### **ECS 171: Introduction to Machine Learning**

Lecture 6

# **Artificial Neural Networks**

#### **Physical Address for Prof. Ilias Tagkopoulos**

Computer Science:

Office: 3063 Kemper Hall

Phone: (530) 752-4821

Fax: (530) 752-4767

Instructor: Ilias Tagkopoulos

iliast@ucdavis.edu

Genome and Biomedical Sciences Facility:

Office: 5313 GBSF

Phone: (530) 752-7707 Fax: (530) 754-9658

| Lecture | Date       | Topic                                                       | Comments             |
|---------|------------|-------------------------------------------------------------|----------------------|
| 1       | 9/24/2015  | Introduction                                                | HW1 posted           |
| 2       | 9/29/2015  | Linear Regression                                           |                      |
| 3       | 10/1/2015  | Other Regression methods                                    |                      |
| 4       | 10/6/2015  | Classification                                              | HW1 due - HW2 posted |
| 5       | 10/8/2015  | Artificial Neural Networks                                  | Project Topics       |
| 6       | 10/13/2015 | Artificial Neural Networks                                  |                      |
| 7       | 10/15/2015 | Support Vector Machines                                     | Projects Assigned    |
| 8       | 10/20/2015 | Support Vector Machines                                     |                      |
| 9       | 10/22/2015 | Support Vector Machines                                     | HW2 due - HW3 posted |
| 10      | 10/27/2015 | Midterm                                                     |                      |
| 11      | 10/29/2015 | Classification issues: Kernels, Overfitting, Regularization |                      |
| 12      | 11/3/2015  | Dimensionality Reduction                                    |                      |
| 13      | 11/5/2015  | Reinforcement Learning                                      |                      |
| 14      | 11/10/2015 | Decision support: Markov Decision Processes                 |                      |
| 15      | 11/12/2015 | Graphical Models - Naïve Bayes                              |                      |
| 16      | 11/17/2015 | Clustering: K-means - Hierarchical                          | HW3 due - HW4 posted |
| 17      | 11/19/2015 | Special topics: Deep Learning                               |                      |
| 18      | 11/24/2015 | Project Presentation I                                      | Project Reports Due  |
| 19      | 11/26/2015 | NO CLASS (Thanksgiving)                                     | HW4 due              |
| 20      | 12/1/2015  | Project Presentation II                                     |                      |
| 21      | 12/3/2015  | Project Presentation III - Overview                         |                      |

10/20/2015



Picking the right weights, function and thresholds (whenever needed), we can represent any Boolean function.

For simplicity assume here that we use the step function.



Picking the right weights, function and thresholds (whenever needed), we can represent any Boolean function.

For simplicity assume here that we use the step function.

$$g(x; w) = \begin{cases} 0 & if w^T x < 0 \\ 1 & if w^T x \ge 0 \end{cases}$$

Case 1: Construct 
$$g(x; w) = x_1 \overline{x_2}$$

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ ... \\ w_n \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1 \\ -1 \\ ... \\ 0 \end{bmatrix}$$
 **Note:** this solution is **not** 
$$w = \begin{bmatrix} 105 \\ 200 \\ -100 \\ ... \\ 0 \end{bmatrix}$$

**Note:** this solution is not unique, e.g.

$$w = \begin{bmatrix} 105 \\ 200 \\ -100 \\ \dots \\ 0 \end{bmatrix}$$

$$x_0 w_0$$
 $x_1 w_1$ 
 $x_2$ 

predicted y:  $g(x; w)$ 

Case 2: Construct  $g(x; w) = x_1 AND x_2$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 0           |
| 0     | 1     | 0           |
| 1     | 0     | 0           |
| 1     | 1     | 1           |

$$g(x; w) = -1.5 + x_1 + x_2$$

$$x_1 = x_1$$

$$x_2 = x_2$$

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -1.5 \\ 1 \\ 1 \end{bmatrix}$$

$$x_0 w_0$$

$$x_1 w_1$$

$$w_2$$

$$x_2$$
predicted y:  $g(x; w)$ 

Case 3: Construct  $g(x; w) = x_1 OR x_2$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 0           |
| 0     | 1     | 1           |
| 1     | 0     | 1           |
| 1     | 1     | 1           |

