Aspectos Homológicos de la Teoría Clásica de Campos en el formalismo de Batalin-Vilkovisky

Tomas Alzate Lugo Director: PhD Cristhiam López Arcos

Universidad EIA Trabajo de grado para obtar al Título de Físico

16 de septiembre de 2025

Contenido

- Introducción
- 2 Teorías gauge
 - Teoría Clásica de Campos
 - Estructura general de las teorías gauge
- Fundamentos Matemáticos
 - Álgebra Homológica
 - Geometría Graduada
- Formalismo de Batalin-Vilkovisky Clásico
 - Complejo BRST
 - Complejo de Batalin-Vilkovisky y la Ecuación Maestra
 - ullet Álgebras L_{∞} en teorías clásicas de campos
- 5 Conclusiones y Consideraciones Finales
- 6 Referencias

Motivación

- Modelo estándar y Relatividad General Teorías Gauge.
- Simetría gauge \implies redundancia \implies grados de libertad no físicos.
- Esta redundancia induce dificultades al estudiar la dinámica, tanto clásica como cuántica, de estas teorías.
- El formalismo de Batalin-Vilkovisky (BV) es considerado el método más general y poderoso para tratar estos sistemas.

El formalismo BV in a nutshell

- Es homológico.
- Introduce fantasmas para resolver las redundancias gauge (BRST).
- Introduce anticampos para resolver las ecuaciones de movimiento.
- Data clásica \Longrightarrow Q-variedad simpléctica.
- Teoría de campos \iff álgebra L_{∞} .
- Aplicaciones modernas
 [Macrelli et al., 2019, Jurčo et al., 2020, Lopez-Arcos and Vélez, 2019, Gomez et al., 2021, Borsten et al., 2021].

Objetivo

Estudiar los fundamentos matemáticos del formalismo de Batalin-Vilkovisky y las álgebras L_{∞} que aparecen en la Teoría Clásica de Campos.

Teoría Clásica de Campos

- 1 Un espacio tiempo: una variedad d-dimensional M.
- ② Un espacio de campos $\mathfrak{F} = Map(M, V)$.
- **3** Un funcional de action $S:\mathfrak{F}\to\mathbb{R}$ de la forma

$$S[\phi] = \int_{\mathcal{M}} \mathcal{L}(\phi, \partial \phi) \tag{1}$$

4 El principio variacional:

$$\delta S[\phi] = 0 \tag{2}$$

 $Crit(S) = \{ \phi \in \mathfrak{F} \mid \delta S[\phi] = 0 \}. \ \phi \in Crit(S) \text{ es un campo } \textit{on-shell.}$

Estructura general de las teorías gauge

- Una Teoría Gauge es cierta teoría de campos en la que la dinámica es invariante bajo transformaciones locales.
- Una acción de G = Map(M, G)

$$\begin{array}{c}
\mathcal{G} \triangleright \mathfrak{F} : \mathcal{G} \times \mathfrak{F} \to \mathfrak{F} \\
(g, \phi) \mapsto g \triangleright \phi,
\end{array}$$
(3)

 $\mathsf{tal} \; \mathsf{que} \; \mathcal{S}[\phi] = \mathcal{S}[\mathsf{g} \triangleright \phi] \quad \forall \; \mathsf{g} \in \mathcal{G} \; \mathsf{y} \; \forall \; \phi \in \mathfrak{F}.$

Transformaciones infinitesimales

ullet Transformación generada por Lie (\mathcal{G})

$$\phi^{\mathbf{a}}(\mathbf{x}) \to \phi^{\mathbf{a}}(\mathbf{x}) + \delta\phi^{\mathbf{a}}(\mathbf{x}) := \phi^{\mathbf{a}}(\mathbf{x}) + (R_i^{\mathbf{a}}(\phi)\varepsilon^i)(\mathbf{x}) \tag{4}$$

- $\{\varepsilon^i: M \to \mathbb{R}\}_{i \in I}$: parámetros de la transformación gauge.
- Notación de De-Witt
 - $a \rightarrow A = (a, x)$
 - Ahora suma sobre índices repetidos incluye integración sobre el espacio-tiempo

$$\delta \phi^{A} = R_{I}^{A} \varepsilon^{I} \Leftrightarrow \delta \phi^{a}(x) = \int_{M} d^{d} y R_{i}^{a}(x, y) \varepsilon^{i}(y). \tag{5}$$

