COL352

Introduction to Automata and Theory of Computation Problem Set 1

T Abishek - 2019CS10407, Mihir Meena - 2019CS10370, Gaurav Jain - 2019CS10349

1. Given an alphabet $\Gamma = l_1, ..., l_k$, construct an NFA that accepts strings that don't have all the characters from Γ . Can you give an NFA with k states?

Solution:

We can design such NFA by adding k states for each letter in alphabet Γ . All of these k states are accepting states. For state j, the NFA remains in the same state for all letters in alphabet except l_j . The NFA transitions to a common reject state for l_j . We also need a dummy start state which is connected to these k states via ϵ transition. Thus, the total number of states in this NFA is k+2. A representative diagram of the NFA is present below:

Figure 1: NFA Design

2. An all-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts $x \in \Sigma^*$ if every possible state that M could be in after reading input x is a state from F. Note, in contrast, that an ordinary NFA accepts a string if some state among these possible states is an accept state. Prove that all-NFAs recognize the class of regular languages.

Solution:

We have to prove that the language recognized by all-NFAs is regular. Take an arbitrary all-NFA N. Modify N by adding a reject state which is the target of every transition that isn't defined in N. The resulting all-NFA is N_1 . The language recognized by N_1 and N is same as only transitions that weren't defined are sent to a reject state. Generate N_2 where N_2 is same as N_1 except the accept states are now non-accept states and the non-accept states are now accept states. Define N_2 as a standard NFA instead of all-NFA.

Claim: $L(N_2)$ is complement of $L(N_1)$

Proof: Proof by cases

Take a arbitrary input string W_1 . *Case 1:* W_1 is accepted by N_1

This implies that all the paths in N_1 go to a accepting state. In N_2 , all those end states are reject states as it is opposite. This means, N_2 can't accept W_1 as all the paths go to a reject state in N_2 .

Case 2: W_1 is rejected by N_1

This implies there exists at least one run R in N_1 that goes to a reject state S in N_1 . This means, in N_2 , in the run R, S is a accepting state (opposite of N_1). This means W_1 is accepted by N_2 .

This proves that $L(N_2)$ is complement of $L(N_1)$. As N_2 is a standard NFA, $L(N_2)$ is regular (by definition). Since complement of regular languages are also regular (discussed in lecture), $L(N_1)$ is also regular. As $L(N_1) = L(N)$ by construction, language accepted by arbitrary all-NFA is also regular. Hence proved.

3. Show that regular languages are closed under the **repeat** operation, where **repeat** operation on a language L is given

repeat(L) =
$$\{l_1l_1l_2l_2...l_kl_k \mid l_1l_2...l_k \in L\}$$

Solution:

Since L is a regular language \exists DFA $A = (Q, \Sigma, q_0, F, \delta)$ which recognizes L. To show that regular languages are closed under the repeat operation, we are required to show that L' is recognized by some NFA A'.

A' can be obtained from A by the following constructions:

For every arc from a state q_i to q_j in A insert another state q_{ij} in A such that the arc goes through the newly added state q_{ij} i.e if the transition in A is defined as $\delta(q_i, l_i) = q_j$. Then add q_{ij} and replace the transition $\delta(q_i, l_i) = q_j$ by the transitions $\delta'(q_i, l_i) = q_{ij}$ and $\delta'(q_{ij}, l_i) = q_j$ to obtain A'. So $A' = (Q', \Sigma, q_0, F, \delta')$.

Correctness:

<u>Claim</u>: If a string $w = l_1 l_2 ... l_k$ is accepted by A then $w' = l_1 l_1 l_2 l_2 ... l_k l_k$ is accepted by A'.

If w is accepted by A then \exists a run of the automaton $p_0p_1...p_n$ s.t $p_0=q_0$ and $p_n\in F$. In obtaining A' from A we had only added few more states and modified the transition function. Leveraging that fact we can show that w' will be accepted by A'. Consider the run of automaton A' $p_0p_1....p_n$. We know from the construction that if $\delta(p_i,l_i)=p_j$ then $\delta'(p_i,l_i)=p_{ij}$ and $\delta'(p_{ij},l_i)=p_j$. So if l_i caused the transition from p_i to p_j in A then l_i will cause the transition from p_i to p_j in A'. We can see from this correspondence that w' will be accepted by A'.

It can be similarly shown that if w is rejected by A then w' will be rejected by A'

4. Design an algorithm that takes as input the descriptions of two DFAs, D_1 and D_2 , and determines whether they recognize the same language.

Solution:

Given two DFAs D_1 and D_2 we are required to design an algorithm which determines whether they recognize the same language i.e are equivalent or not. Now, the DFA D_1 and D_2 are equivalent iff $L(D_1) \subseteq L(D_2)$ and vice versa. This condition can be restated by using intersection and complement operations which is, D_1 and D_2 are equivalent iff

$$\overline{L(D_1)} \cap L(D_2) = \phi$$
 and $L(D_1) \cap \overline{L(D_2)} = \phi$

The algorithm for determining whether D_1 is equivalent to D_2 or not is as follows:

Step-1: Obtain the DFA which recognizes $\overline{L(D_1)}$ by doing the following constructions:

- (a) Make every accepting state in D_1 rejecting state.
- (b) Make every rejecting state in D_1 accepting state.

