

# Introduction to Information Coding

#### Dr Laura Toni

l.toni@ucl.ac.uk

University College London

## **Examples of Codes**



|                 |       | X      | X      |        |        |
|-----------------|-------|--------|--------|--------|--------|
| Input<br>letter | Prob. | Code 1 | Code 2 | Code 3 | Code 4 |
| A//             | 1/2   | 0      | 0      | 1,     | 0      |
| B //            | 1/4   | 0      | 1      | 01/    | 01     |
| С               | 1/8   | 1      | 00/    | 001    | 011    |
| D               | 1/8   | 10     | 11     | 000    | 0111   |
| L(C)            |       | 1.125  | 1.25 ( | 1.75   | 1.875  |



## Problems with these codes



Code 1: Two input symbols have the same codeword

 Code 2: This problem is fixed. But suppose the decoder receives 00. What was the input? C or AA?

Codes 3 and 4 look OK. Code 3 is shorter.

Is that the best we can do?

# More Examples of Codes



| Input  | Singular | Non-sing        | U.D.       | Prefix     |
|--------|----------|-----------------|------------|------------|
| Letter |          | <i>Not</i> U.D. | Not prefix | (Instant.) |
| A      | 0        | 0               | 10         | 0          |
| В      | 0        | 010             | 00         | 10         |
| С      | 0        | 01              | 11         | 110        |
| D      | 0        | 10              | 110        | 111        |

## **Optimal Code**



$$H(x) = \sum_{x_i \in x} p(x_i) \cdot A \log_{p(x_i)} = \sum_{x_i \in x} p(x_i) \log_{p(x_i)}$$

$$H(x) = -\sum_{x_i \in x} p(x_i) \log_{p(x_i)} \qquad P(x_i)$$

$$L(x) = \sum_{x_i \in x} p(x_i) l(x_i)$$

$$L(x) \ge H(x) \le$$

$$H(x) \leq L^* < H(x)+1$$

## **Optimal Code**



**Theorem 5.3.1** The expected length L of any instantaneous D-ary code for a random variable X is greater than or equal to the entropy  $H_D(X)$ ; that is,

$$L \ge H_D(X), \tag{5.21}$$

with equality if and only if  $D^{-l_i} = p_i$ .

$$1 - \sum p_i \log_D p_i = H_D(X)$$

**Theorem 5.4.1** Let  $l_1^*, l_2^*, \ldots, l_m^*$  be optimal codeword lengths for a source distribution  $\mathbf{p}$  and a D-ary alphabet, and let  $L^*$  be the associated expected length of an optimal code ( $L^* = \sum p_i l_i^*$ ). Then

$$H_D(X) \le L^* < H_D(X) + 1.$$
 (5.33)

## **Huffman Coding Example**



Example:



- The entropy of the source is H = 1.012 bps
- Average length of this code is L = 1.25 bps
- The efficiency of the code is:

efficiency = 
$$\frac{H}{L} = \frac{1.012}{1.25} \approx 0.81$$

# Huffman Coding Example Extended

If we take pairs, get more efficient code:



- Expected length now 1.0375 bps
- Efficiency is up to 1.012/1.0375 = 0.97
- **Output** Code/decode the message: AAABAAAAACBAAABA

## **EXAMPLE**





### Outline



#### Introduction to Information compression

- Source Coding
- Information and Entropy
- Variable length coding
- Quantization

#### **Multimedia Systems**

- Image and Lossy Compression
  - Transforms
  - JPEG Quantization
  - JPEG Lossless Compression
- Video Compression
  - Motion Compensation

## Why do we need quantization?





## Scalar Quantization (SQ)



#### Input-output characteristic of a scalar quantizer



## **Example of Quantized Waveform**





## Scalar Quantization





• Uniform quantization is not always the best



# Thank You