Quantentheorie II Übung 12

Besprechung: 2021WE28 (KW28)

SS 2021

Prof. Dominik Stöckinger (IKTP)

1. Questions

- (a) Give one or two simple arguments why the scattering amplitude is complex (as expressed by the order-l contribution of the form $e^{i\delta_l}\sin\delta_l$).
- (b) What is the ground state wave function of an electron in hydrogen atom?
- (c) What is the validity criterion for Born approximation?
- 2. Scattering on central potential: consider elastic scattering on a central potential

$$V(r) = \frac{c}{r^2}, \quad c > 0, \tag{1}$$

where $2mc \ll 1$, and determine the scattering phases $\delta_l(k)$ and the scattering amplitude $f(\theta)$.

(Hint1) By using the definition $\lambda(\lambda+1) \equiv l(l+1) + 2mc$, we can assume that the radial function $R_l(r)$ approximates to

$$R_l(kr) \to j_\lambda(kr).$$
 (2)

 $R_l(kr)$ and $j_{\lambda}(kr)$ behave asymptotically as

$$R_l(kr) \to \frac{1}{kr} \sin\left(kr - \frac{l\pi}{2} + \delta_l\right) e^{i\delta_l},$$
 (3)

$$j_{\lambda}(kr) \to \frac{1}{kr} \sin\left(kr - \frac{\lambda\pi}{2}\right),$$
 (4)

when $kr \gg l$.

(Hint 2) Use the formula

$$\sum_{l=0}^{\infty} P_l(\cos \theta) = \frac{1}{2\sin(\theta/2)}.$$
 (5)

- 3. Electron scattering on hydrogen atom (Born approximation): we investigate scattering of electrons on neutral hydrogen atoms. We assume that each electron is scattered exactly on one hydrogen atom. The hydrogen atoms are in the ground state.
 - (a) Formulate the scattering potential, and verify that it is a central potential.
 - (b) Compute the scattering amplitude $f^{(1)}(\theta)$ in the first-order Born approximation and the differential cross section $\frac{d\sigma^{(1)}}{d\theta}$.
 - (c) Compute the total cross section $\sigma^{(1)}$.
 - (d) What is the condition for the validity of the Born approximation? Discuss it when $ka_B \ll 1$ and $ka_B \gg 1$ respectively.