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \\ 1 \end{bmatrix}$$

Case 3: Construct  $g(x; w) = x_1 XOR x_2$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 0           |
| 0     | 1     | 1           |
| 1     | 0     | 1           |
| 1     | 1     | 0           |



Case 3: Construct  $g(x; w) = x_1 XOR x_2$ 



| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 0           |
| 0     | 1     | 1           |
| 1     | 0     | 1           |
| 1     | 1     | 0           |



Case 3: Construct  $g(x; w) = x_1 XOR x_2$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 0           |
| 0     | 1     | 1           |
| 1     | 0     | 1           |
| 1     | 1     | 0           |





Case 3: Construct  $g(x; w) = x_1 XOR x_2$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 0           |
| 0     | 1     | 1           |
| 1     | 0     | 1           |
| 1     | 1     | 0           |





Case 4: What is this gate?  $g(x; w) = x_1 ? x_2$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | Ş           |
| 0     | 1     | ?           |
| 1     | 0     | ?           |
| 1     | 1     | ?           |



Case 4: What is this gate?  $g(x; w) = x_1 XNOR x_2 = NOT(x_1 XOR x_2)$ 

| $x_1$ | $x_2$ | y = g(x; w) |
|-------|-------|-------------|
| 0     | 0     | 1           |
| 0     | 1     | 0           |
| 1     | 0     | 0           |
| 1     | 1     | 1           |



Actually a NOR, not an AND, on the original inputs

### **Multi-class ANN**

- We can train the ANN to classify samples into multiple classes (mutual exclusive or not)
- For example: classify images to {bird, chimpanzee, human}



**HIDDEN** Layer

- We can train the ANN to classify samples into multiple classes (mutual exclusive or not)
- For example: classify images to {bird, chimpanzee, human}



**HIDDEN Layer** 

example: 
$$y = g(x; w) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- We can train the ANN to classify samples into multiple classes (mutual exclusive or not)
- For example: classify images to {bird, chimpanzee, human}



**HIDDEN Layer** 

example:  $y = g(x; w) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 

- We can train the ANN to classify samples into multiple classes (mutual exclusive or not)
- For example: classify images to {bird, chimpanzee, human}



## **ANN** training and backpropagation

### Training the parameters

• If we use logistic regression as the activation function, then that the log likelihood for one NN node is (lecture 4, slide 11):

$$l(w) \triangleq log p(D|w) = \sum_{i=1}^{M} (y^{(i)} \log g(x^{(i)}; w) + (1 - y^{(i)}) \log(1 - g(x^{(i)}; w)))$$

• So if we have K nodes then the log likelihood becomes:

$$l(w) = \sum_{k=1}^{K} \sum_{i=1}^{M} \left( y^{(i)}_{k} \log g(x^{(i)}; w)_{k} + (1 - y^{(i)}_{k}) \log \left( 1 - g(x^{(i)}; w)_{k} \right) \right)$$

- Similarly as before (logistic regression) we want to maximize the log likelihood
  - or conversely minimize the negative log likelihood, that can be thought as representing the cost function.

### Back propagation

To train the parameters, we can use any optimization method, for example Gradient Descent (or "ascent" in the case of the log-likelihood):

$$w_{ij} \coloneqq w_{ij} + a \frac{\partial l(w)}{\partial w_{ij}}$$

with

$$l(w) = \sum_{k=1}^{K} \sum_{i=1}^{M} \left( y^{(i)}_{k} \log g(x^{(i)}; w)_{k} + (1 - y^{(i)}_{k}) \log \left( 1 - g(x^{(i)}; w)_{k} \right) \right)$$

If we take the derivatives with respect to w, we see that:

$$\frac{\partial l(W)}{\partial w_{ij}^{(l-1)}} = -\boldsymbol{a}_j^{(l-1)} \boldsymbol{\delta}_i^{(l)}$$

Where  $\delta_i^{(l)}$  is the error of the  $i^{\text{th}}$  neuron (node) in the  $l^{\text{th}}$  layer.

