

特許願

昭和49年1月12日

- 特許長官 斎藤英雄 殿
1. 発明の名称 平電炉鋼ダスト等からの有価金属回収方法
 2. 発明者 住 所 東京都文京区本郷2丁目15番地の5
氏 名 岩井 伸一 外2名
 3. 特許出願人 住 所 東京都中央区日本橋2丁目12番2号
氏 名 代表取締役 木下 誠
 4. 代理人 住 所 東京都文京区本郷2丁目12番2号
氏 名 (5911)弁理士 千ヶ崎 実
 5. 添付書類の目録

(1) 明細書	1通
(2) 図面	1枚
(3) 願書副本	1通
(4) 委任状	1通

49-C00336

明細書

1. 発明の名称 平電炉鋼ダスト等からの有価金属回収方法

2. 特許請求の範囲

平電炉鋼ダスト及び類似粉塵から重鉛、船、カドミウム及び鉄を有価金属として回収する方法において、該ダスト等を水洗し、塩素、ナトリウム及びカリウムを除去する工程と、その工程で得られる水洗ダストに、コードクスを加えて造粒し焼結し、重鉛及び船を含む焼結鉄鉱を得る工程と、更にその工程からの焼結ガスを酸素操作して得た焼結ダストをアルカリ性の水で洗浄して堿素を除去し、船とカドミウムを含む非鉄金属滓を得る工程とを含むことを特徴とする平電炉鋼ダスト等からの有価金属回収方法。

3. 発明の詳細な説明

本発明は、平電炉鋼ダスト等からの有価金属回収方法に関する。より詳しく言えば、本発明は、平電炉鋼ダスト等から重鉛、船、鉄及びカドミウムを有価金属として回収するにあ

⑯ 日本国特許庁

公開特許公報

⑪特開昭 50-101202

⑫公開日 昭50(1975)8.11

⑬特願昭 49-6933

⑭出願日 昭49(1974)1.12

審査請求 未請求 (全6頁)

府内整理番号

6616 42
7412 42
6567 42

⑮日本分類

10 A2
10 A63 6.2
10 J11

⑯ Int.CI²

C22B 7/02II

たり、回収を妨げる不純物としての塩素、ナトリウム、カリウム及び堿素を洗浄処理によって除去するための方法に関する。

ここに言う平電炉鋼ダスト等とは、鋼鐵工場における比較的多量の重鉛を含む平炉ダストや電気炉ダストのほか、転炉ダストや鍛錬工場における高炉ダストのような比較的重鉛含有の低いダストから還元鉄を得る処理工程で発生する比較的重鉛含有の高い二次ダスト等の類似物をも含んでいる。これらのダストは、通常、重鉛及び船を各々20%以上、船を1~10%、カドミウムを1%以下などの量で含んでいるほか1~10%の塩素、1~5%のナトリウム、0.5~2%のカリウム及び0.5~5%の堿素をも含んでいる。

こうした平電炉鋼ダスト等を鉄鋼原料とするため、一部には、重鉛、船等の損失を犠牲にして鉄ペレットを得ようとする還元焙燒法も考えられているが、重鉛及び船の含有量が高すぎるため成功していない。又平電炉鋼ダスト

等を亜鉛の回収用原料として処理する試みも行なわれているが、これら原料中に含まれている塩素、ナトリウム、カリウム及び弗素がこれら回収金属の精製を妨げ、且つ收率を低下させるため、未だに成功していない。

結局、これら平電炉製鋼ダスト等は、これまで有効な経済的処理方法がなく、徒らに廃棄乃至堆積されるのみであった。

最近になり、漸く、亜鉛及び鉄の回収を目的として、平電炉製鋼ダストをロータリーキルン内で、硫黄及び酸化鉄の存在下で比較的低温の焙焼を行なうことにより、亜鉛及び鉄の揮発を抑えながら含有塩素を除く方法が公表された（特開昭47-27898号）。この方法は、平電炉製鋼ダストの積極的な利用を意図したもので注目されるものであるが、原料となるダストが多量の低融点金属酸化物を含むだけに、多量のクリンカーを生じる危険があり、生産されるクリンカーの処理は新たな問題を提供するものと考えられる。

粉であり、好ましくは水分を添加し、水分10～15%を含むペレット状態で貯蔵あるいは運搬される。ペレットは使用時に湿式ボールミル等で粉碎される。

粉碎された原料ダストは、洗浄槽内で混合攪拌される。即ち水洗される。この水洗工程は、洗浄によって塩素、ナトリウム及びカリウムを除去することが目的であり、亜鉛等有価金属の溶出は出来るだけ抑えなければならない。又その水洗されたダストの凝聚沈降を促進させるためにも水洗液は中性乃至弱アルカリ性に維持する必要がある。通常平電炉製鋼ダストの水洗液は、そのままで、pH7～12のアルカリ性となるので、アルカリ性の液については、硫酸等酸性液でpHを7～9好ましくは9以上に保持するようとする。混合水量は多いほど良く、ダストと水の接触効果からも、混合攪拌時間は長いほど良い。ダスト対水の重量比は1対5以上で水量が多いほどよいが、設備容量が大きくなるし、1対5以上の水量域では効果に大差

