Naïve Bayes

Made By Munna Bhai MBBS

Given the dataset

Department	Age	Salary	Status
Sales	31-35	46-50k	Senior
Sales	26-30	26-30k	Junior
Sales	31-35	31-35k	Junior
Systems	21-25	46-50k	Junior
Systems	31-35	66-70k	Senior
Systems	26-30	46-50k	Junior
Systems	41-45	66-70k	Senior
Marketing	36-40	46-50k	Senior
Marketing	31-35	41-45k	Junior
Secretary	46-50	36-40k	Senior
Secretary	26-30	26-30k	Junior

Given the Input : Department = Systems, Age = (26-30), Salary = (46-50k)

Input : Systems, (26-30), (46-50k)

Step: 1

- P(Status = Senior) = $\frac{5}{11}$
- P(Status = Junior) = $\frac{6}{11}$

Step: 2

-

	- 1-		2	1
•	P(Department = Systems	Status = Junior)	= - =	= -
	P(Department = Systems	j status samer,	6	3

• P(Age = (26-30) | Status = Senior) =
$$\frac{0}{5} = \frac{1}{6}$$

• P(Age = (26-30) | Status = Junior) =
$$\frac{3}{6} = \frac{1}{2} = \frac{2}{3}$$

Department	Age	Salary	Status
Sales	31-35	46-50k	Senior
Sales	26-30	26-30k	Junior
Sales	31-35	31-35k	Junior
Systems	21-25	46-50k	Junior
Systems	31-35	66-70k	Senior
Systems	26-30	46-50k	Junior
Systems	41-45	66-70k	Senior
Marketing	36-40	46-50k	Senior
Marketing	31-35	41-45k	Junior
Secretary	46-50	36-40k	Senior
Secretary	26-30	26-30k	Junior

• P(Salary = (46-50k) | Status = Senior) =
$$\frac{2}{5}$$

• P(Salary = (46-50k) | Status = Junior) =
$$\frac{2}{6} = \frac{1}{3}$$

Step: 3

• P(X | Status = Senior) =
$$\frac{2}{5} \times \frac{1}{6} \times \frac{2}{5} = \frac{2}{75}$$

• P(X | Status = Junior) =
$$\frac{1}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{2}{27}$$

Department	Age	Salary	Status
Sales	31-35	46-50k	Senior
Sales	26-30	26-30k	Junior
Sales	31-35	31-35k	Junior
Systems	21-25	46-50k	Junior
Systems	31-35	66-70k	Senior
Systems	26-30	46-50k	Junior
Systems	41-45	66-70k	Senior
Marketing	36-40	46-50k	Senior
Marketing	31-35	41-45k	Junior
Secretary	46-50	36-40k	Senior
Secretary	26-30	26-30k	Junior

Input : Systems, (26-30), (46-50k)

Step: 4

• P(X | Status = Senior) P(Status = Senior) =
$$\frac{2}{75} \times \frac{5}{11} = 0.01212$$

• P(X | Status = Junior) P(Status = Junior) =
$$\frac{2}{27} \times \frac{6}{11} = 0.04040$$

Which Bigger One??

Obviously 0.04040, So we can say that for Systems department, Age Limit (26 - 30) and Salary Range (46 – 50k), Status will be Junior.

K- Means Clustering

Made By Munna Bhai MBBS

Given the dataset

No	X	Υ
1	1	1
2	2	3
3	1	2
4	3	3
5	2	2
6	3	1

Given No of Cluster K = 2

Iteration: 1

Let, Centroids - c1 = (1,1) and c2 = (3,3)

Now Fill the table using Eq- $\sqrt{(ci_x - x_i)^2 + (ci_y - y_i)^2}$

	(1,1)	(2,3)	(1,2)	(3,3)	(2,2)	(3,1)
C1 = (1,1)	0	2.24	1	2.83	1.41	2
C2 = (3,3)	2.83	1	2.24	0	1.41	2
Cluster	c1	c2	c1	c2	c1	c2

c1	(1,1), (1,2), (2,2)
c2	(2,3), (3,3), (3,1)

Now Update, Centroids -

Iteration: 2

New Centroids - c1 = (1.33, 1.67) and c2 = (2.67, 2.33)

Now Fill the table again using Eq- $\sqrt{(ci_x - x_i)^2 + (ci_y - y_i)^2}$

	(1,1)	(2,3)	(1,2)	(3,3)	(2,2)	(3,1)
C1 = (1.33,1.67)	0.75	1.49	0.47	2.13	0.75	1.79
C2 = (2.67,2.33)	2.13	0.95	1.70	0.75	0.75	1.37
Cluster	c1	c2	c1	c2	c2	c2

c1	(1,1), (1,2)
c2	(2,3), (3,3), (2,2), (3,1)

Now Update, Centroids -

$$c1 = \left(\frac{1+1}{2}, \frac{1+2}{2}\right)$$

$$c2 = \left(\frac{2+3+2+3}{4}, \frac{3+3+2+1}{4}\right)$$

$$= \left(\frac{2}{2}, \frac{3}{2}\right)$$

$$= \left(\frac{10}{4}, \frac{9}{4}\right)$$

$$= (2.5, 2.25)$$

Iteration: 3

c1	(1,1), (1,2)
c2	(2,3), (3,3), (2,2), (3,1)

New Centroids - c1 = (1,1.5) and c2 = (2.5, 2.25)

Now Fill the table again using Eq- $\sqrt{(ci_x - x_i)^2 + (ci_y - y_i)^2}$ iteration 2

Same as

	(1,1)	(2,3)	(1,2)	(3,3)	(2,2)	(3,1)
C1 = (1,1.5)	0.5	1.80	0.5	2.5	1.12	2.06
C2 = (2.5,2.25)	1.95	0.90	1.52	0.90	0.56	1.35
Cluster	c1	c2	c1	c2	c2	c2

SVM Large Margin

Made By Munna Bhai MBBS

Given, $oldsymbol{ heta}_0 = \mathbf{0}$

For Figure 1,

Here,
$$X = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $Y = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and let, $\theta = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$

We know that, $P_x = \theta^T X$

$$= \begin{bmatrix} 4 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$= \left((4 \times 2) + \left(4 \times (-1) \right) \right)$$

$$= (8 - 4)$$

$$= 4$$

Similarly, $P_{\gamma} = \theta^T Y$

=
$$[4 4] \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

= $((4 \times (-2)) + (4 \times 1))$
= $(-8 + 4)$

For Figure 2,

Here,
$$X = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $Y = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and let, $\theta = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

We know that, $P_x = \theta^T X$

$$= [5 0]. \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$= ((5 \times 2) + (0 \times (-1)))$$

$$= (10 - 0)$$

$$= 10$$

Similarly, $P_{\nu} = \theta^T Y$

= -10

=
$$[5 0]. \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

= $((5 \times (-2)) + (0 \times 1))$
= $(-10 + 0)$

SVM Select This

Back Propagation

Made By Munna Bhai MBBS

Given the dataset

Department	Age	Salary	Status
Sales	31-35	46-50k	Senior
Sales	26-30	26-30k	Junior
Sales	31-35	31-35k	Junior
Systems	21-25	46-50k	Junior
Systems	31-35	66-70k	Senior
Systems	26-30	46-50k	Junior
Systems	41-45	66-70k	Senior
Marketing	36-40	46-50k	Senior
Marketing	31-35	41-45k	Junior
Secretary	46-50	36-40k	Senior
Secretary	26-30	26-30k	Junior

Given the training instance "(sales, senior, 31 . . . 35, 46K . . . 50K)".

Encoding the Dataset First-

Department	Age	Salary	Status
1	33	48	1
1	28	28	0
1	33	33	0
2	23	48	0
2	33	68	1
2	28	48	0
2	43	68	1
3	38	48	1
3	33	43	0
4	48	38	1
4	28	28	0

Given the training instance "(sales, senior, 31 . . . 35, 46K . . . 50K)".

Using min-max normalization, normalize the data into (0-1). So, new min = 0 and new max = 1

We know that,

$$V' = \frac{v_i - min_{vi}}{max_{vi} - min_{vi}} (new \max - new \min) + new \min$$

For Department Column

Values: 1, 2, 3, 4 min = 1 and max = 4

$$v_1 = \frac{1-1}{4-1}(1-0) + 0 = 0$$

$$v_2 = \frac{2-1}{4-1}(1-0) + 0 = 0.33$$

$$v_3 = \frac{3-1}{4-1}(1-0) + 0 = 0.67$$

$$v_4 = \frac{4-1}{4-1}(1-0) + 0 = 1$$

$$v_{23} = \frac{23 - 23}{48 - 23}(1 - 0) + 0 = 0$$

$$v_{43} = \frac{43 - 23}{48 - 23}(1 - 0) + 0 = 0.8$$

$$v_{28} = \frac{28 - 23}{48 - 23}(1 - 0) + 0 = 0.2$$

$$v_{48} = \frac{48 - 23}{48 - 23}(1 - 0) + 0 = 1$$

$$v_{33} = \frac{33 - 23}{48 - 23}(1 - 0) + 0 = 0.4$$

$$v_{38} = \frac{38 - 23}{48 - 23}(1 - 0) + 0 = 0.6$$

For Salary Column

Values: 28, 33, 38, 43, 48, 68 min = 23 and max = 68

$$v_{28} = \frac{28 - 28}{68 - 28}(1 - 0) + 0 = 0$$

$$v_{48} = \frac{48 - 28}{68 - 28}(1 - 0) + 0 = 0.5$$

$$v_{33} = \frac{33 - 28}{68 - 28}(1 - 0) + 0 = 0.125$$

$$v_{68} = \frac{68 - 28}{68 - 28}(1 - 0) + 0 = 1$$

$$v_{38} = \frac{38 - 28}{68 - 28}(1 - 0) + 0 = 0.25$$

$$v_{43} = \frac{43 - 28}{68 - 28}(1 - 0) + 0 = 0.375$$

After Normalization of the dataset

Department	Age	Salary	Status
0	0.4	0.5	1
0	0.2	0	0
0	0.4	0.125	0
0.33	0	0.5	0
0.33	0.4	1	1
0.33	0.2	0.5	0
0.33	0.8	1	1
0.67	0.6	0.5	1
0.67	0.4	0.375	0
1	1	0.25	1
1	0.2	0	0

Given the training instance "(0, 0.4, 0.5)".

Let,

Learning Rate = 0.9

$$w_{14} = 0.2$$

$$w_{24} = 0.4$$

$$w_{34} = -0.5$$

$$w_{15} = -0.3$$

$$w_{25} = 0.1$$

$$w_{35} = 0.2$$

$$w_{46} = -0.3$$

$$w_{56} = -0.2$$

$$\theta_4 = -0.4$$

$$\theta_{5} = 0.2$$

$$\theta_6$$
 = 0.1

$$X1 = 0$$
, $x2 = 0.4$, $x3 = 0.5$

Step 1:

We know that,

$$f = w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + Bias$$

So,

$$f_4 = w_{14} \times x_1 + w_{24} \times x_2 + w_{34} \times x_3 + \theta_4$$

$$= 0.2 \times 0 + 0.4 \times 0.4 + (-0.5) \times 0.5 - 0.4$$

$$= 0 + 0.16 - 0.25 - 0.4$$

$$= -0.49$$

Now, final
$$f_4 = \frac{1}{(1+e^{-(-0.49)})} = 0.38$$

```
Let,

Learning Rate = 0.9

w_{14} = 0.2

w_{24} = 0.4

w_{34} = -0.5

w_{15} = -0.3

w_{25} = 0.1

w_{35} = 0.2

w_{46} = -0.3

w_{56} = -0.2

\theta_4 = -0.4

\theta_5 = 0.2

\theta_6 = 0.1

X1 = 0, x2 = 0.4, x3 = 0.5
```

