

# NASIONALE SENIOR SERTIFIKAAT

**GRAAD 12** 

# **SEPTEMBER 2022**

# FISIESE WETENSKAPPE V2 (CHEMIE)

**PUNTE: 150** 

TYD: 3 uur

Hierdie vraestel bestaan uit 21 bladsye en insluitend gegewensblaaie.

#### **INSTRUKSIES EN INLIGTING**

- Skryf jou NAAM en VAN in die toepaslike ruimte op die ANTWOORDEBOEK.
- 2. Hierdie vraestel bestaan uit NEGE vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in die vraestel gebruik is.
- 5. Laat EEN reël tussen twee sub-vrae oop, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Toon ALLE formules en substitusies/vervangings in ALLE berekeninge.
- 9. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 10. Gebruik kort (bondige) motiverings, besprekings, ensovoorts waar nodig.
- 11. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 12. Skryf netjies en leesbaar.

#### **VRAAG 1: MEERVOUDIGEKEUSE-VRAE**

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, byvoorbeeld. 1.11 D.

- 1.1 Die naam van die funksionele groep van propanoësuur is ...
  - A formiel.
  - B karboksiel.
  - C karboniel.

- 1.2 Watter EEN van die volgende is die KORREKTE naam vir die addisie reaksie van water tot 'n alkeen?
  - A hidrasie
  - B hidrolise
  - C dehidrasie

1.3 Beskou die gegewe verbinding hieronder:

Die KORREKTE IUPAC-naam vir die bostaande verbinding is:

- A 4-bromo-2,3-dimetielpentaan
- B 2-bromo-3,4-dimetielpentaan
- C 2,3-dimetiel-4-bromopentaan
- D 3,4-dimetiel-2-bromopentaan (2)

- 1.4 Watter EEN van die volgende organiese molekules sal vinnig met broomwater reageer?
  - A CH<sub>3</sub>CH<sub>2</sub>OH
  - B CH<sub>3</sub>CH<sub>3</sub>
  - C CH<sub>2</sub>CH<sub>2</sub>

$$D \qquad CH_3CH_2CH_3 \tag{2}$$

1.5 Beskou die potensiële energieprofiel hieronder vir die hipotetiese reaksie:



Watter EEN van die volgende kombinasies dui die aktiveringsenergie en reaksiewarmte ( $\Delta H$ ) korrek aan vir die TERUGWAARTSE REAKSIE?

|   | Aktiveringsenergie (kJ·mol <sup>-1</sup> ) | Reaksiewarmte (ΔH) |
|---|--------------------------------------------|--------------------|
|   |                                            |                    |
| Α | a – b                                      | b – c              |
|   |                                            |                    |
| В | b – a                                      | a – c              |
|   |                                            |                    |
| С | a – b                                      | c – b              |
|   |                                            |                    |
| D | b – c                                      | a – b              |

(2)

1.6 H<sub>2</sub>S (g) ontbind volgens die volgende gebalanseerde vergelyking:

$$H_2S(g) \rightleftharpoons H_2(g) + S(s)$$

In elk van vier afsonderlike eksperimente,  $\bf A$  tot  $\bf D$ ,  $H_2S$  met aanvanklike konsentrasie  $\bf c_i$  word in identiese leë flesse geplaas wat dan verseël en verhit word. Die grafieke hieronder toon die resultate wat verkry was vir eksperimente  $\bf A$  tot  $\bf D$ .

Watter eksperiment het die grootste Kc-waarde?



1.7 Die reaksie hieronder verteenwoordig die algemene vergelyking vir die reaksie van 'n suur-basis-indikator.

HIn (aq) + H<sub>2</sub>O (
$$\ell$$
)  $\rightleftharpoons$  H<sub>3</sub>O<sup>+</sup> (aq) + In <sup>-</sup> (aq) geel blou

In watter EEN van die volgende soutoplossings sal hierdie indikator geel word?

A KCl(aq)

B NH<sub>4</sub>Cl(aq)

C NaHCO₃(aq)

D  $CH_3COONa(aq)$  (2)

- 1.8 Die funksie van 'n soutbrug in 'n galvaniese sel is om ...
  - A die beweging van protone toe te laat.
  - B die beweging van elektrone toe te laat.
  - C 'n plek te verskaf waar reduksie kan plaasvind.
  - D te verseker dat die oplossings elektries neutraal bly. (2)
- 1.9 Watter EEN van die stowwe kan optree as 'n amfoliet in sekere reaksies?
  - A CH<sub>3</sub>COO-
  - B HSO<sub>4</sub>-
  - C H<sub>3</sub>O<sup>+</sup>
  - $D NH_4^+$  (2)
- 1.10 Die elektrolitiese sel hieronder word gebruik tydens elektroplatering van 'n ysterring met koper.