Identidades de Noether

Dado que (4) es una simetría de la acción, implica las **identidades de Noether**

$$0 = \frac{\delta S}{\delta \varepsilon^{I}} = \frac{\delta S}{\delta \phi^{A}} \frac{\delta \phi^{A}}{\delta \varepsilon^{I}} \Leftrightarrow \frac{\delta S}{\delta \phi^{A}} R_{I}^{A} = 0$$
 (6)

Variando (6) respecto a ϕ^B y restringiendo ϕ a Crit(S), obtenemos las segundas identidades de Noether

$$\frac{\delta^2 S}{\delta \phi^B \delta \phi^A} R_I^A = 0 \tag{7}$$

 \Rightarrow El Hessiano de S es singular en cada punto de la superficie estacionaria.

Problemas

- Las ecuaciones de movimiento NO determinan por completo la dinámica de la teoría.
- No tenemos propagadores.
- No es posible aplicar teoría de pertubaciones.

Conclusión

Se deben imponer y resolver *ligaduras* adicionales. **Formalismos** BRST-BV.

Álgebra Homológica

Complejo

Un complejo (C, d)

$$\cdots \xrightarrow{d_{k-2}} C^{k-1} \xrightarrow{d_{k-1}} C^k \xrightarrow{d_k} C^{k+1} \xrightarrow{d_{k+1}} \cdots$$
 (8)

tales que

$$d_{k+1} \circ d_k = 0 \ \forall \ k \in \mathbb{Z}. \tag{9}$$

- $Z^k := \ker(d_k) \subseteq C^k$ k-cociclos.
- $B^k := \operatorname{im}(d_{k-1}) \subseteq Z^k$ k-cobordes.
- $H_d^k(C) := Z^k/B^k$ cohomología de orden k.

Variedades graduadas

En una variedad graduada tenemos coordenadas locales impares.

$$(\varphi_U, \varphi_U^*) : (U, C^{\infty}(M)|_U) \xrightarrow{\cong} (U', C^{\infty}(U') \otimes S^{\bullet}(\mathcal{V}_{U'}^*))$$
 (10)

• $C^{\infty}(M)$ es un álgebra graduada conmutativa.

$$f(x,\xi) = f_0(x) + f_\alpha(x)\xi^\alpha + f_{\alpha\beta}(x)\xi^\alpha \xi^\beta + \cdots$$
 (11)

- $\xi^{\alpha}\xi^{\beta}=(-1)^{|\xi^{\alpha}||\xi^{\beta}|}\xi^{\beta}\xi^{\alpha}$. $|\xi^{\alpha}|\in\mathbb{Z}$ número fantasma.
- Ejemplo: *T*[1]*M*:
 - Coordenadas x^{μ} en M de grado 0, las fibras $\xi^{\mu} \Leftrightarrow dx^{\mu}$ con grado +1.
 - $dx^{\mu} \wedge dx^{\nu} \Leftrightarrow \xi^{\mu} \xi^{\nu}$.
 - $C^{\infty}(M) = \Omega^{\bullet}(M)$

Campo Vectorial Homológico

- $\mathfrak{X}(M) = \operatorname{Der}(C^{\infty}(M)).$
- Si $X: C^{\infty}(M) \to C^{\infty}(M) \in \mathfrak{X}(M)$ entonces

$$X(fg) = X(f)g + (-1)^{|f||X|}fX(g).$$
 (12)

- $Q \in \mathfrak{X}(M)$ tal que |Q| = 1, $Q^2 = 0$.
- El par (M, Q) se denomina Q-variedad.
- Ejemplo. En T[1]M para, el diferencial de de Rham $Q = \xi^{\mu} \frac{\partial}{\partial x^{\mu}}$ es un campo vectorial homológico.

