Holger Macht <holger@homac.de>

27. Mai 2008

GreenIT: Energieverbrauch und -optimierung von PCs

- 1 Einleitung
- 2 ACPI
- 3 System als Ganzes
- 4 Systemkomponenten
- 5 Software-Strategien

- 1 Einleitung
- 2 ACP

Einleitung

- 3 System als Ganzes
- 4 Systemkomponenter
- 5 Software-Strategier

Einleitung

Warum Energie sparen?

- Steigende Energiepreise und allgemeine Energieknappkeit zwingen sowohl Heimanwender als auch Firmen nach energiesparenden Lösungen zu suchen
- Umweltschutz
- Laufzeit batteriebetriebener Systeme (Laptops, PDAs) muss maximiert werden

- 1 Einleitung
- 2 ACPI
- 3 System als Ganzes
- 4 Systemkomponenten
- 5 Software-Strategier

Advanced Power Management (APM)

- Standard f
 ür Energiesparmethoden
- Entwickelt von Intel und Microsoft
- Kontrolle liegt bei Hardware und BIOS, kaum Einflußmöglichkeiten durch das Betriebssystem
- Hardware implementiert Funktionalität:
 - Vorteil: Es funktioniert, auch über Betriebssystemgrenzen hinweg
 - Nachteile:
 - Verschiedene Hersteller implementieren die selbe Funktionalität wieder und wieder
 - Unflexibel, verschiedene Anwendungsfälle

Nachfolger ACPI

Advanced Configuration and **Power Interface Specification**

Hewlett-Packard Corporation Intel Corporation Microsoft Corporation Phoenix Technologies Ltd. Toshiba Corporation

Revision 3.0b October 10, 2006

ACPI

- Standard für Energieverwaltung und Konfiguration
- Sehr allgemein gehalten, daher viel umfangreicher als APM (insgesamt 611 Seiten)
- Kontrolle liegt im Bereich des Betriebssystems
- Definiert einheitliche Schnittstellen um Hardware anzusprechen
- Hersteller müssen nur diese Schnittstellen implementieren

Configuration and Power Interface

Spezifikation beschäftigt sich mit viel mehr als nur "Power Management"

Configuration Interface

- Steuermethoden um mit Hardware zu kommunizieren
- "Plug and Play"

Power Interface

- Systemzustände
- Schlafzustände
- Gerätezustände

ACPI System Description Tables

- Beschreiben die Schnittstellen zur Hardware
- Werden vom BIOS mitgeliefert (DSDT, FADT, SSDT, usw.)
- Enthalten sog. "Definition Blocks" für einzelne Komponenten
- AML: ACPI Machine Language
- Betriebssystem verwendet Interpreter um Tabellen zu dekodieren

ACPI

DSDT

```
Scope (\_SB)
 Device (GDCK)
 {
     Name (_HID, EisaId ("IBM0079"))
 Γ...]
     Method (_DCK, 1, NotSerialized)
 [...]
     Method (_EJO, 1, NotSerialized)
 [...]
     Method (_STA, 0, NotSerialized)
```

GreenIT: Energieverbrauch und -optimierung von PCs

- 1 Einleitung
- 2 ACP
- 3 System als Ganzes
- 4 Systemkomponenten
- 5 Software-Strategier

System betriebsfähig

G1: Sleeping

System nicht betriebsfähig, Rückkehr in aktiven Zustand jedoch schnell möglich

G2: Soft-off

ATX-Standby-Spannung

G3: Mechanical Off

Stromversorgung entfernt

Zunehmende Rückkehrzeit Abnehmender

Stromverbrauch

Schlafzustände: ACPI S1 bis S5

S0:

Entspricht globalem Zustand G0 (Working)

S1-S2: Standby

Einige Geräte befinden sich in einem Stromsparmodus

S3-S4: Suspend

- Aktiver Zustand wird gespeichert
- System wird in Stromsparmodus versetzt

S5:

Entspricht globalem Zustand G2 (Soft-off)

Holger Macht <holger@homac.de>

Abnehmender

Stromverbrauch

ACPI S3: Suspend to RAM

- Suspend, Suspend To RAM, Standby
- Aktiver Zustand wird auf flüchtigem Medium zwischengespeichert, meist RAM
- Alle Geräte werden in Stromsparmodus versetzt
- RAM wird weiterhin mit Strom versorgt
- Wenige Sekunden um Zustand S3 zu erreichen und zu aktivem Zustand zurückzukehren
- Stromverbrauch zwischen 1 und 3 Watt

