





### A VINHA e O VINHO, o MOTOR do DOURO







# Conceito de *Terroir* (Magalhães, 2008, citando Riou *et al.* 1995 e Morlat, 1996)

"O "terroir" representa pois um território de dimensão variável, definido pela associação das componentes geológica, pedológica e paisagística, na qual a resposta da videira é considerada reprodutível para um dado clima"

Magalhães, N (2008). Tratado de Viticultura. A Videira, a Vinha e o Terroir. Chaves Ferreira, Publicações S.A., Lisboa.





### Os fatores do *Terroir* vitícola









# A intervenção humana no *Terroir* (Magalhães, 2008)

"A intervenção do homem, por seu lado, traduz-se através da aplicação de técnicas culturais às condições particulares do meio, com o objetivo de fazer sobressair, da melhor forma, as caraterísticas específicas do produto final"





### O SOLO no Terroir Vitícola

SOLO – Como ambiente onde a videira se desenvolve, de onde retira a água e os nutrientes para cumprir todo o seu ciclo vegetativo, tem um efeito fundamental na quantidade e qualidade da produção de uvas e no produto final, o VINHO





# SOLO – Suporte e fornecedor de água e nutrientes



#### **Funções principais**

- ✓ Ancorar a planta e mantê-la na vertical
- ✓ Fornecer dois constituintes
   fundamentais água e nutrientes (N,
   P, K, Ca, Mg, S, Fe, Zn, Mo, Mn, B.....)

#### **Requisitos**

- **✓** Espessura de enraizamento
- ✓ Retenção e disponibilidade de água
- ✓ Arejamento (O<sub>2</sub>)
- ✓ Armazenar e fornecer nutrientes e dispor de condições químicas e biológicas para sua absorção







### O SOLO e a VINHA (Magalhães 2008)

- ☐ A influência do SOLO nas características das uvas e dos vinhos pode ser apreciada através da sua composição relativa em açúcares, ácidos, elementos minerais e orgânicos, polifenóis, antocianas, complexidade, intensidade aromática e caráter mineral, bem como na componente enzimática das uvas, muito relacionada com as qualidades e características do vinho.
  - ☐ Também o desequilíbrio em termos de nutrientes e a acidez ou alcalinidade do solo, conduzem a problemas na nutrição da vinha com efeitos nocivos na mesma





# Efeitos da disponibilidade de água na vinha (Magalhães, 2008)

- ☐ Condiciona o crescimento, a produtividade e o grau de maturação
  - Solos com elevada disponibilidade de água conduzem a elevado vigor, falta de açúcar e excessiva acidez e adstringência
  - ❖ Por outro lado, a falta de água pode conduzir a atrasos na maturação, diminuição do teor de açúcares e de compostos fenólicos e conduzir a adstringência, com caráter herbáceo







### A Litologia e o *Terroir* Duriense



para a sua gestão







### Razões???







### Diferenças entre solos derivados de granito e de xistos



Cerca de 20 m de distância, com a mesma vegetação



Solo derivado de granito

Solo derivado de xisto





# Diferenças entre solos derivados de granito e de xistos (cont.)



Solo derivado de granito

#### Solos derivados de Granitos

Em geral ocorrem duas situações distintas:

- ☐ O granito ocorre próximo da superfície, duro, não permitindo o aprofundamento
- □ Ou o granito está muito alterado, a designada arenização, com muito saibro e areia grossa e elevada pobreza em nutrientes, o que dificulta a retenção de água e a nutrição vegetal, como é visível no perfil do solo com ausência de raízes

Esta situação pode ser consideravelmente diferente no caso de granitos biotíticos com plagioclases, mas são menos comuns







# Diferenças entre solos derivados de granito e de xistos (cont)



Solo derivado de xisto

#### Solos derivados de Xistos

No caso dos xistos uma situação completamente diferente:

- □ Possibilidade de aprofundamento face à natureza mais branda do xisto e à sua clivagem
- ☐ Um ambiente mais rico em materiais finos e em nutrientes, com condições mais favoráveis à retenção de água e fornecimento de nutrientes, bem visível pela quantidade de raízes que existem no perfil do solo





### Efeitos dos xistos no *Terroir* duriense

- □ fácil fraturação da rocha com a possibilidade de aprofundamento do solo e ocorrência de pedregosidade no perfil e à superfície, o que diminui a erosão e facilita a permeabilidade e recarga hídrica
- □ texturas favoráveis à retenção de água disponível





# Efeitos dos xistos no *Terroir* duriense (cont)

- □ disponibilidade de nutrientes importantes na fisiologia da videira (caso do K⁺)
- □ estrutura do xisto em camadas com possibilidade de entrada das raízes e exploração desse ambiente, rico em água e em nutrientes face ao estado inicial de alteração mineral



### Características químicas gerais dos solos da região do Douro





O valor de pH e de GSB dos solos na região Duriense aumentam no Douro Superior e em áreas com calcários







### Características físicas - Classe de textura dominante dos solos do DOURO



- Na região duriense dominam os solos com texturas <u>franco arenoso fino e franco limoso,</u> o que se reflete num elevado volume de água utilizável e em fracas condições de estrutura
- ➤ Nos resultados apresentados, a areia fina e limo perfazem 63% da terra fina





### Distribuição da água utilizável com a textura do solo



Solos com diferentes texturas exercem atração diferente para a água, o que faz variar o volume de água utilizável. Texturas médias mostram o maior volume de água utilizável





### Água utilizável do solo e classe de textura \*



<sup>\*</sup> Resultados obtidos para 136 solos, com MO < 2% e AU estimada para 1 m de espessura

√ Valores de Água Utilizável mais elevados nas texturas médias, com elevado teor em areia fina e limo, como é o caso geral dos solos do Douro







### Síntese das características globais dos solos do Douro

| Relevo com declives geralmente elevados                                              |
|--------------------------------------------------------------------------------------|
| Baixa espessura natural                                                              |
| Elevada % de pedregosidade                                                           |
| Texturas médias, geralmente franco arenoso fino e franco limoso                      |
| Valores baixos de MO                                                                 |
| Valores baixos de fósforo e médios de potássio assimiláveis                          |
| pH ácido no Baixo Corgo e Cima Corgo e pouco ácido a neutro no Douro Superior        |
| Em litologias com calcário, o pH do solo e o GSB apresentam os valores mais elevados |





# Gestão do SOLO nas vinhas para a sustentabilidade do sistema vitícola

- Aprofundamento do solo com mobilizações profundas antes da plantação e armação do terreno em terraços ou em vinha ao alto (corrige a espessura e o declive, no caso dos terraços)
- Incorporação de fertilizantes de acordo com a natureza química do solo (conserva ou aumenta a MO e corrige as limitações em nutrientes ou a acidez)
- ☐ Gestão anual do solo, com proteção da erosão e promoção do armazenamento de carbono e matéria orgânica e da biodiversidade
- ☐ Utilização de rega nos casos de défice hídrico mais intenso





# Exemplo de SOLOS originais no Douro sem espessura suficiente para o sucesso das plantações e um bom desenvolvimento da vinha





- **✓ Dificuldade de enraizamento**
- ✓ Défice hídrico na época estival e possível morte das videiras
- **✓ Défice de nutrientes**







# O trabalho das máquinas promove a fratura da rocha (xisto) a armação do terreno e o aprofundamento do solo \*



2. Fratura da rocha (Xisto)
e aprofundamento do
solo até cerca de 1,5 m
nos terraços com
giratória

1. Abertura dos terraços com trator de rastos e lâmina frontal

3. Trituração da pedregosidade à superfície e preparação para a plantação

(\*) cerca de 11 000 €/ha





# Importância da espessura de enraizamento e da permeabilidade



Em ambiente mediterrânico, com forte défice hídrico na estação quente, o SOLO tem um papel essencial no fornecimento de água e na resistência à secura estival.