Álgebras de Lie como Q-variedades

Ejemplo: $M = \mathfrak{g}[1]$, \mathfrak{g} un álgebra de Lie $[\tau_{\alpha}, \tau_{\beta}] = f_{\alpha\beta}^{\gamma} \tau_{\gamma}$:

- $\xi^{\alpha} \in \mathfrak{g}[1]^*$ coordenadas de grado 1: $\xi^{\alpha}\xi^{\beta} = -\xi^{\beta}\xi^{\alpha}$
- $C^{\infty}(\mathfrak{g}[1]) \cong \bigwedge^{\bullet} \mathfrak{g}^*$: Polinomios en las funciones coordenadas $\{\xi^{\alpha}: \mathfrak{g}[1] \to \mathbb{R}\}.$
- Campo vectorial homológico:

$$Q = -\frac{1}{2} f_{\alpha\beta}^{\gamma} \xi^{\alpha} \xi^{\beta} \frac{\partial}{\partial \xi^{\gamma}}$$

$$Q^2 = 0 \Longleftrightarrow f_{\alpha\beta}^{\delta} f_{\delta\gamma}^{\epsilon} + f_{\gamma\alpha}^{\delta} f_{\delta\beta}^{\epsilon} + f_{\beta\gamma}^{\delta} f_{\delta\alpha}^{\epsilon} = 0.$$

• $(C^{\infty}(\mathfrak{g}[1]), Q) \cong \mathsf{CE}(\mathfrak{g}) := (\bigwedge^{\bullet} \mathfrak{g}^*, \mathsf{d}_{\mathsf{CE}}).$

$$Q\xi^{\gamma} = -\frac{1}{2}f^{\gamma}_{\alpha\beta}\xi^{\alpha}\xi^{\beta}$$

Álgebras L_{∞}

- M = L[1] para $L = \bigoplus_{k \in \mathbb{Z}} L_k$
- Campo vectorial homológico

$$Q = \sum_{i=1}^{\infty} \frac{1}{i!} f_{\alpha_1 \dots \alpha_i}^{\beta} \xi^{\alpha_1} \dots \xi^{\alpha_i} \frac{\partial}{\partial \xi^{\beta}}$$
 (13)

• Las constantes $f_{\alpha_1...\alpha_i}^{\beta}$ definen $\mu_i: \bigwedge^i L \to L$

$$\mu_i(\tau_{\alpha_1}, \dots, \tau_{\alpha_i}) := f_{\alpha_1 \dots \alpha_i}^{\beta} \tau_{\beta} \tag{14}$$

• La condición $Q^2 = 0$ se traduce en

$$\sum_{k=i+j} \sum_{\sigma \in \mathsf{Sh}(\mathbf{j},\mathbf{i})} (-1)^k \chi(\sigma; l_1, \dots, l_i) \mu_{k+1}(\mu_j(l_{\sigma(1)}, \dots, l_{\sigma(j)}), l_{\sigma(j+1)}, \dots, l_{\sigma(i)}) = 0$$
UNIVERSIDAD

Identidades de Jacobi generalizadas

• k = 1 Diferencial

$$\mu_1(\mu_1(I))=0$$

• k = 2 Regla de Leibniz:

$$\mu_1(\mu_2(l_1, l_2)) = \mu_2(\mu_1(l_1), l_2) + (-1)^{|l_1|} \mu_2(l_1, \mu_1(l_2))$$

• k = 3 Identidad de Jacobi salvo homotopía:

$$\begin{split} &\mu_2(\mu_2(l_1,l_2),l_3) + (-1)^{|l_1|(|l_2|+|l_3|)}\mu_2(\mu_2(l_2,l_3),l_1) + \\ &(-1)^{|l_3|(|l_1|+|l_2|)}\mu_2(\mu_2(l_3,l_1),l_2) \\ &= &\mu_1(\mu_3(l_1,l_2,l_3)) + \mu_3(\mu_1(l_1),l_2,l_3) + (-1)^{|l_1|(|l_2|+|l_3|)}\mu_3(\mu_1(l_2),l_3,l_1) \\ &+ (-1)^{|l_3|(|l_1|+|l_2|)}\mu_3(\mu_1(l_3),l_1,l_2) \end{split}$$

- $(L, \{\mu_i : \bigwedge^i L \to L\}_{i \in \mathbb{N}})$ álgebra L_{∞} .
- $CE(L) := (C^{\infty}(L[1]), Q)$: álgebra de Chevalley-Eilenberg.
- ullet Campo vectorial homológico y productos L_{∞}

$$Q\xi^{\alpha} = \sum_{i=1}^{\infty} -\frac{1}{i!} f^{\alpha}_{\beta_1...\beta_i} \xi^{\beta_1} \cdots \xi^{\beta_i}$$

• Los coeficientes son las componentes L_{∞} .

