CC1004 - Modelos de Computação Teóricas 5 e 6

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Março 2021

Exemplo: Descrição por expressões regulares

 $L = \{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$ é descrita por $(11)^* + 11(11)^*0$, que é equivalente a $\varepsilon + 11(11)^* + 11(11)^*0$, e é aceite pelo AFD

Expressão regular que descreve $\mathcal{L}(s_0 \leadsto s)$ para cada s?

```
s_0 \leadsto s_0: \varepsilon

s_0 \leadsto s_1: 1(11)^*

s_0 \leadsto s_2: 11(11)^*

s_0 \leadsto s_3: 11(11)^*0

s_0 \leadsto s_4: (0+1(11)^*0+11(11)^*0(0+1))(0+1)^*
```

Exemplo: Descrição por expressões regulares

 $L = \{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$ é descrita por $(11)^* + 11(11)^*0$, que é equivalente a $\varepsilon + 11(11)^* + 11(11)^*0$, e é aceite pelo AFD

Expressão regular que descreve $\mathcal{L}(s_0 \leadsto s)$ para cada s?

```
s_0 \leadsto s_0: \varepsilon

s_0 \leadsto s_1: 1(11)*

s_0 \leadsto s_2: 11(11)*

s_0 \leadsto s_3: 11(11)*0

s_0 \leadsto s_4: (0 + 1(11)*0 + 11(11)*0(0 + 1))(0 + 1)*
```

O que vamos estudar a seguir?

- Autómatos finitos não determinísticos (AFND).
- Autómatos finitos não determinísticos com transições por ε (AFND- ε).
- Algoritmos de conversão:
 - Dado um AFND ou um AFND- ε , construir um AFD equivalente.
 - Dado um autómato finito (AFD, AFND ou AFND- ε), determinar uma expressão regular que descreve a linguagem reconhecida pelo autómato.
 - Dada uma expressão regular, construir um AFND- ε que reconhece a linguagem descrita por essa expressão.

Conclusão:

As linguagens que podem ser descritas por expressões regulares são as que podem ser reconhecidas por autómatos finitos.

Um autómato finito é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que S é o conjunto de estados e é finito, Σ é o alfabeto, s_0 é o estado inicial, $F \subseteq S$ é conjunto de estados finais (estados de aceitação) e δ é a função de transição, determinando o tipo de autómato, assim:

AFD Autómato finito determinístico:

 δ é uma função de $S \times \Sigma$ em S.

AFND Autómato finito não determinístico:

 δ é uma função de $S \times \Sigma$ em 2^S ;

AFND- ε Autómato finito não determinístico com transições por ε : δ é uma função de $S \times (\Sigma \cup \{\varepsilon\})$ em 2^S .

onde 2^S denota o conjunto dos subconjuntos de S.

A linguagem reconhecida pelo autómato é o conjunto das palavras de Σ^* que o podem levar do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Um autómato finito é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que S é o conjunto de estados e é finito, Σ é o alfabeto, s_0 é o estado inicial, $F \subseteq S$ é conjunto de estados finais (estados de aceitação) e δ é a função de transição, determinando o tipo de autómato, assim:

AFD Autómato finito determinístico:

 δ é uma função de $S \times \Sigma$ em S.

AFND Autómato finito não determinístico:

 δ é uma função de $S imes \Sigma$ em 2 S ;

AFND- ε Autómato finito não determinístico com transições por ε : δ é uma função de $S \times (\Sigma \cup \{\varepsilon\})$ em 2^S .

onde 2^S denota o conjunto dos subconjuntos de S.

A **linguagem reconhecida pelo autómato** é o conjunto das palavras de Σ^* que o podem levar do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Um **autómato finito** é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que S é o conjunto de estados e é finito, Σ é o alfabeto, s_0 é o estado inicial, $F \subseteq S$ é conjunto de estados finais (estados de aceitação) e δ é **a função de transição**, **determinando o tipo de autómato**, assim:

AFD Autómato finito determinístico:

 δ é uma função de $S \times \Sigma$ em S.

