Professor: Geovany Araújo Borges {gaborges@unb.br}

Roteiro do Experimento 1 (Turma X1): Identificação do Modelo de Velocidade

1 Fundamentação

1.1 Modelos

Motores élétricos estão presentes em grande parte dos processos industriais. Comumente o controle desses motores é feito para velocidade ou posição. Como a dinâmica dos componentes mecânicos do motor é bem mais lenta do que da parte elétrica, o modelo que relaciona a velocidade angular de rotação do motor $\Omega(s) = \mathcal{L}(\omega(t))$ em função da tensão de armadura $V_a(s)$ pode ser aproximada por

$$\Omega(s) = \frac{K_m}{\tau s + 1} V_a(s),\tag{1}$$

em que K_m e τ são, respectivamente, o ganho de regime permanente e a constante de tempo do modelo de primeira ordem. Entretanto, devido ao atrito estático nos elementos de transmissão mecânica de movimento, é necessário valores de $v_a(t)$ maiores, que um determinado limiar δ_+ de forma que o motor comece a girar no sentido positivo. Ou ainda, menores que δ_- de forma que o motor comece a girar no sentido negativo. Esse efeito pode ser modelado como uma banda morta em $v_a(t)$, que é uma componente não-linear do modelo. Logo, um modelo que pode ser empregado para melhor representar a dinâmica do motor é dado por:

$$\Omega(s) = \frac{K_m}{\tau s + 1} U_a(s),\tag{2}$$

$$u_{a}(t) = h(v_{a}(t), \delta_{+}, \delta_{-}) = \begin{cases} v_{a}(t) - \delta_{+} & \text{se } v_{a}(t) \ge \delta_{+} \\ 0 & \text{se } -\delta_{-} < v_{a}(t) < \delta_{+} \\ v_{a}(t) - \delta_{-} & \text{se } v_{a}(t) \le \delta_{-} \end{cases}$$
(3)

em que $\delta_+ > 0$ e $\delta_- < 0$ são os valores mínimos, em módulo, da tensão sobre o motor para que o mesmo inicie movimentação, quer seja para o sentido positivo, quer seja para o sentido negativo. Não necessariamente δ_+ e δ_- são iguais em módulo. Isso se deve a diferentes razões, entre elas, a assimetria do sistema de engrenagens.

Logo, o modelo para velocidade é composto por uma parte não-linear, dada pela Eq. (3), que precede a parte linear dada pela Eq. (2). Esse modelo, tem como entrada a tensão $v_a(t)$ e saída a velocidade $\omega(t)$.

Uma dificuldade típica de quem trabalha com esses processo consiste em obter os parâmetros do modelo. Como os parâmetros são K_m e τ , da parte linear, e δ_+ e δ_- , da parte não-linear, faz-se necessário realizar dois experimentos, conforme a seguir.

1.2 Identificação da parte não-linear

Primeiramente, iniciando pela identificação dos parâmetros δ_+ e δ_- da parte não-linear (Eq. (2)), deve-se realizar um experimento que permita excitar esses parâmetros, ou seja, explorar valores de $v_a(t)$ próximos a δ_+ e δ_- . Isso pode ser feito por meio de uma onda triangular, de baixa freqüência f_t e baixa amplitude A_t , desde que $A_t > \delta_+$ e $A_t > -\delta_-$. Como não se sabe de ante-mão os valores de δ_+ e δ_- , deve-se determinar A_t e f_t experimentalmente, de forma que o sistema motor, dentro de um período da onda triangular, alterne entre períodos de movimentação para o sentido positivo, repouso, movimentação para o sentido negativo e repouso. E ainda, f_t precisa ser pequena o suficiente de forma a, para valores pequenos de $v_a(t)$, o motor, que vinha em movimento, alcance o repouso. Isso é melhor exemplificado pela simulação da Fig. 1, que contém um gerador de onda triangular usando o bloco repeating sequence do Simulink. O modelo de velocidade é dado por blocos Dead Zone e Transfer Function. Um gerador de ruído aleatório de distribuição Gaussiana de média nula e variância $\sigma_w^2=1$ permite simular o ruído de medição. Os dados da simulação são salvos em um arquivo, para análise posterior em um script do Matlab que realiza o procedimento de identificação.

