Bike Sharing Demand

Bing Liu

Jilin University
College of Computer Science and Technology

2021-04-23

Table Of Content

Overview

Data

Feature Engineering and Model

Conclusion

Overview

Description and Evaluation

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

Description and Evaluation

Data

Feature Engineering and Model

Conclusion

Overview

Description and Evaluation

Overview

Description and Evaluation

Data

Feature Engineering and Model

Conclusion

Description

In this competition, participants are asked to combine historical usage patterns with weather data in order to forecast bike rental demand in the Capital Bikeshare program in Washington, D.C.

■ Evaluation

Submissions are evaluated one the Root Mean Squared Logarithmic Error.

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

Data

Data Description and Explorer

Overview

Data

Data Description and Explorer

Data Fields
Missing Values Analysis
Outliers Analysis
Correlation Analysis

Visualizing Distribution Of Data Visualizing Count

Feature Engineering and Model

Conclusion

Data Description

The competition provide hourly rental data spanning two years.the training set is comprised of the first 19 days of each month, while the test set is the 20th to the end of the month. The taskis to predict the total count of bikes rented during each hour covered by the test set, using only information available prior to the rental period.

Data Explorer

- ◆ **train.csv** it contains 10886 rows and 12 columns. Each row represents bike rental data for a certain hour. Each column indicates the current conditions
- ◆ **test.csv** it contains 6493 rows and 9 columns. Compared with the train data, there are fewer "casual", "registered" and "count" columns.
- ◆ **sampleSubmission.csv** it clarifies the data submission format. It just contains 2 columns that is "datetime" and "count".

Data Fields

Overview

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

column	description			
datetime	hourly date + timestamp			
season	1 = spring, 2 = summer, 3 = fall, 4 = winter			
holiday	whether the day is considered a holiday			
workingday	whether the day is neither a weekend nor holiday			
weather	1=clear, 2=mist + cloudy, 3=light snow, 4=heavy rain			
temp	temperature in Celsius			
atemp	"feels like" temperature in Celsius			
humidity	relative humidity			
wind speed	wind speed			
casual	number of non-registered user rentals initiated			
registered	number of registered user rentals initiated			
count	number of total rentals			

Missing Values Analysis

Overview

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

I use "missingno" to visualize missing value in the dataset, Luckily the dataset do not has any missing value.

Figure 1: Missing values analysis

Outliers Analysis

Overview

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data Visualizing Count

Feature Engineering and Model

Conclusion

1:Spring season has got relatively lower count.

2:The boxplot with "Hour Of The Day" is quiet interesting. The median value are relatively higher at 7AM to 8AM and 5PM to 6PM.

3:Most of the outlier points are mainly contributed from "Working Day" than "Non Working Day".

Figure 2: Outliers analysis

Correlation Analysis

Overview

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data Visualizing Count

Feature Engineering and Model

Conclusion

1:temp and humidity features has got positive and negative correlation with count respectively. the count variable has got little dependency on "temp" and "humidity".

2:"Casual" and "Registered" are also not taken into account since they are leakage variables in nature and need to dropped during model building.

3:windspeed is not gonna be really useful numerical feature.

Figure 3: Correlation Analysis I

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

Regression plot in seaborn is one useful way to depict the relationship between two features. Here we consider "count" vs "temp", "humidity", "windspeed".

Figure 4: Correlation Analysis II

Visualizing Distribution Of Data

Overview

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

It is desirable to have Normal distribution as most of the machine learning techniques require dependent variable to be Normal. One possible solution is to take log transformation on "count" variable after removing outlier data points.

Figure 5: Visualizing Distribution Of Data

Visualizing Count

Overview

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

1:It is quiet obvious that people tend to rent bike during summer season. Therefore June, July and August has got relatively higher demand for bicycle.

2:On weekdays more people tend to rent bicycle around 7AM-8AM and 5PM-6PM.

Figure 6: Visualizing Count I

Data

Data Description and Explorer

Data Fields

Missing Values Analysis

Outliers Analysis

Correlation Analysis

Visualizing Distribution Of Data

Visualizing Count

Feature Engineering and Model

Conclusion

1:On "Saturday" and "Sunday". More people tend to rent bicycle between 10AM and 4PM.

2:Registered user contribute the peak around 7AM-8AM and 5PM-6PM.

Figure 7: Visualizing Count II

Data

Feature Engineering and Model

Conclusion

Feature Engineering and Model

Feature Processing

Overview

Data

Feature Engineering and Model

Conclusion

Split the given date into "date, hour, year, weekday, month".

```
# Feature Engineering
data["date"] = data.datetime.apply(lambda x: x.split()[0])
data["hour"] = data.datetime.apply(lambda x: x.split()[1].split(":")[0]).astype("int")
data["year"] = data.datetime.apply(lambda x: x.split()[0].split("-")[0])
data["weekday"] = data.date.apply(lambda dateString: datetime.strptime(dateString, "%Y-%m-%d").weekday())
data["month"] = data.date.apply(lambda dateString: datetime.strptime(dateString, "%Y-%m-%d").month)
```

Figure 8: Time feature processing

According to visual analysis, select features that have strong correlation with count.

```
# Coercing To Categorical Type
categoricalFeatureNames = ["season", "holiday", "workingday", "weather", "weekday", "month", "year", "hour"]
numericalFeatureNames = ["temp", "humidity", "windspeed", "atemp"]
dropFeatures = ['casual', "count", "datetime", "date", "registered"]
```

Figure 9: Feature selection

Splitting train and test date

$\overline{}$							
	v	e 1	r٦	71	61	W	

Doto

Feature Engineering and Model

Conclusion

Divide train set and test set according to whether there is count attribute.

```
# Splitting Train And Test Data
dataTrain = data[pd.notnull(data['count'])].sort_values(by=["datetime"])
dataTest = data[~pd.notnull(data['count'])].sort_values(by=["datetime"])

datetimecol = dataTest["datetime"]
yLabels = dataTrain["count"]
yLablesRegistered = dataTrain["registered"]
yLablesCasual = dataTrain["casual"]

# Dropping Unncessary Variables
dataTrain = dataTrain.drop(dropFeatures, axis=1)
dataTest = dataTest.drop(dropFeatures, axis=1)
```

Figure 10: Training set and test set division

Model

Overview

Data

Feature Engineering and Model

Conclusion

I have choose the Ensemble Model - Gradient Boost. Compare the distribution of train and test results. It confirms visually that the model has not predicted really bad and not suffering from major overfitting problem.

Figure 11: Distribution of train and test results

Data

Feature Engineering and Model

Conclusion

Conclusion

Conclusion

Overview

Data

Feature Engineering and Model

Conclusion

Using RMSLE to calculate the error, it penalizes under-prediction even more.

RMSLE Value For Gradient Boost: 0.189973542608

The score of my submission in kaggle is 0.41867. Ranked 428 among 3242 teams.

Figure 12: The score of my submission

Contact Information

Bing Liu
College of Computer Science and Technology
Jilin University, China

BLIU@TULIP.ACADEMY

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING