Classificação com Árvores de Decisão

Prof. Dr. Leandro Balby Marinho

Análise de Dados II

Roteiro

1. Introdução

- 2. Tipos de Partições de Atributos
- 3. Indução de Árvores de Decisão
- 4. Florestas Aleatórias
- 5. Avaliação de Classificadores

Classificação

- ► Classificação Binária:
 - ► Tweet: Positivo/Negativo.
 - ► Email: Spam/Não Spam.
 - ► Empréstimo em Banco: Aprovado/Não aprovado.
 - ► Tumor: Maligno/Benigno.
- Classificação Multiclasse:
 - ► Detecção de dígitos manuscritos: {0,1,2,...,9}.
 - ► Categorização de Páginas Web: {política, esporte, . . .}.

Aprendizagem de Máquina para Classificação

Exemplo: Aprovação de Crédito

Idade	23
Sexo	Masculino
Salário Anual	R\$60.000
Poupança	R\$10.000
Quantidade Pedida	R\$100.000

Aprovar crédito?

- ► Entrada: x (Dados do requerente)
- ► Saída: y (bom/mal cliente)
- ▶ Função alvo: $f: \mathcal{X} \to \mathcal{Y}$ (função ideal de aprovação de crédito)
- ▶ Dados de Treino: $\mathcal{D}^{\text{train}} := \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ (registros históricos)
- ▶ Hipótese: $g: \mathcal{X} \to \mathcal{Y}$

Prof. Leandro Balby Marinho

Componentes da Aprendizagem [Yaser, 2012]

Prof. Leandro Balby Marinho 5 / 44 UFCG DSC

Classificando com Árvores de Decisão

Considere o problema de classificar um vertebrado como mamífero ou não mamífero.

Nome	Temperatura do Corpo	Dar à Luz	Mamífero
humano	quente	sim	sim
baleia	quente sim		sim
salamandra	frio	não	não
pombo	quente	não	não
morcego	quente	sim	sim
sapo	frio	não	não
tubarão-leopardo	frio	sim	não
salmão	frio	não	não

Classificando com Árvores de Decisão

Prof. Leandro Balby Marinho

O que é uma Árvore de Decisão?

- ▶ Uma árvore de decisão é uma árvore que:
 - ► Possui um **nó raiz**.
 - Cada nó interno tem uma regra que atribui instâncias de treino unicamente aos nós filhos.
 - ► Cada **nó folha** tem um rótulo de classe.
- ► Tipos de Árvore
 - ▶ Árvore de Regressão: nós folha contém valores numéricos.
 - Árvores Probabilísticas: nós folha contém probabilidades.

Árvore de Decisão como Regras de Decisão

Temperatura do Corpo = fria \rightarrow classe = nao (Temperatura do Corpo = quente) \wedge (Dar à Luz = sim) \rightarrow classe = sim (Temperatura do Corpo = quente) \wedge (Dar à Luz = não) \rightarrow classe = não

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

Prof. Leandro Balby Marinho 9 / 44 UFCG DSC

Roteiro

- 1. Introdução
- 2. Tipos de Partições de Atributos
- 3. Indução de Árvores de Decisão
- 4. Florestas Aleatórias
- 5. Avaliação de Classificadores

Atributos Nominais

Prof. Leandro Balby Marinho

Se o atributo for binário, o teste gera duas saídas possíveis.

Se o atributo for multinomial: (i) há uma saída para cada valor do atributo, ou os valores de atributos são combinados para gerar uma saída binária. Nesse caso há $2^{k-1}-1$ partições possíveis para k valores de atributos.

4 D > 4 B > 4 E >

10 / 44

UFCG DSC

Atributos Ordinais

A saída pode ser binária ou multinomial, mas a ordem dos valores deve ser preservada.

Atributos Numéricos

A saída pode ser binária ou multinomial. Para saídas multinomiais cada valor corresponde a um intervalo do tipo $v_i \leq X < v_{i+1}$ onde $v_i \in \text{Dom}(X)$ para $i = 1, \ldots, k$.

Prof. Leandro Balby Marinho 12 / 44 UFCG DSC

Roteiro

- 1. Introdução
- 2. Tipos de Partições de Atributos
- 3. Indução de Árvores de Decisão
- 4. Florestas Aleatórias
- 5. Avaliação de Classificadores

Formalização do Problema

Dado um conjunto de treino $\mathcal{D}^{\text{train}}$, encontre uma árvore

$$g: \mathcal{X} \to \mathcal{Y}$$

tal que para um conjunto de teste $\mathcal{D}^{\mathsf{test}} \subseteq \mathcal{X} \times \mathcal{Y}$ (desconhecido durante o treino), o erro de classificação no teste

$$\mathsf{err}(g; \mathcal{D}^\mathsf{test}) := \frac{1}{|\mathcal{D}^\mathsf{test}|} \sum_{(x,y) \in \mathcal{D}^\mathsf{test}} \delta(\hat{g}(x), y)$$

seja mínimo. $\delta(g(x), y) = 1$ se g(x) = y e 0 caso contrário.