É fundamental dispor de uma elevada espessura e permeabilidade para recarga hídrica durante a estação das chuvas e posterior fornecimento de água na época seca, bem como disponibilizar nutrientes





# A disponibilidade de água em ambiente mediterrânico. Importância do sistema radical

A principal causa da redução do crescimento e produtividade no ambiente mediterrânico é o stresse hídrico. Nestas situações, um sistema radical bem desenvolvido tem um papel relevante, para assegurar uma adequada absorção de água e de nutrientes







# Influência da espessura efetiva na disponibilidade de água

#### Perfil 1

Espessura efetiva = 35 cm Elem Gros = 30 % (Vol) MVA = 1,2 t m<sup>-3</sup> CC (%) = 40 % CE (%) = 12 %

Vol AU =  $10000 \times 0.35 \times 0.70 \times 1.2 \times 0.32$ =  $940.8 \text{ m}^3/\text{ha}$ 

#### Perfil 2

Espessura efetiva = 90 cm Elem Gros = 35 % (Vol) MVA média = 1,2 t m<sup>-3</sup> CC (%) = 38 % CE (%) = 10 %

Vol AU =  $10000 \times 0.90 \times 0.65 \times 1.2 \times 0.28$ =  $1965.6 \text{ m}^3/\text{ha}$ 







# Influência da espessura efetiva na disponibilidade de água



Perfil 2 com cerca de 2
vezes mais
disponibilidade de água
que o Perfil 1, com
efeitos benéficos na
diminuição do défice
hídrico estival

### Um dos efeitos de aprofundamento do solo pela surriba





### Papel das camadas profundas no armazenamento de água e fornecimento às plantas na época estival



- ✓ Geralmente, em Julho e sem chuva, a camada superficial tem um teor de humidade abaixo ou próximo do Coeficiente de Emurchecimento (CE)
- ✓ Ao contrário, a maior profundidade (75 cm), a humidade do solo permanece com valores acima de CE até ao final da época estival





As camadas profundas são essenciais para o armazenamento de água durante a estação chuvosa e disponibilizá-la para a vinha na estação quente







# Efeito das mobilizações de preparação do terreno na disponibilidade de nutrientes



Aumento da concentração de Ca e Mg no solo submetido a mobilização profunda







### Efeito da mobilização com fratura da rocha (xisto)



Com a fraturação do xisto resultam fragmentos mais pequenos, com maior superfície específica, o que incrementa as reações com a solução do solo e a libertação de elementos existentes nos minerais





### O material litológico e implicações no fornecimento de nutrientes e de água no caso da região Duriense





Devido à baixa resistência à alteração e à sua estrutura em lâminas, o xisto permite a entrada de raízes para o seu interior, onde a vinha encontra um ambiente muito rico em elementos minerais nutrientes e mesmo água, face ao estado inicial da alteração mineral, aspeto de grande importância no Terroir Duriense







### A atividade humana, a pedogénese e a nutrição vegetal



Solos numa fase inicial de pedogénese, com influência da atividade humana, podem ser muito mais ricos quimicamente do que solos muito evoluídos, desde que criadas condições para a expansão radical e a rocha contenha nutrientes e permita a sua libertação





### Mobilidade relativa dos elementos no meio de alteração (segundo Polinov) (Bastos Macedo, 1983 \*)

| componente                                                                                     | concentração<br>média nas<br>rochas ígneas | concentração<br>média na<br>água dos rios | mobilidade<br>relativa | ordem de<br>mobilidade |
|------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------|------------------------|
| Cl <sup>-</sup>                                                                                | 0,05                                       | 6,75                                      | 100                    | I                      |
| SO <sub>4</sub> <sup>2-</sup>                                                                  | 0,15                                       | 11,60                                     | 60                     | I                      |
| SO <sub>4</sub> <sup>2-</sup> Ca <sup>2+</sup> Na <sup>+</sup> Mg <sup>2+</sup> K <sup>+</sup> | 3,60                                       | 14,70                                     | 3,00                   | II                     |
| Na <sup>+</sup>                                                                                | 2,97                                       | 9,50                                      | 2,40                   | II                     |
| $Mg^{2+}$                                                                                      | 2,11                                       | 4,90                                      | 1,31                   | II                     |
| K +                                                                                            | 2,57                                       | 4,40                                      | 1,25                   | II                     |
| SiO <sub>2</sub>                                                                               | 59,09                                      | 12,80                                     | 0,20                   | III                    |
| Fe <sub>2</sub> O <sub>3</sub>                                                                 | 7,29                                       | 0,40                                      | 0,04                   | IV                     |
| $Al_2O_3$                                                                                      | 15,35                                      | 0,90                                      | 0,02                   | V                      |



Face à mobilidade dos elementos no meio de alteração, há tendência natural para lixiviação de bases e enriquecimento residual de Si, Al e Fe, processo incipiente num estado inicial da alteração, em que os nutrientes mais importantes permanecem

<sup>\*</sup> Macedo, J M Bastos de, (1983). Introdução à meteorização das rochas. Comportamento e distribuição dos produtos. O solo na crusta de meteorização. ISA, ciclostilado.





### Importância da preparação do solo na instalação da vinha

- Maior eficiência da precipitação por efeito da correção da topografia e menor susceptibilidade à erosão, quando na armação em terraços
- □ Aumento da espessura efetiva e da profundidade de enraizamento, com vantagens na disponibilidade de água e de nutrientes







## Importância da preparação do solo na instalação da vinha (cont)

- Descompactação do solo e aumento da permeabilidade e infiltração de água
- Promoção da recarga hídrica, aumento do armazenamento de água e diminuição do défice hídrico estival
- Maior disponibilidade de nutrientes como efeito da fraturação da rocha, da expansão radical e da adubação de fundo







Gestão do solo vitícola para promoção da conservação do solo, incluindo os nutrientes, armazenamento de carbono, conservação e aumento da MO e biodiversidade







### Sistema Convencional – mobilização com escarificador ou aivequilhos



- ► Mineralização de MO e emissões de CO<sub>2</sub>
- > Aumento da compacidade
- Danos nas raízes
- > Aumento de riscos de erosão
- > Decréscimo de biodiversidade e da atividade biológica







## Gases com Efeito de Estufa (GEE) (IPCC\*)



 $CO_2$  representa cerca de 64% dos GEE; Metano (CH<sup>4</sup>), cerca de 20 vezes mais potente que  $CO_2$ ; Óxido nitroso (N<sub>2</sub>O), cerca de 300 vezes mais potente que  $CO_2$ 

\* Intergovernmental Panel on Climate Change







## Fontes de emissões de GEE e peso da Agricultura e de alterações ao uso do solo (1)

| Fontes de emissões      | %     |
|-------------------------|-------|
| Produção de energia     | 24.9  |
| Indústria               | 14.7  |
| Transportes             | 14.3  |
| Agricultura             | 13.8  |
| Alterações uso solo     | 12.2  |
| Outros Combustíveis     | 8.6   |
| Processos industriais   | 4.3   |
| Lixos                   | 3.2   |
| Equipamentos de pressão | 4.0   |
| TOTAL                   | 100.0 |

As emissões pela agricultura e alterações ao uso do solo têm um peso próximo da indústria e transportes (26 contra 29%)

http://www.suapesquisa.com/efeitoestufa/gases\_do\_efeito\_estufa.htm





# Vinhas com cobertura verde, semeada ou espontânea na entrelinha, uma prática que tem vindo a conquistar novos produtores





### **Benefícios**

- Diminuição dos riscos de erosão, em particular nas vinhas ao alto
- Conservação e aumento da MO, armazenamento de C e diminuição de emissões de CO2
- > Melhoria das condições de estrutura (porosidade e permeabilidade)
- > Aumento de biodiversidade e das condições para a luta biológica





## Armazenamento de Carbono segundo o sistema de gestão do solo em soutos \*

CT - Mobilização convencional

NT – Não mobilização com cobertura herbácea há 15 anos

|    | Camadas minerais<br>(0-20 cm) | Camada orgânica        | Conjunto das camadas   |
|----|-------------------------------|------------------------|------------------------|
|    | (g kg <sup>-1</sup> )         | (Mg ha <sup>-1</sup> ) | (Mg ha <sup>-1</sup> ) |
| СТ | 12.66 a                       |                        | 25.19 b                |
| NT | 12.82 a                       | 3.12                   | 35.62 a                |

Considerando as duas camadas (mineral e orgânica) observa-se um aumento significativo de Carbono ao fim de 15 anos de abandono das mobilizações, (cerca de 10 t), confirmando o que foi observado em outros estudos

<sup>\*</sup> Borges, O. (2012). Efeitos da gestão do solo em soutos no sequestro de carbono e na sustentabilidade do sistema. Dissertação de mestrado. UTAD, 92 pág



43



## Exemplo de um projeto para observação dos efeitos da gestão do solo no comportamento da vinha (GreenVitis)













## GreenVitis – PRODER PA 43879 - Esquema do dispositivo experimental



#### **Caminhos**

Patamares (P) Sombreado a verde – patamares onde se fazem medições

#### **Tratamentos**

MC - mobilização convencional

CE – cobertura espontânea

**CS** – Cobertura semeada





45

## O Projeto

Efeitos da gestão do solo na produtividade e sustentabilidade do sistema vitivinícola duriense (GreenVitis) (Financiado pelo PRODER – Inovação)

### Situações a ensaiar

- 1- Prática convencional de mobilização do solo para controlo de infestantes (MC)
- 2. Manutenção de cobertura herbácea com espécies espontâneas (CE)
- 3. Manutenção de cobertura herbácea com uma mistura de gramíneas e leguminosas, adaptada às condições climáticas do local (CS)







### Objetivos do projeto GreenVitis

# O projeto faz uma abordagem holística do tema, procurando observar os efeitos das três práticas nos seguintes aspetos

- ✓ Monitorização das variáveis microclimáticas associadas às práticas culturais
- ✓ Relações hídricas solo-vinha
- **✓** Comportamento fisiológico da videira
- **✓Balanço global de C**
- **✓ Emissões de gases**





## Objetivos do projeto GreenVitis (cont)

- ✓ Eficácia no uso e reciclagem de nutrientes e efeitos na vinha
- ✓ Perdas por erosão
- ✓ Efeitos na sanidade da vinha
- ✓ Produção e qualidade do vinho
- ✓ Efeitos nos custos globais de manutenção da vinha





### Conclusões

- ☐ A rocha mãe dominante, o xisto, com baixa resistência à fracturação e alteração, estrutura em lâminas, que ao abrirem permitem a exploração pelas raízes da vinha, é uma das vantagens do *Terroir*
- ☐ O xisto origina classes de textura no solo com elevada capacidade de água utilizável, embora com elevada sensibilidade à erosão, o que requer especial cuidado na conservação dos taludes e dos caminhos de acesso
- ☐ A natureza química da maioria dos solos obriga a cuidados na sua correção em especial da acidez, fósforo e micronutrientes







## Conclusões (Cont)

- ☐ Face às condições climáticas e à gestão convencional do solo, com mobilizações frequentes, ocorrem baixos teores de MO, o que requer uma nova gestão do solo, com coberturas verdes e efeitos benéficos para o sistema e para o ambiente
- ☐ Tratando-se de uma região com acentuada feição mediterrânica, com elevado défice hídrico estival, que poderá agravar-se no futuro num cenário de alterações climáticas, poderá impor-se a necessidade de rega









Sustentabilidade da Viticultura de Encosta: algumas ferramentas para a sua gestão