

BOTANY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Photosynthesis in Higher plants

ENGLISH MEDIUM

Pre-Medical

EXERCISE-I (Conceptual Questions)

INTRODUCTION TO HOW MANY PIGMENTS ARE INVOLVED IN PHOTOSYNTHESIS

- **1.** Oxygen which is liberated during photosynthesis comes from -
 - (1) Carbondioxide
 - (2) Water
 - (3) Chlorophyll
 - (4) Phosphoglyceric acid

PS0001

- 2. In which of the following process, the light energy is converted into chemical energy?
 - (1) Digestive action
 - (2) Respiration
 - (3) Photosynthesis
 - (4) Fermentation

PS0002

- **3.** During photosynthesis the oxygen in glucose comes from :-
 - (1) Water
 - (2) Carbon dioxide
 - (3) O_2 in air
 - (4) Both from water and CO₂

PS0003

- **4.** Name the scientist, who first pointed out by bell jar experiment that plants purify foul air:-
 - (1) Engelmann
- (2) Robert Hooke
- (3) Priestley
- (4) Ruben & Kamen

PS0011

- **5.** Moll's half leaf experiment explains that :-
 - (1)Carbon dioxide is essential for photosynthesis
 - (2)Chlorophyll and water are necessary for photosynthesis
 - (3) Light and water are essential for photosynthesis
 - (4) All the above are correct

PS0013

Build Up Your Understanding

- **6.** Oxygen during photosynthesis comes from water was proved with the help of O¹⁸ experiment by:-
 - (1) Ruben and Kamen (2) Hill
 - (3) Warburg
- (4) Blackman

Biology: Plant Physiology

PS0014

- 7. Name the scientist who pointed out the importance of different wavelengths of light using a green algae and aerobic bacteria:
 - (1) Priestley
- (2) Ingenhousz
- (3) R. Hill
- (4) Englemann

PS0015

- 8. Photosynthesis is:-
 - (1) Oxidative, exergonic, catabolic
 - (2) Redox-reaction, endergonic, anabolic
 - (3) Reductive, exergonic, anabolic
 - (4) Reductive, endergonic, catabolic

PS0017

- **9.** The significance of light and chlorophyll in photosynthesis was discovered by :-
 - (1) Priestley
- (2) Ingenhousz
- (3) Englemann
- (4) Blackman

PS0018

- **10.** Which one of the following pigment does not occur in the chloroplast?
 - (1) Carotene
- (2) Xanthophyll
- (3) Chlorophyll-b
- (4) Anthocyanin
 - PS0022
- 11. Chlorophyll contains:-
 - (1) Fe
- (2) Mg
- (3) K
- (4) Mn

PS0023

- **12.** Which pigment is water soluble?
 - (1) Chlorophyll
- (2) Carotene
- (3) Anthocyanin
- (4) Xanthophyll

- **13.** Chlorophyll is present :-
 - (1) In the grana of chloroplasts
 - (2) On the surface of chloroplasts
 - (3) Dispersed through out the chloroplasts
 - (4) In the stroma of chloroplasts

- **14.** Which colour of light gives maximum absorption peak by chlorophyll-a?
 - (1) Blue light
- (2) Green light
- (3) Violet light
- (4) Red light

PS0027

- **15.** The formula of chlorophyll-a is :-
 - (1) $C_{35}H_{72}O_5N_4$ Mg
- (2) $C_{55}H_{70}O_3N_4$ Mg
- (3) $C_{55}H_{72}O_5N_4$ Mg
- (4) $C_{51}H_{70}O_6N_4$ Mg

PS0029

- **16.** The number of pigment molecules in photosystem is:
 - (1) 250 400
- (2)300 900
- (3)500 600
- (4)50-100

PS0030

- **17.** The main difference between chlorophyll-a and b is:
 - (1) Chlorophyll-a is a linear chain compound and b is branched chain
 - (2)Chlorophyll-a has no Mg⁺ ion in center of molecule
 - (3)In chlorophyll-a there is -CH₃ group whereas in b it is -CHO group
 - (4) All of the above

PS0031

- **18.** Basic common structure of all chlorophyll comprises of :-
 - (1) Cytochrome system (2) Flavoproteins
 - (3) Porphyrin system (4) Plastocyanin

PS0034

- **19.** What is the by product of bacterial photosynthesis?
 - $(1) O_2$
- (2) CO_2
- (3) S
- (4) H₂S

PS0035

- **20.** Which of the following chlorophyll is lack of phytol tail?
 - (1) Chl-a
- (2) Chl-b
- (3) Chl-c
- (4) Chl-e

PS0038

- **21.** Universal chlorophyll is :-
 - (1) Chl-a
- (2) Chl-b
- (3) Chl-c
- (4) Chl-e

PS0040

- **22.** Which one of the following is precursor of protochlorophyll?
 - (1) Acetyl COA
 - (2) Succinyl COA
 - (3) Oxlaoacetic acid
 - (4) α-ketoglutarate

PS0042

- **23.** Photosynthesis is an oxidation reduction process, the materials that is oxidised is :-
 - (1) CO₂
- (2) NADP
- (3) H_2O
- (4) PGA

PS0060

- 24. During photosynthesis:-
 - (1) Water is reduced & CO₂ is oxidized
 - (2) CO_2 is reduced & water is oxidized
 - (3) Both CO₂ & water get reduced
 - (4) Both CO₂ & water get oxidized

PS0068

- **25.** Which photosynthetic pigment converts nascent oxygen to molecular oxygen?
 - (1) Chlorophyll-a
- (2) Carotenoids
- (3) Phycobilins
- (4) Chlorophyll-b

PS0070

- **26.** Hill reaction occurs in :-
 - (1) High altitude plants only
 - (2) Total darkness
 - (3) Presence of ferricyanide
 - (4) Absence of water

Pre-Medical

27. Photosynthetically active radiation (PAR) represents the following range of wavelength:-

(1) 400-700 nm

(2) 500-600 nm

(3) 450-950 nm

(4) 340-450 nm

PS0119

28. Which one of the following categories of organisms do not evolve oxygen during photosynthesis?

- (1) Red algae
- (2) Photosynthetic bacteria
- (3) C₄ plants with Kranz anatomy
- (4) Blue green algae

PS0123

29. The site for dark reaction of photosynthesis is :-

(1) Stroma

(2) Grana

(3) Intergrana

(4) Mitochondria

PS0025

WHAT IS LIGHT REACTION AND THE ELECTRON TRANSPORT

- **30.** Discovery of Emerson effect has shown the existence of :—
 - (1) Two distinct photosystems
 - (2) Light and dark reactions of photosynthesis
 - (3) Photophosphorylation
 - (4) Photorespiration

PS0010

- **31.** Wavelength of light responsible for Emerson's enhancement effect:—
 - (1) only 680 nm↑
 - (2) only 680 nm↓
 - (3) infra red wavelength
 - (4) Both 680 nm[↑] and 680 nm[↓]

PS0019

- **32.** The process of photo-phosphorylation take place in :-
 - (1) Chloroplast

(2) Ribosomes

(3) Mitochondria

(4) Cell-wall

PS0020

33. In pigment system -I, reaction centre is :-

(1) P-600

(2) P-680

Biology: Plant Physiology

(3) P-700

(4) P-720

PS0033

34. Which of the following is the site of photolysis of water?

- (1) Stroma of chloroplast
- (2) Cristae of chloroplast
- (3) Ribosome of chloroplast
- (4) Lumen surface of thylakoid membrane

PS0041

35. The first step in photosynthesis is :-

- (1) Joining of three carbon atoms to from glucose
- (2) Formation of ATP
- (3) Ionization of water
- (4) Excitement of an electron of chlorophyll by a photon of light.

