Numerical answers to past exams

2016

2)
$$1.6 \times 10^{-11}$$
s

6)
$$3.87\mu_B$$
; $3\mu_B$; 0.8314

2015

<u>2014</u>

- 2) 68%
- 6) (111)
- 8) c) (111), (200), (220); d) 3.61 Å
- 10) b) 0.79;

<u>2013</u>

2) Bond length
$$r = r_0$$
; cohesive energy $-3U_0$

4)

hkl	2θ
100	21.61°
110	30.75°
111	37.90°

6)
$$E_F = 4.7 \text{ eV}; T_F \sim 54,000 \text{ K}$$

7) d)
$$T_i \sim 195 \text{ K}$$

2012

1)
$$R = (2)^{1/6} \sigma$$

8) b)
$$2k_BTN$$
 for energy; $C_V{\sim}2k_BN$

9) e)
$$E_F=2.1$$
 eV; $v_F=8.6 imes10^5$ m/s; f) $rac{k_F}{rac{\pi}{a}}$ \sim 98%

<u>2011</u>

1) 0.74

3)

hkl	2θ
100	25.9°
110	36.9°
111	45.6°

7) 2D: $g(\omega) \propto \omega \rightarrow C_V \propto T^2$; 1D: $g(\omega)$ independent of ω , $C_V \propto T$

8) Monovalent:
$$k_F = \frac{\sqrt{2\pi}}{a}$$

10)
$$T_i \sim 360 \text{ K}$$