4.4 Mais da geometria analítica de retas e planos

Equações da reta na forma simétrica

Lembremos que uma reta r, no planos casos acima, a forma simétrica é um caso particular da equação na reta na forma geral ou no espaço, é determinada por um ponto A e um vetor \vec{v} , não nulo, sendo sua equação vetorial dada por $r: X = A + \lambda \vec{v}, \lambda \in \mathbb{R}$.

O escalar λ é chamado parâmetro da equação.

A aplicação $\begin{cases} f: \mathbb{R} & \longrightarrow \mathbb{R}^2 \text{ ou } \mathbb{R}^3 \\ \lambda & \longmapsto f(\lambda) = A + \lambda \vec{v}, \end{cases}$, que associa a cada λ real um ponto $X = A + \lambda \vec{v},$ é chamada parametrização da reta r e evidencia o caráter dinâmico da trajetória retilílea percorrida por um ponto X da reta, dependendo do parâmetro λ .

As equações paramétricas da reta que passa por $A=(x_0,y_0,z_0)$ e tem a direção de $\vec{v}=(a,b,c)\neq$ (0,0,0) (no caso de \mathbb{R}^3) expressam a dependência das coordenadas de X=(x,y,z) da reta, em relação ao parâmetro em questão:

$$\begin{cases} x = x_0 + \lambda a \\ y = y_0 + \lambda b \end{cases} \quad \lambda \in \mathbb{R}$$

$$z = z_0 + c$$

Se a, b e c forem todos não nulos, então em cada uma das equações paramétricas podemos isolar o parâmetro λ correspondente ao ponto (x,y,z): $\lambda = \boxed{\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}}$

$$\lambda = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

As expressões dentro do retângulo acima não contém λ e expressam as relações que existem entre as coordenadas de $X \in r$, independente do parâmetro. São chamadas equações da reta rna forma simétrica.

Se $a=0,\ b\neq 0$ e $c\neq 0$, ficamos com as equações $x=x_0,\ \frac{y-y_0}{b}=\frac{z-z_0}{c}$ e fica claro que a reta r está contida num plano paralelo ao plano yz dado por x

Se a=0 e b=0 (neste caso, somente $c\neq 0$), ficamos com as equações $x=x_0, y=y_0$ como as equações na forma simétrica.

Faça como exercício as análises dos outros casos: (i) somente b=0, (ii) somente c=0, (iii)

somente $a \neq 0$, (iv) somente $b \neq 0$.

Nesta ilustração obtida no Maple, a reta foi dada pela equação na forma simétrica $r: x=2, \ \frac{y-2}{1}=\frac{z-1}{3}, \text{e visualizada na}$ região

$$\left\{ (x, y, z) \in \mathbb{R}^3 \mid \begin{cases} 0 \le x \le 4, \\ -2 \le y \le 4, \\ -2 \le z \le 4 \end{cases} \right\}$$

A reta r é a intersecção do plano π_1 : x=2, paralelo ao plano yz, com o plano π_2 : $\frac{y-2}{1} = \frac{z-1}{3}$.

Agora, consideremos o caso em \mathbb{R}^2 : Sejam $A=(x_0,y_0),\,\vec{v}=(a,b)\neq (0,0)$ e a reta r(A,v) dada em equações paramétricas $\begin{cases} x=x_0+ta \\ y=y_0+tb \end{cases},\,\,t\in\mathbb{R}.$

Considerando $a \neq 0$ e $b \neq 0$, temos a equação simétrica $\boxed{\frac{x-x_0}{b} = \frac{y-y_0}{b}}$, donde $y-y_0 = \frac{b}{a}(x-x_0)$, que pode ser escrita na forma $y = m(x-x_0) + y_0$, onde $m = \frac{b}{a}$, ou ainda, y = mx + n, onde $n = -mx_0 + y_0$.

