Iluminación. Introducción.

<a.soroa@ehu.eus>

EHU

Iluminación

- En este tema vamos a hablar de la ilumniación de la escena 3D.
 - luces.
 - materiales.
- Algoritmo de sombreado (shading algorithm):
 - Color de los objetos.
 - Reflejos luminosos.
 - Transparencia.
 - Texturas.
 - Sombras.

Iluminación

- Elementos necesarios para la iluminación:
 - Modelo óptico de la luz.
 - Geometría de los objetos.
 - Material asignado a cada objeto.
 - Luces.

Modelo óptico de la luz

- Simplificación matemática de las complejas inter-relaciones entre luz y objetos.
- Se distinguen dos modelos:
 - Modelo de iluminación
 - Cómo se refleja la luz en las superficies para producir lo que vemos como color.
 - Modelo de sombreado
 - Proceso de alterar el color de cada cara de los objetos 3D.

Modelo de iluminación

- Modela las complejas interacciones entre la luz y los objetos.
- Cómo reaccionan los objetos a la luz.

Modelo de iluminación

- Puede ser muy complicado:
 - la luz incidente puede venir de una fuente de luz o de reflejos de otros objetos.
 - a su vez, la superficie iluminada refleja luz a otros objetos.
 - multitud de interacciones entre la luz y la superficie.

Modelos básicos

- Dos modelos básicos:
 - Modelo de Lambert
 - Modelo de Phong
- La principal diferencia es que el modelo de *Phong* contiene reflejos especulares.

Lambert

Phong

Modelo de sombreado

- Modelo poligonal.
- Los objetos son aproximaciones formadas por primitivas:
 - vértices, aristas, caras.
- El modelo de sombreado asigna colores a cada pixel.

Modelo de sombreado

• Permite abstraer el modelo poligonal

Tipos básicos

- Dos tipos básicos de sombreado:
 - Flat shading: se interpola cada cara por separado.
 - Smooth shading: se interpola entre caras.

Flat

Smooth

Tipos básicos

- Dos tipos básicos de sombreado:
 - Flat shading: se interpola cada cara por separado.
 - Smooth shading: se interpola entre caras.

También se distingue:

Dos modelos comunes:

- Per vertex shading (Gouraud shading): los cálculos se hacen para cada vértice.
 Se interpolan los colores de los vértices.
- Per fragment shading (Phong shading): Los cálculos se hacen para cada fragmento (pixel). Se interpolan las normales de los vértices.

Flat, per vertex, per fragment

(Imágenes obtenidas de "Real time rendering")

Material

- Cada objeto tiene asignado un material.
- Diferente comportamiento con respecto a la luz.
- El material define también:
 - el modelo de iluminación.
 - el modelo de sombreado.

El objeto THREE. Material

- Se define los parámetros de material.
- Color del material: atributo color
- Modelo de sombreado: atributo shading
 - THREE.FlatShading, THREE.SmoothShading
- Modelo de alambre: atributo wi reframe
- Diferentes tipos de materiales implementan diferentes modelos de iluminación:
 - THREE.MeshBasicMaterial, THREE.MeshLambertMaterial, THREE. MeshPhongMaterial, ...

- THREE.MeshBasicMaterial: Material básico, asigna un color uniforme a todo el objeto.
- THREE.MeshLambertMaterial: Material de tipo Lambert.
- THREE.MeshPhongMaterial: Material de tipo Phong.
- Por ejemplo:

THREE.Mesh

- Objetos básico en Three.JS
- Dos parámetros fundamentales:
 - geometría (tipo derivado de THREE. Geometry)
 - material (tipo derivado de THREE.Material)
- Por ejemplo: