Praca zaliczeniowa z przedmiotu:

Analiza współzależności zjawisk

Adam Matuszczyk Studia Podyplomowe MSAD 2018/2019

1. Dane i opis źródła

We współczesnym świecie wraz ze wzrostem średniej długości życia koszty leczenia stają się jednym z najważniejszych wydatków społecznych, dlatego wiele krajów z dużą atencją przygląda się wzrastającej średniej długości życia, a także jego komfortowi.

Projekt dotyczy porównania kosztów leczenia z nieokreślonego stanu w USA, a podzielonego na następujące zmienne: age, sex, bmi, children, smoker, region, charges.

Dane pochodzą ze strony:

https://www.kaggle.com/mirichoi0218/insurance#insurance.csv

```
library("tidyverse")
library("skimr")
library("mosaic") # favstats
library("car")
library("data.table")
library("psych")

d <- read_csv("path/insurance.csv")
d <- d %>%
    mutate_if(is.character, as.factor)
```

2. Rozkłady zmiennych

```
d %>% count(region) %>% kable()
```

```
region n
northeast 324
northwest 325
southeast 364
southwest 325
```

d %>% count(sex) %>% kable()

```
sex n
female 662
male 676
```

d %>% count(smoker) %>% kable()

smoker	n
no	1064
yes	274

```
ggplot(d, aes(charges)) + geom_histogram() + labs(title = "Rozkład zmiennej c
harges", subtitle = "rozkład prawostronnie skośny")+theme(plot.subtitle = ele
ment_text(size = 10, face = "italic", color = "black"))
```

Rozkład zmiennej charges

rozkład prawostronnie skośny

ggplot(d, aes(charges)) + geom_histogram() + scale_x_log10() + labs(title = "Rozkład zmiennej log(charges)", subtitle = "przedstawionej w formie wykładni czej co jest efektem prawoskośności w wykresie poprzednim") + theme(plot.subt itle=element_text(size=7, face="italic", color="black"))

Rozkład zmiennej log(charges)

ggplot(d, aes(age)) + geom_histogram(binwidth = 3)+ labs(title = "Rozkład zmi ennej age", subtitle = "rozklad jednostajny") + theme(plot.subtitle=element_t ext(size=10, face="italic", color="black"))

Rozkład zmiennej age


```
# rozklad jednostajny
ggplot(d, aes(bmi)) + geom_histogram() + labs(title = "Rozkład zmiennej bmi"
, subtitle = " rozklad normalny") + theme(plot.subtitle=element_text(size=10,
face="italic", color="black")) # rozklad normalny
```

Rozkład zmiennej bmi

2.1 Zależności między zmienną objaśnianą, a wieloma zmiennymi objaśniającymi

favstats(charges ~ children, data = d) %>% kable()

children	min	Q1	median	Q3	max	mean	sd	n	missing
0	1121.874	2734.421	9856.952	14440.12	63770.43	12365.976	12023.294	574	0
1	1711.027	4791.643	8483.870	15632.05	58571.07	12731.172	11823.631	324	0
2	2304.002	6284.939	9264.979	20379.28	49577.66	15073.564	12891.368	240	0
3	3443.064	6652.529	10600.548	19199.94	60021.40	15355.318	12330.869	157	0
4	4504.662	7512.267	11033.662	17128.43	40182.25	13850.656	9139.223	25	0
5	4687.797	5874.974	8589.565	10019.94	19023.26	8786.035	3808.436	18	0

Średnie koszty leczenia wahają się w zależności od ilości dzieci pomiędzy 1127,84, a 4687,797. Mediana natomiast pokazuje, że istnieją inne

czynniki znacznie wpływające na koszty leczenia, które znacznie odbiegają od średnich tej kategorii.

