CS 7641 Machine Learning Fall 2019 HW1

Grade: 129/130

1 Linear Algebra (25pts + 8pts)

1.1 Determinant and Inverse of Matrix [11pts]

Given a matrix M:

$$M = \begin{bmatrix} 5 & 0 & 1 \\ 6 & 1 & 2 \\ 0 & 4 & 3 \end{bmatrix}$$

- · Calculate the determinant of M. [5pts] (Calculation process required)
- Does the inverse of M exist? If so, calculate M^{-1} . [6pts] (Calculation process required)

(**Hint:** please double check your answer and make sure $MM^{-1} = I$)

1.2 Characteristic Equation [8pts] (BONUS)

Consider the eigenvalue problem:

$$Ax = \lambda x, x \neq 0$$

where x is a non-zero eigenvector and λ is eigenvalue of A. Prove that the determinant $|A - \lambda I| = 0$.

(Hint: If a matrix is not full-rank (has linearly dependent columns), it is singular and non-invertible)

1.3 Eigenvalue [7pts]

Following 1.2, given a matrix A:

$$A = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}$$

Calculate all the eigenvalues of A. (Calculation process required. Your answer should be expressed as a function of r.)

1.4 Eigenvector [7pts]

Following 1.3, given that the l_2 norm of each eigenvector is 1, what are the eigenvectors of matrix A? For example, if an eigenvector is $v = \begin{bmatrix} x1 \\ x2 \end{bmatrix}$, then $||v||_2 = \sqrt{x_1^2 + x_2^2} = 1$ (Calculation process required.)

Answers begin here

1.1

$$\frac{|.|.|}{|M|} = 5 \times (1 \times 3 - 2 \times 4) - 0(6 \times 3 - 2 \times 0) + 1 \times (6 \times 4 - 1 \times 0)$$

$$= 5 \times (3 - 8) - 0 + 24$$

$$= 5 \times (-5) + 24$$

$$= -1 \quad \text{the determs neart of } M.$$

1.1.2 By observation, it looks like that both M's rows and columns are binearly independent, so M is innertible. Furthermore, since $|M| = -1 \neq 0$, M is invertible. Write M like this and calculate M^{-1} :

Therefore,
$$M^{-1} = \begin{bmatrix} 5 & -4 & 1 \\ 18 & -15 & 4 \\ -24 & 20 & -5 \end{bmatrix}$$

Check: $M M^{-1} = \begin{bmatrix} 5 & 0 & 1 \\ 6 & 1 & 2 \\ 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} 5 & -4 & 1 \\ 18 & -15 & 4 \\ -24 & 20 & -5 \end{bmatrix}$

$$= \begin{bmatrix} 25 + 0 + (-24) & -20 + 0 + 20 & 5 + 0 - 5 \\ 30 + 18 & -48 & -24 - 15 + 40 & 6 + 4 - 10 \\ 0 & +72 & -72 & 0 - 60 + 60 & 0 + 16 - 15 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1$$

1.2

1.3

$$A = \begin{pmatrix} 1 & r \\ r & l \end{pmatrix}, \quad \lambda I = \lambda \begin{pmatrix} 1 & 0 \\ 0 & l \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

$$\Rightarrow \det (A - \lambda I) = 0 \Rightarrow \det \begin{pmatrix} 1 - \lambda & r \\ r & l - \lambda \end{pmatrix} = 0 \Rightarrow (1 - \lambda)^{\frac{1}{2}} - r^{2} = 0$$

$$\Rightarrow (1 - \lambda)^{\frac{1}{2}} - r^{2} \Rightarrow 1 - \lambda = \pm r \Rightarrow \boxed{\lambda = 1 \pm |r|} \Rightarrow 2\pi \text{ with reduces to } \boxed{\lambda = 1 \pm r}$$

Sime
$$\lambda = 1 \pm r$$
 from 1.5. We have $\begin{cases} \lambda_1 = 1 + r \\ \lambda_2 = 1 - r \end{cases}$

(A1.) $(A - \Lambda I) = 0$ =D $(I - (I + r) - r) = 0$

If $(A - \Lambda I) = 0$ =D $(I - (I + r) - r) = 0$

If $(A - \Gamma) = 0$ =D $(A - \Gamma) = 0$ =D $(A - \Gamma) = 0$

* Case I

If $(A - \Gamma) = 0$ =D $(A - \Gamma) = 0$

The results of the answer is the same, see above case 1.

* Case 2: It r +0, then
$$\chi_1 = -\chi_2$$
, $\sqrt{\chi_1^2 + \chi_2^2} = 1$, this colves to

$$\vec{v} = \begin{pmatrix} -\sqrt{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \text{ or } \vec{v} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\sqrt{2} \end{pmatrix}$$

2 Expectation, Co-variance and Independence [25pts + 5pts]

Suppose X,Y and Z are three different random variables. Let X obeys Bernouli Distribution. The probability disbribution function is

$$p(x) = \begin{cases} 0.5 & x = c \\ 0.5 & x = -c. \end{cases}$$

c is a constant here. Let Y obeys the standard Normal (Gaussian) distribution, which can be written as $Y \sim N(0, 1)$. X and Y are independent. Meanwhile, let Z = XY.

- What is the Expectation and Variance of *X*? (in terms of *c*) [4pts]
- Show that when c=1, Z is a standard Normal (Gaussian) distribution, which means $Z \sim N(0,1)$. [9pts]
- How should we choose c such that Y and Z are uncorrelated (which means Cov(Y, Z) = 0)? [9pts]
- Are Y and Z independent? (Just clarify) [3pts]
- Show your conclusion for the above question with an example. (Bouns) [5pts]

Answers begin here

2.1

2.1. For Bomondi Distribution, the expectation of
$$X$$
 is
$$E[X] = P(X=c) \times c + P(X=-c) \times (-c) = 0.5 \times c - 0.5 \times c = 0$$

$$Var[X] = E[X^{2}] - E[X]^{2} = P(X=c) \cdot c^{2} + P(X=c) \cdot (-c)^{2} - E[X]^{2}$$

$$= 0.5 \times c^{2} + 0.5 \times (-c^{2}) - 0^{2}$$

$$= c^{2}$$

2.2

When
$$C=1$$
, $p(Z) = p(XY)$
= $p(XY|X=1) p(X=1) + p(XY|X=-1) p(X=-1)$
= $p(Y|X=1) p(X=1) + p(Y|X=-1) p(X=-1)$
= $p(Y)$ 0.5 + $p(Y)$ 0.5, since X. Y are independent.
= $p(Y)$.

Therefore, Z is also a standard normal distribution, Z~N(0,1)

$$cov(Y, z) = E[Yz] - E[Y] E[Z]$$

$$= E[XY^2] - E[Y] \cdot E[Z] \cdot since Z = XY$$

$$= E[X] \cdot E[Y^2] - E[Y^2] \cdot E[Z]$$

$$= 0.$$

Y & & are unconselected regardless of c.

2.4

Z = XY. y and Z [are not independent]. Z depends on Y , also X is just a constant (±C).

2.5

A.S. For Z=XY and X.Y independent. Even though Y, Z can be uncorrelated, Z, Y are not independent and $p(Y,Z) \neq p(Y) \cdot P(Z)$.

Example: Given the definition of Y, Z, p(Yzo, Zzo) = 0.5 (half of the numbers drawn are bigger than 0). However, Since YN(0,1) and $Z \sim N(0,1)$, we have p(Yzo) = 0.5 and p(Zzo) = 0.5, and so $p(Yzo) \cdot p(Zzo) = 0.5 \times 0.5 = 0.25 \neq 0.5$.

(For dependent variables, $p(A,B) = p(A) \cdot p(B|A)$.

