Calculus

Joseph Le

Contents

Ι	Preliminaries	7
1	Functions 1.1 Sets 1.2 What is a function? 1.3 The Graph of a Function 1.4 Types of Functions 1.5 Common Functions 1.6 Inverse Function 1.7 Function Compositions 1.8 Function Transformations and Operations 1.9 Even, Odd, Increasing, Decreasing, and Periodic Functions	9 10 11 11 11 11 11 11
2	2.1 Linear Functions	13 13 13 13 13 13
3	3.1 Conic Sections	15 15 15 15
Π	Differential Calculus	17
4	4.1 Definition of a Limit	19 19 19 19
5	Differentiation and Derivatives 5.1 The Limit Definition of the Derivative 5.2 Differential Rules	21 21 21 21 21 21 21 21 21

4 CONTENTS

		5.4.1 5.4.2 5.4.3	Logarithmic Differentiation	21 21 21
6	App	licatio	ns of Derivatives	23
	6.1			23
	6.2	Optim	ization	23
	6.3	L'Hôp	tal's Rule Rule	23
II	I I	ntegr	al Calculus 2	25
7	Inte	gratio	and Integrals	27
	7.1	_	~	27
	7.2	Riema	nn Sums	27
	7.3	The F	Indamental Theorem of Calculus	27
_	.	. •		
8	1nte 8.1	_	1	29 29
	8.2			29 29
	8.3	_	V	29 29
	8.4			29 29
	8.5			29 29
	0.0	пурег	Some Substitutions	29
9	App	olicatio	n of Integrals	31
	9.1		~	31
	9.2			31
		9.2.1	The Disk Method	31
		9.2.2	The Washer Method	31
		9.2.3	The Shell Method	31
	9.3	Arc Le	ngth	31
	_			
10			8	33
				33
	10.2		O .	33
			1	33
		10.2.2	Simpson's Rule	33
11	Sequ	uences	Series, and Convergence	35
	_			35
	11.2	Infinit	e Series	35
		11.2.1	Algebraic Series	35
				35
		11.2.3	p-Series	35
		11.2.4	Alternating Series	35
	11.3	Conve	gence Tests	35
		11.3.1	The Divergence Test	35
		11.3.2	The Comparison Test	35
				35
		11.3.4	The Integral Test	35
				35
		11.3.6	The Root Test	35
	11.4	Power	Series	35
	11.5	Taylor	Series	35

CONTENTS 5

IV	Multivariable Calculus	37
12 '	Vectors and Vector Spaces	39
	2.1 Vectors in 2D/3D	39
	2.2 Vector Products	39
	12.2.1 Dot Products	39
	12.2.2 Cross Products	39
	2.3 Lines and Planes in Space	39
13	Functions of Several Variables	41
	3.1 Parametric Curves	41
	3.2 Derivatives and Integrals of Vector Functions	41
	3.3 Curvature	41
14]	Partial Derivatives	43
	4.1 Limits and Continuity in Higher Dimensions	43
	4.2 Partial Derivatives	43
	4.3 The Chain Rule	43
	4.4 The Gradient	43
-	4.5 Extremal Values	43
15 I	Multiple Integrals	45
	5.1 Double Integrals	45
	5.2 Coordinate Systems	45
	15.2.1 Polar coordinates	45
	15.2.2 Cylindrical Coordinates	45
	15.2.3 Spherical Coordinates	45
	5.3 Surface Area and Volume	45
	5.4 Triple Integrals	45
	5.5 Change of Variables	45
16 '	Vector Calculus	47
	6.1 Line Integrals	47
	6.2 Green's Theorem	47
	6.3 Divergence and Curl	47
	6.4 Surface Integrals	47
	6.5 Stokes' Theorem	47
	6.6 The Divergence Theorem	47
-		41
	Applications of Multivariable Calculus	49
	7.1 Lagrange Multipliers and Optimization	49
	7.2 The Jacobian	49
	7.3 Center of Mass	49
	7.4 Fluid Flows	49
${f V}$	Annondix	K 1
V	Appendix	51

6 CONTENTS

Part I Preliminaries

Functions

1.1 Sets

Before defining what a function is or what it does, it is important to briefly discuss what goes into function and what comes out. Simply, *sets* are a collection of items and each one of those items are usually referred to as *elements*. Without getting into the weeds of set theory, sets can contain pretty much anything from numbers, functions, and other sets [1].

