} & \frac{13}{9} \end{bmatrix}$

- **২. (ক)** 2880 **(খ)** 246
- **9.** (4) $\frac{13}{225}$ $(2\hat{i} + 10\hat{j} 11\hat{k})$

- **8.** ($\overline{\Phi}$) x + y 6 = 0 ($\overline{\Psi}$) 6x + 8y = 65, 6x + 8y + 85 = 0
 - (1) $x^2 + y^2 \pm 10x + 8y + 6 = 0$
 - (\P) 5x 12y 51 = 0, 5x 12y + 131 = 0
- ৫. (খ) $\frac{\pi}{4}$ (গ) $\frac{a^2-b^2}{2ab}$, $\frac{a^2+b^2}{a^2-b^2}$
- **9.** $(\overline{\Phi}) \frac{x+8}{2}, 2x-5$
- **b.** ($\overline{\Phi}$) (i) $\frac{1}{1+x^2}$ (ii) $\frac{x+\sin x}{1+\cos x}$ (iii) $x^x (1+\ln x) + x^{\frac{1}{x}-2} (1-\ln x)$
 - (iv) $-\frac{x}{\sqrt{1-x^2}}$ (গ) 3, $\frac{13}{3}$
 - **(V)** (i) $\ln \frac{3}{2}$ (ii) $\frac{1}{4} \pi a^2$ (iii) $\frac{1}{12} (5\pi 6\sqrt{3} + 6)$ (iv) $\frac{8}{21}$

৯৩. বি এ এফ শাহীন কলেজ, তেজগাঁও, ঢাকা

বিষয় কোড : | ২ | ৬ | ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

0**ረ=**\$×3

- $5(x^2 + y^2) = 2x + 7$

6×3=20

- ক. a এবং b বাস্তব সংখ্যা হলে প্রমাণ কর যে, $|a-b| \ge ||a|-|b||$
- খ. যদি a+b+c=0 এবং এককের একটি কাল্পনিক মূল ω হয় তবে দেখাও যে, $(a + b\omega + c\omega^2)^3 + (a + b\omega^2 + c\omega)^3 = 27abc$
- গ. z = x + iy এবং 3|z 1| = 2|z 2| হলে, প্রমাণ কর যে,
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
 - ক. $x^2 + kx 6k = 0$ এবং $x^2 2x k = 0$ সমীকরণ দুইটির একটি মাত্র সাধারণ মূল থাকলে. k এর মানগুলি বের কর।
 - খ. $(1 + x)^{24}$ এর বিস্তৃতি থেকে দুটি ক্রমিক পদ নির্ণয় কর যাদের সহগের অনুপাত 4:1 হবে।

গ. $y = x - x^2 + x^3 - x^4 +$ হলে দেখাও যে, $x = y + y^2 + y^3 + y^4 +$

খ-বিভাগঃ জ্যামিতি

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

€×≥=>0

- ক. $y = ax^2 + bx + c$ পরাবৃত্তটির শীর্ষ (-2, 3) বিন্দুতে অবস্থিত এবং এটি (0, 5) বিন্দু দিয়ে অতিক্রম করে। a, b, c এর মান নির্ণয় কর।
- খ. p এর মান কত হলে $\frac{x^2}{p} + \frac{y^2}{5^2} = 1$ উপবৃত্তটি (6, 4) বিন্দু দিয়ে অতিক্রম করবে? উপবৃত্তটির উৎকেন্দ্রিকতা এবং উপকেন্দ্রের অবস্থান নির্ণয় কর।
- গ. দেখাও যে, $x^2-8y^2=2$ অধিবৃত্তের দিকাক্ষের সমীকরণ $3x=\pm 4$ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য $\frac{1}{2\sqrt{2}}$ ।

গ-বিভাগ: ত্রিকোণমিতি

8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

6×३=১০

ক. প্রমাণ কর যে,

$$2tan^{-1}\left\{ \left. \sqrt{\frac{a-b}{a+b}}\tan\frac{\theta}{2} \right. \right\} \\ = cos^{-1}\!\!\frac{b+acos\theta}{a+bcos\theta}$$

- খ. সমাধান কর: $\sqrt{3}\sin\theta \cos\theta = 2$, যখন $-2\pi < x < 2\pi$
- গ. সমাধান কর: $\cos\theta \cos 7\theta = \sin 4\theta$

ঘ-বিভাগঃ স্থিতিবিদ্যা ও গতিবিদ্যা

- ৫. ক. প্রমাণ কর যে, কোন নির্দিষ্ট দিকে এক বিন্দুগামী দুইটি বলের লম্বাংশের বীজগণিতীয় সমষ্টি একই দিকে এদের লব্ধির লম্বাংশের সমান।
 - খ. P ও Q বলদ্বয় যথাক্রমে একটি হেলানো তলের দৈর্ঘ্য ও ভূমির সমান্তরালে ক্রিয়ারত থেকে প্রত্যেকে এককভাবে তলের উপরস্থ W ওজনের একটি বস্তুকে ধরে রাখতে পারে। প্রমাণ কর যে,

$$\frac{1}{P^2} - \frac{1}{O^2} = \frac{1}{W^2}$$

অথবা,

- ক. দুইটি অসমান বিসদৃশ সমান্তরাল বলের লব্ধির দিক ও ক্রিয়া বিন্দু নির্ণয় কর।
- খ. ABC ত্রিভুজের A, B, C কৌণিক বিন্দুতে যথাক্রমে P, Q, R মানের তিনটি সমমুখী সমান্তরাল বল ক্রিয়ারত আছে। তাদের লব্ধি ঐ ত্রিভুজের লম্ব কেন্দ্রগামী হলে, প্রমাণ কর যে,

$$\frac{P}{\tan A} = \frac{Q}{\tan B} = \frac{R}{\tan C}$$

- 9. ক. দুইটি বেগের বৃহত্তম লব্ধি এদের ক্ষুদ্রতম লব্ধির n গুণ। বেগদ্বয়ের মধ্যবর্তী কোণ x হলে, লব্ধি বেগের মান এদের সমষ্টির অর্ধেক হয়। প্রমাণ কর যে, $\cos \alpha = \frac{n^2 + 2}{2(1 n^2)}$
 - খ. একটি ট্রেন সরল রেলপথে 2 কি.মি. ব্যবধানে দুইটি স্টেশনে থামে। এক স্টেশন থেকে অন্য স্টেশনে পৌছাতে সময় লাগে 4 মিনিট। ট্রেনটি এর গতিপথের প্রথম অংশ x সমত্বরণে এবং দ্বিতীয় অংশ y সমমন্দনে চলে। প্রমাণ কর যে, $\frac{1}{x}+\frac{1}{y}=4$ α

অথবা,

- ক. প্রমাণ কর যে, বায়ুহীন অবস্থায় অনুভূমিকের সাথে lpha কোণে শূন্যে নিক্ষিপ্ত প্রক্ষেপণের অনুভূমিক পাল্লা R হলে, ইহার গতিপথের সমীকরণ $y=x \tan lpha \left(1-rac{x}{R}
 ight)$ lpha
- খ. খাড়া উপরের দিকে নির্দিষ্ট বেগে নিক্ষিপ্ত একটি t সেকেন্ডে h উচ্চতায় উঠে এবং t_1 সেকেন্ড পরে ভূমিতে পৌছায়, প্রমাণ কর যে, (i) কণার আদিবেগ $=\frac{1}{2}g(t+t_1)$ (ii) $h=\frac{1}{2}gtt_1$

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

ক. নিলিখিত যোগাশ্রয়ী প্রোগ্রামকে লেখচিত্রের সাহায্যে সমাধান
 করে প্রান্তবিন্দু নির্ণয় কর এবং সর্বনিন্করণ কর:

$$Z = 2x - y$$

শৈতি: $x + 2y \le 8$; $x + y \le 5$; $4x + 3y \ge 12$; $x, y \ge 0$

চ-বিভাগঃ পরিসংখ্যান ও সম্ভাব্যতা

৮. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

%×≥=5c

ক. নিংলিখিত উপাত্তের পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় কর:

	মাসিক আয় টাকা (হাজারে)	5-9	10-14	15-19	20-24	25-29	30-34
ŀ	কর্মচারীর সংখ্যা	15	30	55	17	10	3

- থ. দুইটি অবর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার সংযোগ সূত্রটি লেখ ও প্রমাণ কর।
- গ. আলমের বাংলা পরীক্ষায় ফেল করার সম্ভাবনা $\frac{1}{5}$, বাংলা এবং ইংরেজি দুটিতেই পাসের সম্ভাবনা $\frac{3}{4}$ এবং দুইটির যে কোনো একটিতে পাশের সম্ভাবনা $\frac{7}{8}$ হলে, তার কেবল ইংরেজিতে পাসের সম্ভাবনা কত?

