Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з комп'ютерного практикуму № 3 з дисципліни «Аналіз даних в інформаційних системах» на тему: «Описова статистика»

Виконав студент <u>ПП-13, Бондаренко Максим Вікторович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Олійник Юрій Олександрович</u> (прізвище, ім'я, по батькові)

# Комп'ютерний практикум 3

Тема – Описова статистика.

Мета – ознайомитись з методикою первинної обробки статистичних даних; проаналізувати вплив способу представлення даних на їх інформативність.

#### Завдання

#### Основне:

- 1. Скачати дані із файлу Data2.csv
- 2. Записати дані у data frame
- 3. Дослідити структуру даних
- 4. Виправити помилки в даних
- 5. Побудувати діаграми розмаху та гістограми
- 6. Додати стовпчик із щільністю населення

#### Додаткове:

Відповісти на питання (файл Data2.csv):

- 1. Чи  $\epsilon$  пропущені значення? Якщо  $\epsilon$ , замінити середніми
- 2. Яка країна має найбільший ВВП на людину (GDP per capita)? Яка має найменшу площу?
- 3. В якому регіоні середня площа країни найбільша?
- 4. Знайдіть країну з найбільшою щільністю населення у світі? У Європі та центральній Азії?
- 5. Чи співпадає в якомусь регіоні середнє та медіана ВВП?
- 6. Вивести топ 5 країн та 5 останніх країн по ВВП та кількості СО2 на душу населення.

# Oсновне завдання DataFrame та його структура

За допомогою Python бібліотеки Pandas завантажимо дані з даного csv файлу в dataframe та досліджуємо структуру наших даних, використовуючи скрипти нижче.

```
[1]: import pandas as pd
     import matplotlib.pyplot as plt
     df = pd.read csv('Data2.csv', delimiter=';', decimal=',')
     df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 217 entries, 0 to 216
     Data columns (total 6 columns):
                Non-Null Count Dtype
     # Column
                       -----
      0 Country Name 217 non-null object
     1 Region 217 non-null object
2 GDP per capita 190 non-null float64
      3 Populatiion 216 non-null float64
     4 CO2 emission 205 non-null float64
     5 Area 217 non-null float64
     dtypes: float64(4), object(2)
     memory usage: 10.3+ KB
```

На даному рисунку можна помітити загальну інформацію про датафрейм: кількість рядків та колонок, назви всіх колонок, кількість записів в кожній з них, тип даних колонки та використання пам'яті.

## Виправлення помилок

Щодо базової обробки датафрейму, змінимо назву колонки 'Population' на 'Population' скриптом нижче, оскільки вона містить помилку в назві.

Знайдемо рядки, поля яких містять від'ємні елементи та виведемо їх.

```
[4]: mask = (df.select_dtypes(include=[float]) < 0).any(axis=1)
result = df[mask]
print(result)

Country Name Region GDP per capita \
56 Dominican Republic Latin America & Caribbean -6722.223536
135 Myanmar East Asia & Pacific 1195.515372

Population CO2 emission Area
56 10648791.0 21539.958 48670.0
135 52885223.0 21631.633 -676590.0
```

Виправимо всі існуючі від'ємні значення та виведемо їх знову, щоб перевірити внесені зміни.

```
[5]: for col in df.columns:
         if df[col].dtype == float:
            df[col] = df[col].abs()
     print(df.loc[[56,135]])
               Country Name
                                               Region GDP per capita \
     56
          Dominican Republic Latin America & Caribbean
                                                       6722.223536
     135
                    Myanmar
                                   East Asia & Pacific
                                                         1195.515372
          Population CO2 emission
                                      Area
     56
          10648791.0 21539.958
                                    48670.0
     135 52885223.0
                       21631.633 676590.0
```

Також в даних наявні пусті елементи, які потрібно замінити середніми по стовпчику.

```
[3]: for col in df.columns:
         if df[col].dtype == float:
             col_mean = df[col].mean()
             df[col] = df[col].fillna(col_mean)
     print(df)
                  Country Name
                                                   Region GDP per capita \
                   Afghanistan
                                                South Asia 561.778746
                                    Europe & Central Asia 4124.982390
                      Albania
     1
     2
                       Algeria Middle East & North Africa
                                                               3916.881571
                American Samoa East Asia & Pacific 11834.745230
     3
     4
                      Andorra
                                    Europe & Central Asia 36988.622030
                                                      . . .
                                                            13374.833168
2943.404534
     212 Virgin Islands (U.S.) Latin America & Caribbean
     213 West Bank and Gaza Middle East & North Africa
     214
                 Yemen, Rep. Middle East & North Africa
                                                              990.334774
                        Zambia Sub-Saharan Africa 1269.573537
Zimbabwe Sub-Saharan Africa 1029.076649
     215
     216
                      Zimbabwe
         Population CO2 emission
                                       Area
                      9809.225000 652860.0
        34656032.0 9809.225000 652860.0
2876101.0 5716.853000 28750.0
     1
     2 40606052.0 145400.217000 2381740.0
           55599.0 165114.116337 200.0
     3
                      462.042000
     4
           77281.0
                                        470.0
               . . .
     212 102951.0 165114.116337 350.0
213 4551566.0 165114.116337 6020.0
     214 27584213.0 22698.730000 527970.0
     215 16591390.0 4503.076000 752610.0
     216 16150362.0 12020.426000 390760.0
     [217 rows x 6 columns]
```

