Formler som skal være kjent ved Del 1 av eksamen i REA3024 Matematikk R2

(Formelarket kan ikke brukes på Del 1 av eksamen.)

(Formelarket kan ikke brukes på Dei 1 av eksamen.)	
Aritmetiske rekker	$a_n = a_1 + (n-1)d$ $s_n = \frac{a_1 + a_n}{2}n$ $a_n = a_1 k^{n-1}$
Geometriske rekker	$a_n = a_1 k^{n-1}$ $S_n = \frac{a_1(k^n - 1)}{k - 1} \text{når } k \neq 1$ $S = \frac{a_1}{1 - k} \text{når } -1 < k < 1$
Uendelige geometriske rekker	$s = \frac{a_1}{1-k} \text{når } -1 < k < 1$ Bestemme konvergensområdet for rekker med variable kvotienter
Induksjonsbevis	Gjennomføre og gjøre rede for induksjonsbevis
Derivasjon	Kunne derivere polynomfunksjoner, potensfunksjoner, rasjonale funksjoner, logaritmefunksjoner og eksponentialfunksjoner og bruke $ (\sin x)' = \cos x \qquad (\cos x)' = -\sin x \qquad (\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x $ Kunne derivere sammensetninger av funksjoner
Ubestemt integral	$F(x) = \int f(x) dx \text{betyr at} F'(x) = f(x)$ $\int x^r dx = \frac{1}{r+1} x^{r+1} + C \text{når } r \neq -1$ $\int \frac{1}{x} dx = \ln x + C$ $\int e^x dx = e^x + C$ $\int a^x dx = \frac{1}{\ln a} \cdot a^x + C$ $\int \cos x dx = \sin x + C$ $\int \sin x dx = -\cos x + C$ $\int (1 + \tan^2 x) dx = \tan x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $x \text{ i absolutt vinkelmål}$
Integrasjonsmetoder	$\int (u(x)\pm v(x)) \ dx = \int u(x) \ dx \pm \int v(x) \ dx$ $\int k \cdot u(x) \ dx = k \int u(x) \ dx , k \text{ er en konstant}$ Integrasjon ved variabelskifte, substitusjon Delvis integrasjon lotegrasjon ved delbrøkoppspalting med lineære nevnere
Bestemt integral	$\int_{a}^{b} f(x) dx = F(b) - F(a) \text{der} F'(x) = f(x)$ Tolke det bestemte integralet i praktiske situasjoner Formel for volum av omdreiningslegemer

	Regning med vektorer geometrisk som piler i rommet
Vektorregning	$[x, y, z] = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$
	t[x, y, z] = [tx, ty, tz]
	$[x_1, y_1, z_1] \pm [x_2, y_2, z_2] = [x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2]$
	$[x_1, y_1, z_1] \cdot [x_2, y_2, z_2] = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$
	$ [x, y, z] = \sqrt{x^2 + y^2 + z^2}$
	$[x_1, y_1, z_1] = [x_2, y_2, z_2] \Leftrightarrow x_1 = x_2 \text{ og } y_1 = y_2 \text{ og } z_1 = z_2$
	$\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1, z_2 - z_1]$ fra $A(x_1, y_1, z_1)$ til $B(x_2, y_2, z_2)$
	Definisjonen av vektorproduktet $\vec{a} \times \vec{b}$
	Kunne regne ut vektorproduktet $\vec{a} \times \vec{b}$ på koordinatform
	Arealet av trekant: $\frac{1}{2} \cdot \vec{a} \times \vec{b} $
	2
	Volum av tetraeder: $\frac{1}{6} \cdot \left (\vec{a} \times \vec{b}) \cdot \vec{c} \right $
	9
Linjer, plan og kuleflater	$\begin{bmatrix} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{bmatrix} (x_0, y_0, z_0) \text{ er et punkt på linja}$ $\vec{v} = [a, b, c] \text{ er retningsvektor}$
	$y = y_0 + bt$ $\vec{v} = [a, b, c]$ er retningsvektor
	$z = z_0 + ct$
	$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ $P_0(x_0,y_0,z_0)$ er punkt i planet,
	$\vec{n} = [a, b, c]$ er normalvektor
	$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$ $S(x_0, y_0, z_0)$ er sentrum i kula,
	r er radius i kula
	Avstand fra punkt til linje
	Avstand fra punkt til plan
Differensiallikninger	Kunne løse første ordens differensiallikninger Kunne løse separable differensiallikninger
	Kunne løse andre ordens homogene differensiallikninger med konstante
	koeffisienter
Trigonometri	Definisjonen av absolutt vinkelmål
	Kunne regne om mellom grader og absolutt vinkelmål
	Kunne den generelle definisjonen av sinus, cosinus og tangens
	Kunne omforme trigonometriske uttrykk av typen $a \sin kx + b \cos kx$, og
	bruke det til å modellere periodiske fenomener
	Kunne løse trigonometriske likninger

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Det forutsettes at eleven behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang.