数值试验二报告

陈稼霖

45875852

2019.4.23

1.~(1) 对函数 $f(x)=\frac{1}{1+25x^2}$,在区间[-1,1]用拉格朗日插值法进行插值,取不同的插值多项式的阶数,观察龙格现象.

解: 在-1与1之间取等距节点

$$x_i = -1 + \frac{2i}{n}, \ i = 0, 1, 2, \dots, n$$

分别做阶数n = 2, 4, 6, 8的拉格朗日插值多项式,作图如下. 可见,在接近端点-1与1的地方插值结果就会出现震荡,且n越大,这种振荡越剧烈.

图 1: 2阶拉格朗日插值多项式和原函数

图 3: 6阶拉格朗日插值多项式和原函数

图 4: 8阶拉格朗日插值多项式和原函数

(2)求f(x)在[-1,1]上的最佳平方逼近多项式 $P_4(x)=a+bx^2+cx^4$. 解: 记

$$I = \int_{-1}^{1} [f(x) - P_4(x)]^2 dx \triangleq \int_{-1}^{1} \left[\frac{1}{1 + 25x^2} - (a + bx^2 + cx^4) \right]^2 dx$$

最佳平方逼近要求

$$\begin{cases} \frac{\partial I}{\partial a} = & -2\int_{-1}^{1} \left[\frac{1}{1+25x^{2}} - (a+bx^{2}+cx^{4}) \right] dx \\ & = -2\left[\frac{2}{5} \arctan 5 - 2a - \frac{2}{3}b - \frac{2}{5}c \right] = 0 \end{cases} \\ \frac{\partial I}{\partial b} = & -2\int_{-1}^{1} x^{2} \left[\frac{1}{1+25x^{2}} - (a+bx^{2}+cx^{4}) \right] dx \\ & = -2\left(\frac{2}{25} - \frac{2}{125} \arctan 5 - \frac{2}{3}a - \frac{2}{5}b - \frac{2}{7}c \right) = 0 \end{cases} \\ \frac{\partial I}{\partial b} = & -2\int_{-1}^{1} x^{4} \left[\frac{1}{1+25x^{2}} - (a+bx^{2}+cx^{4}) \right] dx \\ & = -2\left[\frac{44}{1875} + \frac{2}{3125} \arctan 5 - \frac{2}{5}a - \frac{2}{7}b - \frac{2}{9}c \right] = 0 \end{cases} \\ \Longrightarrow \begin{cases} a = \frac{3(-1610+2797 \arctan 5)}{10000} \\ b = -\frac{21(-180+211 \arctan 5)}{1000} \\ c = \frac{21(-370+399 \arctan 5)}{2000} \end{cases}$$

故f(x)在[-1,1]上的最佳平方逼近多项式为

$$P_4(x) = \frac{3(-1610 + 2797 \arctan 5)}{10000} - \frac{21(-180 + 211 \arctan 5)}{1000}x^2 + \frac{21(-370 + 399 \arctan 5)}{2000}x^4$$

(3) 用复合Simpson公式计算 $(\int_{-1}^{1} [f(x) - P_4(x)]^2 dx)^{\frac{1}{2}}$,即用 $P_4(x)$ 逼近f(x)的均匀方差.

解:将区间[-1,1]做200等分,即取节点

$$x_i = -1 + \frac{i}{100}, \ i = 0, 1, 2, \dots, 200$$

用 $P_4(x)$ 逼近f(x)的均匀方差为

$$\left(\int_{-1}^{1} [f(x) - P_4(x)]^2 dx\right)^{\frac{1}{2}} \approx \left\{\sum_{i=0}^{199} \frac{2}{6 \times 200} [(f(x_i) - P_4(x_i))^2 + 4(f(x_{i+\frac{1}{2}}) - P_4(x_{i+\frac{1}{2}}))^2 + (f(x_{i+1}) - P_4(x_{i+1}))^2]\right\}^{\frac{1}{2}}$$

$$= 0.1835$$

2. 世界人口数据拟合问题据统计六十年代世界人口数据如下(单位: 亿) 根据表中数据,预测2018年(76亿)、2019年时的世界人口。

年	1960	1961	1962	1963	1964	1965	1966	1967	1968
人口	29.72	30.61	31.51	32.13	32.34	32.85	33.56	34.20	34.83

问题分析与数学模型

设人口总数为N(t),根据人口理论的马尔萨斯模型,采用指数函数

$$N(t) = e^{a+bt} \tag{1}$$

对数据进行拟合。为了计算方便,将上式两边同时取对数,得 $\ln N = a + bt$,令

$$y = \ln N \ \vec{\boxtimes} \ N = e^y$$

变换后的拟合函数为

$$y(t) = a + bt$$

有人口取对数 $(y = \ln N)$ 计算,得下表

t	1960	1961	1962	1963	1964	1965	1966	1967	1968
У	3.3918	3.4213	3.4503	3.4698	3.4763	3.4920	3.5133	3.5322	3.5505

