XS3310 Teoría Estadística

I Semestre 2020

2021-06-21

class: center, middle

¿Qué hemos visto hasta ahora?

Todo sobre estimadores puntuales + pivotes e intervalos de confianza, IC con bootstrap. Contrastes de hipótesis y + bootstrap.

¿Qué vamos a discutir hoy?

Un breve repaso de inferencia estadística para entender los errores conceptuales más comunes.

Fisher, Neyman-Pearson, y el híbrido NHST

- Los contrastes de hipótesis que se estudian en los cursos de carrera y de servicio, pueden ser controversiales.
- La razón de esa controversia tiene que ver con las diferencias entre dos corrientes distintas dentro de la estadística clásica: Fisher vs Neyman-Pearson
- Hoy vamos a repasar este artículo: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00223/full para aclarar algunas dudas acerca de lo que Uds han aprendido hasta ahora en la carrera de estadística.

Cronología

- Test de significancia: Fisher ayudó a desarrollarlo y lo promovió desde el año 1925.
- Test de hipótesis estadísticas: desarrollado por Neyman y Pearson (1928)
- Test de significancia de hipótesis nulas (NHST por sus siglas en inglés). Esta propuesta híbrida fue hecha por Lindquist (1940).
- Estas dos corrientes (y un tercer híbrido) pertenecen a la estadística clásica, sin embargo, existen otras corrientes como el contraste de hipótesis de Bayes (Lindley, 1965) y la corriente de teoría de decisión de Wald (1950) que no se discutirán hoy.

La propuesta de Fisher

- Paso 1: seleccione una prueba adecuada.
- Paso 2: configure la hipótesis nula (H0) / Noten que solo es la hipótesis nula, no la alternativa.
- Paso 3: calcule la probabilidad teórica de los resultados bajo H0 todo el procedimiento está basado en el supuesto de que la hipótesis nula es cierta.
- Paso 4: evalue la importancia estadística de los resultados ¿el valor p es muy pequeño o muy grande? ¿cuál es el nivel de significancia? Corrección por pruebas múltiples.
- Paso 5: interprete la significación estadística de los resultados

Discusión - Fisher

- Dudar o negar la H0 dado un valor p bajo no necesariamente "apoya" o "prueba" que lo contrario es cierto.
- Más importante aún, no "apoya" ni "prueba" que cualquier otra cosa que se haya hecho en la investigación tampoco explique los resultados (Macdonald, 1997).
- Para Fisher, un buen control del diseño de la investigación (Fisher, 1955; Johnstone, 1987; Cortina y Dunlap, 1997), especialmente la asignación aleatoria, es fundamental para hacer inferencias razonables basadas en los resultados de las pruebas de significancia (Fisher, 1954; Neyman, 1967).
- Finalmente, consideró los resultados significativos como meros puntos de datos y alentó el uso del metanálisis para avanzar más, combinando resultados significativos y no significativos de proyectos de investigación relacionados (Fisher, 1960; Neyman, 1967).

Puntos destacados (+) - Fisher

- Flexibilidad. Debido a que la mayor parte del trabajo se realiza a posteriori, el enfoque de Fisher es bastante flexible, lo que permite llevar a cabo cualquier cantidad de pruebas.
- Más adecuado para proyectos de investigación ad-hoc o estudios explotarios.
- Inferencial. El procedimiento de Fisher es en gran medida inferencial, desde la muestra hasta la población de referencia, aunque de alcance limitado, principalmente restringido a poblaciones que comparten parámetros similares a los estimados a partir de la muestra (Fisher, 1954, 1955; Macdonald, 2002; Hubbard, 2004).

Puntos destacados (-) - Fisher

- Sin análisis de potencia. Fisher habló de sensibilidad de la prueba, sin embargo, nunca creó un procedimiento matemático para controlar la sensibilidad de una manera predecible (Macdonald, 1997; Hubbard, 2004).
- No hay hipótesis alternativa. Fisher consideró implícitamente hipótesis alternativas, que son la negación
 de las hipótesis nulas, tanto que para él la tarea principal del investigador, y la definición de un
 proyecto de investigación bien hecho, fue rechazar sistemáticamente con suficiente evidencia el nulo
 correspondiente.

