Chapitre 9

Généralités sur les fonctions

	Sommaire	
1	Fonction numérique d'une variable réelle 1.1 Vocabulaire et notation	1 1 1
2	Représentation graphique d'une fonction numérique	2
3	Égalité de deux fonctions numériques	3
4	Parité d'une fonction numérique 4.1 Fonction paire – Fonction impaire	3 3 4
5	Variations d'une fonction numérique 5.1 Monotonie d'une fonction numérique	4 4 5 6
6	Extremums d'une fonction numérique	6
7	Position relative de deux courbes	7
8	Exercices	7

1 Fonction numérique d'une variable réelle

1.1 Vocabulaire et notation

Définitions

Soit D une partie de \mathbb{R} .

On appelle «fonction numérique définie sur D», toute relation f qui associe à tout élément x de D, un unique réel y.

On écrit $f: D \longrightarrow \mathbb{R}$ ou simplement $f: x \mapsto y$.

- L'élément x de D est appelé «variable de f».
- D est appelé «**ensemble de définition de** f» (noté aussi D_f). Il représente l'ensemble de tous les réels x pour lesquels f(x) existe, et s'écrit $D = \{x \in \mathbb{R}/f(x) \in \mathbb{R}\}$.
- Le réel y, noté f(x), est appelé «**image de** x **par** f».
- Le réel x vérifiant f(x) = y, est appelé «antécédent de y par f».

Exemple

Soit f la fonction définie sur l'intervalle [-3; 5] par l'expression : $f(x) = x^2 - x + 2$.

- L'ensemble de définition est $D_f = [-3; 5]$.
- L'image de -1 par f est 4, car $f(4) = (-1)^2 (-1) + 2 = 4$.
- L'image de 0 par f est 2, car $f(4) = 0^2 0 + 2 = 2$.
- L'image de 1 a par f est également 2, car $f(4) = 1^2 1 + 2 = 2$.
- Un antécédent de 4 par f est -1, car f(-1) = 4.
- Deux antécédents de 2 par f sont 0 et 2, car f(0) = 2 et f(0) = 2.

Exercice

- 1. Soit f la fonction définie sur l'intervalle [-4,4] par l'expression : f(x) = 2x 3.
 - (a) Quel est le domaine de définition de f?
 - (b) Déterminer l'image par f de chacun des réels $-\frac{1}{2}$, 0 et 2.
 - (c) Déterminer l'antécédent par f de chacun des réels -1, 0 et $\frac{1}{2}$.
- 2. Soit g la fonction définie sur l'intervalle \mathbb{R} par l'expression : $g(x) = -x^2 + x$.
 - (a) Quel est le domaine de définition de g?
 - (b) Déterminer l'image par g de chacun des réels -2, 1 et $\frac{1}{3}$.
 - (c) Déterminer les antécédents par g de chacun des réels $-2, \frac{1}{4}$ et 1.

1.2 Quelques types de fonctions numériques

Définitions

- Toute fonction f ayant pour expression un polynôme P(x) est appelée «**fonction polynôme**», et son domaine définition est $D_f = \mathbb{R}$.
 - o Une fonction polynôme f de la forme $f: x \mapsto ax + b$ est appelée «**fonction affine**».
 - Si b = 0, alors f est dite «fonction linéaire».
 - Si a = 0, alors f est dite «fonction constante».
 - o La fonction f de la forme $f: x \mapsto x^2$ est appelée «**fonction carré**».
 - o Une fonction polynôme f de la forme $f: x \mapsto ax^2 + bx + c$ est appelée «**fonction polynôme du second degré**».
- Toute fonction f ayant pour expression le quotient $\frac{P(x)}{Q(x)}$, où P(x) et Q(x) sont deux polynômes, est appelée «fonction rationnelle», et son domaine définition est $D_f = \{x \in \mathbb{R}/Q(x) \neq 0\}$.
 - Toute fonction polynôme est une fonction rationnelle de dénominateur 1.
 - La fonction rationnelle f définie par $f: x \mapsto \frac{1}{x}$ est appelée «fonction inverse».

- o Une fonction rationnelle f de la forme $f: x \mapsto \frac{ax+b}{cx+d}$ est appelée «fonction homographique».
- Toute fonction f qui n'est pas rationnelle est appelée «fonction irrationnelle».
 - o La fonction f de la forme $f: x \mapsto \sqrt{x}$ est appelée «fonction de la racine carré».
 - o Une fonction de la forme $f: x \mapsto \sqrt{g(x)}$, où g est une fonction rationnelle a pour domaine de définition $D_f = \{x \in \mathbb{R}/g(x) \ge 0\}.$

Exemple

• Le domaine de définition de la fonction $f: x \mapsto x^2 + x\sqrt{3} - 2:$

f est une fonction polynôme, donc $D_f = \mathbb{R}$.

• Le domaine de définition de la fonction $g: x \mapsto \frac{x+3}{2x-1}:$

$$D_g = \{x \in \mathbb{R} \ / \ 2x - 1 \neq 0\} = \left\{x \in \mathbb{R} \ / \ x \neq \frac{1}{2}\right\} = \mathbb{R} \smallsetminus \left\{\frac{1}{2}\right\} = \left] - \infty; \frac{1}{2} \left[\ \cup \ \right] \frac{1}{2}; + \infty \left[.\right] + \infty$$
 Le domaine de définition de la fonction $h: \ x \mapsto \sqrt{3x + 4}:$

$$D_h=\{x\in\mathbb{R}\ /\ 3x+4\geq 0\}=\big\{x\in\mathbb{R}\ /\ x\geq -\tfrac43\big\}=\big[-\tfrac43;+\infty\big[$$
 • Le domaine de définition de la fonction $u:\ x\mapsto x^2-3\sqrt x+5:$

$$D_u = \{x \in \mathbb{R} \ / \ x \ge 0\} = [0; +\infty[$$

• Le domaine de définition de la fonction $v: x \mapsto \frac{\sqrt{x+2}}{x-3}$:

$$D_v = \{x \in \mathbb{R} / x + 2 \ge 0 \text{ et } x - 3 \ne 0\}$$

=\{x \in \mathbb{R} / x \ge -2 \text{ et } x \neq 3\}
=\[-2; +\infty[\sigma]\{3\} = \[-2; 3[\cup]\3; +\infty[\sigma]

Exercice

Donner le domaine de définition \mathcal{D}_f de la fonction f dans les cas suivants :

- 1. $f: x \mapsto 3x^2 2x + 1$. 2. $f: x \mapsto -2x^3 + 3x$. 3. $f: x \mapsto \frac{3x-1}{2x-4}$. 4. $f: x \mapsto \frac{5x+1}{x^2-x-2}$. 5. $f: x \mapsto \sqrt{3x-6}$. 6. $f: x \mapsto \frac{3x^3-x-1}{\sqrt{15-5x}}$.
- 7. $f: x \mapsto \sqrt{x^2 2x 3}$

Représentation graphique d'une fonction numérique 2

Définitions

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit f une fonction numérique définie sur une partie D de \mathbb{R} .

La «représentation graphique» de la fonction f, notée (C_f) , est l'ensemble des points M de coordonnées (x;y), tels que x est un élément de D et y=f(x). On écrit $(C_f)=\{M(x;y)\mid x\in D \text{ et } y=f(x)\}$.

L'«**équation de la courbe** (C_f) » est y = f(x).

Remarques

- Si $A \in (C_f)$, on représente A comme suit : $^{\cancel{K}}$.
- Si $A \in (C_f)$ et se trouve à l'extrémité de (C_f) , alors, on représente A comme suit :

Exercice

- 1. Soit f la fonction définie par $f(x) = \frac{1}{x-1}$ et (C_f) sa représentation graphique.
 - (a) Déterminer le domaine de définition de f.
 - (b) Les points A(1;0), $B(3;\frac{1}{2})$ et $C(\sqrt{2};\sqrt{2}+1)$ appartiennent-ils à (C_f) ?

- 2. On considère la représentation graphique (C_g) ci-contre, d'une fonction g. Déterminer ce qui suit :
 - (a) Le domaine de définition de g.
 - (b) L'image de 1 par g.
 - (c) Les antécédents de -1 par g.
 - (d) Les points d'intersections de (C_g) avec l'axe des abscisses.
 - (e) Les points d'intersections de (C_q) avec l'axe des ordonnés.

- 3. On considère la fonction $h: x \mapsto x^2$.
 - (a) Déterminer le domaine de définition de h.
 - (b) Compléter le tableau des valeurs suivant :

x			
h(x)			

(c) Construire ci contre (C_h) la courbe de h.

3 Égalité de deux fonctions numériques

Définition

Soient f et g deux fonctions de domaines de definitions respectifs D_f et D_g .

On dit que «f et g sont égales», et on écrit f = g, si et seulement si

$$\begin{cases} D_f = D_g = D \\ \text{Pour tout } x \text{ de } D, \text{ on a } f(x) = g(x) \end{cases}.$$

Exercice

Comparer les deux fonctions f et g dans les cas suivants :

(a)
$$f: x \mapsto x + 1 \text{ et } g: x \mapsto \frac{x^3 + 1}{x^2 - x + 1}$$
.

(b)
$$f: x \mapsto \sqrt{x^2 - 2x}$$
 et $g: x \mapsto \sqrt{x}\sqrt{x - 2}$.

4 Parité d'une fonction numérique

4.1 Fonction paire – Fonction impaire

Définitions

Soit f une fonction numérique et D_f son domaine de définition.

- \bullet On dit que f est une «fonction pair», si et seulement si
 - \circ Pour tout $x \text{ de } D_f$, on a $-x \in D_f$. \circ Pour tout $x \text{ de } D_f$, on a f(-x) = f(x).
- \bullet On dit que f est une «fonction impair», si et seulement si
 - ∘ Pour tout x de D_f , on a $-x \in D_f$. ∘ Pour tout x de D_f , on a f(-x) = -f(x).

Si pour tout x de D_f on a $-x \in D_f$, alors, D_f est dit «**symétrique par rapport à** 0», ou «**centré en** 0».

Remarques

- Les domaines \mathbb{R} , \mathbb{R}^* et $\mathbb{R} \setminus \{-a; a\}$, où a est un réel non nul, sont symétrique par rapport à 0.
- Les intervalles de la forme]-a;a[et [-a;a], où a est un réel strictement positif, sont symétrique par

rapport à 0.

• Les réunions d'intervalles de la forme $]-\infty;-a[\cup]a;+\infty[$ et $]-\infty;-a]\cup[a;+\infty[$, où a est un réel strictement positif, sont symétrique par rapport à 0.

Exercice

Étudier la parité de la fonction f dans les cas suivants : (a) $f: x \mapsto \frac{x^2+3}{|x|-1}$. (b) $f: x \mapsto \frac{\sin(x)-x}{x^2-1}$.

(a)
$$f: x \mapsto \frac{x^2+3}{|x|-1}$$
.

(b)
$$f: x \mapsto \frac{\sin(x) - x}{x^2 - 1}$$

(c)
$$f: x \mapsto x^3 + x^2$$
.

Parité et représentation graphique d'une fonction

Propriétés

Soit f une fonction numérique, D_f son domaine de définition et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- f est une fonction pair, si et seulement si, l'axe des ordonnées est un axe de symétrie de (Cf).
- f est une fonction impair, si et seulement si, le point O est centre de symétrie de (Cf).

Fonction pair

Fonction impair

Exercice

1. Déterminer la parité de la fonction f, dans les cas suivants :

(a)
$$f(x) = \frac{1}{2x-3}$$

(b)
$$f(x) = x^2 - 3x$$

(b)
$$f(x) = x^2 - 3x$$
 (c) $f(x) = \frac{x}{4x^2 + 1}$ (d) $f(x) = \frac{x+1}{3\sqrt{x}}$.

(d)
$$f(x) = \frac{x+1}{3\sqrt{x}}$$
.

2. Déterminer la parité des fonctions de représentations graphiques suivantes :

Variations d'une fonction numérique 5

Monotonie d'une fonction numérique 5.1

Définitions

Soit f une fonction numérique définie sur un intervalle I.

- On dit que « f est croissante sur I» si et seulement si pour tout a et b de I, si a < b, alors $f(a) \le f(b)$.
- On dit que «f est strictement croissante sur I» si et seulement si pour tout a et b de I, si a < b, alors f(a) < f(b).
- ullet On dit que «f est décroissante sur I» si et seulement si pour tout a et b de I, si a < b, alors $f(a) \ge f(b)$.
- On dit que «f est strictement décroissante sur I» si et seulement si pour tout a et b de I, si a < b, alors f(a) > f(b).

• On dit que «f est constante sur I» si et seulement si pour tout a et b de I, si a < b, alors f(a) = f(b).

Fonction croissante f(b)f(a)

- On dit que «f est monotone sur I» si elle est croissante ou décroissante sur I.
- \bullet On dit que «f est strictement monotone sur I» si elle est strictement croissante ou strictement décroissante sur I.

Remarques

Étudier les variations d'une fonction f est déterminer les intervalles de son domaine de définition D_f , sur lesquels la fonction f est monotone ou strictement monotone.

Les résultats de cette étude peuvent être résumés dans un tableau appelé «tableau de variations de la fonction f», ou une flèche montante \nearrow signifie que f est croissante ou strictement croissante, et une flèche descendante \(\signifie \) signifie que f est décroissante ou strictement décroissante.

Exercice

Étudier les variations de la fonction f sur l'intervalle I dans les cas suivants :

(a)
$$f: x \mapsto x^2 - 4x + 1$$
 et $I = [2; +\infty[$.
(c) $f: x \mapsto \frac{1}{x+1}$ et $I =]-\infty; -1[$.

(b)
$$f: x \mapsto -3x + 4$$
 et $I = \mathbb{R}$.

(c)
$$f: x \mapsto \frac{1}{x+1}$$
 et $I =]-\infty; -1[$.

(b)
$$f: x \mapsto -3x + 4 \text{ et } I = \mathbb{R}$$
.
(d) $f: x \mapsto \frac{1}{x+1} \text{ et } I =]-1; +\infty[$.

5.2 Taux de variation d'une fonction numérique

Définitions

Soit f une fonction définie sur un intervalle I, et a et b deux réels quelconques de I tels que $a \neq b$. On appelle «taux de variation de la fonction f entre a et b», le nombre $T(a,b) = \frac{f(a) - f(b)}{a - b}$.

Remarque

Le taux de variation d'une fonction f entre deux réels distincts a et b est le coefficient directeur de la droite (MN), tel que M(a; f(a)) et N(b; f(b)).

Propriété

Soit T(a,b) le taux de variations entre a et b de la fonction f. On a :

- f est croissante sur I si et seulement si $T(a,b) \geq 0$.
- f est strictement croissante sur I si et seulement si T(a,b) > 0.
- f est décroissante sur I si et seulement si $T(a,b) \leq 0$.
- f est strictement décroissante sur I si et seulement si T(a,b) < 0.
- f est constante sur I si et seulement si T(a,b)=0.

Exercice

- 1. Étudier les variations de la fonction $f: x \mapsto x^2 4x + 3$ sur $[2, +\infty[$ et $] \infty; 2]$.
- 2. Étudier les variations de la fonction $g: x \mapsto \frac{x+3}{x-1}$ sur $]1, +\infty[$ et $]-\infty; 1[$.

5.3 Parité d'une fonction numérique et monotonie

Propriété

Soit f une fonction numérique de domaine de définition D_f . Soit I^+ un intervalle de $D_f \cap \mathbb{R}^+$ et I^- son symétrique par rapport à 0 (intervalle de $D_f \cap \mathbb{R}^-$).

- $\bullet\,$ Si f est une fonction pair, alors,
 - \circ si f est croissante sur I^+ , alors f est décroissante sur I^- .
 - \circ si f est décroissante sur I^+ , alors f est croissante sur I^- .
- Si f est une fonction impair, alors,
 - \circ si f est croissante sur I^+ , alors f est croissante sur I^- .
 - \circ si f est décroissante sur I^+ , alors f est décroissante sur I^- .

Exercice

- 1. Soit f la fonction définie par $f(x) = x^2 + 1$.
 - (a) Donner D_f le domaine de définition de f.
 - (b) Étudier la parité de la fonction f.
 - (c) Étudier La monotonie de f sur $[0; +\infty]$
 - (d) Dresser le tableau de variation da la fonction f.
- 2. Soit g la fonction définie par $g(x) = \frac{x^2+1}{x}$.
 - (a) Donner D_g le domaine de définition de g.
 - (b) Étudier la parité de la fonction g.
 - (c) Étudier La monotonie de g sur]0;1] et $[1;+\infty[$.
 - (d) Dresser le tableau de variation da la fonction g.

6 Extremums d'une fonction numérique

Définitions

Soit f une fonction numérique de domaine de définition D_f , I un intervalle de D_f , et a un élément de I.

- On dit que «f admet un maximum ou une valeur maximale sur I en a» ou que «f(a) est le maximum ou la valeur maximale de f sur I», si pour tout x de I, on a $f(x) \le f(a)$.
- On dit que «f admet un minimum ou une valeur minimale sur I en a» ou que «f(a) est le minimum ou la valeur minimale de f sur I», si pour tout x de I, on a $f(x) \ge f(a)$.
- On dit que «f admet un extremum ou une valeur extrême sur I en a» ou que «f(a) est un extremum ou une valeur extrême de f sur I», si f(a) est un maximum ou un minimum de f sur I.

