Algebra lineare e Matematica Discreta Appunti - Parte 2

Marco Zanchin

Contents

onapter 1		Parte due	Page 2
	1.1	Relazioni	2
		Relazioni di equivalenza — 2 • Insieme quoziente — 4	
	ı		
Chapter 2		Partizioni e Relazioni D'ordine	Page 5
	2.1	Diagramma di Hasse	6
	ı		
Chapter 3		Funzioni	Page 8
	3.1	Introduzione	8
	3.2	Notazione	8
	3.3	Primi esempi	8
	3.4	Controimmagini	10
	3.5	Funzione identica	10
	3.6	Funzione costante	10
	3.7	Funzione iniettiva	11
	3.8	Funzione suriettiva	11
	3.9	Funzione biettiva	12
	3.10	Condizioni di esistenza per funzioni iniettive, suriettive e biettive	12
	3.11	Numero di funzioni esistenti	12
	3.12	Funzioni biettive inverse	13
	3.13	Funzioni composte	15
	3.14	Composizione e inversione	15

Chapter 1

Parte due

1.1 Relazioni

1.1.1 Relazioni di equivalenza

Definition 1.1: Relazione di equivalenza

na relazione R su un insieme A è una relazione di equivalenza se R è riflessiva, simmetrica e transitiva.

Esempio:

 $A = \mbox{Studenti in questa aula}$ $R = \{(x,y) \mid x \mbox{ e y hanno lo stesso colore di capelli } \}$

La relazione ha le seguenti proprietà

- Riflessiva: ognuno ha lo stesso colore di capelli di se stesso.
- Simmetrica: se una persona ha lo stesso colore di un'altra persona, varrà anche il contrario. (se $x\mathbb{R}y$ allora $y\mathbb{R}x$)
- \bullet Transitiva: se $x\mathbb{R} y$ e $y\mathbb{R} h$ allora $x\mathbb{R} h$

Le relazioni di equivalenza tendono ad accumunare elementi con le stesse proprietà.

Esempio:

$$R = \{(n, m) \mid n + m \text{ è pari } \}$$

La relazione ha le seguenti proprietà

• Riflessiva:

$$\forall x \in \mathbb{N}, nRn$$
?

Si, ogni numero se sommato per se stesso da origine a un numero pari.

$$\forall x \in \mathbf{N}, n+n=2n$$

• Simmetrica:

se
$$x\mathbb{R}y$$
 allora $y\mathbb{R}x$?

Se n+m è pari, allora m+n è pari?

Si grazie alla **proprietà commutativa**. Cambiando l'ordine dei addendi della addizione, la somma non cambia.

• Transitiva:

$$se\ n\mathbb{R}m\ e\ m\mathbb{R}h\ allora\ n\mathbb{R}h\ ?$$

$$(n+m)+(n+h)$$
è pari

$$n + 2m + h = 2a$$

$$n + h = 2a - 2m$$

$$n + h = 2(a - m) \hat{e} pari$$

R è una relazione di equivalenza.

scriviamo gli elmenti in relazione con 0

$$0\mathbf{R}2\ 0\mathbf{R}4\ 0\mathbf{R}8\ \dots \emptyset \mathbf{R}\emptyset$$

Tutti gli elementi pari sono in relazione tra di loro.

Tutti gli elementi dispari sono in relazione tra di loro.

Nessun numero pari è in relazione con uno dispari.

Definition 1.2: Classe di equivalenza

Classe di equivalenza è il nome dato a un sottoinsieme di qualche relazione di equivalenza R, che include tutti gli elementi che sono equivalenti tra loro.

Se R è una relazione di equivalenza allora $\forall x \in A$ considero

$$[x]_R = \{y \in A \mid x\mathbf{R}y\}$$

Classe di equivalenza di x modulo R

 $[x]_R \subseteq A$

1.1.2 Insieme quoziente

Definition 1.3: Insieme quoziente

ata una relazione di equivalenza R su A, l'insieme quoziente di A modulo R è l'**insieme di tutte le classi di equivalenza modulo R in A**.

$$A/R = \{[x]_R \mid x \in A\}$$

$$A/R = |A|$$

Se e solo se R è la relazione diagonale su A.

Esempio:

$$A = \{a, b, c\}$$

$$\mathbf{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

Considero una relazione su $\mathbf{P}(A)$

$$R = \{(x, y) \in \mathbf{P}(A) \times \mathbf{P}(A) \mid |x| = |y| \}$$
$$[\emptyset]_R = \{x \in \mathbf{P}(A) \mid |x| = 0\} = \{\emptyset\}$$
$$[\{a\}]_R = \{x \in \mathbf{P}(A) \mid |x| = 1\} = \{\{a\}, \{b\}, \{c\}\}$$

Chapter 2

Partizioni e Relazioni D'ordine

Definition 2.1: Antisimmetria

Una relazione è antisimmetrica se esistono x e y tali che $x \neq yex$ e xRy e yRx

Se una relazione è

- Riflessiva
- Antisimmetrica
- Transitiva

Allora è una relazione d'ordine

Esempio:

 $A = \{a, b, c\}$

 A^{+} insieme delle parole su A

se u è una parola $\in A$ con #u indico la **lunghezza** di suddetta parola.

Consideriamo $u\mathbf{R}v$ se $\#u \leq \#v$

abRabbc, abdRbba

• Riflessiva?

 $\forall u \in A^+ \# u \leq \# u$

Ogni parola ha una lunghezza minore o uguale a sè stessa. La relazione è simmetrica.

• Transitiva?

Se $u\mathbf{R}v$ e $v\mathbf{R}h$ allora $u\mathbf{R}h$? Si. è transitiva.

• Antisimmetrica?

 $\#u \leqslant \#v \in \#v \leqslant \#u$

Quindi #u = #v

Ma non è detto che u=s

Di conseguenza R non è antisimmetrica.

2.1 Diagramma di Hasse

Il **Diagramma di Hasse** si utilizza per rappresentare relazioni d'ordine in modo che siano comprensibili al lettore. Se R è una relazione d'ordine su A

- 1. Disegno gli elementi di A in modo che le relazioni vadano dal basso verso l'alto
- 2. Non rappresento la **riflessività**
- 3. Non rappresento le relazioni che si ricavano per transitività

Esempio:

 $A = \{a, b, c, d, e\}$

 $R = \{(x, x) \mid x \in A\} \cup \{(a, b), (b, c), (a, d), (a, c), (d, e), (a, e)\}$

Dopo aver verificato che sia una relazione d'ordine disegnamo il diagramma di Hasse:

Definition 2.2: copertura

ei diagrammi di Hasse un elemento b $\operatorname{\mathbf{copre}}$ a se $a\mathbf{R}b$ e non esiste c tale che $a\mathbf{R}c$ e $c\mathbf{R}b$. Nei diagrammi di Hasse si disegnano solo le coperture.

Terminologia

In una relazione d'ordine R su A

 $M \in A$ è il **massimo** se per ogni $x \in A$ si ha $x \mathbf{R} M$

 $m \in A$ è il **minimo** se per ogni $x \in A$ si ha $m\mathbf{R}x$

 $N \in A$ è il **massimale** se non esiste nessun $x \in A$ tale che $N\mathbf{R}x$

 $n \in A$ è il **minimale** se non esiste nessun $x \in A$ tale che $x\mathbf{R}n$

Esempio:

 $A = \{2, 3, 4, 5, 6, 10, 12\}$

Consideriamo R come relazione di divisibilità.

