Loan status analysis based on bivariate and multivariate analysis

Problem statement: Analyse Loan data, and predict the relation of the loan_status with the other columns, like intrest rate, home ownership type and recommend the way to reduce the risk in loan approvement.

```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   sns.set_style("darkgrid")
   sns.set_theme(style="ticks", color_codes=True)
   cm = sns.light_palette("red", as_cmap=True)
```

This how we load the load csv

```
In [2]: df = pd.read_csv('loan.csv', low_memory=False)
    df.head()
```

Out[2]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	 num_tl_90g_dpd_24m	nui
0	1077501	1296599	5000	5000	4975.0	36 months	10.65%	162.87	В	B2	 NaN	
1	1077430	1314167	2500	2500	2500.0	60 months	15.27%	59.83	С	C4	 NaN	l
2	1077175	1313524	2400	2400	2400.0	36 months	15.96%	84.33	С	C5	 NaN	l
3	1076863	1277178	10000	10000	10000.0	36 months	13.49%	339.31	С	C1	 NaN	l
4	1075358	1311748	3000	3000	3000.0	60 months	12.69%	67.79	В	B5	 NaN	1

5 rows × 111 columns

4

Data cleaning

Checking datatype of the dataset

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39717 entries, 0 to 39716

Columns: 111 entries, id to total_il_high_credit_limit

dtypes: float64(74), int64(13), object(24)

memory usage: 33.6+ MB

As there are 111 columns lets try to find how many of them can be deleted

```
In [4]: df.isnull().sum() / df.count()
Out[4]: id
                                      0.000000
        member id
                                      0.000000
        loan amnt
                                      0.000000
        funded amnt
                                      0.000000
        funded amnt inv
                                      0.000000
        tax liens
                                      0.000983
        tot hi cred lim
                                           inf
        total bal ex mort
                                           inf
        total_bc_limit
                                           inf
        total il high credit limit
                                           inf
        Length: 111, dtype: float64
```

Delete the columns having null values more than 40%

```
In [293]: result = df.isnull().sum() / df.count() > 0.50
for pair in zip(result.index, list(result)):
    index, isAlmostNull = pair
    if isAlmostNull:
        del df[index]

df.head()
df.describe()
```

Out[293]:

: 		id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	installment	annual_inc	dti	delinq_2yrs	inq_la
_	count	3.971700e+04	3.971700e+04	39717.000000	39717.000000	39717.000000	39717.000000	3.971700e+04	39717.000000	39717.000000	397
	mean	6.831319e+05	8.504636e+05	11219.443815	10947.713196	10397.448868	324.561922	6.896893e+04	13.315130	0.146512	
	std	2.106941e+05	2.656783e+05	7456.670694	7187.238670	7128.450439	208.874874	6.379377e+04	6.678594	0.491812	
	min	5.473400e+04	7.069900e+04	500.000000	500.000000	0.000000	15.690000	4.000000e+03	0.000000	0.000000	
	25%	5.162210e+05	6.667800e+05	5500.000000	5400.000000	5000.000000	167.020000	4.040400e+04	8.170000	0.000000	
	50%	6.656650e+05	8.508120e+05	10000.000000	9600.000000	8975.000000	280.220000	5.900000e+04	13.400000	0.000000	
	75%	8.377550e+05	1.047339e+06	15000.000000	15000.000000	14400.000000	430.780000	8.230000e+04	18.600000	0.000000	
	max	1.077501e+06	1.314167e+06	35000.000000	35000.000000	35000.000000	1305.190000	6.000000e+06	29.990000	11.000000	

