

SRM Institute of Science and Technology College of Engineering and Technology SCHOOL OF COMPUTING

SET-B

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-23 (EVEN)

Test: CLAT-2
Course Code & Title: 18CSC304J -COMPILER DESIGN
Year & Sem: III & VI

Date : 04.04.2023

1: 2 Periods
Max. Marks: 50

Course Articulation Matrix:

_														
	S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1	CO3	3	3	3									

1 The grammar A → Ax (A) ε is not suitable for predictive-parsing because the grammar is? a) Left factoring b) Left recursive c) Right recursive d) An operator grammar Answer: B 2 For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing	Q. No	Question	Marks	BL	CO	PO	PI Code
a) Left factoring b) Left recursive c) Right recursive d) An operator grammar Answer: B For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing		The grammar $\mathbf{A} \rightarrow \mathbf{A}\mathbf{x} \mid (\mathbf{A}) \mid \mathbf{\varepsilon}$ is not suitable for					0044
b) Left recursive c) Right recursive d) An operator grammar Answer: B 2 For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing							
c) Right recursive d) An operator grammar Answer: B 2 For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing							
c) Right recursive d) An operator grammar Answer: B 2 For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing			1	1	3	1	1.7.1
Answer: B 2 For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing c) predictive parsing c) c) predictive parsing c) predictive parsing			1			1	1.7.1
For the grammar, E → EE (E) ε, number of parse trees to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) I only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing c) predictive parsing c) predictive parsing		d) An operator grammar					
to produce empty string is? a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E \rightarrow FG 2. F \rightarrow E s F 3. G \rightarrow F t H p 4. H \rightarrow \varepsilon 4. H \rightarrow \varepsilon 5. 1		Answer: B					
a) One b) Two c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing c) predictive parsing c) predictive parsing c)	2						
b) Two c) Three d) Infinite Answer: D Which grammar rules violate the requirements of an operator grammar? 1. E \rightarrow FG 2. F \rightarrow E s F 3. G \rightarrow F t H p 4. H \rightarrow \tau a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing							
c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E \rightarrow FG 2. F \rightarrow E s F 3. G \rightarrow F t H p 4. H \rightarrow \tau a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing							
c) Three d) Infinite Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing c) predictive parsing		l '	1	1	3	1	1.7.1
Answer: D 3 Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 3 1			1			1	1.7.1
Which grammar rules violate the requirements of an operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 1 1 1		d) Infinite					
operator grammar? 1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 3 1							
1. E → FG 2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 3 1	3						
2. F → E s F 3. G → F t H p 4. H → ε 1 2 3 2 a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 1 1 1							
3. G → Ft H p 4. H → ε a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 1 3 1							
4. H → ε a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing							
a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing							
a) 1 only b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing		4. H → ε			3		
b) 1 and 3 only c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing			1	2	3	2	2.8.2
c) 1 and 4 only d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing							
d) 1, 3 and 4 only Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing		'					
Answer: C 4 A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing							
A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing		d) 1, 3 and 4 only					
A form of recursive descent parsing that does not require any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing		Answer: C					
any back-tracking is known as? a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1	4						
a) recursive parsing b) non-recursive parsing c) predictive parsing 1 1 1	-						
b) non-recursive parsing c) predictive parsing 1 1 1							
c) predictive parsing		b) non-recursive parsing		_	3	_	
			1	1		1	1.7.1
		d) non-predictive parsing					
		Answer: C					

