Формула полной вероятности. Формула Байеса. (ДЗ на 07.03.20) Задача 1.

Белые и чёрные шары распределены по ящикам следующим образом:

а) Вытащен белый шар, определить вероятность, что в 1-м ящике осталось 5 белых. *Решение:*

События $A_i, 0 \le i \le 2$ - из 1-ого ящика в 3-ий переложили i белых шаров образуют ПГС. Всего возможных вариантов данного действия: $C_{15}^2 = 105$.

События $B_j, 0 \leqslant j \leqslant 2$ - из 1-го ящика во 2-й переложили j белых шаров.

Построим таблицу условных вероятностей для каждого B_j -ого. Всего вариантов данного события (учитывая, что два уже вытащены из 1-го ящика): $C_{13}^2=78$. Если, например, из 1-го ящика в 3-й переложили 1 белый, то в 1-м ящике осталось 4 белых и 9 черных.

i	0	1	2
$P(A_i)$	$\frac{C_5^0 \cdot C_{10}^2}{C_{15}^2} = \frac{3}{7}$	$\frac{C_5^1 \cdot C_{10}^1}{C_{15}^2} = \frac{10}{21}$	$\frac{C_5^2 \cdot C_{10}^0}{C_{15}^2} = \frac{2}{21}$
$P(B_0 A_i)$	$\frac{C_5^0 \cdot C_8^2}{C_{13}^2} = \frac{14}{39}$	$\frac{C_4^0 \cdot C_9^2}{C_{13}^2} = \frac{6}{13}$	$\frac{C_3^0 \cdot C_{10}^2}{C_{13}^2} = \frac{15}{26}$
$P(B_1 A_i)$	$\frac{C_5^1 \cdot C_8^1}{C_{13}^2} = \frac{20}{39}$	$\frac{C_4^1 \cdot C_9^1}{C_{13}^2} = \frac{6}{13}$	$\frac{C_3^1 \cdot C_{10}^1}{C_{13}^2} = \frac{5}{13}$
$P(B_2 A_i)$	$\frac{C_5^2 \cdot C_8^0}{C_{13}^2} = \frac{5}{39}$	$\frac{C_4^2 \cdot C_9^0}{C_{13}^2} = \frac{1}{13}$	$\frac{C_3^2 \cdot C_{10}^0}{C_{13}^2} = \frac{1}{26}$

По формуле ПГС найдём вероятности $P(B_0), P(B_1), P(B_2)$:

$$P(B_0) = \sum_{i=0}^{2} P(B_0|A_i) \cdot P(A_i) = \frac{3}{7}$$

$$P(B_1) = \sum_{i=0}^{2} P(B_1|A_i) \cdot P(A_i) = \frac{10}{21}$$

$$P(B_2) = \sum_{i=0}^{2} P(B_2|A_i) \cdot P(A_i) = \frac{2}{21}$$

Видно, что вероятности B_0, B_1, B_2 также образуют ПГС. События C_k - из 2-го ящика в 3-й переложили k белых шаров.

B_i	B_0	B_1	B_2
$P(B_i)$	$\frac{3}{7}$	$\frac{10}{21}$	$\frac{2}{21}$
$P(C_0 B_i)$	$\frac{C_4^0 \cdot C_5^3}{C_9^3} = \frac{5}{42}$	$\frac{C_5^0 \cdot C_4^3}{C_9^3} = \frac{1}{21}$	$\frac{C_6^0 \cdot C_3^3}{C_9^3} = \frac{1}{84}$
$P(C_1 B_i)$	$\frac{C_4^1 \cdot C_5^2}{C_9^3} = \frac{10}{21}$	$\frac{C_5^1 \cdot C_4^2}{C_9^3} = \frac{5}{14}$	$\frac{C_6^1 \cdot C_3^2}{C_9^3} = \frac{3}{14}$
$P(C_2 B_i)$	$\frac{C_4^2 \cdot C_5^1}{C_9^3} = \frac{5}{14}$	$\frac{C_5^2 \cdot C_4^1}{C_9^3} = \frac{10}{21}$	$\frac{C_6^2 \cdot C_3^1}{C_9^3} = \frac{15}{28}$
$P(C_3 B_i)$	$\frac{C_4^3 \cdot C_5^0}{C_9^3} = \frac{1}{21}$	$\frac{C_5^3 \cdot C_4^0}{C_9^3} = \frac{5}{42}$	$\frac{C_6^3 \cdot C_3^0}{C_9^3} = \frac{5}{21}$

