QUÈ HEM FET FINS ARA?

El darrer que hem treballat són els principals conceptes sobre funcions inclós antiimatges, classificació d'una funció i funció inversa.

CLASSE D'AVUI 20/11/2020

Avui treballarem el que ens queda del tema de funcions i farem diversos exemples per fixar idees.

EX.: (1) Estudieu la injectivitat, exhaustivitat i bijectivitat de les funcions definides per f(x) = |x|, segons f va de \mathbb{Z} o \mathbb{N} en \mathbb{Z} o \mathbb{N} (hi ha 4 funcions diferents).

Anomenem aquestes funcions f, g, h, i.

1. $f: \mathbb{N} \to \mathbb{N}$ amb f(x) = |x| = x: l'antiimatge de y és y; això és perquè ens

plantegem per $y \in \mathbb{N}$ donat, buscar $x \in \mathbb{N}$ tal que $f(x) = |x| = x = y \Leftrightarrow x = y$; és a dir que tots tenen una antiimatge i només una, per tant és bijectiva perquè tot element de \mathbb{N} té una única antiimatge (l'antiimatge d'un nombre y és el propi nombre y); per tant és exahustiva i injectiva també.

- **2**. $g: \mathbb{N} \to \mathbb{Z}$ amb g(x) = |x| = x l'antiimatge de de y és y per $y \ge 0$ i per y < 0 no hi ha cap antiimatge; g és injectiva ja que tot $y \ge 0$ té $g^{-1}[y] = \{y\}$ i per y < 0, $g^{-1}[y] = \emptyset$; no és exhaustiva (per exemple el -13 no té antiimatge); i no és bijectiva (perquè no és exahustiva).
 - **3**. $h: \mathbb{Z} \to \mathbb{N}$ amb h(x) = |x| les antiimatges de $y \in \mathbb{N}$ són $\pm y$ si $y \neq 0$, i

l'antiimatge de 0 és només una, el mateix 0; h no és injectiva perquè per exemple 27 té dues antiimatges ± 27 ; sí que és exhaustiva (tot y té dues antiimatges, $\pm y$, llevat del 0 que només en té una, 0); i no és bijectiva (ja que no és injectiva).

4. $i: \mathbb{Z} \to \mathbb{Z}$ amb h(x) = |x| les antiimatges de y són $\pm y$ per $y \ge 0$ i per y < 0

no hi ha cap antiimatge; h no és injectiva (per exemple 13 té dues antiimatges ± 13); no és exhaustiva (per exemple el -27 no té cap antiimatge); i per tant no és bijectiva (no és exahustiva).

EX.: (12) Demostreu que estan ben definides, són bijectives i calculeu la inversa de: $f: [5/3, +\infty) \to [0, +\infty)$ definida per $f(x) = \sqrt{\frac{3x-5}{4}}$.

Està ben definida perquè les operacions que s'han de fer per trobar una imatge amb la fórmula $f(x) = \sqrt{\frac{3x-5}{4}}$ es poden fer sempre i tenen només un resultat, a més de que l'arrel es pot fer sempre perquè:

$$\frac{3x-5}{4} \ge 0 \Leftrightarrow 3x-5 \ge 0 \Leftrightarrow x \ge 5/3$$

Ara trobem l'antiimatge de $y \in [0, +\infty)$ és a dir busco $x \in [5/3, +\infty)$ tal que $\sqrt{\frac{3x-5}{4}} = y$: $\sqrt{\frac{3x-5}{4}} = y \Rightarrow \frac{3x-5}{4} = y^2 \Rightarrow 3x-5 = 4y^2 \Rightarrow x = \frac{4y^2+5}{3}$

