预习 操作记录	实验报告 总评成绩			

《大学物理实验》课程实验报告

专业: 实验人姓名: 学号:

参加人姓名:

日期: 年月日 室温: 相对湿度:

实验 5 霍尔效应测量磁场

[实验前思考题]

1. 如何计算载流子的浓度、迁移率? 为什么常利用半导体而非金属导体材料的霍尔效应?

2. 为什么对称测量法可以提高测定霍尔电压的准确性? 试举出该测量思路在其他场景中的应用实例

3. 写出螺线管轴线上任意点磁感应强度的计算公式。

[实验目的]

- 1. 了解霍尔效应的实验原理,掌握用"对称法"测样品的霍尔系数;
- 2. 测量样品的霍尔电压和工作电流关系曲线,并确定样品的导电类型、载流子浓度以及迁移率;
- 3. 了解用霍尔效应测量磁场的原理和方法,并用霍尔器件测亥姆霍兹线圈和长直螺线管的磁场分布。

[仪器用具]

编号	仪器名称	数量	主要参数(型号,测量范围,精度)
1	霍尔效应测试仪		
2	霍尔效应实验仪		
3	螺线管磁场实验仪		
4	导线		

| 原理概述 |

1. 霍尔效应

置于磁场中的半导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向上会产生一个附加的横向电场,这个现象称为霍尔效应。

如图 1(a)所示的 N 型(电子导电,-e)半导体,若在 X 方向通电流 I_s ,在 Z 方向加磁感应强度为 B 的磁场,则样品中平均漂移速度为 \overline{V} 的载流子将受到洛伦兹力

$$F_{B} = e\overline{VB} \tag{1}$$

的作用向 (-Y) 方向偏转,在 A 面不断积累并在 A、A'面之间产生附加的横向电场 E_H (或横向电压 V_H),即霍尔电场(或霍尔电压)。对于 N 型半导体, E_H 沿 (-Y) 方向;对于 P 型半导体, E_H 沿 Y 方向。 E_H 将阻止载流子继续向侧面偏移,当载流子所受的横向电场力 F_E $(=eE_H)$ 与洛伦兹力 F_B 相等时,A、A'面电荷的积累就达到平衡,有

$$eE_H = e\overline{V}B \tag{2}$$

设样品的宽度为b,厚度为d,载流子的浓度为n,则

$$I_{s} = ne\overline{V}bd \tag{3}$$

由式 (2) 和 (3) 可得 A、A'面之间的霍尔电压 V_H 为

$$V_H = E_H b = \frac{1}{ne} \cdot \frac{I_s B}{d} = R_H \frac{I_s B}{d}$$
 (4)

可见,霍尔电压 V_H 与 I_sB 的乘积成正比,与样品的厚度 d 成反比。比例系数

$$R_H = 1/(ne) = V_H d/(I_s B)$$
 (5)

称为霍尔系数,它是反映样品霍尔效应强弱的重要参数。只要测出 V_H 、 I_s 、d 和B等宏观量,就可算出样品的霍尔系数 R_H ,以及载流子浓度n、平均漂移速度 \bar{V} 等微观量。

图 1 霍尔效应原理图

若以图 1 所示的 I_s 和 B 的方向为正向,则由式(4)求得的 R_H 为负值时($V_H = V_{AA'} < 0$),样品是 N 型导电,反之则为 P 型。

要注意的是,式(4 和 5)中令中 $R_H = 1/(ne)$,是假定所有的载流子都具有相同的漂移速度,严格来说,考虑到载流子的速度统计分布,需引入($3\pi/8$)的修正因子,则

$$n = \frac{3\pi}{8} \frac{1}{|R_H|e} \tag{6}$$

进一步还可计算样品的电导率 σ 与载流子的迁移率 μ ,

$$\sigma = \frac{I_s L}{V_{\sigma} S} = ne\mu , \quad \mu = \sigma / ne = |R_H| \sigma$$
 (7)

