Commercial Examples (Part 1): Xilinx SRAM-based FPGAs

Xilinx FPGA

■ A basic SRAM-based FPGA (Spartan-3)

SRAM Usage

(a) Pass transistor control

(b) Multiplexer control

(c) Look up table implementation

Xilinx's CLBs

■ A configurable logic block (CLB) contains a few (2/4) slices.

■ Each slice has a few (2/4) logic cells.

Slice Structure (Simplified View)

- E.g. A slice in Spartan-3 has
 - □ two 4-input LUTs
 - □ two carry and control logic blocks
 - □ two storage elements
- Carry logic runs up vertically

CLB Details

- Multiple roles of LUT
 - □ function generator/synchronous RAM/shift register
- Dedicated carry logic
 - perform fast arithmetic functions
- MUXes
 - □ can combine results of 2 function generators
- Storage elements
 - □ can be configured as DFF or latch
- CLB outputs
 - □ three-state drivers (BUFTs) are provided before routing

Multipurpose LUT

- E.g. A 4-LUT can be used as
 - □ a function generator
 - □ 16-bit synchronous RAM
 - □ 16-bit shift register

Carry and Arithmetic Logic

- Automatically used for most arithmetic functions in a design
- Include dedicated XOR gates and AND gates to implement efficient arithmetic functions together with the LUTs
- E.g. Addition

Carry and Arithmetic Logic

- Efficient multiply and add implementation
 - □ Earlier FPGA architectures require two LUTs per bit to perform the multiplication and addition
 - □ The MULT_AND gate enables an area reduction by performing the *multiply* and the *add* in one LUT per bit

Fast Carry Logic

- Fast and complete arithmetic logic
 - □ Dedicated XOR gate for single-level sum completion
 - ☐ Uses dedicated routing resources
 - ☐ All synthesis tools can infer carry logic
 - □ Increases efficiency of arithmetic computation

MUXes in CLB connecting LUTs

E.g.

- The MUXes increase the flexibility of a CLB
 - □ Output of MUX F5 can be any function of ≤5 variables or a restricted class of functions of up to 9 variables.
 - □ Output of MUX F6 can be any function of ≤6 variables or a restricted class of functions of up to 19 variables.

Detailed Slice Structure

- LUTs
- MUXF5, MUXF6,
 MUXF7, MUXF8
 (only the F5 and
 F6 MUX are shown
 in this diagram)
- Carry Logic
- MULT_ANDs
- Flip-flops

CLB Outputs

- E.g. A slice in Spartan-3
 - □4 outputs per slice
 - 2 registered, 2 nonregistered
 - ■2 BUFTs associated with each CLB
 - accessible by all 16 CLB outputs

New Slice Structure in Spartan-6

- 3 Types of slices
 - ☐ Balance cost, power, performance

SliceM (25%)

- 4 6-LUTs
- 8 registers
- w/ carry logic
- w/ wide muxes
- usable as RAM/shift register

SliceL (25%)

- 4 6-LUTs
- 8 registers
- w/ carry logic
- w/ wide muxes

SliceX (50%)

New LUT Structure in Spartan-6

■ 6-input LUT may serve as two 5-input LUTs

with common inputs

- ☐ Minimal speed impact to a 6-input LUT
- ☐ One or two outputs
- □ Any function of 6 variables or two functions of5 identical variables

Interconnect

- Types of interconnect:
 - □ local (between slices in the same CLB or adjacent CLBs)
 - ☐ general-purpose (through general routing resources)
 - □ dedicated (e.g. for carry)
 - □ global routing network (for clock and other very high fanout signals)

General-Purpose Interconnect

- General routing matrix (GRM) connects horizontal/vertical channels and CLBs.
- Single-length lines connect adjacent GRMs.
- Hex lines connect GRM to GRMs six blocks away.
- Buffered longlines span the chip.

General-Purpose Interconnect

General Routing Matrix

Switch box transistors

Connection example

Three-State Bus

■ Dedicated resources for horizontal on-chip busses:

Clock distribution

Use global routing resources

I/O Block

- IOB provides interface between the package pins and CLBs
- Support a variety of IO standards
- Each IOB can work as uni- or bi-directional I/O
- Outputs can be forced into High Impedance
- Inputs and outputs can be registered
 - □ advised for high-performance I/O
- Inputs can be delayed

I/O Block Diagram

Can be configured to support different signaling standards

I/O Standards and I/O Banks

I/O Standard	Input Reference Voltage (V _{REF})	Output Source Voltage (V _{CCO})	Board Termination Voltage (V _{TT})
LVTTL (2-24 mA)	N/A	3.3	N/A
LVCMOS2	N/A	2.5	N/A
PCI (3V/5V, 33 MHz/66 MHz)	N/A	3.3	N/A
GTL	0.8	N/A	1.2
GTL+	1.0	N/A	1.5
HSTL Class I	0.75	1.5	0.75
HSTL Class III	0.9	1.5	1.5
HSTL Class IV	0.9	1.5	1.5
SSTL3 Class I and II	1.5	3.3	1.5
SSTL2 Class I and II	1.25	2.5	1.25
CTT	1.5	3.3	1.5
AGP-2X	1.32	3.3	N/A

I/O bank organization.

I/O standards supported by Spartan-II

Spartan-3 Architecture

Other Standard Features

- Block RAMs
 - □ Dedicated blocks of memory (18-kb blocks)
 - ☐ Use multiple blocks for larger memories
- Dedicated 18 x 18 multipliers next to block RAMs
- Clock management resources
 - □ Dedicated global clock multiplexers
 - ☐ Digital Clock Managers (DCMs)
 - multiple clock domains