```
import pandas as pd
In [1]:
        import numpy as np
        import seaborn as sns
In [2]:
        car_data=pd.read_csv("C:/Users/shrey/Desktop/Datasets/cars_sampled.csv")
        car_data.head()
Out[2]:
           dateCrawled
                                                             name
                                                                   seller offerType
                                                                                  pri
             30/03/2016
         0
                                                       Zu_verkaufen
                                                                                  44
                                                                  private
                                                                            offer
                 13:51
               7/3/2016
                                            Volvo XC90 2.4D Summum private
                                                                            offer 132
                  9:54
               1/4/2016
         2
                                                   Volkswagen_Touran private
                                                                                  32
                                                                            offer
                  0:57
             19/03/2016
         3
                                           Seat_Ibiza_1.4_16V_Reference private
                                                                                  45
                                                                            offer
                 17:50
             16/03/2016
                      Volvo_XC90_D5_Aut._RDesign_R_Design_AWD_GSHD_S... private
                                                                            offer 187
                 14:51
In [3]: car_data.shape
Out[3]: (50001, 19)
In [4]: car_data.columns
dtype='object')
In [5]: # Setting dimensions for the plot
        sns.set(rc={"figure.figsize":(11.7,8.27)})
```

In [6]: | cars=car data.copy()

In [7]: # structures cars.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50001 entries, 0 to 50000
Data columns (total 19 columns):

```
Non-Null Count Dtype
#
    Column
    ----
---
                       ----
    dateCrawled
0
                       50001 non-null object
                       50001 non-null object
1
    name
2
    seller
                      50001 non-null object
    offerType
3
                     50001 non-null object
                     50001 non-null int64
4
    price
5
                     50001 non-null object
    abtest
                44813 non-null object
6
    vehicleType
7
    yearOfRegistration 50001 non-null int64
                      47177 non-null object
8
    gearbox
                       50001 non-null int64
9
    powerPS
10 model
                      47243 non-null object
11 kilometer
                       50001 non-null int64
12 monthOfRegistration 50001 non-null int64
                       45498 non-null object
13 fuelType
14 brand
                       50001 non-null object
                      40285 non-null object
15 notRepairedDamage
                       50001 non-null object
16 dateCreated
17 postalCode
                       50001 non-null int64
18 lastSeen
                       50001 non-null object
```

dtypes: int64(6), object(13)

memory usage: 7.2+ MB

In [8]: # Summarizing data

cars.describe()

pd.set_option('display.float_format', lambda x: '%.3f' % x)

cars.describe()

Out[8]:

	price	yearOfRegistration	powerPS	kilometer	monthOfRegistration	postalCo
count	50001.000	50001.000	50001.000	50001.000	50001.000	50001.0
mean	6559.865	2005.544	116.496	125613.688	5.744	50775.2
std	85818.470	122.992	230.568	40205.234	3.711	25743.
min	0.000	1000.000	0.000	5000.000	0.000	1067.0
25%	1150.000	1999.000	69.000	125000.000	3.000	30559.0
50%	2950.000	2003.000	105.000	150000.000	6.000	49504.0
75%	7190.000	2008.000	150.000	150000.000	9.000	71404.0
max	12345678.000	9999.000	19312.000	150000.000	12.000	99998.0

```
In [9]: # To display maximum set of columns
pd.set_option('display.max_columns', 500)
cars.describe()
```

Out[9]:

postalCo	monthOfRegistration	kilometer	powerPS	yearOfRegistration	price	
50001.0	50001.000	50001.000	50001.000	50001.000	50001.000	count
50775.2	5.744	125613.688	116.496	2005.544	6559.865	mean
25743.	3.711	40205.234	230.568	122.992	85818.470	std
1067.0	0.000	5000.000	0.000	1000.000	0.000	min
30559.0	3.000	125000.000	69.000	1999.000	1150.000	25%
49504.0	6.000	150000.000	105.000	2003.000	2950.000	50%
71404.0	9.000	150000.000	150.000	2008.000	7190.000	75%
99998.0	12.000	150000.000	19312.000	9999.000	12345678.000	max
						4

In [10]: # Dropping unwanted columns
 col=['name','dateCrawled','dateCreated','postalCode','lastSeen']
 cars=cars.drop(columns=col, axis=1)

In [12]: # Data cleaning
No. of missing values in each column
cars.isnull().sum()

Out[12]: seller 0 0 offerType price 0 abtest 0 vehicleType 5152 yearOfRegistration 0 2765 gearbox powerPS 0 2730 model kilometer 0 monthOfRegistration 0 fuelType 4467 brand notRepairedDamage 9640 dtype: int64

Out[13]: <AxesSubplot:xlabel='yearOfRegistration', ylabel='price'>

In [14]: # Variable price price_count=cars['price'].value_counts().sort_index() sns.distplot(cars['price']) cars['price'].describe() sns.boxplot(y=cars['price']) sum(cars['price'] > 150000) sum(cars['price'] < 100) # Working range- 100 and 150000</pre>

C:\Users\shrey\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[14]: 1748

C:\Users\shrey\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[15]: 5565


```
In [17]: # Further to simplify- variable reduction
         # Combining yearOfRegistration and monthOfRegistration
         cars['monthOfRegistration']/=12
In [18]: # Creating new varible Age by adding yearOfRegistration and monthOfRegistrat
         cars['Age']=(2018-cars['yearOfRegistration'])+cars['monthOfRegistration']
         cars['Age']=round(cars['Age'],2)
         cars['Age'].describe()
Out[18]: count
                42772.000
                  14.873
         mean
         std
                   7.093
                   0.000
         min
         25%
                  10.330
         50%
                  14.830
         75%
                  19.170
              67.750
         max
         Name: Age, dtype: float64
In [19]: # Dropping yearOfRegistration and monthOfRegistration
         cars=cars.drop(columns=['yearOfRegistration','monthOfRegistration'], axis=1)
```

Visualizing parameters

```
In [20]: # Age
sns.distplot(cars['Age'])
sns.boxplot(y=cars['Age'])
```

Out[20]: <AxesSubplot:xlabel='Age', ylabel='Age'>

Out[21]: <AxesSubplot:xlabel='price', ylabel='price'>


```
In [22]: # powerPS
sns.distplot(cars['powerPS'])
sns.boxplot(y=cars['price'])
```

Out[22]: <AxesSubplot:xlabel='powerPS', ylabel='price'>

Out[23]: <AxesSubplot:xlabel='Age', ylabel='price'>


```
In [24]: # powerPS vs price
sns.regplot(x='powerPS', y='price', scatter=True,fit_reg=False, data=cars)
```

Out[24]: <AxesSubplot:xlabel='powerPS', ylabel='price'>

Out[25]: <AxesSubplot:xlabel='seller', ylabel='count'>

Out[26]: <AxesSubplot:xlabel='offerType', ylabel='count'>

Out[27]: <AxesSubplot:xlabel='abtest', ylabel='price'>


```
In [28]: # Variable vehicleType
    cars['vehicleType'].value_counts()
    pd.crosstab(cars['vehicleType'],columns='count',normalize=True)
    sns.countplot(x= 'vehicleType',data=cars)
    sns.boxplot(x= 'vehicleType',y='price',data=cars)
    # 8 types- limousine, small cars and station wagons max freq
    # vehicleType affects price
```

Out[28]: <AxesSubplot:xlabel='vehicleType', ylabel='price'>


```
In [29]: # Variable gearbox
    cars['gearbox'].value_counts()
    pd.crosstab(cars['gearbox'],columns='count',normalize=True)
    sns.countplot(x= 'gearbox',data=cars)
    sns.boxplot(x= 'gearbox',y='price',data=cars)
# gearbox affects price
```

