Gradually Verified Language with Recursive Predicates

Henry Blanchette

Contents

1	Gra	mmar	2
2	Wel	l-formedness	3
3	Aliasing		4
	3.1	Definitions	4
	3.2	Aliasing Context	4
	3.3	Constructing an Aliasing Context	6
4	Framing		8
	4.1	Definitions	8
	4.2	Deciding Framing	9
	4.3	Examples	10
5	Satisfiability		18
6	6 Implication		19
7	Wea	akest Predonditions	20
	7.1	Concrete Weakest Liberal Precondition Rules	20

1 Grammar

```
x, y, z
                              VAR
                              V\!AL
                    \in
                            EXPR
                    \in
             e
                             STMT
                    \in
                            LOC
                    \in
                    \in FIELDNAME
                    \in METHODNAME
      C, D
                   \in CLASSNAME
                    \in PREDNAME
            \alpha
            P ::= \overline{cls} \ s
          cls ::= class \ C \ extends \ D \ \{ \overline{field} \ \overline{pred} \ \overline{method} \}
      field ::= T f;
      pred ::= predicate \alpha_C(\overline{T \ x}) = \widetilde{\phi}
           T \ ::= \ \operatorname{int} \mid \operatorname{bool} \mid C \mid \top
 method ::= T m(\overline{T x})  dynamically contract statically contract  \{s\}
contract \ ::= \ \operatorname{requires} \ \widetilde{\phi} \ \operatorname{ensures} \ \widetilde{\phi}
            \oplus ::= + | - | * | \ | && | ||
           \odot ::= \neq | = | < | > | \leq | \geq
            s \hspace{0.1in} ::= \hspace{0.1in} \mathtt{skip} \hspace{0.1in} | \hspace{0.1in} s_1 \hspace{0.1in} ; \hspace{0.1in} s_2 \hspace{0.1in} | \hspace{0.1in} T \hspace{0.1in} x \hspace{0.1in} | \hspace{0.1in} x := e \hspace{0.1in} | \hspace{0.1in} \mathtt{if} \hspace{0.1in} (e) \hspace{0.1in} \{s_1\} \hspace{0.1in} \mathtt{else} \hspace{0.1in} \{s_2\}
                             \mid while (e) invariant \widetilde{\phi} \{s\} \mid x.f := y \mid x := \mathrm{new} \; C \mid y := z.m(\overline{x})
                              \mid y := z.m_C(\overline{x}) \mid \mathtt{assert} \; \phi \mid \mathtt{release} \; \phi \mid \mathtt{hold} \; \phi \; \{s\} \mid \mathtt{fold} \; A \mid \mathtt{unfold} \; A
             e ::= v \mid x \mid e \oplus e \mid e \odot e \mid e.f
            x ::= result \mid id \mid old(id) \mid this
             v ::= n \mid o \mid \text{null} \mid \text{true} \mid \text{false}
            A ::= \alpha(\overline{e}) \mid \alpha_C(\overline{e})
            ∗ ::= ∧ | ∗
            \phi ::= e \mid A \mid \mathtt{acc}(e.f) \mid \phi \circledast \phi \mid (\mathtt{if} \ e \ \mathtt{then} \ \phi \ \mathtt{else} \ \phi) \mid (\mathtt{unfolding} \ A \ \mathtt{in} \ \phi)
            \widetilde{\phi} ::= \phi \mid ? * \phi
```

2 Well-formedness

3 Aliasing

3.1 Definitions

An **object variable** is one of the following:

- a class instance variable i.e. a variable v such that v:C for some class C,
- a class instance field reference i.e. a field reference e.f where e.f:C for some class C,
- null as a value such that null: C for some class C.

Let \mathcal{O} be a set of object variables. An $O \subset \mathcal{O}$ aliases if and only if each $o \in O$ refers to the same memory in the heap as each other, written propositionally as

$$\forall o, o' \in O : o = o' \iff \mathsf{aliases}(O)$$

While it is possible to keep track of negated aliasings (of the form \sim aliases $\{o_{\alpha}\}$), this will not be needed for either aliasing tree construction or self-framing desicions. So, it will not be tracked i.e. $x \neq y$ does not contribute anything to an aliasing context.

3.2 Aliasing Context

Let ϕ be a formula. The **aliasing context** \mathcal{A} of ϕ is a tree of set of aliasing proposition about aliasing of object variables that appear in ϕ . \mathcal{A} needs to be a tree because the conditional and unfolding sub-formulas that may appear in ϕ allow for branching aliasing contexts not expressible flatly at the top level. In the case of conditionals i.e. sub-formulas of the form if e then ϕ_1 else ϕ_2 , two branches sprout from the original context. In the case of unfoldings i.e. sub-formulas of the form unfolding $\alpha_C(\overline{e})$ in ϕ , one branch sprouts from the original context. Each node in the tree corresponds to a set of aliasing propositions, and each branch refers to a branch of a unique conditional in ϕ . The parts of the tree are labeled in such a way that modularly allows a specified sub-formula of ϕ to be matched to the unique aliasing sub-context that corresponds to it. For example, consider the following formula:

```
\phi := (o_1 = o_2) *
(	ext{if } (b_1)
	ext{then } (
(o_1 \neq o_3) *
(	ext{if } (b_2)
	ext{then } (o_1 = o_4)
	ext{else } (b_3)))
	ext{else } (o_1 = o_3)) *
(o_1 = o_4)
```

where b_1, b_2 are arbitrary boolean expressions that do not assert aliasing propositions. ϕ has a formula-structure represented by the tree in figure 3.2. The formula-structure tree for ϕ corresponds node-for-node and edge-for-edge to the aliasing context tree in figure 3.2.

