C1

filippo

10 May 2018

Es 1.

Sia dato un campione bernoulliano $Y_1, \ldots, Y_n, n \geq 2$, da una variabile casuale Y uniforme nell'intervallo $(0, \Theta), \Theta > 0$.

(a)

Trovare lo stimatore di Θ secondo il metodo dei momenti.

$$T_1 = 2 \frac{\sum_{i=1}^n Y_i}{n}$$

(b)

Sia T_1 lo stimatore calcolato al punto precedente, calcolare $EQM(T_1)$.

$$E(T_1) = \theta$$

Il valore atteso di T_1 è θ , è quindi non distorto.

$$Var(T_1) = \frac{\theta^2}{3n}$$

Poichè T_1 è non distorto, l'errore quadratico medio coiciderà con la sua varianza.

$$EQM(T_1) = \frac{\theta^2}{3n}$$

(c)

Mostrare che lo stimatore è consistente.

$$\lim_{n\to\infty}\frac{\theta^2}{3n}=0$$

(d)

Trovare la costante a per cui lo stimatore

$$T_2 = \frac{Y_1 + aY_n}{n}$$

è uno stimatore non distorto.

$$E(T_2) = \theta + a\theta - 2n\theta \rightarrow a = 2n - 1$$

(e)

Se T_2 è lo stimatore non distorto, mostrare quale stimatore tra T_1 e T_2 è più efficiente.

$$T_{2} = \frac{Y_{1} + (2n-1)Y_{n}}{n}$$

$$Var(T_{2}) = \frac{\theta^{2}(2n^{2} - 2n + 1)}{6n^{2}}$$

$$Se(T_{1}) = \theta\sqrt{\frac{1}{3n}}$$

$$Se(T_{2}) = \frac{\theta}{n}\sqrt{\frac{2n^{2} - 2n + 1}{6}}$$

Lo stimatore T_1 ha un errore standard asintoticamente minore, e di conseguenza si avvicina prima al valore nullo

```
theta <- 5
se.t1 <- function(x){theta * sqrt(1/(3*x))}
se.t2 <- function(x){theta/x * sqrt((2*(x^2) - 2*x + 1)/6)}

curve(se.t1(x), from=0, to=10,col="red",ylab = "Standard Error",xlab = "n")
curve(se.t2(x), from=0, to=10, add=TRUE,col="green")</pre>
```

