Trabalho Prático 1 - Diodos e Transistores Bipolares de Potência

Matheus Barros Oliveira

2022-09-14

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CURSO DE PÓS-GRADUAÇÃO LATO SENSU SISTEMAS ELETROELETRÔNICOS E AUTOMAÇÃO INDUSTRIAL FUNDAMENTOS DE CIRCUITOS ELÉTRICOS PROFESSOR ANDERSON ROCHA

1. Introdução:

Nesse projeto os estudantes deverão utilizar seus conhecimentos sobre tecnologia dos semicondutores de potência, diodos de potência e transistores bipolares de junção na solução de problemas envolvendo a aplicação dos dispositivos como elementos de conversores estáticos.

2. Objetivo:

O objetivo deste trabalho é realizar cálculos e projetos em relação à semicondutores de potência diodos e transitores.

2.1 Problema 01:

O diodo de potência MBR20100CT, do fabricante VISHAY e sujo data sheet encontra-se em anexo, utilizado no circuito da Figura 1, tem uma tensão de threshold estimada (Vt) igual a 620mV e uma resistência em condução direta igual a $10.1m\Omega$. A tensão aplicada apresenta uma forma de onda triangular simétrica (Figura 2), com 120V pico a pico e ciclo de trabalho D=0.5, em uma frequência fs=20kHz. O circuito irá operar na temperatura ambiente de $30^{\circ}C$. Fazer o projeto térmico para a aplicação, se necessário, considerando o uso de pasta térmica e sabendo que o diodo não precisa ser isolado eletricamente de um eventual dissipador.

Figura 1: Circuito Simplificado da Aplicação

Figura 1: Circuito simplificado da aplicação

Figura 2: Forma de Onda da Tensão Vi

Figura 2: Forma de onda da tensão vi.

2.2 Problema 02:

O conversor c.c.-c.c. mostrado na Figura 3 é utilizado para se elevar de 24V para 60V c.c. a tensão de um banco de baterias para aplicação em uma carga elétrica. Os interruptores eletrônicos empregados no conversor são o MOSFET M1 e o Diodo de potência D1. Para a aplicação em questão o projetista escolheu o diodo VS-E5TH1506, cuja folha de dados encontra-se em anexo. As formas de onda das correntes, em ampères, nos interruptores e nos componentes passivos do conversor estão representadas na Figura 4. Se o conversor opera na frequência de chaveamento fs=100KHz, com ciclo de trabalho D=0.66, pede-se determinar:

- a) os valores médio e rms da corrente diodo D1;
- b) as perdas em condução em D1;
- c) a temperatura de junção (Tj) do diodo D1 considerando uma temperatura ambiente de 40°C;
- d) discutir a necessidade de se utilizar um dissipador de calor com o componente D1.

Figura 3: Conversor Boost c.c - c.c

Figura 4: Formas de Onda das Correntes [A]

2.3 Problema 3:

Um circuito de acionamento com o transistor bipolar 2SCR582D3, cujo data sheet encontra-se em anexo, deve alimentar uma carga resistiva de 10Ω a partir de uma fonte de tensão contínua de 24V. A carga deve receber uma tensão com forma de onda quadrada e frequência fs=1KHz, com razão cíclica 0,8 (o sinal deve permanecer em nível alto durante 80% do seu período Ts). A tensão do circuito de comando de base do transistor tem amplitude de 5V.

Sabendo que a corrente média desejada na carga deve ser em torno de 1.92A e a perda por condução no transistor deve ser mínima. Pede-se projetar o resistor de base do acionamento (valor ôhmico e potência), considerando um fator de saturação OF=3.

Comentar sobre a viabilidade de se construir um circuito semelhante ao desse problema, empregando um transistor bipolar de potência, se a fonte de tensão contínua for de 240V e a corrente média desejada na carga estiver em torno de 15A.

3 Materiais e Métodos:

Para a realização desta atividade foram utilizados os sotwares LTspice XVIII versão (17.0.35.0) para as simulações dos circuitos e o Rstudio versão 4.1.2 (2021-11-01) para a criação do relatório e realização dos cálculos.

4. Desenvolvimento:

4.1 Problema 1:

Todos os cálculos desenvolvidos abaixo forma realizados considerando o diodo modelo: TO-220AB MBR20100CT do fabricante VISHAY.

4.1.1 Cálculo da Corrente Média:

Como a fonte de alimentação apresenta uma forma de onda triangular, para o cálculo da corrente média Imed foi utilizado a equação abaixo, onde:

K é a razão cíclica; Ip é a corrente de pico;

$$Imed = \frac{K}{2}Ip$$

```
# Cálculo da corrente média

resistencia <- 3;
tensao_pico <- 60;
ciclo_trabalho <- 0.5;
corrente_pico <- tensao_pico/resistencia;
corrente_media <- round((ciclo_trabalho/2)*corrente_pico,2);</pre>
```

A corrente média calculada foi: 5A.

4.1.2 Cálculo da Corrente RMS:

Para o cálculo da corrente Irms foi utilizada a seguinte fórmula onde:

Ip é a corrente de pico;

K é a razão cícilida;

$$Irms = Ip\sqrt{\frac{K}{3}}$$

```
# Cálculo corrente RMS

corrente_rms <- round(corrente_pico*sqrt(ciclo_trabalho/3),2);</pre>
```

O valor da corrente Irms calculada foi: 8.16A.

4.1.3 Cálculo Potência Condução:

Para o cálculo da potência consumida em condução foi utilizada a seguinte fórmula abaixo onde:

Vt é a queda de tensão direta no diodo; Id é a corrente direta média no diodo; Rd é a resistência de condução direta; Idrms é a corrente direta rms no diodo;

```
Pcond = VtId + RdIdrms^2
```

A potência de condução direta do diodo calculada foi: 3.77W.

4.1.4 Cálculo da Temperatura de Junção:

Para o cálculo da temperatura de operação da junção do diodo foi utilizada a seguinte fórmula, onde:

Tj temperatura de junção;

Pj potência de condução;

Rja resistência junção/ambiente;

Rca resistência case/ambiente;

Rja resistência junção/ambiente;

Ta temperatura ambiente;

$$Tj = (Pj * Rja) + Ta$$

```
#Declaração da função para o cálculo da temperatura de junção
calculo_temperatura_juncao <-
```

A temperatura de junção calculada foi $256.2^{\circ}C$ e a temperatura de junção máxima do diodo é $150^{\circ}C$. Desta forma ve-se a necessidade de se usar um dissipador de calor.

4.1.5 Cálculo do Dissipador de Calor:

Para o cálculo do dissipador de calor foram utilizadas as seguintes equações, onde:

Rja resistência junção/ambiente;

Rjc resistência junção/case;

Rcd resistência case/dissapador;

Rda resistência dissipador/ambiente;

Tj temperatura de junção, considerada 80% da temperatura de junção máxima;

Ta temperatura ambiente;

Pd potência consumida na condução;

$$Rda = Rja - Rjc - Rcd$$

$$Rja = \frac{(Tj - Ta)}{Pd}$$

```
# Declaração da função para o cálculo do valor da resistência Rja.

calculo_resistencia_ja <-
   function(temperatura_juncao, temperatura_ambiente,potencia_conducao){
   resistencia_ja<-
        (temperatura_juncao-temperatura_ambiente)/potencia_conducao;
   return(resistencia_ja);
}</pre>
```

```
# Declaração da função de cálculo da resistência do dissipador Rda.

calculo_resistencia_da <-
   function(resistencia_ja, resistencia_jc,resistencia_cd){

  resistencia_da <-
      resistencia_ja - resistencia_jc - resistencia_cd;

  return(resistencia_da);
}</pre>
```

