```
In [1]:
```

```
# stdlib
import collections
import importlib

# stack
import numpy as np
import pandas as pd
pd.set_option('display.width', 128)
pd.set_option('display.max_columns', 64)
pd.set_option('display.notebook_repr_html', True)

# inline matplotlib
import matplotlibi
import matplotlib inline
import seaborn as sns
```

In [2]:

```
import homework.bunch
import homework.plots
```

Load Data

Load data from the CSV file. The data is bundled into a class for convenience.

In [3]:

```
data_bunch = homework.bunch.RADARBunch('homework.csv')
```

Data Exploration

Let us take a look at the source data summary statistics.

In [4]:

```
data_bunch.data_frame[data_bunch.source_columns].describe()
```

Out[4]:

	CAN Global.Range_tg1	CAN Global.RelSpd_tg1	CAN Global.Angle_tg1	CAN Global.Status_tg1	CAN Global.LKTime_tg1
count	645.000000	645.000000	645.000000	645.0	645.000000
mean	40.996581	6.185912	-6.311108	1.0	193.039023
std	19.109802	3.853240	7.086380	0.0	12.415927
min	5.429853	-3.791982	-38.681824	1.0	0.000000
25%	23.573153	3.137203	-7.469543	1.0	184.800000
50%	46.249249	6.866624	-3.625916	1.0	193.330000
75%	60.031475	9.369266	-2.283691	1.0	201.810000
max	63.164837	21.536921	0.964813	1.0	210.300000

Let us also take a look at summary statistics for an object as an example.

In [5]:

data_bunch.get_subset_for_object(0).describe()

Out[5]:

	aObject[0].Attributes.eClassification	aObject[0].Attributes.eDynamicProperty	aObject[0].General.uiLifeCycles	аC
count	645.000000	645.0	645.000000	64
mean	0.392248	1.0	33.831008	66
std	1.400843	0.0	45.994980	43
min	0.000000	1.0	1.000000	-3
25%	0.000000	1.0	3.000000	34
50%	0.000000	1.0	13.000000	53
75%	0.000000	1.0	41.000000	94
max	6.000000	1.0	179.000000	19
1 (III.			(4)

Lifetime

It was advised that not all object data is useful. Let us take a look at object life time to see which objects are real.

In [6]:

homework.plots.boxplot.many(data_bunch, trait='General.uiLifeCycles')

We can see that objects 7 and 32 stand out from the rest. If we were to automate this process, one might consider the median lifetime above a certain threshold to identify the objects.

Trajectory

Lets take a look at object 32. Below we will plot the position (x, y) and velocity components (u, v) vs time.

In [7]:

```
robj = homework.plots.trajectory.ReferenceObject(data_bunch)
tobj = homework.plots.trajectory.TargetObject(data_bunch, 32)
objs = [robj, tobj]

tlim = homework.plots.trajectory.determin_extent(objs, names=['t'])
qlim = homework.plots.trajectory.determin_extent(objs, names=['x', 'y'], v_min=-5)
plim = homework.plots.trajectory.determin_extent(objs, names=['u', 'v'], v_min=-2)
homework.plots.trajectory.components(objs, tlim=tlim, qlim=qlim, plim=plim)
```


The target appears to be moving in the positive x-direction, while remaining at a relatively constant y-distance. The x-component of the velocity is sinusoidal, while the y-velocity is near zero. The differential GPS velocity data is noisy.

Reference-Target Difference

We can look at the difference between the reference and target position and velocity components. Lets create a histogram to see if the "errors" are normally distributed.

In [8]:

dobj = homework.plots.trajectory.DeltaObject(data_bunch, robj, tobj)
homework.plots.trajectory.components([dobj], func=homework.plots.trajectory.attr_histogram)

The (u) errors do appear to be normal. The (x, y) and (v) errors are not normal. We should be hesitant about taking the mean and standard deviation. Lets do it anyway!

In [9]:

```
dobj_frame = dobj.to_data_frame()
dobj_frame.describe()
```

Out[9]:

	t	x	у	r	u	v	s
count	645.000000	645.000000	645.000000	645.000000	645.000000	645.000000	645.000000
mean	16.925090	-0.001255	0.414813	0.017109	0.046944	-0.299352	0.080764
std	9.808772	0.150064	0.483754	0.150490	0.508923	0.308730	0.506190
min	0.000000	-0.243529	-0.833317	-0.232766	-3.179446	-1.236654	-3.194226
25%	8.438835	-0.132227	0.069634	-0.099730	-0.247309	-0.488947	-0.202057
50%	16.921416	-0.053737	0.350744	-0.051588	0.056462	-0.206600	0.074270
75%	25.397170	0.126367	0.658182	0.153357	0.341988	-0.071695	0.363670
max	33.887476	0.329814	2.084849	0.306848	3.031520	0.289000	3.039914

If we are to trust these values, it appears that the errors are on the order of a few cm or cm $\rm s^{-1}$.

Rolling Mean

In [10]:

```
func = lambda *a, **k: homework.plots.trajectory.window(*a, func='mean', size=32, **k)
homework.plots.trajectory.components(objs=[dobj], func=func)
```


func = lambda *a, **k: homework.plots.trajectory.window(*a, func='std', size=32, **k)
homework.plots.trajectory.components(objs=[dobj], func=func)

Rolling Median

In [12]:

func = lambda *a, **k: homework.plots.trajectory.window(*a, func='median', size=32, **k)
homework.plots.trajectory.components(objs=[dobj], func=func)

func = lambda *a, **k: homework.plots.trajectory.window(*a, func='cov', size=32, **k)
homework.plots.trajectory.components(objs=[dobj], func=func)

In []:			