Lecture 6 SQL- View, Integrity

CS211 - Introduction to Database

View

CS211 – Introduction to Database

3-schema/view

- Logic data independence
- Physical data independence

view

- Data in a table is physically stored
- Tables ←→ files

- View is defined basing on conceptual schema
- Only definition (External-Conceptual mapping) is stored

- Data changing in table may cause view changing
- Will data changing in view cause table data change? Depends

Create View

Instructor and the course they taught (Lecture)

iName, cName, credit

iID	iName	dID	workload
101	Jeremy	03	2.5
102	Vadim	03	2
103	Prabhu	03	1.5
104	Liu Fang	03	1.5

cID	cName	hours	credit	iID
211	Database	56	3	104
225	C++	56	4	102
228	OS	56	3	103

CREATE VIEW Lecture AS

(SELECT iName, cName, credit
FROM instructor, course
WHERE instructor.iID=course.iID);

Logic Data Independence

instructor(

Conceptual view

If course.cname is changed to course.name mapping should also be changed: create view ··· (select iName, name as cName ···).

Schema of view remain unchanged, so that the statement in application "select cName from lecture" could also remain unchanged.

Create View

Students from CS department (compStu)

```
schema
```

dept(dID dName dean)

```
CREATE VIEW compStu AS

( SELECT *

FROM student

WHERE student.dID IN (SELECT dept.dID

FROM dept

WHERE dept.dName='CS');
```

Query View

iName, cName, credit

Instructor and the course they taught (Lecture)

SELECT *
FROM Lecture
WHERE credit > 3

Students from CS department and under 20 (compStu)

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

SELECT *
FROM compStu
WHERE age<20

View Query Implementation

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

Students from CS department and under 20

(compStu)

SELECT * FROM compStu WHERE age < 20;

Substitute definition of view compStu into above expression

SELECT * FROM (SELECT * FROM Student WHERE student.dID IN (SELECT dept.dID FROM dept WHERE dept.dName='CS')) R) WHERE age<20;

Optimize

SELECT * FROM Student, dept WHERE dept.dID=student.dID AND dept.dName='CS' AND age<20

Create View – aggregation func

statStud(sID, sName, avgS, minS, maxS, cnt)

CREATE VIEW statStud AS

(SELECT s.sID, s.sName, avg(score) avgS, min(score) minS, max(score) maxS, count(*) cnt

FROM Student s, rc

WHERE s.sID = rc.sID

GROUP BY s.SID);

sID	cID	score
4001	211	87.5
4001	225	94
4001	228	78
4002	211	92
4003	225	65
4003	228	74
4004	211	88
4004	225	82.4
4005	225	86.7
4005	228	89

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

Update View

statStud(sID, sName, avgS, minS, MaxS, cnt)

UPDATE statStud SET avgS=85 WHERE sID= '4001';

Insert into View

CREATE VIEW depStud(sName,dID) AS (SELECT sName, dID FROM Student);

INSERT INTO depStud VALUES ('Tang', '03')

Accept: When sID is not specified as a primary key

Reject: if sID is the primary key. (Primary key sID in student can not be null,

according to Entity Integrity)

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

View Modification – not allowed

When creating view, use

- Select aggregation function
- Select distinct
- group by
- Select arithmetic expression
- All columns are from a single table but without Primary Key

View Modification

CREATE VIEW Cstud(sID, sName, grade)
AS (SELECT sID, sName, grade FROM Student WHERE dID= '03')

INSERT INTO Cstud VALUES ('4008', 'Tang', 'Freshman')

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
1002	Alice	F	19	04	Freshman
1003	Bob	M	20	03	Sophomore
1004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

Delete a view

DROP VIEW view

Drop external schema and the E-C Mapping Without removing data from the table

Integrity

CS211 – Introduction to Database

Database Integrity

• Data integrity is the maintenance of, and the assurance of the accuracy and consistency of, data over its entire life-cycle

- What causes the violation of data integrity
 - Wrong input
 - Wrong programming operations
 - ...

Keep Integrity

- DBMS: Automatically keep integrity
 - Step1: User define integrity constraint (DDL)
 - Step2: User issue update request
 - Step3: Integrity Control DBMS validate the request basing on the defined constraint
 - Setp4: DBMS pass/fail the request

Integrity constraint

- Four Components
 - Object: data collection
 - Predicate condition: constraint
 - Trigger: when to validate
 - Response: action when fail the validation

Integrity Constraint

- Object
 - Attribute level: age
 - Table level: hour/credit
- Predicate condition
 - Age>15 and age<=40
 - (hour/credit)>=6 and (hour/credit)<=7
- Trigger
 - Update/Insert into table
- Response
 - Reject the request of modification

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

age>15 and age<=40

cID	cName	hours	credit	iID
211	Database	56	3	104
225	C++	56	4	102
228	OS	56	3	103

(hour/credit)>=6 and (hour/credit)<=7

Integrity – static vs. dynamic

Static: fixed value, fixed range age > 0 and age < 150

Dynamic

Salary, only allow to be increased e.g. salary could be 6000, or 8000 change 6000 → 8000 pass! change 8000 → 6000 reject!