Para a determinação do valor da resistência térmica do dissipador não foi considerada a utilização de pasta térmica entre o case e o dissipador e foi considerado um valor máximo da temperatura de junção do diodo em 80% da temperatura máxima do diodo que é $150^{\circ}C$.

```
# Cálculo da resistência ja para a temperatura de projeto
resistencia_jc <- 2;</pre>
resistencia_cd <- 2; # Sem considerar a pasta térmica
temperatura_juncao_projeto <- 0.8 * temperatura_maxima_juncao;</pre>
resistencia_ja_projeto <-
  calculo_resistencia_ja(temperatura_juncao_projeto,
                          temperatura_ambiente,potencia_conducao);
resistencia_ja_projeto <- round(resistencia_ja_projeto,2);</pre>
# cálculo da resistência da máxima
resistencia_da <-
      calculo_resistencia_da(resistencia_ja_projeto,
                          resistencia_jc,resistencia_cd);
resistencia_da <-
  round(resistencia_da,2);
# Valor da reistência do dissipador do catálogo
resistencia_da_final <- 12;</pre>
# cálcudlo da resistência ja final
resistencia_ja_projeto_final <-
      (resistencia_jc + resistencia_cd +
                                 resistencia_da_final);
resistencia_ja_projeto_final <-
  round(resistencia_ja_projeto_final,2);
# Cálculo da temperatura da junção após a instalação do dissipador
temperatura_juncao_final <-</pre>
  calculo_temperatura_juncao(
```

```
potencia_conducao,resistencia_ja_projeto_final,temperatura_ambiente);

temperatura_juncao_final <-
round(temperatura_juncao_final,2);</pre>
```

O valor máximo da resistência térmica do dissipador de calor que atende a temperatura de junção do projeto é $19.87^{\circ}C/W$. Desta forma foi escolhido o dissipador de calor modelo WA-T220-101E da marca Ohmite, pois o mesmo atende às especificações do projeto e possui um valor de resistência térmica de $12^{\circ}C/W$. A tabela contendo as informações do dissipador de calor pode ser vista na Tabela 1 abaixo.

Tabela 1: Informações Dissipador de Calor

SERIES SPECIFICATIONS						
Heatsink Part Number	For Package Type	Ohmite Resistor Series	Surface Area (in²)	Weight	Thermal Resistance*	
WA-T220-1018 WV-T220-1018	10-220	TBH25, TCH35	6.5	0.35 oz/10g	Rs-a=12°C/M Rs-a=13°C/M	
WA-T247-101E WV-T247-101E		TEH70, TEH100	8.4	0.42 oz/12g	Rs-a=11°C/W Rs-a=12°C/W	
WA-T264-101E WV-T264-101E		TFH85	8.4	0.42 oz/12g	Rs-a=11°C/W Rs-a=12°C/W	
WA-DT2-101E WV-DT2-101E		TBH25, TCH35, TEH70, TEH100	15.1	0.79 oz/22g	Rs-a=7°C/W Rs-a=8°C/W	

Após a instalação do dissipador de calor no conjunto o valor final do Rja será $16^{\circ}C/W$ e a temperatura de junção final no diodo sera: $90.32^{\circ}C$.

4.2: Problema 2:

Para a realição da questão foi considerado o diodo modelo VS - E5TH1506 - M3 do fabricante VISHAY.

4.2.1 Cálculo Corrente Média:

Como tem-se uma onda trapezoidal de alimentação do circuito, para o cálculo da corrente média foi utilizada a seguinte equação abaixo onde:

Imed corrente média:

k razão cíclica;

Ia corrente base;

Ib corrente final;

$$Imed = \frac{k(Ia + Ib)}{2}$$

Para o cálculo da corrente RMS foi utilizada a equação abaixo onde:

Irms corrente RMS;

k razão cíclica;

Ia corrente base;

Ib corrente final:

$$Irms = \sqrt{\frac{k(Ib^2 + IaIb + Ia^2)}{3}}$$

```
# Cálculo da corrente média

ciclo_trabalho_2 <- 0.66;
corrente_ia_2 <- 6;
corrente_ib_2 <- 10;

corrente_media_2 <-
   (ciclo_trabalho_2 * (corrente_ia_2 + corrente_ib_2))/2;

corrente_media_2 <-
   round(corrente_media_2,2);</pre>
```

A corrente média calculada foi: 5.28A.

4.2.2 Cálculo Corrente RMS:

O valor da corrente Irms calculada foi: 6.57A.

