

normalizzazione

informatica

- o la *normalizzazione* è un *procedimento* che permette di eliminare la ridondanza
- o la *ridondanza* dei dati
 - o comporta *spreco di memoria* causato dalla memorizzazione multipla della stessa informazione
 - o può portare il database in una situazione di *incoerenza*
- si ha incoerenza quando lo stesso campo ha valori diversi in tabelle diverse
 - o si può verificare quando le tabelle non sono aggiornate o quando l'aggiornamento non è stato effettuato correttamente

o esistono vari **livelli** di **normalizzazione** (**forme normali**) che certificano la qualità dello schema del database

o se una relazione presenta **più concetti** tra loro indipendenti, la si **decompone** in relazioni più piccole, una per ogni concetto

dipendenza funzionale (definizione)

- o la *dipendenza funzionale* è un *vincolo* di integrità che descrive legami di tipo funzionale tra gli attributi di una relazione
- \circ se un attributo a determina un altro attributo b allora esiste una dipendenza funzionale tra a e b
- o definizione:
 - o data una relazione X e due sottoinsiemi di attributi Y e Z di X, esiste una **dipendenza funzionale** tra Y e Z se **per ogni coppia** di tuple t1 e t2 aventi gli stessi valori sugli attributi Y, risulta che t1 e t2 hanno gli **stessi valori** anche sugli attributi Z

- o una base dati è in **prima forma normale** se e solo se:
 - o **non** presenta **attributi multipli**
 - o esiste una chiave primaria
 - o (esiste un insieme di attributi, che identifica in modo univoco ogni tupla della relazione)

1NF - esempio

non in 1NF

Voti

Matricola	Studente	Materia	Voto
0000-000-01	Pietro	Basi di Dati	1 sem, B ; 2 sem, F
0000-000-02	Pietro	Basi di Dati	1 sem, A ; 2 sem, A
0000-000-03	Sara	Basi di Dati	1 sem, B ; 2 sem, A

in 1NF

Voti

Matricola	Studente	<u>Materia</u>	<u>Semestre</u>	Voto
0000-000-01	Pietro	Basi di Dati	1	В
0000-000-01	Pietro	Basi di Dati	2	F
0000-000-02	Pietro	Basi di Dati	1	Α
0000-000-02	Pietro	Basi di Dati	2	Α
0000-000-03	Sara	Basi di Dati	1	В
0000-000-03	Sara	Basi di Dati	2	Α

Computer

Codice	Descrizione	Processore
1	Desktop base	Intel, CoreDuo, 2GHz
2	Desktop medio	AMD, Ahtlon XP, 3GHz
7	Desktop fascia alta	Intel, CoreDuo, 2GHz
8	Portatile wireless medio	Transmeta, TX12, 1GHz

Processori

CodiceProcessore	Marca	Тіро	Velocità
P1	Intel	CoreDuo	2GHz
P2	AMD	Ahtlon XP	3GHz
Р3	Transmeta	TX12	1GHz

Computer

Codice	Descrizione	CodiceProcessore
1	Desktop base	P1
2	Desktop medio	P2
7	Desktop fascia alta	P1
8	Portatile wireless medio	Р3

Processori

CodiceProcessore	Marca	Tipo	Velocità
P1	Intel	CoreDuo	2GHz
P2	AMD	Ahtlon XP	3GHz
P1	Intel	CoreDuo	2GHz
Р3	Transmeta	TX12	1GHz

- una relazione è in seconda forma normale quando è in 1NF e tutti i campi non chiave dipendono funzionalmente dall'intera chiave composta e non da una parte di essa
- o la seconda forma normale **elimina** la **dipendenza parziale** degli attributi dalla chiave e riguarda il caso di relazioni con **chiavi composte**, cioè formate da più attributi

Codice_atleta	Numero_gara	Nome_atleta	tempo
3455	1	Maurizio	36
3455	2	Maurizio	32
3320	1	Luigi	38
3320	2	Luigi	39
3320	3	Luigi	33

la **chiave** è **composta**, in quanto il solo codice non basta per identificare il tempo che è realizzato in gare diverse.

Nome_atleta dipende solo dall'attributo Codice_atleta (solo da una parte della chiave)

Codice_atleta	Numero_gara	tempo
3455	1	36
3455	2	32
3320	1	38
3320	2	39
3320	3	33

Codice atleta	Nome atleta
3455	Maurizio
3320	Luigi

la relazione viene "spezzata" in due relazioni per eliminare l'anomalia

o una relazione si dice in *terza forma normale* quando è in **seconda** forma normale e **tutti** gli attributi **non-chiave** dipendono dalla chiave **soltanto**, ossia non esistono attributi che dipendono da altri attributi non-chiave

Computer

Codice	Descrizione	CodiceMemoria	Dimensione	Codice Processore	Velocità
1	Desktop base	20	512MB	P1	2GHz
2	Desktop medio	21	1GB	P2	3GHz
7	Desktop fascia alta	22	2GB	Р3	4GHz
8	Portatile wireless medio	25	1GB	P2	3GHz

- Codice → Descrizione;
- CodiceMemoria → Dimensione;
- CodiceProcessore → Velocità.

normalizzazione

Computer

Codice	Descrizione	CodiceMemoria	CodiceProcessore
1	Desktop base	20	P1
2	Desktop medio	21	P2
7	Desktop fascia alta	22	Р3
8	Portatile wireless medio	25	P2

Processori

CodiceProcessore	Velocità
P1	2GHz
P2	3GHz
P1	2GHz
Р3	1GHz

Memorie

CodiceMemoria	Dimensione
20	512MB
21	1GB
22	2GB
25	1GB

CodImpiegato	Nome	Reparto	CapoReparto
1	Verdi	Vendite	Rossi
2	Bianchi	Vendite	Rossi

- nell'esempio il campo CapoReparto dipende funzionalmente dal campo non-chiave Reparto
- la soluzione è quella di *scomporre* in due relazioni eliminando il campo che ha dipendena funzionale dalla relazione di partenza

secondo esempio

- Prezzo è deducibile dai due attributi non chiave Costo_unitario e Quantità
- o quindi Prezzo va eliminato

Codice_prodotto	Costo_unitario	Quantità	Prezzo
1040	23	2	46
567	100	6	600
99854	55	1	55