Credit Card Approvals

Commercial banks receive *a lot* of applications for credit cards. Many of them get rejected for many reasons, like high loan balances, low income levels, or too many inquiries on an individual's credit report, for example. Manually analyzing these applications is mundane, error-prone, and time-consuming.

You will build an automatic credit card approval predictor using machine learning techniques. The data shows the credit card applications a bank receives. The last column in the dataset is the target value.

Use supervised learning techniques to automate the credit card approval process for banks.

Preprocess the data and apply supervised learning techniques to find the
best model and parameters for the job. Save the accuracy score from your
best model as a numeric variable, best_score. Aim for an accuracy score
of at least 0.75. The target variable is the last column of the DataFrame.

```
In [1]: # Import necessary libraries
   import pandas as pd
   import numpy as np
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
   from sklearn.linear_model import LogisticRegression
   from sklearn.metrics import confusion_matrix
   from sklearn.model_selection import GridSearchCV

# Load the dataset
   cc_apps = pd.read_csv("../data_raw/creditcard_approvals.data", header=
   cc_apps
```

```
Out[1]:
                                                     8 9 10 11
                                                                      12 13
               0
                      1
                              2
                                 3 4
                                         5 6
                                                  7
               b 30.83
                          0.000
            0
                                            v 1.25
                                                      t
                                                             1
                                                                      0
                                                                          +
                                 u
                                     g
                                                         t
                                         W
                  58.67
                          4.460
                                            h
                                               3.04
                                                      t
                                                          t
                                                             6
                                                                    560
                                 u
                                     g
                                         q
                                                                 q
            2
               a 24.50
                          0.500
                                                1.50
                                                          f
                                                                    824
                                     g
                                         q
                                                             0
               b 27.83
                          1.540
                                         W
                                                3.75
                                                                      3
            4
               b
                   20.17
                          5.625
                                                1.71
                                                      t
                                                         f
                                                             0
                                                                      0
                                  u
                                     g
                                         W
                             • • •
                                 • • •
                                    • • •
                                        ... ...
                                                •••
         685
                  21.08 10.085
                                            h
                                                1.25
                                                      f
                                                         f
                                                             0
                                                                      0
                                 У
                                     р
                                         е
                                                                 g
         686
               a 22.67
                          0.750
                                               2.00
                                     g
                                                             2
                                                                    394
                  25.25 13.500
                                         ff ff
                                               2.00
                                                      f
                                                                      1
         687
                                     р
                                                              1
                                                                 g
                   17.92
                                                                    750
         688
               b
                          0.205
                                        aa
                                               0.04
                                                      f f
                                                             0
                                     g
         689
               b 35.00
                          3.375
                                    g
                                            h 8.29 f
                                                         f
                                                             0
                                                                      0
                                 u
                                         С
                                                                 g
```

690 rows × 14 columns

```
In [2]: # Replace the '?'s with NaN in dataset
        cc_apps_nans_replaced = cc_apps.replace("?", np.nan)
        # Create a copy of the NaN replacement DataFrame
        cc_apps_imputed = cc_apps_nans_replaced.copy()
        # Iterate over each column of cc_apps_nans_replaced and impute the mos
        for col in cc_apps_imputed.columns:
            # Check if the column is of object type
            if cc_apps_imputed[col].dtypes == "object":
                # Impute with the most frequent value
                cc apps imputed[col] = cc apps imputed[col].fillna(
                    cc_apps_imputed[col].value_counts().index[0]
                )
            else:
                cc_apps_imputed[col] = cc_apps_imputed[col].fillna(cc_apps_imp
        # Dummify the categorical features
        cc_apps_encoded = pd.get_dummies(cc_apps_imputed, drop_first=True)
        # Extract the last column as your target variable
        X = cc_apps_encoded.iloc[:, :-1].values
        y = cc_apps_encoded.iloc[:, [-1]].values
        # Split into train and test sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
        # Instantiate StandardScaler and use it to rescale X_train and X_test
```

```
scaler = StandardScaler()
        rescaledX train = scaler.fit transform(X train)
        rescaledX_test = scaler.transform(X_test)
        # Instantiate a LogisticRegression classifier with default parameter {\sf v}
        logreg = LogisticRegression()
        # Fit logreg to the train set
        logreg.fit(rescaledX_train, y_train.ravel())
        # Use logreg to predict instances from the training set
        y_train_pred = logreg.predict(rescaledX_train)
        # Print the confusion matrix of the logreg model
        print(confusion_matrix(y_train, y_train_pred))
       [[203
               11
        [ 1 257]]
In [3]: # Define the grid of values for tol and max_iter
        tol = [0.01, 0.001, 0.0001]
        max_iter = [100, 150, 200]
        # Create a dictionary where tol and max_iter are keys and the lists of
        param_grid = dict(tol=tol, max_iter=max_iter)
        # Instantiate GridSearchCV with the required parameters
        grid_model = GridSearchCV(estimator=logreg, param_grid=param_grid, cv=
        # Fit grid model to the data
        grid_model_result = grid_model.fit(rescaledX_train, y_train.ravel())
        # Summarize results
        best_train_score, best_train_params = grid_model_result.best_score_, q
        print("Best: %f using %s" % (best_train_score, best_train_params))
        # Extract the best model and evaluate it on the test set
        best model = grid model result.best estimator
        best_score = best_model.score(rescaledX_test, y_test)
        print("Accuracy of logistic regression classifier: ", best_score)
       Best: 0.818256 using {'max_iter': 100, 'tol': 0.01}
       Accuracy of logistic regression classifier: 0.7982456140350878
In [4]: # jupyter nbconvert --to html "credit-card-approvals.ipynb"
```

