Bootcamp Lvl Up

Uczenie ze wzmocnieniem v2

Jakub Łyskawa

January 8, 2022

Setup środowiska

Pakiety Python:

- numpy
- tensorflow
- pyglet
- gym
- pettingzoo[mpe]

2 / 30

Uczenie ze wzmocnieniem: krótkie przypomnienie Advantage Actor-Critic - nowy algorytm MARI

Uczenie ze wzmocnieniem: krótkie przypomnienie

Proces decyzyjny Markowa

4 / 30

Proces decyzyjny Markowa - przykład

5 / 30

Proces decyzyjny Markowa - przykład

Jakub Łyskawa

Uczenie ze wzmocnieniem

Szukanie polityki decyzyjnej maksymalizującej sumę nagród otrzymywanych przez agenta.

Oznaczenia

St

Stan/obserwacja w chwili t.

at

Akcja w chwili t.

 r_t

Nagroda w chwili t.

 π

Polityka decyzyjna - rozkład prawdopodobieństwa akcji

Ważne pojęcia

Zdyskontowana suma nagród

$$R_t = \sum_{i=0} \gamma^i r_{t+i}, \gamma \in (0,1]$$

Funkcja wartości

$$V^{\pi}(s) = \mathbb{E}\left[R_t|s_t = s, \pi\right]$$

Funkcja akcji-wartości

$$Q^{\pi}(s, a) = \mathbb{E}\left[R_t | s_t = s, a_t = a, \pi\right]$$

Funkcja przewagi

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s,a)$$

9 / 30

Wybrane rodzaje algorytmów

Q-Learning

- Jeden model funkcja Q
- Polityka akcja o największej oczekiwanej zdyskontowanej sumie nagród
- Uczenie uczenie estymacji funkcji Q
- Tylko dla dyskretnych przestrzeni akcji

Wybrane rodzaje algorytmów

Q-Learning

- Jeden model funkcja Q
- Polityka akcja o największej oczekiwanej zdyskontowanej sumie nagród
- Uczenie uczenie estymacji funkcji Q
- Tylko dla dyskretnych przestrzeni akcji

Aktor-krytyk

- Dwa modele aktor i krytyk
- Aktor określa politykę
- Krytyk estymuje zdyskontowaną sumę nagród
- Aktor uczony na podstawie krytyka

Przydatne mechanizmy

Powatrzanie doświadczenia

Dane zebrane w poprzednich krokach są zapamietywane i powtarzane.

Może wymagać uwzględnienia, że zmienia się prawdopodobieństwo otrzymania takiej próbki.

Przydatne mechanizmy

Powatrzanie doświadczenia

Dane zebrane w poprzednich krokach są zapamietywane i powtarzane.

Może wymagać uwzględnienia, że zmienia się prawdopodobieństwo otrzymania takiej próbki.

ϵ -greedy exploration

Z prawdopodobieństwem ϵ akcja jest losowana z rozkładu jednostajnego z całej przestrzeni, a z $(1-\epsilon)$ jest brana najlepsza

Advantage Actor-Critic - nowy algorytm

Struktura

Aktor

 Określa rozkład prawdopodobieństwa akcji w stanie

Krytyk

• Estymator funkcji wartości

Struktura

Aktor

- Określa rozkład prawdopodobieństwa akcji w stanie
- Nauka minimalizacja $L_{\pi}(t) = -\log \pi(a_t|s_t)A(s_t, a_t)$

Krytyk

- Estymator funkcji wartości
- Nauka minimalizacja:

$$L_V(t) = (r_t + \gamma V(s_{t+1}) - V(s_t))^2$$

Struktura

Aktor

- Określa rozkład prawdopodobieństwa akcji w stanie
- Nauka minimalizacja $L_{\pi}(t) = -\log \pi(a_t|s_t)A(s_t, a_t)$
- Funkcja przewagi $A(s_t, a_t)$ estymowana przez $r_t + \gamma V(s_{t+1}) V(s_t)$

Krytyk

- Estymator funkcji wartości
- Nauka minimalizacja: $L_V(t) = (r_t + \gamma V(s_{t+1}) - V(s_t))^2$

Zbieranie danych

Agent wykonuje do T kroków w środowisku między kolejnymi krokami uczenia.

W każdym kroku uczenia podaje się zebrane dane jako batch.

Zbieranie danych

Agent wykonuje do T kroków w środowisku między kolejnymi krokami uczenia.

W każdym kroku uczenia podaje się zebrane dane jako batch.

Asynchronous Advantage Actor-Critic (A3C)

- Wiele aktorów i krytyków niezależnie zbierających dane
- Regularna synchronizacja parametrów sieci

Zbieranie danych

Agent wykonuje do *T* kroków w środowisku między kolejnymi krokami uczenia.

W każdym kroku uczenia podaje się zebrane dane jako batch.

