Math 217 Worksheet: Symmetric and Skew Symmetric Matrices

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is said to be **symmetric** if $A = A^{\top}$, and **skew-symmetric** if $A = -A^{\top}$.

Let $\operatorname{Sym}^{n \times n}$ and $\operatorname{Skew}^{n \times n}$ denote the sets of symmetric and skew symmetric $n \times n$ matrices, respectively.

Problem 1.

- (a) Prove that $\operatorname{Sym}^{n\times n}$ and $\operatorname{Skew}^{n\times n}$ are subspaces of $\mathbb{R}^{n\times n}$.
- (b) Prove that the diagonal entries of a skew symmetric matrix are zero.
- (c) Find a basis for $Skew^{2\times 2}$ and a basis for $Sym^{2\times 2}$. What are their dimensions?
- (d) Prove that $Skew^{3\times3}$ is three dimensional.
- (e) Prove that the dimension of Skew^{$n \times n$} is $\sum_{i=1}^{n-1} i$, or equivalently (as you should show using induction), $\frac{(n-1)n}{2}$.

Problem 2. Consider the map $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $T(A) = A + A^{\top}$.

- (a) Is T linear?
- (b) Prove that $imT = Sym^{n \times n}$.
- (c) What is the kernel of T?
- (d) Find a formula for the dimension of $\operatorname{Sym}^{n \times n}$ in terms of n.

Problem 3. Does there exist a linear transformation $T : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ with kernel the space of symmetric matrices and image the space of skew symmetric matrices?

Problem 4. Is every matrix in $\mathbb{R}^{n\times n}$ the sum of a symmetric and skew symmetric matrix? If so, is it uniquely such a sum?