ACPI S4: Suspend to Disk

- Hibernate, Suspend To Disk, Ruhemodus
- Aktiver Zustand wird auf nicht-flüchtigem Medium gesichert, meist Festplatte
- Rechner und Geräte werden komplett ausgeschaltet
- 10-60 Sekunden um diesen Zustand zu erreichen
- Stromverbrauch wie bei Soft-off oder Mechanical-Off

GreenIT: Energieverbrauch und -optimierung von PCs

Systemkomponenten

- 1 Einleitung
- 2 ACP
- 3 System als Ganzes
- 4 Systemkomponenten
- 5 Software-Strategier

Aktiver Zustand

D1-D2

Möglicherweise Funktionen deaktiviert

D3: Off

- Gerät deaktiviert, kein Stromverbrauch
- Gerät muss neu initialisiert werden

Abnehmender

Stromverbrauch

Bus-Systeme

- PCI
- PCI Express
- CardBus
- USB (Mäuse, Tastaturen, Fingerabdruck-Leser)
- IEEE 1394 (Firewire)
- usw.

Stromverbrauch

- Viele Geräte verbrauchen Strom, obwohl sie untätig sind
- Betriebssystem hat die Aufgabe, ungenutzte Geräte abzuschalten (ACPI D3)

Abnehmender

Stromverbrauch

CPU-Idle-Zustände: ACPI C0-C4

C₀

Instruktionen werden ausgeführt

C1

- Keine Instruktionen
- Zeit zum Umschalten muss für Betriebssystem transparent sein, kann also vernachlässigt werden

C2 bis Cn

- Keine Instruktionen
- Abnehmender Stromverbrauch
- Zunehmende Rückkehrzeit.

Leistungszustände: ACPI P0-Pn

Frequenzanpassung

- Moderne CPUs verfügen über Technologie ihre interne Taktfrequenz zu ändern (Intel SpeedStep, AMD PowerNow, etc.)
- In Stufen regelbar, z.B.:

P0: 1.833 GHz P1: 1.333 GHz

P2: 1.0 GHz

- Betriebssystem fordert Frequenz an, CPU verändert Spannung
- Während dem Umschalten kann die CPU kurzzeitig keine Befehle abarbeiten (bis ca. $15\mu \text{ sec}$)

Beispiel für Intel CoreDuo aus Spezifikation

C-State	P-State	Verbrauch in Watt
C1	$Pn = 1 \; GHz$	4.8
	P0 = 1.83 GHz	15.8
C2	$Pn = 1 \; GHz$	4.7
	P0 = 1.83 GHz	15.5
C3	$Pn = 1 \; GHz$	3.4
	P0 = 1.83 GHz	10.5
C4		2.2
C5		1.8

- Enorme Einsparungen in C5
- Ziel muss es also sein, so lange wie möglich "idle" zu sein
- Strategie auch bekannt als "Race to Idle"

Die optimale Frequenz

Was ist die optimale Frequenz?

Verantwortung für Frequenzwechsel liegt beim Betriebssystem:

- Frequenz zu niedrig: Möglicher Leistungsverlust
- Frequenz zu hoch: Mögliche Energieverschwendung

Entscheidungskriterium "Prozess"

Vereinfachte Einteilung in zwei Klassen:

- 1 CPU-intensive Prozesse: Viele arithmetische und logische Operationen (Prozessor-Kern)
- 2 Speicherintensive Prozesse: Viele Speicherzugriffe auf Hauptspeicher und MMU

Folgerung

- Optimale Frequenz hängt von den genutzten Ressourcen ab
- Betriebssystem braucht Kenntnis über die Art der Prozesse, die gerade aktiv sind bzw. eingeplant werden wollen
- Realisierung über sog. "Event-Counter" im Kern des Betriebssystems
- Dynamische Anpassung der Taktfrequenz an Bedürfnisse

LEDs-TFTs-externe Monitore

- Stromverbrauch abhängig von Größe, Technologie und Auflösung
- Röhrenmonitore von 50 Watt bis ca. 150 Watt
- Notebook-LCDs von ca. 3 Watt bis 15 Watt

DPMS

Display Power Management Signaling

Standard, um einen Monitor oder eingebauten Bildschirm über die Grafikkarte zu steuern

Zustände/Modi

Vier verschiedene Modi, die meist nacheinander nach Ablauf einer gewissen Zeitspanne erreicht werden

Unterstützung von...

