

Prof. Zygmunt J. Haas
Computer Science Department
The University of Texas at Dallas
ECSS 4.405
Richardson, TX 75080

http://www.utdallas.edu/~haas/courses/acn

Copyright © 2017 by Zygmunt J. Haas

All right reserved. No part of these notes may be reproduced, in any form or by any means, without permission in writing from the author.

The Communication Pipe (con't)

\mathbb{H} The *bit capacity* of the pipe, *B* [bits], the *propagation delay* of the pipe, τ_{prop} , and the pipe *utlization*, ρ , are given by:

$$\tau_{prop} = \frac{L}{s}; \qquad B = C \cdot \tau; \qquad \rho = \frac{T}{C}$$

 \mathbb{H} Thus a total delay of a message of size M [bits] is:

$$\tau_{total} = \tau_{prop} + \tau_{transmission} = \frac{L}{s} + \frac{M}{C}.$$

₩ For example, consider a link of 4,000[miles]=6,400[km] @ 2/3 the speed of light:

$$\tau_{prop} = \frac{6.4 \cdot 10^6}{1.53 \cdot 10^8} = 4.17 \cdot 10^{-2} [\text{sec}] = 41.7 [m \text{sec}].$$

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

The Communication Pipe (con't)

\mathbb{H} Now consider the case of a message of 10 [Kbytes] and \bullet link capacity, C=10[Kbps]:

$$\tau_{transmission} = \frac{80 \cdot 10^{3} [b]}{10 \cdot 10^{3} [bps]} = 8[sec];$$

$$B = 10[Kbps] \cdot 41.7[msec] = 417[b].$$

 \diamond link capacity, C=100[Mbps]:

$$\tau_{transmission} = \frac{80 \cdot 10^{3} [b]}{100 \cdot 10^{6} [bps]} = 0.8[m \,\text{sec}];$$

$$B = 100[Mbps] \cdot 41.7[m sec] = 4.17[Mb]$$
.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

The Communication Pipe (con't)

$$\mathcal{H} \stackrel{\bullet}{\bullet} \text{ link capacity, } C=1[\text{Gbps}]:$$

$$\tau_{transmission} = \frac{80 \cdot 10^3 [bits]}{10^9 [bps]} = 0.08 [msec];$$

$$B = 1 [\text{Gbps}] \cdot 41.7 [msec] = 41.7 [Mb]$$
...

$$10 [Kbps] \text{"pipe"}$$

$$1 [Gbps] \text{"pipe"} \dots \text{bursty traffic}$$
Wireless Networks Laboratory Copyright ©by Zygmunt J. Haas, 2016 7

Voice vs. Data

- **X** Why do we need to worry about data communications?
- ₩ Why aren't voice-based systems sufficient?

Voice	Data
Real time (low delay)	Delays are acceptable
Sensitive to jitter	Insensitive to jitter
Some errors allowable	Errorless
	communication
Constant bit rate	Variable bit rate ⇒
	burstiness

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

Voice vs. Data (con't)

- **#** Circuit switching was traditionally used to switch voice communication.
- **X** Circuit switching involves a set up procedure, during which a resource dedication is performed. Once a circuit is establish, data can flow "freely" without any delay.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

13

Switching Techniques

Circuit Switching:

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

Voice vs. Data (con't)

- **#** But circuit switching assumes constant traffic patterns. Data communications, and especially computer communication, is very *bursty*.
- **X** Such burstiness leads to inefficient use of network resources (e.g., a line is reserved, but is unused for the duration of long periods). ... The pipe remains empty most of the time!!!
- # This is where packet switching (or message switching) was invented.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

Voice vs. Data (con't)

- # The idea behind packet switching is simple use statistical (time) multiplexing of the resources.
- ## The main problem: as the demand for resources can be highly variable in time (i.e., large degree of burstiness) and unpredictable, some data may not find the resources needed.
- # An idea: since delay is not critical for data ⇒ buffer the excess demand.
- ****** But buffering may introduces unfairness in resource usage and large delay variations (jitter). Furthermore, some traffic may be lost due to congestion.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

19

Packet Switching

- # The packet switching has been born!
- **X** Segment the data into small units, packets.

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

Statistical Multiplexing Gain

- Assume a 1[Mbps] link and individual flows of 0.1[Mbps], active 10% of the time.
- Thus, when a flow transmits alone, it uses 10% of the link capacity.
- With circuit switching, we can accommodate 10 users, and the average utilization of the link will be 10%.
- With statistical multiplexing, we can support ~ 30 users with probability of < 0.1% (0.001) that more than 10 flows are active at the same time.
- With statistical multiplexing, we can better fill the pipe. Why cannot we fill the pipe completely (i.e., get 100% utilization, ρ =1)?

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

25

Statistical Multiplexing Gain

- Conclusion, with statistical multiplexing, we can accommodate significantly large number of users with small degradation in performance ... what is the performance degradation?
- But, there is no "free lunch"

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

A Link as a "Communication Pipe"

X A communication link/path is modeled as a conduit carrying liquid (water).

Packet Switching (con't)

- **X** The advantages of *packet switching* (compared with circuit switching):
 - better utilization of resources
 - smaller overhead due to transmission errors/packet loss
 - no set up process (shorter delay for small files)
 - simple (fast) routing/switching decisions
- **And the disadvantages of *packet switching* (again, there is "no free lunch"):
 - header/trailer overhead
 - routing per packet (may become a bottleneck in some cases)
 - increased delay and jitter (due to queueing)
 - more processing (segmentation/reassemble, sequencing, etc)

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

Comparison of switching techniques

- **%** Circuit Switching:
 - ❖ used in telephone network
 - dedicates resources for the duration of the connection
 - ❖ requires (relatively long) set-up delay
 - ❖ not suitable for bursty computer traffic
- ****** Message Switching:
 - *multiplexes messages from various sources on the same link
 - no dedication of resources
 - ♦ no set-up phase
 - different size units (messages)
 - routing is message-based

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

29

Comparison of switching techniques (con't)

- **#** Packet Switching:
 - divides messages to equal-size packets
 - multiplexes packets from various sources
 - no dedication of resources
 - ⋄ no set-up phase
 - one size units (packets)
 - better multiplexing effect
 - routing is packet-based

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016

Comparison of switching techniques (con't)

- **#** Advantages of Packet Switching vs. Message Switching:
 - better buffer utilization
 - ❖ shorter piplining delay
 - *smaller retransmission traffic (in response to errors)
 - fairness of network utilization
- # Disadvantages of Packet Switching vs. Message Switching:
 - processing (switching, control, routing) on per-packet basis (more processing)
 - transmission overhead due to headers, trailers, etc

Wireless Networks Laboratory

Copyright ©by Zygmunt J. Haas, 2016