PS0043

36. The product of light reaction is :-

- (1) ATP & NADPH(H+)
- (2) NADPH(H+) & glucose
- (3) Only ATP
- (4) O₂ & glucose

PS0044

37. Which one of the following concerns with photophosphorylation?

(2) ADP + Inorganic $PO_4 \xrightarrow{\text{Light energy}} ATP$

(3) ADP + Inorganic $PO_4 \longrightarrow ATP$

(4) AMP + Inorganic $PO_4 \longrightarrow ATP$

Join Telegram: @Chalnaayaaar

Biology: Plant Physiology

- **38.** During photochemical reaction of photosynthesis—
 - (1) Liberation of O₂ takes place
 - (2)Formation of ATP and $NADPH_2$ take place
 - (3)Liberation of O₂, formation of ATP, and NADPH₂ takes place
 - (4) Assimilation of CO₂ takes place

PS0049

- **39.** Which of the following is excited molecule during photosynthesis?
 - (1) Chlorophyll
- (2) Oxygen
- (3) Carbondioxide
- (4) Water

PS0051

- **40.** During splitting of H₂O, H⁺ is ultimately captured by :-
 - (1) Chlorophyll
- (2) NADP
- (3) O_2
- (4) Cytochrome

PS0053

- **41.** At the time of splitting of H₂O, which initially captures the electron :-
 - (1) Chlorophyll
- (2) NADP
- (3) OH-
- (4) Cytochrome

PS0054

- **42.** In cyclic photophosphorylation which one of the following is formed?
 - (1) NADP & ATP
 - (2) ATP
 - (3) NADH + H $^+$ and O $_2$
 - (4) NADPH + H^+ , ATP and O_2

PS0055

- **43.** Photooxidation of water in photosynthesis is associated with :-
 - (1) Cytochrome b₆
 - (2) Pigment system I
 - (3) Pigment system II
 - (4) Plastocyanin

PS0057

- **44.** During ATP synthesis electron pass through:-
 - (1) Water (2) Cytochromes
 - (3) O_2 (4) CO_2

PS0058

- **45.** Which pigment system immediately donates e⁻ for the reduction of NADP?
 - (1) PS-II
- (2) PS-I
- (3) CO_2
- (4) Plastoquinone

PS0059

- **46.** Which element are presents in OEC (Oxygen evolving complex)?
 - (1) Mn++
- (2) CI-
- (3) Ca++
- (4) AII

PS0063

WHERE ARE THE ATP AND NADPH USED

- **47.** The path of CO₂ in the dark reactions of photosynthesis was successfully traced by the use of the :-
 - $(1)^{18}O_2$
- $(2)^{14}CO_2$
- $(3)^{32}P$
- (4) X rays

PS0009

- **48.** Which of the following protein is most abundant on the earth?
 - (1) Catalase
- (2) RuBisCO
- (3) Amylase
- (4) Pepsin

PS0039

- **49.** The function of ATP in photosynthesis is the transfer of energy from the :-
 - (1) Dark reaction to the light reaction
 - (2) Light reaction to the dark reaction
 - (3) Chloroplasts to mitochondria
 - (4) Mitochondria to chloroplasts

PS0047

- **50.** In photosynthesis, hydrogen is transferred from the light reactions to dark reactions by :—
 - (1) NAD
- (2) DNA
- (3) ATP
- (4) NADP

Join Telegram: @Chalnaayaaar

Pre-Medical

51. NADPH(H+) is also called :-

- (1) Real power
- (2) Oxidising agent
- (3) Power house of energy
- (4) Reducing power

PS0052

52. Fixation of 1 CO_2 requires :-

- (1) 6NADPH(H+) & 3ATP
- (2) 2NADPH(H+) & 3ATP
- (3) 4NADPH(H+) & 3ATP
- (4) 5NADPH(H+) & 3ATP

PS0056

53. Connecting link between light phase and dark phase of photosynthesis, is:-

- (1) Only ATP
- (2) Only NADPH(H+)
- (3) Only NADH + H+
- (4) ATP & NADPH(H+)

PS0069

54. In photosynthesis CO₂ combines with :-

- (1) RUBP
- (2) ATP
- (3) ADP
- (4) PGA

PS0072

55. During the dark reactions of photosynthesis:—

- (1) Water splits
- (2)CO₂ is reduced to organic compounds
- (3) Chlorophyll is activated
- (4) Stable C₆-sugar is broken into three carbon sugars

PS0073

56. The enzyme that fixes atmospheric CO_2 in C_4 plants is :-

- (1) PEP carboxylase
- (2) Hexokinase
- (3) RUBP oxygenase
- (4) Hydrogenase

PS0075

57. During photosynthesis when PGA is changed into phosphoglyceraldehyde which of the following reaction occur ?

- (1) Oxidation
- (2) Reduction
- (3) Electrolysis
- (4) Hydrolysis

PS0076

58. Carbon refixation in C₄ plants occurs in chloroplasts of :-

- (1) Palisade tissue
- (2) Spongy Mesophyll
- (3) Bundle sheath cells
- (4) Gaurd cells

PS0077

Biology: Plant Physiology

59. Tropical plants like sugarcane show high efficiency of CO₂ fixation because of :-

- (1) Calvin cycle
- (2) Hatch Slack cycle
- (3) Cyclic photophosphorylation
- (4) TCA Cycle

PS0078

60. "Kranz" type of anatomy is found in :-

- (1) C₄ plant
- (2) C₃ plant
- (3) Succulent plants
- (4) All of the above

PS0079

61. Which of the following is C_4 plants?

- (1) Maize
- (2) Atriplex
- (3) Sugarcane
- (4) All of the above

PS0081

62. Which pair is wrong?

- (1) C₃ plant-Maize
- (2) Calvin cycle-PGA
- (3) Hatch and Slack cycle Maize
- (4) C₄-plant- Kranz Anatomy

PS0124

63. C₄ plants are found among :-

- (1) Only gramineae family
- (2) Only monocots
- (3) Only dicots
- (4) Monocots as well as dicots