		1	1			
5	For the grammar given below, find FIRST(X)					
	$X \rightarrow Ya \mid bZ$					
	$Y \rightarrow c \mid \varepsilon$					
	a) {a, b}			_		
	b) $\{c, \varepsilon\}$	1	1	3	1	1.7.1
	c) {a, b, c}					
	$\begin{array}{c} \mathbf{d} \mathbf{j} \ \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{\epsilon} \} \end{array}$					
	u) (a, b, c, c)					
	Answer: D					
6	In shift reduce parsing handle is at					
0						
	a) Top of the stack					
	b) Bottom of the stack		_	3	_	
	c) Anywhere in the stack	1	2		2	2.8.2
	d) Nowhere in the stack					
	Answer: A					
7	Choose the correct precedence relations in operator					
	precedence parsing:					
	if operator O ₁ has higher precedence than operator O ₂					
	$ a O_1 > O_2$					
	$b) O_1 = O_2$	1	2	3	4	4.6.2
	$\begin{vmatrix} c \\ c \end{vmatrix} O_2 < O_1$		_		_	
	$\begin{array}{c} O \cap O_2 \cap O_1 \\ O \cap O_1 > O_2 \text{and} O_2 < O_1 \end{array}$					
	u) 01 × 02 and 02 × 01					
	Answer: D					
8	In SLR, CLR and LALR parser, which have same number					
	of states?					
	a) SLR and CLR					
	b) SLR and LALR	1	2	3	1	1.7.1
	c) CLR and LALR					
	d) SLR, CLR and LALR					
	A D					
	Answer: B					
9	What is the LEADING(X) for the following grammar? $X > X = P + P$					
	$X \rightarrow X - B \mid B$					
	$B \rightarrow B*A \mid A$					
	$A \rightarrow (X) \mid id$					
	a) LEADING(X)= $\{-,*,(,)\}$	1	2	3	4	4.6.2
	b) LEADING(X)= $\{-,*,\}$,id $\}$	1			7	7.0.2
	c) LEADING(X)= $\{-,*,(,id)\}$					
	d) LEADING(X)= $\{-,*,(\}$					
	Answer: B					
10	Construction of parsing table in which strategies do not					
	need the FOLLOW set?					
	a) SLR and CLR					
	b) SLR and LALR			2		
		1	1	3	3	3.8.2
	c) CLR and LALR					
	d) SLR, CLR and LALR					
	Angyram C					
	Answer: C					

SRM Institute of Science and Technology College of Engineering and Technology SCHOOL OF COMPUTING

SET-B

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-23 (EVEN)

Test: CLAT-2
Course Code & Title: 18CSC304J -COMPILER DESIGN
Year & Sem: III & VI

Date : 04.04.2023
: 2 Periods
Max. Marks: 50

Year & S	Sem: III & VI										Ma	ax. M	ark	s: 50		
Course A	Articulation Matrix:															
S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P	011		PO	2
1	CO3	3	3	3												
]	⊥ PART B	(4 x 4 =	= 16) AN	 SWER	ANY F	OUR							
11	Eliminate la $X \rightarrow Ya \mid Y \rightarrow Yc \mid Z \rightarrow aZX$ Left recurs	b c Yd a bXc	aZc 2 marl	KS .		ang in the			gramma	ar:						
	Loft factori	ng 2:				ay						4	2	3	3	3.8.2
	Left factori	ng – 2 1	marks	Z → Z' →	az	21	ЬХс									
12	Check the f "a(a)aa": $A \rightarrow AA$ $A \rightarrow (A)$ $A \rightarrow a$	ollowi	ng gran	nmar is	s ambig	guous o	r not b	y parsi	ng the	input st	ring	4	2	3	4	4.6.2

	12. a) A A A A A A A A A A A A A A					
13	Compute FIRST() and FOLLOW() for the grammar: $S \rightarrow ABCD$ $A \rightarrow a \mid \varepsilon$ $B \rightarrow CD \mid b$ $C \rightarrow c \mid \varepsilon$ $D \rightarrow Aa \mid d$ Compute FIRST() - 2 marks Compute FOLLOW() - 2 marks 13. $S \rightarrow ABCD$ $A \rightarrow a \mid \varepsilon$ $B \rightarrow CD \mid b$ $C \rightarrow c \mid \varepsilon$ $D \rightarrow Aa \mid d$ FOLLOW () $C \rightarrow c \mid \varepsilon$ $C \rightarrow c \mid \varepsilon$ C	4	3	3	3	3.8.2
14	Find LEADING() and TRAILING() for all the non-terminals in the following grammar: $A \rightarrow A - B \mid B$	4	3	3	3	3.8.2

	$B \rightarrow B/C \mid B$ $C \rightarrow C * D \mid D$ $D \rightarrow (A) \mid x \mid y$ Compute LEADING() – 2 marks					
	Compute TRAILING() = 2 marks 14. $ A \rightarrow A - B $ $ A \rightarrow B $ $ B \rightarrow B/C $ $ B \rightarrow B $ $ C \rightarrow C + D $ $ C \rightarrow D $ $ D \rightarrow X $ $ D \rightarrow X $ $ A \rightarrow B = \{ /, 2 \} $ $ C \rightarrow D = \{ /, 2 \} $ $ D \rightarrow (A) $ $ D \rightarrow X $ $ A \rightarrow A - B $ $ (B) = \{ /, 2 \} $ $ (C) = \{ *, (, x, y) \} $ $ (A) = \{ -, /,), x, y \} $ $ (B) = \{ /, *,), x, y \} $ $ (C) = \{ *,), x, y \} $ $ (C) = \{ *,), x, y \} $ $ (D) = \{), x, y \} $					
15	Find the canonical collection of LR(0) items for the following grammar: $S \rightarrow aS$ $S \rightarrow aS$ $S \rightarrow bS$ Augmented grammar $S^{1} \rightarrow .S$ $S \rightarrow .aS$ $S \rightarrow .aS$	4	3	3	2	2.6.4
16.	Part – C (2 x 12 = 24 Marks) Answer ALL Questions Consider the grammar: $A \rightarrow pqC \mid pBs \mid pAD$ $B \rightarrow qB \mid \epsilon$ $C \rightarrow s \mid \epsilon$	12	2	3	3	3.8.2

A A S		
* not match		
PBS PBS PBS PBS PBS PBS PBS PBS P		
A A A A A A A A A A A A A A A A A A A		
A A A A A A A A A A A A A A A A A A A		
	PAC PACES * not match A A A PAD PAD PAD PAD PAD PACE PACE PACE PACE * not match A A A A A A A A A A A A A A A A A A A	PAC PACY * not match A A A PBS PBS PBS PBS * not match A A A PAD PAD PAD PAD PAC PACY P

	(OR)					
17.	Election commission has announced the MLA election for Kanchipuram constituency. In view of this, applications are invited for the MLA election nomination. A candidate should produce proof for Age, Qualification, and any Work experience. The basic criteria for age limit is Age>20 and Age<50. The academic qualification can be UG or PG or Diploma or no qualification. Then, it includes whether the candidate has a work experience or not. Construct CFG for	14	3	3	4	4.6.2

