PATENT ABSTRACTS OF JAPAN

(11)Publication number:

60-059567

(43)Date of publication of application: 05.04.1985

(51)Int.Cl.

G11B 19/247

(21)Application number: 58-166314

(71)Applicant: SONY CORP

(22)Date of filing:

09.09.1983

(72)Inventor: KIMURA SHUICHI

SANO HIDEKI

(54) SPINDLE SERVO MECHANISM HAVING FIXED LINEAR VELOCITY

(57)Abstract:

PURPOSE: To obtain required response characteristics over the inner and outer peripheries of a track and to reduce the unevenness of a linear velocity by compensating the transmission function of a servo in accordance with the revolving radius position of the track read out at a fixed linear velocity on a recording medium.

CONSTITUTION: Sound signals on a track which are successively read out by a pickup P are applied to an error detecting circuit 4 through a clock extracting circuit 1 and a signal obtained by multiplying the error signal SE by a turning radius signal Sr is applied to a driving circuit 6. The signal Sr is obtained by converting the number of pulses from a motor M by a counter circuit 11 and the driving circuit 6 controls the motor M at its revolution. Consequently, the gain or phase is compensated in accordance with the turning radius direction of a disc D, servo stability and required response characteristics are obtained over the inner and

outer peripheries of the track and the performance having a fixed linear velocity free from linear velocity unevenness due to the eccentricity or warp from the recording medium can be attained.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

學特 許 公 報(B2) 平5-27185

®Int. Cl. 5

識別記号

庁内整理番号

200公告 平成5年(1993)4月20日

G 11 B 19/247

R

6255-5D

発明の数 1 (全6頁)

線速度一定のスピンドルサーポ機構 会発明の名称

②特 顧 昭58-166314

6公 開 昭60-59567

②出 願 昭58(1983)9月9日

@昭60(1985)4月5日

@発 明 者 木 村 條

東京都品川区北品川6丁目7番35号 ソニー株式会社内

②一発 明 者 佐 野 英 樹 東京都品川区北品川6丁目7番35号 ソニー株式会社内

勿出 顧 人 ソニー株式会社 東京都品川区北品川6丁目7番35号 砂代 理 人 弁理士 土 屋 勝 外2名

審査官 松 周 Œ

99多考文献 特開 昭57-30144 (JP, A)

1

砂特許請求の範囲

1 光学式デイスクを記録/再生する光学式ピッ クアップの、記録/再生時の回転半径位置を検出 する回転半径位置検出手段と、

を生成する手段と、

前記光学式ピックアップによって得られたクロ ツク信号と基準クロツク信号とを比較して誤差信 号を出力する比較器と、

前記回転半径情報信号と、前記誤差信号とを演 10 算する演算手段とを備え、

前記演算手段からの演算結果を用いて、伝達関 数のゲインを一定にすると共に、前記光学式ディ スクを回転駆動するスピンドルモータを一定線速 スピンドルサーボ機構。

発明の詳細な説明

産業上の利用分野

本発明は、回転中心に対して信号面に同心円状 にあるいは渦巻状にトラックが形成される記録媒 20 体を、そのトラツクの内周で回転数を大きく外周 で小さくして書込みもしくは読取つているトラッ クの線速度が一定になるように回転制御する線速 度一定のスピンドルサーボ機構に関するものであ

背景技術とその問題点

2

例えば光コンパクトデイスクプレーヤにおいて は、前記線速度一定のスピンドルサーボ機構によ つて線速度一定方式 (CLV = Constant Linear Velocity) が採られているとともに、前記記録媒 前記回転半径位置に対応した回転半径情報信号 5 体となるコンパクトデイスクの信号面に形成され たトラツクの内周側から外周側へとコンパクトデ イスクの径方向に光学系ピックアップを送ること によつて記録情報を読取ることで再生が行なわれ ている。

> いま、スピンドルモータの発生トルクからコン パクトデイスクの一定線速度となる読取つている トラックのその線速度までの伝達関数Go(x)を第 1図にもとづいて考察すると、次の如くになる。

まず、慣性モーメント」をもつコンパクトディ 度で回転駆動することを特徴とする線速度一定の 15 スクDを発生トルクTのスピンドルモータMで回 転させる場合、コンパクトデイスクDの角凍度を ωとすれば、次式の微分方程式が成立する。

