

A Particle-based COVID-19 SEIR Epidemic Simulator

Aknur Karabay (aknur.karabay@nu.edu.kz),

Askat Kuzdeuov, Madina Abdrakhmanova and Huseyin Atakan Varol.

25 June 2021, Friday

www.issai.nu.edu.kz

The particle Model

In our simplified model, an individual is modelled as particle p with the following parameters:

$$p = [x, v, e, t, ag]$$

where x – position of the particle on the 2D map,

v – the particle velocity,

e – the epidemic state of the particle

(susceptible (0), exposed (1), infected (2), severe infected

(7), recovered (3), dead (4)),

t – the time of the particle in the current epidemic state,

ag – the age group

x: [0.53, 0.53] v: [0.05, -0.03]

t: 0.00

 \odot

The age pyramid

The statechart of the Particle-based SEIR simulator.

t – the time of the particle in the current epidemic state

t_{exp} – disease exposure period (2 days)

t_{inf} – disease infection period (5 days)

 β – rate of infected particles transitioning to the severe infected state based on the age group

γ – mortality rate

Task 1: Write a function of Class Particles called update_coordinates. The function takes simulator, an object of Class Simulator. At each iteration update the coordinate by the distance moved at the current iteration. "(Hint: simulator.delta_t is the time a particle spends in each iteration.)"

Note, the particles must stay inside of the 2D boundaries, set to [-1,1] for both dimensions. If a particle reaches one of the borders, it should be sent to the opposite side. For example, if x > 1, then update to x = -1.

Task 2: Write a function of Class Particles called plot that visualizes the epidemic curves for each state. The function takes two parameters: 1) simulator, an object of class Simulator; 2) i, the id number of the current iteration. The id should be featured in the title of the plot. The function should save the plot in .png format in the plots subdirectory under the name states_i.png, where i is the id number.

To test the function, you are provided with data_for_plots.p. See test # 2 in the main method of particles.py. The example below is the result of that test.

Task 3: Write a function of Class Simulator called susceptible_to_exposed that updates the epidemic status of particles from susceptible to exposed. The function takes two parameters: 1) model, an object of Class Particles; 2) susceptible_contacted, a list of indices of susceptible particles that were close to contagious particles (exposed, infected, severe infected) at the current iteration. Using these indices the function should: 1) update the corresponding elements in the model.epidemic_state array to the exposed state; 2) reset the corresponding elements in the model.time cur state array to 0.

Task 4: Write a function of Class Simulator called infected_to_recovered following the example code provided for the exposed_to_infected method. The function takes model, an object of Class Particles. The function should: 1) get the indices of the particles whose time at the current state have reached T_INF in model.time_cur_state array; 2) for these indices update the model.epidemic state to recovered and model.time cur state to 0.

