15/11/2017 HackerRank

Problem Submissions Leaderboard Discussions Editorial

You are given a tree (a simple connected graph with no cycles). The tree has N nodes numbered from 1 to N and is rooted at node 1.

Find the maximum number of edges you can remove from the tree to get a forest such that each connected component of the forest contains an even number of nodes.

Input Format

The first line of input contains two integers N and M. N is the number of nodes, and M is the number of edges. The next M lines contain two integers u_i and v_i which specifies an edge of the tree.

Constraints

• $2 \le N \le 100$

Note: The tree in the input will be such that it can always be decomposed into components containing an even number of nodes.

Output Format

Print the number of removed edges.

Sample Input

- 10 9
- 2 1
- 4 3
- 5 2
- 6 1 7 2
- 8 6
- 9 8
- 10 8

Sample Output

2

Explanation

On removing edges (1,3) and (1,6), we can get the desired result.

Original tree:

Decomposed tree:

f in
Submissions:23980
Max Score:50
Difficulty: Medium
Rate This Challenge:
かかかかか

```
Current Buffer (saved locally, editable) & 🗘
                                                                                            Java 7
 1 ▼ import java.io.*;
    import java.util.*;
    import java.text.*;
 3
    import java.math.*;
    import java.util.regex.*;
 7 ▼ public class Solution {
 8
 9 ▼
         public static void main(String[] args) {
             /* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
10 ▼
11
    }
12
                                                                                                                     Line: 1 Col: 1
                      ☐ Test against custom input
                                                                                                         Run Code
                                                                                                                      Submit Code
1 Upload Code as File
```

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature