

Dpto. Teoría de la Señal, Telemática y Comunicaciones

E.T.S. Ingeniería Informática y de Telecomunicación C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES 5 de febrero de 2018 - Examen de teoría

Apellidos y nombre:	 Grupo:_	

- 1. (1.25 ptos). Describa el funcionamiento de los protocolos POP3 e IMAP, para qué son utilizados y las diferencias de funcionamiento entre ellos.
- **2.** (1,25 ptos) Suponga que el cliente H1 acaba de iniciarse, tiene vacía la tabla ARP, pero conoce su default GW, y su IP (150.150.150.150) y su servidor DNS, así como su IP (100.100.100.100). Suponga que los servidores y los routers tienen toda la información necesaria. Haga las suposiciones que estime necesarias y rellene la siguiente tabla, mostrando **TODO** el tráfico que aparecería en esa red desde que H1 solicita el fichero indext.html del servidor HTTP www.servidor.org hasta que es servido.

MAC	MAC	IP	IP	Puerto	Puerto	FLAGS	Mensaje/cabecera
origen	destino	Origen	Destino	Origen	Destino	TCP	de Aplicación

- **3.** (1.25 ptos) Al inicio de una conexión TCP, en una línea sin congestión con 18 ms de tiempo de propagación y 1 Mbps de velocidad de transmisión,
 - a) Realice el diagrama de tiempos de la transmisión.
 - b)¿Cuánto tiempo se emplea en enviar y recibir confirmación de 32 KB con las siguientes asunciones? (añada cualquier otra adicional que crea conveniente)
 - a) Ventana ofertada de control de flujo de 20 KB constante.
 - b) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - c) Umbral de congestión de 10 KB
 - d) Respuesta ACK retardada en el receptor de acuerdo a la teoría.
- **4.** (1.25 ptos) En la red mostrada en el gráfico siguiente:
 - a) Señale las subredes que encuentre en la topología mostrada
 - b) Asigne las direcciones privadas que sean necesarias
 - c) Especifique la tabla de encaminamiento para el router R1 de forma tal que se minimicen el número de entradas en la misma.

2. (1,25 ptos) Suponga que el cliente H1 acaba de iniciarse, tiene vacía la tabla ARP, pero conoce su default GW, y su IP (150.150.150.150) y su servidor DNS, así como su IP (100.100.100.100.100. Suponga que los servidores y los routers tienen toda la información necesaria. Haga las suposiciones que estime necesarias y rellene la siguiente tabla, mostrando TODO el tráfico que aparecería en esa red desde que H1 solicita el fichero indext.html del servidor HTTP www.servidor.org hasta que es servido.

1) solicitud DNS:

Lesb. Lesb

14 1

2) Est. TCP:

R1

3) sol, al servidor:

Get Get

ACK TAKE

O+1+NB1

FENT FRNI

FENT

FEN

Server

4) Fin conexión TCP:

H1 ACE P1 ACE SAVVEV

D+1+NB2 D+1+NB2

Q+1+NB1 D+1+NB2

D+1+NB2

Q+2+NB1 D+1+NB2

D+1+NB2

Q+2+NB1 D+1+NB2

ACE

ACE

ACE

ACE

ACE

NB1: Nº Bytes del pravio mansaje enviado (GET)

NB2: N° Bytes del pravio mansaje anviado (vespuesta HTTP con index.html)

1.4	D = \	- 10- 10- 10 100 10	0.400.1		100	t 10
HI	Broadcag	√>0			ARP	Who is 150.150.150.1
RIT	17 1	150.100.00.1 150-15	150	_	- /	Response MAC= RAI
41	RIT	150.120.021.021	0.100.100.10 ₀ (1=k)	53	VDP	DNS request
R1 N	DNS	-	2 >	=	1	~
DNS	RNN	ON.00N.00N.00N	021.021.021.02	S3 (1x)	-	DNS response
RIL	# 1)_	_	=	11	=
H 4	RII A	005 OS N. 021. 02N. 02	.200.700.200 (2	4) 80	SYN, S	ec: a sol. TCP
RID	HTT P	=	1		=	_
HTTP		200.200.700.700	021.021.021.021	80 (5*)	oc:af1,	SPC: b 1º Resp. TCP
P1 T	H1	7	7	ے <u> </u>	_	- 2
/ + v	RAI	021.021.021.021	500-500-500-50 O	(5.4) 80) ACK	ocipty Salesby tCb
R10	HTTP	-	=	2 :		= =
H٧	k₁ I	120.120.021.021	200.200.700.70	0 847 80	SPC :0.4	1 Get (index.utul)
611	· ·	=	2 450 450 450	_ = =	_	
HT7			150.150.150.150	, 80 (5.	*) A(r, 5ec o.c	:b+1 :a+1+NB1 index.Hml
RI	± H1	7	<u>~</u>	1	=	= =
Ħ	sierre 96	ve solo se o lo conexión s en M).			orrtuva	Pero con los

Puerto

Origen

Puerto

Destino

FLAGS

TCP

Mensaje/cabecera de Aplicación

MAC

origen

MAC

destino

IP

Origen

IP

Destino

- 4. (1.25 ptos) En la red mostrada en el gráfico siguiente:
 - a) Señale las subredes que encuentre en la topología mostrada
 - b) Asigne las direcciones privadas que sean necesarias
 - c) Especifique la tabla de encaminamiento para el router R1 de forma tal que se minimicen el número de entradas en la misma.