Out[29]: <AxesSubplot:xlabel='gearbox', ylabel='price'>


```
In [30]: # Variable model
    cars['model'].value_counts()
    pd.crosstab(cars['model'],columns='count',normalize=True)
    sns.countplot(x= 'model',data=cars)
    sns.boxplot(x= 'model',y='price',data=cars)
# Cars are distributed over many models
# Considered in modelling
```

Out[30]: <AxesSubplot:xlabel='model', ylabel='price'>

Out[31]: <AxesSubplot:xlabel='kilometer', ylabel='price'>


```
In [32]: # Variable fuelType
    cars['fuelType'].value_counts()
    pd.crosstab(cars['fuelType'],columns='count',normalize=True)
    sns.countplot(x= 'fuelType',data=cars)
    sns.boxplot(x= 'fuelType',y='price',data=cars)
# fuelType affects price
```

Out[32]: <AxesSubplot:xlabel='fuelType', ylabel='price'>


```
In [33]: # Variable brand
    cars['brand'].value_counts()
    pd.crosstab(cars['brand'],columns='count',normalize=True)
    sns.countplot(x= 'brand',data=cars)
    sns.boxplot(x= 'brand',y='price',data=cars)
# Cars are distributed over many brands
# Considered for modelling
```

Out[33]: <AxesSubplot:xlabel='brand', ylabel='price'>


```
In [34]: # Variable notRepairedDamage
         # yes- car is damaged but not rectified
         # no- car was damaged but has been rectified
         cars['notRepairedDamage'].value_counts()
         pd.crosstab(cars['notRepairedDamage'],columns='count',normalize=True)
         sns.countplot(x= 'notRepairedDamage',data=cars)
         sns.boxplot(x= 'notRepairedDamage',y='price',data=cars)
         # As expected, the cars that require the damages to be repaired
         # fall under lower price ranges
```

Out[34]: <AxesSubplot:xlabel='notRepairedDamage', ylabel='price'>


```
In [35]:
         # Removing insignificant variables
         col=['seller','offerType','abtest']
         cars=cars.drop(columns=col, axis=1)
         cars copy=cars.copy()
```

```
In [36]: # Correlation
         cars_select1=cars.select_dtypes(exclude=[object])
         correlation=cars select1.corr()
         round(correlation,3)
         cars_select1.corr().loc[:,'price'].abs().sort_values(ascending=False)[1:]
```

Out[36]: powerPS 0.575 kilometer 0.440 Age 0.336 Name: price, dtype: float64

We are going to build a Linear Regression and Random Forest model on two sets of data.

- 1. Data obtained by omitting rows with any missing value
- 2. Data obtained by imputing the missing values

OMITTING MISSING VALUES

```
In [37]: cars_omit=cars.dropna(axis=0)

# Converting categorical variables to dummy variables
cars_omit=pd.get_dummies(cars_omit,drop_first=True)

In [38]: # IMPORTING NECESSARY LIBRARIES
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
```

MODEL BUILDING WITH OMITTED DATA

```
In [39]: # Separating input and output features
x1 = cars_omit.drop(['price'], axis='columns', inplace=False)
y1 = cars_omit['price']
```

```
In [40]: # Plotting the variable price
prices = pd.DataFrame({"1. Before":y1, "2. After":np.log(y1)})
prices.hist()
```



```
In [41]: # Transforming price as a logarithmic value
y1 = np.log(y1)
```

In [42]: # Splitting data into test and train
X_train, X_test, y_train, y_test = train_test_split(x1, y1, test_size=0.3, r
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

(23018, 300) (9866, 300) (23018,) (9866,)

BASELINE MODEL FOR OMITTED DATA

We are making a base model by using test data mean value This is to set a benchmark and to compare with our regression model

```
In [43]: # finding the mean for test data value
base_pred = np.mean(y_test)
print(base_pred)
```

