Summary of IMP IO Device Codes

Summary of I/O Commands for the Arpanet IMP

19 Nov 2013

This document will describe the I/O addresses, commands and interrupts as currently employed in the IMP 3050 listing from 9/16/1973. This summary is based on an analysis of the listing and other documents related to the structure of the IMP.

Contents

- Background
- I/O instructions
- Device Addresses
- Device Descriptions
- Interrupt Unit
- Watch Dog Timer and Status Light Box
- Real Time Clock
- Task Interrupt/IMP Number
- Modem/Tip Configuration Flag
- Host Interface
- Modem Interface
- Interrupt Entry Point Addresses
- Dedicated Locations
- Interrupt Masks
- DMC Channel Numbers

Background

The IMP is based on the Honeywell DDP516 processor. In addition to the usual complement of peripherals the IMP has been augmented with some specifically designed cards. At present it is believed that the IMP that supports the 3050 IMP listing included at least:

- Honeywell DDP516 (or possibly 316) processor
- A TTY interface

- A light panel a custom device that indicates the status of the attached lines
- Real Time Clock A custom device that counts 100 usec clock ticks
- Certain custom "sense" options related to configuration
- Possibly a custom hardware interrupt to handle task dispatching
- DMC a direct memory controller for transferring words from selected I/O devices to memory

#** I/O instructions**

The DDP516 I/O instructions have the following format:

Figure 1-5. Input/Output Instruction Format

Figure 1: Input/Output Instruction Format

- Opcode defines the I/O instruction
- Function Code selects a line to pulse (one of 16)
- Device Code address of the device to control

The opcode may be one of:

Opcode	Value	Description
INA	54	Input to A-register ¹
OCP	14	Output Control Pulse as designated by Function Code
OTA	74	Output to device ²
SKS	34	Skip if ready line set
SMK	74	Special Mask – transfer A to interrupt control register

Where the opcode in the table above is shown as two octal digits, but in a typical listing the opcode is broken across three octal digits.

¹Operation of this opcode is complex. The readiness of the device is tested before the device is read. If the device is not ready the next instruction is executed immediately. If the device is ready the data from the device is read into A and the next instruction is skipped. This allows the construction of simple ready wait loops.

²Operation with respect to device ready is similar to above.

Device Addresses

The following device addresses (octal) have been gleaned from the 3050 listing.

Address	Device
04	TTY
20	Standard Interrupt Unit & Extension
26	Watchdog Timer and Status Light Box, Proc. Type
40	Real Time 100 usec Clock
41	Set task interrupt/IMP Number
42	IMP or TIP indicator
50	Host Interface 3
51	Host Interface 4
60	Host Interface 2
70	Host Interface 1
71	Modem Interface 1
72	Modem Interface 2
73	Modem Interface 3
74	Modem Interface 4
75	Modem Interface 5

Device Descriptions

Teletype

The teletype is device address '04'. The following are the macros used to access the TTY in the listing. It appears that there are provisions for two TTY units, but only TTY A is used.

Instruction	Opcode	FC	Dev	Description
030004	OCP	00	04	TTSIM – set TTY input mode
030104	OCP	10	04	TTSOM – set TTY output mode
070004	SKS	00	04	TTSRDY – skip on TTY ready
070104	SKS	10	04	TTSNBZ – skip on TTY not buzy
070504	SKS	05	04	TTSNSC - Skip if stop code not re
	INA	00	04	TTINA – Input in ASCII
	INA	02	04	TTINB – Input in Binary
131004	INA	10	04	TTINAC – get input character
131204	INA	12	04	TTINBC – Binary input (UNUSED)
170004	OTA	00	04	TTOTA – Output to TTY
170204	OTA	02	04	\ensuremath{TTOTB} - Binary output (UNUSED)

The TTY chart from the DDP519 Programmers' Reference Manual (page D-3):

