

Análise dos benefícios do uso de algoritmos computacionais no desenvolvimento do pensamento matemático no ensino superior

IVAN LIMA REIS NETO

UFERSA, 2025

INTRODUÇÃO/JUSTIFICATIVA

O pensamento matemático, desde seus primórdios, faz parte fundamental do conhecimento humano, sendo ferramenta essencial para compreensão do mundo ao nosso redor, como por exemplo na construção de estruturas habitáveis e planejamento de projetos de engenharia. Entretanto, o ensino da matemática enfrenta persistentes desafios, sendo muitas vezes percebido como abstrato e de difícil assimilação pelos estudantes. A complexidade de certos conceitos matemáticos, somada a métodos de ensino que podem falhar em conectar a teoria à prática, resultam em difículdades de aprendizagem que impactam o desempenho dos alunos Masola (2019). Uma possível alternativa para mitigar essa situação é a alfabetização digital e o pensamento computacional como pilares na educação contemporânea.

A era digital tem modificado e redefinido as competências cruciais para o século XXI. A capacidade de analisar logicamente, compreender e resolver problemas complexos é fundamental tanto para o desenvolvimento do pensamento matemático quanto para o pensamento computacional, evidenciando os paralelos entre essas duas áreas. Pensamento este, que envolve a decomposição de tarefas e reconhecimento de padrões na formulação de algoritmos, não restringindo-se apenas ao universo da programação, estendendo-se como uma abordagem universal para resolução de problemas nas mais diversas áreas do conhecimento. Prado et al. (2020) destacam que o pensamento computacional pode potencializar a capacidade dos alunos de lidar com desafios de forma mais estruturada e lógica. Desse modo, acredita-se que os algoritmos além de beneficiarem no desenvolvimento desse pensamento computacional, beneficiam o desenvolvimento do pensamento matemático para resolução de problemas.

A integração do uso de algoritmos no processo de aprendizagem da matemática, mostra-se uma ideia promissora, oferecendo novas perspectivas para superação dos desafios tradicionais. Nesse sentido, a constante evolução tecnológica e o crescente uso de algoritmos no cotidiano demonstram que o conhecimento em algorítmos é benéfico. Casarotto et al. (2018), por exemplo, exploram o uso de jogos de tabuleiro como ferramenta para facilitar na aprendizagem de algoritmos computacionais, evidenciando o potencial de abordagens inovadoras para aumentar a acessibilidade desses conceitos aos alunos.

A utilização de algoritmos no desenvolvimento do pensamento matemático vai além da simples aplicação de fórmulas ou da resolução mecânica de exercícios. Ela incentiva uma

abordagem investigativa, onde o aluno é desafiado a decompor problemas complexos em etapas menores, a identificar padrões, a generalizar soluções e a testar suas hipóteses. Essas são características do pensamento matemático. Ao criar um algoritmo para resolver um problema matemático, o estudante é compelido a formalizar seu raciocínio, a explicitar cada passo lógico e a prever diferentes cenários e resultados. Esse processo de construção e depuração de algoritmos fortalece a capacidade de análise crítica e a habilidade de depurar erros, elementos cruciais para a proficiência matemática.

Portanto, este plano de trabalho propõe investigar e analisar os beneficios do uso de algoritmos no desenvolvimento do pensamento matemático em estudantes. Partindo do pressuposto de que o estudo da lógica de algoritmos pode beneficiar a aprendizagem da matemática, busca-se identificar as principais vantagens dessa abordagem no desenvolvimento de habilidades de resolução de problemas. A pesquisa se justifica pelo déficit do ensino da matemática nos ensinos básicos e mitigar a dificuldade desses alunos na matemática do ensino superior. Por fim, o objetivo é fornecer um panorama de como a aplicação de algoritmos pode beneficiar a experiência de aprendizagem matemática, tornando-a mais engajadora e eficaz.

