ECE 4960 Spring 2018: Computational and Software Engineering Reading 2: Differentiation in Local Analysis

Deposit a pdf file of the two tables below to your Git directory before 11:59pm of 2/11

Document your programming environment: Language; development platform; operating system Prob. 1. (Quadratic function to observe the tradeoffs between the truncation error and round-off error): For $f(x) = x^2$, we know the exact f'(x=1) = 2.

- 1.1 Use Eq. (1) below to estimate f'(x=1) varying the value of h from 0.1 to 10^{-18} to observe the relative error in calculating f'(x). Tabulate your results with sufficient precision in a table.
- 1.2 Repeat your calculation with $f(x) = x^2 + 10^8$. Add your results to the same table.
- 1.3 Repeat the above two procedures by using Eq. (2). Add your results to the same table.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h) \tag{1}$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
 (2)

h	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.	Error in $f'(x=1)$ by Eq.
	(1) where $f(x) = x^2$	(1) where $f(x) = x^2 + 10^8$	(2) where $f(x) = x^2$	(2) where $f(x) = x^2 + 10^8$
10^{-1}	1.000000e-01	1.000001e-01	0.000000e+00	0.000000e+00
10^{-2}	1.000000e-02	9.999722e-03	6.661338e-15	-4.470348e-07
10^{-3}	1.000000e-03	1.002401e-03	6.661338e-15	4.023313e-06
10^{-4}	1.000000e-04	3.382564e-05	8.393286e-13	-4.068017e-05
10 ⁻⁵	1.000001e-05	-2.641976e-04	9.166001e-12	-2.641976e-04
10 ⁻⁶	9.998760e-07	-3.244430e-03	-4.634537e-11	-3.244430e-03
10 ⁻⁷	9.793083e-08	-6.284907e-02	-8.790126e-10	-6.284907e-02
10 ⁻⁸	2.451656e-09	-5.098839e-01	-3.099459e-09	-5.098839e-01
10-9	1.356784e-07	-2.000000e+00	2.465612e-08	-2.000000e+00
10^{-10}	1.356784e-07	-2.000000e+00	1.356784e-07	-2.000000e+00
10^{-18}	-2.000000e+00	-2.000000e+00	-2.000000e+00	-2.000000e+00

Prob. 2. (Cubic function to observe the Richardson error estimation): For $f(x) = x^3$, we know the exact value of f'(x=1) = 3.

- Use Eqs. (3) (5) below to estimate f'(x=1) varying the value of h from 2^{-4} to 2^{-40} to observe the relative error in calculating f'(x). Tabulate your results with sufficient precision in a table.
- 2.2 Estimate η from Eqs. (6) and (7) for each choice of h. Add your results to the same table.

$$f'(x) = \frac{f(x+h) - f(x)}{h} + E(h); \qquad E(h) = O(h) = \frac{1}{2} h f''(x) + O(h^2)$$
 (3)

$$f'(x) = \frac{f(x+2h) - f(x)}{2h} + E(2h); \qquad E(2h) = O(h) = \frac{1}{2}2hf''(x) + O(h^2)$$
(4)

$$f'(x) = \frac{-1}{2h}f(x+2h) - \frac{3}{2h}f(x) + \frac{2}{h}f(x+h) + O(h^2)$$
 (5)

$$R(h) = \frac{E(2h)}{E(h)} \cong \eta \tag{6}$$

$$R(h) \cong \frac{\hat{A}(4h) - \hat{A}(2h)}{\hat{A}(2h) - \hat{A}(h)} \cong \eta \tag{7}$$

h	Error in $f'(x=1)$ by	Error in $f'(x=1)$ by	Error in $f'(x=1)$ by	η by Eq. (6)	η by Eq. (7)
	Eq. (3)	Eq. (4)	Eq. (5)		
2^{-4}	3.000100e-04	6.000400e-04	-2.000161e-08	2.000067e+00	2.000200e+00
2^{-5}	3.000011e-05	6.000039e-05	-2.037268e-10	2.000006e+00	2.000022e+00
2^{-6}	2.999798e-06	6.000065e-06	-4.656613e-10	2.000156e+00	1.999778e+00
2^{-7}	3.015118e-07	5.979414e-07	7.450581e-09	1.983144e+00	2.031835e+00
2^{-8}	3.972047e-09	8.168766e-08	-8.940697e-08	2.056563e+01	4.285714e-01
2^{-9}	2.482211e-07	-8.484580e-08	7.152557e-07	-3.418154e-01	-5.000000e-01
2^{-10}	2.482211e-07	2.482211e-07			
2^{-11}	2.482211e-07	2.482211e-07			
2^{-12}	2.667017e-04	-6.636516e-05			
2^{-13}	-2.397834e-03	9.328356e-04			
2^{-14}	-2.397834e-03	-2.397834e-03			
2^{-40}					