Lista 4

Arruti, Sergio, Jesús

Ej 48. Sea $F \in Mod(R)$ un R-módulo libre con base X y $f: X \to N$ una función, con $N \in Mod(R)$. Entonces $\exists ! \ \overline{f}: F \to N \in Mod(R)$ tal que $\overline{f}|_X = f$.

 $\begin{array}{l} \textit{Demostraci\'on}. \ \ \text{Dado que } X \text{ es base de } F \text{ se tiene que } F = \bigoplus_{x \in X} Rx \text{ y as\'acada } a \in F \text{ se descompone de forma \'unica en } \sum_{x \in X} Rx \text{ como } a = \sum_{x \in X_a} r_x x, \\ \text{con } X_a \subseteq X \text{ finito y } r_x \in R; \text{ por lo tanto la aplicaci\'on} \end{array}$

$$\overline{f}: F \to N$$

$$a \mapsto \sum_{x \in X_a} r_x f(x)$$

es una función bien definida. Sean $r \in R$ y $m,n \in F$, con $\sum_{x \in X_m} r_x x$, $\sum_{x \in X_n} s_x x, \; X' := X_m \cup X_n \; \text{y}$

$$r_x = 0$$
, si $x \in X' \setminus X_m$,
 $s_x = 0$, si $x \in X' \setminus X_n$, (*)

entonces, por la unicidad de la descomposición en $\sum_{x\in X}Rx$, la descomposición de ra+b es $\sum_{x\in X'}(rr_x+s_x)x$. Así

$$\overline{f}(ra+b) = \sum_{x \in X'} (rr_x + s_x) f(x)
= \sum_{x \in X'} (rr_x) f(x) + \sum_{x \in X'} s_x f(x)
= r \sum_{x \in X_m} r_x f(x) + \sum_{x \in X_n} s_x f(x),
= r \overline{f}(a) + \overline{f}(b).
\Longrightarrow \overline{f}: F \to N \in Mod(R).$$
(??)

Sea $x \in X,$ entonces la descomposición de x en $\sum_{x \in X} Rx$ es $1_R x,$ con lo

cual

$$\overline{f}(x) = \sum_{x \in \{x\}} 1_R f(x)$$
$$= f(x).$$
$$\implies \overline{f}|_X = f.$$

Finalmente, sea $g: F \to N$ un morfismo de R-módulos tal que $g|_X = f$ y $a \in F$. Se tiene lo siguiente:

$$g(a) = g\left(\sum_{x \in X_a} r_x x\right)$$

$$= \sum_{x \in X_a} r_x g(x)$$

$$= \sum_{x \in X_a} r_x f(x)$$

$$= \overline{f}(x).$$

$$\Longrightarrow g = \overline{f}.$$

Ej 49. Sean $M \in Mod(R)$ y $X \subseteq M$. Considere el morfismo de R-módulos $\overline{\varepsilon}_{X,M}: F(X) \longrightarrow M$, dado por $\overline{\varepsilon}_{X,M}\left(\{t_x\}_{x \in X}\right) = \Sigma_{x \in X}t_xx$. Note que la composición $X \xrightarrow{\varepsilon_x} F(X) \xrightarrow{\overline{\varepsilon}_{X,M}} M$ coincide con la inclusión $X \subseteq M$. Pruebe que:

- a) $im(\overline{\varepsilon}_{X,M}) = \langle x \rangle_R$
- b) $M = \langle x \rangle_R \Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo.
- c) X es R-linealmente independiente $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un monomorfismo.
- d) X es una R-base $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un isomorfismo.

 $\begin{array}{ll} \textit{Demostraci\'on.} \ \ \overline{\text{a}} \ \ \text{Primero, como} \ \langle x \rangle_R \ \text{es un subm\'odulo de } M, \ \text{se tiene} \\ \text{que } \textit{im} \ (\overline{\varepsilon}_{X,M}) \subseteq \langle x \rangle_R. \ \text{Por otro lado, sea} \ m \in \langle x \rangle_R. \ \text{Entonces} \ m \ \text{tiene} \\ \text{una descomposici\'on} \ m = \Sigma_{x \in X} t_x x, \ \text{donde} \ t_x \in F(X). \ \text{En consecuencia,} \\ \overline{\varepsilon}_{X,M} \ \big(\{t_x\}_{x \in X}\big) = \Sigma_{x \in X} t_x x = m. \ \therefore \ \textit{im} \ (\overline{\varepsilon}_{X,M}) = \langle x \rangle_R \end{array}$

(b) Este inciso se deduce del anteior. $M = \langle x \rangle_R \Leftrightarrow M = im(\overline{\varepsilon}_{X,M}) \Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo.

(c) \Rightarrow Suponga que $\{t_x\}_{x\in X}\in Ker(\overline{\varepsilon}_{X,M})$. De modo que $\Sigma_{x\in X}t_xx=\overline{\varepsilon}_{X,M}(\{t_x\}_{x\in X})=0$. Dado que X es R-linealmente independiente, para

cada $x \in X$, $t_x = 0$. Por tanto, $Ker(\bar{\varepsilon}_{X,M}) = 0$. $\bar{\varepsilon}_{X,M}$ es monomorfismo.

