

Bliss Specification Guide

Happiness sounds just like this.

Bliss gives you – and your patients – plenty to smile about. Simple connectivity to wireless devices. Speech Variable Processing that delivers the natural sound Sonic is known for. And Speech Priority Noise Reduction specifically designed to make everyday conversations every bit enjoyable. Introduce your patients to Bliss. It's a conversation you'll be pretty happy about, too.

Bliss Fully delightful

Featuring the latest in digital sound processing technologies, Bliss raises the standards for the best hearing experience possible. Bliss includes sophisticated features, yet keeps operation simple. It's easy for you to fit and for your patients to use.

An emphasis on speech clarity Speech Variable Processing

preserves the nuances of speech – the soft and loud sounds that occur in every word. These small details enhance overall speech clarity and create rich, full, natural sound.

No more whistle and squeal Feedback is a thing of the past with Bliss. The Adaptive Feedback Canceller attacks feedback before it starts. Bliss removes offending signals – often before they are even heard – for squeal-free, easy listening.

Technologies to remove unwanted noise

Bliss uses multiple systems to identify and reduce sounds that could be noisy distractions.

- Sophisticated Directional
 Systems reduce unwanted noise so patients can stay engaged in their surroundings
- Speech Priority Noise Reduction works to separate speech from surrounding noise, making conversations comfortable and clear
- Impulse Noise Reduction suppresses unexpected loud sounds, like the clinking of silverware or jangling of keys
- Soft Noise Reduction reduces low-level sounds like the whir of a fan or hum of a refrigerator
- Wind Noise Reduction makes time spent outdoors more enjoyable by preventing wind sounds from being amplified

Blissfully simple programming Bliss is not only easy for your patients to use, it's equally simple for you to program with the EXPRESSfit fitting software.

- Pre-defined Environments make it simple to configure listening programs for common situations
- Data Logging makes it simple to fine-tune Bliss based on actual wear data
- Support for common Fitting Algorithms, including NAL-NL2 and our exclusive Best Fit Fast rationale

Feature overview

Sound Quality		
oodiid waality		
Signal Processing	•···········Speech Variab	le Processing ······
Frequency Bandwidth	10 kHz	8 kHz
Noise Management		
Adaptive Feedback Canceller		-
Wind Noise Reduction ¹		-
Soft Noise Reduction	•	-
Speech Priority Noise Reduction	4 levels	3 levels
Impulse Noise Reduction	•	
Directionality ¹		
Fixed Directionality	•	•
Adaptive Directionality	•	•
Hybrid Adaptive Directionality		
Binaural Coordination ²		
Volume & Program Change	•	•
Environment Classification		
Non-Telephone Ear Control (with Auto Telephone)	•	
Programming Options		
Universal Environment	•	
Manual Listening Programs³	4	4
Environments	14	11
Data Logging	•	
Data Learning	•	
nEARcom Wireless Programming ²	•	•
Patient Conveniences		
Push Button Mute	•	•
Audible Performance Indicators	•	•
Start-Up Delay	•	
Auto Telephone Detection¹	•	

Model overview

	IIC	CIC	CICP	ITCD	ITCPDW	ITED	ITEPDW	Nano RITE	miniBTE	BTE
Battery Size	10	10	10	312	312	13	13	312	13	13
Program Button			•	•	•	•	•			
Volume Control				•		•		*		
Telecoil				•	•	•	•			
Auto Telephone				•	•	•	•			•
Wireless accessories					•		•	•	•	•
DAI/FM										
Earhook										
Thin Tube										
IP57 Rating										
Power Receiver								•		

[■] STANDARD

 $[\]ensuremath{^{*}}$ Program Button can be programmed for volume control use

Bliss 100 BTE

		BTE with	Earhook	BTE with T	hin Tube 1.3	BTE with Thin Tube 0.9	
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	130	135 ¹⁾	127	131	123	127
OSPL 90, 1600 Hz	dB SPL	123	131	115	124	109	118
HFA OSPL 90	dB SPL	123	_	116	-	110	-
Full-on gain, peak	dB	63	68	59	63	56	60
Full-on gain, 1600 Hz	dB	55	62	46	56	41	49
HFA full-on gain	dB	55	-	48	-	42	-
Reference test gain	dB	46	55	38	48	32	43
Quiescent current	mA	1.1	1.1	1.1	1.1	1.1	1.1
Operating current	mA	1.2	1.1	1.2	1.1	1.2	1.1
Battery size		13	13	13	13	13	13
Distortion 500/800/1600 Hz	%	<2/<2/<2	<3/<2/<2	<2/<2/<2	<2/<2/<3	<2/<2/<2	<2/<2/<4
Frequency range	Hz	100-6100	-	100-6100	-	100-6100	-
Equivalent input noise 2]	dB SPL	15	15	17	16	19	17
Telecoil 1 mA/m 1600 Hz, IEC		82	90	75	84	69	78
Telecoil HFA SPLITS, ANSI		87	-	74	-	73	-

