variations due to an exoplanet:

$$RV(t) = K \cos\left(\frac{2\pi(t-T)}{P}\right) + V_{sys}$$

where

b) mass of star can be estimated from spectral type

c) make a graph showing the radial velocity predicted by

d) Contributions to measured radial velocity from Earth's spin

$$=$$
 $(465 \frac{\text{m}}{\text{s}}) \cos(5.28)$

HW 4 PT Spin
$$V(t) = V_{mex} \cos(\omega t + \varphi)$$
 $\omega = \frac{2\pi}{86164} s = 7.29212 \times 10^{-5} \frac{r_{max}}{s}$
 $\varphi = \frac{2\pi}{86164} s = 7.29212 \times 10^{-5} \frac{r_{max}}{s}$
 $\varphi = \frac{2\pi}{86164} s = 7.29212 \times 10^{-5} \frac{r_{max}}{s}$

If $t_0 = \frac{\pi}{100} \frac{r_{max}}{s} = \frac{33}{15} \frac{r_{max}}{s}$

If $t_0 = \frac{\pi}{100} \frac{r_{max}}{s} = \frac{33}{15} \frac{r_{max}}{s}$

If $t_0 = \frac{\pi}{100} \frac{r_{max}}{s} = \frac{33}{15} \frac{r_{max}}{s}$

If $t_0 = \frac{\pi}{100} \frac{r_{max}}{s} = \frac{37}{15} \frac{r_{max}}{s} = \frac{37}{15} \frac{r_{max}}{s}$

If $t_0 = \frac{\pi}{100} \frac{r_{max}}{s} = \frac{37}{15} \frac{r_{max}}{s} = \frac{37}{15} \frac{r_{max}}{s}$

If $t_0 = \frac{\pi}{100} \frac{r_{max}}{s} = \frac{37}{15} \frac{r_{max}}{s} = \frac{37}{1$

$$V_{\text{Earth}} = 463 \frac{\text{m}}{\text{s}} \cos \left(\omega_{\text{E}} (t-t_0) + \phi \right)$$

See Fig 2 for comparison of RV due to Gliese 33 alone and due to Earth spin.

$$\lambda(t) = \lambda_0 + \frac{360^{\circ}}{365.25 d} (t-t_0)$$
\(\text{in days}\)

Pick To so that Earth has the proper angular separation from

Gliese 33.

on JD 2457083.15922
$$\lambda = 147^{\circ}$$

on Oct 1, 2015 10 PM local $\lambda = -5^{\circ}$ (near opposition)

Then

See Fig 3 for comparison of orbital and spin and stellar reflex contributions to measured RV.

Adding all 3 contributions, we find overall RV as shown in Fig 4. Note the value grows in positive dir within each night's set. Values at the requested dates + times tabulated in Fig 5.

 Θ . To find the distance between Gliese 33 and its planet, we use Kepler's Law ± 3 :

$$P^2 = \frac{4\pi^2}{GM} a^3$$

If we use solar system units, we find

$$P = \frac{1}{(years)} = \frac{3}{M(solar)}$$
 (Au)

Plug in

$$\rightarrow$$
 a = 0.0526 Au = 7.86 × 10° m

If we assume

then center-of-mass implies

and

planet

$$\rightarrow$$
 $M_p = 6.3 \times 10^{-4} M_s = 0.47 M_J$

Fig 1

Fig1 4/3/2015

Fig 2

Fig3 4/4/2015

Fig4 4/4/2015

rv_r	measure.out	Sat Apr 04 10:52:30 2015			1				
JD	2457297.58353 2457297.66686 2457297.75020	rv rv	-10349.03 -10344.65 -10340.82	rv_spin rv_spin rv_spin	-196.863 12.489 218.477	rv_orbit rv_orbit rv_orbit	-112.79 -69.94 -27.08	tot	-10658.69 -10402.10 -10149.43
JD	2457298.58353 2457298.66686 2457298.75020	rv rv	-10338.12 -10341.47 -10345.40	rv_spin rv_spin rv_spin	-190.558 19.616 224.505	rv_orbit rv_orbit rv_orbit	401.46 444.31 487.16	tot tot tot	-10127.22 -9877.54 -9633.74
JD	2457303.58353 2457303.66686 2457303.75020	rv rv	-10331.94 -10333.40 -10335.53	rv_spin rv_spin rv_spin	-158.224 55.119 253.615	rv_orbit rv_orbit rv_orbit	2967.86 3010.50 3053.13	tot tot tot	-7522.30 -7267.78 -7028.79
JD	2457305.58353 2457305.66686 2457305.75020	rv rv	-10457.68 -10461.17 -10464.05	rv_spin rv_spin rv_spin	-144.949 69.221 264.745	rv_orbit rv_orbit rv_orbit	3989.30 4031.77 4074.23	tot tot tot	-6613.33 -6360.18 -6125.08
JD	2457308.58353 2457308.66686 2457308.75020	rv rv	-10331.57 -10331.03 -10331.17	rv_spin rv_spin rv_spin	-124.720 90.216 280.848	rv_orbit rv_orbit rv_orbit	5512.18 5554.29 5596.39	tot tot tot	-4944.11 -4686.52 -4453.94