

Hello 视觉全训班

OpenGL
OpenGL ES
GPUImage

Metal

视觉全训班. 3D数学从矩阵基础到矩阵与线性变换

@ CC老师

全力以赴.非同凡"想"

1.认识矩阵

4 0 12 -5 \(\sqrt{4} \) 3 12 -4/3 -1 1/2 18 0

2.矩阵维度和记法

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} \\ \mathbf{m}_{21} & \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{m}_{31} & \mathbf{m}_{32} & \mathbf{m}_{33} \end{bmatrix}$$

M_{ii}表示M的第i行,第j列元素。

3 方阵

行数和列数相同的矩阵,称为<mark>方阵</mark> 我们的课程中,主要讨论的范畴就是在 2*2、3*3、4*4方阵

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

方阵的<mark>对角线元素</mark>就是方阵的行号和列号相同的元素;例如 3*3矩阵M的对角线元素为m_{11、}m_{22、}m₃₃。其他元素都是非对角元素。

思考

下面A,B矩阵那个是单元矩阵?

4 单位矩阵

单位矩阵,是一种特殊的对角矩阵,n维单位矩阵记做 I_n 。是n*n 矩阵。对象元素为1.其他元素为0。例如 3*3 单位矩阵

$$I_3 = \begin{bmatrix} 100\\010\\001 \end{bmatrix}$$

单位矩阵非常特殊,因为它是矩阵乘法单位元,其基本性质是用任意1个矩阵乘以单位矩阵,都将得到原矩阵。所以在某种意义上对矩阵的作用就犹如1对于标量的作用。

5 向量作为矩阵使用

行向量 123

列向量

6 矩阵转置

一个r * c 矩阵M。M的转置记做 M^T ,是一个 c * r 矩阵。它的列由M的行组成。可以从另方面理解。 $M_{ii}^{T} = M_{ii}$,即沿着矩阵的对角线翻折。

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

对向量而言,转置将使得行向量变成列向量,是列向量变成行向量。

$$\begin{bmatrix} x & y & z \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^T = \begin{bmatrix} x & y & z \end{bmatrix}$$

7 标量 与 矩阵相乘

$$kM = k \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} km_{11} & km_{12} & km_{13} \\ km_{21} & km_{22} & km_{23} \\ km_{31} & km_{32} & km_{33} \end{bmatrix}$$

8 矩阵与矩阵相乘

例如,设A为4*2矩阵,B为2*5矩阵,那么结果AB为4*5矩阵。

8 矩阵与矩阵相乘

<mark>矩阵相乘法则</mark>:对结果中的任意元素 C_{ij} ,取A的第i行和第j列,将行和列中的对应元素相乘。然后将结果相加(等于A的i列和B的j列的点积)。 C_{ii} 就等于这个和。

$$\begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} & \mathbf{C}_{13} & \mathbf{C}_{14} & \mathbf{C}_{15} \\ \mathbf{C}_{21} & \mathbf{C}_{22} & \mathbf{C}_{23} & \mathbf{C}_{24} & \mathbf{C}_{25} \\ \mathbf{C}_{31} & \mathbf{C}_{32} & \mathbf{C}_{33} & \mathbf{C}_{34} & \mathbf{C}_{35} \\ \mathbf{C}_{41} & \mathbf{C}_{42} & \mathbf{C}_{43} & \mathbf{C}_{44} & \mathbf{C}_{45} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \\ \mathbf{a}_{31} & \mathbf{a}_{32} \\ \mathbf{a}_{41} & \mathbf{a}_{42} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \mathbf{b}_{13} & \mathbf{b}_{14} & \mathbf{b}_{15} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \mathbf{b}_{23} & \mathbf{b}_{24} & \mathbf{b}_{25} \end{bmatrix}$$

例如

$$\mathbf{C}_{24} = \mathbf{a}_{21} \mathbf{b}_{14} + \mathbf{a}_{22} \mathbf{b}_{24}$$
 (C的第2行第4列的元素等于A的第2行和B的第4列的点积)

