1. Probar que para x1,..., xn ETA+ se cumple que

$$\frac{\nu}{x^{r_{+}\dots+}x^{\nu}} \leq \sqrt{x^{r_{x}}x^{s_{\dots}}x^{\nu}}$$

Dem.: Procedemos por inducción sobre el número de términos (o sea, n).

Caso base (n=x): x1, x2 & TA => (x1-x2)2>0

(=) $\chi_1^2 - 2\chi_1\chi_2 + \chi_2^2 > 0 / - 2\chi_1\chi_2$

(=) X12 + X22 > 2 X1 X2 |+ 2 X1 X2

(=) X1+2x1x2+X2 > 4x1x2

(=) (x1+ x2)2 = 4 x1x2). +

 $(=) \left(\frac{\chi_1 + \chi_2}{2}\right)^2 \geqslant \chi_1 \chi_2 / \sqrt{}$

 $\langle = \rangle \frac{\chi_1 + \chi_2}{2} \geqslant \sqrt{\chi_1 \chi_2}$.

Paso inductivo: Asumamos que la afirmación se cumple para K-1 términos. Hay que mostrarla para K. Antes, mostramos un lema

Lema: Si la afirmación es cierta para n elementos, también lo es para 2n.

Dem. (lema): Sabemos que la aff. es cierta para n elementos, o sea

$$\frac{\chi_1 + \chi_2 + \cdots + \chi_n}{n} \geq \sqrt{\chi_1 \chi_2 \cdots \chi_n} \geq 0 \Rightarrow \frac{\chi_1 + \cdots + \chi_n}{n} \geq \sqrt{\sqrt{\chi_1 \chi_2 \cdots \chi_n}} \geq \sqrt{\sqrt{\chi_1 \chi_2 \cdots \chi_n}} = \sqrt{\sqrt{\chi_1 \chi_1 \cdots$$

Ahora probamos el paso inductivo. Todos los pasos siguientes son reversibles, así que podemos partir con lo que queremos mastrar (la aff es cierta para n términos). Consideremos $x_n = \frac{x_1 + x_2 + \cdots + x_{n-1}}{n-1}$. Ahora,

$$\frac{n}{x^{7}+x^{5}+\cdots+x^{4}+\frac{n-1}{x^{7}+\cdots+x^{4}}} = \sqrt[n]{x^{7}x^{5}\cdots x^{4}+\cdots+x^{4}} = \sqrt[n]{x^{7}+x^{5}+\cdots+x^{4}+x^{4}+\cdots+x^{4}+x^{4}+\cdots+x^{4}+x^{4}+\cdots+x^{4}+x^{4}+\cdots+x^{4}+x$$

 $\langle = \rangle \frac{(u-t)|U|}{(u-t)(x^{7}+\cdots+x^{u-1})+x^{7}+\cdots+x^{u-r}} \geqslant \sqrt{x^{7}x^{5}\cdots x^{u-r}} \sqrt{x^{7}+\cdots+x^{u-r}}$

$$(\Rightarrow) \frac{(v-t)\omega}{\omega(x^{r}+\cdots+x^{u-t})} \geq \sqrt{\chi^{r}\chi^{s}\cdots\chi^{u-r}}\sqrt{\frac{u-r}{\chi^{r}+\cdots+\chi^{u-r}}} \sqrt{\div\sqrt{\frac{u-r}{\chi^{r}+\cdots+\chi^{u-r}}}}$$

$$\langle = \rangle \ \left(\frac{\nu_{-1}}{\sqrt{\kappa^{r} + \cdots \kappa^{\nu-1}}} \right) \frac{\nu_{-1}}{\sqrt{\nu_{-1}}} \ge \sqrt{\sqrt{\kappa^{r} \kappa^{s} \cdots \kappa^{\nu-r}}} \ \left\langle \ \right| \ \int_{0}^{\infty} \left(\ \ \right)^{\nu_{-1}}$$

$$\langle = \rangle \left(\frac{\nu - \tau}{\lambda'^{\tau} + \cdots \lambda'^{-\tau}} \right)_{\nu - \tau} \ge \chi'^{\tau} \chi^{s} \cdots \chi^{\nu - \tau} \setminus \nu \cdot \tau^{\nu}$$

$$(=) \frac{\omega - \tau}{\chi^{r_+ \cdots + \chi^{v_- \tau}}} \ge \omega - \iint \chi^r \chi^s \cdots \chi^{v_{-r}}$$

Esto es la que pediamas.

2. Compare el cito, solución de

Sol: 0/1/x-2x+11>0 (=) |(x-1)2|>0 (=) (x-1/2>0 (=) x & TR.

" $\chi^2 - 2|\chi| + 1 \geqslant 0$ (=) $\chi^2 + 1 \geqslant 2|\chi|$ (=) $\frac{|\chi|^2 + 1}{2} \geqslant 2|\chi|^2 \cdot 1$. Es cierto siempre que $\chi^2 \geqslant 0$ par el (tem anterior y esto siempre ocurre. duego, $\chi \in \Pi$).

Los conjuntos solución son iguales.

b) · 1x2- x1<0. Esto runca ocurre (121>0 Yz (R). duego, el cito. sd. es \$.

Un conjunto es vacio, el otro es unión de intervalos.

- c) $(1x^3-2x^2)>0$ (=) $(1x^2)>0$ (=) $(1x^2)>0$ (=) $(1x^2-2)>0$. Es producto de elementos en $(1x^4-10)=0$. Por cenadura, esto siempre está en $(1x^2-2)=0$ 0. duego, $(1x^2-2)=0$ 0.
 - · |x|3-2x2>0 (=) |x|3-2|x|2>0 (=) |x|2(|x|-2)>0 (=) 1x122 (=) xe (-0,-2)u(2,+0).

Una sol, es todo Pr, la otra es unión de intervalos.

- 3. Halle condiciones sobre $n \in \mathbb{N}$ para que la mechación $\sqrt{x^n} + x^n \ge 0$ tenga solución.
- Sol.: Supongamos que n es impor. Asr, solo es posible que x>0 (la rouz cuadrada edo admite cantidades positivas). Entoncez, $x^n>0$ y $\sqrt{x^n}>0$ =) $\sqrt{x^n}+x^n>0$ (=) $x \in [0,+\infty)$ (hay solución).
- Si nes par, n=2x, x E N =) x"= x2x = (xx)2 > 0 Yx E n =) Vxn +xn > 0 (=) x E n (hay solución).

