n!/(k!(n-k)!) が整数になることの証明

黒木 玄

2008年7月2日(水)作成

目次

 1 直接的証明
 1

 2 Pascal の三角形と二項定理
 2

 3 順列と組み合わせ
 2

 4 有限群の位数はその任意の部分群の位数で割り切れる
 3

1 直接的証明

正の整数 n と 0 以上 n 以下の整数 k を任意に取る. このとき n! が k!(n-k)! で割り切れることを証明しよう. k=0,n のときは明らかなので $1 \le k \le n-1$ であると仮定する. p は素数であるとする. 0 でない整数 n に対して n の素因数分解に現われる p べきの指数を $\mathrm{ord}_p n$ と書くことにする. すなわち $\mathrm{ord}_p n$ は p^k が n を割り切る最大の整数 k に等しい. 実数 n に対して n を超えない最大の整数を n に対して

$$\operatorname{ord}_p n! = \sum_{\nu=1}^\infty \nu \cdot \sharp \{$$
 ちょうど p^ν で割り切れる 1 以上 n 以下の整数 $\}$
$$= \sum_{\nu=1}^\infty \nu \cdot \sharp \{1$$
 以上 n 以下の p^ν の倍数 $\} - \sum_{\nu=1}^\infty (\nu-1) \cdot \sharp \{1$ 以上 n 以下の p^ν の倍数 $\}$
$$= \sum_{\nu=1}^\infty \sharp \{1$$
 以上 n 以下の p^ν の倍数の個数 $\}$
$$= \sum_{\nu=1}^\infty \left[\frac{n}{p^\nu}\right].$$

実数 x, y に対して x + y = [x] + [y] + (x - [x]) + (y - [y]) なので

$$[x+y] = \begin{cases} [x] + [y] & ((x-[x]) + (y-[y]) < 1), \\ [x] + [y] + 1 & ((x-[x]) + (y-[y]) \ge 1). \end{cases}$$

よって特に $[x+y] \ge [x] + [y]$ である. したがって正の整数 x,y に対して

$$\operatorname{ord}_p(x+y)! \ge \operatorname{ord}_p x! + \operatorname{ord}_p y!$$

となる. すなわち各素数 p において $\operatorname{ord}_p n! \ge \operatorname{ord}_p k! + \operatorname{ord}_p (n-k)!$ となる. これより n! が k!(n-k)! で割り切れることがわかる.

2 Pascal の三角形と二項定理

非負の整数 k に対して x の函数 $\binom{x}{k}$ を次のように定める:

$$\binom{x}{k} = \frac{x(x-1)(x-2)\cdots(x-k+1)}{k!}.$$

 $\binom{x}{k}$ を二項係数と呼ぶ、二項係数は次を満たしている:

$$\binom{x+1}{k} = \binom{x}{k-1} + \binom{x}{k}.$$

ただし $\binom{x}{-1} = 0$ と約束しておく. この公式を Pascal の三角形と呼ぶ. 実際,

$${x+1 \choose k} = \frac{(x+1)x(x-1)\cdots(x-k+2)}{k!}$$

$$= \frac{(k+(x-k+1))x(x-1)\cdots(x-k+2)}{k!}$$

$$= \frac{x(x-1)\cdots(x-k+2)}{(k-1)!} + \frac{x(x-1)\cdots(x-k+2)(x-k+1)}{k!}$$

$$= {x \choose k-1} + {x \choose k}.$$

正の整数 n と 0 以上 n 以下の整数 k に対して

$$\frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \binom{n}{k}.$$

Pascal の三角形を用いた n に関する数学的帰納法で $\binom{n}{k}$ が整数になることを示せる. これで n! が k!(n-k)! で割り切れることがわかった.

Pascal の三角形を用いた n に関する数学的帰納法で二項定理

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

を示せる. このことからも $\binom{n}{k}$ が整数になることがわかる.

3 順列と組み合わせ

 $1,2,\ldots,n$ から異なる数を k 個選んで順番に並べたものを n 個から k 個取った順列と呼ぶ. たとえば, $n=5,\,k=3$ のとき, $(1,2,3),\,(3,2,5),\,(3,4,2)$ などは 5 個から 3 個取った順列である.

n 個から k 個取った順列全体の集合を $\mathcal{P}_{n,k}$ と表わす. $\mathcal{P}_{n,k}$ の元の個数は n!/(n-k)! に等しい.

 $\mathcal{P}_{n,k}$ には k 次の置換群 S_k が次のように右から作用する:

$$(i_1, i_2, \dots, i_k) \cdot \sigma = (i_{\sigma(1)}, i_{\sigma(2)}, \dots, i_{\sigma(k)}) \quad (\sigma \in S_k, \ (i_1, i_2, \dots, i_k) \in \mathcal{P}_{n,k}).$$

この作用の S_k 軌道の元の個数はすべて k! になる. したがって n!/(n-k)! は k! で割り切れなければいけない.

 $1,2,\ldots,n$ から異なる数を k 個選んで作った集合を n 個から k 個取った組み合わせと呼ぶ. たとえば, n=5, k=3 のとき, $\{1,2,3\}, \{3,2,5\}, \{3,4,2\}$ などは 5 個から 3 個取った組み合わせである.

n 個から k 個取った組み合わせ全体の集合を $\mathcal{C}_{n,k}$ と表わす. 写像 $f:\mathcal{P}_{n,k}\to\mathcal{C}_{n,k}$ を $f(i_1,i_2,\ldots,i_k)=\{i_1,i_2,\ldots,i_k\}$ と定めると, f は全射でかつその任意のファイバーはある S_k 軌道に一致している. よって $\mathcal{P}_{n,k}$ を S_k で割ってできる商集合と $\mathcal{C}_{n,k}$ のあいだには自然な全単射が存在する.

以上によって $C_{n,k}$ の元の個数は n!/(k!(n-k)!) に等しいことがわかる.

4 有限群の位数はその任意の部分群の位数で割り切れる

一般に有限群の位数はその任意の部分群の位数で割り切れる.

n 次の置換群を S_n と書く. $\{1,\ldots,k\}$ と $\{k+1,\ldots,n\}$ の両方を保つ n 次の置換全体のなす S_n の部分群を H と書くと, H は自然に $S_k \times S_{n-k}$ と同一視できる. S_n の位数は n! であり, $H=S_k \times S_{n-k}$ の位数は k!(n-k)! なので, n! は k!(n-k)! で割り切れる.

写像 $g:S_n\to \mathcal{P}_{n,k}$ を $g(\sigma)=(\sigma(1),\ldots,\sigma(k))$ と定めると, g は S_n/S_{n-k} から \mathcal{P}_{n-k} への全単射を誘導する. さらに $h:S_n\to \mathcal{C}_{n,k}$ を $g(\sigma)=\{\sigma(1),\ldots,\sigma(k)\}$ と定めると $h=f\circ g$ であり, h は $S_n/(S_k\times S_{n-k})$ から $\mathcal{C}_{n,k}$ への全単射を誘導する.