$$Q\xi^{\alpha} = -\mu_{1}(\tau_{\beta_{1}})^{\alpha}\xi^{\beta_{1}} - \frac{1}{2}\mu_{2}(\tau_{\beta_{1}}, \tau_{\beta_{2}})^{\alpha}\xi^{\beta_{1}}\xi^{\beta_{2}} - \frac{1}{3!}\mu_{3}(\tau_{\beta_{1}}, \tau_{\beta_{2}}, \tau_{\beta_{3}})^{\alpha}\xi^{\beta_{1}}\xi^{\beta_{2}}\xi^{\beta_{3}} + \cdots$$

Formas simplécticas graduadas

- Una forma simpléctica graduada $\omega \in \Omega^2(M)$ tal que $d\omega = 0$ y $\mathfrak{X}(M) \cong \Omega^1(M)$.
- Ejemplo En $T^*[1]M$:
- Coordenadas x^{μ} en M de grado 0 y coordenadas en las fibras p_{μ} de grado 1.
- $\omega = dp_{\mu} \wedge dx^{\mu}$ es una forma simpléctica de grado 1.

Estructura de Poisson

- Para toda $H \in C^{\infty}(M)$ existe $X_H \in \mathfrak{X}(M)$ tal que $i_{X_H}\omega = dH$. X_H se conoce como campo vectorial hamiltoniano.
- Estructura de Poisson graduada en $C^{\infty}(M)$. Para $f, g \in C^{\infty}(M)$ definimos su anti-bracket:

$$\{f,g\} := \omega(X_g,X_f) = X_f(g) \tag{15}$$

Q-variedades simplécticas

- Una estructura simpléctica diferencial en una variedad graduada M es un par (Q, ω) , donde:
 - \bullet ω es una forma simpléctica
 - Q es un c.v.h. simpléctico:

$$\mathcal{L}_Q\omega=0$$
 $Q^2=0$.

ullet Cuando Q es Hamiltoniano, existe una función $S\in C^\infty(M)$ tal que

$$i_Q\omega=dS$$
 y $\{S,S\}=0$.

• (M, Q, ω) se denomina Q-variedad simpléctica. Es la estructura matemática del formalismo de Batalin-Vilkovisky.

Hacia el formalismo de Batalin-Vilkovisky

• Teoría gauge general $(\mathfrak{F}, G, \mathcal{G} \triangleright \mathfrak{F})$. El *verdadero* espacio de configuraciones está dado por el *cociente*

$$C = \mathfrak{F}/\mathcal{G}. \tag{16}$$

 En escencia, el formalismo BRST-BV busca interpretar este cociente con álgebra homológica.

$$\mathfrak{F}/\mathcal{G} \longrightarrow [\mathfrak{F}/\mathcal{G}]$$

• Codificando $C^{\infty}(\mathfrak{F}/\mathcal{G})$ en un complejo.

Formalismo BRST

En lugar de tratar de definir $C^{\infty}(\mathfrak{F}/\mathcal{G})$, consideramos $\mathsf{CE}(\mathfrak{g},\mathfrak{F})$

$$\operatorname{Hom}\left(\bigwedge\nolimits^0\operatorname{Lie}(\mathcal{G}), C^\infty(\mathfrak{F})\right)\xrightarrow{d_{CE}}\operatorname{Hom}\left(\bigwedge\nolimits^1\operatorname{Lie}(\mathcal{G}), C^\infty(\mathfrak{F})\right)\xrightarrow{d_{CE}}\cdots$$

y definimos

$$[\mathfrak{F}/\mathcal{G}] = \mathsf{Lie}(\mathcal{G})[1] \times \mathfrak{F} := \mathfrak{F}_{\mathsf{BRST}} \tag{17}$$

La acción del álgebra de Lie se codifica en un campo vectorial homológico Q_{BRST} en $\mathfrak{F}_{\mathsf{BRST}}$:

$$Q_{\mathsf{BRST}}\Phi^A = \delta_c \Phi^A, \quad Q_{\mathsf{BRST}}c^a = -\frac{1}{2}f^a_{bc}c^bc^c. \tag{18}$$

Formalismo BRST

- La identidad de Jacobi y la representación se traducen $Q_{BRST}^2 = 0$.
- $(C^{\infty}(\mathfrak{F}_{\mathsf{BRST}}), Q_{\mathsf{BRST}})$ es un complejo:

$$0 \to C_0^\infty(\mathfrak{F}_{\mathsf{BRST}}) \xrightarrow{Q_{\mathsf{BRST}}} C_1^\infty(\mathfrak{F}_{\mathsf{BRST}}) \xrightarrow{Q_{\mathsf{BRST}}} C_2^\infty(\mathfrak{F}_{\mathsf{BRST}}) \xrightarrow{Q_{\mathsf{BRST}}} \cdots$$

donde $C_i^{\infty}(\mathfrak{F}_{\mathsf{BRST}})$ son funciones de número fantasma i.

• $F \in C^{\infty}(\mathfrak{F}/\mathcal{G})$ satisface $Q_{\mathsf{BRST}}F[\Phi] = 0$ y |F| = 0. Por tanto, concluimos

$$C^{\infty}(\mathfrak{F}/\mathcal{G}) \cong H^0_{Q_{\mathsf{BRST}}}(\mathfrak{F}_{\mathsf{BRST}}).$$
 (19)

Extensión Off-shell de BRST

- En algunos casos, incluyendo simetrías abiertas o sistemas reducibles, se encuentra que $Q_{\text{BRST}}^2 \propto \text{EoM}$.
- El formalismo BV provee la extensión *off-shell* para tratar estos casos más generales.
- Por cada campo Φ^A introduce una variable conjugada Φ_A^* llamada anticampo.

$$\mathfrak{F}_{\mathsf{BV}} := T^*[-1]\mathfrak{F}_{\mathsf{BRST}} \tag{20}$$

ullet De manera que se pueda construir $Q_{\mathsf{BV}} \in \mathfrak{X}(\mathfrak{F}_{\mathsf{BV}})$ tal que $Q^2_{\mathsf{BV}} = 0$.

Estructura del espacio extendido y la acción maestra

• En $\mathfrak{F}_{\mathsf{BV}}$ tenemos $\omega_{\mathsf{BV}} = (-1)^{|\Phi^A|} \delta \Phi^A \wedge \delta \Phi_A^*$ y una estructura de Poisson

$$\{F,G\}_{\mathsf{BV}} = (-1)^{|\Phi^A|(|F|+1)} \left(\frac{\delta F}{\delta \Phi^A} \frac{\delta G}{\delta \Phi_A^*} + (-1)^{|F|} \frac{\delta F}{\delta \Phi_A^*} \frac{\delta G}{\delta \Phi^A} \right)$$

• Queremos extender Q_{BRST} a un campo vectorial Hamiltoniano $Q_{\mathsf{BV}} := \{S_{\mathsf{BV}}, -\}_{\mathsf{BV}} \in \mathfrak{X}(\mathfrak{F}_{\mathsf{BV}})$ tal que

$$Q_{\mathsf{BV}}^2 = 0, \quad Q_{\mathsf{BV}}|_{\mathfrak{F}_{\mathsf{BRST}}} = Q_{\mathsf{BRST}}$$

• El funcional $S_{\mathsf{BV}} \in C_0^\infty(\mathfrak{F}_{\mathsf{BV}})$ se denomina **acción maestra clásica**UNIVERSIDA

La ecuación maestra clásica

• La condición $Q_{\mathsf{BV}}^2 = 0$ implica que S_{BV} satisface la **ecuación maestra**

$${S_{BV}, S_{BV}}_{BV} = 0.$$
 (21)

- Condiciones de frontera:
 - La acción clásica de la teoría.
 - Anticampos como fuentes de las transformaciones BRST.
- Expandimos $S_{\rm BV}$ en series de potencias de los anticampos:

$$S_{\mathsf{BV}}[\Phi, \Phi^*] = S[\Phi] + \Phi_A^* Q_{\mathsf{BRST}} \Phi^A + \mathcal{O}((\Phi^*)^2)$$

Transformaciones BV/BRST

$$S_{\mathsf{BV}}[\Phi, \Phi^*] = S[\Phi] + \Phi_A^* Q_{\mathsf{BRST}} \Phi^A \tag{22}$$

- La acción maestra ahora es la generadora de las transformaciones tipo BRST.
- En las coordenadas su acción toma la forma:

$$egin{align} Q_{\mathsf{BV}} \Phi^A &= (-1)^{|\Phi^A|} rac{\delta \mathcal{S}_{\mathsf{BV}}}{\delta \Phi_A^*} \ Q_{\mathsf{BV}} \Phi_A^* &= (-1)^{|\Phi^A|} rac{\delta \mathcal{S}_{\mathsf{BV}}}{\delta \Phi^A} \ \end{split}$$

tales que

$$Q_{\mathsf{BV}}^2 = 0$$
 (off-shell)

