Notas de Aulas - MI401

Probabilidade

Caio Gomes Alves

03/2025

Conteúdos

1	Pre	fácio	2	
2	Definições Básicas			
	2.1	Modelo Probabilístico	3	
	2.2	Álgebras de Conjuntos	4	
	2.3	Axiomas de Kolmogorov	6	
	2.4	Propriedades da medida de probabilidade	6	
	2.5	Propriedades de probabilidade	8	
	2.6	Probabilidade Condicional e Independência	8	
	2.7	Fórmula de Poincaré e Teorema de Bayes	10	
	2.8	Exercícios	12	
3	Var	iáveis Aleatórias	29	
	3.1	Variáveis aleatórias e funções de distribuição	29	
	3.2	Natureza das variáveis aleatórias	31	
	3.3	Variáveis aleatórias e σ -álgebra de Borel	33	
	3.4	Variáveis contínuas	34	
	3.5	Variáveis aleatórias multidimensionais	35	
	3.6	Independência	37	
	3.7	Distribuições de funções de vetores	39	

1 Prefácio

Este "livro" consiste de notas de aulas da matéria MI401 - Probabilidade, do Programa de Mestrado em Estatística, do Instituto de Matemática, Estatística e Computação Científica (IMECC), da Universidade Estadual de Campinas - UNICAMP.

Os seus conteúdos são baseados nas notas tomadas durante as aulas, do livro "Probabilidade e Variáveis Aleatórias", do autor Marcos Nascimento Magalhães, 3ª edição, e do livro "Probabilidade: um curso em nível intermediário", do autor Barry R. James, 5ª edição.

2 Definições Básicas

2.1 Modelo Probabilístico

Suponha que é realizado um experimento "sob certas condições", sendo Ω o conjunto de resultados possíveis do experimento (também chamado de resultados elementares). Chamamos Ω de **espaço amostral do experimento**, com a representação axiomática sendo dada por: $\Omega = \{\omega : \omega \in \Omega\}$.

Example 2.1. Considere o lançamento de um dado honesto. Nesse caso, temos que $\Omega = \{1, 2, 3, 4, 5, 6\}$, em que cada $\{i\}$ é um evento elementar, sendo eles $\{1\},\{2\},\{3\},\{4\},\{5\}$ e $\{6\}$.

Temos então que eventos são coleções de pontos em Ω , por exemplo um evento $A = \{2, 4, 6\}$ (números pares no lançamento de um dado honesto). Assim, temos as seguintes suposições para eventos:

- 1. Todo resultado possível no experimento corresponde a um e somente um $\omega \in \Omega$;
- 2. Resultados diferentes correspondem a elementos diferentes em Ω .

Definition 2.1. Seja um espaço amostral Ω de um experimento. Todo subconjunto $A \subset \Omega$ é um evento. Ω é o evento certo e \emptyset é o evento impossível. Além disso, $\omega \in \Omega \to \{\omega\}$ é um evento elementar.

Note-se que, dados A e B eventos, tais que $A \subset \Omega$ e $B \subset \Omega$, temos que:

- $A \cup B \to (\omega \in A \in \omega \notin B)$ ou $(\omega \notin A \in \omega \in B)$ ou $(\omega \in A \in \omega \in B)$;
- $A \cap B \to (\omega \in A \cup \omega \in B)$;
- $A^c \to (\omega \notin A)$;
- $A \subset B \to a$ ocorrência de A implica a ocorrência de B;
- $A \cap B = \emptyset \rightarrow$ os eventos A e B são mutuamente exclusivos.

No campo probabilístico, pensamos em atribuir probabilidades (leia-se chances) a eventos em Ω .

Definition 2.2 (Clássica). A probabilidade de ocorrência de um evento A, denotada por P(A) é dada por:

$$P(A) = \frac{\#(A)}{\#(\Omega)} = \frac{n^{\circ} \text{ de resultados favoráveis a } A}{n^{\circ} \text{ de resultados possíveis em } \Omega}$$

Onde # indica a cardinalidade de um conjunto (quantidade de elementos no conjunto).

Example 2.2. Seja $A = \{2, 4, 6\}$, os lançamentos pares em um dado honesto. Como $\Omega = \{1, \dots, 6\}$, temos que:

$$P(A) = \frac{3}{6} = \frac{1}{2}$$

Note que o conjunto A pode ser descrito como a união dos eventos elementares, tais que $A = \{2\} \cup \{4\} \cup \{6\}$. Nesse caso, podemos ver que a probabilidade de A não muda, pois:

$$\begin{split} P(\{i\}) &= \frac{\#(\{i\})}{\#(\Omega)} = \frac{1}{6} \\ P(A) &= \frac{\#(\{2\}) + \#(\{4\}) + \#(\{6\})}{\#(\Omega)} = \frac{1+1+1}{6} = \frac{1}{2} \end{split}$$

Definition 2.3. Um evento A ao qual atribuímos uma probabilidade é um evento aleatório.

2.2 Álgebras de Conjuntos

Considere o conjunto de eventos em uma família \mathcal{A} (subconjuntos de Ω), de tal modo que $P:A\to [0,1]$. Uma representação gráfica da relação P pode ser dada por:

Definition 2.4. Seja Ω um conjunto não-vazio. Seja \mathcal{A} uma classe de subconjuntos de Ω , ela será chamada de "Álgebra de subconjuntos de Ω ", caso respeite os seguintes axiomas:

- $Ax_1: \Omega \in \mathcal{A}$, e definimos $P(\Omega) = 1$;
- Ax_2 : Se $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$, e definimos $P(A^c) = 1 P(A)$;
- Ax_3 : Se $A \in \mathcal{A}, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.

E por consequência desses axiomas, temos as seguintes extensões:

- $Ax_4: \emptyset \in \mathcal{A}$;
- Ax_5 : Sejam $A_1, A_2, \ldots, A_n : A_i \in \mathcal{A} \forall i \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A} \in \bigcap_{i=1}^n A_i \in \mathcal{A}$.

É fácil verificar a extensão de Ax_4 a partir de Ax_1 e Ax_2 : Ax_1 define que $\Omega \in \mathcal{A}$, e por Ax_2 temos que $\Omega^c \in \mathcal{A}$, e por definição temos que $\Omega^c = \emptyset$, logo $\emptyset \in \mathcal{A}$. Também é interessante notar que, ainda por Ax_2 , temos que $P(\emptyset) = 1 - P(\Omega)$, e por Ax_1 temos que $P(\Omega) = 1$, portanto $P(\emptyset) = 1 - 1 = 0$.

A extensão de Ax_5 é dada por indução e pelas Leis de De Morgan: Sejam $A_1, A_2 \in \mathcal{A}$. Temos pelo axioma Ax_3 , que $A_1 \cup A_2 \in \mathcal{A}$, podendo assim definir o conjunto $B = A_1 \cup A_2$, sendo possível ver que $B \in \mathcal{A}$. Sejam ainda um conjunto $A_3 \in \mathcal{A}$, podemos ver que $B \cup A_3 \in \mathcal{A}$, e como $B = A_1 \cup A_2$, temos que $(A_1 \cup A_2) \cup A_3 \in \mathcal{A}$. Podemos proceder dessa forma para qualquer quantidade (enumerável) de conjuntos, de modo que $\bigcup_{i=1}^n A_i \in \mathcal{A}$. Pelas Leis de De Morgan, sabemos que:

$$\bigcap_{i=1}^{n} A_i = \left(\bigcup_{i=1}^{n} A_i^c\right)^c \tag{1}$$

E pela extenção indutiva em n do axioma Ax_2 , temos que se $A_i^c \in \mathcal{A}, \forall i$, então $\bigcup_{i=1}^n A_i^c \in \mathcal{A}$. E como, se um conjunto pertence a \mathcal{A} seu complementar deve pertencer também, e pelo resultado em (1), temos então que:

$$\left(\bigcup_{i=1}^{n} A_i^c\right)^c = \left(\bigcap_{i=1}^{n} A_i\right) \in \mathcal{A} \tag{2}$$

Assim provamos o axioma A_5 como extensão indutiva dos axiomas anteriores, indicando que tanto a união quanto a interseção dos A_i pertencem à \mathcal{A} . Podemos também mostrar que a álgebra \mathcal{A} é fechada também para a operação de diferença entre conjuntos: $A \in \mathcal{A}, B \in \mathcal{A}, A - B = A \cap B^c \in \mathcal{A}$.

Proof. Considerando que os conjuntos A e \$B pertencem à \mathcal{A} , podemos utilizar o axioma Ax_2 para mostrar que $A^c \in \mathcal{A}$ e $B^c \in \mathcal{A}$. A partir disso, por meio do axioma Ax_5 temos que os seguintes conjuntos também pertencem à \mathcal{A} : $A \cup B$, $A \cup B^c$, $A^c \cup B$, $A^c \cup B^c$, $A \cap B$, $A \cap B^c$, $A^c \cap B$, $A^c \cap B^c$. E como temos que $A \cap B^c = A - B$, temos a prova de que $A - B \in \mathcal{A}$. Além disso, essa prova mostra que a diferença contrária $(B - A = A^c \cap B)$ também pertence à algebra \mathcal{A} .

Ainda considerando os conjuntos A e B, existem cinco maneiras como esses conjuntos podem "interagir", e podemos mostrar que em todos os casos a diferença $A - B \in \mathcal{A}$:

- $A \not\subset B \in A \not\supset B \in A \cap B \neq \emptyset \Rightarrow A B = A \cap B^c \in \mathcal{A};$
- $A \not\subset B \in A \not\supset B \in A \cap B = \emptyset \Rightarrow A B = A \in \mathcal{A};$
- $A \supset B \Rightarrow A B = A \cap B^c \in \mathcal{A}$;
- $A \subset B \Rightarrow A B = \emptyset \in \mathcal{A}$;
- $A = B \Rightarrow A B = \emptyset \in \mathcal{A}$.

Figure 1: Diferentes relações entre A e B demonstradas por Diagramas de Venn. Note que em todos os casos, $A \cap B^c \in \mathcal{A}$ ou $A \cap B^c = \emptyset \in \mathcal{A}$ ou $A \cap B^c = A \in \mathcal{A}$

As representações por Diagramas de Venn apresentadas na figura 2.2 não é prova formal de que a álgebra \mathcal{A} é fechada para a diferença, mas é um recurso visual que pode auxiliar no entendimento da relação entre os conjuntos.

Definition 2.5. Uma classe \mathcal{A} de conjuntos/subconjuntos de $\Omega \neq \emptyset$, verificando os axiomas Ax_1, Ax_2 e Ax_3 é chamada de σ -álgebra de subconjuntos de Ω .

Note que uma σ -álgebra é sempre uma álgebra. Uma outra forma de construir σ -álgebras é partir de uma álgebra munida dos axiomas de Kolmogorov (Teorema de Carathéodory).

Proposition 2.1. Seja \mathcal{A} uma σ -álgebra de subconjuntos de Ω , se A_1, A_2, \ldots , é uma coleção em $\mathcal{A} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$.

Example 2.3. Seja $\Omega = \{1, 2, 3, 4, 5, 6\}$ (o lançamento de um dado cúbico usual). A σ -álgebra usual é definida da seguinte forma e denotada por $\mathcal{P}(\Omega)$ (chamada de partes de Ω ou powerset de Ω):

$$\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \\ \{2, 3\}, \{2, 4\}, \dots, \\ \Omega\}$$

Example 2.4. Definamos a σ -álgebra de Borel no intervalo $\Omega = [0, 1]$. Uma possível definição seria:

 $\mathcal{A} = \text{todos os subconjuntos de } [0,1]$ cujo cumprimento esteja bem definido

Podemos, por exemplo, propor uma álgebra para o intervalo [0, 1] dada por:

$$A_{\prime} = \{A \subset [0,1] : A \text{ \'e uma união finita de intervalos } \}$$

É possível encontrar um conjunto A tal que $A \notin \mathcal{A}$, por exemplo:

$$A = \left\{ \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, \frac{3}{4}\right) \cup \dots \cup \left(1 - \frac{1}{2^n}, 1 - \frac{1}{2^{n+1}}\right) \cup \dots \right\}$$

Podemos ver que, para qualquer n^* finito, $\lim_{n\to n^*} \left(1-\frac{1}{2^{n+1}}\right) \neq 1$, de modo que o conjunto A não cobrirá completamente o intervalo [0,1]. Dessa forma, a σ -álgebra de Borel no intervalo [0,1] (denotada $\mathcal{B}_{[0,1]}$) é definida como:

$$\mathcal{B}_{[0,1]} = \{A : A \subset [0,1] \text{ e } A \text{ \'e boreliano}\}$$

Onde boreliano denota que A é união enumerável (finita ou infinita) de intervalos em [0,1]

Axiomas de Kolmogorov

Seja $P: \mathcal{A} \to [0,1]$, com:

- $Ax_1(K): P(A) \geq 0, \forall A \in \mathcal{A};$
- $Ax_3(K)$: Se A_1, A_2, \ldots, A_n : $A_i \in A \forall i \in A_i \cap A_j = \emptyset \forall i, j \in \{1, 2, \ldots, n\}, i \neq j \Rightarrow P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k)$.

Definition 2.6. Seja Ω um conjunto não-vazio, \mathcal{A} uma σ -álgebra em Ω , com $P: \mathcal{A} \to [0,1]$, verificando os axiomas de Kolmogorov, então P é dita finitamente aditiva. Podemos assim, modificar o axioma $Ax_3(K)$ para:

• $Ax_3'(K)$: Se A_1, A_2, \ldots é uma sequência em \mathcal{A} tal que $\forall i \neq j, A_i \cap A_j = \emptyset$, tem-se que $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$. (propriedade da σ -aditividade)

Definition 2.7. P definida em uma σ -álgebra A, satisfazendo os axiomas de Kolmogorov $(Ax_1(K), Ax_2(K), Ax_3'(K))$ é uma medida de probabilidade em \mathcal{A} , constituída pela terna (Ω, \mathcal{A}, P) .

2.4 Propriedades da medida de probabilidade

Proposition 2.2 (Continuidades).

- 1. Seja $\{A_i\}_{i=1}^{\infty}$ uma sequência (crescente) de eventos tais que $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$, e seja $A = \bigcup_{i=1}^{\infty} A_i$,
- 2. Seja $\{B_i\}_{i=1}^{\infty}$ uma sequência (decrescente) de eventos tais que $B_1\supseteq B_2\supseteq B_3\supseteq\ldots$, e seja $B=\bigcap_{i=1}^{\infty}B_i$, então $P(B) = \lim_{i \to \infty} P(B_i)$.

