§2. Скалярное произведение двух векторов

Определение 2.1. *Скалярным произведением* двух векторов \vec{a} и \vec{b} называется произведение длин этих векторов на косинус угла между ними.

(Если хотя бы один из векторов нулевой, то угол между ними не определён (т.е. может принимать любое значение между 0 и π). Однако косинус этого угла ограничен, и в соответствии с определением 2.1 скалярное произведение таких векторов существует и равно 0.)

Скалярное произведение двух векторов \vec{a} и \vec{b} принято обозначать так: $\vec{a} \cdot \vec{b}$, $\vec{a}\vec{b}$ иногда (\vec{a},\vec{b}) . Таким образом, по определению

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\vec{a}, \widehat{\vec{b}}),$$

где $(\widehat{\vec{a}}, \widehat{\vec{b}})$ – угол между векторами \vec{a} и \vec{b} .

Скалярное произведение применяется в физике при вычислении работы A, затрачиваемой при прямолинейном движении материальной точки из положения P_1 в положение P_2 в поле действия силы \vec{F} ,

$$A = \vec{F} \cdot \overrightarrow{P_1 P_2} \,. \tag{2.1}$$

Свойства скалярного произведения

- **1.** $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$:
- **2.** $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot \text{np}_{\vec{a}} \vec{b} = |\vec{b}| \cdot \text{np}_{\vec{b}} \vec{a};$
- 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$;
- **4.** $\vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$;
- **5.** $\vec{a} \cdot \vec{a} = |\vec{a}|^2$;
- **6.** $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

Замечание 2.1. Свойства 3 – 4 называются *линейными свойствами* скалярного произведения.

- ▶1. Данное равенство является следствием определения 2.1 и свойства угла между векторами: $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$.
- **2.** Данное утверждение следует из определения 2.1 и свойства 5 проекции вектора \vec{a} на направление вектора \vec{b} (§1). Действительно,

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos(\vec{a}, \widehat{\vec{b}}) = |\vec{a}| \operatorname{mp}_{\vec{a}} \vec{b}, \quad \vec{a} \cdot \vec{b} = |\vec{b}| \cdot |\vec{a}| \cos(\vec{a}, \widehat{\vec{b}}) = |\vec{b}| \operatorname{mp}_{\vec{b}} \vec{a}.$$

3. Доказываемое равенство очевидно, если хотя бы один из векторов \vec{a} , \vec{b} , \vec{c} нулевой. Пусть теперь $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$, $\vec{c} \neq \vec{0}$. Тогда по доказанному свойству 2 и свойству 3 проекции суммы векторов имеем:

$$\vec{a} \cdot (\vec{b} + \vec{c}) = |\vec{a}| \cdot \mathbf{np}_{\vec{a}} (\vec{b} + \vec{c}) = |\vec{a}| \cdot (\mathbf{np}_{\vec{a}} \vec{b} + \mathbf{np}_{\vec{a}} \vec{c}) =$$

$$= |\vec{a}| \cdot \mathbf{np}_{\vec{a}} \vec{b} + |\vec{a}| \cdot \mathbf{np}_{\vec{a}} \vec{c} = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}.$$

4. Данное соотношение очевидно в случае, когда хотя бы один из векторов \vec{a} и \vec{b} нулевой, или $\lambda=0$. Предполагая теперь, что $\vec{a}\neq\vec{0},\ \vec{b}\neq\vec{0}$ и

 $\lambda \neq 0$, в силу выше доказанного свойства 2 и свойства 4 проекции вектора \vec{a} на направление вектора \vec{b} имеем

$$\vec{a} \cdot (\lambda \vec{b}) = |\vec{a}| \cdot \pi p_{\vec{a}}(\lambda \vec{b}) = \lambda \cdot |\vec{a}| \cdot \pi p_{\vec{a}} \vec{b} = \lambda \cdot (\vec{a} \cdot \vec{b}).$$

