

LATVIJAS UNIVERSITĀTE DATORIKAS FAKULTĀTE

ATDARINOŠĀS MAŠĪNMĀCĪŠANĀS PIELIETOJUMS ROBOTIKĀ

MAGISTRA KURSA DARBS

Darba autors: **Pēteris Račinskis** Darba vadītājs: Dr. Sc. comp. Modris Greitāns

DARBA MĒRĶIS

Struktūra: teorētisks nozares pārskats **Motivējošā problēma**: atkritumu šķirošanas līnijās vai citur. Robots no konveijera ņem neregulāras formas objektus, šķiro tvertnēs ar metienu palīdzību.

Tematika: atdarināšanu kā piemērotu risinājumu apsver Elektronikas un datorzinātņu institūts, mazāki šķēršļi nekā reinforcement learning.

Jānoskaidro: nozares apakšvirzieni; kādi pētījumi jau veikti; kādas metodes pastāv; kādi ir to sasniegtie rezultāti; vai var piemērot tos motivējošam uzdevumam.

Jāizstrādā: provizorisks risinājums, plāns tālākai pētnieciskai darbībai

ATDARINOŠĀ MAŠĪNMĀCĪŠANĀS IMITATION LEARNING

Uzdevums: Markova lēmumu process (**MDP**) **Zināmas**: demonstrāciju trajektorijas (s_t , a_t) **legūstama**: stratēģija $\pi(s_t) = a$

Pētniecības virziens:

TRAJEKTORIJU KOPĒŠANA

Uzdevums: dotas trajektorijas ar tiešiem novērojumiem s_t un darbībām a_t. Kā precīzāk, efektīvāk atdarināt?

Metodes: uzvedības klonēšana - modelis trenēts aproksimēt demonstrāciju, $\pi(s_t) \cong \pi_{dem}(s_t)$. Modeļu tipi - neironu tīkli, SVM, citi klasifikatori vai regresori.

Izaicinājumi: stratēģiju inducēto stāvokļu sadalījumu diverģence - situācijas, kas demonstrāciju kopā nav redzētas. Pielieto statistiskas korekcijas, uzdevumu dekompozīciju, *inverse reinforcement learning*.

Pētniecības virziens:

NOVĒROJUMU IEGŪŠANA, PAPILDINĀŠANA

Uzdevums: dotas trajektorijas ar netiešiem novērojumiem $o_t = f(s_t)$ (piemēram, attēliem), iztrūkstošām darbībām a_t . Nepietiekami treniņa datu apjomi. Mainīgi darba apstākļi.

Metodes: aizvieto trūkstošās darbības ar sistēmas dinamikas iemācīšanos, demonstrācijās novēroto pāreju klasifikāciju. Mainīgas slodzes var kompensēt, ja eksperimentāli nosaka nominālās slodzes. Papildināšanai - datus sintezē simulatorā. Attēliem - konvolūciju neironu tīkli, perspektīvu pārnese ar enkoderiem.

Pētniecības virziens:

VISPĀRINĀŠANA, ADAPTĀCIJA

Uzdevums: demonstrācijas nav optimālas - uzlabot; atdarināt jaunus paraugus ar minimālu papildus apmācību.

Metodes: reinforcement learning atalgojuma funkciju atjaunošana un ekstrapolācija; tūlītēja (one-shot) atdarināšana, par modeļa argumentu ņemot veselu demonstrāciju; demonstrāciju kopas kā inicializācija reinforcement learning procesiem; demonstrāciju iegūšana no nestrukturētām datu kopām (learning from play), pārejas stratēģiju iegūšana starp patvaļīgiem stāvokļiem.

RISINĀJUMA PLĀNS

Izstrādes vieta: Elektronikas un datorzinātņu institūts, robotikas laboratorija

Pieņēmumi: objekta satveršanas un klasifikācijas uzdevumi ir atrisināti.

Demonstrāciju ģenerēšana: izmantojot kinemātikas ieraksta aprīkojumu (kameras) vai VR saskarni. Iespējams - kompaktas metiena reprezentācjas aprēķins.

Būvējamais modelis: parametrizēts pēc metiena galamērķa, jaunu metienu programmēšana ar koordinātēm. Vispārināma apmācība no demonstrācijām, papildināta ar *reinforcement learning* optimizācijai.