## Contrastes de hipótesis: Introducción

### **Decisiones**

Ejemplo: Una empresa de telecomunicaciones recibe una partida de 100 routers cada mes. El técnico que se encarga de la recepción del material tiene la orden de rechazar entera las partidas que contengan más de un 5 % de unidades defectuosas.

El técnico toma la decisión de aceptar o rechazar la partida basándose en el análisis de una muestra aleatoria de unidades

Estas afirmaciones reciben el nombre de hipótesis y el método estadístico de toma de una decisión sobre una hipótesis recibe el nombre de contraste de hipótesis

### **Decisiones**

Para que la estadística inferencial sea útil no solo necesitamos estimar un valor sino que además tendremos que tomar una decisión apoyada en los datos (muestras) que acepte o rechace alguna afirmación relativa al valor de un parámetro

Ejemplo: Los responsables de salud pública del gobierno han determinado que el número medio de bacterias por cc en las aguas en las que se practica la recogida de moluscos para el consumo humano tiene que ser ≤ 70

Tomamos una serie de muestras de agua de una zona, y hemos de decidir so podemos recoger moluscos

### **Decisiones**

En un contraste de hipótesis, se contrastan dos hipótesis alternativas: la hipótesis nula  $H_0$  y la hipótesis alternativa  $H_1$ 

- La hipótesis alternativa H<sub>1</sub> es de la que buscamos evidencia
- La hipótesis nula H<sub>0</sub> es la que rechazaremos si obtenemos evidencia de la hipótesis alternativa
- Si no obtenemos evidencia a favor de  $H_1$ , no podemos rechazar  $H_0$  ( $\approx$  aceptamos  $H_0$ , pero es un abuso de lenguaje)

### **Ejemplos**

Los responsables de salud pública del gobierno han determinado que el número medio de bacterias por cc en las aguas en las que se practica la recogida de moluscos para el consumo humano tiene que ser ≤ 70

 $\mu=$  número media de bacterias por cc de agua

#### Contraste:

$$\begin{cases} H_0: \mu \leqslant 70 \\ H_1: \mu > 70 \end{cases}$$

Decisión: Tomaremos algunas muestras y calcularemos la media muestral del nombre de bacterias por cc. Si es bastante grande, lo consideraremos como una evidencia de  $H_1$ , y si no, aceptaremos  $H_0$ .

### **Decisiones**

Un contraste de hipótesis

$$\begin{cases} H_0 : \text{hipótesis nula} \\ H_1 : \text{hipótesis alternativa} \end{cases}$$

consiste en plantear:

- Hipótesis nula H<sub>0</sub>: Es la hipótesis que "por defecto" aceptamos como verdadera, y que rechazamos si hay pruebas en contra
- Hipótesis alternativa  $H_1$ : Es la hipótesis contra la que contrastamos la hipótesis nula y que aceptamos cuando rechazamos la nula

y generar una regla de decisión para rechazar o no la hipótesis nula a partir de la información contenida en una muestra

### **Ejemplos**

Un técnico recibe una partida de 100 routers cada mes. El técnico tiene la orden de rechazar entera las partidas que contengan más de un 5 % de unidades defectuosas.

p = proporción de unidades defectuosas

Contraste:

$$\begin{cases} H_0: p \le 0.05 \\ H_1: p > 0.05 \end{cases}$$

Decisión: El encargado comprueba algunas unidades y calcula la proporción muestral de routers defectuosos. Si es bastante grande, lo considerará una evidencia de  $H_1$ , y si no, aceptará  $H_0$ .

