

HCC/HCF4094B

8-STAGE SHIFT-AND-STORE BUS REGISTER

- 3-STATE PARALLEL OUTPUTS FOR CONNECTION TO COMMON BUS
- SEPARATE SERIAL OUTPUTS SYN-CHRONOUS TO BOTH POSITIVE AND NEGA-TIVE CLOCK EDGES FOR CASCADING
- MEDIUM SPEED OPERATION 5MHz AT 10V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4094B** (extended temperature range) and **HCF4094B** (intermediate temperature range) are monolithic integrated circuits available in 16-lead dual in-line plastic or ceramic packageand plastic micropackage.

The HCC/HCF4094B is an 8-stage serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transitions. The data in each shift register stage is transferred to the storage register when the STROBE input is high. Data in the storage register appears at the outputs whenever the OUTPUT-ENABLE signal is high. Two serial outputs are available for cascading a number of HCC/HCF4094B devices. Data is available at the Qs serial output terminal on positive clock edges to allow for high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information, available at the Q's terminal on the next negative clock edge, provides a means for cascading HCC/HCF4094B devices when the clock rise time is slow.

June 1989 1/14

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for T _{op} = Full Package-temperature Range	100	mW
T _{op}	Operating Temperature : HCC Types HCF Types	– 55 to + 125 – 40 to + 85	°C ℃
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C

^{*} All voltage values are referred to Vss pin voltage.

LOGIC DIAGRAMS

TIMING DIAGRAM

TRUTH TABLE

TRUTH TABLE

CL^Δ	Outputs		Data	Parallel Outputs		Serial Outputs	
OL.	Enable			Q1	QN	QS*	Q'S
$ \mathcal{L} $	0	Х	Х	ОС	ОС	Q7	NC
Ţ	0	Х	Х	ОС	ОС	NC	Q7
	1	0	Х	NC	NC	Q7	NC
	1	1	0	0	Q _N -1	Q7	NC
	1	1	1	1	Q _N -1	Q7	NC
7	1	1	1	NC	NC	NC	Q7

f A = Level Change Logic 1 ≡ High X = Don't Care Logic 0 ≡ Low NC = No Change OC = Open Circuit * At the positive clock edge information in the 7th shift register stage is transferred to the 8th register stage and the Q_S output.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