More generally, for ϕ a formula and ϕ' a sub-formula of ϕ , write $\mathcal{A}_{\phi}(\phi')$ as the **total**

Figure 1: Formula structure tree for ϕ .

aliasing context of ϕ' which includes aliasing propositions inherited from its ancestors in the aliasing context tree of ϕ . These aliasing contexts are combined via \sqcup which will be defined in the next section. For example, the total aliasing context at the sub-formula $(o_1 = o_4)$ of ϕ is:

$$A_{\phi}(o_1 = o_4) := \{ \text{aliased } \{o_1, o_2, o_4\} \}$$

along with the fact that it has no child branches. Usually $\mathcal{A}_{\phi_{\text{root}}}(\phi')$ is abbreviated to $\mathcal{A}(\phi')$ when the top level formula ϕ is implicit and ϕ' is a sub-formula of ϕ_{root} .

An aliasing context \mathcal{A} may entail $\mathsf{aliased}(O)$ for some $O \subset \mathcal{O}$. Since \mathcal{A} is efficiently represented as a set of propositions about sets, it may be the case that $\mathsf{aliased}(O) \not\in \mathcal{A}$ yet still the previous judgement holds. For example, this is true when $\exists O' \subset \mathcal{O}$ such that $O \subset O'$ and $\mathsf{aliased}(O') \in \mathcal{A}$. So, the explicit definition for making this judgement is as follows:

$$\mathcal{A} \vdash \mathsf{aliased}(O) \iff \exists O' \subset \mathcal{O} : (O \subset O') \land (\mathsf{aliased}(O') \in \mathcal{A})$$

The notations $\mathsf{aliased}(O) \in \mathcal{A}$ is a little misleading because \mathcal{A} is in fact a tree and not just a set. To be explicit, $\mathsf{aliased}(O) \in \mathcal{A}$ is defined to be set membership of the set of aliasing propositions in the total aliasing context at \mathcal{A} .

Figure 2: $\mathcal{A}(\phi)$, the aliasing context tree for ϕ .

3.3 Constructing an Aliasing Context

An aliasing context of a formula ϕ is a tree, where nodes represent local aliasing contexts and branches represent the branches of conditional sub-formulas nested in ϕ . So, an aliasing context is defined structurally as

$$\mathcal{A} ::= \langle A, \{l_{\alpha} : \mathcal{A}_{\alpha}\} \rangle$$

where A is a set of propositions about aliasing and the l_{α} : \mathcal{A}_{α} are the nesting aliasing contexts that correspond to the branches of conditionals and unfoldings directly nested in ϕ , the l_{α} being labels for each child context.

Given a root formula ϕ_{root} , the aliasing context of ϕ_{root} is written $\mathcal{A}(\phi_{\text{root}})$. With the root invariant, the following recursive algorithm constructs $\mathcal{A}(\phi)$ for any sub-formula of ϕ_{root}

(including $\mathcal{A}(\phi_{\mathsf{root}})$).

```
\mathcal{A}(\phi) := \mathsf{match} \ \phi \ \mathsf{with}
                                                                                                     \mapsto \langle \varnothing, \varnothing \rangle
                                                                                                     \mapsto \langle \varnothing, \varnothing \rangle
                                e_1 \&\& e_2
                                                                                                     \mapsto \mathcal{A}(e_1) \sqcup \mathcal{A}(e_2)
                                                                                                     \mapsto \mathcal{A}(\texttt{if}\ e_1\ \texttt{then}\ \texttt{true}\ \texttt{else}\ e_2)
                                e_1 \parallel e_2
                                e_1 \oplus e_2
                                                                                                     \mapsto \langle \varnothing, \varnothing \rangle
                                o_1 = o_2
                                                                                                                \langle \{ \text{aliases } \{o_1, o_2\} \} , \varnothing \rangle
                                e_1 \odot e_2
                                                                                                              \langle \varnothing, \varnothing \rangle
                                e.f
                                                                                                     \mapsto \langle \emptyset, \emptyset \rangle
                                acc(e.f)
                                                                                                     \mapsto \langle \varnothing, \varnothing \rangle
                                                                                                     \mapsto \mathcal{A}(\phi_1) \sqcup \mathcal{A}(\phi_2)
                                \phi_1 * \phi_2
                                \phi_1 \wedge \phi_2
                                                                                                     \mapsto \mathcal{A}(\phi_1) \sqcup \mathcal{A}(\phi_2)
                                \alpha_C(\overline{e})
                                                                                                     \mapsto \langle \varnothing, \varnothing \rangle
                                                                                                    \mapsto \langle \varnothing, \{e : \mathcal{A}(e) \sqcup \mathcal{A}(\phi_1), \sim e : (\mathcal{A}(\sim e)) \sqcup \mathcal{A}(\phi_2)\} \rangle
                                if e then \phi_1 else \phi_2
                                unfolding \alpha_C(\overline{e}) in \phi' \mapsto \langle \varnothing, \{ \text{unfolding}(\alpha_C(\overline{e})) : \mathcal{A}(\text{unfold } \alpha_C(\overline{e})) \sqcup \mathcal{A}(\phi') \} \rangle
```

