Provable Chosen-Target-Forced-Midfix Preimage Resistance

Elena Andreeva and Bart Mennink (K.U.Leuven)

Selected Areas in Cryptography
Toronto, Canada

August 11, 2011

Merkle-Damgård Hash Function Design (MD):

Merkle-Damgård Hash Function Design (MD):

ullet M injectively padded: $M\mapsto M_1\cdots M_k=M\|1\|0^{-|M|-1 mod m}\|\langle |M|
angle_m$

 M_1 M_2 \cdots M_k

Merkle-Damgård Hash Function Design (MD):

- ullet M injectively padded: $M\mapsto M_1\cdots M_k=M\|1\|0^{-|M|-1 mod m}\|\langle |M|
 angle_m$
- ullet M_i compressed iteratively using $f:\{0,1\}^{n+m}
 ightarrow \{0,1\}^n$

Hash Function Security Requirements

Preimage resistance Second preimage resistance Collision resistance

Hash Function Security Requirements

Preimage resistance
Second preimage resistance
Collision resistance
Multicollision resistance
Security against length extension attack
Chosen-target-forced-prefix preimage resistance

Hash Function Security Requirements

Preimage resistance
Second preimage resistance
Collision resistance
Multicollision resistance
Security against length extension attack
Chosen-target-forced-prefix preimage resistance

Chosen-target-forced-prefix (CTFP) preimage resistance (security against herding attack)

- Choose y, given P, find R such that $\mathcal{H}(P||R) = y$
- Applications: predicting elections, sports games, etc.
- Ideally, CTFP attack requires 2" work

attack	L = M	complexity (f-calls)
herding	O(n) blocks	$\sqrt{n}2^{2n/3}$

attack	L = M	complexity (f-calls)
herding	O(n) blocks	$\sqrt{n}2^{2n/3}$
elongated herding $(0 \le r \le n/2)$	$O(n+2^r)$ blocks	$\sqrt{n}2^{2n/3}/2^{r/3}$

- Herding attack generalized to MD-based hash functions
 - Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
 - Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]

- Herding attack generalized to MD-based hash functions
 - Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
 - Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]

- Herding attack generalized to MD-based hash functions
 - Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
 - Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]

- Herding attack generalized to MD-based hash functions
 - Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
 - Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]

- Herding attack generalized to MD-based hash functions
 - Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
 - Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]

- Herding attack generalized to MD-based hash functions
 - Merkle-Damgård with checksums [Gauravaram et al., 08, 10]
 - Hash twice, concatenated, zipper and tree hash [Andreeva et al., 09]

Chosen-target-forced-midfix (CTFM) preimage resistance

- Formalize and generalize security against herding
- Notion particularly covers all known attacks

Chosen-target-forced-midfix (CTFM) preimage resistance

- Formalize and generalize security against herding
- Notion particularly covers all known attacks

CTFM security bound for MD

- We formally prove security of MD
- Analysis directly applies to other hash functions

Chosen-target-forced-midfix (CTFM) preimage resistance

- Formalize and generalize security against herding
- Notion particularly covers all known attacks

CTFM security bound for MD

- We formally prove security of MD
- Analysis directly applies to other hash functions

Existence of optimally CTFM secure hash functions?

No optimally secure narrow-pipe design known

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Definition

ullet using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

- ullet using ideal compression function $f:\{0,1\}^{n+m}
 ightarrow \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

- ullet using ideal compression function $f:\{0,1\}^{n+m}
 ightarrow \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

- ullet using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

- ullet using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

- ullet using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Definition

- ullet \mathcal{H} using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

$$\begin{array}{c|c} A^f & \xrightarrow{\longrightarrow} & y \\ \longleftarrow & P \xleftarrow{5} \{0,1\}^p \\ \longrightarrow & g,R \end{array}$$

• \mathcal{A} wins if $\mathcal{H}^f(g(P,R)) = y$ and $|\operatorname{rng}(g)| \leq 2^{Lm}$

