

SEQUENCE LISTING

Palli, Subba Reddy
Kapitskaya, Marianna Zinovjevna
Cress, Dean Ervin

<120> Ecdysone Receptor-Based Inducible Gene Expression System
<130> A01020B
<140> US 09/965,703
<141> 2001-09-26
<150> US 60/191,355
<151> 2000-03-22
<150> US 60/269,799
<151> 2001-02-20
<160> 78
<170> PatentIn version 3.3
<210> 1
<211> 1288
<212> DNA
<213> Choristoneura fumiferana

<400> 1
aaggccctg cgccccgtca gcaagaggaa ctgtgtctgg tatgcgggga cagagcctcc 60
ggataccact acaatgcgct cacgtgtcaa gggtgtaaag ggttcttcag acggagtgtt 120
accaaaaaatg cggttatat ttgtaaattc ggtcacgctt gcgaaatgga catgtacatg 180
cgacggaaat gccaggagtg ccgcctgaag aagtgccttag ctgttaggcat gaggcctgag 240
tgcgtagtagtac ccgagactca gtgcgccatg aagcggaaag agaagaaagc acagaaggag 300
aaggacaaac tgccctgtca gacgacgacg gtggacgacc acatgccgcc cattatgcag 360
tgtgaacctc cacctcctga agcagcaagg attcacgaag tggtcccaag gtttctctcc 420
gacaagctgt tggagacaaa ccggcagaaa aacatcccc agttgacagc caaccagcag 480
ttccttatcg ccaggctcat ctggtaccag gacgggtacg agcagccttc tcatgtaaat 540
ttgaagagga ttacgcagac gtggcagcaa gcggacgatg aaaacgaaga gtctgacact 600
cccttccgccc agatcacaga gatgactatc ctcacggtcc aacttatacg ggagttcg 660
aagggattgc cagggttcgc caagatctcg cagcctgatc aaattacgct gcttaaggct 720
tgctcaagtg aggtaatgtat gctccgagtc gcgacgat acgatgcggc ctcagacagt 780
gttctgttcg cgaacaacca agcgtacact cgcgacaact accgcaaggc tggcatggcc 840
tacgtcatcg aggatctact gcacttctgc cggtgcatgt actctatggc gttggacaac 900
atccattacg cgctgctcac ggctgtcgat atctttctg accggccagg gttggagcag 960
ccgcaactgg tggaaagaaat ccagcggtac tacctaata cgctccgcat ctatatcctg 1020
aaccagctga gcgggtcgcc gcgttcgtcc gtcataatacg gcaagatcct ctcaatcctc 1080

tctgagctac	gcacgctcg	catgcaaaac	tccaacatgt	gcatctccct	caagctcaag	1140
aacagaaaagc	tgccgcctt	cctcgaggag	atctggatg	tggcggacat	gtcgcacacc	1200
caaccgccgc	ctatcctcg	gtccccacg	aatctctagc	ccctgchg	acgcacatcg	1260
gatgccgcgt	ccggccgcgc	tgctctga				1288

<210>	2					
<211>	1110					
<212>	DNA					
<213>	Choristoneura fumiferana					
<400>	2					
gcggttata	tttgtaaatt	cggtcacgct	tgcgaaatgg	acatgtacat	gchgacggaaa	60
tgccaggagt	gccgcctgaa	gaagtgccta	gctgttagca	tgaggcctga	gtgcgttagta	120
cccgagactc	agtgcgccat	gaagcggaaa	gagaagaaag	cacagaagga	gaaggacaaa	180
ctgcctgtca	gcacgacgac	ggtggacgac	cacatgccgc	ccattatgca	gtgtgaacct	240
ccaccccttg	aagcagcaag	gattcacgaa	gtggtcccaa	ggtttctctc	cgacaagctg	300
ttggagacaa	accggcagaa	aaacatcccc	cagttgacag	ccaaccagca	gttccttatac	360
gccaggctca	tctggtacca	ggacgggtac	gagcagcctt	ctgatgaaga	tttgaagagg	420
attacgcaga	cgtggcagca	agcggacgat	gaaaacgaag	agtctgacac	tcccttccgc	480
cagatcacag	agatgactat	cctcacggc	caacttatcg	tggagttcgc	gaagggattt	540
ccagggttcg	ccaagatctc	gcagcctgat	caaattacgc	tgcttaaggc	ttgctcaagt	600
gaggtaatga	tgctccgagt	cgcgcgacga	tacgatgcgg	cctcagacag	tgttctgttc	660
gcgaacaacc	aagcgtacac	tcgcgacaac	taccgcaagg	ctggcatggc	ctacgtcatc	720
gaggatctac	tgcacttctg	ccggtgcatg	tactctatgg	cgttggacaa	catccattac	780
gcgctgctca	cggctgtcgt	catctttct	gaccggccag	ggttggagca	gccgcaactg	840
gtggaagaaa	tccagcggta	ctacctgaat	acgctccgca	tctatatcct	gaaccagctg	900
agcgggtcgg	cgcgttcgtc	cgtcatatac	ggcaagatcc	tctcaatcct	ctctgagcta	960
cgcacgctcg	gcatgaaaaa	ctccaacatg	tgcacatccc	tcaagctcaa	gaacagaaaag	1020
ctgcccctt	tcctcgagga	gatctggat	gtggcggaca	tgtcgacac	ccaaccgccc	1080
cctatcctcg	agtccccac	gaatctctag				1110

<210>	3					
<211>	1054					
<212>	DNA					
<213>	Choristoneura fumiferana					
<400>	3					
cctgagtgcg	tagtacccga	gactcagtgc	gccatgaagc	ggaaagagaa	gaaagcacag	60
aaggagaagg	acaaactgcc	tgtcagcacg	acgacggtgg	acgaccacat	gccgcccatt	120

atgcagtgtg aacctccacc tcctgaagca gcaaggattc acgaagtggt cccaaggttt	180
ctctccgaca agctgttgg acaaaccgg cagaaaaaca tccccagtt gacagccaac	240
cagcagttcc ttatcgccag gtcatctgg taccaggacg ggtacgagca gccttctgat	300
gaagattta agaggattac gcagacgtgg cagcaagcgg acgatgaaaa cgaagagtct	360
gacactccct tccgcccagat cacagagatg actatcctca cggtccaact tatcgtggag	420
ttcgcgaagg gattgccagg gttcgc当地 atctcgcatc ctgatcaaata tacgctgctt	480
aaggcttgct caagtgaggt aatgatgctc cgagtcgc当地 gacgatacga tgccgc当地	540
gacagtgttc tgccgc当地 caaccaagcg tacactc当地 gcaactaccg caaggctggc	600
atggcctacg tcatcgagga tctactgc当地 ttctgccc当地 gcatgtactc tatggc当地	660
gacaacatcc attacgc当地 gtc当地 gcttctgaccg gccagggtt当地	720
gagcagccgc aactggtgaa agaaatccag cggtaactacc tgaatacgct cc当地 catctat	780
atccctgaacc agctgagcgg gtc当地 gctt当地 tc当地 tccgtca tatacgccaa gatccctctca	840
atccctctg agctacgc当地 gtc当地 gcatc当地 caaaaactcca acatgtgcat ct当地 cctcaag	900
ctcaagaaca gaaagctgcc gc当地 tccctc当地 gaggagatct ggatgtggc ggacatgtcg	960
cacacccaaac cgccgc当地 tccgagtc当地 cccacgaatc tctagccct gc当地 gcaacgc	1020
atcgccgatg cc当地 cgtccgg cc当地 gctgctt ctga	1054

<210> 4
 <211> 735
 <212> DNA
 <213> Choristoneura fumiferana

<400> 4	
taccaggacg ggtacgagca gc当地 tctgat gaagattta agaggattac gc当地 acgtgg	60
cagcaagcgg acgatgaaaa cgaagagtct gacactccct tccgccc当地 cacagagatg	120
actatcctca cggtccaact tattcgtggag ttccgc当地 agg gattgccagg gttcgc当地	180
atctcgcatc ctgatcaaata tacgctgctt aaggcttgct caagtgaggt aatgatgctc	240
cgagtcgc当地 gacgatacga tgccgc当地 gacagtgttc tgccgc当地 caaccaagcg	300
tacactc当地 gcaactaccg caaggctggc atggcctacg tcatcgagga tctactgc当地	360
ttctgccc当地 gcatgtactc tatggc当地 gacaacatcc attacgc当地 gtc当地 acggct	420
gtc当地 gtcatc ttctgaccg gc当地 cagggtt当地 gagcagccgc aactggtgaa agaaatccag	480
cggtaactacc tgaatacgct cc当地 catctat atccctgaacc agctgagcgg gtc当地 gcgct	540
tc当地 tccgtca tatacgccaa gatccctctca atccctctg agctacgc当地 gtc当地 ggcat	600
caaaaactcca acatgtgcat ct当地 cctcaag ctcaagaaca gaaagctgcc gc当地 tccctc当地	660
gaggagatct ggatgtggc ggacatgtcg cacacccaaac cgccgc当地 tccgagtc当地	720

cccacgaatc tctag

735

<210> 5
<211> 960
<212> DNA
<213> Choristoneura fumiferana

<400> 5
cctgagtgcg tagtacccga gactcagtgc gccatgaagc ggaaagagaa gaaagcacag 60
aaggagaagg acaaactgcc tgtcagcacg acgacgggtgg acgaccacat gccgcccatt 120
atgcagtgtg aacctccacc tcctgaagca gcaaggattc acgaagtggt cccaagggtt 180
ctctccgaca agctgttggg gacaaaccgg cagaaaaaca tccccagtt gacagccaac 240
cagcagttcc ttatcgccag gctcatctgg taccaggacg ggtacgagca gccttctgat 300
gaagatttga agaggattac gcagacgtgg cagcaagcgg acgatgaaaa cgaagagtct 360
gacactccct tccgcccagat cacagagatg actatcctca cggtccaact tatcgtggag 420
ttcgcgaagg gattgccagg gttcgccaag atctcgccagc ctgatcaaatt tacgctgctt 480
aaggcttgct caagtgaggt aatgatgctc cgagtcgcgc gacgatacga tgccgcctca 540
gacagtgttc tggtcgccgaa caaccaagcg tacactcgccg acaactaccg caaggctggc 600
atggcctacg tcatcgagga tctactgcac ttctgcccgt gcatgtactc tatggcgttg 660
gacaacatcc attacgcgcgt gctcacggct gtcgtcatct tttctgaccg gccagggttg 720
gagcagccgc aactgggtggg agaaaatccag cggtaactacc tgaatacgct ccgcacatctat 780
atcctgaacc agctgagcgg gtcggcgcgt tcgtccgtca tatacggcaa gatcctctca 840
atcctctctg agctacgcac gtcggcatg caaaaactcca acatgtgcat ctccctcaag 900
ctcaagaaca gaaagctgcc gcctttccctc gaggagatct gggatgtggc ggacatgtcg 960

<210> 6
<211> 1878
<212> DNA
<213> Drosophila melanogaster

<400> 6
ggacctgcgc cacgggtgca agaggagctg tgcctggttt gcggcgacag ggcctccggc 60
taccactaca acgccctcac ctgtgagggc tgcaaggggt tcttcgacg cagcgttacg 120
aagagcgccg tctactgctg caagttcggg cgcgcctgcg aaatggacat gtacatgagg 180
cgaaaatgtc aggagtgcgg cctgaaaaag tgcctggccg tgggtatgcg gccggaatgc 240
gtcgtcccg agaaccaatg tgcgatgaag cggcgcgaaa agaaggccca gaaggagaag 300
gacaaaatga ccacttcgccc gagctctcag catggcggca atggcagctt ggcctctgg 360
ggcggccaag actttgttaa gaaggagatt cttgacacctt tgacatgcga gccgccccag 420
catgccacta ttccgctact acctgatgaa atattggcca agtgtcaagc gcgcaatata 480

ccttccttaa	cgtacaatca	gttggccgtt	atatacaagt	taatttgta	ccaggatggc	540
tatgagcagc	catctgaaga	ggatctcagg	cgtataatga	gtcaacccga	tgagaacgag	600
agccaaacgg	acgtcagctt	tcggcatata	accgagataa	ccataactcac	ggtccagttg	660
atttgttagt	ttgctaaagg	tctaccagcg	tttaccaaaga	taccccagga	ggaccagatc	720
acgttactaa	aggcctgctc	gtcggaggtg	atgatgctgc	gtatggcacg	acgctatgac	780
cacagctcgg	actcaatatt	cttcgcgaat	aatagatcat	atacgcggga	ttcttacaaa	840
atggccggaa	tggctgataa	cattgaagac	ctgctgcatt	tctgcccca	aatgttctcg	900
atgaaggtagg	acaacgtcga	atacgcgctt	ctcactgc当地	ttgtgatctt	ctcggaccgg	960
ccgggcctgg	agaaggccca	actagtcgaa	gcgatccaga	gctactacat	cgacacgcta	1020
cgcatttata	tactcaaccg	ccactgc当地	gactcaatga	gcctcgtctt	ctacgcaaag	1080
ctgctctcga	tcctcaccga	gctgc当地	ctgggcaacc	agaacgc当地	gatgtgttc	1140
tcactaaagc	tcaaaaaccg	caaactgccc	aagttcctcg	aggagatctg	ggacgttcat	1200
gccatcccgc	catcggtcca	gtcgacctt	cagattaccc	aggaggagaa	cgagcgtctc	1260
gagcgggctg	agcgtatgcn	ggcatcggtt	gggggc当地	ttaccgc当地	cattgattgc	1320
gactctgc当地	ccacttc当地	ggcggc当地	gcggccc当地	atcagc当地	gcctc当地	1380
cagccccaaac	cctcctccct	gaccagaac	gattccc当地	accagacaca	gccgc当地	1440
caacctcagc	taccacctca	gctgcaaggt	caactgcaac	cccagc当地	accacagctt	1500
cagacgcaac	tccagccaca	gattcaacca	cagccacagc	tccttccc当地	ctccgctccc	1560
gtgccc当地	ccgtaaccgc	acctggttcc	ttgtccgc当地	tcagta	cagc当地	1620
atgggc当地	gtcgccat	aggacccatc	acgccc当地	ccaccagc当地	tatcagcgct	1680
gccgttaccg	ctagctccac	cacatcagc当地	gtaccgatgg	gcaacggag	tggagtc当地	1740
gttggggtgg	gccc当地	cagcatgtat	gcaacgc当地	agacggc当地	ggc当地	1800
ggtgttagccc	tgcattcgca	ccaagagc当地	cttatc当地	gagtggc当地	taagtc当地	1860
cactcgacga	ctgc当地	tag				1878

