WeRateDogs is a Twitter account that rates people's dogs. I downloaded their Twitter archive. Also a data frame from the Udacity's neural network that can classify breeds of dogs was also downloaded to answer two questions: Which factor influences the number of retweet? Is it the number of favorite, or the ratings of a dog? Whether the neural network could successfully predict an image to be a dog?

To answer the first question, I plot the rating_numerator with favorite_count. It is fair to say with a high rating, it is possible to have more favorites.

Then I plot the favorite_count with the retweet_count. From this chart we could easily see a trend with these parameters. The number of favorite has a positive relation with the number of retweet.

Also, the ratings of dogs and the number of retweet were plotted. It is also fair to say that with a higher rating, it is possible to get more retweets.

Till now, I have analyzed the relation between ratings, favorite_count and retweet_count through three plots. Although a trend could be found through these plots, it is good to have a quantitative conclusion. Hence, linear regression was used find the trend.

Results: Ordinary least squares

============							==	
Model:	OLS	OLS		Adj. R-squared:			0.709	
Dependent Variabl	e: retwee	retweet_count		AIC:			28340.8659	
Date:	2021-0	2-13 15:3	33 BIC:			28357.349	92	
No. Observations:	1798	1798		Log-Likelihood:				
Df Model:	2	2		F-statistic:			2194.	
Df Residuals:	1795	1795		Prob (F-statistic):			0.00	
•	0.710		Scale:)5	
						0.975]		
intercept favorite_count								
14.01100_00am	0.1020	0.0000	00.1001	0.0000	0.100	,,		
rating_numerator	6.4531	5.3484	1.2065	0.2278	-4.036	66 16.94	28	
Omnibus:	994.817		Durbin-Watson:			1.659		
Prob(Omnibus):	0.000		Jarque-Bera (JB):			10228.9	01	
Skew:	2.410		Prob(JB):			0.000		
Kurtosis:	13.645			Condition No.:				
=================							==	

^{*} The condition number is large (3e+04). This might indicate strong multicollinearity or other numerical problems.

From this table a conclusion can be obtained. For each additional unit increase in the favorite_count, the retweet_count is expected to increase by 0.19 as long as all the other varibales stay the same. The P-value suggests that this is statistically significant. For each additional unit increase in the rating_numerator, the retweet_count is expected to increase by 6.5 as long as all the other varibales stay the same. However, the P-value suggests that this is statistically insignificant.

Next question I want to ask is wheter the algorithm could predict the picture to be a dog?

From this plot we could see the success rate of predciting the picture to be a dog is around 74%. It is not a very high rate. The algorithm needs to be improved.

Conclusion: In this project, we analyzed which factor influence the retweet_count and whether the algorithm is good at predicting whether a image is a dog. We used linear regression to find that favorite_count has a positive influence on retweet_count. Also we found the algorithm could figure out whether a image is the picture of dog with a success rate above 70%.