8.249615787653337

```
In [44]: # Repeating same value till length of test data
base_pred = np.repeat(base_pred, len(y_test))
```

```
In [45]: # finding the RMSE
    base_root_mean_square_error = np.sqrt(mean_squared_error(y_test, base_pred))
    print(base_root_mean_square_error)
```

1.1274483657478247

LINEAR REGRESSION WITH OMITTED DATA

```
In [46]: # Setting intercept as true
lgr=LinearRegression(fit_intercept=True)
```

```
In [47]: # Model
model_lin1=lgr.fit(X_train,y_train)
```

```
In [48]: # Predicting model on test set
cars_predictions_lin1 = lgr.predict(X_test)
```

```
In [49]: # Computing MSE and RMSE
lin_mse1 = mean_squared_error(y_test, cars_predictions_lin1)
lin_rmse1 = np.sqrt(lin_mse1)
print(lin_rmse1)
```

0.5455481266513857

```
In [50]: # R squared value
    r2_lin_test1=model_lin1.score(X_test,y_test)
    r2_lin_train1=model_lin1.score(X_train,y_train)
    print(r2_lin_test1,r2_lin_train1)
```

0.7658615091649229 0.7800936978183916

```
Out[51]: count
                  9866.000
                     0.003
         mean
          std
                     0.546
                    -5.796
          min
          25%
                    -0.261
                     0.041
          50%
         75%
                     0.302
         max
                     4.547
         Name: price, dtype: float64
```


RANDOM FOREST WITH OMITTED DATA

```
In [53]: # Model
    model_rf1=rf.fit(X_train,y_train)

In [54]: # Predicting model on test set
    cars_predictions_rf1 = rf.predict(X_test)

In [55]: # Computing MSE and RMSE
    rf_mse1 = mean_squared_error(y_test, cars_predictions_rf1)
    rf_rmse1 = np.sqrt(rf_mse1)
    print(rf_rmse1)
    0.4360736289370223

In [56]: # R squared value
    r2_rf_test1=model_rf1.score(X_test,y_test)
    r2_rf_train1=model_rf1.score(X_train,y_train)
    print(r2_rf_test1,r2_rf_train1)
    0.8504018147750623 0.9202494705146291
```

MODEL BUILDING WITH IMPUTED DATA

```
In [57]: cars_imputed = cars.apply(lambda x:x.fillna(x.median()) \
                            if x.dtype=='float' else \
                            x.fillna(x.value_counts().index[0]))
         cars_imputed.isnull().sum()
Out[57]: price
                               0
         vehicleType
                               0
         gearbox
                               0
                               0
         powerPS
         model
                               0
         kilometer
         fuelType
                               0
                               0
         brand
         notRepairedDamage
                               0
         dtype: int64
In [58]: # Converting categorical variables to dummy variables
         cars_imputed=pd.get_dummies(cars_imputed,drop_first=True)
```

MODEL BUILDING WITH IMPUTED DATA

```
In [59]: # Separating input and output feature
x2 = cars_imputed.drop(['price'], axis='columns', inplace=False)
y2 = cars_imputed['price']
```

```
In [60]: # Plotting the variable price
prices = pd.DataFrame({"1. Before":y2, "2. After":np.log(y2)})
prices.hist()
```



```
In [61]: # Transforming price as a logarithmic value
y2 = np.log(y2)
```

In [62]: # Splitting data into test and train
X_train1, X_test1, y_train1, y_test1 = train_test_split(x2, y2, test_size=0.
print(X_train1.shape, X_test1.shape, y_train1.shape, y_test1.shape)

(29940, 303) (12832, 303) (29940,) (12832,)

BASELINE MODEL FOR IMPUTED DATA

We are making a base model by using test data mean value This is to set a benchmark and to compare with our regression model

```
In [63]: # finding the mean for test data value
base_pred = np.mean(y_test1)
print(base_pred)
```