Formalismo BV y observables clásicos

Los observables clásicos estan dados por

$$C^{\infty}(\mathfrak{F}/\mathcal{G})/\mathfrak{I}$$

donde \Im es el ideal de funcionales que se anulan en la superficie crítica de S. [Gomis et al., 1995]

$$G^{A}(\Phi)\frac{\delta S_{\text{BV}}}{\delta \Phi^{A}} \in \mathfrak{I}$$
 (23)

 El formalismo BV codifica este cociente en el álgebra diferencial graduada:

$$(C^{\infty}(\mathfrak{F}_{\mathsf{BV}}), Q_{\mathsf{BV}}), \quad Q_{\mathsf{BV}} = \{S_{\mathsf{BV}}, -\}$$

Observables clásicos y la resolución de Koszul-Tate

• Tenemos el complejo de funciones en $\mathfrak{F}_{\mathsf{BV}} = \mathcal{T}^*[-1]\mathfrak{F}_{\mathsf{BRST}}$:

$$\cdots \xrightarrow{Q_{\mathsf{BV}}} C^{\infty}_{-1}(\mathfrak{F}_{\mathsf{BV}}) \xrightarrow{Q_{\mathsf{BV}}} C^{\infty}_0(\mathfrak{F}_{\mathsf{BV}}) \xrightarrow{Q_{\mathsf{BV}}} C^{\infty}_1(\mathfrak{F}_{\mathsf{BV}}) \xrightarrow{Q_{\mathsf{BV}}} \cdots$$

• Como $C^{\infty}_{-1}(\mathfrak{F}_{\mathrm{BV}})$ son funcionales lineales en los anticampos y $Q_{\mathrm{BV}}\Phi^*_A=(-1)^{|\Phi^A|} \frac{\delta S_{\mathrm{BV}}}{\delta \Phi^A}$,

$$\mathfrak{I} = Q_{\mathsf{BV}}(C_{-1}^{\infty}(\mathfrak{F}_{\mathsf{BV}})) \tag{24}$$

• Y como el kernel de $Q_{\rm BV}$ en $C_0^\infty(\mathfrak{F}_{\rm BV})$ son funcionales *invariantes* gauge, concluimos

$$H^0_{Q_{\mathrm{BV}}} = \{ \text{funcionales invariantes gauge } \textit{on-shell} \}$$

Álgebras L_{∞} de las teorías clásicas de campos

- La Q-variedad $(\mathfrak{F}_{\mathsf{BV}}, Q_{\mathsf{BV}})$ induce una estructura L_{∞} sobre $\mathfrak{F}_{\mathsf{BV}}[-1]$.
- Esta álgebra L_{∞} codifica toda la información clásica de la teoría en el complejo:

$$\cdots \xrightarrow{\mu_1} \underbrace{\mathfrak{F}_{\mathsf{BV}}^{-1}}_{L_0} \xrightarrow{\mu_1} \underbrace{\mathfrak{F}_{\mathsf{BV}}^0}_{L_1} \xrightarrow{\mu_1} \underbrace{\mathfrak{F}_{\mathsf{BV}}^1}_{L_2} \xrightarrow{\mu_1} \cdots$$

- $L_0 = \mathfrak{F}_{\mathsf{BV}}^{-1}$: fantasmas (parámetros gauge)
- $L_1 = \mathfrak{F}^0_{BV}$: campos clásicos
- $L_2 = \mathfrak{F}^1_{\mathsf{BV}}$: Ecuaciones de Movimiento
- $L_3 = \mathfrak{F}^2_{\mathsf{BV}}$: Identidades de Noether

Teoría de Yang-Mills

- Surge como una generalización del electromagnetismo de Maxwell a simetrías gauge **no abelianas** [Yang and Mills, 1954].
- Base teórica del SM
- Estructura matemática: haz principal sobre el espacio-tiempo M con grupo de estructura G.
- $\mathfrak{F}_{\mathsf{YM}} = \Omega^1(M) \otimes \mathfrak{g}$