#### Some definitions

To calculate the error, lets go through some definitions first:

 $\alpha_i^{(l)}$  = Activation of unit i in layer l  $W^{(l)}$  = weight matrix from layer l to l + 1



$$\alpha_1^{(3)} = g(W_{10}^{(2)}x_0 + W_{11}^{(2)}\alpha_1^{(2)} + W_{12}^{(2)}\alpha_2^{(2)})$$

$$\alpha_1^{(2)} = g(W_{10}^{(1)}x_0 + W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2)$$

$$\alpha_2^{(2)} = g(W_{20}^{(1)}x_0 + W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2)$$

You can represent the sum in the () as z (since you didn't have enough variable definitions already...):

$$z_1^{(2)} = W_{10}^{(1)} x_0 + W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2$$
  
so that activation of unit 1 becomes:  
 $\alpha_1^{(2)} = g(z_1^{(2)})$ 

#### Artificial Neural Network

**OUTPUT Layer**  $W_{12}^{(2)}$  $\alpha_1^{(2)}$  $\alpha_2^{(2)}$ **HIDDEN** Layer  $W_{12}^{(1)}$  $W_{11}^{(1)}$  $W_{22}^{(1)}$  $W_{21}^{(1)}$  $x_2$  $\chi_1$ **INPUT Layer** 

So output can be represented as

$$a^{(l)} = g(z^{(l)})$$

With 
$$a^{(l)} = \begin{bmatrix} \alpha_0^{(l)} \\ \alpha_1^{(l)} \\ \alpha_2^{(l)} \end{bmatrix} \qquad z^{(l)} = \begin{bmatrix} z_1^{(l)} \\ z_2^{(l)} \end{bmatrix}$$

Each  $a^{(l)}$  can be computed iteratively, starting from l = 1 and ending at the output layer (here l = 3). This is called forward-propagation.

The final output is given by:

$$a^{(3)} = g(z^{(3)})$$

### Back-propagation

OUTPUT Layer  $w_{11}^{(2)}$   $w_{12}^{(2)}$ HIDDEN Layer  $\alpha_{1}^{(2)}$   $\alpha_{2}^{(2)}$   $w_{11}^{(1)}$   $w_{21}^{(1)}$   $w_{22}^{(1)}$ 

 $\chi_1$ 

Let the error of **node** *i in layer l* be

$$\delta_i^{(l)} = \alpha_i^{(l)} - y_i$$

Then we can calculate iteratively the errors for each layer as:

$$\delta_i^{(l-1)} = (W^{(l-1)})^T \delta^{(l)} \cdot a^{(l-1)} \cdot (1 - a^{(l-1)})$$

Where

 $x_2$ 

$$\boldsymbol{\delta^{(l)}} = \begin{bmatrix} \boldsymbol{\delta_1^{(l)}} \\ \dots \\ \boldsymbol{\delta_n^{(l)}} \end{bmatrix}$$
 is the vector of errors

for the n nodes of the  $l^{th}$  layer.

**INPUT Layer** 

### Back-propagation

### **OUTPUT Layer**

 $\alpha_1^{(3)}$  $W_{12}^{(2)}$ **HIDDEN** Layer  $\alpha_2^{(2)}$  $\alpha_1^{(2)}$  $W_{12}^{(1)}$  $W_{11}^{(1)}$  $W_{21}^{(1)}$ **INPUT**  $x_2$  $\chi_1$ Layer

It turns out that the partial derivatives of the log-likelihood with respect to the weights w are given by:

$$\frac{\partial l(W)}{\partial w_{ij}^{(l-1)}} = -a_j^{(l-1)} \delta_i^{(l)}$$

Which you now can calculate recursively:

$$\delta^{(l-1)}$$
 Element-by-element multiplication 
$$= (W^{(l-1)})^T \delta^{(l)} \cdot a^{(l-1)} \cdot (1 - a^{(l-1)})$$

Why you need the partial derivatives?

