第3章 多维随机变量及其分布

- ■二维随机变量及其联合分布
- ■边缘分布与独立性

1

前面我们讨论的是随机实验中单独的一个随机变量,又称为一维随机变量;然而在许多实际问题中,常常需要同时研究一个试验中的两个甚至更多个随机变量。

例如 抽样调查15-18岁青少年的身高 X与体重 Y, 以研究当前该年龄段青少年的身体发育情况。

此时我们需要研究的不仅仅是X及Y各自的性质, 更需要了解这两个随机变量的相互依赖和制约关系。 因此, 我们将二者作为一个整体来进行研究,记为 (X, Y),称为二维随机变(向)量。

二维随机变量(X, Y)的取值可看作平面上的点

3

第1节

二维随机变量的 联合分布

二维随机变量的联合分布函数

■ 定义 若(X, Y) 是二维随机变量, 对于任意的实数x, y.

$$F(x, y) = P\{X \le x, Y \le y\}$$

称为二维随机变量的联合分布函数

5

联合分布函数表示矩形域概率

 $P (x_1 < X \le x_2, y_1 < Y \le y_2)$

$$P (x_1 < X \le x_2, y_1 < Y \le y_2)$$
= $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$

联合分布函数的性质

- 1. F(x,y)分别关于x和y单调不减;
- 2. F(x,y)关于x右连续,关于y右连续;
- 3. F(x,y) 的值域为[0,1], 并且

$$F(-\infty, y) = 0$$

$$F(x,-\infty)=0$$

$$F(+\infty, +\infty) = 1$$

7

第2节

二维离散型随机变量

二维离散型随机变量

■ 定义

若二维随机变量(X,Y)的所有可能取值 只有限个或可列个,则称(X,Y)为二维离散型随 机变量。

如何表达(X, Y)的取值规律呢?

9

(X, Y) 的联合概率分布(分布律)

■ 公式法

$$P{X = x_i, Y = y_j} = p_{ij}$$
 $(i = 1, 2, \dots; j = 1, 2, \dots)$

■ 表格法(常见形式)

XY	y_1	y_2		y_j	 13
x_1	p_{11}	p_{12}		p_{1j}	 (
x_2	p_{21}	p_{22}		p_{2j}	 _
• • •		• • •			 2
X_i	p_{i1}	p_{i2}		p_{ij}	 1
			• • •		

性质

$$0 \le p_{ij} \le 1$$

$$\sum_{i} \sum_{j} p_{ij} = 1$$

- **[79]** 一个口袋中有三个球,依次标有数字1,2,2,从中任取一个,不放回袋中,再任取一个。设每次取球时,各球被取到的可能性相等.以X、Y分别记第一次和第二次取到的球上标有的数字,求(X,Y) 的联合分布律.
- (X,Y) 的可能取值为(1, 2), (2, 1), (2, 2).

$$P\{X = 1, Y = 2\} = (1/3) \times (2/2) = 1/3$$

$$P\{X = 2, Y = 1\} = (2/3) \times (1/2) = 1/3$$

$$P\{X = 2, Y = 2\} = (2/3) \times (1/2) = 1/3$$

X	1	2
1	0	1/3
2	1/3	1/3

11

离散型随机变量分布函数的计算

$$F(x, y) = P\{X \le x, Y \le y\} = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}$$

作业

P91 习题3 4

13

第3节

二维连续型随机变量

二维连续型随机变量的联合概率密度

■ 定义 设二维随机变量(X, Y)的分布函数 F(X, Y),若存在非负函数 f(x, y),使 对任意实数x, y, 都有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

则称(X,Y)是二维连续型随机变量,f(x,y)称为二维随机变量(X,Y)的联合概率密度函数.

