Weather trends in Canada over the last 10 years (2011 – 2021)

JINAL AJAY PATEL, MANIK SOOD, AKSHAY SAREEN, AJAY PRATHAP SINGH RATHORE

PROJECT DESCRIPTION

The objective of this group project would be analysing and visualising weather trends from 2011 to 2021 in Canada. Maximum and Minimum temperature, Heat degree days, Cool degree days, Total rain, Total snow, Total precipitation, and snow on the ground are the attributes of the dataset which will cover in this project to visually answer our set of questions. Apart from this, we will demonstrate how the actual weather trends differ from the expected weather trends.

DATA SET DESCRIPTION

All the data is from 1 file having Metadata with 24 fields, comprising 85810 rows of data in total. The dataset contains all the weather fields like Longitude, Latitude, City Name, Date, Year, Month, Day, Total Snow, Snow on Ground, Direction Max Gust, Speed Max Gust, Mean Temperature, Min Temperature, Max temperature, Relative humidity (min and max), heating and cooling degree days and, total Precipitation of Canada. Here we targeted only two popular cities from each province of Canada to limit the volume of the data set.

No	Field name	Measurement	Data	Description
			type	
1	Longitude	Interval	Number	The longitude of each site if given to the
			(Decimal)	nearest second or to the nearest 0.003 of
				a degree
2	Latitude	Interval	Number	The latitude of each site if given to the
			(Decimal)	nearest second or to the nearest 0.003 of
				a degree
3	City Name	Categorical	String	Canada's city name
4	Climate Identifier	Categorical	Number	Unique 7-digit ID number assigned for
			(Decimal)	province
5	ID	Categorical	Number	Unique ID number of the official weather
			(Decimal)	observations taken
6	Date	Interval	String	Date format for which observation was
				taken
7	Province Code	Categorical	String	Canada's province code
8	Year	Interval	String	Year format
9	Month	Interval	String	Month format
10	Day	Interval	String	Day format
11	Mean	Interval	Number	Average of maximum and minimum
	Temperature		(Decimal)	temperature in degree Celsius(°C)
12	Min Temperature	Interval	Number	Lowest temperature in degree Celsius(°C)
			(Decimal)	observed for a specific location for
				specified time interval
13	Max Temperature	Interval	Number	Highest temperature in degree Celsius(°C)
			(Decimal)	observed for a specific location for
				specified time interval
14	Total	Ratio	Number	Sum of total rainfall (mm) and water
	Precipitation		(Decimal)	equivalent of the total snowfall (mm)
				observed for a specific location for
				specified time interval
15	Total Snow	Ratio	Number	Total snow or amount of frozen
			(Decimal)	precipitation (cm) such as snow and ice

				pellets observed for a specific location for
				specified time interval
16	Snow on Ground	Ratio	Number	The depth of snow in centimetres (cm) on
			(Decimal)	the ground
17	Cooling Degree	Ratio	Number	Cooling degree-days for a given day are
	Days		(Decimal)	the number of degrees Celsius that the
				mean temperature is above 18 °C
18	Heating Degree	Ratio	Number	Heating degree-days for a given day are
	Days		(Decimal)	the number of degrees Celsius that the
				mean temperature is below 18 °C
19	Min Rel Humidity	Ratio	Number	The minimum percentage (%) value of all
			(Decimal)	hourly relative humidity values observed
				at a specified location for a specified time
				interval
20	Max Rel Humidity	Ratio	Number	The maximum percentage (%) value of all
			(Decimal)	hourly relative humidity values observed
				at a specified location for a specified time
				interval
21	Total Rain	Ratio	Number	The total rainfall, or amount of all liquid
			(Decimal)	precipitation in millimetres (mm) such as
				rain, drizzle, freezing rain, and hail,
				observed at the location during a specified
				time interval
22	Direct Max Gust	Interval	Number	The direction (in degrees) of the maximum
			(Decimal)	gust (true or geographic, not magnetic)
				from which the wind blows
23	Speed Max Gust	Ratio	Number	The speed in kilometres per hour (km/h) of
			(Decimal)	the maximum wind gust during the day
24	Date (group)	Interval	String	Grouped 2 years 2011 and 2021 for Q1

DATASET NAME AND URL

Canada Weather, https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
Weather Glossary, https://climate.weather.gc.ca/glossary_e.html#a

