	Metric reconstruction via optimal transport
7	Joint with Michael Adamaszek and Florian Frick
	X metric space, r > 0
Def	The Vietoris-Rips simplicial complex VR(X;r) has
	• vertex set X • Finite simplex $\sigma \subseteq X$ when $diam(\sigma) \subseteq r$
1 ((Clique or flag simplicial complex) (< subscript)
History	Leopold Vietoris (co) homology theory for metric spaces
	· recovers Coch cohomology if X compact · Vietors homology = counterent to Alexander-Sourcer
	Ilya Rips · Geometric group Neary Leans
	Ilya Rips · Geometric group theory · VR(δ-hyperbolic group; r) = * for r≥ 45
Thm	(Hausmann 195) M compact Riemannian manifold.
	Then 7 ro>0 s.t. VR(M;r)~M Frero.
Sketch	VRe(Mix)
	VRe(M;r) Not canonical May VRe(M;r) not continuous
Thm	(Latycher OI) M, ro as above.
	Vr <ro ∃δ="">0 s.t. if dGH(X; M)<δ, then VR(X;r)~M.</ro>
	X
Ex	Cyclo-octane molecule (8H16)
	Martin, Thompson, Contsias, Watson 10

	Metric reconstruction
	$\bigcirc \qquad \bigcirc \qquad \bigvee R(X:c) \stackrel{?}{\simeq} M$
me	tric space M X SM Metrizable (locally finite
7	
Det	X metric space, r>D. The Vietoris-Rips thickening
	VRm(X;r) is VR(X;r) as a set, egropped w/
	the 1-Wassersten metric.
Explicitly	$VR^{m}(X;r) = \begin{cases} \frac{1}{2} a_{i} \times i \end{cases} \times i \in X diam[x_{0}, -, x_{n}] = r \end{cases}$ $\begin{cases} \sum_{i=0}^{k} a_{i} \times i \end{cases} a_{i} \geq 0 \sum_{i=0}^{k} a_{i} = 1 \end{cases}$
	Think of x; as Dirac S-measures
	$d(\sum_{i=0}^{\infty} a_i x_i) = \inf_{\{p_{i,j} \ge 0\}} \sum_{c_{i,j}} p_{i,j} d(x_{c_i} x_j)$
	ξρώς =ai
	$\sum_{i} p_{i,j} = \alpha_{i,j}$
	Eig Prij=1
	2/3 V
	13 3 16 a
	10 1/2
	A matching or transport plan is a joint pdf w/ given marginals
	The former and of conspers plant by control of control
Poo	VRM(X:r) is an r-thickening of X
	$VR^{m}(X;r)$ is an r -thickening of X Extends metric, and $d(X, VR^{m}(X;r)) \leq r$
	and alay vicinity
	Grande children as cosa V lavala
	Gromov studied in case X discrete

Thm	M complete Riemannian manifold, ro > 0 satisfies
	· balls radius to gealesically convex
	To < T K-1/2 (K sectional curvatures)
Sketch	Then $VR^{m}(M;r) \simeq M$ for $r < r_{o}$ $VR^{m}(M;r) \qquad \overline{Z}_{a} : x_{i}$
	VRM(N;r) Zaixi J Karcher or Frechet mean Karcher mean
	M Freshet mean 3
	Linear homotopies (dual space of continuous functions)
	Liveur nomeropies (and space or continuous functions)
Rmk	$VR^m(S';\frac{1}{3}) \simeq S^3$
Th	1/0m(cn) ~ 55n
Inm	$VR^{m}(S^{n};r) \simeq SS^{n}$ $\sum_{A_{n+2}}^{N+1} \frac{SO(n+1)}{A_{n+2}} \qquad r = r_{n}$
	I'm = diameter of inscribed regular Dn+1 ()
	1777 12
Shelib	An+z = alternating group (rotational symmetries of Anti) VRM(Sh; rn) = VRM(Sh; rn) \ interrors of regular Anti \ \(\Delta \lefta \tau \) Anti \(\times \frac{SO(n+1)}{Antz} \)
3/20/01	$\simeq 5^n \times C\left(\frac{50(n+1)}{An+2}\right) U C(5^n) \times \frac{50(n+1)}{An+2}$
	$= 5^n * \frac{50(n+1)}{4n+2}$
Oals	$= \frac{\sum_{n \neq 1}^{n \neq 1} \frac{SO(n+1)}{An+2}}{An+2}$
Thertians	· Larger r? (Strongly self-dual polytopes) · Other manifolds VR(Loo tori), flat metric, VR(ellipse) < 51 52 53
	< <u>S' V552</u>
	* Hausmann : Honotopy connectivity a non-electrosing function of p
	· Trigonometric moment curves, cyclic polytopes, orbitopes · Joshua Mirth: Euclidean submanifold
·	110 a 10m 2