Exercise Class Solutions 3

13 Modeling Computation

13.2 Finite-State Machines with Output

13.2.9

Construct a finite-state machine that delays an input string two bits, giving 00 as the first two bits of output.

13.3 Finite-State Machines with no Output

13.3.1

Let $A = \{0, 11\}$ and $B = \{00, 01\}$. Find each of these sets.

- a) AB
- b) BA
- c) A^2
- d) B^3

Solution

- a) {000,001,1100,1101}
- b) {000,0011,010,0111}
- c) {00,011,110,1111}
- $d) \ \{000000,000001,000100,010000,000101,010001,010100,010101\}$

13.3.5

Describe the elements of the set A^* for these values of A.

- a) {10}
- b) {111}
- c) $\{0,01\}$
- d) {1,101}

- a) The set of all bit strings consisting of zero or more repetitions of 10.
- b) The set of all bit strings consisting of zero or more repetitions of 111; or equivalently, the set of all bit strings containing only 1s and having length divisible by 3.
- c) The set of all bit strings where a 1 is always preceded by a 0.
- d) The set of all bit strings where a 0 is always preceded and succeeded by a 1.

Determine whether the string 11101 is in each of these

- c) $\{11\}\{0\}^*\{01\}$
- d) $\{11\}^*\{01\}^*$
- e) $\{111\}^*\{0\}^*\{1\}$

Solution

- c) No
- d) No
- e) Yes

13.3.17

Find the language recognized by the given deterministic finite-state automaton.

Solution

The set of bit strings that start with 0, 10, or 11; i.e., $\{0, 10, 11\}\{0, 1\}^*$

Find the language recognized by the given deterministic finite-state automaton.

Solution

The set of bit strings starting with zero or more 0s and followed by one or more 1s; i.e., $\{0^m1^n|m\geq 0, n\geq 1\}$.

13.3.27

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain exactly three 0s.

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain three consecutive 1s.

Solution

13.3.31

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that begin and end with 11.

Construct a deterministic finite-state automaton that recognizes the set of bit strings consisting of a 0 followed by a string with an odd number of 1s.

Solution

13.3.25

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain the string 101.

Explain how you can change the deterministic finite-state automaton M so that the changed automaton recognizes the set $I^* - L(M)$.

Solution

Make all of the final states non-final, and vice versa.

13.3.41

Use the procedure you described in Exercise 39 and the finite-state automata you constructed in Exercise 25 to find a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain the string 101.

Find the language recognized by the given nondeterministic finite-state automaton. $\,$

Solution

 $\{0,01,11\}$

13.3.45

Find the language recognized by the given nondeterministic finite-state automaton.

$$\{\lambda, 0\} \cup \{0^m 1^n | m \geq 1, n \geq 1\}$$