1	- .	· ·	D 1 ·
Laura	Lameirao	Sampaio	Rodrigues
	. acii ao	Campuio	

Otimização estrutural de um painel reforçado utilizando os parâmetros de laminação

Belo Horizonte, MG - Brasil 31 de julho de 2018

Laura Tameirao Sampaio Rodrigues

Otimização estrutural de um painel reforçado utilizando os parâmetros de laminação

Trabalho de conclusão de curso de Engenharia Aeroespacial na Universidade Federal de Minas Gerais, centrado na otimização de uma estrutura em material composto utilizando os parâmetros de laminação

Universidade Federal de Minas Gerais – UFMG Escola de Engenharia Engenharia Aeroespacial

Orientador: Prof. Rodrigo de Sá Martins Coorientador: -

> Belo Horizonte, MG - Brasil 31 de julho de 2018

Laura Tameirao Sampaio Rodrigues

Otimização estrutural de um painel reforçado utilizando os parâmetros de laminação/ Laura Tameirao Sampaio Rodrigues. — Belo Horizonte, MG - Brasil, 31 de julho de 2018-

31 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Rodrigo de Sá Martins

Coorientador: -

Trabalho de Conclusão de Curso – Universidade Federal de Minas Gerais – UFMG

Escola de Engenharia

Engenharia Aeroespacial, 31 de julho de 2018.

1. Otimização. 2. Materiais compostos. 2. Parâmetros de laminação. I. Prof. Rodrigo de Sá Martins. II. Universidade Federal de Minas Gerais. III. Escola de Engenharia. IV. Otimização estrutural de um painel reforçado utilizando os parâmetros de laminação

Laura Tameirao Sampaio Rodrigues

Otimização estrutural de um painel reforçado utilizando os parâmetros de laminação

Trabalho de conclusão de curso de Engenharia Aeroespacial na Universidade Federal de Minas Gerais, centrado na otimização de uma estrutura em material composto utilizando os parâmetros de laminação

Trabalho aprovado. Belo Horizonte, MG - Brasil, 31 de julho de 2018:

Prof. Rodrigo de Sá Martins
Orientador

Coorientador

Nome
Convidado 1

Belo Horizonte, MG - Brasil 31 de julho de 2018

Resumo

A primeira versão deste Trabalho de Concusão de Curso consiste em uma revisão bibliográfica a respeito do tema: Otimização estrutural de um painel reforçado utilizando os parâmetros de laminação. As próximas versões irão conter mais detalhes da metodologia adotada e os resultados obtidos durante o desenvolvimento do trabalho.

Palavras-chave: engenharia aeroespacial. otimização. materiais compostos. parâmetros de laminação. painel reforçado. nastran sol 200.

Lista de abreviaturas e siglas

PL Parâmetros de laminação

CLT Classical Theory of Lamination

FEM Finite Element Model

Sumário

1	OBJETIVOS	5
2	INTRODUÇÃO 1	L 7
3	MATERIAIS COMPOSTOS	<u> </u>
3.1	Desenvolvimento histórico	Į
3.2	Visão geral	21
3.3	Teoria Clássica da Laminação	21
3.3.1	Relações entre deformações e deslocamentos	22
3.3.2	Relações entre tensões e deformações de uma lâmina dentro de um laminado 2	<u>2</u> 4
3.3.3	Relações envolvendo forças e momentos resultantes	25
3.4	Parâmetros de laminação	27
3.5	Práticas de projeto adotadas	27
3.5.1	Laminados simétricos	27
3.5.2	Laminados balanceados	28
3.5.3	Regra dos 10%	29
	REFERÊNCIAS	31

1 Objetivos

Como trabalho final do curso de graduação em Engenharia Aeroespacial na Universidade Federal de Minas Gerais, este trabalho de pesquisa foi realizado no âmbito de uma otimização estrutural de um painel reforçado utilizando como variáveis de otimização os parâmetros de laminação de cada componente estrutural. Visando otimizar a estrutura de um painel reforçado quando submetido à uma determinada carga de compressão, será feito um modelo em elementos finitos utilizando o software FEMAP. O revetimento do painel e os reforçadores serão otimizada utilizando a SOL 200 do Nastran e análises de flambagem, SOL 105, serão realizadas visando obter os modos de flambagem da estrutura.

O objetivo inicial da otimização é obter as propriedades de um laminado que suporte a maior carga de flambagem, mantendo as espessuras do revestimento e a geometria e espessuras dos reforçadores constantes, portanto, variando somente as propriedades do laminado. Os parâmentros de laminação serão utilizados como variáveis de projeto e serão os resultados obtidos da otimização.

O outro objetivo do trabalho é criar um banco de dados para um determinado valor de espessura do laminado. Com este banco de dados de laminados será possível obter a sequência e os ângulos de cada lâmina do laminado com base nos valores de propriedades do laminado que foram otimizados.

2 Introdução

A utilização de materiais compostos em estruturas primárias tem aumentado gradualmente nas últimas décadas. Atualmente, no setor aeronáutico, estruturas primárias como asas, fuselagens e empenagens possuem a tendência de serem projetadas utilizando painéis reforçados constituídos de material composto. Isto se deve ao fato de as estruturas em materiais compostos possuírem elevadas resistência e rigidez específicas (HERENCIA; WEAVER; FRISWELL, 2007). Além disso, variando-se a sequência do laminado e os ângulos de laminação, as propriedades do material composto podem ser otimizadas em vista do componente estrutural no qual o laminado será aplicado, apresentando um potencial de uso bastante elevado.

No decorrer dos anos, diversas técnicas de otimização foram desenvolvidas para auxiliar nos processos de obtenção do laminado ótimo para cada uso. Algumas das técnicas de otimização dos materiais compostos envolvem a variação do número de camadas do laminado e dos ângulos de laminação, e assumem que o material possui propriedades ortotrópicas, conforme utilizado por (SCHMIT; FARSHI, 1973). No entanto, segundo (CHAMIS, 1969) pelo fato de os materiais compostos poderem apresentar características anisotrópicas, resultados não conservativos podem ser obtidos, durante otimizações nas quais o comportamento em flambagem é observado, caso a anisotropia flexural dos materiais não sejam consideradas. A otimização do número de camadas e dos ângulos de laminação de cada camada demanda um elevado custo computacional e consiste em um processo de otimização não linear com variáveis discretas e que possui um espaço de projeto não convexo.

Visando solucionar o problema de otimização das variáveis discretas da sequência de laminação dos materias compostos, (MIKI, 1991) propôs a utilização dos parâmetros de laminação. O método proposto por (MIKI, 1991), considera que a rigidez no plano e a rigidez flexural de materiais compostos que possuem laminados simétricos e ortotrópicos são funções dos parâmetros de laminação, e esses parâmetros dependem da sequência de laminação. Com isso, os parâmetros de laminação podem ser utilizados como as variáveis de projeto durante a otimização e pontos ótimos de projeto podem ser obtidos em função desses parâmetros e da função objetivo.

O objetivo deste trabalho de conclusão de curso, é portanto, descrever um processo de otimização de um painel reforçado em material composto utilizando os parâmetros de laminção como variáveis de projeto. O problema será divido em duas etapas, na qual a primeira consistirá na otimização dos parâmetros de laminação aplicando restrições de projetos presentes na indústria aeronáutica. A função objetivo da otimização é obter uma

estrutura que suporte a maior carga de flambagem variando somente as propriedades do material e mantendo a geometria dos reforçadores e do painel constantes. Nesta etapa, será assumido que os laminados dos reforçadores e do revestimento sejam simétricos e ortotrópicos. Após a obtenção dos parâmetros de laminação com a otimização estrutural, a sequência de laminação do laminado deverá ser obtida. Para isso, será criado um banco de dados de laminados com restrições e critérios de boas práticas e então os melhores laminados que atenderem aos critérios pré-estabelecidos serão selecionados.

3 Materiais Compostos

3.1 Desenvolvimento histórico

A implementação do uso de materiais compostos na indústria aeronáutica civil e militar seguiu os estágios típicos da implementação de qualquer nova tecnologia no mercado. Segundo (KASSAPOGLOU, 2013), primeiramente o uso da tecnologia de materiais compostos foi limitado às estruturas secundárias visto que minimizavam os riscos envolvidos e também possibilitava a coleta de dados, o que viabilizava uma melhor compreensão do comportamento das estruturas que possuiam essa tecnologia.