২. (ক) 0, 3, 8 **(খ)** 6 তম ও 5 তম; অথবা 20 তম ও 21 তম।

- ত (ক) $\frac{1}{2}$, 2, 5 (খ) P = 100; $\frac{\sqrt{3}}{2}$; $(\pm 5\sqrt{3}, 0)$
 - 8. (খ) $-\frac{4\pi}{3}$, $\frac{2\pi}{3}$ (গ) $\frac{n\pi}{4}$, $\frac{n\pi}{3}$ + $(-1)^n \frac{\pi}{18}$, যখন $n \in A$
- **9.** $(3,0), (5,0), (0,4), (2,3), Z_{min} = -4$
- **b.** ($\overline{\Phi}$) 5.76, 33.17 ($\overline{\eta}$) $\frac{3}{40}$

৯৪. হলি ক্রস কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৬

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

- **ক-বিভাগ: বীজগণিত** . যে কো**নো দুইটি** প্রশ্লের উত্তর দাও:
- 6 x 3 10
- ক. a,b বাস্তব সংখ্যা হলে প্রমাণ কর যে, $|a-b|\geq ||a|-|b||$
- খ. এককের একটি জটিল ঘনমূল ω হলে, প্রমাণ কর যে, $(-1+\sqrt{-3})^4 + \left(-1-\sqrt{-3}\right)^4 = -16 \ {\rm I}$

- গ. প্রমাণ কর যে, $\left\{\frac{-1+\sqrt{-3}}{2}\right\}^n + \left\{\frac{-1-\sqrt{-3}}{2}\right\}^n = 2$, যখন n -এর মান 3 দারা বিভাজ্য এবং রাশিটি =-1, যখন n অপর কোন পূর্ণ সংখ্যা হয়।
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $0 \le 4 \times 3$

- ক. যদি a, b, c মূলদ এবং a + b + c = 0 হয়, তবে দেখাও যে, $(b+c-a)x^2+(c+a-b)\ x+(a+b-c)=0$ সমীকরণের মূলদ্বয় মূলদ হবে।
- খ. যদি $y=2x+3x^2+4x^3+\dots \infty$ হয়, তবে দেখাও যে, $x = \frac{1}{2}y - \frac{3}{8}y^2 + \frac{5}{16}y^3 - \dots \infty$
- গ. দেখাও যে, $\left(x-\frac{1}{x}\right)^{2n}$ এর বিস্তৃতিতে মধ্যপদটি $\frac{1.3.5 \dots (2n-1)}{n!} (-2)^n$

খ-বিভাগ: জ্যামিতি

৩. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

& × ₹ = **>**0

- ক. $5x^2 + 30x + 2y + 59 = 0$ পরাবৃত্তটির শীর্ষ বিন্দুর স্থানাংক, ফোকাস এর স্থানাংক, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, অক্ষরেখা এবং নিয়ামক রেখার সমীকরণ নির্ণয় কর।
- খ. উপবৃত্তের অক্ষদ্বয়কে x ও y অক্ষরেখা ধরে উপবৃত্তটির সমীকরণ নির্ণয় কর। যার উৎকেন্দ্রিকতা $rac{1}{3}$ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য 8 1
- গ. এমন একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র (1,-8), উৎকেন্দ্রিকতা $\sqrt{5}$ এবং নিয়ামকের সমীকরণ 3x-4y-10=0গ-বিভাগ: ত্রিকোণমিতি
- যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

- ক. যদি $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$ হয় তবে প্রমাণ কর যে, $x^2 + y^2 = 1$
- সমাধান কর : $\sin x + \cos x = \sin 2x + \cos 2x$
- গ. সমাধান কর : $\sqrt{3}\cos x + \sin x = 1$; যখন $-2\pi < x < 2\pi$

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- ক. প্রমাণ কর যে, কোন নির্দিষ্ট দিকে দুইটি বলের লম্বাংশের বীজগাণিতিক যোগফল ঐ একই দিকে লব্ধির লম্বাংশের সমান। ৫
 - খ. একটি হেলানো সমতলের ভূমি ও দৈর্ঘ্যের সমান্তরালে যথাক্রমে ক্রিয়াশীল দুইটি পৃথক বল P ও Q এর প্রত্যেকে একাকী W ওজনের কোন বস্তুকে সমতলের উপর স্থিরভাবে ধরে রাখতে পারে। প্রমাণ কর যে, $W = \frac{PQ}{\sqrt{P^2 - Q^2}}$ ।

অথবা, ক. দুইটি অসমান বিসদৃশ সমান্তরাল বলের লব্ধির মান, দিক ও কার্যবিন্দুর অবস্থান নির্ণয় কর।

- P ও Q দুইটি সমমুখী সমান্তরাল বল। P বলটির ক্রিয়ারেখা সমান্তরাল রেখে তার ক্রিয়াবিন্দুকে x দূরে সরালে, দেখাও যে, তাদের লব্ধি $\frac{Px}{P+Q}$ দূরে সরে যাবে।
- ক. সচরাচর সংকেত মালায় প্রমাণ কর যে, $\mathbf{v}^2 = \mathbf{u}^2 + 2f\mathbf{s}$ ।
 - কোন সরলরেখায় সমতুরণে চলস্ত কোন বিন্দুর গড় বেগ ধারাবাহিক t₁, t₂, t₃ সময়ে যথাক্রমে v₁, v₂, v₃ হলে, প্রমাণ কর
- অথবা, ক. দেখাও যে বায়ু শূন্যে প্রক্ষিপ্ত বস্তুকণার গতিপথের সমীকরণ y = $x anlpha \left(1-rac{x}{R}
 ight)$ যেখানে নিক্ষেপণ কোণ lpha এবং পাল্লা R ।
 - একটি টাওয়ারের চূড়া হতে একখণ্ড পাথর x মিটার নিচে নামার পর অপর এক খণ্ড পাথর চূড়ার y মিটার নিচ হতে ফেলে দেওয়া হল। যদি উভয়ই স্থিরাবস্থা হতে পড়ে এবং একই সঙ্গে ভূমিতে পতিত হয়, তবে দেখাও যে, টাওয়ারের উচ্চতা $\dfrac{(x+y)^2}{4x}$ মিটার।

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

যে কোনো **একটি** প্রশ্নের উত্তর দাও:

- ক. লেখচিত্রের সাহায্যে Z=2x+y এর সর্বোচ্চমান নির্ণয় কর। সীমাবদ্ধতাগুলো : $x + 2y \le 10$, $x + y \le 6$, $x - y \le 2$, $x - 2y \le 10$
- খ. একজন ফল বিক্রেতা আম ও পেয়ারা বিক্রি করেন। প্রতি ঝুড়ি আম ও পেয়ারার মূল্য যথাক্রমে 50 ও 25 টাকা। ঐ বিক্রেতা তার দোকানে 12 টির বেশি ঝুড়ি রাখতে পারেন না। প্রতি ঝুঁড়ি আম ও পেয়ারা বিক্রয়ে লাভ হয় যথাক্রমে 10 ও 6 টাকা হলে 500 টাকা মূলধন ব্যয়ে কত ঝুড়ি আম ও পেয়ারা ক্রয় করলে ঐ বিক্রেতা সর্বোচ্চ লাভ করতে পারবেন?

