

Летний интенсив 2022

Компьютерное зрение

Преподаватели курса:

- Бурмистров Степан
- Федосеев Алексей

Руководитель лаборатории:

Дмитрий Тетерюков

Skoltech Robot X

Задачи курса:

- Изучение алгоритмов компьютерного зрения
- Поиск и распознавание объектов
- Управление коллаборативным роботом-манипулятором UR3

Skoltech Robot X

Их разыскивает Россия!

Тимошин Иван Смагин Никита Жданов Степан Палади Максим Гартуев Максим Громаков Максим Громакова Варвара Тегниряднов Артём Тихонов Константин

Калибровка камеры

4633.jpg

493.jpg

491.jpg

6043.jpg

683.jpg

643.jpg

4603.jpg

1979.jpg

5865.jpg

729.jpg

Шахматная доска

Skoltech Robet X

Результат

Skoltech Robet X

Aruco-маркеры

Skoltech Robot X

Поиск Aruco-маркеров

Skoltech Røb@{X

- Обнаружение маркеров с помощью cv2.aruco.detectMarkers.
- Нахождение их крайних точек.

Исправление перспективы поля

После получения крайних точек растягиваем изображение

Skoltech Robet X

А что если маркер закрыт?

Skoltech Røb@tX

Математический способ

$$k = \frac{y2 - y1}{x2 - x1}$$

$$b = y2 - k * x1$$

$$x = \frac{b2 - b1}{k2 - k1}$$

$$y = k2 - x * b1$$

Skoltech Røbøt X

Метод сохранения данных

Создание бинаризованых масок для объектов разных цветов

Skoltech Robot X

HSV

Hue

Saturation

Value

Skoltech Robet X

Нахождение контуров объекта

Skoltech Robot X

Создание обводящей рамки

Skoltech Robot X

```
for i in range(len(contours)):
    x, y, w, h = cv2.boundingRect(contours[i])
    cv2.rectangle(field, (x, y), (x+w, y+h), (255,0,0), 2)
```


Определение центра объекта, зная его крайние точки

Skoltech Robot X

Нахождение формы объектов

Skoltech RobotX


```
area = cv2.contourArea(contour)
perimeter = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.005 * perimeter,
True)
x, y, w, h = cv2.boundingRect(contour)
if len(approx) <= 11:</pre>
   if w * h - area < 5000:
       shape = 1 # cube 0 deg
   else:
       shape = 2 # cube 45 deg
else:
   shape = 0 \# ball
```

CNN для классификации объектов на поле

Skoltech Robot X

Датасет

Skoltech Røbøł X

Количество классов - 5 Классы:

- кубик 45°
- кубик 90°
- жёлтый шарик
- оранжевый шарик
- зелёный шарик

Размер изображений: 128x128x3
Количество тренировочных картинок для каждого класса ~200

Архитектура CNN

import torch

Skoltech Robot X

```
from torch import nn
class CustomConvNet(nn.Module):
  def init (self, num classes):
      self.layer1 = self.conv module (3, 16)
      self.layer2 = self.conv module (16, 32)
      self.layer3 = self.conv module (32, 64)
      self.layer4 = self.conv module (64, 128)
      self.layer5 = self.conv module (128, 256)
      self.gap = self.global avg pool (256,
   def forward(self, x):
      out = self.layer1(x)
      out = self.layer2(out)
      out = self.layer3(out)
      out = self.layer4(out)
      out = self.layer5(out)
      out = self.gap(out)
      out = out.view(-1, 5) # 5 - num classes
       return out
```

5 свёрточных слоёв

Выход нейросети:

```
tensor([[0.4581, 0.5374, 0.3437, 0.4208, 0.3797], [0.3316, 0.2519, 0.4646, 0.4176, 0.3997]], grad_fn=<ViewBackward0>) torch.Size([2, 5])
```

Обучение

Skoltech RøbøtX

```
#Гиперпараметры
hyper_param_epoch = 80
hyper_param_batch = 8
hyper_param_learning_rate = 0.001
```

```
Epoch [78/80], Loss: 0.0009
Epoch [78/80], Loss: 0.0004
Epoch [78/80], Loss: 0.0003
Epoch [79/80], Loss: 0.0008
Epoch [79/80], Loss: 0.0002
Epoch [79/80], Loss: 0.0010
Epoch [79/80], Loss: 0.0008
Epoch [79/80], Loss: 0.0007
Epoch [79/80], Loss: 0.0003
Epoch [79/80], Loss: 0.0007
Epoch [80/80], Loss: 0.0132
Epoch [80/80], Loss: 0.0005
Epoch [80/80], Loss: 0.0012
Epoch [80/80], Loss: 0.0012
Epoch [80/80], Loss: 0.0045
```


Инференс и обработка результатов

```
Skoltech RobotX
```


tensor([[0.1567, -0.0217, 6.4791, 1.1930, -0.0247]])

Тестирование обученной модели

Skoltech Robot X

Инференс на Tesla K80 ~**390 FPS**

Инференс на CPU ~ 90 FPS

GPU - Nvidia Tesla K80 spec

Куда ядра: 2496

Видео-память: **12GB GDDR5**

CPU - Intel Xeon spec

Частота: **2.3Ghz**

Ядра: 1 ядро, 2 потока

Проверка на реальном поле

Skoltech Robet X

Перевод координат в миллиметры

Skoltech Robot X

ПОДСКАЖИТЕ Сколько в 1 мм пикселей!


```
x_mm = int((287 / width) * x_center)

y_mm = int((200 / height) * y_center)
```


Skoltech Robot X

Изменяем систему координат поля

Skol<mark>tech</mark> Røb**ot**X

Перевод систему координат поля в систему координат робота

Симуляция в RoboDK

Skoltech Robot X

Симуляция в RoboDK

- Импорт

```
import sys
sys.path.insert(0, '/home/user/RoboDK/Python')
from robodk.robolink import *
from robodk.robomath import *

RDK = Robolink()

robot = RDK.ItemUserPick('Select a robot', ITEM_TYPE_ROBOT)
if not robot.Valid():
    raise Exception('No robot selected or available')
```

- Использование

```
def movel(coord, *args, **kwargs):
    target = UR_2_Pose(coord)
    try:
        robot.MoveL(target)
    except TargetReachError:
        pass

movel([0, 0, 10, 0, 3.142, 0])
```

Робот-манипулятор UR3

Skoltech Robot X

Работа манипулятора при помощи планшета

Skoltech Robet X

Free drive

Skoltech Robet X

Первое подключение к роботу

Skoltech Røbøł X

Построение маршрута робота

Skoltech Robot X

Работа с роботом

Skoltech RøbækX

Movel команда для линейного перемещение робота

максимальная скорость

координаты

ускорение

```
robot.movel([x, y, z, angle_1, angle_2, angle_3]), acc=acc,
vel=velocity, wait=True)
```


Skoltech

Робот Спасибо за внимание!

https://github.com/robotxschool/CV June 2022

stepan_burmistrov

alexeyfas