Convex Optimization Lecture 8 - Applications in Smart Grids

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Today's Lecture

1 Generalized Inequalities and Semidefinite Programming

2 Overview of Smart Grids

3 Optimal Power Flow and Extensions

Outline

1 Generalized Inequalities and Semidefinite Programming

Overview of Smart Grids

3 Optimal Power Flow and Extensions

Proper Cones

a convex cone $K \subseteq \mathbb{R}^n$ is proper if:

- K is closed
- K has nonempty interior
- K is pointed (i.e., contains no line)

examples of proper cones:

nonnegative orthant

$$K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n | x_i \ge 0, i = 1, \dots, n\}$$

• positive semidefinite cone

$$K = \mathbb{S}^n_+$$

Generalized Inequalities

generalized inequality defined by proper cone K:

$$x \prec_K y \Leftrightarrow y - x \in K$$
, $x \prec_K y \Leftrightarrow y - x \in \text{int} K$

examples of generalized inequalities:

• component-wise inequality $(K = \mathbb{R}^n_+)$:

$$x \leq_{\mathbb{R}^n_+} y \Leftrightarrow x_i \leq y_i, i = 1, \ldots, n$$

• matrix inequality $(K = \mathbb{S}^n_+)$:

$$X \leq_{\mathbb{S}^n_{\perp}} Y \Leftrightarrow Y - X$$
 positive semidefinite

subscripts usually dropped when $K = \mathbb{R}^n_+$ or \mathbb{S}^n_+

Some Properties

some properties are similar to \leq on \mathbb{R} :

$$x \leq_K y$$
, $u \leq_K v \Rightarrow x + u \prec_K y + v$

some properties are different:

• may not have a linear ordering:

it is possible that
$$x \npreceq_K y$$
 and $y \npreceq_K x$

• may not have a minimum element for any subset S:

may not exist
$$x$$
 such that $x \leq y$, $\forall y \in S$

Convexity With Respect To Generalized Inequalities

 $f: \mathbb{R}^n \to \mathbb{R}^m$ is K-convex if dom f is convex and

$$f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y)$$

for any $x, y \in \text{dom} f$ and $\theta \in [0, 1]$

examples:

- $f: \mathbb{S}^m \to \mathbb{S}^m$, $f(X) = X^2$ is \mathbb{S}^m_+ -convex
 - proof: use the fact that $z^T X^2 z = ||Xz||_2^2$ is convex in X

Convex Optimization With Generalized Inequalities

convex optimization with generalized inequality constraints:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, i = 1, ..., m$
 $Ax = b$

where

- $f_0: \mathbb{R}^n \to \mathbb{R}$ is convex
- $f_i: \mathbb{R}^n \to \mathbb{R}^{k_i}$ is K_i -convex

Semidefinite Program (SDP)

semidefinite program:

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \cdots + x_n F_n + G \leq 0$
 $Ax = b$

where F_i , $G \in \mathbb{S}^k$

- inequality constraint called linear matrix inequality (LMI)
- can include multiple LMI constraints

$$x_1\hat{F}_1+x_2\hat{F}_2+\cdots+x_n\hat{F}_n+\hat{G} \leq 0, \ x_1\tilde{F}_1+x_2\tilde{F}_2+\cdots+x_n\tilde{F}_n+\tilde{G} \leq 0$$

is equivalent to

$$x_1\begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2\begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \cdots \times x_n\begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0$$

Semidefinite Program (SDP) - Standard Form

standard form semidefinite program:

minimize
$$\operatorname{tr}(CX)$$

subject to $\operatorname{tr}(A_iX) = b_i, \ i = 1, \dots, p$
 $X \succ 0$

where

- optimization variable $X \in \mathbb{S}^n$
- $C, A_1, \ldots, A_p \in \mathbb{S}^n$
- tr(·) is the trace of a matrix:

$$\operatorname{tr}(X) \triangleq \sum_{i=1}^{n} x_{ii}$$

•
$$\operatorname{tr}(CX) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

LP as SDP

linear program (LP):

minimize
$$c^T x$$

subject to $Ax \le b$

equivalent SDP:

minimize
$$c^T x$$

subject to $diag(Ax - b) \leq 0$

diagonal matrix semidefinite ⇔ each diagonal element nonnegative

SOCP as SDP

second-order cone program (SOCP):

