Implications of g_{μ} – 2 *for 3-3-1 Models*

Yoxara Sánchez Villamizar 🕞

International Institute of Physics & Physics Departament -UFRN Astroparticles and Particles Physics group

June 25, 2021

Based on:

DOI:10.1016/j.physletb.2020.135689, arXiv:2003.06440

Collaborators:

Álvaro S. de Jesus, Sergey Kovalenko, C. A. de S. Pires and Farinaldo S. Queiroz.

Overview

- Muon Anomalous Magnetic Moment
- **2** 3-3-1 Models
- **3** Contributions to $g_{\mu} 2$
- Results
- 6 Conclusions

Picture credit: Fermilab, Reidar Hahn

Muon Anomalous Magnetic Moment (a_{μ})

Picture credit: Sandbox Studio, Steve Shanabruch

Muon Anomalous Magnetic Moment (a_µ)

The Dirac equation predicts at tree level, $\overrightarrow{\mu_{\mu}} = g_{\mu} \frac{q}{2m_{\mu}} \overrightarrow{S}$. Where $g_{\mu} = 2$ is the gyromagnetic ratio, m_{μ} , q and S are the muon mass, the electric charge and the spin respectively. However, through quantum corrections at the loop $g_{\mu} \neq 2$, letting us define the Muon Anomalous Magnetic Moment as

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = 116591802(2)(42)(26) \times 10^{-11}.$$

Figure 1: Feynman diagram of the corrections to a_{μ} on SM interactions: (a) first order QED, (b) lowest-order weak, and (c) lowest-order hadronic effects. $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QCD}}$

Muon Anomalous Magnetic Moment (a_µ)

Comparing the SM prediction with the measurements from Brookhaven National Lab, we get Δa_{μ}^{-1} :

$$\Delta a_{\mu} = (261 \pm 78) \times 10^{-11} (3.3\sigma) - (2009)^{a}$$

$$\Delta a_{\mu} = (325 \pm 80) \times 10^{-11} (4.05\sigma) - (2012)^{b}$$

$$\Delta a_{\mu} = (287 \pm 80) \times 10^{-11} (3.6\sigma) - (2013)^{c}$$

$$\Delta a_{\mu} = (377 \pm 75) \times 10^{-11} (5.02\sigma) - (2015)^{d}$$

$$\Delta a_{\mu} = (313 \pm 77) \times 10^{-11} (4.1\sigma) - (2017)^{e}$$

$$\Delta a_{\mu} = (270 \pm 36) \times 10^{-11} (3.7\sigma) - (2018)^{f}$$

FERMILAB:
$$\Delta a_{\mu} = (251 \pm 59) \times 10^{-11} (4.2\sigma) - (2021)^g$$

We will explore new physics contributions to a_{μ} on the $SU(3)_C \times SU(3)_L \times U(1)_X$ gauge symmetry and will use the following a_{μ} discrepancies,

$$\Delta a_{\mu \text{Current}} = (261 \pm 78) \times 10^{-11} (3.3\sigma)$$

 $\Delta a_{\mu \text{Projected}} = (261 \pm 34) \times 10^{-11} (5\sigma)$

¹Refs: ^aPrades, Joaquim, Eduardo De Rafael, and Arkady Vainshtein., Tanabashi, Masaharu, et al.; ^bBenayoun, M., et al.; ^cBenayoun, M., et al.; ^cReshavarzi, Alexander, Daisuke Nomura, and Thomas Teubner.; ^gB. Abi, et al. (Muon g-2 Collaboration)

 $SU(3)_C \times SU(3)_L \times U(1)_X$ (3-3-1) Models

Models based on 3-3-1 gauge symmetry²:

- Minimal 3-3-1 Model^a
- 2 3-3-1 with right-handed neutrinos, $(r.h.n)^b$
- **3** 3-3-1 with neutral lepton $(3-3-1 \text{ LHN})^c$,
- Economical 3-3-1^d
- **3** 3-3-1 with exotic leptons^e,

The electric charge operator for 3-3-1 Models is,

$$\frac{Q}{e} = \frac{1}{2}(\lambda_3 + \alpha\lambda_8) + XI, \qquad \alpha = -\sqrt{3}, \pm \frac{1}{\sqrt{3}}$$

These models are quite popular because they can explain:

- neutrino masses,
- dark matter,
- meson oscillations,
- flavor violation,
- collider physics,
- among others.

where $\lambda_{3,8}$ and I are the generators of $SU(3)_C$ and $U(1)_X$, respectively.

