Computationally reproducible research

Leveraging reproducibility tools in laboratory-based research

Brooke Anderson, Colorado State University

Department of Environmental & Radiological Health Sciences

➡: brooke.anderson@colostate.edu

y: @gbwanderson

\Oi: github.com/geanders

Objectives

The objectives for this talk are:

- 1. Clarify the principle and requirements for **reproducible research**, from a computational standpoint.
- Outline some guidelines for recording experimental data in a way that facilitates computationally reproducible research, based on two recent papers:
 - Broman and Woo (2018) Data Organization in Spreadsheets, The American Statistician, 72:1, 2–10, DOI: 10.1080/00031305.2017.1375989
 - Ellis and Leek (2018) How to Share Data for Collaboration, The American Statistician, 72:1, 53–57, DOI: 10.1080/00031305.2017.1375987

Objective 1: Clarify the principle and requirements for reproducible research, from a computational standpoint.

Reproducible research

Source: Peng (2011) Reproducible Research in Computational Science, *Science*, 334:6060, 1226–1227, DOI: 10.1126/science.1213847

Computationally **reproducible research** is research for which another person could take the published materials and recreate the same results from the same raw data.

Reproducible research

Source: Sidney Harris, The New Yorker

To make research computationally reproducible, full instructions should be available describing how you:

- Did any cleaning, pre-processing, or reformatting of the raw data (i.e., the data directly recorded for an experiment or output by laboratory equipment)
- Analyzed the processed data to generate figures, tables, and other research results

Code scripts are an excellent way to record this information.

Common "black boxes" in laboratory-based research

We identified two common **black boxes** in laboratory-based research, where the research steps are often neither **transparent** nor **reproducible**.

"Co-benefits" of reproducible research

Meeting the standards of reproducibility can have many co-benefits for a research lab, including **increasing efficiency** of research and **sharing data pre-processing and analysis techniques** across laboratory members.

Objective 2: Outline some guidelines for recording experimental data in a way that facilitates computationally reproducible research

Record data in "rectangular" formats

	A	В	С	D	E
1	id	sex	glucose	insulin	triglyc
2	101	Male	134.1	0.60	273.4
3	102	Female	120.0	1.18	243.6
4	103	Male	124.8	1.23	297.6
5	104	Male	83.1	1.16	142.4
6	105	Male	105.2	0.73	215.7

Figure 4. An example spreadsheet with a rectangular layout. This layout will aid future analyses.

Source: Broman and Woo, 2018

Rectangular format: One unit of observation per spreadsheet; one row for each study observation (e.g., study subject, time point); one column for each variable being measured; no empty boxes.

Non-"rectangular" formats

	A	В	С		D	E	F		A	В	С	D		E	
1								1	1MIN				_		
2		101	102	2	103	104	105	2			Normal			Mu	tant
3	SEX	Male	Fema	ale 1	Male	Male	Male	3	B6	146.6	138.6	155.6	3	166 17	9.3 1
4								4	BTBR	245.7	240	243.1		177.8 17	1.6 1
5		101	102	2	103	104	105	5							
6	glucose	134.1	120	.0 1	24.8	83.1	105.2	6	5MIN						
7								7			Normal			Mu	
8		101	102		103	104	105	8	86	333.6	353.6	408.8		450.6 47	
9	insulin	0.60	1.18	8	1.23	1.16	0.73	9	BTBR	514.4	610.6	597.9	9	412.1 44	7.4 4
								D							
	A	В	С	D	E	F	G		A	В	С		D	E	F
1								1		GTT date	GTT we	ight	time	glucose mg	di insulin
2	Date	11/3/14						2	321	2/9/15	24.5		0	99.2	lo off o
3	Days on diet	126						3					5	349.3	0.2
4	Mouse #	43						- 4					15	286.1	0.1
5	sex	f						5					30	312	0.1
6	experiment		values			mean	SD	6					60	99.9	0.1
7	control		0.186	0.191	1.081	0.49	0.52	7					120	217.9	lo off o
8	treatment A		7.414	1.468	2.254	3.71	3.23	8	322	2/9/15	18.9		0	185.8	0.2
9	treatment B		9.811	9.259	11.296	10.12	1.05	9					5	297.4	2.2
10								10					15	439	2.0
11	fold change		values			mean	SD	11					30	362.3	0.7
12	treatment A		15.26	3.02	4.64	7.64	6.65	12					60	232.7	0.
13	treatment B		20.19	19.05	23.24	20.83	2.17	13					120	260.7	0.5
								14	323	2/9/15	24.7		0	198.5	0.1
										2010	84.7				

Figure 5. Examples of spreadsheets with nonrectangular layouts. These layouts are likely to cause problems in analysis.

