

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605)

Realimentação de relevância e Expansão de consulta

Profa. Giseli Rabello Lopes

Roteiro

- Introdução
- Um framework para métodos de realimentação
 - Realimentação de relevância explícita
 - Realimentação explícita através de cliques
 - Realimentação implícita através de análise local
 - Realimentação implícita através de análise global
- Referências

Introdução

- A maioria dos usuários encontra dificuldades para formular consultas bem projetadas para fins de recuperação
- No entanto, usuários muitas vezes precisam reformular suas consultas para obter os resultados que lhes interessam
 - Assim, a primeira formulação da consulta deve ser tratada como uma tentativa inicial de recuperar informações relevantes
 - Os documentos inicialmente recuperados poderiam ser analisados por relevância e usados para melhorar a formulação da consulta inicial

Introdução

- Duas abordagens básicas de métodos de realimentação:
 - Realimentação explícita, em que a informação para reformulação da consulta é fornecida diretamente pelos usuários, e
 - Realimentação implícita, em que a informação para a reformulação da consulta é derivada implicitamente pelo sistema

Um framework para métodos de realimentação

- Em um ciclo de **realimentação de relevância implícita**, a informação de realimentação é derivada implicitamente pelo sistema
- Existem duas abordagens básicas para a coleta de informações implícitas de realimentação:
 - Análise local, que deriva a informação de realimentação dos documentos ranqueados no topo do conjunto de resultados
 - Análise global, que deriva a informação de realimentação de fontes externas tais como um tesauro

Informação implícita de realimentação

Implicit Feedback

Análise local

- Análise local consiste em derivar informação de realimentação de documentos recuperados para uma dada consulta q
- Isso é semelhante a um ciclo de realimentação de relevância, mas feito sem o envolvimento do usuário
- Será discutida a seguinte estratégia local: clustering local

Clustering local

- A adoção de técnicas de clustering para expansão de consulta tem sido uma abordagem básica em RI
- O procedimento padrão é quantificar correlações entre termos e então usar os termos correlacionados para a expansão da consulta
- Correlações entre termos podem ser quantificadas pelo uso de estruturas globais, tais como matrizes de associação
- Entretanto, estruturas globais podem não se adaptar bem para o contexto local definido pela consulta atual
- Para lidar com esse problema, clustering local pode ser usado, como será discutido agora

Matriz de correlação entre termos para uma coleção de exemplo [Baeza-Yates & Ribeiro-Neto, 2013]

- Para uma dada consulta q, sejam
 - $-D_l$: conjunto de documentos locais, ou seja, conjunto de documentos recuperados por q
 - $-N_l$: número de documentos em D_l
 - $-\ V_l$: vocabulário local, ou seja, conjunto de todas as palavras distintas em D_l
 - $-f_{i,j}$: frequência de ocorrência do termo k_i em um documento $d_j \subseteq D_l$
 - M_l =[m_{ij}]: matriz de termos por documentos com V_l linhas e N_l colunas
 - $-m_{ii}=f_{i.i}$: um elemento da matriz M_l
 - $-M^{T}_{l}$: transposta de M_{l}
- . A matriz $\mathbf{C}_\ell = \mathbf{M}_\ell \mathbf{M}_\ell^T$

é a matriz de correlação local entre termos

- Cada elemento $c_{u,v} \in C_l$ expressa uma correlação entre termos k_u e k_v
- Esse relacionamento entre termos é baseado em suas coocorrências dentro de documentos da coleção
- Quanto maior o número de documentos nos quais dois termos coocorrem, mais forte sua correlação
- A força de correlação pode ser usada para definir clusters locais de termos próximos
- Termos no mesmo cluster podem ser então usados para expansão de consulta

- Um clustering de associação é computado a partir da matriz de correlação local ${\cal C}_l$
- Para isso, redefinimos os fatores de correlação $c_{u,v}$ entre qualquer par de termos k_u e k_v , como segue:

$$c_{u,v} = \sum_{d_j \in D_l} f_{u,j} \times f_{v,j}$$

- Nesse caso a matriz de correlação é referenciada como uma matriz de associação local
- A motivação é que termos que coocorrem frequentemente dentro de documentos têm uma associação de sinonímia

- Dada uma matriz de associação local C_l , podemos usá-la para construir clusterings de associação locais como segue
- Seja $C_u(n)$ uma função que retorna os n maiores fatores $c_{u,v} \in C_l$, onde v varia sobre o conjunto de termos locais e $v \neq u$
- Então, $C_u(n)$ define um cluster de associação local, uma vizinhança, em torno do termo k_u
- Dada uma consulta q, estamos normalmente interessados em encontrar clusters apenas para os |q| termos da consulta
- Isso significa que tais clusters podem ser computados eficientemente em tempo de consulta

Assistência na consulta (expansão assistida)

[Manning et al. 2008]

Would you expect such a feature to increase the query volume at a search engine?

Referências

 Baeza-Yates, R.; Ribeiro-Neto, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. 2 ed. Bookman, 2013.

 Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval. Wokingham, UK: Addison-Wesley, 2 ed., 2011.

 Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.

Online edition 2009: http://nlp.stanford.edu/IR-book/

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605) Dúvidas?

Profa. Giseli Rabello Lopes giseli@dcc.ufrj.br CCMN - DCC - Sala E-2012

