机器学习大作业——珠海二手房房价预测实验报告

一、数据爬取以及数据集构建

为了获取珠海二手房的房价信息,我们编写了一个 Python 爬虫程序,用于从链家网上爬取珠海地区二手房的数据,并将数据保存到 originaldata.csv 文件中。程序主要分为以下几个部分:

Get_url(url): 这个函数用于生成每一页的 URL 地址, 其中 url 参数是链家网珠海二手房页面的基础 URL。在这个函数中,通过循环生成每一页的 URL,并将其存储在一个列表中返回。代码如下:

```
#获取每一页的url

def Get_url(url):
    all_url=[]
    for i in range(402,800):
        all_url.append(url+'pg'+str(i)+'/') #储存每一个页面的url
    return all_url
```

Get_house_url(all_url, headers): 这个函数用于获取每套房详情信息的 URL。它接收两个参数, all_url 是包含所有页面 URL 的列表, headers 则是 HTTP 请求头, 用于模拟浏览器发送请求。在函数中, 遍历每一页的 URL, 发送 HTTP 请求, 解析 HTML 内容, 提取每套房的详情页 URL, 并调用 Analysis_html() 函数进行详情页信息的解析。代码如下:

```
#获取每套房详情信息的url

def Get_house_url(all_url, headers):
    num=0
    #简单统计页数
    for i in all_url:
        r=requests.get(i, headers=headers)
        html=etree.HTML(r.text)
        url_ls=html.xpath("//ul[@class='sellListContent']/li/a/@href") #获取房子的url
        Analysis_html(url_ls, headers)
        time.sleep(1)
        print("第%s页爬完了"%i)
        num+=1
```

Analysis_html(url_ls, headers): 这个函数用于解析每套房详情页的 HTML 内容, 提取房源的各种信息,如小区名、价格、地区、房屋基本属性等。然后调用 Save_data() 函数将这些信息保存到 CSV 文件中。代码如下:

```
#获取每套房的详情信息

def Analysis_html(url_ls, headers):
    for i in url_ls: #num记录顺取成功的索引值
        r=requests.get(i, headers=headers)
        html=etree.HTML(r. text)
        name=(html.xpath("//div[@class='communityName']/a/text()"))[0].split() #获取房名
        money = html.xpath("//span[@class='total']/text()") # 获取价格
        area = html.xpath("//span[@class='info']/a[1]/text()") # 获取地区
        data = html.xpath("//div[@class='content']/ul/li/text()")# 获取房子基本属性
        Save_data(name, money, area, data)
```

Save_data(name, money, area, data): 这个函数用于将爬取到的房源信息保存到 CSV 文件中。它接收房源的各种信息作为参数,并将这些信息以列表形式写入 CSV 文件。代码如下:

```
#把爬取的信息存入文件

def Save_data(name, money, area, data):
    result=[name[0]]+money+[area]+data #把详细信息合为一个列表
    with open(r'originaldata.csv','a',encoding='utf_8_sig',newline='')as f:
        wt=csv.writer(f)
        wt.writerow(result)
        print('已写入')
        f.close()
```

在 main 函数中,首先定义了要爬取的链家网珠海二手房页面的基础 URL 和 HTTP 请求头。然后调用 Get_url() 函数生成所有页面的 URL 列表,并调用 Get_house_url() 函数开始爬取数据。代码如下:

originaldata.csv 文件中存储着所有爬取到的数据,格式如下图所示。

	价格/万 地区	0 房屋户型	1 所在機层	2 建筑面积	3 户型结构	4 套内面积	5 建筑类型	6 房屋朝向	7 建筑结构	8 装修情况	9 梯户比例	10 配备电梯
保利时代	170 ['金湾区']	3室2厅1厨2卫	高被层(共15层)	92.62 m²	平层	74.03m²	板塔结合	南北	框架结构	精装	两梯四户	有
嘉珠时代广	115 ['金湾区']	3室2厅1厨1卫	中楼层(共19层)	97.75 n²	平层	73.52m²	板塔结合	南	钢混结构	精装	暂无数据	暫无数据
金地格林着	90 ['金湾区']	3室2厅1厨2卫	高楼层(共28层)	90.702	平层	68.6m²	板塔结合	南北	框架结构	毛坯	两梯四户	有
龙光致警逐	215 ['金湾区']	4室2厅1厨2卫	高樹层(共38层)	107.34 m ²	平层	83.98m²	板塔结合	东南	钢混结构	精装	两梯五户	有
金碧丽江	65 ['삭门区']	3室2厅1厨2卫	高機层(共6层)	116.68 m²	平层	102. 42 n ²	板機	南北	钢混结构	其他	暂无数据	无
與國香海美	36 ['삭门区']	1室1厅1厨1卫	高機层(共17层)	32.37 m ²	平层	22.83m²	板塔结合	北	钢混结构	精装	三様二十户	有
路苑	188 ['香洲区']	4室2厅1厨2卫	中機层(共7层)	129.07 m ²	平层	暂无数据	板機	东南	铜混结构	精装	暂无数据	无
翠湖香山另	348 ['高新区']	4室2厅1厨2卫	低機层(共6层)	138.34 m²	平层	暂无数据	板機	南	铜混结构	精装	暂无数据	暂无数据
海怡湾群	315 ['高新区']	4室2厅1厨3卫	中機层(共5层)	205.06 M2	复式	182. 18nº	板塔结合	东南	钢结构	简装	暂无数据	暂无数据
拱运宿舍	115 ['香洲区']	3室1厅1厨1卫	低機层(共6层)	75. 28 m²	平层	68. 28 m²	暂无数据	东	混合结构	其他	暂无数据	无
春泽名园	93.8 ['香洲区']	2室1厅1厨1卫	高楼层(共11层)	46.06 m²	平层	暂无数据	板塔结合	北	铜混结构	精装	一様十户	有
中珠九悦	490 ['香洲区']	4室2厅1厨2卫	高楼层(共26层)	14202	平层	暂无数据	塔楼	东南	铜混结构	精装	两梯三户	有
田德花园A	180 ['香洲区']	3室2厅1厨2卫	高楼层(共7层)	115.12 M2	复式	103.48 m²	板楼	东	铜混结构	精装	暂无数据	无
石榴园	100 ['香洲区']	2室2厅1厨1卫	中楼层(共7层)	73.33 m²	平层	66.83m²	板楼	南	钢混结构	简装	暂无数据	暂无数据
海湾花园	220 ['香洲区']	3室1厅1厨1卫	高楼层(共28层)	112.36 M2	平层	暂无数据	板塔结合	西南	钢混结构	其他	三梯八户	有
安居园北区	110 ['香洲区']	2室2厅1厨1卫	高楼层(共7层)	63.65 M ²	平层	暂无数据	塔楼	西	钢混结构	精装	暂无数据	无
华发山庄	515 ['香洲区']	4室2厅1厨2卫	高楼层(共12层)	168 n²	平层	暂无数据	塔楼	东南	钢混结构	毛坯	一梯两户	有
北园新村-	107 ['香洲区']	2室2厅1厨1卫	中機层(共6层)	65 n ²	平层	暂无数据	塔楼	东南	混合结构	精装	暂无数据	无
春晖花园	243 ['香洲区']	3室2厅1厨1卫	低機层(共7层)	85.5 n²	暂无数据	暂无数据	塔楼	南	钢混结构	精装	暂无数据	无
华发峰尚	85 ['삭门区']	3室2厅1厨2卫	中楷层(共34层)	90. 28 n ²	平层	73.28m²	板機	南	钢混结构	毛坯	两梯六户	有

这个数据集中包含很多的定性变量,例如所在楼层、户型结构、建筑类型等等,为了将定性变量转换为数值表示,我们采用虚拟变量的方式对这些定性变量进行转换;同时这个数据集中很多变量需要删除或分割,因此我们对这个数据进行了一系列处理,处理主要分成以下几个部分:

"户型结构"的转换: "户型结构"分为平层、复式、错层三种情况,因此我们在数据集中新增两个虚拟变量"复式"和"错层",当样本的户型结构为复式时, "复式"变量值为 1;当样本的户型结构为错层时, "错层"变量值为 1;当样本的户型结构为平层时, "复式"和"错层"变量值均为 0。

"所在楼层"的转换: "所在楼层"分为高楼层、中楼层、低楼层三种情况,因此我们在数据集中新增两个虚拟变量"高楼层"和"中楼层",当样本的所在楼层为高楼层时, "高楼层"变量值为 1; 当样本的所在楼层为低楼层时, "高楼层"和"中楼层"变量值均为 0。

"建筑类型"的转换:"建筑类型"分为板楼、塔楼、板塔结合三种情况,因此我们在数据集中新增两个虚拟变量"板楼"和"塔楼",当样本的建筑类型为板楼时,"板楼"变量值为 1; 当样本的建筑类型为板塔结合时,"板楼"和"塔楼"变量值均 0。

