Large Scale GAN Training for High Fidelity Natural Image Synthesis ¹

February 19, 2020

 $^{^{\}rm 1}\,{}^{\rm ^{\rm 1}}{}^{\rm Large}$ Scale GAN Training for High Fidelity Natural Image Synthesis" by Brock, Donahue, and Simonyan

 Authors trained the largest GAN model (to the moment of the project)

- Authors trained the largest GAN model (to the moment of the project)
- ▶ Explored a lot of techniques of training GANs

- Authors trained the largest GAN model (to the moment of the project)
- Explored a lot of techniques of training GANs
- Proposed a "truncation trick" for better sampling at test-time

- Authors trained the largest GAN model (to the moment of the project)
- Explored a lot of techniques of training GANs
- Proposed a "truncation trick" for better sampling at test-time
- Dramatically improved SotA on ImageNet

1. Take Inception classifier

- 1. Take Inception classifier
- 2. Generate a lot of samples

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)
- 4. Average them to approximately compute $p(y) pprox \mathop{\mathbb{E}}_{p_g(x)}[p(y|x)]$

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)
- 4. Average them to approximately compute $p(y) pprox \mathop{\mathbb{E}}_{\rho_g(x)}[p(y|x)]$
- 5. Compute inception score:

$$IS = \exp\left(\mathbb{E}_{p_{\mathcal{E}}(x)}[D_{\mathcal{KL}}(p(y|x)||p(y))]\right)$$
(1)

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)
- 4. Average them to approximately compute $p(y) pprox \mathop{\mathbb{E}}_{\rho_g(x)}[p(y|x)]$
- 5. Compute inception score:

IS =
$$\exp\left(\mathbb{E}_{p_g(x)}[D_{KL}(p(y|x)||p(y))]\right)$$
 (1)

Intuition:

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)
- 4. Average them to approximately compute $p(y) pprox \mathop{\mathbb{E}}_{\rho_g(x)}[p(y|x)]$
- 5. Compute inception score:

IS =
$$\exp\left(\mathbb{E}_{p_g(x)}[D_{KL}(p(y|x)||p(y))]\right)$$
 (1)

Intuition:

▶ If samples represent meaningful objects then p(y|x) is one-hot

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)
- 4. Average them to approximately compute $p(y) pprox \mathop{\mathbb{E}}_{\rho_g(x)}[p(y|x)]$
- 5. Compute *inception score*:

IS =
$$\exp\left(\mathbb{E}_{p_g(x)}[D_{KL}(p(y|x)||p(y))]\right)$$
 (1)

Intuition:

- If samples represent meaningful objects then p(y|x) is one-hot
- ▶ If samples are diverse then p(y) is uniform

- 1. Take Inception classifier
- 2. Generate a lot of samples
- 3. For each sample x compute class probabilities p(y|x)
- 4. Average them to approximately compute $p(y) pprox \mathop{\mathbb{E}}_{\rho_g(x)}[p(y|x)]$
- 5. Compute *inception score*:

IS =
$$\exp\left(\mathbb{E}_{p_g(x)}[D_{KL}(p(y|x)||p(y))]\right)$$
 (1)

Intuition:

- ▶ If samples represent meaningful objects then p(y|x) is one-hot
- ▶ If samples are diverse then p(y) is uniform
- ▶ This gives very high values for KL between p(y|x) and p(y).

1. Take feature extractor from Inception classifier

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings
- 3. Take a lot of real images and:

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings
- 3. Take a lot of real images and:
 - 3.1 Compute embeddings for them

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings
- 3. Take a lot of real images and:
 - 3.1 Compute embeddings for them
 - 3.2 Compute statistics μ_r, Σ_r for embeddings

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings
- 3. Take a lot of real images and:
 - 3.1 Compute embeddings for them
 - 3.2 Compute statistics μ_r , Σ_r for embeddings
- 4. Compute Frechet distance between two Guassians:

$$FID = \|\mu_r - \mu_g\|^2 + Tr\left(\Sigma_r + \Sigma_g - 2\left(\Sigma_r \Sigma_g\right)^{1/2}\right)$$
 (2)

