

INDUSTRIAL ROBOTICS

Prof. Dr.-Ing. Thomas Wich

3 - KINEMATIK

Objectives of the chapter

We want:

- Calculate where a robot moves when we set certain joint angles (forward transformation, forward kinematics)
- Calculate how we need to adjust joint angles to reach a certain position (backward transformation, inverse kinematics)

Contents of the lecture

- Structure
 - Coordinate systems
 - Reference systems
 - Transformations between reference systems
 - The Denavit-Hardenberg process
 - Inverse Kinematics / Backward Transformation

•

Coordinate systems

- Origin
 - Reference point to which the coordinates refer
 - Coordinates there take the value 0
- Unit vectors
 - Vectors of length 1 tangential to the coordinate axes
 - n vectors for n-dimensional KS
- Vectors
 - Linear combination of unit vectors

$$\overrightarrow{P^{Kart.}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$$

TECHNISCHE HOCHSCHULE LÜBECK

Koordinatensysteme

Cartesian coordinate system

$$\overrightarrow{P^{Kart.}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$$

CS	Dist.	Angles	Unit vectors	coord.
Cartesi an	3	0	$\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z}$	x, y, z

Coordinate systems

Cylinder coordinate system

CS	Dist.	Angles	Unit vectors	coord.
Cylinder	2	1	$\overrightarrow{e_r}, \ \overrightarrow{e_\phi}, \ \overrightarrow{e_z}$	r, Φ, z

Coordinate systems

Spherical Coordinate System

$$\overrightarrow{P^{Kugel}} = \begin{pmatrix} r \\ \phi \\ \theta \end{pmatrix} = r\overrightarrow{e_r} + \phi \overrightarrow{e_\phi} + \theta \overrightarrow{e_\theta}$$

CS	Dist.	Angles	Unit vectors	coord.
spheric al	1	2	$\overrightarrow{e_r}, \ \overrightarrow{e_\phi}, \ \overrightarrow{e_ heta}$	r, Φ, θ

Reference systems

- Common reference coordinates in robotics
 - World coordinates
 - Firmly connected to the surroundings
 - Base coordinates of the robot
 - Hand flange coordinates (Tool Connector Point, TCP)
 - connected to the hand flange,
 - are also moved
 - Workpiece coordinates
 - Coordinates connected to the workpiece
 - Workpiece and thus also its CS can be movable!
 - Convention: When working with coordinates and systems, always specify the reference system, e.g.:

TECHNISCHE HOCHSCHULE LÜBECK

Transformations between reference systems

- Transformations between reference Coordinate systems
 - How can a location in the workpiece KS be converted into base coordinates?
 - Transformation consists of:
 - Translation:
 - Shift of KS 1 compared to KS 0
 - Description by a vector
 - Rotation
 - Rotation of the CS 1 compared to the CS 0
 - Description by a rotation matrix
- Goal: Development of a transformation matrix that combines translation and rotation.

- 2D rotation
 - The transformation of a CS rotated by the angle φ can be represented by a simple 2 x 2 rotation matrix:
 - This allows a point P^B to be transferred to CS A:

$$T_B^A = R(\varphi) = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}$$

$$p^{A} = T_{B}^{A} p^{B} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x_{P}^{B} \\ y_{P}^{B} \end{pmatrix}$$

- 2D rotation
 - Reverse transformation from CS A to CS B:

$$T_A^B = R(\varphi)^T = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \qquad p^B = T_A^B p^A = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x_P^A \\ y_P^A \end{pmatrix}$$

• The rotation matrices $R(\phi)^T$ and $R(\phi)$ are orthonormal to each other, thus:

$$R(\varphi)^T R(\varphi) = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The determinant is 1.

