પ્રશ્ન 1(અ) [3 ગુણ]

રિન્યુએબલ એનર્જી શું છે? તેનું મહત્વ સમજાવો.

જવાબ:

રિન્યુએબલ એનર્જી એ કુદરતી સ્ત્રોતોમાંથી મેળવાતી ઊર્જા છે જે સમય સાથે ફરીથી બનતી રહે છે, જેમ કે સૌર, પવન, જળ, બાયોમાસ અને ભૂગર્ભીય ઊર્જા.

ટેબલ: રિન્યુએબલ એનર્જીનું મહત્વ

પાસું	ફાયદો
પર્યાવરણીય	ગ્રીનહાઉસ ગેસ ઉત્સર્જન અને પ્રદૂષણ ઘટાડે છે
આર્થિક	નોકરીઓ બનાવે છે અને લાંબા ગાળે ઊર્જા ખર્ચ ઘટાડે છે
ઊર્જા સુરક્ષા	અશ્મિભૂત ઇંધણની આયાત પર નિર્ભરતા ઘટાડે છે
ટકાઉપણું	ભાવિ પેઢીઓ માટે અખૂટ ઊર્જા સ્ત્રોતો

મુખ્ય મુદ્દાઓ:

• સ્વચ્છ ઊર્જા: કામગીરી દરમિયાન શૂન્ય કાર્બન ઉત્સર્જન

• ખર્ચ-અસરકારક: ઘટતી ટેકનોલોજી કિંમતો તેને આર્થિક બનાવે છે

• રોજગાર સર્જન: વધતો ઉદ્યોગ રોજગારની તકો પૂરી પાડે છે

યાદ રાખવાની ટેકનીક: "EEES" - Environmental protection, Economic benefits, Energy security, Sustainability

પ્રશ્ન 1(બ) [4 ગુણ]

ઇલેક્ટ્રિક વાહનોના પ્રકારોની યાદી બનાવો. દરેકને સંક્ષિપ્તમાં સમજાવો.

જવાબ:

ટેબલ: ઇલેક્ટ્રિક વાહનોના પ્રકારો

SISK	સંપૂર્ણ નામ	વર્ણન
BEV	Battery Electric Vehicle	સંપૂર્ણ ઇલેક્ટ્રિક, માત્ર બેટરીથી ચાલે છે
HEV	Hybrid Electric Vehicle	ગેસોલિન એન્જિન અને ઇલેક્ટ્રિક મોટરનું મિશ્રણ
PHEV	Plug-in Hybrid Electric Vehicle	બાહ્ય પાવર સ્ત્રોતથી ચાર્જ કરી શકાય છે
FCEV	Fuel Cell Electric Vehicle	પાવર માટે હાઇડ્રોજન ફ્યૂઅલ સેલનો ઉપયોગ

મુખ્ય લક્ષણો:

• BEV: શૂન્ય ઉત્સર્જન, યાર્જિંગ સ્ટેશનની જરૂર

• **HEV**: બહેતર ઇંધણ દક્ષતા, રિજનરેટિવ બ્રેકિંગ દ્વારા સ્વ-ચાર્જિંગ

• PHEV: બેવડા પાવર વિકલ્પો, વિસ્તૃત રેન્જ

• FCEV: ઝડપી રિફ્યુઅલિંગ, એકમાત્ર ઉત્સર્જન પાણી

યાદ રાખવાની ટેકનીક: "Big Hybrid Plug Fuel" BEV, HEV, PHEV, FCEV માટે

પ્રશ્ન 1(ક) [7 ગુણ]

સૌર ઊર્જા અને સૌર થર્મલ ઊર્જા વચ્ચે શું તફાવત છે? હોમ સોલાર રફટોપ સિસ્ટમના બ્લોક ડાયાગ્રામની ચર્ચા કરો.

જવાબ:

ટેબલ: સૌર ઊર્જા વિ સૌર થર્મલ ઊર્જા

પેરામીટર	સૌર ઊર્જા (PV)	સૌર થર્મલ ઊર્જા
રૂપાંતરણ	સીધો સૂર્યપ્રકાશ વીજળીમાં	સૂર્યપ્રકાશ ગરમી ઊર્જામાં
ટેકનોલોજી	ફોટોવોલ્ટેઇક સેલ્સ	સોલાર કલેક્ટર્સ/પેનલ્સ
આઉટપુટ	વિદ્યુત ઊર્જા	ઉષ્મા ઊર્જા (ગરમ પાણી/વરાળ)
ઉપયોગો	પાવર જનરેશન, લાઇટિંગ	પાણી ગરમ કરવું, સ્પેસ હીટિંગ
કાર્યક્ષમતા	15-22%	70-80%

બ્લોક ડાયાગ્રામ: હોમ સોલાર રફટોપ સિસ્ટમ

મુખ્ય ઘટકો:

• **સોલાર પેનલ્સ**: સૂર્યપ્રકાશને DC વીજળીમાં ફેરવે છે

• **યાર્જ કંટ્રોલર**: બેટરી ચાર્જિંગ નિયંત્રિત કરે છે

• **ઇન્વર્ટર**: DC ને AC પાવરમાં ફેરવે છે

• બેટરી બેંક: વધારાની ઊર્જા સ્ટોર કરે છે

• ગ્રિડ કનેક્શન: બે-માર્ગી પાવર ફ્લો

યાદ રાખવાની ટેકનીક: "Solar Converts Battery Inverter Grid" મુખ્ય ઘટકો માટે

પ્રશ્ન 1(ક OR) [7 ગુણ]

સૌર ફોટોવોલ્ટેઇક અસર શું છે? ફોટોવોલ્ટેઇક રૂપાંતરણનો સિદ્ધાંત સમજાવો.

જવાબ:

સૌર ફોટોવોલ્ટેઇક અસર એ સેમિકંડક્ટર સામગ્રી પર પ્રકાશ પડતાં વિધુત પ્રવાહ ઉત્પન્ન થવાની ઘટના છે.

ફોટોવોલ્ટેઇક રૂપાંતરણનો સિદ્ધાંત:

કાર્યપ્રક્રિયા:

• ફોટોન શોષણ: પ્રકાશ ફોટોન સેમિકંડક્ટર સામગ્રીને અથડાવે છે

• **ઇલેક્ટ્રોન ઉત્તેજના**: ઇલેક્ટ્રોન્સ ઊર્જા મેળવીને કંડક્શન બેન્ડમાં જાય છે

• **P-N જંક્શન**: વિદ્યુત ક્ષેત્ર બનાવીને ચાર્જ અલગ કરે છે

• કરંટ જનરેશન: ઇલેક્ટ્રોન્સનો પ્રવાહ વિદ્યુત પ્રવાહ બનાવે છે

મુખ્ય મુદ્દાઓ:

• **ઊર્જા રૂપાંતરણ**: પ્રકાશ ઊર્જા → વિદ્યુત ઊર્જા

• સેમિકંડક્ટર મટીરિયલ: સામાન્ય રીતે સિલિકોન આધારિત

• સીધું રૂપાંતરણ: કોઈ હલનચલન ભાગોની જરૂર નથી

• ક્વોન્ટમ અસર: ફોટોઇલેક્ટ્રિક અસર પર આધારિત

ટેબલ: PV સેલ સામગ્રીઓ

સામગ્રી	કાર્યક્ષમતા	કિંમત	ઉપયોગ
મોનોક્રિસ્ટલાઇન સિલિકોન	18-22%	ઊંચી	રેસિડેન્શિયલ
પોલિક્રિસ્ટલાઇન સિલિકોન	15-17%	મધ્યમ	કોમર્શિયલ
થિન ફિલ્મ	10-12%	ઓછી	મોટા પાયે

યાદ રાખવાની રેકનીક: "Photons Push Electrons Producing Power"

પ્રશ્ન 2(અ) [3 ગુણ]

નેનો ટેકનોલોજી શું છે? નેનો ટેકનોલોજી પર આદ્યારિત કોઈપણ ત્રણ એપ્લિકેશનની યાદી બનાવો.

જવાબ:

નેનો ટેકનોલોજી એ મોલેક્યુલર અને પરમાણુ સ્તરે (1-100 નેનોમીટર) પદાર્થોની હેરફેર વિજ્ઞાન છે.