# Діаграми розмаху та гістограми

Виведемо діаграми розмаху та гістограми для кожного стовпця з чисельними даними.

```
[6]: for col in df.columns:
    if df[col].dtype == float:
        plt.figure()
        plt.boxplot(df[col])
        plt.title(col)
```

# Аналіз даних в інформаційних системах

```
[7]: for column in df.columns:
    if df[column].dtype == float:
        plt.hist(df[column].dropna(), bins=20)
        plt.title(column)
        plt.xlabel('Value')
        plt.ylabel('Frequency')
        plt.show()
```

#### Діаграма розмаху та гістограма для ВВП на душу населення



#### Діаграма розмаху та гістограма для кількості населення



Діаграма розмаху та гістограма для кількості викидів СО2







Додавання стовпчику із щільністю населення

Додаємо стовпчик із щільністю населення кожної країни, який  $\epsilon$  просто представленням кількості населення поділеного на площу країни.

| [8]: | <pre>df["Population Density"] = df["Population"] / df["Area"] df.head(1)</pre> |              |            |                |            |              |          |                    |
|------|--------------------------------------------------------------------------------|--------------|------------|----------------|------------|--------------|----------|--------------------|
| [8]: |                                                                                | Country Name | Region     | GDP per capita | Population | CO2 emission | Area     | Population Density |
|      | 0                                                                              | Afghanistan  | South Asia | 561,778746     | 34656032.0 | 9809,225     | 652860.0 | 53.083405          |

## Додаткове завдання

#### Заміна пропущених значень

Демонстрація заміни пропущених значень описана в розділі «Виправлення помилок».

## Країна з найбільшим ВВП на людину, з найменшою площею

Виведемо країну з найбільшим ВВП на душу населення та країну з найменшою площею.

```
[9]: max_gdp_index = df['GDP per capita'].idxmax()
    max_gdp_country = df.loc[max_gdp_index, 'Country Name']
    print(f"The country with the largest GDP per capita in the world is {max_gdp_country}.")

min_area_index = df['Area'].idxmin()
    min_area_country = df.loc[min_area_index, 'Country Name']
    print(f"The country with the smallest area is {min_area_country}.")

The country with the largest GDP per capita in the world is Luxembourg.
The country with the smallest area is Monaco.
```

# Регіон з найбільшою середньою площею країн

```
[10]: region_mean_area = df.groupby('Region')['Area'].mean()
    largest_region = region_mean_area.idxmax()
    print("The region with the largest average area is", largest_region)
```

The region with the largest average area is North America

# Країна з найбільшою щільністю населення у світі, у Європі та центральній Азії

```
[11]: df_sorted = df.sort_values(by='Population Density', ascending=False)
    print('Country with highest population density is', df_sorted.iloc[0]['Country Name'])

df_eu_ca = df[df['Region'] == 'Europe & Central Asia']
    df_eu_ca_sorted = df_eu_ca.sort_values(by='Population Density', ascending=False)
    print('Country with highest population density in Europe and Central Asia is', df_eu_ca_sorted.iloc[0]['Country Name'])

Country with highest population density is Macao SAR, China
    Country with highest population density in Europe and Central Asia is Monaco
```

## Співпадіння середнього та медіани ВВП по регіонам

Для початку розрахуємо загальне ВВП для кожної країни та створимо окрему колонку для цих даних.

```
[12]: df["Total GDP"] = df["GDP per capita"] * df["Population"]

[12]: Country Name Region GDP per capita Population CO2 emission Area Population Density Total GDP

O Afghanistan South Asia 561.778746 34656032.0 9809.225 652860.0 53.083405 1.946902e+10
```

