Plano de Ensino – Análise de Algoritmos

Instituto Federal de Educação, Ciência e Tecnologia de Brasília

Câmpus Taguatinga

1 Identificação da Disciplina

- Nome da Disciplina: Análise de Algoritmos;
- Curso: Bacharelado em Ciência da Computação;
- Pré-requisitos: Algoritmos e Programação de Computadores;
- Carga Horária: 72 h/a.
- Período: 2021/1;
- Professor: Daniel Saad Nogueira Nunes.

2 Bases Tecnológicas (Ementa)

Modelos computacionais. Cotas inferiores e superiores. Medidas de eficiência de algoritmos. Técnicas de projeto e análise de algoritmos. Algoritmos de ordenação e busca. Redutibilidade. Complexidade computacional. Classes de problemas. Problemas NP-completos. Tratamento de problemas NP- difíceis.

3 Objetivos e Competências

- Estudar métodos de análise de algoritmos e relações de recorrência.
- Verificar paradigmas de projeto de algoritmos.
- Detectar a dificuldade inerente de problemas.

4 Habilidades Esperadas

- Analisar as soluções propostas quanto aos recursos de tempo/espaço em termos assintóticos.
- Dominar os paradigmas de divisão e conquisa, algoritmos gulosos e programação dinâmica para projeto de algoritmos.
- Identificar a intratabilidade de problemas.

5 Conteúdo Programático

- 1. Introdução à disciplina.
- 2. Conceitos preliminares.
- 3. Notação assintótica.
- 4. Relações de recorrência.
- 5. Projeto por indução.
- 6. Algoritmos gulosos.
- 7. Programação dinâmica.
- 8. Casamento de padrões.
- 9. Compressão de dados.
- 10. Classes de complexidade P e NP.
- 11. Problemas NP-Completos.
- 12. Redução de problemas.
- 13. Tratamento de problemas difíceis.

6 Metodologias de Ensino

A metodologia de ensino tradicional é adotada na disciplina, mas com atenção de procurar instigar a participação dos alunos.

7 Recursos de Ensino

Os recursos de ensino baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

8 Avaliação

A nota da disciplina consiste em três provas.

A nota final é calculada como:

$$N_f = \frac{N_1 + N_2 + N_3}{3}$$

Onde N_1, N_2 e N_3 , correspondem as três maiores notas considerando três provas.

O aluno é considerado aprovado se, e somente se, obtiver $N_f \ge 6.0$ e presença $\ge 75\%$.

9 Observações

Será atribuída nota **ZERO** a qualquer avaliação onde for detectado plágio tanto para quem forneceu, para quem plagiou.

10 Cronograma

Segue abaixo o planejamento de atividades da disciplina (sujeito à alterações):

Bibliografia

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity - A modern approach, Cambridge University Press, 2009.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to algorithms (3. ed.)*, MIT Press, 2009.

Tabela 1: Cronograma.

Semana do dia	Conteúdo	Total de Horas
17/fev	Introdução à disciplina e Análise Assintótica	4
2/mar	Análise Assintótica	4
9/mar	Relações de Recorrência	4
16/mar	Ordenação	4
23/mar	Ordenação	4
30/mar	Exercícios	4
06/abr	Prova 1	4
13/abr	Algoritmos Gulosos	4
20/abr	Projeto por Indução	4
27/abr	Programação Dinâmica	4
04/mai	Programação Dinâmica	4
11/mai	Exercícios	4
18/mai	Prova 2	4
25/jun	As classes P e NP	4
01/jun	Problemas NP-Completos	4
08/jun	Redutibilidade	4
15/jun	Exercícios	4
22/jun	Prova 3	4
29/jun	Encerramento da Disciplina	4

Total 76

[Knu68] Donald E. Knuth, The art of computer programming, volume I: fundamental algorithms, Addison-Wesley, 1968.

[Knu69] _____, The art of computer programming, volume II: seminumerical algorithms, Addison-Wesley, 1969.

[Knu73] _____, The art of computer programming, volume III: sorting and searching, Addison-Wesley, 1973.

[Man89] Udi Manber, Introduction to algorithms - a creative approach, Addison-Wesley, 1989.

[Pap07] Christos H. Papadimitriou, Computational complexity, Academic Internet Publ., 2007.

[Ski08] Steven Skiena, The algorithm design manual (2. ed.), Springer, 2008.