ટેબલ: નેનો ટેકનોલોજી એપ્લિકેશન્સ

એપ્લિકેશન	વર્ણન	ફાયદો
મેડિકલ	ડ્રગ ડિલિવરી સિસ્ટમ, કેન્સર ટ્રીટમેન્ટ	લક્ષિત ઉપચાર
ઇલેક્ટ્રોનિક્સ	નાના, ઝડપી પ્રોસેસર અને મેમોરી	ઉચ્ચ કાર્યક્ષમતા
ଉର୍ଜ	સોલાર સેલ્સ, બેટરીઓ, ફ્યૂઅલ સેલ્સ	બહેતર કાર્યક્ષમતા

મુખ્ય મુદ્દાઓ:

• **સ્કેલ**: નેનોમીટર સ્તરે કામ કરે છે (10⁻⁹ મીટર)

• યોકસાઈ: પરમાણુ સ્તરે હેરફેર

• ક્રાંતિકારી: વિવિધ ઉદ્યોગોનું રૂપાંતરણ

યાદ રાખવાની ટેકનીક: "Nano Makes Everything Better" - Medical, Electronics, Energy

પ્રશ્ન 2(બ) [4 ગુણ]

મહત્વપૂર્ણ ઉભરતી નવીનીકરણીય ઊર્જા તકનીક તરીકે ભરતી તરંગ ઊર્જા પર ટૂંકી નોંધ લખો.

જવાબ:

ભરતી તરંગ ઊર્જા સમુદ્રી ભરતીઓ અને તરંગોની ગતિશીલ ઊર્જાનો ઉપયોગ કરીને વીજળી ઉત્પન્ન કરે છે.

મુખ્ય લક્ષણો:

• **પૂર્વાનુમાન**: ભરતી નિયમિત પેટર્ન અનુસરે છે

• ઉચ્ચ ઘનતા: પાણી હવા કરતાં 800 ગણું ઘન છે

• સ્થિર: દિવસ-રાત ઉપલબ્ધ

• સ્વચ્છ: કોઈ ઉત્સર્જન અથવા બળતણ વપરાશ નથી

ટેબલ: ભરતી ઊર્જા સિસ્ટમ્સ

уѕіг	પદ્ધતિ	ફાયદો
ટાઇડલ બેરેજ	નદીમુખ પર બંધ	ઉચ્ચ પાવર આઉટપુટ
ટાઇડલ સ્ટ્રીમ	પાણીની અંદર ટર્બાઇન	ન્યૂનતમ પર્યાવરણીય અસર
વેવ એનર્જી	સપાટીના તરંગ ગતિ	વિપુલ સંસાધન

ઉપયોગો:

• કોસ્ટલ પાવર જનરેશન: દૂરના દરિયાકાંઠાના સમુદાયો

• ગ્રિડ ઇન્ટિગ્રેશન: અન્ય નવીનીકરણીય સ્ત્રોતોના પૂરક

• આઇલેન્ડ નેશન્સ: દરિયાઈ દેશો માટે આદર્શ

યાદ રાખવાની ટેકનીક: "Tides Provide Predictable Power"

પ્રશ્ન 2(ક) [7 ગુણ]

સ્માર્ટ વોટર મોનિટરિંગ સિસ્ટમ શું છે? સ્માર્ટ વોટર ક્વોલિટી મોનિટરિંગ સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો.

જવાલ

સ્માર્ટ વોટર મોનિટરિંગ સિસ્ટમ IoT સેન્સર્સનો ઉપયોગ કરીને પાણીની ગુણવત્તાના પેરામીટર્સનું સતત નિરીક્ષણ કરે છે અને નિર્ણય લેવા માટે રીઅલ-ટાઇમ ડેટા પ્રદાન કરે છે.

બ્લોક ડાયાગ્રામ: સ્માર્ટ વોટર ક્વોલિટી મોનિટરિંગ સિસ્ટમ

મુખ્ય ઘટકો:

• **સેન્સર્સ**: pH, ટર્બિડિટી, તાપમાન, ઓગળેલા ઓક્સિજનનું નિરીક્ષણ

• માઇક્રોકંટ્રોલર: ડેટા પ્રોસેસિંગ માટે Arduino/Raspberry Pi

• **કમ્યુનિકેશન**: ડેટા ટ્રાન્સમિશન માટે WiFi/GSM

• **ક્લાઉડ પ્લેટફોર્મ**: ડેટા સ્ટોરેજ અને વિશ્લેષણ

• યુઝર ઇન્ટરફેસ: મોનિટરિંગ માટે મોબાઇલ એપ

ફાયદા:

• રીઅલ-ટાઇમ મોનિટરિંગ: સતત પાણીની ગુણવત્તા મૂલ્યાંકન

• અલીં વોર્નિંગ: દૂષણ માટે તાત્કાલિક અલર્ટ

• ડેટા એનાલિટિક્સ: ઐતિહાસિક પ્રવૃત્તિઓ અને અનુમાનો

• ખર્ચ અસરકારક: મેન્યુઅલ પરીક્ષણ ખર્ચ ઘટાડે છે

ટેબલ: પાણીની ગુણવત્તાના પેરામીટર્સ

પેરામીટર	સામાન્ય રેન્જ	સેન્સર પ્રકાર
рН	6.5-8.5	pH ઇલેક્ટ્રોડ
ટલિંડિટી	<1 NTU	ઓપ્ટિકલ સેન્સર
तापभान	15-25°C	થર્મિસ્ટર
ઓગળેલા ઓક્સિજન	>5 mg/L	ઇલેક્ટ્રોકેમિકલ

યાદ રાખવાની ટેકનીક: "Smart Sensors Send Signals Safely"

પ્રશ્ન 2(અ OR) [3 ગુણ]

વેરેબલ ટેકનોલોજી શું છે? વેરેબલ ટેકનોલોજીની ઓછામાં ઓછી બે એપ્લિકેશનના નામ આપો?

જવાબ:

વેરેબલ ટેકનોલોજી એ ઇલેક્ટ્રોનિક ઉપકરણો છે જે કપડાં અથવા એક્સેસરીઝ તરીકે પહેરી શકાય છે, જેમાં સ્માર્ટ સેન્સર્સ અને કનેક્ટિવિટી સામેલ છે.

એપ્લિકેશન્સ:

• આરોગ્ય નિરીક્ષણ: હાર્ટ રેટ, પગલાં, ઊંઘની પેટર્ન ટ્રેક કરતી સ્માર્ટવોચ

• ફિટનેસ ટ્રેકિંગ: કેલોરી, અંતર, કસરતનું માપ કરતા એક્ટિવિટી મોનિટર્સ

• મેડિકલ ડિવાઇસેસ: સતત ગ્લુકોઝ મોનિટર્સ, બ્લડ પ્રેશર મોનિટર્સ

• સ્માર્ટ ગ્લાસીસ: ઓગમેન્ટેડ રિયાલિટી ડિસ્પ્લે, હેન્ડ્સ-ફ્રી કમ્પ્યુટિંગ

મુખ્ય લક્ષણો:

• પોર્ટેબલ: હળવા અને પહેરવા માટે આરામદાયક

• કનેક્ટેડ: સ્માર્ટફોન સાથે Bluetooth/WiFi કનેક્ટિવિટી

• સેન્સર-રિચ: ડેટા એકત્રીકરણ માટે બહુવિધ સેન્સર્સ

યાદ રાખવાની ટેકનીક: "Wearables Watch Wellness Wirelessly"

પ્રશ્ન 2(બ OR) [4 ગુણ]

વિવિધ પ્રકારના સોલાર સેલની યાદી બનાવો. ઇલેક્ટ્રિક વાહન માટે વિવિધ ઊર્જા સ્ત્રોતોની યાદી બનાવો.