ggplot(d, aes(as.factor(children), charges)) + geom_boxplot(fill =c(2 : 7)) +
scale_y_log10() + labs(title = "Wydatki na leczenie(charges) vs. ilość dzieci
(children)") + theme(plot.title=element_text(size=10))

favstats(charges ~ region, data = d) %>% kable()

region	min	Q1	median	Q3	max	mean	sd	n	missing	
northeast	1694.796	5194.322	10057.652	16687.36	58571.07	13406.38	11255.80	324	0	
northwest	1621.340	4719.737	8965.796	14711.74	60021.40	12417.58	11072.28	325	0	
southeast	1121.874	4440.886	9294.132	19526.29	63770.43	14735.41	13971.10	364	0	
southwest	1241.565	4751.070	8798.593	13462.52	52590.83	12346.94	11557.18	325	0	

Chociaż wydawać się powinno, że miejsce zamieszkania nie powinno specjalnie wpływać na koszty to zauważyć można żyjącym w południowych regionach jest średnio taniej niż w północnych. Mediana wyrównuje tą dysproporcję.

```
ggplot(d, aes(region, charges)) + geom_boxplot(fill =c(2:5)) + scale_y_log10(
) + labs(title = "Wydatki na leczenie(charges) vs. miejsce zamieszkania(regio
n)") + theme(plot.title=element_text(size=10))
```


ggplot(d, aes(charges, fill = region)) + geom_density(alpha = 0.5) + scale_x_
log10() + labs(title = "Gestość wydatków (charges) w miejscu zamieszkania(reg
ion)") + theme(plot.title=element_text(size=12))

Gęstość wydatków (charges) w miejscu zamieszkania(region)

favstats(charges ~ sex, data = d) %>% kable()

sex	min	Q1	median	Q3	max	mean	sd	n	missing
female	1607.510	4885.159	9412.962	14454.69	63770.43	12569.58	11128.70	662	0
male	1121.874	4619.134	9369.616	18989.59	62592.87	13956.75	12971.03	676	0

ggplot(d, aes(sex, charges)) + geom_boxplot(fill = c(2:3)) + scale_y_log10()
+ labs(title = "Wydatki na leczenie(charges) vs. płeć(sex)") + theme(plot.tit
le=element_text(size=10))

Wydatki na leczenie(charges) vs. płeć(sex)

ggplot(d, aes(charges, fill = sex)) + geom_density(alpha = 0.5) + scale_x_log
10() + labs(title = "Wykres gestości wydatków (charges) w zalezności od płci(
sex)") + theme(plot.title=element_text(size=12))

Typowy wykres gęstości charakterystyczny dla mężczyzn i kobiet. Mężczyźni mniej dbają o swoje zdrowie, natomiast w ogonach pojawiają się zdecydowanie kosztowniejsi pacjenci.

favstats(charges ~ smoker, data = d) %>% kable()

smoker	min	Q1	median	Q3	max	mean	sd	n	missing
no	1121.874	3986.439	7345.405	11362.89	36910.61	8434.268	5993.782	1064	0
ves	12829.455	20826.244	34456.348	41019.21	63770.43	32050.232	11541.547	274	0

Jak się należało spodziewać średnia kosztów leczenia palących jest znacznie przewyższająca niepalących. Mediana jest ponad cztery razy wyższa.

ggplot(d, aes(smoker, charges)) + geom_boxplot(fill = c(2:3)) + scale_y_log10
() + labs(title = "Wydatki na leczenie(charges), a niepalący(smoker no) i pal
acy(smoker yes)")+ theme(plot.title=element_text(size=8))

ggplot(d, aes(charges, fill = smoker)) + geom_density(alpha = 0.5) + scale_x_ log10() + labs(title = "Wydatki palacych i niepalacych")

