Instructions

- Show all the details of your work and carefully explain the way you have solved problems. Failure to
 comply with this requirement will automatically and deterministically place you on a list of students
 that have to meet me during office hours and explain their solution, your temporary grade will be 0.
- You can answer in soft form or scan extremely legible written answers.
- Please attach the quiz form with your name and student id to your answer sheets.
- Please submit all your work including scratch papers and write your name on every paper you submit
- Please make and document reasonable assumptions
- Graduate students have to solve all the questions including questions / sections with bold font.
 Undergraduate students are exempt from questions/sections with bold font.
- Use the last digit of your Texas State student id to figure your individual parameters (from Table 1). Note that the parameters are used as vectors and/or as vertices/points depending on the questions. For example if your student id is 12345678, the use 8 as an entry to table and use the parameters:

Last digit	u_x	u_y	u_z	v_{x}	v_y	v_z	W_{χ}	w_y	W_Z	t_{x}	t_y	t_z
8	7	5	3	4	4	4	5	7	3	7	4	9

Question

- 1. Use your individual parameters and:
 - a. Given a plan A, defined by the vectors $\vec{u}=(u_x,u_y,u_z,0)$ and $\vec{v}=(v_x,v_y,v_z,0)$ and a plan B defined by the vectors $\vec{w}=(w_x,w_y,w_z,0)$ and $\vec{t}=(t_x,t_y,t_z,0)$ find the cosine of the angle between the normal to the plan A and the normal to the plan B.

Find the two normal vectors

Find the angle between these two normal vectors

b. Consider the vector $\vec{v}=(v_x,v_y,v_z,0)$, and find the coordinates of a new vector $\vec{s}=(s_x,s_y,s_z,0)$, such that the vector \vec{s} is perpendicular to the vector \vec{v} .

You are supposed to find a new vector S

Individual parameters

	u_x	u_y	u_z	v_x	v_y	v_z	W_{χ}	w_y	W_Z	t_{x}	t_y	t_z
0	4	1	7	2	6	7	5	8	3	2	9	4
1	7	5	3	4	4	4	5	7	3	7	4	9
2	6	5	4	6	8	4	3	6	4	5	4	6
3	2	2	4	7	3	7	3	6	4	2	5	5
4	4	8	6	3	8	3	5	6	8	3	7	6
5	7	9	8	2	7	6	6	5	7	4	5	7
6	5	4	2	2	3	5	2	8	9	7	6	6
7	8	9	6	7	4	7	6	4	4	4	8	7
8	3	5	2	3	4	5	5	2	6	9	3	2
9	5	8	7	6	2	3	3	6	7	3	9	7