Математическая логика

Исчисление высказываний

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Высказывание

Определим высказывание как утвердительное предложение, которое может быть либо истинным (\mathcal{U}) либо ложным (\mathcal{J}).

Примеры:

- Снег белый.
- Я человек.

Алфавит исчисления высказываний

Алфавит исчисления высказываний есть объединение трех множеств

$$A \cup \{\neg, \land, \lor, \rightarrow\} \cup \{(,)\},$$

где A – множество пропозициональных переменных, т.е. переменных, значениями которых служат высказывания;

$$\{\neg, \land, \lor, \to\}$$
 — множество логических связок;

 $\{(,)\}$ – множество вспомогательных знаков.

Формулы в исчислении высказываний

Формулами являются:

- 1) пропозициональные переменные, например, $a, a \in A$;
- 2) если a и b формулы, то \bar{a} , $a \lor b$, $a \cdot b$, $a \to b$ формулы.

Поскольку значениями пропозициональных переменных являются высказывания, которые, в свою очередь, принимают значения либо \mathcal{U} , либо \mathcal{I} , то и формула также принимает два значения – \mathcal{U} либо \mathcal{I} .

Интерпретация и истинность формулы

Интерпретацией формулы F называют приписывание значений U (истина) или \mathcal{I} (ложь) входящим в нее переменным.

Формула F истинна в некоторой интерпретации тогда и только тогда, когда она получает значение U в данной интерпретации.

Общезначимость и противоречивость формулы

Формула F называется общезначимой тогда и только тогда, когда она истинна при всех интерпретациях (иначе необщезначима).

Формула F называется *противоречивой* тогда и только тогда, когда она ложна при всех интерпретациях (иначе непротиворечива).

Примеры на общезначимость и противоречивость

 $F(x_1,...,x_n) \equiv U$ – общезначима, непротиворечива;

 $F(x_1,...,x_n) = \mathcal{I}I$, $F(y_1,...,y_n) = \mathcal{I}II$ – необщезначима, непротиворечива;

 $F(x_1,...,x_n) \equiv \mathcal{J} - противоречива,$ необщезначима.

Определение логического следствия

Пусть даны формулы $F_1, ..., F_n$ и формула G. G есть логическое следствие формул $F_1, ..., F_n$ тогда и только тогда, когда для всякой интерпретации I, в которой $F_1 \wedge ... \wedge F_n$ истинна, G также истинна.

 $(F_1,...,F_n)$ называется посылками).

Теорема 1 о логическом следствии

G есть логическое следствие $F_1, ..., F_n$ тогда и только тогда, когда формула $((F_1 \wedge ... \wedge F_n) \rightarrow G)$ общезначима.

Док-во:

Обозначим
$$H = ((F_1 \land ... \land F_n) \rightarrow G)$$
.

Теорема 1 о логическом следствии

Необходимость.

Пусть G – логическое следствие $F_1, ..., F_n$. По определению о логическом следствии, если $F_i = U, \ i = \overline{1,n}$, то G = U, следовательно $H = ((F_1 \wedge ... \wedge F_n) \rightarrow G) = U$.

Если некоторое $F_i = \mathcal{I}$ в интерпретации I, то $F_1 \wedge \ldots \wedge F_n = \mathcal{I}$ в этой интерпретации, следовательно при $G = \mathcal{I}$ или $G = \mathcal{I}$ обязательно $H = \mathcal{U}$, т.е. H – общезначима.

Теорема 1 о логическом следствии

Достаточность.

Пусть H — общезначима. Тогда если $F_1 \wedge ... \wedge F_n = U$ в интерпретации I , то G = U в этой интерпретации, т.е. G — логическое следствие. \square

Теорема 2 о логическом следствии

G есть логическое следствие $F_1, ..., F_n$ тогда и только тогда, когда формула $\left((F_1 \wedge ... \wedge F_n) \wedge (\overline{G}) \right)$

противоречива.

Док-во. Из теоремы 1 о логическом следствии G следствие, если логическое $((F_1 \wedge ... \wedge F_n) \rightarrow G)$ общезначима, TO $H = ((F_1 \wedge \cdots \wedge F_n) \rightarrow G) - противоречива.$ Ho $((F_1 \wedge \cdots \wedge F_n) \rightarrow G) = ((F_1 \wedge \cdots \wedge F_n) \vee G) =$ $=(F_1 \vee \cdots \vee F_n \vee G) = (F_1 \wedge \cdots \wedge F_n \wedge G) = 0$. \square

Проверить является ли вопрос задачи логическим следствием?

Если конгресс отказывается принять новые законы, то забастовка не будет окончена, кроме, может быть, случая, когда она длится более года и президент фирмы уйдет в отставку. Допустим, что конгресс отказывается действовать, забастовка оканчивается и президент фирмы не уходит. Длилась ли забастовка более года?

Обозначим элементарные высказывания через пропозициональные переменные:

p: конгресс отказывается действовать;

q: забастовка оканчивается;

r: президент фирмы уходит в отставку;

s: забастовка длится более года.

$$F_1: p \to (q \lor (rs))$$

$$F_2: pqr$$

$$G: s-?$$

Используйте теорему 2 для ответа на вопрос.

$$F_{1} \wedge F_{2} \wedge \overline{G} = (p \rightarrow (\overline{q} \vee (rs)) \wedge (pq\overline{r}) \wedge \overline{s} =$$

$$= (\overline{p} \vee \overline{q} \vee (rs)) \wedge (pq\overline{r}s) = (\overline{p} \wedge \overline{q} \wedge (r\overline{s})) \wedge (pq\overline{r}s) =$$

$$= (\overline{pqrs}) \wedge (pq\overline{rs}) = 0.$$

и, следовательно, G является логическим следствием и забастовка длилась более года.

Тема следующей лекции:

«Метод резолюций для исчисления высказываний».