9.C.1 BIG THETA(Θ) NOTATION-MATHEMATICAL EXAMPLES AND PROOFS

EXAMPLE 1

Find
$$\Theta$$
 bound for $f(n) = \frac{n^2}{2} - \frac{n}{2}$

Solution

Note by definition:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$
 for all $n \geq n_0$

Hence

$$\frac{n^2}{2} - \frac{n}{2} \le c_2 g(n)$$

$$\Rightarrow f(n) \le \left(\frac{n^2}{2} + \frac{n^2}{2}\right) - \frac{n^2}{2} \text{ [As there is } -\frac{n}{2} \text{ and } \frac{2n^2}{2} \ge \frac{n^2}{2} \text{ is 2}$$
 is degree of polynomial]

$$\Rightarrow f(n) \le \left(\frac{n^2}{2} + \frac{n^2}{2}\right) - \frac{n^2}{2}$$

$$\Rightarrow f(n) \leq \left(\frac{2n^2}{2}\right) - \frac{n^2}{2}$$

$$\Rightarrow f(n) \leq n^2$$

Now let's take $\frac{n^2}{5}$ which is $\leq \frac{n^2}{2}$ i.e.

$$\Rightarrow \frac{n^2}{5} \le \frac{n^2}{2} - \frac{n}{5} \le n^2$$

When in such a condition we have to go each input as mentioned by the definition of big theta:

N	$\frac{n^2}{2} - \frac{n}{2}$	$\frac{n^2}{5}$	n^2
1	0	0.2	1
2	1	0.8	4
3	3	1.8	9
4	6	3.2	16

Here we cannot consider 1 as f(n) becomes 0 as it becomes.

$$0.2 \le 0 \le 1$$
, here $0.2 \le 0$ is not true.

Hence, we say $n \ge 2$.

As we take
$$rac{n^2}{5} \leq f(n)$$
, hence $c_1g(n) = rac{1}{5} imes n^2$
Hence $c_1 = rac{1}{5}$

Also take $f(n) \leq n^2$, hence $c_1g(n) = 1 \times n^2$

Hence $c_2 = 1$

Also $n_0 = 2$.

Therefore, $f = \Theta(g)$

Hence, $f(n) = \Theta(g(n))$

$$\Rightarrow \frac{n^2}{2} - \frac{n}{5} = \Theta(n^2)$$

Prove
$$n \neq \Theta(n^2)$$

Solution

Note by definition:

$$c_1g(n) \le f(n) \le c_2g(n)$$
 for all $n \ge n_0$

Here clearly mentions that $g(n) = n^2$, f(n) = nHence,

$$c_1 \times n^2 \le n \le c_2 \times n^2$$

$$\implies c_1 n^2 \le n$$

$$\Rightarrow n^2 \leq \frac{n}{c_1}$$

$$\Rightarrow n \leq \frac{1}{c_1}$$

Also,

$$\Rightarrow n \leq c_2 n^2$$

$$\Longrightarrow \frac{n}{c_2} \le n^2$$

$$\Rightarrow n \geq \frac{1}{c_2}$$

As it stands now:

$$\frac{1}{c_2} \le n \le \frac{1}{c_1}$$

And if we put according to definition:

$$\frac{1}{c_2} \times g(n) \le f(n) \le \frac{1}{c_1} \times g(n)$$

And $\Theta(n^2)$ only can happen when it is in above condition. And it goes against the definition of Big theta:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$
 for all $n \geq n_0$

Hence,
$$n \neq \Theta(n^2)$$
.

EXAMPLE 3

Prove
$$6n^3 \neq \Theta(n^2)$$

Solution

Note by definition:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$
 for all $n \geq n_0$

Here clearly mentions that $g(n)=n^2$, $f(n)=6n^3$

Hence,

$$c_1 n^2 \le 6n^3 \le c_2 n^2$$

$$\Rightarrow c_1 n^2 \leq 6n^3$$

$$\implies c_1 \leq \frac{6n^3}{n^2}$$

$$\Rightarrow c_1 \leq 6n$$

$$\Rightarrow \frac{c_1}{6} \leq n$$

$$\Rightarrow n \geq \frac{c_1}{6}$$

Again,

$$6n^3 \le c_2n^2$$

$$\Rightarrow$$
 6 $n \leq c_2$

$$\implies n \leq \frac{c_2}{6}$$

As it stands now:

$$\frac{c_1}{6} \le n \le \frac{c_2}{6}$$

And if we put according to definition:

$$\frac{c_1}{6} \times g(n) \le f(n) \le \frac{c_2}{6} \times g(n)$$

And $\Theta(n^2)$ only can happen when it is in above condition. And it goes against the definition of Big theta:

$$c_1g(n) \le f(n) \le c_2g(n)$$
 for all $n \ge n_0$
Hence, $6n^3 \ne \Theta(n^2)$.

EXAMPLE 4

Prove
$$n \neq \Theta(\log n)$$

Solution

Note by definition:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$
 for all $n \geq n_0$

Here clearly mentions that g(n) = log n, f(n) = n

$$\therefore c_1 logn \leq n \leq c_2 logn$$
 , for all $n \geq n_0$

$$\therefore c_1 \leq rac{n}{logn} ext{ and } c_2 \geq rac{n}{logn}$$
 , $for \ all \ n \geq n_0$

If we observe:

$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = \lim_{n\to\infty} \left(\frac{n}{\log(n)}\right) = \frac{\lim_{n\to\infty} (n)}{\lim_{n\to\infty} (\log n)} = \frac{\infty}{\infty}$$

Applying L'Hospital Theorem:
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \lim_{n \to \infty} \left(\frac{f'(n)}{g'(n)} \right)$$

As we know that,
$$\frac{d}{dn}(n) = 1$$
 and $\frac{d}{dn}(log(n)) = \frac{1}{n}$

Hence
$$\lim_{n\to\infty} \left(\frac{\frac{1}{1}}{n}\right) = \lim_{n\to\infty} (n) = \infty$$

Hence there is no such finite constant for f(n)=n for which $f(n) \le c_2 \times g(n)$

Hence it is impossible to have $\Theta(logn)$ for f(n)=n.

