Teoretisk matematikk 1 1T og R1

Innhold

1	Men		4		
	1.1	Mengder	4		
	1.2	Verdi- og definisjonsmengder	8		
	1.3	Betingelser	10		
2	Algebra 1				
	2.1	Faktorisering	12		
	2.2	Andregradslikninger	17		
	2.3	Polynomdivisjon	20		
	2.4	Polynomers egenskaper	24		
	2.5	Eulers tall	26		
	2.6	Logaritmer	27		
	2.7	Forklaringer	30		
3	Geometri 32				
	3.1	Definisjoner	32		
	3.2	Egenskaper til trekanter	36		
	3.3		40		
	3.4	Forklaringer	41		
4	Vekt	forer	50		
	4.1	Introduksjon	50		
	4.2	Regneregler	53		
	4.3	Lengden til en vektor	54		
	4.4	Skalarproduktet I	55		
	4.5	Skalarproduktet II	57		
	4.6	Vektorer vinkelrett på hverandre	58		
	4.7	Parallelle vektorer	60		
	4.8	Vektorfunksjoner; parameterisering	62		
	1.0	4.8.1 Vektorfunksjonen til ei linje	62		
	4.9	Sirkellikningen	64		
	4.10	Determinanter	65		
5	Grei	nseverdier og kontinuitet	69		
0	5.1	=	69		
	5.2	Kontinuitet	72		
6	Deri	vasjon	74		
-	6.1	Definisjoner	74		
	6.2	Derivasjonsregler	79		
		6.2.1 Den deriverte	79		
			80		
		6.2.3 Kjerneregelen	81		
		6.2.4 Produkt- og divisjonsregelen	82		
	6.3	Forklaringer	85		
-	י הד				
7			89		
	7.1	Monotoniegenskaper	89		
	7.2	Ekstremalpunkt	93		

	7.3	Asymptoter
	7.4	Konvekse og konkave funksjoner
	7.5	Injektive funksjoner
	7.6	Omvendte funksjoner
8	\mathbf{Vedl}	egg 107
	8.1	Navn på funksjoner
	8.2	Å løse likninger ved bytte av variabel
	8.3	Eulers tall
	8.4	Tangeringslinja til en graf

Viktig kommentar om funksjoner

Som nevnt i MB, er funksjoner variabler som endrer seg i takt med at andre variabler endrer seg. I denne boka vil det å skrive en funksjon f som f(x) indikere at f endrer seg i takt med variabelen x. Så lenge det er etablert at x er en variabel, vil det derfor ikke være noen forskjell på f og f(x), for eksempel kan vi skrive

$$f = f(x) = 2x \tag{1}$$

En slik konvensjon gjør at mange forklaringer får penere uttrykk, men den krever at vi er bevisst hvordan paranteser brukes i sammenheng med multiplikasjon og i sammenheng med funksjoner. Da må vi tenke over om et symbol står for en uavhengig variabel eller en variabel som avhenger av en annen — altså en funksjon. Slik (1) er formulert, er x en uavhengig variabel og f en variabel avhengig av x. For en konstant a er da

$$x(a) = x \cdot a = ax$$

$$f(a) = 2 \cdot a = 2a$$

Videre er

$$f - a = 2x - a$$

Kapittel 1

Mengder

1.1 Mengder

En samling av tall kalles en $mengde^2$, og et tall som er en del av en mengde kalles et element. Mengder kan inneholde et endelig antall elementer og de kan inneholde uendelig mange elementer.

²En mengde kan også være en samling av andre matematiske objekter, som for eksempel funksjoner, men i denne boka holder det å se på mengder av tall.

Regel 1.1 Mengder

For to reelle tall a og b, hvor $a \leq b$, har vi at

- [a,b] er mengden av alle reelle tall større eller lik a og mindre eller lik b.
- (a, b] er mengden av alle reelle tall større enn a og mindre eller lik b.
- [a,b) er mengden av alle reelle tall større eller lik a og mindre enn b.

[a,b] kalles et lukket intervall, (a,b) kalles et åpent intervall, og både (a,b] og [a,b) kalles halvåpne intervall.

Mengden som inneholder bare a og b skrives som $\{a, b\}$.

At x er et element i en mengde M, skrives som $x \in M$.

At x ikke er et element i en mengde M, skrives som $x \notin M$.

At x er et element i både en mengde M_1 og en mengde M_2 , skrives som $x \in M_1 \cup M_2$.

Språkboksen

 $x \in M$ uttales "x inneholdt i M".

Mange tekster bruker (istedenfor (for å indikere åpne (eller halvåpne) intervall.

Merk

Når vi heretter i boka definerer et intervall beskrevet av a og b, tar vi det for gitt at a og b er to reelle tall og at $a \le b$.

Mengden av alle heltall større enn 0 og mindre enn 10 skriver vi som

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Denne mengden inneholder 9 elementer. 3 er et element i denne mengden, og da kan vi skrive $3 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

10 er ikke et element i denne mengden, og da kan vi skrive $10 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Eksempel 2

Skriv opp ulikhetene som gjelder for alle $x \in M$, og om 1 er inneholdt i M.

- a) M = [0, 1]
- b) M = (0, 1]
- c) M = [0, 1)

Svar

- a) $0 \le x \le 1$. Videre er $1 \in M$.
- b) $0 < x \le 1$. Videre er $1 \in M$.
- c) $0 \le x < 1$. Videre er $1 \notin M$.

Definisjon 1.2 Navn på mengder

- \mathbb{N} Mengden av alle positive heltall¹
- \mathbb{Z} Mengden av alle heltall²
- $\mathbb Q$ Mengden av alle rasjonale tall
- \mathbb{R} Mengden av alle reelle tall
- \mathbb{C} Mengden av alle komplekse tall

 $^{^{1}}$ Inneholder *ikke* 0.

 $^{^{2}}$ Inneholder 0.

Symbolet for uendelig

Mengdene i definisjon 1.2 inneholder uendelig mange elementer. Noen ganger ønsker vi å avgrense deler av en uendelig mengde, og da melder det seg et behov for et symbol som er med på å symbolisere dette. ∞ er symbolet for en uendelig stor, positiv verdi.

Eksempel

Et vilkår om at $\geq > 2$ kan vi skrive som $x \in [2, \infty)$.

Et vilkår om at x < -7 kan vi skrive som $x \in (-\infty, -7)$.

Språkboksen

De to intervallene i eksempelet over kan også skrives som $[2, \rightarrow]$ og $(\leftarrow, -7)$.

Merk

er ikke noe bestemt tall. Å bruke de fire grunnleggende regneartene alene med dette symbolet gir derfor ingen mening.

1.2 Verdi- og definisjonsmengder

Definisjon 1.3 Verdi- og definisjonsmengder

Gitt en funksjon f(x). Mengden som utelukkende inneholder alle verdier x kan ha, er definisjonsmengden til f. Denne mengden skrives som D_f . Mengden som utelukkende inneholder alle verdier f kan ha når $x \in D_f$, er verdimengden til f. Denne mengden skrives som V_f .

Eksempel 1

Figuren under viser f(x) = 2x + 1, hvor $D_f = [1, 3]$. Da er $V_f = [1, 5]$.

Eksempel 2

Figuren under viser $f(x) = \frac{1}{x}$, hvor $D_f = [-3, -1] \cup [2, 5]$. Da er $V_f = \left[-1, -\frac{1}{3}\right] \cup \left[\frac{1}{2}, \frac{1}{5}\right]$

Merk

Definisjonsmengden til en funksjon bestemmes av to ting; hvilken sammenheng funksjonen skal brukes i og eventuelle verdier som gir et udefinert funksjonsuttrykk. I *Eksempel 1* på side 8 er definisjonsmengden helt vilkårlig valgt, siden funksjonen er definert for alle x. I *Eksempel 2* derimot er ikke funksjonen definert for x=0, så en definisjonsmengde som inneholdt denne verdien for x ville ikke gitt mening.

1.3 Betingelser

Symbolet ⇒ bruker vi for å vise til at hvis et vilkår er oppfylt, så er en annen (eller flere) vilkår også oppfylt. For eksempel; i MB så vi at hvis en trekant er rettvinklet, er Pytagoras' setning gyldig. Dette kan vi skrive slik:

trekanten er rettvinklet ⇒ Pytagoras' setning er gyldig

Men vi så også at det omvendte gjelder; hvis Pytagoras' setning er gyldig, må trekanten være rettvinklet. Da kan vi skrive

trekanten er rettvinklet \iff Pytagoras' setning er gyldig

Det er veldig viktig å være bevisst forskjellen på \Rightarrow og \iff ; at vilkår A oppfylt gir B oppfylt, trenger ikke å bety at vilkår B oppfylt gir vilkår A oppfylt!

Eksempel 1

firkanten er et kvadrat \Rightarrow firkanten har fire like lange sider

Eksempel 2

tallet er et primtall større enn $2 \Rightarrow$ tallet er et oddetall

Eksempel 3

tallet er et partall \iff tallet er delelig med 2

Funksjoner med betingelser

Funksjoner kan gjerne ha flere uttrykk som gjelder for forskjellige vilkår. La oss for eksempel definere en funksjon f(x) slik:

For x < 1 er funksjonsuttrykket -2x + 1For $x \ge 1$ er funksjonsuttrykket $x^2 - 2x$

Dette kan vi skrive som

$$f(x) = \begin{cases} -2x+1 & , & x < 1 \\ x^2 - 2x & , & x \ge 1 \end{cases}$$
 (1.1)

Kapittel 2

Algebra

2.1 **Faktorisering**

Regel 2.1 Kvadratsetningene

For to reelle tall a og b er

$$(a+b)^2 = a^2 + 2ab + b^2$$

(1. kvadratsetning)

$$(a-b)^2 = a^2 - 2ab + b^2 \qquad (2. \text{ kvadratsetning})$$

$$(a+b)(a-b) = a^2 - b^2$$

(3. kvadratsetning)

Språkboksen

 $(a+b)^2$ og $(a-b)^2$ kalles fullstendige kvadrat.

3. kvadratsetning kalles også konjugatsetningen.

Eksempel 1

Skriv om $a^2 + 8a + 16$ til et fullstendig kvadrat.

Svar

$$a^{2} + 8a + 16 = a^{2} + 2 \cdot 4a + 4^{2}$$

= $(a+4)^{2}$

Eksempel 2

Skriv om $k^2 + 6k + 7$ til et uttrykk der k er et ledd i et fullstendig kvadrat.

Svar

$$k^{2} + 6k + 7 = k^{2} + 2 \cdot 3k + 7$$
$$= k^{2} + 2 \cdot 3k + 3^{2} - 3^{2} + 7$$
$$= (k+3)^{2} - 2$$

Faktoriser $x^2 - 10x + 16$.

Svar

Vi starter med å lage et fullstendig kvadrat:

$$x^{2} - 10x + 16 = x^{2} - 2 \cdot 5x + 5^{2} - 5^{2} + 16$$
$$= (x - 5)^{2} - 9$$

Vi legger merke til at $9 = 3^2$, og bruker 3. kvadratsetning:

$$(x-5)^2 - 3^2 = (x-5+3)(x-5-3)$$
$$= (x-2)(x-8)$$

Altså er

$$x^2 - 10x + 16 = (x - 2)(x - 8)$$

2.1 Kvadratsetningene (forklaring)

Kvadratsetningene følger direkte av den distributive egenskapen til multiplikasjon (se MB).

Regel 2.2 a_1a_2 -metoden

Gitt $x, b, c \in \mathbb{R}$. Hvis $a_1 + a_2 = b$ og $a_1 a_2 = c$, er

$$x^{2} + bx + c = (x + a_{1})(x + a_{2})$$
(2.1)

Eksempel 1

Faktoriser uttrykket $x^2 - x - 6$.

Svar

Siden
$$2(-3) = -6$$
 og $2 + (-3) = -1$, er

$$x^2 - 1x - 6 = (x+2)(x-3)$$

Faktoriser uttrykket $b^2 - 5b + 4$.

Svar

Siden
$$(-4)(-1) = 4$$
 og $(-4) + (-1) = -5$, er

$$b^2 - 5b + 4 = (b - 4)(b - 1)$$

Eksempel 3

Løs ulikheten

$$x^2 - 8x - 9 \le 0$$

Svar

Siden
$$1(-9) = -9$$
 og $1 + (-9) = -8$, er

$$x^2 - 8x - 9 = (x+1)(x-9)$$

Vi setter f = (x + 1)(x - 9), og lager et fortegnsskjema:

Fortegnsskjemaet illustrerer følgende:

- Uttrykket x + 1 er negativt når x < -1, lik 0 når x = -1, og positivt når x > -1.
- Uttrykket x-9 er negativt når x<9, lik 0 når x=9, og positivt når x>9.
- Siden f = (x+1)(x-9), er

$$f>0$$
når $x\in[-\infty,-1)\cup(9,\infty]$

$$f = 0 \text{ når } x \in \{-1, 9\}$$

$$f < 0 \text{ når } x \in (-1, 9)$$

Altså er $x^2 - 8x - 9 \le 0$ når $x \in [-1, 9]$.

$2.2 \ a_1 a_2$ -metoden (forklaring)

Vi har at

$$(x + a_1)(x + a_2) = x^2 + xa_2 + a_1x + a_1a_2$$

= $x^2 + (a_1 + a_2)x + a_1a_2$

Hvis $a_1 + a_2 = b$ og $a_1 a_2 = c$, er

$$(x + a_1)(x + a_2) = x^2 + bx + c$$

2.2 Andregradslikninger

Regel 2.3 Andregradslikning med konstantledd

Gitt likningen

$$ax^2 + bx + c = 0 (2.2)$$

hvor a, b og c er konstanter. Da er x gitt ved abc-formelen:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad (abc - formelen) (2.3)$$

Hvis $x=x_1$ og $x=x_2$ er løsninger gitt av abc-formelen, kan vi skrive

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$
(2.4)

Eksempel 1

- a) Løs likningen $2x^2 7x + 5 = 0$.
- b) Faktoriser uttrykket på venstre side i oppgave a).

Svar

a) Vi bruker abc-formelen. Da er $a=2,\,b=-7$ og c=5. Nå får vi at

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 2 \cdot 5}}{2 \cdot 2}$$

$$= \frac{7 \pm \sqrt{49 - 40}}{4}$$

$$= \frac{7 \pm \sqrt{9}}{4}$$

$$= \frac{7 \pm 3}{4}$$

Enten er

$$x = \frac{7+3}{4} = \frac{5}{2}$$

Eller så er

$$x = \frac{7 - 3}{4} = 1$$

b)
$$2x^2 - 7x + 5 = 2(x-1)\left(x - \frac{5}{2}\right)$$

Løs likningen

$$x^2 + 3 - 10 = 0$$

Svar

Vi bruker abc-formelen. Da er $a=1,\,b=3$ og c=-10. Nå får vi at

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1}$$
$$= \frac{-3 \pm \sqrt{9 + 40}}{2}$$
$$= \frac{-3 \pm 7}{2}$$

Altså er

$$x = -5$$
 \vee $x = 2$

Eksempel 3

Løs likningen

$$4x^2 - 8x + 1$$

Svar

Av abc-formelen har vi at

$$x = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4}$$
$$= \frac{8 \pm 4\sqrt{4 - 1}}{8}$$
$$= \frac{2 \pm \sqrt{3}}{2}$$

Altså er

$$x = \frac{2 + \sqrt{3}}{2} \quad \lor \quad \frac{2 - \sqrt{3}}{2}$$

Andregradslikninger (forklaring)

Gitt likningen

$$ax^2 + bx + c = 0$$

Vi starter med å omskrive likningen:

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

Så lager vi et fullstendig kvadrat, og anvdender konjugatsetningen til å faktorisere uttrykket:

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = x^{2} + 2 \cdot \frac{b}{2a}x + \frac{c}{a}$$

$$= \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}$$

$$= \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}$$

$$= \left(x + \frac{b}{2a}\right)^{2} - \left(\sqrt{\frac{b^{2} - 4ac}{4a^{2}}}\right)^{2}$$

$$= \left(x + \frac{b}{2a}\right)^{2} - \left(\frac{\sqrt{b^{2} - 4ac}}{2a}\right)^{2}$$

$$= \left(x + \frac{b}{2a} + \frac{\sqrt{b^{2} - 4ac}}{2a}\right) \left(x + \frac{b}{2a} - \frac{\sqrt{b^{2} - 4ac}}{2a}\right)$$

Uttrykket over er lik 0 når

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad \lor \qquad x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

2.3 Polynomdivisjon

Når to gitte tall ikke er delelige med hverandre, kan vi bruke brøker for å uttrykke kvotienten. For eksempel er

$$\frac{17}{3} = 5 + \frac{2}{3} \tag{2.5}$$

Tanken bak (2.5) er at vi skriver om telleren slik at den delen av 17 som er delelig med 3 framkommer:

$$\frac{17}{3} = \frac{5 \cdot 3 + 2}{3} = 5 + \frac{2}{3}$$

Den samme tankegangen kan brukes for brøker med polynomer, og da kalles det *polynomdivisjon*:

Eksempel 1

Utfør polynomdivisjon på uttrykket

$$\frac{2x^2 + 3x - 4}{x + 5}$$

Svar

Metode 1

Vi gjør følgende trinnvis; med den største potensen av x i telleren som utgangspunkt, lager vi uttrykk som er delelige med telleren.

$$\frac{2x^2 + 3x - 4}{x + 5} = \frac{2x(x + 5) - 10x + 3x - 4}{x + 5}$$

$$= 2x + \frac{-7x - 4}{x + 5}$$

$$= 2x + \frac{-7(x + 5) + 35 - 4}{x + 5}$$

$$= 2x - 7 + \frac{31}{x + 5}$$

Metode 2

(Se utregningen under punktene)

- i) Vi observerer at leddet med den høyste ordenen av x i dividenden er $2x^2$. Dette uttrykket kan vi framkalle ved å multiplisere dividenden med 2x. Vi skriver 2x til høgre for likhetstegnet, og subtraherer $2x(x+5) = 2x^2 + 10x$.
- ii) Differansen fra punkt ii) er -7x 4. Vi kan framkalle leddet med den høyeste ordenen av x ved å multiplisere dividenden med -7. Vi skriver -7 til høgre for likhetstegnet, og subtraherer -7(x+5) = -7x 5.
- iii) Differansen fra punkt iii) er 31. Dette er et uttrykk som har lavere orden av x enn dividenden, og dermed skriver vi $\frac{31}{x+5}$ til høgre for likhetstegnet.

$$(2x^{2} + 3x - 4) : (x + 5) = 2x - 7 + \frac{31}{x + 5}$$

$$- \underbrace{(2x^{2} + 10x)}_{-7x - 4}$$

$$- \underbrace{(-7x - 35)}_{31}$$

Utfør polynomdivisjon på uttrykket

$$\frac{x^3 - 4x^2 + 9}{x^2 - 2}$$

Svar

Metode 1

$$\frac{x^3 - 4x^2 + 9}{x^2 - 2} = \frac{x(x^2 - 2) + 2x - 4x^2 + 9}{x^2 - 2}$$
$$= x + \frac{-4x^2 + 2x + 9}{x^2 - 2}$$
$$= x + \frac{-4(x^2 - 2) - 8 + 2x + 9}{x^2 - 2}$$
$$= x - 4 + \frac{2x + 1}{x^2 - 2}$$

Metode 2

$$(x^{3} - 4x^{2} + 9) : (x^{2} - 2) = x - 4 + \frac{2x + 1}{x^{2} - 2}$$

$$-(x^{3} - 2x)$$

$$- 4x^{2} + 2x + 9$$

$$-(-4x^{2} + 8)$$

$$2x + 1$$

Utfør polynomdivisjon på uttrykket

$$\frac{x^3 - 3x^2 - 6x + 8}{x - 4}$$

Svar

Metode 1

$$\frac{x^3 - 3x^2 - 6x + 8}{x - 4} = \frac{x^2(x - 4) + 4x^2 - 3x^2 - 6x + 8}{x - 4}$$
$$= x^2 + \frac{x^2 - 6x + 8}{x - 4}$$
$$= x^2 + \frac{x(x - 4) + 4x - 6x + 8}{x - 4}$$
$$= x^2 + x + \frac{-2x + 8}{x - 4}$$
$$= x^2 + x - 2$$

Metode 2

$$(x^{3} - 3x^{2} - 6x + 8) : (x - 4) = x^{2} + x - 2$$

$$-(x^{3} - 4x^{2})$$

$$x^{2} - 6x + 8$$

$$-(-x^{2} - 4x)$$

$$-2x + 8$$

$$-(-2x + 8)$$

$$0$$

2.4 Polynomers egenskaper

Eksemplene på side 20-23 peker på noen viktige sammenhenger som gjelder for generelle tilfeller:

Regel 2.4 Polinomdivisjon

La A_k betegne et polynom A med grad k. Gitt polynomet P_m , da fins polynomene Q_n , S_{m-n} og R_{n-1} , hvor $m \ge n > 0$, slik at

$$\frac{P_m}{Q_n} = S_{m-n} + \frac{R_{n-1}}{Q_n} \tag{2.6}$$

Språkboksen

Hvis $R_{n-1} = 0$, sier vi at P_m er delelig med Q_n .

Eksempel 1

Undersøk om polynomene er delelige med x-3.

a)
$$P(x) = x^3 + 5x^2 - 22x - 56$$

b)
$$K(x) = x^3 + 6x^2 - 13x - 42$$

Svar

a) Ved polynomdivisjon finner vi at

$$\frac{P}{x-2} = x^2 + 8x + 2 - \frac{50}{x-2}$$

Altså er ikke P delelig med x-3.

b) Ved polynomdivisjon finner vi at

$$\frac{K}{x-2} = x^2 + 9x + 14$$

Altså er K delelig med x-3.

Regel 2.5 Faktorer i polynomer

Gitt et polynom P(x) og en konstant a. Da har vi at

$$P \text{ er delelig med } x - a \iff P(a) = 0$$
 (2.7)

Hvis dette stemmer, fins det et polynom S(x) slik at

$$P = (a - x)S \tag{2.8}$$

Eksempel 1

Gitt polynomet

$$P(x) = x^3 - 3x^2 - 6x + 8$$

- a) Vis at x = 1 løser likningen P = 0.
- b) Faktoriser P.

Svar

a) Vi undersøker P(1):

$$P(1) = 1^3 - 3 \cdot 1^3 - 6 \cdot 1 + 8$$
$$= 0$$

Altså er P = 0 når x = 1.

b) Siden P(1) = 0, er x - 1 en faktor i P. Ved polynomdivisjon finner vi at

$$P = (x-1)(x^2 - 2x - 8)$$

Da 2(-4) = -8 og -4 + 2 = -2, er

$$x^2 - 2x - 8 = (x+2)(x-4)$$

Dette betyr at

$$P = (x-1)(x+2)(x-4)$$

2.5 Eulers tall

 $Eulers\ tall$ er en konstant som har så stor betydning i matematikk at den har fått sin egen bokstav; <code>e</code>. Tallet er irrasjonalt¹, og de ti første sifrene er

$$e = 2.718281828...$$

De mest fascinerende egenskapene til dette tallet kommer til syne når man undersøker funksjonen $f(x) = e^x$. Dette er en eksponentialfunksjon som er så viktig at den rett og slett går under navnet eksponentialfunksjonen.

¹Og trascendentalt.

2.6 Logaritmer

I MB så vi på potenstall, som består av et grunntall og en eksponent. En logaritme er en matematisk operasjon relativ til et tall. Hvis en logaritme er relativ til grunntallet til en potens, vil operasjonen resultere i ekspontenten.

Logaritmen relativ til 10 skrives \log_{10} . Da er for eksempel

$$\log_{10} 10^2 = 2$$

Videre er for eksempel

$$\log_{10} 1000 = \log_{10} 10^3 = 3$$

Følelig kan vi skrive

$$1000 = 10^{\log_{10} 1000}$$

Med potensreglene som ugangspunkt (se MB), kan man utlede mange regler for logartimer.

Definisjon 2.6 Logaritmer

La \log_a betegne logaritmen relativ til $a \in \{\mathbb{R} | a \neq 0\}$. For $m \in \mathbb{R}$ er da

$$\log_a a^m = m \tag{2.9}$$

Alternativt kan vi skrive

$$m = a^{\log_a m} \tag{2.10}$$

Eksempel 1

$$\log_5 5^9 = 9$$

Eksempel 2

$$3 = 8^{\log_8 3}$$

Språkboksen

 \log_{10} skrives ofte som \log , mens \log_e skrives ofte som \ln eller (!) \log . Når man bruker digitale hjelpemidler til å finne verdier til logaritmer er det derfor viktig å sjekke hva som er grunntallet. I denne boka skal vi skrive \log_e som \ln .

Logaritmen med e som grunntall kalles den $naturlige\ logaritmen.$

$$\log 10^7 = 7$$

Eksempel 4

$$\ln e^{-3} = -3$$

Regel 2.7 Logaritmeregler

Merk: Logaritmereglene er her gitt ved den naturlige logaritmen. De samme regelene vil gjelde ved å erstatte l
n med \log_a , og e med a, for et vilkårlig tall a.

Gitt de reelle tallene x og y, alle forskjellige fra 0. Da er

$$ln e = 1$$
(2.11)

$$ln 1 = 0$$

$$(2.12)$$

$$ln(xy) = ln x + ln y$$
(2.13)

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y \tag{2.14}$$

$$ln x^y = y ln x$$
(2.15)

Eksempel 1

$$\ln(ex^5) = \ln e + \ln x^5 = 1 + 5\log x$$

Eksempel 2

$$\ln\frac{1}{2} = \ln 1 - \ln 2 = \ln 2$$

Logaritmerregler (forklaring)

Likning (2.11)

$$\ln e = \ln e^1 = 1$$

Likning (2.12)

$$\ln 1 = \ln e^0 = 0$$

Likning (2.13)

For $m, n \in \mathbb{R}$, har vi at

$$\ln e^{m+n} = m+n$$
$$= \ln e^m + \ln e^n$$

Vi setter¹ $x = e^m$ og $y = e^n$. Siden $\ln e^{m+n} = \ln(e^m \cdot e^n)$, er da

$$\ln(xy) = \ln x + \ln y$$

Likning (2.14)

Ved å undersøke $\ln a^{m-n}$, og ved å sette $y = a^{-n}$, blir forklaringen tilsvarende den gitt for likning (2.13).

Likning (2.15)

Siden $x = e^{\ln x}$ og $\left(e^{\ln x}\right)^y = e^{y \ln x}$ (se potensregler i MB), har vi at

$$\ln x^y = \ln e^{y \ln x}$$
$$= y \ln x$$

¹Vi tar det her for gitt at ethvert reelt tall forskjellig fra 0 kan uttrykkes som et potenstall.

2.7 Forklaringer

Polynomdivisjon (2.4) (forklaring)

Gitt polynomene

 P_m hvor ax^m er leddet med høyest grad

 Q_n hvor bx^n er leddet med høyest grad

Da kan vi skrive

$$P_{m} = -\frac{a}{b}x^{m-n}Q_{n} - \frac{a}{b}x^{m-n}Q_{n} + P_{m}$$
 (2.16)

Polynomet $-\frac{a}{b}x^{m-n}Q_n + P_m$ må nødvendigvis ha grad lavere eller lik m-1. Vi kaller dette polynomet U, og får at

$$P_m = -\frac{a}{b}x^{m-n}Q_n + U \tag{2.17}$$

Dermed er

$$\frac{P_m}{Q_n} = \frac{a}{b}x^{m-n} + \frac{U}{Q_n} \tag{2.18}$$

Vi kan nå stadig gjenta prosedyren fra (2.16) og (2.17), hvor høgresiden i (2.18) får ledd med grad stadig mindre enn m-n, fram til polynomet i telleren på høgresiden får grad n-1.

Faktorisering av polynom (forklaring)

(i) Vi starter med å vise at

Hvis P er delelig med x - a er x = a en løsning for P = 0.

For et polynom S har vi av (2.6) at

$$\frac{P}{x-a} = S$$

$$P = (x-a)S$$

Da er åpenbart x = a en løsning for likningen P = 0.

(ii) Vi går over til å vise at

Hvis x = a er en løsning for P = 0, er P delelig med x - a.

For polynomene S og R

$$\frac{P}{x-a} = S + \frac{R}{x-a}$$

$$P = (x-a)S + R$$

Siden x-a har grad 1, må R ha grad 0, og er dermed en konstant. Hvis P(a)=0, er

$$0 = R$$

Altså er P delelig med x - a.