(∵R;機械系の粘性抵 抗)

両辺をラブラス変換し、初期値を零にすると、 スピンドルモータMの発生トルクTからコンパク トデイスクDの角速度ωまでの伝達関数G₁(x)は、

$$G_{1}(x) = \frac{1}{J \cdot S + R}$$

3

になる。

ところで、一定線速度になる読取つているトラ ツクにおけるコンパクトディスクDでの回転半径 位置r;線速度をv。とすれば、

 $v_e = r \cdot \omega$

となり、前記(1)式に代入すると、

$$T = J \cdot \frac{1}{r} \cdot \frac{dv_e}{dt} + \frac{R}{r} \cdot v_e$$

になる。

しかして、前配伝達関数Go(x)は、

$$G_0(x) = \frac{1}{J \cdot S + R} \times r$$

となつて、前記回転半径位置rに比例する。

然るに、コンパクトデイスクの信号面に形成さ 周でほぼ径120mmであることから、トラックの内 周側から外周側までの伝達関数G₀(x)のゲイン差

$$20\log \frac{120}{50} = 7.6 db$$

という大きな値となる。

したがつて、トラックの内周で必要なゲインに なるように設定してもトラックの外周では7.6db も増え、第2図のポーデ線図で示される如くに位 相余裕またはゲイン余裕がなくなつてサーボの安 25 れたピット列から構成されている。 定度が得られなくなる。また、トラックの外周で ゲインを設定するとトラックの内周ではサーボの 速応性が得られなくなる。すなわち、トラックの 内外周に亘つて所要の応答特性が得られなくな らの外乱に対して線速度むらが大きくなるという 問題点がある。

発明の目的

本発明は、このような問題点に鑑みて発明され ボの伝達関数のゲインをトラツクの回転半径位置 に応じて変化させて、記録媒体に形成されるトラ ツクの内外周に亘つて所要の応答特性が得られ て、記録媒体からの偏心あるいはそり等の外乱に ンドルサーポ機構を提供することにある。

発明の概要

本発明にかかる線速度一定のスピンドルサーボ 機構は、回転中心に対して信号面に同心円状或は

渦巻状にトラツクが形成される記録媒体を一定線 速度で回転制御する線速度一定のスピンドルサー ボ機構において、サーボの伝達関数を前記トラツ クの回転半径位置に応じて補償して、所要の応答 5 特性が前記トラックの内外周に亘つて得られるよ うに構成することを特徴とするものである。

これにより、記録媒体に形成されるトラックの 内外周に亘つてサーボの安定度および速応性の所 要の応答特性が得られて、記録媒体からの偏心あ 10 るいはそり等の外乱に対する線速度むらが少なく なる。

実施例

次に、本発明にかかる線速度一定のスピンドル サーボ機構を光コンパクトデイスクプレーヤに適 れたトラックは、その内周でほぼ径50㎜、その外 15 用した場合の具体的一実施例につき、図面を参照 しつつ説明する。

> 第3図は、所要の応答特性を得るにゲイン調整 による補償法を用いた場合のプロック回路図であ

スピンドルモータMによつて回転される記録媒 20 体の一例である円盤状のコンパクトディスクDの 信号面には、回転中心に対して同心円状にまたは 渦巻状にトラツクが形成されている。なお、トラ ツクは、記録情報になる音声情報によって変調さ

しかして、コンパクトデイスクDに形成された 前記トラツクの内周側から外周側へとコンパクト デイスクDの径方向に送られる光学系ピックアッ プPによって順次に読取られた音声情報の信号出 り、偏心あるいはそり等のコンパクトデイスクか 30 力は、クロック抽出回路部1に与えられる。そし て、抽出されたクロックは、PLL(Phase Locked Loop) 回路部 2 およびLPF(Low Pass Filter) 回路部3を通じて誤差検出回路部4に与 えられる。この誤差検出回路部4では、所定のク たものであつて、その目的とするところは、サー 35 ロック基準信号と比較して制御動作のもとになる アナログ電圧信号の誤差信号Seが形成される。