本発明の処理方法は、平電炉製鋼ダスト等を原料とし、塩素、ナトリウム、カリウム及び弗素を除去して、亜鉛、鉄、カドミウムは勿論、銅をも有価金属として経済的に回収することを目的としており、且つこれらの処理を無公害的に行なわしめることを考慮したものであり、該ダストを水洗し戸別することにより、塩素、ナトリウム及びカリウムを除去する工程と、その工程で得られる水洗ダストをコークスと共に造粒し焼結して亜鉛及び鉄を主要成分として含む焼結鉱を得る工程と、この焼結の際の排ガスから除塵操作によって得られる焼結ダストをアルカリ性の水で洗浄して弗素を除去して非鉄金属滓を得る工程とを含むことを特徴とする平電炉製鋼ダスト等からの有価金属回収方法である。

以下図面に示す本発明方法の実施例を示すフローシートを参照しながら本発明の構成を説明する。

本方法に用いられる平電炉製鋼ダスト等（以下原料ダストと呼称する）は、本来乾燥した微

がなく、実用上は1対5で十分である。ダストを繰返えし洗浄することも効果がある。

更に、水洗されるダストは微細であるが、水洗液の温度が低いと水洗ダストへの附着水が多くなり塩素等不純物の除去効率が稍々劣り戸過性はかなり低下する。発明者等の試験によれば、同一条件による常温の水洗ダストの戸過度は60℃の水洗ダストのそれに比し約4%である。従って、液温は高いほどよいが、水蒸気吹込加熱が盛ましく、50～60℃が採用される。液温が60℃以上になつても、それほどの効果向上は認めず、積極的な加熱設備を設けることは、経済的には反対で得策ではない。更に又、水洗ダストの沈降戸過を促進させるために凝聚剤を使用することが盛ましい。用いられる凝聚剤は一般にアニオン系高分子凝聚剤が好適で、例えばポリアクリルアマイトとアクリル酸ソーダの高度共重合体で、前記水洗液のpH7～9に適する範囲のものから選ばれる。このような凝聚剤の使用により水洗ダストを沈降性及び戸過性

よく分離することが出来る。このようにして得られる除安率は、塩素で95%以上、ナトリウムで95%以上、カリウムで95%以上である。又亜鉛等有価金属の溶出は零に等しい。

水洗され、済過された水洗ダスト中の亜鉛、船、カドミウム鉄及び弗素をほとんど残存させたまゝである。この水洗ダストは30~40%の水分を含んでるので、ロータリードライヤー等により、適当な水分にまで乾燥される。乾燥された水洗ダストは、次に粉コーカスに還鉄を加えて混練造粒され、焼結機により焼結される。粉コーカス対ダストの混合比は1対3乃至1対10である。

焼結工程は、主として弗素及びカドミウムを焼結ガスに移行させ、亜鉛を焼結試中に残留させる目的で行なわれる。焼結温度が約1300℃以上になると、焼結ガスに混入する亜鉛の量が多くなるので、この焼結温度は一般に1300℃以下を好適とする。船は焼結ガスに移行させる方が後の金属分離回収に有利である場合が多い

○ 原料ダストの水洗工程からの塩素、ナトリウム及びカリウムを含む水洗液と、焼結ダストのアルカリ洗浄工程からの弗素を含む洗浄水は、それぞれあるいは混合されて公知の方法によつて、処理を施され、処理水は清浄水として放流される。例えば、これら洗浄水を硫酸によつて毎日調整し、カルシウム化合物添加による中和処理を行うことにより、弗素はカルシウム化合物として中和津中に固定され、この中和津の製鉄炉等への補助原料としての利用が可能となる。

本発明の方法は、以上のように、平電炉製鋼ダストのような比較的亜鉛の高いダストを原料として、水洗、焼結及びアルカリ洗浄の各工程を順次行なうことにより、有害な塩素、ナトリウム、カリウム及び弗素を除去し、有価金属を回収するものであつて、焼結鉱及び洗浄津までの段階における有価金属の回収率は、亜鉛、船、カドミウム及び鉄が何れもほとんど100%となる。

が、必須条件ではない。この焼結により、原料ダスト中の弗素及びカドミウムの80%以上を焼結ガス中に移行させることが出来る。

次に、焼結ガスはサイタロン、バグフィルタ等公知の除塵装置を経由し、無害な排ガスとして大気放出され、同時に、上記原料ダスト中の弗素及びカドミウムの大部分のほか、若干の船及び亜鉛を含む焼結ダストが回収される。