15

联合概率密度函数的性质

- 非负性 $f(x,y) \ge 0$
- 若F(x,y)存在二阶连续偏导数,则

$$\frac{\partial^2 F(x, y)}{\partial x \partial y} = f(x, y)$$

■ 设D为平面区域

$$P\{(x, y) \in D\} = \iint_D f(x, y) d\sigma$$

9 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} ke^{-(2x+3y)} & x > 0, y > 0 \\ 0 & \text{#}\dot{\Xi} \end{cases}$$

- (1) 确定常数 k;
- (2) 求 (X,Y) 的分布函数;
- (4) 求 $P\{X < Y\}$

17

19

(2)
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

当 $x \le 0$, 或 $y \le 0$ 时, $F(x,y) = 0$
当 $x > 0$, 且 $y > 0$ 时,

$$F(x,y) = \int_{0}^{x} \int_{0}^{y} 6e^{-(2u+3v)} du dv = (1-e^{-2x})(1-e^{-3y})$$
所以, $F(x,y) = \begin{cases} (1-e^{-2x})(1-e^{-3y}), & (x>0,y>0) \\ 0 & 其他 \end{cases}$

(3) $P{0 < X \le 4, \ 0 < Y \le 1}$ $= \int_{0}^{1} \int_{0}^{4} 6e^{-(2x+3y)} dx dy$ $= (1-e^{-8})(1-e^{-3}) \approx 0.95$ 解法2 $P{0 < X \le 4, \ 0 < Y \le 1}$ = F(4,1) + F(0,0) - F(4,0) - F(0,1) $= F(4,1) = (1-e^{-8})(1-e^{-3}) \approx 0.95$

(4)
$$P\{X < Y\} = \iint_{D} f(x, y) dx dy \qquad x > 0, y > 0$$

$$= \iint_{x < y} f(x, y) dx dy$$

$$= \int_{0}^{+\infty} \left[\int_{0}^{y} 6e^{-(2x+3y)} dx \right] dy \qquad 0 \qquad x$$

$$= \int_{0}^{+\infty} 3e^{-3y} [1 - e^{-2y}] dy$$

$$= \int_{0}^{+\infty} 3e^{-3y} dy - \int_{0}^{+\infty} 3e^{-5y} dy = 1 - \frac{3}{5} = \frac{2}{5}$$

作业

P91 习题3 7,8

第4节

常见多维随机变量

23

1. 多项分布

在独立重复试验中,设每次实验必有 A_1, A_2, \dots, A_r 之一发生,且事件 A_i 在每次实验中发生的概率为 p_i ,记 X_i 为 A_i 出现的次数,则 X_1, X_2, \dots, X_r 的分布律为

$$P\{X_1 = n_1, X_2 = n_2, \dots, X_r = n_r\}$$

$$= \frac{n!}{n_1! n_2! \dots n_r!} p_1^{n_1} p_2^{n_2} \dots p_r^{n_r}$$

其中 $p_1 + p_2 + \cdots + p_r = 1$, $n_1 + n_2 + \cdots + n_r = n$ 这种联合分布律称为多项分布,记为

$$M(n, p_1, p_2, \dots, p_r)$$

2. 二维均匀分布

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{S(D)}, & (x,y) \in D \\ 0, & \text{其它} \end{cases}$$

则称 (X,Y)在D上服从均匀分布,记为 $(X,Y) \sim U(D)$

25

3. 二维正态分布 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot e^{\frac{-1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

$$(-\infty < x < +\infty, -\infty < y < +\infty)$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 均为参数 $\sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1$ 则称(X,Y) 服从参数为 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

第5节

边缘分布

27

边缘分布 marginal distribution

二维随机变量 (X,Y),是两个随机变量视为一个整体,来讨论其取值规律的,我们可用分布函数来描述其取值规律。

$$F(x, y) = P\{X \le x, Y \le y\}$$

问题:能否由二维随机变量的分布来确定两个一维随机变量的取值规律呢?如何确定呢?

——边缘分布问题

边缘分布 marginal distribution

设二维随机变量 (X,Y) 的分布函数为 F(x,y),

$$F_X(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\} = F(x, +\infty)$$

$$F_Y(y) = P\{Y \le y\} = P\{X < +\infty, Y \le y\} = F(+\infty, y)$$

依次称为二维随机变量 (X,Y)关于 X和关于 Y的边缘分布函数.

$$F_X(x) = F(x, +\infty)$$
 $F_Y(y) = F(+\infty, y)$

$$F_{v}(y) = F(+\infty, y)$$

二维离散型随机变量的边缘分布

如果二维离散型随机变量(X,Y)的联合分布律为

$$P{X = x_i, Y = y_j} = p_{ij}$$
 $i, j = 1, 2, 3, \dots$

即

X	y ₁	y ₂	y ₃	
x_1	p ₁₁	p ₁₂	p ₁₃	
x ₂	p ₂₁	p ₂₂	p ₂₃	
X ₃	p ₃₁	p ₃₂	p ₃₃	

=	维	离	散	型	随	机	变	₽	的	边	缘	分布	•
---	---	---	---	---	---	---	---	----------	---	---	---	----	---

X	y ₁	y ₂	y ₃	 P _i .
X ₁	p ₁₁	p ₁₂	p ₁₃	 P ₁ .
\mathbf{x}_2	p ₂₁	p ₂₂	p ₂₃	 P ₂ .
X ₃	p ₃₁	p ₃₂	p ₃₃	 P ₃ .
		•••		
p. _i	p. ₁	p. ₂	p. ₃	

关于
$$\mathbf{X}$$
的边缘分布律 $p_{i\bullet} = P\{X = x_i\} = \sum_j p_{ij}$ 关于 \mathbf{Y} 的边缘分布律 $p_{\bullet j} = P\{Y = y_j\} = \sum_i p_{ij}$ 31

二维离散型随机变量的边缘分布

关于X的边缘分布列

X	X ₁	X ₂	X ₃	
概率	P ₁ .	P ₂ .	P ₃ .	

$$p_{i\bullet} = P\{X = x_i\} = \sum_{j} p_{ij}$$

关于Y的边缘分布列

Y	y ₁	y ₂	y ₃	
概率	P. ₁	P. ₂	P. ₃	• • •

$$p_{\bullet j} = P\{Y = y_j\} = \sum_i p_{ij}$$

例1 设二维离散型随机变量(X,Y)的联合分布律为

X	0	1	1/3
-1	0	1/3	1/12
0	1/6	0	0
2	5/12	0	0

求关于X、Y的边缘分布

33

解(X,Y)的联合分布列

XY	0	1	1/3	$P_{i\bullet}$
-1	0	1/3	1/12	5/12
0	1/6	0	0	1/6
2	5/12	0	0	5/12
$P_{\bullet j}$	7/12	1/3	1/12	

关于X的边缘分布为 关于Y的边缘分布

Χ	-1	0	2
P _i .	5/12	1/6	5/12

Y	0	1	1/3
P. _j	7/12	1/3	1/12

二维连续型随机变量的边缘分布

关于 X的边缘分布函数为

$$F_X(x) = F(x, +\infty) = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(x, y) dy \right] dx$$

■ 关于**X**的边缘分布密度为 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$ 关于 *Y*的边缘分布函数为

$$F_Y(y) = F(+\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, y) dx \right] dy$$

■ 关于Y的边缘分布密度为 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

35

192 设(X,Y)的联合分布密度为

$$f(x,y) = \begin{cases} k & x^2 + y^2 \le 1 \\ 0 & 其它 \end{cases}$$

- (1) 求k值
- (2) 求关于X和Y的边缘密度
- (3) 求概率P(X+Y<-1) 和 P(X>1/2)

