Tarefa 1: Explorar x Explotar

Objetivos de aprendizagem

- compreender a diferença entre explorar e explotar
- compreender espaço de estados
- compreender as diferenças acerca das crenças necessárias aos agentes para explorar/explotar
- compreender como se dá o aprendizado em exploração (e explotação)
- compreender otimalidade e heurística

Método

Equipe

Até 2 pessoas

Cenário: Resgate de Vítimas de Catástrofes Naturais, Desastres ou Grandes Acidentes

Neste cenário, dois agentes trabalham para fazer os primeiros levantamentos e socorros pósevento. A região de responsabilidade é passada pelo controle geral à dupla que deve localizar as vítimas e levar suprimentos o mais rapidamente possível para salvá-las.

O agente <u>vasculhador</u> tem por objetivo construir um mapa do ambiente e localizar as vítimas coletando seus sinais vitais (e.g. de respiração, de voz, pulsação). Também obtém dados e calcula a dificuldade do salvamento (e.g. em função do nível de soterramento, dificuldade de acesso ao ponto onde está a vítima). O vasculhador tem um período limitado para explorar o ambiente que varia em função de eventos que requeiram o retorno do agente à base (e.g. mau tempo, estratégia de busca e salvamento, manutenção do equipamento). Cada ação executada pelo agente tem uma duração e um consumo de bateria, então o vasculhador faz busca por vítimas por um período e retorna à base, seja porque o limite de tempo para vasculhar o ambiente esgotou ou para recarregar a bateria.

Ao retornar à base de operações, o <u>vasculhador</u> repassa a dificuldade de resgate e os sinais vitais coletados. O agente <u>socorrista</u> faz o processamento para calcular a gravidade de cada vítima (risco de morte). Em seguida, o socorrista define a quais vítimas prestará auxílio em função do tempo que lhe for dado. O salvamento, nesta etapa do evento, consiste em levar um pacote de suprimentos para uma vítima. O socorrista retorna à base quando o tempo ou a bateria se esgota. Ele pode recarregar a bateria e voltar a socorrer as vítimas sempre considerando o limite de tempo que lhe foi dado.

A Figura 1 ilustra uma pequena região esquadrinhada na qual os dois agentes $(A_s \ e \ A_v)$ estão na base, as vítimas estão dispersas no ambiente $(v_1, v_2 \ e \ v_3)$ e as barreiras (obstáculos) são os quadrados pretos.

Figura 1: Ambiente pós-desastre com os agentes na posição base, vítimas dispersas e escombros.

Objetivo da tarefa

Resolver o problema de salvar o maior número das Vt vítimas que estão dispersas em um ambiente desconhecido levando em conta que o agente vasculhador (A_v) tem um tempo T_v dado para encontrá-las e o socorrista (A_s) tem um tempo T_s para salvá-las. Salvar uma vítima significa que o A_s conseguiu levar um pacote de suprimentos até sua posição.

Restrições

- o A_v deve obrigatoriamente retornar à base antes que T_v ou a bateria se esgote ($B_v < 0$), caso contrário, a execução deve ser encerrada com 0 vítima socorrida;
- o A_s pode levar uma carga de até K_s pacotes de suprimentos, deixando um para cada vítima, não havendo necessidade de retornar à base entre o socorro a duas vítimas;
- o $A_{\it S}$ deve estar na base ao final de $T_{\it S}$ com carga de bateria $B_{\it S} \geq 0$

Desempenho

Considere as variáveis abaixo nas fórmulas de cálculo de desempenho:

- V_v : número de vítimas localizadas pelo vasculhador
- V_s : número de vítimas salvas pelo socorrista
- V_t : número total de vítimas dispersas no ambiente (parâmetro de entrada)
- Número de vítimas localizadas por tempo gasto
 - \circ Pelo $A_v: V_v/T_v$
- Número de vítimas salvas por tempo gasto
 - \circ Pelo $A_s: V_s/T_s$
 - o Pela dupla: $V_s/(T_v + T_s)$
- Número de vítimas localizadas em 10 extratos de gravidade
 - o Vítimas em estado gravíssimo]0.9, 1]: $V_{v_{90a_{100}}}/V_t$
 - 0]0.8, 0.9]
 - ο.
 - o [0, 0.1] sem ou pouquíssima gravidade
- Número de vítimas salvas em 10 extratos de gravidade
 - o Vítimas em estado gravíssimo]0.9, 1]: $V_{s_{90,q_{100}}}/V_t$
 - 0]0.8, 0.9]
 - ο.
 - o [0, 0.1] sem ou pouquíssima gravidade

Modelagem

Ambiente: tem a forma de grade com barreiras que impedem a passagem de um quadrado para outro; a <u>base da região</u> sempre é na coordenada (0, 0). As vítimas estão distribuídas aleatoriamente na <u>grade</u>, há somente uma vítima por quadrado e nunca sobre uma barreira nem na posição (0, 0). O ambiente com as vítimas é um dos parâmetros de entrada. Porém, os agentes não têm conhecimento do ambiente já que terão que explorá-lo para construir seu mapa com a localização das vítimas.

Agentes: A_v e A_s possuem como crenças iniciais as dimensões do ambiente em linhas x colunas e a posição da base da região onde ambos estão inicialmente (0,0).

Ações:

- Os agentes possuem uma <u>carga de bateria</u> $(B_v \in B_s)$ em minutos dada como parâmetro de entrada; cada ação que o A_v executa consome tempo de B_v e, de forma idêntica, A_S em relação a B_s ;
- \circ A_v e A_s são <u>capazes de ir</u> para qualquer quadrado da vizinhança do atual. Portanto, podem se mover na horizontal, vertical ou diagonal;
- o <u>tempo</u> de deslocamento na diagonal é **1,5'** enquanto na horizontal e na vertical é de **1'**;
- o $A_v e A_s$ são <u>capazes de recarregar</u> suas baterias na base da sua região; o tempo de carga é de **240'**; obviamente, esta operação não consome bateria;
- o $A_v e A_s$ possuem GPS que retorna a coordenada (*lin,col*) atual;
- \circ A_v e A_s não dispõem de sensores de distância a obstáculos; quando batem em um obstáculo permanecem na posição onde estavam; ao tentar executar um movimento e bater, você deve considerar tanto o gasto de tempo de executar a ação como o consumo de bateria;
- o A_v é capaz de ler os sinais vitais das vítimas e calcular a dificuldade de socorro. Esta ação consome **2'** de tempo e da bateria.
- O A_s pode carregar suprimentos na base (**0,5'** por pacote) na sua caçamba e deixar um pacote junto a uma vítima (**0,5'** por pacote)

Tabelas resumo

O programa deve ser sensível a diferentes configurações de entrada em tempo de execução a partir da leitura de um arquivo texto que contém a descrição do ambiente e de um segundo arquivo texto com os demais parâmetros da Tabela 1.

Parâmetro	Significado			
maxLin	Número máximo de linhas do ambiente			
maxCol	Número máximo de colunas do ambiente			
ambiente	Labirinto de tamanho maxLin x maxCol com n paredes e t			
	vítimas. Cada vítima tem 6 sinais vitais (s1 s6) que são			
	valores numéricos reais sendo s_{6} a gravidade (no intervalo			
	[0, 1], sendo 1 é a máxima gravidade). O valor d é a			
	dificuldade de socorro no intervalo [0,1], sendo 1 a máxima			
	dificuldade			
T_v	Tempo (min.) dado ao A_{v} para localizar vítimas e construir			
	um mapa do ambiente.			
$T_{\mathcal{S}}$	Tempo (min.) dado ao $A_{\it S}$ para levar suprimentos para cada			
	vítima			
B_{v}	Carga de bateria inicial disponível para $A_{oldsymbol{v}}$ (min.)			
$B_{\scriptscriptstyle S}$	Carga de bateria inicial disponível para $A_{\mathcal{S}}$ (min.)			
$K_{\mathcal{S}}$	Capacidade de carga de pacotes do $A_{\mathcal{S}}$ em unidades			

Tabela 1: parâmetros de entrada

Arquivo ambiente.txt

As palavras-chave iniciam por maiúsculas e não têm acentuação. As coordenadas são listas de pares *x,y* sem espaços (x é a linha, y a coluna) Utilizar espaço apenas para separar uma coordenada da outra.

- Agente: uma única coordenada que indica a posição inicial do agente
- **Objetivo**: uma única coordenada que indica o estado objetivo do agente (não é obrigatório)
- **Parede**: lista de coordenadas *x,y* de cada quadrado que representa uma parede
- Vitima: lista de coordenadas x,y de cada uma das vítimas

```
Agente x<sub>0</sub>,y<sub>0</sub>
Parede x<sub>1</sub>,y<sub>1</sub> x<sub>2</sub>,y<sub>2</sub> x<sub>3</sub>,y<sub>3</sub> ... x<sub>n</sub>,y<sub>n</sub>
Vitima x<sub>1</sub>,y<sub>1</sub> x<sub>2</sub>,y<sub>2</sub> x<sub>3</sub>,y<sub>3</sub> ... x<sub>t</sub>,y<sub>t</sub>
```

Arquivo config.txt

Contém a configuração do tamanho labirinto e dos parâmetros da tarefa de salvamento.

```
maxLin=<int>
maxCol=<int>
Tv=<int>
Ts=<int>
Bv=<int>
Bs=<int>
Ks=<int>
```

Exemplo

Para a Figura 2 que as paredes das coordenadas (1,1) e (2,2) impedem que um agente que esteja em (1,1) vá para (2,2) e vice-versa.

Figura 2: exemplo de ambiente com 3 vítimas e os dois agentes na posição base com o arquivo ambiente.txt e config.txt

As ações que os agentes são capazes de executar com os respectivos consumos de tempo e de bateria estão na Tabela 2.

	Agente(s)	Tempo de execução (min)	Consumo bateria (min)
Mover hor. ou ver. (1 step)	$A_{ve}A_{s}$	1	1
Mover diagonal (1 step)	$A_{ve}A_{s}$	1,5	1,5
Recarregar bateria	$A_{ve}A_{s}$	240	0
Ler todos os sinais vitais	A_v	2	2
Carga/descarga de um pacote.	A_s	0,5	0,5

Tabela 2: ações dos agentes e seus consumos.

ENTREGA

- 1) Os códigos fonte
- 2) Um artigo PDF de até 4 páginas com o formato da SBC com a estrutura abaixo

Estrutura do artigo

Introdução: dentro do problema como um todo, quais subproblemas atacará e por quais razões: quais são as motivações e justificativas para resolvê-los.

Fundamentação Teórica: tipos de busca vistas até o momento

Metodologia: caracterize o ambiente, o problema com seus estados e tamanho do espaço de estados, as buscas escolhidas com justificativa (por que esta e não as outras?) e a modelagem.

Resultados e análise: desempenho

Conclusões: atingiu os objetivos, o que pode ser melhorado, há problemas éticos na solução – como ela afeta a vida das pessoas envolvidas

---- até aqui 4 páginas no máximo ---

Referências bibliográficas

Apêndice: como executar o código, telas se desejar.

UTFPR/Curitiba - SISTEMAS INTELIGENTES 1 – 2022/1 – Prof. Tacla