Cómo la geometría nos permite entender la dinámica: una introducción a los sistemas integrables

Asier López-Gordón

Instituto de Ciencias Matemáticas (ICMAT-CSIC), Madrid

Coloquio Junior 24 de mayo de 2023

Subvencionado por las ayudas CEX2019-000904-S y PID2019-106715GB-C21 financiadas por MCIN/AEI/10.13039/501100011033

Introduccción

- Grosso modo, un sistema completamente integrable es un sistema dinámico con n constantes del movimiento independientes y «compatibles», donde n es el número de grados de libertad.
- En tales sistemas, las ecuaciones del movimiento se pueden «resolver completamente».

Campos de vectores

- Recordemos que un campo de vectores X en una variedad M es una aplicación $X \colon M \to TM$ que a cada punto $x \in M$ le asigna un vector tangente $X(x) \in T_x M$.
- Equivalentemente, podemos entender X como una aplicación lineal $X: C^{\infty}(M) \to C^{\infty}(M)$ que es una derivación, i.e.

$$X(fg) = fX(g) + gX(f), \quad \forall f, g \in C^{\infty}(M).$$

Campos de vectores

• Si $(x^1, ..., x^n)$ son coordenadas en M y

$$X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}},$$

entonces una curva integral $\gamma \colon I \subseteq \mathbb{R} \to M, \ \gamma(t) = (x^i(t))$ de X está dada por

$$\frac{\mathrm{d}x^{i}}{\mathrm{d}t} = X^{i}(\gamma(t)), \qquad i = 1, \dots, n.$$
 (1)

Campos de vectores

- Si tenemos un sistema dinámico descrito por un sistema de EDOs (1), podemos interpretarlo como el flujo de un campo vectorial.
- Esto nos permite darle una interpretación geométrica a la dinámica. Algunas de las ventajas de esto son:
 - Reescribir el campo en unas coordenadas en las que las EDOs sean triviales de resolver (el tema de esta charla).
 - Proyectar el campo a una variedad de dimensión menor cocientando por sus simetrías.
 - 3 Caracterizar su estabilidad.
 - 4 Desarrollar métodos numéricos que preserven propiedades geométricas del sistema original (e.g. preservación del volumen).

Formas diferenciales

- Podemos definir una p-forma α en M como una aplicación antisimétrica y multilineal que a p campos de vectores X_1, \ldots, X_p en M les asigna la función $\alpha(X_1, \ldots, X_p)$.
- El producto exterior de 1-formas $\alpha_1 \wedge \alpha_2$ es distributivo, asociativo y antisimétrico.
- En coordenadas, una 1-forma α y una 2-forma β se escriben

$$\alpha = \sum_{i=1}^n \alpha_i \mathrm{d} x^i, \quad \beta = \sum_{i=1}^n \sum_{j=1}^n \beta_{ij} \mathrm{d} x^i \wedge \mathrm{d} x^j.$$

Geometría simpléctica

Definición

Sea M una variedad. Una **forma simpléctica** ω en M es una 2-forma en M tal que

- **1** es no degenerada: $\omega(v,\cdot) = 0 \Leftrightarrow v = 0$,
- **2** es cerrada: $d\omega = 0$.

Al par (M, ω) se le llama variedad simpléctica.

Proposición

La aplicación $X \mapsto \omega(X, \cdot)$ es un isomorfismo entre el $C^{\infty}(M)$ -módulo de los campos vectoriales y el de las 1-formas.

Geometría simpléctica

Ejemplo

- Sean $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ coordenadas canónicas en \mathbb{R}^{2n}
- La 2-forma ω dada por

$$\omega = \sum_{i=1}^n \mathrm{d} x_i \wedge \mathrm{d} y_i$$

es simpléctica

Geometría simpléctica

Teorema (Darboux)

Alrededor de todo punto $x \in M$ de una variedad simpléctica (M, ω) existe una carta $(U; q^1, \ldots, q^n, p_1, \ldots, p_n)$ tal que

$$\omega = \sum_{i=1}^n \mathrm{d}q^i \wedge \mathrm{d}p_i.$$

A las coordenadas $(q^1, \ldots, q^n, p_1, \ldots, p_n)$ se las conoce como **coordenadas de Darboux**.

