CELL DECOMPOSITION OF RANK 2 QUIVER GRASSMANNIANS

DYLAN RUPEL AND THORSTEN WEIST

ABSTRACT. We prove that all quiver Grassmannians for preprojective and preinjective representations of a generalized Kronecker quiver admit a cell decomposition. We also provide a natural combinatorial labeling for these cells using compatible pairs in a maximal Dyck path.

1. Introduction

-something about cluster algebras -something about categorification and quiver Grassmannians -something about compatible pairs and combinatorial construction of cluster variables -statement of our results -something about torus actions and the universal cover -something about cell decompositions of quiver Grassmannians -acknowledgements?

2. Torus Action on Quiver Grassmannians

Let Q be an acylic quiver with vertices Q_0 and arrows Q_1 which we denote by $\alpha: i \to j$. Moreover, let W_Q be the free (non-abelian) group generated by Q_1 . We denote by Rep(Q) the category of \mathbb{C} -representations of Q.

Definition 2.1. The universal covering quiver \tilde{Q} of Q is given by the vertices $\tilde{Q}_0 = Q_0 \times W_Q$ and the arrow set $\tilde{Q}_1 = Q_1 \times W_Q$ where $(\alpha, w) : (i, w) \to (j, w\alpha)$ for every $\alpha : i \to j$.

We say that a representation $X \in \text{Rep}(Q)$ can be lifted (to \tilde{Q}) if there exists a representation $\tilde{X} \in \text{Rep}(\tilde{Q})$ such that $F_Q\tilde{X} = X$ where $F_Q : \text{Rep}(\tilde{Q}) \to \text{Rep}(Q)$ is the natural functor.

Lemma 2.2. Every preprojective (resp. preinjective) representation of Q can be lifted to a representation of \tilde{Q} .

Proof. This statement is clear for the simple representations S_q , $q \in Q_0$. Now every preprojective representation X can be obtained when applying a sequence of BGP-reflections [2] to a simple representation $S_{q'}$ of a quiver Q' whose underlying graph is the one of Q. Applying BGP-reflections to a source q of Q corresponds to applying BGP-reflections to all vertices (q, w) of \tilde{Q} . This leads the claim. The statement for preinjective representations follows in the same way.

We choose a map $d: \tilde{Q}_0 \to \mathbb{Z}$ and fix a representation $X \in \text{Rep}(Q)$. In any case, we can consider the decomposition $X_q = \bigoplus_{w \in W_Q} X_{(q,w)}$. We define a torus action on each $X_{(q,w)}$ via $t.x_{(q,w)} = t^{d(q,w)}x_{(q,w)}$ which can be extended linearly to each X_q . For a fixed a subspace U_q , we can define the subspace $t.U_q$. In general, this torus action induces no torus action on the Quiver Grassmannians $\text{Gr}_{\mathbf{e}}(X)$ as $t.U = (t.U_q)_{q \in Q_0}$ is no subrepresentation of X for every $U \in \text{Gr}_{\mathbf{e}}(X)$. Actually, for this the action has to satisfy $X_{\alpha}(t.U_i) \in t.U_j$ for every $\alpha: i \to j$ and every $x \in X_i$.

Lemma 2.3. Fix an integer $c_{\alpha} \in \mathbb{Z}$ for every $\alpha \in Q_1$. If $X \in \text{Rep}(Q)$ can be lifted, $d : \tilde{Q}_0 \to \mathbb{Z}$ induces a torus action on $\text{Gr}_{\mathbf{e}}(X)$ if we have $d(j, w\alpha) - d(i, w) = c_{\alpha}$ for all $\alpha : i \to j$ and $w \in W_Q$.

Proof. Since X can be lifted, we can write $X_{\alpha}: X_i \to X_j$ as block matrix consisting of linear maps $X_{(\alpha,w)}: X_{(i,w)} \to X_{(j,w\alpha)}$. Then the condition $X_{\alpha}(t.U_i) \in t.U_j$ translates into ...to be continued.

Lemma 2.4. There exists $d: \tilde{Q}_0 \to \mathbb{Z}$ such that $d(q, w) \neq d(q', w')$ for all q, q', w, w' with dim $X_{q,w} \neq 0$ and dim $X_{q',w'} \neq 0$.

Theorem 2.5. $Gr_{\mathbf{e}}^{Q}(X)^{T} \cong \bigsqcup_{\tilde{\mathbf{e}}oftune\mathbf{e}} Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$

Corollary 2.6. affine bundles over $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})$ if $Gr_{\mathbf{e}}^{Q}(X)$ is smooth

$$\{U \in Gr_{\mathbf{e}}^{Q}(X) : \lim_{t \to 0} t \cdot U \in Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{X})\}$$

Question 2.7. What are the ranks of these bundles? Poincaré polynomials?

3. Representation Theory of K(n)

Denote by K(n) the n-Kronecker quiver $1 \stackrel{n}{\longleftarrow} 2$ with vertices $K(n)_0 = \{1,2\}$ and n arrows from vertex 2 to vertex 1.

Define Chebyshev polynomials u_k for $k \in \mathbb{Z}$ by the recursion $u_0 = 0$, $u_1 = 1$, $u_{k+1} = nu_k - u_{k-1}$.

Theorem 3.1. For each $m \ge 1$, there exist unique (up to isomorphism) indecomposable rigid representations P_m and I_m of K(n) with dimension vectors (u_m, u_{m-1}) and (u_{m-1}, u_m) respectively. Moreover, any rigid representation of K(n) is isomorphic to one of the form $P_m^{a_1}P_{m+1}^{a_2}$ or $I_m^{a_1}I_{m+1}^{a_2}$ for some $m \geq 1$ and some $a_1, a_2 \geq 0$.

The representations P_m are called the preprojective representations of K(n) and the representations I_m are called *preinjective*.

Lemma 3.2. For any $m \ge 1$, we have

$$\dim \operatorname{Hom}(P_m, P_m) = 1$$
, $\dim \operatorname{Hom}(P_m, P_{m+1}) = n$, $\dim \operatorname{Hom}(P_{m+1}, P_m) = 0$.

Moreover, for $1 \le k < n$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, the map $[f_1 \cdots f_k]$: $P_m^k \to P_{m+1}$ is injective.

Proof. Note that we have an Auslander-Reiten sequence

$$(1) 0 \longrightarrow P_{m-1} \longrightarrow P_m^{n} \xrightarrow{[f_1 \dots f_n]} P_{m+1} \longrightarrow 0$$

with irreducible homomorphisms f_i which are also linearly independent. Thus they do not factor through a representation $Z \neq P_m$ which already means that they are injective, see for instance [1, Lemma 1.6]. If we pick k < n linear independent homomorphisms f_{i_1}, \ldots, f_{i_k} , this also means that $[f_{i_1}, \cdots, f_{i_k}]: P_m^k \to P_{m+1}$ is injective. Indeed otherwise, at least one of the homomorphisms were forced to factor through a representation $Z \neq P_m$.

Write $P_{m+1}^{\{f_1,\ldots,f_k\}}$ for the cokernel of the map $[f_1 \cdots f_k]: P_m^k \to P_{m+1}$, i.e. we have a short exact sequence

$$(2) 0 \longrightarrow P_m^k \stackrel{[f_1 \dots f_k]}{\longrightarrow} P_{m+1} \longrightarrow P_{m+1}^{\{f_1, \dots, f_k\}} \longrightarrow 0.$$

Lemma 3.3. For $m \geq 1$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, the following

- Hom(P_m, P_{m+1}^{f₁,...,f_k}) is naturally isomorphic to Hom(P_m, P_{m+1})/kf₁ ⊕ · · · ⊕ kf_k;
 Ext(P_{m+1}^{f₁,...,f_k}, P_m) is naturally isomorphic to kf₁ ⊕ · · · ⊕ kf_k;
 Hom(P_{m+1}^{f₁,...,f_k}, P_m) = 0.

Proof. Applying the functor $Hom(P_m, -)$ to the sequence (2) gives the exact sequence

$$0 \longrightarrow \operatorname{Hom}(P_m, P_m^k) \stackrel{[f_1 \, \cdots \, f_k] \circ}{\longrightarrow} \operatorname{Hom}(P_m, P_{m+1}) \longrightarrow \operatorname{Hom}(P_m, P_{m+1}^{\{f_1, \dots, f_k\}}) \longrightarrow 0,$$

To see (2), we apply the functor $\operatorname{Hom}(-, P_m)$ to the sequence (2) to get an isomorphism $\operatorname{Hom}(P_m^k, P_m) \cong$ $\operatorname{Ext}(P_{m+1}^{\{f_1,\ldots,f_k\}},P_m)$. Observe that $\operatorname{Hom}(P_m^k,P_m)$ is spanned by the coordinate projections $\pi_i:P_m^k\to P_m$

for $1 \le i \le k$ and each of these gives rise to a commutative diagram

The bottom row of this diagram is the extension in $\operatorname{Ext}(P_{m+1}^{\{f_1,\dots,f_k\}},P_m)$ naturally identified with the generator f_i of $\mathbb{k}f_1\oplus\cdots\oplus\mathbb{k}f_k$.

