Zuchtwertschätzung

Peter von Rohr

16.04.2018

Selektionsfortschritt

 Differenz zwischen mittleren Leistung der Nachkommen und mittleren Leistung der (gesamten) Elterngeneration

$$\Delta G = \frac{i * r_{TI} * \sigma_T}{L}$$

- Vier Faktoren
- 1. Selektionsintensität *i*
- 2. Genauigkeit der Zuchtwertschätzung r_{TI}
- 3. additiv-genetische Standardabweichung σ_T
- 4. Generationeninterval L

Verteilung über Generationen

Geschichte der Zuchtwertschätzung

- Selektion auf Phänotypen
 - funktioniert für Erscheinungsmerkmale
 - nicht erfolgreich bei Leistungsmerkmalen
- Leistungen anfangs nicht objektiv gemessen
- Leistungssteigerung erfolgte mit
 - systematischer Erfassung der Leistungen
 - Auswertung in der Zuchtwertschätzung
 - Verfügbarkeit von Rechenressourcen

Weshalb sind Zuchtwerte wichtig

- Für Selektion brauchen wir Rangierung der Selektionskandidaten
- Somit brauchen wir ein Kriterium anhand dessen wir Kandidaten rangieren können
- ▶ Da Eltern die Hälfte ihrer Allele an Nachkommen weitergeben, soll Kriterium das genetische Potential beschreiben

Rangierung bedeutet

Resultat der Rangierung

Table 1: Rangierung der Tiere nach deren Werte des Kriteriums

Tier	Kriterium
Tier 5	92
Tier 10	94
Tier 4	98
Tier 7	98
Tier 8	99
Tier 2	101
Tier 3	103
Tier 6	106
Tier 1	110
Tier 9	113

Definition des Zuchtwerts

- doppelte Leistungsabweichung der Nachkommen im Vergleich zum Populationsdurchschnitt
- doppelte Leistungsabweichung, da Elternteil nur Hälfte seiner Allele weitergibt
- viele Nachkommen, da weitergegebene Elternallele einer Zufallsstichprobe entsprechen
- Zuchtwert als Abweichung von Populationsschnitt, somit nur innerhalb der Population gültig
- Durchschnitt der Zuchtwerte ist 0

Prinzip der Zuchtwertschätzung

- Bei allen Zuchtwertschätzungen wird nach dem gleichen Prinzip vorgegangen
- ► Leistungen werden relativiert
 - Korrektur der Leistung damit Zuchtwerte unter gleichen Bedingungen vergleichbar
 - Subtraktion der Leistung um einen Vergleichswert
- Relativerte Leistungen werden gewichtet
 - Gewichtung erfolgt nach Informationsquellen
 - ▶ höhere Gewichtung bei verlässlicheren Informationsquellen

Mathematische Umsetzung

- ▶ Relativierung: Subtraktion eines Vergleichswertes (hier mit μ bezeichnet)
- Gewichtung: Multiplikation mit Faktor gemäss Informationsquellen
- ▶ Somit ist der geschätzte Zuchtwert (\hat{u}_i) des Tieres i

$$\hat{u}_i = b_i(y_i - \mu)$$

Beispiel: Zuchtwertschätzung mit Eigenleistungen

- Gegeben Zahlenbeispiel aus dem Skript
- ► Schritt 1: Relativieren
 - Korrektur der Eigenleistungen um die LeastSquares Lösungen der Betriebe

$$e_i = y_i - x_i^T \hat{\beta}$$

- Schritt 2: Gewichtung
 - Welcher Teil des phänotyps ist genetisch bedingt
 - ▶ Eigenleistung führt zu Regression von Genotyp auf Phänotyp

$$b = \frac{Cov(u, y)}{Var(y)} = \frac{\sigma_{u, y}}{\sigma_y^2} = \frac{\sigma_u^2}{\sigma_y^2} = h^2$$

Resultat

$$\hat{u}_i = h^2(y_i - x_i^T \hat{\beta})$$

► Verwendung: beschränkt auf Tiere mit Eigenleistung

Selektionsindex

- Ziel der Zuchtwertschätzung: auf additiver Genwirkung basierende Leistungsüberlegenheit der Nachkommen eines Tieres aufgrund vorliegender Informationsquellen so zu schätzen, dass Korrelation zwischen wahrem und geschätztem Zuchtwert maximal
- additive Genwirkung: nur eine Hälfte der Allele von Eltern an Nachkommen
- Leistungsüberlegenheit der Nachkommen aufgrund der Definition des Zuchtwerts
- Informationsquellen k\u00f6nnen vom Tier selber oder von Verwandten stammen
- alternative Zielformulierung zur Korrelation: Minimierung der mittleren quadrierten Fehler (oder der Fehlervarianz)

Begriffe

Wichtige Unterscheidung zwischen zwei "Arten" von Zuchtwerten

- 1. wahrer Zuchtwert: Summe der Gensubstitutionseffekte
- 2. **geschätzer Zuchtwert**: aufgrund von Informationsquellen (Daten) mit einem statistischen Modell geschätzter Wert.

Konstruktion des Selektionsindexes

- ▶ Ziel: alle verfügbaren Informationsquellen (x_i) werden zu einem Index I kombiniert
- ► Kombination erfolgt über lineare Funktion