

Winning Space Race with Data Science

Parth Mehta 10-12-2021

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Data Collection SpaceX API & Web Scraping
- 2. Data Wrangling
- 3. EDA with Data Visualization & SQL
- 4. Interactive Map with folium
- 5. Plotly Dash Board
- 6. Machine Learning Models- LogReg, SVM, KNN, Decision Tree
- Summary of all results

Complete Data Frame of Falcon 9, Success Rate, Launch Site's Location and surroundings, Charts and Plots, Accuracies Of the Models

Introduction

MANUFACTURING COST

SPACEX \$62 Millions

HOW??

By Reusing The First Stage!

Other Providers
Upwards of \$165 millions

Methodology

Executive Summary

- Data collection methodology:
 - Using SpaceX API and Web Scraping
- Perform data wrangling
 - Filtering, Transforming, Changing and adding columns like df['Class']
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Split, Fit, Train, Test, Best Parameters, Best Score and Score method used

Data Collection – SpaceX API

Import Libraries
Define Auxillary Functions
Get Request
Normalize
Cleaning Requested Data
Filtering Falcon 9 Data
Reser Flight Number

API GITHUB

Data Collection Scraping

WEB SCRAPING GITHUB

Data Wrangling

- Missing Values
- Column Type
- No. of Launches per orbit , No. Of launches per site
- Landing Outcomes TRUE =1, False=0
- Add Class Column
- Success rate

EDA github

EDA with Data Visualization

- Flight Number Vs Payload Mass -
- ↑ Flight Number = ↑ Payload Mass & ↑ Success Rate
- Flight Number Vs launch Site TOP = CCAFS SLC 40
- Payload vs launch site Most Heavy Launches in CCAFS SLC 40
- Success rate vs Orbit Higher in ES-L1, GEO, HEO, SSO

Lower in GTO & ISS

- Flight Number VS orbit Tright Number = TVLEO Orbit
- Payload Mass vs Orbit Highest Payload = VLEO Orbit
- Success Rate Vs Year 12013-17 12017-18 12018-19 2019-20
- EDA with data visualization github

EDA with SQL

- DISTINCT Statement
- WHERE + LIKE "%NAME%' LIMIT
- SUM() + WHERE
- AVG() + WHERE
- MIN() + WHERE
- COUNT() + GROUPBY
- DISTINCT + WHERE (SUBQUERY MAX())
- substr(Date, 4, 2) as month + substr(Date, 7, 4) = '2015'
- WHERE + BETWEEN AND + LIKE "%NAME%" ORDER BY Desc
- EDA with sql github

Build an Interactive Map with Folium

CLUSTER – TO SHOW IN A SIMPLE MANNER THE SUCCESS/FAILURE OF EACH LAUNCH AT A LAUNCH SITE.

LINES- ILLUSTRATING
THE DISTANCES BETWEEN KEY
PLACES AND THE LAUNCH SITE.

DISTANCE KM – EXPRESSING A NUMERICAL FACT

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

Machine Learning Prediction Github

Results

- Exploratory data analysis results
- Different Launch Sites: CCAFS LC-40, KSC LC-39A, VAFB SLC 4E, CCAFS SLC-40
- Most No. Launches: CCAFS SLC-40
- 100% Success Orbits: ES-L1,GEO,HEO, SSO
- Success Rate: 0.6667
- Total Payload Mass: 45,596KG
- First Successful Landing: 01-05-17
- Interactive analytics demo in screenshots
- Launch Site Latitude and Longitude
- Launch Site Plotting
- Marker color
- Cluster
- Closest Distances: Coast: 0.90 km, City: 18.21 km, Highway: 0.58 km, Railway: 1.28 km
- Predictive analysis results
- 4 models: Logarithmic Regression, SVM, KNN Neighbors, Tree
- Best parameters
- Accuracy
- Score

Flight Number vs. Launch Site

- Most launches at CCAFS SLC 40 (the more n° launches, the more successful)
- At VAFB SLC 4E, few n° of launches. No one for some launches.
- Late starting at KSC LC 39A, however, good successful rate and still working there.

Payload vs. Launch Site

• For the VAFB-SLC launchsite there are no rockets launched for heavypayload mass(greater than 10000).

Success Rate vs. Orbit Type

- 100 % success- ES-L1,GEO,HEO,SSO
- Failure- GTO,ISS,SO.

Flight Number vs. Orbit Type

• In the LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However for GTO we cannot distinguish this well as both positive landing rate and negative landing (unsuccessful mission) are both there here.

Launch Success Yearly Trend

 you can observe that the sucess rate since 2013 kept increasing till 2020

All Launch Site Names

 %sql SELECT UNIQUE(Launch_Site) FROM SPACEXTBL

launch_site CCAFS LC-40 **CCAFS SLC-40** KSC LC-39A **VAFB SLC-4E**

Launch Site Names Begin with 'CCA'

 %sql SELECT * FROM SPACEXTBL WHERE launch_site like 'CCA%' LIMIT 5

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

- %%sql
- SELECT
 sum(payload_mass__kg_),cu
 stomer from SPACEXTBL
 GROUP BY customer HAVING
 customer='NASA (CRS)'

Average Payload Mass by F9 v1.1

%sql SELECT
 avg(payload_mass__kg_),bo
 oster_version from
 SPACEXTBL GROUP BY
 booster_version HAVING
 booster_version ='F9 v1.1'

1	booster_version
2928	F9 v1.1

First Successful Ground Landing Date

 %sql SELECT min(date),landing__outcome from SPACEXTBL GROUP BY landing__outcome HAVING landing__outcome='Success (ground pad)'

1	landing_outcome
2015-12-	Success (ground pad)

Successful Drone Ship Landing with Payload between 4000 and 6000

 %sql SELECT booster_version FROM SPACEXTBL WHERE landing__outcome='Success (drone ship)' and (payload_mass__kg_ between 4000 and 6000)

ooster_version
F9 FT B1022
F9 FT B1026
F9 FT B1021.2
F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

sql SELECT COUNT(), mission_outcome FROM SPACEXTBL GROUP BY mission_outcome

mission_outcome	1
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

Boosters Carried Maximum Payload

 %sql SELECT booster_version FROM SPACEXTBL where payload_mass__kg_ = (SELECT max(payload_mass__kg_) FROM SPACEXTBL)

	booster_version
F9 B5 B1048.4	
F9 B5 B1049.4	
F9 B5 B1051.3	
F9 B5 B1056.4	
F9 B5 B1048.5	
F9 B5 B1051.4	
F9 B5 B1049.5	
F9 B5 B1060.2	
F9 B5 B1058.3	
F9 B5 B1051.6	
F9 B5 B1060.3	
F9 B5 B1049.7	

2015 Launch Records

%sql SELECT booster_version,launch_site,landing_outcome FROM SPACEXTBL WHERE landing_outcome = 'Failure (drone ship)' and YEAR(DATE)='2015'

booster_version	launch_site	landingoutcome
F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

COUNT	landing_outcome
38	Success
22	No attempt
14	Success (drone ship)
9	Success (ground pad)
5	Controlled (ocean)
5	Failure (drone ship)
3	Failure
2	Failure (parachute)
2	Uncontrolled (ocean)
1	Precluded (drone ship)

 %sql SELECT COUNT(*) as count,landing__outcome from SPACEXTBL GROUP BY landing__outcome ORDER BY count DESC

Launch Site Locations

- All of them on the coast
- 3 out of 4 in the east coast
- Those on the east coast are pretty close

Launch Site Cluster

 Easy and accessible way to group and show the data (each launch site with its success/failure launch)

Exploring the surroundings of a launch site

• Closest Distances: Coast :0.90 km, City : 18.21 km, Highway : 0.58 km, Railway : 1.28 km

Launch Success Vs success rate

• KSC LC –39A Has the highest success rate

KSC LC-39A: THE BEST SITE

KSC LC-39A: Although being the most successful one, nearly 25% of the launches fail!

Success Rate per Payload Mass for each Booster Version (2,500-7,500 kg) • The FT Booster Version has the largest success rate

Classification Accuracy

Decision Tree has the highest classification

accuracy

Confusion Matrix

- The model predicted: 3 launches as not landed and 15 as landed
- Whereas true labels shows: 6 of them unsuccessfully landed and 12 did it with success.
- PRECISION: 0.5
- RECALL: 1
- ACURRANCY: 0.8334

Conclusion

Payload Mass,
Orbit and Launch
Site affect
directly to the
probability of
success

KSC LC-39A is the most successful Launch Site (79.6%)

FT Booster Version is the one with highest success rate in payload range 2500-7000.

Decision Tree Model is the most accurate

Appendix

Model	Best Parameters	Score	Accuracy
Log Reg	{'C': 0.01, 'penalty': '12', 'solver': '1bfgs'}	0.83	0.846
SVM	{'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}	0.83	0.848
KNN	<pre>{'criterion': 'gini', 'max_depth': 4, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 2, 'splitter': 'random'}</pre>	0.83	0.889
DECISION TREE	{'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}	0.83	0.848

