Основные теоремы о дифференцируемых функциях

Точка x_0 из области определения функции называется точкой локального максимума (минимума), если существует такой интервал, содержащий эту точку, что для всех $x \neq x_0$ из этого интервала верно неравенство $f(x) \leq f(x_0)$ ($f(x) \geq f(x_0)$). Точки максимума и минимума называются точками (локального) экстремума.

1. **Теорема Ферма.** Докажите, что, если функция f дифференцируема в точке экстремума x_0 , то $f'(x_0) = 0$.

Следующие теоремы позволяют делать вывод о значениях производной, имея информацию о значениях самой функции. Докажите их самостоятельно.

- 2. **Теорема Ролля.** Если функция f непрерывна на отрезке [a, b], дифференцируема на интервале (a, b) и f(a) = f(b), то найдётся точка $c \in (a, b)$ такая, что f'(c) = 0.
- 3. **Теорема Лагранжа.** Если функция f непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то найдётся точка $c \in (a,b)$ такая, что $f'(c) = \frac{f(b) f(a)}{b a}$.
- 4. **Теорема Коши.** Если функции f и g непрерывны на отрезке [a,b], дифференцируемы на (a,b), производные f' и g' не обращаются в нуль одновременно ни в одной точке интервала (a,b) и $g(a) \neq g(b)$, то найдётся точка $c \in (a,b)$ такая, что $\frac{f'(c)}{g'(c)} = \frac{f(b) f(a)}{g(b) g(a)}$.

Монотонность и критические точки функции

Поскольку производная показывает скорость изменения функции в точке, то её значения в точке (или на промежутке) характеризуют поведение функции.

- 5. Функция f, дифференцируемая на промежутке (a, b), возрастает на этом промежутке. Докажите, что для всех $x \in (a, b)$ верно неравенство $f'(x) \ge 0$.
- 6. Функция f, дифференцируемая на промежутке (a,b), такова, что для всех $x \in (a,b)$ верно неравенство $f'(x) \geqslant 0$ (f'(x) > 0). Докажите, что f возрастает (строго возрастает) на этом промежутке.
- 7. Сформулируйте аналогичный критерий убывания на промежутке.
- 8. Функция f дифференцируема на промежутке (a,b) и $x_0 \in (a,b)$. Докажите, что:
 - (a) Если $f'(x) \geqslant 0$ на (a, x_0) и $f'(x) \leqslant 0$ на (x_0, b) , то точка x_0 является точкой максимума функции f на (a, b);
 - (b) Если $f'(x) \leq 0$ на (a, x_0) и $f'(x) \geq 0$ на (x_0, b) , то точка x_0 является точкой минимума функции f на (a, b).

Упражнения

- 9. Найдите наименьшее и наибольшее значения функции f на отрезке [a,b]:
 - (a) $f(x) = 6x^3 3x^2 12x + 7$, [a, b] = [-1, 2];
 - (b) $f(x) = x^2\sqrt{3-x}$, [a,b] = [1,3];
 - (c) $f(x) = 15 3\cos x + \cos 3x$, $[a, b] = [0, \pi/2]$;
 - (d) $f(x) = |x^2 x 6| x^3$, [a, b] = [-4, 4].
- 10. Докажите, что, если a корень многочлена p(x) кратности k, то a является корнем производной p'(x) кратности k-1.
- 11. Найдите количество вещественных корней многочлена $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!}$
- 12. По двум перпендикулярным дорогам к перекрёстку движутся две автомашины со скоростями $40\,\mathrm{km/v}$ и $50\,\mathrm{km/v}$. В данный момент они находятся от перекрёстка на расстоянии $20\,\mathrm{km}$ и $30\,\mathrm{km}$, соответственно. Через какое время расстояние между ними будет минимальным?

Основные теоремы. Монотонность и критические точки. 10.04.06

- 13. Корабль расположен в точке K, находящейся на расстоянии h=3 км от ближайшей
 - точки берега точки A (см. рис.). С корабля отправлен гонец с донесением в штаб B, расположенный от точки A на расстоянии $60\,\mathrm{km}$ по берегу ($\angle BAK = 90^{\circ}$). Лодка движется прямолинейно со скоростью $u = 5 \,\mathrm{km/v}$, а гонец, выйдя из лодки, бежит со скоростью $v=13\,\mathrm{km/y}$. На каком расстоянии от точки A вдоль берега должна пристать

- лодка, чтобы донесение в штаб было доставлено в кратчайшее время?
- 14. Закон преломления света. Луч света вышел из точки A одной среды, преломился на границе ℓ и пришёл в точку B другой среды. Расстояния от точек A и B до границы равны h_1 и h_2 соответственно. Считаем, что обе среды изотропны, так что, свет в них распространяется прямолинейно с постоянными скоростями v_1 и v_2 . Пусть α_1 и α_2 — углы падения и преломления света (т.е. углы между лучом и нормалью n к границе). Зная, что свет проходит по пути, по которому он затратит наименьшее возможное время, докажите равенство

Задачи

- 15. Дан многочлен $P(x)=a_{2n+1}x^{2n+1}+a_{2n}x^{2n}+\ldots+a_{1}x+a_{0}$ нечётной степени с положительными коэффициентами. Докажите, что существует такая перестановка его коэффициентов (может быть, тождественная), что у полученного многочлена есть ровно один вещественный корень.
- 16. Найдите все дифференцируемые функции $f: \mathbb{R} \to \mathbb{R}$ такие, что $f \circ f \equiv f$.