Proof.

1. Note que, sendo $A_0 = \emptyset$, tem-se que $A = (A_1 - A_0) \cup (A_2 - A_1) \cup (A_3 - A_2) \cup \ldots$, ou seja, A é união disjunta de eventos $D_i = A_i - A_{i-1}$, de forma que $A_{i-1} \subseteq A_i \Rightarrow P(A_i) = P(A_{i-1}) + P(A_i - A_{i-1}) \Rightarrow P(A_i - A_{i-1}) = P(A_i) - P(A_{i-1})$. Logo, temos que:

$$A = \bigcup_{i=1}^{\infty} D_i \xrightarrow{Ax_3'(K)} P(A) = \sum_{i=1}^{\infty} P(D_i)$$

$$= \sum_{i=1}^{\infty} P(A_i - A_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} [P(A_i) - P(A_{i-1})]$$

$$= \lim_{n \to \infty} [P(A_1) - P(A_0) + P(A_2) - P(A_1) + P(A_3) - P(A_2) + \dots]$$

$$= \lim_{n \to \infty} P(A_n)$$

2. Note que, por De Morgan, $B = \bigcap_{i=1}^n B_i = (\bigcup_{i=1}^n B_i^c)^c$. Logo $P(\bigcap_{i=1}^n B_i) = 1 - P(\bigcup_{i=1}^n B_i^c)$. Seja $A = B_i^c$ de modo que:

$$B_1^c = \Omega - B_1 = A_1$$

$$B_2^c = (B_1 - B_2) \cup (\Omega - B_1) = A_2$$

:

Assim $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$, e com isso $P(\bigcap_{i=1}^n B_i) = 1 - P(\bigcup_{i=1}^n B_i^c) = 1 - P(\bigcup_{i=1}^n A_i)$. Por outro lado, tem-se que $A = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i^c \Rightarrow A^c = (\bigcup_{i=1}^{\infty} B_i^c)^c = \bigcap_{i=1}^{\infty} B_i = B$. Logo, temos que:

$$P\left(\bigcap_{i=1}^{n} B_i\right) \xrightarrow[n \to \infty]{} (1 - P(A)) = P(A^c) = P(B)$$

Definition 2.8 (Continuidade no vazio).

• $Ax_4(K)$: Se $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$ e $A_n\supseteq A_{n+1}\forall n$ e $\bigcap_{n=1}^{\infty}A_n\neq\emptyset$ então $P(A_n)\xrightarrow[n\to\infty]{}0$

A prova dessa definição é dada pela segunda parte da prova da proposição 2.2. A representação visual é dada pelo seguinte diagrama:

Proposition 2.3. Dados os axiomas $Ax_1(K)$, $Ax_2(K)$, $Ax_3(K)$, o axioma 4 é equivalente ao axioma $Ax'_3(K)$, ou seja, uma probabilidade finitamente aditiva é uma medida de probabilidade se e somente se é contínua no vazio.

A prova de que a σ -aditividade implica o axioma 4 é consequência da prova da proposição anterior, dado que $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Para demonstrar o contrário (que $Ax_1(K) + Ax_2(K) + Ax_3(K) + Ax_4(K) \to Ax_3'(K)$), tomemos uma sequência infinita de eventos $\{A_i\}_{i\geq 1}$ em $\mathcal{A}: A_i \cap A_j = \emptyset \ \forall i \neq j$. Devemos ver que $P(\bigcup_{n=1}^{\infty}) = \emptyset$ $\sum_{n=1}^{\infty} P(A_n)$. Seja $A = \bigcup_{n=1}^{\infty} A_n = (\bigcup_{n=1}^k A_n) \cup (\bigcup_{n=k+1}^{\infty} A_n)$. Tem-se que:

$$P(A) = P\left(\bigcup_{n=1}^{k} A_n\right) + P\left(\bigcup_{n=k+1}^{\infty} A_n\right) = \sum_{n=1}^{k} P(A_n) + P\left(\bigcup_{n=k+1}^{\infty} A_n\right)$$

Seja $B_k = \bigcup_{n=k+1}^{\infty} A_n$. Note que $B_k \downarrow \emptyset$ quando $k \to \infty$ de modo que $P(B_k) \xrightarrow[k \to \infty]{} 0$, logo:

$$\lim_{k \to \infty} \sum_{n=1}^{k} P(A_n) = \sum_{n=1}^{\infty} P(A_n)$$

Corollary 2.1. Os seguintes sistemas são equivalentes:

$$Ax_1(K), Ax_2(K), Ax_3'(K) \equiv Ax_1(K), Ax_2(K), Ax_3(K), Ax_4(K)$$

Propriedades de probabilidade

Seja P uma probabilidade em uma σ -álgebra A. Suponhamos que todo A abaixo pertença à A. Então as seguintes propriedades são consequências dos axiomas:

- **P1**: $P(A^c) = 1 P(A)$;
- **P2**: $0 \le P(A) \le 1$:

- **P3**: $A_1 \subset A_2 \Rightarrow P(A_1) \leq P(A_2)$; **P4**: $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$; **P5**: $P(\bigcup_{i=1}^\infty A_i) \leq \sum_{i=1}^\infty P(A_i)$;

Com essas propriedades, podemos então definir um modelo probabilístico. Sejam:

- a) Um espaço amostral: $\Omega \neq \emptyset$;
- **b**) Uma σ -álgebra em Ω : \mathcal{A} ;
- c) Uma medida de probabilidade em A: P.

Definition 2.9. Um espaço de probabilidade é uma terna (Ω, \mathcal{A}, P) seguindo $\mathbf{a}, \mathbf{b} \in \mathbf{c}$.

2.6 Probabilidade Condicional e Independência

Considere o seguinte experimento: um dado é lançado duas vezes e anota-se a dupla de resultados. Temos que:

$$\Omega = \{(i, j) : 1 < i < 6; 1 < j < 6; i, j \in \mathbb{Z}\}\$$

Sejam os seguintes eventos:

- $A = "em \ cada \ lançamento \ o \ valor \ observado \ \acute{e} \le 2";$
- B = "a soma dos resultados é igual a 4".

$$A = \{(1,1), (1,2), (2,1), (2,2)\}$$

$$B = \{(1,3), (3,1), (2,2)\}$$

Já que $\#\Omega = |\Omega| = 36$, e pela equiprobabilidade dos eventos (considerando que os dados são honestos), temos que:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{36}$$
$$P(B) = \frac{|B|}{|\Omega|} = \frac{3}{36}$$

Além disso, $(A \cap B) = \{(2,2)\}; P(A \cap B) = 1/36$. Suponha que A ocorre com P(A) > 0, e que B é o evento de interesse. Assumindo a potencial ocorrência de A, qual é a probabilidade de B ocorrer. Nesse caso P(B|A) = 1/4.

Definition 2.10 (Probabilidade condicional). Sejam A e B eventos em A, com P(A) > 0. A probabilidade condicional P(B|A) é definida como:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \tag{3}$$

ou equivalentemente:

$$P(A \cap B) = P(B|A)P(A) \tag{4}$$

Example 2.5. Considere uma urna com 5 bolas, sendo 3 vermelhas e 2 brancas. O experimento consiste de 2 retiradas sucessivas de uma bola da urna (sem reposição). Considere os eventos $A_1 = Cor \ da \ primeira \ bola$ e $A_2 = Cor \ da \ segunda \ bola$:

$$P(A_1 = B) = \frac{2}{5} , P(A_1 = V) = \frac{3}{5}$$

$$P(A_2 = B|A_1 = B) = \frac{1}{4} , P(A_2 = V|A_1 = B) = \frac{3}{4}$$

$$P(A_2 = B|A_1 = V) = \frac{2}{4} , P(A_2 = V|A_1 = V) = \frac{2}{4}$$

Podemos visualizar esse experimento com os seguintes diagrama e tabela de probabilidades:

Resultados						
A_1	A_2	$ P(A_1)P(A_2 A_1) $				
В	В	$2/5 \times 1/4 = 2/20$				
В	V	$2/5 \times 3/4 = 6/20$				
V	В	$3/5 \times 2/4 = 6/20$				
V	V	$3/5 \times 2/4 = 6/20$				

Definition 2.11 (Eventos independentes).

- a) Os eventos A e B são independentes (denotados como $A \perp B$) se $P(A \cap B) = P(A)P(B)$;
- b) $\{A_i, i \in \mathbb{I}\}$ são independentes se $P\left(\bigcap_{i \in \mathcal{J}} A_i\right) = \prod_{i \in \mathcal{J}} P(A_i), \forall \text{ subfamílias } \mathcal{J} \text{ de índices em } \mathbb{I}.$

Disso segue que, sendo A e B dois eventos, as seguintes propriedades são válidas:

- 1. Se $P(A) = 0 \Rightarrow P(A \cap B) = 0 \ \forall B$, ou seja, $A \perp B$;
- 2. Se $P(B) = 1 \Rightarrow P(A \cap B) = 0 \ \forall A$, ou seja, $A \perp B$;
- 3. A é independente dele mesmo se e somente se P(A) = 0 ou P(A) = 1;
- 4. $A \perp B \Rightarrow A \perp B^c, A^c \perp B, A^c \perp B^c;$
- 5. As seguintes proposições são equivalentes:
 - a) $(A \perp B) \Rightarrow P(B|A) = P(B) \in P(B|A^c) = P(B);$
 - b) $P(B|A) = P(B) \Rightarrow A \perp B$;
 - c) $P(B|A^c) = P(B) \Rightarrow A \perp B$.

Theorem 2.1 (Teorema das Probabilidades Totais).

1. Dados A e B eventos em \mathcal{F} :

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

2. No geral, se B_1, B_2, \ldots, B_n é uma partição de Ω , então:

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$
 (5)

Demonstração: Note que $A = (A \cap B) \cup (A \cap B^c)$ e $(B \cap B^c) = \emptyset$ e $(B \cup B^c) = \Omega$. Além disso, $(A \cap B) \cap (A \cap B^c) = \emptyset$, logo $P(A) = P(A \cap B) + P(A \cap B^c)$. Como, por definição, $P(A|B) = P(A \cap B)/P(B)$ e $P(A|B^c) = P(A \cap B^c)/P(B^c)$, temos que:

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

Para o caso geral, temos que $\{B_i\}_{i=1}^n$, $(B_i \cap B_j) = \emptyset \ \forall i,j \ \mathrm{e} \ \bigcup_{i=1}^n B_i = \Omega$. Logo:

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \ldots \cup (A \cap B_n)$$

 \Downarrow Pela σ -aditividade

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

E como $P(A|B_i) = P(A \cap B_i) P(B_i)$:

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

2.7 Fórmula de Poincaré e Teorema de Bayes

Theorem 2.2 (Fórmula de Poincaré). Seja $\{A_i\}_{i\geq 1}\subseteq \mathcal{F}$. Então:

$$P\left(\bigcup_{i=1}^{n} A_{n}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) - \dots$$

$$+ (-1)^{n+1} P(A_{1} \cap A_{2} \cap \dots \cap A_{n})$$

$$(6)$$

A demonstração da fórmula (6) é dada no exercício 2.10.

Theorem 2.3 (Teorema de Bayes). Seja $\{B_i\}_{i=1}^n$ uma partição de Ω e A um evento em \mathcal{F} , temos que:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}$$
(7)

O denominador de (7) é derivado do teorema das probabilidades totais, visto que $\{B_i\}_{i=1}^n$ é uma partição de Ω .

Lemma 2.1. Sejam A_1, A_2, \ldots, A_n eventos em \mathcal{F} , logo:

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1} \cap A_{2}) \dots P(A_{n}|A_{1} \cap A_{2} \cap \dots \cap A_{n-1})$$

Proof. Suponha a validade do lema anterior. Logo, seja $D=(\bigcap_{i=1}^n A_i)$:

$$P(A_1 \cap ... \cap A_n \cap A_{n+1}) = P(D \cap A_{n+1})$$

$$= P(D)P(A_{n+1}|D)$$

$$= P(A_1)P(A_2|A_1)...P(A_n|A_1 \cap ... \cap A_{n-1})P(A_{n+1}|A_1 \cap ... \cap A_n)$$

2.8 Exercícios

Exercise 2.1 (BJ1). Sejam $A, B \in C$ eventos aleatórios. Identifique as seguintes equações e frases, casando cada equação expressa na notação de conjuntos com a correspondente frase na linguagem de eventos:

$$A\cap B\cap C=A\cup B\cup C$$
 A e "B ou C" são incpmpatíveis.
$$A\cap B\cap C=A$$
 Os eventos A,B e C são idênticos.
$$A\cup B\cup C=A$$
 A ocorrência de A implica a de "B e C".
$$(A\cup B\cup C)-(B\cup C)=A$$
 A ocorrência de A decorre de "B ou C".