<210> 7
 <211> 1752
 <212> DNA
 <213> Drosophila melanogaster

<400>	7	gccgtctact	gctgcaagtt	cgggc当地	tgc当地	aatgg	60
tgta	caggagt	gccgc当地	aaagtgc当地	gccgtggta	tgc当地	ccgga	120
ccggagaacc	aatgtgc当地	gaagc当地	gccc当地	aaaaagaagg	ccc当地	agaagga	180
atgaccactt	c当地	cgccgagctc	tc当地	gcatggc	ggcaatggca	gcttgc当地	240
caagactttg	ttaagaagga	gattctt当地	gac	cttatgacat	gca	gccc当地	300

actattccgc tactacctga tgaaatattg gccaagtgtc aagcgcgcaa tataccttcc	360
ttaacgtaca atcagttggc cgttatatac aagttaattt ggtaccagga tggctatgag	420
cagccatctg aagaggatct caggcgtata atgagtcaac ccgatgagaa cgagagccaa	480
acggacgtca gcttcggca tataaccgag ataaccatac tcacggtcca gttgatttt	540
gagtttgcta aaggcttacc agcgttaca aagatacccc aggaggacca gatcacgtt	600
ctaaaggcct gctcgtcgga ggtgatgatg ctgcgtatgg cacgacgcta tgaccacagc	660
tcggactcaa tattcttcgc gaataataga tcatatacgc gggattctta caaatggcc	720
ggaatggctg ataacattga agacctgctg catttctgcc gccaaatgtt ctcgatgaag	780
gtggacaacg tcgaatacgc gcttctcaact gccattgtga tcttctcgga ccggccggc	840
ctggagaagg cccaaactagt cgaagcgatc cagagctact acatcgacac gctacgcatt	900
tatatactca accgcccactg cggcgactca atgagcctcg tcttctacgc aaagctgctc	960
tcgatcctca ccgagctgctg tacgctggc aaccagaacg ccgagatgtg tttctcaacta	1020
aagctaaaa accgcaaact gcccagttc ctcgaggaga tctggacgt tcatgccatc	1080
ccgcccattcg tccagtcgca ctttcagatt acccaggagg agaacgagcg tctcgagcgg	1140
gctgagcgta tgcgggcatc gggtggggc gccattacgg ccggcattga ttgcgactct	1200
gcctccactt cgccggcggc agccgcggcc cagcatcagc ctcagcctca gccccagccc	1260
caaccctcct ccctgaccca gaacgattcc cagcaccaga cacagccgca gctacaacct	1320
cagctaccac ctcagctgca aggtcaactg caaccccagc tccaaccaca gcttcagacg	1380
caactccagc cacagattca accacagcca cagctccttc ccgtctccgc tcccgtgccc	1440
gcctccgtaa ccgcacctgg ttccctgtcc gcggtcagta cgagcagcga atacatgggc	1500
ggaagtgcgg ccataggacc catcacgccc gcaaccacca gcagtatcac ggctgccc	1560
accgcttagct ccaccacatc agcggtaccg atggcaacg gagttggagt cggtgttggg	1620
gtggcggca acgtcagcat gtatgcgaac gcccagacgg cgatggcctt gatgggtgta	1680
gccctgcatt cgcaccaaga gcagcttatac gggggagttt cggttaagtc ggagcactcg	1740
acgactgcat ag	1752

<210> 8
 <211> 1650
 <212> DNA
 <213> Drosophila melanogaster

<400> 8	
cggccgaaat gcgtcgcccc ggagaaccaa tgtgcgtatga agcggcgca aaagaaggcc	60
cagaaggaga aggacaaaat gaccacttcg ccgagctctc agcatggcgg caatggcagc	120
ttggcctctg gtggcggcca agactttgtt aagaaggaga ttcttgacct tatgacatgc	180

gagccgcccc	agcatgccac	tattccgcta	ctacctgatg	aaatattggc	caagtgtcaa	240
gcgcgcaata	tacccctt	aacgtacaat	cagttggccg	ttatatacaa	gttaatttg	300
taccaggatg	gctatgagca	gccatctgaa	gaggatctca	ggcgataat	gagtcaaccc	360
gatgagaacg	agagccaaac	ggacgtcagc	tttcggcata	taaccgagat	aaccatactc	420
acggtccagt	tgattgttga	gtttgctaaa	ggtctaccag	cgtttacaaa	gataccccag	480
gaggaccaga	tcacgttact	aaaggcctgc	tcgtcggagg	tgtatgtct	gcgtatggca	540
cgacgctatg	accacagctc	ggactcaata	ttcttcgcga	ataatagatc	atatacgcgg	600
gattcttaca	aatggccgg	aatggctgat	aacattgaag	acctgctgca	tttctgccgc	660
caaatgttct	cgatgaaggt	ggacaacgtc	gaatacgcgc	ttctcactgc	cattgtgatc	720
ttctcgacc	ggccggggcct	ggagaaggcc	caactagtcg	aagcgatcca	gagctactac	780
atcgacacgc	tacgcattta	tatactcaac	cgccactgcg	gcgactcaat	gagcctcgtc	840
ttctacgcaa	agctgctctc	gatcctcacc	gagctgcgt	cgctggcaa	ccagaacgcc	900
gagatgtgtt	tctcaactaaa	gctaaaaaac	cgcaaactgc	ccaagttcct	cgaggagatc	960
tgggacgttc	atgcccattcc	gccatcggtc	cagtcgcacc	ttcagattac	ccaggaggag	1020
aacgagcgtc	tcgagcgggc	tgagcgtatg	cgggcatcgg	ttggggcgc	cattaccgcc	1080
ggcatttgatt	gcgactctgc	ctccacttcg	gcggcggcag	ccgcggccca	gcatcagcct	1140
cagcctcagc	cccagccccca	accctccctcc	ctgaccaga	acgattccca	gcaccagaca	1200
cagccgcagc	tacaacctca	gctaccacct	cagctgcaag	gtcaactgca	accccagctc	1260
caaccacagc	ttcagacgca	actccagcca	cagattcaac	cacagccaca	gctccttccc	1320
gtctccgctc	ccgtgcccgc	ctccgttaacc	gcacctgggt	ccttgtccgc	ggtcagtagc	1380
agcagcgaat	acatgggcgg	aagtgcggcc	ataggacc	tcacgcccgc	aaccaccagc	1440
agtatcacgg	ctgcccgttac	cgctagctcc	accacatcag	cgttaccgat	ggcaacgg	1500
gttggagtcg	gtgttggggt	gggcggcaac	gtcagcatgt	atgcgaacgc	ccagacggcg	1560
atggccttga	tgggtgttagc	cctgcattcg	caccaagagc	agcttatcgg	gggagtggcg	1620
gttaagtccg	agcactcgac	gactgcata				1650

<210> 9
 <211> 1338
 <212> DNA
 <213> Drosophila melanogaster

<400> 9	tatgagcagc	catctgaaga	ggatctcagg	cgtataatga	gtcaacccga	tgagaacgag	60
	agccaaacgg	acgtcagctt	tcggcatata	accgagataa	ccataactcac	ggtccagttg	120
	attgttgagt	ttgctaaagg	tctaccagcg	tttacaaaga	tacccagga	ggaccagatc	180
	acgttactaa	aggcctgctc	gtcggaggtg	atgatgctgc	gtatggcacg	acgctatgac	240

cacagctcg	actcaatatt	cttcgcgaat	aatagatcat	atacgcggga	ttcttacaaa	300
atggccgaa	tggctgataa	cattgaagac	ctgctgcatt	tctgccgcca	aatgttctcg	360
atgaagggtgg	acaacgtcg	atacgcgctt	ctcaactgc	ttgtgatctt	ctcggaccgg	420
ccgggcctgg	agaaggccc	actagtcgaa	gcgatccaga	gctactacat	cgacacgcta	480
cgcattata	tactcaaccg	ccactgcggc	gactcaatga	gcctcgtctt	ctacgcaaag	540
ctgctctcg	tcctcaccga	gctgcgtacg	ctgggcaacc	agaacgcccga	gatgtgttc	600
tcactaaagc	tcaaaaaccg	caaactgccc	aagttcctcg	aggagatctg	ggacgttcat	660
gccatcccgc	catcggtcca	gtcgcacctt	cagattaccc	aggaggagaa	cgagcgtctc	720
gagcgggctg	agcgtatgcg	ggcatcggtt	gggggcgcca	ttaccgcgg	cattgattgc	780
gactctgcct	ccacttcggc	ggcggcagcc	gcggcccagc	atcagcctca	gcctcagccc	840
cagccccaaac	cctcctccct	gacccagaac	gattcccagc	accagacaca	gccgcagcta	900
caacctcagc	taccacctca	gctgcaaggt	caactgcaac	cccagctcca	accacagctt	960
cagacgcaac	tccagccaca	gattcaacca	cagccacagc	tccttcccgt	ctccgctccc	1020
gtgcccgcct	ccgtaaccgc	acctggttcc	ttgtccgcgg	tcagtacgag	cagcgaatac	1080
atgggcggaa	gtgcggccat	aggacccatc	acgcccggcaa	ccaccagcag	tatcacggct	1140
gccgttaccg	ctagctccac	cacatcagcg	gtaccgatgg	gcaacggagt	tggagtcggt	1200
gttgggtgg	gccccaaacgt	cagcatgtat	gcgaacgccc	agacggcgat	ggccttgatg	1260
ggtgttagccc	tgcattcgca	ccaagagcag	cttacgggg	gagtggcggt	taagtcggag	1320
cactcgacga	ctgcata	1338				

<210> 10
 <211> 969
 <212> DNA
 <213> Drosophila melanogaster

<400> 10	cggccgaaat	gcgtcgcccc	ggagaaccaa	tgtgcgatga	agcggcgcga	aaagaaggcc	60
	cagaaggaga	aggacaaaaat	gaccacttcg	ccgagctctc	agcatggcgg	caatggcagc	120
	ttggcctctg	gtggcggcca	agactttgtt	aagaaggaga	ttcttgacct	tatgacatgc	180
	gagccgc(ccc)	agcatgccac	tattccgcta	ctacctgtat	aaatattggc	caagtgtcaa	240
	gcgcgcaata	tacccctt	aacgtacaat	cagttggccg	ttatatacaa	gttaatttgg	300
	taccaggatg	gctatgagca	gccatctgaa	gaggatctca	ggcgataat	gagtcaaccc	360
	gatgagaacg	agagccaaac	ggacgtcagc	tttcggcata	taaccgagat	aaccataactc	420
	acggtcagt	tgattgtta	gtttgctaaa	ggtctaccag	cgtttacaaa	gataccccag	480
	gaggaccaga	tcacgttact	aaaggcctgc	tcgtcggagg	tgtatgtct	gcgtatggca	540

cgacgctatg accacagctc ggactcaata ttcttcgcga ataatagatc atatacgcgg 600
gattcttaca aaatggccgg aatggctgat aacattgaag acctgctgca tttctgccgc 660
caaatgttct cgatgaaggt ggacaacgtc gaatacgcgc ttctcactgc cattgtgatc 720
ttctcgacc ggccgggcct ggagaaggcc caactagtcg aagcgatcca gagctactac 780
atcgacacgc tacgcattta tatactcaac cgccactgcf gcgactcaat gagcctcgac 840
ttctacgcaa agctgctctc gatcctcacc gagctgcgt a cgctggcaa ccagaacgcc 900
gagatgtgtt tctcactaaa gctaaaaac cgcaaactgc ccaagttcct cgaggagatc 960
tgggacgtt 969

<210> 11
<211> 412
<212> PRT
<213> Choristoneura fumiferana

<400> 11

Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu Cys Leu Val Cys Gly
1 5 10 15

Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys
20 25 30

Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn Ala Val Tyr Ile Cys
35 40 45

Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys
50 55 60

Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu
65 70 75 80

Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu Lys Lys
85 90 95

Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Val Asp
100 105 110

Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro Glu Ala
115 120 125

Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys Leu Leu
130 135 140

Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn Gln Gln
145 150 155 160

Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro
165 170 175

Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp
180 185 190

Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr Glu Met
195 200 205

Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro
210 215 220

Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala
225 230 235 240

Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr Asp Ala
245 250 255

Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arg Asp
260 265 270

Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu Leu His
275 280 285

Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His Tyr Ala
290 295 300

Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Gln
305 310 315 320

Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg
325 330 335

Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile
340 345 350

Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met
355 360 365

Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu
370 375 380

Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser His Thr
385 390 395 400

Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn Leu
405 410

<210> 12
<211> 412
<212> PRT
<213> Choristoneura fumiferana

<400> 12

Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu Cys Leu Val Cys Gly
1 5 10 15

Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys
20 25 30

Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn Ala Val Tyr Ile Cys
35 40 45

Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys
50 55 60

Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu
65 70 75 80

Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu Lys Lys
85 90 95

Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Thr Val Asp
100 105 110

Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro Glu Ala
115 120 125

Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys Leu Leu
130 135 140

Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn Gln Gln
145 150 155 160

Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro
165 170 175

Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp
180 185 190

Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr Glu Met
195 200 205

Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro
210 215 220

Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala
Page 11

225

230

235

240

Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr Asp Ala
245 250 255

Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arg Asp
260 265 270

Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu Leu His
275 280 285

Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His Tyr Ala
290 295 300

Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Gln
305 310 315 320

Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg
325 330 335

Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile
340 345 350

Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met
355 360 365

Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu
370 375 380

Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser His Thr
385 390 395 400

Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn Leu
405 410

<210> 13

<211> 334

<212> PRT

<213> Choristoneura fumiferana

<400> 13

Pro Glu Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu
1 5 10 15

Lys Lys Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Thr
20 25 30

Val Asp Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro
35 40 45

Glu Ala Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys
50 55 60

Leu Leu Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn
65 70 75 80

Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu
85 90 95

Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln
100 105 110

Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr
115 120 125

Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly
130 135 140

Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu
145 150 155 160

Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr
165 170 175

Asp Ala Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr
180 185 190

Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu
195 200 205

Leu His Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His
210 215 220

Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu
225 230 235 240

Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr
245 250 255

Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser
260 265 270

Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu
275 280 285

Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg
290 295 300

Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser
305 310 315 320

His Thr Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn Leu
325 330

<210> 14
<211> 244
<212> PRT
<213> Choristoneura fumiferana

<400> 14

Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile
1 5 10 15

Thr Gln Thr Trp Gln Gln Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr
20 25 30

Pro Phe Arg Gln Ile Thr Glu Met Thr Ile Leu Thr Val Gln Leu Ile
35 40 45

Val Glu Phe Ala Lys Gly Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro
50 55 60

Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu
65 70 75 80

Arg Val Ala Arg Arg Tyr Asp Ala Ala Ser Asp Ser Val Leu Phe Ala
85 90 95

Asn Asn Gln Ala Tyr Thr Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala
100 105 110

Tyr Val Ile Glu Asp Leu Leu His Phe Cys Arg Cys Met Tyr Ser Met
115 120 125

Ala Leu Asp Asn Ile His Tyr Ala Leu Leu Thr Ala Val Val Ile Phe
130 135 140

Ser Asp Arg Pro Gly Leu Glu Gln Pro Gln Leu Val Glu Glu Ile Gln
145 150 155 160

Arg Tyr Tyr Leu Asn Thr Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser
165 170 175

Gly Ser Ala Arg Ser Ser Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu
180 185 190

Ser Glu Leu Arg Thr Leu Gly Met Gln Asn Ser Asn Met Cys Ile Ser
195 200 205

Leu Lys Leu Lys Asn Arg Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp
210 215 220

Asp Val Ala Asp Met Ser His Thr Gln Pro Pro Pro Ile Leu Glu Ser
225 230 235 240

Pro Thr Asn Leu

<210> 15
<211> 320
<212> PRT
<213> Choristoneura fumiferana

<400> 15

Pro Glu Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu
1 5 10 15

Lys Lys Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Thr
20 25 30

Val Asp Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro
35 40 45

Glu Ala Ala Arg Ile His Gln Val Val Pro Arg Phe Leu Ser Asp Lys
50 55 60

Leu Leu Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn
65 70 75 80

Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu
85 90 95

Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln
100 105 110

Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr
115 120 125

Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly
130 135 140

Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu
145 150 155 160

Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr
165 170 175

Asp Ala Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr
180 185 190

Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu
195 200 205

Leu His Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His
210 215 220

Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu
225 230 235 240

Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr
245 250 255

Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser
260 265 270

Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu
275 280 285

Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg
290 295 300

Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser
305 310 315 320

<210> 16

<211> 625

<212> PRT

<213> Drosophila melanogaster

<400> 16

Gly Pro Ala Pro Arg Val Gln Glu Glu Leu Cys Leu Val Cys Gly Asp
1 5 10 15

Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys Lys
20 25 30

Gly Phe Phe Arg Arg Ser Val Thr Lys Ser Ala Val Tyr Cys Cys Lys
35 40 45

Phe Gly Arg Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys Gln
50 55 60

Glu Cys Arg Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu Cys
Page 16

65

70

75

80

Val Val Pro Glu Asn Gln Cys Ala Met Lys Arg Arg Glu Lys Lys Ala
85 90 95

Gln Lys Glu Lys Asp Lys Met Thr Thr Ser Pro Ser Ser Gln His Gly
100 105 110

Gly Asn Gly Ser Leu Ala Ser Gly Gly Gln Asp Phe Val Lys Lys
115 120 125

Glu Ile Leu Asp Leu Met Thr Cys Glu Pro Pro Gln His Ala Thr Ile
130 135 140

Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys Cys Gln Ala Arg Asn Ile
145 150 155 160

Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val Ile Tyr Lys Leu Ile Trp
165 170 175

Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu Glu Asp Leu Arg Arg Ile
180 185 190

Met Ser Gln Pro Asp Glu Asn Glu Ser Gln Thr Asp Val Ser Phe Arg
195 200 205

His Ile Thr Glu Ile Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe
210 215 220

Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile Pro Gln Glu Asp Gln Ile
225 230 235 240

Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Met Ala
245 250 255

Arg Arg Tyr Asp His Ser Ser Asp Ser Ile Phe Phe Ala Asn Asn Arg
260 265 270

Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala Gly Met Ala Asp Asn Ile
275 280 285

Glu Asp Leu Leu His Phe Cys Arg Gln Met Phe Ser Met Lys Val Asp
290 295 300

Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile Phe Ser Asp Arg
305 310 315 320

Pro Gly Leu Glu Lys Ala Gln Leu Val Glu Ala Ile Gln Ser Tyr Tyr
Page 17

325

330

335

Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn Arg His Cys Gly Asp Ser
340 345 350

Met Ser Leu Val Phe Tyr Ala Lys Leu Leu Ser Ile Leu Thr Glu Leu
355 360 365

Arg Thr Leu Gly Asn Gln Asn Ala Glu Met Cys Phe Ser Leu Lys Leu
370 375 380

Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu Glu Ile Trp Asp Val His
385 390 395 400

Ala Ile Pro Pro Ser Val Gln Ser His Leu Gln Ile Thr Gln Glu Glu
405 410 415

Asn Glu Arg Leu Glu Arg Ala Glu Arg Met Arg Ala Ser Val Gly Gly
420 425 430

Ala Ile Thr Ala Gly Ile Asp Cys Asp Ser Ala Ser Thr Ser Ala Ala
435 440 445

Ala Ala Ala Ala Gln His Gln Pro Gln Pro Gln Pro Gln Pro
450 455 460

Ser Ser Leu Thr Gln Asn Asp Ser Gln His Gln Thr Gln Pro Gln Leu
465 470 475 480

Gln Pro Gln Leu Pro Pro Gln Leu Gln Gly Gln Leu Gln Pro Gln Leu
485 490 495

Gln Pro Gln Leu Gln Thr Gln Leu Gln Pro Gln Ile Gln Pro Gln Pro
500 505 510

Gln Leu Leu Pro Val Ser Ala Pro Val Pro Ala Ser Val Thr Ala Pro
515 520 525

Gly Ser Leu Ser Ala Val Ser Thr Ser Ser Glu Tyr Met Gly Gly Ser
530 535 540

Ala Ala Ile Gly Pro Ile Thr Pro Ala Thr Thr Ser Ser Ile Thr Ala
545 550 555 560

Ala Val Thr Ala Ser Ser Thr Ser Ala Val Pro Met Gly Asn Gly
565 570 575

Val Gly Val Gly Val Gly Val Gly Asn Val Ser Met Tyr Ala Asn
Page 18

580

585

590

Ala Gln Thr Ala Met Ala Leu Met Gly Val Ala Leu His Ser His Gln
595 600 605

Glu Gln Leu Ile Gly Gly Val Ala Val Lys Ser Glu His Ser Thr Thr
610 615 620

Ala
625

<210> 17
<211> 583
<212> PRT
<213> Drosophila melanogaster

<400> 17

Ala Val Tyr Cys Cys Lys Phe Gly Arg Ala Cys Glu Met Asp Met Tyr
1 5 10 15

Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val
20 25 30

Gly Met Arg Pro Glu Cys Val Val Pro Glu Asn Gln Cys Ala Met Lys
35 40 45

Arg Arg Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Met Thr Thr Ser
50 55 60

Pro Ser Ser Gln His Gly Gly Asn Gly Ser Leu Ala Ser Gly Gly
65 70 75 80

Gln Asp Phe Val Lys Lys Glu Ile Leu Asp Leu Met Thr Cys Glu Pro
85 90 95

Pro Gln His Ala Thr Ile Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys
100 105 110

Cys Gln Ala Arg Asn Ile Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val
115 120 125

Ile Tyr Lys Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu
130 135 140

Glu Asp Leu Arg Arg Ile Met Ser Gln Pro Asp Glu Asn Glu Ser Gln
145 150 155 160

Thr Asp Val Ser Phe Arg His Ile Thr Glu Ile Thr Ile Leu Thr Val
165 170 175

Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile
180 185 190

Pro Gln Glu Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val
195 200 205

Met Met Leu Arg Met Ala Arg Arg Tyr Asp His Ser Ser Asp Ser Ile
210 215 220

Phe Phe Ala Asn Asn Arg Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala
225 230 235 240

Gly Met Ala Asp Asn Ile Glu Asp Leu Leu His Phe Cys Arg Gln Met
245 250 255

Phe Ser Met Lys Val Asp Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile
260 265 270

Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Lys Ala Gln Leu Val Glu
275 280 285

Ala Ile Gln Ser Tyr Tyr Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn
290 295 300

Arg His Cys Gly Asp Ser Met Ser Leu Val Phe Tyr Ala Lys Leu Leu
305 310 315 320

Ser Ile Leu Thr Glu Leu Arg Thr Leu Gly Asn Gln Asn Ala Glu Met
325 330 335

Cys Phe Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu
340 345 350

Glu Ile Trp Asp Val His Ala Ile Pro Pro Ser Val Gln Ser His Leu
355 360 365

Gln Ile Thr Gln Glu Glu Asn Glu Arg Leu Glu Arg Ala Glu Arg Met
370 375 380

Arg Ala Ser Val Gly Gly Ala Ile Thr Ala Gly Ile Asp Cys Asp Ser
385 390 395 400

Ala Ser Thr Ser Ala Ala Ala Ala Ala Gln His Gln Pro Gln Pro
405 410 415

Gln Pro Gln Pro Gln Pro Ser Ser Leu Thr Gln Asn Asp Ser Gln His
420 425 430

Gln Thr Gln Pro Gln Leu Gln Pro Gln Leu Pro Pro Gln Leu Gln Gly
435 440 445

Gln Leu Gln Pro Gln Leu Gln Pro Gln Leu Gln Thr Gln Leu Gln Pro
450 455 460

Gln Ile Gln Pro Gln Pro Gln Leu Leu Pro Val Ser Ala Pro Val Pro
465 470 475 480

Ala Ser Val Thr Ala Pro Gly Ser Leu Ser Ala Val Ser Thr Ser Ser
485 490 495

Glu Tyr Met Gly Gly Ser Ala Ala Ile Gly Pro Ile Thr Pro Ala Thr
500 505 510

Thr Ser Ser Ile Thr Ala Ala Val Thr Ala Ser Ser Thr Thr Ser Ala
515 520 525

Val Pro Met Gly Asn Gly Val Gly Val Gly Val Gly Val Gly Asn
530 535 540

Val Ser Met Tyr Ala Asn Ala Gln Thr Ala Met Ala Leu Met Gly Val
545 550 555 560

Ala Leu His Ser His Gln Glu Gln Leu Ile Gly Gly Val Ala Val Lys
565 570 575

Ser Glu His Ser Thr Thr Ala
580

<210> 18
<211> 549
<212> PRT
<213> Drosophila melanogaster

<400> 18

Arg Pro Glu Cys Val Val Pro Glu Asn Gln Cys Ala Met Lys Arg Arg
1 5 10 15

Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Met Thr Thr Ser Pro Ser
20 25 30

Ser Gln His Gly Gly Asn Gly Ser Leu Ala Ser Gly Gly Gln Asp
35 40 45

Phe Val Lys Lys Glu Ile Leu Asp Leu Met Thr Cys Glu Pro Pro Gln
50 55 60

His Ala Thr Ile Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys Cys Gln
65 70 75 80

Ala Arg Asn Ile Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val Ile Tyr
85 90 95

Lys Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu Glu Asp
100 105 110

Leu Arg Arg Ile Met Ser Gln Pro Asp Glu Asn Glu Ser Gln Thr Asp
115 120 125

Val Ser Phe Arg His Ile Thr Glu Ile Thr Ile Leu Thr Val Gln Leu
130 135 140

Ile Val Glu Phe Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile Pro Gln
145 150 155 160

Glu Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met
165 170 175

Leu Arg Met Ala Arg Arg Tyr Asp His Ser Ser Asp Ser Ile Phe Phe
180 185 190

Ala Asn Asn Arg Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala Gly Met
195 200 205

Ala Asp Asn Ile Glu Asp Leu Leu His Phe Cys Arg Gln Met Phe Ser
210 215 220

Met Lys Val Asp Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile
225 230 235 240

Phe Ser Asp Arg Pro Gly Leu Glu Lys Ala Gln Leu Val Glu Ala Ile
245 250 255

Gln Ser Tyr Tyr Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn Arg His
260 265 270

Cys Gly Asp Ser Met Ser Leu Val Phe Tyr Ala Lys Leu Leu Ser Ile
275 280 285

Leu Thr Glu Leu Arg Thr Leu Gly Asn Gln Asn Ala Glu Met Cys Phe
290 295 300

Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu Glu Ile
305 310 315 320

Trp Asp Val His Ala Ile Pro Pro Ser Val Gln Ser His Leu Gln Ile
325 330 335

Thr Gln Glu Glu Asn Glu Arg Leu Glu Arg Ala Glu Arg Met Arg Ala
340 345 350

Ser Val Gly Gly Ala Ile Thr Ala Gly Ile Asp Cys Asp Ser Ala Ser
355 360 365

Thr Ser Ala Ala Ala Ala Ala Gln His Gln Pro Gln Pro Gln Pro
370 375 380

Gln Pro Gln Pro Ser Ser Leu Thr Gln Asn Asp Ser Gln His Gln Thr
385 390 395 400

Gln Pro Gln Leu Gln Pro Gln Leu Pro Pro Gln Leu Gln Gly Gln Leu
405 410 415

Gln Pro Gln Leu Gln Pro Gln Leu Gln Thr Gln Leu Gln Pro Gln Ile
420 425 430

Gln Pro Gln Pro Gln Leu Leu Pro Val Ser Ala Pro Val Pro Ala Ser
435 440 445

Val Thr Ala Pro Gly Ser Leu Ser Ala Val Ser Thr Ser Ser Glu Tyr
450 455 460

Met Gly Gly Ser Ala Ala Ile Gly Pro Ile Thr Pro Ala Thr Thr Ser
465 470 475 480

Ser Ile Thr Ala Ala Val Thr Ala Ser Ser Thr Thr Ser Ala Val Pro
485 490 495

Met Gly Asn Gly Val Gly Val Gly Val Gly Val Gly Gly Asn Val Ser
500 505 510

Met Tyr Ala Asn Ala Gln Thr Ala Met Ala Leu Met Gly Val Ala Leu
515 520 525

His Ser His Gln Glu Gln Leu Ile Gly Gly Val Ala Val Lys Ser Glu
530 535 540

His Ser Thr Thr Ala
545

<210> 19
<211> 445
<212> PRT

<213> Drosophila melanogaster

<400> 19

Tyr Glu Gln Pro Ser Glu Glu Asp Leu Arg Arg Ile Met Ser Gln Pro
1 5 10 15

Asp Glu Asn Glu Ser Gln Thr Asp Val Ser Phe Arg His Ile Thr Glu
20 25 30

Ile Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu
35 40 45

Pro Ala Phe Thr Lys Ile Pro Gln Glu Asp Gln Ile Thr Leu Leu Lys
50 55 60

Ala Cys Ser Ser Glu Val Met Met Leu Arg Met Ala Arg Arg Tyr Asp
65 70 75 80

His Ser Ser Asp Ser Ile Phe Phe Ala Asn Asn Arg Ser Tyr Thr Arg
85 90 95

Asp Ser Tyr Lys Met Ala Gly Met Ala Asp Asn Ile Glu Asp Leu Leu
100 105 110

His Phe Cys Arg Gln Met Phe Ser Met Lys Val Asp Asn Val Glu Tyr
115 120 125

Ala Leu Leu Thr Ala Ile Val Ile Phe Ser Asp Arg Pro Gly Leu Glu
130 135 140

Lys Ala Gln Leu Val Glu Ala Ile Gln Ser Tyr Tyr Ile Asp Thr Leu
145 150 155 160

Arg Ile Tyr Ile Leu Asn Arg His Cys Gly Asp Ser Met Ser Leu Val
165 170 175

Phe Tyr Ala Lys Leu Leu Ser Ile Leu Thr Glu Leu Arg Thr Leu Gly
180 185 190

Asn Gln Asn Ala Glu Met Cys Phe Ser Leu Lys Leu Lys Asn Arg Lys
195 200 205

Leu Pro Lys Phe Leu Glu Glu Ile Trp Asp Val His Ala Ile Pro Pro
210 215 220

Ser Val Gln Ser His Leu Gln Ile Thr Gln Glu Glu Asn Glu Arg Leu
225 230 235 240

Glu Arg Ala Glu Arg Met Arg Ala Ser Val Gly Gly Ala Ile Thr Ala
245 250 255

Gly Ile Asp Cys Asp Ser Ala Ser Thr Ser Ala Ala Ala Ala Ala Ala
260 265 270

Gln His Gln Pro Gln Pro Gln Pro Gln Pro Ser Ser Leu Thr
275 280 285

Gln Asn Asp Ser Gln His Gln Thr Gln Pro Gln Leu Gln Pro Gln Leu
290 295 300

Pro Pro Gln Leu Gln Gly Gln Leu Gln Pro Gln Leu Gln Pro Gln Leu
305 310 315 320

Gln Thr Gln Leu Gln Pro Gln Ile Gln Pro Gln Pro Gln Leu Leu Pro
325 330 335

Val Ser Ala Pro Val Pro Ala Ser Val Thr Ala Pro Gly Ser Leu Ser
340 345 350

Ala Val Ser Thr Ser Ser Glu Tyr Met Gly Gly Ser Ala Ala Ile Gly
355 360 365

Pro Ile Thr Pro Ala Thr Thr Ser Ser Ile Thr Ala Ala Val Thr Ala
370 375 380

Ser Ser Thr Thr Ser Ala Val Pro Met Gly Asn Gly Val Gly Val Gly
385 390 395 400

Val Gly Val Gly Gly Asn Val Ser Met Tyr Ala Asn Ala Gln Thr Ala
405 410 415

Met Ala Leu Met Gly Val Ala Leu His Ser His Gln Glu Gln Leu Ile
420 425 430

Gly Gly Val Ala Val Lys Ser Glu His Ser Thr Thr Ala
435 440 445

<210> 20

<211> 323

<212> PRT

<213> Drosophila melanogaster

<400> 20

Arg Pro Glu Cys Val Val Pro Glu Asn Gln Cys Ala Met Lys Arg Arg
1 5 10 15

Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Met Thr Thr Ser Pro Ser
Page 25

20

25

30

Ser Gln His Gly Gly Asn Gly Ser Leu Ala Ser Gly Gly Gln Asp
35 40 45

Phe Val Lys Lys Glu Ile Leu Asp Leu Met Thr Cys Glu Pro Pro Gln
50 55 60

His Ala Thr Ile Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys Cys Gln
65 70 75 80

Ala Arg Asn Ile Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val Ile Tyr
85 90 95

