

Proceedings OF THE National Academy of Sciences

OF THE UNITED STATES OF AMERICA

September 13, 1994

Volume 91, Number 19

pp. 8729-9196

Table of Contents

CONDENSED INFORMATION FOR CONTRIBUTORS

AUTHOR INDEX

ix-xii

8842-8845

8747-8751

Commentary

De novo design of β-sheet proteins

Michael H. Hecht 8729-8730

Reviews

The development of mitochondrial medicine

Rolf Luft 8731-8738

Mitochondrial DNA sequence variation in human evolution and disease

Douglas C. Wallace 8739-8746

Paper from a Colloquium

Hepatitis viruses: Changing patterns of human

Kinetic intermediates in the reactions between peptides and proteins of major histocompatibility

complex class II

Craig Beeson and Harden M. McConnell

Physical Sciences

disease (Correction)

Robert H. Purcell

Convenient separation of high-purity C₆₀ from crude 9019-9021 fullerene extract by selective complexation with AlCla

Imre Bucsi, Robert Aniszfeld, Tatyana Shamma, G. K. Surya Prakash, and George A. Olah

Biological Sciences

CHEMISTRY

Photolabile precursors of glutamate: Synthesis, photochemical properties, and activation of

glutamate receptors on a microsecond time scale Raymond Wieboldt. Kyle R. Gee. Li Niu, Doraiswamy Ramesh, Barry K. Carpenter, and George P. Hess

8752-8756

9195

BIOCHEMISTRY

Betadoublet: De novo design, synthesis, and characterization of a B-sandwich protein

Thomas P. Quinn, Neil B. Tweedy, Robert W. Williams, Jane S. Richardson, and David C.

Richardson

iii

Contents			
CCAAT/enhancer binding protein α is sufficient to initiate the 3T3-L1 adipocyte differentiation program Fang-Tsyr Lin and M. Daniel Lane	8757–8761	Enhancer 1 binding Partor (E ₁ BF), a Ku-related protein, is a growth-regulated RNA polymerase I transcription factor: Association of a repressor activity with purified E ₁ BF from serum-	9101-9105
Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue Agnes Jancso and Andrew G. Szent-Györgyi	8762-8766	deprived cells Huifeng Niu and Samson T. Jacob	
RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)-and (-)-strands of virus-associated RNAs	8792–8796	The transcription factor TFIIS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II ChoonJu Jeon, HoSup Yoon, and Kan Agarwal	9106-9110
Chuanzheng Song and Anne E. Simon		The phosphatidylinositol 3-kinase α is required for DNA synthesis induced by some, but not all,	9185-9189
Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53 Martin Scheffner, Jon M. Huibregtse, and	8797-8801	growth factors Serge Roche, Manfred Koegl, and Sara A. Courtneidge	
Peter M. Howley		Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing	9195
Induction of structural changes in the bovine papillomavirus type 1 origin of replication by the	8846-8850	ribosomal frame-shifting (Correction) Eran Rom and Chaim Kahana	
viral E1 and E2 proteins Thomas G. Gillette, Monika Lusky, and James A. Borowiec		Assembly of synthetic cellulose I (Correction) Jong H. Lee, R. Malcolm Brown, Jr., Shigenori Kuga, Shin-ichiro Shoda, and Shiro Kobayashi	9195
The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication	8895–88 99	BIOPHYSICS	
origin complex Monika Lusky, Jerard Hurwitz, and Yeon-Soo Seo		The structure of a complex of hexameric insulin and 4'-hydroxyacetanilide G. David Smith and Ewa Ciszak	8851-8855
Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells Toshikazu Suzuki, Yong He, Keiko Kashiwagi, Yasuko Murakami, Shin-ichi Hayashi, and	8930-8934	Synergy in the spectral tuning of retinal pigments: Complete accounting of the opsin shift in bacteriorhodopsin Jingui Hu, Robert G. Griffin, and Judith Herzfeld	8880-8884
Kazuei Igarashi		Femtosecond photodichroism studies of isolated	8999-9003
Constitutive activation of Mek1 by mutation of serine phosphorylation sites Weidong Huang and Raymond L. Erikson	89 6 0–89 6 3	photosystem II reaction centers Gary P. Wiederrecht, Michael Seibert, Govindjee, and Michael R. Wasielewski	
Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution	8974–8978	Computation with chaos: A paradigm for cortical activity A. Babloyantz and C. Lourenço	9027-9031
Hiroshi Sakamoto, Marc S. Lewis, Hiroaki Kodama, Ettore Appella, and Kazuyasu Sakaguchi		CELL BIOLOGY	
Specific inhibition of herpes virus replication by receptor-mediated entry of an antiviral peptide linked to Escherichia coli enterotoxin B subunit Alessandro Marcello, Arianna Loregian, Anne Cross, Howard Marsden, Timothy R. Hirst, and	8994-8998	P-selectin induces the expression of tissue factor on monocytes Alessandro Celi, Giuliana Pellegrini, Roberto Lorenzet, Antonio De Blasi, Neal Ready, Barbara C. Furie, and Bruce Furie	8767-8771
Giorgio Palù An in vitro polysome display system for identifying ligands from very large peptide libraries	9022-9026	Integrin $\alpha_v \beta_3$ rescues melanoma cells from apoptosis in three-dimensional dermal collagen Anthony M. P. Montgomery, Ralph A. Reisfeld, and David A. Cheresh	88568860

9096-9100

human telomeres

Titia de Lange

Stringent sequence requirements for the formation of

Yasuko Yamamura, Makoto Noda, and Yoji Ikawa

John P. Hanish, Judith L. Yanowitz, and

Activated Ki-Ras complements erythropoietin

signaling in CTLL-2 cells, inducing tyrosine

phosphorylation of a 160-kDa protein

8861-8865

8866-8870

Larry C. Mattheakis, Ramesh R. Bhatt, and

Involvement of the C-terminal residues of the

20,000-dalton light chain of myosin on the regulation

Mitsuo Ikebe, Sheila Reardon, Yasuo Mitani,

Hiroshi Kamisoyama. Motoi Matsuura, and

William J. Dower

Reiko Ikebe

of smooth muscle actomyosin

Contents

•			
Subcellular localization of the UDP-N-acetyl-p-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland Jürgen Roth, Yang Wang, Allen E. Eckhardt, and	8935-8939	Evidence for multiple but the peaks from populations of bacteria evolving in a structured habitat Ryszard Korona, Cindy H. Nakatsu, Larry J. Forney, and Richard E. Lenski	9037–9041
Robert L. Hill		·	
Relief of p53-mediated transcriptional repression by	8940-8944	GENETICS	
the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein Yuqiao Shen and Thomas Shenk		Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice M. M. Matzuk, M. J. Finegold, J. P. Mather, L. Krummen, H. Lu, and A. Bradley	8817–8821
Direct observation of substance P-induced	8964-8968	E. Ridminell, II. Ed, and A. Bradicy	
internalization of neurokinin 1 (NK ₁) receptors at sites of inflammation		A mismatch recognition defect in colon carcinoma confers DNA microsatellite instability and a	8905-8909
Jeffrey J. Bowden, Adella M. Garland, Peter Baluk, Peter Lefevre, Eileen F. Grady, Steven R. Vigna, Nigel W. Bunnett, and Donald M. McDonald		mutator phenotype Gabriele Aquilina, Patricia Hess, Pauline Branch, Catriona MacGeoch, Ida Casciano, Peter Karran, and Margherita Bignami	
Long-term culture and functional characterization of	9004-9008	A targeted chain-termination mutation in the mouse	8969-8973
follicular cells from adult normal human thyroids Francesco Curcio, Francesco Saverio Ambesi-Impiombato, Giuseppina Perrella, and		Apc gene results in multiple intestinal tumors Riccardo Fodde, Winfried Edelmann, Kan Yang, Claus van Leeuwen, Christine Carlson, Beatrice	
Hayden G. Coon		Renault, Cor Breukel, Elaine Alt, Martin Lipkin, P. Meera Khan, and Raju Kucherlapati	
Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo	9111–9115	· ·	2000 2003
Xiaoyue Chen, Donald S. Sullivan, and Tim C. Huffaker		Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice Jay L. Grisolano, Gary M. Sclar, and	8989–8 99 3
A yeast TCP-1-like protein is required for actin	9116-9120	Timothy J. Ley	
function in vivo Dani Bich-Nga Vinh and David G. Drubin		A transposable element can drive the concerted evolution of tandemly repetitious DNA	9042–9046
Identification of soluble forms of the fibroblast growth factor receptor in blood	9170-9174	Dianne Thompson-Stewart, Gary H. Karpen, and Allan C. Spradling	
Anne Hanneken, Wenbin Ying, Nicholas Ling, and Andrew Baird		DNA polymerase δ is required for base excision repair of DNA methylation damage in	9047-9051
Mapping of the C5a receptor signal transduction	9190-9194	Saccharomyces cerevisiae	
network in human neutrophils Anne Mette Buhl, Natalie Avdi, G. Scott		A. Blank. Baek Kim, and Lawrence A. Loeb	0052 0055
Worthen, and Gary L. Johnson		Genetic variation detected by quantitative analysis of end-labeled genomic DNA fragments Jun-ichi Asakawa, Rork Kuick, James V. Neel.	9052–9056
DEVELOPMENTAL BIOLOGY		Mieko Kodaira, Chiyoko Satoh, and Samir M. Hanash	
The cellular retinoic acid binding protein I is dispensable	9032-9036		
Philippe Gorry, Thomas Lufkin, Andrée Dierich, Cécile Rochette-Egly, Didier Décimo, Pascal Dollé, Manuel Mark, Béatrice Durand, and		Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein Karen K. Hsiao, Darlene Groth, Michael Scott, Shu-Lian Yang, Hana Serban, Dennis Rapp,	9126–9130
Pierre Chambon		Dallas Foster, Marilyn Torchia, Stephen J. DeArmond, and Stanley B. Prusiner	
ECOLOGY		·	
Eastern Pacific molluscan provinces and latitudinal	8871-8874	IMMUNOLOGY	
diversity gradient: No evidence for "Rapoport's rule" Kaustuv Roy, David Jablonski, and James W. Valentine		Monoclonal antibody-superantigen fusion proteins: Tumor-specific agents for T-cell-based tumor therapy Mikael Dohlsten, Lars Abrahmsén. Per Björk, Peter A. Lando, Gunnar Hedlund, Göran	8945-8949
EVOLUTION		Forsberg, Thomas Brodin, Nick R. J. Gascoigne, Cecilia Förberg, Peter Lind, and Terje Kalland	
Gene trees and hominoid phylogeny Maryellen Ruvolo, Deborah Pan, Sarah Zehr, Tony Goldberg, Todd R. Disotell, and Miranda von Dornum	8900-8904	Binding of soluble natural ligands to a soluble human T-cell receptor fragment produced in <i>Escherichia coli</i> Katherine L. Hilyard, Hugh Reyburn, Shan Chung, John I. Bell, and Jack L. Strominger	9057-9061

