Colles semaine 8 - Compléments intégration

Intégration sur un segment

- Intégrabilité automatique pour une fonction continue sur un segment.
- Propriétés générales Linéarité, Chasles, positivité, intégrale d'une constante.
- ► Intégrale et primitive $\int_a^b f(t) dt = F(b) F(a)$ si F est C^1 sur [a; b] et F' = f.
- ► Intégration par parties pour u, v de classe C^1 sur [a; b], on a : $\int_a^b u'v = [uv]_a^b \int_a^b uv'.$ (Stratégie : on essaie de se rapprocher de la sortie du calcul)
- ▶ **Changement de variables** (le changement de variables est indiqué par l'énoncé)
 - \star) *Hypothèses*: $u:[a,b] \to \mathbb{R}$ de classe \mathcal{C}^1 , f continue sur u([a,b]).

*) Hypothèses:
$$u:[a,b] \to \mathbb{R}$$
 de classe \mathcal{C}^1 , f continue sur $u([a,b])$.

*) Formule:
$$\int_a^b f(u(t)) \cdot u'(t) \, \mathrm{d}t = \int_{u(a)}^{u(b)} f(x) \, \mathrm{d}x$$
(On remplace tous les $u(t)$ par des x , et $u'(t)$ dt par $\mathrm{d}x$.)

*) Notation: on a posé $x = u(t)$ et $dx = u'(t) \, \mathrm{d}t$. Alors $t = a \leadsto x = u(a) \ldots$

- \star) *Notation*: on a posé x = u(t) et dx = u'(t) dt. Alors $t = a \rightsquigarrow x = u(a) \dots$
- Extension aux fonctions continues par morceaux

Sur un segment, on dit que f est **continue par morceaux** si :

- f admet un nombre fini de points de discontinuité,
- ▶ f admet une **limite** à gauche et à droite en chacun.

On a convergence automatique de l'intégrale sur un segment pour une fonction cpm.

Intégration sur un intervalle quelconque

- ► Convergence d'une intégrale étude en $\pm \infty$, en un point x_0^{\pm} .
- ▶ Intégrales convergentes de référence
 - ► Fonctions exponentielles e^{-ax} , a > 0 sur $[0; +\infty[$.
 - ► En $+\infty$: $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge ssi $\alpha > 1$.
 - ► En 0⁺ : $\int_{0^+}^1 \frac{dt}{t^{\alpha}}$ converge ssi α < 1.

(retournement de ci-dessus)

- ► Critère de convergence absolue par comparaison = o(g(t)), ~ g(t) ou $|.| \le g(t)$.
 - ► souvent $\frac{1}{t^2}$ pour une intégrale en $+\infty$.
 - souvent $\frac{1}{\sqrt{t}}$ pour une intégrale en 0^+ .
- Extension en cas de discontinuités sur un intervalle (nombre fini de points de discontinuité) On étudie chaque « problème », puis calcul par Chasles

Principe de la comparaison série-intégrale

Encadrement d'intégrales

Pour f continue **décroissante**, on a l'encadrement : $f(n+1) \le \int_{0}^{n+1} f(t) dt \le f(n)$.

Encadrement de sommes partielles

Obtention d'encadrement de sommes partielles $\sum_{n=1}^{N} f(n)$ (Chasles pour comparer à $\int_{1}^{N+1} f(t) dt$.)

► Études de suites
$$a_n = \int_1^n f(t) dt - \sum_{k=1}^n f(k)$$
 et $b_n = \int_1^n f(t) dt - \sum_{k=1}^{n-1} f(k)$.

Questions de cours 4

1. Énoncer le critère de convergence de Riemann en $+\infty$ et en 0^+ .

2. Convergence et calcul de $\int_0^1 \ln(t) dt$.

3. Énoncer le principe du changement de variables pour une intégrale sur un segment.

4. Énoncer le principe de l'intégration par parties sur un segment.

 $\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{\mathrm{d}t}{t}.$ Passage à la limite $n \to +\infty$. **5.** Comparaison série-intégrale pour montrer :