CS6848 - Principles of Programming Languages Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

Recursive types

- A data type for values that may contain other values of the same type.
- Also called inductive data types.
- Compared to simple types that are finite, recursive types are not.

```
interface I {
   void s1(boolean a);
   int m1(J a);
}
interface J {
   boolean m2(I b);
}
```

Infinite graph.

Recap

- Type rules.
- Simply typed lambda calculus.
- Type soundness proof.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

2/2

Recursive types

- Can be viewed as directed graphs.
- Useful for defining dynamic data structures such as Lists, Trees.
- Size can grow in response to runtime requirements (user input); compare that to static arrays.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras)

Equality and subtyping

- In Java two types are considered equal iff they have the same name. Tricky example?
- Same with subtyping.
- Contrast the name based subtyping to structural subtyping.
- Why is structural subtyping interesting?

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

5 / 31

Type derivation example

- Type of the lambda term $\lambda x.xx$.
- Use a type $u = \mu \alpha.(\alpha \rightarrow \text{Int})$.

•

$$\frac{\phi[x:u] \vdash x:u \to \text{Int} \qquad \phi[x:u] \vdash x:u}{\phi[x:u] \vdash \lambda x: \text{Int}}$$

$$\frac{\phi[x:u] \vdash \lambda x: \text{Int}}{\phi \vdash \lambda x: u.xx: u \to \text{Int}}$$

- We will extend the grammar of our simple types.
- •

$$t ::= t_1 \rightarrow t_2 |\text{Int } |\alpha| \mu \alpha. (t_1 \rightarrow t_2)$$

where

- α is a variable that ranges over types.
- $\mu \alpha . t$ is a recursive type that allows unfolding.

$$\mu \alpha . t = t[\alpha := (\mu \alpha . t)]$$

- Example: Say $u = \mu \alpha.(\alpha \rightarrow Int)$. Now unfold
 - Once: $u = u \rightarrow Int$
 - Twice: $u = (u \rightarrow Int) \rightarrow Int$
 - ..
 - Infinitely: Infinite tree the type of *u*.
- A type derived from this grammar will have finite number of *distinct* subtrees *regular* trees.
- Any regular tree can be written as a finite expression using μ s.

V.Krishna Nandivada (IIT Madras)

S6848 (IIT Madras)

0.101

Type derivation, example II

- $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$
- Y-combinator is also called fixed point combinator or paradoxical combinator.
- When applied to any function *g*, it produces a fixed point of *g*.
- That is Y(E) = E(Y(E))

•

$$Y(E) =_{\beta} (\lambda x.E(xx))(\lambda x.E(xx))$$

= \begin{align*} E((\lambda x.E(xx))(\lambda x.E(xx))) \\ =_{\beta} E(Y(E)) \end{align*}

Useless assignment: For the factorial function

 $F = \lambda f. \lambda n. if (zero? n) 1 (mult n (f pred n)), show that <math>(YF) n$ computes factorial n.

Use the definition of factorial function:

Fact n = if (zero? n) 1 (mult n (Fact (pred n))) Ueless assignment II: Write the Y combinator in Scheme.

Type derivation of Y-combinator

- Y combinator cannot be typed with simple types.
- Use a type $u = \mu \alpha.(\alpha \rightarrow \text{Int})$.

$$\frac{\phi[f:Int\to Int] \vdash (\lambda x.f(xx))(\lambda x.f(xx)):Int}{\phi \vdash \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)):(Int\to Int)\to Int)}$$

- If we can get the type of $\lambda x.f(xx)$ to be type u then using $u = u \rightarrow Int$ like above, we can get the premise.
- Goal $\phi[f: Int \rightarrow Int] \vdash \lambda x.f(xx) : u$

$$\frac{\phi[f: \mathsf{Int} \to int][x:u] \vdash f: \mathsf{Int} \to \mathsf{Int} \quad \phi[x:u] \vdash xx: \mathsf{Int}}{\phi[f: \mathsf{Int} \to \mathsf{Int}][x:u] \vdash f(xx): \mathsf{Int}}$$

$$\frac{\phi[f: \mathsf{Int} \to \mathsf{Int}][x:u] \vdash f(xx): \mathsf{Int}}{\phi[f: \mathsf{Int} \to \mathsf{Int}] \vdash \lambda x: u.f(xx): u}$$

- Not all terms can be typed with recursive types either: $\lambda x.x(\operatorname{succ} x)$
- Type soundness theorem can be proved for recursive types as well.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Representation of types - as functions

- Denote an alphabet Σ that contains all the labels and paths of the type tree.
- We can represent such a tree by a function that maps paths to labels — called a term.
- Say we denote *left* by 0 and *right* by 1, for the types discussed before: path $\in \{0,1\}^*$.
- And the labels are from the set $\Sigma = \{\text{Int }, \rightarrow \}$.
- A term t over Σ is a partial function

$$t: \{0,1\}^* \to \Sigma$$

- The domain D(t) must satisfy:
 - D(t) is non-empty and is prefix-closed.
 - if $t(\alpha) = \rightarrow$ then $\alpha 0$, $\alpha 1 \in D(t)$.