8 rows × 31 columns

We can see now there are only 53 columns left when we deleted all the columns having mostly null values

```
df.info()
In [294]:
           о сосат рушис
                                           ספרבו ווסוו-וועדד ודמערס<del>ט</del>
           37 total pymnt inv
                                          39717 non-null float64
           38 total rec prncp
                                          39717 non-null float64
           39 total rec int
                                          39717 non-null float64
           40 total rec late fee
                                          39717 non-null float64
           41 recoveries
                                          39717 non-null float64
           42 collection recovery fee
                                          39717 non-null float64
           43 last pymnt d
                                          39646 non-null object
           44 last pymnt amnt
                                          39717 non-null float64
           45 last credit pull d
                                          39715 non-null object
           46 collections_12_mths_ex_med
                                          39661 non-null float64
           47 policy code
                                          39717 non-null int64
           48 application type
                                          39717 non-null object
           49 acc now deling
                                          39717 non-null int64
           50 chargeoff within 12 mths
                                          39661 non-null float64
           51 deling amnt
                                          39717 non-null int64
           52 pub rec bankruptcies
                                          39020 non-null float64
           53 tax liens
                                          39678 non-null float64
          dtypes: float64(18), int64(13), object(23)
          memory usage: 16.4+ MB
```

Lets add correct data type of int_rate

```
In [295]: import re
          def cleanIntRate(intRate):
              newIntRate = re.sub(r'%+', '', str(intRate))
              if len(newIntRate):
                  return float(newIntRate)
              return 0
          df['int_rate'] = df['int_rate'].apply(cleanIntRate)
          print(df['int rate'].head(10))
          df['int rate'].describe()
               10.65
               15.27
          1
               15.96
               13.49
               12.69
               7.90
               15.96
               18.64
               21.28
               12.69
          Name: int rate, dtype: float64
Out[295]: count
                   39717.000000
                      12.021177
          mean
          std
                       3.724825
          min
                       5.420000
          25%
                       9.250000
          50%
                      11.860000
          75%
                      14.590000
          max
                      24.590000
          Name: int rate, dtype: float64
```

Fill null values in int_rate with the most occuring value

```
In [296]: df['int_rate'].mode()
Out[296]: 0
               10.99
          Name: int_rate, dtype: float64
In [297]: df['int_rate'].fillna(df['int_rate'].mode(), inplace=True)
          Creating the categorical data out of the int rate column
In [298]: np.quantile(df['int_rate'], 0.25)
Out[298]: 9.25
In [299]: np.quantile(df['int_rate'], 0.50)
Out[299]: 11.86
In [300]: np.quantile(df['int_rate'], 0.75)
Out[300]: 14.59
```

```
In [301]: |def createCategorical(int_rate):
              if int rate <= 9.25:
                  return 'low'
              elif int_rate <= 11.86:</pre>
                  return 'mid'
              else:
                  return 'high'
          df['int_rate_category'] = df['int_rate'].apply(createCategorical)
          df['int_rate_category'].head(10)
Out[301]: 0
                mid
               high
          1
               high
               high
               high
          5
               low
               high
               high
               high
               high
          Name: int_rate_category, dtype: object
```

Uivariate and Multivariate analysis for the int_rate_category and int_rate

In [302]: plot = sns.violinplot(df, y='int_rate', x='loan_status', hue=df['int_rate_category'])
 plot.set_xlabel('Loan status with interest category', labelpad=10)

Out[302]: Text(0.5, 0, 'Loan status with interest category')

Loan status with interest category

```
In [303]: plot = sns.scatterplot(df, y='int_rate', x=df.index, hue=df['loan_status'])
    plot.set_xlabel('Loan application ID')
```

Out[303]: Text(0.5, 0, 'Loan application ID')


```
In [304]: df['int_rate_category'].value_counts()
```

Out[304]: high 19482 mid 10208 low 10027

Name: int_rate_category, dtype: int64

```
In [305]: sns.countplot(df['int_rate_category'])
```

Out[305]: <AxesSubplot:xlabel='count', ylabel='int_rate_category'>

Observations

- Loan users tends to default when interest rate is higher.
- Charged off status rows in the dataset have the higer median (int_rate) than the other loan status data.