当然还有另一种助记方法:

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \end{bmatrix}$$

例如

$$c_{24} = a_{21}b_{14} + a_{22}b_{24}$$

2 * 2 矩阵相乘完整公式

AB=
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

矩阵乘法注意事项:

- 1.任意矩阵M乘以方阵S,不管从哪边乘,都得到与原矩阵大小相同的矩阵。当然,前提是假定乘法有意义。如果S是单位矩阵,结果就是原矩阵M,即:MI = IM = M。
- 2.矩阵乘法不满足交换律, 即:AB!= BA
- 3.矩阵乘法满足结合律,即:(AB)C = A(BC)。假定ABC的维数使得其乘法有意义,要注意如果(AB)C有意义,那么A(BC)就一定有意义。
- 4.矩阵乘法也满足与标量或向量的结合律, 即:(kA)B = k(AB) = A(kB); (vA)B = v(AB);
- 5.矩阵积的转置相当于先转置矩阵然后以相反的顺序乘法,即: $(AB)^T = B^T A^T$

9 向量与矩阵的乘法

思考

向量与矩阵相乘结果是多少? 是否具有意义?

$$\begin{bmatrix} x \ y \ z \end{bmatrix} \begin{bmatrix} m_{11} \ m_{12} \ m_{21} \ m_{22} \ m_{23} \ m_{31} \ m_{32} \ m_{33} \end{bmatrix} = ?$$

$$\begin{bmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} \\ \mathbf{m}_{21} & \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{m}_{31} & \mathbf{m}_{32} & \mathbf{m}_{33} \end{bmatrix} \begin{bmatrix} \mathbf{x} \ \mathbf{y} \ \mathbf{z} \end{bmatrix} = ?$$

$$\begin{bmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} \\ \mathbf{m}_{21} & \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{m}_{31} & \mathbf{m}_{32} & \mathbf{m}_{33} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = ?$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = ?$$

9 向量与矩阵的乘法详解

$$\begin{bmatrix} x \ y \ z \end{bmatrix} \begin{bmatrix} m_{11} \ m_{12} \ m_{21} \ m_{22} \ m_{23} \ m_{31} \ m_{32} \ m_{33} \end{bmatrix} = \begin{bmatrix} x m_{11+} y m_{21+} z m_{31} \ x m_{12+} y m_{22+} z m_{32} \ x m_{13+} y m_{23+} z m_{33} \end{bmatrix}$$

1*3 向量与3*3矩阵相乘=1*3矩阵

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ xm_{11+} ym_{12+} zm_{13} \\ xm_{21+} ym_{22+} zm_{23} \\ xm_{31+} ym_{32+} zm_{33} \end{bmatrix}$$

3 * 3矩阵 与 3 *1 向量相乘 = 3 * 1矩阵

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} \pm \pm 2 \\ \pm \pm 2 \end{bmatrix} \begin{bmatrix} x & y & z \\ y & z \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} \pm \pm \pm 2 \\ \pm \pm \pm 2 \end{bmatrix}$$

3 * 3矩阵 与 1 * 3 向量相乘 无意义

3 * 1 向量 3 * 3矩阵 与相乘 无意义

9 向量与矩阵的乘法详解

总结

行向量左乘矩阵时,结果是行向量; 列向量右乘矩阵时,结果是列向量; 行向量右乘矩阵时,结果是无意义; 列向量左乘矩阵时,结果是无意义;

矩阵与向量相乘 注意事项:

1.结果向量中的每个元素都是原向量与矩阵中单独行或列的点积;

2.矩阵一向量乘法满足对向量加法的分配律,对于向量v,w 和 矩阵M 有,

(v + w)M = vM + wM;

10 行向量与列向量的使用场景

为什么要使用行向量? (偏向于书写方便)

- 1.在文字中使用行向量的形式更加好书写;
- 2.用矩阵乘法实现坐标系转换时,向量左乘矩阵的形式更加方便
- 3.DirectX使用的是行向量

DirectX是由微软公司创建的多媒体编程接口。由C++编程语言实现。它们旨在使基于Windows 的计算机成为运行和显示具有丰富多媒体元素(例如全色图形、视频、3D 动画和丰富音频)的应用程序的理想平台。DirectX并不是一个单纯的图形API,它是由微软公司开发的用途广泛的AP

为什么要使用列向量?

