Instructor:

Peter M. Garfield Mondays 11am-12pm garfield@math.ucsb.edu Tuesdays 1:30-2:30PM South Hall 6510 Wednesdays 1–2PM

TAs:

Administration

Trevor Klar Wednesdays 2–3PM trevorklar@math.ucsb.edu South Hall 6431 X

Garo Sarajian Mondays 1–2PM South Hall 6431 F gsarajian@math.ucsb.edu

Sam Sehayek Wednesdays 3:30–4:30pm South Hall 6432 P ssehayek@math.ucsb.edu

© 2020 Daryl Cooper, Peter M. Garfield Please do not distribute outside of this course.

Question: At 5am the temperature is 42° F and increasing at a rate of 10° F per hour. Which of the following do you think is closest to the temperature at 5:15am?

(A) 2.5° F (B) 52° F (C) 43.5° F (D) 44.5° F (E) 5.15° F

Answer: D

Continuing this example

- Same set-up: f(x) = temperature at time x hours after midnight
 - $f(5) = 42 (42^{\circ} \text{ F at } 5:00 \text{am})$
 - f'(5) = 2
- (1) Find the equation of tangent line to y = f(x) at x = 5.

(A)
$$y = 5x + 42$$
 (B) $y = 2x + 5$ (C) $y = 2(x - 5) + 42$

$$=2x+5$$

(C)
$$y = 2(x-5) +$$

(D)
$$y-5=2(x-42)$$
 (E) $y-42=2x-5$ C

(E)
$$y - 42 = 2x - 8$$

- (2) Use this to predict the approximate temperature at 4am.

- (A) 40 (B) 41 (C) 42 (D) 43 (E) 44

- (3) The tangent line approximation is used to estimate the temperature at the following times. Which do you think is most accurate?

- (A) 4am (B) 4:50am (C) 5:25am (D) 6am (E) midnight

Tangent Line Approximation

To do a tangent line approximation:

- (i) Find the equation of the tangent line.
- (ii) Plug in the required value(s) into this equation.

Suppose f(4) = 2 and f'(4) = 3.

(a) The equation of the tangent line to y = f(x) at x = 4 is y = ?

(A)
$$4x - 14$$
 (B) $3x - 10$ (C) $2x - 6$

(D)
$$3x - 4$$
 (E) $2x - 5$

В

- (b) Use this tangent line approximation to estimate f(4.1).

(A) 2.3 (B) 1.7 (C) 2.6 (D) 1.4

- (c) Use the tangent line approximation to estimate the value of x which gives f(x) = 2.9.

(A) 4.9 (B) 4.1 (C) 2.9 (D) 4.1

Standard Estimation Problem

000000

Question: Approximate $\sqrt{26}$.

- (A) 0.1
- (B) 5.01 (C) 5.05 (D) 5.1

Hint: If $g(x) = \sqrt{x}$, then g'(25) = 1/10 and $g(25) = \sqrt{25} = 5$.

Better estimate: $\sqrt{26} \approx 5.09902$, so the error in the tangent line approximation here is

$$error \approx 5.1 - 5.09902 \approx 0.001$$

This is a percentage error of only 0.02%.

Another Example:

- f(t) = number of grams of a chemical reagent after t seconds
- We're told f(0) = 20 and f'(0) = -3

Question: Roughly how many grams are there after t seconds?

(A)
$$4 - 3t$$

(B)
$$20 - 3$$

Answer: B

Lake Cachuma (a linear approximation)

• Lake Cachuma was completed in 1950.

really completed 1953

- It originally had a capacity of 205,000 acre feet (this is volume).
- In 2010 it has a capacity of approximately 190,000 acre-feet as a result of the accumulation of silt in the reservoir.
- f(t) = capacity in acre-feet of Lake Cachuma t years after 1950.
- (1) Write down a linear approximation from this information for f(t).
- (A) 205,000 15,000t (B) 190,000 + 250t (C) 205,000 250t
 - (D) 190,000 250t (E) 190,000 125t C
- (2) Which of the following years is the best estimate for when 10% of its original capacity will have been lost due to silt?
- (B) 2032 (C) 2037 (D) 2042

Sketching some simple graphs

It's useful to be able to sketch...

(1) Quadratics

$$y = 2x^2 + 4x - 44$$
$$y = -2x^2 + 4x + 38$$

- Bowl-shaped:
 - ★ Opens up if a > 0
 - ★ Opens down if a < 0
- Model curve: $y = x^2$ Shown here!

Sketching some simple graphs

It's useful to be able to sketch...

(2) Cubics

$$y = 2x^3 - 6x - 15$$
$$y = -2x^3 + 3x^2 + 12x - 10$$

•
$$y = ax^3 + bx^2 + cx + d$$

• "S"-shaped:

★ Goes to
$$+\infty$$
 if $a > 0$

★ Goes to
$$-\infty$$
 if $a < 0$

• Model curve:
$$y = x^3$$

Shown here!

For a polynomial, the highest power of x dominates when x is big

The Derivatives of Simple Functions

The derivative of a constant is...? zero because:

- derivative = rate of change
- constants don't change
- derivative = slope
- slope = 0

So
$$\frac{d}{dx}(5) = 0$$

The derivative of a straight line is...? its slope because

• derivative = slope

So
$$\frac{d}{dx}(2x) = 2$$

Meaning of Derivatives

$$\frac{d}{dx}\left(x^2\right) = 2x$$

What this means

The slope of the graph of $y = x^2$ at x = a is 2a

derivative = rate of change = slope of graph = slope of tangent line

General Rule:

$$\frac{d}{dx}(x^2) = 2x$$
$$\frac{d}{dx}(x^3) = 3x^2$$
$$\frac{d}{dx}(x^4) = 4x^3$$

$$\frac{d}{dx}\left(x^{\mathbf{n}}\right) = \mathbf{n}x^{n-1}$$

The exponent comes out front. Then subtract one from exponent. Examples:

(1)
$$\frac{d}{dx}(x^7) =$$

- (A) $7x^7$ (B) $6x^6$ (C) $6x^7$ (D) $7x^6$ (E) 0

$$(2) \frac{d}{dx} \left(x^{-3} \right) =$$

- (A) $3x^{-2}$ (B) $-3x^{-2}$ (C) $-2x^{-4}$ (D) $-3x^{-4}$

$$\frac{d}{dx}\left(x^{\mathbf{n}}\right) = \mathbf{n}x^{n-1}$$

$$\frac{d}{dx}\left(x^{\mathbf{n}}\right) = \mathbf{n}x^{\mathbf{n}-1}$$

(3)
$$\frac{d}{dx}(x^{1/2}) =$$

(A)
$$\frac{1}{2}x^{1/2}$$

(B)
$$-\frac{1}{2}x^{-1/2}$$

(C)
$$\frac{1}{2}x^{-1/2}$$

$$\mathbf{C}$$

Rule: ALWAYS rewrite the thing you want derivative of as x^n

$$(4) \frac{d}{dx} \left(\frac{1}{x^3} \right) =$$

(A)
$$\frac{1}{3x^2}$$

(B)
$$-3x^{-2}$$

(C)
$$-3x^{-4}$$

$$(5) \frac{d}{dx} (\sqrt{x}) =$$

(A)
$$-\frac{1}{2}\sqrt{x}$$

(B)
$$\frac{1}{2}x^{-1/2}$$

(C)
$$-\frac{1}{2}x^{-1/2}$$