જવાબ:

ટેબલ: સોલાર સેલના પ્રકારો

પ્રકાર	સામગ્રી	કાર્યક્ષમતા	કિંમત
મોનોક્રિસ્ટલાઇન	સિંગલ ક્રિસ્ટલ સિલિકોન	18-22%	ઊંચી
પોલિક્રિસ્ટલાઇન	મલ્ટિ-ક્રિસ્ટલ સિલિકોન	15-17%	મધ્યમ
થિન ફિલ્મ	એમોર્ફ્સ સિલિકોન	10-12%	ઓછી
કેડમિયમ ટેલ્યુરાઇડ	CdTe કમ્પાઉન્ડ	16-18%	મધ્યમ

ટેબલ: ઇલેક્ટ્રિક વાહનો માટે ઊર્જા સ્ત્રોતો

સ્ત્રોત	વર્ણન	ફાયદો
બેટરી	લિથિયમ-આયન સેલ્સ	ઉચ્ચ ઊર્જા ઘનતા
ફ્યૂઅલ સેલ	હાઇડ્રોજન રૂપાંતરણ	ઝડપી રિફ્યુઅલિંગ
અલ્ટ્રાકેપેસિટર	ઝડપી યાર્જ/ડિસચાર્જ	ફાસ્ટ યાર્જિંગ
રિજનરેટિવ બ્રેકિંગ	ગતિશીલ ઊર્જા પુનઃપ્રાપ્તિ	ઊર્જા કાર્યક્ષમતા

याह राजवानी टेडनीड: "Solar: Mono Poly Thin Cadmium" / "EV: Battery Fuel Ultra Regen"

પ્રશ્ન 2(ક OR) [7 ગુણ]

ડ્રોનના બ્લોક ડાયાગ્રામ અને તેના મુખ્ય ઘટકોનું વર્ણન કરો.

જવાબ:

બ્લોક ડાયાગ્રામ: ડ્રોન સિસ્ટમ

મુખ્ય ઘટકો:

ટેબલ: ડ્રોન ઘટકો

ยรร	รเช้	મહત્વ
ફ્લાઇટ કંટ્રોલર	સેન્ટ્રલ પ્રોસેસિંગ યુનિટ	ડ્રોનનું મગજ
ESC	મોટર સ્પીડ કંટ્રોલ	ચોક્કસ મોટર કંટ્રોલ
મોટર્સ અને પ્રોપેલર્સ	થ્રસ્ટ જનરેટ કરે છે	ફ્લાઇટ ક્ષમતા
બેટરી	પાવર સપ્લાય	ફ્લાઇટ અવધિ
GPS	પોઝિશન ટ્રેકિંગ	નેવિગેશન
ІМИ	મોશન સેન્સિંગ	સ્ટેબિલિટી કંટ્રોલ

મુખ્ય સિસ્ટમ્સ:

• પ્રોપલ્શન સિસ્ટમ: લિફ્ટ અને કંટ્રોલ માટે 4 મોટર્સ પ્રોપેલર્સ સાથે

• કંટ્રોલ સિસ્ટમ: સ્ટેબિલાઇઝેશન એલ્ગોરિધમ સાથે ફ્લાઇટ કંટ્રોલર

• નેવિગેશન સિસ્ટમ: પોઝિશનિંગ માટે GPS અને કંપાસ

• **પાવર સિસ્ટમ**: ઇલેક્ટ્રિકલ પાવર માટે LiPo બેટરી

• કમ્યુનિકેશન: ગ્રાઉન્ડ કંટ્રોલર સાથે રેડિયો લિંક

કાર્યસિદ્ધાંત:

• લિક્ટ: રોટર્સ ઉપરની દિશામાં થ્રસ્ટ બનાવે છે

• કંટ્રોલ: વિવિધ રોટર સ્પીડ મૂવમેન્ટ કંટ્રોલ કરે છે

• સ્ટેબિલિટી: સેન્સર્સ બેલેન્સ અને ઓરિએન્ટેશન જાળવે છે

યાદ રાખવાની ટેકનીક: "Drones Fly Using Motors, Electronics, Sensors, Power"

પ્રશ્ન 3(અ) [3 ગુણ]

IoT શું છે? IoT ના મુખ્ય ઘટકોની યાદી બનાવો.

જવાબ:

IoT (Internet of Things) એ ભૌતિક ઉપકરણોનું નેટવર્ક છે જે ઇન્ટરનેટ દ્વારા ડેટા એકત્રિત અને વિનિમય કરે છે.

ટેબલ: IoT ના મુખ્ય ઘટકો

ยรร	รเช้	ઉદાહરણ
સેન્સર્સ	ડેટા એકત્રીકરણ	તાપમાન, ભેજ સેન્સર્સ
કનેક્ટિવિટી	ડેટા ટ્રાન્સમિશન	WiFi, Bluetooth, GSM
ડેટા પ્રોસેસિંગ	માહિતી વિશ્લેષણ	ક્લાઉડ કમ્પ્યુટિંગ
યુઝર ઇન્ટરફેસ	માનવીય ક્રિયાપ્રતિક્રિયા	મોબાઇલ એપ્સ, ડેશબોર્ડ

મુખ્ય લક્ષણો:

• **આંતરકનેક્ટેડ**: ઉપકરણો એકબીજા સાથે વાતચીત કરે છે

• સ્માર્ટ: સ્વચાલિત નિર્ણય લેવું

• ડેટા-ડ્રિવન: સતત નિરીક્ષણ અને વિશ્લેષણ

યાદ રાખવાની ટેકનીક: "IoT Connects Smart Devices Using Internet"

પ્રશ્ન 3(બ) [4 ગુણ]

કાર્બનિક અને અકાર્બનિક ઇલેક્ટ્રોનિક્સ વચ્ચે સરખામણી કરો.

જવાબ:

ટેબલ: કાર્બનિક વિ અકાર્બનિક ઇલેક્ટ્રોનિક્સ

પેરામીટર	કાર્બનિક ઇલેક્ટ્રોનિક્સ	અકાર્બનિક ઇલેક્ટ્રોનિક્સ
સામગ્રી	કાર્બન આદ્યારિત સંયોજનો	સિલિકોન, ધાતુઓ
ઉત્પાદન	ઓછું તાપમાન, પ્રિન્ટિંગ	ઊંચું તાપમાન, ક્લીન રૂમ
લવચીકતા	લવચીક, વળી શકાય તેવું	કઠોર, બરડ
કિંમત	ઓછી ઉત્પાદન કિંમત	ઊંચી ઉત્પાદન કિંમત
કાર્યક્ષમતા	ઓછી ઝડપ, કાર્યક્ષમતા	ઊંચી ઝડપ, કાર્યક્ષમતા
એપ્લિકેશન્સ	ડિસ્પ્લે, સોલાર સેલ્સ	પ્રોસેસર્સ, મેમોરી

મુખ્ય તફાવતો:

• પ્રોસેસિંગ: કાર્બનિક સોલ્યુશન આધારિત પ્રોસેસિંગ વાપરે છે

• સબસ્ટ્રેટ: કાર્બનિક પ્લાસ્ટિક સબસ્ટ્રેટ વાપરી શકે છે

• ટકાઉપણું: અકાર્બનિક વધુ સ્થિર અને ટકાઉ

• નવીનતા: કાર્બનિક નવા ફોર્મ ફેક્ટર્સ સક્ષમ કરે છે

યાદ રાખવાની ટેકનીક: "Organic: Flexible, Cheap, Printable vs Inorganic: Fast, Stable, Expensive"

પ્રશ્ન 3(ક) [7 ગુણ]

સ્માર્ટ સ્ટ્રીટ લાઇટ કંટ્રોલ અને મોનિટરિંગ સિસ્ટમનો બ્લોક ડાયાગ્રામ દોરો. ઉદ્યોગમાં AR/VR ટેકનોલોજીના ફાયદા અને ઉપયોગની ચર્ચા કરો.

