Collision Detection

15-493 Computer Game Programming

James Kuffner, Jr.
Carnegie Mellon University

Geometric Proximity Queries Frequently Encountered

Given two geometric objects, determine:

- If they intersect with each other?
- If they do not interpenetrate each other, how far are they apart?
- If they define volumes, do they overlap?

Spatial Data Structures & Subdivision

3

Bounding Volume Hierarchies

- Model Hierarchy:
 - Simple volume that bounds a set of triangles
 - Nodes bound a subset of the parent's triangles
 - Leaves contain individual triangles
- Sample Binary BVH:

Example Bounding Volumes

- Spheres
- Ellipsoids
- Axis-Aligned Bounding Boxes (AABB)
- Oriented Bounding Boxes (OBBs)
- Convex Hulls
- *k*-Discrete Orientation Polytopes (*k*-dop)
- Spherical Shells
- Swept-Sphere Volumes (SSVs)

OOBB-OOBB Overlap Test

■ Half-length of interval is sum of box axis projections.

$$r_B = b_1 |\mathbf{R}_1^B \cdot \mathbf{n}| + b_2 |\mathbf{R}_2^B \cdot \mathbf{n}| + b_3 |\mathbf{R}_3^B \cdot \mathbf{n}|$$

15

OBB Separating Axis Theorem

Without overlap $T * L > r_A + r_B$

Colliding Two Object Hierarchies

19

Collision Detection Software

University of North Carolina (UNC) at Chapel Hill is a leader in geometric proximity query research and has many software packages available to students and educators

http://www.cs.unc.edu/~geom/collide/