Exercise 2.2 (BJ2). A partir dos axiomas, prove a propriedade P5:

$$P\left(\bigcup_{n=i}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} P(A_n)$$

Proof. Consideremos uma prova por indução para $n \to \infty$: Para n=2:

$$P(A_1 \cup A_2) = P(A_1) + P(A_1^c \cap A_2)$$

Considerando que $(A_1^c \cap A_2) \subset A_2$ e o fato de que $(A_1) \cap (A_1^c \cap A_2) = \emptyset$, temos pela propriedade P3 que $P(A_1^c \cap A_2) \leq P(A_2)$, de modo que:

$$P(A_1 \cup A_2) = P(A_1) + P(A_1^c \cap A_2) \le P(A_2)$$

$$\le P(A_1) + P(A_2)$$

$$\le \sum_{i=1}^2 P(A_i)$$

De modo semelhante, podemos fazer para n:

$$P\left(\bigcup_{i=i}^{n} A_i\right) = P(A_1) + P(A_1^c \cap A_2) + \dots$$

$$\leq P(A_1) + P(A_2) + \dots$$

$$\leq \sum_{i=1}^{n} P(A_i)$$

Consideremos então uma sequência de eventos $A_i^*, \forall i \in \{n+1, n+2, \dots\}$, disjuntos de A_i . Denotemos ainda $A = (\bigcup_{i=1}^n A_i) \cup (\bigcup_{i=n+1}^\infty A_i)$. Pela aditividade infinita (ou ainda pela σ -aditividade), temos que:

$$P\left(\bigcup_{n=i}^{\infty} A_n\right) \le \sum_{i=1}^{n} P(A_i) + P\left(\bigcup_{i=n+1}^{\infty} A_i\right)$$

Que por serem disjuntos, pelo axioma Ax_4 tem que $\left(\bigcup_{i=n+1}^{\infty} A_i\right) \downarrow \emptyset$, de modo que $P\left(\bigcup_{i=n+1}^{\infty} A_i\right) \to 0$. Logo, tem-se que:

$$P\left(\bigcup_{n=i}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} P(A_n)$$

Exercise 2.3 (BJ3). Sejam A_1, A_2, \ldots eventos aleatórios. Mostre que:

a)
$$P(\bigcap_{k=1}^{n} A_k) \ge 1 - \sum_{k=1}^{n} P(A_k^c)$$

Proof. Por De Morgan temos que $\bigcap_{k=1}^n A_k = (\bigcup_{k=1}^n A_k^c)^c$, de modo que:

$$\begin{split} P\left(\bigcap_{k=1}^{n}A_{k}\right) &= P\left(\bigcup_{k=1}^{n}A_{k}^{c}\right)^{c} \\ &= 1 - P\left(\bigcup_{k=1}^{n}A_{k}^{c}\right) \xrightarrow{\text{Por P4}} P\left(\bigcup_{k=1}^{n}A_{k}^{c}\right) \leq \sum_{k=1}^{n}P\left(A_{k}^{c}\right) \\ &\geq 1 - \sum_{k=1}^{n}P\left(A_{k}^{c}\right) \end{split}$$

b) Se $P(A_k) \ge 1 - \epsilon$ para k = 1, 2, ..., n, então $P(\bigcap_{k=1}^n A_k) \ge 1 - n\epsilon$

Proof. É fácil ver que:

$$P(A_k) \ge 1 - \epsilon \Rightarrow P(A_k^c) \le 1 - (1 - \epsilon) = \epsilon$$

E de modo semelhante ao que foi feito na questão anterior (utilizando De Morgan), temos que:

$$P\left(\bigcap_{k=1}^{n} A_{k}\right) = P\left(\bigcup_{k=1}^{n} A_{k}^{c}\right)^{c} = 1 - P\left(\bigcup_{k=1}^{n} A_{k}^{c}\right)$$

$$\geq 1 - \sum_{k=1}^{n} P\left(A_{k}^{c}\right)$$

$$\geq 1 - \sum_{k=1}^{n} \epsilon$$

$$\geq 1 - n\epsilon$$

c) $P(\bigcap_{k=1}^{\infty} A_k) \ge 1 - \sum_{k=1}^{\infty} P(A_k^c)$

Proof. De maneira semelhante ao que foi visto na prova da letra a, temos que:

$$P\left(\bigcap_{k=1}^{\infty} A_k\right) = P\left(\bigcup_{k=1}^{\infty} A_k^c\right)^c$$

$$= 1 - P\left(\bigcup_{k=1}^{\infty} A_k^c\right) \xrightarrow{\text{Por P5}} P\left(\bigcup_{k=1}^n A_k^c\right) \le \sum_{k=1}^{\infty} P\left(A_k^c\right)$$

$$\ge 1 - \sum_{k=1}^{\infty} P\left(A_k^c\right)$$

Para ver a demonstração da propriedade P5, vide exercício 2.2.

Exercise 2.4 (BJ4). Demonstre as seguintes propriedades:

a) Se $P(A_n)=0$ para $n=1,2,\ldots,$ então $P\left(\bigcup_{n=1}^{\infty}A_n\right)=0.$

Proof. Utilizando a propriedade P5, temos que:

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} P(A_n)$$

$$\le \sum_{n=1}^{\infty} 0$$

$$\le 0$$

$$\downarrow \text{ Por } P2$$

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

b) Se $P(A_n)=1$ para $n=1,2,\ldots,$ então $P\left(\bigcap_{n=1}^{\infty}A_n\right)=1.$

Proof. Levando em consideração que se $P(A_n) = 1 \Rightarrow P(A_n^c) = 0$ (pela propriedade P1), utilizando De Morgan e a prova da letra \mathbf{c} do exercício 2.3, temos que:

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) \ge 1 - \sum_{n=1}^{\infty} P(A_n^c)$$

$$\ge 1 - \sum_{n=1}^{\infty} 0$$

$$\ge 1 - 0$$

$$\ge 1$$

$$\oint \text{Por } P2$$

$$P\left(\bigcap_{n=1}^{\infty} A_n\right) = 1$$

Exercise 2.5 (BJ6). Seja Ω um conjunto não-vazio.

a) Prove: se \mathcal{A} e \mathcal{B} são σ -álgebras de subconjuntos de Ω , então $(\mathcal{A} \cap \mathcal{B})$ também é uma σ -álgebra.

Proof. Para que $A \cap B$ seja uma σ -álgebra, é necessário que cumpram-se os axiomas Ax_1, Ax_2 e Ax_3 :

- Ax_1 : Sabemos que $\Omega \in \mathcal{A}$ e $\Omega \in \mathcal{B}$, logo sabemos que $\Omega \in (\mathcal{A} \cap \mathcal{B})$;
- Ax_2 : Seja um evento $E \in (A \cap B)$, sabemos então que $E \in A$ e $E \in B$, logo $E^c \in A$ e $E^c \in B$, portanto $E^c \in (A \cap B)$;
- Ax_3 : Sejam dois eventos, $E_1 \in (A \cap B)$ e $E_2 \in (A \cap B)$. Com isso, temos que $E_1, E_2 \in A$ e $E_1, E_2 \in B$, portanto $(E_1 \cup E_2) \in A$ e $E_1 \cup E_2 \in B$, logo $(E_1 \cup E_2) \in (A \cap B)$.

Como os três axiomas foram cumpridos, temos que $(A \cap B)$ é uma σ -álgebra.

b) Generalize o item (a): se $\mathcal{A}_i, i \in \mathcal{I}$, são σ -álgebras de partes de Ω , onde \mathcal{I} é um conjunto não-vazio de índices, então $\bigcap_{i \in \mathcal{I}} \mathcal{A}_i$ também é uma σ -álgebra.

Proof. Como anteriormente, temos que mostrar que $\bigcap_{i\in\mathcal{I}}\mathcal{A}_i$ cumpre os axiomas Ax_1,Ax_2 e Ax_3 :

- Ax_1 : Sabemos que $\Omega \in \mathcal{A}_i, \ \forall i \in \mathcal{I}, \ \text{logo sabemos que } \Omega \in \bigcap_{i \in \mathcal{I}} \mathcal{A}_i;$
- Ax_2 : Seja um evento $E \in \bigcap_{i \in \mathcal{I}} \mathcal{A}_i$, sabemos então que $E \in \mathcal{A}_i$, $\forall i \in \mathcal{I}$, logo $E^c \in \mathcal{A}_i$, $\forall i \in \mathcal{A}$, portanto $E^c \in \bigcap_{i \in \mathcal{I}} \mathcal{A}_i$;
- Ax_3 : Sejam dois eventos, $E_1 \in \bigcap_{i \in \mathcal{I}} \mathcal{A}_i$ e $E_2 \in \bigcap_{i \in \mathcal{I}} \mathcal{A}_i$. Com isso, temos que $E_1, E_2 \in \mathcal{A}_i$, $\forall i \in \mathcal{I}$, portanto $(E_1 \cup E_2) \in \mathcal{A}_i$, $\forall i \in \mathcal{I}$, logo $(E_1 \cup E_2) \in \bigcap_{i \in \mathcal{I}} \mathcal{A}_i$.

Vemos portanto que, por cumprir os axiomas $Ax_1, Ax_2 \in Ax_3, \bigcap_{i \in \mathcal{I}} A_i$ é também uma σ -álgebra.

c) Seja $\mathbb C$ uma classe de subconjuntos de Ω . Mostre que existe pelo menos uma σ -álgebra que contém $\mathbb C$.

Proof. É fácil ver que a maior classe de subconjuntos de Ω é o conjunto das partes de Ω , denotado como $\mathcal{P}(\Omega)$ (definido no exemplo 2.3). Assim, temos que $\mathbb{C} \subseteq \mathcal{P}(\Omega)$, de modo que, pelo menos a σ-álgebra formada por $\mathcal{P}(\Omega)$ contém \mathbb{C} .

d) Visando a plena utilização dos itens (b) e (c), como você definiria "a menor σ -álgebra contendo \mathbb{C} ", onde \mathcal{C} é uma classe de subconjuntos de Ω ?

Proof. Considere que temos σ-álgebras de partes de Ω , \mathcal{A}_i com $i \in \mathbb{I}$ (sendo \mathbb{I} um conjunto não-vazio de índices), tais que $\mathbb{C} \in \mathcal{A}_i$: $\forall i \in \mathbb{I}$. Assim, sabemos que algum dos \mathcal{A}_i é a menor σ-álgebra que contém \mathbb{C} , de modo que $\bigcap_{i \in \mathbb{I}} A_i$ será a menor σ-álgebra que contém \mathbb{C} .

Exercise 2.6 (BJ9). Uma caixa contém 2n sorvetes, n do sabor A e n do sabor B. De um grupo de 2n pessoas, a < n preferem o sabor A, b < n o sabor B e 2n - (a + b) não tem preferência. Demonstre: se os sorvetes são distribuídos ao acaso, a probabilidade de que a preferência de todas as pessoas seja respeitada é de $\binom{2n-a-b}{n-a} / \binom{2n}{n}$.

Proof. Sabendo que a ordem de entrega dos n sorvetes de cada sabor, para as 2n pessoas não importa, temos que a quantidade possível de entregas diferentes é:

$$|\Omega| = \binom{2n}{n}$$

Considere que o evento R indica o caso em que todos tiveram sua preferência respeitada. Podemos ver que:

$$P(R) = \frac{|R|}{|\Omega|} = \frac{|R|}{\binom{2n}{n}}$$

Para que R ocorra, é necessário que as a pessoas que preferem A recebam esse sabor, bem como as b pessoas que preferem B. Dessa forma, temos que distribuir os 2n - (a + b) sorvetes restantes para as pessoas que não tem preferência. Assim, primeiramente temos os n - a sorvetes do sabor A que não foram alocados, de forma que:

$$\binom{2n-a-b}{n-a} = \frac{(2n-a-b)!}{(2n-a-b-n+a)!(n-a)!} = \frac{(2n-a-b)!}{(n-b)!(n-a)!}$$
(8)

E podemos mostrar que, caso fossemos alocar os n-b sorvetes do sabor B para as 2n-(a+b) pessoas sem preferência, teríamos:

$$\binom{2n-a-b}{n-b} = \frac{(2n-a-b)!}{(2n-a-b-n+b)!(n-b)!} = \frac{(2n-a-b)!}{(n-a)!(n-b)!}$$
(9)

Como (8) e (8) são iguais, podemos ver que a alocação dos sorvetes restantes não depende de qual sabor já foi alocado. Assim, temos que $|R| = \binom{2n-a-b}{n-a} = \binom{2n-a-b}{n-b}$, portanto:

$$P(R) = \frac{|R|}{|\Omega|} = \frac{\binom{2n-a-b}{n-a}}{\binom{2n}{n}}$$

Exercise 2.7 (BJ10). Suponhamos que dez cartas estejam numeradas de 1 até 10. Das dez cartas, retira-se uma de cada vez, ao acaso e sem reposição, até retirar-se o primeiro número par. Conta-se o número de retiradas necessárias. Exiba um bom modelo probabilístico para esse experimento.

Proof. Dada essa formulação, temos que 5 cartas são pares e 5 são ímpares. Assim, considere o evento $\{Y_k: 1 \le k \le 6; k \in \mathbb{Z}\}$ em que k indica que a k-ésima retirada contém a primeira carta par. Assim, por exemplo, Y_1 indica o evento em que a primeira carta retirada é par, Y_2 o evento em que a segunda carta retirada é par, e assim por diante.

O nosso espaço amostral é (visto que o número da carta não importa, apenas se é P = "par" ou I = "ímpar"):

$$\Omega = \{(P), (I, P), (I, I, P), (I, I, I, P), (I, I, I, I, P), (I, I, I, I, I, P)\}$$

É fácil ver que não é possível ter $\{Y_k : k \geq 7\}$, já que as cartas são retiradas sem reposição. Podemos facilmente calcular as probabilidades de cada evento em Ω , como segue:

$$P(Y_1) = \frac{5}{10} = \frac{1}{2}$$

$$P(Y_2) = \frac{5}{10} \cdot \frac{5}{9} = \frac{5}{18}$$

$$P(Y_3) = \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{5}{8} = \frac{5}{36}$$

$$P(Y_4) = \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{5}{7} = \frac{5}{84}$$

$$P(Y_5) = \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{5}{6} = \frac{5}{252}$$

$$P(Y_6) = \frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6} \cdot \frac{5}{5} = \frac{1}{252}$$

Podemos ver que $\sum_{k=1}^{6} P(Y_k) = 1$, e além disso, podemos denotar as probabilidades a partir da seguinte função:

$$P(Y_k) = \frac{5}{11 - k} \cdot \prod_{n=1}^{k-1} \frac{6 - n}{11 - n}$$
 (10)

A segunda parcela da equação (10) é válida para $k \ge 2$, pois ela representa as k-1 cartas ímpares retiradas antes da primeira carta par, caso que só ocorre caso $k \ge 2$.

Exercise 2.8 (BJ11). Para cada um dos seguintes experimentos, descreva um espaço de probabilidade que sirva de modelo:

a) Seleciona-se um ponto, ao acaso, do quadrado unitário

$$\{(x,y): 0 \le x \le 1, 0 \le y \le 1\}$$

Proof. Temos que:

$$\Omega = \{(x, y) \in [0, 1] \times [0, 1] \subset \mathbb{R}^2\}$$

Pela continuidade no vazio, é necessário que a probabilidade de ocorrência de um determinado ponto ser igual a zero, de modo que uma medida de probabilidade possível é por meio de intervalos. Considerando que $x \sim U(0,1)$ e $y \sim U(0,1)$ (ou seja, x e y são uniformemente distribuídos), podemos encontrar a probabilidade de $(x,y) \in \mathbb{I}$, com \mathbb{I} sendo um intervalo no cartesiano $[0,1] \times [0,1] \in \mathbb{R}^2$, por meio da distribuição de probabilidade conjunta de x e y.

b) Retiram-se cartas sucessivamente de um baralho de 52 cartas, ao acaso e *com* reposição, até retirar-se o primeiro rei. Registra-se o número total de retiradas.

