1. Группа G (допустим, для простоты, по умножению) называется иикличе-cκοй, если все её элементы являются степенями некоторого элемента $g \in G$. Такой элемент g называется ofpasyrowei группы G.

Докажите, что все циклические группы порядка п изоморфны.

- 2. Пусть группа G порядка п является циклической. Найдите количество элементов группы G, каждый из которых является образующей этой группы.
- 3. Перестановка элементов группы G, являющаяся изоморфизмом, называется автоморфизмом.

Докажите, что при любом автоморфизме циклической группы G образующая этой группы переходит в образующую.

- 4. Множество всех автоморфизмов группы G обозначается Aut G. Докажите, что Aut G является группой.
 - 5. Опишите группу $\operatorname{Aut} \mathbb{Z}_n$, понимая \mathbb{Z}_n как группу по сложению.
 - **6**. Пусть $n\in\mathbb{N},\ n\geqslant 2,\ e\in\mathbb{Z},\ (e,\phi(n))=1$. Докажите, что отображение

$$\operatorname{Enc}_e(\mathfrak{a}) = \mathfrak{a}^e \pmod{\mathfrak{n}}$$

является автоморфизмом группы \mathbb{Z}_n^* .

Замечание: Это отображение играет ключевую роль в криптосистеме RSA.

7. Пусть р — простое число. Опишите группу $\operatorname{Aut} \mathbb{Z}_p^*$.

 $\mathit{Указание}$: Воспользуйтесь тем фактом, что группа $\mathbb{Z}_{\mathfrak{p}}^*$ — циклическая.