

Heat death of the Universe

Law of increase of entropy

Reversible adiabatic changes

1st and 2nd law combined

The Universe is dying!

View universe as closed system

Systems are driving towards thermal equilibrium

Once reached there can no longer be any heat flow (0th law)

 \Rightarrow No work will be done (2nd law)

1st law states conservation of energy and hence there can be no new energy supplied to system

How long have we got? 10¹⁰⁰⁰ years (Wikipedia*)

However...

Modern big-bang theory says that T_{universe} is continually changing

Continual expansion - never reaches true thermodynamic equilibrium

 T_{universe} is never constant

Death is avoided.

Yet, expansion can in principle be purely adiabatic

Entropy constant: Death!

Law of increase of entropy

Oth law: 1 & 2 are not in equilibrium

1st law: $-dQ_1 = dQ_2$

2nd law: irreversible & spontaneous; heat flow from 2 to 1 impossible

Law of increase of entropy

Reversible adiabatic changes

Carnot cycle in different coordinates:

$$\begin{array}{c|c}
T \\
T_1 \\
T_2 \\
D \\
\Delta Q_1 \\
B \\
\Delta Q_2 \\
C$$

$$\Delta Q_1 = T_1 \int_A^B \mathrm{d}S = T_1 (S_B - S_A)$$

$$\Delta Q_2 = T_2 \int_C^D dS = T_2 (S_D - S_C)$$

$$\oint dU = 0 = \Delta Q + \Delta W$$

work out:

work dore

$$\phi T dS = \Delta Q = \text{area enclosed}$$

∴ w. d. by system $\Delta W' = -\Delta W = \Delta Q = \text{area enclosed}$

Combined statement of 1st and 2nd law

```
\mathrm{d}U = \mathrm{d}Q + \mathrm{d}W 1<sup>st</sup> law \mathrm{d}W = -p\mathrm{d}V for a reversible change of V \mathrm{d}Q = T\mathrm{d}S for a reversible change (2<sup>nd</sup> law)
```

Hence dU = TdS - pdV true for reversible AND irreversible changes

All variables are FoS (path independent)

Restrictions: closed system

work done by volume change only (otherwise additional

terms needed)

Combined statement of 1st and 2nd law

from dU = TdS - pdV we see that U = U(S, V)

$$\therefore dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial V}\right)_S dV$$

Comparing these two equations:

$$T = \left(\frac{\partial U}{\partial S}\right)_V \text{ and } p = -\left(\frac{\partial U}{\partial V}\right)_S$$

Now recall that if f(x,y) is FoS then

$$df = \left(\frac{\partial f}{\partial x}\right)_{y} dx + \left(\frac{\partial f}{\partial y}\right)_{x} dy \equiv Xdx + Ydy \text{ where } \left(\frac{\partial X}{\partial y}\right)_{x} = \left(\frac{\partial Y}{\partial x}\right)_{y}$$

since dU is exact: $\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V$ a Maxwell relation (more later)