Equality of types

- Isorecursive types: $\mu \alpha . t$ and $t [\alpha / \mu \alpha . t]$ are distinct (disjoint) types.
- Equirecursive types: Type type expessions are same if their infinite trees match.
 - Direct comparison is not enough.
 - Convert a given type into a canonical (normal/standard) form and then compare.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Types as functions (contd)

Example.

• The term is given by:

$$t(0^n) = -t(0^{2n}1) = 1$$

 $t(0^{2n+1}1) = 1$

- A term over Σ is a partial function: $t: w^* \to \Sigma$
- Define a new partial function $t \downarrow \alpha$:

•
$$t \downarrow \alpha(\beta) = t(\alpha\beta)$$
.

- A term t is finite if its domain D(t) is a finite set – finite types
- If $t \downarrow \alpha$ has non empty domain \Rightarrow it is a term and is called the subterm of t at position α .
- t is regular if it has only finitely many distinct subterms. That is. $\{t \downarrow \alpha | \alpha \in w^*\}$ is a finite set.
- A term t is regular \equiv it represents a recursive type.

Types as automata

If *t* is a term then following are equivalent:

- *t* is regular.
- t is representable by a term automata
- t is describable by a type expression involving μ .

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

13 / 3

Rules for subtyping

•

(reflexive) $t \le t$

•

transitive $\frac{t_1 \le t_2 \qquad t_2 \le t_3}{t_1 \le t_3}$

•

Arrow
$$\frac{t_1 \le s_1}{s_1 \to s_2 \le t_1 \to t_2}$$

- The subtype relation is reversed (contravariant) for the argument types.
- The subtype relation in the result types covariant.

Subtyping

- We want to denote that some types are more informative than other.
- We say $t_1 \le t_2$ to indicate that every value described by t_1 is also describled by t_2 .
- That is, if you have a function that needs a value of type t_2 , you can give safely pass a value of type t_1 .
- t_1 is a subtype of t_2 or t_2 is a super type of t_1 .
- Example: C++ and Java.
- •

$$\frac{A \vdash e : t \qquad t \leq t'}{A \vdash e : t'}$$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

14/5

Special types

$$(Top)t \leq \top$$

- T = Java Object class.
- \bullet \perp = Subtype of all the classes undefined type.
 - (lambda (x) (zero? x) 4 (error # mesg))
- $t = \text{Int } |\bot| \top |t \to t| v |\mu v.(t \to t)$

Subtyping algorithm for recursive types

- Roberto M Amadio. and Luca Cardelli. Subtyping recursive types. In ACM Symposium on Principles of Programming Languages, 1990. - self reading.
- Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach.
 Efficient recursive sub-typing. In ACM Symposium on Principles of Programming Languages, 1993.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

17 / 31

31

Type ordering

• For two types s, and t, we define $s \le t$, iff $s(\alpha) \le_{\pi\alpha} t(\alpha)$ for all $\alpha \in D(s) \cap D(t)$.

- A counter example to $s \le t$: \exists a path $\alpha \in D(s) \cap D(t)$, where $s(\alpha) \not \leq_{\pi\alpha} t(\alpha)$
 - Two trees are ordered if no common path detects a counter example.
- For finite types, we can compare all the paths (cost?) in the tree-For recursive types?

Parity

- The partiy of $\alpha \in \{0,1\}^*$ is even if α has even number of zeros.
- The partiy of $\alpha \in \{0,1\}^*$ is odd if α has odd number of zeros.
- Denote parity of α by $\pi\alpha = 0$ if even, 1 if odd.
- We will definte two orders.
 - co-variant: $\bot \le_0 \top$
 - contra-variant: $\top \leq_1 \bot$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

18/3

Recap product autoamta

 A prduct automata represents interaction between two finite state machines.

If we start from A, C and after the word w we are in the state A, D we know that w contains an even number of p_0 s and odd number of p_1 s

Slide from Thierry Coquand @ University of Gothenburg

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19 / 31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras)

Modified product automata

• Given two term automata M and N, we will construct a product automata – (non-deterministic?)

$$A = (Q^A, \Sigma, q_0^A, \delta^A, F^A)$$

where

- $Q^A = Q^M \times Q^N \times \{0,1\}$
- $\Sigma = \{0, 1\}$
- $q_0^A = (q_0^M, q_0^N, 0)$ start state of A.
- $\delta^A: Q^A \times \Sigma \to Q^A$. For $b, i \in \Sigma$, $p \in Q^M$, and $q \in Q^N$, we have $\delta^A((p,q,b),i) = (\delta^M(p,i),\delta^N(q,i),b\oplus \pi i)$ $(\oplus = xor)$
- Final states
 - Recall: $s \not< t$ iff $\{\alpha \in D(s) \cap D(t) | s(\alpha) \not\leq_{\pi\alpha} t(\alpha)\}$
 - Goal: create an automata, where final states are denoted by states that will lead to \angle .

$$F^A = \{(p,q,b)|l^M(p) \not\leq_b l^N(q)\} - l$$
 gives the label of that node.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Example 0

- \bullet ($\bot \to \top$) and ($\top \to \bot$) $\not\leq$
- \bullet (($\bot \to \top$) \to (\bot) and (($\top \to \bot$) \to (\bot) \leq

Decision procedure for subtyping

Input: Two types s, t.

