

PurdueX: 416.2x Probability: Distribution Models & Continuous Random Variables

Help

Bookmarks

- Welcome
- Unit 7: Continuous Random Variables
- Unit 8: Conditional Distributions and Expected Values
- L8.1: Conditional
 Distributions for
 Continuous Random
 Variables
- L8.2: Expected Values of Continuous Random Variables
- L8.3: Expected Values of Functions of Random Variables I
- L8.4: Expected Values of Functions of Random Variables II

Unit 8: Conditional Distributions and Expected Values > L8.7: Quiz > Unit 8: Quiz

Unit 8: Quiz

 \square Bookmark this page

Unit 8: Quiz

The problems in the quiz will be automatically graded.

You are given only **ONE** attempt for each problem. You will be able to see the solution after you submit your answers.

If the answer is numeric and has more than 4 decimal places, just give your answers to **4 decimal places (0.0001 accuracy)** unless otherwise stated.

e.g. for 0.123456... you just need to round it up to 0.1235

Problem 1

2/3 points (graded)

1. Suppose X and Y have joint probability density function

$$f_{X,Y}(x,y) = 70e^{-3x-7y}$$

for 0 < x < y; and $f_{X,Y}(x,y) = 0$ otherwise.

12/20/2016

L8.5: Facts about the Variance

L8.6: Practice

L8.7: Quiz Quiz

 Unit 9: Models of Continuous Random Variables

- Unit 10: Normal
 Distribution and
 Central Limit Theorem
 (CLT)
- Unit 11: Covariance, Conditional Expectation, Markov and Chebychev Inequalities
- Unit 12: Order
 Statistics, Moment
 Generating Functions,
 Transformation of RVs

1a. For x>0, find the density $f_X(x)$ of X. Compute the value of $f_X(0.1)$.

$$f_X(0.1) = 9.048374$$
 X Answer: 3.678794

1b. For x>0, use your answer to **a** to find the conditional density $f_{Y|X}(y\mid x)$ of Y given X=x, then compute the value of $f_{Y|X}(0.2\mid 0.1)$

1c. When x=1/10, verify that the conditional probability density function $f_{Y|X}(y\mid \frac{1}{10})$ is a valid density, i.e., that (1) it is nonnegative and (2) we get 1 when integrating over the relevant y's.

1d. Find the conditional probability that Y>1/4, given X=1/10, i.e., $P(Y>1/4\mid X=1/10)$.

Explanation

1a. For x>0, we have $f_X(x)=\int_x^\infty 70e^{-3x-7y}\,dy=10e^{-10x}$; for $x\leq 0$, we have $f_X(x)=0$.

1b. For x>0, the conditional density is $f_{Y\mid X}(y\mid x)=rac{f_{X,Y}(x,y)}{f_Y(x)}=rac{70e^{-3x-7y}}{10e^{-10x}}=7e^{7x-7y}$.

1c. We have $f_{Y|X}(y\mid \frac{1}{10})=7e^{7(1/10)-7y}$, which is nonnegative, and $\int_{1/10}^{\infty}7e^{7(1/10)-7y}\,dy=1$.

1d. We have $P(Y>1/4\mid X=1/10)=\int_{1/4}^{\infty}f_{Y\mid X}(y\mid \frac{1}{10})=e^{-21/20}=0.3499.$

Submit

You have used 1 of 1 attempt

Problem 2

1/2 points (graded)

2a. How do you setup a calculation to compute $P(Y>1/4\mid X>1/10)$? Do you need the conditional probability density function $f_{Y\mid X}(y\mid x)$ for this calculation? (Notice that we are now conditioning on X>1/10 instead of X=1/10.) Go ahead and calculate $P(Y>1/4\mid X>1/10)$. It might help to draw separate pictures for the numerator and denominator, so that you get the regions of integration right.

2b. Find the conditional probability that Y < 1/3, given X > 1/10, i.e., $P(Y < 1/3 \mid X > 1/10)$.

$$P(Y < 1/3 \mid X > 1/10) = 0.3490748$$
 * Answer: 0.575

Explanation

2a. We don't need $f_{Y|X}(y \mid x)$ for this part at all. Instead, we use the basic definition of conditional probability from Problem Set 4 (second week of class).

