Landon Moon ID: 1001906270

CSE 3313 - Homework #3 – LSI Systems HW

Causality & Stability

Test the following linear-shift-invariant systems for causality and stability

$$h[n] = 0 \text{ for } n < 0$$
$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

- a. $h[n] = (\frac{1}{4})^n u[n]$
 - 1) Causal. All n<0 values equal 0
 - 2) Stable. Total sums to 4/3
- b. $h[n] = \delta[n] + 2\delta[n-1]$
 - 1) Causal. All n<0 values equal 0
 - 2) Stable. Total sums to 3
- c. $h[n] = 2^n u[-n-1]$
 - 1) Non-Causal. Non-zero n<0 values exist due to '-n'
 - 2) Stable. Total sums to 1
- d. $h[n] = \delta[n+1] + 2\delta[n] + \delta[n-1]$
 - 1) Non-Causal. Non-zero n<0 values exist due to 'n+1'
 - 2) Stable. Total sums to 4
- e. $h[n] = 3^n u[-n]$
 - 1) Non-Causal. Non-zero n<0 values exist due to '-n'
 - 2) Stable. Total sums to 3
- f. $h[n] = (\frac{1}{2})^n u[-n]$
 - 1) Non-Causal. Non-zero n<0 values exist due to '-n'
 - 2) Non-Stable. Total sums to ∞ due to $(\frac{1}{2})^{n}$ as $n \to -\infty$

Sum totals were approximated with custom made desmos code. This was done so I could visualize each equation.

Landon Moon ID: 1001906270

Convolution

Calculate y[n] analytically using convolution. Remember, x[k] * h[k] = h[k] * x[k]

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

a.
$$x[n] = (\frac{1}{2})^n u[n], \ h[n] = \delta[n-1]$$

 δ [n] is only non-zero when its input is 0, so using the second equation above, the only non-zero value is when k=1 due to h[n].

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[1]x[n-1]$$
$$= (\frac{1}{2})^{n-1}u[n-1]$$

b.
$$x[n] = 3^n u[-n], h[n] = \delta[n+2]$$

 δ [n] is only non-zero when its input is 0, so using the second equation above, the only non-zero value is when k=-2 due to h[n].

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[-2]x[n+2]$$
$$= 3^{n+2}u[-(n+2)]$$

c.
$$x[n] = \delta[n-1] + \delta[n+1], h[n] = (\frac{1}{3})^n u[n]$$

 δ [n] is only non-zero when its input is 0, so using the first equation above, the only non-zero values are when k=-1 and k=1 due to x[n].

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[-1]h[n+1] + x[1]h[n-1]$$
$$= (\frac{1}{3})^{n+1}u[n+1] + (\frac{1}{3})^{n-1}u[n-1]$$

d.
$$x[n] = \sin(2\pi f n), h[n] = \delta[n + 5]$$

 δ [n] is only non-zero when its input is 0, so using the second equation above, the only non-zero value is when k=-5 due to h[n].

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[-5]x[n+5]$$

= $\sin(2\pi f(n+5))$