·Contents

Contents			
Genomic organization and structure of Bruton agammaglobulinemia tyrosine kinase: Localization of mutations associated with varied clinical presentations and course in X chromosome-linked agammaglobulinemia.	9062–9066	A murine model for B-lymphocyte somatic cell gene therapy Natalie Sutkowski, Ming-Ling Kuo, Alfredo Varela-Echavarria, Joseph P. Dougherty, and Yacov Ron	8875 <u>–</u> 8879
Yuko Ohta, Robert N. Haire, Ronda T. Litman, Shu Man Fu, Robert P. Nelson, Jamie Kratz, Stephen J. Kornfeld, Maite de la Morena, Robert A. Good, and Gary W. Litman		BCL2 translocation frequency rises with age in humans Yafei Liu. Antonio M. Hernandez, Darryl Shibata, and Gino A. Cortopassi	8910-8914
BY55 monoclonal antibody delineates within human cord blood and bone marrow lymphocytes distinct cell subsets mediating cytotoxic activity A. Bensussan, E. Gluckman, S. El Marsafy, V. Schiavon, IG. Mansur, J. Dausset, L. Boumsell, and E. Carosella	9136–9140	Adeno-associated virus vectors preferentially transduce cells in S phase David W. Russell, A. Dusty Miller, and lan E. Alexander Transcriptional regulation of basic fibroblast growth	8915-8919 9009-9013
Human T-cell-mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse Allan G. Murray, Peter Petzelbauer, Christopher C. W. Hughes, José Costa, Philip Askenase, and Jordan S. Pober	9146-9150	factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells Tetsuya Ueba, Tetsuya Nosaka, Jun A. Takahashi, Futoshi Shibata, Robert Z. Florkiewicz, Bert Vogelstein, Yoshifumi Oda, Haruhiko Kikuchi, and Masakazu Hatanaka	3007-3013
The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C Libo Yao, Yuko Kawakami, and Toshiaki Kawakami The \alpha 3 chain of type IV collagen induces	9175–9179	A lag in intracellular degradation of mutant α ₁ -antitrypsin correlates with the liver disease phenotype in homozygous PiZZ α ₁ -antitrypsin deficiency Ying Wu, Ina Whitman, Ernesto Molmenti, Kenneth Moore, Paul Hippenmeyer, and David H. Perlmutter	9014–9018
autoimmune Goodpasture syndrome (Correction) Raghuram Kalluri, Vincent H. Gattone II, Milton E. Noelken, and Billy G. Hudson MEDICAL SCIENCES		Direct isolation of genes encoded within a homogeneously staining region by chromosome microdissection Yan A. Su, Jeffrey M. Trent, Xin-Yan Guan, and Paul S. Meltzer	9121-9125
Genetic changes in the transforming growth factor β (TGF-β) type II receptor gene in human gastric cancer cells: Correlation with sensitivity to growth inhibition by TGF-β Keunchil Park, Seong-Jin Kim, Yung-Jue Bang, Jae-Gahb Park, Noe Kyeong Kim, Anita B. Roberts, and Michael B. Sporn	8772-8776	Gastric carcinoma: Monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein Shosuke Imai, Shigeki Koizumi, Makoto Sugiura, Masayoshi Tokunaga, Yoshiko Uemura, Noriko Yamamoto, Sadao Tanaka, Eiichi Sato, and Toyoro Osato	9131-9135
An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3 Andrew J. Bett, Wael Haddara, Ludvik Prevec, and Frank L. Graham Receptor for advanced glycation end products (AGEs)	8802-8806 8807-8811	Protein farmesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice Nancy E. Kohl, Francine R. Wilson, Scott D. Mosser, Elizabeth Giuliani, S. Jane deSolms, Michael W. Conner, Neville J. Anthony, Wilbur J. Holtz, Robert P. Gomez, Ta-Jyh Lee, Robert L. Smith, Samuel L. Graham, George D. Hartman, Jackson B. Gibbs, and Allen Oliff	9141-9145
has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins Ann Marie Schmidt, Mirela Hasu. Doina Popov, Jing Hua Zhang, Jingxian Chen, Shi Du Yan, Jerold Brett, Rong Cao, Keisuke Kuwabara, Gabriela Costache, Nicolae Simionescu, Maya		Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus Alfons Valera, Anna Pujol, Mireia Pelegrin, and Fatima Bosch	9151-9154
Simionescu, and David Stern The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump G. J. R. Zaman, M. J. Flens, M. R. van Leusden, M. de Haas, H. S. Mülder, J. Lankelma, H. M. Pinedo, R. J. Scheper, F. Baas, H. J. Broxterman, and P. Borst	8822-8826	Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan Paulo F. P. Pimenta, Elvira M. B. Saraiva, Edgar Rowton, Govind B. Modi, Levi A. Garraway, Stephen M. Beverley, Salvatore J. Turco, and David L. Sacks	9155-9159