Formalização do Problema

- ightharpoonup Como $\mathcal{D}^{\mathsf{test}}$ é desconhecido, procuramos a árvore que minimize o erro de classificação em $\mathcal{D}^{\mathsf{train}}$.
- ▶ Para isso, assume-se que a distribuição de instâncias nas classes do treino ≈ a distribuição de instâncias nas classes do teste.
- Uma abordagem força bruta é inviável pois o número de árvores no espaço de busca cresce exponencialmente com o número de atributos.

Busca Gulosa

Sendo assim, uma busca gulosa é usada de forma que:

- ► Árvores são construídas a partir da raiz em uma sequência de passos até que a árvore final seja encontrada.
- ► Em cado passo a escolha deve ser
 - 1. ótima localmente.
 - irrevogável.
- Hipótese: uma sequência de seleções ótimas localmente levarão a uma solução ótima global no final.

Indução de Árvores de Decisão

- ▶ Ideia: testar os atributos mais importantes primeiro.
- Atributos importantes tem maior poder de classificação.
- Condição de parada:
 - expandir um nó até que (quase) todas as instâncias possuam a mesma classe, ou
 - 2. nenhum dos atributos apresentam "ganho de informação".
 - 3. não existam mais atributos para discriminar as instâncias.
 - 4. a árvore atingiu uma altura predefinida.

Exemplo 2

Considere os dados do Exemplo 1 novamente com a adição do atributo binário Pernas.

Tid	Nome	Temperatura do Corpo	Pernas	Dar à Luz	Mamífero
1	humano	quente	sim	sim	sim
2	baleia	quente	não	sim	sim
3	salamandra	frio	sim	não	não
4	pombo	quente	sim	não	não
5	morcego	quente	sim	sim	sim
6	sapo	frio	sim	não	não
7	tubarão-leopardo	frio	não	sim	não
8	salmão	frio	sim	não	não

Qual atributo tem maior poder de classificação?

Qual atributo tem maior poder de classificação?

Para *Temperatura do Corpo=fria* e *Dar à Luz=não* todas as instâncias são classificadas como *Não*.

Prof. Leandro Balby Marinho 18 / 44 UFCG DSC

Repetimos o processo para as instâncias onde *Temperatura do Corpo=quente*.

O processo termina quando todos os nós folha possuem somente instâncias de uma mesma classe.

Prof. Leandro Balby Marinho 20 / 44 UFCG DSC

Tratando Casos Especiais

- Se algum dos nós filho estiver vazio (i.e., nenhuma instância associada), o nó é declarado folha com o rótulo da classe majoritária.
- Se não houverem mais atributos, mas ainda existirem exemplos positivos e negativos, o nó folha é declarado folha com o rótulo da classe majoritária.

Fronteira de Decisão [Tan, 2007]

As fronteiras de decisão são retilíneas.

Prof. Leandro Balby Marinho 22 / 44 UFCG DSC

Medidas de Impureza de Atributos

As medidas mais usadas para a seleção de atributos são entropia, coeficiente de Gini e erro de classificação.

Seja p(y|t) a probabilidade condicional da classe $y \in \mathcal{Y}$ no nó t. As medidas são dadas abaixo:

$$\begin{split} \mathsf{Entropia}(t) &:= -\sum_{y \in \mathcal{Y}} p(y|t) \log_2 p(y|t) \\ \mathsf{Gini}(t) &:= 1 - \sum_{y \in \mathcal{Y}} p(y|t)^2 \\ \mathsf{Erro_Class}(t) &:= 1 - \max_{y \in \mathcal{Y}} [p(y|t)] \end{split}$$

Medidas de Impureza para Classificação Binária

Prof. Leandro Balby Marinho 24 / 44 UFCG DSC

Nó N ₁	# Instâncias
Classe=0	0
Classe=1	6

$$\begin{aligned} &\text{Gini} = 1 - (0/6)^2 - (6/6)^2 = 0 \\ &\text{Entropia} = - (0/6)\log_2(0/6) - (6/6)\log_2(6/6) = 0 \\ &\text{Erro_Class} = 1 - \max[0/6, 6/6] = 0 \end{aligned}$$