- 1.等式中使用列向量形式更好
- 2.多本计算机图形学都是使用的列向量
- 4.OpenGL 使用的是列向量

1 矩阵是如何变换成向量的?

首先,向量[1,-3-4]是如果实现位移?

位移[1,0,0],随后位移[0,-3,0],最后位移[0,0,4]

$$\begin{bmatrix} 1 \\ -3 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -4 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{y} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{z} \end{bmatrix}$$

p、q、r 定义分别指向+x,+y,+z方向的单位向量,v = xp+yq+zr;

$$M = \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} p_x p_y p_z \\ q_x q_y q_z \\ r_x r_y r_z \end{bmatrix}$$

如果把矩阵的行解释为坐标的基向量,那么乘以该矩阵就是做了一次坐标转换。若aM = b,我们就可以说,M 将a向量转换成了b。

100 010 001

+y

3*3矩阵的9个数字之间有什么关系?怎样构建一个矩阵来做这个转换?

思考上面2个问题,我们可以看一下使用基向量[1,0,0]、[0,1,0]、[0,0,1]乘以矩阵M的情况:

$$\begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \end{bmatrix}$$

$$\begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} m_{21} & m_{22} & m_{23} \\ m_{21} & m_{22} & m_{23} \end{bmatrix}$$

 $\begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} m_{31} & m_{32} & m_{33} \end{bmatrix}$

总结:

基向量[1,0,0]乘以矩阵M ,结果是M 的第一行。后面的2个方程也是一样的规律。

矩阵的每一个都能解释为转换后的基 本向量。

2 * 2 矩阵:

$$M = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

抽取基向量p和q

p = [2,1]

q = [-1,2]

蓝色箭头表示单元向量

蓝色线段与基向量q,p构成平行四边形更便于理解变化对其他向量的影响

二维矩阵的几何意义

- 蓝色箭头表示单元向量
- 蓝色线段与基向量q,p构成平行四边形更便于理解变化对其他向量的影响

总结

- 1.方阵的行能被解释为坐标系的基向量;
- 2.为了将向量从原坐标系变换到新坐标系,用它乘以一个矩阵。
- 3.从原坐标系到这些基向量定义的新坐标系的变化是一种线性变换。线性变换保持直线和平行线。但角度、长度 面积或体积可能会改变。
- 4.零向量乘以任何矩阵仍然得到零向量。因此,方阵所代表的线性变换的原点和原坐标系原点一致。变换不包含 原点。
- 5.可以通过想象变换后的坐标系的基向量来想象矩阵。这些基向量在2D中构成L形。在3D构成"三角架"型。用一个盒子以及辅助更有助于理解

矩阵和线性变换

变换物体&变换坐标系

矩阵和线性变换

变换物体优点

变换物体,是最直接的变 化。比如,渲染一辆车,需 要将点从车的物体坐标变换 到世界坐标接着到照相机坐 标系

将车旋转到世界坐标系,在 世界坐标系中做碰撞检测, 但这需要大量的资源。因为 模型有大量的顶点数据,计 算量偏大。 可以选择变换物体坐标系、 也可以选择变换坐标系。在 某一些情况选择合适的即 可。2种变换实际上上等价 的。将物体变换一个量等价 于将坐标系变换一个相反的 量。

变换坐标系优点

比如,如果此时2台车撞击。 我们知道世界坐标中的撞击 位置和撞击路线。想像一 下,世界坐标系被转换到 下,也将坐标系重合的位 下,始体坐标系重合的位 车、撞击路线不动。这样和 车、增量击车和撞击路线在 车的物体坐标系的坐标。 下来就可以判断是汽车是否 相撞。