duego, how sol. the N.

```
a) 15x+51-8 417
      15 x+51 £ 25 => -25 £ 5x+5 £ 25
      -30$5x$20 : -6$x$4 => x & [-6;4]
  b) x^2 + 5x + 4 > 2 = > (x + 4) \cdot (x + 1) > 2 = > |x + 4| > 2

x^2 - 4x - 5 > 2 = > (x + 4) \cdot (x + 1) > 2 = > |x + 4| > 2
C1: x+4 >2 => x+4 > 2x - 10 => 14 > x S1 = ]-0, 14[
                           1x + 5
C2: x+4 2-2 1. (x-5)
 1) 6-5)40 => x+4>-2x+10=> 3x >6 => x >2 Sz= ]2;00[
 b) (x-5)>0 => x+4 < -2 x+10 => 3x < 6 => x < 2 => (x-5) < 0 1
   : x & SI 1 Sz = ] 2, 14 [ - [5
 c) 13x+21 = 1x+11 + 12x+11 => 13x+21-1x+11-12x+11 =0
  3(x) T C1 C2 3 C3 C4 C1 XE ]-00, -1]
                              => -6x+2)+(x+1)+(2x+1) 20
                                 > 0 20 : SI= ]-00,-1]
 (2) x E ]-1,-33] => -Bx+2)-(x+1)+(2x+1) >0
    => -2x-2 20 => x =-1 : Sz=]-0,-1] []-1,-2/3] = $
 (3) x∈ ]-1/3;-1/2] => (x+1)+(x+1) =0
   => 4x +2 20 => x 2 1/2 : S3 = ]-1/3; -1/2] U[-1/2, 00[ = [-1/2]
 C4: x € ]-1/2; 00[ => (3x+2)-(x+1)-(2x+1) ≥0
    => B=0 : S4 - ]-1/2; 00[
       ST = SI US2 US3 US4 = J-0; -1] U [-1/2; 00[
```

```
d) 1x2-2x1 + x·1x-31 ≥3 => 1x1·1x-21 + x·1x-31 ≥3
                                                                                                     CI: XEta,0)
                                                                                                    => -x \cdot (-(x-2)) + x \cdot (-(x-3)) \ge 3
=> x^2 - 2x - x^2 + 3x \ge 3
                                                                                                     => x 23 : S = ]-0,0[1[3,0[
x-3 -
C2: x E [0,2[
 => x \cdot (-(x-2)) + x (-(x-3)) \ge 3 => -x^2 + 2x - x^2 + 3x \ge 3
 ->-2x2+5x-320 => 2x2-5x+360 => (2x-3)-(x-1) =0
     2x-3≤0 A x-1≥0 b)2x-3≥0 A x-1≤0
      => × \( \frac{3}{2} \) \( \times \( \times \) \( \times \( \times \) \( \times \( \times \) \( \times \) \( \times \) \( \times \( \times \) \( \times \) \( \times \) \( \times \( \times \) \( \times 
=> x ∈ [1, 3/2] x ∈ ] + ω; 1] ∩ [3/2, ∞[ = Ø
         Sz = [1,3/2] 1 [0,2[ => [1,3/2]
C3: x∈ [2,3[
      =) x ·(x-2) + x · (-(x-3)) 23 => x2-2x -x2+3x 23
     => x 23 : S3 = [2,3[ 1 [3, 00[ = 0
 C4: x ∈ [3, ∞[
     => x ·(x-2) + x · (x-3) 2 3 => x^2 - 2x + x^2 - 3x \ge 3
      => 2x2 -5x -3 =0 => (2x+1)(x-3) 20
=) 2x+1 20 A x-3 20
                                                                                            b) 2x+1 40 A x-3 40
                 x 2 - 1/2 A x 23
                                                                                              x 4-1/2 1 x 43
                                                                                                  x ∈ ]-0, -1/2] ∩ [3,00[ = Ø
                  x € [3,00]
     S4 = [3, 00[
 :. ST = SIUSZUS3US4 = [1, 3/2]U[3, 00[
```

$$\frac{x}{x^{-4}} \angle \frac{x^{-4}}{x} \angle \frac{x^{-4}}{x} \angle \frac{x^{-4}}{x} \angle 0$$

$$\frac{x^{2} - (x^{-4})^{2}}{x(x^{-4})} = \frac{x^{2} - x^{2} + 8x - 16}{x(x^{-4})} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{8 \cdot (x - 2)}{x(x - 4)} \angle 0$$

$$\frac{x - 2}{(x - 4)^{2}} = \frac{x^{2} - x^{2} + 8x - 16}{x(x - 4)} \Rightarrow \frac{x - 2}{x(x - 4)} \Rightarrow \frac{x - 2}{x(x - 4)} \Rightarrow \frac{x - 2}{x(x - 4)^{2}} \Rightarrow \frac{x - 2}{(x - 4)^{2}} \Rightarrow \frac{x - 2}{x(x - 4)^{2}} \Rightarrow \frac{x - 2}{x(x$$

```
6) T/x+1-1x-21 22
      Primero, la a 30
         => |X+11|-|X-2| 20 (=) |X+1| 2|X-4| // |2
           [x+1] 2 k-29 = x2+2x+13x2-4x+4 /14x-1
           6x23 => 1x3/2
    Luezo, buscamos los x que setisficen la ecuación
        V 11-1x-21 42
     Bu proposedad, lat-16/2 lated , si tomenics a=x+1
       |x+11 - |x-21 < |x+1 - (x-2) => |x+11 - |x-21 < 3 /11)
      1x11-12-2 2 13 : 13 28-2
    => x E R A [1/2, 20) = /2, 20)
I- 1/4=0,25 ; 1/2=0,5
          9,25 69,5 : 4 & S Falsa
 1 - 3 = 0,3 1/2 = 9,5
            9,34 9,5 : SC (1/3, 20) Verdadero
 II - 1/2,00) 1 (-00,1/2) = $ Falso
```