We need to compute
$$P(Y>1/4 \mid X>1/10) = \frac{P(Y>1/4 \ \& \ X>1/10)}{P(X>1/10)}$$
.

For the numerator,

$$P(Y > 1/4 \& X > 1/10) = \int_{1/4}^{\infty} \int_{1/10}^{y} 70e^{-3x-7y} dx dy \ = \int_{1/4}^{\infty} \left(\frac{70}{3} e^{-(3/10)-7y} - \frac{70}{3} e^{-10y} \right) dy$$

$$=\frac{10}{3}e^{-41/20}-\frac{7}{3}e^{-5/2}=0.2376$$

For the denominator,

$$P(X > 1/10) = \int_{1/10}^{\infty} \int_{x}^{\infty} 70e^{-3x-7y} dy dx$$

= $\int_{1/10}^{\infty} 10e^{-10x} dx = e^{-1} = 0.3679$.

So we get

$$P(Y > 1/4 \mid X > 1/10) = \frac{P(Y > 1/4 \& X > 1/10)}{P(X > 1/10)}$$

= 0.2376/0.3679 = 0.6458.

2b. We need to compute $P(Y < 1/3 \mid X > 1/10) = \frac{P(Y < 1/3 \& X > 1/10)}{P(X > 1/10)}$.

For the numerator,

$$egin{aligned} P(Y < 1/3 \ \& \ X > 1/10) &= \int_{1/10}^{1/3} \int_{1/10}^{y} 70e^{-3x-7y} \, dx \, dy \ &= \int_{1/10}^{1/3} \left(rac{70}{3} e^{-(3/10)-7y} - rac{70}{3} e^{-10y}
ight) dy \ &= e^{-1} - rac{10}{3} e^{-79/30} + rac{7}{3} e^{-10/3} = 0.2117. \end{aligned}$$

The denominator is

$$P(X>1/10)=e^{-1}=0.3679$$
, just as in part 2a.

So we get

$$P(Y < 1/3 \mid X > 1/10) = rac{P(Y < 1/3 \& X > 1/10)}{P(X > 1/10)} = 0.2117/0.3679 = 0.575.$$

Submit

You have used 1 of 1 attempt

Partially correct (1/2 points)

Problem 3

2/3 points (graded)

3. Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0,0), (2,0), and (0,8).

3a. For $0 \leq x \leq 2$, find the conditional density $f_{Y|X}(y \mid x)$ of Y, given X = x.

- $\frac{8-4x}{8}$
- $\frac{1}{8}$
- $\bigcirc \quad \frac{8}{8-4x}$

3b. Find the conditional probability that $Y \leq 4$, given X = 1/2. I.e., find $P(Y \leq 4 \mid X = 1/2)$.

2/3

✓ Answer: 0.6667

3c. Find the conditional probability that $Y \leq 4$, given $X \leq 1/2$. I.e., find $P(Y \leq 4 \mid X \leq 1/2)$.

32/7

X Answer: 0.5714286

3a. For
$$0 \leq x \leq 2$$
, $f_X(x) = \int_0^{8-4x} 1/8 dy = (8-4x)/8$.

We have

$$f_{Y|X}(y\mid x) = rac{f_{X,Y}(x,y)}{f_{X}(x)} = rac{1/8}{(8-4x)/8} = rac{1}{8-4x}.$$

3b.
$$f_{Y|X}(y \mid 1/2) = \frac{1}{8-4(1/2)} = 1/6$$
.

Thus
$$P(Y \leq 4 \mid X = 1/2) = \int_0^4 1/6 \, dy = 4/6 = 2/3$$
.

3c. We have
$$P(Y \leq 4 \mid X \leq 1/2) = rac{P(Y \leq 4 \ \& \ X \leq 1/2)}{P(X \leq 1/2)}$$
 . Both the numerator and denominator can

be calculated by ratios of areas, since the joint density is constant. So we calculate

$$P(Y \le 4 \mid X \le 1/2) = \frac{P(Y \le 4 \& X \le 1/2)}{P(X \le 1/2)} = \frac{2/8}{(7/2)/8} = \frac{2}{7/2} = 4/7.$$

Submit

You have used 1 of 1 attempt

Partially correct (2/3 points)

Problem 4

2/2 points (graded)

4a. Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0,0), (5,0), and (0,5). For a (fixed) value of x with $0 \le x \le 5$, find the conditional density $f_{Y\mid X}(y\mid x)$ of Y, given X=x

