

Contents

Ι	笔记		5
1	复数	ngasta tangga tangg nga ga g	7
	1.1	复数域	7
		1.1.1 直线、圆的方程	7
	1.2	复平面的拓扑	8
		1.2.1 复数域的完备性定理与极限理论	8
		1.2.2 Euler 公式	8
		1.2.3 复数域上的点集拓扑概念	9
		1.2.4 曲线和连通	9
		1.2.5 单连通	10
	1.3	复函数	10
		1.3.1 复值函数及其极限	10
		1.3.2 复值函数连续性质	10
		1.3.3 复值函数的偏导和微分	11
		1.3.4 切映射	12
	1.4	扩充复平面 (Riemann 球面)	14
2	解析	函数 ····································	17
	2.1		17
	2.2	Cauchy-Riemann 方程	18
		。 2.2.1 解析函数的充要条件	
		2.2.2 C-R 方程解的存在性	20
	2.3	导数的几何意义	21
		2.3.1 导数和 Jacobi 行列式关系	22
		2.3.2 保向变换和保角变换	

	2.4	幂级数	女		24						
		2.4.1	幂级数及其收敛性质		24						
		2.4.2	幂级数和解析函数		26						
		2.4.3	幂级数的计算和表示		27						
	2.5	多值函	函数与反函数		29						
		2.5.1	多值函数和单值解析分支		29						
		2.5.2	单值解析分支存在性和关系		29						
		2.5.3	Riemann 曲面和反函数		30						
	2.6	分式线	浅性变换		32						
		2.6.1	分式线性变换群与矩阵表示		32						
		2.6.2	分式线性变换的决定和分解		33						
		2.6.3	分式线性变换性质		34						
		2.6.4	常用分式线性变换		35						
3	Cauchy 定理和 Cauchy 公式 37										
	3.1	路径积	只分		37						
	3.2	Canala	/→ т Ш		39						
	0.2	Cauch	y 定理		00						
	3.3		ny		42						
II	3.3		ny 公式	•							
	3.3 课	Cauch	v ny 公式	•	42						
	3.3 课	Cauch 本 习 是 和复函	v ny 公式	•	42 47						
	3.3 课 复数 1.1	本 习 是 和复函 例题	wy 公式		42 47 49						
III 1	3.3 课 复数 1.1 1.2	本 习 是 和复函 例题	wy 公式		42 47 49						
1	3.3 课 复数 1.1 1.2	Cauch 本 习 題 和 例 习 函 函数	wy 公式		42 47 49 49						

Part I

笔记

Chapter 1

复数和复函数

- 1. 复数域
- 2. 复平面的拓扑
- 3. 复函数
- 4. 扩充复平面 (Riemann 球面)

1.1 复数域

• 直线、圆的方程

1.1.1 直线、圆的方程

用复数方程来表示复平面上的图形的基本思路如下: 在 xy 平面上写出图形的方程, 然后利用

$$x = \frac{z + \bar{z}}{2} \quad y = \frac{z - \bar{z}}{2i}$$

代入,得到关于 z,\bar{z} 的复数方程.

命题 1.1.1. 由上面的方法,复平面上直线方程可以表示为

$$\overline{B}z + B\overline{z} + c = 0$$

反之,任给 $B \in \mathbb{C}, c \in \mathbb{R}, B \neq 0$,则 $\overline{B}z + B\overline{z} + c = 0$ 是直线的方程.

命题 1.1.2. 复平面上圆的方程可以表示为

$$Az\bar{z} + B\bar{z} + \overline{B}z + C = 0$$

其中 $A, C \in \mathbb{R}(A \neq 0), B \in \mathbb{C}$,反之,任给满足这样条件的方程,当 $B\overline{B} - AC > 0$ 时, 都是一个圆的方程.

于是直线和圆的方程可以统一为 $Az\bar{z} + B\bar{z} + \overline{B}z + C = 0$, 取决于 A = 0 与否.

复平面的拓扑 1.2

- C 上的完备性定理和极限理论
- Euler 公式• ℂ 上的点集拓扑概念• ℂ 上的曲线

- 单连通概念

复数域的完备性定理与极限理论 1.2.1

数学分析 (III) 相关章节, \mathbb{C} 可以看做 \mathbb{R}^2 .

Euler 公式 1.2.2

定理 1.2.1 (Euler 公式).

$$e^{iz} = \cos z + i\sin z$$

 $e^{iz}=\cos z+i\sin z$ 设 $z\in C$,令 $z_n=\sum_{k=0}^\infty \frac{z^k}{k!}$,得到 $\{z_n\}$. 对 m>n 有

$$|z_n - z_m| \le \frac{|z^{n+1}|}{(n+1)!} + \dots + \frac{|z^m|}{m!}$$

因为 $\left\{a_n = \sum_{k=0}^n \frac{|z^k|}{k!}\right\}$ 在 \mathbb{R} 中收敛于 $e^{|z|}$,是 Cauchy 序列,因此 $\{z_n\}$ 也是 Cauchy 序 列,于是在 \mathbb{C} 收敛,定义它的极限为 e^z ,即

$$e^z = 1 + \frac{z}{1!} + \dots + \frac{z^n}{n!} + \dots$$

同理用 Cauchy 准则我们可以得到下面两个级数也是收敛的

$$z - \frac{z^3}{3!} + \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots$$
$$1 - \frac{z^2}{2!} + \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots$$

分别定义 $\sin z$, $\cos z$ 为这两个级数的极限,于是得到 Euler 公式

$$e^{iz} = \cos z + i \sin z$$

1.2. 复平面的拓扑 9

1.2.3 复数域上的点集拓扑概念

见实变函数笔记的相关章节.

1.2.4 曲线和连通

定义 1.2.1 (复平面上的曲线). 对 [a,b] 上的连续函数 x(t),y(t) , 映射 $\gamma:[a,b]\to \mathbb{C}, \gamma(t)=(x(t),y(t))$ 称为一条**连续曲线**.

若 x,y 在 [a,b] 光滑可导, 称 γ 为光滑曲线.

光滑曲线可求长, 弧长可表示为

$$\int_{a}^{b} \sqrt{x'^2 + y'^2} \, \mathrm{d}t = \int_{\gamma} \, \mathrm{d}s$$

其中弧长微元为

$$ds = \sqrt{x'^2 + y'^2} dt = \sqrt{(dx)^2 + (dy)^2}$$

利用复坐标可以把曲线表示为 z(t) = x(t) + iy(t), 如果定义

$$z'(t) = x'(t) + iy'(t) \quad dz = x'(t)dt + iy'(t)dt$$

则我们得到

$$|\mathrm{d}z| = \sqrt{x'^2 + y'^2} \mathrm{d}t = \mathrm{d}s$$

即弧长微元就是 |dz|.

定义 1.2.2 (曲线连通). \mathbb{C} 中的集合 S 称为曲线连通的,若 S 中任意两点之间都存在连续曲线. 曲线连通的开集称为**区域**.

定理 1.2.2 (开集曲线连通). \mathbb{C} 中开集 Ω 曲线连通的充要条件是 Ω 不能表示为两个非空、不交的开集的并.

证明

- 1. 充分性: 任取 $z \in \Omega$,令 Ω_1 为所有和 z 有连续曲线的点的集合, $\Omega_2 = \Omega \Omega_1$,证明 Ω_i 都是开集,于是 $\Omega = \Omega_1$,是曲线连通的.
- 2. 必要性: 如果存在这样的 Ω_1, Ω_2 , 取 $z_1 \in \Omega_1, z_2 \in \Omega_2$, 则存在连续曲线 $\gamma : [a,b] \to \Omega$ 使得 $\gamma(a_1) = z_1, \gamma(b_1) = z_2$, 然后取中点构造闭区间套 $[a_n, b_n]$, 推出矛盾.

定义 1.2.3 (连通的定义). 集合 $S \subset \mathbb{C}$ 称为**连通**的,若不存在开集 O_1, O_2 使得

$$S \subset O_1 \cup O_2, S \cap O_i \neq \emptyset, (O_1 \cap S) \cap (O_2 \cap S) = \emptyset$$

由 1.2.2 得到,对开集而言,连通等价于曲线连通.

定义 1.2.4 (最大连通分支). $S \subset \mathbb{C}$, $z_0 \in S$, 令 $L(z_0)$ 为 S 所有包含 z_0 的连通子集的并,则 $L(z_0)$ 连通,且唯一,称为 S 中包含 z_0 的最大连通分支.

1.2.5 单连通

定义 1.2.5. 区域 D 称为单连通的,若对 D 中任意简单闭曲线 L ,都存在 D 中的有界 区域 \tilde{D} 使得 $L=\partial \tilde{D}$.

显然连通和单连通并没有什么关系.

1.3 复函数

- 复值函数及其极限
- 复值函数连续性质
 - 1. 介值定理
 - 2. 最值定理
 - 3. 一致连续定理
- 复值函数的偏导和微分
- 切映射

1.3.1 复值函数及其极限

对 $S \to \mathbb{C}$ 的 w = f(z) , 令 z = x + iy, w = u + iv , 则 w = f(z) 又可以表示为

$$u + iv = f(x + iy)$$
 $u = u(x, y), v = v(x, y)$

复值函数可以看成二元实函数.

和 \mathbb{R}^2 一样定义复值函数的极限和连续.

1.3.2 复值函数连续性质

定理 1.3.1 (介值定理). S 是连通集合, f(z) 是 S 上的连续函数, 则 f(S) 连通.

1.3. 复函数 11

证明 这里的证明就可以用到 1.2.3 这里看似变扭的定义了,我们假设 f(S) 不连通,则由定义,存在开集 O_1, O_2 使得

$$f(S) \subset O_1 \cup O_2, f(S) \cap O_i \neq \emptyset, (f(S) \cap O_1) \cap (f(S) \cap O_2) = \emptyset$$

因为 f(z) 连续,于是 $\forall z \in S$,若 $f(z) \in O_i$,则存在 $\varepsilon(z) > 0$ 使得

$$f(D(z,\varepsilon(z)))\subset O_i$$

$$O_i' = \bigcup_{f(z) \in O_i} D(z, \varepsilon(z))$$

则 O'_i 均为非空开集,且满足连通定义那一串不应该满足的条件,这和 S 的连通性矛盾.

定理 1.3.2 (最大最小模定理). S 是有界闭集,f(z) 是 S 上的连续函数,则 |f(z)| 在 S 上有界,并取到 |f(z)| 在 S 的上下确界.

定理 1.3.3 (一致连续定理). S 是有界闭集,f(z) 是 S 上的连续函数,则 f(z) 在 S 上一致连续.

1.3.3 复值函数的偏导和微分

定义 1.3.1 (偏导数). f(z) = u(x,y) + iv(x,y) 是区域 D 上的复函数, $z_0 = x_0 + iy_0 \in D$, 称 f(z) 在 z_0 对 x 可导,若实函数 u(x,y), v(x,y) 在 (x_0,y_0) 都存在关于 x 的偏导数,定义

$$\frac{\partial f}{\partial x}(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$$
$$\frac{\partial f}{\partial y}(z_0) = \frac{\partial u}{\partial y}(x_0, y_0) + i\frac{\partial v}{\partial y}(x_0, y_0)$$

为 f(z) 关于 x, y 的偏导数.

定义 1.3.2 (微分). 设 $f(z) = u(x,y) + iv(x,y) \in C^1(D)$, 定义

$$df(z) = du(x, y) + idv(x, y)$$

称其为 f(z) 在 D 上的**微分**,可表示为

$$df(z) = \frac{\partial f}{\partial x}(z)dx + \frac{\partial f}{\partial y}(z)dy$$

接下来,我们用复变量表示微分,方法和表示直线、圆的方程一样,有

$$dx = \frac{dz + d\bar{z}}{2}$$
 $dy = \frac{dz - d\bar{z}}{2i}$

代入上面 $\mathrm{d}f(z)$ 就得到

$$df(z) = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\bar{z}$$

于是我们把 $dz, d\bar{z}$ 前面的两个部分形式地定义成 z, \bar{z} 的偏导,即

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

这样定义偏导数,我们就可以用和实变量一样的形式来表示复变量形式的微分

$$\mathrm{d}f(z) = \frac{\partial f}{\partial z} \mathrm{d}z + \frac{\partial f}{\partial \bar{z}} \mathrm{d}\bar{z}$$

1.3.4 切映射

定义 1.3.3 (切空间/切平面和切映射). p = (0,0) ,过 p 的所有光滑曲线在 p 的切向量全体记为 T_p ,是一个线性空间,称为 \mathbb{R}^2 在 p 点的切空间/切平面.

取一条过 p 的光滑曲线 $l:t\mapsto (x(t),y(t))$, 其中 p=(x(0),y(0)) , 如果 f(x,y)(u(x,y),v(x,y)) 是从 p 点邻域到 q=(0,0) 邻域的可微映射, f(0,0)=(0,0) ,则 f 诱导了 l 在 p 处切向量到 f(l) 在 q 处切向量的映射,即

$$\alpha = (x'(0), y'(0)) \mapsto \beta = \left(\frac{\mathrm{d}u}{\mathrm{d}t}(0), \frac{\mathrm{d}v}{\mathrm{d}t}(0)\right)$$

记为 $f^*: \alpha \mapsto \beta$, 如果考虑所有过 p 点的光滑曲线, 就得到一个线性映射

$$f^*: T_p \to T_q$$

称为 f(x,y) 在 p = (0,0) 的**切映射**.

下面我们用复变量z表示上面的映射:

命题 1.3.1 (复变量表示切映射). 在复平面上,l 表示为 z(t) = x(t) + iy(t) ,则切向量 $\alpha = z'(0) = x'(0) + iy'(0)$,令 f(z) = u + iv ,则切映射可表示为

$$f^*: \alpha \mapsto \beta = \frac{\mathrm{d}f(z(t))}{\mathrm{d}t}\bigg|_{t=0} = \frac{\partial f}{\partial z}z'(0) + \frac{\partial f}{\partial \bar{z}}\bar{z}'(0)$$

第二个等号是因为

$$\frac{\mathrm{d}f(z(t))}{\mathrm{d}t} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t} + i\left(\frac{\partial v}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial v}{\partial y} \cdot \frac{\partial y}{\partial t}\right)$$
$$= \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)\frac{\partial x}{\partial t} + \left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right)\frac{\partial y}{\partial t}$$

1.3. 复函数

13

其中

$$\frac{\partial z}{\partial t} = \frac{\partial x}{\partial t} + i \frac{\partial y}{\partial t} \quad \frac{\partial \bar{z}}{\partial t} = \frac{\partial x}{\partial t} - i \frac{\partial y}{\partial t}$$

得到

$$\frac{\partial x}{\partial t} = \frac{1}{2} \left(\frac{\partial z}{\partial t} + \frac{\partial \bar{z}}{\partial t} \right) \quad \frac{\partial y}{\partial t} = \frac{1}{2} \left(\frac{\partial z}{\partial t} - \frac{\partial \bar{z}}{\partial t} \right)$$

代入上式整理,得到 $\frac{\partial z}{\partial t}$, $\frac{\partial \bar{z}}{\partial t}$ 的系数分别为

$$\frac{1}{2} \left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \right) \quad \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} \right)$$

又因为

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$

代入 f = u + iv 就得到

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \right)$$

因此上面 $\frac{\partial z}{\partial t}$ 的系数就是 $\frac{\partial f}{\partial z}$,同理 $\frac{\partial \bar{z}}{\partial t}$ 的系数是 $\frac{\partial f}{\partial \bar{z}}$,因此

$$\frac{\mathrm{d}f(z(t))}{\mathrm{d}t} = \frac{\partial f}{\partial \bar{z}} \cdot \frac{\partial \bar{z}}{\partial t} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial t}$$

于是切映射可表示为

$$f^*: \alpha \mapsto \beta = \frac{\mathrm{d}f(z(t))}{\mathrm{d}t}\bigg|_{t=0} = \frac{\partial f}{\partial z}z'(0) + \frac{\partial f}{\partial \bar{z}}\bar{z}'(0)$$

在有了映射的式子之后, 我们考虑下面的方程

$$f^*(c_1\alpha_1 + c_2\alpha_2) = c_1f^*(\alpha_1) + c_2f^*(\alpha_2)$$

显然 $c_1, c_2 \in \mathbb{R}$ 的时候方程成立,即 f^* 是实线性的,于是我们自然地考虑,当 $c_1, c_2 \in \mathbb{C}$ 时,方程是否成立,即方程是否**复线性**?如果不是,需要满足什么条件才能是复线性的?

