Theoretical Computer Science Tutorial Week 9

Prof. Andrey Frolov

nnoboria

Agenda

- Turing Machine
 - formal definition
 - example

FSA (Formal definition)

Definition

A (complete) Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of *states*;

 Σ is a finite input alphabet;

 $q_0 \in Q$ is the *initial* state;

 $A \subseteq Q$ is the set of *accepting* states;

 $\delta: Q \times \Sigma \to Q$ is a (total) *transition* function.

PDA (Formal Definition)

Definition

```
A (Deterministic) Pushdown Automaton (PDA) is a tuple \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle, where Q is a finite set of states;
```

 Σ and Γ are the input and stack (finite) alphabets;

 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ is the (partial) transition function;

 $q_0 \in Q$ is the initial state;

 $Z_0 \in \Gamma$ is the initial stack symbol;

 $A \subseteq Q$ is the set of accepting states.

Pushdown automata

Special symbols

R: move the head one position to the right

L: move the head one position to the left

S: stand still

Special symbols

R: move the head one position to the right

L: move the head one position to the left

S: stand still

: a special blank symbol on the tapes

Formal Definition

A Turing Machine (TM) (with 1-tape) is a tuple

$$T = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

where

Q is a finite set of states;

 Σ is the input alphabet;

 Γ is the memory alphabet;

$$\delta: (Q - F) \times (\Sigma \cup \{_\}) \times (\Gamma \cup \{_\}) \rightarrow Q \times (\Gamma \cup \{_\}) \times \{R, L, S\}^2$$

is the transition function;

 $q_0 \in Q$ is the initial state;

 $Z_0 \in \Gamma$ is the initial memory symbol;

 $F \subseteq Q$ is the set of final states.

Example: Language $A^nB^nC^n$

A TM T that recognises the language $A^nB^nC^n = \{a^nb^nc^n \mid n > 0\}$

Is the string *aabbcc* recognised by *T*?

Agenda

- Turing Machine
 - formal definition
 - example

Formal Definition

A Turing Machine (TM) (with k-tapes) is a tuple

$$T = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

where

Q is a finite set of states; Σ is the input alphabet; Γ is the memory alphabet; δ is the transition function; $q_0 \in Q$ is the initial state; $Z_0 \in \Gamma$ is the initial memory symbol; $F \subseteq Q$ is the set of final states.

Transition Function

The transition function is defined as

$$\delta: (Q-F)\times(\Sigma\cup\{_\})\times(\Gamma\cup\{_\})^k \to Q\times(\Gamma\cup\{_\})^k\times\{R,L,S\}^{k+1}$$

Remarks:

- the transition function can be partial;
- no transition outgoing from the final states;
- \bullet the symbol $_\not\in\Gamma\cup\Sigma$ is a special blank symbol on the tapes.

Moves

Moves are based on

- state of the control device,
- one symbol read from the input tape,
- k symbols, one for each memory tape.

Actions

- Change state,
- Write a symbol replacing the one read on each memory tape,
- Move the k+1 heads.

Moves: Graphically

$$\underbrace{ (q) \overset{i, \langle A_1, A_2, \ldots, A_k \rangle / \langle A_1', A_2', \ldots, A_k' \rangle, \langle M_0, M_1, \ldots, M_k \rangle}_{q'} \underbrace{ (q')}$$

- $q \in Q F$ and $q' \in Q$
- i is the input symbol,
- A_j is the symbol read from the j^{th} memory tape,
- A'_{i} is the symbol replacing A_{i} ,
- M_0 is the direction of the head of the input tape,
- M_j is the direction of the head of the j^{th} memory tape.

where
$$1 \le j \le k$$

Configuration

A configuration (a snapshot) c of a TM with k memory tapes is the following (k+2)-tuple:

$$c = \langle q, x \uparrow y, \alpha_1 \uparrow \beta_1, \dots, \alpha_k \uparrow \beta_k \rangle$$

where

- $ogline q \in Q$
- $x \in (\Sigma \cup \{_\})^*$, $y = y' \cdot _$ with $y' \in \Sigma^*$
- $\alpha_r \in (\Gamma \cup \{_\})^*$ and $\beta'_r = {\beta'}_r \cdot _$ with $\beta'_r \in \Gamma^*$ and $1 \le r \le k$
- $\bullet \ \uparrow \not \in \Sigma \cup \Gamma$

