MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2012 SOLUTION KEY

Round 1

A) The smaller angle is opposite the shorter leg which we find by using the Pythagorean Theorem, $37^2 = 35^2 + x^2 \Rightarrow x^2 = 37^2 - 35^2$.

Recognizing this as the difference of perfect squares, we avoid the need to square these numbers.

$$37^2 - 35^2 = (37 + 35)(37 - 35) = 72 \cdot 2 = 144 \Rightarrow x = 12$$

Thus, SOHCAHTOA $\Rightarrow \sin \theta = \frac{12}{37}$.

B) With no loss of generality, assume the side of square ABCD is 3. Using the Pythagorean Theorem, the sides of ΔFCE are easily determined. Using the Law of Cosines on ΔFCE ,

$$8 = 10 + 10 - 2 \cdot 10\cos\theta \Rightarrow \cos\theta = \frac{12}{20} = \frac{3}{5}.$$

Alternate solution:

Recognizing that $\triangle EFC$ is isosceles, draw the perpendicular bisector \overline{CM} of the base \overline{EF} , where M is the midpoint of \overline{EF} . \overline{CM} bisects $\angle FCE$.

Appling the Pythagorean Theorem, $CF = \sqrt{10}$, $EF = \sqrt{8} = 2\sqrt{2}$

Squaring both sides and substituting for \sin^2 , $\frac{\sin^2 A}{\sin^2 B} = \frac{1-\cos^2 A}{1-\cos^2 B} = \frac{4}{7}$

Cross multiplying, $7 - 7\cos^2 A = 4 - 4\cos^2 B \Leftrightarrow 7\cos^2 A - 4\cos^2 B = 3$.

Amazingly, for a right triangle the answer is still 3.

If $\triangle ABC$ is a right triangle, A cannot be the right angle. (\overline{BC} would be the hypotenuse and $2 \not> \sqrt{7}$.)

If B is the right angle, then $AB = \sqrt{3}$ and $7\left(\frac{\sqrt{3}}{\sqrt{7}}\right)^2 - 4(0)^2 = 7 \cdot \frac{3}{7} - 0 = \underline{3}$.

If C is the right angle, then $AB = \sqrt{11}$ and $7\left(\frac{\sqrt{7}}{\sqrt{11}}\right)^2 - 4\left(\frac{2}{\sqrt{11}}\right)^2 = 7 \cdot \frac{7}{11} - 4 \cdot \frac{4}{11} = \frac{49 - 16}{11} = \underline{3}$.