Asynchronous Advantage Actor-Critic (A3C)

- Wiele aktorów i krytyków niezależnie zbierających dane
- Regularna synchronizacja parametrów sieci

Synchronous Advantage Actor-Critic (A2C)

- Dane zbierane na wielu środowiskach równocześnie
- Łączone w pojedynczy batch

Aktor-krytyk dla dyskretnej przestrzeni akcji

• Krytyk - jak zwykle

Aktor-krytyk dla dyskretnej przestrzeni akcji

- Krytyk jak zwykle
- Aktor sieć neuronowa z softmaxem na wyjściu

Coding time!

→ロト → □ ト → 三 ト → 三 ・ りへ○

MARL

Bardziej złożone środowisko

18 / 30

Proces decyzyjny Markowa

 Wiele agentów, każdy wykonuje akcję, każdy ma swoją obserwację, każdy ma swoją nagrodę

- Wiele agentów, każdy wykonuje akcję, każdy ma swoją obserwację, każdy ma swoją nagrodę
- Cel maksymalizacja sumy nagród dla (podzbioru) agentów

- Wiele agentów, każdy wykonuje akcję, każdy ma swoją obserwację, każdy ma swoją nagrodę
- Cel maksymalizacja sumy nagród dla (podzbioru) agentów
- Agenci mogą współpracować lub konkurować

- Wiele agentów, każdy wykonuje akcję, każdy ma swoją obserwację, każdy ma swoją nagrodę
- Cel maksymalizacja sumy nagród dla (podzbioru) agentów
- Agenci mogą współpracować lub konkurować
- Liczba agentów może się zmieniać

- Wiele agentów, każdy wykonuje akcję, każdy ma swoją obserwację, każdy ma swoją nagrodę
- Cel maksymalizacja sumy nagród dla (podzbioru) agentów
- Agenci mogą współpracować lub konkurować
- Liczba agentów może się zmieniać
- Może być ograniczona możliwość komunikacji między agentami podczas uczenia oraz podczas działania

Podejście pierwsze

Każdy agent trenowany niezależnie - Independent A2C

4□ > 4ⓓ > 4 ≧ > 4 ≧ > □ ■ ♥9

Coding time!

Podejście pierwsze

Każdy agent trenowany niezależnie

Problemy:

- Zmienia się otoczenie w którym agent działa
- Pomija wpływ innych agentów na otrzymane wyniki

Podejście drugie

Agenci trenowani razem, maksymalizując sumaryczną nagrodę

Podejście drugie

Agenci trenowani razem, maksymalizując sumaryczną nagrodę

Czy osobne modele polityki?

Podejście drugie

Agenci trenowani razem, maksymalizując sumaryczną nagrodę

Czy osobne modele polityki?

Centralized A2C

Coding time!

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Podejście drugie

Agenci trenowani razem

Problemy:

- Ciężko określić wpływ akcji agenta na nagrodę
- Pojedynczy gorsi agenci mogą "ciągnąć w dół" wszystkich

• Każdy agent ma swojego aktora i krytyka

- Każdy agent ma swojego aktora i krytyka
- Parametr $\alpha \in [0,1]$ określa wpływ innych agentów

- Każdy agent ma swojego aktora i krytyka
- ullet Parametr $\alpha \in [0,1]$ określa wpływ innych agentów
- ullet Maksymalizacja sumy nagród $ilde{r}_t^i = r_t^i + \sum_{j
 eq i} lpha r_t^j$

- Każdy agent ma swojego aktora i krytyka
- ullet Parametr $lpha \in [0,1]$ określa wpływ innych agentów
- ullet Maksymalizacja sumy nagród $ilde{r}_t^i = r_t^i + \sum_{j
 eq i} lpha r_t^j$
- ullet Wejście krytyka: $ilde{s}_t^i = [s_t^i] \cup lpha[s_t^j]_{j
 eq i}$

- Każdy agent ma swojego aktora i krytyka
- ullet Parametr $lpha \in [0,1]$ określa wpływ innych agentów
- ullet Maksymalizacja sumy nagród $ilde{r}_t^i = r_t^i + \sum_{j
 eq i} lpha r_t^j$
- Wejście krytyka: $\tilde{\mathbf{s}}_t^i = [\mathbf{s}_t^i] \cup \alpha[\mathbf{s}_t^j]_{j \neq i}$
- Można ograniczyć widoczność agentów

- Każdy agent ma swojego aktora i krytyka
- ullet Parametr $lpha \in [0,1]$ określa wpływ innych agentów
- ullet Maksymalizacja sumy nagród $ilde{r}_t^i = r_t^i + \sum_{j
 eq i} lpha r_t^j$
- ullet Wejście krytyka: $ilde{s}_t^i = [s_t^i] \cup lpha[s_t^j]_{j
 eq i}$
- Można ograniczyć widoczność agentów
- Do straty aktora dodany bonus za entropię: $\sum_{a \in A^i} \pi^i \log \pi^i(a|s_t^i)$

Coding time!

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Inne podejścia

- Niezależne agenty
- Scentralizowane uczenie
- Faktoryzacja funkcji wartości

Inne podejścia

- Niezależne agenty
- Scentralizowane uczenie
- Faktoryzacja funkcji wartości
- Konsensus

Inne podejścia

- Niezależne agenty
- Scentralizowane uczenie
- Faktoryzacja funkcji wartości
- Konsensus
- Nauka komunikacji