- **5.** В случае $\vec{a} \neq \vec{0}$ доказываемое равенство следует из определения 2.1, так как тогда $(\vec{a}, \vec{a}) = 0$ и $\cos(\vec{a}, \vec{a}) = 1$. Если же $\vec{a} = \vec{0}$, то $|\vec{a}|^2 = 0$ и $\vec{a} \cdot \vec{a} = 0$. Таким образом, и в этом случае $\vec{a} \cdot \vec{a} = |\vec{a}|^2$.
- **6.** Предположим сначала, что $\vec{a} \neq \vec{0}$ и $\vec{b} \neq \vec{0}$. Утверждение $\vec{a} \cdot \vec{b} = 0$ согласно определению 2.1 эквивалентно утверждению: $\cos(\vec{a}, \widehat{\vec{b}}) = 0$ или утверждению: $\vec{a} \perp \vec{b}$, так как в этом случае угол $(\vec{a}, \vec{b}) = \frac{\pi}{2}$. Если же хотя бы один из этих векторов нулевой, то $\vec{a} \cdot \vec{b} = 0$, а нуль-вектор можно считать перпендикулярным любому вектору, в том числе и нулевому. ◀

Пусть векторы \vec{a} и \vec{b} заданы разложениями в прямоугольном базисе \vec{i} , \vec{j} , \vec{k} :

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k},
\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}.$$
(2.2)

Тогда

$$\vec{a} \cdot \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \cdot (b_x \vec{i} + b_y \vec{j} + b_z \vec{k}).$$

Раскрывая скобки в правой части этого равенства, учитывая линейные свойства 3 и 4 скалярного произведения и принимая во внимание, что $\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$, а $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{i} = \vec{i} \cdot \vec{k} = \vec{k} \cdot \vec{i} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{j} = 0$, получим:

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z. \tag{2.3}$$

В частном случае, при $\vec{a} = \vec{b}$, имеем $\vec{a} \cdot \vec{a} = \left| \vec{a} \right|^2 = a_x^2 + a_y^2 + a_z^2$, т.е.

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} \ .$$
 (2.4)

Равенство (2.4) даёт выражение для длины вектора \vec{a} через его координаты.

В частности, если $\vec{a} = \overrightarrow{AB}$, $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ и, следовательно,

$$\vec{a} = \overrightarrow{AB} = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j} + (z_2 - z_1)\vec{k}$$
 (см. (6.6), глава 1), то
$$|\vec{a}| = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} . \tag{2.5}$$

С помощью соотношения (2.5) вычисляется расстояние между точками A и B по известным прямоугольным координатам этих точек.

Из определения 2.1 с учетом (2.3) и (2.4) следует формула для косинуса угла между данными векторами:

$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$
 (2.6)

Полагая в (2.6) поочередно $\vec{b}=\vec{i}$, $\vec{b}=\vec{j}$, $\vec{b}=\vec{k}$, приходим к формулам для так

называемых *направляющих* косинусов вектора \vec{a} , под которыми понимают косинусы углов, образованных \vec{a} с векторами прямоугольного базиса \vec{i} , \vec{j} , \vec{k} или, что то же самое, с осями прямоугольной системы координат:

$$\cos(\vec{a},\vec{i}) = \frac{\vec{a} \cdot \vec{i}}{|\vec{a}| \cdot |\vec{i}|} = \frac{a_x}{|\vec{a}|}, \cos(\vec{a},\vec{j}) = \frac{\vec{a} \cdot \vec{j}}{|\vec{a}| \cdot |\vec{j}|} = \frac{a_y}{|\vec{a}|}, \cos(\vec{a},\vec{k}) = \frac{\vec{a} \cdot \vec{k}}{|\vec{a}| \cdot |\vec{k}|} = \frac{a_z}{|\vec{a}|}.(2.7)$$

$$\cos^2(\vec{a},\vec{i}) + \cos^2(\vec{a},\vec{j}) + \cos^2(\vec{a},\vec{k}) = 1.$$

Направляющие косинусы вектора \vec{a} — это координаты его орта $\vec{a}_0 = \frac{\vec{a}}{|\vec{a}|}$.

Из равенств (2.7) следует, что по знаку координаты вектора \vec{a} можно судить о том, какой угол — острый или тупой — образует этот вектор с данной осью координат. Действительно, в силу этих равенств знак координаты вектора \vec{a} по данной оси координат совпадает со знаком косинуса рассматриваемого угла. Таким образом, если координата по данной оси отрицательна, то этот угол тупой, а если положительна, то острый.

