Paired Data

Paired data often arise when measuring the same individuals twice (before and after a period).

Individual	Weight in 2010	Weight in 2020	Diff
Marion	140	135	-5
Sylvester	190	249	59
Florence	183	183	0
David	90	134	44
Gertrude	208	180	-28
:	:	:	:

What would an implied question be?

Two sets of observations are paired if each observation in one set has a special correspondence or connection with exactly one observation in the other data set.

Unpaired Data

Two separate random samples would produce unpaired data.

year=2010		
Individual	Weight	
Lonzo	140	
Rosalia	190	
Leora	183	
Otis	90	
Edward	208	
:	:	

2000		
year=2020		
Individual	Weight	
Henry	310	
Harvey	250	
Phoebe	210	
Donna	150	
John	110	
:	:	

What would an implied question be?

We will discuss unpaired analysis in Chapter 5.3 (next class). With paired data, we consider a **mean of differences**. With unpaired data, we consider a **difference of means**.

Derivation of paired formulas

Let random variable D_i represent the (unknown) difference from a (yet to be) randomly selected individual i.

We want to predict what happens when we find a mean of differences.

$$\bar{D} = \frac{D_1 + D_2 + D_3 + \dots + D_n}{n}$$

The central limit theorem still applies!

As $n \to \infty$, \bar{D} becomes normally distributed.

Basically, we can treat these differences just like any other independent and identically distributed random variables.

Note about notation

- ▶ I used \bar{D} for the random variable representing an unknown mean of differences.
- ▶ I would use \bar{d} for a specific (observed, critical, etc) mean of difference.
- ▶ The book uses \bar{x}_{diff} for both of these concepts. This is misleading, as it looks like a difference of means, not a mean of differences.
- ▶ I would at least prefer using $\overline{X_{\text{diff}}}$ and $\overline{x_{\text{diff}}}$ to emphasize we are finding a mean of differences.
- The book's notation of μ_{diff} (for the population's true difference) is useful. We could also use E(D) or μ_D .
- In order to match the book as much as possible, I will now use $x_{\text{diff},i}$ and $\overline{X}_{\text{diff}}$ and $\overline{X}_{\text{diff}}$ and μ_{diff} .

Example problem

A teacher wonders if, on average, a random student will perform about the same on two exams. She decides to run a two-tail t test on a random sample of size n=5 with a signficance level $\alpha=0.05$. Here are the results of her study:

Student	Exam 1	Exam 2
Norma	98	96
Elliot	15	10
Walton	61	61
Mable	80	79
Loretta	10	8

Perform the t test.

Example problem solution

Find the differences.

i	$x_{1,i}$	<i>x</i> _{2,<i>i</i>}	X _{diff,i}
1	98	96	-2
2	15	10	-5
3	61	61	0
4	80	79	-1
5	10	8	-2

Find the (differences') sample mean.

$$\overline{\mathbf{x}_{\text{diff}}} = \frac{\sum_{i=1}^{n} \mathbf{x}_{\text{diff},i}}{n} = \frac{-2 - 5 + 0 - 1 - 2}{5} = -2$$

Find the (differences') sample standard deviation.

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_{\text{diff},i} - \overline{x_{\text{diff}}})^2}{n-1}} = \sqrt{\frac{(0)^2 + (3)^2 + (2)^2 + (1)^2 + (0)^2}{5-1}} = 1.87$$

We are doing a two-tail test with the following:

$$n = 5$$
 $\overline{x_{\text{diff}}} = -2$ $s = 1.87$ $\alpha = 0.05$

State the hypotheses.

$$H_0: \quad \mu_{\mathrm{diff}} = 0 \qquad \qquad H_A: \quad \mu_{\mathrm{diff}} \neq 0$$

Determine the critical value, t^* , such that $P(|T| > t^*) = 0.05$.

$$t^{\star} = 2.78$$

Find the standard error (the standard deviation of the differences' sampling distribution).

$$SE = \frac{s}{\sqrt{n}} = \frac{1.87}{\sqrt{5}} = 0.837$$

Calculate an observed t score.

$$t_{\text{obs}} = \frac{(-2) - 0}{0.837} = -2.39$$

From the previous slides:

$$n = 5$$
 $\overline{x_{\text{diff}}} = -2$ $s = 1.87$ $\alpha = 0.05$ $t^* = 2.78$ $SE = 0.837$ $t_{\text{obs}} = -2.39$

We can determine a *p*-value. Remember we are doing a two-tail test, so *p*-value = P(|T| > 2.39).

$$0.05 < p$$
-value < 0.1

We can compare t_{obs} and t^* . We can also compare p-value and α .

$$|t_{\mathsf{obs}}| < |t^{\star}|$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis.

We maintain that maybe both tests are equally challenging.

Practice

The following table has paired data. Test the hypotheses of whether or not the differences have a population average of 0. Use $\alpha=0.1$.

<i>X</i> _{1.<i>i</i>}	<i>X</i> 2, <i>i</i>
50	54
23	25
96	97
47	49
10	16
	23 96 47