GigaDevice Semiconductor Inc.

GD32303B-EVAL Arm® Cortex®-M4 32-bit MCU

User Manual

Revision 2.0

(April 2022)

Table of Contents

TABLE OF CONTENTS	1
LIST OF FIGURES	4
LIST OF TABLES	5
1. SUMMARY	6
2. FUNCTION PIN ASSIGN	
3. GETTING STARTED	
4. HARDWARE LAYOUT OVERVIEW	
	_
4.1. Power	
4.2. Boot	
4.3. LED	
4.4. KEY	
4.5. USART	
4.6. ADC	
4.7. DAC	
4.8. I2S	
4.9. I2C	
4.10. SPI	
4.11. CAN	
4.12. LCD	
4.13. USBD	
4.14. Extension	-
4.15. GD-Link	
5. ROUTINE USE GUIDE	14
5.1. GPIO_Running_Led	14
5.1.1. DEMO Purpose	14
5.1.2. DEMO Running Result	14
5.2. GPIO_Key_Polling_mode	14
5.2.1. DEMO Purpose	
5.2.2. DEMO Running Result	14
5.3. GPIO_Key_Interrupt_mode	15
5.3.1. DEMO Purpose	
5.3.2. DEMO Running Result	15
5.4. USART_Printf	
5.4.1. DEMO Purpose	
5.4.2. DEMO Running Result	15
5.5. USART_Echo_Interrupt_mode	
5.5.1. DEMO Purpose	
5.5.2. DEMO Running Result	

5.6. USART_DMA	16
5.6.1. DEMO Purpose	16
5.6.2. DEMO Running Result	17
5.7. ADC_Temperature_Vrefint	17
5.7.1. DEMO Purpose	17
5.7.2. DEMO Running Result	17
5.8. ADC0_ADC1_Follow_up_mode	18
5.8.1. DEMO Purpose	18
5.8.2. DEMO Running Result	18
5.9. ADC0_ADC1_Regular_Parallel_mode	19
5.9.1. DEMO Purpose	19
5.9.2. DEMO Running Result	19
5.10. DAC_Output_Voltage_Value	20
5.10.1. DEMO Purpose	20
5.10.2. DEMO Running Result	20
5.11. I2C_EEPROM	20
5.11.1. DEMO Purpose	20
5.11.2. DEMO Running Result	20
5.12. SPI_SPI_Flash	21
5.12.1. DEMO Purpose	21
5.12.2. DEMO Running Result	21
5.13. I2S_Audio_Player	22
5.13.1. DEMO Purpose	22
5.13.2. DEMO Running Result	23
5.14. EXMC_TouchScreen	23
5.14.1. DEMO Purpose	23
5.14.2. DEMO Running Result	23
5.15. CAN_Network	24
5.15.1. DEMO Purpose	24
5.15.2. DEMO Running Result	24
5.16. RCU_Clock_Out	24
5.16.1. DEMO Purpose	24
5.16.2. DEMO Running Result	24
5.17. CTC_Calibration	25
5.17.1. DEMO Purpose	25
5.17.2. DEMO Running Result	25
5.18. PMU_sleep_wakeup	25
5.18.1. DEMO Purpose	25
5.18.2. DEMO Running Result	25
5.19. RTC_Calendar	26
5.19.1. DEMO Purpose	26
5.19.2. DEMO Running Result	26
5.20. TIMER_Breath_LED	26
5.20.1. DEMO Purpose	26

GigaDevice	User Guide GD32303B-EVAL
5.20.2. DEMO Running Result	
5.21. USBD_Keyboard	
5.21.1. DEMO_Purpose	27
5.21.2. DEMO Running Result	27
6. REVISION HISTORY	28

List of Figures

Figure 4-1. Schematic diagram of power supply	8
Figure 4-2. Schematic diagram of boot option	8
Figure 4-3. Schematic diagram of LED function	9
Figure 4-4. Schematic diagram of Key function	9
Figure 4-5. Schematic diagram of USART function	10
Figure 4-6. Schematic diagram of ADC function	10
Figure 4-7. Schematic diagram of DAC function	10
Figure 4-8. Schematic diagram of I2S function	11
Figure 4-9. Schematic diagram of I2C function	11
Figure 4-10. Schematic diagram of SPI function	11
Figure 4-11. Schematic diagram of CAN function	12
Figure 4-12.Schematic diagram of LCD function	12
Figure 4-13. Schematic diagram of USBFS function	
Figure 4-14. Schematic diagram of Extension Pin	13
Figure 4-15. Schematic diagram of GD-Link	13

List of Tables

Table 2-1. Function pin assign	6
Table 6-1. Revision history	. 28

1. Summary

GD32303B-EVAL uses GD32F303VBT6 as the main controller. It uses Mini USB interface or DC-005 connector to supply 5V power. SWD, Reset, Boot, User button key, LED, CAN, I2C, I2S, USART, RTC, LCD, SPI, ADC, DAC, EXMC, CTC, SDIO, USBD, GD-Link and Extension Pins are also included. For more details please refer to GD32303B-EVAL-V1.0 schematic.

