WHAT IS CLAIMED IS:

15

20

- 1. A method for producing a light-transmitting electromagnetic wave-shielding film having a conductive

 5 metal portion and a light-transmitting portion, which comprises exposing and developing a silver salt-containing layer containing a silver salt and provided on a support to form a metal silver portion and the light-transmitting portion, and further subjecting the metal silver portion

 10 to physical development and/or plating to form the conductive metal portion consisting of the metal silver portion carrying conductive metal particles.
 - 2. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the silver salt in the silver salt-containing layer is a silver halide.
 - 3. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 2, wherein the silver halide consists mainly of silver bromide.
 - 4. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 2, wherein the silver halide contains a rhodium compound and/or an iridium compound.
- 5. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 2, wherein the silver halide contains Pd(II) ions and/or Pd

metal.

25

- 6. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the silver salt-containing layer has an Ag/binder volume ratio of 1/4 or higher.
- 7. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the silver salt in the silver salt-containing layer has a diameter as sphere of 0.1 to 100 nm.
- 8. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the developer used for the development of the silver salt-containing layer is a lith developer.
- 9. The method for producing a light-transmitting
 15 electromagnetic wave-shielding film according to Claim 1,
 wherein an exposed portion after the development contains
 the metal silver at a content of 50% by weight or more
 based on the weight of silver contained in the exposed
 portion before the exposure.
- 20 10. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the plating is performed by electroless plating.
 - 11. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the surface of the conductive metal portion is further subjected to a blackening treatment.
 - 12. The method for producing a light-transmitting

electromagnetic wave-shielding film according to Claim 1, wherein the light-transmitting portion does not substantially contain physical development nuclei.

13. The method for producing a light-transmitting electromagnetic wave-shielding film according to Claim 1, wherein the light-transmitting electromagnetic wave-shielding film has a surface resistance of 2.5 Ω /sq or lower after the physical development and/or plating, and/or the light-transmitting portion has a transmittance of 95% or higher.

5

10

- 14. A light-transmitting electromagnetic waveshielding film having a conductive metal portion and a light-transmitting portion, which is obtainable by the production method according to Claim 1.
- 15. The light-transmitting electromagnetic waveshielding film according to Claim 14, wherein weight of
 silver contained in the conductive metal portion accounts
 for 50% by weight or more of the total weight of metal
 components contained in the conductive metal portion.
- 20 16. The light-transmitting electromagnetic waveshielding film according to Claim 14, wherein the total
 weight of silver, copper and palladium contained in the
 conductive metal portion accounts for 80% by weight or
 more of the total weight of the all metal components.
- 25 17. The light-transmitting electromagnetic waveshielding film according to Claim 14, wherein a layer comprising the conductive metal particles carried by the

conductive metal portion has a thickness of 0.1 μm or larger and less than 5 μm and a surface resistance value of 3 Ω/sq or smaller.

- 18. The light-transmitting electromagnetic waves shielding film according to Claim 14, wherein the conductive metal portion has a line width of 0.1 μ m or larger and smaller than 18 μ m.
- 19. A plasma display panel having the lighttransmitting electromagnetic wave-shielding film according 10 to Claim 14.
- 20. A method for producing a light-transmitting electromagnetic wave-shielding film having a conductive metal portion and a light-transmitting portion, which comprises exposing and developing a silver salt-containing layer containing a silver salt and provided on a support to form a metal silver portion in an exposed portion and the light-transmitting portion in an unexposed portion and further subjecting the metal silver portion to physical development and/or plating to form the conductive metal portion consisting of the metal silver portion carrying conductive metal particles.