

Convertidores DC/DC. Ejercicio 2

Para el convertidor DC/DC de la figura controlado por PWM, suponiendo que existe CCM en ambos inductores y que C_1 es muy grande:

- a) Dibujar las topologías circuitales en los estados ON y OFF.
- b) Dibujar las formas de onda de corriente en L_1 y L_2 , calculando la relación de conversión de gran señal.
- c) Calcular la tensión en C_1 .
- d) Obtener el modelo de estado promediado del sistema.

Convertidores DC/DC. Ejercicio 2

Análisis de la topología

Convertidor Cùk

Relación de tensiones

En estado estacionario:

$$\langle v_{L1} \rangle = 0, \langle v_{L2} \rangle = 0$$

$$V_{in} - \langle v_{C1} \rangle + \langle v_0 \rangle = 0$$

$$\langle v_{C1}\rangle = V_{in} + \langle v_0\rangle$$

Esta relación muestra que $\langle v_{C1} \rangle$ es mayor que V_{in} y $\langle v_0 \rangle$.

Características:

- Tensión de salida con polaridad negativa respecto al terminal común de la fuente de entrada.
- Corriente de entrada y salida continua.

Para el análisis se va a asumir que C_1 es grande, de modo que: $\Delta V_{C1} \ll \langle v_{C1} \rangle$. Esta condición debe ser tenida en cuenta en el diseño.

Convertidores DC/DC. Ejercicio 2

Análisis de los diferentes estados

Suposiciones:

 C_1 suficientemente grande Llaves ideales. V(ON)=0.

 C_1 oficia como medio para transferir energía entre la fuente de entrada y la carga.

Estado ON (llave encendida)

 v_{C1} polariza en inversa a D_1 .

 L_1 se carga con la fuente de entrada.

 C_1 se descarga: transfiere energía a L_2 y la carga. L_2 se carga debido a que $\langle v_{C1} \rangle \gg \langle v_0 \rangle$.

Estado OFF (llave apagada)

 L_1 se decarga debido a que $\langle v_{C1} \rangle \gg V_{in}$.

 C_1 se carga a través de L_1 .

 L_2 se decarga debido a que $v_{L2} = -v_0$.

Convertidores DC/DC - Modelo Promediado de Estados

Convertidores DC/DC. Ejercicio 2

Estado OFF

Formas de onda

Se condición de estado estacionario, donde: $V_{C1} = \langle v_{C1} \rangle$ y $V_0 = \langle v_0 \rangle$

 $V_{x1} = V_{in} - V_{C1}$

 $V_{x2} = V_{C1} - V_0$

Convertidores DC/DC. Ejercicio 2

Relación de conversión de gran señal

En corriente

$$\Delta i_{L1}^{+} = \frac{V_{in}DT}{L_1}$$
 $\Delta i_{L1}^{-} = \frac{(V_{in} - V_{C1})(1 - D)T}{L_1}$

$$|\Delta i_{L1}^{+}| = |\Delta i_{L1}^{-}| \implies |V_{C1}/V_{in}| = 1/(1-D)$$

$$\Delta i_{L2}^{+} = \frac{(V_{C1} - V_0)DT}{L_2}$$
 $\Delta i_{L2}^{-} = \frac{-V_0(1 - D)T}{L_2}$

$$|\Delta i_{L2}^{+}| = |\Delta i_{L2}^{-}| \qquad V_0/V_{C1} = D$$

En tensión

$$V_{in}DT = (V_{C1} - V_{in})(1-D)T$$

 $V_{C1}/V_{in} = 1/(1-D)$

$$(V_{C1} - V_0)DT = V_0(1 - D)T$$

$$V_0/V_{C1} = D$$

$$\frac{V_0}{V_{in}} = \frac{D}{(1-D)}$$

Formas de onda

Se condición de estado estacionario, donde: $V_{C1} = \langle v_{C1} \rangle$ y $V_0 = \langle v_0 \rangle$

Convertidores DC/DC. Ejercicio 2

Relación de corrientes medias

Si se asume eficiencia unitaria en el convertidor se tiene:

$$P_{in} = P_0 \qquad \bigvee V_{in} \langle i_{L1} \rangle = V_0 \langle i_{L2} \rangle$$

$$\frac{\langle i_{L1} \rangle}{\langle i_{L2} \rangle} = \frac{V_0}{V_{in}} = \frac{D}{(1-D)}$$

Otra forma

Formas de onda

Se condición de estado estacionario, donde: $V_{C1} = \langle v_{C1} \rangle$ y $V_0 = \langle v_0 \rangle$

Convertidores DC/DC. Ejercicio 2

Análisis de los diferentes estados

Estado OFF v_{L2}

Ecuaciones de estado

Е	stado	ON
$\frac{di_{L1}}{dl_{L1}}$	$=\frac{V_{in}}{}$	

$$\frac{di_{L2}}{dt} = \frac{v_{C1}}{L_2} - \frac{v_{C2}}{L_2}$$

$$\frac{dv_{C1}}{dt} = -\frac{i_{L2}}{C_1}$$

$$\frac{dv_{C2}}{dt} = \frac{i_{L2}}{C_2} - \frac{v_{C2}}{C_2 R_0}$$

Estado OFF

$$\frac{di_{L1}}{dt} = \frac{-v_{C1}}{L_1} + \frac{v_{in}}{L_1}$$

$$\frac{di_{L2}}{dt} = \frac{-v_{C2}}{L_2}$$

$$\frac{dv_{C1}}{dt} = \frac{i_{L1}}{C_1}$$

$$\frac{dv_{C2}}{dt} = \frac{i_{L2}}{C_2} - \frac{v_{C2}}{C_2 R_1}$$

Matriz
$$A_1$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1/L_2 & -1/L_2 \\ 0 & -1/C_1 & 0 & 0 \\ 0 & 1/C_2 & 0 & -1/C_2 R \end{bmatrix}$$

Vector
$$B_1^T$$

$$\begin{bmatrix} 1/L_1 & 0 & 0 & 0 \end{bmatrix}$$

Matriz
$$A_2$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1/L_2 & -1/L_2 \\ 0 & -1/C_1 & 0 & 0 \\ 0 & 1/C_2 & 0 & -1/C_2 R_0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1/L_1 & 0 \\ 0 & 0 & 0 & -1/L_2 \\ 1/C_1 & 0 & 0 & 0 \\ 0 & 1/C_2 & 0 & -1/C_2 R_0 \end{bmatrix}$$

Vector B_2^T

$$[1/L_1 \quad 0 \quad 0 \quad 0]$$

Convertidores DC/DC. Ejercicio 2

Matrices del modelo promediado

$$A = A_1 D + A_2 (1 - D) = \begin{bmatrix} 0 & 0 & -(1 - D)/L_1 & 0 \\ 0 & 0 & D/L_2 & -1/L_2 \\ (1 - D)/C_1 & -D/C_1 & 0 & 0 \\ 0 & 1/C_2 & 0 & -1/C_2 R_0 \end{bmatrix}$$

$$B = B_1 D + B_2 (1 - D) = [1/L_1 \quad 0 \quad 0 \quad 0]^T$$

$$C = C_1 D + C_2 (1 - D) = \begin{bmatrix} 0 & 0 & 0 & -1 \end{bmatrix}$$