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

equivalent SDP:

minimize
$$f^T x$$

subject to
$$\begin{bmatrix} (c_i^T x + d_i) I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, i = 1, \dots, m$$

important fact in SDP:

$$||A||_2 \le s \Leftrightarrow A^T A \le s^2 I \Leftrightarrow \begin{bmatrix} sI & A \\ A^T & sI \end{bmatrix} \succeq 0$$

Outline

Generalized Inequalities and Semidefinite Programming

Overview of Smart Grids

3 Optimal Power Flow and Extensions

Traditional Power Systems → Smart Grid

traditional power systems:

smart grid:

- integration of renewables
- deregulated electricity market
- coupling with other infrastructures

efficient optimization and computation is key!

transmission grid:

- high voltage
- bulk power generators (e.g., coal, hydro-electric generators, wind farms)
- complicated topology

distribution grid:

- low voltage
- small power generators (e.g., residential solar panels)
- tree topology

Example Topology of Transmission Grids

transmission grid (IEEE 118-bus system):

complicated with many cycles

Example Topology of Distribution Grids

distribution grid:

tree / radial networks

Outline

1 Generalized Inequalities and Semidefinite Programming

Overview of Smart Grids

3 Optimal Power Flow and Extensions

Graph Model of The Grid

- a power system is usually modeled by a (undirected) graph $(\mathcal{N},\mathcal{E})$
 - ullet \mathcal{N} : set of nodes representing generator and/or load
 - $m{\cdot}$ \mathcal{E} : set of edges representing transmission lines

key elements:

- (complex) power injection at node j: $s_i \in \mathbb{C}$
- admittance of line $(i,j) \in \mathcal{E}$: $y_{ij} \in \mathbb{C}$
 - usually $y_{ij} = y_{ji}$

Kirchhoff's law:

$$s_{j} = \sum_{k:(j,k)\in\mathcal{E}} y_{jk}^{H} V_{j} \left(V_{j}^{H} - V_{k}^{H}\right)$$

Optimal Power Flow

optimal power flow (vanilla version):

where

- $V \in \mathbb{C}^n$: the vector of voltages at each bus
- C(V): cost of generation, loss of power in transmission, etc.
- voltage magnitude constraints: stability of transmission lines
- power injection constraints: physics of generators

usually solved by system operators:

- extremely important, solved every 5-15 minutes
- nonconvex

QCQP Formulation

cost is usually quadratic:

$$C(V) = V^H CV$$

admittance matrix $Y \in \mathbb{C}^{n \times n}$:

$$Y_{ij} = \begin{cases} \sum_{k:(i,k) \in \mathcal{E}} y_{ik} & \text{if } i = j \\ -y_{ij} & \text{if } i \neq j \text{ and } (i,j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

Ohm's law: (I is the current injections to each bus)

$$I = YV$$

QCQP Formulation

power injections:

$$s_{j} = V_{j}I_{j}^{H} = (e_{j}^{H}V)(I^{H}e_{j})$$

$$= \operatorname{tr}(e_{j}^{H}VV^{H}Y^{H}e_{j}) = \operatorname{tr}((Y^{H}e_{j}e_{j}^{H})VV^{H}) \triangleq \operatorname{tr}(Y_{j}VV^{H})$$

$$= \operatorname{tr}(V^{H}Y_{j}V) = V^{H}Y_{j}V$$

similarly, $V_j V_j^H = V^H J_j V$, where $J_j = e_j e_j^H$

optimal power flow as nonconvex QCQP:

