The area of a triangle with vertices

$$(x_1), (y_1), (x_2), (y_2), \text{ and } (x_3), (y_3)$$

$$Area = \pm \frac{1}{2} det \begin{bmatrix} x_1 & y_1 & 1\\ x_2 & y_2 & 1\\ x_3 & y_3 & 1 \end{bmatrix}$$

where the sign (\pm) is chosen to give a positive area.

Proof

Prove the case for $y_i > 0$. Assume that $x_1 \le x_3 \le x_2$ and that (x_3, y_3) lies above the line segment connecting (x_1, y_1) and (x_2, y_2) . Consider the three trapezoids whose vertices are

Trapezoid 1:
$$(x_1,0), (x_1,y_1), (x_3,y_3), (x_3,0)$$

Trapezoid 2:
$$(x_3,0),(x_3,y_3),(x_2,y_2),(x_2,0)$$

Trapezoid 3:
$$(x_1,0),(x_1,y_1),(x_2,y_2),(x_2,0)$$

The area of the triangle is equal to the sum of the areas of the first two trapezoids minus the area of the third trapezoid. So,

$$Area = \frac{1}{2}(y_1 + y_2)(x_3 - x_1) + \frac{1}{2}(y_3 + y_2)(x_2 - x_3) - \frac{1}{2}(y_1 + y_2)(x_2 - x_1)$$

$$= \frac{1}{2}(x_1y_2 + x_2y_3 + x_3y_1 - x_1y_3 - x_2y_1 - x_3y_2)$$

$$= \frac{1}{2}\begin{bmatrix} x_1 & y_1 & 1\\ x_2 & y_2 & 1\\ x_3 & y_3 & 1 \end{bmatrix}$$

If the vertices do not occur in the order $x_1 \le x_3 \le x_2$ and that (x_3, y_3) or if the vertex (x_3, y_3) is not above the line segment connecting the other two vertices, then the formula above may yield the negative of the area. So, use \pm and choose the correct sign to give a positive area.