#### Аналіз даних в інформаційних системах

Розрахуємо середнє та медіану для кожного регіону окремо та порівняємо їх. Не існує жодного регіону, де ці параметри були б рівними.

```
region_stats = df.groupby('Region')['Total GDP'].agg(['mean', 'median'])

for region in region_stats.index:
    mean = region_stats.loc[region, 'mean']
    median = region_stats.loc[region, 'median']
    if mean == median:
        print(f"The mean and median GDP in {region} are equal ({mean}).")
    else:
        print(f"The mean and median GDP in {region} are different (mean = {mean}, median = {median}).")

The mean and median GDP in East Asia & Pacific are different (mean = 601314797021.4976, median = 11400653732.56196).
    The mean and median GDP in Europe & Central Asia are different (mean = 349091144622.72107, median = 49052249268.26028).
    The mean and median GDP in Latin America & Caribbean are different (mean = 128573963145.39444, median = 13643876718.90971).
    The mean and median GDP in Middle East & North Africa are different (mean = 161162758088.2565, median = 102047824411.42694).
    The mean and median GDP in North America are different (mean = 6718676588591.594, median = 1530680973899.0176).
    The mean and median GDP in South Asia are different (mean = 361745128122.7743, median = 52017740706.313446).
    The mean and median GDP in Subh-Saharan Africa are different (mean = 49945863170.15772, median = 10981369640.35254).
```

#### Топ 5 країн та 5 останніх країн по ВВП та кількості СО2 на душу населення

Для початку розрахуємо кількість викидів СО2 на душу населення для кожної країни

```
[14]: df['CO2 emission per capita'] = df['CO2 emission'] / df['Population']

[14]: Country Name Region GDP per capita Population CO2 emission Area Population Density Total GDP CO2 emission per capita

0 Afghanistan South Asia 561.778746 34656032.0 9809.225 652860.0 53.083405 1.946902e+10 0.000283
```

#### Виведемо 5 країн з найбільшою кількістю ВВП на душу населення та 5 з найменшою

```
[15]: df_sorted = df.sort_values(['GDP per capita'], ascending=False)
     print('Top 5 countries by GDP per capita:\n', df_sorted.head()[['Country Name', 'GDP per capita']],
           '\nThe last 5 countries by GDP per capita:\n', df_sorted.tail()[['Country Name', 'GDP per capita']])
      Top 5 countries by GDP per capita:
              Country Name GDP per capita
     115
               Luxembourg
                           100738.68420
             Switzerland 79887.51824
     116 Macao SAR, China 74017.18471
                  Norway 70868.12250
     146
                             64175.43824
     92
                  Ireland
      The last 5 countries by GDP per capita:
                      Country Name GDP per capita
                                    401.742270
     118
                       Madagascar
     37
         Central African Republic
                                     382.213174
                                     382.069330
     134
                       Mozambique
                                  300.307665
     119
                           Malawi
                          Burundi
                                     285.727442
```

#### Виведемо 5 країн з найбільшою кількістю викидів СО2 на душу населення та 5 з найменшою

```
[16]: df_sorted = df.sort_values(['CO2 emission per capita'], ascending=False)
      print('Top 5 countries by CO2 emission per capita:\n', df_sorted.head()[['Country Name', 'CO2 emission per capita']],
            \nThe last 5 countries by CO2 emission per capita:\n', df_sorted.tail()[['Country Name', 'CO2 emission per capita']])
      Top 5 countries by CO2 emission per capita:
                       Country Name CO2 emission per capita
      182 St. Martin (French part)
                                                   5.168053
                                                  4.972867
      163
                        San Marino
      130
                          Monaco
                                                  4.288790
      145 Northern Mariana Islands
                                                   3.000820
                    American Samoa
                                                   2.969732
      The last 5 countries by CO2 emission per capita:
               Country Name CO2 emission per capita
          Congo, Dem. Rep.
      38
                    Chad
                                          0.000050
      175
                   Somalia
                                          0.000043
      31
                   Burundi
                                           0.000042
                   Eritrea
                                           0.000020
      61
```

#### Висновок

У цьому комп'ютерному практикуму було вивчено можливості Руthon, а саме Рапсав у роботі з даними. Вхідні дані було записано в DataFrame, структуру якого було вивчено та помічено нецілісність даних, тому я почистив дані від від'ємних значень, нульові замінив середніми для більш об'єктивної побудови гістограм та діаграм розмаху. На діаграмах розмаху було помічено великий розмах між даними. Наприклад, на діаграмі населення є дві країни з кількістю населення значно більшою за всі інші, так само і з викидами СО2, дані з ВВП на душу населення є найбільш кучними. Було визначено країну з найбільшим ВВП на душу населення у світі, з найменшою площею території, регіон з найбільшою середньою площею країн, країни з найбільшою густиною населення у світі та окремо в регіоні «Європа та центральна Азія». Регіонів з однаковими середньою та медіаною ВВП країн не виявилось, усі мають різні. Також було виведено 5 країн з найбільшим та найменшим ВВП на душу населення та 5 з найбільшою та найменшою кількістю викидів СО2.