Numerical System Project

19015566	حسن أيمن عبد المنعم أحمد النجار
19015603	حسن علي حسن إبراهيم عبد الواحد
19015880	عبد الرحمن إبراهيم عبد الحليم سعد
19016112	عمرو عبد الحميد محد إبراهيم

Gauss Elimination:

Pseudocode

Pseudocode to perform Forward Elimination:

```
for k = 1 to n-1
  for i = k+1 to n
      factor = aik / akk
  for j = k+1 to n
      aij = aij - factor * akj
  bi = bi - factor * bk
```

Pseudocode to perform Back Substitution:

```
xn = bn / ann

for i = n-1 downto 1

sum = 0

for j = i+1 to n

sum = sum + aij * xj

xi = (bi - sum) / aii
```

Total Cost : 2n3/3 + O(n2)

Runs:

guess-jordan:

Pseudocode

Apply Gauss Jordan Elimination on Matrix A:

```
For i = 1 to n
            If Ai_i = 0
                  Print "Mathematical Error!"
            End If
            For j = 1 to n
                  If i ≠ j
                         Ratio = Aj,i/Ai,i
                         For k = 1 to n+1
                               Aj_k = Aj_k - Ratio * Ai_k
                         Next k
                  End If
            Next j
      Next i
Obtaining Solution:
For i = 1 to n
            Xi = Ai, n+1/Ai, i
      Next i
```

Total-Cost: 4n3/3

Pseudocode for LU Decomposition

```
LUDecomp(a, b, n, x, tol, er) {
    Declare s[n] // An n-element array for storing
     scaling factors
    Declare o[n] // Use as indexes to pivot rows.
     // oi or o(i) stores row number of the ith pivot
    row.
    er = 0
    Decompose(a, n, tol, o, s, er)
    if (er != -1)
     Substitute(a, o, n, b, x)
}
Decompose(a, n, tol, o, s, er) {
    for i = 1 to n { // Find scaling factors
         o[i] = i
          s[i] = abs(a[i,1])
          for j = 2 to n
              if (abs(a[i,j]) > s[i])
                   s[i] = abs(a[i,j])
     for k = 1 to n-1 {
         Pivot(a, o, s, n, k) // Locate the kth pivot
          row
          // Check for singular or near-singular cases
          if (abs(a[o[k],k]) / s[o[k]]) < tol) {
              er = -1
              return
          }
     for i = k+1 to n \{
    factor = a[o[i],k] / a[o[k],k]
    // Instead of storing the factors
    // in another matrix (2D array) L,
    // We reuse the space in A to store
    // the coefficients of L.
    a[o[i],k] = factor
```

```
// Eliminate the coefficients at column j
    // in the subsequent rows
    for j = k+1 to n
         a[o[i],j] = a[o[i],j] - factor * a[o[k],j]
         } // end of "for k" loop from previous page
         // Check for singular or near-singular cases
         if (abs(a[o[n],n]) / s[o[n]]) < tol)
             er = -1
}
Psuedocode for finding the pivot
Pivot(a, o, s, n, k) {
    // Find the largest scaled coefficient in column k
    p = k // p is the index to the pivot row
    big = abs(a[o[k],k]) / s[o[k]])
    for i = k+1 to n \{
        dummy = abs(a[o[i],k] / s[o(i)])
         if (dummy > big) {
             big = dummy
             p = i
         }
    }
    // Swap row k with the pivot row by swapping the
    // indexes. The actual rows remain unchanged
    dummy = o[p]
    o[p] = o[k]
    o[k] = dummy
}
Psuedocode for solving LUx = b
Substitute(a, o, n, b, x) {
    Declare y[n]
    y[o[1]] = b[o[1]]
    for i = 2 to n \{
    sum = b[o[i]]
    for j = 1 to i-1
```

```
sum = sum - a[o[i],j] * b[o[j]]
y[o[i]] = sum
}
x[n] = y[o[n]] / a[o[n],n]
for i = n-1 downto 1 {

    sum = 0
    for j = i+1 to n

    sum = sum + a[o[i],j] * x[j]
    x[i] = (y[o[i]] - sum) / a[o[i],i]
}
```

Total cost =
$$O(n_3) + K * O(n_2)$$

Runs:

PseudoCode for Guess Sediel:

```
Inputs: A, b
Output: \phi

Choose an initial guess \phi to the solution repeat until convergence for i from 1 until n do \sigma \leftarrow 0 for j from 1 until n do if j \neq i then \sigma \leftarrow \sigma + a_{ij}\phi_j end if end (j\text{-loop}) \phi_i \leftarrow \frac{1}{a_{ii}}(b_i - \sigma) end (i\text{-loop}) check if convergence is reached end (repeat)
```

Total Cost: O(n^2)

Runs:

PseudoCode for Jacobi Iterative:

Step 1. Read the coefficients aij, i, j = 1, 2, ..., n and the right hand vector bi, i= 1, 2, ..., n of the system of equations and error tolerance ϵ .

Step 2. Rearrange the given equations, if possible, such that the system becomes diagonally dominant.

Step 3. Rewrite the ith equation as

$$x_i = rac{1}{a_{ii}} \Biggl(b_i - \sum_{j=1, j
eq i}^n a_{ij} x_j \Biggr) for \ i=1,2,\ldots,n$$

Step 4. Set the initial solution as

$$x_i = 0, \ i = 1, 2, \dots, n$$

Step 5. Calculate the new value $x_i^{(n)}$ of x_i as

$$x_i{}^{(n)} = rac{1}{a_{ii}} \Biggl(b_i - \sum_{j=1, j
eq i}^n a_{ij} x_j \Biggr) for \ i=1,2,\ldots,n$$

Step 6. If $|x_i - x_i^{(n)}| \le \epsilon$ for all i, then goto Step 7 else $x_i = x_i^{(n)}$ for all i and goto step 5.

Step 7. Print $x_i^{(n)}$, i = 1, 2, ..., n as solution.

Total Cost: O(n^2)

Runs:

Data structure used:

We used Just Arrays

Figures for gui plotting