Kapittel 3

Geometri

3.1 Definisjoner

Definisjon 3.1 Halveringslinje

Gitt $\angle BAC$. For et punkt P som ligger på halveringslinja til vinkelen, er

$$\angle BAP = PAC = \frac{1}{2} \angle BAC \tag{3.1}$$

Definisjon 3.2 Midtpunkt

Midtpunktet C til AB er punktet på linjestykket slik at AC = CB.

Definisjon 3.3 Midtnormal

Midtnormalen til AB står normalt på, og går gjennom midtpunktet til, AB.

Definisjon 3.4 Sinus, cosinus og tangens

Gitt en rettvinklet trekant med katetene a og b, hypotenus c, og vinkel v, som vist i figuren under.

Da er

$$\sin v = \frac{a}{c} \tag{3.2}$$

$$\cos v = \frac{b}{c} \tag{3.3}$$

$$tan v = \frac{a}{b}$$
(3.4)

Språkboksen

I figuren over blir a kalt den motstående kateten til vinkel v, og b den hosliggende.

Eksaktverdier

De aller fleste sinus-, cosinus- og tangensverdier er irrasjonale tall, i praktiske anvendelser av verdiene er det derfor vanlig å benytte digitale hjelpemidler. Verdiene som er viktigst for teoretiske formål er gitt i vedlegg ??.

Eksempel

$$\sin v = \frac{3}{5}$$
 , $\cos v = \frac{4}{5}$, $\tan v = \frac{3}{4}$

Regel 3.5 Sinus, cosinus og tangens I

Gitt $\triangle ABC$, hvor $v = \angle BAC > 90^{\circ}$, som vist i figuren under.

Da er

$$\sin v = \frac{CD}{AC} \tag{3.5}$$

$$\cos v = -\frac{AD}{AC} \tag{3.6}$$

$$\tan v = -\frac{CD}{AD} \tag{3.7}$$

Eksempel

I figuren over er $CD=\sqrt{3},\,AD=1$ og AC=2. Da er

$$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$$
 , $\cos 120^{\circ} = -\frac{1}{2}$, $\tan 120^{\circ} = -\sqrt{3}$

3.2 Egenskaper til trekanter

Regel 3.6 Arealsetningen

Arealet T til $\triangle ABC$ er

$$T = \frac{1}{2}AB \cdot AC \cdot \sin \angle A \tag{3.8}$$

Eksempel

Da $\sin 60^\circ = \frac{\sqrt{3}}{2}$ Arealet Ttil $\triangle ABC$ er

$$T = \frac{1}{2} \cdot 5 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}$$

Regel 3.7 Sinussetningen

$$\frac{\sin \angle A}{BC} = \frac{\sin \angle B}{AC} = \frac{\sin \angle C}{AB} \tag{3.9}$$

Regel 3.8 Cosinussetningen

Gitt en trekant med sidelengder $a,\,b$ og c, og vinkel v, som vist i figurene under.

Da er

$$a^2 = b^2 + c^2 - ab\cos v \tag{3.10}$$

Regel 3.9 Midtnormalen i en likebeint trekant

Gitt en likebeint trekant $\triangle ABC$, hvor AC=BC, som vist i figuren under.

Høgda DC ligger da på midtnormalen til AB.

Regel 3.10 Medianer i trekanter

En median er et linjestykke som går fra et hjørne i en trekant til midtpunktet på den motstående siden i trekanten.

De tre medianene i en trekant skjærer hverandre i ett og samme punkt.

Gitt $\triangle ABC$ med medianer $CD,\,BF$ og $AE,\,$ som skjærer hverandre i G. Da er

$$\frac{CG}{GD} = \frac{BG}{GF} = \frac{AG}{GE} = 2$$

Regel 3.11 Midtnormaler i trekanter

Midtnormalene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i den omskrevne sirkelen til trekantne, som har hjørnene til trekanten på sin bue.

Regel 3.12 Halveringslinjer og innskrevet sirkel i trekanter

Halveringslinjene til vinklene i en trekant møtes i ett og samme punkt. Dette punktet er sentrum i den innskrevne sirkelen til trekanten, som tangerer hver av sidene til trekanten.

3.3 Egenskaper til sirkler

Regel 3.13 Tangent

En linje som skjærer en sirkel i bare ett punkt, kalles en *tangent* til sirkelen.

La S være sentrum i en sirkel, og la A være skjæringspunktet til denne sirkelen og ei linje. Da har vi at

linja er en tangent til sirkelen $\Longleftrightarrow \overrightarrow{AS}$ står vinkelrett på linja

Regel 3.14 Sentral- og periferivinkel

Både periferi- og sentralvinkler har vinkelbein som ligger (delvis) inni en sirkel.

En sentralvinkel har toppunkt i sentrum av en sirkel.

En periferivinkel har toppunkt på sirkelbuen.

Gitt en periferivinkel u og en sentralvinkel v, som er innskrevet i samme sirkel og som spenner over samme sirkelbue. Da er

3.4 Forklaringer

3.9 Midtnormalen i en likebeint trekant (forklaring)

Da både $\triangle ADC$ og $\triangle DBC$ er rettvinklede, har CD som korteste katet, og AC=BC, følger det av Pytagoras' setning at AD=BD.

3.10 Medianer i trekanter (forklaring)

Vi lar G være skjæringspunktet til BF og AE, og tar det for gitt at dette ligger inne i $\triangle ABC$. Da $AF = \frac{1}{2}AC$ og $BE = \frac{1}{2}BC$, er $ABF = BAE = \frac{1}{2}ABC$. Dermed har F og E lik avstand til AB, som betyr at $FE \parallel AB$. Videre har vi også at

$$ABG + AFG = ABG + BGE$$

 $AFG = BGE$

G har lik avstand til AF og FC, og AF = FC. Dermed er AFG = GFC. Tilsvarende er BGE = GEC. Altså har disse fire trekantene likt areal. Videre er

$$AFG + GFC + GEC = AEC$$

$$GEC = \frac{1}{6}ABC$$

La H være skjæringspunktet til AE og CD. Med samme framgangsmåte som over kan det vises at

$$HEC = \frac{1}{6}ABC$$

Da både $\triangle GEC$ og $\triangle HEC$ har CE som side, likt areal, og både G og H ligger på AE, må G=H. Altså skjærer medianene hverandre i ett og samme punkt.

 $\triangle ABC \sim \triangle FEC$ fordi de har parvis parallelle sider. Dermed er

$$\frac{AB}{FE} = \frac{BC}{CE} = 2$$

 $\triangle ABG \sim \triangle EFG$ fordi $\angle EGF$ og $\angle AGB$ er toppvinkler og $AB \parallel FE.$ Dermed er

$$\frac{GB}{FG} = \frac{AB}{FE} = 2$$

Tilsvarende kan det vises at

$$\frac{CG}{GD} = \frac{AG}{GE} = 2$$

3.11 Midtnormaler i trekanter (forklaring)

Gitt $\triangle ABC$ med midtpunktene D, E og F. Vi lar S være skjæringspunktet til de respektive midtnormalene til AC og AB. $\triangle AFS \sim \triangle CFS$ fordi begge er rettvinklede, begge har FS som korteste katet, og AF = FC. Tilsvarende er $\triangle ADS \sim \triangle BDS$. Følgelig er CS = AS = BS. Dette betyr at

- $\triangle BSC$ er likebeint, og da går midtnormalen til BC gjennom S.
- A, B og C må nødvendigvis ligge på sirkelen med sentrum S og radius AS = BS = CS

3.12 Halveringslinjer og innskrevet sirkel i trekanter (forklaring)

Gitt $\triangle ABC$. Vi lar S være skjæringspunktet til de respective halveringslinjene til $\angle BAC$ og $\angle CBA$. Videre plasserer vi D, E og F slik at $DS \perp AB$, $ES \perp BC$ og $FS \perp AC$. $\triangle ASD \cong \triangle ASF$ fordi begge er rettvinklede og har hypotenus AS, og $\angle DAS = \angle SAF$. Tilsvarende er $\triangle BSD \cong \triangle BSE$. Dermed er SE = SD = SF. Følgelig er F, C og E de respektive tangeringspunktene til AB, BC og AC og sirkelen med sentrum S og radius SE.

Videre har vi at $\triangle CSE \cong \triangle CSF$, fordi begge er rettvinklede og har hypotenus CS, og SF = SE. Altså er $\angle FCS = \angle ECS$, som betyr at CS ligger på halveringslinja til $\angle ACB$.

3.13 Tangent (forklaring)

Linja er en tangent til sirkelen $\Longrightarrow \overrightarrow{AS}$ står vinkelrett på linja

Vi antar at vinkelen mellom linja og \overrightarrow{AS} er ulik 90°. Da må det finnes et punkt B på linja slik at $\angle BAS = \angle SBA$, som betyr at $\triangle ASB$ er likebeint. Følgelig er AS = BS, og da AS er lik radien i sirkelen, må dette bety at B også ligger på sirkelen. Dette motsier det faktum at A er det eneste skjæringspunktet til sirkelen og linja, og dermed må vinkelen mellom linja og \overrightarrow{AS} være 90°.

Linja er en tangent til sirkelen $\Longleftarrow \overrightarrow{AS}$ står vinkelrett på linja

Gitt et vilkårlig punkt B, som ikke samsvarer med A, på linja. Da er BS hypotenusen i $\triangle ABC$. Dette innebærer at BS er større enn radien til sirkelen (BS > AS), og da kan B umulig ligge på sirkelen. Altså er A det eneste punktet som ligger på både linja og sirkelen, og dermed er linja en tangent til sirkelen.

3.6 Arealsetningen (forklaring)

Gitt to tilfeller av $\triangle ABC$, som vist i figuren under. Det éne hvor $\angle BAC \in (0^{\circ}, 90^{\circ}]$, det andre hvor $\angle BAC \in (90^{\circ}, 0^{\circ})$ og la h være høyden med grunnlinje AB.

Arealet T til $\triangle ABC$ er i begge tilfeller

$$T = \frac{1}{2}AB \cdot h \tag{3.12}$$

Av henholdsvis (3.2) og (3.5) har vi at $h = AC \cdot \sin \angle BAC$, og da er

$$T = \frac{1}{2}AB \cdot h = \frac{1}{2}AB \cdot AC \sin \angle BAC$$

3.8 Cosinussetningen (forklaring)

 $v \in (90^\circ, 180^\circ)$

Av Pytagoras' setning har vi at

$$x^2 = b^2 - h^2 (3.13)$$

og at

$$a^2 = (x+c)^2 + h^2 (3.14)$$

$$a^2 = x^2 + 2xc + c^2 + h^2 (3.15)$$

Ved å sette uttrykket for x^2 fra (3.13) inn i (3.15), får vi at

$$a^2 = b^2 - h^2 + 2xc + c^2 + h^2 (3.16)$$

$$a^2 = b^2 + c^2 + 2xc (3.17)$$

Av (3.6) har vi at $x = -b\cos v$, og da er

$$a^2 = b^2 + c^2 - 2bc\cos v$$

 $v \in [(0^\circ, 90^\circ]$

Dette tilfellet skiller seg ut fra tilfellet hvor $v \in (90^{\circ}, 180^{\circ}]$ på to måter:

- (i) I (3.14) får vi $(c-x)^2$ i steden for $(x+c)^2$. I (3.17) får vi da -2xc i steden for +2xc.
- (ii) Av (3.3) er $x = b \cos v$. Av punkt (ii) følger det da at

$$a^2 = b^2 + c^2 - 2bc\cos v$$

3.14 Sentral- og periferivinkel (forklaring)

Tilhørende periferi- og sentralvinkler kan deles inn i tre tilfeller.

i) En diameter i sirkelen er høyre eller venstre vinkelbein i begge vinklene

I figuren under er S sentrum i sirkelen, $\angle BAC = u$ en periferivinkel og $\angle BSC = v$ den tilhørende sentralvinkelen. Vi setter $\angle SCB = a$. $\angle ACS = \angle SAC = u$ og $\angle CBS = \angle SCB = a$ fordi både $\triangle ASC$ og $\triangle SBC$ er likebeinte.

Vi har at

$$2a = 180^{\circ} - v \tag{3.18}$$

$$2u + 2a = 180^{\circ} \tag{3.19}$$

Vi setter uttrykket for 2a fra (3.18) inn i (3.19):

$$2u + 180^{\circ} - v = 180^{\circ}$$
$$2u = v$$

ii) Vinklene ligger innenfor samme halvdel av sirkelen

I figuren under er u en periferivinkel og v den tilhørende sentralvinkelen. I tillegg har vi tegnet inn en diameter, som er med på å danne vinklene a og b. Både u og v ligger i sin helhet på samme side av denne diameteren.

Ettersom u+a er en periferivinkel, og v+b den tilhørende sentralvinkelen, vet vi av tilfelle 1 at

$$2(u+a) = v+b$$

Men ettersom a og b også er samhørende periferi- og sentralvinkler, er 2a=b. Det betyr at

$$2u + b = v + b$$
$$2u = v$$

iii) Vinklene ligger ikke innenfor samme halvdel av sirkelen

I figuren under er u en periferivinkel og v den tilhørende sentralvinkelen. I figuren til høyre har vi tegnet inn en diameter. Den deler u inn i vinklene a og c, og v inn i b og d.

a og cer begge periferivinkler, med henholdsvis b og d som tilhørende sentralvinkler. Av tilfelle i) har vi da at

$$2a = b$$

$$2c = d$$

Dermed er

$$2a + 2c = b + d$$
$$2(a + c) = v$$
$$2u = v$$

Kapittel 4

Vektorer

4.1 Introduksjon

En todimensjonal vektor angir en forflytning i et koordinatsystem med en x-akse og en y-akse. En vektor tegner vi som et linjestykke mellom to punkt, i tillegg til at vi lar en pil vise til hva som er endepunktet. Det betyr at forflytningen starter i punktet uten pil, og ender i punktet med pil.

I figur (a) er vektoren \vec{v} vist med startpunkt (0,0) og endepunkt (3,1). Når en vektor har startpunkt (0,0), sier vi at den er vist i grunn-stillingen. I figur (b) er \vec{v} vist med startpunkt (1,-2) og endepunkt (3,1). Forflytningen \vec{v} viser til er å vandre 2 mot høgre langs x-aksen og 3 opp langs y-aksen. Dette skriver vi som $\vec{u} = [2,3]$, som kalles \vec{u} skrevet på komponentform.

