班级、

并填写试卷序号、

请在所附答题纸上空出密封位置。

无名氏大学 2017-2018 学年第 1 学期 不知道写什么 试卷

是	页号	_	=	三	四	五.	六	总 分	阅卷 教师
分	} 数								

阅卷人	
得 分	

一、选择题 (每题 3 分, 共 21 分)

- 1. 极限 $\lim_{x \to \infty} \frac{\sin x}{x} = ($)
- (B) 1;
- (C) 2;
- (D) ∞ .
- 2. 如图, 正方体 AC_1 的棱长为 1, 过点 A 作平面 A_1BD 的垂线, 垂足为点 H, 则以下命题 中,错误的命题是()

- (A) 点 *H* 是 △*A*₁*BD* 的垂心;
- (B) $AH \perp$ 平面 CB_1D_1 ;
- (C) AH 的延长线经过点 C_1 ;
- (D) AH 和 BB₁ 所成角为 45°.

- 3. 下列说法正确的是(
 - (A) 分段函数一定不是初等函数;
 - (B) 若 $\lim_{n\to\infty} x_n y_n = 0$, 则必有 $\lim_{n\to\infty} x_n = 0$ 或 $\lim_{n\to\infty} y_n = 0$; (C) 若 f(x) 在 (a,b) 内连续,则 f(x) 在 (a,b) 内必有界;

 - (D) 若 $\lim x_n = a(a)$ 为有限实数),则数列 $\{x_n\}$ 必有界.
- 組 4. 方程 $4x^2 + y^2 + z^2 = 4$ 表示的曲面方程是 ()
 - (A) 单叶双曲面:;
- (B) 双叶双曲面:;
- (C) 椭球面.;
- (D) 抛物面..
- 5. 二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f_x(x_0,y_0), f_y(x_0,y_0)$ 存在是 f(x,y) 在该点连 续的()

(A) 充分而非必要条件:;

(B) 必要而非充分条件:;

(C) 充分必要条件::

- (D) 既非充分也非必要条件..
- 6. 设有平面区域 $D = \{(x, y) \mid -a \le x \le a, x \le y \le a\}$, $D_1 = \{(x, y) \mid 0 \le x \le a, x \le y \le a\}$, 则 $\int \int (xy + \cos x \sin y) dxdy = ($)

(B) $4\iint (xy + \cos x \sin y) dxdy$.;

()

(C) $2\iint xy dx dy$.;

- (D) $2 \iint \cos x \sin y dx dy$..
- 7. 设 L 为正向单位圆周 $x^2 + y^2 = 1$, 则 $\oint_L (2xy y) dx + (x^2 + 2x) dy = ($)

阅卷人	二、判断题: 正确 √, 错误 × (每题 2 分,	± 10 分)
得 分		7 10 7)

- 1. 若 f(x) 在 (a,b) 上连续,则 f(x) 在 (a,b) 上一定可导.
- 2. 函数 f(x) 在 $x = x_0$ 处可导是函数 f(x) 在 $x = x_0$ 处可微的充要条件.
- 3. 函数 $f(x) = x^5 + x 1$ 在 (0,1) 内存在唯一解.
- 4. M(0,0) 为 $f(x,y) = x^6 + \sin^2(xy)$ 的一个极小值点.
- 5. 若 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都发散, 则 $\sum_{n=1}^{\infty} (u_n + v_n)$ 也一定发散.

三、填空题 (每题 3 分, 共 15 分)

- 1. $\lim_{x \to \infty} (1-x)^{\frac{1}{x}} = \underline{\hspace{1cm}}$
- 2. 设 $z = u^2 \ln v$,而 $u = \frac{x}{v}, v = x y$,则 $\frac{\partial z}{\partial x} =$
- 3. 函数 $f(x,y) = xe^y$ 在点 (1,0) 处的梯度为 $\nabla f =$.
- 4. 把二次积分 $\int_0^1 \mathrm{d}x \int_0^{\sqrt{1-x^2}} f(x,y) \mathrm{d}y$ 化为极坐标形式的二次积分为
- 5. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 3, 则幂级 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半径为_____.

请在所附答题纸上空出密封位置。

阅卷人 得 分

1. 设 $a = (3, 4, 5), b = (1, -2, 3), 求 a \cdot b, a 在 b 上的投影, a \times b.$

2. 计算二重积分
$$\iint_D e^{x^2+y^2} d\sigma$$
, 其中 $D = \{(x,y) | x^2 + y^2 \le 25\}$.

2. 求过点 A(1,2,-1), B(2,3,0), C(3,3,2) 的三角形 $\triangle ABC$ 的面积和它们确定的平面方程.

3. 计算三重积分 $\iint_{\Omega} z dx dy dz$, 其中 Ω 是由 圆锥面 $z = \sqrt{x^2 + y^2}$ 和平面 z = 4 围成的闭区域.

阅卷人		<u>+</u>	无穷级数	(木5 19	分
得 分		/ / /	76.71 <i>5</i> 0.50	(ARE 12	, ,,
求幂级	数 $\sum_{n=30}^{\infty} \frac{(x-1)^n}{n}$	<u>)"</u> 的	收敛域与和	函数 $s(x)$.	

五、重积分 (每题 7 分, 共 21 分)