France J Vallyer Vigier LCC V-2952/1
a) Sea la funcion $g(x) = x + \cos(x)$ tenemos que demostrar que existe un plo fijo en [0,1] y que para todo valor inicial x_0 , $g(x)$ converge a ese punto fijo
1) Primero antes que nada x está acotada en o x x x 1: por la tanta como g es una función monotona estrictamente creciente podemos decir
monotona estrictamente creciente podemos decir que $g(o) \langle g(x) \langle g(1) \rangle \forall x \in [0,1]$ Valorizando
0 (1/2 (g(x) (0,7701 (1) + xe[0,1]
Por Teorema 1. Con $0i \times (1 \rightarrow 0ig(x))$ (1) Existe pto fijo en $[0,1]$ (1) (2) $g'(x) = 1 - sin(x)$
$ g'(x) = \frac{1 - \sin(x)}{2} = \frac{1}{2} - \frac{\sin x}{2} $ Sabemos que $\sin x$ en $[0,1]$; ocan $x < \sin x$
5 in × creciente en [0,1] Enton ce6 191 (x)1 = 1/2 - sin × 1
$1/2 - \frac{\sin 0}{2} \left(\frac{1}{2} - \frac{\sin x}{2} \right) \left(\frac{1}{2} - \frac{\sin x}{2} \right)$ $1/2 \left(\frac{1}{2} - \frac{\sin x}{2} \right) \left(\frac{0.08}{2} \right)$
Teorema 2: existe una unica sol en [0,1] y converge +xoe [0,1]