Watter EEN van die volgende kombinasies is KORREK oor die ione in die elektroliet wanneer die sel in werking is?

|   | Konsentrasie | Positiewe ione   |    |
|---|--------------|------------------|----|
| Α | Bly konstant | Cu <sup>2+</sup> |    |
| В | Bly konstant | Fe <sup>2+</sup> |    |
| С | Verhoog      | Fe <sup>3+</sup> |    |
| D | Verhoog      | Cu <sup>2+</sup> | [2 |
|   |              |                  | [2 |

Kopiereg voorbehou Blaai om asseblief

(2) **[20]** 

# VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters **A** tot **D** in die tabel hieronder verteenwoordig vier organiese verbindings wat aan verskillende homoloë reekse behoort.

| Α | 2-metielpropanal                                     | В | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|---|------------------------------------------------------|---|------------------------------------------------------|
| С |                                                      | D |                                                      |
|   | CH <sub>3</sub> C ≡ CCH <sub>2</sub> CH <sub>3</sub> |   | Pentaan                                              |

- 2.1 Definieer die term homoloë reeks. (2)
- 2.2 Skryf neer die:
  - 2.2.1 Letter wat 'n versadigde koolwaterstof verteenwoordig (1)
  - 2.2.2 Algemene formule van die homoloë reeks waarin verbinding **C** behoort (1)
  - 2.2.3 Struktuurformule van verbinding **A** (2)
- 2.3 Skryf die IUPAC-naam van verbinding **B** neer. (3)
- 2.4 Verbinding **D** het drie strukturele isomere.

Skryf neer die:

- 2.4.1 Struktuurformule van die isomeer met die kortste kettinglengte (3)
- 2.4.2 Gebalanseerde vergelyking vir die verbranding van verbinding **D** in OORMAAT suurstof deur molekulêreformules te gebruik (3) [15]

### VRAAG 3 (Begin op 'n nuwe bladsy.)

3.1 Die grafieke hieronder toon die kookpunte van reguitketting primêre alkohole en reguitketting ketone met verskillende aantal koolstofatome.



3.1.1 Definieer die term kookpunt.

(2)

3.1.2 Verduidelik waarom die kookpunte van die alkohole toeneem soos die aantal koolstofatome toeneem deur te verwys na slegs die TIPE en STERKTE van intermolekulêrekragte.

(2)

3.1.3 Verduidelik waarom die kurwe van die alkohole hoër is as dié van die ketone.

Verwys na die TIPE en STERKTE van die intermolekulêrekragte betrokke.

(3)

(1)

Die dampdruk van die alkohole word nou vergelyk met dié van die ketone by dieselfde temperatuur.

- 3.1.4 Waarom moet die alkohol en ketoon wat vergelyk word dieselfde aantal koolstofatome hê?
- 3.1.5 Watter EEN sal die hoër dampdruk het: ALKOHOL of KETOON?

Gee 'n rede vir die antwoord deur na die inligting in die grafiek te verwys. (2)

- 3.2 Die kookpunte van propanoësuur en propan-1-ol word nou vergelyk.
  - 3.2.1 Watter verbinding het die hoër kookpunt?

(1)

3.2.2 Verduidelik die antwoord tot VRAAG 3.2.1 deur na die TIPE, STERKTE van die intermolekulêrekragte en ENERGIE te verwys.

(3) **[14]** 

### VRAAG 4 (Begin op 'n nuwe bladsy.)

4.1 Verbinding **P** kan gebruik word in die voorbereiding van verbindings **R** en **Q** soos getoon in die vloeidiagram hieronder.



In reaksie I, alkohol **P** reageer met 'n ander organiese verbinding in die teenwoordigheid van gekonsentreerde swawelsuur.

- 4.1.1 Noem die tipe reaksie wat deur reaksie I voorgestel word. (1)
- 4.1.2 Behalwe vir die teenwoordigheid van 'n katalisator skryf een ander reaksie toestand neer vir reaksie **I.** (1)

Skryf neer die:

- 4.1.3 Struktuurformule van alkohol **P** (2)
- 4.1.4 IUPAC-naam van verbinding **R** (2)
- 4.1.5 IUPAC-naam van die reguitketting FUNKSIONELE isomeer van verbinding **R** (2)

Vir reaksie II, skryf neer die:

- 4.1.6 Tipe reaksie wat plaasvind (1)
- 4.1.7 Formule van die anorganiese produk (1)
- 4.1.8 Gekondenseerde struktuurformule van verbinding **Q** (2)

4.2 'n Primêre alkohol wat 3 koolstofatome bevat word omskep na 'n sekondêre alkohol in 'n TWEE-stapproses soos in die vloeidiagram hieronder getoon:



**P** is 'n anorganiese reagens terwyl verbinding **Q** 'n organiese verbinding is.

Skryf neer die:

- 4.2.1 Formule van reagens **P** (2)
- 4.2.2 Een reaksietoestand vir die reaksie in STAP 2 (1)
- 4.2.3 Gebalanseerde vergelyking vir die reaksie in STAP 2 deur gebruik te maak van struktuurformules vir die organiese verbindings (5) [20]

# VRAAG 5 (Begin op 'n nuwe bladsy.)

Die reaksie tussen natrium tiosulfaat (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) en OORMAAT soutsuur (HCl) word gebruik om die effek van konsentrasie en temperatuur op die reaksietempo te ondersoek.

Die gebalanseerde vergelyking vir hierdie reaksie is:

$$Na_2S_2O_3$$
 (aq) + 2 HC $\ell$   $\to$  2 NaC $\ell$  (aq) + S (s) + SO<sub>2</sub> (g) + H<sub>2</sub>O ( $\ell$ )

'n Erlenmeyer-fles word op 'n wit papier geplaas met 'n ligte kruis daarop. Die tyd wat dit neem vir die sigbaarheid van die kruis om te verdwyn, word gemeet. Sien die diagram hieronder.



**LET WEL:** Dieselfde volume van Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> oplossing was in al drie reaksies gebruik.

Die tabel hieronder toon die reaksie toestande.

| Eks | Konsentrasie<br>van Na₂S₂O₃ | Konsentrasie<br>van HCℓ<br>(mol⋅dm <sup>-3</sup> ) | Temperatuur<br>(°C) | Volume van<br>HCℓ<br>(cm³) |
|-----|-----------------------------|----------------------------------------------------|---------------------|----------------------------|
|     |                             |                                                    |                     |                            |
| 1   | 0,05                        | 2                                                  | 25                  | 25                         |
|     |                             |                                                    |                     |                            |
| 2   | 0,05                        | 1                                                  | 25                  | 25                         |
|     |                             |                                                    |                     |                            |
| 3   | 0,05                        | 2                                                  | 40                  | 25                         |

5.1 Definieer die term reaksietempo.

- (2)
- 5.2 Skryf die naam van die onafhanklike veranderlike neer vir die vergelyking van eksperiment **1** en **2**. (1)
- 5.3 Hoe sal die hoeveelheid swawel (S) wat in eksperiment **1** gevorm het vergelyk met die hoeveelheid swawel (S) wat in eksperiment **2** geproduseer word by voltooiing van die reaksie?

Kies uit HOËR AS, LAER AS of GELYK AAN.

Gee 'n rede vir die antwoord. (2)

5.4 Eksperiment 1 en 3 word nou vergelyk.

Die Maxwell-Boltzmann energie verspreidings kurwes vir Eksperimente 1 en 3 word hieronder getoon.



5.4.1 Watter eksperiment **1** of **3** word deur kurwe **T**<sub>2</sub> voorgestel? (1)

5.4.2 Verduidelik die antwoord tot VRAAG 5.4.1 deur na die botsingsteorie te verwys. (3)

5.4.3 Skets SLEGS die kurwe vir **T**<sub>2</sub> in die ANTWOORDEBOEK en dui die effek wat 'n katalisator op E<sub>a</sub> sal hê.

Dui die nuwe aktiveringsenergie aan as **X** op die grafiek. (2)

5.5 0,7118 g van Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> reageer volledig met HCl in **eksperiment 1** in 34 s.

Bereken die tempo waarteen HCl gereageer het in **eksperiment 1** in mol·s<sup>-1</sup>. (5)

Die volume van HC $\ell$  wat in **eksperiment 1** gebruik was word nou **verdubbel.** Al die ander reaksietoestande bly dieselfde.

5.6 Hoe sal die reaksietempo beïnvloed word deur die verandering in volume?

Kies uit VERHOOG, VERLAAG of BLY DIESELFDE. (1)
[17]

#### VRAAG 6 (Begin op 'n nuwe bladsy.)

6.1 Die volgende omkeerbare reaksie kan gebruik word om te demonstreer hoe sekere faktore 'n chemiese ewewig beïnvloed:

$$CoC\ell_4^{2-}$$
 (aq) + 6 H<sub>2</sub>O ( $\ell$ )  $\rightleftharpoons$   $Co(H_2O)_6^{2+}$  (aq) + 4 C $\ell$  - (aq)   
Blou Pienk

6.1.1 Definieer die term omkeerbare reaksie.

(2)

Die oplossing is aanvanklik **BLOU**.

Skryf RAAK MEER BLOU of RAAK MEER PIENK neer om die volgende te beskryf wat met die reaksiemengsel sal gebeur as:

(1)

6.1.3 Gekonsentreerde HCl bygevoeg word

(1)

Die proefbuis wat die reaksiemengsel bevat word in warmwater geplaas. Dit word waargeneem dat die oplossing meer blou word.

6.1.4 Is die voorwaartse reaksie EKSOTERMIES of ENDOTERMIES?

(1)

6.1.5 Verduidelik die antwoord tot VRAAG 6.1.4 deur te verwys na Le Chatelier se beginsel.

(2)

6.2  $3,01 \times 10^{23}$  molekules van N<sub>2</sub>O<sub>4</sub> word verseël in 'n 4 dm<sup>3</sup> houer en dan verhit tot 400 K.

Die volgende gebalanseerde vergelyking verteenwoordig die reaksie in die houer wat ewewig bereik by 400 K.

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

Daar word gevind by ewewig dat 0,4 mol N<sub>2</sub>O<sub>4</sub> het ontbind na NO<sub>2</sub>.

Bereken die ewewigskonstante (Kc) by 400 K.

(8) **[15]** 

Kopiereg voorbehou

#### VRAAG 7 (Begin op 'n nuwe bladsy.)

7.1 Die vergelykings hieronder toon die reaksies wat in soutsuur (HCl) en etanoësuur (CH<sub>3</sub>COOH) oplossings plaasvind. Beide sure het 'n konsentrasie van 1 mol·dm<sup>-3</sup>, en word by 'n temperatuur van 25 °C gehou.

I: 
$$HCl(aq) + H_2O(l) \rightleftharpoons Cl(aq) + H_3O^+(aq)$$
  $K_a = 1.3 \times 10^6$ 

II: CH<sub>3</sub>COOH (aq) + H<sub>2</sub>O (
$$\ell$$
)  $\rightleftharpoons$  CH<sub>3</sub>COO<sup>-</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq) K<sub>a</sub> = 1,8 × 10<sup>-5</sup>

- 7.1.1 Definieer 'n suur volgens die Lowry-Brønsted-teorie. (2)
- 7.1.2 Skryf EEN gekonjugeerde suur-basis paar in reaksie I neer. (2)
- 7.1.3 Watter oplossing, I of II, sal die laer pH-waarde het?

Verduidelik die antwoord. (3)

- 7.2 10 cm<sup>3</sup> van 'n 1 mol·dm<sup>-3</sup> natrium hidroksied (NaOH) oplossing word met water verdun totdat die pH gelyk is aan 13.
  - 7.2.1 Bereken die aantal mol van NaOH in die oorspronklike 10 cm<sup>3</sup> oplossing. (3)
  - 7.2.2 Bereken die volume van die verdunde oplossing in dm<sup>3</sup>. (5)

Al die verdunde natrium hidroksiedoplossing word in 'n buret gegooi. Tydens 'n titrasie word 15 cm³ oksaalsuur met 'n konsentrasie van presies 0,09 mol·dm⁻³ geneutraliseer deur 'n sekere volume van die verdunde natrium hidroksiedoplossing.

Die gebalanseerde vergelyking vir die reaksie is:

2 NaOH (aq) + 
$$H_2C_2O_4$$
 (aq)  $\rightarrow$  Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (aq) + 2 H<sub>2</sub>O ( $\ell$ )

7.2.3 Bereken die volume van die verdunde natriumhidroksied wat in die buret na titrasie oorbly.(5)[20]

# VRAAG 8 (Begin op 'n nuwe bladsy.)

'n Galvaniese sel word onder standaardtoetstande opgestel deur halfselle **A** en **B** wat hieronder getoon word, te gebruik.

Halfsel **A**:  $Cu(s)/Cu^{2+}(aq)$  Halfsel **B**:  $H_2O(\ell)/O_2(q)/H^+(aq)$ 

- 8.1 Definieer *oksidasie* in terme van elektron oordrag. (2)
- 8.2 Skryf neer die:
  - 8.2.1 Aanvanklike konsentrasie van die H<sup>+</sup> (aq) oplossing in halfsel **B** (1)
  - 8.2.2 Naam van die metaal wat as 'n elektrode in halfsel **B** gebruik word (1)
  - 8.2.3 Formule van die reduseermiddel (1)
  - 8.2.4 Reduksie halfreaksie (2)
  - 8.2.5 Gebalanseerde ioniese vergelyking vir die algehele selreaksie (3)
- 8.3 Die grafiek toon die verhouding van die EMK van die sel teenoor tyd.



- 8.3.1 Bereken die waarde van  $\mathbf{x}$  op die grafiek. (4)
- 8.3.2 Verduidelik die afname in die EMK van die sel soos tyd verloop. (2)
- 8.3.3 Wat het gebeur met die reaksie in die sel by tyd  $\mathbf{t}_1$ ? (1)

# VRAAG 9 (Begin op 'n nuwe bladsy.)

9.1 Die diagram verteenwoordig die apparaat wat gebruik was in die elektrolise van 'n gekonsentreerde NaCl oplossing. **A** en **B** is twee koolstofelektrodes.



- 9.1.1 Definieer 'n elektrolitiese sel. (2)
- 9.1.2 Skryf die halfreaksie wat by elektrode **B** plaasvind neer. (2)

Gasborrels word waargeneem rondom die katode van die sel.

- 9.1.3 Skryf die NAAM of FORMULE neer van die gas wat by die katode gevorm het. (1)
- 9.1.4 Verwys na die relatiewe sterkte van die oksideermiddels om te verduidelik waarom die gas in VRAAG 9.1.3 vorm by die katode en nie Na.
  (2)
- 9.2 'n Eletrolitiese sel gebruik 'n onsuiwer koperelektrode wat uit 95% Cu en 'n suiwer koperelektrode bestaan. Koper (II) chloried (CuCl<sub>2</sub>) oplossing word as 'n elektroliet gebruik.
  - 9.2.1 Is die suiwer koper die ANODE of KATODE? (1)
  - 9.2.2 Wanneer al die koper in die onsuiwer elektrode op die koperelektrode geplaas is, word daar gevind dat 6 mol elektrone oorgedra is.
    - Bereken die aanvanklike massa van die ONSUIWER koper elektrode. (4) [12]

TOTAAL: 150

# NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

# DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

# GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

| NAAM/NAME                 | SIMBOOL/SYMBOL | WAARDE/VALUE                            |
|---------------------------|----------------|-----------------------------------------|
| Standard pressure         |                |                                         |
|                           | $p^{\theta}$   | 1,013 × 10 <sup>5</sup> Pa              |
| Standaarddruk             |                |                                         |
| Molar gas volume at STP   |                |                                         |
|                           | V <sub>m</sub> | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup> |
| Molêre gasvolume teen STD |                |                                         |
| Standard temperature      |                |                                         |
|                           | Tθ             | 273 K                                   |
| Standaardtemperatuur      |                |                                         |
| Charge on electron        |                |                                         |
|                           | e              | $-1,6 \times 10^{-19}$ C                |
| Lading op elektron        |                |                                         |
| Avogadro's constant       |                |                                         |
|                           | N <sub>A</sub> | $6,02 \times 10^{23}  \text{mol}^{-1}$  |
| Avogadro se konstante     |                |                                         |

#### TABLE 2: FORMULAE/TABEL 2: FORMULES

| $n = \frac{m}{M} \text{ or/of}$ $n = \frac{N}{N_A} \text{ or/of}$ | $c = \frac{n}{V} \text{ or/of } c = \frac{m}{MV}$ $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$ | pH= -log[H <sub>3</sub> O <sup>+</sup> ]<br>$K_{w} = [H_3O^+][OH^-] = 1x10^{-14}$<br>at /by 298K |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| $n = \frac{V}{V_m}$                                               |                                                                                               |                                                                                                  |

$$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \ / \ E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$$

$$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} \ / \ E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$$

$$E^{\theta}_{\text{cell}} = E^{\theta}_{\text{oxidising agent}} - E^{\theta}_{\text{reducing agent}} \ / \ E^{\theta}_{\text{sel}} = E^{\theta}_{\text{oksideermiddel}} - E^{\theta}_{\text{reduseermiddel}}$$

# TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

|                  | 2<br>(II)          | 3                | 4                                         | 5<br>KEY/       | 6<br>SLEUTI                          | 7<br>EL          | 8 Atoor                 | 9<br>ngetal       | 10               | 11                 | 12                | 13<br>(III)                  | 14<br>(IV)        | 15<br>(V)         | 16<br>(VI)                   | 17<br>(VII)            | 18<br>(VIII)    |
|------------------|--------------------|------------------|-------------------------------------------|-----------------|--------------------------------------|------------------|-------------------------|-------------------|------------------|--------------------|-------------------|------------------------------|-------------------|-------------------|------------------------------|------------------------|-----------------|
| 2,1<br>+H<br>1   |                    |                  |                                           |                 |                                      |                  | 2                       | ,                 |                  |                    |                   |                              |                   |                   |                              |                        | 2<br>He<br>4    |
| 3<br>oLi<br>~7   | 4<br>၄ Be<br>၄ 9   |                  |                                           |                 | ektronega<br>ectroneg                |                  |                         | Cu<br>3,5         | Simb<br>Symb     |                    |                   | 5<br>oB<br>011               | 6<br>10,C<br>12   | 7<br>⊙N<br>∾14    | 8<br>ი:0<br>ო16              | 419<br>o <u>E</u><br>9 | 10<br>Ne<br>20  |
| 11<br>იNa<br>023 | 12<br>ℵMg<br>►24   |                  |                                           |                 |                                      |                  | lerde rela<br>ximate re |                   |                  |                    |                   | 13<br>∽Aℓ<br>~27             | 14<br>∞Si<br>~28  | 15<br>P<br>~31    | 16<br>ი,S<br>ი;32            | 17<br>oCl<br>m35,5     | 18<br>Ar<br>40  |
| 19               | 20<br>Ca<br>40     | 21<br>ოSc<br>~45 | 22<br>ιςTi<br>~48                         | 23<br>؈V<br>~51 | 24<br><b>©</b> Cr<br><del>~</del> 52 | 25<br>∽Mn<br>~55 | 26<br>∞Fe<br>~56        | 27<br>∞Co<br>~59  | 28<br>∞Ni<br>~59 | 29<br>თCu<br>~63,5 | 30<br>∞Zn<br>~65  | 31<br>બGa<br><del>~</del> 70 | 32<br>∞Ge<br>~73  | 33<br>oAs<br>N75  | 34<br><del>∢</del> Se<br>∾79 | 35<br>∞Br<br>∾80       | 36<br>Kr<br>84  |
| 37               | 38<br>• Sr<br>• 88 | 39<br>7,Y<br>89  | 40<br><del>4</del> Zr<br><b>∵</b> 91      | 41<br>Nb<br>92  | 42<br>∞Mo<br>~96                     | 43<br>იTc        | 44<br>NRu<br>N101       | 45<br>NRh<br>N103 | 46<br>ญPd        | 47<br>၈Ag          | 48<br>►Cd<br>►112 | 49<br>⊱ln<br>∵115            | 50<br>∞Sn<br>~119 | 51<br>იSb<br>~122 | 52<br>-Te                    | 53<br>ທຸ!<br>ຕ່127     | 54<br>Xe<br>131 |
| 55<br>Cs         | 56<br>⊕Ba<br>⊝137  | 57<br>La<br>139  | 72<br><sub>⊕</sub> Hf<br><del>←</del> 179 | 73<br>Ta<br>181 | 74<br>W<br>184                       | 75<br>Re<br>186  | 76<br>Os<br>190         | 77<br>Ir<br>192   | 78<br>Pt         | 79<br>Au           | 80<br>Hg<br>201   | 81<br>∞Tℓ<br>~204            | 82<br>∞Pb<br>~207 | 83                | 84<br>oPo                    | 85<br><sub>10</sub> At | 86<br>Rn        |
| 87<br>Fr<br>0    | 88<br>Ra<br>226    | 89<br>Ac         |                                           | 58              | 59                                   | 60               | 61                      | 62                | 63               | 64                 | 65                | 66                           | 67                | 68                | 69                           | 70                     | 71              |
|                  | <u> </u>           |                  | J                                         | Ce<br>140       | Pr<br>141                            | Nd<br>144        | Pm                      | Sm<br>150         | 152              | Gd<br>157          | 159               | Dy<br>163                    | Ho<br>165         | Er<br>167         | Tm<br>169                    | Yb<br>173              | Lu<br>175       |
|                  |                    |                  |                                           | 90<br>Th<br>232 | 91<br>Pa                             | 92<br>U<br>238   | 93<br>Np                | 94<br>Pu          | 95<br>Am         | 96<br>Cm           | 97<br>Bk          | 98<br>Cf                     | 99<br>Es          | 100<br>Fm         | 101<br>Md                    | 102<br>No              | 103<br>Lr       |

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

| Half-reactions                                                                    | Ε <sup>θ</sup> (V) |                                       |        |
|-----------------------------------------------------------------------------------|--------------------|---------------------------------------|--------|
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                              | =                  | 2F-                                   | + 2,87 |
| Co <sup>3+</sup> + e <sup>-</sup>                                                 | =                  | Co <sup>2+</sup>                      | + 1,81 |
| H <sub>2</sub> O <sub>2</sub> + 2H <sup>+</sup> +2e <sup>-</sup>                  | =                  | 2H <sub>2</sub> O                     | +1,77  |
| MnO _ + 8H+ + 5e-                                                                 | =                  | $Mn^{2+} + 4H_2O$                     | + 1,51 |
| Cl <sub>2</sub> (g) + 2e <sup>-</sup>                                             | =                  | 2C{-                                  | + 1,36 |
| Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> + 14H <sup>+</sup> + 6e <sup>-</sup> | =                  | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | + 1,33 |
| O <sub>2</sub> (g) + 4H <sup>+</sup> + 4e <sup>-</sup>                            | =                  | 2H₂O                                  | + 1,23 |
| MnO <sub>2</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>                              | =                  |                                       | + 1,23 |
| Pt <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Pt                                    | + 1,20 |
| $Br_2(\ell) + 2e^-$                                                               | =                  | 2Br <sup>-</sup>                      | + 1,07 |
| NO 3 + 4H <sup>+</sup> + 3e <sup>-</sup>                                          | =                  | NO(g) + 2H <sub>2</sub> O             | + 0,96 |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Hg(ℓ)                                 | + 0,85 |
| Ag+ + e-                                                                          | =                  | Ag                                    | + 0,80 |
| NO 3 + 2H+ + e-                                                                   | <b>=</b>           | $NO_2(g) + H_2O$                      | + 0,80 |
| Fe <sup>3+</sup> + e <sup>-</sup>                                                 |                    | Fe <sup>2+</sup>                      |        |
|                                                                                   | <b>=</b>           |                                       | + 0,77 |
| $O_2(g) + 2H^+ + 2e^-$                                                            | =                  | H <sub>2</sub> O <sub>2</sub>         | + 0,68 |
| l <sub>2</sub> + 2e <sup>-</sup>                                                  | =                  | 2l <sup>-</sup>                       | + 0,54 |
| Cu+ + e-                                                                          | =                  |                                       | + 0,52 |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                               | =                  | S + 2H <sub>2</sub> O                 | + 0,45 |
| 2H <sub>2</sub> O + O <sub>2</sub> + 4e <sup>-</sup>                              | =                  | 40H <sup>-</sup>                      | + 0,40 |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Cu                                    | + 0,34 |
| SO <sub>4</sub> <sup>2-</sup> + 4H <sup>+</sup> + 2e <sup>-</sup>                 | =                  | $SO_2(g) + 2H_2O$                     | + 0,17 |
| Cu <sup>2+</sup> + e <sup>-</sup>                                                 | =                  | Cu <sup>+</sup>                       | + 0,16 |
| Sn <sup>4+</sup> + 2e <sup>-</sup>                                                | =                  | Sn <sup>2+</sup>                      | + 0,15 |
| S + 2H+ + 2e-                                                                     | =                  | $H_2S(g)$                             | + 0,14 |
| 2H+ + 2e⁻                                                                         | =                  | H₂(g)                                 | 0,00   |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                                | =                  | Fe                                    | - 0,06 |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                                | $\Rightarrow$      | Pb                                    | - 0,13 |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Sn                                    | - 0,14 |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Ni                                    | - 0,27 |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Co                                    | - 0,28 |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Cd                                    | - 0,40 |
| Cr <sup>3+</sup> + e <sup>-</sup>                                                 | =                  | Cr <sup>2+</sup>                      | - 0,41 |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Fe                                    | - 0,44 |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                                | =                  | Cr                                    | - 0,74 |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Zn                                    | - 0,76 |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                               | =                  | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,83 |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Cr                                    | - 0,91 |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Mn                                    | - 1,18 |
| $A\ell^{3+} + 3e^{-}$                                                             | =                  | Αℓ                                    | - 1,66 |
| Mg <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Mg                                    | - 2,36 |
| Na+ + e-                                                                          | =                  | Na                                    | - 2,71 |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Ca                                    | - 2,87 |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Sr                                    | - 2,89 |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                                | =                  | Ва                                    | - 2,90 |
| Cs+ + e-                                                                          | =                  | Cs                                    | - 2,92 |
| K+ + e-                                                                           | =                  | K                                     | - 2,93 |
| Li <sup>+</sup> + e <sup>-</sup>                                                  | =                  | Li                                    | - 3,05 |