Наконец, для проекции вектора \vec{a} , заданного первым из разложений (2.2), на ось \vec{l} с ортом \vec{e} справедливо равенство

$$\operatorname{np}_{\vec{l}}\vec{a} = \vec{a} \cdot \vec{e} = a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma,$$

где $\cos\alpha$, $\cos\beta$, $\cos\gamma$ — направляющие косинусы вектора \vec{e} .

Пример 2.1. Точки A(1,-1,0), B(3,-3,1), C(2,1,2)— вершины треугольника. Найти его внутренний угол при вершине B.

▶Угол треугольника \overrightarrow{ABC} при вершине B образован векторами \overrightarrow{BA} и \overrightarrow{BC} (рис. 2.1). Найдём их координаты, вычитая из координат

наидем их координаты, вычитая из координат $\overrightarrow{BA} = (-2, 2, -1)$, их концов координаты начала (формула (6.4), глава 1): $\overrightarrow{BA} = (-2, 2, -1)$,

 \overrightarrow{BC} = (-1, 4, 1), а их длины по формуле (2.4):

$$|\overrightarrow{BA}| = \sqrt{(-2)^2 + 2^2 + (-1)^2} = 3, |\overrightarrow{BC}| = \sqrt{(-1)^2 + 4^2 + 1^2} = 3\sqrt{2}.$$

Для $\cos \hat{B}$ в силу (2.6) имеем равенство

$$\cos \hat{B} = \frac{(\overrightarrow{BA}, \overrightarrow{BC})}{|\overrightarrow{BA}||\overrightarrow{BC}|} = \frac{(-2)(-1) + 2 \cdot 4 + (-1) \cdot 1}{3 \cdot 3\sqrt{2}} = \frac{1}{\sqrt{2}},$$

откуда заключаем, что $B = \pi/4$. ◀

Пример 2.2. Найти длины диагоналей параллелограмма, построенного на

векторах \vec{a} и \vec{b} , если $\vec{a} = 3\vec{p} + 2\vec{q}$, $\vec{b} = 2\vec{p} - \vec{q}$, $|\vec{p}| = 4$, $|\vec{q}| = 3$, $(\vec{p}, \vec{q}) = 2\pi/3$.

▶Длины диагоналей параллелограмма равны $|\vec{a} + \vec{b}|$, $|\vec{a} - \vec{b}|$ (рис. 2.2), $\vec{a} + \vec{b} = 5\vec{p} + \vec{q}$, $\vec{a} - \vec{b} = \vec{p} + 3\vec{q}$. В силу свойству 5 имеем:

$$\begin{vmatrix} \vec{a} + \vec{b} | = \sqrt{(\vec{a} + \vec{b})^2} & \text{или} & \left| \vec{a} + \vec{b} \right| = \sqrt{(5\vec{p} + \vec{q})^2} = \sqrt{25\vec{p}^2 + 10\vec{p}\vec{q} + \vec{q}^2} . \quad \text{Поскольку}$$

$$\vec{p}\vec{q} = \left| \vec{p} \right| \left| \vec{q} \right| \cos(\vec{p}, \vec{q}) = 4 \cdot 3 \cdot \cos(2\pi/3) = -6 , \quad \vec{p}^2 = \left| \vec{p} \right|^2 = 16 , \quad \vec{q}^2 = \left| \vec{q} \right|^2 = 9 , \quad \text{то}$$

$$|\vec{a} + \vec{b}| = \sqrt{25 \cdot 16 - 60 + 9} = \sqrt{349} . \quad \text{Аналогично},$$

$$\sqrt{(\vec{a} - \vec{b})^2} = \sqrt{(\vec{p} + 3\vec{q})^2} = \sqrt{\vec{p}^2 + 6\vec{p}\vec{q} + 9\vec{q}^2} = \sqrt{16 - 36 + 9 \cdot 9} = \sqrt{61} . \blacktriangleleft$$

Пример 2.3. Найти работу, совершаемую при прямолинейном движении материальной точки из положения $P_1(1,-1,3)$ в положение $P_2(2,-1,1)$ в поле действия силы $\vec{F}=(-2,3,-5)$.

► Согласно (2.1) для работы A имеем равенство: $A = \vec{F} \cdot \overrightarrow{P_1P_2}$. Поскольку $\overrightarrow{P_1P_2} = (1,0,-2)$, то $A = (-2) \cdot 1 + 3 \cdot 0 + (-5)(-2) = 8$ (ед. энергии). \blacktriangleleft