Part (3) follows immediately from (2) and the observation that

$$\langle P_{m+1}^{\{f_1,\dots,f_k\}}, P_m \rangle = \langle P_{m+1}, P_m \rangle - k \langle P_m, P_m \rangle = -k.$$

Lemma 3.4. Let $f_1, \ldots, f_n \in \text{Hom}(P_m, P_{m+1})$ be linearly independent morphisms and write $g: P_{m-1} \to P_m$ for the composition of the inclusion from (1) with the projection $\pi_n: P_m^n \to P_m$ to the n^{th} factor. Then $P_{m+1}^{\{f_1, \ldots, f_{n-1}\}} \cong P_m^{\{g\}}$.

Proof. We have the following commutative diagram

$$0 \longrightarrow P_m^{n-1} \longrightarrow P_m^n \xrightarrow{\pi_n} P_m \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow^{[f_1 \dots f_n]} \qquad \downarrow^{f_n}$$

$$0 \longrightarrow P_m^{n-[f_1 \dots f_{n-1}]} \xrightarrow{P_{m+1}} P_{m+1}^{\{f_1, \dots, f_{n-1}\}} \longrightarrow 0$$

Since the vertical morphism on the left is an equality, the right hand square is a pullback. But this implies the kernels of the vertical morphisms coincide. The middle vertical morphism fits into the exact sequence (1) and so the kernel is P_{m-1} . It follows that there is a morphism $g: P_{m-1} \to P_m$ so that $P_{m+1}^{\{f_1, \dots, f_{n-1}\}} \cong P_m^{\{g\}}$. \square

For any nonempty subset $I \subset [1, k]$, say with $|I| = \ell$, we get an exact sequence

$$0 \longrightarrow P_m^{\ell} \stackrel{[f_i]_{i \in I}}{\longrightarrow} P_{m+1}^{\{f_j\}_{j \in [1,k] \setminus I}} \longrightarrow P_{m+1}^{\{f_1, \dots, f_k\}} \longrightarrow 0.$$

Each such sequence has the following almost-split property for subrepresentations of $P_{m+1}^{\{f_1,\ldots,f_k\}}$.

Lemma 3.5. For $m \ge 1$ and linearly independent functions $f_1, \ldots, f_k \in \text{Hom}(P_m, P_{m+1})$, given any proper subrepresentation $V \subseteq P_{m+1}^{\{f_1, \ldots, f_k\}}$, the upper pullback sequence

$$0 \longrightarrow P_{m}^{\ell} \longrightarrow V^{I} \longrightarrow V \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow P_{m}^{\ell} \xrightarrow{[f_{i}]_{i \in I}} P_{m+1}^{\{f_{j}\}_{j \in [1,k] \setminus I}} \longrightarrow P_{m+1}^{\{f_{1}, \dots, f_{k}\}} \longrightarrow 0$$

splits for every $I \subset [1, k]$.

Proof. When $I = \emptyset$, we have $\ell = 0$ and there is nothing to show, so assume I is a nontrivial subset of [1, k]. We proceed by simultaneous induction on k and $\ell = |I|$. For any nonzero $f \in \text{Hom}(P_m, P_{m+1})$ the exact sequence

$$0 \longrightarrow P_m \stackrel{f}{\longrightarrow} P_{m+1} \longrightarrow P_{m+1}^{\{f\}} \longrightarrow 0$$

is almost split, giving the claim in the case $k = \ell = 1$. For k > 1 and a nontrivial proper subset $I \subsetneq [1, k]$, we have the following commutative diagram

A proper subrepresentation $V \subsetneq P_{m+1}^{\{f_1,\dots,f_k\}}$ gives rise, via pullbacks, to the following commutative diagram

in which the middle vertical sequence and the middle horizontal sequence split by induction. But the images of $[f_i]_{i\in I}$ and $[f_j]_{j\in [1,k]\setminus I}$ intersect trivially inside $V^{[1,k]}$ and thus the lower horizontal sequence must split as well, establishing the claim for $I \subseteq [1,k]$.

