EEE222. In two decations to Physical Decision Australian
EE5333: Introduction to Physical Design Automation
Partitioning

Why partition?

- Exploding design complexity
 - Hard to do layout full-chip as a single entity
- Is logical boundary a good demarcation?
- Emulation
 - Limit on number of pins and available cells
- Divide and conquer

Paritioning problem

- Undirected graph G = (V, E)
- Generate k subgraphs of V, $\{V_1, V_2, \ldots, V_k\}$, such that $\bigcup_{i=1}^k V_i = V \text{ and } V_i \bigcap V_j = \emptyset, \forall i, j \in \{1, 2, \ldots, k\}$
- Minimize the number of *cuts* (why?)

Bipartition

Kernighan-Lin Algorithm - Terminology

- Undirected graph G = (V, E)
- Two partitions A, B : |A| = |B|
- Cut size is the sum of costs of edges between A and B
- $E_A(v)$ is the set of edges between v and its neighbours in A
- Cost of moving a vertex v from from A to B is $D(v) = |E_B(v)| |E_A(v)|$
- Gain on swapping $a \in A$ and $b \in B$ is g(a,b) = D(a) + D(b) 2c(a,b)
- Max. Gain is the maximum sum in a subsequnce of m swaps : $m \left(\leq \frac{|V|}{2} \right)$

		1		(b,h)	2
v	$E_A(v)$	$E_B(v)$	D(v)	(\mathbf{c}, \mathbf{e})	3
a	1	2	1	(c, f)	2
b	1	2	1	(c,g)	1
c	1	3	2	(c,h)	1
d	1	2	1	(d, e)	2
e	2	1	1	(\mathbf{d}, \mathbf{f})	3
f	3	1	2	(d,g)	0
g	2	1	1	(d, h)	0
h	2	1	1	,	

g(u,v)

(u, v) (a, e) (a, f) (a, g) (a, h) (b, e)

(b,g)

5/11	

v	$E_A(v)$	$E_B(v)$	D(v)	(\mathbf{c}, \mathbf{e})
a	1	2	1	(c,f)
b	1	2	1	(c,g)
c	1	3	2	(c,h)
d	1	2	1	(d,e)
e	2	1	1	(\mathbf{d}, \mathbf{f})
f	3	1	2	(d,g)
g	2	1	1	(d,h)
h	2	1	1	, , ,

(u, v)	g(u,v)
(a,e)	0
(a, f)	1
(a,g)	2
(a, h)	2
(b, e)	0
(b, f)	1
(b,g)	2
(b,h)	2
(\mathbf{c},\mathbf{e})	3
(c, f)	2
(c,g)	1

	α	``\.	70
v	$E_A(v)$	$E_B(v)$	D(v)
\overline{a}	2	1	-1
b	2	1	-1
c	_	_	_
d	0	3	3
e	_	_	_
f	3	1	2
$\frac{g}{h}$	1	2	-1
h	1	2	-1

$\overline{(u,v)}$	g(u,v)
(a,f)	-1
(a,g)	-2
(a, h)	-2
(b, f)	-1
(b,g)	-2
(b,h)	-2
(\mathbf{d},\mathbf{f})	5
(d,g)	0
(d,h)	0

	(a, f)	-1
	(a,g)	-2
	(a, h)	-2
	(b, f)	-1
_	(b,g)	-2
_	(b,h)	-2
	(\mathbf{d}, \mathbf{f})	5
	(d,g)	0
	(d, h)	0

g(u,v)

(u,v)

-1

$d \stackrel{\longleftarrow}{\longleftarrow} h$					
\overline{v}	$E_A(v)$	$E_B(v)$	D(v)		
\overline{a}	3	0	-3		
b	3	0	-3		
d	_	_	_		
	_	_	_		
e	_	_	_		
f	_	_	_		
g	0	3	-3		
h	0	3	-3		

(u,v)	g(u,v)
(\mathbf{a}, \mathbf{g})	-6
(a,h)	-6
(b,g)	-6
(b,h)	-6

3

	(u, v)	g(u,v)
	(\mathbf{a}, \mathbf{g})	-6
_	(a, h)	-6
_	(b,g)	-6
	(b,h)	-6
		•

D(v)

$d \longrightarrow h$					
v	$E_A(v)$	$E_B(v)$	D(v)		
a	_	_	_		
b	2	1	-1		
d	_	_	_		
d	-	_	_		
e	_	_	_		
f	_	_	_		
g	_	_	_		
h	1	2	-1		

(u, v)	g(u,v)
(b, h)	-2

(u, v)	g(u,v)
(b,h)	-2

- 0	$L_A(v)$	B(v)	D(0)
а	_	_	_
b	2	1	-1
C	_	_	_
d	_	_	_
e	_	_	_
f	_	_	_
g	_	_	_
$_{h}^{g}$	1	2	-1

	/ \
$v \mid E_A(v) \mid E_B(v) \mid D$	(v)
a	_
b	_
c	_
	_
e	_
f	_
	_
$h \mid - \mid - \mid$	_

Kernighan-Lin extensions

- Handling unequal partition sizes : Initialize with the required number of vertices and restrict number of moves in an iteration to $\min(|A|, |B|)$
- *k*-way partitioning : Iteratively apply KL to every pair of bipartitions until no improvement in an iteration

Logical operations as linear constraints

- F is a boolean function in product-of-sums form. e.g. $F = (x_1 + \overline{x_2} + x_3) \cdot (\overline{x_1} + x_2 + \overline{x_3})$
- An equivalent ILP constraint:

$$x_1 + (1 - x_2) + x_3 \ge 1$$
$$(1 - x_1) + x_2 + (1 - x_3) \ge 1$$

- Logical implication : $a \to b = \overline{a} + b$
- Logical equivalence or bi-implication $a \leftrightarrow b = a \rightarrow b \land b \rightarrow a = (\overline{a} + b) \cdot (a + \overline{b})$
- $\bullet\,$ To translate any logical function to a POS form we use the logical equivalence operation