Eksempel 1

$$\vec{a} = [1, 3]$$

$$\vec{b} = [0, -2]$$

$$\vec{c} = [-3, -4]$$

$$\vec{d} = [5, 0]$$

Regel 4.1 Vektoren mellom to punkt

En vektor \vec{v} med startpunkt (x_1, y_1) og endepunkt (x_2, y_2) er gitt som

$$\vec{v} = [x_2 - x_1, y_2 - y_1] \tag{4.1}$$

Eksempel 1

Skriv vektorene på komponentform.

- \vec{a} har startpunkt (1,3) og endepunkt (7,5)
- \vec{b} har startpunkt (0,9) og endepunkt (-3,2)
- \vec{c} har startpunkt (-3,7) og endepunkt (2,-4)
- \vec{d} har startpunkt (-7, -5) og endepunkt (3, 0)

Svar

$$\begin{aligned} \vec{a} &= [7-1, 5-3] = [6, 2] \\ \vec{b} &= [-3-0, 2-9] = [-3, -7] \\ \vec{c} &= [2-(-3), -4-7] = [5, -11] \\ \vec{d} &= [3-(-7), 0-(-5)] = [10, 5] \end{aligned}$$

4.2 Regneregler

Regel 4.2 Regneregler for vektorer

Gitt vektorene $\vec{u}=[x_1,y_1]$ og $\vec{v}=[x_2,y_2]$, punktet $A=(x_0,y_0)$ og en konstant t. Da er

$$A + \vec{u} = (x_0 + x_1, y_0 + y_1) \tag{4.2}$$

$$\vec{u} + \vec{v} = [x_1 + x_2, y_1 + y_2] \tag{4.3}$$

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2] \tag{4.4}$$

$$t\vec{u} = [tx_1, ty_1, tz_1] \tag{4.5}$$

$$t(\vec{u} + \vec{v}) = t\vec{u} + t\vec{v} \tag{4.6}$$

Summen eller differansen av \vec{u} og \vec{v} kan vi tegne slik:

For en vektor \vec{w} har vi videre at

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (4.7)

$$\vec{u} - (\vec{v} + \vec{w}) = \vec{u} - \vec{v} - \vec{w} \tag{4.8}$$

Vinkelen mellom to vektorer

Vinkelen mellom to vektorer er (den minste) vinkelen som blir dannet når vektorene plasseres i samme startpunkt. For to vektorer \vec{u} og \vec{v} skriver vi denne vinkelen som $\angle(\vec{u}, \vec{v})$.

I vektorregning er det vanlig å oppgi vinkler i grader, altså på "intervallet [0°, 180°].

4.3 Lengden til en vektor

Gitt en vektor $\vec{v} = [x_1, y_1]$. Lengden til \vec{v} er avstanden mellom startpunktet og endepunktet.

Av enhver vektor kan vi danne en rettvinklet trekant hvor $|\vec{v}|$ er lengden til hypotenusen og $|x_1|$ og $|y_1|$ er de respektive lengdene til katetene. Dermed er $|\vec{v}|$ gitt av Pytagoras' setning.

Regel 4.3 Lengden til en vektor

Gitt en vektor $\vec{v} = [x_1, y_1]$. Lengden $|\vec{v}|$ er da

$$|\vec{v}| = \sqrt{x_1^2 + y_1^2} \tag{4.9}$$

Eksempel 1

Finn lengden til vektorene $\vec{a} = [7, 4]$ og $\vec{b} = [-3, 2]$.

Svar

$$|\vec{a}| = \sqrt{7^2 + 4^2} = \sqrt{65}$$

$$|\vec{b}| = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$$

4.4 Skalarproduktet I

Regel 4.4 Skalarproduktet I

For to vektorer $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$, er skalarproduktet gitt som

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 \tag{4.10}$$

Språkboksen

Skalarproduktet kalles også prikkproduktet eller indreproduktet.

Eksempel 1

Gitt vektorene $\vec{a}=[3,2],\, \vec{b}=[4,7]$ og $\vec{c}=[1,-9].$ Regn ut $\vec{a}\cdot\vec{b}$ og $\vec{a}\cdot\vec{c}.$

Svar

$$\vec{a} \cdot \vec{b} = 3 \cdot 4 + 2 \cdot 7 = 26$$

$$\vec{a} \cdot \vec{c} = 3 \cdot 1 + 2(-9) = -15$$

Regel 4.5 Regneregler for skalarproduktet

For vektorene $\vec{u},\,\vec{v}$ og \vec{w} har vi at

$$\vec{u} \cdot \vec{u} = \vec{u}^2 \tag{4.11}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \tag{4.12}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \tag{4.13}$$

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 \tag{4.14}$$

Eksempel

Forkort uttrykket

$$\vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2$$

når du vet at $\vec{b} \cdot \vec{c} = 0$.

Svar

$$\begin{split} \vec{b} \cdot (\vec{a} + \vec{c}) + \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b}^2 &= \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2 \\ &= \left(\vec{a} + \vec{b} \right)^2 \end{split}$$

Skalar??

4.5 Skalarproduktet II

Gitt vektoren $\vec{u} - \vec{v}$, hvor $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$. Da er

$$\vec{u} - \vec{v} = [x_1 - x_2, y_1 - y_2]$$

Av (??) har vi at

$$|\vec{u} - \vec{v}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$= \sqrt{x_1^2 - 2x_1x_2 + x_2^2 + y_1^2 - 2y_1y_2 + y_2^2}$$
(4.15)

Ved hjelp av (4.10) og (4.11) kan vi skrive (4.15) som

$$|\vec{u} - \vec{v}| = \sqrt{\vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2} \tag{4.16}$$

Videre merker vi oss følgende figur:

. Av $cosinussetningen^1$ og (4.16) er

$$|(\vec{v} - \vec{u})|^2 = |\vec{v}|^2 + |\vec{u}|^2 - 2\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$
$$\vec{v}^2 - 2\vec{u} \cdot \vec{v} + \vec{u}^2 = \vec{v}^2 + \vec{u}^2 - 2|\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$
$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\angle(\vec{u}, \vec{v})$$

Regel 4.6 Skalarproduktet II

For to vektorer \vec{u} og \vec{v} er

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos \angle (\vec{u}, \vec{v}) \tag{4.17}$$

¹Se ??

4.6 Vektorer vinkelrett på hverandre

Fra (4.17) kan vi gjøre en viktig observasjon; Hvis $\angle(\vec{u},\vec{v})=90^\circ$, er $\cos\angle(\vec{u},\vec{v})=0$, og da blir

$$\vec{u} \cdot \vec{v} = 0$$

Regel 4.7 Vinkelrette vektorer

For to vektorer \vec{u} og \vec{v} har vi at

$$\vec{u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v} \tag{4.18}$$

Språkboksen

Det er mange måter å uttrykke at $\vec{u} \perp \vec{v}$ på. Blant annet kan vi si at

- \vec{u} og \vec{v} står vinkelrett på hverandre.
- \vec{u} og \vec{v} står normalt på hverandre.
- \vec{u} er en normalvektor til \vec{v} (og omvendt).
- \vec{u} og \vec{v} er ortogonale.

Eksempel 1

Sjekk om vektorene $\vec{a}=[5,-3],$ $\vec{b}=[6,-10]$ og $\vec{c}=[2,7]$ er ortogonale.

Svar

Vi har at

$$\vec{a} \cdot \vec{b} = 5 \cdot 6 + (-3)10$$
$$= 0$$

Altså er $\vec{a} \perp \vec{b}$. Videre er

$$\vec{a} \cdot \vec{c} = 5 \cdot 2 + (-3)7 \cdot$$

$$= 11$$

Altså er \vec{a} og \vec{c} ikke ortogonale. Da $\vec{a} \perp \vec{b}$, kan heller ikke \vec{b} og \vec{c} være ortogonale.

Nullvektoren

I forkant av regel 4.7 har vi bare argumentert for at $\vec{u} \perp \vec{v} \Rightarrow \vec{u} \cdot \vec{v} = 0$. For å rettferdiggjøre betingelsen som går begge veier i (4.18), må vi spørre: Kan vi få $\vec{u} \cdot \vec{v} = 0$ om vinkelen mellom \vec{u} og \vec{v} ikke er 90°?

På intervallet $[0^{\circ}, 180^{\circ}]$ er det bare vinkelverdien 90° som resulterer i cosinusverdi 0. Skal skalarproduktet bli 0 for andre vinkler, må derfor lengden av \vec{u} eller \vec{v} være 0. Den eneste vektoren med denne lengden er nullvektoren $\vec{0} = [0, 0]$, som rett og slett ikke har noen retning¹. Det er likevel vanlig å definere at nullvektoren står vinkelrett på alle vektorer.

¹Eventuelt kan man hevde at den peker i alle retninger!

4.7 Parallelle vektorer

Definisjon 4.8 Parallelle vektorer

Hvis vinkelen mellom to vektorer er 0° eller 180°, er de parallelle.

Gitt to vektorer $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$. La θ og α være vinkelen mellom x-aksen og henholdsvis \vec{u} og \vec{v} , med x-aksen som høgre vinkelbein. Da er $\tan \theta = \frac{y_1}{x_1}$ og $\tan \alpha = \frac{y_2}{x_2}$. Hvis $\frac{y_1}{x_1} = \frac{y_2}{x_2}$, er det to muligheter:

- (i) $\theta = 0^{\circ}$ og $\alpha = 180^{\circ}$, eller omvendt.
- (ii) $\theta = \alpha$

I begge tilfeller er $\angle(\vec{u}, \vec{v})$ enten 0° eller 180°, og da er \vec{u} og \vec{v} parallelle. Det omvendte gjelder også: Hvis punkt (i) eller (ii) gjelder, er $\frac{y_1}{x_1} = \frac{y_2}{x_2}$. Det er ofte praktisk å omskrive denne sammehengen til forholdet mellom samsvarende komponenter¹:

¹For vektorene $[x_1, y_1]$ og $[x_2, y_2]$ er disse samsvarende komponenter:

[•] $x_1 \circ x_2$

[•] y_1 og y_2

Regel 4.9 Parallelle vektorer

For to vektorer $\vec{u} = [x_1, y_1]$ og $\vec{v} = [x_2, y_2]$ har vi at

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} \iff \vec{u} \parallel \vec{v} \tag{4.19}$$

Alternativt, for et tall t har vi at

$$\vec{u} = t\vec{v} \iff \vec{u} \parallel \vec{v} \tag{4.20}$$

Språkboksen

Når $\vec{u} = t\vec{v}$, sier vi at \vec{u} er et multiplum av \vec{v} (og omvendt). Vi sier også at \vec{u} og \vec{v} er lineært uavhengige.

Eksempel

Undersøk hvorvidt $\vec{a}=[2,-3]$ og $\vec{b}=[20,-45]$ er parallelle med $\vec{c}=[10,-15].$

Svar

Vi har at

$$\vec{c} = 5[2, -4] = 5\vec{a}$$

Dermed er $\vec{a} \parallel \vec{c}.$ Da $\frac{20}{10} \neq \frac{-45}{15},$ er \vec{b} og \vec{c} ikke parallelle.

4.8 Vektorfunksjoner; parameterisering

Definisjon 4.10

Gitt to funksjoner f(t) og g(t). En vektor \vec{v} på formen

$$\vec{v}(t) = [f(t), g(t)]$$

er da en vektorfunksjon.

 \vec{v} kan skrives på parameterisert form som

$$\vec{v}(t): \left\{ \begin{array}{l} x = f(t) \\ y = g(t) \end{array} \right. \tag{4.21}$$

Merk

Til forskjell fra grafen til en skalarfunksjon kan grafen til en vektorfunksjon "begevege seg fritt" i koordinatsystemet.

4.8.1 Vektorfunksjonen til ei linje

Gitt ei linje l, som vist i figuren under

Hvis en vektor \vec{r} er parallell med l, kalles den en retningsvektor for linja. Si at $\vec{r} = [a,b]$ er en retningsvektor for l, og at $A = (x_0,y_0)$ er et punkt på l. Om vi starter i A og vandrer parallellt med \vec{r} , kan vi være sikre på at vi fortsatt befinner oss på linja. Dette må bety at vi for en variabel t kan nå et vilkårlig punkt B = (x,y) på linja ved følgende utregning:

$$B = A + t\vec{r}$$

På koordinatform kan vi skrive dette som¹

$$(x,y) = (x_0 + at, y_0 + bt)$$

Altså kan linja skrives som en vektorfunksjon:

Regel 4.11 Linje som vektorfunksjon

Ei linje $\vec{l}(t)$ som går gjennom punktet $A=(x_0,y_0,)$ og har retningsvektor $\vec{r}=[a,b]$ er gitt som

$$\vec{l} = [x_0 + at, y_0 + bt]$$

 $^{^{1}}$ Se (4.2).

4.9 Sirkellikningen

Gitt en sirkel med sentrum $S = (x_0, y_0)$ og et punkt A = (x, y), som ligger på buen til sirkelen.

Da er

$$\overrightarrow{SA} = [x - x_0, y - y_0]$$

Av (4.9) er da

$$\left| \overrightarrow{SA} \right|^2 = (x - x_0)^2 + (y - y_0)^2$$

Hvis vi lar r være radien til sirkelen, er $\left|\overrightarrow{SA}\right| = r$, og dermed kan vi uttrykke r ved koordinatene til S og A.

Regel 4.12 Sirkelligningen

Gitt en sirkel radius r og sentrum $S = (x_0, y_0)$. Hvis punktet A = (x, y) ligger på buen til sirkelen, er

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Eksempel

Finn sentrum og radien til sirkelen gitt av likningen

$$x^2 + y^2 - 4x + 10y - 20 = 0 (4.22)$$

Svar

Vi starter med å lage fullstendige kvadrat:

$$x^2 - 4x = (x - 2)^2 - 2^2$$

$$y^2 + 10y = (y+5)^2 - 5^2$$

Altså kan vi skrive (4.22) som

$$(x-2)^{2} + (y+5)^{2} - 2^{2} - 5^{2} - 20 = 0$$
$$(x-2)^{2} + (y+5)^{2} = 7^{2}$$

Altså har sirkelen sentrum (2, -5) og radius 7.

4.10 Determinanter

Regel 4.13 2×2 determinanter

Determinanten $\det(\vec{u}, \vec{v})$ av to vektorer $\vec{u} = [a, b]$ og $\vec{v} = [b, c]$ er gitt som

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
$$= ad - bc$$

Eksempel

Gitt vektorene $\vec{u} = [-1, 3]$ og $\vec{v} = [-2, 4]$. Bestem $\det(\vec{u}, \vec{v})$.

