CLAIM AMENDMENTS

This listing of claims will replace all prior versions and listings of claims in the application.

1 1. (Currently Amended) A method of performing a reduction operation in a cryptographic calculation in a digital computer, the method comprising: 2 selecting a modulus having a first section with a plurality of "1" Most 3 Significant Word states and a second section which further comprises: a plurality of 4 "1" or "0" states whereby a number formed of the two sections is a modulus; and 5 operating a reduction operation on the modulus comprising: 6 multiplying a first variable no by a second variable r3 to produce a first 7 result; 8 adding the first result to a third variable r₁ and B multiplied by a fourth 9 variable Br₂-r₂ to produce a first sum, wherein the first sum corresponds to a first 10 equation: n_{0} $r_{3} + B r_{2} + r_{1}$; 11 dividing the first sum into an upper half and a lower half; 12 multiplying the upper half by the first variable n₀ to produce a second result: 13adding the second result to the lower half and a fifth variable r₀ to produce a 14 second sum, thereby permitting use of the second sum as the modulus; and 15 using the modulus in the cryptographic calculation. 16

- 2. (Currently Amended) A—The method according to of claim 1, further comprising:

 effecting a plurality of multiplication operations.
- 3. (Currently Amended) A—The method according to of claim 2, further comprising:
- effecting a plurality of multiplication operations followed by effecting a reduction operation.
- 4. (Currently Amended) A—<u>The</u> method according to of claim 3, further comprising:
 - repeating the combined multiplication operations and reduction operation effecting step of claim 3.
- 5. (Currently Amended) A—<u>The</u> method according to of claim 1, further comprising:
- using a multiple of the modulus.

1

1

3

4

1

1

6. (Currently Amended) A—The method according to of claim 1, further comprising:

- 3
- wherein, when a last multiplication gives an overflow, the overflow is added adding an overflow from a last multiplication to a part of a selected number.

1

1

2

4

- 7. (Currently Amended) A—The method according to of claim 6, further comprising:
- wherein, when the overflow addition step produces an overflow, then adding the first variable n₀' is added to the overflow.

1

1

2

8. (Currently Amended) A-The method according to of claim 1, wherein a carry c between two adjacent multiplications is effected as an addend in the next a subsequent multiplication.

1

1

2

3

- 9. (Currently Amended) A—<u>The</u> method according to of claim 1, further comprising:
- monitoring the a number of leading "1"s to determine if the number is less than (k-2).

1

1 10. (Currently Amended) A—The method according to—of claim 9, further comprising:

initiating a next calculation-when the number of leading "1"s is less than (k-3 2). (Currently Amended) A-The method according to of claim 1, the method 11. 2 further comprising: operating 192-bit ECC and a word size of 64-bit, 3 the modulus comprises a first section of 138 bits and a second section of 54 4 bits. 5 12. (Currently Amended) A The method according to of claim 1, the method 1 further comprising: 2 operating 128-bit ECC and a word size of 64-bit, 3 the modulus comprises a first section of 74 bits and a second section of 54 4 bits. 5 1 (Currently Amended) A-The method according to of claim 1, the method 13. 1 further comprising: 2 operating 256-bit ECC and a word size of 64-bit, 3 the modulus comprises a first section of 202 bits and a second section of 54 4 .

bits.

5

G

(Currently Amended) A computer program product directly loadable into the 1 14. internal memory of a digital computer, comprising: 2 software code portions for performing the method of claim 1 when said 3 product is run on a computer. 4 1 (Currently Amended) A computer program directly loadable into the internal 15. 1 memory of a digital computer, comprising: 2 software code portions for performing the method of claim 1 when said 3 program is run on a computer. 4 1 16-17. (Canceled). 1 1 18. (Currently Amended) An apparatus that performs a reduction operation in a 1 cryptographic calculation on a digital computer, the apparatus comprising: 2 a plurality of input registers that store a plurality of input operands; 3 a plurality of output registers that store a plurality of outputs; and 4 a multiplier that produces said outputs using a function that operates on 5 variables from both said input registers and said output registers; wherein said 6

multiplier selects a modulus having a first section with a plurality of "1" states and

a second section having a plurality of "1" or "0" states whereby a number formed of

7

9	the two sections is a modulus and performs a reduction operation on the modulus,
10	the reduction operation comprising:
11	multiplying a first variable n_0 by a second variable r_3 to produce a first
12	result;
13	adding the first result to a third variable r ₁ and B multiplied by a fourth
14	variable Br2-r2 to produce a first sum, wherein the first sum corresponds to a first
15	equation: $n_{0'} r_3 + B r_2 + r_1$;
16	dividing the first sum into an upper half and a lower half;
17	multiplying the upper half by the first variable no to produce a second result;
18	adding the second result to the lower half and a fifth variable \mathbf{r}_0 to produce a second
19	sum, thereby permitting use of the second sum as the modulus; and
20	using the modulus in the cryptographic calculation.
1	
1	19. (Previously Presented) The apparatus of claim 18, further comprising:
2	means to effect a plurality of multiplication operations.
1	
1	20. (Previously Presented) The apparatus of claim 19, further comprising:
2	means to effect a plurality of multiplication operations followed by a
3	reduction operation.

(Previously Presented) The apparatus of claim 20, further comprising: 21. 1 means to repeat the plurality of multiplication operations and the reduction 2 operation. 3 1 (Previously Presented) The apparatus of claim 18, further comprising: 22. 1 means to use a multiple of the modulus. 2 1 (Currently Amended) The apparatus of claim 18, further comprising: 23. 1 means, when a last multiplication gives an overflow, to add the overflow to a 2 part of a selected number to add an overflow from a last multiplication to part of a 3 selected number. 4 1 24. (Currently Amended) The apparatus of claim 23, further comprising: 1 means, when the overflow addition step produces an overflow, to add to add 2 the first variable n_{0} to the overflow. 3 1 25. (Currently Amended) The apparatus of claim 18, further comprising: 1 means to effect a carry c between two adjacent multiplications as an addend 2 in the next a subsequent multiplication. 3 1

- 26. (Currently Amended) Apparatus according to The apparatus of claim 18, further comprising: 2 means to monitor the a number of leading "1"s to determine if the number is 3 less than (k-2). 4 (Currently Amended) The apparatus of claim 26, further comprising: 27. 1 means to initiate a next calculation-when the number of leading "1"s is less 2 than (k-2). 3 1 28. (Currently Amended) The apparatus of claim 18, further comprising: 1 with means for 192-bit ECC and a word size of 64-bit, 2 wherein the modulus comprises a first section of 74 bits and a second section of 54 3 bits. 4 1 29. (Currently Amended) The apparatus of claim 18, further comprising: 1 with means for 128-bit ECC and a word size of 64-bit, 2 wherein the modulus comprises a first section of 74 bits and a second section of 54 3 bits. 4 1
 - 30. (Currently Amended) The apparatus of claim 18, further comprising:with

2 means, for 256 bit ECC and word size of 64 bit, wherein the modulus comprises a

3 | first section of 202 bits and <u>a</u> second section of 54 bits.

1 31-33. (Canceled).