What Is Claimed Is:

- 1 1. A method for integrating at least one
- 2 remote of a microcellular communication system with
- 3 at least one face of a code division multiple access
- 4 (CDMA) communication system, said CDMA system being
- 5 capable of signal advancing, said method comprising
- 6 the steps of:
- 7 measuring fiber length and remote power
- 8 output;
- 9 interconnecting hardware between said at
- 10 least one remote and said at least one face;
- 11 performing calculations using data obtained
- 12 from said step of measuring to determine how much to
- 13 advance said CDMA signal;
- 14 translating said calculations to a database
- 15 for advancing a signal allowing said at least one
- 16 remote to communicate with said at least one face;
- 17 and
- setting output levels of said CDMA system ,
- 19 said output levels determined based upon said
- 20 measurement data and said calculations.
 - 1 2. The method of claim 1 further
 - 2 comprising the step of testing said method for proper
 - 3 operation.

- 3. The method of claim 2 wherein said step of testing further comprises testing said system at said at least one face and at said at least one remote.
- 1 4. The method of claim 1 wherein said 2 microcellular communication system further comprises 3 a stand alone microcellular communication system.
- 5. The method of claim 4 wherein said step of interconnecting hardware further comprises the steps of:
- installing a combiner for each face to be integrated;
- connecting a meter to said CDMA system for taking output power readings;
- 8 connecting a transmit cable to each of said 9 combiners;
- 10 connecting a receive cable to each of said 11 combiners; and
- 12 terminating said receive cable.
- 1 6. The method of claim 1 wherein said
- 2 microcellular communication system further comprises
- 3 a simulcast microcellular communication system.

18

least one face.

1	7. The method of claim 6 wherein said
2	step of interconnecting hardware further comprises
3	the steps of:
4	connecting a transmit cable to said at
5	least one face;
6	connecting a combiner to said transmit
7	cable;
8	connecting said transmit cable to ar
9	interface module for said remote;
10	connecting a receive cable to said
11	interface module for said remote;
12	connecting a combiner to said receive
13	cable;
14	connecting an attenuator to said combiner;
15	connecting said attenuator to said receive
16	cable; and
17	connecting said receive cable to said a

said

translating.

11

12

- The method of claim 1 wherein said 8. 1 step of measuring further comprises the steps of: 2 verifying said at least one remote is in 3 normal condition; 4 isolating said at least one face; 5 measuring said fiber length of said at 6 least one remote; 7 measuring said power output of said at 8 least one remote; and 9 recording additional data necessary 10
- 9. The method of claim 8 wherein said step of measuring further comprises the steps of recording said CDMA output power level.

steps of performing calculations

and

1	10. The method of claim 1 wherein said
2	step of performing calculations further comprises the
3	steps of:
4	calculating propagation delay for a
5	transmit antenna for said at least one remote;
6	calculating propagation delay of a receive
7	antenna for said at least one remote;
8	selecting and recording a lowest value of
9	said propagation delay calculations for both said
10	transmit and said receive antennas;
11	calculating a maximum differential
12	delay of all delay calculations completed for said at
13	least one remote;
14	calculating a sector size;
15	determining a cell search window size;
16	calculating actual input analog composite
17	power;
18	determining total gain for said at least
19	one remote;
20	determining actual gain for said at least
21	one remote;
22	calculating CDMA input power for said at
23	least one remote; and
24	checking power calculations.

- The method of claim 10 wherein for a 1 simulcast CDMA said step of selecting and recording a 2 lowest value of said propagation delay calculations 3 for both said transmit and said receive antennas 4 further comprises selecting a fixed value for said 5 propagation delay for each of said transmit and said 6 receive antennas, said fixed value based on 7 equipment specification. 8
- 1 12. The method of claim 1 wherein said 2 step of translating further comprises the step of 3 updating a database for said at least one remote and 4 said at least one face to be integrated by loading 5 said database with values derived in said steps of 6 calculating and translating to compensate for time 7 delay by advancing said CDMA signal.
- 1 13. The method of claim 1 wherein said
 2 step of setting output levels further comprises the
 3 steps of:
 4 ensuring output levels are properly set by
 5 using values derived in said steps of measuring and
 6 performing calculations; and
- 7 restoring said at least one face to normal 8 service.