DCT & Quantizer

DCT

- The DCT transform of an image brings out a set of numbers called coefficients.
- A coefficient's usefulness is determined by its variance over a set of images as in video's case.
- If a coefficient has a lot of variance over a set, then it cannot be removed without affecting the picture quality.

Recovered Image
(Notice Lesser Image Quality)

The image is broken into 8x8 groups, each containing 64 pixels. Three of these 8x8 groups are enlarged in this figure, showing the values of the individual pixels, a single byte value between 0 and 255.

Quantizer

 this saves a lot of bits, but we no longer have an exact replica of original image block

 $\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$

quantized DCT

ч	uan	LIZE	u D	- 1				
-26					-1	0	0	
			1		0	0	0	
-3	1	5	-1	-1	0			
-4	1	2	-1	0	0	0	0	
1	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

inverse DCT

60	63	55	58	70	61	58	80
58	56	56	83	108	88	63	71
60	52	62	113	150	116	70	67
			122				
69	62	65	100	120	86	59	76
			68				
74	82	67	54	63	64	65	83
83	96	77	56	70	83	83	89

original pixels

			INOIC				
52	55	61	66	70	61	64	73
63	59	55	90	70 109 144	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94
_							_

note, however, that visually the blocks are not very different

- we have saved lots of bits without much "perceptual" loss
- this is the reason why JPEG and MPEG work

Image compression

three JPEG examples

- note that the blockiness is more visible in the torso