Надёжность стержня

На стержень сечением A см² действует продольная растягивающая нагрузка F кH. Предел текучести для материала стержня — R_y МПа. Вероятность не разрушения стержня — P. Значения нагрузки F и предела текучести R_y распределены по нормальному закону со средними \bar{F} и \bar{R}_y , стандартными отклонениями S_F и R_F соответственно. Определить минимальное сечение стержня, необходимое для обеспечения надёжности не менее P.

Данные приведены в таблице. Вариант выбирается по сумме двух последних цифр номера зачётной книжки.

N	$ar{R_y}$, M Π a	S_R , M Π a	$ar{F}$, κH	S_F , к H	P
0	232.04	6.44	90.97	1.82	0.99253
1	233.09	5.69	101.45	1.05	0.99827
2	222.44	3.49	92.32	2.58	0.98848
3	222.0	3.78	104.26	2.0	0.98357
4	225.74	3.51	108.26	1.3	0.98924
5	230.44	5.39	92.18	2.27	0.99378
6	239.58	6.98	100.05	1.39	0.9908
7	231.45	4.7	100.28	1.83	0.99684
8	229.49	3.0	103.3	3.0	0.98452
9	232.2	2.03	99.95	2.2	0.98421
10	238.64	5.02	98.44	2.49	0.98558
11	230.54	5.81	103.1	2.89	0.98512
12	220.78	2.14	109.31	1.04	0.9929
13	226.62	3.27	103.86	1.12	0.99021
14	232.83	2.4	98.82	1.03	0.98091
15	238.32	4.64	98.45	1.93	0.98206
16	226.02	6.97	105.14	2.32	0.98633
17	226.36	4.49	91.4	2.34	0.98678
18	235.76	2.25	105.21	2.29	0.99136
19	220.57	2.01	93.01	1.29	0.9976

Надёжность стержня

(необязательное задание)

На стержень сечением A действует нагрузка F . Предел текучести для стержня – $R_{_{\scriptscriptstyle V}}$. Вероятность не разрушения стержня — P.

Значения нагрузки F и предела R_y текучести распределены по нормальному закону со средними \bar{F} и $\bar{R_y}$, стандартными отклонениями S_F и R_F .

Определить надёжность стержня методом статистических испытаний. Построить гистограмму относительных частот резерва несущей способности.

Площадь поперечного сечения стержня считать нормально распределённой случайной величиной с коэффициентом вариации 0.05. Средние значения и стандартные отклонения нагрузки и предела текучести рекомендуется взять близкими к тем, что предложены в приведённой ранее таблице.