AFND Autómato finito não determinístico:

 δ é uma função de $S \times \Sigma$ em 2^S ;

AFND- ε Autómato finito não determinístico com transições por ε : δ é uma função de $S \times (\Sigma \cup \{\varepsilon\})$ em 2^S .

onde 2^S denota o conjunto dos subconjuntos de S. A **linguagem reconhecida pelo autómato** é o conjunto das palavras de Σ^* que

podem levar do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Um autómato finito é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que S é o conjunto de estados e é finito, Σ é o alfabeto, s_0 é o estado inicial, $F \subseteq S$ é conjunto de estados finais (estados de aceitação) e δ é a função de transição, determinando o tipo de autómato, assim:

AFD Autómato finito determinístico:

 δ é uma função de $S \times \Sigma$ em S.

AFND Autómato finito não determinístico:

 δ é uma função de $S \times \Sigma$ em 2^S ;

AFND- ε Autómato finito não determinístico com transições por ε :

 δ é uma função de $S \times (\Sigma \cup \{\varepsilon\})$ em 2^S .

onde 2^S denota o conjunto dos subconjuntos de S.

A linguagem reconhecida pelo autómato é o conjunto das palavras de Σ^* que o podem levar do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Um autómato finito é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que S é o conjunto de estados e é finito, Σ é o alfabeto, s_0 é o estado inicial, $F \subseteq S$ é conjunto de estados finais (estados de aceitação) e δ é a função de transição, determinando o tipo de autómato, assim:

AFD Autómato finito determinístico:

 δ é uma função de $S \times \Sigma$ em S.

AFND Autómato finito não determinístico:

 δ é uma função de $S \times \Sigma$ em 2^S ;

AFND- ε Autómato finito não determinístico com transições por ε :

 δ é uma função de $S \times (\Sigma \cup \{\varepsilon\})$ em 2^S .

onde 2^S denota o conjunto dos subconjuntos de S.

A linguagem reconhecida pelo autómato é o conjunto das palavras de Σ^* que o podem levar do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

4 / 19

AFND que reconhece a linguagem das palavras que terminam em b.

$$\delta(s_0, b) = \{s_0, s_1\},\$$

$$\delta(s_0, a) = \{s_0\},\$$

$$\delta(s_1, a) = \delta(s_1, b) = \emptyset$$

Qualquer palavra que termine em b é aceite pois pode levar o autómato ao estado s_1 . Mas, nem ε nem as que terminam em a são aceites porque, depois de as processar, o AFND não pode estar em s_1 .

AFND que reconhece $\{x \mid x \in \{a,b\}^* \text{ e tem } a \text{ ou } bb \text{ como subpalavra}\}$

$$\begin{split} &\delta(s_0, b) = \{s_0, s_1\}, \\ &\delta(s_0, a) = \{s_0, s_2\}, \ \delta(s_1, a) = \{\}, \\ &\delta(s_1, b) = \{s_2\}, \\ &\delta(s_2, b) = \delta(s_2, b) = \{s_2\} \end{split}$$

AFND que reconhece a linguagem das palavras que terminam em b.

$$\delta(s_0, b) = \{s_0, s_1\},\$$

$$\delta(s_0, a) = \{s_0\},\$$

$$\delta(s_1, a) = \delta(s_1, b) = \emptyset$$

Qualquer palavra que termine em b é aceite pois pode levar o autómato ao estado s_1 . Mas, nem ε nem as que terminam em a são aceites porque, depois de as processar, o AFND não pode estar em s_1 .

