Estimación de varianzas

Si bien la <u>varianza muestral</u> s^2 es un *estimador insesgado* de σ^2 , esto **no implica** que la <u>desviación estándar muestral</u> s sea un *estimador insesgado* de σ . No lo es

Para muestras de gran tamaño, el sesgo es pequeño y se acostumbra a estimar σ con s.

Rango muestral R:

Mayor_valor_de_una_muestra - Menor_valor_de_la_muestra

Dada una muestra de tamaño **n** de una *población normal*, puede verificarse que la distribución muestral del rango tiene:

Media:

d₂σ

Deviación estándar:

d₃σ

Donde las d son constantes que dependen del tamaño de la muestra. Tenemos el siguiente cuadro:

d_2	1.128	1.693	2.054	2.326	2.534	2.704	2.847	2.970	3.078
d ₃	0.853	0.888	0.880	0.864	0.848	0.833	0.830	0.808	0.797
N	2	3	4	5	6	7	8	9	10

Luego $\frac{R}{d_2}$ es un estimador isesgado de σ que proporciona una estimacion de σ tan buena como s para muestras muy pequeñas (n \leq 5). Cuando se incrementa el tamaño muestral sucede lo **contrario**.

$$\sigma = \frac{R}{d_2}$$

R se emplea fundamentalmente en Control de Calidad

Estimación de intervalos para σ (o σ^2):

La mayoría de aplicaciones practicas se basan en la <u>desviación estándar muestral</u> (o en la <u>varianza muestral</u>). En muestras aleatorias de **poblaciones normales**

$$\chi^2 = \frac{(n-1) \cdot s^2}{\sigma^2}$$
 $con v = n-1$ Grados de libertad

Siendo esta la abscisa que deja a la *izquierda* un área α. Se puede asegurar con una probabilidad de 1-α que se satisface:

$$\left(\chi^2\right)\!\!\frac{\alpha}{2} < \frac{(n-1)\!\cdot\!s^2}{\sigma^2} < \left(\chi^2\right)_{1-\frac{\alpha}{2}}$$

$$\frac{(n-1)\cdot s^2}{\left(\chi^2\right)_{1-\frac{\alpha}{2}}} < \sigma^2 < \frac{(n-1)\cdot s^2}{\left(\chi^2\right)_{\frac{\alpha}{2}}}$$

Se puede determinar un intervalo de confianza 1-α para la varianza poblacional

Esto se aplica a muestras aleatorias de **poblaciones normales**, pero si el tamaño de la muestra es *grande*, la distribución muestral de la deviación estándar puede *aproximarse* a una distribución normal con media σ y deviación estándar $\frac{\sigma}{\sqrt{2\pi}}$.

$$z = \frac{s - \sigma}{\frac{\sigma}{\sqrt{2 \cdot n}}}$$

Por lo que se puede generar un intervalo de confianza 1-α

$$\begin{aligned} & -z_{\frac{\alpha}{2}} < \frac{s-\sigma}{\frac{\sigma}{\sqrt{2 \cdot n}}} < z_{\frac{\alpha}{2}} \\ & \frac{s}{z_{\frac{\alpha}{2}}} < \sigma < \frac{s}{z_{\frac{\alpha}{2}}} \\ & 1 + \frac{z_{\frac{\alpha}{2}}}{\sqrt{2 \cdot n}} & 1 - \frac{z}{\sqrt{2 \cdot n}} \end{aligned}$$

Que es un intervalo de confianza para σ en muestas de gran tamaño

Hipótesis referida a una varianza

Para muestras aleatorias extraídas de una **población normal** con varianza σ^2 , se puede usar

$$\chi^2 = \frac{(n-1) \cdot s^2}{\left(\sigma_0\right)^2}$$

Para tomar las *regiones criticas* para probar $\sigma^2 = \sigma^2_0$

Hipótesis Alterna	Se rechaza la Hipótesis Nula si
$\sigma^2 < \sigma_0^2$	$\chi^2 < \chi_0^2_{1-\alpha}$
$\sigma^2 > \sigma_0^2$	$\chi^2 < \chi_0^2 \alpha$
$\sigma^2 <> \sigma_0^2$	$\chi^2 < \chi_0^2_{1-\alpha/2}$ $\chi^2 < \chi_0^2_{\alpha/2}$