命题 1.3.2 (复线性不成立). 当 $\frac{\partial f}{\partial \bar{z}} \neq 0$ 时, f^* 在 $c_1, c_2 \in \mathbb{C}$ 时不成立,即不是复线性.

证明
$$\quad$$
 设 $\alpha_1=z_1'(0),\alpha_2=z_2'(0)$, 则

$$c_1 f^*(\alpha_1) + c_2 f^*(\alpha_2) = c_1 f_z z_1'(0) + c_1 f_{\bar{z}} \bar{z}_1'(0) + c_2 f_z z_2'(0) + c_2 f_{\bar{z}} \bar{z}_2'(0)$$

$$f^*(c_1\alpha_1 + c_2\alpha_2) = c_1 f_z z_1'(0) + \bar{c}_1 f_{\bar{z}} \bar{z}_1'(0) + c_2 f_z z_2'(0) + \bar{c}_2 f_{\bar{z}} \bar{z}_2'(0)$$

因此 $f_z \neq 0$ 时等式不成立.

从证明还可以看出, 当 $\frac{\partial f}{\partial \bar{z}} = 0$ 时, f^* 是复线性的.

于是当 $\frac{\partial f}{\partial \bar{z}} \neq 0$ 时,f(z) 关于 \bar{z} 并不独立,因此 z 自身不能完全反映 l 的形式,即我们还需要考虑 \bar{z} 的影响,又因为 $(z,\bar{z}),(x,y)$ 之间互相决定,因此我们可以用复变量 \bar{z} 表示曲线

$$l: t \mapsto (z(t), \bar{z}(t))$$

则此时用 $(z'(t), \bar{z}'(t))$ 表示 l 的切向量,就把切映射表示为

$$(z'(t), \bar{z}'(t)) \mapsto \left(\frac{\mathrm{d}f(z(t))}{\mathrm{d}t}, \frac{\overline{\mathrm{d}f(z(t))}}{\mathrm{d}t}\right) = (z'(t), \bar{z}'(t)) \begin{bmatrix} \frac{\partial f}{\partial z} & \frac{\partial \bar{f}}{\partial z} \\ \frac{\partial f}{\partial \bar{z}} & \frac{\partial f}{\partial \bar{z}} \end{bmatrix}$$

因为

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

代入 f = u + iv, 得到

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + i \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right]$$

因此 $\frac{\partial f}{\partial \bar{z}} = 0$ 即 u, v 满足 C-R 方程 (见下一章)

1.4 扩充复平面 (Riemann 球面)

C 紧致化

我们通过单点紧致化的方法把 ℂ 扩充成一个紧集:

令 S 为 \mathbb{R}^3 上以 $\left(0,0,\frac{1}{2}\right)$ 为球心, $\frac{1}{2}$ 为半径的球,对 N(0,0,1) ,将平面 Oxy 上任意一点 p 和 N 连线,和 S 交于另一点 q ,再把 Oxy 对应为复平面 \mathbb{C} ,则在 \mathbb{C} 和 $S-\{N\}$ 之间建立了一个一一对应.

显然 $\{q_n\}$ 趋于 N 当且仅当 $\{p_n\}$ 趋于 ∞ ,因此我们在 S 和 $\mathbb{C} \cup \{\infty\}$ 之间建立了一个一一对应,记

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\} = S$$

称为**扩充复平面**. 此时 $\overline{\mathbb{C}}$ 是一个紧曲面(收敛序列的极限都属于 $\overline{\mathbb{C}}$)

下面我们讨论 ℂ 上函数的可微性:

容易把 \mathbb{C} 上极限和连续的概念扩充到 $\overline{\mathbb{C}}$ 上,为了应用,我们还需要再 ∞ 的邻域上定义坐标,来推广可导性到 $\overline{\mathbb{C}}$ 上.

一个主要的问题是如何处理 ∞ 处的可导性问题,于是我们在上述模型中再加入一个复平面,进行坐标的转化,通俗地说,就是通过取倒数的方法把 ∞ 变成 0 ,从而沿用有限情形下的可导性定义.

在 \mathbb{R}^3 中, 令

$$\mathbb{C}_1 = \{(x, y, 0) : x, y \in \mathbb{R}\} \quad \mathbb{C}_2 = \{(x, y, 1) : x, y \in \mathbb{R}\}$$

我们用 z = x + iy 表示 \mathbb{C}_1 中点 (x, y, 0) 的复坐标,用 w = x - iy 表示 \mathbb{C}_2 中点 (x, y, 1) 的复坐标. 这里 w 形式上的不同,可以看成把原先正面朝上的 \mathbb{C}_2 沿着 x 轴旋转 180 度,使得原来同一点对应到其共轭点.

按照前述定义球面 S ,通过计算得到,对 $(x_0, y_0, u_0) \in S, (x_0, y_0, u_0) \neq (0, 0, 1)$,该点在 \mathbb{C}_1 上对应的点为

$$z = \frac{x_0}{1 - u_0} + i \frac{y_0}{1 - u_0}$$

对 $(x_0, y_0, u_0) \in S$, $(x_0, y_0, u_0) \neq (0, 0, 0)$, 该点在 \mathbb{C}_2 上对应的点为

$$w = \frac{x_0}{u_0} - i \frac{y_0}{u_0}$$

于是对 $S - \{N_1, N_2\}$ 中的同一点,上面的 z, w 给出了在 $\mathbb{C}_1, \mathbb{C}_2$ 下两个不同的复坐标,直接计算得到

$$zw = 1$$

于是我们得到一个 $\mathbb{C}_1 - \{N_2\}$ 和 $\mathbb{C}_2 - \{N_1\}$ 之间的一一映射

$$z \mapsto \frac{1}{z} = w$$

称为 $S = \{N_1, N_2\}$ 上坐标 z, w 的**坐标变换**,也就是对 $S = \{N_1, N_2\}$ 上一点,如果知道该点在 \mathbb{C}_1 下给出的坐标 z ,则该点在 \mathbb{C}_2 下给出的坐标就是 w .

设 $D \subset \mathbb{C}$ 是 \mathbb{C} 上的区域, $f: D \to \mathbb{C}$ 是映射,若 $p_0 \in D$ 且 $p_0 \neq (0,0,1)$,利用 \mathbb{C}_1 可以把 f 在 p_0 的邻域上表示为 z = x + iy 的函数,若它是 x, y 的可导函数,则称 f 在 p_0 实可导. 这样就推广了实可导的概念.

如果 $f(z_0) = \infty$,则我们可以讨论 $\frac{1}{f(z)}$ 在 z_0 的可导性,来得到 $f(z) = z_0$ 的可导性;如果 $f(\infty) = \infty$,则可以讨论 $\frac{1}{f\left(\frac{1}{z}\right)}$ 来得到 f(z) 在 ∞ 处的可导性.

例 1.4.1 (无穷处可导的应用). 令 $f(z) = \frac{z-1}{z^2+1}$,并令 $f(i) = f(-i) = \infty$, $f(\infty) = 0$. 我们希望证明 f(z) 是 C^{∞} 的映射.

当 $z \neq \pm i, \infty$ 时,显然 f(z) 是 C^{∞} 的.

若 $z=\infty$,利用坐标变换 $z=\frac{1}{w}$,把 $f\left(\frac{1}{w}\right)$ 看成 w=0 邻域上的函数,则 $f\left(\frac{1}{w}\right)=\frac{w-w^2}{w^2+1}$,是 \mathbb{C}^∞ 的.

若 z=i ,此时对因变量 f 作坐标变换,此时 $\frac{1}{f(z)}=\frac{z^2+1}{z-1}$,显然在 z=i 邻域是 C^∞ 的,对 -i 同理.

本节提到的 S 称为 Riemann 球面

Chapter 2

解析函数

2.1 解析函数

定义 2.1.1. 设 w = f(z) 是区域 Ω 上的函数, $z_0 \in \Omega$, 如果极限

$$\lim_{x \to x_0} \frac{f(z) - f(z_0)}{z - z_0}$$

存在 (有限复值),则称 f(z) 在 z_0 可导,并将此极限记为 $f'(z_0)$,称为 f(z) 在 z_0 处的导数.

定义 2.1.2. 如果存在 z_0 的一个邻域 $D(z_0,\varepsilon)\subset\Omega$,使得 f(z) 在邻域 $D(z_0,\varepsilon)$ 的每一点都可导,则称 f(z) 在 z_0 处解析. 如果 f(z) 在 Ω 内的每一点都可导,则称 f(z) 为 Ω 内的解析函数,或称为 Ω 内的**全纯函数**.

f(z) 的四则运算的导数、复合函数的导数和实数情况相同.

定义 2.1.3. 区域 Ω 上单射的解析函数 f(z) 称为单叶解析函数.

定义 2.1.4. 设 Ω_1, Ω_2 为 $\mathbb C$ 中区域,映射 $w = f(z): \Omega_1 \to \Omega_2$ 称为解析同胚(或全纯同胚),如果 w = f(z) 是区域 Ω_1 上单叶解析函数, $f(\Omega_1) = \Omega_2$,并且 f(z) 的反函数 $z = f^{-1}(w): \Omega_2 \to \Omega_1$ 也是解析的. 如果 $\Omega_1 = \Omega_2 := \Omega$,称 f(z) 为 Ω 的全纯自同胚.解析同胚也称为共形映射.

定理 2.1.1. 设 f(z) 是区域 Ω 上的单叶解析函数,则

- 1. f'(z) 在 Ω 上处处不为零;
- 2. $f(\Omega)$ 是开集,因而是 \mathbb{C} 中的区域;

3. $f^{-1}: f(\Omega) \to \Omega$ 在 $f(\Omega)$ 上解析,并且

$$(f^{-1})'[f(z)] = \frac{1}{f'(z)}$$

即只要解析函数 f(z) 在 Ω 上是单射,则 $f:\Omega\to f(\Omega)$ 必定是解析同胚. 证明将在第三章给出.

2.2 Cauchy-Riemann 方程

- 解析函数的充要条件
- C-R 方程解的存在性

2.2.1 解析函数的充要条件

对函数

$$f(z) = u(x, y) + iv(x, y)$$

作为复函数对 z 的可导性和 u(x,y),v(x,y) 作为实函数对 x,y 的可导性之间有什么关系?

定理 2.2.1. f(z) = u(x,y) + i(x,y) 在 $z_0 = x_0 + iy_0$ 处对 z 可导,则 u(x,y), v(x,y) 在 (x_0, y_0) 处对 x, y 存在偏导,且其偏导满足

$$\frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y} \quad \frac{\partial u(x_0, y_0)}{\partial y} = \frac{\partial v(x_0, y_0)}{\partial x}$$

证明 当 $\Delta x \in \mathbb{R}$ 时

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{f(z_0 + \Delta x) - f(z_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x}$$

$$+ i \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$

$$= \frac{\partial u(x_0, y_0)}{\partial x} + i \frac{\partial v(x_0, y_0)}{\partial x}$$

当 $\Delta y \in \mathbb{R}$ 时

$$f'(z_0) = \lim_{\Delta y \to 0} \frac{f(z_0 + \Delta y) - f(z_0)}{\Delta y}$$

$$= \frac{1}{i} \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y}$$

$$+ \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y}$$

$$= \frac{\partial v(x_0, y_0)}{\partial y} - i \frac{\partial u(x_0, y_0)}{\partial y}$$

比较实部、虚部的结果,证毕.

通过上面证明得到,若 f(z) 在 $z_0 = x_0 + iy_0$ 处可导,则

$$f'(z_0) = \frac{\partial u(x_0, y_0)}{\partial x} + i \frac{\partial v(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y} - i \frac{\partial u(x_0, y_0)}{\partial y}$$

定义 2.2.1. 微分方程

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

称为 Cauchy-Riemann 方程, 简称 C-R 方程.

2.2.1 表明,若 f(z) 可导,则其实部和虚部之间并不相互独立,需要满足 C-R 方程. **定理 2.2.2.** 函数 f(z) = u(x,y) + iv(x,y) 在区域 Ω 上解析的充分必要条件是 u,v 在区域 Ω 上处处可微,且其偏导数在区域 Ω 上满足 C-R 方程.

证明 设 f(z) 在 Ω 解析,对任意 $z_0 = x_0 + iy_0 \in \Omega$,有

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + o(|z - z_0|)$$

比较上式的实部虚部,得到 u, v 在 (x_0, y_0) 处可微,由 2.2.1 知 u, v 的偏导数在 Ω 上满足 C-R 方程.

现设 $z_0 = x_0 + iy_0 \in \Omega, u(x,y), v(x,y)$ 在 (x_0, y_0) 处可微,且满足 C-R 方程,则由可微性

$$u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)$$

$$= \frac{\partial u(x_0, y_0)}{\partial x} \Delta x + \frac{\partial u(x_0, y_0)}{\partial y} \Delta y + o(\sqrt{|\Delta x|^2 + |\Delta y|^2})$$

$$v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)$$

$$= \frac{\partial v(x_0, y_0)}{\partial x} \Delta x + \frac{\partial v(x_0, y_0)}{\partial y} \Delta y + o(\sqrt{|\Delta x|^2 + |\Delta y|^2})$$

因此如果 $\Delta z = \Delta x + i \Delta y$,则

$$f(z_{0} + \Delta z) - f(z_{0})$$

$$= \left[\frac{\partial u(x_{0}, y_{0})}{\partial x} + i \frac{\partial v(x_{0}, y_{0})}{\partial x}\right] \Delta x$$

$$+ \left[\frac{\partial u(x_{0}, y_{0})}{\partial y} + i \frac{\partial v(x_{0}, y_{0})}{\partial y}\right] \Delta y + o(|\Delta z|)$$

$$= \left[\frac{\partial u(x_{0}, y_{0})}{\partial x} - i \frac{\partial u(x_{0}, y_{0})}{\partial y}\right] \Delta x$$

$$+ \left[\frac{\partial u(x_{0}, y_{0})}{\partial y} + i \frac{\partial u(x_{0}, y_{0})}{\partial x}\right] \Delta y + o(|\Delta z|)$$

$$= \left[\frac{\partial u(x_{0}, y_{0})}{\partial x} - i \frac{\partial u(x_{0}, y_{0})}{\partial y}\right] (\Delta x + i \Delta y) + o(|\Delta z|)$$

$$= \left[\frac{\partial u(x_{0}, y_{0})}{\partial x} - i \frac{\partial u(x_{0}, y_{0})}{\partial y}\right] \Delta z + o(|\Delta z|)$$

于是 f(z) 在 z_0 可导,因为 $z_0 \in \Omega$ 任意,因此 f(z) 在 Ω 上解析,证毕.