চ-বিভাগ: পরিসংখ্যান ও সম্ভাবনা

যে কোনো দুইটি প্রশ্নের উত্তর দাও:

- বর্জনশীল ঘটনার ক্ষেত্রে প্রমাণ কর যে, $P(A \cup B) = P(A)$ +
- একটি থলিতে 5 টি সাদা এবং 4 টি কালো বল আছে। অপর একটি থলিতে 3 টি সাদা এবং 6 টি কালো বল আছে। নিরপেক্ষভাবে প্রত্যেক থলি থেকে একটি করে মোট 2টি বল তোলা হল। দুইটি বলের মধ্যে অন্ততঃ একটি সাদা হওয়ার সম্ভাব্যতা নির্ণয় কর।
- নিচের তথ্য সারণি থেকে পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় কর:

শ্রেণি ব্যাপ্তি	20-24	25-29	30-34	35-39	40-44	45-49
গণসংখ্যা	7	10	15	13	9	6

- **9.** $(\overline{\Phi})$ (-3, -7), $(-3, -\frac{71}{10})$, $\frac{2}{5}$, x + 3 = 0, 10y + 69 = 0
- (*) $\frac{4x^2}{81} + \frac{y^2}{18} = 1$ (*) $4x^2 + 11y^2 24xy 50x 225 = 0$
 - **8.** (খ) $2n\pi$, $\frac{2}{3}\left(n\pi + \frac{\pi}{4}\right)$ (গ) $-\frac{3\pi}{2}$, $-\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{11\pi}{6}$
- **9.** ($\overline{\Phi}$) $Z_{max} = 10$
 - (খ) আম ৪ ঝুড়ি, পেয়ারা 4 ঝুড়ি।
- ৮. (খ) $\frac{19}{27}$
 - (গ) 7.37 ও 54.41

৯৫. কুইন্স স্কুল এন্ড কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৬ পর্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

% × ≥ = **>**0

- ক. (i) সমাধান কর: |2x 5| < 3.
 - (ii) প্রমমান চিহ্নের সাহায্যে প্রকাশ কর : −7 < x < −1.
- খ. বর্গমূল নির্ণয় কর : -7 + 24i.
- গ. $\sqrt[3]{x+iy}=a+ib$ হলে, প্রমাণ কর যে, $\frac{x}{a}+\frac{y}{b}=4(a^2-b^2)$ ।
- ২. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

 $c \times 5 = 50$

- ক. যদি $ax^2+bx+c=0$ এর একটি মূল $cx^2+bx+a=0$ এর একটি মূলের দ্বিগুণ হয়, তাহলে দেখাও যে, 2a=c অথবা, $(2a+c)^2=2b^2$
- খ. $\left(x^2-2+\frac{1}{x^2}\right)^6$ এর বিস্তৃতির x বর্জিত পদ এবং তার মান নির্ণয় কর ।
- গ. প্রমাণ কর যে, $\frac{1}{1-5x+6x^2}$ এর বিস্তৃতির x^n -এর সহগ $3^{n+1}-2^{n+1}$.

খ-বিভাগ: জ্যামিতি

৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $6 \times 2 = 20$

- ক. $y^2 = 4y + 4x 8$ পরাবৃত্তটির শীর্ষবিন্দু, উপকেন্দ্রের স্থানাংক, উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।
- খ. উপবৃত্তের সমীকরণ নির্ণয় কর, যার উৎকেন্দ্রিকতা $\frac{1}{3}$, উপকেন্দ্র(3,4) এবং নিয়ামক রেখার সমীকরণ x+y-2=0.
- গ. p-এর মান কত হলে $\frac{x^2}{p}+\frac{y^2}{5^2}=1$ উপবৃত্তটি $(6,\,4)$ বিন্দু দিয়ে অতিক্রম করবে? উপবৃত্তের উৎকেন্দ্রিকতা এবং উপকেন্দ্রের অবস্থান নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

 $e \times 2 = 2c$

- ক. $\sin(\pi\cos\theta) = \cos(\pi\sin\theta)$ হলে, দেখাও যে, $\theta = \pm\frac{1}{2}\sin^{-1}\frac{3}{4}$
- খ. সমাধান কর : $\cos x + \cos 2x + \cos 3x = 0$.
- গ. সমাধান কর : $\sqrt{3} \sin\theta \cos\theta = 2$, যখন $-2\pi < \theta < 2\pi$.

ঘ-বিভাগ: বলবিদ্যা

- ে ক. বলের ত্রিভুজ সূত্রের বর্ণনা ও প্রমাণ কর। c + c = 3c
 - খ. ACB একটি রশির দুই প্রান্ত একই আনুভূমিক রেখায় A এবং B বিন্দুতে আবদ্ধ আছে। রশিটির C বিন্দুতে W ওজনের একটি বস্তুকে গিঁট দিয়ে বাঁধা। ABC ত্রিভূজের ক্ষেত্রফল Δ দ্বারা সূচিত হলে দেখাও যে, রশির অংশের টান $\frac{wb}{4c\Delta}(c^2+a^2-b^2)$

- অথবা, ক. প্রমাণ কর যে, কোন বিন্দুতে ক্রিয়ারত দুটি বলের কোন নির্দিষ্ট দিকের লম্বাংশের বীজগাণিতিক যোগফল উক্ত দিকের তাদের লব্ধির লম্বাংশের সমান।
 - খ. কোন ত্রিভুজের কৌণিক বিন্দুগুলোতে P, Q, R মানের তিনটি সমমুখী সমান্তরাল বল ক্রিয়ারত আছে। এদের লব্ধি ঐ ত্রিভুজের ভরকেন্দ্রে ক্রিয়ারত হলে দেখাও যে, P = O = R।
- - খ. কোনো সরলরেখায় সমত্বরণে চলন্ত কোনো বিন্দুর গড়বেগ ধারাবাহিক $t_1,\ t_2,\ t_3$ সময়ে যথাক্রমে v_1,v_2,v_3 হলে, দেখাও যে, $\frac{v_1-v_2}{v_2-v_3}=\frac{t_1+t_2}{t_2+t_3}$
- অথবা, ক. একটি বস্তুকণা u আদিবেগে ভূমির সমতলের সাথে α কোণে নিক্ষিপ্ত হলো। বস্তুকণাটির সর্বোচ্চ উচ্চতা ও সর্বোচ্চ উচ্চতায় ওঠার সময় নির্ণয় কর।
 - খ. যদি কোনো প্রক্ষিপ্ত বস্তুর দুটি গতিপথের অনুভূমিক পাল্লা R, উচ্চতা h_1 ও h_2 হয়, তবে দেখাও যে, $R=4\sqrt{h_1h_2}$

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

নিলের যোগাশ্রয়ী প্রোগ্রামটির লেখচিত্রের সাহায্যে সর্বন্দি মান নির্ণয়
কর।

$$Z = 2x - y$$
, শৈতি: $x + y \le 5$, $x + 2y \ge 8$, $x \ge 0$, $y \ge 0$. অথবা

একটি লোক সর্বাধিক 500 টাকা ব্যয় করে কয়েকখানা থালা ও গ্লাস কিনতে চান। প্রতিটি থালা ও গ্লাসের মূল্য যথাক্রমে 30 টাকা ও 20 টাকা। অন্তঃত 3টি গ্লাস ও 8 খানার বেশি থালা তিনি কিনবেন না। উপরোক্ত টাকায় তিনি কোন প্রকারের কতগুলো জিনিস কিনলে একত্রে সর্বাধিক সংখ্যক জিনিস কিনতে পারবেন?

চ-বিভাগ: বিস্তার পরিমাপ ও সম্ভাবনা

৮. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:

◊ × **३** = **১**0

- ক. বর্জনশীল ঘটনার ক্ষেত্রে সম্ভাব্যতার সংযোগ সূত্র বর্ণনাসহ প্রমাণ কব।
- খ. গণিত ও পরিসংখ্যান বিষয়ে 200 জন পরীক্ষার্থীর মধ্যে 20 জন পরিসংখ্যানে এবং 40 জন গণিতে ফেল করে। উভয় বিষয়ে 10 জন ফেল করেছে। নিরপেক্ষভাবে একজন ছাত্রকে বাছাই করলে তার (i) পরিসংখ্যানে পাস ও গণিতে ফেল এবং
 - (ii) পরিসংখ্যানে ফেল ও গণিতে পাস হওয়ার সম্ভাব্যতা কত?
- গ. নিচের সংখ্যাগুলির পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় কর। 6, 10, 9, 12, 21, 24, 25, 15, 16, 22

3.
$$(\overline{\Phi})$$
 (i) $1 < x < 4$; (ii) $|x + 4| < 3$

(খ)
$$\pm (3 + 4i)$$

২. (খ) 924

9.
$$(\mathbf{\overline{\Phi}})$$
 (1, 2); (2, 2); 4; $\mathbf{x} = \mathbf{0}$

(*)
$$17x^2 - 2xy + 17y^2 - 104x - 140y + 446 = 0$$

(গ)
$$P = 100, \frac{\sqrt{3}}{2}, (\pm 5\sqrt{3}, 0)$$

8. (খ)
$$(2n+1)\frac{\pi}{4}$$
, $2n\pi \pm \frac{2\pi}{3}$ যখন $n \in \land$

$$(9) - \frac{4\pi}{3}, \frac{2\pi}{3}$$

9. $Z_{min} = -5$ অথবা, ৪টি থালা, 13টি গ্লাস

৮. (খ) (i)
$$\frac{3}{20}$$
; (ii) $\frac{1}{20}$ (গ) 6.39, 40.8

৯৬. কবি নজরুল সরকারি কলেজ, ঢাকা

বিষয় কোড:

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

যে কোনো দইটি প্রশ্নের উত্তর দাও: ١.