Teoría de Yang-Mills

- (M, η) el espacio tiempo d-dimensional de Minkowski,
- G un grupo de Lie compacto y $\mathfrak{g} = \text{Lie}(G)$,
- $\langle -, \rangle_{\mathfrak{g}}$ un producto escalar definido positivo Ad-invariante en \mathfrak{g} ,
- $\{\tau_a\}_{a=1,\dots r}$ una base ortonormal tal que $[\tau_a,\tau_b]=f_{ab}^{c}\tau_c$,
- $\Omega^{\bullet}(M,\mathfrak{g}) := \Omega^{\bullet}(M) \otimes \mathfrak{g}$

Teoría de Yang-Mills

• Campo gauge $A=A_{\mu}^{a}dx^{\mu}\otimes au_{a}\in \Omega^{1}(M,\mathfrak{g})$, y su curvatura:

$$F=dA+rac{1}{2}[A,A]=rac{1}{2}F_{\mu
u}^{a}dx^{\mu}\wedge dx^{
u}\otimes au_{a}$$

- tal que $F^a_{\mu
 u} = \partial_\mu A^a_
 u \partial_
 u A^a_\mu + f^a{}_{bc} A^b_\mu A^c_
 u$
- Acción de Yang-Mills:

$$S_{\mathsf{YM}}[A] = -\frac{1}{4} \int_{M} d^{d}x F_{\mu\nu}^{a} F_{a}^{\mu\nu}$$

Transformaciones infinitesimales:

$$\delta A^{a}_{\mu}(x) = \partial_{\mu}c^{a}(x) + f^{a}_{bc}A^{b}_{\mu}(x)c^{c}(x).$$

• $c(x) = c^a(x)\tau_a \in \Omega^0(M, \mathfrak{g})$ parámetros gauge.

(26)

Formalismo BV en Yang-Mills

- Promovemos los parámetros de gauge a campos fantasmas $c \in \Omega^0(M,\mathfrak{g})[1]$
- El complejo BRST toma la forma:

$$\mathfrak{F}_{\mathsf{YM-BRST}} = \Omega^0(M,\mathfrak{g})[1] \oplus \Omega^1(M,\mathfrak{g})$$

- Añadimos:
 - Anticampos $A^* \in \Omega^1(M,\mathfrak{g})[-1]$
 - Antifantasmas $c^* \in \Omega^0(M,\mathfrak{g})[-2]$
- El espacio de campos BV queda:

$$\mathfrak{F}_{\mathsf{YM-BV}} = \Omega^0(M,\mathfrak{g})[1] \oplus \Omega^1(M,\mathfrak{g}) \oplus \Omega^1(M,\mathfrak{g})[-1] \oplus \Omega^0(M,\mathfrak{g})[-2]$$

• La acción maestra clásica de Yang-Mills:

$$S_{\text{YM-BV}} = \int_{M} d^{4}x \left(-\frac{1}{4} F_{\mu\nu}^{a} F_{a}^{\mu\nu} + A_{a}^{*\mu} (\partial_{\mu}c^{a} + f_{bc}^{a} A_{\mu}^{b}c^{c}) + \frac{1}{2} c_{a}^{*} f_{bc}^{a} c^{b}c^{c} \right)$$

• de la cual extraemos las transformaciones BV y la estructura L_{∞} :

$$\begin{split} Q_{\text{BV}} A_{\mu}^{a} &= \underbrace{\partial_{\mu} c^{a}}_{\mu_{1}(c)_{\mu}^{a}} + \underbrace{f_{bc}^{a} A_{\mu}^{b} c^{c}}_{\mu_{2}(A,c)_{\mu}^{a}} \\ Q_{\text{BV}} c^{a} &= -\underbrace{\frac{1}{2} f_{bc}^{a} c^{b} c^{c}}_{\mu_{2}(c,c)^{a}} \\ Q_{\text{BV}} A_{a}^{*\mu} &= \underbrace{\partial_{\nu} (\partial^{\mu} A_{a}^{\nu} - \partial^{\nu} A_{a}^{\mu})}_{\mu_{1}(A)_{a}^{\mu}} + \underbrace{\partial_{\nu} (f_{a}^{\ bc} A_{b}^{\mu} A_{c}^{\nu}) + f_{a}^{\ bc} A_{b\nu} \partial^{\mu} A_{c}^{\nu} - f_{a}^{\ bc} A_{b}^{b} \partial^{\mu} A_{c}^{\nu}}_{\mu_{2}(A,A)_{a}^{\mu}} \\ &+ \underbrace{f_{a}^{\ bc} A_{b\nu} f_{c}^{\ de} A_{d}^{\mu} A_{e}^{\nu}}_{\mu_{3}(A,A,A)_{a}^{\mu}} + \underbrace{f_{ab}^{\ c} A_{c}^{*\mu} c^{b}}_{\mu_{2}(A^{*},c)_{a}^{\mu}} \\ Q_{\text{BV}} c_{a}^{*} &= \underbrace{-\partial_{\mu} A_{a}^{*\mu} + f_{ab}^{\ c} A_{\mu}^{A} A_{c}^{*\mu} + f_{ab}^{\ c} c_{c}^{*c} c^{b}}_{\mu_{2}(A,A^{*})_{a}} \cdot \underbrace{UNIVER}_{\mu_{2}(c^{*},c)_{a}} \end{split}$$

