Lecture 9 – Support Vector Machines

Martin Spindler

2016-04-26

Introduction

- ▶ Outcome variable: $Y \in \{-1, +1\}$
- Generalization to multi-valued outcomes is straight forward.
- ▶ Basic Idea (for classification): Separating the space of features by hyperplanes into different regressions so that the dependent variable / outcome is separated.
- Seperating hyperplanes
- Graph: cf white board
- ▶ In this lecture we focus only on the basic idea.

Digression: Hyperplanes

- ▶ In a p-dimensional space a *hyperplane* is a flat affine subspace of dimension p-1-
- **Example** 1: In p = 2 a hyperplane is a line.
- Example 2: In p = 3 a hyperplane is a plane.
- ▶ A hyperplane is a *p*-dimensional space is defined by

$$\beta_0 + \beta_1 X_1 + \dots \beta_p X_p = 0$$

.

- ▶ If $\beta_0 + \beta_1 X_1 + ... \beta_p X_p < 0$ than $X = (X_1, ..., X_p)$ lies on one side of the hyperplane.
- ▶ If $\beta_0 + \beta_1 X_1 + ... \beta_p X_p > 0$ than X lies on the other side of the hyperplane.
- Hence: Separation of the space into two parts.
- ▶ $f(x) = \beta_0 + \beta_1 x_1 + ... \beta_p x_p$ gives the signed distance from a point x to the hyperplane defined by f(x) = 0

Support Vector Classifier

- ► Training data: $(x_1, y_1), \dots, (x_n, y_n), x_i \in \mathbb{R}^p$ and $y_i \in \{-1, +1\}$
- ▶ Definition hyperplane: $\{x: f(x) = x^T \beta + \beta_0 = 0\}$ (β unit vector with $\|\beta\| = 1$)
- ▶ Classification rule: $G(x) = sign[x^T \beta + \beta_0]$

Support Vector Classifier: Separable Case

- ▶ Separable means: $y_i f(x_i) > 0 \forall i$ for a plane f(x)
- ▶ Find the hyperplane that creates the biggest margin between the classes for -1 and +1.
- ▶ Optimization problem: $\max_{\beta,\beta_0,||\beta||=1} M$ subject to

$$y_i(x_i^T\beta + \beta_0) \geq M, i = 1, \ldots, n$$

▶ Equivalent formulation: $\min_{\beta,\beta_0} \|\beta\|$ subject to

$$y_i(x_i^T\beta + \beta_0) \ge 1, i = 1, ..., n$$

Support Vector Classifiers: Non-separable Case

- ▶ Now: classes overlap in the feature space.
- ightharpoonup Still maximize M, but allow for some points to be on the wrong side of the margin.
- ▶ Slack variables $\xi = (\xi_1, \dots, x_n)$
- ▶ Modification of the constraints: $y_i(x_i^T \beta + \beta_0) \ge M \xi_i$ or $y_i(x_i^T \beta + \beta_0) \ge M(1 \xi_i)$
- $\forall \xi \geq 0, \sum_{i=1}^{n} \xi_i \leq constant$
- Interpretation: overlap in actual distance from the margin vs overlap in relative distance.
- ► Focus on the second case (b/c convex optimization problem)

Support Vector Classifiers: Non-separable Case

- ▶ ξ_i proportional amount by which the prediction $f(x_i)$ is on the wrong side of the margin.
- ▶ Missclassification occurs, if $\xi_i > 1$
- ▶ Bounding $\sum \xi_i$ at value K, bounds the number of training missclassifications at K.
- ▶ Equivalent formulation of the problem: min $\|\beta\|$ subject to

$$y_i(x_i^T\beta + \beta_0) \ge 1 - \xi_i \forall i, \xi_i \ge 0, \sum \xi_i \le K$$

Support Vector Machines

- ▶ Up to now: linear boundaries in the feature space.
- ► Flexibility by enlarging the feature space using basis expansions (e.g. polynomials, splines)
- Better training-class separation and nonlinear boundaries in the original space.
- Selection of basis functions $h_m(x)$, m = 1, ..., M and fit of SV classifier using the input features $h(x_i) = (h_1(x_i), ..., h_M(x_i))$.
- Nonlinear function $\hat{f}(x) = h(x)^T \hat{\beta} + \hat{\beta}_0$
- Classifier: $\hat{G} = sign(\hat{f}(x))$

Support Vector Machines

- SVM use a very large space of basis functions leading to computational problems.
- Problem of overfitting.
- ▶ SVM technology takes care of both problems.

Support Vector Machines

- (omitting technical details)
- ▶ Solution of the optimization problem involve h(x) only through inner products.
- ▶ Knowledge of the kernel functions $K(x, x') = \langle h(x), h(x') \rangle$ is sufficient.
- ► Examples: + dth degree polynomial: $K(x, x') = (1 + \langle x, x' \rangle)^d + \text{Radial basis: } K(x, x') = \exp(-\gamma ||x x'||^2)$

Support Vector Machines | Example

- ▶ Consider two-dimensional space (X_1, X_2) and polynomial kernel of degree 2.
- $K(X, X') = 1 + 2X_1X_1' + 2X_2X_2' + (X_1X_1')^2 + (X_2X_2')^2 + 2X_1X_1'X_2X_2'$
- ▶ Then M=6 and $h_1(X)=1, h_2(X)=\sqrt(2)X_1,\ldots$ Then $K(X,X')=\langle h(X),h(X')\rangle$

SVM as a Penalization Method

With $f(x) = h(x)^T \beta + \beta_0$, we consider the optimization problem:

$$\min_{\beta_0,\beta} \sum_{i=1}^n [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} \|\beta\|^2$$

- ▶ loss + penalty
- ▶ Hinge loss function: $L(y, f) = [1 yf]_+$
- ▶ Solution to the above optimization problem (with $\lambda = 1/C$) is the same as for the SVM problem.
- ▶ (C is a Cost parameter related to K)

We use the library e1071 (alternative LiblineaR for very large linear problems)

```
library(e1071)
```

First, we generate data we would like to classify

```
set.seed(12345)
x = matrix(rnorm(200*2), ncol=2)
x[1:100,] = x[1:100,] + 2
x[101:150,] = x[101:150,] - 2
y = c(rep(1,150), rep(2,50))
dat = data.frame(x=x, y=as.factor(y))
```

plot(x, col=y)

Next, we split the data into training and testing sample

```
train = sample(200,100)
```

Then we fit a SVM with radial basis and plot the result

```
svmfit = svm(y~., data=dat[train,], kernel="radial", gamma:
# summary(smvfit)
```

plot(svmfit, dat[train,])

SVM classification plot

We can now increase the cost parameter to reduce the training errors

```
svmfit = svm(y~., data=dat[train,], kernel="radial", gamma=
#plot(svmfit, dat[train,])
# summary(smvfit)
```

plot(svmfit, dat[train,])

SVM classification plot

Selection of the cost parameter and γ by CV

```
tune.out=tune(svm, y~., data=dat[train,], kernel="radial",
#summary(tune.out)
```

true 1 2 ## 1 70 5 ## 2 4 21

Finally, we test it on the testing data

```
table(true=dat[-train,"y"], pred=predict(tune.out$best.mode
## pred
```