CAS 741 (Development of Scientific Computing Software)

Winter 2025

Mixed-Precision Iterative Solver

Xunzhou (Joe) Ye

Faculty of Engineering, McMaster University

January 28, 2025

Linear Solver: the Good Old $\mathbf{A}\mathbf{x} = \mathbf{b}$ Problem

Direct method: Gaussian elimination

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 3 \\ 3 \end{bmatrix} = \mathbf{b}$$

$$\mathbf{A}|\mathbf{b} = \begin{bmatrix} 1 & -1 & 3 & 11 \\ 1 & 1 & 0 & 3 \\ 3 & -2 & 1 & 3 \end{bmatrix} \times 1 \times 3$$

$$\mathbf{A}|\mathbf{b} \leftarrow \begin{bmatrix} 1 & -1 & 3 & 11 \\ 0 & 2 & -3 & -8 \\ 0 & 1 & -8 & -30 \end{bmatrix}$$

Think Big, Think Sparse

- In structural simulations (e.g., finite element analysis), structures are modeled based on real-world physics, where forces and constraints are often localized.
- Each element or node in a structure is typically connected only to a few nearby elements or nodes.
- System of equations in structural simulations is assembled from local contributions.
- In contrast, in neural networks, dense weight matrices are used in fully connected layers.

Sparse Matrix Example: Boeing/ct20stif

- 52329×52329
- 2 600 295 non-zeros
- \approx 33 MB in file size

Boeing/ct20stif: CT20 Engine Block - Stiffness matrix

Sparse Matrix Example: Janna/Serena

- 1391349 × 1391349
- 64 131 971 non-zeros
- $\bullet \approx 847\,\mathrm{MB}$ in file size

 ${\sf Janna/Serena:}\ gas\ resevoir\ simulation\ for\ {\sf CO}_2\ sequestration$

The Problem with Gaussian Elimination

- Store the whole matrix
- Memory bounded

$$\mathbf{A}|\mathbf{b} = \begin{bmatrix} 1 & -1 & 3 & 11 \\ 1 & 1 & 0 & 3 \\ 3 & -2 & 1 & 3 \end{bmatrix} \xrightarrow{\times 1} \xrightarrow{\times 3}$$

$$\mathbf{A}|\mathbf{b} \leftarrow \begin{bmatrix} 1 & -1 & 3 & 11 \\ 0 & 2 & -3 & -8 \\ 0 & 1 & -8 & -30 \end{bmatrix}$$

The Problem with Gaussian Elimination

Sparsity preservation

Janna/Serena: gas resevoir simulation for CO₂ sequestration

Iterative Refinement

• A method to enhance the accuracy of a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$

The algorithm goes:

- 1. Solve $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$ approximately to get an initial solution \mathbf{x}_0 .
- 2. Compute the residual $\mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x}_0$, which measures how far \mathbf{x}_0 is from being an exact solution.
- 3. Solve $\mathbf{Ae} = \mathbf{r}$ for the correction vector \mathbf{e} .
- 4. Update ("refine") the solution as $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{e}$.
- 5. Repeat steps 2–4 until the residual \mathbf{r} is small enough.

Iterative Refinement in Mixed-Precision

- 1. Solve $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$ approximately in **low** precision.
- 2. Compute the residual $\mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x}_0$ in **high** precision.
- 3. Solve $\mathbf{Ae} = \mathbf{r}$ for the correction vector \mathbf{e} in \mathbf{low} precision.
- 4. Update the solution as $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{e}$ in **medium** precision.
- 5. Repeat steps 2–4 until the residual \mathbf{r} is small enough.

Key points:

- Trade computational complexity for space complexity
- Choose algorithms that can preserve sparsity: sparse LU factorization, General Minimal Residual Method (GMRES)
- Inner solves could also be iterative and in mixed-precision
- Possible matrix-free implementation

Goals

- GS1 Given some matrix \mathbf{A} and column vector \mathbf{b} , the solver should iteratively find \mathbf{x} satisfying the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ until the norm of the residual $\mathbf{r} = \mathbf{A}\mathbf{x} \mathbf{b}$ is smaller than some tolerance ϵ , or the maximum number of iterations n_{iter} is exhausted, whichever comes first.
- GS2 Given some combinations of floating point precision configuration, the solver should perform internal steps such as matrix factorizations, triangular solves, and residual computation in these configured precisions.

Goals (Non-functional)

- GS3 The solver should offer a quantifiable performance or resource utilization advantage over other competing sparse linear solvers.
- GS4 The library should offer a set of streamlined public application programming interfaces (APIs), such that when integrated into other software as a dependent library, the interfaces are self-contained, readable and easy to consume.

Stretch Goals

- GS5 With the existing solver implementation being the baseline, the refactored solver should produce more accurate results, lowering the norm of the residual by at least 1 order of magnitude.
- GS6 The solver should optimize existing algorithms such that given the same set of inputs, it produces results with the same accuracy in notably less time.

Inputs

Variable	Description
Α	$n \times n$ matrix
b	<i>n</i> -vector
ϵ	a solution is found if the norm of the residual is
	less than ϵ
$\emph{n}_{ ext{iter}}$	the maximum number of iterations to perform
U_f	factorization precision
u_w	working precision
U_r	precision in which the residuals are computed

Outputs

Variable	Description
x	a numerical solution to the linear system
err	the norm of the residual

Assumptions and Constraints

- A1 Matrix **A** is quasi-definite. (LC1)
- A2 The precisions follow the order $u_f \le u_w \le u_r$, with u_r being the highest precision.
- C1 Use preconditioned GMRES for solving the error correction vector.

Questions