Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

Práctica N° 6: BASES ORTONORMALES Y PROYECCIONES

1) Identificar cuáles de los siguientes conjuntos son ortogonales, ortonormales o ninguna de las opciones anteriores:

$$a)\ C = \left\{ \left(\begin{array}{c} 1\\1\\1 \end{array}\right), \left(\begin{array}{c} 1\\0\\1 \end{array}\right), \left(\begin{array}{c} -1\\0\\2 \end{array}\right) \right\}$$

$$b)\ C = \left\{ \left(\begin{array}{c} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{array} \right), \left(\begin{array}{c} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{array} \right) \right\}$$

2) Encontrar condiciones sobre a y b para que el conjunto $B = \{(a,b), \left(-\frac{3}{5}, \frac{4}{5}\right)\}$ sea ortonormal.

3) Encontrar una base ortogonal y una base ortonormal a partir de la siguiente base de R^3 : B = (1,0,0), (4,-2,0), (1,1,5).

4) Construir una base ortogonal y otra ortonormal para los siguientes subespacios H, mediante el procedimiento de Gram — Schmidt:

a)
$$H = \{(x, y, z) \in \mathbb{R}^3 / \frac{x}{2} = \frac{y}{3} = \frac{z}{4} \}$$

b)
$$H = \{(x, y, z, w) \in \mathbb{R}^4 / 2x - y + 3z - w = 0\}$$

5) Demostrar que las siguientes matrices son ortogonales:

$$a) A = \begin{bmatrix} sen t & cos t \\ cos t & -sen t \end{bmatrix}$$

$$b) B = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

6) Demostrar que:

a) Si P y Q son matrices ortogonales de nxn, entonces $P \cdot Q$ es tambien una matriz ortogonal.

b) Si Q es una matriz ortogonal simétrica, entonces $Q^2 = I$.

c) u + v y u - v son vectores ortogonales si y sólo si ||u|| = ||v||.

d) Si u y v son ortogonales, entonces $||u+v||^2 = ||u||^2 + ||v||^2$.

e) Si A es una matriz ortogonal, entonces det(A) = 1 o det(A) = -1.

7) Dado el conjunto $S = \left\{ \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \right\}$:

a) Verificar que S es una base ortonormal para \mathbb{R}^3 .

b) Hallar el vector de coordenadas de $\alpha = (15, 3, 3)$ con respecto a S.

c) Expresar α como combinación lineal de los vectores de S y los escalares obtenidos en b).

8) Sea B una base ortonormal de R^2 . Encontrar las coordenadas del vector u=(2,4) con respecto a la base B:

$$B = \left\{ \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \right\}$$

1

9) Hallar la proyección del vector v sobre el espacio vectorial H en cada ítem:

$$a)\ H = \left\{ (x,y,z,w) \in R^4 \, / \, x = y, w = 3y \right\} \qquad \qquad v = (-1,2,3,1)$$

b) a)
$$H = \{(x, y, z) \in \mathbb{R}^3 / 3x - 2y + 6z = 0\}$$
 $v = (-3, 1, 4)$

- 10) Se define la distancia de un vector x de R^n a un subespacio H de R^n como $d(x, H) = |x proy_H x|$. Utilizar este concepto para hallar la distancia del punto Q = (1, 3, 4) al plano de la ecuación 2x + y z = 0.
- 11) Calcular la distancia del punto $x = (4, 1, -7) \in \mathbb{R}^3$ al subespacio $W = \{(a, b, b) \in \mathbb{R}^3 \mid a, b \in \mathbb{R}\}.$

Observaciones: La definición 4 y el teorema 4 de la Sección 4.9 de Grossman, pueden adaptarse en el caso de que se tenga una base ortogonal y no ortonormal:

a) Si $B = \{v_1, v_2, ..., v_n\}$ es una base ortogonal de R^n , entonces cualquier vector $v \in R^n$ puede escribirse como:

$$v = \frac{v \cdot v_1}{\|v_1\|^2} v_1 + \frac{v \cdot v_2}{\|v_2\|^2} v_2 + \dots + \frac{v \cdot v_n}{\|v_n\|^2} v_n$$

Donde $\frac{v \cdot v_i}{\|v_i\|^2}$ es el escalar que multiplica al vector $v_i \, \forall \, i=1,2,...,n.$

Esta igualdad muestra como calcular las coordenadas de un vector v de \mathbb{R}^n con respecto a la base ortogonal B de dicho espacio.

b) Además, si $B = \{v_1, v_2, ..., v_n\}$ es una base ortogonal de un subespacio H de R^n y $v \in R^n$, entonces la proyección de v sobre H esta dada por:

$$proy_H v = \frac{v \cdot v_1}{\|v_1\|^2} v_1 + \frac{v \cdot v_2}{\|v_2\|^2} v_2 + \dots + \frac{v \cdot v_n}{\|v_n\|^2} v_n$$

Notar que en a) se esta expresando un vector de R^n como combinación de los vectores de una base ortogonal de R^n . En B se esta proyectando un vector de R^n sobre un subespacio de R^n .

Ejercitación adicional para seguir practicando:

- 12) Sea H un subespacio de \mathbb{R}^4 con base $\{(1,1,-1,0),(0,2,0,1),(-1,0,0,1)\}$:
 - a) Utilizar el proceso de Gram-Schmidt para determinar una base ortonormal de H.
 - b) Calcular la proyección de v = (-1, 0, -4, -2) sobre la base ortonormal obtenida en a).
- 13) Determinar una base ortonormal para el espacio solución del sistema homogéneo:

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 2 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

2

14) ¿Para qué valores de α los vectores u=(1,1,-2) y $v=(\alpha,-1,2)$ son ortogonales? Justificar.