下一代Internet技术与 协议

张冬梅 北京邮电大学 计算机学院 zhangdm@bupt.edu.cn

IP协议

- □IP协议概述
- □ IPv4
- □ IPv6

IP协议概述

- □互联网通信协议的工作环境
 - ■用户需求
 - ■底层通道环境
- □互联网通信协议的功能
- □IP协议提供的服务

IP在协议栈中的位置

- □多个高层协议
- □多个低层协议

□唯一的网络层协议

□是路由器和主机共同支持的最高层协议

IP 提供的服务

- □ 不可靠(unreliable connectionless)的 尽力投递服务
 - 不可靠: IP does not make an attempt to recover lost packets
 - 无连接: Each packet ("datagram") is handled independently. IP is not aware that packets between hosts may be sent in a logical sequence
 - 尽力投递: IP does not make guarantees on the service
- □影响
 - 高层协议需要处理丢包等问题
 - 分组乱序

IP数据报简介

- □通用的虚拟包
- ■對装
 - ■IP数据报与帧
 - 底层封装
 - ■互联网传输过程
- □分段与重组
 - 最大传送单元(Maxium Transmission Unit)
 - ■原因
 - ■方法

IPv4

- □IP协议内容
- □ IPv4数据报
- □ IPv4路由技术的工作原理
- □ IPv4变革动机

IP协议内容

- □ IP地址的编址方案(已经讲过)
- □IP数据报格式
- □IP路由和交换

IPv4数据报

- □简介
 - 互联网的基本传输单元: IP数据报
 - IP数据报处理在软件中进行
- □IP数据报格式

IPv4数据报格式

IP节点处理数据报过程

IP路由技术的工作原理(1/6)

□路由表的内容

- ■目的地址
- ■前缀长度
- 下一跳地址
- ■端口号

IP路由技术的工作原理(2/6)

□基本概念

- 直接投递: 通信双方在同一个物理网络中
- 间接投递: 通信双方不在一个物理网络中
- 默认路由: 简化路由表的一种方法

IP路由技术的工作原理(3/6)

□路由表表项的分类

- 特定主机路由
- 网络前缀路由
- 缺省路由 (默认路由)

IP路由技术的工作原理(4/6)

- □路由匹配原则归纳
 - 首选: 特定主机路由
 - 其次: 最长网络前缀匹配
 - 最后: 缺省路由
 - 路由错误,ICMP报错

IP路由技术的工作原理(5/6)

- □生成路由表的方法
 - 静态生成, 手工配置
 - ■利用ICMP消息
 - ■利用动态路由协议
 - OSPF
 - RIP
 - BGP

IP路由技术的工作原理(6/6)

- □生成路由表的基本工作过程
 - ■制定各物理网络的网络前缀
 - ■配置路由器各端口的IP地址及前缀长度
 - ■路由器学习邻局路由器的信息
 - 路由器根据路由协议,定期交换路由更新信息,更新自己的路由表

IP网络路由举例

源地址:	1.0.0.1

目的地址: 1.0.1.2, 2.0.0.3

2.0.0.7,4.0.0.5

Router1			
目的地址	网络掩码	下一跳地址	端口号
1.0.0.0	255.0.0.0	直接投递	a
2.0.0.0	255.0.0.0	3.0.0.253	b
3.0.0.0	255.0.0.0	直接投递	b
Router2			
目的地址	网络掩码	下一跳地址	端口号
1.0.0.0	255.0.0.0	3.0.0.254	С
2.0.0.0	255.0.0.0	直接投递	ь
3.0.0.0	255.0.0.0	直接投递	с

H1			
目的地址	网络掩码	下一跳地址	端口号
0.0.0.0	0.0.0.0	1.0.0.254	a
1.0.0.0	255.255.255.240	直接投递	a
Н3			
目的地址	网络掩码	下一跳地址	端口号
0.0.0.0	0.0.0.0	2.0.0.253	a
2.0.0.0	255.0.0.0	直接投递	a
			2

