L'oculométrie au service de la cartographie

LAURA WENCLIK

28 MARS 2024

JOURNÉE DE LA RECHERCHE

ÉCOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES

L'utilisation des cartes pan-scalaire

> une carte pan-scalaire : carte multi-échelle interactive

Géoportail

Google Maps

➤ Comment comprendre l'utilisation des cartes pan-scalaire ?

L'oculométrie

> Suivi du regard à l'aide d'un dispositif :

Eye-tracker pupil Core de pupil Labs

Capture d'écran du logiciel pupil Capture

Capture d'écran du logiciel pupil Player

Premier cas d'étude : Qu'est ce qu'une personne regarde sur une carte ?

Comprendre comment une personne utilise une carte

➤ Qu'est ce qu'il regarde notamment pour ce repérer et effectuer sa tâche?

➤ Quelle est le comportement d'une personne pendant une interaction (pan et zoom)?

Premier cas d'étude : Mise en place du protocole

Identification des tâches à effectuer

Utilisation d'un eye-tracker

Pas de limitation dans la manipulation

Premier cas d'étude : Les tâches de l'expérience

Premier cas d'étude : Les tâches de l'expérience

Premier cas d'étude : Les tâches de l'expérience

Premier cas d'étude: Les comportements lors d'une interaction

Zoom out

► Tendance à regarder vers le curseur

Tendance à chercher plus de contexte dans une direction donnée

Premier cas d'étude: Les comportements lors d'un pan

> Deux comportements majoritaires:

Comportement passif et fixe

>Je fixe l'écran et effectue un pan linéaire

▶ Je fixe l'écran et ne fait pas un pan linéaire

Premier cas d'étude : utilisation des ancres à différentes échelles

Plage de niveau de zoom par participant pour la zone 9

Pas d'utilisation multi-échelle

Plage de niveau de zoom par participant pour la zone 16

Zone d'intérêt multi-échelle

Saillance

• Mécanisme de pre-attention

Saillance

Deuxième cas d'étude : détection de la saillance dans les cartes

➤ Les algorithmes de détection :

Carte d'osm du jeu de donnée

Résultat de l'algorithme FES

Résultat de l'algorithme Covsal

Deuxième cas d'étude : Création d'un jeu de donnée de saillance

- Création d'un jeu de donnée avec plus de 300 cartes:
 - Différents fond de carte (IGN, OSM, google map)
 - > Différents niveau de zoom (10 à 18)
 - > Différents éléments représentés (ville, monument, montagne, fleuve, mer, campagne....)
 - Cartes thématiques

Regarder les cartes avec un eye tracker pendant 3s

Deuxième cas d'étude : détection de la saillance dans les cartes

Heatmap créer à partir des données de l'eye-tracker

Heatmap créer à partir des données de l'eye-tracker

Deuxième cas d'étude : détection de la saillance dans les cartes

Carte osm du jeu de donnée

Heatmap créer à partir des données de l'eye-tracker

Résultat de l'algorithme FES

Résultat de l'algorithme Covsal

Conclusion

> L'oculométrie apporte une nouvelle approche dans la compréhension de l'utilisation de la carte

L'oculométrie dans la cartographie permet d'enrichir des jeux de données et des méthodes déjà existantes

Merci pour votre attention

Laura Wenclik

28 mars 2024

Journée de la recherche

Laura.wenclik@ign.fr

Zones d'intérêts

Zones d'intérêts

Zones d'intérêts