2.2.2 C-R 方程解的存在性

C-R 方程在什么条件下有解 v(x,y) ?

对 C-R 方程求二阶偏导,得到

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \quad \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y}$$

因此

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

定义 2.2.2. 我们称

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

为 Laplace 算子.

定义 2.2.3. 如果区域 Ω 上二阶连续可导的函数 u(x,y) 满足

$$\Delta u = 0$$

则称 u 为 Ω 上的**调和函数**.

根据上面的讨论得到:

定理 2.2.3. 设 f(z) = u(x,y) + iv(x,y) 为 Ω 上的解析函数,并假设 $u, v \in C^2(\Omega)$,则 u(x,y), v(x,y) 都是 Ω 上的调和函数.

定义 2.2.4. u(x,y) 是区域 Ω 上给定的调和函数, Ω 上的调和函数 v(x,y) 称为 u(x,y) 的共轭调和函数,如果

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$
 $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$

如果 v(x,y) 是 u(x,y) 的调和共轭函数,则

$$f(z) = u(x, y) + iv(x, y)$$

是解析函数,因此 Ω 上的调和函数 u(x,y) 是 Ω 上一个解析函数的实部的充要条件是 u(x,y) 有调和共轭函数.

定理 2.2.4. 设 Ω 是 $\mathbb C$ 中的单连通区域,,则 Ω 上任意调和函数 u(x,y) 存在共轭调和函数 v(x,y) ,且 v(x,y) 在相差一常数的意义下由 u(x,y) 唯一确定.

证明 在 Ω 上考虑路径积分

$$\int_{\gamma} \frac{\partial u}{\partial x} \, \mathrm{d}y - \frac{\partial u}{\partial y} \, \mathrm{d}x$$

如果 γ 是 Ω 中的简单闭曲线,由 Ω 的单连通性知,存在 Ω 中的有界区域 D 使得 $\gamma=\partial D$. 因此利用 Green 公式得到

$$\int_{\gamma} \frac{\partial u}{\partial x} dy - \frac{\partial u}{\partial y} dx = \iint_{D} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right) dx dy = 0$$

说明了路径积分

$$\int_{\gamma} \frac{\partial u}{\partial x} \, \mathrm{d}y - \frac{\partial u}{\partial y} \, \mathrm{d}x$$

只和路径的起点终点有关,和路径本身无关.

在 Ω 内任取一点 $p_0=(x_0,y_0)$, 对 Ω 的任一点 p=(x,y) , 作 Ω 中连接 p,p_0 的分段光滑曲线 γ ,并定义函数

$$v(x,y) = \int_{\gamma} \frac{\partial u}{\partial x} dy - \frac{\partial u}{\partial y} dx$$

由于上面积分和 γ 的选取无关,因此v(x,y)的定义是合理的,微分得到

$$\mathrm{d}v = \frac{\partial u}{\partial x} \mathrm{d}y - \frac{\partial u}{\partial y} \mathrm{d}x$$

即

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

即 v(x,y) 是 u(x,y) 的共轭调和函数.

如果 $v_1(x,y)$ 是 u(x,y) 的另一共轭调和函数,由 C-R 方程

$$\frac{\partial v_1(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial x} \quad \frac{\partial v_1(x,y)}{\partial y} = \frac{\partial v(x,y)}{\partial y}$$

由于 Ω 单连通, 因此 $v_1(x,y) = v(x,y) + c$, 证毕.

2.3 导数的几何意义

- 导数和 Jacobi 行列式关系
- 保向变换和保角变换

2.3.1 导数和 Jacobi 行列式关系

定理 2.3.1. $|f'(z_0)|^2$ 是 $(x,y) \mapsto (u(x,y),v(x,y))$ 在 (x_0,y_0) 处的 Jacobi 行列式,其中 f(z) = u(x,y) + iv(x,y) 在区域 D 解析

证明 直接展开再由 C-R 方程即得.

推论 2.3.1. f(z) 在 Ω 解析,导函数 f'(z) 处处连续,若 $f'(z_0) \neq 0$,则存在 z_0 的邻域 D 使得

- 1. f(D) 是开集
- 2. $f: D \to f(D)$ 是一一映射

3.
$$f^{-1}: f(D) \to D$$
 在 $f(D)$ 解析,且 $(f^{-1})'(w) = \frac{1}{f'(z)}, w = f(z)$

证明 因为 $f'(z) \neq 0$,因此 Jacobi 行列式大于 0,由逆映射定理,存在 z_0 的邻域 D 使得 f(D) 是开集且存在逆映射 f^{-1} ,设 $z \in D$,令 w = f(z),则

$$(f^{-1})'(w) = \lim_{w' \to w} \frac{f^{-1}(w') - f^{-1}(w)}{w' - w}$$
$$= \lim_{z' \to z} \frac{z' - z}{f(z') - f(z)}$$
$$= \frac{1}{f'(z)}$$

例 2.3.1. f = u + iv 在区域 D 上解析,导函数处处连续,且 $u^3 = v$, 证明 $f(z) \equiv C$.

证明 若存在 $z_0 \in D$ 使得 $f(z_0) \neq 0$,则由上面的推论 f(D) 包含内点,而 $\mathbb{R} \supset S = \{(u,v): u^3 = v\}$ 没有内点,矛盾.

2.3.2 保向变换和保角变换

微积分中我们知道,若变换 $(x,y)\mapsto (u,v)$ 是 Jacobi 行列式处处非负,则变换保向. 于是解析函数**保向**.

在上一章中,我们说明了如果将实可微的映射 $(x,y)\mapsto (u,v)$ 表示为复函数 $w=f(z,\bar{z})$ 时,为了保证其诱导的切映射是复线性的,我们在将曲线 (x(t),y(t)) 表示为复坐标时,需要定义其复切矢量为

$$\left(\frac{\mathrm{d}z(t)}{\mathrm{d}t}, \frac{\mathrm{d}\bar{z}(t)}{\mathrm{d}t}\right)$$

若 w=f(z) 解析,则 f(z) 独立于 \bar{z} ,因此不需要考虑 \bar{z} 方向偏导数,此时将 (x(t),y(t)) 表示为 z(t)=x(t)+iy(t) ,则切映射

$$f^*: z'(t) = x'(t) + iy'(t) \mapsto \frac{\mathrm{d}f[z(t)]}{\mathrm{d}t} = f'[z(t)]z'(t)$$

对切向量 z'(t) 已经是复线性得了,于是不需要考虑 $\bar{z}'(t)$. 因此在讨论解析映射诱导的切映射时,对 $z_0\in\mathbb{C}$,只需考虑 z'(t) 的部分并定义

$$T'_{z_0} = \left\{ \frac{\mathrm{d}z(0)}{\mathrm{d}t} : z(t) \ z_0 \ , z(0) = z_0 \right\}$$

 T_{z_0}' 称为 z_0 点的**全纯切面**,对解析函数 f ,我们称

$$f^*: T'_{z_0} \to T'_{f(z_0)} \quad \alpha \mapsto f'(z_0)\alpha \quad \alpha \in T_{z_0}$$

为解析映射 w = f(z) 诱导的**全纯切映射**.

下面我们考虑: 当解析函数 f 对过 z_0 的曲线 $t\mapsto z(t)$ 作变换时,诱导的映射 f^* 对切向量在几何上是如何变化的.

当 $f'(z_0) \neq 0$ (必须的条件), 其中 $z_0 = z(0)$, 则 $\frac{\mathrm{d}z(0)}{\mathrm{d}t}$ 是 z(t) 在 z_0 处的切向量,而由上面的结论,变换后的 f[z(t)] 在 $f(z_0)$ 处切向量为

$$f^*\left(\frac{\mathrm{d}z(0)}{\mathrm{d}t}\right) = \frac{\mathrm{d}f[z(0)]}{\mathrm{d}t} = f'(z_0)\frac{\mathrm{d}z(0)}{\mathrm{d}t}$$

此时

$$\left| \frac{\mathrm{d}f[z(0)]}{\mathrm{d}t} \right| = |f'(z_0)| \left| \frac{\mathrm{d}z(0)}{\mathrm{d}t} \right|$$
$$\operatorname{Arg} \frac{\mathrm{d}f[z(0)]}{\mathrm{d}t} = \operatorname{Arg}f'(z_0) + \operatorname{Arg} \frac{\mathrm{d}z(0)}{\mathrm{d}t}$$

因此 f^* 的变换对切向量作 $|f'(z_0)|$ 的伸缩和 $\operatorname{Arg} f'(z_0)$ 的旋转. 因此 f^* 是**保角的**,且 保持旋转关系不变,称为**第一类保角映射**.

保持夹角但是改变旋转关系的映射称为第二类保角映射.

导数不为零对切映射的保角性是必须的.

例 2.3.2. 若 $\overline{f(z)}$ 解析,则函数 w = f(z) 称为**反解析函数**,因为

$$\frac{\partial \overline{f(z)}}{\partial \bar{z}} = \overline{\left(\frac{\partial f(z)}{\partial z}\right)}$$

得到 f(z) 反解析当且仅当 $\frac{\partial f}{\partial z}=0$,即 f(z),z 独立,此时考虑 f 的切映射,对 z(t) ,定义 f^*

$$f^*: \bar{z}'(t) \mapsto \frac{\mathrm{d}f[z(t)]}{\mathrm{d}t} = \frac{\partial f}{\partial \bar{z}}\bar{z}'(t)$$

则在 $\frac{\partial f}{\partial \bar{z}} \neq 0$ 的点, f^* 是第二类保角映射.

2.4 幂级数

- 幂级数及其收敛性质
- 幂级数和解析函数
- 幂级数的计算和表示

2.4.1 幂级数及其收敛性质

定义 2.4.1 (幂级数和一致收敛). $z_0 \in \mathbb{C}$, 称

$$\sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

为 z₀ 处展开的幂级数。

若 $\forall \varepsilon > 0, \exists N$, 只要 k > N , 则 $\forall z \in \Omega$ 都有

$$|f(z) - \sum_{n=0}^{k} a_n (z - z_0)^n| < \varepsilon$$

称幂级数一致收敛。

定理 2.4.1 (Cauchy 准则). 幂级数 $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$ 在 Ω 一致收敛当且仅当 $\forall \varepsilon>0,\exists N$,只要 $k_1>k_2>N$ 则 $\forall z\in\Omega$ 都有

$$\left| \sum_{n=k_0}^{k_1} a_n (z - z_0)^n \right| < \varepsilon$$

利用 Cauchy 准则,可以得到一个判断一致收敛常用的判别法则

定理 2.4.2 (控制收敛原理). 若对 $n \in \mathbb{N}$, 存在 M_n 使得 $\forall z \in \Omega$ 有 $|a_n(z-z_0)^n| \leq M_n$,且 $\sum_{n=0}^{+\infty} M_n$ 收敛,则 $\sum_{n=0}^{+\infty} a_n(z-z_0)^n$ 在 Ω 一致收敛。

证明 若 $\sum_{n=0}^{+\infty} M_n$ 收敛,则满足 Cauchy 准则,于是幂级数被控制为 Cauchy 列,在 Ω 上满足一致收敛的 Cauchy 准则。

定理 2.4.3 (Abel 定理). 若幂级数 $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$ 在 $z' \neq z_0$ 处收敛,则对任意 $0 < r < |z'-z_0|$,幂级数在

$$\overline{D(z_0, r)} = \{z : |z - z_0| \le r\}$$

一致收敛。

2.4. 幂级数 25

证明 因为幂级数收敛,因此 $k \to +\infty$ 时

$$|a_k(z'-z_0)^k|\to 0$$

因此 $\{a_k(z'-z_0)^k\}$ 有界,设上界为 M ,则对 $\forall z \in \overline{D(z_0,r)}$

$$|a_n(z-z_0)^n| = \left|a_n(z'-z_0)^n \frac{(z-z_0)^n}{(z'-z_0)^n}\right| \le M \left(\frac{r}{|z'-z_0|}\right)^n$$

显然

$$\sum_{n=0}^{+\infty} M \left(\frac{r}{|z' - z_0|} \right)^n$$

收敛, 由控制收敛原理, 证毕。

根据 Abel 定理, 我们定义

$$R = \sup \left\{ |z - z_0| : \sum_{n=0}^{+\infty} a_n (z - z_0)^n \ z$$
收敛 \right\}

为幂级数的**收敛半径**。且 $\forall r \in (0,R)$,幂级数在 $\overline{D(z_0,r)}$ 一致收敛;当 $z \notin \overline{D(z_0,R)}$,幂级数发散;在边界 $\partial D(z_0,R)$ 上幂级数有些点可能发散,有些点可能收敛。

如何求收敛半径?