Bank Marketing Campaign

Personal loans are a lucrative revenue stream for banks. The typical interest rate of a two-year loan in the UK is around 10%. This might not sound like a lot, but in

September 2022 alone UK consumers borrowed around £1.5 billion, which would mean approximately £300 million in interest generated by banks over two years!

Clean the data collected as part of a recent marketing campaign, which aimed to get customers to take out a personal loan. They plan to conduct more marketing campaigns going forward so would like you to ensure it conforms to the specific structure and data types that they specify so that they can then use the cleaned data you provide to set up a PostgreSQL database, which will store this campaign's data and allow data from future campaigns to be easily imported.

There's a csv file called "bank_marketing.csv", which you will need to clean, reformat, and split the data, saving three final csv files. Specifically, the three files should have the names and contents as outlined below:

client.csv

column	data type	description	cleaning requirements
client_id	integer	Client ID	N/A
age	integer	Client's age in years	N/A
job	object	Client's type of job	Change "." to "_"
marital	object	Client's marital status	N/A
education	object	Client's level of education	Change "." to "_" and "unknown" to np.nan
credit_default	bool	Whether the client's credit is in default	Convert to boolean data type: 1 if "yes", otherwise 0
mortgage	bool	Whether the client has an existing mortgage (housing loan)	Convert to boolean data type: 1 if "yes", otherwise 0

campaign.csv

column	data type	description	cleaning requirements
client_id	integer	Client ID	N/A
		Number of contact	

number_contacts	integer	attempts to the client in the current	N/A
		campaign	
contact_duration	integer	Last contact duration in seconds	N/A
previous_campaign_contacts	integer	Number of contact attempts to the client in the previous campaign	N/A
previous_outcome	bool	Outcome of the previous campaign	Convert to boolean data type: 1 if "success", otherwise 0.
campaign_outcome	bool	Outcome of the current campaign	Convert to boolean data type: 1 if "yes", otherwise 0.
last_contact_date	datetime	Last date the client was contacted	Create from a combination of day, month, and a newly created year column (which should have a value of 2022); Format = "YYYY-MM-DD"

economics.csv

column	data type	description	cleaning requirements
client_id	integer	Client ID	N/A
cons_price_idx	float	Consumer price index (monthly indicator)	N/A
euribor_three_months	float	Euro Interbank Offered Rate (euribor) three- month rate (daily indicator)	N/A

Subset, clean, and reformat the bank_marketing.csv dataset to create and store three new files.

