ಭూకంపాలు(Earthquakes)

సహజ విపత్తుల్లో భూకంపాలు తీద్రమైనవి. అకస్మాత్తుగా భూమి కంపించడం వల్ల ఎర్ఫడే భూకంప తరంగాలు కొన్నివేల కిలోమీటర్ల వేగంతో డ్రయాణించడం వల్ల అధిక ఆస్తి, ప్రాణ నష్టం సంభవిస్తుంది. భూకంప తరంగాలు డ్రయాణించే వేగాన్ని బట్టి భూమి కంపించడం భవనాలు కూలడం జరుగుతుంది. భూకంపాలు పగలు, రాత్రి తేడా లేకుండా ఎప్పుడైనా సంభవించడానికి అవకాశముంది. భారతదేశంలో డ్రతిసంవత్సరం 6.0 నుంచి 8.0 మధ్య తీద్రత ఉన్న భూకంపాలు దాదాపు 96 వరకు సంభవిస్తున్నాయని అంచనా. ప్రపంచం మొత్తం విపత్తుల్లో 8 శాతం భూకంపాలు దాదాపు 96 వరకు సంభవిస్తున్నాయని అంచనా. ప్రపంచం మొత్తం విపత్తుల్లో 8 శాతం భూకంపాలదే. అత్యధికంగా పసిఫిక్ పరివేష్టిత ప్రాంతంలో 68 శాతం భూకంపాలు సంభవిస్తున్నాయి. 2001లో గుజరాత్లోని భుజ్ సమీపంలో సంభవించిన భూకంపం వల్ల దాదాపు 14 వేల మంది ప్రాణాలు కోల్పోయారు. లక్షల మంది నిర్వాసితులయ్యారు. 2010లో హైతీ దేశంలో సంభవించిన భూకంపం వల్ల దాదాపు 2 లక్షల మందికి పైగానే మరణించారు. ఇటీవలి కాలంలో సంభవించిన భూకంపాల్లో ఇదే అతి పెద్దది. మరి ఇంత నష్టాన్ని కల్గిస్తున్న భూకంపాల గురించి తెలుసుకోవాల్సిన అవసరం ఎంతైనా ఉంది.

భూకంపం అంటే?

తక్కువ తరచు దనాన్ని కల్గి ఉంటాయి.

'భూ అంతర్భాగంలో కొన్ని ప్రదేశాల్లో కలిగే ఆకస్మికమైన కదలిక లేదా అలజడి'. ఈ అలజడి వల్ల అత్యధిక శక్తి విడుదలై అది కంపన తరంగాల (Vibrate Waves) రూపంలో చుట్టు ఉన్న రాతి, భూపొరల గుండా ప్రయాణించడం వల్ల కలిగే కంపనాన్ని 'భూకంపం' అంటారు. ఇది కొద్దికాలం మాత్రమే ఉంటుంది. భూకంపం సంభవించినపుడు జరిగే నష్టం భూమి కంపించే తీవ్రతపై ఆధారపడి ఉంటుంది.

అంతర్భాగంలో చాలా లోతుగా కంపన తరంగాలు విడుదలయ్యే డ్రుదేశాన్ని 'భూకంప నాభి' లేదా 'కేంద్రం'(Focus) అంటారు. ఈ నాభికి ఎదురుగా పైన ఉండే ఉపరితల బిందును 'అధికేంద్రం' (epicentre) అంటారు. దీని వద్ద తీద్రత ఎక్కువగా ఉంటుంది. అధికేంద్రం ఉపరితలంపై కొంత స్థలాన్ని ఆక్రమించి ఉంటుంది. భూకంప నాభి లోతు పెరిగే కొద్ది భూకంపం సంభవించే ప్రాంత వైశాల్యం పెరుగుతుంది. భూకంప తీద్రత (Intensity) సమానంగా ఉండే ప్రదేశాలను కలుపుతూ ఉపరితలంపై గీసే రేఖలను సమకంపన రేఖలు (Isoseismal Lines) అంటారు.

