Section 9.4 Closures of a Relation

Comp 232

Instructor: Robert Mearns

- 1. Closure of a Relation:
 - a) If a Relation R does not have one of the properties: (Reflexive, Symmetric, Transitive) and you add ordered pairs so R has the desired property then the new relation is Closed with respect to that property.
- b) There are three Closures we will consider: Reflexive Closure, Symmetric Closure and Transitive Closure.
- 2. Reflexive Closure. Recall: R is Reflexive iff $\forall x (x, x) \in \mathbb{R}$

Ordered Pairs Example	$ \begin{aligned} &\text{If R=}\{(1,2),(2,3),(3,3)\} \text{ on } A\times A, \text{ where } A=\{1,2,3\}, \text{ R is not Reflexive} \\ &\text{If we add pairs } (1,1),(2,2): R_R=\{(1,1),(1,2),(2,2),(2,3),(3,3)\} \text{ is called the.} \\ &\text{Reflexive Closure of R} & \text{Note: } R_R=\{R\} \cup \{\ (1,1),(2,2),(3,3)\ \} \end{aligned} $
Matrix	Recall: Identity Matrix (I) has 1 on main diagonal, 0 everywhere else:
Example	Consider: M _R ∨ I
	$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} $
Set Builder Example	If $R = \{(x,y) \in Z \times Z, xRy \to x < y\}$ then $\forall x \ xRx \notin R$. R is not Reflexive Now change the relation from $\langle \text{ to } \leqslant$. We get the Reflexive closure of R:
	$R_R = \{\; (x,y) \in Z \times Z \; \; xRy \to x \leq y \} \;, \; \text{now} \; \forall x \;\; xRx \in R_R \;\; \text{hence} \;\; \text{Rr is Reflexive} \;\; \text{Reflexive} \;\; \text{Rr} \;\; \text{Reflexive} \;\; \text{Rr} \;\; Rr$

3. Symmetric Closure Recall: R is Symmetric iff $\forall (x, y) (x, y) \in R \rightarrow (y, x) \in R$

Ordered Pairs Example	If $R = \{(1,2), (2,3), (3,3)\}$ on $A \times A$, where $A = \{1,2,3\}$, R is not Symmetric If we add pairs $(2,1), (3,2)$: $R_S = \{(1,2), (2,1), (2,3), (3,2), (3,3)\}$ is called the
	Symmetric Closure of R. Note: $R_S = \{R\} \cup \{(2,1), (3,2)\}$
Matrix	Recall: to get M _R transpose: Rows of M _R become the cols of M _R transpose
Example	Consider: M _R ∨ M _R ^T Mrt is notation for transpose
	$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{array}{ccccc} 0 & 0 & 0 & & & & & & & & & & & & & & $
	Now $M_R \vee M_R^T$ represents $\{(1,2), (2,1), (2,3), (3,2), (3,3)\} = R_S$
	Notation: $M_{R_S} = M_R \vee M_R^T$ represents the Symmetric Closure Rs of R
Set Builder Example	$R = \{(x,y) \in Z \times Z \mid xRy \to x > y\}$
	then $\forall (x,y) \ (x,y) \in R \text{ implies } (y,x) \in R \text{ is False} \rightarrow R \text{ is not Symmetric}$
	Now change the relation from $>$ to \neq we get the Symmetric closure of R:
	$R_{S} = \{(x,y) \in Z \times Z \mid xRy \to x \neq y\}.$
	Now $[(xRy \in R_S) \rightarrow (yRx \in R_S)]$ hence Rs is Symmetric.

3

- 4. Transitive Closure Recall: R is Transitive iff $\forall (x, y, z) [(x, y) \in R \land (y, z) \in R]$ implies $(x, z) \in R$
- a) The forming of the Transitive closure presents a problem:

```
Ex: If R=\{(1,3), (1,4), (2,1), (3,2)\} on A\times A, where A=\{1,2,3,4\}, R is not Transitive Recall definition of transitive:
```

 $[(1,3) \wedge (3,2)] \text{ in } R \rightarrow \text{we need} \quad \text{(1,2) in Transitive Closure of R}$

$$(2,1) \land (1,3) \rightarrow \text{we need} \quad (2,3)$$

$$(2,1) \land (1,4) \rightarrow \text{we need} \quad (2,4)$$

$$(3,2) \land (2,1) \rightarrow \text{we need} \quad (3,1)$$

If we do a union of sets to get missing ordered pairs: $R \cup \{(1,2), (2,3), (2,4), (3,1)\}$

We end up having: $(3,1) \land (1,3) \rightarrow \text{now we need}$ (3,3)

$$(3,1) \land (1,4) \rightarrow \text{now we need}$$
 (3,4)

So we do not have Transitive closure. We have created some new required ordered pairs.