La propuesta de Neyman-Pearson

A priori:

- Paso 1: configure el tamaño del efecto esperado en la población.
- Paso 2: seleccione una prueba óptima.
- Paso 3: configure la hipótesis principal (HM). Error tipo I. Alfa (α). La región crítica (CRtest) y el valor crítico (CVtest, Testcrit) de una prueba.
- Paso 4: configure la hipótesis alternativa (HA). Error tipo II Beta (β) .
- Paso 5: calcule el tamaño de muestra (N) requerido para una buena potencia (1β)
- Paso 6: calcule el valor crítico de la prueba.

La propuesta de Neyman-Pearson

A posteriori:

- Paso 7: calcule el valor de la prueba para la investigación (RVtest).
- Paso 8 decida a favor de la hipótesis principal o alternativa.

Discusión - Neyman-Pearson

- El enfoque de Neyman-Pearson lleva a una decisión entre hipótesis (Neyman y Pearson, 1933; Spielman, 1978). En la práctica, realmente no hace mucha diferencia si acepta HM o HA, según corresponda (Macdonald, 1997). De hecho, aceptar HM o HA es beneficioso ya que evita la confusión con el enfoque de Fisher, que solo puede rechazar H0 (Perezgonzalez, 2014).
- Informar el valor de la prueba de investigación observada es relevante bajo el enfoque de Neyman-Pearson, ya que sirve para comparar el valor observado con el valor crítico a priori.

• También se supone que las hipótesis de Neyman-Pearson son ciertas. Esto significa que HM y HA no pueden ser, al mismo tiempo, falsas, ni demostrarse o falsificarse a posteriori. El único camino a seguir es actuar como si la conclusión a la que llegara la prueba fuera cierta, sujeto a una probabilidad α o β de cometer un error de Tipo I o Tipo II, respectivamente (Neyman y Pearson, 1933; Cortina y Dunlap, 1997).

Puntos destacados (+) - Neyman-Pearson

- Mejor potencia. El enfoque de Neyman-Pearson es más poderoso que el de Fisher para probar datos a largo plazo (Williams et al., 2006).
- Más adecuado para proyectos de muestreo repetido. Utilizando la misma población y pruebas, como el control de calidad industrial o las pruebas de diagnóstico a gran escala (Fisher, 1955; Spielman, 1973).
- Deductivo. El enfoque es deductivo y bastante mecánico una vez que se han establecido los pasos a priori (Neyman y Pearson, 1933; Neyman, 1942; Fisher, 1955).

Puntos destacados (-) - Neyman-Pearson

- Menos flexible que el enfoque de Fisher. Debido a que la mayor parte del trabajo se realiza a priori, este enfoque es menos flexible para acomodar pruebas no pensadas de antemano y para realizar investigaciones exploratorias (Macdonald, 2002).
- Por defecto se adapta fácilmente al enfoque de Fisher. Como este enfoque parece superficialmente similar al de Fisher, es fácil confundir ambos y olvidar lo que hace que el enfoque de Neyman-Pearson sea único (Lehman, 1993). Si la información proporcionada por la hipótesis alternativa (ES y β) no se tiene en cuenta para diseñar una investigación con buena potencia, el análisis de datos se basa en la prueba de significancia de Fisher.

Null hypothesis significance testing (NHST) - el método híbrido

- El NHST es el procedimiento más común utilizado para probar datos hoy en día, aunque bajo el supuesto falso de probar hipótesis sustantivas (Carver, 1978; Nickerson, 2000; Hubbard, 2004; Hager, 2013).
- NHST es, en realidad, una amalgama de las teorías de Fisher y Neyman-Pearson, que se ofrece como un enfoque continuo para las pruebas (Macdonald, 2002; Gigerenzer, 2004). Tampoco es una amalgamación claramente definida y, dependiendo del autor que lo describa o del investigador que la use, puede desviarse más hacia el enfoque de Fisher o hacia el enfoque de Neyman-Pearson.
- Desafortunadamente, si comparamos los enfoques de Fisher y Neyman-Pearson frente a frente, encontramos que son incompatibles en la mayoría de las cuentas (ver tabla en la siguiente filmina).
- Sin embargo, en general, la mayoría de las amalgamaciones siguen a Neyman-Pearson de manera procesal pero a Fisher filosóficamente (Spielman, 1978; Johnstone, 1986; Cortina y Dunlap, 1997; Hubbard, 2004).

Tabla comparativa

Concept	Fisher		Neyman-Pearson
Test object	Data—P(D H ₀)	=	Data—P(D H _M)
NHST	•	Data as if testing a falsifiable hypothesis— $P(H_0 D)$	-
Approach	A posteriori	≠	A priori
NHST	-	A posteriori, sometimes both	← (partly)
Research goal	Statistical significance of research results	<i>≠</i>	Deciding between competing hypotheses
NHST	-	Statistical significance, also used for deciding between hypotheses	-
Hs under test	H ₀ , to be nullified with evidence	≈	H _M , to be favored against H _A
NHST	•	Both $(H_0 = H_M)$	-
Alternative hypothesis	Not needed (implicitly, "No H _{0"})	≠	Needed. Provides ES and β
NHST	•	H_A posed as 'No H_0 ' (ES and β sometimes considered)	≠ (partly)
Prob. distr. of test	As appropriate for H ₀	=	As appropriate for H _M
NHST	-	As appropriate for H ₀	-

Figure~1:~Fuente:~https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00223/full

Tabla comparativa (continuación)

Cut-off point NHST	Sig identifies noteworthy results; can be gradated; can be corrected a posteriori	\neq $\mbox{Sig} = \alpha \mbox{, can be gradated, can be}$ $\mbox{corrected a posteriori}$	Common to CV_{test} , α , β , and MES; cannot be gradated; cannot be corrected a posteriori \leftarrow (partly)
NHST	-	Either	-
Statistic of interest	p-value, as evidence against H ₀	<i>≠</i>	CV _{test} (p-value has no inherent meaning but can be used as a proxy instead)
NHST	•	$\emph{p}\text{-value},$ used both as evidence against H_0 and a proxy to accept H_A	-
Error prob.	α possible, but irrelevant with single studies	≠	$\alpha = \text{Type I error prob. } \beta = \text{Type II}$ error prob.
NHST	(partly) →	p -value = α = Type I error in single studies (β sometimes considered)	← (partly)

Figure 2: Fuente: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00223/full

Tabla comparativa (continuación)

Result falls outside critical region	е	Ignore result as not significant	≠	Accept H _M if good power; conclude nothing otherwise
NHST	NHST	ST 🗢	Either ignore result as not significant; or accept H_0 ; or conclude nothing	-
Result falls in critic region	cal	Reject H ₀	≠	Accept H_A (= Reject H_M in favor of H_A)
	NHST	-	Either	-
Interpretation of re	esults	Either a rare event occurred or H ₀ does not explain the research data	<i>≠</i>	H_A explains research data better than H_M does (given α)
NHST	NHST		H_A has been proved / is true; or H_0 has been disproved / is false; or both	
Next steps		Rejecting H ₀ does not automatically justify not H ₀ . Replication needed, meta-analysis is useful.	<i>≠</i>	Impossible to know whether α error has been made. Repeated sampling of same population needed, Monte Carlo is useful.
	NHST		None (results taken as definitive, especially if significant); further studies may be sometimes recommended (especially if results are not significant)	

Figure 3: Fuente: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00223/full

Ejercicio para pensar

- Hagan una lista de los cursos que han llevado de la carrera de estadística. Identifiquen en cuáles cursos han usado los conceptos de cada tendencia: Fisher, Neyman-Pearson y/o NHST.
- Otros ejercicios:
- Práctica de contrastes (para hacerla en sus casas): http://math.arizona.edu/~jwatkins/r-composite. pdf

class: center, middle

¿Qué discutimos hoy?

Repaso de la inferencia clásica, específicamente las pruebas de hipótesis.

¿Qué nos falta para el II Parcial?

Estadística Bayesiana.