whether (* Find all the zero positions *)
 xstar = Solve[r*x + 4*x^3 - 9*x^5 = 0, x] // Simplify

Out|44|
$$\left\{(x \to 0), \left(x \to -\frac{1}{3}\sqrt{2 - \sqrt{4 + 9 \, r}}\right), \left(x \to \frac{1}{3}\sqrt{2 - \sqrt{4 + 9 \, r}}\right), \left(x \to -\frac{1}{3}\sqrt{2 + \sqrt{4 + 9 \, r}}\right), \left(x \to -\frac{1}{3}\sqrt{2 + \sqrt{4 + 9 \, r}}\right), \left(x \to -\frac{1}{3}\sqrt{2 + \sqrt{4 + 9 \, r}}\right), \left(x \to -\frac{1}{3}\sqrt{2 + \sqrt{4 + 9 \, r}}\right)\right\}$$

Whether xstar1[r_] = 0 * r;
 xstar2[r_] = $\frac{1}{3}\sqrt{2 - \sqrt{4 + 9 \, r}};$
 xstar4[r_] = $\frac{1}{3}\sqrt{2 + \sqrt{4 + 9 \, r}};$
 xstar1[r_] = 0;

whether xstar1[r_] = 0;

whether

ln[64]:= (* Find the saddle-node bifurcations analytically *) $df[x_{, r_{]}} = r + 12 x^2 - 45 x^4;$

$$ln[62]:= b1[r_] = df[x, r] /. xstar[3]$$

$$\text{Out[62]= } r + \frac{4}{3} \left(2 - \sqrt{4 + 9 \; r} \right) - \frac{5}{9} \left(2 - \sqrt{4 + 9 \; r} \right)^2$$

Out[63]=
$$\left\{ \left\{ r \rightarrow -\frac{4}{9} \right\}, \left\{ r \rightarrow 0 \right\} \right\}$$