- **64.** In case of C₄ pathway, the first step is :-
 - (1) CO₂ combines with RUBP
 - (2) CO₂ combines with PGA
 - (3) CO₂ combines with PEP
 - (4) CO₂ combines with PGAL

- 65. In dark reaction, first reaction is the :-
 - (1) Carboxylation
- (2) Decarboxylation
- (3) Dehydrogenation
- (4) Deamination

PS0085

- **66.** Number of ATP molecules required for regeneration phase of RUBP during synthesis of 1 glucose molecule:-
 - (1)6
- (2)12
- (3) 18
- (4) 30

PS0086

- **67.** Isotopes employed to study the process of photosynthesis reaction.
 - (1) S^{35} and P^{32}
- (2) C^{14} and O^{18}
- (3) N^{14} and Co^{60}
- (4) N^{14} and O^{18}

PS0087

- **68.** Chloroplast is present in bundle sheath cells of :-
 - (1) C₃ plants
 - (2) C₄ plants
 - (3) CAM plants
 - (4) Photorespiring plants

PS0088

- **69.** CO₂ is accepted by RUBP in C₄ plants in :-
 - (1) Mesophyll cells
 - (2) Bundle sheath cells
 - (3) Stomatal gaurd cells
 - (4) Epidermal cells

PS0089

- **70.** Bundle sheath chloroplasts of C₄ plant are :
 - (1) Large & agranal
- (2) Large & granal
- (3) Small & agranal
- (4) Small & granal

PS0090

- **71.** In addition to the 12 molecules of NADPH(H+), the energy required for the synthesis of one mole of hexose by C_3 and C_4 pathway is
 - (1) 18 & 18 molecules of ATP respectively
 - (2) 30 & 30 molecules of ATP respectively
 - (3) 18 & 30 molecules of ATP respectively
 - (4) 30 & 18 molecules of ATP respectively

PS0094

- **72.** How many Calvin cycles would generate one molecule of glucose/hexose?
 - (1) One cycle
- (2) Three cycles
- (3) Six cycles
- (4) Twelve cycles

PS0096

- **73.** CAM plants are :-
 - (1) Succulent xerophyte
 - (2) Hydrophytes
 - (3) Epiphytes
 - (4) Mesophytes

PS0097

- **74.** The first stable product of Calvin cycle and Hatch stack pathway are :-
 - (1) 4-C and 3-C compounds respectively
 - (2) 4-C and 6-C compounds respectively
 - (3) 3-C and 4-C compounds respectively
 - (4) 5-C and 4 C compounds respectively

PS0098

- **75.** Which of the following was used during discovery of Calvin cycle ?
 - (1) Spirogyra
 - (2) Volvox
 - (3) Chlamydomonas
 - (4) Chlorella

PS0099

PHOTORESPIRATION & FACTOR AFFECTING PHOTOSYNTHESIS

- **76.** Which one of the following have high ${\rm CO_2}$ compensation point ?
 - (1) C_2 plants
 - (2) C₃ plants
 - (3) C₄ plants
 - (4) CAM plants

PS0102

- 77. First stable product of photorespiration is :-
 - (1) PGAL
 - (2) Glycerate
 - (3) Glycine
 - (4) Phosphoglycolate

Join Telegram: @Chalnaayaaar

Pre-Medical

78. Photorespiration is favoured by :-

- (1) Low light intensity
- (2) Low O_2 & high CO_2
- (3) Low temperature
- (4) High O_2 & Low CO_2

PS0110

PS0111

79. C_2 - Cycle is also known as :-

(1) Glycolate cycle

(2) Calvin cycle

(3) Kreb's cycle

(4) TCA - cycle

80. Compensation point means :-

- (1) When the rate of photosynthesis is equal to rate of respiration
- (2) When there is neither photosynthesis nor respiration
- (3) When the entire food manufactured in photosynthesis remains unutilized
- (4) When availability of water equalise with necessity of water.

PS0112

- 81. What does not occur in photorespiration
 - (1) Utilization of O₂
 - (2) Production of CO₂
 - (3) Synthesis of ATP
 - (4) Use of ATP

PS0114

82. DCMU is an inhibitor of :-

(1) PS-I

(2) PS-II

(3) Calvin cycle

(4) Kreb's cycle

Biology: Plant Physiology

PS0115

83. Main factor which limits the rate of photosynthesis on a clear day is:-

(1) Chlorophyll

(2) Light

(3) CO_2

(4) Water

PS0116

84. Which one of the following is wrong in relation to photorespiration?

- (1) It occurs in chloroplast
- (2) It occurs in daytime only
- (3) It is a characterisitic of C₄ plants
- (4) It is a characteristic of C₃ plants

PS0118

85. The law of limiting factor for photosynthesis was given by :-

(1) R. Hill

(2) Krebs

(3) Calvin

(4) Blackman

EX	EXERCISE-I (Conceptual Questions) ANSWER KEY														<ey< th=""></ey<>
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	3	2	3	1	1	4	2	2	4	2	3	1	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	3	3	3	3	1	2	3	2	2	3	1	2	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	1	3	4	4	1	2	3	1	2	1	2	3	2	2
Que.	46	47	48	40	EΛ	F.1	Γ0	F 0	F 4					F0	(0
		7/	40	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	2	2	2	4	4	2 2	4	54 1	2 2	56 1	57 2	58 3	59 2	1
Ans. Que.	4 61	_		_			_		_						
	_	2	2	2	4	4	2	4	1	2	1	2	3	2	1
Que.	61	2	2 63	2 64	4 65	4 66	2 67	4 68	1 69	2 70	1 71	2 72	3	2 74	1 75

EXERCISE-II (Previous Year Questions)

AIPMT 2006

- **1.** In photosystem-I, the first electron acceptor is :-
 - (1) Plastocyanin
 - (2) An iron-sulphur protein
 - (3) Ferredoxin
 - (4) Cytochrome

PS0125

- **2.** During photorespiration, the oxygen consuming reaction(s) occur in
 - (1) Grana of chloroplasts and peroxisomes
 - (2)Stroma of chloroplasts
 - (3)Stroma of chloroplasts and mitochondria
 - (4) Stroma of chloroplasts and peroxisomes

PS0126

AIPMT 2007

- 3. The first acceptor of electrons from an excited chlorophyll molecule of photosystem II is :-
 - (1) Quinone
 - (2) Cytochrome
 - (3) Iron-sulphur protein
 - (4) Ferredoxin

PS0127

- 4. In the leaves of C₄ plants, malic acid formation during CO₂ fixation occurs in the cells of :-
 - (1) Epidermis
 - (2) Mesophyll
 - (3) Bundle Sheath
 - (4) Phloem

PS0128

AIPMT 2008

- 5. In leaves of C₄ plants malic acid synthesis during CO₂ fixation occurs in :-
 - (1) Bundle sheath
 - (2) Guard cells
 - (3) Epidermal cells
 - (4) Mesophyll cells

PS0129

AIPMT/NEET

- **6.** The C_4 plants are photosynthetically more efficient than C_3 plants because :-
 - (1) The CO₂ efflux is not prevented
 - (2) They have more chloroplasts
 - (3) The CO₂ compensation point is more
 - (4)CO₂ generated during photorespiration is trapped and recycled through PEP carboxylase

PS0130

- 7. Electrons from excited chlorophyll molecule of photosystem II are accepted first by :-
 - (1) Quinone
- (2) Ferredoxin
- (3) Cytochrome –b
- (4) Cytochrome -f

PS0131

AIPMT 2009

- 8. Oxygenic photosynthesis occurs in :-
 - (1) Oscillatoria
- (2) Rhodospirillum
- (3) Chlorobium
- (4) Chromatium

PS0132

- **9.** Cyclic photophosphorylation results in the formation of :-
 - (1) ATP and NADPH
 - (2) ATP, NADPH and O₂
 - (3) ATP
 - (4) NADPH

PS0133

AIPMT-Pre 2010

- **10.** PGA as the first CO₂ fixation product was discovered in photosynthesis of :
 - (1) Bryophyte
- (2) Gymnosperm
- (3) Angiosperm
- (4) Alga

PS0134

- **11.** C_4 plants are more efficient in photosynthesis than C_3 plants due to :
 - (1) Higher leaf area
 - (2) Presence of larger number of choloplasts in the leaf cells
 - (3) Presence of thin cuticle
 - (4) Lower rate of photorespiration

ALLEN®

Pre-Medical

AIPMT-Mains 2010

12. Study the pathway given below:

In which of the following options correct words for all the three blanks A, B and C are indicated?

	А	В	С
(1)	Fixation	Transamination	Regeneration
(2)	Fixation	Decarboxylation	Regeneration
(3)	Carboxylation	Decarboxylation	Reduction
(4)	Decarboxylation	Reduction	Regeneration

PS0136

13. Read the following four statements, A, B, C and D and select the right option having both correct statements.

Statements:

- (A) Z scheme of light reaction takes place in presence of PSI only.
- (B) Only PSI is functional in cyclic photophosphorylation
- (C) Cyclic photophosphorylation results into synthesis of ATP and NADPH(H⁺)
- (D) Stroma lamellae lack PSII as well as NADP reductase

Options:

- (1) A and B
- (2) B and C
- (3) C and D
- (4) B and D

PS0137

- 14. CAM helps the plants in :-
 - (1) Conserving water
 - (2) Secondary growth
 - (3) Disease resistance
 - (4) Reproduction

PS0138

Biology: Plant Physiology

AIPMT-Mains 2011

- **15.** In Kranz anatomy, the bundle sheath cells have:
 - (1) thick walls, many intercellular spaces and few chloroplasts
 - (2) thin walls, many intercellular spaces and no chloroplasts.
 - (3) thick walls, no intercellular spaces and large number of chloroplasts.
 - (4) thin walls, no intercellular spaces and several chloroplasts.

PS0139

AIPMT-Pre 2012

- **16.** A process that makes important difference between C₃ and C₄ plants is :-
 - (1) Photosynthesis
 - (2) Photorespiration
 - (3) Transpiration
 - (4) Glycolysis

PS0140

- **17.** The correct sequence of cell organelles during photorespiration is :-
 - (1)Chloroplast-mitochondria-peroxisome
 - (2) Chloroplast-vacuole-peroxisome
 - (3) Chloroplast-Golgibodies-mitochondria
 - (4) Chloroplast-Rough endoplasmic reticulum-Dictyosomes

PS0141

AIPMT 2014

- **18.** Anoxygenic photosynthesis is characteristic of :
 - (1) Rhodospirillum
- (2) Spirogyra
- (3) Chlamydomonas
- (4) *Ulva*

PS0142

Re-AIPMT 2015

- **19.** Chromatophores take part in :
 - (1) Respiration
 - (2) Photosynthesis
 - (3) Growth
 - (4) Movement

- **20.** In photosynthesis, the light-independent reactions take place at :
 - (1) Stromal matrix
 - (2) Thylakoid lumen
 - (3) Photosystem-I
 - (4) Photosystem-II

NEET-I 2016

- **21.** Emerson's enhancement effect and red drop have been instrumental in the discovery of :-
 - (1) Photophosphorylation and non-cyclic electron transport
 - (2) Two photosystems operating simultaneously
 - (3) Photophosphorylation and cyclic electron transport
 - (4) Oxidative phosphorylation

PS0145

- **22.** In a chloroplast the highest number of protons are found in :-
 - (1) Stroma
 - (2) Lumen of thylakoids
 - (3) Inter membrane space
 - (4) Antennae complex

PS0146

- 23. avoids Α plant in your garden photorespiratory losses, has improved water use efficiency shows high rates of photosynthesis at high temperatures and has improved efficiency of nitrogen utilisation. In which of the following physiological groups would you assign this plant?
 - (1) C_3
 - (2) C_4
 - (3) CAM
 - (4) Nitrogen fixer

PS0147

PS0148

NEET-II 2016

- **24.** The process which makes major difference between C₃ and C₄ plants is :-
 - (1) Photorespiration
 - (2) Respiration
 - (3) Glycolysis
 - (4) Calvin cycle

NEET(UG) 2017

- **25.** With reference to factors affecting the rate of photosynthesis, which of the following statements is not correct?
 - (1) Increasing atmospheric CO₂ concentration up to 0.05% can enhance CO₂ fixation rate
 - (2) C₃ plants respond to higher temperatures with enhanced photosynthesis while C₄ plants have much lower temperature optimum
 - (3) Tomato is a greenhouse crop which can be grown in CO₂ - enriched atmosphere for higher yield
 - (4) Light saturation for CO₂ fixation occurs at 10% of full sunlight

PS0152

- **26.** Phosphoenol pyruvate (PEP) is the primary CO₂ acceptor in:
 - (1) C₄ plants
 - (2) C₂ plants
 - (3) C₃ and C₄ plants
 - (4) C₃ plants

PS0153

NEET(UG) 2018

- **27.** Which of the following is **not** a product of light reaction of photosynthesis?
 - (1) ATP
 - (2) NADH
 - (3) NADPH
 - (4) Oxygen

PS0159

- **28.** Oxygen is **not** produced during photosynthesis by:-
 - (1) Green sulphur bacteria
 - (2) Nostoc
 - (3) Cycas
 - (4) Chara

PS0160

NEET(UG) 2019 (Odisha)

- **29.** In Hatch and Slack pathway, the primary CO₂ acceptor is -
 - (1) Oxaloacetic acid
 - (2) Phosphoglyceric acid
 - (3) Phosphoenol pyruvate
 - (4) RuBisCO

Pre-Medical

- One scientist cultured Cladophora in a 30. suspension of Azotobacter and illuminated the culture by splitting light through a observed prism. He that bacteria accumulated mainly in the region of:
 - (1) Violet and green light
 - (2) Indigo and green light
 - (3) Orange and yellow light
 - (4) Blue and red light

PS0242

NEET(UG) 2020

- 31. In light reaction, plastoquinone facilitates the transfer of electrons from:
 - (1) PS-I to ATP synthase
 - (2) PS-II to Cytb₆f complex
 - (3) Cytb₆f complex to PS-I
 - (4) PS-I to NADP+

PS0243

- 32. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of:
 - (1)1 molecule of 4-C compound and 1 molecule of 2-C compound.
 - (2)2 molecules of 3-C compound
 - (3)1 molecule of 3-C compound
 - (4) 1 molecule of 6-C compound

PS0244

NEET(UG) 2020 (COVID-19)

- During non-cyclic photophosphorylation, 33. when electrons are lost from the reaction centre at PS II, what is the source which replaces these electrons?
 - (1) Oxygen
 - (2) Water
 - (3) Carbon dioxide
 - (4) Light

PS0245

- 34. Which of the following statements is incorrect?
 - (1) RuBisCO is a bifunctional enzyme
 - (2) In C₄ plants, the site of RuBisCO activity is mesophyll cell
 - (3) The substrate molecule for RuBisCO activity is a 5-carbon compound
 - (4) RuBisCO action requires ATP and NADPH

PS0246

NEET(UG) 2021

Biology: Plant Physiology

- 35. The first stable product of CO₂ fixation in sorghum is:
 - (1) Pyruvic acid
 - (2) Oxaloacetic acid
 - (3) Succinic acid
 - (4) Phosphoglyceric acid

PS0247

- 36. Which of the following statements is incorrect?
 - (1) Both ATP and NADPH + H⁺ non-cyclic synthesized during photophosphorylation.
 - (2) Stroma lamellae have PS I only and lack NADP reductase.
 - (3) Grana lamellae have both PS I and PS II.
 - (4) Cyclic photophosphorylation involves both PS I and PS II.

PS0248

NEET(UG) 2021 (Paper-2)

37. Match the columns and choose the correct option.

Column I	Column II
a. Visible light	i. 0.1–1.0 nm
b. Ultraviolet	ii. 400-700 nm
radiation	
c. X-rays	iii. Longer than 700 nm

- d. Infrared radiation iv. 100-400 nm
- (1) a-i, b-ii, c-iv, d-ii
- (2) a-iii, b-ii, c-i, d-iv
- (3) a-iv, b-iii, c-ii, d-i
- (4) a-ii, b-iv, c-i, d-iii

PS0287

- 38. Separation of leaf pigments of any green plants can be carried out by
 - (1) X-ray radiography
 - (2) Paper chromatography
 - (3) Half-leaf experiment
 - (4) Variegated leaf experiment

- **39.** In the plastid, the site of dark and light reaction is
 - (1) Grana and stroma respectively
 - (2) Grana and matrix respectively
 - (3) Matrix and grana respectively
 - (4) Stroma and grana respectively

- **40.** The maximum absorption of light by chlorophyll occurs in which region of the absorption spectrum.
 - (1) Red and green
 - (2) Yellow and green
 - (3) Blue and red
 - (4) Brown and red

PS0290

- **41.** Non-cyclic photophosphorylation results in the formation of
 - (1) ATP and NADH + H⁺
 - (2) ATP only
 - (3) ATP and NADPH + H^{+}
 - (4) ATP, ADP and NADH + H^{+}

PS0291

NEET(UG) 2022

42. Given below are two statements:

Statement I: The primary CO_2 acceptor in C_4 plants is phosphoenolpyruvate and is found in the mesophyll cells.

Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme.

In the light of the above statements, choose the correct answer from the options given below:

- (1)Both **Statement I** and **Statement II** are incorrect
- (2) **Statement I** is correct but **Statement II** is incorrect
- (3) **Statement I** is incorrect but **Statement II** is correct
- (4) Both **Statement I** and **Statement II** are correct

PS0292

- **43.** Which one of the following is **not true** regarding the release of energy during ATP synthesis through chemiosmosis? It involves:
 - (1) Breakdown of electron gradient
 - (2) Movement of protons across the membrane to the stroma
 - (3) Reduction of NADP to NADPH₂ on the stroma side of the membrane
 - (4) Breakdown of proton gradient

PS0293

- **44.** What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants?
 - (1) To increase the number of chloroplast for the operation of Calvin cycle
 - (2) To enable the plant to tolerate high temperature
 - (3) To protect the vascular tissue from high light intensity
 - (4) To provide the site for photorespiratory pathway

PS0294

NEET(UG) 2022 (OVERSEAS)

- **45.** The products of light reaction in photosynthesis are:
 - (1) ATP, NADPH, O₂ and H₂O
 - (2) ATP, NADPH and H₂O
 - (3) ATP, NADPH and CO₂
 - (4) ATP, NADPH and O₂

PS0295

Re-NEET(UG) 2022

- **46.** When one CO₂ molecule is fixed as one molecule of triose phosphate, which of the following photochemically made, high energy chemical intermediates are used in the reduction phase ?
 - (1) 1 ATP + 1 NADPH
 - (2) 1 ATP + 2 NADPH
 - (3) 2 ATP + 1 NADPH
 - (4) 2 ATP + 2 NADPH

Biology: Plant Physiology

- **47.** Identify the correct statements regarding chemiosmotic hypothesis :
 - (a) Splitting of the water molecule takes place on the inner side of the membrane.
 - (b)Protons accumulate within the lumen of the thylakoids.
 - (c) Primary acceptor of electron transfers the electrons to an electron carrier.
 - (d)NADP reductase enzyme is located on the stroma side of the membrane.
 - (e) Protons increase in number in stroma.

Choose the **correct answer** from the options given below:

- (1) (a), (b) and (e) (2) (a), (b) and (d)
- (3) (b), (c) and (d) (4) (b), (c) and (e)

EX	ERCI	ISE-II	(Pre	vious	Year	Ques)				ı	ANSV	VER I	KEY	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	1	2	4	2	1	1	3	4	2	2	4	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	1	2	1	2	2	2	1	2	1	2	1	3	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	3	2	2	2	4	4	2	4	3	3	4	1	1	4
Que.	46	47													
Ans.	1	2	[

EXERCISE-III

Master Your Understanding

EXERCISE-III(A) NCERT BASED QUESTIONS

- "Only green part of the plants could release oxygen" this is shown by –
 - (1) Priestley
 - (2) Moll
 - (3) Ingenhousz
 - (4) Julius Von Sachs

PS0163

- 2. In Calvin cycle which step involve utilisation of 2 molecules of ATP for phosphorylation and two of NADPH₂ per CO₂ molecule fixed?
 - (1) Regeneration
 - (2) Carboxylation
 - (3) Reduction
 - (4) All of above

PS0164

- **3**. Which character make C_4 plants special?
 - (1) Special type of leaf anatomy
 - (2) They can tolerate high temperature
 - (3) Show response to high light intensities
 - (4) All of the above

PS0165

- 4. Most abundant enzyme in the world is
 - (1) Collagen
 - (2) RuBisCO
 - (3) PEPcase
 - (4) Pyruvate dikinase

PS0166

- **5**. For every CO₂ molecule entering the Calvin cycle, required energy is :-
 - (1) 3 ATP and 2 NADPH
 - (2) 2 ATP and 3 NADPH
 - (3) 3 ATP and 3 NADPH
 - (4) 2 ATP and 2 NADPH

- **6**. In C₄ plants, bundle sheath cells are characterised by :-
 - (1) Large number of chloroplasts
 - (2) Thick walls impervious to gaseous exchange
 - (3) No intercellular spaces
 - (4) All the above

PS0169

- **7**. In C₄ plants photorespiration does not occur, due to:-
 - (1) Presence of RubisCO enzyme
 - (2) Presence of high light intensity
 - (3) Increased concentration of CO₂ at RuBisCO enzyme site
 - (4) Presence of bundle sheath cells.

PS0171

- **8**. In photosynthesis during ATP formation accumulation of protons occurs :-
 - (1) in lumen of thylakoid
 - (2) in stroma of chloroplast
 - (3) in periplastidial space
 - (4) at outer surface of thylakoid

PS0172

- **9**. By using the bell jar, which of the following showed that sunlight is essential to plant process that purifies the air?
 - (1) Joseph Priestley
 - (2) Julius Von Sachs
 - (3) T.W. Engelmann
 - (4) Jan Ingenhousz

PS0173

- **10**. Radioisotopic technique was used to prove some facts about :-
 - (1) light reaction of photosynthesis
 - (2) biosynthetic phase of photosynthesis
 - (3) Both (1) and (2)
 - (4) Different shapes of chloroplasts in plants

PS0174

Biology: Plant Physiology

11. Represented below is the graph showing action spectrum of photosynthesis superimposed on absorption spectrum of chlorophyll-a. Which one of the following is **correct** for this?

- (1) There is a complete one to one overlap between the absorption and action spectrum
- (2) By this overlapping it can be concluded that chlorophyll-a is the chief pigment of photosynthesis
- (3) This overlapping shows that only chlorophyll-a absorb the entire light energy
- (4) These graphs show that photosynthesis occurs only in the wavelengths of blue and red light

PS0190

- **12**. The plants with Hatch and Slack pathway are adapted to :-
 - (1) humid temperate regions
 - (2) dry temperate regions
 - (3) humid tropical regions
 - (4) dry tropical regions

PS0176

- **13**. Which of the following is correct?
 - (1)The C₃ and C₄ plants respond similarly to CO₂ concentrations
 - (2)At low light conditions C₄ plats show increase in the rates of photosynthesis
 - (3)C₄ plants not respond to high temperature
 - (4) The C₃ and C₄ plants respond differently to CO₂ concentrations

PS0249

- **14**. Word dark reaction for biosynthetic phase of photosynthesis is misnomer word because:-
 - (1) Dark reaction occur during dark
 - (2) Dark reaction occur during day
 - (3) Dark reaction is completely free from light
 - (4) Dark reaction occur during short dark intervals

PS0178

- **15**. Photosynthetic photosystem is consist of :-
 - (1) Reaction centre only
 - (2) LHC only
 - (3) Both LHC & reaction centre
 - (4) Proteins only

PS0179

- 16. In grana lamellae, presence of which of the following specify that 'z' scheme found only in grana lamellae?
 - (1) PS-I, PS-II
 - (2) PS-II & NADP reductase
 - (3) PS-I & NADP reductase
 - (4) Mg++

PS0180

- 17. An elegant experiment with an aquatic plant showed that in bright sunlight, small bubbles were formed around the green parts while in the dark they did not. It was done by:-
 - (1) Jan Ingenhousz
- (2) Von Sachs
- (3) Priestley
- (4) Van Niel

PS0183

- **18.** Based on his studies of purple & green bacteria who demonstrated that photosynthesis is essentially a light dependent reaction in which hydrogen from a suitable oxidisable compound reduces CO₂ to carbohydrates?
 - (1) Van Niel
- (2) Von Sachs
- (3) Calvin
- (4) Priestley

ALLEN®
Pre-Medical

- **19**. Which of following is correct about dark reaction?
 - It is not directly light driven but are dependent on products of light reaction (ATP & NADPH)
 - (2) It occurs in stroma of chloroplast by enzymatic reactions
 - (3) Both (1) & (2)
 - (4) It occurs in stroma lamellae

PS0185

- **20**. Which of the following is most crucial step of Calvin cycle?
 - (1) Carboxylation
 - (2) Reduction
 - (3) Regeneration
 - (4) Glycolytic reversal

PS0186

- **21**. How many ATP are required for regeneration of RUBP in one Calvin cycle?
 - (1) 6 ATP
- (2) 1 ATP
- (3) 3 ATP
- (4) 12 ATP

PS0187

22. Find out the **correct match** from the following table :-

	Column-I	Column-II	Column-III
(i)	Photochemical phase	Photosystem II	Oxygen release
(ii)	Paper Chromatography	Chlorophyll-b	Yellow orange
(iii)	Carotenoids	Chief pigment	Red light absorption

- (1) (i) only
- (2) (i) and (ii)
- (3) (iii) only
- (4) (ii) and (iii)

PS0192

- 23. During photosynthesis, plants mainly utilise the red and blue regions of visible spectrum, for the first time it was concluded by:
 - (1) Jan Ingenhousz
 - (2) Joseph Priestley
 - (3) T.W. Engelmann
 - (4) Cornelius Van Niel

PS0250

- **24.** Which of the following conclusions regarding photosynthesis was proved by using radioisotopic techniques?
 - (1) Light is essential
 - (2) O₂ comes from H₂O and not from CO₂
 - (3) Glucose is stored as starch
 - (4) Exchange of gases with environment

PS0251

- **25.** The dark reactions of the photosynthesis :
 - (1) occur in darkness
 - (2) are not light dependent
 - (3) are not directly light driven
 - (4) occur in membrane system of chloroplast

PS0252

- **26.** Electrons from which of following reduces NADP+ to NADPH+H+ during Z-scheme of photosynthesis?
 - (1) Photosystem-I
 - (2) Water
 - (3) Carbon dioxide
 - (4) Photosystem-II

PS0253

- **27.** During photosynthesis the stroma lamellae of chloroplast could perform :
 - (1) the process of dark reaction in which ATP utilised
 - (2) the process of light reaction which produce NADPH+H+
 - (3) the process of dark reaction which utilise NADPH+H+
 - (4) the process of light reaction which produce ATP