& × \(\dagger = \section \)

ক.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 6 \end{bmatrix}$$
 এবং $B = \begin{bmatrix} 0 & 2 \\ 1 & 2 \\ 0 & -1 \end{bmatrix}$ হয় তবে AB এবং BA

নির্ণয় কর এবং দেখাও যে. AB ≠ BA।

খ. প্রমাণ কর যে,
$$\begin{vmatrix} a-b-c & 2a & 2a\\ 2b & b-c-a & 2b\\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$
 গ. প্রমাণ কর যে,
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b\\ 2ab & 1-a^2+b^2 & 2a\\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$

গ. প্রমাণ কর যে,
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$$
$$= (1+a^2+b^2)^3.$$

'MATHEMATICS' শব্দটির বর্ণগুলিকে কত প্রকারে সাজানো যায় তা ર. বের কর এবং এদের কতগুলিতে স্বরবর্ণগুলি একত্রে থাকবে? অথবা.

প্রমাণ কর যে, ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

খ-বিভাগ: জ্যামিতি ও ভেক্টর

- দেখাও যে, রম্বসের কর্ণগুলি পরস্পর লম্বভাবে ছেদ করে। **o**. অথবা ধ্রুবক a-এর মান নির্ণয় কর যেন $2\hat{i}+\hat{j}-\hat{k},\ 3\hat{i}-2\hat{j}+4\hat{k}$ এবং $\hat{i}-3\hat{j}+a\hat{k}$ এই তিনটি ভেক্টর একই সমতলে থাকে।
- যে কোনো তিনটি প্রশ্নের উত্তর দাও: 8.

- ক. (7,7) ও (-5,-10) বিন্দুদ্বয়ের সংযোগ রেখাংশকে x-অক্ষ যে অনুপাতে বিভক্ত করে তা নির্ণয় কর এবং বিভাজন বিন্দুটির ভুজ
- খ. A(2, 1) ও B(5, 2) বিন্দুদ্বয়ের সংযোগ সরলরেখাংশ AB কে সমকোণে সমদ্বিখণ্ডিত করে এরূপ সরলরেখার সমীকরণ নির্ণয় কর। রেখাটি y অক্ষকে যে বিন্দুতে ছেদ করে তার স্থানাংক নির্ণয় কর।
- গ. 4x + 3y = c এবং 12x 5y = 2(c + 3) রেখা দুটি মূলবিন্দু থেকে সমদূরবর্তী। c এর ধন্দ্রক মান নির্ণয় কর।
- ঘ. একটি বৃত্ত (1, 2) ও (3, 2) বিন্দু দিয়ে যায় এবং x অক্ষকে স্পর্শ করে। বত্তটির সমীকরণ নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

যে কোনো দুইটি প্রশ্নের উত্তর দাও: Œ.

٥**٤** = **۶** × ځ

- ক. একটি বৃত্তচাপ 30 মিটার ব্যাসার্ধবিশিষ্ট একটি বৃত্তের কেন্দ্রে 60° কোণ উৎপন্ন করে। বৃত্তচাপটির দৈর্ঘ্য এবং চাপটির উপর দণ্ডায়মান বৃত্তকলার ক্ষেত্রফল নির্ণয় কর।
- খ. প্রমাণ কর যে, রেডিয়ান একটি ধ্রুবক কোণ।
- গ. $y = \sin x$ এর লেখচিত্র অংকন কর, যখন $0 \le x \le 2\pi$
- যে কোনো দুটি প্রশ্নের উত্তর দাও:

06 = 0 × 0

ক. প্রমাণ কর যে,
$$\tan\frac{45^\circ + \theta}{2}\tan\frac{45^\circ - \theta}{2} = \frac{\sqrt{2}\cos\theta - 1}{\sqrt{2}\cos\theta + 1}$$

খ. প্রমাণ কর যে,
$$2\sin\frac{\pi}{16} = 2\sin 11^{\circ}15 = \sqrt{2-\sqrt{2+\sqrt{2}}}$$

গ. যদি ABC ত্রিভুজে $\cos A = \sin B - \cos C$ হয়, তবে দেখাও যে, ত্রিভুজটি সমকোণী।

ঘ-বিভাগ: ক্যালকুলাস

 $f(x) = x^2$, $g(x) = x^3 + 1$ হলৈ, $(f \circ g)(x)$, $(g \circ f)(x)$ এবং $(f \circ g)(2)$ এর মান নির্ণয় কর।

অথবা.

$$f(x)=\ln{(\sin{x})}$$
 এবং $\phi(x)=\ln{(\cos{x})}$ হলে, দেখাও যে, $e^{2\phi(a)}-e^{2f(a)}=e^{\phi(2a)}$

- যে কোনো তিনটি প্রশ্নের উত্তর দাও:
 - ক. মূল নিয়মে sin x এর অন্তরক সহগ নির্ণয় কর।

অথবা, x এর সাপেক্ষে অন্তরীকরণ কর (যে কোন দুটি):

(i)
$$\tan (\sin^{-1} x)$$
 (ii) $e^{x^2} + x^x$ (iii) $\frac{x \sin x}{1 + \cos x}$

- খ. $y = (\cos^{-1} x)^2$ হলে দেখাও যে, $(1 x^2)y_2 xy_1 2 = 0$
- গ. $y = (x 3)^2 (x 2)$ বক্ররেখার যে সমস্ত বিন্দুতে স্পর্শক xঅক্ষের সমান্তরাল তাদের স্থানাংক নির্ণয় কর।
- ঘ. অনির্দিষ্ট যোগজ নির্ণয় কর (যেকোন দুটি)

(i)
$$\int \frac{dx}{\sqrt{9-16x^2}}$$
 (ii) $\int \frac{\tan x}{\ln(\cos x)} dx$

(iii)
$$\int \cos x e^{\sin x} dx$$
 (iv) $\int e^x \cdot \sin x dx$

ঙ. মান নির্ণয় কর : (যেকোন দুটি)

(i)
$$\int_0^{\frac{\pi}{3}} \frac{1}{1 - \sin x} dx$$
 (ii) $\int_0^{\frac{\pi}{2}} \cos^3 x \sqrt{\sin x} dx$

(iii)
$$\int_0^1 \frac{(\tan^{-1} x)^2}{1 + x^2} dx$$
 (iv) $\int_0^4 y \sqrt{4 - y} dy$

3. (季) $\begin{bmatrix} 2 & 3 \\ 5 & 12 \end{bmatrix}$, $\begin{bmatrix} 8 & 10 & 12 \\ 9 & 12 & 15 \\ -4 & -5 & -6 \end{bmatrix}$

২. 4989600, 120960

8. (4) $7 8 10, \frac{35}{17}$ (4) 3x + y = 12, (0, 12) (9) c = 10(\P) $2x^2 + 2y^2 - 8x - 5y + 8 = 0$

৫. (ক) 31.42 মিটার, 471.24 বর্গ মিটার

9. $x^6 + 2x^3 + 1$, $x^6 + 1$, 81

৮. (ক) $\cos x$ অথবা, (i) $\frac{1}{(1-x^2)^3/2}$

(ii) $2x e^{x^2} + x^x$. $x^x [(1 + lnx) lnx + \frac{1}{x}]$ (iii) $\frac{x + sin x}{1 + cos x}$

 (\mathfrak{I}) (3, 0), $(\frac{7}{3}, \frac{4}{27})$

 $(\overline{4})$ (i) $\frac{1}{4} \sin^{-1} \frac{4x}{3} + c$ (ii) $-\ln(\ln \cos x) + c$

(iii) $e^{\sin x} + c$ (iv) $\frac{1}{2}e^{x}(\sin x - \cos x) + c$

(8) (i) $\sqrt{3} + 1$, (ii) $\frac{8}{21}$ (iii) $\frac{\pi^3}{192}$ (iv) $\frac{128}{15}$

৯৭. সরকারি বাঙলা কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.