Some common sets that you may be familiar with are the *natural numbers* $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$, the *integers* $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, and the *real numbers* \mathbb{R} , which is usually represented via a number line. Sets can also be intervals on the real line (i.e. [a,b) is an interval on \mathbb{R} containing a but not b) or even the possible results of flipping a coin $C = \{H, T\}$.

We will now define the basic notation when dealing with sets and the operations that can be performed on sets. We say that x is an element of a set A with the notation $x \in A$ and when x is not in A, we say $x \notin A$. For example, given the set $A = \{1, 2, 3, 4\}$, we can say that $1 \in A$ is true as well as $5 \notin A$.

The notion of combining sets comes with *unions* and *intersections*. Given A and B are sets, the union of A and B is denoted as $A \cup B$ and is equal to the set the contains elements in either A or B. Similarly, the intersection between A and B is denoted as $A \cap B$ and is the set that contains elements that are in both A and B. For example, given the sets $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, the union and intersection between A and B is

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

$$A \cap B = \{3, 4\}$$
 (1.1)

Subsets are important to relate different sets. A set A is said to be a subset of another set B if all of the elements of A are also within B and is denoted as $A \subseteq B$ and a set A is equal to a set B if and only if $A \subseteq B$ and $B \subseteq A$. An important subset is the empty set represented by the symbols \emptyset , \emptyset , or simply $\{\}$. It is important to note that the empty set is also a subset of all sets.

Using sets by listing them out can become cumbersome and sometimes confusing, instead set builder notation is used to build a set based on a rule. For example, the set of all positive even integers can be written as

$$A = \{2, 4, 6, 8, \dots\} = \{z : z \text{ is an positive even integer}\} = \{z : z = 2n, n \in \mathbb{Z} \text{ and } n > 0\}$$
 (1.2)

Here, the : stands for "such that" which indicates the rule (the words "such that" or the symbol | is also often used). The *rational numbers* \mathbb{Q} can also be constructed via the integers with

$$\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z} \text{ and } q \neq 0 \}$$
 (1.3)

As mentioned previously, intervals on the real number line can be represented as sets. Given two values a and b and assuming that $a \le b$, intervals on the real line are represented as

b

b

 ∞

 $-\infty$

 $-\infty$

 $-\infty$

Here, the open brackets (and) indicate that the respective endpoint is not included, while the closed brackets [and] indicate that the respective endpoint is included in the interval.

1.2 What is a function?

 $- (-\infty, b) = \{x \in \mathbb{R} : x < b\}$

 $-(-\infty, b] = \{x \in \mathbb{R} : x < b\}$

 $-(-\infty,\infty)=\mathbb{R}$

Functions are objects in math that describe a relationship or mapping between two sets. Given two sets X and Y, a function f maps the elements of X, called the *domain* of the function, to elements in the set Y called the *codomain* of the function and the relationship is denoted as $f: X \to Y$ ("f maps from X to Y") or y = f(x) ("g equals g of g"), where g is known as the *dependent variable* and g is known as the *independent variable* or the *argument* of the function. The *range* of a function is the set of all possible values that g is able to output with g as its domain, note that the range is a subset of g but is not always equal.

Some real-world examples of functions are

• The area of a circle: $A(r) = \pi r^2$ • The height of a falling ball: $h(t) = h_0 + v_0 t - (1/2) g t^2$ • Compound interest: $A(t) = P(1 + \frac{r}{n})^{nt}$ • Temperature conversion: $C(F) = \frac{5}{9}(F - 32)$

- 1.3 The Graph of a Function
- 1.4 Types of Functions
- 1.5 Common Functions
- 1.6 Inverse Function
- 1.7 Function Compositions
- 1.8 Function Transformations and Operations
- 1.9 Even, Odd, Increasing, Decreasing, and Periodic Functions

Special Functions

- 2.1 Linear Functions
- 2.2 Quadratic Functions
- 2.3 Polynomial and Rational Functions
- 2.4 Exponential and Logarithmic Functions
- 2.5 Absolute Value and Piecewise Functions
- 2.6 Systems of Equations

Analytic Geometry

- 3.1 Conic Sections
- 3.2 Parametric Equations
- 3.3 Polar Coordinates

Part II Differential Calculus

Limits and Continuity

- 4.1 Defnition of a Limit
- 4.2 One-Sided Limits and Limits to Infinity
- 4.3 Continuity and the Intermediate Value Theorem
- 4.4 The Squeeze Theorem

