For these problems, you should justify your answers. You do not need to provide a rigorous mathematical proof, but rather an informal argument.

Problem 1. Let $A = \mathbb{Z} \times \mathbb{R}$, let $B = \mathbb{R} \times \mathbb{Z}$, and let $C = \{(x, y) : x^2 + 4y^2 \le 16\}$. For each of the following sets, describe the set in set-builder notation and give a detailed sketch the set in \mathbb{R}^2 .

- (i) $C \cap (A \cup B)$
- (ii) $C \cap A \cap B$
- (iii) $C (A \cup B)$
- (iv) $C (A \cap B)$

Solution.

(i)

$$\{(x,y) \in \mathbb{R}^2 : x^2 + 4y^2 \le 16 \land (x \in \mathbb{Z} \lor y \in \mathbb{Z})\}$$

(ii)

$$\{(x,y)\in\mathbb{R}^2: x^2+4y^2\leq 16 \wedge (x\in\mathbb{Z} \wedge y\in\mathbb{Z})\}$$

(iii)

$$\{(x,y)\in\mathbb{R}^2: x^2+4y^2\leq 16 \ \land (x\notin\mathbb{Z}\land y\notin\mathbb{Z})\}$$

(iv)

$$\{(x,y)\in\mathbb{R}^2: x^2+4y^2\leq 16 \ \land (x\notin\mathbb{Z}\lor y\notin\mathbb{Z})\}$$

Problem 2. Let $\mathcal{F} = \{A \subseteq \mathbb{N} : |A| \text{ is finite}\}$. Determine whether each of the following is true or false; justify your answer.

- (i) $\mathbb{N} \in \mathcal{F}$.
- (ii) If $A \in \mathcal{F}$, then $\overline{A} \in \mathcal{F}$.
- (iii) $|\mathcal{F}|$ is finite.
- (iv) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$. (v) If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Solution.

- (i) False. N's cardinality is \aleph_0 which is the smallest infinite cardinality.
- (ii) False. In this context $\overline{A} = \mathbb{N} A$. No matter how big |A| is, $|A| < |\mathbb{N}|$, so $|A| = |\mathbb{N}|$ and $\overline{A} \notin \mathcal{F}$.
- (iii) False. There are an infinite number of finite (and infinite) subsets of N.

Consider $S = \{\{1\}, \{2\}, \{3\} \dots\} = \{\{x\} : x \in \mathbb{N}\}.$

 $A \subseteq \mathcal{F}$ and A's cardinality is clearly infinite, thus so is \mathcal{F} 's.

- (iv) False. $\bigcup A_n$ is \mathbb{N} . Consider S from the previous subproblem, the union of the singletons as we reach all in \mathbb{N} is equal to \mathbb{N} .
- (v) True. $\{0\}$ and $\{1\}$ are subsets of \mathbb{N} and thus members of \mathcal{F} . Their intersection is \emptyset , thus $\bigcap A_n = \emptyset$. \emptyset is also a subset of $\mathbb N$ and thus a member of $\mathcal F$.

Problem 3. For each $\alpha \in \mathbb{R}$, define $A_{\alpha} = \{(x, \alpha \cos x) \in \mathbb{R}^2 : -2\pi \le x \le 2\pi\}$. Describe the following sets in set-builder notation and draw them in the plane \mathbb{R}^2 .

- (i) $A_{\frac{1}{2}}$
- (ii) $\bigcup A_{\alpha}$
- (iii) $\bigcap_{\alpha} A_{\alpha}$
- (iv) $\bigcup_{\alpha} A_{\alpha}$
- $(\mathbf{v}) \bigcap_{\alpha \in \mathbb{R}} A_{\alpha}$

Solution.