По формуле ПГС найдём вероятности $P(C_0), P(C_1), P(C_2), P(C_3)$:

$$P(C_0) = \sum_{i=0}^2 P(C_0|B_i) \cdot P(B_i) = \frac{11}{147}$$

$$P(C_1) = \sum_{i=0}^2 P(C_1|B_i) \cdot P(B_i) = \frac{58}{147}$$

$$P(C_2) = \sum_{i=0}^2 P(C_2|B_i) \cdot P(B_i) = \frac{190}{441}$$

$$P(C_3) = \sum_{i=0}^2 P(C_3|B_i) \cdot P(B_i) = \frac{44}{441}$$

$$\sum_{i=0}^3 P(C_i) = 1 \Rightarrow \text{ события образуют ПГС}$$

Событие D_l – в 3-й ящик попало l белых (из 1-го и 2-го ящика).

l	0	1	2	3	4	5
Комбинация событий	(C_0, A_0)	(C_1, A_0) (C_0, A_1)	(C_2, A_0)	(C_3, A_0)	(C_3, A_1)	(C_3, A_2)
томоннация соовтии	(00,710)	(C_0, A_1)	(C_1, A_1) (C_0, A_2)	(C_2, A_1) (C_1, A_2)	(C_2, A_2)	(03,712)

$$P(D_0) = P(C_0) \cdot P(A_0) = 0.032$$

$$P(D_1) = P(C_1) \cdot P(A_0) + P(C_0) \cdot P(A_1) = 0.204$$

$$P(D_2) = P(C_2) \cdot P(A_0) + P(C_1) \cdot P(A_1) + P(C_0) \cdot P(A_2) = 0.379$$

$$P(D_3) = P(C_3) \cdot P(A_0) + P(C_2) \cdot P(A_1) + P(C_1) \cdot P(A_2) = 0.2855$$

$$P(D_4) = P(C_3) \cdot P(A_1) + P(C_2) \cdot P(A_2) = 0.0885$$

$$P(D_5) = P(C_3) \cdot P(A_2) = 0.0095$$

$$\sum_{i=0}^{5} P(D_i) \approx 1 \Rightarrow \text{ события образуют ПГС}$$

В результате в 3-ем ящике 10 шаров.

Событие E - из 3-го ящика достали белый шар.

i	0	1	2	3	4	5
$P(D_i)$	0.032	0.204	0.379	0.2855	0.0885	0.0095
$P(E D_i)$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$

$$P(E) = \sum_{i=0}^{5} P(D_i)P(E|D_i) = 0.4217$$

Событие F - в 1-ом ящике осталось 5 белых шаров, т.е. из него достали все чёрные, а белый шар, который достали из 3-его изначально был в нём или пришёл из 2-ого.

Должна выполниться совокупность событий A_0 - из 1-ого ящика во 3-ий ушло 0 белых шаров, B_0 - из 1-ого ящика во 2-ой ушло 0 белых шаров. В совокупности в 3-ий ящик может придти от 0 до 3-х шаров, что соотвествует событиям $D_0 - D_3$. При этом нам необходима выполнимость указанных событий A_0 и B_0 .

Подходящие комбинации для событий D_l :

	0	1	2	3
Комбинация событий	(C_0, A_0)	(C_1,A_0)	(C_2,A_0)	(C_3, A_0)

Также учитываем, что для событий C'_k мы рассматриваем случае, при которых выполняется B_0 , т.е. используя таблицу, приведённую выше, получаем:

$$P(C'_0) = P(C_0B_0) = P(C_0|B_0)P(B_0) = \frac{5}{42} \cdot \frac{3}{7} = \frac{5}{98}$$

$$P(C'_1) = P(C_1B_0) = P(C_1|B_0)P(B_0) = \frac{10}{21} \cdot \frac{3}{7} = \frac{10}{49}$$

$$P(C'_2) = P(C_2B_0) = P(C_2|B_0)P(B_0) = \frac{5}{14} \cdot \frac{3}{7} = \frac{15}{98}$$

$$P(C'_3) = P(C_3B_0) = P(C_3|B_0)P(B_0) = \frac{1}{21} \cdot \frac{3}{7} = \frac{1}{49}$$

