

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 March 2002 (28.03.2002)

PCT

(10) International Publication Number
WO 02/24924 A2

(51) International Patent Classification⁷: **C12N 15/55**,
9/16, 15/63, 5/10, A01K 67/027, C12P 21/00, C07K
16/40, C12Q 1/68, A61K 38/46, C12Q 1/42, G01N 33/573

(21) International Application Number: PCT/US01/29451

(22) International Filing Date:
20 September 2001 (20.09.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/234,526	21 September 2000 (21.09.2000)	US
60/236,967	29 September 2000 (29.09.2000)	US
60/238,332	5 October 2000 (05.10.2000)	US
60/242,236	19 October 2000 (19.10.2000)	US
60/243,928	27 October 2000 (27.10.2000)	US
60/249,814	17 November 2000 (17.11.2000)	US

(71) Applicant (*for all designated States except US*): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). YAO, Monique, G. [US/US]; 111 Frederick Court, Mountain View, CA 94043 (US). WALIA, Narinder, K. [US/US]; 890 Davis Street #205, San Leandro, CA 94577 (US). ELLIOTT, Vicki, S. [US/US]; 3770 Polton Place Way, San Jose, CA 95121 (US). RAMKUMAR, Jayalaxmi [IN/US]; 34359 Maybird Circle, Fremont, CA 94555 (US). LU, Yan [CN/US]; 3885 Corrina Way, Palo Alto, CA 94304 (US). ARVIZU, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). DING, Li [CN/US]; 3353 Alma Street #146, Palo Alto, CA 94306 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). LU, Dyung, Aina, M. [US/US]; 233 Coy Drive, San Jose, CA 95123 (US). TRIBOULEY, Catherine, M.

[FR/US]; 1121 Tennessee Street #5, San Francisco, CA 94107 (US). THORNTON, Michael [US/US]; 9 Medway Road, Woodside, CA 94062 (US). GANDHI, Ameena, R. [US/US]; 837 Roble Avenue #1, Menlo Park, CA 94025 (US). LEE, Ernestine, A. [US/US]; 624 Kains Street, Albany, CA 94706 (US). XU, Yuming [US/US]; 1739 Walnut Drive, Mountain View, CA 94040 (US). WANG, Yumei, E. [CN/US]; 4624 Strawberry Park Drive, San Jose, CA 95129 (US). HAFALIA, April, J., A. [US/US]; 2227 Calle de Primavera, Santa Clara, CA 95054 (US). THANGAVELU, Kavitha [IN/US]; 1950 Montecito Avenue 23, Mountain View, CA 94043 (US). DANIELS, Susan, E. [GB/US]; 136 Seale Avenue, Palo Alto, CA 94301 (US). LAL, Preeti [IN/US]; P.O. Box 5142, Santa Clara, CA 95056 (US). SWARNAKAR, Anita [CA/US]; 8 Locksley Avenue # 5D, San Francisco, CA 94122 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROTEIN PHOSPHATASES

(57) Abstract: The invention provides human protein phosphatases (PP) and polynucleotides which identify and encode PP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides for diagnosing, treating, or preventing disorders associated with aberrant expression of PP.

WO 02/24924 A2

PROTEIN PHOSPHATASES

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of protein phosphatases and 5 to the use of these sequences in the diagnosis, treatment, and prevention of immune system disorders, neurological disorders, developmental disorders, and cell proliferative disorders, including cancer, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of protein phosphatases.

10 BACKGROUND OF THE INVENTION

Reversible protein phosphorylation is the ubiquitous strategy used to control many of the intracellular events in eukaryotic cells. It is estimated that more than ten percent of proteins active in a typical mammalian cell are phosphorylated. Kinases catalyze the transfer of high-energy phosphate groups from adenosine triphosphate (ATP) to target proteins on the hydroxyamino acid residues 15 serine, threonine, or tyrosine. Phosphatases, in contrast, remove these phosphate groups.

Extracellular signals including hormones, neurotransmitters, and growth and differentiation factors can activate kinases, which can occur as cell surface receptors or as the activator of the final effector protein, but can also occur along the signal transduction pathway. Cascades of kinases occur, as well 20 as kinases sensitive to second messenger molecules. This system allows for the amplification of weak signals (low abundance growth factor molecules, for example), as well as the synthesis of many weak signals into an all-or-nothing response. Phosphatases, then, are essential in determining the extent of phosphorylation in the cell and, together with kinases, regulate key cellular processes such as metabolic enzyme activity, proliferation, cell growth and differentiation, cell adhesion, and cell cycle progression.

25 Protein phosphatases are generally characterized as either serine/threonine- or tyrosine-specific based on their preferred phospho-amino acid substrate. However, some phosphatases (DSPs, for dual specificity phosphatases) can act on phosphorylated tyrosine, serine, or threonine residues. The protein serine/threonine phosphatases (PSPs) are important regulators of many cAMP-mediated hormone responses in cells. Protein tyrosine phosphatases (PTPs) play a significant role in cell cycle 30 and cell signaling processes. Another family of phosphatases is the acid phosphatase or histidine acid phosphatase (HAP) family whose members hydrolyze phosphate esters at acidic pH conditions.

PSPs are found in the cytosol, nucleus, and mitochondria and in association with cytoskeletal and membranous structures in most tissues, especially the brain. Some PSPs require divalent cations, such as Ca^{2+} or Mn^{2+} , for activity. PSPs play important roles in glycogen metabolism, muscle 35 contraction, protein synthesis, T cell function, neuronal activity, oocyte maturation, and hepatic

metabolism (reviewed in Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508). PSPs can be separated into two classes. The PPP class includes PP1, PP2A, PP2B/calcineurin, PP4, PP5, PP6, and PP7.

Members of this class are composed of a homologous catalytic subunit bearing a very highly conserved signature sequence, coupled with one or more regulatory subunits (PROSITE

- 5 PDOC00115). Further interactions with scaffold and anchoring molecules determine the intracellular localization of PSPs and substrate specificity. The PPM class consists of several closely related isoforms of PP2C and is evolutionarily unrelated to the PPP class.

PP1 dephosphorylates many of the proteins phosphorylated by cyclic AMP-dependent protein kinase (PKA) and is an important regulator of many cAMP-mediated hormone responses in cells. A

- 10 number of isoforms have been identified, with the alpha and beta forms being produced by alternative splicing of the same gene. Both ubiquitous and tissue-specific targeting proteins for PP1 have been identified. In the brain, inhibition of PP1 activity by the dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein of 32kDa (DARPP-32) is necessary for normal dopamine response in neostriatal neurons (reviewed in Price, N.E. and M.C. Mumby (1999) Curr. Opin.

- 15 Neurobiol. 9:336-342). PP1, along with PP2A, has been shown to limit motility in microvascular endothelial cells, suggesting a role for PSPs in the inhibition of angiogenesis (Gabel, S. et al. (1999) Otolaryngol. Head Neck Surg. 121:463-468).

PP2A is the main serine/threonine phosphatase. The core PP2A enzyme consists of a single 36 kDa catalytic subunit (C) associated with a 65 kDa scaffold subunit (A), whose role is to recruit

- 20 additional regulatory subunits (B). Three gene families encoding B subunits are known (PR55, PR61, and PR72), each of which contain multiple isoforms, and additional families may exist (Millward, T.A et al. (1999) Trends Biosci. 24:186-191). These "B-type" subunits are cell type- and tissue-specific and determine the substrate specificity, enzymatic activity, and subcellular localization of the holoenzyme. The PR55 family is highly conserved and bears a conserved motif (PROSITE

- 25 PDOC00785). PR55 increases PP2A activity toward mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK). PP2A dephosphorylates the MAPK active site, inhibiting the cell's entry into mitosis. Several proteins can compete with PR55 for PP2A core enzyme binding, including the CKII kinase catalytic subunit, polyomavirus middle and small T antigens, and SV40 small t antigen.

- Viruses may use this mechanism to commandeer PP2A and stimulate progression of the cell through
30 the cell cycle (Pallas, D.C. et al. (1992) J. Virol. 66:886-893). Altered MAP kinase expression is also implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development. PP2A, in fact, can dephosphorylate and modulate the activities of more than 30 protein kinases in vitro, and other evidence suggests that the same is true in vivo for such kinases as PKB, PKC, the calmodulin-dependent kinases, ERK family MAP kinases, cyclin-dependent kinases, and the I_KB kinases (reviewed in Millward et al., supra). PP2A is itself a

substrate for CKI and CKII kinases, and can be stimulated by polycationic macromolecules. A PP2A-like phosphatase is necessary to maintain the G1 phase destruction of mammalian cyclins A and B (Bastians, H. et al. (1999) Mol. Biol. Cell 10:3927-3941). PP2A is a major activity in the brain and is implicated in regulating neurofilament stability and normal neural function, particularly the 5 phosphorylation of the microtubule-associated protein tau. Hyperphosphorylation of tau has been proposed to lead to the neuronal degeneration seen in Alzheimer's disease (reviewed in Price and Mumby, supra).

PP2B, or calcineurin, is a Ca^{2+} -activated dimeric phosphatase and is particularly abundant in the brain. It consists of catalytic and regulatory subunits, and is activated by the binding of the 10 calcium/calmodulin complex. Calcineurin is the target of the immunosuppressant drugs cyclosporine and FK506. Along with other cellular factors, these drugs interact with calcineurin and inhibit phosphatase activity. In T cells, this blocks the calcium dependent activation of the NF-AT family of transcription factors, leading to immunosuppression. This family is widely distributed, and it is likely that calcineurin regulates gene expression in other tissues as well. In neurons, calcineurin modulates 15 functions which range from the inhibition of neurotransmitter release to desensitization of postsynaptic NMDA-receptor coupled calcium channels to long term memory (reviewed in Price and Mumby, supra).

Other members of the PPP class have recently been identified (Cohen, P.T. (1997) Trends Biochem. Sci. 22:245-251). One of them, PP5, contains regulatory domains with tetratricopeptide 20 repeats. It can be activated by polyunsaturated fatty acids and anionic phospholipids in vitro and appears to be involved in a number of signaling pathways, including those controlled by atrial natriuretic peptide or steroid hormones (reviewed in Andreeva, A.V. and M.A. Kutuzov (1999) Cell Signal. 11:555-562).

PP2C is a ~42kDa monomer with broad substrate specificity and is dependent on divalent cations (mainly Mn^{2+} or Mg^{2+}) for its activity. PP2C proteins share a conserved N-terminal region with an invariant DGH motif, which contains an aspartate residue involved in cation binding (PROSITE PDOC00792). Targeting proteins and mechanisms regulating PP2C activity have not been identified. PP2C has been shown to inhibit the stress-responsive p38 and Jun kinase (JNK) pathways (Takekawa, M. et al. (1998) EMBO J. 17:4744-4752).

In contrast to PSPs, tyrosine-specific phosphatases (PTPs) are generally monomeric proteins 30 of very diverse size (from 20kDa to greater than 100kDa) and structure that function primarily in the transduction of signals across the plasma membrane. PTPs are categorized as either soluble phosphatases or transmembrane receptor proteins that contain a phosphatase domain. All PTPs share a conserved catalytic domain of about 300 amino acids which contains the active site. The active site 35 consensus sequence includes a cysteine residue which executes a nucleophilic attack on the phosphate

moiety during catalysis (Neel, B.G. and N.K. Tonks (1997) *Curr. Opin. Cell Biol.* 9:193-204). Receptor PTPs are made up of an N-terminal extracellular domain of variable length, a transmembrane region, and a cytoplasmic region that generally contains two copies of the catalytic domain. Although only the first copy seems to have enzymatic activity, the second copy apparently 5 affects the substrate specificity of the first. The extracellular domains of some receptor PTPs contain fibronectin-like repeats, immunoglobulin-like domains, MAM domains (an extracellular motif likely to have an adhesive function), or carbonic anhydrase-like domains (PROSITE PDOC 00323). This wide variety of structural motifs accounts for the diversity in size and specificity of PTPs.

PTPs play important roles in biological processes such as cell adhesion, lymphocyte 10 activation, and cell proliferation. PTPs μ and κ are involved in cell-cell contacts, perhaps regulating cadherin/catenin function. A number of PTPs affect cell spreading, focal adhesions, and cell motility, most of them via the integrin/tyrosine kinase signaling pathway (reviewed in Neel and Tonks, *supra*). CD45 phosphatases regulate signal transduction and lymphocyte activation (Ledbetter, J.A. et al. (1988) *Proc. Natl. Acad. Sci. USA* 85:8628-8632). Soluble PTPs containing Src-homology-2 15 domains have been identified (SHPs), suggesting that these molecules might interact with receptor tyrosine kinases. SHP-1 regulates cytokine receptor signaling by controlling the Janus family PTKs in hematopoietic cells, as well as signaling by the T-cell receptor and c-Kit (reviewed in Neel and Tonks, *supra*). M-phase inducer phosphatase plays a key role in the induction of mitosis by dephosphorylating and activating the PTK CDC2, leading to cell division (Sadhu, K. et al. (1990) *Proc. Natl. Acad. Sci. USA* 87:5139-5143). In addition, the genes encoding at least eight PTPs have 20 been mapped to chromosomal regions that are translocated or rearranged in various neoplastic conditions, including lymphoma, small cell lung carcinoma, leukemia, adenocarcinoma, and neuroblastoma (reviewed in Charbonneau, H. and N.K. Tonks (1992) *Annu. Rev. Cell Biol.* 8:463-493). The PTP enzyme active site comprises the consensus sequence of the MTM1 gene family. The 25 MTM1 gene is responsible for X-linked recessive myotubular myopathy, a congenital muscle disorder that has been linked to Xq28 (Kioschis, P. et al., (1998) *Genomics* 54:256-266. Myotubularin is a PTP which is required for muscle differentiation and is a potent phosphatidylinositol 3-phosphate (PI(3)P) phosphatase. Mutations in the myotubularin gene (MTM1) that cause human myotubular myopathy result in a dramatic reduction in the ability of the phosphatase to dephosphorylate PI(3)P. 30 Myotubular myopathy is an X-linked, severe congenital disorder characterized by generalized muscle weakness and impaired maturation of muscle fibers (Taylor, G.S. et al., (2000) *Proc. Natl. Acad. Sci. U.S.A.* 97:8910-8915). Many PTKs are encoded by oncogenes, and it is well known that oncogenesis is often accompanied by increased tyrosine phosphorylation activity. It is therefore possible that PTPs may serve to prevent or reverse cell transformation and the growth of various cancers by 35 controlling the levels of tyrosine phosphorylation in cells. This is supported by studies showing that

overexpression of PTP can suppress transformation in cells and that specific inhibition of PTP can enhance cell transformation (Charbonneau and Tonks, *supra*).

Dual specificity phosphatases (DSPs) are structurally more similar to the PTPs than the PSPs. DSPs bear an extended PTP active site motif with an additional 7 amino acid residues. DSPs are primarily associated with cell proliferation and include the cell cycle regulators cdc25A, B, and C. The phosphatases DUSP1 and DUSP2 inactivate the MAPK family members ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase), and p38 on both tyrosine and threonine residues (PROSITE PDOC 00323, *supra*). In the activated state, these kinases have been implicated in neuronal differentiation, proliferation, oncogenic transformation, platelet aggregation, and apoptosis. Thus, DSPs are necessary for proper regulation of these processes (Muda, M. et al. (1996) *J. Biol. Chem.* 271:27205-27208). The tumor suppressor PTEN is a DSP that also shows lipid phosphatase activity. It seems to negatively regulate interactions with the extracellular matrix and maintains sensitivity to apoptosis. PTEN has been implicated in the prevention of angiogenesis (Giri, D. and M. Ittmann (1999) *Hum. Pathol.* 30:419-424) and abnormalities in its expression are associated with numerous cancers (reviewed in Tamura, M. et al. (1999) *J. Natl. Cancer Inst.* 91:1820-1828).

Histidine acid phosphatase (HAP; EXPASY EC 3.1.3.2), also known as acid phosphatase, hydrolyzes a wide spectrum of substrates including alkyl, aryl, and acyl orthophosphate monoesters and phosphorylated proteins at low pH. HAPs share two regions of conserved sequences, each centered around a histidine residue which is involved in catalytic activity. Members of the HAP family include lysosomal acid phosphatase (LAP) and prostatic acid phosphatase (PAP), both sensitive to inhibition by L-tartrate (PROSITE PDOC00538).

LAP, an orthophosphoric monoester of the endosomal/lysosomal compartment is a housekeeping gene whose enzymatic activity has been detected in all tissues examined (Geier, C. et al. (1989) *Eur. J. Biochem.* 183:611-616). LAP-deficient mice have progressive skeletal disorder and an increased disposition toward generalized seizures (Saftig, P. et al. (1997) *J. Biol. Chem.* 272:18628-18635). LAP-deficient patients were found to have the following clinical features: intermittent vomiting, hypotonia, lethargy, opisthotonus, terminal bleeding, seizures, and death in early infancy (Online Mendelian Inheritance in Man (OMIM) *200950).

PAP, a prostate epithelium-specific differentiation antigen produced by the prostate gland, has been used to diagnose and stage prostate cancer. In prostate carcinomas, the enzymatic activity of PAP was shown to be decreased compared with normal or benign prostate hypertrophy cells (Foti, A.G. et al. (1977) *Cancer Res.* 37:4120-4124). Two forms of PAP have been identified, secreted and intracellular. Mature secreted PAP is detected in the seminal fluid and is active as a glycosylated homodimer with a molecular weight of approximately 100-kilodalton. Intracellular PAP is found to

exhibit endogenous phosphotyrosyl protein phosphatase activity and is involved in regulating prostate cell growth (Meng, T.C. and M.F. Lin (1998) J. Biol. Chem. 34:22096-22104).

Synaptojanin, a polyphosphoinositide phosphatase, dephosphorylates phosphoinositides at positions 3, 4 and 5 of the inositol ring. Synaptojanin is a major presynaptic protein found at clathrin-coated endocytic intermediates in nerve terminals, and binds the clathrin coat-associated protein, EPS15. This binding is mediated by the C-terminal region of synaptojanin-170, which has 3 Asp-Pro-Phe amino acid repeats. Further, this 3 residue repeat had been found to be the binding site for the EH domains of EPS15 (Haffner, C. et al. (1997) FEBS Lett. 419:175-180). Additionally, synaptojanin may potentially regulate interactions of endocytic proteins with the plasma membrane, and be involved in synaptic vesicle recycling (Brodin, L. et al. (2000) Curr. Opin. Neurobiol. 10:312-320). Studies in mice with a targeted disruption in the synaptojanin 1 gene (Synj1) were shown to support coat formation of endocytic vesicles more effectively than was seen in wild-type mice, suggesting that Synj1 can act as a negative regulator of membrane-coat protein interactions. These findings provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling (Cremona, O. et al. (1999) Cell 99:179-188).

The discovery of new protein phosphatases, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of immune system disorders, neurological disorders, developmental disorders, and cell proliferative disorders, including cancer, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of protein phosphatases.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, protein phosphatases, referred to collectively as "PP" and individually as "PP-1," "PP-2," "PP-3," "PP-4," "PP-5," "PP-6," "PP-7," "PP-8," "PP-9," "PP-10," "PP-11" and "PP-12." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-12.

The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the

group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a 5 polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-12. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:13-24.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter 10 sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino 15 acid sequence selected from the group consisting of SEQ ID NO:1-12. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group 20 consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino 25 acid sequence selected from the group consisting of SEQ ID NO:1-12. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a 30 polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an

immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.

The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of 5 SEQ ID NO:13-24, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

10 Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of 15 SEQ ID NO:13-24, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a 20 hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, 25 said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide 30 complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a 35 polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid

sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional PP, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional PP, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of

treating a disease or condition associated with overexpression of functional PP, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, ii) a

polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions 5 whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24, 10 iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in 15 an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide 20 sequences of the present invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including 25 predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble 30 polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polynucleotides of the invention.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and 35 polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these 5 may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a 10 reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. 15 Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the 20 invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"PP" refers to the amino acid sequences of substantially purified PP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

25 The term "agonist" refers to a molecule which intensifies or mimics the biological activity of PP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PP either by directly interacting with PP or by acting on components of the biological pathway in which PP participates.

An "allelic variant" is an alternative form of the gene encoding PP. Allelic variants may 30 result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others; one or more times 35 in a given sequence.

"Altered" nucleic acid sequences encoding PP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as PP or a polypeptide with at least one functional characteristic of PP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe

5 of the polynucleotide encoding PP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PP.

Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge,

10 solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with

15 uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring

20 protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

25 The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of PP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PP either by directly interacting with PP or by acting on components of the biological pathway in which PP participates.

30 The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind PP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of

35 RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly

used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to 5 immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a 10 specific molecular target. Aptamers are derived from an *in vitro* evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include 15 deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH₂), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a 20 cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)

The term "intramer" refers to an aptamer which is expressed *in vivo*. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl Acad. Sci. USA 96:3606-3610).

The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left- 25 handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; 30 RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once 35 introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring

nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic PP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.

15 Compositions comprising polynucleotide sequences encoding PP or fragments of PP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

20 "Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

25

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows 30 amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

Original Residue	Conservative Substitution
Ala	Gly, Ser
Arg	His, Lys
Asn	Asp, Gln, His
Asp	Asn, Glu

	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
5	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Ile
10	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
15	Val	Ile, Leu, Thr

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of 20 the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an 25 alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a 30 measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

35 "Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.

A "fragment" is a unique portion of PP or the polynucleotide encoding PP which is identical 40 in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the

entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:13-24 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:13-24, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:13-24 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:13-24 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:13-24 and the region of SEQ ID NO:13-24 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-12 is encoded by a fragment of SEQ ID NO:13-24. A fragment of SEQ ID NO:1-12 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-12. For example, a fragment of SEQ ID NO:1-12 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-12. The precise length of a fragment of SEQ ID NO:1-12 and the region of SEQ ID NO:1-12 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A “full length” polynucleotide sequence encodes a “full length” polypeptide sequence.

“Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in

- 5 Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

10 Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence 15 analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called 'BLAST 2 Sequences' that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST 20 programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

25 *Penalty for mismatch: -2*

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

30 *Filter: on*

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous 35 nucleotides. Such lengths are exemplary only, and it is understood that any fragment length

supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes 5 in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some 10 alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e 15 sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

20 Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

25 *Open Gap: 11 and Extension Gap: 1 penalties*

Gap x drop-off: 50

Expect: 10

Word Size: 3

Filter: on

30 Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment

length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for 5 chromosome replication, segregation and maintenance.

The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

“Hybridization” refers to the process by which a polynucleotide strand anneals with a 10 complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific 15 binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 20 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of 25 the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present 30 invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic 35 solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular

circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

5 The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate 10 to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression 15 of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of PP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment 20 of PP which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

25 The term "modulate" refers to a change in the activity of PP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PP.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or 30 synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding

sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

“Peptide nucleic acid” (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of 5 amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

“Post-translational modification” of an PP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in 10 the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of PP.

“Probe” refers to nucleic acid sequences encoding PP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.

15 Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. “Primers” are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

20 Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the 25 specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs 30 can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such 35 purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to

100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of 5 Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a “mispriming library,” in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the 10 selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user’s specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved 15 regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of 20 oligonucleotide selection are not limited to those described above.

