MGRECON - Class 3 (after class)

Summary of Class 2: Revenue Maximization 1/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

What are the quantity Q_* and the price P_* that maximize the monopolist's revenue? What is the resulting revenue?

Answer - Step 1: Get the inverse demand

$$P = 120 - 0.5 \cdot Q$$

Answer - Step 1b: Plot the demand

Summary of Class 2: Revenue Maximization 2/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

What are the quantity Q_* and the price P_* that maximize the monopolist's revenue? What is the resulting revenue?

Answer - Step 2: Double the slope of the inverse demand to get MR

$$MR = 120 - Q$$

Answer - Step 2b: Add the MR curve to the graph

Summary of Class 2: Revenue Maximization 3/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

What are the quantity Q_* and the price P_* that maximize the monopolist's revenue? What is the resulting revenue?

Answer - Step 3: Solve the equation MR = 0, to find the optimal quantity Q_*

$$120 - Q = 0 \rightarrow Q_* = 120$$

Answer - Step 3b: Mark Q_* in the graph

Summary of Class 2: Revenue Maximization 4/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

What are the quantity Q_* and the price P_* that maximize the monopolist's revenue? What is the resulting revenue?

Answer - Step 4: Plug Q_* into the inverse demand to find the optimal price P_*

$$P_* = 120 - \frac{1}{2}Q_* = 60$$

Answer - Step 4b: Mark P_* in the graph

Summary of Class 2: Revenue Maximization 5/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

What are the quantity Q_* and the price P_* that maximize the monopolist's revenue? What is the resulting revenue?

Answer - Step 5: Multiply P_* by Q_* to find the resulting revenue

$$P_* \cdot Q_* = 60 \cdot 120 = 7200$$

Answer - Step 5b: Highlight the revenue rectangle in the graph

Summary of Class 2: Profit Maximization 1/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

and its total and marginal cost functions are given by

$$TC(Q) = 500 + 10 \cdot Q \rightarrow MC(Q) = 10$$

What are the quantity Q_M and the price P_M that maximize the monopolist's profit? What is the resulting profit ?

Answer - Step 1: Get the inverse demand

$$P = 120 - 0.5 \cdot Q$$

Answer - Step 1b: Plot the demand

Summary of Class 2: Profit Maximization 2/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

and its total and marginal cost functions are given by

$$TC(Q) = 500 + 10 \cdot Q \rightarrow MC(Q) = 10$$

What are the quantity Q_M and the price P_M that maximize the monopolist's profit? What is the resulting profit?

Answer - Step 2: Double the slope of the inverse demand to get MR

$$MR = 120 - Q$$

Answer - Step 2b: Add the MR curve and the MC curve to the graph

Summary of Class 2: Profit Maximization 3/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

and its total and marginal cost functions are given by

$$TC(Q) = 500 + 10 \cdot Q \rightarrow MC(Q) = 10$$

What are the quantity Q_M and the price P_M that maximize the monopolist's profit? What is the resulting profit?

Answer - Step 3: Solve the equation MR = MC, to find the optimal quantity Q_M

$$120 - Q = 10 \rightarrow Q_M = 110$$

Answer - Step 3b: Mark Q_M in the graph

Summary of Class 2: Profit Maximization 4/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

and its total and marginal cost functions are given by

$$TC(Q) = 500 + 10 \cdot Q \rightarrow MC(Q) = 10$$

What are the quantity Q_M and the price P_M that maximize the monopolist's profit? What is the resulting profit?

Answer - Step 4: Plug Q_M into the inverse demand to find the optimal price P_M

$$P_M = 120 - \frac{1}{2}Q_M = 65$$

Answer - Step 4b: Mark P_M in the graph

Summary of Class 2: Profit Maximization 5/5

Question A monopolist faces the following demand curve

$$Q = 240 - 2P$$

and its total and marginal cost functions are given by

$$TC(Q) = 500 + 10 \cdot Q \rightarrow MC(Q) = 10$$

What are the quantity Q_M and the price P_M that maximize the monopolist's profit? What is the resulting profit?

