Machine Learning Hidden Markov Models

Satishkumar L. Varma

Department of Information Technology SVKM's Dwarkadas J. Sanghvi College of Engineering, Vile Parle, Mumbai. ORCID | Scopus | Google Scholar | Google Site | Website

Outline

- Classification
 - Bayesian Belief Networks
 - Hidden Markov Models
 - Support Vector Machine
 - Maximum Margin Linear Separators
 - Quadratic Programming solution to finding maximum margin separators
 - Kernels for learning non-linear functions
 - Classification using k Nearest Neighbour Algorithm

- Hidden Markov models (HMMs) are sequence models.
- That is, given a sequence of inputs, such as words
- HMM will compute a sequence of outputs of the same length.
- HMM model is a graph where nodes are probability distributions over labels and edges give the probability of transitioning from one node to the other.
- When working with sequences of data,
 - we often face situations where we can't directly see the important factors that influence the datasets.
 - HMM help solve this problem by predicting these hidden factors based on the observable data.

3

- Hidden Markov models (HMMs) are sequence models.
- That is, given a sequence of inputs, such as words
- HMM will compute a sequence of outputs of the same length.
- HMM model is a graph where nodes are probability distributions over labels and edges give the probability of transitioning from one node to the other.
- When working with sequences of data,
 - we often face situations where we can't directly see the important factors that influence the datasets.
 - HMM help solve this problem by predicting these hidden factors based on the observable data.

4

- HMM in Machine Learning
- It is an statistical model.
- Used to describe probabilistic relationship bet. a sequence of observations and a sequence of hidden states.
- Used in situations where observations is unknown or hidden, hence it known as "Hidden Markov Model."
- HMM consists of two types of variables: hidden states and observations.
 - Hidden states: Variables that generate the observed data, but they are not directly observable.
 - Observations: Variables that are measured and observed.
- Relationship between the hidden states and the observations is modeled using a probability distribution.
- HMM is the relationship between the hidden states and the observations using two sets of probabilities:
 - o the transition probabilities and the emission probabilities.
- Transition probabilities: describe the probability of transitioning from one hidden state to another.
- Emission probabilities: describe the probability of observing an output given a hidden state.

5 Satish

- Hidden Markov Model Algorithm: Implementation Steps:
- Step 1: Define the state space and observation space:
 - The state space is the set of all possible hidden states, and the observation space is the set of all possible observations.
- Step 2: Define the initial state distribution:
 - This is the probability distribution over the initial state.
- Step 3: Define the state transition probabilities:
 - These are the probabilities of transitioning from one state to another.
 - This forms the transition matrix, which describes the probability of moving from one state to another.
- Step 4: Define the observation likelihoods:
 - These are the probabilities of generating each observation from each state.
 - This forms emission matrix, which describes probability of generating each observation from each state.

6

- Hidden Markov Model Algorithm: Implementation Steps:
- Step 5: Train the model:
 - The parameters of the state transition probabilities and the observation likelihoods are estimated using the Baum-Welch algorithm, or the forward-backward algorithm.
 - This is done by iteratively updating the parameters until convergence.
- Step 6: Decode the most likely sequence of hidden states:
 - o Given observed data, the Viterbi algorithm is used to compute the most likely sequence of hidden states.
 - This can be used to predict future observations, classify sequences, or detect patterns in sequential data.
- Step 7: Evaluate the model:
 - The performance of the HMM can be evaluated using various metrics, such as
 - accuracy,
 - precision,
 - recall, or F1 score.

- HMM can be used to identify underlying patterns or structures in sequential data.
- HMM application domains:
 - Machine learning
 - Natural language processing
 - Speech recognition
 - Bioinformatics
 - Gene analysis
 - Time-series forecasting
- HMM Example: Speech recognition tasks
 - o It helps to measure the probability of a certain word or lack of words occurring in a given audio recording.
 - Occurrence of specific words or silence in the recording can represent states
 - Volume of speech throughout the recording can represent observations
 - o By knowing observations (volume), HMM helps to determine
 - the likelihood of hidden states or
 - words and lack of words and
 - predict the most probable word being spoken.