De acordo com (DANIEL, 2006), em 1942 o primeiro barco constiuído de fibra de vidro foi fabricado, e nos anos 1950 as primeiras aplicações com materiais compostos em mísseis foram realizadas. Referindo-se a indústria aeronáutica no último século, o primeiro uso de materiais compostos mais avançados, segundo (KASSAPOGLOU, 2013), ocorreu no final da década de 1950 na aeronave Akaflieg Phonix FS-24. Essa aeronave consistiu em um planador projetado por professores e alunos da Universidade de Stuttgart e foi construído, inicialmente de madeira balsa, e posteriormente teve sua estrutura alterada para um sanduíche de compósitos de fibra de vidro com madeira tipo balsa. Após isso, no fim dos anos 1960, com a nova geração de materiais compostos avançados, como o carbono, a indústria de helicópteros foi a primeira a utilizá-los em estruturas primárias, destacando o projeto do Aerospatiale AS-341 Gazelle. Este helicóptero foi considerado um dos mais modernos na época, não só porque ele possuía um inovador rotor de cauda reduzindo drasticamente a emissão de ruídos, mas também, pelo fato de as pás do rotor principal serem constituídas de material composto.

Por volta dos anos 1970 as primeiras aeronaves majoritariamente constituídas de materiais compostos começaram a surgir. Essas aeronaves eram pequenas e normalmente para uso recreativo ou para acrobacias, visto que com o uso de materiais compostos era possível obter uma redução de peso estrutural e portanto, aeronaves mais rápidas e ágeis quando comparadas às aeronaves da época. O uso de material composto teve início em aeronaves pequenas também pelo fato de os requisitos de certificação estrutural para aeronaves menores serem mais facilmente cumpridos quando comparados aod requisitos das aeronaves de grande porte. Além disso, de acordo com (KASSAPOGLOU, 2013), a performance dos materias compostos não era completamente conhecida, por exemplo, a sensitividade desse tipo de material ao dano por impacto e suas implicações para o projeto só foram ser melhor conhecidas no final dos anos 1970. Portanto, somente no final dos anos 1970 e início dos anos 1980 que a utilização de materiais compostos começou a ser expandida para aeronaves de porte maior, como a concepção da empenagem horizontal

do *Boeing 737*, que era uma estrutura primária construída de um sanduíche de materias compostos. Seguindo a aplicação em grande escala de materiais compostos, destaca-se o *Airbus A320*, no qual tanto a empenagem horizontal e a vertical, quanto as superfícies de controle foram projetadas e fabricadas utilizando material composto.

A proxíma aplicação significante desse tipo de material em estruturas primárias foi no início dos anos 1990 com o Boeing 777, em que além das empenagens e superfícies de controle, as vigas principais do piso eram constituídas de material composto. Segundo (DANIEL, 2006), o maior sinal de aceitação do uso de materiais compostos na indústria aeronáutica civil, ocorreu no Boeing 787 Dreamliner, em que materiais como carbono/epoxy e grafite/titânio constituíam cerca de 50% do peso da aeronave, incluindo majoritariamente asas e fuselagem. Destaca-se também o Airbus A380, que utiliza materiais compostos, incluindo o GLARE, um laminado híbrido de fibra de vidro/epoxy/alumínio, que combina as vantagens e desvantagens dos materiais metálicos e compostos.

Observa-se, portanto, que o uso dos materiais compostos vem aumentando de maneira significativa na indústria aeronáutica. Uma maneira de perceber o aumento do uso de materiais compostos nessa indústria é com base na Figura 1, em que fica claro o aumento percentual da utilização desse tipo de material em relação ao peso das estruturas de vários modelos de aeronaves.

Figura 1 – Uso de materiais compostos na indústria aeronáutica

Fonte: (KASSAPOGLOU, 2013, p. 6)

3.2. Visão geral 21

3.2 Visão geral

De acordo com (DANIEL, 2006), os materiais compostos possuem diversas vantagens de utilização em relação aos materiais metálicos como a elevada resistência, a elevada rigidez, a vida longa em fadiga, a baixa densidade e a alta adaptabilidade em relação a função de utilização pretendida pela estrutura. A superior perfomance estrutural dos materiais compostos se deve basicamente às elevadas resistência e rigidez específicas e à anisotropia do material, visto que devido à esta última característica, o material composto possui diversos graus de liberdade para uma configuração ótima do laminado. No geral, devido ao elevado número de graus de liberdade é possível realizar a otimização do laminado em material composto para diversas restrições de projeto e objetivos, como menor peso estrutural, máxima estabilidade dinâminca e/ou menor custo de fabricação. No entanto, todo o processo requer um confiável banco de dados das propriedades dos materiais, métodos de análises estruturais, técnicas de modelagem e simulações padronizadas e certificadas. Logo, devido às numerosas opções disponíveis, os processos e análises acabam se tornando mais complexos e custos em relação aos dos materiais convencionais.