A “recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the 25 artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

30 Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions

(UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

“Reporter molecules” are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, 5 chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An “RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose 10 instead of deoxyribose.

The term “sample” is used in its broadest sense. A sample suspected of containing PP, nucleic acids encoding PP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

15 The terms “specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide 20 comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term “substantially purified” refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which 25 they are naturally associated.

A “substitution” refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

“Substrate” refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, 30 microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A “transcript image” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

“Transformation” describes a process by which exogenous DNA is introduced into a recipient 35 cell. Transformation may occur under natural or artificial conditions according to various methods

well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term

5 "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989),
20 supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide

polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

The invention is based on the discovery of new human protein phosphatases (PP), the polynucleotides encoding PP, and the use of these compositions for the diagnosis, treatment, or prevention of immune system disorders, neurological disorders, developmental disorders, and cell proliferative disorders, including cancer.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential

phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, 5 searchable databases to which the analytical methods were applied.

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are protein phosphatases. For example, SEQ ID NO:2 is 47% identical to *Escherichia coli* Serine/Threonine protein phosphatase (EC 3.1.3.16) (GenBank ID g1736483) as determined by the Basic Local Alignment Search Tool (BLAST). (See 10 Table 2.) The BLAST probability score is 8.4e-49, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:2 also contains a serine/threonine specific protein phosphatases signature as indicated in the PROFILESCAN analysis. (See Table 3.) Data from MOTIFS analysis provides further corroborative evidence that SEQ ID NO:2 is a 15 serine/threonine protein phosphatase. In an alternative example, SEQ ID NO:4 is 45% identical to human protein tyrosine phosphatase (GenBank ID g452194) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.6e-169, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ 20 ID NO:4 also contains a FERM domain (Band 4.1 family) as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:4 contains a Band 4.1 family domain which is found in protein tyrosine phosphatases (note that the "Band 4.1 family domain signatures" is a conserved N-terminal domain of about 150 amino-acid residues known to exist in protein tyrosine phosphatases and could act at junctions between the plasma membrane and the cytoskeleton (Rees,D.J.G. et al., 25 (1990) Nature 347:685-689, Funayama,N. et al., (1991) J. Cell Biol. 115:1039-1048, and Q. Yang and N.K. Tonks (1991) Proc. Natl. Acad. Sci. U.S.A. 88:5949-5953). In another alternative example, SEQ ID NO:7 is 57% identical to *Drosophila melanogaster* MAP kinase phosphatase (GenBank ID g6714641) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 7.3e-101, which indicates the probability of obtaining the observed 30 polypeptide sequence alignment by chance. SEQ ID NO:7 also contains a dual specificity phosphatase catalytic domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analysis provides further corroborative evidence that SEQ ID NO:7 is a dual-specificity phosphatase. In another alternative example, SEQ ID NO:9 is 46% identical to 35 bovine protein phosphatase 2C beta (GenBank ID g3063745) as determined by the Basic Local

Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 3.5e-77, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:9 also contains a protein phosphatase 2C proteins domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and MOTIFS analyses provide further corroborative evidence that SEQ ID NO:9 is a protein phosphatase 2C. In another alternative example, SEQ ID NO:11 has 97% local identity to *human striatum-enriched phosphatase* (GenBank ID g957217) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.8e-292, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:11 also contains a tyrosine phosphatase active site domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:11 is a tyrosine specific phosphatase. In another alternative example, SEQ ID NO:12 is 1511 amino acids in length and is 99% identical over 1441 residues to *human synaptojanin 2B* (GenBank ID g4104822) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:12 also contains an inositol polyphosphate phosphatase family catalytic domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analyses provide further corroborative evidence that SEQ ID NO:12 is a synaptojanin (note that "synaptojanin" is a specific subfamily of the primary family of "protein phosphatases"). SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5-6, SEQ ID NO:8 and SEQ ID NO:10 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-12 are described in Table 7.

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:13-24 or that distinguish between SEQ ID NO:13-24 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages

comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.

- 5 The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 2013147H1 is the identification number of an Incyte cDNA sequence, and TESTNOT03 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71163473V1). Alternatively, the identification numbers in column 5
 10 may refer to GenBank cDNAs or ESTs (e.g., g3163696) which contributed to the assembly of the full length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (*i.e.*, those sequences including the designation "ENST"). Alternatively, the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (*i.e.*, those sequences
 15 including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (*i.e.*, those sequences including the designation "NP"). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. In instances where a RefSeq sequence
 20 was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier (*i.e.*, gBBBBBB).

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis
 25 methods associated with the prefixes (see Example IV and Example V).

Prefix	Type of analysis and/or examples of programs
GNN, GFG, ENST	Exon prediction from genomic sequences using, for example, GENSCAN (Stanford University, CA, USA) or FGENES (Computer Genomics Group, The Sanger Centre, Cambridge, UK).
GBI	Hand-edited analysis of genomic sequences.
FL	Stitched or stretched genomic sequences (see Example V).
INCY	Full length transcript and exon prediction from mapping of EST sequences to the genome. Genomic location and EST composition data are combined to predict the exons and resulting transcript.

In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotide

5 sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

The invention also encompasses PP variants. A preferred PP variant is one which has at least

10 about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the PP amino acid sequence, and which contains at least one functional or structural characteristic of PP.

The invention also encompasses polynucleotides which encode PP. In a particular

embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected 15 from the group consisting of SEQ ID NO:13-24, which encodes PP. The polynucleotide sequences of SEQ ID NO:13-24, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding PP. In

20 particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PP. A particular aspect of the invention encompasses a variant of a

polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:13-24 which has at least about 70%, or alternatively at least about 85%, or even at least about 25 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:13-24. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the

genetic code, a multitude of polynucleotide sequences encoding PP, some bearing minimal similarity 30 to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode PP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring PP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode PP and PP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:13-24 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding PP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PP may be cloned in recombinant DNA molecules that direct expression of PP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) *Nat. Biotechnol.* 17:793-797; Christians, F.C. et al. (1999) *Nat. Biotechnol.* 17:259-264; and Crameri, A. et al. (1996) *Nat. Biotechnol.* 14:315-319) to alter or improve the biological properties of PP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding PP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) *Nucleic Acids Symp. Ser.* 7:215-223; and Horn, T. et al. (1980) *Nucleic Acids Symp. Ser.* 7:225-232.) Alternatively, PP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) *Proteins, Structures and Molecular Properties*, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) *Science* 269:202-204.) Automated synthesis

may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of PP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

5 The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) *Methods Enzymol.* 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, *supra*, pp. 28-53.)

In order to express a biologically active PP, the nucleotide sequences encoding PP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding PP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

25 Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding PP and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. (See, e.g., Sambrook, J. et al. (1989) *Molecular Cloning, A Laboratory Manual*, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) *Current Protocols in Molecular Biology*, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding PP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); 35 plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV,

or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, *supra*; Ausubel, *supra*; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PP can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of PP are needed, e.g. for the production of antibodies, vectors which direct high level expression of PP may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of PP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, *supra*; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of PP. Transcription of sequences encoding PP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J.

6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or

- 5 pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses PP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

15 Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

20 For long term production of recombinant proteins in mammalian systems, stable expression of PP in cell lines is preferred. For example, sequences encoding PP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media
25 before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These
30 include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat*
35 confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g.,

Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PP is inserted within a marker gene sequence, transformed cells containing sequences encoding PP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding PP and that express PP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of PP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding PP, or any fragments thereof, may be cloned into a vector for

the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega 5 (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding PP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein 10 produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PP may be designed to contain signal sequences which direct secretion of PP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the 15 inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for 20 post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid 25 sequences encoding PP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding 30 protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of 35 fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic

cleavage site located between the PP encoding sequence and the heterologous protein sequence, so that PP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled PP may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ^{35}S -methionine.

PP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to PP. At least one and up to a plurality of test compounds may be screened for specific binding to PP. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of PP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which PP binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express PP, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, *Drosophila*, or *E. coli*. Cells expressing PP or cell membrane fractions which contain PP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either PP or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with PP, either in solution or affixed to a solid support, and detecting the binding of PP to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

PP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of PP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for PP activity, wherein PP is combined with at least one test compound, and the activity of PP in the presence of a

test compound is compared with the activity of PP in the absence of the test compound. A change in the activity of PP in the presence of the test compound is indicative of a compound that modulates the activity of PP. Alternatively, a test compound is combined with an in vitro or cell-free system comprising PP under conditions suitable for PP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of PP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding PP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent Number 5,175,383 and U.S. Patent Number 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. 15 (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell 20 blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding PP may also be manipulated in vitro in ES cells derived from 25 human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding PP can also be used to create "knockin" humanized animals (pigs) 30 or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding PP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a

mammal inbred to overexpress PP, e.g., by secreting PP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

- Chemical and structural similarity, e.g., in the context of sequences and motifs, exists
- 5 between regions of PP and protein phosphatases. In addition, the expression of PP is closely associated with bone, ovary, brain, prostate, abdominal fat, nervous, gastrointestinal and diseased tissues. Therefore, PP appears to play a role in immune system disorders, neurological disorders, developmental disorders, and cell proliferative disorders, including cancer. In the treatment of disorders associated with increased PP expression or activity, it is desirable to decrease the
- 10 expression or activity of PP. In the treatment of disorders associated with decreased PP expression or activity, it is desirable to increase the expression or activity of PP.

Therefore, in one embodiment, PP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PP.

- Examples of such disorders include, but are not limited to, an immune system disorder, such as
- 15 acquired immunodeficiency syndrome (AIDS), X-linked agammaglobulinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with
- 20 Cushing's disease, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins,
- 25 erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus,
- 30 systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder, such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic
- 35 lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis

pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a developmental disorder, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; and a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

In another embodiment, a vector capable of expressing PP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PP including, but not limited to, those described above.

In a further embodiment, a composition comprising a substantially purified PP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PP including, but not limited to, those listed above.

In a further embodiment, an antagonist of PP may be administered to a subject to treat or 5 prevent a disorder associated with increased expression or activity of PP. Examples of such disorders include, but are not limited to, those immune system disorders, neurological disorders, developmental disorders, and cell proliferative disorders, including cancer described above. In one aspect, an antibody which specifically binds PP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express PP.

10 In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate 15 therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

20 An antagonist of PP may be produced using methods which are generally known in the art. In particular, purified PP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PP. Antibodies to PP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments 25 produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PP or with any fragment or oligopeptide thereof 30 which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PP 35 have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of

at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of PP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

- 5 Monoclonal antibodies to PP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci. USA* 80:2026-2030; and
- 10 Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci. USA* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) *Proc. Natl. Acad. Sci. USA* 88:10134-10137.)

20 Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci. USA* 86:3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

25 Antibody fragments which contain specific binding sites for PP may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

30 Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to

two non-interfering PP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for PP. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of PP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PP epitopes, represents the average affinity, or avidity, of the antibodies for PP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular PP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the PP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of PP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of PP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding PP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding PP. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PP.

(See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Clin. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995)

9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, *supra*; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other 5 systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding PP may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency 10 (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene 15 Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites 20 (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the 25 case where a genetic deficiency in PP expression or regulation causes disease, the expression of PP from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in PP are treated by constructing mammalian expression vectors encoding PP and introducing these vectors by mechanical means into PP-deficient cells. Mechanical transfer technologies for use with cells in 30 vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of PP include, but are not limited 35 to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen,

Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). PP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. *supra*), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding PP from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to PP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding PP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4 $^{+}$ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in

the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

5 In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding PP to cells which have one or more genetic abnormalities with respect to the expression of PP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas
10 (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

15 In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding PP to target cells which have one or more genetic abnormalities with respect to the expression of PP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing PP to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant
20 HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned
25 herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

30 In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding PP to target cells. The biology of the prototypic alphavirus, Semliki

Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the 5 overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for PP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of PP-coding RNAs and the synthesis of high levels of PP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster 10 normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of PP into a variety of cell types. The specific transduction of a subset of cells in a population may require 15 the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful 20 because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of 25 mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze 30 endonucleolytic cleavage of sequences encoding PP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for 35 secondary structural features which may render the oligonucleotide inoperable. The suitability of

candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques 5 for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, 10 cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs 15 and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a 20 compound which is effective in altering expression of a polynucleotide encoding PP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular 25 chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased PP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding PP may be therapeutically useful, and in the treatment of disorders associated with decreased PP expression or activity, a compound which specifically promotes expression of the 30 polynucleotide encoding PP may be therapeutically useful.

At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary 35 library of naturally-occurring or non-natural chemical compounds; rational design of a compound

based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding PP is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding PP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding PP. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of PP, antibodies to PP, and mimetics, agonists, antagonists, or inhibitors of PP.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

5 Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the
10 lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

15 Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising PP or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, PP or a fragment thereof may be joined to a short cationic N-terminal
20 portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs,
25 monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example PP or fragments thereof, antibodies of PP, and agonists, antagonists or inhibitors of PP, which ameliorates
30 the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Compositions which exhibit large therapeutic indices are
35 preferred. The data obtained from cell culture assays and animal studies are used to formulate a range

of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

- 5 The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and
- 10 response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.

- 15 Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind PP may be used for the diagnosis 20 of disorders characterized by expression of PP, or in assays to monitor patients being treated with PP or agonists, antagonists, or inhibitors of PP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PP include methods which utilize the antibody and a label to detect PP in human body fluids or in extracts of 25 cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring PP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PP expression. Normal or standard values for PP expression are established by combining body fluids or cell extracts taken 30 from normal mammalian subjects, for example, human subjects, with antibodies to PP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of PP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding PP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of PP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PP, and to monitor regulation of PP levels during therapeutic intervention.

5 In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PP or closely related molecules may be used to identify nucleic acid sequences which encode PP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a 10 conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding PP, allelic variants, or related sequences.

15 Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the PP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:13-24 or from genomic sequences including promoters, enhancers, and introns of the PP gene.

20 Means for producing specific hybridization probes for DNAs encoding PP include the cloning of polynucleotide sequences encoding PP or PP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

25 Polynucleotide sequences encoding PP may be used for the diagnosis of disorders associated with expression of PP. Examples of such disorders include, but are not limited to, an immune system disorder, such as acquired immunodeficiency syndrome (AIDS), X-linked agammaglobulinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), 30 immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing's disease, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy 35 (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis,

dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation,

5 osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder, such as epilepsy,

10 ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial

15 thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down

20 syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia,

25 diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a developmental disorder, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental

30 retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Sydenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; and a cell proliferative disorder, such as actinic keratosis, arteriosclerosis,

35 atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis,

paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary,

5 pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis; thymus, thyroid, and uterus. The polynucleotide sequences encoding PP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PP expression. Such qualitative or quantitative methods are well known in the art.

10 In a particular aspect, the nucleotide sequences encoding PP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding PP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a. 15 standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

20 In order to provide a basis for the diagnosis of a disorder associated with expression of PP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values 25 from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, 30 hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or 35 overexpressed) in biopsied tissue from an individual may indicate a predisposition for the

development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

- 5 Additional diagnostic uses for oligonucleotides designed from the sequences encoding PP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding PP, or a fragment of a polynucleotide complementary to the polynucleotide encoding PP, and will be employed under optimized conditions for identification of a specific gene or condition.
- 10 Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding PP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.

- 15 Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding PP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the
- 20 secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSSCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual
- 25 overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

- 30 Methods which may also be used to quantify the expression of PP include radiolabeling or biotinyling nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of

interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray 5 can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the 10 activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

15 In another embodiment, PP, fragments of PP, or antibodies specific for PP may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of 20 gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of 25 transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, 30 biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental 35 compounds. All compounds induce characteristic gene expression patterns, frequently termed

molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at <http://www.niehs.nih.gov/oc/news/toxchip.htm>.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical

density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the

5 spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

10 A proteomic profile may also be generated using antibodies specific for PP to quantify the levels of PP expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) *Anal. Biochem.* 270:103-111; Mendoza, L.G. et al. (1999) *Biotechniques* 27:778-788). Detection may be performed by a variety of
15 methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson,
20 N.L. and J. Seilhamer (1997) *Electrophoresis* 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

25 In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic
30 response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

35 In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of

protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

- 5 Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are
10 well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding PP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be
15 preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1
20 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
25 (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding PP on a
30 physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse,
35 may reveal associated markers even if the exact chromosomal locus is not known. This information is

valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, PP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with PP, or fragments thereof, and washed. Bound PP is then detected by methods well known in the art. Purified PP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PP specifically compete with a test compound for binding PP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PP.

In additional embodiments, the nucleotide sequences which encode PP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, including U.S. Ser. No. 60/234,526, U.S. Ser. No. 60/236,967, U.S. Ser. No. 60/238,332, U.S. Ser. No. 60/242,236, U.S. Ser. No. 60/243,928 and U.S. Ser. No. 60/249,814, are expressly incorporated by reference herein.

EXAMPLES

I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA (Invitrogen), PCMV-ICIS (Stratagene), or pINCY (Incyte Genomics, Palo Alto CA), or derivatives thereof. Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids obtained as described in Example I were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid,

QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) *Anal. Biochem.* 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

10 **III. Sequencing and Analysis**

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

25 The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences.

35 Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or

Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive 5 the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length 10 polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

15 Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column 20 presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ 25 ID NO:13-24. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.

IV. Identification and Editing of Coding Sequences from Genomic DNA

Putative protein phosphatases were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is 30 a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of 35 sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan

predicted cDNA sequences encode protein phosphatases, the encoded polypeptides were analyzed by querying against PFAM models for protein phosphatases. Potential protein phosphatases were also identified by homology to Incyte cDNA sequences that had been annotated as protein phosphatases. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data

15 "Stitched" Sequences

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm 20 based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic 25 sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or 30 genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

35 "Stretched" Sequences

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

VI. Chromosomal Mapping of PP Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:13-24 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:13-24 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (<http://www.ncbi.nlm.nih.gov/genemap/>), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs

from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is
5 much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

BLAST Score x Percent Identity

10
$$5 \times \min\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}$$

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the
15 product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a
20 BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

25 Alternatively, polynucleotide sequences encoding PP are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive
30 system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following
35 disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma,

cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding PP. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

5 **VIII. Extension of PP Encoding Polynucleotides**

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using
10 OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

15 Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme
20 (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94 °C, 3 min; Step 2: 94 °C, 15 sec; Step 3: 60 °C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4 °C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94 °C, 3 min; Step 2:
25 94 °C, 15 sec; Step 3: 57 °C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4 °C.

The concentration of DNA in each well was determined by dispensing 100 µl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II
30 (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.

35 The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and

sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham 5 Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase 10 (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted 15 with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides 20 designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:13-24 are employed to screen cDNAs, 25 genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ-³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: 30 Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 35 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature

under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

- 5 The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, *supra*.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), *supra*). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers.
- 10 Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645;
- 15 Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the 20 biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element 25 on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is 30 reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by *in vitro* transcription 35 from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one

with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated 5 using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 µl 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element 10 is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 µg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

15 Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 20 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 µl of the array element DNA, at an average concentration of 100 ng/µl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

25 Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 µl of sample mixture consisting of 0.2 µg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered 35 with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the

addition of 140 μ l of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

5 **Detection**

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide

- 10 containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477,

- 15 Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

- 20 The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different
25 fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC
30 computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

5 **XI. Complementary Polynucleotides**

Sequences complementary to the PP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO
10 4.06 software (National Biosciences) and the coding sequence of PP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the PP-encoding transcript.

XII. Expression of PP

15 Expression and purification of PP is achieved using bacterial or virus-based expression systems. For expression of PP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element.
20 Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of PP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PP by
25 either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA
30 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, PP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on
35 immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham

Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from PP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins

- 5 (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified PP obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, XVIII, and XIX where applicable.

XIII. Functional Assays

PP function is assessed by expressing the sequences encoding PP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 µg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome

- 15 formulations or electroporation. 1-2 µg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

- 30 The influence of PP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding PP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success 35 NY). mRNA can be purified from the cells using methods well known by those of skill in the art.

Expression of mRNA encoding PP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIV. Production of PP Specific Antibodies

PP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g.,

- 5 Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the PP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for 10 selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to 15 increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for anti-peptide and anti-PP activity by, for example, binding the peptide or PP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

20 XV. Purification of Naturally Occurring PP Using Specific Antibodies

Naturally occurring or recombinant PP is substantially purified by immunoaffinity chromatography using antibodies specific for PP. An immunoaffinity column is constructed by covalently coupling anti-PP antibody to an activated chromatographic resin, such as CNBr-activated 25 SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing PP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotropic, such as urea or thiocyanate ion), and 30 PP is collected.

XVI. Identification of Molecules Which Interact with PP

PP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent.

- (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled PP, washed, and 35 any wells with labeled PP complex are assayed. Data obtained using different concentrations of PP

are used to calculate values for the number, affinity, and association of PP with the candidate molecules.

Alternatively, molecules interacting with PP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available 5 kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

PP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

10 XVII. Demonstration of PP Activity

PP activity is measured by the hydrolysis of para-nitrophenyl phosphate (PNPP). PP is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1% β -mercaptoethanol at 37°C for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH (Diamond, R.H. et al. (1994) Mol. Cell. Biol. 14:3752-62). Alternatively, acid phosphatase activity of PP is demonstrated by incubating PP-containing extract with 100 μ l of 10 mM PNPP in 0.1 M sodium citrate, pH 4.5, and 50 μ l of 40 mM NaCl at 37°C for 20 min. The reaction is stopped by the addition of 0.5 ml of 0.4 M glycine/NaOH, pH 10.4 (Saftig, P. et al. (1997) J. Biol. Chem. 272:18628-18635). The increase in light absorbance at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the activity of PP in the assay.

20 In the alternative, PP activity is determined by measuring the amount of phosphate removed from a phosphorylated protein substrate. Reactions are performed with 2 or 4 nM enzyme in a final volume of 30 μ l containing 60 mM Tris, pH 7.6, 1 mM EDTA, 1 mM EGTA, 0.1% β -mercaptoethanol and 10 μ M substrate, 32 P-labeled on serine/threonine or tyrosine, as appropriate. Reactions are initiated with substrate and incubated at 30° C for 10-15 min. Reactions are quenched with 450 μ l of 25 4% (w/v) activated charcoal in 0.6 M HCl, 90 mM Na₄P₂O₇, and 2 mM NaH₂PO₄, then centrifuged at 12,000 $\times g$ for 5 min. Acid-soluble 32 Pi is quantified by liquid scintillation counting (Sinclair, C. et al. (1999) J. Biol. Chem. 274:23666-23672).

XVIII. Identification of PP Inhibitors

Compounds to be tested are arrayed in the wells of a 384-well plate in varying concentrations 30 along with an appropriate buffer and substrate, as described in the assays in Example XVII. PP activity is measured for each well and the ability of each compound to inhibit PP activity can be determined, as well as the dose-response kinetics. This assay could also be used to identify molecules which enhance PP activity.

XIX. Identification of PP Substrates

A PP "substrate-trapping" assay takes advantage of the increased substrate affinity that may be conferred by certain mutations in the PTP signature sequence. PP bearing these mutations form a stable complex with their substrate; this complex may be isolated biochemically. Site-directed mutagenesis of invariant residues in the PTP signature sequence in a clone encoding the catalytic domain of PP is performed using a method standard in the art or a commercial kit, such as the MUTA-GENE kit from BIO-RAD. For expression of PP mutants in *Escherichia coli*, DNA fragments containing the mutation are exchanged with the corresponding wild-type sequence in an expression vector bearing the sequence encoding PP or a glutathione S-transferase (GST)-PP fusion protein. PP mutants are expressed in *E. coli* and purified by chromatography.