Contents

Collegia			
MICROBIOLOGY		Microglia in in ate ganglia Dario Sonetti, Enzo Ottaviani, Francesca	9180-9184
Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission	8885-8889	Bianchi, Madeline Rodriguez. Michelle L. Stefano, Berta Scharrer, and George B. Stefano	
Isabelle Schmidt, Stéphane Blanc, Pascal Esperandieu, Georges Kuhl, Gérard Devauchelle, Claude Louis, and Martine Cerutti		PHARMACOLOGY	
Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli Duk-Ju Hwang. Ian M. Roberts, and T. Michael A. Wilson	9067-9071	Cellular signaling by an agonist-activated receptor/G ₅ α fusion protein Brigitte Bertin, Michael Freissmuth, Ralf Jockers, A. Donny Strosberg, and Stefano Marullo	8827-8831
		Genomic structure and analysis of promoter	9081-9085
NEUROBIOLOGY		sequence of a mouse μ opioid receptor gene	
None		Bon H. Min, Lance B. Augustin, Roderick F.	
mRNA expression in the rat brain and pituitary	8777-8781	Felsheim, James A. Fuchs, and Horace H. Loh	
E. Potter, S. Sutton, C. Donaldson, R. Chen, M. Perrin, K. Lewis, P. E. Sawchenko, and W. Vale		Regulation of receptor internalization by the major histocompatibility complex class I molecule Lennart Olsson, Avram Goldstein, and	9086-9090
Murine oligodendroglial cells express nerve growth factor	8812-8816	Jan Stagsted	
Sujatha Byravan, Lyndon M. Foster, Tommy			
Phan, A. Neil Verity, and Anthony T. Campagnoni		PHYSIOLOGY	
Heteromeric olfactory cyclic nucleotide-gated channels: A subunit that confers increased sensitivity	8890-8894	On measuring the third dimension of cultured endothelial cells in shear flow	8782-8786
to cAMP Jonathan Bradley, Jun Li, Norman Davidson, Henry A. Lester, and Kai Zinn		S. Q. Liu, Morris Yen, and Y. C. Fung	
, 🗠		ω3 polyunsaturated fatty acid modulates	8832-8836
Brain-derived neurotrophic factor increases the electrical activity of pars compacta dopamine	8920-8924	dihydropyridine effects on L-type Ca ²⁺ channels, cytosolic Ca ²⁺ , and contraction in adult rat	
ceurons in vivo		cardiac myocytes Salvatore Pepe, Konstantin Bogdanov, Haifa	
Roh-Yu Shen, C. Anthony Altar, and Louis A. Chiodo		Hallaq, Harold Spurgeon, Alexander Leaf, and Edward Lakatta	
Cyanotriphenylborate: Subtype-specific blocker of	8950-8954		
glycine receptor chloride channels		Regulation of collecting duct water channel	8984-8988
Nils Rundström. Volker Schmieden, Heinrich Betz, Joachim Bormann, and Dieter Langosch		expression by vasopressin in Brattleboro rat Susan R. DiGiovanni, Søren Nielsen, Erik Ilsø Christensen, and Mark A. Knepper	
reproenkephalin promoter yields region-specific and	8979-8983	Christensen, and Mark 71. Perepper	
long-term expression in adult brain after direct in		Creatine kinase (CK) in skeletal muscle energy	9091-9095
vivo gene transfer via a defective herpes simplex		metabolism: A study of mouse mutants with	
viral vector Michael G. Kaplitt, Ann D. Kwong, Steven P.		graded reduction in muscle CK expression	
Kleopoulos, Charles V. Mobbs, Samuel D.		Jan van Deursen, Wim Ruitenbeek, Arend	
Rabkin, and Donald W. Pfaff		Heerschap, Paul Jap, Henk ter Laak, and Bé Wieringa	
Transgenic engineering of neuromuscular junctions in ienopus laevis embryos transiently overexpressing	9072-9076	Phosphatase inhibitors activate normal and defective	9160-9164
key cholinergic proteins		CFTR chloride channels	
Michael Shapira, Shlomo Seidman, Meira		Frédéric Becq, Timothy J. Jensen, Xiu-Bao Chang, Anna Savoia, Johanna M. Rommens,	
Sternfeld, Rina Timberg, Daniela Kaufer, James Patrick, and Hermona Soreq		Lap-Chee Tsui, Manuel Buchwald, John R. Riordan, and John W. Hanrahan	
Intravenous administration of a transferrin receptor	9077-9080		
antibody-nerve growth factor conjugate prevents the		Involvement of microtubules in the link between	9165-9169
degeneration of cholinergic striatal neurons in a		cell volume and pH of acidic cellular compartments	• • •
Jeffrey H. Kordower, Vinod Charles, Robert		in rat and human hepatocytes Gillian L. Busch, Rainer Schreiber, Peter C.	
Bayer, Raymond T. Bartus, Scott Putney, Lee R.		Dartsch, Harald Völkl, Stephan vom Dahl, Dieter	
Walus, and Phillip M. Friden		Häussinger, and Florian Lang	

•

Contents

PLANT BIOLOGY

The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance

Cloning and characterization of a maize

calmodulin-independent protein kinase

pollen-specific calcium-dependent

8787-8791

8837-8841

An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene Hanan Itzhaki, Julie M. Maxson, and

8925-8929

Zoltan Gombos, Hajime Wada, and Norio Murata

William R. Woodson

Isolation of phytoalexin-deficient mutants of

8955-8959

Juan J. Estruch, Sue Kadwell, Elijs Merlin, and Lyle Crossland

Arabidopsis thaliana and characterization of their interactions with bacterial pathogens Jane Glazebrook and Frederick M. Ausubel

Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins

(glycated protein/endothelium/receptor/diabetes mellitus)

ANN MARIE SCHMIDT*†, MIRELA HASU‡, DOINA POPOV‡, JING HUA ZHANG§, JINGXIAN CHEN§, SHI DU YAN§, JEROLD BRETT§, RONG CAO§, KEISUKE KUWABARA§, GABRIELA COSTACHE‡, NICOLAE SIMIONESCU‡, MAYA SIMIONESCU‡, AND DAVID STERN§

Departments of *Medicine and *Physiology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032; and *Institute of Cellular Biology and Pathology, 8 B.P. Hasdeu Street, Bucharest-79691, Romania

Communicated by George E. Palade, April 7, 1994

The extended interaction of aldoses with protem or lipids results in nonenzymatic glycation and oxidation, ultimately forming AGEs, the presence of which in the plasma and vessel wall is associated with diabetic vascular complications. We show here that AGE albumin in the intravascular space interacts with the vessel wall via binding to an integral membrane protein, receptor for AGE (RAGE), a member of the immunoglobulin superfamily, resulting in clearance from the plasma and induction of interleukin 6 mRNA. Intravenously infused 125I-AGE albumin showed a rapid phase of plasma clearance with deposition in several organs. Rapid removal of 125I-AGE albumin from the plasma was prevented by administration of a soluble, truncated form of RAGE, which blocked binding of 125I-labeled AGE albumin to cultured endothelial cells and mononuclear phagocytes, as well as by pretreatment with anti-RAGE IgG. Ultrastructural studies with AGE albumin-colloidal gold conjugates perfused in situ showed that in murine coronary vasculature this probe was taken up by endothelial plasmalemmal vesicles followed by transport either to the abluminal surface or by accumulation in intracellular vesicular structures reminiscent of endosomes and lysosomes. Consequences of AGE-RAGE interaction included induction of interleukin 6 mRNA expression in mice. These data indicate that RAGE mediates the interaction of AGEs with the vessel wall, both for removal of these glycated proteins from the plasma and for changes in gene expression.