Proof. Considere que $\{Y:Y\in\{1,2,\ldots\}\}$ indica a quantidade de retiradas necessárias até o primeiro rei. O espaço amostral é dado diretamente: $\Omega=\{1,2,3,\ldots\}$. Temos que, para cada retirada, a probabilidade da carta ser um rei é 4/52=1/13 (considerando que temos 4 reis no baralho), e a probabilidade de não ser é de 48/52=12/13. Assim, a probabilidade de que a primeira retirada seja um rei é de:

$$P(Y=1) = \frac{1}{13}$$

Caso isso não ocorra, a probabilidade de que o primeiro rei ocorra na segunda retirada é de:

$$P(Y=2) = \frac{12}{13} \cdot \frac{1}{13}$$

É possível verificar que, para todo $n \in \mathcal{N}$ a probabilidade de que o primeiro rei ocorra na retirada n é de:

$$P(Y=n) = \left(\frac{12}{13}\right)^{n-1} \cdot \left(\frac{1}{13}\right)$$

Esse modelo de probabilidade é denotado modelo geométrico.

c) Quinze bolas são retiradas, ao acaso e *com* reposição, de uma urna contendo 5 bolas vermelhas, 9 bolas pretas e uma bola branca. Observa-se o número que ocorre cada cor.

Proof. Sejam os eventos V, P e B o número de vezes que as retiradas foram de bolas vermelhas, pretas e brancas, respectivamente. É necessário (pela definição do modelo) que V + P + B = 15, mas consideremos o caso em que o número de retiradas seja n. Assim, para n = 1, o espaço amostral Ω é:

$$\Omega = \{(V), (P), (B)\}$$

E as probabilidades de cada evento são:

$$P(V = 1) = \frac{5}{15}$$

$$P(P = 1) = \frac{9}{15}$$

$$P(B = 1) = \frac{1}{15}$$

Para n=2 bolas retiradas, temos que o espaço amostral é:

$$\Omega = \{(V, V), (V, P), (V, B), \\ (P, V), (P, P), (P, B), \\ (B, V), (B, P), (B, B)\}$$

E as probabilidades de cada evento são:

$$P(V,V) = \frac{5}{15} \cdot \frac{5}{15}; P(V,P) = \frac{5}{15} \cdot \frac{9}{15}; P(V,B) = \frac{5}{15} \cdot \frac{1}{15};$$

$$P(P,V) = \frac{9}{15} \cdot \frac{5}{15}; P(P,P) = \frac{9}{15} \cdot \frac{9}{15}; P(P,B) = \frac{9}{15} \cdot \frac{1}{15};$$

$$P(B,V) = \frac{1}{15} \cdot \frac{5}{15}; P(B,P) = \frac{1}{15} \cdot \frac{9}{15}; P(B,B) = \frac{1}{15} \cdot \frac{1}{15}$$

Aqui é possível ver o padrão que surge para esse problema. Temos que os eventos V, P, B formam uma permutação (com repetição) da quantidade de bolas retiradas. A fórmula para a permutação com repetição de n elementos, em que cada um aparece $k_1, k_2, \dots k_j$ vezes é dada por:

$$P_n^{k_1, k_2, \dots, k_j} = \frac{n!}{k_1! \cdot k_2! \cdot \dots \cdot k_j!}$$

Assim, podemos considerar que cada evento irá aparecer uma quantidade V = v, P = p, B = b de vezes, com a seguinte probabilidade:

$$P(V = v, P = p, B = b) = \frac{15!}{v!p!b!} \cdot \left(\frac{5}{15}\right)^v \cdot \left(\frac{9}{15}\right)^p \cdot \left(\frac{1}{15}\right)^b ; \text{com } v + p + b = 15$$

Caso seja necessário, podemos ainda generalizar para uma quantidade $n:1\leq n\leq 15$ de retiradas:

$$P(V = v, P = p, B = b) = \frac{n!}{v!p!b!} \cdot \left(\frac{5}{15}\right)^v \cdot \left(\frac{9}{15}\right)^p \cdot \left(\frac{1}{15}\right)^b \; ; \text{com } v + p + b = n$$

Em que verifica-se facilmente que é válido para os casos em que n=1 e n=2 demonstrados anteriormente.

d) O experimento (c) é realizado sem reposição.

Proof. Como temos 15 bolas que serão retiradas sem reposição, o único evento possível após as 15 serem retiradas é:

$$\Omega = \{(V = 5, P = 9, B = 1)\}$$

E a probabilidade de isso ocorrer é 1 (visto que é o único evento no espaço amostral). Caso consideremos uma quantidade de retiradas n < 15, temos que o modelo de probabilidade é diferente. Consideremos que V + P + B = n e que a quantidade de vezes que cada cor aparece é v, p e b, respectivamente. Então, como a ordem com que as cores são retiradas não importa, a probabilidade de aparecer uma quantidade de bolas de cada cor é dada por:

$$P(V = v, P = p, B = b) = \frac{\binom{5}{v}\binom{9}{p}\binom{1}{b}}{\binom{15}{n}}, \ v + p + b = n$$

Esse modelo de probabilidade é chamado de multinomial hipergeométrico, e é uma generalização do modelo hipergeométrico para mais de duas classes (como é o caso).

Exercise 2.9 (BJ12). Retiram-se 4 cartas, ao acaso, de um baralho de 52 cartas. Registra-se o número de reis na amostra. Exiba um bom modelo probabilístico para este experimento se:

a) As retiradas são feitas sem reposição.

Proof. Considerando que em um baralho usual tem 52 cartas, e que a ordem com que cada uma das 4 cartas retiradas da amostra não importa (apenas importa a quantidade de reis na amostra), a quantidade total de amostras possíveis é $\binom{52}{4}$.

Como temos 4 reis no baralho, isso implica que há 48 cartas que são "não-reis". Dessa forma, se na amostra forem coletados k reis, serão coletados também 4-k "não-reis", com os k reis podendo aparecer de $\binom{4}{k}$ maneiras diferentes (não importa qual o rei foi registrado) e os 4-k "não-reis" podem aparecer de $\binom{48}{4-k}$ maneiras diferentes.

Assim, seja K o evento registrar k reis na amostra, a probabilidade P(K = k) é dada por:

$$P(K=k) = \frac{\binom{4}{k} \binom{48}{4-k}}{\binom{52}{4}} \tag{11}$$

Esse modelo é chamado de hipergeométrico, que vale quando sabemos a quantidades de sucessos totais na população, e queremos contar a quantidade de sucessos coletados em uma amostra finita da população (que também deve ser finita).

b) As retiradas são feitas *com* reposição.

Proof. Se as retiradas são feitas com reposição, a probabilidade de registrar um rei em cada retirada é de 4/52 e a probabilidade de registrar um "não-rei" é de 48/52. Como a ordem das retiradas não importa, podemos ver que em uma amostra de tamanho 4, os k reis podem aparecer de $\binom{4}{k}$ maneiras diferentes. Além disso, podemos ver que, como irão aparecer k reis na amostra, consequentemente irão aparecer k "não-reis".

Assim, seja K o evento registrar k reis na amostra, a probabilidade P(K = k) é dada por:

$$P(K = k) = {4 \choose k} \left(\frac{4}{52}\right)^k \left(\frac{48}{52}\right)^{4-k} \tag{12}$$

Esse modelo é chamado de binomial, e vale quando queremos encontrar a probabilidade de ocorrer k sucessos em uma amostra de tamanho n, dado que a probabilidade de cada sucesso é fixa.

c) Determine em que caso, (a) ou (b), é mais provável obter 4 reis.

Proof. Substituindo os valores de k em (11) e (12) para 4, podemos calcular as probabilidades em cada caso. Assim:

$$P(K = k) = \frac{\binom{4}{4}\binom{48}{0}}{\binom{52}{4}} \approx 3.7 \times 10^{-6}$$
$$P(K = k) = \binom{4}{4} \left(\frac{4}{52}\right)^4 \left(\frac{48}{52}\right)^0 \approx 3.5 \times 10^{-5}$$

De modo que é possível ver que no caso com reposição a probabilidade de encontrar 4 reis é maior. Exercise 2.10 (BJ13).

a) Sejam $A, B \in C$ eventos aleatórios em um espaço de probabilidade (Ω, \mathcal{A}, P) . Mostre que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

е

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Proof. Podemos escrever os eventos A e B como as seguintes uniões de eventos disjuntos:

$$A = (A \cap B) \cup (A \cap B^c)$$
$$B = (A \cap B) \cup (A^c \cap B)$$

Utilizando a propriedade da aditividade finita (P3), temos que:

$$P(A) = P(A \cap B) + P(A \cap B^c) \Rightarrow P(A \cap B^c) = P(A) - P(A \cap B)$$

$$P(B) = P(A \cap B) + P(A^c \cap B) \Rightarrow P(A^c \cap B) = P(B) - P(A \cap B)$$
(13)

Além disso, podemos escrever o evento $(A \cup B)$ como a seguinte união disjunta de eventos:

$$(A \cup B) = (A \cap B^c) \cup (A^c \cap B) \cup (A \cap B)$$

Por fim, utilizando os resultados de (13) e a aditividade finita, temos que:

$$P(A \cup B) = P(A \cap B^c) + P(A^c \cap B) + P(A \cap B)$$

= $P(A) - P(A \cap B) + P(B) - P(A \cap B) + P(A \cap B)$
= $P(A) + P(B) - P(A \cap B)$

Para a segunda expressão, podemos levar em consideração que os conjuntos $A, B \in C$ podem ser escritos como uniões de eventos disjuntos da seguinte forma:

$$A = (A \cap B^c \cap C^c) \cup (A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A \cap B \cap C)$$

$$B = (A^c \cap B \cap C^c) \cup (A \cap B \cap C^c) \cup (A^c \cap B \cap C) \cup (A \cap B \cap C)$$

$$C = (A^c \cap B^c \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A \cap B \cap C)$$

Nos utilizando novamente da aditividade finita, temos que:

$$P(A) = P(A \cap B^c \cap C^c) + P(A \cap B \cap C^c) + P(A \cap B^c \cap C) + P(A \cap B \cap C)$$

$$P(B) = P(A^c \cap B \cap C^c) + P(A \cap B \cap C^c) + P(A^c \cap B \cap C) + P(A \cap B \cap C)$$

$$P(C) = P(A^c \cap B^c \cap C) + P(A^c \cap B \cap C) + P(A \cap B^c \cap C) + P(A \cap B \cap C)$$

De maneira similar ao que fizemos na demonstração anterior, podemos isolar as probabilidades à direita, como por exemplo:

$$P(A \cap B \cap C^c) = P(A) - P(A \cap B^c \cap C^c) - P(A \cap B^c \cap C) - P(A \cap B \cap C)$$

$$\tag{14}$$

Mas vale notar que, por serem eventos disjuntos:

$$P(A \cap B^c \cap C^c) + P(A \cap B^c \cap C) = P(A - B) = P(A \cap B^c) = P(A) - P(A \cap B)$$

De modo que a equação (14) pode ser reescrita como:

$$P(A \cap B \cap C^c) = P(A) - P(A) + P(A \cap B) - P(A \cap B \cap C)$$

= $P(A \cap B) - P(A \cap B \cap C)$

Assim, podemos denotar as seguintes probabilidades:

$$P(A \cap B \cap C^{c}) = P(A \cap B) - P(A \cap B \cap C)$$

$$P(A \cap B^{c} \cap C) = P(A \cap C) - P(A \cap B \cap C)$$

$$P(A^{c} \cap B \cap C) = P(B \cap C) - P(A \cap B \cap C)$$

$$(15)$$

Utilizando os resultados de (15), podemos isolar as outras probabilidades, tais como:

$$P(A \cap B^c \cap C^c) = P(A) - P(A \cap B \cap C^c) - P(A \cap B^c \cap C) - P(A \cap B \cap C)$$

= $P(A) - P(A \cap B) + P(A \cap B \cap C) - P(A \cap C) + P(A \cap B \cap C) - P(A \cap B \cap C)$
= $P(A) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)$

De modo que podemos denotar as seguintes probabilidades:

$$P(A \cap B^c \cap C^c) = P(A) - P(A \cap B) - P(A \cap C) + P(A \cap B \cap C)$$

$$P(A^c \cap B \cap C^c) = P(B) - P(A \cap B) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A^c \cap B^c \cap C) = P(C) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$(16)$$

O evento $(A \cup B \cup C)$ pode ser escrito como a seguinte união de eventos disjuntos (de fácil verificação que são disjuntos dois a dois):

$$(A \cup B \cup C) = (A \cap B \cap C^c) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A^c \cap B \cap C)$$

$$(A \cap B \cap C)$$

$$(17)$$

Por fim, valendo-se da aditividade finita e substituindo em (17) os resultados obtidos em (15) e (16), temos que:

$$\begin{split} P(A \cup B \cup C) = & P(A \cap B \cap C^c) + P(A \cap B^c \cap C) + P(A^c \cap B \cap C) + P(A \cap B^c \cap C^c) + \\ & P(A^c \cap B \cap C^c) + P(A^c \cap B^c \cap C) + P(A \cap B \cap C) \\ = & P(A \cap B) - P(A \cap B \cap C) + P(A \cap C) - P(A \cap B \cap C) + P(B \cap C) - P(A \cap B \cap C) + \\ & P(A) - P(A \cap B) - P(A \cap C) + P(B) - P(A \cap B) - P(B \cap C) + P(C) - P(A \cap C) - \\ & P(B \cap C) + P(A \cap B \cap C) \\ = & P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C) \end{split}$$

b) Enuncie a generalização do item (a) para o caso da união de n eventos aleatórios.