引理 2.4.1 (收敛半径引理). 对幂级数 $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$,设 $L = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$,则 $R = \frac{1}{L}$ (对极限取 $0, +\infty$)

证明 设 $|z-z_0| < \frac{1}{L}$,即 $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n||z-z_0|^n} < 1$,取 p 介于二者之间,则由上极限的定义,存在 N ,只要 n > N ,就有 $|a_n(z-z_0)^n| < p^n$,而 $\sum_{n=0}^{+\infty} p^n$ 收敛,于是 $\sum_{n=0}^{+\infty} a_n(z-z_0)^n$ 收敛,因此

$$R \ge \frac{1}{L}$$

若 $|z-z_0| > \frac{1}{L}$,则 $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n||z-z_0|^n} > 1$,由上极限定义,存在序列 $\{a_n(z-z_0)^n\}$ 的子序列 $\{a_{n_k}(z-z_0)^{n_k}\}$ 使得 $\lim_{n_k\to+\infty} a_{n_k}(z-z_0)^{n_k} = \infty$,于是 $\sum_{n=0}^{+\infty} a_n(z-z_0)^n$ 发散,因此

$$R \le \frac{1}{L}$$

证毕。

用该引理可以得到幂级数 $\sum_{n=0}^{+\infty} a_n(z-z_0)^n$ 和形式导数 $\sum_{n=1}^{+\infty} na_n(z-z_0)^{n-1}$ 有相同的收敛半径。下面我们证明**正收敛半径的幂级数是解析函数**,且它的形式导数就是解析函数的导数。

2.4.2 幂级数和解析函数

定理 2.4.4 (形式导数). 幂级数 $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$ 收敛半径 R>0 ,则

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

在 $D(z_0,R)$ 解析且

$$f'(z) = \sum_{n=1}^{+\infty} na_n(z - z_0)^{n-1}$$

证明 在 $\overline{D(z_0,r)}$, 0 < r < R 上幂级数 $\sum_{n=0}^{+\infty} a_n (z-z_0)^n$, $\sum_{n=1}^{+\infty} n a_n (z-z_0)^{n-1}$ 都一致收敛, 因此我们只需要讨论 $D(z_0,r)$ 上 f(z) 在 z' 的可导性。

记 $S_k(z) = \sum_{n=0}^k a_n (z-z_0)^n$,则在有限和情形下显然导数就是形式导数,即

$$S'_k(z') = \sum_{n=1}^k n a_n (z' - z_0)^{n-1}$$

又因为

$$\left| \frac{f(z) - f(z')}{z - z'} - \sum_{n=1}^{+\infty} n a_n (z' - z_0)^{n-1} \right|$$

$$\leq \left| \frac{S_k(z) - S_k(z')}{z - z'} - S'_k(z') \right| + \left| \sum_{n=k+1}^{+\infty} n a_n (z' - z_0)^{n-1} \right|$$

$$+ \left| \sum_{n=k+1}^{+\infty} a_n \left[\frac{(z - z_0)^n - (z' - z_0)^n}{z - z'} \right] \right|$$

其中

$$\left| \frac{(z - z_0)^n - (z' - z_0)^n}{z - z'} \right| = \left| \sum_{i=1}^n (z - z_0)^{n-i} (z' - z_0)^{i-1} \right|$$

$$\leq \sum_{i=1}^n |(z - z_0)^{n-i}| |(z' - z_0)^{i-1}| \leq nr^{n-1}$$

$$\left| \sum_{n=k+1}^{+\infty} na_n (z - z_0)^{n-1} \right| \leq \sum_{n=k+1}^{+\infty} n|a_n|r^{n-1}$$

因为 $\sum_{n=1}^{+\infty} n|a_n|r^{n-1}$ 收敛,因此 $\forall \varepsilon > 0$,可取 k_0 使得

$$\sum_{n=k_0}^{+\infty} n|a_n|r^{n-1} < \frac{\varepsilon}{3}$$

2.4. 幂级数 27

在上面的三角不等式中令 $k = k_0$, 因为

$$\lim_{z \to z'} \left| \frac{S_{k_0}(z) - S_{k_0}(z')}{z - z'} - S'_{k_0}(z') \right| = 0$$

所以存在 $\delta > 0$, 当 $|z - z'| < \delta$ 时

$$\left| \frac{S_{k_0}(z) - S_{k_0}(z')}{z - z'} - S'_{k_0}(z') \right| < \frac{\varepsilon}{3}$$

于是 $|z-z'| < \delta$ 时

$$\left| \frac{f(z) - f(z')}{z - z'} - \sum_{n=0}^{+\infty} n a_n (z' - z_0)^{n-1} \right| < \varepsilon$$

于是 f(z) 在 z' 可导,且 $f'(z') = \sum_{n=1}^{+\infty} na_n(z'-z_0)^{n-1}$,证毕。

于是我们可以得到下面的推论,其说明幂级数就是其和函数 f(z) 在 z_0 处的 Taylor 展开式。

推论 2.4.1 (和函数 Taylor 展开). 幂级数 $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ 收敛半径 R > 0 ,则 f(z) 在 $D(z_0, R)$ 任意阶可导,且 $a_n = \frac{f^{(n)}(z_0)}{n!}$,即

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

在第三章我们会证明 2.4.4 可逆,即若 f(z) 是 $D(z_0,R)$ 上的解析函数,则 f(z) 可以在 $D(z_0,R)$ 展开为

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

因此对 $D(z_0, R)$,关于 $z - z_0$ 收敛的幂级数和其上解析函数一一对应,二者性质可以相互反映。因为解析函数可以经过四则运算和复合之后保持解析,因此幂级数在相应收敛区域也可以四则运算与复合。

2.4.3 幂级数的计算和表示

命题 2.4.1 (幂级数运算). 对两个在 z_0 邻域收敛的幂级数

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
$$g(z) = \sum_{n=0}^{+\infty} b_n (z - z_0)^n = \sum_{n=0}^{+\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$$

定义乘积为

$$f(z)g(z) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) (z - z_0)^n$$
$$= \sum_{n=0}^{+\infty} \frac{(fg)^{(n)}(z_0)}{n!} (z - z_0)^n$$

也是在 zo 展开的幂级数。

若两个幂级数的收敛半径分别为 r_1, r_2 ,则乘积的收敛半径大于 $\min\{r_1, r_2\}$,可以从2.4.4 的逆看出。

幂级数相除和复合得到的幂级数一般可以待定系数求出

例 2.4.1. $f(z) = \sum_{n=0}^{+\infty} (n+1)^2 z^n, g(z) = \sum_{n=0}^{+\infty} (-1)^n (n+1) z^n$, 假设 $\frac{f(z)}{g(z)} = \sum_{n=0}^{+\infty} b_n z^n$, 其中 b_n 为待定系数,则比较对应系数可以得到 $b_0 = 1, b_1 = 6, b_2 = 18$ 。

若 f(x) 是 [a,b] 上的实值函数,可展开为收敛半径为 R 的幂级数 $f(x) = \sum_{n=0}^{+\infty} a_n(x-x_0)^n$,则 $f(z) = \sum_{n=0}^{+\infty} a_n(z-x_0)^n$ 是收敛半径为 R 的解析函数,称为对 f(x) 的**解析拓展**。 利用 $\sin x, \cos x, e^x$ 的幂级数展开,在第一章定义了

$$\sin z = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{z^{2n-1}}{(2n-1)!}$$

$$\cos z = \sum_{n=0}^{+\infty} (-1)^{n-1} \frac{z^{2n}}{(2n)!}$$

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

由 2.4.4得到, $\sin z$, $\cos z$, e^z 都是 \mathbb{C} 上的解析函数。

因为 $\sin x$, $\cos x$, e^x 作为实函数满足的恒等关系式都可以表示为 x 的幂级数之间相应的恒等关系式,而这些关系仅涉及 x 的代数运算,因此用 z 代替 x 同样成立,如

$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$$

同样有

$$\sin z = \frac{e^{iz} - e^{-iz}}{2}$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

因此以 e^z 为基本初等函数,可以得到其它基本初等函数。

2.5 多值函数与反函数

- 多值函数和单值解析分支
- 单值解析分支存在性和关系
- Riemann 曲面和反函数

2.5.1 多值函数和单值解析分支

定义 2.5.1 (多值函数). 集合 S 上的映射 F 把 $z \in S$ 映为 \mathbb{C} 中一个集合 F(z) ,称为 **多值函数**。

区域 D 上的函数 f(z) 不是单射时,其反函数 f^{-1} 是多值函数。

定义 2.5.2 (单值解析分支). F(z) 是 Ω 上多值函数, 若存在 Ω 上的解析函数 f(z) 使得

$$f(z) \in F(z) \quad \forall z \in \Omega$$

则 f(z) 为多值函数 F(z) 在 Ω 上的一个单值解析分支。

我们首先讨论 e^z 的**反函数**。当 $z \neq 0$ 时,定义 $e^w = z$ 的解为 z 的**对数**,记为 $\mathrm{Ln}z$,则显然 $\mathrm{Ln}z$ 是多值函数,设 $z = re^{i\theta}, w = u + iv$,则解得

$$u = \ln r$$
, $v = \theta + 2k\pi$

于是

$$w = \operatorname{Ln} z = \ln r + i(\theta + 2k\pi) = \ln |z| + i(\arg z + 2k\pi)$$

即对数函数的实部是单值函数,而多值性是虚部导致的。

2.5.2 单值解析分支存在性和关系

下面讨论 Lnz 在什么区域存在单值解析分支。

平面一个动点沿 Jordan 曲线 Γ 运动一周后,模不变,若 Γ 包含原点,则辐角改变 $\pm 2\pi$,否则,辐角不改变,因此要区域 D 内 $\mathrm{Ln}z$ 能分出单值分支,D 不能含有绕原点的闭曲线,因此从 $\mathbb C$ 挖去任何一条从原点出发区域无穷的曲线后,剩下的区域都可以分出 $\mathrm{Ln}z$ 的单值解析分支。

下面讨论各个单值解析分支的关系。

q(z) 是 Lnz 在区域 D 的一个单值解析分支,利用反函数求导关系得到

$$g'(z) = \frac{1}{(e^w)'} \Big|_{w=\ln z} = \frac{1}{z}$$

即 Lnz 的任意单值解析分支在 $z \in D$ 的导数相同,,因此任意两个单值解析分支的差是常数。

取 $D = \mathbb{C} - \{\mathbb{R}^+ \cup \{0\}\}$,限定 $0 < \text{Im} w < 2\pi$,则 w = Ln z 在 D 有唯一单值分支

$$ln z = ln |z| + i arg z := f_0(z)$$

称 ln z 为 Lnz 的主值,其它分支可表示为

$$\ln_k z = \ln z + i2k\pi = \ln |z| + i(\arg z + 2k\pi)$$

2.5.3 Riemann 曲面和反函数

考虑找一个特殊定义的曲面,即 Riemann 曲线,使得 Lnz 在上面成为一个单值函数。

将平行 y 轴的直线 l_0 上下连续移动为 $\mathrm{Im} z = y = \theta_0$,则 $w = e^z$ 把 l_0 映为 $\mathbb{C} - \{0\}$ 中的射线 $\mathrm{arg} w = \theta_0$. 当 l_0 由 y = 0 移动到 $y = 2\pi$ 时, e^z 将 \mathbb{R}^+ 逆时针绕原点一周回到 \mathbb{R}^+ ,将到达 \mathbb{R}^+ 的直线稍稍上提,则 l_0 继续向上连续移动时, $w = e^z$ 将 $2\pi < \mathrm{Im} z < 4\pi$ 又一次映满复平面,此时得到两层曲面。以此类推,同理,当 l_0 向下移动时把扫描的曲线下压,得到一个连续曲面 S ,在 S 上 e^z 把 \mathbb{C} 一一映为 S ,从而 $\mathrm{Ln} z$ 在 S 上是单值函数。

 $\operatorname{Ln} z$ 的 Riemann 曲面也可按如下定义: 对每个 $k \in \mathbb{Z}$,取一块沿正实轴 \mathbb{R}^+ 剪开并 去掉原点的复平面 $\mathbb{C}_k - \{0\}$,将 $\mathbb{C}_k - \{0\}$ 的剪开的上边缘和 $\mathbb{C}_{k-1} - \{0\}$ 的下边缘粘接,将 \mathbb{C}_k 的下边缘与 \mathbb{C}_{k+1} 的上边缘粘接,得到 S ,在 S 上定义函数

$$\operatorname{Ln} z = \operatorname{ln}_k z = \operatorname{ln} |z| + i(\arg z + 2k\pi) \quad z \in \mathbb{C}_k, k \in \mathbb{Z}$$

S 称为 Lnz 的 **Riemann 曲面**,Lnz 可看做定义在 S 上的单值解析函数。

下面讨论 $f(z) = z^n$ 的反函数,只讨论 n = 2 时对 $w = z^2$,反函数可记为

$$\sqrt{z} = e^{\frac{1}{2}\text{Ln}z} = e^{\frac{1}{2}\ln|z| + \frac{i}{2}(\arg z + 2k\pi)}$$

因为 e^z 是单值函数,因此在 $\operatorname{Ln} z$ 可以分出单值分支的区域上, $w=z^{\frac{1}{2}}$ 均可分出单值分支,再由 e^z 的周期性, $w=z^{\frac{1}{2}}$ 只有两个单值分支。

若令
$$z = re^{i\theta} \neq 0$$
,令

$$f_1(z) = r^{\frac{1}{2}} e^{i\frac{\theta}{2}}$$
 $f_2(z) = r^{\frac{1}{2}} e^{i(\frac{\theta}{2} + \pi)}$

则 $f_1(z), f_2(z)$ 都是 \sqrt{z} 在 $\mathbb{C} - \mathbb{R}^+ \cup \{0\}$ 上的单值解析分支,若取 $r = r_0 \neq 0$,则

$$\lim_{\theta \to 0+0} f_1(z) = r_0^{1/2} \quad \lim_{\theta \to 2\pi - 0} f_1(z) = -r_0^{1/2}$$

因此 $f_1(z)$ 在 \mathbb{R}^+ 无意义,同样 $f_2(z)$ 在 \mathbb{R}^+ 无意义,因此得不到 \sqrt{z} 在 $\mathbb{C}-\{0\}$ 上的单值解析分支,但

$$\lim_{\theta \to 0+0} f_1(z) = \lim_{\theta \to 2\pi - 0} f_2(z) \quad \lim_{\theta \to 2\pi - 0} f_1(z) = \lim_{\theta \to 0+0} f_2(z)$$

 $f(z)=z^2$ 的反函数 \sqrt{z} 的 Riemann 曲面可按下面方法得到: 取两块去除原点的复平面 $\mathbb{C}_1-\{0\},\mathbb{C}_2-\{0\}$,分别沿 \mathbb{R}^+ 剪开,把两个平面的上下部分错位粘接,得到曲面 S ,在 S 上定义函数 $f^{-1}(z)$

$$f^{-1}(z) = \begin{cases} f_1(z) & z \in \mathbb{C}_1 - \{0\} \\ f_2(z) & z \in \mathbb{C}_2 - \{0\} \end{cases}$$

就得到 $S \to \mathbb{C}$ 的一个单值映射。这样的 $f^{-1}(z)$ 称为 $f(z) = z^2$ 的单值反函数。

对多值函数,用单值解析分支关系构造曲面 S ,将多值函数变成曲面 S 上的单值函数,是**表示解析函数反函数**的一个基本方法。

利用同样的方法,可以构造函数 $f(z)=z^n$ 的反函数 $\sqrt[n]{z}$ 的 Riemann 曲面 S_n 和单值映射 $\sqrt[n]{z}:S_n\to\mathbb{C}$ 。

对 $\operatorname{Ln} z$ 和 \sqrt{z} ,当 z 沿任何绕原点的圆周运动一周, $\operatorname{Ln} z$, \sqrt{z} 的一个解析分支都必须变成另一个解析分支,因此称 z=0 为这些多值函数的一个支点。因为任何绕原点的圆周从 Riemann 球面上来看也是绕 ∞ 的圆周,因此把 ∞ 也称为它们的**解析支点**。

对 $\operatorname{Ln} z$ 的支点 z=0 ,动点沿着绕原点的圆周朝一方向运动时, $\operatorname{Ln} z$ 从一个解析分支变成另一个解析分支,且不管运动多久都不能回到原来的解析分支,因此称 z=0 及 ∞ 为 $\operatorname{Ln} z$ 的对数支点。对 \sqrt{z} ,动点沿圆周运动两圈后解析分支就回到原来的分支,这种支点称为代数支点。

其余的**初等解析函数**都可以通过 e^z , Lnz 的四则运算和复合得到。

下面我们定义反三角函数

定义 2.5.3 (反三角函数). 因为

$$w = \cos z = \frac{e^{iz} + e^{-iz}}{2}$$

得到 $(e^{iz})^2 - 2we^{iz} + 1 = 0$, 因此

$$e^{iz} = w \pm \sqrt{w^2 - 1} \implies z = \frac{1}{i} \text{Ln}(w \pm \sqrt{w^2 - 1})$$

