

Spreading Through Networks

Information Diffusion

Diffusion in Viral Marketing

□ Product adoption:

Spread of Diseases

Network Cascades

Contagion that spreads over the edges of the network □ It creates a propagation tree, i.e., cascade

(propagation graph)

- Terminology:
 Stuff that spreads: Contagion
 "Infection" event: Adoption, infection, activation
 We have: Infected/active nodes, adoptors

How to Model Diffusion?

Probabilistic models:

- Models of influence or disease spreading
 - An infected node tries to "push" the contagion to an uninfected node
- Example:
 - You "catch" a disease with some prob. from each active neighbor in the network

□ Decision based models (today!):

- Models of product adoption, decision making
 - A node observes decisions of its neighbors and makes its own decision
- Example:
 - \blacksquare You join demonstrations if k of your friends do so too

DECISION BASED MODEL OF DIFFUSION

Decision Based Models

□ Two ingredients:

- Payoffs:
 - Utility of making a particular choice
- Signals:
 - Public information:
 - What your network neighbors have done
 - (Sometimes also) Private information:
 - Something you know
 - Your belief
- Now you want to make the optimal decision

Game Theoretic Model of Cascades

Based on 2 player coordination game

- □ 2 players each chooses technology A or B
- Each person can only adopt **one** "behavior", **A** or **B**
- You gain more payoff if your friend has adopted the same behavior as you

Local view of the network of node v

Example: BlueRay vs. HD DVD

The Model for Two Nodes

□ Payoff matrix:

- If both v and w adopt behavior A, they each get payoff a > 0
- If v and w adopt behavior B, they reach get payoff b > 0
- If v and w adopt the opposite behaviors, they each get 0

□ In some large network:

- Each node v is playing a copy of the game with each of its neighbors
- □ Payoff: sum of node payoffs per game

Calculation of Node v

Threshold: v choses A if $p > q = \frac{b}{a + b}$

- □ Let v have d neighbors
- \square Assume fraction p of v's neighbors adopt A
 - $Payoff_v = a \cdot p \cdot d$ $= b \cdot (1-p) \cdot d$

if v chooses A if v chooses B

□ Thus: v chooses A if: $a \cdot p \cdot d > b \cdot (1-p) \cdot d$

Example Scenario

14

□ Scenario:

Graph where everyone starts with B. Small set S of early adopters of A

- □ Hard-wire S they keep using A no matter what payoffs tell them to do
- Assume payoffs are set in such a way that nodes say:

If more than 50% of my friends take A

I'll also take A

(this means: $a = b-\epsilon$ and q>1/2)

Example Scenario

Monotonic Spreading

- Observation: Use of A spreads monotonically (Nodes only switch B→A, but never back to B)
 - Why? Proof sketch:
 - Nodes keep switching from B to A: B→A
 - Now, suppose some node switched back from A→B, consider the first node u to do so (say at time t)
 - Earlier at some time t' (t' < t) the same node u switched $B \rightarrow A$
 - $\hfill \square$ So at time t' u was above threshold for A
 - But up to time t no node switched back to
 B, so node u could only had more neighbors who used A at time t compared to t'.
 There was no reason for u to switch.
 !! Contradiction!!

Infinite Graphs

- □ Consider infinite graph G
 - (but each node has finite number of neighbors!)
- □ We say that a finite set S causes a cascade in G with threshold q if, when S adopts A, eventually every node adopts A
- □ Example: Path
 If q<1/2 then cascade occurs</p>

Infinite Graphs

If q<1/3 then cascade occurs

□ Infinite Grid:

If q<1/4 then cascade occurs

Cascade Capacity

□ <u>Def:</u>

- The cascade capacity of a graph G is the largest q for which some finite set S can cause a cascade
- □ Fact:
 - There is no G where cascade capacity > $\frac{1}{2}$
- □ Proof idea:
 - Suppose such G exists: q>½, finite S causes cascade
 - Show contradiction: Argue that nodes stop switching after a finite # of steps

Cascade Capacity

- \Box **Fact:** There is no G where cascade capacity > $\frac{1}{2}$
 - □ Proof sketch:
 - Suppose such G exists: q>1/2, finite S causes cascade
 - □ Contradiction: Switching stops after a finite # of steps
 - <u>Define</u> "potential energy"
 - Argue that it starts finite (non-negative) and strictly decreases at every step
 - \square "Energy": = $|d^{out}(X)|$
 - $= |d^{out}(X)| := \#$ of outgoing edges of active set X
 - The only nodes that switch have a strict majority of its neighbors in S
 - | d^{out}(X) | strictly decreases
 - It can do so only a finite number of steps

Stopping Cascades

- □ What prevents cascades from spreading?
 - \Box <u>Def:</u> Cluster of density ρ is a set of nodes C where each node in the set has at least ρ fraction of edges in C.

Stopping Cascades

- Let S be an initial set of adopters of A
 - All nodes apply threshold q to decide whether to switch to A

No cascade if q>2/5

□ Two facts:

- 1) If G\S contains a cluster of density >(1-q) then S can not cause a cascade
- 2) If S fails to create a cascade, then there is a cluster of density >(1-q) in G\S

EXTENDING THE MODEL:
ALLOW PEOPLE TO ADOPT A
AND B

Cascades & Compatibility

□ So far:

- □ Behaviors A and B compete
- Can only get utility from neighbors of same behavior: A-A get a, B-B get b, A-B get 0
- □ Let's add an extra strategy "A-B"
 - □ AB-A: gets a
 - □ AB-B: gets b
 - AB-AB: gets max(a, b)
 - Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)

Cascades & Compatibility: Model

- Every node in an infinite network starts with B
 - □ Then a finite set S initially adopts A
 - \square Run the model for t=1,2,3,...
 - □ Each node selects behavior that will optimize payoff (given what its neighbors did in at time t-1)

□ How will nodes switch from B to A or AB?

Example: Path Graph

- □ Path graph: Start with all Bs, a > b (A is better)
 - □ One node switches to A what happens?
 - With just A, B: A spreads if a > b
 - □ With A, B, AB: Does A spread?
 - □ Assume a=3, b=2, c=1:

Cascade stops

Example

For what pairs (c,a) does A spread?

- □ Payoffs for w: A:a, B:1, AB:a+1-c
- □ What does node w in **A-w-B** do?

For what pairs (c,a) does A spread?

- □ What does node w in **A-w-B** do?

For what pairs (c,a) does A spread?

- □ Notice: Now also AB spreads

For what pairs (c,a) does A spread?

□ Joining the two pictures:

Lesson

