

Figure 1 - Construction of Typical Existing Hydromount (Prior Art)

Figure 2 - Construction of Typical Existing Hydromount w/ Alternate Construction (Prior Art)

Figure 3 - Diagram of a Typical Shock Absorber in a Vehicle (Prior Art)

Figure 4 - Diagram of a Parallel Placement of a Shock Absorber and a Long Stroke Hydraulic Tuned Damper in a Vehicle

Figure 5 - Construction of LSHTD

Figure 6a - LSHTD with External Collection Chamber

Figure 6b - LSHTD with Internal Collection Chamber and Inertia Track Integrated into Piston

Figure 6 - Alternate LSHTD Constructions

Fig 7a -
Performance of
shock absorber
tuned for low
frequency blow-off.

Fig 7b -
Performance of
shock absorber
tuned for high
frequency blow-off.

Fig 7c -
Performance of
hydro-shock.

Fig 7d -
Combined
performance of
shock absorber &
hydro-shock.

Figures 7 - Shows that the Hydro-Shock/Shock Absorber combination is effective at damping both ride and wheel hop frequencies without compromising high frequency isolation

Figures 8 - Single Degree of Freedom example demonstrating the effects of damping on resonance and high frequency isolation

Figures 9 - Adjacent construction of Hydro-Shock and shock absorber

Figures 10 - Concentric construction of Hydro-Shock and shock absorber integrated into one assembly

Figures 11 - Long Stroke Hydraulic Tuned Damper in Parallel with Vehicle Steering System