Proof. Podemos ver que as demonstrações anteriores podem ser escritas como:

$$P\left(\bigcup_{i=1}^{n} A_{n}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \leq i_{1} < i_{2} < i_{3} \leq n} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) - \dots$$

$$+ (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} P(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

$$(18)$$

Esse é chamado de princípio de inclusão-exclusão.

c) Prove as seguintes desigualdades de Bonferroni:

$$(i) \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) \le P\left(\bigcup_{i=1}^{n} A_n\right) \le \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k)$$

Proof. Podemos demonstrar a primeira desigualdade utilizando a equação (18):

$$\sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) \leq P\left(\bigcup_{i=1}^{n} A_{n}\right)$$

$$0 \leq P\left(\bigcup_{i=1}^{n} A_{n}\right) - \left(\sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}\right)$$

$$0 \leq \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k}) - \sum_{1 \leq i < j < k < l \leq n} P(A_{i} \cap A_{j} \cap A_{k} \cap A_{l}) + \dots$$

$$+ (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} < n} P(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

$$(19)$$

E como $(A_{i_1} \cap \cdots \cap A_{i_n}) \subseteq (A_{i_1} \cap \cdots \cap A_{i_{n-1}}) \Rightarrow P((A_{i_1} \cap \cdots \cap A_{i_n})) \leq P((A_{i_1} \cap \cdots \cap A_{i_{n-1}}))$, temos que a expressão (19) é maior que 0. Para a segunda designaldade, vamos nos valer do mesmo princípio:

$$P\left(\bigcup_{i=1}^{n} A_{n}\right) \leq \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k})$$

$$0 \leq \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k}) - \left(P\left(\bigcup_{i=1}^{n} A_{n}\right)\right)$$

$$0 \leq \sum_{1 \leq i < j < k < l \leq n} P(A_{i} \cap A_{j} \cap A_{k} \cap A_{l}) - \dots - (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} P(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

$$(20)$$

E da mesma forma que antes, é possível ver que a última expressão em (20) é maior que 0.

(ii) Se k é impar, $k \leq n$, então:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P(A_{n}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \dots + (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} P(A_{i_{1}} \cap \dots \cap A_{i_{k}});$$

se k é par, $k \le n$, vale \ge nesta última desigualdade.

Proof. Como $k \leq n$, podemos separar a desigualdade em dois casos:

- 1. k = n;
- 2. k < n;

No primeiro caso é fácil ver que a expressão se iguala à generalização para a união dada em (18). Para o segundo caso, temos que:

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}P(A_{i}) - \sum_{1\leq i_{1}< i_{2}\leq n}P(A_{i_{1}}\cap A_{i_{2}}) + \dots \\ + \ (-1)^{k-1}\sum_{1\leq i_{1}< \dots < i_{k-1}< i_{k}}P(A_{i_{1}}\cap \dots \cap A_{i_{k}}) \ + \ (-1)^{k}\sum_{1\leq i_{1}< \dots < i_{k}< i_{k+1}}P(A_{i_{1}}\cap \dots \cap A_{i_{k+1}}) \ + \dots \\ \text{Termo k}$$

Como k é ímpar, o termo k será positivo e o termo k+1 será negativo. Assim, se subtrairmos os $k+j,\ j\in\{1,\ldots,n-k\}$ termos de ambos os lados, teremos:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) - \left((-1)^{k} \sum_{1 \leq i_{1} < \dots < i_{k} < i_{k+1}} P(A_{i_{1}} \cap \dots \cap A_{i_{k+1}}) + \dots\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \dots + (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k-1} < i_{k}} P(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

E podemos ver que:

$$P\left(\bigcup_{i=1}^{n} A_i\right) - \left((-1)^k \sum_{1 \le i_1 < \dots < i_k < i_{k+1}} P(A_{i_1} \cap \dots \cap A_{i_{k+1}}) + \dots\right) \ge P\left(\bigcup_{i=1}^{n} A_i\right)$$

De modo que:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P(A_{n}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \dots + (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k-1} < i_{k}} P(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

Se k for par, o termo k será negativo e o termo k+1 será positivo, de modo que a desigualdade anterior se inverte, ao fazer a subtração dos $k+j,\ j\in\{1,\ldots,n-k\}$ termos na igualdade.

Exercise 2.11 (BJ15). Suponha que *n* cartas numeradas de 1 até *n* sejam embaralhadas e retiradas uma por uma, sem reposição, até todas as cartas serem retiradas. Qual a probabilidade de que para pelo menos uma carta, o número da carta coincida com o número da retirada?

Proof. Seja A_i o evento em que o número da carta i coincidiu com o número da retirada. Podemos ver que, o caso em que para pelo menos uma delas coincida é equivalente a $\bigcup_{i=1}^{n} A_i$. Dessa maneira, podemos ver que a probabilidade de isso ocorrer é:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{n}) - \sum_{1 \leq i_{1} < i_{2} \leq n} P(A_{i_{1}} \cap A_{i_{2}}) + \dots + (-1)^{k-1} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} P(A_{i_{1}} \cap \dots \cap A_{i_{k}});$$

O primeiro termo pode ser demonstrado como sendo:

$$\sum_{i=1}^{n} P(A_n) = P(A_1) + P(A_2) + \dots + P(A_n) = \sum_{i=1}^{n} \frac{1}{n} = 1$$

Para o termo de intercessão dois a dois, temos que a probabilidade de que o número na primeira carta ser igual a o número da retirada é de 1/n, e o da segunda carta o ser é de 1/(n-1), e como temos $\binom{n}{2}$ combinações diferentes de retiradas, temos que a probabilidade do segundo termo é:

$$\sum_{1 \le i_1 < i_2 \le n} P(A_{i_1} \cap A_{i_2}) = P(A_1 \cap A_2) + P(A_1 \cap A_3) + \dots + P(A_{n-1} \cap A_n)$$
$$= \frac{\binom{n}{2}}{n \cdot (n-1)} = \frac{n!}{(n-2)!2!} \cdot \frac{1}{n \cdot (n-1)} = \frac{n!}{n!2!} = \frac{1}{2!}$$

Assim, podemos ver que para qualquer termo teremos:

$$\sum_{1 \le i_1 < \dots < i_k \le n} P(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{1}{k!}$$

De modo que a probabilidade da união dos eventos se resume à série:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{k-1} \frac{1}{k!}$$

Exercise 2.12 (BJ16). Seja (Ω, \mathcal{A}, P) um espaço de probabilidade e suponha que todos os conjuntos abaixo pertençam a \mathcal{A} . Prove:

a) Se os A_n são disjuntos e $P(B|A_n) \ge c$ para todo n, então $P(B|\bigcup_{n=1}^k A_n) \ge c$ (pode supor $P(A_n) > 0$ para todo n).

Proof. Sabemos que $A_i \cap A_j = \emptyset$, $\forall i, j$. Dito isso, podemos ver que a seguinte relação é válida:

$$P(B|A_n) = \frac{P(A_n \cap B)}{P(A_n)} \ge c$$

$$P(A_n \cap B) \ge cP(A_n) \tag{21}$$

Além disso, podemos desenvolver $P(B|\bigcup_{n=1}^k A_n)$ da seguinte forma:

$$P\left(B \mid \bigcup_{n=1}^{k} A_n\right) = \frac{P\left(B \cap (A_1 \cup A_2 \cdots \cap A_k)\right)}{P\left(\bigcup_{n=1}^{k} A_n\right)}$$

$$= \frac{P\left((A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_k \cap B)\right)}{\sum_{n=1}^{k} P(A_n)}$$

$$P\left(B \mid \bigcup_{n=1}^{k} A_n\right) = \frac{\sum_{n=1}^{k} P(A_n \cap B)}{\sum_{n=1}^{k} P(A_n)}$$
(22)

O denominador de (22) é simplesmente o somatório das probabilidades dos A_n 's pelo fato de que eles são disjuntos (definidos no enunciado da questão). Agora, considerando que a relação (21) é válida para todos os A_n 's, vamos somar todas as probabilidades para os $n \in \{1, 2, ..., k\}$:

$$P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_k \cap B) \ge cP(A_1) + cP(A_2) + \dots + cP(A_k)$$

$$\sum_{n=1}^k P(A_n \cap B) \ge \sum_{n=1}^k cP(A_n)$$

$$\sum_{n=1}^k P(A_n \cap B) \ge c \sum_{n=1}^k P(A_n)$$

$$\frac{\sum_{n=1}^k P(A_n \cap B)}{\sum_{n=1}^k P(A_n)} \ge c$$

$$P\left(B \mid \bigcup_{n=1}^k A_n\right) \ge c$$

b) O item (a) com "=" no lugar de "≥".

Proof. Substituindo o sinal de \geq em (22) por uma igualdade, a prova é igual ao já realizado no item anterior.

c) Se $A_n \supset A_{n+1}$ e $P(A_{n+1}|A_n) \leq \frac{1}{2}$ para todo n, então $P(A_n) \to 0$ quando $n \to \infty$.

Proof. Consideremos o caso inicial, com A_1 e A_2 . Disso tem-se que:

$$P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)} \le \frac{1}{2}$$

Como $A_1 \supset A_2$, $P(A_1 \cap A_2) = P(A_2)$. Logo:

$$\frac{P(A_2)}{P(A_1)} \le \frac{1}{2} \Rightarrow P(A_2) \le \frac{1}{2}P(A_1)$$

Para o caso seguinte, com A_2 e A_3 , temos que:

$$P(A_3|A_2) = \frac{P(A_2 \cap A_3)}{P(A_2)} \le \frac{1}{2}$$
$$\frac{P(A_3)}{P(A_2)} \le \frac{1}{2} \Rightarrow P(A_3) \le \frac{1}{2}P(A_2)$$

E como $P(A_2) \leq \frac{1}{2}P(A_1)$, temos que $P(A_3) \leq \frac{1}{4}P(A_1)$. Assim, já é possível identificar que, para qualquer n temos que:

$$P(A_n) \le \frac{1}{2^{n-1}} P(A_1)$$

$$\lim_{n \to \infty} P(A_n) \le \lim_{n \to \infty} \frac{1}{2^{n-1}} P(A_1) = 0$$

Assim, independentemente do valor de $P(A_1)$, o valor $P(A_n) \to 0$ conforme $n \to \infty$.

d) Se os A_n são disjuntos e $P(B|A_n) = P(C|A_n)$ para todo n, então

$$P(B|\cup A_n) = P(C|\cup A_n)$$

Proof. Como os A_n s são disjuntos, temos que:

$$P(B|A_n) = \frac{P(B \cap (\cup A_n))}{P(\cup A_n)}$$

$$= \frac{P((A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B))}{\sum P(A_n)}$$

$$= \frac{\sum P(A_n \cap B)}{\sum P(A_n)}$$

Para C temos a mesma relação:

$$P(C|A_n) = \frac{\sum P(A_n \cap C)}{\sum P(A_n)}$$

E disso temos que:

$$P(B|A_n) = \frac{P(A_n \cap B)}{P(A_n)}$$

Como, por hipótese, temos que $P(B|A_n) = P(C|A_n) \Rightarrow P(A_n \cap B) = P(A_n \cap C)$, de modo que, como os A_n s são disjuntos, $\sum P(A_n \cap B) = \sum P(A_n \cap C)$, logo:

$$\frac{\sum P(A_n \cap B)}{\sum P(A_n)} = \frac{\sum P(A_n \cap C)}{\sum P(A_n)}$$

e) Se A_1, A_2, \dots são disjuntos e $\cup A_n = \Omega$, então:

$$P(B|C) = \sum_{n} P(A_n|C)P(B|A_n \cap C)$$

Proof. Pelo Teorema da Multiplicação, temos que $P(A_n \cap B \cap C)$ pode ser escrito como:

$$P(A_n \cap B \cap C) = P(B|A_n \cap C)P(A_n \cap C)P(C)$$

É importante notar que essa representação não é única, mas apenas conveniente para o problema em questão. Podemos então somar para todos os A_n s:

$$\sum P(A_n \cap B \cap C) = \sum P(B|A_n \cap C)P(A_n \cap C)P(C) = P(C)\sum P(B|A_n \cap C)P(A_n \cap C)$$

Como os A_n s formam uma partição de Ω , $\sum P(A_n \cap B \cap C) = P(B \cap C)$. Logo:

$$P(B|C) = \frac{P(B \cap C)}{P(C)}$$

$$= \frac{P(C) \sum P(B|A_n \cap C)P(A_n \cap C)}{P(C)}$$

$$= \sum P(B|A_n \cap C)P(A_n \cap C)$$

Exercise 2.13 (BJ17). Suponha que a ocorrência ou não de chuva dependa das condições do tempo no dia imediatamente anterior. Admita-se que se chove hoje, choverá amanhã com probabilidade de 0,7 e que se não chove hoje choverá amanhã com probabilidade 0,4. Sabendo-se que choveu hoje, calcule a probabilidade de que choverá depois de amanhã.

Proof. Sejam os eventos C_n = "Choveu no dia de hoje", NC_n = "Não choveu no dia de hoje". De maneira similar, C_{n+1} indica que choverá amanhã, C_{n+2} que choverá depois de amanhã e assim por diante. Sabemos pelo enunciado as seguintes probabilidades:

$$P(C_{n+1}|C_n) = 0.7$$
, $P(NC_{n+1}|C_n) = 0.3$
 $P(C_{n+1}|NC_n) = 0.4$, $P(NC_{n+1}|NC_n) = 0.6$

Além disso, como os eventos Chover e Não-Chover formam uma partição (são eventos complementares), pelo Teorema da Probabilidade Total temos que a probabilidade de chover depois de amanhã é dada por:

$$P(C_{n+2}) = P(C_{n+2}|C_{n+1})P(C_{n+1}) + P(C_{n+2}|NC_{n+1})P(NC_{n+1})$$
(23)

É fácil perceber que $P(C_{n+2}|C_{n+1}) = P(C_{n+1}|C_n)$ e de maneira similar que $P(C_{n+2}|NC_{n+1}) = P(C_{n+1}|NC_n)$. Ainda assim, é necessário encontrar as probabilidades $P(C_{n+1})$ e $P(NC_{n+1})$. Como sabemos que choveu hoje, $P(C_n) = 1$ e $P(NC_n) = 0$, de modo que:

$$P(C_{n+1}) = P(C_{n+1}|C_n)P(C_n) + P(C_{n+1}|NC_n)P(NC_n)$$

$$= 0,7 \times 1 + 0,4 \times 0 = 0,7$$

$$P(NC_{n+1}) = P(NC_{n+1}|C_n)P(C_n) + P(NC_{n+1}|NC_n)P(NC_n)$$

$$= 0,3 \times 1 + 0,6 \times 0 = 0.3$$

Substituindo esses valores em (23), temos:

$$P(C_{n+2}) = P(C_{n+1}|C_n) \times 0.7 + P(C_{n+1}|NC_n) \times 0.3$$

= 0.7 \times 0.7 + 0.4 \times 0.3 = 0.49 + 0.12 = 0.61

Exercise 2.14 (BJ18). Certo experimento consiste em lançar um dado equilibrado duas vezes, independentemente. Dado que os dois números sejam diferentes, qual a probabilidade condicional de:

a) Pelo menos um dos números ser 6?