The expression vector is transfected into COS1 or 293 cells via calcium phosphate-mediated transfection with 20 µg of CsCl-purified DNA per 10-cm dish of cells or 8 µg per 6-cm dish. Forty-eight hours after transfection, cells are stimulated with 100 ng/ml epidermal growth factor to increase tyrosine phosphorylation in cells, as the tyrosine kinase EGFR is abundant in COS cells. Cells are lysed in 50 mM Tris·HCl, pH 7.5/5 mM EDTA/150 mM NaCl/1% Triton X-100/5 mM iodoacetic acid/10 mM sodium phosphate/10 mM NaF/5 µg/ml leupeptin/5 µg/ml aprotinin/1 mM benzamidine (1 ml per 10-cm dish, 0.5 ml per 6-cm dish). PP is immunoprecipitated from lysates with an appropriate antibody. GST-PP fusion proteins are precipitated with glutathione-Sepharose, 4 µg of mAb or 10 µl of beads respectively per mg of cell lysate. Complexes can be visualized by PAGE or further purified to identify substrate molecules (Flint, A.J. et al. (1997) Proc. Natl. Acad. Sci. USA 94:1680-1685).

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Incyte Project ID	Polypeptide SEQ ID NO:	Incyte Polypeptide ID	Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID
3272350	1	3272350CD1	13	3272350CB1
7481507	2	7481507CD1	14	7481507CB1
2285140	3	2285140CD1	15	2285140CB1
7197873	4	7197873CD1	16	7197873CB1
6282188	5	6282188CD1	17	6282188CB1
2182961	6	2182961CD1	18	2182961CB1
5119906	7	5119906CD1	19	5119906CB1
4022502	8	4022502CD1	20	4022502CB1
4084356	9	4084356CD1	21	4084356CB1
1740204	10	1740204CD1	22	1740204CB1
7483804	11	7483804CD1	23	7483804CB1
7483934	12	7483934CD1	24	7483934CB1

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability score	GenBank Homolog
1	32272350CD1	g1418932	1.60E-14	[Homo sapiens] human phosphotyrosine phosphatase kappa 16719 Fuchs, M. et al. (1996) J. Biol. Chem. 271(28):16712-239
2	7481507CD1	g133360272	4.00E-95	[Escherichia coli Q157:H7] serine/threonine protein phosphatase Makino, K. et al. (1999) Genes Genet. Syst. 74(5):227-239
3	2285140CD1	g3874135	7.60E-55	[Caenorhabditis elegans] similar to acid phosphatase
4	7197873CD1	g452194	2.60E-169	[Homo sapiens] protein tyrosine phosphatase (PTP-BAS, type 3) Maekawa, K., et al. (1994) FEBS Lett. 337:200-206
5	6282188CD1	g9759130	1.80E-06	[Arabidopsis thaliana] contains similarity to tyrosine phosphatase gene_id: MZK4_21
6	2182961CD1	g3876155	3.50E-84	[Caenorhabditis elegans] Similar to Aspergilus acid phosphatase
7	5119906CD1	g6714641	7.30E-101	[Drosophila melanogaster] MAP kinase phosphatase
8	4022502CD1	g12746390	1.00E-46	[Rattus norvegicus] sphingosine-1-phosphate phosphohydrolase
9	4084356CD1	g3063745	3.50E-77	[Bos taurus] protein phosphatase 2C beta
10	1740204CD1	g619215	7.40E-244	Klumpp, S. et al. (1998) J. Neurosci. Res. 51:328-338 [Oryctolagus cuniculus] protein phosphatase 2A1 B gamma subunit Zolnierowicz, S. et al. (1994) Biochem. 33:11858-11867
11	7483804CD1	g957217	2.80E-292	[Homo sapiens] striatum-enriched phosphatase Li, X. (1995) Genomics 28:442-449
12	7483934CD1	g4104822	0	[Homo sapiens] synaptjanin 2B Nemoto, Y and De Camilli, P. (1999) EMBO J. 18(11):2991-3006

Table 3

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
1	3272350CD1	435	S111 S129 S159 S24 S308 T143 T288 T390 T401	N135 N227 N306	PROTEIN-TYROSINE-PHOSPHATASE, RECEPTOR TYPE MU DM07136 P35822 1-187 : C233-V389 MAM DM01344 P28824 595-796 : S229-D387 PRECURSOR GLYCOPROTEIN SIGNAL TRANSMEMBRANE HYDROLASE PROTEIN REPEAT RECEPTOR PHOSPHATASE NEUROPILIN PD001482: D230-C396 MAM domain proteins. BL00740A:C241-W253 , BL00740B:L381-T401	BLAST_DOMO
2	7481507CD1	233	S57 T4	N221	MAM domain signature PR00020A:K239-N257 , PR00020C:Y312-K323 , PR00020D:V360-G374 , PR00020E:G379-K392 MAM domain. MAM: C233-R398 Immunoglobulin domain. ig: G33-V97 ; C241-S315 Spescan signal_cleavage:M1-P47	BLIMPS_PRINT HMMER_PFAM
3	2285140CD1	315			SERINE/TREONINE PROTEIN PHOSPHATASE HYDROLASE IRON MANGANESE PD152367:Q89-Q228 Ser_Thr_Phosphatase V83-E88 Serine / threonine specific protein phosphatases signature ser_thr_phosphatase.prf:D63-G108	SPSCAN BLAST_PRODOME MOTIFS PROFILESCAN
					PROTEIN PHYB1 PUTATIVE ACID PHOSPHATASE F26CL1.1 HYDROLASE PD146082: D57-L315	BLAST_PRODOME

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
4	7197873CD1	1278	S1013 S1017 S1040 S1177 S1197 S122 S1254 S157 S20 S204 S212 S249 S255 S266 S278 S471 S523 S589 S649 S651 S68 S733 S85 S850 S908 S913 T108 T1162 T119 T1242 T155 T185 T301 T562 T573 T579 T584 T592 T670 T694 T746 T788 T981 Y430 Y461	N1015 N173 N41 N548 N842 N938	Band 4.1 family domain signatures:A494-E545 BAND 4 DM00609 A54971 562-990: T301-Q614 BAND 4 DM00609 S51005 13-453: T301-F606 BAND 4 DM00609 JC4155 11-447: K305-Q609 GLGF DOMAIN DM00224 A54971 1358-1454: S908-E1001	PROFILESCAN BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_DOMO
					PROTEIN CYTOSKELETON STRUCTURAL PHOSPHATASE HYDROLASE PROTEIN TYROSINE PHOSPHORYLATION MOESIN TYROSINE BAND PD000961: L313-V516 PHOSPHATASE TYROSINE PROTEIN TYPE PTP BAS HYDROLASE PROTEIN TYROSINE PHOSPHATASE PHOSPHOTYROSINE PTTPASE 1E PD008840: V6-S85 PHOSPHATASE TYROSINE PROTEIN TYPE PTP BAS HYDROLASE PROTEIN TYROSINE PHOSPHATASE PHOSPHOTYROSINE PTTPASE 1E PD150192: H519-Q614	BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM
5	6282188CD1	218	S134 S152 S204 S31 T212 T99	N123 N20	T392-H519 PDZ domain (Also known as DHR or GLGF): active site: V76-T161 signal peptide: M1-A25 Tyrosine specific protein phosphatase signature: M128-M140	HMMER_PFAM HMMER_PFAM PROFILESCAN HMMER_SPCSCAN MOTIFS

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
6	2182961CD1	420	S100 S115 S274 T139 T282 T38 T79 Y379	N193 N332 N386	Purple acid phosphatase PA_phosphatase: N187-P366 ACID PHOSPHATASE PURPLE HYDROLASE IRONII ZINCII PD006329: M182-D400 PHOSPHATASE II; PURPLE; IRON; DM08310 P80366 [75-291: Y74-S274; S51078 1-211: Y74-M266 PHOSPHATASE; ACID; DM08309 JC2545 292-446: S178-F230	HMMER_PFAM BLAST_PRODOM BLAST_DOMO
7	5119906CD1	986	S169 S21 S262 S270 S378 S452 S458 S513 S559 S582 S585 S657 S676 S69 S697 S715 S734 S786 S791 S831 S873 S880 S925 S931 S969 T145 T170 T183 T188 T209 T527 T543 T684 T763 T937 T945 T958 T965 Y591	N207 N260 N277 N322 N557 N732 N868	Signal cleavage: M1-C37 Inhibin beta C chain signature PR00672 K108-K124 Dual specificity phosphatase, catalytic domain DSPC: K245-I383 Lymphocyte-specific protein PR01083: E528-0547 Tyrosine specific protein phosphatases signature BL00383: V328-A338 VH1-TYPE DUAL SPECIFICITY PHOSPHATASE DM03823 P28562 169-314: P246-E381 DM08829 P38590 138-376: M243-L384	SPSCAN HMMER BLIMPS_PRINTS HMMER_PFAM BLIMPS_PRINTS BLIMPS_BLOCKS BLAST_DOMO
8	4022502CD1	399	S118 S180 S7 T214 T237 T39 T273 Y373	N344	Transmembrane domain: T113-Y130, F189-Y209, I280-L299, V322-V342 Magnesium independent phosphatidate phosphatase (PAP2) superfamily: S93-C241 Intergenic Region Transmembrane Protein RPS21BMR3 MRS4DYN1 PD042353: F90-E368	HMMER HMMER_PFAM BLAST_PRODOM BLAST_DOMO

Table 3 (cont.)

SEQ ID NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
9	4084356CD1	387	S103 S128 S153 S381 S88 T174 T194 Y195	N275	signal cleavage: M1-A67 Protein phosphatase 2C: L22-M276 Protein phosphatase 2C proteins BL01032: S272-V281, Q30-H40, L55-G64, G92-R109, G118-V127, H136-I175, R179-D192, D223-D235	SPSCAN HHMMER_PFFAM BLIMPS_BLOCKS
					PROTEIN PHOSPHATASE 2C MAGNESIUM HYDROLASE MANGANESE MULTIGENE FAMILY PP2C ISOFORM PD0011.01: E91-R296, L22-T117	BLAST_PRODOM
					PROTEIN PHOSPHATASE 2C DM00377 P36993 1-304:H13-A293 DM00377 S39781 1-304:H13-A293 DM00377 I49016 1-304:H13-A293 DM00377 P35815 1-304:H13-A293	BLAST_DOMO
10	1740204CD1	447	S109 S163 S183 S190 S242 S246 S272 S28 S283 S292 S331 S381 S63 T114 T121 T204 T22 T226 T303 T369 T412 T7	N11 N273 N33 N347	ATP/GTP-binding site motif A (P-loop): G367-S374 Protein phosphatase 2A regulatory subunit BL01024: C185-L221, T222-F265, E266-I316, E317-G348, K389-K441, T22-D68, L86-R126, T146-D184	BLIMPS_BLOCKS
					Protein phosphatase 2A regulatory subunit PR00600: E31-F51, E66-K94, I95-R123, H172-W199, H200-A227, S228-A256, L257-V284, S285-E312, A313-I338, F339-F365, I409-F438	BLIMPS_PRINTS
					Protein phosphatase 2A regulatory subunit Pr55.1: E79-N93	MOTIFS
					PROTEIN PHOSPHATASE 2A REGULATORY SUBUNIT DM02681 A55836 1-447: M1-M446 DM02681 P36872 60-498: V21-K441 DM02681 Q00362 1-525: V21-F365, D407-F438 DM02681 S55889 13-513: V145-F438, V21-R123	BLAST_DOMO
					SUBUNIT PP2A PHOSPHATASE REGULATORY PROTEIN B ISOFORM MULTIGENE FAMILY PD004712: N131-R385, D17-Y130, N347-F438 PD004812: D407-F438	BLAST_PRODOM

Table 3 (cont.)

SEQ ID NO:	Incyte polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
11	7483804CD1	572	S184 S245 S268 S273 S28 S448 S451 S465 S52 S560 S8 T168 T192 T233 T342 T386 T406 T83	N115 N246	WD domain, G-beta repeat WD40: R16-Q52, Y82-K119, R165-H200, N273-D308, S331-D366, S405-Q439 Y_phosphatase: L322-L561 Protein-tyrosine phosphatase active site TYR_Phosphatase: V501-F513 Tyrosine protein phosphatase active site tyr_phosphatase.prf: L478-R539 Tyrosine specific protein phosphatase BL00383: R539-F554, K325-V339, S351-I359, D389-T399, H460-P472, V501-G511 Protein tyrosine phosphatase PR00700: S352-I359, Y376-Q396, R456-D473, P498-T516, V529-G544, M545-V555 PROTEIN-TYROSINE-PHOSPHATASE	HMMER_PFAM HMMER_PFFAM HMMER_PROFILESCAN BLIMPS_BLOCKS BLIMPS_PRINTS BLAST_DOMO

Table 3 (cont.)

SEQ NO:	Incyte Polypeptide ID	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Domains and Motifs	Analytical Methods and Databases
12	7483934CD1	1510	S1024 S1046 S1136 S1221 S1265 S1316 S1493 S1457 S211 S388 S429 S440 S585 S590 S632 S776 S806 S839 S961 S998 T1018 T1074 T1081 T114 T1155 T1256 T1260 T1284 T1404 T1491 T157 T160 T204 T382 T395 T41 T524 T532 T616 T667 T718 T748 T793 T815 T830 T914 T952 Y111	N1376 N1440 N612	Inositol polyphosphate phosphatase Family, catalytic domain: K542-D884 YOR109W; MEMBRANE; DM02715 P50942 65-597: QL22-W551 SYNDROME; YOR109W; OCULOCEREBRORENAL; BLAST_DOMO MEMBRANE; DM02714 Q01968 323-658:D588-W820 SYNDROME; YOR109W; OCULOCEREBRORENAL; BLAST_DOMO MEMBRANE; DM02714 P50942 599-979:N552-D838 SYNDROME; YOR109W; OCULOCEREBRORENAL; BLAST_DOMO MEMBRANE; DM02714 S61667 574-958:D593-W820 KIAA0348 PD142428: P1266-T1510 KIAA0348 SYNAPTOJANIN ISOFORM ALPHA PD155999: F1040-S1265 BLAST_PRODOM PROTEIN INOSITOL HYDROLASE 5-PHOSPHATASE SYNAPTOJANIN POLYPHOSPHATE PHOSPHATASE TYPE I POLYPHOSPHATE 5-PHOSPHATASE PD002029: D587-DB84 SYNAPTOJANIN ENDOCYTOSIS KIAA0348 II ISOFORM ALPHA DELTASACSYNAPTOJANIN1 PD011649:R888-P1128 Inositol polyphosphate phosphatase family, BLIMPS_PFAM catalytic domain PF00783: F736-I745, R810-L819	HMMER_PFAM BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_DOMO BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM BLIMPS_PFAM

Table 4

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
13	3272350CB1.	1600	1573-1600, 1-53, 433-614, 1505-1542	GNN.G8517773_1.edit 2013147H1 (TESTNOT03) 8094106H1 (EYERNOA01) 71163473V1	1 1431 473 1099	664 1600 1133 1593
14	7481507CB1.	781	745-781, 395-691, 1-313	GBI.g7188861_000153.edit GNN.g6446924_004.edit	426 80	781 644
15	2285140CB1.	1724	871-914, 1-52, 1296-1724	55001533J2 3271918H1 (BRAINOT20) 362853R6 (PROSNOT01) 362853T6 (PROSNOT01) 1856725F6 (PROSNOT18)	1 194 633 1110	307 756 1299 1724
16	7197873CB1	4157	1-56, 3888-3949, 741-2915	2173313T6 (ENDCNOT03) 55099335H1 70880928V1 72010790V1 55075261J1	1 3513 3152 2247	878 4157 3828 2848
				55123062J1 55099328J1 56000513H1 72008877V1 55076893J1	498 2518 1238 3206 1877	1292 3215 1974 3950 2420
17	6282188CB1	1044	1-1044	71715772V1 71715368V1	1 414	678 1044
18	2182961CB1	2797	1394-2240, 1-77, 285-803	58002040T1 55144256J1 2893561H1 (KIDNTUT14) 114545H1 (TESTNOT01) GNN:98570194	2151 1155 1 846 213	2797 2046 286 971 1475
				58002164T1 94533101 5079017F6 (LNODNOT11) GNN.G6978120_000001_002 6814714J1 (ADRETUR01) 5119906F6 (SMCBUNT01) 7441274R6 (ADRETUE02) g1997526	2010 1794 1873 1 1 946 1521 2139	2794 2204 2064 876 1488 2005 2232
19	5119906CB1	3488	2861-3488, 1-1396	6814714J1 (ADRETUR01) 5119906F6 (SMCBUNT01) 7441274R6 (ADRETUE02) 6565672H1 (MCOLDXT04)	874 1 874 808	3488 1 808 1427

Table 4 (cont.)

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragment(s)	Sequence Fragments	5' Position	3' Position
20	4022502CB1	1522	1-109, 1425-1522	g2012311 5594812H1 (COLCDIT03) 7947957J1 (BRABN0E02) 354066H1 (SEMMNNOT04) 4022502F8 (BRAXNOT02) 5594812F6 (COLCDIT03) 6299318H1 (UTREDIT07)	1372 1243 45 1339 396 998 1	1522 1505 743 1517 1058 1502 283
21	4084356CB1	1393	1366-1393, 1-47, 706-807	6332847H1 (BRANDIN01) GNN.g809120_006.edit 7333518H1 (CONFETDN02) GBI.g809120_000001.edit	597 106 917 1	1109 1095 1393 810
22	1740204CB1	1430	1-401	93163696 6332536H1 (BRANDIN01) 6205996H1 (PITUNON01) 70218058V1	764 1034 204 1	1107 1430 912 508
23	7483804CB1	3102	1-990, 1441-1460, 1840-2628, 3083-3102	7189648H1 (BRATDIC01) 6873131H1 (BRAGNON02) 72470166D1 72475127D1 72474804D1 72474643D1 71880642V1 6987688R8 (BRAFFER05)	1 2207 1438 2273 615 2315 1270 328 4977	500 2941 2223 3055 1302 3102 2110 1243 5612
24	7483934CB1	5612	3420-3503, 1-313, 824-2655, 4533-4960	8114162H1 (OSTEUNC01) 8130776H1 (SCOMDIC01) 7483934CB1 4672080H1 (SINTNOT24)	59 4420 59 1	5121 5063 223

Table 5

Polynucleotide SEQ ID NO:	Incyte Project ID	Representative Library
13	3272350CB1	OVARNOT13
15	2285140CB1	BRSTNOT01
16	7197873CB1	BRAINNOT12
17	6282188CB1	SKINDIA01
18	2182961CB1	SININOT01
19	5119906CB1	SMCBUNT01
20	4022502CB1	BRAXNOT02
21	4084356CB1	CONFNOT02
22	1740204CB1	BRAINNOT09
23	7483804CB1	BSCNNOT03
24	7483934CB1	BRAUNOR01

Table 6

Library	Vector	Library Description
BRAINOT09	PINCY	Library was constructed using RNA isolated from brain tissue removed from a Caucasian male fetus, who died at 23 weeks' gestation.
BRAINOT12	PINCY	Library was constructed using RNA isolated from brain tissue removed from the right frontal lobe of a 5-year-old Caucasian male during a hemispherectomy. Pathology indicated extensive polymicrogyria and mild to moderate gliosis (predominantly subpial and subcortical), which are consistent with chronic seizure disorder. Family history included a cervical neoplasm.
BRAUNOR01	PINCY	This random primed library was constructed using RNA isolated from striatum, globus pallidus and posterior putamen tissue removed from an 81-year-old Caucasian female who died from a hemorrhage and ruptured thoracic aorta due to atherosclerosis. Pathology indicated moderate atherosclerosis involving the internal carotids, bilaterally; microscopic infarcts of the frontal cortex and hippocampus; and scattered diffuse amyloid plaques and neurofibrillary tangles, consistent with age. Grossly, the leptomeninges showed only mild thickening and hyalinization along the superior sagittal sinus. The remainder of the leptomeninges was thin and contained some congested blood vessels. Mild atrophy was found mostly in the frontal poles and lobes, and temporal lobes, bilaterally. Microscopically, there were pairs of Alzheimer type II astrocytes within the deep layers of the neocortex. There was increased satellitosis around neurons in the deep gray matter in the middle frontal cortex. The amygdala contained rare diffuse plaques and neurofibrillary tangles. The posterior hippocampus contained a microscopic area of cystic cavitation with hemosiderin-laden macrophages surrounded by reactive gliosis. Patient history included sepsis, cholangitis, post-operative atelectasis, pneumonia CAD, cardiomegaly due to left ventricular hypertrophy, splenomegaly, arteriolonephrosclerosis, nodular colloid goiter, emphysema, CHF, hypothyroidism, and peripheral vascular disease.
BRAXNOT02	PINCY	Library was constructed using RNA isolated from cerebellar tissue removed from a 64-year-old male. Patient history included carcinoma of the left bronchus.
BRSTNOT01	PBLUE-SCRIPT	Library was constructed using RNA isolated from the breast tissue of a 56-year-old Caucasian female who died in a motor vehicle accident.
BSCNNNOT03	PINCY	Library was constructed using RNA isolated from caudate nucleus tissue removed from the brain of a 92-year-old male. Pathology indicated several small cerebral infarcts but no senile plaques or neurofibrillary degeneration. Patient history included throat cancer which was treated with radiation.
CONFNOT02	PINCY	Library was constructed using RNA isolated from abdominal fat tissue removed from a 52-year-old Caucasian female during an ileum resection and incarcerated ventral hernia repair. Patient history included diverticulitis. Family history included hyperlipidemia.

Table 6 (cont.)

Library	Vector	Library Description
OVARNOT13	PINCY	Library was constructed using RNA isolated from left ovary tissue removed from a 47-year-old Caucasian female during a vaginal hysterectomy with bilateral salpingo-oophorectomy, and dilation and curettage. Pathology for the associated tumor tissue indicated a single intramural leiomyoma. The endometrium was in the secretory phase. The patient presented with metrorrhagia. Patient history included hyperlipidemia and benign hypertension. Family history included colon cancer, benign hypertension, atherosclerotic coronary artery disease, and breast cancer.
STINNOT01	PINCY	Library was constructed using RNA isolated from ileum tissue obtained from the small intestine of a 4-year-old Caucasian female, who died from a closed head injury. Serologies were negative. Patient history included jaundice. Previous surgeries included a double hernia repair.
SKINDIA01	PSPORT1	This amplified library was constructed using RNA isolated from diseased skin tissue removed from 1 female and 4 males during skin biopsies. Pathologies indicated tuberculoid and lepromatous leprosy.
SMCBUNT01	PINCY	Library was constructed using RNA isolated from untreated bronchial smooth muscle cell tissue removed from a 21-year-old Caucasian male.