Wydatki palących i niepalących

Ciekawostką jest podwójny pik wśród palących. Prawdopodobnie jest to związane z chorobami, które są efektem palenia papierosów, a pojawiają się z biegiem czasu.

```
ggplot(d, aes(ifelse(bmi >= 30, "yes", "no"), charges)) + geom_boxplot(fill=
c(2:3), outlier.colour = "red", outlier.shape = 1) + scale_y_log10() + labs(t
itle = "Zależność między wydatkami na leczenie(charges), a podziałem bmi>=30"
, subtitle = "bmi powyżej 30 uważa się za otyłość") + theme(plot.title = elem
ent_text(size=9, color="black") ) + theme(plot.subtitle = element_text(size=9
, face="italic", color="black") )
```


Dla mnie największe zaskoczenie. Specjalnie bmi powyżej 30 nie wpływa na koszty leczenia, chociaż jest wyższe.

ggplot(d, aes(bmi, log10(charges), colour = age, shape = smoker)) + geom_poin
t() + scale_y_log10() + geom_vline(xintercept = 30) + geom_smooth(method = "
lm", se = FALSE, col = "red")+ labs(title = "Wydatki na leczenie(charges) vs.
bmi uwarunkowanym wiekiem oraz paleniem", subtitle = "Wyraźny podział wydatkó
w palących i niepalących") + theme(plot.title = element_text(size=8, color="b
lack")) + theme(plot.subtitle = element_text(size=8, face="italic", color="bl
ack"))

Wydatki na leczenie(charges) vs. bmi uwarunkowanym wiekiem oraz paleniem Wyraźny podział wydatków palacych i niepalacych

Jeden z ciekawszych wykresów gdzie jak widzimy "ggplot" wyznaczył sobie tak naprawdę dwie grupy ludzi i narysował linie, które dzielą nasz zbiór "bmi" na palących(czerwona górna linia) i niepalących. Widać też grupę z "bmi" ponad 30 równocześnie palącą, której wydatki na zdrowie są zdecydowanie wyższe i odbiegają dość znacznie od pozostałych grup.

```
ggplot(d, aes(age, charges, col = smoker, shape = smoker)) + geom_point(size
= 2) + scale_y_log10() + geom_smooth(method = "lm",col = "black") + labs(titl
e = "Zależność między wydatkami na leczenie(charges), wiekiem oraz paleniem")
+ theme(plot.title = element_text(size=7, color="black"))
```


Wyraźna różnica między palącymi, a niepalącymi maleje z wiekiem, ale jak widać palenie papierosów jest dość kosztowne, nie tylko ze względu na ich kupno.

charges.subset <- subset(d, select = c(charges, age, sex, bmi, region, children
, smoker))
pairs.panels(charges.subset)</pre>

Ostatni wykres "korelacji pearsona" między zmiennymi. Widać, że największa korelacja ze zmienną "charges" jest dla zmiennych "smoker', "age" oraz "bmi".

3. Wstępna analiza modelu

hist(log(d\$charges))

Histogram of log(d\$charges)


```
m2 \leftarrow lm(log(charges) \sim ., d)
summary(m2) #summary(Lm(Log(charges) ~ ., d))
##
## Call:
## lm(formula = log(charges) ~ ., data = d)
##
## Residuals:
##
                  10
                       Median
        Min
                                     30
                                             Max
  -1.07186 -0.19835 -0.04917
                               0.06598
                                         2.16636
##
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    7.0305581 0.0723960 97.112
                                                  < 2e-16 ***
                                                  < 2e-16 ***
                    0.0345816 0.0008721 39.655
## age
## sexmale
                   -0.0754164   0.0244012   -3.091   0.002038 **
## bmi
                    0.0133748 0.0020960
                                           6.381 2.42e-10 ***
## children
                               0.0100995 10.085 < 2e-16 ***
                    0.1018568
                                                  < 2e-16 ***
## smokeryes
                    1.5543228 0.0302795
                                           51.333
## regionnorthwest -0.0637876 0.0349057
                                           -1.827 0.067860 .
## regionsoutheast -0.1571967  0.0350828  -4.481  8.08e-06 ***
## regionsouthwest -0.1289522 0.0350271 -3.681 0.000241 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4443 on 1329 degrees of freedom
## Multiple R-squared: 0.7679, Adjusted R-squared: 0.7666
## F-statistic: 549.8 on 8 and 1329 DF, p-value: < 2.2e-16
```

Pierwszy rozpatrywany model m2 uwzględnia wszystkie zmienne z danych. F unkcja. Funkcja *lm* uprościła już model do płci "mężczyźni" oraz "palący".

