Math Pres 302

Ex 4.3.5 Prove that $2^N \geq N$ for all positive integers N. (Hint: Use Induction)

Solution: If N = 0, we have $2^N = 2^0 = 1 \ge 0$. If N is negative, then 2^N is positive, so $2^N \ge N$. So infact, this result holds true for all integers, not just the positive integers.

We first show it holds true for positive integers via induction. In fact, we prove something stronger that $2^N > N$ for all positive integers N.

Base Case: For N=1, we have $2^1=2>1$.

Now suppose inductively, that $2^N > N$. We want to show that $2^{N+1} > N+1$.

We have $2^{N+1} = 2 \times 2^{N} > 2 \times N$ and since $N \ge 1$, we can add N to both sides to show that $2N \ge N+1$. Thus, we have that $2^{N+1} > 2N \ge N+1$ which closes the induction.

Alternate Proof:

Let P(n) be $2^n \ge n$. Then, P(1) is true as 2 > 1. For P(n+1), note $2^{n+1} = 2^n \times 2 \ge n \times 2$ by inductive hypothesis. Then $n \times 2 > n$ (as $n \times 2 - n = n \ge 1 > 0$) as desired.

 \mathbf{Ex} 4.3.4 Prove proposition 4.3.12. (Hint: induction is not suitable here, instead use proposition 4.3.10)

Proposition 4.3.12 Properties of Exponentiation, II. Let x, y be non-zero rational numbers, and let n, m be integers.

- (a) $x^n x^m = x^{n+m}, (x^n)^m = x^{nm}, \text{ and } (xy)^n = x^n y^n$
- (b) If $x \ge y > 0$, then $x^n \ge y^n > 0$ if n is positive, and $0 < x^n \le y^n$ if n is negative.
- (c) If x, y > 0, $n \neq 0$, and $x^n = y^n$, then x = y.
- (d) We have $|x^n| = |x|^n$

Solution: We will use n, m to denote positive integers, and -n, -m to denote negative integers.

(a) Suppose n, m are both positive. Then the result simply follows from proposition 4.3.10 (a).

Next suppose that -n, -m are negative. Then we have $x^{-n}x^{-m}=\frac{1}{x^n}\frac{1}{x^m}=\frac{1}{x^nx^m}=\frac{1}{x^nx^m}=\frac{1}{x^n+m}=x^{-(n+m)}=x^{-n-m}$.

Next suppose that n is positive, while -m is negative. We have two cases, $n-m \ge 0$, or n-m < 0.

- $\mathbf{n} \mathbf{m} \ge \mathbf{0}$: Then m is positive, thus by proposition 4.3.10 (a) we have: $x^{n-m}x^m = x^n$. Thus we have $x^nx^{-m} = x^{n-m}x^mx^{-m} = x^{n-m}x^m/x^m = x^{n-m}$
- Suppose instead that n-m<0. Then -n+m>0, and since $n\geq 0$, we can use proposition 4.3.10(a) to get $x^{-n+m}x^n=x^m$. By def of exponentiation, $x^{n-m}=\frac{1}{x^{-n+m}}$. If we multiply both sides by $\frac{1}{x^n}$, we obtain $x^{n-m}\frac{1}{x^n}=\frac{1}{x^{-n+m}}\frac{1}{x^n}$. Simplifying, we get $\frac{1}{x^{-n+m+n}}=\frac{1}{x^m}$. But $x^{-m}=\frac{1}{x^m}$, so we have $x^{n-m}\frac{1}{x^n}=x^{-m}$. So multiplying by x^n on both sides, we get $x^{n-m}=x^nx^{-m}$.

A similar proof follows when -n is negative, and m is positive, and is analogous to the previous cases, which is that $x^{-n}x^m = x^{m-n}$.