We know that,

$$f = w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + Bias$$

So,

$$f_5 = w_{15} \times x_1 + w_{25} \times x_2 + w_{35} \times x_3 + \theta_5$$

$$= (-0.3) \times 0 + 0.1 \times 0.4 + 0.2 \times 0.5 + 0.2$$

$$= 0 + 0.04 + 0.1 + 0.2$$

$$= 0.34$$

Now, final
$$f_5 = \frac{1}{(1+e^{-(0.34)})} = 0.58$$

```
Let,

Learning Rate = 0.9

w_{14} = 0.2

w_{24} = 0.4

w_{34} = -0.5

w_{15} = -0.3

w_{25} = 0.1

w_{35} = 0.2

w_{46} = -0.3

w_{56} = -0.2

\theta_4 = -0.4

\theta_5 = 0.2

\theta_6 = 0.1

x_{10} = 0.4

x_{11} = 0, x_{12} = 0.4, x_{13} = 0.5
```

We know that,

$$f = w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + Bias$$

So,

$$f_6 = w_{46} \times f_4 + w_{56} \times f_5 + \theta_6$$

$$= (-0.3) \times 0.38 + (-0.2) \times 0.58 + 0.1$$

$$= -0.114 - 0.116 + 0.1$$

$$=-0.13$$

Now, final
$$f_6 = \frac{1}{(1+e^{-(-0.13)})} = 0.47$$

Let, Learning Rate = 0.9 $w_{14} = 0.2$ $w_{24} = 0.4$ $w_{34} = -0.5$ $w_{15} = -0.3$ $w_{25} = 0.1$ $w_{35} = 0.2$ $w_{46} = -0.3$ $w_{56} = -0.2$ $\theta_4 = -0.4$ $\theta_5 = 0.2$ $\theta_6 = 0.1$ X1 = 0, x2 = 0.4, x3 = 0.5

Step 2: Calculate Error

```
For Output Layer, Error_{output} = f_6(1 - f_6)(Target - f_6) So, Error_{output} = 0.47(1 - 0.47)(1 - 0.47) = 0.132
```

```
Let,
Learning Rate = 0.9
W_{14} = 0.2
w_{24} = 0.4
w_{34} = -0.5
W_{15} = -0.3
w_{25} = 0.1
w_{35} = 0.2
W_{46} = -0.3
w_{56} = -0.2
\theta_4 = -0.4
\theta_{5} = 0.2
\theta_6 = 0.1
X1 = 0, x2 = 0.4, x3 = 0.5
F6 = 0.47
Target = 1
```

