

Outline

- Link parameters
 - Decibel
 - Performance specifications
 - Satellite specificities
- Point-to-point link budget
 - Power
 - Losses
 - Noise
- Satellite link budget
 - Uplink&Downlink
 - Interferences
 - Overall link

Decibel (dB)

$$X_{dB} = 10\log_{10} X \quad \Leftrightarrow \quad X = 10^{X_{dB}/10}$$

Ratio	Value in dB
1	0dB
10	10dB
1.02	0.1dB
1.26	1dB
2	3dB
3	4.77dB
π	4.97dB
4=2*2	6dB
5=10/2	7dB
6=2*3	7.77dB
7	8.45dB

- Use for a ratio (dB) or any unit (dBW, dBW/m², dBJ, dBK, dBK⁻¹)
- Easy handling of small numbers (1µW ⇔ -60dBW ⇔ -30dBm)
- Additive operations due to logarithms

Theoretical Performances

Spectral efficiency

$$\eta = \frac{R_b}{R} (b/s/Hz)$$

Spectral entered $\eta = \frac{R_b}{B_N} \left(b/s/Hz \right)$ R_b bit rate B_N noise bandwidth R_N volume that $B_{N} = R_s \left(Hz \right)$ B_N Nyquist bandwidth R_s symbol rate R_s symbol rate (maximum data rate)

$$B_{vv} = R (Hz)$$

$$R_b = B_W \log_2 \left(1 + \frac{C}{N}\right) = B_W \log_2 \left(1 + \eta \frac{E_b}{N_0}\right) (b/s)$$

$$B_{N} = B_{W} \Longrightarrow \eta = \frac{R_{b}}{R_{s}} \Longrightarrow E_{b} / N_{0} = \frac{2^{\eta} - 1}{\eta}$$

Satellite Geometry

- Parameters
 - R_E=6371km Earth radius, H satellite altitude,
 R distance from satellite to ground station
 - ξ central angle, Φ elevation, α nadir, Θ azimuth
 - L_S&L_G satellite & ground station longitudes (East +)
 - I_S&I_G satellite & ground station latitudes (North +)

Satellite distance for a given (LEO) or fixed (GEO) elevation

$$R = R_E \left(\sqrt{\left(\left(R_E + H \right) / R_E \right)^2 - \left(\cos \varphi \right)^2} - \sin \varphi \right)$$

$$R = \sqrt{R_E^2 + \left(R_E + H \right)^2 - 2R_E \left(R_E + H \right) \cos \xi} \text{ with } \cos \xi = \cos \left(L_G - L_S \right) \cos \left(l_S \right) \cos \left(l_S \right) + \sin \left(l_S \right) \sin \left(l_G \right)$$

$$\varphi = \arctan \left(\left(\cos \xi - R_E / \left(R_E + H \right) \right) \sqrt{1 - \left(\cos \xi \right)^2} \right)$$

- Satellite azimuth depending on the position of S relative to G $\theta = \tilde{\theta}(NE), \pi \tilde{\theta}(SE), 2\pi \tilde{\theta}(NW), \pi + \tilde{\theta}(SW) \text{ for } \tilde{\theta} = \arcsin\left(\sin\left(|L_G L_S|\right)\cos\left(l_S\right)/\sqrt{1 \left(\cos\xi\right)^2}\right)$
- Coverage radius R_c and percentage of Earth P_c for a minimum elevation Φ_m $R_c = R_E \sqrt{(1-\cos\beta)/2}$ $P_c = 0.5(1-\cos\beta)$ for $\beta = \arccos(\cos\varphi_m R_E/(R_E+H)) \varphi_m$

Transmitter

- High Power Amplifier (HPA) characterized by AM/AM and AM/PM curves
 - Solid-State Amplifiers (SSPAs)
 - Klystron-tube Power Amplifiers (KPAs) or Travelling Wave Tube Amplifiers (TWTAs)