IPv4变革的动机

- □有限的地址空间
- □ 新的Internet应用
 - 传递音频和视频信息
 - 对更复杂的寻址和路由能力的需求
 - ■移动服务

IPv6

- □ IPv6简介
- □ IPv6特征
- □ IPv6协议
- □常用的几种扩展头标简介

IPv6简介

- □ IPv6是IP协议的新版本
- □ 也叫做IPng(IP新一代)
- □ 1995年随RFC1883的出现而完成
- □ 1998年RFC2460取代了RFC1883
- □ IPv6的目的就是要解决IPv4遇到的问题
- □ IPv6将是未来唯一的第三层协议
- □ IPv6将是下一代Internet的基础协议

IPv6特征

- □ IPv6保留了IPv4的成功特征
- □ IPv6的新加特征
 - ■地址尺寸
 - 头部格式
 - ■扩展头标
 - ■对音频和视频的支持
 - ■可扩展的协议

IPv6协议

- □ 基本术语
 - 节点 (node): 任何实现了IPv6的设备
 - 路由器: 转发IPv6报文的节点
 - 主机: 在网络上除了路由器的节点
 - 链路: 节点利用来在链路层通信的通信设备或介质,如以太网、PPP链路或网络层隧道

相关术语

- 邻居:连接在同一链路上的节点
- ■接口:结点与链路相连接的部件
- 链路MTU: 在某一链路上的最大传输单元
- 路径MTU: 出发点和目的节点之间的路径上 所有链路的最小链路MTU.

- □ IPv6报头特点
 - 报头大大简化
 - ■固定的基本报头长度
 - 去掉报头校验和
 - IPv4报头中的一些字段被取消或是变成 可选项
 - ■用扩展报头代替了IPv4报头中的选项字 段

- □ IPv6数据报格式
 - 简化的头标(40字节基本/固定头标)
 - ■参数的修订
 - ■新增加的域

□扩展报头

- IPv6使用扩展报头来代替IPv4的选项字段。以此来减少IPv6信息包中途经过路由器时的处理时间。扩展报头可位于IPv6报头和上层协议之间,报头之间由下一个报头字段进行连接,这样组成一个菊花链式结构。
- 一个IPv6信息包可以有0个,1个或多个 扩展报头。

□ IPv6扩展头标

■ 基本格式

IPv6格式—下一头标

取值 (十进制)	含义	取值 (十进制)	含义
0	Hop-by-hop 逐跳选项首部	47	通用路由封装GRE
1	ICMPv4	50	ESP
2	IGMPv4	51	AH
4	IPv4封装	58	ICMPv6
5	IST(Internet Stream Protocol)	59	无下一头标
6	TCP	60	Destination option目的选项扩展头标
8	EGP	88	EIGRE(Enhanced Interior Gateway Routing Protocol)
9	IGP	89	OSPF
17	UDP	108	IP有效载荷压缩协议
41	IPv6封装	115	L2TP(二层隧道传输协议)
43	routing路由扩展首部	132	流控制传输协议SCTP
44	fragment分段扩展首部	135	Monility移动扩展头标,移动节点使用
46	RSVP		

路由器转发IPv6分组过程

- ■检查首部校验和
- □检查版本字段
- □ 递减生存时间(跳数限制)字段的值
- **√**□ 处理<u>首部选项(下一首部</u>)字段的值,依次处理
 - □路由选择
 - 下一跳地址、默认路由、discard and ICMP
- **√**□ 处理<u>分组总长度(有效载荷</u>)长度的问题
 - discard and ICMP
 - 计算校验和
 - □依据路由选择结果转发分组

扩展头标

- □位置:在IPv6基本头标和有效载荷之间
- □特点(与IPv4的选项字段比较)
 - 灵活、高效: 只在需要时才插入
 - 可扩展性好: 可以根据需要定义新的扩展头标
- □处理位置:路由器、目的节点
- □问题
 - 路由器需要查看每个扩展头标吗?
 - 如何能够做到让路由器高效地选择出需要其处理的扩展头标

