Projekt

STEROWNIKI ROBOTÓW

Założenia projektowe

Oscyloskop z pomiarem parametrów sygnału OSPA

Skład grupy: Krzysztof Kaliszuk, 248953 Krystian Mirek, 242053

Termin: czwTP19

 $Prowadzący: \\ {\rm dr~in\dot{z}.~Wojciech~DOMSKI}$

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera	3
	Harmonogram pracy 3.1 Podział pracy	3 4
4	Podsumowanie	4
Bi	ibilografia	5

1 Opis projektu

Projekt zakłada stworzenie oscyloskopu na płytce STM32F429I-DISC1. Mierzone sygnały będą pokazane na wyświetlaczu wraz z dodatkowymi informacjami o sygnale. Obejmuje to pomiar napięcia peak-to-peak, częstotliwości oraz podziałek. Wykorzystanie (ADC, DMA, Flash) [2] Oscyloskop z pomiarem parametrów sygnału

Założone funkcjonalności i wymagania dla oscyloskopu:

- generowanie sygnałów testowych,
- bufor zapisujący próbki badanego sygnału,
- funkcja pomiaru napięcia (Vpp),
- funkcja pomiaru częstotliwości i okresu (FFT),
- regulacja progu wyzwalania,
- funkcja stop,
- interfejs graficzny menu,
- wyświetlanie przebiegu sygnału na LCD.

Określiliśmy najważniejsze momenty rozwoju projektu. Zbierając je razem wyklarowaliśmy 3 kamienie milowe rozwoju projektu:

- Wizualizacja odczytu sygnału,
- poprawne obliczenie parametrów sygnału,
- przetestowanie wszystkich funkcji.

2 Konfiguracja mikrokontrolera

W projekcie zostanie wykorzystane ADC [3] wraz DMA do odczytu analizowanego sygnału. Komunikacja z wyświetlaczem odbywa się z pomocą interfejsu SPI.

3 Harmonogram pracy

Rysunek 1: Diagram Gantta

3.1 Podział pracy

Krzysztof Kaliszuk	%	Krystian Mirek	%
E2.1. Wstępna konfiguracja peryferiów w		E2.1. Wstępna konfiguracja peryferiów w	
programie STM32CubeIDE		programie STM32CubeIDE	
E2.2. Opracowanie funkcji generującej		E2.3. Opracowanie funkcji zapisującej	
sygnaly testowe		próbki badanego sygnału	
E2.4. Funkcja przetwarzająca dane z bufora		E2.5. Opracowanie sposobu obsługi	
na dane wizualne		wyświetlacza	

Tabela 1: Podział pracy – Etap II

Krzysztof Kaliszuk	%	Krystian Mirek	%
E3.1.Finalna konfiguracja peryferiów w programie CubeMX		E3.2.Opracowanie funkcji do pomiaru częstotliwości i okresu (FFT)	
E3.3.Opracowanie regulacji poziomu wyzwalania		E3.4.Opracowanie funkcji STOP	
E3.5. Wyświetlanie informacji o sygnale na wyświetlaczu		E3.6.Stworzenie interfejsu graficznego dla użytkownika	

Tabela 2: Podział pracy – Etap III

4 Podsumowanie

W I etapie zrobiliśmy rozeznanie w temacie oscyloskopów. Określiliśmy możliwe do wykonania przez nas funkcje oraz rozpisaliśmy wymagania. [1] Bazowaliśmy przy tym na możliwościach płytki rozwojowej, z której będziemy korzystać. Pracę w projekcie podzieliliśmy na zadania, które rozłożyliśmy na 2 etapy. Pierwszy etap kończymy osiągnięciem możliwości wizualizacji sygnału (pierwszy kamień milowy). W 3 etapie do osiągnięcia pozostają 2 kamienie milowe.

Literatura

- [1] Abby. How I Create an Oscilloscope with STM32 and You Can Too. Luty 2020.
- [2] T. Ostrowski. Miniscope v2c https://tomeko.net//miniscope_v2c.
- [3] ST. AN2834 Application note How to get the best ADC accuracy in STM32 microcontrollers. Gru. 2020.