TL03x, TL03xA **ENHANCED-JFET LOW-POWER LOW-OFFSET**

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

- Direct Upgrades for the TL06x Low-Power **BiFETs**
- Low Power Consumption . . . 6.5 mW/Channel Typ
- **On-Chip Offset-Voltage Trimming for Improved DC Performance** (1.5 mV, TL031A)
- **Higher Slew Rate and Bandwidth Without Increased Power Consumption**
- Available in TSSOP for Small Form-Factor **Designs**

description

The TL03x series of JFET-input operational amplifiers offer improved dc and ac characteristics over the TL06x family of low-power BiFET operational amplifiers. On-chip zener trimming of offset voltage yields precision grades as low as 1.5 mV (TL031A) for greater accuracy in dc-coupled applications. The Texas Instruments improved BiFET process and optimized designs also yield improved bandwidths and slew rates without increased power consumption. The TL03x devices are pin-compatible with the TL06x and can be used to upgrade existing circuits or for optimal performance in new designs.

BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors without sacrificing the output drive associated with bipolar amplifiers. This higher input impedance makes the TL3x amplifiers better suited for interfacing with high-impedance sensors or very low-level ac signals. These devices also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption.

The TL03x family has been optimized for micropower operation, while improving on the performance of the TL06x series. Designers requiring significantly faster ac response should consider the Excalibur™ TLE206x family of low-power BiFET operational amplifiers.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input-voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required, and loads should be terminated to a virtual-ground node at midsupply. The TI TLE2426 integrated virtual-ground generator is useful when operating BiFET amplifiers from single supplies.

The TL03x devices are fully specified at ±15 V and ±5 V. For operation in low-voltage and/or single-supply systems, the TI LinCMOS families of operational amplifiers (TLC prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate, bandwidth requirements, and output loading.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Excalibur is a trademark of Texas Instruments

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

NC - No internal connection

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

AVAILABLE OPTIONS

				PAC	KAGED DEVI	CES		
T _A	V _{IO} MAX AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)
	0.8 mV	TL031ACD TL032ACD	_	_	_	_	TL031ACP TL032ACP	
0°C to 70°C	1.5 mV	TL031CD TL032CD TL034ACD	_			TL034ACN	TL031CP TL032CP	
	4 mV	TL034CD	_	_	— TL034CN		_	TL034CPW
	0.8 mV	TL031AID TL032AID	_	_	_	_	TL031AIP TL032AIP	_
-40°C to 85°C	1.5 mV	TL031ID TL032ID TL034AID	_	_	_	TL034AIN	TL031IP TL032IP	_
	4 mV	TL034ID	_	_	_	TL034IN	_	_
	0.8 mV	TL031AMD TL032AMD	TL031AMFK TL032AMFK	_	TL031AMJG TL032AMJG	_	TL031AMP TL032AMP	
-55°C to 125°C	1.5 mV	TL031MD TL032MD TL034AMD	TL031MFK TL032MFK TL034AMFK	B2MFK TL034AMJ TL031MJ		TL034AMN	TL031MP TL032MP	_
	4 mV	TL034MD	TL034MFK	TL034MJ	_	TL034MN	_	_

The D and PW packages are available taped and reeled and are indicated by adding an R suffix to device type (e.g., TL034CDR or TL034CPWR).

symbol (each amplifier)

equivalent schematic (each amplifier)

NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL031, TL031A.

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (see Note 1): V _{CC+}		18 V
Differential input voltage, V _{ID} (see Note 2)		
Input voltage, V _I (any input) (see Notes 1 and 3	•	
Input current, I _I (each input)		±1 mA
Output current, I _O (each output)		±40 mA
Total current into V _{CC+}		160 mA
Total current out of V _{CC}		
Duration of short-circuit current at (or below) 25	°C (see Note 4)	Unlimited
Continuous total power dissipation		
Package thermal impedance, θ_{JA} (see Note 5):	D package (8 pin)	97°C/W
, , , , , , , , , , , , , , , , , , , ,	D package (14 pin)	86°C/W
	N package	
	P package	
	PW package	
Lead temperature 1,6 mm (1/16 inch) from case	e for 10 seconds: D, N, P, or PV	V package 260°C
Lead temperature 1,6 mm (1/16 inch) from case	e for 60 seconds: J or JG packa	age
Case temperature for 60 seconds: FK package		260°C
Storage temperature range, T _{sta}		
Storage temperature range, rsig		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC-} and V_{CC-}

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- 4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

PACKAGE	$T_{A} \leq 25^{\circ} C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW

recommended operating conditions

			C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
$V_{CC^{\pm}}$	Supply voltage		±5	±15	±5	±15	±5	±15	V
.,	On a second seco	$V_{CC\pm} = \pm 5 \text{ V}$	-1.5	4	-1.5	4	-1.5	4	V
V_{IC}	Common-mode input voltage	$V_{CC\pm} = \pm 15 \text{ V}$	-11.5	14	-11.5	14	-11.5	14	V
T _A	Operating free-air temperature		0	70	-40	85	-55	125	°C

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031C and TL031AC electrical characteristics at specified free-air temperature

						Т	L031C,	TL031A	С		
	PARAMETER	TEST CO	NDITIONS	TA	Vo	cc± = ±5	٧	٧c	c± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0040	25°C		0.54	3.5		0.5	1.5	
,,	locate the standard	$V_{O} = 0,$	TL031C	Full range†			4.5			2.5	
V _{IO}	Input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TI 001 A C	25°C		0.41	2.8		0.34	0.8	mV
			TL031AC	Full range†			3.8			1.8	
a.	Temperature coefficient of	$V_{O} = 0,$ $V_{IC} = 0,$	TL031C	25°C to 70°C		7.1			5.9		μV/°C
$\alpha_{V_{IO}}$	input offset voltage	$R_S = 50 \Omega$	TL031AC	25°C to 70°C		7.1			5.9	25	μν/ Ο
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$		25°C		0.04			0.04		μV/mo
1	Input offeet ourrent		V _O = 0, V _{IC} = 0 See Figure 5			1	100		1	100	pA
I _{IO}	Input offset current	See Figure	See Figure 5			9	200		12	200	pΑ
1	Input bias current	$V_{O} = 0$, V_{IC}		25°C		2	200		2	200	рA
I _{IB}	input bias current	See Figure	5	70°C		50	400		80	400	PΛ
\ \ \	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		V
V _{ICR}	voltage range			Full range†	-1.5 to 4			-11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing	$R_L = 10 \text{ k}\Omega$		0°C	3	4.2		13	14		V
	output voltage ownig			70°C	3	4.3		13	14		
	Mandananananathananata			25°C	-3	-4.2		-12.5	-13.9		
V _{OM} _	Maximum negative peak output voltage swing	$R_L = 10 \text{ k}\Omega$		0°C	-3	-4.1		-12.5	-13.9		V
	output voltage ownig			70°C	-3	-4.2		-12.5	-14		
				25°C	4	12		5	14.3		
A _{VD}	Large-signal differential voltage amplification§	$R_L = 10 \text{ k}\Omega$		0°C	3	11.1		4	13.5		V/mV
	voltage amplifications			70°C	4	13.3		5	15.2		
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	0			25°C	70	87		75	94		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, $V_O = 0$, $R_S = 50 \Omega$		0°C	70	87		75	94		dB
	-,	0 -,		70°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_0 = 0, R_S = 0$	= 50 Ω	0°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			70°C	75	96		75	96		

 $^{^{\}dagger}$ Full range is 0°C to 70°C.

 $^{^{\}ddagger}$ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A=25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At V_{CC±} = ±5 V, V_O = ±2.3 V; at V_{CC±} = ±15 V, V_O = ±10 V

TL031C and TL031AC electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST C	TEST CONDITIONS		$V_{CC^{\pm}} = \pm 5 \text{ V}$			V _{CC±} = ±15 V			UNIT			
					MIN	TYP	MAX	MIN	TYP	MAX				
				25°C		1.9	2.5		6.5	8.4				
PD	P _D Total power dissipation	$V_{O} = 0$,	No load	0°C		1.8	2.5		6.3	8.4	mW			
				70°C		1.9	2.5		6.3	8.4				
				25°C		192	250		217	280				
Icc	I _{CC} Supply current	$V_{O} = 0$,	$V_O = 0$, No load	No load	No load	= 0, No load	0°C		184	250		211	280	μΑ
			•	70°C		189	250		210	280				

TL031C and TL031AC operating characteristics at specified free-air temperature

							Т	L031C, 1	ΓL031AC	;									
	PARAMETER		TEST CO	NDITIONS	TA	V _C	_{C±} = ±5	٧	V _C	_{C±} = ±15	٧	UNIT							
						MIN	TYP	MAX	MIN	TYP	MAX								
					25°C		2		1.5	2.9									
SR+	Positive slew rate unity gain [†]	at	$R_L = 10 kΩ, C_L$ See Figure 1	_ = 100 pF	0°C		1.8		1	2.6		V/µs							
	unity gain		occ rigure r	de rigure r			2.2		1.5	3.2									
							3.9		1.5	5.1									
SR-	Negative slew rate unity gain [†]	e at	$R_L = 10 kΩ, C_L$ See Figure 1	_ = 100 pF	0°C		3.7		1.5	5		V/µs							
	unity gain		occ rigure r		70°C		4		1.5	5									
			V _{((PP)} = +10 m	$I_{(PP)} = \pm 10 \text{ mV},$			138			132									
t _r	Rise time		$R_L = 10 \text{ k}\Omega$, C_L	$\hat{L} = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$			134			127		ns							
			See Figures 1	ee Figures 1 and 2			150			142									
			V _{I(PP)} = ±10 m	V	25°C		138			132									
t _f	Fall time		$R_L = 10 \text{ k}\Omega$, C_L	= 100 pF	0°C		134			127		ns							
			See Figure 1		70°C		150			142									
			$V_{I(PP)} = \pm 10 \text{ m}$	V	25°C		11%			5%									
	Overshoot factor		RL = 10 k Ω , C _I	_L = 100 pF	0°C		10%			4%									
										See Figures 1 a	and 2	70°C		12%			6%		
		- :: 0		f = 10 Hz			61			61									
	Equivalent input	TL031C	$R_S = 20 \Omega$	f = 1 kHz	25°C		41			41		,,,, ,							
V _n	noise voltage		See Figure 3	f = 10 Hz			61			61		nV/√ Hz							
		TL031AC		f = 1 kHz	25°C		41			41	60								
In	Equivalent input n current	oise	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz							
			V _I = 10 mV		25°C		1			1.1									
B ₁	Unity-gain bandwi	dth	$R_L = 10 \text{ k}\Omega, C_L$	_ = 25 pF	0°C		1			1.1		MHz							
			See Figure 4		70°C		1			1									
			V _I = 10 mV		25°C		61°			65°									
φm	Phase margin at u	unity gain	$R_L = 10 \text{ k}\Omega, C_L$	_ = 25 pF	0°C		61°			65°									
			See Figure 4		70°C		60°			64°									

[†] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031I and TL031AI electrical characteristics at specified free-air temperature

PARAMETER						,	TL031I,	TL031A	I		
	PARAMETER	TEST CO	NDITIONS	TA	Vo	cc± = ±5	٧	٧٥	cc± = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0041	25°C		0.54	3.5		0.5	1.5	
.,	land to affect welled as	$V_{O} = 0,$	TL0311	Full range [†]			5.3			3.3	\
V_{IO}	Input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TI 004 AI	25°C		0.41	2.8		0.34	0.8	mV
		Ğ	TL031AI	Full range [†]			4.6			2.6	
a,	Temperature coefficient of	$V_{O} = 0,$ $V_{IC} = 0,$	TL031I	25°C to 85°C		6.5			6.2		μV/°C
$\alpha_{V_{IO}}$	input offset voltage	$R_S = 50 \Omega$	TL031AI	25°C to 85°C		6.5			6.2	25	μν/ Ο
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \ \Omega$		25°C		0.04			0.04		μV/mo
١,	Input offeet ourrent	$V_O = 0$, $V_{IC} =$	$V_{O} = 0, V_{IC} = 0$			1	100		1	100	pА
I _{IO}	Input offset current	See Figure 5	See Figure 5			0.02	0.45		0.02	0.45	nA
1	Input bigg gurrent		$V_{O} = 0, V_{IC} = 0$			2	200		2	200	pА
I _{IB}	Input bias current	See Figure 5	5	85°C		0.2	0.9		0.2	0.9	nA
	Common-mode input				-1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		V
V _{ICR}	voltage range			Full range [†]	-1.5 to 4			-11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing	$R_L = 10 \text{ k}\Omega$		–40°C	3	4.1		13	14		V
	odiput voltago owing			85°C	3	4.4		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V_{OM-}	Maximum negative peak output voltage swing	$R_L = 10 \text{ k}\Omega$		–40°C	-3	-4.1		-12.5	-13.8		V
	- and an entire country			85°C	-3	-4.2		-12.5	-14		
				25°C	4	12		5	14.3		
A_{VD}	Large-signal differential voltage amplification§	$R_L = 10 \text{ k}\Omega$		−40°C	3	8.4		4	11.6		V/mV
	voltage amplifications			85°C	4	13.5		5	15.3		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	Oamman mada	V V		25°C	70	87		75	94		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, $V_O = 0$, $R_S = 50 \Omega$		–40°C	70	87		75	94		dB
	• • • • • • • • • • • • • • • • • • •	$V_O = 0$, $H_S = 50 \Omega$		85°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{O} = 0$,	$R_S = 50 \Omega$	–40°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			85°C	75	96		75	96		

[†] Full range is -40°C to 85°C.

 $[\]ddagger$ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}$ C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

TL031I and TL031AI electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST C	ONDITIONS	TA	$V_{CC\pm} = \pm 5 V$			V _{CC±} = ±15 V			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		1.9	2.5		6.5	8.4	
P_{D}	Total power dissipation	$V_{O} = 0$,	No load	–40°C		1.4	2.5		5.4	8.4	mW
				85°C		1.9	2.5		6.2	8.4	
				25°C		192	250		217	280	
Icc	Supply current	$V_O = 0$,	No load	–40°C		144	250		181	280	μΑ
				85°C		189	250		207	280	

TL031I and TL031AI operating characteristics at specified free-air temperature

								TL031I,	ΓL031AI			
	PARAMETER		TEST CO	NDITIONS	TA	٧c	_{C±} = ±5	٧	Vco	_{C±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	1
					25°C		2		1.5	2.9		
SR+	Positive slew rate unity gain [†]	e at	$R_L = 10 kΩ, C_L$ See Figure 1	_ = 100 pF	-40°C		1.6		1	2.1		V/µs
	unity gain		occ rigure r		85°C		2.3		1.5	3.3		
				=	25°C		3.9		1.5	5.1		
SR-	Negative slew rat	e at unity	$R_L = 10 \text{ k}\Omega, C_L$ See Figure 1	_ = 100 pF	–40°C		3.3		1.5	4.8		V/µs
	gam		occ rigure r		85°C		4.1		1.5	4.9]
			V _{I(PP)} = ±10 m	V.	25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega$, C_L	_ = 100 pF	-40°C		132			123		ns
			See Figures 1	and 2	85°C		154			146		
			V _{I(PP)} = ±10 m	V.	25°C		138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega$, C_L		-40°C		132			123		ns
			See Figure 1		85°C		154			146		
			V _{I(PP)} = ±10 m	V.	25°C		11%			5%		
	Overshoot factor		$R_L = 10 \text{ k}\Omega$, C_L	_ = 100 pF	–40°C		12%			5%]
			See Figures 1	and 2	85°C		13%			7%		
		TI 0041		f = 10 Hz	0500		61			61		
	Equivalent	TL031I	$R_S = 20 \Omega$	f = 1 kHz	25°C		41			41] ,,,, ,,,
V _n	input noise voltage	TI 004 A1	See Figure 3	f = 10 Hz	0500		61			61		nV/√ Hz
	noise voltage	TL031AI		f = 1 kHz	25°C		41			41	60	
In	Equivalent input r current	noise	f = 1 kHz		25°C		0.003			0.003		p A /√ Hz
			V _I = 10 mV		25°C		1			1.1		
B ₁	Unity-gain bandw	ridth	$R_L = 10 \text{ k}\Omega$, C_L	_ = 25 pF	-40°C		1			1.1		MHz
			See Figure 4		85°C		0.9			1		1
			$V_{I} = 10 \text{ mV},$		25°C		61°			65°		
φ _m	Phase margin at	unity gain	$R_L = 10 \text{ k}\Omega$, C_L	_ = 25 pF	-40°C		60°			65°		1
			See Figure 4		85°C		60°			64°]

 $^{^{\}dagger}$ For $V_{CC\pm}$ = ± 5 V, $V_{I(PP)}$ = ± 1 V; for $V_{CC\pm}$ = ± 15 V, $V_{I(PP)}$ = ± 5 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031M and TL031AM electrical characteristics at specified free-air temperature

						Т	L031M,	TL031A	М		
	PARAMETER	TEST CO	NDITIONS	TA	Vo	_{CC±} = ±5	V	٧c	cc± = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 00414	25°C		0.54	3.5		0.5	1.5	
.,		$V_{O} = 0,$	TL031M	Full range†			6.5			4.5	.,
V_{IO}	Input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TI 004 AN4	25°C		0.41	2.8		0.34	8.0	mV
			TL031AM	Full range [†]			5.8			3.8	
	Temperature coefficient of	V _O = 0,	TL031M	25°C to 125°C		5.1			4.3		\/\footnote{\chi_0}
$\alpha_{V_{IO}}$	input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TL031AM	25°C to 125°C		5.1			4.3		μV/°C
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$		25°C		0.04			0.04		μV/mo
		$V_O = 0$, V_{IC}	= 0	25°C		1	100		1	100	pА
I _{IO}	Input offset current	See Figure		125°C		0.2	10		0.2	10	nA
	Lama Adela a samurada	$V_O = 0$, V_{IC}	= 0	25°C		2	200		2	200	pА
I _{IB}	Input bias current	See Figure	5	125°C		7	20		8	20	nA
.,	Common-mode input			25°C	-1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		.,
V _{ICR}	voltage range			Full range [†]	-1.5 to 4			-11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing	$R_L = 10 \text{ k}\Omega$		−55°C	3	4.1		13	14		V
	output voltage swilig			125°C	3	4.4		13	14		
	Mandaga and the same			25°C	-3	-4.2		-12.5	-13.9		
V_{OM-}	Maximum negative peak output voltage swing	$R_L = 10 \text{ k}\Omega$		−55°C	-3	-4		-12.5	-13.8		V
				125°C	-3	-4.3		-12.5	-14		
				25°C	4	12		5	14.3		
A_{VD}	Large-signal differential voltage amplification§	$R_L = 10 \text{ k}\Omega$		–55°C	3	7.1		4	10.4		V/mV
				125°C	3	12.9		4	15		
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
Ci	Input capacitance			25°C		5			4		pF
	Common-mode	V V ~	nin	25°C	70	87		75	94		
CMRR	rejection ratio	$V_{IC} = V_{ICR}m$ $V_{O} = 0$, $R_{S} = 0$, = 50 Ω	−55°C	70	87		70	94		dB
	-			125°C	70	87		70	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{O} = 0$,	$R_S = 50 \Omega$	–55°C	75	96		75	95		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			125°C	75	96		75	96		
				25°C		1.9	2.5		6.5	8.4	
P_{D}	Total power dissipation	$V_O = 0$,	No load	−55°C		1.1	2.5		4.7	8.4	mW
				125°C		1.8	2.5		5.8	8.4	

