

Redes de Computadores

Camada de Aplicação

Professor: Reinaldo Gomes

1

2

4

Algumas aplicações de rede

- Correio Eletrônico (e-mail)
- Hipertexto (http://www...)
- Mensagem instantânea
- Login remoto (e.g., ssh)
- Compartilhamento de Arquivos Entre-Pares (P2P *file* sharing)
- Jogos multi-usuário em Rede
- Streaming stored videoclipes
- Telefonia via Internet (VoIP)
- Videoconferência em tempo real
- Grades Computacionais (grid computing)

3

Camada de aplicação

- 2.1 Princípios de aplicações em rede de computadores
- 2.2 Web e HTTP
- 2.3 FTP
- 2.4 Correio electrônico
- SMTP, POP3, IMAP
- 2.5 DNS
- •2.6 Compartilhamento de arquivos P2P

- Cliente-servidor
- Entre-Pares (Peer-to-peer, P2P)
- Híbrida de cliente-servidor e P2P

Arquitetura cliente-servidor

- Hospedeiro sempre ativo
- Endereço IP permanente
- Fornece serviços solicitados pelo cliente

- Comunicam-se com o servidor
- Pode ser conectado intermitentemente
- Pode ter endereço IP dinâmico
 Não se comunicam diretamente uns com os outros

Arquitetura P2P pura

- Nem sempre no servidor
- Sistemas finais arbitrários comunicam-se diretamente
- · Pares são intermitentemente
- Ex.: Gnutella

Altamente escaláveis mas difíceis de gerenciar

7

🗒 Híbrida de cliente-servidor e P2P

- Transferência de arquivo P2P
- Busca centralizada de arquivos:
- Conteúdo de registro dos pares no servidor central
- Consulta de pares no mesmo servidor central para localizar o conteúdo

- Bate-papo entre dois usuários é P2P
- Detecção/localização de presença é centralizada:
- Usuário registra seu endereço IP com o servidor central quando fica
- Usuário contata o servidor central para encontrar endereços IP dos "amigos"

8

O protocolo da camada de aplicação define

- Tipo das mensagens trocadas, mensagens de requisição e resposta
- Sintaxe dos tipos de mensagem: os campos nas mensagens e como são delineados
- Semântica dos campos, ou seja, significado da informação nos campos
- Regras para quando e como os processos enviam e respondem às mensagens

- Definidos nas RFCs
- Recomendados para interoperabilidade
- Ex.: HTTP, SMTP, DNS, SSH

Protocolos proprietários:

• Ex.: KaZaA, BitTorrent

9

10

De qual serviço de transporte uma aplicação necessita?

Perda de dados

- Algumas aplicações (ex.: áudio) podem tolerar alguma perda
- Outras aplicações (ex.: transferência de arquivos, sessão remota) exigem transferência de dados 100% confiável

Algumas aplicações (ex.: telefonia IP, jogos interativos) exigem baixos atrasos para serem "efetivos"

- Algumas aplicações (ex.: multimídia) exigem uma banda mínima para serem "efetivas"
- Outras aplicações ("aplicações elásticas") melhoram quando a banda disponível aumenta

Requisitos de transporte de aplicações comuns

Aplicação	Perdas	Таха	Sensível ao atraso
file transfer	sem perdas	elástica	não
e-mail	sem perdas	elástica	não
Web documents	sem perdas	elástica	não
real-time áudio/vídeo	tolerante	aúdio: 5 Kb-1Mb vídeo:10Kb-5Mb	sim, 100's mseg
stored áudio/video	tolerante	igual à anterior	sim, segundos
jogos interativos	tolerante	kbps	sim, 100's mseg
e-business	sem perda	elástica	sim

Aplicação	Protocolo de aplicação	Protocolo de transporte
	smtp [RFC 821]	T00
e-mail	telnet [RFC 854]	TCP
acesso de terminais remotos	http [RFC 2068]	TCP
Web	ftp [RFC 959]	TCP
transferência de arquivos	RTP ou proprietário	TCP
streaming multimídia	(ex.: RealNetworks) NFS	TCP ou UDP
servidor de arquivos remoto	RTP ou proprietário	TCP ou UDP
telefonia Internet	(ex.: Vocaltec)	tipicamente UDF

15 16

21 22

23 24

27 28

29 30

33 34

35 36

39 40

41 42

Mais sobre POP3

O exemplo anterior usa o modo download-and-delete

Bob não pode reler o e-mail se ele trocar o cliente

download-and-keep: cópias das mensagens em clientes diferentes

POP3 é stateless através das sessões

IMAP

Mantém todas as mensagens em um lugar: o servidor

Permite que o usuário organize as mensagens em pastas

IMAP mantém o estado do usuário através das sessões:

Nomes das pastas e mapeamentos entre os IDs da mensagem e o nome da pasta

45

46

Pessoas: muitos identificadores:

• RG, nome, passaporte, CPF
Internet hospedeiros, roteadores:

• Endereços IP (32 bits) - usados para endereçar datagramas

• "nome", ex.: www.dsc.ufcg.edu.br - usados por humanos
P: Como relacionar nomes com endereços IP?

Domain Name System:

• Base de dados distribuída implementada numa hierarquia de muitos servidores de nomes

• Protocolo de camada de aplicação hospedeiro, roteadores se comunicam com servidores de nomes para resolver nomes (tradução nome/endereço)

• Nota: função interna da Internet, implementada como protocolo da camada de aplicação

• Complexidade na "borda" da rede

47 48

Servidores TLD e autoritários

Servidores Top-Level Domain (TLD): responsáveis pelos domínios com, org, net, edu etc e todos os domínios top-level nacionais uk, fr, ca, jp, br

Network Solutions mantém servidores para o TLD "com"

Educause para o TLD "edu"

Servidores DNS autorizados: servidores DNS de organizações, provêem nome de hospedeiro autorizado para mapeamentos IP para servidores de organizações (ex.: Web e mail).

Podem ser mantidos por uma organização ou provedor de serviços

51 52

53 54

57 58

59 60

63 64

69 70

71 72

75

77 78