Agrupociones:

pado que no es necesario ajustor al máximo las direcciones, las osignamos continuos an 124 de forma que se puedo direccionar todo elemeto de la subved.

bir Destino	Máscava	Sig. Salto	
200.200.200.0	130	*	R١
197.168.8.0	124	*	
0.0.0.0	10	200.200.200-1	(Rotter ISP)
107. 168.0.0	122		(Ks)
162 168.0.0	121		(R3)
192.468.4.0	122		(RY)

1.-Solución en los apuntes de teoría y Bibliografía recomendada

2.-

MAC origen	MAC destino	IP Origen	IP Destino	Puerto Origen	Puerto Destino	FLAGS TCP	Mensaje/cabecera deAplicación
MAC-H1	BROADCAST	150.150.150.150	150.150.150.1	X	X	ARP	WHO IS 150.150.150.1?
MAC-R1I	МАС-Н1	150.150.150.1	150.150.150.150	X	X	ARP	RESPONSE MAC= MAC-R1I
МАС-Н1	MAC-R1I	150.150.150.150	100.100.100.100	40000	53	UDP	REQ. IP WWW.SERVIDOR.ORG
MAC- R1N	MAC-DNS	150.150.150.150	100.100.100.100	40000	43	UDP	REQ. IP WWW.SERVIDOR.ORG
MAC- DNS	MAC-R1N	100.100.100.100	150.150.150.150	53	40000	UDP	RESPONSE IP=200.200.200.200
MAC.R1I	МАС-Н1	100.100.100.100	150.150.150.150	53	40000	UDP	RESPONSE IP=200.200.200.200
МАС-Н1	MAC-R1I	150.150.150.150	200.200.200.200	40001	80	SYN	INICIO CONEX. TCP SEQ=A
MAC- R1D	МАС-НТТР	150.150.150.150	200.200.200.200	40001	80	SYN	INICIO CONEX. TCP SEQ=A
MAC- HTTP	MAC-RID	200.200.200.200	150.150.150.150	80	40001	ACK,SYN	SEQ=B, ACK=A+1
MAC-R1I	MAC-H1	200.200.200.200	150.150.150.150	80	40001	ACK,SYN	SEQ=B, ACK=A+1
MAC-H1	MAC-R1I	150.150.150.150	200.200.200.200	40001	80	ACK	SEQ=A+1, ACK=B+1
MAC- R1D	MAC-HTTP	150.150.150.150	200.200.200.200	40001	80	ACK	SEQ=A+1, ACK=B+1
МАС-Н1	MAC-R1I	150.150.150.150	200.200.200.200	40001	80	ACK	SEQ=A+1, ACK=B+1, HTTP REQ.
MAC- R1D	MAC-HTTP	200.200.200.200	150.150.150.150	80	40001	ACK	SEQ=A+1, ACK=B+1, HTTP REQ.
MAC- HTTP	MAC-RID	200.200.200.200	150.150.150.150	80	40001	ACK	ACK=A+1+TAM_REQ. SEQ=B+1, HTTP RESPONSE (INDEX.HTML)
MAC-R1I	МАС-Н1	200.200.200.200	150.150.150.150	80	40001	ACK	ACK=A+1+TAM_REQ. SEQ=B+1, HTTP RESPONSE (INDEX.HTML)

3.-Control de flujo = 20KB Control de Congestión = 10KB

$$t_{prop.} = 18 \text{ ms.}$$

$$t_t = \frac{1MSS}{V_t} = \frac{2 \cdot 1024 \cdot 8}{10^6} = 16,4 \ ms.$$

$$Num_segmentos = \frac{Tamaño\ mensaje}{Tamaño\ MSS} = \frac{32KB}{2KB} = 16\ segmentos$$

Tabla R1 reducida:

Red Destino	Mascara	Siguiente Salto
200.200.200.0	/30	
192.168.0.0	/24	
0.0.0.0	/0	200.200.200.2
192.168.0.0	/21	192.168.0.2 (R2)
192.168.6.0	/23	192.168.0.3 (R3)
192.168.8.0	/22	192.168.0.4 (R4)