Algorithm Library

Shanghai Jiao Tong University

未至之境 Yet to be Explored

Chengyuan Luo

November, 2021

The template of these templates is based on palayutm/ply-template Some of the codes are taken from:

FTRobbin/Dreadnought-Standard-Code-Library,
laonahongchen/ICPC-code-template-Quasar-,
laonahongchen/ICPC-code-template-Blazar.

Contents				线性代数 12
1	Vim 配置 1.1 vimrc	2 2 2		6.1 线性基
2		2	7	数据结构
3	随机数生成器	3		7.3 KD-Tree
4	数列与计数 4.1 多项式板子 4.2 牛顿迭代 4.3 MTT 4.4 FWT 4.5 BM 4.6 numbers 4.6.1 伯努利数 4.6.2 第一类斯特林数 4.6.3 第二类斯特林数 4.6.4 斯特林反演 4.6.5 Burnside 引理 4.6.6 五边形数 4.7 树的计数	3 3 5 6 7 7 8 8 8 8 8 9 9	8	80% 15 8.1 点双 15 8.2 全局平衡二叉树 15 8.3 求欧拉回路 16 8.4 SPFA 16 8.5 虚树 16 8.6 2-SAT 17 8.7 有根树同构 17 8.8 支配树 17 8.9 MCS 求 PEO 18 8.10 最大团 18 8.11 最小树形图 19 8.12 二分图最大权匹配(KM) 21 8.13 一般图最大匹配(随机,非完全正确) 21
5	5.3 杜教筛 5.4 min_25 5.5 佩尔方程 5.6 直线下整点个数 5.7 定理 5.7.1 扩展欧拉定理 5.7.2 卢卡斯定理	9 9 10 10 10 11 11 11 11 11 11 12 12	9	8.14 一般图最大权匹配 22 8.15 无向图最小割 23 8.16 网络流 (ISAP) 24 8.17 网络流 (HLPP) 24 8.18 网络流 (dengyaotriangle) 25 8.19 最小费用流 30 字符串 31 9.1 后缀树组 31 9.2 后缀自动机 31 9.3 Manacher 32 9.4 回文自动机 32 9.5 Lyndon 分解 32 9.6 Z Function 32

10	计算几何 10.1 基本操作	34	15 常见问题 15.1 编译指令	
	10.3 凸包操作	$\frac{36}{37}$	16 cheat.pdf	48
	10.6 圆与多边形面积交	38	1 Vim 配置	
	10.9 三维几何基本操作	40	1.1 vimrc	
	10.10三维凸包		<pre>filetype plugin indent on syntax on set softtabstop=4 shiftwidth=4 smarttab expandta</pre>	ab
11	其他 11.1 Dancing Links	42	set mouse=a backspace=2	
	11.2 日期	43	<pre>set number relativenumber ruler set listchars=trail:\$ list</pre>	
	11.3 环状最长公共子序列			
	11.4 经纬度球面距离		<pre>let mapleader = " " inoremap jk <esc></esc></pre>	
	11.6 模拟退火	44	inoremap bbb { <enter>}<esc>0</esc></enter>	
	11.7 Simpson 积分		-	
		44	<pre>nmap <leader>go :call GoSh()<cr> func GoSh()</cr></leader></pre>	
12	积分表	45	exec "w"	
13	Dreadnought	45	exec "! ./go.sh a"	
	13.1 弦图		endfunc	
	13.2 重心		1.2 VS Code	
14	Blazar	45	{	
	14.1 博弈		"vim.easymotion": true,	
	14.1.1 巴什博奕		<pre>"vim.incsearch": true, "vim.useSystemClipboard": false,</pre>	
	14.1.2 威佐夫博弈		"vim.useCtrlKeys": true,	
	14.1.4 链的删边游戏		"vim.hlsearch": true,	
	14.1.5 树的删边游戏	46	"vim.insertModeKeyBindings": [
	14.1.6 局部连通图的删边游戏		{ "before": [<i>"j"</i> , <i>"k"</i>],	
	14.2 求和公式	-	"after": [" <esc>"]</esc>	
	14.4 错排公式		},	
	14.5 欧拉公式		{	
	14.6 皮克定理		"before": ["b", "b", "b"],	
	14.8 平面几何公式		"after": ["{", " <enter>"]</enter>	
	14.8.1 三角形		}	
	14.8.2 四边形], "vim.leader": " <space>"</space>	
	14.8.3 正 <i>n</i> 边形		}	
	14.8.5 棱柱			
	14.8.6 棱锥		2 \mathbf{Z}	
	14.8.7 棱台			
	14.8.8 圆柱		using u32 = unsigned;	
	14.8.10 圆台		using u64 = unsigned long long; const u32 MOD = 1E9 + 7;	
	14.8.11球	48	COMBC USZ MOD - 1ES T /;	
	14.8.12球台		struct Z {	
	14.8.13 球扇形		u32 v;	
	14.9.1 球面三角公式		$Z(u32 \ v = 0) : v(v) \{\}$	
	14.9.2 四面体体积公式		Z& operator += (const Z &z) {	

```
if (v \ge MOD) v -= MOD;
                                                             v = static_cast<u64>(v) * z.v % MOD;
        return *this;
                                                             return *this;
    }
   Z& operator -= (const Z &z) {
                                                     };
        if (v < z.v) v += MOD;
                                                     Z operator + (const Z &x, const Z &y) {
                                                         return Z(x.v + y.v >= MOD ? x.v + y.v - MOD :
        v = z.v;
        return *this;
                                                         x.v + y.v);
                                                     }
    Z& operator *= (const Z &z) {
                                                     Z operator - (const Z &x, const Z &y) {
        v = static_cast<u64>(v) * z.v % MOD;
                                                         return Z(x.v < y.v ? x.v + MOD - y.v : x.v -
        return *this;
                                                         y.v);
                                                     }
};
                                                     Z operator * (const Z &x, const Z &y) {
Z operator + (const Z &x, const Z &y) {
                                                         return Z(static_cast<u64>(x.v) * y.v % MOD);
   return Z(x.v + y.v \ge MOD ? x.v + y.v - MOD :
                                                     Z qpow(Z base, u32 e) {
   x.v + y.v);
}
                                                         Z ret(1);
Z operator - (const Z &x, const Z &y) {
                                                         for (; e; e >>= 1) {
   return Z(x.v < y.v ? x.v + MOD - y.v : x.v -
                                                             if (e & 1) ret *= base;
                                                             base *= base;
   y.v);
}
Z operator * (const Z &x, const Z &y) {
                                                         return ret;
   return Z(static_cast<u64>(x.v) * y.v % MOD);
                                                     }
                                                     istream& operator >> (istream &in, Z &x) {
Z qpow(Z base, u32 e) {
                                                         in >> x.v;
   Z ret(1);
                                                         return in:
   for (; e; e >>= 1) {
                                                     }
        if (e & 1) ret *= base;
                                                     ostream& operator << (ostream &os, const Z &z) {
        base *= base;
                                                         return os << z.v;
    }
                                                     }
   return ret;
}
                                                          数列与计数
istream& operator >> (istream &in, Z &x) {
    in >> x.v;
                                                           多项式板子
                                                     4.1
    return in;
                                                     // SZ: size * 4
ostream& operator << (ostream &os, const Z &z) {
                                                     const size_t SZ = 1 << 19;</pre>
   return os << z.v;
                                                     using Poly = vector<Z>;
}
                                                     using i64 = long long;
                                                     template <typename InputZ, typename Output>
    随机数生成器
3
                                                     void sp_copy(InputZ begin, InputZ end, Output
                                                      → output) {
using u32 = unsigned;
                                                         while (begin != end) *output++ = begin++->v;
using u64 = unsigned long long;
                                                     }
const u32 MOD = 1E9 + 7;
                                                     int get_lg(int x) {
                                                         return 32 - __builtin_clz(x) - ((x & (-x)) ==
struct Z {
                                                         x):
   u32 v;
    Z(u32 v = 0) : v(v) {}
                                                     Z inv[SZ + 5], ww[SZ];
    Z& operator += (const Z &z) {
                                                     void prep() {
        v += z.v;
                                                         static bool has_prep = false;
        if (v \ge MOD) v = MOD;
                                                         if (has_prep) return;
        return *this;
                                                         inv[0] = inv[1] = 1;
                                                         for (unsigned i = 2; i \le SZ; ++i)
    Z& operator -= (const Z &z) {
                                                              inv[i] = MOD - MOD / i * inv[MOD % i];
        if (v < z.v) v += MOD;
                                                         ww[0] = 1;
        v = z.v;
                                                         Z \text{ mul} = \text{qpow}(3, (MOD - 1) / SZ);
        return *this;
                                                         for (unsigned i = 1; i < SZ; ++i)
                                                             ww[i] = ww[i - 1] * mul;
    Z& operator *= (const Z &z) {
```

```
has_prep = true;
                                                          if (g.size() > f.size()) f.resize(g.size());
                                                          auto it = f.begin();
                                                          auto jt = g.begin();
void fft(i64 a[], int lg, bool flag) {
                                                          while (jt != g.end()) *it++ -= *jt++;
    prep();
    int n = 1 \ll lg;
                                                          return f;
    if (flag) reverse(a + 1, a + n);
    static int rev[SZ], rev_lg = -1;
                                                      Poly operator - (const Poly &f, const Poly &g) {
    if (rev_lg != lg) {
                                                          Poly ret = f; return ret -= g;
        for (int i = 0; i < n; ++i)
            rev[i] = (rev[i >> 1] >> 1) | ((i & 1)
                                                      Poly operator * (const Poly &f, const Poly &g) {
   << lg >> 1);
                                                          u32 n = f.size() + g.size() - 1;
                                                          if ((i64) f.size() * g.size() <= 2048) {</pre>
        rev_lg = lg;
    }
                                                              static u64 ans[SZ];
    for (int i = 0; i < n; ++i)
                                                              memset(ans, 0, sizeof(u64) * n);
        if (rev[i] > i) swap(a[i], a[rev[i]]);
                                                              for (u32 i = 0; i < f.size(); ++i)</pre>
    for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
                                                                  for (u32 j = 0; j < g.size(); ++j)
                                                                      if ((ans[i + j] += (u64) f[i].v *
        i64 *x = a, *y = a + m, xx, yy; int *w,
                                                      \rightarrow g[j].v) >> 62)
                                                                          ans[i + j] %= MOD;
   mul[SZ];
        for (int i = 0, j = 0, step = SZ / 1; i <
                                                              Poly ret(n);
   m; ++i, j += step)
                                                              for (u32 i = 0; i < n; ++i) ret[i] =
            mul[i] = ww[j].v;
                                                          ans[i] % MOD;
        for (int i = 0; i < n; i += 1) {
                                                              return ret;
            w = mul;
            for (int j = 0; j < m; ++j, ++x, ++y,
                                                          Poly ret(f.size() + g.size() - 1);
   ++w) {
                                                          static i64 a[SZ], b[SZ];
                                                          int lg = get_lg(n);
                xx = *x;
                yy = *y \% MOD * *w;
                                                          memset(a, 0, sizeof(i64) << lg);
                *x = xx + yy;
                                                          memset(b, 0, sizeof(i64) << lg);</pre>
                                                          sp_copy(f.begin(), f.end(), a);
                *y = xx - yy;
            }
                                                          sp_copy(g.begin(), g.end(), b);
            x += m;
                                                          fft(a, lg, 0);
                                                          fft(b, lg, 0);
            y += m;
                                                          for (u32 i = 0, _ = 1 << lg; i < _; ++i)
                                                              (a[i] *= b[i]) %= MOD;
        if (1 >> 15 & 1)
            for (int i = 0; i < n; ++i)
                                                          fft(a, lg, 1);
                a[i] %= MOD;
                                                          copy(a, a + n, ret.begin());
    }
                                                          return ret;
    for (int i = 0; i < n; ++i) {
        a[i] %= MOD;
                                                      Poly& operator *= (Poly &f, const Poly &g) {
        if (flag) (a[i] *= inv[n].v) %= MOD;
                                                          return f = f * g;
        if (a[i] < 0) a[i] += MOD;
    }
                                                      Poly& operator *= (Poly &f, const Z &x) {
                                                          for (Z &c : f) c *= x;
void fft(Z a[], int lg, bool flag) {
                                                          return f;
    static i64 ta[SZ];
    sp_copy(a, a + (1 << lg), ta);
                                                      Poly operator * (const Poly &f, const Z &x) {
                                                          Poly ret = f; return ret *= x;
    fft(ta, lg, flag);
    copy(ta, ta + (1 << lg), a);
                                                      void calc_inv(Z arr[], Z brr[], int n) {
Poly operator += (Poly &f, const Poly &g) {
                                                          if (n == 1) {
    if (g.size() > f.size()) f.resize(g.size());
                                                              brr[0] = qpow(arr[0], MOD - 2);
                                                              return;
    auto it = f.begin();
    auto jt = g.begin();
    while (jt != g.end()) *it++ += *jt++;
                                                          calc_inv(arr, brr, n >> 1);
                                                          int lg = get_lg(n << 1);
    return f;
                                                          static Z ta[SZ], tb[SZ];
Poly operator + (const Poly &f, const Poly &g) {
                                                          memset(ta, 0, sizeof(Z) << lg);</pre>
    Poly ret = f; return ret += g;
                                                          memset(tb, 0, sizeof(Z) << lg);</pre>
                                                          copy(arr, arr + n , ta);
                                                          copy(brr, brr + (n >> 1), tb);
Poly operator -= (Poly &f, const Poly &g) {
```

```
fft(ta, lg, 0);
    fft(tb, lg, 0);
    for (int i = 0, _ = 1 << lg; i < _; ++i)
        ta[i] = (2 - ta[i] * tb[i]) * tb[i];
    fft(ta, lg, 1);
    copy(ta, ta + n, brr);
Poly calc_inv(const Poly &f) {
    static Z a[SZ], b[SZ];
    int lg = get_lg(f.size());
    memset(a, 0, sizeof(Z) << lg);</pre>
    copy(f.begin(), f.end(), a);
    calc_inv(a, b, 1 << lg);
    return Poly(b, b + f.size());
Poly operator / (const Poly &f, const Poly &g) {
    if (f.size() < g.size()) return Poly();</pre>
    Poly tf = f; reverse(tf.begin(), tf.end());
    Poly tg = g; reverse(tg.begin(), tg.end());
    tg.resize(f.size() - g.size() + 1);
    Poly ret = tf * calc_inv(tg);
    ret.resize(f.size() - g.size() + 1);
    reverse(ret.begin(), ret.end());
    return ret;
Poly& operator /= (Poly &f, const Poly &g) {
    return f = f / g;
}
Poly operator % (const Poly &f, const Poly &g) {
    Poly ret = f - (f / g) * g;
    ret.resize(g.size() - 1);
    return ret;
Poly& operator %= (Poly &f, const Poly &g) {
    return f = f % g;
Poly calc_der(const Poly &f) {
    Poly ret(f.size() - 1);
    for (u32 i = 1; i < f.size(); ++i) ret[i - 1]</pre>
   = f[i] * i;
    return ret;
Poly calc_pri(const Poly &f) {
    prep();
    Poly ret(f.size() + 1);
    for (u32 i = 1; i <= f.size(); ++i) ret[i] =</pre>
  f[i - 1] * inv[i];
    return ret;
}
Poly calc_ln(const Poly &f) {
    assert(f[0].v == 1);
    Poly g = calc_der(f) * calc_inv(f);
    g.resize(f.size() - 1);
    return calc_pri(g);
Poly calc_exp(int arr[], int n) {
    if (n == 1) {
        assert(arr[0] == 0);
        return Poly{1};
    Poly f = calc_exp(arr, n >> 1);
```

```
Poly tf = f;
    tf.resize(n);
    Poly a = Poly(arr, arr + n);
    Poly g = f * (Poly{1} - calc_ln(tf) + a);
    g.resize(n);
    return g;
Poly calc_exp(const Poly &f) {
    static int a[SZ];
    int lg = get_lg(f.size());
    memset(a, 0, sizeof(int) << lg);</pre>
    sp_copy(f.begin(), f.end(), a);
    Poly ret = calc_exp(a, 1 << lg);
    ret.resize(f.size());
    return ret;
Poly operator ^ (const Poly &f, const int &e) {
    u32 trail = 0;
    for (u32 i = 0; i < f.size(); ++i)</pre>
        if (f[i].v) break; else ++trail;
    if ((i64) trail * e >= f.size())
        return Poly(f.size(), 0);
    Z lst = f[trail], inv = qpow(lst, MOD - 2);
    Poly g;
    for (u32 i = trail; i < f.size(); ++i)</pre>
        g.emplace_back(f[i] * inv);
    Poly ret = calc_exp(calc_ln(g) * e) *
    qpow(lst, e);
    Poly t0 = Poly(trail * e, 0);
    ret.insert(ret.begin(), t0.begin(), t0.end());
    ret.resize(f.size());
    return ret;
Poly& operator ^= (Poly &f, const int &e) {
    return f = f ^ e;
```

4.2 牛顿迭代

问题描述:给出多项式 G(x), 求解多项式 F(x) 满足:

$$G(F(x)) \equiv 0 \pmod{x^n}$$

答案只需要精确到 $F(x) \mod x^n$ 即可。

实现原理:考虑倍增,假设有:

$$G(F_t(x)) \equiv 0 \pmod{x^t}$$

对 $G(F_{t+1}(x))$ 在模 x^{2t} 意义下进行 Taylor 展开:

$$G(F_{t+1}(x)) \equiv G(F_t(x)) + \frac{G'(F_t(x))}{1!} (F_{t+1}(x) - F_t(x)) \pmod{x^{2t}}$$

那么就有:

$$F_{t+1}(x) \equiv F_t(x) - \frac{G(F_t(x))}{G'(F_t(x))} \pmod{x^{2t}}$$

注意事项:G(F(x)) 的常数项系数必然为 0, 这个可以作为 求解的初始条件。

多项式求逆原理: $\Diamond G(x) = x * A - 1$ (其中 A 是一个多项 式系数),根据牛顿迭代法有:

$$F_{t+1}(x) \equiv F_t(x) - \frac{F_t(x) * A(x) - 1}{A(x)}$$
$$\equiv 2F_t(x) - F_t(x)^2 * A(x) \pmod{x^{2t}}$$

注意事项:

- 1. F(x) 的常数项系数必然不为 0, 否则没有逆元;
- 2. 复杂度是 $O(n \log n)$ 但是常数比较大 $(10^5$ 大概需要 0.3 秒左右);
- 3. 传入的两个数组必须不同,但传入的次数界没有必要是2 的次幂;

多项式取指数和对数作用:给出一个多项式 A(x),求一个多项式 F(x) 满足 $e^A(x) - F(x) \equiv 0 \pmod{x^n}$ 。 **原理:**令 $G(x) = \ln x - A$ (其中 A 是一个多项式系数),根据牛顿迭代法有:

$$F_{t+1}(x) \equiv F_t(x) - F_t(x)(\ln F_t(x) - A(x)) \pmod{x^{2t}}$$

求 $\ln F_t(x)$ 可以用先求导再积分的办法, 即:

$$\ln A(x) = \int \frac{F'(x)}{F(x)} \, \mathrm{d}x$$

多项式的求导和积分可以在 O(n) 的时间内完成,因此总复杂度为 $O(n \log n)$ 。

应用:加速多项式快速幂。

注意事项:

- 1. 进行 \log 的多项式必须保证常数项系数为 1, 否则必须要先求出 $\log a[0]$ 是多少;
- 2. 传入的两个数组必须不同,但传入的次数界没有必要是2的次幂;
- 3. 常数比较大, 10^5 的数据求指数和对数分别需要 0.37s 和 0.85s 左右的时间,注意这里 memset 几乎不占用时。

4.3 MTT

```
// N: size * 4
// MOD
const size_t N = 1 << 18;</pre>
const int MOD = 1E9 + 7;
struct Complex {
    double a, b;
    Complex() {}
    Complex(double a, double b) : a(a), b(b) {}
    Complex operator + (const Complex &c) const {
        return Complex(a + c.a, b + c.b);
    Complex operator - (const Complex &c) const {
        return Complex(a - c.a, b - c.b);
    Complex operator * (const Complex &c) const {
        return Complex(a * c.a - b * c.b, a * c.b
   + b * c.a);
    Complex conj() const {
        return Complex(a, -b);
    }
} w[N];
void prep() {
    const double PI = acos(-1);
    for (int i = 0; i \le N >> 1; ++i) {
        double ang = 2 * i * PI / N;
```

```
w[i] = Complex(cos(ang), sin(ang));
    }
struct _ {
    _() { prep(); }
void fft(Complex a[], int lg) {
    int n = 1 \ll lg;
    static int rev[N], rev_lg = -1;
    if (rev_lg != lg) {
        for (int i = 0; i < n; ++i)
            rev[i] = rev[i >> 1] >> 1 | ((i & 1)
    << lg >> 1);
        rev_lg = lg;
    for (int i = 0; i < n; ++i)
        if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
    for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
    1) {
        static Complex ww[N];
        for (int i = 0, j = 0, step = N / 1; i <
   m; ++i, j += step)
            ww[i] = w[j];
        Complex *xx = a, *yy = a + m, x, y;
        for (int i = 0, j; i < n; i += 1) {
            for (j = 0; j < m; ++j, ++xx, ++yy) {
                x = *xx; y = *yy * ww[j];
                *xx = x + y;
                *yy = x - y;
            }
            xx += m;
            yy += m;
    }
void mul(int a[], int b[], int c[], int n, int m)
    static Complex d[N], e[N], f[N], g[N];
    int lg = 0;
    while ((1 << lg) < n + m) ++ lg;
    int tot = 1 << lg;</pre>
    for (int i = 0; i < n; ++i)
        d[i] = Complex(a[i] & 32767, a[i] >> 15);
    for (int i = 0; i < m; ++i)
        e[i] = Complex(b[i] & 32767, b[i] >> 15);
    fft(d, lg); fft(e, lg);
    for (int i = 0; i < tot; ++i) {
        int j = i? tot -i : 0;
        Complex da = (d[i] + d[j].conj()) *
    Complex(.5, 0);
        Complex db = (d[i] - d[j].conj()) *
    Complex(0, -.5);
        Complex dc = (e[i] + e[j].conj()) *
    Complex(.5, 0);
        Complex dd = (e[i] - e[j].conj()) *
    Complex(0, -.5);
        f[j] = da * dc + da * dd * Complex(0, 1);
        g[j] = db * dc + db * dd * Complex(0, 1);
    fft(f, lg); fft(g, lg);
    for (int i = 0; i < n + m - 1; ++i) {
```

```
i64 da = round(f[i].a / tot); da %= MOD;
                                                                        tmp[i + j] \% = MOD;
        i64 db = round(f[i].b / tot); db %= MOD;
                                                           for (int i = 0; i < n + m - 1; ++i) {
        i64 dc = round(g[i].a / tot); dc %= MOD;
                                                               c[i] = tmp[i] % MOD; tmp[i] = 0;
        i64 dd = round(g[i].b / tot); dd %= MOD;
        c[i] = (da + ((db + dc) << 15) + (dd <<
                                                       }
    30)) % MOD;
                                                       void get_mod(Z a[], Z b[], Z c[], int n, int m) {
    }
                                                           static Z tc[N];
}
                                                           copy(a, a + n, tc);
                                                           Z iv = qpow(b[m - 1], MOD - 2);
                                                           for (int i = n; i-- >= m; ) {
4.4 FWT
                                                               Z \text{ mul} = tc[i] * iv;
// N: size * 2
                                                               for (int j = m, k = i; j--; --k)
const size_t N = 1 << 17;</pre>
                                                                    tc[k] -= mul * b[j];
void div2(Z &x) {
    if (x.v \& 1) x.v += MOD;
                                                           copy(tc, tc + m - 1, c);
    x.v >>= 1;
                                                       void _solve(Z a[], Z b[], i64 n, int m) {
void fwt_and(Z a[], int n, bool rev) {
                                                           if (n < m - 1) {
    for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
                                                               b[n] = 1; return;
        for (int i = 0; i < n; i += 1)
                                                           static Z ta[N], tb[N];
            for (int j = 0; j < m; ++j)
                                                           if (n & 1) {
                 if (rev) a[i + j] -= a[i + j + m];
                                                               _{\text{solve}}(a, b, n - 1, m);
                else a[i + j] += a[i + j + m];
                                                               ta[1] = 1;
                                                               mul(b, ta, tb, m, 2);
void fwt_or(Z a[], int n, bool rev) {
                                                               get_mod(tb, a, b, m + 1, m);
    for (int m = 1, l = 2; m < n; m <<= 1, l <<=
                                                           } else {
→ 1)
                                                               _solve(a, b, n >> 1, m);
        for (int i = 0; i < n; i += 1)
                                                               mul(b, b, tb, m, m);
            for (int j = 0; j < m; ++j)
                                                               get_mod(tb, a, b, (m << 1) - 1, m);
                 if (rev) a[i + j + m] -= a[i + j];
                 else a[i + j + m] += a[i + j];
                                                       Z solve(const Poly &init, const Poly &a, i64 n) {
void fwt_xor(Z a[], int n, bool rev) {
                                                           int m = a.size();
    for (int m = 1, 1 = 2; m < n; m <<= 1, 1 <<=
                                                           static Z ta[N], b[N];
→ 1)
                                                           for (int i = 0; i < m; ++i)
        for (int i = 0; i < n; i += 1)
                                                               ta[i] = 0 - a[m - 1 - i];
            for (int j = 0; j < m; ++j) {
                                                           ta[m] = 1;
                Z xx = a[i + j], yy = a[i + j +
                                                           _{\text{solve}}(\text{ta, b, n, m + 1});
\hookrightarrow m];
                                                           Z ans = 0;
                a[i + j] = xx + yy;
                                                           for (int i = 0; i < m; ++i)
                a[i + j + m] = xx - yy;
                                                               ans += init[i] * b[i];
                 if (rev) {
                                                           return ans;
                     div2(a[i + j]);
                                                       }
                     div2(a[i + j + m]);
                                                       }
            }
                                                       namespace BM {
}
                                                       Poly& operator += (Poly &p, const Poly &q) {
                                                           if (q.size() > p.size()) p.resize(q.size());
                                                           for (size_t i = 0; i < q.size(); ++i)</pre>
4.5 BM
                                                               p[i] += q[i];
// N: size * 2
                                                           return p;
const size_t N = 1E4 + 5;
using Poly = vector<Z>;
                                                       Poly operator * (const Poly &p, Z x) {
namespace Rec {
                                                           Poly ret(p.size());
u64 tmp[N];
                                                           for (size_t i = 0; i < p.size(); ++i)</pre>
void mul(Z a[], Z b[], Z c[], int n, int m) {
                                                               ret[i] = p[i] * x;
    for (int i = 0; i < n; ++i)
                                                           return ret;
        for (int j = 0; j < m; ++j)
            if ((tmp[i + j] += (u64) a[i].v *
                                                       Poly solve(const Poly &a) {
\rightarrow b[j].v) >> 62)
                                                           Poly P, R; int cnt = 1;
```

```
for (size_t i = 0; i < a.size(); ++i) {
        Poly tmp = P; tmp.insert(begin(tmp), MOD -
   1);
        Z delta = 0;
        for (size_t j = 0; j < tmp.size(); ++j)</pre>
             delta += tmp[j] * a[i - j];
        if (delta.v) {
             vector<Z> t(cnt);
             R.insert(begin(R), begin(t), end(t));
             P += R * (MOD - delta);
            R = tmp * qpow(delta, MOD - 2);
             cnt = 0;
        } else {
             ++cnt;
    for (size_t i = P.size(); i < a.size(); ++i) {</pre>
        for (size_t j = 0; j < P.size(); ++j)</pre>
            cur += a[i - 1 - j] * P[j];
        assert(cur.v == a[i].v);
    }
    return P;
}
}
int main() {
    vector<Z> p(read());
    i64 m = read();
    generate(begin(p), end(p), read);
    Poly P = BM::solve(p);
    for (Z x : P) cout << x << ' ';</pre>
    cout << '\n';
    cout << Rec::solve(p, P, m) << ' \setminus n';
    return 0;
}
```

4.6 numbers

4.6.1 伯努利数

伯努利数满足

$$B_0 = 1, \sum_{j=0}^{m} {m+1 \choose j} B_j = 0 \ (m > 0).$$

等式两边同时加上 B_{m+1} , 并设 n=m-1, 得

$$\sum_{i=0}^{n} \binom{n}{i} B_i = [n=1] + B_n$$

设
$$\hat{B}(x) = \sum_{i=0}^{\infty} B_i \cdot \frac{x^i}{i!}, \quad \mathbb{N}$$

$$\hat{B}(x)e^x = x + \hat{B}(x) \Rightarrow \hat{B}(x) = \frac{x}{e^x - 1}$$

$$0^k + 1^k + \dots + n^k$$

$$= k! \left[x^k \right] \frac{e^{(n+1)x} - 1}{x} \cdot \hat{B}(x)$$

$$= k! \sum_{i=0}^k \frac{B_i}{i!} \cdot \frac{(n+1)^{k-i+1}}{(k-i+1)!}$$

$$= \frac{1}{k+1} \sum_{i=0}^k \binom{k+1}{i} B_i \cdot (n+1)^{k-i+1}$$

4.6.2 第一类斯特林数

记 $S_1(n,k)$ 为将 n 个不同元素分为 k 个环排列的方案数. 由组合意义得,

$$S_1(n,k) = S_1(n-1,k-1) + (n-1)S_1(n-1,k)$$

$$x^{\overline{n}} = \sum_{i=0}^n S_1(n,i)x^i$$

$$x^{\underline{n}} = \sum_{i=0}^n (-1)^{n-i}S_1(n,i)x^i$$

$$\sum_{i=0}^n S_1(n,i)x^i = \prod_{i=0}^{n-1} (x+i)$$

注意最后等式的右半部分,可以使用递增 + 点值平移 $O(n \log n)$ 求出第 n 行斯特林数.