 (\Leftarrow) Sean $x_1,...,x_n \in X$ y $r_{x_1},...r_{x_n} \in R$ tales que $\sum_{k=1}^n r_{x_k} x_k = 0$. Completamos a un elemento de F(X) como $r_x = 0$, con $x \notin \{x_1,...,x_n\}$. Con lo cual tenemos que:

$$\overline{\varepsilon}_{X,M} \left(\{r_x\}_{x \in X} \right) = \sum_{x \in X} r_x x$$

$$= \sum_{k=1}^n r_{x_k} x_k$$

$$= 0$$

Entonces $\{r\}$ $xX \in Ker(\bar{\varepsilon}_{X,M}) = 0$. Por tanto, $r_{x_1} = ... = r_{x_n} = 0$. $\therefore X$ es R-linealmente independiente.

(d) Este resultado se concluye de los anteriores. En efecto,

 $\overline{\varepsilon}_{X,M}$ es un isomorfismo $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo y monomorfismo $\Leftrightarrow M = im(\overline{\varepsilon}_{X,M})$ y X es R - l.i. $\Leftrightarrow X$ es una R - base.

Ej 50.

Ej 51. Sea $C \in Mod(Mod(R))$ y ~ una relación en Obj(Mod(R)/C) dada por $f \sim f' \iff Hom(f,f') \neq \emptyset \neq Hom(f',f).$

Entonces \sim es un relación de equivalencia en $Obj\left(Mod\left(R\right)/C\right)$.

Demostración. Reflexividad Sea $f: A \to C \in Obj (Mod(R)/C)$. Notemos que $Id_A \in Hom_R(A, A)$ y $f \circ Id_A = f$, así $Id_a \in Hom(f, f)$ y por lo tanto $Hom(f, f) \neq \emptyset$.

Simetría

$$f \sim f' \iff Hom(f, f') \neq \varnothing \neq Hom(f', f)$$
$$\iff Hom(f', f) \neq \varnothing \neq Hom(f, f')$$
$$\iff f' \sim f.$$

Transitividad Sean $f: A \to C, g: A' \to C, h: B \to C \in Obj \left(Mod \left(R \right) \right)_{C}$ tales que $f \sim g$ y $g \sim h$. De la definición de \sim se sigue que $\exists p \in Hom_{R}(A,A'), q \in Hom_{R}(A',A), p' \in Hom_{R}(A',B), q' \in Hom_{R}(B,A')$ tales que

$$gp = f$$

$$fq = g.$$
(*)

$$hp' = g$$

$$gq' = h.$$
(**)

Así $p'p \in Hom_R(A, B), qq' \in Hom_R(B, A)$ y

$$h(p'p) = f$$

$$f(qq') = h,$$

$$\therefore f \sim h.$$

Ej 52. Sean $\psi: B' \longrightarrow B$ un isomorfismo y $f: B \longrightarrow C$ es Mod(R). Pruebe que: Si f es minimal a derecha, entonces $f \circ \psi : B' \longrightarrow C$ es minimal a derecha.

Demostración. Sea $g: f \circ \psi \longrightarrow f \circ \psi$ un morfismo en Mod(R)/C. Entonces, por el **ejercicio 50**., $g: B' \longrightarrow B'$ es un homomorfismo en Mod(R). Más aún, $\psi \circ g: B' \longrightarrow B$ también es un homomorfismo. Dado que f es minimal a derecha, se tiene que $\psi \circ g$ es un isomorfismo en Mod(R). En virtud de que ψ es un isomorfismo, $g: B' \longrightarrow B'$ es un isomorfismo en Mod(R). Aplicando el **ejercicio 50.**, se tiene que $g: f \circ \psi \longrightarrow f \circ \psi$ es un isomorfismo. $f \circ \psi$ es minimal a derecha.

Ej 53.

Definición 1. Decimos que una sucesión exacta en Mod(R), η ,

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0 .$$

se escinde, o bien que se parte, si f es un split-mono y g es un split-epi.

- **Ej 54.** Sea η : $0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$ exacta en Mod(R). Las siguientes condiciones son equivalentes
 - a) η se escinde,
 - b) f es un split-mono,
 - c) g es un split epi
 - d) Im(f) = Ker(g) y Im(f) es un sumando directo de M.

Demostración. La demostración se realizará siguiendo el siguiente esquema:

 $a) \implies b$) y $a) \implies c$) se siguen en forma inmediata de la definición de sucesión exacta que se escinde.

En adelante, sean N := Im(f) y N' := Ker(g).

 $b \implies d$ N = N' se sigue del hecho de que η es una sucesión exacta. Sean i la inclusión de N en M, $\alpha: M \to M_1$ un morfismo de R-módulos tal que $\alpha f = Id_{M_1}$ (cuya existencia se tiene garantizada dado que f es un split-mono) y la función

$$\gamma: M \to N$$

$$m \mapsto f\alpha(m).$$

 γ es un morfismo de R-módulos pues f y α lo son, y más aún si $f\left(a\right)\in N$ se satisface que

$$\begin{split} \gamma i \left(f \left(a \right) \right) &= f \left(\alpha f \left(a \right) \right) \\ &= f \left(a \right). \\ &\Longrightarrow \gamma i = Id_N, \\ &\Longrightarrow i : N \to M \text{ es un split-mono.} \\ &\Longrightarrow N \text{ es un sumando directo de } M. \end{split}$$
 Teorema 1.12.5b)

c) \implies d) Sean π el epimorfismo canónico de M sobre $N', \beta: M_2 \to M$ un morfismo de R-módulos tal que $g\beta=Id_{M_2}$ y la aplicación