Os materiais compostos possuem algumas limitações de uso em relação ao materiais metálicos. Do ponto de vista da micromecânica, as fibras dos materiais compostos possuem uma grande variabilidade nas propriedades de resistência e concentradores de tensão locais reduzem consideravelmente a resistência a tração das estruturas projetadas em materiais compostos. Em relação a macromecânica, a anisotropia do material pode ser utilizada considerada como uma vantagem visto que o comportamento do material pode ser variado, no entando, esta mesma característica faz com que as análises desses materiais sejam muito mais complexas (DANIEL, 2006).

3.3 Teoria Clássica da Laminação

De acordo com (DANIEL, 2006) para o desenvolvimento da Teoria Clássica da Laminação, assumem-se as seguintes premissas e restrições:

- 1. Cada lâmina do laminado é quasi-homogênea e ortotrópica;
- 2. O laminado é fino com as suas dimensões laterais muito maiores do que a sua espessura e é carregado somente no plano, isto é, o lamninado e suas lâminas (exceto as bordas) estão em um estado plano de tensão ($\sigma_z = \tau_{xz} = \tau_{yz} = 0$);
- 3. Todos os deslocamentos são pequenos comparados com a espessura do laminado $(|u|, |v|, |w| \ll h);$
- 4. Deslocamentos são contínuos ao longo da espessura;

- 5. Deslocamentos no plano variam linearmente ao longo da espessura do laminado, isto é, os deslocamentos u e v nas direções x e y são funções lineares de z;
- 6. Linhas retas normais à superfície média permanece reta e normal à essa superfície após a deformação. Isto implica que as deformações transversais de cisalhamento γ_{xz} e γ_{yz} são nulas;
- 7. As relações deformações-deslocamentos e tensões-deformações são lineares;
- 8. Distâncias normais à superfície média permanecem constantes, isto é, o deslocamento transversal normal, ε_z é zero. Isto implica que o deslocamento transversal w é independente da coordenada de espessura z.

3.3.1 Relações entre deformações e deslocamentos

Seguindo a Figura 2 como referência, tem-se que o plano x-y é o plano médio do laminado, ou seja, é equidistante do laminado mais superior e do mais inferior. Portanto, este plano é chamado de *Plano médio* ou *Plano de referência*.

Figura 2 – Seção do laminado antes (ABCD) e depois da deformação (A'B'C'D')

Fonte: (DANIEL, 2006)

Tem-se que os deslocamentos no plano u_0 e v_0 nas direções x e y e o deslocamento fora do plano w na direção z são funções somente de x e y, como mostrado a seguir.

$$u_0 = u_0(x, y)$$

$$v_0 = v_0(x, y)$$

$$w = f(x, y)$$
(3.1)

E que as rotações ao longo dos eixos x e y são dadas por:

$$\alpha_x = \frac{\partial w}{\partial x}$$

$$\alpha_y = \frac{\partial w}{\partial y}$$
(3.2)

Portanto, os componentes de deslocamentos de um ponto B de coordenada z_b , onde z é a coordenada na espessura do laminado, são:

$$u = u_0 - \frac{\partial w}{\partial x}$$

$$v = v_0 - \frac{\partial w}{\partial y}$$
(3.3)

Para pequenos deslocamentos, as relações clássicas de deformação e deslocamento no campo elástico são dadas por:

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = \frac{\partial u_{0}}{\partial x} - z \frac{\partial^{2} w}{\partial x^{2}}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y} = \frac{\partial v_{0}}{\partial y} - z \frac{\partial^{2} w}{\partial y^{2}}$$

$$\gamma_{xy} = \gamma_{z} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} - 2z \frac{\partial^{2} w}{\partial x \partial y}$$
(3.4)

Sabe-se ainda, por definição, que:

$$\varepsilon_x^0 = \frac{\partial u_o}{\partial x}$$

$$\varepsilon_y^0 = \frac{\partial v_o}{\partial y}$$

$$\gamma_{xy}^0 = \gamma_z^0 = \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}$$

$$\kappa_x = -\frac{\partial^2 w}{\partial x^2}$$

$$\kappa_y = -\frac{\partial^2 w}{\partial y^2}$$

$$\kappa_{xy} = \kappa_z = -2\frac{\partial^2 w}{\partial x \partial y}$$
(3.5)