ক.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 \\ 6 \\ -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & -5 & 6 \end{bmatrix}$, ABC

খ. প্রমাণ কর :
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$

গ. বিপরীত ম্যাট্রক্স নির্ণয় কর :
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

PARALLEL শন্দটির বর্ণগুলিকে কতভাবে বিন্যাস করা যায় নির্ণয় ২. কর এবং এদের কতগুলিকে স্বরবর্ণগুলি একত্রে থাকবে। অথবা

প্রমাণ কর : ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$.

খ-বিভাগ: জ্যামিতি ও ভেক্টর

৩নং সহ যে কোনো চারটি প্রশ্নের উত্তর দাও: $6 \times 8 = 20$ ভেক্টর পদ্ধতিতে প্রমাণ কর, সামস্তরিকের কর্ণদ্বয় পরস্পারকে সমদ্ধিখণ্ডিত •

অথবা, a এর মান কত হলে $a\hat{i} - 2\hat{j} + \hat{k}$ এবং $2a\hat{i} - a\hat{j} - 4\hat{k}$ পরস্পর লম্ব

- একটি বিন্দুর স্থানাংক নির্ণয় কর, যার কোটি ভূজের দ্বিগুণ এবং তা (4. 8. বিন্দু হতে √10 একক দূরত্বে অবস্থিত।
- যদি A(3, 4), B(2t, 3), C(6, t) বিন্দু দ্বারা উৎপন্ন ত্রিভুজের ক্ষেত্রফল ৫. 19¹বর্গ একক হয়, তবে t এর মান নির্ণয় কর।
- A(h, k) বিন্দুটি 6x y = 1 রেখার উপর এবং B(k, h) বিন্দুটি 2x k৬. 3v = 5 রেখার উপর অবস্থিত। AB সরলরেখার সমীকরণ নির্ণয় কর।
- A(8, 5); B (-4, -3) রেখাংশের লম্বদ্বিখন্ডক সরলরেখার সমীকরণ ٩. নির্ণয় কর।
- (1, 2) কেন্দ্রবিশিষ্ট একটি বৃত্ত x অক্ষকে স্পর্শ করে। এর সমীকরণ ও y- অক্ষ থেকে তা কি পরিমাণ অংশ ছেদ করে তাও নির্ণয় কর।

অথবা, px + qy = 1 রেখাটি $x^2 + y^2 = a^2$ বৃত্তকে স্পর্শ করে। দেখাও যে, (p,q) বিন্দু একটি বৃত্তের উপর অবস্থিত।

গ-বিভাগ: ত্রিকোণমিতি

যে কোনো চারটি প্রশ্নের উত্তর দাও:

 $6 \times 8 = 20$

৫ \times ২ = ১০ \mid ৯. $y = \cos x, -\pi \le x \le \pi$ লেখচিত্র অংকন কর।

অথবা, $\sin\,x - \cos\,x = 0,\, 0 \le x \le \frac{\pi}{2}$ লেখচিত্রের সাহায্যে সমাধান কর।

১০. যে কোন তিনটি প্রশ্নের উত্তর দাও।

- ক. যদি $\cot \alpha + \cot \beta = a$, $\tan \alpha + \tan \beta = b$ এবং $\alpha + \beta = \theta$ হয়, তবে প্রমাণ কর $(a - b) \tan \theta = ab$
- খ. প্রমাণ কর : $16\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}\cos\frac{14\pi}{15}=1$
- গ. প্রমাণ কর : $\sec x = \frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 4x}}}$
- $\overline{4}$. $\sin A + \sin B \sin C = 4 \sin \frac{A}{2}$. $\sin \frac{B}{2}$. $\cos \frac{C}{2}$

ঘ-বিভাগ: ক্যালকুলাস

১১নং ও ১৫নং সহ যে কোন চারটি প্রশ্নের উত্তর দাও : ৫ × 8 = ২০

১১. $f: X \to Y$ এবং $X, Y \subset \nabla$ যেখানে $f(x) = \frac{x-3}{2x+1}$, তবে ফাংশন f এর ডোমেন ও রেঞ্জ নির্ণয় কর।

অথবা, $f: \nabla \to \nabla$ কে $f(\mathbf{x}) = \left\{ egin{array}{ll} \mathbf{x}^2 + 3\mathbf{x}, & \mathbf{x} \geq 2 \\ \mathbf{x} + 2, & \mathbf{x} < 2 \end{array} \right.$ দ্বারা সংজ্ঞায়িত করা হলো। f(7), f(0), f(2), f(-2), f(-3) নির্ণয় কর।

১২। মান নির্ণয় কর : $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$

অথবা, মূল নিয়মে xⁿ-এর অন্তরক সহগ নির্ণয় কর।

১৩। x-এর সাপেক্ষে অন্তরীকরণ কর (যে কোন দুইটি) :

(i)
$$y = \frac{1 + \sin x}{1 - \sin x}$$
 (ii) $y = \tan (\sin^{-1} x)$ (iii) $\ln (xy) = x + y$

১৪ । $y = (\cos^{-1} x)^2$ হলে, প্রমাণ কর $(1 - x^2) y_2 - x y_1 = 2$.

অথবা, দেখাও যে, $_{
m X}$ + $\frac{1}{
m v}$ এর গুরুমান, লঘুমান অপেক্ষা ক্ষুদ্রতম।

১৫। সমাকলন কর (যে কোন দুইটি) ঃ (ক) $\int \frac{\tan{(\sin^{-1}x)}dx}{\sqrt{1-x^2}}$

$$(\forall) \int x \sin^{-1} x \, dx \, (\forall) \int_{0}^{\frac{\pi}{4}} \tan^{2} x \sec^{2} x \, dx.$$

$$(\mathfrak{F}) \begin{bmatrix} \frac{2}{21} & \frac{1}{7} & -\frac{13}{21} \\ -\frac{1}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{5}{21} & -\frac{1}{7} & -\frac{1}{21} \end{bmatrix}$$

২. 3360, 360

অথবা, a = 1, -2.

8. (3, 6) বা, (1, 2)

 $(2, -2, \frac{15}{2})$

9. x + y - 6 = 0

9. 3x + 2y - 8 = 0

৮. $(x-1)^2 + (y-2)^2 = 4$ বা, $x^2 + y^2 - 2x - 4y + 1 = 0$ y-অক্ষ হতে ছেদিত অংশের পরিমাণ 2√3 একক।

৯. অথবা, $x = \frac{\pi}{4}$

১১. $f(\mathbf{x})$ এর ডোমেন $\mathbf{D} = \nabla - \left\{ -\frac{1}{2} \right\}$

 $f(\mathbf{x})$ এর রেঞ্জ $\mathbf{R} = \nabla - \left\{ rac{1}{2}
ight.
ight\}$

অথবা, f(7) = 70, f(0) = 2, f(2) = 10, f(-2) = 0, f(-3) = -1.

