

American Modelica Conference 2020

Online Conference September 22nd – September 24th Mountain Daylight Time

American Modelica Conference 2020, September 22nd – September 24th

Zheng O'Neill, Session Chair

Thermofluid Systems & HVAC, 11:15am to 12:15pm, September 22nd, 2020

Dr. Zheng O'Neill is an Associate Professor and J. Mike Walker '66 Faculty Fellow II in J. Mike Walker '66 Department of Mechanical Engineering at Texas A&M University.

Fast Simulations of Air Conditioning Systems Using Spline-Based Table Look-Up Method (SBTL) with Analytic Jacobians

Lixiang Li, Modelon Inc, USA

Fast Simulations of Air Conditioning Systems Using Spline-Based Table Look-Up Method (SBTL) with Analytic Jacobians.

Lixiang Li¹ ,Jesse Gohl¹,John Batteh¹,Christopher Greiner²,Kai Wang²

¹Modelon Inc, USA

²Ford Motor Company, USA

Data-driven Prediction of Occupant Presence and Lighting Power: A Case Study for Small Commercial Buildings

Jing Wang, University of Colorado Boulder, USA

Data-driven Prediction of Occupant Presence and Lighting Power: A Case Study for Small Commercial Buildings

Jing Wang¹, Wangda Zuo¹, Sen Huang², Draguna Vrabie²

¹Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, USA

²Pacific Northwest National Laboratory, USA

Development and Verification of Control Sequences for Single-Zone Variable Air Volume System Based on ASHRAE Guideline 36

David II. Dium, Lawrence Berkeley National Laboratory, USA

odelon

Development and Verification of Control Sequences for Single-Zone Variable Air Volume System Based on **ASHRAE** Guideline 36

Kun Zhang, David H. Blum, Milica Grahovac, Jianjun Hu, Jessica Granderson, Michael Wetter Building Technology and Urban Systems Division Lawrence Berkeley National Laboratory

Our Sponsors

Platinum

Silver