Svar

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} -1 & 3 \\ -2 & 4 \end{vmatrix}$$
$$= (-1)4 - 3(-2)$$
$$= 2$$

Regel 4.14 Arealformler med determinanter

Arealet Atil et parallellogram formet av to vektorer \vec{u} og \vec{v} er gitt ved

$$A = |\det(\vec{u}, \vec{v})| \tag{4.23}$$

Arealet Atil en trekant formet av to vektorer \vec{u} og \vec{v} er gitt ved

$$A = \frac{1}{2} |\det(\vec{u}, \vec{v})| \tag{4.24}$$

Regel 4.15 Avstand mellom punkt og linje

Avstanden hmellom et punktBog en linje gitt av punktet Aog retningsvektoren \vec{r} er gitt som

$$h = \frac{\left| \overrightarrow{AB} \times \overrightarrow{r} \right|}{\left| \overrightarrow{r} \right|} \tag{4.25}$$

(forklaring)

La en linje l i rommet være gitt av et punkt A og en retningsvektor \vec{r} . I tillegg ligger et punkt B utenfor linja, som vist i figuren under

Den korteste avstanden fra B til linja er høyden h i trekanten utspent av \vec{r} og \overrightarrow{AB} . Arealet til denne trekanten er gitt ved (4.24):

$$\frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{r} \right) \right|$$

Av den klassiske arealformelen for en trekant har vi nå at

$$\frac{1}{2}|\vec{r}|h = \frac{1}{2}\left|\det\left(\overrightarrow{AB}, \vec{r}\right)\right|$$
$$h = \frac{\left|\det\left(\overrightarrow{AB}, \vec{r}\right)\right|}{|\vec{r}|}$$

4.14 Arealformler med determinanter (forklaring)

Vi lar A_N betegne arealet til en geometrisk form N.

Gitt to vektorer $\vec{u} = [a, b]$ og $\vec{v} = [c, d]$, hvor a, b, c, d > 0, som vist i figur (a). Plasserer vi vektorene i grunnstillingen er punktene vist i figur (b) gitt som

$$O = (0,0)$$
 $B = (a,b)$ $C = (a+b,c+d)$
 $D = (c,d)$ $E = (a+c,0)$ $F = (0,b+d)$

D = (c, a) E = (a + c, 0) F = (0, b + a)

Med
$$OE$$
 som grunnlinje har $\triangle OEB$ høgde b , altså er
$$2A_{\triangle OEB} = (a+c)b$$

Tilsvarende er

$$2A_{\triangle FDO} = (b+d)c$$

Da $A_{\triangle OEB} = A_{\triangle CDF}$ og $A_{\triangle FDO} = A_{\triangle EBC}$, har vi at

$$A_{\Box ABCD} = A_{\Box OECF} - 2A_{\triangle OBE} - 2A_{\triangle FDO}$$
$$= (a+c)(b+d) - (a+c)b - (b+d)c$$
$$= (a+c)d - (b+d)c$$
$$= ad - bc$$

I figurene har vi antatt at (den minste) vinkelen mellom \vec{v} og x-aksen er mindre enn vinkelen mellom \vec{u} og x-aksen. I omvendt tilfelle ville vi fått at

$$A_{\square OECF} = bc - ad$$

Altså er

$$A_{\square OECF} = |ac - bd|$$

På lignende måte kan det vises at (4.23) gjelder for alle $a,b,c,d\in\mathbb{R},$ se oppgave ??.

Kapittel 5

Grenseverdier og kontinuitet

5.1 Grenseverdier

Si at vi starter med verdien 0.9, og deretter stadig legger til 9 som bakerste siffer. Da får vi verdiene 0.9, 0.99, 0.999 og så videre. Ved å legge til 9 som bakerste siffer på denne måten, kan vi komme så nærme vi måtte ønske — men aldri nå eksakt — verdien 1. Det å "komme så nærme vi måtte ønske — men aldri nå eksakt — en verdi" vil vi heretter kalle å "gå mot en verdi". Metoden vi akkurat beskrev kan vi se på som en metode for å gå mot 1. Vi kan da si at grenseverdien til denne metoden er 1. For å indikere en grenseverdi skriver vi lim.

Det er viktig å tenke over at vi kan gå mot et tall fra to sider; fra venstre eller fra høgre på tallinjen. Med en metode som gir oss verdiene 0.9, 0.99, 0.999 og så videre, nærmer vi oss 1 fra venstre. Lager vi oss en metode som gir verdiene 1.1, 1.01, 1.001 og så videre, nærmer vi oss 1 fra høgre. Dette vises ved å markere + eller - på tallet vi går mot.

Regel 5.1 Grenseverdier

 $x \to a^+ = x$ går mot a fra høgre

 $x \to a^- = x$ går mot a fra venstre

 $x \to a = x$ går mot a (fra både høgre og venstre)

 $\lim_{x\to a} f(x) = \text{grenseverdien til } f \text{ når } x \text{ går mot } a$

= verdien f går mot når x går mot a

Språkboksen

Å gå mot en verdi fra høgre/venstre kalles også å gå mot en verdi ovenfra/nedenfra.

Merk

 $x \to a$ omfatter de to tilfellene $x \to a^+$ og $x \to a^-$. Ofte vil disse være så like av natur at vi kan behandle $x \to a$ som ett tilfelle.

En utvidelse av =

Det litt paradoksale med grenserverdier hvor x går mot a, er at vi ofte ender opp med å erstatte x med a, selv om vi per definisjon har at $x \neq a$. For eksempel er

$$\lim_{x \to 2} (x+1) = 2 + 1 = 3 \tag{5.1}$$

Det er verd å filosofere litt over likhetene i (5.1). Når x går mot 2, vil x aldri bli eksakt lik 2. Dette betyr at x+1 aldri kan bli eksakt lik 3. Men jo nærmere x er lik 2, jo nærmere er x+1 lik 3. Med andre ord går x+1 mot 3 når x går mot 2. Likheten i (5.1) viser altså ikke til et uttrykk som er eksakt lik en verdi, men et uttrykk som går eksakt mot en verdi. Dette gjør altså at grenseverdier bringer en noe utvidet forståelse av =.

Eksempel 1

Gitt
$$f(x) = \frac{x^2 + 2x - 3}{x - 1}$$
. Finn $\lim_{x \to 1} f(x)$.

Svar

Når $x \neq 1$, har vi at

$$f(x) = \frac{(x-1)(x+3)}{x-1}$$
$$= x+3$$

Dette betyr at

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} x + 3$$
$$= 4$$

5.2 Kontinuitet

Regel 5.2 Kontinuitet

Gitt en funksjon f(x) og en konstant c. Hvis f(c) eksisterer, er f kontinuerlig for x = c hvis

$$\lim_{x \to c} f(x) = f(c) \tag{5.2}$$

Hvis (5.2) er ugyldig, er f diskontinuerlig for x = c.

Eksempel 1

Undersøk om funksjonene er kontinuerlige for x=2.

a)

$$f(x) = \begin{cases} x+4 & , & x < 2 \\ -3x+12 & , & x \ge 2 \end{cases}$$
 (5.3)

b)

$$g(x) = \begin{cases} x+1 & , & x \le 2 \\ -x+6 & , & x > 2 \end{cases}$$
 (5.4)

Svar

a) Vi har at

$$\lim_{x \to 2^{+}} f(x) = f(2) = -3 \cdot 2 + 12 = 6$$

$$\lim_{x \to 2^{-}} f(x) = 2 + 4 = 6$$

Altså er f kontinuerlig for x = 2.

b) Vi har at

$$\lim_{x \to 2^{-}} g(x) = g(2) = 2 + 1 = 3$$

$$\lim_{x \to 2^+} g(x) = -2 + 6 = 4$$

Altså er g ikke kontinuerlig for x = 2.

Visualisering av kontinuitet

Visuelt kan vi skille mellom kontinuerlige og diskontinuerlige funksjoner slik; kontinuerlige funksjoner har sammenhengende grafer, diskontinuerlige funksjoner har det ikke. Et utsnitt av grafene til funksjonene fra *Eksempel 1* på side 72 ser slik ut:

Grafer fungerer utmerket til å avgjøre hvilke funskjoner vi forventer å være kontinuerlige eller ikke, men er aldri gyldige som et bevis for dette.

Kapittel 6

Derivasjon

6.1 Definisjoner

Gitt en funksjon f(x) og to x-verdier a og b, hvor a < b. Endringen til f relativ til endringen til x for disse verdiene er gitt som

$$\frac{f(b) - f(a)}{b - a} \tag{6.1}$$

I MB har vi sett at uttrykket over gir stigningstallet til linja som går gjennom punktene (a, f(a)) og (b, f(b)). I en matematisk sammenheng er det ekstra interessant å undersøke (6.1) når b nærmer seg a.

Ved å sette b = a + h, hvor h > 0, kan vi skrive (6.1) som

$$\frac{f(a+h) - f(a)}{h}$$

Å derivere innebærer å undersøke grenseverdien til denne brøken når hgår mot 0.

Definisjon 6.1 Den deriverte

Gitt en funksjon f(x). Den deriverte av f i x = a er da gitt som

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 (6.2)

Linja som har stigningstall f'(a), og som går gjennom punktet (a, f(a)), kalles tangeringslinja til f for x = a.

Eksempel 1

Gitt $f(x) = x^2$. Finn f'(2).

Svar

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h}$$

$$= \lim_{h \to 0} \frac{2^2 + 4h + (h)^2 - 2^2}{h}$$

$$= 4$$

Eksempel 2

Gitt $f(x) = x^3$. Finn f'(a).

Svar

Vi har at

$$f'(a) = \lim_{h \to 0} \frac{(a+h)^3 - a^3}{h}$$

$$= \lim_{h \to 0} \frac{a^3 + 3a^2h + 3ah^2 + h^3 - a^3}{h}$$

$$= \lim_{h \to 0} \left(3a^2 + 3ah + h^2\right)$$

$$= 3a^2$$

Altså er $f'(a) = 3a^2$.

Alternativ definisjon

En ekvivalent utgave av (6.2) er

$$f'(a) = \lim_{b \to a} \frac{f(b) - f(a)}{b - a}$$
 (6.3)

Linearisering av en funksjon

Gitt en funksjon f(x) og en variabel k. Siden f'(a) angir stigningstallet til f(a) for x = a, vil en tilnærming til f(a + k) være (se figur ???)

$$f(a+k) \approx f(a) + f'(a)k$$

Det er ofte nyttig å vite differansen ε mellom en tilnærming og den faktiske verdien:

$$\varepsilon = f(a+k) - [f(a) + f'(a)k] \tag{6.4}$$

Vi legger merket til at $\lim_{h\to 0} \frac{\varepsilon_f}{k} = 0$, og skriver om (6.4) til en formel for f(x+k):

¹Dette overlates til leseren å vise.

Regel 6.2 Linearisering av en funskjon

Gitt en funskjon f(x)og en variabel k. Da finnes en funksjon ε slik at

$$f(a+k) = f(a) + f'(a)k + \varepsilon \tag{6.5}$$

hvor $\lim_{h\to 0} \frac{\varepsilon_f}{k} = 0$.

Tilnærmingen

$$f(a+k) \approx f(a) + f'(x)k \tag{6.6}$$

kalles lineæarapproksimasjonen av f(a + k).

6.2 Derivasjonsregler

6.2.1 Den deriverte

Eksempel 2 på side 77 belyser noe viktig; hvis grenseverdien i (6.2) eksisterer, vil f'(a) være uttrykt ved a. Og selv om a betraktes som en konstant langs veien som fører til dette uttrykket, er det ingenting som hindrer oss i å etterpå behandle a som en variabel. Hvis f'(a) er et resultat av derivasjon av funksjonen f(x) er det også hendig å omdøpe a til x:

Regel 6.3 Den deriverte funksjonen

Gitt en funksjon f(x). Den deriverte av f er funksjonen som fremkommer ved å erstatte a i (6.2) med x. Denne funksjonen skriver vi som f'(x).

Eksempel

Gitt $f(x) = x^3$. Siden $f'(a) = 3a^2$, er $f'(x) = 3x^2$.

¹Se Eksempel 2, side 77.

Alternative skrivemåter

Alternative skrivemåter for f' er (f)' og $\frac{d}{dx}f$.

Derivert med hensyn på

Derivasjon som vi har sett på så langt har vært en brøk med en differanse av x-verdier i nevner og den tilknyttede differansen av f-verdier i teller. Da sier vi at f er derivert med hensyn på x. I denne bokserien skal vi i all hovedsak se på funksjoner som bare er avhengige av én variabel. Gitt en funksjon f(x), er det da underforstått at f' symboliserer f derivert med hensyn på x.

Samtidig er det greit å være klar over at en funksjon gjerne kan være avhengig av flere variabler. For eksempel er funksjonen

$$f(x,y) = x^2 + y^3$$

en flervariabel funksjon, avhengig av både x og y. I dette tilfellet kan vi bruke skrive $\frac{d}{dx}f$ for å indikere derivasjon med

hensyn på x, og $\frac{\mathrm{d}}{\mathrm{d}x}f$ for å indikere derivasjon med hensyn på y. Leseren må gjerne forklare for seg selv hvorfor følgende stemmer:

$$\frac{\mathrm{d}}{\mathrm{d}x}f = 2x \qquad , \qquad \frac{\mathrm{d}}{\mathrm{d}y}f = 3y^2,$$

6.2.2 Den deriverte av elementære funksjoner

Regel 6.4 Den deriverte av elementære funksjoner

For $x, r \in \mathbb{R}$ og

$$(e^x)' = e^x (6.7)$$

$$(x^r)' = rx^{r-1} (6.8)$$

$$(\ln x)' = \frac{1}{x} \tag{6.9}$$

$$(\sin x)' = \cos(x) \tag{6.10}$$

$$(\cos x)' = -\sin(x) \tag{6.11}$$

$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x \tag{6.12}$$

Regel 6.5 Den deriverte av sammensatte funksjoner

Gitt $c \in \mathbb{R}$ og funksjonene f(x) og g(x). Da er

$$(a \cdot f)' = a \cdot f'$$

$$(f+g)' = f' + g'$$

$$(f-g)' = f' - g'$$

Definisjon 6.6 Den deriverte av en vektorfunksjon

Gitt funksjonene f(t), g(t) og v(t) = [f(t), g(t)]. Da er

$$v'(t) = [f'(t), g'(t)]$$
(6.13)

6.2.3 Kjerneregelen

La oss se på tre funksjoner f, g og u, hvor

$$f(x) = g\left[u(x)\right]$$

f beskrives direkte av x, mens g beskrives indirekte av x, via u(x).