解 (1) 由
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

得
$$\iint_{x^2+y^2 \le 1} k dx dy = k\pi = 1$$
 均匀分布

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

当 $x \in [-1,1]$ 时

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy$$
$$= \frac{2}{\pi} \sqrt{1-x^2}$$

37

当 *x* ∉ [-1, 1] 时

$$f_{X}(x) = 0$$

所以,关于**X**的边缘 分布密度函数为

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

当 y ∈ [-1,1] 时

 $f_{v}(y) = 0$

所以,关于**Y**的边缘 分布密度函数为

$$f_{Y}(y) = \begin{cases} \frac{2}{\pi} \sqrt{1 - y^{2}} & y \in [-1, 1] \\ 0 & \text{ } \sharp \ \vdots \end{cases}$$

(3)
$$P(X+Y<-1) = \iint_{D} f(x,y) dx dy$$

$$= \iint_{D_{1}} \frac{1}{\pi} dx dy = \int_{-1}^{0} dx \int_{-\sqrt{1-x^{2}}}^{-1-x} \frac{1}{\pi} dy$$

$$= \frac{1}{\pi} (\frac{\pi}{4} - \frac{1}{2})$$

$$P(X > \frac{1}{2}) = \iint_{D} f(x,y) dx dy$$

$$= \iint_{D_{2}} \frac{1}{\pi} dx dy = \int_{\frac{1}{2}}^{1} dx \int_{-\sqrt{1-x^{2}}}^{+\sqrt{1-x^{2}}} \frac{1}{\pi} dy$$

$$= \frac{1}{\pi} (\frac{\pi}{3} - \frac{\sqrt{3}}{4})$$

如果二维随机变量(X,Y)服从正态分布

$$N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$

则两个边缘分布分别服从正态分布

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$

与相关系数 / 无关

可见,联合分布可以确定边缘分布,但边缘分布 不能确定联合分布

41

例3 设(X,Y)的联合分布密度函数为

$$f(x, y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} (1 + \sin x \sin y), \quad -\infty < x, y < +\infty$$

求关于X,Y的边缘分布密度函数

解关于X的分布密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$= \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} (1 + \sin x \sin y) dy$$

$$= \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dy + \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} \sin x \sin y dy$$
₄₂

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

$$+ \frac{1}{2\pi} e^{-\frac{x^2}{2}} \sin x \cdot \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} \sin y dy$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad \text{fig. } X \sim N(0,1)$$

同理可得 $Y \sim N(0,1)$

不同的联合分布, 可有相同的边缘分 布。

可见,边缘分布不能确定联合分布。

43

作业

P91 习题3 12

第7节

随机变量的独立性

45

随机变量的相互独立性

- 定义 设(X, Y) 的联合分布函数为F(x, y), 两个边缘分布函数分别为 $F_X(x)$, $F_Y(y)$, 如果对于任意的x, y都有 $F(x,y)=F_X(x)$, $F_Y(y)$, 则称随机变量X, Y相互独立。
- 特别,对于离散型和连续型的随机变量,该定义 分别等价于

★
$$p_{ij} = p_{i \bullet} \times p_{\bullet j}$$
 对任意 i,j

*
$$f(x, y) = f_X(x) \cdot f_Y(y)$$
 在 $f(x,y)$ 连续处

■ 实际意义

在实际问题或应用中,当X的取值与Y的取值 互不影响时,我们就认为X与Y是相互独立的,进 而把上述定义式当公式运用.

