Comment on 'Must a Hamiltonian be hermitian'

André van Hameren

Institute of Nuclear Physics, NCSR Demokritos, 15310 Athens, Greece andrevh@inp.demokritos.gr

April 25, 2020

Abstract

A small comment on the paper with the mentioned title by Carl M. Bender, Dorje C. Brody and Hugh F. Jones.

As argued in [1], the eigenfunctions ϕ_n of the Sturm-Liouville eigenvalue problem (8) are fixed up to a constant phase factor. Instead of ϕ_n , one can also choose

$$\psi_n(x) = i^n \phi_n(x) ,$$

to be the eigenfunctions under considerations, which satisfy

$$\mathcal{PT}\psi_n(x) = \psi_n^*(-x) = (-i)^n \phi_n^*(-x) = (-i)^n \phi_n(x) = (-i)^n \psi_n(x) ,$$

and

$$\delta(x-y) = \sum_{n} (-)^n \phi_n(x) \phi_n(y) = \sum_{n} \psi_n(x) \psi_n(y) .$$

This formula, then, looks more familiar than (6). Only if the functions ψ_n are non-real, one usually has a different formula: $\sum_n \psi_n^*(x) \psi_n(y) = \delta(x-y)$. The operator \mathcal{C} can be represented by

$$C(x,y) = \sum_{n} (-)^n \psi_n(x) \psi_n(y) .$$

It acts on the functions ψ_n as $\mathcal{C}\psi_n = (-)^n \psi_n$, so that they are invariant under \mathcal{CPT} :

$$\mathcal{CPT}\psi_n = \psi_n$$

and are orthonormal under

$$\langle \psi_n | \psi_m \rangle = \int [\mathcal{CPT}\psi_n(x)] \psi_m(x) dx = \int \psi_n(x) \psi_m(x) dx$$
,

which looks like a *real* inner product¹. So we see that \mathcal{CPT} -invariance of a Hamiltonian, as introduced in [1], is equivalent with the existence of a set of eigenfunctions that are

^{1.}e. $\langle f|g\rangle = \langle g|f\rangle$ instead of $\langle f|g\rangle = \langle g|f\rangle^*$

complete and orthonormal under a *real* inner product. The (complex) inner product in the whole Hilbert space can be defined by

$$\langle f|g\rangle = \sum_{n} f_n^* g_n$$
 with $f_n = \int \psi_n(x) f(x) dx$, $g_n = \int \psi_n(x) g(x) dx$.

References

[1] Carl M. Bender, Dorje C. Brody and Hugh F. Jones, *Must a Hamiltonian be hermitian*, hep-th/0303005.