² Refs: Pisano, F., and Vicente Pleitez.^a; Hoang Ngoc Long^b; Martinez, R., and F. Ochoa., Mizukoshi, J. K., et al. ^c; Model, Dong, P. V., et al. , R. Martínez and F. Ochoa, Dong, P. V., and H. N. Long, ^d; Ponce, William A., Juan B. Florez, and Luis A. Sanchez., Anderson, David L., and Marc Sher., Cabarcas, J. M., J. Duarte, and J-Alexis Rodriguez.^e.

The scalar sector contains between 2 or 3 scalar triplets (χ, η, ρ) to give the masses of the fermions. The 3-3-1 gauge symmetry experiences the following spontaneous symmetry breaking: $SU(3)_L \times U(1)_X \xrightarrow{\langle \chi \rangle} SU(2)_L \times U(1)_Y \xrightarrow{\langle \eta \rangle, \ \langle \rho \rangle} U(1)_Q$, with VEV different scales: $v_\chi \gg v_\eta, v_\rho$.

The fermionic sector of each 3-3-1 model contains leptonic triplets,

- Minimal 3-3-1 Model —
- ② 3-3-1 with right-handed neutrinos, (r.h.n.
- 3 3-3-1 with neutral lepton (3-3-1 LHN),
- Economical 3-3-1 Model
- **3** 3-3-1 with exotic leptons,

where a = 1, 2, 3 is the generation index and v and ℓ are the SM particles.

The fermionic sector of each 3-3-1 model contains leptonic triplets,

- Minimal 3-3-1 Model
- 2 3-3-1 with right-handed neutrinos, (r.h.n)
- 3 3-3-1 with neutral lepton (3-3-1 LHN),
- Economical 3-3-1 Model, -
- 3-3-1 with exotic leptons.

where a = 1, 2, 3 is the generation index and v^c is the r.h.n.

The fermionic sector of each 3-3-1 model contains leptonic triplets,

- Minimal 3-3-1 Model
- 2 3-3-1 with right-handed neutrinos, (r.h.n)
- **3** 3-3-1 with neutral lepton (3-3-1 LHN), –
- Economical 3-3-1 Model,
- 5 3-3-1 with exotic leptons

where a = 1, 2, 3 is the generation index and N is the heavy neutral lepton.

The fermionic sector of each 3-3-1 model contains leptonic triplets,

- Minimal 3-3-1 Model
- 2 3-3-1 with right-handed neutrinos, (r.h.n)
- **3** 3-3-1 with neutral lepton (3-3-1 LHN),
- Economical 3-3-1 Model,
- 3 3-3-1 with exotic leptons, —

$$f_{1L} = \begin{pmatrix} v_1 \\ \ell_1 \\ E_1^- \end{pmatrix}; f_{2,3L} = \begin{pmatrix} v_{2,3} \\ \ell_{2,3} \\ N_{2,3} \end{pmatrix}$$

$$\begin{array}{c}
f_{4L} = \begin{pmatrix} E_2^- \\ N_3 \\ N_4 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_5 \\ E_3^+ \\ \ell_3^+ \end{pmatrix}; \\
\ell_1^c; \ell_{23}^c; E_2^c; E_3^c
\end{array}$$

where N and E are the exotic neutral and charged leptons, respectively.

