Lecture 13

October 2, 2018

▶ Suppose $X_1, ..., X_n$

▶ Suppose $X_1, ..., X_n$ are i.i.d observations

Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- ▶ Let $\mu = \mu(F)$

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F.

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example,

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let *T* be a statistic

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n .

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n . For example,

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n . For example, T could be the sample mean

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X₁,..., X_n. For example, T could be the sample mean or the sample median

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X₁,..., X_n. For example, T could be the sample mean or the sample median or the sample standard deviation etc.

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n . For example, T could be the sample mean or the sample median or the sample standard deviation etc.
- ▶ We want to determine the distribution of $T \mu$.

- Suppose $X_1, ..., X_n$ are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n . For example, T could be the sample mean or the sample median or the sample standard deviation etc.
- ▶ We want to determine the distribution of $T \mu$. The bootstrap algorithm for doing this is given below.

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n . For example, T could be the sample mean or the sample median or the sample standard deviation etc.
- ▶ We want to determine the distribution of $T \mu$. The bootstrap algorithm for doing this is given below.
- Remember the notion of empirical distribution.

- Suppose X_1, \ldots, X_n are i.i.d observations having common distribution F.
- Let $\mu = \mu(F)$ be a parameter that depends on F. For example, μ could be the mean of F or μ could be the standard deviation of F.
- Let T be a statistic that is computed from the data X_1, \ldots, X_n . For example, T could be the sample mean or the sample median or the sample standard deviation etc.
- ▶ We want to determine the distribution of $T \mu$. The bootstrap algorithm for doing this is given below.
- ▶ Remember the notion of empirical distribution. The empirical distribution of the data $X_1, ..., X_n$ is a discrete probability measure that gives the mass 1/n to each data point $X_1, ..., X_n$.

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

Its distribution function is given by

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

▶ Bootstrap algorithm for approximating the distribution of $T - \mu$:

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - Estimate the distribution of the data F

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} .

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000)

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $X_1^{(j)}, \ldots, X_n^{(j)}$

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $X_1^{(j)}, \ldots, X_n^{(j)}$ from \hat{F} .

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $X_1^{(j)}, \ldots, X_n^{(j)}$ from \hat{F} .
 - 3.2 Compute the statistic T from the generated observations $X_1^{(j)}, \ldots, X_n^{(j)}$.

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $X_1^{(j)}, \ldots, X_n^{(j)}$ from \hat{F} .
 - 3.2 Compute the statistic T from the generated observations $X_1^{(j)}, \ldots, X_n^{(j)}$. Call the computed value $T^{(j)}$.

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $X_1^{(j)}, \ldots, X_n^{(j)}$ from \hat{F} .
 - 3.2 Compute the statistic T from the generated observations $X_1^{(j)}, \ldots, X_n^{(j)}$. Call the computed value $T^{(j)}$.
 - 4. The empirical distribution of the values $T^{(j)} \mu(\hat{F})$ for j = 1, ..., N

The Bootstrap Algorithm for i.i.d data

lts distribution function is given by

$$\hat{F}(t) := \frac{1}{n}$$
 (number of points X_1, \dots, X_n that are $\leq t$).

- ▶ Bootstrap algorithm for approximating the distribution of $T \mu$:
 - 1. Estimate the distribution of the data F by the empirical distribution \hat{F} .
 - 2. Calculate the value of the parameter μ for the empirical distribution \hat{F} . Let us call this value $\mu(\hat{F})$.
 - 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $X_1^{(j)}, \ldots, X_n^{(j)}$ from \hat{F} .
 - 3.2 Compute the statistic T from the generated observations $X_1^{(j)}, \ldots, X_n^{(j)}$. Call the computed value $T^{(j)}$.
 - 4. The empirical distribution of the values $T^{(j)} \mu(\hat{F})$ for j = 1, ..., N is an estimate of the distribution of $T \mu$.

We shall now study our linear model

• We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p

• We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$.

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .
- We do not need to assume that they are normal.

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .
- ▶ We do not need to assume that they are normal. Let the common distribution of e_1, \ldots, e_n be denoted by G.

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .
- We do not need to assume that they are normal. Let the common distribution of e_1, \ldots, e_n be denoted by G.
- Let $\hat{\beta}$ denote the usual least squares estimate of β

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .
- We do not need to assume that they are normal. Let the common distribution of e_1, \ldots, e_n be denoted by G.
- Let $\hat{\beta}$ denote the usual least squares estimate of β (assume that X has full column rank).

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β₀,...,β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .
- We do not need to assume that they are normal. Let the common distribution of e_1, \ldots, e_n be denoted by G.
- Let $\hat{\beta}$ denote the usual least squares estimate of β (assume that X has full column rank). We would like to determine the distribution of say $\hat{\beta}_j \beta_j$ for some j.

- We shall now study our linear model and see how bootstrap can be used to produce confidence intervals for β_0, \ldots, β_p without relying on the normal regression theory.
- ▶ Recall our linear model for Y: $Y = X\beta + e$. We take X to be fixed and the errors e_1, \ldots, e_n to be i.i.d with mean zero and common variance σ^2 .
- We do not need to assume that they are normal. Let the common distribution of e_1, \ldots, e_n be denoted by G.
- Let $\hat{\beta}$ denote the usual least squares estimate of β (assume that X has full column rank). We would like to determine the distribution of say $\hat{\beta}_j \beta_j$ for some j. Without loss of generality, let us take j=1.

Let the joint distribution of $Y = (Y_1, \dots, Y_n)$ be denoted by F.

- Let the joint distribution of $Y = (Y_1, \dots, Y_n)$ be denoted by F.
- Note that F depends on β and G.

- Let the joint distribution of $Y = (Y_1, ..., Y_n)$ be denoted by F.
- Note that F depends on β and G.
- ▶ If we knew β and G,

- Let the joint distribution of $Y = (Y_1, ..., Y_n)$ be denoted by F.
- Note that F depends on β and G.
- If we knew β and G, then we can determine the distribution of $\hat{\beta}_1 \beta_1$ by simulation:

1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, \dots, -0.883)$

1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, \dots, -0.883)$ and *G* is the standard *t*-distribution with 5 degrees of freedom.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$,

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000)

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and *G* is the standard *t*-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate *n* observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution *G*.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and *G* is the standard *t*-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883))$

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, \dots, -0.883))$ to $e^{(j)}$

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)) to <math>e^{(j)}$ to create a new vector called $Y^{(j)}$.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, \dots, -0.883))$ to $e^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 3.3 Regress $Y^{(j)}$ on X.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)$ and G is the standard t-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)) to <math>e^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 3.3 Regress $Y^{(j)}$ on X. Call the resulting estimated coefficient vector $\hat{\beta}^{(j)}$.

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, \dots, -0.883)$ and *G* is the standard *t*-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)) to <math>e^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 3.3 Regress $Y^{(j)}$ on X. Call the resulting estimated coefficient vector $\hat{\beta}^{(j)}$.
- 4. The empirical distribution of the values $\hat{\beta}_1^{(j)} 3.65$ for j = 1, ..., N

- 1. Suppose $\beta = (10.45, 3.65, -2.54, 9.94, \dots, -0.883)$ and *G* is the standard *t*-distribution with 5 degrees of freedom.
- 2. Since we are given that $\beta_1 = 3.65$, we need to determine the distribution of $\hat{\beta}_1 3.65$.
- 3. Fix a large number N (say N = 5000) and repeat the following steps for j = 1, ..., N.
 - 3.1 Generate n observations $e_1^{(j)}, \ldots, e_n^{(j)}$ from the distribution G. Let $e^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 3.2 Add the vector $X\beta$ (with $\beta = (10.45, 3.65, -2.54, 9.94, ..., -0.883)) to <math>e^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 3.3 Regress $Y^{(j)}$ on X. Call the resulting estimated coefficient vector $\hat{\beta}^{(j)}$.
- 4. The empirical distribution of the values $\hat{\beta}_1^{(j)} 3.65$ for j = 1, ..., N gives the distribution of $\hat{\beta}_1 \beta_1$.

▶ What can we do if we do not know β and G?

▶ What can we do if we do not know β and G? We simply estimate them from the data.

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- \triangleright β is estimated by the least squares estimate $\hat{\beta}$.

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- \triangleright β is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*?

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals ê

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals *ê* resulting in the method called *Residual Bootstrap*.

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate G? For this we use residuals ê resulting in the method called Residual Bootstrap.
- Recall that

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- ightharpoonup eta is estimated by the least squares estimate $\hat{\beta}$.
- ▶ How to estimate G? For this we use residuals ê resulting in the method called Residual Bootstrap.
- Recall that

$$\hat{e} = (I - H)Y$$

▶ Because $Y = X\beta + e$

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ▶ How to estimate G? For this we use residuals ê resulting in the method called Residual Bootstrap.
- Recall that

$$\hat{e} = (I - H)Y$$

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals *ê* resulting in the method called *Residual Bootstrap*.
- Recall that

$$\hat{e} = (I - H)Y$$

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- ightharpoonup eta is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals ê resulting in the method called *Residual Bootstrap*.
- Recall that

$$\hat{e} = (I - H)Y$$

$$\hat{\mathbf{e}} = (\mathbf{I} - \mathbf{H})(\mathbf{X}\beta + \mathbf{e})$$

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals ê resulting in the method called *Residual Bootstrap*.
- Recall that

$$\hat{e} = (I - H)Y$$

$$\hat{\mathbf{e}} = (I - H)(X\beta + \mathbf{e}) = (X - HX)\beta + (I - H)\mathbf{e}$$

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals *ê* resulting in the method called *Residual Bootstrap*.
- Recall that

$$\hat{e} = (I - H)Y$$

$$\hat{\mathbf{e}} = (I - H)(X\beta + \mathbf{e}) = (X - HX)\beta + (I - H)\mathbf{e} = (I - H)\mathbf{e}.$$

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- \blacktriangleright β is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals *ê* resulting in the method called *Residual Bootstrap*.
- Recall that

$$\hat{e} = (I - H)Y$$

▶ Because $Y = X\beta + e$ and HX = X, we get

$$\hat{\mathbf{e}} = (I - H)(X\beta + \mathbf{e}) = (X - HX)\beta + (I - H)\mathbf{e} = (I - H)\mathbf{e}.$$

Therefore

- ▶ What can we do if we do not know β and G? We simply estimate them from the data.
- $ightharpoonup \beta$ is estimated by the least squares estimate $\hat{\beta}$.
- ► How to estimate *G*? For this we use residuals \hat{e} resulting in the method called *Residual Bootstrap*.
- Recall that

$$\hat{e} = (I - H)Y$$

▶ Because $Y = X\beta + e$ and HX = X, we get

$$\hat{\mathbf{e}} = (I - H)(X\beta + \mathbf{e}) = (X - HX)\beta + (I - H)\mathbf{e} = (I - H)\mathbf{e}.$$

Therefore

$$\hat{e} = e - He$$
.

➤ The closeness of the distribution of \hat{e} to e thus depends on the term He.

➤ The closeness of the distribution of \hat{e} to e thus depends on the term He. The ith entry of He equals

► The closeness of the distribution of ê to e thus depends on the term He. The ith entry of He equals

$$(He)_i = \sum_{j=1}^n h_{ij}e_j$$

► The closeness of the distribution of \hat{e} to e thus depends on the term He. The ith entry of He equals

$$(He)_i = \sum_{j=1}^n h_{ij}e_j = h_{ii}e_i + \sum_{j \neq i} h_{ij}e_j.$$

► The closeness of the distribution of ê to e thus depends on the term He. The ith entry of He equals

$$(He)_i = \sum_{j=1}^n h_{ij}e_j = h_{ii}e_i + \sum_{j\neq i} h_{ij}e_j.$$

▶ Recall that h_{ii} is also known as the *i*th leverage.

➤ The closeness of the distribution of ê to e thus depends on the term He. The ith entry of He equals

$$(He)_i = \sum_{i=1}^n h_{ij}e_j = h_{ii}e_i + \sum_{i \neq i} h_{ij}e_j.$$

▶ Recall that h_{ii} is also known as the *i*th leverage. Here are two facts about the hat matrix:

▶ The average of the leverages equals (p+1)/n

▶ The average of the leverages equals (p + 1)/n where p is the number of explanatory variables of X.

- ► The average of the leverages equals (p + 1)/n where p is the number of explanatory variables of X.
- ► The reason for this is the following:

- ► The average of the leverages equals (p + 1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix.

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace.

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H).

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ▶ The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

Here is a most important fact about trace:

$$tr(AB) = tr(BA).$$

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ▶ The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

Here is a most important fact about trace:

$$tr(AB) = tr(BA).$$

This gives

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ▶ The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

Here is a most important fact about trace:

$$tr(AB) = tr(BA).$$

This gives

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right) =$$

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

► Here is a most important fact about trace:

$$tr(AB) = tr(BA).$$

► This gives

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right) = tr\left((X^TX)^{-1}X^TX\right)$$

- ▶ The average of the leverages equals (p+1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

► Here is a most important fact about trace:

$$tr(AB) = tr(BA).$$

► This gives

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right) = tr\left((X^TX)^{-1}X^TX\right) = tr(I_{p+1})$$

- ▶ The average of the leverages equals (p + 1)/n where p is the number of explanatory variables of X.
- The reason for this is the following:
- ► The sum of the leverages equals the sum of the diagonals of the hat matrix. The sum of the diagonals of a square matrix is called its trace. We therefore need to find the trace of the hat matrix, denoted by tr(H). Because $H = X(X^TX)^{-1}X^T$, we have

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right)$$

► Here is a most important fact about trace:

$$tr(AB) = tr(BA).$$

▶ This gives

$$tr(H) = tr\left(X(X^TX)^{-1}X^T\right) = tr\left((X^TX)^{-1}X^TX\right) = tr(I_{p+1}) = p+1$$

▶ We thus have tr(H) = p + 1

- ▶ We thus have tr(H) = p + 1 which implies that the average of the leverages equals (p+1)/n.

- ▶ We thus have tr(H) = p + 1 which implies that the average of the leverages equals (p+1)/n. When *n* is large,
 - (p+1)/n is quite small.

- ▶ We thus have tr(H) = p + 1 which implies that the average of the leverages equals (p + 1)/n. When n is large,
- (p+1)/n is quite small.

► Unless there are points with very high leverages,

- We thus have tr(H) = p + 1 which implies that the average of the leverages equals (p+1)/n. When *n* is large,
- (p+1)/n is quite small. Unless there are points with very high leverages, all

leverages will be small when *n* is large.

▶ In the *i*th row of *H*,

▶ In the *i*th row of H, the sum of the squares of the non-diagonal entries equals $h_{ii} - h_{ii}^2$.

$$h_{ii} = \sum_{i} h_{ij}^2$$

$$h_{ii}=\sum_j h_{ij}^2=h_{ii}^2+\sum_{j:j
eq i}h_{ij}^2$$

$$h_{ii} = \sum_{j} h_{ij}^2 = h_{ii}^2 + \sum_{j:j \neq i} h_{ij}^2$$

Therefore

$$h_{ii} = \sum_{i} h_{ij}^2 = h_{ii}^2 + \sum_{i:i \neq i} h_{ij}^2$$

▶ Therefore

$$\sum_{j:j
eq i}h_{ij}^2=h_{ii}\left(1-h_{ii}
ight).$$

$$h_{ii} = \sum_{i} h_{ij}^2 = h_{ii}^2 + \sum_{i:i \neq i} h_{ij}^2$$

▶ Therefore

$$\sum_{j:i\neq i}h_{ij}^2=h_{ii}\left(1-h_{ii}\right).$$

Therefore if the leverages are small,

$$h_{ii} = \sum_{j} h_{ij}^2 = h_{ii}^2 + \sum_{j:j \neq i} h_{ij}^2$$

Therefore

$$\sum_{i:i\neq i}h_{ij}^2=h_{ii}\left(1-h_{ii}\right).$$

Therefore if the leverages are small, then the non-diagonal entries of the hat matrix are also small. ► Because of the previous pair of facts,

is negligible when n is large

▶ Because of the previous pair of facts, we can argue that *He*

- Because of the previous pair of facts, we can argue that He
 - is negligible when *n* is large and when are there no points

with high leverages.

▶ Because of the previous pair of facts, we can argue that He is negligible when n is large and when are there no points with high leverages. In this situation, $He \approx 0$

▶ Because of the previous pair of facts, we can argue that He is negligible when n is large and when are there no points with high leverages. In this situation, $He \approx 0$ which means that $\hat{e} \approx e$.

▶ Because of the previous pair of facts, we can argue that He is negligible when n is large and when are there no points with high leverages. In this situation, $He \approx 0$ which means that $\hat{e} \approx e$. Residual bootstrap can be proved to work in this setting.

1. Estimate β by the least squares estimate $\hat{\beta}$

1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X.

1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000)

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample *n* times with replacement from the residuals to obtain $\hat{e}_{n}^{(j)}, \dots, \hat{e}_{n}^{(j)}$.

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample n times with replacement from the residuals to obtain $\hat{e}_1^{(j)}, \dots, \hat{e}_n^{(j)}$. Let $\hat{e}^{(j)}$ denote the $n \times 1$ vector consisting of these observations.

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample n times with replacement from the residuals to obtain $\hat{e}_1^{(j)}, \ldots, \hat{e}_n^{(j)}$. Let $\hat{e}^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 2.2 Add the vector $X\hat{\beta}$ to $\hat{e}^{(j)}$

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample n times with replacement from the residuals to obtain $\hat{e}_1^{(j)}, \dots, \hat{e}_n^{(j)}$. Let $\hat{e}^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 2.2 Add the vector $X\hat{\beta}$ to $\hat{e}^{(j)}$ to create a new vector called $Y^{(j)}$.

