# Lecture 4: Shortest Paths II - Dijkstra

# Overview

- Review
- Shortest paths in DAGs
- Shortest paths in graphs without negative edges
- Dijkstra's Algorithm

# Readings



CLRS, Sections 24.2-24.3

# Shortest path weight

#### Notation:

 $v_0 \xrightarrow{p} v_k$  means p is a path from  $v_0$  to  $v_k$ .  $(v_0)$  is a path from  $v_0$  to  $v_0$  of weight 0.

#### Definition:

Shortest path weight from u to v as

$$\delta(u,v) = \left\{ \begin{array}{ccc} \min \left\{ w(p) : & p \\ \infty & v \end{array} \right\} & \text{if } \exists \text{ any such path} \\ \text{otherwise} & (v \text{ unreachable from } u) \end{array} \right.$$

### General structure of S.P. Algorithms

#### Relaxation is Safe

Basic operation in shortest path computation is the relaxation operation:

```
RELAX(u, v, w)

if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)

\Pi[v] \leftarrow u
```

**Lemma:** The relaxation algorithm maintains the invariant that  $d[v] \ge \delta(s, v)$  for all  $v \in V$ .

**Proof:** By induction on the number of steps. Consider RELAX(u, v, w). By induction  $d[u] \ge \delta(s, u)$ . By the triangle inequality,  $\delta(s, v) \le \delta(s, u) + \delta(u, v)$ . This means that  $\delta(s, v) \le d[u] + w(u, v)$ , since  $d[u] \ge \delta(s, u)$  and  $w(u, v) \ge \delta(u, v)$ . So setting d[v] = d[u] + w(u, v) is safe.

## DAGs

Can't have negative cycles because there are no cycles!

1. Topologically sort the DAG. Path from u to v implies that u is before v in the linear ordering.

2. One pass over vertices in topologically sorted order relaxing each edge that leaves each vertex.

 $\Theta(V + E)$  time

# Example DAG



## Dijkstra Example:



ACEBD DBECA ECADB 7 12 18 22

4 13 15 22

5 12 13 16

#### Dijkstra's Algorithm

For each edge (u, v)  $\epsilon$  E, assume  $w(u, v) \geq 0$ , maintain a set S of vertices whose final shortest path weights have been determined. Repeatedly select  $u \epsilon V - S$  with minimum shortest path estimate, add u to S, relax all edges out of u.

#### Pseudo-code

```
Dijkstra (G, W, s) //uses priority queue Q Initialize (G, s) S \leftarrow \phi Q \leftarrow V[G] //Insert into Q while Q \neq \phi do u \leftarrow \text{EXTRACT-MIN}(Q) //deletes u from Q S = S \cup \{u\} for each vertex v \in \text{Adj}[u] do RELAX (u, v, w) \leftarrow this is an implicit DECREASE_KEY operation
```

## Example

```
Dijkstra (G, W, s) //uses priority queue Q

Initialize (G, s)

S \leftarrow \phi

Q \leftarrow V[G] //Insert into Q

while Q \neq \phi

do u \leftarrow \text{EXTRACT-MIN}(Q)

S = S \cup \{u\}

for each vertex v \in \text{Adj}[u]

do RELAX (u, v, w)
```



```
S = \{ \}  { A B C D E } = Q 

S = \{A\} 0 \infty \infty \infty \infty \infty \infty
S = \{A,C\} 0 10 3 \infty \infty \infty after relaxing edges from A after relaxing edges from C 

S = \{A,C,E\} 0 7 3 11 5
S = \{A,C,E\} 0 7 3 9 5 after relaxing edges from B
```

## Dijkstra Algorithm Summary

**Strategy**: Dijkstra is a greedy algorithm: choose closest vertex in V – S to add to set S.

**Correctness**: We know relaxation is safe. The key observation is that each time a vertex u is added to set S, we have  $d[u] = \delta(s, u)$ .

#### Dijkstra Complexity

- $\Theta(v)$  inserts into priority queue
- Θ(v) EXTRACT MIN operations
- Θ(E) DECREASE KEY operations

# Dijkstra Algorithm Summary

#### Dijkstra Complexity

Θ(v) inserts into priority queue

Θ(v) EXTRACT MIN operations

Θ(E) DECREASE KEY operations

Array impl:

 $\Theta(v)$  time for extra min

 $\Theta(1)$  for decrease key

Total:  $\Theta(V \cdot V + E \cdot 1) = \Theta(V^2 + E) = \Theta(V^2)$ 

#### Binary min-heap:

 $\Theta(\lg V)$  for extract min

 $\Theta(\lg V)$  for decrease key

Total:  $\Theta(V \lg V + E \lg V)$