\bigcirc	2
	25(5-x)

4b. Can you generalize this? Suppose that c>0 is a fixed constant. Consider a pair of random variables X,Y with constant joint density on the triangle with vertices at (0,0), (c,0), and (0,c). For a (fixed) value of x with $0 \le x \le c$, find the conditional density $f_{Y|X}(y \mid x)$ of Y, given X=x.

$$\bigcirc \quad \frac{2}{c^2(c-x)}$$

$$\frac{2}{c-x}$$

4a. For $0 \le x \le 5$, we have $f_X(x) = \int_0^{5-x} 2/25 \, dy = (2/25)(5-x)$. So we get $f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{2/25}{(2/25)(5-x)} = \frac{1}{5-x}$. **4b.** For $0 \le x \le c$, we have $f_X(x) = \int_0^{c-x} 2/c^2 \, dy = (2/c^2)(c-x)$. So we get $f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{2/c^2}{(2/c^2)(c-x)} = \frac{1}{c-x}$.

Submit

You have used 1 of 1 attempt

Correct (2/2 points)

Problem 5

1/1 point (graded)

5. Suppose X and Y have joint probability density function

$$f_{X,Y}(x,y) = 70e^{-3x-7y}$$

for 0 < x < y; and $f_{X,Y}(x,y) = 0$ otherwise. Find $\mathbb{E}(X)$. (You may either use the joint density given here, or the density $f_X(x)$ that was found in 1a.)

1/10

✓ Answer: 0.1

5. One method is that we can compute

$$\mathbb{E}(X) = \int_0^\infty \!\! \int_x^\infty (x) (70e^{-3x-7y}) dy dx \ = \int_0^\infty \!\! (x) (70e^{-3x}) \int_x^\infty e^{-7y} dy dx = \int_0^\infty \!\! (x) (70e^{-3x}) (1/7)e^{-7x} dx,$$

which simplifies to

$$\mathbb{E}(X) = \int_0^\infty (x) (10 e^{-10x}) \, dx = 1/10.$$

FYI, if you decided (instead) to just directly use the density of X, namely, $f_X(x)=10e^{-10x}$ for x>0, we get exactly the line above, $\mathbb{E}(X)=\int_0^\infty (x)(10e^{-10x})dx=1/10$.

Submit

You have used 1 of 1 attempt

Correct (1/1 point)

Problem 6

1/1 point (graded)

6. For the setup in question **5**, find $\mathbb{E}(Y)$. (In this example, there are tradeoffs to the order of integration that you choose to use, i.e., to whether you integrate with respect to x or y first. You might find it instructive to try it both ways and compare the difficulties; this would also enable you to double-check your answer.)

0.2428571

✓ Answer: 0.2428571

Explanation

6. One method is that we can compute

$$\mathbb{E}(Y) = \int_0^\infty\!\!\int_x^\infty (y) (70e^{-3x-7y}) dy dx \ = \int_0^\infty\!\!(70e^{-3x}) \int_x^\infty y e^{-7y} dy dx = \int_0^\infty\!\!(70e^{-3x}) rac{7x+1}{49} e^{-7x} dx,$$
 which simplifies to

$$\mathbb{E}(Y) = \int_0^\infty (70/49)(7x+1)e^{-10x}\,dx = 17/70.$$

A second method is that we can compute

$$\mathbb{E}(Y) = \int_0^\infty\!\!\int_0^y\!(y)(70e^{-3x-7y})\,dx\,dy \ = \int_0^\infty\!\!(y)(70e^{-7y})\int_0^y e^{-3x}\,dx\,dy = \int_0^\infty\!\!(y)(70e^{-7y})(1/3)(1-e^{-3y})\,dy,$$
 which simplifies to

$$\mathbb{E}(Y) = \int_0^\infty (y) (70/3) (e^{-7y} - e^{-10y}) \, dy = 10/21 - 7/30 = 17/70.$$

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Problem 7

1/1 point (graded)

7. Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0,0), (2,0), and (0,8). Find $\mathbb{E}(X)$.

