

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ <u>«Инфо</u>	ррматика и системы управления»	
КАФЕДРА «Програм	лмное обеспечение ЭВМ и информационные технологии»	

ОТЧЕТ

по ЛР по курсу «АА» на тему: «1»

Студент <u>ИУ7-55Б</u> (Группа)	(Подпись, дата)	Евграфов Ф. Д. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	<u>ФИО</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

Bl	ВВЕДЕНИЕ 4				
1	Ана	итическая часть	5		
	1.1	Преломление лучей	5		
	1.2	Задача	7		
	1.3	Объекты	7		
		1.3.1 Описание	8		
		1.3.2 Представление	8		
	1.4	Алгоритмы удаления невидимых поверхностей	8		
		1.4.1 Алгоритм Робертса	8		
		1.4.2 Алгоритм Художника	9		
		1.4.3 Алгоритм, использующий Z-буфер	10		
		1.4.4 Алгоритм обратной трассировки лучей	10		
		1.4.5 Выбранный алгоритм	11		
	1.5	Освещение	11		
			11		
		1.5.2 Тени	12		
		1.5.3 Полная интенсивность	12		
	1.6	Выводы из аналитической части	12		
2	Кон	структорская часть	13		
3	Text	ологическая часть	14		
4	Исс	иедовательская часть	15		

ЗАКЛЮЧЕНИЕ	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17

введение

1 Аналитическая часть

1.1 Преломление лучей

Когда свет проходит из одной среды в другую, например из воздушной в водную и т.п., луч отклоняется, такое явление называется преломление. Его пример видно на рисунке 1.1, из-за отклонения лучей света наблюдателю кажется, что объект разрывается.

Рисунок 1.1 – Карандаш в стакане с водой, преломление света нарушает визуальную непрерывность.

Закон описывающий направления отклонения, изображенном на рисунке 1.2, называется закон Снелиуса [1]:

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1},\tag{1.1}$$

где:

- $\theta_1, \, \theta_2$ угол падения и преломленного угла луча,
- n_1, n_2 коэффициенты плотности среды,
- v_1, v_2 соответствующие скорости распространения света в средах,
- normal нормаль к поверхности N,

— P — вектор, описывающий направление падающего луча в пространстве,

- Q — исходящего.

Рисунок 1.2 – Преломление одного луча.

Важное замечание – если луч падает их более оптически плотной среде $(n_1>n_2)$, под определенным углом (критическим) явление преломления выродится в случай внутреннего отражения. И значение угла θ_1 находится при $\theta_2=\pi/2$, как:

$$\sin \theta_1 = \frac{n_2}{n_1} \cdot \sin \theta_2 = \frac{n_2}{n_1},\tag{1.2}$$

и угол исходящего луча θ_2 будет равен θ_1 .

Направление исходящего луча также вычисляется следующим выражением:

$$Q = r \cdot P + \left[r \cdot c - \sqrt{1 - r^2 \cdot (1 - c^2)} \right] \cdot N, \tag{1.3}$$

где $r = n_1/n_2$ и $c = -\cos\theta_1 = -N \cdot P$.

Если луч падает под критическим углом, то

$$r^{2} \cdot (1 - c^{2}) = r^{2} \cdot \sin^{2} \theta_{1} = \frac{n_{1}^{2}}{n_{2}^{2}} \cdot \frac{n_{2}^{2}}{n_{1}^{2}} = 1,$$
(1.4)

то есть подкоренное меньше нуля, если происходит внутреннее отражение. Направление отраженного луча определяется, как:

$$Q = P - 2 \cdot (N \cdot L) \cdot N = P + 2 \cdot c \cdot N \tag{1.5}$$

1.2 Задача

Формализованная задача представлена в виде диаграммы на рисунке 1.3.

Рисунок 1.3 – IDEF0 диаграмма формализованной задачи

1.3 Объекты

Сцена содержит в себе следующие объекты:

- модели видимые объемные фигуры произвольной формы с параметрами:
 - 1) цвет поверхности,
 - 2) прозрачность,
 - 3) коэффициент преломления (оптическая плотность среды);
- источники света, с параметрами:
 - 1) цвет,
 - 2) интенсивность излучения;
- точки обзора (камеры) являются наблюдателями на сцене, всегда присутствует хотя бы одна камера, с параметрами:
 - 1) разрешение (в том числе задает соотношение сторон изображения),
 - 2) угол обзора.

Каждый объект обладает положением в пространстве

1.3.1 Описание

Для представления объемных сущностей в компьтерной графике ниже представлены [2, с.с. 341–350]:

- 1) аналитическая в виде уравнения поверхности, позволяет описать примитивную геометрию объекта, например прямой, плоскости, шара, тора и т.п., в пространстве;
- 2) воксельная использует блоки для построения;
- 3) полигональная в виде многогранника, позволяет описывать сложную геометрию.

1.3.2 Представление

Для решения задачи необходимо выбрать то представление объекта, которого будет достаточно для представления любого на сцене. Так как объекты могут быть любой формы, и описываются сущности имеющие объем, выбран полигональное представление.