OCP	0004	Enable ASR-33/35 In Input Mode
		*
OCP	0104	Enable ASR-33/35 In Output Mode
SKS	0004	Skip if ASR-33/35 is Ready
SKS	0104	Skip if ASR-33/35 is Not Busy
SKS	0404	Skip if ASR-33/35 is Not Interrupting
SKS	0504	Skip if Stop Code Was Not Read on ASR-33/35
INA	0004	Input in ASCII from ASR-33/35
INA	0204	Input in Binary from ASR-33/35
INA	1004	Clear Register A and Input in ASCII from ASR-33/35
INA	1204	Clear Register A and Input in Binary from ASR-33/35
ATO	0004	Output in ASCII to ASR-33/35
ATO	0204	Output in Binary to ASR-33/35
SMK	0020	Set Interrupt Mask (A11)

Figure 2: TTY Opcodes

Interrupt Unit

Device address '20' is used to set interrupt masks per the SMK instruction. The function code controls which bank of interrupts is to be set from the A register. In addition to the standard interrupt level the IMP apparently includes the next interrupt level the IMP includes an extension to allow interrupts on lines 1-16. This probably is where the "task" interrupt enters the system.

Instruction	Opcode	FC	Dev	Description
170020	OTA	00	20	SMK – set "standard" interrupt mask
170120	OTA	00	20	SMK – set extension interrupt mask lines 1-

Mnemonic	Octal Code	Instruction	instruction Type			Pag
Priority Inte	rrupt · Moo	del 316/516-25		DDP-516	H316	
SMK '0020	170020	Set Standard Interrupt Mask	10	1.92	3.2	2-3
SMK '0120	170120	Set Interrupt Mask Lines 1-16	IO	1.92	3.2	2-3
SMK '0220	170220	Set Interrupt Mask Lines 17-32	10	1.92	3.2	2-3
SMK '0320	170320	Set Interrupt Mask Lines 33-48	IO	1.92	3.2	2-3

Figure 3: Interrupt unit

Watch Dog Timer and Status Light Box

Presently the exact structure of this unit is unknown. It appears that the watch dog timer (WDT) generates an interrupt if it is not given an OCP pulse at periodic intervals (interval unknown). The light box appears to be 16 lights controlled by a register and is used to display modem and host status (see listing @3355). There is an SKS function at this address, which appears to be a bit that indicates the type of processor. This function is defined, but is not used in the code.

Instruction	Opcode	FC	Dev	Description
030026	OCP	00	26	Reset watch dog timer
170026	OTA	00	26	Set status lights
070006	CIZC	00	26	AMIT 10 1.: 4

Real Time Clock

This appears to be a custom hardware that counts 100 usec pulses. From analysis of the code it appears that the RTC interrupt, CLOKIL, occurs on the carry of the eighth bit. This would correspond to 25.600 msec. It appears that the clock can only be read and that it is initialized to zero on power up. Not sure whether the clock counts up or down.

Instruction	Opcode	\mathbf{FC}	Dev	Description
030040	OCP	00	40	CLKON – turn clock on
031040	OCP	10	40	CLKOFF – stop real time clock
131040	INA	10	40	RDCLOK-read current time

Task Interrupt/IMP Number

This appears to be a control pulse that can be used to set an external interrupt to indicate that a task has been posted to the task queue. The IMP number appears to be a hardwired number of the particular IMP.

Instruction	Opcode	\mathbf{FC}	Dev	Description
030041	OCP	00	41	TASK – set task interrupt
131041	INA	10	41	RDIMPN – probably hardwired IMP number

The RDIMPN instruction is a form of the INA instruction. If the IMP number is not available the code executes the next instruction. If the IMP number is available the next instruction is skipped. Presumably the IMP number is always available.

Modem/Tip Configuration Flag

Allows the code to determine if the machine is an IMP or a TIP (Multi-Line Controller).

Instruction	Opcode	FC	Dev	Description
070042	SKS	00	42	$AMIMLC^{3} - $ $- 0 = IMP$ $- 1 = MLC (Multi Line Controller)$

³AMIMLC – probably means "Am I a Multi-Line Controller?"

Host Interface

As shown above the host device addresses are not sequential probably because there are other important Honeywell devices already assigned to this area. In the following x is the device number that may vary from 1 to 4. The actual device address is shown above. MIDAS macros on page 4 of the listing show the construction of host instructions.

It appears that these controls go to the host interface. Data for the host is transferred through DMC channels.

