Parte III

Lembrando ...

Até agora estudamos quatro sistemas e algumas conversões:

- Decimal
- Binário
- Octal
- Hexadecimal

→ Conversões para Decimal

Sistema	Base	Algarismos
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Binário	2	0, 1
Octal	8	0, 1, 2, 3, 4, 5, 6, 7
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Lembrando ...

Binário para Decimal

$$1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 16 + 8 + 4 + 0 + 1 = 29$$

Portanto, $11101_2 = 29_{10}$

Octal para Decimal

$$2 \times 8^{1} + 7 \times 8^{0} = 16 + 7 = 23$$

Portanto, $27_8 = 23_{10}$

Hexadecimal para Decimal

$$2 \times 16^{2} + 12 \times 16^{1} + 10 \times 16^{0} =$$

$$2 \times 256 + 12 \times 16 + 10 \times 1 = 714$$

Portanto, 2CA_{16} = 714_{10}

Conversão Sistema decimal para base 'X'

Introdução

- Nos tópicos anteriores foi demonstrado como converter um número binário ou hexadecimal em decimal.
- Agora vamos aprender como converter um número no sistema decimal para os sistemas binário e hexadecimal.

Fundamentação

- A conversão de números, representados na base 10, para seus valores equivalentes em uma base X qualquer é obtida dividindo-se o número decimal sucessivamente pela base X desejada;
- O resto encontrado é o algarismo menos significativo do valor na base X (mais à esquerda). Em seguida, divide-se o quociente encontrado pela base X; o resto é o algarismo seguinte (à esquerda);
- E assim, sucessivamente, vão-se dividindo os quocientes pelo valor da base até se obter quociente de valor zero.
- Em cada divisão, o resto encontrado é um algarismo significativo do número na nova base; o primeiro resto encontrado é o valor do algarismo menos significativo (mais à direita), e o último resto será o algarismo mais significativo (mais à esquerda).
- Usar o dividendo (que agora é menor que o divisor) como último algarismo à esquerda (algarismo mais significativo).

Esquema geral

Conversão - decimal ->binário

O último quociente será o algarismo mais significativo, fica colocado à esquerda; os outros algarismos seguem-se na ordem do último resto, penúltimo resto, anti-penúltimo resto, etc, até o 1º resto. Teremos, então, no caso acima:

1	0	1	1	1	1
Último	5°	4°	3°	2°	1°
quociente	resto	resto	resto	resto	resto

 $|1011111_2 = 47_{10}|$

001

- 1. Converter de decimal para binário
- a) 45
- b) 97
- c) 400

 $45_{10} = 101101_2$

 $97_{10} = 1100001_2$

Conversão

Decimal > Hexadecimal

Divisões sucessivas pela base (16)

O resultado é: 3_14 8, mas no sistema hexadecimal 14 = E

Portanto, $1000_{10} = 3E8_{16}$

Efetuar as seguintes conversões de decimal para hexa

001

- 1) 134
- 2) 384

Portanto, 13410 = 8616

Conversões

- → Binário para Hexadecimal
- → Hexadecimal para Binário

Binário para Hexadecimal

Nesta caso, agrupamos de quatro em quatro algarismos da direita para a esquerda.

Fazemos, agora, a conversão desses grupos de algarismos para o sistema decimal.

Converter o número **10011000**₂ em **hexadecimal.**

1001 1000

Separando:

 $1001 \rightarrow 9$ $1000 \rightarrow 8$

Portanto, $10011000_2 = 98_{16}$

Hexadecimal para Binário

A conversão de números da base 16 para a base 2 é obtida substituindo-se o algarismo hexadecimal pelos 4 bits correspondentes (algarismos binários)

Ex. 1 : Converter o número C13₁₆ em binário

Portanto, C13₁₆ = 110000010011₂

Ex. 2 : Converter o número ABF₁₆ em binário

Tabela: binário – octal – decimal e hexa

Base 2	Base 8	Base 10	Base 16
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

001

Exercícios – binário para hexa

001

- a) 101101110
- b) 10000101
- c) 1111101000
- d) 10001000001000
- e) 101111011101
- f) 1011011011

- a) 255
- b) DEB
- c) 9A
- d) 9C7
- e) ABF

Respostas

Binário → hexa

- a) 16E
- b) 85
- c) 3E8
- d) 2208
- e) BDD
- f) 2DB

Hexa → binário

- a) 1001010101
- b) 110111101011
- c) 10011010
- d) 100111000111
- e) 101010111111