4.6.3 第二类斯特林数

记 $S_2(n,k)$ 为将 n 个不同元素分至 k 个相同的盒子 (每个盒子至少一个元素) 的方案数. 由组合意义得,

$$S_2(n,k) = S_2(n-1,k-1) + kS_2(n-1,k)$$

$$x^n = \sum_{i=0}^n S_2(n,i)x^i$$

$$S_2(n,k) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n$$

$$\frac{S_2(n,k)}{k!} = \sum_{i=0}^k \frac{i^n}{i!} \cdot \frac{(-1)^{k-i}}{(k-i)!}$$

是一个卷积的形式,可以 FFT 求出某一行第二类斯特林数.

4.6.4 斯特林反演

$$x^{n} = \sum_{i=0}^{n} S_{2}(n, i)x^{i}$$

$$= \sum_{i=0}^{n} S_{2}(n, i) \sum_{j=0}^{i} (-1)^{i-j} S_{1}(i, j)x^{j}$$

$$= \sum_{i=0}^{n} x^{i} \sum_{j=i}^{n} (-1)^{j-i} S_{2}(n, j) S_{1}(j, i)$$

设

$$g_n = \sum_{i=0}^n S_2(n,i) f_i,$$

则

$$f_n = \sum_{i=0}^{n} (-1)^{n-i} S_1(n,i) g_i.$$

4.6.5 Burnside 引理

设置换群为G,染色集合为X.

若染色 $x \in X$ 在置换 f 的作用下得到染色 $y \in X$,则称 x,y 等价. 由置换群的定义,我们可以得到等价类,使得等价类内任意两个染色等价.

设 $X^g(g \in G)$ 表示在置换 g 下的不动点,即

$$X^g = \{x \mid x \in X, gx = x\}.$$

则等价类个数

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

例 LOJ 6538 烷基计数,对于一棵有根树,每个节点至多三个儿子,且这些儿子排列同构. 求有多少个 n 个节点的等价类

考虑其生成函数 f(x). 根节点有 3 个儿子 (儿子可以为空,因为循环同构,我们不需讨论 0,1,2 个儿子的情况),排列的置换群有 6 种,其中 (1,2,3)染色方案数为 $f(x)^3$, (1,3,2),(2,1,3),(3,2,1)染色方案为 $f(x^2)f(x)$, (2,3,1),(3,1,2)染色方案为 $f(x^3)$. 所以

$$f(x) = x \times \frac{f(x)^3 + 3f(x^2)f(x) + 2f(x^3)}{6} + 1.$$

牛顿迭代.

4.6.6 五边形数

$$\prod_{n=1}^{\infty} (1-x^n) = \sum_{n=0}^{\infty} (-1)^n (1-x^{2n+1}) x^{n(3n+1)/2}$$

4.7 树的计数

1. 有根树计数: n+1 个结点的有根树的个数为

$$a_{n+1} = \frac{\sum_{j=1}^{n} j \cdot a_j \cdot S_{n,j}}{n}$$

其中,

$$S_{n,j} = \sum_{i=1}^{n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$$

2. 无根树计数: 当 n 为奇数时, n 个结点的无根树的个数 为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$$

当 n 为偶数时, n 个结点的无根树的个数为

$$a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$$

3. n 个结点的完全图的生成树个数为

$$n^{n-2}$$

4. 矩阵—树定理:图 G 由 n 个结点构成,设 A[G] 为图 G 的邻接矩阵、D[G] 为图 G 的度数矩阵,则图 G 的不同生成树的个数为 C[G] = D[G] - A[G] 的任意一个 n-1 阶主子式的行列式值。

5 数论

5.1 判素数 (miller-rabin)

```
i64 Rand() {
    return (i64) rand() * rand() + rand();
};
i64 mul_mod(i64 a, i64 b, i64 mod) {
    i64 tmp = (long double) a * b / mod;
    i64 ret = a * b - tmp * mod;
    while (ret >= mod) ret -= mod;
    while (ret < 0) ret += mod;</pre>
    return ret;
i64 pow_mod(i64 base, i64 e, i64 mod) {
    i64 ret = 1;
    for (; e; e >>= 1) {
        if (e & 1) ret = mul_mod(ret, base, mod);
        base = mul_mod(base, base, mod);
    return ret;
};
const int pri[] {
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29
};
bool isp(i64 num) {
    for (int x : pri) if (num == x) return true;
    i64 a = num - 1;
    int b = 0;
    while (!(a & 1)) {
        a >>= 1; ++b;
    for (int p : pri) {
        i64 x = pow_mod(p, a, num), y = x;
        for (int i = 0; i < b; ++i) {
            y = mul_mod(x, x, num);
            if (y == 1 && x != 1 && x != num - 1)
                return false;
            x = y;
        if (y != 1) return false;
    return true;
}
vector<i64> fac;
i64 gcd(i64 a, i64 b) {
    return b ? gcd(b, a % b) : a;
void rho(i64 n) {
    if (isp(n)) {
        fac.emplace_back(n);
        return;
    while (true) {
```

```
i64 \times 0 = Rand() \% n, \times 1 = \times 0, d = 1, c =
                                                                }
   Rand() \% n, cnt = 0;
                                                            }
        while (d == 1) {
                                                       }
                                                        int cipolla(int n) {
            x0 = (mul_mod(x0, x0, n) + c) % n;
            d = gcd(abs(x1 - x0), n);
                                                            if (!n) return 0;
                                                            if (qpow(n, (mod - 1) / 2) != 1) {
            ++cnt;
            if (!(cnt & (cnt - 1))) x1 = x0; //
                                                                return -1;
                                                            }
   Floyd 倍增判环
                                                            int a = get_num(n);
        }
        if (d < n) {
                                                            Number res = npow(Number(a, 1), (mod + 1) /
            rho(d); rho(n / d); return;
                                                            assert(!res.y);
                                                            return res.x;
    }
}
                                                       }
5.2 二次剩余(Cipolla)
                                                        5.3 杜教筛
欧拉判定:
                x^{\frac{p-1}{2}} \equiv \begin{pmatrix} \underline{x} \\ p \end{pmatrix} \pmod{p}
                                                       // prep_calc[N]: pre-calculated
                                                       map<i64, i64> mp;
                                                       i64 calc(i64 n) {
// input mod
                                                            if (n < N) return pre_calc[n];</pre>
// method: cipolla(int n)
                                                            if (mp.count(n)) return mp[n];
int mod;
                                                            i64 ret = 1LL * n * (n + 1) / 2; // 这里改成
namespace Cipolla {
                                                           (f * q) 的前缀和
int omega;
                                                            for (i64 l = 2, r; l \le n; l = r) {
int sqr(int x) {
                                                                r = n / (n / 1) + 1;
    return (i64) x * x % mod;
                                                                ret -= (r - 1) * calc(n / 1); // 这里 r -
                                                            1 改成 g 在 [1, r] 的和
struct Number {
                                                            }
    int x, y;
                                                            return mp[n] = ret;
    Number() {}
    Number(int x, int y = 0) : x(x), y(y) {}
    Number operator * (const Number &n) const {
                                                        5.4 \quad \min \quad 25
        Number ret;
        ret.x = ((i64) x * n.x + (i64) y * n.y %
                                                        const size_t N = 2E5 + 5; // 2 * sqrt(N)
   mod * omega) % mod;
        ret.y = ((i64) x * n.y + (i64) y * n.x) %
                                                        i64 n, lim, val[N];
   mod;
                                                        int id1[N], id2[N];
        return ret;
                                                       bool npr[N]; int pri[N], pcnt; Z pg0[N], pg1[N];
    }
                                                       Z g0[N], g1[N];
    Number& operator *= (const Number &n) {
        return *this = *this * n;
                                                       void prep() {
                                                            for (int i = 2; i < (int) N; ++i) {
};
                                                                if (!npr[i]) {
Number npow(Number base, int e) {
                                                                    pri[++pcnt] = i;
    Number ret(1);
                                                                    pg0[pcnt] = pg0[pcnt - 1] - 1;
    for (; e; e >>= 1) {
                                                                    pg1[pcnt] = pg1[pcnt - 1] + i;
        if (e & 1) ret *= base;
        base *= base;
                                                                for (int j = 1, k; j \le pcnt && (k = i *
                                                            pri[j]) < (int) N; ++j) {</pre>
    return ret;
                                                                    npr[k] = true;
                                                                    if (i % pri[j] == 0) break;
int get_num(int n) {
                                                                }
    while (true) {
                                                            }
        int x = rand();
                                                       }
        int tmp = (sqr(x) - n) \% mod;
        if (tmp < 0) tmp += mod;
                                                        int get_id(i64 x) {
        if (qpow(tmp, (mod - 1) / 2) == mod - 1) {
                                                            return x <= lim ? id1[x] : id2[n / x];</pre>
            omega = tmp;
            return x;
```

```
printf("Case %d: ",test);
Z calc_f(int p, int c) {
    return p ^ c;
                                                                if (fabs(sqrt(n)-floor(sqrt(n)+1e-7))<=1e-7)</pre>
                                                                  int a=(int)(floor(sqrt(n)+1e-7)); printf("%d
Z S(i64 n, int x) {
                                                            \rightarrow %d \ln ", a, 1);
    // 求 \sum f(1 ~ n 中最小质因子 >= pri[x])
                                                                } else {
    if (n <= 1 || pri[x] > n) return 0;
                                                                  // 求 $x^2-ny^2=1$ 的最小正整数根, n 不是完全
    Z ret = g0[get_id(n)] + g1[get_id(n)];
    if (x == 1) ret += 2; // #6035 特殊 f(2) = 2 +
                                                                  p[1]=q[0]=h[1]=1;p[0]=q[1]=g[1]=0;
   1 = 3 != 1
                                                                  a[2]=(int)(floor(sqrt(n)+1e-7));
    ret -= pg0[x - 1] + pg1[x - 1];
                                                                  for (int i=2;i;++i) {
    // 当前 ret 为 \sum f(1 ~ n 中 >= pri[x] 的质
                                                                     g[i]=-g[i-1]+a[i]*h[i-1];
→ 数)
                                                            \rightarrow h[i]=(n-sqr(g[i]))/h[i-1];
                                                                     a[i+1]=(g[i]+a[2])/h[i];
    for (int k = x; k \le pcnt; ++k) {
                                                                p[i]=a[i]*p[i-1]+p[i-2];
         i64 p1 = pri[k], p2 = p1 * pri[k];
         if (p2 > n) break;
                                                                     q[i]=a[i]*q[i-1]+q[i-2];
         for (int e = 1; p2 \le n; p2 = (p1 = p2) *
                                                                     if
                                                                (\operatorname{sqr}((\operatorname{ULL})(\operatorname{p[i]}))-\operatorname{n*sqr}((\operatorname{ULL})(\operatorname{q[i]}))==1)\{
    pri[k], ++e) {
             ret += S(n / p1, k + 1) *
                                                                      A=p[i];B=q[i];break;
    calc_f(pri[k], e);
                                                                  }
             ret += calc_f(pri[k], e + 1);
                                                                  cout << A << ' ' << B <<endl;
    }
                                                             }
    return ret;
                                                           }
}
int main() {
                                                                 直线下整点个数
                                                           5.6
    n = read();
                                                            // Quasar
    \lim = \operatorname{sqrt}(n + .5);
                                                            // calc \sum_{i=0}^{n-1} [(a+bi)/m]
    prep();
                                                           // n, a, b, m > 0
    int cnt = 0;
                                                           LL solve(LL n, LL a, LL b, LL m) {
    for (i64 i = 1, j; i <= n; i = j + 1) {
                                                                if(b == 0)
         i64 t;
                                                                     return n * (a / m);
         j = n / (t = val[++cnt] = n / i);
                                                                if(a >= m || b >= m)
         (t <= lim ? id1[t] : id2[i]) = cnt;
                                                                    return n * (a / m) + (n - 1) * n / 2 * (b)
         t %= MOD;
                                                            \rightarrow / m) + solve(n, a % m, b % m, m);
         g0[cnt] = 1 - Z(t);
                                                                return solve((a + b * n) / m, (a + b * n) % m,
         g1[cnt] = (t - 1) * (t + 2) / 2 % MOD;
                                                                m, b);
    }
                                                            }
    for (int i = 1; i <= pcnt; ++i) {</pre>
         // 筛掉最小质因子为 pri[i] 的数
         i64 bnd = (i64) pri[i] * pri[i];
                                                                  定理
                                                            5.7
         if (bnd > n) break;
                                                            5.7.1 扩展欧拉定理
         for (int j = 1, id; val[j] >= bnd; ++j) {
                                                                 \int a^{b \bmod \varphi(m)}
             id = get_id(val[j] / pri[i]);
                                                                                      (\gcd(a, m) = 1)
             g0[j] -= (g0[id] - pg0[i - 1]);
                                                                                      (\gcd(a, m) \neq 1, b < \varphi(m)) \pmod{m}
             g1[j] -= (g1[id] - pg1[i - 1]) *
                                                                  a^{(b \bmod \varphi(m)) + \varphi(m)}
                                                                                     (\gcd(a,m) \neq 1, b > \varphi(m))
    pri[i];
                                                           5.7.2 卢卡斯定理
    // q[i] = \sum 1~val[i] 中质数
                                                           \forall 质数 p, n, m \in \mathbb{N}^+,
    cout << 1 + S(n, 1) << ' \setminus n';
    return 0;
                                                                      \binom{n}{m} \equiv \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \binom{n \bmod p}{m \bmod p}
}
5.5 佩尔方程
// Blazar
```

ULL A,B,p[maxn],q[maxn],a[maxn],g[maxn],h[maxn];

for (int test=1, n; scanf("d",&n) && n; ++test) {

int main() {

5.7.3 威尔逊定理

对于质数 p, 有 $(p-1)! \equiv -1 \pmod{p}$ (证明 $2,3,\ldots,p-2$ 可以逆元两两配对) 高斯的扩展:

$$\prod_{1 \leq k \leq m, \gcd(k,m)=1} k \equiv \begin{cases} -1, & \text{if } m = 4, p^{\alpha}, 2p^{\alpha}, \\ 1, & \text{otherwise.} \end{cases} \pmod{m}$$

5.7.4 莫比乌斯函数

$$\mu(n) = \begin{cases} 1 & 若n = 1 \\ (-1)^k & 若n无平方数因子, 且n = p_1 p_2 \dots p_k \\ 0 & 若n有大于1的平方数因数 \end{cases}$$

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & 若n = 1 \\ 0 & 其他情况 \end{cases}$$

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$$

$$g(x) = \sum_{n=1}^{[x]} f(\frac{x}{n}) \Leftrightarrow f(x) = \sum_{n=1}^{[x]} \mu(n)g(\frac{x}{n})$$

6 线性代数

6.1 线性基

```
// N: size
const size_t N = 50;
u64 base[N];
void add(u64 val) {
    for (int i = 49; ~i; --i) if (val >> i & 1)
        if (!base[i]) {
            for (int j = 0; j < i; ++j) if (val >>
            j & 1) val ^= base[j];
            base[i] = val;
            for (int j = i + 1; j < 50; ++j) if

            (base[j] >> i & 1) base[j] ^= val;
            break;
        } else {
            val ^= base[i];
        }
}
```

6.2 矩阵求逆

```
struct Matrix {
    size_t n, m;
    vector<vector<Z>> a;
    Matrix() {}
    Matrix(size_t n, size_t m) : n(n), m(m) {
        a = vector<vector<Z>>(n, vector<Z>(m));
    }
    void do_diag(Z x) {
        for (size_t i = 0; i < n && i < m; ++i)
        a[i][i] = x;
    }
    Matrix& operator += (const Matrix &mat) {
        assert(n == mat.n && m == mat.m);
    }
}</pre>
```

```
for (size_t i = 0; i < n; ++i) for (size_t</pre>
j = 0; j < m; ++j) a[i][j] += mat.a[i][j];</pre>
    return *this;
Matrix operator + (const Matrix &mat) const {
    Matrix ret = *this; return ret += mat;
Matrix operator * (const Matrix &mat) const {
    assert(m == mat.n);
    Matrix ret(n, mat.m);
    for (size_t i = 0; i < n; ++i)</pre>
        for (size_t j = 0; j < mat.m; ++j)</pre>
             for (size_t k = 0; k < m; ++k)</pre>
                 ret.a[i][j] += a[i][k] *
mat.a[k][j];
    return ret;
Matrix& operator *= (const Z &x) {
    for (size_t i = 0; i < n; ++i) for (size_t</pre>
j = 0; j < m; ++j) a[i][j] *= x;
    return *this;
Matrix operator * (const Z &x) const {
    Matrix ret = *this; return ret *= x;
Matrix& operator *= (const Matrix &mat) {
return *this = *this * mat; }
Matrix get_inv() const {
    assert(n == m);
    Matrix m = *this, r(n, n); r.do_diag(1);
    for (size_t i = 0; i < n; ++i) {</pre>
        int pivot = -1;
        for (size_t j = i; j < n; ++j) if
(m.a[j][i].v && !~pivot) pivot = j;
        assert(~pivot);
        for (size_t j = i; j < n; ++j) {
             swap(m.a[i][j], m.a[pivot][j]);
             swap(r.a[i][j], r.a[pivot][j]);
        Z \text{ mul} = \text{qpow}(\text{m.a[i][i]}, \text{MOD} - 2);
        for (size_t j = 0; j < n; ++j) { // 矩
阵求逆时切勿从 i 开始枚举
            m.a[i][j] *= mul; r.a[i][j] *=
mul:
        for (size_t j = 0; j < n; ++j) {
             if (j == i) continue;
            Z mul = m.a[j][i]; if (!mul.v)
continue;
             for (size_t k = 0; k < n; ++k) {
                 m.a[j][k] -= mul * m.a[i][k];
                 r.a[j][k] -= mul * r.a[i][k];
             assert(!m.a[j][i].v);
    for (size_t i = 0; i < n; ++i) {
        for (size_t j = 0; j < n; ++j)
assert(m.a[i][j].v == (i == j));
```

```
return r;
                                                                  for (int p = 0; p < n; ++p) mat[p][j]
   }
                                                          += u * mat[p][k];
};
                                                              }
                                                          }
Matrix qpow(Matrix base, int e) {
                                                          vector<Poly> p(1, Poly(1, 1));
   Matrix ret(2, 2); ret.do_diag(1);
                                                          for (int k = 0; k < n; ++k) {
    for (; e; e >>= 1) {
                                                              Poly po = p.back();
        if (e & 1) ret *= base;
                                                              po.insert(begin(po), 0);
        base *= base;
                                                              po -= p.back() * mat[k][k];
                                                              for (int i = 0; i < k; ++i) {
                                                                  Z mul = mat[i][k];
   return ret;
}
                                                                  for (int j = i; j < k; ++j) mul *=
                                                         mat[j + 1][j];
ostream& operator << (ostream &os, const Matrix
                                                                  po -= p[i] * mul;
}
    for (size_t i = 0; i < mat.n; ++i) {</pre>
                                                              p.emplace_back(po);
        for (size_t j = 0; j < mat.m; ++j) os <<</pre>
                                                          }
                                                          return p.back();
   mat.a[i][j] << ' ';
        os << ' \setminus n';
                                                     }
    }
    return os;
                                                          数据结构
                                                     7
}
                                                           左偏树
                                                     7.1
     矩阵特征多项式
6.3
// nflsoj 333
                                                     struct Node {
using Poly = vector<Z>;
                                                          int lc, rc, val, dis;
Poly& operator -= (Poly &p, const Poly &q) {
                                                          Node() {}
    if (q.size() > p.size()) p.resize(q.size());
                                                     } t[N];
    for (u32 i = 0; i < q.size(); ++i) p[i] -=
                                                     int arr[N], rt[N];
   q[i];
                                                     bool del[N];
   return p;
                                                     int merge(int x, int y) {
                                                          if (!x || !y) return x | y;
Poly operator * (const Poly &p, const Z &v) {
                                                          if (arr[y] < arr[x]) swap(x, y);
   Poly ret(p.size());
                                                          t[x].rc = merge(t[x].rc, y);
    for (u32 i = 0; i < p.size(); ++i) ret[i] =
                                                          if (t[t[x].lc].dis < t[t[x].rc].dis)
   p[i] * v;
                                                              swap(t[x].lc, t[x].rc);
    return ret;
                                                          t[x].dis = t[t[x].rc].dis + 1;
}
                                                          return x;
Poly charac_poly(vector<Poly> mat) {
    int n = (int) mat.size();
                                                     7.2 LCT
    assert(n == (int) mat[0].size());
    for (int j = 1; j < n; ++j) {
                                                     // N
        if (!mat[j][j - 1].v) {
                                                     const size_t N = 1E5 + 5;
            for (int i = j + 1; i < n; ++i) {
                                                     int pa[N], ch[N][2], siz[N], val[N];
                if (mat[i][j - 1].v) {
                                                     bool tag[N];
                    for (int p = 0; p < n; ++p)
                                                     void update(int x) {
    swap(mat[i][p], mat[j][p]);
                                                          swap(ch[x][0], ch[x][1]);
                    for (int p = 0; p < n; ++p)
                                                          tag[x] ^= 1;
   swap(mat[p][i], mat[p][j]);
                    break;
                                                     void pushdown(int x) {
                }
                                                          if (tag[x]) {
            }
                                                              if (ch[x][0]) update(ch[x][0]);
                                                              if (ch[x][1]) update(ch[x][1]);
        Z inv = qpow(mat[j][j - 1], MOD - 2);
                                                              tag[x] = 0;
        for (int k = j + 1; k < n; ++k) {
            Z u = mat[k][j - 1] * inv;
                                                     }
            for (int p = 0; p < n; ++p) mat[k][p]</pre>
                                                     void pushup(int x) {
    -= u * mat[j][p];
                                                          siz[x] = siz[ch[x][0]] + val[x] +
                                                         siz[ch[x][1]];
```

```
}
                                                      #define se second
                                                      const size t N = 2E5 + 5;
int getd(int x) {
   return ch[pa[x]][0] == x ? 0 : ch[pa[x]][1] ==
                                                      struct Node {
                                                          int xl, yl, xm, ym, xr, yr;
   x ? 1 : -1;
}
                                                          int lc, rc, pa;
void rotate(int x) {
                                                          i64 sum, val, tag;
    int y = pa[x], z = pa[y], k = getd(x);
                                                          int cnt; bool exist;
    if (\neg getd(y)) ch[z][getd(y)] = x;
                                                          Node() {}
    pa[x] = z; pa[y] = x;
                                                      } t[N];
    ch[y][k] = ch[x][k^1];
                                                      int tot;
    ch[x][k ^1] = y;
                                                      P point[N];
    if (ch[y][k]) pa[ch[y][k]] = y;
                                                      map<P, int> mp;
                                                      int build(int 1, int r, bool d = 0, int pa = 0) {
    pushup(y);
                                                          if (1 > r) return 0;
                                                          int x = ++tot;
void splay(int x) {
    static int stk[N];
                                                          t[x].pa = pa;
    int y = x, tp = 0;
                                                          int mid = (1 + r) >> 1;
    stk[++tp] = y;
                                                          nth_element(point + 1, point + mid, point + r
    while (\neg getd(y)) stk[++tp] = y = pa[y];

→ + 1,

    while (tp) pushdown(stk[tp--]);
                                                                   [&](const P &p, const P &q) {
    while (~getd(x)) {
                                                              P a = p, b = q;
        y = pa[x];
                                                              if (d) swap(a.fi, a.se), swap(b.fi, b.se);
        if (~getd(y))
                                                              return a < b;
            rotate(getd(x) ^ getd(y) ? x : y);
                                                          });
                                                          mp[point[mid]] = x;
        rotate(x);
    }
                                                          t[x].xl = t[x].xm = t[x].xr = point[mid].fi;
                                                          t[x].yl = t[x].ym = t[x].yr = point[mid].se;
    pushup(x);
                                                          if ((t[x].lc = build(1, mid - 1, d ^ 1, x))) {
void access(int x) {
                                                              int y = t[x].lc;
    for (int y = 0; x; x = pa[y = x]) {
                                                              chkmin(t[x].xl, t[y].xl); chkmax(t[x].xr,
        splay(x);
                                                         t[y].xr);
        val[x] += siz[ch[x][1]];
                                                              chkmin(t[x].yl, t[y].yl); chkmax(t[x].yr,
        ch[x][1] = y;
                                                      \rightarrow t[y].yr);
        val[x] -= siz[ch[x][1]];
                                                          }
                                                          if ((t[x].rc = build(mid + 1, r, d ^ 1, x))) {
        pushup(x);
    }
                                                              int y = t[x].rc;
                                                              chkmin(t[x].xl, t[y].xl); chkmax(t[x].xr,
void makeroot(int x) {
                                                         t[y].xr);
    access(x);
                                                              chkmin(t[x].yl, t[y].yl); chkmax(t[x].yr,
    splay(x);
                                                          t[y].yr);
    update(x);
                                                          }
                                                          return x;
void link(int x, int y) {
    makeroot(x);
                                                      void pushup(int x) {
                                                          t[x].sum = t[t[x].lc].sum + t[t[x].rc].sum;
    access(y); splay(y);
                                                          if (t[x].exist) t[x].sum += t[x].val;
    pa[x] = y;
    val[y] += siz[x];
                                                      }
    pushup(y);
                                                      void update(int x, i64 v) {
}
                                                          t[x].sum += v * t[x].cnt;
i64 split(int x, int y) {
                                                          t[x].val += v;
    makeroot(y);
                                                          t[x].tag += v;
    access(x); splay(x);
    //x \rightarrow y is now a link from the root
                                                      void pushdown(int x) {
    return (i64) (siz[x] - siz[y]) * siz[y];
                                                          if (t[x].tag) {
}
                                                              if (t[x].lc) update(t[x].lc, t[x].tag);
                                                              if (t[x].rc) update(t[x].rc, t[x].tag);
                                                              t[x].tag = 0;
7.3 KD-Tree
                                                          }
                                                      }
using P = pair<int, int>;
                                                      void link_pd(int x) {
#define fi first
                                                          static int stk[N];
```

```
do bcc[cc].emplace_back(stk[tp]);
    int tp = 0;
    for (; x; x = t[x].pa) stk[++tp] = x;
                                                                      while (stk[tp--] != v);
    while (tp) pushdown(stk[tp--]);
                                                                      bcc[cc].emplace_back(u);
                                                                  }
void modify(int x, int a, int b, int val) {
                                                              } else
    if (!x || t[x].xr < a || t[x].yr < b) return;</pre>
                                                                  low[u] = min(low[u], dfn[v]);
    if (t[x].xl \ge a \&\& t[x].yl \ge b) return
                                                          }
   update(x, val);
                                                          if (!child) {
   pushdown(x);
                                                              cut[u] = true;
    if (t[x].xm >= a && t[x].ym >= b) t[x].val +=
                                                              bcc[++cc].emplace_back(u);
                                                         }
                                                     }
   modify(t[x].lc, a, b, val);
    modify(t[x].rc, a, b, val);
   pushup(x);
                                                          全局平衡二叉树
                                                     8.2
                                                     vector<int> g[];
void doit(int x, int y, int d) {
                                                     int siz[], son[], lsiz[];
    int u = mp[\{x, y\}];
                                                     int pa[], ch[][2];
    link_pd(u);
                                                     T val[], sum[];
    i64 e = t[u].val * d;
                                                     void dfs1(int u, int p = 0) {
   t[u].exist ^= 1;
                                                          siz[u] = 1;
   for (; u; u = t[u].pa) {
                                                          for (int v : g[u]) {
        t[u].cnt += d;
        t[u].sum += e;
                                                              if (v == p) continue;
                                                              dfs1(v, u);
   }
                                                              siz[u] += siz[v];
    modify(1, x + 1, y + 1, d);
                                                              if (siz[v] > siz[son[u]]) son[u] = v;
void query(int x, int a, int b, i64 &sum, int
                                                     }
void dfs2(int u, int p = 0) {
    if (!x || t[x].xl > a || t[x].yl > b) return;
                                                          for (int v : g[u]) {
    if (t[x].xr <= a && t[x].yr <= b) {</pre>
                                                              if (v == p) continue;
        sum += t[x].sum;
                                                              dfs2(v, u);
        cnt += t[x].cnt;
                                                              if (v == son[u]) continue;
        return;
                                                              lsiz[u] += siz[v];
   }
                                                              // val[v] -> val[u]
   pushdown(x);
    if (t[x].xm \le a \&\& t[x].ym \le b \&\&
                                                          sum[u] = val[u];
   t[x].exist) {
                                                     }
       sum += t[x].val;
                                                     int build(vector<int> &vc, int 1, int r) {
        cnt += 1;
                                                          if (1 > r) return 0;
                                                          int tot = 0;
    query(t[x].lc, a, b, sum, cnt);
                                                          for (int i = 1; i <= r; ++i) tot +=
    query(t[x].rc, a, b, sum, cnt);

→ lsiz[vc[i]];

}
                                                          for (int i = 1, sum = 0; i \le r; ++i)
                                                              if ((sum += lsiz[vc[i]]) * 2 >= tot) {
    图论
8
                                                                  int x = vc[i];
                                                                  if ((ch[x][0] = build(vc, 1, i - 1)))
    点双
8.1
                                                          pa[ch[x][0]] = x;
                                                                  if ((ch[x][1] = build(vc, i + 1, r)))
void dfs1(int u, int p = 0) {
                                                          pa[ch[x][1]] = x;
    static int tme = 0, stk[N], tp;
                                                                  return x;
    dfn[u] = low[u] = ++tme;
                                                              }
    stk[++tp] = u;
                                                     }
    int child = 0;
    for (int v: g[u]) {
                                                     int build(int u) {
        if (!dfn[v]) {
                                                          static bool vis[N];
            dfs1(v, u); ++child;
                                                          vector<int> stk;
            low[u] = min(low[u], low[v]);
                                                         for (int v = u; v; v = son[v]) {
            if (low[v] >= dfn[u]) {
                                                              vis[v] = true;
                cut[u] = true;
                                                              stk.emplace_back(v);
                ++cc;
                                                          }
```

```
int x = build(stk, 0, (int) stk.size() - 1);
                                                      bool spfa(int n) {
    for (int v = u; v; v = son[v])
                                                          memset(dis, 0x3f, sizeof dis);
        for (int w : g[v])
                                                          queue<int> que;
            if (!vis[w]) pa[build(w)] = v;
                                                          que.emplace(0);
                                                          dis[0] = 0; inque[0] = true; cnt[0] = 1;
    return x;
}
                                                          while (!que.empty()) {
int rt;
                                                               int u = que.front(); que.pop();
int build() { rt = build(1); }
                                                               inque[u] = false;
                                                              for (auto [v, w] : g[u]) {
void pushup(x) {
    sum[x] = val[x];
                                                                   if (chkmin(dis[v], dis[u] + w) &&
    if (ch[x][0]) sum[x] = sum[ch[x][0]] + sum[x];
                                                          !inque[v]) {
    if (ch[x][1]) sum[x] = sum[x] + sum[ch[x][1]];
                                                                       que.emplace(v);
                                                                       inque[v] = true;
void modify(int x) {
                                                                       if (++cnt[v] > n) return false;
    int y;
                                                                   }
    while ((x = pa[y = x])) {
                                                              }
        if (ch[x][0] != y && ch[x][1] != y)
                                                          }
            // del sum[y] \rightarrow val[x]
                                                          return true;
                                                      }
        pushup(y);
        if (ch[x][0] != y && ch[x][1] != y)
            // add sum[y] \rightarrow val[x]
                                                           虚树
                                                      8.5
    }
                                                      // 需要快速求 lca (LCA::get_lca)
    pushup(y);
}
                                                      void add_edge(int u, int v) {
                                                          // 虚树中一条 u -> v 的边
8.3 求欧拉回路
// input: N, k, graph
// output: print_ans (an euler tour whose length
                                                      void build(vector<int> &vc) {
\rightarrow is \geq k)
                                                          vc.emplace_back(1);
                                                          sort(vc.begin(), vc.end(), [](int x, int y) {
int k;
                                                              return dfn[x] < dfn[y];</pre>
bool vis[N];
                                                          });
vector<int> g[N];
                                                          vc.erase(unique(vc.begin(), vc.end()),
vector<int> ans1, ans2;

  vc.end());
void print_ans(const vector<int> &vc) {
                                                          static int stk[N];
    for (int x : vc) cout << x << ' ';</pre>
                                                          int tp = 1;
    exit(0);
                                                          stk[tp] = 1;
                                                          for (unsigned i = vc[0] == 1; i < vc.size();</pre>
void dfs(int u) {
    vis[u] = true;
                                                              int u = vc[i], lca = LCA::get_lca(u,
    if (ans1.size() >= k) print_ans(ans1);
                                                          stk[tp]);
    for (int v : g[u]) {
                                                              while (tp > 1 && dfn[stk[tp - 1]] >=
        if (vis[v]) continue;
                                                          dfn[lca]) {
        ans1.emplace_back(u);
                                                                   add_edge(stk[tp - 1], stk[tp]); --tp;
        dfs(v);
        ans1.pop_back(); ans2.emplace_back(u);
                                                              if (dfn[lca] < dfn[stk[tp]]) {</pre>
        if (ans2.size() >= k) {
                                                                   add_edge(lca, stk[tp]); --tp;
            reverse(begin(ans2), end(ans2));
                                                              }
            print_ans(ans2);
                                                              if (!tp || dfn[stk[tp]] < dfn[lca]) {</pre>
                                                                   stk[++tp] = lca;
    }
}
                                                              stk[++tp] = u;
                                                          for (; tp > 1; --tp) {
8.4 SPFA
                                                              add_edge(stk[tp - 1], stk[tp]);
// input: N, n - number of vertices
// output: dis - distance, return - no negative
                                                      }
→ loops
int dis[N], cnt[N];
bool inque[N];
```

```
8.6 2-SAT
                                                          for (int i = 1; i <= n; ++i) {
                                                              magic[i] = magic[i - 1] * MAGIC;
// Quasar
int stamp, comps, top;
                                                          std::vector<int> queue;
int dfn[N], low[N], comp[N], stack[N];
                                                          queue.push_back(root);
                                                          for (int head = 0; head < (int)queue.size();</pre>
void add(int x, int a, int y, int b) {
                                                          ++head) {
    edge[x << 1 | a].push_back(y << 1 | b);
                                                              int x = queue[head];
                                                              for (int i = 0; i < (int)son[x].size();</pre>
                                                          ++i) {
void tarjan(int x) {
                                                                  int y = son[x][i];
    dfn[x] = low[x] = ++stamp;
                                                                  queue.push_back(y);
    stack[top++] = x;
                                                              }
   for (int i = 0; i < (int)edge[x].size(); ++i)</pre>
                                                          for (int index = n - 1; index >= 0; --index) {
        int y = edge[x][i];
                                                              int x = queue[index];
        if (!dfn[y]) {
                                                              hash[x] = std::make_pair(0, 0);
            tarjan(y);
            low[x] = std::min(low[x], low[y]);
                                                              std::vector<std::pair<unsigned long long,
        } else if (!comp[y]) {
                                                         int> > value;
            low[x] = std::min(low[x], dfn[y]);
                                                              for (int i = 0; i < (int)son[x].size();
                                                         ++i) {
    }
                                                                  int y = son[x][i];
    if (low[x] == dfn[x]) {
                                                                  value.push_back(hash[y]);
        comps++;
        do {
                                                              std::sort(value.begin(), value.end());
            int y = stack[--top];
            comp[y] = comps;
                                                              hash[x].first = hash[x].first * magic[1] +
        } while (stack[top] != x);
    }
                                                              hash[x].second++;
}
                                                              for (int i = 0; i < (int)value.size();</pre>
bool solve() {
                                                                  hash[x].first = hash[x].first *
    int counter = n + n + 1;
                                                         magic[value[i].second] + value[i].first;
    stamp = top = comps = 0;
                                                                  hash[x].second += value[i].second;
    std::fill(dfn, dfn + counter, 0);
    std::fill(comp, comp + counter, 0);
                                                              hash[x].first = hash[x].first * magic[1] +
   for (int i = 0; i < counter; ++i) {</pre>
                                                         41;
        if (!dfn[i]) {
                                                              hash[x].second++;
            tarjan(i);
                                                          }
                                                     }
   }
    for (int i = 0; i < n; ++i) {
                                                     8.8 支配树
        if (comp[i << 1] == comp[i << 1 | 1]) {
            return false;
                                                      // Dreadnought
                                                      // 半支配点:u 是 v 的半支配点, 当且仅当存在一条 u
        answer[i] = (comp[i << 1 | 1] < comp[i <<
                                                      \rightarrow -> \nu 的路径, 使得这条路径上除了 \nu 以外 \nu \nu
   1]); // DAG 序更大的 SCC 编号更小
                                                      \hookrightarrow num[v]
    }
                                                      // sem: num 最小的半支配点
    return true;
                                                      vector<int> prec[N], succ[N];
                                                      vector<int> ord;
                                                      int stamp, vis[N];
     有根树同构
                                                      int num[N];
                                                      int fa[N];
const unsigned long long MAGIC = 4423;
                                                      void dfs(int u) {
                                                       vis[u] = stamp;
unsigned long long magic[N];
                                                       num[u] = ord.size();
std::pair<unsigned long long, int> hash[N];
                                                       ord.push_back(u);
                                                        for (int i = 0; i < (int)succ[u].size(); ++i) {</pre>
void solve(int root) {
                                                          int v = succ[u][i];
   magic[0] = 1;
                                                          if (vis[v] != stamp) {
```

```
fa[v] = u;
                                                           }
                                                         }
      dfs(v);
    }
 }
}
                                                       8.9 MCS 求 PEO
int fs[N], mins[N], dom[N], sem[N];
                                                       // 一个图是弦图当且仅当它有 PEO
int find(int u) {
  if (u != fs[u]) {
                                                       // input: N
                                                       \begin{subarray}{ll} // & n: & number & of & vertices \end{subarray}
    int v = fs[u];
                                                       // g: edges
    fs[u] = find(fs[u]);
    if (mins[v] != -1 \&\& num[sem[mins[v]]] <
                                                       const size_t N = 1E4 + 5;
  num[sem[mins[u]]]) {
      mins[u] = mins[v];
                                                       int n; vector<int> g[N];
 }
                                                       int label[N], pos[N], peo[N];
 return fs[u];
                                                       vector<int> que[N];
}
void merge(int u, int v) { fs[u] = v; }
                                                       int main() {
vector<int> buf[N];
                                                           for (int i = 1; i <= n; ++i) {
int buf2[N];
                                                               que[0].emplace_back(i);
void mark(int source) {
 ord.clear();
                                                           int j = 0;
 ++stamp;
                                                           for (int i = n; i \ge 1; --i) {
 dfs(source);
                                                               int u;
  for (int i = 0; i < (int)ord.size(); ++i) {</pre>
                                                               while (j \ge 0) {
    int u = ord[i];
                                                                    while (!que[j].empty()) {
    fs[u] = u, mins[u] = -1, buf2[u] = -1;
                                                                        u = que[j].back();
 }
                                                                        if (pos[u]) {
 for (int i = (int)ord.size() - 1; i > 0; --i) {
                                                                            que[j].pop_back();
    int u = ord[i], p = fa[u];
                                                                        } else {
    sem[u] = p;
                                                                            break;
    for (int j = 0; j < (int)prec[u].size(); ++j)</pre>
                                                                    }
      int v = prec[u][j];
                                                                    if (!que[j].empty()) break;
      if (use[v] != stamp) continue;
                                                                    --j;
      if (num[v] > num[u]) {
        find(v); v = sem[mins[v]];
                                                               assert(j >= 0);
                                                               pos[u] = i; peo[i] = u;
      if (num[v] < num[sem[u]]) {</pre>
                                                               for (int v : g[u]) {
        sem[u] = v;
                                                                    if (!pos[v]) {
      }
                                                                        ++label[v];
    }
                                                                        que[label[v]].emplace_back(v);
    buf[sem[u]].push_back(u);
                                                                        if (label[v] > j) j = label[v];
    mins[u] = u;
                                                                    }
    merge(u, p);
                                                               }
    while (buf[p].size()) {
                                                           }
      int v = buf[p].back();
                                                       }
      buf[p].pop_back();
      find(v);
      if (sem[v] == sem[mins[v]]) {
                                                       8.10 最大团
        dom[v] = sem[v];
                                                       // Dreadnought
      } else {
                                                       // Super Fast Maximum Clique
        buf2[v] = mins[v];
                                                       // To Build Graph: Maxclique(Edges, Number of
      }
                                                          Nodes)
    }
                                                       // To Get Answer: mcqdyn(AnswerNodes Index Array,

→ AnswserLength)

 dom[ord[0]] = ord[0];
                                                       typedef bool BB[N];
 for (int i = 0; i < (int)ord.size(); ++i) {</pre>
                                                       struct Maxclique {
    int u = ord[i];
                                                         const BB* e; int pk, level; const float Tlimit;
    if (~buf2[u]) {
      dom[u] = dom[buf2[u]];
```

```
if((float)S[level].i1 / ++pk < Tlimit)</pre>
 struct Vertex{ int i, d; Vertex(int
                                                           degree_sort(Rp);//diff
\rightarrow i):i(i),d(0){}};
 typedef vector<Vertex> Vertices; typedef
                                                                  color_sort(Rp);
                                                                  S[level].i1++, level++;//diff
   vector<int> ColorClass;
 Vertices V; vector<ColorClass> C; ColorClass
                                                                  expand_dyn(Rp);

→ QMAX, Q;

                                                                  level--;//diff
 static bool desc_degree(const Vertex &vi, const
                                                               else if((int)Q.size() > (int)QMAX.size())
  Vertex &vj){
   return vi.d > vj.d;
                                                           QMAX = Q;
 }
                                                               Q.pop_back();
 void init_colors(Vertices &v){
                                                             }
   const int max_degree = v[0].d;
                                                             else return;
   for(int i = 0; i < (int)v.size(); i++) v[i].d
                                                             R.pop_back();
   = min(i, max_degree) + 1;
                                                         }
 }
 void set_degrees(Vertices &v){
                                                         void mcqdyn(int* maxclique, int &sz){
   for(int i = 0, j; i < (int)v.size(); i++)</pre>
                                                           set_degrees(V); sort(V.begin(), V.end(),
     for(v[i].d = j = 0; j < int(v.size()); j++)</pre>

→ desc_degree); init_colors(V);
                                                           for(int i = 0; i < (int)V.size() + 1; i++)</pre>
       v[i].d += e[v[i].i][v[j].i];
 }
                                                          S[i].i1 = S[i].i2 = 0;
 struct StepCount{ int i1, i2;
                                                           expand_dyn(V); sz = (int)QMAX.size();

    StepCount():i1(0),i2(0){} };

                                                           for(int i = 0; i < (int)QMAX.size(); i++)</pre>
 vector<StepCount> S;
                                                           maxclique[i] = QMAX[i];
 bool cut1(const int pi, const ColorClass &A){
                                                         }
   for(int i = 0; i < (int)A.size(); i++) if</pre>
                                                         void degree_sort(Vertices &R){
  (e[pi][A[i]]) return true;
                                                           set_degrees(R); sort(R.begin(), R.end(),
   return false;
                                                           desc_degree);
 }
                                                         }
 void cut2(const Vertices &A, Vertices &B){
                                                         Maxclique(const BB* conn, const int sz, const
   for(int i = 0; i < (int)A.size() - 1; i++)</pre>
                                                           float tt = 0.025) \
     if(e[A.back().i][A[i].i])
       B.push_back(A[i].i);
                                                           : pk(0), level(1), Tlimit(tt){
 }
 void color_sort(Vertices &R){
                                                           for(int i = 0; i < sz; i++)
   int j = 0, maxno = 1, min_k =
                                                           V.push_back(Vertex(i));
\rightarrow max((int)QMAX.size() - (int)Q.size() + 1, 1);
   C[1].clear(), C[2].clear();
                                                           e = conn, C.resize(sz + 1), S.resize(sz + 1);
   for(int i = 0; i < (int)R.size(); i++) {</pre>
     int pi = R[i].i, k = 1;
                                                           }
     while(cut1(pi, C[k])) k++;
                                                       };
     if(k > maxno) maxno = k, C[maxno +
   1].clear();
                                                              最小树形图
                                                       8.11
     C[k].push_back(pi);
                                                       // oi-wiki
     if(k < min_k) R[j++].i = pi;</pre>
                                                       // tarjan \ dmst - O(n + m \setminus log \ m)
                                                       #define maxn 102
   if(j > 0) R[j - 1].d = 0;
                                                       #define INF Ox3f3f3f3f
   for(int k = min_k; k <= maxno; k++)</pre>
                                                       struct UnionFind {
     for(int i = 0; i < (int)C[k].size(); i++)</pre>
                                                         int fa[maxn << 1];</pre>
       R[j].i = C[k][i], R[j++].d = k;
                                                         UnionFind() { memset(fa, 0, sizeof(fa)); }
 }
                                                         void clear(int n) { memset(fa + 1, 0,
 void expand_dyn(Vertices &R){// diff -> diff

    sizeof(int) * n); }

\rightarrow with no dyn
                                                         int find(int x) { return fa[x] ? fa[x] =
   S[level].i1 = S[level].i1 + S[level - 1].i1 -
                                                          find(fa[x]) : x; }
\rightarrow S[level].i2;//diff
                                                         int operator[](int x) { return find(x); }
   S[level].i2 = S[level - 1].i1;//diff
                                                       };
   while((int)R.size()) {
                                                       struct Edge {
     if((int)Q.size() + R.back().d >
                                                         int u, v, w, w0;
   (int)QMAX.size()){
                                                       }:
       Q.push_back(R.back().i); Vertices Rp;
                                                       struct Heap {
   cut2(R, Rp);
                                                         Edge *e;
       if((int)Rp.size()){
```

```
int rk, constant;
                                                              a = id[ed[a]->u];
                                                            } while (a == b && Q[a]);
  Heap *lch, *rch;
  Heap(Edge *_e) : e(_e), rk(1), constant(0),
                                                            if (a == b) break;
→ lch(nullptr), rch(nullptr) {}
                                                            if (!mark[a]) continue;
  void push() {
                                                            // 对发现的环进行收缩,以及环内的结点重新编号,总
    if (lch) lch->constant += constant;
                                                           权值更新。
    if (rch) rch->constant += constant;
                                                            for (a = b, n++; a != n; a = p) {
    e->w += constant;
                                                              id.fa[a] = fa[a] = n;
    constant = 0;
                                                              if (Q[a]) Q[a]->constant -= ed[a]->w;
 }
                                                              Q[n] = merge(Q[n], Q[a]);
};
                                                              p = id[ed[a]->u];
Heap *merge(Heap *x, Heap *y) {
                                                              nxt[p == n ? b : p] = a;
  if (!x) return y;
  if (!y) return x;
                                                          }
  if (x\rightarrow e\rightarrow w + x\rightarrow constant > y\rightarrow e\rightarrow w +
                                                        }
\rightarrow y->constant) swap(x, y);
  x \rightarrow push();
                                                        i64 expand(int x, int r);
  x->rch = merge(x->rch, y);
                                                        i64 expand_iter(int x) {
  if (!x->lch \mid | x->lch->rk < x->rch->rk)
                                                          i64 r = 0;
\rightarrow swap(x->lch, x->rch);
                                                          for (int u = nxt[x]; u != x; u = nxt[u]) {
  if (x->rch)
                                                            if (ed[u] \rightarrow w0 >= INF)
    x->rk = x->rch->rk + 1;
                                                              return INF;
  else
    x->rk = 1;
                                                              r += expand(ed[u]->v, u) + ed[u]->w0;
  return x;
                                                          }
                                                          return r;
Edge *extract(Heap *&x) {
  Edge *r = x->e;
                                                        i64 expand(int x, int t) {
  x->push();
                                                          i64 r = 0;
  x = merge(x->lch, x->rch);
                                                          for (; x != t; x = fa[x]) {
  return r;
                                                            r += expand iter(x);
}
                                                            if (r >= INF) return INF;
                                                          }
vector<Edge> in[maxn];
                                                          return r;
int n, m, fa[maxn << 1], nxt[maxn << 1];</pre>
Edge *ed[maxn << 1];</pre>
                                                        void link(int u, int v, int w) {
Heap *Q[maxn << 1];</pre>
                                                        \rightarrow in[v].push_back({u, v, w, w}); }
UnionFind id;
                                                        int main() {
void contract() {
                                                          int rt;
  bool mark[maxn << 1];</pre>
                                                          scanf("%d %d %d", &n, &m, &rt);
  // 将图上的每一个结点与其相连的那些结点进行记录。
                                                          for (int i = 0; i < m; i++) {
  for (int i = 1; i <= n; i++) {</pre>
                                                            int u, v, w;
    queue<Heap *> q;
                                                            scanf("%d %d %d", &u, &v, &w);
    for (int j = 0; j < in[i].size(); j++)</pre>
                                                            link(u, v, w);

¬ q.push(new Heap(&in[i][j]));

                                                          }
    while (q.size() > 1) {
                                                          // 保证强连通
      Heap *u = q.front();
                                                          for (int i = 1; i <= n; i++) link(i > 1 ? i - 1
      q.pop();
                                                        \hookrightarrow : n, i, INF);
      Heap *v = q.front();
                                                          contract();
      q.pop();
                                                          i64 ans = expand(rt, n);
      q.push(merge(u, v));
                                                          if (ans >= INF)
                                                            puts("-1");
    Q[i] = q.front();
                                                            printf("%lld\n", ans);
  mark[1] = true;
                                                          return 0;
  for (int a = 1, b = 1, p; Q[a]; b = a, mark[b] = }
\rightarrow true) {
    //寻找最小入边以及其端点, 保证无环。
    do {
      ed[a] = extract(Q[a]);
```

8.12 二分图最大权匹配(KM)

```
int n;
// n, N 两侧点数
// 需定义 INF
namespace KM {
i64 arr[N][N];
bool visl[N], visr[N];
int matchl[N], matchr[N], matcht[N];
i64 slack[N], expl[N], expr[N];
void change_match(int v) {
    for (; v; swap(v, matchl[matcht[v]])) {
        matchr[v] = matcht[v];
}
void find_path(int s) {
    queue<int> que;
    que.emplace(s);
    visl[s] = true;
    while (true) {
        while (!que.empty()) {
            int 1 = que.front();
            que.pop();
            for (int r = 1; r \le n; ++r) {
                if (visr[r]) continue;
                i64 \text{ gap} = expl[l] + expr[r] -
   arr[1][r];
                if (gap > slack[r]) continue;
                matcht[r] = 1;
                if (gap == 0) {
                    if (!matchr[r]) return
    change_match(r);
                    que.emplace(matchr[r]);
                    visl[matchr[r]] = visr[r] =
    true;
                } else {
                    slack[r] = gap;
            }
        }
        int v = -1;
        for (int r = 1; r \le n; ++r) {
            if (!visr[r] && (!~v || slack[r] <</pre>
   slack[v])) {
                v = r;
            }
        }
        assert(~v);
        i64 delta = slack[v];
        for (int i = 1; i <= n; ++i) {
            if (visl[i]) expl[i] -= delta;
            if (visr[i]) expr[i] += delta; else
    slack[i] -= delta;
        }
        if (!matchr[v]) return change_match(v);
        que.emplace(matchr[v]);
        visl[matchr[v]] = visr[v] = true;
    }
}
i64 km() {
    for (int l = 1; l <= n; ++l) {
```

```
for (int r = 1; r \le n; ++r) {
            expl[1] = max(expl[1], arr[1][r]);
    }
    for (int l = 1; l <= n; ++l) {
        fill(slack + 1, slack + n + 1, INF);
        memset(visl, 0, sizeof(bool) * (n + 1));
        memset(visr, 0, sizeof(bool) * (n + 1));
        memset(matcht, 0, sizeof(int) * (n + 1));
        find path(1);
    }
    i64 \text{ ans} = 0;
    for (int i = 1; i <= n; ++i) ans +=
    arr[i][matchl[i]];
    return ans;
}
}
8.13 一般图最大匹配(随机,非完全正确)
// #79. skyline 97
using namespace std;
int n,m,a[505],p[505],ans,u[505],U;
vector<int> v[505];
bool dfs(int x){
    u[x]=U;
    random_shuffle(v[x].begin(),v[x].end());
    for(int i=0;i<v[x].size();++i){</pre>
        int y=v[x][i];
        if(!a[y]){
            a[x]=y,a[y]=x;
            return 1;
        }
    }
    for(int i=0;i<v[x].size();++i){</pre>
        int y=v[x][i],z=a[y];
        if(u[z]==U) continue;
        a[x]=y,a[y]=x,a[z]=0;
        if(dfs(z)) return 1;
        a[x]=0,a[y]=z,a[z]=y;
    }
    return 0;
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;++i){</pre>
        int x,y;
        scanf("%d%d",&x,&y);
        v[x].pb(y),v[y].pb(x);
    for(int i=1;i<=n;++i)p[i]=i;</pre>
    for(int _=5;_;--_){
        random_shuffle(p+1,p+n+1);
        for(int i=1;i<=n;++i){</pre>
            if(a[p[i]]) continue;
            ++U;
            dfs(p[i]);
        }
    }
    for(int i=1;i<=n;++i)if(a[i]>i)++ans;
```

printf(" $%d\n$ ",ans);

```
for(int i=1;i<n;++i)printf("%d ",a[i]);</pre>
                                                          rotate(flower[u].begin(),flower[u].begin()+pr,f
    printf("%d\n",a[n]);
                                                            lower[u].end());
    //system("pause");
    return 0;
                                                       void augment(int u,int v){
}
                                                          int xnv=st[match[u]];
                                                          set_match(u,v);
                                                          if(!xnv)return;
8.14 一般图最大权匹配
                                                          set_match(xnv,st[pa[xnv]]);
// uoj #81 claris
                                                          augment(st[pa[xnv]],xnv);
#include<bits/stdc++.h>
                                                       }
#define DIST(e)
                                                       int get_lca(int u,int v){
\rightarrow (lab[e.u]+lab[e.v]-g[e.u][e.v].w*2)
                                                          static int t=0;
using namespace std;
                                                          for(++t; u||v; swap(u,v)){
typedef long long 11;
                                                            if (u==0) continue;
const int N=1023,INF=1e9;
                                                            if(vis[u]==t)return u;
struct Edge{
                                                            vis[u]=t;
  int u,v,w;
                                                            u=st[match[u]];
} g[N][N];
                                                            if(u)u=st[pa[u]];
int n,m,n_x,lab[N],match[N],slack[N],st[N],pa[N],

    flower_from[N][N],S[N],vis[N];

                                                          return 0;
vector<int> flower[N];
                                                       }
deque<int> q;
                                                        void add_blossom(int u,int lca,int v){
void update_slack(int u,int x){
                                                          int b=n+1;
  if(!slack[x]||DIST(g[u][x])<DIST(g[slack[x]][x]_</pre>
                                                          while (b \le n_x \& \& st[b]) + +b;
    ))slack[x]=u;
                                                          if(b>n_x)++n_x;
}
                                                          lab[b]=0,S[b]=0;
void set_slack(int x){
                                                          match[b] = match[lca];
  slack[x]=0;
                                                          flower[b].clear();
  for(int u=1; u<=n; ++u)
                                                          flower[b].push_back(lca);
    if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)update__|
                                                          for(int x=u,y; x!=lca; x=st[pa[y]])
   slack(u,x);
                                                            flower[b].push_back(x),flower[b].push_back(y= |
}
                                                            st[match[x]]),q_push(y);
void q_push(int x){
                                                         reverse(flower[b].begin()+1,flower[b].end());
  if(x<=n)return q.push_back(x);</pre>
                                                          for(int x=v,y; x!=lca; x=st[pa[y]])
  for(int i=0; i<flower[x].size();</pre>
                                                            flower[b].push_back(x),flower[b].push_back(y= |
    i++)q_push(flower[x][i]);
                                                           st[match[x]]),q_push(y);
}
                                                         set st(b,b);
void set_st(int x,int b){
                                                          for(int x=1; x \le n_x; ++x)g[b][x].w=g[x][b].w=0;
  st[x]=b;
                                                          for(int x=1; x<=n; ++x)flower_from[b][x]=0;</pre>
  if(x<=n)return;</pre>
                                                          for(int i=0; i<flower[b].size(); ++i){</pre>
  for(int i=0; i<flower[x].size();</pre>
                                                            int xs=flower[b][i];
    ++i)set_st(flower[x][i],b);
                                                            for(int x=1; x<=n_x; ++x)</pre>
}
int get_pr(int b,int xr){
                                                            if(g[b][x].w==0||DIST(g[xs][x])<DIST(g[b][x]))
  int pr=find(flower[b].begin(),flower[b].end(),x_|
                                                                g[b][x]=g[xs][x],g[x][b]=g[x][xs];

¬ r)-flower[b].begin();

                                                            for(int x=1; x<=n; ++x)</pre>
  if(pr%2==1){
                                                              if(flower_from[xs][x])flower_from[b][x]=xs;
    reverse(flower[b].begin()+1,flower[b].end());
                                                          }
    return (int)flower[b].size()-pr;
                                                          set_slack(b);
  }
                                                       }
  else return pr;
                                                        void expand_blossom(int b){
}
                                                          for(int i=0; i<flower[b].size(); ++i)</pre>
void set_match(int u,int v){
                                                            set_st(flower[b][i],flower[b][i]);
  match[u]=g[u][v].v;
                                                          int xr=flower_from[b][g[b][pa[b]].u],pr=get_pr(
  if(u<=n)return;</pre>
  Edge e=g[u][v];
                                                          for(int i=0; i<pr; i+=2){</pre>
  int xr=flower_from[u][e.u],pr=get_pr(u,xr);
                                                            int xs=flower[b][i],xns=flower[b][i+1];
  for(int i=0; i<pr;</pre>
                                                            pa[xs]=g[xns][xs].u;

→ ++i)set_match(flower[u][i],flower[u][i^1]);
                                                            S[xs]=1,S[xns]=0;
  set_match(xr,v);
                                                            slack[xs]=0,set_slack(xns);
                                                            q_push(xns);
```

```
}
                                                                 if(S[st[b]]==0)lab[b]+=d*2;
  S[xr]=1,pa[xr]=pa[b];
                                                                 else if(S[st[b]]==1)lab[b]-=d*2;
  for(int i=pr+1; i<flower[b].size(); ++i){</pre>
                                                               }
    int xs=flower[b][i];
                                                             q.clear();
    S[xs]=-1,set_slack(xs);
                                                             for(int x=1; x<=n_x; ++x)
                                                               if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&DIS_|
                                                           T(g[slack[x]][x])==0)
  st[b]=0;
}
                                                                 if(on_found_Edge(g[slack[x]][x]))return 1;
bool on_found_Edge(const Edge &e){
                                                             for(int b=n+1; b<=n_x; ++b)</pre>
  int u=st[e.u],v=st[e.v];
                                                               if(st[b]==b\&\&S[b]==1\&\&lab[b]==0)expand_blos_1
  if(S[v]==-1){
                                                             som(b);
                                                          }
    pa[v]=e.u,S[v]=1;
    int nu=st[match[v]];
                                                          return 0;
    slack[v]=slack[nu]=0;
    S[nu]=0,q_push(nu);
                                                        pair<ll,int> weight_blossom(){
                                                           fill(match, match+n+1,0);
  }
  else if(S[v]==0){
                                                          n_x=n;
    int lca=get_lca(u,v);
                                                           int n_matches=0;
    if(!lca)return augment(u,v),augment(v,u),1;
                                                          11 tot_weight=0;
    else add_blossom(u,lca,v);
                                                          for(int u=0; u<=n;</pre>
                                                            ++u)st[u]=u,flower[u].clear();
                                                           int w max=0;
  return 0;
}
                                                           for(int u=1; u<=n; ++u)</pre>
bool matching(){
                                                             for(int v=1; v<=n; ++v){
  fill(S,S+n_x+1,-1),fill(slack,slack+n_x+1,0);
                                                               flower_from[u][v]=(u==v?u:0);
  q.clear();
                                                               w_{max=max}(w_{max,g}[u][v].w);
  for(int x=1; x<=n_x; ++x)
    if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(_|
                                                           for(int u=1; u<=n; ++u)lab[u]=w_max;</pre>
   x);
                                                           while(matching())++n_matches;
                                                          for(int u=1; u<=n; ++u)</pre>
  if(q.empty())return 0;
  for(;;){
                                                             if(match[u]&&match[u]<u)</pre>
    while(q.size()){
                                                               tot_weight+=g[u][match[u]].w;
      int u=q.front();
                                                          return make_pair(tot_weight,n_matches);
      q.pop_front();
      if(S[st[u]]==1)continue;
                                                        int main(){
      for(int v=1; v<=n; ++v)</pre>
                                                           cin>>n>>m;
        if(g[u][v].w>0&&st[u]!=st[v]){
                                                          for(int u=1; u<=n; ++u)</pre>
          if(DIST(g[u][v])==0){
                                                             for(int v=1; v<=n; ++v)</pre>
             if(on_found_Edge(g[u][v]))return 1;
                                                               g[u][v]=Edge \{u,v,0\};
                                                           for(int i=0,u,v,w; i<m; ++i){</pre>
                                                             cin>>u>>v>>w;
          else update_slack(u,st[v]);
        }
                                                             g[u][v].w=g[v][u].w=w;
                                                          }
    }
    int d=INF;
                                                           cout<<weight_blossom().first<< '\n';</pre>
    for(int b=n+1; b<=n_x; ++b)</pre>
                                                           for(int u=1; u<=n; ++u)cout<<match[u]<< ' ';</pre>
      if(st[b]==b\&\&S[b]==1)d=min(d,lab[b]/2);
    for(int x=1; x<=n_x; ++x)
      if(st[x]==x\&\&slack[x]){
                                                                无向图最小割
                                                        8.15
        if(S[x]==-1)d=min(d,DIST(g[slack[x]][x]));
                                                        // Quasar
                                                        int cost[maxn] [maxn], seq[maxn], len[maxn], n, m, pop, |
    if(S[x]==0)d=min(d,DIST(g[slack[x]][x])/2);
                                                         → ans:
                                                        bool used[maxn];
    for(int u=1; u<=n; ++u){</pre>
                                                        void Init(){
      if(S[st[u]]==0){
                                                           int i,j,a,b,c;
        if(lab[u] <= d) return 0;</pre>
                                                           for(i=0;i<n;i++) for(j=0;j<n;j++) cost[i][j]=0;
        lab[u]-=d;
                                                          for(i=0;i<m;i++){
      }
                                                             scanf("%d %d %d",&a,&b,&c); cost[a][b]+=c;
      else if(S[st[u]]==1)lab[u]+=d;
                                                            cost[b][a]+=c;
                                                          }
    for(int b=n+1; b<=n_x; ++b)</pre>
      if(st[b]==b){
                                                          pop=n; for(i=0;i<n;i++) seq[i]=i;
```

```
}
                                                                       ret += tmp; fl -= tmp;
void Work(){
                                                                       e[i].cap -= tmp;
 ans=inf; int i,j,k,l,mm,sum,pk;
                                                                       e[i ^ 1].cap += tmp;
                                                                       if (!fl) return ret;
 while(pop > 1){
    for(i=1;i<pop;i++) used[seq[i]]=0;</pre>
   used[seq[0]]=1;
                                                               }
    for(i=1;i<pop;i++)</pre>
                                                               cur[v] = head[v];
  len[seq[i]]=cost[seq[0]][seq[i]];
                                                               if (!(--f[d[v]])) d[s] = n;
    pk=0; mm=-inf; k=-1;
                                                               ++f[++d[v]];
    for(i=1;i<pop;i++) if(len[seq[i]] > mm){
                                                               return ret;

    mm=len[seq[i]]; k=i; }

                                                          }
    for(i=1;i<pop;i++){</pre>
                                                          int maxflow(int _s, int _t) {
      used[seq[l=k]]=1;
                                                               n = _n; s = _s; t = _t;
                                                               memset(cur, 0, sizeof cur);
      if(i==pop-2) pk=k;
      if(i==pop-1) break;
                                                               memset(d, 0, sizeof d);
                                                               memset(f, 0, sizeof f);
      mm=-inf;
      for(j=1;j<pop;j++) if(!used[seq[j]])</pre>
                                                               f[0] = n;
        if((len[seq[j]]+=cost[seq[1]][seq[j]]) >
                                                               int ret = 0;
                                                               while (d[s] < n) ret += dfs(s);
   mm)
          mm=len[seq[j]], k=j;
                                                               return ret;
    }
                                                          }
    sum=0;
                                                      } flow;
    for(i=0;i<pop;i++) if(i != k)</pre>
  sum+=cost[seq[k]][seq[i]];
                                                             网络流(HLPP)
                                                      8.17
    ans=min(ans,sum);
                                                      // N: vertices, M: edges
    for(i=0;i<pop;i++)</pre>
                                                      // method: add_edge(int u, int v, i64 cap),
      cost[seq[k]][seq[i]]=cost[seq[i]][seq[k]]+=
                                                       \rightarrow maxflow(int s, int t)
   cost[seq[pk]][seq[i]];
                                                      struct Maxflow {
    seq[pk] = seq[--pop];
                                                          int n;
 }
                                                          struct Edge {
 printf("%d\n",ans);
                                                               int to; i64 cap; int nxt;
                                                               Edge() {}
                                                               Edge(int to, i64 cap, int nxt) : to(to),
8.16 网络流(ISAP)
                                                          cap(cap), nxt(nxt) {}
// N: vertices, M: edges
                                                          } e[M << 1];
// method: add_edge(int u, int v, int cap),
                                                          int tot_e, head[N], cur[N], deg[N];
\rightarrow maxflow(int s, int t)
                                                          Maxflow() {
struct Maxflow {
                                                               memset(this, 0, sizeof *this);
    struct Edge {
                                                               tot_e = 1;
        int to, cap, nxt;
                                                          }
        Edge(int to = 0, int cap = 0, int nxt =
                                                          void add_edge(int u, int v, i64 cap) {
                                                               e[++tot_e] = {v, cap, head[u]}; head[u] =
   0):
            to(to), cap(cap), nxt(nxt) {}
                                                          tot_e;
                                                               e[++tot_e] = \{u, 0, head[v]\}; head[v] =
    } e[M];
    int head[N], cur[N], d[N], f[N], tot = 1;
                                                          tot_e;
    int n, s, t;
                                                               ++deg[u]; ++deg[v];
    void add_edge(int u, int v, int cap) {
        e[++tot] = Edge(v, cap, head[u]); head[u]
                                                          int cnt_upd_h, max_h, h[N], cnt[N]; i64
    = tot;

    rest[N];

        e[++tot] = Edge(u, 0, head[v]); head[v]
                                                          vector<int> vc1[N], vc2[N];
                                                          void update_h(int v, int nh) {
   = tot;
                                                               ++cnt_upd_h;
                                                               if (h[v] < INF) --cnt[h[v]];
    int dfs(int v, int fl = INF) {
        if (v == t) return fl;
                                                               h[v] = nh;
                                                               if (h[v] == INF) return;
        int ret = 0;
        for (int &i = cur[v]; i; i = e[i].nxt) {
                                                               ++cnt[h[v]];
            if (e[i].cap && d[e[i].to] + 1 ==
                                                               \max_h = h[v];
   d[v]) {
                                                               vc1[h[v]].emplace_back(v);
                int tmp = dfs(e[i].to, min(fl,
                                                               if (rest[v]) vc2[h[v]].emplace_back(v);
                                                          }
  e[i].cap));
```

```
for (int i = head[s]; i; i = e[i].nxt)
void relabel(int t) {
                                                      push(i);
    cnt upd h = \max h = 0;
    fill(h, h + n + 1, INF);
                                                          for (int &i = max_h; ~i; --i) {
                                                               while (!vc2[i].empty()) {
    fill(cnt, cnt + n + 1, 0);
    for (int i = 0; i <= max_h; ++i) {
                                                                   int u = vc2[i].back();
        vc1[i].clear();
                                                                   vc2[i].pop_back();
        vc2[i].clear();
                                                                   if (h[u] != i) continue;
    }
                                                                   push_flow(u);
    queue<int> que;
                                                                   if (cnt_upd_h > lim) relabel(t);
    que.emplace(t);
    update_h(t, 0);
                                                          }
    while (!que.empty()) {
                                                          return rest[t];
         int u = que.front(); que.pop();
        for (int i = head[u]; i; i = e[i].nxt)
                                                  } flow;
{
             int v = e[i].to;
                                                         网络流(dengyaotriangle)
                                                  8.18
             if (h[u] + 1 < h[v] && e[i ^
                                                  #include <bits/stdc++.h>
1].cap) {
                                                  using namespace std;
                 update_h(v, h[u] + 1);
                                                  //dengyaotriangle!
                 que.emplace(v);
            }
                                                  namespace flow { template<typename edg> class
        }
    }
                                                  → base_flowgraph {
                                                  public:
                                                      int n, s, t;
void push(int i) {
                                                      vector<vector<edg>> adj;
    int u = e[i ^1].to, v = e[i].to;
                                                      base_flowgraph(int n, int s, int t): n(n),
    i64 w = min((i64) rest[u], e[i].cap);
                                                      s(s), t(t) 
    if (!w) return;
                                                          adj.resize(n, vector<edg>());
    if (!rest[v]) vc2[h[v]].emplace_back(v);
                                                      }
    e[i].cap -= w; e[i ^ 1].cap += w;
                                                      vector<edg> &operator[](unsigned x) {
    rest[u] -= w; rest[v] += w;
                                                          return adj[x];
}
                                                      }
void push flow(int u) {
                                                  };
    int nh = INF;
    for (int &i = cur[u], j = 0; j < deg[u]; i</pre>
                                                  template<typename FT> struct flow_edg {
= e[i].nxt, ++j) {
        if (!i) i = head[u];
                                                      int v;
                                                      FT w;
        int v = e[i].to;
        if (e[i].cap) {
                                                      flow_edg(int v, FT w, int b): v(v), w(w), b(b)
            if (h[u] == h[v] + 1) {
                                                      {}
                 push(i);
                                                  };
                 if (!rest[u]) return;
            } else if (nh > h[v] + 1) {
                                                  template<typename FT> class dinic_flowgraph:
                 nh = h[v] + 1;
                                                  → public base_flowgraph<flow_edg<FT>> {
                                                  public:
        }
                                                      vector<int> cur, dis;
    }
                                                      dinic_flowgraph(int n, int s, int t):
    if (cnt[h[u]] > 1) {
                                                      base_flowgraph<flow_edg<FT>>(n, s, t) {
        update_h(u, nh);
                                                          cur.resize(n);
    } else {
                                                          dis.resize(n);
        for (int i = h[u]; i <= max_h; ++i) {</pre>
            for (int v : vc1[i]) update_h(v,
                                                      void addedge(int u, int v, FT w) {
INF);
                                                          flow_edg<FT> eu(v, w,
            vc1[i].clear();
                                                     (int)this \rightarrow adj[v].size()), ev(u, 0,
        }
                                                      (int)this->adj[u].size());
    }
                                                          this->adj[u].push_back(eu);
                                                          this->adj[v].push_back(ev);
int maxflow(int s, int t, int lim = 10000) {
                                                      }
    rest[s] = 1E18;
    relabel(t);
                                                      bool bfs() {
                                                          fill(dis.begin(), dis.end(), -1);
```

```
fill(cur.begin(), cur.end(), 0);
                                                          cost_edg(int v, FT w, CT c, int b): v(v),
        dis[this->s] = 0;
                                                          w(w), c(c), b(b) {}
        queue<int> q;
                                                      };
        q.push(this->s);
                                                      template<typename FT, typename CT> class
        while (!q.empty()) {

→ ek_flowgraph: public

            int u = q.front();
                                                       → base_flowgraph<cost_edg<FT, CT>> {
                                                      public:
            q.pop();
                                                          vector<CT> dis;
            for (int i = 0; i <
                                                          vector<int> lst, lsi;
    (int)this->adj[u].size(); i++) {
                                                          vector<bool> inq;
                flow_edg<FT> v = this->adj[u][i];
                                                          ek_flowgraph(int n, int s, int t):
                                                          base_flowgraph<cost_edg<FT, CT>>(n, s, t) {
                if (v.w \&\& dis[v.v] == -1) {
                                                              dis.resize(n);
                    dis[v.v] = dis[u] + 1;
                                                              lst.resize(n);
                    q.push(v.v);
                                                              lsi.resize(n);
                }
                                                              inq.resize(n);
            }
        }
                                                          void addedge(int u, int v, FT w, CT c) {
                                                              cost_edg<FT, CT> eu(v, w, c,
        return dis[this->t] != -1;
                                                          (int)this->adj[v].size()), ev(u, 0, -c,
                                                          (int)this->adj[u].size());
    FT dfs(int u, FT fl) {
                                                              this->adj[u].push_back(eu);
        if (!fl || u == this->t)
                                                              this->adj[v].push_back(ev);
            return fl;
                                                          template < class comp > bool spfa(pair < FT, CT >
        FT ret(0);
                                                          &ans, CT mxv, comp cmp) {
                                                              queue<int> q;
        for (int &i = cur[u]; i <</pre>
                                                              fill(dis.begin(), dis.end(), mxv);
    (int)this->adj[u].size(); i++) {
                                                              fill(inq.begin(), inq.end(), 0);
            flow_edg<FT> v = this->adj[u][i];
                                                              dis[this->s] = 0;
                                                              q.push(this->s);
            if (v.w \&\& dis[v.v] == dis[u] + 1) {
                FT nw = dfs(v.v, min(fl, v.w));
                                                              while (!q.empty()) {
                this->adj[u][i].w -= nw;
                                                                   int u = q.front();
                this->adj[v.v][v.b].w += nw;
                                                                   q.pop();
                                                                   inq[u] = 0;
                ret += nw;
                if (!(fl -= nw))
                                                                   for (int i = 0; i <
                    return ret;
                                                          (int)this->adj[u].size(); i++) {
            }
                                                                       cost_edg<FT, CT> v =
        }
                                                          this->adj[u][i];
        return ret;
                                                                       if (v.w && cmp(dis[v.v], dis[u] +
                                                          v.c)) {
    FT maxflow() {
                                                                           dis[v.v] = dis[u] + v.c;
        FT ans(0);
                                                                           lst[v.v] = u;
                                                                           lsi[v.v] = i;
        while (bfs())
                                                                           if (!inq[v.v]) {
            ans += dfs(this->s,
   numeric_limits<FT>::max());
                                                                               q.push(v.v);
                                                                               inq[v.v] = 1;
        return ans:
                                                                           }
    }
                                                                       }
                                                                   }
};
template<typename FT, typename CT> struct cost_edg
                                                              }
← {
                                                              if (dis[this->t] == mxv)
    int v;
    FT w;
                                                                   return 0;
    CT c;
                                                              int cu = this->t;
    int b;
```

```
FT fl = numeric_limits<FT>::max();
                                                              this->adj[v].push_back(ev);
        CT fc(0);
                                                          }
                                                          template < class comp > bool spfa(CT mxv, comp
        while (cu != this->s) {
                                                          cmp) {
            fl = min(fl,
                                                              queue<int> q;
    this->adj[lst[cu]][lsi[cu]].w);
                                                              fill(dis.begin(), dis.end(), mxv);
            fc += this->adj[lst[cu]][lsi[cu]].c;
                                                              fill(inq.begin(), inq.end(), 0);
            cu = lst[cu];
                                                              fill(cur.begin(), cur.end(), 0);
                                                              fill(vis.begin(), vis.end(), 0);
        }
                                                              dis[this->s] = 0;
        ans.first += fl, ans.second += fl * fc;
                                                              q.push(this->s);
        cu = this->t;
                                                              while (!q.empty()) {
                                                                  int u = q.front();
        while (cu != this->s) {
            this->adj[lst[cu]][lsi[cu]].w -= fl;
                                                                  q.pop();
                                                                  inq[u] = 0;
   this->adj[cu][this->adj[lst[cu]][lsi[cu]].b].w
   += fl;
                                                                  for (int i = 0; i <
            cu = lst[cu];
                                                          (int)this->adj[u].size(); i++) {
        }
                                                                       cost_edg<FT, CT> v =
                                                          this->adj[u][i];
        return 1;
    }
                                                                      if (v.w && cmp(dis[v.v], dis[u] +
    pair<FT, CT> mincostmaxflow() {
                                                          v.c)) {
                                                                           dis[v.v] = dis[u] + v.c;
        pair<FT, CT> ans(0, 0);
        while (spfa(ans,
                                                                           if (!inq[v.v]) {
   numeric_limits<CT>::max(), greater<CT>()));
                                                                               q.push(v.v);
                                                                               inq[v.v] = 1;
                                                                           }
        return ans;
    }
                                                                      }
    pair<FT, CT> maxcostmaxflow() {
                                                                  }
        pair<FT, CT> ans(0, 0);
                                                              }
        while (spfa(ans,
                                                              return dis[this->t] != mxv;
   numeric_limits<CT>::min(), less<CT>()));
                                                          }
                                                          FT dfs(int u, FT fl, CT &cst) {
                                                              if (!fl || u == this->t)
        return ans;
    }
                                                                  return fl;
};
                                                              vis[u] = 1;
                                                              FT ret(0);
template<typename FT, typename CT> class

    zkw_flowgraph: public

                                                              for (int &i = cur[u]; i <</pre>
→ base_flowgraph<cost_edg<FT, CT>> {
                                                          (int)this->adj[u].size(); i++) {
public:
                                                                  cost_edg<FT, CT> v = this->adj[u][i];
    vector<int> cur;
    vector<CT> dis;
                                                                  if (v.w \&\& dis[v.v] == dis[u] + v.c \&\&
    vector<bool> vis, inq;
                                                          !vis[v.v]) {
                                                                      FT nw = dfs(v.v, min(fl, v.w),
    zkw_flowgraph(int n, int s, int t):
   base_flowgraph<cost_edg<FT, CT>>(n, s, t) {
                                                          cst);
        dis.resize(n);
                                                                      this->adj[u][i].w -= nw;
        cur.resize(n):
                                                                      this->adj[v.v][v.b].w += nw;
        vis.resize(n);
                                                                      cst += nw * v.c;
        inq.resize(n);
                                                                      ret += nw;
    }
    void addedge(int u, int v, FT w, CT c) {
                                                                      if (!(fl -= nw)) {
        cost_edg<FT, CT> eu(v, w, c,
                                                                           vis[u] = 0;
    (int)this->adj[v].size()), ev(u, 0, -c,
                                                                           return ret;
    (int)this->adj[u].size());
        this->adj[u].push_back(eu);
                                                                  }
```

```
}
                                                              this->adj[this->t].clear();
                                                              for (int i = 0; i < this->n; i++) {
        return ret;
    }
                                                                   while (!this->adj[i].empty() &&
    pair<FT, CT> mincostmaxflow() {
                                                          (this->adj[i].back().v == this->s ||
        pair<FT, CT> ans(0, 0);
                                                          this->adj[i].back().v == this->t))
                                                                      this->adj[i].pop_back();
        while (spfa(numeric_limits<CT>::max(),
                                                              }
                                                          }
    greater<CT>()))
            ans.first += dfs(this->s,
                                                      };
    numeric_limits<FT>::max(), ans.second);
                                                      template<typename FT, template<typename _FT> class
                                                          based_graph> class sourced_bounded_flow:
        return ans;
    }
                                                          public
    pair<FT, CT> maxcostmaxflow() {
                                                          bounded_flow<FT, based_graph> {
        pair<FT, CT> ans(0, 0);
                                                      public:
        fill(vis.begin(), vis.end(), 0);
                                                          int fs, ft;
                                                          sourced_bounded_flow(int n, int s, int t):
                                                          bounded_flow<FT, based_graph>(n), fs(s), ft(t)
        while (spfa(numeric_limits<CT>::min(),
   less<CT>()))
            ans.first += dfs(this->s,
                                                          pair<bool, FT> feasibleflow() {
   numeric_limits<FT>::max(), ans.second);
                                                              this->addedge(ft, fs,
                                                          numeric_limits<FT>::max());
                                                              bool ret = bounded_flow<FT,</pre>
        return ans;
    }
                                                          based_graph>::feasibleflow();
};
                                                              FT ans = this->adj[fs].back().w;
                                                              this->adj[fs].pop_back();
template<typename FT, template<typename _FT> class
                                                              this->adj[ft].pop_back();
→ based_graph> class bounded_flow : public
                                                              return make_pair(ret, ans);
\hookrightarrow based_graph<FT> {
public:
                                                          pair<bool, FT> maxfeasibleflow() {
    vector<FT> pot;
                                                              pair<bool, FT> x = feasibleflow();
    bounded_flow(int n): based_graph<FT>(n + 2, n,
                                                              this->clearaugedge();
   n + 1) {
                                                              if (!x.first)
        pot.resize(n + 2);
    }
                                                                  return x;
    void addboundedge(int u, int v, FT wl, FT wr)
                                                              this->addedge(this->s, fs,
        this->addedge(u, v, wr - wl);
                                                          numeric_limits<FT>::max());
        pot[u] -= wl;
                                                              this->addedge(ft, this->t,
        pot[v] += wl;
                                                          numeric_limits<FT>::max());
    }
                                                              x.second += this->maxflow();
    bool feasibleflow() {
                                                              return x;
        FT tot(0);
                                                          pair<bool, FT> minfeasibleflow() {
        for (int i = 0; i < this->n; i++) {
                                                              pair<bool, FT> x = feasibleflow();
            if (i != this->s && i != this->t) {
                                                              this->clearaugedge();
                if (pot[i] > 0)
                    this->addedge(this->s, i,
                                                              if (!x.first)
    pot[i]), tot += pot[i];
                                                                  return x;
                else if (pot[i] < 0)</pre>
                    this->addedge(i, this->t,
                                                              this->addedge(this->s, ft,
    -pot[i]);
                                                          numeric limits<FT>::max());
                                                              this->addedge(fs, this->t,
            }
                                                          numeric_limits<FT>::max());
        }
                                                              x.second -= this->maxflow();
        FT ans = this->maxflow();
                                                              return x;
                                                          }
        return ans == tot;
                                                      };
    void clearaugedge() {
        this->adj[this->s].clear();
```

```
template<typename FT, typename CT,
                                                          pair<bool, pair<FT, CT>> mincostfeasibleflow()
_{\hookrightarrow} template<typename _FT, typename _CT> class
                                                         {
   based_graph> class
                                                              this->addedge(ft, fs,
    cost_bounded_flow : public based_graph<FT, CT>
                                                         numeric_limits<FT>::max(), 0);
                                                              pair<bool, CT> ret = cost_bounded_flow<FT,</pre>
                                                          CT, based_graph>::mincostfeasibleflow();
public:
    vector<FT> pot;
                                                              FT ans = this->adj[fs].back().w;
                                                              this->adj[fs].pop_back();
    CT cs;
    cost_bounded_flow(int n): based_graph<FT,</pre>
                                                              this->adj[ft].pop_back();
   CT>(n + 2, n, n + 1), cs(0) {
                                                              return make_pair(ret.first, make_pair(ans,
        pot.resize(n + 2);
                                                          ret.second));
    }
                                                          }
    void addboundedge(int u, int v, FT wl, FT wr,
                                                          pair<bool, pair<FT, CT>>
   CT c) {
                                                          mincostmaxfeasibleflow() {
        this->addedge(u, v, wr - wl, c);
                                                              pair<bool, pair<FT, CT>> x =
        pot[u] -= w1;
                                                          mincostfeasibleflow();
        pot[v] += wl;
                                                              this->clearaugedge();
        cs += c * wl;
    }
                                                              if (!x.first)
    pair<bool, CT> mincostfeasibleflow() {
                                                                  return x;
        FT tot(0);
                                                              this->addedge(this->s, fs,
        for (int i = 0; i < this->n; i++) {
                                                          numeric_limits<FT>::max(), 0);
            if (i != this->s && i != this->t) {
                                                              this->addedge(ft, this->t,
                if (pot[i] > 0)
                                                          numeric_limits<FT>::max(), 0);
                    this->addedge(this->s, i,
                                                              pair<FT, CT> g = this->mincostmaxflow();
                                                              x.second.first += g.first;
    pot[i], 0), tot += pot[i];
                else if (pot[i] < 0)</pre>
                                                              x.second.second += g.second;
                    this->addedge(i, this->t,
                                                              return x;
                                                          }
    -pot[i], 0);
            }
                                                      };
        }
                                                      }
        pair<FT, CT> ans = this->mincostmaxflow();
                                                      // 115. 无源汇有上下界可行流
        return make_pair(ans.first == tot,
   ans.second + cs);
                                                      int main() {
                                                          ios::sync_with_stdio(0);
    void clearaugedge() {
                                                          cin.tie(0);
        this->adj[this->s].clear();
                                                          int n, m;
        this->adj[this->t].clear();
                                                          cin >> n >> m;
                                                          flow::bounded_flow<int, flow::dinic_flowgraph>
        for (int i = 0; i < this->n; i++) {
                                                       \rightarrow x(n + 1);
            while (!this->adj[i].empty() &&
                                                          vector<pair<int, int>> idx(m + 1);
   (this->adj[i].back().v == this->s ||
                                                          vector<int> lb(m + 1);
    this->adj[i].back().v == this->t))
                                                          for (int i = 1; i <= m; i++) {
                this->adj[i].pop_back();
                                                              int s, t, l, r;
        }
                                                              cin >> s >> t >> 1 >> r;
    }
                                                              lb[i] = 1;
                                                              idx[i] = make_pair(t, x[t].size());
};
                                                              x.addboundedge(s, t, 1, r);
template<typename FT, typename CT,
_{\hookrightarrow} template<typename _FT, typename _CT> class
                                                          bool ans = x.feasibleflow();
\hookrightarrow based_graph> class
                                                          if (!ans)
                                                              cout << "NO";
    sourced_cost_bounded_flow : public
    else {
public:
                                                              cout << "YES\n";
    sourced_cost_bounded_flow(int n, int s, int
                                                              for (int i = 1; i <= m; i++) {
   t): cost_bounded_flow<FT, CT, based_graph>(n),
  fs(s), ft(t) {}
                                                          x[idx[i].first][idx[i].second].w + lb[i] <<</pre>
                                                          ' \setminus n';
```

```
}
                                                       typedef pair<int,int> PII;
    }
                                                       struct edge{ int t,u,v; edge *nxt,*op;
                                                       → }E[MAXE],*V[MAXV];
    return 0;
}
                                                       int D[MAXN], dist[MAXN], maxflow, mincost; bool

    in[MAXN];

// 116. 有源汇有上下界最大流
                                                       bool modlabel(){
int main() {
                                                         while(!Q.empty()) Q.pop();
    ios::sync_with_stdio(0);
                                                         for(int i=S;i<=T;++i) if(in[i])</pre>
    cin.tie(0);

→ D[i]=0,Q.push(PII(0,i)); else D[i]=inf;
    int n, m, s, t;
                                                         while(!Q.empty()){
    cin >> n >> m >> s >> t;
                                                           int x=Q.top().first,y=Q.top().second; Q.pop();
                                                           if(y==T) break; if(D[y]<x) continue;</pre>
    flow::sourced_bounded_flow<int,</pre>
   flow::dinic_flowgraph> x(n + 1, s, t);
                                                           for(edge *ii=V[y];ii;ii=ii->nxt) if(ii->u)
                                                             if(x+(ii->v+dist[ii->t]-dist[y])<D[ii->t]){
                                                               D[ii->t]=x+(ii->v+dist[ii->t]-dist[y]);
    for (int i = 1; i <= m; i++) {
                                                               Q.push(PII(D[ii->t],ii->t));
        int s, t, l, r;
        cin >> s >> t >> 1 >> r;
        x.addboundedge(s, t, 1, r);
    }
                                                         if(D[T]==inf) return false;
                                                         for(int i=S;i<=T;++i) if(D[i]>D[T])
    pair<bool, int> ans = x.maxfeasibleflow();
    if (!ans.first)

→ dist[i]+=D[T]-D[i];

        cout << "please go home to sleep";</pre>
                                                         return true;
                                                       }
    else {
                                                       int aug(int p,int limit){
        cout << ans.second;</pre>
    }
                                                         if(p==T) return

    maxflow+=limit,mincost+=limit*dist[S],limit;
    return 0;
}
                                                         in[p]=1; int kk,ll=limit;
                                                         for(edge *ii=V[p];ii;ii=ii->nxt) if(ii->u){
// 117. 有源汇有上下界最小流
                                                           if(!in[ii->t]\&\&dist[ii->t]+ii->v==dist[p]){
int main() {
                                                             kk=aug(ii->t,min(ii->u,ll));
    ios::sync_with_stdio(0);
                                                          ll-=kk,ii->u-=kk,ii->op->u+=kk;
    cin.tie(0);
                                                             if(!ll) return in[p]=0,limit;
    int n, m, s, t;
    cin >> n >> m >> s >> t;
                                                         }
    flow::sourced_bounded_flow<long long,</pre>
                                                         return limit-ll;
   flow::dinic_flowgraph> x(n + 1, s, t);
    for (int i = 1; i <= m; i++) {
                                                       PII mincostFlow(){
                                                         for(int i=S;i<=T;++i) dist[i]=i==T?inf:0;</pre>
        int s, t;
                                                         while(!Q.empty()) Q.pop(); Q.push(PII(0,T));
        long long 1, r;
        cin >> s >> t >> 1 >> r;
                                                         while(!Q.empty()){
                                                           int x=Q.top().first,y=Q.top().second;
        x.addboundedge(s, t, l, r);

    Q.pop(); if(dist[y]<x) continue;
</pre>
                                                           for(edge *ii=V[y];ii;ii=ii->nxt)
    pair<bool, long long> ans =

    if(ii->op->u&&ii->v+x<dist[ii->t]

   x.minfeasibleflow();
                                                               dist[ii->t]=ii->v+x,Q.push(PII(dist[ii->t]
    if (!ans.first)
                                                       → ],ii->t));
        cout << "please go home to sleep";</pre>
                                                               }
        cout << ans.second;</pre>
                                                               maxflow=mincost=0;
    }
                                                               do{
                                                               do{
    return 0;
}
                                                               memset(in,0,sizeof(in));
                                                               }while(aug(S,maxflow));
                                                               }while(modlabel());
8.19 最小费用流
                                                               return PII(maxflow,mincost);
// dreadnought
// Q is a priority_queue<PII, vector<PII>,
\hookrightarrow qreater<PII> >
// for an edge(s, t): u is the capacity, v is the
\rightarrow cost, nxt is the next edge,
// op is the opposite edge
// this code can not deal with negative cycles
```

9 字符串

9.1 后缀树组

```
// input: n, s
// output: sa, rnk, hei
// method: init(const string&); calc_sa();

    calc_hei();

struct GetSa {
    int n;
    string s;
    vector<int> sa, rnk, hei;
    GetSa() {}
    void init(const string &_s) {
        s = _s; n = _s.size();
    }
    void calc_sa() {
        sa.resize(n);
        rnk.resize(n);
        vector<int> x(n), y(n);
        for (int i = 0; i < n; ++i) x[i] = s[i];
        int tot = *max_element(ALL(x)) + 1;
        vector<int> cnt(tot);
        for (int i = 0; i < n; ++i) ++cnt[x[i]];</pre>
        partial_sum(ALL(cnt), begin(cnt));
        for (int i = 0; i < n; ++i)
            sa[--cnt[x[i]]] = i;
        for (int 1 = 1; ; 1 <<= 1) {
            vector<int> cnt(tot);
            int p = n;
            for (int i = n - 1; i < n; ++i) y[--p]
   = i;
            for (int i = 0; i < n; ++i)
                if (sa[i] >= 1) y[--p] = sa[i] -
   1;
            for (int i = 0; i < n; ++i)
   ++cnt[x[y[i]]];
            partial_sum(ALL(cnt), begin(cnt));
            for (int i = 0; i < n; ++i)
                sa[--cnt[x[y[i]]]] = y[i];
            y[sa[0]] = 0;
            for (int i = 1; i < n; ++i)
                y[sa[i]] = y[sa[i-1]] +
                    (x[sa[i-1]] < x[sa[i]] ||
  (sa[i]+l < n && (sa[i-1]+l >= n | |
\rightarrow x[sa[i-1]+l] < x[sa[i]+l])));
            tot = y[sa.back()] + 1;
            x.swap(y);
            if (tot == n) break;
        copy(ALL(x), begin(rnk));
    void calc_hei() {
        hei.resize(n);
        for (int i = 0, j = 0; i < n; ++i) {
            if (!rnk[i]) continue;
            int ii = sa[rnk[i]-1];
            if (j) --j;
            while (ii+j < n \&\& i+j < n \&\& s[ii+j]
   == s[i+j]) ++j;
            hei[rnk[i]] = j;
```

```
}
    }
};
9.2 后缀自动机
// N: length of string
// AL: alphabet size
// method: add(), build()
namespace Sam {
const size_t V = N << 1;</pre>
const size t AL = 26;
int ch[V][AL], par[V], len[V], pos[V], tot = 1,
\rightarrow lst = 1, s[N];
bool ed[V];
void add(int po, int c) {
    int p = lst, np = ++tot;
    s[po] = c;
    len[np] = len[lst] + 1;
    pos[np] = po;
    ed[np] = true;
    for (; p && !ch[p][c]; p = par[p])
        ch[p][c] = np;
    if (p) {
        int q = ch[p][c];
        if (len[p] + 1 == len[q]) {
            par[np] = q;
        } else {
            int nq = ++tot;
            len[nq] = len[p] + 1;
            par[nq] = par[q];
            pos[nq] = pos[q];
            memcpy(ch[nq], ch[q], sizeof ch[q]);
            for (; p && ch[p][c] == q; p = par[p])
                ch[p][c] = nq;
            par[q] = par[np] = nq;
        }
    } else {
        par[np] = 1;
    }
    lst = np;
int fch[V][AL], cnt;
void dfs(int u = 1) {
    if (!u) return;
    if (ed[u]) {
        ++cnt;
        sa[cnt] = pos[u];
        rnk[pos[u]] = cnt;
    for (int v : fch[u]) dfs(v);
void build() {
    for (int i = 2; i <= tot; ++i)</pre>
        fch[par[i]][s[pos[i] + len[par[i]]]] = i;
    dfs();
}
```

9.3 Manacher

9.4 回文自动机

```
// N: length of string
// method: prep, add
namespace PAM {
const size_t AL = 26;
int n, s[N];
int tot, lst, ch[N][AL], par[N], len[N], dep[N];
void prep() {
    par[0] = par[1] = 1;
    s[0] = len[1] = -1;
   lst = tot = 1;
}
int get_link(int x) {
   for (; s[n] != s[n - len[x] - 1]; x = par[x])
   {}
   return x;
}
int add(int c) {
    s[++n] = c;
    int p = get_link(lst);
    if (!ch[p][c]) {
        int np = ++tot;
        len[np] = len[p] + 2;
        par[np] = ch[get_link(par[p])][c];
        dep[np] = dep[par[np]] + 1;
        ch[p][c] = np;
   return dep[lst = ch[p][c]];
}
}
```

9.5 Lyndon 分解

9.6 Z Function

```
void z_func(string s, int f[]) {
   int l = 0, r = 0;
   for (int i = 1; i < (int) s.size(); ++i) {
      f[i] = i < r ? min(r - i, f[i - 1]) : 0;
      while (i + f[i] < (int) s.size() &&
        s[f[i]] == s[i + f[i]]) ++f[i];
      if (i + f[i] > r) r = (l = i) + f[i];
   }
}
```

