

GeneLab Standard Operating Procedure: Sequencing Library Quantification using QIAseq Library Quant Assay

October 2021

Version 1.0

Document Revisions

Document Number	Revision Number	Date	Description of Changes
GL-SOP-6.7	1.0	October 2021	Original document

Scope and Purpose

This procedure follows the <u>QIAseq Library Quant Assay Handbook</u> to quantitate Next Generation Sequencing libraries. It is strongly advised to read this document in full before using the SOP.

Equipment

- 1. Eppendorf Centrifuge 5804 (Eppendorf Cat # 022622501 or similar)
- 2. Bench top microcentrifuge to accommodate 1.5mL tubes (Thermo Scientific Cat #75004081 or similar)
- 3. DNA LoBind Microcentrifuge Tubes 1.5mL (Thermo Scientific, Cat #13-698-791 or similar)
- 4. QuantStudio[™] 6 Flex Real-Time PCR System (Thermo Fisher Cat # 4485697 or similar)
- MicroAmp™ EnduraPlate™ Optical 96-well fast clear reaction plates (Thermo Fisher Cat # A36930 or similar)
- 6. MicroAmp Optical Adhesive Film, 100 covers (Fisher Scientific Cat # 43-119-71 or similar)

Reagents

1. QIAseq Library Quant Assay Kit (Cat # 333314)

General Practices and Notes

- 1. Carefully read the QIAseq Library Quant Assay Handbook before proceeding with this SOP.
- 2. Physically separate the workspace for PCR setup and post-PCR work.
- 3. Before setting up an experiment, decontaminate the PCR workspace and labware (pipet barrels, tube racks, etc.) with 10% bleach and UV light. A PCR workstation is the preferred method for setting up qPCR reactions.
- 4. Make sure to open tubes containing PCR product in an area physically separated from the PCR setup. Close all tubes containing PCR products as soon as possible after use.

- 5. Do not vortex reactions or reagents unless instructed to do so.
- 6. Remove enzymes from -20°C freezer only when ready for use and immediately place them back in a -20°C freezer when finished.
- 7. For accuracy and precision, ensure that micro pipettors are calibrated before beginning the protocol. Be sure not to introduce bubbles into the wells when pipetting.
- 8. **Do not use DEPC-treated water.** Use high-quality, nuclease-free water.
- 9. If precipitates are present in the master mix tubes, warm the reagents at 42°C for 1 min and vortex briefly to dissolve. Repeat if necessary.
- 10. Refer to the <u>QIAseq Library Quant Assay Handbook</u> for ordering the appropriate configuration of the assay kit.

Procedure

- 1. Thaw Illumina DNA Standard on ice.
- 2. Prepare five sequential 10-fold dilutions from Illumina DNA Standard in dilution buffer using PCR tubes or strips as described in Table 1 below.

Note: Keep all components on ice and pipette mix the RNase Inhibitor and EZ Reverse Transcriptase. All other components can be vortexed.

Table 1: Illumina DNA Standard dilution.

Component	Illumina DNA Standard	Dilution buffer vol (uL)
Std 1	5 uL undiluted	45
Std 2	5 uL Std 1	45
Std 3	5 uL Std 2	45
Std 4	5 uL Std 3	45
Std 5	5 uL Std 4	45

- 3. Prepare a starting 1:20 dilution of the sample library in dilution buffer (1 uL of sample library + 19 uL dilution buffer). Pipette up and down 12 times to mix.
- 4. Prepare two working dilutions of the sample library, Dilution 1 and Dilution 2, as indicated in Table 2.

Note: Always use freshly made dilutions.

Table 2: Sample library dilution

Dilution	Library	Dilution buffer	
Dilution 1 (1:2000)	2 uL 1:20	198 uL	
Dilution 2 (1:20000)	5 uL 1:2000	45 uL	

5. Briefly centrifuge the SYBR Green Mastermix (10–15 s) to bring the contents to the bottom of the tube.

Note: Because SYBR Green Mastermix contains HotStarTaq® DNA Polymerase, which is heat-activated, reactions can be prepared at room temperature (15–25°C).

6. Make PCR reaction master mix according to **Table 3**. Scale up according to the number of reactions. Add 10% overage to ensure enough mastermix for all samples. Pipette up and down 10 times to mix.

Table 3: Setup of qPCR mastermix.

Component	Volume (uL for 1X reaction)
Nuclease free water	8.5
SYBR Green Mastermix	12.5
Primer mix (10 uM)	1

- 7. Aliquot bulk mastermix, distributing the entire mastermix into a single strip of PCR tubes.
- 8. Add 3 uL of template (standard, dilution 1 sample, dilution 2 sample) and NTC to a 96 well plate designed for your Real-Time PCR System as shown in Figure 1.

Note: Add each template and NTC in triplicate.

Well	1	2	3	4	5	6	7	8	9	10	11	12
Α	Standard 1	Standard 1	Standard 1	Sample2 dilution 1	Sample2 dilution 1	Sample2 dilution 1	Sample6 dilution 1	Sample6 dilution 1	Sample6 dilution 1	Sample10 dilution 1	Sample10 dilution 1	Sample10 dilution 1
В	Standard 2	Standard 2	Standard 2	Sample2 dilution 2	Sample2 dilution 2	Sample2 dilution 2	Sample6 dilution 2	Sample6 dilution 2	Sample6 dilution 2	Sample10 dilution 2	Sample10 dilution 2	Sample10 dilution 2
С	Standard 3	Standard 3	Standard 3	Sample3 dilution 1	Sample3 dilution 1	Sample3 dilution 1	Sample7 dilution 1	Sample7 dilution 1	Sample7 dilution 1	Sample11 dilution 1	Sample11 dilution 1	Sample11 dilution 1
D	Standard 4	Standard 4	Standard 4	Sample3 dilution 2	Sample3 dilution 2	Sample3 dilution 2	Sample7 dilution 2	Sample7 dilution 2	Sample7 dilution 2	Sample11 dilution 2	Sample11 dilution 2	Sample11 dilution 2
E	Standard 5	Standard 5	Standard 5	Sample4 dilution 1	Sample4 dilution 1	Sample4 dilution 1	Sample8 dilution 1	Sample8 dilution 1	Sample8 dilution 1	Sample12 dilution 1	Sample12 dilution 1	Sample12 dilution 1
F	NTC	NTC	NTC	Sample4 dilution 2	Sample4 dilution 2	Sample4 dilution 2	Sample8 dilution 2	Sample8 dilution 2	Sample8 dilution 2	Sample12 dilution 2	Sample12 dilution 2	Sample12 dilution 2
G	Sample1 dilution 1	Sample1 dilution 1	Sample1 dilution 1	Sample5 dilution 1	Sample5 dilution 1	Sample5 dilution 1	Sample9 dilution 1	Sample9 dilution 1	Sample9 dilution 1	Sample13 dilution 1	Sample13 dilution 1	Sample13 dilution 1
Н	Sample1 dilution 2	Sample1 dilution 2	Sample1 dilution 2	Sample5 dilution 2	Sample5 dilution 2	Sample5 dilution 2	Sample9 dilution 2	Sample9 dilution 2	Sample9 dilution 2	Sample13 dilution 2	Sample13 dilution 2	Sample13 dilution 2

Figure 1: QIAseq Library Quant Assay Kit layout (96-well plate)

9. Using a multi-channel pipettor, pipette 23 uL of mastermix created in step 6 above into each of the wells containing template or NTC. Pipette up and down 10 times to mix.

Note: Try to avoid creating bubbles when pipette mixing.

10. Carefully, tightly seal the plate with Optical Adhesive Film.

Note: Follow instructions on the <u>QIAseq Library Quant Assay Handbook</u> for details regarding the appropriate seal to use with the specific Real-Time PCR System.

11. Centrifuge the plate for 30 seconds at 1000 x g at room temperature to remove any visible bubbles.

Note: Carefully inspect the wells for the presence of bubbles, as they will interfere with results.

12. Place the plate on ice while setting up the PCR cycling program.

Note: The plates containing PCR components may be stored at -20°C wrapped in aluminum foil for up to one week.

13. Program the Real-Time PCR System as shown in Table 4 below.

Note: Follow instructions on the <u>QIAseq Library Quant Assay Handbook</u> for details regarding the appropriate cycling condition for each Real-Time PCR System.

Table 4: Cycling conditions for Applied Biosystems, Bio-Rad, Stratagene and Eppendorf cyclers

Cycles	Duration	Temperature	Comments
1	10 min	95°C	HotStarTaq DNA Polymerase is activated by this heating step
30	15 sec	95°C	
	30 sec	60°C	
	2 min	72°C	Perform fluorescence data collection

- 14. Place the plate in the Real-Time PCR System. If recommended by the Real-Time PCR System user manual, use a compression pad for a plate sealed with optical adhesive film.
- 15. Download the <u>QIAseq Library Quant Assay Kit Excel-based data analysis</u> file that corresponds to the plate format used.
- 16. Follow the instructions on the excel data analysis file or the <u>QIAseq Library Quant Assay Handbook</u> to calculate the library concentration in nM.