Chapter 14

Vector Functions and Their Derivatives

14.1 Introduction

12/14:

- Vector function (of h): A function $\mathbf{F}(h)$ with n components where each component is a function. Essentially, $\mathbf{F} = (f_1, f_2, \dots, f_n)$.
- Limit (of $\mathbf{F}(h)$ as $h \to a$): If each component f_1, \ldots, f_n of \mathbf{F} has a limit L_1, \ldots, L_n as $h \to a$, then

$$\lim_{h\to a}\mathbf{F}(h)=(L_1,\ldots,L_n)$$

• Continuous (vector function **F** at a): A vector function **F** where for every $\epsilon > 0$, there corresponds a $\delta > 0$ such that

$$|\mathbf{F}(h) - \mathbf{F}(a)| < \epsilon$$
 when $|h - a| < \delta$

- Thomas, 1972 shows that this is equivalent to the requirement that each component of \mathbf{F} is continuous at a.
- **Derivative** (of a vector function at c): The derivative $\mathbf{F}'(c)$ of a vector function \mathbf{F} at c is given by the equation

$$\mathbf{F}'(c) = \lim_{h \to 0} \frac{\mathbf{F}(c+h) - \mathbf{F}(c)}{h}$$

- It can be proven that \mathbf{F} is differentiable at c if and only if each of its components are differentiable at c, and that if this condition is met,

$$\mathbf{F}'(c) = (f_1'(c), \dots, f_n'(c))$$

14.2 Velocity and Acceleration

- Results from here on out will generally pertain to 2D questions, but these methods can easily be generalized to higher dimensions.
- Applications of vectors to physics problems.
 - To solve **statics** problems, we only need to know the **algebra** of vectors.
 - To solve **dynamics** problems, we also need to know the **calculus** of vectors.
- **Position vector**: The vector from the origin to a point P that moves along a parametrically defined curve. Denoted by \mathbf{R} .

• **Velocity vector**: The vector tangent to a point P that moves along a parametrically defined curve and with magnitude |ds/dt|. Denoted by \mathbf{v} .

Figure 14.1: Velocity vector.

- Thomas, 1972 semi-rigorously proves from Figure 14.1 that if \mathbf{R} is the position vector, then $d\mathbf{R}/dt$ is the velocity vector.
- Essentially, he proves that

$$\frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} = \mathbf{i}\frac{\mathrm{d}x}{\mathrm{d}t} + \mathbf{j}\frac{\mathrm{d}y}{\mathrm{d}t}$$

It follows from this that

slope of
$$\frac{d\mathbf{R}}{dt} = \frac{\mathbf{j}\text{-component}}{\mathbf{i}\text{-component}} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\left|\frac{\mathrm{d}R}{\mathrm{d}t}\right| = \left|\mathbf{i}\frac{\mathrm{d}x}{\mathrm{d}t} + \mathbf{j}\frac{\mathrm{d}y}{\mathrm{d}t}\right| = \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} = \left|\frac{\mathrm{d}s}{\mathrm{d}t}\right|$$

• Acceleration vector: The derivative of the velocity vector and second derivative of the position vector. Denoted by **a**.

$$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{i}\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + \mathbf{j}\frac{\mathrm{d}^2y}{\mathrm{d}t^2}$$

- Sometimes, we are given a force vector $\mathbf{F} = m\mathbf{a}$ and initial conditions.
 - From these, we can solve for velocity and position vectors via fairly straightforward component integration.
 - Note, however, that constants of integration are now vectors.

14.3 Tangential Vectors

- Let P_0 be a point on a curve. The distance s from P_0 to some point P along the curve is clearly related to the position of P. Thus, we may think of \mathbf{R} as a function of s, and investigate the properties of $d\mathbf{R}/ds$.
- Tangent vector: The unit vector tangent to a point P along a curve.
 - Since $\Delta \mathbf{R}$ and Δs approach the same quantity as $\Delta s \to 0$, $\Delta \mathbf{R}/\Delta s$ approaches unity, i.e., $|\mathrm{d}\mathbf{R}/\mathrm{d}s|=1$.
 - Because of the sign change, whether Δs is positive or negative, $\Delta \mathbf{R}/\Delta s$ points in the same general direction for sufficiently small Δs . Indeed, it converges to pointing tangentially.

Figure 14.2: Tangent vector.