১২. $\frac{1}{2}$ অথবা, nx^{n-1}

50. (i) $\frac{dy}{dx} = \frac{2\cos x}{(1-\sin x)^2}$ (ii) $\frac{dy}{dx} = \frac{1}{(1-x^2)^{3/2}}$ (iii) $\frac{dy}{dx} = \frac{y(x-1)}{x(1-y)}$

\$৫. $(\overline{\Phi})$ ln $\{\sec(\sin^{-1}x)\}$ + c

 $\left(\text{$\forall$} \right) \frac{x^2}{2} \sin^{-1} x - \frac{1}{4} \sin^{-1} x + \frac{x}{4} \sqrt{1 - x^2} + c \left(\text{n} \right) \frac{1}{3}$

৯৮. সরকারি বাঙলা কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৩ পর্ণমান — ৭

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

১. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × ≥ = >0

- ক. $|x-1| < \frac{1}{10}$ হলে, দেখাও যে, $|x^2-1| < \frac{21}{100}$
- খ. সমাধান কর এবং সমাধান সেট বাস্তব সংখ্যা রেখায় দেখাও

$$\frac{1}{|3x-5|} > 2$$
, এখানে $\left(x \neq \frac{5}{3}\right)$

- গ. $\sqrt[3]{a+ib}=x+iy$ হলে, দেখাও যে, $-2(x^2+y^2)=rac{a}{x}-rac{b}{y}.$
- ২. যে কোনো দুইটি প্রশ্নের উত্তর দাও:

 $e \times 2 = 2$

- ক. k-এর মান কত হলে, $(k-1) x^2 (k+2)x + 4 = 0$ সমীকরণের মূলগুলি বাস্তব এবং সমান হবে?
- খ. $27x^2 + 6x (p+2) = 0$ এর একটি মূল অপরটির বর্গের সমান হলে, p এর মান নির্ণয় কর।
- গ. $p\in [1,q\in \mathbb{R}]$ হলে, $(1+x)^p\left(1+\frac{1}{x}\right)^q$ এর বিস্তৃতি থেকে সাধারণ পদ বের করে x বর্জিত পদটির মান নির্ণয় কর।

খ-বিভাগঃ ত্রিকোণমিতি

থে কোনো দুইটি প্রশ্নের উত্তর দাও:

& × 3 = 30

- ক. প্রমাণ কর যে, $2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} = \cos^{-1} \frac{1-x^2}{1+x^2}$
- খ. দেখাও যে, $\sin^{-1}\frac{3}{5} + \frac{1}{2}\cos^{-1}\frac{5}{13} \cot^{-1}2 = \tan^{-1}\frac{28}{29}$
- গ. সমাধান কর $4 \cos x \cos 2x \cos 3x = 1$, যখন $0 < x < \pi$

গ-বিভাগঃ জ্যামিতি

8. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

× 5 - 1

- ক. $y = ax^2 + bx + c$ প্যারাবোলাটির শীর্ষ (-2, 3) বিন্দুতে অবস্থিত এবং তা (0, 5) বিন্দু দিয়ে অতিক্রম করে। a, b, c এর মান নির্ণয় কর।
- খ. $\frac{x^2}{p^2} + \frac{y^2}{5^2} = 1$ উপবৃত্তটি (6, 4) বিন্দু দিয়ে অতিক্রম করে। p-এর মান, উপবৃত্তের উৎকেন্দ্রিকতা ও উপকেন্দ্রের স্থানাংক নির্ণয় কর।
- গ. দেখাও যে, $x^2 8y^2 = 2$ অধিবৃত্তের নিয়ামক রেখার সমীকরণ

 $3x=\pm~4$ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য $\frac{1}{2\sqrt{2}}.$

ঘ-বিভাগ: স্থিতিবিদ্যা ও গতিবিদ্যা

- ক. প্রমাণ কর যে, কোন নির্দিষ্ট দিকে এক বিন্দুগামী দুটি বলের
 লমাংশের বীজগণিতীয় সমষ্টি একই দিকে এদের লব্ধির লমাংশের
 সমান।
 - খ. P ও Q বলদ্বয় যথাক্রমে একটি হেলানো তলের দৈর্ঘ্য ও ভূমির সমান্তরালে ক্রিয়ারত থেকে প্রত্যেকে এককভাবে তলের উপরস্থ W ওজনের একটি বস্তুকে ধরে রাখতে পারে। প্রমাণ কর যে, $\frac{1}{P^2}$

$$-\frac{1}{Q^2} = \frac{1}{W^2}.$$

অথবা,

- ক. দুটি অসদৃশ অসমান সমান্তরাল বলের লব্ধি ও এর প্রয়োগ বিন্দু নির্ণয় কর।
- খ. P, Q, R তিনটি সদৃশ সমান্তরাল বল যথাক্রমে ABC ত্রিভুজের কৌণিক বিন্দু A, B, C তে ক্রিয়া করে। এদের লব্ধির ক্রিয়ারেখা যদি ত্রিভুজেটির লম্ববিন্দুগামী হয়, তাহলে প্রমাণ কর যে,

$$P \& Q \& R = \tan A \& \tan B \& \tan C.$$

- ৬. ক. সচরাচর সংকেত মালায় প্রমাণ কর যে, $s = ut + \frac{1}{2} ft^2$
 - খ. একটি ট্রেন সরল রেলপথে 2 কি: মি: ব্যবধানে দুটি স্টেশনে থামে। এক স্টেশন থেকে অন্য স্টেশনে পৌছাতে সময় লাগে 4 মিনিট। ট্রেনটি এর গতিপথের প্রথম অংশ x সমত্বরণে এবং দ্বিতীয় অংশ y সমমন্দনে চলে। প্রমাণ কর যে, $\frac{1}{x}+\frac{1}{y}=4$. &

ক. প্রমাণ কর যে, উলম্ব তলে প্রক্ষিপ্ত কোন বস্তুকণার গতিপথ একটি প্রাবন্ধ।

খ. একটি বল ${\bf u}$ বেগে খাড়া উপরের দিকে নিক্ষেপ করলে তা t_1 ও t_2 সেকেন্ডে h উচ্চতায় অবস্থান করে। প্রমাণ কর যে,

(i)
$$h = \frac{1}{2} gt_1 t_2$$
 (ii) $u = \frac{1}{2} g(t_1 + t_2)$.

ঙ-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

- ৭. যে কোনো একটি প্রশ্নের উত্তর দাও:
- ◊ × ১ = ◊
- ক. যোগাশ্রয়ী প্রোগ্রামিং কাকে বলে। যোগাশ্রয়ী প্রোগ্রামিং এর শর্ত ও
 সুবিধাগুলি কি কি?
- খ. সর্বোচ্চ করণ কর : z=2x+3y যার সীমাবদ্ধতা : $x+2y\leq 10,$ $x+y\leq 6,$ $x\leq 4,$ x, $y\geq 0.$

চ-বিভাগঃ পরিসংখ্যান

- ৮. যে কোনো দু**ইটি** প্রশ্নের উত্তর দাও:
- ٥**٤** = ১ × ع
- ক. নিতে দ্বাদশ শ্রেণির 60 জন ছাত্রের গণিতে প্রাপ্ত নম্বর দেওয়া হলো। প্রাপ্ত নম্বরের গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় কর।

- নম্বর 51-60 61-70 71-80 81-90 91-100 ছাত্র 10 20 15 10 5
- খ. 52 খানা তাসের প্যাকেট হতে 1টি তাস দৈবভাবে উঠানো হল। তাসটি লাল টেক্কা হওয়ার সম্ভাবনা কত?
- গ. A ও B একটি অঙ্কের সমাধান করতে পারার সম্ভাবনা যথাক্রমে $\frac{1}{3}$ এবং $\frac{1}{4}$ তারা একত্রে অংকটি করার চেষ্টা করলে অঙ্কটির সমাধান করার সম্ভাবনা নির্ণয় কর।

১. (খ) নির্ণেয় সমাধান : $\frac{3}{2} < x < \frac{11}{6}$ এবং $x \neq \frac{5}{3}$

সমাধান সেট $S = \{x \in \nabla : \frac{3}{2} < x < \frac{11}{6}$ এবং $x \neq \frac{5}{3}\}$

সংখ্যারেখায়:

২. (ক) 2 অথবা 10 (খ) -1, 6 (গ) $\frac{(p+q)!}{p! \, q!}$

- **v.** (1) $\frac{\pi}{8}$, $\frac{\pi}{3}$, $\frac{3\pi}{8}$, $\frac{2\pi}{3}$, $\frac{5\pi}{8}$, $\frac{7\pi}{8}$
- **8.** (**a**) $\frac{1}{2}$, 2, 5 (**a**) $P = 10, \frac{\sqrt{3}}{2}, (\pm 5\sqrt{3}, 0)$
- ৭. (খ) $Z_{max} = 10$
- ৮. (ক) 10, 11.78 (খ) $\frac{1}{26}$ (গ) $\frac{1}{2}$

৯৯. সরকারি বিজ্ঞান কলেজ, ঢাকা

বিষয় কোড : ২ ৬ ৬ পর্ণমান — ৭৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্বীয়) : দ্বিতীয় পত্র [বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

গ-বিভাগঃ ত্রিকোণমিতি

১. যে কোনো দুইটি প্রশ্নের উত্তর দাও: $e \times 2 = 3$ ক. যদি $a, b, c \in \nabla$, ac = bc এবং $c \neq 0$ হলে দেখাও যে, a = b.

