Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A composite sacrificial anode for immersion in a corrosive environment comprising a plurality of castings of a sacrificial material each disposed around a corresponding electrical connector for attachment to a structure to be protected, a part of the surface of each casting being protected from corrosion by the environment by being adjacent to at least one other casting, wherein the castings are connected electrically together only via their respective electrical connectors, [and] wherein the composite anode has a weight greater than 10 kg and wherein the castings are joined together by a waterproof mastic or resin.

Claim 2 (previously presented): An anode as claimed in claim 1 wherein composite anode is in the form of a block.

Claim 3 (previously presented): An anode as claimed in claim 2 wherein the block is circular, square or rectangular in cross-section.

Claim 4 (previously presented): An anode as claimed in claim 1 whose weight is greater than 100 kg.

Claim 5 (cancelled)

Claim 6 (currently amended): An anode as claimed in claim [[5]] wherein the waterproof mastic or resin coats the surface of each casting around its electrical connector.

Claim 7 (previously presented): An anode as claimed in claim 1 wherein each electrical connector is substantially straight.

Claim 8 (currently amended): An anode as claimed in claim $[[5]]\underline{1}$ wherein the mastic or resin completely fills any gaps between the castings.

Claim 9 (previously presented): An anode as claimed in claim 1 wherein the castings are identical.

Claim 10 (previously presented): An anode as claimed in claim 1 when composed of between two and six castings.

Claim 11 (cancelled)

Claim 12 (currently amended): An anode as claimed in claim 11A composite sacrificial anode for immersion in a corrosive environment comprising a plurality of castings of a sacrificial material each disposed around a corresponding electrical connector for attachment to a structure to be protected, a part of the surface of each casting being protected from corrosion by the environment by being adjacent to at least one other casting, wherein the castings are connected electrically together only via their respective electrical connectors, wherein the composite anode has a weight greater than 10 kg, and wherein the sacrificial material is an alloy consisting essentially of magnesium and from 0.15 to 1.3% by weight of manganese.

Claim 13 (currently amended): A method of producing a composite sacrificial anode for immersion in a corrosive environment and having an electrical connection for attachment to the structure to be protected, which method comprises casting a plurality of segments of a sacrificial material each in contact with a corresponding electrical connector, each connector being at least partly within its corresponding individual segment, assembling the segments together to form a composite anode such that a part of the surface of each segment is protected from corrosion by the environment by being adjacent

Appl. No. 10/534.895 Amdt. Dated October 19, 2007

Reply to Office action of July 19, 2007

to at least one other segment, and electrically connecting the

segments together only via their electrical connectors, wherein

the weight of the composite anode its greater than 10 kg and

wherein the castings are joined together by a waterproof mastic

or resin.

Claim 14 (previously presented): A method as claimed in

claim 13 wherein the composite anode is in the form of a block.

Claim 15 (previously presented): A method as claimed in

claim 14 wherein the block is circular, square or rectangular in

cross-section.

Claim 16 (previously presented): A method as claimed in

claim 13 wherein the weight of the composite anode is greater

than 100 kg.

Claim 17 (cancelled)

Claim 18 (currently amended): A method as claimed in claim

[[17]]13 wherein the waterproof mastic or resin is arranged to

coat the surface of each segment around its electrical

connectors.

Page 5 of 10

Claim 19 (previously presented): A method as claimed in claim 13 wherein each electrical connector is substantially straight.

Claim 20 (currently amended): A method as claimed in claim [[17]]13 wherein the mastic or resin completely fills any gaps between the castings.

Claim 21 (previously presented): A method as claimed in claim 13 wherein each segment is identical.

Claim 22 (previously presented): A method as claimed in claim 13 wherein the anode is composed of between two and six segments.

Claim 23 (previously presented): A method as claimed in claim 13 wherein each segment is formed by continuous casting.

Claim 24 (previously presented): A method as claimed in claim 23 wherein each segment is forcibly cooled.

claim 25 (previously presented): A method as claimed in claim 24 wherein the cooling is effected by water.

claim 26 (previously presented): A method as claimed in claim 13 wherein the casting is effected by direct chill casting.

Claim 27 (cancelled)

Claim 28 (currently amended): A method-as claimed-in-claim 27A method of producing a composite sacrificial anode for immersion in a corrosive environment and having an electrical connection for attachment to the structure to be protected, which method comprises casting a plurality of segments of a sacrificial material each in contact with a corresponding electrical connector, each connector being at least partly within its corresponding individual segment, assembling the segments together to form a composite anode such that a part of the surface of each segment is protected from corrosion by the environment by being adjacent to at least one other segment, and electrically connecting the segments together only via their electrical connectors, wherein the weight of the composite anode is greater than 10 kg and wherein the sacrificial material is an alloy consisting essentially of magnesium and from 0.15% to 1.3% by weight of manganese.

Claim 29 (previously presented): A composite sacrificial anode for immersion in a corrosive environment, comprising at least two casting segments comprised of sacrificial material, an electrical connector at least partly within each corresponding casting segment for attachment to a structure to be protected, each casting segment including exterior surfaces and at least one interior surface, each said interior surface of each said casting segment being spaced apart from said interior surface of another said casting segment forming a gap therebetween, wherein said gap is sufficiently small effective to protect said interior surfaces from corrosion by the environment, an electrically insulating waterproof layer being disposed in each of said gaps, and said electrical connectors of each of the casting segments are connected electrically together.

Claim 30 (previously presented): An anode as claimed in claim 29 wherein a weight of said anode exceeds 100 kg.

Claim 31 (previously presented): An anode as claimed in claim 29 wherein said anode is comprised of between two and six casting segments.

Claim 32 (previously presented): An anode as claimed in claim 29 wherein the sacrificial material is an alloy consisting essentially of magnesium and from 0.15% to 1.3% by weight of manganese.