R有如下性质:

非自反: Ø ⊄ Ø。

反自反: 不存在 x, 使 $\langle x, x \rangle \in R$ 。

对称: 不存在 $x, y \in \mathcal{P}(A)$ 使得 $\langle x, y \rangle \in R$, 故 $xRy \to yRx$ 恒成立。

反对称: 由于不存在 $x, y \in \mathcal{P}(A)$ 使得 $\langle x, y \rangle \in R \land \langle y, x \rangle \in R$,故 $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y$ 恒成立。

传递: 因为 Ø 有真子集, 故 R 为空关系。故不存在 x,y,z, 使得 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R$ 。所以蕴涵式: $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R$ 永真。

S 有如下性质:

自反: $\langle \emptyset, \emptyset \rangle \in S$ 。

非反自反: $\langle \emptyset, \emptyset \rangle \in S$ 。

对称:集合交性质。

反对称: $\forall x \forall y (\langle x, y \rangle \in S \land \langle y, x \rangle \in S \Rightarrow x = \emptyset \land y = \emptyset \Rightarrow x = y)$.

传递: $\forall x \forall y \forall z (\langle x, y \rangle \in S \land \langle y, z \rangle \in S \Rightarrow x = \emptyset \land y = \emptyset \land z = \emptyset \Rightarrow \langle x, z \rangle \in S)$ 。

T有如下性质:

自反: $\varnothing \cup \varnothing = \varnothing = A \Rightarrow \langle \varnothing, \varnothing \rangle \in T$ 。

非反自反: $\langle \emptyset, \emptyset \rangle \in T$ 。

对称:集合并性质。

反对称: $\forall x \forall y (\langle x, y \rangle \in T \land \langle y, x \rangle \in T \Rightarrow x = \emptyset \land y = \emptyset \Rightarrow x = y)$

传递: $\forall x \forall y \forall z (\langle x, y \rangle \in T \land \langle y, z \rangle \in T \Rightarrow x = \emptyset \land y = \emptyset \land z = \emptyset \Rightarrow \langle x, z \rangle \in T)$ 。

2.16

(1) $R = \{\langle 0, 10 \rangle, \langle 1, 9 \rangle, \langle 2, 8 \rangle, \langle 3, 7 \rangle, \langle 4, 6 \rangle, \langle 5, 5 \rangle, \langle 6, 4 \rangle, \langle 7, 3 \rangle, \langle 8, 2 \rangle, \langle 9, 1 \rangle, \langle 10, 0 \rangle \};$ $S = \{\langle 0, 4 \rangle, \langle 3, 3 \rangle, \langle 6, 2 \rangle, \langle 9, 1 \rangle, \langle 12, 0 \rangle \}_{\circ}$

(2)

R有如下性质:

非自反: $\langle 0,0 \rangle \notin R$ 。

非反自反: 使 $\langle 5,5 \rangle \in R$ 。

对称:加法性质。

非反对称: $(0,10) \in R \land (10,0)$, 但 $0 \neq 10$ 。

非传递: $\langle 0, 10 \rangle \in R \land \langle 10, 0 \rangle$, 但 $\langle 0, 0 \rangle \notin R$ 。

S 有如下性质:

非自反: $\langle 0,0\rangle \notin S$ 。

非反自反: $\langle 3,3 \rangle \in S$ 。

非对称: $\langle 0,4\rangle \in S$, 但 $\langle 4,0\rangle \notin S$ 。

反对称: 不存在 $x, y \in A$ 使得 $\langle x, y \rangle \in S \land \langle y, x \rangle \in S$ 。