3 Maximum Likelihood [25pts + 10pts]

3.1 Discrete Example [15pts]

Suppose you are playing two unfair coins. The probability of tossing a head is 2θ for coin 1, and θ for coin 2. You toss each coin for several times, and you get the following results:

Result	Coin No.
head	1
head	2
tail	1
tail	2
head	1
tail	2

- What is the probability of tossing a tail for coin 1 (p_{t1}) and tossing a tail for coin 2 (p_{t2}) [3pts]?
- What is the likelihood of the data given θ [6pts]?
- What is maximum likelihood estimation for θ [6pts]?

3.2 Continues Example [10pts] (BONUS)

A uniform distribution in the range of [a, b] is given by

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

What is maximum likelihood estimation for a and b? (You need to show the derivation of your answer.)

(**Hint**: Think of two cases, where $x < max(x_1, x_2, \dots, x_n)$ and $x \ge max(x_1, x_2, \dots, x_n)$.)

3.3 Maximum A Posteriori (MAP) [10pts]

Suppose there exists an unknown parameter θ that describe whether the sun will explode tomorrow. $\theta=1$ means the sun will explode and $\theta=0$ if it won't. The likelihood function is:

$$P(yes|\theta) = \begin{cases} 1/36 & \theta = 0\\ 35/36 & \theta = 1 \end{cases}$$

- What is the maximum likelihood estimate of θ ?[3pts]
- Maximum A Posteriori (MAP) estimator aims to maximize the value of θ in $p(\theta|yes)$. What is the MAP estimate of θ given that $P(\theta=0) \gg P(\theta=1)$? Comment on the result.[7pts]

(**Hint**: You can use Bayes Rule to get $p(\theta|yes)$ from the likelihood!)

Answers begin here

3.1.1

The probability of tossing a tail for coin |

= 1 - the probability of tossing a head for coin |

= 1-20

Similarly, the probability of torsing a tail for coina is [10.]

3.1.2

The likelihood of the data given 1:

Loin No.)	۵	1	۵	LÚ	ا ۵
resurt	head	head	tail	tail	head	tail
probability	28	Ø	1-20	1-19	219	1-0

The Likelihood is:

1= p(head for com). p(head for coin 2).p(tail for coin)...

$$= 20 \cdot 0 \cdot (1-20) \cdot (1-0) \cdot 20 \cdot (1-0)$$

$$= 40^{3} (1-0)^{2} (1-20)$$

2.1.3

Take log of likelihood (by connention). log (L) = log 4 + 3 log θ + $2 \log (1-\theta)$ + log $(1-2\theta)$. Take derivative with respect to θ : $\frac{3}{\theta} = \frac{2}{1-\theta} = \frac{2}{1-2\theta} = 0$, solve for θ , we get: $\frac{(3-5\theta)(1-2\theta)-2\theta(1-\theta)}{F(1-\theta)(1-2\theta)} = 0$

$$12\theta^{2} - 13\theta + 3 = 0$$

However, if $\theta = \frac{3}{4}$, then $2\theta = \frac{6}{4} > 1$ which can't be true. Therefore, $\theta = \frac{1}{3}$

3.2

 $a \leq \min(\chi_1, \chi_2, \dots \chi_n)$ and $b \geq \max(\chi_1, \chi_2, \dots \chi_n)$ otherwise we can't get such χ_i samples.

 $L(a,b) = \prod_{i=1}^{n} f(x;a,b) = \frac{1}{b-a} \cdot \frac{1}{b-a} \cdot \frac{1}{b-a} = \frac{1}{(b-a)^n}$ $\log L(a,b) = \log \prod_{i=1}^{n} f(x;a,b) = \sum_{i=1}^{n} \log f(x;a,b)$ $s \cdot \log L(a,b) = \sum_{i=1}^{n} \log \frac{1}{(b-a)} = n \log \frac{1}{(b-a)}$ $\frac{\partial}{\partial a} \log L(a,b) = \frac{n}{b-a} , \text{ as a increases, } \frac{\partial}{\partial a} \log(2) \text{ increases.}$ $\frac{\partial}{\partial b} \log L(a,b) = \frac{-n}{b-a} , \text{ as b increases, } \frac{\partial}{\partial b} \log(2) \text{ observes.}$

Therefore, the largest possible a is miss $\{x_1, \dots, x_n\}$ and the smallest possible b is $\max\{x_1, \dots, x_n\}$.

