```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.linear_model import Ridge,Lasso
   from sklearn.linear_model import ElasticNet
   from sklearn import metrics
   from sklearn.linear_model import LogisticRegression
   from sklearn.preprocessing import StandardScaler
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.model_selection import GridSearchCV
   from sklearn.tree import plot_tree
```

Out[2]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тс
0	2017- 06-01 01:00:00	NaN	NaN	0.3	NaN	NaN	4.0	38.0	NaN	NaN	NaN	NaN	5.0	Na
1	2017- 06-01 01:00:00	0.6	NaN	0.3	0.4	0.08	3.0	39.0	NaN	71.0	22.0	9.0	7.0	1.
2	2017- 06-01 01:00:00	0.2	NaN	NaN	0.1	NaN	1.0	14.0	NaN	NaN	NaN	NaN	NaN	Na
3	2017- 06-01 01:00:00	NaN	NaN	0.2	NaN	NaN	1.0	9.0	NaN	91.0	NaN	NaN	NaN	Na
4	2017- 06-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	19.0	NaN	69.0	NaN	NaN	2.0	Na
210115	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	27.0	NaN	65.0	NaN	NaN	NaN	Na
210116	2017- 08-01 00:00:00	NaN	NaN	0.2	NaN	NaN	1.0	14.0	NaN	NaN	73.0	NaN	7.0	Na
210117	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	4.0	NaN	83.0	NaN	NaN	NaN	Na
210118	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	11.0	NaN	78.0	NaN	NaN	NaN	Na
210119	2017- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	1.0	14.0	NaN	77.0	60.0	NaN	NaN	Na

210120 rows × 16 columns

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210120 entries, 0 to 210119
Data columns (total 16 columns):
```

#	Column	Non-Null Count	Dtype
0	date	210120 non-null	object
1	BEN	50201 non-null	float64
2	CH4	6410 non-null	float64
3	CO	87001 non-null	float64
4	EBE	49973 non-null	float64
5	NMHC	25472 non-null	float64
6	NO	209065 non-null	float64
7	NO_2	209065 non-null	float64
8	NOx	52818 non-null	float64
9	0_3	121398 non-null	float64
10	PM10	104141 non-null	float64
11	PM25	52023 non-null	float64
12	S0_2	86803 non-null	float64
13	TCH	25472 non-null	float64
14	TOL	50117 non-null	float64
15	station	210120 non-null	int64
dtyp	es: float	64(14), int64(1),	object(1)

dtypes: float64(14), int64(1), object(1)

memory usage: 25.6+ MB

In [4]: df=df.dropna()
df

Out[4]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн
87457	2017- 10-01 01:00:00	0.6	1.22	0.3	0.4	0.09	4.0	54.0	60.0	43.0	12.0	9.0	13.0	1.31
87462	2017- 10-01 01:00:00	0.2	1.18	0.2	0.1	0.09	1.0	26.0	28.0	42.0	14.0	6.0	3.0	1.27
87481	2017- 10-01 02:00:00	0.4	1.22	0.2	0.2	0.06	2.0	32.0	36.0	53.0	14.0	10.0	13.0	1.28
87486	2017- 10-01 02:00:00	0.2	1.19	0.2	0.1	0.07	1.0	15.0	17.0	51.0	18.0	8.0	3.0	1.26
87505	2017- 10-01 03:00:00	0.3	1.23	0.2	0.2	0.06	2.0	27.0	29.0	57.0	15.0	10.0	13.0	1.29
158238	2017- 12-31 22:00:00	0.3	1.11	0.2	0.1	0.03	1.0	8.0	9.0	73.0	3.0	1.0	3.0	1.14
158257	2017- 12-31 23:00:00	0.6	1.38	0.3	0.1	0.03	6.0	42.0	51.0	47.0	7.0	4.0	3.0	1.41
158262	2017- 12-31 23:00:00	0.3	1.11	0.2	0.1	0.03	1.0	6.0	8.0	72.0	6.0	3.0	3.0	1.14
158281	2018- 01-01 00:00:00	0.5	1.38	0.2	0.1	0.02	2.0	20.0	23.0	69.0	4.0	2.0	3.0	1.39
158286	2018- 01-01 00:00:00	0.3	1.11	0.2	0.1	0.03	1.0	1.0	3.0	83.0	8.0	5.0	3.0	1.14

4127 rows × 16 columns

localhost:8888/notebooks/F17.ipynb