AFND que reconhece $\{x \mid x \in \{a,b\}^* \text{ e tem } a \text{ ou } bb \text{ como subpalavra}\}$

$$\begin{split} &\delta(s_0, b) = \{s_0, s_1\}, \\ &\delta(s_0, a) = \{s_0, s_2\}, \ \delta(s_1, a) = \{\}, \\ &\delta(s_1, b) = \{s_2\}, \\ &\delta(s_2, b) = \delta(s_2, b) = \{s_2\} \end{split}$$

AFND- ε que reconhece a linguagem das palavras que começam por aa ou por bb.

$$\begin{split} &\delta(s_0,\varepsilon) = \{s_1,s_4\},\\ &\delta(s_1,b) = \{s_2\},\\ &\delta(s_2,b) = \{s_3\},\\ &\delta(s_3,a) = \delta(s_3,b) = \{s_3\},\\ &\delta(s_4,a) = \{s_5\},\\ &\delta(s_5,a) = \{s_6\},\\ &\delta(s_6,\varepsilon) = \{s_3\} \end{split}$$

Para todos os restantes, $\delta(s, \alpha) = \emptyset$, com $(s, \alpha) \in S \times (\Sigma \cup \{\varepsilon\})$

Na transição por ε , muda de estado sem consumir símbolos da palavra.

Este AFND- ε serve só para ilustração. Poderiamos ter evitado as transições por ε , juntando s_3 com s_6 , e s_0 com s_1 e s_4 .

Conversões: AFD para AFND e AFND para AFND- ε

Proposição: AFND equivalente a AFD

Dado um AFD $A = (S, \Sigma, \delta, s_0, F)$, o AFND $A' = (S, \Sigma, \delta', s_0, F)$, com $\delta'(s, a) = \{\delta(s, a)\}$, é equivalente a A.

Exemplo:

O AFD representado pelo diagrama de transição à esquerda pode ser visto como um AFND $A' = (S, \Sigma, \delta', s_0, F)$, se definirmos δ' de $S \times \Sigma$ em 2^S como se indica à direita.

$$\begin{array}{l} \delta'(s_0,0) = \{s_1\} \\ \delta'(s_0,1) = \{s_2\} \\ \delta'(s_1,0) = \{s_1\} \\ \delta'(s_1,1) = \{s_2\} \\ \delta'(s_2,0) = \{s_2\} \\ \delta'(s_2,1) = \{s_1\} \end{array}$$

Um AFD pode assim ser considerado como um caso particular de AFND.

Conversões: AFD para AFND e AFND para AFND- ε

Proposição: AFND- ε equivalente a AFND

Dado um AFND $A=(S,\Sigma,\delta,s_0,F)$, o AFND- ε $A'=(S,\Sigma,\delta',s_0,F)$, com $\delta'(s,\varepsilon)=\{\}$, para todo $s\in S$ e $\delta'(s,a)=\delta(s,a)$, para $a\in \Sigma$, é equivalente a A.

Um AFND pode assim ser considerado como um caso particular de AFND- ε , com $\delta'(s,\varepsilon)=\{\}$, para todo $s\in S$, pois não tem transições por ε em nenhum estado.

Conclusão:

As linguagens aceites por AFDs podem ser reconhecidas por AFNDs e AFNDs- ε .

Questão: Serão os AFNDs e AFNDs- ε mais potentes do que os AFDs? Ou seja, existe alguma linguagem que pode ser reconhecida por um AFND- ε mas não pode ser reconhecida por um AFD? Vamos ver que a resposta à questão é não!

Proposição: AFD equivalente a AFND

O AFND $A = (S, \Sigma, \delta, s_0, F)$ é equivalente ao AFD $A' = (S', \Sigma, \delta', s_0', F')$, com $S' = 2^S$, $s_0' = \{s_0\}$ e $F' = \{E \in S' \mid E \cap F \neq \emptyset\}$ e

$$\delta'(E,a) = \bigcup_{s \in E} \delta(s,a)$$

O método de conversão de AFNDs para AFDs que resulta desta proposição será designado por "construção baseada em subconjuntos".

Exemplo: Para o AFND

o AFD resultante desta construção é:

Exemplo (cont):

Os estados $\{\}$ e $\{s_1\}$ poderiam ser eliminados, pois não sendo acessíveis do estado inicial do AFD, i.e., de $\{s_0\}$, não servem nem para o AFD aceitar nem para rejeitar palavras.

