Al Performance Engineering: Apr 21, 2025

Talk #0: Introductions and Meetup Updates

by Chris Fregly and Antje Barth

Talk #1: Al Model Performance Optimizations for Beginners (and More Than Beginners)

by Chaim Rand (https://chaimrand.medium.com/)

Talk #2: NVIDIA GTC 2025 Highlights for AI Systems Performance by Chris Fregly (https://linkedin.com/in/cfreqly/)

Meetup: https://meetup.com/ai-performance-engineering/

YouTube: https://youtube.com/@AIPerformanceEngineering

Book: https://amazon.com/Systems-Performance-Engineering-Optimizing-Algorithms/dp/B0F47689K8/

GitHub: https://github.com/cfreqly

Al Systems Performance Engineering O'Reilly Book

Chapter 1: Introduction and Al System Overview

- 1.1 The Al Systems Performance Engineer
- 1.2 Towards 100-Trillion-Parameter Models
- 1.3 NVIDIA's "AI Supercomputer in a Rack"
- 1.4 Mechanical Sympathy: Hardware-Software Co-Design
- 1.5 Measuring "Goodput" Useful Throughput
- 1.6 Book Roadmap and Methodology
- 1.7 Key Takeaways
- 1.8 Conclusion

Chapter 2: Al System Hardware Overview

- 2.1 The CPU and GPU "Superchip"
- 2.2 Ultra-Scale Networking Treating Many GPUs as One
- 2.3 Compute Density and Power Requirements
- 2.4 Liquid Cooling vs. Air Cooling
- 2.5 Performance Monitoring and Utilization in Practice
- 2.6 Sharing and Scheduling
- 2.7 ROI of Upgrading Your Hardware
- 2.8 A Glimpse into the Future: NVIDIA's Roadmap
- 2.9 Key Takeaways
- 2.10 Conclusion

Chapter 3: OS, Docker, and Kubernetes Tuning for GPUs

- 3.1 Operating System
- 3.2 GPU Driver and Software Stack
- 3.3 Configuring the CPUs and OS for GPU Environments
- 3.4 GPU Driver and Runtime Settings for Performance
- 3.5 Container Runtime Optimizations for GPUs
- 3.6 Kubernetes for Topology-Aware Container Orchestration and
- **Networking**
- 3.7 Key Takeaways
- 3.8 Conclusion

Chapter 4: Distributed Communication and I/O Optimizations

- 4.1. Overlapping Communication and Computation
- 4.2 NVIDIA Magnum IO Optimization Stack
- 4.3 High Speed, Low Overhead Data Transfers with RDMA
- 4.4 NCCL for Distributed, Multi-GPU Communication
- 4.5 NIXL for Accelerated Data Transfer and Inference
- 4.6 Storage I/O Optimizations
- 4.7 Tuning the Data Pipeline
- 4.8 Key Takeaways
- 4.9 Conclusion

Al Systems Performance Engineering O'Reilly Book

Chapter 5: Optimizing Memory Access and Data Movement

<u>Uncoalesced Global Memory Access</u>

Lack of Data Reuse and Tiling

Shared Memory Bank Conflicts

Misaligned and Scalar Access vs. Vectorized Loads

Ignoring Read-Only Data Caches

<u>Using Tensor Memory Accelerator (TMA)</u>

CPU-GPU Transfer Bottlenecks

Key Takeaways

Conclusion

Chapter 6: Tuning Compute Strategy and Parallelism

<u>Using Tensor Cores and Transformer Engines</u>

Instruction-Level Parallelism (Loop Unrolling)

Warp Specialization and Producer-Consumer Parallelism

Warp Branch Divergence

Eliminating Redundant Computation and Memory Access

Imbalanced Work Distribution and Persistent Kernels

CUDA Graphs for Launch Overhead Reduction

Asynchronous Data Transfers and Memory Prefetching

Key Takeaways

Chapter 7: Improve Kernel Scheduling, Execution, Orchestration

Excessive Global Synchronization

Sequential Host-Driven Execution vs. Streams Overlap

High Kernel Launch Overhead and Kernel Fusion

Improve Kernel Batching (CUDA Graphs)