8.068391740519193

```
In [64]: # Repeating same value till length of test data
base_pred = np.repeat(base_pred, len(y_test1))
```

```
In [65]: # finding the RMSE
base_root_mean_square_error_imputed = np.sqrt(mean_squared_error(y_test1, ba
print(base_root_mean_square_error_imputed)
```

1.1884349112889792

LINEAR REGRESSION WITH IMPUTED DATA

```
In [66]: # Setting intercept as true
         lgr2=LinearRegression(fit_intercept=True)
In [67]: | # ModeL
         model_lin2=lgr2.fit(X_train1,y_train1)
In [68]: # Predicting model on test set
         cars_predictions_lin2 = lgr2.predict(X_test1)
In [69]: # Computing MSE and RMSE
         lin_mse2 = mean_squared_error(y_test1, cars_predictions_lin2)
         lin_rmse2 = np.sqrt(lin_mse2)
         print(lin_rmse2)
         0.6483956449231295
In [70]: # R squared value
         r2_lin_test2=model_lin2.score(X_test1,y_test1)
         r2_lin_train2=model_lin2.score(X_train1,y_train1)
         print(r2_lin_test2,r2_lin_train2)
         0.7023339008631185 0.7071658736894363
```

RANDOM FOREST WITH IMPUTED DATA

```
In [74]: # Computing MSE and RMSE
    rf_mse2 = mean_squared_error(y_test1, cars_predictions_rf2)
    rf_rmse2 = np.sqrt(rf_mse2)
    print(rf_rmse2)
```

0.494313994408829

In [75]: # R squared value r2_rf_test2=model_rf2.score(X_test1,y_test1) r2_rf_train2=model_rf2.score(X_train1,y_train1) print(r2_rf_test2,r2_rf_train2)

0.8269964521311131 0.9024289431669166

In [76]: # Final output

print("Metrics for models built from data where missing values were omitted" print("R squared value for train from Linear Regression= %s"% r2_lin_train1 print("R squared value for test from Linear Regression= %s"% r2 lin test1) print("R squared value for train from Random Forest= %s"% r2_rf_train1) print("R squared value for test from Random Forest= %s"% r2 rf test1) print("Base RMSE of model built from data where missing values were omitted= print("RMSE value for test from Linear Regression= %s"% lin_rmse1) print("RMSE value for test from Random Forest= %s"% rf_rmse1) print("\n\n") print("Metrics for models built from data where missing values were imputed" print("R squared value for train from Linear Regression= %s"% r2_lin_train2 print("R squared value for test from Linear Regression= %s"% r2_lin_test2) print("R squared value for train from Random Forest= %s"% r2_rf_train2) print("R squared value for test from Random Forest= %s"% r2_rf_test2) print("Base RMSE of model built from data where missing values were imputed= print("RMSE value for test from Linear Regression= %s"% lin rmse2) print("RMSE value for test from Random Forest= %s"% rf_rmse2)

Metrics for models built from data where missing values were omitted R squared value for train from Linear Regression= 0.7800936978183916 R squared value for test from Linear Regression= 0.7658615091649229 R squared value for train from Random Forest= 0.9202494705146291 R squared value for test from Random Forest= 0.8504018147750623 Base RMSE of model built from data where missing values were omitted= 1.12 74483657478247 RMSE value for test from Linear Regression= 0.5455481266513857

RMSE value for test from Linear Regression= 0.5455481266513857 RMSE value for test from Random Forest= 0.4360736289370223

Metrics for models built from data where missing values were imputed R squared value for train from Linear Regression= 0.7071658736894363 R squared value for test from Linear Regression= 0.7023339008631185 R squared value for train from Random Forest= 0.9024289431669166 R squared value for test from Random Forest= 0.8269964521311131 Base RMSE of model built from data where missing values were imputed= 1.18 84349112889792 RMSE value for test from Linear Regression= 0.6483956449231295 RMSE value for test from Random Forest= 0.494313994408829

In []:	
In []:	
In []:	
In []:	
In []:	