Corolario

Toda variedad simpléctica tiene dimensión par.

Campo hamiltoniano

- Sea (M, ω) una variedad simpléctica.
- Dada una función $f \in C^{\infty}(M)$, su **campo hamiltoniano** es un campo vectorial X_f en M dado por

$$\omega(X_f,\cdot)=\mathrm{d}f$$
.

En coordenadas de Darboux

$$X_f = \sum_{i=1}^n \left(\frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial f}{\partial p_i} \frac{\partial}{\partial p_i} \right) .$$

Campo hamiltoniano

• Una curva integral $\gamma \colon \mathbb{R} \supseteq I \ni t \mapsto (q(t), p(t)) \in M$ de X_f satisface

$$\frac{\mathrm{d}q'}{\mathrm{d}t} = \frac{\partial f}{\partial p_i}(q(t), p(t)),$$

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{\partial f}{\partial q^i}(q(t), p(t)),$$

para $i = 1, \ldots, n$.

Sistema hamiltoniano

Definición

Un **sistema hamiltoniano** es un triple (M, ω, h) , donde (M, ω) es una variedad simpléctica y $h \in C^{\infty}(M)$ es una función llamada **función** hamiltoniana.

Su dinámica viene dada por el flujo del campo hamiltoniano de h:

$$\omega(X_h,\cdot)=\mathrm{d}h$$

- Esta es la forma intrínseca (sin coordenadas) de escribir las ecuaciones de Hamilton.
- En sistemas físicos, habitualmente *h* se puede interpretar como la energía del sistema.

Ejemplo (Ecuaciones geodésicas)

- Sea (M, g) una variedad (pseudo)riemanniana con coordenadas (x^i) .
- Consideremos el sistema hamiltoniano (T^*M, ω, h), con

$$\omega = \sum_{i=1}^n \mathrm{d} x^i \wedge \mathrm{d} p_i, \qquad h = \sum_{i,j=1}^n g^{ij} p_i p_j,$$

donde (g^{ij}) es la matriz inversa de (g_{ij}) .

 Las ecuaciones de Hamilton para h son las ecuaciones geodésicas para g.

Corchete de Poisson

El corchete de Poisson {·,·}: C[∞](M) × C[∞](M) → C[∞](M) está dado por

$$\{f,g\}=\omega(X_f,X_g).$$

Notemos que

$$\{f,g\} = X_g(f) = -X_f(g).$$

• En coordenadas de Darboux

$$\{f,g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial g}{\partial q^{i}} \frac{\partial f}{\partial p_{i}} \right).$$

Corchete de Poisson

- Propiedades:
 - Bilinealidad.
 - 2 Antisimetría: $\{f,g\} = -\{g,f\}$,
 - **3** Identidad de Jacobi: $\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$,
 - 4 Identidad de Leibniz: $\{fg, h\} = \{f, h\}g + f\{g, h\}$.
- Las tres primeras implican (por definición) que el corchete de Poisson es un corchete de Lie en $C^{\infty}(M)$.
- Se cumple

$$X_{\{f,g\}} = -[X_f, X_g].$$

• Por lo tanto, la aplicación $f \mapsto X_f$ es un anti-homomorfismo de álgebras de Lie.

Subvariedades lagrangianas

Definición

Una subvariedad $N \subset M$ de una variedad simpléctica (M^{2n}, ω) se dirá **lagrangiana** si dim N = n y $\omega|_{N} = 0$.

Ejemplo

- Consideremos la variedad simpléctica ($\mathbb{R}^{2n}, \omega = \sum_{i=1}^{n} \mathrm{d}x_i \wedge \mathrm{d}y_i$).
- Podemos comprobar que

$$N = \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \in \mathbb{R}^{2n} \mid y_i = 0, i = 1, \ldots, n\}$$

es una subvariedad lagrangiana.

