Assignment -3

Python Programming

Question-1:

Download the dataset: Dataset

Solution:

https://drive.google.com/file/d/1xkynpL15pt6KT3YSIDimu4A5iRU9qYck/view

Question-2:

Image Augmentation.

Solution:

```
from google.colab import drive
drive.mount('/content/drive/')
data_path = '/content/drive/MyDrive/dataset/flowers/'
batch_size = 32
target_size = (64, 64)
```

Drive already mounted at /content/drive/; to attempt to forcibly remount, call drive.mount("/content/drive/", force_remount=True).

X_train = train_datagen.flow_from_directory(data_path,target_size_target_size,batch_size=batch_size,subset="training",class_mode='categorical')
X_test = test_datagen.flow_from_directory(data_path,target_size=target_size,batch_size,size=batch_size,si

Found 3457 images belonging to 5 classes. Found 860 images belonging to 5 classes.

Question-3:

Create Model

Solution:

```
model = Sequential()
```

Question-4:

Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output) Solution:

```
\label{local_model_add} $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))$ $$ \bmod 2D(32, (32, 3), (32, 3), activation='relu'))$ $$ \bmod 2D(32, (32, 3), (32, 3), activation='relu')$ $$ \bmod 2D(32, (32, 3), activation='relu')$ $$ does $$ does
model.add(Convolution2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Flatten())
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=5, activation='softmax'))
  model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 32)	896
max_pooling2d (MaxPooling2D)	(None, 31, 31, 32)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248
max_pooling2d_1 (MaxPooling 2D)	(None, 14, 14, 32)	0
conv2d_2 (Conv2D)	(None, 12, 12, 64)	18496
max_pooling2d_2 (MaxPooling 2D)	(None, 6, 6, 64)	0
flatten (Flatten)	(None, 2304)	0
dense (Dense)	(None, 64)	147520
dense 1 (Dense)	(None, 5)	325

Trainable params: 176,485 Non-trainable params: 0

Question-5:

Compile The Model

Solution:

```
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

Question-6:

Fit The Model

Solution:

```
model.fit(X_train, steps_per_epoch=100, epochs=15)
Epoch 2/15
Epoch 3/15
Epoch 4/15
100/100 [=============== ] - 26s 257ms/step - loss: 0.9996 - accuracy: 0.5989
Epoch 5/15
Epoch 6/15
Epoch 7/15
    100/100 [====
Epoch 8/15
100/100 [===
    Epoch 9/15
Epoch 10/15
100/100 [======== ] - 25s 251ms/step - loss: 0.7897 - accuracy: 0.6974
Epoch 11/15
Epoch 12/15
Epoch 13/15
Epoch 14/15
Epoch 15/15
100/100 [========================= ] - 25s 251ms/step - loss: 0.7175 - accuracy: 0.7274
```

Question-7:

Save The Model

Solution:

```
model.save("model.h5")
```

Question-8:

Test The Model

Solution:

```
def predict():
    img = image.load_img("/content/drive/MyDrive/dataset/flowers/rose/1775233884_12ff5a124f.jpg", target_size=target_size)
    x = image.img_to_array(img)
    x = tf.expand_dims(x,0)

labels = ['daisy', 'dandelion', 'rose', 'sunflower', 'tulip']

pred = model.predict(x)
    prediction = labels[np.argmax(pred[0])]

print(f'The given image is a {prediction}')
    plt.imshow(plt.imread("/content/drive/MyDrive/dataset/flowers/rose/1775233884_12ff5a124f.jpg"))
    plt.axis('off')
    plt.show()
```