El nombre $\frac{4y^2+5}{3} \in [5/3,+\infty)$, sigui quin sigui el valor y. Com que hem elevat al quadrat els dos costats de l'equació (és una equació irracional) s'han de comprovar les solucions:

$$\sqrt{\frac{3\frac{4y^2+5}{3}-5}{4}} = \sqrt{\frac{4y^2+5-5}{4}} = \sqrt{\frac{4y^2}{4}} = \sqrt{y^2} = |y| = y \text{ perquè } y \in [0,+\infty)$$

i com es pot veure és clau que $y \in [0,+\infty)$ per poder afirmar que |y|=y. Per tant tenim que $f^{-1}[y]=\left\{\frac{4y^2+5}{3}\right\}$. Llavors és una aplicació bijectiva perquè només tenim una antiimatge per a cada nombre i només una, i en particular serà injectiva i exhaustiva. I la inversa:

$$f\left(\frac{4y^2+5}{3}\right) = y \Leftrightarrow \frac{4y^2+5}{3} \xrightarrow{f} y \Leftrightarrow y \xrightarrow{f^{-1}} \frac{4y^2+5}{3} \Leftrightarrow f^{-1}(y) = \frac{4y^2+5}{3}$$

si canviem les lletres: $f^{-1}(x) = \frac{4x^2+5}{3}$.

EX.: (13) Idem amb $f: \mathbb{R} - \{0\} \to \mathbb{R} - \{0\}$ definida per $f(x) = \frac{1}{x}$.

Amb aquesta funció és molt fàcil veure que és bijectiva perquè donat $y \in \mathbb{R} - \{0\}$ i busco x tal que $\frac{1}{x} = y \Leftrightarrow x = \frac{1}{y}$ que és un element de $\mathbb{R} - \{0\}$, per tant cada element té una antiimatge i només una $f^{-1}[y] = \{\frac{1}{y}\}$. I això justifica que és bijectiva i en particular injectiva i exhaustiva. Per la inversa com abans:

$$f(\frac{1}{y}) = y \Leftrightarrow \frac{1}{y} \xrightarrow{f} y \Leftrightarrow y \xrightarrow{f^{-1}} \frac{1}{y} \Leftrightarrow f^{-1}(y) = \frac{1}{y}$$

si canviem les lletres: $f^{-1}(x) = \frac{1}{x}$.

De vegades la injectivitat s'escriu de la manera següent: f és injectiva si i només si per a tot $x, x' \in A$ si f(x) = f(x') aleshores x = x'.

EX.: Demostreu que és injectiva l'aplicació $g: \mathbb{R} - \{5\} \to \mathbb{R} - \{\frac{1}{2}\}$ definida per $g(x) = \frac{x+1}{2x-10}$ sense fer servir antiimatges.

Sigui x i x' tals que g(x) = g(x') i vull deduir que $x = {???} x'$: $g(x) = g(x') \Leftrightarrow \frac{x+1}{2x-10} = \frac{x'+1}{2x'-10} \Leftrightarrow (x+1)(2x'-10) = (x'+1)(2x-10) \Leftrightarrow 2x'-10x+2xx'-10 = 2x-10x'+2xx'-10 \Leftrightarrow 2x'-10x = 2x-10x' \Leftrightarrow 2x'+10x' = 2x+10x \Leftrightarrow 12x' = 12x \Leftrightarrow x' = x$

per tant és injectiva.

EX.: (22) Demostreu que $f^{-1}[B] = A$.

Indicació: utilitzeu la definició d'antiimatge amb la doble inclusió.

EX.: (23) Sigui $f: A \to B$ i siguin $X_1, X_2 \subseteq A$. Demostreu que $f[X_1 \cup X_2] = f[X_1] \cup f[X_2]$.

Per veure que és certa aquesta igualtat procedim de la manera següent:

$$x \in f[X_1 \cup X_2] \Leftrightarrow \text{existeix un } a \in X_1 \cup X_2 \text{ tal que } f(a) = x \Leftrightarrow$$

 \Leftrightarrow existeix un $a \in X_1$ o $a \in X_2$ tal que $f(a) = x \Leftrightarrow$

 \Leftrightarrow (existeix un $a \in X_1$ tal que f(a) = x) o (existeix un $a \in X_2$ tal que f(a) = x) \Leftrightarrow

$$\Leftrightarrow x \in f[X_1] \text{ o } x \in f[X_2] \Leftrightarrow x \in f[X_1] \cup f[X_2].$$

EX.: (24) Sigui $f: A \to B$. Demostreu que f és injectiva $\Leftrightarrow f^{-1}(f(X)) = X$ per a tot $X \subseteq A$.

Indicació: utilitzeu la definició d'antiimatge amb la doble inclusió.

EX.: (25) Sigui $f: A \rightarrow B$. Demostreu que són equivalents:

- **a**. *f* és injectiva.
- **b**. per tot $X_1, X_2 \subseteq A$, es compleix que $f[X_1 \cap X_2] = f[X_1] \cap f[X_2]$.
- **c**. per tot $X_1, X_2 \subseteq A$, si $X_1 \cap X_2 = \emptyset$ llavors $f[X_1] \cap f[X_2] = \emptyset$.

Demostrem les tres implicacions següents:

- **a**. \Rightarrow **b**. Suposem que f és injectiva i volem demostrar que donats $X_1, X_2 \subseteq A$ tenim que $f(X_1 \cap X_2) = {}^{???} f(X_1) \cap f(X_2)$. Veiem la doble inclusió:
 - $\operatorname{si} x \in f(X_1 \cap X_2) \Leftrightarrow x = f(a)$ per cert $a \in X_1 \cap X_2 \Leftrightarrow x = f(a)$ per cert $a \in X_1$ i $a \in X_2$
 - $\operatorname{si} x \in f(X_1) \cap f(X_2) \Leftrightarrow x \in f(X_1) \text{ i } x \in f(X_2) \Leftrightarrow x = f(a) \text{ per cert } a \in X_1 \text{ i } x = f(b)$ per cert $b \in X_2$

La primera afirmació implica la segona (simplement agafant com a b l'element a). Per veure que la segona afirmació implica la primera hem d'utilitzar que l'aplicació és injectiva i tenim que en aquesta expressió $x = f(a) = f(b) \Rightarrow a = b$ i per tant surtiria la primera afirmació com volíem demostrar.

b. \Rightarrow **c**. Ara sabem que per tot $X_1, X_2 \subseteq A$, es compleix que $f[X_1 \cap X_2] = f[X_1] \cap f[X_2]$ i volem provar que donats $X_1, X_2 \subseteq A$ dos subconjunts disjunts aleshores $f[X_1] \cap f[X_2] = ??? \varnothing$. En efecte:

$$f[X_1] \cap f[X_2] = f[X_1 \cap X_2] = f[\emptyset] = \emptyset.$$

c.⇒**a**. La suposició ara és que per tot $X_1, X_2 \subseteq A$, si $X_1 \cap X_2 = \emptyset$ llavors $f[X_1] \cap f[X_2] = \emptyset$ i volem demostrar que l'aplicació és injectiva. En efecte: per demostrar que és injectiva suposem que tenim dos elements $x, x' \in A$ amb f(x) = f(x') i volem demostrar que x = ???? x', cosa que és fàcil perquè raonant per reducció a l'absurd (és a dir suposant que $x \neq x'$) podem pensar en els conjunts disjunts $\{x\}, \{x'\}$ i llavors

$$\{x\} \cap \{x'\} = \varnothing \Rightarrow f[\{x\}] \cap f[\{x'\}] = \varnothing \Rightarrow \{f(x)\} \cap \{f(x')\} = \varnothing \Rightarrow \{f(x)\} = \varnothing$$

cosa impossible perquè aquest conjunt no pot tenir un element.

EX.: (26) Siguin A,B conjunts i $f:A \to C, g:B \to C$. Definim una funció $h:A \cup B \to C$ així: h(x) = f(x) si $x \in A, h(x) = g(x)$ si $x \in B$.