### **Ejemplo**

La parábola del juicio y el contraste de hipótesis En un juicio, tenemos que declarar a un acusado inocente o culpable

Contraste:

$$\begin{cases} H_0 : El \text{ acusado es inocente} \\ H_1 : El \text{ acusado es culpable} \end{cases}$$

Las pruebas son los elementos de la muestra

Si el jurado encuentra suficiente mente incriminatorias las pruebas, declara culpable al acusado (rechaza  $H_0$  en favor de  $H_1$ )

Si no las encuentra suficientemente incriminatorias, le declara no culpable (no rechaza  $H_0$ )

Considerar no culpable  $\neq$  declarar inocente

### ¿Cómo escoger $H_0$ y $H_1$ ?

Las pruebas tienen que aportar evidencia de  $H_1$ , lo que nos permitirá rechazar  $H_0$ 

Es imposible encontrar evidencia de que  $\mu=$  lo que sea, en cambio sí que es puede demostrar que  $\mu>$ , o que  $\mu<$ , o que  $\mu\neq$  lo que sea

Ejemplo: ¿Es  $e^{\pi\sqrt{163}} = 262537412640768744$ ? Si calculamos

262537412640768743.999999999 ... 9999 ... 250072597198 ...

Hemos demostrado que no; pero, para demostrar que sí, tendríamos que haber calculado infinitas cifras decimales

### ¿Cómo elegir H<sub>0</sub>?

#### Ejemplos

 Queremos decidir si la media es más pequeña que 2 o no

$$\begin{cases} H_0: \mu = 2 \text{ (o } \mu \geqslant 2) \\ H_1: \mu < 2 \end{cases}$$

 Queremos decidir si la media es igual o diferente de 5

$$\begin{cases} H_0: \mu = 5 \\ H_1: \mu \neq 5 \end{cases} \circ \begin{cases} H_0: \mu \neq 5 \\ H_1: \mu = 5 \end{cases}?$$

 Queremos decidir si la media es igual o diferente de 5

$$\begin{cases}
H_0: \mu = 5 \\
H_1: \mu \neq 5
\end{cases}$$

## ¿Cómo escoger $H_0$ y $H_1$ ?

Las pruebas han de poder dar evidencia de  $H_1$ , lo que permitirá rechazar  $H_0$ 

Es imposible encontrar evidencia de que  $\mu=$  lo que sea, en cambio sí que es puede demostrar que  $\mu>$ , o que  $\mu<$ , o que  $\mu\neq$  lo que sea

En este contexto:

- $H_1$  se define con >, <, o  $\neq$
- $H_0$  se define con =,  $\leq$ , o  $\geq$
- H<sub>1</sub> es la hipótesis de la que podemos hallar pruebas incriminatorias, H<sub>0</sub> la que estamos dispuestos a aceptar si no hay pruebas en contra

### Tipos de hipótesis alternativas

- Hipótesis unilateral (one-sided; también de una cola, one-tailed):  $H: \theta > \theta_0$ ,  $H: \theta < \theta_0$
- Hipótesis bilateral (two-sided; también de dos colas, two-tailed):  $H: \theta \neq \theta_0$

Los tests suelen tomar el nombre de la hipótesis alternativa: test unilateral, test de dos colas,...

### Tipos de errores

| Decisión       | Realidad           |                |
|----------------|--------------------|----------------|
|                | $H_0$ cierta       | $H_0$ falsa    |
| Aceptar $H_0$  | Dec. correcta      | Error Tipos II |
|                | Prob= $1 - \alpha$ | $Prob = \beta$ |
| Rechazar $H_0$ | Error Tipos I      | Dec. correcta  |
|                | $Prob = \alpha$    | $Prob=1-\beta$ |

• Error de Tipos I: Rechazar  $H_0$  cuando es cierta  $P(\text{Error Tipos I}) = P(\text{Rechazar } H_0 \mid H_0 \text{ cierta}) = \alpha$   $\alpha$  es el nivel de significación del contraste

### Tipos de errores

En un juicio, se declarar un acusado inocente o culpable Contraste:

 $\begin{cases} H_0 : El \text{ acusado es inocente} \\ H_1 : El \text{ acusado es culpable} \end{cases}$ 

Error de Tipo I: Declarar culpable un inocente Error de Tipo II: Declarar no culpable un culpable Es peor el error de Tipo I, conviene minimizarlo