Table 7

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PARACEL RDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	<i>ESTs</i> : Probability value= 1.0E-8 or less <i>Full Length sequences</i> : Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	<i>ESTs</i> : fastx E value= 1.0E-6 <i>Assembled ESTs</i> : fastx Identity= 95% or greater and Match length=200 bases or greater; fastx E value= 1.0E-8 or less <i>Full Length sequences</i> : fastx score=100 or greater
BLIMPS	A BLOCKs IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) <i>Our World View</i> , in a Nutshell, Cambridge Univ. Press, pp. 1-350.	<i>PFAM hits</i> : Probability value= 1.0E-3 or less <i>Signal peptide hits</i> : Score= 0 or greater

Table 7 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score \geq CCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phil's Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Person, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sommerhammar, E.L. et al. (1998) Proc. Sixth Intl. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motif	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide selected from the group consisting of:
 - a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-12,
 - b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-12,
 - c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, and
 - d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.
2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-12.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
- 20 5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:13-24.
- 25 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 30 9. A method of producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
 - b) recovering the polypeptide so expressed.

10. A method of claim 9, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.

11. An isolated antibody which specifically binds to a polypeptide of claim 1.

5

12. An isolated polynucleotide selected from the group consisting of:

- a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24,
- b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:13-24,
- c) a polynucleotide complementary to a polynucleotide of a),
- d) a polynucleotide complementary to a polynucleotide of b), and
- e) an RNA equivalent of a)-d).

10
15

13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.

14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

- a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.

20
25

15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.

30

16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and

- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable
5 excipient.

18. A composition of claim 17, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.

10 19. A method for treating a disease or condition associated with decreased expression of functional PP, comprising administering to a patient in need of such treatment the composition of claim 17.

15 20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
b) detecting agonist activity in the sample.

21. A composition comprising an agonist compound identified by a method of claim 20 and a
20 pharmaceutically acceptable excipient.

22. A method for treating a disease or condition associated with decreased expression of functional PP, comprising administering to a patient in need of such treatment a composition of claim 21.

25 23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:

- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
b) detecting antagonist activity in the sample.

30 24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.

25. A method for treating a disease or condition associated with overexpression of functional
35 PP, comprising administering to a patient in need of such treatment a composition of claim 24.

26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising:

- 5 a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
- b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:

- 10 a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
- b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
- c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

20 28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:

- 25 a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
- b) detecting altered expression of the target polynucleotide, and
- c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

29. A method of assessing toxicity of a test compound, the method comprising:

- 30 a) treating a biological sample containing nucleic acids with the test compound,
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof,

- 5 c) quantifying the amount of hybridization complex, and
d) comparing the amount of hybridization complex in the treated biological sample with
the amount of hybridization complex in an untreated biological sample, wherein a
difference in the amount of hybridization complex in the treated biological sample is
indicative of toxicity of the test compound.

30. A diagnostic test for a condition or disease associated with the expression of PP in a
biological sample, the method comprising:

- 10 a) combining the biological sample with an antibody of claim 11, under conditions
suitable for the antibody to bind the polypeptide and form an antibody:polypeptide
complex, and
b) detecting the complex, wherein the presence of the complex correlates with the
presence of the polypeptide in the biological sample.

15 31. The antibody of claim 11, wherein the antibody is:

- a) a chimeric antibody,
b) a single chain antibody,
c) a Fab fragment,
d) a F(ab')₂ fragment, or
e) a humanized antibody.

32. A composition comprising an antibody of claim 11 and an acceptable excipient.

33. A method of diagnosing a condition or disease associated with the expression of PP in a
25 subject, comprising administering to said subject an effective amount of the composition of claim 32.

34. A composition of claim 32, wherein the antibody is labeled.

35. A method of diagnosing a condition or disease associated with the expression of PP in a
30 subject, comprising administering to said subject an effective amount of the composition of claim 34.

36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim
11, the method comprising:

- a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- b) isolating antibodies from said animal, and
- 5 c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.

37. A polyclonal antibody produced by a method of claim 36.

10

38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.

39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising:

- 15 a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
- b) isolating antibody producing cells from the animal,
- c) fusing the antibody producing cells with immortalized cells to form monoclonal
- 20 antibody-producing hybridoma cells,
- d) culturing the hybridoma cells, and
- e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.

25

40. A monoclonal antibody produced by a method of claim 39.

41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.

30 42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.

43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.

35

44. A method of detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12 in a sample, the method comprising:

- a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
- 5 b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12 in the sample.

45. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12 from a sample, the method comprising:

- a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
- b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-12.

46. A microarray wherein at least one element of the microarray is a polynucleotide of claim 13.

20 47. A method of generating a transcript image of a sample which contains polynucleotides, the method comprising:

- a) labeling the polynucleotides of the sample,
- b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and
- 25 c) quantifying the expression of the polynucleotides in the sample.

48. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.

49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.

50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.

51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.

52. An array of claim 48, which is a microarray.

53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.

54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.

55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.

56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.

57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.

58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.

59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.

60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.

61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.

62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.

63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.

64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.

65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.

5 66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.

67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.

68. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
10 NO:13.

69. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:14.

15 70. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:15.

71. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:16.

20 72. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:17.

73. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
25 NO:18.

74. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:19.

30 75. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:20.

76. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
35 NO:21.

77. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:22.

78. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID
5 NO:23.

79. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:24.

<110> INCYTE GENOMICS, INC.
TANG, Y. Tom
YAO, Monique G.
WALIA, Narinder K.
ELLIOTT, Vicki S.
RAMKUMAR, Jayalaxmi
LU, Yan
ARVIZU, Chandra
DING, Li
BAUGHN, Mariah R.
YUE, Henry
LU, Dyung Aina M.
TRIBOULEY, Catherine M.
THORNTON, Michael
GANDHI, Ameena R.
LEE, Ernestine A.
XU, Yuming
WANG, Yumei E.
HAFALIA, April J.A.
THANGAVELU, Kavitha
DANIELS, Susan E.
LAL, Preeti
SWARNAKAR, Anita

<120> PROTEIN PHOSPHATASES

<130> PI-0228 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/234,526; 60/236,967; 60/238,332; 60/242,236; 60/243,928; 60/249,814
<151> 2000-09-21; 2000-09-29; 2000-10-05; 2000-10-19; 2000-10-27; 2000-11-17

<160> 24

<170> PERL Program

<210> 1
<211> 435
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3272350CD1

<400> 1
Met Ala Gly Glu Asn Gly Gln Glu Gly Val Gly Ile Cys Arg Leu
1 5 10 15
Gly Val Gln Pro Glu Val Glu Pro Ser Ser Gln Asp Val Arg Gln
20 25 30
Ala Leu Gly Arg Pro Val Leu Leu Arg Cys Ser Leu Leu Arg Gly
35 40 45
Ser Pro Gln Arg Ile Ala Ser Ala Val Trp Arg Phe Lys Gly Gln
50 55 60
Leu Leu Pro Pro Pro Pro Val Val Pro Ala Ala Ala Glu Ala Pro
65 70 75
Asp His Ala Glu Leu Arg Leu Asp Ala Val Thr Arg Asp Ser Ser
80 85 90
Gly Ser Tyr Glu Cys Ser Val Ser Asn Asp Val Gly Ser Ala Ala
95 100 105

Cys	Leu	Phe	Gln	Val	Ser	Ala	Lys	Ala	Tyr	Ser	Pro	Glu	Phe	Tyr
				110					115					120
Phe	Asp	Thr	Pro	Asn	Pro	Thr	Arg	Ser	His	Lys	Leu	Ser	Lys	Asn
				125					130					135
Tyr	Ser	Tyr	Val	Leu	Gln	Trp	Thr	Gln	Arg	Glu	Pro	Asp	Ala	Val
				140					145					150
Asp	Pro	Val	Leu	Asn	Tyr	Arg	Leu	Ser	Ile	Arg	Gln	Leu	Asn	Gln
				155					160					165
His	Asn	Ala	Val	Val	Lys	Ala	Ile	Pro	Val	Arg	Arg	Val	Glu	Lys
				170					175					180
Gly	Gln	Leu	Leu	Glu	Tyr	Ile	Leu	Thr	Asp	Leu	Arg	Val	Pro	His
				185					190					195
Ser	Tyr	Glu	Val	Arg	Leu	Thr	Pro	Tyr	Thr	Thr	Phe	Gly	Ala	Gly
				200					205					210
Asp	Met	Ala	Ser	Arg	Ile	Ile	His	Tyr	Thr	Glu	Pro	Ile	Asn	Ser
				215					220					225
Pro	Asn	Leu	Ser	Asp	Asn	Thr	Cys	His	Phe	Glu	Asp	Glu	Lys	Ile
				230					235					240
Cys	Gly	Tyr	Thr	Gln	Asp	Leu	Thr	Asp	Asn	Phe	Asp	Trp	Thr	Arg
				245					250					255
Gln	Asn	Ala	Leu	Thr	Gln	Asn	Pro	Lys	Arg	Ser	Pro	Asn	Thr	Gly
				260					265					270
Pro	Pro	Thr	Asp	Ile	Ser	Gly	Thr	Pro	Glu	Gly	Tyr	Tyr	Met	Phe
				275					280					285
Ile	Glu	Thr	Ser	Arg	Pro	Arg	Glu	Leu	Gly	Asp	Arg	Ala	Arg	Leu
				290					295					300
Val	Ser	Pro	Leu	Tyr	Asn	Ala	Ser	Ala	Lys	Phe	Tyr	Cys	Val	Ser
				305					310					315
Phe	Phe	Tyr	His	Met	Tyr	Gly	Lys	His	Ile	Gly	Ser	Leu	Asn	Leu
				320					325					330
Leu	Val	Arg	Ser	Arg	Asn	Lys	Gly	Ala	Leu	Asp	Thr	His	Ala	Trp
				335					340					345
Ser	Leu	Ser	Gly	Asn	Lys	Gly	Asn	Val	Trp	Gln	Gln	Ala	His	Val
				350					355					360
Pro	Ile	Ser	Pro	Ser	Gly	Pro	Phe	Gln	Ile	Ile	Phe	Glu	Gly	Val
				365					370					375
Arg	Gly	Pro	Gly	Tyr	Leu	Gly	Asp	Ile	Ala	Ile	Asp	Asp	Val	Thr
				380					385					390
Leu	Lys	Lys	Gly	Glu	Cys	Pro	Arg	Lys	Gln	Thr	Asp	Pro	Asn	Lys
				395					400					405
Val	Val	Val	Met	Pro	Gly	Ser	Gly	Ala	Pro	Cys	Gln	Ser	Ser	Pro
				410					415					420
Gln	Leu	Trp	Gly	Pro	Met	Ala	Ile	Phe	Leu	Leu	Ala	Leu	Gln	Arg
				425					430					435

<210> 2
<211> 233
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7481507CD1

<400> 2
Met Ala Ala Thr Arg Gly Glu Glu Lys Ile Cys Met Ser Met Tyr
1 5 10 15
Gln Arg Ile Asn Gly Ala Asp Trp Arg Asn Ile Phe Val Val Gly
20 25 30
Asp Leu His Gly Cys Tyr Thr Leu Leu Met Asn Glu Leu Glu Lys
35 40 45
Val Ser Phe Asp Pro Ala Cys Asp Leu Leu Ile Ser Val Gly Asp

50	55	60
Leu Val Asp Arg Gly Ala Glu Asn Val Glu Cys Leu Glu Leu Ile		
65	70	75
Thr Met Pro Trp Phe Arg Ala Val Arg Gly Asn His Glu Gln Met		
80	85	90
Met Ile Asp Gly Leu Ser Glu Tyr Gly Asn Val Asn His Trp Leu		
95	100	105
Glu Asn Gly Gly Val Trp Phe Phe Ser Leu Asp Tyr Glu Lys Glu		
110	115	120
Val Leu Ala Lys Ala Leu Val His Lys Ser Ala Ser Leu Pro Phe		
125	130	135
Val Ile Glu Leu Val Thr Ala Glu Arg Lys Ile Val Ile Cys His		
140	145	150
Ala Asp Tyr Pro His Asn Glu Tyr Ala Phe Asp Lys Pro Val Pro		
155	160	165
Lys Asp Met Val Ile Trp Asn Arg Glu Arg Val Ser Asp Ala Gln		
170	175	180
Asp Gly Ile Val Ser Pro Ile Ala Gly Ala Asp Leu Phe Ile Phe		
185	190	195
Gly His Thr Pro Ala Arg Gln Pro Leu Lys Tyr Ala Asn Gln Met		
200	205	210
Tyr Ile Asp Thr Gly Ala Val Phe Cys Gly Asn Leu Thr Leu Val		
215	220	225
Gln Val Gln Gly Gly Ala His Ala		
230		

<210> 3
<211> 315
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2285140CD1

400	3		
Met His Gly His Gly Gly Tyr Asp Ser Asp Phe Ser Asp Asp Glu			
1	5	10	15
His Cys Gly Glu Ser Ser Lys Arg Lys Lys Arg Thr Val Glu Asp			
20	25	30	
Asp Leu Leu Leu Gln Lys Pro Phe Gln Lys Glu Lys His Gly Lys			
35	40	45	
Val Ala His Lys Gln Val Ala Ala Glu Leu Leu Asp Arg Glu Glu			
50	55	60	
Ala Arg Asn Arg Arg Phe His Leu Ile Ala Met Asp Ala Tyr Gln			
65	70	75	
Arg His Arg Lys Phe Val Asn Asp Tyr Ile Leu Tyr Tyr Gly Gly			
80	85	90	
Lys Lys Glu Asp Phe Lys Arg Leu Gly Glu Asn Asp Lys Thr Asp			
95	100	105	
Leu Asp Val Ile Arg Glu Asn His Arg Phe Leu Trp Asn Glu Glu			
110	115	120	
Asp Glu Met Asp Met Thr Trp Glu Lys Arg Leu Ala Lys Lys Tyr			
125	130	135	
Tyr Asp Lys Leu Phe Lys Glu Tyr Cys Ile Ala Asp Leu Ser Lys			
140	145	150	
Tyr Lys Glu Asn Lys Phe Gly Phe Arg Trp Arg Val Glu Lys Glu			
155	160	165	
Val Ile Ser Gly Lys Gly Gln Phe Phe Cys Gly Asn Lys Tyr Cys			
170	175	180	
Asp Lys Lys Glu Gly Leu Lys Ser Trp Glu Val Asn Phe Gly Tyr			
185	190	195	
Ile Glu His Gly Glu Lys Arg Asn Ala Leu Val Lys Leu Arg Leu			

Cys	Gln	Glu	Cys	Ser	Ile	Lys	Leu	Asn	Phe	His	His	Arg	Arg	Lys
200					215				220					225
Glu	Ile	Lys	Ser	Lys	Lys	Arg	Lys	Asp	Lys	Thr	Lys	Lys	Asp	Cys
220					230				235					240
Glu	Glu	Ser	Ser	His	Lys	Lys	Ser	Arg	Leu	Ser	Ser	Ala	Glu	Glu
235					245				250					255
Ala	Ser	Lys	Lys	Lys	Asp	Lys	Gly	His	Ser	Ser	Ser	Lys	Ser	
250					260				265					270
Glu	Asp	Ser	Leu	Leu	Arg	Asn	Ser	Asp	Glu	Glu	Glu	Ser	Ala	Ser
265					275				280					285
Glu	Ser	Glu	Leu	Trp	Lys	Gly	Pro	Leu	Pro	Glu	Thr	Asp	Glu	Lys
280					290				295					300
Ser	Gln	Glu	Glu	Phe	Asp	Glu	Tyr	Phe	Gln	Asp	Leu	Phe	Leu	
295				305				310						315

<210> 4
<211> 1278
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7197873CD1

<400> 4															
Met	Ser	Leu	Ser	Ser	Val	Thr	Leu	Ala	Ser	Ala	Leu	Gln	Val	Arg	
1					5				10					15	
Gly	Glu	Ala	Leu	Ser	Glu	Glu	Glu	Ile	Trp	Ser	Pro	Leu	Phe	Leu	
									20					30	
Ala	Ala	Glu	Gln	Leu	Leu	Glu	Asp	Leu	Arg	Asn	Asp	Ser	Ser	Asp	
									35					45	
Tyr	Val	Val	Cys	Pro	Trp	Ser	Ala	Leu	Leu	Ser	Ala	Ala	Gly	Ser	
									50					60	
Leu	Ser	Phe	Gln	Gly	Arg	Val	Ser	His	Ile	Glu	Ala	Ala	Pro	Phe	
									65					75	
Lys	Ala	Pro	Glu	Leu	Leu	Gln	Gly	Gln	Ser	Glu	Asp	Glu	Gln	Pro	
									80					90	
Asp	Ala	Ser	Gln	Pro	Leu	Gln	Leu	Cys	Glu	Pro	Leu	His	Ser	Ile	
									95					105	
Leu	Leu	Thr	Met	Cys	Glu	Asp	Gln	Pro	His	Arg	Arg	Cys	Thr	Leu	
									110					120	
Gln	Ser	Val	Leu	Glu	Ala	Cys	Arg	Val	His	Glu	Lys	Glu	Val	Ser	
									125					135	
Val	Tyr	Pro	Ala	Pro	Ala	Gly	Leu	His	Ile	Arg	Arg	Leu	Val	Gly	
									140					150	
Leu	Val	Leu	Gly	Thr	Ile	Ser	Glu	Val	Glu	Lys	Arg	Val	Val	Glu	
									155					165	
Glu	Ser	Ser	Ser	Val	Gln	Gln	Asn	Arg	Ser	Tyr	Leu	Leu	Arg	Lys	
									170					180	
Arg	Leu	Arg	Gly	Thr	Ser	Ser	Glu	Ser	Pro	Ala	Ala	Gln	Ala	Pro	
									185					195	
Glu	Cys	Leu	His	Pro	Cys	Arg	Val	Ser	Glu	Arg	Ser	Thr	Glu	Thr	
									200					210	
Gln	Ser	Ser	Pro	Glu	Pro	His	Trp	Ser	Thr	Leu	Thr	His	Ser	His	
									215					225	
Cys	Ser	Leu	Leu	Val	Asn	Arg	Ala	Leu	Pro	Gly	Ala	Asp	Pro	Gln	
									230					240	
Asp	Gln	Gln	Ala	Gly	Arg	Arg	Leu	Ser	Ser	Gly	Ser	Val	His	Ser	
									245					255	
Ala	Ala	Asp	Ser	Ser	Trp	Pro	Thr	Thr	Pro	Ser	Gln	Arg	Gly	Phe	
									260					270	

Leu	Gln	Arg	Arg	Ser	Lys	Phe	Ser	Arg	Pro	Glu	Phe	Ile	Leu	Leu
				275					280					285
Ala	Gly	Glu	Ala	Pro	Met	Thr	Leu	His	Leu	Pro	Gly	Ser	Val	Val
				290					295					300
Thr	Lys	Lys	Gly	Lys	Ser	Tyr	Leu	Ala	Leu	Arg	Asp	Leu	Cys	Val
				305					310					315
Val	Leu	Leu	Asn	Gly	Gln	His	Leu	Glu	Val	Lys	Cys	Asp	Val	Glu
				320					325					330
Ser	Thr	Val	Gly	Ala	Val	Phe	Asn	Ala	Val	Thr	Ser	Phe	Ala	Asn
				335					340					345
Leu	Glu	Glu	Leu	Thr	Tyr	Phe	Gly	Leu	Ala	Tyr	Met	Lys	Ser	Lys
				350					355					360
Glu	Phe	Phe	Phe	Leu	Asp	Ser	Glu	Thr	Arg	Leu	Cys	Lys	Ile	Ala
				365					370					375
Pro	Glu	Gly	Trp	Arg	Glu	Gln	Pro	Gln	Lys	Thr	Ser	Met	Asn	Thr
				380					385					390
Phe	Thr	Leu	Phe	Leu	Arg	Ile	Lys	Phe	Phe	Val	Ser	His	Tyr	Gly
				395					400					405
Leu	Leu	Gln	His	Ser	Leu	Thr	Arg	His	Gln	Phe	Tyr	Leu	Gln	Leu
				410					415					420
Arg	Lys	Asp	Ile	Leu	Glu	Glu	Arg	Leu	Tyr	Cys	Asn	Glu	Glu	Ile
				425					430					435
Leu	Leu	Gln	Leu	Gly	Val	Leu	Ala	Leu	Gln	Ala	Glu	Phe	Gly	Asn
				440					445					450
Tyr	Pro	Lys	Glu	Gln	Val	Glu	Ser	Lys	Pro	Tyr	Phe	His	Val	Glu
				455					460					465
Asp	Tyr	Ile	Pro	Ala	Ser	Leu	Ile	Glu	Arg	Met	Thr	Ala	Leu	Arg
				470					475					480
Val	Gln	Val	Glu	Val	Ser	Glu	Met	His	Arg	Leu	Ser	Ser	Ala	Leu
				485					490					495
Trp	Gly	Glu	Asp	Ala	Glu	Leu	Lys	Phe	Leu	Arg	Val	Thr	Gln	Gln
				500					505					510
Leu	Pro	Glu	Tyr	Gly	Val	Leu	Val	His	Gln	Val	Phe	Ser	Glu	Lys
				515					520					525
Arg	Arg	Pro	Glu	Glu	Glu	Met	Ala	Leu	Gly	Ile	Cys	Ala	Lys	Gly
				530					535					540
Val	Ile	Val	Tyr	Glu	Val	Lys	Asn	Asn	Ser	Arg	Ile	Ala	Met	Leu
				545					550					555
Arg	Phe	Gln	Trp	Arg	Glu	Thr	Gly	Lys	Ile	Ser	Thr	Tyr	Gln	Lys
				560					565					570
Lys	Phe	Thr	Ile	Thr	Ser	Ser	Val	Thr	Gly	Lys	Lys	His	Thr	Phe
				575					580					585
Val	Thr	Asp	Ser	Ala	Lys	Thr	Ser	Lys	Tyr	Leu	Leu	Asp	Leu	Cys
				590					595					600
Ser	Ala	Gln	His	Gly	Phe	Asn	Ala	Gln	Met	Gly	Ser	Gly	Gln	Pro
				605					610					615
Ser	His	Val	Leu	Phe	Asp	His	Asp	Lys	Phe	Val	Gln	Met	Ala	Asn
				620					625					630
Leu	Ser	Pro	Ala	His	Gln	Ala	Arg	Ser	Lys	Pro	Leu	Ile	Trp	Ile
				635					640					645
Gln	Arg	Leu	Ser	Cys	Ser	Glu	Asn	Glu	Leu	Phe	Val	Ser	Arg	Leu
				650					655					660
Gln	Gly	Ala	Ala	Gly	Gly	Leu	Leu	Ser	Thr	Ser	Met	Asp	Asn	Phe
				665					670					675
Asn	Val	Asp	Gly	Ser	Lys	Glu	Ala	Gly	Ala	Glu	Gly	Ile	Gly	Arg
				680					685					690
Ser	Pro	Cys	Thr	Gly	Arg	Glu	Gln	Leu	Lys	Ser	Ala	Cys	Val	Ile
				695					700					705
Gln	Lys	Pro	Met	Thr	Trp	Asp	Ser	Leu	Ser	Gly	Pro	Pro	Val	Gln
				710					715					720
Ser	Met	His	Ala	Gly	Ser	Lys	Asn	Asn	Arg	Arg	Lys	Ser	Phe	Ile
				725					730					735
Ala	Glu	Pro	Gly	Arg	Glu	Ile	Val	Arg	Val	Thr	Leu	Lys	Arg	Asp