	400W Ku SSPA GaN	400W Ku SSPA GaAs	750W Ku TWTA	
Weight	30kg	80kg	37kg	
Volume	29 dm ³	142 dm ³	74 dm ³	
Consumption	2.2kW	3.5kW	2.5kW	
(C/I ₃ ,Δφ) at 24dBW	(-20.67dBc,1.0° /dB)	(-19.86dBc,2.0° /dB)	(-18dBc,3.5° /dB)	
(C/I ₃ ,Δφ) at 23dBW	(-26.63dBc,0.8° /dB)	(-23.16dBc,1.5° /dB)	(-20dBc,3.0° /dB)	
(C/I ₃ ,Δφ) at 22dBW	(-31.63dBc,0.5° /dB)	(-27.50dBc,1.0° /dB)	(-22dBc,2.5° /dB)	

Advantech Wireless comparison (2012)

Cable

f (GHz)	2	4	6	8	10	12	14	16	18	26.5
A _c (dB/m)	0.30	0.42	0.52	0.61	0.68	0.75	0.82	0.88	0.95	1.15

Sucoflex 404 - Ø 5.5mm (2011)

Antenna

- **Geometric angles**
 - Θ azimuth (look angle in the horizontal plane from North)
 - Φ elevation (look angle above the horizontal plane)

- Antenna gain (relative to an isotropic antenna)
 - $p(\theta, \Phi)$ transmitted power at the direction (θ, Φ)
 - p₀ total transmitted power

- Maximum antenna gain for aperture antennas (horns, reflectors)
 - $_{0}$ η aperture efficiency, η = 0.5...0.85 (typical)
 - A physical aperture area, D circular aperture diameter
- Antenna beamwidth for a parabolic antenna (ψ angle with center axis)

 - Half-power beamwidth $\theta_{3dB} = k \frac{\lambda}{D}(^{\circ}), k = 50...70 \text{ (typical)}$ Model with J₁(x) 1st kind Bessel function (~x/2 for x small) $g(\psi) = g_{\text{max}} \left(2 \frac{J_1(\pi D \sin \psi / \lambda)}{(\pi D \sin \psi / \lambda)} \right)^2$
- Inverse roles of D and λ on gain and beamwidth

Tx Antenna: Power & Flux Density

Effective Isotropic Radiated Power (EIRP)

$$eirp = p_{Tx}g_{Tx}(W)$$
 with $p_{Tx} = p_{HPA}l_c(W)$ and $l_c = a_cd_c(W)$

- $^{\circ}$ p_{Tx} , g_{Tx} transmit antenna power, gain
- p_{HPA} HPA power
- □ I_c, a_c, d_c cable losses, attenuation per meter, length
- **Power Flux Density (PFD)**

$$\varphi = \frac{eirp}{4\pi R^2} \left(W / m^2 \right)$$

 $\,^{\circ}\,$ Power density at distance R for a spherical shell of surface $4\pi R^2$ in a lossless medium

Rx Antenna: Free Space & Losses

Aperture antenna

$$p_{Rx} = \varphi \eta A(W)$$

- P_{Rx} receive antenna power
- Friis transmission formula

$$p_{Rx} = p_{Tx} g_{Tx} g_{Rx} \left(\frac{\lambda}{4\pi R} \right)^2 (W) \text{ with } l_{FS} = \left(\frac{4\pi R}{\lambda} \right)^2$$
• G_{Rx} receive antenna gain

- L_{FS} free space losses
- Real transmission formula

$$C = \frac{p_{Tx}g_{Tx}g_{Rx}}{l_{FS}l_{Pt}l_{Atm}}(W) \Leftrightarrow C_{dB} = P_{Tx} + G_{Tx} + G_{Rx} - L_{FS} - L_{Pt} - L_{Atm}(dBW)$$

 $^{\circ} \quad L_{Pt} \ \text{pointing losses with} \ \theta_{\Delta i} \ \text{off-boresight angles and} \ \theta_{3dB} \ \text{half-power beamwidth in degrees}$

$$L_{Pt} = 12 \sum_{i} \left(\frac{\theta_{\Delta i}^{2}}{\theta_{3JR}^{2}} \right)$$

L_{Atm} atmospheric losses ITU-R P.618-10 (10/09)