Тогда:

$$P(D_0') = P(D_0 C_0 B_0) = P(C_0') \cdot P(A_0) = P(C_0 B_0) \cdot P(A_0) = \frac{15}{686}$$

$$P(D'_1) = P(D_1C_1B_0) = P(C'_1) \cdot P(A_0) = \frac{30}{343}$$

$$P(D'_2) = P(D_2C_2B_0) = P(C'_2) \cdot P(A_0) = \frac{45}{686}$$

$$P(D'_3) = P(D_3C_3B_0) = P(C'_3) \cdot P(A_0) = \frac{3}{343}$$

$$P(D'_0|E) = \frac{P(E|D'_0) \cdot P(D'_0)}{P(E)} = \frac{\frac{2}{10} \cdot \frac{15}{686}}{0.4217} \approx 0.01037$$

$$P(D'_1|E) \approx 0.06222$$

$$P(D'_2|E) \approx 0.06222$$

$$P(D'_3|E) \approx 0.01037$$

Тогда вероятность того, что из 3-его ящика достали белый шар и в 1-ом ящике осталось 5 белых равна:

$$\sum_{i=0}^{3} P(D_i'|E) = \sum_{i=0}^{3} P(D_i C_i B_i|E) = 0.14518$$

Задача 2.

- а) Определить вероятность, что из 3-его ящика вытащили шары одинаково цвета.
- б) Вытащили шары одного цвета, определить вероятность, что они изначально из одного ящика.

Решение:

а) События $A_i, 0 \leqslant i \leqslant 2$ - из 1-ого ящика в 3-ий переложили i белых и 2-i чёрных шаров образуют ПГС. Всего возможных вариантов данного действия: $C_{15}^2=105$.

События $B_j, 0 \leqslant j \leqslant 2$ - из 1-го ящика во 2-й переложили j белых и 2-j чёрных шаров.

Построим таблицу условных вероятностей для каждого B_j -ого. Всего вариантов данного события (учитывая, что два уже вытащены из 1-го ящика): $C_{13}^2 = 78$. Если, например, из 1-го ящика в 3-й переложили 1 белый и 1 чёрный, то в 1-м ящике осталось 4 белых и 9 черных.

i	0	1	2
$P(A_i)$	$\frac{C_5^0 \cdot C_{10}^2}{C_{15}^2} = \frac{3}{7}$	$\frac{C_5^1 \cdot C_{10}^1}{C_{15}^2} = \frac{10}{21}$	$\frac{C_5^2 \cdot C_{10}^0}{C_{15}^2} = \frac{2}{21}$
$P(B_0 A_i)$	$\frac{C_5^0 \cdot C_8^2}{C_{13}^2} = \frac{14}{39}$	$\frac{C_4^0 \cdot C_9^2}{C_{13}^2} = \frac{6}{13}$	$\frac{C_3^0 \cdot C_{10}^2}{C_{13}^2} = \frac{15}{26}$
$P(B_1 A_i)$	$\frac{C_5^1 \cdot C_8^1}{C_{13}^2} = \frac{20}{39}$	$\frac{C_4^1 \cdot C_9^1}{C_{13}^2} = \frac{6}{13}$	$\frac{C_3^1 \cdot C_{10}^1}{C_{13}^2} = \frac{5}{13}$
$P(B_2 A_i)$	$\frac{C_5^2 \cdot C_8^0}{C_{13}^2} = \frac{5}{39}$	$\frac{C_4^2 \cdot C_9^0}{C_{13}^2} = \frac{1}{13}$	$\frac{C_3^2 \cdot C_{10}^0}{C_{13}^2} = \frac{1}{26}$

По формуле ПГС найдём вероятности $P(B_0), P(B_1), P(B_2)$:

$$P(B_0) = \sum_{i=0}^{2} P(B_0|A_i) \cdot P(A_i) = \frac{3}{7}$$

$$P(B_1) = \sum_{i=0}^{2} P(B_1|A_i) \cdot P(A_i) = \frac{10}{21}$$
$$P(B_2) = \sum_{i=0}^{2} P(B_2|A_i) \cdot P(A_i) = \frac{2}{21}$$

Видно, что вероятности B_0, B_1, B_2 также образуют ПГС.

События $C_k, k = 0,1,2,3$ - из 2-го ящика в 3-й переложили k белых и 3-k чёрных шаров.