OBJETIVOS

GERAL: Comparar o desempenho acadêmico em disciplinas de matemática específicas entre os alunos de engenharia que estudaram previamente algoritmos computacionais e os que não estudaram

ESPECÍFICOS:

- Fazer levantamento bibliográfico do que é pensamento computacional e analisar sua relação com o desempenho acadêmico nas disciplinas específicas de engenharia
- Coletar e analisar dados de desempenho acadêmico de alunos de engenharia, categorizando-os com base em seu estudo prévio de algoritmos computacionais

METODOLOGIA

Este trabalho, que visa explorar os benefícios do uso de algoritmos no desenvolvimento do pensamento matemático, será conduzido por meio de uma abordagem mista qualitativa e quantitativa, com a utilização de uma revisão sistemática de literatura e posteriormente coleta de dados com alunos da faculdade de ciência e tecnologia. Esta metodologia permite uma análise crítica e síntese de estudos existentes sobre o tema em conjunto a coleta de novos dados em campo, oferecendo uma base sólida para a compreensão das contribuições dos algoritmos na educação matemática. A abordagem mista se justifica pela necessidade de mapear o conhecimento produzido até o momento e consolidar a eficácia da pesquisa por meio de coleta de dados.

HABILIDADES A SEREM DESENVOLVIDAS

Planejamento e Execução de Revisão Sistemática: Domínio das etapas metodológicas de uma RSL, incluindo a definição de critérios de inclusão/exclusão, a elaboração de estratégias de busca e a gestão de bancos de dados.

Busca e Seleção de Fontes Confiáveis: Desenvolvimento da proficiência em utilizar bases de dados científicas e em discernir a qualidade e relevância das publicações acadêmicas.

Leitura Crítica e Análise de Artigos Científicos: Capacidade de ler artigos de forma aprofundada, identificando os principais argumentos, metodologias, resultados e limitações dos estudos. Isso inclui a habilidade de avaliar a validade e a confiabilidade das evidências.

Pensamento Lógico e Analítico: Fortalecimento da capacidade de decompor o problema central em partes menores, analisar as relações entre elas e construir argumentos baseados em evidências

Escrita Científica Formal: Aprimoramento da habilidade de produzir textos acadêmicos claros, coesos e bem estruturados, seguindo as normas da ABNT ou outras diretrizes científicas.

Gerenciamento de Tempo: Capacidade de planejar e executar as diferentes etapas da pesquisa dentro de prazos estabelecidos.

Organização e Sistematização: Habilidade de manter a documentação da pesquisa organizada, desde os registros das buscas até a sistematização dos dados extraídos.

REFERÊNCIAS BIBLIOGRÁFICAS

CASAROTTO, Isaac Romeu et al. *Logirunner: um Jogo de Tabuleiro como Ferramenta para o Auxílio do Ensino e Aprendizagem de Algoritmos e Lógica de Programação*. RENOTE, Porto Alegre, v. 16, n. 1, 2018. DOI: 10.22456/1679-1916.85998. Disponível em: https://seer.ufrgs.br/index.php/renote/article/view/85998. Acesso em: 9 jun. 2025.

MASOLA, Wilson; ALLEVATO, Norma. *Dificuldades de aprendizagem matemática: algumas reflexões*. Educação Matemática Debate, Montes Claros, v. 3, n. 7, p. 52–67, 2019. DOI: 10.24116/emd.v3n7a03. Disponível em: https://www.periodicos.unimontes.br/index.php/emd/article/view/78. Acesso em: 15 jul. 2025.

PRADO, M. E. B. B. et al. *Pensamento computacional e atividade de programação: perspectivas para o ensino da matemática*. Revista Sergipana de Matemática e Educação Matemática, Brasil, v. 5, n. 2, p. 195–208, 2020. DOI: 10.34179/revisem.v5i2.14422. Disponível em: https://periodicos.ufs.br/ReviSe/article/view/14422. Acesso em: 7 jun. 2025

SILVA, Gilmar Herculano da; OLIVEIRA, Francisco Kelsen de. *Mapeamento Sistemático de Literatura sobre Pensamento Matemático-Computacional*. Revista Semiárido De Visu, Brasil, v. 11, n. 3, p. 637–648, 2023. DOI: 10.31416/rsdv.v11i3.788. Disponível em: https://revistas.ifsertao-pe.edu.br/index.php/rsdv/article/view/788. Acesso em: 21 jun. 2025