The Fundamental Group of Small Cover

2017年7月31日

1 引言

1.1 small cover

凸多面体 P 是指 \mathbb{R}^n 中非空有限个点集的凸包,或者等价的是由 \mathbb{R}^n 中有限个半空间的有界交,即

$$P = conv\{p_1, p_2, \dots, p_\ell\} = \{x \in \mathbb{R}^n : \langle l_i, x \rangle \ge -a_i, i = 1, 2, \dots, m\}$$

其中 l_i 为 $(\mathbb{R}^n)^*$ 中的线性函数, $a_i \in \mathbb{R}$.

凸多面体的维数就是指凸包或者有界交的维数。若无特殊说明,本文中的所考虑的 n 维多面体均指 \mathbb{R}^n 中的 n 维凸多面体,记为 P^n ,P 的边界记为 K. 另外我们把 P 的内部记为 P° . 凸子集 $F \subset P$ 称为 P 的面,若 F 是多面体 P 与某一个半空间 $V = \{x \in \mathbb{R}^n : \langle l, x \rangle \geq -a \}$ 的交,且 $P^\circ \cap \partial V = \varnothing$. 子集 \varnothing 和 P 本身都为 P 的面,称为平凡面;其他的面称为 真面. P 的 0 维面称为 P 的项点,P 的 1 维面称为 P 的边,P 的 n-1 维面称为 P 的 facet. 记 f_i 为 P 的 i 维面的个数,称 $\mathbf{f}(P) = (f_0, f_1, \cdots, f_{n-1})$ 为 P 的 f — vector. 取 $f_{-1} = 1$,则 P 的 h — vector (h_0, h_1, \cdots, h_n) 由下面等式定义

$$h_0 t^n + \dots + h_{n-1} t + h_n = (t-1)^n + f_0 (t-1)^{n-1} + \dots + f_{n-1}$$

由 Dehn-Sommerville 关系知 $h_i = h_{n-i}, i = 0, 1, \dots, n$,为方便我们统一将 P 的 facets 的个数记为 $f_{n-1} = m$,即 P^n 的 facets 集为 $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$; 把 $h_1 = h_{n-1}$ 记为 κ ,把 $h_2 = h_{n-2}$ 记为 ω .

称多面体 P^n 是单的,若 P^n 的每个顶点恰好是 P + n 个 facets 的交,等价地,每个顶点处恰好有 n 条边. 单多面体中任意余维数为 k 的面 F 总

可以 (唯一) 表示为 $F = F_1 \cap F_2 \cap \cdots \cap F_k$,其中 F_1, F_2, \cdots, F_k 为包含 F 的 facets.

取 $\mathbb{Z}_2 = \{1, -1\}$ 为二元乘法群或者模空间, \mathbb{Z}_2^n 表示它们的乘积, e_i 表示第 i 个标准向量。设 P^n 为 n 维单凸多面体, \mathcal{F} 为 P^n 的 facets 集,对每一个 facet $F_i \subset \mathcal{F}$,定义一个染色 $\lambda(F_i) \in \mathbb{Z}_2^n$,使得对 P^n 的每一个顶点 $p = F_1 \cap F_2 \cap \cdots \cap F_n$,满足 $span\{\lambda(F_1),\lambda(F_2),\cdots,\lambda(F_n)\} \cong \mathbb{Z}_2^n$ (对任意多面体,这样的染色不一定存在)。对任意点 $x \in P$,记 F(x) 为 P^n 中包含 x 为相对内点的唯一的面,例如 x 为 P^n 内部的点时,则 $F(x) = P^n$; x 为 P^n 的顶点时,则 $F(x) = F_1 \cap F_2 \cap \cdots \cap F_n$,其中 $\{F_1,F_2,\cdots,F_n\}$ 为点 x 附近的 n 个 facets. 不妨设 $F(x) = F_1 \cap F_2 \cap \cdots \cap F_k$,记 $G_{F(x)} = span\{\lambda(F_1),\lambda(F_2),\cdots,\lambda(F_k)\} = span\{\lambda(F_i):x \in F_i\}$.

则构造 small cover 为

$$M_P^n = (P^n \times \mathbb{Z}_2^n)/\sim$$

 $(x,g) \sim (y,h)$ 当且仅当 $x = y, g^{-1}h \in G_{F(x)}$

设 $\pi: M_P \longrightarrow P$ 为一个自然的投射. 事实上,将 $P^n \cong \mathcal{R}/\mathcal{Z}_2^n$ 看为 orbifold,则 small cover 是一个 right-angle Coxeter orbifold,局部同构 orbifold $\mathcal{R}/\mathcal{Z}_2^n$,映射 $\pi: M_P \longrightarrow P$ 是 P 上的一个正则的 orbifold covering, \mathcal{Z}_2^n 是它的 covering transformation group.

命题 1.1 small cover 为连通闭流形.

证明: convex polytope, coxeter orbifolds and torus action 性质 1.7 $\lambda: \mathcal{F} \longrightarrow \mathbb{Z}_2^n$ 称为 small cover M_P 的示性函数.

定义 1 facets-pair structure of X.

若连通拓扑空间 X 可由若干个单凸多面体 $\{P_l^n: l=1,2,\cdots,N\}$ 粘合 而成,我们记 P_l 的第 i 个 facet F_i 为 $F_{i,l}$,并且满足下面两个条件:

1、任意 facet F_{i,l_1} 唯一配对 F_{j,l_2} 且存在一个同痕 $\tau_{i,l_1}: F_{i,l_1} \longrightarrow F_{j,l_2}$ 与 $\tau_{j,l_1}: F_{j,l_2} \longrightarrow F_{i,l_1}$ 使得 $\tau_{i,l_1} = \tau_{j,l_2}^{-1}$,我们称 $\hat{F} = \{F_{i,l_1}, F_{j,l_2}\}$ 为一个 facet 对,称 F_{j,l_2} 为 F_{i,l_1} 的对 facet

2、对任意余二维面 $f = F_{i_1,l_1} \cap F_{i_2,l_1}$, 如果 $\tau_{i_1,l_1}(f) = F_{j_1,l_2} \cap F_{j_3,l_2}$, $\tau_{i_2,l_1}(f) = F_{j_2,l_4} \cap F_{j_4,l_4}$, 则 $\tau_{j_3,l_2} \tau_{i_1,l_1}(f) = \tau_{j_4,l_4} \tau_{i_2,l_1}(f) = F_{i_3,l_3} \cap F_{i_4,l_3}$. 这里不排除 $F_{j_2,l_4} = F_{j_3,l_2}$ 或者 $F_{i_2,l_1} = F_{i_3,l_3}$.