2. Function Pin Assign

Table 2-1. Function pin assign

Function	Pin	Description
156	PC0	LED1
	PC2	LED2
LED	PE0	LED3
	PE1	LED4
RESET		K1-Reset
	PA0	KEY_A
	PC13	KEY_B
KEY	PB14	KEY_C
	PC5	KEY_D
	PC4	KEY_Cet
LICARTO	PA9	USART0_TX
USART0	PA10	USART0_RX
ADC	PC3	ADC012_IN13
DAG	PA4	DAC_OUT0
DAC	PA5	DAC_OUT1
100	PB6	I2C0_SCL
I2C	PB7	I2C0_SDA
	PA5	SPI0_SCK
CDI	PA6	SPI0_MISO
SPI	PA7	SPI0_MOSI
	PE3	SPI0_CS
	PB12	I2S_WS
100	PB13	12S_CK
I2S	PB15	I2S_DIN
	PC6	I2S_MCK
CAN	PD0	CAN0_RX
CAN	PD1	CAN0_TX
	PD14	EXMC_D0
LCD	PD15	EXMC_D1
	PD0	EXMC_D2

		OD02000D E 17 (E
	PD1	EXMC_D3
	PE7	EXMC_D4
	PE8	EXMC_D5
	PE9	EXMC_D6
	PE10	EXMC_D7
	PE11	EXMC_D8
	PE12	EXMC_D9
	PE13	EXMC_D10
	PE14	EXMC_D11
	PE15	EXMC_D12
	PD8	EXMC_D13
	PD9	EXMC_D14
	PD10	EXMC_D15
	PE2	EXMC_A23
	PD4	EXMC_NOE
	PD5	EXMC_NWE
	PD7	EXMC_NE0
	PA11	USB_DM
USBD	PA12	USB_DP
	PD13	USB_ID

3. Getting started

The EVAL board uses Mini USB connecter or DC-005 connector to get power DC +5V, which is the hardware system normal work voltage. A J-Link tool or GD-Link on board is necessary in order to download and debug programs. Select the correct boot mode and then power on, the LEDPWR will turn on, which indicates that the power supply is OK.

There are Keil version and IAR version of all projects. Keil version of the projects are created based on Keil MDK-ARM 4.74 uVision4. IAR version of the projects are created based on IAR Embedded Workbench for ARM 7.40.2. During use, the following points should be noted:

- 1. If you use Keil uVision4 to open the project, install the GigaDevice.GD32F30x_Add On.2.1.0.exe to load the associated files.
- 2. If you use Keil uVision5 to open the project, there are two ways to solve the "Device Missing (s)" problem. One is to install \GD32F30x_AddOn\Keil\Keil5\GigaDevice.GD 32F30x_DFP.2.2.0.pack. In Project menu, select the Manage sub menu, click on the "Version Migrate 5 Format..." menu, the Keil uVision4 project will be converted to Keil uVision5 project. Then add "C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target. The other is to install Addon directly. Select the installation directory of Keil uVision5 software, such as C:\Keil_v5, in Destination Folder of Fold er Selection. Select the corresponding device in Device of Option for Target and add "C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target.

3. If you use IAR to open the project, install IAR_GD32F30x_ADDON.2.1.0.exe to loa d the associated files.

4. Hardware layout overview

4.1. Power

Figure 4-1. Schematic diagram of power supply

4.2. **Boot**

Figure 4-2. Schematic diagram of boot option

4.3. LED

Figure 4-3. Schematic diagram of LED function

4.4. KEY

Figure 4-4. Schematic diagram of Key function

4.5. USART

Figure 4-5. Schematic diagram of USART function

4.6. ADC

Figure 4-6. Schematic diagram of ADC function

4.7. DAC

Figure 4-7. Schematic diagram of DAC function

4.8. I2S

Figure 4-8. Schematic diagram of I2S function

4.9. I2C

Figure 4-9. Schematic diagram of I2C function

4.10. SPI

Figure 4-10. Schematic diagram of SPI function

4.11. CAN

Figure 4-11. Schematic diagram of CAN function

4.12. LCD

Figure 4-12.Schematic diagram of LCD function

4.13. USBD

Figure 4-13. Schematic diagram of USBFS function

4.14. Extension

Figure 4-14. Schematic diagram of Extension Pin

4.15. **GD-Link**

Figure 4-15. Schematic diagram of GD-Link

5. Routine use guide

5.1. **GPIO_Running_Led**

5.1.1. **DEMO Purpose**

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use SysTick to generate 1ms delay

GD32303B-EVAL board has four LEDs. The LED1, LED2, LED3 and LED4 are controlled by GPIO. This demo will show how to light the LEDs.

5.1.2. **DEMO Running Result**

Download the program <01_GPIO_Running_Led> to the EVAL board, LED1,LED2, LED3, LED4 will turn on in sequence with interval of 200ms, and turn off together, 200ms later, repeat the process.

5.2. **GPIO_Key_Polling_mode**

5.2.1. **DEMO Purpose**

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use SysTick to generate 1ms delay

GD32303B-EVAL board has five keys and four LEDs. The five keys are key A, key B, key C, key D and key Cet. The LED1, LED2, LED3 and LED4 are controlled by GPIO.

This demo will show how to use the key A to control the LED2. When press down the key A, it will check the input value of the IO port. If the value is 0 and will wait for 50ms. Check the input value of the IO port again. If the value still is 0, it indicates that the button is pressed successfully and toggle LED2.

5.2.2. **DEMO Running Result**

Download the program <02_GPIO_Key_Polling_mode> to the EVAL board, press down the Key A, LED2 will be turned on. Press down the Key A again, LED2 will be turned off.

5.3. EXTI_Key_Interrupt_mode

5.3.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use EXTI to generate external interrupt

GD32303B-EVAL board has five keys and four LEDs. The five keys are key A, key B, key C, key D and key Cet. The LED1, LED2, LED3 and LED4 are controlled by GPIO.

This demo will show how to use the EXTI interrupt line to control the LED2. When press down the Key A, it will produce an interrupt. In the interrupt service function, the demo will toggle LED2.

5.3.2. DEMO Running Result

Download the program <03_EXTI_KeyBoard_Interrupt_mode> to the EVAL board, press down the Key A, LED2 will be turned on. Press down the Key A again, LED2 will be turned off.

5.4. USART Printf

5.4.1. **DEMO Purpose**

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to retarget the C library printf function to the USART

5.4.2. DEMO Running Result

Download the program < 04_USART_Printf > to the EVAL board, connect serial cable to EVAL_COM0. Firstly, all the LEDs are turned on and off, HyperTerminal outputs "USART printf example: please press the KEY_B" on the HyperTerminal using EVAL_COM0. Press the KEY_B, serial port will output "USART printf example" and LED2 is turned on, otherwise, LED2 turn off.

The output information via the serial port is as following.

USART printf example: please press the KEY_B
USART printf example

5.5. USART_Echo_Interrupt_mode

5.5.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the USART transmit and receive interrupts to communicate with the serial terminal tool

5.5.2. DEMO Running Result

Download the program < 05_USART_Echo_Interrupt_mode > to the EVAL board, connect serial cable to EVAL_COM0. Firstly, all the LEDs are turned on and off for test. Then, the EVAL_COM0 sends the tx_buffer array (from 0x00 to 0xFF) to the serial terminal tool supporting hex format communication and waits for receiving data of BUFFER_SIZE bytes from the serial terminal. The data MCU has received is stored in the rx_buffer array. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED1, LED2, LED3, LED4 flash by turns. Otherwise, LED1, LED2, LED3, LED4 toggle together.

The output information via the serial port is as following.

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
```

5.6. USART_DMA

5.6.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use the USART transmit and receive data using DMA

5.6.2. DEMO Running Result

Download the program < 06_USART_DMA > to the EVAL board, connect serial cable to EVAL_COM0. Firstly, all the LEDs are turned on and off for test. Then, the EVAL_COM0 sends the tx_buffer array (from 0x00 to 0xFF) to the serial terminal tool supporting hex format communication and waits for receiving data of same bytes as tx_buffer from the serial terminal. The data MCU have received is stored in the rx_buffer array. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED1, LED2, LED3, LED4 flash by turns. Otherwise, LED1, LED2 LED3, LED4 toggle together.

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
                                  26 27
                                        28
                                            29
                                               2A 2B
                                                      2C
                                                         2D
   39 3A 3B 3C 3D 3E 3F 4O 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50
          57 58 59 5A 5B 5C
73 74 75 76 77 78
                              5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B
                           78
   8D 8E 8F 90 91 92 93 94 95 96 97
                                        98 99 9A 9B 9C 9D 9E 9F AO A1 A2
   A9 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
   C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB
FC FD FE FF
```

5.7. ADC_Temperature_Vrefint

5.7.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to get the value of inner channel 16 (temperature sensor channel) and channel 17 (VREFINT channel)

5.7.2. DEMO Running Result

Download the program <07_ADC_Temperature_Vrefint> to the GD32303B-EVAL-V1.0 board. Connect serial cable to EVAL_COM0, open the HyperTerminal.

When the program is running, HyperTerminal display the value of temperature and internal voltage reference (VREFINT).

