Mapping spatial data

Zhen Zhang*

July 12, 2022

Abstract

In this document, we will provide an example for mapping spatial data (areal) with CAR model, and some quick estimation.

Contents

Simulated areal data for spatial mapping

1

Spatial prediction using conditional autoregressive (CAR) model

4

Simulated areal data for spatial mapping

Here is the example R code.

```
rm(list=ls())
require(leaflet)
fileNam <- 'spatInfo.RData'</pre>
if(!file.exists(fileNam)){
  #----- prepare the spatial info (e.g., .shp, Adj.csv from ArcGIS)
  dir0 <- './ArcGIS_out/'</pre>
  require(rgdal)
  map <- readOGR(dsn=pasteO(dirO,'shapefile'),"Counties_for_analysis_region")</pre>
  map <- spTransform(map, CRS("+init=epsg:4267"))</pre>
  coords <- as.data.frame(coordinates(map)) #centers of the polygons</pre>
  names(coords) <- c('Longitude','Latitude')</pre>
  county <- map$COUNTY</pre>
  require(rgeos)
  map1 <- gSimplify(map, tol=0.01, topologyPreserve=TRUE)</pre>
  # need to save Adj csv from txt
  # match Adj.csv with Num.txt
```

^{*}zhangquake1@outlook.com

```
WO <- read.csv(pasteO(dirO, 'Adjacency/Adj.csv'), head=F)
  MO <- read.csv(pasteO(dirO,'Adjacency/Num.txt'), head=F)</pre>
  M <- MO$V1
  n \leftarrow nrow(WO); W \leftarrow matrix(0,n,n); for(i in 1:n) W[i,na.omit(as.numeric(WO[i,]))] \leftarrow 1
  all(W==t(W))
  all(rowSums(W)==MO$V1)
  cols <- rep('lightgreen',n); k <- 125 #random check site ID</pre>
  cols[c(k,na.omit(as.numeric(WO[k,])))] <- 'blue'; cols[k] <- 'red'</pre>
  plot(map1, col=cols) # shape file matches with W
  save(file=fileNam, map1, W, M, coords, county)
}else load(fileNam)
#----- simulate areal data from Conditional AutoRegressive (CAR) model
# with precision matrix = (M-gamma*W)/tau^2
set.seed(1234)
n \leftarrow nrow(W)
mu <- 1
tau2 <- 0.5
gamm <- 0.9
Pre <- (diag(M)-gamm*W)/tau2</pre>
Z <- matrix(rnorm(n),n,1) #standard Normal</pre>
U \leftarrow chol(Pre) \#so Pre = t(U) \% * \% U, Sigma = (Pre)^{-1} = U^{-1} \% \% t(U)^{-1}
# hence let Uy=Z, y=U^-1Z^-N(0, U^-1)**(U)^-1 = Sigma) as desired
y0 <- solve(U,Z) #spatial random effect
y <- mu + y0 #mu = X%*%beta to introduce site-specific covariates
# also for each site i, simulate 20-70 patients with reported outcomes around site mean y
sample_size <- 20 + sample.int(50, size=n, replace=TRUE)</pre>
pro <- as.list(rep(NA, n)) #simulate patient-reported outcomes</pre>
sig <- 0.3 #nuqqet effect
for(i in 1:n) pro[[i]] <- rnorm(sample_size[i], y[i], sig)</pre>
dat <- cbind(county, coords, sample_size, mean_pro=y)</pre>
# save(file='demo.RData', map1, dat, pro)
# customize color at: colorbrewer2.org
J \leftarrow length(cols \leftarrow c('#a50026','#d73027','#f46d43','#fdae61','#fee08b',
                        '#ffffbf','#d9ef8b','#a6d96a','#66bd63','#1a9850','#006837'))
# graphical control
sizeBy <- 'sample_size'
colorBy <- 'mean_pro'</pre>
fac <- 2000 #can be an option from the drag-down menu to control the size of centers
radius <- log(dat[[sizeBy]] / max(dat[[sizeBy]]) * 30000) *fac/2</pre>
# categorize the continuous variable
require(arules)
colorData <- dat[[colorBy]]</pre>
```


Figure 1: Spatial mapping

The results are shown in Figure 1.

Spatial prediction using conditional autoregressive (CAR) model

Estimate the spatial parameters for the areal data:

```
logLik <- function(para){ #para = c('mu', 'tau2', 'qamm') #mean, variance, autocorrelation
  Pre <- (diag(M)-para[3]*W)/para[2]</pre>
  U \leftarrow chol(Pre) \#so Pre = t(U) \% \% U, t(y-mu) \% \% Pre \% \% (y-mu) = ||d||^2 where d=U(y-mu)
  -0.5*sum((U%*%(y-para[1]))^2) + sum(log(diag(U))) #quadratic term + log determinant
}
eps <- .Machine$double.eps
# get a small value for bounding the parameter space to avoid things such as log(0).
paraInit <- c(mu, tau2, gamm)*.8 #perturb the true parameters</pre>
# logLik(paraInit)
fit <- optim(paraInit, logLik, method="L-BFGS-B", lower=c(-Inf, eps, -1+eps),</pre>
             upper=c(Inf, Inf, .999), hessian=TRUE, control=list(fnscale=-1, trace=TRUE))
         10 value -224.010423
## iter
## final value -224.010423
## converged
paraMLE <- fit$par #MLE of the CAR model: maximizing the log likelihood
SE <- sqrt(diag(solve(-fit$hessian)))</pre>
est <- data.frame(est=paraMLE, SE=SE, lower=paraMLE-SE*qnorm(.975),
                   upper=paraMLE+SE*qnorm(.975), pval=2*(1-pnorm(abs(paraMLE)/SE)))
row.names(est) <- c('mu', 'tau2', 'gamm')</pre>
knitr::kable(est, row.names=TRUE, caption = "\\label{tab:t1}Parameter estimate.", digits=3)
```

Table 1: Parameter estimate.

	est	SE	lower	upper	pval
mu	1.005	0.060	0.888	1.121	0
tau2	0.480	0.038	0.407	0.554	0
gamm	0.932	0.034	0.865	0.998	0

The results are shown in Table 1.