Calculating Centralities and Detecting Communities with NetworkX

Artur Krochin

DATA SCIENTIST

linkedin.com/in/arturkrochin/

Overview

Why centrality measures?

Degree centrality

Closeness centrality

Betweenness centrality

Katz, Eigenvector, and PageRank centralities

Girvan-Newman community detection

Why Centrality Measures?

Centrality Use Cases

Influencer identification in social networks

Bottleneck identification in transportation networks

Pandemic prevention in virus spread networks

Degree Centrality

Different Centrality Measures

Girvan-Newman Algorithm

Degree Centrality

Undirected Degree

Directed Degree

$$\Delta = \frac{D_{in}}{D_{out}}, D_{out} \neq 0$$

$$\Delta = D_{in} - D_{out}$$

$$\Delta = \frac{D_{in}}{D_{out}}, D_{out} \neq 0$$

$$\Delta = D_{in} - D_{out}$$


```
nx.degree_centrality(G)
nx.in_degree_centrality(G)
nx.out_degree_centrality(G)
```

Degree Centrality in NetworkX

Closeness Centrality

Closeness Centrality

Measures how close a node is, on average, to all the other nodes in the network.

Closeness Centrality Formulation

d(u, v) := minimum number of hopsor sum of weights from node u to node v

Closeness Centrality Formulation

d(u, v) := minimum number of hopsor sum of weights from node u to node v

$$C'(u) = \frac{\sum_{v=1}^{n-1} d(u, v)}{n-1}$$

Closeness Centrality Formulation

d(u, v) := minimum number of hopsor sum of weights from node u to node v

$$C(u) = \frac{n-1}{\sum_{v=1}^{n-1} d(u,v)}$$

High Closeness

Path	Min. Distance
6 to 2	1
6 to 3	1
6 to 4	1
6 to 5	1
6 to 1	2

$$C(6) = \frac{6-1}{1+1+1+1+2} = 0.83$$

Low Closeness

Path	Min. Distance
1 to 2	1
1 to 3	2
1 to 5	2
1 to 6	2
1 to 4	3

$$C(1) = \frac{6-1}{1+2+2+3} = 0.5$$

Closeness Caveat

K₅ graph

$$C(Any\ node) = \frac{5-1}{1+1+1+1} = 1$$

Delivery Center Placement

nx.closeness_centrality(G)

Closeness Centrality in NetworkX

Betweenness Centrality

Betweenness Centrality

Measures the extent to which a node serves as a bridge or interchange hub to other nodes.

Paths

 $paths(s,t) := number \ of \ shortest \ paths \ between \ nodes \ s \ and \ t$

 $paths(s,t) \coloneqq number\ of\ shortest\ paths\ between\ nodes\ s\ and\ t$

 $paths(s,t) \coloneqq number\ of\ shortest\ paths\ between\ nodes\ s\ and\ t$ $paths(s,t|u) \coloneqq number\ of\ shortest\ paths\ between\ nodes\ s\ and\ t$ $going\ through\ u$

 $paths(s,t) := number \ of \ shortest \ paths \ between \ nodes \ s \ and \ t$

 $paths(s,t|u) := number \ of \ shortest \ paths \ between \ nodes \ s \ and \ t \ going \ through \ u$

$$C(u) = \sum_{\substack{For\ every\ pair\ of\ nodes\ s\ and\ t}} \frac{paths(s,t|u)}{paths(s,t)}$$

 $\frac{paths(s,t|1)}{paths(s,t)}$

Contribution

1

 $\frac{paths(s,t|1)}{paths(s,t)}$

1

•

1

٦

 $\frac{paths(s,t|1)}{paths(s,t)}$

- 11

$$C(1) = 5$$

nx.betweenness_centrality(G)

Betweenness Centrality in NetworkX

Katz, Eigenvector, and PageRank Centralities

Attenuation factor $\alpha = 0.5$

nx.katz_centrality(G, alpha=0.5)

Katz Centrality in NetworkX

Eigenvector Centrality

Eigenvector Centrality

Eigenvector Centrality

Eigenvector vs. Katz

$$\alpha \approx \frac{1}{\lambda_{principal}}$$

Alternative Definition


```
nx.eigenvector_centrality(G)
nx.pagerank_centrality(G)
```

Eigenvector and PageRank Centrality in NetworkX

Community Detection: Girvan-Newman Algorithm

Communities

Edge Betweenness Example

Assumption: if two nodes are connected by an edge with high betweenness centrality, those nodes are likely to be part of separate communities.

Conversely, if they are connected by an edge with low betweenness centrality, they are likely to be part of the same community.

Community	Members
Α	0
В	1
С	2
D	3
Е	4
F	5
G	6
н	7
I	8
J	9

Community	Members
AE	0,4
В	1
С	2
D	3
F	5
G	6
Н	7
1	8
J	9

Community	Members
AE	0,4
В	1
С	2
D	3
F	5
G	6
н	7,8
J	9

Community	Members
AECDB	0,4,2,3,1
HIGFJ	7,8,6,5,9

Community	Members
AECDBHIGFJ	0,4,2,3,1,7,8,6,5,9

Girvan-Newman Time Complexity

$$O(E^2N)$$

Demo

Detecting communities in NetworkX

Summary

Many centrality measures because many notions of "center" in a network

- Degree centrality for identifying local leaders
- Closeness centrality for identifying nodes on average closest to all other nodes
- Betweenness centrality for identifying bridges and communication hubs

Katz and Eigenvector are great for identifying global influence

Katz gives more control, but Eigenvector has reasonable defaults

PageRank is similar to Eigenvector but adjusted for directed networks

Girvan-Newman used to detect levels of communities algorithmically

