Noyaux de formes linéaires

Notations

Soit E un espace vectoriel et $n \in \mathbb{N}^*$.

• $Si \mathscr{F} = (x_1, \dots, x_n) \in E^n$ est une famille de E, on note

$$\operatorname{CL}_{\mathscr{F}}: \left\{ \begin{array}{c} \mathbb{K}^n \longrightarrow E \\ (\lambda_1, \dots, \lambda_n) \longmapsto \sum_{i=1}^n \lambda_i x_i \end{array} \right.$$

• Quand \mathscr{B} est une base de E, on peut prouver que $\operatorname{CL}_{\mathscr{B}}$ est inversible. On note alors $\operatorname{Coords}_{\mathscr{B}}$ sa réciproque. On a

$$Coords_{\mathscr{B}}: E \longrightarrow \mathbb{K}^n.$$

Introduction

Soit E un espace vectoriel de dimension finie. On rappelle qu'on note $E^* := L(E, \mathbb{K})$. L'espace E^* est aussi appelé espace dual de E.

Le but de ce problème est de montrer que

$$\dim\left(\bigcap_{i=1}^{p} \operatorname{Ker} \varphi_{i}\right) = \dim E - \dim \operatorname{Vect}(\varphi_{1}, \varphi_{2}, \dots, \varphi_{p}).$$

- 1. Combien vaut $\dim E^*$, en fonction de $\dim E$?
- **2.** Soient $p, q \in \mathbb{N}^*$ et soient $(\varphi_i)_i \in (E^*)^p$, $(\psi_j)_j \in (E^*)^q$ telles que

$$\operatorname{Vect}(\varphi_1, \varphi_2, \dots, \varphi_p) = \operatorname{Vect}(\psi_1, \psi_2, \dots, \psi_q).$$

Montrer que

$$\bigcap_{i=1}^{p} \operatorname{Ker} \varphi_{i} = \bigcap_{j=1}^{q} \operatorname{Ker} \psi_{j}.$$

3. Notons $n := \dim E$. Dans la suite, pour $i \in [1, n]$, on note p_i l'application

$$p_i: \left\{ \begin{array}{c} \mathbb{K}^n \longrightarrow \mathbb{K} \\ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto x_i \end{array} \right.$$

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E.

- a) Montrer que $p_i \circ \text{Coords}_{\mathscr{B}} \in E^*$.
- b) Décrivez plus précisément cette forme linéaire.
- c) On note $e_i^* := p_i \circ \text{Coords}_{\mathscr{B}}$. Montrer que (e_1^*, \dots, e_n^*) est une base de E^* .

Définition

La base (e_1^*, \ldots, e_n^*) de E^* est appelée base duale de (e_1, \ldots, e_n) .

Noyaux de formes linéaires 1/2

4. Soit $\mathscr{F} := (\varphi_1, \varphi_2, \dots, \varphi_n) \in (E^*)^n$. On note

$$\Phi_{\mathscr{F}}: \left\{ \begin{array}{c} E \longrightarrow \mathbb{K}^n \\ \varphi_1(x) \\ \varphi_2(x) \\ \vdots \\ \varphi_n(x) \end{array} \right. .$$

- a) On suppose que \mathscr{F} est une base de E^* . Montrer que $\Phi_{\mathscr{F}}$ est un isomorphisme.
- b) On suppose que ${\mathscr F}$ n'est pas une base. Montrer que $\Phi_{\mathscr F}$ n'est pas un isomorphisme.
- 5. On considère l'application

$$\Psi: \left\{ \begin{array}{ll} E^n \longrightarrow {\rm L}(\mathbb{K}^n, E) \\ \mathscr{F} \longmapsto {\rm CL}_{\mathscr{F}} \end{array} \right. .$$

- a) Montrer que Ψ est linéaire.
- b) Montrer que Ψ est un isomorphisme.
- **6.** Soit $\mathscr{F} := (\varphi_1, \varphi_2, \dots, \varphi_n)$ une base de E^* .
 - a) Montrer qu'il existe une base \mathscr{B} de E telle que $\Phi_{\mathscr{F}}=\operatorname{Coords}_{\mathscr{B}}$.
 - b) Montrer que cette base $\mathcal B$ est unique.
- 7. Soit $p \in \mathbb{N}^*$ et soient $\varphi_1, \ldots, \varphi_p \in E^*$.

Montrer que

$$\dim\left(\bigcap_{i=1}^{p} \operatorname{Ker} \varphi_{i}\right) = \dim E - \dim \operatorname{Vect} (\varphi_{1}, \varphi_{2}, \dots, \varphi_{p}).$$