Consider the panel LRM

$$y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \mu_i + \nu_{it}.$$

 y_{it} : an observation for individual i at time t.

 \mathbf{x}'_{it} : K independent variables for individual i at time t. $1 \times K$. A variable can be time-varying or time-invariant.

 β : vector of true coefficients. $K \times 1$.

$$y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \mu_i + \nu_{it}.$$

 μ_i : time-invariant error, specific to i. $\mu_i \sim N(0, \sigma_\mu^2)$, and hence it is a random effect. Hence, the model is called the random effects model. μ_i captures individual heterogeneity. μ_i is assumed to be uncorrelated with \mathbf{x}_{it} which is a strong assumption. μ_i are uncorrelated among individuals.

 ν_{it} : time-variant error. $\nu_{it} \sim N(0, \sigma_{\nu}^2)$. ν_{it} is uncorrelated with X_{it} . ν_{it} are uncorrelated among individuals, but also within individuals.

 ε_{it} : define it as $\mu_i + \nu_{it}$. It is the composite error of the model. μ_i and ν_{it} are independent.

Derive the variance-covariance matrix of ε_{it} . That is, derive $\mathsf{E}\left[\varepsilon\varepsilon'\mid \pmb{X}\right]$.

The variance for i, at a given t:

$$\mathsf{E}\left[\varepsilon_{it}\varepsilon_{it}\mid \boldsymbol{x}_{it}'\right] = \sigma_{\mu}^2 + \sigma_{\nu}^2.$$

The covariance for i, across t: ε_{it} are correlated within an individual, due to the time-invariant μ_i . Serial correlation! That is, for every i, and $t \neq s$,

$$\mathsf{E}\left[\varepsilon_{it}\varepsilon_{is}\mid \boldsymbol{x}_{it}'\right]=\sigma_{\mu}^{2}.$$

The covariance for i and j, across t: ε_{it} are not correlated across individuals. That is, for every $i \neq j$,

$$\mathsf{E}\left[\varepsilon_{it}\varepsilon_{js}\mid \boldsymbol{x}_{it}'\right]=0.$$

How does $E[\varepsilon \varepsilon' \mid \mathbf{X}]$ look like?

For T errors of individual i, stored in ε_i ,

$$\mathsf{E}\left[\boldsymbol{\varepsilon}_{i}\boldsymbol{\varepsilon}_{i}^{\prime}\mid\boldsymbol{X}_{i}^{\prime}\right] = \begin{bmatrix} \boldsymbol{\sigma}_{\mu}^{2}+\boldsymbol{\sigma}_{\nu}^{2} & \boldsymbol{\sigma}_{\mu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2} \\ \boldsymbol{\sigma}_{\mu}^{2} & \boldsymbol{\sigma}_{\nu}^{2}+\boldsymbol{\sigma}_{\nu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \boldsymbol{\sigma}_{\mu}^{2} & \boldsymbol{\sigma}_{\mu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2}+\boldsymbol{\sigma}_{\nu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2} \\ \vdots & \vdots & \dots & \vdots & \ddots & \vdots \\ \boldsymbol{\sigma}_{\mu}^{2} & \boldsymbol{\sigma}_{\mu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2} & \dots & \boldsymbol{\sigma}_{\mu}^{2}+\boldsymbol{\sigma}_{\nu}^{2} \end{bmatrix}_{T\times T}$$

$$\equiv \boldsymbol{\omega}_{i}$$

 ε_{it} are serially correlated within an individual!

For T errors of N individuals, stored in ε .

$$\mathsf{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'\mid\boldsymbol{X}\right] = \boldsymbol{\Omega} = \begin{bmatrix} \boldsymbol{\omega}_1 & \boldsymbol{0} & \dots & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\omega}_2 & \dots & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \dots & \boldsymbol{\omega}_n & \dots & \boldsymbol{0} \\ \vdots & \vdots & \dots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \dots & \boldsymbol{0} & \dots & \boldsymbol{\omega}_N \end{bmatrix}_{NT\times NT}$$

Example Ω for N=2, T=2,

$$\mathsf{E}\left[\varepsilon\varepsilon' \mid \pmb{X}\right] = \mathbf{\Omega} = \begin{bmatrix} \sigma_{\mu}^2 + \sigma_{\nu}^2 & \sigma_{\mu}^2 & 0 & 0 \\ \sigma_{\mu}^2 & \sigma_{\mu}^2 + \sigma_{\nu}^2 & 0 & 0 \\ 0 & 0 & \sigma_{\mu}^2 + \sigma_{\nu}^2 & \sigma_{\mu}^2 \\ 0 & 0 & \sigma_{\mu}^2 + \sigma_{\nu}^2 & \sigma_{\mu}^2 \end{bmatrix}_{4\times4}$$

 ε_{it} are serially correlated within individuals. We cannot estimate $m{\beta}$ efficiently using OLS! What can we do?

We have constructed

 Ω .

It includes the unknown σ_{μ}^2 and σ_{ν}^2 . There are different ways to estimate them. We do not cover this. Use these estimates to obtain

 $\hat{\Omega}$.

Now GLS estimation is feasible. Then obtain

$$\hat{oldsymbol{\Omega}}^{-1} = \hat{oldsymbol{P}}' \hat{oldsymbol{P}}.$$

 $\hat{m{P}}arepsilon$ is serially uncorrelated within individuals!

Obtain $\hat{P}y$ and $\hat{P}X$. Applying the OLS on them,

$$\mathbf{b}_{FGLS} = (\underbrace{(\hat{P}X)'}_{X^{*'}}\underbrace{(\hat{P}X)}_{X^{*}})^{-1}\underbrace{(\hat{P}X)'}_{X^{*'}}\underbrace{\hat{P}y}_{y^{*'}}$$
$$= \mathbf{b}_{RE}$$

The feasible generalised least squares estimator is the random effects estimator!

Example in MATLAB, where we check how the $\hat{\boldsymbol{P}}$ matrix looks like.

```
Editor - /Users/Tunga/Library/Mobile Documents/com~apple~CloudDocs/Academic/Te
   exercisepartwo.m × exerciseparttwofunctionbgs.m × exerciseparttwofunctionfes.m
        % The RE estimator as the EGLS estimator
 2
 3
        % 1. Load the data
 4 -
        clear:
 5 -
        filename = 'C:\Users\username\Desktop\exercise.csv';
 6 -
        delimiterIn = '.';
 7 -
        headerlinesIn = 1;
 8 -
        exercisedata = importdata(filename,delimiterIn,headerlinesIn);
 9
        % 2. Create the systematic component of the regression
10
11 -
        v = exercisedata.data(:,1);
12 -
        N = length(y);
        X = [ones(N,1) exercisedata.data(:,2:end)];
13 -
14
        % 3. Create additional variables
15
16 -
        T = 8;
17 -
        M = N/T:
        P_D = kron(eye(M), ones(T,T).*1/T);
18 -
19
        % 4. Obtain the RF coefficient estimates as FGLS coefficient estimates
20
        fes = exerciseparttwofunctionfes(v,X,M,P D,N);
21 -
22 -
        bgs = exerciseparttwofunctionbgs(y,X,M,P D,T);
23 -
        s2_m = fes.s2_hat;
        s2_v = bgs.s2_hat-s2_m/T;
24 -
        L = 1-(T*s2 \text{ v/s2 m+1})^{(-1/2)}:
25 -
26 -
        P \text{ hat} = eve(N) - L * P D;
27 -
        y t = P hat*y;
28 -
        X_t = P_hat*X;
29 -
        B_{hat} = (X_t'*X_t) \setminus (X_t'*y_t);
```

Z Editor – exercisepartwo.m						✓ Variables – X_t				
X	t ×									
4360x10 double										
150	1	2	3	4	5	6	7	8	9	
1	0.3634	0	-0.0796	0	0	5.0875	-1.8647	-15.2334		
2	0.3634	0	0.9204	0	0	5.0875	-0.8647	-12.2334		
3	0.3634	0	-0.0796	0	0	5.0875	0.1353	-7.2334		
4	0.3634	0	-0.0796	0	0	5.0875	1.1353	-0.2334		
5	0.3634	0	-0.0796	0	0	5.0875	2.1353	8.7666		
6	0.3634	0	-0.0796	0	0	5.0875	3.1353	19.7666		
7	0.3634	0	-0.0796	0	0	5.0875	4.1353	32.7666		
8	0.3634	0	-0.0796	0	0	5.0875	5.1353	47.7666		
9	0.3634	0	0	0	0	4.7241	-0.7745	-23.1512		
10	0.3634	0	0	0	0	4.7241	0.2255	-14.1512		
11	0.3634	0	0	0	0	4.7241	1.2255	-3.1512		
12	0.3634	0	0	0	0	4.7241	2.2255	9.8488		
13	0.3634	0	0	0	0	4.7241	3.2255	24.8488		
14	0.3634	0	0	0	0	4.7241	4.2255	41.8488		
15	0.3634	0	0	0	0	4.7241	5.2255	60.8488		
16	0.3634	0	0	0	0	4.7241	6.2255	81.8488		
17	0.3634	0	0	0.3634	0	4.3607	-0.7745	-23.1512		
18	0.3634	0	0	0.3634	0	4.3607	0.2255	-14.1512		
19	0.3634	0	0	0.3634	0	4.3607	1.2255	-3.1512		
20	0.3634	0	0	0.3634	0	4.3607	2.2255	9.8488		
21	0.3634	0	0	0.3634	0	4.3607	3.2255	24.8488		
22	0.3634	0	0	0.3634	0	4.3607	4.2255	41.8488		
23	0.3634	0	0	0.3634	0	4.3607	5.2255	60.8488		
24	0.3634	0	0	0.3634	0	4.3607	6.2255	81.8488		

	itor – exerci	separtwo.m	1		✓ Variables – P_hat							
_	_hat ×											
	1	2	3	4	5	6	7	8	9			
1	0.9204	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	0			
2	-0.0796	0.9204	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	0			
3	-0.0796	-0.0796	0.9204	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	0			
4	-0.0796	-0.0796	-0.0796	0.9204	-0.0796	-0.0796	-0.0796	-0.0796	0			
5	-0.0796	-0.0796	-0.0796	-0.0796	0.9204	-0.0796	-0.0796	-0.0796	0			
6	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	0.9204	-0.0796	-0.0796	0			
7	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	0.9204	-0.0796	0			
8	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	-0.0796	0.9204	0			
9	0	0	0	0	0	0	0	0	0.9204			
10	0	0	0	0	0	0	0	0	-0.0796			
11	0	0	0	0	0	0	0	0	-0.0796			
12	0	0	0	0	0	0	0	0	-0.0796			
13	0	0	0	0	0	0	0	0	-0.0796			
14	0	0	0	0	0	0	0	0	-0.0796			
15	0	0	0	0	0	0	0	0	-0.0796			
16	0	0	0	0	0	0	0	0	-0.0796			
17	0	0	0	0	0	0	0	0	0			
18	0	0	0	0	0	0	0	0	0			
19	0	0	0	0	0	0	0	0	0			
20	0	0	0	0	0	0	0	0	0			
21	0	0	0	0	0	0	0	0	0			
22	0	0	0	0	0	0	0	0	0			
23	0	0	0	0	0	0	0	0	0			
24	0	0	0	0	0	0	0	0	0			