Direct Collocation for Quantum Optimal Control

Aaron Trowbridge, Aditya Bhardwaj, Kevin He, David I. Schuster, & Zachary Manchester

Quantum Optimal Control Review

Know the dynamics of my system

$$i\frac{\partial |\psi\rangle}{\partial t} = H(\mathbf{u}(t))|\psi\rangle$$

Achieve

$$|\psi_0\rangle \to |\psi_{\rm target}\rangle$$

Minimize

$$J = 1 - |\langle \psi_{\text{final}} | \psi_{\text{target}} \rangle|^2$$

Procedure

- 1. Rollout
- Calculate gradient of cost function w.r.t controls
- 3. Update controls with gradient
- 4. Repeat

GRAPE and Other Indirect Methods

Question: What if you care about things besides the fidelity?

$$J = 1 - |\langle \psi_{\text{final}} | \psi_{\text{target}} \rangle|^2 + \sum_{i} w_i \text{cost}_i$$

Answer: Cost function shaping

Direct Methods

Treat states and controls as decision variables

minimize
$$J(x) = 1 - \mathcal{F}(x_N, x_{\text{goal}})$$

subject to $f(x_{k+1}, x_k, u_k) = 0$
 $c(x, u) \ge 0$
 $d(x, u) = 0$

Solve using nonlinear program solver (IPOPT)

Direct Collocation

Direct Collocation

Padé Approximants

Taylor Series

$$\exp(A) \approx T_4(A) = 1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \frac{A^4}{4!}$$

Padé Approximant

$$\exp(A) \approx \frac{F_2(A)}{B_2(A)} = \frac{b_0 + b_1 A + b_2 A^2}{1 + c_1 A + c_2 A^2}$$

Demand

$$\frac{F_2(A)}{B_2(A)} = T_4(A)$$

match coefficients

$$\frac{F_2(A)}{B_2(A)} = \frac{1 + \frac{1}{2}A + \frac{1}{12}A^2}{1 - \frac{1}{2}A + \frac{1}{12}A^2}$$

Padé Approximants

Padé Integrator Collocation (PICO)

$$0 = f(x_{k+1}, x_k, u_k)$$

$$= x_{k+1} - \exp(-i\Delta t H(u_k)) x_k$$

$$\approx x_{k+1} - B(u_k)^{-1} F(u_k) x_k$$

$$= B(u_k) x_{k+1} - F(u_k) x_k$$

Hardware System

Hardware Result

$$|g0\rangle \rightarrow |g1\rangle$$

Fidelity = 0.988 ± 0.011

Direct Indirect

	Direct	Indirect
Dynamics	Implicit and parallelizable	Explicit and requires rollouts

	Direct	Indirect
Dynamics	Implicit and parallelizable	Explicit and requires rollouts
State constraints	Easily implemented	More difficult

	Direct	Indirect
Dynamics	Implicit and parallelizable	Explicit and requires rollouts
State constraints	Easily implemented	More difficult
Initial guess	More freedom	Dynamically constrained

	Direct	Indirect
Dynamics	Implicit and parallelizable	Explicit and requires rollouts
State constraints	Easily implemented	More difficult
Initial guess	More freedom	Dynamically constrained
Convergence	Great tail convergence	Poor tail convergence

$$\underset{x,u,\Delta t}{\operatorname{minimize}} \quad \ell(x_N)$$

$$\underset{x,u,\Delta t}{\operatorname{minimize}} \quad \ell(x_N)$$

subject to
$$f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$$

$$\underset{x,u,\Delta t}{\text{minimize}} \quad \ell(x_N)$$

subject to
$$f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$$

subject to
$$f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$$

subject to
$$f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$$

minimize
$$\ell(x_N) + \sum_k \Delta t_k$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N) + \sum_k \Delta t_k$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N) + \sum_k \Delta t_k$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N) + \sum_k \Delta t_k$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$
 $\mathcal{F}(x_N) \geq \bar{\mathcal{F}}$

minimize
$$\ell(x_N) + \sum_k \Delta t_k$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$
 $\mathcal{F}(x_N) \geq \bar{\mathcal{F}}$

minimize
$$\ell(x_N) + \sum_k \Delta t_k$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$
 $\mathcal{F}(x_N) \geq \bar{\mathcal{F}}$

PICO minimum time pulse

GRAPE pulse

minimize
$$\ell(x_N)$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N)$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$
 $\|x_{\text{guard}}\| < \epsilon$

minimize
$$x, u, \Delta t$$
 $\ell(x_N)$ subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$ $\|x_{\text{guard}}\| < \epsilon$

minimize
$$\ell(x_N)$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$
 $\|x_{\text{guard}}\| < \epsilon$

minimize
$$\ell(x_N)$$
 subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N) + \|x_{\text{guard}}\|_1$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N) + \|x_{\text{guard}}\|_1$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

minimize
$$\ell(x_N) + \|x_{\text{guard}}\|_1$$

subject to $f(x_{k+1}, x_k, u_k, \Delta t_k) = 0$

Questions?