

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1-65. (canceled).

66. (new): A mesogenic, cross-linkable mixture comprising:

- i) a cross-linkable liquid crystalline host comprising at least one cross-linkable liquid crystalline compound, and
- ii) at least one chiral or achiral rod shaped additive component, wherein the additive component is a compound of formula (I):

wherein:

C^1 to C^4 are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene; connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ; wherein A^1 to A^3 each independently represent hydrogen or a group represented by formula (II), and

wherein at least one of A^1 to A^3 has the meaning of formula (II),

wherein:

P is hydrogen or a polymerizable group which is $\text{CH}_2=\text{CW}-$, $\text{CH}_2=\text{CW}-\text{O}-$,

$\text{CH}_2=\text{CW}-\text{COO}-$, wherein:

W is H or CH_3 ,

Sp has the meaning of formula (III)

(III)

wherein:

Y^1 and Y^2 each independently represent $-\text{OCO-}$ or $-\text{COO-}$,

B^1 represents C, which is chiral,

R^1 and R^2 each independently represent a $\text{C}_1\text{-C}_{12}$ alkyl residue,

n^1 , n^2 , n^3 and n^4 are independently integers from 0 to 15,

such that $1 \leq n^1 + n^2 + n^3 + n^4 \leq 15$;

m^2 is 1,

m^1 and m^3 are independently integers from 0 to 1, and

wherein:

one or more $-\text{CH}_2-$ groups present in the hydrocarbon chain of (III) is unreplaced or replaced, independently, by one or more groups selected from $-\text{O-}$, $-\text{CH=CH-}$ or $-\text{C}\equiv\text{C-}$, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 0 or 1, with the proviso that in at least one A^1 to A^3 k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,

t is 1;

or

wherein at least one of A¹ to A³ has the meaning of formula (II),

P-(Sp)_k-(X)_t - (II)

wherein:

P is hydrogen or a polymerizable group which is CH₂=CW-, CH₂=CW-O-,

CH₂=CW-COO-, wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

(III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C or CH,

R¹ and R² each independently represent hydrogen or a C₁-C₁₂ alkyl residue,

n¹, n², n³ and n⁴ are independently integers from 1 to 15,

such that 1 ≤ n¹ + n² + n³ + n⁴ ≤ 15;

m^1 , m^2 and m^3 are 0 or 1, with the proviso that at least one of m^1 or m^3 is 1; and with the proviso that if m^1 is 1, than n^1 and at least one of n^2 , m^2 , n^3 or n^4 is 1; and if m^3 is 1 than n^4 is 1 and at least one of n^1 , n^2 , m^2 or n^3 is 1;

and wherein one or more -CH₂- groups present in the hydrocarbon chain of (III) is unreplaced or replaced, independently, by one or more groups selected from -O-, -

CH=CH- or -C≡C-,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y¹ or Y²,

k is 0 or 1, with the proviso that at in least one of A¹ to A³ k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,

t is 1;

A⁴ is hydrogen, a polar group which is cyano, nitro, a halogen, or a group of formula (II)

P-(Sp)_k-(X)_t - (II)

in which:

P is hydrogen or a polymerizable group which is CH₂=CW-, CH₂=CW-O-,

CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more

groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, - CH=CH-, -C≡C-, -(CF₂)_r- ,

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,

t is 1,

with the proviso that at least one of A¹ to A⁴ comprises a polymerizable group which is CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I;

Z¹ to Z³ are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a₁, a₂ and a₃ are independently from each other integers from 0 to 3, such that

$$1 \leq a_1 + a_2 + a_3 \leq 3,$$

with the proviso that the sequence:

describes the long molecular axis of the rod shaped additive components and wherein the additive component changes from the liquid crystalline state to the isotropic state at a temperature of 20 °C or lower.

67. (new): A mixture according to claim 66, wherein the additive component has a transition temperature to the isotropic state of 0 °C or lower.

68. (new): A mixture according to claim 66 having a clearing temperature of 30 °C or higher.

69. (new): A mixture according to claim 66 having a clearing temperature of 50 °C or higher.

70. (new): A mixture according to any one of claims 66-69, wherein the liquid crystalline host has a clearing temperature of 50 °C or higher.

52. (previously presented):

71. (new): A mixture according to claim 66 comprising further agents, which are cross-linking agents, stabilizing agents, initiators, dyes, other chiral or achiral additives and plasticizers.

72 (new): A mixture according to claim 66 in form of an elastomer, polymer gel, polymer network or polymer film.