Portanto, as deformações em qualquer ponto do laminado podem ser relacionadas às deformações do plano e às curvaturas do laminado como mostrado a seguir:

$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_z \end{bmatrix} = \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_z^0 \end{bmatrix} + z \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_z \end{bmatrix}$$
(3.6)

3.3.2 Relações entre tensões e deformações de uma lâmina dentro de um laminado

Considera uma lâmina específica, k em um laminado multidirecional, na qual a distância z_k se refere a distância da lâmina ao plano de referência do Laminado. Tem-se que as relações de tensão-deformação para essa lâmina, no sistema de coordenada do laminado valem:

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_s \end{bmatrix}_k = \begin{bmatrix} Q_{xx} & Q_{xy} & Q_{xs} \\ Q_{yx} & Q_{yy} & Q_{ys} \\ Q_{sx} & Q_{sy} & Q_{ss} \end{bmatrix}_k \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_s \end{bmatrix}_k$$
(3.7)

Substituindo a Equação 3.6 na Equação 3.7 tem-se, de forma generalizada, a

seguinte expressão para as deformações:

$$[\sigma]_{x,y}^k = [Q]_{x,y}^k [\varepsilon^0]_{x,y} + z[Q]_{x,y}^k [\kappa]_{x,y}$$
(3.8)

Nota-se, portanto, das Equação 3.6 e Equação 3.8 que mesmo que as deformações variem linearmente, não necessariamente as tensões variam da mesma maneira. Devido à discontinuidade da matriz de rigidez $[Q]_{x,y}$ ao longo das lâminas do laminado, as tensões também podem variar de forma discontínua ao longo das lâminas.

3.3.3 Relações envolvendo forças e momentos resultantes

Tendo como referência a Figura 3 e sabendo que as tensões ao longo do laminado variam devido às diferentes matrizes de rigidez de cada lâmina específica, pode-se fazer uma integração para obter forças e momentos resultantes.

Figura 3 – Elemento de uma lâmina com forças e momentos resultantes

Fonte: (DANIEL, 2006)

As expressões seguintes se relacionam a essas forças e momentos resultantes.

$$N_{x}^{k} = \int_{-t/2}^{t/2} \sigma_{x} dz$$

$$N_{y}^{k} = \int_{-t/2}^{t/2} \sigma_{y} dz$$

$$N_{s}^{k} = \int_{-t/2}^{t/2} \tau_{s} dz$$

$$M_{x}^{k} = \int_{-t/2}^{t/2} \sigma_{x} z dz$$

$$M_{y}^{k} = \int_{-t/2}^{t/2} \sigma_{y} z dz$$

$$M_{s}^{k} = \int_{-t/2}^{t/2} \tau_{s} z dz$$
(3.9)

Em que z é a coordenada da lâmina na seção do laminado, t é a espessura da lâmina, N_i^k são as forças (x, y, s) por unidade de comprimento e M_i^k são os momentos (x, y, s) por unidade de comprimento. E no caso de um laminado com diversas lâminas, a força e o momento total são obtidos fazendo o somatório dos efeitos de cada lâmina. Tem-se, portanto, as seguintes expressões:

$$\begin{bmatrix}
N_x \\
N_y \\
N_s
\end{bmatrix}_k = \sum_{k=1}^n \int_{z_{k-1}}^{z_k} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_s \end{bmatrix}_k dz$$

$$\begin{bmatrix}
M_x \\
M_y \\
M_s
\end{bmatrix}_k = \sum_{k=1}^n \int_{z_{k-1}}^{z_k} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_s \end{bmatrix}_k z dz$$

$$(3.10)$$

Substituindo a Equação 3.7 na Equação 3.10, tem-se:

$$N_{x,y} = \left[\sum_{k=1}^{n} [Q]_{x,y}^{k} (z_{k} - z_{k-1})\right] [\varepsilon^{0}]_{x,y} + \left[\sum_{k=1}^{n} [Q]_{x,y}^{k} (z_{k}^{2} - z_{k-1}^{2})\right] [\kappa]_{x,y}$$

$$(3.11)$$

$$M_{x,y} = \left[\frac{1}{2} \sum_{k=1}^{n} [Q]_{x,y}^{k} (z_{k}^{2} - z_{k-1}^{2})\right] [\varepsilon^{0}]_{x,y} + \left[\frac{1}{3} \sum_{k=1}^{n} [Q]_{x,y}^{k} (z_{k}^{3} - z_{k-1}^{3})\right] [\kappa]_{x,y}$$