Si la muestra es grande, la hipótesis nula se puede probar con:

$$z = \frac{s - \sigma_0}{\frac{\sigma_0}{\sqrt{2 \cdot n}}}$$

Estimación de proporciones

Usualmente la información que se dispone para estimar la proporción es el numero de veces (x) que ocurre un evento y el numero de observaciones (n) que se realizaron. Por lo que la estimación puntual suele ser la proporción muestral ($\frac{x}{n}$)
Para los ensayos que satisfacen una distribución binomial, se verifica:

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

Que si se los divide por n, se encuentra la media y la desviación estándar de la proporción de éxitos, es decir, la proporción muestral.

$$\frac{\mu}{n} = n \cdot \frac{p}{n} = p \qquad \qquad y \qquad \qquad \frac{\sigma}{n} = \frac{\sqrt{n \cdot p \cdot (1-p)}}{n} = \sqrt{\frac{p \cdot (1-p)}{n}}$$

La proporción muestral es entonces un estimador insesgado del parámetro binomial p (la proporción real que se desea estimar a partir de la muestra)

Ya que $x \in \frac{x}{n}$ Son *variables discretas* y que para hallar $\frac{\sigma}{n}$ hace falta conocer **p**, es dificil crear un *intervalo de* confianza con un nivel de confianza $1-\alpha$. Para lograrlo se deben determinar x_0 y x_1 para un conjunto determinado de valores de p.

Donde:

• x₀ es el maximo entero para el que se verifica la desigualdad:

$$\sum_{k=0}^{x_0} b(k,n,p) \le \frac{\alpha}{2}$$

• x_1 es el **minimo** entero para el que se verifica la desigualdad:

$$\sum_{k\,=\,x_1}^n b(k,n,p) \leq \frac{\alpha}{2}$$

La distribución binomial es una distribución de probabilidad discreta, aplicable a procesos de Bernoulli.

- 1. Hay dos resultados posibles mutuamente excluyentes en cada ensayo (éxito y fracaso).
- 2. La serie de ensayos constituyen eventos independientes.
- 3. La probabilidad de éxito ${f p}$ permanece constante en todos los ensayos, es decir, el proceso es estocástico.

Para el calculo de la distribución binomial se necesitan 3 valores

- x: el numero de éxitos
- n: el numero de ensayos
- n. la probabilidad de évito

Para el calculo de la distribución binomial se necesitan 3 valores

- x: el numero de éxitos
- n: el numero de ensayos
- p: la probabilidad de éxito

$$b(x,n,p) = C_{n,x} \cdot p^{x} \cdot (1-p)^{n-x} = \frac{n!}{x! \cdot (n-x)!} \cdot \left\lfloor p^{x} \cdot (1-p)^{n-x} \right\rfloor$$

Entonces se puede asegurar que se cumple la siguiente desigualdad con una probabilidad de aproximadamente 1- α :

$$x_{0(p)} < x < x_{1(p)}$$

Para transformar esta desigualdad en intervalo de confianza se recurre a un método grafico:

p	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
X0	-	0	1	3	5	7	9	11	14
X1	6	9	11	13	15	17	19	20	_

Para distintos valores de \mathbf{n} se obtienen distintas ramas

$$x0(p) := \frac{qbinom\left(\frac{\alpha}{2}, n, p\right)}{n}$$

$$x1(p) := \frac{n - qbinom\left(\frac{\alpha}{2}, n, 1 - p\right)}{n}$$

Por lo que dado un \mathbf{x} , se pueden obtener *cotas* para \mathbf{p} con un nivel de significación de 1- α . Existen gráficos de este tipo para *niveles de confianza* de 95 y 99%, para varios valores de n. En los mismos se emplea la proporción muestral $(\frac{x}{n})$ en lugar de \mathbf{x} .