જવાબ:

બ્લોક ડાયાગ્રામ: સ્માર્ટ સ્ટ્રીટ લાઇટ સિસ્ટમ

ઉદ્યોગમાં AR/VR ટેકનોલોજી:

ટેબલ: AR/VR એપ્લિકેશન્સ

ઉદ્યોગ	AR એપ્લિકેશન	VR એપ્લિકેશન
મેન્યુફેક્ચરિંગ	એસેમ્બલી સૂચનાઓ	ટ્રેનિંગ સિમ્યુલેશન
હેલ્થકેર	સર્જરી સહાયતા	મેડિકલ ટ્રેનિંગ
શିક્ષણ	ઇન્ટરેક્ટિવ લર્નિંગ	વર્ચ્યુઅલ ક્લાસરૂમ
રિટેલ	પ્રોડક્ટ વિઝ્યુઅલાઇઝેશન	વર્ચ્યુઅલ શોરૂમ

કાયદા:

• વિક્રસિત પ્રશિક્ષણ: સુરક્ષિત, પુનરાવર્તિત શીખવાનું વાતાવરણ

• રિમોટ કોલેબોરેશન: વર્ચ્યુઅલ મીટિંગ્સ અને શેર્ડ વર્કસ્પેસ

• **ડિઝાઇન વિઝ્યુઅલાઇઝેશન**: 3D પ્રોટોટાઇપિંગ અને મોડેલિંગ

• મેઇન્ટેનન્સ સપોર્ટ: રીઅલ-ટાઇમ માર્ગદર્શન અને સમસ્યા નિવારણ

મુખ્ય ફાયદા:

• કિંમત ઘટાડો: ઓછા પ્રશિક્ષણ અને પ્રવાસ ખર્ચ

• સલામતી: જોખમ-મુક્ત પ્રશિક્ષણ વાતાવરણ

• કાર્યક્ષમતા: ઝડપી શીખવું અને સમસ્યા-નિવારણ

• નવીનતા: માનવ-કમ્પ્યુટર ક્રિયાપ્રતિક્રિયાની નવી રીતો

યાદ રાખવાની ટેકનીક: "AR/VR: Training, Design, Remote, Maintenance"

પ્રશ્ન 3(અ OR) [3 ગુણ]

સ્માર્ટ સિસ્ટમ શું છે? કોઈપણ ચાર પ્રકારની સ્માર્ટ સિસ્ટમની યાદી બનાવો.

જવાબ:

સ્માર્ટ સિસ્ટમ એ બુદ્ધિશાળી સિસ્ટમ છે જે સેન્સર્સ, ડેટા પ્રોસેસિંગ અને ઓટોમેશનનો ઉપયોગ કરીને નિર્ણયો લે છે અને બદલાતી પરિસ્થિતિઓમાં અનુકૂલન કરે છે.

ટેબલ: સ્માર્ટ સિસ્ટમના પ્રકારો

уѕіг	વર્ણન	ઉદાહરણ
સ્માર્ટ હોમ	સ્વચાલિત ઘર નિયંત્રણ	લાઇટિંગ, HVAC, સિક્યુરિટી
સ્માર્ટ સિટી	શહેરી ઇન્ફ્રાસ્ટ્રક્ચર મેનેજમેન્ટ	ટ્રાફિક, યુટિલિટીઝ, કચરો
સ્માર્ટ ગ્રિડ	બુદ્ધિશાળી પાવર વિતરણ	ઊર્જા મેનેજમેન્ટ
સ્માર્ટ હેલ્થકેર	મેડિકલ મોનિટરિંગ સિસ્ટમ	દર્દી મોનિટરિંગ, ડાયાગ્નોસ્ટિક્સ

મુખ્ય લક્ષણો:

• સ્વચાલિત: સ્વ-સંચાલન ક્ષમતાઓ

• કનેક્ટેડ: ઇન્ટરનેટ કનેક્ટિવિટી

• અનુકૂલનશીલ: સમય સાથે શીખવું અને સુધારવું

યાદ રાખવાની ટેકનીક: "Smart: Home, City, Grid, Health"

પ્રશ્ન 3(બ OR) [4 ગુણ]

ઓર્ગેનિક ઇલેક્ટ્રોનિક્સના ફાયદા અને એપ્લિકેશનની યાદી બનાવો.

જવાબ:

ટેબલ: ઓર્ગેનિક ઇલેક્ટ્રોનિક્સના ફાયદા

ફાયદો	વર્ણન	લાલ
લવચીકતા	વળી શકાય, ખેંચાય તેવું	પહેરી શકાય તેવા ઉપકરણો
ઓછી કિંમત	સસ્તું ઉત્પાદન	મોટા પાચે ઉત્પાદન
મોટો વિસ્તાર	મોટી સપાટી પર પ્રિન્ટિંગ	મોટા ડિસ્પ્લે
ઓછું તાપમાન	રૂમ ટેમ્પરેચર પ્રોસેસિંગ	ઊર્જા કાર્યક્ષમ

એપ્લિકેશન્સ:

• **OLED ડિસ્પ્લે**: સ્માર્ટફોન, TV, લાઇટિંગ

• ઓર્ગેનિક સોલાર સેલ્સ: લવચીક સોલાર પેનલ્સ

• ઓર્ગેનિક ટ્રાન્ઝિસ્ટર: લવચીક સર્કિટ્સ

• **ઇલેક્ટ્રોનિક પેપર**: E-રીડર્સ, સ્માર્ટ લેબલ્સ

મુખ્ય ફાયદા:

• હળવા: પોર્ટેબલ ઉપકરણો માટે યોગ્ય

• પારદર્શક: સી-થ્રુ ઇલેક્ટ્રોનિક્સ

• પર્યાવરણને અનુકૂળ: બાયોડિગ્રેડેબલ સામગ્રી

યાદ રાખવાની ટેકનીક: "Organic: Flexible, Cheap, Large, Low-temp"

પ્રશ્ન 3(ક OR) [7 ગુણ]

(i) પહેરી શકાય તેવી સ્માર્ટ ઘડિયાળ અને (ii) બાયોમેટ્રિક સિસ્ટમનો મૂળભૂત બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

(i) વેરેબલ સ્માર્ટ વોચ બ્લોક ડાયાગ્રામ:

(ii) બાયોમેટ્રિક સિસ્ટમ બ્લોક ડાયાગ્રામ:

સ્માર્ટ વોચ ઘટકો:

• સેન્સર્સ: હાર્ટ રેટ, એક્સેલેરોમીટર, જાયરોસ્કોપ

• **પ્રોસેસર**: ARM આધારિત માઇક્રોકંટ્રોલર

• ડિસ્પ્લે: ટયરક્રીન OLED/LCD

• કનેક્ટિવિટી: Bluetooth, WiFi, સેલ્યુલર

• પાવર: રિચાર્જેબલ લિથિયમ બેટરી

બાયોમેટ્રિક સિસ્ટમ ઘટકો:

• સેન્સર મોડ્યુલ: બાયોમેટ્રિક ડેટા કેપ્યર કરે છે

• પ્રોસેસિંગ યુનિટ: ફીચર્સનું વિશ્લેષણ અને નિષ્કર્ષણ

• ડેટાબેસ: નોંધાયેલા ટેમ્પ્લેટ્સ સ્ટોર કરે છે

• મેચિંગ એન્જિન: સ્ટોર કરેલા ડેટા સાથે સરખામણી

• ડિસિઝન લોજિક: પ્રવેશ મંજૂર અથવા નકારે છે

મુખ્ય લક્ષણો:

• ઓથેન્ટિકેશન: સુરક્ષિત યુઝર આઇડેન્ટિફિકેશન

• રીઅલ-ટાઇમ: તાત્કાલિક પ્રોસેસિંગ અને પ્રતિસાદ

• યોકસાઈ: આઇડેન્ટિફિકેશનમાં ઉચ્ચ યોકસાઈ

યાદ રાખવાની ટેકનીક: "Smart Watch: Sense, Process, Display, Connect" / "Biometric: Capture, Process, Match, Decide"

પ્રશ્ન 4(અ) [3 ગુણ]

રાસ્પબેરી પાઇમાં NOOBS, GPIO અને LXDE નું સંપૂર્ણ સ્વરૂપ આપો.

જવાબ:

ટેબલ: રાસ્પબેરી પાઇ સંક્ષેપ

સંક્ષેપ	સંપૂર્ણ સ્વરૂપ	હેતુ
NOOBS	New Out Of Box Software	સરળ OS ઇન્સ્ટોલેશન
GPIO	General Purpose Input Output	હાર્ડવેર ઇન્ટરફેસ પિન્સ
LXDE	Lightweight X11 Desktop Environment	ડેસ્કટોપ ઇન્ટરફેસ

કાર્યો:

• NOOBS: શરૂઆતીઓ માટે રાસ્પબેરી પાઇ સેટઅપ સરળ બનાવે છે

• **GPIO**: બાહ્ય હાર્ડવેર માટે 40-પિન કનેક્ટર

• LXDE: યુઝર-ફ્રેન્ડલી ગ્રાફિકલ ઇન્ટરફેસ

યાદ રાખવાની ટેકનીક: "New GPIO, Lightweight Experience"

પ્રશ્ન 4(બ) [4 ગુણ]

OLED પર ટૂંકી નોંધ લખો.