则我们称 $S = \{\hat{F_{i,l}}, \tau_{i,l}\}$ 为 $\{P_l^n\}$ 上的一个 facets-pairing structure, $\tau_{i,l_1}: F_{i,l_1} \longrightarrow F_{j,l_2}$ 为 S 的 structure map. 记一步,若 X 为闭的,我们称 S 是 M_P 的一个完全的 facets-pairing structure

事实上, \mathcal{F} 上的示性函数 $\lambda: \mathcal{F} \longrightarrow \mathbb{Z}_2^n$ 决定了 M_P 上的一个配对结构. 多面体 (P^n,g) 的 facets F_i 与多面体 (P^n,h) 的 facets F_j 相粘,当且仅当 $F_i = F_j, \lambda(F_i)^{-1}\lambda(F_j) = g^{-1}h$. 反之,若知道 $\{P_l^n: l = 1, 2, \cdots, N\}$ 上的一个完全配对结构,我们也可以构造 M_P .

1.2 example

例 1 当 $P^n = \triangle^n$ 时, \mathcal{F} 上本质上只有一种染色, 如 n = 2 时,

先将 P 在一个点处粘,得到一个大的四边形,由染色信息知它的对边沿着箭头方向粘,这是一个 RP^2 .

例 2 当 $P^2 = I^2$ 时, F 上有下面两种不同的染色,

同样的操作, 我们可以分别得到 T^2 和 Klein bottle.

例 3 (P^2 是一个 m 边形时)

 M_P 是由 $4 \land m$ -gon 沿边粘成的曲面,所以 M_P 的欧拉数为 $\chi(M_P)=4-m$. 当 m 为奇数时, M_P 为 $m-2 \land RP^2$ 的连通和;当 m 为偶数时, M_P 为 $m-2 \land RP^2$ 的连通和或着为 $\frac{m-2}{2} \land T^2$ 的连通和. 所以 $small\ cover$ 决定了除 S^2 外的所有二维闭曲面.

在本文中,我们主要通过构造 small cover 的不同胞腔分解来计算基本群的群表示. 我们由 Hurewicz 定理知道,胞腔复形的基本群可以由它们的二维骨架确定,所以在本文中,我们构造了 small cover 的两种胞腔结构, 计算基本群时,仅考虑它们的二维骨架.

2 dual cell structure

我们首先将 $|\mathbb{Z}_2^n| = 2^n$ 个多面体 P^n 的 copy 在 P 的任一项点 p_0 处粘合,得到一个大的多面体 $Q^n = P \times \mathbb{Z}_2^n / \sim$,这里 Q 也可以看作将多面体 P 沿着它的一点 p_0 附近的 facets 作反射得到,所以对于 M_P ,局部上 $(\mathbb{Z}_2^n$ 不变) 都可由反射构造,染色信息实际上不决定 M_P 的局部信息.

由 Q 的构造知, Q^n 中的每一个 P 自然地拥有一个标号 $l \in \mathbb{Z}_2^n$,我们记第 l 个多面体 P 为 (P,l)或 P_l . 若 (P,l) 的 face $F_i^k \subset \partial Q$,此时 F_i^k 称为 Q 的外 face,否则称为 Q 的内 face,分别记为 $in(F_i^k)$, $out(F_i^k)$. 同上我们仍将将 Q 中 (P,l) 的第 i 个 facet F_i 记为 $F_{i,l}$. 接下来把 Q 的外 facets 按照染色信息配对粘合就可以得到商空间—small cover M_P ,记 $F_{i,l}$ 的对 facet 为 $F_{i,l(i)}$. Q^n 到 P^n 有一个自然地投射,我们记为 $\bar{\pi}:Q\longrightarrow P$.

Q 的 facets F_{i,l_1} 与 F_{j,l_2} 粘,当且仅当它们对应 P 的同一个 facets, 且 $l_1^{-1}l_2=\lambda(F_i)^{-1}\lambda(F_j)$.

下面构造 M_P 的一个 duall cell constrction。我们记 M_P 的 k 维骨架为 $M_P[k]$. 首先我们取点 p_0 为 $M_P[0]$. 我们在 Q 的余 1 维面处构造横截的 1-cells. 对 Q 的每对 facets pair $\{F_{i,l_1},F_{i,l_2}\}$ (包括所有的内 facets、外 facets),任取 F_{i,l_1} , F_{i,l_2} 内部的点 a_{i,l_1},a_{i,l_2} (不妨取为 F_{i,l_1} , F_{i,l_2} 的重心),使得 $\overline{\pi}(a_{i,l_1})=\overline{\pi}(a_{i,l_2})=a_i$,在 Q 的内部取连接 a_{i,l_1},a_{i,l_2} ,和 p_0 的两条简单有向道路(不妨取为直线段),不妨记为 $\overline{a_{i,l_1}},\overline{a_{i,l_2}}$,则 $\overline{a_{i,l_1}}(\overline{a_{i,l_2}})^{-1}$ 为 M_P 中以 p_0 为起点的一条有向闭路,不妨记为 x_{i,l_1} ,另外记 $x_{i,l_2}=x_{i,l_1}^{-1}$,它表示 M_P 中以 p_0 为起点的有向闭路 $\overline{a_{i,l_2}}(\overline{a_{i,l_1}})^{-1}$. 不考虑 $x_{i,l_1}(orx_{i,l_2})$ 的方向,则 $x_{i,l_1}-\{p_0\}\cong x_{i,l_2}-\{p_0\}\cong e^1$,即 M_P 中的每一对 facets pair 都决定了一个 1-cell. 在上述构造中,我们总可以使所有 $\{x_{i,l_1}\}$ 仅交于 0-skelton p_0 处. 这样我们就获得 M_P 的 1-skelton $M_P[1]=\bigvee x_{i,l_1}$.