Para poder $\it aproximar$ la $\it distribución$ binomial a la $\it normal$, se debe cumplir:

- np > 5
- (1-p) > 5

Y se puede asegurar con una *probabilidad* 1- α que se cumple:

$$-z_{\frac{\alpha}{2}} < \frac{x - n \cdot p}{\sqrt{n \cdot p \cdot (1 - p)}} < z_{\frac{\alpha}{2}}$$

Para evitar cálculos complicados, se aproxima $p \cos \frac{x}{n}$

$$\frac{x}{n} - z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\frac{x}{n} \cdot \left(1 - \frac{x}{n}\right)}{n}}$$

Para muestras de gran tamaño

La magnitud del **error** cometido cuando se usa esta aproximación esta dada por: $\left|\frac{x}{n}-p\right|$ En base a la *distribución normal*, se puede asegurar con *probabilidad* 1- α que se cumplirá:

$$\left| \frac{x}{n} \right| - p \le z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$$

Por lo que este será el *Error Máximo de estimación* cuando se sustituye $p \operatorname{con} \frac{x}{n}$

$$E = z_{\frac{\alpha}{2}} \sqrt{\frac{\frac{x}{n} \cdot \left(1 - \frac{x}{n}\right)}{n}}$$

Este error puede ser usado para determinar el tamaño muestral que es necesario para llegar a un grado deseado de precisión.

$$n = p \cdot (1 - p) \cdot \left(\frac{z_{\frac{\alpha}{2}}}{E}\right)^{2}$$

Formula que solo se puede usar si se tiene información sobre **p** (en base a datos auxiliares, como una muestra previa). Si no se conoce, se sabe que p(1-p) es a lo sumo $\frac{1}{a}$, correspondiente a $p=\frac{1}{2}$

$$n = \frac{1}{4} \cdot \left(\frac{z_{\alpha}}{\frac{2}{E}}\right)^2$$

Entonces, se puede asegurar con una *probabilidad* de 1- α que el error de utilizar $\frac{x}{n}$ como estimacion de p, **no** va a exceder E

Una vez obtenidos los datos, se puede *asegurar* con una *confianza* de $\,$ al menos 1- α que el error **no** sobrepasa E.

Con una confianza de 95% y un error de a lo sumo 0.04:

• No se sabe como podría ser la proporción muestral

$$n = \frac{1}{4} \cdot \left(\frac{z_{\alpha}}{\frac{2}{E}}\right)^2 = \frac{1}{4} \cdot \left(\frac{1.96}{0.04}\right)^2 = 600.25$$

• Se sabe que la proporción real no excede de 0.127

$$n = p \cdot (1 - p) \cdot \left(\frac{z_{\frac{\alpha}{2}}}{E}\right)^2 = 0.127 \cdot (1 - 0.127) \cdot \left(\frac{1.96}{0.04}\right)^2 = 266.201$$

Esto ilustra que conocer alguna información auxiliar de p reduce en gran medida el tamaño de muestra requerida

Cuando **p** es *próximo* a 0 (alta confiabilidad) y cuando **p** es la *probabilidad de fracaso*, se necesitan <u>intervalos de confianza unilaterales</u>. Para **p** chicos y **n** grandes, la <u>distribución de Poisson</u> se aproxima a la binomial, por lo que se puede mostrar que:

$$p < \frac{1}{2 \cdot n} \cdot \chi_{\alpha}^2$$

Con v = 2(x + 1) grados de libertad

Hipótesis relativa a una proporción

Se verán los casos para muestras grandes, donde se probarán:

Hipótesis Nula:

Hipótesis Alternativas:

- p ≠ p₀
- p < p₀
- p > p₀

Aplicando el estadístico:

$$z = \frac{\mathbf{x} - \mathbf{n} \cdot \mathbf{p}_0}{\sqrt{\mathbf{n} \cdot \mathbf{p}_0 \cdot (1 - \mathbf{p}_0)}}$$

Hipótesis relativa a varias proporciones

Cuando interesa probar si dos poblaciones binomiales tienen el mismo parámetro p.