Widać po wartościach *p-wartość*, że poza graniczną "regionnorthwest", który usuwam, wszystkie pozostałe zmienne należy brać pod uwagę przy dalszej analizie modelu.

Współczynnik determinancji *R-squared* jest na poziomie 0,768 czyli otrzy mujemy informację, że 77% zmienności zostaje wyjaśniona dzięki temu modelowi.

P-wartość dla *testu-F* również jest bardzo małe więc należy rozpatrywać **H1: przynajmniej jedna zmienna objaśniająca jest istotna.** Równocześnie można założyć, że występują interakcje między zmiennymi objaśniającymi.

Wstępny model możemy opisać równaniem:

log(charges) = 7,0305581 + 0,0345876age - 0,0754164sexmale + 0.0133748bmi + 0,1018568children + 1,5543228smokeryes - 0,1571967regionsoutheast - 0,1289522regionsouthwest + ε

```
res_m2 <- m2 %>% summary() %>% coef() %>% as.data.frame()
res_m2[, 1] <- exp(res_m2[, 1])
res_m2[, 2] <- exp(res_m2[, 2])
kable(res_m2 %>% round(3))
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1130.661	1.075	97.112	0.000
age	1.035	1.001	39.655	0.000
sexmale	0.927	1.025	-3.091	0.002
bmi	1.013	1.002	6.381	0.000
children	1.107	1.010	10.085	0.000
smokeryes	4.732	1.031	51.333	0.000
region northwest	0.938	1.036	-1.827	0.068
regionsoutheast	0.855	1.036	-4.481	0.000
regionsouthwest	0.879	1.036	-3.681	0.000

Do ciekawych wniosków można dojść zmieniając chwilowo naszą zmienną log(charges) na "charges" i wtedy jeśli palisz, koszty leczenie wzrastają średnio 4.73 razy (przy ustalonych pozostałych zmiennych) czyli 373%. Wraz ze wzrostem "children" o 1, koszty leczenia wzrastają średnio 1,11razy czyli o

11%. Jeśli mieszkasz w region "southwest", koszty leczenia "wzrastają 0.88razy" czyli maleją o 12%.

vif(m2)

```
GVIF Df GVIF^(1/(2*Df))
##
## age
            1.016822 1
                               1.008376
            1.008900 1
                               1.004440
## sex
## bmi
            1.106630 1
                               1.051965
## children 1.004011 1
                               1.002003
## smoker
            1.012074
                               1.006019
## region
            1.098893 3
                               1.015841
```

jeśli $GVIF^{(1/(2*Df))} > sqrt(10)$, to jest problem ze współliniowością

Ze względu na zmienną "region", która ma więcej kategorii niż dwie, liczymy tzw. "uogólniony VIF. Otrzymane wyniki są dużo niższe niż √10 więc n ie ma problemu ze współliniowością.

hist(m2\$residuals)

Histogram of m2\$residuals

Pierwszy wykres ogólnie sprawdza czy reszty mają rozkład normalny

residualPlots(m2)

Niestety po wykresach widać, że nie są specjalnie zachowane założenia regresji, które są bardzo restrykcyjne jeżeli chodzi o liniowość. Szczególnie ostatni wykres pokazuje, że rozjeżdża się wszystko w jakimś parabolicznym kształcie.

Możliwe, że wiek należałoby podnieść do kwadratu aby uwzględnić nieliniową zależność z "charges", chociaż zależność może być bardziej skomplikowana i należałoby podnieść do trzeciej. Ewidentnie zależności są bardziej skomplikowane niż zakłada ten model regresji.

