1/4/23, 12:40 PM apuntes

Trigonalization

Let K be a field

ullet **Def - Upper Triangular:** A matrix A is upper triangular if $a_{i,j}=0$ for all i>j

- **Def Triagonizable:** $A\in M_n(K)$ is *triagonizable* when A is similar to a upper triangular matrix. That is, there is $P\in GL_n(K)$ s.t PAP^{-1} is upper triangular
- Lemma 1: A triagonalizable matrix always admits an eigenvalue
- Theorem: Let $A \in M_n(K)$. The following are equivalent:
 - 1. A is triagonalizable
 - 2. the characteristic polynomial χ_A of A splits over K
 - 3. rhe minimal polynomial P_{A} of A splits over K

In this context, "split over" means that the polynomial can be written as the product of its linear factors. Which means can be factorized.

- Corollary 1: Any matrix over C is trigonalizable
- **Corollary 2:** Any nilpotent matrix is trigonalizable. More precisely, it is similar to an upper triangular matrix with only 0's on the diagonal

A nilpotent matrix is a square matrix A such that $A^k=0$ for some positive integer k.

- ullet Proposition 3: For any $A\in M_n(K)$ trigonalizable, we have:
 - $\circ trace(A) = \sum_{\lambda \in A} \lambda$
 - $\circ \ det(A) = \prod_{\lambda \in A} \lambda$

Reduction through topology

• Lemma 1: Let |||.||| be a submultiplicative norm on $M_n(K)$. Then for any matrix $A \in M_n(K)$ with |||A||| < 1 the matrix Id - A is invertible.

Suppose we have a vector space V and a norm $||\cdot||$ on V. Then the **submultiplicative** inequality states that:

$$||x + y|| \le ||x|| * ||y||$$

- Theo 1: The subset $GL_n(K)$ is open in $M_n(K)$
- Theo 2: $GL_n(K)$ is dense in $M_n(K)$
- Theo 3: The set of diagonalizable matrices of $M_n(\mathbb{C})$ is dense in $M_n(\mathbb{C})$

1/4/23, 12:40 PM apuntes

- ullet Corollary 1 Cayley Hamilton: $orall A\in M_n(\mathbb C), \chi_A(A)=0$
- ullet Lemma 2: Let $A\in M_n(\mathbb{C}).$ For any eigenvalue λ of A, we have

$$|\lambda| \leq |||A|||$$

• Theo 4: For any $A\in M_n(\mathbb{C})$, we have

$$\log
ho(A) = \lim_n rac{\log |||A|||}{n}$$