Hipótesis Nula:

$$\bullet \quad p_1 = p_2 = \dots = p_k = p$$

Hipótesis Alterna:

Al menos 1 es significativamente distinto

Para poder saberlo, se necesitan **k** muestras aleatorias de **k** poblaciones de tamaño $n_1, n_2, ..., n_k$, y el numero de éxitos $x_1, x_2, ..., x_k$.

La prueba se fundamenta en:

• Para muestras grandes la distribución muestral de

$$z_i = \frac{x_i - n_i \cdot p_i}{\sqrt{n_i \cdot p_i \cdot (1 - p_i)}}$$

Es aproximadamente la distribución normal estándar.

- El <u>cuadrado</u> de una variable aleatoria con función de densidad **normal estándar**, es otra variable aleatoria con distribución **chi-cuadrado** con <u>1 grado de libertad</u>.
- La <u>suma</u> de **k** variables aleatorias *independientes* con distribución **chi-cuadrado** con 1 grado de libertad, es otra variable aleatoria chi-cuadrado con k grados de libertad.

$$\chi^{2} = \sum_{i=1}^{k} \frac{(x_{i} - n_{i} \cdot p_{i})^{2}}{n_{i} \cdot p_{i} \cdot (1 - p_{i})}$$

 $\nu = k$ grados de libertad

Como todas las p; son iguales por la hipótesis,

$$\hat{p} = \frac{x_1 + x_2 + \cdots + x_k}{n_1 + n_2 + \cdots + n_k}$$

Se las puede sustituir por \hat{p} .

La Hipótesis Nula se rechaza si las diferencias entre x_i y $n_i\hat{p}$ son grandes. Por lo que la región crítica es $\chi^2>\chi^2_{~\alpha}$, tomando $\nu=k-1$ grados de libertad (por haber reemplazado ${\bf p}$ con su estimacion \hat{p})

Para el calculo en conveniente tener los datos en un cuadro similar al siguiente

	Muestra 1	Muestra 2		Muestra k	Total
éxitos	× ₁	×2	I	x _k	х
fallas	n ₁ - x ₁	n ₂ - x ₂		n _k - n _k	n - x
Total	n ₁	n ₂		$^{\mathrm{n}}\mathrm{k}$	n

- Renglón: i = 1, 2, ..., k• Columna: j = 1, 2, ..., k• Frecuencia observada en la celda: $o_{i,j}$
- Éxitos para la j-ésima muestra (frecuencia esperada):

$$e_{1j} = n_j \cdot \hat{p} = \frac{n_j \cdot x}{n}$$

• Fracasos para la j-ésima muestra (frecuencia esperada):

$$e_{2j} = n_j \cdot (1 - \hat{p}) = \frac{n_j \cdot (n - x)}{n}$$

En la misma notación, el estadístico χ²

$$\chi^2 = \sum_{\substack{i=1\\ \nu=k-1\\ p_i=\hat{p}}}^2 \sum_{\substack{j=1\\ \text{grados de libertad}}}^k \frac{\left(\diamond_{i,j} - \mathsf{e}_{i,j}\right)^2}{\mathsf{e}_{i,j}}$$

Deducción:

$$\chi^{2} = \sum_{j=1}^{k} \frac{\left(x_{j} - n_{i} \cdot p_{j}\right)^{2}}{n_{j} \cdot p_{j} \cdot \left(1 - p_{j}\right)} = \sum_{j=1}^{k} \frac{\left(x_{j} - n_{i} \cdot \hat{p}\right)^{2}}{n_{j}} \cdot \left(\frac{1}{\hat{p}} + \frac{1}{1 - \hat{p}}\right)$$

$$\chi^{2} = \sum_{j=1}^{k} \left[\frac{\left(x_{j} - n_{i} \cdot \hat{p}\right)^{2}}{n_{j} \cdot \hat{p}} + \frac{\left(x_{j} - n_{i} \cdot \hat{p}\right)^{2}}{n_{j} \cdot \left(1 - \hat{p}\right)}\right]$$