Uivariate and Bivariabte analysis for the loan_status with the other columns.

```
In [306]: df['loan_status'].value_counts()
```

Out[306]: Fully Paid 32950

Charged Off 5627 Current 1140

Name: loan_status, dtype: int64

In [307]: sns.histplot(df['loan_status'])

Out[307]: <AxesSubplot:xlabel='loan_status', ylabel='Count'>


```
In [308]: sns.jointplot(df, x='loan_status', y='int_rate')
```

Out[308]: <seaborn.axisgrid.JointGrid at 0x7fbc27fcf520>


```
In [309]: df.pivot_table(values=['int_rate'], index=['loan_status'], aggfunc=np.median)
```

Out[309]:

int_rate

loan_status	
Charged Off	13.61
Current	14.65
Fully Paid	11.49

In [310]: sns.boxplot(x=df.loan_status, y=df.int_rate)

Out[310]: <AxesSubplot:xlabel='loan_status', ylabel='int_rate'>

Loan_status and Loan_amount lets do the analysis on this.

In [311]: | sns.barplot(y=df.loan_amnt, x=df.loan_status)

Out[311]: <AxesSubplot:xlabel='loan_status', ylabel='loan_amnt'>


```
df.pivot_table(index='loan_status', columns="int_rate_category", values="loan_amnt", aggfunc='median')
In [312]:
Out[312]:
            int rate_category
                             high
                                          mid
                                    low
                 loan_status
                Charged Off 12000
                                   7000
                                          9225
                    Current 16000
                                  12000
                                         14300
                  Fully Paid 10000
                                   7500
                                         9300
```

In [313]: sns.heatmap(df.pivot_table(index=['loan_status'], columns=['int_rate_category'], values="loan_amnt", aggfunc=np.mediar

Out[313]: <AxesSubplot:xlabel='int_rate_category', ylabel='loan_status'>

In [314]: sns.heatmap(df.pivot_table(index=['loan_status'], columns=['int_rate_category'], values="int_rate", aggfunc=np.median)

Out[314]: <AxesSubplot:xlabel='int_rate_category', ylabel='loan_status'>


```
In [315]: | df.groupby(['int_rate_category', 'loan_status']).size()
Out[315]: int_rate_category loan_status
          high
                             Charged Off
                                             3835
                             Current
                                             881
                             Fully Paid
                                            14766
          low
                             Charged Off
                                             600
                             Current
                                              42
                             Fully Paid
                                             9385
          mid
                             Charged Off
                                             1192
                             Current
                                             217
                                             8799
                             Fully Paid
          dtype: int64
```

```
In [316]: plot = df.groupby(['int_rate_category', 'loan_status']).size().unstack().plot.bar()
    plot.set_ylabel('Count')
```

Out[316]: Text(0, 0.5, 'Count')

Observations

- When intrest rate is high, there are more number of people who default on loan
- Peple tend to take more amount, when interest rate is higher.

Bivariate with the annual_inc and loan_status

In [317]: sns.boxplot(df, x='loan_status', y='annual_inc', log_scale=True)

Out[317]: <AxesSubplot:xlabel='loan_status', ylabel='annual_inc'>


```
In [318]: sns.scatterplot(df, x='annual_inc', y='loan_amnt', hue=df['loan_status'])
```

Out[318]: <AxesSubplot:xlabel='annual_inc', ylabel='loan_amnt'>


```
In [319]: sns.stripplot(df, x='loan_status', y='annual_inc', log_scale=True)
```

Out[319]: <AxesSubplot:xlabel='loan_status', ylabel='annual_inc'>


```
In [320]: sns.barplot(df, x='loan_status', y='annual_inc', log_scale=True)
```

Out[320]: <AxesSubplot:xlabel='loan_status', ylabel='annual_inc'>

In [321]: loan_status_int_annual_inc_table = df.pivot_table(index=['loan_status', 'int_rate_category'], values='annual_inc', agg
loan_status_pivot_table.style.background_gradient(cmap=cm)

