Scan Converting Lines

Bresenham's Line Drawing Algorithm

- Mohammad Imrul Jubair

The Scenario

Given, Start point (X0, Y0) End point (X1, Y1)

Assumption: (Only the 1st Octant for this time)

$$Y = mX + B$$

$$or, Y = \frac{dy}{dx} * X + B$$

$$or, Ydx = Xdy + Bdx$$

$$or, Xdy - Ydx + Bdx = 0$$

$$or, aX + bY + c = 0 \text{ [here, } a = dy, b = -dx, c = Bdx]$$

$$F(X,Y) = aX + bY + c = 0$$

$$Y = mX + B$$

$$or, Y = \frac{dy}{dx} * X + B$$

For every point (X,Y) on the line the function is Zero

$$or, Ydx = Xdy + Bdx$$

$$or, Xdy - Ydx + Bdx = 0$$

$$or$$
, $aX + bY + c = 0$ [here, $a = dy$, $b = -dx$, $c = Bdx$]

$$F(X,Y) = aX + bY + c = 0$$

$$F(X,Y) = aX + bY + c = 0$$

If F(X,Y) = 0, the point (X,Y) on lying on the line

$$F(X,Y) = aX + bY + c = 0$$

If F(X,Y) = 0, the point (X,Y) on lying on the line

If F(X,Y) > 0, the point (X,Y) is below the line

$$F(X,Y) = aX + bY + c = 0$$

If F(X,Y) = 0, the point (X,Y) on lying on the line

If F(X,Y) > 0, the point (X,Y) is below the line

If F(X,Y) < 0, the point (X,Y) is above the line

Selecting E or NE depends on closeness to the line. If E is closer to line, then E is selected If NE is closer, then NE is selected

To determine the nearness, mid point between E and NE is used

If M is above the line, then E is closer to the line
→E is selected

If M is above the line, then E is closer to the line
→E is selected

If M is below the line, then NE is closer to the line

 \rightarrow **NE** is selected

Now, we have to evaluate whether the mid point is below or above the line

If M is above the line, then E is closer to the line

 \rightarrow **E** is selected

If M is below the line, then NE is closer to the line

 \rightarrow **NE** is selected

We know, F(X,Y) = aX + bY + cLets put the mid point **M**'s coordinate in function F(X,Y) $F(M) = F(X_P+1, Y_P+0.5) = a(X_P+1) + b(Y_P+0.5) + c$

We know,
$$F(X,Y) = aX + bY + c$$

Lets put the mid point **M**'s coordinate in function $F(X,Y)$
 $F(M) = F(X_P+1, Y_P+0.5) = a(X_P+1) + b(Y_P+0.5) + c$

So,
$$d = F(M)$$

= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$

if d = 0, then midpoint is on the line

So,
$$d = F(M)$$

= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$

if **d** = **0**, then midpoint M is on the line

If **d > 0**, then midpoint M is below the line

So,
$$d = F(M)$$

= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$

if $\mathbf{d} = \mathbf{0}$, then midpoint M is on the line

If **d > 0**, then midpoint M is below the line

If d < 0, then midpoint M is above the line

So,
$$d = F(M)$$

= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$

As we must select E or NE:

If **d > 0**, then midpoint M is below the line

If $d \le 0$, then midpoint M is above the line

Bresenham's Mid Point Criteria: Summary

If **d** ≤ **0**, then midpoint M is above the line, and E is closer to line, So, **E** is selected

If **d > 0**, then midpoint M is below the line, and NE is closer to line, So, **NE** is selected

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$

If $d_1 \le 0$, select $E(X_P = X_P+1, Y_P)$

$$d_1 = F(M_1)$$
= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$

If $d_1 \le 0$, select $E(X_p = X_p+1, Y_p)$
 $d_2 = F(M_2)$

$$\begin{aligned} d_1 &= F(M_1) \\ &= F(X_P+1, Y_P+0.5) \\ &= a(X_P+1) + b(Y_P+0.5) + c \\ IF \ d_1 &\leq 0 \ , select \ E(X_P = X_P+1, Y_P) \\ d_2 &= F(M_2) \\ &= F(X_P+2, Y_P+0.5) \end{aligned}$$

$$\begin{aligned} d_1 &= F(M_1) \\ &= F(X_P+1, Y_P+0.5) \\ &= a(X_P+1) + b(Y_P+0.5) + c \\ IF \ d_1 &\leq 0 \ , select \ E \ (X_P = X_P+1, Y_P) \\ d_2 &= F(M_2) \\ &= F(X_P+2, Y_P+0.5) \\ &= a(X_P+2) + b(Y_P+0.5) + c \\ &= aX_P + 2a + bY_P + 0.5b + c \\ &= aX_P + a + bY_P + 0.5b + c + a \\ &= [\ a(X_P+1) + b(Y_P+0.5) + c\] + a \\ &= d_1 + a \end{aligned}$$

$$\begin{aligned} d_1 &= F(M_1) \\ &= F(X_P+1, Y_P+0.5) \\ &= a(X_P+1) + b(Y_P+0.5) + c \\ IF \ d_1 &\leq 0 \ , select \ E \ (X_P = X_P+1, Y_P) \\ d_2 &= F(M_2) \\ &= F(X_P+2, Y_P+0.5) \\ &= a(X_P+2) + b(Y_P+0.5) + c \\ &= aX_P + 2a + bY_P + 0.5b + c \\ &= aX_P + a + bY_P + 0.5b + c + a \\ &= [\ a(X_P+1) + b(Y_P+0.5) + c\] + a \\ &= d_1 + a \end{aligned}$$

IF $d_2 \leq 0$, select $E(X_P = X_P + 1, Y_P)$

$$\begin{aligned} d_1 &= F(M_1) \\ &= F(X_p+1, Y_p+0.5) \\ &= a(X_p+1) + b(Y_p+0.5) + c \\ IF \ d_1 &\leq 0 \ [select \ E] \\ d_2 &= F(M_2) \\ &= F(X_p+2, Y_p+0.5) \\ &= a(X_p+2) + b(Y_p+0.5) + c \\ &= aX_p + 2a + bY_p + 0.5b + c \\ &= aX_p + a + bY_p + 0.5b + c + a \\ &= [\ a(X_p+1) + b(Y_p+0.5) + c\] + a \\ &= d_1 + a \end{aligned}$$

IF
$$d_2 \le 0$$
, select $E(X_P = X_P + 1, Y_P)$
Similarly, $d_3 = F(M_3) = d_2 + a$

Every iteration after **selecting E**, we can successively update our decision variable with-

$$\mathbf{d}_{NEW} = \mathbf{d}_{OLD} + \mathbf{a}$$
$$= \mathbf{d}_{OLD} + \mathbf{dy}$$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$

$$d_1 = F(M_1)$$
= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$
IF $d_1 > 0$, select NE $(X_p=X_p+1, Y_p=Y_p+1)$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$
IF $d_1 > 0$, select NE $(X_P=X_P+1, Y_P=Y_P+1)$

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}+0.5)$$

$$= a(X_{p}+1) + b(Y_{p}+0.5) + c$$

$$IF d_{1} > 0, select NE(X_{p}=X_{p}+1, Y_{p}=Y_{p}+1)$$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}+1.5)$$

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}+0.5)$$

$$= a(X_{p}+1) + b(Y_{p}+0.5) + c$$

$$IF d_{1} > 0, select NE (X_{p}=X_{p}+1, Y_{p}=Y_{p}+1)$$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}+1.5)$$

$$= a(X_{p}+2) + b(Y_{p}+1.5) + c$$

$$= aX_{p} + 2a + bY_{p} + 1.5b + c$$

$$= aX_{p} + a + bY_{p} + 0.5b + c + a + b$$

$$= [a(X_{p}+1) + b(Y_{p}+0.5) + c] + a + b$$

$$= d_{1} + (a + b)$$

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}+0.5)$$

$$= a(X_{p}+1) + b(Y_{p}+0.5) + c$$

$$IF d_{1} > 0, select NE (X_{p}=X_{p}+1, Y_{p}=Y_{p}+1)$$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}+1.5)$$

$$= a(X_{p}+2) + b(Y_{p}+1.5) + c$$

$$= aX_{p} + 2a + bY_{p} + 1.5b + c$$

$$= aX_{p} + a + bY_{p} + 0.5b + c + a + b$$

$$= [a(X_{p}+1) + b(Y_{p}+0.5) + c] + a + b$$

$$= d_{1} + (a + b)$$

IF $d_2 > 0$, select NE $(X_P = X_P + 1, Y_P = Y_P + 1)$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P+0.5)$
= $a(X_P+1) + b(Y_P+0.5) + c$
IF $d_1 > 0$, select NE $(X_P=X_P+1, Y_P=Y_P+1)$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}+1.5)$$

$$= a(X_{p}+2) + b(Y_{p}+1.5) + c$$

$$= aX_{p} + 2a + bY_{p} + 1.5b + c$$

$$= aX_{p} + a + bY_{p} + 0.5b + c + a + b$$

$$= [a(X_{p}+1) + b(Y_{p}+0.5) + c] + a + b$$

$$= d_{1} + (a + b)$$

IF
$$d_2 > 0$$
, select NE $(X_p = X_p + 1, Y_p = Y_p + 1)$
Similarly, $d_3 = F(M_3) = d_2 + (a + b)$

Every iteration after **selecting NE**, we can successively update our decision variable with-

$$d_{NEW} = d_{OLD} + (a + b)$$
$$= d_{OLD} + (dy - dx)$$

Bresenham's Mid Point Criteria: Successive Updating (Summary)

If d > 0, then midpoint M is
below the line, and NE is closer
to line,
So, NE is selected
And, dod = d + ΔNE
Where, ΔE = dy - dx

```
while (x \le x1)
   if d <=0 /* Choose E */
       x = x+1
        d = d + \Delta E;
    else /* Choose NE */
       x = x+1
       y = y+1
        d = d + \Delta NE
    Endif
    PlotPoint(x, y)
end while
```

```
while (x \le x1)
   if d <=0 /* Choose E */
       x = x+1
        d = d + \Delta E;
   else /* Choose NE */
       x = x + 1
       y = y+1
        d = d + \Delta NE
    Endif
    PlotPoint(x, y)
end while
```

Modified

```
while (x \le x1)
   if d <=0 /* Choose E */
        d = d + \Delta E;
    else /* Choose NE */
        y = y+1
        d = d + \Delta NE
    Endif
    x = x+1
    PlotPoint(x, y)
end while
```

This **d** must be initialized to start the successive operation

```
while (x \le x1)
   if d <=0 /* Choose E */
       x = x+1
        d = d + \Delta E;
   else /* Choose NE */
       x = x + 1
       y = y+1
        d = d + \Delta NE
    Endif
    PlotPoint(x, y)
end while
```

```
while (x \le x1)
   -¥(d <=0)/* Choose E */
        d = d + \Delta E;
    else /* Choose NE */
       y = y+1
        d = d + \Delta NE
    Endif
    x = x+1
    PlotPoint(x, y)
end while
```

Bresenham's Mid Point Algorithm: Initializing Decision Variable

$$d_{INIT} = F(M)$$

$$= F(X_0+1, Y_0+0.5)$$

$$= a(X_0+1) + b(Y_0+0.5) + c$$

$$= aX_0 + a + bY_0 + 0.5b + c$$

$$= aX_0 + bY_0 + c + a + 0.5b$$

$$= (aX_0 + bY_0 + c) + a + 0.5b$$

$$= F(X_0, Y_0) + a + 0.5b$$

$$= a + 0.5b$$

$$= dy - 0.5dx$$

Bresenham's Mid Point Algorithm: Initializing Decision Variable

Still there is floating point. floating point operation is slower than integer operation

Bresenham's Mid Point Algorithm: Initialization

$$\Rightarrow d_{INIT} = dy - 0.5dx$$
$$= 2dy - dx$$

$$\rightarrow$$
 ΔE = 2dy
 \rightarrow ΔNE = 2(dy - dx)

2 is multiplied with \mathbf{d}_{INIT} to remove the floating point. Observe that, $\Delta \mathbf{E}$ and $\Delta \mathbf{NE}$ also multiplied by 2 as those two will be added with \mathbf{d}_{INIT} depending on condition. The **sign** of the decision variable d is needed to select E or NE pixel. (+ve / -ve) **Value** is influencing the decision here.

Given:

Start point (x0,y0) End point (x1, y1)

Initialization:

$$x = x0, y = y0$$

 $dx = x1-x0, dy = y1-y0$
 $d = 2dy - dx$
 $\Delta E = 2dy$
 $\Delta NE = 2(dy - dx)$

PlotPoint(x, y)

Loop:

```
while (x \le x1)
   if d <=0 /* Choose E */
       d = d + \Delta E;
   else /* Choose NE */
       y = y+1
       d = d + \Delta NE
    Endif
   x = x+1
    PlotPoint(x, y)
end while
```


Given:

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

$$d = 2$$

d	2		
(X, Y)			

Start point (5, 8) End point (9, 11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

d	2		
(X, Y)	NE (6, 9)		

d > 0, NE

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

$$d = 2 + \Delta NE$$

d	2	0	
(X, Y)	NE (6, 9)		

Start point (5, 8) End point (9, 11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

d	2	0	
(X, Y)	NE (6, 9)	E (7,9)	

 $d \le 0$, E

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

$$d = 0 + \Delta E$$

d	2	0	6	
(X, Y)	NE (6, 9)	E (7,9)		

Start point (5, 8) End point (9, 11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

d	2	0	6	
(X, Y)	NE (6, 9)	E (7,9)	NE (8,10)	

d > 0, NE

Start point (5, 8) End point (9, 11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

 $d = 6 + \Delta NE$

d	2	0	6	4
(X, Y)	NE (6, 9)	E (7,9)	NE (8,10)	

Start point (5, 8) End point (9, 11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

d	2	0	6	4
(X, Y)	NE (6, 9)	E (7,9)	NE (8,10)	NE (9,11)

d > 0, NE

Start point (5, 8) End point (9, 11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

d	2	0	6	4
(X, Y)	NE (6, 9)	E (7,9)	NE (8,10)	NE (9,11)

d > 0, NE