A shape optimization problem for stationary Navier-Stokes flows in three-dimensional tubes

Michael Hintermüller, Axel Kröner, and Hong Nguyen.
WIAS Berlin, Germany.

July 27, 2020

Abstract

In order to optimize the shape design of air ducts in combustion engines, we consider a shape optimization problem subject to the stationary Navier-Stokes equations in three dimensions with mixed boundary conditions on domains of polyhedral type. An inflow profile is given at the inlet, a no-slip boundary condition is imposed on the wall, and a no-friction boundary condition on the outlet. To find optimal shapes, we choose a cost functional to achieve a uniform outflow and to minimize the total pressure loss. The associated numerical solution requires an efficient computation and yet accurate approximation of an adjoint-based shape gradient in a shape-gradient-related descent method. We present a numerical example illustrating the method.

Keywords: Shape optimization, Navier-Stokes equations, adjoint-based method.