 Gradient Descent or other optimization algorithms

### i1

### **Back-propagation**



For example, for our 3-layer network on the left we have:

$$\delta^{(3)} = \delta_1^{(3)} = \alpha_1^{(l)} - y_1$$

$$W^{(2)} = \begin{bmatrix} w_{10}^{(2)} \\ w_{11}^{(2)} \\ w_{12}^{(2)} \end{bmatrix} \qquad W^{(1)} = \begin{bmatrix} w_{10}^{(1)} \\ w_{11}^{(1)} \\ w_{12}^{(1)} \end{bmatrix} \qquad a^{(2)} = \begin{bmatrix} 1 \\ a_{1}^{(2)} \\ a_{2}^{(2)} \end{bmatrix}$$

So that for  $\delta^{(2)}$  we have (following the equation from the previous slide:

$$\boldsymbol{\delta}^{(2)} = \begin{bmatrix} \boldsymbol{\delta}_0^{(2)} \\ \boldsymbol{\delta}_1^{(2)} \\ \boldsymbol{\delta}_2^{(l)} \end{bmatrix} = \begin{bmatrix} w_{10}^{(2)} \\ w_{11}^{(2)} \\ w_{12}^{(2)} \end{bmatrix}^T (\boldsymbol{\alpha}_i^{(l)} - y_i)$$

Note: this is a vector/matrix representation. Follow the derivation that we did in class instead.

i1 iliast, 10/28/2014

### Backpropagation of a FF-ANN

For each training sample  $(x^{(k)}, y^{(k)})$ :

- Set  $a^{(1)} = x^{(k)}$
- Compute  $a^{(l)}$  for all layers l (forward propagation)
- Compute the error in final layer  $\delta_j^{(L)} = a_i^{(L)} y^{(k)}$  and all hidden layers  $\delta^{(l-1)} = (W^{(l-1)})^T \delta^{(l)} \cdot a^{(l-1)} \cdot (1 a^{(l-1)})$
- Compute partial derivatives  $\frac{\partial l(W)}{\partial w_{ij}^{(l-1)}} = -a_j^{(l-1)} \delta_i^{(l)}$
- Use the derivatives to update with a heuristic optimization method:

$$w_{ij}^{(l-1)} \coloneqq w_{ij}^{(l-1)} - \alpha(\boldsymbol{a}_j^{(l-1)} \boldsymbol{\delta}_i^{(l)})$$

#### Recurrent Neural Networks

- Neural Networks can be split in two main categories:
  - Feed-forward networks (what we have done so far), when the ANN graph is acyclic
  - Recurrent networks, when the ANN graph contains cycles (feedback)
- The are many other types of networks that can fall into these categories (e.g. Radial Basis Function Networks, Hopfield Networks, long-short memory etc.)
- How can we train Recurrent networks?

 Elman network, Backpropagation through time, real-time Hidden, recurrent learning, etc.



#### Recurrent Neural Networks



# Context-dependent computation by recurrent dynamics in prefrontal cortex

Valerio Mante1+\*, David Sussillo2\*, Krishna V. Shenoy2.3 & William T. Newsome1

78 | NATURE | VOL 503 | 7 NOVEMBER 2013

Figure 4 | A neural network model of input selection and integration. PFC is modelled as a network of recurrently connected, nonlinear, rate neurons that receive independent motion, colour and contextual inputs. The network is fully recurrently connected, and each unit receives both motion and colour inputs as well as two inputs that indicate context. At each time step, the sensory inputs are drawn from two normal distributions, the means of which correspond to the average strengths of the motion and colour evidence on a given trial. The contextual inputs take one of two values (0 or 1), which instruct the network to discriminate either the motion or the colour input. The network is read out by a single linear read-out, corresponding to a weighted sum over the responses of all neurons (red arrows). We trained the network (with back-propagation<sup>35</sup>) to make a binary choice, that is, to generate an output of +1 at the end of the stimulus presentation if the relevant evidence pointed towards choice 1, or a -1 if it pointed towards choice 2. Before training, all synaptic strengths were randomly initialized.

### **End of Lecture 6**