

FastSLAM

Hakan Aşık

12.01.2020

Outline

- What is FastSLAM?
- Particle Filter workflow
- FastSLAM workflow
- Demo

FastSLAM

- Particle filter based SLAM
- Decomposes the SLAM problem into:
 - a robot localization problem, plus
 - a collection of landmark estimation problems that are conditioned on the robot pose estimate.
- Stems from the basis : all individual landmark estimation problems are independent if one knew the robot's path stand the correspondence variables not
- Reduces running time to O(M*logK) time


```
1: FastSLAM1.0_known_correspondence(z_t, c_t, u_t, \mathcal{X}_{t-1}):
                  or k = 1 to N do // loop over all particles
Let \left\langle x_{t-1}^{[k]}, \left\langle \mu_{1,t-1}^{[k]}, \Sigma_{1,t-1}^{[k]} \right\rangle, \ldots \right\rangle \text{ be particle } k \text{ in } \mathcal{X}_{t-1}
                for k = 1 to N do
                      x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t) // sample pose
                                                                                    // observed feature
5:
                      j = c_t
                      if feature j never seen before
6:
                         \mu_{j,t}^{[k]} = h^{-1}(z_t, x_t^{[k]})
H = h'(\mu_{j,t}^{[k]}, x_t^{[k]})
\Sigma_{j,t}^{[k]} = H^{-1} Q_t (H^{-1})^T
w^{[k]} = p_0
                                                                                   // initialize mean
                                                                                   // calculate Jacobian
                                                                                   // initialize covariance
                                                                                    // default importance weight
10:
11:
                        else  \hat{z}^{[k]} = h(\mu_{j,t-1}^{[k]}, x_t^{[k]}) 
 H = h'(\mu_{j,t-1}^{[k]}, x_t^{[k]}) 
 Q = H \sum_{j,t-1}^{[k]} H^T + Q_t 
 K = \sum_{j,t-1}^{[k]} H^T Q^{-1} 
 \mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]} + K(z_t - \hat{z}^{[k]}) 
 \sum_{j,k}^{[k]} = (I - K H) \sum_{j,t-1}^{[k]} 
                                                                                            // measurement prediction
                                                                                            // calculate Jacobian
                                                                                           // measurement covariance
                                                                                           // calculate Kalman gain
15:
                                                                                           // update mean
16:
                                                                                  // update covariance
17:
                          w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T\right\}
18:
                                                          Q^{-1}(z_t - \hat{z}^{[k]}) // importance factor
19:
                       endif
20:
                      for all unobserved features j' do
                     \langle \mu_{j',t}^{[k]}, \Sigma_{j',t}^{[k]} \rangle = \langle \mu_{j',t-1}^{[k]}, \Sigma_{j',t-1}^{[k]} \rangle endfor
                                                                                          // leave unchanged
21:
23:
24:
               endfor
              \mathcal{X}_t = \text{resample}\left(\left\langle x_t^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \right\rangle, \dots, w^{[k]} \right\rangle_{k=1,\dots,N}\right)
26:
               return \mathcal{X}_t
```


Odometry Model

Sample Odometry Motion Model

- Algorithm **sample_motion_model**(u_t, x_{t-1}):
- $\delta_{rot1} = \operatorname{atan2}(\overline{y}' \overline{y}, \overline{x}' \overline{x}) \overline{\theta}$
- 3. $\delta_{trans} = \sqrt{(\overline{x}' \overline{x})^2 + (\overline{y}' \overline{y})^2}$
- 4. $\delta_{rot2} = \overline{\theta}' \overline{\theta} \delta_{rot1}$
- 5. $\hat{\delta}_{rot1} = \delta_{rot1} sample(\alpha_1 \delta_{rot1}^2 + \alpha_2 \delta_{trans}^2)$
- **6.** $\hat{\delta}_{trans} = \delta_{trans} sample(\alpha_3 \delta_{trans}^2 + \alpha_4 (\delta_{rot1}^2 + \delta_{rot2}^2))$

- 9. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
- 10. $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
- II. return $[x' \ y' \ \theta']^T$

```
11:
                         else
                            \hat{z}^{[k]} = h(\mu_{j,t-1}^{[k]}, x_t^{[k]})
H = h'(\mu_{j,t-1}^{[k]}, x_t^{[k]})
Q = H \sum_{j,t-1}^{[k]} H^T + Q_t
K = \sum_{j,t-1}^{[k]} H^T Q^{-1}
\mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]} + K(z_t - \hat{z}^{[k]})
\sum_{j,t}^{[k]} = (I - K H) \sum_{j,t-1}^{[k]}
                                                                                                     // measurement prediction
                                                                                                    // calculate Jacobian
                                                                                                // measurement covariance
                                                                                                   // calculate Kalman gain
                                                                                                   // update mean
                                                                                                   // update covariance
                             w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T\right\}
18:
                                                               Q^{-1}(z_t - \hat{z}^{[k]}) // importance factor
                         endif
19:
20:
                        for all unobserved features j' do
                            \langle \mu_{j',t}^{[k]}, \Sigma_{j',t}^{[k]} \rangle = \langle \mu_{j',t-1}^{[k]}, \Sigma_{j',t-1}^{[k]} \rangle // leave unchanged
                         endfor
23:
24:
                 endfor
               \mathcal{X}_t = \text{resample}\left(\left\langle x_t^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \right\rangle, \dots, w^{[k]} \right\rangle_{k=1,\dots,N}\right)
26:
                 return \mathcal{X}_t
```

EKF Correction steps
$$K_{t} = \sum_{t}^{-} H_{t}^{T} (H_{t} \sum_{t}^{-} H_{t}^{T} + Q_{t})^{-1}$$

$$\overline{x}_{t}^{+} = \overline{x}_{t}^{-} + K_{t} (z_{t} - h(\overline{x}_{t}^{-}))$$

$$\Sigma_{t}^{+} = (I - K_{t} H_{t}) \Sigma_{t}^{-}$$


```
11:
                                     else
                                         \hat{z}^{[k]} = h(\mu_{j,t-1}^{[k]}, x_t^{[k]}) \qquad // \text{ measurement prediction}
H = h'(\mu_{j,t-1}^{[k]}, x_t^{[k]}) \qquad // \text{ calculate Jacobian}
Q = H \sum_{j,t-1}^{[k]} H^T + Q_t \qquad // \text{ measurement covariance}
K = \sum_{j,t-1}^{[k]} H^T Q^{-1} \qquad // \text{ calculate Kalman gain}
\mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]} + K(z_t - \hat{z}^{[k]}) \qquad // \text{ update mean}
\sum_{j,t}^{[k]} = (I - K H) \sum_{j,t-1}^{[k]} \qquad // \text{ update covariance}
  16:
  17:
                                          w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T\right\}
  18:
                                                                                            Q^{-1}(z_t - \hat{z}^{[k]}) // importance factor
                                     endif
   19:
  20:
                                     for all unobserved features j' do
                                           \langle \mu_{j',t}^{[k]}, \Sigma_{j',t}^{[k]} \rangle = \langle \mu_{j',t-1}^{[k]}, \Sigma_{j',t-1}^{[k]} \rangle
                                                                                                                                              // leave unchanged
 21:
 23:
                                     endfor
 24:
                          endfor
25:
                          return \mathcal{X}_t
```

Resampling of particles enables to select particles based on the current state, instead of using the particle distribution given at initialization which helps more accurate tracking and long-term performance improvements.

The minimum effective particle ratio(neff) is a measure of how well the current set of particles approximates the posterior distribution. The number of effective particles is calculated by

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} (w^i)^2}$$

The lower the neff, less contribution to the state estimation.

Resampling help closer particles to be selected so as to contribute to the current state estimation and have higher weights.

Demo

References

- 1) FastSLAM, PhD thesis, M. Montemerlo, 2002
- 2) FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, Montemerlo, Thrun, Koller and Wegbreit, 2002
- 3) Probabilistic Robotics, Thrun 2005