Note the following:

- $\mathcal{A}(\phi_{\mathsf{root}})$ is implicitly unioned with the discrete aliasing context $\{\{o\}: o \in \mathcal{O}\}$. This convention yields that each $o \in \mathcal{O}$ is always considered an alias of itself.
- The $\sim e$ expression in the result of the rule for $\mathcal{A}(\text{if } e \text{ then } \phi_1 \text{ else } \phi_2)$ means to negate the boolean expression of e
- The $e_1 \parallel e_2$ expression is translated into if e_1 then true else e_2 for the purpose of aliasing. So, boolean or operations in forumals yield branching just like conditional expressions.
- The unfold $\alpha_C(\overline{e})$ expression in the result of the rulle for $\mathcal{A}(\text{unfolding }\alpha_C(\overline{e}) \text{ in } \phi')$ is translated to a single unfolding of the body of $\alpha_C(\overline{e})$ with the arguments substituted appropriately.

As examples,

$$\mathcal{A}(\sim(x=y)) = \mathcal{A}(x \neq y) = \langle \varnothing, \ \varnothing \rangle$$
$$\mathcal{A}(\sim(x \neq y)) = \mathcal{A}(x=y) = \langle \{ \text{aliased } \{x,y\} \}, \ \varnothing \rangle$$

Context union, \sqcup , and context intersection, \sqcap , are operations that combine aliasing contexts and are defined below.

4 Framing

4.1 Definitions

For framing, a formula is considered inside a **permission context**, a set of permissions, where a **permission** π is to do one of the following:

- to reference e.f, written accessed(e.f).
- to assume $\alpha_C(\overline{e})$, written assumed $(\alpha_C(\overline{e}))$. This allows the a single unrolling of $\alpha_C(\overline{e})$. Explicitly, an instance of assumed $(\alpha_C(\overline{e}))$ in a set of permissions Π may be expanded into $\Pi \cup \mathsf{granted}(\dots)$ where \dots is replaced with a single unrolling of the body of $\alpha_C(\overline{e})$ with the arguments substituted appropriately¹.

Let ϕ be a formula. ϕ may **require** a permission π . For example, the formula e.f = 1 requires accessed(e.f), because it references e.f. The set of all permissions that ϕ requires is called the **requirements** of ϕ . ϕ may also **grant** a permission π . For example, the formula acc(e.f) grants the permission accessed(e.f).

Altogether, ϕ is **framed** by a set of permissions Π if all permissions required by ϕ are either in Π or granted by ϕ . The proposition that Π frames ϕ is written

$$\Pi \vDash_I \phi$$

Of course, ϕ may grant some of the permissions it requires but not all. The set of permissions that ϕ requires but does not grant is called the **footprint** of ϕ . The footprint of ϕ is written

 $|\phi|$

Finally, a ϕ is called **self-framing** if and only if for any set of permissions Π , $\Pi \vDash_I \phi$. The proposition that ϕ is self-framing is written

$$\vdash_{\mathsf{frm}I} \phi$$

Note that $\vdash_{\mathsf{frm}I} \phi \iff \varnothing \vDash_I \phi$, in other words ϕ is self-framing if and only if it grants all of the permissions it requires. Or in other words still, $|\phi| = \varnothing$.

¹As demonstrated by this description, assumed predicates are really just a useful shorthand and not a fundamentally new type of permission. The only kind fundamental kind of permission is accessed.

