When dispersed teams are more successful: Theory and evidence from software

Gábor Békés*, Julian Hinz**, Miklós Koren*, Aaron Lohmann**

*CEU, KRTK and CEPR **University Bielefeld and IfW Kiel

Economics of open source

- 1. Why do people work for free? (literature in the early 2000s, not our main concern)
- 2. How do software teams form and collaborate in space? (This paper)

Why Open Source Software (OSS)?

- Software is everywhere and more specifically OSS is everywhere
 - 98% of commercial software uses OSS according to a report by Synopsis in 2023.
 - OSS is powering Machine Learning, Al development and embedded systems.
- OSS is huge
 - Hoffmann, Nagle, and Zhou (2024) estimate demand side as 8.8 triilion USD;
 GitHub nowadays has over 100 million developers
- OSS is observable
 - Due to the git paradigm almost everything is recorded!

What we see in the data: ggplot2-project as an example

Users living in cities

Figure 1: Hadley Wickham

are collaborating

Figure 2: Commits in ggplot2

earning them fame.

Figure 3: ggplot2 stars over time

Literature

- Production in teams: Jarosch, Oberfield, and Rossi-Hansberg (2021);
 Herkenhoff et al. (2024); Freund (2022); Kerr and Kerr (2018)
 Our contribution: A model for global team formation which has selection as a main mechanism.
- Gravity/International Trade: Eaton and Kortum (2002); Atkin, Chen, and Popov (2022); Head, Li, and Minondo (2019)
 Our contribution: Gravity estimates for team formation in OSS.
- OSS: Lerner and Tirole (2002); Fackler and Laurentsyeva (2020); Wachs et al.
 (2022)
 - Our contribution: Providing more descriptive statistics, making use of data and combining several data sources.

Data

GHtorrent

Metadata from the GitHub (over 95 percent of OSS projects)

- 835, 283 projects.
- 347,767 developers.
- over years from 2012 to 2019

Libraries.io

A data effort to collect upstream and downstream dependencies of OSS projects.

Analysis sample

- First quarter of each project.
- Developers who report their location.

Developers are globally dispersed

 $\textbf{Figure 4:} \ \ \mathsf{OSS} \ \ \mathsf{developers} \ \mathsf{around} \ \mathsf{the} \ \mathsf{world}$

Most developer teams are small

Number of Developers	Share		
1	0.72		
2	0.17		
3	0.06		
4	0.03		
5	0.01		

Table 1: Share of projects by number of developers.

- About 27% of projects are developed in collaborative teams.
- Team size follows a power-law like relationship.

Lots of "North-North" collaboration

Figure 5: Pairwise collaboration between top cities in JavaScript language.

A model of global team formation

Features of OSS

- Developer differ in skills (partially observable).
- Team output is uncertain.
- Developers compete for "kudos."

Endowments, technologies, and tastes

Developers have heterogenous skills Z_i which is drawn from a Fréchet distribution according to $\Pr(Z_i \leq x) = e^{-T_i x^{-\theta}}$

- observable skill T_i
- dispersion of unobserved skill $1/\theta$

Quality production function

The best idea determines software quality.

$$X_p = \max_{j \in p} \{ Z_j / \tau_{jp} \}$$

Customer happiness

Overall customer happiness convex in software quality:

Frictions

Communication

Not all good ideas are heard (language, time zone, culture, clarity). $\tau_{ip} \geq 1$ iceberg cost of turning skills into ideas.

Participation

Not all benefits of distant projects can be captured (private cost of participation, time zones, misappropriate of credit). $d_{ip} \geq 1$ iceberg cost of turning kudos into utils.

Team formation

Attribution of kudos

Developer with the "winning idea" gets all the kudos for ${\cal V}_p.$

Selection

Join if I am likely to have the winning idea \rightarrow positive selection.

$$Z_i > \frac{\tau_{ip} T_{jp}^{1/(\theta+1)}}{(\tau_{ip} d_{ip} - 1)^{1/(\theta+1)}} \xi_i$$

Team formation

Every project member has to say yes ightarrow assortative matching.