For I = [1, k], we consider the commutative diagram

A proper subrepresentation $V \subsetneq P_{m+1}^{\{f_1,\dots,f_k\}}$ then gives rise to the following commutative diagram

in which the middle vertical sequence splits and the middle horizontal sequence is split by induction. But the image of $[f_1 \ \cdots \ f_k]: P_m^{k-1} \oplus P_m \to V^{[1,k]} \oplus V^{[1,k]}$ and the diagonal $\Delta: V^{[1,k]} \to V^{[1,k]} \oplus V^{[1,k]}$ intersect trivially because f_1, \ldots, f_k are linearly independent. As above the lower horizontal sequence also splits, establishing the claim for I = [1, k].

4. Quiver Grassmannians of
$$\widetilde{K(n)}$$

Let \tilde{P}_m be a fixed lift of P_m to the universal cover K(n).

Lemma 4.1. There exist lifts $\tilde{P}_{m-1,i}$ for $1 \le i \le n$ of P_{m-1} to K(n) so that:

- (1) $\operatorname{Hom}_Q(P_{m-1}, P_m) \cong \bigoplus_{i=1}^n \operatorname{Hom}_{\tilde{Q}}(\tilde{P}_{m-1,i}, \tilde{P}_m)$, where each $\operatorname{Hom}_{\tilde{Q}}(\tilde{P}_{m-1,i}, \tilde{P}_m)$ is one-dimensional; (2) For any proper subset $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$, there exists a short exact sequence

$$0 \longrightarrow \tilde{P}_{m-1,i_1} \oplus \cdots \oplus \tilde{P}_{m-1,i_k} \longrightarrow \tilde{P}_m \longrightarrow \tilde{P}_m^{i_1,\dots,i_k} \longrightarrow 0;$$

- (3) The lifts $\tilde{P}_{m-1,i}$ are pairwise orthogonal.
- (4) All nontrivial proper subrepresentations of $\tilde{P}_m^{i_1,\dots,i_k}$ are preprojective.

We will always choose the subset $\{1,\ldots,k\}$ when using Lemma 4.1.2 and thus we denote the cokernel simply by $\tilde{P}_m^{(k)}$.

Lemma 4.2. If each $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_{m-1,i})$ has a cell decomposition, then $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\bigoplus \tilde{P}_{m-1,i_j})$ has a cell decomposition.

Lemma 4.3. (1)
$$\tilde{P}_{m}^{(n-1)} \cong \tilde{P}_{m-1}^{(1)}$$

(2) The subrepresentation $\bigoplus_{i=1}^{k-1} \tilde{P}_{m-1,i} \oplus \bigoplus_{i=1}^{k} \tilde{P}_{m-2,i} \subset \bigoplus_{i=1}^{k} \tilde{P}_{m-1,i}$ is in $(\tilde{P}_{m}^{(k)})^{\perp}$ and

$$\operatorname{Ext}(\bigoplus_{i=1}^{k} \tilde{P}_{m-1,i}, \tilde{P}_{m}^{(k)}) \cong \operatorname{Ext}(\tilde{P}_{m-1}^{(k)}, \tilde{P}_{m}^{(k)})$$

where $\tilde{P}_{m-1}^{(k)}$ above denotes the cokernel of the inclusion.

Lemma 4.4. Consider $0 \to \tilde{P}_m \to \tilde{P}_{m+1}^{(k)} \to \tilde{P}_{m+1}^{(k-1)} \to 0$ There exists a short exact sequence

$$0 \to \tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k} \to \tilde{P}_m \to \tau \tilde{P}_{m+1}^{(k-1)} \to 0$$

 $where \ \tau \ denotes \ the \ Auslander-Reiten \ translate. \ Moreover, \ we \ have \ \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_m) \cong \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tau\tilde{P}_{m+1}^{(k-1)}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tau\tilde{P}_{m+1}^{(k-1)}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tau\tilde{P}_{m+1}^{(k-1)}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tau\tilde{P}_{m+1}^{(k-1)}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m+1}^{(k-1)}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P}_{m+1}^{(k-1)},\tilde{P}_{m}) = \mathrm{Ext}(\tilde{P$ $k \text{ and } \operatorname{Hom}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}) = 0.$

Proof. Idea: Check this for m = 1 or m = 2 and apply BGP-reflections.