- b) Vocabulary for Directed Graph: Consider $A = \{a, b\}$
 - (i) Elements of A are called the vertices
 - (ii) The joining of 2 different vertices is called an edge
 - (iii) The number of edges to get from vertex ${\bf a}$ to vertex ${\bf b}$ is called the length of the path from vertex ${\bf a}$ to vertex ${\bf b}$ (There can be more than one path from ${\bf a}$ to ${\bf b}$)
 - (iv) If aRa, \rightarrow the smallest path from a to a has length = 0

There may be other paths to get from ${\bf a}$ back to ${\bf a}$. The length of these other paths > 0

COMP 232 Page 3

Ex: Consider vertices 1,2,3,4: There \exists a path from:

- 1 to 1: it has no edges, length of this path n=0.
- 1 to 1: $(1 \rightarrow 2 \rightarrow 3 \rightarrow 1)$ \rightarrow 3 edges \rightarrow length of path n=3 1 to 1: $(1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1)$ \rightarrow 4 edges \rightarrow length of path n=
- 2 to 2: $(2 \rightarrow 3 \rightarrow 2)$ \rightarrow 2 edges \rightarrow length of path n=2
- 2 to 2: $(2 \to 4 \to 3 \to 2)$ → 3 edges → length of path
- 2 to 3: $(2 \to 3)$ \rightarrow 1 edge \rightarrow length of path n=1
- 2 to 3: $(2 \rightarrow 4 \rightarrow 3)$ \rightarrow 2 edges \rightarrow length of pat
- c) The Directed Graph method to get Transitive Closure for R (also called the Connectivity Method)

Definition: Relation $R^* = \{(a,b) \in R \mid \exists \text{ a path, length } n \ge 1 \text{ from a to b} \}$

R* is called the Connectivity Relation of R

Ex: Return to our original problem to find the Transitive Closure of

 $R = \{(1,3), (1,4), (2,1), (3,2)\}\$ on $A \times A$, where $A = \{1,2,3,4\}$.

Step 1 Draw the Di-graph of R (Directed Graph)

Step 2 Form R^* : Set of all pairs that have at least one path between them where length $n \ge 1$ $R^* = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3)\}$

Step 3 Note: R* produces the Transitive Closure of R = Rt Notation:

7

d) Matrix method to get the Transitive Closure for R

If R is a Relation on A×A and A has n elements then $R_T = M_R \vee M_R^2 \vee M_R^3 ... \vee M_R^n$

Ex 1: Consider $R = \{(1,1),(1,3),(2,2),(3,1),(3,2)\}$, from $A \times A$, $A = \{1,2,3\}$

$$\begin{aligned} \text{Step 2} \ R_T &= R^* = \ M_R \lor \ M_R^{\ 2} \lor \ M_R^{\ 3} \\ R_T &= R^* = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}^2 \lor \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}^3 \\ &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \end{aligned}$$

$$R_T = R^* = \{(1,1), (1,2), (1,3), (2,2), (3,1), (3,2), (3,3)\}$$

Form matrix that represents R

$$\begin{aligned} \mathbf{M_R}^{\ 2} &= \ \mathbf{M_R} \odot \mathbf{M_R} \\ &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \end{aligned}$$

Bit-wise Or

Form R from its matrix representation

Ex 2: There are 4 cities a,b,c,d. R = {(a,b), (a,c), (b,d), (c.a), (d,a)}
Where xRy means x "has a direct flight to" y
What flights need to be added if all cities presently connected by a flight or flights end up with a direct flight between them?

We need $R_T = R^*$ Use Di-graph
or Matrix method (if you use a matrix multiplier
each time a sum > 1 appears it is replaced by 1, why?)

- Ex 3: There are five cities a,b,c,d,e. $R = \{ (x,y) \text{ xRy where R means "has a direct flight to"} \}$ The following direct flights exist. $R = \{ (a,e), (b,c), (b,e), (c,a), (c,e), (d,a), (e,b), (e,c), (c,d) \}$
 - (i) Draw D-graph. (Directed graph)

Hint: Which Relation do we need?

- (ii) Is it possible to get to all cities with one or more flights?
- (iii) What Relation do we need so all cities have a direct flight?
- (iv) Which cities have the greatest number of connecting flights?

Answer: Add flights: (a,d)(b,a)(b,c)(c,b)(c,d)(d,b)(d,c)

(v) What one flight needs to be added so only one connection has the maximum number of flights?

Answers: (ii) yes, (iii) $R_T = R^*$ (iv) n = 3, (a,d) (d,b) (d,c) (v) add (d,e), leaves (a,d) with n = 3

12