Instruction	Opcode	FC	Description	Listing
303060	OCP	00	HxROUT – Host "regular" output – start output to hos	t 17056
030170	OCP	01	HxIN – start host input	13200
030270	OCP	02	HxFOUT – Host final output – final output to host	16124
030370	OCP	03	HxXP – Cross patch host (see listing p. 179)	
030470	OCP	04	HxUNXP – un-Cross patch host (see listing p. 179)	01170
030570	OCP	05	HxENAB – Enable host ??	16316
070070	SKS	00	HxERR – skip on host error	13172
070071	SKS	01	HxRDY – skip on host ready	21664
070072	SKS	02	HxEOM – skip on host end-of-message (UNUSED ??)	13303
070075	SKS	04	HxFULL – skip on host buffer full ?? (UNUSED ??)	

Modem Interface

The following controls go to the modem (M1, M2, M3, M4, M5). The actual data is transferred through the DMC. Modem addresses are given in the table above. Instruction codes are examples for particular modems. Page 4 of the listing gives the macros used to generate the instructions.

Instruction	Opcode	\mathbf{FC}	Description	Listing
030071	OCP	00	MxOUT – start modem output	01062
030171	OCP	01	MxUNXP – un-Cross Patch Modem (see listing p. 179)	01266
030172	OCP	02	MxLXP – set Line Cross Patch (see listing p. 179)	21631
030173	OCP	03	MxIXP – set Interface Cross Patch (see listing p. 179)	21632
030471	OCP	04	MxIN – start modem input (see listing p. 179)	01223
070471	SKS	04	MxERR – Skip on modem error	10052

Interrupt Entry Point Addresses

It appears that the interrupts vectors for the IMP peripherals have replaced those associated with the generic DDP 516. The basic interrupt structure of the DDP 516 is that there are 12 groups of four interrupt address, starting at 000064 and extending upward in block of four (probably this is related to packaging of

the circuitry). There is a group "0" of four interrupts from 000060 to 000063, which are fixed. Here is a table from the Programmer's Reference Manual related to the interrupt groups:

Table 2-19.
Dedicated Locations for the 12 Groups
of Priority Interrupt Lines

Priority Interrupt Group	Dedicated Locations (Octal Codes)
1	00064 - 00067
2	00070 - 00073
3	00074 - 00077
4	00100 - 00103
5	00104 - 00107
6	00110 - 00113
7	00114 - 00117
8	00120 - 00123
9	00124 - 00127
10	00130 - 00133
11	00134 - 00137
12	00140 - 00143

Figure 4: Interrupt locations

The IMP uses interrupt groups 1 through 4. As shown below.(these addresses have not all been verified.)

AddressMACRO evice		Description	Grou	$\overline{\mathrm{pLine}}$
000060	PFIL Power Fail			
000061	O			
000062	?? WDTHWatah Dog			
000062	WDTILWatch Dog ??			
000063	STDIL Standard			
	Interrupt			
000064	M1INTModem 1	Modem 1 input ready	1	1
	IN			
000065	M2INTModem 2	Modem 2 input ready	1	2
	IN			
000066	M3INTModem 3	Modem 3 input ready	1	3
	IN			
00067	M4INTModem 4	Modem 4 input ready	1	4
	IN			
	H4OTIHost 4 Out	Host 4 output complete	1	4
	(=M4INTL)	-		

Addres	ssMACH 0 evice	Description	Gro	$\overline{\text{upLine}}$
000070	M5INTModem 5 IN	Modem 5 input ready	2	5
	H3OTIHost 3 Out (=M5INIL)	Host 3 output complete	2	5
000071	M1OTIModem 1 OUT	Modem 1 output complete	2	6
000072	M2OTIModem 2 OUT	Modem 2 output complete	2	7
000073	M3OTIModem 3 OUT	Modem 3 output complete	2	8
000074	M4OTIModem 4 OUT	Modem 4 output complete	3	9
	H4INILHost 4 IN (=M4OTIL)	Host 4 input ready	3	9
000075	M5OTIModem 5 OUT	Modem 5 output complete	3	10
	H3INILHost 3 ⁴ IN (=M5OTIL)	Host 3 input ready	3	10
000076	H1OTIHost 1 Out	Host 1 output complete	3	11
000077	H2OTIHost 2 Out	Host 2 output complete	3	12
000100	H1INILHost 1 IN	Host 1 input ready	4	13
000101	H2INILHost 2 IN	Host 2 input ready	4	14
000102	CLOKIReal time clock	25.600 msec interrupt ??	4	15
000103	TASKIITask ready	Set dynamically by the program when tasks are added to the task queue	4	16

Masking of the interrupts is as shown in the table below (from the Programmer's Reference Manual). The IMP makes use only of the interrupt lines 1-16, shown in gray below.