4.2 Deciding Framing

Deciding $\Pi \vDash_I \phi$ must take into account the requirements, granteds, and aliases contained in Π and the sub-formulas of ϕ . The following recursive algorithm decides $\Pi \vDash_I \phi_{root}$, where \mathcal{A} is implicitly assumed to be the top-level aliasing context (where the top-level in this context is the level that ϕ_{root} exists at in the program).

```
\Pi \vDash_I \phi \iff \mathsf{match} \ \phi \ \mathsf{with}
                                                                                             Т
                                                                                     \mapsto \top
                                     e_1 \oplus e_2
                                                                                     \mapsto \Pi \vDash_I e_1, e_2
                                     e_1 \odot e_2
                                                                                     \mapsto \Pi \vDash_I e_1, e_2
                                                                                     \mapsto \quad (\Pi \vDash_I e) \ \land \ (\Pi \vdash \mathsf{accessed}_\phi(e.f))
                                     e.f
                                     acc(e.f)
                                                                                    \mapsto (\Pi \vDash_I e)
                                                                                    \mapsto (\Pi \cup \mathsf{granted}(\phi_2) \vDash_I \phi_1) \land
                                     \phi_1 \circledast \phi_2
                                                                                             (\Pi \cup \mathsf{granted}(\phi_1) \vDash_I \phi_2)
                                     \alpha_C(e_1,\ldots,e_k)
                                                                                    \mapsto \Pi \vDash_I e_1, \ldots, e_2
                                      if e then \phi_1 else \phi_2
                                                                                    \mapsto \Pi \vDash_I e, \phi_1, \phi_2
                                     unfolding \alpha_C(\overline{e}) in \phi' \mapsto (\Pi \vDash_I \alpha_C(\overline{e})) \land (\Pi \vdash \mathsf{assumed}_{\phi}(\alpha_C(\overline{e}))) \land (\Pi \vDash_I \phi')
granted(\phi)
                                     match \phi with
                                                                                     \mapsto
                                                                                             Ø
                                     e
                                     acc(e.f)
                                                                                     \mapsto {accessed(e.f)}
                                                                                     \mapsto granted(\phi_1) \cup granted(\phi_2)
                                     \phi_1 \circledast \phi_2
                                     \alpha_C(\overline{e})
                                                                                     \mapsto {assumed(\alpha_C(\overline{e}))}
                                                                                     \mapsto granted(\phi_1) \cap granted(\phi_2)
                                      if e then \phi_1 else \phi_2
                                     unfolding \alpha_C(\overline{e}) in \phi' \mapsto \operatorname{granted}(\phi')
```

Where $\mathsf{accessed}_{\phi}$ and $\mathsf{assumed}_{\phi}$ indicate the respective propositions considered within the total alias context (including inherited aliasing contexts). More explicitly,

```
\Pi \vdash \mathsf{accessed}_{\phi}(o.f) \iff \exists \mathsf{accessed}(o'.f) \in \Pi : \mathcal{A}(\phi) \vdash \mathsf{aliased} \ \{o,o'\} \Pi \vdash \mathsf{assumed}_{\phi}(\alpha_{C}(e_{1},\ldots,e_{k})) \iff \exists \mathsf{assumed}(\alpha_{C}(e'_{1},\ldots,e'_{k})) \in \Pi : \forall i : \mathcal{A}(\phi) \vdash \mathsf{aliased} \ \{e_{i},e'_{i}\}
```

4.3 Examples

In the following examples, assume that the considered formulas are well-formed.

Example 1

Define

$$\phi_{\mathsf{root}} := x = y * \mathtt{acc}(x.f) * \mathtt{acc}(y.f).$$

Then

$$\mathcal{A}(\phi_{\mathsf{root}}) = \langle \{\mathsf{aliased}\, \{x,y\}\}\,, \ \varnothing \rangle.$$

$$\begin{split} \vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} &\iff \varnothing \vDash_I \phi_{\mathsf{root}} \\ &\iff \varnothing \vDash_I x = y * \mathsf{acc}(x.f) * \mathsf{acc}(y.f) \\ &\iff (\mathsf{granted}(\mathsf{acc}(x.f) * \mathsf{acc}(y.f)) \vDash_I x = y) \land \\ & (\mathsf{granted}(x = y * \mathsf{acc}(y.f)) \vDash_I \mathsf{acc}(x.f)) \land \\ & (\mathsf{granted}(x = y * \mathsf{acc}(x.f)) \vDash_I \mathsf{acc}(y.f)) \\ &\iff \top \land \\ & (\mathsf{granted}(x = y * \mathsf{acc}(y.f)) \vDash_I x) \land \\ & (\mathsf{granted}(x = y * \mathsf{acc}(x.f)) \vDash_I y) \\ &\iff \top \land \top \land \top \\ &\iff \top \end{split}$$

Define

$$\phi_{\mathsf{root}} := \mathtt{acc}(x.f) \ * \ (\mathtt{if} \ x.f = 1 \ \mathtt{then} \ true \ \mathtt{else} \ \mathtt{acc}(x.f))$$

Then

$$\mathcal{A}(\phi_{\mathsf{root}}) = \langle \varnothing, \{x.f = 1 : \langle \varnothing, \varnothing \rangle, x.f \neq 1 : \langle \varnothing, \varnothing \rangle \} \rangle$$

