4 Isotope Effects and Kinetics

- 11/26: The questions pertain to the material covered from Thermodynamic Isotope Effects (Nov 5) to Kinetic Rate Laws (Nov 14).
 - 1. The following schematic illustrates the six possible kinetic scenarios for the reaction

$$\mathbf{A} \xrightarrow[k_{-1}]{k_1} \mathbf{B} \xrightarrow{k_2} \mathbf{C}$$

of A to C via B.

- a) In which of these scenarios would the steady-state approximation *not* be valid? Provide a brief explanation for your answers.
- b) In which of these scenarios would the quasi-equilibrium assumption not be valid? Provide a brief explanation for your answers.
- c) Consider a situation where **A** is isotopically labeled. If isotopic substitution affects only the rate of conversion of **B** to **C** (and not from **A** to **B**), in which scenarios might you expect to observe an independent rate kinetic isotope effect (KIE)? Please explain.
- d) In which scenarios might you expect to observe an independent rate KIE if isotopic substitution affects only the step involving formation of $\bf B$ from $\bf A$ (and not from $\bf B$ to $\bf C$)?

2. Consider the following reaction.

- a) The mechanism for this reaction could proceed via a concerted pathway or a stepwise pathway. Provide arrow-pushing mechanisms for both processes.
- b) When the two benzylic methyl groups were deuterated, kinetic isotope effects (KIEs) of 5 and 1.2 were measured in toluene and DMF respectively. Suggest a possible explanation for the observed KIEs.
- c) When the reaction was run at two different temperatures and in two different solvents, the following rate data were obtained. Compare the activation enthalpy (ΔH^{\ddagger}) and activation entropy (ΔS^{\ddagger}) of the reactions in toluene and in DMF. Suggest a possible explanation for the observed differences.

T (°C)	k_{rel} in toluene	k_{rel} in DMF
60	1	10
110	50	500,000

3. In nonpolar solvents, compound 1 reacts thermally with 2 to give only endo 3.

$$H_3C$$
 CH_3
 H_3C
 H_3C

Using small amounts of $\mathbf{1}$ and 'flooding' with $\mathbf{2}$, it has been established that the rate is pseudo-first-order in $[\mathbf{1}]$. Measuring the pseudo-first-order rate constant k_{obs} at several different concentrations of excess $\mathbf{2}$ gives a plot of the type shown below.

Compound 1, deuterated at phosphorus, undergoes exchange of D with both α -hydrogens, as shown below. At low concentrations of 2, the H/D exchange rate is rapid compared to the rate of formation of 3. At 'saturating' concentrations of 2, the formation of 3 occurs faster than H/D exchange.

- a) Write a full mechanism and a rate law for the formation of **3** that is consistent with these observations.
- b) Explain how your mechanism accounts for the labeling and kinetic behavior.
- c) Draw reaction coordinate energy diagrams at the limiting cases where [2] is...
 - i) Very low;
 - ii) Very high.

4. a) Estimate the magnitudes of the equilibrium constants (K_1, K_2) for the following reactions. Provide explanations.

b) Estimate the magnitudes of ${\rm KIE_1}$ and ${\rm KIE_2}$ for the following solvolysis reactions. Provide explanations.