• Besides, new known gauge bosons appear, such as $U^{\pm\pm}$, W'^- , and Z'

Contributions to g_{μ} – 2 to 3-3-1 models

We make our Mathematica numerical codes of the analytical expressions to Muon Anomalous Magnetic Moment(Δa_{μ}) corresponding to the 3-3-1 Models available at https://bit.ly/2vFZLnG

Figure 2: Feynman diagrams that contribute to the $g_{\mu}-2$ in the 3-3-1 models investigated in this work. Where $U^{\pm\pm}$, W'^- , K^- , K^0 and Z' are new gauge bosons. With ϕ and ϕ^- are the neutral and singlet charged scalars fields, and correspond to the scalars χ^0 , S_2 , η_1^+ , h_1^+ , h_2^+ , and χ^+

New Physics contributions to g-2

Lindner, Manfred, Moritz Platscher, and Farinaldo S. Queiroz. "A call for new physics: the muon anomalous magnetic moment and lepton flavor violation." Physics Reports 731 (2018): 1-82. & arXiv:1403.2309

Some general expressions for Δa_{μ}

Neutral Gauge Boson Mediator:

$$\Delta a_{\mu} \left(f, Z' \right) = \frac{1}{8\pi^2} \frac{m_{\mu}^2}{M_{Z'}^2} \int_0^1 dx \sum_f \left[\frac{\left| g_{v1}^{f\mu} \right|^2 P_1^+(x) + \left| g_{a1}^{f\mu} \right|^2 P_1^-(x)}{(1-x)\left(1-\lambda_1^2 x\right) + \varepsilon_f^2 \lambda_1^2 x} \right],$$

 $P_1^{\pm} = 2x(1-x)(x-2\pm 2\varepsilon_f) + \lambda_1^2 x^2(1\mp \varepsilon_f)^2(1-x\pm \varepsilon_f), \ \varepsilon_f \equiv \frac{m_f}{m_\mu}, \ \lambda_1 \equiv \frac{m_\mu}{M_{Z'}}. \ g_{v1}^{f\mu} \ \text{and} \ g_{a1}^{f\mu} \ \text{are the vector and vector-axial coupling constants.}$

Charged Gauge Boson Mediator:

$$\Delta a_{\mu}(W') = \frac{-1}{8\pi^2} \frac{m_{\mu}^2}{M_{W'}^2} \int_0^1 dx \sum_f \frac{\left|g_{\nu 2}^{f\mu}\right|^2 P_2^+(x) + \left|g_{a2}^{f\mu}\right|^2 P_2^-(x)}{\varepsilon_f^2 \lambda_2^2 (1-x) \left(1 - \varepsilon_f^{-2} x\right) + x},$$

with
$$P_2^{\pm}=-2x^2(1+x\mp 2\varepsilon_f)+\lambda_2^2x(1-x)(1\mp \varepsilon_f)^2(x\pm \varepsilon_f)$$
, where and $\varepsilon_f\equiv \frac{m_f}{m_\mu}$, $\lambda_2\equiv \frac{m_\mu}{M_{W'}}$.

Doubly Charged Vector Boson Mediator:

$$\Delta \mathbf{a} \mu \left(U^{++} \right) = \frac{8}{8\pi^2} \frac{m_{\mu}^2}{M_U^2} \int_0^1 \mathrm{d} \mathbf{x} \sum_f \frac{\left| g_{v3}^{f \, \mu} \right|^2 P_2^+(\mathbf{x}) + \left| g_{a3}^{f \, \mu} \right|^2 P_2^-(\mathbf{x})}{\varepsilon_f^2 \lambda_4^2 (1-\mathbf{x}) \left(1 - \varepsilon_f^{-2} \mathbf{x} \right) + \mathbf{x}} - \frac{4}{8\pi^2} \frac{m_{\mu}^2}{M_U^2} \int_0^1 \mathrm{d} \mathbf{x} \sum_f \frac{\left| g_{v3}^{f \, \mu} \right|^2 P_1^+(\mathbf{x}) + \left| g_{a3}^{f \, \mu} \right|^2 P_1^-(\mathbf{x})}{(1-\mathbf{x}) (1-\lambda_4^2 \mathbf{x}) + \varepsilon_f^2 \lambda_4^2 \mathbf{x}},$$

where $\varepsilon_f \equiv \frac{m_f}{m_H}$, $\lambda_4 \equiv \frac{m_\mu}{M_H}$, and $g_{a3}^{f\mu}$ ($g_{v3}^{f\mu}$) are symmetric and anti-symmetric couplings in flavor space.

Figure 3: Overall contribution to Δa_{μ} from the 3-3-1 models. The green bands are delimited by $\Delta a_{\mu} = (261 \pm 78) \times 10^{-11} \ (3.3\sigma)$. The projected 1σ bound: $\Delta a_{\mu} < 78 \times 10^{-11} \ - \Delta a_{\mu} < 34 \times 10^{-11}$.

Model	LHC-13TeV	g-2 current	g-2 projected
Minimal 3-3-1	$M_{Z'} > 3.7 \text{ TeV}^{-1}$	$M_{Z'} > 434.5 \text{ GeV}$	$M_{Z'} > 632 \text{ GeV}$
	$M_{W'} > 3.2 \text{ TeV}^{-1}$	$M_{W'} > 646 \text{ GeV}$	$M_{W'} > 996.1 \mathrm{GeV}$
3-3-1 r.h.n	$^*M_{Z'} > 2.64 \text{ TeV}^2$	$M_{Z'} > 158 \text{ GeV}$	$M_{Z'} > 276.5 \text{ GeV}$
		$M_{W'} > 133 \text{ GeV}$	$M_{W'} > 239 \text{ GeV}$
3-3-1 LHN	$^*M_{Z'} > 2 \text{ TeV }^2$	$M_{Z'} > 160 \text{ GeV}$	$M_{Z'} > 285 \text{ GeV}$
for $M_N = 1 \text{ GeV}$		$M_{W'} > 134.3 \text{ GeV}$	$M_{W'} > 238.3 \text{ GeV}$
3-3-1 LHN	$^*M_{Z'} > 2 \text{ TeV }^2$	$M_{Z'} > 136.7 \text{ GeV}$	$M_{Z'} > 276.5 \text{ GeV}$
for $M_N = 100 \text{ GeV}$		$M_{W'} > 114.2 \text{ GeV}$	$M_{W'} > 231 \mathrm{GeV}$
Economical	$^*M_{Z'} > 2.64 \text{ TeV}^2$	$M_{Z'} > 59.3 \text{GeV}$	$M_{Z'} > 271.4 \text{ GeV}$
3-3-1		$M_{W'} > 49.5 \text{ GeV}$	$M_{W'} > 226.7 \text{ GeV}$
3-3-1 exotic leptons	$^*M_{Z'} > 2.91 \text{ TeV}^3$	$M_{Z'} > 429 {\rm GeV}$	$M_{Z'} > 693 \text{ GeV}$
for $M_N(M_E) = 10(150)$ GeV		$M_{W'} > 359 \text{ GeV}$	$M_{W'} > 579.6 \text{ GeV}$
3-3-1 exotic leptons	$^*M_{Z'} > 2.91 \text{ TeV}^3$	$M_{Z'} > 369 \text{ GeV}$	$M_{Z'} > 600 \text{ GeV}$
for $M_N(M_E) = 100(150)$ GeV		$M_{W'} > 309.1 \text{ GeV}$	$M_{W'} > 501.4 \text{ GeV}$

Table 1: Summary of the lower bounds based on our calculations. For comparison we include the LHC bounds at 13 TeV center-of-mass energy.

¹ Nepomuceno, A. A., and Bernhard Meirose, ² Lindner, Manfred, Moritz Platscher, and Farinaldo S. Queiroz., ³ Salazar, Camilo, et al.