- Thus,

$$\mathbf{T} = \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}s} = \mathbf{i}\frac{\mathrm{d}x}{\mathrm{d}s} + \mathbf{j}\frac{\mathrm{d}y}{\mathrm{d}s}$$

- There are two different ways to find **T**: Straight differentiation combined with manipulations of differentials, and the chain rule combined with the dot product. We will explore each, in turn, with an example.
- "Find the unit vector **T** tangent to the circle $x = a \cos \theta$, $y = a \sin \theta$ at any point P(x, y)" (Thomas, 1972, p. 471).
 - From the given equations, we have

$$dx = -a \sin \theta \, d\theta \qquad dy = a \cos \theta \, d\theta \qquad ds^2 = dx^2 + dy^2$$
$$= a^2 (\sin^2 \theta + \cos^2 \theta) \, d\theta^2$$
$$= a^2 \, d\theta^2$$
$$ds = \pm a \, d\theta$$

- We could alternatively obtain ds by expressing the arc length formula $S = R\theta$ in terms of differentials.
- "If we measure arc length in the counterclockwise direction, with s=0 at (a,0), s will be an increasing function of θ , so the +-sign should be taken: $ds=a\,d\theta$ " (Thomas, 1972, p. 471).
- Therefore,

$$\mathbf{T} = \mathbf{i} \frac{\mathrm{d}x}{\mathrm{d}s} + \mathbf{j} \frac{\mathrm{d}y}{\mathrm{d}s}$$
$$= \mathbf{i} \left(\frac{-a \sin \theta \, \mathrm{d}\theta}{a \, \mathrm{d}\theta} \right) + \mathbf{j} \left(\frac{a \cos \theta \, \mathrm{d}\theta}{a \, \mathrm{d}\theta} \right)$$
$$= -\mathbf{i} \sin \theta + \mathbf{j} \cos \theta$$

• The equations

$$x = a\cos\omega t$$
 $y = a\sin\omega t$ $z = bt$

where a, b, ω are positive constants define a circular helix in $E^{3[1]}$.

¹Three-dimensional Euclidean space, equivalent to \mathbb{R}^3

- Let $P_0 = (a, 0, 0)$, since this is the point on the locus of the parametric equations where t = 0. Additionally, let arc length be measured in the direction in which P moves away from P_0 as t increases from 0.
- Using the chain rule to differentiate, we have

$$\mathbf{T} = \mathbf{i} \frac{\mathrm{d}x}{\mathrm{d}s} + \mathbf{j} \frac{\mathrm{d}y}{\mathrm{d}s} + \mathbf{k} \frac{\mathrm{d}z}{\mathrm{d}s}$$
$$= \mathbf{i} \left(-a\omega \sin \omega t \frac{\mathrm{d}t}{\mathrm{d}s} \right) + \mathbf{j} \left(a\omega \cos \omega t \frac{\mathrm{d}t}{\mathrm{d}s} \right) + \mathbf{k} \left(b \frac{\mathrm{d}t}{\mathrm{d}s} \right)$$

- Since **T** is a unit vector, we have $1 = |\mathbf{T}| = |\mathbf{T}|^2 = \mathbf{T} \cdot \mathbf{T}$. Thus,

$$1 = \mathbf{T} \cdot \mathbf{T}$$

$$= \mathbf{i} \cdot \mathbf{i} \left(-a\omega \sin \omega t \frac{\mathrm{d}t}{\mathrm{d}s} \right)^2 + \mathbf{j} \cdot \mathbf{j} \left(a\omega \cos \omega t \frac{\mathrm{d}t}{\mathrm{d}s} \right)^2 + \mathbf{k} \cdot \mathbf{k} \left(b \frac{\mathrm{d}t}{\mathrm{d}s} \right)^2$$

$$= \left(a^2 \omega^2 + b^2 \right) \left(\frac{\mathrm{d}t}{\mathrm{d}s} \right)^2$$

$$\frac{\mathrm{d}t}{\mathrm{d}s} = \pm \frac{1}{\sqrt{a^2 \omega^2 + b^2}}$$

- We choose the +-sign because s should be a positive function of t.
- Putting this all together, we get

$$\mathbf{T} = \frac{a\omega(-\mathbf{i}\sin\omega t + \mathbf{j}\cos\omega t) + \mathbf{k}b}{\sqrt{a^2\omega^2 + b^2}}$$