La oss bruke $f(x) = e^{x^2}$ som eksempel. Kjenner vi verdien til x, kan vi fort regne ut hva verdien til f(x) er. For eksempel er

$$f(2) = e^4$$

Men vi kan også skrive $g[u(x)] = e^{u(x)}$, hvor $u(x) = x^2$. Denne skrivemåten impliserer at når vi kjenner verdien til x, regner vi først ut verdien til u, før vi så finner verdien av g:

$$u(2) = 4$$
 , $g[u(2)] = e^{u(2)} = e^4$

Av derdef?? har vi at

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{g[u(x+h)] - g[u(x)]}{h}$$

Vi setter k = u(x+h) - u(x). Da er

$$\lim_{h \to 0} \frac{g[u(x+h)] - g[u(x)]}{h} = \lim_{h \to 0} \frac{g(u+k) - g(u)}{h}$$

Av (6.5) har vi at

$$g(u) - g(u+k) = g'(u)k + \varepsilon_g$$

Altså er

$$\lim_{h \to 0} \frac{g(u+k) - g(u)}{h} = \lim_{h \to 0} \frac{g'(u)k + \varepsilon_g}{h}$$
$$= \lim_{h \to 0} \left(g'(u) + \frac{\varepsilon_g}{k} \right) \frac{k}{h}$$

Da $\lim_{h\to 0} k=0$, er $\lim_{h\to 0} \frac{\varepsilon_g}{k}=0$. Videre har vi at $\lim_{h\to 0} \frac{k}{h}=u'(x)$. Altså har vi at

$$\lim_{h \to 0} \left(g'(u) + \frac{\varepsilon_g}{k} \right) \frac{k}{h} = g'(u)u'(x)$$

Regel 6.7 Kjerneregelen

For en funksjon f(x) = g[u(x)], har vi at

$$f'(x) = g'(u)u'(x) (6.14)$$

Eksempel

Finn f'(x) når $f(x) = e^{x^2 + x + 1}$.

Svar

Vi setter $u = x^2 + x + 1$, og får at

$$g(u) = e^{u}$$
$$g'(u) = e^{u}$$
$$u'(x) = 2x + 1$$

Altså er

$$f'(x) = g'(u)u'(x)$$

$$= e^{u}(2x+1)$$

$$= e^{x^{2}+x+1}(2x+1)$$

6.2.4 Produkt- og divisjonsregelen

Gitt funksjonene f, u og v, hvor

$$f(x) = u(x)v(x)$$

Av defref?? er da

$$f' = \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

La oss nå skrive u(x) og v(x) som henholdsvis u og v, og u(x+h) og v(x+h) som henholdsvis \tilde{u} og \tilde{v} :

$$f' = \lim_{h \to 0} \frac{\tilde{u}\tilde{v} - uv}{h}$$

Vi kan alltids legge til 0 i form av $\frac{u\tilde{v}}{h} - \frac{u\tilde{v}}{h}$:

$$f' = \lim_{h \to 0} \left[\frac{\tilde{u}\tilde{v} - uv}{h} + \frac{u\tilde{v}}{h} - \frac{u\tilde{v}}{h} \right]$$
$$= \lim_{h \to 0} \left[\frac{(\tilde{u} - u)\tilde{v}}{h} + \frac{u(\tilde{v} - v)}{h} \right]$$

Siden vi for enhver kontinuerlig funksjon ghar at $\lim_{h\to 0} \tilde{g} = g$ og

$$\lim_{h \to 0} \frac{g(x+k) - g(x)}{h} = g', \text{ er}$$

$$f' = u'v + uv'$$

Regel 6.8 Produktregelen ved derivasjon

Gitt funksjonene f(x), u(x) og v(x), hvor f = uv da er

$$f' = u'v + uv'$$

Eksempel 1

Finn den deriverte av funksjonen $f(x) = x^2 e^x$.

Svar

Vi setter $u(x) = x^2$ og $v(x) = e^x$, da er

$$f = uv$$
 $u' = 2x$ $v' = e^x$

Altså er

$$f' = 2xe^x + x^2e^x$$
$$= xe^x(2+x)$$

Regel 6.9 Divisjonsregelen ved derivasjon

Gitt funksjonene f(x), u(x) og v(x), hvor $f = \frac{u}{v}$. Da er

$$f' = \frac{u'v - uv'}{v^2} \tag{6.15}$$

Eksempel

Finn den deriverte av funksjonen $f(x) = \frac{\cos x}{x^4}$.

Svar

Vi setter $u(x) = \cos x$ og v(x) = x, da er

$$f = uv u' = -\sin x v' = 4x^3$$

Altså er

$$f' = \frac{-\sin x \cdot x^4 - \cos x \cdot 4x^3}{x^8}$$
$$= -\frac{x \sin x + 4 \cos x}{x^5}$$

Merk: Vi kan også finne f' ved å sette $u(x) = \cos x$ og $v(x) = x^{-4}$, for så å bruke produktregelen.

Regel 6.10 L'Hopitals regel I

Gitt to deriverbare funksjoner f(x) og g(x), hvor

$$f(a) = g(a) = 0$$

eller hvor

$$\lim_{x\to a}f=\lim_{x\to a}g=\infty$$

Da er

$$\lim_{x\to a}\frac{f}{g}=\lim_{x\to a}\frac{f'}{g'}$$

Eksempel

Finn grenseverdien til $\lim_{x\to 0} \frac{e^x - 1}{x}$.

Svar

Vi setter $f(x) = e^x - 1$ og g(x) = x, og merker oss at f(0) = g(0) = 0. Dermed har vi at

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{f}{g}$$

$$= \lim_{x \to 0} \frac{f'}{g'}$$

$$= \lim_{x \to 0} \frac{e^x}{1}$$

$$= 1$$

6.3 Forklaringer

L'hoptial (forklaring)

Siden f(a) = g(a) = 0, er

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$

Vi setter k = a - x, da har vi av linaprx?? at

$$f(x) - f(a) = f(x) - f(x+h) = -f'(x)k - \varepsilon_f$$

$$g(x) - g(a) = g(x) - g(x+h) = -g'(x)k - \varepsilon_g$$

Altså er

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x) + \frac{\varepsilon_f}{k}}{g'(x) + \frac{\varepsilon_g}{k}}$$

Da $\lim_{x\to a}k=0,$ har vi at $\lim_{x\to a}\frac{\varepsilon_f}{k}=\lim_{x\to a}\frac{\varepsilon_g}{k}=0$ Altså er

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

L'hopital 2 (forklaring)

Vi har at

$$\lim_{x \to a} \frac{g}{f} = \lim_{x \to a} \frac{\frac{1}{f}}{\frac{1}{g}}$$

Da $\lim_{x\to a}f=\lim_{x\to a}g=\infty$, må $\lim_{x\to a}\frac{1}{f}=\lim_{x\to a}\frac{1}{g}=0$. Av Lhopital
1?? har vi da at

$$\lim_{x \to a} \frac{g}{f} = \lim_{x \to a} \frac{\frac{1}{f^2} f'}{\frac{1}{g^2} g'}$$

Multipliserer vi begge sider med $\lim_{x\to a} \frac{f^2}{g^2}$, får vi at

$$\lim_{x \to a} \frac{f}{g} = \lim_{x \to a} \frac{f'}{g'}$$

(forklaring)

Vi har at

$$f' = \left(\frac{u}{v}\right)' = \left(uv^{-1}\right)'$$

Av produktregelen og kjerneregelen er da

$$f' = u'v^{-1} - uv^{-2}v'$$
$$= \frac{u'v - uv'}{v^2}$$

(forklaring)

Likning (6.8)

Vi starter med å merke oss at

$$(\ln x^r)' = (r \ln x)'$$
$$= \frac{r}{r}$$

Vi setter $u = x^r$. Av kjerneregelen har vi da at

$$\frac{r}{x} = (\ln u)'$$

$$= \frac{1}{u}u'$$

$$= \frac{1}{x^r}(x^r)'$$

Altså er

$$(x^r)' = \frac{r}{x}x^r = rx^{r-1}$$

Likning (6.9)

Vi har at $x = e^{\ln x}$. Vi setter $u = \ln x$ og $g(u) = e^u$. Da har vi at x = g(u), og at

$$g'(u) = e^{u} = e^{\ln x} = x$$
$$u'(x) = (\ln x)'$$

Av kjerneregelen har vi at

$$(x)' = g'(u)u'(x)$$
$$= x (\ln x)'$$

 $Da^1(x)' = 1$, har vi at

$$1 = x \left(\ln x\right)'$$

Altså er

$$(\ln x)' = \frac{1}{x}$$

Vi skal her anvende de to ligningene (se vedlegg??)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{I}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \tag{II}$$

Av (6.2) har vi at

$$(\cos x)' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

Ved (??) kan vi skrive

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{[\cos h - 1] \cos x - \sin x \sin h}{h}$$

$$= \lim_{h \to 0} \frac{\cos h - 1}{h} \cos x - \lim_{h \to 0} \frac{\sin h}{h} \sin x$$

$$= 0 - 1 \cdot \sin x$$

$$= -\sin x$$

Mellom tredje og fjerde linje i likningen over brukte vi (I) og (II).

Likning (6.11)

Av $(\ref{eq:constraints}),\,(\ref{eq:constraints})$ og $(\ref{eq:constraints})$ har vi at

$$\sin x = \cos\left(x - \frac{\pi}{2}\right)$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Bruker vi det faktum at $(\cos x)' = -\sin x$, i kombinasjon med kjerneregelen, får vi at

$$(\sin x)' = \left(\cos\left(x - \frac{\pi}{2}\right)\right)'$$
$$= -\sin\left(x - \frac{\pi}{2}\right) \cdot 1$$
$$= \sin\left(\frac{\pi}{2} - x\right)$$
$$= \cos x$$

Likning (6.12)

Av kjerneregelen og (6.15) har vi at

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \cos x \cos^{-1} x + \sin x \left(\cos^{-1}\right)'$$

$$= 1 + \sin x (-\cos^{-2} x)(-\sin x)$$

$$= 1 + \tan^2 x$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}$$

¹Se oppgave ??.

Kapittel 7

Funksjonsdrøfting

7.1 Monotoniegenskaper

De fleste funksjonsverdier varierer. Beskrivelser av hvordan funksjonene varierer kaller vi beskrivelser av funksjonenes monotoniegenskaper.

Regel 7.1 Voksende og avtagende funskjoner

Gitt en funksjon f(x).

• f er voksende på intervallet [a,b] hvis vi for alle $x_1,x_2\in [a,b]$ har at

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \tag{7.1}$$

Hvis $f(x_1) \leq f(x_2)$ kan erstattes med $f(x_1) < f(x_2)$, er f strengt voksende.

• f er avtagende på intervallet [a,b] hvis vi for alle $x_1,x_2\in [a,b]$ har at

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \tag{7.2}$$

Hvis $f(x_1) \ge f(x_2)$ kan erstattes med $f(x_1) > f(x_2)$, er f strengt avtagende.

Regel 7.2 Monotoniegenskaper og den deriverte

Gitt f(x) deriverbar på intervallet [a, b].

- Hvis $f' \ge 0$ for $x \in [a, b]$, er f voksende for $x \in (a, b)$
- Hvis $f' \leq 0$ for $x \in [a, b]$, er f avtagende for $x \in (a, b)$

Hvis henholdsvis \geq og \leq kan erstattes med > og <, er f strengt voksende/avtagende.

Eksempel

Avgjør på hvilke intervaller f er voksende/avtagende når

$$f(x) = \frac{1}{3}x^3 - 4x^2 + 12x$$
 , $x \in [0, 8]$

Svar

Vi har at

$$f'(x) = x^2 - 8x + 12$$

For å tydeliggjøre når f' er positiv, negativ eller lik 0 gjør vi to ting; vi faktoriserer uttrykket til f', og tegner et fortegnsskjema:

Fortegnsskjemaet illustrerer følgende:

- Uttrykket x-2 er negativt når $x \in [0,2)$, lik 0 når x=2, og positivt når $x \in (2,8]$.
- Uttrykket x 6 er negativt når $x \in [0, 8)$, lik 0 når x = 6, og positivt når $x \in (6, 8]$.

• Siden
$$f' = (x-2)(x-6)$$
, er
$$f' \ge 0 \text{ når } x \in [0,2] \cup (6,8]$$

$$f' = 0 \text{ når } x \in \{2,6\}$$

$$f' \le 0 \text{ når } x \in [2,6]$$

Dette betyr at

f er voksende når $x \in (0,2) \cup (6,8)$ f er avtagende når $x \in (2,6)$

$7.2\,\mathrm{Monotoniegenskaper}$ og den deriverte (forklaring)

Gitt f(x), hvor $f' \ge 0$ for $x \in [a,b]$. La $x_1, x_2 \in (a,b)$ og $x_2 > x_1$. Av middelverdisetningen¹ finnes det et tall $c \in (x_1, x_2)$ slik at

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Da $c \in [a, b]$, er $f'(x) \ge 0$, og da er

$$0 \ge \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Følgelig er $f(x_2) \ge f(x_1)$, og av definisjon 7.1 er da f voksende på intervallet (a, b).

¹Se vedlegg??

7.2 Ekstremalpunkt

Regel 7.3 Maksimum og minimum

Merk: Et tall c kan omtales som et punkt i funskjonsdrøftinger, underforstått at det er snakk om punktet (c, 0).

Gitt en funksjon f(x) og et tall c.

Absolutt maksimum og minimum

- f har absolutt maksimum f(c) hvis $f(c) \ge f(x)$ for alle $x \in D_f$.
- f har absolutt minimum f(c) hvis $f(c) \le f(x)$ for alle $x \in D_f$.

Lokalt maksimum og minimum

- f har et lokalt maksimum f(c) hvis det finnes et åpent intervall I om c slik at $f(c) \ge f(x)$ for $x \in I$.
- f har et lokalt minimum f(c) hvis det finnes et åpent intervall I om c slik at $f(c) \leq f(x)$ for $x \in I$.

Språkboksen

Et maksimum/minimum blir også kalt en maksimumsverdi/minimumsverdi.

Regel 7.4 Ekstremalverdi og ekstremalpunkt

Gitt en funksjon f(x) med maksimum/minimum f(c). Da er

- f(c) en ekstremalverdi for f.
- c et ekstremalpunkt for f. Nærmere bestemt et maksimalpunkt/minimumspunkt for f.
- (c, f(c)) et toppunkt/bunnpunkt for f.

Regel 7.5 Kritiske punkt

Et tall c er et kritisk punkt for en funksjon f(x) hvis én av følgende gjelder:

- f er ikke deriverbar i c
- f'(c) = 0

Regel 7.6 f' = 0 for lokale ektstremalpunkt

Gitt en deriverbar funksjon f(x) og $c \in [a, b]$.

- (i) Hvis c er et lokalt ekstremalpunkt for f, er f'(c) = 0
- (ii) Hvis f' > 0 for $x \in (a, c)$ og f' < 0 for $x \in (c, b)$, er c et lokalt maksimumspunkt for f
- (iii) Hvis f' < 0 for $x \in (a, c)$ og f' > 0 for $x \in (c, b)$, er c et lokalt minimumspunkt for f

Eksempel 1

Finn det lokale bunnpunktet og toppunktet til

$$f(x) = 2x^3 + 9x^2 - 60x$$

Svar

Vi starter med å finne f':

$$f' = 6x^2 + 18x - 60$$
$$= 6(x^2 + 3x - 10)$$

Siden 5(-2) = 10 og 5 - 2 = 3, har vi av regel 2.2 at

$$f' = 6(x-2)(x+5)$$

f' = 0 for x = 2 og x = -5. Vi har at

$$f(-5) = 2^3 + 9 \cdot 2^2 - 60 \cdot 2 = -68$$

$$f(2) = 5^3 + 9 \cdot 5^2 - 60 \cdot 5 = 275$$

Altså er (-5, 275) toppunktet til f og (2, -68) er bunnpunktet til f.

Språkboksen

Det som blir beskrevet i punkt ii) og iii) omtales ofte som at f skifter fortegn i c

7.6 f' = 0 for lokale ektstremalpunkt (forklaring) Punkt (i)

La c være et lokalt maksimumspunkt for f. For et tall h må vi da ha at $c \ge x$ for $x \in (c - |h|, c + |h|)$. Da er

$$f(c+h) - f(c) \le 0$$

Dette betyr at

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$

og at

$$\lim_{h\to 0^-}\frac{f(c+h)-f(c)}{h}\geq 0$$

Følgelig er

$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h}$$

Altså er f'(c) = 0, og f' skifter fortegn fra positiv til negativ i c. Med samme framgangsmåte kan det vises at dette også gjelder dersom c er et minimumspunkt, bare at da skifter f' fra negativ til positiv.

Punkt (ii)

Hvis f' > 0 på intervallet (a, c), har vi av regel 7.2 at f er sterkt voksende der. Hvis f' < 0 på (c, b), er f sterkt avtagende der. Dette må nødvendigvis bety at $f(c) \ge f(x)$ for $x \in (a, b)$, og da er c et maksimumspunkt.

Punkt (iii)

Tilsvarende resonnement som for punkt (ii).

Regel 7.7 Andrederiverttesten

Gitt en deriverbar funksjon f(x) og et tall c.

- Hvis f'(c) = 0 og f''(c) < 0, er f(c) et lokalt maksimum.
- Hvis f'(c) = 0 og f''(c) > 0, er f(c) et lokalt minimum.
- Hvis f'(c) = f''(c) = 0, kan man ikke ut ifra denne informasjonen alene si om f(c) er et lokalt maksimum eller minimum.

7.7 Andrederiverttesten (forklaring)

Av definisjonen for den deriverte har vi at

$$f''(c) = \lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h}$$

Når f'(c) = 0, er

$$f''(c) = \lim_{h \to 0} \frac{f'(c+h)}{h}$$

Når f''(c) < 0, betyr dette at

$$\lim_{h \to 0} \frac{f'(c+h)}{h} < 0$$

Altså må f'(c+h) være positiv når h går mot 0 fra venstre og negativ når h går mot 0 fra høgre. Dermed skifter f' fortegn i c, som da må være et maksimalpunkt for f. Tilsvarende må c være et minimumspunkt for f hvis f(c) = 0 og f''(c) < 0.

Regel 7.8 Infleksjonspunkt og vendepunkt

For en kontinuerlig funksjon f(x) har vi at

- Hvis f''(c) = 0 og f'' skifter fortegn i c, er c et infleksjonspunkt for f.
- Hvis c er et infleksjonspunkt for f, er (c, f(c)) et vendepunkt.
- f er konveks på intervall hvor f'' > 0, og konkav på intervall hvor f'' < 0.

Eksempel

$$f(x) = x^3 - 3x^2 - 144x - 140$$

$\mathrm{punkt/verdi}$	type
A = (-14, -1456)	absolutt bunnpunkt
-14	ekstremalpunkt; absolutt minimum
-1456	absolutt minimum
B = (-6, 400)	lokalt toppunkt
-6	ekstremalpunkt; lokalt maksimalpunkt
400	lokalt maksimum
C = (-1, -286)	vendepunkt
-1	infleksjonspunkt
D = (8, -972)	lokalt bunnpunkt
8	ekstremalpunkt; lokalt minimumspunkt
-972	lokal minimum
E = (16, 884)	absolutt maksimum
16	ekstremalpunkt; absolutt maksimumspunkt
884	absolutt maksimum
-10, -1 og 14	nullpunkt

Eksempel

Gitt funksjonen

$$f(x) = \sin x \quad , \quad x \in [-2, 4]$$

- a) Finn infleksjonspunktene til f.
- **b)** Finn vendepunktene til f.

Svar

a) Infleksjonspunktene finner vi der hvor f''(x) = 0:

$$f''(x) = 0$$
$$(\sin x)'' = 0$$
$$-\sin x = 0$$

Av $x \in D_f$ er det x = 0 og $x = \pi$ som oppfyller kravet fra ligningen over. For å finne ut om f'' skifter fortegn i disse punktene, setter vi opp et fortegnsskjema:

f'' går altså fra positiv til negativ i x=0 og fra negativ til positiv i $x=\pi$. Dette betyr at f går fra konveks til konkav i x=0 og fra konkav til konveks i $x=\pi$.

7.3 Asymptoter

Regel 7.9 Vertikale asymptoter

Gitt en funksjon f(x) og en konstant c.

- Hvis $\lim_{x\to c^+} f(x) = \pm \infty$, er c en vertikal asymptote ovenfra for f.
- Hvis $\lim_{x\to c^-} f(x) = \pm \infty$, er c en vertikal asymptote nedenfra for f.
- Hvis $\lim_{x\to c} f(x) = \pm \infty$, er c en vertikal asymptote for f.

Eksempel

Finn den vertikale asymptoten til

$$f(x) = \frac{1}{x-3} + 2$$

Svar

Vi observerer at

$$\lim_{x \to 3} \left[\frac{1}{x - 3} + 2 \right] = \pm \infty$$

Altså er x=3 en vertikal asymptote for f

Regel 7.10 Horisontale asymptoter

Gitt en funksjon f(x). Da er y = c en horisontal asymptote for f hvis

$$\lim_{x \to |\infty|} f(x) = c$$

Eksempel

Finn den horisontale asymptoten til

$$f(x) = \frac{1}{x-3} + 2$$

Svar

Vi observerer at

$$\lim_{x\to |\infty|} \left[\frac{1}{x-3}+2\right] = 2$$

Altså er y=2 en horisontal asymptote for f.

7.4 Konvekse og konkave funksjoner

Regel 7.11 Konvekse og konkave funksjoner

Gitt en kontinuerlig funksjon f(x).

Hvis hele linja mellom (a, f(a)) og (b, f(b)) ligger over grafen til f på intervallet [a, b], er f konveks for $x \in [a, b]$.

Hvis hele linja mellom (a, f(a)) og (b, f(b)) ligger under grafen til f på intervallet [a, b], er f konkav for $x \in [a, b]$.

7.5 Injektive funksjoner

Regel 7.12 Injektive funksoner

Gitt en funksjon f(x). Hvis alle verdier til f er unike på intervallet $x \in [a, b]$, er f injektiv på dette intervallet.

Språkboksen

Et annet ord for injektiv er én-entydig.

7.6 Omvendte funksjoner

Gitt funksjonen f(x) = 2x + 1, som åpenbart er injektiv for alle $x \in \mathbb{R}$. Dette betyr at likningen f = 2x + 1 bare har én løsning, uavhengig om vi løser med hensyn på x eller f. Løser vi med hensyn på x, får vi at

$$x = \frac{f - 1}{2}$$

Nå har vi gått fra å ha et uttrykk for f til, det "omvendte", et uttrykk for x. Siden x og f begge er variabler, er x en funksjon av f, og for å tydeliggjøre dette kunne vi ha skrevet

$$x(f) = \frac{f-1}{2}$$

Denne funksjonen kalles den *omvendte* til f. Setter vi uttrykket til f inn i uttrykket til x(f), får vi nødvendigvis x:

$$x(2x+1) = \frac{2x+1-1}{2}$$
$$= x$$

Likningen over synliggjør et problem; det er veldig rotete å behandle x som en funksjon og som en variabel samtidig. Det er derfor vanlig å omdøpe både f og x, slik at den omvendte funksjonen og variabelen den avhenger av får nye symboler. For eksempel kan vi sette y=f og g=x. Den omvendte funksjonen g til f er da at

$$g(y) = \frac{y-1}{2}$$

Regel 7.13 Omvendte funksjoner

Gitt to injektive funksjoner f(x) og g(y). Hvis

$$g(f) = x$$

er f og g omvendte funksjoner.

Eksempel 1

Gitt funksjonen f(x) = 5x - 3.

- a) Finn den omvendte funksjonen g til f.
- b) Vis at g(f) = x.

Svar

a) Vi setter y=f, og løser likningen med hensyn på x:

$$y = 5x - 3$$
$$x = \frac{y+3}{5}$$

Da er $g(y) = \frac{y+3}{5}$.

b) Når y = f, har vi at

$$g(y) = g(5x - 3)$$

$$= \frac{5x - 3 + 3}{5}$$

$$= x$$

$$f^{-1}$$

Hvis f og g er omvendte funksjoner, skrives g ofte som f^{-1} . Da er det veldig viktig å merke seg at f^{-1} ikke er det samme som $(f)^{-1}$. For eksempel, gitt f(x) = x + 1. Da er

$$f^{-1} = x - 1$$
 , $(f)^{-1} = \frac{1}{x + 1}$

I alle andre tilfeller enn ved n=-1, vil det i denne boka være slik at

$$f^n = (f)^n$$

Kapittel 8

Vedlegg

8.1 Navn på funksjoner

Definisjon 8.1 Potensfunksjoner

Gitt $x, k, b \in \mathbb{R}$. En funksjon på formen

$$f(x) = kx^m (8.1)$$

er da en potensfunksjon med koeffisient k og eksponent m.

Definisjon 8.2 Polynomfunksjoner

En polynomfunksjon er én av følgende:

- en potensfunksjon med heltalls eksponent større eller lik 0.
- summen av flere potensfunksjoner med heltalls eksponent større eller lik 0.

Polynomfunksjoner kategoriseres etter den største eksponenten i funksjonsuttrykket. For konstantene $a,\,b,\,c$ og d, og en variabel x, har vi at

funksjonsuttyrykk	funksjonsnavn
ax + b	1. grads funksjon/polynom (lineær)
$ax^2 + bx + c$	2. grads funksjon/polynom (kvadratisk)
$ax^3 + bx^2 + cx + d$	3. grads funksjon/polynom (kubisk)

Eksempel 1

 $4x^7 - 5x^2 + 4$ er et 7. grads polynom.

 $\frac{2}{7}x^5 - 3$ er et et 5. grads polynom.

Definisjon 8.3 Eksponentialfunksjoner

Gitt $x, a, b, c, d \in \mathbb{R}$, hvor b > 0. En funksjon f gitt som

$$f(x) = a \cdot b^{cx+d}$$

er da en eksponentialfunksjon.

8.2 Å løse likninger ved bytte av variabel

La oss løse likningen

$$x - 11\sqrt{x} + 28 = 0 \tag{8.2}$$

Hvis vi ser nøye etter, innser vi at dette er en andregradslikning for \sqrt{x} . Enda tydeligere blir dette hvis vi definerer variabelen $u = \sqrt{x}$, da kan vi skrive (8.2) som

$$u^2 - 11u + 28 = 0$$

Siden $(-7) \cdot (-4) = 28$ og -7 - 4 = -11, har vi av (2.1) at

$$(u-4)(u-7) = 0$$

Altså er

$$u = 4 \qquad \lor \qquad u = 7$$

Dette betyr at

$$\sqrt{x} = 4$$
 \forall $\sqrt{x} = 7$

Dermed er

$$x = 16 \qquad \lor \qquad x = 49$$

8.3 Eulers tall

Den deriverte som motivajon

Gitt funksjonen $f(x) = a^x$. Da har vi at

$$(a^x)' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

Da x er uavhengig av h, får vi at

$$(a^x)' = a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

Likningen over peker mot noe fantastisk; hvis det finnes et tall a som er slik at $\lim_{h\to 0} \frac{a^h-1}{h} = 1$, så vil funksjonen a^x være sin egen deriverte funksjon! Altså er da $(a^x)' = a^x$. Vi legger nå merke til at hvis

$$a = \lim_{h \to 0} (1+h)^{\frac{1}{h}}$$

så er

$$\lim_{h \to 0} \frac{a^h - 1}{h} = \lim_{h \to 0} \frac{\left((1+h)^{\frac{1}{h}} \right)^h - 1}{h}$$
$$= \frac{1+h-1}{h}$$

Hvis vi kan vise at grenseverdien $\lim_{h\to 0} (1+h)^{\frac{1}{h}}$ eksisterer, har vi altså funnet akkurat det uttrykket for a som vi ønsket oss.

Undersøking av grenseverdien

Vi innfører de to funksjonene

$$f(h) = 1 + h$$
 , $g(h) = 2 - \left(\frac{1}{4}\right)^h$

Videre ønsker vi å undersøke for hvilke verdier f er mindre enn g. Når f=g, har vi at

$$1 + h = 2 - \left(\frac{1}{4}\right)^h \tag{8.3}$$

Vi gjør nå følgende observasjon: Gitt to tall c og k, og funksjonen $p(h) = a^h$, hvor k > 0 og 0 < a < 1. Da har vi at

$$p(c+k) - p(c) = a^{c+k} - a^c = a^c (a^k - 1)$$

Tilsvarende er

$$p(c+2k) - p(c+k) = a^{c+k} (a^k - 1)$$

Videre er $a^{c+k} < a^c$ og $a^k - 1 < 1$, som betyr at

$$\frac{p(c+k) - p(c)}{h} < \frac{p(c+2k) - p(c)}{h}$$

Dermed må linja mellom (c, p(c)) og (c + k, p(c + k)) være brattere enn linja mellom (c + k, p(c + k)) og (c + 2k, p(c + 2k)), og da må (c + k, p(c + k)) ligge under linja mellom (c, p(c)) og (c + 2k, p(c + 2k)).

Det er åpenbart at p(h) ikke er en lineær funksjon, og da må én av disse tre påstandene være gyldig:

- (a) p er konveks for alle h
- (b) p er konkav for alle h
- (c) p er skiftvis konkav/konveks

Men hvis p er konkav, må det finnes et intervall hvor (c+k, p(c+k)) ligger over linja mellom (c, p(c)) og (c+2k, p(c+2k)), og dette er selvmotsigende. Altså må p nødvendigvis være konveks for alle h.

Av det vi akkurat har funnet, kan vi konkludere med at funksjonen $2 - \left(\frac{1}{4}\right)^h$ er konkav for alle h, og da 1 + h er et lineært uttrykk, har (8.3) maksimalt to løsninger.

Vi setter $z = \frac{1}{h}$ for $h \neq 0$. Da er

$$\lim_{h \to 0} (1+h)^h = \lim_{z \to \infty} = \left(1 + \frac{1}{z}\right)^{\frac{1}{z}}$$

Videre kan (8.3) omskrives til

$$1 + \frac{1}{z} = 2 - \left(\frac{1}{4}\right)^{\frac{1}{z}} \tag{8.4}$$

Det er enkelt å vise at h=0 og $h=\frac{1}{2}$ er løsningene til (8.3). Dette må bety at $z=\frac{1}{\frac{1}{2}}=2$ er den eneste løsningen til (8.4). Det er også enkelt å bekrefte at venstresiden i (8.4) er større enn høgresiden for z=1, og dette innebærer at

$$1 + \frac{1}{z} < 2 - \left(\frac{1}{4}\right)^{\frac{1}{z}}$$

For $z \to \infty$ kan vi derfor være sikre på at

$$1 + \frac{1}{z} < 1 + 1 - \left(\frac{1}{4}\right)^{\frac{1}{z}} + \left(1 - \left(\frac{1}{4}\right)^{\frac{1}{z}}\right)^2 + \left(1 - \left(\frac{1}{4}\right)^{\frac{1}{z}}\right)^3 + \dots$$

Høgresiden i ulikheten over kjenner vi igjen (se ?? i TM2) som en uendelig geometrisk rekke hvor summen er gitt som

$$\frac{1}{1 - \left(1 - \left(\frac{1}{4}\right)^{\frac{1}{z}}\right)} = \frac{1}{\left(\frac{1}{4}\right)^{\frac{1}{z}}} = 4^{\frac{1}{z}}$$

Altså er

$$\lim_{z \to \infty} \left(1 + \frac{1}{z} \right)^z \le \lim_{z \to \infty} \left(4^{\frac{1}{z}} \right)^z = 4 \tag{8.5}$$

Ved å bytte ut $\frac{1}{4}$ med $\frac{1}{2}$ i (8.3), får likningen i stedet løsningene h=-1 og h=1. Med dette som utgangspunkt kan vi på samme måte som vi kom fram til (8.5) vise at

$$2 \le \lim_{z \to \infty} \left(1 + \frac{1}{z} \right)^z$$

Nå vet vi altså at $\lim_{z\to\infty}\left(1+\frac{1}{z}\right)^n$ ligger et sted mellom 2 og 4. Da uttrykket inneholder utelukkende positive ledd for $z\to\infty$, kan vi også være sikre på at grenseverdien er endelig¹. Da gir derfor mening å behandle grenseverdien som et tall, som vi kaller for e:

$$e = \lim_{z \to \infty} \left(1 + \frac{1}{z} \right)^n$$

Et tilbakeblikk på den deriverte

Derivasjon av potensfunksjoner var det som motiverte oss til å undersøke tallet e. Av det vi har drøftet i de foregående avsnittene, følger det at

$$(e^x)' = e^x$$

Likningen over er rett og slett én av de viktigste likningene i matematikk.

 $^{^1}$ I motsetning til å være ubestemt. For eksempel vil $\lim_{x\to\infty}\cos x$ være ubestemt, fordi $\cos x$ svinger mellom -1 og 1.

8.4 Tangeringslinja til en graf

Introduksjon

Innen geometri er en tangeringslinje til en sirkel definert som en linje som skjærer en sirkel i bare ett punkt (Moise, 1974). Av denne definisjonen kan det vises at

- en tangeringslinje står normalt på vektoren dannet av sentrum i sirkelen og skjæringspunktet
- enhver linje som har et skjæringspunkt med en sirkel, og hvor skjæringspunktet og sentrum i sirkelen danner en normalvektor til linja, er en tangeringslinje til sirkelen.

(Se figur 8.1a.)

Gitt en deriverbar funksjon f(x). Innen reell analyse defineres $tangeringslinja\ til\ f\ i\ punktet\ (a,f(a))\ som\ linja\ som\ går\ gjennom\ (a,f(a))$ og har stigningstall f'(a) (Spivak, 1994). (Se $Figur\ 8.1b$.)

Figur 8.1

Det er for mange ganske intuitivt at tangeringslinjer til sirkler og tangeringslinjer til grafer er nært beslektet, men formålet med denne teksten er å formalisere dette.

Senteret til krumningen

Gitt en funksjon f(x) som er kontinuerlig og to ganger deriverbar for alle $x \in \mathbb{R}$, og hvor $f''(x) \neq 0$. For en gitt a lar vi $f_a = f(a)$, og definerer funksjonene

$$f_b(h) = f(a-h)$$
 , $f_c(h) = f(a+h)$

Vi innfører også punktene

$$A = (a, f_a)$$
 , $B = (a - h, f_b)$, $C = (a + h, f_c)$

Videre lar vi $S=(S_x,S_y)$ være sentrum i den omskrevne sirkelen til $\triangle ABC$. På samme måte som vi finner den deriverte i et punkt ved å la avstanden mellom to punkt på en graf gå mot 0, kan man finne krumningen i et punkt ved å la avstanden mellom tre punkt gå mot 0. I vårt tilfelle er krumningen beskrevet av den omskrevne sirkelen til $\triangle ABC$ når h går mot 0.

Figur 8.2

Et likningssett for S

Vi har at

$$\overrightarrow{BA} = [h, f_a - f_b]$$
 , $\overrightarrow{AC} = [h, f_c - f_a]$

La B_m og C_m være midptunktene til henholdsvis (sekantene) AB og AC. Da er

$$B_m = B + \frac{1}{2}\overrightarrow{BA}$$
 , $C_m = C + \frac{1}{2}\overrightarrow{AC}$

 $[f_a - f_b, -h]$ er en normalvektor for \overrightarrow{BA} , dette betyr at midtnormalen l_1 til sekanten AB kan parameterisere som

$$l_1(t) = B_m + [f_a - f_b, -h]t$$

Tilsvarende er midtnormalen l_2 til sekanten AC parameterisert ved

$$l_2(q) = C_m + [f_c - f_a, -h]q$$

S sammenfaller med skjæringspunktet til l_1 og l_2 . Ved å kreve at $l_1 = l_2$, får vi et lineært likningssett med to ukjente som gir

$$t = \frac{(f_a - f_c)(f_b - f_c) + 2h^2}{2h(f_b + f_c - 2f_a)}$$

S når h går mot 0

Vi definerer funkjonene \dot{f}_b , \dot{f}_c , \ddot{f}_b og \ddot{f}_c ut ifra de (respektive) deriverte og andrederiverte av f_b og f_c med hensyn på h:

$$-\dot{f}_b = (f_b)' = -f'(a - h)$$
$$\dot{f}_c = (f_c)' = f'(a + h)$$
$$\ddot{f}_b = (f_b)'' = f''(a - h)$$
$$\ddot{f}_c = (f_c)'' = f''(a + h)$$

Vi skal nå bruke dise funsjonene til å studere koordinatene til S når h går mot 0. Vi tar da med oss at

$$\lim_{h \to 0} \left\{ h^2, h \right\} = 0$$

$$\lim_{h \to 0} \left\{ \dot{f}_c, \dot{f}_b \right\} = f'_a$$

$$\lim_{h \to 0} \left\{ \ddot{f}_b, \ddot{f}_c \right\} = f''_a$$

hvor¹ $f'_a = f'(a)$ og $f''_a = f''(a)$.

For t uttrykt ved (8.4) er (se (8.4))

$$S_y = \frac{f_a + f_b + 2ht}{2} = \frac{f_a + f_b}{2} + ht$$

Vi har at

$$\lim_{h \to 0} \frac{f_a + f_b}{2} = f_a$$

Videre er

$$ht = \frac{(f_c - f_a)(f_b - f_c) + 2h^2}{2(f_b + f_c - 2f_a)}$$
$$= \frac{(f_c - f_a)(f_b - f_c)}{2(f_b + f_c - 2f_a)} + \frac{h^2}{f_b + f_c - 2f_a}$$

 $^{^1\}mathrm{Legg}$ merke til at det her er snakk om f derivert med hensyn på x, og evaluert i a.

Når h går mot 0, er begge leddene i (8.6) «0 over 0» uttrykk. Vi bruker L'Hopitals regel på det siste leddet:

$$\lim_{h \to 0} \frac{h^2}{2(f_b + f_c - 2f_a)} = \lim_{h \to 0} \frac{(h^2)'}{(f_b + f_c - 2f_a)'}$$
(8.6)

$$= \lim_{h \to 0} \frac{2h}{-\dot{f}_b + \dot{f}_c} \qquad \qquad \text{(0 over 0)}$$

$$=\lim_{h\to 0}\frac{2}{\ddot{f_b}+\ddot{f_c}}\tag{8.8}$$

$$=\frac{1}{f_a^{\prime\prime}}\tag{8.9}$$

Ved å bruke L'Hopitals regel på det første leddet i (8.6) har vi at

$$\lim_{h \to 0} \frac{(f_c - f_a)(f_b - f_c)}{f_b + f_c - 2f_a} = \lim_{h \to 0} \frac{((f_c - f_a)(f_b - f_c))'}{(f_b + f_c - 2f_a)'}$$

Av produktregelen ved derivasjon er

$$\lim_{h \to 0} \frac{((f_a - f_c)(f_b - f_c))'}{(f_b + f_c - 2f_a)'} = \lim_{h \to 0} \left[\frac{\dot{f}_c(f_b - f_c)}{-\dot{f}_b + \dot{f}_c} + \frac{(f_c - f_a)(\dot{f}_b + \dot{f}_c)}{-\dot{f}_b + \dot{f}_c} \right]$$

Begge leddene over er «0 over 0» uttrykk. Vi undersøker dem hver for seg ved å anvende L'Hopitals regel:

$$\lim_{h \to 0} \frac{\dot{f}_c(f_b - f_c)}{-\dot{f}_b + \dot{f}_c} = \lim_{h \to 0} \left[\frac{\ddot{f}_c(f_b - f_c)}{\ddot{f}_b + \ddot{f}_c} + \frac{\dot{f}_c(\dot{f}_b + \dot{f}_c)}{\ddot{f}_b + \ddot{f}_c} \right]$$
$$= 0 + \frac{(f'_a)^2}{2f''_a}$$

$$\lim_{h \to 0} \frac{(f_c - f_a)(\dot{f}_b + \dot{f}_c)}{-\dot{f}_b + \dot{f}_c} = \lim_{h \to 0} \left[\frac{\dot{f}_c(\dot{f}_b + \dot{f}_c)}{\ddot{f}_b + \ddot{f}_c} + \frac{(f_c - f_a)(-\dot{f}_b + \dot{f}_c)}{\ddot{f}_b + \ddot{f}_c} \right]$$
(8.10)

$$=\frac{(f_a')^2}{2f_a''}+0\tag{8.11}$$

Av (8.6), (8.9), (8.10) og (8.11) har vi at

$$\lim_{h \to 0} ht = \frac{1 + (f_a')^2}{f_a''}$$

Dermed er

$$S_y = f_a + \frac{1 + (f_a')^2}{f_a''}$$

Videre er (med t gitt av (8.4))

$$S_x = (f_b - f_a)t + a - \frac{1}{2}h$$

Vi har at

$$\lim_{h \to 0} (f_b - f_a)t = \lim_{h \to 0} \frac{f_b - f_a}{h} \cdot ht$$

$$= \lim_{h \to 0} \frac{f_b - f_a}{h} \cdot \lim_{h \to 0} ht$$

$$= -f_a' \frac{1 + (f_a')^2}{f_a''}$$

Altså er

$$S_x = a - f_a' \frac{1 + (f_a')^2}{f_a''}$$

Avslutning

Linja som har stigningstall f'(a), og som går gjennom (a, f(a)), er gitt ved funksjonen

$$g(x) = f_a'(x - a) + f_a$$

 $\vec{r}=[1,f_a]$ er en retningsvektoren til denne linja. Av uttrykkene vi har funnet for S_x og S_y har vi at

$$S = \left(a - f_a' \frac{1 + (f_a')^2}{f_a''}, f_a + \frac{1 + (f_a')^2}{f_a''}\right)$$

Dermed er

$$\overrightarrow{AS} = \frac{1}{f_a''} \left[-f_a (1 + (f_a')^2), 1 + (f_a')^2 \right]$$

Siden $\overrightarrow{r} \cdot \overrightarrow{AS} = 0$ og g(a) = f(a), er grafen til g tangeringslinja til sirkelen med sentrum S når h går mot 0. Altså er g tangeringslinja til sirkelen som beskriver krumningen til f når x = a.

Litteratur

Moise, E. E. (1974). Elementary geometry from an advanced standpoint. Reading, Addison-Wesley Publishing Company.

Lindstrøm, T. (2006). Kalkulus (2. utg). Oslo, Universitetsforlaget AS.

Spivak, M. (1994). Calculus (3.
utg). Cambridge, Cambridge University Press