Arquitetura do Sistema ErgoShirt

I. Identificação do Produto e da Equipe

Produto

ErgoShirt – sua camisa inteligente para correção postural

Equipe

Fabio Silva, Luis Jairo Jr, Mauricio Stelling, Silmar Reis, João França, Gustavo Fontinha, Ana Paula Marcatto, Rodrigo Uchôa

II. Dispositivos e Serviços

Controlador

Placa de Desenvolvimento ESP32 C3 Super Mini	Valor FOB
Conectividade: WIFI & Bluetooth LE	importação
Processador: RISC-V Single-Core CPU	direta da
Comunicação/Alimentação: USB Tipo C	China
Alimentação: 5V D (step-down) ou 3.3V DC	
Memória: Flash 4MB	R\$ 15,00
IO: 12x IO bidirecionais, com ADC de 12 bits em 4 delas. I2C, SPI, UART	
A leitura dos sensores, processamento e decisão sobre ativação dos atuadores ocorre localmente. A conexão à plataforma é necessária para alteração de parâmetros e envio de informações, a serem acompanhadas pelo cliente e seu fisioterapeuta.	

Sensores e Atuadores

Sensor Flexível Resistivo Impermeável	Valor FOB
Varia a resistência de acordo com a pressão. Aplicado com um divisor resistivo	importação
nas portas ADC do microcontrolador.	direta da
Modelo: ZD10-100	China
Comprimento: 100mm	
Largura: 10mm	R\$ 20,00
Faixa: 0 ~ 500g	
Espessura: menos de 0.25mm	
Resposta ponto: menos de 20g	
Tensão de teste: 3.3V DC típico	
Durabilidade: mais de 1 milhão vezes	
Tempo de resposta: 10ms	
Tempo de recuperação: menos de 15ms	
Temperatura de trabalho: - 20 °C ~ 60 °C	
Peso: 3g	
Atuador – Mini motor de vibração	R\$ 5,00
Alimentação: 3.3V DC	

Outros

Alimentação	Variável
Bateria 3.3V ou 5V DC.	
Para o protótipo foi usada a saída USB (5V DC) de um Powerbank de 10000	
mAh, permitindo vários dias de operação.	
Camiseta justa ao corpo	Variável
O protótipo foi montado e uma base de ABS levemente flexível para facilitar o	
manuseio. O produto final deve ser costurado a uma camisa justa ao corpo.	
Misc	~0
Resistores 10kOhm, fios elétricos, costura	

Serviços

Firmware do controlador	Dev
Código em C++ desenvolvido pela equipe conforme registrado no <u>GitHub</u> . Para	Interno
comunicação com a nuvem foi usada principalmente a biblioteca	
BlynkSimpleEsp32.h	
Plataforma	R\$ 35 /
Plataforma <u>Blynk</u> , que oferece suporte à conexão de dispositivos IOT via Wi-Fi	mês
(diretamente para a plataforma) ou Bluetooth (se comunicando com o app	<u>Plano</u>
Blynk) com sua nuvem proprietária, além da construção de dashboards,	<u>maker -</u>
atualização OTA e outras facilidades.	<u>personal</u>
Poderíamos explorar soluções abertas como https://thingsboard.io/ , mas não o	
fizemos em benefício do tempo, por já termos familiaridade com Blynk.	

III. Conexão e comunicação

A conexão pode ser feita de 2 formas principais:

- 1) Diretamente do dispositivo IOT, que tem WiFi integrado, à nuvem da plataforma. Essa conexão foi implementada para o protótipo.
- 2) Conectando o dipositivo IOT, que tem BlueTooth integrado, a um aparelho celular rodando o app Blynk Android ou iOS e, a partir dele, à nuvem da plataforma. Não implementamos no protótipo mas, pela facilidade de conexão do BlueTooth, essa parece ser uma escolha melhor para a entrada em produção.

IV. Aplicações

Aplicativo Móvel	Custo
Dashboard construído sobre o <u>app Android</u> da plataforma <u>Blynk</u> . Bidirecional,	incluído
servindo tanto para configurar parâmetros (variações admissíveis na leitura de	na
cada sensor, período do ciclo de leitura, período do ciclo para envio de	plataforma
informações à nuvem) quanto exibir as leituras atuais e passadas dos sensores,	
assim como o estado dos atuadores.	
Aplicativo Web	Idem
Dashboard construído na plataforma web <u>Blynk</u> , com as mesmas	
características informadas acima.	

V. Dispositivos e serviços que compõem a arquitetura do sistema

VI. Informações Adicionais

Pinout ESP32 C3 Super Mini

Esquemático para 3 sensores/atuadores

Ligações Realizadas

Sensor Flexível

Mini Motor

Console Mobile

Console Web

Vinícius, nosso protótipo funcional / Mascote

Código-Fonte, Apresentação e Outras informações

