```
In [1]: import pandas as pd
        import warnings
        warnings.filterwarnings('ignore')
        import numpy as np
        import seaborn as sns
        from sklearn.preprocessing import LabelEncoder
        from matplotlib import pyplot as plt
        %matplotlib inline
        from sklearn.feature_selection import SelectKBest
        from sklearn.feature_selection import chi2
        from sklearn.linear model import LogisticRegression
        from sklearn.ensemble import ExtraTreesClassifier
        from sklearn.metrics import confusion matrix
        from sklearn.model_selection import train_test_split
        from sklearn.feature selection import mutual info classif
        from sklearn.model selection import cross val score
        from sklearn.svm import SVC
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import confusion matrix
        ### Importing all the libraries for the ananlysis
In [2]: train data = pd.read csv('healthcare-dataset-stroke-data.csv') # importing dataset
In [3]: train data.columns
Out[3]: Index(['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married',
                'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',
                'smoking_status', 'stroke'],
              dtype='object')
In [4]: train data.dtypes #checking datatype for columns in the dataset
Out[4]: id
                               int64
                              object
        gender
        age
                             float64
        hypertension
                               int64
        heart disease
                               int64
                              object
        ever married
        work_type
                              object
        Residence type
                              object
        avg glucose level
                             float64
                             float64
        bmi
        smoking status
                              object
                               int64
        stroke
        dtype: object
```

```
Stroke Prediction by Aaditya - Jupyter Notebook
In [5]: train_data.isnull().sum()
                                              #checking if we have any null values in the dataset
Out[5]: id
                                      0
                                     0
          gender
                                      0
          age
          hypertension
                                      0
          heart_disease
                                      0
          ever married
                                      0
          work_type
                                     0
          Residence_type
                                      0
          avg_glucose_level
                                     0
          bmi
                                   201
          smoking_status
                                     0
          stroke
                                      0
          dtype: int64
In [6]: |train_data
Out[6]:
                    id
                        gender
                                 age
                                      hypertension
                                                    heart_disease ever_married
                                                                                work_type
                                                                                           Residence_type
                                                                                                     Urban
              0
                  9046
                                                 0
                          Male
                                67.0
                                                               1
                                                                           Yes
                                                                                    Private
                                                                                      Self-
                 51676 Female
                                                               0
                                61.0
                                                 0
                                                                           Yes
                                                                                                      Rural
                                                                                  employed
                 31112
                                                                                    Private
              2
                          Male
                                80.0
                                                 0
                                                               1
                                                                           Yes
                                                                                                      Rural
                 60182 Female
                                49.0
                                                 0
                                                               0
                                                                           Yes
                                                                                    Private
                                                                                                     Urban
                                                                                      Self-
                  1665
                        Female
                                79.0
                                                 1
                                                               0
                                                                           Yes
                                                                                                      Rural
                                                                                  employed
                                                                             ...
           5105
                 18234
                                                                                    Private
                        Female
                                80.0
                                                 1
                                                               0
                                                                           Yes
                                                                                                     Urban
```

5110 rows × 12 columns

5109 44679 Female 44.0

5107 19723 Female

37544

5108

5106 44873

Female

Male

81.0

35.0

51.0

In [7]: train_data['stroke'].value_counts(normalize=True) #counting the value of strope

0

0

0

0

0

0

0

0

Out[7]: 0 0.951272 1 0.048728

Name: stroke, dtype: float64

Urban

Rural

Rural

Urban

Self-

Self-

employed

employed

Private

Govt_job

Yes

Yes

Yes

Yes

```
In [8]: train_data['bmi'].round() #Rounding the values of Bmi column so that we can conv
Out[8]: 0
                37.0
                 NaN
        2
                32.0
        3
                34.0
                24.0
        5105
                 NaN
        5106
                40.0
        5107
                31.0
        5108
                26.0
                26.0
        5109
        Name: bmi, Length: 5110, dtype: float64
In [9]: train_data.describe() # this shows the mathematical ground for each feature
Out[9]:
```