Por definição tem-se as três matriz de rigidez do laminado como:

$$A_{ij} = \sum_{k=1}^{n} [Q]_{ij}^{k} (z_k - z_{k-1})$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} [Q]_{ij}^{k} (z_k^2 - z_{k-1}^2)$$
(3.12)

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} [Q]_{ij}^{k} (z_k^3 - z_{k-1}^3)$$

Portanto, em geral, substituindo Equação 3.13 na Equação 3.11, pode-se representar as forças e momentos resultantes em função das matrizes de rigidez [A], [B] e [D] como segue:

$$\begin{bmatrix} N \\ M \end{bmatrix} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{bmatrix} \varepsilon^0 \\ \kappa \end{bmatrix} \tag{3.13}$$

Para cada uma das matrizes de rigidez [A], [B] e [D] tem os seguintes significados físicos:

- Matriz [A]:
- Matriz [B]:
- Matriz [D]:

3.4 Parâmetros de laminação

$$\begin{bmatrix} \xi_{11}^2 & x_{12} & x_{13} & \dots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{d1} & x_{d2} & x_{d3} & \dots & x_{dn} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & x_{d3} & \dots & x_{dn} \end{bmatrix}$$

3.5 Práticas de projeto adotadas

Esta seção apresenta regras e práticas relevantes utilizadas durante o projeto de estruturas em materiais compostos na indústria aeronáutica.

3.5.1 Laminados simétricos

Os laminados que possuem um sequência de ângulos das lâminas simétrico em relação ao plano médio, são chamados de laminados simétricos. Conforme descrito por

(MIL-HDBK-17-3F, 2002) e (NIU, 1992), a maior vantagem da utilização de um laminado simétrico é o desacoplamento entre o comportamento de membrana e flexão da estrutura.

Em um laminado simétrico, conforme notação apresentada na Figura 4 e conforme a Equação 3.14 matriz [B] do laminado se anula.

Figura 4 – Notação para espessura do laminado e sequência das lâminas

Fonte: (MIL-HDBK-17-3F, 2002)

$$B_{ij} = \sum_{k=1}^{N} (\overline{Q}_{ij})_k [z_k^2 - (z_{k-1})^2]$$
(3.14)

Sabe- se que \overline{Q}_{ij} corresponde a rigidez da lâmina. E sabe-se também que a matriz B_{ij} é a responsável pelo acomplamento entre a reposta no plano e a flexão do laminado. Portanto, conforme (BAILIE J; LEY; PASRICHA, 1997), quando a matriz B_{ij} não é zerada, um carregamento no plano induz curvaturas, e momentos de flexão induzem deformações no plano. Nota-se pela Equação 3.14 que a matriz B_{ij} possui termos da coordenada z elevados ao quadrado, portanto, quando o laminado possui simetria geométrica e de materiais em relação ao plano médio, este termo é zerado.

3.5.2 Laminados balanceados

Os laminados balanceados são aqueles em que todas as lâminas, com exceção das de 0° e das de 90° , devem ocorrer em pares de $+\theta$ e $-\theta$ acima e abaixo do plano médio do laminado. Para o conjunto de laminados compostos por lâminas com ângulos $0/\pm 45/90$, cada lâmina de $+45^{\circ}$ deve ser acompanhada de um lâmina de -45° . Laminados balanceados possuem vantagens similares às vantagens do laminados simétricos. Uma delas é que o acoplamento de membrana entre o comportamento normal e de cisalhamento no plano da estrutura é removido, visto que ambos os coeficientes, A_{16} e A_{26} , são iguais a zero (BAILIE J; LEY; PASRICHA, 1997). Este comportamento pode ser explicado observado

as equações do carregamento de membrana de um laminado simétrico, Equação 3.15, Equação 3.16 e Equação 3.17.

