Lecture-8

Sushrut Tadwalkar; 55554711

September 22, 2023

Quote of the day

"Do you know about Dressew downtown on Hastings street? It's amazing. This where people who know how to make things with fabric go." - Dr. Philip Loewen, 09/20/2023

"There are politics jokes ready here – 'no matter how far to the right we start out, a point further right will escape the tolerance band." - Dr. Philip Loewen, 09/20/2023

1 Sequences and Limits

Definition: Sequence

A <u>sequence</u> in a given set \mathcal{X} is simply a *function* $x : \mathbb{N} \to \mathcal{X}$. We will often write x_n instead fo x(n) and list the values.

Example 1. $x = (x_1, x_2, x_3, \dots)$.

The order of a sequence matters; the sequence $x = (x_1, x_2, x_3, \dots)$ is different from the set $\{x_1, x_2, x_3, \dots\}$.

Example 2. Consider $x_n = (-1)^{n+1}$ for $n \in \mathbb{N}$. This sequence has the set $\{(-1)^{n+1} | n \in \mathbb{N}\} = \{-1, +1\}$.

Definition: Convergence

Given a sequence $(x_n)_{n\in\mathbb{N}}$ and a point \hat{x} , all in $\mathcal{X}\in\mathbb{R}$, saying the sequence (x_n) converges to \hat{x} means for all $\varepsilon>0$ there exists $N\in\mathbb{N}$ such that for all $n\in\mathbb{N}$, $|x_n-\hat{x}|<\varepsilon$.

In a simplified form, a real-valued sequence $(x_n)_{n\in\mathbb{N}}$ converges when

$$\exists \hat{x} \in \mathbb{R} \text{ such that } \lim_{n \to \infty} x_n = \hat{x}.$$

Notation 1. When this happens, we write

$$\hat{x} = \lim_{n \to \infty} x_n \text{ or } x_n \to \infty \text{ or } x_n \xrightarrow[n \to \infty]{} \hat{x}.$$

Definition: Divergence

A sequence is said to diverge when it *does not* converge.

Concretely, $(x_n)_{n\in\mathbb{N}}$ diverges iff for all $\hat{x}\in\mathbb{R}$ there exists $\varepsilon>0$, and for all $N\in\mathbb{N}$ there exists n>N such that $|x_n-\hat{x}|\geq\varepsilon$.

1

Example 3. Some simple examples that showcase the above definitions are:

(a)
$$x_n = \frac{1}{n}$$
 converges to $\hat{x} = 0$.

Proof. Given $\varepsilon > 0$, note $\frac{1}{\varepsilon} \in \mathbb{R}$ and Archimedes says there exists $n \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. For any n > N we will have

$$|x_n - \hat{x}| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} < \frac{1}{N} < \varepsilon.$$

(b) If $x_n = 1$ converges to $\hat{x} = 1$.

Proof. Given $\varepsilon > 0$ pick N = 320. Clearly, every n > N makes $|x_n - \hat{x}| = 0 < \varepsilon$.

Now,

Example 4. Consider some slightly harder examples:

(a) Suppose

$$x_n = \frac{\sin n}{1 + n + n^2 + n^3 + n^4 + n^5}.$$

For every $n \in \mathbb{N}$,

$$|x_n - \hat{x}| = \frac{|\sin n|}{1 + n + n^2 + \dots + n^5} < \frac{1}{0 + n + 0 + \dots + 0}.$$

Furthermore, $\frac{1}{n} < \varepsilon$ whenever $n > \frac{1}{\varepsilon}$. We pick some $N > \frac{1}{\varepsilon}$ and every n > N will have $\frac{1}{n} < \varepsilon$ and make $|x_n - \hat{x}| < \varepsilon$.

Note 1. For efficiency, keeping n^5 rather than n would give a much smaller N. However, we don't particularly care about efficiency, we prioritize <u>existence</u>.

(b) The sequence $x_n = \frac{n^2 - 320^{3/2}}{2n^2 - 801}$ converges to $\hat{x} = \frac{1}{2}$.

Proof. Given $\varepsilon > 0$, choose integer $N \ge \max\{30, \left(\frac{750}{\varepsilon}\right)^2\}$. We see that every for $n > n > 30 \implies n^2 > 900$, giving us $2n^2 - 801 = n^2 + (n^2 - 801) > n^2$.

By Archimedean property, $\sqrt{n} > \frac{750}{\varepsilon}$, if n > N,

$$\begin{aligned} |x_n - \hat{x}| &= \left| \frac{n^2 - 320n^{3/2}}{2n^2 - 801} - \frac{1}{2} \right| \\ &= \left| \frac{2(n^2 - 320^{3/}) - (2n^2 - 801)}{2(2n^2 - 801)} \right| \\ &\leq \frac{640n^{3/2} + 801}{2(2n^2 - 801)} \text{ (by triangle inequality)}, \\ &\leq \frac{640n^{3/2} + 801n^{3/2}}{2n^2} \\ &\leq \frac{1500n^{3/2}}{2n^2} = \frac{750}{\sqrt{n}} \\ &\leq \frac{750}{750/\varepsilon} = \varepsilon, \text{ as required.} \end{aligned}$$

 $(c) \lim_{n\to\infty} n^{\frac{1}{n}} = 1.$

Proof. Define $x_n = n^{\frac{1}{n}} - 1$; each $x_n > 0$. Recall that by the binomial theorem, $(1+a)^n = 1 + na + \frac{n(n-1)}{2}a^2 + \dots + na^{n-1} + a^n$; thus,

$$(1+a)^n \ge \frac{n(n-1)}{2}a^2$$
 for all $a \ge 0$.

Thus, when $n \geq 2$, we have $x_n > 0$, i.e., $n = (1+x_n)^n \geq \frac{n(n-1)}{2}x_n^2 \implies 0 < x_n^2 < \frac{2}{n(n-1)}n$, i.e., $x_n \leq \sqrt{\frac{2}{n-1}}$. Thus, we solve for $\sqrt{\frac{2}{n-1}} < \varepsilon$ for $\frac{2}{n-1} < \varepsilon^2 \iff \frac{2}{\varepsilon^2} < n-1$. So, choosing $N \geq \max\left\{2, 1 + \frac{2}{\varepsilon^2}\right\}$ is what we require.