Różowe wierzchołki

Paweł Putra

April 24, 2025

1 Wstęp

Różowy wierzchołek to taki, że zawsze istnieje rozwiązanie optymalne, które go nie zawiera.

1.1 Nowe redukcje

1.1.1 Redukcja pierwotna

Jeśli dla krawędzi $(u, v) \in E$ zachodzi:

- $N[u] \subseteq N[v]$
- v nie jest różowy
- nie istnieje **czerwona** krawędź (u, w) gdzie $w \neq v$ (bo mówi o istnieniu usuniętego sąsiada u, który nie jest w N[v])

to pokoloruj u na różowo.

1.1.2 Redukcja dla pojedyńczego wierzchołka

Jeśli istnieje różowy wierzchołek, który jest zdominowany - usuń go z grafu.

1.1.3 Redukcja sąsiedztwa

Jeśli istnieje **niezdominowany** nieróżowy wierzchołek v, że całe N(v) jest różowe, weź go do rozwiązania i usuń N[v] z grafu.

1.2 Wpływ na AlberSimpleRule1

Było: Jeśli istnieje czarna krawędź, której oba końce są zdominowane - usuń ją.

Teraz z różowymi wierzchołkami mamy dodatkowo:

• Jeśli istnieje czarna krawędź, której oba końce są różowe - usuń ją.

- Jeśli istnieje **czerwona** krawędź (u, v), taka, że u jest różowy, dodaj v do rozwiązania i usuń wierzchołki u i v.
- Test: Jeśli istnieje czerwona krawędź, której oba końce są różowe, mamy sprzeczność instancja jest niepoprawna.

1.3 Wpływ na AlberSimpleRule{2, 3, 4}

Zauważmy, że usuwany w redukcji wierzchołek u nie może być różowy, bo musi być zdominowany, a więc nie może go być w grafie po redukcji z (1.1.2). Zostaje więc spojrzeć co się dzieje jak w sąsiedztwie są różowe wierzchołki.

1.3.1 AlberSimpleRule2 (usuwanie zdominowanego liścia)

Różowy niezdominowany sąsiad nie pozwala usunąć wierzchołka u.

1.3.2 AlberSimpleRule3.1

Było: Jeśli istnieje zdominowany wierzchołek u o stopniu 2, z niezdominowanymi sąsiadami v oraz w połączonymi krawędzią, usuń u z grafu.

Można było tak zrobić, bo mieliśmy gwarancję, że jeśli istnieje optymalny zbiór dominujący zawierający wierzchołek u to można go podmienić na któregoś z sąsiadów bez utraty optymalności.

Jeśli wierzchołki v i w są różowe, to nie mamy takiej gwarancji, w szczególności gdy $V = \{u, v, w\}$ to jedyny zbiór dominujący to $\{u\}$.

Zatem nowa reguła brzmi:

Jeśli istnieje zdominowany wierzchołek u o stopniu 2, z niezdominowanymi sąsiadami v oraz w połączonymi krawędzią, z których conajwyżej jeden jest różowy, usuń u z grafu.

1.3.3 AlberSimpleRule3.2

Było: Jeśli istnieje zdominowany wierzchołek u o stopniu 2, z niezdominowanymi sąsiadami v_1 oraz v_2 ze wspólnym sąsiadem w $(w \neq u)$, usuń u z grafu.

Można było tak zrobić, bo mieliśmy gwarancję, że jeśli istnieje optymalny zbiór dominujący zawierający wierzchołek u to można go podmienić na w bez utraty optymalności.

Jeśli wierzchołek w jest różowy, to nie mamy takiej gwarancji.

Zatem nowa reguła brzmi:

Jeśli istnieje zdominowany wierzchołek u o stopniu 2, z niezdominowanymi sąsiadami v_1 oraz v_2 ze wspólnym **nieróżowym** sąsiadem w $(w \neq u)$, usuń u z grafu.

1.3.4 AlberSimpleRule4

Było: Jeśli istnieje zdominowany wierzchołek u o stopniu 3, z niezdominowanymi sąsiadami v_1 , v_2 oraz v_3 , takimi, że istnieją krawędzie (v_1, v_2) i (v_2, v_3) usuń u z grafu.

Można było tak zrobić, bo mieliśmy gwarancję, że jeśli istnieje optymalny zbiór dominujący zawierający wierzchołek u to można go podmienić na v_2 bez utraty optymalności.

Jeśli wierzchołek v_2 jest różowy, to nie mamy takiej gwarancji.

Zatem nowa reguła brzmi:

Jeśli istnieje zdominowany wierzchołek u o stopniu 3, z niezdominowanymi sąsiadami v_1 , v_2 oraz v_3 , takimi, że istnieją krawędzie (v_1, v_2) i (v_2, v_3) , oraz v_2 nie jest różowy, usuń u z grafu.

1.4 Wpływ na ForcedEdgeRule

Czerwona krawędź (u, v) oznacza, że w optymalnym rozwiązaniu S musi być conajmniej jeden element zbioru $\{u, v\}$.

Oznaczając krawędź (u, v) jako czerwoną oznaczamy również $N[u] \cap N[v]$ jako zdominowane, bo będą zdominowane przez u lub v.

1.4.1 Wierzchołki o stopniu 2

Jeśli istnieje **czarny** wierzchołek u o stopniu 2, taki, że jego sąsiedzi v, w są połączeni krawędzią, to:

- Test: Zakładając aplikowanie redukcji (1.1.3) przed tą, nie istnieje sytuacja, w której zarówno wierzchołek v jak i w jest różowy.
- jeśli obie krawędzie wierzchołka u są czarne, oznacz krawędź (v, w) jako czerwoną i usuń wierchołek u.
- Test: Zakładając aplikowanie redukcji (1.2) przed tą, nie istnieje sytuacja, w której jakiś koniec czerwonej krawędzi jest różowy.
- jeśli tylko krawędź (u, w) jest czerwona, weź w do rozwiązania i usuń wierzchołek u.
- jeśli tylko krawędź (u, v) jest czerwona, weź v do rozwiązania i usuń wierzchołek u.
- jeśli obie krawędzie są czerwone **nie rób nic** (pomysł: ściągnąć do jednego niezdominowanego wierzchołka g, wtedy $g \in S' \implies \{v, w\} \subseteq S$, a $g \notin S' \implies u \in S$).

Czyli pod założeniem wyczerpania poprzednich redukcji bez zmian, wpp. wystarczy nie aplikować redukcji jeśli zachodzą wyżej wymienione sytuacje.

1.5 Wpływ na AlberMainRule1

Ta redukcja polega na zachłannym wzięciu wierzchołka v jeśli jego sąsiedztwo spełnia odpowiednie kryteria.

Dodatek: Rozważany wierzchołek nie może być różowy.

1.6 Wpływ na AlberMainRule2

Ta redukcja polega na zachłannym wzięciu wierzchołka v i/lub w jeśli ich sąsiedztwo spełnia odpowiednie kryteria.

Dodatek: Rozważane wierzchołki nie mogą być różowe.