根据表中数据及等式 $a+bt_k=y_k\ (k=1,2,\cdots,9)$ 可列出关于两个未知数a、b的9个方程的超定方程组(方程数多于未知数个数的方程组)

$$a + t_i b = y_i$$

可用最小二乘法求解。

算法与数学模型求解

算法如下:

第一步:输入入口数据,并计算所有人口数据的对数值;

第二步:建立超定方程组的系数矩阵,并计算对应的正规方程组的系数矩阵和 右端向量;

第三步: 求解超定方程组并输出结果: a, b;

第四步:利用数据结果构造指数函数计算2018、2019年人口近似值,结束。

超定方程组的系数矩阵为

$$A = \begin{bmatrix} 1 & 1960 \\ 1 & 1961 \\ 1 & 1962 \\ 1 & 1963 \\ 1 & 1964 \\ 1 & 1965 \\ 1 & 1966 \\ 1 & 1967 \\ 1 & 1968 \end{bmatrix}$$

超定方程组的右端向量为

$$y = \begin{bmatrix} 3.3918 \\ 3.4213 \\ 3.4503 \\ 3.4698 \\ 3.4763 \\ 3.4920 \\ 3.4831 \\ 3.5322 \\ 3.5505 \end{bmatrix}$$

正规方程组的系数矩阵为

$$A^T A = \left[\begin{array}{cc} 9 & 17676 \\ 17676 & 34715724 \end{array} \right]$$

正规方程组的右端矢量为

$$A^T y = \left[\begin{array}{c} 31.2673 \\ 61410.0086 \end{array} \right]$$

求解
$$A^T A \begin{bmatrix} a \\ b \end{bmatrix} = A^T y$$
得

$$\left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} -31.0613 \\ 0.0176 \end{array}\right]$$

将a、b代入式(1),再分别代入t=2018和t=2019得到2018年和2019年时的世界人口近似值(亿)

$$N(2018) = e^{-31.0613 + 0.0176 \times 2018} = 83.4035$$

$$N(2019) = e^{-31.0613 + 0.0176 \times 2019} = 84.8831$$

图 5: 世界人口及其拟合曲线

3. SARS的传播及预防问题

非典的爆发和蔓延给我国的经济发展和人民生活带来了很大的影响,下标给出了北京市当年4月份到6月份的疫情数据,通过拟合确诊的累计病人曲线,若延后5天采取严格的预防措施,对疫情的传播所生成的影响作出估计.

日期	己确诊病例累计	现有疑似病例	死亡累计	治愈出院累计
4月20日	297	402	18	33
4月30日	1584	1408	75	90
5月1日	1640	1415	82	100
5月10日	1988	1397	116	175
5月20日	2189	1225	150	395
5月30日	2309	706	176	1006
6月1日	2319	739	181	1124
6月10日	2394	351	184	1747
6月20日	2439	3	191	2189

取拟合曲线的拟合函数为如下非线性函数

$$\frac{1}{y} = a + \frac{b}{x}$$

试确定拟合函数中的参数: a, b, 并推测五天后累计病人数量。 算法如下:

第一步:输入时间t(天)和累计确诊病例数N,并分别计算其倒数,

时间 t (天)	时间的倒数 $\frac{1}{t}$ (天 $^{-1}$)	累计确诊病例数N(人)	累计确诊病例数 $\frac{1}{N}$ (人 $^{-1}$)
1	1	297	$\frac{1}{297}$
11	$\frac{1}{11}$	1584	$\frac{1}{1584}$
22	$\frac{1}{22}$	1640	$\frac{1}{1640}$
31	$\frac{1}{31}$	1988	$\frac{1}{1988}$
41	$\frac{1}{41}$	2189	$\frac{1}{2189}$
51	$\frac{1}{51}$	2309	$\frac{1}{2309}$
53	$\frac{1}{53}$	2319	$\frac{1}{2319}$
62	$\frac{1}{62}$	2396	$\frac{1}{2394}$
72	$\frac{1}{72}$	2439	$\frac{1}{2439}$

第二步:建立超定方程组的系数矩阵和右端向量

$$A = \begin{bmatrix} 1 & \frac{1}{1} \\ 1 & \frac{1}{11} \\ 1 & \frac{1}{22} \\ 1 & \frac{1}{31} \\ 1 & \frac{1}{41} \\ 1 & \frac{1}{53} \\ 1 & \frac{1}{53} \\ 1 & \frac{1}{62} \\ 1 & \frac{1}{2394} \\ 1 & \frac{1}{2430} \end{bmatrix}, b = \begin{bmatrix} \frac{1}{297} \\ \frac{1}{1584} \\ \frac{1}{1640} \\ \frac{1}{1988} \\ \frac{1}{1988} \\ \frac{1}{2189} \\ \frac{1}{2309} \\ \frac{1}{2319} \\ \frac{1}{2394} \\ \frac{1}{2430} \end{bmatrix}$$