Notice: Because there is an offset, when inner temperature sensor is used to detect accurate temperature, an external temperature sensor part should be used to calibrate the offset error.


```
the temperature data is 20 degrees Celsius the reference voltage data is 1.206V

the temperature data is 20 degrees Celsius the reference voltage data is 1.205V

the temperature data is 20 degrees Celsius the reference voltage data is 1.205V

the temperature data is 20 degrees Celsius the reference voltage data is 1.204V

the temperature data is 20 degrees Celsius the reference voltage data is 1.209V

the temperature data is 20 degrees Celsius the reference voltage data is 1.203V

the temperature data is 20 degrees Celsius the reference voltage data is 1.203V
```

5.8. ADC0_ADC1_Follow_up_mode

5.8.1. **DEMO Purpose**

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to use ADC0 and ADC1 follow-up mode

5.8.2. **DEMO Running Result**

Download the program <08_ADC0_ADC1_Follow_up_mode> to the GD32303B-EVAL-V1.0 board. Connect serial cable to EVAL_COM0, open the HyperTerminal. PC3 and PC5 pin voltage access by external voltage.

TIMER0_CH0 is the trigger source of ADC0 and ADC1. When the rising edge of TIMER0_CH0 coming, ADC1 starts immediately and ADC0 starts after a delay of several ADC clock cycles. The values of ADC0 and ADC1 are transmitted to array adc_value[0] and adc_value[1] by DMA.

When sampling the first channel of ADCx (x=0,1), the value of the ADC1 conversion of PC5 pin is stored into the high half word of adc_value[0], and after a delay of several ADC clock cycles the value of the ADC0 conversion of PC3 pin is stored into the low half word of adc_value[0]. When sampling the second channel of ADCx (x=0,1), the value of the ADC1 conversion of PC3 pin is stored into the high half word of adc_value[1], and after a delay of several ADC clock cycles the value of the ADC0 conversion of PC5 pin is stored into the low word of adc_value[1].

When the program is running, HyperTerminal display the regular value of ADC0 and ADC1 by adc_value[0] and adc_value[1].


```
the data adc_value[0] is OFFF08AF
the data adc_value[1] is O8B2OFFF

the data adc_value[0] is OFFF08BO
the data adc_value[1] is O8AEOFFF

the data adc_value[0] is OFFF08BO
the data adc_value[1] is O8AEOFFF

the data adc_value[0] is OFFF08AF
the data adc_value[1] is O8AFOFFF

the data adc_value[1] is O8BOOFFF

the data adc_value[0] is OFFF08BO
the data adc_value[1] is O8BOOFFF
```

5.9. ADC0_ADC1_Regular_Parallel_mode

5.9.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to use ADC0 and ADC1 regular parallel mode

5.9.2. DEMO Running Result

Download the program <09_ADC0_ADC1_Regular_Parallel_mode> to the GD32303B-EVAL-V1.0 board. Connect serial cable to EVAL_COM0, open the HyperTerminal. PC3 and PC5 pin connect to external voltage input.

TIMER0_CH0 is the trigger source of ADC0 and ADC1. When the rising edge of TIMER0_CH0 coming, ADC0 and ADC1 convert the regular channel group parallelly. The values of ADC0 and ADC1 are transmitted to array adc_value[0] and adc_value[1] by DMA.

When sampling the first channel of ADCx (x=0,1), the value of the ADC0 conversion of PC3 pin is stored into the low half word of adc_value[0], the value of the ADC1 conversion of PC5 pin is stored into the high half word of adc_value[0]. When sampling the second channel of ADCx (x=0,1), the value of the ADC0 conversion of PC5 pin is stored into the low half word of adc_value[1], the value of the ADC1 conversion of PC3 pin is stored into the high half word of adc_value[1].

When the program is running, HyperTerminal displays the regular value of ADC0 and ADC1 stored in adc_value[0] and adc_value[1].


```
the data adc_value[0] is OFFFO8AD
the data adc_value[1] is O8AOOFFF

the data adc_value[0] is OFFFO8AD
the data adc_value[1] is O8A2OFFF

the data adc_value[0] is OFFFO8AE
the data adc_value[1] is O8AOOFFF

the data adc_value[1] is O8FFO8AE
the data adc_value[1] is O8FFO8AE
the data adc_value[1] is O8FFO8AE
the data adc_value[1] is O8FFFO8AE
the data adc_value[1] is O8FFFO8AD
the data adc_value[1] is O8FFFO8AD
the data adc_value[1] is O8AOOFFF
```

5.10. DAC_Output_Voltage_Value

5.10.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use DAC to output voltage on DAC0 output

5.10.2. DEMO Running Result

Download the program <10_DAC_Output_Voltage_Value> to the GD32303B-EVAL-V1.0 board and run, all the LEDs will turn on and turn off for test. The digital value is 0x7FF0, its converted analog voltage should be 1.65V (VREF/2), using the voltmeter to measure PA4 or DA0 on JP7, its value is 1.65V.

