

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

nonprobsvy – An R package for modern methods for non-probability surveys

Łukasz Chrostowski Adam Mickiewicz University Piotr Chlebicki © Stockholm University

Maciej Beręsewicz ®

Poznań University of Economics and Business

Abstract

The abstract of the article.

Keywords: keywords, not capitalized, R.

1. Introduction

This template demonstrates some of the basic LaTeX that you need to know to create a JSS article.

1.1. Code formatting

In general, don't use Markdown, but use the more precise LaTeX commands instead:

- Java
- plyr

One exception is inline code, which can be written inside a pair of backticks (i.e., using the Markdown syntax).

If you want to use LaTeX commands in headers, you need to provide a short-title attribute. You can also provide a custom identifier if necessary. See the header of Section 2 for example.

2. Methods for non-probability samples R code

2.1. Basic setup

Let $U = \{1, ..., N\}$ denote the target population consisting of N labelled units. Each unit i has an associated vector of auxiliary variables \mathbf{x}_i (a realisation of the random vector \mathbf{X}_i in the super-population) and the study variable y_i (a realisation of the random variable Y_i in the super-population). Let $\{(y_i, \mathbf{x}_i), i \in S_A\}$ be a dataset of a non-probability sample of size n_A and let $\{(\mathbf{x}_i, \pi_i), i \in S_B\}$ be a dataset of a probability sample of size n_B , where only information about variables \mathbf{X} and inclusion probabilities π (which in the super population model are also considered to be random variables) are available. Let δ be an indicator of inclusion into non-probability sample. Each unit in the sample S_B has been assigned a~design-based weight given by $d_i = 1/\pi_i$. The setting is summarised in Table ..

The goal is to estimate a~finite population mean $\mu_y = \frac{1}{N} \sum_{i=1}^N y_i$ of the target variable Y. As values of y_i are not observed in the probability sample, it cannot be used to estimate the target quantity. Instead, one could try combining the non-probability and probability samples to estimate μ_y . In this paper we do not consider modifications for the possibly occurring overlap.

2.2. Mass Imputation estimators

2.3. Inverse Probability Weighting estimators

2.4. Doubly Robust estimators

Can be inserted in regular R markdown blocks.

2.5. Features specific to rticles

- Adding short titles to section headers is a feature specific to **rticles** (implemented via a Pandoc Lua filter). This feature is currently not supported by Pandoc and we will update this template if it is officially supported in the future.
- Using the \AND syntax in the author field to add authors on a new line. This is a specific to the rticles::jss_article format.

3. Package contents and implementation

4. Practical examples

Affiliation:

Łukasz Chrostowski Pearson First line Second line

E-mail: lukchr@st.amu.edu.pl

URL: https://posit.co

Piotr Chlebicki Stockholm University Department of Statistics and Mathematics, Faculty of Biosciences, Universitat Autònoma de Barcelona E-mail: piotr.chlebicki@math.su.se

Maciej Beręsewicz Statistical Office in Poznań Department of Statistics, Institute of Informatics and Electronic Economy, Poznań University of Economics and Business E-mail: maciej.beresewicz@ue.poznan.pl

URL: https://posit.co

Submitted: yyyy-mm-dd Accepted: yyyy-mm-dd

http://www.jstatsoft.org/ http://www.foastat.org/