Stochastic Processes - Homework Stochastic Differential Equations

Yuri F. Saporito

1. Solve the SDE

$$dX_t = (-\alpha X_t + \beta) dt + \sigma dB_t$$

where $X_0 = x_0$ and $\alpha > 0$, and verify that the solution can be written as

$$X_t = e^{-\alpha t} \left(x_0 + \frac{\beta}{\alpha} \left(e^{\alpha t} - 1 \right) + \sigma \int_0^t e^{\alpha s} dB_s \right)$$

Use the representation to show that X_t converges in distribution as $t \to \infty$, and find the limiting distribution. Finally, find the covariance $\text{Cov}(X_s, X_t)$.

2. Solve the SDE

$$dX_t = tX_t dt + e^{t^2/2} dB_t \text{ with } X_0 = 1$$

3. Use appropriate coefficient matching to solve the SDE

$$dX_t = -2\frac{X_t}{1-t}dt + \sqrt{2t(1-t)}dB_t \quad 0 \le t < 1$$

with $X_0 = 0$. Show that the solution X_t is a Gaussian process. Find the covariance function $\text{Cov}(X_s, X_t)$. Compare this covariance function to the covariance function for the Brownian bridge.

4. Show that if X_t is a process that satisfies $X_0 = 0$ and

$$dX_{t} = a(X_{t}) dt + \sigma(X_{t}) dB_{t}$$

where $a(\cdot)$ and $\sigma(\cdot)$ are smooth functions and $\sigma(\cdot) \ge \epsilon > 0$, then there is a monotone increasing function $f(\cdot)$ and a smooth function $b(\cdot)$ such that $Y_t = f(X_t)$ satisfies

$$Y_t = Y_0 + \int_0^t b(Y_s) ds + B_t.$$

The benefit of this observation is that it shows that many one-dimenal SDEs can be recast as an integral equation where there is no stochastic integral (other than a standard Brownian motion). Anyone who wants a hint might consider applying Itô's formula to $f(X_t)$ and making appropriate coefficient matches.