5.11. I2C_EEPROM

5.11.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the master transmitting mode of I2C module
- Learn to use the master receiving mode of I2C module
- Learn to read and write the EEPROM with I2C interface

5.11.2. DEMO Running Result

Download the program <11_I2C_EEPROM> to the EVAL board and run. Connect serial cable to COM0, and open the HyperTerminal to show the print message.

Firstly, the data of 256 bytes will be written to the EEPROM from the address 0x00 and printed by the serial port. Then, reading the EEPROM from address 0x00 for 256 bytes and the result will be printed. Finally, compare the data that were written to the EEPROM and the data that were read from the EEPROM. If they are the same, the serial port will output "I2C-AT24C02 test passed!" and the four LEDs lights flashing, otherwise the serial port will output "Err: data read and write aren't matching." and all the four LEDs light.

The output information via the serial port is as following.

```
I2C-24C02 configured.
The I2C0 is hardware
The speed is 400000
AT24C02 writing...
0x00 0x01 0x02 0x03 0
                                  interface
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C
                                                                                                       0x3D 0x3E 0x3E
        0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48
                                                                        Ox49 Ox4A Ox4B Ox4C
                                                                                                       0x4D
                                                                                                               0x4E
0×50 0×51 0×52 0×53 0×54 0×55 0×56 0×57 0×58 0×59 0×54 0×58 0×50
                                                                                                       0x50.0x5E
        0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C
                                                                                                       0x7D 0x7E 0x7E
        0x81 0x82 0x83 0x84
                                        0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C
                                                                                                       Ox9D Ox9E Ox9F
0xA0 0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC
0xB0 0xB1 0xB2 0xB3 0xB4 0xB5 0xB6 0xB7 0xB8 0xB9 0xBA 0xBB 0xBC
                                                                                                       OxBD OxBE
                                                                                                                       0xBB
0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 0xC8 0xC9 0xCA 0xCB 0xCC 0xD0 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 0xD7 0xD8 0xD9 0xDA 0xDB 0xDC
                                                                                                       OxCD OxCE OxCF
OxDD OxDE OxDF
OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7 OxE8 OxE9 OxEA OxEB OxEC
                                                                                                       OWED OWER OWER
  xFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFF
 AT24CO2 reading
ATZ4UUZ reading...
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C
                                                                                                       0x4D 0x4E 0x4F
0x5D 0x5E 0x5F
0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C
                                                                                                       Ox6D Ox6E Ox6F
Ox7D Ox7E Ox7F
0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C
                                                                                                       Ox8D Ox8E Ox8E
OxBO OxB1 OxB2 OxB3 OxB4 OxB5 OxB6 OxB7 OxB8 OxB9 OxBA OxBB
        0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 0xC8 0xC9 0xCA 0xCB 0xCC
                                                                                                       OxCD OxCE OxCE
0xD0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xT7 0xE8 0xE9 0xE4 0xEC 0xED 0xED 0xDE 0xTF 0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xE7 0xE8 0xE9 0xEA 0xE8 0xEC 0xED 0xED 0xEE 0xEF 0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB 0xEC 0xED 0xEE 0xEF
Oxfo Oxf1 Oxf2 Oxf3 Oxf4 Oxf5 Oxf6 Oxf7 Oxf8 Oxf9 OxfA OxfB OxfC OxfD OxfE OxfF
I2C-AT24C02 test passed!
```

5.12. SPI_SPI_Flash

5.12.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the master mode of SPI unit to read and write NOR Flash with the SPI interface

5.12.2. DEMO Running Result

The computer serial port line connected to the COM0 port of development board, set the baud rate of HyperTerminal software to 115200, 8 bits data bit, 1 bit stop bit. At the same time you should jump the JP12 to SPI0.

Download the program <12_SPI_SPI_Flash> to the EVAL board, the HyperTerminal software can observe the operation condition and will display the ID of the flash, 256 bytes data which are written to and read from flash. Compare the data that were written to the flash and the

