Cyber security automation for an industrial 4.0 garment manufacturing system

2021-11

Our Team

Dasunpriya Kalhara IT18139440 Cyber Security

Udara De Alwis
IT18136098
Cyber Security

Anuka Jinadasa IT18132410 Cyber Security

Dinuwan Randunu IT18133578 Cyber Security

Prof. Pradeep Abeygunawardhana
Professor / Head | Department of
Computer Systems Engineering

Co - Supervisor

Ms. Wellalage Sasini Nuwanthika

External – Supervisor

Mr. Gamini De Alwis

Introduction

Security is neglected when migrating into Industry 4.0 by most companies.

Why Garment Industry ?

Research Question

How can we secure industrial 4.0 garment manufacturing system?

Challenges:

- **❖** The development of the secure network environment.
- Collaboration between different systems.
- Centralized security management.
- **❖** Secure communication.
- Insecure data.
- **❖** Initial cost.
- **❖** Lack of strategy to industry 4.0.

Main and Sub Objectives

Security implementation for the potential challenges of the smart manufacturing system

Authentication & access monitoring

Security updates

Security configurations

Overall System Diagram

Dasunpriya Kalhara IT18139440 Cyber Security

Dasunpriya Kalhara IT18139440

Introduction

Background

Dasunpriya Kalhara IT18139440

Insecure Default Settings

Devices or systems shipped with insecure default settings or lack the ability to make the system more secure by restricting operators from modifying configurations [1].

Research Gap

	SCAP Workbench [2]	CIS-CAT Pro [3]	Proposed Tool
Ubuntu Linux	×	✓	✓
Robot OS	×	×	✓
Raspberry OS	×	×	V

Research Question

How can we Automate Security configuration for CPS devices?

Specific & Sub Objectives

Specific Objective:

A tool for Automating security configurations

Sub Objectives:

- Audit security configurations
- Centralized device configuration management
- Generate Audit reports

RESEARCH METHODOLOGY

System Diagram

Technologies, techniques & algorithms

Software specification

Requirements

- **❖** A Python tool to automate security configurations.
- **❖** Add new audit and remediations to the python tool.
- ❖ Select and deselect remediations to create optimize compliance profile based on resource usage of the devices.
- **❖** A report generating function to generate audit reports.

Work Breakdown Structure

SUPPORTIVE INFORMATION

Commercialization

Targeted Audience: Small and medium 4.0 industries or industries that migrating into industry 4.0

Social Media - We will gauge our target audience through Facebook, Twitter, and Instagram campaigns.

REFERENCES

- •[1] "OWASP Internet of Things Project OWASP." https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10 (accessed Mar. 06, 2021).
- •[2] "SCAP Workbench | OpenSCAP portal." https://www.openscap.org/tools/scap-workbench/ (accessed Mar. 06, 2021).
- •[3] "CIS Benchmarks™," CIS. https://www.cisecurity.org/cisbenchmarks/ (accessed Mar. 06, 2021).

Udara De Alwis
IT18136098
Cyber Security

Introduction

- Manufacturing standards, are a challenge that IoT has to overcome. Manufacturers do not spend enough effort and resources on security[1].
- ❖ They are very industry specific and mostly just suggested best practices.
- ❖ IoT Devices lack having guidance for security policy enforcement.
- Policies are not been focused to enforce in the design stage.
- Lack of compliance.[1]
- Lack of secure update mechanism.[1]

Research Gap

- ❖ Industrial 4.0 automation is driven by focusing on the functionality and SAM/SMV(Standard Allowed Minute/ Standard Minute Value) rather than security.
- ❖ There are few IoT security frameworks in various stages of development. (ETSI(European Telecommunications Standards Institue)EN 303 645, IoT Security Compliance Framework, OWASP ISVS, ENISA, NIST)[2][3].
- ❖ Comparison of the security standards and best practices for the different industrial automation domains are available.[4]
- There hasn't been a powerful enough push to make universal IoT security standards.

Research Question

How to identify and create security policies suitable for IoT and CPS devices.

How to Integrate security strategies and policies suitable for IoT and CPS devices.[5]

How to implement proper security update mechanism.

Specific & Sub Objectives

- Create security policies for IoT and CPS
- Update management

Sub Objectives:

- Password policy creation
- Access policy creation
- Firewall policy creation
- Acceptable use policy creation
- Update policy implementation

RESEARCH METHODOLOGY

System Diagram

Technologies, techniques & algorithms

Techniques

- **NIST**
- **ENISMA**

Requirements

- Meeting Stakeholder requirements.
- ❖ Risk identification and assessment.
- **❖** Security policy development and privacy by design.
- **❖** Hardware root of trust.