```
Test stat Pr(>|Test stat|)
##
                                 0.001934 **
                -3.1063
## age
## sex
## bmi
                -2.7069
                                 0.006879 **
## children
                -1.9867
                                 0.047166 *
## smoker
## region
## Tukey test -16.9453
                                < 2.2e-16 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```


Kolejny wykres rozkład reszt w naszym modelu, który potwierdza, że nie ma rozkładu normalnego. W pewnym momencie pojawiają się dane, które wyraźnie odstają od krzywej

```
## [1] 431 517
```

outlierTest(m2)#zmienna odstająca(obserwacja wpływowa)

```
rstudent unadjusted p-value Bonferroni p
##
## 517
        4.931762
                         9.1785e-07
                                        0.0012281
## 431
        4.829232
                         1.5296e-06
                                        0.0020466
## 220
       4.819643
                         1.6037e-06
                                        0.0021457
## 1028 4.652732
                         3.6029e-06
                                        0.0048207
## 103
       4.347975
                         1.4789e-05
                                        0.0197880
## 1040 4.327581
                         1.6206e-05
                                        0.0216830
## 527 4.206679
                         2.7653e-05
                                        0.0370000
## 1020 4.163362
                         3.3380e-05
                                        0.0446620
```

Bonferroni p pokazuje konkretne pozycje, które mogą mieć wpływ na mode, ale wyniki nie są specjalnie odstające na tyle aby można założyć, że ich usunięcie wyraźnie zmieni model.