我们在余 2 维面处构造 2 - cells. 设 $f_1 = F_{i,l} \cap F_{j,l}$ 为 Q 的任意一个余 2 维面,则令 $f_2 = F_{i,l(i)} \cap F_{j,l(i)}$, $f_3 = F_{i,l(i)l(j)} \cap F_{j,l(i)l(j)}$, $f_4 = F_{i,l(j)} \cap F_{j,l(j)}$,使得 $\bar{\pi}(f_k)$,k = 1, 2, 3, 4 在 P 中的像一样,记为 f. 取 f 内部的一个点 b,对应 f_k 上的点设为 b_k . 取 V_1 为经过点 b_k , p_0 , $a_{i,l}$, $a_{j,l}$ 的二维简单区域,如取 b 为 $span\{\vec{a_i}, \vec{a_j}\} \cap f$,其中 $\vec{a_i} = \bar{\pi}(\vec{a_{i,l_1}})$, $\vec{a_j} = \bar{\pi}(\vec{a_{j,l_1}})$,则 $V_1 = span\{\vec{a_{i,l_1}}, \vec{a_{i,l_2}}\} \cap P_l \cong D_+^2$. 类似确定 V_2 , V_3 , V_4 ,则 $\{V_k\}$ 在 M_P 中实际上粘合成一个 D^2 ,记为 V_f ,且 V_f 的边界落在 1-skelton 中. 对应的二维 cell $e^2 = V_f - \bar{\pi}^{-1}(a_i) \cup \bar{\pi}^{-1}(a_j)$. 这样就得到 2-skelton $M_P[2] = M_P[1] \cup \{V_f\}$.

依次进行下去,我们可以在 Q 余 k 维面处可构造 M_P 的 k-cells. 最终在 Q 的顶点处构造 M_P 的 h_0 个 n-cells.

事实上,对于一般具有 facets pair 结构的拓扑流形都可类似构造其胞腔结构. 如我们考虑

\mathbf{M} 4 我们将三角形沿着他们对应的边粘和得到一个 S^2

按照上面步骤,我们可以得到 S^2 的一个胞腔分解 $S^2=e_0\cup e^1\cup e_1^2\cup e_2^2$

在这种胞腔结构下,可以得到 $\pi_1(M_P)$ 的一个漂亮的表达形式. 下面我们分析 M_P 的基本群.small cover 的基本群 $\pi_1(M_P)$ 的生成元可取为 facets 对应的有向闭路 $\{x_{i,l}\}$. $\pi_1(M_P)$ 的关系由二维胞腔及配对关系决定. 对任意 facet F_{i,l_1} 对应的生成元 x_{i,l_1} 与它的对 facet F_{i,l_2} 对应的生成元 x_{i,l_2} 互为逆,即 $x_{i,l_1}x_{i,l_2}=1$. 若我们设 $l(i)=l\lambda(F_i)$,则 $x_{i,l_1}x_{i,l_2}=1$ 当且仅当 $if\ l(i)=l_1l_2$. 对于任意余二维面 $f=F_{i,l}\cap F_{j,l}(\neq\varnothing)\subset Q$,由 f 确定的二维胞腔 V_f 决定一个关系 $r_f=\partial V_f=x_{i,l}x_{j,l(i)}x_{i,l(i)l(j)}x_{j,l(j)}=1$. 从而我们得到 $\pi_1(M_P)$ 的一个群表示.

$$\pi_1(M_P) = \langle x_{i,l}, i = 1, 2, \cdots, m, l \in \mathbb{Z}_2^n : x_{i,l_1} x_{i,l_2} = 1, if \ l(i) = l_1 l_2$$
$$x_{i,l} x_{j,l(i)} x_{i,l(i)l(j)} x_{j,l(j)} = 1, \forall f = F_{i,l} \cap F_{j,l} \neq \emptyset \rangle \quad (1)$$

其中 $l(i) = l\lambda(F_i)$

事实上,若 $F_{i,l}$ 为内 facets,则 $\overrightarrow{x_{i,l}}$ 包含在 Q 的内部,可缩为点道路,故 $x_{i,l}=1$. 同理对于内余 2 维 face $f=F_{i,l}\cap F_{j,l}$ 确定的关系,为内生成元的组合,故也是平凡的. 若 $F_{i,l}$, $F_{j,l}$ 分别为内面和外面,不妨设 $F_{i,l}$ 为外面, $F_{j,l}$ 为内面,则 f 对应的关系为 $x_{i,l}x_{j,l(i)}x_{i,l(i)l(j)}x_{j,l(j)}=x_{i,l}x_{i,l(i)l(j)}=x_{i,l}x_{i,l(j)}=1$. 即内面附近的且相交为余二维面 f 的 facets 对应的生成元是彼此相关的. 每对 facets pair 对应的生成元互为逆元,在本文例子中,我们可能只取其中一个作为基本群的生成元,并且不作额外说明默认上面的结果.