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

- ullet \mathcal{H} using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

$$\begin{vmatrix} \mathcal{A}^f & \longrightarrow & y \\ \longleftarrow & P \stackrel{\$}{\leftarrow} \{0,1\}^p \\ \longrightarrow & g,R \end{vmatrix}$$

- \mathcal{A} wins if $\mathcal{H}^f(g(P,R)) = y$ and $|\operatorname{rng}(g)| \leq 2^{Lm}$
- $Adv_{\mathcal{H}}^{\mathsf{ctfm}}(q)$: success probability of any adversary making q queries

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Definition

- ullet \mathcal{H} using ideal compression function $f:\{0,1\}^{n+m} o \{0,1\}^n$
- ullet Adversary ${\cal A}$ query access to f

$$\begin{array}{c|c} A^f & \xrightarrow{\longrightarrow} & y \\ \longleftarrow & P \xleftarrow{s} \{0,1\}^p \\ \longrightarrow & g,R \end{array}$$

- \mathcal{A} wins if $\mathcal{H}^f(g(P,R)) = y$ and $|\operatorname{rng}(g)| \leq 2^{Lm}$
- ullet Adv $_{\mathcal{H}}^{\mathsf{ctfm}}(q)$: success probability of any adversary making q queries

In remainder, $g(P, R_1 || R_2) = R_1 || P || R_2$, where R_1, R_2 of arbitrary length

Herding attack for MD

$$g(P,R_2) = P \| R_2$$

- ullet R_1 is empty string
- P is prefix

Herding attack for MD

$$g(P,R_2) = P \| R_2$$

- R₁ is empty string
- P is prefix

Herding attack for zipper

$$g(P,R_1) = R_1 || P$$

- \bullet R_2 is empty string
- P is suffix

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Theorem

$$\mathsf{Adv}^{\mathsf{ctfm}}_{MD}(q) \leq \frac{(L-1)tq}{2^n} + \frac{m2^{\lceil p/m \rceil}q}{2^p} + \left(\frac{q^2e}{t2^n}\right)^t + \frac{q^3}{2^{2n}}$$

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Theorem

$$\mathsf{Adv}^{\mathsf{ctfm}}_{MD}(q) \leq \frac{(L-1)tq}{2^n} + \underbrace{\frac{m2^{\lceil p/m \rceil}q}{2^p}}_{\mathsf{E}_0} + \underbrace{\left(\frac{q^2e}{t2^n}\right)^t}_{\mathsf{E}_1} + \underbrace{\frac{q^3}{2^{2n}}}_{\mathsf{E}_2}$$

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Theorem

$$\mathbf{Adv}^{\mathsf{ctfm}}_{MD}(q) \leq \underbrace{\frac{(L-1)tq}{2^n}}_{\mathsf{succ}} + \underbrace{\frac{m2^{\lceil p/m \rceil}q}{2^p}}_{\mathsf{E}_0} + \underbrace{\left(\frac{q^2e}{t2^n}\right)^t}_{\mathsf{E}_1} + \underbrace{\frac{q^3}{2^{2n}}}_{\mathsf{E}_2}$$

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Theorem

For any integral t > 0:

$$\mathsf{Adv}^{\mathsf{ctfm}}_{MD}(q) \leq \underbrace{\frac{(L-1)tq}{2^n}}_{\mathsf{succ} \mid \neg \mathsf{E}_i} + \underbrace{\frac{m2^{\lceil p/m \rceil}q}{2^p}}_{\mathsf{E}_0} + \underbrace{\left(\frac{q^2e}{t2^n}\right)^t}_{\mathsf{E}_1} + \underbrace{\frac{q^3}{2^{2n}}}_{\mathsf{E}_2}$$

• t: tradeoff between first and third term

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Theorem

$$\mathsf{Adv}^{\mathsf{ctfm}}_{MD}(q) \leq \underbrace{\frac{(L-1)tq}{2^n}}_{\mathsf{succ} \mid \neg \mathsf{E}_i} + \underbrace{\frac{m2^{\lceil p/m \rceil}q}{2^p}}_{\mathsf{E}_0} + \underbrace{\left(\frac{q^2e}{t2^n}\right)^t}_{\mathsf{E}_1} + \underbrace{\frac{q^3}{2^{2n}}}_{\mathsf{E}_2}$$