Visual representation

From theory to data

We derive the following empirical predictions from our model:

Prediction 1: Developers are **less likely** to collaborate across greater distances due to higher τ_{ip} and d_{ip} .

Prediction 2: Collaborating developers on average have higher skill.

Prediction 3: Skilled developers worked with skilled developers (PAM).

Prediction 4: Projects with **geographically diverse** teams tend to produce **higher quality** software, as measured by adoption or recognition.

Gravity approach for prediction 1

Developer i and j collaborate with probability

$$\Pr(\mathsf{Collaboration}_{ij}) = \exp(\alpha_i + \beta_j - \gamma \times \mathsf{distance}_{ij})$$

Aggregate across city pairs d and o:

$$E(N_{do, \mathrm{collab}}) = N_o \times N_d \times \exp(\tilde{\alpha}_d + \tilde{\beta}_o - \gamma \times \mathrm{distance}_{do})$$

Estimate this with Poisson maximum likelihood.

Collaboration decays with distance - Gravity approach (Prediction 1)

Figure 6: Estimates for different distance categories.

 Developers in the same city are much more likely to work on the same project.

Participation in collaboration (Prediction 2)

Figure 7: Work experience of developers who only work solo and those who work in collaboration.

- Developers who work in collaborative teams are on average more experienced.
- Experience works as a proxy here for skill.

Experienced developers work with experienced developers (Prediction 3)

 Table 2: Assortative matching in developer experience

	Experience of Developer 2 (1)
Log(Experience of Developer 1)	0.3190*** (0.0547)
Observations Squared Correlation Pseudo \mathbb{R}^2 BIC	2,518,765 0.00018 0.07283 102,122,219.0
Quarter x Language fixed effects Developer Count fixed effects	√ √

Team dispersion and quality

Poisson regression

$$\mathsf{Quality}_{pt} = \exp\left[\beta_1 \ln \mathsf{distance}_{i,j \in p} + \beta_2 \mathsf{experience}_{it} + \beta_3 \mathsf{experience}_{jt} + f(n_{pt}) + \lambda_{lt}\right] + \varepsilon_{ljt}$$

where Quality can be:

- 1. Downstream Libraries
- 2. Stars on GitHub (3 Quarters Ahead)

And fixed effects cover:

- 1. Programming language \times Quarter
- 2. Developer count n_{pt}

Higher success of dispersed teams (Prediction 4)

Table 3: Spatial dispersion and project success

	Shared as Library		Downstream Libraries		Stars on GitHub	
	(1)	(2)	(3)	(4)	(5)	(6)
Log(Distance Between Developers)	0.0321***	0.0185***	0.2638***	0.2528***	0.1792***	0.1649***
	(0.0047)	(0.0045)	(0.0386)	(0.0415)	(0.0110)	(0.0110)
Log(Max Developer Experience by Commits)		0.1326***		0.1833**		0.1494***
		(0.0104)		(0.0794)		(0.0113)
Log(Min Developer Experience by Commits + 1)		-0.0039		-0.0188		-0.0457***
		(0.0062)		(0.0299)		(0.0129)
Observations	513,197	489,211	45,045	44,030	603,918	576,324
Squared Correlation	0.07435	0.08139	0.06271	0.06792	0.01273	0.01348
Pseudo R ²	0.10285	0.10894	0.27119	0.27871	0.15470	0.16002
BIC	284,301.8	273,799.6	3,591,174.6	3,531,085.0	15,447,482.2	15,089,200.9
Quarter x Language fixed effects	✓	✓	✓	✓	✓	✓
Developer Count fixed effects	✓	✓	✓	✓	✓	✓

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Conclusion

- We build a model of global team formation centering around selection on skill.
- This selection induces a positive correlation of distance and quality for software projects.
- Predictions are consistent with data from GitHub 2019.