જવાબ:

OLED (Organic Light Emitting Diode) એ ડિસ્પ્લે ટેકનોલોજી છે જે કાર્બનિક સંયોજનોનો ઉપયોગ કરે છે જે વિદ્યુત પ્રવાહ લાગુ કરવામાં આવે ત્યારે પ્રકાશ ઉત્સર્જન કરે છે.

મુખ્ય લક્ષણો:

• સ્વ-પ્રકાશિત: બેકલાઇટની જરૂર નથી

• પાતળું પ્રોફાઇલ: અત્યંત પાતળા ડિસ્પ્લે

• ઉચ્ચ કોન્ટ્રાસ્ટ: સાચા કાળા પિક્સેલ્સ

• **વાઇડ વ્યુઇંગ એંગલ**: કોઈ કલર ડિસ્ટોર્શન નથી

ટેબલ: OLED વિ LCD

પેરામીટર	OLED	LCD
બેકલાઇટ	જરૂરી નથી	જરૂરી
કોન્ટ્રાસ્ટ	અનંત	1000:1
ชรเย์	અલ્ટ્રા-થિન	જાડું
પાવર	ઓછું (ડાર્ક ઇમેજ)	સતત

એપ્લિકેશન્સ:

• સ્માર્ટફોન: Samsung, iPhone ડિસ્પ્લે

• TV: પ્રીમિયમ ટેલિવિઝન સેટ્સ

• **ઓટોમોટિવ**: ડેશબોર્ડ ડિસ્પ્લે

• વેરેબલ્સ: સ્માર્ટવોચ સ્ક્રીન

ફાયદા:

• ઊર્જા કાર્યક્ષમ: ઓછો પાવર વપરાશ

• લવચીક: વળી શકાય તેવું બનાવી શકાય

• ફાસ્ટ રિસ્પોન્સ: કોઈ મોશન બ્લર નથી

યાદ રાખવાની ટેકનીક: "OLED: Organic, Light, Emitting, Display"

પ્રશ્ન 4(ક) [7 ગુણ]

રાસ્પબેરી પાઇનું આર્કિટેક્ચર અને બ્લોક ડાયાગ્રામ સમજાવો.

જવાબ:

બ્લોક ડાયાગ્રામ: રાસ્પબેરી પાઇ આર્કિટેક્ચર

મુખ્ય ઘટકો:

ટેબલ: રાસ્પબેરી પાઇ ઘટકો

ยรร	સ્પેસિફિકેશન	รเช่
СРИ	ARM Cortex-A72 Quad-core	મુખ્ય પ્રોસેસિંગ
GPU	VideoCore VI	ગ્રાફિક્સ પ્રોસેસિંગ
RAM	4GB LPDDR4	સિસ્ટમ મેમોરી
સ્ટોરેજ	MicroSD ธเร็	ઓપરેટિંગ સિસ્ટમ
GPIO	40-પિન હેડર	હાર્ડવેર ઇન્ટરફેસ
કનેક્ટિવિટી	WiFi, Bluetooth, Ethernet	નેટવર્ક એક્સેસ

આર્કિટેક્ચર લક્ષણો:

• SoC ડિઝાઇન: સિસ્ટમ ઓન ચિપ ઇન્ટિગ્રેશન

• **લો પાવર**: ઊર્જા-કાર્યક્ષમ ARM પ્રોસેસર

• **એક્સપેન્ડેબલ**: હાર્ડવેર પ્રોજેક્ટ્સ માટે GPIO પિન્સ

• મલ્ટિમીડિયા: વીડિયો માટે હાર્ડવેર એક્સેલેરેશન

ઇન્ટરફેસ:

• વીડિયો: 4K સુધી HDMI આઉટપુટ

• **ઓડિયો**: 3.5mm જેક અને HDMI ઓડિયો

• **કેમેરા**: CSI કેમેરા કનેક્ટર

• **ડિસ્પ્લે**: DSI ડિસ્પ્લે કનેક્ટર

એપ્લિકેશન્સ:

• શિક્ષણ: પ્રોગ્રામિંગ અને ઇલેક્ટ્રોનિક્સ શીખવું

• IoT પ્રોજેક્ટ્સ: હોમ ઓટોમેશન, સેન્સર્સ

• મીડિયા સેન્ટર: હોમ એન્ટરટેઇનમેન્ટ સિસ્ટમ

• રોબોટિક્સ: રોબોટ્સ માટે કંટ્રોલ સિસ્ટમ્સ

યાદ રાખવાની ટેકનીક: "Pi: Processor, Interfaces, Projects, Internet"

પ્રશ્ન 4(અ OR) [3 ગુણ]

રાસ્પબેરી પાઇ શું છે અને તેના ફાયદા અને ગેરફાયદા શું છે?

જવાબ:

રાસ્પબેરી પાઇ એ નાનું, સસ્તું સિંગલ-બોર્ડ કમ્પ્યુટર છે જે શિક્ષણ અને શોખીન પ્રોજેક્ટ્સ માટે ડિઝાઇન કરવામાં આવ્યું છે.

ટેબલ: ફાયદા અને ગેરફાયદા

ફાયદા	ગેરફાયદા
ઓછી કિંમત	મર્ચાદિત કાર્યક્ષમતા
નાનું સાઇઝ	બિલ્ટ-ઇન સ્ટોરેજ નથી
GPIO પિન્સ	SD કાર્ડની જરૂર
Linux સપોર્ટ	રીઅલ-ટાઇમ OS નથી
ข้ผูเยร	પાવર સપ્લાય સમસ્યાઓ
કમ્યુનિટી સપોર્ટ	મર્યાદિત RAM

મુખ્ય લક્ષણો:

• **સસ્તું**: ખર્ચ-અસરકારk કમ્પ્યુટિંગ સોલ્યુશન

• વર્સેટાઇલ: બહુવિધ પ્રોગ્રામિંગ ભાષાઓ સપોર્ટેડ

• ઓપન સોર્સ: મફત સોફ્ટવેર અને ડોક્યુમેન્ટેશન

યાદ રાખવાની ટેકનીક: "Pi: Cheap, Small, Educational vs Limited, External, Power"

પ્રશ્ન 4(બ OR) [4 ગુણ]

OFET પર ટૂંકી નોંધ લખો.

જવાબ:

OFET (Organic Field Effect Transistor) એ કાર્બનિક સેમિકંડક્ટિંગ સામગ્રીનો ઉપયોગ કરીને સ્વિચિંગ અને એમ્પ્લિફિકેશન માટેનો ટ્રાન્ઝિસ્ટર છે.

મુખ્ય લક્ષણો:

• ઓર્ગેનિક મટીરિયલ્સ: કાર્બન આધારિત સેમિકંડક્ટર્સ

• લો ટેમ્પરેચર: સોલ્યુશન આધારિત પ્રોસેસિંગ

• ફલેક્સિબલ: પ્લાસ્ટિક સબસ્ટ્રેટ પર બનાવી શકાય

• લાર્જ એરિયા: મોટા ડિસ્પ્લે માટે યોગ્ય

ટેબલ: OFET સ્ટ્રક્ચર

ยรร	સામગ્રી	รเน้
ગેટ	મેટલ ઇલેક્ટ્રોડ	કરંટ ફ્લો કંટ્રોલ કરે છે
ડાઇઇલેક્ટ્રિક	ઇન્સ્યુલેટિંગ લેયર	ગેટને ચેનલથી અલગ કરે છે
સોર્સ/ડ્રેઇન	મેટલ કોન્ટેક્ટ્સ	કરંટ ઇન્જેક્શન/કલેક્શન
ચેનલ	ઓર્ગેનિક સેમિકંડક્ટર	કરંટ કંડક્શન પાથ

એપ્લિકેશન્સ:

• ફ્લેક્સિબલ ડિસ્પ્લે: વળી શકાય તેવી સ્ક્રીન્સ

• સ્માર્ટ કાર્ડ્સ: RFID એપ્લિકેશન્સ

• સેન્સર્સ: કેમિકલ અને બાયોલોજિકલ ડિટેક્શન

• લોજિક સર્કિટ્સ: સિમ્પલ ડિજિટલ સર્કિટ્સ

ફાયદા:

• મેકેનિકલ ફ્લેક્સિબિલિટી: વળી શકાય તેવી ઇલેક્ટ્રોનિક્સ

• લો કોસ્ટ: સસ્તું ઉત્પાદન

• રૂમ ટેમ્પરેચર: ઊંચા તાપમાનની પ્રોસેસિંગ નથી

મર્યાદાઓ:

• લોઅર મોબિલિટી: સિલિકોન કરતાં ધીમું

• સ્ટેબિલિટી ઇશ્યુઝ: સમય સાથે ક્ષીણતા

• મર્યાદિત કાર્યક્ષમતા: ઓછી સ્વિચિંગ સ્પીડ્સ

યાદ રાખવાની ટેકનીક: "OFET: Organic, Flexible, Easy, Transistor"

પ્રશ્ન 4(ક OR) [7 ગુણ]

રાસ્પબેરી પાઇ પોર્ટ્સના પ્રકારોની સૂચિ બનાવો. રાસ્પબેરી પાઇની વિવિધ ઓપરેટિંગ સિસ્ટમ્સની ચર્ચા કરો.

