Сглаживающая фильтрация изображений в системе остаточных классов

Н. И. Червяков¹, П. А. Ляхов², Н. Н. Нагорнов³ Северо-Кавказский федеральный университет ¹k-fmf-primath@stavsu.ru, ²ljahov@mail.ru, ³sparta1392@mail.ru³ Д. И. Каплун¹, А. С. Вознесенский², Д. В. Богаевский³

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ¹dikaplun@etu.ru, ²a-voznesensky@yandex.ru, ³dan4ezz94@gmail.com

Аннотация. В данной статье мы предлагаем новый метод сглаживания изображений с использованием системы остаточных классов (СОК). Суть рассматриваемого подхода заключается в замене вычислительно сложной операции деления в СОК на умножение всех дробных чисел на степень двойки с последующим округлением. В результате выполнения этих действий все последующие вычисления производятся над числами в формате с фиксированной точкой. Проведенные теоретические и практические исследования показали, что при достижении определенной точности вычислений, погрешность, возникающая при округлении, не оказывает существенного влияния на результат фильтрации изображения. Это открывает возможности для эффективной аппаратной реализации на FPGA и ASIC.

Ключевые слова: система остаточных классов; цифровая обработка изображений; сглаживающие фильтры

I. Введение

Методы цифровой обработки изображений широко используются в различных областях науки и техники: медицине, биологии, физике, астрономии, а также в промышленной, оборонной и правоохранительной сферах деятельности [1]. Большим потенциалом для повышения эффективности работы цифровых систем обработки изображений обладает система остаточных классов (СОК) [2]. Свойственные ей малоразрядность представления чисел и возможность независимой параллельной обработки данных [3] позволяют значительно повысить эффективность вычислений в приложениях преобладающим количеством модульных операций сложения, вычитания и умножения за счет оптимального использования ресурсов интегральных схем, в частности FPGA [4]. Одним из таких приложений является цифровая обработка изображений [1].

Одной из актуальных задач цифровой обработки изображений является очистка изображений от шума, представляющего собой случайные изменения значений пикселей [5]. Для решения этой задачи на практике используются различные сглаживающие фильтры [6, 7]: фильтры Гаусса, медианные фильтры, биномиальные фильтры и т.д. Сглаживающие фильтры основаны на

выполнении операции свертки — вычислении значения пикселя на основе значений соседних пикселей, приводящему к необходимости выполнения операции деления. Так как деление является немодульной операцией, его выполнение в СОК имеет высокую вычислительную сложность. В последние годы активно развиваются новые методы и алгоритмы для повышения эффективности выполнения этой операции в СОК [6–8].

В настоящее время проведены различные исследования по повышению эффективности вычислений при использовании сглаживающих фильтров для обработки изображений в СОК. В [6] описан метод, согласно которому происходит разделение расчетов между СОК и позиционной системой счисления (ПСС). Операции сложения, вычитания и умножения выполняются в СОК, в то время как операция деления выполняется в ПСС. В [7] предложена модификация этого метода, реализующая деление в СОК, но накладывающая ограничения на основания СОК.

Мы предлагаем новый метод сглаживания изображений с использованием СОК. Основная идея рассматриваемого подхода заключается в замене вычислительно сложной операции деления в СОК на умножение всех дробных чисел на множитель определенной величины и последующее округление. В результате выполнения этих действий все последующие вычисления производятся только над целыми числами, что открывает возможность эффективной аппаратной реализации на FPGA [9].

II. ВВЕДЕНИЕ В СОК

Числа в СОК представляются в виде совокупности остатков от деления $(a_1,a_2,...,a_n)$ на набор взаимно простых чисел $\{p_1,p_2,...,p_n\}$, называемых модулями

СОК. Произведение всех модулей СОК $P = \prod_{i=1}^n p_i$, называется рабочим диапазоном системы. Любое целое число $0 \le A < P$ в СОК представимо в виде $A = (a_1, a_2, ..., a_n)$, где $a_i = \left|A\right|_{p_i} = A \bmod p_i$ [2].

Сложение, вычитание и умножение чисел в ПСС эквивалентно сложению, вычитанию и умножению остатков этих чисел в СОК по соответствующим модулям:

$$\begin{split} A \pm B &= (\left| a_1 \pm b_1 \right|_{p_i}, \left| a_2 \pm b_2 \right|_{p_2}, ..., \left| a_n \pm b_n \right|_{p_n}), \\ A \cdot B &= (\left| a_1 \cdot b_1 \right|_{p_i}, \left| a_2 \cdot b_2 \right|_{p_2}, ..., \left| a_n \cdot b_n \right|_{p_n}). \end{split}$$

Обратный перевод из СОК в ПСС основан на использовании Китайской теоремы об остатках [13]:

$$A = \left| \sum_{i=1}^{n} \left| P_i^{-1} \right|_{p_i} \cdot a_i \right|_{p_i} \cdot P_i \right|_{p}, \tag{1}$$

где $P_i = P \ / \ p_i$ и $\left| P_i^{-1} \right|_{p_i}$ мультипликативный обратный элемент числа P_i по модулю p_i .

III. ОПТИМИЗАЦИЯ СГЛАЖИВАЮЩЕЙ ФИЛЬТРАЦИИ В COK

Изображение A состоит из X строк и Y столбцов и представимо как функция A(x,y), где $0 \le x \le X-1$ и $0 \le y \le Y-1$ пространственные координаты, и величина A в любой точке с координатами (x,y) представляет собой значение яркости изображения в этой точке. Элементы A(x,y) называются пикселями изображения A. Фильтрация изображения представима в виде:

$$A_2(x, y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} A_1(x+i, y+j) \cdot f_{i,j}$$

для всех пар значений (x,y), где A_1 — исходное изображение, A_2 — отфильтрованное, и $f_{i,j}$ — коэффициенты фильтра размера $(2k+1)\times(2k+1)$:

$$F = 1/d \cdot \begin{pmatrix} f_{-k,-k} & \cdots & f_{-k,k} \\ \cdots & \cdots & \cdots \\ f_{k,-k} & \cdots & f_{k,k} \end{pmatrix},$$

где сумма всех коэффициентов фильтра равна единице и d — усредняющий коэффициент, определяемый по формуле $d=\sum_{i=-k}^k\sum_{j=-k}^k f_{i,j}$.

Для фильтрации данным методом необходимо предварительно преобразовать исходные коэффициенты фильтра. Первым шагом является умножение всех коэффициентов фильтра $f_{i,j}$ на множитель 2^n . Данный множитель эффективен с точки зрения аппаратной реализации, так как выполнение операций умножения и деления в двоичной записи числа соответствует сдвигу запятой на n знаков вправо или влево соответственно.

Все коэффициенты фильтра $2^n f_{i,j}$ округляются в бо́льшую сторону. В результате выполнения этих действий

мы избавляемся от дробных величин и все последующие операции на интегральной схеме производятся только над числами с фиксированной точкой. При этом степень n множителя 2^n представляет собой разрядность коэффициентов фильтра.

После этого коэффициенты фильтра переводятся из ПСС в СОК с выбранной системой модулей $\{p_1, p_2, ..., p_m\}$. Схема самого процесса фильтрации представлена на рисунке 1.

Рис. 1. Схема сглаживающей фильтрации в СОК

Вначале значения яркости входящего цифрового изображения переводятся из ПСС в СОК. После чего по каждому модулю системы $\{p_1, p_2, ..., p_m\}$ производится свертка с преобразованными коэффициентами фильтра. Результат выполнения этой операции переводится обратно из СОК в ПСС согласно формуле (1). Далее полученные значения делятся на 2^n и округляются в меньшую сторону.

В результате выполнения операции округления появляется погрешность. Возникает вопрос о величине этой погрешности и о ее влиянии на результат фильтрации изображения. Точность вычислений возрастает с увеличением разрядности n. Необходимо выяснить, какую разрядность необходимо использовать для того, чтобы погрешность вычислений не оказывала существенного влияния на конечный результат фильтрации изображения. В качестве критерия оценки качества фильтрации изображений использована числовая характеристика PSNR [5].

IV. Теоретический анализ максимальной погрешности метода сглаживающей фильтрации

Изначально погрешность возникает при округлении коэффициентов фильтра, затем она возрастает при выполнении операции свертки, так же оказывает влияние округление после деления в ПСС. Введем следующие обозначения [10]: LAE_1 — предельная абсолютная погрешность (ПАП) округления коэффициентов фильтра; LAE_2 — ПАП нормированных (деленных на 2^n) результатов свертки; $AE_2 \in [0, LAE_2]$ — абсолютная погрешность (АП) нормированных результатов свертки; LAE_3 — ПАП округления нормированных результатов свертки; $\lambda \in [0,1)$ — дробная часть точного результата свертки; LAE_4 — ПАП округленных нормированных результатов свертки. Проведем теоретические расчеты для оценки максимальной погрешности вычислений метода

сглаживающей фильтрации для фильтров Гаусса F_1 , F_2 и F_3 (с размерами 3×3 , 5×5 и 7×7 соответственно).

Вычислим
$$LAE_1 = \sum_{i=-k}^k \sum_{i=-k}^k \left(\left\lceil 2^n f_{i,j} \right\rceil - 2^n f_{i,j} \right)$$
. Далее

определим $LAE_2=LAE_1\cdot M/2^n$. Следующим шагом будет вычисление $LAE_3=LAE_2+\lambda-\lfloor LAE_2+\lambda\rfloor$. В результате выполнения операции свертки точное значение редко будет целым числом. Таким образом, значение LAE_3 зависит не только от LAE_2 , но и от λ . Результирующая погрешность представляет собой LAE_4 .

$$LAE_4 = |LAE_2 - LAE_3|. (2)$$

Выразим LAE_3 через LAE_2 и λ в формуле (2).

$$LAE_4 = |LAE_2 - (LAE_2 + \lambda - |LAE_2 + \lambda)| =$$

$$= ||LAE_2 + \lambda| - \lambda|.$$
(3)

Рассмотрим два случая:

1. $\lfloor LAE_2 + \lambda \rfloor - \lambda > 0 \Rightarrow \lfloor LAE_2 + \lambda \rfloor \geq 1$. Чем больше $\lfloor LAE_2 + \lambda \rfloor$, тем больше LAE_4 . Таким образом, $\lfloor LAE_2 + \lambda \rfloor = \lfloor LAE_2 \rfloor + 1$ и λ представляет собой дополнение дробной части числа LAE_2 до единицы: $\lambda = \lfloor LAE_2 \rfloor + 1 - LAE_2$. Подставим это выражение в (3).

$$LAE_{4} = \lfloor LAE_{2} + \lfloor LAE_{2} \rfloor + 1 - LAE_{2} \rfloor -$$

$$- (\lfloor LAE_{2} \rfloor + 1 - LAE_{2}) = LAE_{2}.$$

$$(4)$$

 $2. \quad \lfloor LAE_2 + \lambda \rfloor - \lambda \leq 0 \Rightarrow \lfloor LAE_2 + \lambda \rfloor \leq \lambda \Rightarrow \lfloor LAE_2 + \lambda \rfloor = 0 \Rightarrow LAE_4 = |0 - \lambda| = \lambda$. Чем больше λ , тем больше LAE_4 . Но $\quad \lfloor LAE_2 + \lambda \rfloor = 0 \Rightarrow LAE_2 + \lambda = 1 - \varepsilon \Rightarrow \lambda = 1 - \varepsilon - LAE_2$. Используя AE_2 вместо LAE_2 , и положим его равным нулю. В этом случае формула (3) примет вид:

$$LAE_4 = \left| \left| 0 + 1 - \varepsilon \right| - (1 - \varepsilon) \right| = 1 - \varepsilon. \tag{5}$$

Так как величина LAE_4 представляет собой максимально возможное значение погрешности, то формулу (4) используем для $LAE_2 > 1 - \varepsilon \ge 1$. Таким образом, из формул (4) и (5) можно однозначно определить LAE_4 через LAE_2 :

$$LAE_4 = \begin{cases} LAE_2, LAE_2 \ge 1, \\ 1 - \varepsilon, LAE_2 < 1. \end{cases}$$

PSNR в данном случае вычисляется по формуле $PSNR=20\lg(M/LAE_4)$, где $MSE=LAE_4^{\ 2}$.

В результате проведения расчетов для 13 различных разрядностей n (n=1,...,13) коэффициентов фильтров

 F_1 , F_2 and F_3 и M=255 получены следующие значения PSNR (табл. 1).

Из табл. 1 мы можем заключить следующее.

Чем больше размер фильтра, тем большая разрядность нужна для сохранения уровня точности вычислений.

Результат фильтрации не содержит значительных искажений ($PSNR \ge 40$) при использовании разрядностей n=10, n=11 и n=12 для обработки фильтрами размеров 3×3 , 5×5 и 7×7 соответственно.

ТАБЛИЦА І РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ РАСЧЕТОВ (ДБ)

n	F_1	F_2	F_3
1	-10,881	-21,214	-27,421
2	-1,938	-14,403	-21,023
3	2,499	-7,044	-14,403
4	6,021	0,561	-7,739
5	13,201	7,180	-1,493
6	22,144	15,296	5,242
7	26,581	23,059	11,774
8	30,103	29,080	18,917
9	37,283	31,907	25,886
10	46,227	37,927	31,579
11	48,131	43,948	39,378
12	48,131	48,131	43,304
13	48,131	48,131	48,131

Таким образом, мы можем определить наименьшую разрядность n коэффициентов фильтров размера $(2k+1)\times(2k+1)$, при которой результат обработки не содержит значительных искажений:

$$n = 9 + k. \tag{6}$$

Результат фильтрации содержит минимальные $(PSNR \approx 48.131)$ искажения при использовании разрядностей n = 11, n = 12 и n = 13 для обработки фильтрами размеров 3×3 , 5×5 и 7×7 соответственно. Таким образом, мы можем определить наименьшую разрядность коэффициентов фильтров n $(2k+1) \times (2k+1)$ при которой результат обработки содержит минимальные искажения:

$$n = 10 + k. \tag{7}$$

Проведем моделирование рассматриваемого метода фильтрации для сверки с полученными результатами теоретических расчетов.

V. МОДЕЛИРОВАНИЕ МЕТОДА СГЛАЖИВАЮЩЕ ФИЛЬТРАЦИИ

Моделирование проведено в программной среде MatLab версии R2015b для 8-битного изображения в оттенках серого: «Лена» (рис. 2a). Использована СОК с модулями $\{2^r-1,2^r,2^r+1\}$ [2] с r=8 и динамическим диапазоном P=16776960.

На исходное изображение с помощью команды wgn наложен дискретный белый гауссов шум мощностью 5, 10, ..., 50 дБ. Далее, с помощью команды «imfilter»,

осуществлена фильтрация изображений в ПСС и в СОК с разрядностями $n=1,\dots,13$ коэффициентов фильтров F_1 , F_2 и F_3 .

Пример моделирования представлен на рис. 2. Из результатов обработки изображения, показанных на рис. $2s-2\partial$, видно, что при увеличении разрядности n качество фильтрации в СОК постепенно улучшается.

Рис. 2. Результаты моделирования изображения «Лена» с использованием фильтра F_3 : а) исходное изображение; б) зашумленное изображение (30 дБ); результаты фильтрации: в) СОК, n=4, PSNR=-2,01 дБ; г) СОК, n=8, PSNR=23,21 дБ; д) СОК, n=12, PSNR=27,86 дБ; е) ПСС, PSNR=27,84 дБ.

Значения PSNR, полученные в результате обработки изображений фильтром F_3 , представлены в табл. 2. Разрядность коэффициентов выбрана в соответствии с формулами (6) и (7). Как показано в табл. 2, результаты обработки изображений в СОК с разрядностью $n \ge 9 + k = 12$ сопоставимы с результатами обработки в ПСС по качеству. Таким образом, результаты моделирования подтверждают результаты расчетов.

На основе теоретических и практических результатов мы можем сделать следующие выводы:

Разрядность n коэффициентов фильтров, при которой результат фильтрации изображения не содержит значительных искажений $(PSNR \ge 40)$, может быть найден по формуле (6).

ТАБЛИЦА II РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ С ФИЛЬТРОМ F_3 (ДБ)

	0 0		СОК		ПСС - СОК	
Шум	Зашумленное изображение	ЭЭШ	n = 12	n = 13	n = 12	n = 13
нет	8	33.524	33.560	33.571	-0.037	-0.048
5	43.028	33.488	33.521	33.532	-0.033	-0.045
10	38.099	33.406	33.439	33.448	-0.033	-0.042

15	33.103	33.153	33.188	33.196	-0.035	-0.043
20	28.138	32.480	32.503	32.515	-0.022	-0.034
25	23.123	30.773	30.790	30.797	-0.017	-0.024
30	18.285	27.844	27.858	27.858	-0.014	-0.014
35	13.753	23.956	23.970	23.965	-0.014	-0.009
40	10.152	19.896	19.915	19.906	-0.020	-0.010
45	7.918	16.722	16.729	16.726	-0.007	-0.004
50	6.760	14.845	14.844	14.846	0.001	0.000

Можно добиться сокращения ресурсов, используемых в аппаратной реализации этого метода, поскольку наивысшие биты коэффициентов равны нулю.

VI. ЗАКЛЮЧЕНИЕ

Мы предлагаем новый подход к сглаживанию изображений c использованием Суть рассматриваемого подхода заключается замене вычислительно сложной операции деления в СОК на умножение всех дробных чисел на множитель определенной величины и последующее округление. В результате выполнения этих действий все последующие вычисления производятся только над целыми числами.

Проведенные теоретические и практические исследования показали, что при разрядности коэффициентов фильтра n=9+k, где k определяется размером сглаживающего фильтра $(2k+1)\times(2k+1)$, погрешность вычислений, возникающая при округлении, не оказывает существенного влияния на результат фильтрации изображения $(PSNR \ge 40)$. Это открывает возможности для эффективной аппаратной реализации на FPGA и ASIC.

Список литературы

- [1] Bovik A.C. Handbook of image and video processing, 2^{nd} ed. San Diego: Elsevier Academic Press, 2005. 1429 p.
- [2] Chang C.-H., Molahosseini A.S., de Sousa L.S. Embedded Systems Design with Special Arithmetic and Number Systems. Cham: Springer International Publishing, 2017. 389 p.
- [3] Chang C.-H., Molahosseini A.S., Zarandi A.A.E., Tay T.F. Residue Number Systems: A New Paradigm to Datapath Optimization for Low-Power and High-Performance Digital Signal processing Applications // IEEE Circuits and Systems Magazine. 2015. vol. 15, no. 4. pp. 26-44.
- [4] Bailey G. Design for embedded image processing on FPGAs. Singapore: Wiley-IEEE Press, 2011. 496 p.
- [5] Chervyakov N.I., Lyakhov P.A., Babenko M.G. Digital Filtering of Images in a Residue Number System Using Finite-Field Wavelets // Automatic Control and Computer Sciences. 2014. vol. 48, no. 3. pp. 180-189.
- [6] Vasalos E., Bakalis D., Vergos H.T. RNS Assisted Image Filtering and Edge Detection // IEEE 18th International Conference on Digital Signal Processing (DSP). 2013. pp. 1–6.
- [7] Chervyakov N.I., Lyakhov P.A., Ionisyan A.S., Valueva M.V. High-Speed Smoothing Filter in the Residue Number System // Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC). 2016. pp. 121–126.
- [8] Chang C.-C., Lai Y.-P. A division algorithm for residue numbers // Applied Mathematics and Computation. 2006. vol. 172, no. 1. pp. 368-378.
- [9] Talbi F., Alim F., Seddiki S., Mezzah I., Hachemi B. Separable Convolution Gaussian Smoothing Filters on a Xilinx FPGA platform // IEEE Fifth International Conference on Innovative Computing Technology (INTECH). 2015. pp. 112-117.
- [10] Burden R.L., Faires J.D., Burden A.M. Numerical Analysis, 10th ed. Boston: Cengage Learning, 2016. 896 p.