中国科学技术大学 2023-2024 学年 线性代数 A1 期末考试答案

苏和杨 (QQ: 2934189460)

2024年7月13日

$$-$$
 (15 分) 求多项式矩阵 $\begin{pmatrix} x+1 & x^2+1 & x^3+1 \\ x^2+1 & x^3+1 & x^4+1 \\ x^3+1 & x^4+1 & x^5+1 \end{pmatrix}$ 的 Smith 标准型.

解:

行列式因子 $D_0(x) = 1$, $D_1(x) = 1$.

$$D_{2}(x) = \gcd_{i,j,k \in \mathbb{N}^{*}, j \leq 2, k \leq 2, i+j+k \leq 5} \det \begin{pmatrix} x^{i} + 1 & x^{i+j} + 1 \\ x^{i+k} + 1 & x^{i+j+k} + 1 \end{pmatrix}$$

$$= \gcd_{i,j,k \in \mathbb{N}^{*}, j \leq 2, k \leq 2, i+j+k \leq 5} x^{i} (x^{j} - 1)(x^{k} - 1)$$

$$= x(x - 1)^{2}$$

$$D_3(x) = \det \begin{pmatrix} x+1 & x^2+1 & x^3+1 \\ x^2+1 & x^3+1 & x^4+1 \\ x^3+1 & x^4+1 & x^5+1 \end{pmatrix}$$

$$= \det \begin{pmatrix} x+1 & x^2+1 & 1-x \\ x^2+1 & x^3+1 & 1-x \\ x^3+1 & x^4+1 & 1-x \end{pmatrix} (第 3 列减去第 2 列的 x 倍)$$

$$= \det \begin{pmatrix} x+1 & 1-x & 1-x \\ x^2+1 & 1-x & 1-x \\ x^3+1 & 1-x & 1-x \end{pmatrix} (第 2 列减去第 1 列的 x 倍)$$

不变因子 $d_1(x) = \frac{D_1(x)}{D_0(x)} = 1$, $d_2(x) = \frac{D_2(x)}{D_1(x)} = x(x-1)^2$. 故 **Smith** 标准型 $S(x) = diag\{1, x(x-1)^2, 0\}$.

$$\Xi$$
 (20 分) 设实方阵 $A = \begin{pmatrix} 1 & -2 & 4 \\ -2 & -2 & -2 \\ 4 & -2 & 1 \end{pmatrix}$.

- 1. 求 A 的特征多项式与最小多项式
- 2. 求可逆矩阵 P 及对角阵 Λ , 使得 $A = P\Lambda P^{-1}$.
- 3. 求 e^A . 这里 $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$.

解:

1. 特征多项式

$$\varphi_A = |\lambda I - A| = \begin{vmatrix}
\lambda - 1 & 2 & -4 \\
2 & \lambda + 2 & 2 \\
-4 & 2 & \lambda - 1
\end{vmatrix} = \lambda^3 - 27\lambda - 54 = (\lambda + 3)^2(\lambda - 6)$$

由于 A 为实对称矩阵, A 可对角化为 $\Lambda = diag\{-3, -3, 6\}$. 故最小多项式 $d_A = (\lambda + 3)(\lambda - 6) = \lambda^2 - 3\lambda - 18$.

2. 计算特征值对应的特征向量.

$$Ax = -3x$$
解系为 $x_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}; Ax = 6x$ 解系为 $x_3 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}.$

取
$$\Lambda = diag\{-3, -3, 6\}, P = (x_1, x_2, x_3) = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
,则有 $A = P\Lambda P^{-1}$.

3. 利用对角化的结果进行计算.

$$\begin{split} e^A &= \sum_{k=0}^\infty \frac{A^k}{k!} = P(\sum_{k=0}^\infty \frac{\Lambda^k}{k!}) P^{-1} = P \, diag\{e^{-3}, e^{-3}, e^{-6}\} \, P^{-1} \\ &= \begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} e^{-3} \\ e^{-3} \\ e^{-6} \end{pmatrix} \begin{pmatrix} \frac{5}{9} & -\frac{4}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{2}{9} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{5}{9} & \frac{2}{9} \end{pmatrix} \\ &= \begin{pmatrix} \frac{5}{9}e^{-3} + \frac{4}{9}e^6 & \frac{2}{9}e^{-3} - \frac{2}{9}e^6 & -\frac{4}{9}e^{-3} + \frac{4}{9}e^6 \\ \frac{2}{9}e^{-3} - \frac{2}{9}e^6 & \frac{8}{9}e^{-3} + \frac{1}{9}e^6 & \frac{2}{9}e^{-3} - \frac{2}{9}e^6 \\ -\frac{4}{9}e^{-3} + \frac{4}{9}e^6 & \frac{2}{9}e^{-3} - \frac{2}{9}e^6 & \frac{5}{9}e^{-3} + \frac{4}{9}e^6 \end{pmatrix} \quad \Box$$

三 (20 分) 设 $R_n[x]$ 是次数不超过 n 的实系数多项式全体按多项式加法与数乘构成的线性空间. 令 $B_i^n(x) = \binom{n}{i} x^i (1-x)^{n-i}, i=0,1,\cdots,n$.