Proof. Sejam A_1 e A_2 os lançamentos do primeiro e do segundo dado, respectivamente. Sabemos que $P(A_1 = A_2) = 0$. Disso temos que:

$$P((A_1 = 6) \cup (A_2 = 6)) = P(A_1 = 6) + P(A_2 = 6) - P((A_1 = 6) \cap (A_2 = 6))$$

$$= \frac{1}{6} + \frac{1}{6} - 0$$

$$= \frac{1}{3}$$

b) A soma dos números ser 8?

Proof. Considere o evento $S = x, x \in \{2, 3, ..., 12\}$ o resultado da soma dos lançamentos A_1 e A_2 . Utilizando o Teorema da Probabilidade Total, podemos decompor a probabilidade da soma ser igual a 8 da seguinte forma:

$$P(S=8) = P(S=8|A_1=1)P(A_1=1) + P(S=8|A_1=2)P(A_1=2) + \dots + P(S=8|A_1=6)P(A_1=6)$$

$$= 0 \times \frac{1}{6} + \frac{1}{5} \times \frac{1}{6} + \frac{1}{5} \times \frac{1}{6} + 0 \times \frac{1}{6} + \frac{1}{5} \times \frac{1}{6} + \frac{1}{5} \times \frac{1}{6}$$

$$= \frac{1}{30} + \frac{1}{30} + \frac{1}{30} + \frac{1}{30}$$

$$= \frac{4}{30}$$

Exercise 2.15 (BJ19). Em teste de múltipla escolha, a probabilidade do aluno saber a resposta é p. Havendo m escolhas, se ele sabe a resposta ele responde corretamente com probabilidade 1; se não sabe, ele responde corretamente com probabilidade $\frac{1}{m}$. Qual a probabilidade de que ele soubesse a resposta dado que a pergunta foi respondida corretamente? Calcule o limite dessa probabilidade quando (i) $m \to \infty$ com p fixo e (ii) $p \to 0$ com p fixo.

Proof. Sejam: P(S) = p a probabilidade de saber a resposta, P(A|S) = 1 a probabilidade de acertar, dado que sabia a resposta, $P(A|NS) = \frac{1}{m}$ a probabilidade de acertar, dado que não sabia a resposta e $P(NA|NS) = \frac{m-1}{m}$ a probabilidade de não acertar, dado que não sabe a resposta. Sabemos que os eventos $S \in NS$ são complementares, assim como $A \in NA$. Queremos encontrar P(S|A), que é dada por:

$$\begin{split} P(S|A) &= \frac{P(S \cap A)}{P(A)} \\ &= \frac{P(A|S)P(S)}{P(A|S)P(S) + P(A|NS)P(NS)} \\ &= \frac{1 \times p}{1 \times p + \frac{1}{m} \times (1-p)} \\ &= \frac{p}{\frac{mp+1-p}{m}} \end{split}$$

De modo que, simplificando a última expressão:

$$P(S|A) = \frac{mp}{p(m-1)+1}$$
 (24)

Agora, calculando os limites temos:

• (i) $\lim_{p \to 0} \frac{mp}{p(m-1)+1} = \frac{0}{1} = 0$

• (ii)

$$\lim_{m \to \infty} \frac{mp}{p(m-1)+1} \xrightarrow{\text{L'Hôpital}} \frac{\frac{\partial}{\partial m}mp}{\frac{\partial}{\partial m}p(m-1)+1} = \frac{p}{p} = 1$$

Exercise 2.16 (BJ20). Durante o mês de novembro a probabilidade de chuva é de 0,3. O Fluminense ganha um jogo em um dia de chuva com a probabilidade de 0,4; em um dia sem chuva com a probabilidade 0,6. Se ganhou um jogo em novembro, qual é a probabilidade de que choveu neste dia?

Proof. Sejam os seguintes eventos: P(C) = 0, 3 é a probabilidade de chover em novembro, P(NC) = 0, 7 é a probabilidade de não chover em novembro, P(V|C) = 0, 4 é a probabilidade de vitória, dado que choveu no dia, P(D|C) = 0, 6 é a probabilidade de derrota, dado que choveu no dia, P(V|NC) = 0, 6 é a probabilidade de vitória, dado que não choveu no dia e P(D|NC) = 0, 4 é a probabilidade de derrota, dado que não choveu no dia. Pelo Teorema da Probabilidade Total, temos que:

$$P(V) = P(V|C)P(C) + P(V|NC)P(NC)$$

= 0, 4 × 0, 3 + 0, 6 × 0, 7
= 0, 54

Além disso, temos que o evento $P(C \cap V) = P(V|C)P(C)$, logo:

$$P(C \cap V) = P(V|C)P(C) = 0,4 \times 0,3 = 0,12$$

Assim, temos que a probabilidade de ter chovido, dado que o Fluminense ganhou o jogo em novembro é de:

$$P(C|V) = \frac{P(C \cap V)}{P(V)} = \frac{0,12}{0,54} = \frac{2}{9}$$

3 Variáveis Aleatórias

3.1 Variáveis aleatórias e funções de distribuição

Example 3.1. Considere um experimento em que uma moeda é lançada duas vezes. Seja X = total de caras nos dois lançamentos. Denotemos o evento cara como H e coroa como T. Logo:

Espaço Amostral (Ω)	X
HT	1
TH	1
HH	2
TT	0

Logo, $X: \mathcal{F} \to \mathbb{R}$. Vale também que, $\forall x$ valor na imagem de $X, X^{-1}(x) \in \mathcal{F}$. Por exemplo:

$$x = 1 \Rightarrow X^{-1}(1) = \{HT, TH\}$$

 $x = 2 \Rightarrow X^{-1}(2) = \{HH\}$
 $x = 0 \Rightarrow X^{-1}(0) = \{TT\}$

Definition 3.1 (Variável aleatória). Seja (Ω, \mathcal{F}, P) um espaço de probabilidades. Uma função $X : \mathcal{F} \to \mathbb{R}$ é variável aleatória se $[x \in I] \in \mathcal{F}, I \in \mathbb{R}$ (ou, equivalentemente, se $\{\omega : X(\omega) \in I\} \in \mathcal{F}; X^{-1}(I) \in \mathcal{F}\}$).

Definition 3.2 (Distribuição Acumulada). Considere um espaço de probabilidades (Ω, \mathcal{F}, P) e $X : \mathcal{F} \to \mathbb{R}$ uma variável aleatória, defina $F(r) = P(X \le r) = P(\{\omega : X(\omega) \le r\})$.

Example 3.2. Seja X = número de caras em dois lançamentos de moeda (honesta). Temos que as probabilidades de X são dadas por:

$$P(X = 0) = P(\{TT\}) = \frac{1}{4}$$

$$P(X = 1) = P(\{TH, HT\}) = \frac{2}{4}$$

$$P(X = 2) = P(\{HH\}) = \frac{1}{4}$$

Para encontrarmos a função de distribuição acumulada, podemos particinar o espaço e "acumular" as probabilidades. Para r < 0:

$$F(r) = P([X \le r]) = P(\emptyset) = 0$$

Para $r \in [0, 1)$:

$$F(r) = P([X \le r]) = P(X \le 0) = \frac{1}{4}$$

Para $r \in [1, 2)$:

$$F(r) = P([X \le r]) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{3}{4}$$

Para $r \geq 2$:

$$F(r) = P([X \le r]) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1$$

Logo, F é dada por:

$$F(r) = \begin{cases} 0, & r < 0 \\ \frac{1}{4}, & r \in [0, 1) \\ \frac{3}{4}, & r \in [1, 2) \\ 1, & r \ge 2 \end{cases}$$

Distribuição de probabilidades acumulada

Theorem 3.1 (Propriedades da distribuição acumulada). Seja X uma variável aleatória definida em (Ω, \mathcal{F}, P) , então a f.d.a. de X (F_X ou F) verifica:

- a) F é monótona não decrescente;
- b) F é contínua à direita;
- c) $\lim_{t\to-\infty} F(t) = 0$ $e \lim_{t\to\infty} F(t) = 1$.

Proof.

- a) Dados $a, b \in \mathbb{R}$: $a \le b$; $[X \le a] \subseteq [X \le b] \Rightarrow P([X \le a]) \le P([X \le b]) \Rightarrow F(a) \le F(b)$.
- b) Se $X_n \downarrow x$, quando $n \to \infty$, temos que $\{[X \le x_n]\}_{n \ge 1}$ é tal que $\bigcap_{n \ge 1} [X \le x_n] = [X \le x]$. Isso significa que $[X \le x]$ acontece se e somente se $[X \le x_n] \forall n$. Além disso, $[X \le x_n] \downarrow [X \le x]$ quando $n \to \infty$, logo, pela continuidade da função de probabilidade $P([X \le x_n]) \downarrow P([X \le x]), n \to \infty$.
- c) Considere agora que $x_n \downarrow -\infty \Rightarrow [X \leq x_n] \downarrow \emptyset$, $n \to \infty \Rightarrow F(x_n) = P([X \leq x_n]) \downarrow P(\emptyset) = 0$, $n \to \infty$. Se $x_n \uparrow \infty \Rightarrow [X \leq x_n] \uparrow \Omega$, $n \to \infty \Rightarrow F(x_n) = P([X \leq x_n]) \uparrow P(\Omega) = 1$, $n \to \infty$.

Theorem 3.2. Se F é a f.d.a. da variável aleatória X, então:

- a) Existem e são finitos os limites laterais $\lim_{t\to r^-} F(t), \lim_{t\to r^+} F(t), \forall r\in\mathbb{R}$ e $\lim_{t\to r^-} F(t)\leq \lim_{t\to r^+} F(t);$
- b) $\lim_{t\to r^+} F(t) = F(r), \forall r \in \mathbb{R};$
- c) $F \notin descontinua\ em\ r, r \in \mathbb{R}\ se\ e\ somente\ se\ \lim_{t\to r^-} F(t) < F(r),\ com\ um\ salto\ de\ tamanho\ F(r) \lim_{t\to r^-} F(t);$
- d) $\forall r \in \mathbb{R}, P(X = r) = F(r) \lim_{t \to r^{-}} F(t);$
- e) Existem no máximo um total enumerável de descontinuidades em F.

Proof.

- a) F é monótona e limitada $(0 \le F \le 1)$. Logo, os limites laterais existem e são limitados.
- b) Como F é monótona não-decrescente, $\forall x,y:x\leq y\Rightarrow F(x)\leq F(y)$. Logo $\lim_{t\to r^-}F(t)\leq F(y)$ $\lim_{t\to r^+} F(t)$.
- c) Como F é monótona não-decrescente, uma descontinuidade só ocorre se e somente se $\lim_{t\to r^-} F(t) <$ $\lim_{t \to r^+} F(t) = F(r).$
- d) Seja $r \in \mathbb{R}$. $[X \le r] = \bigcap_{n=1}^{\infty} (r \frac{1}{n} < x \le r)$, logo:

$$\begin{split} P([X=r]) &= P\left(\bigcap_{n=1}^{\infty} \left(r - \frac{1}{n} < x \le r\right)\right) \\ & \Downarrow (\text{Teorema da continuidade}) \\ &= \lim_{n \to \infty} P\left(\left(r - \frac{1}{n} < x \le r\right)\right) \\ &= \lim_{n \to \infty} \left(F(r) - F\left(r - \frac{1}{n}\right)\right) \\ &= F(r) - \lim_{n \to \infty} F\left(r - \frac{1}{n}\right) \\ P([X=r]) &= F(r) - \lim_{t \to r^-} F(t) \end{split}$$

e) Seja \mathcal{D} o conjunto de pontos de descontinuidades de F, e seja $\lim_{t\to x^-} F(t) = F(x^-)$. Logo:

$$\mathcal{D} = \{ x \in \mathbb{R} : F(x) - F(x^{-}) > 0 \}$$

Seja \mathcal{D}_n o conjunto de pontos para os quais a amplitude do salto é maior ou igual a $\frac{1}{n}$. Logo:

$$\mathcal{D}_n = \left\{ x \in \mathbb{R} : F(x) - F(x^-) \ge \frac{1}{n} \right\} \Rightarrow \#D = |D| \le n$$

Se $x \in \mathcal{D} \Rightarrow \exists n_0 > 1 : F(x) - F(x^-) \ge \frac{1}{n_0} \Rightarrow x \in \bigcup_{n=1}^{\infty} \mathcal{D}_n$. Se $x \in \bigcup_{n=1}^{\infty} \mathcal{D}_n \Rightarrow \exists n_1 : x \in \mathcal{D}_n \Rightarrow x \in \mathcal{D}$. \mathcal{D} portanto é a união enumerável de conjuntos finitos, logo é enumerável.

Natureza das variáveis aleatórias

- a) X é uma variável aleatória discreta se os valores que ela toma pertencem a um conjunto enumerável, $\log X: \Omega \to \{x_1, x_2, \ldots\}$ (ou seja, $X(\omega) \in \{x_1, x_2, \ldots\}, \forall \omega \in \Omega$) e $P: \{x_1, x_2, \ldots\} \to [0, 1]$ é dado por $P(x_i) = P\{\omega : \omega \in \Omega \in X(\omega) = x_i\} \forall i \geq 1.$
- b) X é uma variável aleatória absolutamente contínua se $\exists f$ (uma função) tal que $f(x) \geq 0, \forall x \in \mathbb{R}$ e $F_X(x) = \int_{-\infty}^x f(t)dt$ (onde f é chamada de densidade de X).