この誤差信号Seは、掛け算回路部5に与えられ て後述するアナログ電圧信号の回転半径情報信号 Stと掛け合わされる。そして、掛け合わされた信 対する線速度むらが少なくなる線速度一定のスピ 40 号は、第1のスイツチ回路部 (SW₁) を通じてド ライブ回路部6に与えられ、増巾された後にスピ ンドルモータMに与えられる。しかして、光学系 ピツクアツプPで読取つているトラックの線速度 が一定になるようにスピンドルモータMが回転制

5

御される。なお第1のスイツチ回路部SW1は、モ ータ駆動命令信号Suによつて駆動制御されて、 モータ駆動命令信号Suで"ON"状態になる。

以上の閉ループ制御系サーボでの伝達関数は、 掛け算回路部5に与えられる回転半径情報信号Sc 5 がトラックの内周である場合においていわゆる "1"であるとして、トラックの内周で必要なゲ インが得られるように設定されている。

一方、スピンドルモータMには、放射状にかつ 着されている。この回転円板8を挟むようにして 相対向させてLED等の発光線素子9Aおよびフ オトトランジスタ等の受光素子9日が配設されて いる。これら回転円板8、発光素子9Aおよび受 光素子9B等によつて、回転数検出機構が構成さ 15 れている。

しかして、スピンドルモータMが回転してコン パクトディスクDが回転されるとともに、回転円 板8が回転される。そして、スリット7を介して 子9Bで受光され、パルスが発生される。

然るに、このパルスは回転円板8に周方向に等 間隔に穿設されるスリット7によるもので、また コンパクトデイスクDはスピンドルモータMと一 とすれば、次式が成立する。

$$n = K \cdot \omega$$
 ·····(A)

(∵K;定数、ω;コンパクトデイスクDの

におけるコンパクトデイスクDでの回転半径位置 rと線速度veとの関係は、

 $v_e = r \cdot \omega$

であることから、前記(A)式を代入して

$$= r \cdot \frac{n}{k}$$

となる。

したがつて、回転半径位置 r は、

$$r = \frac{1}{n} \cdot K \cdot v_e$$

になり、定数Kおよび線速度v。が一定であること から発生パルスの周波数nに反比例することとな る。

ところで、スピンドルモータMの発生トルクT

6

から光学系ピックアップPによつて読取つている トラツクの線速度veまでの伝達関数Go(x)は、

$$G_0(x) = \frac{1}{J \cdot S + R} \times r$$

(∵」;コンパクトディスクDの慣性モ ーメント、

R;機械系の粘性抵抗)

である。したがつて、伝達関数Go(x)のゲインが 回転半径位置rに比例されることから、前記発生 周方向にスリット 7 が穿設される回転円板 8 が固 10 パルスの周波数 n を伝達関数 $G_0(x)$ に掛け合わせ るようにすれば、前記閉ルーブ制御系のゲインは 一定になる。なお、閉ループ制御系全体の伝達関 数は、伝達関数Go(x)に定数を掛け合わせたもの である。

しかして、前記パルスは波形整形回路部10で 波形整形された後に、カウンタ回路部11に与え られる。このカウンタ回路部11はタイマー回路 部12によつて一定時間t₁毎にリセットされるよ うに構成されている。そして、カウンタ回路部1 間欠的に発光素子9Aから放射される光が受光素 20 1で計数されたパルス数はリセツト後の一定時間 t₂(≤t₁) 毎にタイマー回路部 1 2 による転送命 令にもとづいてシフトレジスタ回路部13にラツ チされる。

このラツチされた発生パルスの周波数nに相当 体に回転することから、発生パルスの周波数をn 25 する計数値は、D/A変換部14に与えられ、ア ナログ電圧信号の回転半径情報信号Srに変換さ れて第2のスイッチ回路部(SW₂)の一方の入力 端子aに与えられる。この回転半径情報信号S-は、前述の如くに読取つているトラックの回転半 また、一定線速度になる読取つているトラック 30 径位置 r に反比例されて、発生パルスの周波数 n に比例されている。したがつて、読取つているト ラツクが内周である場合にはいわゆる"1"であ るとして、外周側では回転半径位置 r に反比例し て小数点以下の値となる。

> なお、第2のスイツチ回路部SW₂の他方の入力 端子bには、トラツクの内周での回転半径情報信 号Srに相応するいわゆる"1"になる一定電圧E が加えられている。そして、第2のスイツチ回路 部SW2には、遅延回路部 15を通じたモータ駆動 40 命令信号Suが与えられて駆動制御がされている。