Step-2: Obtain the DFA which will recognize $\overline{L(D_1)} \cap L(D_2)$. In Step-1 we have obtained the DFA which recognizes $\overline{L(D_1)}$. The DFA which recognizes $\overline{L(D_1)} \cap L(D_2)$ then can be constructed using product construction.

Step-3: We have the DFA which recognizes $\overline{L(D_1)} \cap L(D_2)$. Now checking if \exists a path from a start state to an accepting state will determine whether $\overline{L(D_1)} \cap L(D_2)$ is an empty set or not. If there does not exist any path from a start state to an accepting state in the DFA then it is empty otherwise not.

Step-4: If the DFA in Step-3 does not contain a path from a start state to an accepting state then repeat Step-1, 2, 3 for $L(D_1) \cap \overline{L(D_2)}$ else D_1 and D_2 are not equivalent.

Step-5: If $L(D_1) \cap \overline{L(D_2)}$ also turn out be an empty set then D_1 and D_2 are equivalent otherwise they are not.

5. For any string $w = w_1 w_2 ... w_n$ the reverse of w written w^R is the string $w_n ... w_2 w_1$. For any language A, let $A^R = \{w^R \mid w \in A\}$. Show that if A is regular, then so is A^R . In other words, regular languages are closed under the reverse operation.

Solution:

If A is regular, there exists DFA X that accepts A. Let $X = (Q1, \Sigma, q0, F1, \delta 1)$

Let q1 = dummy start state

Create NFA Y such that,

 $Y = (Q1 + q1, \Sigma, q1, q0, \delta 2)$, where $\delta 2 =$ reverse of all transitions in $\delta 1 + \epsilon$ transition from q1 to all members in F1.

To Prove: $L(Y) = A^R$ Proof: Proof by cases

Case 1:

Let w1 be an arbitrary string in A. Let $w1^R$ be reverse of w1.

As w1 is in A, the run of w1 ends up in some accept state s0 in X. This s0 is connected to q1 in Y. Thus retracing of that path (reverse) would go to q0 in Y, where q0 is an accept state. This means $w1^R$ is accepted by Y, where $w1^R$ is an arbitrary string in A^R .

Case 2:

Proof by contradiction: Let w2 be an arbitrary string that isn't accepted by X. Let $w2^R$ be reverse of w2.

Assume $w2^R$ is accepted by Y.

The run of $w2^R$ in Y would start in one of the states s1 in F1, and end at q0 for it to be accepted by Y. The reverse of this run would have the string w2. This implies, w2's run in X would start at q0 and end at s1 in X. This implies w2 is accepted by X, which is a contradiction. This implies that the assumption is wrong. $w2^R$ isn't accepted by Y, where $w2^R$ is an arbitrary string not present in A^R .

Thus proved, $L(Y) = A^R$

As A^R is L(Y), it is accepted by Y NFA. Thus, A^R is a regular language by definition, where A is an arbitrary regular language

Therefore, regular languages are closed under the reverse operation.

6. Let Σ and Γ be two finite alphabets. A function $f: \Sigma^* \to \Gamma^*$ is called a homomorphism if for all $x,y \in \Sigma^*, f(x.y) = f(x).f(y)$. Observe that if f is a string homomorphism, then $f(\epsilon) = \epsilon$, and the values of f(a) for all $a \in \Sigma$ completely determines f. Prove that the class of regular languages is closed under homomorphisms. That is, prove that if $L \subseteq \Sigma^*$ is a regular language, then $f(L) = \{f(x) \in \Gamma^* \mid x \in L\}$ is regular. Try to informally describe how you will start with a DFA for L and get an NFA for L.

Solution:

Regular languages can be represented in terms of regular expressions. For any regular expression R, f(L(R)) = L(f(R)). This can be proved by induction on number of terms in R. We need to show the induction for all types of regular expressions- $R_1 \cup R_2$, R^* and $R_1.R_2$. For $R = R_1.R_2$, $f(R_1.R_2) = f(R_1).f(R_2)$ and $f(L(R)) = f(L(R_1).L(R_2)) = f(L(R_1)).f(L(R_2))$. By induction hypothesis, $f(L(R_1)) = L(f(R_1))$ and $f(L(R_2)) = L(f(R_2))$ so, $f(L(R)) = L(f(R_1)).L(f(R_2)) = L(f(R_1))$. Similar arguments can be given for other cases.

The regular language L is written as L(R) where R is some regular expression. Using above property, f(L) = f(L(R)) = L(f(R)) = L(R'). Thus, f(L) can be represented as the language of some regular expression R' which is regular.

The NFA of f(L) can be constructed by replacing every letter a in the original DFA by f(a). This will be a NFA because there may be elements in Γ^* which are not mapped to elements in Σ^* .