જવાબ:

ટેબલ: રાસ્પબેરી પાઇ પોર્ટ્સ

પોર્ટ પ્રકાર	સંખ્યા	รเช้
USB	4 પોર્ટ્સ	પેરિફેરલ્સ કનેક્ટ કરવા
номі	2 માઇક્રો HDMI	વીડિયો આઉટપુટ
GPIO	40 પિન્સ	હાર્ડવેર ઇન્ટરફેસ
Ethernet	1 นโร้	વાયર્ડ નેટવર્ક
ઓડિયો	3.5mm જેક	ઓડિયો આઉટપુટ
પાવર	USB-C	પાવર ઇનપુટ
કેમેરા	CSI કનેક્ટર	કેમેરા મોક્યુલ
ડિસ્પ્લે	DSI કનેક્ટર	ડિસ્પ્લે પેનલ

રાસ્પબેરી પાઇ માટે ઓપરેટિંગ સિસ્ટમ્સ:

ટેબલ: રાસ્પબેરી પાઇ ઓપરેટિંગ સિસ્ટમ્સ

os	પ્રકાર	શ્રેષ્ઠ માટે
Raspberry Pi OS	Debian આધારિત	સામાન્ય ઉપયોગ, શરૂઆતીઓ
Ubuntu	Linux વિતરણ	સર્વર એપ્લિકેશન્સ
LibreELEC	મીડિયા સેન્ટર	હોમ એન્ટરટેઇનમેન્ટ
RetroPie	ગેમિંગ	રેટ્રો ગેમિંગ કન્સોલ
Windows 10 IoT	Microsoft OS	IoT ડેવેલપમેન્ટ
OSMC	મીડિયા સેન્ટર	મીડિયા સ્ટ્રીમિંગ

Raspberry Pi OS ના મુખ્ય લક્ષણો:

• પ્રી-ઇન્સ્ટોલ્ડ સોફ્ટવેર: પ્રોગ્રામિંગ ટૂલ્સ, ઓફિસ સ્યુટ

• GPIO સપોર્ટ: હાર્ડવેર ઇન્ટરફેસિંગ લાઇબ્રેરીઓ

• ខាំងូខ្រាន: Scratch, Python, Minecraft Pi

• **લાઇટવેઇટ**: ARM પ્રોસેસર્સ માટે ઓપ્ટિમાઇઝ્ડ

ઇન્સ્ટોલેશન પદ્ધતિઓ:

• NOOBS: શરૂઆતી-મૈત્રીપૂર્ણ ઇન્સ્ટોલર

• Raspberry Pi Imager: ઓફિશિયલ ઇમેજિંગ ટૂલ

• ડાયરેક્ટ ફ્લેશ: એડવાન્સ્ડ યુઝર્સ

કાયદા:

• વેરાઇટી: વિવિધ હેતુઓ માટે બહુવિધ OS વિકલ્પો

• ક્રમ્યુનિટી: મોટો યુઝર બેઝ અને સપોર્ટ

• અપડેટ્સ: નિયમિત સિક્યુરિટી અને ફીચર અપડેટ્સ

• કસ્ટમાઇઝેશન: ઓપન સોર્સ લવચીકતા

યાદ રાખવાની ટેકનીક: "Pi Ports: USB, HDMI, GPIO, Ethernet" / "Pi OS: Official, Ubuntu, Media, Gaming"

પ્રશ્ન 5(અ) [3 ગુણ]

મશીન લર્નિંગ માટે NumPy python library સમજાવો.

જવાબ:

NumPy (Numerical Python) એ વૈજ્ઞાનિક કમ્પ્યુટિંગ માટેની મૂળભૂત લાઇબ્રેરી છે, જે મોટા મલ્ટિ-ડાઇમેન્શનલ એરેઝ અને ગાણિતિક ફંક્શન્સ માટે સપોર્ટ પ્રદાન કરે છે.

મુખ્ય લક્ષણો:

• N-dimensional Arrays: કાર્યક્ષમ એરે ઓપરેશન્સ

• ગાણિતિક કંક્શન્સ: લિનિયર અલજેબ્રા, ફોરિયર ટ્રાન્સફોર્મ

• બ્રોડકાસ્ટિંગ: વિવિધ આકારના એરે પર ઓપરેશન્સ

• મેમોરી એફિશિયન્ટ: Python lists કરતાં ઝડપી

ટેબલ: મશીન લર્નિંગમાં NumPy

ફંક્શન	ઉપયોગ	ઉદાહરણ
એરેઝ	ડેટા સ્ટોરેજ	np.array([1,2,3])
લિનિયર અલજેબ્રા	મેટ્રિક્સ ઓપરેશન્સ	np.dot(a,b)
સ્ટેટિસ્ટિક્સ	ડેટા એનાલિસિસ	np.mean(), np.std()
રેન્ડમ	ડેટા જનરેશન	np.random.rand()

ML માં એપ્લિકેશન્સ:

• ડેટા પ્રીપ્રોસેસિંગ: એરે મેનિપ્યુલેશન અને ક્લીનિંગ

• ફીચર એન્જિનિયરિંગ: ગાણિતિક રૂપાંતરણો

• મોડલ ઇમ્પ્લિમેન્ટેશન: એલ્ગોરિધમ માટે મેટ્રિક્સ ઓપરેશન્સ

યાદ રાખવાની ટેકનીક: "NumPy: Numbers, Python, Arrays, Math"

પ્રશ્ન 5(બ) [4 ગુણ]

ઓર્ગેનિક ફોટોવોલ્ટેઇક સેલ (OPV) શું છે? તેના કાર્ય સિદ્ધાંતને સમજાવો.

જવાભ

OPV (Organic Photovoltaic) સેલ એ કાર્બનિક સેમિકંડક્ટર્સનો ઉપયોગ કરીને પ્રકાશને વીજળીમાં રૂપાંતરિત કરતા સોલાર સેલ છે.