しかして、遅延されたモータ駆動命令信号Sm が第2のスイッチ回路部SW₂に与えられるまで は、入力端子bを通じて一定電圧Eが掛け算回路 部5に与えられる。このことは、スピンドルモー

7

タMが回転開始した直後においては読取つている トラックの線速度が一定に達しておらず、回転半 径位置rに対応した回転半径情報信号Srではない ことによる。なお、モータ駆動命令信号Sxがな 与えられることになるが、モータ駆動命令信号 Suが与えられて駆動されるまでは第1のスイツ チ回路部SWiが "OFF" 状態に保たれて、前記 閉ループ制御系はオープンされているために支障 は生じない。

そして、スピンドルモータMが立ち上がつた頃 に、遅延されたモータ駆動命令信号Smにより第 2のスイッチ回路部SW₂が駆動制御されて、入力 端子aを通じて回転半径情報信号Srが掛け算回路 部5に与えられる。

以上の如くにして、読取つているトラツクのコ ンパクトデイスクDでの回転半径位置rに応じて 掛け算回路部5には、その回転半径位置 r に反比 例する前記発生パルスの周波数 n に比例した回転 半径情報信号Saが与えられて、誤差信号Saと掛け 20 合わされる。しかして、回転半径位置「に比例す る前記閉ループ制御系サーボの伝達関数に、回転 半径位置 r に反比例する回転半径情報信号Scが掛 け合わされることになりゲインは一定となる。し び速応性が得られて、所要の応答特性が得られ

なお、前記回転数検出機構としては、周波数発 電機を用いてもよい。

次に、回転数検出機構に変えて読取つているト 30 が少なくなる。 ラツクのコンパクトデイスクDでの回転半径位置 rが直接に得られるポテンションメータを用いた 変形例を、第4図にもとづいて説明する。なお、 前記実施例と同一符号は同一内容を示しており、 重複する説明は省略する。

光学系ピツクアツプPがコンパクトデイスクD の径方向に送られることにともなつて、ポテンシ ヨンメータ 16の摺動子 16 aが移動させられ る。これにより、ポテンションメータ16から直 8

接に光学系ピックアップPによつて読取つている トラックの回転半径位置ェに比例するアナログ電 圧信号の回転半径情報信号Sr'が得られる。この 回転半径情報信号Sr'は、前記実施例と異なり割 い状態においても一定電圧Eが掛け算回路部5に 5 り算回略部5′に直接に与えられ、誤差検出回路 部4からの誤差信号Sgを割るようになる。

> したがつて、回転半径位置 r に比例する前記閉 ループ制御系の伝達関数が回転半径位置 r に比例 する回転半径情報信号Sfで割られるようになり、 10 ゲインは一定となる。

> 以上においては、回転半径情報信号Sr, Sr'に もとづいて前記閉ループ制御系サーボの所要の応 答特性を得るに、ゲイン一定とするゲイン調整に よる補償法を用いたが、進み回路、遅れ回路ある 15 いは進み遅れ回路による直列補償回路によつて適 当な位相余裕を得る位相調整による直列補償を用 いてもよい。また、ゲイン調整による補償および 直列補償の両者を用いてもよい。

発明の効果

本発明は、次のような利点を有するものであ

同心円状または渦巻状に形成されるトラックの 読取つているトラックの記録媒体での回転半径位 置に比例するサーボの伝達関数を、回転半径位置 たがつて、トラツクの内外周に亘つて安定性およ 25 に応じてゲインもしくは位相または両者を補償す ることで、記録媒体に形成されるトラツクの内外 周に亘つてサーボの安定度および速応性の所要の 応答特性が得られる。したがつて、記録媒体から の偏心あるいはそり等の外乱に対する線速度むら

図面の簡単な説明

第1図および第2図夫々は背景技術とその問題 点を説明するための機械系の略図およびボーデ線 図、第3図は本発明にかかる線速度一定のスピン 35 ドルサーボ機構のブロック回路図、第4図は第2 図に対応する変形例のプロック回路図である。

なお、図面中において用いられている符号にお いて、D……コンパクトデイスク、M·····スピン ドルモータ、である。

第1図

第2図

第4図

