9.4 특이값 분해

□ 정리 9.4.1

A : $m \times n$ 행렬

- (a) $null(A) = null(A^T A)$ (: A와 $A^T A$ 는 같은 영공간을 갖는다.)
- (b) $row(A) = row(A^T A)$ (: A와 $A^T A$ 는 같은 행공간을 갖는다.)
- (c) $col(A^T) = col(A^TA)$ (: A^T 와 A^TA 는 같은 열공간을 갖는다.)
- (d) $rank(A) = rank(A^T A)$ (: A와 $A^T A$ 는 같은 랭크를 갖는다.)

[증명] (a)

- (a) ① \mathbf{x}_0 가 $A\mathbf{x} = \mathbf{0}$ 의 해라 하자. $\Rightarrow \mathbf{x}_0$ 가 $A^T A\mathbf{x} = \mathbf{0}$ 의 해
 - ② \mathbf{x}_0 가 $A^T A \mathbf{x} = \mathbf{0}$ 의 해라 하자. \Rightarrow \mathbf{x}_0 가 $A \mathbf{x} = \mathbf{0}$ 의 해 \therefore
- (b)
- (C)
- (d)

□ 정리 9.4.2

A : $m \times n$ 행렬

- (a) $A^T A$ 는 직교대각화 가능하다.
- (b) $A^T A$ 의 고유값이 음이 아니다.

[증명] (a) $A^T A$ 이 대칭행렬 $\therefore A^T A$ 는 직교대각화 가능

- (b) $A^T A$ 는 직교대각화 가능
 - \Rightarrow A^TA 의 고유벡터로 구성된 R^n 의 정규직교기저 $\left\{ \mathbf{v}_1,\,\mathbf{v}_2,\,...,\,\mathbf{v}_n \right\}$ 존재.

대응 되는 고유값을 $\lambda_1,\,\lambda_2,\,\dots\,,\lambda_n$ 이라 하면 $1\leq i\leq n$ 에 대해

$$\|A\mathbf{v}_i\|^2 = A\mathbf{v}_i \cdot A\mathbf{v}_i = \mathbf{v}_i \cdot A^T\!A\mathbf{v}_i = \mathbf{v}_i \cdot \lambda_i \mathbf{v}_i = \lambda_i (\mathbf{v}_i \cdot \mathbf{v}_i) = \lambda_i \|\mathbf{v}_i\|^2 = \lambda_i$$
 따라서 $\lambda_i \geq 0 \quad (1 \leq i \leq n)$

■ 정의 1

■ A가 $m \times n$ 행렬이고 $\lambda_1, \lambda_2, \dots, \lambda_n$ 가 $A^T A$ 의 고유값일 때 다음의 수를 A의 특이값(singular value)이라 한다.

$$\sigma_1 = \sqrt{\lambda_1}, \ \sigma_2 = \sqrt{\lambda_2}, \ \dots \ , \sigma_n = \sqrt{\lambda_n}$$

$$\begin{bmatrix} \boxed{\textbf{qM 1}} \end{bmatrix}$$
 행렬 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ 의 특이값을 구하여라.

[풀이]

■ 정의

- ullet A가 $m \times n$ 행렬일 때 A의 주대각(main diagonal)은 $m \geq n$ 일 때 원소 $a_{11}, a_{22}, \ldots, a_{nn}$ 이 있는 위치, $m \leq n$ 일 때 원소 $a_{11}, a_{22}, \ldots, a_{nm}$ 이 있는 위치.
- ■이때 주대각에 있는 모든 원소를 **대각원소**라고 한다.

Ex

$$\begin{pmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{pmatrix} \qquad \begin{pmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{pmatrix}$$

□ 정리 9.4.4 <특이값 분해(SVD, singular value decomposition)>

ullet A : 랭크가 k인 $m \times n$ 행렬

$$\Rightarrow \ A = U \Sigma V^T = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k | \, \mathbf{u}_{k+1} \cdots \mathbf{u}_m \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 & \\ 0 & \sigma_2 & \cdots & 0 & \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \cdots & \sigma_k & \\ O_{(m-k) \times k} & O_{(m-k) \times (n-k)} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_k^T \\ \mathbf{v}_{k+1}^T \\ \vdots \\ \mathbf{v}_n^T \end{pmatrix}$$

여기서 U : $m \times m$ 직교행렬

V : $n \times n$ 직교행렬

arSigma : 주 대각 성분이 A의 특이값이고 나머지 원소는 모두 0인 m imes n 행렬

- (a) $V = (\mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n)$ 는 $A^T A$ 를 직교대각화한다.
- (b) $\lambda_1,\,\lambda_2,\,\dots,\lambda_k$ 가 V의 열벡터에 대응하는 A^TA 의 영이 아닌 고유값이면, Σ 의 영이 아닌 대각성분은 $\sigma_1=\sqrt{\lambda_1},\,\,\sigma_2=\sqrt{\lambda_2},\,\,\dots\,,\sigma_k=\sqrt{\lambda_k}$ (: 특이값)
- (c) V의 열벡터는 $\sigma_1 \geq \sigma_2 \geq \cdots \sigma_k > 0$ 을 만족시키도록 배열되어 있다.

(d)
$$\mathbf{u}_i = \frac{1}{\|A\mathbf{v}_i\|} A\mathbf{v}_i = \frac{1}{\sigma_i} A\mathbf{v}_i, \quad i = 1, 2, \dots, k$$

- (e) $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ 는 $\operatorname{col}(A)$ 의 정규직교기저이다.
- (f) $\left\{\mathbf{u}_{1,}\,\mathbf{u}_{2},\,\,\cdots\,,\mathbf{u}_{k},\,\mathbf{u}_{k+1},\,\,\ldots\,,\mathbf{u}_{m}\right\}$ 은 $\left\{\mathbf{u}_{1,}\,\mathbf{u}_{2},\,\,\cdots\,,\mathbf{u}_{k}\right\}$ 로부터 R^{m} 의 정규직교기저로 확장한 것이다.