Se na construção mantivermos apenas os estados acessíveis de $\lfloor \{s_0\} \rfloor$ então cada estado do AFD representa o conjunto de estados possíveis para o AFND em cada momento.

Ou seja, o AFD estaria a simular o AFND: o conjunto de estados em que o AFND pode estar se processar uma palavra x a partir de s_0 é "memorizado" na designação que se tem no estado a que o AFD chega se consumir x, qualquer que seja $x \in \Sigma^*$.

Exemplo (cont): O AFD equivalente ao AFND

obtém se descartamos estados impossíveis, é:

Proposição: AFD equivalente a AFND (versão 2)

O AFND $A = (S, \Sigma, \delta, s_0, F)$ é equivalente ao AFD $A' = (S', \Sigma, \delta', s_0', F')$, com $S' = \{E \mid E \in 2^S \text{ é acessível do estado inicial } \{s_0\}\}, s_0' = \{s_0\}, F' = \{E \mid E \cap F \neq \emptyset\} \text{ e } \delta'(E, a) = \bigcup_{s \in F} \delta(s, a).$

Exemplo:

AFND que reconhece a linguagem das palavras de $\{a,b\}^*$ que não têm b's depois de a's ou começam por ab. À direita, o AFD equivalente obtido pelo método baseado em subconjuntos, com remoção de estados não acessíveis de $\{s_0\}$.

AFND

AFD

Se considerarmos os estados não acessíveis do estado inicial, o AFD teria $2^5=32$ estados em vez de 6.

Exemplo:

AFND que reconhece a linguagem das palavras de $\{a,b\}^*$ que não têm b's depois de a's ou começam por ab. À direita, o AFD equivalente obtido pelo método baseado em subconjuntos, com remoção de estados não acessíveis de $\{s_0\}$.

AFND

AFD

Se considerarmos os estados não acessíveis do estado inicial, o AFD teria $2^5=32$ estados em vez de 6.

Exemplo:

O conjunto de estados em que pode estar se a palavra for ε é $\{s_0, s_1, s_4\}$. Se for aa é $\{s_3, s_6\}$. O AFD equivalente é:

Apenas considerámos os estados acessíveis do inicial. A seguir, vamos apresentar o método de conversão formalmente.

✓ □ ▶ ✓ ♠ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♣ ▶ ✓ ♠ ■ ■

Exemplo:

O conjunto de estados em que pode estar se a palavra for ε é $\{s_0, s_1, s_4\}$. Se for aa é $\{s_3, s_6\}$. O AFD equivalente é:

Apenas considerámos os estados acessíveis do inicial. A seguir, vamos apresentar o método de conversão formalmente.

Dado um AFND- ε , definimos $Fecho_{\varepsilon}(s) = \{s\} \cup \{\text{estados acessíveis do estado } s \text{ por } \varepsilon\}$. $Fecho_{\varepsilon}(s)$ é o conjunto de estados a que consegue aceder a partir de s sem consumir símbolos da palavra. Apenas, pode "consumir" ε nas transições efetuadas no percurso, podendo passar por vários estados. Por definição, o estado de s pertence ao $Fecho_{\varepsilon}(s)$.

Se E for um conjunto de estados, definimos $Fecho_{\varepsilon}(E) = \bigcup_{s \in E} Fecho_{\varepsilon}(s)$.

Observação

 $Fecho_{\varepsilon}(E_1) \cup Fecho_{\varepsilon}(E_2) = Fecho_{\varepsilon}(E_1 \cup E_2)$, quaisquer que sejam os conjuntos E_1 e E_2 $\bigcup_{k=1}^n Fecho_{\varepsilon}(E_k) = Fecho_{\varepsilon}(\bigcup_{k=1}^n E_k)$, quaisquer que sejam os E_k , com $1 \le k \le n$.