భూకంప తరంగాలు (Seismic waves): అంతర్భాగంలో అత్యధిక శక్తి విడుదలై ఏర్పడే తరంగాలను భూకంప తరంగాలు అంటారు. ఈ తరంగాల ప్రయాణ వేగం కల్గించే నష్టం తీరును బట్టి స్థూలంగా రెండు రకాలు అవి 1. ఉపరితల తరంగాలు : వీటిని 'L' తరంగాలని అని కూడా అంటారు. భూ ఉపరితలం ద్వారా వర్తులాకారంగా ప్రయాణిస్తాయి. కాబట్టి వీటిని ఉపరితలం లేదా ర్యాలీ తరంగాలు అంటారు. వీటి వేగం సెకనుకు 4 నుంచి 4.3 కి.మీ. ఉంటుంది. వీటివల్లే అత్యధిక నష్టం కలుగుతుంది. ఇవి అధిక తరంగ ద్వైర్యం

- 2. అంతర్భాగ తరంగాలు : ఇవి భూ అంతర్భాగంలో ప్రయాణిస్తూ పరావర్తనం వక్రీభవనాలకు లోనవుతాయి. ఈ అంతర్బాగ తరంగాలను తిరిగి రెండు రకాలుగా గుర్తించారు. అవి
- 1. P (టైమరీ లేదా ప్రాథమిక) తరంగాలు : P తరంగాలు నాభి వద్ద ఉత్పత్తి అయి పయనించే దిశవైపు లోలకం లాగా ఊగుతూ ప్రయాణిస్తాయి. S తరంగాల కంటే P తరంగాల వేగం ఎక్కువగా ఉంటుంది. ఇవి సెకనుకు 5 నుంచి 13 కి.మీ. వేగంతో ప్రయాణిస్తూ భూమిపై ఒత్తిడి కల్గిస్తాయి. తరంగదైర్ఘ్యం తక్కువ. అధిక తరచుదనాన్ని కలిగి శబ్ద తరంగాలను పోలి ఉంటాయి. ఘన, ద్రవ, వాయు మాధ్యమాల్లో ప్రయాణిస్తాయి.
- 2. S (సెకండరీ లేదా ద్వితీయ) తరంగాలు : ఇవి ప్రయాణించే మార్గంలో వాలు కోణంలో ముందుకు వెనుకకు ఊగుతూ ప్రయాణిస్తాయి. కాబట్టి వీటిని తిర్యక్ తరంగాలు అంటారు. వీటి వేగం సెకనుకు 3 నుంచి 7 కి.మీ ఉంటుంది. ఇవి ప్రయాణించిన తరువాత భూమిపై విపరీతమైన నష్టం కలుగుతుంది. S- తరంగాలు ద్రవ, ఘన మాధ్యమంలో మాత్రమే ప్రయాణిస్తాయి. కాంతి తరంగాల లాగా ఉండి తక్కువ తరంగ ద్వైర్యం అధిక తరచుదనం కలవి.

గత వంద సంవత్సరాల్లో భారత్లలో వచ్చిన ప్రధాన భూ కంపాలు

ම් <u>යි</u>	ట్రదేశం	భూకంప పరిమాణ	ంం మృతులు/గాయపడినవారు
		(Magnitude)	
1819 జూన్ 16	ఖచ్, గుజరాత్	8.3	26 కి.మీ. దూరం, 3 కి.మీ వెడల్పు
1897జూన్ 12	షిల్లాంగ్, మేఘాలయ	8.7	1542
1905 ఏట్రిల్ 4	కాంగ్రా, ఇండియా	7.5	19000
1934 జనవరి 15	బీహార్, నేపాల్	8.4,	10,653
1950	అరుణాచల్ ప్రదేశ్,		
	చైనా సరిహద్దు	8.5	_
1956	అంజార్, గుజరాత్	7.0	_
1967 డిసెంబర్ 10	కోయనా	6.5	200/1500
1988 ఆగస్టు 21	బీహార్, నేపాల్ సరిహద్దు	6.4	1004 (భారతీయులు 232,
			నేపాల్ 722)/16000
1991 అక్టోబర్ 20	ఉత్తర కాశి, ఉత్తరాఖండ్	6.6	768/5066
1993 సెప్టెంబర్ 30	లాతూర్(కిల్లరి), ఉస్మాన్బాద్	6.3	9748
	మహారాడ్ష్ట		
1997 మే 22	జబల్పూర్, మధ్యప్రదేశ్	6.0,	$38/350,\ 8546$ ఇళ్ళు నేలమట్టం.
1999 మార్చి 29	చమోలి, ఉత్తర్రపదేశ్	6.9	150
2001 జనవరి26	భుజ్, గుజరాత్	7.7	14,000/1,66,000
2005	ముజఫర్బాద్, పాకిస్తాన్, జమ	7.4 ,	75000

