Пусть задана функция $f \colon A \to A$. Орбитой элемента x называется множество $\{x, f(x), f(f(x)), \ldots\}$, если функция является биективной, то в орбиту также добавляются итерации обратной функции. В ориентированном графе $(A, x \mapsto f(x))$ орбиты – это всевозможные пути.

- 1. На трассе, имеющей форму круга, расположены n машин в n различных точках. Все машины начали двигаться по трассе одновременно и с одинаковой скоростью, каждая в своём направлении. Если две машины встречались в некоторой точке, они мгновенно разворачивались и продолжали движение в противоположных направлениях. Докажите, что в некоторый момент времени все машины будут находиться в начальных точках и двигаться в исходных направлениях.
- 2. Докажите, что для любой биекции $f\colon A\to A$ существуют функции $g_1,g_2\colon A\to A$ такие, что $f=g_2\circ g_1$, а композиции $g_1\circ g_1$ и $g_2\circ g_2$ являются тождественными отображениями.

Упражнения

- 3. Обозначим $S=\{1,2,\ldots,999\}$. Функция $f\colon S\to S$ удовлетворяет двойному равенству $f^{\circ(n+f(n)+1)}(n)=f^{\circ(nf(n))}(n)=n$ при всех $n\in S$. Докажите, что существует элемент $a\in S$ такой, что f(a)=a.
- 4. Положим $S=\{1,\ldots,n\}$. Для любой биекции $f\colon S\to S$ через c(f) обозначим количество её различных обит. Пусть даны k биекций f_1,\ldots,f_k из S в себя, докажите, что $c(f_1)+\cdots+c(f_k)\leqslant n(k-1)+c(f_1\circ\cdots\circ f_k)$.
- 5. Множество L состоит из 2020 прямых общего положения на плоскости. Будем говорить, что прямая $\ell_1 \in L$ ограничивает другую прямую $\ell_2 \in L$, если все точки пересечения ℓ_2 с прямыми из L лежат в одной полуплоскости относительно ℓ_1 . Докажите, что найдутся прямые ℓ и ℓ' в L такие, что ℓ ограничивает ℓ' , а ℓ' не ограничивает ℓ .
- 6. Множество M состоит из 2017 натуральных чисел. Для любого подмножества $A\subset M$ через f(A) обозначим множество, состоящее из всех элементов множества M, которые делятся на нечётное количество элементов множества A. Найдите наименьшее количество цветов, в которое гарантированно возможно покрасить все непустые подмножества множества M так, чтобы из $A\neq f(A)$ следовало, что множества A и f(A) окрашены в разные цвета.
- 7. S конечное множество, а A множество всех функций из S в S. Для некоторой функции $f \in A$ известно, что $f \circ g \circ f \neq g \circ f \circ g$ при всех $g \in A$, отличных от f. Докажите, что f(f(S)) = f(S).
- 8. Найдите все функции $f\colon \mathbb{Z} \to \mathbb{Z}$ такие, что при всех $a,b\in \mathbb{Z}$ верно равенство $f^{\circ(a^2+b^2)}(a+b) = af(a) + bf(b).$