4. Interakcje

##

Dodawanie interakcji aby polepszyć model Dodanie interakcji dzięki funkcji "step()", model sam sobie poszuka, które są istotne. Odejmujemy region w interakcji drugiego stopnia, żeby nie komplikować modelu jeszcze bardziej, ale region zostaje, m4 <- lm(log(charges) ~ (. - region)^2 + region, d) %>% step() ## Start: AIC=-2600.84 ## log(charges) ~ ((age + sex + bmi + children + smoker + region) region)^2 + region ## Df Sum of Sa ## RSS AIC ## - sex:bmi 1 0.007 186.19 -2602.8 ## - bmi:children 0.013 186.19 -2602.8 1 ## - sex:children 0.020 186.20 -2602.7 1 ## - age:bmi 0.057 186.24 -2602.4 1 ## <none> 186.18 -2600.8 ## - sex:smoker 0.633 186.81 -2598.3 1 ## - age:sex 1 1.625 187.80 -2591.2 ## - region 3 4.871 191.05 -2572.3 ## - children:smoker 4.636 190.81 -2569.9 1 ## - age:children 1 5.090 191.27 -2566.8 ## - bmi:smoker 1 20.654 206.83 -2462.1 ## - age:smoker 44.223 230.40 -2317.7 ## ## Step: AIC=-2602.79 ## log(charges) ~ age + sex + bmi + children + smoker + region + age:sex + age:bmi + age:children + age:smoker + sex:children + ## sex:smoker + bmi:children + bmi:smoker + children:smoker ## ## ## Df Sum of Sq **RSS** AIC ## - bmi:children 0.013 186.20 -2604.7 1 ## - sex:children 0.020 186.21 -2604.7 1 ## - age:bmi 1 0.059 186.24 -2604.4 ## <none> 186.19 -2602.8 ## - sex:smoker 1 0.632 186.82 -2600.3 ## - age:sex 1.670 187.85 -2592.8 1 ## - region 3 4.866 191.05 -2574.3 ## - children:smoker 1 4.629 190.81 -2571.9 ## - age:children 1 5.099 191.28 -2568.6 ## - bmi:smoker 1 20.676 206.86 -2463.9 ## - age:smoker 44.362 230.55 -2318.8

```
## Step: AIC=-2604.7
## log(charges) ~ age + sex + bmi + children + smoker + region +
       age:sex + age:bmi + age:children + age:smoker + sex:children +
##
       sex:smoker + bmi:smoker + children:smoker
##
##
                     Df Sum of Sa
                                     RSS
                      1
                            0.020 186.22 -2606.6
## - sex:children
## - age:bmi
                            0.061 186.26 -2606.3
                      1
                                  186.20 -2604.7
## <none>
## - sex:smoker
                      1
                            0.626 186.82 -2602.2
## - age:sex
                      1
                            1.677 187.87 -2594.7
                      3
                            4.864 191.06 -2576.2
## - region
## - children:smoker 1
                            4.616 190.81 -2573.9
                            5.273 191.47 -2569.3
## - age:children
                      1
## - bmi:smoker
                      1
                           20.691 206.89 -2465.7
## - age:smoker
                      1
                           44.372 230.57 -2320.7
##
## Step: AIC=-2606.56
## log(charges) ~ age + sex + bmi + children + smoker + region +
       age:sex + age:bmi + age:children + age:smoker + sex:smoker +
##
       bmi:smoker + children:smoker
##
##
##
                     Df Sum of Sq
                                     RSS
                                              AIC
                            0.063 186.28 -2608.1
## - age:bmi
                      1
                                  186.22 -2606.6
## <none>
## - sex:smoker
                      1
                            0.625 186.84 -2604.1
## - age:sex
                      1
                            1.696 187.91 -2596.4
                      3
                            4.872 191.09 -2578.0
## - region
## - children:smoker
                      1
                            4.597 190.81 -2575.9
## - age:children
                      1
                           5.338 191.56 -2570.7
                      1
## - bmi:smoker
                           20.785 207.00 -2467.0
## - age:smoker
                      1
                           44.352 230.57 -2322.7
##
## Step: AIC=-2608.1
## log(charges) ~ age + sex + bmi + children + smoker + region +
##
       age:sex + age:children + age:smoker + sex:smoker + bmi:smoker +
##
       children:smoker
##
##
                     Df Sum of Sq
                                     RSS
                                              AIC
                                  186.28 -2608.1
## <none>
## - sex:smoker
                      1
                            0.641 186.92 -2605.5
## - age:sex
                            1.674 187.95 -2598.1
                      1
## - region
                      3
                            4.871 191.15 -2579.6
## - children:smoker
                      1
                            4.602 190.88 -2577.4
## - age:children
                      1
                            5.375 191.66 -2572.1
                      1 20.891 207.17 -2467.9
## - bmi:smoker
                      1
                          44.423 230.70 -2323.9
## - age:smoker
summary(m4)
```

```
##
## Call:
## lm(formula = log(charges) ~ age + sex + bmi + children + smoker +
       region + age:sex + age:children + age:smoker + sex:smoker +
       bmi:smoker + children:smoker, data = d)
##
##
## Residuals:
##
       Min
                  10
                      Median
                                    3Q
                                            Max
  -0.51136 -0.15405 -0.08433 -0.01707
                                        2.47390
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       7.0888514
                                 0.0776978 91.236
                                                   < 2e-16 ***
                                                    < 2e-16 ***
                       0.0421160
                                  0.0012071 34.890
## age
                                  0.0621635 -4.956 8.15e-07 ***
## sexmale
                      -0.3080542
                       0.0014020
                                             0.705 0.480881
## bmi
                                 0.0019885
                                 0.0273731 10.534 < 2e-16 ***
## children
                      0.2883382
                      1.3570030
                                 0.1438525
                                             9.433
                                                    < 2e-16 ***
## smokeryes
## regionnorthwest
                      -0.0560587
                                 0.0295126 -1.899 0.057718 .
## regionsoutheast
                                 0.0296686 -4.733 2.45e-06 ***
                      -0.1404290
## regionsouthwest
                      -0.1505651
                                 0.0296077
                                            -5.085 4.20e-07 ***
## age:sexmale
                      0.0050583
                                 0.0014670
                                             3.448 0.000583 ***
                                 0.0006515 -6.178 8.60e-10 ***
## age:children
                      -0.0040252
                                 0.0018428 -17.762 < 2e-16 ***
## age:smokeryes
                      -0.0327328
                                              2.133 0.033103 *
## sexmale:smokeryes
                      0.1110171
                                 0.0520458
                                 0.0041226 12.181 < 2e-16 ***
## bmi:smokeryes
                      0.0502169
## children:smokeryes -0.1253703
                                 0.0219296 -5.717 1.34e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3752 on 1323 degrees of freedom
## Multiple R-squared: 0.8352, Adjusted R-squared: 0.8335
                  479 on 14 and 1323 DF, p-value: < 2.2e-16
## F-statistic:
              Test stat Pr(>|Test stat|)
##
                -3.4054
                               0.0006806 ***
## age
## sex
                               0.0009156 ***
## bmi
                -3.3228
                -3.3737
                               0.0007630 ***
## children
## smoker
## region
## Tukey test
                -7.7792
                               7.299e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
      Dołączenie interakcji podniosło rozwiązanie modelu do 83,5%, niestety
```