Increasing GPU Utilization with Multi-Stream Kernels

Reduce Kernel Overhead with Persistent Kernels

Reduce Device-Launch Latency (Dynamic Parallelism)

Balance Work Distribution and Dynamic Load Balancing

Reduce Throttling by Insufficient CPU Submission

Chapter 8: PyTorch and Triton Optimizations

Profiling and Bottleneck Identification

Compiler-Level Optimizations with torch.compile

Mixed-Precision and Tensor-Core Techniques

Attention Variants and High-Level PyTorch Attention APIs

Fusion and Custom Kernels

Advanced GPU Kernel Techniques

Memory Management and Data Pipelines

Distributed Training and MLPerf

PyTorch XLA Fundamentals and Workloads

Al Systems Performance Engineering O'Reilly Book

Chapter 9: Distributed Training at Ultra-Scale

<u>Fundamental Challenges and the Need for Distributed Systems</u>

Core Parallelism Strategies

Advanced Hardware and Infrastructure

Overlapping Communication with Computation

Memory Optimization and Mixed Precision Techniques

Advanced Scheduling and Kernel-Level Optimizations

In-Depth Communication and Network Optimizations

Convergence, Stability, and Distributed Optimization Nuances

Energy Efficiency, Economic Considerations, and Resource

<u>Management</u>

Enhanced Observability, Instrumentation, and Self-Tuning

Emerging Trends and Future Directions

Advanced Operational Considerations

Key Takeaways

Conclusion

Chapter 10: High-Performance Inference Optimizations

Core System Architectures

Distributed Inference Strategies for Large Models

Low-Level GPU Kernel and Execution Optimizations

Memory Management and KV Cache Strategies

Advanced Decoding Techniques

Batching and Scheduling Strategies

Precision, Quantization, and Sparsity Techniques

Profiling and Roofline Analysis

Application-Level Best Practices

Key Takeaways

Conclusion

Chapter 11: Al System Performance Optimization Case Studies

<u>Chapter 12: Future Trends in Ultra-Scale Al Systems</u>
<u>Performance Engineering</u>

<u>Chapter 13: 250+ Tips for Al Systems Performance</u> <u>Engineers</u>

NVIDIA GTC 2025 Keynote - March 2025 - Jensen Huang (CEO)

NVIDIA is at a \$1 trillion computing inflection point.

Reasoning and Agents - Al computing demand is accelerating rapidly

NVIDIA Blackwell (GPU) and Grace (CPU) + Blackwell (GPU) Systems are in Full Production. Delivering 40x the performance of Hopper.

NVIDIA Will Release New Hardware Annually.

Upcoming NVIDIA Vera-Rubin (next gen Grace-Blackwell) in 2026+.

Photonics-based Networking and Al-Optimized Storage are Next Innovation Segments

Advanced networking and storage solutions will improve AI scalability, efficiency and energy consumption

Physical AI for Industrial and Robotics is \$50 Trillion Opportunity.

NVIDIA Isaac and Cosmos for Al-powered robotics and automation for manufacturing, logistics, healthcare, etc.

Hardware Updates

Blackwell GPUs are in Full Production. Blackwell GPUs are shipping at hyperscale, delivering up to 40× the Al throughput of Hopper for training and inference workloads.

Blackwell Ultra GPU (H2 2025). Double Transformer-Engine attention acceleration and deliver 1.5× more AI compute FLOPS with FP4/FP6 support.

GB300 NVL72 Rack-Scale System (H2 2025). 36 Grace CPUs + 72 Blackwell Ultra GPUs with 1.8 TB/s NVLink-C2C boasting up to 30× faster LLM inference.

DGX Spark & DGX Station. DGX "Spark" and DGX Station personal desktop AI supercomputers with Grace-Blackwell and Blackwell Ultra for local prototyping

Vera-Rubin and Rubin Ultra SuperChip Previews. Vera (CPU) - Rubin (GPU) SuperHip (2026) and Rubin Ultra (2027) - annual release cadence

Networking Hardware Updates

NVLink-C2C 1.8 TB/s Interconnect. The fifth-gen NVLink-C2C

interconnect (1.8 TB/s per link) enables unified CPU-GPU and GPU-GPU memory domains with sub-µs latency.