-y

将坐标系顺时针旋转20° 等价于逆时针旋转车20°

三角函数表

[0 1]	[1,0]
[-1 0]	[0,1]
[0 -1]	[-1,0]
[1 0]	[0,-1]
	[0,-1]

	0 0°	π/2 90°	π 180°	3π/2 270°	2π 360°
sin∂	0	1	0	-1	0
cosð	1	0	-1	0	1
tan∂	0	不存在	0	不存在	0
cot∂	不存在	0	不存在	0	不存在

旋转—2D

2D旋转矩阵的构成

$$R(\partial) = \begin{bmatrix} p' \\ q' \end{bmatrix} = \begin{bmatrix} \cos \partial & \sin \partial \\ -\sin \partial & \cos \partial \end{bmatrix}$$

思考

将上述公式,用自己的方式证明(推演出来)

[1,0] [0,1] [-1,0] [0,-1]

旋转—2D

2D旋转矩阵的构成

$$R(\partial) = \begin{bmatrix} p' \\ q' \end{bmatrix} = \begin{bmatrix} \cos \partial & \sin \partial \\ -\sin \partial & \cos \partial \end{bmatrix}$$

公式推演: 注意: p与q是同时旋转

p 的变化

q 的变化

[1 0]

[0 1]

[0 1]

[-1 0]

[-1 0]

[0 -1]

[0 -1] [1 0]

[cos∂ sin∂]

[-sin∂ cos∂]

旋转—3D

左手坐标系中以左手法则定义正方向

右手坐标系中以右手法则定义正方向

3D旋转 围绕X轴旋转

$$\mathbf{R}_{\mathsf{x}}(\partial) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \partial & \sin \partial \\ 0 & -\sin \partial & \cos \partial \end{bmatrix}$$

思考

将上述公式,用自己的方式证明(推演出来)

3D旋转 围绕X轴旋转

$$\mathbf{R}_{\mathsf{x}}(\partial) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

公式推演:

注意: p与r是同时旋转

q 的变化

r 的变化

[0 1 0]

[0 0 1]

[0 -1 0]

[0 -1 0]

 $[0 \ 0 \ -1]$

[0 0 1]

 $[0 \ 0 \ -1]$

[0 1 0]

[0, $\cos \partial$, $\sin \partial$] [0, $-\sin \partial$, $\cos \partial$]

几何意义:

想让一个图形在3D中绕X轴旋转∂度。可以将矩阵与Rx(∂)矩阵相乘,既可实现矩阵中的坐标旋转后

3D旋转 围绕Y轴旋转

$$\mathbf{R}_{x}(\partial) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} \cos \partial & 0 & -\sin \partial \\ 0 & 1 & 0 \\ \sin \partial & 0 & \cos \partial \end{bmatrix}$$

思考

将上述公式,用自己的方式证明(推演出来)

3D旋转 围绕Y轴旋转

$$\mathbf{R}_{x}(\partial) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} \cos \partial & 0 & -\sin \partial \\ 0 & 1 & 0 \\ \sin \partial & 0 & \cos \partial \end{bmatrix}$$

公式推演:

注意: p与r是同时旋转

p 的变化 r 的变化

[1 0 0] [0 0 1]

[0 0 -1] [1 0 0]

[-1 0 0] [0 0 -1]

[0 0 1] [-1 0 0]

[cos∂ 0 -sin∂] [sin∂ 0 cos∂]

几何意义:

想让一个图形在3D中绕Y轴旋转∂度。可以将矩阵与Rx(∂)矩阵相乘,既可实现矩阵中的坐标旋转后的矩阵结果老师 课程授课:CC老师

3D旋转 围绕Z轴旋转

$$\mathbf{R}_{x}(\partial) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} \cos \partial & \sin \partial & 0 \\ -\sin \partial & \cos \partial & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

思考

将上述公式,用自己的方式证明(推演出来)