Atmospheric Losses

- Atmospheric gas attenuation ITU-R P.676-9 (02/12)
- Precipitation attenuation and depolarization ITU-R P.618-10 (10/09)
 - Rain height ITU-R P.839-3 (02/01)
 - Maps of rainfall rate ITU-R P.837-6 (02/12)
 - Specific attenuation model for rain ITU-R P.838-3 (03/05)
 - Comparison with measures ITU-R P.678-1 (03/92)
 - Conversion of annual statistics to worst-month statistics ITU-R P.841-4 (03/05)
- Clouds and fog attenuation ITU-R P.840-5 (02/12)
- Tropospheric scintillation ITU-R P.618-10 (10/09)
 - Radio refractive index ITU-R P.453-10 (02/12)
- Total attenuation ITU-R P.618-10 (10/09)

$$L_{Atm}(p) = L_G + \sqrt{(L_R(p) + L_C(p))^2 + L_S(p)^2}$$

- L_G gases attenuation
- $^{\rm u}$ ~ $L_{\rm R},L_{\rm C},~L_{\rm S}$ rain, cloud, scintillation exceeded attenuations for p% of time

Component Noise Temperature

Power due to thermal noise

 $N = kT_{Ea}B$

- k = 1.379 10-23 W/K/Hz Boltzmann's constant (-228.6dBW/Hz/K)
- T_{Eq} equivalent noise temperature (of a passive resistor giving same noise power per bandwidth)
- Noise power spectral density

 $N_0 = N/B = kT_{Eq}$

Lossy element noise temperature (output, input)

$$T_{output} = T_0 (1 - 1/l_e) \Leftrightarrow T_{input} = T_0 (l_e - 1)$$

I_e losses at T₀ noise temperature (290K)

nf_d noise figure (input over output signal to noise ratios)

D, Φ ground station diameter (m) and elevation (°)

System Noise Temperature

$$N = g_{IF}kT_{IF}B + g_{IF}g_{M}kT_{M}B + g_{IF}g_{M}g_{RF}k((T_{A} + T_{C})/l_{C} + T_{RF})B$$

$$N = g_{IF}g_{M}g_{RF}kT_{Eq}B \quad \text{with} \quad T_{Eq} = (T_{A} + T_{C})/l_{C} + T_{RF} + \frac{T_{M}}{g_{RF}} + \frac{T_{IF}}{g_{M}g_{RF}}$$

- Good Low Noise Amplifier (LNA)

Highest gain
$$g_{RF}$$
 possible
Lowest temperature T_{RF} or noise figure NF_{RF} possible
$$T_{Eq} \approx \frac{T_A}{l_C} + T_0 \left(1 - \frac{1}{l_C} \right) + T_0 \left(n f_{RF} - 1 \right)$$

- Antenna noise temperature
 - $^{\circ}$ Pointing at Sun (12000f^{-0.75}K), Moon (200-300K), Earth (290K), cosmic background (T_S=2.7K)
 - $^{\circ}$ On ground with clear sky L_{G} (T $_{G}$ =280K) or exceeded attenuation L_{Atm} (T $_{R}$ =260K)

$$T_{Aclear} = \frac{T_{S}}{l_{G}} + T_{G} \left(1 - \frac{1}{l_{G}} \right) + T_{Aground} \qquad T_{Aexceeded} = \frac{T_{S}}{l_{Atm}} + T_{R} \left(1 - \frac{1}{l_{Atm}} \right) + T_{Aground}$$

Satellite Uplink

$$G_{Sat} = 10\log_{10}\eta(70\pi/\theta_{3dB})^2$$

Satellite transponder
-Saturation Flux Density (SFD)
Power flux density for IBO=0
-Operation Flux Density (OFD)
Power flux density for IBO=OFD-SFD
-Coverage variations
Constant SFD+G/T

- Satellite beam (G/T or SFD in Rx)
- Ground station EIRP for a satellite transponder at saturation
 - Clear sky

$$EIRP_G = SFD + 10\log_{10}(4\pi R^2)$$

Atmospheric losses with Uplink Power Control (UPC)

$$EIRP_G = SFD + 10\log_{10}(4\pi R^2) + L_{Atm} + L_{Pt}$$

- Estimation of the atmospheric and pointing losses
 - Satellite unmodulated and temperature-stabilized beacon to use with narrow bandwidth filter
 - Satellite telemetry beacons to use with large bandwidth filter to minimize level variations

