Variable aléatoire : la variable aléatoire X est une application qui permet de passer de l'espace Ω théorique à un espace E de valeurs observables :

$$X: \Omega \to E$$

$$\omega \mapsto X(\omega) = x.$$

Loi de probabilité : pour toute partie A de E,

$$P_X(X \in A) = P(\{\omega; X(\omega) \in A\}).$$

Variables aléatoires indépendantes : Deux Variables aléatoires X_1 et X_2 à valeurs dans E_1 et E_2 sont indépendantes si pour tout événement $A_1 \subset E_1$ et $A_2 \subset E_2$, les événements $\{X_1 \in A_1\}$ et $\{X_2 \in A_2\}$ sont indépendants, c-à-d

$$P(X_1 \in A_1 \text{ et } X_2 \in A_2) = P(X_1 \in A_1)P(X_2 \in A_2).$$

Vocabulaire probabiliste

Vocabulaire probabiliste

variable aléatoire discrète : On appelle variable aléatoire discrète une variable aléatoire qui prend

- i. un nombre fini de valeurs : $E = \{x_1, ..., x_n\}$,
- ii. ou un nombre infini dénombrables de valeurs $E = \{x_1, ..., x_n, ...\}.$

La loi d'une variable aléatoire discrète est entièrement décrite par la donnée de $p_i = P(X = x_i)$ pour tout i = 1, 2,

variable aléatoire entière : Une variable aléatoire X est dite entière si elle prend ses valeurs dans $\mathbb N$ ou une partie de $\mathbb N$. Sa loi de probabilité est donnée par les quantités $p_k = P(X = k)$ pour $k \in \mathbb{N}$.

Lois discrètes usuelles :

nom de la loi	notation	espace E	probabilité $P(X = k)$
Loi Uniforme sur $\{1,,n\}$	$\mathcal{U}(\{1,,n\})$	$\{1,,n\}$	$\frac{1}{n}$
Loi de Bernouilli de paramètre <i>p</i>	$\mathcal{B}(p)$	$\{0,1\}$	$p_0 = 1 - p, \ p_1 = p$
Loi Binomiale de paramètres <i>n</i> et <i>p</i>	$\mathcal{B}(n,p)$	$\{0,,n\}$	$C_n^k p^k (1-p)^{n-k}$
Loi de Poisson de paramètre λ	$\mathcal{P}(\lambda)$	N	$e^{-\lambda} \frac{\lambda^k}{k!}$
Loi Géométrique de paramètre p	$\mathcal{G}(p)$	N*	$p(1-p)^{k-1}$

Propriétés:

- 1. La somme $X_1 + ... + X_n$ de n lois de Bernouilli $\mathcal{B}(p)$ indépendantes suit une loi binomiale $\mathcal{B}(n,p)$.
- 2. Le rang du premier succès $T = \inf\{j \ge 1, X_j = 1\}$ à des tirages $X_1, X_2, ...$ indépendants de loi $\mathcal{B}(p)$ suit la loi géométrique $\mathcal{G}(p)$.

Vocabulaire probabiliste

- 3. Si X suit la loi $\mathcal{P}(\lambda)$ et Y suit la loi $\mathcal{P}(\eta)$ sont des variables aléatoires indépendantes, alors X + Y suit la loi $\mathcal{P}(\lambda + \eta)$.
- 4. Si X_n suit la loi binomiale $B(n, \frac{\lambda}{n})$, alors

$$\lim_{n\to+\infty} P(X_n=k)=e^{-\lambda}\frac{\lambda^k}{k!}, \ \forall n\in\mathbb{N}.$$

Par conséquence, pour n grand et p petit, $\mathcal{B}(n,p) \approx \mathcal{P}(pn)$.

Espérance d'une variable aléatoire discrète : Soit X une variable aléatoire discrète. La moyenne (ou espérance) de X est définie par

$$E(X) = \sum_{k \geqslant 0} x_k P(X = x_k).$$

De plus, pour toute fonction h(X), on peut également calculer une moyenne

$$E(h(X)) = \sum_{k \geqslant 0} h(x_k) P(X = x_k).$$

Propriétés : Soient X et Y deux variables aléatoires discrètes, alors :

- 1. E(X + Y) = E(X) + E(Y).
- 2. $E(\alpha X) = \alpha E(X), \forall \alpha \in \mathbb{R}.$
- 3. si de plus X et Y sont indépendantes, on a E(XY) = E(X)E(Y).

Variance d'une variable aléatoire discrète : Soit X une variable aléatoire discrète. La variance de X est définie par

$$V(X) = E(X^2) - E(X)^2$$
.

Propriétés:

- 1. $V(X) = 0 \Leftrightarrow X$ est constante.
- 2. $V(\alpha X) = \alpha^2 V(X), \forall \alpha \in \mathbb{R}.$
- 3. Si X et Y sont deux variables aléatoires discrètes indépendantes, alors V(X + Y) = V(X) + V(Y).

Caractéristiques des lois discrètes usuelles :

nom de la loi	espérance	variance
Loi Uniforme $\mathcal{U}(\{1,,n\})$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$
Loi de Bernouilli $\mathcal{B}(p)$	p	p(1-p)
Loi Binomiale $\mathcal{B}(n,p)$	np	np(1-p)
Loi de Poisson $\mathcal{P}(\lambda)$	λ	λ
Loi Géométrique $\mathcal{G}(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Fonction de répartition : Pour toute variable aléatoire X, on définit la fonction de répartition par

$$F(x) = P(X \leqslant x).$$

