Едрышов Артем Дмитриевич, группа 9-1 Лабораторная работа №1

Вариант № 1-Ь

Моделирование случайных величин

Цель работы. Исследовать алгоритмы генерации случайных величин в среде Python. Научиться вычислять значения выборочных характеристик случайной величины.

Задание

Постройте график зависимости значения выборочной дисперсии от числа реализаций СВ. Так же отобразите на графике значение дисперсии, вычисленное на основе соотношений из таблицы 1.

№	Наименование	Обозначение, параметры сдвига, масштаба, формы	Плотность распределения $p(x)$, математическое ожидание m и дисперсия D	Алгоритм генерации
1	Равномерное распределение	R:a,b	$p(x) = \begin{cases} 1/b, & a \le x \le a+b, \\ 0, & x < a, & x > a+b, \end{cases}$ $m = a + b/2, D = b^2/12$	$R: a, b \sim a + b\alpha$

Код программы

```
import numpy as np import matplotlib.pyplot as plt
```

Параметры равномерного распределения

a = 100

b = 200

theoretical_variance = b * b / 12 # Рассчет теоретической дисперсии

 $START_N = 10$

 $MAX_N = 50000$

 $STEP_N = 5$

samples = np.random.rand(MAX_N) # Выборка

samples_processed = [a + b * x for x in samples] # Пересчет в равномерное распределение

realizations = np.arange(START_N, MAX_N + 1, STEP_N) # Все количества реализаций

sample_variances = [] # Выборочные дисперсии

 $print(f"Равномерное распределение R({a}, {b})")$

```
print(f"Теоретическая дисперсия: {theoretical_variance:.4f}")
print("Генерация данных...")
for N in realizations:
  samples = samples_processed[:N] # Генерация выборки
  sample var = np.var(samples, ddof=1) # Вычисление выборочной дисперсии, ddof=1? чтобы работало как в
матлабе
  sample_variances.append(sample_var) # Сохранение выборочной дисперсии
  if N % 500 == 0:
     print(f"N = {N}: выборочная дисперсия = {sample_var:.4f}")
def plot_graph(x, y, filename, ylabel): # График зависимости дисперсии от числа реализаций
  plt.figure(figsize=(10, 6))
  plt.plot(
     Χ,
    у,
     alpha=0.7,
    linewidth=1,
    label='Выборочная дисперсия',
  )
  plt.axhline(
    y=theoretical_variance,
     color='r',
    linestyle='--',
    linewidth=2,
    label=f'Teopeтическая дисперсия = {theoretical_variance:.4f}',
  plt.xlabel('Количество реализаций')
  plt.ylabel(ylabel)
  plt.title(f'Зависимость дисперсии от числа реализаций для R({a}, {b})')
  plt.legend()
  plt.grid(True, alpha=0.3)
  plt.tight_layout()
  plt.savefig(filename, dpi=150)
plot_graph(realizations, sample_variances, 'krutoy_graphic.png', 'Дисперсия') # График зависимости дисперсии от
```

числа реализаций

plot_graph(realizations, sample_variances, 'krutoy_graphic.png', 'Дисперсия') # График зависимости дисперсии от числа реализаций

Результат выполнения задания

Рисунок 1.

Вывод

На основе имитационного моделирования делаем вывод, что выборочная дисперсия приближается к теоретической дисперсии при увеличении количества реализаций СВ.