- t: tradeoff between first and third term
- p dominates second term: E_0 covers event "A guesses P"

p: length of forced midfix (bits)

L: max. length of forged preimage (blocks)

Theorem

$$\mathsf{Adv}^{\mathsf{ctfm}}_{MD}(q) \leq \underbrace{\frac{(L-1)tq}{2^n}}_{\mathsf{succ}} + \underbrace{\frac{m2^{\lceil p/m \rceil}q}{2^p}}_{\mathsf{E}_0} + \underbrace{\left(\frac{q^2e}{t2^n}\right)^t}_{\mathsf{E}_1} + \underbrace{\frac{q^3}{2^{2n}}}_{\mathsf{E}_2}$$

- t: tradeoff between first and third term
- p dominates second term: E_0 covers event "A guesses P"
- L dominates first term: larger L gives higher success probability

Implications

Corollary

Let p be "large enough" (see paper). For any $\varepsilon > 0$:

$$\lim_{n \to \infty} \mathbf{Adv}^{\text{ctfm}}_{MD} \left(2^{2n/3} / L^{1/3} \cdot 2^{\text{-}n\varepsilon} \right) = 0$$

Implications

Corollary

Let p be "large enough" (see paper). For any $\varepsilon > 0$:

$$\lim_{n \to \infty} \mathbf{Adv}^{\text{ctfm}}_{MD} \left(2^{2n/3} / L^{1/3} \cdot 2^{-n\varepsilon} \right) = 0$$

- Implies (asymptotic) optimality of
 - Original attack of Kelsey & Kohno
 - Almost all attacks of Gauravaram et al. and Andreeva et al.
- Analysis can easily be generalized to other hash functions, such as
 - MD with prefix-free or suffix-free padding
 - Enveloped MD
 - MD with permutation
 - HAIFA

Proof Idea

- Attack consists of two phases:
 - First phase: A queries f and decides on y
 - A receives random challenge P
 - Second phase: \mathcal{A} queries f and outputs g, R s.t. $\mathcal{H}^f(g(P, R)) = y$
- ullet Graph: $f(h_{i-1},M_i)=h_i$ corresponds to arc $h_{i-1}\stackrel{M_i}{\longrightarrow} h_i$
- "x at distance k from y": there exists a path $x \longrightarrow y$ of length k

Proof Idea

- Attack consists of two phases:
 - First phase: A queries f and decides on y
 - A receives random challenge P
 - Second phase: \mathcal{A} queries f and outputs g, R s.t. $\mathcal{H}^f(g(P, R)) = y$
- Graph: $f(h_{i-1}, M_i) = h_i$ corresponds to arc $h_{i-1} \xrightarrow{M_i} h_i$
- "x at distance k from y": there exists a path $x \longrightarrow y$ of length k

\mathcal{A} wins if:

- E_0 He guesses P in the first phase
- E₁ For some node y and $k \in \{0, ..., L\}$: graph contains more than t elements at distance k from y
- E₂ Graph contains 3-way collision
- succ $|\neg E_i|$ Adversary finds CTFM preimage given $\neg E_i$

Optimally CTFM Secure Hash Functions

Optimally CTFM Secure Hash Functions

Wide-pipe

• Wide-piping renders optimal CTFM security (trivial)

Optimally CTFM Secure Hash Functions

Wide-pipe

• Wide-piping renders optimal CTFM security (trivial)

Narrow-pipe

- No optimally CTFM secure narrow-pipe hash function known
- We consider two possible directions:
 - Salting
 - Message modification: MD with more sophisticated padding

$$\mathcal{H}: \{0,1\}^s \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{H}(S,M) = y$

$$\mathcal{H}: \{0,1\}^s \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{H}(S,M) = y$

Variant 2:

$$\mathcal{H}: \{0,1\}^s \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{H}(S,M) = y$