Missing comment (-1 pts)

3.3.1

If $\theta=1$, then $p(\eta es | \theta) = \frac{35}{36}$, and if $\theta=0$, $p(\eta es | \theta) = \frac{1}{36}$. When $\theta=1$, $p(\eta es | \theta)$ is more likely, $s \circ \theta=1$

MAP aims to meximize p(b|ges), which can be calculated by p(ges|0) p(b) using Bayes Rules and we can ignore p(ges) in the denominator (conventionally).

$$p(\eta_{es}(\theta))p(\theta) \begin{cases} p(\eta_{es}(\theta)) p(\theta=0) = \frac{1}{36} \cdot p(\theta=0) \\ p(\eta_{es}(\theta)) p(\theta=1) = \frac{35}{36} \cdot p(\theta=1) \end{cases}$$
 when

4 Information Theory [25pts + 7pts]

4.1 Marginal Distribution [4pts]

Suppose the joint probability distribution of two binary random variables X and Y are given as follows.

X Y	1	2
0	<u>1</u> 5	<u>2</u> 5
1	0	<u>2</u> 5

• Show the marginal distribution of X and Y, respectively. [4pts]

4.2 Mutual Information and Entropy [21pts]

Given a dataset as below.

Day	Outlook	Temperature	Humidity	Wind	Play?
1	overcast	hot	normal	medium	yes
2	sunny	hot	high	weak	no
3	sunny	mild	normal	weak	yes
4	rain	cool	high	strong	no
5	overcast	cool	normal	strong	yes
6	rain	mild	normal	medium	no
7	sunny	mild	high	medium	yes
8	overcast	hot	normal	strong	no
9	rain	hot	high	weak	no
10	sunny	cool	normal	strong	yes

We want to decide whether to play or not to play basketball on a certain day. Each input has four features (x_1, x_2, x_3, x_4) : Outlook, Temperature, Humidity, Wind. The decision (play vs no-play) is represented as Y.

- Find entropy H(Y). [4pts]
- Find conditional entropy $H(Y|x_1)$, $H(Y|x_4)$, respectively. [8pts]
- Find mutual information $I(x_1, Y)$ and $I(x_4, Y)$ and determine whether which one $(x_1 \text{ or } x_4)$ is more informative. [5pts]
- Find joint entropy $H(Y, x_3)$. [4pts]

4.3 Bonus Question [7pts]

- Suppose X and Y are independent. Show that H(X|Y) = H(X). [2pts]
- Suppose X and Y are independent. Show that H(X,Y)=H(X)+H(Y). [2pts]
- Prove that the mutual information is symmetric, i.e., I(X,Y) = I(Y,X) and $x_i \in X, y_i \in Y$ [3pts]

Answers begin here

4.1

XX	ι (૨	total	
0	十	子	3 5	
l	0	斗	2/5	
total	士	4	1	

The marginal distribution of X is: $\frac{X}{X=0} = \frac{3}{5}$ $X=1 = \frac{2}{5}$

The marginal distribution of Yis:

$$H(Y) = -\left[\frac{5}{10}\log_{2}\left(\frac{5}{10}\right) + \frac{5}{10}\log_{2}\left(\frac{5}{10}\right)\right]$$
, since $5/10$ we decided to play, and $5/10$ we decided not to play

$$= -\left(-\frac{1}{2}+\left(-\frac{1}{2}\right)\right)$$
$$= \boxed{\boxed{}}$$