Involutividad

Definición

Una colección de funciones $f_1, \ldots, f_n \in C^{\infty}(M)$ se dirá que está **en involución** si $\{f_i, f_i\} = 0$ para cada $i, j = 1, \ldots, n$.

Involutividad

Proposición

Sea (M, ω, h) un sistema hamiltoniano y $f \in C^{\infty}(M)$. Las siguientes afirmaciones son equivalentes:

- $oldsymbol{0}$ f toma un valor constante a lo largo de cada curva integral de X_h ,
- **2** $X_h(f) = 0$,
- 3 f y h están en involución, i.e. $\{f, h\} = 0$.

A una función que satisfaga tales condiciones la llamaremos cantidad conservada (o constante del movimiento).

Definición

Un sistema hamiltoniano (M^{2n}, ω, h) se dirá **completamente integrable** (o **integrable Liouville**) si existen n funciones $f_1, f_2, \ldots, f_n \in C^{\infty}(M)$ tales que

- $\mathbf{0}$ h, f_1 , f_2 , ..., f_n están en involución,
- **2** son funcionalmente independientes (i.e. rank $\{df_i\} = n$) a.e.,

Las funciones f_1, f_2, \ldots, f_n se dirán **integrales**.

Denotaremos $F = (f_1, \ldots, f_n) \colon M \to \mathbb{R}^n$.

Teorema (Liouville–Arnold)

Sea (M, ω, h) un sistema completamente integrable. Sea $M_{\Lambda} = F^{-1}(\Lambda)$ un conjunto de nivel regular, i.e. rank $d_x F = n$ para todo $x \in M_{\Lambda}$. Entonces

- **1** M_{Λ} es una subvariedad lagrangiana de (M, ω) .
- **2** M_{Λ} es invariante bajo el flujo de X_h y X_{f_i} .
- **3** Cada componente conexa y compacta de M_{Λ} es difeomorfa a \mathbb{T}^n .
- **4** En un entorno de M_{Λ} existen coordenadas (φ^i, s_i) , llamadas de acción-ángulo, tales que

 - **B** las coordenadas de acción s_i son funciones de las integrales f_1, \ldots, f_n ,
 - **©** las ecuaciones de Hamilton (curvas integrales de X_h) se escriben

$$\frac{\mathrm{d}\varphi^i}{\mathrm{d}t} = \Omega^i(s_1,\ldots,s_n), \qquad \frac{\mathrm{d}s_i}{\mathrm{d}t} = 0.$$

Demostración de 1 y 2

- Puesto que $X_{f_i}f_i = \{f_i, f_j\} = 0 \ \forall i, j \ y \ T_x M_{\Lambda} = \ker\{\mathrm{d}f_i\}$, los campos X_{f_i} son tangentes a M_{Λ} .
- En otras palabras, los flujos de X_{f_i} dejan M_{Λ} invariante.
- Al ser df_1, \ldots, df_n linealmente independientes y $v \mapsto \iota_v \omega$ un isomorfismo, X_{f_1}, \ldots, X_{f_n} son linealmente independientes.
- Luego, $\{X_{f_1}(x), \dots, X_{f_n}(x)\}$ es una base de $T_x M_{\Lambda}$ para cada $x \in M_{\Lambda}$.
- Usando que $\omega(X_{f_i}, X_{f_j}) = \{f_i, f_j\} = 0$ para cada i, j, concluimos que M_{Λ} es lagrangiana.

Esquema de la demostración de 3

Lema

Sea N una n-variedad y X_1, \ldots, X_n campos vectoriales linealmente independientes y completos en N. Si estos campos conmutan entre sí, entonces N es difeomorfa a $\mathbb{T}^k \times \mathbb{R}^{n-k}$ for some $k \leq n$. En particular, si N es compacta, entonces $N \cong \mathbb{T}^n$.

- Recordemos que X_i completo significa que su flujo $\phi_t^{X_i}$ está definido $\forall t \in \mathbb{R}$.
- Puesto que los campos conmutan, la composición de sus flujos también conmuta.

