

Kvantumszámítógépek programozása

Asbóth János^{1,2}

- 1: BME TTK Elméleti Fizika Tanszék;
- 2: Wigner Fizikai Kutatóközpont, Kvantumoptikai és Kvantuminformatikai Osztály

asboth.janos@ttk.bme.hu

A mai előadás

Mi a kvantumszámítógép?

"kvantumos furcsaságokat" - szuperpozíció, összefonódás számítási célokra felhasználó gép

Mire jó?

Néhány nehéz feladatra jobb, mint a mai számítógépek

- Molekuláris reakciók szimulálása (új gyógyszerek, jobb műtrágya)
- Titkosítás feltörése (RSA)
- ??

Mikor lesz?

Nagyon korai fázisú kutatás-fejlesztés

- Többféle hardver
- legjobb gép 53 bites (~1 millió bit kéne)
- IBM gépe online elérhető, kipróbálható

Magyarországon is kutatunk-fejlesztünk kvantumtechnológiát

Vannak (exponenciálisan) nehéz feladatok, amiken csak picit segít a gyorsabb számítógép

Utazó ügynök probléma: melyik a legrövidebb út, ami minden várost érint?

2x sebesség → +1 város

(a legjobb egzakt algoritmusnak, de 1%-os hibájú közelítések hatékonyak, ld. wikipedia)

Prímtényezőkre bontás: milyen prímszámokból áll össze a nagy szám?

502 560 280 658 509 = 15 485 863 * 32 452 843

2x sebesség → +néhány számjegy

(szubexponenciális skálázás, általános számtest-szita (GNFS) algoritmus)

Kémiai reakciók pontos modellezése

2x memória → +1 elektronpálya

A kémiai reakciók pontos számolása a kvantumos furcsaságok miatt nehéz: szuperpozíció, összefonódás

elektron "egyszerre több helyen" lehet – szuperpozíció.

Csak így tudunk számot adni a kísérletekről

Több elektron

- → egymástól függő szuperpozíciók
- = összefonódás

exponenciálisan bonyolult, de néha ettől hatékony kémiai reakció

1935- Paradoxonok ellenére a kvantummechanika a modern tudomány és technológia alapja

R. Feynman: Kvantum-elektrodinamika, 1965

J. Bardeen
Tranzisztor
1956
Szupravezetés
elmélete
1972

Az 1990-es évek óta a "kvantumparadoxonokat" közvetlenül, kísérletben vizsgálhatjuk

Szupravezető gyűrűben áram jobbra és balra megy körbe "egyszerre" [Mooij, Delft, 2001]

2000 atomos óriásmolekulák is egyszerre két résen tudnak átmenni [Arndt, Bécs, 2019]

Feynman, 1981: Ha egyszer a kvantumkémiai számolások ilyen nehezek, kéne ezekhez egy "kvantum-számítógép"

.. trying to find a computer simulation of physics seems to me to be an excellent program to follow out. . . . the real use of it would be with quantum mechanics. . . .

if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

Kvantumszimulátor vagy digitális számítógép?

Ha digitális, mik a kvantumbitek?

Hogy nézne ki egy program?

Miből lenne a számítógép?

1994, Peter Shor (MIT): Ha lenne kvantumszámítógép, gyorsan tudna prímtényezőkre bontani

Peter Shor, MIT (1959-)

- 1994: prímtényezőket találó kvantumos algoritmus
 -exponenciálisan gyorsabb!
- 1996: kvantumos hibajavítás

A kvantumszámítógéphez kellenek kvantumbitek. Ezek a környezettől jól elszigetelt, egyedi kvantumrendszerek, amiken műveleteket tudunk végezni.

Chris Monroe, USA, Joint Quantum Inst.: vákuumban lebegtetett ionok Ausztrália (UNSW): szilíciumba ültetett foszforatom magspinje

A hasznos kvantumszámításokhoz több millió kvantumbit kéne. Pillanatnyilag ehhez a szupravezető-alapú kvantumszámítógépek állnak legközelebb

Shor-algoritmussal prímtényezőkre bontás, ~10^d : 10d qubit, d³ lépés (Kitaev-féle módosítással, arXiv:quant-ph/9511026)

→ RSA2048 feltörése: ~600 számjegy: kell 6000 qubit, 200 millió lépés → 10^{-10} pontosság