When proteins or lipids are exposed to aldoses, they undergo nonenzymatic glycation and oxidation (1-8), ultimately forming AGEs, whose formation occurs during normal aging and is accelerated in diabetics (1-7). The presence of AGEs in the plasma and vessel wall has been linked to the pathogenesis of diabetic complications, stimulating investigations to determine mechanisms through which AGEs exert their pathologic effects.

An important mechanism through which AGEs interact with cells is through specific receptors (9-13). We thus evaluated the role of the receptor for AGE (RAGE), which so cifically binds AGEs (10-12), in mediating the interactions of these glycated molecules with target cells such as endothelial cells (ECs) and mononuclear phagocytes (MPs) (10, 11, 13). Previous studies have identified the presence of RAGE in bovine cardiac vasculature (13). We have now identified RAGE in murine coronary vasculature both *in vivo* and *in vitro* and employed this model to demonstrate that RAGE has a central role in uptake by the endothelium and in gene expression following AGE infusion.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

MATERIALS AND METHODS

Preparation of AGE Albumin, RAGE, and Anti-RAGE Antibody. Mouse and bovine AGE albumin were prepared and characterized as described (2, 10, 11). Radiolabeling of AGE and native albumin was performed by the lactoperoxidase method (14); the tracers had specific radioactivities of ≈1.5 × 10⁴ cpm/ng (10, 11). For AGE albumin-gold conjugates, colloidal gold particles (5 nm in diameter) were prepared as described (15, 16). Bovine RAGE and monospecific rabbit anti-RAGE IgG were prepared and characterized as described (11). The ≈35-kDa form of bovine RAGE was termed soluble RAGE (sRAGE; refs. 10 and 12).

Cell Binding Assays. Binding of 1251-AGE albumin to cultured bovine adrenal capillary ECs or human MPs was

studied as described (10, 11, 17).

Infusion/Uptake Studies. 125 I-labeled AGE albumin or 125 I-labeled native albumin ($\approx 3~\mu g$) was infused via the tail vein of CD₁ mice with or without preincubation with a 50-fold molar excess of sRAGE or preinfusion of the animals with either anti-RAGE IgG or nonimmune IgG. To assess tissue deposition, organs were removed and the weight and radioactivity (cpm) were measured (18). The method of Spady et al. (19) was used to calculate the tissue spaces. To correct for nonspecific tissue trapping of tracer, a tissue space f r 125 I-albumin was calculated (18). All preparations of proteins utilized in infusion studies were tested in the Limulus amebocyte assay (Sigma) for lipopolysaccharide content and, where indicated, were chromatographed on Detoxi-Gel columns (Pierce). Inactive heat-treated AGE albumin (boiled for 15 min) was also employed.

Effect of AGE Albumin Infusion on Levels of Interleukin 6 (IL-6) Transcripts. Three hours after AGE albumin infusion, mice were sacrificed, livers were excised, total RNA was extracted, and poly(A)* mRNA was prepared (20, 21). Random hexanucleotide-primed first-strand cDNA served as the template for polymerase chain reaction (PCR) analysis. Murine IL-6 primers and actin primers were obtained from Clontech, cDNA for murine IL-6 was amplified by PCR for 35 cycles, each consisting of incubations at 94°C for 2 min (first cycle) or 45 sec (remaining 34 cycles), 60°C for 45 sec, and 72°C for 2 min followed by 7 min at 72°C linked to 4°C. A similar protocol was utilized for the β -actin primers except that 25 cycles were employed. Products were separated by 2% agarose gel electrophoresis and transferred to nyl n membrane for Southern hybridization with a 32P-labeled oligonucleotide probe for murine IL-6 (Clontech).

Abbreviations: AGE, advanced glycation end product; RAGE, receptor for AGE; sRAGE, soluble RAGE; EC, endothelial cell; MP, mononuclear phagocyte; IL, interleukin.

*To whom reprint requests should be addressed.

Fig. 1. (Legend appears at the bottom of the opposite page.)

Uptake f AGE Albumin. Via laparotomy, a rtae were catheterized, and the vasculature was washed free of blood with phosphatebuffered saline (PBS) containing albumin (3.5 mg/ml) by using the vena cava as the outflow track. AGE albumin conjugated to colloidal gold was introduced at a flow rate of 3 ml/min at 37°C for 4 r 15 min. Unbound ligand was removed by perfusing PBS (3 min; 3 ml/min) and then 2.5% formaldehyde/1.5% glutaraldehyde/2.5 mM CaCl₂/0.1 M soiliam cacodylate-HCl buffer (pH 7.2). Thin sections of myocardium were cut on an OmU Reichert Ultramicrotome, stained with uranyl acetate and lead citrate, and examined with a Philips 400 HM electron microscope.

Identification of Murine RAGE Antigen and mRNA in Cardiac Vasculature and Cultured Murine Coronary ECs. RAGE was detected immunohistochemically on freshly harvested mouse cardiac tissue fixed overnight with 3.5% formalin in PBS and on confluent cultured murine coronary ECs (gcrerously provided by R. Auerbach, University of Wisconan, Madison) fixed in buffered 3.5% paraformaldehyde. After preparation, immunostaining with anti-RAGE IgG was performed as described (13). In situ hybridization was performed with digoxigenin-labeled RNA probes (13). Immunoblotting was performed with 10⁷ cultured murine coronary ECs (10, 11, 13, 22).

