CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/42

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

1 (a) fluorine: $1s^22s^22p^5$ [1]

sulfur: 1s²2s²2p⁶3s²3p⁴

(b) (i)
$$2HCl \longrightarrow H_2 + Cl_2$$
 [1]

(ii) bond energies: HF (562) is **stronger** than HC
$$l$$
 (431) or F₂ (158) is **weaker** than C l_2 (244)

(c) electronegativity: [2]

The attraction by an atom/nucleus/element of the electrons in a bond *or* a shared pair *or* a molecule *bond polarity:*

..is due to atoms/elements of different electronegativities at each end of a bond

(d) (i)

- (ii) Yes, it will have a dipole moment, either because it has an uneven distribution of electrons or because it contains a lone pair
 - or the S–F dipoles don't cancel or molecule is not symmetrical or diagram of see-saw shape.

(allow an ecf for "no dipole" if their structure in (d)(i) has **no** lone pair)

- (e) Sulfur can use its d-orbitals or has low-lying/accessible/available d-orbitals or can expand its octet.
 (allow reverse argument for oxygen; do NOT allow just "sulfur has d-orbitals")
- **(f) (i)** Burning of **fossil** fuels *or* coal/oil/petrol/natural gas (NOT methane *or* hydrocarbons) *or* volcanoes *or* roasting/burning sulfide ores

(ii) Acid rain [2]

[Total: 11]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

2 (a)
$$A_r = 204 \times 0.019 + 206 \times 0.248 + 207$$
 [2] = 207.21 (correct ans = [2])

The **last** answer written by the candidate needs to be written with 2 d.p. to get the last mark.

(b) (i)
$$Tin(II)$$
 oxide is more basic than $tin(IV)$ oxide or $tin(II)$ oxide is less acidic than $tin(IV)$ oxide

(ii) e.g. SnO + 2HC
$$l$$
 \longrightarrow SnC l_2 + H2O(or ionic or with H₂SO₄) [2]
SnO₂ + 2NaOH \longrightarrow Na₂SnO₃ + H₂O (or ionic or with KOH etc.)

PbO₂ changes colour (from brown/black to yellow/orange/red)

$$PbO_2 \longrightarrow PbO + \frac{1}{2} O_2$$
 or $3PbO_2 \longrightarrow Pb_3O_4 + O_2$

[Total: 8]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

(b) Solubility decreases (from Mg to Ba *or* down the group) [4]

Both lattice energy/ ΔH_{latt} and enthalpy change of hydration/ ΔH_{hyd} are involved enthalpy change of hydration **decreases more** than lattice energy

So enthalpy change of solution $/\Delta H_{sol}$ becomes more endothermic *or* more positive *or* less exothermic *or* less negative (NOT ΔH_{sol} decreases, or increases)

(c) precipitate/solid CaSO₄ would form due to the **common ion effect** or K_{sp} is exceeded or the following equilibrium shifted over to the right $Ca^{2+(aq)} + SO4^{2-}(aq) \rightleftharpoons CaSO_4(s)$ [2]

(d) charge passed =
$$1.8 \times 40 \times 60$$
 (= 4320 C) [4]
 $n(e^{-})$ = $4320/96500$ (= $4.477 \times 10^{-2} \text{ mol}$) ecf
 $n(Cr)$ = $0.776/52$ (= $1.492 \times 10^{-2} \text{ mol}$) ecf
 n = $4.477 \times 10^{-2}/1.492 \times 10^{-2} = 3.00$ (=3)

[Total: 12]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

4 (a) (i) a solution that resists/minimises a change in its pH *or* **helps** maintain its pH..... [2] (NOT any of: "maintains pH"; "keeps pH constant"; "no change in pH")when small amounts of acid/H⁺ or base/OH⁻ are added (**both** acid and base are needed)

$$HCO3^- + H^+ \longrightarrow H_2CO_3 (or H_2O + CO_2)$$

and with OH⁻ ions thus:

$$HCO_3^- + OH^- \longrightarrow CO_3^{2-} + H_2O$$

(the equation arrows can be equilibrium arrows, as long as HCO₃⁻ is on the left)

(iii)
$$(pK_a = -log(K_a) = 7.21)$$
 [2]

$$pH = pK_a + log([base]/[acid] = 7.21 + log(0.5/0.3)$$

= 7.43 (7.4)

(b) (i)
$$K_{sp} = [Ag^{+}]^{3}[PO_{4}^{3-}]$$
 and units: $mol^{4}dm^{-12}$ [1]

(ii) call
$$[PO_4^{3-}] = x$$
, then $[Ag^+] = 3x$, and $K_{so} = 27x^4$

$$x = (K_{sp}/27)^{1/4} = (1.25 \times 10^{-20}/27)^{1/4} = 4.64 \times 10^{-6} \text{ mol dm}^{-3}$$

$$[Ag^{+}] = 3x = 1.39 \times 10^{-5} \text{ (mol dm}^{-3})$$
 (allow 1.4×10^{-5})

(c)
$$H_3PO_3 + 2Fe^{3+} + H_2O \longrightarrow H_3PO_4 + 2Fe^{2+} + 2H^+$$
 [2]

$$E_{\Theta_{\text{cell}}} = 0.77 - (-0.28) = (+)1.05 \text{ V}$$

or
$$3H_3PO_3 + 3H_2O + 2Fe^{3+} \longrightarrow 3H_3PO_4 + 6H^+ + 2Fe$$

$$E_{\Theta_{\text{cell}}} = -0.04 - (-0.28) = (+)0.24 \text{ V}$$

[Total: 12]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

5 (a) (i)
$$H_2 + Pt \ or \ H_2 + Ni/Pd + heat/warm \ or \ 50^\circ < T < 500^\circ C$$
 [1]