Note that some interrupt locations are assigned to two different devices (e.g., $\rm H4OTIL=M4INIL$). These are shown in gray shading above. Certain configurations of host and modems are not allowed, so these interrupts will go to the particular device configured. For example, four hosts and four modems do not appear to be an allowed combination. This allows the interrupt to be shared. Listing page 43 is probably an enumeration of allowed host/modem configurations.

⁴Only certain configurations of host and modem are allowed, so some interrupts overlap.

Table 2-20.
Priority Interrupt Mask Assignments

A-Register Bit No.	SMK '0120	SMK '0220	SMK '0320	
1	1	17	33	רו
2	2	18	34	
3	3	19	35	
4	4	20	36	
5	5	21	37	
6	6	22	38	
7	7	23	39	Interrupt
8	8	24	40	Line Number
9	9	25	41	
10	10	26	42	11
11	11	27	43	
12	12	28	44	1
13	13	29	45	
14	14	30	46	
15	15	31	47	
16	16	32	48	IJ

Figure 5: Priority interrupt mask assignments

Dedicated Locations

The DDP516 has certain low memory locations that area dedicated as shown in the table below.

Interrupt Masks

Interrupts are organized into four banks. The first bank is standard and the following three banks are optional. The standard bank appears to be devoted to standard Honeywell peripherals. In the IMP the second bank is used to provide interrupts for the modems, host, program and timer. The table below shows the organization of the interrupt banks in reference to the set mask instructions that control each bank.

Mask bits in the standard interrupt bank are applied according to the following table:

The interrupts for the IMP specific devices are related to their device address as shown in the table of IMP special interrupts. Interrupts for a particular input are enabled if the bit is set to "0" they are disabled ("masked") if the corresponding bit is set to 1.

Address	Mask Bit	Function
000064	1	Modem 1 IN

Address	Mask Bit	Function
000065	2	Modem 2 IN
000066	3	Modem 3 IN
000067	4	Modem 4 IN or Host 4 OUT
000070	5	Modem 5 IN or Host 3 OUT
000071	6	Modem 1 OUT
000072	7	Modem 2 OUT
000073	8	Modem 3 OUT
000074	9	Modem 4 OUT or Host 4 IN
000075	10	Modem 5 OUT or Host 3 IN
000076	11	Host 1 Out
000077	12	Host 2 Out
000100	13	Host 1 IN
000101	14	Host 2 IN
000102	15	Real time clock
000103	16	Task ready

Note that certain interrupts and interrupt addresses are shared between modems and hosts. This means that only certain configurations are allowed. Specifically:

- 5 Modems and 2 Hosts
- 4 Modems and 3 Hosts
- 3 Modems and 4 Hosts

DMC Channel Numbers

The DDP516 supports 16 channels assignments according to the following table from the Programmer's Reference. Normally, these would be allocated to various devices, like the tape, printer and disk. However, the IMP does not include any of these peripherals, so they channel assignments are freed up for use by the host and modems as shown following this table.

DMC pointers occur in pairs. For each DMC channel there are two consecutive words. The first word is the starting address for the channel and the second word is the ending address. For the modems and host attached to the IMP the address word pairs are stored as follows. For each device there is an input and output pointer designated as xx INBP and xxOTBP, respectively. The pointers for the modem and host DMC channels are defined on listing page 4 using MIDAS macros.

