Lecture 3 Image Sampling

COMP3204 & COMP6223 Computer Vision

How is an image sampled and what does it imply?

Sampling at Different Frequencies

(a) sampling at high frequency

(b) sampling at low frequency

Aliasing in Sampled Imagery

(a) high resolution

(c) low resolution – aliased

Sampling Signals

original signal

good sampling

bad sampling (aliasing)

Correct and Incorrect Apparent Wheel Motion

Sampling theory

- Nyquist's sampling theorem is 1D
- E.g. speech 6kHz, sample at 12 kHz
- Video bandwidth (CCIR) is 5MHz
- Sampling at 10MHz gave 576×576 images
- Guideline: "two pixels for every pixel of interest"

https://www.pinterest. com/pin/27542333343 1517864/

Transform Pair for Sampled Pulse

(a) sampled pulse

(b) DFT of sampled pulse

(a) original sampled signal

(c) second coefficient Fp₁

(b) first coefficient Fp₀

(d) adding Fp₁ and Fp₀

(f) adding all six frequency components

2D Fourier transform

Forward transform
$$\mathbf{F}\mathbf{P}_{u,v} = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(ux+vy)}$$

Where two dimensions of space, x and y two dimensions of frequency, u and v image NxN pixels $\mathbf{P}_{x,v}$

Inverse transform

$$\mathbf{P}_{x,y} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \mathbf{F} \mathbf{P}_{u,v} e^{j\left(\frac{2\pi}{N}\right)(ux+vy)}$$

 π ??

Shift invariance

Rotation

(a) original image

(b) rotated image

(c) transform of original image

(d) transform of rotated image

$$\mathbf{FP}_{u,v} = \frac{1}{N} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(uy+vx)}$$

Filtering

Fourier gives access to frequency components

(a) low-pass filtered image

(b) low-pass filtered transform

(c) high-pass filtered image

(d) high-pass filtered transform

Other transforms

• For Lena

(b) discrete cosine transform

(c) Hartley transform

Modelling Gait(s)

- Extended pendular thigh-model, based on angles
- Uses forced oscillator/ bilateral symmetry/ phase coupling

Modeling the Thigh's Motion 1

$$vs_x(t) = A\cos(\omega t + \phi)$$

Modeling the Thigh's Motion 2

$$vh_x(t) = Vx + A\cos(\omega t + \phi)$$

Modeling the Thigh's Motion 3

$$\phi(t) = a_0 + \sum_{k=1}^{N} \left[b_k \cos(k\omega_0 t + \psi) \right]$$

Validity?

Applications of 2D FT

- Understanding and analysis
- Speeding up algorithms
- Representation (invariance)
- Coding
- Recognition/ understanding (e.g. texture)

