CS581 Theory of Computation: Homework #4

Due on February 22 2016 at $2:00 \mathrm{pm}$

Harry H. Porter Winter 2016

Konstantin Macarenco

Problem 4.1

Answer all parts for the following DFA M and give reasons for your answers.

1. Is $\langle M, 0100 \rangle \in A_{DFA}$?

Yes. The DFA M accepts 0100.

2. Is $(M, 011) \in A_{DFA}$?

No. The DFA M doesn't accept 011.

3. Is $\langle M \rangle \in A_{DFA}$?

No. This input has only a single component and thus is not of the correct form.

4. Is $\langle M, 0100 \rangle \in A_{REX}$?

No. The first component is not a regular expression and so the input is not of the correct form.

5. Is $\langle M \rangle \in E_{DFA}$?

No. M's language isn't empty.

6. Is $\langle M, M \rangle \in EQ_{DFA}$?

Yes. M accepts the same language as itself.

Problem 4.2

Consider the problem of determining whether a DFA and regular expression are equivalent. Express this problem as a language and show that it is decidable.

Solution

Let $EQ_{DFA,REGEX} = \{\langle A, R \rangle | A \text{ is a } DFA, R \text{ is a Regular Expression and } L(A) = L(R) \}.$ The following TM decides $EQ_{DFA,REGEX}$

On input $\langle A, R \rangle$, where A is a DFA, and R is a regular expression do the following:

- 1. Convert R to equivalent DFA R_D .
- 2. Run EQ_{DFA} as a subroutine on $\langle A, R_D \rangle$.
- 3. If EQ_{DFA} accepts, accept, otherwise reject.

Problem 4.3

Let $ALL_{DFA} = \{\langle A \rangle | A \text{ is a } DFA \text{ and } L(A) = \Sigma^* \}$. Show that ALL_{DFA} is decidable.

(Harry H. Porter Winter 2016)

Solution

Since class of DFA is closed under complement, we can prove that ALL_{DFA} is decidable by constructing it:

On input $\langle A \langle$, where A is a DFA, do the following:

- 1. Convert A to \overline{A} (complement of A).
- 2. Run E_{DFA} as a subroutine on \overline{A} , check if $L(\overline{A}) = \emptyset$ or not.
- 3. $L(\overline{A}) = \emptyset$ return accept, otherwise return reject

Problem 4.6

Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 19\}$. We describe the functions $f: X \to Y$ and $g: X \to Y$ in the following tables. Answer each part and give a reason for each negative answer.

n	f(n)	n	g(n)
1	6	1	10
2	7	2	9
3	6	3	8
4	7	4	7
5	6	5	6

Solution

1. Is f one-to-one?

No. f is not one-to-one because f(1) = f(3)

2. Is f onto?

No. f is not onto, because there doesn't exist $x \in X$ such that f(x) = 8.

3. Is f a correspondence?

No. f is not a correspondence because f is not one-to-one and onto.

4. Is q one-to-one?

Yes. q is one-to-one.

5. Is g onto?

Yes. q is onto.

6. Is q a correspondence?

Yes. g is a correspondence because g is one-to-one and onto.

Problem 4.11

Let $INFINITE_{PDA} = \{\langle M \rangle | M \text{ is a } PDA \text{ and } L(M) \text{ is an infinite language} \}$. Show that $INFINITE_{PDA}$ is decidable

Solution

Build a Turing machine that will do the following. Read $\langle M \rangle$ and create an equivalent context-free grammar G.

- 1. Convert G to Chomsky Normal Form. Call it G'
- 2. Do a breadth-first search of the grammar rules of G' looking for recursion. That is, does there exist a derivation $A \stackrel{+}{\Rightarrow} uAv$?
- 3. If so, then accept $\langle M \rangle$.
- 4. If not, then reject $\langle M \rangle$.