Amplificador de 2 estágios

Nicolas Beraldo 15102826

ENC

Modelo:

O modelo é denominado amplificador de 2 estágios pois tem o objetivo de amplificar, ou seja, aumentar a tensão e o termo "2 estágios" se deve ao fator se ocorrer em duas partes. O primeiro estagio e a parte central do modelo e é um amplificador diferencial é o segundo estagio é o lado direto do modelo e se trata sobre uma fonte comum e já falamos sobre esse tipo de modelo anteriormente.

 Parte 1
 Modelo de pequenos sinais em um amplificador de 2 estágios:

Para definir o modelo de pequenos sinais é melhor analisarmos cada estágio separadamente, logo o ganho do primeiro estágio pode ser definido por:

$$A_{v1} = \frac{V_{out}}{V_{in}} = G_{mM1}(r_{02}||R_{01})$$

E o ganho para o segundo estágio é definido por:

$$A_{v1} = \frac{V_{out}}{V_{in}} = G_{mM1}(r_{03}||R_{04})$$

O produto de ambos os ganhos resulta no ganho total do modelo, logo:

$$A_v = A_{v1} * A_{V2}$$

$$A_v = G_{mM1}G_{mM2}(r_{02}||R_{01})(r_{03}||R_{04})$$

Parte 2

Agora iremos verificar quais as tensões de saída mínima e máxima com os transistores em saturação, o que é limitado pelos transistores PMOS M3 e NMOS M8. Para transistores NMOS estar em saturação devemos verificar se:

$$V_{DS} \geq V_{ov}$$

Para um transistor PMOS:

$$V_{DS} \leq V_{ov}$$

Logo, a excursão de saída mínima e máxima é:

$$V_{OV8} \le V_O \le V_{OV6}$$

Para a tensão de entrada mínima e máxima devemos checar se os transistores PMOS M4 e M5 estarão em saturação.

Para M4:

$$V_{IN-} \ge V_d + T_- th$$

Para M5:

$$V_{gs} > V_{OV} + V_{th}$$

Parte 3

Usamos um algoritmo genético desenvolvido para a aula de Inteligência Artificial 2 pelos alunos Athila Santiago, Lucas Gauer e Nicolas Beraldo para otimizar o modelo.

Cada gene é uma informação do modelo, cada cromossomo é um modelo e cada modelo tem o seu score. M1, M2 e M3 possuem os mesmos valores de comprimento(L) e largura(W), M4 e M5 possuem L e W iguais, M6 e M7 possuem valores iguais e M8 é um valor único para si.

O maior ganho obtido foi 161 dB mas por teste descobrimos que os transistores não estavam saturados, logo decidimos usar um valor de ganho consideravelmente menor para garantir a saturação.

A tabela a seguir mostra o ganho escolhido para testar a saturação:

Ganho:	119.29 dB
L para M1, M2, M3	13.671 um
W para M1, M2, M3	33.871 um
L para M4, M5	20.877 um
W para M4, M5	13.542 um
L para M6, M7,	18.717 um
W para M6, M7	33.217 um
L para M8	11.358 um
W para M8	39.462 um
С	2.5696 pF
1	12.519 uA

Gráfico de ganho:

Para verificar a saturação realizamos a verificação manual e aplicamos as equações encontradas na parte 2, logo:

Transistor	Proporção	Vd	Valor para
			saturar
M1 P	<=	1.043	1.043
M2 P	<=	1.682	1.043
M3 P	<=	-0.988	1.043
M4 P	<=	-1.433	0
M5 P	<=	-1.433	0
M6 N	>=	-1.433	-1.433
M7 N	>=	-1.433	-1.433
M8 N	>=	-0.988	-1.043

Pelos valores obtidos podemos perceber que todos os transistores estão saturados, validando o ganho de 119 dB para as limitações impostas.

Parte 4