[†] Full range is -55°C to 125°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

§ At V_{CC±} = ±5 V, V_O = ±2.3 V; at V_{CC±} = ±15 V, V_O = ±10 V

TL031M and TL031AM electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST CONDITIONS		TA	V _{CC±} = ±5 V			V _{CC±} = ±15 V			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		192	250		217	280	
Icc	Supply current	$V_{O} = 0$,	No load	−55°C		114	250		156	280	μΑ
				125°C		178	250		197	280	

TL031M and TL031AM operating characteristics at specified free-air temperature

							Т	L031M,	TL031AN	1		
	PARAMETER		TEST CO	NDITIONS	TA	٧c	C± = ±5	٧	Vcc	_{C±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew rate unity gain [†]	at	R_L = 10 kΩ, C See Figure 1	_L = 100 pF	−55°C		1.4		1	1.9		V/µs
	urilly gairr		occ riguic r		125°C		2.4		1	3.5		
					25°C		3.9		1.5	5.1		
SR-	Negative slew rate unity gain [†]	at	$R_L = 10 \text{ k}\Omega$, C See Figure 1	_L = 100 pF	−55°C		3.2		1	4.6		V/µs
	urilly gairr		Occ rigure r		125°C		4.1		1	4.7		
			$V_{I(PP)} = \pm 10 \text{ m}$	ıV.	25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega, C$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns							
			See Figures 1	and 2	125°C		166			158		
			$V_{I(PP)} = \pm 10 \text{ mV},$		25°C		138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega$, C		–55°C		142			123		ns
			See Figure 1		125°C		166			158		
			$V_{I(PP)} = \pm 10 \text{ m}$	ıV.	25°C		11%			5%		
	Overshoot factor		$R_L = 10 \text{ k}\Omega$, C	L = 100 pF	–55°C		16%			6%		
			See Figures 1	and 2	125°C		14%			8%		
				f = 10 Hz			61			61		
١.,	Equivalent input	TL031M	$R_S = 20 \Omega$	f = 1 kHz	25°C		41			41		/
V _n	noise voltage		See Figure 3	f = 10 Hz			61			61		nV/√ Hz
		TL031AM		f = 1 kHz	25°C		41			41		
In	Equivalent input no current	oise	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			V _I = 10 mV,		25°C		1			1.1		
B ₁	Unity-gain bandwi	dth	R_L = 10 kΩ, C	_L = 25 pF	–55°C		1			1.1		MHz
			See Figure 4		125°C		0.9			0.9		
			$V_1 = 10 \text{ mV},$		25°C		61°			65°		
φ _m	Phase margin at u	nity gain	$R_L = 10 \text{ k}\Omega$, C	L = 25 pF	–55°C		57°			64°		
	0 70		See Figure 4		125°C		59°			62°		

[†] For $V_{CC\pm}$ = ±5 V, $V_{I(PP)}$ = ±1 V; for $V_{CC\pm}$ = ±15 V, $V_{I(PP)}$ = ±5 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032C and TL032AC electrical characteristics at specified free-air temperature

						Т	L032C,	TL032A	С		
	PARAMETER	TEST CON	IDITIONS	TA	٧ ₀	CC± = ±5	V	٧c	cc± = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			T i	25°C		0.69	3.5		0.57	1.5	
١.,		$V_{O} = 0,$	TL032C	Full range†			4.5			2.5	.,
V_{IO}	Input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TI 000 A C	25°C		0.53	2.8		0.39	0.8	mV
		o o	TL032AC	Full range [†]			3.8			1.8	
$\alpha_{ m V}_{ m IO}$	Temperature	$V_{O} = 0,$ $V_{IC} = 0,$	TL032C	25°C to 70°C		11.5			10.8		μV/°C
V IO	coefficient of input offset voltage	$R_S = 50 \Omega$	TL032AC	25°C to 70°C		11.5			10.8	25	μν/ Ο
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$		25°C		0.04			0.04		μV/mo
	land offer a comment	$V_{O} = 0$,	V _{IC} = 0	25°C		1	100		1	100	4
I _{IO}	Input offset current	See Figure 5	.0	70°C		9	200		12	200	рA
	loout biss summent	$V_{O} = 0$,	V _{IC} = 0	25°C		2	200		2	200	A
I _{IB}	Input bias current	See Figure 5		70°C		50	400		80	400	рA
.,	V _{ICR} Common-mode input voltage range			25°C	-1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		,
VICR				Full range [†]	-1.5 to 4			-11.5 to 14			V
	Maximum positive			25°C	3	4.3		13	14		
V _{OM+}	peak output voltage	$R_L = 10 \text{ k}\Omega$		0°C	3	4.2		13	14		V
	swing			70°C	3	4.3		13	14		
	Maximum negative			25°C	-3	-4.2		-12.5	-13.9		
V_{OM-}	peak output voltage	$R_L = 10 \text{ k}\Omega$		0°C	-3	-4.1		-12.5	-13.9		V
	swing			70°C	-3	-4.2		-12.5	-14		
	Large-signal			25°C	4	12		5	14.3		
A_{VD}	differential voltage	$R_L = 10 \text{ k}\Omega$		0°C	3	11.1		4	13.5		V/mV
	amplification [§]			70°C	4	13.3		5	15.2		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			14		pF
	Common made	V V!		25°C	70	87		75	94		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$ $V_O = 0, R_S = 5$		0°C	70	87		75	94		dB
	•	J 4, 3 5		70°C	70	87		75	94		
	Supply-voltage	V±E V4	o ±15 \/	25°C	75	96		75	96		
k _{SVR}	rejection ratio $V_{CC\pm} = \pm 5 \text{ V to } \pm 1$		0°C	75	96		75	96		dB	
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			70°C	75	96		75	96		

[†] Full range is 0°C to 70°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

TL032C and TL032AC electrical characteristics at specified free-air temperature (continued)

	DADAMETED					TI	L032C, 1	TL032AC	:		
	PARAMETER	TEST CO	NDITIONS	TA	٧c	_{C±} = ±5	٧	Vcc	_{)±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		3.8	5		13	17	
P_{D}	Total power dissipation (two amplifiers)	$V_{O} = 0$,	No load	0°C		3.7	5		12.7	17	mW
	(two ampimoro)			70°C		3.8	5		12.6	17	
	Supply current	V 0	Nalaad	0°C		368	500		422	560	
ICC	(two amplifiers)	$V_{O}=0,$	No load	70°C		378	500		420	560	μΑ
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	dB	25°C		120			120		dB

TL032C and TL032AC operating characteristics at specified free-air temperature

							Т	L032C, 1	ΓL032AC	;		
	PARAMETER		TEST CO	NDITIONS	TA	ν _c	C± = ±5	٧	Vcc	_{2±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		1.2		1.5	2.9		
SR+	Positive slew rate a gain [†]	t unity	$R_L = 10 \text{ k}\Omega$, C See Figure 1	_L = 100 pF	0°C		1.8		1	2.6		V/μs
	gaiii		Coo i iguio i		70°C		2.2		1.5	3.2		
			D 4010 0	100 5	25°C		3.9		1.5	5.1		
SR-	Negative slew rate a	at unity	$R_L = 10 \text{ k}\Omega$, C See Figure 1	L = 100 pF	0°C		3.7		1.5	5		V/μs
	gani				70°C		4		1.5	5		
			$V_{I(PP)} = \pm 10 \text{ V}$	' ,	25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega$, C	L = 100 pF	0°C		134			127		ns
			See Figures 1 and 2		70°C		150			142		
		$V_{I(PP)} = \pm 10$		' ,	25°C		138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega$, C	L = 100 pF	0°C		134			127		ns
			See Figures 1	and 2	70°C		150			142		
			$V_{I(PP)} = \pm 10 \text{ V}$	' ,	25°C		11%			5%		
	Overshoot factor		$R_L = 10 \text{ k}\Omega$, C	L = 100 pF	0°C		10%			4%		
			See Figures 1	and 2	70°C		12%			6%		
		TL032C		f = 10 Hz	25°C		49			49		
Vn	Equivalent input	110320	$R_S = 20 \Omega$	f = 1 kHz	25 C		41			41		nV/√ Hz
v _n	noise voltage	TL032AC	See Figure 3	f = 10 Hz	25°C		49			49		IIV/VIIZ
		TLUSZAC		f = 1 kHz	25 C		41			41	60	
In	Equivalent input noi	se current	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			$V_{I} = 10 \text{ mV},$		25°C		1			1.1		
B ₁	Unity-gain bandwidth	h	$R_L = 10 \text{ k}\Omega$, C	_L = 25 pF	0°C		1			1.1		MHz
			See Figure 4		70°C		1			1		
		<u>-</u>	V _I = 10 mV,		25°C		61°			65°		
φm	Phase margin at un	ity gain	$R_L = 10 \text{ k}\Omega$, C	_L = 25 pF	0°C		61°			65°		
		See Figure 4		70°C		60°			64°			