www.sakshieducation.com

కారణాలు: భూ అంతర్భాగంలోని క్రస్ట్ (ఘన రాతిమయమైన లిథోస్పియర్) పై పొరలో వివిధ తలాల మధ్య సమతాల్యత లోపించడం, అధిక ఉష్ణోగ్రత కారణంగా జనించిన ఒత్తిడికి, భూమిలోని రాతిపొరలు స్థాన్మభంశం చెంది బలమైన షాక్ వేమ్స్ రూపంలో శక్తి విడుదలవుతుంది. దాంతో భూమి కంపిస్తుంది. దీనిని 'ప్లేట్ టెక్టోనిక్స్ సిద్ధాంతం' వివరిస్తుంది. ఈ సిద్ధాంతం ప్రకారం భూమిపై భాగంలో 60–90 కిలోమీటర్ల మేర ఉన్న దట్టమైన పొరను 'లిథోస్పియర్' (Lithosphere) అంటారు. ఇది అనేక చిన్న, పెద్ద ఫలకాల సమ్మిళితం. భూమి కింది పొరపై కదలాడే ఈ ఫలకాలనే 'మ్యాంటెల్' (Mantel) అంటారు. ఇవి నిరంతరాయంగా కదులుతూ ఒకదానితో ఒకటి కలుస్తూ, విడిపోతుంటాయి. ఇలా భూ అంతర్భాగంలో ఫలకాల తీద్ర కదలికలు, సర్దబాట్ల వల్లే భూకంపాలు సంభవిస్తాయి. దీనివల్ల విడుదలయ్యే అత్యధిక శక్తి తరంగాల రూపంలోకి మారుతుంది. ఈ తరంగాలు అత్యధిక వేగంతో ప్రయాణించి ఉపరితలాన్ని చేరుతాయి. భూకంపాలు సంభవించడానికి ఈ కింది కారణాలున్నాయి.

- 1. ఉపరితల కారణాలు (Surface causes)
- 2. అగ్నిపర్వత సంబంధ కారణాలు (Volcanic causes)
- 3. భూ సర్వబాటుకు చెందిన కారణాలు (Isostatic adjustment causes)
- 4. విరూపకారక కారణాలు (Tectonic causes)
- 5. పాతాశ సంబంధ కారణాలు (Plutonic causes)
- 1. ఉపరితల కారణాలు : వర్నాలు అధికంగా కురవడం వల్ల కొండచరియలు జారడం, మంచు విరిగిపడటం (avalanches) భూగర్భంలో అణ్వస్తాల పేలుడు, ఖనిజాన్వేషణ కోసం తవ్విన సొరంగాల కప్పుకూలడం వల్ల భూకంపాలు ఏర్పడుతాయి. ఇవి కేవలం కొన్ని ప్రాంతాలకే పరిమితం. అంత తీవ్రమైనవి కావు.
- 2. అగ్నిపర్వత సంబంధ కారణాలు : అగ్నిపర్వతాలు పేలడానికి ముందు లేదా తర్వాత ఏర్పడుతాయి. భూ అంతర్భాగంలోని శిలాద్రవం కదిలి పైకి వచ్చినపుడు భూమి లోపల కొన్నిచోట్ల శూన్యప్రదేశాలు ఏర్పడుతాయి. ఈ శూన్యప్రదేశాల మీద ఉండే శిలల బరువుకు భూమి కిందకు కుంగుతుంది. దీని వల్ల భూకంపాలు సంభవిస్తాయి. ఇవి కూడా అంత తీద్రమైనవి కావు. ఎక్కువ నష్టం ఉండదు.
- 3. భూ సర్దుబాటుకు చెందిన కారణాలు: భూమి లోపల అక్కడక్కడ జరిగే సర్దుబాట్ల వల్ల ఇవి సంభవిస్తాయి. దీనికి కారణం నదులు ఇత పరివాహక ప్రాంతాలు తీసుకువచ్చే శిథిలాలు, సముద్రం మీద నిక్షేపించబడి పొరలు వేలమీటర్ల మందం వరకు ఉండటంతో భూమిపై భారం పెరుగుతుంది. కాబట్టి అక్కడ జరిగే సర్దుబాటు వల్ల భూకంపాలు వస్తాయి.
- 4. విరూపకారక కారణాలు : భూ అంతర్భాగంలో రాతిపొరల్లో వచ్చే కదలికల వల్ల భూకంపాలు వస్తాయి. వీటిని 'విరూపకారక భూకంపాలు' అంటారు. భూకంపాలకు కారణాలను తెల్పుతూ రిట్ అనే శాస్త్రజ్ఞుడు స్థితిస్థాపక నిరోధక సిద్ధాంతం (Elastic Bound Theory) ప్రతిపాదించాడు. కాలిఫోర్నియాలో వచ్చిన భూకంపాన్ని ఆధారంగా చేసుకొని 1906లో ఆయన ఈ సిద్ధాంతం ప్రతిపాదించాడు. దీని ప్రకారం శిలలు