Source: Broman and Woo, 2018

These may be **human-readable**, but are much less **computer-readable**.

Think in terms of "plain text" file formats

	A	В	С	D	Е
1	id	sex	glucose	insulin	triglyc
2	101	Male	134.1	0.60	273.4
3	102	Female	120.0	1.18	243.6
4	103	Male	124.8	1.23	297.6
5	104	Male	83.1	1.16	142.4
6	105	Male	105.2	0.73	215.7

id, sex, glucose, insulin, triglyc 101, Male, 134.1, 0.60, 273.4 102, Female, 120.0, 1.18, 243.6 103, Male, 124.8, 1.23, 297.6 104, Male, 83.1, 1.16, 142.4 105, Male, 105.2, 0.73, 215.7

Figure 11. (a) An example spreadsheet. (b) The same data as a plain text file in CSV format.

Source: Broman and Woo, 2018

Ideally, the data recording format should be something that could be set up as within a **plain text file format**, like a comma-separated values format (.csv).

Avoid cell formatting

	A	В	С		A	В	С	D
		_	-			В	C	D
1	id	date	glucose	1	id	date	glucose	outlier
2	101	2015-06-14	149.3	2	101	2015-06-14	149.3	FALSE
3	102	2015-06-14	95.3	3	102	2015-06-14	95.3	FALSE
4	103	2015-06-18	97.5	4	103	2015-06-18	97.5	FALSE
5	104	2015-06-18	1.1	5	104	2015-06-18	1.1	TRUE
6	105	2015-06-18	108.0	6	105	2015-06-18	108.0	FALSE
7	106	2015-06-20	149.0	7	106	2015-06-20	149.0	FALSE
8	107	2015-06-20	169.4	8	107	2015-06-20	169.4	FALSE

Figure 10. Highlighting in spreadsheets. (a) A potential outlier indicated by highlighting the cell. (b) The preferred method for indicating outliers, via an additional column. Source: Broman and Woo, 2018

Any time you use **highlighting** or other forms of cell formatting in a spreadsheet, you will lose the information when you read the data into R or Python. Similarly, avoid adding **text boxes** or **embedded formulas** to spreadsheets used for data recording.

Be careful in naming columns

Table 1. Examples of good and bad variable names.

good name	good alternative	avoid
Max_temp_C Precipitation_mm Mean_year_growth sex weight cell_type Observation_01		Maximum Temp (°C) precmm Mean growth/year M/F w. Cell type 1st Obs.

Source: Broman and Woo, 2018

Make sure that column names do not have **spaces**, **mathematical symbols**, or **other special characters**.

More guidelines

When	Be sure to	So Do this	Avoid this	Why?
Naming variables (aka assigning column headers)	Use meaningful variable names	`AgeAtDiagnosis`	`ADx`	`ADx` is an unclear and uninformative abbreviation
Naming variables	Avoid spacing in column headers	`AgeAtDiagnosis`	`Age At Diagnosis`	Spacing in variable names makes the analyst's life more difficult
Naming variables	Use consistent capitalization	`AgeAtDiagnosis`	Using both `AgeAtDiagnosis` and `ageatdiagnosis`	Using consistent column names across tables/spreadsheets simplifies any merging the statistician may have to do.
Naming variables	Avoid using separators, but if it's necessary, use an underscore (`_`)	`IGF1` (or `IGF_1`)	`IGF.1`, `IGF-1`, `IGF/1`, `IGF,1`	Separators (commas, periods, hyphens, slashes, spaces etc.) often have different meanings in coding languages than they do in text. Avoiding them avoids error.
Coding variables	Avoid unnecessary spaces	'male'	'male'	That extra space after 'male' makes it different from 'male' without a space.
Coding variables	Be consistent!	'male'	'Male', male', and 'M',	In the eyes of the statistician, "Male", male", and "M" could be incorrectly perceived as three different values.
Coding variables	Be careful of spelling errors	'male'	'maale'	That extra 'a' makes these two different categories.
Coding date and time	Use ISO 8601 coding	YYYY-MM-DD'	'MM/DD/YY` and `Month Day, Year`	Consistency simplifies the analyst's life, and YYYY-MM-DD will not be misconstrued if opened in Excel.
Coding missing data	Not leave any cells blank and use a consistent value	'NA'	'0', '-9', red-highlighted blank cells, '. ', '-',	Each cell should be filled with a consistent value. Pick a way to denote missingness (ideally "NA") and stick with it. Avoid using numbers or punctuation to denote missing data.

Source: Ellis and Leek, 2018

Similar and additional guidelines are outlined in Ellis and Leek, 2018.