Output: If s < t.

- Construct the term automata for s and t.
- 2 Construct the product automaton $s \times t$. Size = ?
- Opening Decide, using depth first search, if the product automaton accepts the nonempty set.
 - Does there exist a path from the start state to some final state?
- If yes, then $s \not \leq t$. Else $s \leq t$.

Compute the time complexity - $O(n^2)$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Example 1

• $\mu v.(v \rightarrow \bot)$ and $\mu u.(u \rightarrow \top)$

Term automata

Product automata

Unreachable states

 $((\to_V, \top, 1)), (\to_V, \top, 0), (\bot, \to u, 1), ((\bot, \to u, 0)),$

• $\mu v.(v \rightarrow \bot) \not< \mu u.(u \rightarrow \top)$ Note: Some of the unreachable states are ((final))

Example 2

• $\mu u.((u \rightarrow u) \rightarrow \bot)$ and $\mu v.((v \rightarrow \bot) \rightarrow \top)$

Term automata

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

First order unification

- Goal: To do type inference
- Given: A set of variables and literals and their possible types.
 - Remember: type = constraint.
- Target: Does the given set of constraints have a solution? And if so, what is the most general solution?
- Unification can be done in linear time: M. S. Paterson and M. N. Wegman, Linear Unification, Journal of Computer and System Sciences, 16:158167, 1978.
- We will instead present a simpler to understand, complex to run algorithm.

Type inference

- Goal: Given a program with some types.
- Infer "consistent" types of all the expressions in the program.

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

Definitions

• We will stick to simple type experssions generated from the grammar:

$$t ::= t \rightarrow t | \text{Int } | \alpha$$

where α ranges over type variables.

Type substitution, example:

$$((\mathsf{Int} \ \to \alpha) \to \beta)[\alpha := \mathsf{Int} \ , \beta := (\mathsf{Int} \ \to \mathsf{Int} \)] = (\mathsf{Int} \ \to \mathsf{Int} \) \to (\mathsf{Int} \ \to \mathsf{Int} \)$$

$$((\mathsf{Int} \ \to \alpha) \to \gamma)[\alpha := \mathsf{Int} \ , \beta := (\mathsf{Int} \ \to \alpha)] = (\mathsf{Int} \ \to \mathsf{Int} \) \to \gamma$$

- We say given a set of type equations, we say a substituion σ is an *unifier or solution* if for each of the equation of the form s = t, $s\sigma = t\sigma$.
- Substituions can be composed:

$$t(\sigma \circ \theta) = (t\sigma)\theta$$

• A substituion σ is called a most general solution of an equation set provided that for any other solution θ , there exists a substituon τ such that $\theta = \sigma \ o \ \tau$

Unification algorithm

Input: G: set of type equations (derived from a given program).

Output: Unification σ

- failure = false; $\sigma = \{\}$.
- ② while $G \neq \phi$ and \neg failure do
 - **1** Choose and remove an equation *e* from G. Say $e\sigma$ is (s = t).
 - 2 If s and t are variables, or s and t are both Int then continue.
 - **3** If $s = s_1 \rightarrow s_2$ and $t = t_1 \rightarrow t_2$, then $G = G \cup \{s_1 = t_1, s_2 = t_2\}$.
 - 4 If (s = Int and t is an arrow type) or vice versa then failure = true.
 - **3** If *s* is a variable that does not occur in *t*, then $\sigma = \sigma \ o \ [s := t]$.
 - **6** If *t* is a variable that does not occur in *s*, then $\sigma = \sigma$ o [t := s].
 - If $s \neq t$ and either s is a variable that occurs in t or vice versa then failure = true.
- end-while.
- **1** if (failure = true) then output "Does not type check". Else o/p σ .

Q: Composability helps?

Q: Cost?

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

29 / 3

Recap

- Structural subtyping
- Unification algorithm

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

31 / 31

Examples

$$\alpha = \beta \rightarrow \operatorname{Int}$$
 $\beta = \operatorname{Int} \rightarrow \operatorname{Int}$

$$lpha = \operatorname{Int} \
ightarrow eta \ eta = lpha
ightarrow \operatorname{Int}$$

V.Krishna Nandivada (IIT Madras)

CS6848 (IIT Madras)

20 / 21