- Taylor Polynom P(x,...,y) mit mehreren Variablen
 - nähert f(x,...,y) für die ersten Ableitungen gut an
 - $\underline{a_{n_1n_2}} = \frac{1}{n_1!n_2!} \frac{\partial^{n_1+n_2} f}{\partial x^{n_1} \partial y^{n_2}} (0,0)$

· Multinomialkoeffizient

$$\begin{array}{l} - \ \binom{n}{n_1, \dots, n_p} = \frac{n!}{n_1! \dots n_p!} \\ - \ \text{Parameteranzahl in zweiter Zeile} = \mathbf{n} \end{array}$$

- Binomialkoeffizient $\binom{n}{k} = \binom{n}{k,n-k}$
- Multinomialer Lehrsatz

Satz von Taylor

- $U \subset \mathbb{R}^p$ offen
- liegen x_0 und x_0+h samt Verbindungsstrecke in U

$$\bullet ==> f(x_0+h) = \textstyle\sum_{v=0}^n (\frac{1}{v!}(h_1\frac{\partial}{\partial x_1}+\ldots+h_p\frac{\partial}{\partial x_p})f|_{x_0}) + \frac{1}{(n+1)!}(h_1\frac{\partial}{\partial x_1}+\ldots+h_p\frac{\partial}{\partial x_p})f|_{x_0+\theta h}$$

- 1. Term Taylor-Polynom
- 2. Term Rest

Extremwerte für Funktionen \mathbb{R}^2 -> \mathbb{R}

- im eindimensionalen
 - Extremstelle, wenn f'(x)=0
 - Min/Max, wen f' (x) > < 0
- · mehrdimensionalen
 - Extremstelle, wenn Gradient von f(x)=0
 - Max, wenn Hessematrix im Punkt negativ definit

- Min, wenn Hessematrix im Punkt positiv definit
- kein Extremum, wenn indefinit
 - * sondern Sattelpunkt
- semidefinit ==> keine Aussagekraft
- Definitheit
 - * quadratische Form $Q_A(x)$

- * positiv definit <==> $Q_A(x) > 0 \forall x \neq 0$
- * negativ definit <==> $Q_A(x) < 0 \forall x \neq 0$
- * positiv semidefinit <==> $Q_A(x) \ge 0 \forall x \ne 0$
- * negativ semidefinit $<==>Q_A(x) \le 0 \forall x \ne 0$
- * ansonsten indefinit
- Rechnerische Bestimmung von Extrema im mehrdimensionalen

- Vorzeichen von Unterdeterminanten
 - * positiv def. <==> positives Vorzeichen
 - * negativ def. <==> alternierendes Vorzeichen

- Aussagekraft der Δ_i
 - * eins der $\Delta = 0 ==>$ keine Aussagekraft
 - * alle $\Delta > 0 ==> Min$

- * ungerade Δ < 0, gerade Δ > 0 ==> Max
- * ein gerades $\Delta < 0 ==>$ Sattelpunkt

[[Mehrdimensionale Differentialrechnung]]