Using the normal distribution for inference

Overview

Quick review of theories/concepts in hypothesis testing

Review and continuation of the normal distribution

Using the normal distribution for inference

- Hypothesis tests
- Confidence intervals

Quick review of theories of hypothesis tests

Two theories of hypothesis testing

- 1. Significance testing of Ronald Fisher
 - p-value as strength of evidence against the null hypothesis
- 2. Hypothesis testing of Jezy Neyman and Egon Pearson
 - Make a formal decision of whether to reject H_0 (if p-value < predefined α value)

Significance testing

Hypothesis testing

Neyman-Pearson Frequentist logic

If Neyman-Pearson null hypothesis testing paradigm was followed perfectly, then only $^{5}\%$ of all published research findings should be wrong (for $\alpha = 0.05$)

Type I error: incorrectly rejecting the null hypothesis when it is true

Neyman-Pearson Frequentist logic

Type 2 error: incorrectly rejecting failing to reject H₀ when it is false

Type I and Type II Errors

	Reject H ₀	Do not reject H ₀
H ₀ is true	Type I error (α) (false positive)	No error

Problems with the NP hypothesis tests

<u>Problem 1</u>: we are interested in the results of a specific experiment, not whether we are right most of the time

- E.g., 95% of these statements are true:
 - Calcium is good for your heart, Paul is psychic, Buzz and Doris can communicate, ...

<u>Problem 2</u>: Arbitrary thresholds for alpha levels

• P-value = 0.051, we don't reject H_0 ?

<u>Problem 3</u>: running many tests can give rise to a high number of type 1 errors

Multiple hypothesis tests

Replication crisis

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

The file drawer effect

American Statistical Association's '
Statement on p-values

Some thoughts...

Better to have hypothesis tests than none at all. Just need to think carefully and use your judgment.

Report effect size in most cases – i.e., confidence intervals

• i.e., report p = 0.023 not p < 0.05

Replicate findings (perhaps in different contexts) to make sure you get the same results

Be a good/honest scientists and try to get at the Truth!

Inference using parametric probability distributions

Inference using parametric probability distributions

We can use mathematical functions called **probability distributions** to do inference

 e.g. instead of running computer simulations to create null distributions we can just mathematical probability distributions

A **density curve** is a mathematical function f(x) that has two important properties:

- 1. The total area under the curve f(x) is equal to 1
 - 2. The curve is always ≥ 0

Density Curves

The <u>area under the curve</u> in an interval [a, b] models the probability that a random number X will be in the interval

Pr(a < X < b) is the area under the curve from a to b

The Normal Density Curve

Normal distributions are a family of bell-shaped curves with two

parameters

• The mean: μ

• The standard deviation: σ

Notation: $X \sim N(\mu, \sigma)$

Graphing Normal Curves

Plotting IQ scores

Finding normal probabilities of a normal curve

To get the probability (area) from a normal distribution we can use the pnorm function

```
pnorm(x, mu, sigma)
```


Calculate the probability a random person you meet has an IQ less than 88

pnorm(88, 100, 15)

Normal area $Pr(X \le x)$ app

Normal area Pr(a < X < b) app

Probability practice questions

1. What is probability a randomly chosen person will have an IQ greater than 96?

pnorm(96, 100, 15, lower.tail = FALSE)

• <u>Answer</u>: 0.605

2. What is the probability a randomly chosen person will have an IQ between 88 and 96?

pnorm(96, 100, 15) - pnorm(88, 100, 15)

• Answer: 0.183

Calculating quantiles

To find quantiles of the normal distribution we can use the quantile function:

```
qnorm(quantile, mu, sigma)
```

What are the IQ scores (interval) that demark the middle 50% of the IQ range?

What about the middle 95%?