B_i	B_0	B_1	B_2
$P(B_i)$	$\frac{3}{7}$	$\frac{10}{21}$	$\frac{2}{21}$
$P(C_0 B_i)$	$\frac{C_4^0 \cdot C_5^3}{C_9^3} = \frac{5}{42}$	$\frac{C_5^0 \cdot C_4^3}{C_9^3} = \frac{1}{21}$	$\frac{C_6^0 \cdot C_3^3}{C_9^3} = \frac{1}{84}$
$P(C_1 B_i)$	$\frac{C_4^1 \cdot C_5^2}{C_9^3} = \frac{10}{21}$	$\frac{C_5^1 \cdot C_4^2}{C_9^3} = \frac{5}{14}$	$\frac{C_6^1 \cdot C_3^2}{C_9^3} = \frac{3}{14}$
$P(C_2 B_i)$	$\frac{C_4^2 \cdot C_5^1}{C_9^3} = \frac{5}{14}$	$\frac{C_5^2 \cdot C_4^1}{C_9^3} = \frac{10}{21}$	$\frac{C_6^2 \cdot C_3^1}{C_9^3} = \frac{15}{28}$
$P(C_3 B_i)$	$\frac{C_4^3 \cdot C_5^0}{C_9^3} = \frac{1}{21}$	$\frac{C_5^3 \cdot C_4^0}{C_9^3} = \frac{5}{42}$	$\frac{C_6^3 \cdot C_3^0}{C_9^3} = \frac{5}{21}$

Событие D_l – в 3-й ящик попало l белых и 5 – l чёрных (из 1-го и 2-го ящика).

l	0	1	2	3	4	5
			(C_2, A_0)	(C_3, A_0)		
Vargania	$\begin{pmatrix} C & A \end{pmatrix}$	(C_1, A_0)	$(C \land A)$	$(C \land A)$	(C_3,A_1)	$\begin{pmatrix} C & A \end{pmatrix}$
Комбинация событий	(C_0, A_0)	(C_1, A_0) (C_0, A_1)	(C_1, A_1)	(C_2, A_1)	(C_2, A_2)	(C_3, A_2)
		(00,11)	(C_0, A_2)	(C_1, A_2)	(02,112)	

$$P(D_0) = P(C_0) \cdot P(A_0) = \frac{11}{147} \cdot \frac{3}{7} = \frac{11}{343}$$

$$P(D_1) = P(C_1) \cdot P(A_0) + P(C_0) \cdot P(A_1) = \frac{632}{3087}$$

$$P(D_2) = P(C_2) \cdot P(A_0) + P(C_1) \cdot P(A_1) + P(C_0) \cdot P(A_2) = \frac{1172}{3087}$$

$$P(D_3) = P(C_3) \cdot P(A_0) + P(C_2) \cdot P(A_1) + P(C_1) \cdot P(A_2) = \frac{892}{3087}$$

$$P(D_4) = P(C_3) \cdot P(A_1) + P(C_2) \cdot P(A_2) = \frac{820}{9261}$$

$$P(D_5) = P(C_3) \cdot P(A_2) = \frac{88}{9261}$$

$$\sum_{i=1}^{5} P(D_i) = 1 \Rightarrow \text{ события образуют ПГС}$$

В результате в 3-ем ящике 10 шаров.

Событие E - из 3-го ящика достали **белый** шар.

i	0	1	2	3	4	5
$P(D_i)$	0.032	0.204	0.379	0.2855	0.0885	0.0095
$P(E D_i)$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$

$$P(E_1) = \sum_{i=0}^{5} P(D_i)P(E|D_i) = \frac{19631}{46305}$$

Вероятность вытащить 2-ой белый шар будет равна:

i	0	1	2	3	4	5
$P(D_i)$	0.032	0.204	0.379	0.2855	0.0885	0.0095
$P(E D_i)$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{3}{9}$	$\frac{4}{9}$	$\frac{5}{9}$	$\frac{6}{9}$

$$P(E_2) = \sum_{i=0}^{5} P(D_i)P(E|D_i) = \frac{29969}{83349}$$

Событие N - достали два белых шара подряд:

$$P(N) = P(E_1) \cdot P(E_2) = \frac{588321439}{3859475445} \approx 0.152436$$

Событие G - из 3-го ящика достали **чёрный** шар.