由于根号前正负是由取函数 \sqrt{z} 的不同解析分支时产生的,而如果我们将其看做 \sqrt{z} 的 Riemann 曲面上的函数,则正负号可以不加区别,因此我们定义 $w=\cos z$ 的反函数为

$$w = \operatorname{Arccos} z = \frac{1}{i} \operatorname{Ln}(z + \sqrt{z^2 - 1})$$

同理

$$w = \operatorname{Arcsin} z = \frac{\pi}{2} - \frac{1}{i} \operatorname{Ln}(z + \sqrt{z^2 - 1})$$

这样我们就把实变量的基本初等函数推广为复变量的函数。

2.6 分式线性变换

- 分式线性变换群与矩阵表示
- 分式线性变换的决定和分解
- 分式线性变换性质
- 常用分式线性变换

2.6.1 分式线性变换群与矩阵表示

定义 2.6.1 (分式线性变换). 有理函数

$$w = f(z) = \frac{az+b}{cz+d}$$
 $a,b,c,d \in \mathbb{C}, ad-bc \neq 0$

称为分式线性变换,也称为 Möbius 变换.

c=0 时即线性函数,在 $\mathbb C$ 解析,定义 $f(\infty)=\infty$ $c\neq 0$ 时,当 $z\neq -\frac{d}{c}$,分式线性变换显然解析,定义

$$f\left(-\frac{d}{c}\right) = \infty, \quad f(\infty) = \frac{a}{c}$$

即可以把分式线性变换看成 $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ 的映射。

按照上一章介绍的方法,我们用坐标变换 $z' = \frac{1}{z}$, 考虑

$$f\left(\frac{1}{z'}\right) = \frac{a + bz'}{c + dz'}$$

显然在 z'=0 处解析,因此 f(z) 在 $z=\infty$ 处解析。同理,用 $w'=\frac{1}{w}$,函数

$$w' = \frac{cz + d}{az + b}$$

2.6. 分式线性变换 33

在 $z = -\frac{d}{c}$ 解析,因此分式线性变换可以看成 $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ 的解析映射。又因为

$$z = \frac{-dw + b}{cw - a}$$

因此分式线性变换是一一映射,且逆映射也是分式线性变换。

分式线性变换的**复合**也是分式线性变换,在复合运算下所有分式线性变换构成群。 第四章我们会证明若 $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ 是一一的解析映射,则是分式线性变换。

分式线性变换 L(z) 分子分母可以乘上相同复数,因此总是假设 ad-bd=1 ,此时记矩阵

$$E = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

则对 $E\mapsto L(z)$, 有 $E^{-1}\mapsto L^{-1}, E_1\cdot E_2\mapsto L_1\cdot L_2$ 的同态关系,令

$$\mathrm{PSL}(2,\mathbb{C}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a,b,c,d \in \mathbb{C}, ad-bc = 1 \right\}$$

称为**二阶特殊复矩阵**群,映射 $E \mapsto L(z)$ 给出了一个同态。

2.6.2 分式线性变换的决定和分解

定理 2.6.1 (三点决定分式线性变换). 对 $\overline{\mathbb{C}}$ 中任意三个两两不同的点 z_1, z_2, z_3 和三个两两不同的点 w_1, w_2, w_3 ,存在唯一的 L(z) 使得

$$w_i = L(z_i) \quad i = 1, 2, 3$$

定义 2.6.2 (基本分式线性变换). 1. 旋转: $L(z) = e^{i\theta}z, \theta \in \mathbb{R}$

- 2. 伸缩: $L(z) = rz, r \in \mathbb{R}^+$
- 3. 平移: $L(z) = z + a, a \in \mathbb{C}$

性质, 只需要考虑基本分式线性变换。

4. $L(z) = \frac{1}{z}$

定理 2.6.2 (分式线性变换分解). 任意分式线性变换可以分解成有限个基本分式线性变换的复合.

证明 $w = L(z) = \frac{az + b}{cz + d}$,若 c = 0 分解显然,否则 $L = \frac{a}{c} + \frac{bc - ad}{c(cz + d)}$,证毕。 即基本分式线性变换是分式线性变换群的**生成元**。于是要得到一般分式线性变换的

2.6.3 分式线性变换性质

定理 2.6.3 (保圆保线). 分式线性变换把 ℂ 的圆和直线变为 ℂ 中的圆和直线。

证明 第一章已经说明圆和直线方程可统一为

$$Az\overline{z} + \overline{B}z + B\overline{z} + C = 0$$
 $A, C \in \mathbb{R}, B \in \mathbb{C}, B\overline{B} - AC > 0$

该形式方程显然在平移、旋转和伸缩下不变。对 $w=\frac{1}{z}$, 变换为

$$Cw\bar{w} + Bw + \overline{B}\bar{w} + A = 0$$

依然是圆和直线。

定义 2.6.3 (对称和对称映射). $K: Az\bar{z} + \overline{B}z + B\bar{z} + C = 0$, 称 $z_1, z_2 \in \mathbb{C}$ 关于 K 对称,若

$$Az_1\bar{z}_2 + \overline{B}z_1 + B\bar{z}_2 + C = 0$$

若 A=0, 对 $z \in \mathbb{C}$, 存在唯一 $S_K(z)$ 和 z 对称, 且

$$S_K(z) \to \infty (z \to \infty)$$

因此记 $S_K(\infty) = \infty$,于是 $S_K(z)$ 是 $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$ 的反解析映射(即 $\overline{S_K(z)}$ 解析),称为 $\overline{\mathbb{C}}$ 关于直线 K 的**对称映射**。

若 $A \neq 0$,当 $A\bar{z} + \overline{B} \neq 0$, z 在 $\mathbb C$ 有唯一对称点 $S_K(z)$,且

$$S_K(z) \to \infty \left(z \to -\frac{\overline{B}}{A}\right) \quad S_K(z) \to -\frac{\overline{B}}{A}(z \to \infty)$$

定义 $S_K\left(-\frac{\overline{B}}{A}\right)=\infty, S_K(\infty)=-\frac{\overline{B}}{A}$,则 $S_K(z)$ 称为 $\overline{\mathbb{C}}$ 关于圆 K 的**对称映射**。由定义容易得到对直线和圆 K 都有 $S_K\cdot S_K(z)=z$,因此称为对称映射。此处圆的对称是**反演**。

定理 2.6.4 (保对称). 若分式线性变换 w=L(z) 把 K_1 变为 K_2 ,则将关于 K_1 的对称点。即

$$L \cdot S_{K_1} = S_{K_2} \cdot L$$

即分式线性变换和对称映射可交换。

证明 只需要考虑四个基本分式线性变换即可。

2.6. 分式线性变换 35

 \mathbb{C} 上任意三个不等且有序的点 z_1, z_2, z_3 决定了一个圆(把直线看做半径 ∞ ,过 ∞ 的圆)并决定了圆周上一个定向 $z_1 \to z_2 \to z_3 \to z_1$,称此圆为 z_1, z_2, z_3 确定了定向的圆。

由前面的定理,存在唯一的分式线性变换 L(z) 把 z_1, z_2, z_3 确定定向的圆变成 w_1, w_2, w_3 确定定向的圆,我们希望证明 L(z) 保持两个圆的正定向。因此需要引入**交比**的概念。

定义 2.6.4 (交比). z_1, z_2, z_3, z_4 是 $\overline{\mathbb{C}}$ 中任意四个互不相等有序点,定义**交比**

$$(z_1, z_2, z_3, z_4) = \frac{z_1 - z_3}{z_1 - z_4} : \frac{z_2 - z_3}{z_2 - z_4}$$

若其中有 ∞ , 定义为其 $\rightarrow \infty$ 的极限。

引理 2.6.1 (保交比). 分式线性变换保持交比不变。

证明 只需要验证基本分式线性变换即可。

引理 2.6.2 (共圆交比). \mathbb{C} 中 z_1, z_2, z_3, z_4 共圆的充要条件是交比为实数。

证明 K 是 z_2, z_3, z_4 决定的圆,L(z) 把 K 变为实轴,则 z_1 在 K 等价于 $L(z_1)$ 在实轴上,即等价于

$$(L(z_1), L(z_2), L(z_3), L(z_4)) \in \mathbb{R}$$

而分式线性变换保持交比, 证毕。

命题 2.6.1 (交比表示分式线性变换和保正定向). K_1, K_2 是 $z_1, z_2, z_3; w_1, w_2, w_3$ 确定定向的圆,则分式线性变换 $z_i \to w_i$ 可表示为

$$(w, w_1, w_2, w_3) = (z, z_1, z_2, z_3)$$

比较等式两边的虚部,得到 L(z) 把 K_1 变为 K_2 ,且把 ${\rm Im}(z,z_1,z_2,z_3)<0$ 的部分(即点 z_1,z_2,z_3 确定的圆的左边)变为 ${\rm Im}(w,w_1,w_2,w_3)<0$ 的部分。因此分式线性变换保持正定向。

2.6.4 常用分式线性变换

例 2.6.1 (把单位圆周变为自身). 考虑把单位圆盘变成自身的所有分式线性变换。

w=L(z) 把单位圆盘变为自身,将 a(|a|<1) 变为 0 ,则把 a 关于单位圆周的对称 点 $\frac{1}{a}$ 变成原点 0 关于单位圆周的对称点 ∞ ,因此

$$L(z) = c\frac{z-a}{z - \frac{1}{\overline{a}}} = c_1 \frac{z-a}{1 - \overline{a}z}$$

其中 c, c_1 为常数。当 $z=e^{i\theta}$ 时,必须 |L(z)|=1 ,因此 $c_1=e^{i\theta}$,因此所有满足要求的分式线性变换即

$$L(z) = e^{i\theta} \frac{z - a}{1 - \bar{a}z}$$
 $\theta \in [0, 2\pi), a \in D(0, 1)$

例 2.6.2 (把上半平面变为单位圆盘). 考虑把 Im z > 0 变为单位圆盘的所有分式线性变换。

将的 a 变为 0,则 L(z) 把 a 关于实轴的对称点 \bar{a} 围边 ∞ ,因此

$$L(z) = c \frac{z - a}{z - \bar{a}}$$

当 z 为实数时,必须 |L(z)| = 1,而 z 为实数时

$$|z-a| = |\overline{z-a}| = |z-\overline{a}| \implies \left|\frac{z-a}{z-\overline{a}}\right| = 1$$

因此满足要求的所有分式线性变换即

$$L(z) = e^{i\theta} \frac{z-a}{z-\bar{a}} \quad \theta \in [0, 2\pi), \operatorname{Im} a > 0$$

例 2.6.3 (上半平面到自身). 考虑上半平面到自身的所有分式线性变换。

变换 $w=\frac{az+b}{cz+d}$ 把实轴变到实轴,容易看出 $a,b,c,d\in\mathbb{R}$ 。又因为是上半平面到自身,因此 z 为实数且从 $-\infty$ 到 $+\infty$ 时,L(z) 也从 $-\infty$ 到 $+\infty$,于是 $z\in\mathbb{R}$ 时 w 单调上升,得到

$$w' = \frac{ad - bc}{(cz + d)^2} > 0 \implies ad - bc > 0$$

反之任给 $a,b,c,d\in\mathbb{R},ad-bc>0$,分式线性变换 $w=\frac{az+b}{cz+d}$ 把实轴变为实轴,上半平面变为上半平面,令分子分母同除以 $\sqrt{ad-bc}$,则分式线性变换不变,因此不失一般性,不妨设 ad-bc=1 ,于是对

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}(2, \mathbb{R})$$

分式线性变换 $w = \frac{az+b}{cz+d}$ 是满足要求的所有分式线性变换。

Chapter 3

Cauchy 定理和 Cauchy 公式

1. 路径积分

2.

3.1 路径积分

定义 3.1.1 (路径积分). γ 是 \mathbb{C} 中给定定向的连续曲线, p_0, p_1 分别为起点和终点。作 γ 的分割 $p_0 = z_0, z_1, \cdots, z_n = p_1$,在 γ 上任取介点集 $\{\xi_i\}$,作 Riemann 和

$$\sum_{i=1}^{n} f(\xi_i)(z_i - z_{i-1})$$

若只要 $\lambda = \max\{\operatorname{diam}(z_{i-1}z_i)\} \to 0$ 时 Riemann 和都有极限 $S \in \mathbb{C}$ 且极限和分割方法 与介点集选取都无关,则称 f(z) 在 γ 可积,称 S 为 f(z) 在 γ 上的路径积分,记为

$$S = \int_{\gamma} f(z) \, \mathrm{d}z$$

命题 3.1.1 (路径积分和实函数关系). 设 z = x + iy, f(z) = u + iv , 对分割和介点集, 设 $z_i = x_i + iy_i$, $\xi_i = \eta_i + i\mu_i$, 则

$$\sum_{i=1}^{n} f(\xi_i)(z_i - z_{i-1})$$

$$= \sum_{i=1}^{n} [u(\eta_i, \mu_i) + iv(\eta_i, \mu_i)] \cdot [(x_i - x_{i-1}) + i(y_i - y_{i-1})]$$

$$= \sum_{i=1}^{n} [u(\eta_i, \mu_i)(x_i - x_{i-1}) - v(\eta_i, \mu_i)(y_i - y_{i-1})]$$

$$+ i \sum_{i=1}^{n} [u(\eta_i, \mu_i) \cdot (y_i - y_{i-1}) + v(\eta_i, \mu_i)(x_i - x_{i-1})]$$

等式右边的和分别是 u,v 在曲线 γ 上的第二型曲线积分的 Riemann 和,因此若 u,v 在 γ 的第二型曲线积分存在,则 f(z) 在 γ 可积,且

$$\int_{\gamma} f(z) dz = \int_{\gamma} (u + iv) (dx + idy)$$
$$= \int_{\gamma} (udx - vdy) + i \int_{\gamma} (udy + vdx)$$

已知若 γ 是分段光滑曲线,u,v 在 γ 连续,则 u,v 在 γ 的第二型曲线积分存在。因此若 γ 分段光滑且 f(z) 在 γ 连续,则 f(z) 在 γ 路径积分存在。

命题 3.1.2 (原函数). 取参数 $t \in [a,b]$,将曲线表示为 $t \mapsto z(t)$,并使曲线的定向与 t 由 $a \to b$ 时决定的曲线走向相同,则

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f[z(t)] dz(t) = \int_{a}^{b} f[z(t)]z'(t) dt$$

其中 z'(t) = x'(t) + iy'(t)。特别地,若存在 F(z) 使得 $\mathrm{d}F(z) = f(z)\mathrm{d}z$,则

$$\int_{\gamma} f(z) dz = \int_{\gamma} dF[z(t)] = \int_{a}^{b} \frac{dF[z(t)]}{dt} dt = F[z(b)] - F[z(a)]$$

命题 3.1.3 (路径积分性质). 路径积分有如下性质

1. 方向性: 用 $-\gamma$ 表示 γ 反定向,则

$$\int_{-\gamma} f(z) \, \mathrm{d}z = -\int_{\gamma} f(z) \, \mathrm{d}z$$

2. 线性性: 对 $a,b \in \mathbb{C}$

$$\int_{\gamma} [af(z) + bg(z)] dz = a \int_{\gamma} f(z) dz + b \int_{\gamma} g(z) dz$$