UCSB+Google, 2022: 72 qubites "Sycamore" csipen kvantumos hibajavítás arxiv:2207.06431 (2022)

qubitek száma ~100 kapuhiba: <1%

kiolvasási hiba: ~2%

IBM, 2021: 433 qubites "Osprey" bejelentve, még nem kalibrálták

Hefei, China, 2021:

Zuchongzhi, 66 qubit

Szupravezető-alapú kvantumszámítógépek nanoáramköreit 10 mK körülre kell hűteni, hogy a környezet zavaró hatásait kiszűrjük

Egész áramkört hűteni nehezebb, mint néhány iont

He3/He4 keveréses hűtő (1 millió \$) \rightarrow 15 mK (200x hidegebb a csillagközi térnél).

Magyarországon: BME Kvantumelektronika Csoport https://nanoelectronics.physics.bme.hu/

A Google és az IBM is 2030-ra 1 millió kvantumbites számítógépet ígér

10⁶ qubit milestone: Error-corrected quantum computer

2048-bit RSA: 1 hour, 20M qubits

4096-bit RSA: 2 hours, 40M qubits

65536-bit RSA: 4 days, 1000M qubits

Consists of ~100 tiled modules

Tiles consist of ~100x100 physical qubits

[Gidney & Ekera: How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits, arXiv:1905.09749]

Az IBM Quantum Experience online hozzáférést ad kvantumszámítógépekhez

Az IBM gépparkjáról naprakész információt ad az online felületük (naponta újrakalibrált kvantumszámítógépek)

A kvantumszámítógépek mindjárt itt vannak. Tanuljuk meg használni őket!

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

 Kvantumbitek szuperpozícióban: Kvantumlogikai kapuk (NOT, Z, H, CNOT)

- Igazán hasznos kvantumszámítógép még nincs:
 - ~1 millió kvantumbit, ~0.1% kapuhiba, kiolvasási hiba
 - titkosítás feltörése, kvantumkémia
 - quantumalgorithmzoo
- Természetadta kvantumbitek: vákuumkamrában lebegtetett ionok
- Legígéretesebb hardver: szupravezető nanoáramkörök (kvantumfölény benchmark 2019: véletlen kvantumos logikai áramkör mintavételezése)
- Programozásra fel!
 IBM Quantum Experience

Programozás alapjai: bitek

digits position
$$5 \ 4 \ 3 \ 2 \ 1 \ 0$$
binary 100010
 100010
 100010
 100010
 100010
 100010
 100010
 100010
 100010
 100010
decimal $32 + 0 + 0 + 0 + 2 + 0 = 34$

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Office received

(Franchises of

Írd fel az életkorod bináris számmal! Add össze a szomszédodéval, írd fel azt is! Ellenőrizzétek egymás eredményét

Programozás alapjai: bitek, és rajtuk ható logikai áramkörök

Logic Gate	Symbol	Description	Boolean
AND		Output is at logic 1 when, and only when all its inputs are at logic 1,otherwise the output is at logic 0.	X = A•B
OR		Output is at logic 1 when one or more are at logic 1.If all inputs are at logic 0,output is at logic 0.	X = A+B
NAND		Output is at logic 0 when,and only when all its inputs are at logic 1,otherwise the output is at logic 1	$X = \overline{A \cdot B}$
NOR	→	Output is at logic 0 when one or more of its inputs are at logic 1.If all the inputs are at logic 0,the output is at logic 1.	X = A+B
XOR		Output is at logic 1 when one and Only one of its inputs is at logic 1. Otherwise is it logic 0.	X = A⊕ B
XNOR		Output is at logic 0 when one and only one of its inputs is at logic1. Otherwise it is logic 1. Similar to XOR but inverted.	X = A ⊕ B
NOT	─	Output is at logic 0 when its only input is at logic 1, and at logic 1 when its only input is at logic 0. That's why it is called and INVERTER	$X = \overline{A}$

Pl. két bit összeadása: hogyan kell megcsinálni?