[증명] $(A \rightarrow d \rightarrow k) n \times n$ 행렬인 경우에)

 A^TA 는 대칭행렬 \Rightarrow 직교대각화 가능(고유값 분해) : $A^TA = VDV^T$ 이때 $V = (\mathbf{v}_1 \ \mathbf{v}_2 \cdots \mathbf{v}_n)$ 의 열벡터는 A^TA 의 정규직교 고유벡터 D의 대각성분 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 은 V의 열벡터에 대응하는 A^TA 의 고유값

$$\operatorname{rank}(A) = k$$
 \Rightarrow $\operatorname{rank}(A^T A) = k$ \Rightarrow $\operatorname{rank}(D) = k$ (∵ D 와 $A^T A$ 가 많은)

$$D = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_k & \\ & & & 0 \\ 0 & & & \ddots \\ 0 & & & 0 \end{pmatrix} \quad \text 여기서 } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0 \text{ 이다}.$$

 $\{A\mathbf{v}_1, A\mathbf{v}_2, \cdots, A\mathbf{v}_n\}$ (A의 상(image)의 집합) 은 직교집합이다.

$$(\because i \neq j \text{ 때 } \mathbf{v}_i \text{ 와 } \mathbf{v}_j \text{가 직교} \quad \Rightarrow \quad A\mathbf{v}_i \cdot A\mathbf{v}_j = \mathbf{v}_i \cdot A^T\!A\mathbf{v}_j = \mathbf{v}_i \cdot (\lambda_j \mathbf{v}_j) = \lambda_j (\mathbf{v}_i \cdot \mathbf{v}_j) = 0 \)$$

D에서 처음 k개의 대각원소들은 영이 아니고, 또한 $\|A\mathbf{v}_i\|^2 = \lambda_i$ (정리 9.5.2(b) 증명에서)이므로

 $\left\{A\mathbf{v}_{1,}\,A\mathbf{v}_{2},\;\cdots,A\mathbf{v}_{n}
ight\}$ 에서 처음 k개의 벡터들을 영벡터가 아니다.

 $S = \{A\mathbf{v}_1, A\mathbf{v}_2, \cdots, A\mathbf{v}_k\}$ 는 영이 아닌 벡터들로 이루어진 A의 열공간의 직교집합이다.

A의 열공간의 차원은 $\operatorname{rank}(A) = \operatorname{rank}(A^TA) = k$ 이므로 S는 $\operatorname{col}(A)$ 의 기저이다.

$$\Rightarrow \qquad \text{정규화} \qquad \mathbf{u}_i = \frac{1}{\|A\mathbf{v}_i\|}A\mathbf{v}_i = \frac{1}{\sqrt{\lambda_i}}A\mathbf{v}_i = \frac{1}{\sigma_i}A\mathbf{v}_i \qquad (\iff A\mathbf{v}_i = \sqrt{\lambda_i}\,\mathbf{u}_i = \sigma_i\mathbf{u}_i \,)$$
 따라서 $\mathrm{col}(\mathbf{A})$ 의 정규직교기저 $\{\mathbf{u}_1,\mathbf{u}_2,\,\cdots,\mathbf{u}_k\}$ 를 얻는다.

이 기저에서 R^m 의 정규직교기저로 확장한다. $\left\{\mathbf{u}_{1,}\,\mathbf{u}_{2},\,\,\cdots\,,\mathbf{u}_{k},\,\mathbf{u}_{k+1},\,\,\dots\,,\mathbf{u}_{m}\right\}$

$$U = (\mathbf{u}_1 \; \mathbf{u}_2 \; \cdots \; \mathbf{u}_k \; \mathbf{u}_{k+1} \; \cdots \; \mathbf{u}_m)$$
라 하면 \Rightarrow U 는 직교행렬

$$\Sigma = egin{pmatrix} \sigma_1 & & & 0 \ \sigma_2 & & & \ & \ddots & & \ & & \sigma_k & & \ & & 0 \ & & & \ddots \ 0 & & & 0 \end{pmatrix}$$
라 하면,

$$U\Sigma = (\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_k \mathbf{u}_k \ 0 \ \cdots \ 0) = (A\mathbf{v}_1 \ A\mathbf{v}_2 \ \cdots \ A\mathbf{v}_k \ A\mathbf{v}_{k+1} \ \cdots \ A\mathbf{v}_n) = A \ V$$

[예제
$$2$$
] $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ 의 특이값 분해를 찾아라.

[풀이]

9.5 특이값 분해를 이용한 자료압축

[Note]

■ 특이값 분해에서 행렬의 영행과 영열은 불필요하므로 다음과 같은 형태의 분해를 얻을 수 있다.

$$A = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{pmatrix} \begin{pmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_k^T \end{pmatrix} \quad : A 의 축소된 특이값 분해--(*)$$

$$A = U_1 \Sigma_1 V_1^T$$
 이때 U_1 은 $m \times k$ 행렬, Σ_1 은 $k \times k$ 가역행렬, V_1^T 은 $k \times n$ 행렬

■ (*) 식을 전개하면 *A* 의 축소된 특이값 전개를 얻는다.

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \cdots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$$

[예제 1] 행렬
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
의 (축소된 특이값 분해와) 축소된 특이값 전개를 구하여라.

즉, $A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T$ 로 나타내어라.

[풀이]