Yang-Mills álgebra L_{∞}

• El complejo de Yang-Mills

$$\underbrace{\Omega^0(M,\mathfrak{g})}_{L^0_{\mathsf{YM}}} \xrightarrow{d} \underbrace{\Omega^1(M,\mathfrak{g})[-1]}_{L^1_{\mathsf{YM}}} \xrightarrow{\delta d} \underbrace{\Omega^1(M,\mathfrak{g})[-2]}_{L^2_{\mathsf{YM}}} \xrightarrow{\delta} \underbrace{\Omega^0(M,\mathfrak{g})[-3]}_{L^3_{\mathsf{YM}}}$$

ullet Y la versión libre de coordenadas de los productos en el álgebra L_{∞}

$$\begin{split} \mu_1(c_1) &= dc_1, \quad \mu_1(A_1) = \delta dA_1, \quad \mu_1(A_1^*) = \delta A_1^*, \\ \mu_2(c_1, c_2) &= [c_1, c_2], \quad \mu_2(c_1, A_1) = [c_1, A_1], \quad \mu_2(c_1, A_1^*) = [c_1, A_1^*], \\ \mu_2(c_1, c_2^*) &= [c_1, c_2^*], \quad \mu_2(A_1, A_2^*) = \star [A_1, A_2^*], \\ \mu_2(A_1, A_2) &= \delta [A_1, A_2] + \star [A_1, \star dA_2] + \star [A_2, \star dA_1], \\ \mu_3(A_1, A_2, A_3) &= \star [A_1, \star [A_2, A_3]] + \star [A_2, \star [A_3, A_1]] + \star [A_3, \star [A_1, A_2]]; \end{split}$$

Conclusiones y Perspectivas

- Formalismo BV: $(\mathfrak{F}, \mathcal{S}, \mathcal{G} \triangleright \mathfrak{F}) \longrightarrow (\mathcal{T}^*[-1](\mathfrak{g}[1] \times \mathfrak{F}), \omega_{\mathsf{BV}}, \mathcal{Q}_{\mathsf{BV}})$
- Modelo del espacio de configuraciones reducido
- Los observables clásicos están determinados por $H^0_{Q_{\mathrm{BV}}}$.
- Esta variedad es dual a una estructura L_{∞} en $\mathfrak{F}_{\mathsf{BV}}[-1]$.
- Los productos μ_i son extraídos sistemáticamente de la acción maestra clásica.
- Teoría Cuántica de Campos:

 - Loop-level?

Referencias I

Borsten, L., Kim, H., Jurčo, B., Macrelli, T., Saemann, C., and Wolf, M. (2021).

Double copy from homotopy algebras.

Fortschritte der Physik, 69(8-9).

Gomez, H., Jusinskas, R. L., Lopez-Arcos, C., and Velez, A. Q. (2021). The L_{∞} structure of gauge theories with matter. *JHEP*, 02:093.

Gomis, J., París, J., and Samuel, S. (1995).

Antibracket, antifields and gauge-theory quantization.

Physics Reports, 259(1–2):1–145.

Jurčo, B., Macrelli, T., Sämann, C., and Wolf, M. (2020). Loop Amplitudes and Quantum Homotopy Algebras. JHEP, 07:003.

Referencias II

Macrelli, T., Sämann, C., and Wolf, M. (2019). Scattering amplitude recursion relations in batalin-vilkovisky–quantizable theories. *Physical Review D*, 100(4).

Yang, C. N. and Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. *Phys. Rev.*, 96:191–195.

Muchas Gracias!

