

IDM

Ingénierie Dirigée par les Modèles

Olfa Dâassi

IDM?

« One and three chairs », Joseph Kossuth, 1965

Olfa Dâassi, ISIMG- 2011

- Evolution permanente des technologies logicielles
- Exemple : systèmes distribués
 - Faire communiquer et interagir des éléments distants
- Evolution dans ce domaine
- C et sockets TCP/UDP
- C et RPC
- C++ et CORBA
- Java et RMI
- Java et EJB
- C# et Web Services
- A suivre ...

- Idée afin de limiter le nombre de technologies
 - Normaliser un standard qui sera utilisé par tous

- Evolutions apportent un gain réel
- Paradigmes de programmation
 - C: procédural
 - Java, C++, C# : objet
 - Encapsulation, réutilisation, héritage, spécialisation ...
 - EJB, CCM (Corba Component Model): composants
 - Meilleure encapsulation et réutilisation, déploiement ...

Olfa Dâassi, ENICar-2019

d'objets

Olfa Dâassi, ENICar-2019

procédurale

- Conclusion sur l'évolution des technologies
 - Nouveaux paradigmes, nouvelles techniques
 - Pour développement toujours plus rapide, plus efficace
 - Rend difficile la standardisation (désuétude rapide d'une technologie)
 - Et aussi car combats pour imposer sa technologie
- Principes de cette évolution
 - Evolution sans fin
 - La meilleure technologie est ... celle à venir

- Quelles conséquences en pratique de cette évolution permanente ?
 - Si veut profiter des nouvelles technologies et de leurs avantages
 - Nécessite d'adapter une application à ces technologies
- Quel est le coût de cette adaptation ?
 - Généralement très élevé
 - Doit réécrire presque entièrement l'application
 - Car mélange et du code métier et du code technique
 - Aucune capitalisation de la logique et des règles métiers

Olfa Dâassi, ENICar-2019

- Exemple : Application de calculs scientifiques distribués sur un réseau de machines
 - Passage de C/RPC à Java/EJB
 - Impossibilité de reprendre le code existant
 - Paradigme procédural à objet/composant

Pourtant

- Les algorithmes de distribution des calculs et de répartition des charges sur les machines sont indépendants de la technologie de mise en oeuvre
- Logique métier indépendante de la technologie

IDM

- « Modéliser est le futur, et je pense que les sociétés qui travaillent dans ce domaine ont raison » B. Gates
- « Obtenir du code à partir d'un modèle stable est une capacité qui s'inscrit dans la durée » R. Soley
- « A quoi sert bon modéliser puisque *in fine* il faudra toujours écrire du code? »
- « Un bon schéma vaut mieux qu'un long discours ... sauf qu'à un schéma (UML) correspond plus d'un long discours ! »

IDM

19	980 19	20	00
← Technologie procédurale	Technologie des objets	Technologie des composants	Technologie des modèles
Procédures	Objets	Paquetages,	Modèles, Métamodèles
Pascal	Classes	Patrons	UML, MOF,
C,	Smalltalk, C++,		XML, XMI, XSLT
•••	•••		

Composition

d'objets

Transformation

de modèles

Olfa Dâassi, ENICar-2019

Raffinement

procédurale

IDM: Principes

- Modèle
- Méta-modèle
- Transformation de modèles

Modèle

- Un modèle est une description, une spécification partielle d'un système
 - Abstraction de ce qui est intéressant pour un contexte et dans un but donné
 - Vue subjective et simplifiée d'un système
- But d'un modèle
 - Faciliter la compréhension d'un système
 - Simuler le fonctionnement d'un système
- Exemples
 - Modèle économique,
 - Modèle démographique ...

Modèle

Modèle : C'est un point de vue

Méta-modèle

- Est une description des élements du modèle
- La relation entre modèle et méta-modèle est une relation de conformité
- Chaque élément du modèle
 - Est une « instance » d'un élément du méta-modèle (d'un métaélément)
 - En respectant les contraintes définies dans le méta-modèle
 - Un texte écrit est conforme à une orthographe et une grammaire
 - Un programme Java est conforme à la syntaxe et la grammaire du langage Java
 - Un fichier XML est conforme à sa DTD
 - Un modèle UML est conforme au méta-modèle UML

Méta-modèle : en rouge celui des diagrammes de classes, en vert celui des

Olfa Dâassi, ENICar-2019

Transformation de modèles

 Une transformation est la génération automatique d'un modèle cible à partir d'un modèle source conformément à une définition de transformation

IDM: Les 4 niveaux d'abstraction

MDA: Architecture à quatre niveaux

Niveaux d'abstraction de l'IDM

M3 : Méta-méta-modèle des méta-modèles de M2... et de M3

M2 : Méta-modèles des modèles de M1

M1 : Modèles (Diagrammes de classes, de séquence, ...)

M0 : Instances des modèles à l'exécution

[Image empruntée à www.omg.org]

Olfa Dâassi, ENICar-2019

21

Exemple: M1

Olfa Dâassi, ENICar-2019

Conformité

Méta-modèle des BD relationnelles

