Main Infrastructure Changes

Fuel Storage:

- + Insulated tanks with cooling system to keep fuel under -33°C
- + Heated foundation due to lower fuel storage temperature
- + Ammonia leak detectors required + Minimum safety distance of 150m required

Refuelling

- + Hydrant refuelling system/separate refuelling area needed for safety
- + If refuelling trucks are used, it needs to have refrigeration **Airport Management:**
- + Hazmat emergency response unit required on-site
- + Independent drainage system required for chemical waste
- + Gas filters installed on airport ventilation system

Key Infrastructure Parameters **Capital Expenses:** 5% to 31% higher **Operating Expenses:** 16% to 110% higher **Carbon Emissions**: Up to 92% reduction **Refuelling Time:** 32 to 60 minutes Moderately high Risk Level:

Colour Legend

23

Mission Profile Cruise, Mach 0.45 Divert, Mach 0.3 25000 ft 150 km 5000 ft Descend Descend Climb Loiter, 30 min Descend Landing and Taxi Taxi and Takeoff Missed Approach

- 1400 m balanced field length
- Follow spirit of FAR-25/EASA requirements

Propulsion System Design Approach

Engine: PW150A Turboprop

Fuel mixture: $30\%H_2$ -70% NH_3 in a pilot zone; Pure ammonia in remaining

Catalytic converter: to convert suitable Ammonia into a suitable mixture of

Hydrogen, Nitrogen and Ammonia. Heat exchange system: to satisfy the power required by the catalytic converter working at 400°C

Cooling system: to maintain the temperature of the liquified ammonia at -50°C

Ammonia-Powered Regional Aircraft

Cabin Layout

Safety On Board • Emergency NH₃ removal system • Liquid NH₃ storage - safer than vapour form Reinforced fuel tanks to mitigate

Final Mixture LHV:

Primary Zone Air %:

Dilution Zone Air %:

Equivalence Ratio:

Insulation Thickness:

Recirculating Chiller:

Catalyst + Fin Mass:

Mass of Chiller:

Catalyst Length:

Catalyst Radius:

Fin Thickness:

Fin Height:

Secondary Zone Air %:

Cool Linear Walls Air %:

Fuel Consumption Rate:

Ammonia LHV:

TSFC:

F/A Ratio:

Key Engine Parameters

Aircraft Performance

Tail Geometry

Spanwise distance, m

Takeoff distance:

1101.7 m **Landing distance:**

1087 m **OEI climb gradient:**

7.36 %

Main Design Features

Turboprop engines:

- + Best suits range
- + Very efficient for low speed & short haul Fuel system in wings:

+ Close to the engine

- + Wing bending relief
- + Efficient space utilisation

High wing:

- + Fuel system away from cabin and ground + More fuel storage volume
- + Faster turnaround

Conventional fuselage:

- + 2x1 seating reduces drag
- + Passenger comfort & familiarity
- Nacelle mounted gear:
- + No overturning issues
- + No bulky housing structures needed T-tail:
- + Best avoids engine & wing wake disturbances

Ammonia presents a promising solution to decarbonising aviation for a sustainable future

Propulsion System Design Considerations

in cabin

damage

Power requirement of the catalytic cracker is reduced to 162kW by injecting the fuel mixture into the pilot zone and pure ammonia into the rest combustion zones.

- To reduce & minimize NO_x : A fuel staging in the primary zone is applied. Ammonia is injected directly into the exhaust for reduction
- Cooling system: A cooling system integrated alongside Cryogel (FRAB) is utilised. A commercial refrigerated recirculating chiller, pumping tanks at varying mass flow rates

Overall Engine Efficiency = 30 %

15% 25% 0.0455 0.1345 Stoichiometric F/A Ratio: 0.3382 0.04 m **Outboard Insulation Weight:** 220kg/wing Inboard Insulation Weight: 75kg/wing *m* Coolant Outboard Tank: 1.23kg/s *m* Coolant Inboard Tank: 0.90kg/s

