Shizheng Wen

My research focuses on Al4physics and Physics4Al. I strive to develop new methods through the fusion of physical models, data-driven algorithms to understand nature and sovle problems in science and engineering. Specifically, my research lies in the span of the following topics:

- O Graph Neural Networks for Partial Differential Equations
- Scientific Machine Learning for Physical Systems (fluid mechanics, Nanoscale Heat Transfer)
- O Data-driven Discovery of Governing Laws, Physics Informed Neural Networks
- Finite Element Method, Molecular Dynamics, Density Functional Theory

Education

ETH Zürich Zürich, Switzerland

M.S. Candidate 2022 – present

Department of Mathematics

M.S. Major in Computational Science and Engineering

Advisor: undetermined

Nanjing University of Aeronautics and Astronautics Undergraduate, GPA: 92/100 (Top 1% in 248 Students) Nanjing, China

2014 - 2020

Major in Aircraft Power Engineering, School of Energy and Power Engineering

Advisor: Xianglei Liu

Visiting Position

Renmin University of China

Online

Gaoling school of artificial intelligence

2022.4-present

Host: Hao Sun,

Working on graph neural networks and partial differential equations.

Nanjing University of Aeronautics and Astronautics

Nanjing, China

Institute of Nano Science

2020.10-2022.4

Host: Wanlin Guo.

Working on the underlying mechanism of ultra-low energy loss in biomolecular motor.

Duke University
Aeroelasticity Group
Durham, NC, U.S.
2019.7-2019.10

neroelasticity Group

Host: Earl Dowell,

Working on the fusion of machine learning and nonlinear fluid flows.

Publication

(* denotes the corresponding author)

- Shizheng Wen*, Michael W. Lee, Kai M. Kruger Bastos, Earl H. Dowell. Application of Convolutional Neural Networks for Feature Identification in Complex Fluid Flows, Preprint (2022), arXiv:2208.09663.
- 2. Shizheng Wen, Chunzhuo Dang, Xianglei Liu*. A Machine Learning Strategy for Modeling and Optimal design of Near-Field Radiative Heat Transfer, Appl. Phys. Lett. 121 (2022), 071101.

- Chunzhuo Dang, Xianglei Liu*, Haifeng Xia, Shizheng Wen, Qiao Xu. High-performance three-body near-field thermophotovoltaic energy conversion, J. Quant. Spectrosc. Radiat. Transf. 259 (2020), 107411.
- 4. Shizheng Wen, Xianglei liu*, Sheng Cheng, Zhoubing Wang, Shenghao Zhang, Chunzhuo Dang. Ultrahigh thermal rectification based on near-field thermal radiation between dissimilar nanoparticles, *J. Quant. Spectrosc. Radiat. Transfer* 234 (2019), pp. 1-9.

HONORS AND AWARDS

Best Undergraduate Thesis award (top 1%)	2020
University Achievements Award (nominee), NUAA (the highest honor for graduates)	2020
Chancellor's Honorary Scholarships, NUAA (the highest honor for undergraduate student)	2019
National Scholarship, Ministry of Education of P.R. China (top 1%)	2019
Boeing Scholarship, Boeing Aerospace company (16 among the whole university)	2018
Nanjing University of Aeronautics and Astronautics Scholarship - First Prize (top 3%)	2017-2019

SKILLS AND OTHERS

Programming: Expertise in Python, Matlab, C++, R language, SPSS, LINGO and various machine learning algorithms (tensorflow, Pytorch), finite element programming

Molecular Dynamics Simulations: VMD, NAMD, tcl/tk language

Modeling: ANSYS, Abaqus (finite element analysis), Multisim, ProE and AutoCAD **Hobbies:** Violin, Guitar, Tennis, Soccer, Billiards, Swimming, Music, Rubik's Cube