zamiast się upraszczać coraz bardziej się komplikuje.

residualPlots(m4)

Ciekawie wyglądają wykresy po uwzględnieniu interakcji. Powoli można wysnuć wnioski, że jest jakaś podgrupa ludzi, których koszty leczenia są po prostu niedoszacowane. Reszty są mniej więcej z przedziału -3</ri>
reszty<3. Z wykresu wynika, że jest bardzo duża grupa osób z resztą "dodatnią". To może wynikać z braku informacji na temat konkretnych schorzeń, które powodują odstawanie. Widać, że grupa osób nie jest losowa.</p>

qqPlot(m4)


```
## [1] 431 517
outlierTest(m4)
##
        rstudent unadjusted p-value Bonferroni p
## 431
       6.736167
                        2.4197e-11
                                     3.2375e-08
## 517 6.489237
                        1.2168e-10
                                     1.6281e-07
## 1028 5.815184
                        7.5858e-09
                                     1.0150e-05
## 220 5.794173
                        8.5724e-09
                                     1.1470e-05
## 103 5.632659
                        2.1654e-08
                                     2.8973e-05
## 398 5.524293
                        3.9793e-08
                                     5.3243e-05
## 1040 5.242712
                        1.8404e-07
                                     2.4624e-04
## 341 5.026402
                        5.6831e-07
                                     7.6039e-04
## 355 4.851804
                        1.3688e-06
                                     1.8314e-03
## 1020 4.850980
                        1.3744e-06
                                     1.8389e-03
     4. Model otrzymany metoda Hellwiga
```