Next steps

- Get more data.
- Estimate key parameters with "natural experiments" (policy changes on GitHub, war in Ukraine).
- Evaluate counterfactual policies.

Appendix

Expected developer payoff from project p

$$\mathcal{U}_{ip} = \begin{cases} e^{\xi_i Z_i/\tau_{ip}} & \text{if } Z_i/\tau_{ip} > Z_j/\tau_{jp} \\ 0 & \text{otherwise} \end{cases}$$

where $\boldsymbol{\xi}_i$ is a taste parameter for enjoying kudos. In expectation,

$$U_{ip} = \mathsf{E}\,\mathcal{U}_{ip} = e^{-T_{jp}\tau_{ip}^{\theta}Z_{i}^{-\theta}}e^{\xi Z_{i}/\tau_{ip}}$$

Increases in Z_i , decreases in T_{jp} , τ_{ip} .

Team formation

Does developer i join project p?

$$U_{ip}(Z_i,T_{jp},\xi_i)> \mathrm{cost}_i(Z_i,d_{ip}):=e^{d_{ip}\xi_iZ_i}$$

Distribution cost

 $d_{ip} \geq 1$. Not all benefits of distant projects can be captured (private cost of participation, time zones, misappropriate of credit).

Gravity

$$d_{ip} = \mathsf{distance}_{ip}^{\gamma_s}$$

where γ_s may be different from γ_k

Join team p if

$$Z_i > \frac{\tau_{ip} T_{jp}^{1/(\theta+1)}}{(\tau_{ip} d_{ip} - 1)^{1/(\theta+1)}} \xi_i^{-1/(\theta+1)}$$

Selection

- 1. Better skilled developers are more likely to join.
- 2. Spatial frictions reduce team formation.
- 3. Projects with high-skilled developers are more selective.

Fréchet magic

Assume Z_i is Fréchet with parameters T_i and θ ,

 ξ_i is Weibull with κ and $\theta/(\theta+1)$. Then

$$\Pr(Z_i \leq x | i \text{ joins project } p) = e^{-T_{ip}x^{-\theta}}$$

with

$$T_{ip} = T_i + \frac{1}{\kappa} \frac{\tau_{ip}^{\theta} T_{jp}^{\theta/(\theta+1)}}{(\tau_{ip} d_{ip} - 1)^{\theta/(\theta+1)}}$$

Closing the model

Both developers want to join, knowing what to expect from the other.

Mutual coincidence of wants

$$\begin{split} T_{1p} &= T_1 + \frac{1}{\kappa} \frac{T_{2p}^{\theta/(\theta+1)}}{(d_{1p} - 1)^{\theta/(\theta+1)}} \\ T_{2p} &= T_2 + \frac{1}{\kappa} \frac{\tau_{2p}^{\theta} T_{1p}^{\theta/(\theta+1)}}{(\tau_{2p} d_{2p} - 1)^{\theta/(\theta+1)}} \end{split}$$

Team forms with probability

$$\frac{T_1}{T_{1p}}\frac{T_2}{T_{2p}}$$

References

- Atkin, David, M Keith Chen, and Anton Popov. 2022. "The Returns to Face-to-Face Interactions: Knowledge Spillovers in Silicon Valley." National Bureau of Economic Research.
- Eaton, Jonathan, and Samuel Kortum. 2002. "Technology, Geography, and Trade." *Econometrica* 70 (5): 1741–79.
- Fackler, Thomas, and Nadzeya Laurentsyeva. 2020. "Gravity in Online Collaborations: Evidence from Github." In *CESifo Forum*, 21:15–20. 03. München: ifo Institut-Leibniz-Institut für Wirtschaftsforschung an der
- Freund, Lukas. 2022. "Superstar Teams: The Micro Origins and Macro Implications of Coworker Complementarities." *Available at SSRN 4312245*.
- Head, Keith, Yao Amber Li, and Asier Minondo. 2019. "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics." *Review of Economics and Statistics* 101 (4): 713–27.