Lista nr 4 z matematyki dyskretnej

- 1. (a) Wykaż, że $F_{2n} = F_n(F_n + 2F_{n-1})$
 - (b) Podaj podobną zależność dla F_{2n+1} zawierającą liczby Fibonacciego o mniejszych indeksach.
- 2. Podwójna wieża Hanoi składa się z 2n krążków n różnych rozmiarów, po 2 krążki każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z palika A na palik B, posługując się przy tym palikiem C, gdy krążki równej wielkości nie są rozróżnialne?
- 3. Na płaszczyźnie danych jest *n* okręgów. Jaka jest maksymalna liczba obszarów, na które dzielą one płaszczyznę. Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.
- 4. Na ile maksymalnie obszarów można podzielić trójwymiarową przestrzeń za pomocą *n* płaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.
- 5. (** 3p) Przestrzeń R^n to zbiór wszystkich punktów (x_1, x_2, \ldots, x_n) o n rzeczywistych współrzędnych. Hiperpłaszczyzna w R^n zadana jest wzorem $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$, gdzie przynajmniej jedno a_i jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą n hiperpłaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej. (Wska-zówka: przyda się rozwiązanie poprzedniego zadania.)
- 6. Ile jest różnych sposobów wejścia po schodach zbudowanych z *n* stopni, jeśli w każdym kroku można pokonać jeden lub dwa stopnie?
- 7. Wykaż, że jeśli $2^n 1$ jest liczbą pierwszą, to n jest liczbą pierwszą (por. liczby Mersenne'a).
- 8. Wykaż, że jeśli a^n-1 jest liczbą pierwszą, to a=2 (por. liczby Mersenne'a).
- 9. Wykaż, że jeśli $2^n + 1$ jest liczbą pierwszą, to n jest potęgą liczby 2 (por. liczby Fermata).

- 10. Określ liczbę podzielną przez 7, która leży najbliżej liczby 10^{100000} .
- 11. Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.
- 12. Rozwiąż następujące zależności rekurencyjne:
 - (a) $a_0 = 0$, $a_1 = 4$, $a_n = 7a_{n-1} 12a_{n-2}$,
 - (b) $b_0 = 1$, $b_1 = 8$, $b_n = b_{n-1} b_{n-2}$.
- 13. Udowodnij lub obal następujące stwierdzenie:

Liczba naturalna a, której zapis w systemie dziesiętnym to $a_n a_{n-1} \dots a_2 a_1 a_0$ dzieli się przez 11 wtw gdy liczba $\sum_{i=1}^{\lceil n/2 \rceil} a_{2i-1} - \sum_{i=0}^{\lfloor n/2 \rfloor} a_{2i}$ jest podzielna przez 11.

- 14. Wyprowadź zależność rekurencyjną dla liczby nieporządków: $d_{n+1} = n(d_n + d_{n-1})$. Jakie należy przyjąć warunki początkowe dla tej zależności?
- 15. Podaj dwie ostatnie cyfry liczby $9^{8^{7^{6^{5^{4^{3^{2^{1}}}}}}}$ w rozwinięciu dziesiętnym.
- 16. Czy po usunięciu z szachownicy 8 × 8 jednego pola czarnego i jednego białego zawsze można pokryć resztę szachownicy kostkami domina? Jedna kostka ma rozmiar dwóch pól. Usunięte pola nie muszą ze sobą sąsiadować.

Katarzyna Paluch