Answer - Step 5: Compute the resulting profit

Answer - Step 5b: Highlight the profit area in the graph

Classic Monopoly Picture

Consumer Surplus $= AP_ME$

Profit = BP_MEG

Deadweight Loss = GEH

Revenue $= OP_M EQ_M$

Total Variable Cost $= OBGQ_M$

Marginal Revenue and Elasticity when Demand is Linear

The Lerner Index

$$\frac{P_M - MC(Q_M)}{P_M} = \frac{1}{|E|}$$

The Lerner Index in Pictures

Two More Things to Remember from Class 2

- 1. Suppose that:
 - we see the price charged by a seller, and
 - we have an estimate of the elasticity (at that point). If we assume that the seller is *maximizing profit*, can we infer MC (at that point)?

Yes!

$$\frac{P - MC}{P} = \frac{1}{|E|} \rightarrow \text{solve for MC}$$

2. Any point on the demand where |E|<1 cannot be profit maximizing. We can say this, without knowing anything about costs (beyond $MC\geq 0$).

Profit Maximization with a Flat Demand

Question A seller with costs

$$TC(Q) = 100 + \frac{1}{4} \cdot Q^2 \quad o \quad MC(Q) = \frac{1}{2} \cdot Q$$

faces a perfectly elastic (horizontal) demand P = 20.

What is the quantity that maximizes its profit?

Answer

Profit Maximization with a binding Capacity Constraint

Question A seller can produce up to 60 units at constant marginal cost, MC = 5.

Its (inverse) demand is given by $P = 20 - \frac{1}{10}Q$.

What are the quantity Q_M and the price P_M that maximize its profit?

Answer The capacity constraint is *binding*, meaning $MR(60) = 20 - \frac{2}{10} \cdot 60 = 8 > MC$. Therefore the optimal quantity is $Q_M = 60$.

Profit Max'n with a non-binding Capacity Constraint

Question A seller can produce up to 90 units at constant marginal cost, MC = 5.

Its (inverse) demand is given by $P = 20 - \frac{1}{10}Q$.

What are the quantity Q_M and the price P_M that maximize its profit?

Answer The capacity constraint is *not binding*, meaning $MR(90) = 20 - \frac{2}{10} \cdot 90 = 2 < MC$. Therefore the optimal quantity is given by

$$\underbrace{20 - \frac{2}{10} \cdot Q}_{MR(Q)} = \underbrace{5}_{MC} \rightarrow Q_M = 75 \rightarrow P_M = 20 - \frac{1}{10}75 = \$12.5$$

Price Discrimination Classification

Price Discrimination = selling identical goods at different prices

There are 3 kinds of price discrimination:

1. Perfect Price Discrimination

prices are tailored to each customer; this is a theoretical benchmark — it requires perfect knowledge of the buyers' WTP

2. Multi-market Price Discrimination

prices are based on *observable characteristics* of the buyers; e.g. age, membership, geographical location, ...

3. Menu Pricing

prices are based on the amount purchased; e.g. quantity discounts

Why Price-Discriminate?

Selling all units at the same unit price "leaves money on the table."

A monopolist that cannot price discriminate, sets its price at P_M and sells Q_M units.

Price discrimination aims at converting (some of) the CS and DWL into profit

Perfect Price Discrimination

A rental car (R) company buys maintenance services from a local mechanic (M).

Inspections per Month	Marginal WTP
1	\$2500
2	\$1800
3	\$1500
4	\$1100
5	\$800
6	\$200
7	\$0

If M knows R's demand, then it can charge:

\$2499 for the 1st inspection

\$1799 for the 2^{nd} inspection

\$1499 for the 3rd inspection

. . .

thus converting the entire WTP into revenue

Note: in this case

MR = MWTP

Perfect Price Discrimination

If MC = \$500, then

MWTP
\$2500
\$1800
\$1500
\$1100
\$800
\$200
\$0

it is optimal for M to sell $Q_* = 5$ inspections per month, because

$$MWTP(1) > ... > MWTP(5) = \$800 > MC = \$500 > MWTP(6) = \$200$$

$$\Pi_* = \underbrace{\$2500 + \$1800 + \$1500 + \$1100 + \$800}_{Total \ Cost} - \underbrace{5 \cdot \$500}_{Total \ Cost} = \$5200$$

Note: $CS_*=0,\ DWL_*=0,\ \Pi_*=$ all gains from trade

Perfect Price Discrimination vs. Linear Pricing

With perfect price discrimination: $\Pi_* = \$5200$

With linear pricing $Q_M = 3$, $P_M = 1500

Multi-market Price Discrimination: Problem 1

The demand for a college football game consists of two segments

The stadium has a maximum capacity of 75,000 seats.