```
In [5]: df.isnull().sum()
Out[5]: date
                    0
        BEN
                    0
        CH4
                    0
        CO
                    0
        EBE
                    0
        NMHC
                    0
                    0
        NO
                    0
        NO_2
        NOx
                    0
        0_3
                    0
        PM10
                    0
        PM25
                    0
        SO 2
                    0
        TCH
                    0
        TOL
                    0
        station
                    0
        dtype: int64
```

In [6]: df.describe()

Out[6]:

	BEN	CH4	СО	EBE	NMHC	NO	NO_
count	4127.000000	4127.000000	4127.000000	4127.000000	4127.000000	4127.000000	4127.00000
mean	0.919918	1.323732	0.417858	0.578168	0.097269	41.785316	58.0690
std	1.123078	0.215742	0.342871	0.962000	0.094035	71.118499	38.9741 [,]
min	0.100000	1.100000	0.100000	0.100000	0.000000	1.000000	1.00000
25%	0.300000	1.180000	0.200000	0.100000	0.050000	3.000000	30.00000
50%	0.600000	1.270000	0.300000	0.300000	0.080000	16.000000	54.00000
75%	1.100000	1.400000	0.500000	0.700000	0.110000	50.000000	78.00000
max	19.600000	3.630000	4.900000	16.700001	1.420000	879.000000	349.00000

```
In [7]: df.columns
```

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x1311ccfe5e0>

In [9]: sns.distplot(df['PM10'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='PM10', ylabel='Density'>

In [10]: sns.heatmap(df.corr())

Out[10]: <AxesSubplot:>


```
In [11]: df.loc[df['TCH']<2,'TCH']=0
    df.loc[df['TCH']>2,'TCH']=1
    df['TCH']=df['TCH'].astype(int)
    df
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self. setitem single column(loc, value, pi)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_column(loc, value, pi)
<ipython-input-11-e3d36a273982>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['TCH']=df['TCH'].astype(int)

Out[11]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TCH
87457	2017- 10-01 01:00:00	0.6	1.22	0.3	0.4	0.09	4.0	54.0	60.0	43.0	12.0	9.0	13.0	С
87462	2017- 10-01 01:00:00	0.2	1.18	0.2	0.1	0.09	1.0	26.0	28.0	42.0	14.0	6.0	3.0	С
87481	2017- 10-01 02:00:00	0.4	1.22	0.2	0.2	0.06	2.0	32.0	36.0	53.0	14.0	10.0	13.0	С
87486	2017- 10-01 02:00:00	0.2	1.19	0.2	0.1	0.07	1.0	15.0	17.0	51.0	18.0	8.0	3.0	С
87505	2017- 10-01 03:00:00	0.3	1.23	0.2	0.2	0.06	2.0	27.0	29.0	57.0	15.0	10.0	13.0	С
														•••
158238	2017- 12-31 22:00:00	0.3	1.11	0.2	0.1	0.03	1.0	8.0	9.0	73.0	3.0	1.0	3.0	С
158257	2017- 12-31 23:00:00	0.6	1.38	0.3	0.1	0.03	6.0	42.0	51.0	47.0	7.0	4.0	3.0	С
158262	2017- 12-31 23:00:00	0.3	1.11	0.2	0.1	0.03	1.0	6.0	8.0	72.0	6.0	3.0	3.0	С
158281	2018- 01-01 00:00:00	0.5	1.38	0.2	0.1	0.02	2.0	20.0	23.0	69.0	4.0	2.0	3.0	С
158286	2018- 01-01 00:00:00	0.3	1.11	0.2	0.1	0.03	1.0	1.0	3.0	83.0	8.0	5.0	3.0	С

4127 rows × 16 columns

LogisticRegression

Out[12]: LogisticRegression()

```
In [13]: |lgr.predict(x test)
Out[13]: array([0, 0, 0, ..., 0, 0, 0])
In [14]: |lgr.score(x_test,y_test)
Out[14]: 0.9741727199354318
In [15]: | fs=StandardScaler().fit_transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[15]: LogisticRegression()
In [16]: o=[[1,2,3,4,5,6,7,8,9,10,11,12]]
         prediction=logr.predict(o)
         print(prediction)
         [0]
In [17]: logr.classes
Out[17]: array([0, 1, 2])
In [18]: |logr.predict_proba(o)[0][0]
Out[18]: 0.9998820050961933
In [19]: logr.predict proba(o)[0][1]
Out[19]: 2.960805477134634e-12
```

LinearRegression

```
In [20]: lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[20]: LinearRegression()

```
In [21]: print(lr.intercept_)
26853.65546002316
```

In [22]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff

Out[22]:

	Co-efficient
BEN	-0.014217
СО	-0.072624
EBE	0.067624
NMHC	0.543903
NO	0.001124
NO_2	-0.001157
O_3	-0.000119
PM10	-0.003988
PM25	0.009482
SO_2	0.004584
TOL	-0.006439
station	-0.000956

```
In [23]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[23]: <matplotlib.collections.PathCollection at 0x13131691940>


```
In [24]: print(lr.score(x_test,y_test))
```

0.2576700195782905

Ridge, Lasso

```
In [25]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)

Out[25]: Ridge(alpha=10)

In [26]: rr.score(x_test,y_test)

Out[26]: 0.25561120867895626

In [27]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[27]: Lasso(alpha=10)

In [28]: la.score(x_test,y_test)

Out[28]: -0.001862074246179457

ElasticNet

In [29]: en=ElasticNet()
en.fit(x_train,y_train)
```

```
Out[29]: ElasticNet()
In [30]:
         print(en.coef_)
          [ 0.
                       0.
                                  0.
                                             0.
                                                         0.0013631 -0.
           0.
                                  0.
                                             0.
                                                                             ]
                       0.
                                                         0.
                                                                   -0.
In [31]:
         print(en.intercept_)
          -0.01564627430519628
In [32]:
         print(en.predict(x_train))
         [-0.00883077 -0.00610457 0.15201504 ... 0.00752643 0.02252053
           0.08386003]
In [33]:
         print(en.score(x_train,y_train))
         0.2680061856692486
In [34]: |print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolytre Error: 0.07080928821097447
```

