IN THE SPECIFICATION:

Kindly amend the paragraph beginning on page 3, line 4, as follows:

According to a ninth aspect of the present invention, each tap of the first FIR filter has a corresponding coefficient W as follows:

$$W_0 = unity$$

$$0 < \sum_{i=1}^{M} W_{-i} + W_0 + \sum_{i=1}^{n} W_i << 1, \text{ and}$$

$$-1 \left[\left[<< \right] \right] \le W_1, \dots W_n \left[\left[<< \right] \right] \le 0.$$

Kindly amend the paragraph beginning on page 4, line 25, as follows:

According to a twenty-ninth aspect of the present invention, each tap of the first FIR filter means has a corresponding coefficient W as follows:

$$W_0 = unity$$

$$0 < \sum_{i=1}^{M} W_{-i} + W_0 + \sum_{i=1}^{n} W_i << 1, \text{ and}$$

$$-1 \left[\left[<< \right] \right] \le W_1, \dots W_n \left[\left[<< \right] \right] \le 0.$$

Kindly amend the paragraph beginning on page 8, line 25, as follows:

The selection of the coefficients W is critical in providing the response defined in Fig. 5. To achieve this response, the selection of the coefficients W is critical. The appropriate selection of coefficients $W_1 \dots W_n$ determines the sharpness of the response, and the appropriate selection of coefficients W_{-m} - W_{-1} effectively cancels the precursor tail. In the present embodiment the coefficients are selected from the following constraints:

$$W_0 = \text{unity}$$

$$0 < \sum_{i=1}^{M} W_{-i} + W_o + \sum_{i=1}^{n} W_i << 1$$

Customer No.: 23624

$$-1$$
 [[$<<$]] \leq W₁, ... W_n [[$<<$]] \leq 0,

in the preferred embodiment

$$W_0=1$$

$$W_{-1} = -0.1$$

$$W_{-1}+W_0+W_1+W_2+W_3=0.1$$

$$|W_1| > |W_2| > |W_3|$$

-1 [[
$$<<$$
]] \leq W₁, W₂, W₃ [[$<<$]] \leq 0, preferably W₁=-.35, W₂=-.25, and W₃=-.20.

Customer No.: 23624