TD n° 4

Exercice 1.

On considère le groupe $(Z/11Z \setminus \{\overline{0}\}, \times)$.

- 1) Déterminer l'ordre de $\bar{1}$ dans $(Z/11Z \setminus \{\bar{0}\}, \times)$.
- 2) Déterminer l'ordre de $\overline{2}$ dans $(Z/11Z \setminus \{\overline{0}\}, \times)$.
- 3) Montrer que $(Z/11Z \setminus \{\overline{0}\})$, \times) est un groupe cyclique.

Exercice 2.

- 1) Déterminer l'ordre de $\frac{1}{4}$ dans le groupe ($\mathbb{Z}/24\mathbb{Z},+$).
- 2) On note (Ω_{63},\times) désigne le groupe des racines $63^{\,\mathrm{ème}}$ de l'unité .

Vérifier $w = e^{\frac{100\pi}{21}}$ est un élément de Ω_{63} puis détérminer son ordre dans le groupe (Ω_{63}, \times)

Exercice 3.

On note $\ U_{\rm 15}$ l'ensemble des inversibles de l'anneau $\ Z/15Z$.

Considérons le morphisme de groupes $f:U_{15} \to U_{15}$ défini par : $f(x) = x^{-2}$

- 1) Résoudre dans Z, l'équation $x^2 \equiv 1$ [15]
- 2) Déterminez ker(f) puis calculez l'ordre de chaque élément de ker(f)
- 3) En déduire (U_{15},\times) n'est pas cyclique

Exercice 4.

1) Résoudre dans Z, les systèmes suivants :

(1)
$$\begin{cases} 2x \equiv 7 & [13] \\ x \equiv -1 & [11] \end{cases}$$
; (2)
$$\begin{cases} 5x \equiv -4 & [8] \\ 2x \equiv 6 & [7] \end{cases}$$
; (3)
$$\begin{cases} 5x \equiv 4 & [6] \\ 16x \equiv 13 & [7] \end{cases}$$
; (4)
$$\begin{cases} 2x \equiv 7 & [5] \\ x \equiv 10 & [11] \end{cases}$$

Exercice 5.

Dans un chiffrement utilisant le code RSA modulo n et de clé public e, Alice publie $(n=26,\,e=7)$ et reçoit de Bob le message m^7 Comment pourra-t-elle le déchiffrer ?

Exercice 6

Soit n = p q = 8871979 un produit de deux nombres premiers.

Sachant que $\varphi(n) = 8866000$ où φ désigne la fonction indicatrice d'Euler, retrouver alors la factorisation de l'entier n