4.2.2

1810	onercast	Sunny	rain	1 total
play	a	3	0	5
no plany	1	(3	5
total	3 /	4	3	10

$$H(Y|\text{ overcast}) = H(\frac{2}{3}, \frac{1}{3}) = 0.9183$$
 $H(Y|\text{ sunny}) = H(\frac{3}{4}, \frac{1}{4}) = 0.8112$
 $H(Y|\text{ rain}) = H(\frac{0}{3}, \frac{3}{3}) = 0$

$$H(Y|X_1) = P(overcest)$$
. $H(Y|overcest) + P(sunny)$. $H(Y|sunny)$
+ $P(zain)$. $H(Y|zain) = \frac{3}{10} \times 0.9183 + \frac{4}{10} \times 0.8112 + \frac{3}{10} \times 0.9183$

			(wind)	*	
	1/4	medium	1) weak	Strong	total	
	play	2	1	2	7	
	no play	1	٤	à		
	total [3	3	4	10	
$H(Y mind = medium) = H(\frac{2}{3}, \frac{1}{3}) = 0.9183$ $H(Y mind = meak) = H(\frac{1}{3}, \frac{2}{3}) = 0.9183$						

$$H(Y|\text{ mind} = \text{strong}) = H(\frac{2}{4}, \frac{2}{4}) = 1$$
 $H(Y(X4) = P(\text{medium}) \cdot H(Y|\text{ medium}) + P(\text{mind} = \text{meak}) \cdot H(Y|\text{ meak})$
 $+ P(\text{mind} = \text{strong}) \cdot H(Y|\text{mind} = \text{strong})$
 $= \frac{3}{10} \cdot 0.9183 + \frac{3}{10} \cdot 0.9183 + \frac{4}{10} \cdot 1$

4.2.3

$$I(\chi_{i}, \Upsilon) = H(\Upsilon) - H(\Upsilon|\chi_{i}) = 1 - 0.59997 = 0.40003$$

$$I(\chi_{4}, \Upsilon) = H(\Upsilon) - H(\Upsilon|\chi_{4}) = 1 - 0.9510 = 0.049$$
Since $I(\chi_{i}, \Upsilon) \geq I(\chi_{4}, \Upsilon)$, χ_{i} is the more informative feature.

4.3.2 By Theorem for conditional entropy we know that H(X|Y) = H(X,Y) - H(Y)

 \Rightarrow H(X, Y) = H(Y) + H(X|Y)

from 4.3.1 we obtained that H(X) = H(X|Y). Therefore,

 $H(x,Y) = H(x) + H(Y) \cdot \square$

 $\frac{4.3.3}{I(x,Y)-I(Y,X)} = H(x)-H(x|Y)-H(Y)+H(Y|X)$ = H(x)-[H(x,Y)-H(Y)]-H(Y)+[H(x,Y)-H(x)] = H(x)-H(x,Y)+H(Y)-H(Y)+H(x,Y)-H(x) = 0.

Therefore, I(x,Y) = I(Y,X). []

Another proof. I(X,Y) = H(X) - H(XIY)

 $= \sum_{x} p(x) \log \frac{1}{p(x)} - \sum_{x \in \mathcal{Y}} p(x, y) \log \left(\frac{1}{p(x|y)} \right)$

 $= \sum_{x,y} p(x,y) \log \frac{p(x(y))}{p(x)}$

= $\sum_{\alpha, \gamma} p(\alpha, \gamma) \log \frac{p(\alpha, \gamma)}{p(\alpha)p(\gamma)}$

= $\sum_{x,y} p(x,y) \log \frac{P(y|x)}{P(y)}$

 $= \frac{1}{2} p(y) \log \frac{1}{p(y)} - \frac{1}{x,y} p(x,y) \log \frac{1}{p(y|x)}$

= $H(Y) - H(Y|X) = I(Y,X).\Box$