 $m = \operatorname{tg} \theta$, onde θ é o ângulo entre r e o eixo positivo Ox.

n é a ordenada do ponto de intersecção da reta r como o eixo Oy. Temos a conhecida fórmula da reta na forma y = mx + n, onde m é chamado coeficiente angular de r e n é chamado coeficiente linear de r.

Quando a = 0, a equação da reta na forma simétrica será simplesmente $x = x_0$. Analogamente, se b = 0, a equação na forma simétrica é $y = y_0$.

Em qualquer dos casos acima, a forma simétrica é um caso particular da equação na reta na forma geral, da forma $\alpha x + \beta y + \gamma = 0$, onde $\vec{w} = (\alpha, \beta)$ é o vetor normal á reta.

Posição relativa entre dois planos

A partir da equação geral de um plano no espaço, π : ax + by + cz + d = 0, onde $\vec{n} = (a, b, c)$ é o vetor normal ao plano, o estudo das posições relativas entre dois planos se torna mais rico.

Consideremos os planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$.

1. O plano π_1 é paralelo ao plano π_2 se e somente se $\pi_1 \cap \pi_2$ é vazio. Isto é, o sistema linear $\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$ é impossível. Neste caso, posto(A)=1 e posto([A | B])=2. Geometricamente, isto ocorre quando $\{\vec{n}_1 = (a_1, b_1, c_1), \vec{n}_2 = (a_2, b_2, c_2)\}$ é l.d. e, portanto, $\vec{n}_2 = k\vec{n}_1$ para um escalar $k \neq 0$, mas $d_2 \neq kd_1$.

Nesta ilustração, os planos são $\pi_1: y+z=1$ e $\pi_2: 2x+2z=4$.

 $\vec{n}_1=(0,1,1)$ é paralelo a $\vec{n}_1=(0,2,2)$ com $\vec{n}_2=2\vec{n}_1,$ mas $4\neq 2\times 1.$

Logo não existe (x, y, z) satisfazendo as duas equações ao mesmo tempo.

2. π_1 é coincidente com π_2 se todos os pontos de π_1 também são pontos de π_2 e vice-versa. Neste caso, o sistema $\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$ é possível e indeterminado, com posto(A)=1 e posto([A | B])=1, e portanto, o grau de liberdade é 2, que é a dimensão de um plano.

Geometricamente, $\{\vec{n}_1, \vec{n}_2\}$ é l.d., $\vec{n}_2 = k\vec{n}_1$ e além disso, $d_2 = kd_1$.

3. π_1 intercepta π_2 segundo uma reta.

Neste caso $\{\vec{n}_1, \vec{n}_2\}$ é l.i. e o sistema $\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$ é possível e $a_2x + b_2y + c_2z + d_2 = 0$ indeterminado, com grau de liberdade 1, ou seja, existe a escolha de um parâmetro escalar para descrever o conjunto de soluções, e portanto esse conjunto é uma reta.

Já vimos que a equação vetorial (ou as paramétricas) da reta aparece naturalmente quando aplicamos o método de eliminação de Gauss para resolver o sistema.

Aqui apresentamos uma outra maneira geometricamente interessante para o problema de determinar r, que é observar que o vetor direção $\vec{v} \neq \vec{0}$ de $r = \pi_1 \cap \pi_2$ deve ser ortogonal a \vec{n}_1 e a \vec{n}_2 simultaneamente. De fato, por \vec{v} ser um vetor contido em π_1 , segue que $\vec{v} \perp \vec{n}_1$ e por \vec{v} ser um vetor de π_2 , segue que $\vec{v} \perp \vec{n}_2$. Logo \vec{v} e $\vec{n}_1 \times \vec{n}_2$ são paralelos.

Assim, conhecido <u>um</u> ponto P, solução do sistema, a equação vetorial será conhecida: $r: X = P + t(\vec{n}_1 \times \vec{n}_2), t \in \mathbb{R}$.