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings
- 3. Take a lot of real images and:
 - 3.1 Compute embeddings for them
 - 3.2 Compute statistics μ_r , Σ_r for embeddings
- 4. Compute Frechet distance between two Guassians:

$$FID = \|\mu_r - \mu_g\|^2 + Tr\left(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2}\right)$$
 (2)

Intuition:

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_g, Σ_g for embeddings
- 3. Take a lot of real images and:
 - 3.1 Compute embeddings for them
 - 3.2 Compute statistics μ_r , Σ_r for embeddings
- 4. Compute Frechet distance between two Guassians:

$$FID = \|\mu_r - \mu_g\|^2 + Tr\left(\Sigma_r + \Sigma_g - 2\left(\Sigma_r \Sigma_g\right)^{1/2}\right)$$
 (2)

Intuition:

We directly measure the distribution

- 1. Take feature extractor from Inception classifier
- 2. Generate a lot of samples and:
 - 2.1 Compute embeddings for them
 - 2.2 Compute statistics μ_{g}, Σ_{g} for embeddings
- 3. Take a lot of real images and:
 - 3.1 Compute embeddings for them
 - 3.2 Compute statistics μ_r, Σ_r for embeddings
- 4. Compute Frechet distance between two Guassians:

$$FID = \left\| \mu_r - \mu_g \right\|^2 + \mathsf{Tr} \left(\Sigma_r + \Sigma_g - 2 \left(\Sigma_r \Sigma_g \right)^{1/2} \right) \tag{2}$$

Intuition:

- We directly measure the distribution
- ▶ It is not obvious why we do that with FD instead of KL/JS/etc

Baseline: SA-GAN (self-attention GAN) which uses spectral normalization for both D and G.

▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.
- ▶ Pass class information via Conditional Batch Norm. Use shared embeddings and train a linear projection for each level.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.
- ▶ Pass class information via Conditional Batch Norm. Use shared embeddings and train a linear projection for each level.
- ▶ Pass noise on each level (by concatenating to a class embedding): +18% faster. Use either independent noise per each level or shared.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.
- ▶ Pass class information via Conditional Batch Norm. Use shared embeddings and train a linear projection for each level.
- ▶ Pass noise on each level (by concatenating to a class embedding): +18% faster. Use either independent noise per each level or shared.
- ▶ Use moving averages of Generator with decay of 0.9999.

Used tricks

Baseline: SA-GAN (self-attention GAN) which uses spectral normalization for both D and G.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.
- ▶ Pass class information via Conditional Batch Norm. Use shared embeddings and train a linear projection for each level.
- ▶ Pass noise on each level (by concatenating to a class embedding): +18% faster. Use either independent noise per each level or shared.
- ▶ Use moving averages of Generator with decay of 0.9999.
- They used orthogonal initialization instead of He/Xavier: sample from standard normal, compute svd, take U matrix.

Used tricks

Baseline: SA-GAN (self-attention GAN) which uses spectral normalization for both D and G.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.
- ▶ Pass class information via Conditional Batch Norm. Use shared embeddings and train a linear projection for each level.
- ▶ Pass noise on each level (by concatenating to a class embedding): +18% faster. Use either independent noise per each level or shared.
- ▶ Use moving averages of Generator with decay of 0.9999.
- They used orthogonal initialization instead of He/Xavier: sample from standard normal, compute svd, take U matrix.
- Progressive growing was unnecessary.

Used tricks

Baseline: SA-GAN (self-attention GAN) which uses spectral normalization for both D and G.

- ▶ Just increasing a batch size helps a lot (+46% IS). But this makes training unstable for some reason.
- ▶ Double the width in each layer: +21% IS.
- ▶ Pass class information via Conditional Batch Norm. Use shared embeddings and train a linear projection for each level.
- ▶ Pass noise on each level (by concatenating to a class embedding): +18% faster. Use either independent noise per each level or shared.
- ▶ Use moving averages of Generator with decay of 0.9999.
- They used orthogonal initialization instead of He/Xavier: sample from standard normal, compute svd, take U matrix.
- Progressive growing was unnecessary.
- ▶ A model is trained on 128 to 512 TPU v3 cores

▶ Idea: at test-time sample from truncated normal instead of $\mathcal{N}(0,1)$, i.e. resample large coordinates.

- ▶ Idea: at test-time sample from truncated normal instead of $\mathcal{N}(0,1)$, i.e. resample large coordinates.
- ▶ This improves quality but decreases diversity.

- ▶ Idea: at test-time sample from truncated normal instead of $\mathcal{N}(0,1)$, i.e. resample large coordinates.
- ▶ This improves quality but decreases diversity.
- ▶ Some models are not amenable to truncation because of the distribution shift: during training we see *z* that comes from different distribution.

- ▶ Idea: at test-time sample from truncated normal instead of $\mathcal{N}(0,1)$, i.e. resample large coordinates.
- ▶ This improves quality but decreases diversity.
- ▶ Some models are not amenable to truncation because of the distribution shift: during training we see *z* that comes from different distribution.
- ▶ Use orthogonal regularization to alleviate this:

$$R_{\beta}(W) = \beta \|W^{\top}W \odot (1-I)\|_{F}^{2}$$

²Training collapse is when IS/FID deteriorates very rapidly in a few iterations

▶ Authors were tracking first 3 singular values.

²Training collapse is when IS/FID deteriorates very rapidly in a few iterations

- ▶ Authors were tracking first 3 singular values.
- ► They tried a lot of tricky ways to regularize them, but it worked only a little and couldn't guarantee stability.

²Training collapse is when IS/FID deteriorates very rapidly in a few iterations

- ▶ Authors were tracking first 3 singular values.
- ► They tried a lot of tricky ways to regularize them, but it worked only a little and couldn't guarantee stability.
- ▶ This means that singular values explosion is a symptom and not the cause.

²Training collapse is when IS/FID deteriorates very rapidly in a few iterations

► Singular values are much more well-behaved, they only jump at collapse and do not explored

- Singular values are much more well-behaved, they only jump at collapse and do not explored
- Singluar values are more noisy and have spikes

- Singular values are much more well-behaved, they only jump at collapse and do not explored
- Singluar values are more noisy and have spikes
- ► Authors hypothesize that spikes occur because *D* receives large gradients sometimes

- Singular values are much more well-behaved, they only jump at collapse and do not explored
- Singluar values are more noisy and have spikes
- Authors hypothesize that spikes occur because D receives large gradients sometimes
- ▶ To alleviate this they use R_1 regularization: it helps it decreases overall performance

$$R_1 := \frac{\gamma}{2} \mathbb{E}_{p_{\mathcal{D}}(x)} \left[\| \nabla D(x) \|_F^2 \right] \tag{3}$$

Results

Model	Res.	FID/IS	(min FID) / IS	FID / (valid IS)	FID / (max IS)
SN-GAN	128	27.62/36.80	N/A	N/A	N/A
SA-GAN	128	18.65/52.52	N/A	N/A	N/A
BigGAN	128	$8.7 \pm .6/98.8 \pm 3$	$7.7 \pm .2/126.5 \pm 0$	$9.6 \pm .4/166.3 \pm 1$	$25 \pm 2/206 \pm 2$
BigGAN	256	$8.7 \pm .1/142.3 \pm 2$	$7.7 \pm .1/178.0 \pm 5$	$9.3 \pm .3/233.1 \pm 1$	$25 \pm 5/291 \pm 4$
BigGAN	512	8.1/144.2	7.6/170.3	11.8/241.4	27.0/275
BigGAN-deep	128	$5.7 \pm .3/124.5 \pm 2$	$6.3 \pm .3/148.1 \pm 4$	$7.4 \pm .6/166.5 \pm 1$	$25 \pm 2/253 \pm 11$
BigGAN-deep	256	$6.9 \pm .2/171.4 \pm 2$	$7.0 \pm .1/202.6 \pm 2$	$8.1 \pm .1/232.5 \pm 2$	$27 \pm 8/317 \pm 6$
BigGAN-deep	512	7.5/152.8	7.7/181.4	11.5/241.5	39.7/298