A partir dos dados de entrada $v_a(t)$ e da velocidade $\omega(t)$, o procedimento de identificação consiste no seguinte:

- Segmentar os dados em períodos de repouso ($|\omega(t)| < \omega_r$), períodos de movimento em sentido positivo $\omega(t) \ge \omega_r$ e períodos de movimento em sentido negativo $\omega(t) \le -\omega_r$, em que ω_r é um parâmetro a ser determinado. Uma escolha teoricamente justificada para esse parâmetro consiste em usar $\omega_r = 3\sigma_w$, que incorpora já quase 100% da distribuição gaussiana dentro do perído de repouso;
- Os valores de v_a(t) correspondentes ao início dos períodos de movimento em sentido positivo são candidatos para δ₊. Logo, pode-se usar como estimativa δ̂₊ de δ₊ a média aritmética desses valores;
- Os valores de $v_a(t)$ correspondentes ao início dos períodos de movimento em sentido negativo são candidatos para δ_- . Logo, pode-se usar como estimativa $\hat{\delta}_-$ de δ_- a média aritmética desses valores.

1.3 Identificação da parte linear

Deve-se observar que $u_a(t)$ não é diretamente mensurável no nosso processo, uma vez que a entrada de tensão é dada por $v_a(t)$. Para fazer identificação da parte linear, será necessário antes obter uma estimativa de $u_a(t)$. Isso é possível usando

$$\hat{u}_a(t) = h(v_a(t), \hat{\delta}_+, \hat{\delta}_-) \tag{4}$$

da Eq. (3), e fazendo uso das estimativas dos parâmetros da parte não-linear.

A partir então de $\hat{u}_a(t)$ e $\omega(t)$, tem-se os sinais de entrada e saída do modelo da parte linear, dado pela Eq. (2). A identificação de modelos lineares é um problema bem estudado no contexto da disciplina Identificação de Sistemas. Uma das técnicas que pode ser usada nesse caso é a de estimação no sentido de mínimos quadrados [1][2].

Para tanto, deve ser realizado um experimento no domínio do tempo em que os dados são amostrados periodicamente a cada T segundos (período de amostragem). No caso dos processos em questão, T=2ms. A entrada do processo deve ser capaz de excitar os parâmetros do modelo dado pela Eq. (2). Esses parâmetros são K_m e τ . Como K_m é o ganho de regime permanente, é importante que o processo alcance uma situação de regime permanente e com $u_a>0$. E como τ refere-se a transitório, deve haver períodos de transitório no sinal. Portanto, uma onda quadrada de amplitude $A_q>\delta_+$ e $A_q>-\delta_-$ permitiria fazer com que o motor gire em ambos os sentidos, provocando assim alternância entre períodos de transitório. No mais, a mesma onda quadrada com frequência f_t suficientemente baixa permite com que a velocidade alcance períodos de regime permanente. Deve-se apenas escolher valores de f_t muito pequenos de forma que os períodos de transitório fossem pequenos em comparação a períodos de regime permanente. Escolhas razoáveis para esses parâmetros levariam a curvas conforme as mostradas na Fig. 2. Nessa figura tem-se uma simulação similar à usada para

Figura 1: Captura de tela de uma simulação do procedimento de coleta de dados para identificação da parte não-linear do modelo de velocidade.

identificação da parte não-linear, com a diferença que o gerador de tensão fornece uma onda quadrada e os dados são salvos em um arquivo com nome distinto.

Assim, de posse de dados experimentais de $v_a(t)$ e $\omega(t)$ amostrados a T=2ms, obtém-se $\hat{u}_a(t)$ usando a Eq. (4). Já $\hat{u}_a(t)$ seriam ligados $\omega(t)$ por Eq. (2), considerando-se que $\hat{u}_a(t)$ seja uma excelente estimativa de $u_a(t)$. Como essas variáveis são representadas no domínio do tempo, usando-se a transformação inversa de (2) tem-se

$$\tau \dot{\omega}(t) + \omega(t) = K_m \hat{u}_a(t). \tag{5}$$

As amostras são coletadas nos instantes $t_k = kT$, com k = 1, 2, 3, ..., e são relacionadas aproximadamente por

$$\tau \frac{\omega_k - \omega_{k-1}}{T} + \omega_{k-1} = K_m \hat{u}_{a,k-1},\tag{6}$$

em que $\omega_k = \omega(t_k)$, $\hat{u}_{a,k}(t_k)$ e foi usada a seguinte aproximação:

$$\dot{\omega}(t_k) \approx \frac{\omega_k - \omega_{k-1}}{T}.\tag{7}$$

Por meio do processo de amostragem, são coletados N valores para ω_k e $\hat{u}_{a,k}$, com k=1,2,3,...N, e esses valores são colocados em vetores. A obtenção de K_m e τ a partir das amostras de ω e \hat{u}_a é feita por meio de regressão linear, resultando assim em estimativas \hat{K}_m e $\hat{\tau}$ para essas variáveis. Para tanto, a Eq. (6) pode ser reescrita na forma

$$\omega_k = \frac{(\tau - T)}{\tau} \omega_{k-1} + \frac{K_m T}{\tau} \hat{u}_{a,k-1}, \tag{8}$$