3 例子

P 为五边形时,Q 可视为 12 边形,对应 6 对 facets,4 组余二维面。

求 M_P 的基本群。Q 中的 facets pair 有 $\{F_{2,e_1},F_{2,e_2}\}$, $\{F_{1,e_1},F_{1,e_1e_2}\}$, $\{F_{1,1},F_{1,e_2}\}$, $\{F_{2,1},F_{2,e_1e_2}\}$, $\{F_{3,1},F_{3,e_1}\}$, $\{F_{3,e_2},F_{3,e_1e_2}\}$ (内部 facets pair 对应平凡生成元,我们暂不考虑). 给所有道路一个指向 p_0 的方向,不妨设 p_0 为基本群基点,取生成元为

$$\begin{cases} x_{2,e_1} & \longleftrightarrow (\overrightarrow{a_{2,e_2}})^{-1} \cdot \overrightarrow{a_{2,e_1}} \\ x_{1,e_1} & \longleftrightarrow (\overrightarrow{a_{1,e_1e_2}})^{-1} \cdot \overrightarrow{a_{1,e_1}} \\ x_{1,1} & \longleftrightarrow (\overrightarrow{a_{1,e_2}})^{-1} \cdot \overrightarrow{a_{1,1}} \\ x_{2,1} & \longleftrightarrow (\overrightarrow{a_{2,e_1e_2}})^{-1} \cdot \overrightarrow{a_{2,1}} \\ x_{3,1} & \longleftrightarrow (\overrightarrow{a_{3,e_1}})^{-1} \cdot \overrightarrow{a_{3,1}} \\ x_{3,e_2} & \longleftrightarrow (\overrightarrow{a_{3,e_1e_2}})^{-1} \cdot \overrightarrow{a_{3,e_2}} \end{cases}$$

在余 2 维面 p_1, p_2, p_3, p_4 处确定四组二维 cells:

在 p_1 处胞腔的边界对应 $\overline{a_{1,1}}(\overline{a_{1,e_1}})^{-1}\overline{a_{1,e_1e_2}}(\overline{a_{1,e_2}})^{-1}$,即 $x_{1,1}(x_{1,e_1})^{-1}=1$ 在 p_2 处胞腔的边界对应 $\overline{a_{2,1}}(\overline{a_{1,1}})^{-1}\overline{a_{1,e_2}}(\overline{a_{2,e_2}})^{-1}\overline{a_{2,e_1}}(\overline{a_{1,e_1}})^{-1}\overline{a_{1,e_1e_2}}(\overline{a_{2,e_1e_2}})^{-1}$,即 $x_{2,1}(x_{1,1})^{-1}x_{2,e_1}(x_{1,e_1})^{-1}=1$ 在 p_3 处胞腔的边界对应 $\overline{a_{3,1}}(\overline{a_{2,1}})^{-1}\overline{a_{2,e_1e_2}}(\overline{a_{3,e_1e_2}})^{-1}\overline{a_{3,e_2}}(\overline{a_{2,e_2}})^{-1}\overline{a_{2,e_1}}(\overline{a_{3,e_1}})^{-1}$,即 $x_{3,1}(x_{2,1})^{-1}x_{3,e_2}(x_{2,e_1})^{-1}=1$ 在 p_4 处胞腔的边界对应 $\overrightarrow{a_{3,e_2}}(\overrightarrow{a_{1,1}})^{-1}\overrightarrow{a_{3,e_1}}(\overrightarrow{a_{3,e_1e_2}})^{-1}$,即 $x_{3,1}(x_{3,e_2})^{-1}=1$ 从而

$$\pi_{1}(M_{P}) = \langle x_{2,e_{1}}, x_{1,e_{1}}, x_{1,1}, x_{2,1}, x_{3,1}, x_{3,e_{2}} | x_{1,1}(x_{1,e_{1}})^{-1}, x_{3,1}(x_{3,e_{2}})^{-1},$$

$$x_{2,1}(x_{1,1})^{-1} x_{2,e_{1}}(x_{1,e_{1}})^{-1}, x_{3,1}(x_{2,1})^{-1} x_{3,e_{2}}(x_{2,e_{1}})^{-1} \rangle$$

$$\cong \langle x_{2,e_{1}}, x_{1,1}, x_{2,1}, x_{3,1} |$$

$$x_{2,1}(x_{1,1})^{-1} x_{2,e_{1}}(x_{1,1})^{-1}, x_{3,1}(x_{2,1})^{-1} x_{3,1}(x_{2,e_{1}})^{-1} \rangle$$

$$(2)$$

$$\mathbb{P} \pi_1(M_P) \cong \langle a, x, y, z | yx^{-1}ax^{-1} = zy^{-1}za^{-1} \rangle$$

4 Morse theory

微分拓扑

结论: the small cover M_P has a cell structure which is perfect in the sense of Morse theory, with one cell for each vertex of P^n and with exactly h_i cells of dimension i.

5 Morse function 在 small cover 上的作用

取 \mathbb{R}^n 中一个向量 ω ,使得它是 generic 的,即 ω 与 P 的任何一个真面都不相切. 设 $\phi = \langle \omega, x \rangle$ 为多面体 P^n 上的高度函数,由于 ω 为 generic 的,所以对 P 中任意两个不同的顶点 p_i, p_j ,都有 $\phi(P_i) \neq \phi(p_j)$. 我们把 P^n 的一维骨架(图)记为 G_P . 对 G_P 中的任意一条以点 p_1, p_2 为端点的边 s,若 $\phi(p_1) > \phi(p_2)$,则给边 s 一个指向 p_1 的方向,反之给边 s 指向 p_2 的方向,则得到一个有向图,记为 $\overrightarrow{G_P}$. 记 m(p) 为 $\overrightarrow{G_P}$ 中以顶点 p 为端点且指向点 p 的边的个数. 对于 P^n 中的任意一个面 $F^k(k>0)$,由于 ϕ 是 generic 的线性函数,则 $\phi|_F$ 存在最大值,且在某个定点上取得,这个顶点称为面 F 的最高点,类似 $\phi|_F$ 取最小值的点称为 F 的最低点,显然 F 的最高点和最低点都是唯一的. 对 P 的每一个顶点 p,包含所有指向点 p 的边的最小面记为 F_p ,显然 dim $F_p = m(p)$,且 P 中任意一个以点 p 为最高点的面都是 F_p 的面. 将 F_p 所有面的相对内部(F_p 挖掉 F_p 中不包含点 p 的真面)的并记为