焼結ダストは、次いでアルカリ洗浄工程に導入される。この工程は、弗素を除去し、亜鉛、カドミウム及び船を有価金属として含む非鉄金属津を回収する目的をもつもので、焼結ダストは、苛性ソーダ液で毎日1/1に調整した洗浄水と共に攪拌される。このうち1種について、焼結ダスト中の弗素はその約80%以上が液中に除去され、アルカリ洗浄津として亜鉛、カドミウム及び船をほとんどそのまま含む調練原料が回収される。この洗浄津には、原料ダストの水洗工程で除去を免がれた塩素も含まれるが、微量であり、有価金属回収の妨げとなるものではない。

本発明の方法の特徴は、上記したように、水洗、焼結及びアルカリ洗浄の各工程を順次行なうところにある。單なる工程の組み合わせではない点にある。

原料ダスト中の塩素、ナトリウム及びカリウムは、通常の水洗によりその大部分を除去することが出来るが、同じ水洗によつてほとんどの弗素は除去することが出来ない。しかも原料ダストに含まれるこの弗素は、そのままではアルカリ洗浄によつても全く除去出来ない。更に、こうした洗浄過程において、塩素や弗素などの有害成分を溶出させねばならないが、他の有価金属の溶出は極力抑えなければならない。

本発明者等は、こうした難点をダストの水洗工程と、アルカリ洗浄工程との間に焼結工程を入れ、順次工程としたことによつて克服したものである。

理由は明らかではないが、原料ダストあるいは水洗ダスト中の弗素は、焼結工程における加熱処理によつて、揮発し、更に焼結ダスト中に

移行する過程でその形態を変え、水溶液特にアルカリ性水溶液に対して高活性を示すのである。

水洗に先立ち原料ダストを焼結処理することは、ナトリウム及びカリウムをそのまま焼結試中に残存させることになり、当初の目的を達することが出来ない。又比較的多量の塩素及び弗素を含む腐食性焼結ガスの発生は、焼結機その他の処理設備の材料等に与える影響を考慮すれば、甚だ好ましくない。

以上のように、本発明の方法によって、塩素ナトリウム、カリウム及び弗素を含まない焼結鉱と洗浄津が得られるが、焼結鉱は亜船及び鉄を主要原料として含んでおり、若干の船をも含有する。亜船は湿式あるいは乾式方法によって分離することが出来るが、経済的には、乾式方法によって蒸溜亜船あるいは酸化亜船として回収するのが有利と雇われる。又その残渣は鉄原料として利用出来る。例えば、不出職人の保有する特許第439394号（特公昭40-13651号）の方法のよう、亜船及び若干の船を含む

とし、これに液温を常温及び50'～60'とに分け、ダスト対水洗水の重量比を1対1、1対2、1対3及び1対10に変えて混合し、各々30分攪拌する方法をとった。凝聚剤は使用していない。水洗結果を表2表に示した。尚本試験中、混合液のpHは11～12であった。

表1表

成分	Zn	Pb	Ca	Ts	Na	K	F	C1
当	31.9	3.0	0.05	21.7	2.2	2.1	1.0	8.05

表2表

ダスト/水 比	液温	水洗ダスト品位%				除去率%			
		Na	K	Ts	C1	Na	K	Ts	C1
1/1	常温	1.2	1.85	1.04	0.91	6.2	4.9	5	7.2
	50'～60'	1.4	1.88	0.99	0.99	6.0	4.9	11	7.0
1/2	常温	1.05	1.00	1.05	0.54	7.0	6.3	7	8.8
	50'～60'	0.90	0.70	0.97	0.48	7.8	7.6	11	8.6
1/5	常温	0.90	0.60	0.95	0.32	7.6	7.5	18	9.3
	50'～60'	0.85	0.56	0.90	0.19	7.7	7.6	19	9.4
1/10	常温	0.90	0.48	0.89	0.16	7.8	8.0	20	9.5
	50'～60'	0.75	0.40	0.87	0.10	8.0	8.3	22	9.7

特開昭50-101202(4)

焼結鉱を盛運蒸溜炉においてコークスと共に加熱し、亜船を揮発酸化させて酸化亜船として回収し、更に若干の船を含む焼結鉱を電気炉等により溶融し、溶融状態において鉄と船を分離し別個に回収することが出来る。

