DIGITAL LOGIC

Chapter 3 part2: Two Level Implementation

2023 Fall

Today's Agenda

- Recap
- Context
 - NAND and NOR Implementation
 - Other Two-Level Implementations
 - Exclusive-OR Function
- Reading: Textbook, Chapter 3.6-3.9

Recap

Recall: Logic Gates

AND	$x \longrightarrow F$	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	x— F	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	x— F	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Recall: Logic Gates

			х	у	F
NAND	$x \longrightarrow F$	F = (xy)'	0 0 1 1	0 1 0 1	1 1 1 0
			<i>x</i>	y	F
NOR	$y \longrightarrow F$	F = (x + y)'	0 0 1	0 1 0	1 0 0
			1 x	1 y	$\frac{0}{F}$
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0 0 1	0 1 0	0 1 1
			1 x	1 y	$\frac{0}{F}$
Exclusive-NOR or equivalence	x y F	F = xy + x'y' = $(x \oplus y)'$	0 0 1 1	0 1 0 1	1 0 0 1

Outline

- NAND Implementation
- NOR Implementation
- Other Two-Level Implementations
- Exclusive-OR Function

Universal Gates

- NAND gates and NOR gates are called universal gates or universal building blocks.
 - Any type of gates or logic functions can be implemented by these gates.
 - In gate arrays, only NAND (or NOR) gates are used.

	Standard form	Universal Gate implementation	Universal Gate implementation
Sum-of- products	AND-OR	NAND-NAND	NAND-NAND
Product-of- sums	OR-AND	NOR-NOR	NOR-NOR

NAND circuits

hint: AB' + A'B = AB' + A'B + AA' + BB'

NAND circuits

- To facilitate the conversion to NAND logic, it is convenient to define an alternative graphic symbol for the gate.
- AND-invert and Invert-OR are both NAND gates

NAND-NAND Implementation

- A Boolean function can be implemented with two levels of NAND gates
 - Starting point → Simplify the function in the form of sum-of-products (AND-OR circuit).
 - 2. Transfer it to 2-level NAND-NAND expression.
 - algebraically (DeMorgan's Law)
 - or graphically (Bubble pushing)
 - 3. Draw the corresponding NAND gate implementation. A 1-input NAND gate can be replaced by an inverter.

NAND-NAND Example1

- F(A,B,C,D) = AB + CD
 - Starting point: sum of products form → done
 - F = AB+CD = ((AB+CD)')' = ((AB)'(CD)')' → DeMorgan's
 - Implementations: AND-OR / NAND-NAND (AND-Inv / Inv-OR)

NAND-NAND Example2

- Example: Implement the following Boolean function with NAND gates
- $F(x,y,z) = \sum (1,2,3,4,5,7)$

NAND-NAND Exercise

- Exercise: Implement the following Boolean function with NAND gates
- F(A,B,C,D) = A'B'C'D+CD+AC'D

NAND-NAND Exercise

- F(A,B,C,D) = A'B'C'D+CD+AC'D
 = A'B'C'D+(A+A')(B+B')CD+A(B+B')C'D
 = A'B'C'D+ABCD+AB'CD+A'BCD+A'B'CD+ABC'D+AB'C'D
 = ∑(1,3,7,9,11,13,15)
- F = CD+AD+A'D=[(CD+AD+A'D)']' = [(CD)'(AD)'(A'D)']'

Multilevel NAND Implementation

- Multilevel-NAND circuits conversion procedure
 - Convert all AND to NAND with AND-Invert graphic symbols
 - Convert all OR to NAND with Invert-OR graphic symbols
 - Check all the bubbles (inverter) in the diagram and insert possible inverter to keep the original function
- Example: F(A,B,C,D) = A(CD+B)+BC'
 - AND-OR logic → NAND-NAND logic
 - For every bubble that is not compensated by another small circle along the same line, insert an inverter.

 AND → AND + inverter

OR: inverter + OR = NAND

Multilevel NAND Implementation

- Multilevel-NAND circuits conversion procedure
 - Convert all AND to NAND with AND-Invert graphic symbols
 - Convert all OR to NAND with Invert-OR graphic symbols
 - Check all the bubbles (inverter) in the diagram and insert possible inverter to keep the original function
- Example: F(A,B,C,D) = A(CD+B)+BC'
 - AND-OR logic → NAND-NAND logic
 - For every bubble that is not compensated by another small circle along the same line, insert an inverter.

 AND → AND + inverter

OR: inverter + OR = NAND

Multilevel NAND Implementation

• Exercise: Implementing F = (AB' + A'B)(C + D')

Outline

- NAND Implementation
- NOR Implementation
- Other Two-Level Implementations
- Exclusive-OR Function

NOR-NOR Implementation

- NOR-NOR is the dual of the NAND-NAND implementation
 - All procedures and rules for NOR logic are the duals of the corresponding which developed for NAND logic.
 - sum-of-product (AND-OR) => NAND-NAND
 - product-of-sum (OR-AND) => NOR-NOR

NOR-NOR Implementation

 To facilitate the conversion to NOR logic, it is convenient to define an alternative graphic symbol for the gate.

$$x'y'z' = (x + y + z)'$$
(b) Invert-AND

NOR-NOR Implementation

- Procedure of NOR-NOR implementation
 - Starting point → Simplify the function in the form of product-of-sum (OR-AND circuit).
 - Transfer it to 2-level NOR-NOR expression.
 - algebraically (DeMorgan's Law)
 - or, graphically (Bubble pushing)
 - Draw the corresponding NOR gate implementation. A 1-input NOR gate can be replaced by an inverter.