^{*} Measurements are taken with undamped earhook

^{**} FOG with 50 dB SPL input

¹ Special care should be taken when fitting and using a hearing instrument with maximum sound pressure capability in excess of

¹³² dB SPL (IEC 60318-4) since there may be a risk of impairing the remaining hearing of the hearing instrument user.

21 "Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

22 "cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 80 BTE

	BTE with	BTE with Earhook		BTE with Thin Tube 1.3		BTE with Thin Tube 0.9	
	2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator	
dB SPL	130	135 ^{1]}	127	131	123	127	
dB SPL	123	131	114	124	109	118	
dB SPL	123	-	115	_	110	-	
dB	63	68	59	63	56	60	
dB	54	63	46	55	40	50	
dB	55	_	47	-	42	-	
dB	46	56	37	49	32	43	
mA	1.1	1.1	1.1	1.1	1.1	1.1	
mΑ	1.2	1.1	1.2	1.1	1.2	1.1	
	13	13	13	13	13	13	
%	<2/<2/<2	<3/<2/<2	<2/<2/<2	<2/<2/<3	<2/<2/<2	<2/<2/<4	
Hz	100-6100	-	100-5200	-	100-6100	-	
dB SPL	14	14	16	16	19	17	
	82	90	74	84	68	78	
	87	-	74	_	73	-	
	dB SPL dB SPL dB dB dB dB mA mA Hz	dB SPL 130 dB SPL 123 dB SPL 123 dB SPL 123 dB 63 dB 54 dB 55 dB 46 mA 1.1 mA 1.2 T3 3 % <2/<2/<2	dB SPL 130 135 II dB SPL 123 131 dB SPL 123 - dB 63 68 dB 54 63 dB 55 - dB 46 56 mA 1.1 1.1 mA 1.2 1.1 mA 1.2 1.1 M <2/<2/<2	dB SPL 130 135 II 127 dB SPL 123 131 114 dB SPL 123 - 115 dB 63 68 59 dB 54 63 46 dB 55 - 47 dB 46 56 37 mA 1.1 1.1 1.1 mA 1.2 1.1 1.2 mA 1.2 1.1 1.2 tall 13 13 13 % <2/<2/<2	dB SPL 130 135 II 127 131 dB SPL 123 131 114 124 dB SPL 123 - 115 - dB 63 68 59 63 dB 54 63 46 55 dB 55 - 47 - dB 46 56 37 49 mA 1.1 1.1 1.1 1.1 mA 1.2 1.1 1.2 1.1 mA 1.2 2.2	dB SPL 130 135 ll 127 131 123 dB SPL 123 131 114 124 109 dB SPL 123 131 115 - 110 dB SPL 123 - 115 - 110 dB 63 68 59 63 56 dB 54 63 46 55 40 dB 55 - 47 - 42 dB 46 56 37 49 32 mA 1.1 1.1 1.1 1.1 1.1 1.1 mA 1.2 1.1 1.2 1.1 1.2 mA 1.2 1.1 1.2 1.1 1.2 mA 1.2 1.1 1.2 1.1 1.2 mA 1.2 1.3 13 13 13 13 13 13 % <2/<2/2<	

^{*} Measurements are taken with undamped earhook

^{**} FOG with 50 dB SPL input

¹ Special care should be taken when fitting and using a hearing instrument with maximum sound pressure capability in excess of

¹³² dB SPL (IEC 60318-4) since there may be a risk of impairing the remaining hearing of the hearing instrument user.

