Selinie Wang September 24, 2018 floatingpoint.pdf

Floating Point

Your magic (32 bit) floating point number is 39.0625.

This is the number that needs to be converted to (little endian) binary, and expressed in hexadecimal.

- 1. CONVERT TO LITTLE ENDIAN BINARY (HEX): 39.0625
 - a. *Sign bit* is 0 because it is positive.
 - b. Exponent is 5; $2^5 = 32$ and 39.0625/32 = 1.2207 5 + 127 = 132 which is $1000\ 0100_b$
 - c. Mantissa is 1.220703125 1 = 0.220703125 = 113/512.

$$113/512 - 64/512 = 49/512 (1/8 = 1/2^3)$$

$$49/512 - 32/512 = 17/512 (1/16 = 1/2^4)$$

$$17/512 - 16/512 = 1/512 (1/32 = 1/2^5)$$

$$1/512 - 1/512 = 0/512 (1/512 = 1/2^9)$$

0011 1000 1000 0000 0000 000

Little Endian Binary: 0000 0000 0100 0000 0001 1100 0100 0010

Big Endian: 0x421c4000 Little Endian: 0x00401c42

Your other magic floating point number is, in hex, 0x00401ec3.

This is the number that needs to be converted to a (32 bit) floating point number.

Note that the hexadecimal printed above is in little-endian format!

1. CONVERT TO FLOATING POINT NUMBER

- b. Sign bit is 1 so it is negative.
- c. Exponent is $1000\ 0110$; 134 127 = 7
- d. Mantissa is 0011 1000 1000 0000 0000 000 $(1/2)^3 + (1/2)^4 + (1/2)^5 + (1/2)^9 = 0.220703125$ 0.220703125 + 1 = 1.220703125
- e. $-1.220703125 * 2^7 = -156.25$