Co-Packaged Optics (CPO)

Silicon photonics switches embedding optics on-chip, 144 ports, 800 Gb/s per port (liquid cooled)

Data Infrastructure and Storage Updates

[Reference Design] NVIDIA Al Data Platform.

Integrates BlueField DPUs, Blackwell GPUs, networking, GPUDirect Storage, and Dynamo (!!) for accelerated inference.

Designed for enterprise storage providers.

CUDA + Python + PyTorch

CUDA Toolkit 12.8.1 Highlights. Updated CUDA Toolkit 12.8.1 with lazy module/kernel loading, updated dynamic parallelism APIs, enhanced CUDA Graph capture/reuse, reduced CPU–GPU sync overhead

Transformer Engine with FlashAttention Primitives. Hits up to 1.2 PFLOPs FP8 attention computations for Blackwell GPUs <u>GitHub</u>.

CUDA Python: New Python-first CUDA Libraries (PyTorch, etc.)

<u>cuTile Library</u>: Python DSL for working with matrix tiles and Advanced Tensor-Core pipelining and optimization techniques

- cuda.core: Pythonic access to CUDA Runtime and other core functionalities
- cuda.bindings: Low-level Python bindings to CUDA C APIs

for use within Numba CUDA kernels

- cuda.cooperative: A Python package providing CCCL's reusable block-wide and warp-wide device primitives
- <u>cuda.parallel</u>: A Python package for easy access to CCCL's highly efficient and customizable parallel algorithms, like sort, scan, reduce, transform, etc, that are callable on the *host*
- <u>numba.cuda</u>: Numba's target for CUDA GPU programming by directly compiling a restricted subset of Python code into CUDA kernels and device functions following the CUDA execution model.

```
TILE_SIZE = wp.constant(256)
TILE_THREADS = 64
@wp.kernel
def compute(a: wp.array2d(dtype=float), b: wp.array2d(dtype=float)):
    # obtain our block index
    i = wp.tid()
    # load a row from global memory
    t = wp.tile_load(a[i], TILE_SIZE)
    # cooperatively compute the sum of the tile elements; s is a single element tile
    s = wp.tile_sum(t)
    # store s in global memory
    wp.tile_store(b[i], s)
a_np = np.arange(N).reshape(-1, 1) * np.ones((1, 256), dtype=float)
a = wp.array(a_np, dtype=float)
b = wp.zeros((N,1), dtype=float)
wp.launch_tiled(compute, dim=[a.shape[0]], inputs=[a, b], block_dim=TILE_THREADS)
```

Model Inference Updates - NVIDIA Dynamo!!

NVIDIA Dynamo Model Inference Server.

Successor to Triton Inference Server, orchestrates disaggregated prefill/decode, smart routing, dynamic GPU scheduling, KV-cache offloading

Considered the new "Inference OS"

Backends: vLLM, TensorRT-LLM, SGLang

Dynamo + 671B DeepSeek-R1 World Record.

Achieved 253 tokens/s per user (>30,000 tokens/s aggregate) on a single 8-GPU Blackwell DGX node using optimized fusion kernels.

Performance Tooling Updates: Python/PyTorch Call-Stack!!

Nsight Compute. Chart mode for CUDA Graph visualization, zoomable memory timelines, and enhanced kernel profiling.

Nsight Systems. Python call-stack views!!

Thanks! Al Performance Engineering: Apr 21, 2025

Talk #0: Introductions and Meetup Updates by Chris Fregly

Talk #1: Al Performance Optimizations for Beginners (and More Than Beginners!)

by Chaim Rand (https://chaimrand.medium.com/)

Talk #2: NVIDIA GTC 2025 Recap (Performance Focus)

by Chris Fregly (https://linkedin.com/in/cfregly/)

Meetup: meetup.com/ai-performance-engineering/

YouTube: youtube.com/@AIPerformanceEngineering

Book: <u>amazon.com/Systems-Performance-Engineering-Optimizing-Algorithms/dp/B0F47689K8/</u>

GitHub: github.com/cfregly

