Descriptive Statistics (done in Excel – Summary Statistics)

	Lemon	
x	Mean	116,5806452
SE	Standard Error	4,694259636
Me	Median	115
Мо	Mode	98
S	Standard Deviation	26,13653151
s^2	Sample Variance	683,1182796
K	Kurtosis	-0,296985973
S	Skewness	0,363889727
	Range	105
	Minimum	71
	Maximum	176
	Sum	3614
	Count	31

Standard Error

How close we are to the population mean, because every time we collect a sample, we will have a slightly different mean from the one of the population.

Kurtosis and Skewness

These two are the indicators of the distribution shape. In both cases, the values between -2 and +2 are considered okay for statistical analysis. **Kurtosis** is an estimate of the normality of the data, the closer it is to the 0, the more likely the data is normally distributed. **Skewness** has to do with tails. If it is a positive number, that means that the distribution is right-skewed; if it is a negative number, it is left-skewed. It is telling the direction of the tails.

Skewed to the Right

Data that are skewed to the right have a long tail that extends to the right. An alternate way of talking about a data set skewed to the right is to say that it is positively skewed.

Skewed to the Left

The situation reverses itself when we deal with data skewed to the left. Data that are skewed to the left have a long tail that extends to the left. An alternate way of talking about a data set skewed to the left is to say that it is negatively skewed.