$$\chi^{2} = \sum_{j=1}^{k} \left[\frac{\left(x_{j} - n_{i} \cdot \hat{p}\right)^{2}}{n_{j} \cdot \hat{p}} + \frac{\left(n_{j} - x_{j} - n_{j} + n_{i} \cdot \hat{p}\right)^{2}}{n_{j} \cdot \left(1 - \hat{p}\right)}\right]$$

$$\chi^{2} = \sum_{j=1}^{k} \left[\frac{\left(o_{1, j} - e_{1, j}\right)^{2}}{e_{1, j}} + \frac{\left(o_{2, j} - e_{2, j}\right)^{2}}{e_{2, j}}\right]$$

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{\left(o_{i, j} - e_{i, j}\right)^{2}}{e_{i, j}}$$

Habrá casos en los que k = 2, por lo que la <u>Hipótesis Alternativa</u> podría ser:

Por lo que se puede fundamentar la prueba en el siguiente estadístico:

$$z = \frac{\frac{x_1}{n_1} - \frac{x_2}{n_2}}{\sqrt{\hat{p} \cdot (1 - \hat{p}) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Donde
$$p = \frac{x_1 + x_2}{n_1 + n_2}$$

$$x_{1} - n_{1} \cdot \frac{x_{1} + x_{2}}{n_{1} + n_{2}} = \frac{x_{1} \cdot n_{1} + x_{1} \cdot n_{2} - n_{1} \cdot x_{1} - n_{1} \cdot x_{2}}{n_{1} + n_{2}} = \frac{\left(x_{1} \cdot n_{2} - n_{1} \cdot x_{2}\right)}{\left(n_{1} + n_{2}\right)}$$

$$x_{2} - n_{2} \cdot \frac{x_{1} + x_{2}}{n_{2} + n_{2}} = \frac{x_{2} \cdot n_{1} + x_{2} \cdot n_{2} - n_{2} \cdot x_{1} - n_{2} \cdot x_{2}}{n_{2} \cdot n_{2} \cdot n_{2} \cdot x_{2}} = \frac{\left(x_{2} \cdot n_{1} - n_{2} \cdot x_{2}\right)}{\left(n_{2} + n_{2}\right)}$$

$$x_2 - n_2 \cdot \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 + n_2}{n_1 + n_2} = \frac{(n_1 + n_2)}{(n_1 + n_2)} = \frac{(n_1 + n_2)}{(n_1 + n_2)}$$

$$\chi^{2} = \frac{\left(x_{1} - n_{1} \cdot p\right)^{2}}{n_{1} \cdot p \cdot (1 - p)} + \frac{\left(x_{2} - n_{2} \cdot p\right)^{2}}{n_{2} \cdot p \cdot (1 - p)}$$

$$\chi^{2} = \frac{\left(x_{1} - n_{1} \cdot \frac{x_{1} + x_{2}}{n_{1} + n_{2}}\right)^{2}}{n_{1} \cdot p \cdot (1 - p)} + \frac{\left(x_{2} - n_{2} \cdot \frac{x_{1} + x_{2}}{n_{1} + n_{2}}\right)^{2}}{n_{2} \cdot p \cdot (1 - p)}$$

$$\chi^{2} = \frac{\left[\frac{\left(x_{1} \cdot n_{2} - n_{1} \cdot x_{2}\right)^{2}}{(n_{1} + n_{2})}\right]^{2}}{n_{1} \cdot p \cdot (1 - p)} + \frac{\left[\frac{\left(x_{2} \cdot n_{1} - n_{2} \cdot x_{1}\right)^{2}}{(n_{1} + n_{2})}\right]^{2}}{n_{2} \cdot p \cdot (1 - p)}$$

