Les calculatrices sont autorisées.

N.B. Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Notation et but du problème

On désigne par :

- E_0 : le ${\bf R}$ espace vectoriel des fonctions f définies sur ${\bf R}_+$ à valeurs réelles, de classe ${\bf C}^{-1}$ sur ${\bf R}_+$, et qui vérifient f(0) = 0;
- E_1 : l'ensemble des fonctions f appartenant à E_0 et telles que la fonction $t \mapsto \left(\frac{f(t)}{t}\right)^2$ soit intégrable sur \mathbf{R}_+^* ;
- E_2 : l'ensemble des fonctions f appartenant à E_0 et telles que la fonction $t\mapsto \left(f'(t)\right)^2$ soit intégrable sur \mathbf{R}_+ .

On note:

$$N_1(f) = \left[\int_{\mathbf{R}_+^*} \left(\frac{f(t)}{t} \right)^2 dt \right]^{1/2} \quad \text{pour} \quad f \in E_1 ; \qquad \qquad N_2(f) = \left[\int_{\mathbf{R}_+} \left(f'(t) \right)^2 dt \right]^{1/2} \quad \text{pour} \quad f \in E_2 .$$

Le but de ce problème est de comparer les ensembles E_1 et E_2 d'une part, les fonctions N_1 et N_2 d'autre part.

Les parties I et II sont consacrées à deux exemples, la partie III aborde le problème de comparaison de façon plus générale.

PARTIE I – Exemple 1

Dans cette partie, on suppose que f est la fonction définie sur \mathbf{R}_+ par $f(t) = \operatorname{Arctan} t$ (où Arctan désigne la fonction Arctangente).

- **I.1**/ Montrer que f appartient à E_1 .
- **I.2**/ Montrer que, pour tout $x \in \mathbb{R}_+^*$, la fonction $H_x : t \mapsto \frac{1}{\left(t^2 + 1\right)\left(t^2 + x^2\right)}$ est intégrable sur \mathbb{R}_+ , et qu'en particulier f appartient à E_2 .
- I.3/ Calcul de $N_2(f)$.

Pour $x \in \mathbf{R}_{+}^{*}$, on note $\varphi(x) = \int_{\mathbf{R}_{+}} H_{x}(t) dt$.

- **I.3.1**/ Montrer que la fonction φ est continue sur \mathbf{R}_{+}^{*} .
- **I.3.2**/ Soit $x \in \mathbb{R}_+^*$, $x \neq 1$; décomposer en éléments simples la fraction rationnelle de la variable T:

$$\frac{1}{(T+1)(T+x^2)}$$

- **I.3.3**/ En déduire l'expression explicite de $\varphi(x)$ pour $x \in \mathbb{R}_+^*$, $x \neq 1$.
- **I.3.4**/ Quelle est la valeur de $N_2(f)$?
- **I.4**/ Etudier le signe de u Arctan u, pour $u \in \mathbf{R}_+$.
- **I.5**/ Montrer que, pour tout $x \in \mathbf{R}_+$, la fonction $G_x : t \mapsto \frac{\operatorname{Arctan}(xt)}{t(t^2+1)}$ est intégrable sur \mathbf{R}_+^* .

I.6/ Calcul de $N_1(f)$.

Pour $x \in \mathbf{R}_+$, on pose $\theta(x) = \int_{\mathbf{R}_+^*} G_x(t) dt$.

- **I.6.1**/ Montrer que la fonction θ est continue sur \mathbf{R}_+ .
- **I.6.2**/ Montrer que la fonction θ est de classe C^{-1} sur \mathbf{R}_{+} .
- **I.6.3**/ Expliciter $\theta'(x)$ pour $x \in \mathbb{R}_+$.
- **I.6.4**/ Expliciter $\theta(x)$ pour $x \in \mathbb{R}_+$.
- **I.6.5**/ Etablir une relation entre $\left[N_1(f)\right]^2$ et $\theta(1)$.
- **I.6.6**/ En déduire la valeur de $N_1(f)$ et celle de $\frac{N_1(f)}{N_2(f)}$.

PARTIE II – Exemple 2

Dans cette partie, on suppose que f est la fonction définie sur \mathbf{R}_+ par $f(t) = \ln(t + \sqrt{t^2 + 1})$ (où ln désigne la fonction logarithme népérien).

- II.1/ Calculer f'(t) pour $t \in \mathbf{R}_+$. En déduire que f appartient à E_2 . Quelle est la valeur de $N_2(f)$?
- II.2/ Déterminer un équivalent (simple !) de f(t) lorsque $t \to 0^+$ (respectivement lorsque $t \to +\infty$).
- II.3/ Montrer que f appartient à E_1 .

II.4/ Calcul d'une intégrale.

II.4.1/ Montrer que la fonction $t \mapsto \frac{-\ln t}{1-t^2}$ est intégrable sur l'intervalle]0,1[.