કાર્યસિદ્ધાંત:

મુખ્ય પગલાં:

• પ્રકાશ શોષણ: કાર્બનિક મોલેક્યુલ્સ ફોટોન્સ શોષે છે

• એક્સિટન ફોર્મેશન: બાઉન્ડ ઇલેક્ટ્રોન-હોલ પેર્સ બને છે

• **યાર્જ સેપરેશન**: ડોનર-એક્સેપ્ટર ઇન્ટરફેસ પર એક્સિટન્સ વિભાજિત થાય છે

• **યાર્જ ટ્રાન્સપોર્ટ**: ઇલેક્ટ્રોન્સ અને હોલ્સ ઇલેક્ટ્રોડ્સ તરફ જાય છે

• કરંટ કલેક્શન: બાહ્ય સર્કિટ પ્રવાહ પૂર્ણ કરે છે

ટેબલ: OPV સ્ટ્રક્ચર

લેચર	સામગ્રી	รเช้
એનોડ	ITO	પારદર્શક ઇલેક્ટ્રોડ
એક્ટિવ લેચર	ઓર્ગેનિક બ્લેન્ડ	પ્રકાશ શોષણ
કેથોડ	એલ્યુમિનિયમ	બેક ઇલેક્ટ્રોડ
બફર લેયર્સ	PEDOT:PSS	કાર્યક્ષમતા સુધારે છે

ફાયદા:

• લવચીક: પ્લાસ્ટિક પર બનાવી શકાય

• હળવા: પોર્ટેબલ એપ્લિકેશન્સ

• ઓછી કિંમત: સોલ્યુશન પ્રોસેસિંગ

• પારદર્શક: સી-શ્રુ પેનલ્સ

મર્યાદાઓ:

• **ઓછી કાર્યક્ષમતા**: 10-15% વિ 20%+ સિલિકોન

• સ્ટેબિલિટી: ડિગ્રેડેશન ઇશ્યુઝ

• લાઇફટાઇમ: અકાર્બનિક સેલ્સ કરતાં ઓછું

યાદ રાખવાની ટેકનીક: "OPV: Organic, Photons, Voltage, Excitons"

પ્રશ્ન 5(ક) [7 ગુણ]

કોઈપણ ચાર મશીન લર્નિંગ ટૂલ્સની યાદી બનાવો. કોઈપણ એકની સંક્ષિપ્તમાં ચર્ચા કરો.

જવાબ:

ટેબલ: મશીન લર્નિંગ ટ્રલ્સ

ZЯ	પ્રકાર	શ્રેષ્ઠ માટે
TensorFlow	ડીપ લર્નિંગ ફ્રેમવર્ક	ન્યુરલ નેટવર્ક્સ
Scikit-learn	જનરલ ML લાઇબ્રેરી	પરંપરાગત એલ્ગોરિધમ
PyTorch	ડીપ લર્નિંગ ફ્રેમવર્ક	સંશોધન અને વિકાસ
Keras	હાઇ-લેવલ API	ઝડપી પ્રોટોટાઇપિંગ

વિગતવાર ચર્ચા: TensorFlow

TensorFlow એ Google દ્વારા વિકસિત ML મોડેલ્સ બનાવવા અને તૈનાત કરવા માટેનું ઓપન-સોર્સ મશીન લર્નિંગ ફ્રેમવર્ક છે.

મુખ્ય લક્ષણો:

วัผผ: TensorFlow ยุวร)

ยวร	รเช้	ફાયદો
ટેન્સર્સ	મલ્ટિ-ડાઇમેન્શનલ એરેઝ	ડેટા રિપ્રેઝન્ટેશન
ગ્રા ફરા	કોમ્પ્યુટેશનલ ફ્લો	મોડલ વિઝ્યુઅલાઇઝેશન
સેશન્સ	એક્ઝિક્યુશન એન્વાયરનમેન્ટ	રિસોર્સ મેનેજમેન્ટ
એસ્ટિમેટર્સ	હાઇ-લેવલ APIs	સરળ મોડલ બિલ્ડિંગ

આર્કિટેક્ચર:

• ફ્રન્ટએન્ડ: Python, C++, Java APIs

• બેકએન્ડ: CPU, GPU, TPU સપોર્ટ

• ડિસ્ટ્રિબ્યુટેડ: મલ્ટિ-ડિવાઇસ ટ્રેનિંગ

• પ્રોડક્શન: મોડલ સર્વિંગ અને ડિપ્લોયમેન્ટ

એપ્લિકેશન્સ:

• ઇમેજ રેકગ્નિશન: કમ્પ્યુટર વિઝન ટાસ્ક

• નેચરલ લેંગ્વેજ: ટેક્સ્ટ પ્રોસેસિંગ અને ટ્રાન્સલેશન

• રેકમેન્ડેશન સિસ્ટમ્સ: વ્યક્તિગત કન્ટેન્ટ

• ટાઇમ સિરીઝ: ફોરકાસ્ટિંગ અને પ્રિડિક્શન

ફાયદા:

• સ્કેલેબિલિટી: મોબાઇલથી ડેટા સેન્ટર સુધી

• ફ્લેક્સિબિલિટી: સંશોધનથી પ્રોડક્શન સુધી

• કમ્યુનિટી: મોટું ઇકોસિસ્ટમ અને સપોર્ટ

• વિઝ્યુઅલાઇઝેશન: મોનિટરિંગ માટે TensorBoard

કોડ ઉદાહરણ:

```
import tensorflow as tf
model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])
```

ઉદ્યોગમાં ઉપયોગ:

• Google: સર્ચ અને એડ્સ ઓપ્ટિમાઇઝેશન

• હેલ્થકેર: મેડિકલ ઇમેજ એનાલિસિસ

• ફાઇનાન્સ: ફ્રોડ ડિટેક્શન સિસ્ટમ્સ

• ઓટોમોટિવ: ઓટોનોમસ વહિકલ ડેવેલપમેન્ટ

યાદ રાખવાની ટેકનીક: "TensorFlow: Tensors, Graphs, Scale, Deploy"

પ્રશ્ન 5(અ OR) [3 ગુણ]

મશીન લર્નિંગ માટે પાન્ડા python library સમજાવો.

જવાબ:

Pandas એ ડેટા મેનિપ્યુલેશન અને એનાલિસિસ માટેની Python લાઇબ્રેરી છે, જે સ્ટ્રક્યર્ડ ડેટા હેન્ડલ કરવા માટે ડેટા સ્ટ્રક્યર્ અને ટૂલ્સ પ્રદાન કરે છે.

મુખ્ય લક્ષણો:

• DataFrame: 2D લેબલ્ડ ડેટા સ્ટ્રક્ચર

• Series: 1D લેબલ્ડ એરે

• ડેટા ક્લીનિંગ: મિસિંગ વેલ્યુઝ, ડુપ્લિકેટ્સ હેન્ડલ કરવું

ટેબલ: મશીન લર્નિંગમાં Pandas

ફંક્શન	ઉપયોગ	ઉદાહરણ
ડેટા લોડિંગ	ડેટાસેટ્સ ઇમ્પોર્ટ	pd.read_csv()
ડેટા ક્લીનિંગ	મિસિંગ રિમૂવ/ફિલ	df.dropna()
ડેટા સિલેક્શન	ડેટા ફિલ્ટર	df[df['col'] > 5]
એગ્રીગેશન	ગ્રુપ અને સમરાઇઝ	df.groupby().mean()

ML માં એપ્લિકેશન્સ:

• ડેટા પ્રીપ્રોસેસિંગ: ડેટાસેટ્સ ક્લીન અને તૈયાર કરવું

• ક્રીચર એન્જિનિયરિંગ: અસ્તિત્વમાંના ડેટામાંથી નવા ફીચર્સ બનાવવા

• એક્સપ્લોરેટરી એનાલિસિસ: ડેટા પેટર્ન અને સંબંધો સમજવા

યાદ રાખવાની ટેકનીક: "Pandas: Python, Analysis, Data, Structure"

પ્રશ્ન 5(બ OR) [4 ગુણ]

ઓગમેન્ટેડ રિયાલિટી અને વર્ચ્યુઅલ રિયાલિટી વચ્ચેનો તફાવત સમજાવો.

