Lab 12

Numerical methods for solving nonlinear equations

1. Solve the equation

$$x = cosx.$$

using Newton's method for: $x_0 = \frac{\pi}{4}$, $\varepsilon = 10^{-4}$ and maximum number of iterations N = 100.

2. For finding the position of a satellite for t=9 minutes, we have to solve Kepler's equation

$$f(E) = E - 0.8\sin E - \frac{2\pi}{10} = 0.$$

Type the results obtained applying Newton's method 6 times, starting with E=1. (Notice the quadratic precision.)

3. Use the secant method with $x_0 = 1$ and $x_1 = 2$ to solve $x^3 - x^2 - 1 = 0$, with $\varepsilon = 10^{-4}$ and maximum number of iterations N = 100.

4. Let $f:[1,2] \to \mathbb{R}$, $f(x) = (x-2)^2 - \ln x$. Solve the equation f(x) = 0, using bisection and false position methods, for $\varepsilon = 10^{-4}$ and maximum number of iterations N = 100. (Use $abs(f(c) < \varepsilon$ as a stopping criterion.)

(Facultative) 5. Check the performances of Newton's method in two versions:

standard:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

root of multiplicity m : $x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$

to approximate the multiple zero $\alpha = 1$ of the function $f(x) = (x^2 - 1)^p \log x$ (for $p \ge 1$ and x > 0). The desired root has multiplicity m = p + 1. Consider the value p = 2 and $x_0 = 0.8$, $\varepsilon = 10^{-10}$. Type the number of iterations required to converge for each case.