Biology: Plant Physiology

Pre-Medical

- **28.** Which of the following statements are correct regarding synthesis of ATP in chloroplast during photosynthesis?
 - (A)Splitting of water in stroma helps in creation of proton gradient
 - (B) Cytochrome complex helps in the release of protons in the lumen of thylakoid by accepting electrons from hydrogen carrier.
 - (C) Movement of protons across the membrane to the stroma through the ${\bf F}_0$ of the ATP synthesis.
 - (D)Reduction of NADP+ to NADPH+H+ is also a cause for creation of proton gradient.
 - (1) All statements are correct
 - (2) C and D
 - (3) A and B
 - (4) B, C and D

PS0255

29. What is the correct ratio of ATP utilisation in steps of Calvin cycle?

(1) Reduction: Regeneration::1:1

(2) Reduction: Regeneration:: 2:1

(3) Reduction: Regeneration:: 2:2

(4) Reduction: Regeneration::1:2

PS0256

- **30.** The cells of C₄ plants those are rich in RuBisCO enzyme, also have which of the following characteristic (s)?
 - (1) Intercellular spaces absent
 - (2) Thick walls impervious to gaseous exchange
 - (3) Large number of chloroplast
 - (4) All of the above

PS0257

- **31.** The productivity is better in C₄ plants because:
 - (1) They increase the intracellular concentration of CO₂ in mesophyll cells

- (2) In these plants RuBisCO has much greater affinity for O₂ than for CO₂
- (3) These plants can prevent competitive binding phenomena related to RuBisCO
- (4) These plants minimise the carboxylase activity of RuBisCO

PS0258

- **32.** C₃ plants respond to higher CO₂ concentration by showing increased rates of photosynthesis because:
 - (1) Current availability of CO₂ levels is limiting to the C₃ plants
 - (2) C_3 plants show saturation at about 360 $\mu\ell L^{-1}$ concentration of CO_2
 - (3) These plants responds to high CO₂ concentration even in low light conditions
 - (4) In these plants RuBisCO shows only carboxylation

PS0259

33. $2H_{9}A + CO_{9} \rightarrow 2A + CH_{9}O + H_{9}O$

in this given equation H₂A represents to:

- (1) Suitable reducible compounds
- (2) Suitable oxidisable compound
- (3) Suitable buffer
- (4) Both (1) and (2)

PS0260

- **34.** The membrane system of chloroplast is responsible for :
 - (1) Trapping the light energy
 - (2) Synthesis of ATP & NADPH
 - (3) Enzymatic reactions for CO₂ incorporation
 - (4) Both (1) and (2)

- **35.** How does PS-II supply electrons continuously?
 - (1) by removing electrons from photon
 - (2) by removing electrons from H₂O
 - (3) by removing electrons from CO₂
 - (4) by removing electrons from constituent carotenoids

- **36.** Which of the following is not always required for chemiosmosis?
 - (1) Membrane
- (2) Proton pump
- (3) OEC
- (4) ATP synthase

PS0263

- **37.** Classification of biosynthetic phase of dark reaction as $C_3 \& C_4$ is primarily based on.
 - (1) Initial CO₂ fixation
 - (2) Final CO₂ assimilation
 - (3) First CO₂ receptor
 - (4) Number of ATP get consumed

PS0264

- **38.** Which of the following is not special about C_4 plants?
 - (1) Responsiveness to high light intensities
 - (2) Lack of photorespiration
 - (3) Greater productivity
 - (4) Scotoactive stomata

PS0265

- **39.** Which of the following is not a plant factor regulating photosynthesis?
 - (1) Age of leaf
 - (2) Number of mesophyll cells
 - (3) Atmospheric CO₂ concentration
 - (4) Amount of chlorophyll

PS0266

- **40.** CO₂ is the major limiting factor for photosynthesis because the concentration of CO₂ is very low in the atmosphere which is:-
 - (1) between 0.01 and 0.02 per cent
 - (2) between 0.02 and 0.03 per cent
 - (3) between 0.03 and 0.04 per cent
 - (4) between 0.06 and 0.07 per cent

PS0267

- 41. (a) Formation of ATP and NADPH
 - (b) Use of ATP
- (c) Reduction of PGA
- (d) Water splitting (e) Oxygen release Which of the above processes are included in the dark reaction of photosynthesis?
- (1) a, b and c
- (2) c and e
- (3) b and c
- (4) b, c and e

PS0268

- **42.** Which of the following statements is correct in relation to the photosynthesis?
 - (1) It is the redox reaction during which reduction of H₂O and oxidation of CO₂ occurs
 - (2) First of all it started in Chlorella
 - (3) It converts light energy into chemical energy in night
 - (4) Photosynthesis results in synthesis of sugar

PS0269

43. Regarding to given curves select the incorrect identification:-

- (1) A is the absorption spectrum of chl-a
- (2) B is the absorption spectrum of the chl-b
- (3) C is the absorption spectrum of chl-b
- (4) D is the absorption spectrum of carotenoids.

Biology: Plant Physiology

Pre-Medical

- **44.** Which of the following step(s) of Calvin cycle require(s) both ATP and NADPH(H⁺)?
 - (1) Carboxylation and regeneration
 - (2) Carboxylation
 - (3) Reduction
 - (4) Regeneration

PS0271

- **45.** During photosynthesis, fixation of one CO₂ molecule in maize (A) and tomato (B) plant require :-
 - (1) [A] 5 ATP & 2 NADPH + $2H^+$
 - [B] 3 ATP & 2 NADPH + 2H+
 - (2) $[A] 3 ATP & 2 NADPH + 2H^+$
 - [B] 3 ATP & 2 NADPH + 2H+
 - (3) [A] 2 ATP & 2 NADPH + 2H+
 - [B] 3 ATP & 2 NADPH + 2H+
 - (4) [A] 30 ATP & 12 NADPH + 12H+
 - [B] 18 ATP & 12 NADPH + 12H⁺

PS0272

- **46.** How many carbons are present in primary CO₂ acceptor in *Sorghum*?
 - (1)5

(2)4

- (3) 3
- (4) 2

PS0273

- **47.** How many electrons are required to produce sufficient reducing power [NADPH + H⁺] to fix 6 CO₂ molecules to form glucose?
 - (1)6 electrons
- (2) 12 electrons
- (3) 18 electrons
- (4) 24 electrons

PS0274

- **48.** Which of the following is correct for photosynthesis?
 - use light energy to drive the synthesis of organic compounds
 - (2) primary source of all food on earth
 - (3) responsible for release of oxygen into the atmosphere
 - (4) All of the above

PS0275

- **49.** Studies by which of the following scientists showed that the green substance in plants is located in special bodies within plant cells?
 - (1) T.W. Engelmann
 - (2) Julius Von Sachs
 - (3) Cornelius Van Niel
 - (4) Joseph Priestley

PS0276

- **50.** Action spectrum of photosynthesis roughly resembles the :-
 - (1) absorption spectrum of chlorophyll a
 - (2) absorption spectrum of chlorophyll b
 - (3) both (1) and (2)
 - (4) absorption spectrum of carotenoids

PS0277

- **51.** Which of the following is correct for the carbon reactions of photosynthesis?
 - (1)They occur in the membranous system of chloroplast
 - (2) They are not light dependent
 - (3) They synthesize sugar, ATP and NADPH
 - (4) They are not directly light driven

PS0278

- **52.** $2H_2O \longrightarrow 4H^+ + O_2 + 4e^-$
 - Above reaction is a part of :-
 - (1)biosynthetic phase of photosynthesis in C₃ plants
 - (2)Z-Scheme of light reaction of photosynthesis
 - (3) Hatch and slack pathway
 - (4) Cyclic photophosphorylation

PS0279

- **53.** Respectively during the creaction of proton gradient and breakdown of proton gradient in chloroplast, protons move:-
 - (1) from the stroma to cytoplasm and from the cytoplasm to stroma
 - (2) from the cytoplasm to stroma and from stroma to cytoplasm
 - (3) from the thylakoid lumen to stroma and from the stroma to thylakoid lumen
 - (4) from the stroma to thylakoid lumen and from the thylakoid lumen to stroma

- **54.** In photosynthesis (Choose the correct one):-
 - (1) Phosphorylation can occur in light reaction only
 - (2) Phosphorylation can occur in biosynthetic phase only
 - (3) Phosphorylation can occur in both light reaction and biosynthetic phase
 - (4) Phosphorylation not occurs at all

- **55.** Which of the following is a probable reason that why cyclic photophosphorylation takes place in photosynthesis?
 - (1) To supply extra carbondioxide to Calvin cycle
 - (2) To ulilise the light of wavelength of 680 nm which is not utilised in noncyclic photophosphorylation
 - (3) To produce extra NADPH for biosynthetic phase
 - (4) To meet the difference in number of ATP and NADPH

PS0282

- **56.** C₄ plants are special plants having Kranz anatomy in their leaves, here term 'Kranz' is a reflection of :-
 - (1) large number of chloroplasts in mesophyll cells
 - (2) capacity to tolerate high temperatures
 - (3) absence of chloroplasts in bundle sheath cells
 - (4) ring like arrangement of cells

PS0283

- **57.** During the dark reaction of photosynthesis in C_4 plants (Choose the correct one) :-
 - (1) Regeneration step occurs in mesophyll cell only
 - (2) Regeneration step occurs in bundle sheath cell only
 - (3) Regeneration steps occur in both mesophyll cell and bundle sheath cell
 - (4) There is no step of regeneration

PS0284

58. RuBP+...A... $\xrightarrow{\text{RuBisCO}}$ 2 × Phosphoglycerate RuBP+...B... $\xrightarrow{\text{RuBisCO}}$ Phosphoglycerate +

Phosphoglycolate

Choose correct match for A and B from given options :-

- $(1)A = NADPH, B = CO_2$
- $(2)A = O_2, B = CO_2$
- $(3)A = CO_2, B = O_2$
- (4) $A = CO_2$, B = NADPH

PS0285

- **59.** Before the discovery of RuBP as primary acceptor of CO₂ in Calvin cycle, it was believed that the primary acceptor would be:-
 - (1) a 6-carbon compound
 - (2) a 2-carbon compound
 - (3) a 3-carbon compound
 - (4) a 4-carbon compound

PS0286

EXERCISE-III(B) ANALYTICAL QUESTIONS

- **60.** Glycolate accumulates in chloroplast at :-
 - (1) Low temp.
 - (2) Low CO₂
 - (3) Visible light illumination
 - (4) High CO,

PS0189

- **61**. For the synthesis of one molecule of sucrose, how may ATP molecules are required in reduction step of Calvin cycle?
 - (1) 24 ATP
- (2) 18 ATP
- (3) 2 ATP
- (4) 12 ATP

PS0175

- **62.** Which of the following is the product of oxidation during photosynthesis?
 - (1) Carbondioxide
- (2) Glucose
- (3) Water
- (4) Oxygen

Pre-Medical

Biology: Plant Physiology

- 63. In Calvin cycle, CO₂ is fused with primary acceptor molecule to form 3C compound phosphoglycerate. If in this reaction CO₂ provides one carbon then how many carbons are present in primary acceptor molecule?
 - (1) Five carbons
- (2) Two carbons
- (3) Six carbons
- (4) Three carbons

PS0194

- **64.** In photosynthesis, NADPH + H⁺ are oxidised in :-
 - (1) Calvin cycle
 - (2) noncyclic photophosphorylation
 - (3) cyclic photophosphorylation
 - (4) Z-scheme

PS0195

- **65.** Enzyme, which can catalyse both carboxylation and oxygenation of RuBP in the chloroplast, is **not** found in which of the following cells ?
 - (1) Mesophyll cells of C₄ plants
 - (2) Mesophyll cells of C₃ plants
 - (3) Mesophyll cells of CAM plants
 - (4) Bundle sheath cells of C₄ plants

PS0196

- 66. The product of light reaction of photosynthesis, which is not common between cyclic and non cyclic photophosphorylation and is not utilized in Calvin cycle, is :-
 - (1) O₂
- (2) ATP
- (3) NADPH₂
- (4) O_2 and ATP

PS0197

- **67.** Which phase of Calvin cycle does/do not use any energy rich molecule?
 - (1) Carboxylation only
 - (2) Carboxylation and reduction
 - (3) Reduction and regeneration
 - (4) Reduction only

PS0201

- **68.** The C_4 plants differ from C_3 plants with reference to the :-
 - (1) Primary acceptor of CO₂ in dark reaction
 - (2) Type of end product of photosynthesis
 - (3) Number of NADPH₂ that are consumed in synthesis of hexose
 - (4) Type of pigments involved in photosynthesis.

PS0202

- **69.** The common feature between non-cyclic and cyclic photophosphorylation is :-
 - (1) Proton gradient formation
 - (2) Release of O₂
 - (3) Formation of NADPH + H+
 - (4) Photolysis of water

PS0204

- **70.** The second acceptor of CO₂ in C₄ plants is :-
 - (1) PEP
- (2) Malate
- (3) Aspartate
- (4) RuBP

PS0205

Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ans. 3 3 4 2 1 4 3 1 4 3 2 4 4 2 3 Que. 16 17 10 10 20 21 20 21 20 21 20 21 20<

Que.	1		3	4	Э	Ö	/	0	9	10	11	12	15	14	15
Ans.	3	3	4	2	1	4	3	1	4	3	2	4	4	2	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	1	3	1	2	1	3	2	3	1	4	4	2	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	1	2	4	2	3	1	4	3	3	3	4	3	3	1
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	4	4	2	3	4	2	4	3	4	4	3	3	2	2
Que.	61	62	63	64	65	66	67	68	69	70					
Ans.	1	4	1	1	1	1	1	1	1	4					