Nó N ₂	# Instâncias
Classe=0	1
Classe=1	5

$$\begin{aligned} &\text{Gini} = 1 - (1/6)^2 - (5/6)^2 = 0.278 \\ &\text{Entropia} = - (1/6)\log_2(1/6) - (5/6)\log_2(5/6) = 0.650 \\ &\text{Erro_Class} = 1 - \max[1/6, 5/6] = 0.167 \end{aligned}$$

Exemplo 3

Nó N ₃	# Instâncias
Classe=0	3
Classe=1	3

$$\begin{aligned} &\mathsf{Gini} = 1 - (3/6)^2 - (3/6)^2 = 0.5 \\ &\mathsf{Entropia} = - (3/6)\log_2(3/6) - (3/6)\log_2(3/6) = 1 \\ &\mathsf{Erro_Class} = 1 - \max[3/6, 3/6] = 0.5 \end{aligned}$$

Qualidade da Partição de Atributos

Para medir a qualidade da partição para um atributo x, comparamos os graus de impureza da partição anterior a x com os das partiões geradas pelos valores de x. Quanto maior a diferença melhor.

Chamamos isso de ganho de informação que é calculado como segue:

$$\Delta(x) = I(P_1) - \sum_{j=1}^k \frac{N(P_j)}{N} I(P_j)$$

onde I(.) é a medida de impureza de um dado nó, N é o número de registros da partição P_1 , k é o número de valores do atributo e $N(P_j)$ é o número de registros associados á partição P_j . O termo $\frac{N(P_j)}{N}$ é um peso que favorece partições com menos instâncias.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < (で)

Prof. Leandro Balby Marinho

Exemplo 2 Revisitado

Seja Dar à Luz= t_1 e Temperatura do Corpo= t_2 e Pernas= t_3 . Antes da partição, a distribuição das classes é

$$p(y|t_1) = p(y|t_2) = p(y|t_3) = (0.625, 0.375)$$

Exemplo 2 Revisitado

Seja Dar à Luz= t_1 e Temperatura do Corpo= t_2 e Pernas= t_3 . Antes da partição, a distribuição das classes é

$$p(y|t_1) = p(y|t_2) = p(y|t_3) = (0.625, 0.375)$$

$$Gini(t_1) = Gini(t_2) = Gini(t_3) = 1 - (0.625)^2 - (0.375)^2 = 0.468$$

Exemplo 2: Cálculo do Ganho (t_1)

$$\Delta = 0.468 - (\frac{4}{8}0.375 + \frac{4}{8}0) = 0.2805$$

Prof. Leandro Balby Marinho

Exemplo 2: Cálculo do Ganho (t_2)

$$\Delta = 0.468 - (\frac{4}{8}0.375 + \frac{4}{8}0) = 0.2805$$

Prof. Leandro Balby Marinho

$$\Delta = 0.468 - (\frac{6}{8}0.44 + \frac{2}{8}0.5) = 0.013$$

Exemplo 2: Chamada Recursiva no Atributo Escolhido

Antes da partição, a distribuição das classes é $P(c|t_1) = P(c|t_2) =$ (0.25, 0.75).

$$Gini(t_1) = Gini(t_3) = 1 - (0.75)^2 - (0.25)^2 = 0.375$$

Exemplo 2: Cálculo do Ganho $(t_2 \rightarrow t_1)$

$$\Delta = 0.375 - (\frac{3}{4}0 + \frac{1}{4}0) = 0.375$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - り Q (^)

Exemplo 2: Cálculo do Ganho $(t_2 \rightarrow t_3)$

$$\Delta = 0.375 - (\frac{3}{4}0.44 + \frac{1}{4}0) = 0.045$$

Prof. Leandro Balby Marinho 33 / 44 UFCG DSC

Regularização (Pré-Poda)

- ▶ Pare o algoritmo antes que a árvore esteja completa.
- Outras condições típicas de parada:
 - ▶ Pare se a expansão do nó corrente não melhora o ganho.
 - ▶ Pare quando o ganho não satisfizer um limiar pré-definido.
 - Pare se o número de instâncias for menor que um limiar pré-definido.
 - Pare se o número de nós-folha for menor que um limiar pré-definido.