- a. Demostreu que si $A \cap B = \emptyset$ llavors h està ben definida.
- b. Suposem ara que $A \cap B = \emptyset$. Demostreu que són equivalents:
- (i). h és injectiva.
- (ii). $f \mid g$ són injectives i $f(A) \cap g(B) = \emptyset$.

Es van aplicant les definicions i amb paciència surt el que es demana.

Amb les funcions és molt important poder fer operacions amb elles: una de les més important és la composició.

DEF.: Donades dues funcions $f: A \to B, g: B \to C$ es defineix la funció composició de f amb g com a $g \circ f: A \to C$ definida per $(g \circ f)(x) = g(f(x))$.

Les propietats de la composició les veurem el proper dia però feu una ullada als apunts oficials de l'assignatura.

EXERCICI PER REPASSAR TEORIA DE CONJUNTS

EX.: (60) Demostreu que per a qualssevol conjunts A, B, C tenim que $(A \times A) - (B \times B) = A \times (A - B) \cup (A - B) \times (B \cap A)$.

Veiem per separat què vol dir que un element és de cadascun d'aquests dos conjunts que hem de demostrar que són iguals:

• $(x,y) \in (A \times A) - (B \times B) \Leftrightarrow (x,y) \in (A \times A) \mid (x,y) \notin (B \times B) \Leftrightarrow$ $\Leftrightarrow x \in A \mid y \in A \mid \text{no}(x \in B \mid y \in B) \Leftrightarrow x \in A \mid y \in A \mid (x \notin B \circ y \notin B) \Leftrightarrow$ $\Leftrightarrow (x \in A \mid y \in A \mid x \notin B) \circ (x \in A \mid y \in A \mid y \notin B) \Leftrightarrow$ $\Leftrightarrow (x \in A \mid y \in A \mid x \notin B) \circ (x \in A \mid y \in A \mid y \notin B) \Leftrightarrow$ • $(x,y) \in A \times (A - B) \cup (A - B) \times (B \cap A) \Leftrightarrow$ $\Leftrightarrow (x,y) \in A \times (A - B) \circ (x,y) \in (A - B) \times (B \cap A) \Leftrightarrow$ $\Leftrightarrow (x \in A \mid y \in A - B) \circ (x \in A - B \mid y \in B \cap A) \Leftrightarrow$ $\Leftrightarrow (x \in A \mid y \in A \mid y \notin B) \circ (x \in A \mid x \notin B \mid y \in A \mid y \in B)$

Si veiem que les dues expressions són equivalents tindrem demostrada la igualtat de conjunts. En totes dues expressions es pot treure factor comú $x \in A$ i $y \in A$, fem-ho i llavors:

• ... \Leftrightarrow $(x \in A \mid y \in A \mid x \notin B)$ o $(x \in A \mid y \in A \mid y \notin B)$ \Leftrightarrow \Leftrightarrow $(x \in A \mid y \in A) \mid (x \notin B \circ y \notin B)$ • ... \Leftrightarrow $(x \in A \mid y \in A) \mid (y \notin B)$ o $(x \in A \mid x \notin B \mid y \in A \mid y \in B)$ \Leftrightarrow \Leftrightarrow $(x \in A \mid y \in A) \mid (y \notin B \circ (x \notin B \mid y \in B))$ \Leftrightarrow \Leftrightarrow $(x \in A \mid y \in A) \mid ((y \notin B \circ x \notin B) \mid (y \notin B \circ y \in B))$ \Leftrightarrow \Leftrightarrow $(x \in A \mid y \in A) \mid ((y \notin B \circ x \notin B) \mid veritat)$ \Leftrightarrow \Leftrightarrow $(x \in A \mid y \in A) \mid ((y \notin B \circ x \notin B) \mid veritat)$ \Leftrightarrow \Leftrightarrow $(x \in A \mid y \in A) \mid ((y \notin B \circ x \notin B) \mid veritat)$