Por exemplo, os planos da ilustração, $\pi_1: 3x-z=0$ e $\pi_2: -x+z=0$ têm o ponto P=(0,0,0) na intersecção. Como $\vec{n}_1=(3,0,-1)$ e $\vec{n}_2=(-1,0,1)$, temos que $\vec{v} \parallel \vec{n}_1 \times \vec{n}_2=(0,2,0)$. Podemos tomar $\vec{v}=(0,1,0)$. Então r:X=(0,0,0)+t(0,1,0), $t\in\mathbb{R}$, ou seja, r neste caso é o eixo Oy.

Posições relativas entre retas no espaço, com produto vetorial

As posições relativas entre retas no espaço também podem ser analisadas com o uso do produto vetorial. Sejam $r_1: X = A + \lambda \vec{v}_1, \ \lambda \in \mathbb{R}$ e $r_2: X = B + \mu \vec{v}_2, \ \mu \in \mathbb{R}$ as duas retas.

- 1. Se $\vec{v}_1 \times \vec{v}_2 = \vec{0}$ temos que \vec{v}_1 e \vec{v}_2 são l.d., e portanto, as retas são paralelas ou coincidentes. Se além disso, $A \in r_2$ (ou $B \in r_1$), então são coincidentes. É claro que se \vec{v}_1 e \vec{v}_2 são conhecidos em coordenadas, é muito mais fácil ver se são l.d ou l.i. verificando se são múltiplos ou não. Quando as retas são paralelas, temos também que $\{\vec{v}_1, \overrightarrow{AB}\}$ é l.i. O plano determinado por A, \vec{v}_1 e \overrightarrow{AB} é o plano contendo ambas as retas.
- 2. Se $\vec{v}_1 \times \vec{v}_2 \neq \vec{0}$ as retas têm direções l.i. e portanto, são concorrentes ou reversas. Se ainda $[\vec{v}_1, \vec{v}_2, \overrightarrow{AB}] = 0$, então \overrightarrow{AB} é coplanar com \vec{v}_1 e \vec{v}_2 , donde as retas são concorrentes. Caso contrário, $\{\vec{v}_1, \vec{v}_2, \overrightarrow{AB}\}$ é l.i. e as retas são reversas.

Se as retas são concorrentes e $r_1 \cap r_2 = P$, o plano $X = P + \lambda \vec{v}_1 + \mu \vec{v}_2$ é o plano contendo as retas. O vetor normal a esse plano é $\vec{v}_1 \times \vec{v}_2$.

Se as retas são reversas, o plano $\pi_1: X = A + t\vec{v}_1 + s\vec{v}_2, \, t, s \in \mathbb{R}, \text{ contendo } r_1$ e paralelo a r_2 , é paralelo ao plano $\pi_2: X = B + t\vec{v}_1 + s\vec{v}_2, \, t, s \in \mathbb{R}, \text{ contendo } r_2$ e paralelo a r_1 . Ambos os planos têm vetor normal $\vec{v}_1 \times \vec{v}_2$. Observe que não existe plano algum contendo as duas retas simultaneamente.

Exercício 1: Encontrar a equação da reta perpendicular a duas retas reversas.

Exercício 2: Encontrar a equação do plano que contém r_1 e é ortogonal ao plano π_2 . Encontrar a intersecção deste plano com π_2 . Qual é a posição relativa entre r_1 e esta reta intersecção?

Angulo entre dois planos

Consideremos dois planos π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$.

Os vetores $\vec{n}_1=(a_1,b_1,c_1)$ e $\vec{n}_2=(a_2,b_2,c_2)$ são respectivamente os vetores normais de π_1 e π_2 .

Já vimos que se $\{\vec{n}_1, \vec{n}_2\}$ é l.d. os planos são paralelos ou coincidentes. Quando são coincidentes, dizemos que o ângulo entre π_1 e π_2 é zero. Quando são paralelos, não definimos o ângulo entre π_1 e π_2 .

Consideremos então o caso em que $\{\vec{n}_1, \vec{n}_2\}$ é l.i. e portanto a intersecção $\pi_2 \cap \pi_2$ é uma reta, e tem sentido considerar os ângulos que se formam na intersecção, chamados *ângulos diedrais*, como na figura.

