Machine Learning Notebook

Cong Bao

Contents

1	Intr	roduction	1		
	1.1	About this Notebook	1		
	1.2	Policy of Use	1		
2	Mat	thematics Basics	2		
	2.1	Probability	2		
		2.1.1 Basic Rules	2		
		2.1.2 Common Probability Distributions	4		
	2.2	Linear Algebra	4		
	2.3	Calculus	4		
	2.4	Informatics	4		
	2.5	Optimization	4		
3	Mac	Tachine Learning Basics			
4	Regression				
	4.1	Linear Regression	6		
	4.2	Non-linear Regression	6		
	4.3	Logistic Regression	6		
5	Sup	oport Vector Machines	7		
\mathbf{Bi}	bliog	graphy	8		
Δ	Test	t	9		

Introduction

- 1.1 About this Notebook
- 1.2 Policy of Use

Mathematics Basics

2.1 Probability

2.1.1 Basic Rules

Three Axioms of Probability Let Ω be a sample space. A probability assigns a real number P(X) to each event $X \subseteq \Omega$ in such a way that

- 1. $P(X) \ge 0, \forall X$
- 2. If X_1, X_2, \ldots are pairwise disjoint events $(X_1 \cap X_2 = \emptyset, i \neq j, i, j = 1, 2, \ldots)$, then $P(\bigcup_{i=1}^{\infty} X_i) = \sum_{i=1}^{\infty} P(X_i)$. (This property is called countable additivity.)
- 3. $P(\Omega) = 1$

Joint Probability The probability both event A and B occur. $P(X,Y) = P(X \cap Y)$.

Marginalization The probability distribution of any variable in a joint distribution can be recovered by integrating (or summing) over the other variables.

- 1. For continuous r.v. $P(x) = \int P(x,y) dy$; $P(y) = \int P(x,y) dx$.
- 2. For discrete r.v. $P(x) = \sum_{y} P(x, y)$; $P(y) = \sum_{x} P(x, y)$.
- 3. For mixed r.v. $P(x,y) = \sum_{w} \int P(w,x,y,z) dz$, where w is discrete and z is continuous.

Conditional Probability P(X = x | Y = y) is the probability X = x occurs given the knowledge Y = y occurs. Conditional probability can be extracted from joint probability that

$$P(x|y = y^*) = \frac{P(x, y = y^*)}{\int P(x, y = y^*) dx} = \frac{P(x, y = y^*)}{P(y = y^*)}$$

Usually, the formula is written as $P(x|y) = \frac{P(x,y)}{P(y)}$.

Product Rule The formula can be rearranged as P(x, y) = P(x|y) P(y) = P(y|x) P(x). In case of multiple variables

$$P(w, x, y, z) = P(w, x, y|z) P(z)$$

$$= P(w, x|y, z) P(y|z) P(z)$$

$$= P(w|x, y, z) P(x|y, z) P(y|z) P(z)$$

Independence If two variables x and y are independent, then r.v. x tells nothing about r.v. y (and vice-versa)

$$P(x|y) = P(x)$$

$$P(y|x) = P(y)$$

$$P(x,y) = P(x) P(y)$$

Baye's Rule By rearranging formula in Product Rule, we have

$$P(y|x) = \frac{P(x|y) P(y)}{P(x)}$$

$$= \frac{P(x|y) P(y)}{\int P(x,y) dy}$$

$$= \frac{P(x|y) P(y)}{\int P(x|y) P(y) dy}$$

Expectation Expectation tells us the excepted or average value of some function f(x), taking into account the distribution of x.

$$\mathbf{E}[f(x)] = \sum_{x} f(x)P(x)$$
$$\mathbf{E}[f(x)] = \int f(x)P(x) dx$$

Definition in two dimensions: $\mathbf{E}\left[f(x,y)\right] = \iint f(x,y)P\left(x,y\right)dx\ dy$

Function $f(\bullet)$	Expectation
x^k	k^{th} moment about zero
$(x-\mu_x)^k$	k^{th} moment about the mean

Function $f(\bullet)$	Expectation
x	mean, μ_x
$(x-\mu_x)^2$	variance
$(x-\mu_x)^3$	skew
$(x-\mu_x)^4$	kurtosis
$(x-\mu_x)(x-\mu_y)$	covariance of x and y

Besides, Expectation has the following four rules

- 1. Expected value of a constant is the constant $\mathbf{E}\left[\kappa\right]=\kappa.$
- 2. Expected value of constant times function is constant times excepted value of function $\mathbf{E}[kf(x)] = k\mathbf{E}[f(x)].$
- 3. Expectation of sum of functions is sum of expectation of functions $\mathbf{E}[f(x) + g(y)] = \mathbf{E}[f(x)] + \mathbf{E}[g(x)].$

2.1.2 Common Probability Distributions

Bernoulli

Beta

Categorical

Dirichlet

Univariable Normal

Normal Inverse Gamma

Multivariate Normal

Normal inverse Wishart

- 2.2 Linear Algebra
- 2.3 Calculus
- 2.4 Informatics
- 2.5 Optimization

Machine Learning Basics

Regression

- 4.1 Linear Regression
- 4.2 Non-linear Regression
- 4.3 Logistic Regression

Support Vector Machines

Bibliography

Appendix A

Test

test