Brannan's conjecture and trigonometric polynomials

Sim Hui Xiang, Jay Tai Kin Heng, Gabriel Tan Jiaxu

Introduction

Trigonometric inequalities have been an important area of research in mathematics, physics and engineering, In particular, R.W. Barnard et al. [2] have shown that the famous Brannan Conjecture is equivalent to the following open problem.

Conjecture 1 (cf. [2, Conjecture 2]). If $n \in \mathbb{N}$, $0 < r \le 1$ and $\theta \in [0, \pi)$, then

$$\left(\sum_{k=1}^{2n-1} \frac{r^k}{k} (1 - \cos k\theta)\right)^2 + \left(\sum_{k=1}^{2n-1} \frac{r^k}{k} \sin k\theta\right)^2 < 4\left(\sum_{k=1}^{n} \frac{r^{2k-1}}{2k-1}\right)^2.$$

In this project, we give a partial answer to the above conjecture.

Theorem 2 If $n \in \mathbb{N}$ and $\theta \in [0, \pi)$, then

$$\left(\sum_{k=1}^{2n-1} \frac{1}{k} (1 - \cos k\theta)\right)^2 + \left(\sum_{k=1}^{2n-1} \frac{\sin k\theta}{k}\right)^2 < 4\left(\sum_{k=1}^{n} \frac{1}{2k-1}\right)^2. \tag{1}$$

Proof of Theorem 2

We consider the following functions

$$L_{2n-1}: \theta \mapsto -\sum_{k=1}^{2n-1} \frac{\cos k\theta}{k} + \frac{\left(\sum_{k=1}^{2n-1} \frac{\cos k\theta}{k}\right)^2 + \left(\sum_{k=1}^{2n-1} \frac{\sin k\theta}{k}\right)^2}{2\sum_{k=1}^{2n-1} \frac{1}{k}} \quad \text{and} \quad R: n \mapsto \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} + \frac{\left(\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}\right)^2}{2\sum_{k=1}^{n} \frac{1}{k}},$$

where $n \in \mathbb{N}$ and $\theta \in [0, \pi]$. Then, (1) is equivalent to the following inequality

$$L_{2n-1}(\theta) < R(2n-1).$$

Outline of proof of Theorem 2. We have the following assertions:

(A)
$$L_{2n-1}(\theta) < R(2n-1) \text{ for } \theta \in \left[0, \frac{4n-3}{4n-1}\pi\right] \text{ and } n=1,2,3,4.$$

(B) (1) holds whenever
$$\theta \in \left[0, \frac{2\pi}{3}\right]$$
 and $n = 5, 6, 7 \dots$

(C)
$$L_{2n-1}(\theta) < R(2n-1) \text{ for } \theta \in \left[\frac{2\pi}{3}, \frac{4n-3}{4n-1}\pi\right] \text{ and } n = 5, 6, 7, \dots$$

(D)
$$L_{2n-1}(\theta) < R(2n-1) \text{ for } \theta \in \left[\frac{4n-3}{4n-1}\pi, \pi\right) \text{ and } n = 1, 2, 3, \dots$$

Proof of assertion (A).

Let

$$S_n(\theta) := \sum_{k=1}^n \frac{\sin k\theta}{k}$$
 and $C_n(\theta) := \sum_{k=1}^n \frac{\cos k\theta}{k}$ $(n \in \mathbb{N} ; \theta \in [0,\pi])$.

Then,

$$S'_{2n-1}(\theta) = \frac{\cos n\theta \sin\left(n - \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} \text{ and } C'_{2n-1}(\theta) = -\frac{\sin n\theta \sin\left(n - \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} \quad (n \in \mathbb{N}; \ \theta \in (0, \pi)). \tag{2}$$

Using (2) we show, by computing the stationary points, that

$$\max_{\theta \in \left[0, \frac{(4n-3)}{4n-1}\pi\right]} L_{2n-1}(\theta) = \max_{\theta \in \left[0, \frac{(4n-3)}{4n-1}\pi\right]} \left\{ -C_{2n-1}(\theta) + \frac{\left(C_{2n-1}(\theta)\right)^{2} + \left(S_{2n-1}(\theta)\right)^{2}}{2\sum_{k=1}^{2n-1} \frac{1}{k}} \right\} \\
\leqslant \max_{\theta \in \left[0, \frac{(4n-3)}{4n-1}\pi\right]} \left\{ -C_{2n-1}(\theta) + \frac{\left(C_{2n-1}(\theta)\right)^{2}}{2\sum_{k=1}^{2n-1} \frac{1}{k}} \right\} + \max_{\theta \in \left[0, \frac{(4n-3)}{4n-1}\pi\right]} \left\{ \frac{\left(S_{2n-1}(\theta)\right)^{2}}{2\sum_{k=1}^{2n-1} \frac{1}{k}} \right\}$$

The proof is complete.