740	745	750
Pro His Arg Gly Phe Gly Phe Val Ile Asn Glu Gly Glu Tyr Ser		
755	760	765
Gly Gln Ala Asp Pro Gly Ile Phe Ile Ser Ser Ile Ile Pro Gly		
770	775	780
Gly Pro Ala Glu Lys Ala Lys Thr Ile Lys Pro Gly Gly Gln Ile		
785	790	795
Leu Ala Leu Asn His Ile Ser Leu Glu Gly Phe Thr Phe Asn Met		
800	805	810
Ala Val Arg Met Ile Gln Asn Ser Pro Asp Asn Ile Glu Leu Ile		
815	820	825
Ile Ser Gln Ser Lys Gly Val Gly Gly Asn Asn Pro Asp Glu Glu		
830	835	840
Lys Asn Ser Thr Ala Asn Ser Gly Val Ser Ser Thr Asp Ile Leu		
845	850	855
Ser Phe Gly Tyr Gln Gly Ser Leu Leu Ser His Thr Gln Asp Gln		
860	865	870
Asp Arg Asn Thr Glu Glu Leu Asp Met Ala Gly Val Gln Ser Leu		
875	880	885
Val Pro Arg Leu Arg His Gln Leu Ser Phe Leu Pro Leu Lys Gly		
890	895	900
Ala Gly Ser Ser Cys Pro Pro Ser Pro Pro Glu Ile Ser Ala Gly		
905	910	915
Glu Ile Tyr Phe Val Glu Leu Val Lys Glu Asp Gly Thr Leu Gly		
920	925	930
Phe Ser Val Thr Gly Gly Ile Asn Thr Ser Val Pro Tyr Gly Gly		
935	940	945
Ile Tyr Val Lys Ser Ile Val Pro Gly Gly Pro Ala Ala Lys Glu		
950	955	960
Gly Gln Ile Leu Gln Gly Asp Arg Leu Leu Gln Val Asp Gly Val		
965	970	975
Ile Leu Cys Gly Leu Thr His Lys Gln Ala Val Gln Cys Leu Lys		
980	985	990
Gly Pro Gly Gln Val Ala Arg Leu Val Leu Glu Arg Arg Val Pro		
995	1000	1005
Arg Ser Thr Gln Gln Cys Pro Ser Ala Asn Asp Ser Met Gly Asp		
1010	1015	1020
Glu Arg Thr Ala Val Ser Leu Val Thr Ala Leu Pro Gly Arg Pro		
1025	1030	1035
Ser Ser Cys Val Ser Val Thr Asp Gly Pro Lys Phe Glu Val Lys		
1040	1045	1050
Leu Lys Lys Asn Ala Asn Gly Leu Gly Phe Ser Phe Val Gln Met		
1055	1060	1065
Glu Lys Glu Ser Cys Ser His Leu Lys Ser Asp Leu Val Arg Ile		
1070	1075	1080
Lys Arg Leu Phe Pro Gly Gln Pro Ala Glu Glu Asn Gly Ala Ile		
1085	1090	1095
Ala Ala Gly Asp Ile Ile Leu Ala Val Asn Gly Arg Ser Thr Glu		
1100	1105	1110
Gly Leu Ile Phe Gln Glu Val Leu His Leu Leu Arg Gly Ala Pro		
1115	1120	1125
Gln Glu Val Thr Leu Leu Leu Cys Arg Pro Pro Pro Gly Ala Leu		
1130	1135	1140
Pro Glu Leu Glu Gln Glu Trp Gln Thr Pro Glu Leu Ser Ala Asp		
1145	1150	1155
Lys Glu Phe Thr Arg Ala Thr Cys Thr Asp Ser Cys Thr Ser Pro		
1160	1165	1170
Ile Leu Asp Gln Glu Asp Ser Trp Arg Asp Ser Ala Ser Pro Asp		
1175	1180	1185
Ala Gly Glu Gly Leu Gly Leu Arg Pro Glu Ser Ser Gln Lys Ala		
1190	1195	1200
Ile Arg Glu Ala Gln Trp Gly Gln Asn Arg Glu Arg Pro Trp Ala		
1205	1210	1215

Ser Ser Leu Thr His Ser Pro Glu Ser His Pro His Leu Cys Lys
 1220 1225 1230
 Leu His Gln Glu Arg Asp Glu Ser Thr Leu Ala Thr Ser Leu Glu
 1235 1240 1245
 Lys Asp Val Arg Gln Asn Cys Tyr Ser Val Cys Asp Ile Met Arg
 1250 1255 1260
 Leu Gly Arg Tyr Ser Phe Ser Ser Pro Leu Thr Arg Leu Ser Thr
 1265 1270 1275
 Asp Ile Phe

<210> 5
 <211> 218
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 6282188CD1

<400> 5

Met	Leu	Lys	His	Pro	Val	Leu	Pro	Ala	Leu	Cys	Leu	Ala	Leu	Val
1										10				15
Ser	Leu	Phe	Ala	Asn	Val	Ser	Val	Gln	Ala	Asp	Ala	Ile	Val	Thr
										25				30
Ser	Val	Arg	Ser	Pro	Glu	Trp	Ala	Gln	Pro	Ile	Asp	Ala	His	Tyr
										40				45
Asn	Leu	His	Gln	Met	Thr	Pro	Thr	Leu	Tyr	Arg	Ser	Gly	Leu	Pro
										55				60
Asp	Ser	Arg	Ala	Leu	Pro	Leu	Leu	Glu	Lys	Leu	Asn	Val	Gly	Thr
										70				75
Val	Ile	Asn	Phe	Leu	Pro	Glu	Ser	Asp	Asp	Ser	Trp	Leu	Ala	Asp
										85				90
Ser	Asp	Ile	Lys	Gln	Val	Gln	Leu	Thr	Tyr	Arg	Thr	Asn	His	Val
										100				105
Asp	Asp	Ser	Asp	Val	Leu	Ala	Ala	Leu	Arg	Ala	Ile	Arg	Gln	Ala
										115				120
Glu	Ala	Asn	Gly	Ser	Val	Leu	Met	His	Cys	Lys	His	Gly	Ser	Asp
										130				135
Arg	Thr	Gly	Leu	Met	Ala	Ala	Met	Tyr	Arg	Val	Val	Ile	Gln	Gly
										145				150
Trp	Ser	Lys	Glu	Asp	Ala	Leu	Asn	Glu	Met	Thr	Leu	Gly	Gly	Phe
										160				165
Gly	Ser	Ser	Asn	Gly	Phe	Lys	Asp	Gly	Val	Arg	Tyr	Met	Met	Arg
										175				180
Ala	Asp	Ile	Asp	Lys	Leu	Arg	Thr	Ala	Leu	Ala	Thr	Gly	Asp	Cys
										190				195
Ser	Thr	Ser	Ala	Phe	Ala	Leu	Cys	Ser	Met	Lys	Gln	Trp	Ile	Ser
										205				210
Thr	Thr	Gly	Ser	Glu	Gln	Lys	Glu							
										215				

<210> 6
 <211> 420
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2182961CD1

<400> 6
 Met Val Ala Ala Arg Glu Asn Glu Glu Ala Lys Glu Glu Thr

1	5	10	15											
Pro	Asp	Lys	Leu	Ile	Arg	Ser	Cys	Glu	Pro	Gly	Ser	Met	Thr	Val
				20					25					30
Thr	Trp	Thr	Trp	Trp	Val	Pro	Thr	Arg	Ser	Glu	Val	Gln	Phe	Gly
					35				40					45
Leu	Gln	Pro	Ser	Gly	Pro	Leu	Pro	Leu	Arg	Ala	Gln	Gly	Thr	Phe
					50				55					60
Val	Pro	Phe	Val	Asp	Gly	Gly	Ile	Leu	Arg	Arg	Lys	Leu	Tyr	Ile
					65				70					75
His	Arg	Val	Thr	Leu	Arg	Lys	Leu	Leu	Pro	Gly	Val	Gln	Tyr	Val
					80				85					90
Tyr	Arg	Cys	Gly	Ser	Ala	Gln	Gly	Trp	Ser	Arg	Arg	Phe	Arg	Phe
					95				100					105
Arg	Ala	Leu	Lys	Asn	Gly	Ala	His	Trp	Ser	Pro	Arg	Leu	Ala	Val
					110				115					120
Phe	Gly	Asp	Leu	Gly	Ala	Asp	Asn	Pro	Lys	Ala	Val	Pro	Arg	Leu
					125				130					135
Arg	Arg	Asp	Thr	Gln	Gln	Gly	Met	Tyr	Asp	Ala	Val	Leu	His	Val
					140				145					150
Gly	Asp	Phe	Ala	Tyr	Asn	Leu	Asp	Gln	Asp	Asn	Ala	Arg	Val	Gly
					155				160					165
Asp	Arg	Phe	Met	Arg	Leu	Ile	Glu	Pro	Val	Ala	Ala	Ser	Leu	Pro
					170				175					180
Tyr	Met	Thr	Cys	Pro	Gly	Asn	His	Glu	Glu	Arg	Tyr	Asn	Phe	Ser
					185				190					195
Asn	Tyr	Lys	Ala	Arg	Phe	Ser	Met	Pro	Gly	Asp	Asn	Glu	Gly	Leu
					200				205					210
Trp	Tyr	Ser	Trp	Asp	Leu	Gly	Pro	Ala	His	Ile	Ile	Ser	Phe	Ser
					215				220					225
Thr	Glu	Val	Tyr	Phe	Phe	Leu	His	Tyr	Gly	Arg	His	Leu	Val	Gln
					230				235					240
Arg	Gln	Phe	Arg	Trp	Leu	Glu	Ser	Asp	Leu	Gln	Lys	Ala	Asn	Lys
					245				250					255
Asn	Arg	Ala	Ala	Arg	Pro	Trp	Ile	Ile	Thr	Met	Gly	His	Arg	Pro
					260				265					270
Met	Tyr	Cys	Ser	Asn	Ala	Asp	Leu	Asp	Asp	Cys	Thr	Arg	His	Glu
					275				280					285
Ser	Lys	Val	Arg	Lys	Gly	Leu	Gln	Gly	Lys	Leu	Tyr	Gly	Leu	Glu
					290				295					300
Asp	Leu	Phe	Tyr	Lys	Tyr	Gly	Val	Asp	Leu	Gln	Leu	Trp	Ala	His
					305				310					315
Glu	His	Ser	Tyr	Glu	Arg	Leu	Trp	Pro	Ile	Tyr	Asn	Tyr	Gln	Val
					320				325					330
Phe	Asn	Gly	Ser	Arg	Glu	Met	Pro	Tyr	Thr	Asn	Pro	Arg	Gly	Pro
					335				340					345
Val	His	Ile	Ile	Thr	Gly	Ser	Ala	Gly	Cys	Glu	Glu	Arg	Leu	Thr
					350				355					360
Pro	Phe	Ala	Val	Phe	Pro	Arg	Pro	Trp	Ser	Ala	Val	Arg	Val	Lys
					365				370					375
Glu	Tyr	Gly	Tyr	Thr	Arg	Leu	His	Ile	Leu	Asn	Gly	Thr	His	Ile
					380				385					390
His	Ile	Gln	Gln	Val	Ser	Asp	Asp	Gln	Asp	Gly	Lys	Ile	Val	Asp
					395				400					405
Asp	Val	Trp	Val	Val	Arg	Pro	Leu	Phe	Gly	Arg	Arg	Met	Tyr	Leu
					410				415					420

<210> 7
<211> 986
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte ID No: 5119906CD1

<400> 7

Met	Arg	Phe	Phe	Leu	Arg	Glu	Ala	Gly	Thr	Val	Ser	Ala	Gly	Thr
1				5					10					15
Ser	Gln	Cys	Pro	Arg	Ser	Ser	Trp	Glu	Leu	Cys	Leu	Leu	Ser	Cys
				20					25					30
Pro	Leu	Pro	Pro	Ser	Val	Ser	Cys	Glu	Met	Arg	Gly	Leu	Arg	Leu
					35				40					45
Ser	Leu	Ser	Thr	Leu	Trp	Thr	Leu	Ile	Met	Cys	Val	Val	Pro	Thr
					50				55					60
Arg	Ala	His	Val	Val	Leu	Ala	Pro	Ser	Tyr	Pro	Asp	Val	Thr	Phe
					65				70					75
Thr	Ala	Gly	Ala	Asp	Phe	Ser	Pro	Gln	Ile	Pro	Phe	Ser	Leu	Cys
					80				85					90
Phe	Ile	Leu	Ser	Gly	Phe	Ser	Val	Ser	Thr	Ala	Gly	Arg	Met	His
					95				100					105
Ile	Phe	Lys	Pro	Val	Ser	Val	Gln	Ala	Met	Trp	Ser	Ala	Leu	Gln
					110				115					120
Val	Leu	His	Lys	Ala	Cys	Glu	Val	Ala	Arg	Arg	His	Asn	Tyr	Phe
					125				130					135
Pro	Gly	Gly	Val	Ala	Leu	Ile	Trp	Ala	Thr	Tyr	Tyr	Glu	Ser	Cys
					140				145					150
Ile	Ser	Ser	Glu	Gln	Ser	Cys	Ile	Asn	Glu	Trp	Asn	Ala	Met	Gln
					155				160					165
Asp	Leu	Glu	Ser	Thr	Arg	Pro	Asp	Ser	Pro	Ala	Leu	Phe	Val	Asp
					170				175					180
Lys	Pro	Thr	Glu	Gly	Glu	Arg	Thr	Glu	Arg	Leu	Ile	Lys	Ala	Lys
					185				190					195
Leu	Arg	Ser	Ile	Met	Met	Ser	Gln	Asp	Leu	Glu	Asn	Val	Thr	Ser
					200				205					210
Lys	Glu	Ile	Arg	Asn	Glu	Leu	Glu	Lys	Gln	Met	Asn	Cys	Asn	Leu
					215				220					225
Lys	Glu	Leu	Lys	Glu	Phe	Ile	Asp	Asn	Glu	Met	Leu	Leu	Ile	Leu
					230				235					240
Gly	Gln	Met	Asp	Lys	Pro	Ser	Leu	Ile	Phe	Asp	His	Leu	Tyr	Leu
					245				250					255
Gly	Ser	Glu	Trp	Asn	Ala	Ser	Asn	Leu	Glu	Glu	Leu	Gln	Gly	Ser
					260				265					270
Gly	Val	Asp	Tyr	Ile	Leu	Asn	Val	Thr	Arg	Glu	Ile	Asp	Asn	Phe
					275				280					285
Phe	Pro	Gly	Leu	Phe	Ala	Tyr	His	Asn	Ile	Arg	Val	Tyr	Asp	Glu
					290				295					300
Glu	Thr	Thr	Asp	Leu	Leu	Ala	His	Trp	Asn	Glu	Ala	Tyr	His	Phe
					305				310					315
Ile	Asn	Lys	Ala	Lys	Arg	Asn	His	Ser	Lys	Cys	Leu	Val	His	Cys
					320				325					330
Lys	Met	Gly	Val	Ser	Arg	Ser	Ala	Ser	Thr	Val	Ile	Ala	Tyr	Ala
					335				340					345
Met	Lys	Glu	Phe	Gly	Trp	Pro	Leu	Glu	Lys	Ala	Tyr	Asn	Tyr	Val
					350				355					360
Lys	Gln	Lys	Arg	Ser	Ile	Thr	Arg	Pro	Asn	Ala	Gly	Phe	Met	Arg
					365				370					375
Gln	Leu	Ser	Glu	Tyr	Glu	Gly	Ile	Leu	Asp	Ala	Ser	Lys	Gln	Arg
					380				385					390
His	Asn	Lys	Leu	Trp	Arg	Gln	Gln	Thr	Asp	Ser	Ser	Leu	Gln	Gln
					395				400					405
Pro	Val	Asp	Asp	Pro	Ala	Gly	Pro	Gly	Asp	Phe	Leu	Pro	Glu	Thr
					410				415					420
Pro	Asp	Gly	Thr	Pro	Glu	Ser	Gln	Leu	Pro	Phe	Leu	Asp	Asp	Ala
					425				430					435
Ala	Gln	Pro	Gly	Leu	Gly	Pro	Pro	Leu	Pro	Cys	Cys	Phe	Arg	Arg

Leu Ser Asp Pro	440	Leu Leu Pro Ser Pro	445	Glu Asp Glu Thr Gly	450
	455		460	Ser	465
Leu Val His Leu	470	Glu Asp Pro Glu Arg	475	Glu Ala Leu Leu Glu	480
	485		490		495
Gln Gly Ser Gly	500	Leu Cys Glu Lys Asp	505	Val Lys Lys Lys Leu	Glu
	515		520		510
Phe Gly Ser Pro	520	Lys Gly Arg Ser Gly	525	Ser Leu Leu Gln Val	Glu
	530		535		525
Glu Thr Glu Arg	535	Glu Glu Gly Leu Gly	540	Ala Gly Arg Trp Gly	Gln
	550		555		
Leu Pro Thr Gln	555	Leu Asp Gln Asn Leu	560	Asn Ser Glu Asn	Leu
	560		565		555
Asn Asn Asn Ser	565	Lys Arg Ser Cys Pro	570	Asn Gly Met Glu Asp	Asp
	575		580		
Ala Ile Phe Gly	580	Ile Leu Asn Lys Val	585	Pro Ser Tyr Lys Ser	
	590		595		
Cys Ala Asp Cys	595	Met Tyr Pro Thr Ala	600	Ser Gly Ala Pro Glu	Ala
	605		610		
Ser Arg Glu Arg	610	Cys Glu Asp Pro Asn	615	Pro Ala Ile Cys Thr	
	620		625		
Gln Pro Ala Phe	625	Leu Pro His Ile Thr	630	Ser Ser Pro Val Ala	His
	635		640		
Leu Ala Ser Arg	640	Ser Arg Val Pro Glu	645	Pro Ala Ser Gly	Pro
	650		655		
Thr Glu Pro Pro	655	Pro Phe Leu Pro Pro	660	Ala Gly Ser Arg Arg	Ala
	665		670		
Asp Thr Ser Gly	670	Pro Gly Ala Gly Ala	675	Leu Glu Pro Pro Ala	
	680		685		
Ser Leu Leu Glu	685	Pro Ser Arg Glu Thr	690	Lys Val Leu Pro	Lys
	695		700		
Ser Leu Leu Leu	700	Lys Asn Ser His Cys	705	Ser Lys Asn Pro Pro	Ser
	710		715		
Thr Glu Val Val	715	Ile Lys Glu Glu Ser	720	Pro Lys Lys Asp	Met
	725		730		
Lys Pro Ala Lys	730	Asp Leu Arg Leu Leu	735	Phe Ser Asn Glu Ser	Glu
	740		745		
Lys Pro Thr Thr	745	Asn Ser Tyr Leu Met	750	His Gln Glu Ser	Ile
	755		760		
Ile Gln Leu Gln	760	Lys Ala Gly Leu Val	765	Lys His Thr Lys	Glu
	770		775		
Leu Glu Arg Leu	775	Lys Ser Val Pro Ala	780	Pro Ala Pro Pro	Ser
	785		790		
Arg Asp Gly Pro	790	Ala Ser Arg Leu Glu	795	Ser Ile Pro Glu	Glu
	800		805		
Ser Gln Asp Pro	805	Ala Ala Leu His Glu	810	Gly Pro Leu Val	Met
	815		820		
Pro Ser Gln Ala	820	Gly Ser Asp Glu Lys	825	Ser Glu Ala Ala Pro	Ala
	830		835		
Ser Leu Glu Gly	835	Gly Ser Leu Lys Ser	840	Pro Pro Pro Phe Phe	Tyr
	845		850		
Arg Leu Asp His	850	Thr Ser Ser Phe Ser	855	Lys Asp Phe Leu Lys	Thr
	860		865		
Ile Cys Tyr Thr	865	Met Ser Ser Asn Leu	870	Met Ser Ser Asn Leu	Thr
	875		880		
Arg Ser Ser Ser	880	Ser Asp Ser Ile His	885	Val Arg Gly Lys	Pro
	890		895		
Gly Leu Val Lys	895	Gln Arg Thr Gln Glu	900	Ile Glu Thr Arg Leu	Arg
	905		910		
Leu Ala Gly Leu	910	Thr Val Ser Ser Pro	915	Lys Arg Ser His Ser	

Leu	Ala	Lys	Leu	Gly	Ser	Leu	Thr	Phe	Ser	Thr	Glu	Asp	Leu	Ser
					920				925					930
Ser	Glu	Ala	Asp	Pro	Ser	Thr	Val	Ala	Asp	Ser	Gln	Asp	Thr	Thr
					935				940					945
Leu	Ser	Glu	Ser	Ser	Phe	Leu	His	Glu	Pro	Gln	Gly	Thr	Pro	Arg
					950				955					960
Asp	Pro	Ala	Ala	Thr	Ser	Lys	Pro	Ser	Gly	Lys	Pro	Ala	Pro	Glu
					965				970					975
Asn	Leu	Lys	Ser	Pro	Ser	Trp	Met	Ser	Lys	Ser				
					980				985					

<210> 8

<211> 399

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4022502CD1

<400> 8

Met	Ala	Glu	Leu	Leu	Arg	Ser	Leu	Gln	Asp	Ser	Gln	Leu	Val	Ala
					1				10					15
Arg	Phe	Gln	Arg	Arg	Cys	Gly	Leu	Phe	Pro	Ala	Pro	Asp	Glu	Gly
					20				25					30
Pro	Arg	Glu	Asn	Gly	Ala	Asp	Pro	Thr	Glu	Arg	Ala	Ala	Arg	Val
					35				40					45
Pro	Gly	Val	Glu	His	Leu	Pro	Ala	Ala	Asn	Gly	Lys	Gly	Gly	Glu
					50				55					60
Ala	Pro	Ala	Asn	Gly	Leu	Arg	Arg	Ala	Ala	Ala	Pro	Glu	Ala	Tyr
					65				70					75
Val	Gln	Lys	Tyr	Val	Val	Lys	Asn	Tyr	Phe	Tyr	Tyr	Tyr	Leu	Phe
					80				85					90
Gln	Phe	Ser	Ala	Ala	Leu	Gly	Gln	Glu	Val	Phe	Tyr	Ile	Thr	Phe
					95				100					105
Leu	Pro	Phe	Thr	His	Trp	Asn	Ile	Asp	Pro	Tyr	Leu	Ser	Arg	Arg
					110				115					120
Leu	Ile	Ile	Ile	Trp	Val	Leu	Val	Met	Tyr	Ile	Gly	Gln	Val	Ala
					125				130					135
Lys	Asp	Val	Leu	Lys	Trp	Pro	Arg	Pro	Ser	Ser	Pro	Pro	Val	Val
					140				145					150
Lys	Leu	Glu	Lys	Arg	Leu	Ile	Ala	Glu	Tyr	Gly	Met	Pro	Ser	Thr
					155				160					165
His	Ala	Met	Ala	Ala	Thr	Ala	Ile	Ala	Phe	Thr	Leu	Leu	Ile	Ser
					170				175					180
Thr	Met	Asp	Arg	Tyr	Gln	Tyr	Pro	Phe	Val	Leu	Gly	Leu	Val	Met
					185				190					195
Ala	Val	Val	Phe	Ser	Thr	Leu	Val	Cys	Leu	Ser	Arg	Leu	Tyr	Thr
					200				205					210
Gly	Met	His	Thr	Val	Leu	Asp	Val	Leu	Gly	Gly	Val	Leu	Ile	Thr
					215				220					225
Ala	Leu	Leu	Ile	Val	Leu	Thr	Tyr	Pro	Ala	Trp	Thr	Phe	Ile	Asp
					230				235					240
Cys	Leu	Asp	Ser	Ala	Ser	Pro	Leu	Phe	Pro	Val	Cys	Val	Ile	Val
					245				250					255
Val	Pro	Phe	Phe	Leu	Cys	Tyr	Asn	Tyr	Pro	Val	Ser	Asp	Tyr	Tyr
					260				265					270
Ser	Pro	Thr	Arg	Ala	Asp	Thr	Thr	Thr	Ile	Leu	Ala	Ala	Gly	Ala
					275				280					285
Gly	Val	Thr	Ile	Gly	Phe	Trp	Ile	Asn	His	Phe	Phe	Gln	Leu	Val
					290				295					300
Ser	Lys	Pro	Ala	Glu	Ser	Leu	Pro	Val	Ile	Gln	Asn	Ile	Pro	Pro
					305				310					315

