Indian Institute of Technology Madras

MS4610 – Introduction to Data Analytics

Tutorial session - 1

Probability Review 16th October 2020

Questions

1. Suppose that in a class of 60 students, everyone places their pen in a single box, and then each pick up one pen at random. What is the expected value of X, the number of people that get back their own pen?

- 2. Customers arrive at a point of sales counter in a store at the rate of 10 per hour. Find:
 - i. The probability that exactly 3 customers arrive at the counter in an hour.
 - ii. The probability that exactly 2 customers arrive at the counter during a 30-minute period.

Questions

3. Let X be exponentially distributed with mean 1. Once we observe the experimental value x of X, we generate a Normal random variable Y with zero mean and variance x + 1. What is the joint PDF of X and Y?

4. Let X and Y be two jointly continuous random variables with joint PDF

$$f_{XY}(x,y) = \begin{cases} 6xy, & 0 \le x \le 1, \ 0 \le y \le \sqrt{x} \\ 0, & otherwise \end{cases}$$

- i. Find $f_X(x)$ and $f_Y(y)$
- ii. Are X and Y independent?
- iii. Find the conditional PDF of X given Y=y
- iv. Find E[X|Y=y] for $0 \le y \le 1$

Regression – Some formulae

Studentised residuals:

Hat matrix $H = X(X^TX)^{-1}X^T$

Leverage h_{ii} is the ith diagonal element of H.

Studentised residual is

$$t_i = \frac{e_i}{\widehat{\sigma}\sqrt{1 - h_{ii}}}$$

 $\hat{\sigma}$ is appropriate estimate of σ (standard deviation of the errors) e_i is the i^{th} residual

Regression – Some formulae

Confidence intervals:

Expected value at response x*:

$$\hat{\mu} \pm t_{1-\alpha/2,n-2} \cdot s \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Prediction intervals:

$$\hat{y}(x^*) \pm t_{1-\alpha/2,n-2} \cdot s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Regression – Some formulae

Variance inflation factor

VIF for each variable:

$$VIF(\beta_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

Multicollinearity is high if VIF is greater than 5 or 10.

Estimated variance of coefficient estimate:

$$\widehat{Var}(\widehat{\beta}_j) = \frac{s^2}{(n-1)\widehat{var}(X_j)} \cdot \frac{1}{1-R_j^2}$$

 S^2 is estimate of the variance of error term $X_i - j^{th}$ independent variable