北京信息科技大学 2017~2018 学年第1学期

《计算机电路基础》期末考试试卷 A

课程所在学院: 电子信息与控制国家级实验教学中心

适用专业班级: 计算机大类 1601-1611

考 试 形 式: 闭卷

题序	1	11	11.1	四	五	六	七	总分
满分	24	24	10	10	10	10	12	100
得分								

一、共4小题(每小题6分,共24分)

- 1. 电路如图 1.1 所示,已知 I=1 A,试求 R 的阻值。
- 2. 电路如图 1.2 所示,计算以下电量的数值: (1) 电流 I; (2) 电压 U。

- 3. 在图 1.3 所示电路中,设锗二极管的正向导通电压 $U_{\rm D1} = U_{\rm D2} = 0.3 \, {
 m V}$ 。要求:
 - (1) 说明二极管 D_1 、 D_2 的工作状态;
 - (2) 求 A 点电位 V_A 的数值。
- 4. 测得某晶体三极管各极电位如图 1.4 所示。试说明:
 - (1) 该三极管处于何种工作状态(饱和、放大、截止);
 - (2) 该三极管的类型(NPN型或PNP型)和材料(锗或硅)。

二、共4小题(每小题6分,共24分)

- 1. (1) 数制转换: (211)10=(______)2
 - (2) 将逻辑函数 Y = AB + BC 写成最小项表达式:
- 2. 试证明以下逻辑关系式成立:

 $A \oplus B \oplus C = A \odot B \odot C$

- 3. 逻辑电路如图 2.3 所示。要求:
 - (1) 写出输出 Y 与输入 A 、 B 、 C 、 D 之间的逻辑表达式;
 - (2) 化为最简与或表达式。

4. 逻辑电路如图 2.4 (a) 所示,输入端 CP、A、B 的波形如图 (b) 所示。 试对应画出触发器输入端 J 和输出端 Q 的波形(设初始状态 Q=0)。

- 三、(10分)直流电路及参数如图 3 所示, 试求:
 - (1) 流过 6Ω 电阻的电流 I=? (2) 3Ω 电阻消耗的功率。
- 四、(10 分) 电路如图 4 所示,已知电源和各电阻值及三极管参数 $U_{\rm BE}$ 、 β 、 $r_{\rm be}$ 。要求:
 - (1) 写出静态值 I_B 、 I_C 、 U_{CE} 的表达式; (2) 画出放大电路的微变等效电路;
 - (3) 写出电压放大倍数 A_u 、输入和输出电阻 r_i 、 r_o 的表达式。

- 五、(10分)运放电路如图 5 所示,已知: $R_1 = 10$ kΩ, $R_2 = 20$ kΩ, $R_3 = 15$ kΩ, $R_4 = 30$ kΩ。
 - (1) 推导输出 u_0 与输入 u_{i1} 、 u_{i2} 、 u_{i3} 之间的运算关系式;
 - (2) 若各输入为 $u_{i1} = 2V$, $u_{i2} = -3V$, $u_{i3} = 1.5 \sin \omega t V$, 计算 u_{0} ;
 - (3) 求平衡电阻 R₅ 的阻值。

六、(10分)由74161(功能表见表 6)和与非门构成的计数器电路如图 6所示。要求:

- (1) 分析电路一个周期的工作过程,填入状态表(设初态 $Q_3 Q_2 Q_1 Q_0 = 0000$);
- (2) 说明电路实现几进制计数。

表 6 同步四位二进制加法计数器 74161 的功能表

		输 出					
功能	清零	时钟	置数	控制	信号	置数输入	0.0.0.0
	$\overline{R}_{ m D}$	CP	\overline{LD}	EP	ET	$A_3A_2A_1A_0$	$Q_3Q_2Q_1Q_0$
清零	0	×	×	×	*	\times \times \times	0 0 0 0
置数	1	↑	0	×	×	$d_3d_2d_1d_0$	$d_3d_2d_1d_0$
计数	1	↑	1	1	1	××××	计数
保持	1	×	1	0	1	\times \times \times	保持
保持	1	×	1	×	0	× × × ×	保持

状态表

CP	$Q_3 Q_2 Q_1 Q_0$
0	0 0 0 0
1	
2	
3 4 5 6 7	
4	
5	
6	
7	

- 七、(12分)某产品有A、B、C 三项质量指标,其中A 为主要指标,B、C 为次要指标。 产品检测标准规定: 当主要指标和至少一项次要指标合格时,产品为合格,否则为废品。(设A、B、C = 1/0表示质量指标合格/不合格; Y = 1/0表示产品合格/废品。)
 - (1) 列出产品合格 Y 与三项质量指标 $A \times B \times C$ 关系的逻辑状态表;
 - (2) 写出 Y 的逻辑表达式;
 - (3) 画出用与非门实现 Y 的逻辑电路图。