Report1

PAPER NAME

Jinxi Liu

Contents

	List of Figures	2
	List of Tables	3
1	Introduction	4
2	Section2	5
	2.1 Subsection1	5
	2.2 Subsection2	
	2.3 Subsection3	6

List	of	Figures
1100	OI	I IS at CB

T	ict	α f	T_{2}	bles
Н.	บรษ	OI	1 a	nes

1 Introduction

This article discussed the false discovery rate in the settings where the ordered of hypothesis was prespecified. Paragraph2

2 Section2

2.1 Subsection1

Figure 1: A plot of the critical constants of the procedures in Theorems 3.1 (solid line), 3.2 (dashed line), and the FWER fixed sequence procedure (dotted line) for m = 20, 50, and 100.

Figure 1: Real caption to display

Figure 1 shows...

Table 1: Real caption to display

Patid	Visit	Treatment	Weight
11011	BAS	Placebo	100
11012	BAS	Metformin	120

Table 1 shows...

2.2 Subsection2

This is a list:

- This is the first item
 - ♦ sub item

title second sub

- item 3!
 - 1. list with numbers

Subsection3 2.3

Math:

For example: $E = mc^2$ or

$$a = b + c$$

$$\frac{\bar{x}}{2\hat{x}} \frac{d\sigma^2}{d\sigma}$$

 $CE: CH_4(g) \longrightarrow CO_2(g)$

$$d_(i) = 1/2 \cdot t^2$$

Brackets:

$$\left(\frac{1}{2}\right) = 0.5$$

$$\frac{1}{2} = 0.5$$

$$|-7| = 7$$

$$x^{2^3}$$

$$\sqrt{4} = 2$$

$$\sqrt{4} \neq 3$$

$$\pi \approx 3$$

$$x \times 2$$

$$\frac{1}{2} = 0.5$$

$$|-7| = 7$$

$$x^{2^3}$$

$$x^{2^3}$$

$$\sqrt{4} = 2$$

$$\sqrt{4} \neq 3$$

$$\pi \approx 3$$

$$x \times 2$$

 $\left(\frac{1}{2}\right) = 0.5$ $Pr\left(\hat{P}_i \le p_{\mu_i}\right)$ (1)

Test the equation reference: 1.

$$Pr\left(\hat{P}_i \leq p_{\mu_i}\right)$$

 p_{μ_i}

References