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample n times with replacement from the residuals to obtain $\hat{e}_1^{(j)}, \ldots, \hat{e}_n^{(j)}$. Let $\hat{e}^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 2.2 Add the vector $X\hat{\beta}$ to $\hat{e}^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 2.3 Regress $Y^{(j)}$ on X.

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample n times with replacement from the residuals to obtain $\hat{e}_1^{(j)}, \ldots, \hat{e}_n^{(j)}$. Let $\hat{e}^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 2.2 Add the vector $X\hat{\beta}$ to $\hat{e}^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 2.3 Regress $Y^{(j)}$ on X. Call the resulting least squares coefficient vector $\hat{\beta}^{(j)}$.

- 1. Estimate β by the least squares estimate $\hat{\beta}$ in the regression of Y on X. Let \hat{e} denote the vector of residuals.
- 2. Fix a large number (say N = 5000) and repeat the following steps for j = 1, ..., N:
 - 2.1 Resample n times with replacement from the residuals to obtain $\hat{e}_1^{(j)}, \ldots, \hat{e}_n^{(j)}$. Let $\hat{e}^{(j)}$ denote the $n \times 1$ vector consisting of these observations.
 - 2.2 Add the vector $X\hat{\beta}$ to $\hat{e}^{(j)}$ to create a new vector called $Y^{(j)}$.
 - 2.3 Regress $Y^{(j)}$ on X. Call the resulting least squares coefficient vector $\hat{\beta}^{(j)}$.
- 3. The empirical distribution of the values $\hat{\beta}_i^{(j)} \hat{\beta}_i$ for j = 1, ..., N provides an estimate of the distribution of $\hat{\beta}_i \beta_i$.

▶ The bootstrap estimate of the standard error of $\hat{\beta}_i$ is given by the standard deviation of the values $\hat{\beta}_i^{(j)} - \hat{\beta}_i$ for i = 1, ..., N.

- ▶ The bootstrap estimate of the standard error of $\hat{\beta}_i$ is given by the standard deviation of the values $\hat{\beta}_i^{(j)} \hat{\beta}_i$ for j = 1, ..., N.
- A bootstrap confidence interval for β_i is given by $\hat{\beta}_i$ plus/minus 1.96 times the bootstrap estimate of the standard error.

- ▶ The bootstrap estimate of the standard error of $\hat{\beta}_i$ is given by the standard deviation of the values $\hat{\beta}_i^{(j)} \hat{\beta}_i$ for j = 1, ..., N.
- A bootstrap confidence interval for β_i is given by $\hat{\beta}_i$ plus/minus 1.96 times the bootstrap estimate of the standard error.
- standard error.
 An alternate bootstrap confidence interval for β_i is given by:

- ▶ The bootstrap estimate of the standard error of $\hat{\beta}_i$ is given by the standard deviation of the values $\hat{\beta}_i^{(j)} \hat{\beta}_i$ for j = 1, ..., N.
- A bootstrap confidence interval for β_i is given by $\hat{\beta}_i$ plus/minus 1.96 times the bootstrap estimate of the standard error.
- ▶ An alternate bootstrap confidence interval for β_i is given by:

$$[\hat{eta}_{\it i} - b_{
m 0.975}, \hat{eta}_{\it i} - b_{
m 0.025}]$$

- ▶ The bootstrap estimate of the standard error of $\hat{\beta}_i$ is given by the standard deviation of the values $\hat{\beta}_i^{(j)} \hat{\beta}_i$ for j = 1, ..., N.
- A bootstrap confidence interval for β_i is given by $\hat{\beta}_i$ plus/minus 1.96 times the bootstrap estimate of the standard error.
- ▶ An alternate bootstrap confidence interval for β_i is given by:

$$[\hat{eta}_{\it i} - b_{
m 0.975}, \hat{eta}_{\it i} - b_{
m 0.025}]$$

- ▶ The bootstrap estimate of the standard error of $\hat{\beta}_i$ is given by the standard deviation of the values $\hat{\beta}_i^{(j)} \hat{\beta}_i$ for j = 1, ..., N.
- A bootstrap confidence interval for β_i is given by $\hat{\beta}_i$ plus/minus 1.96 times the bootstrap estimate of the standard error.
- ▶ An alternate bootstrap confidence interval for β_i is given by:

$$[\hat{eta}_i - m{b}_{0.975}, \hat{eta}_i - m{b}_{0.025}]$$

where $b_{0.025}$ and $b_{0.975}$ denote the 0.025^{th} and the 0.975^{th} quantiles of values $\hat{\beta}_i^{(j)} - \hat{\beta}_i$ for j = 1, ..., N.