Prove
$$5n^2 + 3n + 1 = \theta(n^2)$$

Solution:

Let,
$$f(n) = 5n^2 + 3n + 1$$

When $n \geq 5$,

By definition:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$
 for all $n \geq n_0$

We get:

$$5n^2 \le 5n^2 + 3n + 1 \le 6n^2 [6n^2 > 5n^2 and 4n^2 < 5n^2$$

the degree of polynomial]

$$\textit{Here}$$
, $c_1=5$, $c_2=6$, $g(n)=n^2$, $n_0=5$

Hence,
$$5n^2 + 3n + 1 = \theta(n^2)$$

EXAMPLE 6

Let us consider that $f(n)=n^4+3n^3+5n+1$ and $g(n)=n^4+1$, Prove that f(n) of an algorithm is in $\Theta(n^4)$.

Solution:

By definition:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$
 for all $n \geq n_0$

$$n^4 \le n^4 + 3n^3 + 5n + 1 \le 2n^4$$

Hence

$$c_1 = 1 \ and \ c_2 = 2$$

It is also true for

$$1 \times (n^4 + 1) \le n^4 + 3n^3 + 5n + 1 \le 2 \times (n^4 + 1)$$

It can be observed that this condition holds good for

$$c_1 = 1$$
 and $c_1 = 2$. Therefore, f is in $\Theta(n)$.

In other words, the algorithm complexity is in $\Theta(n^4)$.

EXAMPLE 7

Find theta notation for $f(n) = 3n^2 + 2n + 5$

Solution

As per definition of Θ' notation, the function f(n) such that

$$\Rightarrow c_1 \times g(n) \leq 3n^2 + 2n + 5 \leq c_2 \times g(n)$$

When $n \geq 3$

$$\Rightarrow 3n^2 \le 3n^2 + 2n + 5 \le 4n^2$$

Hence it puts:

$$c_1 \times g(n) \leq 3n^2 + 2n + 5$$
, for all $n \geq n_0$
Again,

$$3n^2 + 2n + 5 \le c_2 \times g(n)$$
, for all $n \ge n_0$
Therefore, $3n^2 + 2n + 5 = \Theta(n^2)$

EXAMPLE 8

Prove
$$f(n) = n^4 + 3n^3 = \Theta(n^4)$$

Solution

As per definition of Θ' notation, the function f(n) such that

$$\Rightarrow c_1 \times g(n) \le n^4 + 3n^3 \le c_2 \times g(n)$$

When $n \ge 1$

$$\Rightarrow n^4 \leq n^4 + 3n^3 \leq 2n^4$$
 , for all $n \geq n_0$

Hence
$$c_1=1$$
 , $c_2=2$, $n_0=1$ and $g(n)=n^4$

And
$$f = \Theta(g) \Rightarrow f(n) = \Theta(g(n)) \Rightarrow \Theta(n^4)$$

Prove
$$log(n!) = \Theta(nlog(n))$$

Solution

$$log(n!) = log(1) + log(2) + log(3) + \cdots + log(n)$$

Upper Bound

$$log(1) + log(2) + log(3) + \dots + log(n)$$

$$\leq log(n) + log(n) + log(n) + \dots + log(n)$$

$$[\operatorname{As} log(1) \leq log(n), log(2) \leq log(n), \dots, log(n) \leq log(n)]$$

$$log(1) + log(2) + log(3) + \cdots + log(n) \le nlog(n)$$

Lower Bound

$$(n!)^2 \geq \prod_{k=1}^n n_k$$

$$\left[\prod_{k=1}^n a_k = a_0 \times a_1 \times ... \times a_n\right]$$

$$\begin{bmatrix} \prod_{k=1}^n a_k \text{ , if } a=6 \text{ , } n=2 \\ a_1=6 \text{ } \times a_2=6=36 => 6^2 \end{bmatrix}$$

$$(n!)^2 \geq n^n \left(\prod_{k=1}^n n_k = n^n \right)$$

Putting log in LHS and RHS we get:

$$log(n!)^2 \ge logn^n$$

$$2log(n!) \ge nlogn$$

$$log(n!) \geq \frac{1}{2}nlogn$$

Which stands like:

$$\frac{1}{2}(nlogn) \leq log(n!) \leq nlogn$$

Hence
$$\,c_1=rac{1}{2}$$
 , $c_2=1$, and $g(n)=nlogn$

And
$$f = \Theta(g) \Rightarrow f(n) = \Theta(g(n)) \Rightarrow \Theta(n \log n)$$

Suppose that an algorithm that an algorithm takes eight seconds to run on an input size n=12. Estimate the instances that can be processed in 56 seconds. Assume that the algorithm complexity is $\Theta(n)$.

Solution

Assume that the time complexity is $\Theta(n)$, then $cn \approx 8$ seconds . Here the instance n is given as 12.

Therefore 12
$$c = 8$$
; $hence$, $c = \frac{8}{12} = \frac{2}{3}$.

The problem is to determine the value of n that can be processed in 56 seconds . This implies that $c \times n = 56$.

The value of c has already been determined as $\frac{2}{3}$. Therefore, $\frac{2}{3} \times n = 56$. This implies that $n = 56 \times \frac{3}{2} = 84$.

Hence, the maximum input that is possible is 84.