- Sob (a) temos que $[X \le x] = \bigcup_{i:x_i \le x} [X = x_i]$. Logo $F_x(x) = \sum_{i:x_i \le x} P(x_i)$. Sob (b) estamos afirmando que F_X é a integral de f (ou seja, f é a sua derivada) para todo x exceto em um conjunto de medida de Lebesgue nula, ou seja, se seu comprimento for zero $(\int_a^a f(t)dt = 0)$. Ainda sob (b), se f é uma função de densidade podemos definir $F(x) = \int_{-\infty}^{x} f(t)dt$ e F verifica:
 - 1. $x \le y \Rightarrow F(x) \le F(y)$;
 - 2. Se $x_n \downarrow x \Rightarrow F(x_n) \downarrow F(x)$;
 - 3. Se $x_n \downarrow -\infty \Rightarrow F(x_n) \downarrow 0$ e se $x_n \uparrow \infty \Rightarrow F(x_n) \uparrow 1$.

Dada uma variável aleatória com distribuição F_X , X tem densidade se:

- (i) F_X é contínua;
- (ii) F_X é derivável por partes (ou derivável no interior de um número finito ou enumerável de intervalos fechados cuja união é igual a \mathbb{R}), ou derivável para todo x exceto um número finito (enumerável) de pontos.

Example 3.3.

$$F_X(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1] \\ 1, & x > 1 \end{cases} \qquad \overset{\widehat{\aleph}}{\searrow}$$

Notas:

- F_X é contínua;
- {0,1} são pontos sem derivada;
- Podemos definir os seguintes intervalos em que F_X é derivável: $(-\infty,0),(0,1),(1,\infty);$
- $F'_X(x) = \begin{cases} 1, & x \in (0,1) = f_X(x) \\ 0, & c.c. \end{cases}$;
- f(0) e f(1) podem ser definidos como zero ou um, já que tais definições não alteram $F_X(x) = \int_{-\infty}^x f(t)dt$.

Em contrapartida, considere:

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Notas:

• F_X não é contínua;

•
$$P(X = 0) = \lim_{x \to 0^+} F_X(x) - \lim_{x \to 0^-} F_X(x) = 1.$$

Example 3.4. Considere a densidade triangular:

$$f_X(x) = \begin{cases} x, & \text{se } 0 \le x < 1 \\ 2 - x, & \text{se } 1 \le x < 2 \\ 0 & c.c. \end{cases}$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

Por definição, $f(x) \ge 0 \ \forall x$. Para verificarmos que a probabilidade total é igual a um, podemos realizar a seguinte integração por partes:

$$\int_{-\infty}^{x} f_X(x) dx = \int_{0}^{2} f_X(x) dx$$

$$= \int_{0}^{1} x dx + \int_{1}^{2} (2 - x) dx$$

$$= \frac{x^2}{2} \Big|_{0}^{1} + 2x \Big|_{1}^{2} - \frac{x^2}{2} \Big|_{1}^{2}$$

$$= 1$$

O que demonstra que $f_X(x)$ é densidade de probabilidade.

Conjecture 3.1. Cada função de distribuição se corresponde com apenas uma distribuição? Não.

Proof. Considere, por exemplo, que a variável aleatória $X \sim N(0,1)$. Logo, a sua função distribuição de probabilidade é dada por $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ e $\Phi(x)$ é sua acumulada. Vejamos que $X \sim N(0,1) \iff -X \sim N(0,1)$:

Seja ω um possível valor de -X, devemos calcular $P(-X \leq \omega)$ e provar que $P(-X \leq \omega) = \Phi(\omega)$:

$$P(-X \le \omega) = P(X \ge -\omega) = 1 - P(X \le \omega) = 1 - \Phi(-\omega) = 1 - (1 - \Phi(\omega)) = \Phi(\omega)$$

3.3 Variáveis aleatórias e σ -álgebra de Borel

Se X é uma variável aleatória em (Ω, \mathcal{A}, P) , cada evento $[X \leq x] \in \mathcal{A} \ \forall x \in \mathbb{R}$. Isto é, $[X \in \mathcal{B}]$, onde $[X \in \mathcal{B}] = [X \leq x]$ é um evento e $P(X \in \mathcal{B})$ é bem definido. No entanto, a operacionalidade do sistema (Ω, \mathcal{A}, P) pode ser estendido a todo boreliano (ou seja, a todos os elementos da σ -álgebra de Borel, que é a menor σ -álgebra contendo os intervalos cujos comprimentos estejam bem definidos).

Proposition 3.1. Se X é uma variável aleatória em (Ω, \mathcal{A}, P) , então o evento $[x \in \mathcal{B}] = \{\omega : \omega \in \Omega \ e \ X(\omega) \in \mathcal{B}\}$ é um evento aleatório para todo \mathcal{B} boreliano (ou seja, $[x \in B] \in \mathcal{A} \ \forall B \in \mathcal{B}$).

Podemos ver que diferentes tipos de intervalos (leia-se borelianos) podem ser mostrados como pertencentes à σ -álgebra, de modo que variáveis aleatórias que operam sobre esses intervalos estarão bem definidas:

- 1. Se $B = (-\infty, b] \Rightarrow [X \in B] \in \mathcal{A}$ de acordo com a definição de variável aleatória;
- 2. Se $B=(a,\infty)$, podemos fazer $B=(-\infty,a]^c$. Como o evento $[X\leq a]\in\mathcal{A}$ por definição, sendo \mathcal{A} uma σ -álgebra, deve ocorrer que $[X \leq a]^c = B \in \mathcal{A}$, ou seja, $B \in \mathcal{A}$;
- 3. Se $B=(a,b]\Rightarrow [X\in B]=[X\in (a,b]]=[X\leq b]-[X\leq a]$. Como $[X\leq b]\in \mathcal{A}$ e $[X\leq a]\in \mathcal{A}$, então
- $P(X \in B) = P(X \le b) P(x \le a) = F_X(b) F_X(a);$ 4. Se $B = (a, b) \Rightarrow B = \bigcup_{n=1}^{\infty} \left(a, b \frac{1}{n}\right]$ Sabemos que os eventos $\left(a < X \le b \frac{1}{n}\right] \in \mathcal{A}$ e as suas uniões também pertencem à \mathcal{A} . Quanto à probabilidade, temos $P(X \in B) = P\left(\bigcup_{n=1}^{\infty} \left(a < X \le b \frac{1}{n}\right)\right) = \frac{1}{n}$
- $\lim_{n\to\infty} P\left(\left(a < X \leq b \frac{1}{n}\right)\right) = \lim_{n\to\infty} F_X\left(b \frac{1}{n}\right) F_X(a) = F_X(b^-) F_X(a);$ 5. Se $B = \bigcup_{i=1}^n B_i : B_i \in \mathcal{A} \ \forall i$, e sendo os B_i 's disjuntos, temos que $[X \in B] = \bigcup_{i=1}^n [X \in B_i] \Rightarrow P([X \in B]) = \sum_{i=1}^n P(X \in B_i).$

Podemos assim reformular os axiomas de Kolmogorov:

- $Ax_1(K)$: $P_X(B) = P(X \in B) \ge 0$;
- $Ax_2(K)$: $P_X(\mathbb{R}) = P(X \in \mathbb{R}) = 1$;
- $Ax_3(K)$: Se $B_1, \ldots, B_n \in \mathcal{B}$, com $B_i \cap B_j = \emptyset \ \forall i \neq j \Rightarrow P_X(\bigcup B_n) = P(X \in \bigcup_n B_n) = P(\bigcup_n [X \in \mathcal{B}_n])$ $B_n]) = \sum_n P(X \in B_n).$

Definition 3.3. A probabilidade P_X definida na σ -álgebra de Borel por $P_X(B) = P(X \in B)$ é a distribuição de X.

Proposition 3.2.

- a) Se X é uma variável aleatória discreta com valores em $\{x_1, x_2, \ldots\} \Rightarrow P_X(B) = \sum_{i:x_i \in B} P(x_i);$
- b) Se X é absolutamente contínua com densidade $f \Rightarrow P_X(B) = \int_B f_X dx$.

3.4 Variáveis contínuas

Proposition 3.3. Se $X \sim f_X$, y = bx + c, b > 0 e $c \in \mathbb{R} \Rightarrow Y \sim f_Y$ onde $f_Y(y) = \frac{1}{b} f_X(\frac{y-c}{b})$; $y \in \mathbb{R}$, onde c é dito um parâmetro de posição (muitas vezes de posição central) e b um parâmetro de escala.

3.4.1 Exemplos

Example 3.5 (Distribuição Normal).

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Longrightarrow f_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Aqui, μ representa a média (posição central) da distribuição e σ^2 a sua variância.

Example 3.6 (Distribuição Cauchy).

$$f(x) = \frac{1}{\pi(1+x^2)} \Longrightarrow f_{b,M}(x) = \frac{1}{b} \frac{1}{\pi\left(1+\left(\frac{x-M}{b}\right)^2\right)} = \frac{b}{\pi(b^2+(x-M)^2)}$$

Neste caso, M é a mediana da distribuição e b representa a distância entre M e o 1° quartil da distribuição.

Example 3.7 (Distribuições Exponencial e Gamma). Considere $g(x) = e^{-x}I_{0,\infty}(x)$. Sabemos que g é uma distribuição de probabilidade pois:

$$\begin{cases} g(x) \ge 0 \ \forall x \in (0, \infty) \\ \int_0^\infty e^{-x} dx = 1 \end{cases}$$

Vamos agora incluir no formato do tipo exponencial um componente polinomial. Dado $\alpha > 0$, defina $q(x) = x^{\alpha-1}e^{-x}$. Podemos ver que q é integrável, de modo que:

$$\int_0^\infty g(x)dx = \int_0^\infty x^{\alpha - 1} e^{-x} dx = \Gamma(\alpha)$$
$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} & x > 0\\ 0 & c.c. \end{cases}$$

Defina agora $y = \frac{X}{\beta}$ onde $X \sim \text{Gamma}(\alpha, 1)$ e $\beta > 0$. A densidade de Y pode ser encontrada por meio de:

$$P(Y \le y) = P\left(\frac{X}{\beta} \le y\right) = P(X \le \beta y) \Rightarrow F_Y(y) = F_X(\beta y)$$
$$f_Y(y) = \beta f_X(\beta y) = \beta \frac{(\beta y)^{\alpha - 1}}{\Gamma(\alpha)} e^{-\beta y} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y}$$

Nesse caso (conhecido como distribuição Gama) $\frac{1}{\beta}$ é um parâmetro de escala e α é um parâmetro de forma. Temos alguns casos especiais, como:

- Se $\alpha = 1 : Y \sim \text{Exp}(\beta);$
- Se $\alpha = \frac{n}{2}$, com *n* inteiro e $\beta = \frac{1}{2}$: $Y \sim \chi^2(n)$

3.5 Variáveis aleatórias multidimensionais

Definition 3.4. A distribuição de probabilidades do vetor aleatório dado por (x_1, \ldots, x_n) é uma tabela que associa a cada valor (x_1, \ldots, x_n) sua probabilidade $P(x_1, \ldots, x_n) = P(X_1 = x_1, \ldots, X_n = x_n)$, onde p é a distribuição conjunta.

Example 3.8. Considere o conjunto de 32 cartas para poker: 7,8,9,10,J,Q,K,A, dos 4 naipes. Duas cartas são retiradas aleatoriamente, sem reposição, e X = número de ases que a pessoa recebe e Y = número de cartas de copas que a pessoa recebe. Qual a probabilidade P(X = 0, Y = 0)?

$$P(X = 0, Y = 0) = \frac{\binom{21}{2}}{\binom{32}{2}} = \frac{210}{496}$$

Definition 3.5. A função de distribuição acumulada do par de variáve aleatórias (X,Y) é dada por:

$$F(X,Y) = P(X \le x, Y \le y) = \sum_{\{i: x_i \le x\}} \sum_{\{j: y_j \le y\}} P(X = x_i, Y = y_i)$$

Seja $\underline{\mathbf{X}} = (X_1, \dots, X_n)$ tal que X_i é variável aleatória definida em (Ω, \mathcal{A}, P) $\forall i$. Então F, a acumulada de $\underline{\mathbf{X}}$ verifica:

- F₁: F é não decrescente em cada uma das coordenadas;
- F₂: F é contínua à direita em cada uma das coordenadas;
- F_3 : $\lim_{x_i \to -\infty} F(x_1, \dots, x_n) = 0$ e $\lim_{x_i \to \infty \forall i} F(x_1, \dots, x_n) = 1$.

As provas de F_1 e F_2 são de simples construção. Para F_3 temos:

Proof. Considere i fixo e o evento $[X_1 \leq x_1, \dots, X_{i-1} \leq x_{i-1}, X_i \leq -m, X_{i+1} \leq x_{i+1}, \dots, X_n \leq x_n]$. Logo, $F(x_1, \dots, x_{i-1}, -m, x_{i+1}, \dots, x_n) \xrightarrow[m \to \infty]{} 0$. Por outro lado, note que $[X_1 \leq x_1, \dots, X_{i-1} \leq x_{i-1}, X_i \leq m, X_{i+1} \leq x_{i+1}, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, x_n \leq x_n]$

Por outro lado, note que
$$[X_1 \leq x_1, \dots, X_{i-1} \leq x_{i-1}, X_i \leq m, X_{i+1} \leq x_{i+1}, \dots, X_n \leq x_n] \xrightarrow[m \to \infty]{} [X_1 \leq x_1, \dots, X_{i-1} \leq x_{i-1}, X_{i+1} \leq x_{i+1}, \dots, X_n \leq x_n]$$
 (que é o evento marginal sem o X_i). Já se $x_i \to \infty \ \forall i : \bigcap_{i=1}^n [X_i \leq x_i] \uparrow \Omega \Rightarrow F(x_1, \dots, x_n) = P(\bigcap_{i=1}^n [X_i \leq x_i]) \uparrow 1, x_i \to \infty \ \forall i.$

 F_1, F_2 e F_3 não são condições suficientes para que F seja uma função de distribuição acumulada. Vejamos um exemplo que segue F_1, F_2 e F_3 e que não é função de distribuição acumulada:

Seja
$$F_0(x,y) = \begin{cases} 1 & \text{se } x \ge 0, y \ge 0, x+y \ge 1 \\ 0 & \text{c.c.} \end{cases}$$
. Graficamente, temos:

É fácil ver que F_0 segue F_1, F_2 e F_3 , mas vejamos que F_0 atribui probabilidade negativa a certos eventos, a ver $[0 \le X \le 1, 0 \le Y \le 1]$:

$$F_0(0,0) = P(X \le 0, Y \le 0)$$

$$F_0(1,1) = P(X \le 1, Y \le 1)$$

$$F_0(1,1) - F_0(1,0) = P(X \le 1, Y \le 1) - P(X \le 1, Y \le 0) = P(X \le 1, 0 \le Y \le 1)$$

$$F_0(0,1) - F_0(0,0) = P(X \le 0, Y \le 1) - P(X \le 0, Y \le 0) = P(X \le 0, 0 \le Y \le 1)$$

$$F_0(1,1) - F_0(1,0) - F_0(0,1) - F_0(0,0) = P(X \le 1, 0 \le Y \le 1) - P(X \le 0, 0 \le Y \le 1)$$

$$= P(0 \le X \le 1, 0 \le Y \le 1) = -1$$

Defina $\Delta_{k,I}(g(x_1,\ldots,x_k)) = g(x_1,\ldots,x_{k-1},b) - g(x_1,\ldots,x_{k-1},a)$ onde $g: \mathbb{R}^k \to \mathbb{R}; I = (a,b], a \leq b$. Logo, se $I_1 = (a_1,b_1]$ e $I_2 = (a_2,b_2], F: \mathbb{R}^2 \to \mathbb{R}$. Então:

$$\begin{split} \Delta_{1,I_1}(\Delta_{2,I_2}(F(x,y))) &= \Delta_{1,I_1}(F(x,b_2) - F(x,a_2)) \\ &= F(b_1,b_2) + F(a_1,a_2) - F(a_1,b_2) - F(b_1,a_2) \geq 0 \\ &= P(a_1 < X \leq b_1, a_2 < Y \leq b_2) \geq 0 \end{split}$$

No geral:

• F_4 : $\Delta_{1,I_1}\Delta_{2,I_2}\ldots\Delta_{n,I_n}(F(x_1,\ldots,x_n))\geq 0 \ \forall I_k=(a_k,b_k]; a_k\leq b_k, k=1,\ldots,n.$

Definition 3.6. Seja $F : \mathbb{R}^n \to \mathbb{R}$ seguindo F_1, F_2, F_3 e F_4 , logo F é uma função de distribuição acumulada n-dimensional (ou n-variada).

