Ferienkurs zur Theoretischen Physik II 21. März - 24. März 2016

PHILIPP LANDGRAF, FRANZ ZIMMA

 $\ddot{\mathbf{U}} \mathbf{B} \mathbf{U} \mathbf{N} \mathbf{G} \mathbf{S} \mathbf{B} \mathbf{L} \mathbf{A} \mathbf{T} \mathbf{3}$ Elektrodynamik, Elektromagnetische Strahlung

Aufgabe 3.1: Gemischte Elektrodynamik

- (a) Ein leitender Kreisring $(x^2 + y^2 = R^2, z = 0)$ rotiert mit konstanter Winkelgeschwindigkeit um die x-Achse. Es wirkt das homogene Magnetfeld $\vec{B} = B_0 \hat{e}_z$.
 - i. Geben Sie die (rotierende) Flächennormale $\vec{n}(t)$ an.
 - ii. Berechnen Sie die Spannung U_{ind} , die im Ring induziert wird.
- (b) Berechnen Sie die Selbstinduktivität pro Längeneinheit $\frac{L}{\ell}$ von folgenden (unendlich langen und zylindersymmetrischen) Objekten.
 - i. Ein Hohlrohrleiter bestehend aus zwei (unendlich dünnen) Zylindermänteln mit Innenradius R_i und Außenradius $R_a > R_i$, bei dem der Strom I auf dem inneren Mantel hin- und auf dem äußeren Mantel zurückfließt.
 - ii. Ein Koaxialkabel, bestehend aus einem inneren, leitenden Vollzylinder vom Radius R_i und konzentrisch dazu einem leitendem Zylindermantel mit Radius R_a , bei dem der Strom I auf dem Vollzylinder hin- und auf dem Mantel zurückfließt.
- (c) Eine kreisförmigen Leiterschleife (Radius R) befinde sich in der xy-Ebene. Ein hochfrequenter Wechselstrom $\vec{j}(\vec{r},t)=\vec{j}_0\cos(\omega t)$ mit $\vec{j}_0=I_0\delta(\rho-R)\delta(z)\hat{e}_{\varphi}$ erzeugt M1-Strahlung. Die Ladungsdichte kann als verschwindend angenommen werden.
 - i. Berechnen Sie das retardierte Skalarpotential $\Phi(\vec{r},t)$ sowie Vektorpotential $\vec{A}(\vec{r},t)$ in Fernfeldnäherung.

Zur Kontrolle:

$$\vec{A}(\vec{r},t) = -\frac{\mu\omega m}{4\pi rc}\sin(\omega t - kr)\sin\theta \hat{e}_{\varphi},$$

wobei $m = |\vec{m}|$ das (statische) magnetische Dipolmoment der Leiterschleife ist.

ii. Berechnen Sie hieraus $\vec{E}(\vec{r},t)$ und $\vec{B}(\vec{r},t)$ in Fernfeldnäherung. Hinweis: Sie können die Rotation in Zylinderkoordinaten verwenden:

$$\operatorname{rot} \vec{A}(r,\theta,\varphi) = \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta} \left(A_{\varphi}\sin\theta \right) - \frac{\partial A_{\theta}}{\partial\varphi} \right] \hat{e}_{r} + \left[\frac{1}{r\sin\theta} \frac{\partial A_{r}}{\partial\varphi} - \frac{1}{r} \frac{\partial}{\partial r} \left(rA_{\varphi} \right) \right] \hat{e}_{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(rA_{\theta} \right) - \frac{\partial A_{r}}{\partial\theta} \right] \hat{e}_{\varphi} .$$

Aufgabe 3.2: Aufladen eines Plattenkondensators

Ein Plattenkondensator bestehend aus zwei parallelen kreisförmigen Platten vom Radius R wird beginnend bei t=0 aufgeladen. Das zeitabhängige elektrische Feld zwischen den Platten hat die Form $\vec{E}(\vec{r},t)=E(t)\hat{e}_z$ mit E(t)=Kt für $t\geq 0$.

- (a) Berechnen Sie das durch den Verschiebungsstrom induzierte Magnetfeld $\vec{B}(\vec{r})$ im Kondensator als Funktion des Abstandes ρ von der Symmetrieachse. Gehen Sie davon aus, dass das Magnetfeld (wie bei einem stromdurchflossen Leiter) nur eine azimuthale Komponente hat: $\vec{B}(\vec{r}) = B(\rho)\hat{e}_{\varphi}$.
- (b) Berechnen Sie den Poynting Vektor $\vec{S} = (\vec{E} \times \vec{B})/\mu_0$.
- (c) Berechnen Sie den gesamten Energiefluss J in den Kondensator hinein sowie die im Kondensator gespeicherte Feldenergie

$$\mathcal{E}_{\rm em}(t) = \int dV \left(\frac{\varepsilon_0}{2} \vec{E}^2 + \frac{1}{2\mu_0} \vec{B}^2 \right).$$

Zeigen Sie, dass

$$\frac{\mathrm{d}\mathcal{E}_{\mathrm{em}}(t)}{\mathrm{d}t} = J$$

gilt.

(d) Zeigen Sie, dass die lineare Zeitabhängigkeit E(t) = Kt für ein Aufladefeld der Form $\vec{E}(\vec{r},t) = E(t)\hat{e}_z$ als einzige mit den gekoppelten Maxwellgleichungen konsistent ist. Hinweis: Betrachten Sie die Wellengleichung für \vec{E} .

Aufgabe 3.3: Streuung an einem magnetischen Dipol.....

In großer Entfernung von einem Streukörper mit induziertem magnetischem Dipolmoment \vec{m} hat das gestreute Strahlungsfeld die Form:

$$\vec{E}_{\text{streu}}(\vec{r},t) = \frac{\mu_0 \omega^2}{4\pi r c} e^{i(kr - \omega t)} \left(\vec{m} \times \hat{e}_r \right).$$

Für einen Streukörper mit der magnetischer Polarisierbarkeit β gilt die Beziehung $\vec{m} = \beta \frac{\vec{B}_0}{\mu_0}$, wobei \vec{B}_0 der magnetische Amplitudenvektor der in z-Richtung laufenden ebenen elektromagnetischen Welle $(\vec{E}_{\rm ein}, \vec{B}_{\rm ein})$ ist.

- (a) Geben Sie den allgemeinen Ausdruck für den Wirkungsquerschnitt $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{pol}}$ in Abhängigkeit von den Polarisationen $\vec{\epsilon}_0$ und $\vec{\epsilon}$ der einfallenden und gestreuten Strahlung an und vereinfachen Sie diesen Ausdruck für das gegebene Problem.
- (b) Berechnen Sie $\frac{d\sigma}{d\Omega}$ für die Streuung unpolarisiert einfallender Strahlung. Hinweis: Die richtungsabhängige Größe ist über die Polarisationsvektoren

$$\vec{\epsilon}_{||} = \frac{\hat{e}_z - \cos\theta \hat{e}_r}{\sin\theta} \qquad \text{mit} \qquad \vec{\epsilon}_{\perp} = \frac{\hat{e}_r \times \hat{e}_z}{\sin\theta}$$

der gestreuten Strahlung zu summieren.