1. Let φ . $\Lambda \rightarrow \beta$ be a my hom. and $\varphi^{\#}$: spec Λ .

(a) Show that if φ is surjective, then $\varphi^{\#}$ is a cloud embeddy.

(b) If φ is injective, then $\varphi^{\#}$ is dominant i.e.; $\varphi^{\#}(X) = Y$.

5. Define integral morphisms $f: X \to Y$ locally. Show that if $f: X \to Y$ then f is a cloud map. Show this by showing.: (a) enough to show f(X) is closel in Y

(t)	We	may	assume	X	and	Y	are	reduced.
		U						

Then conclude-

4. Show by swing examples:

(a) The underlying top, space of X x Y

need not be the film product of X and Y over

(l) show that X x Y need not be reduced

even if X and Y are reduced.

5. Show that $(X \times Y)$ = (X red X red) red $(X \times Y)$ red (X