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000	51
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067	
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000	
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000	
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000	
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	
4							

Checking for Null values

Manipulating the null value

```
In [10]: train_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5110 entries, 0 to 5109
         Data columns (total 12 columns):
              Column
                                  Non-Null Count
                                                  Dtype
          - - -
               ----
                                  _____
                                                   ----
              id
          0
                                  5110 non-null
                                                   int64
          1
              gender
                                  5110 non-null
                                                   object
          2
              age
                                  5110 non-null
                                                   float64
          3
                                                   int64
              hypertension
                                  5110 non-null
          4
              heart disease
                                  5110 non-null
                                                   int64
          5
              ever married
                                  5110 non-null
                                                   object
              work type
                                  5110 non-null
                                                   object
          6
          7
              Residence_type
                                  5110 non-null
                                                   object
          8
              avg_glucose_level
                                  5110 non-null
                                                   float64
          9
              bmi
                                  4909 non-null
                                                   float64
          10
              smoking_status
                                  5110 non-null
                                                   object
          11
              stroke
                                  5110 non-null
                                                   int64
         dtypes: float64(3), int64(4), object(5)
         memory usage: 479.2+ KB
In [11]: train_data.isnull().sum()
                                        # checking total number of null values in the datas
Out[11]: id
                                 0
         gender
                                 0
                                 0
         age
         hypertension
                                 0
         heart disease
                                 0
         ever_married
                                 0
         work type
                                 0
         Residence type
                                 0
         avg_glucose_level
                                 0
         bmi
                               201
         smoking_status
                                 0
         stroke
                                 0
         dtype: int64
```

```
In [12]: train_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):

memory usage: 479.2+ KB

```
Non-Null Count Dtype
    Column
    ----
                        -----
                                       ----
    id
 0
                       5110 non-null
                                       int64
 1
    gender
                       5110 non-null
                                       object
 2
    age
                       5110 non-null
                                       float64
 3
                                       int64
    hypertension
                       5110 non-null
 4
    heart disease
                       5110 non-null
                                       int64
 5
    ever married
                       5110 non-null
                                       object
    work type
                       5110 non-null
                                       object
 6
 7
    Residence_type
                                       object
                       5110 non-null
 8
    avg_glucose_level 5110 non-null
                                       float64
 9
                       4909 non-null
                                       float64
 10
    smoking_status
                       5110 non-null
                                       object
 11 stroke
                       5110 non-null
                                       int64
dtypes: float64(3), int64(4), object(5)
```

```
In [13]: #Changing Bmi null value to mean values of Bmi as for health purpose Average Bmi
train_data['bmi'] = train_data['bmi'].fillna(train_data['bmi'].mean())
```

In [14]: train_data

Out[14]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
0	9046	Male	67.0	0	1	Yes	Private	Urban
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural
2	31112	Male	80.0	0	1	Yes	Private	Rural
3	60182	Female	49.0	0	0	Yes	Private	Urban
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural
					•••			
5105	18234	Female	80.0	1	0	Yes	Private	Urban
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urban
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rural
5108	37544	Male	51.0	0	0	Yes	Private	Rural
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban

5110 rows × 12 columns

In [15]: train_data.isnull().sum()

Out[15]: id

0 gender 0 0 age hypertension 0 heart_disease 0 ever_married 0 0 work_type Residence_type 0 avg_glucose_level 0 bmi 0 smoking_status 0 stroke 0 dtype: int64

In [16]: train_data.describe() #after changing the null values we can see there was a diff

Out[16]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	51 [′]
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.698018	
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.800000	
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.400000	
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	32.800000	
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	

