

Chapter 3A – Process Concept

Spring 2023

Process Concept

- The Process
- Process State
- Process Control Block

- An operating system executes a variety of programs that run as a process.
- Process a program in execution; process execution must progress in sequential fashion. No parallel execution of instructions of a single process

some mordern upv night predict and run in parallel.

- Multiple parts
- not changed in processing
- The program code, also called text section
- Current activity including program counter, processor registers
- Stack containing temporary data e.g. variables in maine; each fune would be poshed into stack while declared.
 - Function parameters, return addresses, local variables
- Data section containing global variables
- Heap containing memory dynamically allocated during run time

- Program is passive entity stored on disk (executable file); process is active
 - Program becomes process when an executable file is loaded into memory
- Execution of program started via GUI mouse clicks, command line entry of its name, etc.
- · One program can be several processes but with different PID
 - Consider multiple users executing the same program

Process State

- As a process executes, it changes state
 - New: The process is being created
 - Running: Instructions are being executed
 - Waiting: The process is waiting for some event to occur e.g. some 30
 - Ready: The process is waiting to be assigned to a processor
 - Terminated: The process has finished execution

Process State

Process Control Block

- Information associated with each process (also called task control block)
 - Process state running, waiting, etc.
 - Program counter location of instruction to next execute
 - CPU registers contents of all process-centric registers
 - CPU scheduling information- priorities, scheduling queue pointers
 - Memory-management information memory allocated to the process
 - Accounting information CPU used, clock time elapsed since start, time limits
 - I/O status information I/O devices allocated to process, list of open files

Process Control Block

- Process Control Block in Linux
 - Represented by the C structure task_struct (https://github.com/torvalds/linux/blob/master/include/linux/sched.h)

