Aula 5

20 Outubro

Grenpla 1. \(\sigma_{\ini} \) \(\sigma_{\ini bonsiderens à sèrie des modules de sèrie $\sum_{m \in \mathbb{N}} (-1)^m \frac{1}{m^{\frac{1}{2}}}$, isto é, consideremos a sèrce Jemos que a réace dos módulos é conneergente porque é uma sène de huemann de expoente d = 771 Como a réace dos módulos é con reorgente, então a sère dada 5 (-1)^m 1 é também connecegente Dezenos meste caso que a rêre e (-1)^m 1/n⁷ é alisolulamente connevigente porque a sua convergencia é acompanhada pela convergencia da sècue des módules).

Enemplo 2. \(\sum_{\in IN} \) (-1)^m \(\frac{1}{n} \) Considerences a série des módules da série $\frac{5}{m \in \mathbb{N}} (-1)^{\frac{m}{1}} \frac{1}{m}$, usto é, considerences a série $\frac{5}{m \in \mathbb{N}} \left((-1)^{\frac{m}{1}} \frac{1}{m} \right)$. Temos que: $\frac{\sum_{n \in \mathbb{N}} |(-1)^n \frac{1}{n}|}{n \in \mathbb{N}} = \frac{\sum_{n \in \mathbb{N}} \frac{1}{n}}{n}$ Or sérue dos módulos é a sérue har mômica, que é devergente Assem, a partir da natureza da sérce dos módulos, NADA podemos concluer solere a matureza da sérue dada No entanto, na aula anterior, concluímos que a rèree dada 5 (-1) 1 e' convergente $m \in \mathbb{N}$ (usando o britério de Leilenvy) Como a convergência da série 2 (-1) 1 n
mão é a con panhada pla convergência da

sères des médules, conclumes que a série ∑ (-1)^m 1 é semplesmente conneezgente.

Trimero britério de Comparação Comple 1. $\sum_{m \in W} \frac{2+(-1)^m}{m^3}$ Atendendo a que: • $0 \left(\frac{2+(-1)^m}{m^3} \left(\frac{3}{m^3} \right), \forall m \in \mathbb{N} \right)$ · a séree $\sum_{M \in \mathbb{N}} \frac{3}{M^3}$ é convergente (a sère ≥ 1 é connergente porque é rema sérue de Reemanon de expoente d = 3 > 1. Então, a serve $\frac{5}{m^3}$ e dambém connergente), concluimos felo Tremevo Cretéreo de Comfaração que a sèrie dada é convergente

Legundo bretério de Comparação Chemplo 1. $\sum_{m \in W} \frac{1}{m+1}$ Temos que lêns $\frac{1}{n+1}$: lem $\frac{n}{n+1}$ = $1 \in \mathbb{R}^+$ Pono $\sum_{m \in \mathbb{N}} \frac{1}{n}$ é de reez gente, concleúmos felo Legendo bretério de bomparação que a sère e dada é de reexgente

Exemple 2. 5 m new 1+ m3 Temos que $\frac{m}{1+m^3}$ = $\lim_{n \to \infty} \frac{m^3}{1+m^3} = 1 \in \mathbb{R}^+$ De sérue 5 1 e' connecegents porque é ema sérue de Premann de expoente 2 = 2 >1 Consequentemente, fello Legeendo Contério de Comparação con clesimos que a serue proposta é con riezgente

Coutérie de Cauchy

Exemple.
$$\sum_{m \in IN} \left(\frac{m^2}{m^3 + 3m} \right)$$

Como lem
$$m \left(\frac{n^2}{n^3+3n}\right)^{2} = lem \frac{n^2}{n^3+3n} =$$

 $\begin{array}{c|c}
 & \frac{m^2}{m^3} & \frac{1}{m} & \frac{1}{m} \\
 & \frac{m^3 + 3m}{m^3} & \frac{1}{m^2} & \frac{1}{m^2}
\end{array}$

concluimes pelo britério de baudy que a

serve froporta é convergente.

Bruténio de d'Alambert

Exemplo :
$$\sum_{m \in W} \frac{(m!)^2}{(2m)!}$$

Connecemos fox recordax que

 $m! = m \times (m-1) \times (m-2) \times \cdots \times 2 \times 1 = m \times (m-1)!$

Lega $u_m = \frac{(m!)^2}{(2m)!}$

Jenos que .

 $\frac{(m+1)!}{u_m} = \frac{(n+1)!}{(n+1)!} = \frac{(n+1)!}{(2m)!}$
 $= \lim_{m \to \infty} \frac{(m+1)!}{(2m+2)!} \frac{(n+1)!}{(2m)!} = \lim_{m \to \infty} \frac{(m+1)!}{(2m+2)!} \frac{(n+1)!}{(2m)!} = \lim_{m \to \infty} \frac{(m+1)!}{(2m+2)!} \frac{(n+1)!}{(2m+1)!} = \lim_{m \to \infty} \frac{(m+1)!}{(2m+1)!} = \lim_{m \to \infty$

 $= \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{4 + \frac{2}{n}} = \frac{1}{4} < 1$ = lem n Illo britéres de d'Alembert, concluémos que a sèrce proposta é con reezgente.

Exercício: balcule a soma da série

$$\sum_{m \in IN} \left(\frac{(-1)^m}{2^{m+1}} + \frac{5^{m-1}}{7^m} \right)$$