(ii)

[1]

(iii)
$$2^2 = 4$$
 [1]

(iv)

2 Hs have to be on the **same side** of the ring. Allow $-C_3H_7$ or -R for $-CH(CH_3)_2$ [1]

(b) (i)
$$C \qquad \qquad Or \qquad \bigvee_{N_2^+} Or \qquad \bigvee_{N^+}$$

(ii) step 1: conc HNO₃ + H₂SO₄ (@ 25 °C < T < 60 °C – see below) ("aq" negates) step 2: Sn/Fe + HC*l* step 3: HNO₂ or NaNO₂ + HC*l* (@ T< 10 °C – see below) both temperatures correct for steps 1 + 3 (temperature not required for step 2) (inclusion of the word "heat" or "reflux" in step 3 negates the temperature mark)

(c) [5]

HBr	no reaction	Br
Na	ONa	ONa
NaOH(aq)	ONa	no reaction

[Total: 14]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

6 (a) There are three acceptable alternatives – follow each column down vertically:

(i) D is	RCOC1	RCOOCH₂CH₃	RCO ₂ ⁻ NH ₄ ⁺
(ii) step 1	$SOCl_2$ (or PCl_3 or PCl_5)	ethanol (e.g.) + conc H ₂ SO ₄	NH ₃
(ii) step 2	NH ₃ (NaOH negates th	nis mark)	heat
(ii) step 3	LiAlH ₄ (aq) negates(NOT NaBH ₄ ; Sn + HCl etc.)		

(b) (i) amine (other groups negate)

[1]

(ii) phenol and carboxylic acid (both needed)

[1]

(iii)

[4]

compound	first functional group	second functional group
E	amide	alcohol
F	amine	carboxylic acid
G	amine	ester
Н	amide	phenol

- (iv) Mark this in the following way. For each structure of E, F, G and H: [4]
 - check whether the structure fits the molecular formula C₈H₉NO₂, i.e. that it has: **one** nitrogen, **two** oxygens and **eight** carbons.
 - check that it contains the two groups that the candidate's answers to part (ii) says it contains.

[Total: 13]

Page 8		Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42
(a)	L – it is the only compound that is an amino acid <i>or</i> can form (NOT <i>co</i> –NH–CO– /amide / peptide linkages / bonds <i>or</i>	ntain)	[1]
	it contains an N atom/NH₂ group/CO₂H group		
(b)	mark both parts of this together – max [4] from the following six points		[4]
	M1 mRNA is complementary to <i>or</i> a copy of (a portion of) DNA		
	M2 mRNA encodes the sequence of amino acids in proteins <i>or</i> each	h of its	
	codons (base triplets) codes for one amino acid		
	M3 mRNA binds to/associates with the ribosome M4 tRNAs are specific to their amino acids		
	M4 tRNAs are specific to their amino acidsM5 tRNA contains an anticodon or bonds to the codon/mRNA three	ough basa n	airing or
	translates the RNA code into the amino acid sequence	bugii base p	airing or
	M6 tRNA carries the amino acid to the ribosome/mRNA		
(c)	max [3] from the following six points.		[3]
(0)	M1 the pH of that area of the protein would change		[2]
	M2 protein becomes less hydrophilic/soluble <i>or</i> more hydrophobic		
	M3 fewer hydrogen bonds <i>or</i> more van der Waals' (id–id) forces		
	M4 fewer ionic bonds form		
	M5 the tertiary structure/folding/(3D) shape (of the protein) would	change	
	M6 the active site would be different/less efficient	3 -	

Page 8

7

[Total: 8]

		Cambridge International A Level – May/June 2015	9701	42
8	(a) (i)	The nucleus/proton of a hydrogen atom has spin		[1]
	(ii)	Hydrogen doesn't have enough electrons/electron density		[1]
	(iii)	S/sulfur – it has the greatest number of electrons or highest electrons	n density	[1]
	(b) (i)	12 protons (=9+2+1)		[1]
	(ii)	The group responsible for this peak is –OH (allow NH) The D in D ₂ O exchanges with the H in –OH or H is replaced by D or "–OH \rightarrow –OD",		[2]
	(iii)	The adjacent carbon atom has no hydrogen atoms bonded to it		[1]
	(iv)	Methyl/CH ₃ group		[1]
	(v)	P is (CH ₃) ₃ C–CH ₂ OH		[1]
	(c) (i)	$n = \frac{100 \times (M+1)}{1.1 \times M} = \frac{100 \times 0.5}{1.1 \times 9.3} = 50/10.23$ $= 4.89 \text{ hence } 5 \text{ carbons}$		[1]
	(ii)	(Ratio of ⁷⁹ Br: ⁸¹ Br is 1 : 1), hence ratio of M : M+2 : M+4 is 1 : 2 : 1		[1]
	(iii)	Molecular formula of ${f R}$ is $C_5H_{10}Br_2$		[1]

Mark Scheme

Syllabus

Paper

[Total: 12]

Page 9

Page 10	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9701	42

9 (a)_______ [3]

monomer	addition	condensation	both
H H OH		√	
H C = C OH	✓		
H ₃ C = C H	✓		

(b) polythene is non-polar or its bonds are non-polar so not (easily) hydrolysed

(Allow displayed, skeletal, part-skeletal, structural etc.)

- (ii) The ester (or –COO–) linkage/bond is hydrolysed *or* reacts with water [1]
- (d) Polythene has (weak) van der Waals' (or id-id) forcesPVC has stronger van der Waals' forces or additional dipole forcesNylon has (strong) hydrogen bonding

[Total: 10]

[2]