10 计算几何

10.1 基本操作

```
// Dreadnought
struct Point {
 Point rotate(const double ang) { // 逆时针旋转
    ang 弧度
    return Point(cos(ang) * x - sin(ang) * y,
   cos(ang) * y + sin(ang) * x);
 }
 Point turn90() { // 逆时针旋转 90 度
    return Point(-y, x);
 }
};
Point isLL(const Line &11, const Line &12) {
  double s1 = det(12.b - 12.a, 11.a - 12.a),
        s2 = -det(12.b - 12.a, 11.b - 12.a);
 return (11.a * s2 + 11.b * s1) / (s1 + s2);
}
bool onSeg(const Line &l, const Point &p) { // 点
→ 在线段上
 return sign(det(p - 1.a, 1.b - 1.a)) == 0 &&
\rightarrow sign(dot(p - 1.a, p - 1.b)) <= 0;
Point projection(const Line &1, const Point &p) {
→ // 点到直线投影
 return 1.a + (1.b - 1.a) * (dot(p - 1.a, 1.b -
→ 1.a) / (1.b - 1.a).len2());
double disToLine(const Line &1, const Point &p) {
 return abs(det(p - 1.a, 1.b - 1.a) / (1.b -
→ 1.a).len());
double disToSeg(const Line &1, const Point &p) {
→ // 点到线段距离
 return sign(dot(p - 1.a, 1.b - 1.a)) *

    sign(dot(p - 1.b, 1.a - 1.b)) != 1 ?

    disToLine(1, p) : min((p - 1.a).len(), (p -
  1.b).len());
}
Point symmetryPoint(const Point a, const Point b)
→ { // 点 b 关于点 a 的中心对称点
 return a + a - b;
Point reflection(const Line &1, const Point &p) {
→ // 点关于直线的对称点
 return symmetryPoint(projection(1, p), p);
```

```
// 求圆与直线的交点
                                                    // 求圆到圆的外共切线, 按关于 c1.o 的顺时针方向返回
bool isCL(Circle a, Line 1, Point &p1, Point &p2)
                                                       两条线
                                                    vector<Line> extanCC(const Circle &c1, const
 double x = dot(1.a - a.o, 1.b - 1.a),
                                                    y = (1.b - 1.a).len2(),
                                                     vector<Line> ret;
        d = x * x - y * ((1.a - a.o).len2() - a.r
                                                      if (sign(c1.r - c2.r) == 0) {
→ * a.r);
                                                        Point dir = c2.o - c1.o;
 if (sign(d) < 0) return false;</pre>
                                                        dir = (dir * (c1.r / dir.len())).turn90();
 d = max(d, 0.0);
                                                        ret.push_back(Line(c1.o + dir, c2.o + dir));
 Point p = 1.a - ((1.b - 1.a) * (x / y)), delta =
                                                        ret.push_back(Line(c1.o - dir, c2.o - dir));
\rightarrow (1.b - 1.a) * (sqrt(d) / y);
                                                      } else {
 p1 = p + delta, p2 = p - delta;
                                                       Point p = (c1.o * -c2.r + c2.o * c1.r) / (c1.r)
 return true;
                                                       - c2.r);
                                                       Point p1, p2, q1, q2;
// 求圆与圆的交面积
                                                        if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1,
double areaCC(const Circle &c1, const Circle &c2)

    q2)) {

                                                         if (c1.r < c2.r) swap(p1, p2), swap(q1, q2);
 double d = (c1.o - c2.o).len();
                                                         ret.push_back(Line(p1, q1));
 if (sign(d - (c1.r + c2.r)) >= 0) {
                                                         ret.push_back(Line(p2, q2));
   return 0;
                                                     }
 }
 if (sign(d - abs(c1.r - c2.r)) \le 0) {
                                                     return ret;
   double r = min(c1.r, c2.r);
   return r * r * PI;
                                                    // 求圆到圆的内共切线,按关于 c1.o 的顺时针方向返回
 }
                                                    → 两条线
 double x = (d * d + c1.r * c1.r - c2.r * c2.r) /
                                                    vector<Line> intanCC(const Circle &c1, const
                                                    t1 = acos(x / c1.r), t2 = acos((d - x) /
                                                     vector<Line> ret;
   c2.r);
                                                     Point p = (c1.0 * c2.r + c2.o * c1.r) / (c1.r + c2.o * c1.r) / (c1.r + c2.o * c1.r)
 return c1.r * c1.r * t1 + c2.r * c2.r * t2 - d *
                                                    \rightarrow c2.r);
   c1.r * sin(t1);
                                                     Point p1, p2, q1, q2;
}
                                                     if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1,
// 求圆与圆的交点,注意调用前要先判定重圆
                                                    → q2)) { // 两圆相切认为没有切线
bool isCC(Circle a, Circle b, Point &p1, Point
                                                       ret.push_back(Line(p1, q1));
ret.push_back(Line(p2, q2));
 double s1 = (a.o - b.o).len();
                                                     }
 if (sign(s1 - a.r - b.r) > 0 \mid \mid sign(s1 - a.r - b.r))
                                                     return ret;

→ abs(a.r - b.r)) < 0) return false;</pre>
 double s2 = (a.r * a.r - b.r * b.r) / s1;
                                                    bool contain(vector<Point> polygon, Point p) { //
 double aa = (s1 + s2) * 0.5, bb = (s1 - s2) *
                                                    → 判断点 p 是否被多边形包含,包括落在边界上
                                                     int ret = 0, n = polygon.size();
 Point o = (b.o - a.o) * (aa / (aa + bb)) + a.o;
                                                      for(int i = 0; i < n; ++ i) {
 Point delta = (b.o - a.o).unit().turn90() *
                                                       Point u = polygon[i], v = polygon[(i + 1) %
→ newSqrt(a.r * a.r - aa * aa);
                                                      n];
 p1 = o + delta, p2 = o - delta;
                                                        if (onSeg(Line(u, v), p)) return true;
 return true;
                                                        if (sign(u.y - v.y) \le 0) swap(u, v);
                                                        if (sign(p.y - u.y) > 0 \mid \mid sign(p.y - v.y) \le
// 求点到圆的切点,按关于点的顺时针方向返回两个点
                                                       continue;
bool tanCP(const Circle &c, const Point &p0, Point
                                                        ret += sign(det(p, v, u)) > 0;
\hookrightarrow &p1, Point &p2) {
                                                     }
 double x = (p0 - c.o).len2(), d = x - c.r * c.r;
                                                     return ret & 1;
 if (d < EPS) return false; // 点在圆上认为没有切
→ 点
                                                    vector<Point> convexCut(const vector<Point>&ps,
 Point p = (p0 - c.o) * (c.r * c.r / x);
                                                    → Line 1) { // 用半平面 (q1,q2) 的逆时针方向去切
 Point delta = ((p0 - c.o) * (-c.r * sqrt(d) /
                                                      凸多边形
\rightarrow x)).turn90();
                                                     vector<Point> qs;
 p1 = c.o + p + delta;
                                                      int n = ps.size();
 p2 = c.o + p - delta;
                                                      for (int i = 0; i < n; ++i) {
 return true;
                                                        Point p1 = ps[i], p2 = ps[(i + 1) % n];
```

```
int d1 = sign(det(1.a, 1.b, p1)), d2 =
                                                           if (sign(m) == 0) return Point(0, 0);
\rightarrow sign(det(1.a, 1.b, p2));
                                                           return Point(x / m, y / m);
    if (d1 >= 0) qs.push_back(p1);
    if (d1 * d2 < 0) qs.push_back(isLL(Line(p1,</pre>
                                                        void input() {
   p2), 1));
                                                           x = read();
                                                           y = read();
                                                        }
 return qs;
}
                                                      };
vector<Point> convexHull(vector<Point> ps) { // 求
→ 点集 ps 组成的凸包
                                                      ostream& operator << (ostream &os, const Point &p)
  int n = ps.size(); if (n <= 1) return ps;</pre>
                                                        return os << "(" << p.x << ", " << p.y << ")";
 sort(ps.begin(), ps.end());
 vector<Point> qs;
 for (int i = 0; i < n; qs.push_back(ps[i++]))</pre>
                                                      bool operator == (const Point &a, const Point &b)
    while (qs.size() > 1 \&\&

    sign(det(qs[qs.size()-2],qs.back(),ps[i])) <=
</pre>
                                                        return sign(a.x - b.x) == 0 \&\& sign(a.y - b.y)
 → 0) qs.pop_back();
                                                          == 0;
 for (int i = n - 2, t = qs.size(); i >= 0;
                                                      }

¬ qs.push back(ps[i--]))

    while ((int)qs.size() > t &&
\rightarrow sign(det(qs[(int)qs.size()-2],qs.back(),ps[i])) bool operator < (const Point &a, const Point &b) {
                                                        return sign(a.x - b.x) ? a.x < b.x : sign(a.y - b.x)
\rightarrow <= 0) qs.pop_back();
                                                       \rightarrow b.y) ? a.y < b.y : false;
  qs.pop_back(); return qs;
                                                      bool operator != (const Point &a, const Point &b)
10.2 半平面交
using ld = long double;
                                                        return !(a == b);
const ld eps = 1E-14;
int sign(ld x) {
                                                      ld dot(const Point &a, const Point &b) {
 return x < -eps ? -1 : x > eps ? 1 : 0;
                                                        return a.x * b.x + a.y * b.y;
struct Point {
                                                      ld det(const Point &a, const Point &b) {
 ld x, y;
                                                        return a.x * b.y - a.y * b.x;
 Point(ld x = 0, ld y = 0): x(x), y(y) {}
 Point operator + (const Point &p) const {
                                                      struct Line {
    return Point(x + p.x, y + p.y);
 }
                                                        Point a, b;
 Point operator - (const Point &p) const {
                                                        Line(Point a = Point(), Point b = Point()) :
    return Point(x - p.x, y - p.y);
                                                       \rightarrow a(a), b(b) {}
                                                        bool include(const Point &p) const {
 Point operator * (const ld &k) const {
                                                           return sign(det(b - a, p - a)) > 0;
    return Point(x * k, y * k);
                                                        Line push() const {
 Point operator / (const ld &k) const {
                                                           Point delta = (b - a).turn90().norm() * eps;
    return Point(x / k, y / k);
                                                           return Line(a - delta, b - delta);
                                                        }
  int quad() const {
                                                      };
    return sign(y) == 1 || (sign(y) == 0 &&
   sign(x) >= 0);
                                                      bool on_seg(const Line &1, const Point &p) {
                                                        return sign(det(p - 1.a, 1.b - 1.a)) == 0 &&
 Point turn90() const {
                                                           sign(dot(p - 1.a, p - 1.b)) \le 0;
    return Point(-y, x);
 }
 ld mod() const {
                                                      bool parallel(const Line &11, const Line &12) {
                                                        return sign(det(l1.b - l1.a, l2.b - l2.a)) == 0;
    return sqrt(x * x + y * y);
 Point norm() const {
    1d m = mod();
                                                      Point intersect(const Line &11, const Line &12) {
```

```
double s1 = det(12.b - 12.a, 11.a - 12.a);
                                                     return ret * .5;
 double s2 = -det(12.b - 12.a, 11.b - 12.a);
 return (l1.a * s2 + l1.b * s1) / (s1 + s2);
}
                                                    10.3 凸包操作
                                                    // Dreadnought
bool same_dir(const Line &10, const Line &11) {
 return parallel(10, 11) && sign(dot(10.b - 10.a,
                                                       给定凸包, $\log n$ 内完成各种询问, 具体操作有 :
   l1.b - l1.a)) == 1;
                                                       1. 判定一个点是否在凸包内
}
                                                       2. 询问凸包外的点到凸包的两个切点
                                                       3. 询问一个向量关于凸包的切点
bool sp_comp_point(const Point &a, const Point &b)
                                                       4. 询问一条直线和凸包的交点
                                                       inf 为坐标范围,需要定义点类大于号
 if (a.quad() != b.quad()) {
                                                       改成实数只需修改 sign 函数,以及把 long long 改为
   return a.quad() < b.quad();</pre>
 } else {
                                                       double 即可
                                                      构造函数时传入凸包要求无重点, 面积非空, 以及
   return sign(det(a, b)) > 0;
                                                    \rightarrow pair(x,y) 的最小点放在第一个
}
                                                    const int inf = 1000000000;
bool operator < (const Line &10, const Line &11) {</pre>
                                                   struct convex
 if (same dir(10, 11)) {
   return 11.include(10.a);
                                                      int n;
 } else {
                                                      vector<point> a, upper, lower;
   return sp_comp_point(10.b - 10.a, 11.b -
                                                      convex(vector<point> _a) : a(_a) {
   11.a);
                                                        n = a.size();
 }
                                                        int ptr = 0;
}
                                                       for(int i = 1; i < n; ++ i) if (a[ptr] < a[i])</pre>

    ptr = i;

bool check(const Line &u, const Line &v, const
                                                       for(int i = 0; i <= ptr; ++ i)</pre>
\hookrightarrow Line &w) {
                                                    → lower.push_back(a[i]);
 return w.include(intersect(u, v));
                                                       for(int i = ptr; i < n; ++ i)</pre>

    upper.push_back(a[i]);

                                                        upper.push_back(a[0]);
vector<Point> intersection(vector<Line> 1) {
                                                     }
 sort(begin(1), end(1));
                                                     int sign(long long x) { return x < 0 ? -1 : x >
 deque<Line> q;
                                                    → 0; }
 for (int i = 0; i < (int) l.size(); ++i) {</pre>
                                                     pair<long long, int> get_tangent(vector<point>
   if (i && same_dir(l[i], l[i - 1])) continue;
                                                    while (q.size() > 1 && !check(q[q.size() - 2],
                                                        int 1 = 0, r = (int)convex.size() - 2;
\rightarrow q.back(), l[i])) q.pop_back();
                                                        for(; 1 + 1 < r; ) {
   while (q.size() > 1 && !check(q[1], q[0],
                                                         int mid = (1 + r) / 2;
   1[i])) q.pop_front();
                                                         if (sign((convex[mid + 1] -
   q.emplace_back(l[i]);
                                                       convex[mid]).det(vec)) > 0) r = mid;
                                                          else l = mid;
 while (q.size() > 2 \&\& !check(q[q.size() - 2],
                                                        }
\rightarrow q.back(), q[0])) q.pop_back();
                                                       return max(make_pair(vec.det(convex[r]), r),
 while (q.size() > 2 \&\& !check(q[1], q[0],
                                                       make_pair(vec.det(convex[0]), 0));

¬ q.back())) q.pop_front();

 vector<Point> ret;
                                                     void update_tangent(const point &p, int id, int
 for (int i = 0; i < (int) q.size(); ++i) {</pre>
                                                    ret.emplace_back(intersect(q[i], q[(i + 1) %
                                                       if ((a[i0] - p).det(a[id] - p) > 0) i0 = id;
   q.size()]));
                                                        if ((a[i1] - p).det(a[id] - p) < 0) i1 = id;
 }
 return ret;
                                                     void binary_search(int 1, int r, point p, int
                                                    if (1 == r) return;
ld calc_area(const vector<Point> &vc) {
                                                        update_tangent(p, 1 % n, i0, i1);
 ld ret = 0;
                                                        int sl = sign((a[1 \% n] - p).det(a[(1 + 1) \%
 for (int i = 0; i < (int) vc.size(); ++i) {</pre>
                                                    \rightarrow n] - p));
   ret += det(vc[i], vc[(i + 1) % vc.size()]);
                                                        for(; 1 + 1 < r; ) {
 }
                                                         int mid = (1 + r) / 2;
```

```
int smid = sign((a[mid % n] - p).det(a[(mid
                                                                                       // 求凸包上和向量 vec 叉积最大的点, 返回编号, 共线
                                                                                     → 的多个切点返回任意一个
    + 1) % n] - p));
         if (smid == sl) l = mid;
                                                                                       int get_tangent(point vec) {
         else r = mid;
                                                                                           pair<long long, int> ret = get_tangent(upper,
     }
                                                                                          vec);
     update_tangent(p, r % n, i0, i1);
                                                                                           ret.second = (ret.second + (int)lower.size() -
  }
  int binary_search(point u, point v, int 1, int
                                                                                          ret = max(ret, get_tangent(lower, vec));
                                                                                           return ret.second;
     int sl = sign((v - u).det(a[1 % n] - u));
     for(; 1 + 1 < r; ) {
                                                                                       // 求凸包和直线 u,v 的交点,如果无严格相交返回
         int mid = (1 + r) / 2;
                                                                                     \rightarrow false. 如果有则是和 (i,next(i)) 的交点,两个点
         int smid = sign((v - u).det(a[mid % n] -
                                                                                         无序, 交在点上不确定返回前后两条线段其中之一
    u));
                                                                                       bool get_intersection(point u, point v, int &i0,
         if (smid == sl) l = mid;
                                                                                          int &i1) {
         else r = mid;
                                                                                           int p0 = get_tangent(u - v), p1 =
     }
                                                                                           get_tangent(v - u);
     return 1 % n;
                                                                                            if (sign((v - u).det(a[p0] - u)) * sign((v - u).det(a[p0] - 
  }
                                                                                          u).det(a[p1] - u)) < 0) {
  // 判定点是否在凸包内, 在边界返回 true
                                                                                              if (p0 > p1) swap(p0, p1);
  bool contain(point p) {
                                                                                              i0 = binary_search(u, v, p0, p1);
     if (p.x < lower[0].x \mid\mid p.x > lower.back().x)
                                                                                              i1 = binary_search(u, v, p1, p0 + n);
    return false;
                                                                                              return true;
     int id = lower_bound(lower.begin(),
                                                                                           } else {
   lower.end(), point(p.x, -inf)) -
                                                                                              return false;
→ lower.begin();
     if (lower[id].x == p.x) {
                                                                                       }
         if (lower[id].y > p.y) return false;
                                                                                    };
     } else if ((lower[id - 1] - p).det(lower[id] -
→ p) < 0) return false;</pre>
                                                                                    10.4 动态维护凸壳
     id = lower_bound(upper.begin(), upper.end(),
→ point(p.x, inf), greater<point>()) -
                                                                                    // CodeChef TSUM2
    upper.begin();
                                                                                    // 动态维护凸壳, 求 $x$ 为横坐标时的最大取值
     if (upper[id].x == p.x) {
                                                                                    // 一个直线 y = kx + b 可用平面上的点 (k, b) 表示
         if (upper[id].y < p.y) return false;</pre>
                                                                                    // 两个点的斜率,即两条直线交点横坐标的相反数,因此可
     } else if ((upper[id - 1] - p).det(upper[id] -
                                                                                     → 以用两点的斜率衡量某一条直线可否删除
→ p) < 0) return false;</pre>
                                                                                    // 具体地,设 l1.k < l2.k < l3.k, l2 可以删除当且仅
     return true;
                                                                                         当 11 与 12 的交点 > 12 与 13 的交点, 即 (12 -
  }
                                                                                          11) % (13 - 12) > 0
  // 求点 p 关于凸包的两个切点, 如果在凸包外则有序返
                                                                                    struct Point {
→ 回编号, 共线的多个切点返回任意一个, 否则返回
                                                                                           i64 x, y;
\hookrightarrow false
                                                                                           Point(i64 x = 0, i64 y = 0):
  bool get_tangent(point p, int &i0, int &i1) {
                                                                                                 x(x), y(y) {}
     if (contain(p)) return false;
                                                                                          Point operator - (const Point &p) const {
     i0 = i1 = 0;
                                                                                                 return Point(x - p.x, y - p.y);
     int id = lower_bound(lower.begin(),
                                                                                           }
   lower.end(), p) - lower.begin();
                                                                                           i64 operator % (const Point &p) const {
     binary_search(0, id, p, i0, i1);
                                                                                                 return x * p.y - y * p.x;
     binary_search(id, (int)lower.size(), p, i0,
    i1);
                                                                                           bool operator < (const Point &p) const {</pre>
     id = lower_bound(upper.begin(), upper.end(),
                                                                                                 if (x != p.x) return x < p.x;
     p, greater<point>()) - upper.begin();
                                                                                                 return y < p.y;</pre>
     binary_search((int)lower.size() - 1,
    (int)lower.size() - 1 + id, p, i0, i1);
                                                                                    };
     binary_search((int)lower.size() - 1 + id,
                                                                                    bool comp(const Point &p, const Point &q) { // p's
     (int)lower.size() - 1 + (int)upper.size(), p,
                                                                                          slope greater than q's
    i0, i1);
                                                                                           return p % q < 0;
     return true;
                                                                                    }
  }
                                                                                    struct Node {
                                                                                           Point p;
```

```
mutable Point slope;
                                                                      break;
                                                                  }
    bool type;
    Node() : type(false) {}
                                                             }
    Node(Point p) : p(p), type(false) {
                                                             while (has_rht(it)) {
    bool operator < (const Node &n) const {</pre>
                                                                  jt = it; ++jt;
        assert(!type);
                                                                  if (has_rht(jt)) {
        if (n.type) {
                                                                     kt = jt; ++kt;
            return comp(slope, n.slope);
                                                                      if (!comp(jt->p - it->p, kt->p -
                                                         jt->p)) {
            return p < n.p;
                                                                          s.erase(jt);
        }
                                                                      } else {
    }
                                                                          break;
};
                                                                      }
                                                                  } else {
struct Hull {
                                                                     break;
    using iter = set<Node>::iterator;
    set<Node> s;
                                                             }
    Hull() {}
                                                             update_border(it);
                                                         }
    bool has_lft(iter it) {
        return it != s.begin();
                                                         i64 query(i64 k) {
    bool has_rht(iter it) {
                                                             assert(!s.empty());
        return ++it != s.end();
                                                             Node n;
                                                             n.slope = Point(1, -k);
    void update_border(iter it) {
                                                             n.type = true;
        {
                                                             auto it = s.lower_bound(n);
                                                             if (it != s.begin()) --it;
            if (has_lft(it)) {
                iter jt = it; --jt;
                                                             return k * it->p.x + it->p.y;
                it->slope = it->p - jt->p;
                                                     };
            } else {
                it->slope = Point(1, (i64) 1e14);
            }
                                                     10.5 三角形的心
        }
                                                     // Dreadnought
        if (has_rht(it)) {
                                                     Point inCenter(const Point &A, const Point &B,
            iter jt = it; ++jt;
                                                      → const Point &C) { // 内心
            jt->slope = jt->p - it->p;
                                                       double a = (B - C).len(), b = (C - A).len(), c =
    }
                                                         (A - B).len(),
    void add(const Point &p) {
                                                              s = fabs(det(B - A, C - A)),
        iter it = s.emplace(Node(p)).first, jt,
                                                              r = s / p;
                                                       return (A * a + B * b + C * c) / (a + b + c);
   kt;
        if (has_lft(it) && has_rht(it)) {
            jt = it; --jt;
                                                     Point circumCenter(const Point &a, const Point &b,
                                                      → const Point &c) { // 外心
            kt = it; ++kt;
            if (!comp(it->p - jt->p, kt->p -
                                                       Point bb = b - a, cc = c - a;
                                                       double db = bb.len2(), dc = cc.len2(), d = 2 *
   it->p)) {
                s.erase(it);

→ det(bb, cc);

                return;
                                                       return a - Point(bb.y * dc - cc.y * db, cc.x *
            }
                                                         db - bb.x * dc) / d;
        }
        while (has_lft(it)) {
                                                     Point othroCenter(const Point &a, const Point &b,
            jt = it; --jt;
                                                      → const Point &c) { // 垂心
            if (has_lft(jt)) {
                                                       Point ba = b - a, ca = c - a, bc = b - c;
                kt = jt; --kt;
                                                       double Y = ba.y * ca.y * bc.y,
                if (!comp(jt->p - kt->p, it->p -
                                                              A = ca.x * ba.y - ba.x * ca.y,
  jt->p)) {
                                                              x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y
                    s.erase(jt);
                                                         * c.x) / A,
                } else {
                                                               y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
                    break;
                                                       return Point(x0, y0);
                                                     }
            } else {
```

10.6 圆与多边形面积交

```
// Dreadnought
double areaCT(Point pa, Point pb, double r) {
     if (pa.len() < pb.len()) swap(pa, pb);</pre>
     if (sign(pb.len()) == 0) return 0;
     double a = pb.len(), b = pa.len(), c = (pb -
 \rightarrow pa).len();
     double sinB = fabs(det(pb, pb - pa) / a / c),
                        cosB = dot(pb, pb - pa) / a / c,
                        sinC = fabs(det(pa, pb) / a/ b),
                        cosC = dot(pa, pb) / a / b;
     double B = atan2(sinB, cosB), C = atan2(sinC,
        cosC);
     if (a > r) {
          S = C / 2 * r * r;
          h = a * b * sinC / c;
          if (h < r && B < PI / 2) {
                S = (acos(h / r) * r * r - h * sqrt(r 
         h * h));
     } else if (b > r) {
          double theta = PI - B - asin(sinB / r * a);
          S = a * r * sin(theta) / 2 + (C - theta) / 2 *
 \rightarrow r * r;
     } else {
          S = sinC * a * b / 2;
     return S;
}
                  圆的面积模板 (n^2 \log n)
// Dreadnought
struct Event {
     Point p;
     double ang;
     int delta;
     Event (Point p = Point(0, 0), double ang = 0,
 \rightarrow double delta = 0) : p(p), ang(ang),
          delta(delta) {}
};
bool operator < (const Event &a, const Event &b) {
     return a.ang < b.ang;</pre>
void addEvent(const Circle &a, const Circle &b,
 → vector<Event> &evt, int &cnt) {
     double d2 = (a.o - b.o).len2(),
                        dRatio = ((a.r - b.r) * (a.r + b.r) / d2
                        pRatio = sqrt(-(d2 - sqr(a.r - b.r)) *
 \rightarrow (d2 - sqr(a.r + b.r)) / (d2 * d2 * 4));
     Point d = b.o - a.o, p = d.rotate(PI / 2),
```

q0 = a.o + d * dRatio + p * pRatio,

q1 = a.o + d * dRatio - p * pRatio;

double ang 0 = (q0 - a.o).ang(),

cnt += ang1 > ang0;

ang1 = (q1 - a.o).ang();
evt.push_back(Event(q1, ang1, 1));

evt.push_back(Event(q0, ang0, -1));

```
bool issame(const Circle &a, const Circle &b) {
\rightarrow return sign((a.o - b.o).len()) == 0 &&
\rightarrow sign(a.r - b.r) == 0; }
bool overlap(const Circle &a, const Circle &b) {
\rightarrow return sign(a.r - b.r - (a.o - b.o).len()) >=
bool intersect(const Circle &a, const Circle &b) {
\rightarrow return sign((a.o - b.o).len() - a.r - b.r) <
→ 0; }
int C;
Circle c[N];
double area[N];
void solve() {
  memset(area, 0, sizeof(double) * (C + 1));
  for (int i = 0; i < C; ++i) {
    int cnt = 1;
    vector<Event> evt;
    for (int j = 0; j < i; ++j) if (issame(c[i],
   c[j])) ++cnt;
    for (int j = 0; j < C; ++j) {
      if (j != i && !issame(c[i], c[j]) &&
    overlap(c[j], c[i])) {
        ++cnt;
      }
    }
    for (int j = 0; j < C; ++j) {
      if (j != i && !overlap(c[j], c[i]) &&
    !overlap(c[i], c[j]) && intersect(c[i], c[j]))
        addEvent(c[i], c[j], evt, cnt);
    }
    if (evt.size() == 0) {
      area[cnt] += PI * c[i].r * c[i].r;
    } else {
      sort(evt.begin(), evt.end());
      evt.push_back(evt.front());
      for (int j = 0; j + 1 < (int)evt.size();</pre>
   ++j) {
        cnt += evt[j].delta;
        area[cnt] += det(evt[j].p, evt[j + 1].p) /
        double ang = evt[j + 1].ang - evt[j].ang;
        if (ang < 0) {
          ang += PI * 2;
        area[cnt] += ang * c[i].r * c[i].r / 2 -
    sin(ang) * c[i].r * c[i].r / 2;
    }
  }
}
      Delaunay 三角剖分
// Dreadnought
   Delaunay Triangulation 随机增量算法 :
   节点数至少为点数的 6 倍,
```