## Tipos de errores

| Decisión       | Realidad           |                   |
|----------------|--------------------|-------------------|
|                | $H_0$ cierta       | $H_0$ falsa       |
| Aceptar $H_0$  | Dec. correcta      | Error Tipos II    |
|                | Prob= $1 - \alpha$ | $Prob = \beta$    |
| Rechazar $H_0$ | Error Tipos I      | Dec. correcta     |
|                | $Prob = \alpha$    | Prob= $1 - \beta$ |

• Error de Tipos II: Aceptar  $H_0$  cuando es falsa  $P(\text{Error Tipos II}) = P(\text{Aceptar } H_0 | H_0 \text{ falsa}) = \beta$   $1 - \beta = P(\text{Rechazar } H_0 | H_0 \text{ falsa})$  es la potencia del contraste

### Tipos de errores

Lo más conveniente es encontrar una regla de rechazo de  $H_0$  que tenga poca probabilidad de Error de Tipo I,  $\alpha$ 

Pero también querríamos minimizar la probabilidad de Error de Tipo II,  $\beta$ 

Problema: cuando hacemos disminuir  $\alpha$ , suele aumentar  $\beta$ 

#### ¿Qué se suele hacer?

- Encontrar una regla de decisión para a un  $\alpha$  máximo fijado
- ② Después, si es posible, controlar la tamaño n de la muestra para minimizar  $\beta$

### Tipos de errores

¿Qué se suele hacer?

- Encontrar una regla de decisión para a un  $\alpha$  máximo fijado
- 2 Después, si es posible, controlar la tamaño n de la muestra para minimizar  $\beta$

Este caso solo lo veremos en una de las lecciones de AprendeR2

# Ejemplo: C.H. para a $\mu$ de normal con $\sigma$ conocida

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

Si  $H_0$  es verdadera,

$$Z=rac{\overline{X}-\mu_0}{rac{\sigma}{\sqrt{n}}}\sim \mathit{N}(0,1)$$

Entonces, la regla consistirá en rechazar  $H_0$  si el estadístico de contraste Z es mayor que un cierto umbral, que determinaremos con  $\alpha$ 

## Ejemplo: C.H. para a $\mu$ de normal con $\sigma$ conocida

Sea X una v.a.  $N(\mu, \sigma)$  con  $\mu$  desconocida y  $\sigma$  conocida Sea  $X_1, \ldots, X_n$  una m.a.s. de X de tamaño nConsideremos el contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

Idea: Rechazarnos  $H_0$  en favor de  $H_1$  si  $\overline{X}$  es bastante más grande que  $\mu_0$ 

# Ejemplo: C.H. para la media $\mu$ de normal con $\sigma$ conocida

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

Queremos

$$\alpha = P(\text{rechazar } H_0 | H_0 \text{ cierto }) = P(Z > \text{umbral })$$
  
 $\implies 1 - \alpha = P(Z \leqslant \text{umbral }) \implies \text{umbral } = z_{1-\alpha}$ 

por lo tanto, para que el nivel de significación del contraste sea  $\alpha$ , la regla de rechazo tiene que ser

$$Z > z_{1-\alpha}$$

Rechazamos 
$$H_0$$
 si  $\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > z_{1-\alpha}$ 

# Ejemplo: C.H. para a $\mu$ de normal con $\sigma$ conocida

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$$



### Terminología

#### Dado un contraste:

- Estadístico de contraste: el que nos permite definir una regla de rechazo de  $H_0$
- Nivel de significación  $\alpha$ : la probabilidad (máxima) de error de Tipo l
- Región crítica o de rechazo: si el estadístico de contraste pertenece a la región crítica, entonces rechazamos H<sub>0</sub>
- Región de aceptación: el complementario de la región crítica

# Ejemplo: C.H. para la media $\mu$ de normal con $\sigma$ conocida

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$$



### Terminología

#### Dado un contraste:

• Intervalo de confianza del  $(1-\alpha) \cdot 100$ %: un intervalo en el que el parámetro poblacional tiene probabilidad  $1-\alpha$  de pertenecer (en el sentido de los intervalos de confianza del tema anterior)

Se suele obtener imponiendo que el estadístico pertenezca a la región de aceptación para al nivel de significación  $\alpha$  y despejando el parámetro

# Ejemplo: C.H. para a $\mu$ de normal con $\sigma$ conocida

Si la población es normal con  $\sigma$  conocida, un contraste al nivel de significación  $\alpha$  de

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

tiene

- Estadístico de contraste:  $Z = \frac{\overline{X} \mu_0}{\frac{\sigma}{\sqrt{n}}}$
- Región crítica:  $]z_{1-\alpha}, \infty[$
- Región de aceptación:  $]-\infty, z_{1-\alpha}]$
- Regla de decisión: rechazar  $H_0$  si  $Z > z_{1-\alpha}$

### **Ejemplo**

Sea X una población normal con  $\sigma=1.8$ . Queremos hacer el contraste

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

con un nivel de significación de 0.05

Tomamos una m.a.s. de n=25 observaciones y obtenemos  $\overline{x}=20.25$ 

¿Qué decidimos?

## Ejemplo: C.H. para a $\mu$ de normal con $\sigma$ conocida

• Intervalo de confianza:

$$Z \leqslant z_{1-\alpha} \iff \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \leqslant z_{1-\alpha}$$

$$\iff \mu_0 \geqslant \overline{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\iff \mu_0 \in \left[\overline{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty\right[$$

Es

$$\left[\overline{X}-z_{1-\alpha}\cdot\frac{\sigma}{\sqrt{n}},\infty\right[$$

• Regla de decisión II: rechazar  $H_0$  si el  $\mu_0$  contrastado no pertenece al intervalo de confianza

### **Ejemplo**

$$\begin{cases} H_0: \mu=20\\ H_1: \mu>20 \end{cases}$$
  $\alpha=0.05, \ \sigma=1.8, \ n=25, \ \overline{x}=20.25$ 

- Estadístico de contraste:  $Z = \frac{\overline{X} 20}{\frac{1.8}{\sqrt{25}}}$
- Toma el valor  $z_0 = \frac{20.25 20}{\frac{1.8}{\sqrt{25}}} = 0.694$
- Región crítica:  $]z_{1-0.05}, \infty[=]1.64, \infty[$
- Decisión: Como que 0.694 < 1.64, no podemos rechazar  $H_0$

### **Ejemplo**

$$\begin{cases} H_0: \mu=20\\ H_1: \mu>20 \end{cases}$$
  $\alpha=0.05,\ \sigma=1.8,\ n=25,\ \overline{x}=20.25$ 

• Intervalo de confianza:

$$\left[\overline{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty\right] = [19.66, \infty]$$

• Decisión: Como que 20 pertenece al intervalo de confianza, no podemos rechazar  $H_0$ 

### **Ejemplo**

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

$$\alpha = 0.05$$
,  $\sigma = 1.8$ ,  $n = 25$ ,  $\bar{x} = 20.75$ 

- Estadístico de contraste:  $Z = \frac{\overline{X} 20}{\frac{1.8}{\sqrt{25}}}$
- Toma el valor  $z_0 = \frac{20.75 20}{\frac{1.8}{\sqrt{25}}} = 2.083$
- Región crítica:  $]z_{1-0.05}, \infty[=]1.64, \infty[$
- Intervalo de confianza:  $[\overline{X} z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty[= [20.16, \infty[$
- Decisión: Rechazamos  $H_0$ : Concluimos que  $\mu > 20$

## **Ejemplo**

Sea X una población normal con  $\sigma=1.8$ . Queremos hacer el contraste

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

con un nivel de significación de 0.05

Tomamos una m.a.s. de n=25 observaciones y obtenemos  $\overline{x}=20.75$ 

¿Qué decidimos?

### **Ejemplo**

Sea X una población normal con  $\sigma=1.8$ . Queremos hacer el contraste

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

con un nivel de significación de 0.05

Tomamos una m.a.s. de n=25 observaciones y obtenemos  $\overline{x}=19.75$ 

¿Qué decidimos?

Queremos rechazar  $H_0$  contra  $H_1$ , si  $\overline{x} < 20$ ? (Ejercicio: Haced el cálculo, si no nos creéis)

# Ejemplo: C.H. para a $\mu$ de normal con $\sigma$ conocida

Sea X una v.a.  $N(\mu, \sigma)$  con  $\mu$  desconocida y  $\sigma$  conocida Sea  $X_1, \ldots, X_n$  una m.a.s. de X de tamaño nConsideremos el contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}$$

rechazar  $H_0$  si  $Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$  es inferior a un cierto umbral, que determinaremos con  $\alpha$ 

# Ejemplo: C.H. para la media $\mu$ de una población normal con $\sigma$ conocida

Sea X una v.a.  $N(\mu, \sigma)$  con  $\mu$  desconocida y  $\sigma$  conocida Sea  $X_1, \ldots, X_n$  una m.a.s. de X de tamaño nConsideremos el contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$

Rechazar  $H_0$  si  $Z=\dfrac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}$  está a bastante lejos de de 0, y la determinaremos con el valor de  $\alpha$ 

# Ejemplo: C.H. para una media poblacional $\mu$ de una distribución normal con $\sigma$ conocida

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}$$

Queremos

$$\alpha = P(\text{rechazar } H_0 | H_0 \text{ cierta})$$
  
=  $P(Z < \text{umbral}) \Longrightarrow \text{umbral} = z_{\alpha}$ 

por lo tanto, para que el nivel de significación del contraste Sea  $\alpha$ , la regla de rechazo tiene que ser

$$Z < z_{\alpha}$$

La Región crítica es  $]-\infty, z_{\alpha}[$ 

# Ejemplo: C.H. para la media $\mu$ de una población normal con $\sigma$ conocida

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

Queremos

$$\begin{array}{ll} \alpha &= P(\operatorname{rechazar}\ H_0|H_0\ \operatorname{cierta}\ )\\ &= P(Z < -\operatorname{umbral}\ \ o\ Z > \operatorname{umbral}\ )\\ &= P(Z < -\operatorname{umbral}\ ) + P(Z > \operatorname{umbral}\ )\\ &= 2P(Z > \operatorname{umbral}\ ) = 2(1 - P(Z < \operatorname{umbral}\ ))\\ &\Longrightarrow P(Z < \operatorname{umbral}\ ) = 1 - \frac{\alpha}{2}\\ &\Longrightarrow \operatorname{umbral}\ = z_{1-\frac{\alpha}{2}} \end{array}$$

# Ejemplo: C.H. para la media $\mu$ de una población normal con $\sigma$ conocida

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$

ahora para que el nivel de significación del contraste sea  $\alpha$ , la regla de rechazo tiene que ser

$$Z<-z_{1-rac{lpha}{2}}=z_{rac{lpha}{2}}$$
 o  $Z>z_{1-rac{lpha}{2}}$ 

La región crítica es  $]-\infty,z_{\frac{\alpha}{2}}[\cup]z_{1-\frac{\alpha}{2}},\infty[$ 

# Ejemplo: C.H. para la media $\mu$ de una población normal con $\sigma$ conocida

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$



# Ejemplo: C.H. para la media $\mu$ de una población normal con $\sigma$ conocida

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$



# Ejemplo: C.H. para la media $\mu$ de una población normal con $\sigma$ conocida

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

¿Intervalo de confianza?

$$-z_{1-\frac{\alpha}{2}} \leqslant Z \leqslant z_{1-\frac{\alpha}{2}} \iff -z_{1-\frac{\alpha}{2}} \leqslant \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \leqslant z_{1-\frac{\alpha}{2}}$$

$$\iff -z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \overline{X} - \mu_0 \leqslant z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$\iff \overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leqslant \mu_0 \leqslant \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$\iff \mu_0 \in \left[\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$$

¿Os recuerda a algo. . . ?

### **Ejemplo**

Sea X una población normal con  $\sigma=1.8$ . Queremos realizar el contraste

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu \neq 20 \end{cases}$$

con un nivel de significación de 0.05

Tomamos una m.a.s. de n=25 observaciones y obtenemos  $\overline{x}=20.5$ 

¿Qué decidimos?

### El p-valor

El p-valor o valor crítico (p-value) de un contraste es la probabilidad que, si  $H_0$  es verdadera, el estadístico de contraste tome un valor tan extremo o más que el que se ha observado

Ejemplo: En un contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

si el estadístico Z tiene el valor  $z_0$ ,

$$p$$
-valor =  $P(Z \geqslant z_0)$ 

### **Ejemplo**

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu \neq 20 \end{cases}$$

$$\alpha = 0.05, \ \sigma = 1.8, \ n = 25, \ \overline{x} = 20.5$$

- Estadístico de contraste:  $Z = \frac{\overline{X} 20}{\frac{1.8}{\sqrt{25}}}$
- Toma el valor  $z_0 = \frac{20.5 20}{\frac{1.8}{\sqrt{25}}} = 1.39$
- Región crítica:  $]-\infty, z_{0.025}[\cup]z_{0.975}, \infty[=]-\infty, -1.96[\cup]1.96, \infty[$
- Intervalo de confianza: [19.794, 21.206]
- Decisión: No podemos rechazar  $H_0$

## El p-valor

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$$



## El p-valor

El p-valor o valor crítico (p-value) de un contraste es la probabilidad que, si  $H_0$  es verdadera, el estadístico de contraste tome un valor tan extremo o más que el que se ha observado

Ejemplo: En un contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}$$

si el estadístico Z es  $z_0$ ,

$$p$$
-valor =  $P(Z \leqslant z_0)$ 

### El p-valor

El p-valor o valor crítico (p-value) de un contraste es la probabilidad que, si  $H_0$  es verdadera, el estadístico de contraste tome un valor tan extremo o más que el que se ha observado

Ejemplo: En un contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$

si el estadístico Z ha dado  $z_0$ ,

p-valor = 
$$2 \cdot m \in \{P(Z \leq -|z_0|), P(Z \geqslant |z_0|)\}$$
  
=  $2 \cdot P(Z \geqslant |z_0|)$ 

### El *p*-valor

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}$$



## El p-valor

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$





### El p-valor

El p-valor o valor crítico (p-value) de un contraste es la probabilidad que, si  $H_0$  es verdadera, el estadístico de contraste tome un valor tan extremo o más que el que se ha observado

Es una medida inversa de la fuerza de las pruebas o evidencias que hay en contra de  $H_1$ : si  $H_0$  es verdadera, cuanto más pequeño sea el p-valor, más improbable es observar lo que hemos observado.

en consecuencia, cuanto más pequeño sea el p-valor, con más fuerza podemos rechazar  $H_0$ .

### El p-valor

### [Importante]

En un contraste con nivel de significación  $\alpha$ ,

- rechazamos  $H_0$  si p-valor  $< \alpha$
- aceptamos  $H_0$  si  $\alpha \leqslant p$ -valor

Ejemplo: En un contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

supongamos que el estadístico Z vale  $z_0$ . El p-valor es  $P(Z \geqslant z_0)$ 

Rechazamos 
$$H_0 \iff z_0 > z_{1-\alpha}$$
  
 $\iff P(Z \geqslant z_0) < P(Z \geqslant z_{1-\alpha}) = 1 - (1-\alpha) = \alpha$ 

### El p-valor

por ejemplo tomemos, p-valor = 0.03

- Significa que la probabilidad que, si H<sub>0</sub> es verdadera, el estadístico de contraste tome un valor tan extremo o más que el que ha pres es 0.03 (pequeño: evidencia que H<sub>0</sub> es falsa)
- No significa:
  - La probabilidad que  $H_0$  Sea verdadera es 0.03
  - H<sub>0</sub> es verdadera un 3 % de les veces

### El p-valor

### ilmportante!

En un contraste con nivel de significación  $\alpha$ ,

- rechazamos  $H_0$  si p-valor  $< \alpha$
- aceptamos  $H_0$  si  $\alpha \leqslant p$ -valor

Ejemplo: En un contraste

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu \neq \mu_0
\end{cases}$$

supongamos que el estadístico Z vale  $z_0 > 0$ . El p-valor es  $2P(Z \geqslant z_0)$ 

Rechazamos 
$$H_0 \iff z_0 > z_{1-\frac{\alpha}{2}}$$
  
 $\iff 2P(Z \geqslant z_0) < 2P(Z \geqslant z_{1-\frac{\alpha}{2}}) = 2(1-(1-\frac{\alpha}{2})) = \alpha$ 

### El p-valor

### Importante!

En un contraste con nivel de significación  $\alpha$ ,

- rechazamos  $H_0$  si p-valor  $< \alpha$
- aceptamos  $H_0$  si  $\alpha \leqslant p$ -valor

El p-valor de un contraste es

- El nivel de significación  $\alpha$  más pequeño para el que rechazamos la hipótesis nula
- El nivel de significación  $\alpha$  más grande para el que aceptaríamos la hipótesis nula
- La probabilidad mínima de error de Tipo I que permitimos si rechazamos la hipótesis nula con el valor del estadístico de contraste obtenido
- La probabilidad máxima de error de Tipo I que permitimos si aceptamos la hipótesis nula con el valor del estadístico de contraste obtenido

## **Ejemplo**

Sea X una población normal con  $\sigma=1.8$ . Queremos hacer el contraste

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

Tomamos una m.a.s. de n=25 observaciones y obtenemos  $\bar{x}=20.25$ 

¿ Qué decidimos?

No tenemos  $\alpha$ : Observamos el p-valor

### El *p*-valor

### ¡Importante!

Si no establecemos un nivel de significación  $\alpha$ , entonces

- Aceptamos  $H_0$  si el p-valor es "grande" ( $\geqslant 0.1$ )
- Rechazamos  $H_0$  si el p-valor es "pequeño" (< 0.05). En este caso, el p-valor es
  - Significativo si es < 0.05
  - Fuertemente significativo si es < 0.01
  - Muy significativo si es < 0.001

Si el *p*-valor está entre 0.05 y 0.1 y no tenemos nivel de significación, se requieren; estudios posteriores para tomar una decisión ("la zona crepuscular, twilight zone")

### **Ejemplo**

• Estadístico de contraste: 
$$Z = \frac{\overline{X} - 20}{\frac{1.8}{\sqrt{25}}}$$

Toma el valor 
$$z_0 = \frac{20.25 - 20}{\frac{1.8}{\sqrt{25}}} = 0.694$$

- p-valor=  $P(Z \ge 0.694) = 0.2438 > 0.1$  gran
- Decisión: No podemos rechazar H<sub>0</sub>

### **Ejemplo**

Sea X una población normal con  $\sigma=1.8$ . Queremos hacer el contraste

$$\begin{cases} H_0: \mu = 20 \\ H_1: \mu > 20 \end{cases}$$

Tomamos una m.a.s. de n = 25 observaciones y obtenemos  $\overline{x} = 20.75$ 

¿Qué decidimos?

### **Decisiones**

Podemos decidir un contraste:

- con la regio crítica: Si el estadístico de contraste cae dentro la Región crítica para al nivel de significación  $\alpha$ , rechazamos $H_0$
- con el intervalo de confianza: Si el parámetro poblacional a contrastar cae dentro el intervalo de confianza para al nivel  $(1-\alpha)\cdot 100\,\%$ , aceptamos  $H_0$
- con el p-valor: Si el p-valor es más pequeño que el nivel de significación  $\alpha$ , rechazamos  $H_0$
- con el p-valor y sin  $\alpha$ : Si el p-valor es pequeño, rechazamos  $H_0$ , y si es grande, aceptamos

Aquí utilizaremos el *p*-valor

## **Ejemplo**

• Estadístico de contraste: 
$$Z = \frac{\overline{X} - 20}{\frac{1.8}{\sqrt{25}}}$$

Toma el valor 
$$z_0 = \frac{20.75 - 20}{\frac{1.8}{\sqrt{25}}} = 2.083$$

- p-valor=  $P(Z \ge 2.083) = 0.0186$  pequeño
- Decisión: Rechazamos  $H_0$  contra  $H_1$

# El método de los seis pasos (con $\alpha$ )

- 1) Establecer la hipótesis nula  $H_0$  y la hipótesis alternativa  $H_1$
- 2) Fijar un nivel de significación  $\alpha$
- 3) Seleccionar el estadístico de contraste apropiado
- 4) Calcular el valor del estadístico de contraste a partir de les datos muestrales
- 5) Calcular el p-valor del contraste
- 6) Decisión: rechazar  $H_0$  en favor de  $H_1$  si el p-valor es más pequeño que  $\alpha$ ; en caso contrario, aceptar  $H_0$

# El método de los cinco pasos (sin $\alpha$ )

- 1) Establecer la hipótesis nula  $H_0$  y la hipótesis alternativa  $H_1$
- 2) Seleccionar el estadístico de contraste apropiado
- 3) Calcular el valor del estadístico de contraste a partir de los valores de la muestra
- 4) Calcular el p-valor del contraste
- 5) Decisión: rechazar  $H_0$  en favor de  $H_1$  si el p-valor es pequeño (< 0.05), aceptar  $H_0$  si el p-valor es grande ( $\geqslant 0.1$ ), y ampliar el estudio si el p-valor está entre 0.05 y 0.1

### Ejemplo: con $\alpha$

Tomamos un nivel de significación  $\alpha = 0.05$ 

EL estadístico de contraste es

$$Z = \frac{\overline{X} - 7}{0.89/\sqrt{100}} = \frac{\overline{X} - 7}{0.089}$$

El valor en este contraste es  $z_0 = \frac{71.8 - 70}{0.89} = 2.02$ 

El p-valor es

$$P(Z \geqslant 2.02) = 0.0217$$

Como 0.0217 <  $\alpha$ , rechazamos  $H_0$ : concluimos que  $\mu > 70$ 

### **Ejemplo**

Los años de vida de un router sigue aproximadamente una ley de distribución normal con  $\sigma=0.89$  años

Una muestra aleatoria de la duración de 100 aparatos ha dado una vida media de 7.18 años

Queremos decidir si la vida media en de estos routers es superior a 7 años

utilizaremos el contraste

$$\begin{cases}
H_0: \mu = 7 \\
H_1: \mu > 7
\end{cases}$$

### Ejemplo: con $\alpha$

Supongamos que tomamos un nivel de significación  $\alpha=0.01$ 

El estadístico de contraste es

$$Z = \frac{\overline{X} - 70}{6.8/\sqrt{100}} = \frac{\overline{X} - 70}{0.68}$$

El valor del estadístico de contraste con esta muestra es  $z_0 = \frac{71.8 - 70}{0.68} = 2.022$ 

El p-valor es

$$P(Z \geqslant 2.022) = 0.0217$$

Como  $0.0217 > \alpha$ , no podemos rechazar  $H_0$ : concluimos que  $\mu \leqslant 70$  con este nivel de significación

### Ejemplo: $\sin \alpha$

El estadístico de contraste es

$$Z = \frac{\overline{X} - 70}{6.8/\sqrt{100}} = \frac{\overline{X} - 70}{0.68}$$

Su valor en este contraste es  $z_0 = \frac{71.8 - 70}{0.68} = 2.022$ 

El p-valor es

$$P(Z > 2.022) = 0.0216$$

Como es pequeño (< 0.05), rechazamos  $H_0$ : concluimos que  $\mu > 70$ 

## Un último consejo

Como una regla recomendaríamos en un informe:

- Si tenemos fijado (conocemos)  $\alpha$ : Encontrar el p-valor y el intervalo de confianza del contraste para  $\alpha$  dado (nivel de confianza  $(1 \alpha) \cdot 100 \%$ )
- Si no tenemos fijado (no conocemos)  $\alpha$ : Encontrar el p-valor, y el intervalo de confianza del contraste al nivel de confianza 95 %