Regularização (Pós-Poda)

- ► Árvore cresce até o final.
- ▶ Nós são podados de baixo para cima.
- ► Por exemplo, substituir uma subárvore por um nó-folha cuja classificação é feita pelo voto majoritário.

```
DECISIONTREE(Node T, \mathcal{D}^{train})
    if stop_criterion(\mathcal{D}^{\mathsf{train}})
             T. class = \operatorname{argmax}_{v \in \mathcal{V}} p(y|t)
            return
   s = \mathsf{find\_best\_split}(\mathcal{D}^{\mathsf{train}})
   T.split = s
     for z \in Im(s)
            cria no T'
8
             T.child[z] = T'
            DECISIONTREE(T', {(x, y) \in \mathcal{D}^{train} | s(x) = z})
9
```

Sumário

- ► Modelo não paramétrico e de fácil interpretação.
- Encontrar uma árvore de decisão ótima é um probema NP-Completo, portanto as soluções são baseadas em heurísticas.
- ▶ Baixo custo de indução predição (O(w) onde w =altura da árvore).
- ► Árvores muito profundas tendem a sofrer overfitting.
- São robustas contra ruído e overfitting, quando técnicas de regularização são usadas.

Roteiro

- 1. Introdução
- 2. Tipos de Partições de Atributos
- 3. Indução de Árvores de Decisão
- 4. Florestas Aleatórias
- 5. Avaliação de Classificadores

Florestas Aleatórias

- ► Modelo estado-da-arte para classificação e regressaão.
- Constrói uma floresta de árvores de decisão.
- ► Cada árvore usa uma amostra aleatória dos dados de treino.
- ► A classificação é feita por meio da agregação dos resultados de cada árvore.
- ► Florestas são robustas à overfitting.

Tree Bagging [Wikipedia, 2013]

Existem muitas algoritmos de florestas aleatórias. Abaixo descrevemo um dos mais simples.

- ▶ Para b = 1, ..., B (B = nr. de árvores):
 - 1. Amostre *n* instâncias aleatórias de treino sem repetição e chame-as de $T_b \in D^{\text{train}}$.
 - 2. Treine uma árvore de decisão g_b para cada T_b .
- ► Agora a predição para algum x' cuja classe é desconhecida é feita por:

$$\hat{g}(\mathbf{x}') = \underset{y \in Y}{\operatorname{argmax}} \sum_{b=1}^{B} \delta\left(\hat{g}_b(\mathbf{x}', y)\right)$$

► Ou seja, use o voto majoritário entre as árvores da floresta.

Roteiro

- 1. Introdução
- 2. Tipos de Partições de Atributos
- 3. Indução de Árvores de Decisão
- 4. Florestas Aleatórias
- 5. Avaliação de Classificadores

Acurácia

Avaliação do desempenho de classificadores é baseada na proporção de instâncias corretamente classificadas.

Esses valores podem ser extraídos de uma tabela de confusão.

Prevista Real	Classe=1	Classe=0
Classe=1	f_{11}	f_{10}
Classe=0	f_{01}	f ₀₀

fij denota o número de instâncias da classe i previstos como j.

A acurácia é definida por:

$$acc = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Método Holdout

- ► Os dados são particionados aleatoriamente em dois conjuntos disjuntos chamados treino e teste (e.g. 2/3 para treino e 1/3 para teste).
- O classificador é induzido no treino e avaliado no teste.
- O método pode ser repetido várias vezes para melhorar a confiabilidade das predições (random subsampling).
- ► Nesse caso, a acurácia é dada por:

$$acc = \frac{1}{S} \sum_{i=1}^{k} acc_i$$

onde S é o número de partições treino-teste geradas e acc; a acurácia na partição i.

Validação Cruzada

- ► Cada instância é usada exatamente uma vez para treino e uma vez para teste.
- No caso de uma partição (1/2,1/2) dos dados,
 - 1. A primeira parte é usada para treino e a segunda para teste.
 - 2. A segunda parte é usada para treino e a segunda para teste.
- ► Essa ideia pode ser generalizada para *k* partições de igual tamanho.
- ightharpoonup Em cada execução, k-1 partições são usadas para treino e uma para teste.
- O procedimento é repetido k vezes e a média da acurácia calculada.

Prof. Leandro Balby Marinho 42 / 44 UFCG DSC

Validação Cruzada 5-fold

Referências

- Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2003.
- Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to Data Minig. Primeira Edição. Addison Wesley, 2006.
- Lars Schmidt-Thieme. Notas de aula em aprendizagem de máquina. Disponível em: http://www.ismll.uni-hildesheim.de/lehre/ml-11w/index_en.html
- Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin. Learning from Data. Primeira Edição. AMLBook, 2012.
- "Random Forests." Wikipedia. Wikimedia Foundation Inc.. Jan, 1st, 2015. (http://en.wikipedia.org/wiki/Random_forest).