જવાબ:

ટેબલ: AR વિ VR સરખામણી

પેરામીટર	ઓગમેન્ટેડ રિયાલિટી (AR)	વર્ચ્યુઅલ રિયાલિટી (VR)
પર્યાવરણ	વાસ્તવિક વિશ્વ + ડિજિટલ ઓવરલે	સંપૂર્ણપણે વર્ચ્યુઅલ વિશ્વ
હાર્ડવેર	સ્માર્ટફોન, AR ગ્લાસીસ	VR હેડસેટ, કંટ્રોલર્સ
ઇમર્શન	આંશિક ઇમર્શન	સંપૂર્ણ ઇમર્શન
ઇન્ટરેક્શન	વાસ્તવિક વિશ્વ + ડિજિટલ ઓબ્જેક્ટ્સ	માત્ર વર્ચ્યુઅલ ઓબ્જેક્ટ્સ
કિંમત	ઓછી કિંમત	ઊંચી કિંમત
મોબિલિટી	મોબાઇલ અને પોર્ટેબલ	સ્ટેશનરી સેટઅપ

મુખ્ય તફાવતો:

- **રિયાલિટી મિક્સ**: AR વાસ્તવિક અને વર્ચ્યુઅલ મિશ્રણ કરે છે, VR વાસ્તવિકતા બદલે છે
- યુઝર એક્સિપિરિયન્સ: AR વાસ્તવિકતા વધારે છે, VR નવી વાસ્તવિકતા બનાવે છે
- એપ્લિકેશન્સ: AR નેવિગેશન, શોપિંગ માટે; VR ગેમિંગ, ટ્રેનિંગ માટે
- **હાર્ડવેર આવશ્યકતાઓ**: AR ઓછા શક્તિશાળી હાર્ડવેરની જરૂર

ઉદાહરણો:

- AR: Pokemon Go, Snapchat ફિલ્ટર્સ, Google Maps નેવિગેશન
- **VR**: Oculus ગેમ્સ, વર્ચ્યુઅલ ટૂર્સ, ફ્લાઇટ સિમ્યુલેટર્સ

ઉપયોગ કેસેસ:

- AR: રિટેલ, શિક્ષણ, મેઇન્ટેનન્સ, માર્કેટિંગ
- VR: એન્ટરટેઇનમેન્ટ, ટ્રેનિંગ, થેરાપી, ડિઝાઇન

યાદ રાખવાની ટેકનીક: "AR: Augments Reality vs VR: Virtual Reality"

પ્રશ્ન 5(ક OR) [7 ગુણ]

મશીન લર્નિંગ શું છે? મશીન લર્નિંગના વિવિદ્ય પ્રકારોની ચર્ચા કરો.

જવાબ:

મશીન લર્નિંગ એ આર્ટિફિશિયલ ઇન્ટેલિજન્સનો ઉપવિભાગ છે જે કમ્પ્યુટર્સને સ્પષ્ટ રીતે પ્રોગ્રામ કર્યા વિના ડેટામાંથી શીખવા અને નિર્ણયો લેવા સક્ષમ બનાવે છે.

વ્યાખ્યા:

મશીન લર્નિંગ ડેટાનું વિશ્લેષણ કરવા, પેટર્ન ઓળખવા અને શીખેલા પેટર્ન આધારે અનુમાન અથવા નિર્ણયો લેવા માટે એલ્ગોરિધમનો ઉપયોગ કરે છે.

મશીન લર્નિંગના પ્રકારો:

ટેબલ: મશીન લર્નિંગના પ્રકારો

явіз	นญ์ฯ	ઉદાહરણો	ઉપયોગ કેસેસ
સુપરવાઇઝ્ડ	લેબલ્ડ ડેટામાંથી શીખે છે	ક્લાસિફિકેશન, રિગ્રેશન	ઇમેઇલ સ્પામ, ક્રિંમત પૂર્વાનુમાન
અનસુપરવાઇઝ્ડ	અનલેબલ્ક ડેટામાં પેટર્ન શોધે છે	ક્લસ્ટરિંગ, એસોસિએશન	કસ્ટમર સેંગમેન્ટેશન
રિઇન્ફોર્સમેન્ટ	ટ્રાયલ અને એસ્ટ દ્વારા શીખે છે	Q-learning, પોલિસી ગ્રેડિએન્ટ	ગેમ પ્લેઇંગ, રોબોટિક્સ

1. સુપરવાઇઝ્ડ લર્નિંગ:

સુપરવાઇઝ્ડ લર્નિંગના પ્રકારો:

• ક્લાસિફિકેશન: કેટેગરીઝનું અનુમાન (સ્પામ/નોટ સ્પામ)

• રિગ્નેશન: સતત વેલ્યુઝનું અનુમાન (ઘરની કિંમતો)

2. અનસુપરવાઇઝ્ડ લર્નિંગ:

• **કલસ્ટરિંગ**: સમાન ડેટા પોઇન્ટ્સને ગ્રુપ કરે છે

• **એસોસિએશન**: વેરિએબલ્સ વચ્ચેના સંબંધો શોધે છે

• ડાઇમેન્શનાલિટી રિડક્શન: ડેટા કોમ્પ્લેક્સિટી ઘટાડે છે

3. રિઇન્ફોર્સમેન્ટ લર્નિંગ:

• એજન્ટ: લર્નિંગ એન્ટિટી

• **એન્વાયરનમેન્ટ**: લર્ન થતી સિસ્ટમ

• **રિવોર્ડ**: ફીડબેક મેકેનિઝમ

• **પોલિસી**: ક્રિયાઓ માટેની રણનીતિ

પ્રકાર પ્રમાણે એપ્લિકેશન્સ:

ટેબલ: ML એપ્લિકેશન્સ

уѕіг	એપ્લિકેશન	ઉદ્યોગ
સુપરવાઇઝ્ડ	મેડિકલ ડાયાગ્નોસિસ	હેલ્થકેર
અનસુપરવાઇઝ્ડ	માર્કેટ બાસ્કેટ એનાલિસિસ	રિટેલ
રિઇન્ફોર્સમેન્ટ	ઓટોનોમસ ડ્રાઇવિંગ	ઓટોમોટિવ

મુખ્ય એલ્ગોરિધમ:

- સુપરવાઇઝ્ડ: લિનિયર રિગ્રેશન, ડિસિઝન ટ્રીઝ, SVM, ન્યુરલ નેટવર્ક્સ
- अनसुपरवाद्यञ्ड: K-Means, DBSCAN, PCA, Apriori
- โยระุโล์ห์--- Q-Learning, Actor-Critic, Deep Q-Networks

મશીન લર્નિંગ પ્રક્રિયા:

- 1. **ડેટા એકત્રીકરણ**: સંબંધિત ડેટાસેટ્સ એકત્રિત કરવા
- 2. **ડેટા પ્રીપ્રોસેસિંગ**: ડેટા ક્લીન અને તૈયાર કરવા
- 3. **ફીચર સિલેક્શન**: મહત્વપૂર્ણ વેરિએબલ્સ પસંદ કરવા
- 4. **મોડલ ટ્રેનિંગ**: ડેટા પર એલ્ગોરિધમ ટ્રેન કરવું
- 5. **મોડલ ઇવેલ્યુએશન**: કાર્યક્ષમતા ટેસ્ટ કરવી
- 6. **ડિપ્લોયમેન્ટ**: પ્રોડક્શનમાં અમલીકરણ

કાયદા:

- ઓટોમેશન: મેન્યુઅલ કામ ઘટાડે છે
- યોકસાઈ: ઘણા કાર્યોમાં માનવીય કાર્યક્ષમતા કરતાં સારું
- સ્કેલેબિલિટી: મોટા ડેટાસેટ્સ હેન્ડલ કરે છે
- અનુકૂલનક્ષમતા: વધુ ડેટા સાથે સુધારે છે

પડકારો:

- ડેટા ક્વોલિટી: સ્વચ્છ, સંબંધિત ડેટાની જરૂર
- ઓવરફિટિંગ: મોડલ ટ્રેનિંગ ડેટા માટે ખૂબ વિશિષ્ટ
- ઇન્ટરપ્રિટેબિલિટી: કેટલાક એલ્ગોરિધમનું બ્લેક બોક્સ સ્વભાવ
- કોમ્પ્યુટેશનલ રિસોર્સ: નોંધપાત્ર પ્રોસેસિંગ પાવરની જરૂર

વાસ્તવિક દુનિયાના ઉદાહરણો:

- Netflix: મૂવી રેકમેન્ડેશન્સ (સુપરવાઇઝ્ડ)
- Amazon: કસ્ટમર સેગમેન્ટેશન (અનસુપરવાઇઝ્ડ)
- AlphaGo: ગેમ પ્લેઇંગ (રિઇન્ફોર્સમેન્ટ)

ભાવિ ટ્રેન્ડ્સ:

- **ડીપ લર્નિંગ**: બહુવિધ લેયર્સ સાથે ન્યુરલ નેટવર્ક્સ
- AutoML: ઓટોમેટેડ મશીન લર્નિંગ પાઇપલાઇન્સ
- **એજ AI**: મોબાઇલ અને IoT ડિવાઇસેસ પર ML
- એક્સપ્લેનેબલ AI: ML નિર્ણયોને ઇન્ટરપ્રિટેબલ બનાવવું

યાદ રાખવાની ટેકનીક: "ML Types: Supervised teaches, Unsupervised discovers, Reinforcement rewards"