Parte I

CURVAS Y SUPERFICIES DE NIVEL

Dra Judith Cruz Torres

1. Curvas de nivel

Dada $f:U\subset\mathbb{R}^2\to\mathbb{R}$ función de dos variables con valores reales.

La intersección del plano horizontal z = k con la superficie z = f(x, y) es la **curva de contorno de altura** k sobre la superficie . La proyección vertical de esta curva de contorno en el plano XY es la **curva de Nivel** k **de la función** f.

1.1. Ejemplo

Describa las curvas de nivel de la función $f(x,y) = x^2 - y$. Haga uso del geogebra para tener una idea gráfica de las curvas de nivel y haciendo uso de estas obtenga la gráfica de la superficie z = f(x,y).

Solución

- **a.** $Dom f = \mathbb{R}^2, \, Ran f = \mathbb{R}$
- **b.** Determinemos las intersecciones de z=k, donde $k\in Ranf$, y $z=x^2-y$:

$k \in Ranf$	$z = k \land z = x^2 - y$	Curvas de nivel k	
-3	$-3 = x^2 - y$	$y = x^2 + 3$	Parábola: V=(0,-3) y se extiende hacia el eje y positivo
-2	$-2 = x^2 - y$	$y = x^2 + 2$	Parábola: V=(0,-2) y se extiende hacia el eje y positivo
-1	$-1 = x^2 - y$	$y = x^2 + 1$	Parábola: V=(0,-1) y se extiende hacia el eje y positivo
0	$0 = x^2 - y$	$y = x^2$	Parábola: $V=(0,0)$ y se extiende hacia el eje y positivo
1	$1 = x^2 - y$	$y = x^2 - 1$	Parábola: $V=(0,1)$ y se extiende hacia el eje y positivo
2	$2 = x^2 - y$	$y = x^2 - 2$	Parábola: $V=(0,2)$ y se extiende hacia el eje y positivo

 \mathbf{c} . Graficando las curvas de nivel k en el plano XY en Geogebra:

Primero creamos el deslizador $k \in Ranf$

Desactivamos este botón haciendo clik en

Luego hacemos click en la pantalla del plano y en entrada escribimos

Configurando ec
1 haciendo click derecho sobre esta, obtenemos la gráfica en el plano XY de algunas curvas de nivel

c. Ahora en el espacio graficaremos las curvas de contorno k (cuya proyección son las curvas de nivel) sobre la superficie y así obtendremos la gráfica de z = f(x, y):

Primero en vista activemos una ventana de gráfico 3D , y hallamos la intersección de la superficie z=f(x,y) y z=k así cmo lo hicimos en clases

Vemos que las curvas de contorno k dan lugar a la gráfica de la superficie z = f(x, y) que es un cilindro parabólico.

1.2. Ejemplo

Describa las curvas de nivel de la función $f(x,y)=\frac{2y}{x^2+y^2}$. Haga uso del geogebra para tener una idea gráfica de las curvas de nivel y haciendo uso de estas obtenga la gráfica de la suferficie z=f(x,y).

Solución

a.
$$Dom f = \mathbb{R}^2 - \{(0,0)\}, Ran f = \mathbb{R}$$

b. Determinemos las intersecciones de z=k, donde $k\in Ranf,$ y $z=\frac{2y}{x^2+y^2}$:

$k \in Ranf$	x^2+u^2	Curvas de nivel k	
-3	$-3 = \frac{2y}{x^2 + y^2}$		Circunferencia
-2	$-3 = \frac{2y}{x^2 + y^2}$ $-2 = \frac{2y}{x^2 + y^2}$		Circunferencia
-1	$-1 = \frac{2y^{2}}{x^{2}+y^{2}}$ $0 = \frac{2y}{x^{2}+y^{2}}$		Circunferencia
0	$0 = \frac{\bar{2}y}{x^2 + y^2}$		Eje x
1	$1 = \frac{2y}{x^2 + y^2}$		Circunferencia
2	$2 = \frac{2y}{x^2 + y^2}$		Circunferencia
Completar e	l cuadro		

