Recall:

If $\chi_1 \otimes \chi_2$ are two unknowns, and $a_{11}\chi_1 + a_{12}\chi_2 = b_1$ $a_{21}\chi_1 + a_{22}\chi_2 = b_2$ Solving for $\chi_1 \times \chi_2$ to satisfy the 2 equations Simultaneously is the Same as finding the Scalars $\chi_1 \times \chi_2 \otimes b_1$

Suppose we have the following sys. of linear eqns in 3 unknowns $a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1$ $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2$ $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3$.

Solve for x_1 , x_2 , x_3

$$A \overrightarrow{Z} = \overrightarrow{b}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\overrightarrow{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

If $\vec{a_1}$, $\vec{a_2}$ × $\vec{a_3}$ i.e., $\vec{a_1} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{22} \end{bmatrix}$ $\vec{a_2} = \begin{bmatrix} a_{12} \\ a_{23} \\ a_{23} \end{bmatrix}$ $\vec{a_3} = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$ $\vec{a_4} = \begin{bmatrix} a_{11} \\ a_{22} \\ a_{33} \end{bmatrix}$ $\vec{a_{11}} = \begin{bmatrix} a_{11} \\ a_{22} \\ a_{23} \\ a_{32} \end{bmatrix}$ $\vec{a_{11}} = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{33} \\ a_{32} \end{bmatrix}$ $\vec{a_{23}}$ $\vec{a_{23}}$

det(A) = 0What is it to say Ax:B $\begin{array}{c}
\overrightarrow{Q}_{3} = A_{13} \\
A_{23} \\
A_{23}
\end{array}$ has infinitely many solutions, Let ai = ai $\overline{a_2} = a_{12}$ Q21 Q22 A = where 931 Q12 Q13 ay 932 Q22 Q23 az det (A) = 0 if (i) $\vec{a}_1 = \vec{a}_2 = \vec{a}_3 = \vec{o}$, (atleast one is) (ii) $\vec{a}_1 = k\vec{a}_2$; $\vec{a}_1 = l\vec{a}_3$ (iii) $\vec{a}_3 = \alpha \vec{a}_1 + \beta \vec{a}_2$ 082 033 Q31 元: XI bı χ_2 b2 1/3 bз

$$det(A) = 0$$

For example:
$$9f\vec{a}_1 = 1$$
 $\vec{a}_2 = 2$ $\vec{a}_3 = 5$ $\vec{b}_3 = 0$

HSE in 3D.

Solving using Gauss elimination

→ LU =

Jeast 89. Soln

GSO

→ QR

→ eigenval & eigenvectors. $\begin{array}{c|cccc} 2 & 3 & \boxed{\chi_1} \\ 3 & 5 & \boxed{\chi_2} \\ 0 & 0 & \boxed{\chi_3} \end{array}$ Inconsistent System.