Out[321]:

member_id

	loan_status	home_ownership
2327	Charged Off	
638	Current	MORTGAGE
14694	Fully Paid	
3	Fully Paid	NONE
18	Charged Off	OTHER
80	Fully Paid	OTHER
443	Charged Off	
83	Current	OWN
2532	Fully Paid	
2839	Charged Off	
419	Current	RENT
15641	Fully Paid	

```
plot_axis = sns.heatmap(loan_status_int_annual_inc_table.unstack(), xticklabels=['High', 'Low', 'Mid'])
In [322]:
          plot axis.set xlabel('Interest Rate category', labelpad=10)
          plot axis.set ylabel('Loan status', labelpad=10)
```

Out[322]: Text(47.2499999999999, 0.5, 'Loan status')


```
In [323]: loan_status_int_annual_inc_table.plot.bar()
```

Out[323]: <AxesSubplot:xlabel='loan_status,int_rate_category'>

Observations

• When applicatants takes loan on high interest and having lower than median annual inc compared to the people who takes high interest loan and paids fully.

Bivariate analysis with the loan status and home ownership

In [324]: loan_status_pivot_table = df.pivot_table(index=['home_ownership', 'loan_status'], values="member_id", aggfunc='count')
loan_status_pivot_table.style.background_gradient(cmap=cm)

Out[324]: member_id

home_ownership	loan_status	
	Charged Off	2327
MORTGAGE	Current	638
	Fully Paid	14694
NONE	Fully Paid	3
OTHER	Charged Off	18
OTHER	Fully Paid	80
	Charged Off	443
OWN	Current	83
	Fully Paid	2532
	Charged Off	2839
RENT	Current	419
	Fully Paid	15641

```
In [325]: loan_status_pivot_table.unstack().plot.bar()
```

Out[325]: <AxesSubplot:xlabel='home_ownership'>


```
In [326]: | sns.heatmap(df.pivot_table(index=['loan_status'], columns=['home_ownership'], values="member_id", aggfunc='count'))
```

Out[326]: <AxesSubplot:xlabel='home_ownership', ylabel='loan_status'>


```
people on rent = df[df['home ownership'].isin(('RENT', 'MORTGAGE'))]
In [327]:
          people on rent.groupby(['loan status', 'int rate category']).size()
Out[327]: loan status int rate category
          Charged Off high
                                              3528
                       low
                                               546
                       mid
                                              1092
                       high
          Current
                                               823
                       low
                                                38
                       mid
                                               196
                       high
                                             13672
          Fully Paid
                                              8565
                       low
                       mid
                                              8098
          dtype: int64
```

Observations

- People having house ownership equal to RENT tend to default on loan
- People having house ownership euqal to RENT and MORTAGE tend to take loan on high interest rate and tend to default more.

Bivariate analysis with the loan_status and installment term

```
In [329]: df.groupby(['term', 'loan_status']).size().unstack().plot.bar()
```

Out[329]: <AxesSubplot:xlabel='term'>

Bivariate analysis with the loan_status and installment

```
In [330]: sns.boxplot(df, x='loan_status', y='installment', log_scale=False)
```

Out[330]: <AxesSubplot:xlabel='loan_status', ylabel='installment'>


```
In [331]: sns.barplot(df, x='loan_status', y='installment')
```

Out[331]: <AxesSubplot:xlabel='loan_status', ylabel='installment'>


```
In [332]: sns.barplot(df, x='loan_status', y='installment', hue=df['int_rate_category'])
```

Out[332]: <AxesSubplot:xlabel='loan_status', ylabel='installment'>

In [333]: term_installment_loan_status_table = df.pivot_table(index=['loan_status'], columns=['term'], values=['installment'], a
term_installment_loan_status_table

