3.2. El método del «vecino más cercano»

- \checkmark Disponemos de una tabla resumen de tipo T(n,p)
- ✓ Los elementos de T(n,p) presentan una estructura de grupo o de jerarquía de grupos encajados.

Aplicamos las etapas ya vistas del proceso de clasificación :

Primera etapa:

Con una distancia \mathbf{d}_{ij} podemos evaluar la disimilaridad entre los objetos a clasificar.

Podemos crear una tabla D(n,n), simétrica, que resume las distancias entre los n objetos a clasificar, comparados dos a dos.

Suponemos que es aceptable considerar que la distancia entre dos clases que contienen un solo objeto cada una es igual a la distancia entre los objetos:

$$d_{\left(\left\{x\right\},\left\{y\right\}\right)}=d_{\left(x,y\right)}\ \forall x,y\in I$$

Los términos diagonales de D(n,n) son nulos, puesto que, si

$$\mathbf{d}_{ii}$$
 es una distancia : $\mathbf{d}_{(\{x\},\{x\})} = \mathbf{d}_{(x,x)} = \mathbf{0} \ \forall x \in \mathbf{I}$

Segunda etapa:

Buscamos en la tabla D(n,n) el término extra-diagonal mínimo, es decir el valor $d_{(\{x\},\{y\})}=d_{(x,y)}$ mínimo.

Formamos una nueva clase que reagrupa esos dos objetos: $\{x\}$ y $\{y\}$.

Iteración:

Se recomienza a partir de la primera etapa, pero ahora sólo con n - 1 objetos a comparar, puesto que una clase contiene ahora dos objetos.

Para calcular la Tabla D'(n-1, n-1) correspondiente a la nueva situación debemos darnos un criterio para calcular la distancia entre una clase que contiene dos objetos y las clases restantes que sólo contienen un objeto.

La estrategia de agregación responde a ese problema...

La estrategia del «vecino más cercano» consiste en elegir como distancia entre la clase $\{x;y\}$ y la clase $\{k\}$ la más pequeña de las dos distancias siguientes:

$$d_{\left(\{x\},\{k\}\right)} \quad o \ bien \quad d_{\left(\{y\},\{k\}\right)}$$

En cada etapa t de iteración del proceso de agregación por el método del «vecino más cercano», la Tabla D(n-t, n-t) es construida con la siguiente distancia ultramétrica :

$$d_{(\{x,y\},\{k\})} = Min(d_{\{x,k\}};d_{\{y,k\}})$$

- Ventaja del método : simplicidad de cálculo. No requiere el cálculo de la matriz $D_t(n-t, n-t)$ en cada etapa de agregación.
- Inconveniente del método : tiene tendencia a producir un «efecto de encadenamiento»

3.3. El método del «vecino más cercano» : un ejemplo numérico

a) Tabla de Datos y Representación gráfica en R²

Tabla T(n,p)

	X	Y
A	1	2
В	2	1
C	4	1
D	5	4
E	3	5
F	3	3

Representación gráfica

b) Primera agregación

Utilizando la distancia euclidiana,

$$d_{(i,j)} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \quad \forall i = 1,...,n$$
; $\forall j = 1,...,n$

podemos calcular la matriz $D_1(6, 6)$ siguiente :

	A	В	C	D	E	F
A	0	1,41	3,16	4,47	3,61	2,24
В	1,41	0	2,00	4,24	4,12	2,24
C	3,16	2,00	0	3,16	4,12	2,24
D	4,47	4,24	3,16	0	2,24	2,24
E	3,61	4,12	4,12	2,24	0	2,00
F	2,24	2,24	2,24	2,24	2,00	0

Primera agregación : Como la distancia más pequeña se verifica entre los objetos A y B, formamos la clase {A, B}.

Representación gráfica de la primera agregación

Dendrograma

INDICE

c) Segunda agregación

Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla $\mathbf{D}_2(5,5)$ siguiente :

	(A,B)	C	D	E	F
(A,B)	0	2,00	4,24	3,61	2,24
C	2,00	0	3,16	4,12	2,24
D	4,24	3,16	0	2,24	2,24
E	3,61	4,12	2,24	0	2,00
F	2,24	2,24	2,24	2,00	0

Segunda agregación: Dos pares de objetos presentan la distancia más pequeña: (E, F) y ((A, B), C). Formamos primero la clase {E, F}.

Nudo	Nivel	Primogénito	Benjamin	Peso
7	1,41	A	В	2
8	2,00	E	F	2

Representación gráfica de la segunda agregación

Dendrograma

d) Tercera agregación

Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla $\mathbf{D}_3(4,4)$ siguiente :

	(A,B)	C	D	(E,F)
(A,B)	0	2,00	4,24	2,24
C	2,00	0	3,16	2,24
D	4,24	3,16	0	2,24
(E,F)	2,24	2,24	2,24	0

Tercera agregación: Como la distancia más pequeña se verifica entre los objetos (A, B) y (C), formamos la clase {A, B, C}.

4		

Nudo	Nivel	Primogénito	Benjamin	Peso
7	1,41	A	В	2
8	2,00	E	F	2
9	2,00	AB	C	3

Representación gráfica de la tercera agregación

Dendrograma

e) Cuarta agregación

Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla $\mathbf{D}_4(3,3)$ siguiente :

	(A,B,C)	D	(E,F)
(A,B,C)	0	3,16	2,24
D	3,16	0	2,24
(E,F)	2,24	2,24	0

Cuarta agregación: Dos pares de objetos presentan la distancia más pequeña: ({A, B, C} y {E, F}) y ({E, F} y {D}). Formamos primero la clase{A, B, C, E, F}:

Nudo	Nivel	Primogénito	Benjamin	Peso
7	1,41	A	В	2
8	2,00	E	F	2
9	2,00	AB	C	3
10	2,24	ABC	EF	5

INDICE

Representación gráfica de la cuarta agregación

Dendrograma

f) Quinta agregación

Utilizando la distancia ultramétrica del «vecino más cercano», calculamos la tabla $D_5(2,2)$ siguiente :

	(A,B,C,E,F)	D
(A,B,C,E,F)	0	2,24
D	2,24	0

Quinta agregación : Se agrupan por último los objetos {A,B,C,E,F} y {D}, formando la clase {A,B,C,E,F,D} que reúne todos los objetos de T(n, p)

		· / - /		
Nudo	Nivel	Primogénito	Benjamin	Peso
7	1,41	A	В	2
8	2,00	E	F	2
9	2,00	AB	C	3
10	2,24	ABC	EF	5
11	2,24	ABCEF	D	6
	1			I

Tr. N°29

Representación gráfica de la quinta agregación

Dendrograma final

Programa PRESTA - 1999 - Eduardo CRIVISQUI

g) Resultados de la clasificación

Descripción de las clases encajadas sucesivas

Nudo	Nivel	Primogénito	Benjamin	Peso
7	1,41	A	В	2
8	2,00	E	F	2
9	2,00	AB	C	3
10	2,24	ABC	EF	5
11	2,24	ABCEF	D	6

Histograma de índices de nivel

Num.	Primog.	Benjamin	Efec.	Peso	Indice	Histogr. de los índices de nivel
7	A	В	2	2.00	1.41	*******
8	\mathbf{E}	\mathbf{F}	2	2.00	2.00	*******
9	7	C	3	3.00	2.00	*******
10	9	8	5	5.00	2.24	** *** *** *** *** *** ***
11	10	D	6	6.00	2.24	*******