data that were read from the flash. If they are the same, the serial port will output "SPI-GD25Q16 Test Passed!", otherwise, the serial port will output "Err: Data Read and Write aren't Matching.". At last, turn on and off the leds one by one. The following is the experimental results.

```
GD32303B-EVAL-V1.0.System.is.Starting.up...
GD32303B-EVAL-V1.0.Flash:128K
GD32303B-EVAL-V1.0.The.CPU.Unique.Device.ID:[38353734-13735-200080]
GD32303B-EVAL-V1.0.SPI.Flash:GD25Q16.configured...
The · Flash ID: 0xC84015
Write to tx buffer:
0x00 · 0x01 · 0x02 · 0x03 · 0x04 · 0x05 · 0x06 · 0x07 · 0x08 · 0x09 · 0x0A · 0x0B · 0x0C · 0x0D · 0x0E · 0x0F ·
0 \times 10 \cdot 0 \times 11 \cdot 0 \times 12 \cdot 0 \times 13 \cdot 0 \times 14 \cdot 0 \times 15 \cdot 0 \times 16 \cdot 0 \times 17 \cdot 0 \times 18 \cdot 0 \times 19 \cdot 0 \times 18 \cdot 0 \times 16 \cdot 0 \times 16 \cdot 0 \times 17 \cdot 0 \times 18 \cdot 0
0x20 · 0x21 · 0x22 · 0x23 · 0x24 · 0x25 · 0x26 · 0x27 · 0x28 · 0x29 · 0x2A · 0x2B · 0x2C · 0x2D · 0x2E · 0x2F ·
0x30 · 0x31 · 0x32 · 0x33 · 0x34 · 0x35 · 0x36 · 0x37 · 0x38 · 0x39 · 0x3A · 0x3B · 0x3C · 0x3D · 0x3E · 0x3F ·
0x40.0x41.0x42.0x43.0x44.0x45.0x46.0x47.0x48.0x49.0x4A.0x4B.0x4C.0x4D.0x4E.0x4F.
0x50 · 0x51 · 0x52 · 0x53 · 0x54 · 0x55 · 0x56 · 0x57 · 0x58 · 0x59 · 0x5A · 0x5B · 0x5C · 0x5D · 0x5E · 0x5F ·
0x60 · 0x61 · 0x62 · 0x63 · 0x64 · 0x65 · 0x66 · 0x67 · 0x68 · 0x69 · 0x6A · 0x6B · 0x6C · 0x6D · 0x6E · 0x6F ·
0x70 · 0x71 · 0x72 · 0x73 · 0x74 · 0x75 · 0x76 · 0x77 · 0x78 · 0x79 · 0x7A · 0x7B · 0x7C · 0x7D · 0x7E · 0x7F
0x80 · 0x81 · 0x82 · 0x83 · 0x84 · 0x85 · 0x86 · 0x87 · 0x88 · 0x89 · 0x8A · 0x8B · 0x8C · 0x8D · 0x8E · 0x8F ·
0x90.0x91.0x92.0x93.0x94.0x95.0x96.0x97.0x98.0x99.0x9A.0x9B.0x9C.0x9D.0x9E.0x9F
0xA0 · 0xA1 · 0xA2 · 0xA3 · 0xA4 · 0xA5 · 0xA6 · 0xA7 · 0xA8 · 0xA9 · 0xAA · 0xAB · 0xAC · 0xAD · 0xAE · 0xAF ·
0xB0 · 0xB1 · 0xB2 · 0xB3 · 0xB4 · 0xB5 · 0xB6 · 0xB7 · 0xB8 · 0xB9 · 0xBA · 0xBB · 0xBC · 0xBD · 0xBE · 0xBF ·
0xC0 · 0xC1 · 0xC2 · 0xC3 · 0xC4 · 0xC5 · 0xC6 · 0xC7 · 0xC8 · 0xC9 · 0xCA · 0xCB · 0xCC · 0xCD · 0xCE · 0xCF ·
0xD0 · 0xD1 · 0xD2 · 0xD3 · 0xD4 · 0xD5 · 0xD6 · 0xD7 · 0xD8 · 0xD9 · 0xDA · 0xDB · 0xDC · 0xDD · 0xDE · 0xDF ·
0xE0.0xE1.0xE2.0xE3.0xE4.0xE5.0xE6.0xE7.0xE8.0xE9.0xEA.0xEB.0xEC.0xED.0xEE.0xEF.
0xF0.0xF1.0xF2.0xF3.0xF4.0xF5.0xF6.0xF7.0xF8.0xF9.0xFA.0xFB.0xFC.0xFD.0xFE.0xFF.
Read from rx buffer:
0x00 · 0x01 · 0x02 · 0x03 · 0x04 · 0x05 · 0x06 · 0x07 · 0x08 · 0x09 · 0x0A · 0x0B · 0x0C · 0x0D · 0x0E · 0x0F ·
0x10 · 0x11 · 0x12 · 0x13 · 0x14 · 0x15 · 0x16 · 0x17 · 0x18 · 0x19 · 0x1A · 0x1B · 0x1C · 0x1D · 0x1E · 0x1F ·
0x20.0x21.0x22.0x23.0x24.0x25.0x26.0x27.0x28.0x29.0x2A.0x2B.0x2C.0x2D.0x2E.0x2F.
0x30 · 0x31 · 0x32 · 0x33 · 0x34 · 0x35 · 0x36 · 0x37 · 0x38 · 0x39 · 0x3A · 0x3B · 0x3C · 0x3D · 0x3E · 0x3F ·
0x40 · 0x41 · 0x42 · 0x43 · 0x44 · 0x45 · 0x46 · 0x47 · 0x48 · 0x49 · 0x4A · 0x4B · 0x4C · 0x4D · 0x4E · 0x4F ·
0x50 · 0x51 · 0x52 · 0x53 · 0x54 · 0x55 · 0x56 · 0x57 · 0x58 · 0x59 · 0x5A · 0x5B · 0x5C · 0x5D · 0x5E · 0x5F
0x60 · 0x61 · 0x62 · 0x63 · 0x64 · 0x65 · 0x66 · 0x67 · 0x68 · 0x69 · 0x6A · 0x6B · 0x6C · 0x6D · 0x6E · 0x6F ·
0x70 · 0x71 · 0x72 · 0x73 · 0x74 · 0x75 · 0x76 · 0x77 · 0x78 · 0x79 · 0x7A · 0x7B · 0x7C · 0x7D · 0x7E · 0x7F ·
0x80 · 0x81 · 0x82 · 0x83 · 0x84 · 0x85 · 0x86 · 0x87 · 0x88 · 0x89 · 0x8A · 0x8B · 0x8C · 0x8D · 0x8E · 0x8F ·
0x90.0x91.0x92.0x93.0x94.0x95.0x96.0x97.0x98.0x99.0x9A.0x9B.0x9C.0x9D.0x9E.0x9F.
0xA0 · 0xA1 · 0xA2 · 0xA3 · 0xA4 · 0xA5 · 0xA6 · 0xA7 · 0xA8 · 0xA9 · 0xAA · 0xAB · 0xAC · 0xAD · 0xAE · 0xAF ·
0xB0 · 0xB1 · 0xB2 · 0xB3 · 0xB4 · 0xB5 · 0xB6 · 0xB7 · 0xB8 · 0xB9 · 0xBA · 0xBB · 0xBC · 0xBD · 0xBE · 0xBF ·
0xC0 · 0xC1 · 0xC2 · 0xC3 · 0xC4 · 0xC5 · 0xC6 · 0xC7 · 0xC8 · 0xC9 · 0xCA · 0xCB · 0xCC · 0xCD · 0xCE · 0xCF ·
0xD0 · 0xD1 · 0xD2 · 0xD3 · 0xD4 · 0xD5 · 0xD6 · 0xD7 · 0xD8 · 0xD9 · 0xDA · 0xDB · 0xDC · 0xDD · 0xDE · 0xDF ·
0xE0 · 0xE1 · 0xE2 · 0xE3 · 0xE4 · 0xE5 · 0xE6 · 0xE7 · 0xE8 · 0xE9 · 0xEA · 0xEB · 0xEC · 0xED · 0xEE · 0xEF
0xF0.0xF1.0xF2.0xF3.0xF4.0xF5.0xF6.0xF7.0xF8.0xF9.0xFA.0xFB.0xFC.0xFD.0xFE.0xFF.
SPI-GD25Q16 · Test · Passed!
```