- 1. 证明: $\{B_0^n(x), B_1^n(x), \dots, B_n^n(x)\}$ 构成 $R_n[x]$ 的一组基.
- 2. 当 n=3 时, 求从基 $\{B_0^n(x), B_1^n(x), \cdots, B_n^n(x)\}$ 到基 $\{1, x, \cdots, x^n\}$ 的过渡矩阵.
- 3. 当 n=3 时, 求多项式 $f(x)=1+x+x^2+\cdots+x^n$ 在基 $\{B_0^n(x),B_1^n(x),\cdots,B_n^n(x)\}$ 下的表示 (即将 f(x) 写成这组基的线性组合).

证明:

1. 注意到 $\dim R_n[x] = n + 1$. 只需证明 $\{B_0^n(x), B_1^n(x), \dots, B_n^n(x)\}$ 线性无关.

若其线性相关, 设存在不全为 0 的 b_0, b_1, \dots, b_n 满足 $\sum_{i=0}^n b_i B_i^n(x) = 0$.

设 b_m 为 b_0, b_1, \dots, b_n 中不为 0 且下标最小的数, 则 $\sum_{i=m}^n b_i B_i^n(x) = 0$.

故 $\sum_{i=m}^{n} b_i \binom{n}{i} x^i (1-x)^{n-i} = 0$, 即 $\sum_{i=m}^{n} b_i \binom{n}{i} x^{i-m} (1-x)^{n-i} = 0$.

取 x=0 有 $b_m\binom{n}{m}=0$, 矛盾. 这表明 $\{B_0^n(x), B_1^n(x), \cdots, B_n^n(x)\}$ 线性无关.

2. 注意到

$$(B_0^3(x), B_1^3(x), B_2^3(x), B_3^3(x)) = (1, x, x^2, x^3) \begin{pmatrix} 1 & & \\ -3 & 3 & & \\ 3 & -6 & 3 & \\ -1 & 3 & -3 & 1 \end{pmatrix}$$

故从基 $\{B_0^3(x), B_1^3(x), \cdots, B_n^3(x)\}$ 到基 $\{1, x, \cdots, x^3\}$ 的过渡矩阵

$$P = \begin{pmatrix} 1 & & & \\ -3 & 3 & & \\ 3 & -6 & 3 & \\ -1 & 3 & -3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & & & \\ 1 & \frac{1}{3} & & \\ 1 & \frac{2}{3} & \frac{1}{3} & \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad \Box$$

3. 利用 2 的结果有

$$f(x) = 1 + x + x^{2} + x^{3}$$

$$= (1, x, x^{2}, x^{3}) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= (B_{0}^{3}(x), B_{1}^{3}(x), B_{2}^{3}(x), B_{3}^{3}(x)) \begin{pmatrix} 1 \\ 1 & \frac{1}{3} \\ 1 & \frac{2}{3} & \frac{1}{3} \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= (B_{0}^{3}(x), B_{1}^{3}(x), B_{2}^{3}(x), B_{3}^{3}(x)) \begin{pmatrix} 1 \\ \frac{4}{3} \\ 2 \\ 4 \end{pmatrix}$$

$$= B_{0}^{3}(x) + \frac{4}{3}B_{1}^{3}(x) + 2B_{2}^{3}(x) + 4B_{3}^{3}(x) \qquad \Box$$

四 (15 分) 设矩阵 A 的秩为 r, 证明: A 的 r 阶非零子式所在的 A 的行向量构成 A 的所有行向量的极大无关组.

证明:

这 r 个行向量限制在子式中的部分是线性无关的, 故其本身也是线性无关的. 由于行秩 = 秩 = r, 故这 r 个行向量构成所有行向量的极大无关组. \square

五 (15 分) 设 V 是数域 F 上的线性空间. W 是 V 的子空间, W' 是 W 的补空间. 定义 V 上的投影变换 \mathcal{P} 如下: 对任意 $\alpha \in V$, 设 $\alpha = \alpha_1 + \alpha_2$, 其中 $\alpha_1 \in W$, $\alpha_2 \in W'$, 则 $\mathcal{P}(\alpha) = \alpha_1$. 证明:

- 1. \mathcal{P} 是线性变换.
- 2. \mathcal{P} 可对角化.
- 3. $V = Im(\mathcal{P}) \oplus Ker(\mathcal{P})$.

证明:

1. 对 $\alpha, \alpha' \in V$, 设 $\alpha = \alpha_1 + \alpha_2$, $\alpha' = \alpha'_1 + \alpha'_2$, 其中 $\alpha_1, \alpha'_1 \in W$, $\alpha_2, \alpha'_2 \in W'$.

则 $\mathcal{P}(\alpha) = \alpha_1, \mathcal{P}(\alpha') = \alpha'_1.$ 又 $\alpha + \alpha' = (\alpha_1 + \alpha'_1) + (\alpha_2 + \alpha'_2),$ 其中 $\alpha_1 + \alpha'_1 \in W, \alpha_2 + \alpha'_2 \in W'.$

故 $\mathcal{P}(\alpha + \alpha') = \alpha_1 + \alpha'_1 = \mathcal{P}(\alpha) + \mathcal{P}(\alpha')$. 即 \mathcal{P} 保持加法运算.

对 $\alpha \in V$, $\lambda \in F$, 设 $\alpha = \alpha_1 + \alpha_2$, 其中 $\alpha_1 \in W$, $\alpha_2 \in W'$.

则 $\mathcal{P}(\alpha) = \alpha_1$. 又 $\lambda \alpha = \lambda \alpha_1 + \lambda \alpha_2$, 其中 $\lambda \alpha_1 \in W$, $\lambda \alpha_2 \in W'$.

故 $\mathcal{P}(\lambda \alpha) = \lambda \alpha_1 = \lambda \mathcal{P}(\alpha)$. 即 \mathcal{P} 保持数乘运算.

故 ₱ 是线性变换. □

2. 取 W 和 W' 的一组基, 分别为 w_1, w_2, \dots, w_m 和 w_{m+1}, \dots, w_n .

设 $\alpha \in V$ 在基 w_1, w_2, \cdots, w_n 下的坐标为 (x_1, x_2, \cdots, x_n) . 则经过线性变换 \mathcal{P} 后的坐标为 $(x_1, x_2, \cdots, x_m, 0, \cdots, 0)$.

故 $\mathcal P$ 在这组基下的矩阵为 $\begin{pmatrix} I_m & 0 \\ 0 & 0 \end{pmatrix}$. 故 $\mathcal P$ 可对角化. \square

3. 不难看出 $Im(\mathcal{P}) = W$, $Ker(\mathcal{P}) = W'$. 故 $V = W \oplus W' = Im(\mathcal{P}) \oplus Ker(\mathcal{P})$.

六 (15 分) 设 A, B 均为 2 阶复方阵. 证明: A 与 B 相似当且仅当 A 与 B 有相同的特征 多项式和最小多项式.

证明:

一方面,若 A 与 B 相似,设 $A = PBP^{-1}$. 则 $|\lambda I - A| = |P(\lambda I - B)P^{-1}| = |P||\lambda I - B||P^{-1}| = |\lambda I - A|$. 故 A 与 B 特征多项式相同。又对任意多项式 f 有 $f(A) = Pf(B)P^{-1}$,即 $f(A) = 0 \Leftrightarrow f(B) = 0$. 故 A 与 B 最小多项式相同。

另一方面, 若 A 与 B 有相同的特征多项式和最小多项式.

- 1. 若特征多项式两根不同 (设两根为 λ_1 , λ_2). 则 A 与 B 都可以对角化为 $diag\{\lambda_1,\lambda_2\}$. 故 A 与 B 相似.
 - 2. 若特征多项式两根相同 (设重根为 λ).

若 A 与 B 最小多项式为 $x - \lambda$, 则 $A = B = \lambda I$. 故 A 与 B 相似.

若 A 与 B 最小多项式为 $(x-\lambda)^2$. 设 A 和 B 分别相似于上三角形矩阵 $A'=\begin{pmatrix}\lambda & a\\0 & \lambda\end{pmatrix}$ 和

 $B' = \begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$. 则 $A' \ni B'$ 最小多项式为 $(x - \lambda)^2$, 即 $a, b \neq 0$. 注音到

$$\left(\begin{array}{cc} \lambda & a \\ 0 & \lambda \end{array}\right) = \left(\begin{array}{cc} \frac{a}{b} & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} \lambda & b \\ 0 & \lambda \end{array}\right) \left(\begin{array}{cc} \frac{b}{a} & 0 \\ 0 & 1 \end{array}\right)$$

故 A' 与 B' 相似. 故 A 与 B 相似.

综上, 我们证明了命题. □