All costs are zero.

Resale of tickets is impossible.

The seller can choose:

- · a price P_S for students
- · a price P_G for members of the general public

At what levels should P_S and P_G be set, in order to maximize profit (i.e. revenue)?

Multi-market Price Discrimination: Problem 1 - Answer

Maximize revenue independently in each market:

Since the stadium has 75 000 seats, this is feasible.

Multi-market Price Discrimination: Problem 2

The demand for a NCAA football game consists of two segments

The arena has a maximum capacity of **54 000** seats.

All costs are zero.

Resale of tickets is impossible, so we can set

- \cdot a price P_S for students
- \cdot a price P_G for members of the general public

At what levels should we set P_S and P_G in order to maximize profit (i.e. revenue)?

AJ's proposal

Our friend AJ proposes:

"We should sell all 54,000 seats to the general public for \$11 each.

Indeed,
$$P_G(54,000) = 20 - \frac{1}{6000} \cdot 54,000 = $11.$$

Why bother with the students? No student pays more than \$8!"

Is AJ correct?

Is AJ correct?

What happens if we move a few tickets, say 3,000 tickets, from non-students to the students? We would sell:

· 51,000 tickets to the general public,

at
$$P_G(51000) = 20 - \frac{1}{6000} \cdot 51000 = \$11.50$$
 each

· 3,000 tickets to students

at
$$P_S(3000) = 8 - \frac{1}{2500} \cdot 3000 = $6.8$$
 each

Our total revenue would be

from non-students
$$$11.50 \cdot 51,000 + $6.8 \cdot 3,000$$

 $$586,500 + $20,400 = $606,900$

The revenue generated by AJ's strategy is \$594,000.

AJ is wrong! What is he missing?

The optimal way to allocate tickets across the two segments must satisfy

$$MR_S(Q_S) = MR_G(Q_G)$$

If $MR_S(Q_S) > MR_G(Q_G)$, we can increase total revenue by moving a few tickets from the G group to the S group, i.e. by raising P_G and lowering P_S slightly

If $MR_S(Q_S) < MR_G(Q_G)$, we can increase total revenue by moving a few tickets from the S group to the G group, i.e. by raising P_S and lowering P_G slightly

To find the profit (revenue) maximizing quantities we solve the two equations:

$$\begin{bmatrix} 8 - \frac{1}{1250}Q_S & = 20 - \frac{1}{3000}Q_G \\ Q_S + Q_G & = 54,000 \end{bmatrix} \rightarrow \begin{bmatrix} Q_S^* = 5,294 \\ Q_G^* = 48,706 \end{bmatrix}$$

Once we have the optimal quantities, we find the optimal prices:

$$\left[\begin{array}{c}
P_S = 8 - \frac{1}{2500} \cdot 5294 = \$5.88 \\
P_G = 20 - \frac{1}{6000} \cdot 48706 = \$11.88
\end{array}\right]$$

Total revenue = $$5.88 \cdot 5294 + $11.88 \cdot 48706 = $609,756$

Multi-market Price Discrimination and Elasticities

Recall that MR and elasticity are related

$$\mathit{MR}_1 = \mathit{P}_1 \left(1 - \frac{1}{|\mathit{E}_1|} \right) \quad \text{and} \quad \mathit{MR}_2 = \mathit{P}_2 \left(1 - \frac{1}{|\mathit{E}_2|} \right)$$

Since profit maximization requires $MR_1 = MR_2$, we have

$$P_1\left(1-\frac{1}{|E_1|}\right) = P_2\left(1-\frac{1}{|E_2|}\right)$$

which implies

$$|E_1|<|E_2| \quad \Leftrightarrow \quad P_1>P_2$$

Multi-market Price Discrimination and Dumping

A firm is a monopolist in its domestic market (market 1), where demand is $P_1=80-Q_1$

