Fourth Order Modified Laguerre's Method

Thomas R. Cameron
Davidson College

Abstract

We present a novel modification of Laguerre's method that results in a method for the concurrent approximation of all roots of a univariate polynomial. Our method has strong virtues including fourth-order convergence that is observed in practice and belonging to the class of embarrassingly parallel algorithms. A Fortran 90 implementation of our algorithm is available online and comparisons with several other software are provided to show the effectiveness of our approach.

Introduction

Let $p(\lambda)$ be a polynomial of degree m and denote by (z_1, \ldots, z_m) the current approximations to the roots r_1, \ldots, r_m of $p(\lambda)$. The jth approximation is updated via

$$\hat{z}_j = z_j - \frac{m}{G_j \pm \sqrt{(m-1)(mH_j - G_j^2)}},\tag{1}$$

where

$$G_{j} = \frac{p'(z_{j})}{p(z_{j})} - \sum_{\substack{i=1\\i\neq j}}^{m} \frac{1}{(z_{j} - z_{i})} \text{ and } H_{j} = -\left(\frac{p'(z_{j})}{p(z_{j})}\right)' - \sum_{\substack{i=1\\i\neq j}}^{m} \frac{1}{(z_{j} - z_{i})^{2}}.$$
 (2)

On each iteration, z_j is updated for $j=1,\ldots,m$, unless it was accepted on a previous iteration. In this sense, all roots of the polynomial are approximated concurrently, rather than sequentially.

Initial Estimates In essence, we select complex numbers along circles of suitable radii. What constitues suitable radii is formalized in [Bini] and can be computed via the upper envelope of the convex hull of the set $\{(i, \log |a_i|), i = 0, 1, \ldots, m\}$. We compute the convex hull via Andrew's Monotone Chain algorithm [Andrew].

Backward Error The backward error of an approximate root ξ is given by

$$\eta(\xi) = \frac{|p(\xi)|}{\alpha(\xi)},\tag{3}$$

where $\alpha(\xi) = \sum_{i=0}^{m} |e_i| |\xi|^i$.

Pseudocode

```
Concurrent Style
(z_1, \ldots, z_m) \leftarrow \text{initial estimates}
\mathbf{while} \ i < itmax \ \mathbf{do}
\mathbf{for} \ j = 1 \ \text{to} \ m \ \mathbf{do}
\mathbf{if} \ z_j \ \text{is not close enough to} \ r_j \ \mathbf{then}
Update \ via \ (1) \ \text{and} \ (2)
\mathbf{end} \ \mathbf{if}
\mathbf{end} \ \mathbf{for}
```

Parallel Style

 $i \leftarrow it + 1$

end while

```
(z_1, \ldots, z_m) \leftarrow \text{initial estimates}
while i < itmax \ \mathbf{do}

parfor j = 1 \ \text{to} \ m \ \mathbf{do}

if z_j is not close enough to r_j then

Compute G_j and H_j via (2) and store end if

end parfor

parfor j = 1 \ \text{to} \ m \ \mathbf{do}

if z_j is not close enough to r_j then

Use G_j and H_j to compute z_j via (1)

end if

end parfor

i \leftarrow i + 1

end while
```