Integrity Constraint Definition

- Method 1: CONSTRAITNT
 - When define a static constraint
 - When the object is an attributes in a table
 - Entity integrity Primary key
 - Referential integrity Foreign key
 - User defined integrity
- Method 2: TRIGGER
 - When define a dynamic constraint
 - When the object involves more than one table

SQL Constraint – Primary key

sName gender dID grade age Sophomore 20 Freshman 4003 Bob 20 Sophomore 4004 Cathy 18 Freshman 4005 John M **Junior**

CREATE TABLE

```
CREATE TABLE student(
 sID char(4) PRIMARY KEY,
 sName char(10),
 gender char(1),
 age int,
 dID char(2),
 grade char(10)
```

```
CREATE TABLE student(
 sID char(4),
 sName char(10),
 gender char(1),
 age int,
 dID char(2),
 grade char(10),
 [CONSTRAINT pk_stu] PRIMARY KEY(sID) );
```

SQL Constraint – Add primary key

ALTER TABLE

CREATE TABLE student(
sID char(4),
sName char(10),
gender char(1),
age int,
dID char(2),
grade char(10))

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

ALTER TABLE student ADD [CONSTRAIT pk_stu] PRIMARY KEY (sID);

SQL Constraint – Drop primary key

ALTER TABLE

MariaDB/MySQL

ALTER TABLE student DROP PRIMARY KEY;

SQLServer/Oracle

ALTER TABLE student DROP CONSTRAINT pk_stu;

sID	sName	gender	age	dID	grade
4001	Amy	F	20	03	Sophomore
4002	Alice	F	19	04	Freshman
4003	Bob	M	20	03	Sophomore
4004	Cathy	F	18	04	Freshman
4005	John	M	21	03	Junior

SQL Constraint – composite primary key

```
CREATE TABLE rc(
sID char(4),
cID char(3),
score float,
[CONSTRAINT pk_stu] PRIMARY KEY (sID, cID) );
```

sID	cID	score
4001	211	87.5
4001	225	94
4001	228	78
4002	211	92
4003	225	65
4003	228	74
4004	211	88
4004	225	82.4
4005	225	86.7
4005	228	89

SQL Constraint – foreign key

SQL Constraint – foreign key - cascade

FOREIGN KEY (cID) REFERENCES course(cID) ON DELETE CASCADE

DELETE FROM course WHERE cid='211';

All tuples with cid='211' in rc will be deleted automatically

cID	cName	hours	credit	iID
211	Database	56	3	104
225	C++	56	4	102
228	OS	56	3	103

sID	cID	score
4001	211	87.5
4001	225	94
4001	228	78
4002	211	92
4003	225	65
4003	228	74
4004	211	88
4004	225	82.4
4005	225	86.7
4005	228	89

SQL Constraint – User defined integrity

dept(dID dName dean)

```
CREATE TABLE student(
sID char(4) PRIMARY KEY, sName char(10),
gender char(1) CHECK(gender= '1' or gender = '0'),
age int CHECK(age>=1 and age<150),
dID char(2),
grade char(10),
FOREIGN KEY (dID) REFERENCES dept(dID) ON DELETE CASCADE)
```

SQL Constraint – User defined integrity

If table student exists already

ALTER TABLE student ADD CONSTRAINT CHECK(age>=15 and age<=150);

SQL Constraint - User defined integrity

• Course – credit [0..5], iID F.K. with on delete cascade, references to instructor.iid

cID	cName	hours	credit	ilD
211	Database	56	3	104
225	C++	56	4	102
228	OS	56	3	103

```
CREATE TABLE course(
   cID char(3),
   cName char(12),
   hours int,
   credit float
   iID char(3),
   );
```

SQL Constraint - User defined integrity

• Course – credit [0..5], iID F.K. with on delete cascade, references to instructor.iid

cID	cName	hours	credit	iID
211	Database	56	3	104
225	C++	56	4	102
228	OS	56	3	103

```
CREATE TABLE course(
    cID char(3),
    cName char(12),
    hours int,
    credit float CHECK(credit>=0 and credit<=5),
    iID char(3),
    FOREIGN KEY (iID) FREFERENCES instructor(iID) ON DELETE CASCADE);
```

SQL Constraint - User defined integrity

• Course – multiple attributes constraint

cID	cName	hours	credit	iID
211	Database	56	3	104
225	C++	56	4	102
228	OS	56	3	103

```
CREATE TABLE course(
 cID char(3) PRIMARY KEY,
 cName char(12),
 hours int,
 credit float CHECK(credit>=0 and credit<=5),
 iID int(11),
 CONSTRAINT ctcc CHECK(hours/credit > 10),
 FOREIGN KEY (iID) REFERENCES instructor(iID) ON DELETE CASCADE
```

Resource

- MairaDB, Create Table
 - https://mariadb.com/kb/en/create-table/
- Constraint Expression in Create Table
 - https://mariadb.com/kb/en/create-table/#constraint-expressions