COMP 424 - Artificial Intelligence Lecture 6: Searching under uncertainty

Instructor: Jackie CK Cheung (jcheung@cs.mcgill.ca)

Readings: R&N Ch 4.3, 4.4

Quick recap

- Uninformed and informed search.
- Search for optimization problems.
- Search for constraint satisfaction problems.
 - Discrete (vs continuous) state space.
 - Deterministic (vs stochastic) environment.
 - Observable (vs unobservable) environment.
 - Static (vs changing) environment.
- Search for many real-world domains:
 - Non-deterministic actions.
 - Partial observations.

Sources of uncertainty

Two major issues:

- Agent may not know what the outcomes of its actions are!
 - In this case, the actions are non-deterministic.
- Agent may not be able to observe which state it is in!
 - We can classify problems as observable, partially observable, or non-observable.

Searching with non-deterministic actions

 Consider the case where the next state is not fully determined by the current state and action.

e.g. Play backgammon

- Finite set of states and actions.
- Each action can have many outcomes depending on outcome of dice roll.
- Future states cannot be determined in advance.
- Solution to this problem is not a path, but a contingency plan (or strategy).

The vacuum world

1. Observable case:

- Start in a given state: {5}
- Plan: {Right; Sweep}

Possible actions:

{Left, Right, Sweep}

Goal states: {7, 8}

Observable vacuum: state space

The vacuum world

1. Observable case:

- Start in a given state: {5}
- Plan: {Right; Sweep}

2. Non-observable case:

- Start in any of: {1,2,3,4,5,6,7,8}
- Plan?

Possible actions:

{Left, Right, Sweep}

Goal states: {7, 8}

The vacuum world

1. Observable case:

- Start in a given state: {5}
- Plan: {Right; Sweep}

Non-observable case:

- Start in any of: {1,2,3,4,5,6,7,8}
- Plan: {Right; ?? }

What states are possible after Right action?

Need to reason over **sets of states** → **Beliefs**

Possible actions:

{Left, Right, Sweep}

Goal states: {7, 8}

- Consider case where agent is in one of several possible states, but cannot observe which.
- Represent uncertainty by a belief state
 - i.e., the agent's current belief about the possible states, given the sequence of actions and observations up to that point
- Total number of possible beliefs?
 - $2^8 = 256$ (Technically 2^8-1 , since the belief has to include at least 1 state.)

- Consider case where agent is in one of several possible states, but cannot observe which.
- Represent uncertainty by a belief state
 - i.e., the agent's current belief about the possible states, given the sequence of actions and observations up to that point
- Total number of possible beliefs?
 28 = 256 (Technically 28-1, since the belief has to include at least 1 state.)
- Number of reachable beliefs?

Non-observable vacuum: belief space

- Consider case where agent is in one of several possible states, but cannot observe which.
- Represent uncertainty by a belief state
 - i.e., the agent's current belief about the possible states, given the sequence of actions and observations up to that point
- Total number of possible beliefs?
 2⁸ = 256 (Technically 2⁸-1, since the belief has to include at least 1 state.)
- Number of reachable beliefs? Only 12 reachable beliefs.

Assume (for now) that there are no observations and actions

are deterministic.

Start in any state:

• How to use actions?

$$\{1, 2, 3, 4, 5, 6, 7, 8\} \rightarrow_{Right} \{2, 4, 6, 8\}$$

Plan?

Assume (for now) that there are no observations and actions

are deterministic.

• How to use actions?

$$\{1, 2, 3, 4, 5, 6, 7, 8\} \rightarrow_{Right} \{2, 4, 6, 8\}$$

Plan? Use a conformant plan

$$\{1, 2, 3, 4, 5, 6, 7, 8\} \rightarrow_{Right} \{2, 4, 6, 8\} \rightarrow_{Sweep} \{4, 8\} \rightarrow_{Left} \{3, 7\} \rightarrow_{Sweep} \{7\}$$

Other possible plans?

Conformant planning

- Goal is to find a plan that leads to the goal despite state uncertainty.
- Good heuristic is to use actions that reduce uncertainty → reduce belief to a single state.
- Once you know what state you are in, apply standard search to reach the goal.
- Use conformant planning when there are NO observations.