扩展头标

- □ 关于IPv6扩展头的几点说明:
 - 扩展包头必须严格按出现顺序处理,目的结点不能搜索某一特定的扩展头并对之优先处理
 - 如果要处理的下一个包头的类型不认识或0则 返回ICMP(code 1)并丢弃包
 - ▶ 为了字边界对齐,每个扩展报头的长度是必须是8字节的整数倍

扩展头标

- □基本组合方式
 - IP基本头标+数据
 - IP基本头标+1个扩展头标+数据
 - IP基本头标+n个扩展头标+数据
 - IP基本头标+扩展头标

扩展头标

出现的顺序 首部名称 路 IPv6基本首部 由 Hop-by-hop 逐跳选项扩展首部 器 Destination目的选项扩展首部1(由首部中指定的网络节点依 处 次进行处理) 理 routing扩展首部 5 fragment分片扩展首部 6 AH身份认证扩展首部 的 ESP封装安全净荷 节 点 Destination目的选项扩展首部2(仅由目的节点进行处理) 处 Mobility移动扩展首部 理 无下一头标 最后 最后 UDP,TCP,ICMP以及其他高层协议首部

- Hop-by-hop Options Header
- □作用:描述了数据分组转发的特性
- 处理位置: 从源节点到目的节点的路由上的每 一个节点(即路由器)
- □ 说明:
 - ■除了逐跳选项扩展首部,其余扩展头部与上层协议 一样是根据目标地址判断是否需要解析处理。
 - 逐跳选项首部在沿途路由器上被无条件解析处理

- 逐跳选项首部决定了数据包内容一定会被沿途的 路由器处理
- 逐跳选项首部的选项类型决定了数据包如何被处理。
- □ Pad 1的选项
 - 用于边界对齐,插入一个填充字节
 - 1字节,格式: 0000 0000
- □ Pad N的选项结构
 - 用于边界对齐,插入2个或多个填充字节
 - N字节

0000 0001

选项数据长度

N-2字节个0

■ 格式

N个字节的填充

- □ 特大有效载荷(jumbo payload)
 - 作用: IP数据报的载荷长度超过65535字节时使用
 - 选项从(4n+2)字节处开始。

代码 下一头标 0000 0100 1100 0010

特大有效载荷长度(4字节)

长度

□ 结构

□ 能表示的最大IP分组长度JPL: 65535≤JPL<232

- 该长度不包含IPv6基本首部
- 包含逐跳选项扩展首部在内的字节数
- 使用该选项,则IPv6基本头中的有效载荷字段设置为0
- □ 只有沿途每个路由器都能处理时才可使用该选项
- 如果使用了分片扩展首部,则hop-by-hop选项扩展首部中不 能包含特大有效载荷选项 41

- □ 路由器警告(警示)选项(router alert option)
 - 用于告知路由器该IPv6分组中的内容需要进行特殊的处理,用于RSVP、MLD(Multicast Listener Discovery Protocol)等

This memo describes a new IP Option type that <u>alerts transit routers to</u> <u>more closely examine the contents of an IP packet</u>. This is useful for, but not limited to, new protocols that are addressed to adestination but <u>require relatively complex processing in routers</u> along the path.

代码

长度

下一头标 0 0000 0101 0000 0010 Router alert option data (16比特,2字节)

■ Router处理行为:被应用层进程在用户态处理,将剩余跳数 递减后重新注入协议栈,继续转发

路由扩展首部

- Routing Header, RH
- □ 作用: 控制路径, 用来指出IPv6分组在从源节 点到目的节点的过程中需要经过的一个或多个 路由器
- 应用场景:信源将分组发往信宿时,在某些情况下希望控制该分组经过的路径。
- □格式
- □路由类型

- 类型0: 支持源站选路
- 类型2: 支持IPv6移动性

路由扩展首部

□路由类型0的路由扩展首部

下一头标	下一头标 扩展头标长度		剩余中继点数	
保留				
地址[0]				
地址[1]				

