Tallsystemer

Hva er et tallsystem?

- Vi bruker tall hver dag (penger, klokke, målinger)
- Vanligst: titallsystemet (desimal)
- Andre systemer finnes → viktige i IT og media
- Spørsmål: "Hvilke tallsystemer tror dere vi bruker i hverdagen?"

1	1
10	2
101	5
1010	10
101010	42
1100100	100
1001001100111	4711

Tallsystemer

- Hverdagslige tallsystemer
 - Titallsystemet (desimal) → penger, antall, målinger
 - Sekstitallsystemet (60-tall) → klokke (60 sekunder i et minutt, 60 minutter i en time)
 - Tosystemet (binært) → skjult i datamaskiner og mobiltelefoner (alt data lagres i 0 og 1)

Ekstra for de mer interesserte

- Heksadesimal (16-tallssystemet) → farger i design (#FF0000 = rød),
- IP/MAC-adresserBase64 → YouTube-video-IDer, koder
- Tallsystem i musikk → noter og takt kan også ses som "systemer"

Titallsystemet (desimal)

- Består av sifrene 0–9
- Posisjonsbasert: hver posisjon = ×10 mer enn til høyre
- Eksempel:
 - 123 = 1 hundre + 2 tiere + 3 enere
 - 4078 = ?
 - ...

Totallsystemet (binært)

- Brukes av datamaskiner
- Kun 0 og 1 (av/på)
- Posisjonsbasert: hver posisjon = ×2 mer enn til høyre
- Eksempel: $101000_2 = 40_{10} \rightarrow$
 - $(1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (0 \times 2^0)$
 - $1 \times 32 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 0 \times 2 + 0 \times 1 = 40$
- Desimal_til_Binaer.docx

	I
10	2
101	5
1010	10
101010	42
1100100	100
1001001100111	4711

Sekstentallsystemet

- Sifre: 0–9 + A–F
- Brukes for å forkorte binære ta (f.eks. IP/MAC-adresser)
- Eksempel: $1111_2 = F_{16}$
- Binaer til Heksadesimal.docx

Hexadecimal	Decimal	Binary		
0	0	0000		
1	1	0001		
2	2	0010		
3	3	0011		
4	4	0100		
5	5	0101		
6	6	0110		
7 10000	7	0111		
8	8	1000		
9	9	1001		
A	10	1010		
В	11	1011		
С	12	1100		
D g	13	1101		
E	14	1110		
F	15	1111		

Øvelse

- Ark
- Binary Game
- Number Conversion

Flere tallsystemer (Base64, osv.)

- Brukes for å gjøre adresser korte og mer lesbare
- Eksempel: YouTube-video-ID= Base64
- Viktig for lagring, adressering og effektivitet

Index	Binary	Char	Index	Binary	Char	In	dex	Binary	Char	Index	Binary	Char
0	000000	Α	16	010000	Q		32	100000	g	48	110000	W
1	000001	В	17	010001	R		33	100001	h	49	110001	x
2	000010	С	18	010010	S		34	100010	i	50	110010	у
3	000011	D	19	010011	T		35	100011	j	51	110011	Z
4	000100	Е	20	010100	U		36	100100	k	52	110100	0
5	000101	F	21	010101	V		37	100101	1	53	110101	1
6	000110	G	22	010110	W		38	100110	m	54	110110	2
7	000111	Н	23	010111	X		39	100111	n	55	110111	3
8	001000	I	24	011000	Υ		40	101000	0	56	111000	4
9	001001	J	25	011001	Z		41	101001	р	57	111001	5
10	001010	K	26	011010	а		42	101010	q	58	111010	6
11	001011	L	27	011011	b		43	101011	r	59	111011	7
12	001100	M	28	011100	C		44	101100	S	60	111100	8
13	001101	N	29	011101	d		45	101101	t	61	111101	9
14	001110	0	30	011110	е		46	101110	u	62	111110	+
15	001111	P	31	011111	f		47	101111	V	63	111111	/

Oppsummering

- Desimal → hverdagen vår
- Binært → datamaskiner, lagring, hastighet
- Heksadesimal → nettverksadresser, farger, kortere notasjon
- Andre systemer → spesielle bruksområder

Konkurranse

- Hvem kan oversette raskest?
- Bibliotek Kahoot!

Bit, byte og prefikser

- Hva er et bit? → 0 eller 1
- Hva er en byte? → 8 bit = 1 Byte
- 8 bit → 256 kombinasjoner (nok til å representere en bokstav)
- 👉 Eksempel: ASCII-tegn

Bit vs Byte i praksis

- Lagring (harddisk, minne) oppgis i byte (B)
- Overføringshastighet (internett) oppgis i bit (b)
- Viktig forskjell: 1 B = 8 b
- Mini-oppgave: 100 Mb/s = ? MB/s

SI-prefikser

- Prefikser vi kjenner fra hverdagen: kilo, mega, giga, tera, peta
- 1 k = 1000, 1 M = 1000000 osv.
- **table of the example of the examp**

Prefiks	Symbol	Verdi
tera	Т	$10^{12} = 1000000000000$
giga	G	$10^9 \ = 1000000000$
mega	M	$10^6 = 1000000$
kilo	k	$10^3 = 1000$
hekto	h	$10^2 = 100$
desi	d	$10^{-1} = \frac{1}{10}$
centi	С	$10^{-2} = \frac{1}{100}$
milli	m	$10^{-3} = \frac{1}{1000}$

Hvorfor trenger vi prefikser?

- Bit er en veldig liten enhet
- Filstørrelser, nettverksfart → upraktisk å si "1 000 000 000 bit"
- Derfor bruker vi prefikser (kilo, mega, giga ...)

Prefikser og enheter

10^n	Prefiks	Symbol	Navn	Tall
L0 ¹⁵	peta	Р	billiard	1 000 000 000 000 000
L0 ¹²	tera	Т	billion	1 000 000 000 000
L0 ⁹	giga –	G	milliard	1 000 000 000
L0 ⁶	mega -	M	million	1 000 000
L0 ³	kilo -	k	tusen	1 000
10^2	hekto	h	hundre	100
L0 ¹	deka	da	ti	10
10^{-1}	desi -	d	tidel	0,1
10^{-2}	centi ¬	С	hundredel	0,01
10^{-3}	milli ~	m	tusendel	0,001
10^{-6}	mikro	μ	milliondel	0,000 001
10^{-9}	nano	n	milliarddel	0,000 000 001

SI vs binærprefiks

Harddisk etikett: 500 GB

Windows visning: ~465 GiB

- SI-prefiks: 1 kB = 1000 B
- Binærprefiks: 1 KiB = 1024 B
- Forskjellen liten i starten (2,34 %), men større ved TB (9 %).
- Eksempel: Harddisk oppgitt som 500 GB, Windows viser ~465 GiB.

∨ Enheter og stasjoner			
OS (C:)			
140 CD L F 227 CD			

Decimal Prefix (SI)	Value	Value (1000)	Binary Prefix (IEC)	Value	Value (1024)
kilo (K)	10 ³	1000	kibi (Ki)	210	1024
mega (M)	106	10002	mebi (Mi)	220	10242
giga (G)	10 ⁹	10003	gibi (Gi)	230	10243
tera (T)	10 ¹²	10004	tebi (Yi)	240	10244
peta (P)	10 ¹⁵	10005	pebi (Pi)	250	10245
exa (E)	10 ¹⁸	10006	exbi (Ei)	260	10246
zetta (Z)	1021	10007	zebi (Zi)	270	10247
yotta (Y)	1024	10008	yobi (Yi)	280	10248

Tabell sammenligning

Prefiks	SI (1000)	Binær (1024)
kilo	1000	1024
mega	1 000 000	1 048 576
giga	1 000 000 000	1 073 741 824
tera	1 000 000 000 000	1 099 511 627 776

Problemstilling

- Produsenter bruker SI (1000)
- Operativsystemer bruker ofte binær (1024)
- Resultat: "forskjellige tall for samme disk"

Løsning

- Bruk riktige navn:
 - SI → kB, MB, GB, TB
 - Binær → KiB, MiB, GiB, TiB
- Viktig å være tydelig i IT og media

Oppgaver

- Hvor mange bit er 2 byte?
- Hvor mange byte er 64 bit?
- Hvor mange MB er 16 000 kB (SI)?
- Hvor mange MiB er 16 384 KiB (binær)?

Oppsummering

- Bit = 0/1
- Byte = 8 bit
- SI-prefiks (1000) vs binærprefiks (1024)
- Viktig i: filstørrelser, nettverksfart, lagring
- Husk: alltid sjekk om det står MB, MiB, GB eller GiB!

Regneoppgaver fra NDLA:

- Utregning av bit, byte og prefiks
- Utregning av bit, byte og prefiks Teknologiforståelse (IM-IKM vg1)
 NDLA

Diskusjon:

• Hvorfor er digitalisering viktig i samfunnet?

Egenvurdering

• Hva lærte jeg? Hva var vanskelig?

NDLA egenvurdering

- Egenvurdering for emnet analogt og digitalt
- Egenvurdering for emnet analogt og digitalt Teknologiforståelse
 (IM-IKM vg1) NDLA