

The moving average process

The process y_t is called a $moving\ average\ ({\rm MA})$ process if

$$y_t = e_t + c_1 e_{t-1} + \ldots + c_q e_{t-q} = C(z)e_t$$

where C(z) is a monic polynomial of order q (in z^{-1}), i.e.,

$$C(z) = 1 + c_1 z^{-1} + ... + c_q z^{-q}$$

with $c_q \neq 0$, and e_t is a zero-mean white noise process with variance σ_e^2 .

The moving average process

An $\mathrm{MA}(q)$ process will satisfy

$$m_y = E\{C(z)e_t\} = 0$$

 $r_y(k) = \begin{cases} \sigma_c^2(c_k + c_1c_{k+1} + \dots + c_{q-k}c_q) & \text{if } |k| \le q \\ 0 & \text{if } |k| > q \end{cases}$
 $\phi_c(\omega) = \sigma^2|C(\omega)|^2$

where $C(\omega)$ indicates that C(z) is evaluated at frequency ω , i.e., $z=e^{i\omega}$.

In particular, note that $r_y(k) = 0$ for |k| > q.

The moving average process

An MA(q) process will satisfy

$$\begin{split} m_y &= E\{C(z)e_t\} = 0 \\ r_y(k) &= \left\{ \begin{array}{ll} \sigma_e^2 \left(c_k + c_1 c_{k+1} + \ldots + c_{q-k} c_q \right) & \text{if } |k| \leq q \\ 0 & \text{if } |k| > q \end{array} \right. \\ \phi_y(\omega) &= \sigma_e^2 \left| C(\omega) \right|^2 \end{split}$$

where $C(\omega)$ indicates that C(z) is evaluated at frequency ω , i.e., $z=e^{i\omega}$.

In particular, note that $r_y(k) = 0$ for |k| > q.

Example: Consider the (real-valued) MA(1) process $y_t=e_t+c_1e_{t-1}$, i.e., $C(z)=1+c_1z^{-1}$. The auto-covariance of y_t is

$$r_y(0) = \sigma_e^2(1 + c_1^2)$$

 $r_y(1) = \sigma_e^2c_1$
 $r_y(k) = 0$, for $|k| > 1$

with $r_y(k) = r_y(-k)$, $\forall k$. Similarly, the PSD of y_t is

$$\begin{split} \phi_y(\omega) &= \sigma_e^2 \left| 1 + c_1 e^{-i\omega} \right|^2 \\ &= \sigma_e^2 \left(c_1 e^{i\omega} + 1 + c_1^2 + c_1 e^{-i\omega} \right) \\ &= \sigma_e^2 \left(1 + c_1^2 + 2c_1 \cos(\omega) \right) \end{split}$$

for $\omega = 2\pi f$, with $-0.5 < f \le 0.5$

The roots of C(z) will determine the locations of the nulls in $\phi_y(\omega)$.

The moving average process

$$\label{eq:main} \begin{split} & \text{MA(1)--process} \ Y(t) = e(t) - 0.8e(t-1); \ \text{(a) realisation, (b) covf.} \\ & \text{func., (c) scatter-plot and (d) spectral density.} \end{split}$$

MA(2)-process Y(t) = e(t) + e(t-1) + 0.6e(t-2).

The moving average process

For large N, it holds that

$$E{\{\hat{\rho}_y(k)\}} = 0$$

$$V{\{\hat{\rho}_y(k)\}} = \frac{1}{N} \left(1 + 2(\hat{\rho}_y^2(1) + ... + \hat{\rho}_y^2(q))\right)$$

for $k=q+1,q+2,\ldots$. Furthermore, $\hat{\rho}_y(k),$ for |k|>q, is asymptotically Normal distributed.

The moving average process

For large N, it holds that

$$E{\{\hat{\rho}_y(k)\}} = 0$$

 $V{\{\hat{\rho}_y(k)\}} = \frac{1}{N} \left(1 + 2(\hat{\rho}_y^2(1) + ... + \hat{\rho}_y^2(q))\right)$

for $k=q+1,q+2,\ldots$ Furthermore, $\hat{\rho}_y(k),$ for |k|>q, is asymptotically Normal distributed.

The (approximative) 95% confidence interval for an $\mathrm{MA}(q)$ process can be expressed as

$$\hat{\rho}_e(k) \approx 0 \pm 2\sqrt{\frac{1+2(\hat{\rho}_y^2(1)+\ldots+\hat{\rho}_y^2(q)}{N}} \qquad \text{for } |k| \geq q+1$$

For white noise, i.e., q=0, this simplifies to $\hat{\rho}_e(k) \approx 0 \pm 2/\sqrt{N}$.

Use the provided function ${\tt acf}$. Remember that you can use ${\tt help}$ ${\tt acf}$ to learn more on how to use it.