Normal quantile app

Middle 50% of IQ scores

qnorm(c(.25, .75), 100, 15)

Middle 50%: 89.9 to 110.1

Middle 95%: 70.6 to 129.3

Summary of R functions

Plot the actually density curve

dnorm(x_vec, mu, sigma)

Get the probability that we would get a random value less than x

pnorm(x_vec, mu, sigma)

Get the quantile value for a given proportion of the distribution

• qnorm(area, mu, sigma)

Note: pnorm and qnorm are inverses of each other

- y = pnorm(x, mu, sigma)
- qnorm(y, mu, sigma)

the output value here is x

The Standard Normal distribution and the Central Limit Theorem

Standard Normal N(0, 1)

Since all normal distributions have the same shape, it is convenient to convert them to a standard scale with:

$$\mu = 0$$
, $\sigma = 1$

This is called the **standard normal** distribution:

$$Z \sim N(0, 1)$$

Converting to the standard normal distribution

We can use a z-score transformation to any normally distributed random variable $X \sim N(\mu, \sigma)$ to the standard normal distribution $Z \sim N(0, 1)$:

$$Z = (X - \mu)/\sigma$$

To convert from Z \sim N(0, 1) to any X \sim N(μ , σ), we reverse the standardization with:

$$X = \mu + Z \cdot \sigma$$

Converting to the standard normal distribution

- 1. What is the Z-score of someone who has an IQ score of 112? $Z = (X \mu)/\sigma$
- 2. What if someone has an Z-score of 2.2, what is their IQ score? $X = \mu + Z \cdot \sigma$

Answer 1: Z = (112 - 100)/15 = .8

Answer 2: IQ = 100 + 2.2 * 15 = 133

Central limit theorem

For random samples with a sufficiently large sample size (n), the distribution of sample statistics for a mean (\bar{x}) or a proportion (\hat{p}) is:

- normally distributed
- centered at the value of the population parameter

Stated again: the sampling distribution for means or proportions will be a normal distribution

so we don't need to do resampling to get a bootstrap or null distribution!

Central limit theorem

proportion (p̂)

Proportion sampling distribution app

Sampling/Bootstrap distribution app

Summary of standard normal and CLT

For large n, the sampling distributions of \overline{x} and \hat{p} are normal

We can convert any normal distribution $N(\mu, \sigma)$, into a standard normal distribution N(0, 1)

We are now (almost) ready to run hypothesis tests and compute confidence intervals for \overline{x} and \hat{p} using normal distributions

Hypothesis tests using a normal distribution

Hypothesis tests based on a Normal Distribution

When the null distribution is normal, it is often convenient to use a standard normal test statistic using:

$$z = \frac{Sample \ Statistic - Null \ Parameter}{SE}$$

The p-value for the test is the probability a standard normal value is beyond this standardized test statistic

Pr(
$$Z \ge z_{obs}$$
; $\mu = 0$, $\sigma = 1$)

Hypothesis tests based on a Normal Distribution

<u>To repeat what was on the last slide</u>: we can transform our obs_stat to a z-statistic that comes from a standard normal distribution N(0, 1) using:

$$z = \frac{stat_{obs} - param_0}{SE}$$

The p-value is then the probability of obtaining a value from a <u>standard</u> <u>normal distribution</u> beyond this z statistic

```
> pnorm(z, 0, 1) if H_A: \mu < param_0
> 1 - pnorm(z, 0, 1) if H_A: \mu > param_0
> 2 * (1 - pnorm(abs(z), 0, 1)) if H_A: \mu \neq param_0
```


Do greater than 40% of Americans go without using cash in a typical week?

A survey of 1,000 Americans reported that 43% said they went an entire week without using cash, with a SE = 0.016

Assuming the distribution of the statistic is normal, calculate whether the proportion of all Americans going a week without using cash is greater than 40%

1. Start by stating H₀ and H_A

$$H_0$$
: $\pi = .4$

$$H_A$$
: $\pi > .4$

Do greater than 40% of Americans go without using cash in a typical week?