RESULTS

EAGE Expression in Murine Cardiac Vasculature. Immunohistochemistry demonstrated the presence of RAGE in murine coronary vessels, compared with absence of staining with nonimmune IgG, and in situ hybridization confirmed the presence of the mRNA with antisense probe, whereas sense controls were negative (data not shown). Experiments were also performed with cultured murine coronary ECs: RAGE was evident in nonpermeabilized samples, and in situ hybridization demonstrated RAGE mRNA (data not shown). Consistent with these results, Western blotting of detergent extracts of cultured murine coronary ECs demonstrated the presence of a single band at ≈35 kDa which was specifically immunoreactive with anti-RAGE IgG.

Effect of sRAGE and Anti-RAGE IgG on the Binding of AGE Albumin to Cultured ECs and MPs and on the Removal of Infused AGE Albumin from the Blood. To analyze the contribution of RAGE in the interaction of AGEs with cellular elements, we employed monospecific polyclonal anti-RAGE IgG which blocks the interaction of AGEs with cultured ECs and MPs (10, 11), and sRAGE. Addition of sRAGE to incubation mixtures of ¹²⁵I-labeled AGE albumin with either ECs or MPs resulted in dose-dependent inhibition of binding (Fig. 1A). sRAGE did not affect binding of ¹²⁵I-labeled factor IX to cultured ECs (data not shown).

To determine t of RAGE in the handling of circulating AGEs, infusi n studies were performed with 125 I. labeled AGE or native albumin in mice (Fig. 1B) 125 I-labeled AGE albumin showed an initial rapid phase of removal from the blood, with \approx 70% of the material gone by 5 min (Fig. 1B Left). The deposition of 125I-AGE albumin in the tissues. studied just after the rapid phase of AGE clearance from the blood, was enhanced relative to that of 125 I-albumin, especially in the liver, lung, and kidney (Fig. 1B Right). When 125 I-AGE albumin was preincubated with sRAGE and infused into mice (Fig. 1C), the rapid phase of tracer clearance was largely blocked; sRAGE had no effect on 125I-albumin plasma levels (Fig. 1C Left). Animals pretreated with anti-RAGE IgG showed an even more complete blockade of the early clearance phase of infused 125I-AGE albumin. The clearance of 125 I-albumin was again unaffected (data not shown). Nonimmune IgG had no effect (Fig. 1D Left). Administration of 125 I-AGE albumin with sRAGE or pretreatment with anti-RAGE lgG prior to 125I-AGE albumin infusion strikingly decreased its deposition in the organs (Figs. 1 C Right and D Right, respectively), suggesting that AGE albumin is initially cleared from the circulation and deposited in the organs/ vasculature via a process which involves RAGE.

Ultrastructural Studies of AGE Albumin with the Vessel Wall. To assess vessel wall processing of infused AGEs, morphologic studies were performed with AGE albumin conjugated to colloidal gold particles, employing murine cardiac vasculature as a model system (23, 24). Four minutes after in situ perfusion, AGE albumin-gold conjugates decorated numerous plasmalemmal vesicles opened to the luminal front (Fig. 2A), while coated pits and coated vesicles were unlabeled (Fig. 2B). However, multivesicular bodies (Fig. 2B) and structures resembling endosomes appeared significantly decorated by the tracer (Fig. 2 C and D). Gold particles were also seen in the proximity of the abluminal endothelial cell surface (Fig. 2D). Sparse gold particles were occasionally observed in the subendothelial space (Fig. 2 A and D), suggesting that transcytosis had occurred. At 15 min, the presence of AGE albumin-gold particles in the subendothelial space was even more apparent. These experiments were performed in the presence of a large excess of native albumin (3.5 mg/ml) to block the interaction of determinants on albumin with vessel wall albumin-binding proteins (24-27). In addition, the presence of excess free AGE albumin blocked association of AGE albumin-gold particles with the heart tissue by >50%, while anti-RAGE IgG prevented such association by 50-70%. Similar results were observed in studies using 125I-AGE albumin (data not shown).

Infusion of AGE Albumin Leads to Induction of IL-6 mRNA: Effect of Anti-RAGE IgG. AGEs have been reported t modulate cell properties in vitro, including the induction of genes for cytokines and growth factors (28, 29). In view of the

Intravascular perfusion of 1251-AGE albumin and 1251-albumin into mice: Effect of sRAGE and anti-RAGE lgG. (A) Effect of sRAGE on the binding of 1251-AGE albumin to cultured ECs (Left) and MPs (Right). (Left) Confluent bovine adrenal capillary ECs were incubated with E albumin (100 nM) either alone (total binding), in the presence of a 30-fold excess of unlabeled AGE albumin (nonspecific binding), or want the indicated molar excess of sRAGE for 3 hr at 4°C. Percent maximal specific binding (total minus nonspecific binding), mean ± SEM of triplicate determinations, is shown. Maximal specific binding was ≈ 10 fmol per well. (Right) Cultured human MPs (5 × 10^4 per well) were lested for their capacity to bind 1251-AGE albumin (100 nM) as in A Left. Maximal binding with MPs was =6 fmol per well. (B Left) Removal of 1251-AGE albumin and 1251-native albumin from the plasma. Mice were infused with tracer (3 µg per animal), and blood was withdrawn for determination of radioactivity. The mean ± SEM is shown, and experiments were repeated at least three times. (B Right) Deposition of infused 125]-labeled AGE albumin (a) or 125]-labeled native albumin (e). Mice were infused as in B Left and after 10 min radioactivity in the tissues was determined. Results in mice treated with 1251-AGE albumin were compared with those in animals exposed to 1251-native albumin, and the mean = SEM is shown. (C) Effect of sRAGE on 125 I-AGE albumin clearance from the plasma (Left) and deposition in the tissues (Right). The same experiment as in B was performed, but both 125 I-AGE albumin (\triangle , \triangle) and 125 I-albumin (\bigcirc , \bigcirc) were preincubated for 60 min at 37°C with (\triangle , \bigcirc , open hars) or without (Δ, ♠, filled bars) a 50-fold molar excess of sRAGE. (D) Effect of anti (α)-RAGE IgG on 1251-AGE albumin clearance from the p. sma (Left) and deposition in the tissues (Right). The same experiment as in B was performed, but animals were pretreated for 30 min with either anti-RAGE IgG or nonimmune (NI) IgG (40 μ g per animal). \triangle and filled bars, ¹²⁵I-AGE albumin; \square and open bars, ¹²⁵I-AGE plus anti-RAGE IgG; A, 125I-AGE albumin plus nonimmune IgG; e, 125I-albumin. In all cases representative experiments are shown. Approximately ⁵⁰ mice were employed for each experimental condition.