Logic Gate	Symbol	Description	Boolean
AND		Output is at logic 1 when, and only when all its inputs are at logic 1,otherwise the output is at logic 0.	X = A•B
OR		Output is at logic 1 when one or more are at logic 1.If all inputs are at logic 0,output is at logic 0.	X = A+B
NAND	□	Output is at logic 0 when, and only when all its inputs are at logic 1, otherwise the output is at logic 1	$X = \overline{A \cdot B}$
NOR	□ >~	Output is at logic 0 when one or more of its inputs are at logic 1.If all the inputs are at logic 0,the output is at logic 1.	X = A+B
XOR		Output is at logic 1 when one and Only one of its inputs is at logic 1. Otherwise is it logic 0.	X = A ⊕ B
XNOR		Output is at logic 0 when one and only one of its inputs is at logic1. Otherwise it is logic 1. Similar to XOR but inverted.	X = A ⊕ B
NOT	->	Output is at logic 0 when its only input is at logic 1, and at logic 1 when its only input is at logic 0. That's why it is called and INVERTER	$X = \overline{A}$

https://circuitverse.org/simulator

Pl. két bit összeadása: megoldás

A kvantumbit: szuperpozícióban is tud lenni

abstract spin $|0\rangle$ $|\uparrow\rangle$ $|\downarrow\rangle$

charge

superconducting current

Superposition:

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

[Mooij, Delft, 2001]

Measurement produces 1 or 0, probabilistically

$$|\Psi\rangle$$
 $\qquad\qquad\qquad$ $|\alpha|^2 \to 0$ $|\beta|^2 \to 1$

Egy db. kvantumbit összes lehetséges szuperpozíciós állapota: két pont helyett egy gömb felszíne

Hasonlóan a hagyományos számítógépekhez, kvantumszámítógépekben is logikai kapuk vannak.

Defined as classical NOT (bit flip): $|0\rangle - |1\rangle$

 $|1\rangle \longrightarrow |0\rangle$

Action on superposition states: $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$

 $|\Psi\rangle - \left(-\frac{1}{2} \right) + \alpha |1\rangle$

Purely quantum gate, changes phase:

 $|0\rangle - |Z| - |0\rangle$

Action on superposition states:

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\Psi\rangle$$
— \mathbb{Z} — $\alpha|0\rangle$ - $\beta|1\rangle$

A Hadamard-kapu szuperpozícióba hozza a kvantumbitet

Bázisállapotból szuperpozíciót hoz létre

|0\ H-|0\+|1\
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
|1\ -|H-|0\-|1\ $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Általános állapotból:

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$H|\Psi\rangle = \frac{\alpha}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{\alpha + \beta}{\sqrt{2}} |0\rangle + \frac{\alpha - \beta}{\sqrt{2}} |1\rangle$$

Hasonlóan a NAND-kapuhoz, szükség van kétbites kvantumos logikai kapura is. Ilyen a CNOT

Defined for simple values of control bit, arbitrary target bit $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$

$$|0\rangle$$
 $|0\rangle$ $|\Psi\rangle$ $|\Psi\rangle$

$$|1\rangle$$
 $|1\rangle$ $|\Psi\rangle$ $\beta|0\rangle+\alpha|1\rangle$

Is it a quantum copier?

$$|\Psi\rangle$$
 $|0\rangle$

No, it is a quantum entangler

$$|\Psi\rangle$$
 $|0\rangle$
 $\alpha |00\rangle + \beta |11\rangle$

Még egy hasznos kvantumlogikai kapu: a kétszeresen vezérelt billentő kapu, Toffoli-kapu

Hatása: NOT a Target biten, csak ha C1 és C2 is 1 állapotú

Hogyan kell a bit-összeadó áramkört megcsinálni kvantumlogikai áramkörrel?

Hogyan kell a bit-összeadó áramkört megcsinálni kvantumlogikai áramkörrel?

Ellenőrizzük le az IBM Quantum Composeren!

https://quantum-computing.ibm.com/composer/docs/iqx/

Mit adna ez a kvantumlogikai áramkör?

Ennek az áramkörnek a kimenetele véletlenszerű

|0\ -H-|0\+|1\
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

|1\ -H-|0\-|1\ $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Véletlen kimenetelű kísérlet: p a siker valószínűsége, N ismétlésből k siker vszínűsége:

$$p_k = \frac{N!}{k!(N-k)!} p^k (1-p)^{N-k}$$

Sikeres kimenetek várható k száma N kísérletből:

$$\overline{k} = Np \pm (1...3)\sqrt{Np(1-p)}$$

Azonosságok – amit tudtok, számoljatok utána! Mindet ellenőrizzétek a Composerrel!

Swap implemented with 3 CNOTs