

Universidad La Salle

COMPILADORES

INFORME LENGUAJE DE PROGRAMACIÓN: SERPY

Autor:

Basurco Monroy Luis Gonzalo Lozano Vega Nicolle Andrea Saico Ccahuana Katherine Naomi Silva Cabrera Marcelo Vieri

21 de marzo de 2025

Índice

1.	Justificación y Descripción del Lenguaje	2
2.	Especificación Léxica 2.1. Tabla de Tokens y Expresiones Regulares	3
3.	Ejemplos de Código Fuente3.1. 1. Hola Mundo3.2. 2. Ejemplo con Bucles Anidados3.3. 3. Ejemplo con Recursividad	4
4.	Referencias a Lenguajes de Programación	4
5.	. Justificación de la Comparación	
6.	Conclusión	

1. Justificación y Descripción del Lenguaje

SERPY es un lenguaje de programación diseñado para facilitar el aprendizaje de la programación a hablantes de español. Su sintaxis y palabras clave están completamente en español, lo que permite a los estudiantes y nuevos programadores entender mejor los conceptos de programación sin la barrera del idioma inglés. El lenguaje está orientado a la enseñanza de conceptos básicos de programación, como variables, estructuras de control, bucles y funciones, utilizando una sintaxis clara y legible.

2. Especificación Léxica

2.1. Tabla de Tokens y Expresiones Regulares

Categoría	Token	Expresión Regular
	si	si
	sino	sino
	mientras	mientras
Palabras clave	para	para
1 alabias clave	funcion	definir
	retornar	retornar
	verdadero	verdadero
	falso	falso
	imprimir	imprimir
Identificadores	Nombre de variable/función	[a-zA-Z_][a-zA-Z0-9_]*
Literales	Número entero	[0-9]+
	Número decimal	[0-9]+.[0-9]+
	Cadena de texto	"([^"\\]
.)* "—		'
	Asignación	=
	Suma	+
	Resta	-
	Multiplicación	*
	División	/
On one done	Igualdad	==
Operadores	Desigualdad	!=
	Mayor que	>
	Menor que	<
	Y lógico	у
	O lógico	0
	Negación	no
	Coma	,
	Paréntesis de apertura	(
	Paréntesis de cierre)
Dolimitadonas	Llave de apertura	{
Delimitadores	Llave de cierre	}
	Corchete de apertura	Ĺ
	Corchete de cierre]
Comentarios	Comentario de una línea	//.*
Comentarios	Comentario multilínea	/[\s\S]*?/

Cuadro 1: Tabla de tokens y expresiones regulares para el lenguaje propuesto.

3. Ejemplos de Código Fuente

3.1. 1. Hola Mundo

imprimir("Hola Mundo")

3.2. 2. Ejemplo con Bucles Anidados

```
i = 0
mientras i < 3:
    j = 0
    mientras j < 3:
        imprimir(f"Posición: ({i}, {j})")
        j = j + 1
    i = i + 1</pre>
```

3.3. 3. Ejemplo con Recursividad

```
definir factorial(n):
    si n == 0:
        retornar 1
    si no:
        retornar n * factorial(n - 1)
imprimir(factorial(5))
```

4. Referencias a Lenguajes de Programación

SERPY se asemeja a lenguajes de programación como Python y JavaScript en términos de su estructura y sintaxis:

Python

- Simplicidad y Legibilidad: Al igual que Python, SERPY prioriza la legibilidad del código, utilizando palabras clave en español que son intuitivas para los hablantes nativos.
- Estructuras de Control: Ambos lenguajes utilizan estructuras de control como if, for, y while, lo que permite a los programadores aplicar conceptos similares en ambos entornos.

JavaScript

- Orientación a Objetos: SERPY, al igual que JavaScript, puede implementar conceptos de programación orientada a objetos, permitiendo la creación de funciones y objetos.
- Uso en Desarrollo Web: Aunque SERPY está diseñado principalmente para la enseñanza, su estructura se asemeja a JavaScript, que es ampliamente utilizado en el desarrollo web.

5. Justificación de la Comparación

- Facilidad de Aprendizaje: La similitud con Python y JavaScript hace que los estudiantes que ya están familiarizados con estos lenguajes puedan adaptarse rápidamente a SERPY.
- Conceptos Comunes: La implementación de conceptos de programación comunes, como funciones, bucles y condicionales, permite a los usuarios aplicar sus conocimientos previos en un nuevo contexto.

■ Accesibilidad: Al estar en español, SERPY elimina la barrera del idioma, lo que puede ser un obstáculo en lenguajes como Python y JavaScript para hablantes no nativos de inglés.

6. Conclusión

SERPY se inspira en la simplicidad y la estructura de lenguajes como Python y JavaScript, lo que lo convierte en una herramienta efectiva para la enseñanza de la programación en español. Esta relación con lenguajes conocidos facilita la transición y el aprendizaje para los nuevos programadores.