Leu	Thr	Thr	Tyr	Met	Leu	Val	Leu	Gly	Leu	Thr	Lys	Phe	Ala	Val
				320					325					330
Gly	Ile	Val	Leu	Ile	Leu	Leu	Val	Arg	Gln	Leu	Val	Gln	Asn	Leu
				335					340					345
Ser	Leu	Gln	Val	Leu	Tyr	Ser	Trp	Phe	Lys	Val	Val	Thr	Arg	Asn
				350					355					360
Lys	Glu	Ala	Arg	Arg	Arg	Leu	Glu	Ile	Glu	Val	Pro	Tyr	Lys	Phe
				365					370					375
Val	Thr	Tyr	Thr	Ser	Val	Gly	Ile	Cys	Ala	Thr	Thr	Phe	Val	Pro
				380					385					390
Met	Leu	His	Arg	Phe	Leu	Gly	Leu	Pro						
				395										

<210> 9
<211> 387
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4084356CD1

<400> 9

Met	Arg	Ala	Trp	Ile	Pro	Gly	Trp	Val	Gly	Arg	Pro	His	Gly	Gly
1				5				10						15
Ala	Glu	Ala	Ser	Gly	Gly	Leu	Arg	Phe	Gly	Ala	Ser	Ala	Ala	Gln
				20				25						30
Gly	Trp	Arg	Ala	Arg	Met	Glu	Asp	Ala	His	Cys	Thr	Trp	Leu	Ser
				35				40						45
Leu	Pro	Gly	Leu	Pro	Pro	Gly	Trp	Ala	Leu	Phe	Ala	Val	Leu	Asp
				50				55						60
Gly	His	Gly	Gly	Ala	Arg	Ala	Ala	Arg	Phe	Gly	Ala	Arg	His	Leu
				65				70						75
Pro	Gly	His	Val	Leu	Gln	Glu	Leu	Gly	Pro	Glu	Pro	Ser	Glu	Pro
				80				85						90
Glu	Gly	Val	Arg	Glu	Ala	Leu	Arg	Arg	Ala	Phe	Leu	Ser	Ala	Asp
				95				100						105
Glu	Arg	Leu	Arg	Ser	Leu	Trp	Pro	Arg	Val	Glu	Thr	Gly	Gly	Phe
				110				115						120
Thr	Ala	Val	Val	Leu	Leu	Val	Ser	Pro	Arg	Phe	Leu	Tyr	Leu	Ala
				125				130						135
His	Cys	Gly	Asp	Ser	Arg	Ala	Val	Leu	Ser	Arg	Ala	Gly	Ala	Val
				140				145						150
Ala	Phe	Ser	Thr	Glu	Asp	His	Arg	Pro	Leu	Arg	Pro	Arg	Glu	Arg
				155				160						165
Glu	Arg	Ile	His	Ala	Ala	Gly	Gly	Thr	Ile	Arg	Arg	Arg	Arg	Val
				170				175						180
Glu	Gly	Ser	Leu	Ala	Val	Ser	Arg	Ala	Leu	Gly	Asp	Phe	Thr	Tyr
				185				190						195
Lys	Glu	Ala	Pro	Gly	Arg	Pro	Pro	Glu	Leu	Gln	Leu	Val	Ser	Ala
				200				205						210
Glu	Pro	Glu	Val	Ala	Ala	Leu	Ala	Arg	Gln	Ala	Glu	Asp	Glu	Phe
				215				220						225
Met	Leu	Leu	Ala	Ser	Asp	Gly	Val	Trp	Asp	Thr	Val	Ser	Gly	Ala
				230				235						240
Ala	Leu	Ala	Gly	Leu	Val	Ala	Ser	Arg	Leu	Arg	Leu	Gly	Leu	Ala
				245				250						255
Pro	Glu	Leu	Leu	Cys	Ala	Gln	Leu	Leu	Asp	Thr	Cys	Leu	Cys	Lys
				260				265						270
Gly	Ser	Leu	Asp	Asn	Met	Thr	Cys	Ile	Leu	Val	Cys	Phe	Pro	Gly
				275				280						285
Ala	Pro	Arg	Pro	Ser	Glu	Glu	Ala	Ile	Arg	Arg	Glu	Leu	Ala	Leu
				290				295						300

Asp	Ala	Ala	Leu	Gly	Cys	Arg	Ile	Ala	Glu	Leu	Cys	Ala	Ser	Ala
				305					310					315
Gln	Lys	Pro	Pro	Ser	Leu	Asn	Thr	Val	Phe	Arg	Thr	Leu	Ala	Ser
				320					325					330
Glu	Asp	Ile	Pro	Asp	Leu	Pro	Pro	Gly	Gly	Gly	Leu	Asp	Cys	Lys
				335					340					345
Ala	Thr	Val	Ile	Ala	Glu	Val	Tyr	Ser	Gln	Ile	Cys	Gln	Val	Ser
				350					355					360
Glu	Glu	Cys	Gly	Glu	Lys	Gly	Gln	Asp	Gly	Ala	Gly	Lys	Ser	Asn
				365					370					375
Pro	Thr	His	Leu	Gly	Ser	Ala	Leu	Asp	Met	Glu	Ala			
				380					385					

<210> 10
<211> 447
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1740204CD1

<400> 10

Met	Gly	Glu	Asp	Thr	Asp	Thr	Arg	Lys	Ile	Asn	His	Ser	Phe	Leu
1				5					10					15
Arg	Asp	His	Ser	Tyr	Val	Thr	Glu	Ala	Asp	Ile	Phe	Ser	Thr	Val
				20					25					30
Glu	Phe	Asn	His	Thr	Gly	Glu	Leu	Leu	Ala	Thr	Gly	Asp	Lys	Gly
				35					40					45
Gly	Arg	Val	Val	Ile	Phe	Gln	Arg	Glu	Pro	Glu	Ser	Lys	Asn	Ala
				50					55					60
Pro	His	Ser	Gln	Gly	Glu	Tyr	Asp	Val	Tyr	Ser	Thr	Phe	Gln	Ser
				65					70					75
His	Glu	Pro	Glu	Phe	Asp	Tyr	Leu	Lys	Ser	Leu	Glu	Ile	Glu	Glu
				80					85					90
Lys	Ile	Asn	Lys	Ile	Lys	Trp	Leu	Pro	Gln	Gln	Asn	Ala	Ala	His
				95					100					105
Ser	Leu	Leu	Ser	Thr	Asn	Asp	Lys	Thr	Ile	Lys	Leu	Trp	Lys	Ile
				110					115					120
Thr	Glu	Arg	Asp	Lys	Arg	Pro	Glu	Gly	Tyr	Asn	Leu	Lys	Asp	Glu
				125					130					135
Glu	Gly	Lys	Leu	Lys	Asp	Leu	Ser	Thr	Val	Thr	Ser	Leu	Gln	Val
				140					145					150
Pro	Val	Leu	Lys	Pro	Met	Asp	Leu	Met	Val	Glu	Val	Ser	Pro	Arg
				155					160					165
Arg	Ile	Phe	Ala	Asn	Gly	His	Thr	Tyr	His	Ile	Asn	Ser	Ile	Ser
				170					175					180
Val	Asn	Ser	Asp	Cys	Glu	Thr	Tyr	Met	Ser	Ala	Asp	Asp	Leu	Arg
				185					190					195
Ile	Asn	Leu	Trp	His	Leu	Ala	Ile	Thr	Asp	Arg	Ser	Phe	Asn	Ile
				200					205					210
Val	Asp	Ile	Lys	Pro	Ala	Asn	Met	Glu	Asp	Leu	Thr	Glu	Val	Ile
				215					220					225
Thr	Ala	Ser	Glu	Phe	His	Pro	His	His	Cys	Asn	Leu	Phe	Val	Tyr
				230					235					240
Ser	Ser	Ser	Lys	Gly	Ser	Leu	Arg	Leu	Cys	Asp	Met	Arg	Ala	Ala
				245					250					255
Ala	Leu	Cys	Asp	Lys	His	Ser	Lys	Leu	Phe	Glu	Glu	Pro	Glu	Asp
				260					265					270
Pro	Ser	Asn	Arg	Ser	Phe	Phe	Ser	Glu	Ile	Ile	Ser	Ser	Val	Ser
				275					280					285
Asp	Val	Lys	Phe	Ser	His	Ser	Gly	Arg	Tyr	Met	Leu	Thr	Arg	Asp
				290					295					300

Tyr	Leu	Thr	Val	Lys	Val	Trp	Asp	Leu	Asn	Met	Glu	Ala	Arg	Pro
				305					310					315
Ile	Glu	Thr	Tyr	Gln	Val	His	Asp	Tyr	Leu	Arg	Ser	Lys	Leu	Cys
				320					325					330
Ser	Leu	Tyr	Glu	Asn	Asp	Cys	Ile	Phe	Asp	Lys	Phe	Glu	Cys	Ala
				335					340					345
Trp	Asn	Gly	Ser	Asp	Ser	Val	Ile	Met	Thr	Gly	Ala	Tyr	Asn	Asn
				350					355					360
Phe	Phe	Arg	Met	Phe	Asp	Arg	Asn	Thr	Lys	Arg	Asp	Val	Thr	Leu
				365					370					375
Glu	Ala	Ser	Arg	Glu	Ser	Ser	Lys	Pro	Arg	Ala	Val	Leu	Lys	Pro
				380					385					390
Arg	Arg	Val	Cys	Val	Gly	Gly	Lys	Arg	Arg	Arg	Asp	Asp	Ile	Ser
				395					400					405
Val	Asp	Ser	Leu	Asp	Phe	Thr	Lys	Lys	Ile	Leu	His	Thr	Ala	Trp
				410					415					420
His	Pro	Ala	Glu	Asn	Ile	Ile	Ala	Ile	Ala	Ala	Thr	Asn	Asn	Leu
				425					430					435
Tyr	Ile	Phe	Gln	Asp	Lys	Val	Asn	Ser	Asp	Met	His			
				440					445					

<210> 11
<211> 572
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483804CD1

<400> 11														
Met	Asn	Tyr	Glu	Gly	Ala	Arg	Ser	Glu	Arg	Glu	Asn	His	Ala	Ala
					1			5		10				15
Asp	Asp	Ser	Glu	Gly	Gly	Ala	Leu	Asp	Met	Cys	Cys	Ser	Glu	Arg
					20				25					30
Leu	Pro	Gly	Leu	Pro	Gln	Pro	Ile	Val	Met	Glu	Ala	Leu	Asp	Glu
					35				40					45
Ala	Glu	Gly	Leu	Gln	Asp	Ser	Gln	Arg	Glu	Met	Pro	Pro	Pro	Pro
					50				55					60
Pro	Pro	Ser	Pro	Pro	Ser	Asp	Pro	Ala	Gln	Lys	Pro	Pro	Pro	Arg
					65				70					75
Gly	Ala	Gly	Ser	His	Ser	Leu	Thr	Val	Arg	Ser	Ser	Leu	Cys	Leu
					80				85					90
Phe	Ala	Ala	Ser	Gln	Phe	Leu	Leu	Ala	Cys	Gly	Val	Leu	Trp	Phe
					95				100					105
Ser	Gly	Tyr	Gly	His	Ile	Trp	Ser	Gln	Asn	Ala	Thr	Asn	Leu	Val
					110				115					120
Ser	Ser	Leu	Leu	Thr	Leu	Leu	Lys	Gln	Leu	Glu	Pro	Thr	Ala	Trp
					125				130					135
Leu	Asp	Ser	Gly	Thr	Trp	Gly	Val	Pro	Ser	Leu	Leu	Leu	Val	Phe
					140				145					150
Leu	Ser	Val	Gly	Leu	Val	Leu	Val	Thr	Thr	Leu	Val	Trp	His	Leu
					155				160					165
Leu	Arg	Thr	Pro	Pro	Glu	Pro	Pro	Thr	Pro	Leu	Pro	Pro	Glu	Asp
					170				175					180
Arg	Arg	Gln	Ser	Val	Ser	Arg	Gln	Pro	Ser	Phe	Thr	Tyr	Ser	Glu
					185				190					195
Trp	Met	Glu	Glu	Lys	Ile	Glu	Asp	Asp	Phe	Leu	Asp	Leu	Asp	Pro
					200				205					210
Val	Pro	Glu	Thr	Pro	Val	Phe	Asp	Cys	Val	Met	Asp	Ile	Lys	Pro
					215				220					225
Glu	Ala	Asp	Pro	Thr	Ser	Leu	Thr	Val	Lys	Ser	Met	Gly	Leu	Gln
					230				235					240

Glu	Arg	Arg	Gly	Ser	Asn	Val	Ser	Leu	Thr	Leu	Asp	Met	Cys	Thr
				245					250					255
Pro	Gly	Cys	Asn	Glu	Glu	Gly	Phe	Gly	Tyr	Leu	Met	Ser	Pro	Arg
				260					265					270
Glu	Glu	Ser	Ala	Arg	Glu	Tyr	Leu	Leu	Ser	Ala	Ser	Arg	Val	Leu
				275					280					285
Gln	Ala	Glu	Glu	Leu	His	Glu	Lys	Ala	Leu	Asp	Pro	Phe	Leu	Leu
				290					295					300
Gln	Ala	Glu	Phe	Phe	Glu	Ile	Pro	Met	Asn	Phe	Val	Asp	Pro	Lys
				305					310					315
Glu	Tyr	Asp	Ile	Pro	Gly	Leu	Val	Arg	Lys	Asn	Arg	Tyr	Lys	Thr
				320					325					330
Ile	Leu	Pro	Asn	Pro	His	Ser	Arg	Val	Cys	Leu	Thr	Ser	Pro	Asp
				335					340					345
Pro	Asp	Asp	Pro	Leu	Ser	Ser	Tyr	Ile	Asn	Ala	Asn	Tyr	Ile	Arg
				350					355					360
Pro	Gly	Leu	Gly	Trp	Pro	Gln	Gly	Tyr	Gly	Gly	Glu	Glu	Lys	Val
				365					370					375
Tyr	Ile	Ala	Thr	Gln	Gly	Pro	Ile	Val	Ser	Thr	Val	Ala	Asp	Phe
				380					385					390
Trp	Arg	Met	Val	Trp	Gln	Glu	His	Thr	Pro	Ile	Ile	Val	Met	Ile
				395					400					405
Thr	Asn	Ile	Glu	Glu	Met	Asn	Glu	Lys	Cys	Thr	Glu	Tyr	Trp	Pro
				410					415					420
Glu	Glu	Gln	Val	Ala	Tyr	Asp	Gly	Val	Glu	Ile	Thr	Val	Gln	Lys
				425					430					435
Val	Ile	His	Thr	Glu	Asp	Tyr	Arg	Leu	Arg	Leu	Ile	Ser	Leu	Lys
				440					445					450
Ser	Gly	Thr	Glu	Glu	Arg	Gly	Leu	Lys	His	Tyr	Trp	Phe	Thr	Ser
				455					460					465
Trp	Pro	Asp	Gln	Lys	Thr	Pro	Asp	Arg	Ala	Pro	Pro	Leu	Leu	His
				470					475					480
Leu	Val	Arg	Glu	Val	Glu	Glu	Ala	Ala	Gln	Gln	Glu	Gly	Pro	His
				485					490					495
Cys	Ala	Pro	Ile	Ile	Val	His	Cys	Ser	Ala	Gly	Ile	Gly	Arg	Thr
				500					505					510
Gly	Cys	Phe	Ile	Ala	Thr	Ser	Ile	Cys	Cys	Gln	Gln	Leu	Arg	Gln
				515					520					525
Glu	Gly	Val	Val	Asp	Ile	Leu	Lys	Thr	Thr	Cys	Gln	Leu	Arg	Gln
				530					535					540
Asp	Arg	Gly	Gly	Met	Ile	Gln	Thr	Cys	Glu	Gln	Tyr	Gln	Phe	Val
				545					550					555
His	His	Val	Met	Ser	Leu	Tyr	Glu	Lys	Gln	Leu	Ser	His	Gln	Ser
				560					565					570

Pro Glu

<210> 12
<211> 1510
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7483934CD1

<400> 12
Met Ala Leu Ser Lys Gly Leu Arg Leu Leu Gly Arg Leu Gly Ala
1 5 10 15
Glu Gly Asp Cys Ser Val Leu Leu Glu Ala Arg Gly Arg Asp Asp
20 25 30
Cys Leu Leu Phe Glu Ala Gly Thr Val Ala Thr Leu Asp Asp Cys
35 40 45

Leu Leu Phe Glu Ala Gly Thr Val Ala Thr Leu Ala Pro Glu Glu
 50 55 60
 Lys Glu Val Ile Lys Gly Gln Tyr Gly Lys Leu Thr Asp Ala Tyr
 65 70 75
 Gly Cys Leu Gly Glu Leu Arg Leu Lys Ser Gly Gly Thr Ser Leu
 80 85 90
 Ser Phe Leu Val Leu Val Thr Gly Cys Thr Ser Val Gly Arg Ile
 95 100 105
 Pro Asp Ala Glu Ile Tyr Lys Ile Thr Ala Thr Asp Phe Tyr Pro
 110 115 120
 Leu Gln Glu Glu Ala Lys Glu Glu Glu Arg Leu Ile Ala Leu Lys
 125 130 135
 Lys Ile Leu Ser Ser Gly Val Phe Tyr Phe Ser Trp Pro Asn Asp
 140 145 150
 Gly Ser Arg Phe Asp Leu Thr Val Arg Thr Gln Lys Gln Gly Asp
 155 160 165
 Asp Ser Ser Glu Trp Gly Asn Ser Phe Phe Trp Asn Gln Leu Leu
 170 175 180
 His Val Pro Leu Arg Gln His Gln Val Ser Cys Cys Asp Trp Leu
 185 190 195
 Leu Lys Ile Ile Cys Gly Val Val Thr Ile Arg Thr Val Tyr Ala
 200 205 210
 Ser His Lys Gln Ala Lys Ala Cys Leu Val Ser Arg Val Ser Cys
 215 220 225
 Glu Arg Thr Gly Thr Arg Phe His Thr Arg Gly Val Asn Asp Asp
 230 235 240
 Gly His Val Ser Asn Phe Val Glu Thr Glu Gln Met Ile Tyr Met
 245 250 255
 Asp Asp Gly Val Ser Ser Phe Val Gln Ile Arg Gly Ser Val Pro
 260 265 270
 Leu Phe Trp Glu Gln Pro Gly Leu Gln Val Gly Ser His His Leu
 275 280 285
 Arg Leu His Lys Gly Leu Glu Ala Asn Ala Pro Ala Phe Asp Arg
 290 295 300
 His Met Val Leu Leu Lys Glu Gln Tyr Gly Gln Gln Val Val Val
 305 310 315
 Asn Leu Leu Gly Ser Arg Gly Gly Glu Val Leu Asn Arg Ala
 320 325 330
 Phe Lys Lys Leu Leu Trp Ala Ser Cys His Ala Gly Asp Thr Pro
 335 340 345
 Met Ile Asn Phe Asp Phe His Gln Phe Ala Lys Gly Gly Lys Leu
 350 355 360
 Glu Lys Leu Glu Thr Leu Leu Arg Pro Gln Leu Lys Leu His Trp
 365 370 375
 Glu Asp Phe Asp Val Phe Thr Lys Gly Glu Asn Val Ser Pro Arg
 380 385 390
 Phe Gln Lys Gly Thr Leu Arg Met Asn Cys Leu Asp Cys Leu Asp
 395 400 405
 Arg Thr Asn Thr Val Gln Ser Phe Ile Ala Leu Glu Val Leu His
 410 415 420
 Leu Gln Leu Lys Thr Leu Gly Leu Ser Ser Lys Pro Ile Val Asp
 425 430 435
 Arg Phe Val Glu Ser Phe Lys Ala Met Trp Ser Leu Asn Gly His
 440 445 450
 Ser Leu Ser Lys Val Phe Thr Gly Ser Arg Ala Leu Glu Gly Lys
 455 460 465
 Ala Lys Val Gly Lys Leu Lys Asp Gly Ala Arg Ser Met Ser Arg
 470 475 480
 Thr Ile Gln Ser Asn Phe Phe Asp Gly Val Lys Gln Glu Ala Ile
 485 490 495
 Lys Leu Leu Leu Val Gly Asp Val Tyr Gly Glu Glu Val Ala Asp
 500 505 510
 Lys Gly Gly Met Leu Leu Asp Ser Thr Ala Leu Leu Val Thr Pro