	i	0	1	2	3	4	5
	$P(D_i)$	0.032	0.204	0.379	0.2855	0.0885	0.0095
Ī	$P(G D_i)$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$

$$P(G_1) = \sum_{i=0}^{5} P(D_i)P(G|D_i) = \frac{1079}{2058}$$

Вероятность вытащить 2-ой чёрный шар будет равна:

i	0	1	2	3	4	5
$P(D_i)$	0.032	0.204	0.379	0.2855	0.0885	0.0095
$P(G D_i)$	$\frac{2}{9}$	$\frac{3}{9}$	$\frac{4}{9}$	<u>5</u> 9	<u>6</u> 9	$\frac{7}{9}$

$$P(G_2) = \sum_{i=0}^{5} P(D_i)P(G|D_i) = \frac{39262}{83349}$$

Событие M - достали два чёрных шара подряд:

$$P(M) = G_1 \cdot G_2 = \frac{21181846}{85766121} \approx 0.246972$$

Событие W - достали два шара одного цвета подряд, тогда:

$$P(W) = P(N) + P(M) = \frac{588321439}{3859475445} + \frac{21181846}{85766121} = \frac{15415044644}{3859475445} \approx 0.399408$$

б)

Задача 3.

Белые и чёрные шары распределены по ящикам следующим образом:

1-ый шаг - достали по одному шару; перемешали; 2-ой шаг - вернули обратно по одному шару; 3-ий шаг - из каждого ящика вытащили по одному шару;

- а) Определить вероятность, что шары, вытащенные на 3-ем шаге, одного цвета.
- б) Определить вероятность, что цветовой состав ящиков до вытаскивания на 3-ем шаге, не изменился.

Решение:

а) Рассмотрим 1-ый шаг с перемешиванием. По условию задачи мы не различаем шары между собой, как следствие, если мы вытащили шары одного цвета (ББ или ЧЧ), то ситуация не поменяется. Событие O - достали только белые, L - достали только чёрные.

$$P(O) = \frac{5}{9} \cdot \frac{3}{5} = \frac{1}{3}$$

$$P(L) = \frac{4}{9} \cdot \frac{2}{5} = \frac{8}{45}$$

Рассмотрим события, когда достали БЧ и ЧБ. Событие W - достали БЧ, событие B - ЧБ.

$$P(W) = \frac{5}{9} \cdot \frac{2}{5} = \frac{2}{9}$$

$$P(B) = \frac{4}{9} \cdot \frac{3}{5} = \frac{4}{15}$$

Вероятность, что данные шары поменялись местами $P(C) = \frac{1}{2}$, т.е. вероятность, что в ящик вернётся не тот цвет, что оттуда брали.

Событие R - вытащили два одинаковых шара.

$$P(RO) = \frac{1}{3} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{4}{9} \cdot \frac{2}{5} \right) \right) = \frac{23}{45} \cdot \frac{1}{3} = \frac{23}{135}$$

$$P(RL) = \frac{8}{45} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{4}{9} \cdot \frac{2}{5} \right) \right) = \frac{23}{45} \cdot \frac{8}{45} = \frac{184}{2025}$$

$$P(RW) = + \frac{\frac{1}{2} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{4}{9} \cdot \frac{2}{5} \right) \right)}{\frac{1}{2} \cdot \left(\left(\frac{4}{9} \cdot \frac{4}{5} \right) + \left(\frac{5}{9} \cdot \frac{1}{5} \right) \right)} = \frac{23}{90}$$

$$P(RB) = + \frac{\frac{1}{2} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{4}{9} \cdot \frac{2}{5} \right) \right)}{\frac{1}{2} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{4}{9} \cdot \frac{2}{5} \right) \right)} = \frac{23}{90}$$

$$P(RB) = + \frac{1}{2} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{3}{9} \cdot \frac{3}{5} \right) \right) = \frac{23}{90}$$

$$P(RB) = + \frac{1}{2} \cdot \left(\left(\frac{5}{9} \cdot \frac{3}{5} \right) + \left(\frac{3}{9} \cdot \frac{3}{5} \right) \right) = \frac{7}{30}$$

$$P(RB) = \frac{23}{135} + \frac{184}{2025} + \frac{44}{405} + \frac{88}{675} = \frac{1013}{2025}$$

б) Складываем вероятности из того, что либо бы брали шары одинаково цвета, либо с вероятностью $\frac{1}{2}$ они не поменялись местами, когда взяли разного:

$$\frac{1}{3} + \frac{8}{45} + \frac{1}{2} \cdot \frac{2}{9} + \frac{1}{2} \cdot \frac{4}{15} = \frac{34}{45}$$

Задача 4.