1.4 Алгоритмы удаления невидимых поверхностей

Для удаления невидимых поверхностей в большинстве случаев используют следующие алгоритмы:

- алгоритм Робертса,
- алгоритм Художника,
- алгоритм, использующий Z-буфер,
- алгоритм обратной трассировки лучей.

1.4.1 Алгоритм Робертса

Алгоритм основан на анализе нормалей граней и определении их ориентации относительно наблюдателя.

Основные этапы алгоритма:

1)

2)
3)
Преимущества
_
_
_
Недостатки
_
_
_
Таким образом
1.4.2 Алгоритм Художника
Основные этапы алгоритма:
основные этапы алгоритма.
1)
1)
1)2)
1)2)3)
1)2)3)
1)2)3)
1)2)3)
 1) 2) 3) Преимущества — —
 1) 2) 3) Преимущества — —
 1) 2) 3) Преимущества — —

1.4.3 Алгоритм, использующий Z-буфер

Основные этапы алгоритма:
1)
2)
3)
Преимущества
_
Недостатки
_
_
Таким образом
1.4.4 Алгоритм обратной трассировки лучей
Основные этапы алгоритма:
1)
2)
3)
Преимущества

Недостатки

Таким образом

1.4.5 Выбранный алгоритм

Так как все описанные алгоритмы, кроме обратной трассировки, не учитывают искожений

1.5 Освещение

Модели освещения рассматривают 2 вида: локальная и глобальная.

1.5.1 Модели освещения

Локальная модель освещения учитывает модели индивидуально, что не подходит для реализации задачи, так как именно другие объекты будут видны в результате преломления. Что учитывает глобальная [1, с. 464, с. 502, с. 548].

Уравнение интенсивности:

$$I = k_{\alpha} \cdot I_{\alpha} + k_{d} \cdot \sum_{i=1}^{N} (I_{L_{i}} \cdot \vec{n} \cdot \vec{L}_{i}) + k_{s} \cdot \sum_{i=1}^{N} (I_{L_{i}} \cdot (\vec{S} \cdot \vec{L}_{i})^{n}) + k_{s} \cdot I_{s} + k_{t} \cdot I_{t},$$
 (1.6)

где коэффициенты

- k_{α} фоновый,
- k_d диффузный,
- k_s зеркальный,
- k_t преломленного луча,
- n аппроксимирующий распределение лучей от отражения,

и вектора

- \vec{L} направления до точечного источника света,
- \vec{S} направление до наблюдателя,
- \vec{n} нормали к поверхности.

1.5.2 Тени

Для определения интенсивности затененных областей удобно использовать алгоритм трассировки лучей, для это испускаются зондирующие лучи до источников света, если пересечение установлено, то область находится в тени [1, с. 517]. Однако, когда рассматриваются прозрачные модели, точка может не быть затененной, поэтому для каждого зонда и источника коэффициент затенения от одного объекта составляет [2, с. 368]:

$$k_{shadow,i} = k_{t,i} (1.7)$$

Если луч пересекает несколько объектов, то коэффициент для N_O полных пересечений моделей на отрезке до источника света будет:

$$k_{shadow} = \prod_{i=1}^{N_O} k_{t,i} \tag{1.8}$$

1.5.3 Полная интенсивность

Итоговая интенсивности в точке вычисляется по формуле 1.9.

$$I = k_{\alpha} \cdot I_{\alpha} + \sum_{i=1}^{N_L} \left[\prod_{j=1}^{N_O} k_{t,j} \cdot (k_d \cdot \vec{n} \cdot \vec{L}_i + k_s \cdot (\vec{S} \cdot \vec{L}_i)^n) \right] \cdot I_{L_i} + k_s \cdot I_s + k_t \cdot I_t$$
 (1.9)

1.6 Выводы из аналитической части

2 Конструкторская часть

3 Технологическая часть

4 Исследовательская часть

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. David F. Rogers. Procedural elements for computer graphics 1998. 2-е издание. 695 с.
- 2. John F. Hughes, Andries Van Dam, Morgan MvGuire. Computer Graphics Principles and Practice 2014. 3-е издание. 1260 с.
- 3. Tomas Akenine-Möler, Eric Haines, Naty Hofman. Real-time rendering 2018. 4-е издание. 1199 с.
- 4. Mat Pharr, Wenzel Jakob, Greg Humphreys. Physically based rendering From theory to implementation 2017. 3-е издание. 1270 с.
- 5. Steve Klabnik, Carol Nichols. The Rust Programming Language // Руководство. Языки программирования. 2022. 2-е издание. 560 с.
- 6. Документация библиотеки cpu_time [эл. pecypc]. URL: https://docs.rs/cpu-time/latest/cpu_time/ (дата обращения: 30 сентября 2025 г.).
- 7. Документация текстового редактора «NVim» [эл. ресурс]. URL: https://neovim.io/doc/ (дата обращения: 30 сентября 2025 г.).