Conceptos estadísticos para portafolios de inversión

Profesor: Miguel Jiménez

Distribuciones de probabilidad continua

- Una función de probabilidad continua no puede ser expresada en forma tabular.
- Una ecuación o fórmula es usada para describir una distribución de probabilidad continua llamada
 Función de Densidad de Probabilidad (FDP) o Función de Densidad: P(x)
- El área bajo la curva de la FDP es igual a 1.
- Función de Probabilidad Acumulativa (FDA): es una regla o ecuación que describe la suma de todas las probabilidades.

Distribuciones de probabilidad continua

Variable distribuida normalmente:

Función de Densidad de Probabilidad

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left[-\frac{(X-\mu)^2}{2\sigma^2}\right]}$$

Probabilidad entre los valores a y b:

$$P(a \le X \le b) = \int_{a}^{b} P(x)dx$$

Valor esperado: $E[X]\mu$

Varianza: $VAR[X] = \sigma^2$

Dos variables distribuidas normalmente individualmente, la combinación

lineal de las dos variables también se distribuye normalmente:

$$X_1 \sim N(\mu_1, \mu_1) \ y \ X_2 \sim N(\mu_2, \mu_2)$$

$$Z \sim N(0,1)$$
 $X = aX_1 + bX_2 \sim Normal$

$$X \sim N(\mu, \sigma^2)$$

$$\mu \neq 0$$

La distribución normal está centrada alrededor de la media: µ

La variación o dispersión alrededor de la media se expresa en unidades de la desviación estándar: σ

En portafolios de inversión, la media es el rendimiento promedio y la desviación estándar se define como volatilidad.

$$\mu = \frac{\sum_{i=1}^{n} R_i}{n}$$

EXCEL:

Volatilidad histórica:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (R_i - \mu)^2}{n-1}}$$

EXCEL:

Distribución Normal Estándar

Normalización de los datos (transformación):

$$Z = \frac{X - \mu}{\sigma}$$

Valores de z

Distribución Normal Estándar

Dada una probabilidad, ¿cuál es el valor de z?

Probabilidad	90,0%	95,0%	97,5%	99,0%
Z	1,282	1,645	1,960	2,326

Excel:

z = INV.NORM.ESTAND(probabilidad)

z = DISTR.NORM.ESTAND.INV(probabilidad)

Dado una valor de z, ¿cuál es la probabilidad?

Z	0	1,282	1,645	1,960
Probabilidad	50,0%	90,0%	95,0%	97,5%

Excel:

Probabilidad = DISTR.NORM.ESTAND(z)

Distribución Normal Estándar

Propiedades:

- La suma de las medias de todas las distribuciones normal independientes forman una distribución normal.
- La suma de las varianzas de todas las distribuciones normal independientes forman una distribución normal.

Asimetría estadística – sesgo (skewness)

$$Sk = \frac{\sum_{i=1}^{n} (x_1 - \mu)^3}{\sigma^3}$$
 Positiva Negativa

Asimetría estadística – sesgo (skewness)

Sesgo negativo: Cola izquierda larga. Indica alta probabilidad de observar valores negativos grandes.

Sesgo positivo: Cola derecha larga. Si la distribución es de las rentabilidades existe una mayor probabilidad de pérdidas. Los valores negativos son más probables.

Curtosis (kurtosis)

Indicador que mide el nivel de levantamiento de la curva respecto a la horizontal

$$K = \frac{\sum_{i=1}^{n} (x_1 - \mu)^4}{\sigma^4}$$

Muchos valores observados en la cola genera una mayor ponderación y por lo tanto crea alta curtosis.

Alta curtosis: Alta o baja probabilidad de valores extremos.

Curtosis promedio = 3. Distribución simétrica.

Curtosis (kurtosis)

High Kurtosis

Low Kurtosis

Covarianza y correlación

Es una medida de relación lineal entre dos variables aleatorios describiendo el movimiento conjunto entre éstas.

$$COV(R_i, R_j) = \frac{1}{n} \sum_{i=1}^{n} (R_i - \mu_i) (R_j - \mu_j)$$

Mide el grado de movimiento conjunto entre dos variables o la relación lineal entre ambas en un rango entre -1 y +1

$$Corr(R_i, R_j) = \rho_{ij} = \frac{COV(R_i, R_j)}{\sigma_i \sigma_j}$$

 ρ_{ij} : Correlación entre los activos i y j.

EXCEL:

 $COV(R_i, R_j)$: Covarianza entre los activos i y j.

Covarianza: =COVARIANZA.M()

 σ_i : Desviación estándar del activo i.

Coeficiente de Correlación:

 σ_i : Desviación estándar del activo j.

=COEF.DE.CORREL()

Correlación

El signo positivo en el coeficiente de correlación significa que las dos variables se mueven en la misma dirección, mientras más cercano a la unidad, mayor será el grado de dependencia mutua.

El signo negativo indica que las dos variables se mueven en sentidos opuestos.

Mientras más cercano a cero sea el coeficiente de correlación, mayor será el grado de independencia de las variables.

Acción de Ecopetrol

Fechas: 11 de noviembre de 2008 hasta 05 de octubre de 2018

Frecuencia: diario

Docente: Luis Miguel Jiménez Gómez

Acción de Ecopetrol

$$Rentabilidad_t = Ln\left(\frac{R_t}{R_{t-1}}\right)$$
 Rentabilidad continua

Total datos (n - 1): 2618

-0,15

0,15

Acción de Ecopetrol

Percentiles

EXCEL:

Supuesto distribución normal:

=INV.NORM(%, μ , σ)

Supuesto distribución normal estándar:

=INV.NORM.ESTAND(%)* σ

Conceptos estadísticos para portafolios de inverisón

Gracias

Profesor: Miguel Jiménez