Variant 1:

Variant 2:

Variant 3:

Variant 4:

$$\mathcal{H}: \{0,1\}^s \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{H}(S,M) = y$

Variant 2:

Variant 3:

Variant 4:

Variant 1, 2, 3: \mathcal{A} knows salt, so $Adv_{\mathcal{H}}^{sctfm}(\mathcal{A}) = Adv_{\mathcal{U}}^{ctfm}(\mathcal{A})$

$$\mathcal{H}: \{0,1\}^s \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{H}(S,M) = y$

Variant 1, 2, 3 : $\mathcal A$ knows salt, so $\mathsf{Adv}^\mathsf{sctfm}_\mathcal U(\mathcal A) = \mathsf{Adv}^\mathsf{ctfm}_\mathcal U(\mathcal A)$

Variant 4: A commits to y without knowing hash function instance

• Herding attack: edges in diamond added independently of each other

- Herding attack: edges in diamond added independently of each other
- Idea: create dependence among message blocks

- Herding attack: edges in diamond added independently of each other
- Idea: create dependence among message blocks

- Herding attack: edges in diamond added independently of each other
- Idea: create dependence among message blocks

- We describe attack for this and similar hash functions
 - Same complexity as original herding attack (up to constant)
 - Optimal due to our security bound

Chosen-target-forced-midfix preimage resistance

Chosen-target-forced-midfix preimage resistance

Security notion

Chosen-target-forced-midfix preimage resistance

- Introduced proof methodology
- Optimality of herding attack

Chosen-target-forced-midfix preimage resistance

- Introduced proof methodology
- Optimality of herding attack
 - Optimal (2^n) security???
 - Open problem

Supporting Slides

SUPPORTING SLIDES!!!

Detailed Proof Idea (1)

$E_0 \mid \neg E_2 \colon \mathcal{A} \text{ guesses } P$

- By $\neg E_2$: graph contains at most $m2^{\lceil p/m \rceil}q$ strings of length p
- Any such path equals P with probability at most $1/2^p$

$$\Pr\left(\mathsf{E}_0 \mid \neg \mathsf{E}_2\right) \leq \frac{m2^{\lceil p/m \rceil}q}{2^p}$$

Detailed Proof Idea (1)

$\mathsf{E}_0 \mid \neg \mathsf{E}_2 \colon \mathcal{A} \text{ guesses } P$

- By $\neg E_2$: graph contains at most $m2^{\lceil p/m \rceil}q$ strings of length p
- Any such path equals P with probability at most $1/2^p$

$$\Pr\left(\mathsf{E}_0 \mid \neg \mathsf{E}_2\right) \leq \frac{m2^{\lceil p/m \rceil}q}{2^p}$$

$\mathsf{E}_1 \mid \neg \mathsf{E}_2$: > t elements at distance k from y

- By ¬E₂: only 2-way collisions
- One can show: graph must contain t 2-way collisions

$$\Pr\left(\mathsf{E}_1 \mid \neg \mathsf{E}_2\right) \leq \binom{q}{t} \left(\frac{q}{2^n}\right)^t \leq \left(\frac{q^2 e}{t 2^n}\right)^t$$

Detailed Proof Idea (2)

E₂: 3-way collision

$$\text{Pr}\left(\mathsf{E}_{2}\right) \leq \frac{q^{3}}{2^{2n}}$$

Detailed Proof Idea (2)

E_2 : 3-way collision

$$\Pr\left(\mathsf{E}_{2}\right) \leq \frac{q^{3}}{2^{2n}}$$

$succ \mid \neg E_i$: CTFM preimage

- Forged message of length at most L blocks
- ullet ${\cal A}$ needs at least one query to hit any of the L-1 closest layers to y
- By $\neg E_1$: at most t nodes per layer

$$\Pr\left(\operatorname{\mathsf{suc}}_{\mathcal{A}}(q_2) \mid \neg \mathsf{E}_0 \land \neg \mathsf{E}_1\right) \leq \frac{(L-1)tq}{2^n}$$