Sistemas de computación 1

Trabajo práctico n° 2

Aritmética binaria, octal y hexadecimal

- 1. Resolver las siguientes operaciones en BINARIO (Resultado y operaciones deben estar en el desarrollo).
 - a. 10110 + 101001
 - b. 100111 + 1011
 - c. 111001 + 11011
 - d. 100010 1011
 - e. 111000 100111
 - f. 101101 1111

Método de resolución

Para llevar a cabo las operaciones entre números binarios se alinearon a partir de la derecha coincidiendo sus correspondientes posiciones. La suma se efectúa de igual forma que en los números decimales, pero en el caso de operar 1+1 (que es 2 en decimal y 10 en binario) se genera un acarreo (marcados en rojo) quedando 0 bajo de la línea de igualdad y "llevando" 1 para ser sumado en la siguiente posición (bit de mayor peso). Si el acarreo llevara un 1 y se tendrían que sumar otros 1 (siendo 3 el resultado en decimal y 11 en binario) queda 1 bajo la línea de igualdad y 1 pasa al bit de mayor peso. Para la resta también se opera de forma similar a la decimal y cuando no puede hacerse como ser el caso de 0-1 "se le pide" a la posición de la izquierda (bit de mayor peso), y si este llegara a ser también 0 se llega hasta el próximo 1. En estos sucesivos préstamos siempre se le van restando 1 de forma que una vez que se llega a la cifra que primero pidió el préstamo terminan quedando 10 (2 en decimal) mientras que las intermedias quedan en 1 (en azul quedan marcadas como termina cada posición).

a)	b)	$\mathbf{c})$
10110	100111	111001
101001	1011	11011
111111	110010	1010100
d)	e)	f)
d) 100010	e) $11\overset{0}{1}\overset{1}{0}\overset{1}{0}\overset{1}{0}\overset{1}{0}$	f) 10110110110
1 1 1 10 10	0 1 1 10	•

2. Resolver las siguientes operaciones en OCTAL (resultado y operaciones deben estar en el desarrollo).

- a. 456 + 123
- b. 507 + 265
- c. 413 256
- d. 602 375
- e. 530 164
- f. 765 347

Método de resolución

Las sumas y restas en octal se hacen de manera análoga a la decimal con la salvedad de que al haber solamente 8 símbolos (0-7) cuando nos resulta un número mayor que 7 en el caso de la suma se lo deberá convertir a binario para luego obtener su equivalencia a octal tomándose de a 3 bits. Por ejemplo: $12_{10} = 1100_2 = 14_8$.

En el caso de la resta se hace de manera inversa, cuando el minuendo es menor que el sustraendo y tiene que pedirle a la posición de la izquierda, este número que originalmente es octal debe convertirse al sistema decimal para poder razonar la operación de la forma a que estamos acostumbrados de manera decimal.

Por ejemplo: $13_8 - 6_8 = 001011_2 - 000110_2 = 11_{10} - 6_{10}$

$\mathbf{a})$		b)	$\mathbf{c})$
	456	50 ¹ 7	4113
+	123	265	256
d)	601	774 e)	135 f)
\mathbf{u}_{j}		e)	
		٥)	1)
	602	530	765
-	6 ¹ 0 ¹ 2	·	

a)
$$6+3=9_{10}=1001_2=11_8$$

 $1+5+2=8_{10}=1000_2=10_8$
 $1+4+1=6_8$

c)
$$(13_8 = 001011_2 = 11_{10}) - 6 = 5$$

 $(10_8 = 001000_2 = 8_{10}) - 5 = 3$
 $3 - 2 = 1$

e)
$$(10_8 = 001000 : 2 = 8_{10}) - 4 = 4$$

 $(12_8 = 001010_2 = 10_{10}) - 6 = 4$
 $4 - 1 = 3$

b)
$$7 + 5 = 12_{10} = 1100_2 = 14_8$$

 $1 + 0 + 6 = 7_8$
 $5 + 2 = 7_8$

d)
$$(12_8 = 001010_2 = 10_{10}) - 5 = 5$$

 $7_8 - 7_8 = 0$
 $6_8 - 3_8 = 2$

f)
$$(15_8 = 001101_2 = 13_{10}) - 7 = 6$$

 $5 - 4 = 1$
 $7 - 3 = 4$

- 3. Resolver las siguientes operaciones en HEXADECIMAL (resultado y operaciones deben estar en el desarrollo).
 - a. 6A3 + 2BF
 - b. 3C5 + D1A
 - c. ABC + 1DE
 - d. C89 A1B
 - e. A4F 8D2
 - f. F21 E09