- а) Определить вероятность, что из 3-его ящика достали белый шар.
- б) Из 3-его ящика вытащен белый, найти вероятность, что следующий шар, доставаемый из 3-его тоже белый.

Решение:

а) Событие A - из 3-его ящика достали белый шар.

Событие H_i - шар, вытащенный из 3-его ящика, изначально находился в i-ом ящике.

i	1	2	3	
$P(H_i)$?	?	$\frac{8}{9}$	
$P(A H_i)$	$\frac{10}{15} = \frac{2}{3}$	$\frac{3}{9} = \frac{1}{3}$	$\frac{4}{8} = \frac{1}{2}$	

Событие B_j - вытащенный из 3-его ящика шар, попал туда из j-ого ящика одним текущим перекладыванием.

i	1	2	3
$P(B_i)$	0	$\frac{1}{9}$	$\frac{8}{9}$
$P(A B_i)$?	?	$\frac{1}{2}$

 $P(H_1|B_2)=rac{P(H_1B_2)}{P(B_2)}=rac{2}{3+6+2}=rac{2}{11}$ - вероятность вытащить шар, изначально находившийся в 1-ом ящике из 2-ого.

$$P(H_2|B_2) = \frac{9}{3+6+2} = \frac{9}{11}$$

Если шар был изначально в 3-м ящике, то он не был переложен в него (и наоборот), т.е. $H_3 = B_3$. Если же шар изначально был в 1-м, то он был переложен из 1-го во 2-й, а из 2-ого в 3-й.

$$P(H_1) = P(H_1B_2) = P(H_1|B_2) \cdot P(B_2) = \frac{2}{11} \cdot \frac{1}{9} = \frac{2}{99}$$

Если шар изначально был в 2-м ящике, то он не был переложен во 2-й из 1-ого, но был переложен из 2-ого в 3-й.

$$P(H_2) = P(H_2B_2) = P(H_2|B_2) \cdot P(B_2) = \frac{9}{11} \cdot \frac{1}{9} = \frac{1}{11}$$

i	1	2	3
$P(H_i)$	$\frac{2}{99}$	$\frac{1}{11}$	$\frac{8}{9}$
$P(A H_i)$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{2}$

$$P(A) = \sum_{i=1}^{3} P(A|H_i)P(H_i) = \frac{145}{297} \approx 0.488215$$

б) Вероятность, что следующий вытащенный шар также окажется белым.

1-ый шар, который мы достали из 3-его ящика и который изначально находился в 1-ом или 2-ом ящиках, исключает возможность получения из них же 2-ого шара, который достают из 3-его ящика

По формуле Байеса:

$$P(H_3|A) = \frac{P(A|H_3)P(H_3)}{P(A)} = \frac{\frac{1}{2} \cdot \frac{8}{9}}{\frac{145}{297}} = \frac{132}{145}$$

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A)} = \frac{\frac{1}{3} \cdot \frac{1}{11}}{\frac{145}{297}} = \frac{9}{145}$$

$$P(H_1|A) = \frac{P(A|H_1)P(H_1)}{P(A)} = \frac{\frac{2}{3} \cdot \frac{2}{99}}{\frac{145}{297}} = \frac{4}{145}$$

Событие C - следующий вытащенный шар также оказался белым.

Событие G_k - вытащенный из 3-его ящика второй шар, изначально находился в k-ом ящике.

Если мы достали шар, изначально находившийся в 1-м или 2-м ящике, то 2-ой шар обязан быть из 3-его, т.к. в него положили только один шар из другого ящика.

Если же первым шагом мы достали шар, изначально находившийся в 3-ем ящике, то 2-м может быть шар, пришедший из всех 3-х ящиков.