- Monitor
- Grafikkarte
- Betriebssystem

Beispiel: 17" bis 21" Monitor

Standard der Video Electronics Standards Association (VESA)

Systemkomponenten

Spezifikation kostenpflichtig, deswegen nur Richtwerte

Modus	Richtwert	Aufwachzeit
On	< 120 <i>W</i>	0 sec
Standby	< 110 <i>W</i>	< 3 sec
Suspend	< 15 <i>W</i>	< 3 sec
Off	< 5 <i>W</i>	< 20 sec

Helligkeit

ACPI

Methoden: _BCL und_BCM

Achtung

- Großes Sparpotenzial!
- Wird häufig unterschätzt:
 - Automatisches Dimmen
 - Ambient Light Sensor

Beispiel: 12.1" LCD mit 1024x768 Pixel

- 7 Stufen
- An. hell: $\approx 4W$
- An, dunkel: $\approx 2W$

Festplatten

Festplatten

Zustände

- Aktiv
- Standby
- Sleep

Sparmöglichkeiten

- Festplatte wird nach bestimmter Zeit automatisch in Standbyoder Sleep-Modus versetzt:
 - Betriebssystem hält Daten so lang wie möglich im Puffer
 - Gefahr von Datenverlust!
 - Gefahr der Abnutzung bei Desktop-Platten
- Leistung kann oft stufenlos reguliert werden

Festplatten

Energieersparnis

- Große Einsparungen bei Desktop-Festplatten
- Notebook-Festplatten bereits optimiert
- Stromverbrauch modellabhängig: $\approx 1.5W$ bis $\approx 20W$

Beispiel: Fujitsu-Festplatte mit 80 GB (SATA)

- Volle Leistung: $\approx 2.5W$
- Stromparmodus: $\approx 1.8W$

Grafikkarten

Grafikkarten

- Grafikkarten werden immer leistungsfähiger...
- ...und verbrauchen ähnlich viel Energie wie eine CPU
- Dynamische Anpassung der Frequenz der GPU
- Reduzierung der Spannung
- Ahnlich dem Verfahren der CPU, jedoch in der Hardware selbst

WLAN-Karten

WLAN-Karten

Ansatz der IEEE 802.11 Spezifikation

- Größter Energiebedarf bei Ubertragung von Paketen
- Folge: Kurze Perioden der Übertragung, anschließend legen sich Clients schlafen

Clients: Zwei Modi

- Aktiv: Übertragung stets aktiv
- Schlafzustand: Antenne/Übertragung wird regelmäßig abgeschaltet
 - Periodisches Aufwachen
 - Überprüfung ob Pakete vorhanden sind

WLAN-Karten

Access Point (AP)

- AP kennt Zustand aller verbundener Clients (TIM)
- "Aktive" Clients: Direkte Auslieferung der Pakete
- "Schlafende" Clients: Pufferung der Pakete

Probleme

- Pufferüberlauf beim Access Point, möglicherweise erneutes Senden nötig
- Pakete kommen später an, Leistungsverlust und Verzögerungszeiten

Beispiel: Intel PRO/Wireless 3945ABG, kein Datenverkehr

- Volle Leistung: $\approx 1.15W$
- Stromsparmodus (Leistung reduziert): $\approx 0.3W$

LAN-Karten

LAN-Karten

Einsparmöglichkeiten

- Abschalten auch bei Nichtverwendung (ACPI D3)
- Ubertragungsgeschwindigkeit bei geringer Auslastung verringern (z.B. von 100 Mbps nach 10 Mbps)
- Sparpotenzial unter einem Watt

Wake On LAN (WOL)

- Möglichkeit, einen PC aus dem Ruhemodus aufzuwecken
- Oft in Verbindung mit ACPI S3 Suspend to RAM und Autosuspend
- Vor allem für Firmen mit vielen Arbeitsstationen sinnvoll

