#### Function Approximation

VFA: Temporal Difference

#### Marius Lindauer



102

Leibniz Universität Hannover



#### Recall: Temporal Difference Learning w/ Lookup Table

- ullet Uses bootstrapping and sampling to approximate  $V^\pi$
- Updates  $V^{\pi}(s)$  after each transition (s, a, r, s')

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is  $r + \gamma V^{\pi}(s')$ , a biased estimate of the true value  $V^{\pi}(s)$
- Represent value for each state with a separate table entry



- ullet Uses bootstrapping and sampling to approximate  $V^\pi$
- ullet Updates  $V^\pi(s)$  after each transition (s,a,r,s')

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is  $r + \gamma V^{\pi}(s')$ , a biased estimate of the true value  $V^{\pi}(s)$
- In value function approximation, target is  $r+\gamma \hat{V}^\pi(s';\mathbf{w})$ , a biased and approximated estimate of the true value  $V^\pi(s)$
- 3 forms of approximation:
  - sampling
  - bootstrapping
  - VFA



- In value function approximation, target is  $r + \gamma \hat{V}^{\pi}(s'; \mathbf{w})$ , a biased and approximated estimate of the true value  $V^{\pi}(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs

$$\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \mathbf{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}^{\pi}(s_3; \mathbf{w}) \rangle, \dots$$

• Find weights to minimize mean squared error

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(r_j + \gamma \hat{V}^{\pi}(s_{j+1}, \mathbf{w}) - \hat{V}(s_j; \mathbf{w}))^2]$$



- In value function approximation, target is  $r+\gamma \hat{V}^\pi(s';\mathbf{w})$ , a biased and approximated estimate of the true value  $V^\pi(s)$
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs

$$\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \mathbf{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}^{\pi}(s_3; \mathbf{w}) \rangle, \dots$$

In linear TD(0):

$$\Delta \mathbf{w} = \alpha (r + \gamma \hat{V}^{\pi}(s'; \mathbf{w}) - \hat{V}^{\pi}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{V}^{\pi}(s; \mathbf{w})$$

$$= \alpha (r + \gamma \hat{V}^{\pi}(s'; \mathbf{w}) - \hat{V}^{\pi}(s; \mathbf{w})) \mathbf{x}(s)$$

$$= \alpha (r + \gamma \mathbf{x}(s')^{T} \mathbf{w} - \mathbf{x}(s)^{T} \mathbf{w}) \mathbf{x}(s)$$



Initialize 
$$\mathbf{w} = 0$$
,  $k = 1$ ; Loop

- Sample tuple  $(s_k, a_k, r_k, s_{k+1})$  given  $\pi$
- Update weights:

$$\mathbf{w} = \mathbf{w} + \alpha (r + \gamma \mathbf{x}(s')^T \mathbf{w} - \mathbf{x}(s)^T \mathbf{w}) \mathbf{x}(s)$$

• k = k + 1



# Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

ullet Define the mean squared error of a linear value function approximation for a particular policy  $\pi$  relative to the true value as

$$\mathsf{MSVE}(\mathbf{w}) = \sum_{s \in S} d(s) (V^\pi(s) - \hat{V}^\pi(s; \mathbf{w}))^2$$

- where
  - d(s) : stationary distribution of  $\pi$  in the true decision process
  - $\hat{V}(s; \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w}$ , a linear value function approximation
- TD(0) policy evaluation with VFA converges to weights  $\mathbf{w}_T D$  which is a constant factor of the minimum mean squared error possible:

$$\mathsf{MSVE}(\mathbf{w}_T D) \le \frac{1}{1 - \gamma} \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}(s; \mathbf{w}))^2$$

