

Multiple Myeloma progression in patient case study

Yulia Galatonova and Svetlana Milrud

Supervisor: Anna Zhuk

Jan 27th, Saint Petersburg

Multiple Myeloma

Cancer of plasma cells

(differentiated B-lymphocytes) characterized by production of pathological immune globulin (parapotein)

Pre-clinical stages of Multiple Myeloma:

- Monoclonal gammopathy of undetermined significance (MGUS)
- Smoldering multiple myeloma (SMM)

Genomic Alterations

Primary genomic events

- IGH translocations: *t*(4;14), *t*(11;14), *t*(14;16), *t*(14;20), *t*(6;14)
- Trisomies: *Odd-numbered chromosomes: 3; 5; 7; 9; 11; 15;* 19 or 21
- 13*q* loss

Secondary genomic events

- Translocations affecting MYC
- Copy number variations: gain (1q, 8q, or 11q); del (1p, 17p, 12p, 14q,16q)
- Somatic mutations: MAPK pathway (KRAS,NRAS,BRAF); NF-kB pathway (CYLD, TRAF3, NIK); DNA repair pathway (TP53,ATM,ATR)

Patients are divided into groups:

- Standard
- High-Risk

Study goal

Goal: analysis of tumor-normal pair samples for revealing of genetic alterations at different time points of disease

Aims: creation and realization of pipelines for detection and analysis:

- Somatic alterations
- Germline mutations
- Copy number variations

Study design

Results: Germline genetic variations associated with MM

Chromosome	Gene symbol	dbSNP ID
	Conc symbol	4.00111 12
2	XRCC5	rs207906
2	XRCC5	rs2440
3	MYNN	rs10936599
3	LRRC34	rs10936600
3	LRRC34	rs6793295
3	LRRC31	rs9290375
5	ELL2	rs3815768
9	NDUFA8	rs3793616
14	XRCC3	rs861531
14	XRCC3	rs1799794
16	RFWD3	rs7193541
19	KLF2	rs11086029

Results: Copy number variations

■ CNV associated with MMs
■ All found CNVs

Duplications	Deletions
4	8
13	56
0	0
3	2
26	15
57	47
17	13
34	30
120	

Results: Copy number variations associated with MM

Results: Somatic mutations before treatment

Variants processed 282

Most deleterious variants:

Chr	Gene
11	NFRKB
19	CD22
X	DDX3X

Variants associated with Myeloma

Chromosome	Gene symbol	Effect on protein function
1	EPHB2	+
2	CXCR2	+
2	HJURP	-
3	FANCD2	-
5	DNAH5	-
5	XRCC4	-
8	KHDRBS3	+
11	KMT2A	+
13	DIS3	+
14	NFKBIA	+
15	TP53BP1	+
16	CDH13	+
22	XBP1	+
X	HUWE1	+

Results: somatic mutations in samples during treatment

After chemotherapy

Chromosome	Gene symbol	Effect on protein function
8	ZFHX4	+
14	NFKBIA	+
15	TP53BP1	+

After autological stem cell transplantation

Chromosome	Gene symbol	Effect on protein function
3	ATP11B	+

6 months after stem cell transplantation

Chromosome	Gene symbol	Effect on protein function
3	FANCD2	-
15	TP53BP1	+
17	BRIP1	-

SNVs detected at few stages over period of treatment:

- TP53BP1 encodes TP53-binding protein 1, related to tumor suppression
- NFKBIA participates NF-κB signaling activation, one of key pathways in MM genesis
- FANCD2 related to defective DNArepair

Mutational signatures

Signatures related to defective DNA damage repair

- SBS15
- SBS6

Age-linked signatures

- SBS5
- SBS40

Conclusion

- Number of alterations involving DNA repair processes
- Co-occurrence of gain(1q) and del(17p) – high-risk double-hit myeloma, associated with significantly poorer prognosis
- Therapy strategy can be corrected based on revealed genomic alterations

Table 1 Molecular cytogenetic classification and risk stratification of multiple myeloma (MM).

Cytogenetic abnormality	Gene/chromosome (s) affected	Risk stratification ^a
Secondary cytogen	etic abnormality	
Gain (1q)	1q	High risk
Del (17p)	p53	High risk
p53 mutation	p53	High risk
Other		Variable

^{*}Presence of any two high-risk cytogenetic abnormalities is considered doublehit MM. Presence of any three or more high-risk cytogenetic abnormalities is considered triple-hit MM.

Personal contribution

Split samples:

Svetlana – normal, after therapy **Yulia** - diagnosis, transplantation, 6 months after transplantation

Split callers:

Svetlana – Copy number variations (CNVkit); Germline variations (HaplotypeCaller)

Yulia - Copy number variations (CNVkit), Somatic mutations variations (Mutect2)

Annotation

Svetlana – Germline Mutations; Copy number variations Yulia - Somatic Mutations

Mutational signature analysis

Svetlana – transplantation,6 months after transplantationYulia - diagnosis sample; after therapy sample

Thank you!

ITSMOre than a UNIVERSITY