Hypothesis Testing-III

Tests About a Population Mean: σ Unknown

Test Statistic

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

This test statistic has a t distribution with n - 1 degrees of freedom.

Tests About a Population Mean: σ **Unknown**

Rejection Rule: p - Value Approach

Reject H0 if p –value $< \alpha$

Rejection Rule: Critical Value Approach

H0: $\mu \ge \mu_0$ Reject H0 if $t \le -t_\alpha$

H0: $\mu \le \mu_0$ Reject H0 if $t \ge t_\alpha$

 H_0 : $\mu = \mu_0$ Reject H0 if $t \le -t_{\alpha/2}$ or $t \ge t_{\alpha/2}$


```
In [10]: from scipy import stats
         import numpy as np
In [11]: x=[10,12,20,21,22,24,18,15]
         stats.ttest_1samp(x,15)
Out[11]: Ttest_1sampResult(statistic=1.5623450931857947, pvalue=0.1621787560592894)
```


One-Tailed Test About a Population Mean: σ Unknown

Example: Ice Cream Demand

 In a ice cream parlor at IIT Roorkee, the following data represent the number of ice-creams sold in 20 days

- Test hypothesis H_0 : $\mu \le 10$
- Use $\alpha = .05$ to test the hypothesis.

Day	No. of Ice- cream Sold	Day	No. of Ice- cream Sold
1	13	11	12
2	8	12	11
3	10	13	11
4	10	14	12
5	8	15	10
6	9	16	12
7	10	17	7
8	11	18	10
9	6	19	11
10	8	20	8

Given Data


```
In [8]: x=[13,8,10,10,8,9,10,11,6,8,12,11,11,12,10,12,7,10,11,8]
In [9]: stats.ttest_1samp(x,10)
Out[9]: Ttest_1sampResult(statistic=-0.35843385854878496, pvalue=0.7239703579964252)
```

In [10]: 0.7239703579964252/2

Out[10]: 0.3619851789982126

One-Tailed Test About a Population Mean:


```
[2]:
                                                         ▶ stats.t.ppf(0.05,19)
In [3]:
       stats.t.cdf(-0.384,19)
```

Out[3]: 0.35262102566795583 Out[2]: -1.7291328115213678

Hypothesis Testing – proportion

Null and Alternative Hypotheses: Population Proportion

- The equality part of the hypotheses always appears in the null hypothesis.
- In general, a hypothesis test about the value of a population proportion p must take one of the following three forms (where p0 is the hypothesized value of the population proportion).

$$H_0$$
: $p \ge p_0$

$$H_a$$
: $p < p_0$

$$H_0$$
: $p \le p_0$

$$H_{\rm a}: p > p_{\rm 0}$$

$$H_0$$
: $p = p_0$

$$H_a$$
: $p \neq p_0$

One-tailed (lower tail) One-tailed (upper tail)

Two-tailed

Tests About a Population Proportion

Test Statistic

$$z = \frac{\bar{p} - p_0}{\sigma_{\bar{p}}}$$

where:
$$\sigma_{\bar{p}} = \sqrt{\frac{p_0(1-p_0)}{n}}$$

assuming $np \ge 5$ and n(1-p) > 5

Tests About a Population Proportion

Rejection Rule: *p* –Value Approach

Reject
$$H_0$$
 if p -value $\leq \alpha$

Rejection Rule: Critical Value Approach

$$H_0$$
: $p \le p_0$ Reject H_0 if $z \ge z_\alpha$

$$H_0$$
: $p \ge p_0$ Reject H_0 if $z \le -z_\alpha$

$$H_0$$
: $p = p_0$ Reject H_0 if $z \le -z_{\alpha/2}$ or $z \ge z_{\alpha/2}$

Example: City Traffic Police

For a New Year's week, the City Traffic Police claimed that 50% of the accidents would be caused by drunk driving.

A sample of 120 accidents showed that 67 were caused by drunk driving. Use these data to test the Traffic Police's claim with $\alpha = .05$.

p –Value Approach

1. Determine the hypotheses.

$$H_0$$
: $p = .5$

$$H_a$$
: $p \neq .5$

2. Specify the level of significance.

$$\alpha = .05$$

3. Compute the value of the test statistic.

$$\sigma_{\overline{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{.5(1-.5)}{120}} = .045644$$

$$z = \frac{\overline{p} - p_0}{\sigma_{\overline{p}}} = \frac{(67/120) - .5}{.045644} = 1.28$$

4. Compute the p -value.

For z = 1.28, cumulative probability = .8997 p—value = 2(1 - .8997) = .2006

5. Determine whether to reject H0.

Because p-value = .2006 > α = .05, we cannot reject H0.


```
In [13]: from statsmodels.stats.proportion import proportions_ztest
In [14]: count=67
In [16]: samplesize = 120
In [17]: P=0.5
In [18]: proportions_ztest(count, samplesize,P)
Out[18]: (1.286806739751111, 0.1981616572238455)
```


Critical Value Approach

4. Determine the critical value and rejection rule.

For
$$\alpha/2 = .05/2 = .025$$
, $z_{.025} = 1.96$

Reject
$$H_0$$
 if $z \le -1.96$ or $z \ge 1.96$

5. Determine whether to reject HO.

Because 1.278 > -1.96 and < 1.96, we cannot reject H0.

