RotorNet: A Scalable, Low-complexity, Optical Datacenter Network

William "Max" Mellette

Rob McGuinness, Arjun Roy, Alex Forencich, George Papen, Alex C. Snoeren, and George Porter

UC San Diego

Toward 100+ Petabit/second datacenters

Challenge: deliver (very) low-cost bandwidth at scale

- New protocols
 Load balancing, congestion control, ...
- New topologies
 Jellyfish, Longhop, Slimfly, ...
- New hardware
 Optical circuit switching, RF/optical wireless, ...
- Same switching model
 New "Rotor" switching model

RotorNet → "Future-proof" bandwidth (2× today) + simple control + ...

Don't packet switches work fine?

Packet switch capacity growth:

~ 2× / 2 years

<

Network capacity growth:

~ 2× / year

(A. Singh et al., SIGCOMM 2015)

Optical switching – benefits & barriers

Optical switching – benefits & barriers

Rotor switching model simplifies control

Rotor switches have a simpler implementation

Optical Rotor switch:

Cost and complexity scale with:

Ports

Ex. 2,048 ports: 4,096 mirrors

2,048 directions

Matchings (<< Ports)

2 mirrors 16 directions

RotorNet architecture overview

1-hop forwarding over Rotor switch

Wait for direct path:

But datacenter traffic can be sparse ...

1-hop forwarding & sparse traffic = low throughput

Wait for direct path:

Hint at improvement: network is underutilized

2-hop forwarding better for sparse traffic

Not new: Valiant ('82) & Chang et al. ('02)

Optimization: can we adapt between 1-hop and 2-hop forwarding?

RotorLB: adapting between 1 & 2-hop forwarding

RotorLB (Load Balancing) overview:

- Default to 1-hop forwarding
- Send traffic over 2 hops only when there is extra capacity
- Discover capacity using in-band pairwise protocol:

→ RotorLB is fully distributed

Throughput of forwarding approaches (256 ports)

Throughput of forwarding approaches (256 ports)

RotorNet architecture overview

How should we build a network from Rotor switches?

Rotor switch

At large scale:

- High latency:
 Sequentially step through many matchings
- Fabrication challenge:
 Monolithic Rotor switch with many matchings
- Single point of failure

Distributing Rotor matchings = lower latency

Fault tolerant

Reduced latency:

 Access matchings in parallel

Simplifies Rotor switches:

- Matchings << ports
- More scalable, less expensive

Rotor switching is feasible today

Validated feasibility of entire architecture:

(8 endpoints)

RotorLB

RotorNet topology

Optical Rotor switch

Rotor switch model

100× faster switching than crossbar

Prototype Rotor switch

RotorNet scales to 1,000s of racks

Rotor switch design point: 2,048 ports, 1,000× faster switching than crossbar

Details in: W. Mellette et al., Journal of Lightwave Technology '16

W. Mellette et al., OFC '16

- 2,048-rack data center:
 - → Latency (cycle time)
 - $= 3.2 \, \mathrm{ms}$
- Faster than 10 ms crossbar reconfiguration time
- Hybrid network for lowlatency applications

RotorNet component comparison

Network	# Packet switches	# Transceivers	# Rotor switches	Bandwidth
3:1 Fat Tree	2.6 k	103 k	0	33 %
RotorNet, 10% packet	2.3 k	84 k	128	70 %
RotorNet, 20% packet	2.5 k	96 k	128	70 %

- RotorNet delivers: Today: Bandwidth 2× less expensive
 - Future: Cost advantage grows with bandwidth
 - Benefits of optical switching without control complexity

A scalable, low-complexity optical datacenter network

RotorNet architecture:

- **RotorLB** → Distributed, high throughput
- RotorNet topology → Fast cycle time
- **Optical Rotor switch** \rightarrow More scalable
- **Rotor switching model** → Simpler control

This work was supported by the NSF and a gift from Facebook