$$\delta: N' \to M$$

$$m + N' \mapsto \beta q(m).$$

Afirmamos que δ es una función bien definida. En efecto: sean $m' \in m + N',$ así

$$m - m' \in N'$$

$$\implies g(m - m') = 0$$

$$\implies g(m) = g(m')$$

$$\implies hg(m) = hg(m').$$

Más aún, δ es un morfismo de R-m'odulos pues h y g lo son, y si $m\in M$ entonces

$$\pi\delta\left(m+N'\right) = \beta q\left(m\right) + N',$$

con

$$g(\beta g(m) - m) = g\beta(g(m)) - g(m)$$

$$= g(m) - g(m)$$

$$= 0.$$

$$\implies \beta g(m) - m \in N'$$

$$\implies \beta g(m) + N' = m + N'$$

$$\implies \pi \delta(m + N') = m + N'.$$

$$\implies \pi \delta = Id_{N'},$$

con lo cual π es un split-epi. Así, por el Teorema 1.12.5c) y dado que N=N' por ser η exacta, se tiene lo deseado.

 $d) \implies d$ Verificaremos primeramente que f es un split-mono. Se tiene que $\exists J \in \mathcal{L}(M)$ tal que $M = N \oplus J$, con lo cual para cada $m \in M \exists !$ $n_m \in N$ y $j_m \in J$ tales que $m = n_m + j_m$. Lo anterior en conjunto al hecho de que f es en partícular inyectiva, por ser η exacta, garantiza que

$$\forall m \in M \exists ! a_m \in M_1, j_m \in J \text{ tales que } m = f(a_m) + j_m.$$
 (*

Así

$$\varphi: M \to M_1$$
$$m \mapsto a_m$$

es una función bien definida. Afirmamos que φ es un morfismo de R-módulos. En efecto, sean $r \in R$, $z,w \in M$, tales que $z = f(a_z) + j_z$ y $w = f(a_w) + j_w$, entonces

$$rz + w = r (f (a_z) + j_z) + f (a_w) + j_w$$

= $f (ra_z + a_w) + rj_z + j_w$.

Aplicando el hecho de que J es un submódulo de M y $(\ref{eq:model})$ a lo anterior se sigue que

$$\varphi(rz + w) = ra_z + a_w$$
$$= rf(z) + f(w).$$

Finalmente notemos que, si $a \in M_1$, $\varphi f(a) = \varphi(f(a) + 0) = a$, así que $\varphi f = Id_{M_1}$

 $\therefore f$ es un split-mono.

Por otro lado, como N=N', se tiene que $M=N'\oplus J$ y así

$$\begin{split} Ker\left(\left.g\right|_{J}\right) &= Ker\left(g\right) \cap J \\ &= N' \cap J = \left<0\right>_{R}, \end{split}$$

y como g es sobre

$$\begin{aligned} M_2 &= g\left(M\right) \\ &= g\left(\left\{g(a+b) \mid a \in Ker\left(g\right), b \in J\right\}\right) \\ &= g\left(\left\{g(b) \mid b \in J\right\}\right) \\ &= g\left(J\right) \\ &= g|_J\left(J\right), \\ &\Longrightarrow g|_J: J \to M_2 \text{ es un isomorfismo.} \end{aligned}$$

Por lo anterior $\exists h \in Hom_R(M_2, J)$ tal que $h g|_J = Id_J$ y $g|_J h = Id_{M_2}$, con lo cual Im(h) = J. Así $gh = g|_J h$ y por lo tanto g es un split-epi.

Ej 55. Sea $\eta: 0 \longrightarrow M_1 \stackrel{f_1}{\longrightarrow} M \stackrel{g_2}{\longrightarrow} M_2 \longrightarrow 0$ una sucesión en Mod(R). Pruebe que las siguientes condiciones son equivalentes

- a) η es una sucesión que se parte.
- b) Existe una sucesión $0 \longrightarrow M_2 \xrightarrow{f_2} M \xrightarrow{g_1} M_1 \longrightarrow 0$ en Mod(R) tal que $g_1f_1=1_{M_1},\ g_2f_2=1_{M_2},\ g_2f_1=g_1f_2=0$ y $g_1f_1+g_2f_2=1_M.$
- c) Existe un isomorfismo $h:M_1\times M_2\longrightarrow M$ tal que el siguiente diagrama conmuta

Demostraci'on. a) \Rightarrow c) Dado que η es una sucesi\'on que se parte, existe un morfismo de R-m\'odulos, $f_2: M_2 \longrightarrow M$, tal que $g_2f_2 = 1_{M_2}$. Luego, g_2, f_2 inducen un isomorfismo $h: M_1 \times M_2 \longrightarrow M$. En efecto, definimos h como el morfismo $h(m_1, m_2) = f_1(m_1) + f_2(m_2)$.

En primer lugar, veremos que h es un monomorfismo. En este sentido, sea $(m_1, m_2) \in Ker(h)$, entonces $0 = h(m_1, m_2) = f_1(m_1) + f_2(m_2)$. En consecuencia, $f_2(m_2) = -f_1(m_1) \in Im(f_1) = Ker(g_2)$. Así,

$$m_2 = g_2 f_2 (m_2) = 0$$

Por consiguiente, $f_1(m_1) = h(m_1, m_2) = 0$. Dado que f_1 es mono, $m_1 = 0$. Por lo que h es mono.