Model	LHC-13TeV	g-2 current	g-2 projected
Minimal 3-3-1	$M_{Z'} > 3.7 \text{ TeV}^{-1}$	$M_{Z'} > 434.5 \text{ GeV}$	$M_{Z'} > 632 \text{GeV}$
	$M_{W'} > 3.2 \text{ TeV}^{-1}$	$M_{W'} > 646 \text{ GeV}$	$M_{W'} > 996.1 \mathrm{GeV}$
3-3-1 r.h.n	$^*M_{Z'} > 2.64 \text{ TeV}^2$	$M_{Z'} > 158 \text{ GeV}$	$M_{Z'} > 276.5 \text{ GeV}$
		$M_{W'} > 133 \text{ GeV}$	$M_{W'} > 239 \mathrm{GeV}$
3-3-1 LHN	$^*M_{Z'} > 2 \text{ TeV }^2$	$M_{Z'} > 160 \text{ GeV}$	$M_{Z'} > 285 \text{ GeV}$
for $M_N = 1 \text{ GeV}$		$M_{W'} > 134.3 \text{ GeV}$	$M_{W'} > 238.3 \text{ GeV}$
3-3-1 LHN	$^*M_{Z'} > 2 \text{ TeV }^2$	$M_{Z'} > 136.7 \text{ GeV}$	$M_{Z'} > 276.5 \text{ GeV}$
for $M_N = 100 \text{ GeV}$		$M_{W'} > 114.2 \text{ GeV}$	$M_{W'} > 231 \mathrm{GeV}$
Economical	$^*M_{Z'} > 2.64 \text{ TeV}^2$	$M_{Z'} > 59.3 \text{GeV}$	$M_{Z'} > 271.4 \text{ GeV}$
3-3-1		$M_{W'} > 49.5 \text{ GeV}$	$M_{W'} > 226.7 \text{ GeV}$
3-3-1 exotic leptons	$^*M_{Z'} > 2.91 \text{ TeV}^3$	$M_{Z'} > 429 \text{ GeV}$	$M_{Z'} > 693 { m GeV}$
for $M_N(M_E) = 10(150)$ GeV		$M_{W'} > 359 \text{ GeV}$	$M_{W'} > 579.6 \text{ GeV}$
3-3-1 exotic leptons	$^*M_{Z'} > 2.91 \text{ TeV}^3$	$M_{Z'} > 369 \text{ GeV}$	$M_{Z'} > 600 \text{ GeV}$
for $M_N(M_E) = 100(150)$ GeV		$M_{W'} > 309.1 \mathrm{GeV}$	$M_{W'} > 501.4 \text{ GeV}$

Table 1: Summary of the lower bounds based on our calculations. For comparison we include the LHC bounds at 13 TeV center-of-mass energy.

None of the five models investigated here can accommodate the anomaly in agreement with existing bounds.

3-3-1 LHN model augmented by an inert scalar triplet

The inert scalar triplet allows us to include $\mathcal{L} \supset y_{ab}\overline{f_a}\phi e_{bR}$, taking $y_{22}=1$. Such scalar triplet gets a mass from the quartic coupling in the scalar potential $(\lambda \phi^{\dagger}\phi \chi^{\dagger}\chi)$, after the scalar triplet χ acquires a *vev*.

Figure 4: Overall contribution of the 3-3-1 LHN Model augmented by an inert scalar triplet ϕ .

We have presented a solution to $g_{\mu} - 2$ in the context of 3-3-1 models.

Conclusions

- We concluded that none of the five models investigated here can accommodate the anomaly.
- **②** We derived robust and complementary 1σ lower mass bounds on the masses of the new gauge bosons, namely the Z' and W' bosons, that contribute to muon anomalous magnetic moment assuming the anomaly is otherwise resolved.
- The 3-3-1 models must be extended to explain the anomaly observed in the muon anomalous magnetic moment.
- We presented a plausible extension to the 3-3-1 LHN model, which features an inert scalar triplet.

PhenoBR 2021

24 - 25 de junho de 2021

Natal - RN

Evento online

Yoxara Sánchez Villamizar
International Institute of Physics & Physics Departament -UFRN Astroparticles and Particles Physics group
yoxara@ufrn.edu.br

Thank you so much for your attention!

Questions?

Figure 5: Individual contributions to Δa_{μ} from the 3-3-1 models. The green bands are delimited by $\Delta a_{\mu} = (261 \pm 78) \times 10^{-11} \ (3.3\sigma)$. The projected 1σ bound is found by requiring $\Delta a_{\mu} < 78 \times 10^{-11}$ while the bound is obtained for $\Delta a_{\mu} < 34 \times 10^{-11}$.