- 3D rotation around an elementary axis
 - Similar to 2D rotation, the 3D rotation matrices result in simple rotations (elementary rotations)
 - Rotation around the x-axis:

$$T_B^A = R(x, \propto) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \propto & -\sin \propto \\ 0 & \sin \propto & \cos \propto \end{pmatrix}$$

Rotation around the y-axis:

$$T_B^A = R(y, \beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$$

Rotation around the z-axis:

$$T_B^A = R(z,\theta) = egin{pmatrix} \cos \theta & -\sin \theta & 0 \ \sin \theta & \cos \theta & 0 \ 0 & 0 & 1 \end{pmatrix}$$

- 3D rotation around any axis
 - Rotation matrix

$$T_B^A = R(x, \infty) = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

• Coordinate transformation of a point p from KS B to KS A:

$$p^{A} = T_{B}^{A} p^{B} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} x_{P}^{B} \\ y_{P}^{B} \\ z_{P}^{B} \end{pmatrix}$$

Back transformation:

$$p^B = T_B^{AT} p^A = T_A^B p^A$$

- Translation of coordinate systems
 - The translation corresponds to a simple addition of the displacement vector t:

$$p^A = p^B + t$$

- Problem:
 - Rotation transformation is achieved by matrix multiplication
 - Translation transformation is achieved by vector addition
 - requires several arithmetic operations
 - Reverse transformation is time-consuming to calculate
- Solution: Use of homogeneous coordinates for the closed calculation of transformations

- Homogeneous 3D translation
 - Approach: Another "virtual" coordinate is added to the matrices
 - Example: 2D Translation

$$\begin{aligned}
\tilde{p}^A &= p^B + t = \begin{pmatrix} x_P^B \\ y_P^B \end{pmatrix} + \begin{pmatrix} t_\chi \\ t_y \end{pmatrix} & \longrightarrow & \tilde{p}^A &= \tilde{T}l_B^A \tilde{p}^B = \begin{pmatrix} 1 & 0 & t_\chi \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_P^B \\ y_P^B \\ 1 \end{pmatrix}
\end{aligned}$$

Homogeneous coordinates

- Homogeneous 3D translation
 - General wording for translation (3D) $\binom{p^A}{1} = \binom{I_{3x3}}{0_{1x2}} \quad t \\ 0 \\ 1$

Homogeneous coordinates

$$\widetilde{p}^A = \begin{pmatrix} I_{3x3} & t \\ 0_{1x3} & 1 \end{pmatrix} \widetilde{p}^B$$

Translation matrix with the translation vector in homogeneous coordinates:

$$\widetilde{T}l(t) = \begin{pmatrix} I_{3x3} & t \\ 0_{1x3} & 1 \end{pmatrix}$$

- Homogeneous 3D rotation
 - Approach: the translation vector is zero, the unit matrix is replaced by the rotation matrix.

$$\tilde{R} = \begin{pmatrix} R & 0_{3x1} \\ 0_{1x3} & 1 \end{pmatrix}$$

•

Rotation with homogeneous coordinates:

•

$$\binom{p^A}{1} = \binom{R}{0_{1x3}} \quad \binom{0_{3x1}}{1} \binom{p^B}{1} = \binom{Rp^B}{1}$$

$$\tilde{p}^A = \begin{pmatrix} R & 0_{3x1} \\ 0_{1x3} & 1 \end{pmatrix} \tilde{p}^B = \tilde{R} \, \tilde{p}^B$$

- Homogeneous 3D transformation
 - Concatenation of transformations translation and rotation
 - Intermediate coordinate system KS* is created by shifting KS A around the vector t:

$$T_*^A = \widetilde{T}l(t)$$

•

 By rotating the intermediate coordinate system KS* is created by KS B:

•
$$T_B^* = \tilde{R}$$

<u>/</u>

This can be summarized to:

$$T_B^A = T_*^A T_B^* = \widetilde{T}l(t)\widetilde{R} = \begin{pmatrix} I_{3x3} & t \\ 0_{1x3} & 1 \end{pmatrix} \begin{pmatrix} R & 0_{3x1} \\ 0_{1x3} & 1 \end{pmatrix} = \begin{pmatrix} R & t \\ 0_{1x3} & 1 \end{pmatrix}$$

- Homogeneous 3D Transformation Summary
 - Homogeneous transformation matrices have the form:

$$T = \begin{pmatrix} R & t \\ 0_{1x3} & 1 \end{pmatrix}$$

Inverse transformation matrix:

$$T^{-1} = \begin{pmatrix} R^T & -R^T t \\ 0_{1x3} & 1 \end{pmatrix}$$

$$T T^{-1} = \begin{pmatrix} R & t \\ 0_{1x3} & 1 \end{pmatrix} \begin{pmatrix} R^T & -R^T t \\ 0_{1x3} & 1 \end{pmatrix} = \begin{pmatrix} I_{3x3} & 0_{3x1} \\ 0_{1x3} & 1 \end{pmatrix} = I_{4x4}$$

 Several transformations can be combined by multiplying the homogeneous transformation matrices.
 This saves computing time in the robot controller!

$$T_C^A = T_B^A T_A^B$$

Problem formulation:
 We are looking for a method with which the
 position of the TCP in the base or world
 coordinate system can be calculated if the
 joint angles of the robot are known.