"装修情况"的转换:"装修情况"分为毛坯、简装、精装、其它四种情况,因此我们在数据集中新增三个虚拟变量"毛坯"、"简装"和"精装",当样本的装修情况为毛坯时,"毛坯"变量值为1;当样本的装修情况为简装时,"简装"变量值为1;当样本的装修情况为精装时,"精装"变量值为1;当样本的装修情况为其它时,"毛坯"、"简装"和"精装"变量值均为0。

"房屋户型"的转换:房屋户型包含了4个信息,分别是卧室数、客厅数、厨房数和卫生间数,因此我们在数据集中新增四个变量分别记录卧室数、客厅数、厨房数和卫生间数。

"配备电梯"的转换:将"有"变为1,"无"变为0。

"地区"的转换: 我们从 58 同城网站上找到了 2024 年 6 月珠海各个区域二手房的每平方米价格均值,我们将这些价格存储到一个新增的变量"地区平均房价"中,用于代替"地区"。

随后,我们将一切包含不确定信息的样本删除,并将数据集中不需要的变量删除,将修改后的数据保存到 updateeddata.csv 文件中。

updateeddata.csv 文件中存储着所有更新后的数据,格式如下图所示。

建筑面积	套内面积	配备电梯	复式	错层	高楼层	中楼层	板楼	塔楼	毛坯	简装	精装	卧室数	客厅数	厨房数	卫生间数	地区平均房价	格/万
92.62	74. 03		ı	0	0	1	0	0	0	0	0	1	3	2	1 2	1. 2652	170
90.7	68.6		ı	0	0	1	0	0	0	1	0	0	3	2	1 2	1. 2652	90
107.34	83. 98		1	0	0	1	0	0	0	0	0	1	4	2	1 2	1. 2652	215
116.68	102.42)	0	0	1	0	1	0	0	0	0	3	2	1 2	0. 9573	65
32.37	22. 83		1	0	0	1	0	0	0	0	0	1	1	1	1 1	0.9573	36
115. 12	103.48)	1	0	1	0	1	0	0	0	1	3	2	1 2	2. 3838	180
90. 28	73. 28		1	0	0	0	1	1	0	1	0	0	3	2	1 2	0.9573	85
76.87	58. 75		1	0	0	0	1	0	0	0	0	1	2	2	1 1	1. 534	200
107.34	83. 98		l	0	0	1	0	0	0	0	0	1	4	2	1 2	1. 2652	215
32.37	22.83		1	0	0	1	0	0	0	0	0	1	1	1	1 1	0. 9573	36

至此,数据集构建完毕。

二、随机森林模型构建与评估

我们在尝试了多种回归算法后,决定采用随机森林回归的算法来预测房价。首先我们 将

数据集划分为训练集和测试集,其中测试集占比 25%。随后,我们创建并训练了随机森林模型。为了评估模型的效果,我们计算了模型在测试集以及整个数据集上的均方误差(MSE)、绝对平均误差(MAE)以及决定系数(R^2 Score)。代码和输出结果如下图所示。

```
regressor = Kandom*orestKegressor(n_estimators=200, random_state=0)
regressor.fit(x_train, y_train)
# 在粉成集上进行预制
y_pred = regressor.predict(x_test)
# 计算数量法数点集上的均方误差:(Mean Squared Error)
mee = metrics.mean_squared_error(y_test, y_pred)
print(複型在影成集上的地方干场误差:(Mean Absolute Error)
mae = metrics.mean_absolute_error(y_test, y_pred)
print(複型在影成集上的地方干场误差:(Mean Absolute Error)
mae = metrics.resore(y_test, y_pred)
print(複型在影成集上的地方干场误差:(Mean Squared Error)
# 在整个数据集上的决定系数:(T_2 Score)
# 在整个数据集上进行预制
y_allpred = regressor.predict(x)
# 计算模型定量个数据集上的均方误差:(Mean Squared Error)
mee = metrics.mean_squared_error(y, y_allpred)
print(複型在整个数据集上的均方误差:(Mean Absolute Error)
mee = metrics.mean_sabsolute_error(y, y_allpred)
print("模型在整个数据集上的地对平均误差:(Mean Absolute Error)
mea = metrics.mean_absolute_error(y, y_allpred)
print("模型在整个数据集上的地方平均误差:(Mean Absolute Error)
mea = metrics.nean_absolute_error(y, y_allpred)
print("模型在整个数据集上的决定系数:(T_2 Score)
print("模型在整个数据集上的决定系数:(T_2 Score)
print("模型在整个数据集上的决定系数:(T_2 Score)
print("模型在整个数据集上的决定系数:(T_2 Score)
```