2/3

✓ Answer: 0.6666667

Explanation

7. One method is that we can compute

$$\mathbb{E}(X)=\int_0^2\!\!\int_0^{8-4x}(x)(1/8)\,dydx \ =\int_0^2\!\!x)(1/8)\int_0^{8-4x}1\,dydx=\int_0^2\!\!x)(1/8)(8-4x)\,dx,$$
 which simplifies to

$$\mathbb{E}(X)=\int_0^2(x)\Bigl(rac{8-4x}{8}\Bigr)dx=2/3.$$

FYI, if you decided (instead) to just directly use the density of X, namely, $f_X(x)=rac{8-4x}{8}$ for $0\leq x\leq 2$, we get exactly the line above, $\mathbb{E}(X)=\int_0^2(x)(rac{8-4x}{8})dx=2/3$.

Submit

You have used 1 of 1 attempt

✓ (Correct	(1/1	point)
-----	---------	------	--------

Problem 8

2/2 points (graded)

8a. Suppose that Y is an exponential random variable with probability density function $f_Y(y)=5e^{-5y}$ for y>0, and $f_Y(y)=0$ otherwise. Compute $\mathbb{E}(Y)$.

1/5

✓ Answer: 0.2

8b. Generalize the result in **8a**. In other words, suppose that $\lambda>0$ is a fixed constant, and suppose that Y is an exponential random variable with probability density function $f_Y(y)=\lambda e^{-\lambda y}$ for y>0, and $f_Y(y)=0$ otherwise. Compute $\mathbb{E}(Y)$.

- \circ λ
- 1/λ ✓
- \circ $-1/\lambda$
- \circ $-\lambda$

8a. We have

$$egin{aligned} \mathbb{E}(Y) &= \int_0^\infty (y) (5e^{-5y}) dy \ &= (y) (-e^{-5y})ig|_{y=0}^\infty - \int_0^\infty -e^{-5y} dy \ &= -(1/5)e^{-5y}ig|_{y=0}^\infty = 1/5. \end{aligned}$$

8b. We have

$$egin{aligned} \mathbb{E}(Y) &= \int_0^\infty (y) (\lambda e^{-\lambda y}) dy \ &= (y) (-e^{-\lambda y})ig|_{y=0}^\infty - \int_0^\infty -e^{-\lambda y} \, dy \ &= -(1/\lambda) e^{-\lambda y}ig|_{y=0}^\infty = 1/\lambda. \end{aligned}$$

Submit

You have used 1 of 1 attempt

✓ Correct (2/2 points)

Problem 9

2/2 points (graded)

9. Suppose $oldsymbol{X}$ and $oldsymbol{Y}$ have joint probability density function

$$f_{X,Y}(x,y) = 70e^{-3x-7y}$$

for 0 < x < y; and $f_{X,Y}(x,y) = 0$ otherwise.

9a. Find $\mathbb{E}(X^2)$

0.02

✓ Answer: 0.02

9b. Find $\operatorname{Var}(X)$.

0.01

✓ Answer: 0.01

Explanation

9a. One method is that we can compute

$$egin{aligned} \mathbb{E}(X^2) &= \int_0^\infty \!\! \int_x^\infty (x^2) (70 e^{-3x-7y}) dy dx \ &= \int_0^\infty \!\! (x^2) (70 e^{-3x}) \int_x^\infty e^{-7y} dy dx = \int_0^\infty \!\! (x^2) (70 e^{-3x}) (1/7) e^{-7x} dx, \end{aligned}$$

which simplifies to

$$egin{aligned} \mathbb{E}(X^2) &= \int_0^\infty (x^2)(10e^{-10x})\,dx \ &= (x^2)(-e^{-10x})ig|_{x=0}^\infty - \int_0^\infty (-e^{-10x})(2x)\,dx \ &= 0 + 2\int_0^\infty xe^{-10x}\,dx \end{aligned}$$

We already computed in Problem 5: $10 \int_0^\infty x e^{-10x} \, dx = 1/10$, and thus

$$\mathbb{E}(X^2) = 2 \int_0^\infty x e^{-10x} \, dx = (2/10)(1/10) = 2/100.$$

9b. We have
$$\mathrm{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 2/100 - (1/10)^2 = 1/100$$
.

