图形学第一次作业

实验报告

1600012938 周尚彦

March 26, 2017

Contents

2	扫描线填充算法 2.1 算法流程 2.2 反走样 2.3 实验结果 2.4 未解决问题	. 2
3	直线反走样算法 3.1 算法流程	
4	Cohen-SutherLand 算法 4.1 算法流程	
5	Cyrus-Beck 算法 5.1 算法流程	
1	代码与运行环境 • 代码均在 windows10 64 位系统环境下使用 python3.5.3 编译运行。 • 调用第三方包 Pillow 中的 Image 读写图片, ImageDraw 对图片进行绘制。	

• 第五章作业使用了 Pillow 包内置的画线算法

2 扫描线填充算法

2.1 算法流程

- 1. 读入填充区域的顶点
- 2. 使用 Bresenham 算法将各个顶点依次连接起来作为边界
- 3. 枚举每个像素,若当前像素在区域内部且未被涂色则将其设定为为种子(使用累计角度法判断一个点是否在区域内部)
- 4. 使用扫描线算法填充区域

2.2 反走样

将每个边界附近的像素点均分成 9 个小像素点,判断每个点是否在多边形内部,之后加权求和算出像素点应有的灰度值。

2.3 实验结果

Figure 1: 缩略图效果

图形学第一次作业 2. 扫描线填充算法

Figure 2: 放大细节

2.4 未解决问题

反走样时间花销很大,是否存在更好的方法? 老师课件中给的例子(字母 P)这样空心区域的边界如何表示? 图形学第一次作业 3. 直线反走样算法

3 直线反走样算法

3.1 算法流程

- 1. 读入线段的端点
- 2. 使用 Bresenham 算法画线,对直线附近的像素点使用加权区域采样的方法求出其灰度值
- 3. 将每个像素点分为 9 个小像素点并分配以不同的权值,求出每个小像素点到直线的 距离,若距离小于 0.5 则认为其在直线内部,加权求和最后得到该像素点的灰度值

3.2 实验结果

Figure 3: 缩略图效果

图形学第一次作业 3. 直线反走样算法

Figure 4: 放大细节

4 Cohen-SutherLand 算法

4.1 算法流程

- 1. 读入矩形窗口的边界和线段的端点
- 2. 对线段的端点进行编码,利用编码判断线段的可见性
- 3. 利用编码求出第一个端点与边界所在直线的交点
- 4. 修改第一个端点为此交点并重新编码,再次利用编码判断线段的可见性
- 5. 利用编码求出第二个端点与边界所在直线的交点
- 6. 使用红色线段标示不可见区域,绿色线段标识可见区域

4.2 实验结果

Figure 5: Demo0

Figure 6: Demo1

5 Cyrus-Beck 算法

5.1 算法流程

- 1. 读入多边形窗口的顶点和线段的端点
- 2. 求出每条边的法向量和中点
- 3. 利用 $n_i \bullet (p(t) a_i)$ 列出不等式组并求解出 t 的最小最大值 l, r
- 4. 若 $r \leq l$ 则线段不可见,否则可见区域的交点为 p(l), p(r)
- 5. 使用红色线段标示不可见区域,绿色线段标识可见区域

5.2 实验结果

Figure 7: Demo