Gauge boson and scalar fields interactions with leptons in the 3-3-1 Models

The relevant interactions to a_{μ} are,

$$\begin{aligned} & \textbf{Minimal 3-3-1:} \quad \mathscr{L}^{CC} \supset -\frac{g}{2\sqrt{2}} \left[\overline{v} \gamma^{\mu} \left(1 - \gamma_{5} \right) C \overline{\ell}^{T} W_{\mu}^{\prime -} - \overline{\ell} \gamma^{\mu} \gamma_{5} C \overline{\ell}^{T} U_{\mu}^{--} \right], \\ & \mathscr{L}^{NC} \supset \overline{f} \gamma^{\mu} \left[g_{V}(\ell) + g_{A}(\ell) \gamma_{5} \right] f Z_{\mu}^{\prime}, \quad \mathscr{L}_{Yukawa} \supset G_{\ell} \left[\overline{\ell_{R}} v_{L} \eta_{1}^{-} + \overline{\ell_{R}^{c}} v_{L} h_{1}^{+} + \overline{\ell_{R}} v_{L} h_{2}^{+} + \overline{\ell_{R}} \ell_{L} R_{\sigma_{2}} \right] + h.c. \end{aligned}$$

Where \mathcal{L}^{CC} and \mathcal{L}^{NC} are the charged and neutral currents Lagrangians, $g_A(\ell) = \frac{g}{2c_W} \frac{\sqrt{3}\sqrt{1-4s_W^2}}{6}$, $g_V(\ell) = 3g_A(\ell)$ are the vector and axial coupling constants, $s_W = \text{sen}(\theta_W)$, $c_W = \cos(\theta_W)$, g and $G_\ell = m_\ell \sqrt{2}/v_\eta$ are coupling constants and η_1^- , h_1^+ , h_2^+ , and R_{σ_2} are the scalars fields.

3-3-1 r.h.n:
$$\mathscr{L}^{CC} \supset -\frac{g}{2\sqrt{2}} \left[\overline{v_R^c} \gamma^{\mu} (1 - \gamma_5) \overline{\ell} W_{\mu}^{\prime -} \right], \quad \mathscr{L}^{NC} \supset \overline{f} \gamma^{\mu} \left[g_V^{\prime}(\ell) + g_A^{\prime}(\ell) \gamma_5 \right] f Z_{\mu}^{\prime},$$
 $\mathscr{L}_{Yukawa} \supset G_s \overline{\mu} \mu S_2, \text{ with } G_s = m_{\mu} \sqrt{2}/(2v).$

 \mathcal{L}_{Yukawa} involving the charged scalars is essentially the same as Minimal 3-3-1 Model. G_s is a coupling contant. $g_V'(\ell) = \frac{g}{4c_W} \frac{\left(1 - 4s_W^2\right)}{\sqrt{3 - 4s_W^2}}, g_A'(\ell) = -\frac{g}{4c_W\sqrt{3 - 4s_W^2}}$ are the vector and axial coupling constants.

Gauge boson and scalar fields interactions with leptons in the 3-3-1 Models

The relevant interactions to a_{μ} are,

Economical:
$$\mathscr{L}_{Yukawa} \supset G_s \overline{\mu} \mu S_2 + G_\ell \ell_R^- v_L \eta_1^+,$$

 \mathscr{L}^{NC} and \mathscr{L}^{CC} are the same as in model 3-3-1 r.h.n. .

$$\textbf{3-3-1 L.H.N:} \ \, \boldsymbol{\mathscr{L}^{CC}} \supset -\frac{g}{\sqrt{2}} \left[\overline{N_L} \gamma^{\mu} \overline{\ell}_L W_{\mu}^{\prime -} \right], \quad \boldsymbol{\mathscr{L}_{Yukawa}} \supset G_{\ell} \overline{\ell_R} N_L h_1^- + G_{\ell} \overline{\ell_R} \nu_L h_2^+ + G_s \overline{\mu} \mu S_2$$

 \mathcal{L}^{NC} is the same as in model 3-3-1 r.h.n.

$$\begin{aligned} \textbf{3-3-1 with exotic leptons:} \ \mathscr{L} \supset & \frac{g'}{2\sqrt{3}_W c_W} \overline{\mu} \gamma_\mu \left(g_V + g_A \right) \mu Z' - \frac{g}{\sqrt{2}} \left(\overline{N_{1L}} \gamma_\mu \mu_L + \overline{\mu}_L \gamma_\mu N_{4L} \right) K_\mu^+ \\ & - \frac{g}{\sqrt{2}} \left(\overline{\mu}_L \gamma_\mu E_L \right) K_\mu^0 + h_1 \overline{\mu} \left(1 - \gamma_5 \right) N \chi^+ + h_2 \overline{\mu} E^- \chi^0 + h_3 \overline{\mu} E_2^- \chi^0 + \mathrm{H.c.} \end{aligned}$$

where χ^+ and χ^0 are scalars coming from the scalar triplets, and K_μ^+ and K_μ^0 are new gauge bosons.

$$g_V = \frac{-c_{2W} + 2s_W^2}{2}$$
, and $g_A = \frac{c_{2W} + 2s_W^2}{2}$ are the vector and vector-axial couplings.