洗浄津は、亜船、船及びカドミウムを有価金属として含んでいるが、鉄をほとんど含んでいないから回収は公知の方法により容易に行ない得る。

本発明の方法は、塩素、ナトリウム、カリウム及び弗素を洗浄水中に捕捉するものであるが、その洗浄水の無害化処理は前記中和処理等のように容易であり、焼結ガスの脱塵操作も公知技術の範囲内で十分になし得、更に重金属の系外逸出をほとんど零となし得るものであり、全体として無公害処理を可能とする極めて大きな意義をも有している。

実施例1

方1表に示す成分の平電炉鋼鐵ダストを用い、水洗試験を行なつた。水洗は鋼鐵ダスト量/

1とし、ダスト対水比が1対5以上で塩素の除去率は90%以上で良好である。後記実施例2の場合のような焼結処理後の場合と異り、本試験における弗素の除去率は約20%以下で良い。又ナトリウムやカリウムの除去率は75%以上で良好と言える。尚液温を高くするとこれら除去率は稍々向上する。

実施例2

実施例1の場合と同じ鋼鐵ダストを用い、ダスト量200g、ダスト対水の比を1対5、液温を50'～60'、硫酸により液のpHを5としてダスト水洗試験を行なつた。尚本試験では、アニオン系高分子凝聚剤（日本サイアナミック社製アコフロクタA-130）を30ppm添加した。結果は表3表の通りであつた。

表3表

品名	量	Zn		Pb		Ca		Ts	
		品位	分配	品位	分配	品位	分配	品位	分配
鋼鐵ダスト	200g	31.9	100	3.0	100	0.05	100	21.7	100
水洗液	×90.4	20.6	0.003	87.0	0.056	0.246	0.22	94.5	0.001
水洗ダスト	XX/19.0	38.3	99.997	3.6	99.944	0.05	99.78	22.8	99.999

○ 60%に分けて試験を行なつた。

結果はオタ表の通りであつた。

オタ表

Na		K		Y		Cl	
品位	分配	品位	分配	品位	分配	品位	分配
3.2	100	2.1	100	1.0	100	2.03	100
6.203	88	4.070	88	4.61	2	6.584	98
0.40	12	0.24	12	1.03	98	0.06	2

*-- 水洗ダストへの付着水 9.24

**-- dry 重量を示す。 wet 重量では 28.2 kg (水分 32.6 %)

分析品位は、ダストで多く、液では ppm を示す。

即ち、亜鉛、カドミウム及び銅等の有価金属について水洗の影響はない。 非常にほとんどが水洗ダスト中へ残る。塩素はほとんどが水洗液中へ溶出し、ナトリウム及びカリウムも大部分が溶出する。

実施例③

水洗ダストを粉末コーカス及び返鉄と共に還流焼結し、除塵装置により回収した焼結ダストを用い、アルカリ洗浄試験を行なつた。取扱い焼結ダスト量を 20 kg、洗浄水約 200 L、液 pH は苛性ソーダにより 11 とし、更に液温を常温と

即ち処理時の液温については余り關係がなく、非常に焼結ダスト中の約 50% が洗浄水中に溶出し、ナトリウム及びカリウムも、ほとんどが溶出した。これに対し亜鉛や鉛などの有価金属及び塩素はほとんどそのまま洗浄液中に残留した。

4 図面の簡単な説明

図面は、本発明方法を取り入れた実施例を示すフローシートである。

特許出願人 東邦亜鉛株式会社

代理人 先進士 千ヶ崎 実 男山理子
高木七助

品名	洗浄水 温・温	量	X		Y		Cl	
			品位	分配	品位	分配	品位	分配
焼結ダスト	—	20kg	3.27	100	3.09	100	0.89	100
洗浄液	常温	16L	5.297	92.9	37.72	92.9	0.65	100
洗浄水	常温	219 L	0.022	0.1	0.021	0.1	0.0	0
洗浄液	60°C	16L	5.245	92.9	37.24	92.9	0.67	100
洗浄水	常温	186 L	0.028	0.1	0.028	0.1	0.0	0

Y		Na		K		Y		Cl	
品位	分配	品位	分配	品位	分配	品位	分配	品位	分配
0.17	100	3.43	100	2.33	100	0.17	100	1.77	100
0.21	100	0.34	30	0.14	30	1.80	17.8	2.07	92.8
0.0	0.485	9.80	20.2	9.20	4.85	8.61	0.03	1.7	
0.21	100	0.28	4.2	0.12	4.4	1.75	2.85	2.32	0.68
0.0	3.80	9.28	24.0	9.26	4.2	7.24	0.01	0.6	

ダスト及び液の品位は %、洗浄水の品位は g/L を示す。又処理後の分配率は分析誤差、計算誤差等により合計が 100 % を超えることもある。

▲前記以外の発明者

特開昭50-101202(6)

住所 群馬県安中市安中3丁目15番地の3

氏名 小野 順太郎

住所 群馬県高崎市下条町236番地

氏名 等第 公一