ক-বিভাগ: বীজগণিত

- খ. $\sqrt[3]{x + iy} = a + ib$ হলে, প্রমাণ কর যে, $\frac{x}{a} + \frac{y}{b} = 4(a^2 b^2)$.
- গ. z = x + iy এবং 3|z 1| = 2|z 2| হলে, প্রমাণ কর যে, $5(x^2 + y^2) = 2x + 7.$
- ২. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- & × 2 =
- ক. $x^2+px+q=0$ এবং $x^2+qx+p=0$ সমীকরণদ্বয়ের একটি মাত্র সাধারণ মূল থাকলে, প্রমাণ কর যে, এদের অপর মূল দুইটি $x^2+x+pq=0$ সমীকরণটির মূলদ্বয় হবে?
- খ. $(a+3x)^n$ এর বিস্তৃতির ১ম তিনটি পদ যথাক্রমে $b, \frac{21}{2} \ bx$ এবং $\frac{189}{4} \ bx^2 \ \hbox{হল } a,b,n \ \hbox{এর মান নির্ণয় কর} \ \hbox{।}$
- গ. $\frac{1}{(1-x)(3-x)}$ এর বিস্তৃতিতে x^n এর সহগ নির্ণয় কর।

খ-বিভাগ: জ্যামিতি

- ৩. যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:
- & × \$ = \$0
- ক. $y = ax^2 + bx + c$ প্যারাবোলাটির শীর্ষ (-2,3) বিন্দুতে অবস্থিত এবং তা (0,5) বিন্দু দিয়ে অতিক্রম করে, a,b,c এর মান নির্ণয় কর।
- খ. উপকেন্দ্র (-1,1), উৎকেন্দ্রিকতা $\frac{1}{2}$ এবং নিয়ামক রেখা x-y+3=0 হলে, উপবৃত্তটির সমীকরণ নির্ণয় কর।
- গ. অধিবৃত্তের অক্ষ দুইটিকে স্থানাংকের অক্ষ ধরে এমন একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার অনুবন্ধী অক্ষের দৈর্ঘ্য 24 এবং উপকেন্দ্রের স্থানান্ধ (0, ± 13)।

- 1-11-0111. 14(41)1
- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- & × ≤ = **>**0
- ক. যদি $\sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}$ হয়, তবে প্রমাণ কর যে, $x^2 + y^2 = 1$.
- খ. সমাধান করঃ $4\cos x \cos 2x \cos 3x = 1$ যখন $0 < x < \pi$.
- গ. প্রমাণ কর যে, $tan^{-1}x = 2tan^{-1} [cossec tan^{-1}x tan cot^{-1}x]$

ঘ-বিভাগঃ স্থিতিবিদ্যা ও গতিবিদ্যা

- ক. বলের লম্বাংশের উপপাদ্যটি বর্ণনাসহ প্রমাণ কর।
- খ. কোন বিন্দুতে ক্রিয়ারত P, Q, R বল তিনটি ভারসাম্য সৃষ্টি
 করছে। P ও Q এর অন্তর্গত কোণ, P ও R এর অন্তর্গত
 কোণের দ্বিগুণ হলে, প্রমাণ কর যে, $R^2 = Q(Q P)$. ৫
 অথবা,
- ক. দুইটি বিসদৃশ ও অসমান সমান্তরাল বলের লব্ধির মান ও ক্রিয়াবিন্দু নির্ণয় কর।
- খ. দেখাও যে, P ও Q দুইটি সমান্তরাল বলের Q কে $\frac{P^2}{Q}$ তে পরিবর্তন করে এর সাথে স্থান পরিবর্তন করলে লব্ধির অবস্থান একই থাকে।
- b. ক. সচরাচর সংকেত মালায় প্রমাণ কর যে, $\mathbf{v}^2 = \mathbf{u}^2 + 2\mathbf{f}\mathbf{s}$. ৫
 - খ. একখানি নৌকা t সময়ে একটি নদী সোজাসুজি পাড়ি দিতে পারে এবং t_1 সময়ে স্রোতের অনুকূলে সমান দূরত্ব অতিক্রম করতে পারে ৷ শাস্ত নদীতে নৌকার বেগ u ও স্রোতের বেগ v হলে দেখাও যে, t % $t_1=\sqrt{u+v}$ % $\sqrt{u-v}$. &

অথবা,

ক. প্রমাণ কর যে, বায়ুশূন্য স্থানে প্রক্ষিপ্ত বস্তুর গতিপথের সমীকরণ $y=x\, anlphaigg(1-rac{x}{R}igg)$, যেখানে R= বস্তুর আনুভূমিক পাল্লা।

একটি বস্তু একই বেগে আনুভূমিক তলের সাথে দুইটি ভিন্ন কোণে প্রক্ষিপ্ত হয়ে একই আনুভূমিক পাল্লা R অতিক্রম করে। যদি তার ভ্রমণকাল t_1 এবং t_2 হয় তবে দেখাও যে, $R = \frac{1}{2} g t_1 t_2$.

৬-বিভাগ: যোগাশ্রয়ী প্রোগ্রাম

লেখচিত্রের সাহায্যে z=2x+y এর সর্বোচ্চকরণ কর, যখন ٩. সীমাবদ্ধতাগুলি $x+2y \le 10, \ x+y \le 6, \ x-y \le 2, \ x-2y \le 10$ যেখানে, x, y ≥ 0.

অথবা

একজন ফল বিক্রেতা আঙ্গুর ও কমলা মিলিয়ে 500 টাকার ফল কিনবে। কিন্তু গুদাম ঘরে 12টির অধিক বাক্স রাখতে পারে না। এক বাক্স কমলার দাম 50 টাকা এবং এক বাক্স আঙ্গুরের দাম 25 টাকা। সে প্রতি বাক্স কমলা ও আঙ্গুর যথাক্রমে 10 টাকা ও 6 টাকা লাভে বিক্রয় করে। লোকটি যে পরিমাণ ফল কেনে তার সবই বিক্রি হয়ে

যায়। কমলা ও আঙ্গুর কতগুলি ক্রয় করলে সে সর্বোচ্চ লাভ করতে পারবে?

চ-বিভাগ: পরিসংখ্যান

- যে কোনো দুইটি প্রশ্নের উত্তর দাও:
- & × ≥ = >0
- ক. 1 থেকে 30 পর্যন্ত সংখ্যা হতে যে কোন একটিকে ইচ্ছামত নিলে সেই সংখ্যাটি মৌলিক অথবা 5 এর গুণিতক হওয়ার সম্ভাবনা নির্ণয় কর।
- খ. একটি থলিতে 3টি সাদা ও 2টি কালো বল আছে। অপর একটি থলিতে 2টি সাদা এবং 5টি কালো বল আছে। নিরপেক্ষভাবে প্রত্যেক থলি হতে একটি করে বল তোলা হল। দুইটি বলের মধ্যে অন্ততঃ একটি সাদা হওয়ার সম্ভাবনা নির্ণয় কর।
- গ. 934, 936, 937, 932, 939, 940 উপাত্তগুলির গড় ব্যবধান, পরিমিত ব্যবধান ও ভেদাঙ্ক নির্ণয় কর।

- ২. (খ) 2, 2⁷, 7 (গ) $\frac{1}{2} \left(1 \frac{1}{3^{n+1}}\right)$
- ৩. (ক) $a = \frac{1}{2}$, b = 2, c = 5(খ) $7(x^2 + y^2) + 2xy + 10x 10y + 7 = 0$

- 8. খে) $\frac{\pi}{8}$, $\frac{3\pi}{8}$, $\frac{5\pi}{8}$, $\frac{7\pi}{8}$, $\frac{\pi}{3}$ এবং $\frac{2\pi}{3}$
- **9.** $Z_{max} = 10$ অথবা, ৪ ঝুড়ি কমলা এবং 4 ঝুড়ি আঙ্গুর
- ৮. $(\mathbf{\overline{q}}) \frac{8}{15} (\mathbf{\overline{q}}) \frac{5}{7}$
 - (গ) 2.33, 2.749, 7.556