RandomForest

```
In [37]: rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[37]: RandomForestClassifier()
In [38]:
         parameters={ 'max_depth': [1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n_estimators':[10,20,30,40,50]}
         grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="acc")
In [39]:
         grid search.fit(x train,y train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[39]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param grid={'max depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [40]: |grid_search.best_score_
Out[40]: 0.9695290858725762
In [41]: rfc_best=grid_search.best_estimator_
```

```
plt.figure(figsize=(80,40))
In [42]:
                              plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes','No'],filled=T
Out[42]: [Text(2287.7999999999997, 1956.96, 'X[2] <= 3.2\ngini = 0.089\nsamples = 1841</pre>
                              \nvalue = [2754, 132, 2]\nclass = Yes'),
                                 Text(1227.6, 1522.0800000000002, 'X[2] <= 0.85\ngini = 0.055\nsamples = 1798
                              \nvalue = [2738, 79, 0] \setminus (2738)
                                 Text(669.59999999999, 1087.2, 'X[8] <= 35.5\ngini = 0.018\nsamples = 1465
                              \nvalue = [2271, 21, 0] \setminus (271)
                                 Text(446.4, 652.3200000000002, 'X[0] <= 1.15 \cdot ngini = 0.016 \cdot nsamples = 1457 \cdot ngini = 0.016 \cdot nsamples = 0.016
                              value = [2260, 18, 0]\nclass = Yes'),
                                 Text(223.2, 217.44000000000005, 'gini = 0.009\nsamples = 1297\nvalue = [200
                              7, 9, 0]\nclass = Yes'),
                                 Text(669.59999999999, 217.44000000000005, 'gini = 0.066\nsamples = 160\nva
                              lue = [253, 9, 0]\nclass = Yes'),
                                 Text(892.8, 652.3200000000002, 'gini = 0.337\nsamples = 8\nvalue = [11, 3,
                              0]\nclass = Yes'),
                                 Text(1785.6, 1087.2, X[10] \le 2.95 = 0.197 = 333 = 333 = [4]
                              67, 58, 0]\nclass = Yes'),
                                 Text(1339.19999999999, 652.3200000000002, 'X[0] <= 1.15 \ngini = 0.469\nsam
                              ples = 15\nvalue = [15, 9, 0]\nclass = Yes'),
                                 Text(1116.0, 217.4400000000005, 'gini = 0.0\nsamples = 10\nvalue = [13, 0,
                              0]\nclass = Yes'),
                                 ue = [2, 9, 0] \setminus nclass = No'),
                                 Text(2232.0, 652.3200000000002, 'X[6] <= 14.5 \setminus ini = 0.176 \setminus ini = 318 \setminus ini = 0.176 \setminus ini = 318 \setminus 
                              value = [452, 49, 0]\nclass = Yes'),
                                 Text(2008.8, 217.44000000000005, 'gini = 0.225\nsamples = 236\nvalue = [330,
                              49, 0]\nclass = Yes'),
                                 Text(2455.2, 217.4400000000000, 'gini = 0.0\nsamples = 82\nvalue = [122, 0,
                              01\nclass = Yes'),
                                 Text(3348.0, 1522.0800000000002, X[9] \le 12.5 \le 0.391 \le 43 
                              value = [16, 53, 2]\nclass = No'),
                                 Text(2901.6, 1087.2, 'X[10] <= 25.05\ngini = 0.408\nsamples = 11\nvalue = [1
                              0, 4, 0]\nclass = Yes'),
                                 Text(2678.39999999996, 652.3200000000002, 'gini = 0.0\nsamples = 5\nvalue
                              = [6, 0, 0]\nclass = Yes'),
                                = [4, 4, 0] \setminus class = Yes'),
                                 value = [6, 49, 2] \setminus nclass = No'),
                                 Text(3571.2, 652.3200000000002, 'gini = 0.5\nsamples = 7\nvalue = [6, 6, 0]
                              \nclass = Yes'),
                                 Text(4017.6, 652.3200000000002, 'X[8] <= 31.0\ngini = 0.085\nsamples = 25\nv
                              alue = [0, 43, 2] \setminus nclass = No'),
                                 Text(3794.399999999999, 217.44000000000005, 'gini = 0.208\nsamples = 7\nval
                              ue = [0, 15, 2] \setminus nclass = No'),
                                 Text(4240.8, 217.44000000000005, 'gini = 0.0\nsamples = 18\nvalue = [0, 28,
                              0]\nclass = No')]
```


Best model:LinearRegression

ть Г 1.	
TU 1:	