

Práctica 8. Transistor BJT como interruptor (motor, relevador)

Duración: 2 horas.

OBJETIVO.

Entender el funcionamiento del transistor BJT como interruptor, así como también conocer y comprender las condiciones a partir de las cuales se produce el corte y saturación en el transistor.

Realizar un puente H para el control y cambio de giro de un motor de DC aplicando el transistor BJT como interruptor, así como también utilizando como relevador controlando el encendido y apagado de un led de potencia.

Realizar simulaciones en cada uno de los circuitos presentados para esta práctica.

MARCO TEÓRICO.

El alumno deberá de investigar los siguientes conceptos para desarrollar la práctica.

- Comprender el funcionamiento del transistor BJT como interruptor.
- Comprender las condiciones bajo las cuales se produce el corte.
- Comprender las condiciones bajo las cuales se produce la saturación.
- Diagrama eléctrico de un puente H con transistores BJT NPN.
- Comprender el funcionamiento del puente H.

MATERIALES.

- Generador de funciones y punta para generador.
- Multímetro y punta de multímetro.
- Fuente de voltaje doble.
- Osciloscopio digital y dos puntas de osciloscopio.
- 10 caimanes.
- Transistor BJT tipo NPN (ej. 2n2222, BC548, TIP41, TIP120, etc.)
- Diodos rectificadores.
- Motor de 5 o 12 VDC.
- Led de potencia de 12V.
- Resistencias de acuerdo a los cálculos.
- Cables de alimentación de los equipos (fuente de alimentación, generador de funciones y osciloscopio).

DESARROLLO DE LA PRÁCTICA.

- 1. Realizar los cálculos de corrientes y voltajes de cada uno de los componentes que constituyen a los circuitos. Dichos cálculos deberán de ser adjuntados al reporte de la práctica.
- 2. Realizar las simulaciones necesarias para cada circuito y adjuntarlas en el reporte de la práctica.
- Armar el circuito de la Fig. 17, para la señal de entrada cuadrada de 5V y frecuencia de 500Hz, analizar con el osciloscopio el voltaje de salida y voltaje de entrada.
 - ¿Por qué están desfasadas?
 - ¿En qué momento el transistor está en saturación y en qué momento está en corte?

Fig. 17.- Circuito para analizar la conmutación en un transistor.

- 4. Reducir la frecuencia de la señal de entrada a 0.2Hz, analizar en el osciloscopio lo que sucede.
 - ¿En que momento el Voltaje de salida es cero?
 - ¿En que momento el Voltaje de salida es alto y en qué valor de CD?
- 5. Conectar en lugar de la resistencia de carga RL un Led de potencia para corroborar el funcionamiento del circuito.
- 6. Conectar en lugar del led de potencia un motor de 5V (ajustar el voltaje de la fuente de alimentación VCC a 5V también).
- 7. Conectar en lugar del motor de 5V un relevador de 5V (Fig. 18).

Fig. 18.- Circuito conmutador con BJT y con relevador.

- 8. Armar el circuito correspondiente al puente H mediante los transistores NPN para el control y cambio de giro del motor de 12VDC.
- 9. Realizar las mediciones para validar los resultados de los cálculos realizados y los valores obtenidos de las simulaciones.
- 10. Analizar mediante el uso del osciloscopio las señales correspondientes a las entradas y salidas de cada uno de los circuitos para observar su funcionamiento.

Fig. 19.- Circuito puente H con transistores para motor de DC.

BIBLIOGRÁFIA.

- Apuntes de la materia de electrónica
- Boylestad R. L., Nashelsky L. (2003). Electrónica: Teoría de circuitos y dispositivos electrónicos. México. Pearson Education.
- Floyd T. L. (2008). Dispositivos Electrónicos. México. Pearson Educación.
- Sedra A. S., Kenneth C. S. (1999). Circuitos Microelectronicos. México. Oxford University Press.
- Malvino A., Bates D. (2007). Principios de Electrónica. Distrito Federal, México. Mc Graw Hill.

29