

LECTURE III: DENOISING & CLUSTERING

ALEXANDER EILER DEPARTMENT OF BIOSCIENCES - AQUA

<u>alexander.eiler@ibv.uio.no</u> <u>https://www.mn.uio.no/ibv/english/people/aca/alexaei/</u>

ILLUMINA AMPLICON READS

- Illumina MiSeq sequencing is the current state of the art technology for amplicon sequencing because of its high yield relative to cost.
- The error rate (~1%) of Illumina sequencing is so high that the chance of capturing true reads is small (about 1% for a 450 base fragment, not adjusted for improvements due to overlapping reads).
- This problem is not new, and has been discussed ever since high-throughput sequencing was first applied to taxonomical markers.

PROPOSED SOLUTIONS

- For many years now, the common practice was to solve this by UPGMA- style clustering at a fixed sequence distance (97% similarity).
- Sequences were clustered into operational taxonomic units based on sequence similarity or dissimilarity cutoffs.

UPMG

Single linkage clustering. Advantages:

- reduces the impact of clustering parameters on the resulting OTUs by avoiding arbitrary global clustering thresholds and input sequence ordering dependence.

UPARSE

UPARSE implements a greedy algorithm that performs OTU clustering

Advantages:

- Fast and greedy.

Disadvantages:

- Greedy clustering methods suffer from two fundamental problems.
 - I. They use an arbitrary fixed global clustering threshold. As lineages evolve at variable rates, no single cut-off value can accommodate the entire tree of life.
 - 2. The input order of amplicons strongly influences the clustering results. Previous centroid selections are not reevaluated as clustering progresses, which can generate inaccurately formed OTUs

UPARSE

Swarm is a de novo clustering algorithm based on an unsupervised single-linkage-clustering method. Advantages:

- reduces the impact of clustering parameters on the resulting OTUs by avoiding arbitrary global clustering thresholds and input sequence ordering dependence.

Swarm builds OTUs in two steps:

- I. an initial set of OTUs is constructed by iteratively agglomerating similar amplicons
- 2. amplicon abundance values are used to reveal OTUs' internal structures and to break them into sub-OTUs, if necessary.

C) fastidious

small (

small OTU (made of 2 rare amplicons)

virtual amplicon

LINGERING PROBLEMS WITH "OTU"

LINGERING PROBLEMS WITH "OTU"

LINGERING PROBLEMS WITH "OTU"

Slide adapted from Benjamin Callahan

The shape of amplicon sequencing errors

. . .

Initial guess: one real sequence + errors

Infer initial error model under this assumption.

$$Pr(i \rightarrow j) =$$

	А	С	G	Т
Α	0.97	10 ⁻²	10 ⁻²	10 ⁻²
С	10 ⁻²	0.97	10 ⁻²	10 ⁻²
G	10 ⁻²	10 ⁻²	0.97	10-2
Т	10 ⁻²	10-2	10-2	0.97

Update the model.

Pr(i	\rightarrow	j)	=
		,	

	Α	С	G	Т
Α	0.997	10 ⁻³	10 ⁻³	10 ⁻³
С	10 ⁻³	0.997	10-3	10 ⁻³
G	10 ⁻³	10 ⁻³	0.997	10 ⁻³
Т	10 ⁻³	10 ⁻³	10-3	0.997

Update model again

Pr(i	\rightarrow	i)	=
1 1 (1]/	

	А	С	G	Т
Α	0.998	1×10 ⁻⁴	2×10 ⁻³	2×10 ⁻⁴
С	6×10 ⁻⁵	0.998	3×10 ⁻⁴	1×10 ⁻³
G	1×10 ⁻⁴	1×10 ⁻⁴	0.998	6×10 ⁻⁵
Т	2×10 ⁻⁴	2×10 ⁻³	1×10 ⁻⁴	0.998

DADA2 ASSUMPTIONS

DADA2 Error Model:

- Errors independent b/w different sequences
- Errors independent b/w sites within a sequence
- Sequence i is produced from parent sequence j with probability equal to the product of site-wise substitution probabilities:

$$\lambda_{j\to i} = \prod_{l=0}^{L} p(j(l) \to i(l), q(l)))$$

 Each substitution probability depends on original nt, substituting nt, and quality score at position in i

DADA2 ASSUMPTIONS

DADA2 Abundance Model:

- Errors are independent across reads
- Abundance of reads w/ sequence i produced from more-abundant parent sequence j is poisson distributed
- Expectation of abundance equals error rate, $\lambda j \rightarrow i$, multiplied by the abundance of sequence j
- · i has count greater than or equal to one
- "Abundance p-value" for sequence i is thus:

$$p_A(j \to i) = \sum_{a=a_1}^{\infty} \rho_{pois}(n_j \lambda_{j \to i}, a) / (1 - \rho_{pois}(n_j \lambda_{j \to i}, 0))$$

- "Probability of seeing an abundance of sequence i that is equal to or greater than observed value, by chance, given sequence j." (Bonferroni-corrected)
- · A low pA indicates there are more reads of sequence i than can

APPLICATIONS

- Any amplicon-seq data, not just 16S rRNA or even microbiome
- Sequence variants unique to an individual host
- Sequence variants associated with a clinical outcome
- Improved meta-genomic inference (e.g. PiCRUST)
- Mitigate ambiguity of representative genome(s) to use
- Detecting pathogens (special cases)