5.13. I2S_Audio_Player

5.13.1. DEMO Purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use I2S module to output audio file
- Parsing audio files of wav format

GD32303B-EVAL board integrates the I2S (Inter-IC Sound) module, and the module can communicate with external devices using the I2S audio protocol. This Demo mainly shows how to use the I2S interface of the board for audio output.

5.13.2. DEMO Running Result

Download the program<13_I2S_Audio_Player>to the EVAL board, insert the headphone into the audio port, and then listen to the audio file.

5.14. EXMC_TouchScreen

5.14.1. DEMO Purpose

This demo includes the following function of GD32 MCU:

■ Learn to use EXMC control LCD

5.14.2. DEMO Running Result

GD32F303B-EVAL board has EXMC module to control LCD. Before running the demo, JP12 must be fitted to the SPI port, JP13 and JP14 must be fitted to the EXMC port. Download the program <14_EXMC_TouchScreen> to the EVAL board. This demo displays GigaDevice logo and four green buttons on the LCD screen by EXMC module. Users can touch the green button to turn on the corresponding LED on board, and then the color of button user had touched will change to red.

5.15. CAN Network

5.15.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the CAN0 communication between two boards

GD32303B-EVAL development board integrates the CAN(Controller Area Network) bus controller, which is a common industrial control bus. CAN bus controller follows the CAN bus protocol of 2.0 A and 2.0 B. This demo mainly shows how to communicate two EVAL boards through CAN0.

5.15.2. DEMO Running Result

This example is tested with two GD32303B-EVAL boards. Jump the JP13, JP4 to CAN with the jumper cap. Connect L pin to L pin and H pin to H pin of JP14 on the boards for sending and receiving frames. Download the program <15_CAN_Network> to the two EVAL boards, and connect serial cable to EVAL_COM0. Firstly, the EVAL_COM0 sends "please press the A key to transmit data!" to the HyperTerminal. The frames are sent and the transmit data are printed by pressing A Key push button. When the frames are received, the receive data will be printed and the LED2 will toggle one time.