The firms also sells in a foreign market (market 2), where it faces a flat demand curve $P_2=30\,$

The firm's cost structure is

$$TC(Q_1 + Q_2) = \underbrace{1200}^{\text{fixed cost}} + \underbrace{\frac{\text{variable cost}}{4(Q_1 + Q_2)^2}}$$

and thus

$$MC(Q_1 + Q_2) = \frac{1}{2}(Q_1 + Q_2)$$

What quantity Q_1 , price P_1 and quantity Q_2 should this firm choose, in order to maximize its profit? ($P_2 = \$30$ is given and cannot be changed)

The profit maximizing quantities Q_1^* and Q_2^* must satisfy

$$MR_1(Q_1) = MR_2(Q_2) = MC(Q_1 + Q_2)$$

Equality among MRs \rightarrow how to allocate a given total output <u>across markets</u>: if $MR_1(\overline{Q_1}) > MR_2(Q_2)$, lowering Q_2 and raising Q_1 by the same small amount increases total revenue without changing the total output $Q_1 + Q_2$ and the total cost; if $MR_1(Q_1) < MR_2(Q_2)$, raising Q_2 and lowering Q_1 by the same small amount increases total revenue without changing the total output $Q_1 + Q_2$ and the total cost;

Equality between MR and MC \rightarrow how to choose the *total output* $Q_1 + Q_2$:

if MC < MR, increasing total output increases total revenue more than it increases total cost; if MC > MR, reducing total output decreases total revenue less than it decreases total cost.

Solving the two equations simultaneously we have

$$\left[\begin{array}{c} \mathit{MR}_1 = \mathit{MR}_2 \\ \mathit{MC} = \mathit{MR}_2 \end{array}\right] \Leftrightarrow \left[\begin{array}{c} 80 - 2\mathit{Q}_1 = 30 \\ \frac{1}{2}(\mathit{Q}_1 + \mathit{Q}_2) = 30 \end{array}\right] \to \left[\begin{array}{c} \mathit{Q}_1^* = 25 \to \mathit{P}_1^* = 80 - 25 = 55, \\ \mathit{Q}_2^* = 35 \end{array}\right]$$

The firm's profit is

$$\Pi_{*} = P_{1}^{*} \cdot Q_{1}^{*} + P_{2} \cdot Q_{2}^{*} - TC \left(Q_{1}^{*} + Q_{2}^{*}\right)$$

$$= $55 \cdot 25 + $30 \cdot 35 - $\left(1200 + \frac{1}{4}60^{2}\right)$$

$$= $1375 + $1050 - $2100 = $325$$

Multi-market Price Discrimination and Dumping

What is the average cost at the profit maximizing level of output?

$$ATC(60) = \frac{TC(60)}{60} = \frac{1200 + \frac{1}{4}60^2}{60} = 35$$

Note:
$$ATC(60) = 35 > P_2 = 30!$$

Is this dumping?

If the firm cannot sell in market 2,

$$P_1=80-Q_1$$
 fixed cost variable cost $TC\left(Q_1+Q_2
ight)=\overbrace{1200}^{ ext{fixed cost}}+\overbrace{rac{1}{4}Q_1^2}^{ ext{variable cost}}$ $MC(Q_1)=rac{1}{2}Q_1$

and thus

$$\overbrace{80 - 2Q_{1}}^{MR_{1}} = \overbrace{\frac{1}{2}Q_{1}}^{MC} \rightarrow Q_{1}^{0} = 32 \rightarrow P_{1}^{0} = 80 - 32 = \$48$$

$$\Pi_{1}^{0} = 48 \cdot 32 - 1200 - \frac{1}{4}(32)^{2} = \boxed{\$80}$$

$$AC(32) = \frac{1200 + \frac{1}{4}(32)^2}{32} = $45.5 < P_1^0 \text{ (not dumping now)}$$

If the firm can sell in both markets

$$\Pi_* = P_1^* \cdot Q_1^* + P_2 \cdot Q_2^* - TC(Q_1^* + Q_2^*)
= $55 \cdot 25 + $30 \cdot 35 - $(1200 + \frac{1}{4}60^2)
= $1375 + $1050 - $2100 = $325$$