```
In [17]: train_data['bmi'] = train_data['bmi'].round()
         #Bmi = train_data['bmi'].astype(int)
In [18]: train_data['bmi']
Out[18]: 0
                  37.0
         1
                  29.0
         2
                  32.0
         3
                  34.0
                  24.0
                  . . .
                  29.0
         5105
                  40.0
         5106
         5107
                  31.0
         5108
                  26.0
         5109
                  26.0
         Name: bmi, Length: 5110, dtype: float64
In [19]: Bmi = train_data['bmi']
```

```
In [20]: Bmi
Out[20]: 0
                  37.0
                  29.0
         1
         2
                  32.0
         3
                  34.0
                  24.0
         5105
                  29.0
         5106
                  40.0
         5107
                  31.0
                  26.0
         5108
         5109
                  26.0
         Name: bmi, Length: 5110, dtype: float64
In [21]: |train_data['stroke'].value_counts()
Out[21]: 0
               4861
                249
         Name: stroke, dtype: int64
In [22]: train_data['stroke'].value_counts(normalize=True)
Out[22]: 0
               0.951272
               0.048728
         Name: stroke, dtype: float64
In [23]: train_data['stroke'].value_counts().plot.bar(xlabel='stroke') #Plotting bar to d
Out[23]: <AxesSubplot:xlabel='stroke'>
           5000
           4000
           3000
           2000
           1000
             0
                                    stroke
```

```
In [24]: train_data['ever_married'].value_counts()
Out[24]: Yes
                 3353
                 1757
          Name: ever_married, dtype: int64
In [25]: train_data['ever_married'].value_counts().plot(kind='bar', color=['b','g'])
                                                                                          #sin
Out[25]: <AxesSubplot:>
           3500
           3000
           2500
           2000
           1500
           1000
           500
             0
                                                ŝ
```

Plotting and Analysis using seaborn

hypertension

In [27]: sns.catplot(x='stroke',y='age', data=train_data) #This graph shows number stroke

Out[27]: <seaborn.axisgrid.FacetGrid at 0x24d0e640400>

Out[28]: <AxesSubplot:xlabel='heart_disease', ylabel='count'>


```
In [29]: sns.countplot(train_data['ever_married'])
```

Out[29]: <AxesSubplot:xlabel='ever_married', ylabel='count'>

Out[30]: <AxesSubplot:xlabel='bmi', ylabel='count'>

In [31]: sns.countplot(train_data['Residence_type']) #This graph shows there are equal num

Out[31]: <AxesSubplot:xlabel='Residence_type', ylabel='count'>

In [32]: sns.countplot(train_data['gender']) #this graph the dataset is more bended toward

Out[32]: <AxesSubplot:xlabel='gender', ylabel='count'>


```
In [33]: sns.countplot(train_data['avg_glucose_level']) #Numerical variable showing glucose_level']
```


Independent Variable

```
In [34]: sns.distplot(train_data['avg_glucose_level']) #Glucose level can impact on the out
plt.show()
    train_data['avg_glucose_level'].plot.box(figsize=(16,5))
    plt.show()
```



```
In [35]: lot(column='heart_disease', by = 'smoking_status') #comparing the boxplot in term
)
```

```
Out[35]: Text(0.5, 0.98, '')
```



```
In [36]: train_data.boxplot(column='hypertension', by = 'smoking_status')
plt.suptitle("")
```


Bivariate Analysis

In [40]: #this is a Bivariate graph for remaining dependent features
 Married=pd.crosstab(train_data['ever_married'],train_data['stroke'])
 Working=pd.crosstab(train_data['work_type'],train_data['stroke'])
 Residence=pd.crosstab(train_data['Residence_type'],train_data['stroke'])
 Married.div(Married.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,fiplt.show()
 Working.div(Working.sum(1).astype(float), axis=0).plot(kind="bar",stacked=True,fiplt.show()
 Residence.div(Residence.sum(1).astype(float), axis=0).plot(kind="bar",stacked=Truplt.show()

One Hot Encoding