3. 可加性:用一个点把 γ 分为 γ_1,γ_2 ,则

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz$$

4. 绝对值不等式:

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, |dz| = \int_{\gamma} |f(z)| \, ds$$

其中 $|dz| = \sqrt{dx^2 + dy^2} = ds$ 表示平面的弧长微元。

利用绝对值不等式和下面一致收敛的定义,不难得到下面的定理

3.2. CAUCHY 定理 39

定义 3.1.2 (一致收敛). 集合 K 上的 $\{f_n(z)\}$ 一致收敛于 f(z) ,若 $\forall \varepsilon > 0, \exists N$ 使得对 $\forall n > N, z \in K$ 都有

$$|f_n(z) - f(z)| < \varepsilon$$

定理 3.1.1. γ 是 $\mathbb C$ 分段光滑的有界曲线, $\{f_n(z)\}$ 是 γ 上连续函数列,在 γ 上一致收敛于 f(z) ,则 f(z) 在 γ 连续,且

$$\lim_{n \to +\infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} \lim_{n \to +\infty} f_n(z) dz = \int_{\gamma} f(z) dz$$

定理 3.1.2 (Green 公式). Ω 是 $\mathbb C$ 中以逐段光滑曲线为边界的有界区域,取 $\partial\Omega$ 的正定向,设 u(x,y),v(x,y) 是 $\overline{\Omega}$ 邻域上连续可微的函数,在微积分中证明了下面的 Green 公式

$$\int_{\partial\Omega} (u dx + v dy) = \iint_{\Omega} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy$$

对 z = x + iy, f(z) = u + iv, 因为

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

于是 Green 公式可以写为

$$\int_{\partial\Omega} f(z) \, \mathrm{d}z = \int_{\partial\Omega} (u \, \mathrm{d}x - v \, \mathrm{d}y) + i \int_{\partial\Omega} (u \, \mathrm{d}y + v \, \mathrm{d}x) \\
= \iint_{\Omega} \left[\left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + i \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) \right] \, \mathrm{d}x \, \mathrm{d}y \\
= \iint_{\Omega} \left[\left(-\frac{\partial}{\partial y} + i \frac{\partial}{\partial x} \right) u + \left(-\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) v \right] \, \mathrm{d}x \, \mathrm{d}y \\
= \iint_{\Omega} \frac{\partial}{\partial \bar{z}} (u + iv) \cdot 2i \, \mathrm{d}x \, \mathrm{d}y \\
= \iint_{\Omega} \frac{\partial f}{\partial \bar{z}} \cdot 2i \, \mathrm{d}x \, \mathrm{d}y$$

3.2 Cauchy 定理

对多项式 P(z) ,容易得到,对 $\mathbb C$ 中任意分段光滑的**闭曲线** γ ,恒有

$$\int_{\gamma} P(z) \, \mathrm{d}z = 0$$

进一步,设 $f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$ 是收敛半径为 R 的幂级数, γ 是 f(z) 收敛圆内的闭曲线,因为 f(z) 在 γ 一致收敛,则

$$\int_{\gamma} f(z) dz = \sum_{n=0}^{+\infty} a_n \int_{\gamma} (z - z_0)^n dz = 0$$

即 f(z) 在收敛圆内任意闭曲线积分也为零。或者说路径积分仅和路径的起点和终点有关,和**路径本身无关**。

幂函数是解析函数,因此一个自然的问题是: Ω 上的解析函数 f(z) 的路径积分是否仅和路径的起点和终点有关,而与路径本身无关。

例 3.2.1 (反例). 考虑 $\int_{|z|=r} \frac{\mathrm{d}z}{z}$,其中 |z|=r 取逆时针定向。则 |z|=r 可表示为 $\theta\mapsto z=re^{i\theta},\theta\in[0,2\pi]$,则

$$\int_{|z|=r} \frac{\mathrm{d}z}{z} = \int_0^{2\pi} \frac{\mathrm{d}(re^{i\theta})}{re^{i\theta}} = i \int_0^{2\pi} \frac{re^{i\theta} \mathrm{d}\theta}{re^{i\theta}} = 2\pi i$$

因此我们考虑把闭曲线改为区域边界,得到

定理 3.2.1 (Cauchy 定理). Ω 是 \mathbb{C} 中以有线条逐段光滑曲线为边界的有界区域,f(z) 在 $\overline{\Omega}$ 连续,在 Ω 内解析,则

$$\int_{\partial\Omega} f(z) \, \mathrm{d}z = 0$$

证明 当 f'(z) 在 $\overline{\Omega}$ 的邻域上连续时,设 f(z) = u + iv,因为

$$\int_{\partial\Omega} f(z) dz = \int_{\partial\Omega} (u dx - v dy) + i \int_{\partial\Omega} (u dy + v dx)$$

由 Green 公式

$$\int_{\partial\Omega} P dx + Q dy = \iint_{\Omega} \left(-\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} \right) dx dy$$

得到

$$\int_{\partial\Omega} f(z) dz = \iint_{\Omega} \left(-\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) dx dy + i \iint_{\Omega} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy$$

又根据 C-R 方程代入得到

$$\int_{\partial\Omega} f(z) \, \mathrm{d}z = 0$$

即此时 Cauchy 定理是 Green 公式的一个推论。

但是实际上由条件并不能确定 f'(z) 是否连续。

引理 3.2.1. $D \in \mathbb{C}$ 中的三角形区域,f(z) 在 \overline{D} 邻域解析,则

$$\int_{\partial D} f(z) \, \mathrm{d}z = 0$$

证明 假设 $\int_{\partial D} f(z) \, \mathrm{d}z = M \neq 0$,令 $D = D_1$,连接 ∂D 各边中点,把 D 分为四个三角形 Δ_i ,则

$$\int_{\partial D} f(z) dz = \sum_{i=1}^{4} \int_{\partial \Delta_i} f(z) dz$$

且

$$|M| = \left| \int_{\partial D} f(z) \, dz \right| \le \sum_{i=1}^{4} \left| \int_{\partial \Delta_i} f(z) \, dz \right|$$

于是存在 Δ_i 使得

$$\left| \int_{\partial \Delta_i} f(z) \, \mathrm{d}z \right| \ge \frac{|M|}{4}$$

令其为 D_2 , 一次类推, 得到闭三角形列 $\{D_k\}$ 满足

$$D_k \subset D_{k-1}, \operatorname{diam} D_k = \frac{1}{2} \operatorname{diam} D_{k-1} \quad \left| \int_{\partial D_k} f(z) \, \mathrm{d}z \right| \ge \frac{|M|}{4^{k-1}}$$

于是存在唯一的 z_0 使得 $\{z_0\} = \bigcap_{i=1}^{+\infty} D_k$ 。

因为 f(z) 在 z_0 可导,因此在 z_0 的邻域上

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \rho(z, z_0)(z - z_0) \quad \lim_{z \to z_0} \rho(z, z_0) = 0$$

又因为

$$\int_{\partial D_k} f'(z_0) dz = 0 \quad \int_{\partial D_k} (z - z_0) dz = 0$$

于是

$$\left| \int_{\partial D_k} f(z) \, \mathrm{d}z \right| = \left| \int_{\partial D_k} \rho(z, z_0)(z - z_0) \, \mathrm{d}z \right|$$

$$\leq \max\{ |\rho(z, z_0)| \}_{z \in \partial D_k} \cdot \mathrm{diam}D_k \cdot l(D_k)$$

其中 $l(D_k)$ 表示 D_k 的边长。因为

$$diam D_k = \frac{diam D_1}{2^{k-1}} \quad l(D_k) = \frac{l(D_1)}{2^{k-1}}$$

且
$$\left| \int_{\partial D_t} f(z) \, \mathrm{d}z \right| \ge \frac{|M|}{4^{k-1}}$$
, 因此

$$0 < \frac{|M|}{4^{k-1}} \le \max\{|\rho(z, z_0)|\}_{z \in \partial D_k} \cdot \frac{\operatorname{diam}(D_1)}{2^{k-1}} \cdot \frac{l(D_1)}{2^{k-1}}$$

而 $\max\{|\rho(z,z_0)|\}_{z\in\partial D_k}\to 0 (k\to +\infty)$, 因此上式不成立。证毕

对 $\mathbb C$ 中以有线条逐段光滑曲线为边界的有界区域 Ω ,假定在 Ω 内添加有线条光滑曲线后把 Ω 分割为有限个凸的单连通区域 $\Omega_1,\Omega_2,\cdots,\Omega_n$,则

$$\int_{\partial\Omega} f(z) dz = \sum_{i=1}^{n} \int_{\partial\Omega_i} f(z) dz$$

因此我们只需要考虑凸的单连通区域即可。

对 $\mathbb C$ 中以光滑曲线为边界的凸的有界单区域,f(z) 在 $\overline\Omega$ 连续,在 Ω 解析,因为 f(z) 在 $\overline\Omega$ 一致连续,因此对任意 $\forall \varepsilon>0$,存在以有限条直线段为边界的多边形 D 使得 $\overline D\subset\Omega$,且

$$\left| \int_{\partial \Omega} f(z) \, \mathrm{d}z - \int_{\partial D} f(z) \, \mathrm{d}z \right| < \varepsilon$$

将 D 分割为有限个三角形区域,由引理得到 $\int_{\partial D} f(z) dz = 0$,因此

$$\left| \int_{\partial \Omega} f(z) \, \mathrm{d}z \right| < \varepsilon$$

于是 $\int_{\partial\Omega} f(z) dz = 0$, 证毕。

3.3 Cauchy 公式

定理 3.3.1 (Cauchy 公式). Ω 是 $\mathbb C$ 中以有线条逐段光滑曲线为边界的有界区域,f(z) 在 $\overline{\Omega}$ 连续,在 Ω 内解析,则 $\forall z \in \Omega$

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(w)}{w - z} \, \mathrm{d}w$$

证明 $\mathbb{R} \in \mathbb{R} > 0$ 使得 $\overline{D(z,\varepsilon)} \subset \Omega$, 令

$$D = \Omega - \overline{D(z,\varepsilon)}$$

固定 z, w 作为 D 的变量, 对 D 用 Cauchy 定理, 得到

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} \, \mathrm{d}w = 0$$

而 $\partial D = \partial \Omega \cup (-\partial D(z, \varepsilon))$, 因此

$$\frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(w)}{w - z} \, dw = \frac{1}{2\pi i} \int_{|w - z| = \varepsilon} \frac{f(w)}{w - z} \, dw$$

因为 f(w) 在 z 可导,则

$$f(w) = f(z) + f'(z)(w - z) + \rho(w, z)(w - z)$$

其中 $\lim_{w\to z} \rho(w,z) = 0$, 两边同乘 $\frac{1}{w-z}$ 后积分,得到

$$\int_{|w-z|=\varepsilon} \frac{f(w)}{w-z} dw = \int_{|w-z|=\varepsilon} \frac{f(z)}{w_0 z} dw + \int_{|w-z|=\varepsilon} f'(z) dw$$
$$= \int_{|w-z|=\varepsilon} \rho(w,z) dw$$

注意到

$$\int_{|w-z|=\varepsilon} \frac{f(z)}{w-z} \, \mathrm{d}w = 2\pi i f(z) \quad \int_{|w-z|=\varepsilon} f'(z) \, \mathrm{d}w = 0$$

且

$$\int_{|w-z|=\varepsilon} \rho(w,z) \, \mathrm{d}w \to 0 \quad (\varepsilon \to 0)$$

而由同乘 $\frac{1}{w-z}$ 后积分得到的等式, $\int_{|w-z|=\varepsilon} \rho(w,z)\,\mathrm{d}w$ 是不依赖 ε 的常数,因此它等于 0 ,于是

$$\int_{|w-z|=\varepsilon} \frac{f(w)}{w-z} \, \mathrm{d}w = 2\pi i f(z)$$

证毕。

定义 3.3.1 (核函数). 在 Cauchy 公式中,函数 $\frac{1}{2\pi i}\cdot\frac{1}{w-z}:=H(w,z)$ 称为 Cauchy 核函数,或称为 Cauchy 再生核。

Cauchy 公式表明解析函数由其在边界的函数值唯一确定,并可通过 Cauchy 核利用沿边界的积分得到;反过来,若边界上给了一个可积函数,能否通过 Cauchy 积分得到区域内部的解析函数呢?

引理 3.3.1 (Cauchy 型积分). 若 l 是 $\mathbb C$ 中以有界的分段光滑曲线, $\bar l=l$, $\varphi(z)$ 是 l 上可积函数,对任意 $z\in\mathbb C-\{l\}$,定义

$$f(z) = \frac{1}{2\pi i} \int_{I} \frac{\varphi(w)}{w - z} \, \mathrm{d}w$$

则 f(z) 在 $\mathbb{C} - \{l\}$ 解析。

证明 $z_0 \in \mathbb{C} - \{l\}$,因为 $\{l\}$ 是有界闭集,则

$$\operatorname{dist}(z_0, l) = \delta > 0$$

 $\forall z \in D\left(z_0, \frac{\delta}{2}\right), w \in l$

$$\frac{1}{w-z} = \frac{1}{w-z_0} \cdot \frac{1}{1 - \frac{z-z_0}{w-z_0}} = \sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}$$

由于 $\forall w \in l$, 恒有

$$\left| \frac{(z - z_0)^n}{(w - z_0)^{n+1}} \right| \le \left(\frac{\delta}{2}\right)^n \cdot \frac{1}{\delta^{n+1}} = \frac{1}{\delta} \cdot \frac{1}{2^n}$$

而

$$\sum_{n=0}^{+\infty} \frac{1}{\delta \cdot 2^n} < +\infty$$

由控制收敛定理, $\sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}$ 在 l 一致收敛,因此可逐项积分,得到

$$f(z) = \sum_{n=0}^{+\infty} \frac{1}{2\pi i} \int_{l} \frac{\varphi(w)}{(w - z_0)^{n+1}} dw (z - z_0)^n$$

因此 f(z) 在 z_0 邻域可展开为 $z-z_0$ 的幂级数,因此在 z_0 邻域解析,证毕。

定理 3.3.2. f(z) 在 Ω 解析的充要条件是 $\forall z_0 \in \Omega$, f(z) 在 z_0 的邻域可展开为 $(z-z_0)$ 的幂级数

证明 若 f(z) 局部可展开,由上一章幂级数一节,知 f(z) 在 Ω 解析。

设 f(z) 在 Ω 解析, 对 $\forall z_0 \in \Omega$, 取 r > 0 , 使得 $\overline{D(z_0,r)} \subset \Omega$, 则由 Cauchy 公式

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z} dw \quad \forall z \in D(z_0, r)$$

而

$$\frac{1}{w-z} = \frac{1}{w-z_0} \cdot \sum_{n=0}^{+\infty} \left(\frac{z-z_0}{w-z_0}\right)^n$$

上式 z 固定,因此 $\forall w \in \partial D(z_0, r)$ 恒有

$$\left|\frac{z-z_0}{w-z_0}\right| = \frac{|z-z_0|}{r} < 1$$

利用控制收敛定理,上面的级数对 $w \in D(z_0, r)$ 一致收敛,可逐项积分,得到

$$f(z) = \sum_{n=0}^{+\infty} \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} dw (z-z_0)^n$$

证毕。

推论 3.3.1. 若 f(z) 在 Ω 解析,则实部和虚部在 Ω 的邻域上都可展开为 x,y 的幂级数,因此都是 C^{∞} .

