

Simulation-Based Analysis of Blockchain Architectures: Double-Spend Attacks

Technische Universität München

Bachelor's Thesis

Leo Eichhorn

Garching, 17 July 2018

Outline

- 1. Context
 - Blockchain
 - Double-Spend Attacks
 - Problem Statement
 - Approach
- 2. Blockchain Simulation
- 3. Analysis
- 4. Empirical Model
- 5. Conclusion

Blockchain

- Distributed database
- Entries (blocks) are linked by their hashes
- Peer-to-peer network of nodes maintaining local copies of the blockchain
- Next block is chosen by "random" node and broadcasted to all peers
- No intermediate, trusted authority

Bitcoin

- "Random" node is represented by first node solving cryptographic puzzle (proof of work)
 - Changing nonce values in block until hash smaller than a target mining difficulty
- Requires high amount of computational power
- Node is compensated with block reward and transaction fees

Block Propagation / Stale Blocks

- Peer-to-peer networks are influenced by latency times
- Two blocks mined at roughly the same time: branch in blockchain
- Consensus is eventually retained due to longest chain rule
- Blocks of shorter branch turn stale
- Stale blocks indicate a waste of computational power

Double-Spend Attacks

- Name related to Bitcoin:
 - Group of dishonest nodes reverts transaction to a merchant after receiving the purchased product
 - Attacker needs to mine new blocks faster than the remaining network

- Attacker A generates two transactions:
 - T_M , to pay the merchant ($A \rightarrow M$: 500)
 - T_A , to revert the payment ($A \rightarrow A$: 500)
- T_M is published an mined into the next block

- Honest network keeps mining on the longest chain
- Merchant M waits until payment T_M is confirmed

- Attacking party secretly starts mining a branch containing T_A
- On top of latest block before T_M is mined into the blockchain

- Merchant's payment T_M is confirmed
- M delivers the purchased product (irreversible)

 A tries to mine more blocks than the remaining network in order to replace T_M with T_A

 A tries to mine more blocks than the remaining network in order to replace T_M with T_A

 A tries to mine more blocks than the remaining network in order to replace T_M with T_A

- A publishes the longer chain
- Blockchain containing more proof of work is new valid chain
- Branch containing T_M turns stale
- A keeps the delivered product and the payment

Problem Statement

 A blockchain architecture's resistance against double-spend attacks (RADS) may depend on many factors

 \succ Knowing more about factors affecting RADS and function f would allow architect to improve predictions

Approach

Outline

- 1. Context
- 2. Blockchain Simulation
 - Simulation Parameters
 - Simulation Model
- 3. Analysis
- Empirical Model
- 5. Conclusion

Simulation Parameters

- PDS: Percentage of successful double-spend attacks
- PSB: Percentage of stale blocks

Outline

- 1. Context
- 2. Blockchain Simulation
 - Simulation Parameters
 - Simulation Model
- 3. Analysis
- Empirical Model
- 5. Conclusion

Simulation Model

Outline

- 1. Context
- 2. Blockchain Simulation
- 3. Analysis
 - Experiments
 - Summary
- Empirical Model
- 5. Conclusion

Ratio of attacking nodes R

- Double-spends for R > 0.5 always succeed
- But: DSA at R = 0.5 not guranteed
 - Simulator end condition?
 - Influence of other Parameters?

Confirmations C

 PDS decreases exponentially

Confirmations C

- PDS decreases exponentially
- No effect once majority of computing power under attackers' control

Trusted Latency L_{τ}

- Percentage of stale blocks increases with rising latency
- ➤ More computing power is wasted on generation of stale blocks
- ➤ Lower resistance against double-spend attacks

Trusted Latency L_T

- Direct effect on value of R
- Network density D_T
 produces similar effects
- Effect can be reduced by higher mining difficulty

Summary

- PDS increases exponentially with increasing R
- Effective value of *R* is influenced by *PSB* of both networks
- PSB depends on latency, density and mining difficulty parameters
- Confirmations C successfully reduce PDS exponentially, as long as effective value of R less than 50%

Outline

- 1. Context
- 2. Blockchain Simulation
- 3. Analysis
- 4. Empirical Model
 - Building the Model
 - Model formula
- 5. Conclusion

Building the Model

Model

$$PDS = 100 \cdot exp\left(\left(R - \frac{T \cdot L_A}{D_A} + \frac{T \cdot L_T}{D_T}\right) \cdot C \cdot L_C\right)$$

- PDS indicative of RADS
- Empirical constants omitted
- Multiplied by 100 to receive percentage
- exp(x) corresponds to e^x

Model

$$PDS = 100 \cdot exp\left(\left(R - \frac{T \cdot L_A}{D_A} + \frac{T \cdot L_T}{D_T}\right) \cdot C \cdot L_C\right)$$

- Effects of latency are amplified by density and mining difficulty
- Computation of more stale blocks influences effective value of Nodes

Model

$$PDS = 100 \cdot exp\left(\left(R - \frac{T \cdot L_A}{D_A} + \frac{T \cdot L_T}{D_T}\right) \cdot C \cdot L_C\right)$$

- C and L_C produce dampening effect
- No effect once majority of effective mining power controlled by attacker

Conclusion

Conclusion

Additional findings:

- Definition of double-spend attack as 51% or majority attack is misleading
- Capability of conducting double-spend attacks depends on distribution of effective mining power
- Architectures with higher stale block rates are more vulnerable

Implication:

 Simulator and model can be used to predict a blockchain architecture's resistance against double-spend attacks

References

- Andreas M. Antonopoulos. *Mastering Bitcoin: Programming the Open Blockchain*. "O'Reilly Media, Inc.", 2017.
- C. Decker and R. Wattenhofer. Information propagation in the Bitcoin network. In *IEEE P2P 2013 Proceedings*, pages 1-10, 2013.
- Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
- Carlos Pinzon and Camilo Rocha. Double-spend attack models with time advantage for bitcoin. *Electronic Notes in Theoretical Computer Science*, 329:79-103, 2016. CLEI 2016 -The Latin American Computing Conference.
- Meni Rosenfeld. Analysis of hashrate-based double spending. CoRR, abs/1402.2009, 2014.

Thank you!

Backup

Blockchain Structure (Bitcoin)

Transaction Structure (Bitcoin)

Transaction 534							
Inputs			Outputs				
Transaction	Account	Value	Account	Value			
198	A ₀	1.70	В	2.00			
432	A ₁	0.26	A ₀	0.10			
258	A ₁	0.16					
Transaction fee: 0.02							
Digitally signed by A ₀ and A ₁							

Transaction 817						
Inputs			Outputs			
Transaction	Account	Value	Account	Value		
534	A ₀	0.10	С	0.1		
534	В	2.00	A ₀	0.05		
			В	1.95		
Transaction fee: 0.0						
Digitally signed by A ₀ and B						

Experiments

Difficulty target T

 High T increases the rate of new blocks

Amplifies effect of network topology resulting in more stale blocks

Difficulty target T

- T can be used to reduce effect of topology
- Low difficutly target creates more time between block creations
- Less stale blocks even at higher latencies

Attacker Latency L_A

Leo Eichhorn | Bachelor's Thesis | Simulation-Based Analysis of Blockchain Architectures

Attacker Latency L_A

Connection Latency L_C

Connection Latency L_C

Trusted Density D_T

Trusted Density D_T

Attacker Density D_A

Attacker Density D_A

Number of Nodes N

Comparison

Confirmation length C

Latency L_T , L_A

Trusted Density D_T

Attacker Density D_A

Simulator

Simulator Framework

PeerStrategy

Double-Spend Simulator

Activity Diagram