→ 空间消耗较大注意计算内存使用

```
建图的过程在 build 中,
                                                      int num_children() const {
  注意初始化内存池和初始三角形的坐标范围
                                                        return children[0] == 0 ? 0
                                                          : children[1] == 0 ? 1
   (Triangulation::LOTS)
                                                          : children[2] == 0 ? 2 : 3;
   Triangulation::find 返回包含某点的三角形
   Triangulation::add_point 将某点加入三角剖分
   某个 Triangle 在三角剖分中当且仅当它的
                                                      bool contains(Point const& q) const {
                                                        double a=side(p[0],p[1],q),
  has children 为 0
                                                        b=side(p[1],p[2],q), c=side(p[2],p[0],q);
   如果要找到三角形 u 的邻域, 则枚举它的所有
                                                        return a >= -EPSILON && b >= -EPSILON && c >=
   u.edge[i].tri, 该条边的两个点为 u.p[(i+1)%3],
                                                        -EPSILON;
   u.p[(i+2)\%3]
                                                     }
  */
                                                    } triange_pool[MAX_TRIS], *tot_triangles;
const int N = 100000 + 5, MAX_TRIS = N * 6;
                                                    void set_edge(Edge a, Edge b) {
const double EPSILON = 1e-6, PI = acos(-1.0);
                                                      if (a.tri) a.tri->edge[a.side] = b;
struct Point {
                                                      if (b.tri) b.tri->edge[b.side] = a;
 double x,y; Point():x(0),y(0){} Point(double x,
\rightarrow double y):x(x),y(y){}
                                                    class Triangulation {
 bool operator ==(Point const& that)const
                                                      public:
   {return x==that.x&&y==that.y;}
                                                        Triangulation() {
};
                                                          const double LOTS = 1e6;
inline double sqr(double x) { return x*x; }
                                                          the_root = new(tot_triangles++)
double dist_sqr(Point const& a, Point const&
                                                       Triangle(Point(-LOTS,-LOTS),Point(+LOTS,-LOTS)
⇒ b){return sqr(a.x-b.x)+sqr(a.y-b.y);}
                                                       ),Point(0,+LOTS));
bool in_circumcircle(Point const& p1, Point
                                                        }

→ const& p2, Point const& p3, Point const& p4) {
                                                        TriangleRef find(Point p) const { return
 double u11 = p1.x - p4.x, u21 = p2.x - p4.x,

    find(the_root,p); }

\rightarrow u31 = p3.x - p4.x;
                                                        void add_point(Point const& p) {
 double u12 = p1.y - p4.y, u22 = p2.y - p4.y,
                                                    → add_point(find(the_root,p),p); }
\rightarrow u32 = p3.y - p4.y;
                                                      private:
 double u13 = sqr(p1.x) - sqr(p4.x) + sqr(p1.y)
                                                        TriangleRef the_root;
\rightarrow - sqr(p4.y);
                                                        static TriangleRef find(TriangleRef root,
 double u23 = sqr(p2.x) - sqr(p4.x) + sqr(p2.y)
                                                       Point const& p) {
\rightarrow - sqr(p4.y);
                                                          for(;;) {
 double u33 = sqr(p3.x) - sqr(p4.x) + sqr(p3.y)
                                                            if (!root->has_children()) return root;
\rightarrow - sqr(p4.y);
                                                            else for (int i = 0; i < 3 &&
 double det = -u13*u22*u31 + u12*u23*u31 +
                                                       root->children[i] ; ++i)
if (root->children[i]->contains(p))
  u11*u22*u33;
                                                              {root = root->children[i]; break;}
 return det > EPSILON;
                                                          }
                                                        }
double side (Point const& a, Point const& b, Point
                                                        void add_point(TriangleRef root, Point const&
\rightarrow const& p) { return (b.x-a.x)*(p.y-a.y) -
                                                       p) {
\rightarrow (b.y-a.y)*(p.x-a.x);}
                                                          TriangleRef tab, tbc, tca;
typedef int SideRef; struct Triangle; typedef
                                                          tab = new(tot_triangles++)
Triangle(root->p[0], root->p[1], p);
struct Edge {
                                                          tbc = new(tot_triangles++)
 TriangleRef tri; SideRef side; Edge() : tri(0),
                                                        Triangle(root->p[1], root->p[2], p);
   side(0) {}
                                                          tca = new(tot_triangles++)
 Edge(TriangleRef tri, SideRef side) : tri(tri),
                                                       Triangle(root->p[2], root->p[0], p);
   side(side) {}
                                                          set_edge(Edge(tab,0),Edge(tbc,1));set_edge(
};
                                                       Edge(tbc,0),Edge(tca,1));
struct Triangle {
                                                          set_edge(Edge(tca,0),Edge(tab,1));set_edge(
 Point p[3]; Edge edge[3]; TriangleRef
                                                       Edge(tab,2),root->edge[2]);

    children[3]; Triangle() {}
                                                          set_edge(Edge(tbc,2),root->edge[0]);set_edg_
 Triangle(Point const& p0, Point const& p1,
                                                        e(Edge(tca,2),root->edge[1]);
→ Point const& p2) {
                                                          root->children[0]=tab;root->children[1]=tbc
   p[0]=p0;p[1]=p1;p[2]=p2;children[0]=children[
                                                        ;root->children[2]=tca;
\rightarrow 1]=children[2]=0;
                                                          flip(tab,2); flip(tbc,2); flip(tca,2);
 bool has_children() const { return children[0]
                                                        void flip(TriangleRef tri, SideRef pi) {
  != 0; }
```

```
// 两点在平面同侧 : 点积法向量符号相同
     TriangleRef trj = tri->edge[pi].tri; int pj
                                                // 两直线平行 / 垂直 : 同二维
   = tri->edge[pi].side;
     if(!trj||!in_circumcircle(tri->p[0],tri->p[_
                                                // 平面平行 / 垂直 : 判断法向量
                                                // 线面垂直 : 法向量和直线平行
   1],tri->p[2],trj->p[pj]))
                                                // 判断空间线段是否相交 : 四点共面两线段不平行相互在
     TriangleRef trk = new(tot_triangles++)
                                                → 异侧
   Triangle(tri->p[(pi+1)%3], trj->p[pj],
                                                // 线段和三角形是否相交 : 线段在三角形平面不同侧 三
   tri->p[pi]);
                                                   角形任意两点在线段和第三点组成的平面的不同侧
     TriangleRef trl = new(tot_triangles++)
                                                // 求空间直线交点
   Triangle(trj->p[(pj+1)\%3], tri->p[pi],
                                                Point3D intersection(const Point3D &a0, const
  trj->p[pj]);
                                                → Point3D &b0, const Point3D &a1, const Point3D
     set_edge(Edge(trk,0), Edge(trl,0));
                                                set_edge(Edge(trk,1), tri->edge[(pi+2)%3]);
                                                 double t = ((a0.x - a1.x) * (a1.y - b1.y) -
   set_edge(Edge(trk,2), trj->edge[(pj+1)%3]);
                                                \rightarrow (a0.y - a1.y) * (a1.x - b1.x)) / ((a0.x -
     set_edge(Edge(trl,1), trj->edge[(pj+2)%3]);
                                                \rightarrow b0.x) * (a1.y - b1.y) - (a0.y - b0.y) * (a1.x
   set_edge(Edge(trl,2), tri->edge[(pi+1)%3]);
                                                   - b1.x));
     tri->children[0]=trk;tri->children[1]=trl;t
                                                 return a0 + (b0 - a0) * t;
   ri->children[2]=0;
     trj->children[0]=trk;trj->children[1]=trl;t |
                                                // 求平面和直线的交点
   rj->children[2]=0;
                                                Point3D intersection(const Point3D &a, const
     flip(trk,1); flip(trk,2); flip(trl,1);
                                                → Point3D &b, const Point3D &c, const Point3D
   flip(trl,2);
                                                }
                                                 Point3D p = pVec(a, b, c); // 平面法向量
};
                                                 double t = (p.x * (a.x - 10.x) + p.y * (a.y -
int n; Point ps[N];
                                                \rightarrow 10.y) + p.z * (a.z - 10.z)) / (p.x * (11.x -
void build(){
                                                  10.x) + p.y * (11.y - 10.y) + p.z * (11.z - 10.y)
 tot_triangles = triange_pool; cin >> n;
                                                  10.z));
 for(int i = 0; i < n; ++ i)
                                                 return 10 + (11 - 10) * t;
\rightarrow scanf("%lf%lf",&ps[i].x,&ps[i].y);
 random_shuffle(ps, ps + n); Triangulation tri;
                                                // 求平面交线 : 取不平行的一条直线的一个交点, 以及法
 for(int i = 0; i < n; ++ i)
                                                → 向量叉积得到直线方向
   tri.add_point(ps[i]);
                                                // 点到直线距离 : 叉积得到三角形的面积除以底边
                                                // 点到平面距离 : 点积法向量
                                                // 直线间距离 : 平行时随便取一点求距离, 否则叉积方向
10.9 三维几何基本操作
                                                  向量得到方向点积计算长度
                                                // 直线夹角 : 点积 平面夹角 : 法向量点积
// Dreadnought
                                                // 三维向量旋转操作 (绕向量 s 旋转 ang 角度), 对于右
struct Point3D {
                                                   手系 s 指向观察者时逆时针
 double x, y, z;
                                                // 矩阵版
                                                void rotate(const Point3D &s, double ang) {
Point3D det(const Point3D &a, const Point3D &b) {
                                                 double 1 = s.len(), x = s.x / 1, y = s.y / 1, z
 return Point3D(a.y * b.z - a.z * b.y, a.z * b.x
                                                \rightarrow = s.z / 1, sinA = sin(ang), cosA = cos(ang);
   -a.x * b.z, a.x * b.y - a.y * b.x);
                                                 double p[4][4] = \{CosA + (1 - CosA) * x * x, (1 - CosA)\}
}
                                                \hookrightarrow CosA) * x * y - SinA * z, (1 - CosA) * x * z +
// 平面法向量 : 平面上两个向量叉积
// 点共平面 : 平面上一点与之的向量点积法向量为 0
                                                   SinA * y, 0,
                                                   (1 - CosA) * y * x + SinA * z, CosA + (1 -
// 点在线段 (直线)上: 共线且两边点积非正
                                                   CosA) * y * y, (1 - CosA) * y * z - SinA * x,
// 点在三角形内 (不包含边界,需再判断是与某条边共线
                                                   0,
→ )
                                                   (1 - \cos A) * z * x - \sin A * y, (1 - \cos A) * z
bool pointInTri(const Point3D &a, const Point3D
                                                   * y + SinA * x, CosA + (1 - CosA) * z * z, 0,

→ &b, const Point3D &c, const Point3D &p) {
                                                   0, 0, 0, 1 };
 return sign(det(a - b, a - c).len() - det(p - a,
   p - b).len() - det(p - b, p - c).len() - det(p
                                                // 计算版 : 把需要旋转的向量按照 s 分解, 做二维旋转,
   - c, p - a).len()) == 0;
                                                   再回到三维
}
// 共平面的两点是否在这平面上一条直线的同侧
bool sameSide(const Point3D &a, const Point3D &b,
                                                10.10 三维凸包

→ const Point3D &p0, const Point3D &p1) {
                                                // Dreadnought
 return sign(dot(det(a - b, p0 - b), det(a - b,
                                                \#define\ SIZE(X)\ (int(X.size()))
   p1 - b))) > 0;
                                                #define PI 3.14159265358979323846264338327950288
}
```

```
struct Point {
                                                        return 0;
  Point cross(const Point &p) const {
                                                      }
    return Point(y * p.z - z * p.y, z * p.x - x *
                                                      int main() {
                                                        for (; scanf("%d", &n) == 1; ) {
   p.z, x * p.y - y * p.x);
                                                          for (int i = 0; i < n; i++) info[i].Input();</pre>
} info[1005];
                                                          sort(info, info + n); n = unique(info, info +
int mark[1005][1005],n, cnt;;
                                                       \rightarrow n) - info;
double mix(const Point &a, const Point &b, const
                                                          face.clear(); random_shuffle(info, info + n);
→ Point &c) {
                                                          if (Find()) {
  return a.dot(b.cross(c));
                                                            memset(mark, 0, sizeof(mark)); cnt = 0;
}
                                                            for (int i = 3; i < n; i++) add(i);</pre>
double area(int a, int b, int c) {
                                                          vector<Point> Ndir;
  return ((info[b] - info[a]).cross(info[c] -
                                                            for (int i = 0; i < SIZE(face); ++i) {</pre>
   info[a])).length();
                                                              Point p = (info[face[i][0]] -
}

    info[face[i][1]]).cross(info[face[i][2]] -

double volume(int a, int b, int c, int d) {
                                                          info[face[i][1]]);
                                                              p = p / p.length(); Ndir.push_back(p);
  return mix(info[b] - info[a], info[c] -
   info[a], info[d] - info[a]);
}
                                                            sort(Ndir.begin(), Ndir.end());
struct Face {
                                                            int ans = unique(Ndir.begin(), Ndir.end())
  int a, b, c; Face() {}
                                                          - Ndir.begin();
  Face(int a, int b, int c): a(a), b(b), c(c) {}
                                                            printf("%d\n", ans);
  int &operator [](int k) {
                                                          } else printf("1\n");
                                                        }
    if (k == 0) return a; if (k == 1) return b;
                                                      }

→ return c;

 }
                                                      // 求重心
};
                                                      double calcDist(const Point &p, int a, int b, int
vector <Face> face;
inline void insert(int a, int b, int c) {
                                                        return fabs(mix(info[a] - p, info[b] - p,
  face.push_back(Face(a, b, c));
                                                       \rightarrow info[c] - p) / area(a, b, c));
void add(int v) {
                                                      //compute the minimal distance of center of any
  vector <Face> tmp; int a, b, c; cnt++;
                                                          faces
  for (int i = 0; i < SIZE(face); i++) {</pre>
                                                      double findDist() { //compute center of mass
    a = face[i][0]; b = face[i][1]; c =
                                                        double totalWeight = 0;
\rightarrow face[i][2];
                                                        Point center(.0, .0, .0);
    if (Sign(volume(v, a, b, c)) < 0)
                                                        Point first = info[face[0][0]];
      mark[a][b] = mark[b][a] = mark[b][c] =
                                                        for (int i = 0; i < SIZE(face); ++i) {</pre>
\rightarrow mark[c][b] = mark[c][a] = mark[a][c] = cnt;
                                                          Point p = (info[face[i][0]]+info[face[i][1]]+ |
    else tmp.push_back(face[i]);

    info[face[i][2]]+first)*.25;

  } face = tmp;
                                                          double weight = mix(info[face[i][0]] - first,

→ info[face[i][1]] - first, info[face[i][2]] -
  for (int i = 0; i < SIZE(tmp); i++) {</pre>
    a = face[i][0]; b = face[i][1]; c =

    first);

                                                          totalWeight += weight; center = center + p *
   face[i][2];
    if (mark[a][b] == cnt) insert(b, a, v);
                                                          weight;
    if (mark[b][c] == cnt) insert(c, b, v);
                                                        }
    if (mark[c][a] == cnt) insert(a, c, v);
                                                        center = center / totalWeight;
  }
                                                        double res = 1e100; //compute distance
}
                                                        for (int i = 0; i < SIZE(face); ++i)</pre>
                                                          res = min(res, calcDist(center, face[i][0],
int Find() {
  for (int i = 2; i < n; i++) {
                                                          face[i][1], face[i][2]));
    Point ndir = (info[0] -
                                                        return res;
  info[i]).cross(info[1] - info[i]);
    if (ndir == Point()) continue; swap(info[i],
\rightarrow info[2]);
                                                      10.11 求四点外接球
    for (int j = i + 1; j < n; j++) if
                                                      // Dreadnought
  (Sign(volume(0, 1, 2, j)) != 0) {
                                                      // 注意,无法处理小于四点的退化情况
      swap(info[j], info[3]); insert(0, 1, 2);
                                                      int nouter; Tpoint outer[4], res; double radius;
    insert(0, 2, 1); return 1;
                                                      void ball() {
 }
                                                        Tpoint q[3]; double m[3][3], sol[3], L[3], det;
```

```
int i,j; res.x = res.y = res.z = radius = 0;
                                                       }
 for (i=0; i<3; ++i) q[i]=outer[i+1]-outer[0],</pre>
\rightarrow sol[i]=dot(q[i], q[i]);
                                                     void remove(int c) {
                                                       R[L[c]] = R[c], L[R[c]] = L[c];
 for (i=0;i<3;++i) for (j=0;j<3;++j)
→ m[i][j]=dot(q[i],q[j])*2;
                                                       for(int i = D[c]; i != c; i = D[i])
 det= m[0][0]*m[1][1]*m[2][2]
                                                         for(int j = R[i]; j != i; j = R[j])
   + m[0][1]*m[1][2]*m[2][0]
                                                           U[D[j]] = U[j], D[U[j]] = D[j], -- S[C[j]];
    + m[0][2]*m[2][1]*m[1][0]
    -m[0][2]*m[1][1]*m[2][0]
                                                     void resume(int c) {
    - m[0][1]*m[1][0]*m[2][2]
                                                       R[L[c]] = L[R[c]] = c;
                                                       for(int i = U[c]; i != c; i = U[i])
    - m[0][0]*m[1][2]*m[2][1];
                                                         for(int j = L[i]; j != i; j = L[j])
  if ( fabs(det)<eps ) return;</pre>
  for (j=0; j<3; ++j) {
                                                           U[D[j]] = D[U[j]] = j, ++S[C[j]];
    for (i=0; i<3; ++i) m[i][j]=sol[i];</pre>
   L[j]=(m[0][0]*m[1][1]*m[2][2]
                                                     int ans[MAXD], cnt;
        + m[0][1]*m[1][2]*m[2][0]
                                                     bool dance(int k) {
        + m[0][2]*m[2][1]*m[1][0]
                                                       int i, j, tmp, c;
        -m[0][2]*m[1][1]*m[2][0]
                                                       if( !R[0] ) return 1;
        -m[0][1]*m[1][0]*m[2][2]
                                                       for(tmp = MAXD, i = R[0]; i; i = R[i])
        -m[0][0]*m[1][2]*m[2][1]
                                                         if(S[i] < tmp) tmp = S[c = i];
        ) / det;
                                                       remove(c);
   for (i=0; i<3; ++i) m[i][j]=dot(q[i], q[j])*2;</pre>
                                                       for(i = D[c]; i != c; i = D[i]) {
                                                         ans[cnt++] = Row[i]; //用栈记录解
 } res=outer[0];
  for (i=0; i<3; ++i ) res = res + q[i] * L[i];
                                                         for(j = R[i]; j != i; j = R[j]) remove(C[j]);
  radius=dist2(res, outer[0]);
                                                         if(dance(k + 1)) return 1;
                                                         --cnt;
                                                         for(j = L[i]; j != i; j = L[j]) resume(C[j]);
      其他
11
                                                       resume(c);
                                                       return 0;
11.1 Dancing Links
// Dreadnought
                                                     // 可重复覆盖
// 精确覆盖
                                                     const int mxm = 15 * 15 + 10;
const int MAXD = 1120;
                                                     const int MAXD = 15 * 15 + 10;
const int MAXN = 1000200;
                                                     const int MAXDode = MAXD * mxm;
                                                     const int INF = 0x3f3f3f3f;
int n, m, t, size;
                                                     //能不加的行尽量不加,减少搜索时间
int U[MAXN], D[MAXN], L[MAXN], R[MAXN], C[MAXN],
→ Row [MAXN];
                                                     int U[MAXDode], D[MAXDode], R[MAXDode],
int H[MAXD], S[MAXD];
                                                      → L[MAXDode], Row[MAXDode], Col[MAXDode];
                                                     int H[MAXD], S[mxm];
void init(int n, int m) {
                                                     int ansd;
  for(int i = 0; i <= m; ++i) {
                                                     void init(int n, int m) {
    S[i] = 0, D[i] = U[i] = i;
                                                       int i;
   L[i+1] = i, R[i] = i + 1;
                                                       for(i = 0; i <= m; ++i) {
                                                         S[i] = 0, U[i] = D[i] = i;
 R[m] = 0, size = m;
                                                         L[i] = i - 1, R[i] = i + 1;
 for(int i = 1; i <= n; ++i)</pre>
   H[i] = -1;
                                                       R[m] = 0, L[0] = m, size = m;
                                                       for(i = 1; i \le n; ++i) H[i] = -1;
void link(int r, int c) {
 ++S[C[++size] = c];
                                                     void link(int r, int c) {
 Row[size] = r;
                                                       ++S[Col[++size] = c];
 D[size] = D[c], U[D[c]] = size;
                                                       Row[size] = r; D[size] = D[c]; U[D[c]] = size;
 U[size] = c, D[c] = size;

    U[size] = c; D[c] = size;

  if(H[r] < 0) H[r] = L[size] = R[size] = size;
                                                       if(H[r] < 0) H[r] = L[size] = R[size] = size;
  else {
                                                       else {
   R[size] = R[H[r]], L[R[size]] = size;
                                                         R[size] = R[H[r]];
   L[size] = H[r];
```

R[H[r]] = size;

L[R[H[r]]] = size;

L[size] = H[r];

```
bool has(int i, int j) { return a[(i - 1) % n] ==
        R[H[r]] = size;
    }
                                                                                                              \rightarrow b[(j - 1) % n];}
}
                                                                                                             const int DELTA[3][2] = \{\{0, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, \{-1, -1\}, 
void remove(int c) {
                                                                                                              → 0}};
    for(int i = D[c]; i != c; i = D[i])
                                                                                                             int from[N][N];
        L[R[i]] = L[i], R[L[i]] = R[i];
                                                                                                             int solve() {
                                                                                                                 memset(from, 0, sizeof(from));
void resume(int c) {
                                                                                                                 int ret = 0;
    for(int i = U[c]; i != c; i = U[i])
                                                                                                                 for (int i = 1; i \le 2 * n; ++ i) {
        L[R[i]] = R[L[i]] = i;
                                                                                                                      from[i][0] = 2;
                                                                                                                      int left = 0, up = 0;
                                                                                                                      for (int j = 1; j <= n; ++ j) {
bool vv[mxm];
int f() {
                                                                                                                          int upleft = up + 1 + !!from[i - 1][j];
    int ret = 0, c, i, j;
                                                                                                                          if (!has(i, j)) upleft = INT_MIN;
                                                                                                                          int max = std::max(left, std::max(upleft,
    for(c = R[0]; c != 0; c = R[c]) vv[c] = 1;
    for(c = R[0]; c != 0; c = R[c])

    up));

        if(vv[c]) {
                                                                                                                          if (left == max) {
            ++ret, vv[c] = 0;
                                                                                                                              from[i][j] = 0;
                                                                                                                          } else if (upleft == max) {
            for(i = D[c]; i != c; i = D[i])
                for(j = R[i]; j != i; j = R[j])
                                                                                                                              from[i][j] = 1;
                    vv[Col[i]] = 0;
                                                                                                                          } else {
        }
                                                                                                                              from[i][j] = 2;
                                                                                                                          }
    return ret;
}
                                                                                                                          left = max;
                                                                                                                      }
void dance(int d) {
    if(d + f() >= ansd) return;
                                                                                                                      if (i >= n) {
    if(R[0] == 0) {
                                                                                                                          int count = 0;
        if(d < ansd) ansd = d;</pre>
                                                                                                                          for (int x = i, y = n; y;) {
        return;
                                                                                                                              int t = from[x][y];
    }
                                                                                                                              count += t == 1;
    int c = R[0], i, j;
                                                                                                                              x += DELTA[t][0];
    for(i = R[0]; i; i = R[i])
                                                                                                                              y += DELTA[t][1];
        if(S[i] < S[c]) c = i;
    for(i = D[c]; i != c; i = D[i]) {
                                                                                                                          ret = std::max(ret, count);
                                                                                                                          int x = i - n + 1, y = 0;
        remove(i);
        for(j = R[i]; j != i; j = R[j]) remove(j);
                                                                                                                          from[x][0] = 0;
        dance(d + 1);
                                                                                                                          while (y \le n \&\& from[x][y] == 0) y++;
        for(j = L[i]; j != i; j = L[j]) resume(j);
                                                                                                                          for (; x <= i; ++ x) {
                                                                                                                              from[x][y] = 0;
        resume(i);
                                                                                                                              if (x == i) break;
}
                                                                                                                              for (; y <= n; ++ y) {
                                                                                                                                  if (from[x + 1][y] == 2) break;
                                                                                                                                  if (y + 1 \le n \&\& from[x + 1][y + 1] ==
               日期
11.2
                                                                                                                     1) {
// Dreadnought
                                                                                                                                      y ++; break;
int zeller(int y,int m,int d) {
                                                                                                                                  }
    if (m \le 2) y--, m+=12; int c=y/100; y%=100;
                                                                                                                              }
                                                                                                                          }
        w=((c>>2)-(c<<1)+y+(y>>2)+(13*(m+1)/5)+d-1)%7;
                                                                                                                     }
    if (w<0) w+=7; return(w);
                                                                                                                 }
                                                                                                                 return ret;
int getId(int y, int m, int d) {
    if (m < 3) \{y --; m += 12\};
   return 365 * y + y / 4 - y / 100 + y / 400 +
                                                                                                             11.4 经纬度球面距离
       (153 * m + 2) / 5 + d;
}
                                                                                                             // Dreadnought
                                                                                                             double sphereDis(double lon1, double lat1, double
                                                                                                              → lon2, double lat2, double R) {
11.3 环状最长公共子序列
                                                                                                                 return R * acos(cos(lat1) * cos(lat2) * cos(lon1
// Dreadnought
                                                                                                               → - lon2) + sin(lat1) * sin(lat2));
int n, a[N << 1], b[N << 1];</pre>
                                                                                                             }
```

11.5 长方体表面两点最短距离

```
// Dreadnought
int r;
void turn(int i, int j, int x, int y, int z,int
\rightarrow x0, int y0, int L, int W, int H) {
  if (z==0) { int R = x*x+y*y; if (R< r) r=R;
  } else {
    if(i>=0 && i< 2) turn(i+1, j, x0+L+z, y,
\rightarrow x0+L-x, x0+L, y0, H, W, L);
    if(j>=0 && j< 2) turn(i, j+1, x, y0+W+z,</pre>
\rightarrow y0+W-y, x0, y0+W, L, H, W);
    if(i<=0 && i>-2) turn(i-1, j, x0-z, y, x-x0,
\rightarrow x0-H, y0, H, W, L);
    if(j<=0 && j>-2) turn(i, j-1, x, y0-z, y-y0,
   x0, y0-H, L, H, W);
  }
}
int main(){
  int L, H, W, x1, y1, z1, x2, y2, z2;
  cin >> L >> W >> H >> x1 >> y1 >> z1 >> x2 >> y2
\rightarrow >> z2;
  if (z1!=0 \&\& z1!=H) if (y1==0 || y1==W)
    swap(y1,z1), std::swap(y2,z2), std::swap(W,H);
  else swap(x1,z1), std::swap(x2,z2),

    std::swap(L,H);

  if (z1==H) z1=0, z2=H-z2;
  r=0x3fffffff;
  turn(0,0,x2-x1,y2-y1,z2,-x1,-y1,L,W,H);
  cout<<r<<endl;</pre>
}
```

11.6 模拟退火

```
void simulateAnneal() {
    const double INIT_TEMP = 2e5;
    const double DELTA = 0.997;
    const double EPS = 1e-14;
    double curx = ansx, cury = ansy;
    for (double temp = INIT_TEMP; temp > EPS; temp
    *= DELTA) {
        double xx = curx + ((rand() << 1) -
    RAND_MAX) * temp;
        double yy = cury + ((rand() << 1) -</pre>
    RAND_MAX) * temp;
        double cure = calcEnergy(xx, yy);
        double diff = cure - anse;
        if (diff < 0) {</pre>
            ansx = curx = xx;
            ansy = cury = yy;
            anse = cure;
        } else if (exp(-diff / temp) * RAND_MAX >
   rand()) {
            curx = xx;
            cury = yy;
        }
    }
}
```

11.7 Simpson 积分

```
// Quasar
double area(const double &left, const double
double mid = (left + right) / 2;
   return (right - left) * (calc(left) + 4 *
   calc(mid) + calc(right)) / 6;
double simpson(const double &left, const double
const double &eps, const double
double mid = (left + right) / 2;
   double area_left = area(left, mid);
   double area_right = area(mid, right);
   double area_total = area_left + area_right;
   if (std::abs(area_total - area_sum) < 15 *</pre>
   eps) {
       return area_total + (area_total -
   area_sum) / 15;
   }
   return simpson(left, mid, eps / 2, area_left)
        + simpson(mid, right, eps / 2,
   area_right);
}
double simpson(const double &left, const double
return simpson(left, right, eps, area(left,
   right));
```

11.8 线性规划

```
// Dreadnought
// 求 max (cx), / Ax (leg b, x (geg o)) 的解
typedef vector<double> VD;
VD simplex(vector<VD> A, VD b, VD c) {
 int n = A.size(), m = A[0].size() + 1, r = n, s
\hookrightarrow = m - 1;
 vector<VD> D(n + 2, VD(m + 1, 0)); vector<int>
\rightarrow ix(n + m);
  for (int i = 0; i < n + m; ++ i) ix[i] = i;
 for (int i = 0; i < n; ++ i) {
    for (int j = 0; j < m - 1; ++ j) D[i][j] =
   -A[i][j];
    D[i][m-1] = 1; D[i][m] = b[i];
    if (D[r][m] > D[i][m]) r = i;
  for (int j = 0; j < m - 1; ++ j) D[n][j] = c[j];
  D[n + 1][m - 1] = -1;
  for (double d; ; ) {
    if (r < n) {
      int t = ix[s]; ix[s] = ix[r + m]; ix[r + m]
     D[r][s] = 1.0 / D[r][s]; vector<int>

    speedUp;

      for (int j = 0; j \le m; ++ j) if (j != s) {
        D[r][j] *= -D[r][s];
```

```
if(D[r][j]) speedUp.push_back(j);
     for (int i = 0; i <= n + 1; ++ i) if (i !=
  r) {
       for(int j = 0; j < speedUp.size(); ++ j)</pre>
         D[i][speedUp[j]] += D[r][speedUp[j]] *
  D[i][s];
       D[i][s] *= D[r][s];
     f(s) = -1; s = -1;
   for (int j = 0; j < m; ++ j) if (s < 0 ||
  ix[s] > ix[j]
     if (D[n + 1][j] > EPS || (D[n + 1][j] > -EPS
   && D[n][j] > EPS)) s = j;
   if (s < 0) break;
   for (int i = 0; i < n; ++ i) if (D[i][s] <
  -EPS)
     if (r < 0 || (d = D[r][m] / D[r][s] -
  D[i][m] / D[i][s]) < -EPS
         || (d < EPS \&\& ix[r + m] > ix[i + m])) r
  = i;
   if (r < 0) return VD(); // 无边界
 }
 if (D[n + 1][m] < -EPS) return VD(); // 无解
 VD \times (m - 1);
 for (int i = m; i < n + m; ++ i) if (ix[i] < m -
\rightarrow 1) x[ix[i]] = D[i - m][m];
 return x; // 最优值在 D[n][m]
```

积分表 12

```
\int \frac{1}{1+x^2} dx = \tan^{-1} x \int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}
\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln |a^2 + x^2| \int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a}
\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|
\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}
\int \frac{x^2}{\sqrt{x^2 + a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|
\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right|
\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}
\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2}
\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2}
\int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} +
  \frac{4ac-b^2}{8a^3/2} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx^+c)} \right|
\int x^{n} e^{ax} dx = \frac{x^{n} e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx\int \sin^{2} ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax \int \sin^{3} ax dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a}
\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a} \quad \int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}
\int \tan ax dx = -\frac{1}{a} \ln \cos ax \quad \int \tan^2 ax dx = -x + \frac{1}{a} \tan ax
\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax  1. 博弈在一列阶梯上进行,每个阶梯上放着自然数个点,
\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2} \int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}
```

Dreadnought 13

13.1 弦图

设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点, 判断 $v \cup N(v)$ 是否为极大 团, 只需判断是否存在一个 $w \in w*$, 满足 Next(w) = v 且 $|N(v)| + 1 \le |N(w)|$ 即可.