Observemos que, por um ponto P fora dos planos, podemos traçar retas perpendiculares aos planos π_1 e π_2 , que interceptam os planos nos pontos Q e R, respectivamente. Veja a ilustração ao lado. Os pontos P, Q e R determinam um plano que é ortogonal a π_1 e π_2 simultaneamente (um vetor normal deste plano é $\vec{n}_1 \times \vec{n}_2$) e que intercepta $r = \pi_1 \cap \pi_2$ no ponto S, formando um quadrilátero PQSR.

Neste quadrilátero, os ângulos em R e Q são retos por construção, e os ângulos em S e P são suplementares e iguais aos ângulos diedrais que se formam entre os planos (confira na figura).

Definimos como ângulo entre os planos π_1 e π_2 , o menor dos suplementares, que é exatamente o ângulo entre as retas normais, $r_1(P,Q)$ e $r_2(P,R)$.

Logo, $\angle(\pi_1, \pi_2) = \arccos \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|}$, sendo o ângulo entre 0 e $\frac{\pi}{2}$ radianos. Em particular, se $\vec{n}_1 \perp \vec{n}_2$, temos que $\pi_1 \perp \pi_2$.

Angulo entre uma reta e um plano

Consideremos uma reta dada por $r: X = A + t\vec{v}, t \in \mathbb{R}$, e um plano $\pi: ax + by + cz + d = 0$, com vetor normal $\vec{n} = (a, b, c)$.

1. Se $\{\vec{v}, \vec{n}\}$ for l.d., então a reta r é <u>perpendicular</u> ao plano π , e portanto o ângulo entre r e π é reto (90 graus ou $\frac{\pi}{2}$ radianos). (Obs: Não confundir a notação π utilizada ao nome do plano

e o número real π usada na medição de ângulos!)

- 2. $\{\vec{v}, \vec{n}\}$ for l.i, há três casos a considerar:
 - (a) $\vec{v} \cdot \vec{n} = 0$, isto é, $\vec{v} \perp \vec{n}$, e $A \notin \pi$. Neste caso, a reta r é paralela ao plano π já que a direção de \vec{v} é uma direção do plano. Nenhum ponto da reta pertence ao plano, isto é, a intersecção $r \cap \pi$ é vazia. Neste caso, não há ângulo a considerar.
 - (b) $\vec{v} \cdot \vec{n} = 0$, e $A \in \pi$. Como \vec{v} é um vetor do plano, r estará inteiramente contida em π . Neste caso, o ângulo entre a reta e o plano é zero.
 - (c) $\vec{v} \cdot \vec{n} \neq 0$. Neste caso a reta r é transversal ao plano π , interceptando-o num único ponto P.

Podemos considerar então um plano α contendo a reta r e é perpendicular ao plano π dado, gerado por $\{\vec{v}, \vec{n}\}$ e que passa pelo ponto P. A reta s de intersecção de α com o plano π é chamada projeção ortogonal de r sobre o plano π . O ângulo entre s e r em P é definido como o ângulo entre a reta r e o plano π . Pela própria construção, este ângulo é complementar do ângulo agudo entre as direções de \vec{v} e de \vec{n} .

Logo,
$$\angle(r,\pi) = \frac{\pi}{2} - \arccos\frac{|\vec{v} \cdot \vec{n}|}{|\vec{v}||\vec{n}|} = \arcsin\frac{|\vec{v} \cdot \vec{n}|}{|\vec{v}||\vec{n}|}.$$

Distâncias

1. Distância entre ponto e plano.

A distância de um ponto P a um plano π é o comprimento do segmento PQ, com $Q \in \pi$ e $\overrightarrow{PQ} \perp \pi$. O ponto Q é a intersecção da reta normal a π que passa por P, com o plano π .