Ahora, h es epi. Sea $m \in M$. Entonces

$$g_2(m - f_2g_2(m)) = g_2(m) - g_2(m) = 0$$

De esta forma, $m - f_2g_2(m) \in Im(f_1)$. Ésto aunado a la exactitud de η garantiza la existencia de un elemento $x \in M_1$ tal que $f_1(x) = m - f_2g_2(m)$, con lo cual,

$$h(x, g_2(m)) = f_1(x) + f_2(g_2(m))$$

= m

Una vez demostrado que h es un isomorfismo, podemos proceder a mostrar que el diagrama presentado anteriormente conmuta bajo este isomorfismo. Primero, note que para $m \in M_1$ se tiene que

$$hi_1(m) = h(m, 0)$$

= $f_1(m)$
= $f_1 1_{M_1}(m)$

Por el otro lado, dado $(m_1, m_2) \in M_1 \times M_2$, se satisface que

$$g_2h(m_1, m_2) = g_2(f_1(m_1) + f_2(m_2))$$

$$= g_2f_1(m_1) + g_2f_2(m_2)$$

$$= 0 + m_2$$

$$= m_2$$

$$= 1_{M_2}\pi_2(m_1, m_2)$$

Luego, se satisfacen las siguientes igualdades

$$\begin{split} g_1f_1 &= g_1hi_1 = \pi_1h^{-1}hi_1 = \pi_1i_1 = 1_{M_1} \\ g_2f_2 &= g_2hi_2 = \pi_2i_2 = 1_{M_2} \\ g_1f_2 &= g_1hi_2 = \pi_1h^{-1}hi_2 = \pi_1i_2 = 0 \\ g_2f_1 &= g_2hi_1 = \pi_2h^{-1}hi_1 = \pi_2i_1 = 0 \\ g_1f_1 + g_2f_2 &= 1_{M_1} + 1_{M_2} = 1_{M_1 \times M_2} = 1_M \end{split}$$

 $b) \Rightarrow a$ Por hipótesis, existe un morfismo de R-módulos $f_2: M_2 \longrightarrow M$ tal que $g_2f_2 = 1_{M_2}$. Por tanto, η es una sucesión que se parte.

Ej 56.

Ej 57. Sea \sim una relación en $Obj(Mod(R) \setminus A)$ dada por

$$f \sim f' \iff Hom(f, f') \neq \emptyset \neq Hom(f', f)$$
.

Entonces \sim es un relación de equivalencia en $Obj(Mod(R) \setminus A)$.

Demostración. La simetría de \sim se sigue inmediatamente de su definición, mientras que la reflexividad se sigue del hecho de que si $f:A\to B\in Obj\left(Mod\left(R\right)\setminus A\right)$ entonces $Id_B\in Hom_R\left(B,B\right)$ y $Id_Bf=f$. Así resta verificar que \sim es transitiva.

Sean $f: A \to B, g: A \to B', h: A \to C \in Obj(Mod(R) \setminus C)$ tales que $f \sim g$ y $g \sim h$, por lo tanto $\exists p \in Hom_R(B, B'), q \in Hom_R(B', B), p' \in Hom_R(B', C), q' \in Hom_R(C, B')$ tales que

$$pf = g$$
$$qg = f,$$

$$p'g=h$$

$$q'h = g$$
.

Así $p'p \in Hom_R(B,C), qq' \in Hom_R(C,B)$ y

$$(p'p) f = h$$

$$(qq') h = f,$$

$$\therefore f \sim h.$$

Ej 58. Sean $\varphi_i: A_i \longrightarrow B_i$, con i = 1, 2, minimales a derecha en Mod(R). Pruebe que $\varphi_1 \coprod \varphi_2: A_1 \coprod A_2 \longrightarrow B_1 \coprod B_2$ es minimal a derecha.

Demostración. Sea $\psi: \varphi_1 \coprod \varphi_2 \longrightarrow \varphi_1 \coprod \varphi_2$. Entonces ψ es de la forma $\psi = \psi_1 \coprod \psi_2$, con $\psi_i: A_i \longrightarrow B_i$, i = 1, 2. En efecto, si denotamos por $\eta_i: A_1 \coprod A_2 \longrightarrow B_i$, i = 1, 2, a la proyección canónica, entonces $\psi = \eta_1 \psi \coprod \eta_2 \psi$.

Suponga, así, que $\psi = \psi_1 \coprod \psi_2$. Luego, $\psi_i \in Hom(\varphi_i, \varphi_i)$, con i = 1, 2. Por la minimalidad a derecha de cada φ_1 , se satisface que ψ_1 y ψ_2 son isomorfismos. Por lo que ψ es un isomorfismo.

$$\therefore \varphi_1 \coprod \varphi_2$$
 es minimal a derecha.

Ej 59.

Ej 60. Sea \mathcal{A} una categoría preaditiva y $A \in \mathcal{A}$. Entonces

a) La correspondencia Hom-covariante $Hom_{\mathcal{A}}(A,-): \mathcal{A} \to Ab$ es un funtor covariante aditivo.

b) La correspondencia Hom-contravariante $Hom_{\mathcal{A}}(-,A)\mathcal{A} \to Ab$ es un funtor contravariante aditivo.