Grammar: $M \rightarrow AQE$ $A \rightarrow 2X \mid 3Y \mid 4Y$ $X \rightarrow 1 \mid 2 \mid 3 \mid \mid 9$ $Y \rightarrow 0 \mid X$ $Q \rightarrow ug \mid pg \mid dip \mid \varepsilon$ $E \rightarrow yes \mid no$	marks							
Parsing the inputs:	2 1							
i) 31 dip no - Stack	3 marks Input	Action	7					
\$	31 dip no \$	Shift	_					
\$ 3	1 dip no \$	Shift	1					
\$ 31	dip no \$	Reduce $X \rightarrow 1$						
\$ 3X	dip no \$	Reduce Y → X	1					
\$ 3Y	dip no \$	Reduce A → 3Y						
\$ A	dip no \$	Shift						
\$ A dip	no \$	Reduce Q →dip						
\$ AQ	no \$	Shift	1					
\$ AQ no	\$	Reduce E → no	1					
\$ AQE	\$	Reduce M → AQE						
\$ M	\$	Accept						
20	2 1							
ii) 20 ug yes - Stack	3 marks Input	Action	7					
\$	20 ug yes \$	Shift						
\$ 2		Shift	1					
	0 ug yes \$		-					
\$ 20 \$ 2V		Reduce Y → 0	_					
\$ 2Y	ug yes \$	Shift	4					
\$ 2Y ug	yes \$	Reduce Q → ug	-					
\$ 2YQ	yes \$	Shift	-					
\$ 2YQ yes	\$	Reduce E → yes						
\$ 2YQE	\$	Not Accepted						
Consider the following grant $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$ Construct operator precedence graph and precedence	dence parsing ta	ble using Leading and	d Trailing,	12	2	3	3	3.8


```
Given Grammar:
   S \rightarrow L = R
   S \rightarrow R
   L \rightarrow *R
   L \rightarrow id
   R \rightarrow L
Step-1: Augmented grammar - 1 mark
   S' \rightarrow S
   S \rightarrow L = R
   S \rightarrow R
   L \rightarrow *R
   L \rightarrow id
   R \rightarrow L
Step-2: Find LR(0) collections - 3 marks
I_0:
   S' →.S
   S \rightarrow .L = R
   S \rightarrow .R
   L \rightarrow .*R
   L \rightarrow .id
   R \rightarrow .L
I<sub>1</sub>: goto(I0, S)
   S^1 \rightarrow S.
I<sub>2</sub>: goto(I0, L)
   S \rightarrow L. = R
   R \rightarrow L.
I<sub>3</sub>: goto(I0, R)
   S \rightarrow R.
I<sub>4</sub>: goto(I0, *)
  L → *.R
   R \rightarrow .L
   L \rightarrow .*R
   L \rightarrow .id
I<sub>5</sub>: goto(I0, id)
   L \rightarrow id.
I_6: goto(I2, =)
   S \rightarrow L = R
   R \rightarrow .L
   L \rightarrow .*R
   L \rightarrow .id
I<sub>7</sub>: goto(I4, R)
   L \rightarrow *R.
I<sub>8</sub>: goto(I4, L)
   R \rightarrow L.
```

```
I<sub>4</sub>: goto(I4, *)
   L \rightarrow *.R
   R \rightarrow .L
   L \rightarrow .*R
   L \rightarrow .id
I<sub>5</sub>: goto(I4, id)
   L \rightarrow id.
I<sub>9</sub>: goto(I6, R)
   S \rightarrow L=R.
I_8: goto(I6, L)
   R \rightarrow L.
I<sub>4</sub>: goto(I6, *)
   L \rightarrow *.R
   R \rightarrow .L
   L \rightarrow .*R
   L \rightarrow .id
I<sub>5</sub>: goto(I6, id)
   L \rightarrow id.
```

Transition Diagram of goto function - 2 marks

Step-3: Find FOLLOW() - 1 marks

```
\begin{split} & FOLLOW(S') = \{ \ \} \\ & FOLLOW(S) = \{ \ \} \\ & FOLLOW(L) = \{ \ =, FOLLOW(R) \ \} = \{ \ =, \$ \ \} \\ & FOLLOW(R) = \{ \ FOLLOW(S), FOLLOW(L) \ \} = \{ \ \$, = \} \end{split}
```

	=	*	id	\$	S	L	R
0		S4	S5		1	2	3
1				Accept			
2	S6/R5			R5			
3				R2			
4		S4	S5			8	7
5	R4			R4			
6		S4	S5			8	9
7	R3			R3			
8	R5			R5			
9				R1			

Parsing the input: *id = id - 2 marks

Stack	Input	Action
0	*id = id \$	Shift 4
0 * 4	id = id \$	Shift 5
0 * 4 id 5	= id \$	Reduce by L→ id
0 * 4 L 8	= id \$	Reduce by $R \rightarrow L$
0 * 4 R 7	= id \$	Reduce by $L \rightarrow R$
0 L 2	= id \$	Shift 6
0 L 2 = 6	id \$	Shift 5
0 L 2 = 6 id 5	\$	Reduce by $L \rightarrow id$
0 L 2 = 6 L 8	\$	Reduce by $R \rightarrow L$
0 L 2 = 6 R 9	\$	Reduce by $S \rightarrow L = R$
0 S 1	\$	Accept

*Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator