CHAPITRE

42

GROUPE SYMÉTRIQUE

42.1 DÉFINITION

Définition 1

Soit $n \in \mathbb{N}^*$. On appelle **permutation** de [1, n] toute bijection de [1, n] dans [1, n]. L'ensemble de ces permutations, noté \mathcal{S}_n est appelé **groupe symétrique d'ordre** n.

Remarque

- **1.** $\mathcal{S}_n = \sigma([[1, n]]).$
- **2.** (\mathcal{S}_n, \circ) est un groupe.
- 3. card $(\mathcal{S}_n) = n!$.
- **4.** Si E est un ensemble fini à n éléments, alors $(\mathfrak{S}(E), \circ)$ est isomorphe à (\mathcal{S}_n, \circ) . En effet, si f est une bijection de [1, n] dans E, alors

$$\begin{array}{cccc} \phi : & \mathfrak{S}(E) & \to & \mathcal{S}_n \\ & \sigma & \mapsto & f \circ \sigma \circ f^{-1} \end{array}$$

est un isomorphisme de groupes. Autrement dit, l'étude de \mathcal{S}_n «contient» celle de $\mathfrak{S}(E)$.

Notation

Soit $\sigma \in \mathcal{S}_n$. On note

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}.$$

Définition 2

Soit $p \in [\![2,n]\!]$. Un **cycle de longueur** p est un élément σ de \mathcal{S}_n tel qu'il existe p éléments distincts de $i_1,i_2,\ldots,i_p \in [\![1,n]\!]$ vérifiant

$$\begin{split} &\sigma(i_1)=i_2,\quad \sigma(i_2)=i_3,\quad \dots\quad \sigma(i_{p-1})=i_p,\quad \sigma(i_p)=i_1\\ &\text{et } \forall j\in \llbracket 1,n\rrbracket\setminus \left\{\,i_1,\dots,i_p\,\right\}, \sigma(j)=j. \end{split}$$

- L'ensemble $\{i_1, \dots, i_p\}$ est le **support** du cycle σ .
- Ce cycle se note également $(i_1 \ i_2 \ \dots \ i_p)$.
- Un cycle de longueur 2 est une transposition.

Exemple 3

On considère la permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix}.$$

La permutation σ est un cycle de longueur 4. On a $\sigma=\begin{pmatrix}1&5&2&3\end{pmatrix}$ mais aussi $\sigma=\begin{pmatrix}2&3&1&5\end{pmatrix}$.

On a aussi

$$\sigma^{2} = \sigma \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 3 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 5 \end{pmatrix}$$

$$\sigma^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \operatorname{Id}_{\llbracket 1, 5 \rrbracket}$$

$$\sigma^{-1} = \begin{pmatrix} 3 & 2 & 5 & 1 \end{pmatrix}.$$

Remarque

Deux cycles à supports disjoints commutent.

42.2 DÉCOMPOSITION DES PERMUTATIONS

Théorème 4

Toute permutation de [1,n] distincte de $Id_{[1,n]}$ peut s'écrire comme composée de cycles de supports deux à deux disjoints. Cette décomposition est unique à l'ordre près.

Démonstration. Non exigible.

Exemple 5

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 5 & 1 & 4 & 6 & 8 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 & 4 \end{pmatrix} \circ \begin{pmatrix} 7 & 8 \end{pmatrix} = \begin{pmatrix} 7 & 8 \end{pmatrix} \circ \begin{pmatrix} 1 & 3 & 5 & 4 \end{pmatrix}.$$

Remarque

Cette décomposition permet de calculer facilement les puissance d'une permutation.

Théorème 6

Toute permutation de [[1, n]] peut s'écrire comme composée de transposition. Cette décomposition n'est pas unique.

Démonstration. Il suffit de montrer que tout cycle est composée de transposition. Soit $(i_1 \ i_2 \ \dots \ i_p)$ un cycle de longueur p, alors

$$\begin{pmatrix} i_1 & i_2 & \dots & i_p \end{pmatrix} = \begin{pmatrix} i_1 & i_2 \end{pmatrix} \circ \begin{pmatrix} i_2 & i_3 \end{pmatrix} \circ \dots \circ \begin{pmatrix} i_{p-1} & i_p \end{pmatrix}.$$

Remarque

• $(1 \ 2 \ 3) = (1 \ 2) \circ (2 \ 3) = (1 \ 3) \circ (1 \ 2).$

42.3 SIGNATURE D'UNE PERMUTATION

Définition 7

Soit $\sigma \in \mathcal{S}_n$ $(n \ge 2)$. Soit $(i, j) \in [[1, n]]^2$. On dit que (i, j) est une **inversion** pour σ si

$$i < j$$
 et $\sigma(i) > \sigma(j)$.

La **signature** de σ est $(-1)^p$ où p est le nombre d'inversions de σ . On la note $\epsilon(\sigma)$.

- Si $\epsilon(\sigma) = 1$, on dit que σ est une **permutation paire**.
- Si $\epsilon(\sigma) = -1$, on dit que σ est une **permutation impaire**.

Exemple 8

Avec $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$.

$$1 < 2$$
 et $\sigma(1) = 5 > \sigma(2) = 1$.

Donc le couple (1, 2) est une inversion pour σ .

Exemple 9

On a $\epsilon (Id_{[1,n]}) = (-1)^0 = 1$.

Proposition 10

Soit $\sigma \in \mathcal{S}_n$, alors

$$\varepsilon(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

Théorème 11

Soit $n \in \mathbb{N}^*$ et $(\sigma, \sigma') \in \mathcal{S}_n^2$. Alors

$$\epsilon \left(\sigma \circ \sigma' \right) = \epsilon(\sigma)\epsilon(\sigma').$$

En d'autres termes,

$$\begin{array}{cccc} \epsilon : & \left(\mathcal{S}_n, \circ\right) & \rightarrow & \left(\left\{\,-1,\,1\,\right\}\,, \times\right) \\ & \sigma & \mapsto & \epsilon(\sigma) \end{array}$$

est un morphisme de groupes. C'est le seul morphisme non identiquement égal à 1.

Démonstration. Non exigible.

Proposition 12

Soit $\sigma \in \mathcal{S}_n$.

- 1. La signature d'une transposition est toujours -1.
- **2.** On peut écrire $\sigma = \tau_1 \circ \dots \circ \tau_q$ où les τ_i sont des transpositions. Alors $\epsilon(\sigma) = (-1)^q$.
- 3. La signature d'une cycle de longueur p est $(-1)^{p-1}$.