Elenchiamo le coperture:

• 2**R**4

• 2**R**10

• 4**R**12

• 6**R**12

• 2R6

• 3R6

• 5**R**10

Notare come non abbiamo scritto 2R12, essa non è infatti una relazione diretta essendoci anche 6R12, dunque

non la scrivo. (vedi **coperture**)

Disegnamo il diagramma di Hasse:

- Non esiste nè massimo ne minimo
- Gli elementi minimali sono 2,3,5
- $\bullet\,$ Gli elementi massimali sono 12 e 10

Esempio:

$$\begin{split} A &= \{a,b,c\} \\ P(A) &= \{\emptyset,\{a\},\{b\},\{c\},\{a,b\}\{b,c\},\{a,c\},\{a,b,c\}\} \end{split}$$

Chapter 3

Funzioni

3.1 Introduzione

Definition 3.1: funzione

Una funzione f tra A e B è una relazione $f \in A \times B$ tale che per ogni $a \in A$ esiste un unico elemento $b \in B$ tale che $(a,b) \in f$ (cioè ogni $a \in A$ è in relazione con un unico $b \in B$).

- \bullet L'insieme A è chiamato **dominio** di f.
- L'insieme B è chiamato **codominio** di f.
- b è chiamata **immagine** di a.

3.2 Notazione

Per indicare che f è una funzione da ${\bf A}$ a ${\bf B}$ si scrive

$$f:A\to B$$

oppure

$$f \subseteq A \times B$$

Se $(a,b) \in f$

$$f(a) = b$$

3.3 Primi esempi

$$A = \{a, b, c\}$$

$$B = \{1, 2\}$$

$$f = \{(a, 1), (b, 1), (c, 2)\}$$

Da ogni elemento di A parte una freccia

 $f = \{(a, 1), (b, 1), (c, 2)\}$ è una funzione.

 \bullet $\{(a,1),(a,2),(b,1),(c,2)\}$ non è una funzione perché l'elemento a A è in relazione con 2 elementi \in B

 \bullet $\{(a,2),(b,2)\}$ non è una funzione perché l'elemento c $\,$ A non è in relazione con neussun elemento \in B

3.4 Controimmagini

Se per ogni $x \in A$ f(x) o y è **l'immagine** di x

allora per ogni $y\in B\ f(x)^{-1}$ è la **controimmagine** di y

$$f(x)^{-1} = \{x \in A \mid f(x) = y\}$$

3.5 Funzione identica

La funzione $f:A\to A$ tale che f(a)=a per ogni $a\in A$ è chiamata funzione identica di A. Denotata anche con id_a

$$id_a = \{(a,a) \mid a \in A\}$$

3.6 Funzione costante

La funzione costante è una funzione in cui tutti gli elementi hanno la stessa immagine.

$$f_c:A\to B$$
 tale che $f_c(a)=n\ \forall a\in A$

3.7 Funzione iniettiva

Una funzione f è **iniettiva** se $\forall x, y \in A$ con $x \neq y$ si ha che $f(x) \neq f(y)$. Elementi diversi hanno immagini diverse.

• Questa funzione è iniettiva

• Questa funzione non è iniettiva poichè gli elementi $a, b \in A$ hanno la stessa immagine (2).

3.8 Funzione suriettiva

Una funzione $f:A\to B$ è suriettiva se **ogni** elemento di B (codominio) è immagine di almeno un elemento di A (dominio).

$$\forall y \in B, \exists x \in A, f(x) = y$$

 $\bullet\,$ Questa funzione è suriettiva

• Questa funzione non è suriettiva poichè l'elemento $3 \in B$ non è immagine di alcun elemento di A.

3.9 Funzione biettiva

Una funzione è **biettiva** o biunivoca se è sia *iniettiva* che *suriettiva*.

3.10 Condizioni di esistenza per funzioni iniettive, suriettive e biettive

Se A e B sono *insiemi finiti*, si ha che:

- \bullet se |A| > |B| non esistono funzioni **iniettive** da A a B
- \bullet se | A |<|B | non esistono funzioni suriettive da A a B
- \bullet se | $A \not= B$ | non esistono funzioni **biettive** da A a B

Due insiemi A e B si dicono **equipotenti** se esiste una funzione biettiva tra A e B.

3.11 Numero di funzioni esistenti

 $A = \{a, b, c\}$ $B = \{1, 2\}$

Abbiamo 8 possibili funzioni.