- Split and tidy bank_marketing.csv, storing as three DataFrames called client, campaign, and economics, each containing the columns outlined in the notebook and formatted to the data types listed.
- Save the three DataFrames to csv files, without an index, as client.csv,
 campaign.csv, and economics.csv respectively.

```
import pandas as pd
import numpy as np

# Read in csv
# marketing = pd.read_csv("bank_marketing.csv")
marketing = pd.read_csv("../data_raw/bank_marketing.csv")

marketing.head(20)
# marketing.tail(20)
```

	client_id	age	job	marital	education	credit_default	mo
0	0	56	housemaid	married	basic.4y	no	
1	1	57	services	married	high.school	unknown	
2	2	37	services	married	high.school	no	
3	3	40	admin.	married	basic.6y	no	
4	4	56	services	married	high.school	no	
5	5	45	services	married	basic.9y	unknown	
6	6	59	admin.	married	professional.course	no	
7	7	41	blue-collar	married	unknown	unknown	
8	8	24	technician	single	professional.course	no	
9	9	25	services	single	high.school	no	
10	10	41	blue-collar	married	unknown	unknown	
11	11	25	services	single	high.school	no	
12	12	29	blue-collar	single	high.school	no	
13	13	57	housemaid	divorced	basic.4y	no	
14	14	35	blue-collar	married	basic.6y	no	
15	15	54	retired	married	basic.9y	unknown	
16	16	35	blue-collar	married	basic.6y	no	
17	17	46	blue-collar	married	basic.6y	unknown	
18	18	50	blue-collar	married	basic.9y	no	
19	19	39	management	single	basic.9y	unknown	

Out[5]:

	client_id	cons_price_idx	euribor_three_months
0	0	93.994	4.857
1	1	93.994	4.857
2	2	93.994	4.857
3	3	93.994	4.857
4	4	93.994	4.857
5	5	93.994	4.857
6	6	93.994	4.857
7	7	93.994	4.857
8	8	93.994	4.857
9	9	93.994	4.857
10	10	93.994	4.857
11	11	93.994	4.857
12	12	93.994	4.857
13	13	93.994	4.857
14	14	93.994	4.857
15	15	93.994	4.857
16	16	93.994	4.857
17	17	93.994	4.857
18	18	93.994	4.857
19	19	93.994	4.857

Out[26]:

\cap	1.1	+	Г	7	-1	
U	u	L	L	/	Ш	

	client_id	age	job	marital	education	credit_default	mo
0	0	56	housemaid	married	basic_4y	False	
1	1	57	services	married	high_school	False	
2	2	37	services	married	high_school	False	
3	3	40	admin_	married	basic_6y	False	
4	4	56	services	married	high_school	False	
5	5	45	services	married	basic_9y	False	
6	6	59	admin_	married	professional_course	False	
7	7	41	blue-collar	married	NaN	False	
8	8	24	technician	single	professional_course	False	
9	9	25	services	single	high_school	False	
10	10	41	blue-collar	married	NaN	False	
11	11	25	services	single	high_school	False	
12	12	29	blue-collar	single	high_school	False	
13	13	57	housemaid	divorced	basic_4y	False	
14	14	35	blue-collar	married	basic_6y	False	
15	15	54	retired	married	basic_9y	False	
16	16	35	blue-collar	married	basic_6y	False	
17	17	46	blue-collar	married	basic_6y	False	
18	18	50	blue-collar	married	basic_9y	False	
19	19	39	management	single	basic_9y	False	

```
# Convert day to string
campaign["day"] = campaign["day"].astype(str)

# Add last_contact_date column
campaign["last_contact_date"] = campaign["year"] + "-" + campaign["mon

# Convert to datetime
campaign["last_contact_date"] = pd.to_datetime(campaign["last_contact_format="%Y-%b-%d")

# format="%Y-%b-%d")

# Clean and convert outcome columns to bool
for col in ["campaign_outcome", "previous_outcome"]:
        campaign[col] = campaign[col].astype(bool)

# Drop unnecessary columns
campaign.drop(columns=["month", "day", "year"], inplace=True)

campaign.head(20)
# campaign.tail(20)
```

Out[8]:		client_id	number_contacts	contact_duration	previous_campaign_contacts			
	0	0	1	261	0			
	1	1	1	149	0			
	2	2	1	226	0			
	3	3	1	151	0			
	4	4	1	307	0			
	5	5	1	198	0			
	6	6	1	139	0			
	7	7	1	217	0			
	8	8	1	380	0			
	9	9	1	50	0			
	10	10	1	55	0			
	11	11	1	222	0			
	12	12	1	137	0			
	13	13	1	293	0			
	14	14	1	146	0			
	15	15	1	174	0			
	16	16	1	312	0			
	17	17	1	440	0			
	18	18	1	353	0			
	19	19	1	195	0			
<pre>In [9]: # Save tables to individual csv files client.to_csv("/data_cleaned/client.csv", index=False) campaign.to_csv("/data_cleaned/campaign.csv", index=False) economics.to_csv("/data_cleaned/economics.csv", index=False)</pre> In [10]: df = pd.read_csv("/data_raw/bank_marketing.csv")								
	<pre>for col in ["credit_default", "mortgage", "previous_outcome", "campaig # print(col) print(df[col].value_counts()) print("")</pre>							

```
credit_default
no 32588
        8597
unknown
             3
Name: count, dtype: int64
mortgage
yes
        21576
no
        18622
unknown 990
Name: count, dtype: int64
previous_outcome
nonexistent 35563
failure
             4252
success 1373
Name: count, dtype: int64
campaign_outcome
no 36548
     4640
yes
Name: count, dtype: int64
```

In [11]: # jupyter nbconvert --to html bank-marketing-campaign.ipynb

Hedge Fund Financial Report Analysis

Compute the two ratios:

- A debt-to-equity ratio or an equity multiplier ratio. Save this ratio in a column named "leverage_ratio" in a DataFrame called df_ratios.
- A gross margin ratio or an operating margin ratio. Save this ratio in a column named "profitability_ratio", in a DataFrame called df_ratios.

The datasets have information on the type of industry a company belongs to in a column called comp_type. Your manager also needs you to answer these three questions:

- Which company type (comp_type) has the lowest profitability ratio? Save this comp_type value as a string in a variable called lowest_profitability.
- Which company type has the highest leverage ratio? Save this comp_type value as a string in a variable called highest_leverage.
- What is the relationship between leverage and profitability in the real estate companies represented in this data? Is it "positive," "negative," or "no relationship?" Save one of these three strings in a variable called relationship.

You have two datasets: Balance_Sheet.xlsx and Income_Statement.xlsx. Both these datasets have three columns in common:

- "Company": The company's ticker name.
- "comp_type" The type of industry the company in question belongs to. It is either "tech" for companies in the technology industry, "fmcg" for companies in the fast-moving consumer goods industry, and "real_est" for companies in the real estate industry.
- "Year": The year the company's information is from.

The rest of the columns in the datasets contain information from the financial statement of the "Company" in question. Note that the columns in Balance_Sheet.xlsx only contain financial information from the balance sheet. Similarly, the columns in Income_Statement.xlsx only contain financial information from the income statement. The columns are named accordingly. For instance, the column "Total Liab" from Balance_Sheet.xlsx is the total liability.

```
In [12]: import numpy as np
         import pandas as pd
         import seaborn as sns
         # import openpyxl
         # Read in the files
         balance_sheet = pd.read_excel("../data_raw/Balance_Sheet.xlsx")
         income_statement = pd.read_excel("../data_raw/Income_Statement.xlsx")
In [13]: # Merge both the dataframes and call it df_ratios
         df_ratios = pd.merge(income_statement, balance_sheet, on = ["Year", "c
         # You only need to compute one profitability ratio, but since there is
         # Compute gross margin ratio
         df_ratios["profitability_ratio"] = (df_ratios["Total Revenue"] - df_ra
         # Compute operating margin ratio, but commenting it out
         # df_ratios["profitability_ratio"] = (df_ratios["Total Revenue"] - df_
         # You only need to compute one leverage ratio, but we are providing th
         # Compute debt-to-equity ratio
         df_ratios["leverage_ratio"] = df_ratios["Total Liab"]/df_ratios["Total
         # Compute equity multiplier ratio, but commenting it out
         # df_ratios["leverage_ratio"] = df_ratios["Total Assets"]/df_ratios["T
```

In [14]: # Using pivot table to see the "comp_type" with the lowest average pro
 print(df_ratios.pivot_table(index="comp_type", values="profitability_r
 lowest_profitability = "fmcg"

Using pivot table to see the "comp_type" with the highest average le
 print(df_ratios.pivot_table(index="comp_type", values="leverage_ratio"
 highest_leverage = "real_est"

```
profitability_ratio
comp_type
fmcg
                       0.514396
real_est
                       0.534848
tech
                       0.572062
           leverage_ratio
comp_type
                 2.997896
fmcg
real_est
                 5.692041
tech
                 1.777448
```

