#### **FONCTION CARRE**

**EXERCICE 2A.1:** Compléter le tableau :

| x                   | 1  | -1 | 2  | -3 | $\sqrt{5}$ | $\frac{4}{7}$    | 0,1   | -0,01   |
|---------------------|----|----|----|----|------------|------------------|-------|---------|
| $x^2$               | 1  | 1  | 4  | 9  | 5          | $\frac{16}{49}$  | 0,01  | 0,0001  |
| $-x^2$              | -1 | -1 | -4 | -9 | -5         | $-\frac{16}{49}$ | -0,01 | -0,0001 |
| $\left(-x\right)^2$ | 1  | 1  | 4  | 9  | 5          | $\frac{16}{49}$  | 0,01  | 0,0001  |
| 2 <i>x</i>          | 2  | -2 | 4  | -6 | 2√5        | $\frac{8}{7}$    | 0,2   | -0,02   |

**EXERCICE 2A.2:** On considère la fonction  $f: x \mapsto x^2$  définie sur  $]-\infty$ ;  $+\infty[$ .

**a.** 
$$f(7) = 49$$
;  $f(-11) = 121$ ;  $f(-\sqrt{3}) = 3$ ;  $f(\frac{\sqrt{2}}{5}) = \frac{\sqrt{2}}{5} \times \frac{\sqrt{2}}{5} = \frac{2}{25}$ .

**b.** 
$$f(\sqrt{5}-1) = (\sqrt{5}-1)^2 = 5-2\sqrt{5}+1 = 6-2\sqrt{5}$$

$$f(1-\sqrt{5})=(1-\sqrt{5})^2=1-2\sqrt{5}+5=6-2\sqrt{5}$$
  $\rightarrow$  Ces deux nombres opposés ont la même image.

**c.** De même,  $3-\sqrt{7}$  a la même image par f que  $-3+\sqrt{7}$ .

$$f(3-\sqrt{7})=(3-\sqrt{7})^2=9-6\sqrt{7}+7=16-6\sqrt{7}$$

**d.** 
$$f(\sqrt{18} + \sqrt{98}) = (\sqrt{18} + \sqrt{98})^2 = (\sqrt{9} \times \sqrt{2} + \sqrt{49} \times \sqrt{2})^2 = (3\sqrt{2} + 7\sqrt{2})^2 = (10\sqrt{2})^2 = 100 \times 2 = 200$$

**EXERCICE 2A.3:** Associer à chaque affirmation sa justification :

Un carré est toujours positif  $(-5,12)^{2} > (-5,11)^{2}$   $(-9,54)^{2} = 9,54^{2}$ Tout nombre réel admet un carré

 $f: x \mapsto x^2$  est définie sur ]- $\infty$ ; + $\infty$ [  $f: x \mapsto x^2$  est décroissante sur ]- $\infty$ ; 0]  $f: x \mapsto x^2$  admet pour minimum 0  $f: x \mapsto x^2$  est croissante sur [0; + $\infty$ [  $f: x \mapsto x^2$  est paire

## EXERCICE 2A.4

a. Sans les calculer, ranger dans l'ordre croissant les nombres suivants :

 $801^2 < 802^2$ 

$$\mathbf{0,11}^2 < \mathbf{1}^2 < \mathbf{1,01}^2 < \mathbf{10}^2 < \mathbf{10,01}^2 < \mathbf{10,1}^2 < \mathbf{11,01}^2 < \mathbf{11,1}^2$$

**b.** Sans les calculer, ranger dans l'ordre croissant les nombres suivants :

$$(-0.9)^2 < (-9)^2 < (-9.09)^2 < (-90)^2 < (-90.09)^2 < (-90.9)^2 < (-99.09)^2 < (-99.09)^2$$

c. Sans les calculer, ranger dans l'ordre croissant les nombres suivants :

$$-5.4^{2} < -3.6^{2} < (-3.5)^{2} < (-4.5)^{2} < (-4.6)^{2} < 5.4^{2} < 5.6^{2} < 6.4^{2}$$

### **EXERCICE 2A.5**

**a.** Tableau de variation de la fonction  $f: x \mapsto x^2$  définie sur [-7; 2].



**b.** Le maximum de f est f(-7) = 49 et son minimum est f(0) = 0.

# **FONCTION CARRE**

# EXERCICE 2A.6

**a.** Tableau de variation de la fonction  $f: x \mapsto x^2$  définie sur [-7; -3].



**b.** Le maximum de f est f(-5) = 25 et son minimum est f(-3) = 9.

# **EXERCICE 2A.7**

On considère la fonction  $f: x \mapsto x^2$  définie sur ]  $-\infty$ ;  $+\infty$ [.

- **a.** f(x) décrit l'intervalle [4; 36] quand  $x \in [2; 6]$ .
- **b.** f(x) décrit l'intervalle [16; 64] quand  $x \in [-8; -4]$ .
- c. f(x) décrit l'intervalle [0; 25[ quand  $x \in ]-5$ ; 2].
- **d.** f(x) décrit l'intervalle [0 ; 100[ quand  $x \in ]-10$  ; 9[.
- e. f(x) décrit l'intervalle [0; 3] quand  $x \in \left[-\sqrt{3}; \sqrt{3}\right]$ .