Lemma 4.5. Consider $0 \to \tilde{P}_m \to \tilde{P}_{m+1}^{(k)} \to \tilde{P}_{m+1}^{(k-1)} \to 0$. If $U \subset \tilde{P}_m$ such that $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, U) \neq 0$, then we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_m/U) = 0.$

Proof. Idea: Every $U \subset P_m$ gives rise to a diagram

$$0 \longrightarrow \tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k} \longrightarrow \tilde{P}_m \longrightarrow \tau \tilde{P}_{m+1}^{(k-1)} \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow V \longrightarrow U \longrightarrow W \longrightarrow 0$$

If $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, U) \neq 0$, we have $W \neq 0$. Thus $\tau \tilde{P}_{m+1}^{(k-1)}/W$ is a proper factor. It follows that we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}/W) = 0$ by Auslander-Reiten-theory and because $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tau \tilde{P}_{m+1}^{(k-1)}) = k$. Since we have $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k}) = 0$, it follows $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, (\tilde{P}_{m-1}^{n-1} \oplus \tilde{P}_{m-2}^{n-k})/V) = 0$. The first

statement should be a consequence of Lemma 4.4. This yields the claim.

Proposition 4.6. Consider $\psi: Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m) \to \bigsqcup_{\tilde{\mathbf{f}}+\tilde{\mathbf{g}}=\tilde{\mathbf{e}}} Gr_{\tilde{\mathbf{f}}}^{\tilde{Q}}(\bigoplus_{i=1}^k \tilde{P}_{m-1,i}) \times Gr_{\tilde{\mathbf{g}}}^{\tilde{Q}}(\tilde{P}_m^{(k)})$. Then the following

- (1) For $V \subsetneq \tilde{P}_m^{(k)}$ and $U \subset \bigoplus_{i=1}^k \tilde{P}_{m-1,i}$, we have $\psi^{-1}(U,V) = \mathbb{A}^{\langle V, \bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U \rangle}$. (2) If $V = \tilde{P}_m^{(k)}$, the fibre $\psi^{-1}(U,V)$ is non-empty and of constant dimension if and only if $\operatorname{Ext}(\tilde{P}_m^{(k)}, U) \neq 0$

Proof. (1) V is preprojective but $\bigoplus_{i=1}^k \tilde{P}_{m-1,i}/U$ is not unless U=0

(2) If $\operatorname{Ext}(\tilde{P}_m^{(k)}, U) = 0$, the fibre is empty because the sequence is non-split. If $\operatorname{Ext}(\tilde{P}_m^{(k)}, U) \neq 0$, Lemma 4.5 yields $\operatorname{Ext}(\tilde{P}_{m}^{(k)}, \tilde{P}_{m-1}/U) = 0$. In particular, the dimension is constant if it is not empty and $\operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, U) \xrightarrow{\pi} \operatorname{Ext}(\tilde{P}_{m+1}^{(k-1)}, \tilde{P}_{m})$ is surjective. But this already means that the fibre is not empty. \square

Theorem 4.7. Every quiver Grassmannian of a preprojective or preinjective representation of K(n) and K(n) has a cell decomposition.

Question 4.8. cells of $Gr_{\tilde{\mathbf{e}}}^{\tilde{Q}}(\tilde{P}_m)$ are in one-to-one correspondence with certain tuples of subgraphs for $smaller \; \tilde{P}^{i_1,...,i_k}_{\boldsymbol{\ell}}$

¹introduce/consider/check indices, we have to mod out the corresponding reps in the covering

5. Compatible Pairs Label Cells in $Gr_{f e}^Q(P_m)$

References

- [1] Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative Algebras. Cambridge University Press, Cambridge 2007.
- [2] Bernstein, I. N., Gelfand, I. M., Ponomarev, V. A.: Coxeter functors, and Gabriel's theorem. Russian Mathematical Surveys 28(2), 17-32 (1973).
- [3] Happel, D., Ringel, C.M.: Tilted Algebras. Transactions of the American Mathematical Society 274, no.2, 399-443 (1982).
- [4] Schofield, A.: General representations of quivers. Proceedings of the London Mathematical Society (3) 65(1), 46-64 (1992).