

Mitchell Bosley

PhD Candidate, Department of Political Science, University of Michigan Postdoctoral Fellow, Munk School of Global Affairs and Public Policy and Schwartz Reissman Institute, University of Toronto

Introduction

- The Discourse Quality Index (DQI; Steenbergen 2003, Bachtiger 2014) is a framework for evaluating the quality of deliberation in political discussions.
- Manual DQI coding is time-intensive and resource-demanding.
- I explore the use of Large Language Models (LLMs) as substitutes for expert coders for automated DQI annotation.

DQI Dimensions and Coding

3. Respect

3.1 Towards groups (0-2)

4. Constructive Politics (0-3)

1 Alternative proposal

0 Positional politics

2 Consensus appeal

3 Mediating proposal

3.2 Towards main demand (0-3)

3.3 Towards counterarguments (0-4)

- 1. Participation
 - 0 Impaired participation
- 1 Normal participation
- 2. Justification
- 2.1 Level (0-4)
- 0 No justification
- 1 Inferior justification
- 2 Qualified justification
- 3 Sophisticated justification (broad)
- 4 Sophisticated justification (in depth)
- 2.2 Content (0-3)
- 0 Group interests
- 1 Neutral statement
- 2 Common good (utilitarian/collective)
- 3 Helping least advantaged

Data

- 1000 human-validated speeches from the 101st and 104th US Congress (Steenbergen and Bachtiger 2004).
- Debates on various topics such as gun rights, health care, and abortion.
- Data split: 80% (800 speeches) used for generating examples for in-context learning, 20% (200 speeches) reserved for evaluation of model performance.

Methodology

- Accessed various closed- and open-source LLMs: GPT-4, Claude, DeepSeek, Meta's LLaMA, etc. through APIs.
- Implemented different prompting strategies:
- Zero-shot, few-shot, and many-shot in-context learning.
- Chain-of-Thought (CoT) reasoning
- For DeepSeek models and Claude Haiku, averaged over 5 random draws of examples for the ICL process per specifiation.
- Evaluated models on out-of-sample accuracy, F1 score, Mean Average Error (MAE).
- Total spending roughly \$400 USD.

Prompt Structure

- 1. Theoretical justification:
- References to research on DQI and deliberation
- Explanation of how LLMs can be applied to automate DQI annotation
- 2. Previous examples of annotated speeches:
- Contextualized examples for in-context learning
- Helps model understand annotation task and expected output
- 3. Annotation instructions:
- Provided as a JSON schema
- Includes details on DQI dimensions and scoring

Results

Figure 1:Model Performance (Mean Average Error) vs Number of ICL Examples

Figure 2:Model Performance (Mean Average Error) vs Number of ICL Examples by DQI Dimension

Cost vs. Performance Analysis

Model	Provider	Parameters	Context	Cost (B/M tokens)	Optimal In-Context Learning Performance			
			Length	Input	Output	Examples	Accuracy	F1 Score	MAE
GPT-40	OpenAI	N/A	128k	5.00	15.00	50	0.6382	0.6454	0.4595
Claude 3 Haiku	Anthropic	N/A	200k	0.25	1.25	25	0.6366	0.6343	0.5322
DeepSeek Coder 2	DeepSeek	236b	128k	0.14	0.28	100	0.6826	0.6525	0.4799
DeepSeek Coder 2 (CoT)	DeepSeek	236b	128k	0.14	0.28	25	0.6635	0.6304	0.4294
Llama 3 70B	Meta	70B	8k	0.65	2.75	5	0.6120	0.6023	0.5452
Llama 3 8B	Meta	8B	8k	0.05	0.25	5	0.5422	0.5530	0.7124
Qwen2 72B	Alibaba	72B	32k	0.90	0.90	25	0.6466	0.6110	0.4560
WizardLM 2	Microsoft	176B	32k	1.20	1.20	25	0.6466	0.6110	0.4560

Table 1:Model Comparison with Optimal In-Context Learning Performance for DQI Task

Figure 3:Model Performance (Accuracy) vs Model Cost

Findings

- Many-shot learning is very effective at reducing annotation error across most dimensions of the DQI, and in aggregate.
- The benefits of many-shot learning have diminishing marginal returns on examples after a certain point.
- Chain of Thought (CoT) has a relatively small effect, and more work is needed to understand the conditions under which CoT is sufficient.
- More expensive high-parameter models like GPT-40 do better with few incontext examples than smaller models, but as the number of examples included increases, those early gains are erased.
- GPT-40, despite costing an order of magnitude more, was outperformed by DeepSeek Coder with just a few examples.

Next Steps

- Exploring dynamic prompt optimization to further improve model performance and adapt to new, unseen speeches.
- Investigating model distillation and fine-tuning techniques to create smaller, efficient models that can reliably perform DQI annotation at scale, potentially reducing computational resources and costs.
- Scaling up the annotation task to millions of speeches, enabling larger studies and more comprehensive analyses of deliberation quality.
- Developing open-source software tools that allow researchers to generate DQI measures for speeches in their own text corpora, fostering collaboration and reproducibility in the field.