DATA CLEANING USING TABLEAU PREP BUILDER

- Renamed fields x, y, station_name
- As there were many null values in the columns Total Snow, Snow on Ground, Min Rel Humidity, Max Rel Humidity, Total Rain, Direct Max Gust, Speed Max Gust we have made those fields hidden and not considered in our project.
- Removed fields that contain flag value (0 or 1): MEAN_TEMPERATURE_FLAG,
 MIN_TEMPERATURE_FLAG,MAX_TEMPERATURE_FLAG,TOTAL_PRECIPITATION_FLAG,
 TOTAL_RAIN_FLAG,TOTAL_SNOW_FLAG,SNOW_ON_GROUND_FLAG,DIRECTION_MAX_GUS
 T_FLAG,SPEED_MAX_GUST_FLAG,COOLING_DEGREE_DAYS_FLAG,HEATING_DEGREE_DAYS_
 FLAG, MIN_REL_HUMIDITY_FLAG, MAX_REL_HUMIDITY_FLAG.

 Grouped values under the field City Name as part of the cleaning process to better yield the visualization results.

• Below is the flow for the cleaned data.

As we proceeded with the plotting charts, we renamed fields logically in Tableau. The final columns were – LONGITUDE (deg), LATITUDE (deg), City Name, Climate Identifier, ID, Date, Province Code, Year, Month, DAY, Mean Temperature (°C), Min Temperature (°C), Max Temperature (°C), Total Precipitation (mm), Cooling Degree Days, Heating Degree Days, Date (group).

QUESTIONS AND VISUALIZATION USING TABLEAU

What are the changes in the temperature (Hot/Cold) across Canada from 2011 v/s 2021?

Here we wanted to showcase the comparison between the Year 2011 vs the Year 2021 for the temperature rise and fall (min and max temperature) all over Canada. Here we used a vertical bar chart for visualization and added the only years 2011 and 2021 in the filter. By seeing the visualization, we can clearly state that there is around a 4°C rise in temperature in Canada in the past 10 years.

2. Top 5 Cities with highest total precipitation?

From this question, we wanted to know the highest precipitation of the top 5 most cities in Canada. Here for visualization, we used geographical, treemap, and horizontal bar charts. In the final dashboard of the question, we used the action function to link all 3 charts. We used the province filter

to know if that province has any city which comes under the top 5 cities which are having the highest precipitation in Canada.

3. How do the actual trends in Canadian weather (mean, max., min., precipitation, heating, cooling days) differs from the expected weather trends?

Here we forecasted the weather trends in Canada for the next 5 years (2022-26) based on the data from the past 10 years (2011-2021) using the Tableau forecast function. All forecasts were computed using exponential smoothing with an Additive trend & seasonal effect. We used a line chart for the clear and easy visualization. From the visualization, we can predict that only precipitation and heating degree days are falling, whereas min, max and mean temperature, and cooling degree days are rising.

4. Mean temperature across Canada?

Here we are comparing the mean temperature for all Canada province wise. We used province name and year as a filter to check the mean temperature variation of a specific province at a given year. We used geographical map0 and heat map. The provinces in the North like Nunavut has very harsh and

cold temperature whereas the southern and west coast province British Columbia has the highest mean temperature in Canada.

CONCLUSION

Given the large geographic expanse of Canada, historical climate changes have varied across the country, and projected future changes will vary as well. Annual and seasonal mean temperatures across Canada have increased. Likewise, many other aspects of climate that are important to Canadians are also changing because of global-scale climate change Canada's climate is intimately linked to the global climate. Thus, changes in Canada's climate are a manifestation of changes in the global system, modulated by the effects of Canada's mountains, coastlines, and other geographical features.

CONTRIBUTION

We would like to thank Dr. Enayat Rajabi for his utmost guidance at every step of this project. This project was done as group work using Microsoft Teams as a medium. We had meetings twice a week to discuss the status and work on the visualization. All four of us bring different skills and we were able to leverage each of them to enhance each worksheet through collaboration. It would be difficult for us to exactly quantify the efforts of each person as we worked on it collaboratively. Data collection is done Ajay and Manik, Data cleaning by Jinal and Akshay, Plotting and Visualization is divided into 4 questions done by each one us - Q1 Manik, Q2 Akshay, Q3 Jinal and Q4 Ajay, Storytelling by Jinal and Akshay, and documentation by Ajay and Manik.