Equivalent Formulation

observe:

$$V^H M V = \operatorname{tr}\left(M V V^H\right) = \operatorname{tr}\left(M W\right)$$

where $W \triangleq VV^H \in \mathbb{C}^{n \times n}$

equivalent problem:

$$\begin{array}{ll} \text{minimize} & \operatorname{tr} \left(\mathit{CW} \right) \\ \text{subject to} & \underline{v}_j \leq \operatorname{tr} \left(J_j W \right) \leq \bar{v}_j, \ j \in \mathcal{N} \\ & \underline{s}_j \leq \operatorname{tr} \left(Y_j W \right) \leq \bar{s}_j, \ j \in \mathcal{N} \\ & W \geq 0, \ \operatorname{rank} (W) = 1 \end{array}$$

only nonconvexity comes from rank(W) = 1

Semidefinite Programming Relaxation

SDP relaxation by discarding rank constraint:

$$\begin{array}{ll} \text{minimize} & \operatorname{tr} \left(\mathit{CW} \right) \\ \text{subject to} & \underline{v}_j \leq \operatorname{tr} \left(J_j W \right) \leq \overline{v}_j, \ j \in \mathcal{N} \\ & \underline{s}_j \leq \operatorname{tr} \left(Y_j W \right) \leq \overline{s}_j, \ j \in \mathcal{N} \\ & W > 0 \end{array}$$

convex, can be efficiently solved

- solution to SDP relaxation: W_{sdp} ; solution to OPF: V^*
- if W_{sdp} is rank-1, then $W_{\text{sdp}} = V^{\star}(V^{\star})^{H}$

when is relaxation exact? how tight is the relaxation?

Exactness and Tightness of Relaxation

relaxation is exact if the network is tree ${\rm rank~of~solution~} W_{\rm sdp} \leq {\rm treewidth~of~the~network}$

link exactness / tightness to the network topology

26 / 32

Tree Decomposition of Graph

tree decomposition of a graph:

- a tree with nodes X_1, \ldots, X_m , where X_i is subset of \mathcal{N}
 - **1** union of all sets X_i is \mathcal{N}
 - 2 if X_i and X_j both contain $k \in \mathcal{N}$, all nodes in the path between X_i and X_j contain k
 - **3** if $(k, \ell) \in \mathcal{N}$, there is a set X_i that contain k and ℓ

example:

Treewidth of Graph

tree decomposition is not unique

a trivial tree decomposition for any graph: tree with 1 node

width of a tree decomposition: size of largest set X_i minus one

$$\max |X_i| - 1$$

treewidth of a graph:

minimum width among all tree decompositions

Examples of Treewidth

treewidth of a tree is 1:

tree decomposition

each subset X_i is an edge (i.e., two nodes) in the original tree

Examples of Treewidth

a fully-connected graph:

original graph

invalid tree decomposition tree decomposition

for a fully-connected graph:

- unique tree decomposition: the trivial one
- treewidth: $|\mathcal{N}|-1$

Power System State Estimation

power of electricity flow on each transmission line ℓ :

$$V^H H_\ell V = \operatorname{tr}(H_\ell W)$$
 according to physics

measurements at a few selected lines:

$$z_{\ell} = \operatorname{tr}(H_{\ell}W) + \operatorname{noise}$$

power system state estimation: find V that minimizes the estimation error

$$\begin{array}{ll} \text{minimize} & \sum_{\ell \in \mathcal{L}} \left[z_\ell - \operatorname{tr} \left(H_\ell W \right) \right]^2 \\ \\ \text{subject to} & W \geq 0, \ \operatorname{rank}(W) = 1 \end{array}$$

Power System State Estimation

SDP relaxation:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{\ell \in \mathcal{L}} x_{\ell} \\ \text{subject to} & \left[\begin{array}{cc} -x_{\ell} & z_{\ell} - \operatorname{tr}\left(H_{\ell}W\right) \\ z_{\ell} - \operatorname{tr}\left(H_{\ell}W\right) & -1 \end{array} \right] \leq 0 \\ W > 0 \end{array}$$