Т.к. по условию задачи выполнение события A является обязательным, то в рамках решения данной задачи можно считать, что:

$$P(H_3) = \frac{132}{145}, P(H_2) = \frac{9}{145}, P(H_1) = \frac{4}{145}$$

i	1	2	3
$P(H_i)$	$\frac{4}{145}$	$\frac{9}{145}$	$\frac{132}{145}$
$P(G_1 H_i)$	0	0	?
$P(G_2 H_i)$	0	0	?
$P(G_3 H_i)$	1	1	$\frac{7}{8}$

i	1	2	3
$P(F_l H_3)$	0	$\frac{1}{8}$	$\frac{7}{8}$

Событие F_l - 2-ой вытащенный из 3-его ящика шар был переложен туда из l-ого ящика.

 $P(G_1|F_2H_3)=rac{2}{11}$ - вероятность, что 2-ой шар, который достали из 3-его ящика, был изначально в 1-ом, при условии, что 1-м шаром из 3-его ящика достали шар, который там и был, а 2-ой совершил путь $1 \to 2 \to 3$.

 $P(G_2|F_2H_3)=rac{9}{11}$ - вероятность, что 2-ой шар, который достали из 3-его ящика, был изначально в 2-ом, при условии, что 1-м шаром из 3-его ящика достали шар, который там и был, а 2-ой совершил путь $2 \to 3$.

Если шар был изначально в 3-м, то он не был переложен (и наоборот, то есть $D_3 = F_3$).

Если шар изначально был в 1-м, то он был переложен из 1-го во 2-й, а из 2-го в 3-й, т.е.

$$P(G_1H_3) = P(G_1F_2H_3) = P(G_1|F_2H_3) \cdot P(F_2|H_3) \cdot P(H_3) = \frac{2}{11} \cdot \frac{1}{8} \cdot \frac{132}{145} = \frac{3}{145}$$

Если шар изначально был в 2-м, то он не был переложен из 1-го во 2-й, но совершил путь из 2-ого в 3-ий, т.е.

$$P(G_2H_3) = P(G_2F_2H_3) = P(G_2|F_2H_3) \cdot P(F_2|H_3) \cdot P(H_3) = \frac{9}{11} \cdot \frac{1}{8} \cdot \frac{132}{145} = \frac{27}{290}$$

Если шар изначально был в 3-ем ящике, то его никуда не перекладывали и зависимости от перемещений нет, т.е

$$P(G_3H_3) = P(G_3|H_3) \cdot P(H_3) = \frac{7}{8} \cdot \frac{132}{145} = \frac{231}{290}$$

Из приведённой выше таблицы видно, что:

$$P(G_1H_2) = P(G_2H_2) = 0$$
 (единств. перешедший шар достали)

 $P(G_3H_2) = P(H_2) = \frac{9}{145}$ (единств. перешедший шар достали, а значит $G_3 = 1)$

$$P(G_1H_1) = P(G_2H_1) = 0$$
$$P(G_3H_1) = P(H_1) = \frac{4}{145}$$

$$P(G_1) = \underbrace{P(G_1H_1)}_{=0} + \underbrace{P(G_1H_2)}_{=0} + P(G_1H_3) = \frac{3}{145}$$

$$P(G_2) = \underbrace{P(G_2H_1)}_{=0} + \underbrace{P(G_2H_2)}_{=0} + P(G_2H_3) = \frac{27}{290}$$

$$P(G_3) = P(G_3H_1) + P(G_3H_2) + P(G_3H_3) = \frac{4}{145} + \frac{9}{145} + \frac{231}{290} = \frac{257}{290}$$

$$P(G_1) + P(G_2) + P(G_3) = 1 \Rightarrow$$
 образуют ПГС

На вероятность достать 2-м белый шар также будет влиять их начальное перемещение по ящикам, в случае, если 1-ый и 2-ой шары, которые мы достаём из 3-его ящика изначально были в одном.

Рассмотрим зависимость вероятности события C от того, откуда пришёл вытащенный на 1-ом этапе шар:

(i,j)	(3,1)	(3,2)	(3,3)	(2,3)	(1,3)
$P(G_iH_j)$	$\frac{4}{145}$	$\frac{9}{145}$	$\frac{231}{290}$	$\frac{27}{290}$	$\frac{3}{145}$
$P(C G_iH_j)$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{7}$	$\frac{1}{3}$	$\frac{2}{3}$

В результате:

$$P(C) = \sum P(G_i H_j) P(C|G_i H_j), i = 3,3,3,2,1; j = 1,2,3,3,3$$

$$P(C) = \frac{25}{58} \approx 0.431034$$