Demostración. a) $Hom_{\mathcal{A}}(A,-)$ está dado por la siguiente correspondencia

$$\begin{array}{ccc} \mathcal{A} & \xrightarrow{Hom_{\mathcal{A}}(A,-)} & Ab \\ B \xrightarrow{f} C & \longmapsto Hom_{\mathcal{A}}\left(A,B\right) \xrightarrow{Ff} Hom_{\mathcal{A}}\left(A,C\right) \end{array}$$

con

$$Ff: Hom_{\mathcal{A}}(A, B) \to Hom_{\mathcal{A}}(A, C)$$

 $\alpha \mapsto f\alpha.$

Notemos que $f \in Hom_{\mathcal{A}}(B,C)$, $\alpha \in Hom_{\mathcal{A}}(A,B)$, de lo cual se sigue que $f\alpha \in Hom_{\mathcal{A}}(A,C)$ y por lo tanto Ff está bien definida. Por otro lado como \mathcal{A} es preaditiva entonces $Hom_{\mathcal{A}}(A,B)$ y $Hom_{\mathcal{A}}(A,C)$ son grupos abelianos aditivos. Finalmente si $\alpha, \beta \in Hom_{\mathcal{A}}(A,B)$ como la composición de morfismos en $Hom(\mathcal{A})$ es \mathbb{Z} -bilineal, entonces

$$\begin{split} Ff\left(\alpha+\beta\right) &= f\left(\alpha+\beta\right) \\ &= f\alpha + f\beta \\ &= Ff(\alpha) + Ff(\beta), \\ &\Longrightarrow Ff \text{ es un morfismo de grupos abelianos.} \end{split}$$

Por todo lo anterior $Hom_{\mathcal{A}}(A, -)$ es una correspondencia bien definida. Afirmamos que $Hom_{\mathcal{A}}(A, -)$ es un funtor covariante. En efecto, sean

$$\begin{split} f,g &\in Hom_{\mathcal{A}}\left(B,C\right), \\ \eta &\in Hom_{Ab}\left(Z,Hom_{\mathcal{A}}\left(A,B\right)\right), \\ \mu &\in Hom_{Ab}\left(Hom_{\mathcal{A}}\left(A,B\right),Z\right). \end{split}$$

Asi si $z \in \mathbb{Z}$, entonces

$$Hom_{\mathcal{A}}(A, -) (Id_B) \eta(z) = FId_B (\eta(z))$$

$$= Id_B \eta(z)$$

$$= \eta(z), \qquad \eta(z) \in Hom_{\mathcal{A}}(A, B)$$

$$\Longrightarrow Hom_{\mathcal{A}}(A, -) (Id_B) = \eta.$$

Por su parte

$$\mu Hom_{\mathcal{A}}(A,-) (Id_B) (\alpha) = \mu (FId_B(\alpha))$$

$$= \mu (Id_B\alpha) Id_B\eta (z)$$

$$= \mu (\alpha) , \qquad \alpha \in Hom_{\mathcal{A}}(A,B)$$

$$\Longrightarrow \mu Hom_{\mathcal{A}}(A,-) (Id_B) = \mu.$$

$$\therefore Hom_{\mathcal{A}}(A,-) (Id_B) = Id_{Hom_{\mathcal{A}}(A,B)} = Id_{Hom_{\mathcal{A}}(A,-)(B)}$$

Por su parte

$$Hom_{\mathcal{A}}(A, -)(gf)(\alpha) = (Fgf)(\alpha)$$

= $gf(\alpha) = g(f\alpha)$
= $Fg(Ff(\alpha)), \qquad f\alpha \in Hom_{\mathcal{A}}(A, C)$
= $FgFf(\alpha)$

$$\therefore Hom_{\mathcal{A}}(A,-)(gf) = Hom_{\mathcal{A}}(A,-)(g)Hom_{\mathcal{A}}(A,-)(f).$$

Con lo cual se ha verificado que $Hom_{\mathcal{A}}(A,-)$ es un funtor covariante. Finalmente, dado que la composición en $Hom(\mathcal{A})$ es \mathbb{Z} -bilineal se tiene que

$$Hom_{\mathcal{A}}(A, -) (f + g) (\alpha) = F (f + g) (\alpha)$$

$$= (f + g) \alpha = f\alpha + g\alpha$$

$$= Ff (\alpha) + Fg (\alpha)$$

$$\Longrightarrow Hom_{\mathcal{A}}(A, -) (f + g) = Hom_{\mathcal{A}}(A, -) (f) + Hom_{\mathcal{A}}(A, -) (g)$$

De modo que

$$Hom_A(A, -): Hom_A(B, C) \rightarrow Hom_{Ab}(Hom_A(A, B), Hom_A(A, C))$$

es un morfismo de grupos abelianos. Con lo cual, dado que Ab es una categoría preaditiva (esto ya que la composición de morfismos de grupos abelianos es \mathbb{Z} -bilineal), se tiene que $Hom_{\mathcal{A}}(A,-)$ es un funtor aditivo. La demostración de b) se realiza en forma análoga.

Luis envió Hoy a las 20:22

Ej 61. Sea $X \in {}_{R}Mod_{S}$. Pruebe que:

- a) $Hom_R(-,X): Mod(R) \longrightarrow Mod(S^{op})$ es un funtor contravariante aditivo
- b) Para $\{M_i\}_{i=1}^n$ en Mod(R) se tiene que

$$Hom_R\left(\coprod_{i=1}^n M_i, {_RX_S}\right) = \coprod_{i=1}^n Hom_R\left({_RM_i, {_RX_S}}\right)$$

en $Mod(S^{op})$

Demostración. (a) Primeramente, ya sabemos que $Hom_R(-,X)$ es un funtor contravariante. Entonces bastará probar que éste es aditivo.