 $^{^{\}dagger}$ For $V_{CC\pm}=\pm 5$ V, $V_{I(PP)}=\pm 1$ V; for $V_{CC\pm}=\pm 15$ V, $V_{I(PP)}=\pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032I and TL032AI electrical characteristics at specified free-air temperature

								TL032A	l		
	PARAMETER	TEST CON	NDITIONS	TA	Vo	_{CC±} = ±5	٧	٧,	_{CC±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TL032I	25°C		0.69	3.5		0.57	1.5	
l ,,	Innut offeet velters	$V_O = 0,$ $V_{IC} = 0,$	110321	Full range [†]			5.3			3.3	m)/
V _{IO}	Input offset voltage	$R_S = 50 \Omega$	TLOGGAL	25°C		0.53	2.8		0.39	8.0	mV
		J	TL032AI	Full range†			4.6			2.6	
$\alpha_{V_{IO}}$	Temperature	$V_{O} = 0,$ $V_{IC} = 0,$	TL032I	25°C to 85°C		11.4			10.8		μV/°C
V IO	coefficient of input offset voltage	$R_S = 50 \Omega$	TL032AI	25°C to 85°C		11.4			10.8	25	μν/-Ο
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \ \Omega$		25°C		0.04			0.04		μV/mo
	love to # - to come at	$V_{O} = 0$,	V _{IC} = 0	25°C		1	100		1	100	pА
I _{IO}	Input offset current	See Figure 5		85°C		0.02	0.45		0.02	0.45	nA
	lancia la la accionant	$V_{O} = 0$,	V _{IC} = 0	25°C		2	200		2	200	pА
I _{IB}	Input bias current	See Figure 5		85°C		0.2	0.9		0.3	0.9	nA
	Common-mode input			25°C	-1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		٧
VICR	voltage range			Full range [†]	-1.5 to 4			-11.5 to 14			V
	Maximum positive			25°C	3	4.3		13	14		
V _{OM+}	peak output voltage	$R_L = 10 \text{ k}\Omega$		–40°C	3	4.2		13	14		V
	swing			85°C	3	4.4		13	14		
	Maximum negative			25°C	-3	-4.2		-12.5	-13.9		
V _{OM} _	peak output voltage	$R_L = 10 \text{ k}\Omega$		-40°C	-3	-4.1		-12.5	-13.8		V
	swing			85°C	-3	-4.2		-12.5	-14		
_	Large-signal differential	D 4010		−40°C	3	8.4		4	11.6		\//ma\/
A _{VD}	voltage amplification§	$R_L = 10 \text{ k}\Omega$		85°C	4	13.5		5	15.3		V/mV
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	0			25°C	70	87		75	94		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$ $V_{O} = 0$, $R_{S} = 1$		–40°C	70	87		75	94		dB
		3,113		85°C	70	87		75	94		
	Supply-voltage		.4534	25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{CC\pm} = \pm 5 \text{ V t}$ $V_{CC\pm} = 0. \text{ Re } = 0$		–40°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$	0 3,3	$_{\rm O}$ = 0, R _S = 50 $_{\rm O}$		75	96		75	96		

[†] Full range is -40°C to 85°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

TL032I and TL032AI electrical characteristics at specified free-air temperature (continued)

							TL032I,	TL032AI			
F	PARAMETER	TEST C	ONDITIONS	TA	٧c	_{C±} = ±5	V	Vcc	_{:±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
	Total power			25°C		3.8	5		13	17	
PD	dissipation	$V_{O} = 0$,	No load	-40°C		2.9	5		10.9	17	mW
	(two amplifiers)			85°C		3.7	5		12.4	17	
				25°C		384	500		434	560	
Icc	Supply current (two amplifiers)	$V_{O} = 0$,	No load	-40°C		288	500		362	560	μΑ
	(two ampimoro)			85°C		372	500		414	560	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	dB	25°C		120			120		dB

TL032I and TL032AI operating characteristics at specified free-air temperature

								ΓL032I, ⁻	TL032AI			
	PARAMETER		TEST CO	NDITIONS	TA	Vc	c± = ±5	V	Vc	_{C±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew rate at gain [†]	unity	R_L = 10 kΩ, C	_L = 100 pF	−40°C		1.6		1	2.1		V/μs
	gaiir				85°C		2.3		1.5	3.3		
					25°C		3.9		1.5	5.1		
SR-	Negative slew rate a gain†	it unity	$R_L = 10 \text{ k}\Omega$, C	L = 100 pF	MIN TYP MAX MIN TYP MAX	V/μs						
	gaiiri				85°C		4.1		1.5	4.9		
			V _{I(PP)} = ±10 V		25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega$, C	_L = 100 pF	-40°C		132			123		ns
			See Figures 1	and 2	85°C		154			146		
			V _{I(PP)} = ±10 V		25°C		138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega$, C		-40°C		132			123		ns
			See Figure 1		85°C		154			146	2.1 3.3 5.1 4.8 4.9 132 123 146 132 123 146 5% 5% 7% 49 41 49 41 60 003 pA	
			V _{I(PP)} = ±10 V	,	25°C		11%			5%		
	Overshoot factor		$R_L = 10 \text{ k}\Omega$, C	_L = 100 pF	−40°C		12%			5%		
			See Figures 1	and 2	85°C		13%			7%		
				f = 10 Hz			49			49		
	Equivalent input	TL032I	$R_S = 20 \Omega$	f = 1 kHz	25°C		41			41		/
V _n	noise voltage		See Figure 3	f = 10 Hz			49			49		nV/√ Hz
		TL032AI		f = 1 kHz	25°C		41			41	60	
In	Equivalent input nois	se	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			V _I = 10 mV,		25°C		1			1.1		
B ₁	1 Unity-gain bandwidth	h	$R_L = 10 \text{ k}\Omega$, C	լ = 25 pF	-40°C		1			1.1		MHz
			See Figure 4		85°C		0.9			1		
			$V_1 = 10 \text{ mV},$		25°C		61°			65°		
φ _m	Phase margin at uni	ty gain	$R_L = 10 \text{ k}\Omega, C$	_L = 25 pF	-40°C		61°			65°		
	That marginal and gain	See Figure 4		85°C		60°			64°			

[†] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032M and TL032AM electrical characteristics at specified free-air temperature

						Т	L032M,	TL032A	М		
	PARAMETER	TEST CON	IDITIONS	T _A	Vo	_{CC±} = ±5	V	٧c	cc± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TL032M	25°C		0.69	3.5		0.57	1.5	
. ,	Innut offeet veltere	$V_{O} = 0,$ $V_{IC} = 0,$	TLU32IVI	Full range [†]			6.5			4.5	m\/
V _{IO}	Input offset voltage	$V_{IC} = 0$, $R_S = 50 \Omega$	TLOCOANA	25°C		0.53	2.8		0.39	0.8	mV
			TL032AM	Full range†			5.8			3.8	
a	Temperature coefficient	$V_{O} = 0,$ $V_{IC} = 0,$	TL032M	25°C to 125°C		9.7			9.7		սV/°C
$\alpha_{V_{IO}}$	of input offset voltage	$R_S = 50 \Omega$	TL032AM	25°C to 125°C		9.7			9.7		μν/-Ο
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$		25°C		0.04			0.04		μV/mo
	land offer the comment	$V_{O} = 0,$	V _{IC} = 0	25°C		1	100		1	100	pА
lio	Input offset current	See Figure 5		125°C		0.2	10		0.2	10	nA
	land the land and the land	$V_{O} = 0$,	V _{IC} = 0	25°C		2	200		2	200	pА
I _{IB}	Input bias current	See Figure 5		125°C		7	20		8	20	nA
	Common-mode input			25°C	-1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		.,
VICR	voltage range			25°C to 4 to 5 Full range† -1.5 to 4			-11.5 to 14			V	
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing	$R_L = 10 \text{ k}\Omega$		−55°C	3	4.1		13	14		V
	output voltage swing			125°C	3	4.4		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V_{OM-}	Maximum negative peak output voltage swing	$R_L = 10 \text{ k}\Omega$		−55°C	-3	-4		-12.5	-13.8		V
	output voltage owing			125°C	-3	-4.3		-12.5	-14		
				25°C	4	12		5	14.3		
A_{VD}	Large-signal differential voltage amplification§	$R_L = 10 \text{ k}\Omega$		–55°C	3	7.1		4	10.4		V/mV
	voltage amplification			125°C	3	12.9		4	15		
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	Common mode rejection	\		25°C	70	87		75	94		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ mir $V_O = 0, R_S = 0$		–55°C	70	87		70	94		dB
		, ,		125°C	70	87		70	94		
	Supply-voltage	$V_{CC\pm} = \pm 5 \text{ V t}$	o +15 \/	25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{CC\pm} = \pm 5 \text{ V I}$ $V_{O} = 0, R_{S} = 5$		–55°C	75	95		75	95		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			125°C	75	96		75	96		