NOR-NOR Example1

- Example: Implement the following Boolean function with NAND gates
- F = (A + B)(C + D)E
 - Starting point: product of sums form → done
 - F = (A+B)(C+D)E = ((A+B)(C+D)E)')'
 - = ((A+B)'+(C+D)'+E')'→DeMorgan's
 - Implementations:

NOR-NOR Example2

Example

$$F(x,y,z) = \sum (1,2,3,4,5,7)$$

$$F'=x'y'z' + xyz'$$

 $F = (F')' = (x'y'z' + xyz')'$
 $= ((x+y+z)' + (x'+y'+z))'$

Multilevel NOR Implementation

Example:

• F = (AB' +A'B)(C + D')
$$\stackrel{A'}{B'}$$
 $\stackrel{A}{\longrightarrow}$
 $\stackrel{C}{\longrightarrow}$
 $\stackrel{C}{\longrightarrow}$

• F(A,B,C,D,E)=(AB+E)(C+D)

Outline

- NAND Implementation
- NOR Implementation
- Other Two-Level Implementations
- Exclusive-OR Function

Two-Level Forms

- AND/NAND/OR/NOR have 16 possible combinations of two-level forms
- Eight of them degenerate to a single operation
 - AND-AND => AND
 - OR-OR => OR
 - AND-NAND => NAND
 - OR-NOR => NOR
 - NAND-NOR =>AND
 - NOR-NAND => OR
 - NAND-OR => NAND
 - NOR-AND => NOR

Two-Level Forms

- Eight are non-degenerate forms
- AND-OR => standard sum-of-products
- NAND-NAND => standard sum-of-products
- OR-AND => standard product-of-sums
- NOR-NOR => standard product-of-sums
- NAND-AND/AND-NOR => AND-OR-INVERT (AOI)
 - complement of sum-of-products
- OR-NAND/NOR-OR => OR-AND-INVERT (OAI)
 - complement of product-of-sums

AND-OR-Invert Implementation

- NAND-AND = AND-NOR = AOI
 - F(A,B,C,D,E)=(AB+CD+E)'
 - F'(A,B,C,D,E)=AB+CD+E (sum of products)
 - An AND—OR implementation requires an expression in sum-ofproducts form.
 - The AND—OR—INVERT implementation is similar, except for the inversion.

Combine 0's in K-map to simplify F' in productof-sums and then invert the results

OR-AND-Invert Implementation

- OR-NAND = NOR-OR = OAI
 - F(A,B,C,D,E)=((A+B)(C+D)E)'
 - F' = (A+B)(C+D)E (product of sums)
 - The AND-OR-INVERT implementation requires an expression in product-of-sums form.

Combine 1's in K-map to simplify F' in productof-sums and then invert the results

AOI & OAI Example

Example

$$F = x'y'z' + xyz'$$

 $F' = x'y + xy' + z$

- AND-OR
 - F=x'y'z' + xyz'
- NAND-NAND
 - F=((x'y'z')'(xyz')')
- OR-AND
 - $F'=x'y+xy'+z \rightarrow F=z'(x'+y)(x+y')$
- NOR-NOR
 - $F'=x'y+xy'+z \rightarrow F=(z+(x'+y)'+(x+y')')'$
- AOI
 - $F'=x'y+xy'+z \rightarrow F=(x'y+xy'+z)'$
- OAI
 - $F=x'y'z'+xyz' \to F'=(x+y+z)(x'+y'+z) \to F=((x+y+z)(x'+y'+z'))'$

Exclusive-OR Function

- Exclusive-OR (XOR)
 - $x \oplus y = xy' + x'y$
- Exclusive-NOR (XNOR or equivalency)
 - $(x \oplus y)' = xy + x'y'$
- Some identities
 - $x \oplus 0 = x$
 - $x \oplus 1 = x'$
 - $x \oplus x = 0$
 - $x \oplus x' = 1$
 - $x \oplus y' = x' \oplus y = (x \oplus y)'$
- Commutative and associative
 - $A \oplus B = B \oplus A$
 - $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Exclusive-OR Implementations

Implementations

•
$$(x'+y')x + (x'+y')y = xy'+x'y = x \oplus y$$

Outline

- NAND Implementation
- NOR Implementation
- Other Two-Level Implementations
- Exclusive-OR Function

Odd function

- The XOR operation with three or more variables can be converted into an ordinary Boolean function by replacing the ⊕ with its equivalent Boolean expression.
- $A \oplus B \oplus C = (AB'+A'B)C'+(AB+A'B')C$ = AB'C'+A'BC'+ABC+A'B'C= $\sum (1, 2, 4, 7)$
- Odd function → if odd number of variables are equal to 1, then F = 1.
- Even function → if even number of variables are equal to 1, then F = 1.

Recall: Error-Detecting Code

- Error-Detecting Code
 - An <u>eighth bit</u> is sometimes added to the ASCII character to indicate its parity.
 - A parity bit (校验位) is an extra bit included with a message to make the total number of 1's either even or odd.
- Example: ASCII A = 1000001 With even parity With odd parity 01000001 11000001

Even-Parity-Generator Truth Table

Three-Bit Message		Parity Bit	
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

XOR functions can be used for parity generator and parity checker

Parity Generation and Checking

• P = xy'z'+x'yz'+xyz+x'y'z = $\sum (1, 2, 4, 7)$ – odd function

\boldsymbol{x}	y	z	Parity bit p
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

even parity checker

- Parity Generation and Checking
 - A even parity bit: P = x⊕y⊕z
 - Even Parity check: C = x⊕y⊕z⊕P
 - C=1: one bit error or an odd number of data bit error
 - C=0: correct or an even # of data bit error