$$\chi^{2} = \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \cdot \frac{\left(x_{2} \cdot n_{1} - n_{2} \cdot x_{1}\right)^{2}}{\left(n_{1} + n_{2}\right)^{2} \cdot p \cdot (1 - p)} = \frac{n_{1} + n_{2}}{n_{1} \cdot n_{2}} \cdot \frac{\left(x_{2} \cdot n_{1} - n_{2} \cdot x_{1}\right)^{2}}{\left(n_{1} + n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(n_{1} \cdot n_{2}\right)^{2}}{\left(n_{1} + n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(n_{1} \cdot n_{2}\right)^{2}}{\left(n_{1} + n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(n_{1} \cdot n_{2}\right)^{2}}{\left(n_{1} + n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{2} \cdot n_{1} - x_{2} \cdot x_{1}\right)^{2}}{\left(n_{1} + n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{2} \cdot n_{1} - x_{2} \cdot x_{1}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{1} \cdot n_{2}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{1} \cdot n_{2}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{1} \cdot n_{2}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{1} \cdot n_{2}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{1} \cdot n_{2}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2} \cdot p \cdot (1 - p)} \cdot \frac{\left(x_{1} \cdot n_{2}\right)^{2}}{\left(x_{1} \cdot n_{2}\right)^{2}} \cdot \frac{\left(x_{1} \cdot$$

"El <u>cuadrado</u> de una variable aleatoria con función de densidad **normal estándar**, es otra variable aleatoria con distribución **chi-cuadrado** con <u>1 grado de libertad</u>."

Tablas r x c ó Tablas de Contingencia

Los datos están dispuestos en dos criterios de clasificación:

- r: renglones
- · c: columnas

Como en los casos anteriores, pero con mas resultados

Para su análisis, se calculan las <u>frecuencias esperadas</u> en (r-1)(c-1) celdas $e_{i,j}$, el resto se calculan por *sustraccion de totales* en los renglones o columnas apropiadas.

$$e_{i,j} = \frac{n_j x_i}{n}$$

El estadístico para el análisis de la tabla es:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(o_{i,j} - e_{i,j})^{2}}{e_{i,j}}$$

Donde se rechaza la Hipótesis Nula si $\chi^2 > \chi_{\alpha}^2 \;\;$ para $\nu = (r-1)(c-1) \;\;$ grados de libertad

Bondad de ajuste

Se habla de ella cuando se quiere comparar una distribución de frecuencias observadas con los valores correspondientes a una distribución de frecuencias esperadas o teóricas.

<u>Ejemplo:</u> 400 intervalos de 5 minutos en el control de trafico aéreo en cuanto a la recepción de mensajes de radio, comparándola con una distribución de Poisson $\lambda = 4.6$.

Número de mensajes	Frecuencias	Probabilidad de	Frecuencias
en interv. de 5 min.	observadas	Poisson	esperadas
0	3 1 10	0.010	4.0
1	15 18	0.046	18.4
2	47	0.107	42.8
3	76	0.163	65.2
4	68	0.187	74.8
5	74	0.173	69.2
6	46	0.132	52.8
7	39	0.087	34.8
8	15	0.050	20.0
9	9	0.025	10.0
10	5	0.012	4.8
11	2	0.005	2.0
12	2 10	0.002	0.8
13	1	0.001	0.4

La columna: "Probabilidad de Poisson", se obtiene de tablas o de la expresión

$$\frac{\lambda^k}{k!} \cdot e^{-\lambda}$$
 Densidad de probabilidad

Además, en el cuadro se han combinado datos, de manera que ninguna de las frecuencias esperadas sea menor a 5 (líneas verticales).

Para probar que las discrepancias entre las frecuencias observados y las esperadas pueden atribuirse al azar, se usa otra vez el estadístico:

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

 $\nu=k-m-1$ grados de libertad

Siendo:

- k: el número de términos de la formula (renglones del cuadro después de la combinación)
- m: el número de parámetros de la distribución supuesta (en nuestro ejemplo Poisson)

Hipótesis:

Hipótesis Nula:

La variable aleatoria tiene una distribución x con parámetros p₁ ...

Hipótesis Alternativa:

· No la tiene