45. Сформулировать с помощью неравенств следующие утверждения:

a)
$$\lim_{n\to\infty} x_n = \infty$$
; 6) $\lim_{n\to\infty} x_n = -\infty$; B) $\lim_{n\to\infty} x_n = +\infty$.

Предполагая, что *п* пробегает натуральный ряд чисел, определить значения следующих выражений:

46.
$$\lim_{n\to\infty} \frac{10\ 000n}{n^2+1}$$
. 47. $\lim_{n\to\infty} (\sqrt{n+1}-\sqrt{n})$.

48.
$$\lim_{n\to\infty} \frac{\sqrt[3]{n^2} \sin n!}{n+1}$$
. 49. $\lim_{n\to\infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$.

50.
$$\lim_{n\to\infty} \frac{1+a+a^2+\cdots+a^n}{1+b+b^2+\cdots+b^n}$$
 (|a|<1, |b|<1).

51.
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n-1}{n^2} \right)$$
.

52.
$$\lim_{n\to\infty} \left| \frac{1}{n} - \frac{2}{n} + \frac{3}{n} - \ldots + \frac{(-1)^{n-1}n}{n} \right|$$

53.
$$\lim_{n\to\infty} \left[\frac{1^2}{n^3} + \frac{2^2}{n^3} + \ldots + \frac{(n-1)^2}{n^3} \right].$$

54.
$$\lim_{n\to\infty} \left[\frac{1^2}{n^3} + \frac{3^2}{n^3} + \ldots + \frac{(2n-1)^2}{n^3} \right]$$
.

55.
$$\lim_{n\to\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \ldots + \frac{2n-1}{2^{2n}}\right)$$
.

56.
$$\lim_{n\to\infty} \left[\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n(n+1)} \right].$$

57.
$$\lim_{n \to \infty} \left(\sqrt{2} \sqrt[4]{2} \sqrt[8]{2} \dots \sqrt[2^n]{2} \right)$$
.

Доказать следующие равенства:

58.
$$\lim_{n\to\infty} \frac{n}{2^n} = 0$$
. 59. $\lim_{n\to\infty} \frac{2^n}{n!} = 0$.

60.
$$\lim_{n\to\infty} \frac{n^k}{a^n} = 0$$
 (a>1). 61. $\lim_{n\to\infty} \frac{a^n}{n!} = 0$.

62.
$$\lim_{n\to\infty} nq^n = 0$$
, если $|q| < 1$.

63.
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
 (a>0). 64. $\lim_{n\to\infty} \frac{\log_a n}{n} = 0$ (a>1).

65.
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$
. 66. $\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$.