$$\vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} \iff \varnothing \vDash_{I} \phi_{\mathsf{root}} \\ \iff \varnothing \vDash_{I} \mathsf{acc}(x.f) * (\mathsf{if} \ x.f = 1 \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ \mathsf{acc}(x.f)) \\ \iff (\mathsf{granted}(\mathsf{if} \ x.f = 1 \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ \mathsf{acc}(x.f)) \vDash_{I} \mathsf{acc}(x.f)) \land \\ (\mathsf{granted}(\mathsf{acc}(x.f)) \vDash_{I} \mathsf{if} \ x.f = 1 \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ \mathsf{acc}(x.f)) \\ \iff (\mathsf{granted}(\mathsf{if} \ x.f = 1 \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ \mathsf{acc}(x.f)) \vDash_{I} x) \land \\ (\mathsf{granted}(\mathsf{acc}(x.f)) \vDash_{I} \mathsf{if} \ x.f = 1 \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ \mathsf{acc}(x.f)) \\ \iff \top \land (\mathsf{granted}(\mathsf{acc}(x.f)) \vDash_{I} \mathsf{if} \ x.f = 1 \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ \mathsf{acc}(x.f)) \\ \iff \top \land (\mathsf{\{accessed}(x.f)\} \vDash_{I} x.f = 1) \land (\mathsf{\{accessed}(x.f)\} \vDash_{I} \mathsf{true}) \land \\ (\mathsf{\{accessed}(x.f)\} \vDash_{I} \mathsf{acc}(x.f) \\ \iff \top \land (\mathsf{\{accessed}(x.f)\} \vDash_{I} x) \\ \iff \top \land (\mathsf{\{accessed}(x.f)\} \vDash_{I} x) \\ \iff \top \land (\mathsf{\{accessed}(x.f)\} \vDash_{I} x) \\ \iff \top \land \top \land \top \land \top \land \top \\ \iff \top$$

Define

$$\phi_{\mathsf{root}} := \mathtt{acc}(x.f) \ * \ x = y \ * \ y.f = 1$$

Then

$$\mathcal{A}(\phi_{\mathsf{root}}) = \langle \{\mathsf{aliased}\,\{x,y\}\}\,,\ \varnothing \rangle$$

$$\begin{split} \vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} &\iff \varnothing \vDash_I \phi_{\mathsf{root}} \\ &\iff \varnothing \vDash_I \mathsf{acc}(x.f) \, * \, x = y \, * \, y.f = 1 \\ &\iff (\mathsf{granted}(x = y * y.f = 1) \vDash_I \mathsf{acc}(x.f)) \, \land \\ & (\mathsf{granted}(\mathsf{acc}(x.f) * y.f = 1) \vDash_I x = y) \, \land \\ & (\mathsf{granted}(\mathsf{acc}(x.f) * x = y) \vDash_I y.f = 1) \\ &\iff (\mathsf{granted}(x = y * y.f = 1) \vDash_I x) \, \land \\ & (\mathsf{granted}(\mathsf{acc}(x.f) * y.f = 1) \vDash_I x, y) \, \land \\ & (\mathsf{granted}(\mathsf{acc}(x.f) * x = y) \vDash_I y.f) \\ &\iff \top \, \land \, \top \, \land \, \, (\{\mathsf{accessed}(x.f)\} \vdash \mathsf{accessed}_{\phi_{\mathsf{root}}}(y.f)) \\ &\iff \top \, \land \, \top \, \land \, \, \top \\ &\iff \top \\ &\iff \top \\ &\iff \top \end{split}$$

Define

```
class List {
                                       int head;
                                       List tail;
                                      predicate List(l) =
                                              l \neq \text{null} * \text{acc}(l.head) * \text{acc}(l.tail) *
                                              if l.tail = null then true else List(l.tail);
                                 }
                                  \phi_{\mathsf{root}} := \mathsf{List}(l) * \mathsf{unfolding} \; \mathsf{List}(l) \; \mathsf{in} \; l.head = 1
Then
\mathcal{A}(\phi_{\mathsf{root}}) = \langle \varnothing, \{\mathsf{unfolding}(\mathsf{List}(l)) : 
                                \{\langle \varnothing, \{t.tail = null : \langle \{aliased \{t.tail, null\}\}, \varnothing \rangle, t.tail \neq null : \langle \varnothing, \varnothing \rangle \} \rangle \} \}
And so,
        \vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} \iff \varnothing \vDash_I \phi_{\mathsf{root}}
                           \iff \varnothing \vDash_I \mathsf{List}(l) * \mathsf{unfolding} \; \mathsf{List}(l) \; \mathsf{in} \; l.head = 1
                           \iff (granted(unfolding List(l) in l.head = 1) \vDash_I List(l)) \land
                                    (granted(List(l)) \models_I unfolding List(l) in l.head = 1)
                           \iff \top \land (\{\mathsf{assumed}(\mathsf{List}(l))\} \vDash_I \mathsf{unfolding} \mathsf{List}(l) \; \mathsf{in} \; l.head = 1)
                           \iff \top \land (\mathsf{granted}(l \neq \mathsf{null} * \mathsf{acc}(l.head) * \mathsf{acc}(l.tail) *
                                          if l.tail = null then true else List(l.tail)) \models_I
                                                                                                    (expansion of assumed(List(l)))
                                   l.head = 1
                           \iff \top \land (\{accessed(l.head), accessed(l, tail)\}) \models_I l.head = 1)
                           \iff \top \land (\{\mathsf{accessed}(l.head), \mathsf{accessed}(l,tail)\}) \vdash \mathsf{accessed}_{\phi_{\mathsf{root}}}(l.head))
                           \iff T \land T
                           \iff T
```