515	Arg Ile Leu Lys Ala Met Thr Glu Arg	520	Gln Ser Glu Phe Thr Asn
530		535	540
Phe Lys Arg Ile Arg Ile Ala Met Gly	Thr Trp Asn Val Asn Gly		
545	550	555	
Gly Lys Gln Phe Arg Ser Asn Val Leu	Arg Thr Ala Glu Leu Thr		
560	565	570	
Asp Trp Leu Leu Asp Ser Pro Gln Leu	Ser Gly Ala Thr Asp Ser		
575	580	585	
Gln Asp Asp Ser Ser Pro Ala Asp Ile	Phe Ala Val Gly Phe Glu		
590	595	600	
Glu Met Val Glu Leu Ser Ala Gly Asn	Ile Val Asn Ala Ser Thr		
605	610	615	
Thr Asn Lys Lys Met Trp Gly Glu Gln	Leu Gln Lys Ala Ile Ser		
620	625	630	
Arg Ser His Arg Tyr Ile Leu Leu Thr	Ser Ala Gln Leu Val Gly		
635	640	645	
Val Cys Leu Tyr Ile Phe Val Arg Pro	Tyr His Val Pro Phe Ile		
650	655	660	
Arg Asp Val Ala Ile Asp Thr Val Lys	Thr Gly Met Gly Gly Lys		
665	670	675	
Ala Gly Asn Lys Gly Ala Val Gly Ile	Arg Phe Gln Phe His Ser		
680	685	690	
Thr Ser Phe Cys Phe Ile Cys Ser His	Leu Thr Ala Gly Gln Ser		
695	700	705	
Gln Val Lys Glu Arg Asn Glu Asp Tyr	Lys Glu Ile Thr Gln Lys		
710	715	720	
Leu Cys Phe Pro Met Gly Arg Asn Val	Phe Ser His Asp Tyr Val		
725	730	735	
Phe Trp Cys Gly Asp Phe Asn Tyr Arg	Ile Asp Leu Thr Tyr Glu		
740	745	750	
Glu Val Phe Tyr Phe Val Lys Arg Gln	Asp Trp Lys Lys Leu Leu		
755	760	765	
Glu Phe Asp Gln Leu Gln Leu Gln Lys	Ser Ser Gly Lys Ile Phe		
770	775	780	
Lys Asp Phe His Glu Gly Ala Ile Asn	Phe Gly Pro Thr Tyr Lys		
785	790	795	
Tyr Asp Val Gly Ser Ala Ala Tyr Asp	Thr Ser Asp Lys Cys Arg		
800	805	810	
Thr Pro Ala Trp Thr Asp Arg Val Leu	Trp Trp Arg Lys Lys His		
815	820	825	
Pro Phe Asp Lys Thr Ala Gly Glu Leu	Asn Leu Leu Asp Ser Asp		
830	835	840	
Leu Asp Val Asp Thr Lys Val Arg His	Thr Trp Ser Pro Gly Ala		
845	850	855	
Leu Gln Tyr Tyr Gly Arg Ala Glu Leu	Gln Ala Ser Asp His Arg		
860	865	870	
Pro Val Leu Ala Ile Val Glu Val Glu	Val Gln Glu Val Asp Val		
875	880	885	
Gly Ala Arg Glu Arg Val Phe Gln Glu	Val Ser Ser Phe Gln Gly		
890	895	900	
Pro Leu Asp Ala Thr Val Val Val Asn	Leu Gln Ser Pro Thr Leu		
905	910	915	
Glu Glu Lys Asn Glu Phe Pro Glu Asp	Leu Arg Thr Glu Leu Met		
920	925	930	
Gln Thr Leu Gly Ser Tyr Gly Thr Ile	Val Leu Val Arg Ile Asn		
935	940	945	
Gln Gly Gln Met Leu Val Thr Phe Ala	Asp Ser His Ser Ala Leu		
950	955	960	
Ser Val Leu Asp Val Asp Gly Met Lys	Val Lys Gly Arg Ala Val		
965	970	975	
Lys Ile Arg Pro Lys Thr Lys Asp Trp	Leu Lys Gly Leu Arg Glu		
980	985	990	

Glu Ile Ile Arg Lys Arg Asp Ser Met Ala Pro Val Ser Pro Thr
 995 1000 1005
 Ala Asn Ser Cys Leu Leu Glu Glu Asn Phe Asp Phe Thr Ser Leu
 1010 1015 1020
 Asp Tyr Glu Ser Glu Gly Asp Ile Leu Glu Asp Asp Glu Asp Tyr
 1025 1030 1035
 Leu Val Asp Glu Phe Asn Gln Pro Gly Val Ser Asp Ser Glu Leu
 1040 1045 1050
 Gly Gly Asp Asp Leu Ser Asp Val Pro Gly Pro Thr Ala Leu Ala
 1055 1060 1065
 Pro Pro Ser Lys Ser Pro Ala Leu Thr Lys Lys Lys Gln His Pro
 1070 1075 1080
 Thr Tyr Lys Asp Asp Ala Asp Leu Val Glu Leu Lys Arg Glu Leu
 1085 1090 1095
 Glu Ala Val Gly Glu Phe Arg His Arg Ser Pro Ser Arg Ser Leu
 1100 1105 1110
 Ser Val Pro Asn Arg Pro Arg Pro Pro Gln Pro Pro Gln Arg Pro
 1115 1120 1125
 Pro Pro Pro Thr Gly Leu Met Val Lys Lys Ser Ala Ser Asp Ala
 1130 1135 1140
 Ser Ile Ser Ser Gly Thr His Gly Gln Tyr Ser Ile Leu Gln Thr
 1145 1150 1155
 Ala Arg Leu Leu Pro Gly Ala Pro Gln Gln Pro Pro Lys Ala Arg
 1160 1165 1170
 Thr Gly Ile Ser Lys Pro Tyr Asn Val Lys Gln Ile Lys Thr Thr
 1175 1180 1185
 Asn Ala Gln Glu Ala Glu Ala Ala Ile Arg Cys Leu Leu Glu Ala
 1190 1195 1200
 Arg Gly Gly Ala Ser Glu Glu Ala Leu Ser Ala Val Ala Pro Arg
 1205 1210 1215
 Asp Leu Glu Ala Ser Ser Glu Pro Glu Pro Thr Pro Gly Ala Ala
 1220 1225 1230
 Lys Pro Glu Thr Pro Gln Ala Pro Pro Leu Leu Pro Arg Arg Pro
 1235 1240 1245
 Pro Pro Arg Val Pro Ala Ile Lys Lys Pro Thr Leu Arg Arg Thr
 1250 1255 1260
 Gly Lys Pro Leu Ser Pro Glu Glu Gln Phe Glu Gln Gln Thr Val
 1265 1270 1275
 His Phe Thr Ile Gly Pro Pro Glu Thr Ser Val Glu Ala Pro Pro
 1280 1285 1290
 Val Val Thr Ala Pro Arg Val Pro Pro Val Pro Lys Pro Arg Thr
 1295 1300 1305
 Phe Gln Pro Gly Lys Ala Ala Glu Arg Pro Ser His Arg Lys Pro
 1310 1315 1320
 Ala Ser Asp Glu Ala Pro Pro Gly Ala Gly Ala Ser Val Pro Pro
 1325 1330 1335
 Pro Leu Glu Ala Pro Pro Leu Val Pro Lys Val Pro Pro Arg Arg
 1340 1345 1350
 Lys Lys Ser Ala Pro Ala Ala Phe His Leu Gln Val Leu Gln Ser
 1355 1360 1365
 Asn Ser Gln Leu Leu Gln Gly Leu Thr Tyr Asn Ser Ser Asp Ser
 1370 1375 1380
 Pro Ser Gly His Pro Pro Ala Ala Gly Thr Val Phe Pro Gln Gly
 1385 1390 1395
 Asp Phe Leu Ser Thr Ser Ser Ala Thr Ser Pro Asp Ser Asp Gly
 1400 1405 1410
 Thr Lys Ala Met Lys Pro Glu Ala Ala Pro Leu Leu Gly Asp Tyr
 1415 1420 1425
 Gln Asp Pro Phe Trp Asn Leu Leu His His Pro Lys Leu Leu Asn
 1430 1435 1440
 Asn Thr Trp Leu Ser Lys Ser Ser Asp Pro Leu Asp Ser Gly Thr
 1445 1450 1455
 Arg Ser Pro Lys Arg Asp Pro Ile Asp Pro Val Ser Ala Gly Ala

1460	1465	1470
Ser Ala Ala Lys Ala Glu Leu Pro Pro Asp His Gly His Lys Thr		
1475	1480	1485
Leu Gly His Trp Val Thr Ile Ser Asp Gln Glu Lys Arg Thr Ala		
1490	1495	1500
Leu Gln Val Phe Asp Pro Leu Ala Lys Thr		
1505	1510	

<210> 13
<211> 1600
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3272350CB1

<400> 13

atggctggag	agaatggcca	ggaggggagtg	ggtatctgc	ggttgggagt	ccagccggag	60
gtggagccca	gttcccagga	cgtgcgccag	gcgcgtggcc	ggcccggtct	cctgcgtctc	120
tgcgtgtgc	gaggcagccc	ccagcgcata	gcctcggtct	tgtggcgttt	caaagggcag	180
ctgctgcgc	cgccgctgt	tgttcccgcc	gccgcccagg	cgccgatca	cgcggagctg	240
cgcctcgacg	ccgttaactcg	cgacagcagc	ggcagctacg	agtgcagcgt	ctccaacgat	300
gtgggctcg	ctgcctgcct	cttccaggtc	tccgccaaag	cctacagccc	ggagttttac	360
ttcgacaccc	ccaaaccccac	ccgcaggcac	aagctgtcca	agaactactc	ctacgtgtcg	420
cagtggactc	agagggagcc	cgacgtgtc	gaccctgtgc	tcaactacag	actcagcatc	480
cgcctgtga	accaggcacaa	tgcgggttc	aaggccatcc	cggtcggcg	tgtggagaag	540
gggcagtc	tggagtacat	cctgaccgt	ctccgtgtc	cccacagcta	ttaggtccgc	600
ctcacaccc	ataccacatt	cggggctgtt	gacatggcct	ccgcatcat	ccactacaca	660
gagcccatca	actctccgaa	cctttcagac	aacacctgccc	actttgagga	tgagaagatc	720
tgtggctata	cccaggacct	gacagacaac	tttgacttgg	cgcggcagaa	tgccctcacc	780
cagaacccca	aacgctcccc	caacacttgt	ccccccaccc	acataagtgg	caccctctgag	840
ggctactaca	tgttcatcga	gacatcgagg	cctcgggagc	tgggggaccg	tgcaagggtt	900
gtgagtcccc	tctacaatgc	cagcgccaag	ttctactgtg	tctccttctt	ctaccacatg	960
tacgggaaac	acatcggtcc	cctcaacctc	ctggtgccgt	cccgaaacaa	aggggctctg	1020
gacacgcacg	cctggctct	cagtggcaat	aagggaat	tgtggcagca	ggcccatgtg	1080
cccatcagcc	ccagtgggccc	cttccagatt	attttgagg	gggttcgagg	cccgggctac	1140
ctgggggata	ttgccataga	tgacgtcaca	ctgaagaagg	gggagtgtcc	ccggaagcag	1200
acggatccca	ataaaatggt	ggtgatggcg	ggcagtggag	ccccctgcca	gtccagccca	1260
cagctgtgg	ggcccatggc	catcttctc	ttggcttgc	agagatgtatg	agagctgtgt	1320
ggccacccccc	ccaaaccttgc	ccccggcaca	ccaaagtgtc	cacattgtac	caaagactga	1380
cccccgccag	ctgggggtgc	caggggcagg	gcccggccgc	cagggagggg	gcctgcattt	1440
gctgcaagga	tgagcagaga	acaaggacag	aggccaggca	ctgaggccct	ggagacagct	1500
gttccacttgc	cacacacgc	cacactcatg	ctcacacacaca	cagagatata	ttaaaggcaca	1560
agtttctatc	tgaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	.	.	1600

<210> 14
<211> 781
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7481507CB1

<400> 14

```

aggcgcgccc tgaggaagaa ggggagccat ccgatataccc gaccctgaaa gactacacccg 60
cccgccctgtt ggatcagaaaa tggctgcgac tcgcggcgag gagaaaaatct gcatgagcat 120
gtatcaacgc attaatggcg ctgactggcg caatattttc gtcgtcggcg atctgcattgg 180
gtgctacaacg cttgtctgtga atgaactcga aaaggtttcg ttgcaccccg cgtgtgatttt 240
gctgattttcg gttggagacc ttgttgaccg cggcgcggaa aacgtcgagt gcttggagct 300
gattactatg ccttggttcc gggctgtcg aggttaaccat gaggcagatga tgattgtatgg 360
gctatcgag tatggaaacg ttaaccactg gctggaaaac ggcggcgtgt ggttcttcag 420

```

tcttgattat gaaaaagagg tgctggctaa ggctctggtt cataaatcg ccagcctgcc 480
 attcgtcatc gagctggta ccgctgaacg taaaatcgat atctgccacg ctgactaccc 540
 gcataaacgaa tatgcgttcg acaagccgtt cccgaaagac atggcatct ggaatcgta 600
 acgggttagc gacgctcagg acggcattgt ctcggcata gctggtgctg atctgtttat 660
 cttcggccac accctgcgc gccagcccc gaagtatgcc aaccagatgt acatcgatac 720
 tggtgccgtg ttctgcggaa acctcacgct ggtacagggtt caaggtggc cccatcgta 780
 a 781

<210> 15

<211> 1724

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2285140CB1

<400> 15

gtcgggaccc gtagtagagg cgggttgcgg gcggcggcgg cgccggcggc ggtgggtgg 60
 gtggcaggc tggcgccag ggcgcacggg acctgtcctg cagcggctct ctcaggccgt 120
 gggtcgtcgc tgcagctgcc gggaaagaag gaaacgacga ctccgggggc gaacttggca 180
 cacaggagg aaggaaaagg atgcatggc atggaggcta tgattctgtat ttttagtgc 240
 atgaacactg tggagaatcc agcaaaaagg aaaaaaggac agttgaagac gacttactgc 300
 tccaaaacc atttcagaaa gaaaaacatg gaaaggtggc ccataaaca gttcagcag 360
 aattgctgga taggaaagaa gcaagaaaata gaaggttca tctcatagct atggatgctt 420
 atcaaagaca tagaaagtgc gtaaatgact atattttata ctatggtggc aaaaaagaag 480
 acttcaagcg tttggggaa aatgacaaga cagacttggc tggtatacga gaaaatcata 540
 gattcctatg gaatgaggag gacgaaatgg acatgacttg ggagaagaga cttgctaaga 600
 aatactatga taaatattt aaggaataact gcatagcaga tctcagtaaa tataaagaaa 660
 ataagttgg atttaggtgg cgagtagaaa aagaagtaat ttccggaaaa ggtcaatttt 720
 tctgtggaaa taaatattgt gataaaaaaa aaggcttaaa gagttgggaa gttaattttg 780
 gttatattga gcatggtgag aagagaaatg cacttgtaa attaaggta tgccaagaat 840
 gttccattaa attaatttc catcacagga gaaaagaaaat caagtcaaaa aaaagaaaaag 900
 ataaaaccaa aaaagactgt gaagagtcat cacataaaaa atccagatta tcttctgcag 960
 aagaggcctc caagaaaaaa gataaaggac attcatctc aaagaaatct gaagattctc 1020
 tacttagaaa ctctgtatgag gaagaaaatg cttcagaatc tgaactttgg aagggtccac 1080
 taccagagac agataaaaaa tcacagggaa aagaatttgc tgagtattt caggatttt 1140
 ttctatgaga cgagagagag agcctccgc tccttaatgt gaaacttcat gaagttttaa 1200
 acttcatgca atttggaaatt ccatataatgt ttttatctgc aagttacagc ttgtgtgg 1260
 tgcattttggaa aataaaaaatc caggttctc cagaatgtca gaggctttgg aagttcatta 1320
 gttcaattaa agacttcct gtccttttaa tatctttca attgcttatac tacaattctg 1380
 gtttattttgt agctcctaga ggatagagct ggacagattc cattgttcct acattttgt 1440
 gttttttttt cactgcttc attatggatc ttctcttgcc ttcttattt tattttata 1500
 attttttttt ttctctttt tagagccacc aataccggaa ttgggtggct ttcatttttt 1560
 tcctttgtgg aaacggagtc ctccgtgtt gcccaggcct ggaattcaaa ctctggcc 1620
 taagcaatcc tcccaccctg ggcctccca gatgcccggg ataccagggg tgaagccacc 1680
 atgctctggc aaattttttt aaaataccag ggttaaaagt aaat 1724

<210> 16

<211> 4157

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7197873CB1

<400> 16

tgcatgtctt tattgttaggc atgaggctgt cctctgtgac gctggccagc gcccataagg 60
 tcaggggtga agctctgtct gaggaggaaa tctgttcccc cctgttccctg gccgctgagc 120
 agctcctgga agacccccc aacgattctt cggactatgt ggtttggccc tggtcagccc 180
 tgctttctgc agctggaaagg ctttttttcc aaggccgtgt ttctcatata gaggctgetc 240
 cttcaaggc ccctgaactg ctacaggac agagtggaga tgagcaggct gatgcatctc 300

agccccctgca gctctgcgag cccctgcaact ccattcctgct gaccatgtgt gaagaccaggc 360
 ctcacaggcg gtgcacgttg cagtcggttc tggaaagttt tcgggttcat gagaaaagaag 420
 tgtctgtcta cccagccccct gctggtctcc acatcagaag gctggttggc ttgggttctgg 480
 gtaccatttc tgaggtggag aaaagagtgg tggagggaaag ctcctctgtg cagcagaaca 540
 gaagctacct gctcaggaag aggctgcgtg ggacaagcag cgagagccca gcggcacagg 600
 ccccccggatgt tctgcatcct tgcagagttt cagaagaag cacggagacc cagagctcac 660
 cagagccccca ttggagcacc ttgacacaca gtcactgcag ctccttgcgtt aaccgcgtc 720
 ttccaggagc agatccccag gaccagcagg cggggggag gtcagctt ggatctgtgc 780
 actcggcaggc agacagctca tggccaacaa ctccttctca gaggggtttt ctgcaaagaa 840
 ggagcaagggt ttccaggcca gagttcatcc tggggctgg agaggccccg atgacactac 900
 atctgccggg atcggttgtg accaaaaaaag ggaaatccta tttggctctc agggacctct 960
 gtgtggtctt gctgaacggg cagcacctgg aggtaaaatg tgatgttcaa tcaacagtgg 1020
 gagctgtctt caatgccgtg acatccttgc ccaacctcga ggaactcacc tactttggct 1080
 tggcgatata gaaaagcaaa gagttttt tcctggacag taaaaccaga ttgtgaaaaa 1140
 tagctcctga aggctggaga gaggcgcctc agaagacctc catgaatacc ttcacactct 1200
 tcctgaggat aaagttctt gtcagccact atggctgtc ccagcacagc ctgacaaggc 1260
 accagttta cctgcagctt cggaaagata tcctggagga gaggctgtac tgcaatgaag 1320
 agatactgct gcagctgggg gtccttgct tgcaggctg tttggcaat tacccctaagg 1380
 agcagggtggc gagtaagcca tactttcaag ttgaagatta catcccagcg agtctgtatcg 1440
 agaggatgac cgctctacgg gtccagggtt aagttctcaga gatgcacccg ctcagctcg 1500
 cactgtgggg agaggatgt gagctgaatg tttgggggt cactcagcag ctcccagaat 1560
 acggtgtgtc gtttacccaa gtattctca agaagaggag gccagaagag gagatggccc 1620
 tggggatctg tgccaaagggt gtcatagttt atgaatgaa aaacaacagc agaattgca 1680
 tgtaacggtt tcagttggaga gaaaccggga agatttctac ttataaaaa aagttcacca 1740
 tcacaagcag tgcacttggg aagaagcaca catttgcac agattcagcc aagaccagta 1800
 aataacttact ggacccctgc ttagcccaacg atgggtttaa tgcacagatg ggctctggc 1860
 agcctccca ttttttattt gaccatgata agtttgcata aatggccaaat tttagtccctg 1920
 cacaccaggc cccgtctaaag cctctcattt ggattcagag attgtcatgc tcagaaaacg 1980
 agttgtttgt atccaggctt cagggtgtc caggaggccct gctgagtaca tcaatggata 2040
 acttcaacgt ggacggcaggc aaggaggctg gaggcagaagg catcgccgc agccccctgca 2100
 ctggccgggg gcagctgaag agtgcctgtg tgatccagaa gccaatgacc tggactctc 2160
 tctctggacc acctgttcag agcatgcattt caggctcaaa gataaatagg aggaagagct 2220
 ttatagctga accggccga gaaattgtac gtgtgacact gaaacgtgac ccacatcg 2280
 gttttgggt tgcattaaat gaggggagat attcaggcaca agctgacccct ggcattttta 2340
 tatcttcttat tataaccttggaa ggaccagcag aaaaagcaaa aacgatcaaa ccaggagggc 2400
 agatactagc cctgaatcac atcagtctgg agggcttcac attcaacatg gctgttagga 2460
 tgatccagaa ttcccctgac aacatagaat taattatttc tcagtcaaaa ggtgttgggt 2520
 gaaataaccc agatgaagaa aagaatagca cagccaaattt tggggtctcc tctacagaca 2580
 tccitgagctt cgggttaccag ggaagtttgc tgtcacacac acaagaccagg gacagaaata 2640
 ctgaagaact agacatggctt ggggtgcaga gcttagtgc caggctgaga catcagctt 2700
 ctttctgccc gttaaagggt gctgggttctt cttgtcccttcc atcaccctca gaaatcagt 2760
 ctggtaaaat ctactttgtg gaaactgggtt aagaagatgg gacacttgg ttcagtgtaa 2820
 ctgggtggcat taacaccatgt gtggccatattt gttgtatcta tggaaatccc attgttccctg 2880
 gaggaccaggc tgccaaaggaa gggcagatcc tacagggtga ccgactctg cagggtggatg 2940
 gagtgattct gtgcggccctc acccacaagc aggctgtca gtcctgaag gtcctggc 3000
 aggttgcag actggcttta gagagaagag tccccaggag tacacagcag tgccttctg 3060
 ctaatgacag catggagat gaacgcacgg ctgttccctt gtaacagcc ttgcctggca 3120
 ggccttcgag ctgtgtctca gtgacagatg gtcctaagtt tgaagtcaaa ctaaaaaaaga 3180
 atgccaatgg tttgggattt agtttgcgtc agatggagaa agagagctgc agccatctca 3240
 aaagtgtatct tggaggattt aagaggctctt ttccggggca gccagctgag gagaatgggg 3300
 ccattgcagc tgggtacattt atcctggccg tgaatggaaat gtcacccggaa ggcctcatct 3360
 tccaggaggt gtcgttattt ctggaggggg ccccacagga agtcacgcctc ctcccttgc 3420
 gacccttcgatcc aggtgcgtg ctcggatctt agcaggaatg gcaacatctt gaaactctcag 3480
 ctgacaaaga attcaccagg gcaacatgtt ctgactcatg taccaggcccccc atcctggatc 3540
 aagaggacag ctggagggac agtgcctccc cagatgcagg ggaaggccctt ggtctcaggc 3600
 cagagtcttc caaaaaggcc atcagagagg cacaatgggg caaaaacaga gagagacatt 3660
 gggccagttc ttgcacat ttcctgtat cccacccctca tttatgcataa cttcaccaag 3720
 aaagggatga atcaacattt ggcacccctt tggaaaagga tggaggccaa aactgctatt 3780
 cagtttgcgtt tatcatgaga ctggaaatg attccttctc atcctctcta accagacttt 3840
 cgacagatattt tttctgtat cttctcttc atgtctgcag tgctgttcaa aatgcctac 3900
 ctttgcattt actatctttt ctaatcaaga ggcgtgtgt gcaacttgg ggcagccccct 3960
 ggaagtctt ttctttgacc attacgtctg cggctgcattc accagataat gagcttcacc 4020
 actcgtctgc ctccctgtgtc ttcccgccggg gatgtttatgt cacttcagct tgccgcattct 4080

ctaaataggc aaattttcag tgctcagaaaa aggacctgat cttgcacaaa gtgcggat 4140
gttgcctgc ttggggc 4157

<210> 17
<211> 1044
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6282188CB1

