Typed Tensor Decomposition of Knowledge Bases For Relation Extration

Kai-Wei Chang: University of Illinois Bishan Yang: Cornell Univer.

Wen-tau Yih, Christopher Meek: Microsoft Research

Outline

- RE introduction
- Related word(other approach)
- background
 - Tensor encoding
 - RESCAL
- Approch(improment)
 - Domain Knowledge
 - Reguliation efficiency
- Experiment
 - Knowledge base Completion
 - Relation extraction
- Conclusions

RE introduction

- Tradition
 - 分类问题, 利用文本特征
 - 没有利用已有 KB 的知识帮助判断
- Later
 - (collective filtering?) 把 relation 转化为 vector, 实体对和 relation 建立关系,映射到相同的 vector 上,然后计算相似度

	r_1	r_2	r_3
(e1,e2)	1		
(e2,e4)		1	
(e1,e3)	1		

- 没有挖掘 entity 信息,只是用序号代替 entity
- TRESCAL
 - 利用 relation 限制和 entity 类别来剪枝
 - 运行速度快,不影响关系抽取效果

Related word(other approch)

- 张量分解
 - CP(可分布式) or Tucker decompositions
 - triples->tensor;CP decomposotion;extract hidden triples
 - 改进: 加入 entity 类别信息有关的约束到目标函数中 (基于无参的 3-way tensor 贝叶斯模型)
 - 大多数 TD model 空间大, 慢不实用
- 神经网络
 - 1. 学习 (e_i, r_k) 的向量表示
 - 2. 对于任意 (*e_i*, *r_k*, *e_i*), 得到 $Vector(e_i, r_k), Vector(e_i, r_k), Score(e_i, r_k, e_i) = v(e_i, r_k) \cdot v(e_i, r_k)$
 - $Score(e_i, r_k, e_i) = -\|\mathbf{e_i} + \mathbf{r_k} \mathbf{e_i}\|$
- 神经网络 2
 - 1. 学习单词的向量 vector, 每个关系的矩阵 R
 - 2. $Score(e_i, r_k, e_i) = vector(e_i) \mathcal{R}_k vector^T(e_i)$

background

triples->tensor

- $\mathcal{X}_k \approx \mathbf{A} \mathcal{R}_k \mathbf{A}^T$
- $[\mathbf{A}]_{n \times r}, [\mathcal{R}_k]_{r \times r}$

$$\min_{\mathbf{A}, \mathcal{R}_k} f(\mathbf{A}, \mathcal{R}_k) + \lambda \cdot g(\mathbf{A}, \mathcal{R}_k), \qquad (2)$$

where $f(\mathbf{A}, \mathcal{R}_k) = \frac{1}{2} \left(\sum_k \| \mathcal{X}_k - \mathbf{A} \mathcal{R}_k \mathbf{A}^T \|_F^2 \right)$ is the mean-squared reconstruction error and $g(\mathbf{A}, \mathcal{R}_k) = \frac{1}{2} \left(\| \mathbf{A} \|_F^2 + \sum_k \| \mathcal{R}_k \|_F^2 \right)$ is the regularization term.

优化: 交替优化(ALS)

5 / 8

Approch (improment)

- Domain Knowledge,加入类别判断
 - (person, born-in, person) 剔除
 - *X*, A 的维数都减少

- SVD 分解 [p5 右中]
 - 原来的瓶颈: 求 $[(\mathbf{Z}^T\mathbf{Z} + \lambda I)^{-1}]_{r^2 \times r^2}$ [p4 左中]
 - 替代为求 **A**_{kt} 的 SVD 分解
- 速度提升为 4 倍多

Experiment

- KB completion
 - NELL:v165(training), v166/533(development), v534/745(test)
 - Entity etrival: $(e_i, r_k, ?)$
 - 1 个真实答案 e_i+100 个随机挑选的实体 $e'_1,...,e'_100$, 在其中查找答案
 - 2. $Score(e_i, r_k, e_j) = (a^T)_i R_k a^j$
- Relation Retrieval: $(e_i, ?, e_j)$
 - $Score(e_i, r_k, e_j) = (a^T)_i R_k a^j$, Domain 效果不好
 - 作者解释: entity 类别表错导致准确率降低(直接被筛掉了)
 - 含有相似 relation 的 relation 比较容易判断出来
 - 上位词,抽象词的关系更容易表示?

		F	Entity Retrie	val	Relation Retrieval			
		TransE	RESCAL	TRESCAL	TransE	RESCAL	TRESCAL	
ĺ	w/o type checking	51.41% [‡]	51.59%	54.79%	75.88%	73.15% [†]	76.12%	
	w/ type checking	67.56%	$62.91\%^{\ddagger}$	69.26%	70.71% [‡]	$73.08\%^{\dagger}$	75.70%	

Experiment and Conclusions

Relation extraction

• 比如 RI13, 对于任意 relation r_k ,利用 RI13 返回的前 1000 个实体 (e_i,e_j) 对作为候选,取得分最高的前 100 个作为本系统的输出结果,并比较正确率(发现有明显提高)

Relation	#	MI09	YA11	SU12	RI13	TR	TR+SU12	TR+RI13
person/company	171	0.41	0.40	0.43	0.49	0.43	0.53	0.64
location/containedby	90	0.39	0.43	0.44	0.56	0.23	0.46	0.58
parent/child	47	0.05	0.10	0.25	0.31	0.19	0.24	0.35
person/place_of_birth	43	0.32	0.31	0.34	0.37	0.50	0.61	0.66
person/nationality	38	0.10	0.30	0.09	0.16	0.13	0.16	0.22
author/works_written	28	0.52	0.53	0.54	0.71	0.00	0.39	0.62
person/place_of_death	26	0.58	0.58	0.63	0.63	0.54	0.72	0.89
neighborhood/neighborhood_of	13	0.00	0.00	0.08	0.67	0.08	0.13	0.73
person/parents	8	0.21	0.24	0.51	0.34	0.01	0.16	0.38
company/founders	7	0.14	0.14	0.30	0.39	0.06	0.17	0.44
film/directed_by	4	0.06	0.15	0.25	0.30	0.03	0.13	0.35

Conclusions

• 类别信息很有效,准确率提高,实验复杂度降低