模型在测试集上的均方误差: 478.4930418369557 模型在测试集上的绝对平均误差: 7.575672710367273 模型在测试集上的决定系数: 0.9619026098834969 模型在整个数据集上的均方误差: 192.32339887511935 模型在整个数据集上的绝对平均误差: 4.218579945917655 模型在整个数据集上的决定系数: 0.9846554784607627

为了更直观的显示模型的预测结果与实际结果的差距,我们根据测试集的前 100 个样

本的真实价格和模型预测价格绘制了折线图,如下图所示。

三、随机森林模型优化

为了提高模型的性能,我们选择对模型的超参数进行优化。首先,将数据集划分为训练集和测试集,其中测试集占比 25%。然后,我们选择了对 n_estimators (决策树个数)、max_depth (决策树最大深度)、min_samples_split (最小样本分离数) 这三个超参数进行优化 (原本还有 max_features、min_samples_leaf 这两个参数,我们跑了多次程序后发现这两个参数取默认值时效果就是最好的)。

首先,我们对随机森林模型超参数各自的范围加以确定,其中 n_estimators_range 的取值范围是[50,2000]这个范围内的 50 的倍数; max_depth 的取值范围是[10,300]这个范围内的 10 的倍数; min_samples_split 的取值范围是[2,5,10]。代码如下:

然后,我们利用 RandomizedSearchCV 的功能,采用超参数随机匹配择优的方式,获取其所得到的最优超参数匹配组合 best_hp_now。代码如下:

接着,由于超参数随机匹配择优得到的结果可能并不是全局最优的,而只是一个大概的范围,我们需要在 best_hp_now 的临近范围内选取几个数值,并通过 GridSearchCV 对每一种匹配都遍历,从而选出比较好的超参数匹配组合。(不直接进行遍历匹配择优是因为这样非常耗费时间)代码如下:

最后,获得了新的超参数匹配组合后,我们根据这个匹配组合创建并训练了新的随机森林模型。为了评估模型的效果,我们计算了模型在测试集以及整个数据集上的均方误差(MSE)、绝对平均误差(MAE)以及决定系数(R^2 Score)。代码和输出结果如下图所示。

```
random_forest_model_test_2_random = RandomForestRegressor(max_depth=220, min_samples_split=2, n_estimators=1350)
random_forest_model_test_2_random.fit(x_train, y_train)
# 在测试集上进行预测
y pred = random_forest_model_test_2_random.predict(x_test)
# 计算模型在测试集上的均方误差(Mean Squared Error)
mse = metrics.mean_squared_error(y_test, y_pred)
print("模型在测试集上的均方误差:", mse)
# 计算模型在测试集上的绝对平均误差(Mean Absolute Error)
mae = metrics.mean_absolute_error(y_test, y_pred)
print("模型在测试集上的绝对平均误差:", mae)
# 计算模型在测试集上的决定系数 (R 2 Score)
r2 = metrics.r2_score(y_test, y_pred)
print("模型在测试集上的决定系数:", r2)
# 在整个数据集上进行预测
y_allpred = random_forest_model_test_2_random.predict(x)
# 计算模型在整个数据集上的均方误差(Mean Squared Error)
mse = metrics.mean_squared_error(y, y_allpred)
print("模型在整个数据集上的均方误差:", mse)
# 计算模型在整个数据集上的绝对平均误差 (Mean Absolute Error)
mae = metrics.mean_absolute_error(y, y_allpred)
print("模型在整个数据集上的绝对平均误差:", mae)
# 计算模型在整个数据集上的决定系数 (R'2 Score)
r2 = metrics.r2_score(y, y_allpred)
print("模型在整个数据集上的决定系数:", r2)
index = list(range(1, 101))
plt.xlabel('house')
plt.ylabel('price')
plt.plot(index, y_test[0:100], color='r',label='truth')
plt.plot(index, y_pred[0:100], color='b',label='prediction')
plt.legend()
 模型在测试集上的均方误差: 448.3774144325129
 模型在测试集上的绝对平均误差: 7.442564337000879
 模型在测试集上的决定系数: 0.9643004019212361
 模型在整个数据集上的均方误差: 183.21236192265303
 模型在整个数据集上的绝对平均误差: 4.132638649815203
 模型在整个数据集上的决定系数: 0.9853824025042208
```

可以看出,模型的性能相较于之前有了一定的进步。

为了更直观的显示模型的预测结果与实际结果的差距,我们根据测试集的前 100 个样本的真实价格和模型预测价格绘制了折线图,如下图所示。