73. (new): A chiral or achiral rod shaped compound, wherein said formula (I):

wherein:

C¹ to C⁴ are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene; connected to each other at the opposite positions via the bridging groups Z¹ to Z³; wherein A¹ to A³ each independently represent hydrogen or a group represented by formula (II), and wherein at least one of A¹ to A³ has the meaning of formula (II),

wherein:

P is hydrogen or a polymerizable group which is CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

wherein:

Y¹ and Y² each independently represent -OCO- or -COO-,

B¹ represents C, which is chiral,

R¹ and R² each independently represent a C₁-C₁₂ alkyl residue,

n¹, n², n³ and n⁴ are independently integers from 0 to 15,

such that 1 ≤ n¹ + n² + n³ + n⁴ ≤ 15;

m^2 is 1,

m^1 and m^3 are independently integers from 0 to 1, and

wherein:

one or more -CH₂- groups present in the hydrocarbon chain of (III) is unreplaced or replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C≡C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y¹ or Y²,

k is 0 or 1, with the proviso that in at least one A¹ to A³ k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,

t is 1;

or

wherein at least one of A¹ to A³ has the meaning of formula (II),

wherein:

P is hydrogen or a polymerizable group which is CH₂=CW-, CH₂=CW-O-,

CH₂=CW-COO-, wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

wherein:

Y^1 and Y^2 each independently represent -OCO- or -COO-,

B^1 represents C or CH,

R^1 and R^2 each independently represent hydrogen or a C_1-C_{12} alkyl residue,

n^1, n^2, n^3 and n^4 are independently integers from 1 to 15,

such that $1 \leq n^1 + n^2 + n^3 + n^4 \leq 15$;

m^1, m^2 and m^3 are 0 or 1, with the proviso that at least one of m^1 or m^3 is 1; and with the proviso that if m^1 is 1, than n^1 and at least one of n^2, m^2, n^3 or n^4 is 1; and if m^3 is 1 than n^4 is 1 and at least one of n^1, n^2, m^2 or n^3 is 1;

and wherein one or more - CH_2 - groups present in the hydrocarbon chain of (III) is unreplaced or replaced, independently, by one or more groups selected from -O-, - $CH=CH$ - or - $C\equiv C$ -,

with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 0 or 1, with the proviso that at in least one of A^1 to A^3 k is 1,

X is -O-, -CO-, -COO-, -OCO-, - $CH=CH$ -, - $C\equiv C$ -, or a single bond,

t is 1;

A^4 is hydrogen, a polar group which is cyano, nitro, a halogen, or a group of formula (II)

$P-(Sp)_k-(X)_t-(II)$

in which:

P is hydrogen or a polymerizable group which is $CH_2=CW$ -, $CH_2=CW-O$ -, $CH_2=CW-COO$ - or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)_r-,

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond,

t is 1,

with the proviso that at least one of A¹ to A⁴ comprises a polymerizable group which is CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R'' is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I;

Z¹ to Z³ are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-,

-SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C≡C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a₁, a₂ and a₃ are independently from each other integers from 0 to 3, such that

$$1 \leq a_1 + a_2 + a_3 \leq 3,$$

with the proviso that the sequence:

describes the long molecular axis of the rod shaped additive components.

74. (new): A method of using a chiral or achiral rod shaped compound, comprising preparing a mesogenic polymer mixture as described in claim 66 and having a transition temperature to the isotropic state of 20 °C or lower.

75. (new): A polymer network prepared from a mixture according to claim 66.

76. (new): A liquid crystalline polymer film prepared from a mixture according to claim 66.

77. (new): A method of using a polymer network or a liquid crystalline polymer film, comprising preparing unstructured or structured optical and electro-optical components and multilayer systems from (A) a polymer network prepared from a mixture according to claim 66 or (B) a liquid crystalline polymer film prepared from a mixture according to claim 66.

78. (new): A method of using a mesogenic, cross-linkable mixture, comprising preparing an elastomer, polymer gel, polymer network or polymer film from a mesogenic, cross-linkable mixture according to claim 66.

79. (new): A method of using a polymer network, comprising manufacturing waveguides, optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties from a polymer network according to claim 75.

80. (new): Optical or electro-optical components comprising a polymer network according to claim 75.

81. (new): A method of using a liquid crystalline polymer film, comprising manufacturing waveguides, optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties from a liquid crystalline polymer film according to claim 76.

82. (new): Optical or electro-optical components comprising a liquid crystalline polymer film according to claim 76.