ю-функция Вейерштрасса, ряды Эйзенштейна и модулярные функции.

Виктор Алексеевич Клепцын

23 июля 2021 г.

Определение 1. Элиптическая кривая — $E_{\Gamma} := \mathbb{C}/\Gamma$, где

$$\Gamma := \{ az_1 + bz_2 \mid a, b \in \mathbb{Z} \land z_1/z_2 \notin \mathbb{R} \}.$$

Замечание 1. Это же банально тор.

Определение 2. Элиптическая кривая — $\{(x;y) \mid y^2 = P(x)\}$, где P свободен от кратных корней.

Определение 3. f называется голоморфной в $D\subseteq\mathbb{C}$, если f комплексно дифференцируемо в точке D.

Лемма 1 (условие Коши-Римана). Пусть f дифференцируема в точке $z_0 \in D \subseteq \mathbb{R}^2$ (= \mathbb{C}). Тогда если f комплексно дифференцируема в z_0 , то $\partial_x f(z_0) = \partial_y f(z_0) = f'(z_0).d$

Лемма 2. Голоморфная функция на области восстанавливается по значениям на границе.

Лемма 3. Если f голоморфна в D, то она бесконечно комплексно дифференцируема и совпадает со своим рядом Тейлора (для всякой внутренней точки в D).

Лемма 4. Голоморфная на области функция имеет экстремумы на области на границе этой области.

Замечание 2. Рассмотрим голоморфные функции на элиптической кривой, они же голоморфные функции, периодические по двум неколлинеарным векторам. В таком случае понятно, что она константна.

Будем рассматривать функции не в \mathbb{C} , а в $\mathbb{C} \sqcup \{\infty\} = \mathbb{C}P^1$.

Определение 4. Полюс порядка n у функции f — точка z_0 , что $f(z) = \sum_{k=-n}^{\infty} c_k (z-z_0)^n$ и $c_{-k} \neq 0$, т.е. $1/f = (z-z_0)^n + \dots$

Определение 5. Функция f мероморфиа, если для всякой точки верно, что либо в её окрестности f голоморфиа, либо она является полюсом.

Определение 6. Элептическая функция — мероморфная функция на элиптической кривой.

Определение 7. Пусть дана непрерывная функция $f: S^1 \to S^1$. Тогда *порядком* f называется количество оборотов f при прохождении единожды по окружности.

Определение 8. Пусть дана непрерывная дифференцируемая функция $f:S^1\to S^1$. Тогда для всякой точки $p\in S^1$, если $\{q_1;\ldots;q_n\}=f^{-1}(p)$ и $f'(q_i)\neq 0$, то величина

$$\sum_{i=1}^{n} \operatorname{sign}(f'(q_i))$$

является (целой) величиной, независящей от p. Она называется $nopя \partial ком f$.

Определение 9.

Дописать.

$$\wp(z) := \frac{1}{z^2} + \sum_{\gamma \in E} \frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2}.$$

Теорема 5.

$$\wp'^2 - 4\wp^3 - A\wp^2 - g\wp - d = 0.$$

Доказательство. Поскольку функция выше мезоморфна и не имеет особенностей, то голоморфна, а значит константна.

Следствие 5.1. Отображение

$$f: \mathbb{C}/\Gamma \to \mathbb{C}^2, z \to (\wp(z), \wp'(z))$$

Переводит тор в кривую $y^2 = 4x^3 + gx + d$.

Определение 10. Ряд Эйзенштейна —

$$G_k(\Gamma) := \sum_{\Gamma \setminus \{0\}} \frac{1}{\gamma^k}.$$

Замечание 3. Заметим, что

$$\frac{1}{\gamma - z} = \frac{1}{\gamma} \frac{1}{1 - \frac{z}{\gamma}} = \frac{1}{\gamma} (1 + \frac{z}{\gamma} + \frac{z^2}{\gamma^2} + \dots),$$

следовательно

$$\frac{1}{(z-\gamma)^2} = \left(\frac{1}{\gamma-z}\right)' = \frac{1}{\gamma^2} + \frac{2z}{\gamma^3} + \frac{3z^2}{\gamma^4} + \dots$$

Таким образом

$$\wp(z) = \frac{1}{z^2} + 2z \sum_{\alpha} \frac{1}{\gamma^3} + 3z^2 \sum_{\alpha} \frac{1}{\gamma^4} + 4z^3 \sum_{\alpha} \frac{1}{\gamma^5} + \dots$$

$$=: \frac{1}{z^2} + 3G_4(\Gamma)z^2 + 5G_6(\Gamma)z^4 + 7G_8(\Gamma)z^6 + \dots$$

$$= \frac{1}{z^2} (1 + 3G_4(\Gamma)z^4 + 5G_6(\Gamma)z^6 + 7G_8(\Gamma)z^8 + \dots)$$

А значит

$$\wp'(z) = -\frac{2}{z^3} + 6G_4(\Gamma)z + 20G_6(\Gamma)z^3 + 42G_8(\Gamma)z^8 + \dots$$
$$= -\frac{2}{z^3}(1 - 3G_4(\Gamma)z^4 + 10G_6(\Gamma)z^6 + 21G_8(\Gamma)z^8 + \dots)$$

Смотря на первые члены рядов, получаем, что $g=60G_4(\Gamma)$ и $d=140G_6(\Gamma)$, т.е.

$$\wp'^2 - 4\wp^3 - A\wp^2 - 60G_4(\Gamma)\wp - 140G_6(\Gamma) = 0.$$

Пространство решёток (и модулярная кривая)