On note désormais
$$J = \int_{]0,1[} \frac{-\ln t}{1-t^2} dt$$
.

- II.4.2/ Montrer que, pour tout $k \in \mathbb{N}$, la fonction $t \mapsto -t^{2k} \ln t$ est intégrable sur l'intervalle]0,1[; expliciter la valeur de $: J_k = \int\limits_{\mathbb{N}^n} \left(-t^{2k} \ln t\right) dt$.
 - II.4.3/ Justifier avec soin l'égalité: $J = \sum_{k=0}^{+\infty} J_k = \sum_{k=0}^{+\infty} \int_{[0,1]} (-t^{2k} \ln t) dt$.
- II.4.4/ Déduire de ce qui précède la valeur de l'intégrale J, sachant que la série $\sum_{n\geq 1} \frac{1}{n^2}$ converge et que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

II.5/ Calcul de $N_1(f)$.

Pour simplifier, on note $I = (N_1(f))^2 = \int_{\mathbf{R}_+} \left(\frac{f(t)}{t}\right)^2 dt$.

On rappelle que $shu = \frac{e^u - e^{-u}}{2}$, $chu = \frac{e^u + e^{-u}}{2}$ pour $(u \in \mathbf{R})$ et la relation $ch^2u - sh^2u = 1$.

- II.5.1/ Montrer que $I = 2 \int_{\mathbf{R}_{+}^{*}} \frac{f(t)}{t\sqrt{t^{2}+1}} dt$.
- II.5.2/ Justifier le changement de variable $u = f(t) = \ln(t + \sqrt{t^2 + 1})$ dans l'intégrale obtenue dans la question II.5.1; que devient I quand on effectue ce changement ? Même question pour le changement de variable $v = e^{-u}$.
 - II.5.3/ En déduire la valeur de $N_1(f)$, puis celle de $\frac{N_1(f)}{N_2(f)}$.

PARTIE III

Le but de cette partie est de comparer, d'une part, les ensembles E_1 et E_2 , et, d'autre part, les fonctions N_1 et N_2 .

III.1/ Soit f une fonction quelconque appartenant à E_0 (donc de classe \mathbf{C}^{-1} sur \mathbf{R}_+ et telle que f(0)=0). On associe à f deux fonctions g et h définies sur \mathbf{R}_+^* par $g(t)=\frac{f(t)}{\sqrt{t}}$ et $h(t)=\frac{f(t)}{t}$ pour tout t>0. On pose $\alpha=f'(0)$.

- III.1.1/ Quelle est la limite de h(t) (respectivement de g(t)) lorsque $t \to 0^+$?
- III.1.2/ Exprimer $f'(t) \sqrt{t}g'(t)$ en fonction de h(t) lorsque $t \in \mathbf{R}_{+}^{*}$.
- III.1.3/ Quelle est la limite de $\sqrt{t}g'(t)$ (respectivement de g(t).g'(t)) lorsque $t \to 0^+$? (on exprimera les résultats en fonction de $\alpha = f'(0)$).
 - **III.1.4**/ Etablir, pour x > 0, la relation :

$$\left(R \right) \int_{[0,x]} \left(f'(t) \right)^2 dt = \frac{1}{2} \left(g(x) \right)^2 + \int_{[0,x]} \left(\sqrt{t} g'(t) \right)^2 dt + \frac{1}{4} \int_{[0,x]} \left(h(t) \right)^2 dt .$$

(après avoir justifié l'intégrabilité sur]0,x] de chacune des fonctions qui interviennent).

- III.2/ Comparaison de E_1 et E_2 .
 - III.2.1/ Déduire de la relation (R) l'inclusion : $E_2 \subset E_1$.
- III.2.2/ Les ensembles E_1 et E_2 sont-ils égaux ? (On pourra considérer la fonction $t\mapsto \sin t$).

III.3/ Comparaison de N_1 et N_2 .

III.3.1/ Montrer que E_2 est un sous-espace vectoriel du ${\bf R}$ - espace vectoriel E_0 .

On admettra sans justification que N_1 et N_2 sont des normes sur l'espace vectoriel E_2 .

- III.3.2/ Justifier l'inégalité : $N_1(f) \le 2N_2(f)$, pour $f \in E_2$.
- III.3.3/ Pour $n \in \mathbb{N}^*$, on définit sur \mathbb{R}_+ la fonction f_n par $f_n(t) = e^{-t} \sin(nt)$. Vérifier que $f_n \in E_2$ pour tout $n \in \mathbb{N}^*$ et calculer $N_2(f_n)$.
 - III.3.4/ Les normes N_1 et N_2 sont-elles équivalentes sur E_2 ?

III.4/ Soit f appartenant à E_2 ; en utilisant la relation (R), montrer que g(t) admet une limite lorsque $t \to +\infty$; quelle est cette limite?

Fin de l'énoncé.