స్థితిస్థాపకతను కొంతవరకు మాత్రమే నిరోధించగలవు. తర్వాత శిలలు క్రమంగా వంగి పగుళ్ళు బీటలు వారుతాయి. రాతిపొరలు కదలిక వల్ల అత్యధిక పీడన శక్తి విడుదలై భూకంపం వస్తుంది.

- 5. పాతాశ సంబంధ కారణాలు : భూ ఉపరితలానికి 24 నుంచి 640 కి.మీ.ల లోతులో సంభవిస్తాయి. దీనికి కారణం అంతర్భాగంలో జరిగే రసాయనిక మార్పులు. రేడియోధార్మిక విచ్చిత్తి ఖనిజాల్లో వచ్చే మార్పులు. ఇవి చాలా అరుదుగా సంభవిస్తాయి. భూకంపాలు అవి సంభవించే లోతును బట్టి తిరిగి 3 రకాలు :
- 1. అగాధ భూకంపాలు(Deep Shallow): భూ ఉపరితలం నుంచి 300 కి.మీ కంటే ఎక్కువ లోతులో
- 2. మాధ్యమిక భూకంపాలు : 60 నుంచి 300 కి.మీ
- 3. గాధ భూకంపాలు(Shallow): ఉపరితలం నుంచి 60 కి.మీ. వరకు సంభవించేవి.

భూకంపాల తీద్రత(Intensity): భూకంప కదలికల కాలాన్ని లెక్కించే సాధనం భూకంప లేఖిని (Sysmograph).దీని ద్వారా నమోదు చేసే భూకంపాల తీద్రత చిత్రాన్ని భూకంప రేఖాచిత్రం (Sysmogram) అంటారు. భూకంప నష్టం ఆధారంగా తీద్రతను కొలవడానికి కింది స్కేళ్ళను ఉపయోగిస్తారు.

- 1.రోసీ పారెల్ స్కేల్
- 2. మెర్కల్లి స్కేల్
- 3. రిక్టర్ స్కేల్ పీటిలో మెర్కాలీ, రిక్టర్ స్కేల్ ప్రధానమైనవి.

