Spatially optimal targeting of interventions to reduce air pollution

Martin Kosík

Motivation

- · Air pollution (PM2.5, PM10) increases mortality
- Cities in North India typically rank among the lowest in the world in air quality
- Crop residue burning is an important contributor during the late fall
- Various interventions proposed to reduce residue burning such as conditional payments to farmers
- This paper: Given limited resourced, which places should be targeted for interventions to reduce air pollution?

1

Overview

- Goal: Target the interventions into places where the greatest impact can be achieved
- · Modeling of two main aspects:
 - 1. Harm
 - On average, how much harm would additional emissions from a given location cause?
 - Depends on the weather patterns (wind direction, strength, etc.) and spatial distribution of the population
 - I will use an air pollution transport model (HYSPLIT) to estimate the overall impact

2. Costs

How much we would have to spend to reduce the pollution in a given location

Modeling air pollution transport

- HYSPLIT dispersion model
 - Hybrid Single-Particle Lagrangian Integrated Trajectory model
 - One of the most extensively used atmospheric transport and dispersion models in the atmospheric sciences
 - Applications include tracking and forecasting the release of wildfire smoke, wind-blown dust, volcanish ash, and crop residue burning
- · Main output of interest
 - · Source-receptor matrix: SRM_{ij}
 - \cdot Fraction of emissions from source i that are transported into j
 - Average over 5 days after release

Contributions from the selected Source Air Concentration (mass/m³) averaged between 0 m and 100 m Integrated from 0000 16 Oct to 1200 16 Oct 1995 (UTC) C(R) Release started at 0000 16 Oct 1995 (UTC)

5

..

Contributions from the selected Source Air Concentration (mass/m³) averaged between 0 m and 100 m Integrated from 1200 16 Oct to 0000 17 Oct 1995 (UTC) C(R) Release started at 0000 16 Oct 1995 (UTC)

Contributions from the selected Source Air Concentration (mass/m³) averaged between 0 m and 100 m Integrated from 0000 17 Oct to 1200 17 Oct 1995 (UTC) C(R) Release started at 0000 16 Oct 1995 (UTC)

Contributions from the selected Source Air Concentration $(mass/m^3)$ averaged between 0 m and 100 m Integrated from 1200 17 Oct to 0000 18 Oct 1995 (UTC) C(R) Release started at 0000 16 Oct 1995 (UTC)

Contributions from the selected Source Air Concentration (mass/m³) averaged between 0 m and 100 m Integrated from 0000 18 Oct to 1200 18 Oct 1995 (UTC) C(R) Release started at 0000 16 Oct 1995 (UTC)

Measuring the impact - definitions

- SRM_{ij} ... fraction of emissions from source i that are transported into j
- $E_i \dots$ total air pollution emitted from location i
- $P_j = \sum_i SRM_{ij}E_i$... total air pollution in i
- $L_j = f(P_j)$... loss (harm) to a single person from being exposed to air pollution in j
- N_j ... total population in j
- $TL = \sum_j L_j \cdot N_j \dots$ total population-weighted loss caused by air pollution across all locations

Measuring the impact

 \cdot The impact of small change emissions from i on total loss

$$\frac{\partial TL}{\partial E_i} = \sum_j \frac{\partial L_j}{\partial E_i} N_j = \sum_j \frac{\partial f(P_j)}{\partial P_j} \frac{\partial P_j}{\partial E_i} N_j = \sum_j \frac{\partial f(P_j)}{\partial P_j} SRM_{ij} N_j$$

• if $f(P_j) = a + b \cdot P_j$, this simplifies to

$$TL = b \sum_{j} SRM_{ij}N_{j} := b \cdot \alpha_{j}$$

- Clearly, it is optimal to target locations with the highest $\frac{\partial TL}{\partial E_i}$ since that will lead to greatest reductions in loss
- · In case of linear $f(P_j)$, this means locations with highest α_j
 - Some evidence to support linear effect of PM2.5 concentrations on infant mortality (cite the Burke nature paper)

Measuring the impact - extensions

Preliminary results

- I focus on North-west of India where the air pollution is very severe and crop residue burning is common
- I run simulations based on weather data for the beginning of October for 10 different years
- Regular grid of 121 source location
 - α_j computed for each location separately, then interpolated across across them on a finer grid
- · Finer grid only locations with winter cropping and

Winter cropped area

Total fire radiation power - October 2019

Population exposure - full

Population exposure - full - interpolated

Population exposure - interpolated

Population exposure - interpolated - histogram

Conclusion

•

Thank you for your attention.