Método de resolución

Las operaciones en sistema hexadecimal se hicieron de la misma forma en que se piensan en sistema decimal, con la salvedad de que en hexa se tienen 16 digitos posibles (de 0 a 9 y luego continúan con A para el número 10 hasta la F que representa el número 15). La forma de operar es la misma que en decimal aunque es importante recordar que cuando una resta no es posible y "le pide prestado al de al lado" este, le suma 16 al número solicitante respetando así, el valor posicional del sistema en que se está operando.

a)		b)		c)	
	6A3		3C5		ABC
+	2BF	+	D1A	+	1DE
	962		10DF		C9A
$\mathbf{d})$		e)		f)	
_	C89	_	A4F		F21
	A1B		8D2		E09
	26E		17D		117

a)
$$3 + F = 12$$

 $1 + A + B = 16$
 $1 + 6 + 2 = 9$

b)
$$5 + A = F$$

 $C + 1 = D$
 $3 + D = 10$

c)
$$C + E = A$$

 $B + D = 9$
 $A + 1 = C$

d)
$$19 - B = E$$

 $7 - 1 = 6$
 $C - A = 2$

e)
$$F - 2 = D$$

 $4 - D = 7$
 $A - 8 = 1$

f)
$$11 - 9 = 7$$

 $1 - 0 = 1$
 $F - E = 1$

- 4. Realizar las siguientes operaciones aritméticas usando CA2
- a. 17 7
- b. 60 25
- c. 53 82
- d. -23 25
- e. -45 + 36
- f. 125 365

Método de resolución

Para realizar las operaciones en CA2 primero se convierte a binario natural ambos operando. Luego para efectuar la suma en dicha representación, mientras que los números positivos quedan en su forma de binario natural, a los negativos se los convierte a complemento A1 invirtiendo todos sus bits, para luego al binario obtenido sumarle 1 al bit menos significativo. De esta manera se obtiene el complemento A2 y se efectúa la suma.

a) Operación: 15 - 7

	Operando A (15)	Operando B (-7)	
Binario	00001111	00000111	
Complemento A1	_	11111000	
Complemento A2	_	11111001	
Suma (A + B)	00001000		

b) Operación: 60 - 25

	Operando A (60)	Operando B (-25)	
Binario	00111100	00011001	
Complemento A1	_	11100110	
Complemento A2	—	11100111	
Suma (A + B)	00100011		

c) Operación: 53 - 82

	Operando A (53)	Operando B (-82)	
Binario	00110101	01010010	
Complemento A1	_	10101101	
Complemento A2	_	10101110	
Suma (A + B)	11100011		

d) Operación: -23 -25

	Operando A (-23)	Operando B (-25)	
Binario	00010111	00011001	
Complemento A1	11101000	11100110	
Complemento A2	11101001	11100111	
Suma (A + B)	11010000		

e) Operación: -45 + 36

	Operando A (-45)	Operando B (36)	
Binario	00101101	00100100	
Complemento A1	11010010	_	
Complemento A2	11010011	_	
Suma (A + B)	11110111		

f) Operación: 125 - 365

	Operando A (125)	Operando B (-365)
Binario	001111101	101101101
Complemento A1		010010010
Complemento A2		010010011
Suma (A + B)	1000	10000

- 5. Teniendo en cuenta que los códigos de Gray tienen una distancia de 1 bit entre cada uno de sus valores, cree una secuencia de 4 bits que cumpla con las siguientes consignas:
 - a. Debe tener distancia de 1 bit entre cada uno de sus valores.
 - b. El primer y último valor de la lista también debe tener una distancia de 1.

Método de conversión

El código reflejado de Gray se obtiene aplicando la operación Xor bit a bit entre el número en binario y el mismo número desplazado un bit hacia la derecha, consiguiendo así un sistema de numeración binario donde dos números consecutivos difieren en un solo bit.

0		1		2		3	
	0000		0001		0010		0011
	Xor	X	or	X	Cor		Xor
	0000		0000		0001		0001
	0000		0001		0011		0010
4		5		6		7	
_	0100	_	0101	-	0110	·	0111
	Xor	V	or	V	0110 Cor		0111 Xor
	0010	Λ	0010	Λ	0011		0011
	0110		0111		0101		0100
	0110		0111		0101		0100
8		9		10		11	
8	1000	9	1001	10	1010	11	1011
8	1000 Xor		1001 or		1010 Cor	11	1011 Xor
8						11	
8	Xor		or		Cor	11	Xor
	Xor 0100	X	or 0100	X —	or 0101		Xor 0101
8	Xor 0100 1100		0100 1101		0101 1111	11 15	Xor 0101 1110
	Xor 0100 1100	13	0100 1101	14	1110		Xor 0101 1110
	Xor 0100 1100 1100 Xor	13	0100 1101 1101 for	14	1110 for		Xor 0101 1110 1111 Xor
	Xor 0100 1100	13	0100 1101	14	1110		Xor 0101 1110

Decimal	Binario	Código Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000