4.2.3 Cálculo da Potência Dissipada em Condução:

Para o cálculo da potência dissipada em condução foram considerados os valores da resistência de condução Rd e tensão direta Vt do diodo VS - E5TH1506 - M3 obtidos no arquivo em anexo "Informações Diodo VS - E5TH1506 - M3".

A potência de condução direta do diodo calculada foi: 5.9W.

4.2.4 Cálculo da Temperatura de Junção:

Não foi possível encontar o valor da resistência RJa no data - sheet do componente VS-E5TH1506-M3, desta forma foi utilizado o diodo modelo VS - 15ETX06 - M3, que possui características semelhantes, para a determinação do valor de Rja cujo valor encontrado foi de $70^{\circ}C/W$.

```
# Cálculo da temperatura de junção

temperatura_maxima_juncao_2 <- 175;
temperatura_ambiente_2 = 40;
resistencia_jc_2 = 1.72;
resistencia_ca_2 = 70;
resistencia_ja_2 = resistencia_jc_2 + resistencia_ca_2;

temperatura_juncao_2 <- calculo_temperatura_juncao(potencia_conducao_2,resistencia_ja_2, temperatura_ambiente_2);

temperatura_juncao_2 <- round(temperatura_juncao_2,2);</pre>
```

Analisando o valor da temperatura de junção calculada $463.15^{\circ}C$ e o valor da temperatura máxima de junção do diodo que é $175^{\circ}C$ ve-se a necessidade de instalação de um dissipador de calor no projeto.

4.2.5 Cálculo do Dissipador de Calor:

Para o cálculo do dissipador de calor foram utilizadas as mesmas equações do ítem 4.1.4 deste relatório. Foi considerado para o cálculo do dissipador de calor uma temperatura de junção máxima de 80% da temperatura máxima do diodo que é $175^{\circ}C$ e sem pasta térmica entre o case e o dissipador.

```
# Cálculo resistência ja de acordo com a nova temperatura ja
resistencia cd 2 <- 2;
temperatura_juncao_projeto_2 <- 0.8*temperatura_maxima_juncao_2;</pre>
resistencia_ja_projeto_2 <-
  calculo_resistencia_ja(temperatura_juncao_projeto_2,
                      temperatura_ambiente_2, potencia_conducao_2);
resistencia_ja_projeto_2 <-
  round(resistencia_ja_projeto_2,2);
# Cálculo resistência da máxima
resistencia da 2 <-
  calculo_resistencia_da(resistencia_ja_projeto_2,
                                     resistencia_jc_2, resistencia_cd_2);
resistencia_da_2 <-
  round(resistencia_da_2,2);
resistencia_da_final_2 <- 12;</pre>
# Cálculo resistência ja final
```

```
resistencia_ja_projeto_final_2 <-
    (resistencia_jc_2 + resistencia_cd_2 + resistencia_da_final_2);

resistencia_ja_projeto_final_2 <-
    round(resistencia_ja_projeto_final_2,2);

# Cálculo da temperatura de junção final

temperatura_juncao_final_2 <-
    calculo_temperatura_juncao(potencia_conducao_2,
        resistencia_ja_projeto_final_2, temperatura_ambiente_2);

temperatura_juncao_final_2 <-
    round(temperatura_juncao_final_2);</pre>
```

O valor máximo da resistência térmica do dissipador de calor que atende a temperatura de junção do projeto é $13.23^{\circ}C/W$. Desta forma foi escolhido o dissipador de calor modelo WA-T220-101E da marca Ohmite, que pode ser visto na Tabela 1, pois o mesmo atende às especificações do projeto e possui um valor de resistência térmica de $12^{\circ}C/W$.

Após a instalação do dissipador de calor no conjunto o valor final do Rja será $15.72^{\circ}C/W$.

Após a instalação do dissipador de calor a temperatura de junção final no diodo sera: $133^{\circ}C$.

Como o valor da resistência térmica do dissipador no valor de $12^{\circ}C/W$ está muito próxima da resistência térmica máxima calculada no valor de $13.23^{\circ}C/W$ optou-se por utilizar uma pasta térmica da para a redução da resistência Rcd. Os valores de resistência térmica da pasta térmica podem ser vistas na Tabela 2.