Na koniec chciałem stworzyć model w oparciu o metodę Hellwiga (wykorzystam funkcję Hellwig z MSAD) wybiera nie tylko najwyższe korelacje, ale również eliminuje współliniowość dlatego może uznać, że jeżeli zmienne korelują z wydatkami to dodatkowo może jakaś zmienna opisywać również inną, która jest wysoko skorelowana z "charges".

```
Hellwig <- function(LiczbaZm, ZbiorZm, RodzajKor) {</pre>
   require(gtools)
  Zmienne_opt <- array();</pre>
  chwilowe H <- 0;
  maxH <- 0;
 Macierz kor <- cor(ZbiorZm, method=RodzajKor);</pre>
  Lista_pelna <- list();</pre>
  for( i in 1: (LiczbaZm-1) ) {
     Lista_pelna[[i]] <- combinations( (LiczbaZm-1), i, 2:LiczbaZm,</pre>
repeats=FALSE);
    }
  for(Liczba el w komb in 1:length(Lista pelna)) {
    H<-array();</pre>
    for( Numer_komb in 1: length(Lista_pelna[[ Liczba_el_w_komb ]][, 1]) ) {
     h<-array();
      for( Index_zm_w_komb in 1:length( Lista_pelna[[ Liczba_el_w_komb ]][ Nu
mer komb, ])) {
 Zmienna <- Lista_pelna[[ Liczba_el_w_komb ]][ Numer_komb, Index_zm_w_komb ];</pre>
  RXY <- ( Macierz_kor[ Zmienna, 1] )^2;</pre>
  Zmienne <- Lista_pelna[[ Liczba_el_w_komb ]][ Numer_komb, ];</pre>
```

```
Suma kor mianownik <- 0;
        for(k in Zmienne) {
    Suma_kor_mianownik <- Suma_kor_mianownik + abs( Macierz_kor[k, Zmienna]);</pre>
    h[ Index_zm_w_komb ] <- RXY / Suma_kor_mianownik;</pre>
chwilowe_H <- sum(h);</pre>
      if(chwilowe_H > maxH) {
        maxH = chwilowe_H;
        Zmienne_opt <- Zmienne-1;</pre>
      }
    }
  cat("Koszta optymalne wynosza", maxH, "\n")
  for(d in 1:length(Zmienne opt)) {
    cat("Należy wybrać zmienną X o indeksie", Zmienne_opt[d], "\n")
  }
  }
# W celu wyeliminowania problemu ze zmienng "region", która opisana jest
# przez cztery zmienne jakościowe utworzę macierz, która wprowadzi dodatkowe
#zmienne objaśniające
matrix <- model.matrix(charges ~ ., d)</pre>
matrix <- as.data.frame(matrix[, -1])</pre>
Dane<-data.frame(charges = log(d$charges), matrix)</pre>
Hellwig(ncol(Dane), Dane, "pearson")
## Koszta optymalne wynoszą 0.7146584
## Należy wybrać zmienną X o indeksie 1
## Należy wybrać zmienną X o indeksie 4
## Należy wybrać zmienną X o indeksie 5
# Metoda Hellwiga sugeruje wybór zmiennych o numerach 1,4,5
# czyli age, children, smoker
```

```
xnam0 < -colnames(d)[c(1,4,5)]
formula0 <- as.formula(paste("log(charges) ~ ", paste(xnam0, collapse= "+")))</pre>
formula0
## log(charges) ~ age + children + smoker
#Tworzymy model dla części zmiennych
restrykcja<-lm(formula0, d)</pre>
#Ocena dopasowania
summary(restrykcja)
##
## Call:
## lm(formula = formula0, data = d)
## Residuals:
##
                 10
                      Median
       Min
                                   30
                                           Max
## -0.94939 -0.17632 -0.04368 0.04252 2.13501
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.2877234 0.0387040 188.294 <2e-16 ***
             0.0352849 0.0008839 39.919
                                             <2e-16 ***
## age
              0.1016311 0.0102990
                                    9.868 <2e-16 ***
## children
              1.5442724 0.0307364 50.242 <2e-16 ***
## smokeryes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4535 on 1334 degrees of freedom
## Multiple R-squared: 0.7573, Adjusted R-squared: 0.7567
## F-statistic: 1387 on 3 and 1334 DF, p-value: < 2.2e-16
# Wykres rozrzutu
     Model uzyskany metodą Hellwiga rozwiązuje nam problem również na
poziomie 75,7% czyli jest zbliżony do modelu m2.
```


5. Podsumowanie

Zgodnie z metodą *Hellwiga* nasze równanie przyjmuje najprostsze wzór

Log(charges) = 7,2877234 + 0.0352849age + 0.1016311children + 1.5442724smokeryes

Natomiast model $\mathbf{m4}$ rozwiązuje równanie w niecałych 84%, ale jest bardzo skomplikowany.

Niestety wykresy wskazują na bardziej skomplikowane zależności. Możliwe, że mamy do czynienia z pewnym brakiem informacji ze względu na dane dyskretne, które nie są ujawnione.