- a) Se o vetor aleatório (X_1, \ldots, X_n) toma valores em um conjunto discreto, o vetor é discreto;
- b) Se para o vetor aleatório (X_1, \ldots, X_n) , F é dada pela forma $F(x_1, \ldots, x_n) = \int_{-\infty}^{x_n} \ldots \int_{-\infty}^{x_1} f(t_1, \ldots, t_n) dt_n \ldots dt_1$, $\forall (x_1, \ldots, x_n)$ onde $f(t_1, \ldots, t_n) \geq 0 \ \forall (t_1, \ldots, t_n) \in \mathbb{R}^n$ então (X_1, \ldots, X_n) é um vetor absolutamente contínuo com densidade f (densidade conjunta).

Definition 3.7. A probabilidade definida em \mathcal{B}^n (borelianos em \mathbb{R}^n) por $P(\underline{X} \in B)$ (com $B \in \mathcal{B}^n$) é chamada de distribuição conjunta de $\underline{X} = (X_1, \dots, X_n)$, com notação: $P_{\underline{X}}(B) = P(\underline{X} \in B)$.

Proposition 3.4.

- a) Se o vetor aleatório \underline{X} é discreto, $P_{\underline{X}}(B) = \sum_{\{i: x_i \in B\}} P(X_i = x_i) \ \forall B \in \mathcal{B}^n$;
- b) Se \underline{X} é absolutamente contínuo com densidade f, $P_{\underline{X}}(B) = P(\underline{X} \in B) = \int \dots \int_{B} f(x_{1}, \dots, x_{n}) dx_{n} \dots dx_{1}$.

3.6 Independência

Definition 3.8. As variáveis aleatórias são (coletivamente) independentes se:

$$P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i), \ \forall B_i \in \mathcal{B}^n, \forall i = 1, \dots, n$$

Se X_1, \ldots, X_n são coletivamente independentes, então X_{i1}, \ldots, X_{ik} são coletivamente independentes $\forall k$.

3.6.1 Critérios ou consequências

Proposition 3.5.

- a) Se X_1, \ldots, X_n são independentes, então $F_{X_1 \ldots X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n F_{X_i}(x_i), \forall (x_1, \ldots, x_n) \in \mathbb{R}^n$;
- **b)** Se existem funções F_1, \ldots, F_n tais que $\lim_{n \to \infty} F_i(x) = 1, \forall i \in F_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n F_i(x_i), \forall (x_1, \ldots, x_n) \in \mathbb{R}^n \Rightarrow X_1, \ldots, X_n$ são independentes e $F_i = F_{X_i}, \forall i$.

Proof.

• a) Se X_1, \ldots, X_n são coletivamente independentes e tomamos $[X_i \le x_i] = (-\infty, x_i] = B_i$. Então:

$$F_{X_1...X_n}(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n)$$

$$= P(X_1 \in B_1, ..., X_n \in B_n)$$

$$\stackrel{Ind}{=} \prod_{i=1}^n P(X_i \in B_i)$$

$$= \prod_{i=1}^n P(X_i \le x_i) = \prod_{i=1}^n F_{X_i}(x_i) \ \forall (x_1, ..., x_n)$$

• b) Para cada i, $F_{X_i}(x_i) = P(X_i \le x_i) = \lim_{m \to \infty} P(X_1 \le m, ..., X_{i-1} \le m, X_i \le x_i, X_{i+1} \le m, ..., X_n \le m)$, de modo que:

$$F_{X_i}(x_i) = \lim_{m \to \infty} F_{X_1 \dots X_n}(m, \dots, m, x_i, m, \dots, m)$$

$$\stackrel{Hip}{=} \lim_{m \to \infty} \left(\prod_{j=1}^{i-1} F_j(m) \times F_i(x_i) \times \prod_{j=i+1}^n F_j(m) \right)$$

$$= F_i(x_i)$$

Logo, a marginal de X_i é precisamente $F_i, \forall i$. Devemos ainda verificar que $P(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i) \ \forall B_i \in \mathcal{B}^n$. Considere $B_i = (a_i, b_i], a_i \leq b_i, a_i, b_i \in \mathbb{R}$. Temos que:

$$P(X_1 \in B_1, \dots, X_n \in B_n) = P(a_1 < X_1 \le b_1, \dots, a_n < X_n \le b_n)$$

$$= \Delta_{1,I_1} \dots \Delta_{n,I_n} (F_{X_1 \dots X_n}(x_1, \dots, x_n))$$

$$\stackrel{Ind}{=} \Delta_{1,I_1} \dots \Delta_{n,I_n} (F_{X_1}(x_1) \dots F_{X_n}(x_n))$$

$$= [F_{X_1}(b_1) - F_{X_1}(a_1)] \times \dots \times [F_{X_n}(b_n) - F_{X_n}(a_n)]$$

$$= \prod_{i=1}^n P(a_i < X_i \le b_i) = \prod_{i=1}^n P(X_i \in B_i)$$

3.6.2 Caso contínuo

Proposition 3.6.

- a) Se X_1, \ldots, X_n são independentes e possuem densidades f_{X_1}, \ldots, f_{X_n} , respectivamente, então $f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n f_{X_i}(x_i) \ \forall (x_1, \ldots, x_n) \in \mathbb{R}^n$ é a densidade conjunta de X_1, \ldots, X_n ;
- b) Se X_1, \ldots, X_n tem densidade conjunta $f_{X_1...X_n}(x_1, \ldots, x_n)$: $f_{X_1...X_n}(x_1, \ldots, x_n) = \prod_{i=1}^n f_i(x_i) \ \forall (x_1, \ldots, x_n) \in \mathbb{R}^n$, onde $f_i(x) \geq 0 \ \forall x : \int_{-\infty}^{\infty} f_i(x) dx = 1 \ \forall i$, então X_1, \ldots, X_n são independentes e f_i é a densidade marginal de X_i $\forall i$.

Proof.

• a) Como consequência da proposição 3.5, temos que: $F_{X_1...X_n}(x_1,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i), \forall (x_1,...,x_n)$. Logo, por definição temos:

$$\prod_{i=1}^{n} F_{X_i}(x_i) = \prod_{i=1}^{n} \int_{-\infty}^{x_i} f_{X_i}(t)dt = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1}(t_1) \cdots f_{X_n}(t_n)dt_n \cdots dt_1$$

Assim, f_{X_1}, \ldots, f_{X_n} é a densidade conjunta.

• b) Considere:

$$F_{X_1...X_n}(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1...X_n}(t_1,\ldots,t_n) dt_n \ldots dt_1$$

$$= \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_1(t_1) \ldots f_n(t_n) dt_n \ldots dt_1$$

$$= \prod_{i=1}^n \int_{-\infty}^{x_i} f_i(t_i) dt_i$$

Defina $F_i(x) = \int_{-\infty}^{x_i} f_i(t) dt$. Sendo assim:

$$\prod_{i=1}^{n} \int_{-\infty}^{x_i} f_i(t_i) dt_i = \prod_{i=1}^{n} F_i(x_i)$$

Note que, pela hipótese nas f_i 's, as F_i 's são acumuladas em particular, e $F_i(x) \to 1, x \to \infty$, e pela proposição 3.5: $F_i(x) = F_{X_i}(x_i)$, logo $f_{X_i} = f_i$.

3.6.3 Propriedades

• a) Se F(x,y) é a função de distribuição acumulada conjunta de (X,Y), então $F_X(x) = \lim_{y\to\infty} F(x,y) = F(x,\infty)$ é a função de distribuição acumulada marginal de X;

• b) Se f(x,y) é a função de densidade conjunta de (X,Y), então $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$ é a densidade marginal de X.

Example 3.9.

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) \right] \right\}$$

Sendo $\sigma_i > 0, i = 1, 2; -1 < \rho < 1; \mu_i \in \mathbb{R}, i = 1, 2.$ Logo, $(X, Y) \sim N_2 \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{bmatrix} \sigma_1 & \rho \\ \rho & \sigma_2 \end{bmatrix}$, onde, caso $\rho = 0, X$ e Y são independentes.

3.7 Distribuições de funções de vetores

Seja $\underline{X} = (X_1, \dots, X_n)$ um vetor aleatório em (Ω, A, P) . Seja $Y = g(X_1, \dots, X_n)$. Qual a distribuição de Y?

• Nota 1: Para que Y seja variável aleatória cada $B \in \mathcal{B}$ é necessário que $g^{-1}(B)$ seja mensurável, ou seja:

$$g^{-1}(B) = \{x : g(x) \in B\}$$

$$\downarrow \downarrow$$

$$F_Y(y) = P(g(x) \le y)$$

Generalizando, se $Y = g(X_1, \ldots, X_n)$:

$$F_Y(y) = P(g(X_1, \dots, X_n) \le y) = P((X_1, \dots, X_n) \in B_y) = P_X(B_y)$$

Onde $B_y = \{(x_1, \dots, x_n) : g(x_1, \dots, x_n) \le y\}.$

• Nota 2: Se \underline{X} for discreto:

$$P_Y(y_j) = \sum_{\{i:g(x_i)=y_j\}} P_{\underline{X}}(x_i)$$

Example 3.10. Sejam $X \sim U(0,1)$ e $Y = -\ln(x)$. Temos que $\forall x$ valor de $X: x \in (-\infty,0] \cup [1,\infty)$ o valor de $f_X(x) = 0$. Seja $x \in (0,1) \Leftrightarrow -\ln(x) \in (0,\infty)$, logo $\forall y$ valor de $Y: y \in (0,\infty)$. Calculemos $F_Y(y) = P(Y \leq y)$:

$$F_Y(y) = P(Y \le y) = P(-\ln(X) \le y)$$

$$= P(\ln(X) \ge -y)$$

$$= P(X \ge e^{-y})$$

$$= 1 - P(X < e^{-y}) = 1 - e^{-y}$$

Assim, temos que $Y \sim Exp(1)$.

Example 3.11. Sejam $X \perp Y; X \sim U(0,1); Y \sim U(0,1); Z = \frac{X}{Y}$. Determinar a distribuição de Z: Os valores que geram indefinição de Z são: X = Y = 0 e Y = 0, X > 0, assim a boa definição de Z é no espaço $[0 < X \le 1, 0 < Y \le 1]$. Vejamos se esse intervalo contém toda a massa de probabilidade:

$$P([0 < X \le 1, 0 < Y \le 1]) = P(0 < X \le 1) \times P(0 < Y \le 1) = 1 \times 1 = 1$$

Logo, basta avaliar o conjunto $[0 < X \le 1, 0 < Y \le 1] \Rightarrow [Z \in (0, \infty)]$. Assim, calculemos $F_Z(z)$:

$$F_Z(z) = P(Z \le z) = P\left(\frac{X}{Y} \le z\right) \Rightarrow \left[\frac{X}{Y} \le z\right] = \left[X \le zY\right] = \left[\frac{X}{z} \le Y\right]$$

Sabemos que X e Y pertencem ao intervalo $(0,1] \times (0,1]$, de modo que temos duas regiões genéricas para explorar: z < 1 e z > 1. De maneira gráfica, temos as seguintes regiões (considere c > 1):

Podemos ver que a região azul corresponde aos casos onde z>1 e a região verde corresponde aos casos onde z<1. Assim:

• z < 1:

$$F_Z(z) = \int_0^z \int_0^{\frac{x}{z}} dy dx = \int_0^z y \Big|_0^{\frac{x}{z}} dx = \int_0^z \frac{x}{z} dx = \frac{1}{z} \times \frac{x^2}{2} \Big|_0^z = \frac{z^2}{2z} = \frac{z}{2}$$

• z > 1:

$$F_Z(z) = 1 - \frac{1}{2z}$$

De modo que a distribuição acumulada de Z é dada por:

$$F_Z(z) = \begin{cases} 0 & , z \in (-\infty, 0] \\ \frac{z}{2} & , z \in (0, 1) \\ 1 - \frac{1}{2z} & , z \in [1, \infty) \end{cases}$$

Assim, $F_Z(z) = P\left(\frac{X}{Y} \le z\right) = P((X,Y) \in B_z)$, onde os conjuntos B_z podem ter formatos diferentes dependendo de z. A densidade será dada pela derivada de $F_Z(z)$ com relação a z:

$$f_Z(z) = \begin{cases} 0 & , z \le 0 \\ \frac{1}{2} & , z \in (0,1) \\ \frac{1}{2z^2} & , z \ge 1 \end{cases}$$