并计算对应的正规方程组的系数矩阵和右端向量

$$A^T A = \begin{bmatrix} 9 & 1.2615 \\ 1.2615 & 1.0132 \end{bmatrix}, A^T b = \begin{bmatrix} 0.0073 \\ 0.0035 \end{bmatrix}$$

第三步: 求解 $A^TA = A^Tb$ 并输出结果

$$\left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} 0.0004 \\ 0.0030 \end{array}\right]$$

第四步: 利用数据结果构造非线性函数

$$\frac{1}{N} = 0.0004 + \frac{0.0030}{t}$$

并计算五天后累计病人数量

$$N(77) = \frac{1}{0.0004 + \frac{0.0030}{77}} = 2337$$

图 6: 累计确诊病例数及其拟合曲线

MATLAB/Mathematica代码

1. (1) 拉格朗日插值法Matlab代码

```
hold on;
       plot(t,L(t));
       axis square
11
       ylim([-1,1]);
       title([num2str(n),'-th order Lagrange interpolation ...
13
            polynomial of ...
            f(x) = \frac{1}{1+25x^2}, 'Interpreter', 'LaTeX'
       xlabel('x');
14
       ylabel('y');
       legend('The original function',['The ',num2str(n),'-th order ...
16
            Lagrange interpolation polynomial']);
18
19 function y = f(x)
y = 1 . / (1 + 25 * x.^2);
21
   function y = L_n(t, x)
   n = size(x,1) - 1;
   y = 0;
   for i = 0:n
       l_{-i} = f(x(i + 1));
26
       for j = 0:n
27
28
                l_{-i} = l_{-i} .* (t - x(j + 1)) / (x(i + 1) - x(j + 1));
29
           end
31
       end
       y = y + l_i;
32
33
   end
34 end
```

(2) 解线性代数方程组Mathematica代码

```
1 close, clear, clc;
x = -1:0.01:1;
3 \text{ plot}(x, f(x), '--');
4 hold on;
5 plot(x, P_4(x));
6 axis square;
7 \Delta = @(x)(f(x) - P_4(x)).^2;
s n = 200;
9 I = 0;
10 for i = 0: (n - 1)
       I = I + 2 / (6 * n) * (\Delta(-1 + 2 * i / n) + 4 * \Delta(-1 + 2 * (i ...
            + 1 / 2) / n) + \Delta(-1 + 2 * (i + 1) / n));
12 end
13 I = sqrt(I);
14 function y = f(x)
       y = 1 ./ (1 + 25 * x.^2);
16 end
17 function y = P_4(x)
     y = 3 * (-1610 + 2797 * atan(5)) / 10000 - 21 * (-180 + 211 ...
            * atan(5)) / 1000 * x.^2 + 21 * (-370 + 399 * atan(5)) / ...
            2000 * x.^4;
19 end
```

2. 最小二乘法拟合世界人口Matlab代码

```
1 close, clear, clc;
2 t = (1960:1968)'; % time (year)
N = [29.72; 30.61; 31.51; 32.13; 32.34; 32.85; 32.56; 34.20; 34.83]; % ...
       population
4 y = log(N);
5 A = ones(9,2); % coefficient matrix of overdetermined equation system
6 A(:,2) = t;
7 ATA = A' * A; % coefficient matrix of normal equation system
8 ATb = A' * y;% right vector of normal equation system
9 ab = ATA \setminus ATb;
N_2018 = \exp(ab(1) + ab(2) * 2018);% population in 2018
11 N_2019 = \exp(ab(1) + ab(2) * 2019); % population in 2019
12 plot(t, N, '--');
13 hold on;
14 plot(t, \exp(ab(1) + ab(2) * t));
15 grid on;
16 title('The fitting of World Population with Least Square ...
       Method','Interpreter','latex');
17 xlabel('time $t/$year','Interpreter','latex');
18 ylabel('World Population $N/$hundred million ...
       person(s)','Interpreter','latex');
19 legend('Original data','Fitting World Population')
```

3. 最小二乘法拟合累计确诊病例数Matlab代码

```
close, clear, clc;
t = [1,11,22,31,41,51,53,62,72]';% time (day)
3 N = [297, 1584, 1640, 1988, 2189, 2309, 2319, 2394, 2439]'; % case number
4 A = ones(9,2);% coefficient matrix of overdetermined equation system
5 A(:,2) = 1 ./ t;
6 ATA = A' * A;% coefficient matrix of normal equation system
7 ATb = A' \star (1 ./ N);% right vector of normal equation system
s ab = ATA \ ATb;
9 N_5dlater = 1 / (ab(1) + ab(2) / (t(end) + 5));% Case number 5 ...
       days later
10 plot(t, N, '--');
11 hold on;
12 plot([t;t(end) + 5],[1 ./ (ab(1) + ab(2) ./ t); N_5dlater]);
13 grid on;
14 title('The fitting of Case Number with Least Square ...
       Method','Interpreter','latex');
15 xlabel('time $t/$day(s)','Interpreter','latex');
ylabel('Case Number $N/$person(s)','Interpreter','latex');
17 legend('Original data','Fitting case number')
```