Out[333]:

installment

loan	status

Charged Off	259.57	345.59
Current	NaN	368.19
Fully Paid	262.21	317.04

```
In [334]: ax = sns.heatmap(term_installment_loan_status_table)
ax.set_xlabel('Installment', labelpad=10)
```

Out[334]: Text(0.5, 20.0499999999997, 'Installment')


```
In [335]: higher_term_charged_off = df[(df['term'] == ' 60 months') & df['loan_status'].isin(['Charged Off'])]
    plot = sns.scatterplot(df, x='loan_amnt', y='installment', hue=df['int_rate_category'])
    plot.set_xlabel('Loan Amount', labelpad=10)
    plot.set_ylabel('Installment', labelpad=10)
```

Out[335]: Text(0, 0.5, 'Installment')

In [336]: plot = sns.scatterplot(df, x='annual_inc', y='installment', hue=df['int_rate_category'])

Observations

- When people take loan on 60 months term and higher installment amount tends to default more.
- People take loan on 60 months term and higher interest rate and high installment payment and tend default more.

Bivariate Analysis of loan_status and purpose

loan_status_purpose_table = df.pivot_table(index=['loan_status'], columns=['purpose'], values='member_id', aggfunc='cd In [337]: loan status purpose table.unstack() loan status purpose table Out[337]: purpose car credit_card debt_consolidation educational home_improvement house major_purchase medical moving other renewable loan_status Charged 160.0 2767.0 542.0 56.0 347.0 59.0 222.0 106.0 92.0 633.0 Off 37.0 103.0 586.0 14.0 12.0 7.0 128.0 Current 50.0 NaN 101.0 1928.0 484.0 3232.0 Fully Paid 1339.0 4485.0 15288.0 269.0 2528.0 308.0 575.0

```
In [338]: sns.heatmap(loan_status_purpose_table)
```

Out[338]: <AxesSubplot:xlabel='purpose', ylabel='loan_status'>

Loan_status , purpose , and int_rate analysis

```
In [339]: table = df.pivot_table(index=['purpose', 'loan_status'], values=['int_rate'], aggfunc=np.median)
    plot = sns.heatmap(table.unstack())

plot.set_xlabel('Loan status', labelpad=10)
    table
```

Out[339]:

int_rate

purpose	loan_status	
car	Charged Off	11.710
	Current	11.850
	Fully Paid	10.000
credit_card	Charged Off	13.350
	Current	15.270
	Fully Paid	11.120
debt_consolidation	Charged Off	14.170
	Current	14.790
	Fully Paid	11.860
educational	Charged Off	12.530
	Fully Paid	11.490
home_improvement	Charged Off	13.110
	Current	13.490
	Fully Paid	10.950
house	Charged Off	15.270
	Current	12.740
	Fully Paid	11.475
major_purchase	Charged Off	13.110
	Current	12.990
	Fully Paid	10.380
medical	Charged Off	13.360
	Current	15.380
	Fully Paid	10.990

int_rate

purpose	loan_status	
moving	Charged Off	11.490
	Current	14.790
	Fully Paid	11.110
other	Charged Off	13.490
	Current	13.990
	Fully Paid	11.360
renewable_energy	Charged Off	11.360
	Current	11.490
	Fully Paid	10.990
small_business	Charged Off	13.990
	Current	16.490
	Fully Paid	12.210
vacation	Charged Off	11.490
	Current	11.240
	Fully Paid	10.590
wedding	Charged Off	13.290
	Current	16.770
	Fully Paid	11.490

In [340]: charged_off_debt_consolidation = df[(df['loan_status'].isin(['Charged Off'])) & df['purpose'].isin(['debt_consolidatic
sns.scatterplot(charged_off_debt_consolidation, x='annual_inc', y='loan_amnt', hue=df['int_rate_category'])

Out[340]: <AxesSubplot:xlabel='annual_inc', ylabel='loan_amnt'>

Observations

• People default more when purpose is debt_consolidation and tend to take loan on higher int_rate, even when income is on lower side.

Bivariate analysis for verification status and loan status

In [341]: verification_and_loan_status_table = df.pivot_table(index=['loan_status'], values='member_id', columns='verification_s
verification_and_loan_status_table

 Out[341]:
 verification_status
 Not Verified
 Source Verified
 Verified

 Ioan_status
 Charged Off
 2142
 1434
 2051

 Current
 227
 310
 603

14552

8243

10155

Fully Paid

In [342]: |sns.heatmap(verification_and_loan_status_table)

Out[342]: <AxesSubplot:xlabel='verification_status', ylabel='loan_status'>


```
In [343]: sns.barplot(verification_and_loan_status_table)
```

Out[343]: <AxesSubplot:xlabel='verification status'>

Multi Variate analysis

Of loan_status with other columns like installment, term, annual_inc, home_ownership, int_rate, purpose, loan_amount, int_rate_category, verification_status

Out[344]:

	loan_status	installment	term	annual_inc	home_ownership	int_rate	purpose	loan_amnt	int_rate_category	verification_status
0	Fully Paid	162.87	36 months	24000.0	RENT	10.65	credit_card	5000	mid	Verified
1	Charged Off	59.83	60 months	30000.0	RENT	15.27	car	2500	high	Source Verified
2	Fully Paid	84.33	36 months	12252.0	RENT	15.96	small_business	2400	high	Not Verified
3	Fully Paid	339.31	36 months	49200.0	RENT	13.49	other	10000	high	Source Verified
4	Current	67.79	60 months	80000.0	RENT	12.69	other	3000	high	Source Verified

```
In [345]: sns.pairplot(df_subset)
```

Out[345]: <seaborn.axisgrid.PairGrid at 0x7fbc14eaf460>

loan_status , int_category , purpose , home_ownership

In [346]: table = df.pivot_table(index=['loan_status', 'purpose', 'int_rate_category', 'term', 'home_ownership'], values=['annua

In [347]: | table.style.background_gradient(cmap=cm)

Out[347]:

loan_status	purpose	int_rate_category	term	home_ownership			
				MORTGAGE	54902.520000	6000.000000	
			36 months	OTHER	37800.000000	10000.000000	
				OWN	57000.000000	9000.000000	
		high		RENT	45314.000000	5000.000000	
				MORTGAGE	57000.000000	5600.000000	
				60 months	OWN	38400.000000	3600.000000
			RENT	52500.000000	6000.000000		
			MORTGAGE	67500.000000	5150.000000		
	car	law	36 months	OWN	30900.000000	4775.000000	
		low		RENT	39000.000000	6600.000000	
	6	60 months	MORTGAGE	39000.000000	9800.000000		

annual_inc

loan_amnt

```
In [348]: plot = sns.FacetGrid(df[df['loan_status'] == 'Charged Off'], row='loan_status', col='int_rate_category', height=3, asp
plot.map(sns.boxplot, "loan_amnt")
```

/Users/shaifali.jangra/opt/anaconda3/lib/python3.9/site-packages/seaborn/axisgrid.py:718: UserWarning: Using the boxp lot function without specifying `order` is likely to produce an incorrect plot.

warnings.warn(warning)

Out[348]: <seaborn.axisgrid.FacetGrid at 0x7fbc1bd29880>

Recommendations

- 1. Do more background check when when purpose is debt_consolidation and ready to take loan on higher int_rate, even when income is on lower side.
 - When purpose is debt_consolidation, people do full payment when interest rate is lower.
 - When purpose is debt_consolidation, people do better, full payment rate is higher when loan amount and annual_inc is lower.
- 2. When income is low, and people ready to take on high interest and high installment amount, they tend to default more, do more background check.
- 3. When people living on RENT tend to default more as they are ready to take loan on high interest rate, and high installment amount, and have low annual inc.
 - Pople living on RENT do better when interate rate is low and installment amount is median of the current dataset.