Patch/Gamma Analysis for TIWEchameleon patches

Andy Pickering

February 20, 2017

Contents

1	Overview	2
2	Data	2
3	Methods 3.1 dTdz 3.2 N2 3.3 Mixing Efficiency	3
4	Results	4

1 Overview

The goal of this analysis is to compute mixing efficiency (Γ) for patches in TIWE chameleon profiles, and see if we obtain values close to $\Gamma = 0.2$.

2 Data

Data are made by the 'Chameleon' microstructure profiler near the equator during the 'TIWE' experiment. Data was shared by JN and my local copy is at: /Users/Andy/Dropbox/AP_Share_With_JN/date_from_jim/Tiwe91

I'm using the raw Chameleon data files in:
/Users/Andy/Dropbox/AP_Share_With_JN/date_from_jim/Tiwe91/cham/tw/

All my analysis is in the main folder:
/Users/Andy/Cruises_Research/ChiPod/TIWE

3 Methods

- Process_tiwe_rawprofiles_AP.m Processes raw Chameleon files and saves 'cal2' files which have the raw/ high-res profiles of temp and salinity. These are used to identify patches.
- FindPatches_tiwe_Raw.m Identifies patches in the profiles made by Process_tiwe_rawprofiles_AP.m, using potential temperature.
- Run_tiwe_AP_forPatches.m Runs the Chameleon processing (including χ and ϵ) for just the patches identified in FindPatches_tiwe_Raw.m.
- Run_tiwe_AP.m Runs the standard Chameleon processing, producing 1m avg quantities.
- Combine_tiwe_avg_profiles.m Combines the avg profiles made in Run_tiwe_AP.m into a single structure with common depths.
- Compute_N2_dTdz_patches_tiwe.m Computes N^2 and T_z for patches, using several different methods.

3.1 dTdz

Temperature gradient is computed for each patch using the following methods:

1. dtdz1: Take the range of T over the patch and divided by patch height

- 2. dtdz2: Fit a straight line to sorted T using polyfit
- 3. dtdz3: Use the 'bulk gradient' from Smyth et al 2001, which is the rms fluctuation from the background (sorted) temperature, divided by the thorpe scale (the rms re-ordering distances).

3.2 N2

 N^2 is computed for each patch using the following methods:

- 1. N_1^2 : Take the range of potential density over the patch divided by the patch height $(d\rho/dz)$, then compute $N^2 = \frac{-g}{\rho_o} \frac{d\rho}{dz}$ where ρ_o is the mean potential density over the patch.
- 2. N_2^2 : Fit a straight line to sorted potential density using polyfit to get $d\rho/dz$, then compute N2.
- 3. N_3^2 : Use 'bulk gradient' . This is calculated from the bulk T_z , using a linear fit between density and temperature.
- 4. N_4^2 : Compute N^2 from the sorted profile (sorted by potential density) using sw_bfreq , then take average over the patch. I believe this method is used by some commonly-used overturn codes.

3.3 Mixing Efficiency

Mixing Efficiency Γ is computed from the following equation using different N^2 and dT/dz values.

$$\Gamma = \frac{N^2 \chi}{2\epsilon T_z^2} \tag{1}$$

 χ and ϵ are computed over each patch from the Chameleon data. Gamma is computed for the following 4 combinations:

- 1. N_1^2 , dtdz1
- $2. N_2^2, dtdz2$
- 3. N_3^2 , dtdz3
- 4. N_4^2 , dtdz2

Values where ϵ is below the noise floor of $log_{10}[\epsilon] = -8.5$ are discarded (using these values does have a significant impact on the mean/median of the resulting distribution).

4 Results

- \bullet For some reason many χ values below 150db are bad/missing? Not sure why.
- The median Γ computed using the 1m avg data is 0.063 (Figure 2).
- \bullet Gamma computed over patches w/ linear fits is slightly higher than the binned gamma, but still less than 0.2 (Figure 3).

Figure 1: P color of the combined 1m avg chameleon data for TIWE. * Note for some reason many χ values below 150db are bad/missing.

Figure 2: Histogram of Γ for 1m avg chameleon profiles. Vertical dashed line shows $\Gamma=0.2$.

Figure 3: Histogram of Γ for patches, using different estimates of N^2 and T_z . Vertical dashed line shows $\Gamma=0.2$.