```
In [41]: Work_type = pd.get_dummies(train_data['work_type'])  # Separating the variable
Residence_area = pd.get_dummies(train_data['Residence_type'])
Smoking_status = pd.get_dummies(train_data['smoking_status'])
Gender = pd.get_dummies(train_data['gender'])
Married = pd.get_dummies(train_data['ever_married'])
```

In [42]: Work_type

Out[42]:

	Govt_job	Never_worked	Private	Self-employed	children
0	0	0	1	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	0	0
4	0	0	0	1	0
5105	0	0	1	0	0
5106	0	0	0	1	0
5107	0	0	0	1	0
5108	0	0	1	0	0
5109	1	0	0	0	0

5110 rows × 5 columns

In [43]: Residence_area

Out[43]:

	Rural	Urban
0	0	1
1	1	0
2	1	0
3	0	1
4	1	0
5105	0	1
5106	0	1
5107	1	0
5108	1	0
5109	0	1

5110 rows × 2 columns

In [44]: Smoking_status

Out[44]:

	Unknown	formerly smoked	never smoked	smokes
0	0	1	0	0
1	0	0	1	0
2	0	0	1	0
3	0	0	0	1
4	0	0	1	0
5105	0	0	1	0
5106	0	0	1	0
5107	0	0	1	0
5108	0	1	0	0
5109	1	0	0	0

5110 rows × 4 columns

In [45]: Married

Out[45]:

	No	Yes
0	0	1
1	0	1
2	0	1
3	0	1
4	0	1
5105	0	1
5106	0	1
5107	0	1
5108	0	1
5109	0	1

5110 rows × 2 columns

In [46]: Gender

Out[46]:

	Female	Male	Other
0	0	1	0
1	1	0	0
2	0	1	0
3	1	0	0
4	1	0	0
5105	1	0	0
5106	1	0	0
5107	1	0	0
5108	0	1	0
5109	1	0	0

5110 rows × 3 columns

Making New Variable seperate from Dataset

Making new dataset for every column so that we can't interfere with the main dataset

```
In [47]: Id = train_data['id']
In [48]: |Hypertension = train_data['hypertension']
In [49]: Heart_disease = train_data['heart_disease']
In [50]: Age = train_data['age']
In [51]: Avg_glucose_level = train_data['avg_glucose_level']
In [52]: train_data.head()
Out[52]:
                                             heart_disease ever_married work_type
                    gender
                            age
                                 hypertension
                                                                                  Residence_type av
           0
                                           0
               9046
                      Male 67.0
                                                        1
                                                                   Yes
                                                                           Private
                                                                                          Urban
                                                                             Self-
             51676 Female 61.0
                                           0
                                                                   Yes
                                                                                           Rural
                                                                         employed
              31112
                      Male 80.0
                                           0
                                                        1
                                                                   Yes
                                                                           Private
                                                                                           Rural
                                                        0
                                                                                          Urban
              60182 Female 49.0
                                           0
                                                                   Yes
                                                                           Private
                                                                             Self-
               1665
                    Female 79.0
                                           1
                                                                   Yes
                                                                                           Rural
                                                                         employed
In [53]: Stroke = train_data['stroke']
In [54]: train_data['age'].value_counts()
Out[54]: 78.00
                    102
          57.00
                     95
          52.00
                     90
          54.00
                     87
          51.00
                     86
          0.48
                      3
          1.40
                      3
          0.16
                      3
          0.08
                      2
          0.40
          Name: age, Length: 104, dtype: int64
```