[†] Full range is –55°C to 125°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

TL032M and TL032AM electrical characteristics at specified free-air temperature (continued)

						TI	_032M, ⁻	TL032AN	1		
	PARAMETER	TEST C	ONDITIONS	TA	Vc	_{C±} = ±5	٧	Vcc	_{C±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
	Total power dissipation			25°C		3.8	5		13	17	
PD	(two amplifiers)	$V_{O} = 0$,	No load	−55°C		2.3	5		9.4	17	mW
	$V_O = 0$,			125°C		3.6	5		11.8	17	
	•			25°C		384	500		434	560	
Icc	Supply current (two amplifiers)	$V_{O} = 0$,	No load	−55°C		228	500		312	560	μΑ
	(two amplificis)			125°C		356	500		394	560	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	dB	25°C		120			120		dB

TL032M and TL032AM operating characteristics at specified free-air temperature

							Т	L032M,	TL032AN	1		
	PARAMETE	R	TEST CO	NDITIONS	TA	V _C	_{C±} = ±5	٧	Vcc	_{2±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew ra	ite at unity	$R_L = 10 \text{ k}\Omega, C_l$ See and Figure		−55°C		1.4		1	1.9		V/μs
	gairi		Coo and rigary	0 1	125°C		2.4		1	3.5		
					25°C		3.9		1.5	5.1		
SR-	Negative slew r	ate at unity	$R_L = 10 \text{ k}\Omega, C_L$ See and Figure		–55°C		3.2		1	4.6		V/μs
	gaiii		Oce and rigar	0 1	125°C		4.1		1	4.7		
			$V_{I(PP)} = \pm 10 \text{ V},$		25°C		138			1.9 3.5 5.1 4.6		
t _r	Rise time		$R_L = 10 \text{ k}\Omega$, C_L	_ = 100 pF	−55°C		142			123		ns
			See Figures 1 and 2		125°C		166			58		
			$V_{I(PP)} = \pm 10 \text{ V},$		25°C		138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega$, C_L		−55°C		142			123		ns
			See Figure 1		125°C		166			158		
			$V_{I(PP)} = \pm 10 \text{ V},$		25°C		11%			5%		
	Overshoot factor	or	$R_L = 10 \text{ k}\Omega$, C_L	_ = 100 pF	–55°C		16%			6%		
			See Figures 1	and 2	125°C		14%			8%		
		TL032M		f = 10 Hz	25°C		49			49		
.,	Equivalent input noise	I LU3ZIVI	$R_S = 20 \Omega$	f = 1 kHz	25°0		41			41		nV/√ H :
V _n	voltage	TL032AM	See Figure 3	f = 10 Hz	0500		49			49		nv/∀H
	3	TLU32AW		f = 1 kHz	25°C		41			41		
In	Equivalent inpu current	t noise	f = 1 kHz		25°C		0.003			0.003		pA/√Hz
			$V_1 = 10 \text{ mV},$		25°C		1			1.1		
B1	Unity-gain band	dwidth	$R_L = 10 \text{ k}\Omega$, C_L	_ = 25 pF	–55°C		1			1.1		MHz
			See Figure 4		125°C		0.9			0.9		
			$V_1 = 10 \text{ mV},$		25°C		61°			65°		
φ _m	Phase margin a	at unity gain	$R_L = 10 \text{ k}\Omega, C_L$	_ = 25 pF	–55°C		57°			64°		
			See Figure 4		125°C		59°			62°		

[†] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034C and TL034AC electrical characteristics at specified free-air temperature

						Т	L034C,	TL034A	С		
	PARAMETER	TEST CON	IDITIONS	TA	٧ _c	_{CC±} = ±5	٧	٧c	_{C±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TL034C	25°C		0.91	6		0.79	4	
١,,	Innut offeet veltere	$V_{O} = 0,$ $V_{IC} = 0,$	1L034C	Full range [†]			8.2			6.2	m)/
V _{IO}	Input offset voltage	$V_{IC} = 0$, $R_S = 50 \Omega$	TI 0044C	25°C		0.7	3.5		0.58	1.5	mV
		ŭ	TL034AC	Full range†			5.7			3.7	
, a	Temperature coefficient	$V_{O} = 0,$ $V_{IC} = 0,$	TL034C	25°C to 70°C		11.6			12		แV/°C
$\alpha_{V_{IO}}$	of input offset voltage	$R_S = 50 \Omega$	TL034AC	25°C to 70°C		11.6			12	25	μν/ Ο
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$		25°C		0.04			0.04		μV/mo
	land affect consent	$V_{O} = 0, V_{IC} = 0$		25°C		1	100		1	100	A
I _{IO}	Input offset current	See Figure 5		70°C		9	200		12	200	рA
	Innut hing gurrant	$V_O = 0$, V_{IC}	= 0	25°C		2	200		2	200	~ ^
I _{IB}	Input bias current	See Figure 5		70°C		50	400		80	400	рA
V	Common-mode input			25°C	-1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		٧
VICR	voltage range			Full range [†]	-1.5 to 4			-11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing	$R_L = 10 \text{ k}\Omega$		0°C	3	4.2		13	14		V
	output voltage swilig			70°C	3	4.3		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V_{OM-}	Maximum negative peak output voltage swing	$R_L = 10 \text{ k}\Omega$		0°C	-3	-4.1		-12.5	-13.9		V
	carpat remage eng			70°C	-3	-4.2		-12.5	-14		
				25°C	4	12		5	14.3		
A_{VD}	Large-signal differential voltage amplification§	$R_L = 10 \text{ k}\Omega$		0°C	3	11.1		4	13.5		V/mV
	voltage amplification			70°C	4	13.3		5	15.2		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			14		pF
	Common-mode	V _{IC} = V _{ICR} mi	in,	25°C	70	87		75	94		
CMRR	rejection ratio	$V_{O} = 0,$		0°C	70	87		75	94		dB
	•	$R_S = 50 \Omega$		70°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{O} = 0, R_{S} =$	= 50 Ω	0°C	75	96		75	96		dB
t =	(ΔV _{CC±} /ΔV _{IO})	$/\Delta V_{IO}$)		70°C	75	96		75	96		

[†] Full range is 0°C to 70°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

TL034C and TL034AC electrical characteristics at specified free-air temperature (continued)

					Т	L034C,	TL034AC			
	PARAMETER	TEST CONDITIONS	TA	٧c	_{C±} = ±5	V	Vcc	_{:±} = ±15	V	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
			25°C		7.7	10		26	34	
P_{D}	Total power dissipation (two amplifiers)	V _O = 0, No load	0°C		7.4	10		25.3	34	mW
	(two ampimoro)		70°C		7.6	10		25.2	34	
	0		25°C		0.77	1		0.87	1.12	
Icc	Supply current (four amplifiers)	V _O = 0, No load	0°C		0.74	1		0.85	1.12	mA
	итриното)		70°C		0.76	1		0.84	1.12	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

TL034C and TL034AC operating characteristics at specified free-air temperature

						T	L034C, 1	ΓL034AC	;			
	PARAMETER		TEST COI	NDITIONS	TA	٧c	_{C±} = ±5	V	Vcc	_{C±} = ±15	V	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
	Positive slew rate at unity gain [†]			25°C		2		1.5	2.9			
SR+			R_L = 10 kΩ, C_L = 100 pF See Figure 1		0°C		1.8		1	2.6		V/μs
					70°C		2.2		1.5	3.2		
				=	25°C		3.9		1.5	5.1		
SR-	Negative slew rate a	at unity	$R_L = 10 \text{ k}\Omega, C_l$ See Figure 1	L = 100 pF	0°C		3.7		1.5	5		V/μs
	gain		- Coo i iguio i		70°C		4		1.5	5		
			$V_{I(PP)} = \pm 10 \text{ V}$	•	25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$ See Figures 1 and 2		0°C		134			127		ns
					70°C		150			142		
	Fall time		$V_{I(PP)} = \pm 10 \text{ V},$ $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		25°C		138			132		
t _f					0°C		134			127		ns
			See Figure 1		70°C		150			142		
			$V_{I(PP)} = \pm 10 \text{ V},$		25°C		11%			5%		
	Overshoot factor		$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$ See Figures 1 and 2		0°C		10%			4%		
					70°C		12%			6%		
		TL034C		f = 10 Hz	25°C		83			83		
\ ,	Equivalent input	1L034C	$R_S = 20 \Omega$	f = 1 kHz	25 C		43			43		n\//\/ □=
V _n	noise voltage	TL034AC	See Figure 3	f = 10 Hz	25°C		83			83		nV/√ Hz
		TL034AC		f = 1 kHz	25 C		43			43	60	
I _n	Equivalent input noi	se current	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			V _I = 10 mV		25°C		1			1.1		
B ₁	Unity-gain bandwidt	h	$R_L = 10 \text{ k}\Omega, C_I$	_L = 25 pF	0°C		1			1.1		MHz
			See Figure 4		70°C		1			1		
			V _I = 10 mV,		25°C		61°			65°		
φm	Phase margin at unity gain		$R_L = 10 \text{ k}\Omega$, C	L = 25 pF	0°C		61°			65°		
			See Figure 4		70°C		60°			64°		