 $\frac{1}{a} \xrightarrow{i} a$ Fonction admettant un maximum b = f(a) en a.

Fonction admettant un minimum b = f(a) en a.

Exercice

Soit f la fonction de tableau de variations suivant :

- 1. Déterminer D_f le domaine de définition de f. 2. Donner les images de -4, de 0 et de 3 par f.
- 3. Donner un encadrement des images de -1, de 2 et de 5 par f.
- 4. Donner un des antécédents de $\sqrt{3}$ et de 2 par f. 5. Donner un encadrement des autres antécédents de 6. Donner un encadrement de f sur [0; 3] et sur]-2; 0].
- 7. Donner un encadrement de f sur]-2;3] et sur $[0;+\infty[$.
- 8. Déterminer les extremums de f sur [0;3] et sur]-2;3].
- 9. Déterminer les extremums de f sur $]-\infty;-2]$ et sur D_f .

Position relative de deux courbes 7

Propriété

Soit f et g deux fonctions numériques définies sur un intervalle I, et (C_f) et (C_g) leurs représentations graphiques respectives.

- (C_f) est strictement au dessus de (C_g) sur I, si pour tout x de I, on a f(x) > g(x).
- (C_f) est strictement au dessous de (C_g) sur I, si pour tout x de I, on a f(x) < g(x).
- Les abscisses des points d'intersection de (C_f) et (C_q) sont les solutions de l'équation f(x) = g(x).

Soit (C_f) et (C_g) les représentations graphiques respectives de deux fonctions f et g.

- 1. Donner les tableaux des variations de f et de g.
- 2. Déterminer les extremums de f et de g sur [-3; 6].
- 3. Résoudre dans \mathbb{R} l'équation : f(x) = g(x).
- 4. Résoudre dans \mathbb{R} les inéquations f(x) < g(x) et f(x) > g(x).

Exercices 8

Soit f une fonction numérique définie par $f(x) = 4x^2 + \frac{1}{x}$.

- 1. Déterminer D_f le domaine de définition de f.
- 2. Montrer que pour tout réels distincts a et b de D_f , on a $\frac{f(a)-f(b)}{a-b}=4(a+b)-\frac{1}{ab}$. 3. Étudier la monotonie de f sur les intervalles $]-\infty;0[,\]0;\frac{1}{2}]$ et $[\frac{1}{2};+\infty[$.
- 4. Donner le tableau de variation de f.
- 5. Déduire les extremums de f sur $]0; +\infty[$.
- 6. Montrer que pour tout réel x dans $\left[\frac{1}{3};1\right]$, on a $3 \leq f(x) \leq 5$.

Soit f une fonction numérique définie par $f(x) = 2(x + \frac{4}{x})$.

- 1. Déterminer D_f le domaine de définition de f.
- 2. Déterminer la parité de f.
- 3. Montrer que pour tout réels distincts a et b de D_f , on a $\frac{f(b)-f(a)}{b-a}=2\left(1-\frac{4}{ab}\right)$.
- 4. Étudier la monotonie de f sur les intervalles]0;2] et $[2;+\infty[$.
- 5. Donner le tableau des variations de f.
- 6. On considère un rectangle de surface 4 et l'une de ses dimensions est égale à x.
 - (a) Déterminer le périmètre de ce rectangle.
 - (b) Déduire la valeur minimale de son périmètre.

Soit f une fonction numérique définie par $f(x) = \frac{|x-2|+|x+2|}{|x|-1}$. 1. Déterminer D_f le domaine de définition de f.

- 2. Déterminer la parité de f.
- 3. Étudier la monotonie de f sur les intervalles [0;1[,]1;2], et $[2;+\infty[$.
- 4. Donner le tableau de variation de f .

Exercice 4

Soit f une fonction numérique définie par f(x) = |x+3| - 2.

- 1. Déterminer D_f le domaine de définition de f.
- 2. Donner l'expression de f sans la valeur absolue.
- 3. Tracer (C_f) la représentation graphique de f dans un repère orthonormé $(O, \vec{i}; \vec{j})$.
- 4. Étudier la monotonie de f, puis donner son tableau des variations.
- 5. Construire dans le même repère la droite d'équation y = -3x.
- 6. Résoudre graphiquement l'équation f(x) = -3x.
- 7. Résoudre graphiquement l'inéquation $f(x) \leq -3x$.