Esquema de la demostración de 3

• Por ello, la aplicación $\Phi \colon \mathbb{R}^n \times N \to N$ dada por

$$\Phi(t_1,\ldots,t_n)(x)=\phi_{t_1}^{X_1}\circ\cdots\circ\phi_{t_n}^{X_n}(x).$$

es una acción del grupo de Lie abeliano \mathbb{R}^n sobre N.

- La aplicación A_x : $(t_1, \ldots, t_n) \mapsto \Phi(t_1, \ldots, t_n)(x)$ es una inmersión, i.e. rank $dA_x = n \ \forall x \in N$.
- Por ello, $O(x) = \operatorname{Im} A_x$ es un abierto de N.
- Al ser N conexo por hipótesis, O(x) = N.

Esquema de la demostración de 3

- Por el primer teorema de isomorfismo para grupos de Lie,
 O(x) ≅ G/G_x (isomorfos como grupos y difeomorfas como variedades), con G_x = {g ∈ G | g ⋅ x = x}.
- En este caso, $\operatorname{Im} A_{\scriptscriptstyle X} \cong \mathbb{R}^n/G_{\scriptscriptstyle X}$.
- Al ser A_x un difeomorfismo local, G_x es discreto.
- Se puede probar que G_x es un retículo \mathbb{Z}^k para un cierto $k \leq n$.
- Concluimos que $N \cong \mathbb{R}^n/\mathbb{Z}^k \cong \mathbb{T}^k \times \mathbb{R}^{n-k}$.

Lema

El subgrupo de isotropía G_x de la acción $\Phi \colon \mathbb{R}^n \times \mathbb{N} \to \mathbb{N}$ es un retículo \mathbb{Z}^k para $k \leq n$.

- En el caso n=1 tomemos e_1 como el elemento más pequeño de $G_{\mathsf{x}}\subseteq\mathbb{R}$ distinto de 0.
- Por reducción al absurdo podemos probar que cualquier otro elemento de G_x es múltiplo de e_1 .
- En efecto, si $g \in G_x$ no fuera múltiplo de e_1 tendríamos

$$ke_1 < g < (k+1)e_1$$
,

para algún entero positivo k, pero entonces $e - ke_1 < e_1$.

• En el caso n, procederíamos por inducción obteniendo una base $\{e_1, \ldots, e_k\}$ de $G_{\mathbf{x}} \cong \mathbb{Z}^k$.

Idea de la demostración de (4)

- Al ser $F: M \to \mathbb{R}^n$ una aplicación diferenciable, para cada punto $y \in \mathbb{R}^n$, existe un entorno V tal que $F^{-1}(V)$ es difeomorfo a $V \times F^{-1}(y)$.
- Consideremos un entorno $U = V \times M_{\Lambda}$ de $M_{\Lambda} = F^{-1}(\Lambda)$ de esta forma.
- Como $M_{\Lambda} \cong \mathbb{T}^n$, podemos tomar coordenadas angulares del toro $(\varphi^1, \dots, \varphi^n)$
- Las integrales f_1, \ldots, f_n son coordenadas en $V \subseteq \mathbb{R}^n$.
- Definiendo unas nuevas funciones $s_i = s_i(f_1, \dots f_n)$ es posible escribir

$$\omega = \sum_{i=1}^n \mathrm{d}\varphi^i \wedge \mathrm{d}s_i.$$

Idea de la demostración de 4

• En estas coordenadas, $\frac{\partial}{\partial arphi^i} = X_{s_i}$, de modo que

$$\frac{\partial h}{\partial \varphi^i} = X_{s_i}(h) = \{s_i(f_1,\ldots,f_n),h\} = 0,$$

y tenemos $h = f(s_1, \ldots, s_n)$.

• Además,

$$X_h = \underbrace{\frac{\partial h}{\partial s_i}}_{\Omega i} \frac{\partial}{\partial \varphi^i},$$

donde las frecuencias Ω^i dependen únicamente de las coordenadas acción (s_i) .