 $\hat{F}_p \cong \mathbb{R}^{m(v)}_+$. 设 $\pi: M_P \longrightarrow P$ 为一个 small cover. 则

$$e_p = \pi^{-1}(\hat{F}_p) \cong e^{m(v)}, \qquad D_p = \pi^{-1}(F_p) \cong M_{F_p}$$

这样就得到了 M_P 的一个 cell structure. 由于每个 cell 在 M_P 中的闭包都为一个闭流形,为一个 $\mod 2$ 闭链,所以在 \mathbb{Z}_2 同调中,粘贴映射都是平凡的。所以这种胞腔结构在 \mathbb{Z}_2 系数下是 perfect 的。另外

$$\sum_{i=0}^{k} (-1)^{k-i} \binom{n-i}{n-k} f_{i-1} = h_k = h_{n-k} = \sum_{i=0}^{n} (-1)^{i+k} \binom{i}{k} f_i = |\{p : m(p) = k\}|$$

其中第二个等号是 Dehn-Sommerville 关系, 第三个等式见 [brønsted, p.115]

6 small cover 基本群的计算与表示

选取 $p_0 \in P$ 为 P 的最低点,则 $\pi^{-1}(p_0) = \{p_0\} \subset M_P$,我们不妨取 p_0 为 small cover M_P 的基点. 对任意边 $s \subset P$, $\pi^{-1}(s)$ 为 small cover M_P 中的闭路,我们选取那个 m(p) = 1 的 F_p 所对应的闭路 s 作为 $\pi_1(M_P)$ 的生成元,设 p_1, p_2 为 F_p 的两个端点,并取一条道路(不妨设为 (P[1], 1) 中的道路)连接 s 中较低点与点 p_0 ,这样我们就得到 M_P 的一维骨架 $M_P[1] \cong \bigvee_{p_0} S^1$,剩余其他边对应的连接 p_0 的闭路总可以由这些闭路表示. 所有 m(p) = 2 的顶点对应的面 F_p 决定 M_P 的全部二维胞腔, $\pi^{-1}(F_p - \hat{F}_p)$ 为 M_P 中的闭路,记为 r,它决定了 $\pi_1(M_P)$ 的一个关系,这样经过计算化简我们就得到了 $\pi_1(M_P)$ 的一个 perfect 表示.

6.1 二维 small cover 基本群的计算

设 $P^2 \subset \mathbb{R}^2$ 为单凸 m 边形 (m > 3)

$$M_{P^2} = \mathbb{Z}_2^2 \times P^2 / \sim$$

其中 $(g,p) \sim (h,q) \Leftrightarrow p = q, gh^{-1} \in G_{F(p)}$

下面计算 small cover 的基本群,设 $\mathbb{Z}_2 = \{-1,1\}$ 为乘法群。

已知 P 上的每条边的染色,给定一个 generic 高度函数 ϕ ,从而得到 P 的边构成有向图 $\overrightarrow{G_P}$ 。

设 P 的最高点为点 q_0 , $(m(p_0)=2)$,则二维 $D_{q_0}^2=\pi^{-1}(F_p)$ 是由 4 个 m 边形 P 的 copy 沿着边 F_i,F_{i+1} 粘成,将剩余的边按染色信息成对粘则 得到 small cover M_P .

 $\partial D^2_{p_0}$ 在 M_P 中实际为一些相连的 loop.

在 $\overrightarrow{G_P}$ 中,m(p)=1 的点有 m-2 个,对应的 $\pi^{-1}(F_p)$ 在 M_P 中为 m-2 个依次连接的 loop. 这和定理(3.1)确定的 perfect cell construction 的 1 维骨架 $M[1]=\vee_{m-2}S_1$ 是同伦的 (如收缩 $\widetilde{M}[1]$ 中的一个极大树,使得所有 $m(p\leq 1)$ 的点都收缩到基点 p_0 上去. 下面我们不妨将第 P_1 的 m-2 条边缩到基点上,得到 M[1]).

所以 $\pi_1(M_P)=\pi_1(M[1]\bigcup_{\partial D^2_{p_0}}e^2)\cong\pi_1(\widetilde{M}[1]\bigcup_{\partial D^2_{p_0}}e^2)$. 其中的同构是由上面的收缩映射诱导的.

我们取 $\pi_1(\widetilde{M}_1 \cup e_2)$ 的生成元依次为

$$\begin{cases} x_1 & \longleftrightarrow F_1F_1' \\ x_2 & \longleftrightarrow F_1F_2F_2'F_1' \\ x_3 & \longleftrightarrow F_1F_2F_3F_3'F_2'F_1' \\ & \vdots \\ x_{i-1} & \longleftrightarrow F_1F_2 \cdots F_{i-1}F_{i-1}' \cdots F_1' \\ x_{i+2} & \longleftrightarrow F_mF_{m-1} \cdots F_{i+2}F_{i+2}' \cdots F_m' \\ & \vdots \\ x_m & \longleftrightarrow F_mF_m' \end{cases}$$

其中 $F_i^{'}$ 表示 $\pi^{-1}(F_{p_i})\cap P_1$ 中的边, F_i 表示 $\pi^{-1}(F_{p_i})-P_1$ 中的边,则 x_i 都是以 p_0 为起点的有向闭路. $\partial D_{p_0}^2$ 本质上为 $\widetilde{M}[1]$ 在平面 R^2 上的展开.

