- (b) If there exists a faithful family Ψ of subinvariant states for T on M , then Fix(T) is a C*-subalgebra of M and T(xy) = xT(y) for all $x \in Fix(T)$ and $y \in M$.
- <u>Proof.</u> (a) Take $0 \le \psi \in M^*$ and consider $f := \psi \circ b$. Then f is a positive semidefinite sesquilinear form on M with values in $\mathbb C$. From the Cauchy-Schwarz inequality it follows that f(x,x) = 0 for some $x \in M$ if and only if f(x,y) = 0 and f(y,x) = 0 for all $y \in M$. Since the positive cone M^* is generating, assertion (a) is proved.
- (b) Since T is positive it follows $T(x)^* = T(x^*)$ for all $x \in M$. Hence Fix(T) is a self adjoint subspace of M , i.e. invariant under the involution on M . For every $x,y \in M$ let

$$b(x,y) := T(xy^*) - T(x)T(y)^*$$
.

Then b satisfies the assumptions of (a) . If $x \in Fix(T)$ then

$$0 \le xx^* = (Tx)(Tx)^* \le T(xx^*)$$
,

hence

$$0 \le \psi(T(xx^*) - xx^*) \le 0$$
 for all $\psi \in \Psi$.

But this implies $T(xx^*) = T(x)T(x)^* = xx^*$. Consequently, b(x,x) = 0. Hence $T(xy^*) = xT(y)^*$ for all $y \in M$ and (b) is proved.

- <u>Lemma</u> 1.2. Let M be a W*-algebra, T an identity preserving Schwarz map on M and $S \in L(M)$ such that $S(x)(Sx) * \leq T(xx*)$ for every $x \in M$.
- (a) If $v \in M$ such that $S(v^*) = v^*$ and $T(v^*v) = v^*v$, then T(xv) = S(x)v for all $x \in M$.
- (b) Suppose there exists $\phi \in M_{\star}$ with polar decomposition $\phi = u \mid \phi \mid$ such that $S_{\star} \phi = \phi$ and $T_{\star} \mid \phi \mid = \mid \phi \mid$. If the closed subspace $s(\mid \phi \mid) M$ is T-invariant , then $Su^{\star} = u^{\star}$ and $T(u^{\star}u) = u^{\star}u$.
- <u>Proof.</u> (a) Define a positive semidefinite sesquilinear map $b: M \times M \rightarrow M$ by

$$b(x,y) := T(xy^*) - S(x)S(y)^* (x,y \in M)$$
.