Visual analogy

Feeding parts for manufacturing:

http://goldberg.berkeley.edu/fences.mpg

The vacuum world

1. Observable case:

- Start in a given state: {5}
- Plan: {Right; Sweep}

Non-observable case:

- Start in any of: {1,2,3,4,5,6,7,8}
- Plan: {Right; Sweep; Left; Sweep}

3. Non-deterministic case:

- Start in a given state: {1}
- Sweep clean square sometimes deposits dirt; Sweep dirty square sometimes cleans adjacent square.
- Plan?

Non-deterministic vacuum: AND-OR search

AND-OR search tree:

- OR nodes: the agent chooses between actions.
- AND nodes: choice is induced by the environment's choice of outcome.

Non-deterministic vacuum: AND-OR search

- Solution for AND-OR search problem is a subtree that:
 - specifies one action at each OR node;
 - includes every outcome at each AND node;
 - has a goal node at every leaf.

The vacuum world

1. Observable case:

- Start in a given state: {5}
- Plan: {Right; Sweep}

2. Non-observable case:

- Start in any of: {1,2,3,4,5,6,7,8}
- Plan: {Right; Sweep; Left; Sweep}

3. Non-deterministic case:

- Start in a given state: {1}
- Sweep clean square sometimes deposits dirt; Sweep dirty square sometimes cleans adjacent square.
- Plan: {Sweep; Right; Sweep}

Another case: The slippery vacuum

 Movement actions, {Left, Right}, sometimes fail, leaving the agent in the same location. E.g. {1} ->_{Right} {1, 2}

Another case: The slippery vacuum

Movement actions, {Left, Right}, sometimes fail, leaving the agent in the same location. E.g. $\{1\}$ ->_{Right} $\{1, 2\}$

Apply a cyclic solution: keep on trying an action until it works.

Keep trying until it works

Cyclic solution: keep on trying an action until it works. Is this a good solution?

Depends on cause of the non-determinism:

- Ok if caused by random event
 - E.g. Die roll
- Not if caused by unobserved event
 - E.g. Broken vacuum

From unobservable to partially observable

- Need to add a set of observations and a percept function:
 - Defines how the environment generates percepts for the agent, as a function of the physical state
- Different classes of observability:
 - 1. Fully observable problems: *Percept(s) = s*
 - Actions can be deterministic or non-deterministic
 - 2. Non-observable problems: *Percept(s) = null*
 - 3. Partially observable problems: Percept(s) = {o_i}
 - o_i is a symbol providing (noisy) evidence about s
 - Recall the vacuum world with local sensing
 - 4. Part. Obs. with nondeterministic sensing: $Percept(s) = \{o_1, ..., o_k\}$
 - Can observe any o_i from a set of possible symbols $\{o_1, ..., o_k\}$

Local sensing in vacuum world

- Observable case:
- 2. Non-observable case:
- 3. Non-deterministic case:

 1
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

- 4. Non-deterministic, partially observable case:
 - Start in a given state: {1} <= Belief state
 - Sweep sometimes cleans adjacent square.
 - Local sensing is available: {dirty, clean} <= Sensing function
 - Plan?

Local sensing in vacuum world

- Observable case:
- 2. Non-observable case:
- 3. Non-deterministic case:

- 3 2

- 6
- 7 🕰
- 8 ____

4. Non-deterministic, partially observable case:

Start in a given state: {1}

- <= Belief state
- Sweep sometimes cleans adjacent square.
- Local sensing is available: {dirty, clean} <= Sensing function
- Plan? $\{1\}$ ->_{Sweep} $\{5,7\}$ ->_{Right} $\{6,8\}$ ->_{If dirty, then Sweep} $\{8\}$

Search in belief space

Assume the original (fully observable problem) is defined by:

```
P = { States<sub>p</sub>, InitialState<sub>p</sub>, Actions<sub>p</sub>, Predict<sub>p</sub>, GoalTest<sub>p</sub>, StepCost<sub>p</sub>}
```

Now define a new search problem:

```
B = { States<sub>B</sub>, InitialState<sub>B</sub>, Actions<sub>B</sub>, Predict<sub>B</sub>, GoalTest<sub>B</sub>, StepCost<sub>B</sub>}
```

• What do all of these represent?