为方便我们将 $\partial D^2_{p_0}$ 分成以 p_0 为端点的 4 段. 分别记为 a,b,c,d,则 a,b,c,d 在 M_P 中都为基点在 p_0 上的闭路,则有

$$\begin{cases} a = F_1 F_2 \cdots F_{i-1} f_1(F_{i-1}) \cdots f_1(F_1) \\ b = f_1(F_m) \cdots f_1(F_{i+2}) f_3(F_{i+2}) \cdots f_3(F_m) \\ c = f_3(F_1) \cdots f_3(F_{i-1}) f_2(F_{i-1}) \cdots f_2(F_1) \\ d = f_2(F_m) \cdots f_2(F_{i+2}) F_{i+2} \cdots F_m \end{cases}$$

其中

$$f_1(F_k) = \begin{cases} F_k & \text{if } \lambda(F_i) \cdot \lambda(F_k) = 0\\ F'_k & \text{if } \lambda(F_i) \cdot \lambda(F_k) \neq 0 \end{cases}$$
(3)

$$f_2(F_k) = \begin{cases} F_k & \text{if } \lambda(F_{i+1}) \cdot \lambda(F_k) = 0\\ F_k' & \text{if } \lambda(F_{i+1}) \cdot \lambda(F_k) \neq 0 \end{cases}$$
(4)

$$f_1(F_k) = \begin{cases} F_k & \text{if } \lambda(F_i) \cdot \lambda(F_k) = 0 \\ F'_k & \text{if } \lambda(F_i) \cdot \lambda(F_k) \neq 0 \end{cases}$$

$$f_2(F_k) = \begin{cases} F_k & \text{if } \lambda(F_{i+1}) \cdot \lambda(F_k) = 0 \\ F'_k & \text{if } \lambda(F_{i+1}) \cdot \lambda(F_k) \neq 0 \end{cases}$$

$$f_3(F_k) = \begin{cases} F_k & \text{if } \lambda(F_i) \cdot \lambda(F_{i+1}) \cdot \lambda(F_k) = 0 \\ F'_k & \text{if } \lambda(F_i) \cdot \lambda(F_{i+1}) \cdot \lambda(F_k) \neq 0 \end{cases}$$

$$(3)$$

这样进一步可将闭路 a, b, c, d 由生成元 $x_1, x_2, \dots, x_{i-1}, x_{i+2}, \dots, x_m$ 表 示,故

$$\pi_1(M_P) = \langle x_1, x_2, \cdots, x_{i-1}, x_{i+2}, \cdots, x_m | a(x_1, \cdots, x_m)b(x_1, \cdots, x_m)c(x_1, \cdots, x_m)d(x_1, \cdots, x_m) \rangle;$$
 (6)

另外,还可以获取 F_i 和 F_i' , F_{i+1} 和 F_{i+1}' 组成与基点的 loop 与生成元 之间的关系,在高维 small cover 基本群的计算中,可能会用到这种关系.

example:

给定五边形 P_2 及其上面的染色,并取如图方向高度函数,得有向图

得到的 D^2 如下

我们取生成元如下

$$\begin{cases} x & \longleftrightarrow v_1 v_1' \\ y & \longleftrightarrow v_1 v_2 v_2' v_1' \\ z & \longleftrightarrow v_3 v_3' \end{cases}$$

所以

$$\begin{cases} a: v_1 v_2 v_2^{'} v_1^{'} = y \\ b: v_3 v_3^{'} = z \\ c: v_1 v_2^{'} v_2 v_1^{'} = x y^{-1} x \\ d: v_3^{'} v_3 = z^{-1} \end{cases}$$

从而求得基本群

$$\pi_1(M_P) = \langle x, y, z | yzxy^{-1}xz^{-1} \rangle;$$

验证: (简单的 word problem 问题) 我们知道二维连通闭曲面由其欧拉数 决定,已知 M_p 的欧拉数 $\chi(M_p)=5-10+4=-1$,故 $M_P\cong RP^2\#RP^2\#RP^2\cong K^2\#RP^2\cong T^2\#RP^2$ 。知 $\pi_1(M_P,p)$ 的标准表示为 < a,b,c|aabbcc>。我们通过下面手术知,可取变换

$$\begin{cases} a = z^{-1}y - 1xy^{-1}x \\ b = x^{-1}y \\ c = yz \end{cases}$$

使得上面求得的基本群表示与标准表示同构.

6.2 三维及以上

已知 n 维 $(n \geq 3)$ 单凸多面体 P^n 及其上的染色。我们依然首先给定一高度函数 ϕ ,构造 M_P 的 cell structure. 在 P 的一维边构成的有向图 G_P 中,由 m(v)=1,2 对应的 F_p 确定基本群生成元和关系。从而得出 M_p 的基本群的一个表示。特别注意的是,我们收缩图 $\pi^{-1}(G_P)$ 中的一个极大树,使得 M_P 中的所有的顶点都收缩到一点 p_0 上,这时 $\pi^{-1}(G_P)\cong\bigvee S^1$,前面确定的 loop 为基本群生成元的几何含义是 M_P 中任意一个以 p_0 为端点的 loop l,总存在一个映射柱使得 l 沿着映射柱可以形变收缩到生成元表示的 loop 上去. perfect 胞腔结构中,2 维面的边界在 M_P 始终为 loop,所以我们可以利用这点计算出 M_P 的基本群.

我们在后面会利用不同方法计算一个三维多面体 $P^3 = I^3 \# \triangle^3$ 上的 small cover 的基本群,这这里不举额外的例子了.

7 the fundamental group of $M_{P_1^n \# P_2^n}$

给定两个同维数的单多面体 P_1^n, P_2^n ,p,q 分别为 P_1^n, P_2^n 的两个顶点,分别切去 P^n, Q^n 中包含点 p,q 的一个小角 V_p, V_q ,将剩下的部分粘在一起,称为 P,Q 在点 p,q 处的连通和,记为 $P_1\#_{p,q}P_2$. 注意 $P_1\#_{p,q}P_2$ 表示一族多面体.

注: $P^n \# \triangle^n$ 相当于 P^n 切去一个角.