Proposição: AFD equivalente a AFND- ε

Dado um AFND- ε $A = (S, \Sigma, \delta, s_0, F)$, seja $A' = (S', \Sigma, \delta', s'_0, F')$, com $S' = 2^S$, $s'_0 = Fecho_{\varepsilon}(s_0)$ $F' = \{E \in S' \mid E \cap F \neq \emptyset\}$ e

$$\delta'(E,a) = \bigcup_{s \in Fecho_{\varepsilon}(E)} Fecho_{\varepsilon}(\delta(s,a)) = Fecho_{\varepsilon}(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s,a)).$$

Dado um AFND- ε , definimos $Fecho_{\varepsilon}(s) = \{s\} \cup \{\text{estados acessíveis do estado } s \text{ por } \varepsilon\}$. $Fecho_{\varepsilon}(s)$ é o conjunto de estados a que consegue aceder a partir de s sem consumir símbolos da palavra. Apenas, pode "consumir" ε nas transições efetuadas no percurso, podendo passar por vários estados. Por definição, o estado de s pertence ao $Fecho_{\varepsilon}(s)$.

Se E for um conjunto de estados, definimos $Fecho_{\varepsilon}(E) = \bigcup_{s \in E} Fecho_{\varepsilon}(s)$.

Observação:

 $Fecho_{\varepsilon}(E_1) \cup Fecho_{\varepsilon}(E_2) = Fecho_{\varepsilon}(E_1 \cup E_2)$, quaisquer que sejam os conjuntos E_1 e E_2 . $\bigcup_{k=1}^n Fecho_{\varepsilon}(E_k) = Fecho_{\varepsilon}(\bigcup_{k=1}^n E_k)$, quaisquer que sejam os E_k , com $1 \le k \le n$.

Proposição: AFD equivalente a AFND- ε

Dado um AFND- ε $A = (S, \Sigma, \delta, s_0, F)$, seja $A' = (S', \Sigma, \delta', s'_0, F')$, com $S' = 2^S$, $s'_0 = Fecho_{\varepsilon}(s_0)$ $F' = \{E \in S' \mid E \cap F \neq \emptyset\}$ e

$$\delta'(E,a) = \bigcup_{s \in Fecho_{\varepsilon}(E)} Fecho_{\varepsilon}(\delta(s,a)) = Fecho_{\varepsilon}(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s,a)).$$

Dado um AFND- ε , definimos $Fecho_{\varepsilon}(s) = \{s\} \cup \{\text{estados acessíveis do estado } s \text{ por } \varepsilon\}$. $Fecho_{\varepsilon}(s)$ é o conjunto de estados a que consegue aceder a partir de s sem consumir símbolos da palavra. Apenas, pode "consumir" ε nas transições efetuadas no percurso, podendo passar por vários estados. Por definição, o estado de s pertence ao $Fecho_{\varepsilon}(s)$.

Se E for um conjunto de estados, definimos $Fecho_{\varepsilon}(E) = \bigcup_{s \in E} Fecho_{\varepsilon}(s)$.

Observação:

 $Fecho_{\varepsilon}(E_1) \cup Fecho_{\varepsilon}(E_2) = Fecho_{\varepsilon}(E_1 \cup E_2)$, quaisquer que sejam os conjuntos E_1 e E_2 . $\bigcup_{k=1}^n Fecho_{\varepsilon}(E_k) = Fecho_{\varepsilon}(\bigcup_{k=1}^n E_k)$, quaisquer que sejam os E_k , com $1 \le k \le n$.