For Others Layer,

$$Error_{hidden} = f_i(1 - f_i) \times Error_{output} \times w_i$$

So,

$$Error_{f4} = 0.38(1 - 0.38) \times 0.132 \times (-0.3)$$

$$=-0.0093$$

And,

$$Error_{f5} = 0.58(1 - 0.58) \times 0.132 \times (-0.2)$$

$$=-0.0064$$

Let,

Learning Rate = 0.9

$$w_{14} = 0.2$$

$$w_{24} = 0.4$$

$$w_{34} = -0.5$$

$$w_{15} = -0.3$$

$$w_{25} = 0.1$$

$$w_{35} = 0.2$$

$$w_{46} = -0.3$$

$$w_{56} = -0.2$$

$$\theta_{4} = -0.4$$

$$\theta_5 = 0.2$$

$$0_5 - 0.2$$

$$\theta_6$$
 = 0.1

$$X1 = 0$$
, $x2 = 0.4$, $x3 = 0.5$

$$F6 = 0.47$$

$$F4 = 0.38$$

$$F5 = 0.58$$

Error
$$f6 = 0.132$$

For Weight,

$$w_{new} = w_{old} + LR \times Error \times Input$$

So,

$$w_{14} = w_{14} + LR \times Error \times Input$$

 $= 0.2 + 0.9 \times (-0.0093) \times 0$
 $= 0.2$
 $w_{24} = w_{24} + LR \times Error \times Input$
 $= 0.4 + 0.9 \times (-0.0093) \times 0.4$
 $= 0.397$
 $w_{34} = w_{34} + LR \times Error \times Input$
 $= -0.5 + 0.9 \times (-0.0093) \times 0.5$
 $= -0.504$

```
Let,
Learning Rate = 0.9
W_{14} = 0.2
W_{24} = 0.4
W_{34} = -0.5
w_{15} = -0.3
w_{25} = 0.1
W_{35} = 0.2
W_{46} = -0.3
w_{56} = -0.2
\theta_4 = -0.4
\theta_5 = 0.2
\theta_6 = 0.1
X1 = 0, x2 = 0.4, x3 = 0.5
F6 = 0.47
Target = 1
F4 = 0.38
F5 = 0.58
Error f6 = 0.132
Frror f4 = -0.093
Error f5 = -0064
```

For Weight,

$$w_{new} = w_{old} + LR \times Error \times Input$$

So,

$$w_{15} = w_{15} + LR \times Error \times Input$$

 $= -0.3 + 0.9 \times (-0.0064) \times 0$
 $= -0.3$
 $w_{25} = w_{25} + LR \times Error \times Input$
 $= 0.1 + 0.9 \times (-0.0064) \times 0.4$
 $= 0.098$
 $w_{35} = w_{35} + LR \times Error \times Input$
 $= 0.2 + 0.9 \times (-0.0064) \times 0.5$
 $= 0.197$

```
Let,
Learning Rate = 0.9
W_{14} = 0.2
W_{24} = 0.4
W_{34} = -0.5
w_{15} = -0.3
W_{25} = 0.1
W_{35} = 0.2
W_{46} = -0.3
w_{56} = -0.2
\theta_4 = -0.4
\theta_5 = 0.2
\theta_6 = 0.1
X1 = 0, x2 = 0.4, x3 = 0.5
F6 = 0.47
Target = 1
F4 = 0.38
F5 = 0.58
Error f6 = 0.132
Frror f4 = -0.093
Error f5 = -0064
```

For Weight,

$$w_{new} = w_{old} + LR \times Error \times Input$$

So,

$$w_{46} = w_{46} + LR \times Error \times Input$$

 $= -0.3 + 0.9 \times (0.132) \times 0.38$
 $= -0.255$
 $w_{56} = w_{56} + LR \times Error \times Input$
 $= -0.2 + 0.9 \times (0.132) \times 0.58$
 $= -0.131$

```
Let,
Learning Rate = 0.9
W_{14} = 0.2
w_{24} = 0.4
W_{34} = -0.5
w_{15} = -0.3
w_{25} = 0.1
W_{35} = 0.2
W_{46} = -0.3
w_{56} = -0.2
\theta_4 = -0.4
\theta_5 = 0.2
\theta_6 = 0.1
X1 = 0, x2 = 0.4, x3 = 0.5
F6 = 0.47
Target = 1
F4 = 0.38
F5 = 0.58
Error f6 = 0.132
Frror f4 = -0.093
Error f5 = -0064
```

For Bias,

$$\theta_{new} = \theta_{old} + LR \times Error$$

So,

$$\theta_4 = \theta_4 + LR \times Error$$

= -0.4 + 0.9 × (-0.0093)
= -0.41

$$\theta_5 = \theta_5 + LR \times Error$$

= 0.2 + 0.9 × (-0.0064)
= 0.194

$$\theta_6 = \theta_6 + LR \times Error$$

= 0.1 + 0.9 × (0.132)
= 0.22

Let,

Learning Rate = 0.9

$$w_{14} = 0.2$$

$$w_{24} = 0.4$$

$$w_{34} = -0.5$$

$$w_{15} = -0.3$$

$$w_{25} = 0.1$$

$$w_{35} = 0.2$$

$$W_{46} = -0.3$$

$$w_{56} = -0.2$$

$$\theta_4 = -0.4$$

$$\theta_5$$
 = 0.2

$$\theta_6 = 0.1$$

$$X1 = 0$$
, $x2 = 0.4$, $x3 = 0.5$

$$F6 = 0.47$$

$$F4 = 0.38$$

$$F5 = 0.58$$

Error
$$f6 = 0.132$$

Error
$$f4 = -0093$$

Error
$$f5 = -0064$$

Patter Evaluation

Made By Munna Bhai MBBS

	Milk	! Milk	Sum of Row
Coffee	1000 (108.9)	100 (991.1)	1100
! Coffee	10000 (10891.1)	100000 (99108.9)	110000
Sum of Col	11000	100100	111100

Calculate the Expected Values:

We know that, Expected Value =
$$\frac{Total\ of\ Column\ \times Total\ of\ Row}{Overall\ Total}$$

For Example, Expected Value(1,1) =
$$\frac{11000 \times 1100}{111100}$$
 = $\frac{11000}{101}$ = 108.9

	Milk	! Milk	Sum of Row
Coffee	1000 (108.9)	100 (991.1)	1100
! Coffee	10000 (10891.1)	100000 (99108.9)	110000
Sum of Col	11000	100100	111100

Calculate the probability of Milk, Coffee and (Milk, Coffee):

$$P_{milk} = \frac{11000}{111100} = 0.099, P_{coffee} = \frac{1100}{111100} = 0.0099, P_{milk,coffee} = \frac{1000}{111100} = 0.009$$

$$sup_{milk} = 0.099$$

$$sup_{coffee} = 0.0099$$

$$sup_{milk \cup coffee} = 0.009$$

$$milk \rightarrow coffee = \frac{sup_{milk} \cup coffee}{sup_{milk}}$$
 $coffee \rightarrow milk = \frac{sup_{milk} \cup coffee}{sup_{coffee}}$

$$= \frac{0.009}{0.0099} = 0.091$$

$$= \frac{0.009}{0.0099} = 0.91$$

	Milk	! Milk	Sum of Row
Coffee	1000 (108.9)	100 (991.1)	1100
! Coffee	10000 (10891.1)	100000 (99108.9)	110000
Sum of Col	11000	100100	111100

Calculate lift:

$$P_{milk} = 0.099, P_{coffee} = 0.0099, P_{milk,coffee} = 0.009$$

$$lift = \frac{P_{milk,coffee}}{P_{milk} \times P_{coffee}} = \frac{0.009}{0.099 \times 0.0099} = 9.183$$

	Milk	! Milk	Sum of Row
Coffee	1000 (108.9)	100 (991.1)	1100
! Coffee	10000 (10891.1)	100000 (99108.9)	110000
Sum of Col	11000	100100	111100

Calculate χ^2 :

$$\chi^{2} = \frac{(1000 - 108.9)^{2}}{108.9} + \frac{(100 - 991.1)^{2}}{991.1} + \frac{(10000 - 10891.1)^{2}}{10891.1} + \frac{(100000 - 99108.9)^{2}}{99108.9}$$

$$= 7291.64 + 801.19 + 72.91 + 8.012$$

$$= 8173.75$$

```
All_{conf} = \min(milk \rightarrow coffee, coffee \rightarrow milk)
             = \min(0.091, 0.91)
             = 0.091
 Max_{conf} = max(milk \rightarrow coffee, coffee \rightarrow milk)
             = max(0.091, 0.91)
             = 0.91
Kulc. = \frac{milk \rightarrow coffee + coffee \rightarrow milk}{2}
      =\frac{0.091+0.91}{2}
       = 0.5
cosine = \sqrt{milk} \rightarrow coffee \times coffee \rightarrow milk
         =\sqrt{0.091}\times0.91
         = 0.29
```

 $milk \rightarrow coffee = 0.091$ $coffee \rightarrow milk = 0.91$