Define

$$\phi_{\mathsf{root}} := \mathsf{if}\ x = \mathsf{null}\ \mathsf{then}\ \mathsf{true}\ \mathsf{else}\ (\mathsf{acc}(x.f) * x.f = 1)$$

Then

$$\mathcal{A}(\phi_{\mathsf{root}}) = \langle \varnothing, \ \{x = \mathsf{null} : \langle \{\mathsf{aliased} \ \{x, \mathsf{null}\}\}, \ \varnothing \rangle, x \neq \mathsf{null} : \langle \varnothing, \ \varnothing \rangle \} \rangle$$

$$\vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} \iff \varnothing \vDash_{I} \phi_{\mathsf{root}} \\ \iff \varnothing \vDash_{I} \mathsf{if} \ x = \mathsf{null} \ \mathsf{then} \ \mathsf{true} \ \mathsf{else} \ (\mathsf{acc}(x.f) * x.f = 1) \\ \iff (\varnothing \vDash_{I} x = \mathsf{null}) \ \land \ (\varnothing \vDash_{I} \mathsf{true}) \ \land \ (\varnothing \vDash_{I} \mathsf{acc}(x.f) * x.f = 1) \\ \iff \top \ \land \ \top \ \land \ (\mathsf{granted}(x.f = 1) \vDash_{I} \mathsf{acc}(x.f)) \ \land \ (\mathsf{granted}(\mathsf{acc}(x.f)) \vDash_{I} x.f = 1) \\ \iff \top \ \land \ \top \ \land \ (\varnothing \vDash_{I} \mathsf{acc}(x.f)) \ \land \ (\{\mathsf{accessed}(x.f)\} \vDash_{I} x.f = 1) \\ \iff \top \ \land \ \top \ \land \ (\varnothing \vDash_{I} x) \ \land \ (\{\mathsf{accessed}(x.f)\} \vDash_{I} 1) \\ \iff \top \ \land \ \top \\ \iff \top$$

Use the definition of List from example 4. Define

$$\begin{split} \phi_{\mathsf{root}} &:= \mathsf{acc}(x.f) \ * \ \phi_1 \ * \phi_2 \\ \phi_1 &:= \mathsf{if} \ x.f = 1 \ \mathsf{then} \ x = y \ \mathsf{else} \ \mathsf{true} \\ \phi_2 &:= \mathsf{if} \ x.f = 1 \ \mathsf{then} \ y.f = 1 \ \mathsf{else} \ \mathsf{true} \end{split}$$

Then

$$\mathcal{A}(\phi_{\mathsf{root}}) = \langle \varnothing, \{x.f = 1 : \langle \{\mathsf{aliased} \{x, y\}\}, \varnothing \rangle, \ x.f \neq 1 : \langle \varnothing, \varnothing \rangle \} \rangle$$

And so,

$$\vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} \iff \varnothing \vDash_{I} \mathsf{acc}(x.f) * \phi_{1} * \phi_{2} \\ \iff (\mathsf{granted}(\phi_{1} * \phi_{2}) \vDash_{I} \mathsf{acc}(x.f)) \ \land \ (\mathsf{granted}(\mathsf{acc}(x.f) * \phi_{2}) \vDash_{I} \phi_{1}) \ \land \\ (\mathsf{granted}(\mathsf{acc}(x.f) * \phi_{1}) \vDash_{I} \phi_{2}) \\ \iff (\mathsf{granted}(\phi_{1} * \phi_{2}) \vDash_{I} x) \ \land \\ (\{\mathsf{accessed}(x.f)\} \vDash_{I} \mathsf{if} x.f = 1 \mathsf{then} \ x = y \mathsf{else} \mathsf{true}) \ \land \\ (\{\mathsf{accessed}(x.f)\} \vDash_{I} \mathsf{if} x.f = 1 \mathsf{then} \ y.f = 1 \mathsf{else} \mathsf{true}) \\ \iff \top \ \land \ (\{\mathsf{accessed}(x.f)\} \vDash_{I} (x.f = 1), (x = y), (\mathsf{true})) \ \land \\ (\{\mathsf{accessed}(x.f)\} \vDash_{I} (x.f = 1), (y.f = 1), (\mathsf{true})) \\ \iff \top \ \land \ (\{\mathsf{accessed}(x.f)\} \vDash_{I} x.f) \ \land \ (\{\mathsf{accessed}(x.f)\} \vDash_{I} y.f) \\ \iff \top \ \land \ (\{\mathsf{accessed}(x.f)\} \vdash_{I} \mathsf{accessed}_{\phi_{\mathsf{root}}}(x.f)) \ \land \\ (\{\mathsf{accessed}(x.f)\} \vdash_{I} \mathsf{accessed}_{y.f = 1}(y.f)) \\ \iff \top \ \land \ \top \ \land \ \top \\ \iff \top \ \land \ \top \ \land \ \top$$

(*): {accessed(x.f)} \vdash accessed_{y.f=1}(y.f) \iff \top since $\mathcal{A}(y.f=1) \vdash$ aliased {x,y} because $\mathcal{A}(y.f=1)$ and $\mathcal{A}(x=y)$ are combined into a single branch of $\mathcal{A}(\phi_{\mathsf{root}})$, as they have the same conditions.