```
In [55]: |train_data['work_type'].value_counts()
Out[55]: Private
                           2925
         Self-employed
                            819
         children
                            687
         Govt_job
                            657
         Never_worked
                             22
         Name: work_type, dtype: int64
In [56]: train_data['Residence_type'].value_counts()
Out[56]: Urban
                  2596
         Rural
                   2514
         Name: Residence_type, dtype: int64
In [57]: train data['avg glucose level'].value counts()
Out[57]: 93.88
                    6
         72.49
                    5
         84.10
                    5
         91.68
                    5
         83.16
                    5
         95.02
                   1
         120.09
                   1
         197.58
                   1
         99.91
                   1
         60.50
         Name: avg glucose level, Length: 3979, dtype: int64
In [58]: train_data['smoking_status'].value_counts()
Out[58]: never smoked
                             1892
         Unknown
                             1544
         formerly smoked
                              885
                              789
         smokes
         Name: smoking_status, dtype: int64
In [59]: Stroke.value counts()
Out[59]: 0
              4861
               249
         1
         Name: stroke, dtype: int64
In [60]: finaldata = pd.concat([Gender, Age, Hypertension, Heart disease, Married, Work t√
         X = finaldata.iloc[:,0:-1] # concatenating the newly created and manipulated colu
```

Correlation Matrix

```
In [61]: # this shows the important feature required for the analysis as we can see every
                        corr=X.corr()
                        plt.figure(figsize=(15,10))
                        sns.heatmap(corr, annot = True, cmap="BuPu") # visualising the correlation matri
Out[61]: <AxesSubplot:>
                                                                                                                                                                                                                                1.00
                                                    1 -1 -0.017 0.028 -0.021 -0.086 -0.03 0.03 0.017 -0.011 0.032 0.026 -0.0890 0.063 0.055 0.026 -0.059 -0.044 0.099 -0.01
                                                                -0.012-0.028 0.021 0.086 0.03 -0.03 -0.017 0.011 -0.033 -0.026 0.0890.00590.00590.055 -0.026 0.06 0.043 -0.099 0.013
                                                                       -0.0110.00460.00330.019 -0.0190.0054.000920.012-0.00610.00550.014 -0.0140.011 -0.0130.00920.031 -0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.011-0.0
                                                                                                                                                                                                                                0.75
                                                    028-0.028-0.011 1 0.28 0.26 <mark>-0.68</mark> 0.68 0.13 -0.079 0.12 0.33 <mark>-0.63</mark> -0.014 0.014 0.24 0.33 <mark>-0.38</mark> 0.24 0.12 0.07.
                                                                                       0.11 -0.16 0.16 0.018 -0.0220.0054 0.12 -0.13 0.00790.0079 0.17 0.16
                                                                                                                                                                                                                                0.50
                                                  0.086 0.0860 .0033 0.26 0.11 1 -0.11 0.11 0.0013-0.0162 7e-050.087 -0.0920 .003 D.0031 0.16 0.039 -0.067 0.067 -0.022 0.044
                               heart_disease ·
                                                   0.03 0.03 0.019 <mark>-0.68 -0.16 -0.11 1 -1 -0.13 0.091 -0.15 -0.19 0.54 0.00630.0063 0.16 -0.34 0.33 -0.17 -0.1 -0.13 0.091 -0.15 -0.19 0.54 0.00630.0063 -0.16 -0.34 0.33 -0.17 -0.1</mark>
                                                   -0.25
                                                 0.017-0.017-0.00540.13 0.0180.0013-0.13 <mark>0.13 1 -</mark>0.025<mark>-0.44 0.17 -0.15</mark>-0.013 0.013 0.014 0.077-0.097 0.03 0.047 0.03
                                                   0.011 0.0110.000920.079-0.022-0.016 0.091-0.091-0.025 1 -0.076-0.029-0.026-0.023 0.023-0.015-0.0280.0088-0.03 0.036-0.02
                               Never worked
                                                   .032 -0.033 0.012 0.12 -0.0054.7e-05-0.15 0.15 <mark>-0.44</mark> -0.076 1 <mark>-0.51 -0.46</mark> 0.018 -0.018 0.017 0.2 <mark>-0.21</mark> 0.026 0.1 0.1
                                                                                                                                                                                                                               - 0.00
                                                    0.089 0.089-0.005<mark>-0.63 -0.13 -0.092 0.54 -0.54 -0.15 -0.026 -0.46 -0.17 1 0</mark>.00230.0023 -0.1 -0.44 <mark>0.51 -</mark>0.16 -0.24 -0.17
                                                                                                                                                                                                                                 -0.25
                                                    .
00630.00590.014-0.0140.00790.00310.00630.00630.013-0.023 0.018-0.0110.0023
                                                                                                                                                    1 -1 0.00490.000290.002-0.00770.024-0.02
                                                    00630.00590.014 0.014-0.00790.00310.00630.0063 0.013 0.023 -0.018 0.011-0.0023 -1
                                                    -0.50
                                                    .026-0.026-0.013 0.33 0.16 0.039 -0.34 0.34 0.077-0.028 0.2 0.071 -0.440.00029000290.17
                                                   formerly smoked -0.044 0.043 0.031 0.24 0.059 0.067 -0.17 0.17 0.03 -0.03 0.026 0.093 -0.16 0.0070.00770.068 0.1 -0.3
                                                                                                                                                                                                                                 -0.75
                               never smoked -0.099-0.099-0.011 0.12 0.065-0.022 -0.1 0.1 0.047 0.036 0.1 0.031 -0.24 0.024-0.024 0.024 0.11 -0.5 -0.35
                                                  0.011 0.011 -0.006 0.073 0.031 0.044 -0.11 0.11 0.03 -0.028 0.1 -0.0036-0.17 -0.027 0.027 0.018 0.085
                                                                                                                                                                                                                               -1.00
                                                                                                                       worked
                                                                                                                ġ
                                                                                                                                                                           Ē
In [62]: |y = finaldata['stroke']
In [63]: kbest = SelectKBest(score_func = chi2, k = 'all') # target number of features is
                        ordered features = kbest.fit(X,y)
In [64]: train_data_scores = pd.DataFrame(ordered_features.scores_, columns=['Score']) # s
In [65]: train data columns = pd.DataFrame(X.columns, columns = ['Feature name']) # save
                        feature rank = pd.concat([train data scores, train data columns], axis=1) # combine
```