Lys Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu Glu Asp
100 105 110

Leu Arg Arg Ile Met Ser Gln Pro Asp Glu Asn Glu Ser Gln Thr Asp
115 120 125

Val Ser Phe Arg His Ile Thr Glu Ile Thr Ile Leu Thr Val Gln Leu
130 135 140

Ile Val Glu Phe Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile Pro Gln
145 150 155 160

Glu Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met
165 170 175

Leu Arg Met Ala Arg Arg Tyr Asp His Ser Ser Asp Ser Ile Phe Phe
180 185 190

Ala Asn Asn Arg Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala Gly Met
195 200 205

Ala Asp Asn Ile Glu Asp Leu Leu His Phe Cys Arg Gln Met Phe Ser
210 215 220

Met Lys Val Asp Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile
225 230 235 240

Phe Ser Asp Arg Pro Gly Leu Glu Lys Ala Gln Leu Val Glu Ala Ile
245 250 255

Gln Ser Tyr Tyr Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn Arg His
260 265 270

Cys Gly Asp Ser Met Ser Leu Val Phe Tyr Ala Lys Leu Leu Ser Ile
Page 26

275

280

285

Leu Thr Glu Leu Arg Thr Leu Gly Asn Gln Asn Ala Glu Met Cys Phe
290 295 300

Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu Glu Ile
305 310 315 320

Trp Asp Val

<210> 21
<211> 987
<212> DNA
<213> Mus musculus

<400> 21
tgtgctatct gtggggaccg ctccctcaggc aaacactatg gggatacag ttgtgaggc 60
tgcaagggtct tcttcaagag gacagtacgc aaagacactga cttcacacctg ccgagacaac 120
aaggactgcc tgatcgacaa gagacagcgg aaccgggtgtc agtactgccc ctaccagaag 180
tgcctggcca tgggcatgaa gcggaaagct gtgcaggagg agcggcagcg gggcaaggac 240
cggaatgaga acgaggtgga gtccaccaggc agtgccaacg aggacatgcc tgttagagaag 300
attctggaag ccgagcttgc tgtcgagccc aagactgaga catacgtgga ggcaaacatg 360
gggctgaacc ccagctcacc aaatgaccct gttaccaaca tctgtcaagc agcagacaag 420
cagctttca ctcttgcgaa gtggccaag aggatcccac actttctga gctgccccta 480
gacgaccagg tcattcgtct acgggcaggc tggaacgagc tgctgatcgc ctccctctcc 540
caccgctcca tagctgtgaa agatggatt ctccctggcca cccggctgca cgtacaccgg 600
aacagcgctc acagtgtgg ggtggcgcc atcttgaca gggtaacac agagctggg 660
tctaagatgc gtgacatgca gatggacaag acggagctgg gctgcctgag agccattgtc 720
ctgttcaacc ctgactctaa ggggctctca aaccctgctg aggtggaggc gttgagggag 780
aaggtgtatg cgtcactaga agcgtactgc aaacacaagt accctgagca gccgggcagg 840
tttgccaagc tgctgctccg cctgcctgca ctgcgttcca tcgggctcaa gtgcctggag 900
cacctgttct tcttcaagct catcggggac acgccccatcg acaccccttcatggagatg 960
ctggaggcac cacatcaagc cacctag 987

<210> 22
<211> 789
<212> DNA
<213> Mus musculus

<400> 22
aagcgggaag ctgtgcagga ggagcggcag cggggcaagg accgaaatga gaacgaggtg 60

gagtccacca gcagtgccaa cgaggacatg cctgttagaga agattctgga agccgagctt 120
gctgtcgagc ccaagactga gacatacgtg gaggcaaaca tggggctgaa ccccagctca 180
ccaaatgacc ctgttaccaa catctgtcaa gcagcagaca agcagcttt cactcttg 240
gagtgggccaa agaggatccc acactttct gagctgcccc tagacgacca ggtcatcctg 300
ctacggcag gctggaacga gctgctgatc gcctccttct cccaccgctc catagcttg 360
aaagatggga ttctcctggc caccggcctg cacgtacacc ggaacagcgc tcacagtgt 420
ggggtggcgccatcttga cagggtgcta acagagctgg tgtctaagat gcgtgacatg 480
cagatggaca agacggagct gggctgcctg cgagccattg tcctgttcaa ccctgactct 540
aaggggctct caaacccctgc tgaggtggag gcgttgaggg agaaggtgta tgcgtcacta 600
gaagcgtact gcaaacacaa gtaccctgag cagccggca ggtttgc当地 gctgctgctc 660
cgccctgcctg cactgcgttc catcgggctc aagtgcctgg agcacctgtt cttttcaag 720
ctcatcgaaa acacgcccattc cgacaccttc ctcatggaga tgctggaggc accacatcaa 780
gccacccat 789

<210> 23
<211> 714
<212> DNA
<213> Mus musculus

<400> 23
gccaacgagg acatgcctgt agagaagatt ctggaagccg agcttgctgt cgagcccaag 60
actgagacat acgtggaggc aaacatgggg ctgaacccca gtcacccaa tgaccctgtt 120
accaacatct gtcaaggcagc agacaaggcag ctcttcactc ttgtggagtgg gcggcaagagg 180
atccccacact tttctgagct gccccttagac gaccaggta tcctgctacg ggcaggctgg 240
aacgagctgc tgatgcctc cttctccac cgctccatag ctgtgaaaga tgggattctc 300
ctggccacccg gcctgcacgt acacccggAAC agcgctcaca gtgctggggg gggcgccatc 360
tttgacaggg tgctaaacaga gctgggtgtt aagatgcgtg acatgcagat ggacaagacg 420
gagctgggct gcctgcgagc cattgtcctg ttcaacccctg actctaaagg gctctcaaacc 480
cctgctgagg tggaggcggtt gagggagaag gtgtatgcgt cactagaagc gtactgcaaa 540
cacaagtacc ctgagcagcc gggcagggtt gccaagctgc tgctccgcct gcctgcactg 600
cgttccatcg ggctcaagtg cctggagcac ctgttcttct tcaagctcat cggggacacg 660
cccatcgaca ctttcctcat ggagatgcgtg gaggcaccac atcaagccac ctag 714

<210> 24
<211> 536
<212> DNA
<213> Mus musculus

<400> 24

ggatcccaca	ctttctgag	ctgcccctag	acgaccagg	catcctgcta	cgggcaggct	60
ggaacgagct	gctgatcgcc	tccttctccc	accgctccat	agctgtaaa	gatgggattc	120
tcctggccac	cggcctgcac	gtacaccgga	acagcgctca	cagtgtggg	gtgggcgcca	180
tctttgacag	ggtgctaaca	gagctggtgt	ctaagatg	tgacatgcag	atggacaaga	240
cggagctggg	ctgcctgcga	gccattgtcc	tgttcaaccc	tgactctaag	gggctctcaa	300
accctgctga	ggtggaggcg	ttgagggaga	aggtgtatgc	gtcactagaa	gcgtactgca	360
aacacaagta	ccctgagcag	ccggcagg	ttgccaagct	gctgctccgc	ctgcctgcac	420
tgcgttccat	cgggctcaag	tgcctggagc	acctgttctt	cttcaagctc	atcggggaca	480
cgcacatcga	cacccatc	atggagatgc	tggaggcacc	acatcaagcc	acctag	536

<210> 25
<211> 672
<212> DNA
<213> Mus musculus

<400> 25	gccaacgagg	acatgcctgt	agagaagatt	ctggaagccg	agcttgctgt	cgagcccaag	60
	actgagacat	acgtggaggc	aaacatgggg	ctgaacccca	gctcacaaa	tgaccctgtt	120
	accaacatct	gtcaagcgc	agacaagcag	ctttcactc	ttgtggagt	ggcaagagg	180
	atccccacact	tttctgagct	gcccctagac	gaccagg	tcctgctacg	ggcaggctgg	240
	aacgagctgc	tgatgcctc	cttctccac	cgctccatag	ctgtgaaaga	tggattctc	300
	ctggccaccg	gcctgcacgt	acaccgaa	agcgctcaca	gtgctgggt	gggcgcac	360
	tttgacaggg	tgctaacaga	gctgggtct	aagatgcgt	acatgcagat	ggacaagacg	420
	gagctggct	gcctgcgagc	cattgtcctg	ttcaaccctg	actctaaggg	gctctcaa	480
	cctgctgagg	tggaggcg	gagggagaag	gtgtatgcgt	cactagaagc	gtactgcaaa	540
	cacaagtacc	ctgagcagcc	ggcagg	gccaagctgc	tgctccgc	gcctgcactg	600
	cgttccatcg	ggctcaagt	cctggagc	ctgttcttct	tcaagctcat	cggggacacg	660
	cccatcgaca	cc					672

<210> 26
<211> 1123
<212> DNA
<213> Homo sapiens

<400> 26	tgcgcacat	gcggggaccg	ctcctcaggc	aagcactatg	gagtgtacag	ctgcgagg	60
	tgcaagg	gtctcaagcg	gacgg	tcgc	agg	ccgc	120
	aaggactg	tgattgacaa	gcggc	aggcgg	aacc	gggtgc	180
	tgcctgg	catgaa	gcgg	gag	gt	gcaggagg	240
	cca	g	cc	gg	gg	gg	

cggaacgaga atgaggtgga gtcgaccagc agcgccaacg aggacatgcc	300
atcctggagg ctgagctggc cgtggagccc aagaccgaga cctacgtgga ggcaaacatg	360
gggctgaacc ccagctcgcc gaacgaccct gtcaccaaca tttgccaagc agccgacaaa	420
cagctttca ccctggtgg a tggggcaag cgatccac acttctcaga gctgcccc	480
gacgaccagg tcacatcgct gcgggcaggc tgaaatgagc tgctcatcg ctccttctcc	540
caccgctcca tcgcccgtgaa ggacggatc ctccctggcca ccgggctgca cgtccaccgg	600
aacagcgccc acagcgcagg ggtggcgcc atcttgaca gggtgctgac ggagcttgt	660
tccaagatgc gggacatgca gatggacaag acggagctgg gctgcctgca cgccatcg	720
ctcttaacc ctgactccaa ggggctctcg aaccggccg aggtggaggc gctgagggag	780
aaggctatg cgtccttgg a ggcctactgc aagcacaagt acccagagca gccggaaagg	840
ttcgctaagc tcttgctccg cctgcccgt ctgcgttcca tcgggctcaa atgcctggaa	900
catctttct tcttcaagct catcgggac acacccattg acacccctt tatggagatg	960
ctggaggcgc cgcaccaaat gacttaggcc tgccggccca tcctttgtgc ccaccgttc	1020
tggccaccct gcctggacgc cagctgttct tctcagcctg agccctgtcc ctgccttct	1080
ctgcctggcc tggggact ttggggcaca gcctgtcact gct	1123

<210> 27
 <211> 925
 <212> DNA
 <213> Homo sapiens

<400> 27	
aagcgggaag ccgtgcagga ggagcggcag cgtggcaagg accggaacga gaatgaggtg	60
gagtcgacca gcagcgccaa cgaggacatg ccgggtggaga ggatcctgga ggctgagctg	120
gccgtggagc ccaagaccga gacctacgtg gaggcaaaca tggggctgaa cccagctcg	180
ccgaacgacc ctgtcaccaa catttccaa gcagccgaca aacagcttt caccctgg	240
gagtgggcca agcggatccc acacttctca gagctgccc tggacgacca ggtcatcctg	300
ctgcggcag gctggaatga gctgctcatc gcctccttcc cccaccgtc catcgccgt	360
aaggacggga tcctcctggc caccggctg cacgtccacc ggaacagcgc ccacagcga	420
gggggtggcg ccatcttga cagggtgctg acggagcttg tgtccaagat gggggacatg	480
cagatggaca agacggagct gggctgcctg cgcgcacatcg tcctctttaa ccctgactcc	540
aaggggctct cgaacccggc cgaggtggag ggcgtgaggg agaaggctta tgctccttg	600
gaggcctact gcaagcacaa gtacccagag cagccggaa gttcgctaa gctcttgctc	660
cgcctgcccgg ctctgcgtc catcggcgtc aaatgcctgg aacatctttt cttttcaag	720
ctcatcgggg acacacccat tgacaccttc cttatggaga tgctggaggc gcccaccaaa	780
atgacttagg cctgcgggccc catccttgcgt gcccacccgt tctggccacc ctgcctggac	840

gccagctgtt cttctcagcc tgagccctgt ccctgccctt ctctgcctgg cctgtttgga 900
ctttggggca cagcctgtca ctgct 925

<210> 28
<211> 850
<212> DNA
<213> Homo sapiens

<400> 28
gccaacgagg acatgccggt ggagaggatc ctggaggctg agctggccgt ggagccaaag 60
accgagacct acgtggaggc aaacatgggg ctgaacccca gctcgccaa cgaccctgtc 120
accaacattt gccaaggcagc cgacaaacag ctttcaccc tggtgagtg ggccaagcgg 180
atccccacact tctcagagct gcccctggac gaccaggtca tcctgctgctg ggcaggctgg 240
aatgagctgc tcatgcctc cttctccac cgctccatcg ccgtgaagga cgggatcctc 300
ctggccaccg ggctgcacgt ccacccgaac agcgcccaca gcgcaggggt gggcgccatc 360
tttgcacaggg tgctgacgga gcttgtgtcc aagatgcggg acatgcagat ggacaagacg 420
gagctgggct gcctgcgcgc catcgccctc ttaaccctg actccaaggg gctctcgaac 480
ccggccgagg tggaggcgct gagggagaag gtctatgcgt cttggaggc ctactgcaag 540
cacaagtacc cagagcagcc gggaaaggttc gctaagctct tgctccgcct gccggctctg 600
cgctccatcg ggctcaaatg cctgaaacat ctttcttct tcaagctcat cggggacaca 660
cccattgaca ctttccttat ggagatgctg gaggcgccgc accaaatgac ttaggcctgc 720
gggcccattcc ttgtgcccc cccgttctgg ccaccctgcc tggacgcccag ctgttcttct 780
cagcctgagc cctgtccctg cccttctctg cctggcctgt ttggactttg gggcacagcc 840
tgtcactgct 850

<210> 29
<211> 670
<212> DNA
<213> Homo sapiens

<400> 29
atccccacact tctcagagct gcccctggac gaccaggtca tcctgctgctg ggcaggctgg 60
aatgagctgc tcatgcctc cttctccac cgctccatcg ccgtgaagga cgggatcctc 120
ctggccaccg ggctgcacgt ccacccgaac agcgcccaca gcgcaggggt gggcgccatc 180
tttgcacaggg tgctgacgga gcttgtgtcc aagatgcggg acatgcagat ggacaagacg 240
gagctgggct gcctgcgcgc catcgccctc ttaaccctg actccaaggg gctctcgaac 300
ccggccgagg tggaggcgct gagggagaag gtctatgcgt cttggaggc ctactgcaag 360
cacaagtacc cagagcagcc gggaaaggttc gctaagctct tgctccgcct gccggctctg 420
cgctccatcg ggctcaaatg cctgaaacat ctttcttct tcaagctcat cggggacaca 480

cccattgaca ctttccttat ggagatgctg gaggcgccgc accaaatgac ttaggcctgc 540
gggcccattcc ttgtgcccc cccgttctgg ccaccctgcc tggacgccag ctgttcttct 600
cagcctgagc cctgtccctg cccttctctg cctggcctgt ttggactttg gggcacagcc 660
tgtcactgct 670

<210> 30
<211> 672
<212> DNA
<213> Homo sapiens

<400> 30
gccaacgagg acatgccggt ggagaggatc ctggaggctg agctggccgt ggagcccaag 60
accgagacct acgtggaggg aaacatgggg ctgaacccca gctcgccgaa cgaccctgtc 120
accaacattt gccaaggcagc cgacaaacag ctttcaccc tggtgagtg ggccaagcgg 180
atccccacact tctcagagct gcccctggac gaccaggtca tcctgctgctg ggcaggctgg 240
aatgagctgc tcatgcctc cttctccac cgctccatcg ccgtgaagga cgggatcctc 300
ctggccaccg ggctgcacgt ccacccgaac agcgcccaca gcgcagggtt gggcgccatc 360
tttgacaggg tgctgacgga gcttggtcc aagatgcggg acatgcagat ggacaagacg 420
gagctggct gcctgcgcgc catcgccctc ttaaccctg actccaaggg gctctcgaac 480
ccggccgagg tggaggcgct gagggagaag gtctatgcgt cttggaggc ctactgcaag 540
cacaagtacc cagagcagcc gggaaaggccc gctaagctct tgctccgcct gccggctctg 600
cgctccatcg ggctcaaatg cctgaaacat ctcttcttct tcaagctcat cggggacaca 660
cccattgaca cc 672

<210> 31
<211> 328
<212> PRT
<213> Mus musculus

<400> 31

Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr
1 5 10 15

Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp
20 25 30

Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg
35 40 45

Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Met
50 55 60

Gly Met Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp
65 70 75 80

Arg Asn Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met
85 90 95

Pro Val Glu Lys Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr
100 105 110

Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn
115 120 125

Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr
130 135 140

Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu
145 150 155 160

Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile
165 170 175

Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu
180 185 190

Ala Thr Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val
195 200 205

Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg
210 215 220

Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val
225 230 235 240

Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu
245 250 255

Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His
260 265 270

Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Arg Leu
275 280 285

Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe
290 295 300

Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met
305 310 315 320

Leu Glu Ala Pro His Gln Ala Thr
325

<210> 32
<211> 262
<212> PRT
<213> Mus musculus

<400> 32

Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn
1 5 10 15

Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val
20 25 30

Glu Lys Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr
35 40 45

Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro
50 55 60

Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val
65 70 75 80

Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp
85 90 95

Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser
100 105 110

Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr
115 120 125

Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala
130 135 140

Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met
145 150 155 160

Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe
165 170 175

Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu
180 185 190

Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr
195 200 205

Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala
Page 34

210

215

220

Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys
225 230 235 240

Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu
245 250 255

Ala Pro His Gln Ala Thr
260

<210> 33
<211> 237
<212> PRT
<213> Mus musculus

<400> 33

Ala Asn Glu Asp Met Pro Val Glu Lys Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Ala Thr
225 230 235

<210> 34

<211> 177

<212> PRT

<213> Mus musculus

<400> 34

Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu
1 5 10 15

Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser
20 25 30

Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His
35 40 45

Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val
50 55 60

Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr
65 70 75 80

Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys
85 90 95

Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr
100 105 110

Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly
115 120 125

Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly
130 135 140

Leu Lys Cys Leu Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr
145 150 155 160

Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Ala
165 170 175

Thr

<210> 35
<211> 224
<212> PRT
<213> Mus musculus

<400> 35

Ala Asn Glu Asp Met Pro Val Glu Lys Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

<210> 36
<211> 328
<212> PRT
<213> Homo sapiens

<400> 36

Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr
1 5 10 15

Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp
20 25 30

Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg
35 40 45

Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Met
50 55 60

Gly Met Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp
65 70 75 80

Arg Asn Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met
85 90 95

Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr
100 105 110

Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn
115 120 125

Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr
130 135 140

Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu
145 150 155 160

Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile
165 170 175

Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu
180 185 190

Ala Thr Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val
Page 38

195

200

205

Gly Ala Ile Phe Asp Arg Val 210 Leu Thr Glu Leu Val Ser Lys Met Arg
215 220

Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val
225 230 235 240

Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu
245 250 255

Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His
260 265 270

Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu
275 280 285

Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe
290 295 300

Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met
305 310 315 320

Leu Glu Ala Pro His Gln Met Thr
325

<210> 37

<211> 262

<212> PRT

<213> Homo sapiens

<400> 37

Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn
1 5 10 15

Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val
20 25 30

Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr
35 40 45

Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro
50 55 60

Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val
65 70 75 80

Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp
85 90 95

Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser
100 105 110

Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr
115 120 125

Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala
130 135 140

Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met
145 150 155 160

Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe
165 170 175

Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu
180 185 190

Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr
195 200 205

Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala
210 215 220

Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys
225 230 235 240

Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu
245 250 255

Ala Pro His Gln Met Thr
260

<210> 38
<211> 237
<212> PRT
<213> Homo sapiens

<400> 38

Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Met Thr
225 230 235

<210> 39
<211> 177
<212> PRT
<213> Homo sapiens
<400> 39

Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu
1 5 10 15

Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser
20 25 30

Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His
35 40 45

Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val
50 55 60

Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr
65 70 75 80

Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys
85 90 95

Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr
100 105 110

Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly
115 120 125

Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly
130 135 140

Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr
145 150 155 160

Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Met
165 170 175

Thr

<210> 40
<211> 224
<212> PRT
<213> Homo sapiens

<400> 40

Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp

65

70

75

80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

<210> 41
<211> 198
<212> DNA
<213> Choristoneura fumiferana

<400> 41
tgtctgtat gcggggacag agcctccgga taccactaca atgcgctcac gtgtgaaggg 60
tgtaaagggt tcttcagacg gagtgttacc aaaaatgcgg tttatatttg taaattcggt 120
cacgcttgcg aaatggacat gtacatgcga cggaaatgcc aggagtgccg cctgaagaag 180
tgcttagctg taggcatg 198

<210> 42
<211> 66
<212> PRT
<213> Choristoneura fumiferana

<400> 42

Cys Leu Val Cys Gly Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu
1 5 10 15

Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn
20 25 30

Ala Val Tyr Ile Cys Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr
35 40 45

Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val
50 55 60

Gly Met
65

<210> 43
<211> 441
<212> DNA
<213> *Saccharomyces cerevisiae*

<400> 43
atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60
tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120
tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180
ctagaaagac tggAACAGCT atttctactg attttcctc gagaagacct tgacatgatt 240
ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattatt tgtacaagat 300
aatgtgaata aagatgccgt cacagataga ttggcttcag tggagactga tatgcctcta 360
acattgagac agcatagaat aagtgcgaca tcatcatcg aagagagtag taacaaaggt 420
caaagacagt tgactgtatc g 441

<210> 44
<211> 147
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 44

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu
1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile
Page 44

65

70

75

80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95

Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110

Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125

Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140

Thr Val Ser
145

<210> 45
<211> 606
<212> DNA
<213> Escherichia coli

<400> 45
atgaaagcgt taacggccag gcaacaagag gtgtttgatc tcatccgtga tcacatcagc 60
cagacaggta tgcccgccgac gcgtgcggaa atcgcgcagc gtttgggtt ccgttccccca 120
aacgcggctg aagaacatct gaaggcgctg gcacgcaaag gcgttattga aattgtttcc 180
ggcgcatcac gcgggattcg tctgttcag gaagaggaag aagggttgcc gctggtaggt 240
cgtgtggctg ccggtaacc acttctggcg caacagcata ttgaaggtca ttatcaggtc 300
gatccttcct tattcaagcc gaatgctgat ttcctgctgc gcgtcagcgg gatgtcgatg 360
aaagatatcg gcattatgga tggtgacttg ctggcagtgc ataaaaactca ggatgtacgt 420
aacggtcagg tcgttgtcgc acgtattgat gacgaagtta ccgttaagcg cctgaaaaaaaa 480
cagggcaata aagtcgaact gttgccagaa aatagcgagt ttaaaccat tgtcgttagat 540
cttcgtcagc agagcttcac cattgaaggg ctggcggttgggttattcg caacggcgcac 600
tggctg 606

<210> 46
<211> 202
<212> PRT
<213> Escherichia coli

<400> 46

Met Lys Ala Leu Thr Ala Arg Gln Gln Glu Val Phe Asp Leu Ile Arg
1 5 10 15

Asp His Ile Ser Gln Thr Gly Met Pro Pro Thr Arg Ala Glu Ile Ala
Page 45

20

25

30

Gln Arg Leu Gly Phe Arg Ser Pro Asn Ala Ala Glu Glu His Leu Lys
 35 40 45

Ala Leu Ala Arg Lys Gly Val Ile Glu Ile Val Ser Gly Ala Ser Arg
 50 55 60

Gly Ile Arg Leu Leu Gln Glu Glu Glu Gly Leu Pro Leu Val Gly
 65 70 75 80

Arg Val Ala Ala Gly Glu Pro Leu Leu Ala Gln Gln His Ile Glu Gly
 85 90 95

His Tyr Gln Val Asp Pro Ser Leu Phe Lys Pro Asn Ala Asp Phe Leu
 100 105 110

Leu Arg Val Ser Gly Met Ser Met Lys Asp Ile Gly Ile Met Asp Gly
 115 120 125

Asp Leu Leu Ala Val His Lys Thr Gln Asp Val Arg Asn Gly Gln Val
 130 135 140

Val Val Ala Arg Ile Asp Asp Glu Val Thr Val Lys Arg Leu Lys Lys
 145 150 155 160

Gln Gly Asn Lys Val Glu Leu Leu Pro Glu Asn Ser Glu Phe Lys Pro
 165 170 175

Ile Val Val Asp Leu Arg Gln Gln Ser Phe Thr Ile Glu Gly Leu Ala
 180 185 190

Val Gly Val Ile Arg Asn Gly Asp Trp Leu
 195 200

<210> 47
 <211> 420
 <212> DNA
 <213> Choristoneura fumiferana

<400> 47						
atgagacgcc	gctggtccaa	caacggggc	ttccagacgc	tgcgaatgct	cgaggagac	60
tcgtccgaag	tgacgtcgtc	ctcagctctg	ggtctgccgg	ccgcgtatgg	tatgtctccg	120
gagtcgctcg	cctcgccaga	gtacggcggg	ctcgagctct	ggggatacga	cgatgggttg	180
tcataacaaca	cggcgcagtc	cttgctggc	aataacttgc	cgatgcagca	gcagcaacag	240
acgcagccgc	tgccgtcgat	gccgtgcct	atgccgccga	ccacgcccga	gtctgaaaac	300
gagtctattt	cctcaggccg	tgaggaactg	tcgcccagtt	caagtataaa	tgggtgcagt	360

acagatggcg aggcacgacg tcagaagaag ggcctgcgc cccgtcagca agaggaactg 420

<210> 48

<211> 140

<212> PRT

<213> Choristoneura fumiferana

<400> 48

Met Arg Arg Arg Trp Ser Asn Asn Gly Gly Phe Gln Thr Leu Arg Met
1 5 10 15

Leu Glu Glu Ser Ser Ser Glu Val Thr Ser Ser Ser Ala Leu Gly Leu
20 25 30

Pro Ala Ala Met Val Met Ser Pro Glu Ser Leu Ala Ser Pro Glu Tyr
35 40 45

Gly Gly Leu Glu Leu Trp Gly Tyr Asp Asp Gly Leu Ser Tyr Asn Thr
50 55 60

Ala Gln Ser Leu Leu Gly Asn Thr Cys Thr Met Gln Gln Gln Gln Gln
65 70 75 80

Thr Gln Pro Leu Pro Ser Met Pro Leu Pro Met Pro Pro Thr Thr Pro
85 90 95

Lys Ser Glu Asn Glu Ser Ile Ser Ser Gly Arg Glu Glu Leu Ser Pro
100 105 110

Ala Ser Ser Ile Asn Gly Cys Ser Thr Asp Gly Glu Ala Arg Arg Gln
115 120 125

Lys Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu
130 135 140

<210> 49

<211> 271

<212> DNA

<213> herpes simplex virus 7

<400> 49

atggcccta aaaagaagcg taaagtgcgc ccccgacccg atgtcagcct gggggacgag 60

ctccacttag acggcgagga cgtggcgatg gcgcatgccg acgcgctaga cgatttcgat 120

ctggacatgt tgccccacgg ggattccccg gggccggat ttaccccca cgactccgcc 180

ccctacggcg ctctggatat ggccgacttc gagttgagc agatgttac cgatgccctt 240

ggaattgacg agtacggtg ggaattcccg g 271

<210> 50
 <211> 90
 <212> PRT
 <213> herpes simplex virus 7

 <400> 50

 Met Gly Pro Lys Lys Lys Arg Lys Val Ala Pro Pro Thr Asp Val Ser
 1 5 10 15

 Leu Gly Asp Glu Leu His Leu Asp Gly Glu Asp Val Ala Met Ala His
 20 25 30

 Ala Asp Ala Leu Asp Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp
 35 40 45

 Ser Pro Gly Pro Gly Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala
 50 55 60

 Leu Asp Met Ala Asp Phe Glu Phe Glu Gln Met Phe Thr Asp Ala Leu
 65 70 75 80

 Gly Ile Asp Glu Tyr Gly Gly Glu Phe Pro
 85 90

<210> 51
 <211> 307
 <212> DNA
 <213> Saccharomyces cerevisiae

 <400> 51
 atgggtgctc ctccaaaaaa gaagagaaaag gtagctggta tcaataaaga tatcgaggag 60
 tgcaatgcc a tcattgagca gtttatcgac tacctgcga ccggacagga gatgccatg 120
 gaaatggcgg atcaggcgat taacgtggtg ccgggcatga cgccgaaaac cattttcac 180
 gccggggccgc cgatccagcc tgactggctg aaatcgaatg gttttcatga aattgaagcg 240
 gatgttaacg ataccagcct cttgctgagt ggagatgcct cctaccctta tcatgtgcca 300
 gattatg 307

<210> 52
 <211> 102
 <212> PRT
 <213> Saccharomyces cerevisiae

 <400> 52

 Met Gly Ala Pro Pro Lys Lys Lys Arg Lys Val Ala Gly Ile Asn Lys
 1 5 10 15

 Asp Ile Glu Glu Cys Asn Ala Ile Ile Glu Gln Phe Ile Asp Tyr Leu
 20 25 30

Arg Thr Gly Gln Glu Met Pro Met Glu Met Ala Asp Gln Ala Ile Asn
35 40 45

Val Val Pro Gly Met Thr Pro Lys Thr Ile Leu His Ala Gly Pro Pro
50 55 60

Ile Gln Pro Asp Trp Leu Lys Ser Asn Gly Phe His Glu Ile Glu Ala
65 70 75 80

Asp Val Asn Asp Thr Ser Leu Leu Leu Ser Gly Asp Ala Ser Tyr Pro
85 90 95

Tyr Asp Val Pro Asp Tyr
100

<210> 53

<211> 807

<212> DNA

<213> Homo sapiens

<400> 53

cccatggaat tccagtacctt gccagataca gacgatcgac accggattga ggagaaacgt 60

aaaaggacat atgagacctt caagagcatc atgaagaaga gtcctttcag cggaccacc 120

gaccccccgc ctccacactcg acgcattgct gtgccttccc gcagtcagc ttctgtcccc 180

aagccagcac cccagcccta tccctttacg tcatccctga gcaccatcaa ctatgttag 240

tttcccacca tggtgtttcc ttctggcag atcagccagg cctcggcctt ggcccccggcc 300

cctccccaag tcctgccccca ggctccagcc cctgcccctg ctccagccat ggtatcagct 360

ctggcccaagg ccccagcccc tgtcccaagtc ctagccccag gcccctctca ggctgtggcc 420

ccacctgccc ccaagccccac ccaggctggg gaaggaacgc tgtcagaggc cctgctgcag 480

ctgcagtttgc atgatgaaga cctgggggcc ttgctggca acagcacaga cccagctgtg 540

ttcacagacc tggcatccgt cgacaactcc gagttcagc agctgctgaa ccagggata 600

cctgtggccc cccacacaac tgagcccatg ctgatggagt accctgaggc tataactcgc 660

ctagtgacag gggcccagag gccccccgac ccagctcctg ctccactggg ggcccccgggg 720

ctccccaaatg gcctccttgc aggagatgaa gacttctcct ccattgcgga catggacttc 780

tcagccctgc tgagtcagat cagctcc 807

<210> 54

<211> 269

<212> PRT

<213> Homo sapiens

<400> 54

Pro Met Glu Phe Gln Tyr Leu Pro Asp Thr Asp Asp Arg His Arg Ile

1 5 10 15
Glu Glu Lys Arg Lys Arg Thr Tyr Glu Thr Phe Lys Ser Ile Met Lys
20 25 30

Lys Ser Pro Phe Ser Gly Pro Thr Asp Pro Arg Pro Pro Arg Arg
35 40 45

Ile Ala Val Pro Ser Arg Ser Ser Ala Ser Val Pro Lys Pro Ala Pro
50 55 60

Gln Pro Tyr Pro Phe Thr Ser Ser Leu Ser Thr Ile Asn Tyr Asp Glu
65 70 75 80

Phe Pro Thr Met Val Phe Pro Ser Gly Gln Ile Ser Gln Ala Ser Ala
85 90 95

Leu Ala Pro Ala Pro Pro Gln Val Leu Pro Gln Ala Pro Ala Pro Ala
100 105 110

Pro Ala Pro Ala Met Val Ser Ala Leu Ala Gln Ala Pro Ala Pro Val
115 120 125

Pro Val Leu Ala Pro Gly Pro Pro Gln Ala Val Ala Pro Pro Ala Pro
130 135 140

Lys Pro Thr Gln Ala Gly Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln
145 150 155 160

Leu Gln Phe Asp Asp Glu Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr
165 170 175

Asp Pro Ala Val Phe Thr Asp Leu Ala Ser Val Asp Asn Ser Glu Phe
180 185 190

Gln Gln Leu Leu Asn Gln Gly Ile Pro Val Ala Pro His Thr Thr Glu
195 200 205

Pro Met Leu Met Glu Tyr Pro Glu Ala Ile Thr Arg Leu Val Thr Gly
210 215 220

Ala Gln Arg Pro Pro Asp Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly
225 230 235 240

Leu Pro Asn Gly Leu Leu Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala
245 250 255

Asp Met Asp Phe Ser Ala Leu Leu Ser Gln Ile Ser Ser

260

265

<210>	55	
<211>	225	
<212>	DNA	
<213>	Drosophila melanogaster	
<400>	55	
tcgacattgg acaagtgcat tgaacccttg tctctcgaga gacaaggggg ttcaatgcac	60	
ttgtccaatg tcgagagaca agggggttca atgcacttgt ccaatgtcga gagacaaggg	120	
ggttcaatgc acttgtccaa tgtcgagaga caagggggtt caatgcactt gtccaatgtc	180	
gagagacaag ggggttcaat gcacttgtcc aatgtcgact ctaga	225	
<210>	56	
<211>	19	
<212>	DNA	
<213>	Saccharomyces cerevisiae	
<400>	56	
ggagtagtactgt cctccgagc	19	
<210>	57	
<211>	666	
<212>	DNA	
<213>	Escherichia coli	
<400>	57	
ggatccccag ctggaaattc gacaggttat cagcaacaac acagtcatat ccattctcaa	60	
ttagctctac cacagtgtgt gaaccaatgt atccagcacc acctgttaacc aaaacaattt	120	
tagaagtact ttcactttgt aactgagctg tcatttatat tgaattttca aaaattctta	180	
ctttttttt ggatggacgc aaagaagttt aataatcata ttacatggca ttaccaccat	240	
atacatatcc atatacatat ccatatctaa tcttacctcg actgtgtat ataaaaccag	300	
tggttatatg tacagtactg ctgtatataa aaccagtgtt tatatgtaca gtacgtcgac	360	
tgctgtatat aaaaccagtg gttatatgtc cagtagtgc gtatataaaa ccagtggta	420	
tatgtacagt acgtcgaggg atgataatgc gattagttt ttagccttat ttctgggta	480	
attaatcagc gaagcgatga ttttgatct attaacagat atataaatgc aaaaactgca	540	
taaccacttt aactaatact ttcaacattt tcggtttgc ttacttctta ttcaaatgtc	600	
ataaaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa	660	
actata	666	
<210>	58	
<211>	1542	
<212>	DNA	
<213>	Choristoneura fumiferana	
<400>	58	

ctggacctga aacacgaagt ggcttaccga ggggtgctcc caggccaggt gaaggccaa	60
ccgggggtcc acaacggcca ggtcaacggc cacgtgaggg actggatggc aggccgcgt	120
ggtgccaatt cgccgtctcc gggagcggtg gctcaacccc agcctaacaa tgggtattcg	180
tcgccactct cctcgggaag ctacgggccc tacagtccaa atggaaaat aggccgtgag	240
gaactgtcgc cagcttcaag tataaatggg tgcaagtacag atggcgaggc acgacgtcag	300
aagaagggcc ctgcgccccg tcagcaagag gaactgtgtc tggtatgcgg ggacagagcc	360
tccggatacc actacaatgc gtcacgtgt gaagggtgta aagggttctt cagacggagt	420
gttaccaaaa atgcgggtaa tattgtaaa ttccgtcacg cttgcgaaat ggacatgtac	480
atgcgacgga aatgccagga gtgccgcctg aagaagtgt tagctgttagg catgaggcct	540
gagtgcgttag tacccgagac tcagtgccgc atgaagcgga aagagaagaa agcacagaag	600
gagaaggaca aactgcctgt cagcacgacg acgggtggacg accacatgcc gcccattatg	660
cagtgtgaac ctccacctcc tgaaggcagca aggattcacg aagtggtccc aagggttctc	720
tccgacaagc tggggagac aaaccggcag aaaaacatcc cccagttgac agccaaccag	780
cagttcccta tcgcccaggct catctgtac caggacgggt acgagcagcc ttctgtatgaa	840
gatttgaaga ggattacgca gacgtggcag caagcggacg atgaaaacga agagtctgac	900
actcccttcc gccagatcac agagatgact atcctcacgg tccaacttat cgtggagttc	960
gcgaaggat tgccagggtt cgccaaagatc tcgcagcctg atcaaattac gctgcttaag	1020
gcttgctcaa gtgaggtaat gatgctccga gtcgcgcgac gatacgatgc ggcctcagac	1080
agtgttctgt tcgcgaacaa ccaagcgtac actcgacaca actaccgcaa ggctggcatg	1140
gcctacgtca tcgaggatct actgcacttc tgccggtgca tgtactctat ggcgttggac	1200
aacatccatt acgcgctgct cacggctgtc gtcatcttt ctgaccggcc agggttggag	1260
cagccgcaac tggtggaaaga aatccagcg tactacctga atacgctccg catctatatc	1320
ctgaaccagc tgagcgggtc ggcgcgttcg tccgtcatat acggcaagat cctctcaatc	1380
ctctctgagc tacgcacgct cggcatgcaa aactccaaca tgtgcacatc cctcaagctc	1440
aagaacagaa agctgcccgc tttcctcgag gagatctggg atgtggcgga catgtcgac	1500
acccaaccgc cgccatatcct cgagtccccc acgaatctct ag	1542

<210> 59
 <211> 513
 <212> PRT
 <213> Choristoneura fumiferana
 <400> 59

Leu Asp Leu Lys His Glu Val Ala Tyr Arg Gly Val Leu Pro Gly Gln
 1 5 10 15

Val Lys Ala Glu Pro Gly Val His Asn Gly Gln Val Asn Gly His Val
20 25 30

Arg Asp Trp Met Ala Gly Gly Ala Gly Ala Asn Ser Pro Ser Pro Gly
35 40 45

Ala Val Ala Gln Pro Gln Pro Asn Asn Gly Tyr Ser Ser Pro Leu Ser
50 55 60

Ser Gly Ser Tyr Gly Pro Tyr Ser Pro Asn Gly Lys Ile Gly Arg Glu
65 70 75 80

Glu Leu Ser Pro Ala Ser Ser Ile Asn Gly Cys Ser Thr Asp Gly Glu
85 90 95

Ala Arg Arg Gln Lys Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu
100 105 110

Cys Leu Val Cys Gly Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu
115 120 125

Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn
130 135 140

Ala Val Tyr Ile Cys Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr
145 150 155 160

Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val
165 170 175

Gly Met Arg Pro Glu Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys
180 185 190

Arg Lys Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser
195 200 205

Thr Thr Thr Val Asp Asp His Met Pro Pro Ile Met Gln Cys Glu Pro
210 215 220

Pro Pro Pro Glu Ala Ala Arg Ile His Glu Val Val Pro Arg Phe Leu
225 230 235 240

Ser Asp Lys Leu Leu Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu
245 250 255

Thr Ala Asn Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp
260 265 270

Gly Tyr Glu Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr
275 280 285

Trp Gln Gln Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg
290 295 300

Gln Ile Thr Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe
305 310 315 320

Ala Lys Gly Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile
325 330 335

Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala
340 345 350

Arg Arg Tyr Asp Ala Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln
355 360 365

Ala Tyr Thr Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile
370 375 380

Glu Asp Leu Leu His Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp
385 390 395 400

Asn Ile His Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg
405 410 415

Pro Gly Leu Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr
420 425 430

Leu Asn Thr Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala
435 440 445

Arg Ser Ser Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu
450 455 460

Arg Thr Leu Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu
465 470 475 480

Lys Asn Arg Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala
485 490 495

Asp Met Ser His Thr Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn
500 505 510

Leu

<210> 60
<211> 4375
<212> DNA
<213> Choristoneura fumiferana

<400> 60
tgtaattttg atgggcgccg tcatgcaccg tgtgccatat tgccatccag tcgaatagaa 60
aaaaaaaaaaa aaaaaaaaaat atcagttgtt ttgtccctcg ctcgcttcg agtgtattcg 120
aatattttaga cgtcataatt cacgagtgtc ttttaaattt atatagcgat tagcggggcc 180
gtttgttggc cgtgcgccttg cgtttagtgg agtgcaggga tagtgaggcg agtatggtag 240
ttcgtggta tgtcaagtgt ggcgaagaaa gacaagccga cgatgtcggt gacggcgtg 300
atcaactggg cgcggccggc gccgcaggc ccgcgcagc cgcaagtgc gtcgcctgcg 360
ccggcagcca tgctgcagca gctccgacg cagtcaatgc agtcgttaaa ccacatccca 420
actgtcgatt gctcgctcga tatgcagtgg cttatattag aacctggatt catgtgcct 480
atgtcacctc ctgagatgaa accagacacc gccatgctt atgggctacg agacgacgcc 540
acttcgcccgc ctaacttcaa gaactacccg cctaattcacc ccctgagtgg ctccaaacac 600
ctatgctcta tatgcggcga cagggcgtct ggaaaggact atgggggtgtc cagttgcgaa 660
ggatgcaagg gtttcttcaa gcggaccgtc cggaggacc tgtcgatgc ttgcccggag 720
gagcggact gcatcataga caagcgacaa aggaaccgt gccagttactg ccgctatcaa 780
aagtgtttgg ctgcggtat gaagcgagag gcgggtcaag aggaggcga gaggaatgct 840
cgcggcgcgg agatgacca cccgagtagc tcgggtcagg taagcgatga gctgtcaatc 900
gagcgcctaa cggagatgga gtctttggc gcagatccca gcggaggagtt ccagttcctc 960
cgcgtggggc ctgacagcaa cgtgcctcca cgttaccgcg cgccgtctc ctccctctgc 1020
caaataggca acaagcaaat agcggcgtt gtggtatggg cgcgcgacat ccctcatttc 1080
gggcagctgg agctggacga tcaagtggta ctcattcaagg ctcctggaa tgagctgcta 1140
ctcttcgcca tcgcctggcg ctctatggag tatttggaaat atgagaggga gaacggggac 1200
ggaacgcgga gcaccactca gccacaactg atgtgtctca tgcctggcat gacgttgcac 1260
cgcaactcgg cgcagcaggc gggcgtggc gccatctcg accgcgtgct gtccgagctc 1320
agtctgaaga tgcgcacctt ggcgtggac caggccgagt acgtcgctcaa aactgcac 1380
gtgctgctca accctgatgt gaaaggactg aagaatcgac aagaagttga cgtttgcga 1440
aaaaaaatgt tctcttgcct ggacgactac tgccggcggt cgcgaagcaa cgaggaaggc 1500
cggtttgcgt ccttgcgtgc gggcgtgcca gctctccgct ccatctcgct caagagcttc 1560
gaacacctct acttcttcca ctcgtggcc gaaggctcca tcagcggata catacgagag 1620
gcgctccgaa accacgcgcc tccgatcgac gtcaatgcca tgatgtaaag tgcgatacac 1680
gccctgccga tgtgagaaga actatggcta atagaagcga aactgaatac atctagggt 1740

ggacttaact tggactatc attaaagtat cacgcaaatt atgcgtatgc agaaagtcgc	1800
gtcgatcaa ctttttata aacgaattga gtttctaacg actgcaacac agcggagtt	1860
tgcttctgat agttttatt ctaatggta agatgctta cacggcatt attgacattc	1920
aagtgttaat ggaagttgac aacctgaca tttatatcac gttttaatt gtttaataa	1980
attaattaat cacaagtaag actaacatca acgtcacatc actaacgcca ttttagtata	2040
tttttcatgt caagaaactc attgtttga taaaatattt ttcttaattac tccagtgaac	2100
tcatccaaat gtgacccagt ttcccgcaga gttgcccgtg taaaatcatc ttttagggaca	2160
tatccccgc tatctcatga aattccaagg atcagtaggg gccaattccc ccgatgttt	2220
gggaggcaga attttcgata atctacgact attgttagcc tacgaattag ttgaatttt	2280
tgaaattatt ttattaaagt cgccacttc caaacacatc agcagggtat atgtcaatt	2340
ttgttaacgat aactctattc atttctgata tttatcgaaa ttttatctta cataacatgc	2400
tggctggtcc aggtgtttgg tagttacata tgtatctacg gtttggtaa aattatagct	2460
tttttattgt aatctgtata aaattgagtt atcttacttc acactacgat cgagtaaacc	2520
catcgtcagc tacgaaaaac taatcgata aggcttaaga gtaaataact aattgacaac	2580
cagcaacgag gaccacctca gtcctcgtgc ttacattgtg ccgtagctt atatgtgga	2640
agctgtcgac gttacgacat tagataaagt gcatgaatac caaaaatgtt ccattccgt	2700
ctgatctctc atgctctcgc tgcgtggac ccgtgtcgag tgcgttaagg actgactaat	2760
attttagact aggctgttat gcttcagtaa ttccttatac atattataag tcatccaaat	2820
aacgagtaag gcggcatgtt gagatcagca ttccgagagt caaagagccc ctaacgtac	2880
tgagaagtag agacaataca ctgatttctt gagatgaacg caaccgagat tgacactaaa	2940
aatctattta tggatttcaa aatggcgatg cttgattgtc tgcggcgtgg atagactgaa	3000
atgggtttgc ttaacactgg atattgttt tattatgttta tagtcttaca ttgcagttt	3060
gtaattcggt gctaataatcg accgggttgt taactatcta acgggtccca gtgtcaggca	3120
cacatcttc ccaagcagac aacgcaagag tgtacaaaat gtacatgtt caaaataagg	3180
aacattcgtc ggataagtgt aacagttgat aggtaaagaa aatggggccg cctctttatt	3240
attacgttagc cgtaaaatata ttaacgtatt tagtttagat gttcagctaa ttaggataat	3300
tctatttgc gagtacctag atgtccatag tgaattaata taataattag actgttacgc	3360
gtaggttaatt ataaagttt ccaaatactct cttcaaagca aaaactttgt acacttccgt	3420
actgagacgt cgtacgttat tctgattcac gaaatattt gatcacattt ttacaaggcg	3480
accgtcacgt agtataatgtat tatttacaaa tgacacgtat gtatcaatgc tataagtgtt	3540
ttcggttacat atgtcggtgc tttaacgtgc atttcgatgt gcagattaa aatagcaaga	3600
aatcttggaaa ttgtttttaga aaatatttga tttccttatt gaaagttatt tttaaatgtt	3660

aatatttcgt aatcataata attatgtatt gtgttagttat ttcacctta cggttggat	3720
attatTTAAT ggtggcctac gaaagtgatt ataaccatcc gcgtcctcaa aaaggccagt	3780
ttatTTTGT acctcataca tactaattac gtaagtaata tcaggcgaat ggTTgactaa	3840
caactaacca gtattaaaaa taaaagact tcgtccta ataaatgtat atctatgtat	3900
aaaaatgaaa aatctggcgt ataataggta aaattaaact agattgttaa tgaatgtgat	3960
gtctcataaa cgttagttt ttaatgagaa acatgttag tcgcctacta taagacgaga	4020
cggcaagctc accgagttaa ctcgtaaaca ggaatgttaaaaagatgac acaattata	4080
tttggtattt aaattatgac taaccatgcg ctctatcg TTGTTGGAT gcatagtatt	4140
gctgttggaa ataatggaa taggttaatta ctgcattaa GTGAAAACT tgatattatt	4200
ctatggggat gatgaattt tatgttgaa gtgtgcagc gttgtaaag atgattata	4260
atgatgttca ctaaatatct gactaaatgt aagttatTTT TTTTGATA GACATAGCTT	4320
taagatgaag gtgattaaac ttatcctta tcacaataaa aaaaaaaaaa aaaaa	4375

