

Learning Objectives

- To understand
 - Bernoulli Equation
 - Derivation of Bernoulli equation
 - Explanation of each Term in Bernoulli equation
 - Venturi Effect
 - How to apply Bernoulli equation to explain many problems in everyday life

Bernoulli Equations

Bernoulli's Family

- Daniel Bernoulli (1700-1782) was born in the Netherlands – he wrote the book Hydrodynamica. He hold a Chair at St Petersburg together with his brother Nicolaus II
- His father Johann wrote the first book on calculus (after Newton & Leibniz)
- His uncle Jacob was the first to use the term "integral" ("Bernoulli differential equation")
- His cousin Nicolaus I has contributed to Riccati equations
- His brother Nicolaus II worked on differential equations and probability
- His brother Johann II worked in heat & light he occupied the same chair as his father at Basel University
- His nephews Johann III, Daniel II and Jacob II are also mathematicians of note in their days

The Bernoulli family

Bernoulli Equations

• Bernoulli's Equation for Incompressible Flow

$$\frac{p}{\rho} + \frac{1}{2}V^2 + gz = \text{constant}$$

where ρ is density, g is gravity, p is pressure, V is velocity, and z is the elevation of the point above a reference plane, with the positive z-direction pointing upward — so in the direction opposite to the gravitational acceleration

- The above Bernoulli equation is valid for steady, incompressible flow along a streamline in an "inviscid regions of flow"
- Constant of integration in general varies from one streamline to another, but remains constant along a particular streamline

- Integral from NS Equation
 - Steady, incompressible, inviscid flow (Euler equation)

$$\frac{\partial w}{\partial t} + (\vec{V} \cdot \nabla) u = X - \frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$\frac{\partial v}{\partial t} + (\vec{V} \cdot \nabla) v = Y - \frac{1}{\rho} \frac{\partial p}{\partial y}$$

$$\frac{\partial w}{\partial t} + (\vec{V} \cdot \nabla) w = Z - \frac{1}{\rho} \frac{\partial p}{\partial z}$$

- Only consider gravity; rewrite in vector form

$$\left(\vec{V} \bullet \nabla\right) \vec{V} = \vec{g} - \frac{1}{\rho} \nabla p$$

• Integral from NS Equation

$$\nabla \times \vec{V}$$
 旋度 curl or rotation

$$(\vec{V} \cdot \nabla) \vec{V} = \nabla \frac{\vec{V}^2}{2} - \vec{V} \times \nabla \times \vec{V}$$
 Feynman subscript notation

$$\nabla \frac{\vec{V}^2}{2} - \vec{V} \times \nabla \times \vec{V} = \vec{g} - \frac{1}{\rho} \nabla p$$

- Multiple by the unit vector $\vec{s} = \frac{\vec{V}}{|\vec{V}|}$ along a streamline

amline
$$\vec{s} \cdot \nabla \frac{\vec{V}^2}{2} - \frac{\vec{V}}{|\vec{V}|} \cdot \vec{V} \times \nabla \times \vec{V} = \vec{s} \cdot \vec{g} - \frac{1}{\rho} \vec{s} \cdot \nabla p$$

$$\vec{s} \cdot \nabla \frac{\vec{V}^2}{2} = \vec{s} \cdot \vec{g} - \frac{1}{\rho} \vec{s} \cdot \nabla p$$

streamline

Integral from NS Equation

$$\frac{\partial}{\partial s} \left(\frac{\vec{V}^2}{2} + \frac{p}{\rho} \right) + \vec{s} \cdot \vec{g} = 0$$

Integrate along streamline

$$\frac{\vec{V}^2}{2} + \frac{p}{\rho} + \int \vec{s} \cdot \vec{g} ds = C$$

$$\frac{\vec{V}^2}{2} + \frac{p}{\rho} + gz = C$$

g varies only along z direction

C is constant

- Newton's second law
 - Consider motion of fluid particle in a steady flow

- Newton's second law
 - Applying Newton's second law in the s-direction on a particle moving along a streamline

$$\sum F_{s} = ma_{s}$$

Assuming viscous forces are negligible, only forces acting on fluid particle in s-direction are pressure forces and component of particle's weight

$$PdA - (P + dP)dA - W\sin\theta = ma_s$$
$$-dPdA - W\sin\theta = ma_s$$

 θ is the angle between normal to streamline and vertical z-axis

- Newton's second law
 - Velocity along fluid particle

$$V = \frac{ds}{dt}$$

Velocity is a function of s and t

$$dV = \frac{\partial V}{\partial s} ds + \frac{\partial V}{\partial t} dt$$

$$dV \quad \partial V \, ds \quad \partial V$$

$$\frac{dV}{dt} = \frac{\partial V}{\partial s} \frac{ds}{dt} + \frac{\partial V}{\partial t}$$

- Steady flow $\partial V/\partial t = 0$

$$a_{s} = \frac{dV}{dt} = \frac{\partial V}{\partial s} \frac{ds}{dt} = \frac{\partial V}{\partial s} V$$

Newton's second law

$$-dPdA - W\sin\theta = m\frac{\partial V}{\partial s}V$$

– Volume of the fluid particle Ω

$$m = \rho \Omega = \rho dAds$$

$$W = mg = \rho g dA ds$$

$$\sin\theta = \frac{dz}{ds}$$

$$-\frac{dPdA}{ds} - \rho g dA ds \frac{dz}{ds} = \rho dA ds \frac{\partial V}{\partial s} V$$

$$-dP - \rho gdz = \rho VdV$$

Newton's second law

$$VdV = \frac{1}{2}d(V^2)$$
$$-\frac{dP}{\rho} - gdz = \frac{dV^2}{2}$$

Integrate the above equation

$$\frac{V^2}{2} + gz + \frac{P}{\rho} = C$$

- Between any 2 points on the same streamline: steady, incompressible, inviscid flow:

$$\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2$$

- Energy conservation
 - Work done on a fluid particle is equal to the change in its kinetic energy and potential energy

$$\Delta W = \Delta K + \Delta U$$
Work Kinetic Energy Potential Energy

✓ Work

$$\begin{split} \Delta W &= F_1 \Delta x_1 - F_2 \Delta x_2 \\ &= P_1 A_1 \Delta x_1 - P_2 A_2 \Delta x_2 \\ &= P_1 \Omega_1 - P_2 \Omega_2 \end{split}$$

Recall continuity equation of incompressible flow, $\Omega_1 = \Omega_2 = \Omega$

$$\Delta W = P_1 \Omega - P_2 \Omega$$

- Energy conservation
 - Work done on a fluid particle is equal to the change in its kinetic energy and potential energy
 - ✓ Change in kinetic energy

$$\Delta E = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$

✓ Change in potential energy

$$\Delta U = m_2 g z_2 - m_1 g z_1$$

Recall continuity equation of incompressible flow, $m_1 = m_2 = m$

$$\Delta U = mgz_2 - mgz_1$$

- Energy conservation
 - Work done on a fluid particle is equal to the change in its kinetic energy and potential energy

Kinetic energy and potential energy
$$\Delta W = \Delta K + \Delta U$$

$$P_1\Omega - P_2\Omega = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 + mgz_2 - mgz_1$$

$$\rho = \frac{m}{\Omega} \longrightarrow P_1 - P_2 = \frac{1}{2}\rho v_2^2 - \frac{1}{2}\rho v_1^2 + \rho gz_2 - \rho gz_1$$

$$P + \frac{1}{2}\rho v_2^2 + \rho gz_2$$

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1$$

$$= P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2$$

$$= \text{constant}$$

More explanation

$$\frac{P}{\rho} + \frac{1}{2}v^2 + gz = \text{constant (along a streamline)}$$

 Each term in the above equation has same units of energy per unit mass

✓ P/ρ : Flow energy

 $\sqrt{v^2/2}$: Kinetic energy

✓ gz: Potential energy

- Bernoulli equation can be viewed as a restatement of conservation of mechanical energy
- The sum of the specific (per unit mass) kinetic, potential, and flow energies of a fluid particle is constant along a streamline in a steady, incompressible and inviscid flow.

More explanation

$$P + \frac{1}{2}\rho v^2 + \rho gz = \text{constant (along a streamline)}$$

- Each term in the above equation has same units as pressure
 - ✓ P: static pressure → represents the actual thermodynamic pressure of fluid
 - ✓ $\rho v^2/2$: dynamic pressure → represents pressure rise when fluid in motion is brought to reset
 - $\checkmark \rho gz$: hydrostatic pressure \rightarrow account for the elevation effects
- Total pressure (P_T) : sum of static, dynamic and hydrostatic pressure
- Bernoulli equation: P_T along streamline is constant

$$P + \frac{1}{2}\rho v^2 + \rho gz = P_T = \text{constant (along a streamline)}$$

- Stagnation Pressure
 - Sum of static and dynamic pressure
 - Represents pressure at stagnation point where fluid is brought to rest

- Velocity Measurement
 - Point 1: $V_1 = V$, $P_1 = P$ (static pressure)
 - Point 1: $V_2 = 0$, $P_2 = P_{stag}$ (static pressure) $z_1 = z_2$
 - Apply Bernoulli equation along streamline between 1 and 2:

$$P_{1} + \rho \frac{V_{1}^{2}}{2} + \rho g z_{1} = P_{2} + \rho \frac{V_{2}^{2}}{2} + \rho g z_{2}$$

$$P_{stag} = P + \rho \frac{V^{2}}{2}$$

 Fluid velocity can be deduced from measurement of static and stagnation pressures:

$$V = \sqrt{\frac{2(P_{stag} - P)}{\rho}}$$

- Devices for pressure measurement
 - Static pressure tap: a small hole drilled into a wall such that plane of hole is parallel to flow direction → measures static pressure
 - Pitot tube: a small tube with its open end aligned into the flow so as to sense full impact pressure of the flowing fluid → measures stagnation pressure
 - Piezometer: vertical transparent tube attached to static pressure tap or Pitot tube: liquid rises in piezometer tube to a column height (head) proportional to pressure being measured

- Devices for pressure measurement
 - Pitot-static probe: integrates static pressure holes on a Pitot probe
 - Pitot-static probe connected to pressure transducer or manometer → measures dynamic pressure and hence velocity

- Devices for pressure measurement
 - Static pressure holes (point a) of the outer tube are located such that they measure correct upstream static pressure
 - Two tubes provide the necessary pressure difference measurement using the mercury in it
 - It is possible to use pressure transducers instead of mercury columns to obtain accurate digital readings.

$$P_{o} = P_{x} + \rho \frac{V_{x}^{2}}{2}$$

$$P_{o} - P_{x} = (\rho_{m} - \rho)gh_{m}$$

$$V_{x} = \sqrt{2(P_{stag} - P_{x})/\rho} = \sqrt{2gh_{m}(\frac{\rho_{m}}{\rho} - 1)}$$

$$h_{m}$$

$$22$$

- Stagnation point
 - When a stationary body is immersed in a flow, the fluid is brought to rest at nose of body (stagnation point)
 - Stagnation streamline → streamline that extends from far upstream to stagnation point

- Venturi Effect
 - The reduction in fluid pressure that results when a fluid flows through a constricted section (or choke) of a pipe

- Venturi Effect
 - Devices to measure the flow rate of liquids

$$Q = v_1 A_1 = v_2 A_2$$

$$P_1 + \frac{1}{2} \rho_v v_1^2 + \rho_v g z_1 = P_2 + \frac{1}{2} \rho_v v_2^2 + \rho_v g z_2$$

$$P_1 - P_2 = \frac{1}{2} \rho_v \left(v_2^2 - v_1^2 \right)$$

$$Q = A_{1} \sqrt{\frac{2}{\rho_{v}} \cdot \frac{(P_{1} - P_{2})}{(\frac{A_{1}}{A_{2}})^{2} - 1}} = A_{2} \sqrt{\frac{2}{\rho_{v}} \cdot \frac{(P_{1} - P_{2})}{1 - (\frac{A_{2}}{A_{1}})^{2}}}$$

The areas of cross sections at point 1 and point 2 are known as A_1 and A_2

and Manometer are ρ_v and ρ_m

The densities of fluids in Venturi

$$P_1 - P_2 = \rho_m gh$$

- Venturi Effect
 - Disperse perfume or spray paint (Atomizers)

• Bernoulli's Equation

Olympic collided with Hawke, 1911

• Bernoulli's Equation

A high speed train passing a platform causes a suction effect

Long vehicle and bicycle

• Pour Out Beer

歪门斜倒(邪道) 杯壁(卑鄙)下流 改斜(邪)归正

• Arteriosclerosis and Vascular Flutter

- ✓ Flow speeds up at constriction
- ✓ Pressure is lower
- ✓ Internal force acting on artery wall is reduced
- ✓ External forces are unchanged
- ✓ Artery can collapse

- Why do rabbits not suffocate in the burrows
 - Air must circulate. The burrows must have two entrances.
 - Air flows across the two holes is usually slightly different
 - One hole is usually higher than the other and the a small mound is built around the holes to increase the pressure difference.
 - ✓ Slight pressure difference
 - ✓ Forces flow of air through burrow

- Why does a house lose its roof in strong wind
 - Air flow is disturbed by the house.
 The "streamlines" crowd around the top of the roof
 - Faster flow above house
 - Reduced pressure above roof to that inside the house

- Siphon Phenomenon
 - Water is siphoned from a large tank through a constant diameter hose
 - Determine:
 - a) velocity of water leaving (3) as a free jet
 - b) water pressure in tube at (2)
 - c) water pressure in tube at (4)

Assume water to be inviscid, incompressible and flow to be steady

• Siphon Phenomenon

- Solution:
 - ✓ Part (a): velocity of water leaving (3) $z_1 z_3 = 4 \text{ m}$

$$P_1 = P_3 = 0$$
 (atmospheric pressure, 0 gage pressure)

$$V_1 \approx 0$$
 (large tank)

Applying Bernoulli equation between (1) and (3)

$$\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{P_3}{\rho} + \frac{V_3^2}{2} + gz_3$$

$$\frac{V_3^2}{2} = g(z_1 - z_3)$$

$$V_3 = \sqrt{2g(z_1 - z_3)} = \sqrt{(2)(9.81)(4)}$$

$$V_3 = 8.86 \text{ m/s}$$

Siphon Phenomenon

- Solution:
 - ✓ Part (b): water pressure in tube at (2)

Applying continuity equation between (2) and (3):

$$A_2V_2 = A_3V_3$$

Since
$$A_2 = A_3$$
, $V_2 = V_3 = 8.86 \text{ m/s}$

Applying Bernoulli equation between (2) and (3)

$$\frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2 = \frac{P_3}{\rho} + \frac{V_3^2}{2} + gz_3$$

$$\frac{P_2}{\rho} = g(z_3 - z_2) \qquad z_2 - z_3 = 6 \text{ m}$$

$$P_2 = \rho g(z_3 - z_2) = (1000)(9.81)(-6) \qquad P_2 = -58.9 \text{ kPa}$$

Siphon Phenomenon

- Solution:
 - ✓ Part (c): water pressure in tube at (4)

Applying continuity equation between (4) and (3):

$$A_4V_4 = A_3V_3$$

Since
$$A_4 = A_3$$
, $V_4 = V_3 = 8.86 \text{ m/s}$

Applying Bernoulli equation between (4) and (3)

$$\frac{P_4}{\rho} + \frac{V_4^2}{2} + gz_4 = \frac{P_3}{\rho} + \frac{V_3^2}{2} + gz_3$$

$$\frac{P_4}{\rho} = g(z_3 - z_4) \qquad z_4 - z_3 = 4 \text{ m}$$

$$P_4 = \rho g(z_3 - z_4) = (1000)(9.81)(-4) \qquad P_2 = -39.24 \text{ kPa}$$

$$P_2 = -39.24 \text{ kPa}$$

- Water flows under sluice gate
 - Determine flow rate Q

- Water flows under sluice gate
 - Solution:

Applying continuity equation between (1) and (2):

$$Q = A_1 V_1 = b z_1 V_1 = A_2 V_2 = b z_2 V_2$$
 $V_1 = V_2 \left(\frac{z_2}{z_1}\right)$

Applying Bernoulli equation between (1) and (2):

$$\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2$$

$$P_1 = P_2 = 0$$
 (atmospheric pressure)

$$\frac{V_2^2}{2} - \frac{V_1^2}{2} = g(z_1 - z_2)$$

- Water flows under sluice gate
 - Solution:

$$\frac{V_2^2}{2} - \frac{V_2^2}{2} \left(\frac{z_2}{z_1}\right)^2 = g(z_1 - z_2) \qquad V_2 = \sqrt{\frac{2g(z_1 - z_2)}{1 - (z_2/z_1)^2}}$$

$$V_2 = \sqrt{\frac{2g(z_1 - z_2)}{1 - (z_2/z_1)^2}}$$

$$Q = bz_2V_2 = bz_2\sqrt{\frac{2g(z_1 - z_2)}{1 - (z_2/z_1)^2}}$$

$$Q = (6)(0.5)\sqrt{\frac{(2)(9.81)(5.0 - 0.5)}{1 - (0.5/5.0)^2}}$$

$$Q = 28.33 \text{ m}^3/\text{s}$$

- Water flows under sluice gate
 - Solution:

In the limit of $z_1 >> z_2$

$$Q = bz_{2}V_{2} = bz_{2}\sqrt{\frac{2g(z_{1} - z_{2})}{1 - (z_{2}/z_{1})^{2}}}$$

$$Q = bz_2 \sqrt{2gz_1}$$

$$Q = (6)(0.5)\sqrt{(2)(9.81)(5.0)}$$

$$Q = 29.71 \text{ m}^3/\text{s}$$

- Water flows under sluice gate
 - Solution:

Applying continuity equation between (1) and (2):

$$Q = A_1 V_1 = b z_1 V_1 = A_2 V_2 = b z_2 V_2$$
 $V_1 = V_2 \left(\frac{z_2}{z_1}\right)$

Applying Bernoulli equation between (1) and (2):

$$\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2$$

$$P_1 = P_2 = 0$$
 (atmospheric pressure)

$$\frac{V_2^2}{2} - \frac{V_1^2}{2} = g(z_1 - z_2)$$

- Water flow through a hole of a tank
 - Determine: the flow velocity V_2 at section 2-2?
 - Solution:

Applying Bernoulli equation between (1-1) and (2-2):

$$\frac{P_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{P_2}{\rho} + \frac{V_2^2}{2} + gz_2$$

$$P_1 = P_2 = P_{atm}$$

$$z_1 - z_2 = h$$

$$V_1 \approx 0$$

$$V_2 = \sqrt{2gh}$$

Limitations on Use of Bernoulli Equation

- Assumptions for Bernoulli Equation
 - Steady flow
 - Incompressible flow ⇒ acceptable if flow Mach number is less than 0.3
 - Frictionless (inviscid) flow ⇒ solid walls, wakes downstream of an object, diverging flow sections (diffusers) and flow through long and narrow passages introduce frictional effects
 - Flow along a streamline
 - No shaft work ⇒ pumps, turbines, fans and other fluid machinery carry out energy interactions with fluid particles ⇒ mechanical energy no longer conserved along streamline
 - No heat transfer

Limitations on Use of Bernoulli Equation

• Examples where use of Bernoulli equation is invalid:

Limitations on Use of Bernoulli Equation

• Examples where use of Bernoulli equation is invalid:

- Viscous Effect
 - Frictional/viscous force converts mechanical energy into thermal energy
 - It corresponds to a rise in the internal energy of the fluid (heat up the fluid) or to the heat that is lost to the surroundings

- Viscous Effect
 - Introduce head loss h_f due to viscous force into the original Bernoulli equation
 - $-h_f$ is an empirical parameter.

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2 + h_f$$

Pump Work

- Pump converts mechanical energy into hydraulic energy
- Pump head h_s can be introduced to Bernoulli equation

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2 - h_s$$

- Pump head h_s is related to the power delivered to the fluid by the pump (P_f) as follows

$$P_f = \rho gQh_s$$

where Q is the volumetric flow rate that passes through the pump.

- Compressible fluid
 - Ideal gas at adiabatic condition

$$P_1V_1^{\gamma} = P_2V_2^{\gamma}$$

$$\frac{P_1}{\rho_1^{\gamma}} = \frac{P_2}{\rho_2^{\gamma}}$$

$$\frac{\gamma}{\gamma - 1} \frac{P_1}{\rho_1} + \frac{1}{2}v_1^2 + gz_1 = \frac{\gamma}{\gamma - 1} \frac{P_2}{\rho_2} + \frac{1}{2}v_2^2 + gz_2$$

v is velocity V is volume

- Bernoulli Equation

$$\frac{p}{\rho}$$
 + $\frac{1}{2}V^2$ + $gz = \text{constant}$

Flow energy Kinetic energy Potential energy

$$P + \frac{1}{2}\rho v^2 + \rho gz = \text{constant}$$

• Bernoulli equation is valid for steady, incompressible flow along a streamline in an "inviscid regions of flow"

- Stagnation Pressure : sum of static and dynamic pressure

$$P_{stag} = P + \rho \frac{V^2}{2}$$

Velocity Measurement

$$V = \sqrt{\frac{2(P_{stag} - P)}{\rho}}$$

 Venturi Effect: the reduction in fluid pressure that results when a fluid flows through a constricted section (or choke) of a pipe

- Flow rate measurement:

$$Q = A_{1} \sqrt{\frac{2}{\rho_{v}} \cdot \frac{(P_{1} - P_{2})}{(\frac{A_{1}}{A_{2}})^{2} - 1}} = A_{2} \sqrt{\frac{2}{\rho_{v}} \cdot \frac{(P_{1} - P_{2})}{1 - (\frac{A_{2}}{A_{1}})^{2}}}$$

- Extended Bernoulli Equation
 - Viscous Effect

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2 + h_f$$

• Pump Work

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g z_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g z_2 - h_s$$

• Compressible fluid

$$\frac{\gamma}{\gamma - 1} \frac{P_1}{\rho_1} + \frac{1}{2} v_1^2 + g z_1 = \frac{\gamma}{\gamma - 1} \frac{P_2}{\rho_2} + \frac{1}{2} v_2^2 + g z_2$$

