

Kantonsschule Reussbühl

Fach	Grundlagenfach Mathematik
Prüfende Lehrpersonen	Rita Barmet-Bajor Bernhard Berchtold Peter Büchel Hannes Ernst Felix Huber Roland Reichmuth
Klassen	6a / 6b / 6c / 6d / 6e / 6f / 6K
Prüfungsdatum	Montag, 31. Mai 2010
Prüfungsdauer	3 Stunden
Erlaubte Hilfsmittel	Fundamentum Mathematik und Physik Taschenrechner TI 83+ bzw. TI voyage200
Anweisungen zur Lösung der Prüfung	Bei jeder Aufgabe muss ein formaler Lösungsweg angegeben werden.
Anzahl erreichbarer Punkte	Aufgabe 1: 10 Aufgabe 2: 10 Aufgabe 3: 10 Aufgabe 4: 10 Aufgabe 5: 10 Total: 50 Für 44 Punkte wird die Note 6 erteilt (Notenskala linear)
Anzahl Seiten (inkl. Titelblatt)	4

Kantonsschule Reussbühl

- 1. Gegeben ist die Funktion f mit der Gleichung $f(x) = \frac{1}{9}x^3 x^2$
 - a) Untersuchen Sie den Graphen von f auf sein Verhalten für $x \to \pm \infty$. Bestimmen Sie die Nullstellen, Extremal- und Wendepunkte. (3 Punkte)
 - b) Geben Sie die Gleichung der Wendetangente an und bestimmen Sie deren Schnittpunkte mit der x- und y-Achse. (2 Punkte)
 - c) Der Ursprung und die unter Aufgabe b) bestimmten Achsenschnittpunkte bilden die Eckpunkte eines Dreiecks. In dieses ist ein Rechteck mit maximalem Flächeninhalt einzuschreiben. Berechnen Sie diesen Inhalt. (2 Punkte)
 - d) Sei nun die Funktionenschar f_a gegeben durch $f_a(x) = ax^3 x^2$ mit $a \in \mathbb{R}^+$. Wie lautet die Koordinatengleichung der Kurve, auf der alle Tiefpunkte der Schar f_a liegen? (3 Punkte)
- 2. Für einen Einsatz von 3 Franken darf man an folgendem Spiel teilnehmen.

Ein Glücksrad mit vier gleich grossen Feldern, worauf die Zahlen 1, 3, 9 zu lesen sind, wird zweimal gedreht. Die Auszahlung entspricht dem Produkt der beiden erhaltenen Zahlen, im schlechtesten Fall 0 Franken, im besten Fall 81 Franken.

- a) Die Zufallsvariable X ordnet jedem möglichen Spielergebnis den Gewinn bzw. Verlust (Auszahlung Einsatz) zu. Untersuchen Sie, welche Werte X annehmen kann und stellen Sie die Wahrscheinlichkeitsverteilung von X auf. (3 Punkte)
- b) Berechnen Sie den Erwartungswert von X. (1 Punkt)
- c) Wie wahrscheinlich ist es, dass der Zeiger bei einmaligem Spieldurchgang keinmal die Null zeigt? (1 Punkt)
- d) Jemand hat 9 Franken als Auszahlung erhalten. Wie wahrscheinlich ist es, dass er diesen Betrag durch das Ereignis "1. Drehung zeigt 3 und 2. Drehung zeigt 3" erhalten hat? (1 Punkt)
- e) Man spielt das Spiel zehn Mal.
 - A: Wie wahrscheinlich ist es, dass man genau dreimal Fr. 27.- ausbezahlt bekommt?
 - B: Wie wahrscheinlich ist es, dass man die ersten 3 Durchgänge Fr. 27.- ausbezahlt bekommt und die restlichen Male nichts? (2 Punkte)
- f) Wie oft muss man beim Spiel mitmachen, damit man mit mindestens 90-prozentiger Wahrscheinlichkeit wenigstens einmal Fr. 27.- erhält? (2 Punkte)

Kantonsschule Reussbühl

3. Die folgende Skizze zeigt die Kurve k der Funktion mit Gleichung $f(x) = (1-x) \cdot \sqrt{x}$ im Intervall $0 \le x \le 1$. Diese Kurve k bildet zusammen mit ihrem Spiegelbild k' eine zur x-Achse symmetrische Figur.

- a) Wie gross ist der Schnittwinkel von k und k' in S? (2 Punkte)
- b) Welches ist die grösste Breite dieser Figur (parallel zur y-Achse gemessen)? (2 Punkte)
- c) Berechnen Sie den Inhalt der von k und k' eingeschlossenen Fläche. (2 Punkte)
- d) Bei der Rotation der Fläche von c) um die x-Achse entsteht ein tropfenförmiger Körper. Wie gross ist sein Volumen? (1 Punkt)
- e) Diesem Körper wird ein Kreiskegel mit der Spitze im Ursprung und der Höhe h auf der x-Achse einbeschrieben (vgl. Skizze). Für welche Höhe h wird das Volumen des Kegels maximal? (3 Punkte)
- 4. Die Punkte A(-2|3|1), B(4|-1|2) und C(1|-2|-3) bilden die Ecken der Grundfläche einer Pyramide. Die Spitze D liegt in der Ebene mit der Gleichung 3x-2y+z-6=0 und steht senkrecht über dem Schwerpunkt der Grundfläche.
 - a) Berechnen Sie den grössten Dreieckswinkel und den Flächeninhalt des Dreiecks ABC. (2 Punkte)
 - b) Geben Sie die Koordinatengleichung von E = (ABC) an. (2 Punkte)
 - c) Bestimmen Sie den Schwerpunkt der Grundfläche und die Koordinaten von D. *(3 Punkte)* [Nur zur Kontrolle: D hat die Koordinaten D(-6|-9|6)]

Wer die Aufgabe c) nicht lösen konnte, rechnet für d) und e) mit den in der Kontrolle gegebenen Koordinaten von D.

- d) Berechnen Sie die Höhe und das Volumen der Pyramide (Höhe durch D). (1 Punkt)
- e) Die Gerade g = (AD) wird an der Grundfläche gespiegelt. Bestimmen Sie die Parametergleichung der gespiegelten Geraden g'. (2 Punkte)

Kantonsschule Reussbühl

- 5. Lösen Sie die drei unabhängigen Teilaufgaben
- a) A und B machen ein Spiel, bei dem sie abwechselnd würfeln:
 A wirft mit zwei Würfeln, B nur mit einem Würfel. Wirft A die Summe 5, so gewinnt er; wirft B die Ziffer 5, so gewinnt er. A beginnt.

 Mit welcher Wahrscheinlichkeit gewinnt A das Spiel? (4 Punkte)

[Beachten Sie, dass das Spiel theoretisch unendlich lange dauern kann]

- b) Für welche Werte des Parameters q berührt die Gerade t: $y = -\frac{1}{\sqrt{3}}x + q$ den Kreis k: $x^2 + y^2 = 4$? (3 Punkte)
- c) Berechnen Sie das bestimmte Integral $\int_{1}^{e} x \ln(x) dx$ mit Hilfe von partieller Integration. (e: Euler'sche Zahl) (3 Punkte)