 This is called the so-called forward transformation or forward kinematics.

Notes:

In the picture, the gripper tip is used instead of the TCP

• The axes bear the CS number in the supersciptum

•

- Approach (I):
- Each joint is provided with its own coordinate system
 - Thus, each member has 2 coordinate systems
- Hint:
 - the basic coordinate system and the tcp coordinate system are usually predefined

- Approach (II):
 - For each member, the DH
 Transformation parameters are determined
 to transform from the i-th to the i-1-th joint:

- Rotation around the z-axis: δ
- Translation along the x-axis: a
- Rotation around the x-axis: α

- This gives the DH transformation matrix for one member:
 - $T_i^{i-1} = \widetilde{T}l(z,d)^* \widetilde{R}(z,\delta) * \widetilde{T}l(x,a) * \widetilde{R}(x,\alpha)$

- Approach (III):
 - The DH Transformation Matrix:

$$T_i^{i-1} = \widetilde{T}l(z,d)^* \widetilde{R}(z,\delta) * \widetilde{T}l(x,a) * \widetilde{R}(x,\alpha)$$

Can be easily converted into the following form:

$$T_i^{i-1} = \begin{pmatrix} \cos \delta_i & -\sin \delta_i \cos \alpha_i & \sin \delta_i \sin \alpha_i & a_i \cos \delta_i \\ \sin \delta_i & \cos \delta_i \cos \alpha_i & -\cos \delta_i \sin \alpha_i & a_i \sin \delta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Approach (IV):
 - In total, there are four DH parameters per CS: a_i , α_i , d_i und δ_i
 - Two of the four DH parameters are always constants: a_i , α_i
 - Only one of the other parameters d_i and δ_i is a variable, this depends on the type of movement at the joint i:

• Translation: d_i variable and δ_i constant

• Rotation: d_i constant und δ_i variable

 This is the result of the DH analysis: List of individual parameters in a table:

Glied	d _i	δ_i	a _i	α_i
1				
2	***	***	***	***
3	•••	•••	***	•••
4			•••	•••
5				

25

- Approach (V):
 - The multiplication of the transformation matrices results in the overall transformation rule:

$$\begin{pmatrix} x^{0} \\ y^{0} \\ z^{0} \\ 1 \end{pmatrix} = T_{1}^{0*} T_{2}^{1*} \dots * T_{n}^{n-1} * \begin{pmatrix} x^{n} \\ y^{n} \\ z^{n} \\ 1 \end{pmatrix}$$

- Dies ist die:
 - Forward transformation or
 - Forward kinematics
 - The DH parameters are also required for backward transformation / inverse kinematics.

- The DH Process Step 1
- Analysis of the kinematic chain
 - Links are represented by strokes and by joints (T/R) together connected.
 - If necessary, "straighten" the kinematics

•

- Z-axis points in the direction of positive movement/rotation
- X-axis will be set later (if not specified)
- Y-axis can be omitted!

Links

Swivel joints

linear

axis

The Denavit-Hardenberg-Transformation

- The DH Process Step 1
 - Benennung der Gelenke und Glieder
 - Red World KS is not taken into account here
 - Enter angles and distances if necessary

Glied i

Gelenk i

The Denavit-Hardenberg-Transformation

- The DH Process Step 2
 - Naming of the links and joints:
 - On the link i are the joints i-1 and i

•

The axis z_{i-1} lies on the axis of the joint i-1

- The axis z_i lies on the axis of the joint i.
- The axis x_{i-1} is determined by the previous transformation
- Thus also the origin O_{i-1} of the i-1-th CS

•

 The position of the axis x_i is determined in the next step.