我们称 $Q^n=P_1^n\#P_2^n$ 的染色可继承给 P_1,P_2 ,是指连通和处(三维时对应上图中的小三角)的 n 个 facets 的染色张成 \mathcal{Z}_2^n 的一组基.若 $Q^n=P_1^n\#P_2^n$ 的染色是可继承的,则 P_1^n,P_2^n 上存在一组自然的染色,我们分别设 $\Pi_1:M_{P_1}\longrightarrow P_1,\Pi_2:M_{P_2}\longrightarrow P_2$ 为 P_1^n,P_2^n 上按照继承的染色所构造的small cover.由于 $\Pi_1^{-1}(V_p)\cong D^n\cong\Pi_2^{-1}(V_q)$,所以 $M_{P_1\#P_2}=M_{P_1}\#M_{P_2}$.若 Q^n 上的染色不是可继承的,讨论起来可能比较复杂,比如 $Q=I^2$,给如下的染色,我们知道 $M_Q=T^2$, $M_{P_1}=M_{P_2}=S^2$, T^2 是由两个 S^2 分别挖掉两个圆盘连通起来的,因此不能用 van-Kampen 定理,暂且不讨论.下面讨论的 Q^n 都具备可继承的染色.

当 $n \geq 3$ 时,由 van-Kampen 定理知, $\pi_1(M_{P\#Q}) \cong \pi_1(M_P) * \pi_1(M_Q)$. 由这可以知道不同构的多面体 (如 P#Q) 上的 small cover 也可以是同胚的. (加上 flag,就不能再考虑连通和,是不是也有这样的反例?若没有,则具有 同构基本群的两个 aspherical small cover 的底空间 polytope 是同构的.)

当 n=2 时,在对偶 cell 结构下,我们在 M_{P_1} 中挖掉包含点 p 的一个圆盘,在 M_{P_2} 中挖掉包含点 q 的一个圆盘,将剩余部分粘合(定向?). 我们选取 M_{P_1} 中的 p_0 点作为基点,将 M_{P_2} 中的 q_0 点沿着一条固定道路 h 收缩到 p_0 上,这时它们的连通柱相当于一个一个新的二维胞腔,胞腔的边界恰好落在 $M_{P_1}[1] \cup M_{P_2}[1]$ 上,这样就可以得到 $M_{P_1\#P_2}$ 的一个胞腔结构.

我们不妨设 $\pi_1(M_{P_1},p)=\langle x_1,\cdots,x_{4m_1}:r_1,\cdots,r_{M_1},r_p\rangle$, $\pi_1(M_{P_2})=\langle y_1,\cdots,y_{4m_2}:s_1,\cdots,s_{M_2},s_q\rangle$. 则

$$\pi_1(M_{P_1\#P_2},p_0)=\langle x_1,\cdots,x_{4m_1},y_1,\cdots,y_{4m_2}:$$

$$r_1, \cdots, r_{M_1}, s_1, \cdots, s_{M_2}, r_p^{-1} s_q \rangle$$
 (7)

事实上,由二维闭曲面分类定理,我们只需要判断当 m_1+m_2-2 为偶数时染色信息确定的 small cover 是否可定向,或者由 perfect 胞腔结构我们可以直接算出 M_{Q^2} 的基本群.

Q1:当 P^2 为 m 边形,m 为一个偶数,由 \mathcal{F} 上的染色判断 M_P 是否可定向. 当 n=1 时,P=Q=P#Q=I,则 $\pi_1(M_{P\#Q})\cong\pi_1(M_P)\cong\pi_1(M_Q)\cong\mathbb{Z}$

例:设 P 为平面上的五边形,则 $P = I^2 \# \triangle^2$

分别取 T^2 和 $\mathcal{R}P^2$ 中的以 p_0,q_0 为端点的虚线为生成元,并设 h 为 M_P 中 q_0 到 p_0 的一条固定的道路. 则有

$$\pi_1(T^2) = \langle x_1, x_2, x_3, x_4 | x_1 x_3 = x_2 x_4 = x_1 x_2 x_3 x_4 = 1 \rangle$$

$$\pi_1(\mathcal{R}P^2) = \langle y_1, y_2 | y_1(y_2)^{-1} = y_1 y_2 = 1 \rangle$$

我们取 M_P 的基本群的生成元为 $\{x_1,x_2,x_3,x_4,h^{-1}y_1h=a,h^{-1}y_2h=b\}$ 则

$$\pi_1(M_P) = \langle x_1, x_2, x_3, x_4, h^{-1}y_1h, h^{-1}y_2h |$$

$$x_1x_3 = x_2x_4 = h^{-1}y_1(y_2)^{-1}h = 1, x_1x_2x_3x_4h^{-1}y_1y_2h \rangle$$

$$= \langle x_1, x_2, a | x_1x_2(x_1)^{-1}(x_2)^{-1}a^2 \rangle$$
(8)

8 the fundamental group of $M_{P_1^{n_1} \times P_2^{n_2}}$

令
$$h(P,t)=h_0+h_1t+\cdots+h_nt^n$$
,由于 $f_k(P^{n_1}\times Q^{n_2})=\sum\limits_{i=-1}^{n_1-1}f_i(P)f_{k-i-1}(Q)$,则

$$h(P \times Q, t) = h(P, t)h(Q, t)$$

$$= (h_0 + h_1 t + \dots + h_{n_1} t^{n_1})(h_0^* + h_1^* t + \dots + h_{n_2}^* t^{n_2})$$

$$= h_0 h_0^* + (h_0 h_1^* + h_1 h_0^*)t + (h_0 h_2^* + h_1 h_1^* + h_2 h_0^*)t^2 + \dots$$
(9)

