

Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications

Guillaume Ausset 1,2 , Stéphan Clémençon 1 , François Portier 1

¹ Télécom ParisTech, LTCI, Université Paris Saclay ² BNP Paribas

Local Linear Estimation

We want to estimate the gradient of a function f, whose gradient is supposed sparse. We suppose that we are able to gather evaluations Y = f(X) of the function of interest.

Local Linear Estimation of the Gradient

If we locally approximate the function by its Taylor expansion, we can estimate the gradient by solving

$$(\tilde{m}_{k}(x), \tilde{\beta}_{k}(x)) \in \underset{(m,\beta) \in \mathbb{R}^{D+1}}{\operatorname{arg\,min}} \sum_{i: X_{i} \in KNN(x)} (Y_{i} - m - \beta^{\mathsf{T}}(X_{i} - x))^{2} + \lambda \|\beta\|_{1}$$

Theorem 1.

Let $n \ge 1$ and $k \ge 1$ such that $\overline{\tau}_k \le \tau_0$. Let $\delta \in (0,1)$ and set $\lambda = \overline{\tau}_k(\sqrt{2\sigma^2 \log(16D/\delta)/k} + L_2\overline{\tau}_k^2)$. Then, we have with probability larger than $1 - \delta$,

$$\|\tilde{\beta}_{k}(\mathbf{x}) - \beta(\mathbf{x})\|_{2} \leq (24)^{2} \sqrt{\#\mathcal{S}_{\mathbf{x}}} \left(\overline{\tau}_{k}^{-1} \sqrt{\frac{2\sigma^{2} \log(16D/\delta)}{k}} + L_{2}\overline{\tau}_{k} \right),$$

as soon as $C_1 \# S_x \log(Dn/\delta) \le k \le C_2 n$, $\overline{\tau}_k^2 \le (b_f^2/(C_3 \# S_x L^2) \wedge \tau_0^2)$, where C_1 , C_2 and C_3 are universal constants.

Our bounds make use of the *sparsity* of ∇f and only require a neighbourhood consisting of the K nearest points.

The use of a KNN neighbourhood gives us:

- ► Robustness to the data
- ► Ease of calibration
- Possibility to reuse past computations

Variable Selection

Idea: unimportant variables will have gradients equal to zero on that dimension.

Require: (X, Y): training set, Node: indexes of points in the node

- 1: $\nabla m(X_i) \leftarrow \text{estimated gradient at } X_i, \, \forall i \in \text{Node using } (1)$
- 2: $\omega \leftarrow \sum_{i \in \text{Node}} |\nabla m(X_i)|$
- 3: $extbf{\textit{K}} \leftarrow extbf{sample} \, \sqrt{D}$ dimensions in $\{1,\ldots,d\}$ with probability weights $\propto \omega$
- 4: $k, c \leftarrow$ best threshold c and dimension k
- 5: **return** *k*, *c*

Algorithm 1: Node Splitting for Gradient Guided Trees

Variable Selection

	Description		Loss	
Dataset	n	D	RF	GGF
Wisconsin	569	30	0.0352	$\boldsymbol{0.0345}$
Heart	303	13	0.128	0.124
Diamonds	53940	23	680033	$\boldsymbol{664265}$
Gasoline	60	401	0.678	$\boldsymbol{0.512}$
SDSS	10000	8	$0.872 \cdot 10^{-3}$	$0.776 \cdot 10^{-3}$

Table 1: Performance of the two random forest algorithms on a 50-folds cross validation.

Gradient Free Optimization

Require: x_0 : initial guess, f: function $\mathbb{R}^D \to \mathbb{R}$, M: budget

- 1: $X \leftarrow X_1, \dots, X_M$ with $X_i \sim \mathcal{N}(\mathbf{x}_0, \varepsilon \times I_D)$
- 2: $Y \leftarrow f(X) := f(X_1), \ldots, f(X_M)$
- 3: while not StoppingCondition do
- 4: $m, \Delta \leftarrow \text{estimated gradient at } x \text{ w.r.t } X, Y \text{ using } (1)$
- $X \leftarrow X, X_1, \dots, X_M$ with $X_i \sim \mathcal{N}(\texttt{GradientStep}(x, \Delta), arepsilon imes I_D)$
- 6: $Y \leftarrow f(X)$
- 7: $x \leftarrow \arg\min_{X_i} \{f(X_i)\}$
- 8: **return** *x*

Algorithm 2: Estimated Gradient Descent

Figure 1: Gradient Descent on the sparse noisy Rosenbrock function for d = 100.

