Project Portfolio & Case Studies

1. E-commerce Data Analysis

GitHub Repository: E-commerce Data Analysis

I have Worked on an E-commerce project dealing with large data sets. As I can not present those work samples I have recreated an E-commerce project that can demonstrate similar Insights and visualization. I have collected this dataset from https://www.kaggle.com/

Objective:

Analyzing customer behavior and transaction patterns is crucial for e-commerce businesses. My goal in this project was to extract meaningful insights from customer purchase data, identify key trends, and develop predictive models to assist in decision-making. The analysis covers customer segmentation, revenue impact of discounts, and forecasting customer spending behavior.

Tools Used:

- Python (Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn)
- Jupyter Notebooks
- SQL for data querying

Methodologies Applied:

1. Data Cleaning

- The dataset contained inconsistencies, missing values, and redundant information, which I addressed through preprocessing.
- Date formats and categorical variables were standardized to ensure uniformity across the dataset.
- Duplicates were identified and removed to maintain data accuracy and consistency.
- Reference: 01_data_cleaning.ipynb

2. Exploratory Data Analysis (EDA)

- I conducted an in-depth analysis of customer demographics, purchasing trends, and product preferences.
- Visualizations helped me uncover trends in sales, discount effectiveness, and customer retention.
- I examined how discount strategies influenced customer purchases to optimize future marketing campaigns.
- Reference: 02_eda.ipynb

3. Feature Engineering

- I created new features such as <u>Customer Lifetime Value (CLV)</u>, <u>Recency</u>, <u>Frequency</u>, and <u>Monetary (RFM)</u> metrics to strengthen predictive modeling.
- Customer Lifetime Value (CLV): This metric estimates the total revenue a business can expect from a customer over their relationship duration. It helps identify high-value customers and optimize marketing efforts.
- Recency: Represents the time since a customer's last purchase, useful for predicting future purchase likelihood.
- Frequency: Measures how often a customer makes purchases, indicating their engagement level.
- Monetary (RFM) Analysis: Determines spending behavior, classifying customers into different value groups.
- Reference: 03 feature engineering.ipynb

4. Model Training

- I trained a Random Forest Classifier to predict customer churn based on CLV, Recency, Frequency, and Engagement Level.
- The model was trained using a well-balanced dataset after performing label encoding on categorical variables like Engagement Level.
- Feature Scaling: I applied StandardScaler to normalize numerical features for improved model performance.
- Performance Evaluation: The model was assessed using key metrics like Classification
 Report, Confusion Matrix, and ROC-AUC Score to ensure accuracy and reliability.
- Visualizations: Histograms were generated to compare training and testing data distributions for features like CLV, Recency, and Frequency.
- Reference: 04_model_training.ipynb

Findings from Visualizations:

→ Customer Demographics Analysis:

→ The majority of customers fall into the 25-45 age group, with a significant portion being repeat buyers.

- → Gender distribution shows a slight skew toward female customers.
- → Discount Impact Analysis:
 - ◆ While discounts increase sales volume, they do not always lead to higher profit margins.
 - ◆ Returning customers tend to purchase at regular prices rather than relying on discounts.
- → Revenue Contribution by Customer Segments:
 - ♦ High-value customers contribute disproportionately to total revenue.

♦ Identifying these customers allows businesses to tailor personalized marketing efforts.

Outcomes:

- I successfully identified high-value customers using CLV analysis, aiding in targeted marketing.
- Discount strategies were evaluated for their effectiveness in boosting sales while maintaining profitability.
- The predictive model provides insights into expected future sales based on past purchase behaviors.

2. Cricket Analysis - SQL-Based Data Processing

GitHub Repository: Cricket Analysis

Objective:

This project is centered on structuring cricket match data using SQL, focusing on designing efficient queries, stored procedures, and views to streamline data retrieval and analysis.

Tools Used:

- SQL (MySQL, PostgreSQL)
- Stored Procedures & Views
- Data Aggregation Functions

Methodologies Applied:

1. SQL Query Development

- I wrote SQL queries to extract match statistics, such as player averages, team performance, and match outcomes.
- SQL views were created to simplify structured data retrieval for further analysis.
- 2. Stored Procedures Implementation
 - Automated stored procedures were developed to calculate batting and bowling statistics efficiently.
 - I ensured modularity so that the procedures could be reused for future cricket datasets.
- 3. Optimized Data Retrieval
 - Indexing and query optimization techniques were implemented to enhance database performance.
 - The structured approach allows for handling large volumes of match data efficiently.

Outcomes:

- I developed efficient SQL queries and stored procedures for structured cricket match data analysis.
- Database performance was optimized, ensuring faster query execution.
- The SQL-based solution provides reusable components for similar future projects.

Code Samples & Notebooks

- E-commerce Data Analysis: Jupyter notebooks document the entire workflow, from data cleaning to model building.
- Cricket Analysis: SQL scripts demonstrate structured query design and stored procedure implementation.

Data Visualizations & Dashboards

E-commerce Project:

- Customer segmentation and purchase trends visualized using bar charts and scatter plots.
- The effectiveness of discounts displayed through comparative revenue charts
- Sales predictions plotted against historical data for validation.

Documentation & Reports

- E-commerce Analysis: Markdown explanations are included in Jupyter notebooks to provide clear context on each step.
- Cricket Analysis: SQL documentation outlines query logic, stored procedures, and optimization strategies.

Data Samples & Management

Datasets Used:

dataset.csv: Original e-commerce transaction data.

cleaned_dataset.csv: Processed dataset after data cleaning.

engineered_dataset.csv: Feature-enriched dataset for modeling.

- > Data Quality Management:
 - I ensured data integrity through validation checks and preprocessing steps.
 - Outliers and missing values were carefully handled to maintain data consistency.
 - Query performance was optimized for handling large datasets efficiently.

GitHub Repositories:

- 1. E-commerce Data Analysis
- 2. Cricket Analysis