Logical operations as linear constraints

AND operation

$$F = (y \leftrightarrow a \land b) = (\overline{y} + ab) \cdot (y + \overline{ab})$$
$$= (\overline{y} + a) \cdot (\overline{y} + b) \cdot (y + \overline{a} + \overline{b})$$

OR operation

$$F = (y \leftrightarrow a \lor b) = (\overline{y} + a + b) \cdot (y + \overline{a + b})$$
$$= (\overline{y} + a + b) \cdot (y + \overline{a}) \cdot (y + \overline{b})$$

XOR operation

$$F = (y \leftrightarrow a \oplus b) = (\overline{y} + a \oplus b) \cdot (y + \overline{a \oplus b})$$
$$= (\overline{y} + (a + b) \cdot (\overline{a} + \overline{b})) \cdot (y + (a + \overline{b}) \cdot (\overline{a} + b))$$

 $= (\overline{y} + a + b) \cdot (\overline{y} + \overline{a} + \overline{b}) \cdot (y + a + \overline{b}) \cdot (y + \overline{a} + b)$

$$y + (1 - a) \ge 1$$
$$y + (1 - b) \ge 1$$

(1-y) + a > 1

(1-y) + b > 1

y + (1 - a) + (1 - b) > 1

(1-y) + a + b > 1

$$(1-y) + a + b \ge 1$$
$$(1-y) + (1-a) + (1-b) \ge 1$$
$$y + a + (1-b) > 1$$

u + 1 - a + b > 1

12/15

Bipartitioning using ILP

- Undirected graph G = (V, E)
- Partition V into V_1 and V_2 such that $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$, and $|V_1| = |V_2| = \frac{|V|}{2}$
- x_v is the indicator variable for v being in V_1
- $x_{u,v}$ is the indicator variable for $(u,v) \in E$ being cut

$$x_{u,v} = x_u \oplus x_v$$

$$\underset{x_{u,v}}{\text{minimize}} \quad \sum_{(u,v) \in E} x_{u,v}$$

$$\text{subject to} \quad \sum_{v \in V} x_v = \frac{|V|}{2}$$

$$x_u - x_v \le x_{u,v}, \quad \forall (u,v) \in E$$

$$x_v - x_u \le x_{u,v}, \quad \forall (u,v) \in E$$

$$x_u + x_v \ge x_{u,v}, \quad \forall (u,v) \in E$$

$$x_u + x_v + x_{u,v} \le 2, \quad \forall (u,v) \in E$$

$$x_v \in \{0,1\}, \quad \forall v \in V$$

$$x_{u,v} \in \{0,1\}, \quad \forall (u,v) \in E$$

k-way partitioning using ILP

- Undirected graph G = (V, E)
- Partition V into $V_1, V_2 \dots V_k$ such that $\bigcup_{i=1}^k V_i = V, V_i \cap V_j = \emptyset \ \forall i \neq j$, and $|V_i| = \frac{|V|}{k}$
- $x_{v,i}$ is the indicator variable for v being in V_i
- $x_{u,i,v,j}$ is the indicator variable for $(u,v) \in E$ being cut if u belongs to V_i and v belongs to V_j

$$x_{u,i},v,j = x_{u,i} \oplus x_{v,j}$$

$$\underset{x_{u,i}}{\text{minimize}} \sum_{\substack{k \ j=1 \ j\neq i}} \sum_{j=1}^k x_{u,i} \oplus x_{v,j}$$

$$\sum_{i=1}^k x_{v,i} = 1, \qquad \forall v \in V$$

$$\sum_{i=1}^k x_{v,i} = \frac{|V|}{k}, \qquad \forall i \in \{1,2,\dots k\}$$

$$x_{u,i} - x_{v,j} \leq x_{u,i,v,j}, \quad \forall (u,v) \in E, \forall i \neq j$$

$$x_{v,j} - x_{u,i} \leq x_{u,i,v,j}, \quad \forall (u,v) \in E, \forall i \neq j$$

$$x_{u,i} + x_{v,j} \geq x_{u,i,v,j}, \quad \forall (u,v) \in E, \forall i \neq j$$

$$x_{u,i} + x_{v,j} + x_{u,i,v,j} \leq 2, \qquad \forall (u,v) \in E, \forall i \neq j$$

$$x_{u,i}, x_{u,i}, x_{i,v,j} \in \{0,1\}$$

Fiduccia-Mattheyses Algorithm

- Hypergraph H = (V, E); c(v) is the cost of vertex $v \in V$
- A hyperedge (net) is *cut* if connected vertices occupy more than one partition; *uncut* otherwise
- Gain of vertex $v\left(g(v)\right)$ is the change in cutset size if a vertex moves from one partition to another
 - FS(v) is the number of cut edges connected only to v
 - TE(v) is the number of uncut edges connected to v

- Max. positive gain
- Balance criterion : ratio $r = \frac{\sum\limits_{v \in A} c(v)}{\sum\limits_{v \in V} c(v)} = \frac{c(A)}{c(V)}$
 - Tolerance : $c_{max}(V) = \max(\{c(v) : v \in V\})$
 - $r \cdot c(V) c_{max}(V) \le c(A) \le r \cdot c(V) + c_{max}(V)$
- ullet A hyperedge e is *critical* if it is connected to a cell v whose move will affect its cut status
 - All vertices connected to *e* are in same partition
 - $\bullet\;$ Exactly one vertex connected to e is in a different partition