Note	Unit μΑ
Company Com	
I_L	μА
Types	μΑ
Note	μΑ
HCF Types 0/5 0/10 10 40 0.04 20 150 300	μΑ
Noh	
Types O/15 10 40 0.04 40 300]
Voh Output High Voltage 0/ 5 0/10 0/15 0/10 0/15 0/10 0/15	ļ
Voltage 0/10 < 1 10 9.95 9.95 9.95 VOL Output Low Voltage 5/0 < 1	
O/15 < 1 15 14.95 14.95 14.95 VOL Output Low Voltage 5/0 < 1	
Vol. Output Low Voltage 5/0 < 1 5 0.05 0.05 0.05 0.05 0.05 0.05 VIH Input High Voltage 0.5/4.5 < 1	V
Voltage 10/0 < 1 10 0.05 0.05 0.05 0.05 VIH Input High Voltage 0.5/4.5 < 1	
Note	
ViH Input High Voltage 0.5/4.5 < 1 5 3.5 3.5 3.5 Vil Voltage 1/9 < 1	V
Voltage 1/9 < 1 10 7 7 7 Use of the position of the	
Note	
VIL Input Low Voltage 4.5/0.5 < 1 5 1.15 1.5 1.5 1.5	V
Voltage 9/1 < 1 10 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Toh Output Drive Current HCC Types O/5 2.5 5 -2 -1.6 -3.2 -1.15 O.36 O/15 13.5 15 -4.2 -3.4 -6.8 -2.4 O/5 2.5 5 -1.53 -1.36 -3.2 -1.1 O.36 O/10 9.5 O/10 9.5 10 -1.6 -1.3 -2.6 -0.9 O/15 13.5 15 -4.2 -3.4 -6.8 -2.4 O/5 2.5 5 -1.53 -1.36 -3.2 -1.1 O.36 O/10 9.5 O/10 9.5 10 -1.3 -1.1 -2.6 -0.9 O/15 13.5 15 -3.6 -3.0 -6.8 -2.4 O/5 O/15 13.5 O/15 -3.6 -3.0 -6.8 -2.4 O/15 O	
IOH Output Drive Current HCC Types 0/ 5 2.5 5 - 2 - 1.6 - 3.2 - 1.15 0/ 5 4.6 5 - 0.64 - 0.51 - 1 - 0.36 0/10 9.5 10 - 1.6 - 1.3 - 2.6 - 0.9 0/15 13.5 15 - 4.2 - 3.4 - 6.8 - 2.4 0/ 5 2.5 5 - 1.53 - 1.36 - 3.2 - 1.1 HCF Types 0/ 5 4.6 5 - 0.52 - 0.44 - 1 - 0.36 Types 0/10 9.5 10 - 1.3 - 1.1 - 2.6 - 0.9 0/15 13.5 15 - 3.6 - 3.0 - 6.8 - 2.4 IoL Output UCC 0/ 5 0.4 5 0.64 0.51 1 0.36	V
Drive Current HCC Types 0/5 4.6 5 - 0.64 - 0.51 - 1 - 0.36 - 0.9 0/10 9.5 10 - 1.6 - 1.3 - 2.6 - 0.9 0/15 13.5 15 - 4.2 - 3.4 - 6.8 - 2.4 0/5 2.5 5 - 1.53 - 1.36 - 3.2 - 1.1 HCF 0/5 4.6 5 - 0.52 - 0.44 - 1 - 0.36 Types 0/10 9.5 10 - 1.3 - 1.1 - 2.6 - 0.9 0/15 13.5 15 - 3.6 - 3.0 - 6.8 - 2.4 0/5 0/15 13.5 15 - 3.6 - 3.0 - 6.8 - 2.4 0/5 0/15 13.5 15 - 3.6 - 3.0 - 6.8 - 2.4 0/5 0/15 13.5 0/15 - 3.6 0/15 1 0/15 0/15 0/15 0/15 0/15 0/15 0/	
Current Types 0/10 9.5 10 - 1.6 - 1.3 - 2.6 - 0.9 0/15 13.5 15 - 4.2 - 3.4 - 6.8 - 2.4 0/5 2.5 5 - 1.53 - 1.36 - 3.2 - 1.1 HCF 0/5 4.6 5 - 0.52 - 0.44 - 1 - 0.36 Types 0/10 9.5 10 - 1.3 - 1.1 - 2.6 - 0.9 0/15 13.5 15 - 3.6 - 3.0 - 6.8 - 2.4 10L Output HCC 0/5 0.4 5 0.64 0.51 1 0.36	
Note	
HCF	
HCF	
Types 0/10 9.5 10 -1.3 -1.1 -2.6 -0.9 0/15 13.5 15 -3.6 -3.0 -6.8 -2.4 I _{OL} Output HCC 0/5 0.4 5 0.64 0.51 1 0.36	mA
O/15 13.5 15 - 3.6 - 3.0 - 6.8 - 2.4 IOL Output UCC 0/ 5 0.4 5 0.64 0.51 1 0.36	
I _{OL} Output 1100 0/5 0.4 5 0.64 0.51 1 0.36	
Sink Types 0/10 0.5 10 1.6 1.3 2.6 0.9	
Current 0/15 1.5 15 4.2 3.4 6.8 2.4	
HCF 0/5 0.4 5 0.52 0.44 1 0.36	mA
Types 0/10 0.5 10 1.3 1.1 2.6 0.9	
[
I I _{IH} , I _{IL} Input Leakage Types O/18 Any Input ± 0.1 $\pm 10^{-5}$ ± 0.1 ± 1	
Current HCF Types $0/15$ 15 ± 0.3 $\pm 10^{-5}$ ± 0.3 ± 1	μΑ
I _{OH} , I _{OL} 3-state Output HCC Types 0/18 0/18 18 ± 0.4 ± 10 ⁻⁴ ± 0.4 ± 12	^
Leakage Current Types $0/15$ $0/15$ 15 ± 1.0 $\pm 10^{-4}$ ± 1.0 ± 7.5	μΑ
C _I Input Capacitance Any Input 5 7.5	

^{*} T_{Low} = -55°C for **HCC** device : -40°C for **HCF** device.

* T_{High} = +125°C for **HCC** device : +85°C for **HCF** device.

The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5V min. with V_{DD} = 15V.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb}=25^{\circ}C$, $C_{L}=50 pF$, $R_{L}=200 k\Omega$, typical temperature coefficient for all $V_{DD}=0.3\%$ C values , all input rise and fall time = 20ns)

Symbol	Parameter	Test Conditions			Value		Unit
Symbol	Parameter	V _{DD}	(∀) Mi	n.	Тур.	Max.	Onit
t _{PLH} , t _{PHL}	Propagation Delay Time Clock to	Ę	5		300	600	
	Serial Output Q _S	1	0		125	250	ns
		1	5		95	190	
t _{PLH} , t _{PHL}	Propagation Delay Time Clock to	Ę	5		230	460	
	Serial Output Q' _S	1	0		110	220	ns
		1	5		75	150	
t _{PLH} , t _{PHL}	Propagation Delay Time Clock to	5	5		420	840	
	Parallel Output	1	0		195	390	ns
		1	5		135	270	
t _{PLH} , t _{PHL}	Propagation Delay Time Strobe	5	5		290	580	
	to Parallel Output	1	0		145	290	ns
		1	5		100	200	
t _{PHZ}	Propagation Delay Time Output	5	5		140	280	
	Enable to Parallel Output : Output High to High Impedance	1	0		75	150	ns
	Output High to High Impedance	1	5		55	110	
t _{PLZ}	Out Low to High Impedance	Ę	5		225	450	
		1	0		95	190	ns
		1	5		70	140	
t _W	Strobe Pulse Width	5	5 20	00	100		
		1	0 8	0	40		ns
		1	5 7	0	35		
t _W	Clock Pulse Width	5	5 20	00	100		
		1	0 10	00	50		ns
		1	5 8	3	40		
t _{setup}	Data Setup Time	5	5 12	25	60		
		1	0 5	5	30		ns
		1	5 3	5	20		
t _{TLH} , t _{THL}	Transition Time	5	5		100	200	
		1	0		50	100	ns
		1	5		40	80	
t _r , t _f	Clock Input Rise or Fall Time	5	5 1	5			
		1	0 5	5			μs
		1	5 5	5			
f _{max}	Maximum Clock Input Frequency	5	5 1.2	25	2.5		
		1	0 2.	.5	5		MHz
		1	5 3	3	6		

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Charateristics.

Clock-to-serial Output Q_S Propagation Delay vs. $\mathsf{C}_\mathsf{L}.$

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Clock-to-serial Output $\ensuremath{\text{Q'}_S}$ Propagation Delay vs. $\ensuremath{\text{C}_L}.$

Clock-to-parallel Output Propagation Delay vs. C_L.

Output Enable-to-parallel Output Propagation Delay vs.

Typical Maximum-clock Frequency vs. Supply Voltage.

Strobe-to-parallel Output Propagation Delay vs. CL.

Typical Transition Time vs. Load Capacitance.

Dynamic Power Dissipation vs. Input Clock Frequency.

TYPICAL APPLICATION

REMOTE CONTROL HOLDING REGISTER

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM	DIM. mm inch			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

10/14

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			20			0.787
В			7			0.276
D		3.3			0.130	
E	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch		
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

