

Keskeinen raja-arvolause ja sen sovellukset liiketoiminnassa

25. maaliskuuta 2025

Agenda of the presentation

Lyhyt kertaus: Suurten lukujen laki

Normaalijakauma

Keskeinen raja-arvolause

Kohdeyleisö

■ Ensimmäisen ja toisen vuoden kandiopiskelijat

Moraali

■ Suurten lukujen laki

Opetustavoitteet

Luennon jälkeen

1. osaamme approksimoida todennäköisyyksiä klassisen keskeisen raja-arvo lauseen avulla,

Table of Contents

Lyhyt kertaus: Suurten lukujen laki

Normaalijakauma

Keskeinen raja-arvolause

Table of Contents

Lyhyt kertaus: Suurten lukujen laki

Normaalijakauma

Keskeinen raja-arvolause

Normaalijakauma on absoluuttisesti jatkuva jakauma.

Merkitsemme normaalijakaumaa parametrein $\mu\in(-\infty,\infty)$ ja $\sigma^2\in(0,\infty)$ notaatiolla N (μ,σ^2) . Jakauman N (μ,σ^2) tiheysfunktio on

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}.$$

Normaalijakauma on absoluuttisesti jatkuva jakauma. Merkitsemme normaalijakaumaa parametrein $\mu \in (-\infty, \infty)$ ja $\sigma^2 \in (0, \infty)$ notaatiolla $\mathbf{N}\left(\mu, \sigma^2\right)$. Jakauman $\mathbf{N}\left(\mu, \sigma^2\right)$ tiheysfunktio on

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Tällöin normaalijakauman kertymäfunktio voidaan esittää tiheysfunktion avulla

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

 $\textbf{Kuva:} \ \text{Normaalijakaumat} \ N\left(0,1\right) \ (\text{katkoviiva}) \ \text{ja} \ N\left(1,9\right) \ (\text{jatkuva viiva}).$

Table of Contents

Lyhyt kertaus: Suurten lukujen laki

Normaalijakauma

Keskeinen raja-arvolause

Simulaatio

1. Simuloi otos riippumattomia ja samoin jakauneita havaintoja x_1, \ldots, x_n (otoskoko on n). Laske keskiarvo

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Simulaatio

1. Simuloi otos riippumattomia ja samoin jakauneita havaintoja x_1, \ldots, x_n (otoskoko on n). Laske keskiarvo

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Toista yllä oleva toimenpide m = 1000 kertaa. Näin meillä on m keskiarvoa.

Simulaatio

1. Simuloi otos riippumattomia ja samoin jakauneita havaintoja x_1, \ldots, x_n (otoskoko on n). Laske keskiarvo

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- **2.** Toista yllä oleva toimenpide m = 1000 kertaa. Näin meillä on m keskiarvoa.
- 3. Piirrä histogrammi keskiarvoista.

■ Ensin simuloimme otoksia tasajakaumasta U[0,1] välillä 0-1 (jakauman odotusarvo on 0.5). Kyseisen tasajakauman

tiheysfunktio on
$$f(x) = \begin{cases} 1, & \text{kun } x \in [a, b], \\ 0, & \text{muulloin.} \end{cases}$$

Kuva: Tasajakauma U[0, 1], n = 1 ja m = 1000.

Kuva: Tasajakauma U[0, 1], n = 5 ja m = 1000.

■ Seuraavaksi simuloimme otoksia eksponenttijakaumasta Exp(1) skaalaparametrilla $\lambda = 1$ (jakauman odotusarvo on 1). Kyseisen eksponentijakauman tihevsfunktio on

skaalaparametrilla
$$\lambda=1$$
 (Jakauman odotusarvo on 1). Kyseisen eksponentijakauman tiheysfunktio on
$$f(x)=\begin{cases} e^{-x}, & \text{kun} \quad x\in[0,\infty),\\ 0, & \text{muulloin}. \end{cases}$$

Kuva: Eksponenttijakauma $\operatorname{Exp}(1)$, n = 1 ja m = 1000.

Kuva: Eksponenttijakauma $\operatorname{Exp}(1)$, n = 5 ja m = 1000.

Kuva: Eksponenttijakauma $\operatorname{Exp}(1)$, n = 100 ja m = 1000.

Lause

Olkoon $X_1, X_2, ..., X_n$ riippumattomia ja samoin jakautuneita

satunnaismuuttujia niin, että $\mathbb{E}\left(|X_1|^2\right)<\infty$. Merkitsemme $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i,\, \mu=\mathbb{E}\left(X_1\right)$ ja $\sigma=\sqrt{\operatorname{Var}\left(X_1\right)}$. Tällöin, kun otoskoko n on suuri,

$$\tilde{X} = \sqrt{n} \frac{\bar{X} - \mu}{\sigma}$$

noudattaa likimain standardinormaalijakaumaa \overline{N} (0, 1),

Lause

Olkoon X_1, X_2, \ldots, X_n riippumattomia ja samoin jakautuneita

satunnaismuuttujia niin, että $\mathbb{E}\left(|X_1|^2\right)<\infty$. Merkitsemme $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i,\, \mu=\mathbb{E}\left(X_1\right)$ ja $\sigma=\sqrt{\operatorname{Var}\left(X_1\right)}$. Tällöin, kun otoskoko n on suuri,

$$ilde{X} = \sqrt{n} rac{ar{X} - \mu}{n}$$

noudattaa likimain standardinormaalijakaumaa N(0,1),

$$\mathbb{P}\left(\tilde{X} \leq x\right) \approx \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt.$$

Intuitio

Toisin sanoen kun otoskoko n on suuri, niin \bar{X} noudattaa likimain jakaumaa

$$N\left(\mu, \frac{\sigma^2}{n}\right)$$
.

Kurssin ulkopuolista asiaa

Table of Contents

Lyhyt kertaus: Suurten lukujen laki

Normaalijakauma

Keskeinen raja-arvolause

Sovellus 1: Todennäköisyyksien approksimointi

Tiivistelmä

Lähdeluettelo