Fig. 2. Interaction of AGE albumin—gold conjugates with myocardial capillary endothelium at 4 min (A-C) and 15 min (D-F) after tracer perfusion in situ. (A) The particles are preferentially taken up by plasmalemmal vesicles (v), open to the luminal front, whereas coated pits (cp) are not labeled by the tracer. (B) The probe is endocytosed in a multivesicular body (mv). The intercellular junction (j) is not permeated by the tracer. (C) Large vesicles (e) (most likely of the endosomal compartment) are decorated. (D) At 15 min, several labeled plasmalemmal vesicles are present on the abluminal front (av). (E) In this segment, almost every vesicle associated with the abluminal front (av) appears as discharging its contents into the subendothelial space (arrow). At j, an intercellular junction containing tracer in its luminal infundibulum (arrowhead) is observed. (F) In some areas, the complex (arrow) has reached the subendothelial extracellular compartment. 1, Lumen: ss, subendothelial space:

association of diabetes with increased levels of fibrinogen, an important risk factor for vascular complications (30-32), the ability of infused AGE albumin to elevate mRNA levels of IL-6, a cytokine linked to fibrinogen synthesis (33-35), was studied. Infusion of AGE albumin into normal mice led to an increase in IL-6 transcripts, compared with control animals infused with native albumin (Fig. 3A, lanes 3 and 2, respectively). The migration of the PCR band amplified from AGE albumin-treated mice was identical to that induced by exposure of animals to bacterial lipopolysaccharide, a known inducer of IL-6 (33) (Fig. 3A, lane 6). Southern blotting of these PCR products with an oligonucleotide probe for murine IL-6 confirmed the identity of the above amplicons (Fig. 3B, lanes 3 and 6, respectively). The increase in IL-6 transcripts in response to AGE albumin was blocked by pretreatment of mice with anti-RAGE IgG, whereas nonimmune IgG was without effect (Fig. 3 A and B, lanes 4 and 5, respectively). Heat treatment of these preparations abrogated their ability to induce IL-6 (data not shown).

DISCUSSION

Our data indicate that AGE albumin present in the intravascular space interacts with endothelial RAGE, resulting in its

removal from the plasma and subsequent endocytosis and transcytosis. Cell-bound AGEs can modulate cellular properties, as occurs after AGE-mediated activation of transcription factor NF-kB (36), generation of tumor necrosis factor and IL-1 (28), and induction of IL-6 mRNA (37). In addition, some of the AGE albumin is transferred across the endothelium by transcytosis, depositing ligand in the subendothelium where AGEs can potentially form crosslinks altering basement membrane structure and function (2), as well as interacting with other cells in the subendothelial space that bear RAGE. Subsequently, recruitment of intracellular secondmessenger pathways and effector mechanisms in response to AGE engagement of RAGE could be initiated by signals in the cytosolic tail of the receptor or, in part, by the natur of the ligand itself, as AGEs have been shown to generate reactive oxygen intermediates (38-40).

Since AGEs, though a diverse class of structures, represent the final and irreversible consequence of glycation and oxidation of proteins and lipids (1-8), elucidation of a major cellular acceptor site, such as RAGE, could provide insights into the pathogenesis of disorders in which they accumulate. Although future studies employing reagents which prevent AGE-RAGE interaction over longer periods of time will be

FIG. 3. Infusion of AGE albumin induces IL-6 mRNA as shown by PCR analysis. Mice were infused with either saline alone (0), native albumin (250 μ g per animal) or AGE albumin (250 μ g/animal) alone, or AGE albumin in the presence of anti-RAGE IgG or nonimmune IgG (40 μ g per animal). Other animals received lipopolysaccharide (LPS, 100 μ g per animal, i.v.). B shows Southern hybridization of the products obtained in A with ³²P-labeled oligonucleotide probe for murine IL-6. C shows PCR product obtained with β -actin-specific primers. Migration of DNA size (bp) markers (New England Biolabs) is shown at left.

required to dissect the possible contribution of RAGE to vascular dysfunction, the current experiments establish that AGEs in the intravascular space recognize RAGE on the vessel wall as a major cell-associated target.

his work was supported by grants from the U.S. Public Health Scivice and Fogarty International Center (AGOO602, TW00118, HL42833, HL42507, and HL21006), the Juvenile Diabetes Foundation, the Council for Tobacco Research, and the American Heart Association, New York City Affiliate. D.S. completed this work during the tenure of a Genentech-American Heart Association Established Investigator Award.

- Ruderman, N., Williamson, J. & Brownlee, M. (1992) Fed. Proc. Fed. Am. Soc. Exp. Biol. 6, 2905-2914.
- Brownlee, M., Cerami, A. & Vlassara, H. (1988) N. Engl. J. Med. 318, 1315-1320.
- 3. Sell, D. & Monnier, V. (1989) J. Biol. Chem. 264, 21597-21602.
- Dyer, D., Blackledge, J., Thorpe, S. & Baynes, J. (1991) J. Biol. Chem. 266, 11654-11650.
- 5. Baynes, J. (1991) Diabetes 40, 405-412.
- McCance, D., Dyer, D., Dunn, J., Bailie, K., Thorpe, S., Baynes, J. & Lyons, T. (1993) J. Clin. Invest. 91, 2470-2478.
- Dyer, D., Dunn, J., Thorpe, S., Bailie, K., Lyons, T., Mc-Cance, D. & Baynes, J. (1993) J. Clin. Invest. 91, 2463-2469.
- Bucala, R., Makita, Z., Koschinsky, T., Cerami, A. & Vlassara, H. (1993) Proc. Natl. Acad. Sci. USA 90, 6434-6438.
- Yang, Z., Makita, J., Hori, Y., Brunelle, S., Cerami, A., Sehajpal, P., Suthanthiran, M. & Vlassara, H. (1991) J. Exp. Med. 174, 515-524.

- Schmic M., Vianna, M., Gerlach, M., Brett, J., Ryan, J., Kao, J., Esposito, C., Hegarty, H., Hurley, W., Clauss, M., Wang, F., Pan, Y.-C., Tsang, T. C. & Stern, D. (1992) J. Biol. Chem. 267, 14987-14997.
- Schmidt, A.-M., Yan, S.-D., Brett, J., Mora, R., Nowygrod, R. & Stern, D. (1993) J. Clin. Invest. 91, 2155-2168.
 Neeper, M., Schmidt, A.-M., Brett, J., Yan, S.-D., Wang, F..
- Neeper, M., Schmidt, A.-M., Brett, J., Yan, S.-D., Wang, F., Pan, Y.-C., Elliston, K., Stern, D. & Shaw, A. (1992) J. Biol. Chem. 267, 14998-15004.
- Brett, J., Schmidt, A.-M., Zou, Y.-S., Yan, S.-D., Weidman, E., Pinksy, D., Neeper, M., Przysiecki, C., Shaw, A., Migheli, A. & Stern, D. (1993) Am. J. Pathol. 143, 1699-1712.
- 14. David, G. & Reisfeld, R. (1974) Biochemistry 13, 1014-1029.
- Horrisberger, M. & Rosset, J. (1977) J. Histochem. Cytochem. 25, 293-305.
- 16. Slot, J. & Geuze, H. (1981) J. Cell Biol. 90, 533-536.
- Esposito, C., Gerlach, H., Brett, J., Stern, D. & Vlassara, H. (1989) J. Exp. Med. 170, 1387-1407.
- Choi, S., Fong, L., Kirven, M. & Cooper, A. (1991) J. Clin. Invest. 88, 1173-1181.
- Spady, D., Bilheimer, D. & Dietschy, J. (1983) Proc. Natl. Acad. Sci. USA 80, 3499-3503.
- Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Plainview, NY).
- Chen, J., Border, P., Liao, J. & Kabat, E. A. (1992) Mol. Immunol. 29, 1121-1129.
- 22. Laemmli, U. (1970) Nature (London) 227, 680-685.
- Predescu, D., Simionescu, M., Simionescu, N. & Palade, G. E. (1988) J. Cell Biol. 107, 1729-1738.
- Simionescu, M. (1988) in Endothelial Cell Biology in Health and Disease, eds. Simionescu, N. & Simionescu, M. (Plenum, New York), pp. 69-104.
- Ghinea, N., Fixman, A., Alexandru, D., Popov, D., Hasu, M., Ghitescu, L., Eskenasy, M., Simionescu, M. & Simionescu, N. (1988) J. Cell Biol. 107, 231-239.
- Ghitescu, L., Fixman, A., Simionescu, M. & Simionescu, N. (1986) J. Cell Biol. 102, 1304-1311.
- Schnitzer, J., Carley, W. & Palade, G. (1988) Proc. Natl. Acad. Sci. USA 85, 6773-6777.
- Vlassara, H., Brownlee, M., Manogue, K., Dinarello, C. & Passagian, A. (1988) Science 240, 1546-1548.
- Kirstein, M., Brett, J., Radoff, S., Stern, D. & Vlassara, H. (1990) Proc. Natl. Acad. Sci. USA 87, 9010-9014.
- 30. Ganda, O. & Arkin, C. (1992) Diabetes Care 15, 1245-1250.
- Coller, B., Frank, R., Milton, R. & Gralnick, H. (1978) Ann. Int. Med. 88, 311-316.
- Fuller, J., Keen, H., Jarrett, R., Omer, T., Meade, T., Chakarabarti, R., North, W. & Stirling, Y. (1979) Br. Med. J. 2, 964-966
- 33. Kishimoto, T. & Harano, T. (1988) Annu. Rev. Immunol. 6, 485-512.
- Sehgal, P., Grieninger, G. & Tosata, G. (eds.) (1989) Ann. N.Y. Acad. Sci. 557, 1-583.
- Heinrich, P., Castell, J. & Andus, T. (1990) Biochem. J. 265, 621-636
- Schmidt, A.-M., Anderson, M., Koga, S., Brett, J., Bierhaus, A., Nawroth, P., Nowygrod, R. & Stern, D. (1992) Blood 80, (Suppl. 1), 403 (abstr.).
- Zhang, Y., Lin, J.-X. & Vilcek, J. (1990) Mol. Cell. Biol. 10, 3818-3823.
- 38. Mullarkey, C., Edelstein, D. & Brownlee, M. (1990) Biochem. Biophys. Res. Commun. 173, 932-939.
- Sakurai, T., Sugioka, K. & Nakano, M. (1990) Biochim. Biophys. Acta 1043, 27-33.
- Yan, S.-D., Schmidt, A.-M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., Pinsky, D. & Stern, D. (1994) J. Biol. Chem. 269, 9889-9897.

tracer ts (cp) by the sicles arging ad) is space;

s and propscripactor ition, otheelium baseinter-

als in are of herate

bear

cond-

repren and major sights ulate. event

ill be