Some general expressions for Δa_{μ}

Neutral Gauge Boson Mediator:

$$\Delta a_{\mu} \left(f, Z' \right) = \frac{1}{8\pi^2} \frac{m_{\mu}^2}{M_{Z'}^2} \int_0^1 dx \sum_f \left[\frac{\left| g_{\nu 1}^{f\mu} \right|^2 P_1^+(x) + \left| g_{a1}^{f\mu} \right|^2 P_1^-(x)}{(1-x)(1-\lambda_1^2 x) + \varepsilon_f^2 \lambda_1^2 x} \right],$$

 $P_1^{\pm} = 2x(1-x)(x-2\pm 2\varepsilon_f) + \lambda_1^2 x^2(1\mp \varepsilon_f)^2(1-x\pm \varepsilon_f), \ \varepsilon_f \equiv \frac{m_f}{m_\mu}, \ \lambda_1 \equiv \frac{m_\mu}{M_{Z'}}. \ g_{v\,1}^{f\,\mu} \ \text{and} \ g_{a\,1}^{f\,\mu} \ \text{are the vector and vector-axial coupling constants.}$ m_f is the fermion mass in the loop.

Charged Gauge Boson Mediator:

$$\Delta a_{\mu}\left(W'\right) = \frac{-1}{8\pi^{2}} \frac{m_{\mu}^{2}}{M_{W'}^{2}} \int_{0}^{1} \mathrm{d}x \sum_{f} \frac{\left|g_{v2}^{f\mu}\right|^{2} P_{2}^{+}(x) + \left|g_{a2}^{f\mu}\right|^{2} P_{2}^{-}(x)}{\varepsilon_{f}^{2} \lambda_{2}^{2}(1-x) \left(1 - \varepsilon_{f}^{-2}x\right) + x},$$

with $P_2^{\pm} = -2x^2(1+x\mp 2\varepsilon_f) + \lambda_2^2x(1-x)(1\mp \varepsilon_f)^2(x\pm \varepsilon_f)$, where and $\varepsilon_f \equiv \frac{m_f}{m_\mu}$, $\lambda_2 \equiv \frac{m_\mu}{M_{W'}}$. g_{v2} and g_{a2} are again the vector and vector-axial couplings.

General expressions for Δa_{μ}

Neutral Scalar Mediator:

$$\Delta a_{\mu}(\phi) = \frac{1}{8\pi^2} \frac{m_{\mu}^2}{M_{\phi}^2} \int_0^1 dx \sum_f \left[\frac{\left| g_{s1}^{f\mu} \right|^2 P_3^+(x) + \left| g_{p1}^{f\mu} \right|^2 P_3^-(x)}{(1-x)(1-x\lambda_3^2) + x\varepsilon_f^2 \lambda_3^2} \right], \text{ with } P_3^{\pm}(x) = x^2 (1-x\pm\varepsilon_f),$$

with $g_{s1}^{f\mu}$ and $g_{p1}^{f\mu}$ being the scalar (s) and pseudo-scalar (p) matrices in flavor space, $\varepsilon_f \equiv \frac{m_f}{m_\mu}$ and $\lambda_3 \equiv \frac{m_\mu}{M_\phi}$.

Doubly Charged Vector Boson Mediator:

$$\Delta a_{\mu} \left(U^{++} \right) = \frac{8}{8\pi^2} \frac{m_{\mu}^2}{M_U^2} \int_0^1 dx \sum_f \frac{\left| g_{v3}^{f\,\mu} \right|^2 P_2^+(x) + \left| g_{a3}^{f\,\mu} \right|^2 P_2^-(x)}{\varepsilon_f^2 \lambda_4^2 (1-x) \left(1 - \varepsilon_f^{-2} x \right) + x} - \frac{4}{8\pi^2} \frac{m_{\mu}^2}{M_U^2} \int_0^1 dx \sum_f \frac{\left| g_{v3}^{f\,\mu} \right|^2 P_1^+(x) + \left| g_{a3}^{f\,\mu} \right|^2 P_1^-(x)}{(1-x) \left(1 - \lambda_4^2 x \right) + \varepsilon_f^2 \lambda_4^2 x},$$

where $\varepsilon_f \equiv \frac{m_f}{m_{tt}}$, $\lambda_4 \equiv \frac{m_{\mu}}{M_{tt}}$, and $g_{a3}^{f\mu}$ ($g_{v3}^{f\mu}$) are symmetric and anti-symmetric couplings in flavor space.

General analytical expressions for the corrections to $g_{\mu}-2$

Physics Reports
Volume 731, 14 February 2018, Pages 1-82

A call for new physics: The muon anomalous magnetic moment and lepton flavor violation

Manfred Lindner ™. Moritz Platscher ™. Farinaldo S. Oueiroz ペ ™

New Physics Contributions to the Muon Anomalous Magnetic Moment: A Numerical Code (arXiv:1403.2309)

The corrections to g_{μ} – 2: Minimal 3-3-1 Model

The corrections to $g_{\mu} - 2$ rise from the presence of new gauge bosons U^{++}, Z' and W', and charged scalar η_1^- . The contributions for heavy bosons are given as:

$$\Delta a_{\mu} \left(U^{++} \right) \simeq -2 \frac{1}{\pi^2} \frac{m_{\mu}^2}{M_{e}^2} \left| \frac{g}{2\sqrt{2}} \right|^2$$
, with $M_U \gg m_{\mu}$

$$\Delta a_{\mu}\left(v,W'\right) \simeq \frac{1}{4\pi^2} \frac{m_{\mu}^2}{M_{W'}^2} \left|\frac{g}{2\sqrt{2}}\right|^2 \left(\frac{5}{3}\right)$$

$$\Delta a_{\mu} \left(\mu, Z'
ight) \simeq rac{-1}{4\pi^2} rac{m_{\mu}^2}{M_{Z'}^2} \left| rac{g}{2c_W} rac{\sqrt{3}\sqrt{1-4s_W^2}}{2}
ight|^2 \left(-rac{4}{27}
ight)$$

$$\Delta a_{\mu} \left(\eta_{1}^{+} \right) \simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{\eta_{1}^{+}}^{2}} \left| \frac{m_{\mu} \sqrt{2}}{2 \nu_{\eta}} \right|^{2} \left(\frac{1}{6} \right), \text{ with } M_{\eta_{1}^{+}} \gg m_{\mu}, m_{\nu_{L}}$$

The corrections to g_{μ} – 2: 3-3-1 R.H.N and 3-3-1 LHN Models

3-3-1 R.H.N Model

$$egin{aligned} \Delta a_{\mu} \left(\mu, Z'
ight) &\simeq rac{-1}{4\pi^2} rac{m_{\mu}^2}{M_Z^2} rac{1}{3} \left| -rac{g}{4c_W \sqrt{3-4s_W^2}}
ight| \left[-\left| 1-4s_W^2
ight|^2 + 5
ight] \ \Delta a_{\mu} \left(S_2
ight) &\simeq rac{1}{4\pi^2} rac{m_{\mu}^2}{M_{S_2}^2} \left(rac{m_{\mu} \sqrt{2}}{2
u_{\eta}}
ight)^2 \left[rac{1}{6} - \left(rac{3}{4} + \log \left(rac{m_{\mu}}{M_{S_2}}
ight)
ight)
ight] \end{aligned}$$

3-3-1 L.H.N Model

$$\Delta a_{\mu}\left(\mathsf{N},\mathsf{W}'
ight)\simeqrac{1}{4\pi^{2}}rac{m_{\mu}^{2}}{M_{\mathrm{W}}^{2}}\left|rac{\mathsf{g}}{2\sqrt{2}}
ight|^{2}rac{5}{3}$$

The corrections to g_{μ} – 2: 3-3-1 with exotic leptons