COMPUTER SCIENCE Capstone PBL

- Character Motion Synthesis and Character Control

4 - Motion Editing, Motion Synthesis

Yoonsang Lee Fall 2022

Today's Topics

- 3D Orientation & Rotation
- Inverse Kinematics
 - Limb IK
- Motion Editing Techniques
 - Posture / Motion Difference
 - Motion Warping
- Intro to More Motion Editing Techniques
 - Interpolation of Postures
 - Time Warping
 - Motion Stitching
 - Motion Blending
- Intro to Data-Driven Motion Synthesis
 - Motion Graph
 - Motion Matching
- Intro to Deep Learning-Based Motion Synthesis

3D Orientation & Rotation

Recall: Skeletal Motion

- "*Motion*": time-varying data
 - internal joint motion
 - w.r.t. default frame of each joint
 - the frame after applying joint offset to the parent frame
 - usually **rotation**
 - position and orientation of
 - skeletal root
 - w.r.t. global frame
 - usually the pelvis part

Orientation vs. Rotation and Position vs. Translation

- **Orientation** & Position *state*
 - Position: The state of being located.
 - Orientation: The state of being oriented. (angular position)
- **Rotation** & Translation movement
 - Translation: Linear movement (difference btwn. positions)
 - Rotation: Angular movement (difference btwn. orientations)
- This relationship is analogous to *point* vs. *vector* in *coordinate-invariant geometric programming*.
 - point: position
 - vector: difference between two points

Describing 3D Rotation & Orientation

• Describing 3D rotation & orientation is not as intuitive as the 2D case.

- Several ways to describe 3D rotation and orientation
 - Euler angles
 - Rotation vector (Axis-angle)
 - Rotation matrices
 - Unit quaternions

3D Rotation

• For any 3D rotation, we can always find a fixed axis of rotation and an angle about the axis.

Euler Angles

- Express any arbitrary 3D rotation using three rotation angles about three principle axes.
- Possible 12 combinations
 - XYZ, XYX, XZY, XZX
 - YZX, YZY, YXZ, YXY
 - ZXY, ZXZ, ZYX, ZYZ
 - (Combination is possible as long as the same axis does not appear consecutively.)

Example: ZXZ Euler Angles

• 1. Rotate about Z-axis by α

- https://commons.wikimedia.org/wiki/File:Euler2a.gif
- 2. Rotate about X-axis of the new frame by β
- 3. Rotate about Z-axis of the new frame by γ

$$\mathsf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & -\sin \beta \\ 0 & \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = R_z(\alpha)$$

$$R_x(\beta)$$

$$R_z(\gamma)$$

Example: Yaw-Pitch-Roll Convention (ZYX Euler Angles)

Common for describing the orientation of aircrafts

- 1. Rotate about Z-axis by yaw angle
- 2. Rotate about Y-axis of the new frame by pitch angle
- 3. Rotate about X-axis of the new frame by roll angle

 $R = R_z(yaw) R_v(pitch) R_x(roll)$

Gimbal Lock

• Euler angles temporarily lose a DOF when the two axes are aligned.

Normal configuration: The object can rotate freely.

Gimbal lock configuration:
The object can not rotate in one direction.

Try:

- <u>https://compsci290-s2016.github.io/CoursePage/Materials/EulerAnglesViz/index.html</u>
- Set pitch to 90°

Rotation Vector (Axis-Angle)

 $\hat{\mathbf{v}}$: rotation axis (unit vector)

 θ : scalar angle

• Rotation vector: $\mathbf{v} = \theta \ \hat{\mathbf{v}} = (x, y, z)$

• Axis-Angle: $(\theta, \hat{\mathbf{v}})$

Rotation Matrix

- A rotation matrix defines
 - Orientation of new rotated frame or,
 - Rotation from a global frame to be that rotated frame

Rotation Matrix

• A square matrix \mathbf{R} is a rotation matrix if and only if

1.
$$\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$$

- A rotation matrix is an orthogonal matrix with determinant 1.
 - Sometimes it is called *special orthogonal matrix*
 - A set of rotation matrices of size 3 forms a special orthogonal group, SO(3)

Geometric Properties of Rotation Matrix

- \mathbf{R}^{T} is an inverse rotation of \mathbf{R} .
 - Because, $RR^T = I \iff R^{-1} = R^T$

- $\mathbf{R}_1\mathbf{R}_2$ is a rotation matrix as well (composite rotation).
 - proof) $(\mathbf{R}_1\mathbf{R}_2)^T(\mathbf{R}_1\mathbf{R}_2) = \mathbf{R}_2^T\mathbf{R}_1^T\mathbf{R}_1\mathbf{R}_2 = \mathbf{R}_2^T\mathbf{R}_2 = \mathbf{I}$ and $\det(\mathbf{R}_1\mathbf{R}_2) = \det(\mathbf{R}_1) \cdot \det(\mathbf{R}_2) = 1$
- The length of vector \mathbf{v} is not changed after applying a rotation matrix \mathbf{R} .

- proof)
$$\|\mathbf{R}\mathbf{v}\|^2 = (\mathbf{R}\mathbf{v})^T(\mathbf{R}\mathbf{v}) = \mathbf{v}^T\mathbf{R}^T\mathbf{R}\mathbf{v} = \mathbf{v}^T\mathbf{v} = \|\mathbf{v}\|^2$$
 \mathbf{v}^T \mathbf{v}^T \mathbf{v}^T \mathbf{v}^T

Quaternions

- Complex numbers can be used to represent 2D rotations.
- z = x + yi, where $i^2 = -1$ - Euler's formula: $e^{i\varphi} = \cos \varphi + i \sin \varphi$
- Basic idea: Quaternion is its extension to 3D space.
- q = w + xi + yj + zk
- , where $i^2 = j^2 = k^2 = ijk = -1$ ij = k, jk = i, ki = jji = -k, kj = -i, ik = -j

Quaternions

- q = w + xi + yj + zk
 - w is called a real part (or scalar part).
 - -xi + yj + zk is called an *imaginary part* (or *vector part*).

• Notation:

$$q = w + xi + yj + zk$$
$$= (w, x, y, z)$$
$$= (w, \mathbf{v})$$

Unit Quaternions

- Unit quaternions represent 3D rotations.
- $\bullet \quad q = w + ix + jy + kz,$
- , where $w^2 + x^2 + y^2 + z^2 = 1$

• Rotation about axis $\hat{\mathbf{u}}$ by angle θ :

$$\mathbf{q} = \left(\cos\frac{\theta}{2}, \widehat{\mathbf{u}}\sin\frac{\theta}{2}\right)$$

$$q = w + xi + yj + zk$$
$$= (w, x, y, z)$$
$$= (w, \mathbf{v})$$

Unit Quaternions

• A 3D position (x, y, z) is represented as a pure imaginary quaternion (0, x, y, z).

• If $\mathbf{p} = (0, x, y, z)$ is rotated about axis $\hat{\mathbf{v}}$ by angle θ , then the rotated position $\mathbf{p}' = (0, x', y', z')$ is:

Unit Quaternions

Identity
$$\mathbf{q} = (1,0,0,0)$$

Multiplication $\mathbf{q}_1 \mathbf{q}_2 = (w_1, \mathbf{v}_1)(w_2, \mathbf{v}_2)$
 $= (w_1 w_2 - \mathbf{v}_1 \cdot \mathbf{v}_2, w_1 \mathbf{v}_2 + w_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2)$

Inverse $\mathbf{q}^{-1} = (w, -x, -y, -z)/(w^2 + x^2 + y^2 + z^2)$
 $= (-w, x, y, z)/(w^2 + x^2 + y^2 + z^2)$

• $\mathbf{q_1}\mathbf{q_2}$: rotate by $\mathbf{q_1}$ then $\mathbf{q_2}$ w.r.t. local frame or rotate by $\mathbf{q_2}$ then $\mathbf{q_1}$ w.r.t. global frame

•
$$\mathbf{p}' = \mathbf{q}_1 \mathbf{q}_2 \mathbf{p} (\mathbf{q}_1 \mathbf{q}_2)^{-1} = \mathbf{q}_1 (\mathbf{q}_2 \mathbf{p} \mathbf{q}_2^{-1}) \mathbf{q}_1^{-1}$$

Which Representation to Use?

• General recommendation: Use **rotation matrices** or **unit quaternions**.

• Because they provide accurate "addition", "subtraction", and interpolation of rotations.

• In addition, Euler angles have the gimbal lock issue.

"Addition" of Rotations

- Rotation matrix, Unit quaternion:
 - $\mathbf{R}_1 \mathbf{R}_2$ (or $\mathbf{q}_1 \mathbf{q}_2$)
 - Rotate by \mathbf{R}_1 (or \mathbf{q}_1), then by \mathbf{R}_2 (or \mathbf{q}_2) w.r.t. local frame.
 - (Element-wise addition does NOT even produce a rotation matrix or unit quaternion.)
- Euler angles:
 - $(\alpha_1, \beta_1, \gamma_1) + (\alpha_2, \beta_2, \gamma_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2)?$
 - Does **NOT** mean rotate by $(\alpha_1, \beta_1, \gamma_1)$, then by $(\alpha_2, \beta_2, \gamma_2)$!
- Rotation vector:
 - $v_1 + v_2$?
 - Does **NOT** mean rotate by \mathbf{v}_1 , then by \mathbf{v}_2 !

"Subtraction" of Rotations

- Rotation matrix, Unit quaternion:
 - $\mathbf{R}_1^T \mathbf{R}_2$ (or $\mathbf{q}_1^{-1} \mathbf{q}_2$)
 - Rotational difference: A rotation matrix that rotate a frame \mathbf{R}_1 (or \mathbf{q}_1) to be coincident with the frame \mathbf{R}_2 (or \mathbf{q}_2) when applied w.r.t. the frame \mathbf{R}_1 (or \mathbf{q}_1)
 - Because $\mathbf{R}_1(\mathbf{R}_1^T \mathbf{R}_2) = \mathbf{R}_2$
 - (Element-wise subtraction does NOT even produce a rotation matrix or unit quaternion.)
- Euler angles:
 - $(\alpha_2, \beta_2, \gamma_2) (\alpha_1, \beta_1, \gamma_1) = (\alpha_2 \alpha_1, \beta_2 \beta_1, \gamma_2 \gamma_1)$?
 - Does **NOT** mean difference between rotation $(\alpha_1, \beta_1, \gamma_1)$ and $(\alpha_2, \beta_2, \gamma_2)$!
- Rotation vector:
 - $v_2 v_1$?
 - Does **NOT** mean difference between rotation \mathbf{v}_1 and \mathbf{v}_2 !

Interpolation of Rotations

- Can we just linear interpolate each element of
 - Euler angles
 - Rotation vector
 - Rotation matrix
 - Unit quaternion
- ?

• \rightarrow No!

• The right answer: **slerp**

Slerp

- **Slerp** [Shoemake 1985]
 - Spherical linear interpolation
 - Linear interpolation of two orientations

Slerp

- slerp(\mathbf{R}_1 , \mathbf{R}_2 , t) = $\mathbf{R}_1(\mathbf{R}_1^T\mathbf{R}_2)^t$ = $\mathbf{R}_1 \exp(\mathbf{t} \cdot \log(\mathbf{R}_1^T\mathbf{R}_2))$
 - exp(): rotation vector to rotation matrix
 - log(): rotation matrix to rotation vector

- Implication
 - $\mathbf{R}_1^T \mathbf{R}_2$: difference between orientation \mathbf{R}_1 and \mathbf{R}_2 (\mathbf{R}_2 (-) \mathbf{R}_1)
 - \mathbf{R}^{t} : scaling rotation (scaling rotation angle)
 - $\mathbf{R}_{a}\mathbf{R}_{b}$: add rotation \mathbf{R}_{b} to orientation \mathbf{R}_{a} ($\mathbf{R}_{a}(+)\mathbf{R}_{b}$)