A survey of 1,000 Americans reported that 43% said they went an entire week without using cash, with a SE = 0.016

Assuming the distribution of the statistic is normal, calculate whether the proportion of all Americans going a week without using cash is greater than 40%

2. Can you compute the z statistic?

$$z = \frac{Sample \ Statistic - Null \ Parameter}{SE}$$

Do greater than 40% of Americans go without using cash in a typical week?

A survey of 1,000 Americans reported that 43% said they went an entire week without using cash, with a SE = 0.016

Assuming the distribution of the statistic is normal, calculate whether the proportion of all Americans going a week without using cash is greater than 40%

2. Can you compute the z statistic?

$$z = (.43 - .4)/.016 = 1.875$$

Do greater than 40% of Americans go without using cash in a typical week?

Steps: 3-4. What is the probability one would get a z-statistic as larger or larger than 1.875 from a standard normal distribution?

- > pnorm(1.875, 0, 1, lower.tail = FALSE)
- > 1 pnorm(1.875, 0, 1)

p-value = .0304

Standard normal null distribution

Step 5?

Normal area app $Pr(X \le x)$

Confidence intervals using a normal distribution

Finding quantile values

We can find the quantile value from a normal distribution with:

Standard Normal N(0, 1)

It is often convenient to find quantiles on the standard normal distribution $Z \sim N(0, 1)$ and then to transform them to an arbitrary normal distribution $X \sim N(\mu, \sigma)$, using :

$$X = \mu + Z \cdot \sigma$$

Central limit theorem

Questions:

- 1. What is the standard deviation of these sampling distributions called?
- Suppose we have a \hat{p} or \overline{x} and know the SE, how can we create a 95% CI?

For a proportion π : $Cl_{95} = \hat{p} \pm 2 \cdot SE$ For a mean μ : $Cl_{95} = \overline{x} \pm 2 \cdot SE$

proportion (p)

mean (\overline{x})

Confidence intervals based on a Normal Distribution

If the distribution for a statistic is normal with a standard error SE, we can find a confidence interval for the parameter using:

sample statistic $\pm z^* \times SE$

where z* is chosen so that the area between -z* and + z* in the standard normal distribution is the desired confidence level

• i.e., z* is chosen such that say 95% of the distribution is between ± z*

Confidence intervals based on a Normal Distribution

Suppose we are interested in 80% confidence intervals for $\,\mu$ We calculate the \pm z_{80} that has 80% of the data on N(0, 1)

Let's assume we know the SE but don't know μ . If we have an observed statistic from: $x_{obs} \sim N(\mu, SE)$

We can create an interval that will capture μ 80% of the time using:

$$x_{obs} \pm z_{80} \cdot SE$$

Normal percentiles for common confidence levels

Confidence level	80%	90%	95%	98%	99%
Z*	1.282	1.645	1.960	2.326	2.576

z_stars <- qnorm(c(.90, .95, .975, .99, .995), 0, 1)

Normal quantile app

.99 quantile values

What is the most preferred seat?

A survey of 1,000 air travelers found that 60% prefer a window seat, with a bootstrap standard error of SE = 0.015

Use the normal distribution to compute a 90%, 95% and 99% CIs for the proportion of people who prefer a window seat

sample statistic $\pm z^* \times SE$

Confidence level	80%	90%	95%	98%	99%
Z*	1.282	1.645	1.960	2.326	2.576

What is the most preferred seat?

A survey of 1,000 air travelers found that 60% prefer a window seat, with a bootstrap standard error of SE = 0.015.

90%
$$CI = .6 \pm 1.645 \times .015 = [.575 .625]$$

95% $CI = .6 \pm 1.96 \times .015 = [.571 .629]$
99% $CI = .6 \pm 2.576 \times .015 = [.569 .638]$

Sample statistics $\pm z^* \times SE$

Confidence level	80%	90%	95%	98%	99%
Z*	1.282	1.645	1.960	2.326	2.576