<210> 61
 <211> 472
 <212> PRT
 <213> Choristoneura fumiferana

<400> 61

Met Ser Ser Val Ala Lys Lys Asp Lys Pro Thr Met Ser Val Thr Ala
 1 5 10 15

Leu Ile Asn Trp Ala Arg Pro Ala Pro Pro Gly Pro Pro Gln Pro Gln
 20 25 30

Ser Ala Ser Pro Ala Pro Ala Ala Met Leu Gln Gln Leu Pro Thr Gln
 35 40 45

Ser Met Gln Ser Leu Asn His Ile Pro Thr Val Asp Cys Ser Leu Asp
 50 55 60

Met Gln Trp Leu Asn Leu Glu Pro Gly Phe Met Ser Pro Met Ser Pro
 65 70 75 80

Pro Glu Met Lys Pro Asp Thr Ala Met Leu Asp Gly Leu Arg Asp Asp
 85 90 95

Ala Thr Ser Pro Pro Asn Phe Lys Asn Tyr Pro Pro Asn His Pro Leu
 100 105 110

Ser Gly Ser Lys His Leu Cys Ser Ile Cys Gly Asp Arg Ala Ser Gly
 115 120 125

Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys
130 135 140

Arg Thr Val Arg Lys Asp Leu Ser Tyr Ala Cys Arg Glu Glu Arg Asn
145 150 155 160

Cys Ile Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr
165 170 175

Gln Lys Cys Leu Ala Cys Gly Met Lys Arg Glu Ala Val Gln Glu Glu
180 185 190

Arg Gln Arg Asn Ala Arg Gly Ala Glu Asp Ala His Pro Ser Ser Ser
195 200 205

Val Gln Val Ser Asp Glu Leu Ser Ile Glu Arg Leu Thr Glu Met Glu
210 215 220

Ser Leu Val Ala Asp Pro Ser Glu Glu Phe Gln Phe Leu Arg Val Gly
225 230 235 240

Pro Asp Ser Asn Val Pro Pro Arg Tyr Arg Ala Pro Val Ser Ser Leu
245 250 255

Cys Gln Ile Gly Asn Lys Gln Ile Ala Ala Leu Val Val Trp Ala Arg
260 265 270

Asp Ile Pro His Phe Gly Gln Leu Glu Leu Asp Asp Gln Val Val Leu
275 280 285

Ile Lys Ala Ser Trp Asn Glu Leu Leu Leu Phe Ala Ile Ala Trp Arg
290 295 300

Ser Met Glu Tyr Leu Glu Asp Glu Arg Glu Asn Gly Asp Gly Thr Arg
305 310 315 320

Ser Thr Thr Gln Pro Gln Leu Met Cys Leu Met Pro Gly Met Thr Leu
325 330 335

His Arg Asn Ser Ala Gln Gln Ala Gly Val Gly Ala Ile Phe Asp Arg
340 345 350

Val Leu Ser Glu Leu Ser Leu Lys Met Arg Thr Leu Arg Met Asp Gln
355 360 365

Ala Glu Tyr Val Ala Leu Lys Ala Ile Val Leu Leu Asn Pro Asp Val
370 375 380

Lys Gly Leu Lys Asn Arg Gln Glu Val Asp Val Leu Arg Glu Lys Met
385 390 395 400

Phe Ser Cys Leu Asp Asp Tyr Cys Arg Arg Ser Arg Ser Asn Glu Glu
405 410 415

Gly Arg Phe Ala Ser Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile
420 425 430

Ser Leu Lys Ser Phe Glu His Leu Tyr Phe Phe His Leu Val Ala Glu
435 440 445

Gly Ser Ile Ser Gly Tyr Ile Arg Glu Ala Leu Arg Asn His Ala Pro
450 455 460

Pro Ile Asp Val Asn Ala Met Met
465 470

<210> 62
<211> 1404
<212> DNA
<213> Mus musculus

<400> 62
atggacacca aacatttcct gccgctcgac ttctctaccc aggtgaactc ttcgtccctc 60
aactctccaa cgggtcgagg ctccatggct gtcccctcgc tgcacccctc cttgggtccg 120
ggaatcggt ctccactggg ctcgcctggg cagctgcact ctcctatcag caccctgagc 180
tccccatca atggcatggg tccgccttc tctgtcatca gctccccat gggccgcac 240
tccatgtcgg tacccaccac acccacattg ggcttcggga ctggtagccc ccagctcaat 300
tcacccatga accctgtgag cagcactgag gatatcaagc cgccactagg cctcaatggc 360
gtcctcaagg ttccctgccc tccctcagga aatatggcct cttcaccaa gcacatctgt 420
gctatctgtg gggaccgctc ctcaggcaaa cactatgggg tatacagtt tgagggctgc 480
aagggcttct tcaagaggac agtacgcaaa gacctgacct acacctgccc agacaacaag 540
gactgcctga tcgacaagag acagcggAAC cggtgtcagt actgccgcta ccagaagtgc 600
ctggccatgg gcatgaagcg ggaagctgtg caggaggagc ggcagcgggg caaggaccgg 660
aatgagaacg aggtggagtc caccagcagt gccaacgagg acatgcctgt agagaagatt 720
ctggaagccg agcttgctgt cgagcccaag actgagacat acgtggaggc aaacatgggg 780
ctgaacccca gctcaccaaa tgaccctgtt accaacatct gtcaagcagc agacaagcag 840
ctcttcactc ttgtggagtg ggccaagagg atcccacact tttctgagct gcccctagac 900
gaccaggta tcctgctacg ggcaggctgg aacgagctgc tgatgcctc cttctccac 960
cgctccatag ctgtgaaaga tggattctc ctggccacccg gcctgcacgt acaccggAAC 1020

agcgctcaca gtgctgggt gggccatc tttgacaggg tgctaacaga gctggtgtct 1080
aagatgcgtg acatgcagat ggacaagacg gagctggct gcctgcgagc cattgtcctg 1140
ttcaaccctg actctaaaggc gctctcaaac cctgctgagg tggaggcggtt gagggagaag 1200
gtgtatgcgt cactagaagc gtactgaaa cacaagtacc ctgagcagcc gggcaggttt 1260
gccaagctgc tgctccgcct gcctgcactg cgttccatcg ggctcaagtg cctggagcac 1320
ctgtttcttc tcaagctcat cggggacacg cccatcgaca ctttcctcat ggagatgctg 1380
gaggcaccac atcaagccac ctag 1404

<210> 63
<211> 467
<212> PRT
<213> Mus musculus

<400> 63

Met Asp Thr Lys His Phe Leu Pro Leu Asp Phe Ser Thr Gln Val Asn
1 5 10 15

Ser Ser Ser Leu Asn Ser Pro Thr Gly Arg Gly Ser Met Ala Val Pro
20 25 30

Ser Leu His Pro Ser Leu Gly Pro Gly Ile Gly Ser Pro Leu Gly Ser
35 40 45

Pro Gly Gln Leu His Ser Pro Ile Ser Thr Leu Ser Ser Pro Ile Asn
50 55 60

Gly Met Gly Pro Pro Phe Ser Val Ile Ser Ser Pro Met Gly Pro His
65 70 75 80

Ser Met Ser Val Pro Thr Thr Pro Thr Leu Gly Phe Gly Thr Gly Ser
85 90 95

Pro Gln Leu Asn Ser Pro Met Asn Pro Val Ser Ser Thr Glu Asp Ile
100 105 110

Lys Pro Pro Leu Gly Leu Asn Gly Val Leu Lys Val Pro Ala His Pro
115 120 125

Ser Gly Asn Met Ala Ser Phe Thr Lys His Ile Cys Ala Ile Cys Gly
130 135 140

Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys
145 150 155 160

Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp Leu Thr Tyr Thr Cys
165 170 175

Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys
180 185 190

Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Met Gly Met Lys Arg Glu
195 200 205

Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn Glu Asn Glu
210 215 220

Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val Glu Lys Ile
225 230 235 240

Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr Tyr Val Glu
245 250 255

Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn
260 265 270

Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala
275 280 285

Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile
290 295 300

Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His
305 310 315 320

Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His
325 330 335

Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp
340 345 350

Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp
355 360 365

Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp
370 375 380

Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys
385 390 395 400

Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln
405 410 415

Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser
420 425 430

Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly
435 440 445

Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His
450 455 460

Gln Ala Thr
465

<210> 64
<211> 309
<212> DNA
<213> Simian virus 40

<400> 64
ggtgtgaaa gtccccaggc tccccagcag gcagaagtat gcaaagcatg catctcaatt 60
agtcaagcaac caggtgtgaa aagtccccag gctccccagc aggcagaagt atgcaaagca 120
tgcatctcaa ttagtcagca accatagtcc cgcccctaac tccgcccatac ccgccccaa 180
ctccgcccag ttccgccccat tctccgcccc atggctgact aattttttt atttatgcag 240
aggccgaggc cgccctcgcc tctgagctat tccagaagta gtgaggaggc tttttggag 300
gccttaggct 309

<210> 65
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Synthetic E1B minimal promoter

<400> 65
tatataatgg atccccgggt accg 24

<210> 66
<211> 1653
<212> DNA
<213> Photinus pyralis

<400> 66
atggaagacg caaaaaacat aaagaaaggc ccggcgccat tctatcctct agaggatgga 60
accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120
gctttacag atgcacatat cgaggtgaac atcacgtacg cgaaatactt cgaaatgtcc 180
gttcgggtgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240
tgcaagtggaaa actctcttca attctttatg ccgggtgtgg gcgcgttatt tatcggagtt 300
gcagttgcgc ccgcgaacga cattataat gaacgtgaat tgctcaacag tatgaacatt 360
tcgcagccctaa ccgttagtgg tggttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420

aaaaaaattac	caataatcca	gaaaattatt	atcatggatt	ctaaaacgga	ttaccaggga	480
tttcagtcga	tgtacacgtt	cgtcacatct	catctacctc	ccggtttaa	tgaatacgat	540
tttgtaccag	agtcctttg	tcgtgacaaa	acaattgcac	tgataatgaa	ttcctctgga	600
tctactgggt	tacctaaggg	tgtggccctt	ccgcatagaa	ctgcctgcgt	cagattctcg	660
catgccagag	atcctatttt	tggcaatcaa	atcattccgg	atactgcgt	tttaagtgtt	720
gttccattcc	atcacggttt	tggaatgttt	actacactcg	gatatttgat	atgtggattt	780
cgagtcgtct	taatgtata	atttgaagaa	gagctgtttt	tacgatccct	tcaggattac	840
aaaattcaaa	gtgcgttgct	agtaccaacc	ctattttcat	tcttcgccaa	aagcactctg	900
attgacaat	acgatttatac	taatttacac	gaaattgctt	ctggggcgc	acctcttcg	960
aaagaagtcg	gffaagcggt	tgcaaaacgc	ttccatctc	cagggatacg	acaaggatat	1020
gggctca	ctg	agactacatc	agctattctg	attacacccg	agggggatga	1080
gcggtcggt	aagttgttcc	atttttgaa	gcgaagggtt	tggatctgga	taccggaaa	1140
acgctggcg	ttaatcagag	aggcgaatta	tgtgtcagag	gacctatgtat	tatgtccggt	1200
tatgtaaaca	atccggaagc	gaccaacgccc	ttgattgaca	aggatggatg	gctacattct	1260
ggagacatag	cttactggg	cgaagacgaa	cacttctca	tagttgaccg	cttgaagtct	1320
ttaattaaat	acaaaggata	tcaggtggcc	cccgctgaat	tggaatcgat	attgttacaa	1380
caccccaaca	tcttcgacgc	gggcgtggca	ggtcttcccg	acgatgacgc	cggtaactt	1440
cccgccgccc	tttgtgtttt	ggagcacgga	aagacgatga	cggaaaaaaga	gatcgtggat	1500
tacgtcgcca	gtcaagtaac	aaccgcgaaa	aagttgcgcg	gaggagttgt	gtttgtggac	1560
gaagtaccga	aaggctttac	cggaaaactc	gacgcaagaa	aaatcagaga	gatcctcata	1620
aaggccaaga	aggcgaaaa	gtccaaattt	taa			1653

<210> 67
 <211> 867
 <212> DNA
 <213> Choristoneura fumiferana

<400> 67	aagcgagagg	cggtgcaaga	ggagcgccag	aggaatgctc	gcggcgccga	ggatgcgcac	60
	ccgagtagct	cggtaggt	aagcgatgag	ctgtcaatcg	agcgccta	ac ggagatggag	120
	tcttttgtgg	cagatcccag	cgaggagttc	cagttcctcc	gcgtggggcc	tgacagcaac	180
	gtgcctccac	gttaccgcgc	gcccgtctcc	tccctctgcc	aaataggcaa	caagcaaata	240
	gcggcggtgg	tggtatgggc	gcgcgacatc	cctcatttcg	ggcagctgga	gctggacgat	300
	caagtggta	tcatcaaggc	ctcctggaat	gagctgctac	tcttcgccat	cgcctggcgc	360
	tctatggagt	atttggaa	tgagagggag	aacggggacg	gaacgcggag	caccactcag	420

ccacaactga tgtgtctcat gcctggcatg acgttgacc gcaactcgcc gcagcaggcg 480
ggcgtggcg ccatcttcga ccgcgtgctg tccgagctca gtctgaagat gcgcacctt 540
cgcattggacc aggccgagta cgtcgcgctc aaagccatcg tgctgctcaa ccctgatgtg 600
aaaggactga agaatcggca agaagttgac gtttgcgag aaaaaatgtt ctctgcctg 660
gacgactact gccggcggtc gcgaagcaac gaggaaggcc gggttgcgtc cttgctgctg 720
cggtgccag ctctccgctc catctcgctc aagagcttcg aacacctcta cttcttccac 780
ctcgtggccg aaggctccat cagcggatac atacgagagg cgctccgaaa ccacgcgcct 840
ccgatcgacg tcaatgccat gatgtaa 867

<210> 68
<211> 619
<212> DNA
<213> Cytomegalovirus

<400> 68
cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 60
gacgtcaata atgacgtatg ttcccatagt aacgccaata gggacttcc attgacgtca 120
atgggtggag tatttacggt aaactgccc cttggcagta catcaagtgt atcatatgcc 180
aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 240
catgacccta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac 300
catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggttg actcacggg 360
atttccaagt ctccacccca ttgacgtcaa tggagtttgc 420
ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg gtaggcgtgt 480
acggtggag gtcttatataa gcagagctcg ttttgtaaac cgtcagatcg cctggagacg 540
ccatccacgc tggggacc tccatagaag acaccgggac cgatccagcc tccgcggccg 600
ggaacgggtgc attggAACG 619