In [15]: # Plot the leverage ratio on x-axis and profitability on y axis to see
 df_real_est = df_ratios.loc[df_ratios["comp_type"]=="real_est"]
 plot = sns.regplot(data=df_real_est, x="leverage_ratio", y="profitabil
 relationship = "positive"

In [16]: # jupyter nbconvert --to html hedge-fund-financial-report.ipynb

Stock Portfolio Optimization

Use the faang_stocks.csv dataset to complete the following analysis:

- 1. What are the expected returns and the annualized Sharpe ratio of an equally-weighted portfolio? Assume the risk-free rate is 0% and store your answers as a float variables called benchmark_exp_return and benchmark_sharpe_ratio.
- 2. Find a portfolio that minimizes volatility. Use mean-variance optimization. Store the volatility of the portfolio as a float variable called mv_portfolio_vol. Store the portfolio weights as a pandas Series called mv_portfolio. Use the tickers as index.
- 3. Find a portfolio that maximizes the Sharpe ratio. Use mean-variance optimization and keep the risk-free rate at 0%. Store the Sharpe ratio (annualized) of the portfolio as a float variable called ms_portfolio_sharpe. Store the portfolio weights as a pandas Series called ms_portfolio. Use the tickers as index.

Asset allocation is the most important decision that any investor needs to face. They need to decide how to spread their total capital over certain assets (in this case, stocks). When considering the allocation, the investor wants to balance the risk and the potential reward. At the same time, the allocation depends on factors such as individual goals, risk tolerance, and the investment horizon.

The key framework used in asset allocation is the Modern Portfolio Theory (MPT), which was introduced by the Nobel Prize winner Harry Markowitz. MPT describes how investors can construct portfolios to maximize their expected returns for a given level of risk or, conversely, minimize risk for a given level of expected return. The mathematical framework used to achieve this is called mean-variance optimization.

The main insight from MPT is that investors should not evaluate an asset's performance alone. Instead, they should evaluate how it would impact the performance of a portfolio of assets. Another important takeaway is the concept of diversification, which means that owning different kinds of assets reduces risk. That is because the loss or gain of a particular security has less impact on the overall portfolio's performance.

In the dynamic realm of finance, data scientists/analysts are often tasked with

finding optimal investment strategies. Imagine you're one such analyst, and you were asked to build an effective portfolio comprising FAANG stocks – Facebook (Meta), Apple, Amazon, Netflix, and Google. The goal is to maximize returns while mitigating risk.

You are tasked to find the optimal allocation to the FAANG stocks based on historical stock price data spanning the years 2020-2023. The dataset is stored in the faang_stocks.csv file. For each trading day, it contains the close prices of the five tech companies.

```
In [17]: # Importing libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

from pypfopt.efficient_frontier import EfficientFrontier
   from pypfopt import risk_models
   from pypfopt import expected_returns
```

In [18]: print(plt.style.available)

['Solarize_Light2', '_classic_test_patch', '_mpl-gallery', '_mpl-galler y-nogrid', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeigh t', 'ggplot', 'grayscale', 'petroff10', 'seaborn-v0_8', 'seaborn-v0_8-b right', 'seaborn-v0_8-colorblind', 'seaborn-v0_8-dark', 'seaborn-v0_8-d ark-palette', 'seaborn-v0_8-darkgrid', 'seaborn-v0_8-deep', 'seaborn-v0_8-muted', 'seaborn-v0_8-notebook', 'seaborn-v0_8-paper', 'seaborn-v0_8-pastel', 'seaborn-v0_8-poster', 'seaborn-v0_8-talk', 'seaborn-v0_8-ticks', 'seaborn-v0_8-white', 'seaborn-v0_8-whitegrid', 'tableau-colorblind10']

```
In [19]: # Setting the plotting style to be colorblind-friendly
# plt.style.use("seaborn-v0_8-colorblind")
# plt.style.use("dark_background")
plt.style.use("seaborn-v0_8-dark-palette")

# Loading data
stock_prices_df = pd.read_csv("../data_raw/faang_stocks.csv", index_co
# Changing the index to a datetime type allows for easier filtering an
stock_prices_df.index = pd.to_datetime(stock_prices_df.index)
stock_prices_df
```