As with the interrupt address the DMC address for certain hosts and modems overlap. This is possible because the configurations are limited and conflicting host and modem configurations are not allowed. For example, there cannot be 4 hosts and 5 modems. Whether a channel represents an input or output channel

Octal Address	Assignment
00000	Index Register
00001 thru 00017	Protected Fill Program
00020 00021	Starting Addresses Final DMC Channel 1
00022 thru 00057	DMC Channels 2 thru 16
00060	Power Failure Interrupt Link
00061	Real-Time Clock
00062	Memory Lockout Violation Int. Link
00063	Standard Interrupt Link
00064	Optional PI No. 1 Link
00065 thru 00143	Optional PI No. 2 thru 48 Links

Figure 6: Low memory locations

Table 2-9. Standard Interrupt Mask Assignments

OTB Bit No.	Device	OTB Bit No.	Device
1	Mag Tape Control Unit No. 1	9	Paper Tape Reader
2	Mag Tape Control Unit No. 2	10	Paper Tape Punch
3	(Unassigned)	11	ASR-33/35
4	Moving Head Disc File	12	Card Reader
5	I/O Channel No. 1	13	(Unassigned)
6	I/O Channel No. 2	14	Line Printer
7	I/O Channel No. 3	15	Memory Parity (DDP-516)
		15	(Unassigned) (H316)
8	Small Mass Store	16	Real Time Clock

Figure 7: Standard Interrupt mask bits

Mnemonic	Octal Code	Instruction	Туре	Execution 7	Γime μs	Pag
Priority Inte	rrupt · Mo	del 316/516-25		DDP-516	H316	
SMK '0020	170020	Set Standard Interrupt Mask	10	1.92	3.2	2-3
SMK '0120	170120	Set Interrupt Mask Lines 1-16	IO	1.92	3.2	2-3
SMK '0220	170220	Set Interrupt Mask Lines 17-32	IO	1.92	3.2	2-3
SMK '0320	170320	Set Interrupt Mask Lines 33-48	IO	1.92	3.2	2-3

Figure 8: Interrupt instructions

Table 2-16.
DMC Start and Terminal Memory Address Locations (DDP-516)

Channel Number	Starting Address	Ending Address
1	00020	00021
2	00022	00023
3	00024	00025
4	00026	00027
5	00030	00031
6	00032	00033
7	00034	00035
8	00036	00037
9	00040	00041
10	00042	00043
11	00044	00045
12	00046	00047
13	00050	00051
14	00052	00053
15	00054	00055
16	00056	00057

Figure 9: DMC Channel numbers

is determined by the structure of the hardware and by the value of the high bit (bit 1) of the starting address. A value of "1" indicates the channel is setup for input. A value of "0" indicates the channel is setup for output.

Name	Address	Function	Channel	Code Page
M1INBP	000020	Modem 1 input start address	1	5
	000021	Modem 1 input end address	1	
M2INBP	000022	Modem 2 input start address	2	5
	000023	Modem 2 input end address	2	
M3INBP	000024	Modem 3 input start address	3	5
	000025	Modem 3 input end address	3	
M4INBP	000026	Modem 4 input start address	4	5
	000027	Modem 4 end start address	4	
M5INBP	000030	Modem 5 input start address	5	5
H4OTBP		Host 4 output start address		6
	000031	Modem 5 input end address	5	
		Host 4 output end address		
M1OTBP	000032	Modem 1 output start address	6	5
	000033	Modem 1 output end address	6	
M2OTBP	000034	Modem 2 output start address	7	5
	000035	Modem 2 output end address	7	
M3OTBP	000036	Modem 3 output start address	8	5
	000037	Modem 3 output end address	8	
M4OTBP	000040	Modem 4 output start address	9	5
	000041	Modem 4 output end address	9	
M5OTBP	000042	Modem 5 output start address	10	5
H4INBP		Host 4 input start address		6
	000043	Modem 5 output end address	10	
		Host 4 input end address		
H1OTPB	000044	Host 1 output start address	11	5
	000045	Host 1 output end address	11	
H2OTPB	000046	Host 2 output start address	12	5
	000047	Host 2 output end address	12	
H2INPB	000050	Host 1 input start address	13	5
	000051	Host 1 input end address	13	
H2INPB	000052	Host 2 input start address	14	5
	000053	Host 2 input end address	14	
НЗОТВР	000054	Host 3 output start address	15	6
	000055	Host 3 output end address	15	
H3INBP	000056	Host 3 input start address	16	6
	000057	-	16	