

Comparison of vertical and horizontal permeabilities in intact natural clays.

For marine clays (mostly Canada) Typical $r_k = k_h/k_v = 1.0 - 1.5$ $k_v = 10 \pm 5 \times 10^{-8}$ cm/sec

The e vs. $\lg \sigma_v$ and e vs. $\lg k$ relationships from a typical OEDK test on Louiseville clay.

Relation between the permeability change index $C_{\rm k}$ and $e_{\rm o}$ for all clays tested.

Adapted from Tavenas et al. (1983). "The Permeability of Natural Salt Clays: Parts I & II." CGJ 20(4), 629-668

Vicksburg Silty Clay: $W_L = 37$, $W_P = 23 \& I_P = 14$

Data from Mitchell et al. ASCE, JSMFD 91(4). (1965) for Silty Clay Compacted with Impact Compaction: (a) Hydraulic Conductivity versus Molding Water Content; (b) Compection Curve (1 pct = 0.157 kN/m^3)

Adapted from Daniel & Benson (1990), ASCE JGE 116(12)