[†] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034I and TL034AI electrical characteristics at specified free-air temperature

							TL034I,	TL034A	I		
	PARAMETER	TEST CO	NDITIONS	TA	Vo	_{CC±} = ±5	V	٧,	_{CC±} = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TL034I	25°C		0.91	3.6		0.79	4	
V	Input offset voltage	$V_{O} = 0,$ $V_{IC} = 0,$	110341	Full range [†]			9.3			7.3	mV
V _{IO}	input onset voltage	$R_S = 50 \Omega$	TL034AI	25°C		0.7	3.5		0.58	1.5	IIIV
			TL034AI	Full range [†]			6.8			4.8	
~	Temperature coefficient of input offset voltage	$V_{O} = 0, V_{IC}$	TL034I	25°C to 85°C		11.5			11.6		μV/°C
$\alpha_{V_{IO}}$		$= 0$, $R_S = 50 \Omega$	TL034AI	25°C to 85°C		11.5			11.6	25	μν/°C
	Input offset voltage long-term drift [‡]	$\begin{aligned} V_O &= 0, \\ V_{IC} &= 0, \\ R_S &= 50 \ \Omega \end{aligned}$		25°C		0.04			0.04		μV/mo
	land offers and assessment	$V_{O} = 0, V_{IC} = 0$		25°C		1	100		1	100	pА
I _{IO}	Input offset current	See Figure 5	i	85°C		0.02	0.45		0.02	0.45	nA
	I _{IB} Input bias current		= 0	25°C		2	200		2	200	pА
I _{IB}	input bias current	See Figure 5		85°C		0.2	0.9		0.3	0.9	nA
V	Common-mode input			25°C	-1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		٧
V _{ICR}	voltage range			Full range†	-1.5 to 4			-11.5 to 14			-
		$R_L = 10 \text{ k}\Omega$		25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing			-40°C	3	4.1		13	14		V
	g			85°C	3	4.4		13	14		
	Maximum negative			25°C	-3	-4.2		-12.5	-13.9		
V_{OM-}	peak	$R_L = 10 \text{ k}\Omega$		–40°C	-3	-4.1		-12.5	-13.8		V
	output voltage swing			85°C	-3	-4.2		-12.5	-14		
A_{VD}	Large-signal differential	$R_I = 10 \text{ k}\Omega$		–40°C	4	12		5	14.3		V/mV
700	voltage amplification§	11[= 10 K22		85°C	3	8.4		4	11.6		V/IIIV
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	Common-mode	V _{IC} = V _{ICR} mi	in,	25°C	70	87		75	94		
CMRR	rejection ratio	$V_O = 0$, $R_S = 50 \Omega$		–40°C	70	87		75	94		dB
	•			85°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_O = 0$, $R_S = 50 \Omega$		–40°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			85°C	75	96		75	96		

[†] Full range is -40°C to 85°C.

 $^{^{\}ddagger}$ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A=25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm}=\pm 5$ V, $V_O=\pm 2.3$ V; at $V_{CC\pm}=\pm 15$ V, $V_O=\pm 10$ V

TL034I and TL034AI electrical characteristics at specified free-air temperature (continued)

PARAMETER										
		TEST CONDITIONS	TA	٧c	_{C±} = ±5	٧	V _{CC±} = ±15 V			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
P _D			25°C		7.7	10		26	34	
	Total power dissipation (four amplifiers)	V _O = 0, No load	-40°C		5.8	10		21.7	34	mW
	(rour ampimoro)		85°C		7.4	10		24.8	34	
			25°C		0.77	1		0.87	1.12	
Icc	Supply current (four amplifiers)	$V_O = 0$, No load	-40°C		0.58	1		0.72	1.12	mA
	(iodi diripiiioio)		85°C		0.74	1		0.83	1.12	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

TL034I and TL034AI operating characteristics

						TL034I, TL034AI							
	PARAMETER		TEST CO	NDITIONS	TA	V _{CC±} = ±5 V			Vcc	_{c±} = ±15	٧	UNIT	
						MIN	TYP	MAX	MIN	TYP	MAX		
	Positive slew rate at unity gain [†]				25°C		2		1.5	2.9			
SR+			$R_L = 10 \text{ k}\Omega, C_L$ See Figure 1	_= 100 pF	–40°C		1.6		1	2.1		V/μs	
			See rigule r		85°C		2.3		1.5	3.3]	
					25°C		3.9		1.5	5.1			
SR-	Negative slew rat gain†	e at unity	$R_L = 10 \text{ k}\Omega, C_L$ See Figure 1	_= 100 pF	–40°C		3.3		1.5	4.8		V/µs	
	gairi		Gee rigule r		85°C		4.1		1.5	4.9		1	
			$V_{I(PP)} = \pm 10 \text{ V},$		25°C		138			132			
t _r	Rise time		$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		-40°C		132			123		ns	
			See Figures 1 and 2		85°C		154			146]	
t _f	Fall time		$V_{I(PP)} = \pm 10 \text{ V},$ $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		25°C		138			132			
					-40°C		132			123		ns	
			See Figures 1	and 2	85°C		154			146		1	
	Overshoot factor		$V_{I(PP)} = \pm 10 \text{ V},$ $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$ See Figures 1 and 2		25°C		11%			5%			
					-40°C		12%			5%		1	
					85°C		13%			7%		1	
		TL034I		f = 10 Hz	0500		83			83		\/\ 	
.,	Equivalent input		$R_S = 20 \Omega$	f = 1 kHz	25°C		43			43			
V_n	noise voltage	TI 00441	See Figure 3	f = 10 Hz	0500		83			83		nV/√Hz	
		TL034AI		f = 1 kHz	25°C		43			43	60]	
In	Equivalent input r current	noise	f = 1 kHz		25°C		0.003			0.003		pA/√Hz	
			$V_1 = 10 \text{ mV},$		25°C		1			1.1			
B ₁	Unity-gain bandw	ridth	$R_L = 10 \text{ k}\Omega$, C_L	_ = 25 pF	-40°C		1			1.1		MHz	
			See Figure 4		85°C		0.9			1		1	
			$V_1 = 10 \text{ mV},$		25°C		61°			65°			
φ _m	Phase margin at	Phase margin at unity gain		_ = 25 pF	-40°C		61°			65°		1	
			See Figure 4		85°C		60°			64°		1	

[†] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034M and TL034AM electrical characteristics at specified free-air temperature

						Т	L034M,	TL034A	M		
	PARAMETER	TEST CO	NDITIONS	TA	Vo	_{CC±} = ±5	٧	Vc	cc± = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 00414	25°C		0.91	3.6		0.78	4	
l ,,	land the office to college	$V_{O} = 0,$	TL034M	Full range†			11			9	\
V _{IO}	Input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TLOGANA	25°C		0.7	3.5		0.58	1.5	mV
		J	TL034AM	Full range†			8.5			6.5	
a	Temperature coefficient of	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \Omega$	TL034M	25°C to 125°C		10.6			10.9		μV/°C
$\alpha_{V_{IO}}$	input offset voltage		TL034AM	25°C to 125°C		10.6			10.9		μν/-Ο
	Input offset voltage long-term drift [‡]	$\begin{aligned} V_O &= 0, \\ V_{IC} &= 0, \\ R_S &= 50 \ \Omega \end{aligned}$		25°C		0.04			0.04		μV/mo
		$V_{O} = 0, V_{IC} = 0$		25°C		1	100		1	100	pА
I _{IO}	Input offset current	See Figure 8	See Figure 5			0.2	10		0.2	10	nA
	Innut hing gurrant	$V_{O} = 0, V_{IC} = 0$		25°C		2	200		2	200	pА
I _{IB}	Input bias current	See Figure 5	5	125°C		7	20		8	20	nA
,,	Common-mode input			25°C	-1.5 to 4	-3.4 to 5.4		-11.5 to 14	-13.4 to 15.4		٧
V _{ICR}	voltage range			Full range [†]	-1.5 to 4			-11.5 to 14			V
		$R_L = 10 \text{ k}\Omega$		25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak output voltage swing			−55°C	3	4.1		13	14		V
	output voltage ownig			125°C	3	4.4		13	14		
	Mandananananathananat			25°C	-3	-4.2		-12.5	-13.9		V
V _{OM} _	Maximum negative peak output voltage swing	$R_L = 10 \text{ k}\Omega$		−55°C	-3	-4		-12.5	-13.8		
				125°C	-3	-4.3		-12.5	-14		
				25°C	4	12		5	14.3		
A_{VD}	Large-signal differential voltage amplification§	$R_L = 10 \text{ k}\Omega$		–55°C	3	7.1		4	10.4		V/mV
	voltage amplification			125°C	3	12.9		4	15		
rį	Input resistance			25°C		10 ¹²			10 ¹²		Ω
Ci	Input capacitance			25°C		5			4		pF
	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		25°C	70	87		75	94		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, $V_{O} = 0$, $R_{S} = 50 \Omega$		–55°C	70	87		70	94		dB
	,			125°C	70	87		70	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{O} = 0, R_{S} = 50 \Omega$		−55°C	75	95		75	95		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			125°C	75	96		75	96		

[†] Full range is –55°C to 125°C.

