

DATE: Dec

SUBJECT: _____

orthogonal Matrix.

$$1. |A| = \pm 1$$

الرُّعْدَهُ وَالجُنُفُ حِلَافَةٌ

$$2. r_i r_j^T = 0$$

$$3. A^{-1} = A^T$$

$$\bar{A}' = \frac{1}{r} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = A^T$$

* orthogonal transformation

$$P(xyz) = R P_{ABC}$$

$$P_{ABC} = R' P_{xyz}$$

$$R(x, \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

$$R_{(x, \theta)}^{-1} = R_{(x, \theta)}^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$

inverse \cong Transpose

\rightarrow $\sin \theta$ sine θ , $\cos \theta$ cosine

DATE: _____

SUBJECT: _____

Ex: 3.6. 45° ^{slide.} Composed. w/ \overline{w}

$$*RR^{-1} = R\bar{R}^T = \bar{R}^T R = \bar{R}\bar{R} = I$$

$$A.I = I.A = A$$

. 547

*base reference Frame $\Rightarrow xyz$

I will be used to calculate $\theta = 0$ and $\phi = 0$

end. 5.50

5.55

B₁, A₁ OZ \oplus
 O A \ominus B₂, C₁
 O C ∇ B₂, B₃

