Université Ibn Zohr

Ecole Supérieure de l'Education et de la Formation - Agadir ESEFA

Année Universitaire 2019/2020 Semestre 2

Nom:	; Prénom :	Note:
Filière :	; N° Apogée :	20

ELECTRICITE

CONTRÔLE $N^{\circ}:3$

Une distribution volumique de charges **constante** ρ est comprise entre deux sphères S_1 et S_2 concentrique de centre O, de rayon respectifs R_1 et R_2 ($R_1 < R_2$).

- 1. Calculer le champ électrique \vec{E} crée par cette distribution en tout point de l'espace :
 - **a.** Calculer le flux ϕ qui traverse la surface de Gauss ? (1,5 points)
 - **b.** Déterminer le champ $\vec{E}(M)$ en tout point pour pour $r < R_1$? (1 points)
 - **c.** Déterminer le champ $\vec{E}(M)$ en tout point pour pour $R_1 < r < R_2$? (1,5 points)
 - **d.** Déterminer le champ $\vec{E}(M)$ en tout point pour $r > R_2$? (1,5 points)
 - **e.** Tracer la courbe de E(r) ? (1,5 points)
- 2. Calculer le potentiel électrique V(r) crée par cette distribution en tout point de l'espace :
 - **a.** Pour $r > R_2$ (2 points)
 - **b.** Pour $R_1 < r < R_2$ (2 points)
 - **c.** Pour $r < R_1$ (2 points)
 - **d.** Tracer la courbe de V(r) (1,5 points)
- **3.** Si l'on fait tendre R_1 vers R_2 , la charge totale se trouve alors répartie sur la surface d'une sphère de rayon R_2 .
 - **a.** Déterminer l'expression de ρ en fonction de R_1 , R_2 et σ (σ densité surfacique de la sphère de rayon R_2)? (1,5 points)
 - **b.** Donner l'expression du champ électrique crée par cette distribution ? (2 points)
 - c. Donner l'expression du potentiel électrique crée par cette distribution ? (2 points)