

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Pça. Liberdade — Inst. de Ciências Exatas e Informática — Ciência da Computação

Disciplina	Curso	Sem./Turno
Teoria dos Grafos e Computabilidade	Ciência da Computação	$2022/2^{\circ} - \mathrm{Manh\tilde{a}}$

Professor

Zenilton Kleber Gonçalves do Patrocínio Júnior (zenilton@pucminas.br)

Car	ga Horária Semana	ı	Carga Horária Semestral	Número de Créditos			
Presencial	Remota Sincr.	Total					
04	02	06	120	06			

Objetivos

A disciplina Teoria dos grafos e Computabilidade tem como objetivos principais: (a) introduzir ao aluno os conceitos básicos da teoria de grafos; (b) auxiliar o aluno no desenvolvimento das habilidades de desenvolver soluções computacionais para problemas por meio da modelagem em grafos; (c) apresentar ao aluno diversos algoritmos em grafos existentes e como aplicá-los em problemas reais.

Ementa

Lógica, relações de equivalência, funções e conjuntos. Prova e demonstração de teoremas. Estruturas de dados para grafos, caminhos, busca, árvores, conectividade, isomorfismo, planaridade, coloração, particionamento, modelagem de problemas e fluxo em redes.

Processo de Avaliação $\begin{array}{ll} \text{Provas} & 3\times 20 = 60 \\ \text{Atividades On-line} & 15 \\ \text{Trabalhos} & 20 \\ \text{Avaliação de Desempenho Acadêmico - ADA} & 05 \\ \textbf{Total} & \textbf{100} \\ \\ \textbf{Reavaliação} \equiv \text{Prova substituindo a menor prova (se nota final < 60)} & 1\times 20 = 20 \\ \end{array}$

Trabalho e seminário

O trabalho a ser desenvolvido deverá ser individual, e poderá haver pontos de controle entre a divulgação do trabalho e sua entrega. O trabalho deverá ser desenvolvido em **Java**, **C ou C++**. Após cada ponto de controle, será informada uma nova etapa do trabalho. Este trabalho consistirá na implementação de aplicações que utilizam QUAISQUER conceitos estudados em sala. Uma análise teórica/prática deverá ser feita em entrega em formato de artigo. O texto DEVERÁ ser escrito em LaTeX (modelo divulgado posteriomente) contendo no máximo 15 páginas.

Bibliografia

KLEINBERG, Jon and TARDOS, Eva et al. Algorithm Design. Pearson, 2005.

CORMEN, Thomas H. et al. Algoritmos: teoria e prática. Rio de Janeiro: Campus, 2002. 916p. ISBN 8535209263

SEDGEWICK, Robert. Algorithms in C++: volume 2, pt. 5: graph algorithms. 3nd ed. Boston: Addison-Wesley, c2002. 496 p. ISBN 0201361183

WEST, Douglas Brent. Introduction to graph theory. 2nd ed. Upper Saddle River: Prentice Hall, 2001. 588 p. ISBN 0130144002

BERGE, Claude. The theory of graphs. Mineola: Dover, 2001. 247 p. ISBN 0486419754

VALIENTE, Gabriel. Algorithms on trees and graphs. Berlim: Springer, 2002. 490p. ISBN 3540435506

																	20	22																
			Ago	osto					Set	en	ıbro)						bro)				No	ven	nbr	0				De	zen	nbr	0	
S	Γ	. () (Q S	\mathbf{S}	D	\mathbf{S}	Τ	Q	Q	\mathbf{S}	S	D	S	Τ	Q	Q	S	S	D	\mathbf{S}	Τ	Q	Q	\mathbf{S}	\mathbf{S}	D	\mathbf{S}	Τ	Q	Q	\mathbf{S}	\mathbf{S}	D
01	0:	2 0	3 0	05	06	07				01	02	03	04						01	02		01	02	03	04	05	06				01	02	03	04
08	0	9 10	0 (1	12	13	14																						05	06	07	08	09	10	11
15	10	6 17	7 (18	19	20	21														16								12						
22	2	3 24	4 2	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27	19	20	21	$\overline{22}$	23	24	25
29	30	0 3	1				26	27	28	29	30			24	25	26	27	28	29	30	28	29	3 0					26	27	28	29	30	31	
														31																				

Segunda-feira	Quarta-feira	Quinta-Feira
Agosto 1° 1	3 2	4 3
Apresentação / Introdução a Teoria dos Grafos / Conceitos fundamentais	Conceitos fundamentais	Estruturas de dados para representação

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Pça. Liberdade — Inst. de Ciências Exatas e Informática — Ciência da Computação

Segunda-feira	Quarta-feira	Quinta-Feira
8 4 Estruturas de dados para representação	10 5 Isomorfismo / Subgrafo	11 6 Isomorfismo / Subgrafo
15 Assunção de Nossa Senhora	17 7 Caminho / Noções básicas de conectividade	18 8 Caminho / Noções básicas de conectividade
22 9 Busca em grafos	24 10 Busca em profundidade	25 11 Busca em profundidade
29 12 Busca em profundidade / Busca em largura	31 13 Busca em largura	Setembro 1° 14 Busca em largura
5 15 Conectividade e Separabilidade	7 Independência do Brasil	8 16 Conectividade e Separabilidade
12 17 Grafos hamiltonianos e eulerianos	14 Aula de exercícios e revisão	15 19 Exercícios e revisão
19 20 Prova 1	21 21 Árvores / Árvores geradoras / AGM	22 22 AGM: Método de Prim / Método de Kruskal
26 23 AGM: Método de Prim / Método de Kruskal	28 24 Corte / Caminhos mínimos	29 25 Caminhos mínimos: Método de Dijkstra
Outubro 3 26 Caminhos mínimos: Método de Dijkstra	5 27 Caminhos mínimos: Método de Bellman-Ford	6 28 Caminhos mínimos: Método de Bellman-Ford
10 Recesso – Antecipação do Dia do Professor	12 Nossa Senhora Aparecida	13 29 Caminhos mínimos: Método de Floyd–Warshall
17 30 Fluxo máximo: Método de Ford-Fulkerson	19 31 Teorema do Fluxo máximo e corte mínimo	20 32 Fluxo máximo
24 33 Fluxo máximo: Edmond-Karp	26 34 Fluxo máximo: Dinic	27 35 Fluxo máximo
31 36 Aula de exercícios e revisão	Novembro 2 Finados	3 37 Exercícios e revisão
7 38 Prova 2	9 39 Ordenação topológica: Método de Kahn e via DFS	10 40 Ordenação topológica
14 41 Emparelhamento / Emparelhamento Máximo: Grafo Bipartido x Genérico	16 42 Atribuição Linear: Método Húngaro	17 43 Emparelhamento / Atribuição Linear
21 44 Grafos Planares / Dualidade Geométrica / Teorema das 04 cores	23 45 Coloração / Métodos guloso e de Welsh-Powell	24 46 Planaridade / Coloração / Conjuntos de Vértices
28 47 Conj. de Vértices: Independência, Dominância e Cobertura	30 48 Independência, Dominância e Cobertura: Heurísticas	Dezembro 1° 49 Conjuntos de Vértices
5 Aula de exercícios e revisão	7 51 Aula de exercícios e revisão	8 Nossa Senhora da Conceição
12 52 Prova 3	14 53 Entrega de resultados	15 54 Entrega de resultados
19 55 Reavaliação	21 56 Término do semestre	22 57 Término do semestre