Proposição: AFD equivalente a AFND- ε

Dado um AFND- ε $A = (S, \Sigma, \delta, s_0, F)$, seja $A' = (S', \Sigma, \delta', s'_0, F')$, com $S' = 2^S$, $s'_0 = Fecho_{\varepsilon}(s_0)$ $F' = \{E \in S' \mid E \cap F \neq \emptyset\}$ e

$$\delta'(E,a) = \bigcup_{s \in Fecho_{\varepsilon}(E)} Fecho_{\varepsilon}(\delta(s,a)) = Fecho_{\varepsilon}(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s,a)).$$

Remoção de estados não acessíveis do estado inicial:

Com $s_0' = Fecho_{\varepsilon}(s_0)$, basta tomar $\{E \mid E \in 2^S \text{ \'e acess\'evel } s_0'\}$. Se o fizermos, podemos também **simplificar a definição da função** δ' , como se indica a seguir, porque para $E \in S'$ teremos $Fecho_{\varepsilon}(E) = E$. O **estado em que o AFD se encontra após consumir uma palavra** w **representa o conjunto de estados em que o AFND**- ε **pode estar após processar** w, qualquer que seja $w \in \Sigma^*$.

Proposição: AFD equivalente a AFND- ε (versão II)

Dado um AFND-
$$\varepsilon$$
 $A = (S, \Sigma, \delta, s_0, F)$, seja $A' = (S', \Sigma, \delta', s'_0, F')$, com $s'_0 = Fecho_{\varepsilon}(s_0)$, $S' = \{E \mid E \in 2^S \text{ \'e acess\'ivel } s'_0\}$, $F' = \{E \in S' \mid E \cap F \neq \emptyset\}$ e

$$\delta'(E,a) = \bigcup_{s \in E} Fecho_{\varepsilon}(\delta(s,a)) = Fecho_{\varepsilon}(\bigcup_{s \in E} \delta(s,a)).$$

Estado inicial do AFD: $Fecho_{\varepsilon}(s_8) = \{s_8, s_9, s_6, s_1, s_4\}.$

$$\begin{array}{lcl} \delta'(\{s_8,s_9,s_6,s_1,s_4\},a) & = & Fecho_{\varepsilon}(\bigcup_{s\in\{s_8,s_9,s_6,s_1,s_4\}}\delta(s,a)) = Fecho_{\varepsilon}(\{\}) = \{\}\\ \delta'(\{s_8,s_9,s_6,s_1,s_4\},b) & = & Fecho_{\varepsilon}(\{s_2,s_5\}) = \{s_2,s_5,s_7,s_9,s_6,s_1,s_4\} \end{array}$$

porque

$$\delta(s_8, \mathbf{a}) \cup \delta(s_9, \mathbf{a}) \cup \delta(s_6, \mathbf{a}) \cup \delta(s_1, \mathbf{a}) \cup \delta(s_4, \mathbf{a}) = \{\} \cup \{\} \cup \{\} \cup \{\} \cup \{\} = \{\} \cup \{s_8, \mathbf{b}) \cup \delta(s_9, \mathbf{b}) \cup \delta(s_6, \mathbf{b}) \cup \delta(s_1, \mathbf{b}) \cup \delta(s_4, \mathbf{b}) = \{\} \cup \{\} \cup \{s_2\} \cup \{s_5\} = \{s_2, s_5\} \cup \{s_6, \mathbf{b}\} \cup \{s_6,$$

$$Fecho_{\varepsilon}(s_{1}) = \{s_{1}\}$$

$$Fecho_{\varepsilon}(s_{2}) = \{s_{2}\}$$

$$Fecho_{\varepsilon}(s_{3}) = \{s_{3}, s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{4}) = \{s_{4}\}$$

$$Fecho_{\varepsilon}(s_{5}) = \{s_{5}, s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{5}) = \{s_{5}, s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{6}) = \{s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{7}) = \{s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{8}) = \{s_{8}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{9}) = \{s_{9}\}$$