Acceptance Condition

If
$$T=\langle Q,\Sigma,\Gamma,\delta,q_0,Z_0,F
angle$$
 is a TM and $s\in\Sigma^*$, s is accepted by $T,$ if $c_0\vdash^*c_F$

where

- c_0 is an initial configuration defined as $c_0 = \langle q_0, \uparrow s, \uparrow Z_0, \dots, \uparrow Z_0 \rangle$ where
 - $x = \epsilon$
 - $y = s_{\perp}$
 - $\alpha_r = \epsilon$, $\beta_r = Z_0$, for any $1 \le r \le k$.
- ② c_F is a final configuration defined as $c_F = \langle q, s' \uparrow y, \alpha_1 \uparrow \beta_1, \dots, \alpha_k \uparrow \beta_k \rangle$ where
 - q ∈ F
 - x = s'

$$L(T) = \{ s \in \Sigma^* \mid x \text{ is accepted by } T \}$$

Agenda

- Turing Machine
 - formal definition
 - example

Initial Configuration:

$$\langle q_0,\uparrow aabbcc,\uparrow Z_0\rangle$$

$$\langle q_0,\uparrow aabbcc,\uparrow Z_0\rangle \vdash$$

$$\langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle \vdash \langle q_1, \uparrow aabbcc, Z_0 \uparrow \rangle$$

$$\ldots \vdash \langle q_1, \uparrow aabbcc, Z_0 \uparrow \rangle \vdash$$

$$\ldots \vdash \langle q_1, \uparrow aabbcc, Z_0 \uparrow \rangle \vdash \langle q_1, a \uparrow abbcc, Z_0 M \uparrow \rangle$$

$$\dots \vdash \langle q_1, a \uparrow abbcc, Z_0 M \uparrow \rangle$$

$$\ldots \vdash \langle q_1, a \uparrow abbcc, Z_0 M \uparrow \rangle \vdash \langle q_1, aa \uparrow bbcc, Z_0 M M \uparrow \rangle$$

$$\ldots \vdash \langle q_1, aa \uparrow bbcc, Z_0 MM \uparrow \rangle$$

$$\ldots \vdash \langle q_1, aa \uparrow bbcc, Z_0 M M \uparrow \rangle \vdash \langle q_2, aa \uparrow bbcc, Z_0 M \uparrow M \rangle$$

$$\dots \vdash \langle q_2, aa \uparrow bbcc, Z_0 M \uparrow M \rangle$$

$$\ldots \vdash \langle \mathit{q}_{2}, \mathit{aa} \uparrow \mathit{bbcc}, \mathit{Z}_{0} \mathit{M} \uparrow \mathit{M} \rangle \vdash \langle \mathit{q}_{2}, \mathit{aab} \uparrow \mathit{bcc}, \mathit{Z}_{0} \uparrow \mathit{MM} \rangle$$

$$\ldots \vdash \langle q_2, \mathsf{aab} \uparrow \mathsf{bcc}, Z_0 \uparrow \mathsf{MM} \rangle$$

$$\ldots \vdash \langle q_2, aab \uparrow bcc, Z_0 \uparrow MM \rangle \vdash \langle q_2, aabb \uparrow cc, \uparrow Z_0 MM \rangle$$

$$\ldots \vdash \langle q_2, aabb\uparrow cc, \uparrow Z_0MM \rangle$$

$$\ldots \vdash \langle q_2, aabb \uparrow cc, \uparrow Z_0 MM \rangle \vdash \langle q_3, aabb \uparrow cc, Z_0 \uparrow MM \rangle$$

$$\ldots \vdash \langle q_3, aabb\uparrow cc, Z_0 \uparrow MM \rangle$$

$$\ldots \vdash \langle q_3, \mathsf{aabb} \uparrow \mathsf{cc}, Z_0 \uparrow \mathsf{MM} \rangle \vdash \langle q_3, \mathsf{aabbc} \uparrow \mathsf{c}, Z_0 \mathsf{M} \uparrow \mathsf{M} \rangle$$

$$\dots \vdash \langle q_3, aabbc \uparrow c, Z_0 M \uparrow M \rangle$$

$$\ldots \vdash \langle q_3, \mathsf{aabbc} \uparrow c, Z_0 \mathsf{M} \uparrow \mathsf{M} \rangle \vdash \langle q_3, \mathsf{aabbcc} \uparrow, Z_0 \mathsf{M} \mathsf{M} \uparrow \rangle$$

$$\ldots \vdash \langle q_3, aabbcc\uparrow, Z_0MM\uparrow \rangle$$

$$\ldots \vdash \langle \mathit{q}_3, \mathit{aabbcc} \uparrow, \mathit{Z}_0 \mathit{MM} \uparrow \rangle \vdash \langle \mathit{q}_F, \mathit{aabbcc} \uparrow, \mathit{Z}_0 \mathit{MM} \uparrow \rangle$$

Example: Language $A^nB^nC^n$

$$\langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle \vdash^* \langle q_F, aabbcc \uparrow, Z_0 MM \uparrow \rangle$$

That is the string aabbcc recognised by T

Therefore, the TM recognize $\{a^nb^nc^n\mid n\in\mathbb{N}\}$

Thank you for your attention!