地址 [n-1]				

路由扩展首部应用举例

路由扩展首部

STEP1: 信源发出分组时,基本头标的目的地址是预定路径上第一个中继点地址,沿该路径的各HOP地址依次列于寻路头标地址表内,剩余中继点数为地址表中地址的总数

STEP2:中间节点需要改变的域

- ■基本头标
 - 中继点限制(减1)
 - 目的站IP地址(地址表中的一个地址)
- ■扩展头标
 - 剩余中继点数(SI=SL-1)
 - 地址表中的某个地址(与基本头标中目的地址对调)

路由扩展首部

□相关讨论

- 效率高: 只有目的地址指示的路由器处理路由扩展首部,其他中间路由器不处理
- 路由类型字段不可识别时:
 - ■剩余字段数≠0,忽略,继续处理下一个首部
 - ■剩余字段数=0,丢弃并发送ICMPv6报参数错误
- 路由类型=0时,目的地址不能为多播地址

- Fragment Header: FH
- □ 作用:数据报分片(头标类型:44)用于将大于路径 MTU的信息包从源节点发送到目的节点
- □ 相关技术:路径MTU发现技术
- - M(ore): 最后的报片置为 "0", 其余报片置为 "1";
 - 报片偏移(13bit): 以64比特为单位(即8字节的整数倍), 最大值=2¹³-1=8191*8=65528字节
 - 标识符(32bit): 唯一标识最近(在分组的生存期内)从源地 址发现目的地址的分组

□ 原始IPv6数据报:未被分片的分组

- IPv6分组基本首部
- ■需要路由器处理的扩展首部
 - ■逐跳选项扩展首部
 - 目的选项扩展首部(放在路由选项之前的)
 - ■路由扩展首部

- □可拆分部分
 - 有效载荷
 - 只需要目的节点处理的扩展首部
- ■重组
 - 具有相同源地址、目的地址和分片标识符
 - 不可分片部分=第1个分片分组的不可分片部分
 - 下一头标: 第1个分片分组的分片扩展首部的下一 首部字段

- □ 原始IPv6数据报
- □ 路径MUT=1500B

```
IPv6基本头(40字节) + IP数据(3960字节)
净荷长度=3960
下一头标=17(UDP协议)
```

第1片: IPv6基本头(40字节)+分片扩展首部(8字节)+IP数据(1448字节)

净荷长度=1456 下一头标=17

下一头标=44 偏移量=0

M=1

标识符=1234567

第2片: IPv6基本头(40字节)+分片扩展首部(8字节)+IP数据(1448字节)

净荷长度=1456 下一头标=17

下一头标=44 偏移量=181

M=1

标识符=1234567

第3片: IPv6基本头(40字节)+分片扩展首部(8字节)+IP数据(1064字节)

净荷长度=1072 下一头标=17

M=0

标识符=1234567

□路径MTU

- 作用:为了传送大于路径MTU的信息包,节点可使用IPv6分段报头,在源节点将信息包分段, 而在目的节点将信息包重装配。
- 特点: IPv6 的分段处理不同于IPv4, IPv6仅在 源节点通过扩展报头中的分段报头进行分段处 理, 简化了中间节点对分组的处理。
- 思考问题: 主机如何发现路径的MTU?
 - 路径MTU发现机制

□异常情况处理

- 60s内没有收到全部分片,则终止重组并报错
- M=1且数据部分长度非8字节整数倍,丢弃并报错
- 重组后有效载荷长度>65535字节,丢弃并报错
- MTU<1280字节的数据包为非法

Fragment attack

- Ping of Death---发送大于65536字节的ICMP包使操作系统崩溃
- Teardown attack---偏移字段设置成不正确的值(DoS攻击)
- Tiny fragment attack---发送设计过的分片来绕过防火墙等 包过滤系统或者入侵检测系统