Gesamtes Sparpotenzial

Grobe Energieverteilung:

Beispiel-Laptop: Lenovo ThinkPad X60 mit Intel CoreDuo Prozessor

Komponente	Ersparnis
CPU	$\approx 11.0W$
Bildschirm	$\approx 2.0W$
Festplatte	$\approx 0.7W$
WLAN	$\approx 0.8W$
Sound-Karte	$\approx 0.5W$
USB	$\approx 0.2W$
	$\approx 15.2W$

GreenIT: Energieverbrauch und -optimierung von PCs

- 1 Einleitung
- 2 ACP
- 3 System als Ganzes
- 4 Systemkomponenten
- 5 Software-Strategien

Techniken

Techniken zum Stromsparen

Statisch

- Zur Entwicklungszeit (Software Design)
- z.B. intelligenter Algorithmus

Dynamisch

- Zur Laufzeit
- Nutzt Sparpotenzial bei wenig oder keiner Last
- Dynamic Power Management (DPM)
- z.B. Spannungs-/Frequenzanpassung bei CPUs
- z.B. Schlafzustände bei Geräten (vgl. ACPI D0-D3)

Probleme beim Wechsel in den Schlafzustand

- Es ergeben sich Verzögerungszeiten
- Kurze Energiespitzen

Techniken

Policy

Die Strategie, die bestimmt wann sich ein Gerät schlafen legt

Policy muss sicherstellen, dass

- 1 sich der Wechsel in den Schlafzustand trotz Energiespitze beim "Umschalten" lohnt
- sich die Leistungseinbußen in Grenzen halten

Time-Out

- Time-Out Wert τ (T_1 bis T_2)
- Time-Out Policy nimmt an, dass falls ein Gerät für eine bestimmte Zeit τ untätig ist, es für eine weitere Zeitspanne T_{he} (T_3 bis T_4) untätig sein wird
- **E**nergieverschwendung während Zeit τ wird in Kauf genommen

Time-Out Varianten

Statisch

Fester Wert τ , z.B. 3 Minuten bis der Bildschirm ausgeschaltet wird

Dynamisch

- Time-Out wird dynamisch an Bedürfnisse angepasst
- Meist Quotient aus τ und der letzten Idle-Periode T_{be}

$$\frac{\tau}{T_{be}}$$

Verfeinerung

Hardwareeigenschaften werden in Betracht gezogen

Policies - Strategien

Predictive ("Vorhersagend")

- Policy versucht die Dauer der nächsten Idle-Periode mittels unterschiedlicher Methoden vorherzusagen
- Anhand vergangener Idle-Perioden
- Anhand typischem Benutzerverhalten:
 - Auf kurze leistungsintensive Perioden folgen meist lange Idle-Perioden
 - Auf lange leistungsintensive Perioden folgen meist kurze Idle-Perioden

Break-Even Time

- Zeitspanne, die ein Gerät mindestens "idle" sein muss, damit es sich lohnt, es in einen Schlafzustand zu versetzen
- Berechnung aus Verzögerungszeiten und benötigter Energie beim Wechseln in den Schlafzustand

- Ist die vorhergesagte Zeitspanne länger als die Break-Even Time, wird das Gerät sofort schlafen gelegt (T_1)
- Vorteil: Eliminierung der Time-Out Periode τ
- Nachteil: Energieersparnis abhängig von der Genauigkeit der Vorhersage!

Stochastisch

- Entscheidung, wann ein Gerät in den Schlafzustand versetzt wird, beruht auf stochastischen Erkenntnissen
- Zu einem beliebigen Zeitpunkt können Anfragen eintreffen
- Diese Anfragen treffen mit einer Bestimmten Wahrscheinlichkeit ein
- So kann zu einem bestimmten Zeitpunkt entschieden werden, ob ein Gerät schlafen gelegt wird oder nicht

Zusammenfassung

- Optimale Strategie stark abhängig vom Anwendungszweck
- Benutzer sind "unberechenbar"
- Reduzierung des Energieverbrauchs hat fast immer Leistungsverlust zur Folge
- Allgemeines Ziel muss es sein, Leistungseinbußen bei maximaler Energieeinsparung so gering wie möglich zu halten

GreenIT: Energieverbrauch und -optimierung von PCs

Danke für die Aufmerksamkeit!

