

III. **Amplification et filtrage**

Exercice 1:

Voici la datasheet d'un amplificateur opérationnel :

Absolute maximum ratings

TL081

TL081

Absolute maximum ratings

General purpose JFET single operational amplifiers

Features

- Wide common-mode (up to $V_{\mathbb{C}\mathbb{C}}^{+})$ and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch-up free operation
- High slew rate: 16 V/µs (typ)

Description

The TL081, TL081A and TL081B are high-speed JFET input single operational amplifiers incorporating well matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

able 1.	Absolute maximum ratings				
Symbol	Parameter	TL0811, AI, BI	TL081C, AC, BC	Unit	
V _{CC}	Supply voltage (1)	±18		V	
Vin	Input voltage (2)	±15		V	
V _{id}	Differential input voltage (3)	±30		V	
P _{tot}	Power dissipation	680		mW	
	Output short-circuit duration (4)	Infinite			
T _{stg}	Storage temperature range	-65 to +150		°C	
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ (6) SO-8 DIP8	125 85		°C/M	
R _{thjc}	Thermal resistance junction to case ⁽⁵⁾ (6) SO-8 DIP8	40 41		°C/M	
ESD	HBM: human body model ⁽⁷⁾	500		٧	
	MM: machine model ⁽⁸⁾	200		٧	
	CDM: charged device model ⁽⁹⁾	1.5		kV	

- All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}.
- The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal
- The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- Human body model: 100 pF discharged through a $1.5 k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $< 5 \, \Omega$), done for all couples of pin combinations with other pins floating.

Table 2. Operating conditions

Symbol	Parameter	TL081I, AI, BI	TL081C, AC, BC	Unit
V _{CC}	Supply voltage range	6 to 36		٧
T _{oper}	Operating free-air temperature range	-40 to +105	0 to +70	°C

- 1. Donnez la tension d'alimentation maximal?
- 2. Donnez la tension d'entrée maximal?
- 3. Si mon amplificateur est alimenté à +/- 14v, quel serait la valeur maxi de la tension d'entrée?
- 4. Donnez les noms et leur rôle des pattes 2,6 ?

Exercice 2:

Voici un montage amplificateur non-inverseur.

On considère que
$$\epsilon=0$$
, $V^+=V_e$, $V^-=\frac{V_sR_1}{R_1+R_2}$ et $A=$

Vs/Ve

Déduire la valeur de Vs en fonction de Ve ? Calculer l'amplification pour R1 = $1K\Omega$ et R2 $10k\Omega$

6/9 ScIn1A 2024/25

Exercice 3:

Dans un système, on mesure la température entre -10°C et 80°C, avec des tensions de sortie du capteur correspondant à 0.2 volts et 1.6 volts.

1ère proposition:

On veut amplifier le signal avec un montage non-inverseur avec $R1 = 10k\Omega$ et $R2 = 35k\Omega$

- O Calculer la valeur de l'amplification
- O Calculer la valeur max et min de Vs
- O Tracer la fonction de transfert Vs en fonction de Ve et déterminé graphiquement la valeur limite de Ve à la saturation de l'ampli-opérationnel.

2ème Proposition:

On veut amplifier le signal avec un montage non-inverseur avec R1=1.5K Ω et R2= 18k Ω

- O Calculer la valeur de l'amplification
- O Calculer la valeur max et min de Vs
- O Tracer la fonction de transfert Vs en fonction de Ve et déterminé graphiquement la valeur limite de Ve à la saturation de l'ampli-opérationnel.

Pour une bonne amplification en pleine échelle, quelle proposition est la plus judicieuses ? pourquoi ?

Exercice 4:

Dans un EEG (électroencéphalogramme), on mesure les signaux cérébraux compris entre 5 et 100 µvolts et à des fréquences entre 8 et 100Hz.

- O Afin de limiter les perturbations extérieures, pouvez-vous dire quel type de filtre devons-nous utiliser ? Pourquoi ?
- O Quelle serait la(les) fréquence(s) de coupure ?

Dans la salle où se trouve l'EEG, une source de tension émet un signal de fréquence 50Hz qui perturbe la mesure.

O Quel filtre faut-il ajouter pour éliminer cette fréquence sans perdre les autres signaux ?

ScIn1A 2024/25 7/9