其中 σ 可通过图 1 所示的 A、C(或 A'、C')电极进行测量。设 A、C 间距离为L,样品的横截面积为S=bd,流经样品的电流为 I_s ,在零磁场情况下(B=0),若测得 A、C 间的电位差为 V_s ,则

$$\sigma = I_{S}L/(V_{\sigma}S) \tag{8}$$

式(8)等号右边的量均为易测的宏观量。

2. "对称法"测霍尔电压 V_H

由于霍尔电压 V_H 的数值较小,mV量级,故伴随霍尔效应而出现的多种副效应,包括温差电效应 V_E 、不等势电压 V_δ 、热磁效应 V_N 、热磁效应产生的温差效应 V_{RL} 等,都会对 V_H 的测量造成影响。后三种可采用"对称测量法"加以消除,第一种虽不能消除,但由于数值较小,可忽略不计。测量时保持 I_S 和B的大小不变,设定 I_S 和B的正、反方向后,依次测量下列四组不同方向的 I_S 、B组合对应的AA'电压 V_I 、 V_2 、 V_3 和 V_4 ,即

$$+I_s$$
 $+B$ V_1
 $+I_s$ $-B$ V_2
 $-I_s$ $-B$ V_3
 $-I_s$ $+B$ V_4

然后求上述四组数据 V_1 、 V_2 、 V_3 和 V_4 的代数平均值,就可得到霍尔电压

$$V_H = \frac{1}{4} (V_1 - V_2 + V_3 - V_4) \tag{9}$$

3. 用霍尔器件测量通电长直螺线管轴向上的磁感应强度

霍尔器件是利用霍尔效应制成的电磁转换元件,对于成品霍尔器件,其霍尔系数 R_H 和霍尔片的厚度 d 是已知的,故式(4)可写成

$$V_H = K_H I_s B \tag{10}$$

其中 $K_H = R_H/d$ 为霍尔器件的灵敏度(其值由厂家给出),它表示该器件在单位工作电流和单位磁感应强度下产生的霍尔电压。可见,只要测出 V_H ,就可求得磁感应强度

$$B = V_H / (K_H I_s) \tag{11}$$

长直螺线管是由绕在圆柱面上的导线构成的,如图 2,对于一个有限长度的密绕螺线管,在轴线上的中心点处磁感应强度最大,

$$B_0 = \mu_0 N I_M \tag{12}$$

其中 μ_0 为真空磁导率,N为螺线管单位长度的线圈匝数, I_M 为线圈中的励磁电流。端点处的磁感应强度为中点处的 1/2,且端点附近的磁场不均匀。

图 2 螺线管磁场分布图

4. 实验仪器面板图

图 3 霍尔效应测试仪面板图

图 4 霍尔效应实验仪面板图

图 5 螺线管磁场实验仪面板图

[安全注意事项]

- 1. **关机连线。**为了防止接错线烧坏霍尔元件,接线前,要关掉"测试仪"的电源,接好 线后要反复检查接线是否正确,经教师检查允许,方可接通电源开始实验。
 - **警告:** 严禁将测试仪的励磁电流" I_M 输出"误接到实验仪的" I_S 输入"或" V_H 输出"端口,否则一旦通电,就算测试仪 I_M 显示为 0,霍尔元件也可能损坏!
- 2. **零电流开机。**通电前必须保证测试仪的"Is 调节"和"I_M调节"旋钮均置零位(即逆时针旋到底), <u>严禁</u>霍尔元件工作电流 Is 未调到零就开机, 冲击电流极易损坏霍尔元件。 注意: 线路未连接好, Is 和 I_M 未形成通路时, 不论"Is 调节"和"I_M调节"旋钮旋到什么位置, Is 和 I_M均显示为"0.00"、V_H显示"1."(超量程)。
- 3. **测量前调零:** 测量前需将测试仪的" I_S 调节"和" I_M 调节"旋钮按逆时针方向旋到底,开机预热 15 分钟以上,调节面板上的"调零"电位器使 V_H 显示为"0.00"。更换测量仪器后需要重新调零。

[实验内容及步骤]

1. 测绘 $|V_H| - I_s$ 曲线

- (1) 采用霍尔效应测试仪和霍尔效应实验仪,连线后将测试仪"功能切换"开关置 "H",实验仪的" V_H 、 V_σ "切换开关置 V_H ,调" I_M 调节"使 $I_M=0.50$ A。
- (2) 调" I_s 调节"旋钮,改变 I_s ,在 0—5.00mA 范围内每隔 1mA 用"对称测量法" 测出相应的 V_1 、 V_2 、 V_3 和 V_4 ,并计算 V_H 。
- (3) 作 $|V_H| I_s$ 关系曲线,用最小二乘法拟合,说明两者关系。

2. 测绘 $|V_H|$ — I_M 曲线

- (1) 调 $I_s = 3.00$ mA 并保持不变,调" I_M 调节"旋钮改变 I_M ,在 0—0.50A 范围内每隔 0.1A 用"对称测量法"测出相应的 V_1 、 V_2 、 V_3 和 V_4 ,计算 V_H 。
- (2) 作 $|V_H| I_M$ 关系曲线,用最小二乘法拟合,说明两者关系。
- (3) 选 $I_M = 0.30$ A的数据,计算样品的霍尔系数 R_H ,载流子浓度n,并判断样品的导电类型。