Non ci sono funzioni iniettive essendo |A| > |B| e le uniche funzioni **non suriettive** sono le funzioni costanti f(1), f(2) dove vengono lasciati scoperti rispettivamente l'elemento 2 e 1.

Claim 3.11.1

Se A e B sono insiemi finiti allora ci sono

 $\mid B \mid^{\mid A \mid}$

funzioni di $A \rightarrow B$

(dominio elevato al codominio).

 $A = \{a, b, c\}$

 $B = \{1, 2, 3\}$

In totale ci sono 3³ funzioni di A in B, di cui solo **6** sono **biettive**.

Claim 3.11.2

Ci sono n! funzioni biettive tra 2 insiemi di n elementi.

(Nell' esempio di prima possiamo verificare il ragionamento: 3 possibilità per a \times 2 possibilità per b \times 1 possibilità per c)

3.12 Funzioni biettive inverse

Se $f:A\to B$ è biettiva, allora per ogni $y\in B$

$$f(y)^{-1} = \{ x \in A \mid f(x) = y \}$$

 $f(y)^{-1}$ è sempre diversa da \emptyset (f è suriettiva) ed è sempre un **singleton** (f è iniettiva)

Esempio:

- $f(1)^{-1} = \{b\}$
- $f(2)^{-1} = \{a\}$
- $f(3)^{-1} = \{c\}$
- $f(4)^{-1} = \{d\}$

Leggendo le frecce al contrario ottengo una funzione di B in A.

Se la funzione non è biettiva non posso fare la funzione inversa.

Esempio:

$$A = \{a, b\}$$

$$B = \{1, 2\}$$

$$f(a) = 1$$

$$f(b) = 1$$

La rappresentazione di seguito non è una funzione, dato che f(2) non ha nessuna immagine.

 $f:n\in \mathbf{N}\to 2n\in 2\mathbf{N}$

f è biettiva

Calcoliamo la funzione inversa:

$$f^{-1}: 2\mathbf{N} \to N$$
$$f^{-1}(2n) = n$$

3.13 Funzioni composte

$$f: A \to B$$
$$g: b \to C$$

$$g \circ f : A \to C$$

Definition 3.2: Composizione

La composizione $g\circ f$ è una funzione tra A e C definita per ogni $x\in A$

$$(g \circ f)(x) = g(f(x))$$

$$g \circ f : A \to C$$

- $\bullet (g \circ f)(a) = g(f(a)) = g(1) = 4$
- $(g \circ f)(b) = g(f(b)) = g(2) = 5$
- $(g \circ f)(c) = g(f(c)) = g(1) = 4$

3.14 Composizione e inversione

Data una funzione biettiva $f:A\to B$ e la sua inversa $f^{-1}:B\to A$

$$(f^{-1}\circ f)(a)=f^{-1}(2)=a$$

• Se $a \in A$, $f^{-1}(f(a)) = a$. Quindi $f^{-1} \circ f = id_a$

 id_a è la funzione identica $x \in A \rightarrow x \in A$

Esempio:

$$f: u \in A^* \to \#u \in \mathbf{N}$$

- f(aac) = 3
- f(bc) = 2

$$g: n \in \mathbb{N} \to 2n \in 2\mathbb{N}$$

- g(2) = 4
- g(4) = 8

$$(g \circ f)(u) = g(f(u)) = g(1) = 2$$

 $(g \circ f)(u) = g(f(abbc)) = g(4) = 8$

Esempio:

$$A=B=C=\{a,b,c\}$$

Tre insiemi uguali

$$f \circ g : A \to A$$

- \bullet $a \rightarrow c$
- $b \rightarrow b$
- \bullet $c \rightarrow c$

$$g \circ f : A \to A$$

- \bullet $a \rightarrow b$
- $b \rightarrow b$
- \bullet $c \rightarrow c$

$$f \circ g \neq g \circ f$$

La composizione non è commutativa.