Tarea domiciliaria de Trigonometría

Segunda práctica *Fijas San Marcos* REPASO SAN MARCOS - 2023 I

 La entrada a un túnel tiene forma triangular de altura h y base b. Debido a un accidente se desea introducir una caja rectangular con base en BC. Calcule su altura si es el doble de su base.

B) bh

C) b+h

D)
$$\frac{2bh}{h+2b}$$

E) 2h+b

Un ingeniero para construir un edificio diseña una zapata en la base en forma de un cubo,

cuva arista mide 2 m. M es punto medio de la

arista AB. Calcule sen θ , siendo θ la medida del

A) $\sqrt{\frac{3}{5}}$

B) $\sqrt{\frac{3}{7}}$

C) $\sqrt{\frac{2}{5}}$

2. Un ingeniero debe replantear la ubicación de un terreno de forma rectangular *ABCD*, donde AB=60 m y AD=40 m. En la nueva ubicación del terreno *ABCT*, calcule la longitud de *CT* si $3\cos\alpha-2\sin\alpha=\frac{5}{4}$.

- A) 21D) 25
- B) 22
- C) 23
- E) 20

4. Un reservorio de agua potable ubicado en *O* distribuye ciertos caudales a tres reservorios en *A* (5; 1), *B* y *C*, como se muestra en el gráfico. Determine la tanθ.

- A) $-\frac{3}{2}$
- B) $-\frac{3}{5}$
- C) $-\frac{2}{3}$

D) $-\frac{4}{7}$

E) $-\frac{4}{2}$

Un avión en su despegue presenta las posiciones mostradas en el gráfico. Si el avión se encuentra en el punto M y una torre de control en el punto *O*, entonces ¿cuál será la tanα? (OP = OO)

- A) $-(\sqrt{3}+2)$ B) $-(\frac{\sqrt{3}+2}{2})$ C) $-(\frac{\sqrt{3}+2}{3})$
- D) $-\left(\frac{\sqrt{3}+2}{4}\right)$
- E) $-\left(\frac{\sqrt{2}+3}{2}\right)$

- Un terreno en forma de un rectángulo tiene las siguientes dimensiones:
 - $(2+\cos x)$ m v $(2-\cos x)$ m

se desea saber la variación del área de dicho terreno si $x \in \langle 0; \frac{\pi}{2} \rangle$.

- A) $\langle 1; 4 \rangle$
- B) (3; 4)
- C) $\langle 1; 3 \rangle$

D) (0: 2)

E) $\langle 0:3 \rangle$

6. Se sujeta un poste mediante dos cables de tensión para su estabilidad, como se muestra en la figura. Calcule $\sec^2\theta + \csc^2\theta - 5$

- A) 25
- B) 26
- C) 21

D) 20

- E) 24
- 7. Una estructura metálica tiene la siguiente distribución para su estabilidad, donde la barra AB mide 1 m y la barra DE mide $\sqrt{3}$ m. Calcule el valor de la siguiente expresión: $sen^6 \alpha + cos^6 \alpha + tan^2 \theta$

Si $\alpha \in \langle 0; 2\pi \rangle$, determine la variación de $\cos^2\alpha - \cos\alpha$

A)
$$\left[-\frac{1}{4}; \frac{1}{4}\right]$$
 B) $\left[-\frac{1}{4}; 0\right]$ C) $\left[-\frac{1}{4}; 2\right]$

B)
$$\left[-\frac{1}{4};0\right]$$

C)
$$\left[-\frac{1}{4}; 2\right]$$

D)
$$\left[-\frac{1}{4};1\right]$$

E)
$$\left[-\frac{1}{4}; \sqrt{2} \right]$$

10. Se tiene una placa metálica de forma triangular tal como muestra el gráfico, se requiere hacer un corte para tapar un forado ocasioniado por un provectil. Calcule $2\tan\theta$.

- A) 3
- B) 2
- C) 4

D) 5

E) 1