

Game Mechanics

Themenüberblick

Organisatorisches

- Moodle
 - Kurs: "Game Mechanics"
 - Selbsteinschreibung: gmwise1819
- Kommunikation über E-Mail / Moodle

Themenschwerpunkte

- I. Grundlagen
 - Entwicklungsumgebung
 - Unity Grundlagen
 - C# Grundlagen
 - Coding vs. Codeless
 - Grundlagen: Anreizelemente
- III. Gameplay, User Experience
 - UI Design
 - Entwicklung für VR

- II. Praktische Beispiele
 - Design Document
 - Level Whiteboxing
 - Gegner KI: Spieltheorie
 - Gegner KI: Zustandsautomaten
 - Wegfindung

Möglichkeit für Zusatzleistungen

Arbeitsmittel

- Unity
- Visual Studio
- (Autodesk ReCap, Meshmixer)
- (Autodesk Maya)
- Paint .Net

Voraussetzungen

UNITY 3D (BASIC EXPERIENCE)

- Monobehaviour
- GameObject
- Transform
- Quaternion
- Component/GetComponent
- Time.deltaTime

Voraussetzungen

C#
(BASIC EXPERIENCE)

- Basic data types (boolean, int, float)
- Variables and Functions
- If Statements, Switch
- Loops (for and foreach)
- Scope and Access Modifiers (public, private, static)

Was Iernen Sie?

- Unity: Beginners to Intermediate Level
- C# Beginners Level
- Game Implementation Workflow
 - Entwicklungsumgebung
 - Whiteboxing, Playtesting; User Experience
 - Deployment

Kursplanung

Game Mechanics

Block I - Grundlagen

1. Einstieg in Unity

- Theorie:
 - Spielmechanik 1: Spielraum
 - Spielmechanik 2: Spielzeit
- Unity Entwicklungsumgebung
- Demo zu Spielraum, Spielzeit (Whiteboxing, Playtesting)

Block I - Grundlagen

- 2. Einstieg in C#
- Theorie:
 - Spielmechanik 3: Objekte, Attribute, Statusangaben
- Skripting in Unity mit C#
- "Balancing Demo"

Block I - Grundlagen

- 3. Workflow Spieleentwicklung
- Konzeptphase: Design Document
- Whiteboxing, Playtesting (ProBuilder, ProGrids)
- Einschub: Spielelemente (fun things)
- Exkurs: Procedural Level Design (Tilemaps)

(Quelle: Wikipedia)

Dec. 31, 1935.

C. B. DARROW

2,026.082

BOARD GAME APPARATUS

Filed Aug. -31, 1935

7 Sheets-Sheet 1

Block II – Praktische Beispiele

4. Wegfindung 1

- Spielmechanik 4: Aktionen
- Beispiel: Wegfindung
 - Theorie: Breadth First Search, Dijkstra, A*
 - Verwendung von Tilemaps (Fortsetzung)

(Quelle: Wikipedia)

Block II – Praktische Beispiele

5. Wegfindung 2

- Wegfindung mit Unity
 - UnityEngine.Al
 - NavMesh, NavAgent
 - "Click to Move"
 - Strategien (Wegpunkte, Sichtlinie, Follow)

(Quelle: Unity3D)

Block II – Praktische Beispiele

6. Gegner-Kl

- Spielmechanik 5: Wahrscheinlichkeiten
- Zustandsautomaten
 - Theorie, Implementierung in C#
 - Tools
- Spieltheorie

Block III – Gameplay, User Experience

7. User Interaction

- Spielmechanik 6: Fähigkeiten
- Cross Platform Input Controller
 - Implementierung in C#
- Design for XR
- UI Design (Textmesh Pro)

Block III - Gameplay, User Experience

8. Moderne Techniken

- Spielmechanik 7: Regeln
- Physik in Unity
 - Gravitation, Ballistik
- Möglichkeit für Zusatzleistungen

Block III - Gameplay, User Experience

9. Balancing von Spielmechaniken

- Theorie
- Fortsetzung: Balancing Demo in C#

Block III – Gameplay, User Experience

10. Klausurvorbereitung

- Repetitorium
- Fragen

Block III - Gameplay, User Experience

11. Klausur

- 90 min
- 2 CP

1

2

3