Cumulants de la loi géométrique

Conjecture. (Cumulants d'une loi géométrique)

Pour une variable aléatoire $X \hookrightarrow \mathcal{G}(p)$ à support dans \mathbb{N}^* , $p \in [0,1]$, q = 1-p, le *n*-ième cumulant de X est :

$$\kappa_n = \frac{P_n(q)}{p^n}$$

où les P_n sont des polynômes de $\mathbb{Z}[X]$ de degré n-1, multiples de X dès que $n \geq 2$.

Remarque. Puisque les moments sont des polynômes en les cumulants, on obtient un résultat similaire sur les moments.

Pour s'en convaincre, on dérive n fois la fonction génératrice des cumulants : $K_X(t) = \ln(\mathbb{E}e^{tX})$ qui est $K_X: t \longrightarrow \ln(p) + t - \ln(1 - qe^t)$ dans le cas de la géométrique. On a pour commencer $K_X'(t) = 1 + \frac{qe^t}{1-qe^t}$ et l'on se rend compte que la dérivée n-ième de K_X s'exprime en fonction d'une combinaison \mathbb{Z} -linéaire des dérivées d'ordre inférieur de K_X plus un terme de la forme $Cqe^{-ct}(e^{-t}-q)^{-n}$, qui, évalués en 0, donnent une fraction rationnelle en q, p, donc en q, de dénominateur p^n (ce qu'on obtient, en outre, naturellement en ramenant au même dénominateur).

On peut calculer les premiers P_n :

$$P_{1} = 1$$

$$P_{2} = X$$

$$P_{3} = X(X+1)$$

$$P_{4} = X(X^{2} + 4X + 1)$$

$$P_{5} = X(X^{3} + 11X^{2} + 11X + 1).$$

On observe par ailleurs que le moment d'ordre n s'exprime pour ces cinq premiers cumulants en $\frac{Q_n(q)}{p^n}$ où $Q_n = \frac{P_n}{q}$, ce qui laisse à penser :

$$m_n = \frac{1}{q} \frac{P_n(q)}{p^n}$$

dès que $n \ge 2$. Ceci se vérifierait grâce aux polynômes de Bell si l'on disposait d'une expression récurrente ou fermée des P_n .