```
In [67]: feature rank.nlargest(12, 'Score') # rank the features by score - the scores are #
Out[67]:
                      Score
                                Feature_name
                3635.226911
                                          age
            15
                1718.285446 avg glucose level
             5
                  87.987436
                                 heart disease
             4
                  75.449498
                                  hypertension
                  39.355836
             6
                                          No
            12
                   31.111620
                                      children
             7
                  20.622787
                                          Yes
            18
                  17.607359
                               formerly smoked
            11
                  16.584252
                                 Self-employed
            16
                  15.879229
                                          bmi
            17
                  11.139767
                                     Unknown
             9
                   1.126929
                                 Never worked
```

Extra Trees Classifier

In [71]: ranked_features.nlargest(11).plot(kind='bar') # rank and plot the scores

Out[71]: <AxesSubplot:>

Mutual Information Gain

```
In [72]: mu_ifo = mutual_info_classif(X,y)
```

```
In [73]: mu data = pd.Series(mu ifo, index = X.columns)
         mu data.sort values(ascending=False)
Out[73]: age
                               0.036125
         Yes
                               0.008051
         avg glucose level
                               0.006257
         heart disease
                               0.006204
         hypertension
                               0.005150
         children
                               0.005073
         bmi
                               0.004936
         No
                               0.004766
         Urban
                               0.004236
         Other
                               0.001745
         Govt job
                               0.001648
         Female
                               0.001321
         Never_worked
                               0.000705
         Private
                               0.000494
         formerly smoked
                               0.000453
         Rural
                               0.000000
         Self-employed
                               0.000000
         Male
                               0.000000
         Unknown
                               0.000000
         never smoked
                               0.000000
         smokes
                               0.000000
         dtype: float64
In [74]: | x_train,x_test,y_train,y_test = train_test_split(X,y, test_size = 0.2, random_stail
In [75]: def classify(model, x, y):
             x_train,x_test,y_train,y_test = train_test_split(X,y, test_size = 0.2, random
             model.fit(x train,y train)
             print('Accuracy is: ', model.score(x_test,y_test)*100)
             score = cross_val_score(model,x,y,cv=5)
                                                                        # we set the number
             print('Cross validation Accuaracy: ', np.mean(score)*100)
In [76]: LG model = LogisticRegression()
                                            #making logistic regression model
         classify(LG_model, X,y)
         Accuracy is: 93.9334637964775
         Cross validation Accuaracy: 95.12720156555773
In [77]: y_pred = LG_model.predict(x_test)
In [78]: cm = confusion_matrix(y_test,y_pred)
```