రిక్టర్ స్కేల్ : ఇది భూకంప తీడ్రతలను చెప్పే సంవర్గమాన కొలమానం. ఈ స్కేలును అమెరికాకు చెందిన చార్లెస్ రిక్టర్ 1935లో భూకంప పరిమాణాన్ని(Magnitude) తెలుసుకోవడానికి కనుగొన్నాడు. భూకంపం వల్ల విడుదలైన శక్తి తీడ్రతను వివిధ ప్రామాణిక పరికరాల ద్వారా స్కేలు లెక్కిస్తుంది. దీనిపై సున్న నుంచి 10 వరకు రీడింగులు ఉంటాయి. ఇతను టై నైట్లో టోలిన్ అనే రసాయన పదార్థం విడుదల చేసే శక్తితో భూకంప తీవ్రతను కొలిచి విభజన చేశాడు. రిక్టర్ స్కేలుపై ఇప్పటివరకు అతి పెద్ద భూకంప తీవ్రత 8.9 (1755లో ఆస్సన్ సంభవించింది)గా నమోదైంది. అతి తక్కువ తీవ్రత –3.

2. మెర్కల్లి స్కేలు: భూకంపాలను క్రియారూపంగా కొలిచేందుకు మెర్కల్లి స్కేలు ఉపయోగిస్తారు. ఉదా। ఇళ్ళలోని వస్తువులు స్వల్పంగా కదలడం, గుడిలో గంటలు మోగడం వంటివి. దీని తీడ్రత మోర్కల్లి స్కేలు పైకి చూపిస్తుంది. ఈ తీడ్రత 12 నమోదైతే భూమిపై ఉన్న కట్టడాలు ధ్వంసమవుతాయి. ఉన్న సరస్సులు, చెరువులు, మూసుకుపోయి మరోచోట కొత్తవి ఏర్పడుతాయి. భూడ్రుదేశాల్లో తీడ్రమైన మార్పులు వస్తాయి. రష్యాలో 12 పాయింట్లు, జపాన్లో 7 పాయింట్ల స్కేలు ఉంది.

భారతదేశంలోని భూకంప తీద్రత ప్రాంతాలు :

హిమాలయ ప్రాంతం: హిమాలయ ప్రాంతంలో పర్వతోద్భేదన ప్రక్రియ వల్ల భూకంపాలు తరచుగా వస్తుంటాయి. ఈశాన్య రాష్ట్రాలు, గుజరాత్లలలో భూకంపాలు ఎక్కువగా సంభవిస్తాయి. వీటి తీవ్రత 8గా నమోదవుతుంది. ఉదా। 1985 క్వెట్జాలో సంభవించిన భూకంపం 1934 దూబ్రాలో, 1905లో కాంగ్రా మొదలైనవి.

www.sakshieducation.com

ఉత్తర మైదాన ప్రాంతం: ఇక్కడ భూకంపాలు రావడానికి హిమాలయ పర్వతాల్లో వచ్చే భూకంపాలు కారణం. ఢిల్లీ, పశ్చిమ ఉత్తరప్రదేశ్, బీహార్ ఈ ప్రాంతంలో ఉంటాయి.

దక్కన్ కోస్తాతీరం, తీరప్రాంతాలు : దక్కన్ ప్రాంతం స్థిరమైంది. అయినప్పటికీ స్థానికంగా ఉండే పరిస్థితులు ఇతర కారణాల వల్ల ఇక్కడ భూకంపాలు వస్తాయి. మద్రాస్, అహ్మదాబాద్ (1948), ఖచ్ (1956 –గుజరాత్), సూరత్, లాతూర్(1993), 2001 జనవరి 26న భుజ్ లో సంభవించినవి ప్రధాన భూకంపాలు.

ప్రపంచంలో భూకంపాలు సంభవించే ప్రాంతాలు

పసిఫిక్ పరివేష్టిత సముద్ర మండలం – 75.6 శాతం

మధ్యధరా హిమాలయ ప్రాంతం – 22.1 శాతం

అట్లాంటిక్ మండలం - 1.8 శాతం

భూకంప తీవ్రత పట్టిక

సున్నితంగా భూకంపలేఖిని, కొన్ని జంతువులు మాత్రమే గుర్తిస్తాయి.

స్వల్పంగా వేలాడే వస్తువుల కదలిక, నిశ్శబ్దంగా ఉంటే గుర్తించగలరు. ఇళ్ళలో చిన్న ప్రకంపనాలు

వస్తాయి.