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

| Half-reactions/Halfre                                                     | E <sup>0</sup> (V) |                                       |                  |
|---------------------------------------------------------------------------|--------------------|---------------------------------------|------------------|
| Li+ + e-                                                                  | =                  | Li                                    | - 3,05           |
| K+ + e⁻                                                                   | <del>-</del>       | K                                     | - 3,03<br>- 2,93 |
| Cs <sup>+</sup> + e <sup>−</sup>                                          | <b>=</b>           | Cs                                    | - 2,92           |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                        | ·<br>==            | Ba                                    | - 2,92<br>- 2,90 |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                        | <del>=</del>       | Sr                                    | - 2,89<br>- 2,89 |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                        | =                  | Ca                                    | - 2,89<br>- 2,87 |
| Na <sup>+</sup> + e <sup>-</sup>                                          | <del>=</del>       | Na                                    | - 2,71           |
| Mg <sup>2+</sup> + 2e <sup>-</sup>                                        | <del>=</del>       | Mg                                    |                  |
| Al <sup>3+</sup> + 3e <sup>-</sup>                                        | =                  | Ał                                    | - 2,36<br>1.66   |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                        | =                  | Mn                                    | - 1,66           |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                        | <del>-</del>       | Cr                                    | - 1,18<br>- 0,91 |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                       | =                  |                                       |                  |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                        | <b>-</b>           | H₂(g) + 2OH⁻<br>Zn                    | - 0,83<br>- 0,76 |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                        |                    |                                       |                  |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                        | <del>=</del>       | Cr<br>Fe                              | - 0,74           |
| Cr <sup>3+</sup> + 2e                                                     | =                  | Fe<br>Cr <sup>2+</sup>                | - 0,44<br>0.41   |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                        | <del>=</del>       | _                                     | - 0,41           |
|                                                                           | =                  | Cd                                    | - 0,40<br>0.28   |
| Co <sup>2+</sup> + 2e <sup>-</sup><br>Ni <sup>2+</sup> + 2e <sup>-</sup>  | =                  | Co<br>Ni                              | - 0,28           |
|                                                                           | =                  |                                       | - 0,27           |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                        | =                  | Sn                                    | - 0,14           |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                        | =                  | Pb                                    | - 0,13           |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                        | =                  | Fe                                    | - 0,06           |
| 2H⁺ + 2e⁻                                                                 | <del>+</del>       | H₂(g)                                 | 0,00             |
| S + 2H+ + 2e-                                                             | =                  | H <sub>2</sub> S(g)                   | + 0,14           |
| Sn <sup>4+</sup> + 2e⁻                                                    | =                  | Sn <sup>2+</sup>                      | + 0,15           |
| Cu <sup>2+</sup> + e <sup>-</sup>                                         | =                  | Cu⁺                                   | + 0,16           |
| SO <sub>4</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>                       | =                  | $SO_2(g) + 2H_2O$                     | + 0,17           |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                        | =                  | Cu                                    | + 0,34           |
| $2H_2O + O_2 + 4e^-$                                                      | =                  | 40H <sup>-</sup>                      | + 0,40           |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                       | =                  | S + 2H <sub>2</sub> O                 | + 0,45           |
| Cu⁺ + e⁻                                                                  | =                  | Cu                                    | + 0,52           |
| l <sub>2</sub> + 2e <sup>-</sup>                                          | =                  | 2l <sup>-</sup>                       | + 0,54           |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup>                    | =                  | $H_2O_2$                              | + 0,68           |
| Fe <sup>3+</sup> + e <sup>-</sup>                                         | =                  | Fe <sup>2+</sup>                      | + 0,77           |
| NO 3 + 2H+ + e-                                                           | =                  | $NO_2(g) + H_2O$                      | + 0,80           |
| Ag⁺ + e⁻                                                                  | =                  | Ag                                    | + 0,80           |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                        | =                  | Hg(ℓ)                                 | + 0,85           |
| NO 3 + 4H+ + 3e-                                                          | <b>=</b>           | $NO(g) + 2H_2O$                       | + 0,96           |
| $Br_2(\ell) + 2e^-$                                                       | =                  | 2Br <sup>-</sup>                      | + 1,07           |
| Pt <sup>2+</sup> + 2 e <sup>-</sup>                                       | =                  | Pt                                    | + 1,20           |
| MnO <sub>2</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>                      | =                  | $Mn^{2+} + 2H_2O$                     | + 1,23           |
| O <sub>2</sub> (g) + 4H <sup>+</sup> + 4e <sup>-</sup>                    | =                  | 2H₂O                                  | + 1,23           |
| 2-<br>Cr <sub>2</sub> O <sub>7</sub> + 14H <sup>+</sup> + 6e <sup>-</sup> | <b>=</b>           | 2Cr <sup>3+</sup> + 7H <sub>2</sub> O | + 1,33           |
| Cℓ₂(g) + 2e <sup>-</sup>                                                  | =                  | 2Cℓ <sup>-</sup>                      | + 1,36           |
| MnO <sub>4</sub> + 8H <sup>+</sup> + 5e <sup>-</sup>                      | =                  | Mn <sup>2+</sup> + 4H <sub>2</sub> O  | + 1,51           |
| H <sub>2</sub> O <sub>2</sub> + 2H <sup>+</sup> +2 e <sup>-</sup>         | =                  | 2H₂O                                  | +1,77            |
| Co <sup>3+</sup> + e <sup>-</sup>                                         | =                  | Co <sup>2+</sup>                      | + 1,81           |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                      | =                  | 2F-                                   | + 2,87           |

Increasing reducing ability/Toenemende reduserende vermoë