

ĆWICZENIE 29

POMIAR WSPÓŁCZYNNIKA ROZSZERZALNOŚCI LINIOWEJ METALI METODĄ ELEKTRYCZNĄ

Instrukcja wykonawcza

1. Wykaz przyrządów

- Czujnik mikrometryczny do pomiaru wydłużenia drutu
- Zasilacz prądu stałego: wydajność prądowa = 5A , U_{wy}= min. 10V
- Cyfrowy miernik temperatury.

2. Cel ćwiczenia

Wyznaczenie współczynnika rozszerzalności liniowej metalu.

3. Schemat układu pomiarowego

Term opara

Czujnik
mikrom etryczny

Zasilacz

Rys. 1. Układ pomiarowy do wyznaczania współczynnika rozszerzalności liniowej metalu

Rys.2. Stanowisko pomiarowe

4. Przygotowanie zestawu pomiarowego do pracy:

- **4.1.** Sprawdzić zgodność elementów układu pomiarowego z powyższą listą.
- **4.2.** Ustawić czujnik mikrometryczny tak, by duża wskazówka pokrywała się z cyfrą "0" jego skali na obwodzie. W tym celu należy ostrożnie przekręcić pierścień czujnika. W trakcie pomiarów<u>nie dotykamy</u> czujnika mikrometrycznego!!!

4.3. Włączyć miernik temperatury i odczytać jego wskazanie – temperaturę początkową (pokojową) t_o . Przyjąć, że długość początkowa L_o badanego drutu w temperaturze początkowej t_o wynosi:

$L_{\rm o1} = (0.885 \pm 0.004) [m]$	$L_{o5} = (0.880 \pm 0.004)$ [m]
$L_{o2} = (0.915 \pm 0.004)$ [m]	$L_{o6} = (0.875 \pm 0.004)$ [m]
$L_{o3} = (0.905 \pm 0.004)$ [m]	$L_{o7} = (0.875 \pm 0.004)$ [m]
$L_{o4} = (0.875 \pm 0.004)[m]$	

5. Przebieg pomiarów:

- 5.1. W obecności prowadzącego zajęcia pokrętło regulacji ograniczenia prądowego ustawić w lewym skrajnym położeniu (co odpowiada wartości $I=0\,A$), a pokrętło regulacji napięcia ustawić na max. (co odpowiada wartości $U=15\,V$). Włączyć zasilacz.
- 5.2. Wartość prądu w obwodzie zmieniać co 0,1A lub 0,2A do chwili osiągnięcia temperatury ok. 140 °C.
- **5.3.** Po każdorazowym ogrzaniu drutu odczekać około 5 min., aby ustabilizowała się temperatura. Zanotować uzyskaną temperaturę t i wskazanie ΔL czujnika mikrometrycznego.
- 5.4. Pomiary przeprowadzać do temperatury drutu nie większej niż 150 °C.

6. Opracowanie wyników:

- **6.1**. Sporządzić wykres zależności względnego wydłużenia drutu $\frac{\Delta L}{L_o}$ od przyrostu temperatury ΔT ($\Delta T = t t_o$). Dla wybranych punktów z początkowego, środkowego i końcowego zakresu temperatur zaznaczyć pola niepewności. Z nachylenia wykresu wyznaczyć współczynnik rozszerzalności liniowej α badanego materiału.
- **6.2.** Metodą regresji liniowej wyznaczyć, a następnie omówić, parametry prostej $\mathbf{y} = \mathbf{A}\mathbf{x} \pm \mathbf{B}$ (gdzie: $\mathbf{y} = \Delta L/L_o$, $\mathbf{x} = \Delta T$, $\mathbf{A} = \alpha$, niepewność $u(\mathbf{A}) = u(\alpha)$) oraz współczynnik korelacji \mathbf{r} . Nanieść na wykres prostą najlepszego dopasowania. Porównać parametry tej prostej z wartością α wyznaczoną w punkcie 1 i przedyskutować wnioski płynące z tych porównań.
- **6.3.** Wyniki pomiarów i obliczeń umieścić w tabelce.

7. Proponowane tabele (do zatwierdzenia u prowadzącego)

Tabela 1. Wartości parametrów, temperatury grzania, wydłużenia drutu wraz z obliczonym współczynnikiem rozszerzalności liniowej drutu.

	Lo	t _o	t	ΔΤ	ΔL 10 ⁻³ [m]	$\frac{\Delta L}{L_0}$	z wykresu α	z regresji α=A	
lp.	[m]	[°C]	[°C]	[°C]	10 ⁻³ [m]		[1/K]	[1/K]	
1									
2									
3									
n									
ΔX									
u(X)									
$u_c(X)$									