Ve203 Discrete Mathematics (Spring 2022)

Assignment 1

Date Due: 21:00 PM, Tuesday, Mar. 01, 2022

This assignment has a total of (31 points).

Exercise 1.1

(i) (1 point) Let a, b be statements. Write out the truth tables to prove de Morgan's rules:

$$\neg(a \land b) \Leftrightarrow \neg a \lor \neg b, \qquad \neg(a \lor b) \Leftrightarrow \neg a \land \neg b.$$

(ii) (1 point) Let M be a set and $A, B \subset M$. Prove the following equalities by writing out the sets in terms of predicates and applying de Morgan's rules.

$$M - (A \cap B) = (M - A) \cup (M - B),$$
 $M - (A \cup B) = (M - A) \cap (M - B).$

(2 points)

Exercise 1.2 Given $\varphi = (A \to (B \to C)) \to (B \to (A \to C))$,

- (i) (2 points) Write the truth table for φ .
- (ii) (2 points) Write φ in disjunctive normal form.
- (iii) (2 points) Write φ in conjunctive normal form.

(6 points)

Exercise 1.3 The following shows the truth table for all $2^{2^2} = 16$ different binary logical operators φ_i , $i = 0, \dots, 15$.

p	q	φ_0	φ_1	φ_2	φ_3	φ_4	φ_5	φ_6	φ_7	φ_8	φ_9	φ_{10}	φ_{11}	φ_{12}	φ_{13}	φ_{14}	φ_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Using infix notation, for example, φ_{13} can be represented as $\varphi_{13} = \rightarrow (p,q) = p \rightarrow q$.

A set S of logical operators is called *functionally complete* if every compound proposition is logically equivalent to a compound proposition involving only these logical operators in S. In this exercise, in order to show S is a functionally complete set, it suffices to verify that for all i = 0, ..., 15, φ_i over logical variables p and q can be represented using only operators in S.

- (i) (1 point) Show that $\{\land, \lor, \neg\}$ is functionally complete.
- (ii) (1 point) Show that $\{\land, \neg\}$ is functionally complete.
- (iii) (1 point) Show that $\{\lor, \neg\}$ is functionally complete.
- (iv) (1 point) Show that $\{\vee, \wedge\}$ is not functionally complete.

(4 points)

Exercise 1.4 In computer design, the logical operations NAND and NOR play an important role. In logic, NAND is represented by the $Scheffer\ stroke\ |\$ while NOR is represented by the $Peirce\ arrow\ \downarrow$. They are defined as

$$A \mid B := \neg (A \land B),$$
 $A \downarrow B := \neg (A \lor B).$

- (i) (1 point) Give the truth tables for $A \mid B$ and $A \downarrow B$.
- (ii) (2 points) Prove that $A \downarrow A \Leftrightarrow \neg A$ and $(A \downarrow B) \downarrow (A \downarrow B) \Leftrightarrow A \lor B$.
- (iii) (1 point) Deduce that $\{\downarrow\}$ is functionally complete.
- (iv) (1 point) Represent the exclusive or \oplus solely through \downarrow .

¹According to https://en.wikipedia.org/wiki/Logical_NOR, "The computer used in the spacecraft that first carried humans to the moon, the Apollo Guidance Computer, was constructed entirely using NOR gates with three inputs." A reference for this claim is is given in that article. See also https://en.wikipedia.org/wiki/Flash_memory for a discussion of NAND and NOR flash memory.

- (v) (1 point) Prove that {|} is functionally complete.
- (vi) (1 point) Is the Scheffer stroke | acting on logical statements is associative? That is, is it correct that $(A|B)|C \Leftrightarrow A \mid (B \mid C)$?

(7 points)

Exercise 1.5 For any sets A and B, show that

- (i) (1 point) $2^A \cap 2^B = 2^{A \cap B}$.
- (ii) (1 point) $(2^A \cup 2^B) \subset 2^{A \cup B}$.

(2 points)

Exercise 1.6 Let M be a set and let $X, Y, Z, W \subset M$. We define the *symmetric difference*:

$$X \triangle Y := (X - Y) \cup (Y - X)$$

- (i) (1 point) Prove that $X \triangle Y = (X \cup Y) (X \cap Y)$.
- (ii) (1 point) Prove that $(M-X) \triangle (M-Y) = X \triangle Y$.
- (iii) (1 point) Show that the symmetric difference is associative, i.e., $(X \triangle Y) \triangle Z = X \triangle (Y \triangle Z)$.
- (iv) (1 point) Prove that $X \cap (Y \triangle Z) = (X \cap Y) \triangle (X \cap Z)$.
- (v) (1 point) Show that $X \triangle Y = Z \triangle W$ iff $X \triangle Z = Y \triangle W$.
- (vi) (1 point) Indicate the region of $X \triangle Y \triangle Z$ in a Venn diagram.

(6 points)

Exercise 1.7 Let X be a finite set, define the distance/metric $\varrho(A,B)$ of two sets $A,B\in 2^X$ by

$$\rho(A, B) := |A \triangle B|.$$

Show that $(2^X, \varrho)$ is a *metric space* by verifying that for all $A, B, C \in 2^X$,

- (i) (1 point) $\varrho(A, B) = 0$ iff A = B;
- (ii) (1 point) $\varrho(A, B) = \varrho(B, A)$;
- (iii) (2 points) $\varrho(A,C) \leq \varrho(A,B) + \varrho(B,C)$.

(4 points)