3D旋转 围绕Z轴旋转

$$\mathbf{R}_{\mathsf{x}}(\partial) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} \cos \partial & \sin \partial & 0 \\ -\sin \partial & \cos \partial & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

公式推演: 注意: p与q是同时旋转

p 的变化 q 的变化
[1 0 0] [0 1 0]
[0 1 0] [-1 0 0]
[-1 0 0] [0 -1 0]
[0 -1 0] [1 0 0]
[cos∂ sin∂ 0] [-sin∂ cos∂ 0]

几何意义:

想让一个图形在3D中绕Z轴旋转∂度。可以将矩阵与Rx(∂)矩阵相乘,既可实现矩阵中的坐标旋转后的矩阵结果 课程研发:CC老师 课程授课:CC老师

3D旋转 围绕任意轴旋转向量

绕n轴旋转角度∂的矩阵

$$\mathbf{R}(\mathbf{n}, \boldsymbol{\partial}) = \begin{bmatrix} \mathbf{p'} \\ \mathbf{q'} \\ \mathbf{r'} \end{bmatrix} = \begin{bmatrix} n_x^2(1 - \cos \boldsymbol{\partial}) + \cos \boldsymbol{\partial} & n_x n_y (1 - \cos \boldsymbol{\partial}) + n_z \sin \boldsymbol{\partial} & n_x n_z (1 - \cos \boldsymbol{\partial}) - n_y \sin \boldsymbol{\partial} \\ n_x n_y (1 - \cos \boldsymbol{\partial}) - n_z \sin \boldsymbol{\partial} & n_y^2 (1 - \cos \boldsymbol{\partial}) + \cos \boldsymbol{\partial} & n_y n_z (1 - \cos \boldsymbol{\partial}) - n_x \sin \boldsymbol{\partial} \\ n_x n_z (1 - \cos \boldsymbol{\partial}) + n_y \cos \boldsymbol{\partial} & n_y n_z (1 - \cos \boldsymbol{\partial}) + n_x \sin \boldsymbol{\partial} & n_z^2 (1 - \cos \boldsymbol{\partial}) + \cos \boldsymbol{\partial} \end{bmatrix}$$

p' = k_x q = k_x[0 1] = [0 k_x] q' = k_y q = k_y[0 1] = [0 k_y]

 $k_x = 1, k_y = 1$

2D缩放 与 3D缩放

$$k_x = 1.75, k_y = 0.75$$

沿着坐标轴2D的缩放矩阵

$$S(k_{x},k_{y}) = \begin{bmatrix} p' \\ q' \end{bmatrix} = \begin{bmatrix} k_{x} & 0 \\ 0 & k_{y} \end{bmatrix}$$

 $k_x = 1.5, k_y = 2.25$

沿着坐标轴3D的缩放矩阵

$$S(k_{x,}k_{y,}k_{y}) = \begin{bmatrix} p' \\ q' \\ r' \end{bmatrix} = \begin{bmatrix} k_{x} & 0 & 0 \\ 0 & k_{y} & 0 \\ 0 & 0 & k_{y} \end{bmatrix}$$

沿着任意方向缩放

2D

$$S(n_{,k}) = \begin{bmatrix} 1+(k-1)n_{x}^{2} & (k-1)n_{x}n_{y} \\ (k-1)n_{x}n_{y} & 1+(k-1)n_{y}^{2} \end{bmatrix}$$

3D

$$S(n_{,k}) = \begin{bmatrix} 1+(k-1)n_{x}^{2} & (k-1)n_{x}n_{y} & (k-1)n_{x}n_{z} \\ (k-1)n_{x}n_{y} & 1+(k-1)n_{y}^{2} & (k-1)n_{y}n_{z} \\ (k-1)n_{x}n_{z} & (k-1)n_{z}n_{y} & 1+(k-1)n_{z}^{2} \end{bmatrix}$$

see you next time ~

@ CC老师 全力以赴.非同凡"想"

Hello Coder

学习,是一件开心的事

知识,是一个值得分享的东西

献给,我可爱的开发者们.