3. 测量 / 值 (选做,有部分设备无法做该内容)

将实验仪的" V_H 、 V_σ "切换开关置 V_σ ,在零磁场($I_M=0$)时,取 $I_s=0.20\,\mathrm{mA}$,测对应的 V_σ ,由 V_σ 和 R_H ,计算样品的电导率 σ 和载流子的迁移率 μ 。

4. 测绘螺线管轴线上磁感应强度分布

- (1) 采用霍尔效应测试仪和螺线管磁场实验仪,连线后将测试仪"功能切换"开关置"S",重新"调零"。取 $I_s=3.00$ mA, $I_M=0.500$ A,并保持不变。
- (2) 调测距尺读数旋钮 x_1 和 x_2 ,使 $x_1=x_2=0.0$ cm。调 x_1 和 x_2 旋钮改变霍尔元件的位置,每隔 0.5cm,用"对称测量法"测出各位置对应的 V_1 、 V_2 、 V_3 和 V_4 ,计算 V_{μ} 和 B 值。

注意: x=0 时霍尔元件约在螺线管外 20mm 处,x=110.0mm 时元件约在管的中心处。每台设备都不一样,具体数值需学生根据实验设备自行确定。

- (3) 作 |B|-x 关系曲线,作图时需作坐标变换使中心点为原点。验证螺线管端口 处的磁感应强度为中心处的 1/2。
- (4) 根据实验室提供的螺线管参数,计算螺线管中心处磁感应强度的理论值 B_0 ,并与实验值比较,计算相对误差。

[实验数据记录]

1. 测绘 $|V_H|$ — I_s 曲线

$$I_M = \underline{\hspace{1cm}}$$

Is、B 方向	+Is、+B	+Is、-B	−Is、−B	$-I_{S}$, $+B$	$V_H/{ m mV}$	
I_s / mA	V_1 / mV	V_2 / mV	V_3 / mV	V_4 / mV	, _H , 111 v	
0.00						
0.50						
1.00						
1.50						
2.00						
2.50						

其中:
$$V_H = (V_1 - V_2 + V_3 - V_4)/4$$

2. 测绘 $|V_H|$ — I_M 曲线

$$I_s = \underline{\hspace{1cm}},$$

Is、B方向	+Is、+B	+Is、-B	−Is、−B	$-I_{s}$, $+B$	V_H /mV	
I_M / A	V_1 / mV	V_2 / mV	V_3 / mV	V_4 / mV		
0						
0.10						
0.20						
0.30						
0.40						
0.50						

其中: $V_H = (V_1 - V_2 + V_3 - V_4)/4$

3. 测量 V_σ值

$$I_{\rm c} =$$

 $V_{\pi} =$

4. 测绘螺线管轴线上磁感应强度分布

螺线管参数:

I_S =	≡		,	$I_M =$			o
x_1 /cm	x_2 /cm	V_1 / mV	V_2 / mV	V_3 / mV	V_4 / mV	V_H/mV	B/mT

[数据处理和讨论]

- 1. 作 $|V_H|$ — I_s 关系曲线,并用最小二乘法拟合求直线的截距和斜率,说明两者的关系。(注意:处理数据时 $I_s=0$ 的数据也是一个实验点,不能缺漏)。
- 2. 作 $|V_H|$ — I_M 关系曲线,并用最小二乘法拟合求直线的截距和斜率,说明两者的 关系。(**注意:** 处理数据时 $I_M=0$ 的数据也是一个实验点,不能缺漏)。
 - 3. 选 $I_M = 0.25A$ 的数据,计算样品的霍尔系数 R_H 和载流子浓度n,判断导电类型。
 - 4. 根据 V_{σ} 值,计算样品的电导率 σ 和载流子迁移率 μ 。
- 5. 作 $|B|\sim x$ 关系曲线,说明两者关系。验证测量的准确性(将端点与中点的数据比较,中点的实验值与理论值比较,计算相对误差)。

数据作图与分析应清晰易读,格式工整,鼓励电脑作图

[实验后思考题]

- 1. 若磁感应强度的方向与霍尔元件的平面不完全正交,计算出的 B 值比实际值大还是小?
 - 2. 若沿被测磁场方向有一个恒定的附加外磁场,测量时如何消除该磁场的影响?
 - 3. 如何利用霍尔效应测量交变磁场?试写出测试方法。