[†] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

TL034M and TL034AM electrical characteristics at specified free-air temperature (continued)

PARAMETER											
		TEST CO	TEST CONDITIONS		٧c	_{C±} = ±5	٧	V _{CC±} = ±15 V			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
P _D				25°C		7.7	10		26	34	
	Total power dissipation (two amplifiers)	V _O = 0,	No load	−55°C		4.6	12		18.7	45	mW
	(two ampimoro)			125°C		7.1	12		23.6	45	
	•		No load	25°C		0.77	1		0.87	1.12	
Icc	Supply current (two amplifiers)	$V_{O} = 0$,		−55°C		0.46	1.2		0.62	1.5	mA
	(two ampiniors)			125°C		0.71	1.2		0.79	1.5	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100		25°C		120			120		dB

TL034M and TL034AM operating characteristics at specified free-air temperature

	PARAMETER		TEST CO	NDITIONS	TA	Vcc	_{2±} = ±5	٧	Vc	_{C±} = ±15	٧	UNIT	
						MIN	TYP	MAX	MIN	TYP	MAX	!	
					25°C		2		1.5	2.9			
SR+	Positive slew rate gain [†]	e at unity	$R_L = 10 kΩ, C_L$ See Figure 1	_ = 100 pF	−55°C		1.4		1	1.9		V/μs	
	gaiii		Jess riguis r		125°C		2.4		1	3.5			
					25°C		3.9		1.5	5.1			
SR-	Negative slew rat	e at unity	$R_L = 10 kΩ, C_L$ See Figure 1	_ = 100 pF	−55°C		3.2		1	4.6		V/μs	
	gaiii				125°C		4.1		1	4.7			
			V _{I(PP)} = ±10 V,		25°C		138			132			
t _r	Rise time		$R_L = 10 \text{ k}\Omega$, C_L	_ = 100 pF	–55°C		142			123		ns	
			See Figures 1 and 2		125°C		166			58			
	Fall time		$V_{I(PP)} = \pm 10 \text{ V},$ $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		25°C		138			132			
t _f					–55°C		142			123		ns	
			See Figure 1		125°C		166			158			
			$V_{I(PP)} = \pm 10 \text{ V},$		25°C		11%			5%			
	Overshoot factor	vershoot factor		$R_{L} = 10 \text{ k}\Omega, C_{L} = 100 \text{ pF}$			16%			6%			
			See Figures 1 and 2		125°C		14%			8%			
		TI 00414		f = 10 Hz	0500		83			83			
.,	Equivalent input	TL034M	$R_S = 20 \Omega$	f = 1 kHz	25°C		43			43			
V_n	noise voltage	TI 004414	See Figure 3	f = 10 Hz	0500		83			83		nV/√Hz	
		TL034AM		f = 1 kHz	25°C		43			43			
In	Equivalent input r current	noise	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz	
			V _I = 10 mV,		25°C		1			1.1			
B1	Unity-gain bandw	vidth	$R_L = 10 \text{ k}\Omega, C_L$	_ = 25 pF	–55°C		1			1.1		MHz	
			See Figure 4		125°C		0.9			0.9			
			$V_1 = 10 \text{ mV},$		25°C		61°			65°			
φ _m	Phase margin at	unity gain	$R_L = 10 \text{ k}\Omega, C_L$	_ = 25 pF	–55°C		57°			64°			
			See Figure 4		125°C		59°			62°			

[†] For $V_{CC\pm} = \pm 5 \text{ V}$, $V_{I(PP)} = \pm 1 \text{ V}$; for $V_{CC\pm} = \pm 15 \text{ V}$, $V_{I(PP)} = \pm 5 \text{ V}$

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes fixture capacitance.

Figure 1. Slew-Rate and Overshoot Test Circuit

Figure 2. Rise Time and Overshoot Waveform

Figure 3. Noise-Voltage Test Circuit

NOTE A: C_L includes fixture capacitance.

Figure 4. Unity-Gain Bandwidth and Phase-Margin Test Circuit

Figure 5. Input-Bias and Offset-Current Test Circuit

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

PARAMETER MEASUREMENT INFORMATION

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

input bias and offset current

At the picoampere bias current level typical of the TL03x and TL03xA, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device.

noise

With the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is performed at f = 1 kHz, unless otherwise noted.

Table of Graphs

	FIGURE
Distribution of TL03x input offset voltage	6–11
Distribution of TL03x input offset-voltage temperature coefficient	12–14
Input bias current vs Common-mode input voltage	15
Input bias current and input offset current vs Free-air temperature	16
Common-mode input voltage vs Supply voltage	17
Common-mode input voltage vs Free-air temperature	18
Output voltage vs Differential input voltage	19, 20
Maximum peak output voltage vs Supply voltage	21
Maximum peak-to-peak output voltage vs Frequency	22
Maximum peak output voltage vs Output current	23, 24
Maximum peak output voltage vs Free-air temperature	25, 26
Large-signal differential voltage amplification vs Load resistance	27
Large-signal differential voltage amplification and Phase shift vs Frequency	28
Large-signal differential voltage amplification vs Free-air temperature	29
Output impedance vs Frequency	30
Common-mode rejection ratio vs Frequency	31, 32
Common-mode rejection ratio vs Free-air temperature	33
Supply-voltage rejection ratio vs Free-air temperature	34
Short-circuit output current vs Supply voltage	35
Short-circuit output current vs Time	36
Short-circuit output current vs Free-air temperature	37
Equivalent input noise voltage vs Frequency (TL031 and TL031A)	38
Equivalent input noise voltage vs Frequency (TL032 and TL032A)	39
Equivalent input noise voltage vs Frequency (TL034 and TL034A)	40
Supply current vs Supply voltage (TL031 and TL031A)	41
Supply current vs Supply voltage (TL032 and TL032A)	42
Supply current vs Supply voltage (TL034 and TL034A)	43
Supply current vs Free-air temperature (TL031 and TL031A)	44
Supply current vs Free-air temperature (TL032 and TL032A)	45
Supply current vs Free-air temperature (TL034 and TL034A)	46
Slew rate vs Load resistance	47, 48
Slew rate vs Free-air temperature	49, 50
Overshoot factor vs Load capacitance	51
Total harmonic distortion vs Frequency	52
Unity-gain bandwidth vs Supply voltage	53
Unity-gain bandwidth vs Free-air temperature	54
Phase margin vs Supply voltage	55
Phase margin vs Load capacitance	56
Phase margin vs Free-air temperature	57
Voltage-follower small-signal pulse response	58
Voltage-follower large-signal pulse response	59, 60

DISTRIBUTION OF TL034 INPUT OFFSET VOLTAGE

DISTRIBUTION OF TL034A INPUT OFFSET VOLTAGE

Figure 11

DISTRIBUTION OF TL031 INPUT OFFSET-VOLTAGE TEMPERATURE COEFFICIENT

DISTRIBUTION OF TL032 INPUT OFFSET-VOLTAGE **TEMPERATURE COEFFICIENT**

 $^{\alpha}$ V_{IO} – Temperature Coefficient – μ V/ $^{\circ}$ C Figure 13

Figure 12

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

MAXIMUM PEAK OUTPUT VOLTAGE vs

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE† FREQUENCY V_{O(PP)} - Maximum Peak-to-Peak Output Voltage - V 30 $R_I = 10 \text{ k}\Omega$ $V_{CC\pm} = \pm 15 \text{ V}$ 25 20 15 $T_A = -55^{\circ}C$ 10 $T_A = 125^{\circ}C$, $V_{CC\pm}$ = ± 5 V 5 0 └ 1 k 10 k 100 k 1 M f - Frequency - Hz

Figure 22

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE **AMPLIFICATION AND PHASE SHIFT**

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION[†]** FREE-AIR TEMPERATURE 50 $R_L = 10 \text{ k}\Omega$ A_{VD} – Large-Signal Differential Voltage Amplification – V/mV $V_{CC\pm} = \pm 15 \text{ V}$ $V_{CC\pm} = \pm 5 \text{ V}$ -75 -50 -25 25 100 125 T_△ - Free-Air Temperature - °C Figure 29

FREQUENCY 100 $V_{CC\pm} = \pm 5 \text{ V}$ CMRR - Common-Mode Rejection Ratio - dB 90 $T_A = 25^{\circ}C$ 80 70 60 50 40 30

10 k

f - Frequency - Hz

Figure 31

100 k

1 M

10 M

20

10

0

10

100

COMMON-MODE REJECTION RATIO

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

SHORT-CIRCUIT OUTPUT CURRENT **SUPPLY VOLTAGE** 30 $V_0 = 0$ IOS - Short-Circuit Output Current - mA T_A = 25°C 20 $V_{ID} = 100 \text{ mV}$ 10 0 $V_{ID} = -100 \text{ mV}$ -10 -20 -30 2 10 16 0 12 14 |V_{CC±}| - Supply Voltage - V Figure 35

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

TL031 and TL031A

TYPICAL CHARACTERISTICS

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

100

C_L - Load Capacitance - pF

Figure 51

150

200

250

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

PHASE MARGIN

NOTE A: Values of phase margin below a load capacitance of 25 pF were estimated

Figure 56

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

-6

-8

0 2 8 10

 $\textbf{t-Time}-\mu\textbf{s}$

Figure 60

12 14

16 18

-2

3

 $\textbf{t-Time}-\mu\textbf{s}$

Figure 59

6 7

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION

input characteristics

The TL03x and TL03xA are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction.

