Convex Optimization

(January – June 2022)

Assignment 1

(Un-Graded)

- 1. What is dual norm. Derive the dual norm of the L_1 , L_2 and L_∞ norm
- 2. Gram-Schmidt: Let $\{(1,-1,1,1), (1,0,1,0), (0,1,0,1) \text{ be a linearly independent set in } \mathbb{R}^4$. Find an orthonormal set $\{v_1,v_2,v_3\}$ st $L((1,-1,1,1),(1,0,1,0),(0,1,0,1)) = L(v_1,v_2,v_3)$
- 3. Prove that every real, symmetric matrix X has the decomposition $X = Q\Lambda Q^T$. Q is an orthogonal matrix and Λ is a diagonal matrix with eigenvalues as elements?
- 4. Can an orthogonal matrix have an entry $U_{ij} > 1$? Why?
- 5. When is a diagonal matrix orthogonal?
- 6. When is an upper triangular matrix orthogonal?
- 7. Is the inverse of an orthogonal matrix orthogonal?
- 8. What are eigenvalues and eigenvectors of a diagonal matrix?
- 9. Can you find vectors that attain each of the equality cases in $\lambda_{min} \leq \frac{x^T A x}{\|x\|^2} \leq \lambda_{max}$

Convex Optimization

(January – June 2022)

Assignment 2

(Un-Graded)

- 1. If $A = U\Sigma V^T$ is the SVD of a square invertible A, what is the SVD of A^{-1} ?
- 2. If A is positive semidefinite, is its eigendecomposition $A = U\Lambda U^T$ also an SVD?
- 3. If A is not positive semidefinite, how can we modify signs in $A = U\Lambda U^T$ to obtain an SVD?
- 4. Show that for a square $A = USU^T$ one has $AA^T = US^2U^T$ and $A^TA = V^TS^2V$, and that these are eigendecompositions.