Sean
$$M, N \in Mod(R)$$
. Veremos que $\varphi = Hom_R(-, X)$, con
$$\varphi : Hom_R(M, N) \longrightarrow Hom_{S^{op}}(Hom_R(N, X), Hom_R(M, X)),$$

es un isomorfismo.

Sea $f \in Hom_R(M, N)$. Entonces $\varphi(f) Hom_{S^{op}}(Hom_R(N, X), Hom_R(M, X))$ es el morfismo $\varphi(f)(g) = g \circ f$. De esta manera, φ es un morfismo. En efecto, sean $f, g \in Hom_R(M, N), r \in R$ y $h \in Hom_R(N, X)$, entonces

$$\varphi(f+rg)(h) = (f+rg) \circ h$$

$$= f \circ h + (rg) \circ h$$

$$= f \circ h + r(g \circ h)$$

$$= \varphi(f)(h) + r\varphi(g)(h)$$

$$= (\varphi(f) + r\varphi(g))(h)$$

Por tanto, φ es morfismo. $\therefore Hom_R(-, X)$ es aditivo.

(b) Definimos
$$\rho: Hom_R\left(\coprod_{i=1}^n M_i, {}_RX_S\right) \longrightarrow \coprod_{i=1}^n Hom_R\left({}_RM_i, {}_RX_S\right)$$
 como $\rho(\varphi) = (\varphi\iota_i)_{i=1}^n$.

Veamos que ρ es un morfismo en $Mod(S^{op})$. Para dicho fin, considere $\varphi, \psi \in Hom_R\left(\coprod_{i=1}^n M_i, {_RX_S}\right)$ y $s \in S$.

$$\begin{split} \rho\left(\varphi + \psi s\right) &= \left(\left(\varphi + \psi s\right)\iota_{i}\right)_{i=1}^{n} \\ &= \left(\varphi\iota_{i}\right)_{i=1}^{n} + \left(\left(\psi s\right)\iota_{i}\right)_{i=1}^{n} \\ &= \left(\varphi\iota_{i}\right)_{i=1}^{n} + \left(\psi\iota_{i}\right)_{i=1}^{n} s \\ &= \rho\left(\varphi\right) + \rho\left(\psi\right) s \end{split}$$

Por otro lado, ρ es un inyectivo. En efecto, si $\rho(\varphi) = 0$, entonces se tiene que $(\varphi \iota_i)_{i=1}^n = 0$. Luego, $\varphi = 0$. Por tanto $Ker(\rho) = 0$.

Ahora, sea $(\varphi_i)_{i=1}^n \in \coprod_{i=1}^n Hom_R(_RM_i,_RX_S)$. Entonces cada φ_i es un morfismo $\varphi_i: M_i \longrightarrow X$. Así, por la propiedad universal del coproducto, existe $\varphi: \coprod_{i=1}^n M_i \longrightarrow X$ tal que $\varphi_{\iota_i} = \varphi_i$. De esta manera, $\rho(\varphi) = (\varphi_i)_{i=1}^n$. Por tanto, ρ es un isomorfismo.

Por tanto,
$$\rho$$
 es un isomorfismo.

$$\therefore Hom_R \left(\prod_{i=1}^n M_i, {_RX_S} \right) = \prod_{i=1}^n Hom_R \left({_RM_i, {_RX_S}} \right)$$

Ej 62.

Ej 63. Sea $\{M_i\}_{i\in I}$ en Mod(R). Entonces $\coprod_{i\in I} M_i$ es proyectivo si y sólo si \forall $i\in I$ M_i es proyectivo.

Demostración. Sea C un coproducto para $\{M_i\}_{i\in I}$ por medio de las funciones $\{\mu_i\}_{i\in I}$. \Longrightarrow Sean $f: X \to Y$ un epimorfismo en Mod(R) y, para cada $i \in I$, $g_i \in Hom_R(M_i, Y)$. Por la propiedad universal del coproducto $\exists ! g: C \to Y$ tal que, $\forall i \in I$, $g\mu_i = g_i$. Dado que C es proyectivo entonces $\exists h: C \to X$ en Mod(R) tal que fh = g, con lo cual si $h_i := h\mu_i$ entonces

$$fh_i = f(h\mu_i)$$

 $= (fh) \mu_i$
 $= g\mu_i$
 $= g_i.$
 $\implies g_i$ se factoriza a través de f , $\forall i \in I$.
 $\therefore M_i$ es proyectivo, $\forall i \in I$.

← Verifcaremos primeramente los siguientes resultados:

Lema 1. Sean $\{X_i\}_{i\in I}$, $\{Y_i\}_{i\in I}$ y $\{Z_i\}_{i\in I}$ familias en Mod(R) tales que \forall $i\in I$

$$0 \longrightarrow X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \longrightarrow 0 \tag{L1A}$$

es una sucesión exacta. Entonces $\exists f, g \in Hom(Mod(R))$ tales que

$$0 \longrightarrow \prod_{i \in I} X_i \xrightarrow{f} \prod_{i \in I} Y_i \xrightarrow{g} \prod_{i \in I} Z_i \longrightarrow 0$$
 (L1B)

es una sucesión exacta. Los productos que aparecen en la expresión anterior son aquellos cuyos elementos son i-adas.