 ${\bf c.}$ Graficando las curvas de nivel ken el plano XY en Geogebra:

d. Ahora en el espacio graficaremos las curvas de contorno k (cuya proyección son las curvas de nivel) sobre la superficie y así obtendremos la gráfica de z = f(x, y):

1.3. Ejercicios

Describa las curvas de nivel de las siguientes funciones . Haga uso del geogebra para tener una idea gráfica de las curvas de nivel siguiendo los pasos a,b,c de los ejemplos anteriores. Obtenga la gráfica de la suferficie z = f(x, y).

- 1. f(x,y) = y sen(x)
- 2. $f(x,y) = e^{1-x^2+y^2}$
- 3. El potencial eléctrico V en cualquier punto (x,y) es $V(x,y)=\frac{5}{\sqrt{25+x^2+y^2}}$. Dibujar las curvas equipotenciales $V=\frac{1}{2}, V=\frac{1}{3}, V=\frac{1}{4}$

2. Superficies de nivel

Dada $f:U\subset\mathbb{R}^3\to\mathbb{R}$ función de tres variables con valores reales.

La intersección del hiperplano w=k con la función w=f(x,y,z) es la **superficie de contorno** k sobre la gráfica de f. La proyección de esta superficie de contorno en el espacio \mathbb{R}^3 es la **superficie de Nivel** k **de la función** f.

En otras palabras lo que antes se llamaban curvas de nivel para funciones de dos variables ahora se llaman superficies de nivel para funciones de tres variables.

2.1. Ejemplo

Describa las curvas de nivel de $f(x, y, z) = z - x^2 - y^2$.

a.
$$Dom f = \mathbb{R}^3$$
, $Ran f = \mathbb{R}$

b. Determinemos las intersecciones de w=k, donde $k\in Ranf$, y $w=z-x^2-y^2$:

c. Luego las superficies de nivel k para f son:

2.2. Ejemplo

Describa las curvas de nivel de $f(x, y, z) = z - \sqrt{x^2 + y^2}$.

a.
$$Dom f = \mathbb{R}^3$$
, $Ran f = \mathbb{R}$

b. Determinemos las intersecciones de w=k, donde $k\in Ranf$, y $w=z-\sqrt{x^2+y^2}$:

5

$$\begin{array}{llll} k \in Ranf & w = k \wedge w = z - \sqrt{x^2 + y^2} & \text{Superficies de nivel } k \\ -3 & -3 = z - \sqrt{x^2 + y^2} & z = \sqrt{x^2 + y^2} - 3 & \text{Cono} \\ -2 & -2 = z - \sqrt{x^2 + y^2} & z = \sqrt{x^2 + y^2} - 2 & \text{Cono} \\ -1 & -1 = z - \sqrt{x^2 + y^2} & z = \sqrt{x^2 + y^2} - 1 & \text{Cono} \\ 0 & 0 = z - \sqrt{x^2 + y^2} & z = \sqrt{x^2 + y^2} & \text{Cono} \\ 1 & 1 = z - \sqrt{x^2 + y^2} & z = \sqrt{x^2 + y^2} + 1 & \text{Cono} \\ 2 & 2 = z - \sqrt{x^2 + y^2} & z = \sqrt{x^2 + y^2} + 2 & \text{Cono} \end{array}$$

c. Luego las superficies de nivel k para f son:

-2

2.3. Ejercicios

Describa las superficies de nivel de las siguientes funciones. Seguir los pasos a,b,c de los ejemplos dados.

1.
$$f(x, y, z) = x^2 + y^2 + z^2$$

$$2. f(x, y, z) = sen(x) - z$$

3.
$$f(x, y, z) = \frac{x^2 + y^2}{z}$$