- Destination Option Header, DOH
- □问题的引出:如何对IPv6增加新的功能?
- □ 常用方法
 - 定义一个新扩展头标,该头标仅由目的地址标识的 主机来处理;
 - 不分配新的头标类型,仅定义一个通用的、自由度 高的由目的地主机处理的扩展头标
- □目的选项扩展首部作用
 - 携带只需要目的站点检验的可选信息(便于用户增加新IP层功能),为中间节点或目的节点指定分组的转发参数

□ 使用方式

- IF(存在路由首部AND目的选项在路由首部前), THEN 目的选项指定中间节点(Router)均需要转发或 处理的选项
- ELSE(即不存在路由首部OR目的选项在路由首部后) 目的选项指定目的节点处理的选项
- □ 为什么要定义两个位置?
 - 在某些情况下(例如使用路由头部),当数据报被转发到最终目的地时,IPv6头部中的目的IP地址字段将会改变。

□格式

```
        下一首部
        扩展首部长度

        选项(N*8B)
```

- 下一首部(8bit)
- 扩展首部长度(8bit)
- 选项(变长)

」选项

8bit8bit选项类型T选项数据长度L选项数据值V

■ 选项类型T

2bit	1bit	5bit	
operation	C	type	

- 动作(Operation): 指明处理节点不能识别选项时的操作
 - 00: 忽略,继续处理下一选项
 - 01: 丢弃IP分组,不回送I*CM*P报文
 - 10: 丢弃IP分组,回送ICMP差错报文
 - 11: 丢弃IP分组,如果目的地址不是组播地址,就回送 ICMP报文(目的信息作为一个单独的扩展首部是使用)
- 改变(C): 选项在传输的路径上是否改变(1: 改变; 0: 不改变)

- □类型0目的选项扩展首部
 - 填充1选项
 - ■填充N选项
- □类型2目的选项扩展首部
 - MIPv6章节介绍

选项扩展首部

•	选项名	首部	动作	改变 C	类型(8bit)	长度(Byte)	RFC
	Pad 1	H,D	00	0	0	N	RFC2460
	Pad N	H,D	00	0	1	可变	RFC2460
j	超大有效载荷	Н	11	0	194	4	RFC2675
	路由器警告	Ε	00	0	5	2	RFC2711
	家乡地址	D	11	0	201	16	RFC6275

IPv6扩展首部与IPv4选项的比较

IPv4中的情况	IPv6中的情况		
无操作和选项结束选项	Pad1, Pad N(Hop by Hop)		
记录路由	无		
时间戳	无		
源路由(严格、松散)	路由扩展首部(Routing)		
基本头中的分片字段	分片扩展首部(Fragment)		
无	认证首部AH		
无	封装安全净荷ESP		

关于定义新的扩展首部和选项

□ RFC8200 (2017)

- **不推荐**定义新类型的IPv6扩展首部,除非有充分的证据说明现存的IPv6扩展首部(通过增加新选项等的方法)无法实现需要的功能
- 禁止定义新的具有hop-by-hop行为的扩展首部
- 不推荐定义hop-by-hop新选项
- ■推荐利用目的选项扩展首部实现更多可选功能

IPv6与IPv4的比较

- □ IPv6中,要求所封装的UDP首部中必须有校验和字段,而IPv4封装的UDP首部中校验和是可选的
- □ IPv6要求每条链路最小MTU为1280字节, IPv4的链路最小MTU为68字节.
- □ IPv6的分组最大长度是232, IPv4为216.

IPv6协议与相邻协议关系

- □上层协议和计算
 - IPv6中,UDP的校验和是必需的,IPv4是可 选的
 - TCP、UDP和ICMPv6的校验和采用伪头标校验

伪头标校验

- □关于数据的校验问题
 - ■IP基本头标无校验
 - IP包中的数据部分的报文格式中如果有校验和域,则该校验和的计算需要使用伪头标

伪头标校验

- IP基本头标中的关键数据
 - ■信源地址
 - 信宿地址
 - ■下一头标
 - ▶净荷长度

□ IPv6基本首部

谢 谢!