```
In [79]: sns.heatmap(cm,annot=True)
```

Out[79]: <AxesSubplot:>


```
In [80]: knn_model = KNeighborsClassifier(n_neighbors=5)
classify(knn_model,X,y)
```

Accuracy is: 93.73776908023484 Cross validation Accuaracy: 94.28571428571428

```
In [81]: y_pred = knn_model.predict(x_test)
```

```
In [82]: cm = confusion_matrix(y_test,y_pred)
```

```
In [83]: sns.heatmap(cm,annot=True)
```

Out[83]: <AxesSubplot:>


```
In [84]: SVC_model = SVC(kernel='linear', C = 1)
classify(SVC_model, X,y)
```

Accuracy is: 93.9334637964775

Cross validation Accuaracy: 95.12720156555773

Out[86]: SVC(C=1, kernel='linear')

In [89]: sns.heatmap(cm,annot=True) # plots the confusion matrix

Out[89]: <AxesSubplot:>

Trying the same process using Label Encoding

In [90]: train_data

Out[90]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
0	9046	Male	67.0	0	1	Yes	Private	Urban
1	51676	Female	61.0	0	0	Yes	Self- employed	Rural
2	31112	Male	80.0	0	1	Yes	Private	Rural
3	60182	Female	49.0	0	0	Yes	Private	Urban
4	1665	Female	79.0	1	0	Yes	Self- employed	Rural
5105	18234	Female	80.0	1	0	Yes	Private	Urban
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urban
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rural
5108	37544	Male	51.0	0	0	Yes	Private	Rural
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban

5110 rows × 12 columns

In [92]: train_data

Out[92]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
0	9046	1	67.0	0	1	1	2	1
1	51676	0	61.0	0	0	1	3	0
2	31112	1	80.0	0	1	1	2	0
3	60182	0	49.0	0	0	1	2	1
4	1665	0	79.0	1	0	1	3	0
5105	18234	0	80.0	1	0	1	2	1
5106	44873	0	81.0	0	0	1	3	1
5107	19723	0	35.0	0	0	1	3	0
5108	37544	1	51.0	0	0	1	2	0
5109	44679	0	44.0	0	0	1	0	1

5110 rows × 12 columns

In [94]: plt.figure(figsize=(15,10))
 sns.heatmap(corr, annot = True, cmap="BuPu")

Out[94]: <AxesSubplot:>


```
In [95]: A = train_data.drop(['stroke'],axis=1)
           b = train data['stroke']
 In [96]: kbest = SelectKBest(score func = chi2, k = 'all') # target number of features is
           ordered_features = kbest.fit(A,b)
 In [97]: | df_scores = pd.DataFrame(ordered_features.scores_, columns=['Score'])
 In [98]: | df_columns = pd.DataFrame(X.columns, columns = ['Feature_name'])
 In [99]: feature_rank = pd.concat([df_scores,df_columns],axis=1)
In [100]: feature rank.nlargest(12, 'Score')
Out[100]:
                     Score Feature_name
               3635.226911
                                  Other
               2556.735918
                                 Female
               1718.285446
                                Govt job
             4
                 87.987436
                             hypertension
             3
                 75.449498
                                   age
             5
                 20.622787
                            heart_disease
             9
                 15.879229
                           Never worked
            10
                  3.369423
                                 Private
             6
                  2.925901
                                    No
             7
                  0.600717
                                   Yes
                  0.239001
                                   Male
In [101]:
           model = ExtraTreesClassifier()
           model.fit(A,b)
Out[101]: ExtraTreesClassifier()
In [102]: model.feature_importances_
Out[102]: array([0.17932645, 0.03142367, 0.20624864, 0.02317516, 0.02318449,
                  0.01660314, 0.05738771, 0.03673533, 0.19037076, 0.15401823,
                  0.08152642])
```

```
In [103]: ranked_features = pd.Series(model.feature_importances_, index = A.columns)
```

In [104]: ranked_features.nlargest(12).plot(kind='bar') # rank and plot the scores

Out[104]: <AxesSubplot:>


```
In [105]: mu_ifo = mutual_info_classif(A,b)
mu_data = pd.Series(mu_ifo, index = A.columns)
mu_data.sort_values(ascending=False)
```

```
Out[105]: age
                                 0.034894
           work_type
                                 0.011995
           heart_disease
                                 0.010218
           bmi
                                 0.008821
           smoking_status
                                 0.007195
                                 0.005207
           avg_glucose_level
                                 0.005163
           hypertension
                                 0.004164
           ever married
                                 0.001049
           Residence_type
                                 0.001045
           gender
                                 0.000000
           dtype: float64
```

```
In [106]: a_train,a_test,b_train,b_test = train_test_split(A,b, test_size = 0.2, random_sta
```

```
In [107]: | def classify(model, a, b):
              a_train,x_test,b_train,b_test = train_test_split(A,b, test_size = 0.2, random
              model.fit(a train,b train)
              print('Accuracy is: ', model.score(a_test,b_test)*100)
              score = cross_val_score(model,a,b,cv=5)
                                                                         # we set the number
              print('Cross validation Accuaracy: ', np.mean(score)*100)
In [108]:
          LG model = LogisticRegression()
          classify(LG model, A,b)
          Accuracy is: 93.9334637964775
          Cross validation Accuaracy: 95.06849315068493
In [109]: | b_pred = LG_model.predict(a_test)
In [110]: com = confusion_matrix(b_test,b_pred)
In [111]: sns.heatmap(com,annot=True) # plots the confusion matrix
Out[111]: <AxesSubplot:>
                                                      - 800
                    9.6e+02
                                                      - 600
                                                      - 400
                      61
                                                      - 200
                                        1
                      0
In [112]:
          knn_model = KNeighborsClassifier(n_neighbors=5)
          classify(knn model,A,b)
          Accuracy is: 93.9334637964775
          Cross validation Accuaracy: 95.12720156555773
In [113]: | b_pred = knn_model.predict(a_test)
```

```
In [114]: com = confusion_matrix(b_test,b_pred)
In [115]: sns.heatmap(com,annot=True) # plots the confusion matrix
Out[115]: <AxesSubplot:>
                                                      - 800
                    9.6e+02
                                                     - 600
                                                     - 400
                      62
                                                      - 200
In [116]:
          SVC_model = SVC(kernel='linear', C = 1)
          classify(SVC_model, A,b)
          Accuracy is: 93.34637964774952
          Cross validation Accuaracy: 94.28571428571428
In [117]: SVC_model = SVC(kernel='linear', C = 1)
In [118]: SVC_model.fit(a_train,b_train)
Out[118]: SVC(C=1, kernel='linear')
In [119]: b pred = SVC model.predict(a test) # save predictions in y pred
In [120]: com = confusion_matrix(b_test,b_pred)
```

In [121]: sns.heatmap(com,annot=True) # plots the confusion matrix

Out[121]: <AxesSubplot:>

THANK YOU

In []: