

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral III — Avaliação P2 Prof. Adriano Barbosa

Engenharia Mecânica	25/05/2021
---------------------	------------

1	
2	
3	
4	
5	
Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

1. Dada a região R:

(a) Determine os limites de integração das integrais abaixo:

$$\int \int_{R} f(x,y) \ dA = \int \int f(x,y) \ dxdy$$

$$\int \int_{R} f(x,y) \ dA = \int \int f(x,y) \ dydx$$

- (b) Calcule a área da região R.
- 2. Calcule a integral utilizando coordenadas polares $\int_0^1 \int_0^{\sqrt{1-y^2}} \cos(x^2+y^2) \ dxdy$.
- 3. Calcule o volume do sólido E limitado pela calota de esfera $z=\sqrt{25-x^2-y^2},$ pelo plano z=0 e pelo cilindro $x^2+y^2=9.$

- 4. Dado o campo $F(x,y)=\left(e^x\ln y-\frac{e^y}{x},\frac{e^x}{y}-e^y\ln x\right)$:
 - (a) Determine de F é conservativo.
 - (b) Calcule $\int_C F \cdot dr$, onde $C: r(t) = (t^2, t^3), t \in [1, 2]$.
- 5. Sejam $F(x,y)=(x^2+y,y^2+2x)$ e C a borda da região limitada pelas parábolas $y=x^2$ e $x=y^2$ orientada positivamente. Calcule $\int_C F\cdot dr$. [Dica: use o exercício 1.]