$\dot{}$ À rendre pour le lundi 6 novembre 2023 -

Devoir maison nº 2

Mathématiques

Exercice 1. Soit p un entier naturel non-nul. On pose $f(p) = p^2 + p + 1$ et $u_p = \frac{f(p)}{p(p+1)}$.

- 1) Calculer f(p-1). En déduire, pour $p \ge 2$, une expression de $\frac{p^3-1}{p^3+1}$ en fonction de u_p et u_{p-1} .
- 2) Déterminer la limite quand $n \to +\infty$ de la quantité suivante :

$$w_n = \prod_{p=2}^n \frac{p^3 - 1}{p^3 + 1}.$$

Exercice 2. Soient un entier $n \ge 2$ et a, b des nombres complexes. On pose $\omega = e^{\frac{2i\pi}{n}}$.

- 1) Que vaut ω^n ? Calculer $\sum_{k=0}^{n-1} (a + \omega^k b)$.
- 2) Montrer que $n|a| \leqslant \sum_{k=0}^{n-1} |a + \omega^k b|$.
- 3) Montrer que $\sum_{k=0}^{n-1} |a + \omega^k b| = \sum_{j=0}^{n-1} |b + \omega^j a|$.
- 4) En déduire que $|a| + |b| \leqslant \frac{2}{n} \sum_{k=0}^{n-1} |a + \omega^k b|$.

Problème

L'objectif de ce problème est d'étudier quelques propriétés des réels $\cos\left(\frac{\pi}{n}\right)$ pour différentes valeurs de $n \in \mathbb{N}^*$. On rappelle qu'un réel r est un rationnel s'il existe deux entiers relatifs p et q (avec $q \neq 0$) tels que $r = \frac{p}{q}$. Quitte à simplifier la fraction, on peut toujours choisir p et q premiers entre eux.

On admet dans tout le problème que si p est un nombre premier alors \sqrt{p} est irrationnel (i.e. n'est pas rationnel) ainsi que le résultat d'arithmétique suivant : si p et q sont deux entiers premiers entre eux (i.e. sans facteur commun) tels que p divise q^3 alors $p=\pm 1$.

Partie I

Dans cette partie, on va établir quelques résultats qui seront utiles par la suite. Ici n désigne un entier naturel non-nul et pour tout $k \in \mathbb{Z}$, on pose :

$$a_k = (-1)^k \cos\left(\frac{k\pi}{2n+1}\right).$$

- 1) Calculer $\sum_{k=0}^{2n} a_k$.
- 2) Comparer a_{k+2n+1} et a_{2n+1-k} avec a_k et montrer que : $\forall (s,k) \in \mathbb{Z}^2$, $2a_s a_k = a_{s+k} + a_{s-k}$.
- 3) Établir la relation $\sum_{k=1}^n a_k = \sum_{k=n+1}^{2n} a_k$ et en déduire que $\sum_{k=1}^n a_k = -\frac{1}{2}$.
- 4) Pour $k \in \mathbb{N}^*$, on considère la propriété \mathcal{P}_k : " a_k et a_{k+1} sont rationnels." On **suppose** que a_1 est rationnel. Montrer alors par récurrence que \mathcal{P}_k est vraie pour tout $k \in \mathbb{N}^*$.

On a ainsi montré que si a_1 est rationnel alors tous les a_k , pour $k \in \mathbb{N}^*$, sont rationnels.

Partie II

- 5) On prend n=2. En utilisant la question 3, déterminer une expression de $\cos\left(\frac{\pi}{5}\right)$ à l'aide de racines carrées. Ce nombre est-il rationnel?
- 6) Exprimer $\cos(3\theta)$ en fonction de $\cos\theta$. En déduire que $\cos\left(\frac{\pi}{9}\right)$ est solution de l'équation $8x^3 6x 1$.
- 7) On suppose par l'absurde que $\cos\left(\frac{\pi}{9}\right)$ est rationnel donc s'écrit $\cos\left(\frac{\pi}{9}\right) = \frac{p}{q}$ avec $p, q \in \mathbb{N}^*$ premiers entre eux. Justifier que $8p^3 6pq^2 = q^3$ et en déduire une contradiction. On a ainsi montré que $\cos\left(\frac{\pi}{9}\right)$ est irrationnel.
- 8) Dans cette question, on prend n = 6 et on pose $y_1 = a_1 + a_3 + a_4$ et $y_2 = a_2 + a_5 + a_6$.
 - a) Calculer $y_1 + y_2$ et y_1y_2 .
 - b) Montrer que $y_1 < 0$ et déterminer y_1 et y_2 .
 - c) Montrer que $\cos\left(\frac{\pi}{13}\right)$ est irrationnel.
 - d) On pose $\alpha = y_1$, $\beta = a_1a_3 + a_1a_4 + a_3a_4$ et $\gamma = a_1a_3a_4$. Calculer β et γ .
 - e) Montrer que $\cos\left(\frac{\pi}{13}\right)$ est racine d'un polynôme de degré 3 dont les coefficients s'expriment à l'aide de α, β, γ .