Work Breakdown Structure

Security standards and policy development

Work Breakdown Structure

cont'd

❖ Update management

SUPPORTIVE INFORMATION

Commercialization

Targeted Audience: Small and medium 4.0 industries or industries that migrating into industry 4.0

Social Media - We will gauge our target audience through Facebook, Twitter, and Instagram campaigns.

REFERENCES

[1]"Top 10 IoT Security Issues: Ransom, Botnet Attacks, Spying," *Intellectsoft Blog*, Jul. 30, 2020. https://www.intellectsoft.net/blog/biggest-iot-security-issues/ (accessed Mar. 07, 2021).

[2]"What Are the IoT Security Standards?," *SDxCentral*. https://www.sdxcentral.com/5g/iot/definitions/what-are-iot-security-standards/ (accessed Mar. 07, 2021)."Comparison of IoT Security Frameworks," *Comparison of IoT Security Frameworks*. https://www.eurofins-cybersecurity.com/news/comparison-iot-security-frameworks/ (accessed Mar. 07, 2021).

[3] "Comparison of IoT Security Frameworks," *Comparison of IoT Security Frameworks*. https://www.eurofins-cybersecurity.com/news/comparison-iot-security-frameworks/ (accessed Mar. 07, 2021).

[4]M. Ehrlich, H. Trsek, L. Wisniewski, and J. Jasperneite, "Survey of Security Standards for an automated Industrie 4.0 compatible Manufacturing," in *IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society*, Lisbon, Portugal, Oct. 2019, pp. 2849–2854, doi: 10.1109/IECON.2019.8927559

[5]K. Zhou, Taigang Liu, and Lifeng Zhou, "Industry 4.0: Towards future industrial opportunities and challenges," in 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, Aug. 2015, pp. 2147–2152, doi: 10.1109/FSKD.2015.7382284.

Anuka Jinadasa IT18132410 Cyber Security

Introduction

Background

- **❖** securing smart devices is not a priority for vendors.
- ❖ Commercial security solutions are expensive to establish and maintain. [1] [2]

Research Gap

	McAfee NSP [3]	Cisco Firepower	Trend Micro TippingPoint	Proposed Solution
Signature based	•	•	×	
Anomaly based	✓	✓	•	
Base Price	\$10,995	\$100,000	\$6,000	\$500

Research Question

How can we implement cost effective, lightweight yet fully capable firewall & IDS/IPS?

Specific & Sub Objectives

Specific Objective:

implement a firewall and IDS/IPS system

Sub Objectives:

- Provide easy access dashboard to the user.
- Visualize network behavior to user.
- Enable add/ remove firewall rules through the dashboard.
- Alert user when an anomaly occurs. [1]

RESEARCH METHODOLOGY

System Diagram

Anuka Jinadasa IT18132410

Technologies, techniques & algorithms

Algorithms
Signature based detection
Pattern based detection [4]

Software specification

Requirements

- **❖** Logging & alerting network behavior
- ❖ Packet decoder & Detection engine
- Visualize network behavior via dashboard.
- **❖** Add/ remove firewall rules via dashboard.
- **❖** Minimize false positive & false negative.
- Configure according to the security policies

Work Breakdown Structure

SUPPORTIVE INFORMATION

Commercialization

Targeted Audience: Small and medium 4.0 industries or industries that migrating into industry 4.0

Social Media - We will gauge our target audience through Facebook, Twitter, and Instagram campaigns.

REFERENCES

[1] N. Gupta, V. Naik and S. Sengupta, "A firewall for Internet of Things," 2017 9th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2017, pp. 411-412, doi: 10.1109/COMSNETS.2017.7945418.

[2] M. Brachmann, S. L. Keoh, O. G. Morchon, and S. S. Kumar, "End-toend transport security in the ipbased internet of things," in 2012 21st International Conference on Computer Communications and Networks (ICCCN). IEEE, 2012, pp. 1–5

[3] (Best Intrusion Detection & Prevention Systems 2021 | IDPS Guide, 2021)

[4] Ioulianou, Philokypros & Vassilakis, Vassilios & Moscholios, Ioannis. (2018). A Signature-based Intrusion Detection System for the Internet of Things.

Dinuwan Randunu
IT18133578
Cyber Security

Introduction

Background

- Primarily focus only on functionality of industrial 4.0 automated systems.
- Security has been shared with a third party.
- ❖ Insecure Data
- Ethernet and the IP protocol stack are becoming a core part of plant and factory networks. [1]
- Connected to the internet over TCP/IP protocols without additional protection. [2]

Research Gap

Industrial 4.0 automation is driven by focusing on the functionality rather than security.

Research Question

How can we achieve

- Authentication
- Authorization
- Accounting in cps devices?

Specific & Sub Objectives

Specific Objective:

Establish Authentication, authorization and accounting (AAA) and ensure security.

- Access log visualization.
- Report generation.
- Alert user when an anomaly occurs.

RESEARCH METHODOLOGY

Dinuwan Randunu IT18133578

System Diagram

Dinuwan Randunu IT18133578

Technologies, techniques & algorithms

Software specification

Requirements

- **❖** Database to store access logs and error logs.
- ❖ Implement a Physical Security System
- **❖** Data visualization from access logs.
- **❖** Report generation from access logs.

Work Breakdown Structure

SUPPORTIVE INFORMATION

Commercialization

Targeted Audience: Small and medium 4.0 industries or industries that migrating into industry 4.0

Social Media - We will gauge our target audience through Facebook, Twitter, and Instagram campaigns.

REFERENCES

[1]N. Tuptuk and S. Hailes, "Security of smart manufacturing systems," Journal of Manufacturing Systems, vol. 47, pp. 93–106, Apr. 2018, doi: 10.1016/j.jmsy.2018.04.007.

[2]Francis Enejo Idachaba and Ayobami Ogunrinde, "Review of Remote Terminal Unit (RTU) and Gateways for Digital Oilfield delpoyments" International Journal of Advanced Computer Science and Applications(IJACSA), 3(8), 2012. http://dx.doi.org/10.14569/IJACSA.2012.030826

Gantt chart & Tentative budget allocation

					Timeline																	
#	Task Name	Duration	Start	ETA	January			March	April	May		lune .	July		August		eptem		Octo			ember
	lete project execution	40 weeks	10-01-21	01-11-21	1 2 3	4 1 2	3 4	1 2 3 4	1 2 3 4	1 2 3	4 1 2	3 4	1 2 3	4 1	2 4	4 1	2 3	4	1 2	3 4	1 2	3 4
1	Online project Registration	1 week	10-01-21	17-01-21																		
2	Topic Assessment Form submission	1 week	18-01-21	22-01-21																		
3	Project Charter submission	1 week	08-02-21	12-02-21	>																	
4	Proposal report draft submission	2 weeks	15-02-21	26-02-21		T																
5	Proposal presentation	1 weeks	28-02-21	08-03-21		▶																
6	Proposal report	2 weeks	08-03-21	21-03-21			>															
7	Security Configuration	28 weeks	22-03-21	18-10-21																		
7.1	Identify required CPS devices	2 weeks	22-03-21	05-04-21																		
7.2	Identify and evaluate security requirements o	2 weeks	06-04-21	20-04-21																		
7.3	Implement a tool for security hardening	8 weeks	20-04-21	15-06-21																		
7.4	Implement report generating tool	4 weeks	15-06-21	12-07-21					7													
7.5	Test Security Configuration	3 weeks	13-07-21	02-08-21									Ļ									
7.6	Integrate hardening tool to the entire soluti	9 weeks	03-08-21	18-10-21									7									
8	Security standards and policy development	28 weeks	22-03-21	18-10-21																		
8.1	Identify the connected devices	2 weeks	22-03-21	05-04-21																		
8.2	Conduct a risk assessment	8 weeks	05-04-21	01-06-21																		
8.3	Identify the specific standards, procedures a	4 weeks	01-06-21	28-06-21							 											
8.4	Identify the types of policies required	4 weeks	28-06-21	26-07-21									 									
8.5	Implement policies for the components	10 weeks	26-07-21	18-10-21											>							
9	Implementations of Firewall & IDS	28 weeks	22-03-21	18-10-21																		
9.1	Identify required CPS components and categori	2 weeks	22-03-21	05-04-21																		
9.2	Identify security requirements of the compone	2 weeks	05-04-21	20-04-21					>													
9.3	Configure firewall and define rules based on	8 weeks	20-04-21	15-06-21					>													
9.4	Implement IDS & IPS using a hybrid approach	9 weeks	15-06-21	09-08-21								>										
9.5	Report generating tool based on audits and se	4 weeks	09-08-21	06-09-21												>						
9.6	Test implemented security measures	3 weeks	06-09-21	18-10-21														>				
10	Authentication and access monitoring	28 weeks	22-03-21	18-10-21																		
10.1	Identify required devices	2 weeks	22-03-21	05-04-21																		
10.2	Identify security requirements	4 weeks	05-04-21	03-05-21					>													
10.3	Analysis of network accessibility and physica	9 weeks	03-05-21	05-07-21						>												
10.4	Implement login system for access and activit	9 weeks	05-07-21	06-09-21									>									
10.5	Test implemented security measures	4 weeks	06-09-21	18-10-21		Viewer do	es not sup	pport full SVG 1	1.1								إ	>				

Item(s)	Cost(LKR)
Web server hosting	5000.00
Firewall + IDS/IPS hardware	1 8000.00
Physical security system hardware	5000.00
Raspberry Pi 3	1 2000.00
Total	4 0000.00

