

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Выпускная квалификационная работа бакалавра на тему

Метод подсчета количества человек на видео на основе сверточных нейронных сетей

Студент: Фам Минь Хиеу ИУ7И-82Б

Руководитель: Никульшина Татьяна Александровна

2025г

Цель и задачи

Цель: разработка метода подсчета количества человек на видео на основе сверточных нейронных сетей.

Задачи:

- рассмотреть существующие методы поиска объектов на изображении;
- спроектировать и реализовать метод подсчета количества человек на видео на основе сверточных нейронных сетей;
- разработать программное обеспечение, реализующее предлагаемый метод;
- исследовать характеристики реализованного метода.

Постановка задачи

Сравнение алгоритмов нахождения объектов на изображения

	Одноэтапная архитектура	Средняя точность (mAP ≥ 0.7 на основании датасета СОСО)	Скорость работы (FPS)
YOLO	Да	Нет	50-150
SSD	Да	Нет	25-60
Fast R-CNN	Нет	Да	≤15
Mask R-CNN	Нет	Да	≤15

Сравнение методов нахождения объектов на изображении семейства YOLO

	mAP (IoU 50-95)	Скорость (мс)	Параметры (M)	FLOPs (B)
YOLOv5n	28.0	73.6	2.6	7.7
YOLOv5m	45.4	233.9	25.1	64.2
YOLOv5x	50.7	763.2	97.2	246.4
YOLOv8n	37.3	80.4	3.2	8.7
YOLOv8m	50.2	234.7	25.9	78.9
YOLOv8x	53.9	479.1	68.2	257.8

Метод подсчета количества человек на видео

Схема алгоритма отслеживания объектов

Схема алгоритмов подсчета количества человек

Структура программного обеспечения

Выбор данных для обучения моделей

Информация о выбранных наборах данных:

- 7072 снимок;
- разрешение 640 х 640;
- угол съемки 0-30 градусов;

Набор данных разбивается на обучающую, тестовую и валидационную выборки в соотношении 82 : 12 : 6

Зависимость точности метода от уровня освещенности

$$\begin{split} & I_{\text{новый}} = \alpha \cdot I_{\text{исходный}} + \beta, \\ & \text{где: I - значение яркости} \\ & \text{пикселя,} \\ & \alpha - \text{коэффициент контрастности,} \\ & \beta - \text{смещение по яркости.} \end{split}$$

Зависимость точности метода от качества видео

Кадрразмыт = GaussianBlur(Кадрисходный, (k, k), σ), где: k — размер ядра, σ — стандартное отклонение

Зависимость времени работы метода от качества видео

Заключение

Разработан и реализован метод подсчёта количества человек на видео на основе сверточных нейронных сетей.

Все задачи решены. Цель достигнута.

Дальнейшее развитие:

- реализовать возможность создания еженедельного/ежемесячного отчета;.
- реализовать расширение метода, т.е подсчитать не только людей а другие объекты.