Out[19]:	AAPL	AMZN	GOOGL	META	NFLX

Date					
2020-01-02	75.09	94.90	68.43	209.78	329.81
2020-01-03	74.36	93.75	68.08	208.67	325.90
2020-01-06	74.95	95.14	69.89	212.60	335.83
2020-01-07	74.60	95.34	69.76	213.06	330.75
2020-01-08	75.80	94.60	70.25	215.22	339.26
		•••			
2023-12-22	193.60	153.42	141.49	353.39	486.76
2023-12-26	193.05	153.41	141.52	354.83	491.19
2023-12-27	193.15	153.34	140.37	357.83	491.79
2023-12-28	193.58	153.38	140.23	358.32	490.51
2023-12-29	192.53	151.94	139.69	353.96	486.88

1006 rows × 5 columns

In [20]: # Plotting the stock prices
stock_prices_df.plot(title="FAANG stock prices from years 2020-2023");

FAANG stock prices from years 2020-2023

Expected portfolio return: 0.09% Portfolio Sharpe ratio: 0.72

```
In [30]: # Task 2 --
         # Calculate the annualized expected returns and the covariance matrix
         avg_returns = returns_df.mean() * 252
         cov_mat = returns_df.cov() * 252
         # Instantiate the EfficientFrontier object
         ef = EfficientFrontier(avg_returns, cov_mat)
         # Find the weights that maximize the Sharpe ratio
         weights = ef.min_volatility()
         mv_portfolio = pd.Series(weights)
         # Find the minimized volatility
         mv portfolio vol = ef.portfolio performance(risk free rate=0)[1]
         print(f"Minimum volatility portfolio weights:\n{mv_portfolio}")
         print(f"Minimum volatility portfolio volatility: {mv_portfolio_vol:.2%
        Minimum volatility portfolio weights:
        AAPL
                 0.398420
        AMZN
                 0.149108
        G00GL
                 0.382898
        META
                 0.000000
        NFLX
                 0.069574
        dtype: float64
        Minimum volatility portfolio volatility: 30.31%
In [23]: # Task 2 - alternative solution -
         # # Calculate the annualized expected returns and the covariance matri
         # avg returns = returns df.mean() * 252
         # cov_mat = returns_df.cov() * 252
         # # Define the function to find the portfolio volatility using the wei
         # def get_portfolio_volatility(weights, cov_mat):
               return np.sqrt(np.dot(weights.T, np.dot(cov_mat, weights)))
         # # Define the number of assets
         # n_assets = len(avg_returns)
         # # Define the bounds - the weights can be between 0 and 1
         \# bounds = tuple((0, 1) for asset in range(n_assets))
         # # Define the initial guess — the equally weighted portfolio
         # initial_guess = n_assets * [1.0 / n_assets]
         # # Define the constraint - all weights must add up to 1
         \# constr = {"type": "eq", "fun": lambda x: np.sum(x) - 1}
         # # Find the minimum volatility portfolio
         # result = sco.minimize(
               get_portfolio_volatility,
```

```
x0=initial_guess,
         #
               args=cov mat,
               method="SLSQP",
         #
         #
               constraints=constr,
               bounds=bounds,
         # # Store the portfolio weights
         # mv_portfolio = pd.Series(result.x, index=avg_returns.index).round(2)
         # # Store the portfolio's volatility
         # mv_portfolio_vol = result.fun
In [31]: # Task 3 ---
         # Alternative approach to get the expected returns and the covariance
         # avg_returns = expected_returns.mean_historical_return(stock_prices_d
         # cov_mat = risk_models.sample_cov(stock_prices_df)
         # Instantiate the EfficientFrontier object
         ef = EfficientFrontier(avg_returns, cov_mat)
         # Find the weights that maximize the Sharpe ratio
         weights = ef.max_sharpe(risk_free_rate=0)
         ms_portfolio = pd.Series(weights)
         # Find the maximized Sharpe ratio
         ms portfolio sharpe = ef.portfolio performance(risk free rate=0)[2]
         print(f"Maximized Sharpe ratio portfolio weights:\n{ms portfolio}")
         print(f"Maximized Sharpe ratio portfolio Sharpe ratio: {ms_portfolio_s
        Maximized Sharpe ratio portfolio weights:
        AAPL
                 0.787440
        AMZN
                 0.000000
        G00GL
                 0.199698
        META
                 0.000000
        NFLX
                 0.012861
        dtype: float64
        Maximized Sharpe ratio portfolio Sharpe ratio: 0.88
In [25]: # jupyter nbconvert --to html stock-portfolio-analysis.ipynb
```