애기장대에서 *At3g23880*의 압시신산응답과 **At3g23880**의 세포내국재화

김명욱, 한진성

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《정보기술, 나노기술, 생물공학은 현시대 과학기술발전의 핵심기초기술입니다.》 (《김정일선집》 중보관 제22권 20~21폐지)

식물호르몬인 압시신산은 씨앗의 싹트기와 성숙, 휴면과 같은 식물의 성장 및 발육의일부 과정들을 조절할뿐아니라 가물과 한랭, 고온, 고염 등 환경스트레스에 대한 식물의 응답과정을 조절하는데서 주요한 역할을 한다. 이 압시신산의 신호전달경로에는 접수체들과린산화효소들, 단백질키나제들, E3유비키틴리가제들, 전사인자들을 비롯한 많은 성분들이 참가한다. E3유비키틴리가제는 그 구성성분인 F-box단백질이 특이하게 결합하는 기질단백질을 유비키틴화하여 26S 프로테아솜에서 분해되게 하는 단백질복합체이다.[1] F-box 및 그 관련도메인을 가지고있는 애기장대의 At3g23880단백질[2]이 압시신산경로에 참가할수 있는가를 보기 위하여 우리는 At3g23880의 압시신산에 대한 응답성과 그 발현산물의 세포내국 재화에 대하여 보았다.

재료와 방법

재료로는 야생형애기장대(*Arabidopsis thaliana* Columbia ecotype "Col-0")를 리용하였다. 애기장대씨앗을 흙단지에 직접 심고 22°C, 16h/8h(빛/어둠)의 빛주기, 약 120μmol/(m²·s)의 빛 세기가 보장되는 방에서 자래웠다.

압시신산에 대한 At3g23880의 응답을 보기 위하여 RT-PCR를 리용하여 압시신산을 처리한 개체와 압시신산을 처리하지 않은 개체에서 At3g23880의 발현량을 비교하였다.

압시신산처리는 12일동안 자래운 야생형애기장대개체들을 50μmol/L의 압시신산용액에 넣고 어둠속에서 40r/min의 속도로 4h동안 진탕하는 방법으로 진행하였다. 이 개체들을 꺼내여 액체질소속에서 얼구고 RNA를 Easy Pure Plant RNA kit(《TransGene》)를 리용하여 분리하였다.

RNA농도는 NanoDrop를 리용하여 결정하였다. 여기서 얻은 2 μ g의 총RNA를 Oligo(dT)프라이머와 EazyScript First-Strand DNA Synthesis Super Mix(《TransGen Biotech》)를 리용하여 42℃에서 30min동안 역전사하고 85℃에서 10s동안 역전사효소를 변성시키는 방법으로 cDNA를 합성하였다. 이 cDNA를 주형으로 하고 다음과 같은 프라이머와 조건에서 At3g23880을 PCR증폭하였다.

At3g23880-NdeIF: 5'-CAACATATGGATGAAACTACCAGAGAG-3'

At3g23880-SacIR: 5'-CAAGAGCTCAAAGATCATTTGGAGAAACC-3'

PCR조건: 94°C에서 예비변성 5min→30회전의 94°C에서 변성 30s, 58°C에서 아닐링 30s, 72°C에서 연장 1min→72°C에서 최종연장 10min

대조로는 ACTIN2유전자(ACT2)[4]를 리용하였다. 증폭산물은 0.7% 아가로즈겔전기영동 으로 확인하였다.

At3g23880발현산물의 세포내위치는 풀색형광단백질유전자 gfp를 융합시킨 At3g23880유 전자를 애기장대원형질체에서 림시발현시키고 GFP의 형광을 관찰하는 방법으로 확인하였다.

애기장대에서 분리한 RNA로부터 RT-PCR를 통하여 얻은 완전길이 At3g23880유전자단 편을 0.7% 아가로즈겔에서 분리한 다음 제한효소 NdeI과 SacI로 자르고 정제하였다.

CaMV의 35S 프로모터를 가진 N-말단gfp가 있는 pUC19운반체[5, 6]를 같은 제한효 소로 자르고 0.7% 아가로즈겔에서 전기영동하여 해당한 단편을 분리하였다. 여기에 우의 유 전자단편을 T4 DNA리가제를 리용하여 클론화하였다.

플라즈미드분리에는 플라즈미드분리키트(《CWBiotech》)를, 겔에서 DNA단편을 분리하 는데는 DNA겔분리키트(《AXYGEN》)를, 제한효소로 절단한 DNA단편을 정제하는데는 정 제키트(《Axyprep》)를 리용하였다.

원형질체분리와 원형질체감염은 선행방법[3-7]에 따라 진행하였다. 약 4주일 키운 야 생형애기장대의 앉은잎 15개를 효소(셀룰라제, 마세로짐)용액에 잠그고 40r/min에서 3h동 안 분해한 다음 나이론그물로 걸려 려과액을 얻었다.

여기에 랭각된 200mmol/L의 염화칼시움용액을 절반체적으로 첨가하고 얼음욕에 방치 하였다가 800r/min에서 3min동안 원심분리하고 상청액은 버리였다.

얻어진 침전물에 25mL의 W5용액을 조심히 섞고 얼음욕에 30min동안 방치하였다가 800r/min에서 3min동안 원심분리하고 상청액을 버리였다. 우의 조작을 다시 반복하여 얻은 원형질체에 1mL의 MMG용액을 첨가하고 얼음욕에 방치하였다.

이 원형질체용액 200μL에 10μg의 재조합플라즈미드를 섞고 여기에 같은 체적의 40% PEG 를 넣어주고 조심히 혼합한 다음 얼음욕에 20min동안 방치하였다. 여기에 800μL의 W5용 액을 넣어주고 10min이 지나 800r/min에서 3min동안 원심분리하여 PEG를 제거하고 여기

에 1mL의 WI용액을 첨가하고 조심히 혼합하였다. 이 것을 약 22h동안 방온도에서 어둠조건에 두었다가 800r/min에서 3min동안 원심분리하여 원형질체들을 모 았다

감염된 원형질체에서 림시발현된 GFP의 형광은 공초점현미경(《Olympus FV1000》)으로 관찰하였다.

결과 및 론의

먼저 압시신산처리에 따라 At3g23880의 발현량 이 달라지는가를 보았다. At3g23880은 길이가 1 095bp 이며 엑손 1개로 되여있다.[2] RT-PCR산물의 전기 영동사진(그림 1)을 보면 대조로 리용한 ACT2유전 자증폭산물의 띠들은 밝기가 비슷하지만 At3g23880 에 해당한 띠들은 밝기가 차이난다. 즉 압시신산으 로 처리한 개체의 At3g23880발현량은 처리하지 않 은 대조개체에 비하여 적다. 이것은 At3g23880

그림 1. 압시신산처리때 애기장대에서 At3g23880의 발현량변화

1-압시신산처리개체의 At3g23880증폭산물, 2-대조개체의 At3g23880증폭산물, 3-압시 신산처리개체의 ACT2증폭산물, 4-대조 개체의 ACT2증폭산물, 5-DNA표식자

아가로즈겔전기영동상 1-재조합플라즈미드의 *NdeI* 및 *SacI*분해단편, 2-재조합플라즈미드를 주형으로 한 *At3g23880*의 PCR증폭산물, 3-DNA크기표식자

유전자가 외적으로 처리한 압시신산에 응답하여 내리조절되며 압시신산신호전달경로에 참가할수 있다는것을 보여준다.

다음으로 풀색형광단백질유전자 gfp를 융합 시킨 At3G23880유전자의 발현운반체를 만들었다.

At3G23880유전자가 클론화된 재조합운반체 pUC19(35S:gfp-At3g23880)로 Escherichia coli DH5α를 형질전환시키고 암피실린을 100μg/mL 첨가한 LB평판배지에서 37℃를 보장하면서 하루밤동안 배양하였다.

몇개의 균무지를 선발하여 암피실린을 100 μg/mL 첨가한 LB배지에 각각 접종하고 37℃에서 하루밤동안 진탕배양하였다. 다음 플라즈미드를 분리하고 제한효소(NdeI과 SacI)분해와 At3g23880-NdeIF 및 At3g23880-SacIR를 리용한 PCR증폭을 진행하였다. 0.7% 아가로즈겔전기영동결과(그림 2) 예상되는 크기의 띠들이 정확히 얻어졌다.

얻어진 재조합운반체 pUC19(35S:gfp-At3g23880) 를 애기장대의 원형질체에 감염시켜 림시발현시

켰다.

원형질체에서 림시발현된 GFP의 형광현미경사진(그림 3)으로부터 At3g23880의 발현산물이 기본적으로 핵안에 국재하고있는것을 알수 있다. 즉 At3g23880은 핵에서 기능을 수행하며 F-Box단백질로서 핵에서 전사인자의 분해를 통하여 전사조절에 참가할수 있다.

그림 3. 원형질체에서 림시발현된 *At3g23880*발현산물의 위치 ㄱ) 보임빛, ㄴ) 풀색형광, ㄸ) 융합

맺 는 말

애기장대에서 At3g23880은 외적으로 처리한 압시신산에 응답하여 발현량이 줄어들며 그 발현산물은 기본적으로 핵내에 국재한다.

참 고 문 헌

- [1] E. Lechner et al.; Curr. Opin. Plant. Biol., 9, 6, 631, 2006.
- [2] http://www. arabidopsis.org
- [3] X. Wang et al.; Plant J., 83, 300, 2015.
- [4] S. Liu et al.; Frontiers in Plant Science, 6, 388, 2015.
- [5] H. Tian et al.; Sci. Rep., 5, 17587, 2015.
- [6] S. Wang et al.; Plant Cell, 17, 1979, 2005.
- [7] Hainan Tian et al.; Plant Cell Environ., 40, 1, 2017.

주체109(2020)년 1월 5일 원고접수

ABA Response of At3g23880 and Subcellular Localization of At3g23880 in Arabidopsis

Kim Myong Uk, Han Jin Song

The expression level of *At3g23880* was reduced in response to exogenously applied ABA and At3g23880 was predominantly localized in the nucleus in arabidopsis.

Keywords: ABA response, F-box, arabidopsis