Satellite Downlink

- Transponder gain adjustment
 - Fixed Gain Mode (FGM), gain steps at fixed SFD+G/T (multiple transmission sites)
 - ⇒ Ground station UPC required to keep the same operation point
 - Automatic Level Control (ALC), gain steps at fixed IBO (single transmission site)
 - ⇒ Uplink fading compensation at the cost of the uplink C/N degradation (possibly with UPC)
- Intermodulation noise C/I_{IM}
 - $\ \, \text{Upper bound} \Rightarrow 3^{rd} \text{ order inter-modulations } \text{(C/I}_3\text{)} \Rightarrow \text{Mono-carrier, Small number of carriers}$
 - ${}^{\tt u}\quad \text{Lower bound} \ {}^{\rm p}{\rm Noise} \ {\rm Power} \ {\rm Ratio} \ ({\rm NPR}) \ {}^{\rm p}{\rm Multi-carriers}$

Satellite Overall Link

$$(C/N)_T = ((C/N)^{-1}_{\uparrow} + (C/N)^{-1}_{\downarrow} + (C/I)^{-1})^{-1}$$

<u>NB:</u> Independent uplink and downlink if on-board processing (useful for symmetrical links requiring single hop)

$$C/I_{dB} = C/N_{dB} \Rightarrow C/(N+I)_{dB} = C/N_{dB} - 3dB$$

$$C/I_{dB} = C/N_{dB} + 10dB \Rightarrow C/(N+I)_{dB} = C/N_{dB} - 0.5dB$$

- Internal system interferences (polarization reuse, multi-beam frequency reuse)
 - Interferences due to the satellite reception antennas (C/I_{III})
 - Interferences due to the satellite transmission antennas (C/I_{ID})
- Adjacent system interferences
 - Interferences due to other ground stations (C/I_{AU})
 - Interferences due to other satellites (C/I_{AD})

Multiple Access Links

Multiple-Frequency Time-Division Multiple Access (MF-TDMA)

MF-TDMA efficiency $\Rightarrow \eta_{MF-TDMA} = \frac{N_U}{N_T} \frac{B_U}{B_T}$

- **Burst Plan in Time and Frequency**
- B_U useful bandwidth
 B_T total bandwidth
- N_U number of useful bits per frame
- N_T total number of bits per frame (with transmission during guard time)
- Multiple-Frequency Code-Division Multiple Access (MF-CDMA)
 - R_c chip rate of the spreading sequence

 $E_b / N_0 = \gamma C / N$ with a processing gain $\gamma = R_c / R_b$

 $\begin{array}{ccc} ^{\rm o} & {\rm L_{MU}~losses~due~to~multi-user~load~\eta_{MU}} \\ & L_{MU} = 10{\rm log_{10}} \Big(1/\big(1-\eta_{MU}\big)\big) \end{array}$

Mobile Satellite System Links

Mobile channel

- Three state propagation conditions

 ⇒ Clear line of site (LOS), Shadowing, Blockage
- Data bandwidth compared to path length ⇒ Narrowband fading (kHz), Wideband fading (MHz)

• Friis transmission formula for a mobile link

$$p_{Rx} = p_{Tx} g_{Tx} g_{Rx} g(R) x_S \alpha_M^2(W)$$
 with $g(R) = kR^{-n}$

- g(R) path loss factor (free space losses, two ray path losses)
- x_S Gaussian random shadow fading (trees on roadway or buildings in urban area)
- α_M Rice/Rayleigh distributed multipath fading (mountains or trees without shadowing)
 - ⇒ Fade depth exceeded for a percentage of time cumulating the three states

 Maritime/Land/Aeronautical channel ITU-R P.680-3 (10/99) / 681-7 (10/09) / 682-3 (02/12)

Wideband channel

- Signal spectrum distortion and error floor due to delay spread
- Mitigation techniques
 diversity to reduce deep fades, directional antennas to reduce far-out
 echoes, equalizers to use energy in delayed taps, narrow bandwidth carrier multiplexing

Satellite Link Budget Methodology

Link constraints

- Satellite cost per bandwidth, frequency band, SFD, G/T, EIRP
- User subscription, data rate, availability, C/N

Possible ground stations

- Transmission ground stations EIRP, UPC
- Reception ground stations G/T

Satellite operation point

- Link budget on the uplink and satellite IBO
- Satellite OBO and link budget on the downlink

Interferences

- Internal system interferences
- Adjacent system interferences

System selection

- Margins for the overall link budget
- System redesign to converge on positive margins

http://logiciels.cnes.fr/PROPA/fr/logiciel.htm