Demostración. Sean

$$f: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$$
$$(x_i)_{i \in I} \mapsto (f(x_i))_{i \in I}$$

У

$$g: \prod_{i \in I} Y_i \to \prod_{i \in I} Z_i$$
$$(y_i)_{i \in I} \mapsto (g(y_i))_{i \in I}.$$

 $f \in Hom\left(Mod(R)\right)$ pues $\forall i \in I \ f_i \in Hom\left(Mod(R)\right)$, similarmente se tiene que g es un morfismo de R-módulos.

f es inyectiva Sea $(x_i)_{i\in I} \in Ker(f)$, entonces $\forall i \in I$ $f_i(x_i) = 0$ y por lo tanto $\forall i \in I$ $x_i = 0$, pues $\{f_i\}_{i\in I}$ es una familia de monomorfismos en Mod(R).

g es sobre Sea $(z_i)_{i\in I} \in \coprod_{i\in I} Z_i$. Como $\{g_i\}_{i\in I}$ es una familia de epimorfismos en Mod(R), entonces $\forall i\in I \exists y_i\in Y_i$ tal que $g_i(y_i)=z_i$ y por lo

tanto $g\left((y_i)_{i\in I}\right)=(z_i)_{i\in I}$. $\boxed{Im(f)=Ker(g)} \text{ Sea } (x_i)_{i\in I}\in\coprod_{i\in I}X_i. \text{ Dado que } (\ref{eq:constraint}) \text{ es exacta se tiene}$ que $\forall\ i\in I\ Im(f_i)=Ker(g_i)$ y que, en partícular, $g_if_i=0$. Así

$$gf\left((x_i)_{i\in I}\right) = (g_i f_i\left(x_i\right))_{i\in I}$$

$$= 0.$$

$$\implies gf = 0$$

$$\implies Im(f) \subseteq Ker(g).$$

Por su parte, si $(y_i)_{i\in I}\in Ker(g)$, entonces $\forall i\in I\ y_i\in Ker(g_i)=Im(f_i)$, con lo cual para cada $i\in I\ \exists\ x_i\in X_i$ tal que $y_i=f_i\left(x_i\right)$. De modo que $(y_i)_{i\in I}=f\left((x_i)_{i\in I}\right)$, y por lo tanto $Ker(g)\subseteq Im(f)$. Por todo lo anterior $(\ref{eq:substantial})$ es exacta.

Lema 2. Sean $\{A_i\}_{i=1}^3$, $\{B_i\}_{i=1}^3$ en Mod(R) tales que $\forall i \ in[1,3] \ A_i \simeq B_i$ y

$$0 \longrightarrow A_1 \stackrel{f}{\longrightarrow} A_2 \stackrel{g}{\longrightarrow} A_3 \longrightarrow 0 \tag{L2A}$$

una sucesión exacta. Entonces $\exists \overline{f}, \overline{g} \in Hom(Mod(R))$ tales que

$$0 \longrightarrow B_1 \stackrel{\overline{f}}{\longrightarrow} B_2 \stackrel{\overline{g}}{\longrightarrow} B_3 \longrightarrow 0 \tag{L2B}$$

es una sucesión exacta.

Demostración. Sean $\varphi_i: A_i \to B_i$ isomorfismo $\forall i \in [1,3], \overline{f} := \varphi_2 f {\varphi_1}^{-1}$ y $\overline{g} := \varphi_3 g {\varphi_2}^{-1}$. Dado que f, φ_1 y φ_2 son monomorfismos en Mod(R), entonces \overline{f} lo es; análogamente \overline{g} es un epimorfismo puesto que φ_2 , g y φ_3 lo son.

Notemos que

$$\overline{g}\overline{f} = \varphi_3 g \varphi_2^{-1} \varphi_2 f \varphi_1^{-1}$$

$$= \varphi_3 g f \varphi_1^{-1}$$

$$= \varphi_3 0 \varphi_1^{-1}$$

$$= 0,$$

$$\implies Im(\overline{f}) \subseteq Ker(\overline{g}).$$

Por su parte, si $v \in Ker(\overline{g})$ se tiene que

$$0 = \overline{g}(v) = \varphi_3 \left(g \varphi_2^{-1}(v) \right)$$

$$\implies g \left(\varphi_2^{-1}(v) \right) = 0, \qquad \varphi_3 \text{ es inyectiva}$$

$$\implies \varphi_2^{-1}(v) \in Ker(g) = Im(f).$$

Con lo cual $\exists u \in B_1$ tal que $\varphi_2^{-1}(v) = f(u)$, y así

$$v = \varphi_2 f(u)$$

$$= \varphi_2 f {\varphi_1}^{-1} (\varphi_1(u))$$

$$= \overline{f} (\overline{u}), \qquad \overline{u} := \varphi_1(u)$$

$$\implies Ker (\overline{g}) \subseteq Im (\overline{f}).$$

$$\therefore (L2B) \text{ es exacta.}$$

Lema 3. Sean $M, N \in Mod(R)$ tales que M es proyectivo y $M \simeq N$. Entonces N es proyectivo.

Demostración. Sean $\varphi: M \to N$ un isomorfismo en Mod(R), $f: X \to Y$ un epimorfismo en Mod(R) y $g \in Hom_R(N,Y)$. Como $g\varphi \in Hom_R(M,Y)$ y M es proyectivo, entonces $\exists h \in Hom_R(M,X)$ tal que $fh = g\varphi$, luego $f(h\varphi^{-1}) = g$, con lo cual g se factoriza a través de f. Por lo tanto N es proyectivo.