Tabela 2: Tabela Resistência Térmica

Tine de Casa	Tipo de isolador	Rcd (°C/W)		
Tipo de Case		Com pasta	Sem pasta	
	Sem isolante	0,1	0,3	
TO-3	Teflon	0,7 a 0,8	1,25 a 1,45	
	Mica	0,5 a 0,7	1,2 a 1,5	
TO-66	Sem isolante	0,15 a 0,2	0,4 a 0,5	
	Mica	0,6 a 0,8	1,5 a 2,0	
	Mylar	0,6 a 0,8	1,2 a 1,4	
TO - 220	Sem isolante	0,3 a 0,5	1,5 a 2,0	
TO - 247	Mica	2,0 a 2,5	4,0 a 6,0	

Como o estamos utilizando um diodo TO - 220, o valor da resistência Rcd caiu de $2^{\circ}C/W$ para $0.5^{\circ}C/W$.

```
# Cálculo considerando a pasta térmica

resistencia_cd_2 <- 0.5;

resistencia_ja_projeto_final_2 <-
    (resistencia_jc_2 + resistencia_cd_2 + resistencia_da_final_2);

resistencia_ja_projeto_final_2 <-
    round(resistencia_ja_projeto_final_2,2);

temperatura_juncao_final_2 <-
    calculo_temperatura_juncao(potencia_conducao_2,
        resistencia_ja_projeto_final_2, temperatura_ambiente_2);</pre>
```

```
temperatura_juncao_final_2 <-
round(temperatura_juncao_final_2);</pre>
```

Com a utilização da pasta térmica conseguiu-se reduzir o valor da resistência Rja para $14.22^{\circ}C/W$ e consequentemente reduziou-se a temperatura de junção para $124^{\circ}C$.

4.3 Problema 3:

4.3.1: Parte 1:

Para determinarmos o valor da resistência de base, primeiramente temos que determinar o valor de *Icsat*, situação onde temos a menor perda de condução, e para isso devemos utilizar a corrente média desejada para o cálculo. Para a determinação do *Icsat* foi utilizada a seguinte equação, onde:

4.3.1.1: Cálculo Corrente na Carga:

Imed corrente médida na carga;

D ciclo de trabalho;

Ip corrente de pico na carga

$$Imed = D * Ip$$

```
# Cálculo corrente de pico
duty_cicle <- 0.8;
corrente_media_3 <- 1.92;
corrente_pico_3 <- round(corrente_media_3/duty_cicle,2);</pre>
```

Realizando o cálculo encontramos uma corrente de pico de 2.4A para uma corrente média de 1.92A e um duty cicle de 0.8. Com o valor desta corrente foi possível determinar o valor da corrente de saturação *Ibsat*, conforme pode ser visto na equação abaixo onde:

4.3.1.2: Cálculo Ib sat:

Ibsat corrente de base de saturação;

Ics corrente de coletor de saturação;

 βmin ganho β mínimo do transistor;

$$I\beta sat = \frac{Ics}{\beta min}$$

```
# Cálculo da corrente Ib saturação
b_min <- 200;
ib_sat <- round(corrente_pico_3/b_min, 4);</pre>
```

Para um ganho βmin de 200 e uma corrente Icsat de 2.4A, teremos uma corrente $I\beta sat$ de 0.012A. Com a corrente $I\beta sat$ calculada pode-se calcular o valor de Ib conforme pode-se ver abaixo:

4.3.1.3: Cálculo Ib:

OF over-drive factor;

Ib corrente de base;

Ibsat corrente de base de saturação;

$$OF = \frac{Ib}{Ibsat}$$

```
# Cálculo da corrente ib
over_drive <- 3;
corrente_ib <- over_drive * ib_sat;</pre>
```

Realizando o cálculo foi encontrado um valor de Ib de 0.036A. Com este valor de Ib é possível determinar o valor de Rb a partir da equação abaixo, considerando o valor da tensão de 5V e o valor de VBE de 0.7V, conforme pode-se ver abaixo, onde:

4.3.1.4: Cálculo Rb

Rb resistência de base;

V tensão da fonte;

VBE tensão base-emissor;

Ib corrente de base;

$$Rb = \frac{V - VBE}{Ib}$$

```
# Cálculo da resistência e potência consumida em Rb

tensao_fonte <- 5;
tensao_vbe <- 0.7;

resistencia_rb <- round((tensao_fonte - tensao_vbe)/corrente_ib,2);
potencia_rb <- round((resistencia_rb * corrente_ib,2);</pre>
```

Para se manter uma corrente média de 1.92A com a menor perda possível em condução (transistor em saturação) deve-se usar uma resistência na base de 119.44Ω , que provoca uma dissipação de potência de 4.3W. Os cálculos realizados podem ser comprovados com a simulação realizada no software LtSpice e que pode ser vista na Figura 3.

Figura 3: Simulação no LTSpice

4.3.2: Parte 2

Para a construção de um circutio similar utilizando um tansistor bioplar de potência, com uma fonte de 240V alimentando uma carga com uma corrente média de 15A não podemos utilizar o transistor modelo 2SCR582D3, pois a sua tensão de bloqueio VCE máxima é 30V o que é insuficiente para bloquear a tensão da fonte que é 240V.

Temos no mercado o transistor BJ modelo BUV22, cujo data sheet pode ser visto em anexo, que atenderia à aplicação, pois possui um tensão VCEmax = 250V e uma corrente máxima de Ic = 40A. Para a realização dos cálculos abaixo foram utilizadas as fórmulas já definidas no ítem 4.3.1.

4.3.2.1: Cálculo Corrente na Carga:

```
# Cálculo corrente de pico
duty_cicle <- 0.8;
corrente_media_3_1 <- 15;
corrente_pico_3_1 <- round(corrente_media_3_1/duty_cicle,2);</pre>
```

Realizando o cálculo encontramos uma corrente de pico de 18.75A para uma corrente média de 15A e um duty cicle de 0.8. Com o valor desta corrente foi possível determinar o valor da corrente de saturação *Ibsat*, conforme pode ser visto na equação abaixo onde:

4.3.2.2: Cálculo Ib sat:

```
# Cálculo Ib saturação
b_min_1 <- 10;
ib_sat_1 <- round(corrente_pico_3_1/b_min_1, 2);</pre>
```

Para um ganho βmin de 10 e uma corrente Icsat de 18.75A, teremos uma corrente $I\beta sat$ de 1.88A. Com a corrente $I\beta sat$ calculada pode-se calcular o valor de Ib conforme pode-se ver abaixo:

4.3.2.3: Cálculo Ib:

```
# Cálculo corrente Ib

over_drive <- 3;
corrente_ib_3 <- over_drive * ib_sat_1;</pre>
```

Realizando o cálculo foi encontrado um valor de Ib de 5.64A. Com este valor de Ib é possível determinar o valor de Rb apartir da equação abaixo, considerando o valor da tensão de 5V e o valor de VBE de 0.7V, conforme pode-se ver abaixo, onde:

4.3.2.4: Cálculo Rb

```
# Cálculo resistência e potência dissipada em Rb

tensao_fonte <- 5;
tensao_vbe <- 0.7;

resistencia_rb_1 <- round((tensao_fonte - tensao_vbe)/corrente_ib_3,2);
potencia_rb_1 <- round(resistencia_rb_1*corrente_ib_3,2);</pre>
```

Para se manter uma corrente média de 15A com a menor perda possível em condução (transistor em saturação) deve-se usar uma resistência na base de 0.76Ω que provoca um consumo de potência de 4.29W. Os cálculos realizados podem ser comprovados com a simulação realizada no software LtSpice e que pode ser vista na Figura 4.

Figura 4: Simulação no LTSpice

5. Conclusão:

5.1 Conclusão Questões 1 e 2:

Analisando os resultados obtidos pode-se concluir que os diodos de potência, assim como outros dispositivos eletrônicos, apresentam um certo aquecimento durante a sua operação e esse aquecimento esta diretamente relacionado com a razão direta de sua tensão de treshold Vt, a resistência interna Rd do diodo e a corrente Id que percorre o dispositivo. Para amenizar este efeito uma das soluções mais utilizadas é a instalação de um dissipador de potência para diminuir a resistência térmica do conjunto, pois aumenta a área de superfície do diodo e consequemente favorece a troca de calor com o ambiente.

Nas duas situações estudas as temperaturas de junção dos diodos durante a operação estavam em $256.2^{\circ}C$ e $463.15^{\circ}C$ respectivamente. Após a instalção dos dissipadores de calor as temperaturas caíram para $90.32^{\circ}C$ e $124^{\circ}C$ respectivamente, ou seja, após a instação dos dissipadores tivemos uma redução de aproximadamente 65% no primeiro caso e 72% no segundo caso.

Pode-se concluir que a instalação de dispositivos que deminuem a resistência térmica de um dispositivo com o ambiente é impressindível para o bom funcionamento de equipamento eletrônicos, principalmente os que operam com grandes correntes.

5.2 Conclusão Questão 3:

Ao analisarmos a primeira parte da questão 3 temos um circuito de acionamento de uma carga pequena de corrente média de 1.92A alimentada por uma fonte de 24V. Para chaveramos esta carga, devemos levar o transistor, modelo 2SCR582D3, para a regisão de saturação e para isso deve-se instalar no circuito de acionamento um resistor de 119.44Ω , o que gera na base do transistor uma corrente de 0.036A para um fator de saturação de 3, ou seja, para levarmos este transistor para a regisão de saturação obedecendo um fator de saturação de 3, teremos uma corrente de base de 0.036A. Após os cálculos, o circuito foi simulado com os valor encontrados e obteve-se o resultado esperado de uma corrente média na carga de 1.92A, e este fator pode ser observado na Figura 3 onde temos o gráfico da corrente média Ib na carga.

Já na segunda parte do problema temos um circuito cuja corrente média é 15A e uma tensão de alimentação de 240V. Para este circuito operar com esta tensão, teve-se que escolher outro modelo de transistor, pois a tensão de bloqueio VCE do transistor modelo 2SCR582D3 é somente de 30V e sua corrente Ic é de 10A. Desta forma foi escolhido o transistor modelo BUV22 que possui uma tensão de bloqueio VCE de 250V e uma corrente Ic de 40A. Ao se projetar o resistor de base para que este transistor opere na faixa de saturação com um fator de saturação de 3, foi encontrado um valor de resistecia de 0.76Ω para uma corrente de base 5.64A. Após os cálculos o circuito foi simulado, e obteve-se o resultado esperado de uma corrente média na carga de 15A, este fator pode ser observado na Figura 4. Apesar de ter-se atingido o objetivo, pode-se observar que o circuito de comando possui uma corrente muito alta, pois o ganho β do transistor para altas correntes cai muito, o que faz com que tenhamos uma corrente alta de Ib para levar este transistor para a regisão de saturação. Desta forma este circuito torna-se inviável, pois a corrente de base do transistor é muito alta, o que provocaria um circuito de comando muito grande.

Por fim, pode-se concluir que os transistores bipolares de junção (TBJ) são ótimos dispositivos para chaveamento de cargas, mas para garantir um bom funcionamento do circuito, deve-se ficar atendo às tensões de VCEsat, e correntes ICsat, Ibsat e Ib, pois para determinadas tensões e correntes, o circuito de acionamento pode-se tornar muito grande, inviabilizando desta forma o projeto.

Clique aqui para acessar o Projeto no GitHub:

6 Bibliografia:

ROCHA, Anderson. Interruptores e Comandos Eletrônicos: Diodo de Potência,
2022. 37 slides. Acesso em: 10/09/2022

ROCHA, Anderson.Interruptores e Comandos Eletrônicos: Modelos e Perdas de Dispositivos Semicondutores de Potência, 2022. 24 slides. Acesso em: 10/09/2022

ROCHA, Anderson. Interruptores e Comandos Eletrônicos: Módulo II, 2022. 19 slides. Acesso em: 10/09/2022