Lneya LT-65A1N

325 kg/wing

0.5m

40kg

0.078m

0.001m

0.12m

49 MJ/kg

18.6 MJ/kg

 2.13×10^{-5}

0.51 kg/s

Fuel Tanks

Design Point

Key Parameters

 P_0/W_0 (W/N):

 W_0/S_{ref} (N/m²):

Overall length:

Fuselage diameter:

29.76 m

Wingspan:

Empty weight:

Fuel weight:

Payload weight:

30.36 m

18601 kg

8320 kg

5044 kg

MTOW:

31965 kg

2.3 m

Flight Testing Findings:

Predictable and controllable behaviour in OEI Difficult to control pitch during stall recovery due to

Longitudinal distance, m

ineffective elevator Loss of aileron authority and eventual complete loss of roll control in power-on stalls

Proposed design improvements:

- Addition of spoilerons on inboard wing sections
- Horizontal tail redesign to facilitate larger elevator

Modelling limitations:

- Error in experimental vertical tail aerofoil data caused an asymmetric vertical tail lift curve - requires CFD or wind tunnel testing to improve
- Inaccurate propeller modelling due to unavailability of data - requires detailed propeller design from manufacturer or in-house

Stability Characteristics

Static stability

- Static margin varies between 4% 9% for all load conditions
- Laterally and (Longitudinally) stable
- Satisfy CS-25 requirement for minimum control speed above 1.13 stall speed
- Cons: Excess stability hinders performance

Dynamical stability

- Dynamically stable with satisfactory response
- Acceptable flight handling qualities

Autopilot

Good overall performance

Structural Considerations

- The materials used for the construction of the aircraft's fuselage, wing and fuel tanks were aluminium alloys from different series: Al7255 T7751, Al7068 T6511, Al2024 T861, Al5182 H19 and Al8019.
- Additional coating on the interior of the fuel tanks that would act like a supplementary barrier against corrosion was applied, vinyl ester coating was used.
- Manufacturing methods chosen for the fuselage included press forming, CNC milling and extrusion for better accuracy and mechanical properties.
- CFRP used to manufacture empennage.

Fuselage Weight Breakdown:

Skin	Stringers	Light Frames	Heavy Frames
755 kg	1488 kg	116 kg	1550 kg

Wing Weight Breakdown:

Stringer Panel and Ribs	Spars	D-section	Total
1196 kg	444 kg	17 kg	1657 kg

Tail Weight Breakdown:

Tail	Skin	Spars	Ribs	D- section	Total
Horizontal	13.58 kg	8.18 kg	4.29 kg	7.80 kg	59.7 kg
Vertical	28.16 kg	22.19 kg	9.38 kg	19.44 kg	79.2 kg

Aerodynamic Design Features Thick aerofoil:

- + Reduce structural weight
- + Improved low speed aerodynamic efficiency

SUSTAINABLE DEVELOPMENT GOALS

+ ample space left for fuel storage + gentle stall behaviour

Customized geometric twist (seen below): + Excellent fit towards elliptical lift distribution

- + Washout to prevent tip stall
- + Accounts for unusual lift distribution caused by
- + Yields 19.6% reduction in induced drag worst case scenario. Fairing:

propeller wash-wing interaction

- + Reduces zero lift drag by reducing nterference between wing and fuselage
- + Double slotted flaps + Slats

Wing Planform Geometry

Taper ratio: 0.79 Aspect ratio: 10 Geometric twist: customized Dihedral: 1°

S_{ref}: 87.6 m2 Washout: -4.5° Mean chord length: 3.04 m **Aerofoil**: NACA 64(3)-618

Aerodynamic Performance Indices

 $C_{L_{takeoff}}$: 2.107 $C_{D_{takeoff}}:0.2282$ $C_{L_{cruise}}$: 0.616 $C_{D_{cruise}}: 0.0344$ $C_{L_{landing}}: 1.754$

 $C_{D_{landing}}: 0.2366$ Moment curve slope: -0.028 V_{stall,landing}: 44.89 ms-1

Lift curve slope: 6.12

 $V_{stall,cruise}$: 69.95 ms-1

