Conceptual Multiple Choice Questions: Synthetic Division and Quadratic Equations (Exercise 4.5)

Class 11 Mathematics (Chapter 4)

Prepared by ExpertGuy

MCQs
1. The remainder when $x^2 + 3x + 7$ is divided by $x + 1$ is:
(a) 5
(b) -5
(c) 7
(d) 0
2. The remainder when $x^3 - x^2 + 5x + 4$ is divided by $x - 2$ is:
(a) 18
(b) 4
(c) -18 (d) 0
3. The remainder when $3x^4 + 4x^3 + x - 5$ is divided by $x + 1$ is:
(a) -7
(b) 7
(c) -5
(d) 0
4. The remainder when $x^3 - 2x^2 + 3x + 3$ is divided by $x - 3$ is:
(a) 21
(b) -21
(c) 3 (d) 0
5. The remainder when $2x^3 - 3x^2 + x - 8$ is divided by $x - 1$ is:
(a) -8
(b) 8 (c) -6
(d) 0
6. For $x^n + a^n$ with odd n , the remainder when divided by $x + a$ is
u . Let u

Page 1 of 6

- (b) a^{n}
- (c) $-a^n$
- (d) 1
- 7. The value of k when $x^4 + 2x^3 + kx^2 + 3$ divided by x 2 has remainder 1 is:
 - (a) $-\frac{17}{2}$
 - (b) $\frac{17}{2}$
 - (c) -17
 - (d) 17
- **8.** The value of k when $x^3 + 2x^2 + kx + 4$ divided by x 2 has remainder 14 is:
 - (a) -3
 - **(b)** 3
 - (c) -14
 - (d) 14
- **9.** Using synthetic division, the quotient when $x^3 7x + 6$ is divided by x 2 is:
 - (a) $x^2 + 2x 3$
 - (b) $x^2 2x + 3$
 - (c) $x^2 + 3x 1$
 - (d) $x^2 3x + 1$
- **10.** The complete factorization of $x^3 7x + 6$ given x = 2 is a root is:
 - (a) (x-2)(x+3)(x-1)
 - **(b)** (x-2)(x-3)(x+1)
 - (c) (x+2)(x+3)(x-1)
 - (d) (x+2)(x-3)(x+1)
- **11.** The quotient when $x^3 28x 48$ is divided by x + 4 is:
 - (a) $x^2 4x 12$
 - **(b)** $x^2 + 4x + 12$
 - (c) $x^2 6x + 8$
 - (d) $x^2 + 6x 8$
- **12.** The complete factorization of $x^3 28x 48$ given x = -4 is a root is:
 - (a) (x+4)(x-6)(x+2)
 - **(b)** (x+4)(x+6)(x-2)

 - (c) (x-4)(x-6)(x+2)(d) (x-4)(x+6)(x-2)

- **13.** The quotient when $2x^4 + 7x^3 4x^2 27x 18$ is divided by x 2 is:
 - (a) $2x^3 + 11x^2 + 18x + 9$
 - **(b)** $2x^3 11x^2 + 18x 9$
 - (c) $2x^3 + 11x^2 18x + 9$
 - (d) $2x^3 11x^2 18x 9$
- **14.** The complete factorization of $2x^4 + 7x^3 4x^2 27x 18$ given roots x = 2, -3 is:
 - (a) (x-2)(x+3)(2x+3)(x+1)
 - **(b)** (x-2)(x-3)(2x+3)(x+1)
 - (c) (x+2)(x+3)(2x-3)(x-1)
 - (d) (x+2)(x-3)(2x-3)(x-1)
- **15.** The values of p, q if x + 1, x 2 are factors of $x^3 + px^2 + qx + 6$ are:
 - (a) p = -4, q = 1
 - **(b)** p = 4, q = -1
 - (c) p = -4, q = -1
 - (d) p = 4, q = 1
- **16.** The values of a, b if -2, 2 are roots of $x^3 4x^2 + ax + b$ are:
 - (a) a = -4, b = 16
 - **(b)** a = 4, b = -16
 - (c) a = -4, b = -16
 - (d) a = 4, b = 16
- **17.** For a quadratic $ax^2 + bx + c = 0$, the sum of roots is:
 - (a) $-\frac{b}{a}$
 - (b) $\frac{b}{a}$
 - (c) $-\frac{c}{a}$
 - (d) $\frac{c}{a}$
- **18.** For a quadratic $ax^2 + bx + c = 0$, the product of roots is:
 - (a) $\frac{c}{a}$
 - (b) $-\frac{c}{a}$
 - (c) $\frac{b}{a}$
 - (d) $-\frac{b}{a}$
- **19.** The quadratic equation with roots 3, -2 is:
 - (a) $x^2 x 6 = 0$

(b)
$$x^2 + x - 6 = 0$$

(c)
$$x^2 - x + 6 = 0$$

(d)
$$x^2 + x + 6 = 0$$

- **20.** If x-1 is a factor of $x^3 kx^2 + 2x 2$, the value of k is:
 - (a) 1
 - **(b)** -1
 - **(c)** 2
 - (d) -2

Answers and Explanations

1. Answer: a

Explanation: By the Remainder Theorem, the remainder when a polynomial $f(x) = x^2 + 3x + 7$ is divided by x + 1 is f(-1). Compute $f(-1) = (-1)^2 + 3(-1) + 7 = 1 - 3 + 7 = 5$. Option (a) is correct because it matches the calculated remainder. Options (b), (c), and (d) are incorrect as they do not equal 5.

2. Answer: a

Explanation: For $f(x) = x^3 - x^2 + 5x + 4$ divided by x - 2, the remainder is f(2). Calculate $f(2) = 2^3 - 2^2 + 5 \cdot 2 + 4 = 8 - 4 + 10 + 4 = 18$. Option (a) is correct. Options (b), (c), and (d) are incorrect because they do not match the value 18.

3. Answer: a

Explanation: For $f(x) = 3x^4 + 4x^3 + x - 5$ divided by x + 1, the remainder is f(-1). Compute $f(-1) = 3(-1)^4 + 4(-1)^3 + (-1) - 5 = 3 \cdot 1 + 4 \cdot (-1) - 1 - 5 = 3 \cdot 4 - 1 - 5 = -7$. Option (a) is correct. Options (b), (c), and (d) do not equal -7.

4. Answer: a

Explanation: For $f(x) = x^3 - 2x^2 + 3x + 3$ divided by x - 3, the remainder is f(3). Calculate $f(3) = 3^3 - 2 \cdot 3^2 + 3 \cdot 3 + 3 = 27 - 18 + 9 + 3 = 21$. Option (a) is correct. Options (b), (c), and (d) are incorrect as they do not equal 21.

5. Answer: c

Explanation: For $f(x) = 2x^3 - 3x^2 + x - 8$ divided by x - 1, the remainder is f(1). Compute $f(1) = 2 \cdot 1^3 - 3 \cdot 1^2 + 1 - 8 = 2 - 3 + 1 - 8 = -6$. Option (c) is correct. Options (a), (b), and (d) do not match -6.

6. Answer: a

Explanation: For $f(x) = x^n + a^n$ divided by x + a, the remainder is f(-a). Since n is odd, $f(-a) = (-a)^n + a^n = -a^n + a^n = 0$. Option (a) is correct because the remainder is 0, indicating x + a is a factor. Options (b), (c), and (d) are incorrect as they do not yield 0.

7. Answer: a

Explanation: For $f(x)=x^4+2x^3+kx^2+3$ divided by x-2, the remainder is f(2)=1. Compute $f(2)=2^4+2\cdot 2^3+k\cdot 2^2+3=16+16+4k+3=35+4k$. Set $35+4k=1\implies 4k=-34\implies k=-\frac{34}{4}=-\frac{17}{2}$. Option (a) is correct. Other options do not satisfy the equation.

8. Answer: a

Explanation: For $f(x)=x^3+2x^2+kx+4$ divided by x-2, the remainder is f(2)=14. Compute $f(2)=2^3+2\cdot 2^2+k\cdot 2+4=8+8+2k+4=20+2k$. Set $20+2k=14 \implies 2k=-6 \implies k=-3$. Option (a) is correct. Other options do not yield 14.

9. Answer: a

Explanation: Perform synthetic division on $f(x) = x^3 + 0x^2 - 7x + 6$ by x - 2:

The quotient is $x^2 + 2x - 3$. Option (a) is correct. Other options do not match the quotient coefficients.

10. Answer: a

Explanation: Given x=2 is a root, synthetic division yields quotient x^2+2x-3 . Factorize: $x^2+2x-3=(x+3)(x-1)$. Thus, f(x)=(x-2)(x+3)(x-1). Option (a) is correct. Other options include incorrect factors.

11. Answer: a

Explanation: Perform synthetic division on $f(x) = x^3 + 0x^2 - 28x - 48$ by x + 4 (x = -4):

The quotient is $x^2-4x-12$. Option (a) is correct. Other options do not match.

12. Answer: a

Explanation: Given x = -4 is a root, the quotient is $x^2 - 4x - 12 = (x - 6)(x + 2)$. Thus, f(x) = (x + 4)(x - 6)(x + 2). Option (a) is correct. Other options include incorrect factors.

13. Answer: a

Explanation: Perform synthetic division on $f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18$ by x - 2:

The quotient is $2x^3 + 11x^2 + 18x + 9$. Option (a) is correct. Other options have incorrect coefficients.

14. Answer: a

Explanation: Given roots x=2,-3, synthetic division by x-2 and x+3 yields quotient $2x^2+5x+3=(2x+3)(x+1)$. Thus, f(x)=(x-2)(x+3)(2x+3)(x+1). Option (a) is correct. Option (b) incorrectly uses x-3.

15. Answer: a

Explanation: Since x+1, x-2 are factors, f(-1)=0 and f(2)=0. Perform synthetic division: For x=-1: Coefficients 1, p, q, 6 yield remainder p-q+5=0. For x=2: Coefficients yield remainder p+q+3=0. Solve: p-q+5=0, $p+q+3=0 \implies 2p+8=0 \implies p=-4, q=1$. Option (a) is correct.

16. Answer: a

Explanation: Since -2, 2 are roots, f(-2) = 0, f(2) = 0. Compute: $f(-2) = -8 - 16 - 2a + b = 0 \implies -24 - 2a + b = 0$. $f(2) = 8 - 16 + 2a + b = 0 \implies -8 + 2a + b = 0$. Solve: Add equations to get $2b - 32 = 0 \implies b = 16$. Then, $-24 - 2a + 16 = 0 \implies a = -4$. Option (a) is correct.

17. Answer: a

Explanation: For a quadratic $ax^2 + bx + c = 0$, the sum of roots is $-\frac{b}{a}$. This follows from the quadratic formula, where roots α, β satisfy $\alpha + \beta = -\frac{b}{a}$. Option (a) is correct. Others are incorrect formulas.

18. Answer: a

Explanation: The product of roots for $ax^2 + bx + c = 0$ is $\frac{c}{a}$. From the quadratic formula, $\alpha\beta = \frac{c}{a}$. Option (a) is correct. Others do not represent the product.

19. Answer: a

Explanation: For roots 3, -2, sum = 3 + (-2) = 1, product = $3 \cdot (-2) = -6$. The quadratic is $x^2 - (sum)x + product = x^2 - x - 6 = 0$. Option (a) is correct. Others yield incorrect sums or products.

20. Answer: a

Explanation: If x-1 is a factor, f(1)=0 for $f(x)=x^3-kx^2+2x-2$. Compute $f(1)=1-k+2-2=1-k=0 \implies k=1$. Option (a) is correct. Other values of k do not yield a remainder of 0.