Ahora, sean $\coprod_{i\in I} M_i$ el coproducto para $\{M_i\}_{i\in I}$ cuyos elementos son i

adas de soporte finito, $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ una sucesión exacta en Mod(R) y, para cada $i \in I$, $F_i := Hom_R(M_i, -)$ funtor covariante definido como en el Ej. 60. Por el Ej. 62 d) \forall $i \in I$ se tiene que

$$0 \longrightarrow F_i(X) \xrightarrow{F_i(f)} F_i(Y) \xrightarrow{F_i(g)} F_i(Z) \longrightarrow 0$$

es una sucesión exacta en $Mod(\mathbb{Z})$ y así, por el Lema 1,

$$0 \longrightarrow \prod_{i \in I} F_i(X) \longrightarrow \prod_{i \in I} F_i(Y) \longrightarrow \prod_{i \in I} F_i(Z) \longrightarrow 0$$

es una sucesión exacta. Se tiene que

$$\prod_{i \in I} F_i(X) = \prod_{i \in I} Hom_R(M_i, X)$$

$$\simeq Hom_R\left(\prod_{i \in I} M_i, X\right).$$
 Ej. 32

Similarmente se encuentra que

$$\prod_{i \in I} F_i(Y) \simeq Hom_R \left(\coprod_{i \in I} M_i, Y \right),$$

$$\prod_{i \in I} F_i(Z) \simeq Hom_R \left(\coprod_{i \in I} M_i, Z \right).$$

Con lo cual, por el Lema 2,

$$0 \longrightarrow Hom_R\left(\coprod_{i \in I} M_i, X\right) \longrightarrow Hom_R\left(\coprod_{i \in I} M_i, Y\right) \longrightarrow Hom_R\left(\coprod_{i \in I} M_i, Z\right) \longrightarrow 0$$

es una sucesión exacta y así, nuevamente por el Ej. 62 d), $\coprod_{i \in I} M_i$ es un módulo proyectivo. Finalmente como $C \simeq \coprod_{i \in I} M_i$ en Mod(R), por el Lema 3, se sigue que C es proyectivo y así se tiene lo deseado.

Ej 64. Sea $M \in Mod(R)$. Pruebe que:

M es proyectivo y f.g. \Leftrightarrow existe $n\in\mathbb{N}$ tal que M es isomorfo a un sumando directo de $_RR^n.$

 $\begin{array}{ll} \textit{Demostraci\'on.} & \Longrightarrow) \end{array} \text{Puesto que M es f.g., existe $n \in \mathbb{N}$ tal que la siguiente sucesi\'on en $Mod\left(R\right)$ $0 \longrightarrow Ker(f) \longrightarrow R^n \stackrel{f}{\longrightarrow} M \longrightarrow 0$ es exacta. Ésta a su vez se parte, toda vez que M es proyectivo. <math display="block">\therefore M \text{ es sumando directo de } R^n.$

 \Leftarrow) Suponga que ${}_RR^n \simeq M \oplus K$. Entonces M es f.g., y la sucesión en $Mod(R) \ 0 \longrightarrow K \longrightarrow R^n \longrightarrow M \longrightarrow 0$ se parte. $\therefore M$ es proyectivo y f.g.

Ej 65.

Ej 66. Sea $\{M_i\}_{i\in I}$ en Mod(R). Entonces $\prod_{i\in I}M_i$ es inyectivo si y sólo si, \forall $i\in I$, M_i es inyectivo.

 $\begin{array}{l} \textit{Demostraci\'on}. \text{ La demostraci\'on es an\'aloga a lo realizado en el Ej. 63: se emplea la propiedad universal del producto para verificar la necesidad, mientras que los lemas 1 y 2 probados en el Ej. 63, en conjunto a que <math display="block">\forall \ H \in Mod(R) \text{ se tiene que } \prod_{i \in I} Hom_R\left(H, M_i\right) \simeq Hom_R\left(H, \prod_{i \in I} M_i\right) \text{ (ver Ej. 35), y el siguiente resultado verifican la suficiencia ()cuya desmotraci\'on es an\'aloga a aquella del Lema 3 del Ej. 63)} \end{array}$

Lema 4. Sean $M, N \in Mod(R)$ tales que M es proyectivo y $M \simeq N$. Entonces N es proyectivo.

 \mathbf{Ej} 67. Sea R un anillo no trivial. Pruebe que:

R es semisimple y conmutativo $\Leftrightarrow R \simeq \underset{i=1}{\overset{\iota}{\times}} K_i$ como anillos, donde K_i es un campo $\forall i \in [1,t]$

Demostración. \subseteq Dado que cada K_i es un campo y $R \simeq \underset{i=1}{\overset{t}{\swarrow}} K_i$, se satisface que R es semisimple y conmutativo.

 \Longrightarrow) En virtud del teorema de **Wedderburn-Artin**, R es isomorfo a \bowtie $Mat_{n_i \times n_i}(D_i)$, con $n_i \in \mathbb{N}$ y D_i un anillo con división. Ahora, por la conmutatividad de R, la única posibilidad es que $n_i = 1$ y D_i sea conmutativo, para $i \in [1, t]$.

$$\therefore R \simeq \bigvee_{i=1}^{t} K_i, \text{ con } K_i \text{ un campo}, \forall i \in [1, t]$$