Due to of the extremely high input impedance and resulting low bias-current requirements, the TL03x and TL03xA are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets easily can exceed bias-current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 61). These guard rings should be driven from a low-impedance source at the same voltage level as the common-mode input.

Unused amplifiers should be connected as grounded unity-gain followers to avoid oscillation.

Figure 61. Use of Guard Rings

APPLICATION INFORMATION

output characteristics

All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL03x and TL03xA drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 63). Capacitive loads of 1000 pF and larger can be driven if enough resistance is added in series with the output (see Figure 62).

Figure 62. Effect of Capacitive Loads

Figure 63. Test Circuit for Output Characteristics

APPLICATION INFORMATION

high-Q notch filter

In general, Texas Instruments enhanced-JFET operational amplifiers serve as excellent filters. The circuit in Figure 64 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies that are interfering with the operation of an application. For this filter, the center frequency can be calculated as:

$$f_O = \frac{1}{2\pi \times R1 \times C1}$$

With the resistors and capacitors shown in Figure 64, the center frequency is 1 kHz. C1 = C3 = C2 + 2 and $R1 = R3 = 2 \times R2$. The center frequency can be modified by varying these values. When adjusting the center frequency, ensure that the operational amplifier has sufficient gain at the frequency required.

Figure 64. High-Q Notch Filter

APPLICATION INFORMATION

transimpedance amplifier

The low-power precision TL03x allows accurate measurement of low currents. The high input impedance and low offset voltage of the TL03xA greatly simplify the design of a transimpedance amplifier. At room temperature, this design achieves 10-bit accuracy with an error of less than 1/2 LSB.

Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as:

$$V_O = -I_{IN} \times R_F \left(\frac{R1 + R2}{R2} \right)$$

Using the resistor values shown in the schematic for a 1-nA input current, the output voltage equals -0.1 V. If the V_O limit for the TL03xA is measured at ± 12 V, the maximum input current for these resistor values is ± 120 nA. Similarly, one LSB on a 10-bit scale corresponds to 12 mV of output voltage, or 120 pA of input current.

The following equation shows the effect of input offset voltage and input bias current on the output voltage:

$$V_{O} = -\left[V_{IO} + R_{F}\left(I_{IO} + I_{IB}\right)\right]\left(\frac{R1 + R2}{R2}\right)$$

If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes. Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL03xA inputs (see Figure 65).

As with all precision applications, special care must be taken to eliminate external sources of leakage and interference. Other precautions include using high-quality insulation, cleaning insulating surfaces to remove fluxes and other residue, and enclosing the application within a protective box.

Figure 65. Transimpedance Amplifier

APPLICATION INFORMATION

4-mA to 20-mA current loops

Often, information from an analog sensor must be sent over a distance to the receiving circuitry. For many applications, the most feasible method involves converting voltage information to a current before transmission. The following circuits give two variations of low-power current loops. The circuit in Figure 66 requires three wires from the transmitting to receiving circuitry, while the second variation in Figure 67 requires only two wires, but includes an extra integrated circuit. Both circuits benefit from the high input impedance of the TL03xA because many inexpensive sensors do not have low output impedance.

Assuming that the voltage at the noninverting input of the TL03xA is zero, the following equation determines the output current:

$$I_O = V_I \left(\frac{R3}{R1 \times R_S} \right) + 5V \left(\frac{R3}{R2 \times R_S} \right) = 0.16 \times V_I + 4mA$$

The circuits presently provide 4-mA to 20-mA output current for an input voltage of 0 to 100 mV. By modifying R1, R2, and R3, the input voltage range or the output current range can be adjusted.

Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset TL03xA was chosen:

$$I_{O} = V_{I} \left(\frac{R3}{R1 \times R_{S}} \right) + 5V \left(\frac{R3}{R2 \times R_{S}} \right) - V_{I} \left(\frac{R3}{R1 \times R_{S}} + \frac{R3}{R2 \times R_{S}} + \frac{R1}{R_{S}} \right)$$

$$= 0.16 \times V_{I} + 4mA - 0.17 \times V_{I}$$

For example, an offset voltage of 1 mV decreases the output current by 0.17 mA.

Due to the low power consumption of the TL03xA, both circuits have at least 2 mA available to drive the actual sensor from the 5-V reference node.

APPLICATION INFORMATION

Figure 66. Three-Wire 4-mA to 20-mA Current Loop

Figure 67. Two-Wire 4-mA to 20-mA Current Loop

APPLICATION INFORMATION

low-level light-detector preamplifier

Applications that need to detect small currents require high input-impedance operational amplifiers; otherwise, the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors provide a current that is proportional to the light reaching the transistor. The TL03x allows even the small currents resulting from low-level light to be detected.

In Figure 68, if there is no light, the phototransistor is off and the output is high. As light is detected, the operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the amplifier and adjusts the point of light detection by the amplifier.

Figure 68. Low-Level Light-Detector Preamplifier

APPLICATION INFORMATION

audio-distribution amplifier

This audio-distribution amplifier (see Figure 69) feeds the input signal to three separate output channels. U1A amplifies the input signal with a gain of 10, while U1B, U1C, and U1D serve as buffers to the output channels. The gain response of this circuit is very flat from 20 Hz to 20 kHz. The TL03x allows quick response to the input signal while maintaining low power consumption.

Figure 69. Audio-Distribution Amplifier Circuit

APPLICATION INFORMATION

instrumentation amplifier with linear gain adjust

The low offset voltage and low power consumption of the TL03x provide an accurate but inexpensive instrumentation amplifier (see Figure 70). This particular configuration offers the advantage that the gain can be linearly set by one resistor:

$$V_O = \frac{R6}{R5} \times (V_B - V_A)$$

Adjusting R6 varies the gain. The value of R6 always should be greater than, or equal to, the value of R5 to ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors should be 0.1%-tolerance resistors.

NOTE A: U1A through U1D = TL03x; $V_{CC\pm} = \pm 15 \text{ V}$

Figure 70. Instrumentation Amplifier With Linear Gain-Adjust Circuit

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-9086102Q2A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
TL031ACD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	0 to 70		
TL031ACP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	0 to 70		
TL031AID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 85		
TL031AIP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	-40 to 85		
TL031CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL031C	Samples
TL031CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL031C	Samples
TL031CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL031C	Samples
TL031CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL031C	Samples
TL031CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL031CP	Samples
TL031CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL031CP	Samples
TL031CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		
TL031ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL031I	Samples
TL031IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL031I	Samples
TL031IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL031IP	Samples
TL032ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	032AC	Samples
TL032ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	032AC	Samples
TL032ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	032AC	Samples
TL032ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL032ACP	Samples

www.ti.com

10-Jun-2014

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TL032AID	ACTIVE	SOIC			Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	032AI	Samples	
TL032AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	032AI	Samples
TL032AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	032AI	Samples
TL032AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	032AI	Samples
TL032AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL032AIP	Samples
TL032CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL032C	Samples
TL032CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL032C	Samples
TL032CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL032C	Samples
TL032CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL032C	Samples
TL032CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL032C	Samples
TL032CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL032CP	Samples
TL032CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL032CP	Samples
TL032CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T032	Samples
TL032CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		
TL032ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL032I	Samples
TL032IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL032I	Samples
TL032IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL032I	Samples
TL032IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL032I	Samples

www.ti.com

10-Jun-2014

Orderable Device	Status	Package Type	_	Pins		je Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Sample
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TL032IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL032I	Sample
TL032IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL032IP	Sample
TL032IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL032IP	Sample
TL032MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
TL032MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI	-55 to 125		
TL034ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL034AC	Sample
TL034ACDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL034AC	Sample
TL034ACDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL034AC	Sample
TL034ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TL034ACN	Sample
TL034AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034AI	Sample
TL034AIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034AI	Sample
TL034AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034AI	Sample
TL034AIN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL034AIN	Sample
TL034CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL034C	Sample
TL034CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TL034C	Sample
TL034CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type 0 to 70		TL034CN	Sample
TL034CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type 0 to 70		TL034CN	Sampl
TL034CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM 0 to 70		TL034	Sampl
TL034CPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T034	Sample

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TL034CPWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI	0 to 70		
TL034CPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	T034	Samples
TL034ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034I	Samples
TL034IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034I	Samples
TL034IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034I	Samples
TL034IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TL034I	Samples
TL034IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL034IN	Samples
TL034INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TL034IN	Samples
TL034MD	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	-55 to 125		
TL034MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		
TL034MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	-55 to 125		
TL034MN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	-55 to 125		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

10-Jun-2014

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL031CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL032IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL034AIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL034CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL034CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL034CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 8-Apr-2013

*All dimensions are nominal

7 til dillionolorio aro nomina							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TL031CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL032ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TL032AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TL032CDR	SOIC	D	8	2500	340.5	338.1	20.6
TL032CPSR	SO	PS	8	2000	367.0	367.0	38.0
TL032IDR	SOIC	D	8	2500	340.5	338.1	20.6
TL034AIDR	SOIC	D	14	2500	367.0	367.0	38.0
TL034CDR	SOIC	D	14	2500	367.0	367.0	38.0
TL034CNSR	SO	NS	14	2000	367.0	367.0	38.0
TL034CPWR	TSSOP	PW	14	2000	367.0	367.0	35.0

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity