CLAIMS

1	1. (currently amended) In a receiver of a multiple-input multiple-output (MIMO) system	ı,	
2	the receiver having a plurality of receiver antennas, a method comprising:		
3	(a) receiving signals from a plurality of transmitter antennas, each transmitter antenna		
4	transmitting multiple channels;		
5	(b) for each of a plurality of channels originating from the transmit antennas, estimating a		
6	CIR value characterizing channel impulse response (CIR) of the channel;		
7	(c) summing the CIR values for the plurality of channels to generate a plurality of summer	<u>d</u>	
8	CIR values;		
9	(d) integrating the summed CIR values over a specified window to generate an integrated		
10	summed CIR value;		
11	(e) determining symbol timing in the received signals based on the integrated summed CII	R	
12	value[[s]]; and		
13	(f) processing the received signals based on the determined symbol timing.		
		,	
1	2. (currently amended) The invention method of claim 1, wherein the MIMO system is a	ı	
2	MIMO [[OFDM]] orthogonal frequency division multiplexing (OFDM) system.		
•			
1	3. (currently amended) The invention method of claim 1, wherein each CIR value		
2	corresponds to power of the CIR.		
1	4. (currently amended) The invention method of claim 3, wherein each CIR value is base	ed	
2	on a correlation between a corresponding received signal and a known training sequence.		
1	5. (currently amended) The invention method of claim 1, wherein the specified window	v	
2	has a duration substantially equal to the length of a guard interval of symbols in the received signals.		
1	6. (currently amended) The invention method of claim 1, wherein the specified window		
2	has a duration substantially equal to a maximum tolerable delay spread for the received signals.		
1	7. (currently amended) The invention method of claim 1, wherein:		
2	a plurality of integrated summed CIR values are generated corresponding to a plurality of		
3	different instances of the specified window, each instance corresponding to integrating a different set of		
4	summed CIR values for the plurality of channels; and		

5	the determined symbol timing is based on selecting a maximum integrated summed CIR value o			
6	[[for]] the <u>plurality of</u> integrated summed CIR values.			
1	8.	(currently amended) The invention method of claim 1, wherein the processing of the		
2	received signal	ls includes generating a discrete Fourier transform (DFT) for each received signal, wherein		
3		DFT is based on the determined symbol timing.		
1	9.	(currently amended) The invention method of claim 1, wherein the plurality of channels		
2	corresponds to a single antenna of the receiver.			
1	10.	(currently amended) The invention method of claim [[9]] 1, wherein a different symbol		
2	timing is determined for each different receiver antenna.			
1	11.	(currently amended) The invention method of claim 10, wherein:		
2	timing	of the processing of the received signals for each different receiver antenna is based on		
3	the maximum symbol timing for all of the receiver antennas; and			
4	at least one received signal is delayed based on a timing difference between the maximum			
5	symbol timing	and the symbol timing determined for said at least one received signal.		
1	12.	(currently amended) The invention method of claim 1, wherein the plurality of channels		
2	corresponds to	all of the antennas of the receiver.		
1	13.	(currently amended) The invention method of claim 12, wherein a single, joint symbol		
2	timing is deter	mined for all of the receiver antennas by:		
3	<u>(b)</u>	estimating the CIR value for each of the plurality of channels corresponding to all of the		
4	antennas of the	e receiver;		
5	<u>(c)</u>	summing the CIR values for the plurality of channels corresponding to all of the antennas		
6	of the receiver	to generate the plurality of summed CIR values;		
7	<u>(d)</u>	integrating the summed CIR values over a specified window to generate the integrated		
8	summed CIR value; and			
9	<u>(e)</u>	determining the single, joint symbol timing in the received signals based on the		
10	integrated summed CIR value.			

1	14. (currently amended) The invention method of claim 1, wherein the determined symbol		
2	timing corresponds to minimal CIR power falling outside of the specified window and maximal CIR		
3	power falling inside the specified window.		
1	15. (currently amended) A receiver for a multiple-input multiple-output (MIMO) system, the		
2	receiver comprising:		
3	a plurality of receiver antennas, each adapted to receive signals from a plurality of transmitter		
4	antennas in the MIMO system, each transmitter antenna transmitting multiple channels;		
5	a receiver branch for each different receiver antenna, each receiver branch having a transform		
6	adapted to transform a corresponding received signal into a plurality of transformed components;		
7	a symbol decoder adapted to receive transformed components from each transform and to detect		
8	symbols, wherein:		
9	processing within each receiver branch is based on symbol timing determined for each		
10	receiver branch; and		
11	at least one receiver branch is adapted to determine its symbol timing by		
12	(a) for each of a plurality of channels originating from the transmit		
13	antennas, estimating a CIR value characterizing channel impulse response (CIR) of the channel;		
14	(b) summing the CIR values for the plurality of channels to generate a		
15	plurality of summed CIR values;		
16	(c) integrating the summed CIR values over a specified window to generate		
17	an integrated summed CIR value; and		
18	(d) determining the symbol timing in the received signals based on the		
19	integrated summed CIR value[[s]].		
1	16. (currently amended) The invention receiver of claim 15, wherein each CIR value		
2	corresponds to power of the CIR, wherein each CIR value is based on a correlation between a		
3	corresponding received signal and a known training sequence.		
1	17. (currently amended) The invention receiver of claim 15, wherein the specified window		
2	has a duration substantially equal to the length of a guard interval of symbols in the received signals.		
1	18. (currently amended) The invention receiver of claim 15, wherein the specified window		
2	has a duration substantially equal to a maximum tolerable delay spread for the received signals.		

1	19. (currently amended) The invention receiver of claim 15, wherein:		
2	a plurality of integrated summed CIR values are generated corresponding to a plurality of		
3	different instances of the specified window, each instance corresponding to integrating a different set of		
4	summed CIR values for the plurality of channels; and		
5	the determined symbol timing is based on selecting a maximum integrated summed CIR value of		
6	[[for]] the <u>plurality of</u> integrated summed CIR values.		
1	20. (currently amended) The invention receiver of claim 15, wherein each transform is a		
2	discrete Fourier transform (DFT), wherein timing of the DFT is based on the determined symbol timing.		
1	21. (currently amended) The invention receiver of claim 15, wherein the plurality of		
2	channels used by the at least one receiver branch corresponds to a single antenna of the receiver.		
1	22. (currently amended) The invention receiver of claim 21, wherein a different symbol		
2	timing is determined for each different receiver antenna.		
1	23. (currently amended) The invention receiver of claim 22, wherein:		
2	timing of the processing of the received signals for each different receiver antenna is based on		
3	the maximum symbol timing for all of the receiver antennas; and		
4	at least one received signal is delayed based on a timing difference between the maximum		
5	symbol timing and the symbol timing determined for said at least one received signal.		
J	system in the same system of the same for said at reast one received signal.		
1	24. (currently amended) The invention receiver of claim 15, wherein a single, joint symbol		
2	timing is determined for all of the antennas of the receiver by the at least one receiver branch by:		
3	estimating the CIR value for each of the plurality of channels corresponding to all of the antennas		
4	of the receiver;		
5	summing the CIR values for the plurality of channels corresponding to all of the antennas of the		
6	receiver to generate the plurality of summed CIR values;		
7	integrating the summed CIR values over a specified window to generate the integrated summed		
8	CIR value; and		
9	determining the single, joint symbol timing in the received signals based on the integrated		
10	summed CIR value.		

1	25.	(currently amended) The invention receiver of claim 15, wherein the determined symbol		
2	timing corresponds to minimal CIR power falling outside of the specified window and maximal CIR			
3	power falling inside the specified window.			
1	26.	(canceled)		
1	27.	(new) In a receiver of a multiple-input multiple-output (MIMO) system, the receiver		
2	having a plurality of receiver antennas, a method comprising:			
3	(a)	receiving signals from a plurality of transmitter antennas;		
4	(b)	for each of a plurality of channels originating from the transmit antennas, estimating a		
5	CIR value characterizing channel impulse response (CIR) of the channel;			
6	(c)	summing the CIR values for the plurality of channels;		
7	(d)	integrating the summed CIR values over a specified window;		
8	(e)	determining symbol timing in the received signals based on the integrated summed CIR		
9	value; and			
10	(f)	processing the received signals based on the determined symbol timing, wherein:		
11		the plurality of channels corresponds to a single antenna of the receiver;		
12		a different symbol timing is determined for each different receiver antenna;		
13		timing of the processing of the received signals for each different receiver antenna is		
14	based on the maximum symbol timing for all of the receiver antennas; and			
15	•	at least one received signal is delayed based on a timing difference between the		
16	maximum syn	abol timing and the symbol timing determined for said at least one received signal.		
17	28.	(new) In a receiver of a multiple-input multiple-output (MIMO) system, the receiver		
18	having a plura	ality of receiver antennas, a method comprising:		
19	(a)	receiving signals from a plurality of transmitter antennas;		
20	(b)	for each of a plurality of channels originating from the transmit antennas, estimating a		
21	CIR value cha	racterizing channel impulse response (CIR) of the channel;		
22	(c)	summing the CIR values for the plurality of channels;		
23	(d)	integrating the summed CIR values over a specified window;		
24	(e)	determining symbol timing in the received signals based on the integrated summed CIR		
25	value, wherein	n the determined symbol timing corresponds to minimal CIR power falling outside of the		
26	specified window and maximal CIR power falling inside the specified window; and			
27	(f)	processing the received signals based on the determined symbol timing.		