Z Test for the Population Mean (σ Known) – Exercise

Cont'd

 H_0 : $\mu \ge 368$ H_1 : $\mu < 368$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}}$$
$$= -1.17$$

At $\alpha = 0.05$ n = 25

At $\alpha=0.05$, do not reject H_0

Reject H_0 if Z < -1.645

Critical Value = -1.645

There is no evidence that the true mean weight is less than 368 g

21

Z Test for the Population Mean (σ Known) – Exercise

Cont'd

$$H_0: \mu \ge 368$$

 $H_1: \mu < 368$

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}} = -1.17$$

p-value $= P(Z \le -1.17)$ = 0.1210

As p-value > α , do not reject H_0 There is no evidence that the true mean weight is less than 368 g

32

t Test for the Population Mean (σ Unknown) – Exercise

Cont'd

$$H_0: \mu \le 1$$

 $H_1: \mu > 1$

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = \frac{1.03 - 1}{0.08/\sqrt{40}}$$
$$= 2.37$$

At
$$\alpha = 0.10$$

$$n = 40 \qquad df = 39$$

Critical Value =
$$+1.3036$$

Reject
$$H_0$$
 if $t > +1.3036$

At
$$\alpha = 0.10$$
, reject H_0

There is evidence that the true mean amount is more than 1 L

t Test for the Population Mean (σ Unknown) – Exercise

Cont'd

$$H_0: \mu \le 1$$

 $H_1: \mu > 1$

$$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} = \frac{1.03 - 1}{0.08 / \sqrt{40}} = 2.37$$

p-value = $P(t \ge 2.37)$ = (0.01, 0.025)

0.01 < p-value < 0.025

As p-value $< \alpha$, H_0 is rejected There is evidence that the true mean amount is more than 1 L

Using Excel "T.DIST" function, the p-value is found to be 0.0114

3

Hypothesis Test – More Exercise

Cont'd

Step 1: Define hypotheses

$$H_0$$
: $\mu = -0.545$
 H_1 : $\mu \neq -0.545$

- Step 2: Collect data and identify rejection region(s)
 - Population distribution: Unknown
 - □ Sample size: 14
 - Any assumption needed? Yes
 - What is the assumption? Assume Normal population
 - Why? The sample size is too small to apply Central Limit Theorem
 - σ : unknown
 - □ Distribution to be used: t

41

Hypothesis Test – More Exercise

Cont'd

- Step 2: Collect data and identify rejection region(s)
 - □ Significance level: 0.05
 - Degrees of freedom: 13
 - □ Critical value(s): ±2.1604
 - \Box Decision rule: Reject H_0 if t < -2.1604 or t > +2.1604

42

Hypothesis Test – More Exercise

Cont'd

- Step 3: Compute test statistic

 - \neg p-value = (0.20, 0.50)
- Step 4: Make statistical decision
 - □ Decision: At α = 0.05, do not reject H_0
 - Conclusion: There is insufficient evidence that the mean freezing point of the milk is not -0.545 °C

Hypothesis Test – More Exercise

Cont'd

- What would happened if the sample size is 144 rather than 14?
 - Assumed the sample mean and standard deviation remain unchanged
- Step 1: Define hypotheses

$$H_0$$
: $\mu = -0.545$

$$H_1: \mu \neq -0.545$$

4

Hypothesis Test – More Exercise

Cont'd

- Step 2: Collect data and identify rejection region(s)
 - Population distribution: Unknown
 - □ Sample size: 144
 - Any assumption needed? No
 - What is the assumption? NA
 - Why? The sample size is large enough to apply Central Limit Theorem
 - σ : unknown
 - □ Distribution to use: *t*
 - □ Significance level: 0.05
 - □ Degrees of freedom: $143 \approx \infty$
 - □ Critical value(s): ±1.96
 - □ Decision rule: Reject H_0 if t < -1.96 or t > +1.96

Hypothesis Test – More Exercise

Cont'd

- Step 3: Compute test statistic
 - $\ \ \, \Box \ \ \, {\sf Test \ statistic} = t = \frac{\bar{X} \mu_0}{{\cal S}/\sqrt{n}} = \frac{-0.550 (-0.545)}{0.016/\sqrt{144}} = -3.75$
 - □ p-value < 0.01
- Step 4: Make statistical decision
 - \Box Decision: At α = 0.05, reject H_0
 - Conclusion: There is sufficient evidence that the mean freezing point of the milk is not -0.545 °C

40