Two-Thomas Filter (TT) LTspice Simulation
Presented to Eng. Yameen Tantawy Under Supervisor DR. Fatma Mazen
Prepared by Mai Omar -ECE department

Contents
1.Motivations
2.Generalized Circuit Analysis
3.Hand Analysis
4. Simulation Results

Motivations

The report gives a general overview Two-Thomas General Circuit analysis, followed by detailed discussions of low-pass, including design information, and Simulations.

Introduction

Tow–Thomas second-order filter is two alternative generation methods of the Tow–Thomas filter are discussed. The first is a generation method from the second-order passive RLC filter and the second is from the multiple feedbacks inverting low-pass filter using a single op amp.

Generalized Circuit Analysis

TT realize both LPF & BPF having these Transfer Functions

$$\frac{V_o^{LP}(s)}{V_{in}(s)} = -\frac{\frac{R_6}{R_1 R_4 R_5 C_1 C_2}}{s^2 + \frac{s}{R_3 C_1} + \frac{R_6}{R_2 R_4 R_5 C_1 C_2}}$$

$$\frac{V_o^{BP}(s)}{V_{in}(s)} = -\frac{s \frac{1}{R_1 C_1}}{s^2 + \frac{s}{R_3 C_1} + \frac{R_6}{R_2 R_4 R_5 C_1 C_2}}$$

Check your results in (iii) and (iv) by simulating the filter

(iii) The above filter is used to realize a maximally flat $(Q = 1/\sqrt{2})$ LPF with $f_o = 10$ KHz and $K_o = 10$ (V/V). The following design equations are used: $R_2 = R_3 = R = 1$ K Ω , $C_1 = C_2 = C$, Find C, R_1 , and R_4 .

Hand Analysis

2- For LPF

3- for BPF

For BP

TUSWED = $\frac{R_1}{R_4}$; $Q = \frac{R_1}{R}$; $R_1 = 707SL$ $10 = \frac{707}{R_4}$ $R_4 = 70.7$ for BP

WITH ROUGH 2K to (8K

Centered fo at LOKHE

2KHZ TOKHE 12KHZ

3**.1**-

(iv) Repeat (iii) for $K_0 = 1$, and 2.

for $K_0 = 1$ $\Rightarrow 1 = \frac{R}{R_H} = R_H = 10000.52$ $\Rightarrow for K_0 = 2$ $2 = \frac{R}{R_H} = \frac{R}{10000.52}$ $\Rightarrow all values Demen's R_1 = 707 m$ C = 16.07 n

Simulation Results

1- Circuit

2- Putting Vin =1 so gain = Vout(VLP) [Magnitude &Phase]

VLP

Two-Thomas Biquad(KHN)

1-Hand Analysis

$$\Rightarrow Q = \frac{RA + RB}{3RB} = \frac{1}{3}(1 + \frac{RA}{RB})$$

$$1et RA = 10K \Rightarrow RB = 8.9K$$

Simulation Results

- (iii) The KHN filter is used to realize a maximally flat $(Q = 1/\sqrt{2})$ LPF with $f_o = 10$ KHz. Use R=1K Ω and Find C, R_A, and R_B.
- (iv) Check your results in (iii) by simulating the filter using PSPICE program (use the model of the UA741 IC for the op

1-Circuit

2- Putting Vin =1 so gain = Vout(VHP | VLP) [Magnitude &Phase]

3- For the low-pass and the high-pass outputs, the passband gain is unity.

For VHP as Mentioned it's unity gain (K0=0db=1v)