事实上记 $P_1^{n_1}$, $P_2^{n_2}$ 的乘积为 $Q^{n_1+n_2}=P_1^{n_1}\times P_2^{n_2}$, 任意 P_1 的 i 维面 F_1^i 和 P_2 的 j 维面 F_2^j 贡献 Q 的一个 i+j 维面 $F_1^i\times F_2^j$. 在 perfect 胞腔结构下,我们考虑 M_Q 的胞腔结构,对于 M_Q 中一顶点 (p_i,q_j) ,则 $m(p_i,q_j)=k$ 当且仅当 $m(q_i)+m(q_j)=k$. 在计算基本群时,我们仅考虑 k=1,2 的情况. 当 k=1 时, (p_i,q_j) 对应的边在 M_Q 中取为基本群生成元,此时 $m(q_i)=1,m(q_j)=0$ 或 $m(q_i)=0,m(q_j)=1$,这表示 $\pi_1(M_Q)$ 的生成元,对应 $\pi_1(M_{P_1})$ 和 $\pi_1(M_{P_2})$ 的生成元. 当 k=2 时, (p_i,q_j) 对应的二维面在 M_Q 中的像决定基本群的关系,此时 $m(q_i)=2,m(q_j)=0$,或 $m(q_i)=0,m(q_j)=2$,或 $m(q_i)=m(q_j)=1$,这表示 $\pi_1(M_Q)$ 的关系,对应 $\pi_1(M_{P_1})$ 和 $\pi_1(M_{P_2})$ 的关系,额外添加 $h_1(P_1)h_1(P_2)$ 个形如 $xyx^{-1}y^{-1},xyxy^{-1}$ 的关系(I^2 上的可能关系).即有

$$\pi_1(M_Q) = \langle x_1, \cdots, x_{m_1}, y_1, \cdots, y_{m_2} | r_1, \cdots, r_{n_1}, s_1, \cdots, s_{n_2}, \\ \{ [x_i, y_i], x_i y_i x_i (y_i)^{-1}, y_i x_i y_i (x_i)^{-1} \} \rangle$$

$$(10)$$

其中 M_{P_1}, M_{P_2} 在投射下的高度函数和染色所决定的 perfect 胞腔结构对应的基本群分别为, $\pi_1(M_{P_1}) = \langle x_1, \cdots, x_{m_1} | r_1, \cdots, r_{n_1} \rangle$, $\pi_1(M_{P_2}) = \langle y_1, \cdots, y_{m_2} | s_1, \cdots, s_{n_2} \rangle$

例:如取 $P = I \times \triangle^2$ 为三棱柱,共有 5 个 facets $\{F_i\}_{i=1,2,3,4,5}$,我们给上下底面 F_1, F_2 染色 e_1 ,侧面 F_3, F_4, F_5 染色为 $e_2, e_3, e_1e_2e_3$,由 P 的 h-vector 知, $\pi_1(M_P)$ 有两个生成元和两个关系,它的任意一个侧面上的 small cover 基本群有两个生成元,一个关系.

 $\mathbb{H} \pi_1(M_I)\cong \mathcal{Z}$, $\pi_1(M_{\triangle^2})=\langle x:x^2=1\rangle$, $pi_1(M_P)\cong \langle x,y:x^2=1,yxyx^{-1}\rangle$

Q2:已知三维 small cover 的基本群 $\pi_1(M_P) = G_1 \times G_2$,则 $M_P \cong S^1 \times N^2$.

证: $\pi_1(M_P)$ 存在一个 balance 表示,不妨设

$$\pi_1(M_P) = \langle x_1, \cdots, x_{m_1}, y_1, \cdots, y_{m_1} | r_1, \cdots, r_{m_1 + m_2} \rangle$$

$$\cong \langle x_1, \cdots, x_{m_1} | r_1, \cdots, r_{h_1} \rangle \times \langle y_1, \cdots, y_{m_1} | s_1, \cdots, s_{h_2} \rangle$$
(11)

(其中 m_1, m_2 都大于等于 1,这里生成元个数和关系个数都不能再少),由于关系中至少包含 m_1m_2 个交换关系 $[x_i, y_j]$,故 $m_1 + m_2 - m_1m_2 > 0$,即 $(m_1 - 1)(m_2 - 1) < 1$,即 m_1, m_2 中至少有一个为 1,不妨设 $m_1 = 1$, $\pi_1(M_P)$ 中包含 m_2 个交换关系,所以设 $\pi: M_P \longrightarrow P$ 为单多面体 P^n 上的 small cover. $\mathcal{F} = \{F_1, F_2, \cdots, F_m\}$ 为 P^n 的 facets 集,我们定义 P 的 right-angle Coxeter group W_P 如下:

$$W_P = \langle F_1, \cdots, F_m : F_i^2 = 1; (F_i F_j)^2 = 1, \forall F_i, F_j \in \mathcal{F}, F_i \cap F_j \neq \varnothing \rangle$$

我们构造 P 的一个二页正则的 covering orbifold $\rho: S^n \longrightarrow P^n$,其中 $S^n = P^n \times \mathcal{Z}_2 / \sim \{(*,F_i) \sim (F_i,*), \forall F_i \in \mathcal{F}\}$,当 $n \geq 2$ 时, S^n 为单连通的,我们将覆叠变换群 $D(S^n,\rho,P^n)$ 称为多面体 P^n 的广义基本群,记为 $\hat{\pi}_1(P^n)$. 当 n=1 时, $\hat{\pi}_1(S^1) \cong \mathbb{Z}$,由于 $\rho: S^1 \longrightarrow I$ 为二页覆叠,所以我们将 $\hat{\pi}_1(I)$ 定义为 \mathbb{Z}^2 .

命题: $\hat{\pi}_1(P) \cong W_P$

 $\pi: M_P \longrightarrow P$, $\pi_1(M_P)$ 为 $\hat{\pi}_1(P) \cong W_P$ 的子群.

 $\Pi: \mathcal{L} \longrightarrow M_P$, $\pi_1(\mathcal{L})$ 是 $\pi_1(M_P)$ 的子群,当 \mathcal{L} 为单连通时, $\pi_1(M_P)$ 同构于复叠变换群 $D(\mathcal{L}, \Pi, M_P)$