Lesson 5.3-5.4

Quiz, 8 questions

1	
point	

1.

We use the continuous version of Bayes' theorem if:

- θ is continuous
- Y is continuous
- $\int f(y \mid \theta)$ is continuous
- All of the above
- None of the above

1 point

2.

Consider the coin-flipping example from the lesson. Recall that the likelihood for this experiment was Bernoulli with unknown probability of heads, i.e., $f(y\mid\theta)=\theta^y(1-\theta)^{1-y}I_{\{0\leq\theta\leq1\}}\text{, and we started with a uniform prior on the}$

 $f(y\mid heta)= heta^y(1- heta)^{1-y}I_{\{0\leq heta\leq 1\}}$, and we started with a uniform prior on the interval [0,1].

After the first flip resulted in heads $(Y_1=1)$, the posterior for θ became $f(\theta\mid Y_1=1)=2\theta I_{\{0\leq \theta\leq 1\}}.$

Now use this posterior as your prior for θ before the next (second) flip. Which of the following represents the posterior PDF for θ after the second flip also results in heads $(Y_2=1)$?

$$\int f(heta \mid Y_2=1) = rac{(1- heta)\cdot 2 heta}{\int_0^1 (1- heta)\cdot 2 heta d heta} I_{\{0\leq heta\leq 1\}}$$

$$\int f(heta \mid Y_2 = 1) = rac{ heta \cdot 2 heta}{\int_0^1 heta \cdot 2 heta d heta} I_{\{0 \leq heta \leq 1\}}$$

$$\int f(heta \mid Y_2=1) = rac{ heta(1- heta)\cdot 2 heta}{\int_0^1 heta(1- heta)\cdot 2 heta d heta} I_{\{0\leq heta\leq 1\}}$$

1 point	
Uniform(again the coin-flipping example from the lesson. Recall that we used a (0,1) prior for $ heta$. Which of the following is a correct interpretation of $(heta<0.9)=0.6$?
(0.3, 0.9) is a 60% credible interval for $ heta$ before observing any data.
(0.3, 0.9) is a 60% credible interval for $ heta$ after observing $Y=1.$
(0.3, 0.9) is a 60% confidence interval for $ heta$.
	The posterior probability that $ heta \in (0.3, 0.9)$ is 0.6.
PDF for 6	again the coin-flipping example from the lesson. Recall that the posterior θ , after observing $Y=1$, was $f(\theta\mid Y=1)=2\theta I_{\{0\leq\theta\leq1\}}.$ Which of the θ is a correct interpretation of $\theta<0.9\mid Y=1)=\int_{0.3}^{0.9}2\theta d\theta=0.72?$
(0.3, 0.9) is a 72% credible interval for $ heta$ before observing any data.
(0.3, 0.9) is a 72% credible interval for $ heta$ after observing $Y=1.$
(0.3, 0.9) is a 72% confidence interval for $ heta$.
	The prior probability that $ heta \in (0.3, 0.9)$ is 0.72.
	o quantiles are required to capture the middle 90% of a distribution (thus g a 90% equal-tailed interval)?

.05	and	.95

0 and .9				
1 point				
6. Suppose you collect measurements to perform inference about a population mean θ . Your posterior distribution after observing data is $\theta \mid \mathbf{y} \sim N(0,1)$.				
Report the upper end of a 95% equal-tailed interval for θ . Round your answer to two decimal places.				
Enter answer here				
1 point				
7. What does "HPD interval" stand for?				
Highest partial density interval				
Highest point distance interval				
Highest posterior density interval				
Highest precision density interval				
1 point				
8. Each of the following graphs depicts a 50% credible interval from a posterior distribution. Which of the intervals represents the HPD interval?				
\bigcirc 50% interval: $ heta\in(0.196,0.567)$				

 \bigcirc 50% interval: $heta \in (0.400, 0.756)$

 $\bigcirc \qquad \text{50\% interval: } \theta \in (0.500, 1.000)$

 \bigcirc 50% interval: $heta \in (0.326, 0.674)$

I, **Md Yousuf Ali**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