Cauchy 定理表示解析函数沿区域边界的积分为零,一个自然的问题是逆命题是否成立?

定理 3.3.3 (Morera 定理). $\Omega \subset \mathbb{C}$ 为区域,f(z) 在 Ω 连续,则 f(z) 在 Ω 解析的充要条件是对 Ω 中任意由逐段光滑曲线为边界围成的有界区域 D ,若 $\overline{D} \subset \Omega$,则

$$\int_{\partial D} f(w) \, \mathrm{d}w = 0$$

3.3. CAUCHY 公式 45

证明 必要性显然,是 Cauchy 定理推论。下证充分性:

对 $\forall z_0 \in \Omega$,只要证明 f(z) 在 z_0 邻域解析,取 $\varepsilon > 0$,使得 $D(z_0, \varepsilon) \subset \Omega$ 。 $D(z_0, \varepsilon)$ 单连通,因此其中任意简单闭曲线都是 $D(z_0, \varepsilon)$ 中某个区域的边界,由条件,f(z) 沿 $D(z_0, \varepsilon)$ 中任意简单闭曲线积分为零,因而积分和路径无关。 $\forall z \in D(z_0, \varepsilon)$,在 $D(z_0, \varepsilon)$ 中任取连接 z, z_0 的曲线,定义

$$F(z) = \int_{z_0}^z f(w) \, \mathrm{d}w$$

则 F(z) 是 $D(z_0,\varepsilon)$ 上的函数,特别地, $\forall z_1 \in D(z_0,\varepsilon)$,用 $[z,z_1]$ 表示连接 z,z_1 的直线段,则

$$\left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| = \left| \int_{z_1}^{z} \frac{f(w) - f(z_1)}{z - z_1} \, \mathrm{d}w \right|$$

$$\leq \max\{|f(w) - f(z_1)|\}_{w \in [z, z_1]}$$

因为 f(w) 在 z_1 连续,于是

$$\lim_{z \to z_1} \left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| = 0$$

因此 F(z) 在 z_1 可导,且 $F'(z_1) = f(z_1)$,因为 z_1 任取,于是 F(z) 在 $D(z_0, \varepsilon)$ 解析,且 F'(z) = f(z) 。于是 F(z) 可在 $D(z_0, \varepsilon)$ 展开为 $(z - z_0)$ 的幂级数,并可逐项求导,于是 f(z) = F'(z) 在 $D(z_0, \varepsilon)$ 上可展开为 $(z - z_0)$ 的幂级数,证毕。

由上述证明过程可以得到推论:

推论 3.3.2. $D \in \mathbb{C}$ 中单连通区域, $f(z) \in D$ 上解析函数,则 f(z) 在 D 上有**原函数**。

命题 3.3.1 (多连通区域上解析函数的原函数). Ω 区域上有两个洞 D_1, D_2 ,分别取 $z_i \in D_i$,设 γ_i 是围绕 D_i 的不交的简单闭曲线,对 Ω 上任意解析函数 f(z) ,记

$$C_i = \frac{1}{2\pi i} \int_{\gamma_i} f(z) \, \mathrm{d}z$$

并令

$$F(z) = f(z) - \frac{C_1}{z - z_1} - \frac{C_2}{z - z_2}$$

则由 Cauchy 定理和 Cauchy 公式得到

$$\int_{\gamma_1} F(z) dz = \int_{\gamma_1} f(z) dz - \int_{\gamma_1} \frac{C_1}{z - z_1} dz - \int_{\gamma_2} \frac{C_2}{z - z_2} dz$$
$$= 2\pi i C_1 - 2\pi i C_1 - 0 = 0$$

同理

$$\int_{\mathbb{R}^n} F(z) \, \mathrm{d}z = 0$$

于是 F(z) 在 Ω 中任意闭曲线上积分为零,由 Morera 定理,F(z) 在 Ω 有原函数,又 因为

$$\int_{\gamma_1} \frac{\mathrm{d}z}{z - z_1} = \int_{\gamma_2} \frac{\mathrm{d}z}{z - z_2} = 2\pi i$$

因此 $\frac{1}{z-z_1}$, $\frac{1}{z-z_2}$ 在 Ω 解析但没有原函数。

通过上面分系, Ω 上没有原函数的解析函数本质上仅有两个,同样的,如果 Ω 有 n 个洞,则没有原函数的解析函数本质上仅有 n 个。

另外,Morera 定理的证明过程中还可以看出,连续函数 f(z) 解析的充要条件是 f(z) 局部有原函数。因此只要利用积分和极限交换顺序的条件,就能得到解析函数局部一致收敛的极限函数也是解析的。因此引出下面的定义

定义 3.3.2 (内闭一致收敛). 称区域 Ω 上函数列 $\{f_n\}(z)$ 在 Ω 上**内闭一致收敛**于函数 f(z) ,若 $\{f_n(z)\}$ 在 Ω 中任意紧集上一致收敛于 f(z) 。

定理 3.3.4. $\{f_n(z)\}$ 是区域 Ω 上的解析函数列,且在 Ω 上内闭一致收敛于 f(z) ,则 f(z) 在 Ω 上解析。

证明 $\forall z \in \Omega$,取 $\overline{D(z_0,\varepsilon)} \subset \Omega$,则 $\{f_n(z)\}$ 在 $\overline{D(z_0,\varepsilon)}$ 一致收敛于 f(z),因此 f(z) 在 $D(z_0,\varepsilon)$ 上连续,对 $D(z_0,\varepsilon)$ 中任意简单闭曲线 Γ ,由 Cauchy 定理

$$\int_{\Gamma} f_n(z) \, \mathrm{d}z = 0$$

但 $\{f_n(z)\}$ 在 Γ 一致收敛于 f(z) , 因此

$$\int_{\Gamma} f(z) = \lim_{n \to +\infty} \int_{\Gamma} f_n(z) = 0$$

由 Morera 定理, f(z) 在 $D(z_0, \varepsilon)$ 解析, 而 z 任意, 证毕。

上述定理对实可微函数不成立,因为是可微函数序列一致收敛的极限函数不一定可微(微分和极限交换顺序的条件比积分和极限交换顺序更高)

Part II

课本习题

Chapter 1

复数和复函数

1.1 例题

1.2 习题

题目 1.2.1 (1). 将下面的复数表示为 a + ib 的形式:

$$i^n$$
 $(1+i\sqrt{3})^n$ $(1+i)^n+(1-i)^n$

解 采用三角形式即可

$$i^{n} = \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)^{n} = i\sin\frac{n\pi}{2}$$

$$(1 + i\sqrt{3})^{n} = \left(2\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{n} = 2^{n}\left(\cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3}\right)$$

$$(1 + i)^{n} + (1 - n)^{n} = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{n} + \sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)^{n}$$

$$= \sqrt{2}\left(\cos\frac{n\pi}{4} + i\sin\frac{n\pi}{4}\right) + \sqrt{2}\left(\cos\frac{7n\pi}{4} + i\sin\frac{7n\pi}{4}\right)$$

$$= \sqrt{2}\left(\cos\frac{n\pi}{4} + \cos\frac{7n\pi}{4}\right) + i\sqrt{2}\left(\sin\frac{n\pi}{4} + i\sin\frac{7n\pi}{4}\right)$$

题目 1.2.2 (2). 解方程 $z^5 = 1 - i$.

解 设 $z = r(\cos \theta + i \sin \theta)(r > 0, \theta \in [0, 2\pi)$

$$r^{5}(\cos 5\theta + i\sin 5\theta) = \sqrt{2}\left(\cos \frac{7\pi}{4} + i\sin \frac{7\pi}{4}\right)$$

解得

$$r = 2^{1/10} \quad \theta = \frac{7\pi}{4} + 2k\pi \quad k \in \mathbb{Z}$$

题目 1.2.3 (3). 设 r > 0 为实数,z = x + iy 为复数,将复数 r^z 表示为 a + ib 的形式.

解

$$r^{z} = r^{x+iy} = e^{(x+iy)\ln r} = e^{x\ln r} \cdot e^{iy\ln r}$$
$$= e^{x\ln r} \cdot (\cos(y\ln r) + i\sin(y\ln r))$$

题目 1.2.4 (4). 证明 $|z_1-z_2|^2=|z_1|^2-2\mathrm{Re}z_1\overline{z}_2+|z_1|^2$,并说明其几何意义.

证明 记 $z_i = x_i + iy_i, i = 1, 2$,则

$$|z_1|^2 - 2\operatorname{Re} z_1 \overline{z}_2 + |z_1|^2 = (x_1^2 + y_1^2) - 2\operatorname{Re}(x_1 x_2 + ix_1 y_2 + ix_2 y_1 + y_1 y_2) + (x_2^2 + y_2^2)$$

$$= (x_1^2 + y_1^2) - 2(x_1 x_2 + y_1 y_2) + (x_2^2 + y_2^2)$$

$$= (x_1 - x_2)^2 + (y_1 - y_2)^2$$

$$= |z_1 - z_2|^2$$

证毕. $Re(z_1\overline{z}_2)$ 是 z_1,z_2 的内积,因此上式即两点间距离公式.

题目 1.2.5 (5). 设 z_1, z_2, z_3 都是单位复向量,证明: z_1, z_2, z_3 为一正三角形的顶点的充分必要条件是 $z_1 + z_2 + z_3 = 0$.

证明 设 $z_i=\cos\theta_i+i\sin\theta_i, i=1,2,3$,其中 $\theta_i\in[0,2\pi)$,不妨设 $\theta_1>\theta_2>\theta_3$

1. 充分性: 此时
$$\sum_{i}\cos\theta_{i}=0,\sum_{i}\sin\theta_{i}=0$$
,则

$$(\cos \theta_1 + \cos \theta_2)^2 + (\sin \theta_1 + \sin \theta_2)^2 = 1$$

解得

$$2\cos(\theta_1 - \theta_2) = -1 \implies \theta_1 - \theta_2 = \frac{2\pi}{3} \text{ or } \frac{4\pi}{3}$$

同理 $\theta_2 - \theta_3 = \frac{2\pi}{3}$ or $\frac{4\pi}{3}$,则

$$\theta_1 = \theta_3 + \frac{4\pi}{3} \quad \theta_2 = \theta_3 + \frac{2\pi}{3}$$

显然 z_1, z_2, z_3 为正三角形的顶点.

2. 必要性: 此时

$$\theta_1 = \theta_3 + \frac{4\pi}{3}$$
 $\theta_2 = \theta_3 + \frac{2\pi}{3}$

代入计算,显然 $z_1 + z_2 + z_3 = 0$.

题目 1.2.6 (6). 证明:

1.2. 习题 51

1.
$$|1 - \overline{z}_1 z_2|^2 - |z_1 - z_2|^2 = (1 - |z_1|^2)(1 - |z_2|^2)$$
;

2.
$$\stackrel{\text{def}}{=} |z_1| < 1$$
, $|z_2| < 1$ $\stackrel{\text{def}}{=} \frac{z_1 - z_2}{1 - \overline{z}_1 z_2} | < 1$;

3.
$$\exists |z_1| = 1$$
 或 $|z_2| = 1$ 且 $|z_1| \neq |z_2|$ 时, $\left| \frac{z_1 - z_2}{1 - \overline{z}_1 z_2} \right| = 1$.

证明

- 1. 模长展开即证
- 2. 即证

$$\frac{z_1 - z_2}{1 - \overline{z}_1 z_2} \cdot \frac{\overline{z}_1 - \overline{z}_2}{1 - z_1 \overline{z}_2} < 1$$

等价于

$$(1 - |z_1|^2)(1 - |z_2|^2) > 0$$

成立,证毕.

3. 如上同理.

题目 1.2.7 (7). 用复变量表示过点 (1,3),(-1,4) 的直线的方程.

解 直线方程
$$y=-\frac{1}{2}x+\frac{7}{2}$$
,令 $x=\frac{z+\overline{z}}{2},y=\frac{z-\overline{z}}{2i}$,代入得到
$$\frac{z-\overline{z}}{2i}=\frac{7}{2}-\frac{z+\overline{z}}{4}$$

整理得到

$$(1-2i)z + (1+2i)\overline{z} - 14 = 0$$

- - 2. 在上面方程中如果令 $A \rightarrow 0$,求半径和圆心的极限,并说明其几何意义.

解

1. 方程可以化为

$$z\overline{z} - \left(-\frac{B}{A}\right)\overline{z} - \left(-\frac{\overline{B}}{A}\right)z + \frac{C}{A} = 0$$

进一步化为

$$\left(z + \frac{B}{A}\right)\left(\overline{z} + \frac{\overline{B}}{A}\right) = \frac{B\overline{B} - AC}{A^2}$$

当
$$B\overline{B} - AC > 0$$
 时,是以 $-\frac{B}{A}$ 为圆心, $\sqrt{\frac{B\overline{B} - AC}{A^2}}$ 为半径的圆.

2. $A \to 0$ 时半径 $\to +\infty$, 圆心趋近 -B 方向的无穷远点,代表此时圆变为直线.

题目 1.2.9 (9). 证明: 直线 $B\overline{z} + \overline{B}z + C = 0$ 是点 z_1, z_2 连线的垂直平分线的充要条件 是 $B\overline{z}_1 + \overline{B}z_2 + C = 0$.

证明 z_1, z_2 连线垂直平分线的方程为

$$|z - z_1| = |z - z_2|$$

化简得到

$$(\overline{z}_1 - \overline{z}_2)z + (z_1 - z_2)\overline{z} + z_2\overline{z}_2 - z_1\overline{z}_1 = 0$$

则即证

$$\frac{z_1 - z_2}{z_2 \overline{z}_2 - z_1 \overline{z}_1} = \frac{B}{C} \iff B\overline{z}_1 + \overline{B}z_2 + C = 0$$

即证

$$Bz_2(\overline{z}_1 - \overline{z}_2) = \overline{B}z_2(z_1 - z_2)$$

结论成立,证毕.

题目 1.2.10 (10). 设 $S \subset \mathbb{C}$ 为任意集合,令 S' 为 S 的所有极限点构成的集合,S' 称 为集合 S 的导集,证明: S' 是闭集; $\overline{S} = S \cup S'$.

证明

- 1. 否则,存在 $z \notin S'$ 使得 $\forall \delta > 0$, $\exists z' \in U(z, \delta)$ 使得 $z' \in S'$. 则 z 是 S' 的极限 点,显然与 z 不是 S 的聚点矛盾. 证毕
- 2. 先证明 $S \cup S'$ 是包含 S 的一个闭集: 设 $z \notin S \cup S'$,则 z 不是 S 的聚点,于是存在 r > 0 使得 $B_r(z,r) \cap S = \emptyset$,则对任意 $z' \in B_r(z,r)$,显然 $z' \notin S'$,于是 $B_r(z,r) \cap (S \cup S') = \emptyset$,因此 $S \cup S'$ 是一个闭集.

因为 \overline{S} 是包含 S 的所有闭集的交,因此 $\overline{S} \subset S \cup S'$. 下证 $S \cup S' \subset \overline{S}$: 对任意 $z \in S'$,若 $z \notin \overline{S}$,则因为 \overline{S} 是闭集,于是存在 r > 0 使得 $B_r(z,r) \cap S_2 = \emptyset$,又因为 $S \subset \overline{S}$,于是 $B_r(z,r) \cap S = \emptyset$,与 $z \in S'$ 矛盾. 因此 $S' \subset S$,于是 $S \cup S' \subset \overline{S}$,因此

$$\overline{S} = S \cup S'$$

证毕.

题目 1.2.11 (11). 设 $F \subset \mathbb{C}$ 为紧集,证明: F 是有界闭集.

1.2. 习题 53

证明 显然 $\{U(0,k)\}_{k\in\mathbb{N}^*}$ 是 F 的一个开覆盖,则因为 F 是紧集,存在有限子覆盖 $\{U(0,k_i)\}_{1\leq i\leq n}$,则 F 有界.

下证 F 是闭集:对任意 $z_0 \notin F$,构造一个开集族

$$\left\{ U\left(z, \frac{|z-z_0|}{2}\right) \right\}_{z \in F}$$

则这是 F 的一个开覆盖,则存在有限子覆盖

$$\left\{ U\left(z_i, \frac{|z_i - z_0|}{2}\right) \right\}_{1 \le i \le n}$$

取 $r = \min \left\{ \frac{|z_i - z_0|}{2} \right\}_{1 \le i \le n}$,则开球 $B_r(z_0, r) \cap F = \emptyset$,则 F 是闭集,证毕.

题目 1.2.12 (12). 对任意集合 $S \subset \mathbb{C}$, 证明 $\operatorname{diam} S = \operatorname{diam} \overline{S}$.

证明 因为 $S \subset \overline{S}$,因此 $\operatorname{diam} S \leq \operatorname{diam} \overline{S}$. 因为 \overline{S} 是闭集,因此存在 $z_1, z_2 \in \overline{S}$ 使得

$$diam \overline{S} = |z_1 - z_2|$$

若 $z_1, z_2 \in S$,则 $\operatorname{diam} S \geq \operatorname{diam} \overline{S}$,证毕.

否则,不妨设 $z_1 \notin S$,则 $z_1 \in S'$,则存在 $\{z_k\} \subset S$ 使得 $\lim_{k \to \infty} z_k = z_1$,则

$$\sup\{|z_k - z_2|\} \ge |z_1 - z_2|$$

于是 $\operatorname{diam} S \geq \operatorname{diam} \overline{S}$, 证毕.

题目 1.2.13 (13). 设 $z_0 \notin \mathbb{R}$, $\lim_{n\to+\infty} z_n = z_0$, 证明: 若适当选取辐角主值则下两式成立:

$$\lim_{n \to +\infty} |z_n| = |z_0| \quad \lim_{n \to +\infty} \arg z_n = \arg z_0$$

证明

$$\lim_{n \to +\infty} z_n = z_0 \implies \lim_{n \to +\infty} x_n = x_0, \lim_{n \to +\infty} y_n = y_0$$

结论显然

题目 1.2.14 (14). 设 $\Omega \subset \mathbb{C}$ 为任意开集,证明: Ω 可分为有限或一列互不相交且连通的开集的并.

证明 任取 $z_0 \in \Omega$,令 Ω_1 为所有和 z_0 之间存在连通曲线的点的集合,则 Ω_1 是曲线连通的开集,若 $\Omega = \Omega_1$,证毕,否则,取 $z_1 \in \Omega - \Omega_1$,重复以上步骤即可.

题目 1.2.15 (15). 设 S 是给定的集合,集合 $T \subset S$ 称为 S 的相对闭集,如果 T 在 S 中的极限点都在 T 内;集合 $T \subset S$ 称为 S 的相对开集,如果 S - T 是 S 的相对闭集. 证明:S 连通的充分必要条件是 S 不能分解成两个非空、不交的相对开集(闭集)的并.

证明 由题目的定义,显然,集合 $T \subset S$ 是 S 的相对开集当且仅当存在开集 O 使得 $O \cap S = T$.

1. 必要性: 假设存在相对开集 U,V 使得

$$U \cup V = S, U \cap S \neq \emptyset, V \cap S \neq \emptyset, U \cap V = \emptyset$$

则此时存在开集 O_1, O_2 使得 $O_1 \cap S = U, O_2 \cap S = V$, 于是

$$S \subset O_1 \cup O_2, S \cap O_i \neq \emptyset, (S \cap O_1) \cap (S \cap O_2) = \emptyset$$

与 S 的连通性矛盾.

2. 充分性: 假设 S 不连通,则存在上述的开集 O_1, O_2 ,得到上述的相对开集 U, V ,矛盾.

题目 1.2.16 (16). 设 S 是连通集合,f(z) 是 S 上的函数,如果 $\forall z_0 \in S$,存在 r > 0 使得 f(z) 在 $S \cap D(z_0, r)$ 上为常数,证明: f(z) 在 S 上为常数.

证明 取 $z_1 \in S$, 记 $C = f(z_1)$, 对任意 $z \in S$, 存在 z_1, z 之间的连通曲线

$$\gamma: t \mapsto (x(t), y(t)) \quad t \in [a, b], \gamma(a) = z_1, \gamma(b) = z$$

对 $\forall z' \in \gamma([a,b])$,设 $\gamma(c) = z', c \in [a,b]$,存在 $r_{z'} > 0$ 使得 f(z) 在 $S \cap D(z', r_{z'})$ 上为 常数,则存在 $t_{z'}$ 使得 $\gamma(t)$ 在 $(c - t_{z'}, c + t_{z'}) \cap [a,b]$ 上为常数,于是

$$\{(c-t_{z'},c+t_{z'})\}_{c\in[a,b]}$$

构成 [a,b] 的一个开覆盖,则 [a,b] 存在有限子覆盖 $\{(c_i - t_{z'}, c_i + t_{z'})\}_{i \in I}$,于是 f(z) 在 $\gamma([a,b])$ 上为常数,即 $f(z) = f(z_1)$,因为 z 是任意的,因此 f(z) 在 S 上为常数.

题目 1.2.17 (17). 设 $U, V \in \mathbb{C}$ 中区域,映射 $f: U \to V$ 称为开映射,如果 f 将 U 中开集映为 V 中开集;f 称为**逆紧**的,如果对 V 中任意紧集 $K \subset V$, $f^{-1}(K)$ 是 U 中的紧集. 证明:如果 f 是开且逆紧的映射,则 f(U) = V .

证明 因为 f 是开映射,于是 $f(U) \subset V$ 是开集,假设 $f(U) \neq V$,

1.2. 习题 55

题目 1.2.18 (18). 求

$$(1 + \cos \theta + \dots + \cos n\theta) + i(1 + \sin \theta + \dots + \sin n\theta)$$

解 即

$$\begin{split} \sum_{k=0}^{n} e^{ik\theta} &= \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}} = \frac{e^{i(n+1)\theta/2} (e^{-i(n+1)\theta/2} - e^{i(n+1)\theta/2})}{e^{i\theta/2} (e^{-i\theta/2} - e^{i\theta/2})} \\ &= \frac{e^{i(n+1)\theta/2}}{e^{i\theta/2}} \cdot \frac{-2i\sin\frac{(n+1)\theta}{2}}{-2i\sin\frac{\theta}{2}} \\ &= e^{in\theta/2} \cdot \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}} \end{split}$$

题目 1.2.19 (19). 设 $K \in \mathbb{C}$ 中的紧集, $F \to \mathbb{C}$ 中的闭集, 定义:

$$dist(K, F) = Inf\{|z - w| : z \in K, w \in F\}$$

证明:

- 1. 如果 $K \cap F = \emptyset$, 则 $\operatorname{dist}(K, F) > 0$;
- 2. 设 D 是开集, $S \subset D$ 是有界闭集,则 $\operatorname{dist}(S, \partial D) > 0$.

证明

1. 否则,假设 $\operatorname{dist}(K,F)=0$,则存在 $\{k_n\}\subset K,\{f_n\}\subset F$ 使得

$$k_0 = \lim_{n \to \infty} k_n = \lim_{n \to \infty} f_n = f_0$$

又因为 K, F 都是闭集,因此 $k_0 \in K, f_0 \in F$,于是 $K \cap F = \{k_0 = f_0\}$,矛盾.

2. 因为 $S, \partial D$ 都是闭集,因此由上一问结论,只需证 $S \cap \partial D = \emptyset$. 假设存在 $z \in S \cap \partial D$,则 $z \in D$,因为 D 是开集,与 $z \in \partial D$ 矛盾.

题目 1.2.20 (20). 设 $f(x,y)=x^3+3xy+y$, 求 $\frac{\partial f}{\partial z},\frac{\partial f}{\partial \overline{z}}$.

解 直接代入

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) = \frac{3x^2 + 3y}{2} - i \frac{3x + 1}{2}$$
$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) = \frac{3x^2 + 3y}{2} + i \frac{3x + 1}{2}$$

题目 1.2.21 (21). 设 z_0 是集合 S 的极限点,给出并证明: $z \in S, z \to z_0$ 时,函数 f(z) 收敛的 Cauchy 准则.

证明 对 $\forall \varepsilon > 0$,存在 $\delta > 0$,使得对任意满足 $|z_1 - z_0| < \delta, |z_2 - z_0| < \delta$ 的 z_1, z_2 ,都有

$$f(z_1) = f(z_2)$$

下证之: 若 $z \to z_0$ 时 f(z) 收敛,则 $\forall \varepsilon > 0$,存在 $\delta_0 > 0$ 使得

$$|f(z) - f(z_0)| < \frac{\varepsilon}{2} \quad \forall z \in (z_0 - \delta_0, z_0 + \delta_0)$$

于是

$$|f(z_1) - f(z_2)| \le |f(z_1) - f(z_0)| + |f(z_2) - f(z_0)| < \varepsilon$$

证毕.

题目 1.2.22 (22). 将向量函数 $(x,y) \mapsto (u(x,y),v(x,y))$ 表示为复函数 w = u + iv = f(z) = f(x+iy), 如果 f(x+iy) 连续可导,证明:映射的 Jacobi 行列式满足

$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial \bar{f}}{\partial z} \\ \frac{\partial f}{\partial \bar{z}} & \frac{\partial f}{\partial \bar{z}} \end{vmatrix}$$

证明 为简化,记

$$\frac{\partial u}{\partial x} = a$$
 $\frac{\partial u}{\partial y} = b$ $\frac{\partial v}{\partial x} = c$ $\frac{\partial v}{\partial y} = d$

因为

$$\begin{split} \frac{\partial f}{\partial z} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \\ &= \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) - \frac{i}{2} \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \\ &= \frac{1}{2} \left(a - ib + ic + d \right) \end{split}$$

同理得到

$$\frac{\partial \bar{f}}{\partial z} = \frac{1}{2}(a - ib - ic - d)$$
$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(a + ib + ic - d)$$
$$\frac{\partial \bar{f}}{\partial \bar{z}} = \frac{1}{2}(a + ib - ic + d)$$

于是

$$\begin{vmatrix} \frac{\partial f}{\partial z} & \frac{\partial \bar{f}}{\partial z} \\ \frac{\partial f}{\partial \bar{z}} & \frac{\partial f}{\partial \bar{z}} \end{vmatrix} = \frac{1}{4} \begin{vmatrix} a - ib + ic + d & a - ib - ic - d \\ a + ib + ic - d & a + ib - ic + d \end{vmatrix}$$
$$= ad - bc = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

证毕.

题目 1.2.23 (23). 试用 $\frac{\partial}{\partial z}$, $\frac{\partial}{\partial \bar{z}}$ 表示 $\frac{\partial^2}{\partial x^2}$, $\frac{\partial^2}{\partial x \partial y}$.

解 因为

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

因此

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}} \quad \frac{\partial}{\partial y} = i \left(\frac{\partial}{\partial z} - \frac{\partial}{\partial \bar{z}} \right)$$

于是

$$\begin{split} \frac{\partial^2}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) = \left(\frac{\partial}{\partial x} \right)^2 = \partial_z^2 + 2 \partial_z \partial_{\bar{z}} + \partial_{\bar{z}}^2 \\ \frac{\partial^2}{\partial x \partial y} &= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \right) = i (\partial_z^2 - \partial_{\bar{z}}^2) \end{split}$$

题目 1.2.24 (24). 设 \mathbb{C}_1 , \mathbb{C}_2 是 1.4 中 S 两个坐标平面, $\overline{B}z + B\overline{z} + C = 0$ 是 \mathbb{C}_1 中的直线,问其在平面 \mathbb{C}_2 上是什么样的曲线.

解 由坐标变换 $z \mapsto \frac{1}{z} = w$ 得到,在 \mathbb{C}_2 上曲线的方程为

$$\overline{B} \cdot \frac{1}{z} + B \cdot \frac{1}{\overline{z}} + C = 0$$

化简得到 $\overline{Bz} + Bz + Cz\overline{z} = 0$,当 $C \neq 0$ 时,是一个圆心为 $-\frac{\overline{B}}{C}$,半径为 $\sqrt{\frac{B\overline{B}}{C^2}}$ 的圆,当 C = 0 时,是一条直线.

题目 1.2.25 (25). 假设条件如 24 题,设 $Az\bar{z} + \overline{B}z + B\bar{z} + C = 0$ 是 \mathbb{C}_1 中的圆,问其在 \mathbb{C}_2 上是什么样的曲线.

解 同理,在 \mathbb{C}_2 上的曲线方程为

$$Cz\bar{z} + \overline{B}\bar{z} + Bz + A = 0$$

因为原方程在 \mathbb{C}_1 是一个圆,因此 $\overline{B}B-AC>0$,于是当 $C\neq 0$ 时,是一个圆心为 $-\frac{\overline{B}}{C}$,半径为 $\sqrt{\frac{B\overline{B}-AC}{C^2}}$ 的圆; 当 C=0 时是直线.

题目 1.2.26 (26). 设 f 是 $\overline{\mathbb{C}}$ 上 C^{∞} 的函数,证明: 微分 df 与坐标无关.

证明

题目 1.2.27 (27). 将 $f=z\bar{z}$ 定义到 $\overline{\mathbb{C}}$ 上,并求 $\frac{\partial f}{\partial w}$ 在 ∞ 处的值.

解

题目 1.2.28 (28). 在 ℂ 上定义

$$ds^2 = \frac{4|dz|^2}{(1+|z|^2)^2}$$

 $\mathrm{d}s^2$ 称为**球度量**,证明: 对坐标变换 $z=\frac{1}{w}$,有

$$\frac{4|\mathrm{d}z|^2}{(1+|z|^2)^2} = \frac{4|\mathrm{d}w|^2}{(1+|w|^2)^2}$$

证明 因为 $dw = -\frac{1}{z^2}dz$,直接代入即证.

Chapter 2

解析函数

- 2.1 例题
- 2.2 习题