Multiplication

64-bit ALU

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on gradeschool algorithm

- Negative numbers: convert and multiply
 - there are better techniques, we won't look at them

©1998 Morgan Kaufmann Publishers 86

Multiplication: Implementation 2. Shift the Multiplicand register left 1 bit Yes: 32 rep

©1998 Morgan Kaufmann Publishers 87

Done

Floating Point (a brief look)

- · We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576×10^9
- · Representation:
 - sign, exponent, significand: (-1) $^{sign} \times significand \times 2^{exponent}$
 - more bits for significand gives more accuracy
 - more bits for exponent increases range
- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand

©1998 Morgan Kaufmann Publishers 90

IEEE 754 floating-point standard

- Leading "1" bit of significand is implicit
- Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: (-1) $^{sign} \times (1 + significand) \times 2^{exponent bias}$
- Example:
 - decimal: $-.75 = -3/4 = -3/2^2$
 - binary: $-.11 = -1.1 \times 2^{-1}$
 - floating point: exponent = 126 = 011111110

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

©1998 Morgan Kaufmann Publishers 92

Chapter Four Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two's complement
 - IEEE 754 floating point
- · Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).
- We are ready to move on (and implement the processor)

you may want to look back (Section 4.12 is great reading!)