■ 补充说明

→ 在X与Y是相互独立的前提下,

♥边缘分布可确定联合分布!

$$F(x, y) = F_X(x) \cdot F_Y(y)$$

47

1 设(X, Y)的概率分布(律)为

XY	-1	0	2	$P_{i\bullet}$
1/2	2/20	1/20	2/20	1/4
1	2/20	1/20	2/20	1/4
2	4/20	2/20	4/20	2/4
$P_{\bullet j}$	2/5	1/5	2/5	

证明: X、Y相互独立。

逐个验证等式

$$p_{ij} = p_{i\bullet} \times p_{\bullet j}$$

设(X,Y)的概率密度为 例2

$$\varphi(x,y) = \begin{cases} 6e^{-(2x+3y)} & x \ge 0 \\ 0 & \text{ 其他} \end{cases}$$

求 (1) $P\{0 \le X \le 1, 0 \le Y \le 1\}$

- (2) (X, Y) 的边缘密度,
- (3) 判断X、Y是否独立。

解 ① 设A={ $(x, y) : 0 \le x \le 1, 0 \le y \le 1$ }

$$P\{0 \le x \le 1, 0 \le y \le 1\} = \iint_{(x,y)\in A} \varphi(x,y) dx dy$$
$$= \int_0^1 dx \int_0^1 6e^{-2x-3y} dy = (1 - e^{-2})(1 - e^{-3})$$

$$= \int_0^1 dx \int_0^1 6e^{-2x-3y} dy = (1 - e^{-2})(1 - e^{-3})$$

② 边缘密度函数分别为

$$\varphi_X(x) = \int_{-\infty}^{+\infty} \varphi(x, y) dy$$

当
$$x \ge 0$$
 时 $\varphi_X(x) = \int_0^{+\infty} 6e^{-2x-3y} dy = 2e^{-2x}$

当
$$x < 0$$
 时 $\varphi_X(x) = 0$

所以,
$$\varphi_X(x) = \begin{cases} 2e^{-2x}, & (x \ge 0) \\ 0, & (x < 0) \end{cases}$$

同理可得
$$\varphi_{Y}(y) = \begin{cases} 3e^{-3y}, & (y \ge 0) \\ 0, & (y < 0) \end{cases}$$

$$\varphi_X(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \\ 0, & x < 0 \end{cases}, \quad \varphi_Y(y) = \begin{cases} 3e^{-3y}, & y \ge 0 \\ 0, & y < 0 \end{cases}$$

$$\varphi_X(x) \cdot \varphi_Y(y) = \begin{cases} 6e^{-(2x+3y)}, & (x \ge 0, y \ge 0) \\ 0, & \text{ } \sharp \text{ } \boxminus \end{cases}$$

$$= \varphi(x, y)$$

所以 X 与 Y 相互独立。

51

例3 已知二维随机变量(X,Y)服从区域D上的均匀分布,D为x轴,y轴及直线y=2x+1所围成的三角形区域。判断X,Y是否独立。

解 (X,Y)的密度函数为

$$f(x,y) = \begin{cases} 4, & (-\frac{1}{2} < x < 0, 0 < y < 2x + 1) \\ 0, & \text{其他} \end{cases}$$

关于**X**的边缘分布密度为 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$

当
$$x \le -\frac{1}{2}$$
 或 $x \ge 0$ 时 $f_X(x) = 0$

$$f_X(x) = \int_0^{2x+1} 4dy = 4(2x+1)$$

所以,关于X的边缘分布密度为

-1/2/

53

关于**Y**的边缘分布密度为 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

当
$$y \le 0$$
 或 $y \ge 1$ 时 $f_Y(y) = 0$

当 0 < y < 1 时,

$$f_Y(y) = \int_{\frac{y-1}{2}}^0 4dx = 2(1-y)$$

所以,关于Y的边缘分布密度为

$$f_{Y}(y) = \begin{cases} 2(1-y), & (0 < y < 1) \\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$f_{X}(x) \cdot f_{Y}(y) = \begin{cases} 8(2x+1)(1-y), (-\frac{1}{2} < x < 0, 0 < y < 1) \\ 0, & \text{ #$\dot{\mathbb{C}}$} \end{cases}$$

$$\neq f(x, y)$$

所以,X与Y不独立。

55

作业

本章作业

4, 5, 7, 8, 12, 19, 20

下节课交作业,请同学们做好作业,下次课不要忘了带过来