Les algorithmes de calcul des problèmes d'équilibre liquide-vapeur

L'état d'équilibre d'un mélange est parfaitement déterminé quand on connait :

- La température T;
- La pression p;
- Les compositions de la phase liquide x_i et de la phase vapeur y_i en équilibre,

Ces variables sont liées par les relations suivantes

$$\begin{cases} \gamma_1(T, p, x) \times x_1 \times p_1^{\sigma} = y_1 \times p \\ \gamma_2(T, p, x) \times x_2 \times p_2^{\sigma} = y_2 \times p \\ x_1 + x_2 = 1 \\ y_1 + y_2 = 1 \end{cases}$$

Le tableau ci-dessous indique les problèmes les plus usuels d'équilibre liquide-vapeur,

Données	Résultats	Algorithme
T, xi	p, yi	point de bulle isotherme
p, xi	T, yi	point de bulle isobare
T, yi	p, xi	point de rosée isotherme
p, yi	T, xi	point de rosée isobare
p, T	xi, yi	flash

Algorithmes de calcul des problèmes d'équilibre liquide-vapeur

Soit le système méthanol(1)- acétate de méthyle (2)

Les coefficients d'activité sont calculées en utilisant les relations suivantes :

$$Ln(\gamma_1) = A \times x_2^2$$

$$Ln(\gamma_2) = A \times x_1^2$$

$$A = 2,771 - 0,00523 \times T$$

Les pressions de vapeurs saturantes :
$$Ln(p_1^{\sigma}) = 16,59158 - \frac{3643,31}{T - 33,424}$$

 $Ln(p_2^{\sigma}) = 14,25326 - \frac{2665,54}{T - 53,424}$

T en K et p en kPa,

Supposons la validité du modèle : $x_i \times \gamma_i \times p_i^{\sigma} = y_i \times p$ calculer :

a) p et
$$\{y_i\}$$
 pour T= 318,15 K et $x_1 = 0.25$,

b) p,
$$\{x_i\}$$
 pour T = 318,15 K et $y_1 = 0.60$,

c) T,
$$\{y_i\}$$
 pour p =101,33 kPa et $x_1 = 0.85$,

d) T,
$$\{x_i\}$$
 pour p =101,33 kPa et $y_1 = 0.40$,

Les algorithmes de calcul des problèmes d'équilibre liquide-vapeur

a) p et $\{y_i\}$ pour T= 318,15 K et $x_1 = 0.25$,

$$\begin{cases} \gamma_1 \times x_1 \times p_1^{\sigma} = y_1 \times p \\ \gamma_2 \times x_2 \times p_2^{\sigma} = y_2 \times p \\ x_1 + x_2 = 1 \\ y_1 + y_2 = 1 \end{cases}$$

Pour T= 318,15 K

Pour
$$x_1 = 0.25$$

$$Ln(p_1^{\sigma}) = 16,59158 - \frac{3643,31}{T - 33,424}$$
$$Ln(p_2^{\sigma}) = 14,25326 - \frac{2665,54}{T - 53,424}$$

$$A = 2,771 - 0,00523 \times T$$

$$Ln(\gamma_1) = A \times (1 - x_1)^2$$

$$Ln(\gamma_2) = A \times x_1^2$$

$$p = \gamma_1 \times x_1 \times p_1^{\sigma} + \gamma_2 \times x_2 \times p_2^{\sigma}$$
$$y_1 = \frac{\gamma_1 \times x_1 \times p_1^{\sigma}}{p}$$

Les algorithmes de calcul des problèmes d'équilibre liquide-vapeur

b) p,
$$\{x_i\}$$
 pour T = 318,15 K et $y_1 = 0.60$,

$$\begin{cases} \gamma_1 \times x_1 \times p_1^{\sigma} = y_1 \times p \\ \gamma_2 \times x_2 \times p_2^{\sigma} = y_2 \times p \\ x_1 + x_2 = 1 \\ y_1 + y_2 = 1 \end{cases}$$

$$x_1 = \frac{y_1 \times p}{\gamma_1 \times p_1^{\sigma}}$$

$$x_2 = \frac{y_2 \times p}{\gamma_2 \times p_2^{\sigma}}$$

$$x_1 + x_2 = 1 \qquad 1 = \frac{y_1 \times p}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2 \times p}{\gamma_2 \times p_2^{\sigma}}$$

$$p = \frac{1}{\frac{y_1}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2}{\gamma_2 \times p_2^{\sigma}}}$$

$$Ln(p_i^{\sigma}) = A_i - \frac{B_i}{C_i + T_i}$$

Lecture de T et {v_i}

Initialiser $y_i = 1$

1- Évaluer $\{p_i^{\sigma}\}$

2- Calculer:
$$p = \frac{1}{\frac{y_1}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2}{\gamma_2 \times p_2^{\sigma}}}$$

3- Calculer
$$\{\mathbf{x}_i\}$$
: $x_i = \frac{y_i \times p}{\gamma_i \times p_i^{\sigma}}$

4- Évaluer {⅓}

5- Calculer:
$$p = \frac{1}{\frac{y_1}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2}{\gamma_2 \times p_2^{\sigma}}}$$

6- Calculer
$$\{\mathbf{x}_i\}$$
: $x_i = \frac{y_i \times p}{\gamma_i \times p_i^{\sigma}}$

7- Normalisation des {x_i}

8- Évaluer $\{\gamma_i\}$

9- Calculer:
$$p = \frac{1}{\frac{y_1}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2}{\gamma_2 \times p_2^{\sigma}}}$$

10-Tester $\delta p < \varepsilon$ oui \Rightarrow affichage de p, $\{x_i\}$

Non → aller à 6-

Les algorithmes de calcul des problèmes d'équilibre liquide-vapeur

c) T, $\{y_i\}$ pour p =101,33 kPa et $x_1 = 0.85$,

$$\begin{cases} \gamma_1 \times x_1 \times p_1^{\sigma} = y_1 \times p \\ \gamma_2 \times x_2 \times p_2^{\sigma} = y_2 \times p \\ x_1 + x_2 = 1 \\ y_1 + y_2 = 1 \end{cases}$$

$$\gamma_1 \times x_1 \times p_1^{\sigma} + \gamma_2 \times x_2 \times p_2^{\sigma} = p$$

$$\frac{\gamma_1 \times x_1 \times p_1^{\sigma} + \gamma_2 \times x_2 \times p_2^{\sigma}}{p_1^{\sigma}} = \frac{p}{p_1^{\sigma}}$$

$$p_1^{\sigma} = \frac{p}{\gamma_1 \times x_1 + \gamma_2 \times x_2 \times \left(\frac{p_2^{\sigma}}{p_1^{\sigma}}\right)}$$

$$Ln(p_i^{\sigma}) = A_i - \frac{B_i}{C_i + T_i}$$

1-Lecture de p et {x_i}

2-Calculer
$$\left\{ T_i^{eb} = \frac{B_i}{A_i - Ln(p)} - C_i \right\}$$

3-Calculer
$$T = \sum_{i} x_i \times T_i^{eb}$$

4-Évaluer
$$\left\{p_{i}^{\sigma}\right\}$$
 et $\left\{\gamma_{i}\right\}$

5-Calculer
$$p_1^{\sigma} = \frac{p}{\sum_i x_i \times \gamma_i \times \left(\frac{p_i^{\sigma}}{p_1^{\sigma}}\right)}$$

6-Calculer
$$T = \frac{B_1}{A_1 - Ln(p_1^{\sigma})} - C_1$$

7-Évaluer
$$\left\{p_i^{\sigma}\right\}$$

8-Calculer
$$\left\{ y_i = \frac{x_i \times \gamma_i \times p_i^{\sigma}}{p} \right\}$$

9-Évaluer
$$\{\gamma_i\}$$

10-Calculer
$$p_1^{\sigma} = \frac{p}{\sum_i x_i \times \gamma_i \times \left(\frac{p_i^{\sigma}}{p_1^{\sigma}}\right)}$$

11-Calculer
$$T = \frac{B_1}{A_1 - Ln(p_1^{\sigma})} - C_1$$

Tester $\delta T < \varepsilon$ oui \Rightarrow affichage de T, $\{y_i\}$

Non → aller à 7-

Les algorithmes de calcul des problèmes d'équilibre liquide-vapeur

d) T, $\{x_i\}$ pour p =101,33 kPa et $y_1 = 0.40$,

$$\begin{cases} \gamma_1 \times x_1 \times p_1^{\sigma} = y_1 \times p \\ \gamma_2 \times x_2 \times p_2^{\sigma} = y_2 \times p \end{cases} \qquad x_1 = \frac{y_1 \times p}{\gamma_1 \times p_1^{\sigma}}$$
$$\begin{cases} x_1 + x_2 = 1 \\ y_1 + y_2 = 1 \end{cases} \qquad x_2 = \frac{y_2 \times p}{\gamma_2 \times p_2^{\sigma}}$$

$$1 = \frac{y_1 \times p}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2 \times p}{\gamma_2 \times p_2^{\sigma}}$$

$$p = \frac{p_1^{\sigma}}{p_1^{\sigma} \times \left(\frac{y_1}{\gamma_1 \times p_1^{\sigma}} + \frac{y_2}{\gamma_2 \times p_2^{\sigma}}\right)}$$

$$p = rac{p_1^{\sigma}}{\left(rac{\mathcal{Y}_1}{\gamma_1} + rac{\mathcal{Y}_2}{\gamma_2} imes \left(rac{p_1^{\sigma}}{p_2^{\sigma}}
ight)
ight)}$$

$$p_1^{\sigma} = p \times \left(\frac{y_1}{\gamma_1} + \frac{y_2}{\gamma_2} \times \left(\frac{p_1^{\sigma}}{p_2^{\sigma}} \right) \right)$$

$$Ln(p_i^{\sigma}) = A_i - \frac{B_i}{C_i + T_i}$$

1-Lecture-de-p-et-{v_i}¶

2-initialisation $\{\gamma_i = 1\}$

3-Calculer
$$\left\{T_{i}^{\epsilon\delta} = \frac{B_{i}}{A_{i} - Ln(p)} - C_{i}\right\} \P$$

$$4\text{-Calculer} \cdot T = \sum_{i} y_{i} \times T_{i}^{\epsilon b} \, \P$$

5-Évaluer $\{p_i^{\sigma}\}$ ¶

6-·Calculer·
$$x_1 = \frac{y_1 \times p}{\gamma_1 \times p_1^{\sigma}} \P$$

7-évaluer- $\{\gamma_i\}$ ¶

8-Calculer
$$p_1^{\sigma} = p \times \left(\frac{y_1}{\gamma_1} + \frac{y_2}{\gamma_2} \times \left(\frac{p_1^{\sigma}}{p_2^{\sigma}} \right) \right) \P$$

9-Évaluer
$$T = \frac{B_1}{A_1 - Ln(p_1^{\sigma})} - C_1 \P$$

Tester $\delta T < \varepsilon$ oui \Rightarrow affichage de T, $\{x_i\}$ ¶

