1. Transistor circuit

-guess and sketch the waveform of $V_{\text{A}}\,\text{and}\,\,V_{\text{B}}$

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Min. Typ. Max.		Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μA, V _{GS} =0	60			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max rating V_{DS} = max rating, T_{C} = 125 °C			1 10	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 18 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1	2.1	3	٧
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 0.5 \text{ A}$		1.8 2	5 5.3	Ω

Reason:

Query the datasheet and we could find that the gate threshold voltage is about 2.1V.

VA is always almost equal to the input voltage.

When the input voltage < 2.1V, the NMOS is on, so VB=VDD=5V.

And when the input voltage > 2.1V, the NMOS is off, so VB=0V.

- Build the circuit in Multisim, use 'DC sweep' or 'transient' simulation to validate your guess.

- Find the output waveform of VB, and calculate the voltage gain.

Enlarge the wave of VB, we could find that when VB \approx 2.5V, the input voltage \approx 2.222743V. So let the input voltage=2.222743V, and print the waveform of VB.

Amplitude of the VB's wave is 2.523V-2.501V=0.022V And the Amplitude of the peak voltage is 1mV=0.001V So the voltage gain is (2.523-2.501)/0.001=22 The voltage gain=22.

2. Operational amplifier

Circuit #1

Circuit #2

Vout=-7V

3. Analog-to-digital converter (ADC)

let Vin compare with k if Vin < k then $\chi_{k} = 1$ else $\chi_{k} = 0$									
	X _I		Х3		Bi	Bo			
O <vin< <="" td=""><td>0</td><td></td><td></td><td></td><td>l</td><td>0</td><td></td></vin<>	0				l	0			
2 < Vin < 3	0	0			0	(
3< Vin<4	0	0	D		0	0			

the simplifications of digital circuit:

The circuit is as followed.

Change the value of Vin means the change of Vin.

If B1/B0=1, then the corresponding light will light up.

If B1/B0=0, then the corresponding light will extinguish.

4.MCU development

from machine import TouchPad,Pin#import TouchPad,Pin import time#import time for sleep

red=Pin(27,Pin.OUT)#let the red led get source from D27 yellow=Pin(26,Pin.OUT)#let the yellow led get source from D26 green=Pin(25,Pin.OUT)#let the green led get source from D25 touch=TouchPad(Pin(13))#let the TouchPad get data from D13 while 1:#follow the circuit

while touch.read()>1000:#the hand do not touch the pin for i in range(5):#the red led will be on for 5 seconds if touch.read()<1000:#the hand is touching the pin break#reset the whole system red.value(1)#let the red led be on sleep(0.5)#it will be on for 0.5 second red.value(0)#let the red led be off sleep(0.5)#it will be off for 0.5 second if touch.read()<1000:#the hand is touching the pin break

for i in range(2):#the yellow led will be on for 2 seconds if touch.read()<1000:#the hand is touching the pin break#reset the whole system yellow.value(1)#let the yellow led be on sleep(0.5)#it will be on for 0.5 second yellow.value(0)#let the yellow led be off sleep(0.5)#it will be off for 0.5 second if touch.read()<1000:#the hand is touching the pin

break#reset the whole system
for i in range(4):#the green led will be on for 4 seconds
if touch.read()<1000:#the hand is touching the pin
break#reset the whole system
green.value(1)#let the green led be on
sleep(0.5)#it will be on for 0.5 second

green.value(0)#let the green led be off sleep(0.5)#it will be off for 0.5 second