MATH 601 (DUE 10/9)

HIDENORI SHINOHARA

Contents

1.	Modules	1
2.	Rings of Fractions	1
3.	The Quadratic Equation	2
4.	Factorization in Integral Domains	2

1. Modules

Exercise. (Problem 1) For each of the \mathbb{Z} -modules listed in the handout, answer the questions in the handout.

Proof.

(a) $M = \mathbb{Z}^3 \times \mathbb{Z}/86\mathbb{Z}$.

Solve this problem!

(b) $M = \prod_{n>1} \mathbb{Z}/n\mathbb{Z}$.

Solve this problem!

(c) $\underline{M} = \mathbb{Z}[1/p] \subset \mathbb{Q}$.

Solve this problem!

(d) $M = \mathbb{Q}/\mathbb{Z}_{(p)}$.

Solve this problem!

2. Rings of Fractions

Exercise. (Problem 3) Let $T \subset R$ be the subset consisting of all nonzero divisors.

- \bullet Show that T is a multiplicative set.
- Let $s \in T$ and let $S = \{1, s, s^2, s^3, \dots\} \subset T$. Show that the following rings are isomorphic: $S^{-1}R$, the subring $R[1/s] \subset T^{-1}R$, and the quotient ring R[x]/(sx-1).

Proof.

- Prove this!
- Prove this!

3. The Quadratic Equation

Exercise. (Problem 20)

Exercise. (Problem 21)

Exercise. (Problem 22)

4. Factorization in Integral Domains

Exercise. (Problem 5)

- Let k be a field and let $a \in k$. Construct a k-algebra isomorphism, $k[x,y]/(x-a) \to k[y]$. Justify your answer.
- Let $f(x,y) \in k[x,y]$. What is the image of f(x,y) under the above isomorphism?

Proof.

- Let ϕ be defined such that $\phi(f(x,y)+(x-a))=f(a,y)$. - Well-defined? Let f(x,y)+(x-a)=g(x,y)+(x-a). Then g(x,y)=f(x,y)+(x-a)
 - Well-defined? Let f(x,y) + (x-a) = g(x,y) + (x-a). Then g(x,y) = f(x,y) + h(x,y)(x-a).

$$\phi(g(x,y) + (x - a)) = \phi((f(x,y) + h(x,y)(x - a)) + (x - a))$$

$$= f(a,y) + h(a,y)(a - a)$$

$$= f(a,y)$$

$$= \phi(f(x,y)).$$

- k-algebra homomorphism? Let $c \in k, f, g \in k[x, y]$ be given.

$$\phi(c(f + (x - a))) = \phi(cf + (x - a))$$

$$= cf(a, y)$$

$$= c\phi(f + (x - a)).$$

$$\phi((f + g) + (x - a)) = (f + g)(a, y)$$

$$= f(a, y) + g(a, y)$$

$$= \phi(f + (x - a)) + \phi(g + (x - a)).$$

$$\phi((fg) + (x - a)) = (fg)(a, y)$$

$$= f(a, y)g(a, y)$$

$$= \phi(f + (x - a))\phi(g + (x - a)).$$

Exercise. (Problem 6)

• Give an example of a field k, an element $a \in k$ and a reducible polynomial $f(x, y) \in k[x, y]$ of degree n in y such that $f(a, y) \in k[y]$ is irreducible and has degree n.

- Suppose given a polynomial $f \in k[x,y]$ which when viewed as an element of k(x)[y] has degree n (in y) and content 1. Suppose there is some $a \in k$ such that $f(a,y) \in k[y]$ is irreducible and has degree n. Show that $f(x,y) \in k[x,y]$ is irreducible.
- Give an example of a field k, an element, $a \in k$, and a reducible polynomial $f(x, y) \in k[x, y]$, which when viewed as an element of k(x)[y] has degree n and content 1 such that $f(a, y) \in k[y]$ is irreducible.

Proof.

- Let $k = \mathbb{Q}$, a = 1, f(x, y) = xy. Then the degree of f(x, y) in y is 1. $f(x, y) = xy \in k[x, y]$ is reducible since x and y are not units in k[x, y]. However, f(a, y) = 1y = y is irreducible in k[y].
- Choose $f_1, \dots, f_n \in k[x]$ such that $f(x,y) = f_n(x)y^n + \dots + f_1(x)y^1 + f_0(x)$. Then $f(a,y) = f_n(a)y^n + \dots + f_1(a)y^1 + f_0(a)$. We are given that f(a,y) has degree n in y, so $f_n(a) \neq 0$. Let $h_1(x,y), h_2(x,y) \in k[x]$ be given such that $f(x,y) = h_1(x,y)h_2(x,y)$. Then $f(a,y) = h_1(a,y)h_2(a,y)$. Then $h_1(a,y)$ or $h_2(a,y)$ is a unit in k[y] since f(a,y) is irreducible in k[y]. Without loss of generality, we will assume $h_1(a,y)$ is a unit in k[y]. Then $h_1(a,y)$ is a unit in k[y].

 $\deg_y(f(a,y))$, the degree of f(a,y) in y, is n. Thus $\deg_y(h_1(a,y)) + \deg_y(h_2(a,y)) = n$. Therefore, $\deg_y(h_2(x,y)) \geq n$.

On the other hand, $\deg_y(f(x,y)) = \deg_y(h_1(x,y)) + \deg_y(h_2(x,y))$, so $\deg_y(h_2(x,y)) \le n$. Thus $\deg_y(h_2(x,y)) = n$ and this implies that $\deg_y(h_1(x,y)) = 0$. Let $g_1(x_0, \dots, g_n(x)) \in k[x]$ such that $h_2(x,y) = g_n(x)y^n + \dots + g_1(x)y^1 + g_0(x)$. Then $f(x,y) = h_1(x,y)h_2(x,y) = (h_1(x,y)g_n(x))y^n + \dots + (h_1(x,y)g_1(x))y^1 + h_1(x,y)g_0(x)$.

Since $\deg_y(h_1(x,y)) = 0$, $h_1(x,y) \in k[x]$, so $h_1(x,y)g_i(x) \in k[x]$ for each i. Therefore, $h_1(x,y)g_i(x) = f_i(x)$ for each i.

I know that the idea is that $h_1(x,y)$ divides each coefficient $f_i(x)$ and the content of f is 1, $h_1(x,y) \mid 1$, so $h_1(x,y)$ is a unit in k. However, I noticed that this problem simply says "field k" but we defined on $S^{-1}R$ where R is a UFD and $S = R \setminus \{0\}$. What's R in this case?

• Let $k = \mathbb{Q}$, a = 1, $f(x, y) = (x - 1)y^2 + y$. Then f(x, y), which when viewed as an element of k(x)[y] has degree 1. The content is 1 since

- The coefficient of y is 1, and $\operatorname{ord}_p(1) = 0$ for any p.
- -x-1 is a prime in k(x)[y] since