Também se pode obter a distância de P a π escolhendo qualquer ponto $A \in \pi$ e projetanto ortogonalmente \overrightarrow{AP} sobre a normal \overrightarrow{n} do plano π e tomando o comprimento da projeção.

2. Distância entre reta e plano.

Se algum ponto da reta estiver também no plano, a distância é zero.

Se a reta for paralela ao plano, a distância da reta ao plano é a distância de qualquer um de seus pontos ao plano.

3. Distância entre dois planos.

A distância entre dois planos é zero se eles se interceptam ou são coincidentes.

A distância entre dois planos paralelos é a distância de qualquer ponto de um dos planos ao outro plano.

4. Distância entre ponto e reta no espaço.

Dada uma reta $r: X = A + t\vec{v}, t \in \mathbb{R}$, e um ponto $P = (x_0, y_0, z_0)$ fora de r, a distância de P a r é o comprimento do segmento PQ perpendicular a r, com $Q \in r$.

Pode-se determinar Q como a intersecção de r com o plano π perpendicular a r passando por P, de equação geral

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

Daí, basta calcular $|\overrightarrow{PQ}|$.

Mas também pode-se projetar o vetor \overrightarrow{AP} sobre o vetor \overrightarrow{v} da reta, obtendo um vetor \overrightarrow{v}_1 , donde o vetor $\overrightarrow{AP} - \overrightarrow{v}_1$ será ortogonal a r e seu comprimento é a distância procurada.

5. Distância entre duas retas.

Sejam as retas $r_1: X = A + t\vec{v}_1, t \in \mathbb{R}$, e $r_2: X = B + s\vec{v}_2, s \in \mathbb{R}$.

se r_1 e r_2 forem duas retas coincidentes ou duas retas concorrentes, a distância entre elas é zero.

Se r_1 e r_2 são duas retas paralelas, a distância entre elas é o comprimento de um segmento PQ, onde $P \in r_1$, $Q \in r_2$ e PQ perpendicular às duas retas. Para se obter esta distância, basta escolher qualquer ponto $P \in r_1$ e calcular a distância de P a r_2 .

Também no caso de retas r_1 e r_2 reversas, a distância é dada como o comprimento do segmento PQ,

onde $P \in r_1$, $Q \in r_2$ e PQ é perpendicular às duas retas.

O plano $\alpha: X = A + t\vec{v}_1 + s\vec{v}_1 \times \vec{v}_2$ é um plano contendo r_1 e a direção normal às duas retas. Logo o segmento PQ procurado está em α e portanto, $Q \in r_2$ só pode ser $r_2 \cap \alpha$. Fica como exercício encontrar P.

Essa distância pode ser obtida de diversas maneiras sem necessariamente obter-se os pontos $P \in Q$.

- Os planos paralelos π_1 e π_2 contendo r_1 e r_2 respectivamente, como na figura, distam entre si $\operatorname{dist}(\pi_1, \pi_2) = \operatorname{dist}(r_1, r_2)$.
- Mas tendo o plano π_1 contendo r_1 e paralelo a r_2 , a distância de r_1 a r_2 é a distância deste plano a r_2 .
- Ou ainda, tomando dois pontos quaisquer $A \in r_1$ e $B \in r_2$. e projetando ortogonalmente o vetor \overrightarrow{AB} sobre o vetor $\overrightarrow{v_1} \times \overrightarrow{v_2}$,obtemos um vetor ortogonal às duas retas e de comprimento igual à distância.

Em todos os casos, a distância entre as retas r_1 e r_2 é o menor comprimento |XY|, onde $X \in r_1$ e $Y \in r_2$. E esse mínimo ocorre no segmento PQ perpendicular às duas retas.

Simétrico de um ponto P em relação a um plano π

Por $P \notin \pi$, considere a reta perpendicular a π que o intercepta num único ponto Q. O ponto simétrico a Q em relação a π é o ponto P' sobre esta reta que satisfaz $\overrightarrow{PQ} = \overrightarrow{QP'}$. Que estratégia você usaria para encontrar o ponto P'?