<210> 69
<211> 262
<212> DNA
<213> Rous sarcoma virus

<400> 69
atgttagtctt atgcaatact cttgtgtct tgcaacatgg taacgatgag ttagcaacat 60
gccttacaag gagagaaaaa gcaccgtgca tgccgatagg tggaaagtaag gtggtagat 120
cgtgccttat taggaaggca acagacgggt ctgacatgga ttggacgaac cactgaattc 180
cgcattgcag agatattgtt ttttgttgc tagctcgata caataaacgc catttgcacca 240
ttcaccacat tggagtgcac ct 262

<210> 70

<211> 1247
<212> DNA
<213> Choristoneura fumiferana

<400> 70
tctatttcct caggccgtga ggaactgtcg ccagcttcaa gtataaatgg gtgcagtaca 60
gatggcgagg cacgacgtca gaagaaggc cctgcgcccc gtcagcaaga ggaactgtgt 120
ctggtatgcg gggacagagc ctccggatac cactacaatg cgctcacgtg tgaagggtgt 180
aaagggttct tcagacggag tgttacaaa aatgcggttt atattttaa attcggtcac 240
gcttgcaaa tggacatgta catgcacgg aaatgccagg agtgcgcct gaagaagtgc 300
ttagctgtag gcatgaggcc tgagtgcgt a t a t c a t t g t a a t t c g g t a c 360
aaagagaaga a a g c a c a g a a a g g a a g g a c a a a t g c c t g t a c g a c g a c 420
gaccacatgc c g c c c a t t a t g c a g t g t g a a c t c c a c c t c t g a a g c a g c a g c a c 480
g a a g t g g t c c a a g g t t c t c t c a c a a g c t g t g g a g a a a c c g g c a g a a a c a t c 540
c c c c a g t t g a a c c a a c c a a g t t c t t a t c g c c a g g a c c t g a a g c g g a c 600
t a c g a g c a g c c t t c t g a t g a a g a t t g a a g a g a t t a c g a c g a c a g c g g a c 660
g a t g a a a a c g a a g a g t c t g a a c t c c c t t c g c a g a t c a t c c t c a c g 720
g t c c a a c t t a a c t c g t g a g t t c g c a a g g g a t t c g c a a g a t c t c g c c t 780
g a t c a a a t t a a c t c g t t a a g g t t g c t c a g g t a a g g t t g c t c g c a g c g a 840
c g a t a c g a t g c g c c t c a g t g t t c t g c g a a c a a c a g c t a a c t c g c g a c 900
a a c t a c c g c a a g g t t g c a g g a t t c g c a c t c g c g a c 960
a t g t a c t c t a a t c g c g t t g c a g g a t t c g c a c t c g c g a c 1020
t c t g a c c g g c a g g g t t g c a g g a t t c g c a c t c g c g a c 1080
a a t a c g c t c c a c t c g c a c t c g c g g g t t c g c g c t t c g c t c a t a 1140
t a c g g c a a g a t t c t c t g a a t c g c a c g c t a c g c a c g c t a c g c a a a c t c c a a c 1200
a t g t g c a t c t c c c t c a a g c t a a g a a c a g a a g g t c c g c c t t t c c t 1247

<210> 71
<211> 440
<212> PRT
<213> Choristoneura fumiferana

<400> 71

Ser Ile Ser Ser Gly Arg Glu Glu Leu Ser Pro Ala Ser Ser Ile Asn
1 5 10 15

Gly Cys Ser Thr Asp Gly Glu Ala Arg Arg Gln Lys Lys Gly Pro Ala
20 25 30

Pro Arg Gln Gln Glu Glu Leu Cys Leu Val Cys Gly Asp Arg Ala Ser
Page 65

35

40

45

Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe
50 55 60

Arg Arg Ser Val Thr Lys Asn Ala Val Tyr Ile Cys Lys Phe Gly His
65 70 75 80

Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys Gln Glu Cys Arg
85 90 95

Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu Cys Val Val Pro
100 105 110

Glu Thr Gln Cys Ala Met Lys Arg Lys Glu Lys Lys Ala Gln Lys Glu
115 120 125

Lys Asp Lys Leu Pro Val Ser Thr Thr Thr Val Asp Asp His Met Pro
130 135 140

Pro Ile Met Gln Cys Glu Pro Pro Pro Pro Glu Ala Ala Arg Ile His
145 150 155 160

Glu Val Val Pro Arg Phe Leu Ser Asp Lys Leu Leu Glu Thr Asn Arg
165 170 175

Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn Gln Gln Phe Leu Ile Ala
180 185 190

Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Asp Glu Asp
195 200 205

Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp Asp Glu Asn Glu
210 215 220

Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr Glu Met Thr Ile Leu Thr
225 230 235 240

Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro Gly Phe Ala Lys
245 250 255

Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu
260 265 270

Val Met Met Leu Arg Val Ala Arg Arg Tyr Asp Ala Ala Ser Asp Ser
275 280 285

Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arg Asp Asn Tyr Arg Lys
Page 66

290

295

300

Ala Gly Met Ala Tyr Val Ile Glu Asp Leu Leu His Phe Cys Arg Cys
305 310 315 320

Met Tyr Ser Met Ala Leu Asp Asn Ile His Tyr Ala Leu Leu Thr Ala
325 330 335

Val Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Gln Pro Gln Leu Val
340 345 350

Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg Ile Tyr Ile Leu
355 360 365

Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile Tyr Gly Lys Ile
370 375 380

Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met Gln Asn Ser Asn
385 390 395 400

Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Pro Phe Leu
405 410 415

Glu Glu Ile Trp Asp Val Ala Asp Met Ser His Thr Gln Pro Pro Pro
420 425 430

Ile Leu Glu Ser Pro Thr Asn Leu
435 440

<210> 72

<211> 943

<212> DNA

<213> Renilla

<400> 72

atgacttcga aagtttatga tccagaacaa aggaaacgga tgataactgg tccgcagtgg 60

tgggccagat gtaaacaaat gaatgttctt gattcattta ttaattatta tgattcagaa 120

aaacatgcag aaaatgctgt tatttttta catggtaacg cggcctttc ttatattgg 180

cgacatgttgc tgccacatat tgagccagta gcgccgtgta ttataccaga ccttattgg 240

atgggcaaatt caggcaaattc tggtaatggt tcttataagggt tacttgatca ttacaaatatt 300

cttactgcat ggtttgaact tcttaattta ccaaagaaga tcattttgt cgccatgat 360

tggggtgctt gtttggcatt tcattatagc tatgagcatc aagataagat caaagcaata 420

gttcacgctg aaagtgttagt agatgtgatt gaatcatggg atgaatggcc tgatattgaa 480

gaagatatttgcgttgcata atctgaagaa ggagaaaaaaa tggtttgaa gaataacttc 540

ttcgtggaaa ccatgttgcc atcaaaaatc atgagaaagt tagaaccaga agaatttgca 600

gcatatctt aaccattcaa agagaaaggtaa gaagttcgtc gtccaacatt atcatggcct 660
cgtgaaatcc cgttagtaaa aggtggtaaa cctgacgtt tacaaattgt taggaattat 720
aatgcttatac tacgtgcaag tgatgattt caaaaatgt ttattgaatc ggaccaggaa 780
ttctttcca atgctattgt tgaaggtgcc aagaaggttc ctaatactga atttgtcaaa 840
gtaaaaggtc ttcattttc gcaagaagat gcacctgatg aaatggaaa atatatcaaa 900
tcgttcgtt agcgagttct caaaaatgaa caataattct aga 943

<210> 73
<211> 530
<212> DNA
<213> *Saccharomyces cerevisiae*

<400> 73
ccccattatc ttagcctaaa aaaaccttct ctttggact ttcagtaata cgcttaactg 60
ctcattgcta tattgaagta cgatttagaa gccggccgagc gggtgacagc cctccgaagg 120
aagactctcc tccgtgcgtc ctcgtttca ccggtcgcgt tcctgaaacg cagatgtgcc 180
tcgcgcgca ctgctccgaa caataaaagat tctacaatac tagctttat ggttatgaag 240
aggaaaaatt ggcagtaacc tggcccaca aacttcaaa tgaacgaatc aaattaacaa 300
ccataggatg ataatgcgtat tagttttta gccttatttc tgggttaatt aatcagcgaa 360
gcgatgattt ttgatctatt aacagatata taaatgcaaa aactgcataa ccactttaac 420
taatacttca aacatttcg gtttgttata cttcttattc aaatgtaata aaagtatcaa 480
caaaaaattt ttaatatacc tctatacttt aacgtcaagg aggaattaag 530

<210> 74
<211> 3157
<212> DNA
<213> *Escherichia coli*

<400> 74
atggggggtt ctcatcatca tcatacatcat ggtatggcta gcatgactgg tggacagcaa 60
atgggtcggtt atctgtacga cgatgacgat aaggtaccta aggatcagct tggagttgat 120
cccgtcgttt tacaacgtcg tgactggaa aaccctggcg ttacccaact taatcgccct 180
gcagcacatc ccccttcgc cagctggcgtaatagcgaag aggccgcac cgatgcgcct 240
tcccaacagt tgcgcagcct gaatggcgaa tggcgctttg cctggttcc ggcaccagaa 300
gcggtgccgg aaagctggct ggagtgcgtat cttcctgagg ccgatactgt cgtcgtcccc 360
tcaaactggc agatgcacgg ttacgatgcg cccatctaca ccaacgtaac ctatcccatt 420
acggtaatc cgccgtttgt tcccacggag aatccgacgg gttgttactc gctcacattt 480
aatgttcatg aaagctggct acaggaaggc cagacgcgaa ttatgttga tggcgtaac 540
tcggcggttc atctgtggtg caacggcgcc tgggtcggtt acggccagga cagtcgtttg 600

ccgtctgaat ttgacacctgag cgcatttta cgcgccggag aaaaccgcct cgcggtgatg 660
gtgctgcgtt ggagtgacgg cagttatctg gaagatcagg atatgtggcg gatgagcggc 720
atttccgtg acgtctcggt gctgcataaa ccgactacac aaatcagcga tttccatgtt 780
gccactcgct ttaatgatga tttcagccgc gctgtactgg aggctgaagt tcagatgtgc 840
ggcgagttgc gtgactacct acggtaaca gtttctttat ggcagggtga aacgcaggtc 900
gccagcggca ccgcgcctt cggcggtgaa attatcgatg agcgtggtgg ttatgcccgtat 960
cgcgtcacac tacgtctgaa cgtcgaaaac ccgaaactgt ggagcgcga aatcccgaat 1020
ctctatcggt cggtggttga actgcacacc gccgacggca cgctgattga agcagaagcc 1080
tgcgatgtcg gttccgcga ggtgcggatt gaaaatggtc tgctgctgct gaacggcaag 1140
ccgttgctga ttcgaggcgt taaccgtcac gagcatcatc ctctgcatgg tcaggtcatg 1200
gatgagcaga cgatggtgca ggatatcctg ctgatgaagc agaacaactt taacgcgtg 1260
cgctgttcgc attatccgaa ccatccgctg tggcacacgc tgtgcgaccg ctacggcctg 1320
tatgtggtgg atgaagccaa tattgaaacc cacggcatgg tgccaatgaa tcgtctgacc 1380
gatgatccgc gctggctacc ggcgatgagc gaacgcgtaa cgcgaatggc gcagcgcgtat 1440
cgtaatcacc cgagtgtgat catctggtcg ctggggatg aatcaggcca cggcgtataat 1500
cacgacgcgc tgtatcgctg gatcaaattt gtcgatcctt cccgccccgt gcagtatgaa 1560
ggcggcggag ccgacaccac ggccaccgat attatttgcg cgtatgcgc gcgcgtggat 1620
gaagaccagc cttcccgcc tgtgcgaaa tggccatca aaaaatggct ttcgctaccc 1680
ggagagacgc gcccgcgtat ctttgcgaa tacgcccacg cgtatggtaa cagtcttggc 1740
ggtttcgcta aatactggca ggcgtttcgt cagtatcccc gtttacaggg cggcttcgtc 1800
tgggactggg tggatcagtc gctgattaaa tatgtgaaa acggcaaccc gtggtcggct 1860
tacggcggtg attttggcga tacgccgaac gatgcgcgt tctgtatgaa cggtctggc 1920
tttgcgcacc gcacgcccga tccagcgctg acggaagcaa aacaccagca gcagttttc 1980
cagttccgtt tatccgggca aaccatcgaa gtgaccagcg aatacctgtt ccgtcatagc 2040
gataacgagc tcctgcactg gatggggcg ctggatggta agccgcgtgc aagcggtgaa 2100
gtgcctctgg atgtcgctcc acaaggtaaa cagttgattt aactgcctga actaccgcag 2160
ccggagagcg ccggcaact ctggctcaca gtacgcgttag tgcaaccgaa cgcgaccgca 2220
tggtcagaag ccgggcacat cagcgcctgg cagcagtggc gtctggcgaa aaacctcagt 2280
gtgacgcgtcc ccgcgcgtc ccacgccatc ccgcgtatc ccaccagcga aatggatttt 2340
tgcatcgagc tggtaataa gcgttggcaa ttaaccgcc agtcaggctt tctttcacag 2400
atgtggattt gcgataaaaaa acaactgctg acgcccgtgc gcgatcagtt caccctgtca 2460
ccgctggata acgacattgg cgtaagtgaa gcgaccgcga ttgaccctaa cgcctgggtc 2520

gaacgctgga aggccggcggg ccattaccag gccgaagcag cgtttgtca gtgcacggca 2580
gatacacttg ctgatgcggt gctgattacg accgctcacg cgtggcagca tcagggaaa 2640
accttattta tcagccggaa aacctaccgg attgatggta gtggtcaa at ggcgattacc 2700
gtttagttt aagtggcgag cgatacaccg catccggcgc ggattggcct gaactgccag 2760
ctggcgccagg tagcagagcg ggttaactgg ctcggattag ggccgcaaga aaactatccc 2820
gaccgccta ctgcccctg ttttgcgc tggatctgc cattgtcaga catgtataacc 2880
ccgtacgtct tcccggcga aaacggtctg cgctgcggga cgccgcaatt gaattatggc 2940
ccacaccagt ggcgcggcga cttccagttc aacatcagcc gctacagtca acagcaactg 3000
atggaaacca gccatcgcca tctgctgcac gcggagaag gcacatggct gaatatcgac 3060
ggtttccata tggggattgg tggcgacgac tcctggagcc cgtcagtatc ggcggaatta 3120
cagctgagcg ccggtcgcta ccattaccag ttggtct 3157

<210> 75
<211> 185
<212> DNA
<213> Escherichia coli

<400> 75
gtccaggtcc atatctaatic ttacctcgac tgctgtatataaaaaccagggt gtttatatgtatc
cagtaactgct gtatataaaaa ccagtggta tatgtacagt acgtcgactg ctgtatataaa
aaccagggt tatatgtaca gtactgctgt atataaaacc agtggttata tgtacagtac
gtcga 185

<210> 76
<211> 17
<212> DNA
<213> Artificial

<220>
<223> DNA sequence for response element

<220>
<221> misc_feature
<222> (9)..(9)
<223> n is a, c, g, or t

<400> 76
rrggttcant gacacyy 17

<210> 77
<211> 13
<212> DNA
<213> Artificial

<220>
<223> DNA sequence for response element

<220>
<221> misc_feature
<222> (7)..(7)
<223> n is a, c, g, or t

<400> 77
aggtcnagg tca

13

<210> 78
<211> 15
<212> DNA
<213> Artificial

<220>
<223> DNA sequence for response element

<400> 78
gggttgaatg aattt

15