Define

$$\phi_{\mathsf{root}} := \mathsf{if}\ x = y\ \mathsf{then}\ \mathsf{acc}(x.f)\ \mathsf{else}\ x.f = 2$$

Then

$$\mathcal{A}(\phi_{\mathsf{root}}) = \langle \varnothing, \ \{x = y : \langle \{\mathsf{aliased} \ \{x,y\}\} \ , \ \varnothing \rangle, \ x \neq y : \langle \varnothing, \ \varnothing \rangle \} \rangle$$

$$\begin{split} \vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} &\iff \varnothing \vDash_I \phi_{\mathsf{root}} \\ &\iff \varnothing \vDash_I \mathsf{if} \ x = y \mathsf{ then } \mathsf{acc}(x.f) \mathsf{ else } x.f = 2 \\ &\iff \varnothing \vDash_I (x = y), (\mathsf{acc}(x.f)), (x.f = 2) \\ &\iff \top \ \land \ (\varnothing \vDash_I x) \ \land \ (\varnothing \vDash_I x.f) \\ &\iff \top \ \land \ \top \ \land \ (\varnothing \vdash \mathsf{accessed}_{x.f = 2}(x.f)) \\ &\iff \top \ \land \ \top \ \land \ \bot \\ &\iff \bot \end{split}$$

Define

```
\label{eq:predicate} \operatorname{predicate aliasChoice}(x,y,z) := \ x = y \mid\mid x = z \phi_{\operatorname{root}} := \operatorname{acc}(x.f) \ * \ \operatorname{aliasChoice}(x,y,z) \ * \ \operatorname{unfolding(aliasChoice}(x,y,z)) \ \operatorname{in} \ \phi_1 \phi_1 := y.f = 1 \mid\mid z.f = 1 Then \mathcal{A}(\phi_{\operatorname{root}}) = \langle \varnothing, \ \{\operatorname{unfolding(aliasChoice}(x,y,z)) : \{x = y : \langle \{\operatorname{aliased} \{x,y\}\}, \ \varnothing \rangle, \}
```

 $\{x=y: \langle \{\mathsf{aliased}\,\{x,y\}\}\,,\ \varnothing\rangle,\\ x\neq y: \langle \{\mathsf{aliased}\,\{x,z\}\}\,,\ \varnothing\rangle,\\ y.f=1: \langle\varnothing,\ \varnothing\rangle,\\ y.f\neq 1: \langle\varnothing,\ \varnothing\rangle\} \}$

Note that the $x = y \mid\mid x = z$ in the body of aliasChoice is translated to if x = y then true else x = z when construction $\mathcal{A}(\phi_1)$. And so,

```
\vdash_{\mathsf{frm}I} \phi_{\mathsf{root}} \iff \varnothing \vDash_{I} \phi_{\mathsf{root}} \\ \iff \varnothing \vDash_{I} \mathsf{acc}(x.f) * \mathsf{aliasChoice}(x,y,z) * \mathsf{unfolding}(\mathsf{aliasChoice}(x,y,z)) \; \mathsf{in} \; \phi_{1} \\ \iff (\mathsf{granted}(\mathsf{aliasChoice}(x,y,z) * \mathsf{unfolding}(\mathsf{aliasChoice}(x,y,z)) \; \mathsf{in} \; \phi_{1}) \vDash_{I} \mathsf{acc}(x.f)) \; \land \\ (\mathsf{granted}(\mathsf{acc}(x.f) * \mathsf{unfolding}(\mathsf{aliasChoice}(x,y,z)) \; \mathsf{in} \; \phi_{1}) \vDash_{I} \mathsf{aliasChoice}(x,y,z)) \; \land \\ (\mathsf{granted}(\mathsf{acc}(x.f) * \mathsf{aliasChoice}(x,y,z)) \vDash_{I} \mathsf{unfolding}(\mathsf{aliasChoice}(x,y,z)) \; \mathsf{in} \; \phi_{1}) \\ \iff \top \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} \mathsf{aliasChoice}(x,y,z))\} \vDash_{I} \mathsf{unfolding}(\mathsf{aliasChoice}(x,y,z)) \; \mathsf{in} \; \phi_{1}) \\ \iff \top \; \land \; \top \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} y.f = 1 \; || \; z.f = 1) \\ \iff \top \; \land \; \top \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} y.f) \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} z.f) \\ \iff \top \; \land \; \top \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} y.f) \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} z.f) \\ \iff \top \; \land \; \top \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} x.f) \; \land \; (\{\mathsf{accessed}(x.f)\} \vDash_{I} x.f) \\ \iff \top \; \land \; \top \; \land \; \bot \; \land \; \bot \\ \iff \bot
```