బలంగా నిద్రపోయేవారు మేల్కొవడం, చెట్లు ఊగడం, కుర్పీలు, బల్లలు కింద పడిపోవడం

చాలా బలంగా గోడలు బీటలు వారి పెచ్చులు రాలడం, కొన్ని ఇళ్ళు కూలడం జరుగుతుంది

ధ్వంసంగా నేల బీటలు వారి చెక్క కట్టడాలు, రాతి కట్టడాలు కూలిపోతాయి. రైలు పట్టాలు

వంకరపోవడం

భీభత్సం నేల పగుళ్ళిచ్చి అలలవలె కదులుతుంది. భూమి కుంగడం, కట్టడాలు, భూమి లోపలికి

పోవడం, వస్తువులు చెల్లాచెదరుగా పడటం.

నష్ట నివారణ చర్యలు:

- భూకంపాలను ముందుగా పసిగట్టే వ్యవస్థలను ఏర్పరచుకోవాలి. దీని కోసం డిజిటల్ యాక్సిలో గ్రాఫ్లను ఉపయోగించాలి. వీటిని తూర్పు, ఈశాన్య రాష్ట్రాలు, హిమాలయ ప్రాంతాల్లో నెలకొల్పి, వీటిద్వారా ఎత్తయిన ప్రదేశాలపై ముందస్తు హెచ్చరికల వ్యవస్థను ఏర్పాటు చేయాలి.
- తరచుగా భూకంపాలు సంభవించే ప్రాంతాలను గుర్తించి ఆ ప్రాంతాల్లో నిరంతర నిఘా ఏర్పాటు చేయాలి. తూర్పు, పడమరలను కలుపుతూ (అసోం నుంచి గుజరాత్ వరకు) సెస్మాలాజికల్ అబ్జర్వేటర్ల నెట్వర్క్ లు ఏర్పాటు చేయాలి. భూ కదలికలను ఎల్లప్పుడూ పర్యవేక్షించేందుకు దేశవ్యాప్తంగా శాశ్వత జియోగ్రాఫికల్ పొజిషనింగ్ సిస్టం(GeographicalPositioningSystem) స్టేషన్లను ఏర్పాటు చేసుకోవాలి. దీని వల్ల

www.sakshieducation.com

భూకంపాలను ముందుగానే పసిగట్టవచ్చు.

- భూకంపాలను తట్టుకునే విధంగా ఇళ్లు, ఇతర భవనాల నిర్మాణాలు ఉండాలి. దీని కోసం భారత ప్రమాణాల సంస్థ (Bureau of Indian Standards) వెల్లడించిన ప్రమాణాలను పాటించాలి.
- భూకంపం తరచుగా సంభవించే ప్రాంతాల్లో అణు విద్యుత్ కేంద్రాలు, భారీ డ్యాంలు, విద్యుత్ ప్రాజెక్టులు
 వంటి నిర్మాణాలను చేపట్టకుండా ప్రభుత్వం జాగ్రత్తలు తీసుకోవాలి.
- నిపుణలు సూచించిన విధంగా సెస్మిక్ మైక్రోజొనేషన్ పథకం ప్రకారం నగరాలు, పట్టణాల్లో ఏ నిర్మాణం ఎక్కడ జరపాలి, దానికి ఎటువంటి డిజైన్ ఉండాలో నిర్ణయించాలి. అలాగే బలహీనమై నిర్మాణాల రక్షణకు తీసుకోవాల్సిన జాగ్రత్తలు సూచించాలి. ఇటువంటి పథకం వల్ల భూకంపాల కారణంగా జరిగే నష్టాన్ని చాలావరకు తగ్గించవచ్చు.
- భూకంపాలు ఎలా సంభవిస్తాయి, వాటి ప్రభావం, ప్రమాద సమయంలో ఎలాంటి జాగ్రత్తలు తీసుకోవాలి వంటి అంశాలపై భూ కంపాలు తరచుగా సంభవించే ప్రాంతాల్లో ప్రజలకు అవగాహన కల్పించాలి. దీని ద్వారా ఆస్తి, ప్రాణ నష్టాన్ని తగ్గించవచ్చు. శిథిలాల కింద చిక్కుకున్న వారిని తక్షణమే రక్షించడానికి సహాయక బృందాలు ఏర్పరుచుకోవాలి.
- అసాధారణ పరిస్థితులు ఎదురైతే (అంటే భూమి నుంచి మంచి నీటి ఊటలు రావడం, జంతువులు వింతగా ప్రవర్తించడం బావుల్లో నీటి మట్టం పెరగటం వంటివి) వాటిని భూకంప సంకేతంగా భావించాలి.
- ట్రమాద సమయంలో వెంటనే స్పందించే విధంగా పోలీస్ వ్యవస్థను బలోపేతం చేయాలి. తక్షణమే స్పందించి స్థానింకంగా ఉండే వనరులతో ట్రమాద స్థాయిని తగ్గించే నైపుణ్యత కల్గిన సిబ్బందిని ఏర్పాటు చేసుకోవాలి. అన్ని స్థాయిల్లో విపత్తు నిర్వహణ కేంద్రాలను నెలకొల్పి ట్రభుత్వం, ట్రభుత్వేతర సహాయ సంస్థలు, ట్రసార, ట్రచార సంస్థలు అనుక్షణం అట్రముత్తంగా ఉంటే భూ కంపాల వల్ల కలిగే ట్రమాద స్థాయి తీద్రతను చాలా వరకు తగ్గించవచ్చు.

గత వంద సంవత్సరాల్లో ప్రపంచంలో సంభవించిన భారీ భూకంప వివరాలు

ತೆ ದಿ	<u>్</u> రపదేశం	తీద్రత(Magnitude)	మృతుల సంఖ్య
1908	ಇ టම්	7.2	72,000
1915	ಇ ట 	7.0	32,610
1920	చైనా	7.8	2,00,000
1923	జపాన్	7.9	1,42,800
1927	చైనా	7.5	2,00,000
1935	పాకిస్తాన్	7.6	30,000
1939	టర్కీ	7.8	32,700
1948	తుర్కిమెనిస్థాన్, రష్యా	7.3	1,10,000
1970	చింబోట్, పెరు	7.9	70,000
1976	చైనా	7.5	2,42,769
1990	పశ్చిమ ఇరాన్	7.4	50,000
1993	ఇండియా(లాతూర్)	6.3	9,748
2001	ಇಂడಿಯా (ಗುಜರಾತ್)	7.7	13,000
2003	ఇరాన్	6.6	31,000
2004	సుమత్రా ఇండోనేషియా	9.1	2,86,000
2005	పాకిస్తాన్, ఉత్తర భారత్	7.6	86,000
2008	సూచుయాన్, చైనా	7.9	87, 587
2012	హైతీ	7.0	3,16,000
2011	జపాన్	9.0	15,703

ఆధారం: యూనైటెడ్ స్టేట్స్ జియోలాజికల్ సర్వే ప్రకారం

Earthquake Risk Mitigation Project: భూ కంపం తరచుగా సంభవించే ప్రాంతాల్లో తగిన నివారణ చర్యలు తీసుకోవడానికి 2003లో ERMPని ప్రారంభించారు. ఈ కార్యక్రమంలో భాగంగా భవన సముదాయ నిర్మాణాలు, రోడ్లు, వంతెనలు వంటి నిర్మాణాల్లో తగిన ప్రమాణాలు(Bureau of Indian Standards) పాటించేలా చర్యలు తీసుకుంటారు. కొన్ని వేల మంది ఇంజనీర్లు, ఆర్కిటెక్చర్లు, కాంట్రాక్లర్లు, తాపీపనివారికి తగిన శిక్షణనిచ్చి భూకంపాలను తట్టుకునే నిర్మాణాలు చేపడుతారు. ఆ ప్రాంతాల్లోని వివిధ జిల్లాల్లో ఆసుపత్రులను ఆధునీకీకరించి విపత్తు సమయాల్లో నాణ్యమైన వైద్యం అందేలా చూస్తారు. దీంతోపాటు భూకంపం ఫలితాలు, నష్టనివారణ చర్యలు, ఉపశమనం వంటి వాటిపై సూచనలు చేయడానికి National Core Group for Earthquake Risk Mitigation ఏర్పాటు చేశారు.