The output information via the serial port is as following.

```
please press the A key to transmit data!
CANO transmit data: ab,cd
CANO recive data: 11,22
```

5.16. RCU Clock Out

5.16.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED.
- Learn to use the clock output function of RCU.
- Learn to communicate with PC by USART.

5.16.2. **DEMO Running Result**

Download the program <16_RCU_Clock_Out> to the EVAL board and run. Connect serial cable to EVAL_COM0, open the HyperTerminal. When the program is running, HyperTerminal

will display the initial information. Then user can choose the type of the output clock by pressing the KEY_B button. After pressing, the corresponding LED will be turned on and HyperTerminal will display which mode be selected. The frequency of the output clock can be observed through the oscilloscope by PA8 pin.

Information via a serial port output as following:

5.17. CTC_Calibration

5.17.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use external low speed crystal oscillator (LXTAL) to implement the CTC calibration function.
- Learn to use clock trim controller (CTC) to trim internal 48MHz RC oscillator (IRC48M) clock.

The CTC unit trim the frequency of the IRC48M based on an external accurate reference signal source. It can automatically adjust the trim value to provide a precise IRC48M clock.

5.17.2. DEMO Running Result

Download the program <17_CTC_Calibration> to the EVAL board and run. Firstly, all the LEDs flash once for test. Then if the clock trim is OK, LED2 will be on. Otherwise, all the LEDs are turned off.

5.18. PMU_sleep_wakeup

5.18.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the USART receive interrupt to wake up the PMU from sleep mode

5.18.2. DEMO Running Result

Download the program <18_PMU_sleep_wakeup> to the EVAL board, connect serial cable to COM0. After power-on, all the LEDs are off. The mcu will enter sleep mode and the software

stop running. When the USART0 receives a byte of data from the HyperTerminal, the mcu will wake up from a receive interrupt. And all the LEDs will flash together.

5.19. RTC_Calendar

5.19.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use RTC module to implement calendar and alarm function
- Learn to use USART module to implement time display

5.19.2. DEMO Running Result

Download the program <21_RTC_Calendar> to the EVAL board and run. Connect serial cable to EVAL_COM0, open the HyperTerminal. After start-up, the program will ask to set the time on the HyperTerminal. The calendar will be displayed on the HyperTerminal. At the same time, set current time add 10 second as alarm time. After 10 second, the alarm note will be displayed on the HyperTerminal and turn on LEDs.

```
-----Time Settings-----
Please Set Hours: 23
Please Set Minutes: 23
Please Set Seconds: 23
Set Alarm Time: 23:23:33
Time: 23:23:23
Time: 23:23:23
Time: 23:23:24
Time: 23:23:25
Time: 23:23:26
Time: 23:23:27
Time: 23:23:28
Time: 23:23:29
Time: 23:23:30
Time: 23:23:31
Time: 23:23:32
     =======RTC Alarm and turn on LED=================
Time: 23:23:33
```

5.20. TIMER_Breath_LED

5.20.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use Timer output PWM wave
- Learn to update channel value

5.20.2. DEMO Running Result

Use the DuPont line to connect the TIMER0 CH0 (PA8) and LED1 (PC0), and then download

the program <20_TIMER_Breath_LED> to the GD32303B-EVAL-V1.0 board and run. PA8 should not be reused by other peripherals.

When the program is running, you can see LED1 lighting from dark to bright gradually and then gradually darken, ad infinitum, just like breathing as rhythm.

5.21. USBD_Keyboard

5.21.1. DEMO_Purpose

This demo includes the following functions of GD32 MCU:

- Learn how to use the USBD peripheral
- Learn how to implement USB HID(human interface) device

GD32303B-EVAL board has six keys and one USBD interface. The six keys are A key, B key, C key, D key and CET key and reset key. In this demo, the GD32303B-EVAL board is enumerated as an USB Keyboard, which uses the native PC Host HID driver, as shown below. The USB Keyboard uses three keys (A key, B key and C key) to output three characters ('a', 'b' and 'c'). In addition, the demo also supports remote wakeup which is the ability of a USB device to bring a suspended bus back to the active condition, and the A key is used as the remote wakeup source.

5.21.2. DEMO Running Result

Download the program <21_USBD_Keyboard> to the EVAL board and run. If you press the A key, will output 'a'. If you press the B key, will output 'b'. If you press the C key, will output 'c'.

If you want to test USB remote wakeup function, you can do as follows:

- Manually switch PC to standby mode
- Wait for PC to fully enter the standby mode
- Push the A key
- If PC is ON, remote wakeup is OK, else failed.

6. Revision history

Table 6-1. Revision history

Revision No.	Description	Date
2.0	Initial Release	April. 16, 2022

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice - All rights reserved