

SOMMAIRE

INTRODUCTION

FINGERPRINTING

UART INTERFACE

RADIO SNIFFING

RADIO SPOOFING

REVERSE & VULNERABILITY SEARCH

BUFFER OVERFLOW EXPLOIT

INTRODUCTION

FINGERPRINTING

Where do we start?

CHALLENGE 1: What is the reference of the microchip of the drone and its architecture?

CHALLENGE 2: What communication/debug interfaces are present on the drone?

UART INTERFACE

CHALLENGE 3: What information is leaking on UART?

- Drone Potensic A20
- Logic analyser
- ➤ Logic 2

RADIO INTERFACE

CHALLENGE 4: On which radio channels the remote is communicating?

- Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+

RADIO INTERFACE

CHALLENGE 4: On which radio channels the remote is communicating?

PINING

Hardsploit signal	Harsploit pin number	NRF signal
SPI_CLK	pin A0	SCK
SPI_CS	pin A1	CSN
SPI_MOSI	pin A2	MOSI
SPI_MISO	pin A3	MISO
SPI_PULSE	pin A4	CE

NRF24L01 pinout

TOP VIEW		BOTTOM VIEW		
GND	3.3V		3.3V	GND
CE	CSN		CSN	CE
sck	MOSI		MOSI	scĸ
міѕо	IRQ		IRQ	MISO

RADIO INTERFACE

CHALLENGE 5: What is the address of trainer's controller?

CHALLENGE 6: How does pairing work between the drone and the controller?

MATERIEL

- Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+

RADIO SPOOFING

CHALLENGE 7: Find the take off command

- Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+

REVERSE & VULNERABILITY SEARCH

CHALLENGE 8: Extract the firmware of the drone

MATERIEL

- Drone Potensic A20
- ➤ STLINK-V2
- > OpenOCD

REVERSE & VULNERABILITY SEARCH

CHALLENGE 9: Find the address of the RF-UART monitoring function

GEAR

- Drone firmware
- Ghidra
- PAN2025B datasheet

Several ways to do it (at least 3!)

REVERSE & VULNERABILITY SEARCH

CHALLENGE 10: Find the address of the vulnerable function

GEAR

- Drone firmware
- Ghidra

Think about the most classic vulnerability in C developpement

CHALLENGE 11: Find the address where the RF payload is first stored in RAM

CHALLENGE 12: Find the address where the RF payload is copied in the stack

- Potensic A20
- Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+
- ➤ STLINK-V2
- OpenOCD
- Gdb-multiarch

CHALLENGE 13: Find the address where the targeted Link Register is stored

- Potensic A20
- > Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+
- ➤ STLINK-V2
- OpenOCD
- Gdb-multiarch

CHALLENGE 14: Find the payload to perform a buffer overflow on the target function @0x6788

- Potensic A20
- Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+
- ➤ STLINK-V2
- OpenOCD
- Gdb-multiarch

CHALLENGE 15: Manage to print "Expert overflow" on the UART

- Potensic A20
- Hardsploit
- Hardsploit RF_tool_stud.py
- ➤ NRF24L01+
- ➤ STLINK-V2
- OpenOCD
- Gdb-multiarch
- Logic analyser
- ➤ Logic 2

SERMA

SAFETY & SECURITY

14, rue Galilée 33600 PESSAC

05 57 26 08 88

contact-s3@serma.com

NATHALIE MONEY

DIRECTRICE COMMERCIALE CYBERSÉCURITÉ & SAFETY

+33 (0)6 20 52 04 87 N.MONEY@SERMA.COM

FRANÇOIS-XAVIER DUPLA

RESPONSABLE COMMERCIAL LABORATOIRE DE SÉCURITÉ

+33 (0)6 74 95 98 99 FX.DUPLA@SERMA.COM

RESPONSABLE LABORATOIRE DE SÉCURITÉ

+33 (0)6 68 36 94 32 L.AGULHON@SERMA.COM

MICHEL DUFRESNE

RESPONSABLE SÛRETÉ DE FONCTIONNEMENT / CYBERSÉCURITÉ INDUSTRIELLE ET EMBARQUÉE

+33 (0)6 72 77 59 06 M.DUFRESNE@SERMA.COM

SERVET IDRIZI

RESPONSABLE SOC/AUDIT TECHNIQUE

+33 (0)6 44 66 00 99 S.IDRIZI@SERMA.COM

SYLVAIN METAIS

RESPONSABLE INTÉGRATION / MATÉRIEL

+33 (0)6 98 28 27 62 S.METAIS@SERMA.COM

GEORGES HANNA

RESPONSABLE GOUVERNANCE RISQUE ET CONFORMITÉ

+33 (0)6 21 52 86 65 G.HANNA@SERMA.COM