Gelenk *i* -1

Glied *i*-1

- The DH Process Step 2
 Definition of coordinate systems:
 - The axles x_i and x_{i*} lie
 on the common othogonal
 line
 of axles z_{i-1} and z_i.

- Specifying the auxiliary coordinate system (*):
 - z_{i*} is located on the z_{i-1} –axis
 - x_{i*} is located on the common othogonal line of the z-axes
 - The origin of KS O_{i*} lies at the intersection of Z_{i*} and X_{i*}
- Definition of the i-th CS:
 - O_i lies at the intersection of the z_i -Axis and the common othogonal line
 - The axis x_i is based on the extension of the common othogonal line and sticks to this direction

- The DH Process Step 2
 Definition of coordinate systems:
 - Origin of joint 2 migrates to the origin of joint 1 (special case)

•

The DH Process – Step 3

Determination of DH parameters

• d_i : Distance from O_{i-1} to O_{i*} along z_{i-1}

• δ_i : Angle of x_{i-1} to x_{i*} over z_{i-1}

• a_i : Distance from O_{i*} to O_i along x_{i*}

• \propto_i : Angle of z_{i*} to z_i over x_i

The DH Process – Step 3
 Determination of DH parameters:

Glied	d_i	δ_i	a _i	α_i
1	0	δ_1	<i>I</i> ₁	$-\pi/2$
2	0	+ $\pi/2$ + δ_2	0	$+\pi/2$
3	l_2+d_3	0	0	0

- The DH Process Step 2
 Definition of coordinate systems: special cases
 - orthogonal z-axes

- Parallel z-axes
- Extreme case: parallel z-axes lying on top of each other:
 - O_1 Suitably chosen
 - O_{1*} ins neue Koordinatensystem O_1

Summary:

- Step 1: Sketch with links, joints and zaxes
- Step 2: Definition of the (help) coordinate systems in another sketch
- Step 3: Determination of DH parameters, summary in a table
- Now the transformation matrix can be set up.

Glied	d_i	δ_i	$\boldsymbol{a_i}$	α_i
1	0	δ_1	I ₁	$-\pi/2$
2	0	$+\pi/2 + \delta_2$	0	$+\pi/2$
3	$I_2 + d_3$	0	0	0

Direct kinematics / forward kinematics:

- clearly defined (for open chains)
- to calculate analytically with the help of matrices

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} Welt = T_0^{Welt} \cdot T_3^0(\delta_1, \delta_2, d_3) \cdot T_{Wzg}^3 \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{TCP}$$

Indirect kinematics / backward kineamtics:

- non-linear system of equations → closed solutions are not always possible
- Multiple solutions may be possible
- There can be an infinite number of solutions (e.g. redundant kinematics)
- There can be no acceptable solutions
- therefore:
 - Introduction of boundary conditions
 - possibly numerical solutions

Initial problem: Inverse kinematics explained using the example:

- Mathematically speaking:
 - We are looking for the "Tool Configuration Vector" w in base coordinates, which is composed of the desired position p and the orientation R of the TCP.
 - The transfer function f depends on the joint variables q of the robot.

$$w(q) = f(q_1, q_2, ..., q_n) = f(\theta_1, \theta_2, ..., \theta_n) = {p \choose R}$$

- General approach backward transformation
- If there is a spherical wrist, then the wrist orientation R and the target position p can be calculated back to wrist position:

$$p^{wrist} = p - d * r^3$$

- d is the length of the tool
- r³ is the approach vector

- Numerical approach backward transformation
 - Determination of the zeros of the expression:

$$f(\theta_1, \theta_2, \dots, \theta_n) - {p \choose R} = 0$$

Approach, e.g. by Newton method

• Contains the partial derivatives of the TCP coordinates according to the individual joint angles (Jakobi matrix)

•

- Reverse transformation 5-axis articulated arm (Schilling Fundamentals of Robotics)
 - Kinematic model

- Reverse transformation 5-axis articulated arm
- "Tool configuration vector" w:

Vector of joint variable q:

$$q = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{pmatrix}$$

- Reverse transformation 5-axis articulated arm (Schilling Fundamentals of Robotics)
 - Determine the bases' rotation angle

$$q_1 = atan2(w_2, w_1)$$

 atan2(y,x) function is the 4-quadrant variant for the arcus-tangent function (available in most programming languages, based on the sequence of x,y)

x-value	Quadrant	atan2(y, x)
x > 0	1, 4	atan(y/x)
x = 0	1, 4	[sgn(y)] * $\pi/2$
x < 0	2, 3	atan(y/x) + [sgn(y)] * π

- Reverse transformation 5-axis articulated arm (Schilling Fundamentals of Robotics)
 - Calculation of elbow joint angle q_3
 - The total tool pitch angle corresponds to the given angle w_4

$$q_{234} = q_2 + q_3 + q_4 = w_4$$

$$q_{234} = atan2(-w_4 \cos q_1 - w_5 \sin q_1, -w_6)$$

• 2 intermediate variables are introduced:

$$b_1 = w_1 \cos q_1 + w_2 \sin q_1 - a_4 \cos q_{234} + d_5 \sin q_{234}$$
$$b_2 = d_1 - a_4 \sin q_{234} - d_5 \cos q_{234} - w_3$$

• From this, b^2 is calculated: $b^2 = b_1^2 + b_2^2$

- Reverse transformation 5-axis articulated arm (nach Schilling Fundamentals of Robotics)
 - Calculation of elbow joint angle q₃
 - and from this the joint angle q_3 :

$$q_3 = \pm a\cos\frac{b^2 - a_2^2 - a_3^2}{2a_2 \ a_3}$$

 +/- takes into account the "ellbow up"- and the "ellbow down"-variant, respectively

- Reverse transformation 5-axis articulated arm (Schilling Fundamentals of Robotics)
 - Calculation of the shoulder-joint angle q_2

$$q_2 = \operatorname{atan}((a_2 + a_3 \cos q_3)b_2 - a_3 b_1 \sin q_3, (a_2 + a_3 \cos q_3)b_1 + a_3 b_2 \sin q_3)$$

Tool pitch angle:

$$q_4 = q_{234} - q_2 - q_3$$

• Tool roll angle q_5 :

$$q_5 = \pi \ln(\sqrt{w_4^2 + w_5^2 + w_6^2})$$

 for the 5-axis articulated robot, the approach vector has to be givenin the form:

$$w = {w_p \choose w_o} {p \choose \exp\left(\frac{q_n}{\pi}\right) r_3}$$

- where w_p is the position vector and w_o describes the orientation.
- the function $f(q_n) = \exp\left(\frac{q_n}{\pi}\right) r_3$:
 - describes the roll angle based on the length of w_o
 - r_3 is the unit vector
 - is always positive
 - its inverse function is well defined:

$$f^{-1}(w) = \pi \ln(\sqrt{w_4^2 + w_5^2 + w_6^2})$$

- Reverse transformation 5-axis articulated arm (Schilling Fundamentals of Robotics)
 - Model considers general configuration as shown
 - To adapt the model to the Tinkerbot Braccio
 - Comparison of DH parameters (sign)
 - Adaptation of coordinate systems:
 - Consider different direction of rotation
 - Consider offset, especially with the tool pitch angle!

47

- Working area of the Tinkerbot Braccio (5-axis articulated arm)
- Boundary conditions:
 - Orientation of the gripper:
 - tilted by 11,25° (=pi/16) with respect to the z-axis of the base KS
 - Rotation of the hand
 Joint axis of rotation always 90°
 - Position of the gripper tip 3 mm above X-Y plane

- Result:
 - 5-axis articulated arm has a very limited working area
 - Gripper can hardly be aligned parallel to the z-axis of the base KS

200

- Analytical solutions exist e.g. for the following kinematics:
 - 5-axis articulated arm
 - Scara
 - 6-axis articulated arm
- The following references:
 - B.Siciliano, L. Sciavicco, L. Villani, G. Oriolo "Robotics: Modelling, Planning and Control, Springer 2009 Attention: different approach to DH transformation!
 - Schilling, R.J.
 "Fundamentals of Robotics", Prentice Hall 2003

Summary

- DH method forms the basis for calculating TCP position based on the joint variables
- Inverse kinematics is necessary in practical application to determine the joint variables for a TCP pose.

•