১০০. ঢাকা ইমপিরিয়াল কলেজ

বিষয় কোড: ২ ৬ ৫

সময় — ৩ ঘণ্টা

উচ্চতর গণিত (তত্ত্রীয়) : প্রথম পত্র

[বি. দ্র. দক্ষিণ পার্শ্বস্থ সংখ্যামান প্রশ্নের পূর্ণমান জ্ঞাপক।]

ক-বিভাগ: বীজগণিত

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: ١.
- ক. শূন্য ম্যাট্রিক্সের সংজ্ঞা দাও। $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ হলে, দেখাও যে,
- খ. প্রমাণ কর : $\begin{vmatrix} a & b & ax + by \\ b & c & bx + cy \\ ax + by & bx + cy & 0 \end{vmatrix} = -(ax^2 + 2bxy)$ $+ cy^2$) (ac $- b^2$).
- গ. ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্সের সংজ্ঞা দাও।

$$A=\begin{bmatrix} -1 & -5 \\ -2 & 3 \end{bmatrix}$$
 হলে, A^{-1} নির্ণয় কর।

- ২. 'MATHEMATICS' শব্দটির বর্ণগুলিকে কত প্রকারে সাজানো যায় তা বের কর এবং এদের কতগুলিতে স্বরবর্ণগুলি একত্রে থাকবে?
 - 7 ব্যক্তির একটি দল দুইটি যানবাহনে ভ্রমণ করবে যার একটিতে সাতজনের বেশি ও অন্যটিতে চারজনের বেশি ধরে না। দলটি কত প্রকারে ভ্রমণ করতে পারবে?

খ-বিভাগ: জ্যামিতি ও ভেক্টর

- $2\hat{i}+\hat{j}-2\hat{k}$ ভেক্টরটি অক্ষত্রয়ের সাথে যে কোণগুলি উৎপন্ন করে তা নির্ণয় কর।
 - ভেক্টর পদ্ধতিতে প্রমাণ কর যে, ABC ত্রিভুজে $\cos c = \frac{a^2 + b^2 c^2}{2ab}$
- যে কোনো তিনটি প্রশ্নের উত্তর দাও: 8.

- ক. A(h, k) বিন্দুটি 6x y = 1 রেখার উপর অবস্থিত এবং B(k, h)বিন্দুটি 2x - 5y = 5 রেখার উপর অবস্থিত। AB এর সমীকরণ নির্ণয় কর।
- খ. একটি সরলরেখা (-2, -5) বিন্দু দিয়ে অতিক্রম করে এবং x ও y অক্ষ দুইটিকে যথাক্রমে A ও B বিন্দুতে ছেদ করে, যখন OA + 2.OB = 0 হয় এবং O মূলবিন্দু। তার সমীকরণ নির্ণয় কর।
- গ. একটি বৃত্তের সমীকরণ নির্ণয় কর যার কেন্দ্র (4,5) বিন্দুতে অবস্থিত এবং যা $x^2 + y^2 + 4x - 6y - 12 = 0$ বৃত্তের কেন্দ্র
- ঘ. $x^2+y^2-4x-6y+c=0$ বৃত্তটি x-অক্ষকে স্পর্শ করে। c এর মান এবং স্পর্শ বিন্দুর স্থানাংক নির্ণয় কর।

গ-বিভাগ: ত্রিকোণমিতি

- যে কোনো দুইটি প্রশ্নের উত্তর দাও: Œ.
- **&** × **₹** = **\$**0
- ক. (i) যদি $\cos\theta \sin\theta = \sqrt{2} \sin\theta$ হয়, তবে প্রমাণ কর যে, $\cos \theta + \sin \theta = \sqrt{2} \cos \theta$
 - (ii) a $\cos \theta b \sin \theta = c$ হলে প্রমাণ কর যে, a $\sin \theta + b \cos \theta$ $\theta=\pm\sqrt{a^2+b^2-c^2}$
- খ. প্রমাণ কর রেডিয়ান একটি ধ্রুব কোণ।
- গ. লেখচিত্র অঙ্কন কর : $y = \sin x$, যেখানে $-\pi \le x \le \pi$
- যে কোনো **দুইটি** প্রশ্নের উত্তর দাও:

& × 2 = 30

- ক. প্রমাণ কর যে, tan 70° = tan 20° + 2 tan 50°
- খ. যদি $\tan\frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}}\tan\frac{\phi}{2}$ হয়, তবে প্রমাণ কর যে,

$$\cos \varphi = \frac{\cos \theta - e}{1 - e \cos \theta}$$

গ. প্রমাণ কর যে, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$; যেখানে Rত্রিভুজের পরিলিখিত বৃত্তের ব্যাসার্ধ।

ঘ-বিভাগ: ক্যালকুলাস

যে কোনো **একটি** প্রশ্নের উত্তর দাও: ٩.

 $\mathfrak{d} = \boldsymbol{\zeta} \times \mathfrak{d}$

- (i) $f: \nabla \to \nabla$ ফাংশনটি $f(\mathbf{x}) = \mathbf{x}^2 + 1$ দ্বারা সংজ্ঞায়িত হলে f⁻¹ (10), f⁻¹(0) ও f⁻¹([10, 26]) নির্ণয় কর।
- (ii) $f: \nabla \to \nabla$ ফাংশনটি $f(\mathbf{x}) = \mathbf{x}^2$ দ্বারা সংজ্ঞায়িত হলে f⁻¹ (16) ও f⁻¹ ([−1, 1]) নির্ণয় কর।

অথবা,

 $f(x) = \ln(\sin x)$ এবং $\phi(x) = \ln(\cos x)$ হলে,

দেখাও যে, $e^{2\phi(a)} - e^{2f(a)} = e^{\phi(2a)}$

যে কোনো তিনটি প্রশ্নের উত্তর দাও:

36 = 0 × 3

- ক. মান নির্ণয় কর : $\lim_{x\to 0} \frac{\tan x \sin x}{x^3}$
- খ. (i) মূল নিয়মে x-এর সাপেকে $\log_a x$ এর অন্তরজ সহগ নির্ণয়
 - (ii) x- এর সাপেক্ষে $\dfrac{\sin x + \cos x}{\sqrt{1 + \sin 2x}}$ এর অন্তরজ সহগ নির্ণয় কর।
- গ. (i) $y = e^{a \sin^{-1} x}$ হলে, প্রমাণ কর যে, $(1 x^2) y_2 x y_1 = a^2 y$
 - (ii) $f(x) = 4e^x + 9e^{-x}$ এর লঘুমান নির্ণয় কর।
- ঘ. যোগজ নির্ণয় কর। (যে কোন দুইটি)

$$(i) \int \frac{1}{e^x + e^{-x}} \ dx \ (ii) \int \frac{1}{1 + \tan x} dx \ (iii) \int \cos^4 x dx$$

২. 4989600, 120960 অথবা, 98

- \circ . $\cos^{-1}\left(\frac{2}{3}\right)$, $\cos^{-1}\left(\frac{1}{3}\right)$, $\cos^{-1}\left(-\frac{2}{3}\right)$
- 8. $(\overline{\Phi}) x + y 6 = 0 (\sqrt[4]{y}) x 2y = 8$ (\mathfrak{H}) $x^2 + y^2 - 8x - 10y + 1 = 0$
- - $(\P) c = 4; (2, 0)$

- 9. (i) $f^{-1}(10) = \{-3, 3\}, f^{-1}(0) = \emptyset, f^{-1}([10, 26]) = \{x : -5 \le x \le -3\}$ অথবা, $3 \le x \le 5$ }
 - (ii) $f^{-1}(16) = \{-4, 4\}, f^{-1}([-1, 1]) = -1 \le x \le 1$
- ৮. $(\overline{\Phi})$ $\frac{1}{2}$ (খ) (i) $\frac{1}{x} \log_a e$ (ii) 0 (গ) (ii) 12.
 - (휙) (i) $tan^{-1}(e^x) + c$
 - (ii) $\frac{x}{2} + \frac{1}{2} \ln|\cos x + \sin x| + c$
 - (iii) $\frac{1}{4} \left[\frac{3x}{2} + \sin 2x + \frac{1}{8} \sin 4x \right] + c$