21 "Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

22 "cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 100 **miniBTE**

		miniBTE with Earhook		miniBTE with Thin Tube 1.3		miniBTE with Thin Tube 0.9	
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	125	130	123	127	120	124
OSPL 90, 1600 Hz	dB SPL	117	125	106	115	100	109
HFA OSPL 90	dB SPL	117	_	113	-	106	-
Full-on gain, peak	dB	58	63	56	59	53	57
Full-on gain, 1600 Hz	dB	51	59	39	47	33	43
HFA full-on gain	dB	50	-	46	-	39	-
Reference test gain	dB	40	50	36	39	28	34
Quiescent current	mA	1.0	1.0	1.0	1.0	1.0	1.1
Operating current	mA	1.1	1.1	1.1	1.1	1.1	1.1
Battery size		13	13	13	13	13	13
Distortion 500/800/1600 Hz	%	<2/<1/<1	<2/<2/<1	<1/<1/<1	<1/<1/<1	<1/<1/<1	<1/<1/<1
Frequency range	Hz	100-5960	_	100-5620	-	100-6131	-
Equivalent input noise 1)	dB SPL	18	18	16	18	19	24

^{*} Measurements are taken with undamped earhook

^{**} FOG with 50 dB SPL input

[&]quot;Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"2cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 80 miniBTE

		miniBTE with Earhook		miniBTE with	miniBTE with Thin Tube 1.3		Thin Tube 0.9
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	125	130	123	127	120	124
OSPL 90, 1600 Hz	dB SPL	117	125	106	115	100	109
HFA OSPL 90	dB SPL	117	_	113	-	106	-
Full-on gain, peak	dB	58	63	56	59	53	57
Full-on gain, 1600 Hz	dB	51	59	39	47	33	43
HFA full-on gain	dB	50	-	46	-	39	-
Reference test gain	dB	40	50	36	39	28	34
Quiescent current	mA	1.0	1.0	1.0	1.0	1.0	1.0
Operating current	mA	1.1	1.1	1.1	1.1	1.1	1.1
Battery size		13	13	13	13	13	13
Distortion 500/800/1600 Hz	%	<2/<1/<1	<2/<2/<1	<1/<1/<1	<1/<1/<1	<1/<1/<1	<1/<1/<1
Frequency range	Hz	100-5790	-	100-5620	_	100-6130	-
Equivalent input noise 1)	dB SPL	18	18	16	18	19	24

^{*} Measurements are taken with undamped earhook

^{**} FOG with 50 dB SPL input

[&]quot;Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"2cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 100 **Nano RITE**

		M-Sp	eaker	P-Sp	eaker
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	109	121	124	133*
OSPL 90, 1600 Hz	dB SPL	106	115	122	131
HFA OSPL 90	dB SPL	106	-	119	-
Full-on gain, peak	dB	50	61	65	75
Full-on gain, 1600 Hz	dB	43	53	61	70
HFA full-on gain	dB	45	-	59	-
Reference test gain	dB	29	37	43	55
Quiescent current	mA	1.1	1.1	1.1	1.1
Operating current	mA	1.1	1.1	1.4	1.2
Battery size		312	312	312	312
Distortion 500/800/1600 Hz	%	<2/<2/<2	<3/<3/<2	<2/<2/<2	<2/<3/<2
Frequency rangei	Hz	100-6700	-	100-6900	-
Equivalent input noise 1)	dB (A)	18	20	17	14
Telecoil 1 mA/m 1600 Hz, IEC	dB SPL	70	80	88	97
Telecoil HFA SPLITS	dB SPL	74	-	89	-

^{*} Special care should be taken when fitting and using a hearing instrument with maximum sound pressure capability in excess of 132 dB SPL (IEC 60318-4) since there may be risk of impairing the remaining hearing of the hearing inatrument user.
** FOG with 50 dB SPL input

[&]quot;Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."
"2cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 80 **Nano RITE**

		M-Speaker		P-Speaker		
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator	
OSPL 90, peak	dB SPL	109	120	123	132*	
OSPL 90, 1600 Hz	dB SPL	105	114	122	131	
HFA OSPL 90	dB SPL	106	-	119	-	
Full-on gain, peak	dB	49	60	64	73	
Full-on gain, 1600 Hz	dB	44	52	61	69	
HFA full-on gain	dB	44	-	58	-	
Reference test gain	dB	29	37	43	54	
Quiescent current	mA	1.1	1.1	1.1	1.1	
Operating current	mA	1.1	1.1	1.4	1.2	
Battery size		312	312	312	312	
Distortion 500/800/1600 Hz	%	<2/<2/<2	<3/<3/<2	<2/<2/<2	<2/<2/<2	
Frequency rangei	Hz	100-6700	-	100-6900	-	
Equivalent input noise 1]	dB (A)	17	19	16	14	
Telecoil 1 mA/m 1600 Hz, IEC	dB SPL	70	79	88	95	
Telecoil HFA SPLITS	dB SPL	74	-	89	-	

^{*} Special care should be taken when fitting and using a hearing instrument with maximum sound pressure capability in excess of 132 dB SPL (IEC 60318-4) since there may be risk of impairing the remaining hearing of the hearing inatrument user.
** FOG with 50 dB SPL input

[&]quot;Figural Entraction of the second of the sec

Bliss 100 ITEPDW | ITED

		ITEI	PDW	IT	ED
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	121	130	117	128
OSPL 90, 1600 Hz	dB SPL	115	122	111	121
HFA OSPL 90	dB SPL	116	-	113	-
Full-on gain, peak	dB	52	62	50	61
Full-on gain, 1600 Hz	dB	48	56	41	51
HFA full-on gain	dB	48	-	43	-
Reference test gain	dB	36	46	36	44
Quiescent current	mA	1.1	1.1	0.9	0.9
Operating current	mA	1.1	1.1	1.0	0.9
Battery size		13	13	13	13
Distortion 500/800/1600 Hz	%	<1/<1/<1	<1/<1	<2/<2/<2	<2/<3/<2
Frequency range	Hz	100-7720	-	100-9200	-
Equivalent input noise 1)	dB SPL	17	18	19	22
Telecoil 1 mA/m 1600 Hz, IEC	dB SPL	78	87	72	81
Telecoil HFA SPLITS, ANSI	dB SPL	93	-	94	-

^{**} FOG with 50 dB SPL input

Tequivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"Zec" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 80 ITEPDW | ITED

		ITEF	PDW	IT	ED
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	121	130	117	128
OSPL 90, 1600 Hz	dB SPL	115	122	111	120
HFA OSPL 90	dB SPL	116	-	112	=
Full-on gain, peak	dB	52	62	50	63
Full-on gain, 1600 Hz	dB	48	56	41	50
HFA full-on gain	dB	48	-	43	-
Reference test gain	dB	36	46	36	44
Quiescent current	mA	1.1	1.1	0.9	0.9
Operating current	mA	1.1	1.1	1.0	0.9
Battery size		13	13	13	13
Distortion 500/800/1600 Hz	%	<1/<1/<1	<1/<1	<2/<2/<2	<2/<2/<2
Frequency range	Hz	100-6880	-	100-7100	-
Equivalent input noise 1]	dB SPL	17	18	19	22
Telecoil 1 mA/m 1600 Hz, IEC	dB SPL	78	87	72	81
Telecoil HFA SPLITS, ANSI	dB SPL	93	-	94	-

^{**} FOG with 50 dB SPL input

Tequivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"2cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 100 **ITCPDW | ITCD**

		ITCI	PDW	IT	CD
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	121	130	117	128
OSPL 90, 1600 Hz	dB SPL	115	122	111	121
HFA OSPL 90	dB SPL	116	-	113	=
Full-on gain, peak	dB	52	62	50	61
Full-on gain, 1600 Hz	dB	48	56	41	51
HFA full-on gain	dB	48	-	43	-
Reference test gain	dB	36	46	36	44
Quiescent current	mA	1.1	1.1	0.9	0.9
Operating current	mA	1.1	1.1	1.0	0.9
Battery size		312	312	312	312
Distortion 500/800/1600 Hz	%	<1/<1/<1	<1/<1/<1	<2/<2/<2	<2/<3/<2
Frequency range	Hz	100-7720	-	100-9200	-
Equivalent input noise 1)	dB SPL	17	18	19	22
Telecoil 1 mA/m 1600 Hz, IEC	dB SPL	78	87	72	81
Telecoil HFA SPLITS, ANSI	dB SPL	93	-	94	-

^{**} FOG with 50 dB SPL input

Tequivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"Zec" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 80 ITCPDW | ITCD

		ITC	PDW	IT	CD
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	121	130	117	128
OSPL 90, 1600 Hz	dB SPL	115	122	111	120
HFA OSPL 90	dB SPL	116	-	112	=
Full-on gain, peak	dB	52	62	50	63
Full-on gain, 1600 Hz	dB	48	56	41	50
HFA full-on gain	dB	48	-	43	-
Reference test gain	dB	36	46	36	44
Quiescent current	mA	1.1	1.1	0.9	0.9
Operating current	mA	1.1	1.1	1.0	0.9
Battery size		312	312	312	312
Distortion 500/800/1600 Hz	%	<1/<1/<1	<1/<1	<2/<2/<2	<2/<2/<2
Frequency range	Hz	100-6880	-	100-7100	-
Equivalent input noise 1]	dB SPL	17	18	19	22
Telecoil 1 mA/m 1600 Hz, IEC	dB SPL	78	87	72	81
Telecoil HFA SPLITS, ANSI	dB SPL	93	-	94	-

^{**} FOG with 50 dB SPL input

Tequivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"2cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 100 CICP I CIC

		CICP		CIC	
		2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
OSPL 90, peak	dB SPL	116	127	109	120
OSPL 90, 1600 Hz	dB SPL	108	117	101	109
HFA OSPL 90	dB SPL	110	-	102	-
Full-on gain, peak	dB	48	59	42	52
Full-on gain, 1600 Hz	dB	42	51	34	42
HFA full-on gain	dB	42	-	35	-
Reference test gain	dB	33	44	24	34
Quiescent current	mA	0.9	0.9	0.7	0.7
Operating current	mΑ	1.0	1.0	0.8	0.7
Battery size		10	10	10	10
Distortion 500/800/1600 Hz	%	<1/<1/<1	<2/<2/<2	<1/<1/<1	<2/<2/<2
Frequency range	Hz	100-9720	-	100-6680	-
Equivalent input noise 1)	dB SPL	22	23	21	24

^{**} FOG with 50 dB SPL input

Tequivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"Zec" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 80 CICP I CIC

	CICP		CIC	
	2cc Coupler	Ear Simulator	2cc Coupler	Ear Simulator
dB SPL	116	127	109	120
dB SPL	108	117	101	109
dB SPL	110	-	102	-
dB	48	59	42	52
dB	42	51	34	42
dB	42	-	35	-
dB	33	44	24	34
mA	0.9	0.9	0.7	0.7
mA	1.0	1.0	0.8	0.7
	10	10	10	10
%	<1/<1/<1	<2/<2/<2	<1/<1/<1	<2/<2/<2
Hz	100-7290	-	100-6879	-
dB SPL	22	23	21	24
	dB SPL dB SPL dB dB dB dB mA mA Hz	dB SPL 116 dB SPL 108 dB SPL 110 dB 48 dB 42 dB 33 mA 0.9 mA 1.0 % <1/<1/<1	dB SPL 116 127 dB SPL 108 117 dB SPL 110 - dB 48 59 dB 42 51 dB 42 - dB 33 44 mA 0.9 0.9 mA 1.0 1.0 % <1/<<1/<	dB SPL 116 127 109 dB SPL 108 117 101 dB SPL 110 - 102 dB 48 59 42 dB 42 51 34 dB 42 - 35 dB 33 44 24 mA 0.9 0.9 0.7 mA 1.0 1.0 0.8 10 10 10 % <1/<<1/td> <2/<2/<2

^{**} FOG with 50 dB SPL input

Tequivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"Zec" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Bliss 100 IIC

		IIC		
		2cc Coupler	Ear Simulator	
OSPL 90, peak	dB SPL	108	119	
OSPL 90, 1600 Hz	dB SPL	99	108	
HFA OSPL 90	dB SPL	100	-	
Full-on gain, peak	dB	35	46	
Full-on gain, 1600 Hz	dB	31	40	
HFA full-on gain	dB	32	-	
Reference test gain	dB	23	33	
Quiescent current	mA	0.8	0.8	
Operating current	mA	0.8	0.8	
Battery size		10	10	
Distortion 500/800/1600 Hz	%	<2/<2	<2/<2/	
Frequency range	Hz	100-8900	-	
Equivalent input noise 1)	dB SPL	20	22	

^{**} FOG with 50 dB SPL input

"Equivalent input noise A-weighted. Technical data measured with expansion, corresponding to the test box measurement settings."

"2cc" refers to a coupler according to IEC 60318-5. "Ear simulator" refers to a coupler according to IEC 60318-4. Applied versions: IEC 60118-7:2005, IEC 60118-0:1994 and ANSI S3.22:2009.

Color Options

Bliss BTE and miniBTE

Bliss Nano RITE

beige dark brown dark grey

metallic metallic metallic metallic

Bliss custom instruments

(IIC Only)

beige

medium brown

beige

www.sonici.com