Logo, das N medições coletadas, pode-se obter N-1 equações como essa. Como existe apenas duas incógnitas e, sendo $N-1\gg 2$, é improvável que exista uma sólução única de estimativas \hat{K}_m e $\hat{\tau}$ para K_m e τ

Figura 2: Captura de tela de uma simulação do procedimento de coleta de dados para identificação da parte linear do modelo de velocidade.

que satisfaça exatamente todas as equações. Portanto, a abordagem a ser utilizada nesse experimento consiste em encontrar estimativas que minimizam o seguinte critério de somatório de erro quadrático:

$$V(K_m, \tau) = \sum_{k=2}^{N} \left(\omega_k - \frac{(\tau - T)}{\tau} \omega_{k-1} - \frac{K_m T}{\tau} \hat{u}_{a, k-1} \right)^2, \tag{9}$$

ou seja,

$$\hat{K}_m, \hat{\tau} = \arg_{K_m, \tau} \min V(K_m, \tau). \tag{10}$$

A minimização da função (9) pode ser obtida por meio de qualquer método numérico de minimização de funções. Devido à sua forma quadrática, essa função possui um único valor mínimo global. Isso significa que, mesmo ao se adotar um método que necessite de um valor inicial para as estimativas \hat{K}_m e $\hat{\tau}$, elas devem convergir para o mínimo global.

Pode-se também não adotar um método numérico, mas sim obter a forma fechada da solução de (10), e calcular as estimativas usando os dados e essa forma fechada. Para encontrar essa forma fechada, deve-se encontrar \hat{K}_m e $\hat{\tau}$ que satisfazem simultaneamente o seguinte conjunto de equações:

$$\frac{\partial V(\hat{K}_m, \hat{\tau})}{\partial \hat{K}_m} = 0,$$

$$\frac{\partial V(\hat{K}_m, \hat{\tau})}{\partial \hat{\tau}} = 0.$$
(11)

$$\frac{\partial V(\hat{K}_m, \hat{\tau})}{\partial \hat{\tau}} = 0. \tag{12}$$

Portanto, são apresentadas aqui duas formas distintas de se obter estimativas para os parâmetros da parte linear do modelo de velocidade.

2 Procedimentos de preparação

Como preparação para esse experimento, pede-se:

- 1. Consultar o manual dos processo com o qual o grupo irá trabalhar, e determinar de forma justificada valores para a freqüência e amplitude das ondas a serem usadas para os procedimentos de identificação da parte não-linear e da parte linear. Os manuais do processo são distribuidos em conjunto com esse roteiro. Sugestão: os manuais possuem uma tabela com os parâmetros do processo. Um modelo inicial pode ser obtido a partir desses parâmetros. Existem relações diretas entre τ e a freqüência e amplitude das ondas de excitação;
- 2. Realizar simulações para coleta de dados em Simulink, conforme as Figs. 1 e 2, e parâmetros $\tau = 0, 1$ s, $K_m = 20$, $\delta_+ = 0, 5V$, e $\delta_- = -1, 2V$. Os parâmetros das formas de onda de excitação devem ser devidamente determinados, conforme o procecimento anterior. As variáveis de interesse devem ser salvas em arquivo;
- 3. Preparar um *script* Matlab para ler as variáveis salvas e determinar, de forma automática, estimativas para τ , K_m , δ_+ e δ_- , a partir dos dados gerados em simulação e conforme os procedimentos descritos nas seções 1.2 e 1.3. O mesmo *script* deve ainda, usando a função lsim do Matlab, tendo como entrada $\hat{u}_a(t)$ e a estimativa do modelo da parte linear, gerar estimativa $\hat{\omega}(t)$ para a saída $\omega(t)$. Com isso, o erro $\omega(t) \hat{\omega}(t)$ deve ser pequeno se os todos os parâmetros tiverem sido identificados de forma satisfatória.

Deve ser lembrado que essas simulações devem usar *solver* ode 4 Runge Kutta, com passo fixo em 2 *ms*.

O *script* do último item consiste na verdade na implementação de todos os procedimentos de identificação, a ser usado na fase experimental em laboratório.

3 Experimento

No laboratório, as seguintes etapas deverã ser realizadas:

- Implementar um modelo Simulink para aquisição de dados para identificação da parte não-linear do modelo de velocidade;
- Implementar um modelo Simulink para aquisição de dados para identificação da parte linear do modelo de velocidade;
- Adquirir dados e executar o script de identificação da preparação para verificar a qualidade dos modelos obtidos;
- Levar os dados em meio digital para preparação do relatório do experimento. Sugere-se o uso de *pendrive*.

Referências

- [1] Lennart Ljung. System Identification: Theory for the User. Prentice-Hall, second edition, 1999.
- [2] Luis Antonio Aguirre. Introdução à identificação de sistemas. Editora da UFMG, quarta edition, 2015.