# WSI laboratorium 5 – Sprawozdanie

Pryimak Andrii-Stepan 336173 Bróździński Bartosz 331363

### Wprowadzenie

Celem ćwiczenia było zaimplementowanie perceptronu dwuwarstwowego i nauczenie go aproksymacji funkcji I(x) zdefiniowanej wzorem:

$$J(x) = \sin\left(x\sqrt{p[0]+1}\right) + \cos\left(x\sqrt{p[1]+1}\right)$$

gdzie p = [3,3] to najmłodsze cyfry numerów indeksów wykonawców. Zadanie obejmowało ocenę jakości aproksymacji oraz analizę wpływu liczby neuronów w warstwie ukrytej na tę jakość.



## Jakość aproksymacji

Funkcja straty:  $q(y) = |y - y_d|^2$ 

MSE = 
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - y_{d,i})^2$$

Jakość funkcja aproksymacji oceniana przez średni błąd kwadratowy.

# Wyniki



| Liczba neuronów | Iteracje | MSE                  |
|-----------------|----------|----------------------|
| 1               | 15000    | 0,8646178961814479   |
| 2               | 15000    | 0,6080473944668907   |
| 4               | 15000    | 0,2822586089682772   |
| 8               | 15000    | 0,019888161239076527 |
| 9               | 15000    | 0,01959910126311165  |
| 10              | 15000    | 0,00981236703255499  |
| 11              | 15000    | 0,01990872188822159  |
| 16              | 15000    | 0.01996544163969361  |
| 16              | 30000    | 0,01213              |
| 16              | 60000    | 0.007582265230183606 |
| 32              | 15000    | 0,02030              |
| 32              | 30000    | 0,00253              |
| 32              | 60000    | 0,00090              |
| 64              | 15000    | 0,25665              |
| 64              | 30000    | 0,00743              |
| 64              | 60000    | 0,00113              |

Z analizy wyników wynika, że zwiększenie liczby neuronów w warstwie ukrytej znacząco poprawia jakość aproksymacji, co objawia się niższym błędem MSE. Jednakże dla bardzo dużej liczby neuronów sieć może ma problem z nauczeniem się, jeśli liczba iteracji nie jest wystarczająca.

#### 15k MSE =0,01996544163969361



#### 30k MSE = 0,01213



#### 60k MSE =0,007582265230183606



### 32 neurony, 15000 iteracji



# 32 neurony, 30000 iteracji



### 32 neurony, 60000 iteracji



### 64 neurony, 15000 iteracji



### 64 neurony, 30000 iteracji



### 64 neurony, 60000 iteracji



#### Wnioski

Dwuwarstwowy perceptron dobrze radzi sobie z aproksymacją funkcji J(x), osiągając niski błąd przy odpowiednio dobranej liczbie neuronów. Zwiększenie liczby neuronów poprawia jakość aproksymacji, ale kosztem wzrostu czasu uczenia. Jednakże, jak widać na poniższym wykresie, nie zawsze zwiększenie liczby neuronów poprawi wyniki. Dla dużych ilości neuronów dobre nauczenie się aproksymacji zajmuje więcej iteracji, ponieważ co każdą z nich musimy dostosowywać więcej zmiennych. Przez to zwiększenie liczby neuronów powinno być powiązane ze zwiększeniem liczby iteracji, jeśli zauważamy spadki wartości wykresu. Na przykład, dla naszego przykładu, dla 15000 iteracji zdecydowanie najlepiej radziła sobie siec złożona z 10 neuronów, a zwiększanie ich ilości pogarszało wyniki. Po zwiększeniu liczby iteracji do 30000, najlepsze przybliżenie uzyskano dla 32 neuronów.