Proof of assertion (B). In this section, we evoke a theorem by Fong et al. [5].

< R(2n-1). for n = 1, 2, 3, 4.

Theorem 3. (cf. [5, Theorem 1.3]). Let $n \in \mathbb{N}$ and let $\theta \in (0, \pi)$. Then

$$\sum_{k=1}^{2\left\lfloor\frac{n}{2}\right\rfloor+1} \frac{\left(-1\right)^{k-1}}{k} + \sum_{k=1}^{n} \frac{\cos k\theta}{k} \geqslant \frac{1}{4} \left(1 + \cos \theta\right)^{2},$$

where equality holds if and only if n=2 and $\theta=\pi-\cos^{-1}\frac{1}{3}$.

An application of Theorem 3 shows that (1) is equivalent to

$$-(1+\cos\theta)^2\sum_{k=1}^{2n-1}\frac{1}{2k-1}+\frac{1}{16}(1+\cos\theta)^4+\left(\sum_{k=1}^{2n-1}\frac{\sin k\theta}{k}\right)^2<0. \tag{3}$$

We next consider a few results from Kim et al. [7].

Lemma 4. (cf. [7, Lemma 2.2]). Let $n \in \mathbb{N}$. If $q \in \{1, 2, ..., \lfloor \frac{n+1}{2} \rfloor\}$, then

$$\max_{\theta \in \left[\frac{(4q-2)\pi}{2n+1},\pi\right]} \left\{ \sum_{k=1}^{n} \frac{\sin k\theta}{k} - \frac{\pi-\theta}{2} \right\} = \sum_{k=1}^{n} \frac{\sin k \frac{(4q-2)\pi}{2n+1}}{k} - \frac{\pi - \frac{(4q-2)\pi}{2n+1}}{2}.$$

Theorem 5. (cf. [7, Theorem 2.5]). Let $n \in \mathbb{N}$. If $p \in \mathbb{N}$, then the sequence

$$\left((-1)^{p-1} \left(\sum_{k=1}^{n} \frac{\sin k \frac{2p\pi}{2n+1}}{k} - \frac{\pi - \frac{2p\pi}{2n+1}}{2} \right) \right)_{n=p}^{\infty}$$

is decreasing.

Using Lemma 4 and Theorem 5, we get

$$\max_{\theta \in [0,\frac{\pi}{2}]} \left\{ \sum_{k=1}^{2n-1} \frac{\sin k\theta}{k} - \frac{\pi - \theta}{2} \right\} \leqslant \sum_{k=1}^{9} \frac{\sin k \frac{2\pi}{19}}{k} - \frac{\pi - \frac{2\pi}{19}}{2} = 0.282 \dots < \frac{3}{10}. \tag{4}$$

Combining (3) and (4), we have

$$-\left(1+\cos\theta\right)^{2}\sum_{k=1}^{2n-1}\frac{1}{2k-1}+\frac{1}{16}(1+\cos\theta)^{4}+\left(\frac{\pi-\theta}{2}+\frac{3}{10}\right)^{2}<0. \tag{5}$$

A similar reasoning shows that (3) is also true for $\theta \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$. The proof is complete.

Proof of assertion (C). First, we have

Lemma 6. Let
$$n \in \mathbb{N}$$
 and let $\theta \in (0,\pi)$. Then
$$S_{2n-1}(\theta) < F_n(\theta) := \frac{1}{4n-1} \left(2 \csc \frac{\theta}{2} - 1 \right) + \frac{\pi - \theta}{2}$$

and

$$C_{2n-1}(\theta) > G_n(\theta) := -\frac{2}{4n-1} \left(\csc \frac{\theta}{2} - 1 \right) + C_{2n-1}(\pi) - \ln \left(\sin \frac{\theta}{2} \right).$$

Illustration of figures. Consider the following two graphs.

Figure 1: Graphs of S_{49} and F_{25} .

Figure 2: Graphs of C_{49} and G_{25} .

Since Lemma 6 yields

$$L_{2n-1}(\theta) = -C_{2n-1}(\theta) + \frac{C_{2n-1}^{2}(\theta) + S_{2n-1}^{2}(\theta)}{2\sum_{k=1}^{2n-1} \frac{1}{k}} < -G_{n}(\theta) + \frac{G_{n}^{2}(\theta) + F_{n}^{2}(\theta)}{2\sum_{k=1}^{2n-1} \frac{1}{k}},$$
(6)

we need the following result.

Theorem 7. Let
$$n \in \mathbb{N}$$
 and $n \geqslant 5$. Then
$$-G_n + \frac{G_n^2 + F_n^2}{2\sum\limits_{k=1}^{2n-1}\frac{1}{k}} \quad \text{is increasing on } \left[\frac{2\pi}{3}, \frac{(4n-3)\pi}{4n-1}\right]$$
 and

 $-G_n\left(\frac{(4n-3)\pi}{4n-1}\right) + \frac{G_n^2\left(\frac{(4n-3)\pi}{4n-1}\right) + F_n^2\left(\frac{(4n-3)\pi}{4n-1}\right)}{2\sum_{k=1}^{2n-1}\frac{1}{k}} < R(2n-1).$

The proof is complete.

Proof of assertion (D). We have

$$L'_{2n-1}(\theta) = \frac{\sin n\theta \sin \left(n - \frac{1}{2}\right)\theta}{\sin \frac{\theta}{2} \sum_{k=1}^{2n-1} \frac{1}{k}} \left\{ \sum_{k=1}^{2n-1} \frac{1 - \cos k\theta}{k} + \cot n\theta \sum_{k=1}^{2n-1} \frac{\sin k\theta}{k} \right\}. \tag{7}$$

Last but not least, since $L_{2n-1}(\pi) = R(2n-1)$, we show that

Theorem 8. Let $n \in \mathbb{N}$. Then L_{2n-1} is increasing on the closed interval $\left[\frac{(4n-3)\pi}{4n-1}, \pi\right]$.

The proof is complete.

Conclusion

When r=1, we give an affirmative answer to Conjecture 1. Moreover, our Theorem 3, Lemma 4, Theorem 5 and Lemma 6 are useful for proving other trigonometric inequalities.

References

- [1] D. Aharonov, S. Friedland, On an inequality connected with the coefficient conjecture for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn., Ser. A 1 Math. 524 (1972), 14 p.
- [2] R.W. Barnard, U.C. Jayatilake, A.Yu. Solynin, Brannan's conjecture and trigonometric sums, Proc. Am. Math. Soc. 143 (5) (2015) 2117–2128.
- D.A. Brannan, On coefficient problems for certain power series, in: Proceedings of the Symposium on Complex Analysis, Univ. Kent, Canterbury, 1973, in: London Math. Soc. Lecture Note Ser., vol. 12, Cambridge Univ. Press, London, 1974, pp. 17–27.
- [4] J.Q. Chong, X.C. Huang, T.Y. Lee, J.T. Li, H.X. Sim, J.R. Soh, G.J. Tan, J.K.H. Tai, Some functional upper bounds for Fejér's sine polynomial, to appear in Studia Scientiarum Mathematicarum Hungarica.
- [5] J.Z.Y. Fong, T.Y. Lee, R.N. Rao and P.X. Wong, A functional bound for Young's cosine polynomial II, Publ. Math. Debrecen 96 (2020), 445–457.
- [6] T. H. Gronwall, Über die Gibbssche Erscheinung und die trigonometrischen Summen $\sin x + \frac{1}{2}\sin 2x + \ldots + \frac{1}{n}\sin nx$, Math. Ann. 72 (1912), 288–243.
- [7] Y.B. Kim, T.Y. Lee, V. S, H.X. Sim and J.K.H. Tai, A Sharp Trigonometric Double Inequality, Publ. Math. Debrecen 98 (2021), 231–242.
- [8] W. H. Young, On a certain series of Fourier, Proc. London Math. Soc., 11 (1913), 357–366.