Submit

You have used 1 of 1 attempt

Correct (2/2 points)

Problem 10				
4/4 points (graded) 10. Consider a pair of random variables X,Y with constant joint density on the rectangle with vertices $(0,0)$, $(5,0)$, $(5,8)$, $(0,8)$.				
10a. Find $\mathbb{E}(XY)$.				
10	✓ Answer: 10			
10b. Are $oldsymbol{X}$ and $oldsymbol{Y}$ independent?				
● Yes ✔				
O No				
Now use 10c and 10d to double-check your solution to 10a :				
10c. Find $\mathbb{E}(X)$.				
5/2	✓ Answer: 2.5			
10d. Find $\mathbb{E}(Y)$.				
4	✓ Answer: 4			

Explanation

10a. We have $\mathbb{E}(XY)=\int_0^5\!\!\int_0^8(xy)(1/40)\,dy\,dx=\int_0^5(x)(4/5)\,dx=10.$

10b. Yes, X and Y are independent. Their joint density 1/40 can be factored into 1/5 and 1/8, and the joint density is defined on a rectangle.

10c. We have $\mathbb{E}(X)=\int_0^5(x)(1/5)dx=5/2$.

10d. We have $\mathbb{E}(Y) = \int_0^8 (y) (1/8) \, dy = 4$.

Thus, we can use parts **10b**, **10c**, **10d** to double check that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y) = (5/2)(4) = 10$. (We emphasize that we can only multiply the expected values this way because the X and Y are independent.)

Submit

You have used 1 of 1 attempt

✓ Correct (4/4 points)

Problem 11

2/2 points (graded)

11. Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0,0), (2,0), and (0,8).

11a. Find $\mathbb{E}(X^2)$.

2/3

✓ Answer: 0.667

11b. Find $\mathbb{E}(XY)$.

4/3

✓ Answer: 1.333

Explanation

11a. One method is that we can compute

$$egin{aligned} \mathbb{E}(X^2) &= \int_0^2 \!\! \int_0^{8-4x} (x^2) (1/8) \, dy \, dx \ &= \int_0^2 (x^2) (1/8) \int_0^{8-4x} 1 \, dy \, dx = \int_0^2 (x^2) (1/8) (8-4x) \, dx, \end{aligned}$$

which simplifies to

$$\mathbb{E}(X^2) = \int_0^2 (x^2) \Big(rac{8-4x}{8}\Big) dx = 2/3.$$

FYI, if you decided (instead) to just directly use the density of X, namely, $f_X(x)=rac{8-4x}{8}$ for

$$0 \leq x \leq 2$$
, we get exactly the line above, $\mathbb{E}(X^2) = \int_0^2 (x^2) (rac{8-4x}{8}) dx = 2/3$.

11b. One method is that we can compute

$$egin{align} \mathbb{E}(XY) &= \int_0^2 \!\! \int_0^{8-4x} (xy) (1/8) \, dy dx \ &= \int_0^2 \!\! x) (1/8) \int_0^{8-4x} y \, dy dx \ &= \int_0^2 \!\! x) (1/8) (8x^2 - 32x + 32) \, dx = 4/3. \end{split}$$

You could also have changed the order of integration and the bounds, as another possible method of solution.

Submit

You have used 1 of 1 attempt

✓ Correct (2/2 points)

Problem 12

2/2 points (graded)

12a. Suppose that Y is an exponential random variable with probability density function $f_Y(y)=5e^{-5y}$ for y>0, and $f_Y(y)=0$ otherwise.

12a. Compute $\mathbb{E}(Y^2)$.

2/25

✓ Answer: 0.08

12b. Compute $\mathrm{Var}(Y)$. (You already have $\mathbb{E}(Y)$ from Problem 8.)

1/25

✓ Answer: 0.04

Explanation

12a. We have

$$egin{aligned} \mathbb{E}(Y^2) &= \int_0^\infty (y^2) (5e^{-5y}) \, dy \ &= (y^2) (-e^{-5y})ig|_{y=0}^\infty - \int_0^\infty (2y) (-e^{-5y}) \, dy \end{aligned}$$

which simplifies to $\mathbb{E}(Y^2)=(2)\int_0^\infty (y)(-e^{-5y})\,dy$.

We saw in **8a** that $5\int_0^\infty (y)(-e^{-5y})\,dy=1/5$,

so it follows that $\mathbb{E}(Y^2)=(2/5)(1/5)=2/25$.

12b. We have ${
m Var}(Y)=\mathbb{E}(Y^2)-(\mathbb{E}(Y))^2=2/25-(1/5)^2=1/25.$

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