8

- HMM are probabilistic frameworks.
- HMM model data as a series of outputs generated by one of several (hidden) internal states.
- HMM pertains to stochastic processes where states can be hidden or not directly visible to the observer.
- HMM used to identify underlying patterns or structures in sequential data.
- HMM is used when we can't observe the states of a stochastic process.
- However, we can only see the result of some probability function (observation) of the states.

9

- HMM: Assumptions
- 1. Output Independence Assumption
 - Output observation is conditionally independent of all other hidden states and
 - o all other observations when given the current hidden state.
 - Output independence assumption:
 - $P(x_t = v_i / z_t = s_i) = P(x_t = v_i / x_1, x_2, ..., x_T, z_1, z_2, ..., z_T) = B_{ii}$
- 2. Emission Probability Matrix
 - \circ Probability of hidden state generating output v_i given that state at the corresponding time was s_i

- MM Assumptions
- 1. Limited Horizon Assumption
 - Probability of being in a state at a time t depend only on the state at the time (t-1).
 - Limited horizon assumption equation
 - $P(z_{t}, z_{t-1}, z_{t-2}, ..., z_{1}) = (z_{t} / z_{t-1})$
 - That means state at time t represents enough summary of the past to reasonably predict the future.
 - This assumption is an order-1 Markov process.
 - An order-k Markov process assumes conditional independence of state z_t from the states that are k + 1-time steps before it.
- 2. Stationary Process Assumption
 - o Conditional (probability) distribution over the next state, given the current state, doesn't change over time.
 - Stationary process assumption
 - $P(z_{t-1}) = (z_{t-1})$ where $t \in 2,...,T$
 - That means states keep on changing over time but the underlying process is stationary.

- Markov Model versus HMM
- Both Markov Model and HMM handle data that can be represented as a sequence of observations over time.
- Markov Model (MM) or Markov chain concerns stochastic (random) process states that are visible to the observer. Mathematically: Markov models versus HMM
- MM: Series of (hidden) states $z=\{z_1, z_2, \dots \}$
 - o drawn from state alphabet S = $\{s_1, s_2, \dots, s_{|S|}\}$ where z_i belongs to S.
- HMM: Series of observed output $x = \{x_1, x_2, \dots \}$
 - o drawn from an output alphabet V= $\{v_1, v_2, \dots, v_{|v|}\}$ where x_i belongs to V.
- Questions Answered in a Markov Model
 - What is the probability of particular sequences of state z?
 - How do we estimate parameter of state transition matrix A to maximize likelihood of observed sequence?
- Questions Answered by Hidden Markov Model:
 - What is the probability of an observed sequence?
 - What is the most likely series of states to generate an observed sequence?
 - How can we learn the values for the HMMs parameters A and B given some data?

- Markov Model
- Questions Answered in a Markov Model
 - What is the probability of particular sequences of state z?
 - How do we estimate parameter of state transition matrix A to maximize likelihood of observed sequence?

Satishkumar L. Varma www.sites.google.com/view/vsat2k

- Notation Convention
 - \circ There is an initial state and an initial observation $z_0 = s_0$
 - \circ s₀: Initial probability distribution over states at time 0.
 - \circ Initial state probability: (π)
 - At t = 1, probability of seeing first real state z_1 is $p(z_1/z_0)$
 - \circ Since $z_0 = s_0$: $P(Z_t / Z_{t-1}, Z_{t-2}, ..., Z_1) = P(Z_t / Z_{t-1}, Z_{t-2}, ..., Z_1, Z_0)$
- State Transition Matrix
- Consider state transition matrix of four states, including the initial state:

	$P(S_{\text{hot}}/S_0)$			
i / j	S ₀	S _{hot}	S _{cold}	S _{rain}
S ₀		0.33	0.33	0.34
Shot	0	0.8	0.1	0.1
S _{cold}	0	0.2	0.6	0.2
S	0	0.1	0.2	0.7

- Questions Answered in a Markov Model
 - What is the probability of particular sequences of state z?
 - Ai,j: probability of transitioning from state i to state j at any time t.
 - \circ P(Z) = P(Z₊, Z₊, Z₊, Z₊,...Z₁; A)
 - \circ P(Z) = P(Z, / Z, 1, Z, 2,...Z, Z₀; A)
 - $P(Z) = P(Z_{t} / Z_{t-1}, Z_{t-2}, ..., Z_{t}, Z_{0}, A)$ $P(Z) = P(Z_{t} / Z_{t-1}, Z_{t-2}, ..., Z_{1}, Z_{0}; A) P(Z_{t-1} / Z_{t-2}, ..., Z_{0}; A) ... P(Z_{t} / Z_{0}; A)$
 - $P(Z) = P(Z_{t} / Z_{t-1}; A) P(Z_{t-1} / Z_{t-2}; A) ... P(Z_{t-1} / Z_{t}; A) P(Z_{t-1} / Z_{t}; A)$
 - \circ P(Z) = π P(Z_t, Z_{t-1}; A)
 - \circ P(Z) = π Az₁, z₁
- Consider the state transition matrix above;
- Q: Finding probability of particular sequence i.e determine the probability of sequence:
 - o { $z_1 = s_{hot}$, $z_2 = s_{cold}$, $z_3 = s_{rain}$, $z_4 = s_{rain}$, $z_5 = s_{cold}$ }
 - $P(z) = P(s_{hot}|s_0) P(s_{cold}|s_{hot}) P(s_{rain}|s_{cold}) P(s_{rain}|s_{rain}) P(s_{cold}|s_{rain})$
 - \circ = 0.33 x 0.1 x 0.2 x 0.7 x 0.2 = 0.000924

Initial State

Chain rule of probability

Limited Horizon Assumption

- Example 1: Markov Model
 - State machine of MM gives person feeling in different climates. (see Markov model as finite state machine)
 - Set of states: (S) = {Happy, Grumpy}
 - Set of hidden states: (Q) = {Sunny, Rainy}
 - State series over time: = $z \in S_{\tau}$
 - Observed states for four day: $\{z_1 = \text{Happy}, z_2 = \text{Grumpy}, z_3 = \text{Grumpy}, z_4 = \text{Happy}\}$
 - Feelings are observed through emotions.
 - Observation: feeling that you understand from a person emoting. (since we observe them.)
 - o Hidden state: Weather that influences the feeling of a person. (since we can't observe it.)

- Example 1: Hidden Markov Model
- Emission Probabilities
 - o In this example, feelings ("Happy" or "Grumpy") can be only observed.
 - A person can observe that a person has an 80 percent chance to be "happy" given that the climate at the particular point of observation is sunny.
 - o Similarly there's a 60 percent chance of a person being "grumpy" given that the climate is rainy.
 - The 80 percent and 60 percent are emission probabilities since they deal with observations.
- Transition Probabilities
 - When we consider the climates (hidden states) that influence the observations,
 - there are correlations between consecutive days being sunny or alternate days being rainy.
 - o There is an 80 percent chance for the Sunny climate to be in successive days,
 - whereas there's a 60 percent chance for it to be rainy on consecutive days.
 - Prob. that explain the transition to/from hidden states are transition prob.

- Hidden Markov Model
- Questions Answered by Hidden Markov Model:
 - What is the probability of an observed sequence?
 - What is the most likely series of states to generate an observed sequence?
 - How can we learn the values for the HMMs parameters A and B given some data?

18

- Example 2: Questions Answered by Hidden Markov Model:
 - What is the probability of an observed sequence?
 - S = {hot, cold}
 - \circ v = {v₁ = 1 ice cream, v₂ = 2 ice creams, v₃ = 3 ice creams},
 - where V is the Number of ice creams consumed in a day.
 - Example Sequence: = $\{x_1 = v_2, x_2 = v_3, x_3 = v_1, x_4 = v_2\}$
 - Consider this given data as matrices:
 - Consider the generated finite state machines (FSM) for HMM.

- Step 1: Calculate the prior probabilities i.e probability of being hot or cold previous to any actual observation.
 - This can be obtained from S_0 or π .
 - \circ From the given data as matrices, S_0 is provided as 0.6 and 0.4 (which are prior probabilities).
- Step 2: Calculate the probability of a given sequence based on Markov and HMM assumptions (4 steps of HMM)
- Step 2.1: Observed Output for $x_1 = v_2$ (see left figure for 1st step of HMM)
- Step 2.2: Observed Output for $x_2 = v_3$ (see right figure for 2nd step of HMM)
- Step 2.3: Observed Output for $x_3 = v_1$ (simply multiply the paths that lead to v_1 .)
- Step 2.4: Observed Output for $x_4 = v_2$ (simply multiply the paths that lead to v_2 .)
- Step 3. Find Maximum Likelihood

20

- Step 2: Calculate the probability of a given sequence (last 2 steps of HMM)
- Step 2.3: Observed Output for $x_3 = v_1$ (simply multiply the paths that lead to v_1) (see right figure for 3rd step of HMM)
- Step 2.4: Observed Output for $x_4 = v_2$ (simply multiply the paths that lead to v_2) (see right figure for 4th step of HMM)

21

- Step 3. Find Maximum Likelihood (using the forward procedure).
 - \circ For a given observed sequence of outputs $x \in V_T$
 - \circ we intend to find the most likely series of states $z \in S_T$
- Observe (right top/ left bottom) given data for MM as finite state machine.
- Markov model as a finite state machine (see, right bottom).

- OR Step 3. Find Maximum Likelihood using Viterbi algorithm in Two Steps
 - It is a dynamic programming algorithm similar to the forward procedure.
 - Here, instead of tracking the total probability of generating the observations,
- Viterbi algorithm tracks the maximum probability and the corresponding state sequence.
- Example
 - Let us take a sequence of emotions: H, H, G, G, G, H for six consecutive days.
 - Using the Viterbi algorithm we will find out the more likelihood of the series.
- The Viterbi algorithm requires to choose the best path (See Figure)
 - o There will be several paths that will lead to sunny on Saturday, and
 - many paths that lead to rainy on Saturday.
 - Here, identify the best path to sunny or rainy Saturday and
 - multiply with the transition emission probability of "Happy,"
 - since Saturday makes the person feel "Happy."

- Step 3. Find Maximum Likelihood using Viterbi algorithm in Two Steps (Step 3.1 and Step 3.2)
- Let's consider a sunny Saturday.
- The previous day, Friday, can be sunny or rainy.
- Then we need to know the best path up to Friday, and
- then multiply with emission probabilities that lead to a grumpy feeling.
- Iteratively, we need to figure out the best path at each day ending up in more likelihood of the series of days.
- Step 3.1 (see left figure) and Step 3.2 (see right figure)

24

- Iterate the algorithm to choose the best path.
- The algorithm leaves you with maximum likelihood values and
- Now, we can produce the sequence with a maximum likelihood for a given output sequence.

More likelihood sequence = S S S R R S For the given output sequence H H G G G H

25

- Summary
- HMM algorithm involves
 - o defining the state space, observation space, and the parameters of the state transition probabilities and observation likelihoods.
 - o training the model using the Baum-Welch algorithm or the forward-backward algorithm,
 - o decoding the most likely sequence of hidden states using the Viterbi algorithm, and
 - evaluating the performance of the model.

Satishkumar L. Varma www.sites.google.com/view/vsat2k

References

Text books:

- 1. Ethem Alpaydin, "Introduction to Machine Learning, 4th Edition, The MIT Press, 2020.
- 2. Peter Harrington, "Machine Learning in Action", 1st Edition, Dreamtech Press, 2012."
- 3. Tom Mitchell, "Machine Learning", 1st Edition, McGraw Hill, 2017.
- 4. Andreas C, Müller and Sarah Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", 1ed, O'reilly, 2016.
- 5. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", 1st Edition, MIT Press, 2012."

Reference Books:

- 6. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", 2nd Edition, Shroff/O'Reilly, 2019.
- 7. Witten Ian H., Eibe Frank, Mark A. Hall, and Christopher J. Pal., "Data Mining: Practical machine learning tools and techniques", 1st Edition, Morgan Kaufmann, 2016.
- 8. Han, Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- 9. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, "Foundations of Machine Learning", 1ed, MIT Press, 2012.
- 10. H. Dunham, "Data Mining: Introductory and Advanced Topics", 1st Edition, Pearson Education, 2006.
- 11. Help for images: Vivek Vinushanth Christopher

Thank You.

28