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^o \\ \varepsilon_y^o \\ \gamma_{xy}^o \end{bmatrix}$$
(3.15)

$$A_{16} = \sum_{k=1}^{N} (\overline{Q}_{16})_k t_k \tag{3.16}$$

$$A_{26} = \sum_{k=1}^{N} (\overline{Q}_{26})_k t_k \tag{3.17}$$

Onde

$$(\overline{Q}_{16})_k = (Q_{11} - Q_{12} - 2Q_{66})_k \sin\theta \cos^3\theta + (Q_{11} - Q_{22} - 2Q_{66})_k \sin^3\theta \cos\theta \qquad (3.18)$$

$$(\overline{Q}_{26})_k = (Q_{11} - Q_{12} - 2Q_{66})_k \sin^3\theta \cos\theta + (Q_{11} - Q_{22} - 2Q_{66})_k \sin\theta \cos^3\theta \qquad (3.19)$$

Sabe- se que \overline{Q}_{ij} corresponde a rigidez da lâmina e que t_k corresponde a espessura da lâmina. Nota-se também que ambas as expressões de A_{16} e A_{26} contém potências ímpares de $\sin \theta$ e $\cos \theta$. Logo lâminas com ângulos de 0° e 90° não contribuem para os termos de A_{16} e A_{26} e estes termos são reduzidos a zero em qualquer laminado balanceado (BAILIE J; LEY; PASRICHA, 1997).

A Figura 5 apresenta dois laminados, um desbalanceado, visto que faltam lâminas com -45° e um balanceado.

Portanto, satisfazendo esta prática de projeto de utilizar somente laminados balanceados, tem-se a seguinte Equação 3.20 resultante para tensão-deformação

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^o \\ \varepsilon_y^o \\ \gamma_{xy}^o \end{bmatrix}$$
(3.20)

3.5.3 Regra dos 10%

Esta prática de projeto não é determinada por documentação para ser rigorosamente seguida e também não há nenhuma documentação formal que comprove a sua validade. No entanto, esta prática foi seguida por diversas campanhas de projetos de estruturas em

Figura 5 – Laminado desbalanceado e laminado balanceado

Fonte: (MIL-HDBK-17-3F, 2002)

materiais compostos e demonstrou bons resultados e portanto, é adotada até os dias atuais em diversos programas. A regra dos 10% determina que cada ângulo de laminação $(0^{\circ}, \pm 45^{\circ}$ e $90^{\circ})$ compreenda em pelo menos 10% das camadas do laminado final. O uso desta prática de projeto conduz a laminados utilizáveis que são mais robustos pelo fato de que eles menos susceptíveis à fragilidade associada aos laminados rigorosamente ortotrópicos (BAILIE J; LEY; PASRICHA, 1997).

Além disso, segundo (MIL-HDBK-17-3F, 2002), um comportamento do laminado dominado pela matriz, ou seja, efeitos não lineares, pode ser evitados em laminados onde a direção principal da fibra não é alinhada com o eixo principal do carregamento.

Referências

BAILIE J; LEY, R.; PASRICHA, A. A summary and review of composite laminate design guidelines. *National Aeronautics and Space Administration*, Final, n. 22, 1997. Citado 3 vezes nas páginas 28, 29 e 30.

CHAMIS, C. C. Buckling of anisotropic composite plates. *Journal of the Structural Division*, ASCE, v. 95, n. 10, p. 2119–2140, 1969. Citado na página 17.

DANIEL, I. Engineering Mechanics of Composite Materials. [S.1.]: Oxford University Press, 2006. Citado 5 vezes nas páginas 19, 20, 21, 22 e 25.

HERENCIA, J. E.; WEAVER, P. M.; FRISWELL, M. I. Optimization of long anisotropic laminated fiber composite panels with t-shaped stiffeners. *AIAA journal*, v. 45, n. 10, p. 2497–2509, 2007. Citado na página 17.

KASSAPOGLOU, C. Design and analysis of composite structures: with applications to aerospace structures. [S.l.]: John Wiley & Sons, 2013. Citado 2 vezes nas páginas 19 e 20.

MIKI, M. Optimum design of laminated composite plates using lamination parameters. AIAA Paper, 1991. Citado na página 17.

MIL-HDBK-17-3F. MIL-HDBK-17-3F Composite Materials Handbook - Volume 3: Polymer Matrix Composites, Materials Usage, Design and Analyses. [S.l.]: US Department of Defense, 2002. Citado 2 vezes nas páginas 28 e 30.

NIU, M. C.-Y. Composite airframe structures. *Hong Kong Conmilit Press Ltd*, 1992. Citado na página 28.

SCHMIT, L.; FARSHI, B. Optimum laminate design for strength and stiffness. *International Journal for Numerical Methods in Engineering*, Wiley Online Library, v. 7, n. 4, p. 519–536, 1973. Citado na página 17.