Exp & Log

- Exp (exponential): rotation vector to rotation matrix
 - Given normalized rotation axis $u=(u_x,u_y,u_z)$, rotation angle θ

$$R = \begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta \right) & u_x u_y \left(1 - \cos\theta \right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta \right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta \right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta \right) & u_y u_z \left(1 - \cos\theta \right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta \right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta \right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta \right) \end{bmatrix}$$
(Rodrigues' rotation formula)

• Log (logarithm): rotation matrix to rotation vector

Given rotation matrix **R**, compute axis **v** and angle θ

$$\theta = \cos^{-1}((R_{11} + R_{22} + R_{33} - 1)/2)$$
 $v_1 = (R_{32} - R_{23})/(2\sin\theta)$
 $v_2 = (R_{13} - R_{31})/(2\sin\theta)$
 $v_3 = (R_{21} - R_{12})/(2\sin\theta)$
 \to But this fomula has a singularity at $\theta = k\pi$, where k is an integer.

Algorithm for Log

Algorithm for Computing the Logarithm of a Rotation Matrix

Objective: Given $R \in SO(3)$, find $\omega \in \mathbb{R}^3$, $\|\omega\| = 1$, and $\theta \in [0, \pi]$ such that

$$R = e^{[\omega]\theta} = I + \sin\theta \left[\omega\right] + (1 - \cos\theta)[\omega]^2. \tag{3.62}$$

- (i) If $\operatorname{tr} R = 3$, then set $\omega = 0$, $\theta = 0$.
- (ii) If $\operatorname{tr} R = -1$, then set $\theta = \pi$, and ω to any of the three following vectors that is nonzero:

$$\omega = \frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix}$$
 (3.63)

or

$$\omega = \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{32} \end{bmatrix}$$
 (3.64)

or

$$\omega = \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{21} \end{bmatrix}. \tag{3.65}$$

of "Modern Robotics" for detail: http://hades.mech. northwestern.edu/i mages/2/25/MRv2.pdf

See section 3.2.3.3

(iii) Otherwise set $\theta = \cos^{-1}\left(\frac{\operatorname{tr} R - 1}{2}\right) \in [0, \pi)$ and $[\omega] = \frac{1}{2\sin\theta}(R - R^T)$.

Exp & Log

- However, you can just use scipy.spatial.transform.Rotation for exp() and log().
 - https://docs.scipy.org/doc/scipy/reference/generated/scip
 y.spatial.transform.Rotation.html

Slerp

- Quaternion slerp:
 - slerp(\mathbf{q}_1 , \mathbf{q}_2 , t) = $\mathbf{q}_1(\mathbf{q}_1^{-1}\mathbf{q}_2)^t$
- Geometric slerp (equivalent):

- slerp(
$$\mathbf{q}_1$$
, \mathbf{q}_2 , t) = $\frac{\sin((1-t)\varphi)}{\sin\varphi}\mathbf{q}_1 + \frac{\sin(t\varphi)}{\sin\varphi}\mathbf{q}_2$

- φ : the angle subtended by the arc ($\cos \varphi = \mathbf{q}_1 \cdot \mathbf{q}_2$)
- No slerp for Euler angles or rotation vector representation!
 - They need to be converted to rotation matrix or unit quaternions to slerp.

Interpolation of Rotations

- Start orientation (ZYX Euler angles): Rz(-90) Ry(90) Rx(0)
- End orientation (ZYX Euler angles): Rz(0) Ry(0) Rx(90)

https://youtu.be/ Y02MAWKmfGU

Limb IK

Inverse Kinematics

 Given the desired position and possibly orientation of the end effector,

• What is the set of joint orientations for other joints to generate the desired end effector configuration?

$$\theta_i = \mathrm{F}^{-1}(\mathbf{p}, \mathbf{q})$$

Inverse Kinematics

: Given the position & orientation of end-effector, compute joint angles

[Practice] FK / IK Online Demo

http://robot.glumb.de/

- Forward kinematics : Open "angles" menu and change values
- Inverse kinematics : Move the end-effector position by mouse dragging

Inverse Kinematics

More challenging than forward kinematics

- An IK problem might have:
 - Multiple solutions
 - Infinitely many solutions
 - No solutions

• IK problems generally do not have analytic solutions.

Inverse Kinematics

- Analytic solver
 - Limb IK (Foot IK)

- Numerical solver
 - Jacobian Transpose IK
 - Pseudo-inverse Jacobian
 - Cyclic coordinate descent (CCD)
 - **—** ...

Simple Analytic Solution

- For sufficiently simple mechanisms (two links in 2D plane), the joint angles can be analytically calculated.
- For example, given L_1 , L_2 , and (X,Y),
- What is θ_1 and θ_2 ?

$$a\cos(\theta_T) = \frac{X}{\sqrt{X^2 + Y^2}}$$

$$\theta_T = a\cos\left(\frac{X}{\sqrt{X^2 + Y^2}}\right)$$

$$\cos(\theta_1 - \theta_T) = \frac{L_1^2 + X^2 + Y^2 - L_2^2}{2L_1\sqrt{X^2 + Y^2}}$$
(cosine rule)
$$\theta_1 = a\cos\left(\frac{L_1^2 + X^2 + Y^2 - L_2^2}{2L_1\sqrt{X^2 + Y^2}}\right) + \theta_T$$

$$\cos(180 - \theta_2) = -\cos(\theta_2) = \frac{L_1^2 + L_2^2 - (X^2 + Y^2)}{2L_1L_2}$$
(cosine rule)
$$\theta_2 = a\cos\left(\frac{L_1^2 + L_2^2 - X^2 + Y^2}{2L_1L_2}\right)$$

Limb IK

- Actually, this simple analytic solution alone is not very useful.
- Instead, limb IK (or foot IK) is often used to correct leg joints so that the feet can touch the ground.
- 두 단계로 나누어서 생각 (t: target position)
- 1단계: line ac와 line at의 길이가 같아지도록 joint a와 b의 각도를 조절
- 2단계: line ac와 line at가 일치하도록 joint a의 각도를 조절

• cosine 법칙 이용

$$c^2=a^2+b^2-2ab\cos C \ \cos C=rac{a^2+b^2-c^2}{2ab}$$

- c'을 ac'길이==at길이 가 되도록 하는 ac 상의 위치, b'을 그때의 관절 b 위치라 하면,
- (모든 변의 길이를 구할 수 있기 때문에) cosine 법칙을 이용해서 α' , β' , γ' 을 계산 가능

- Joint a: (ab × ac의 unit vector)인 axis^{g}에 대해 (α α')만큼 회전하는 rotation R_{diff}^{g}을 현재 joint a의 orientation 에 더 하면 (rotation matrix의 곱) 됨.
 - R_{diff}^{g}: a, b, c의 global position으로 구한 axis^{g}에 대한 회전을 뜻하는 rotation matrix는 global frame {g}에서 적용되는 회전을 의미하게 된다.
 - 하지만 human motion에서 joint a의 orientation은 일반적으로 joint a's default frame {ad} (parent joint frame에서 link transform 만 적용된 후의 frame) 대해서 표현되므로,
 - 모션으로부터 joint a의 orientation을 바로 구하면 $\{ad\}$ 에 대해 표현된 $R_a^{\{ad\}}$ 을 얻게 되며, 새로운 orientation을 설정할 때도 $\{ad\}$ 에 대해 표현된 new $R_a^{\{ad\}}$ 를 설정해야 한다.
 - $-R_{diff}^{\{g\}}$ 와 $R_a^{\{ad\}}$ 를 어떻게 더해서 new $R_a^{\{ad\}}$ 를 구할 수 있을까?

- 방법 1: local frame에 대한 rotation을 오른쪽에 곱함
 - forward kinematics로 joint a의 global orientation $R_a^{\{g\}}$ 를 구해서
 - R_a^{{g}-1}를 axis^{g}에 곱해서 joint a's frame {a}에 대해 표현 된 axis^{a}로 만들고 (joint a's default frame {ad}가 아님에 주의),
 - 이것에 대해 $(\alpha \alpha')$ 만큼 회전하는 $R_{diff}^{\{a\}}$ 을 구해서
 - new $R_a^{\{ad\}} = R_a^{\{ad\}} R_{diff}^{\{a\}}$
 - new $R_a^{\{ad\}}$ 를 joint a의 orientation으로 설정하면 됨.
- 방법 2: global frame에 대한 rotation을 왼쪽에 곱함
 - new $R_a^{\{g\}} = R_{diff}^{\{g\}} R_a^{\{g\}}$
 - new $R_a^{\{g\}}$ 로부터 new $R_a^{\{ad\}}$ 를 계산하여 이를 joint a의 orientation으로 설정하면 됨.

• Joint b: 마찬가지 방법으로 β 가 β '로 바뀌도록 하는 R_{diff} 를 구해서 R_b (bd) 를 업데이트 할 수 있음.

2단계: line ac와 line at가 일치하도록 joint a의 각도를 조절

- Joint a: (ac' × at의 unit vector)인 axis^{g}에 대해 τ 만큼 회전하는 rotation R_{diff}^{g}을 현재 joint a의 orientation 에 앞과 마찬가지 방식으로 더하면 됨.
 - τ 는 cosine 법칙을 이용해서 구할 수도 있지만, 벡터 내적 (inner product)을 이용해 구할 수도 있 다.
- 참고: http://theorangeduck.com/page/simple-two-joint
 - (unit quaternion을 이용해 기술되어 있음)

Example - Human figure

https://youtu.be/bt3hTDwiTi0

Posture / Motion Difference

Posture Difference

- "Motion": time-varying data
 - internal joint orientation: $\mathbf{R}_1(t)$, ..., $\mathbf{R}_n(t)$
 - position and orientation of skeletal root: $\mathbf{p}_0(t)$, $\mathbf{R}_0(t)$

• Posture (pose): "motion" at a single frame

Posture Difference

- Let's think about "posture difference" **d**.
- Valid operations (**o**: posture, **d**: difference):

$\mathbf{o}_1 + \mathbf{d} = \mathbf{o}_2$	
$\mathbf{o}_2 - \mathbf{o}_1 = \mathbf{d}$	
$\mathbf{c} * \mathbf{d}_1 = \mathbf{d}_2 \text{ (scalar c)}$	
$\mathbf{d}_1 + \mathbf{d}_2 = \mathbf{d}_3$	

Posture Difference

- Let's think about "posture difference" **d**.
- Valid operations (**o**: posture, **d**: difference):

$\mathbf{o}_1 + \mathbf{d} = \mathbf{o}_2$	$\mathbf{p}_0^{\text{o}1} + \mathbf{p}_0^{\text{d}} = \mathbf{p}_0^{\text{o}2}$ $\mathbf{R}_i^{\text{o}1} \mathbf{R}_i^{\text{d}} = \mathbf{R}_i^{\text{o}2}$
$\mathbf{o}_2 - \mathbf{o}_1 = \mathbf{d}$	$\begin{aligned} \mathbf{p}_0^{\text{o2}} - \mathbf{p}_0^{\text{o1}} &= \mathbf{p}_0^{\text{d}} \\ (\mathbf{R}_i^{\text{o1}})^{\text{T}} \mathbf{R}_i^{\text{o2}} &= \mathbf{R}_i^{\text{d}} \end{aligned}$
$c * \mathbf{d}_1 = \mathbf{d}_2 \text{ (scalar c)}$	$c * \mathbf{p}_0^{d1} = \mathbf{p}_0^{d2}$ $\exp(c * \log(\mathbf{R}_i^{d1})) = \mathbf{R}_i^{d2}$
$\mathbf{d}_1 + \mathbf{d}_2 = \mathbf{d}_3$	$\mathbf{p}_0^{d1} + \mathbf{p}_0^{d2} = \mathbf{p}_0^{d3}$ $\mathbf{R}_i^{d1} \mathbf{R}_i^{d2} = \mathbf{R}_i^{d3}$

- Invalid operations:
 - $o_1 + o_2 = ?$
 - $c * o_1 = ?$
 - $d + o_1 = ?$ (not commutative)

Motion Difference

- Just compute posture differences between postures at the same frame for every frame of both motions.
 - for every t,
 - $-\mathbf{m}_1(\mathbf{t}) + \mathbf{d}(\mathbf{t}) = \mathbf{m}_2(\mathbf{t})$
 - $-\mathbf{m}_2(\mathbf{t}) \mathbf{m}_1(\mathbf{t}) = \mathbf{d}(\mathbf{t})$
 - $c * \mathbf{d}_1(t) = \mathbf{d}_2(t) \text{ (scalar c)}$
 - $\mathbf{d}_1(t) + \mathbf{d}_2(t) = \mathbf{d}_3(t)$
- Motion difference is sometimes called *motion* displacement mapping.

$$\mathbf{m}_1(\mathbf{t}) + \mathbf{d} = \mathbf{m}_2(\mathbf{t})$$

Adding offset to the data so the constraint is satisfied

Warped Motion = original motion + offset
Offset can be a simple 1D motion

scale of posture difference added to the original motion

http://homepages.inf.ed.ac.uk/tkomura/cav/presentation6.pdf

 Set the keyframe posture so that the constraint is satisfied.

$$\mathbf{d} = \mathbf{p}_{\text{key}}(T_{\text{key}}) - \mathbf{m}_{\text{orig}}(T_{\text{key}})$$

$$(\mathbf{p}_{\text{key}}: \text{key frame posture at time } T_{\text{key}})$$

$$\mathbf{m}_{\text{warped}}(\mathbf{t}) = \mathbf{m}_{\text{orig}}(\mathbf{t}) + \mathbf{s}(\mathbf{t}) \cdot \mathbf{d}$$

- Edit the captured motion a little bit so that it satisfies the requirements
 - Effective for changing the location the hand or the foot passes

Example - Motion Warping with Limb IK

https://youtu.be/VH4QuV2mFcg

Discussion #1

- Go to https://www.slido.com/
- Join #pbl-ys
- Click "Polls"

- 아래의 형식으로 적어서 제출할 것.
 - **이름**: 자신의 의견 blah blah ...

Intro to More Motion Editing Techniques

Interpolation of Postures

- Simple solution: linear interpolation
- Linear interpolation of two poses by:
 - Linear interpolation of root positions
 - Slerp of root & joint orientations

Time Warping

$$\mathbf{m}_2(\mathbf{t}) = \mathbf{m}_1(\mathbf{s}(\mathbf{t}))$$

 \mathbf{m}_1 (original motion)

https://youtu.be/ViYTecPLrho

$$\mathbf{m}_2(t) = \mathbf{m}_1(2*t)$$

https://youtu.be/dStMgTRR5iw

Time Warping

$$\mathbf{m}_2(t) = \mathbf{m}_1(0.5*t)$$

compute interpolated poses

https://youtu.be/c3ZI7vMqQMM

https://youtu.be/nAJ-rGNBXSc

Motion Stitching

• Editing the second motion (\mathbf{m}_2) so that it connects seamlessly after the first motion (\mathbf{m}_1) .

$$\mathbf{d} = \mathbf{m}_1(\mathbf{T}_1) - \mathbf{m}_2(0)$$

 $(T_1: last frame time of <math>\mathbf{m}_1$, 0: first frame time)

$$\mathbf{m}_2'(\mathbf{t}) = \mathbf{m}_2(\mathbf{t}) + \mathbf{s}(\mathbf{t}) \cdot \mathbf{d}$$

s(t): transition function

T_r: transition duration (transition length)

Motion Stitching

https://youtu.be/3UBO_CDFjOl

Motion Blending

Interpolation between motions

$$\mathbf{m}(t) = (1-s(t)) \cdot \mathbf{m}_1(t) + s(t) \cdot \mathbf{m}_2(t)$$

s(t): transition function

Motion Blending

blended motion (motion0 + blended cycle + motion1)

https://youtu.be/_y7BtHh6Yvw

Intro to Data-Driven Motion Synthesis

Motion Graph [Lee et al. 2002] [Kovar et al. 2002] [Arikan&Forsyth 2002]

- Consideration for creating transitions:
 - Contact states, pose similarity, avoiding dead-ends
- Once a motion graph is constructed, you can find a series of transitions passing through...
 - Specified poses
 - Specified locations / continuous path
 - Specified poses and times
 - **–** ...
- by using graph search algorithms (such as Dijkstra, A*, ...) or dynamic programming.
- Motion editing techniques facilitates smooth transitions.

Motion Graph

[Lee et al. 2002]

Motion Matching [Büttner and Clavet 2015]

- *Motion DB* stores the pose for each frame of motion data.
- Feature DB stores extracted "features" for each frame of motion data.
 - Feature: (current state, future information)

- Matching (performed periodically):
 - Query q: (current character state, future information created by user input)
 - Search for the frame j^* that corresponds to the feature closest to the query q.
- , then motions are played sequentially from the j^* frame in the *motion* DB.
- Motion editing techniques facilitates smooth transitions.

Motion Matching

https://youtu.be/qBbCjuJpE9o

(Submitted Paper) Interactive Character Path-Following using Motion Matching

Intro to Data-Driven Motion Synthesis

Deep Motion Synthesis - Problems

- Character control
 - [Holden 2017], [Lee 2018], [Zhang 2018], [Starke 2019], [Henter 2020], [Ling 2020], [Starke 2020], [Starke 2021], [Lee 2021], [Cho 2021]

https://youtu.be/Ul0Gilv5wvY

[Holden 2017]

Problems

- Motion prediction
 - [Holden 2015], [Holden 2016], [Harvey 2020]

https://youtu.be/fTV7sXqO6ig

[Harvey 2020]

Problems

- Style transfer
 - [Holden 2016], [Aberman 2020b]

https://youtu.be/m04zuBSdGrc

[Aberman 2020b]

Problems

- Sound to motion
 - [Yoon 2020], [Valle-Pérez 2021]

https://youtu.be/uBnCePehA-Y

[Valle-Pérez 2021]

Learning Approaches

- Learns a model generating new motions
 - Discriminative models with FFNN, CNN, or RNN structures
 - Generative models with GAN, VAE, or Flow
 - Manifold learning with Autoencoders
 - Reinforcement learning to learn a policy

— ...

Supervised Learning in Deep Motion Synthesis

- Feed-forward neural networks are widely used to output the next pose.
 - Training data: motion capture data set
 - Input: pose at frame i, control input, ...
 - − Output: pose at frame i+1, ...

Supervised Learning in Deep Motion Synthesis

- Convolutional neural networks are used to output the new motion.
 - Input: some input sequence
 - Output: output motion (pose sequence)

Supervised Learning in Deep Motion Synthesis

- Recurrent neural networks are used to output the next pose.
 - Input: pose at frame i, *hidden state* (representing past information), ...
 - Output: pose at frame i+1, ...

https://youtu.be/pe-YTvavbtA Output pose sequence x_{t-2} x_{t-1} Per-pose dropout Autoregression Normalising flow Conditioning info Concatenate Hidden LSTM state z_{t+2} | Latents (source of entropy) Z_{t-2} z_{t-1} Z_{t-3} Control inputs c_{t+1}

[Henter 2020]

Unsupervised Learning in Deep Motion Synthesis

AutoEncoder

https://youtu.be/dLopOB6D9co

Figure 3: Units of the Convolutional Autoencoder. The input to layer 1 is a window of 160 frames of 63 degrees of freedom. After the first convolution and max pooling this becomes a window of 80 with 64 degrees of freedom. After layer 2 it becomes 40 by 128, and after layer 3 it becomes 20 by 256.

[Holden 2015]

https://youtu.be/urf-AAlwNYk

Reinforcement Learning in Deep Motion Synthesis

- Deep reinforcement learning (DRL) has been mainly used for physically-simulated character control.
- But recently it has been gradually applied to motion synthesis tasks.

https://youtu.be/ZVVI1VOMdoQ

[Cho 2021]

Generative Model in Deep Motion Synthesis

- Generative models are used to generate different motions for the same control signal
 - because human motion is not completely deterministic

Next Time

- Next week:
 - Preparing Project 3 (No class)

- The week after next:
 - Presentation: Project 3