Ejemplo: el oscilador armónico n-dimensional

• Consideremos el sistema hamiltoniano ($\mathbb{R}^{2n}, \omega, h$), donde

$$h = \sum_{i=1}^n \left(\frac{p_i^2}{2} + \frac{x_i^2}{2} \right), \qquad \omega = \sum_{i=1}^n \mathrm{d} x_i \wedge \mathrm{d} p_i \,.$$

Es completamente integrable. En efecto, las funciones

$$f_i = \frac{p_i^2}{2} + \frac{x_i^2}{2}$$

son integrales, i.e. $\{f_i, h\} = 0$ y rank $\{df_i\} = n$ a.e.

• Los conjuntos de nivel M_{Λ} están dados por

$$M_{\Lambda} = \{(x_1,\ldots,x_n,p_1,\ldots,p_n) \in \mathbb{R}^{2n} \mid \underbrace{p_i^2 + x_i^2 = 2\Lambda_i}\} \cong \mathbb{T}^n.$$

Ejemplo: el oscilador armónico n-dimensional

Podemos escribir el hamiltoniano como

$$h=h(f_1,\ldots,f_n)=\sum_{i=1}^n f_i.$$

• Sea $\varphi^i = \arctan\left(\frac{x_i}{p_i}\right)$. Entonces,

$$\omega = \sum_{i=1}^n \mathrm{d}\varphi^i \wedge \mathrm{d}f_i.$$

• Vemos que (φ^i, f_i) son coordenadas de acción-ángulo.

Ejemplo: el oscilador armónico *n*-dimensional

Los campos hamiltonianos están dados por

$$X_{f_i} = \frac{\partial}{\partial \varphi^i}, \quad X_h = \sum_{i=1}^n \frac{\partial}{\partial \varphi^i}.$$

0000000

Las ecuaciones de Hamilton se escriben

$$rac{\mathrm{d}arphi^i}{\mathrm{d}t} = 1 \,, \ rac{\mathrm{d}f_i}{\mathrm{d}t} = 0 \,.$$

Su solución es inmediata:

$$\varphi^{i}(t) = \varphi^{i}(0) + t, \qquad f_{i} = c_{i} = \text{const.}$$

- [1] V. I. Arnold, *Mathematical Methods of Classical Mechanics* (Graduate Texts in Mathematics). New York: Springer-Verlag, 1978.
- [2] M. Audin, Torus Actions on Symplectic Manifolds. Basel: Birkhäuser Basel, 2004.
- [3] A. V. Bolsinov y A. T. Fomenko, *Integrable Hamiltonian Systems: Geometry, Topology, Classification*. Boca Raton, Fla: Chapman & Hall/CRC, 2004, 730 págs.
- [4] E. Fiorani, G. Giachetta y G. Sardanashvily, "An Extension of the Liouville-Arnold Theorem for the Non-Compact Case," *Nuovo Cimento Soc. Ital. Fis. B*, vol. 118, n.° 3, págs. 307-317, 2003.
- [5] E. Fiorani, G. Giachetta y G. Sardanashvily, "The Liouville–Arnold–Nekhoroshev theorem for non-compact invariant manifolds," J. Phys. A: Math. Gen., vol. 36, n.º 7, pág. L101, feb. de 2003.

- [6] A. Kiesenhofer, E. Miranda y G. Scott, "Action-angle variables and a KAM theorem for b-Poisson manifolds," J. Math. Pures Appl., vol. 105, n.° 1, págs. 66-85, 1 de ene. de 2016.
- [7] J. Liouville, "Note sur l'intégration des équations différentielles de la Dynamique," J. Math. Pures Appl., págs. 137-138, 1855.
- [8] E. Miranda, "Integrable systems and group actions," *Open Mathematics*, vol. 12, n.° 2, págs. 240-270, 1 de feb. de 2014.
- [9] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Texts in Applied Mathematics 2), 2nd ed. New York: Springer, 2003, 843 págs.

¡Muchas gracias!

- ⊠ asier.lopez@icmat.es
- www.alopezgordon.xyz