Search in belief space

```
B = { States<sub>R</sub>, InitialState<sub>R</sub>, Actions<sub>R</sub>, Predict<sub>R</sub>, GoalTest<sub>R</sub>, StepCost<sub>R</sub>}
States<sub>R</sub>: every possible set of physical states, 2^N in total (N = size of
    States<sub>p</sub>)
InitialState<sub>B</sub>: usually every state in States<sub>P</sub>, sometimes task-specific.
Actions<sub>B</sub>: Actions<sub>B</sub>(b) = U_{s \text{ in b}} Actions<sub>P</sub>(s)
      (This can be a problem if some actions are illegal in some states.)
Predict<sub>R</sub>: b -> b'
      Deterministic actions: b' = \{ s' : s' = Predict_p(s,a) \text{ and } s \text{ in } b \}
      Nondeterministic actions: b' = \{ U_{s \text{ in } b} \text{ Predict}_{p}(s,a) \}
GoalTest<sub>R</sub>: Goal is satisfied when all the physical states in b satisfy the
   goal.
StepCost<sub>R</sub>: StepCost<sub>P</sub> (If the cost of an action is the same in all states.)
```

Searching with observations

- Need to account for possible observations, and what observations tell us about the next state!
- State prediction stage:

```
b<sub>a</sub> = Predict(b, a)
```

Observation prediction stage:

```
Possible-Percept(b<sub>a</sub>) = {o : o=Percept(s), s in b<sub>a</sub>}
```

Belief update stage:

COMP-424: Artificial intelligence

Searching with observations

Deterministic case: ~;% [B,Dirty]Right [B,Clean]**** **** [B,Dirty]<u>~</u> %% Right Non-deterministic case: [A,Dirty]/[B,Clean]

Searching with observations

State prediction stage:

```
b<sub>a</sub> = Predict(b, a)
```

Observation prediction stage:

```
Possible-Percept(b<sub>a</sub>) = {o : o=Percept(s), s in b<sub>a</sub>}
```

Belief update stage:

Putting it all together:

```
b' = \{b_{ao} : b_{ao} = Update(Predict(b,a),o), o in Possible-Percept(Predict(b,a))\}
```

Use this procedure to build the nodes in the search tree.

Search properties

- Optimality / Completeness:
 - Depends on the search algorithm used.
- Time / Space complexity?
 - Let S = #states, A=#actions, O=#observations, T=plan length

Search properties

- Optimality / Completeness:
 - Depends on the search algorithm used.
- Time / Space complexity?
 - Let S = #states, A=#actions, O=#observations, T=plan length
 - Worst-case, search tree has $O((AO)^T)$ nodes
 - Each search tree has at most 2^S nodes
 - Each node has at most S states in its belief

BUT: The number of <u>reachable</u> nodes often depends on the number of states, and the number of possible observations in each state.

(Recall, for our vacuum world: 28 possible beliefs, only 12 are reachable.)

Exercise: Mastermind

http://www.web-games-online.com/mastermind/index.php

- Belief space?
- Initial belief?
- Action space?
- Deterministic / non-deterministic actions?
- Possible percepts?
- Perception function?
- Goal test?
- Step cost?

Searching the belief space

- In general, can apply any standard search algorithm.
- Scalability is an issue!
- Problem #1: Number of reachable beliefs can be very large.
 - Use sampling or pruning to reduce this.
- Problem #2: Number of states in each belief can be very large.
 - Use a compact state representation.
 - Plan for each state separately (not as a search over belief space)
 to quickly find out if a state in the belief (and therefore the belief
 state itself) is unsolvable.

Searching the belief space

- In general, can apply any standard search algorithm.
- Scalability is an issue!
- Problem #1: Number of reachable beliefs can be very large.
 - Use sampling or pruning to reduce this.
- Problem #2: Number of states in each belief can be very large.
 - Use a compact state representation.
 - Plan for each state separately (not as a search over belief space)
 to quickly find out if a state in the belief (and therefore the belief
 state itself) is unsolvable.

To be solved in future classes...

Summary

- Actions can be {deterministic, nondeterministic}
- Observations (fully observable, unobservable, partially observable (deterministic), partially observable (nondeterministic))
- Belief states represent the set of possible states an agent is in.
- AND-OR trees can be used to represent and search through a belief state space to produce a plan even when there is uncertainty.