(*): The accessed to y.f, z.f are not framed because it is statically undetermined which branch of $x = y \mid\mid x = z$ will be taken. The case could arise that x = z and then when checking the condition y.f = 1 there is not access to y.f. The idea of the original formula can be correctly captured in one of the following revisions:

```
\begin{aligned} \phi_{\mathsf{root}}' &:= \mathtt{acc}(x.f) \ * \ (x = y \mid\mid x = z) \ * \ \mathsf{if} \ x = y \ \mathsf{then} \ y.f = 1 \ \mathsf{else} \ z.f = 1 \\ \phi_{\mathsf{root}}' &:= \mathtt{acc}(x.f) \ * \ \mathsf{if} \ x = y \ \mathsf{then} \ y.f = 1 \ \mathsf{else} \ (\mathsf{if} \ x = z \ \mathsf{then} \ z.f = 1 \ \mathsf{else} \ \mathsf{false}) \end{aligned}
```

For example, the z.f = 1 will be framed because the aliasing context of the $x \neq y$ branch of $(x = y \mid\mid x = z)$ will be combined with the aliasing context of the $x \neq y$ branch of (if x = y then y.f = 1 else z.f = 1), yielding aliased $\{x, z\}$ in z.f = 1. The similar case holds for the x = y branches combining to allow the aliasing to frame y.f = 1.

5 Satisfiability

6 Implication

7 Weakest Predonditions

7.1 Concrete Weakest Liberal Precondition Rules

```
\mathsf{WLP}:\ \mathsf{STATEMENT} \times \mathsf{SATFORMULA} \to \mathsf{SATFORMULA}
\mathsf{WLP}(s,\phi) := \mathsf{match}\ s \ \mathsf{with}
  skip
                                                                     \mapsto WLP(s_1, \text{WLP}(s_2, \phi))
  s_1; s_3
 T x
                                                                     \mapsto accessTo(e) \land [e/x]\phi
 x := e
                                                                    \mapsto \quad x = \mathsf{newInstance}(C) \ \land \ \phi
 x := \text{new } C
 x.f := y
                                                                     \mapsto x.f = y \land \phi
                                                                     \mapsto WLP(assert [z/\text{this}, \overline{e/x}] \text{pre}(z.m_C);
  y := z.m_C(\overline{e})
                                                                                         [z/{\tt this}, \overline{e/x}]{\tt body}(z.m_C)
                                                                                         assert [z/\text{this}, y/\text{result}, \overline{e/\text{old}(x)}] \text{post}(z.m_C);
                                                                                  accessTo(\overline{e}) \land \phi)
 if (e) \{s_{\rm th}\} else \{s_{\rm el}\}
                                                                     \mapsto accessTo(e) \land ((e \land \mathsf{WLP}(s_{\mathsf{th}}, \phi)) \lor (\sim e \land \mathsf{WLP}(s_{\mathsf{el}}, \phi)))
 while (e) invariant \phi_{\mathrm{inv}} \{ s_{\mathrm{bod}} \} \mapsto \mathsf{accessTo}(e) \land \phi_{\mathrm{inv}} \land \mathsf{bod}(e) 
                                                                              \mathsf{WLP}(s_{\mathrm{bod}},\ (\sim e\ \land\ \phi)\ \lor
                                                                                                    \mathsf{WLP}(\mathtt{while}\ (e)\ \mathtt{invariant}\ \phi_{\mathtt{inv}}\ \{s_{\mathtt{bod}}\},\ \phi))
  assert \phi_{\rm ass}
                                                                     \mapsto \phi_{\rm ass} \wedge \phi
                                                                     \mapsto TODO
 hold \phi_{\rm hol}
                                                                     \mapsto \ TODO
 release \phi_{\mathrm{rel}}
                                                                     \mapsto \ \operatorname{accessTo}(\overline{e}) \ \land \ \alpha_C(\overline{e}) \ \land \ (\phi - [\overline{e/x}] \mathsf{body}(\alpha_C))
  unfold \alpha_C(\overline{e})
                                                                     \mapsto accessTo(\overline{e}) \land [\overline{e/x}]body(\alpha_C) \land \phi
  fold \alpha_C(\overline{e})
```

Some utility functions are defined as follows:

$$\mathsf{accessTo}(e) := \begin{cases} \mathsf{accessTo}(e') \land \mathsf{acc}(e'.f) & \text{if } e = e'.f \\ \mathsf{true} & \text{otherwise} \end{cases}$$

$$\mathsf{accessTo}(e_1, \dots, e_n) := \mathsf{accessTo}(e_1) \land \dots \land \mathsf{accessTo}(e_n)$$

 $\mbox{{\tt newInstance}}(C) := \mbox{an object that is a new instance of class } C$ where all fields are assigned to their default values

 $\phi - \alpha_C(\overline{e}) := \phi$ without a single $\wedge\text{-clause}$ of the form $\alpha_C(\overline{e})$