Estado inicial do AFD: $Fecho_{\varepsilon}(s_8) = \{s_8, s_9, s_6, s_1, s_4\}.$

$$\delta'(\{s_8, s_9, s_6, s_1, s_4\}, \mathbf{a}) = Fecho_{\varepsilon}(\bigcup_{s \in \{s_8, s_9, s_6, s_1, s_4\}} \delta(s, \mathbf{a})) = Fecho_{\varepsilon}(\{\}\}) = \{\}$$

$$\delta'(\{s_8, s_9, s_6, s_1, s_4\}, \mathbf{b}) = Fecho_{\varepsilon}(\{s_2, s_5\}) = \{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$$

porque

$$\delta(s_8, \mathbf{a}) \cup \delta(s_9, \mathbf{a}) \cup \delta(s_6, \mathbf{a}) \cup \delta(s_1, \mathbf{a}) \cup \delta(s_4, \mathbf{a}) = \{\} \cup \{s_5\} \cup \{s_6, \mathbf{b}) \cup \delta(s_6, \mathbf{b}) \cup \delta(s_1, \mathbf{b}) \cup \delta(s_4, \mathbf{b}) = \{\} \cup \{\} \cup \{\} \cup \{s_5\} \cup \{s_5\} \cup \{s_5\} \cup \{s_6, \mathbf{b}\} \cup \{s_6, \mathbf$$

$$Fecho_{\varepsilon}(s_{1}) = \{s_{1}\}$$

$$Fecho_{\varepsilon}(s_{2}) = \{s_{2}\}$$

$$Fecho_{\varepsilon}(s_{3}) = \{s_{3}, s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{4}) = \{s_{4}\}$$

$$Fecho_{\varepsilon}(s_{5}) = \{s_{5}, s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{6}) = \{s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{7}) = \{s_{7}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{8}) = \{s_{8}, s_{9}, s_{6}, s_{1}, s_{4}\}$$

$$Fecho_{\varepsilon}(s_{9}) = \{s_{9}\}$$

Estado inicial do AFD: $Fecho_{\varepsilon}(s_8) = \{s_8, s_9, s_6, s_1, s_4\}.$

$$\begin{array}{lcl} \delta'(\{s_8,s_9,s_6,s_1,s_4\},a) & = & Fecho_{\varepsilon}(\bigcup_{s\in\{s_8,s_9,s_6,s_1,s_4\}}\delta(s,a)) = Fecho_{\varepsilon}(\{\}) = \{\}\\ \delta'(\{s_8,s_9,s_6,s_1,s_4\},b) & = & Fecho_{\varepsilon}(\{s_2,s_5\}) = \{s_2,s_5,s_7,s_9,s_6,s_1,s_4\} \end{array}$$

porque

$$\delta(s_8, \mathbf{a}) \cup \delta(s_9, \mathbf{a}) \cup \delta(s_6, \mathbf{a}) \cup \delta(s_1, \mathbf{a}) \cup \delta(s_4, \mathbf{a}) = \{\} \cup \{s_5, \mathbf{b}) \cup \delta(s_6, \mathbf{b}) \cup \delta(s_1, \mathbf{b}) \cup \delta(s_4, \mathbf{b}) = \{\} \cup \{\} \cup \{s_2\} \cup \{s_5\} = \{s_2, s_5\}$$

	a	b
$\to *\{s_8, s_9, s_6, s_1, s_4\}$		$\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$
$*{s_2, s_5, s_7, s_9, s_6, s_1, s_4}$	$\{s_3, s_7, s_9, s_6, s_1, s_4\}$	$\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$
$*{s_3, s_7, s_9, s_6, s_1, s_4}$		$\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$

A tabela representa o AFD: \rightarrow assinala o estado inicial e * assinala estados finais.

	a	b
$\rightarrow *\{s_8, s_9, s_6, s_1, s_4\}$	{}	$\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$
{}	{}	{}
$*\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$	$\{s_3, s_7, s_9, s_6, s_1, s_4\}$	$\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$
$*\{s_3, s_7, s_9, s_6, s_1, s_4\}$	{}	$\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}$

A tabela representa o AFD: \rightarrow assinala o estado inicial e * assinala estados finais.

AFND- ε que reconhece a linguagem descrita por $(ba + b)^*$:

AFD equivalente obtido pelo método de construção baseado em subconjuntos:

Os nomes dos estados dão-nos informação útil mas não são relevantes para o AFD.