13.2 重心

半径为 r, 圆心角为 θ 的扇形重心与圆心的距离为 $\frac{4r\sin(\theta/2)}{3\theta}$ 半径为 r , 圆心角为 θ 的圆弧重心与圆心的距离为 $\frac{4r\sin^3(\theta/2)}{3(\theta-\sin(\theta))}$

13.3 三角公式

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b \quad \cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ $\tan(a\pm b) = \tfrac{\tan(a)\pm\tan(b)}{1\mp\tan(a)\tan(b)} \ \tan(a)\pm\tan(b) = \tfrac{\sin(a\pm b)}{\cos(a)\cos(b)}$ $\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$ $\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})\cos(a) - \cos(b) = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$ $\sin(na) = n\cos^{n-1} a \sin a - \binom{n}{3}\cos^{n-3} a \sin^3 a + \binom{n}{5}\cos^{n-5} a \sin^5 a - \dots$ $\cos(na) = \cos^n a - \binom{n}{2} \cos^{n-2} a \sin^2 a + \binom{n}{4} \cos^{n-4} a \sin^4 a - \dots$

14 Blazar

博弈 14.1

14.1.1 巴什博奕

- 1. 只有一堆 n 个物品,两个人轮流从这堆物品中取物,规 定每次至少取一个, 最多取 m 个。最后取光者得胜。
- 2. 显然,如果 n=m+1,那么由于一次最多只能取 m 个,所以,无论先取者拿走多少个,后取者都能够一次 拿走剩余的物品,后者取胜。因此我们发现了如何取 胜的法则:如果 n = m + 1r + s, (r 为任意自然数, $s \leq m$), 那么先取者要拿走 s 个物品, 如果后取者拿走 $k(k \le m)$ 个,那么先取者再拿走m+1-k个,结果 剩下 (m+1)(r-1) 个,以后保持这样的取法,那么先 取者肯定获胜。总之,要保持给对手留下 (m+1) 的倍 数,就能最后获胜。

14.1.2 威佐夫博弈

- 1. 有两堆各若干个物品,两个人轮流从某一堆或同时从两 堆中取同样多的物品, 规定每次至少取一个, 多者不限, 最后取光者得胜。
- 2. 判断一个局势 (a,b) 为奇异局势 (必败态) 的方法:

$$a_k = [k(1+\sqrt{5})/2] b_k = a_k + k$$

14.1.3 阶梯博奕

- 两个人进行阶梯博弈,每一步则是将一个阶梯上的若干 个点 (至少一个) 移到前面去, 最后没有点可以移动的 人输。
- 2. 解决方法: 把所有奇数阶梯看成 N 堆石子, 做 NIM。(把 石子从奇数堆移动到偶数堆可以理解为拿走石子,就相 当于几个奇数堆的石子在做 Nim)

14.1.4 链的删边游戏

- 1. 游戏规则:对于一条链,其中一个端点是根,两人轮流 删边,脱离根的部分也算被删去,最后没边可删的人输。
- 2. 做法: sg[i] = n dist(i) 1 (其中 n 表示总点数, dist(i) 表示离根的距离)

14.1.5 树的删边游戏

- 1. 游戏规则:对于一棵有根树,两人轮流删边,脱离根的部分也算被删去,没边可删的人输。
- 2. 做法: 叶子结点的 sg = 0, 其他节点的 sg 等于儿子结点的 sg + 1 的异或和。

14.1.6 局部连通图的删边游戏

- 1. 游戏规则:在一个局部连通图上,两人轮流删边,脱离根的部分也算被删去,没边可删的人输。局部连通图的构图规则是,在一棵基础树上加边得到,所有形成的环保证不共用边,且只与基础树有一个公共点。
- 2. 做法:去掉所有的偶环,将所有的奇环变为长度为1的链,然后做树的删边游戏。

14.2 求和公式

- 1. $\sum_{k=1}^{n} (2k-1)^2 = \frac{n(4n^2-1)}{3}$
- 2. $\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$
- 3. $\sum_{k=1}^{n} (2k-1)^3 = n^2(2n^2-1)$
- 4. $\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$
- 5. $\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$
- 6. $\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$
- 7. $\sum_{k=1}^{n} k(k+1)(k+2) = \frac{n(n+1)(n+2)(n+3)}{4}$
- 8. $\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = \frac{n(n+1)(n+2)(n+3)(n+4)}{5}$

14.3 斐波那契数列

- 1. $fib_0 = 0$, $fib_1 = 1$, $fib_n = fib_{n-1} + fib_{n-2}$
- 2. $fib_{n+2} \cdot fib_n fib_{n+1}^2 = (-1)^{n+1}$
- 3. $fib_{-n} = (-1)^{n-1} fib_n$
- 4. $fib_{n+k} = fib_k \cdot fib_{n+1} + fib_{k-1} \cdot fib_n$
- 5. $gcd(fib_m, fib_n) = fib_{gcd(m,n)}$
- 6. $fib_m|fib_n^2 \Leftrightarrow nfib_n|m$

14.4 错排公式

- 1. $D_n = (n-1)(D_{n-2} D_{n-1})$
- 2. $D_n = n! \cdot \left(1 \frac{1}{1!} + \frac{1}{2!} \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$

14.5 欧拉公式

平面图的顶点个数、边数和面的个数有如下关系:

$$V - E + F = C + 1$$

其中, V 是顶点的数目, E 是边的数目, F 是面的数目, C 是组成图形的连通部分的数目。当图是单连通图的时候, 公式简化为:

$$V - E + F = 2$$

14.6 皮克定理

给定顶点坐标均是整点 (或正方形格点) 的简单多边形, 其面积 A 和内部格点数目 i、边上格点数目 b 的关系:

$$A = i + \frac{b}{2} - 1$$

14.7 牛顿恒等式

设

$$\prod_{i=1}^{n} (x - x_i) = a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n$$

$$p_k = \sum_{i=1}^n x_i^k$$

则

$$a_0p_k + a_1p_{k-1} + \dots + a_{k-1}p_1 + ka_k = 0$$

特别地,对于

$$|\mathbf{A} - \lambda \mathbf{E}| = (-1)^n (a_n + a_{n-1}\lambda + \dots + a_1\lambda^{n-1} + a_0\lambda^n)$$

有

$$p_k = \operatorname{Tr}(\boldsymbol{A}^k)$$

14.8 平面几何公式

14.8.1 三角形

1. 半周长

$$p = \frac{a+b+c}{2}$$

2. 面积

$$S = \frac{a \cdot H_a}{2} = \frac{ab \cdot sinC}{2} = \sqrt{p(p-a)(p-b)(p-c)}$$

3. 中线

$$M_a = \frac{\sqrt{2(b^2 + c^2) - a^2}}{2} = \frac{\sqrt{b^2 + c^2 + 2bc \cdot cosA}}{2}$$

4. 角平分线

$$T_a = \frac{\sqrt{bc \cdot [(b+c)^2 - a^2]}}{b+c} = \frac{2bc}{b+c} cos \frac{A}{2}$$

5. 高线

$$H_a = bsinC = csinB = \sqrt{b^2 - (\frac{a^2 + b^2 - c^2}{2a})^2}$$

6. 内切圆半径

$$r = \frac{S}{p} = \frac{\arcsin\frac{B}{2} \cdot \sin\frac{C}{2}}{\sin\frac{B+C}{2}} = 4R \cdot \sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$
$$= \sqrt{\frac{(p-a)(p-b)(p-c)}{p}} = p \cdot \tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}$$

7. 外接圆半径

$$R = \frac{abc}{4S} = \frac{a}{2sinA} = \frac{b}{2sinB} = \frac{c}{2sinC}$$

14.8.2 四边形

 D_1, D_2 为对角线,M 对角线中点连线,A 为对角线夹角,p 为半周长

- 1. $a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4M^2$
- 2. $S = \frac{1}{2}D_1D_2sinA$
- 3. 对于圆内接四边形

$$ac + bd = D_1D_2$$

4. 对于圆内接四边形

$$S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

14.8.3 正 n 边形

R 为外接圆半径, r 为内切圆半径

1. 中心角

$$A = \frac{2\pi}{n}$$

2. 内角

$$C = \frac{n-2}{n}\pi$$

3. 边长

$$a=2\sqrt{R^2-r^2}=2R\cdot\sin\frac{A}{2}=2r\cdot\tan\frac{A}{2}$$

4. 面积

$$S = \frac{nar}{2} = nr^2 \cdot tan\frac{A}{2} = \frac{nR^2}{2} \cdot sinA = \frac{na^2}{4 \cdot tan\frac{A}{2}}$$

14.8.4 圆

1. 弧长

$$l = rA$$

2. 弦长

$$a=2\sqrt{2hr-h^2}=2r\cdot sin\frac{A}{2}$$

3. 弓形高

$$h = r - \sqrt{r^2 - \frac{a^2}{4}} = r(1 - \cos\frac{A}{2}) = \frac{1}{2} \cdot \arctan\frac{A}{4}$$

4. 扇形面积

$$S_1 = \frac{rl}{2} = \frac{r^2 A}{2}$$

5. 弓形面积

$$S_2 = \frac{rl - a(r - h)}{2} = \frac{r^2}{2}(A - sinA)$$

14.8.5 棱柱

1. 体积

$$V = Ah$$

A 为底面积, h 为高

2. 侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 全面积

$$T = S + 2A$$

14.8.6 棱锥

1. 体积

$$V = Ah$$

A 为底面积, h 为高

2. 正棱锥侧面积

$$S = lp$$

l 为棱长, p 为直截面周长

3. 正棱锥全面积

$$T = S + 2A$$

14.8.7 棱台

1. 体积

$$V = (A_1 + A_2 + \sqrt{A_1 A_2}) \cdot \frac{h}{3}$$

 A_1, A_2 为上下底面积, h 为高

2. 正棱台侧面积

$$S = \frac{p_1 + p_2}{2}l$$

 p_1, p_2 为上下底面周长, l 为斜高

3. 正棱台全面积

$$T = S + A_1 + A_2$$

14.8.8 圆柱

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = 2\pi r(h+r)$$

3. 体积

$$V=\pi r^2 h$$

14.8.9 圆锥

1. 母线

$$l = \sqrt{h^2 + r^2}$$

2. 侧面积

$$S = \pi r l$$

3. 全面积

$$T = \pi r(l+r)$$

4. 体积

$$V = \frac{\pi}{3}r^2h$$

14.8.10 圆台

1. 母线

$$l = \sqrt{h^2 + (r_1 - r_2)^2}$$

2. 侧面积

$$S = \pi(r_1 + r_2)l$$

3. 全面积

$$T = \pi r_1(l + r_1) + \pi r_2(l + r_2)$$

4. 体积

$$V = \frac{\pi}{3}(r_1^2 + r_2^2 + r_1 r_2)h$$

14.8.11 球

1. 全面积

$$T = 4\pi r^2$$

2. 体积

$$V = \frac{4}{3}\pi r^3$$

14.8.12 球台

1. 侧面积

$$S = 2\pi rh$$

2. 全面积

$$T = \pi(2rh + r_1^2 + r_2^2)$$

3. 体积

$$V = \frac{\pi h[3(r_1^2 + r_2^2) + h^2]}{6}$$

14.8.13 球扇形

1. 全面积

$$T = \pi r (2h + r_0)$$

h 为球冠高, r_0 为球冠底面半径

2. 体积

$$V = \frac{2}{3}\pi r^2 h$$

14.9 立体几何公式

14.9.1 球面三角公式

设 a,b,c 是边长, A,B,C 是所对的二面角, 有余弦定理

$$cosa = cosb \cdot cosc + sinb \cdot sinc \cdot cosA$$

正弦定理

$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$

三角形面积是 $A + B + C - \pi$

14.9.2 四面体体积公式

U, V, W, u, v, w 是四面体的 6 条棱, U, V, W 构成三角形, (U, u), (V, v), (W, w) 互为对棱, 则

$$V = \frac{\sqrt{(s-2a)(s-2b)(s-2c)(s-2d)}}{192uvw}$$

其中

$$\begin{cases} a &= \sqrt{xYZ}, \\ b &= \sqrt{yZX}, \\ c &= \sqrt{zXY}, \\ d &= \sqrt{xyz}, \\ s &= a+b+c+d, \\ X &= (w-U+v)(U+v+w), \\ x &= (U-v+w)(v-w+U), \\ Y &= (u-V+w)(V+w+u), \\ Y &= (V-w+u)(w-u+V), \\ Z &= (v-W+u)(W+u+v), \\ z &= (W-u+v)(u-v+W) \end{cases}$$

15 常见问题

15.1 编译指令

- 1. -O2 -g -std = c + +11
- 2. -Wall -Wextra -Wconversion
- 3. -fsantitze=(address/undefined): 检查有符号整数溢出 (无符号整数溢出不算 ub)、数组越界

15.2 问题汇总

- 1. 数组或者变量类型开错,例如将 double 开成 int, 或忘开 long long;
- 2. 函数忘记返回返回值;
- 3. 初始化数组没有初始化完全;
- 4. 对空间限制判断不足导致 MLE;
- 5. 多测清空,清空所有全局变量、数组(不是只有数组);
- 6. n, m, i, j 打错、打反;
- 7. 边界 ±1 的情况;
- 8. 访问负下标, +n 是否足够;
- 9. 输入量达到 5×106 可以考虑快读, 并采用缓冲区;
- 10. PE 显示成了 WA, 或其他错误。

16 cheat.pdf

Theoretical Computer Science Cheat Sheet				
Definitions		Series		
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$		
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	i=1 $i=1$ $i=1$ In general:		
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$		
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$		
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:		
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\begin{cases} \sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, & c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1, \end{cases}$		
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\begin{cases} \sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, & c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, & c < 1. \end{cases}$		
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $H_n = \sum_{i=1}^{n} \frac{1}{i}, \qquad \sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$		
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	i=1 $i=1$		
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$		
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$		
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$ 4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $		
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$		
$\binom{n}{k}$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$		
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$		
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$ 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$ 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$				
$\begin{bmatrix} 18. \ \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, 19. \ \begin{Bmatrix} n \\ n-1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}, 20. \ \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$				
$ 22. \ \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, $ $ 23. \ \left\langle {n \atop k} \right\rangle = \left\langle {n \atop n-1-k} \right\rangle, $ $ 24. \ \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle, $				
$25. \ \left\langle \begin{matrix} 0 \\ k \end{matrix} \right\rangle = \left\{ \begin{matrix} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{matrix} \right. $ $26. \ \left\langle \begin{matrix} n \\ 1 \end{matrix} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle \begin{matrix} n \\ 2 \end{matrix} \right\rangle = 3^n - (n+1)2^n + \binom{n+1}{2}, $				
28. $x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n},$ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k,$ 30. $m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$				
31. $\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!,$ 32. $\binom{n}{0} = 1,$ 33. $\binom{n}{n} = 0$ for $n \neq 0$,				
34. $\left\langle \left\langle {n \atop k} \right\rangle \right\rangle = (k+1) \left\langle \left\langle {n-1 \atop k} \right\rangle + (2n-1-k) \left\langle \left\langle {n-1 \atop k-1} \right\rangle \right\rangle,$ 35. $\sum_{k=0}^{n} \left\langle \left\langle {n \atop k} \right\rangle \right\rangle = \frac{(2n)^{\underline{n}}}{2^{n}},$				
36. $\begin{cases} x \\ x-n \end{cases} = \sum_{k=0}^{n} \left\langle \!\! \binom{n}{k} \!\! \right\rangle \!\! \binom{x+n-1-k}{2n},$ 37. $\begin{cases} n+1 \\ m+1 \end{cases} = \sum_{k=0}^{n} \left\{ \!\! \binom{n}{k} \!\! \right\} = \sum_{k=0}^{n} \left\{ \!\! \binom{k}{m} \!\! \right\} = \sum_{k=0}^{n} \left\{ \!\! \binom{n}{k} \!\! \right\} = \sum_{k=0}^{n}$				

$$38. \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad 39. \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \binom{m}{k} \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \textbf{45.} \ (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

$$\mathbf{46.} \ \left\{ \begin{array}{l} n \\ n-m \end{array} \right\} = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \mathbf{47.} \ \left[\begin{array}{l} n \\ n-m \end{array} \right] = \sum_{k} \binom{m-n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

48.
$${n \brace \ell + m} {\ell + m \choose \ell} = \sum_k {k \brace \ell} {n - k \brack m} {n \brack k},$$
 49.
$${n \brack \ell + m} {\ell + m \brack \ell} = \sum_k {k \brack \ell} {n - k \brack m} {n \brack k}.$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

$$(n-m)!\binom{n}{m} = \sum_{k} {n+1 \brack k+1} {n \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

$$(m-n) (m+n) (m+k)$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i\geq 0} g_{i+1} x^i = \sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i \ge 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

			Theoretical Computer Science C
	$\pi \approx 3.14159,$		71828, $\gamma \approx 0.57721$, $\phi = \frac{1+\gamma}{2}$
i	2^i	p_i	General
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$)
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{3}$
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$
4	16	7	Change of base, quadratic formula:
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
6	64	13	- Su
7	128	17	Euler's number e:
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x.$
10	1,024	29	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}.$
11	2,048	31	107
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right)^n$
13	8,192	41	Harmonic numbers:
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, .$
15	32,768	47	/ 2 / 6 / 12 / 60 / 20 / 140 / 280 / 2520 /
16	65,536	53	$ \ln n < H_n < \ln n + 1, $
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$
18	262,144	61	(")
19	524,288	67	Factorial, Stirling's approximation:
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,
21	2,097,152	73	$-(n)^n$ (1)
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$
23	8,388,608	83	Ackermann's function and inverse:
24	16,777,216	89	$\begin{cases} 2^j & i = 1 \end{cases}$
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 0 \end{cases}$
26	67,108,864	101	
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$
28	268,435,456	107	Binomial distribution:
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - 1$
30	1,073,741,824	113	
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$
32	4,294,967,296	131	$\kappa=1$
	Pascal's Triangl	e	Poisson distribution: $e^{-\lambda}\lambda^k$
1			$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{1 - k}, E[X] = \lambda.$

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61803,$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -.61803$$

Continuous distributions: If

$$\Pr[a < X < b] = \int_a^b p(x) \, dx,$$

Probability

then p is the probability density function of X. If

$$\Pr[X < a] = P(a),$$

then P is the distribution function of X. If P and p both exist then

$$P(a) = \int_{-\infty}^{a} p(x) \, dx.$$

Expectation: If X is discrete

$$\operatorname{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

If X continuous then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$$

Variance, standard deviation:

$$VAR[X] = E[X^{2}] - E[X]^{2},$$

$$\sigma = \sqrt{VAR[X]}.$$

For events A and B:

$$Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$$

$$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$$

iff A and B are independent.

$$\Pr[A|B] = \frac{\Pr[A \wedge B]}{\Pr[B]}$$

For random variables X and Y:

$$E[X \cdot Y] = E[X] \cdot E[Y],$$

if X and Y are independent.

$$E[X + Y] = E[X] + E[Y],$$

$$E[cX] = c E[X].$$

Bayes' theorem:

$$\Pr[A_i|B] = \frac{\Pr[B|A_i]\Pr[A_i]}{\sum_{j=1}^n \Pr[A_j]\Pr[B|A_j]}.$$

$$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$$

$$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j} \right].$$

Moment inequalities:

$$\Pr[|X| \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda},$$

$$\Pr\left[\left|X - \mathrm{E}[X]\right| \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$$

Geometric distribution:

$$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$$

$$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$$

$$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \quad E[X] = \lambda.$$

Normal (Gaussian) distribution:

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad E[X] = \mu.$$

The "coupon collector": We are given a random coupon each day, and there are ndifferent types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

 nH_n .

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x),$$
 $\csc x = \cot \frac{x}{2} - \cot x,$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x,$$
 $\sin 2x = \frac{2\tan x}{1 + \tan^2 x},$
 $\cos 2x = \cos^2 x - \sin^2 x,$ $\cos 2x = 2\cos^2 x - 1,$

$$\cos 2x = \cos^2 x$$
 $\sin^2 x$, $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 © 1994 by Steve Seiden sseiden@acm.org

http://www.csc.lsu.edu/~seiden

Matrices

Multiplication:

$$C = A \cdot B, \quad c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceg - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\begin{split} \sinh x &= \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}, \\ \tanh x &= \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x}, \\ \operatorname{sech} x &= \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}. \end{split}$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$ $\frac{\pi}{4}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$ $\frac{\pi}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	∞

... in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

$$c^2 = a^2 + b^2 - 2ab\cos C.$$

Area:

$$\begin{split} A &= \frac{1}{2}hc, \\ &= \frac{1}{2}ab\sin C, \\ &= \frac{c^2\sin A\sin B}{2\sin C}. \end{split}$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$\tan x = -i\frac{e^{ix} + e^{-ix}}{e^{ix} + e^{-ix}},$$
$$= -i\frac{e^{2ix} - 1}{e^{2ix}},$$

$$\sin x = \frac{\sinh ix}{i},$$

$$\cos x = \cosh ix,$$

$$\tan x = \frac{\tanh ix}{i}.$$

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: An edge connecting a ver-Loop tex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. SimpleGraph with no loops or : : : multi-edges. $C \equiv r_n \mod m_n$ A sequence $v_0e_1v_1\ldots e_\ell v_\ell$. Walkif m_i and m_j are relatively prime for $i \neq j$. TrailA walk with distinct edges. Path trail with distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ ComponentΑ \max imal connected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \bmod b$. DAGDirected acyclic graph. EulerianGraph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p$. Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of xCut-setA minimal cut. $S(x) = \sum_{d \mid r} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ $Cut\ edge$ A size 1 cut. k-Connected A graph connected with the removal of any k-1Perfect Numbers: x is an even perfect numk-Tough $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. $k \cdot c(G - S) < |S|$. Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$. have degree k. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of } \\ r & \text{distinct primes.} \end{cases}$ Möbius inversion: k-regular k-Factor Α spanning subgraph. A set of edges, no two of Matching which are adjacent. CliqueA set of vertices, all of If which are adjacent. $G(a) = \sum_{d|a} F(d),$ Ind. set A set of vertices, none of which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{u} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding of a planar $+O\left(\frac{n}{\ln n}\right),$ $\sum_{v \in V} \deg(v) = 2m.$ $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$ If G is planar then n-m+f=2, so f < 2n - 4, m < 3n - 6.

 $+O\left(\frac{n}{(\ln n)^4}\right).$

Notation:				
E(G)	Edge set			
V(G)	Vertex set			
c(G)	Number of components			
G[S]	Induced subgraph			
deg(v)	Degree of v			
$\Delta(G)$	Maximum degree			
$\delta(G)$	Minimum degree			
$\chi(G)$	Chromatic number			
$\chi_E(G)$	Edge chromatic number			
G^c	Complement graph			
K_n	Complete graph			
K_{n_1, n_2}	Complete bipartite graph			
$\mathrm{r}(k,\ell)$	Ramsey number			
Coometry				

Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0$. Cartesian Projective $(x, y) \quad (x, y, 1)$ $y = mx + b \quad (m, -1, b)$ $x = c \quad (1, 0, -c)$ Distance formula, L_p and L_∞ metric:

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$[|x_1 - x_0|^p + |y_1 - y_0|^p]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$(0, 0) \qquad \ell_1 \qquad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Any planar graph has a vertex with de-

gree ≤ 5 .

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.** $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}$, **6.** $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$

Calculus

$$6. \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$\mathbf{14.} \ \frac{d(\csc u)}{dx} = -\cot u \, \csc u \frac{du}{dx}.$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

$$16. \ \frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1+u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$20. \ \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1}x^{n+1}$$
, $n \neq -1$, **4.** $\int \frac{1}{x}dx = \ln x$, **5.** $\int e^x dx = e^x$,

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** \int

$$= \ln x, \qquad \mathbf{5.} \quad \int e^x \, dx = e^x,$$

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

$$\mathbf{13.} \int \csc x \, dx = \ln|\csc x + \cot x|.$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

$$\int \sin^2(ux)ux = \frac{1}{2a}(ux) \sin(ux)\cos x$$

$$19. \int \sec^2 x \, dx = \tan x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad \textbf{27.} \int \sinh x \, dx = \cosh x, \quad \textbf{28.} \int \cosh x \, dx = \sinh x,$$

20.
$$\int \csc^{-x} dx = -\frac{1}{n-1} + \frac{1}{n-1} \int \csc^{-x} dx, \quad n \neq 1, \quad 27. \int \sinh x \, dx = \cosh x, \quad 28. \int \cosh x \, dx = \sinh x,$$
29.
$$\int \tanh x \, dx = \ln|\cosh x|, \quad 30. \int \coth x \, dx = \ln|\sinh x|, \quad 31. \int \operatorname{sech} x \, dx = \arctan \sinh x, \quad 32. \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2} x$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34. $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$ **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x,$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

$$\int x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0$$

38.
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

$$44. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

$$\int \cos (ax)ax = \frac{1}{2a}(ax + \sin(ax)\cos(ax)),$$

20.
$$\int \csc^2 x \, dx = -\cot x$$
,
22. $\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$,

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

27.
$$\int \sinh x \, dx = \cosh x$$
, 28. $\int \cosh x \, dx = \sinh x$,

$$35. \int \operatorname{sech}^2 x \, dx = \tanh x,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{\pi}{2} \arcsin \frac{\pi}{a}, \quad a > 0,$$

45.
$$\int \frac{1}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - x^2}}$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right|, \quad a > 0,$$

49.
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

53.
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2},$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right)(x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$\mathbf{E} f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{x^{\underline{n+1}}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{0}} = 1,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$=1/(x+1)^{-n},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x+n-1)^{\underline{n}}$$

$$=1/(x-1)^{-n},$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brace k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\begin{array}{lll} \frac{1}{1-x} & = 1+x+x^2+x^3+x^4+\cdots & = \sum\limits_{i=0}^{\infty} x^i, \\ \frac{1}{1-cx} & = 1+cx+c^2x^2+c^3x^3+\cdots & = \sum\limits_{i=0}^{\infty} c^ix^i, \\ \frac{1}{1-x^n} & = 1+x^n+x^{2n}+x^{3n}+\cdots & = \sum\limits_{i=0}^{\infty} c^ix^i, \\ \frac{x}{(1-x)^2} & = x+2x^2+3x^3+4x^4+\cdots & = \sum\limits_{i=0}^{\infty} ix^i, \\ \frac{x}{(1-x)^2} & = x+2x^2+3^nx^3+4^nx^4+\cdots & = \sum\limits_{i=0}^{\infty} i^nx^i, \\ e^x & = 1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots & = \sum\limits_{i=0}^{\infty} i^nx^i, \\ \ln(1+x) & = x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \ln\frac{1}{1-x} & = x+\frac{1}{2}x^2+\frac{1}{3}x^3+\frac{1}{4}x^4+\cdots & = \sum\limits_{i=1}^{\infty} (-1)^{i+1}\frac{x^i}{i}, \\ \sin x & = x-\frac{1}{3}x^3+\frac{1}{3}x^5-\frac{1}{i1}x^7+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ \cos x & = 1-\frac{1}{2}x^2+\frac{1}{4}x^4-\frac{1}{6!}x^6+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ (1+x)^n & = 1+nx+\frac{n(n-1)}{2}x^2+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{1}{(1-x)^{n+1}} & = 1+(n+1)x+\binom{n+2}{2}x^2+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{x}{e^x-1} & = 1-\frac{1}{2}x+\frac{1}{12}x^2-\frac{1}{720}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{B_ix^i}{i!}, \\ \frac{1}{\sqrt{1-4x}} & = 1+2x+6x^2+20x^3+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i}{i}x^i, \\ \frac{1}{\sqrt{1-4x}} & = 1+2x+6x^2+20x^3+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i}{i}x^i, \\ \frac{1}{1-x}\ln\frac{1}{1-x} & = x+\frac{3}{2}x^2+\frac{11}{6}x^3+\frac{12}{25}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{11}{24}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}x^i}{i}, \\ \frac{x}{1-x-x^2} & = x+x^2+2x^3+3x^4+\cdots & = \sum\limits_{i=0}^{\infty} F_{ii}x^i. \end{array}$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man.

- Leopold Kronecker

Theoretical Computer Science Cheat Sheet Escher's Knot Expansions: $\frac{1}{(1-x)^{n+1}}\ln\frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \left\{\frac{i}{n}\right\} x^i,$ $(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} {i \choose n} \frac{n! x^{i}}{i!},$ $x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},$ $=\sum_{i=1}^{\infty} {n \brack i} x^{i},$ $=\sum_{i=0}^{i=0} \begin{bmatrix} i \\ n \end{bmatrix} \frac{n!x^i}{i!},$ $= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i}-1)B_{2i}x^{2i-1}}{(2i)!}, \qquad \zeta(x) \qquad = \sum_{i=1}^{\infty} \frac{1}{i^x}$ $\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$ $=\sum_{i=1}^{\infty}\frac{\mu(i)}{i^x},$ $= \prod \frac{1}{1 - n^{-x}},$ Stieltjes Integration $\zeta^2(x)$ = $\sum_{i=1}^{\infty} \frac{d(i)}{x^i}$ where $d(n) = \sum_{d|n} 1$, $\int_{a}^{b} G(x) \, dF(x)$ exists. If $a \leq b \leq c$ then $\zeta(x)\zeta(x-1)$ = $\sum_{i=1}^{\infty} \frac{S(i)}{x^i}$ where $S(n) = \sum_{d|n} d$, $= \frac{2^{2n-1}|B_{2n}|}{(2n)!} \pi^{2n}, \quad n \in \mathbb{N},$

 $\sqrt{\frac{1-\sqrt{1-x}}{x}} = \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

 $\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n = \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^i,$

 $e^x \sin x \qquad = \sum_{i=1}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^i,$

 $= \sum_{i=1}^{\infty} (-1)^{i-1} \frac{(4^{i}-2)B_{2i}x^{2i}}{(2i)!},$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

 $n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$ where $k_i \geq k_{i+1} + 2$ for all i, $1 \le i < m \text{ and } k_m \ge 2.$

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

$$\begin{split} & \int_a^b \left(G(x) + H(x) \right) dF(x) = \int_a^b G(x) \, dF(x) + \int_a^b H(x) \, dF(x), \\ & \int_a^b G(x) \, d \big(F(x) + H(x) \big) = \int_a^b G(x) \, dF(x) + \int_a^b G(x) \, dH(x), \\ & \int_a^b c \cdot G(x) \, dF(x) = \int_a^b G(x) \, d \big(c \cdot F(x) \big) = c \int_a^b G(x) \, dF(x), \\ & \int_a^b G(x) \, dF(x) = G(b) F(b) - G(a) F(a) - \int_a^b F(x) \, dG(x). \end{split}$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$