Differentiation and Derivatives

- 5.1 The Limit Definition of the Derivative
- 5.2 Differential Rules
- 5.2.1 The Power Rule
- 5.2.2 The Product Rule
- 5.2.3 The Quotient Rule
- 5.2.4 The Chain Rule
- 5.3 Common and Special Derivatives
- 5.4 Advanced Differential Techniques
- 5.4.1 Implicit Differentiation
- ${\bf 5.4.2}\quad {\bf Logarithmic\ Differentiation}$
- 5.4.3 Higher-Order Derivatives

Applications of Derivatives

- 6.1 Related Rates
- 6.2 Optimization
- 6.3 L'Hôpital's Rule Rule

Part III Integral Calculus

Integration and Integrals

- 7.1 Antiderivatives
- 7.2 Riemann Sums
- 7.3 The Fundamental Theorem of Calculus

Integration Techniques

- 8.1 Substitution
- 8.2 Integration by Parts
- 8.3 Partial Fractions
- 8.4 Trigonometric Substitutions
- 8.5 Hyperbolic Substitutions

Application of Integrals

- 9.1 Areas Between Curves
- 9.2 Valumes of 3D Shapes
- 9.2.1 The Disk Method
- 9.2.2 The Washer Method
- 9.2.3 The Shell Method
- 9.3 Arc Length

Improper Integrals and Numerical Integration

- 10.1 Improper Integrals and Their Convergence
- 10.2 Numerical Integration
- 10.2.1 Trapezoidal Rule
- 10.2.2 Simpson's Rule

Sequences, Series, and Convergence

- 11.1 Sequences
- 11.2 Infinite Series
- 11.2.1 Algebraic Series
- 11.2.2 Geometric Series
- 11.2.3 p-Series
- 11.2.4 Alternating Series
- 11.3 Convergence Tests
- 11.3.1 The Divergence Test
- 11.3.2 The Comparison Test
- 11.3.3 The Limit Comparison Test
- 11.3.4 The Integral Test
- 11.3.5 The Ratio Test
- 11.3.6 The Root Test
- 11.4 Power Series
- 11.5 Taylor Series

Part IV Multivariable Calculus

Vectors and Vector Spaces

- 12.1 Vectors in 2D/3D
- 12.2 Vector Products
- 12.2.1 Dot Products
- 12.2.2 Cross Products
- 12.3 Lines and Planes in Space

Functions of Several Variables

- 13.1 Parametric Curves
- 13.2 Derivatives and Integrals of Vector Functions
- 13.3 Curvature

Partial Derivatives

- 14.1 Limits and Continuity in Higher Dimensions
- 14.2 Partial Derivatives
- 14.3 The Chain Rule
- 14.4 The Gradient
- 14.5 Extremal Values

Multiple Integrals

- 15.1 Double Integrals
- 15.2 Coordinate Systems
- 15.2.1 Polar coordinates
- 15.2.2 Cylindrical Coordinates
- 15.2.3 Spherical Coordinates
- 15.3 Surface Area and Volume
- 15.4 Triple Integrals
- 15.5 Change of Variables

Vector Calculus

- 16.1 Line Integrals
- 16.2 Green's Theorem
- 16.3 Divergence and Curl
- 16.4 Surface Integrals
- 16.5 Stokes' Theorem
- 16.6 The Divergence Theorem

Applications of Multivariable Calculus

- 17.1 Lagrange Multipliers and Optimization
- 17.2 The Jacobian
- 17.3 Center of Mass
- 17.4 Fluid Flows

$\begin{array}{c} {\rm Part~V} \\ {\rm Appendix} \end{array}$

Bibliography

[1] Richard Hammack. Book of Proof. 3rd Edition. Richard Hammack, 2018.

Index

```
\begin{array}{c} \text{function, } 10 \\ \text{argument, } 10 \\ \text{codomain, } 10 \\ \text{dependent variable, } 10 \\ \text{domain, } 10 \\ \text{independent variable, } 10 \\ \text{range, } 10 \\ \\ \text{set, } 9 \\ \text{element, } 9 \\ \text{intersection, } 9 \\ \text{union, } 9 \\ \end{array}
```