M	445 Final	Exam Study Guick	Solutions:	
	The "typi	cal" CI is better	as it is narrower stimate of the percent	; thus, amuter.
3	(a) f(x)	$\hat{\theta}) = \frac{\pi}{\sqrt{1 - \frac{\hat{e}}{2}}} \frac{\hat{e}}{\sqrt{1 - \frac{\hat{e}}{2}}} \left(\frac{1}{\sqrt{1 - \frac{\hat{e}}{2}}} \right)$) <u>x</u> ;	
		e (() () ()	() () () () () () () () () ()	
	_ <	-02x:	Σχ. Θ	
Commission of the commission o	Lot	o denote the ML of denote the usual	MI extract of B) .
	1(x) = 1	$\frac{-\theta_0 \mathcal{E}}{(x \mid \theta_0)} = \frac{-\theta_0 \mathcal{E}}{e}$	<u>Θ</u> , - ξχ; ($(\theta_1 - \theta_0)$ $(\frac{\Theta_0}{\Theta_1})$
(,	:) The gen T(X) =	en LR test roperts - 2x; (0,-00) (5	H, if T(x e,) ≤ C) &C ,
(Az)	ing the day)		(x: (logo - logo) lydi) - (0,-00)	
1	Reych if	£x; ≤ c)	Band on the hypothese, this is our situation
		Ex; > C	if 0°< 0'	

Now that we have our rejection rule we need to specify the constat, c

Sma X; an moley. Pois(i0) RVs, Ex, ~ Pois(E, i0).

For n=5 and $\theta_0 \cdot \frac{1}{5}$, $\sum X_i \sim P_{05}(3) \Longrightarrow C=0$.

3 See class notes for the subtron.

(a)
$$f(x|\lambda) = \frac{\pi}{12} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda x_i}$$

Let I denot the ML estimate of 2. Then

$$T(x) = \frac{1}{100} \frac{1}{100} = \frac{1}{$$

We will reject Ho it, for some c, T(x) = c.

Solving for C: $\left(\frac{1}{3}\right)^n e^{-\left(\frac{1}{3}-\frac{1}{3}\right)} \in \mathbb{Z}$ $\left(\frac{1}{3}\right)^n e^{-\left(\frac{1}{3}-\frac{1}{3}\right)} \in \mathbb{Z}$ $\left(\frac{1}{3}\right)^n e^{-\left(\frac{1}{3}-\frac{1}{3}\right)} \in \mathbb{Z}$

$$\Rightarrow -(\lambda_0 - \widehat{\lambda}) \mathcal{E}_{X_1} \leq C$$

Note that 3 = 70 => Ex; = C

We know that EX: ~ Gamma (11, 1), so we find c

by find the a quantile of a Gamma (n,1) don.

Method

Normality

Q-Q plots for each group

Tinck packers groups

Think about the Lata collection process

Equal value (if you assumed it)

Barphato, density plots etc by group

1) \frac{1}{2} \geq x: is a prooted quantity because it is a function of the data and the parameter of interest, but its distribution does not depend on any unknown parameter.

To find a $(1-\alpha)100\%$ (I for 1 we consider $P(\alpha < \frac{2}{2} \tilde{\xi} \chi; < b) = 1-\alpha$

where a is the \(\frac{1}{2} \) quantle of \(\frac{1}{2} \) mma \(n, \frac{1}{2} \) \(\frac{1}{2}

Thus, the interal is

 $\left(\begin{array}{ccc} 2a & 2b \\ \overline{2}X_i & \overline{2}X_i \end{array}\right)$

(8) $P(x \ge 3.2 | \lambda = 1) = \int_{3.2}^{\infty} e^{-x} dx = .04$

(b) P(X=3.2 | 2.5) - J = = = = x = . 527