Étape 1 : détermination de $\varepsilon_{475} \times \ell$

Les solutions :

• A': (Fe³⁺; 3 Cl-) à $C_{A'} = 2.0 \times 10^{-2}$ mol·L-1 (préparée dans solution de HCl à 0,1 mol·L-1)

La première solution testée donnait des résultats aberrants. La deuxième, obtenue à paris du FeCl₃ « billes » donne, elle, des résultats pas mal.

• B: (K+; SCN-) à $C_B = 2.0 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$ (préparée dans solution de HCl à 0,1 mol·L-1)

Spectrophotomètre réglé à 475 nm.

Le blanc est fait avec une solution de 10,0 mL de A' et 4,0 mL d'eau (tube 0).

Principe:

La différence de concentration des réactifs rend la transformation quasi-totale.

$$\Rightarrow n_{\rm FeSCN^2+,f} \approx n_{B,i} = C_B \times V_B$$
 D'où $[{\rm FeSCN^2+}]_{\rm f} = \frac{C_B \times V_B}{V} = 2.0 \times 10^{-3} \times \frac{V_B}{V} \text{ (avec } V = 15 \text{ mL)}$

Rq : gamme actuelle faite un peu à l'arrache avec une solution assez peu concentrée en fer III.

Mesures et résultats :

tube	0	1	2	3	4
V _{A'} (mL)	10,0	10,0	10,0	10,0	10,0
V _B (mL)	0	1,0	2,0	3,0	4,0
V _{eau} (mL)	4,0	3,0	2,0	1,0	0
[FeSCN ²⁺] _f (mol·L ⁻¹)	0,00E+00	1,43E-04	2,86E-04	4,29E-04	5,71E-04
A	0	0,379	0,749	1,132	1,470
Ratio	2,62E+03	2,65E+03	2,62E+03	2,64E+03	2,57E+03

Conclusion : $\varepsilon_{475} \times \ell = 2.62 \times 10^3 \,\text{L} \cdot \text{mol}^{-1}$

Étape 2 : Détermination de la constante d'équilibre

Les solutions :

- A: (Fe³⁺; 3 Cl⁻) à $C_A = 2,0.10^{-3}$ mol·L⁻¹ (préparée dans solution de HCl à 0,1 mol·L⁻¹)
- B: (K+; SCN-) à $C_B = 2.0.10^{-3}$ mol·L-1 (préparée dans solution de HCl à 0,1 mol·L-1)

Spectrophotomètre réglé à 475 nm.

Le blanc est fait avec une solution de 5 mL de A et 5 mL d'eau (tube 0).

Principe:

 $[FeSCN^{2+}]_f$ se déduit maintenant de la mesure de l'absorbance A :

$$[\text{FeSCN}^{2+}]_{\text{f}} = \frac{A}{\varepsilon_{475} \times \ell} = \frac{A}{2,62 \times 10^3} \text{ mol·L-}^{-1}$$

Et $[\text{FeSCN}^{2+}]_f$ nous donne accès à l'avancement final de la réaction x_f : $x_f = [\text{FeSCN}^{2+}]_f \times V$ et par suite aux concentrations finales des réactifs :

$$\begin{split} [\text{Fe}^{3+}]_{\mathrm{f}} &= \frac{C_A \times V_A - x_{\mathrm{f}}}{V} = 2.0 \times 10^{-3} \times \frac{V_A}{V} - \frac{x_{\mathrm{f}}}{V} = 2.0 \times 10^{-3} \times \frac{V_A}{V} - [\text{FeSCN}^{2+}]_{\mathrm{f}} \\ [\text{SCN}^-]_{\mathrm{f}} &= \frac{C_B \times V_B - x_{\mathrm{f}}}{V} = 2.0 \times 10^{-3} \times \frac{V_B}{V} - \frac{x_{\mathrm{f}}}{V} = 2.0 \times 10^{-3} \times \frac{V_B}{V} - [\text{FeSCN}^{2+}]_{\mathrm{f}} \text{ (avec } V = 14 \text{ mL)} \end{split}$$

Mesures et résultats :

tube	0	1	2	3	4	5
V _A (mL)	5	3	4	5	6	7
V _B (mL)	0	7	6	5	4	3
V _{eau} (mL)	5	0	0	0	0	0
A	0	0,482	0,532	0,558	0,531	0,498
[Fe³+] _i (mol·L·¹)	1,00E-03	6,00E-04	8,00E-04	1,00E-03	1,20E-03	1,40E-03
[SCN-] _i (mol·L ⁻¹)	0,00E+00	1,40E-03	1,20E-03	1,00E-03	8,00E-04	6,00E-04
[FeSCN ²⁺] _f (mol·L ⁻¹)	0,00E+00	1,84E-04	2,03E-04	2,13E-04	2,03E-04	1,90E-04
[Fe³+] _f (mol·L·¹)	1,00E-03	4,16E-04	5,97E-04	7,87E-04	9,97E-04	1,21E-03
[SCN ⁻] _f (mol·L ⁻¹)	0,00E+00	1,22E-03	9,97E-04	7,87E-04	5,97E-04	4,10E-04
$\mathbf{Q}_{r,f}$		3,64E+02	3,41E+02	3,44E+02	3,40E+02	3,83E+02

Conclusion:

- Écart relatif maximal de 5,4 %.
- Dans ce <u>vieux BUP</u>, ils donnent une valeur de $10^{2,5} \approx 320$. Mais on trouve souvent aussi évoquée la valeur de 130, et parfois même 60...
- On obtiendrait peut-être des $Q_{r,f}$ plus proches avec un V_A fixé à 5,0 mL, V_B allant toujours de 3 à 7 par incrément de 1, en complétant avec de l'eau distillée pour avoir un volume constant. À tester.