<400> 17
atgctgaaac accccgtgtt acctgccctg tgcctggcgc tcgtcagtct attcgccat 60
gtttctgtgc aggccgcacgc aatcgtaact tccgtccggc ccccgaaatg ggcccaaccg 120
atcgacgctc actacaactt gcaccagatg acgcccacgc tctaccgcag cggttgcgg 180
gacagccgcg cgctgcctc gctggaaaaa ctgaacgttg gcaccgtcat caacttcctg 240
cccgaaatccg atgacagctc gctcggccac tccgatata aacaagtgc gctgacgtat 300
cgcaccaacc acgttagacga ttcatgtat ttggccgcatt tgccgcata ccgcacggca 360
gaagccaatg gctcggtgtt gatgcactgc aagcacggct cgaccgcac cggcctgatg 420
gcggcgatgt atcggtgtt gattcaagg tggagcaaag aggatgcgc gaacgaaatg 480
acgttggcg gtttggcag cagtaatgca ttcaggacg gtgttcgcta catgatgcgc 540
gccgatatcg acaaattacg cactgcctg gccaccgggg attgcagcac cagcgcgtt 600
gctgtgtgtt cgatgaagca atggatttcc acgacaggca gtgagcagaa ggagtagaaa 660
cggtatcaggc agcagcggc cgggtgaatg gacgcgcgc ctgctctggg tgcgtcagt 720
ccttttcaa cttcggtt gaaagaatt gcaccgcctg caccttggg tccggactt 780
tcagcgctga ggtattaacc cgcgtgcca attccttggg caccgacaag ccttggtcat 840
tgagcgatc ggtgttagccg caggccacgc attcgcatg gggcgcgtg tcctcggtcc 900
acatittcaa cttatccggc tcgctgcacg cggggcacac ggccccggcg ataaattgct 960
tttgggtgat cacaggccct tcgetcatgc tgctgcatacc tcactcagge cgctgtgacg 1020
caacagtgcg tcaatggacg gtc 1044

<210> 18
<211> 2797
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2182961CB1

<400> 18
catgggaaga ccccgcttt aaaaaaaaaaaa aaaaatagaa ttaccatatg actcagcaat 60
tacactttt tggatattgt attagttcat ttcatgctg ctgataaaagc catacccaag 120
actgggaaga aaaagagatt taattggact tacagttcca catgcctggg gaggcctcag 180
catcacggta ggaggcaaaa ggcacttctt acatggtggc ggcaagagaa aatgaggaag 240
aagcaaaaga ggaaaccctt gataaactca tcagatcatg tgagccaggg tccatgactg 300
taacttggac cacatgggtc ccaaccgcctt ctgaagtgcatttcgggatcgggatcggg 360
ggccctgc cctccgcgc cagggcacct tcgtccctt tggacgggg ggcattctcc 420
ggcggaaagctt acatatac cggatcacgc ttgcgaagct gtcgcgcagg gttcagtatg 480
tttatcgctg tggcgtgcg cagggtggc gccgtcggtt cgcgttcagg gcccctaaga 540
atggggccca ctggagttccc ctgttggctt tggatgggat cctggggctt gacaacccga 600
aggccgtccc cccgcgtgcgc agggacaccgc acggggcat gtatgcgc gtttccatg 660
tgggagactt tgcctacaac ctggatcagg acaacccgc tggatgggat agttcatgc 720
ggctcattga acccggtggc gccagcctgc cgtacatgac atgcctggg aatcatgaag 780
aacgctacaa cttctctaactacaaggctc gtcgttcacat gcccggggat aatgagggcc 840
tgtggtacag ctggatctg ggtccgcaccc acatcatctc cttctccacc gaggtctatt 900
tctttctcca ttatggccgc cacttggatc agaggcagg tgcgtggctg gagagcgc 960
tccagaaagc caataagaac cgggcagccc ggccgtggat catcaatgt gggcaccggc 1020
ccatgtactg ctccaaacgc gatctggacg actgcacacg acatgaaagc aagggtccgc 1080
aaggcctcca aggcaagctg tacgggttg aggatctttt ctacaaatat ggagtggatc 1140
tgcagctgtg ggctcatgag cactcgatgt aacgactgtg gccaatttac aactaccagg 1200
tatttaacgg cagccgagag atgcccata ccaacccgcg agggcctgtc cacatcatca 1260

caggatctgc tggctgtgag gagcggctga cgcccttgc tgtcttccc aggccctgga 1320
 gtgccgtgc tgcgtggagg tacgggtata cgcgctgca catcctcaac gggaccaca 1380
 tccacatcca gcagggtcg gacgaccagg atggaaagat cgtagatgat gtctgggtgg 1440
 tgagacccct gtttggccgg aggtatgtacc tctaggatg gcggcactct cctccagaag 1500
 cctagggttt gccgccttgg ctgctgtgac cagaaactgc ccaggcctgg gtggggagtt 1560
 gggtgtggcc tgcgtcccc gccctccaga ggcccattgt agggtacatg cagccctatg 1620
 gagctggggc agctgtttcc tcctggagag gtggagttcc tggctgggtg tggagggagg 1680
 gcagggtgtgc gggcacagag tgacacacgg caggttctg ctggcaggc cccaccctcc 1740
 tgcatacgctc tgatcggcg aggtgcccac ggggttcag gaatgaagag gcttaagctc 1800
 tggctccatg gatttgcac atctgcggg gatggcgtg ggctccctcc tctctgccc 1860
 acctggcaag ggcatcgcca ggtgggcaca accgtcatga cactactac cagcaggtgg 1920
 cgtcaggggc ttttcttct gagccggca ctgagagttt gtctgaagcc tggctccctc 1980
 ttcactgctc caggactgtc atgaagagtc ctttcatgcc tcagtttccc agcctggcac 2040
 catcttattt gggaaagagga gacgtgttaa cactttgtcc tcctagctag gacagatgac 2100
 caaccgcaag agccacacagac ttgccagttc cttcccttct tccttcctt ctttccttc 2160
 ttttattttat tgaatcataa ttatttgagc atctaccatg tgccaggctc tggcttcagc 2220
 gctggagaga cagctgtgaa tgagacagag atctcgccccc tcacagagct gacatectaa 2280
 ccagagagggt ggacaaaaat cacgataaat gagttggtaa aatagcgatt tggtagtgg 2340
 aaacgcagggg acggtgagag acgagtttca atttcaggg ggatctact gaggaggcaa 2400
 catttgatct gaaggagggt gggaggagc caagtggca gacatctgg ggaagagcat 2460
 tccaggcaga ggaacagcca gtgcggaaagc cctgagacag aaatgtgcct ggccggctgg 2520
 gtacagtgcac tcacatctgt gttccagca ctttgggagg ccgaggccgg cagatcgctt 2580
 gagcccgagg gtttggagacc agcctgggca acacagcgaa acccttctc taccaaaaat 2640
 atgaaaattt actggcatg gtgggtgtt cctgtggtcc tagctgctcg ggaggctgag 2700
 gcgggaggat ggcttgagcc caggagggtt aggctgcagt gagccatgat tgcgccactg 2760
 caccctcagtc tggcaacacg agcggagacc tgtctca 2797

<210> 19
<211> 3488
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5119906CB1

<400> 19
 tttggtttgt gtttttctt tggcatgctt tattctctgt cctgcttgg ttttgcctc 60
 tgtcttcgtg gtttttctc ttctgtgtcc ttggcttctt ttgttcaat gtttttttc 120
 ttgtctcgct tttttctgtc tcggtctttt ttcttcctt atagtgcgcg gtgtttggcc 180
 ttggttcttg tggcggtttt tctggctgtt cgcgcgtgc ttttgaccgg tgggtttgtc 240
 cgtcagtgtt ctcgtttctt gcttccttctt tgcgtgtcc tgcgtgtctt ctttctgtat 300
 ggtgtctctc gtatgtctat gggttctgtt tgcgtgtcc tgcgtgtctt ggtttttttt 360
 ttccgtgcct cgttctccct ctcctttctg tcttgggttt cgttctgtct ggcttttttc 420
 gtctgtcctt gctttctttt tctattatct gctctttgtt tgcgtgtcat tgcgtgtctg 480
 tctccttgc tctgtgtt gccccgtcccc ttgggtcgct cggtttaatg cgattttttt 540
 tgcgggaagc ggggactgtg tctggggta cctcgcaatg ccctcgctca tcttgggaaac 600
 tgcgtctctt gtcttgcctt ttggccagtg tctcggtcgaa atgcgggggt ctccgcttac 660
 agtccctcag tacatgtgg acactgataa tgcgtgttgc tcccacgcgt ggcacacgtgg 720
 tcttggctcc ctccctaccca gatgtgactt tcactgcagg cgctgatttc tcaccacaga 780
 tacctttctc tctgtgtttt attctcgtt ggttgcgtt gggccacacgca gaaaggatgc 840
 acatattttaa gcctgtgtt gtccggcga tgcgtgtctc cttcgagggt ctccacaagg 900
 cctgcgaagt gggccggagg cacaactact tccccgggg tgcgtgtctc atctgggcta 960
 cctactatga gagctgcattc agctccgagc agactgcattt tgcgtgttgc aacgcctatgc 1020
 aggacctgga gtctacggcg cccgactccc cccgcgtatt tgcgtgttgc aacgcctatgc 1080
 gggaaaggac cgagcgctc atcaaagcca agctccgaaatg catcatgtt agccaggatc 1140
 tagaaaatgt gacttccaaa gagattcgta atgaatttgc gaaacagatg aattgtact 1200
 tgaaggaact caaggaattt atagacaatg agatgtact tatcttggaa cagatggaca 1260
 agccctccct tatcttcgtt catctttatc tcggctctga atggaaatgca tccaatctgg 1320
 aggaactgca gggctcagggtt gttgattaca tttaaatgtt taccagagaa atcgataatt 1380
 ttttcttggg ctatattgcata ttcgtgttca cgtatgttgc accacagacc 1440
 tccctcgccca ctggaaatgaa gctgttatc ttataaacaa agcgttgcagg aaccattcca 1500
 agtgcctgtt gcatttgcataa atggcggttgc ctccacatgc atagcctatg 1560

caatgaagga attcggctgg cctctggaaa aagcatataa ctatgtaaag cagaagcgca 1620
 gcatcacgcg ccccaacgcg gcctttatga ggtagctgtc tgagtatgaa ggcattttgg 1680
 atgcaagcaa acagccgcac aacaagctgt ggctcagca gacagacagc agcctccagc 1740
 agcctgttggc tgaccctgca ggacctggcg acttcttgcc agagacccc gatggcaccc 1800
 cggaaagcca gctgccttc ttggatgtg ccgccttgcg cggcttaggg cccccctcc 1860
 cctgtgttt cccggactc tcagacccc ttctgcctt ccctgaggat gaaactggca 1920
 gcttggtcca cctggaggat cccggagagg aggctctgtt ggaggaagct gctccacctg 1980
 cagaggtgca caggccggcc agacagcccc agcaaggtt cggactctgt gagaaggatg 2040
 tgaagaagaa actagagttt gggagtccta aaggtcgag cggctcctt ctgcaggtgg 2100
 aggagacgga aagggaggag ggcctggag cagggaggtg ggggcagctt ccaacccagc 2160
 tcgatcaaaa cctgtcaac tcggagaacc taaacaacaa cagcaagagg agctgtccca 2220
 acggcatgga ggatgtatgtt atatttggta tccttaacaa agtgaagacct tcctataaat 2280
 cctgtggcga ctgcgtgtac cctacagcca gcggggctcc tgaggcctcc agggagcgat 2340
 gtgaggaccc caatgtccc gccatctgca cccagccagc cttcctaccc cacatcacgt 2400
 cctccctgt ggcccacttg gccagcagt cccgtgttcc ggagaagcca gcctctggcc 2460
 caaccgaacc tccccgttc ctaccaccag caggtccag gagggcagac accagtggcc 2520
 ctggggctgg agctgcccta gagccaccag ccagcctttt ggaaccttcc agagagaccc 2580
 caaaggctt gccaaagtcc ctccctttgt agaardtca ctgtgataag aaccttccca 2640
 gcacagaagt ggtataaaag gaagaatctg caccaaagaa agatgtgaag ccagccaagg 2700
 acctgaggct tctgttcagt aatgaatctg agaagccgac aaccacacgc tacctgtatgc 2760
 agcaccaggaa gtccatcatt cagctgcaga aggccaggctt ggtccgcaag cacaccaaag 2820
 agcttagagcg gctgaagagc gtgcctgcag acccagcacc tccctccagg gatggccctg 2880
 ccagcaggct ggaggccagc atcccccagg agagccagga tccagccgcg ctccacgagc 2940
 tgggccccctt ggttatgccc agccaggccg ggagtgtatga gaagttagag gcccggcc 3000
 cttcattggta aggaggtca ctgaagagcc cccctcctt ctttaccgc ctggaccaca 3060
 ccagtagttt ctcaaaagac tttctgaaga ccatctgcta cacccttccacc tcctcttcca 3120
 tgagctccaa cctgaccctgg agctccagca gcgatagcat ccacagtgtc cgtgggaagc 3180
 cccggctgtt gaagcagcgg acacaggaga ttgagacccg gctccggctg gcccggctca 3240
 cctgtctttt cccactgaag cgctcacact ctcttgc当地 gctggggagt ctcacccctt 3300
 caacggaga cctgtccagt gaggctgacc cgtccaccgt cgctgactcc caggacacca 3360
 ctttgagtga atcttccttcttgcata gcccaggaaac cccgaggac ccagctgcaa 3420
 cctccaaacc atcagggaaa cccggcccccag aaaacttaaa gagcccttcg tggatgagca 3480
 aaagctga 3488

<210> 20

<211> 1522

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4022502CB1

<400> 20

tgcgggtgcca gcggagggca cggcccgccg tggcagcggc ggcggacgcg gccccgggca 60
 caccatggcc gagctgtgc ggagcctgca ggattcccag ctcgtcgcgg ctttcagcg 120
 cccgctgcggg ctcttccccg ctccggatga aggccccccgg gagaacggcg cgaccccccac 180
 ggagcgcgcg ggcgcgggtcc cccgggtcga gcatctccccc gcagccaacg gcaagggcgg 240
 cgaggctccg gccaacgggc tgccagagc cgcggcgcgg gaggctttagt tacagaagta 300
 cgtcgtgaag aattattttt actattacattt attccaaattt tcagctgtt tggccaaaga 360
 agtgttctac atcacccccc ttccattcac tcactggat attgaccctt atttattccag 420
 aagattgtatc atcatatggg ttttggatgtatatttgc caagtggcca aggtgttctt 480
 gaagtggccc cgtccctctt cccctccagt tgtaaaaactg gaaaagagac tgatcgctga 540
 atatggaaatg ccatccaccc acgccatggc ggccactgca attgccttca ccctccctt 600
 ctctactatg gacagatacc agtattccatt tgggtggga ctgggtatgg ccgtgggttt 660
 ttccacccctt gtgtgtctca gcaggctcta cactggatg catacggtcc tggatgtgt 720
 ggggtggcgtc ctgatcaccg cactcctcat cgtccctacc tacccctgcgtt ggaccccttcat 780
 cgactgcctg gactcggcca gccccctt cccctgtgtt gtcataatgg tgccatttctt 840
 cctgtgttac aattaccctg tttctgttata ctacagccca acccggggcgg acaccaccac 900
 cattctggct gccggggctg gaggatgaccat aggattctgg atcaaccatt tctttccagct 960
 tggatccaag cccgtgaat ctctccctgt tattcagaac atcccacccgc tcaccaccta 1020
 catgttagt ttgggtctga ccaaatttgc agtggaaatt gtgtgtatcc tcttgggttcg 1080
 tcagcttgcata caaaatctt cactgcaagt attatactca tggatcaagg tggtcaccag 1140

gaacaaggag gccaggcgga gactggagat tgaagtgcct tacaagttt 1200
 atctgttggc atctgcgcta caacctttgt gccgatgctt cacaggttcc tgggattacc 1260
 ctgagtctca aacagttgga aactagccca ctggacatga aagccaagac ataggaaagt 1320
 tattggtagg caaatcttga caacttattt ttcttaaca acaacaaaaa gtcatacgcc 1380
 tgtcttgcta ctaccagata aatgatgctg ctgtgtgaaa ggaagaactg tctcatagcg 1440
 gtcattggtc gtccgtggtg gttggttgtg ctacagttga acccaggcta aagaccataa 1500
 tccggatctt taaaggcaca ca 1522

<210> 21

<211> 1393

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4084356CB1

<400> 21

atgagagcgt ggatccctgg gtggggttggg cggccgcacg ggggtgccga ggcgtctggg 60
 ggcctgcgt tcggggcgag cgcaagcCAA ggctggcgCG cgcgcATGGA ggatgctcac 120
 tgcacttggc ttctgttacc tggctgtccc cggggtggg ctttgggttc cgtcctcgac 180
 ggccacgggt gggctcgAGC tgccccgttc ggtgcacGCC atttgcCAGG ccatgtgctc 240
 caggagctgg gccccggagCC tagcgagccc gagggcgtgc gcgaggcgct ggcggagCC 300
 ttcttgagcg cgcacagAGC cttcgctcc ctctggcccc gcgtggAAAC ggggggcttc 360
 acggccgtAG ttttgtgtt ctccccggg tttctgtacc tggcgcactg cggtgactcc 420
 cgcgcgtgc tgagccgcG tggcgccgtg gccttcAGCA cagaggacca cggggccctt 480
 cgaccccgGG aacgcgAGC catccacGCC gctggcgGC ccatccgcGG cgcgcgcgtc 540
 gagggctctc tggccgtgtc gcgagcgttgc ggcgacttta cttacaagga ggctccgggg 600
 aggggggggg agctcacAGt ctttctgtc gaggcagagg tggccgcact ggcacgccc 660
 gctgaggacg agttcatgtc cttggccctt gatggcgttgc gggacactgt gtctgggtct 720
 gcccggcgG gactgggtgc ttcaAGCCTC cgcttggccc tggcccccAGA gcttctctgc 780
 ggcgcAGctgt tggacacAGt tctgtgtcaAG ggcgccttgg acaacatgac ctgcacccct 840
 gtctgcttcc ctggggcccc taggccttct gaggaggcga tcaggaggga gctagcactg 900
 gacgcagccc tgggctgtcAG aatcgctgaa ctgtgtgttgc ctgttcAGAA gccccccAGC 960
 ctgaacacAG ttttcaGGAC tctggccctca gaggacatcc cagatttacc tcctggggga 1020
 gggctggact gcaaggccac tgcattgtc gaaggTTTATT ctcagatctg ccaggtctca 1080
 gaagagtgCG gagaGAAGGG GcaggatGGG gctggGAAGT ccaacccCAC Gcatttgggc 1140
 tcagccttgg acatggaggc ctgacAGctg ttgtccTTG gggatcctt gcttctctgg 1200
 ggcctcaaca gaactaaAGA agaaaACCGA ccctttcccc aactacatgt accagcggaa 1260
 ggaaggaaagg ccaatgttagg aacccaaat gcttatttct tcttctcttA cttccctctc 1320
 acagaaaagt cttacGAATG gggaaattcc accaacatcc agaccaaaaaa gaaaaaaAGCC 1380
 caaatcgaaa aaa 1393

<210> 22

<211> 1430

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 1740204CB1

<400> 22

ccagagcacc gggcacggcc ttcaatgggc gaggacacgg acacgcggAA aattaaccac 60
 agcttcctgc gggaccacAG ctatgtact gaagctgaca tcttctctac cgtttagttc 120
 aaccacacgg gagagctgttgc gcccacAGt gacaaggcgc gcccggcgtt catcttccAG 180
 cgggaaccAG agagtaaaaaa tgcccccAC AGCCAGGGCG aatacgaGT gtacAGcACT 240
 ttccagagcc acgagccggA gtttgcTTAT ctcaAGAGCC tggagatAGA ggagaAGATC 300
 aacaAGATCA agtggctccc acagcAGAAAC gcccGCCACT cactcctgtc caccaacgt 360
 aaaactatca aattatggAA gattaccgAA cgagataAAA ggcccgaAGG atacaacctg 420
 aaggatgaAG agggaaaACT taaggacctg tccacGGtGA cgtcactgca ggtgccAGtG 480
 ctgaagccca tggatctgtat ggtggagggtg agccctcgGA ggatTTTC ctaatggccAC 540
 acctaccaca tcaactccat ctccgtcaac agtgcactgCG agacctacat gtcggcggat 600

gacctgcgca	tcaaacctctg	gcacctggcc	atcaccgaca	ggagcttcaa	catcgtaggcac	660
atcaaggccgg	ccaaacatggc	ggaccttacg	gaggtgatca	cagcatctga	ttccatccg	720
caccactgca	acctcttcgt	ctacagcagc	agcaagggtc	ccctgcggct	ctgcgacatg	780
cgggcagctg	ccctgtgtga	caagcattcc	aagctttag	aagagcctga	ggaccccagt	840
aaccgctcat	tcttctcgga	aatcatctcc	tccgtgtccg	acgtgaagtt	cagccacagc	900
ggccgctaca	tgctcaccccg	ggactacctt	acagtcaagg	tctggacact	gaacatggag	960
gcaagaccca	tagagactta	ccaggtccat	gactacccctt	ggagcaagct	ctgttccccgt	1020
tacgagaacg	actgcatttt	cgacaagttt	gaatgtgcct	ggaacgggag	cgacacgcgtc	1080
atcatgaccg	gggccttacaa	caacttcttc	cgcattttcg	atcgaaacac	caagcgggac	1140
gtgaccctgg	aggcctcgag	ggaaaggcagc	aaggccccggg	ctgtgtccaa	gcccacggcgc	1200
gtgtgcgtgg	ggggcaagcg	ccggcgtgtat	gacatcagtg	tggacagctt	ggacttccacc	1260
aagaagatcc	tgcacacggc	ctggcaccccg	gctgagaaca	tcattgccccat	cgccgcacc	1320
aacaacctgt	acatcttcca	ggacaaggta	aactctgaca	tgcacttaggt	atgtgcagtt	1380
ccggccccct	gccacccagc	ctcatgcaag	tcatccccga	catgaccccttc		1430

<210> 23
<211> 3102
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 7483804CB1

<400>	23	ggcggtcggg	cgagggagcg	cgcacggagc	gcgggacgga	gcccaggcg	gacggaccga	60
aggacggagg		caccgaagga	cggacgcccc	cgcacacgc	gacgcacaga	gtcggcgcg		120
gccccggtc		gcatacacac	tggcacagac	acaagcaggg	acacacgc	acacacgcac		180
actcgccgc		gcattccccc	gccagctgc	ccgcctgctc	gcccggccc	ggagcccgct		240
ctggccgctg		gatgatctga	agctgcctc	tcccttcat	ttatatcacc	agttgtctt		300
ttgctgagaa		agcttcctgc	cctggaaagat	ggcacccctc	cccatccaga	caccttggga		360
atgaattatg		aggaggccag	gagtgagaga	gagaaccac	ctgtgtatga	ctccgagggga		420
ggggccctgg		acatgtctg	cagtggagg	ctaccgggtc	tcccccaagcc	gatagtgtat		480
gaggcactgg		acgaggctga	agggctccag	gactcacaga	gagagatgcc	gccacccctc		540
cctccctcgc		cgccctcaga	tccagctcg	aagccaccac	ctcgaggcgc	tgggagccac		600
tccctcactg		tcagggcag	cctgtgcctg	ttcgctgcct	cacagttct	gttgcctgt		660
gggggtgtct		ggttcagcgg	ttatggccac	atctggtcac	agaacccac	aaacctcg		720
tcctctttgc		tgacgctcct	gaaacagctg	gaacccacgg	cctggcttga	ctctgggacg		780
tggggagtcc		ccagtctgt	gctggcttt	ctgtccgtgg	gcctggctt	cgtttaccacc		840
ctggtgtggc		acctcctgag	gacaccccca	gagccacccca	ccccactgccc	ccctgaggac		900
aggcgccagt		cagtgagccg	ccagccctcc	ttcacctact	cagagtggat	ggaggagaag		960
atcgaggatg		acttcctgg	cctcgaccccg	gtgcccggaga	ctcctgtgtt	tgattgtgt		1020
atggacatca		agcctgaggg	tgacccccc	tcactcaccc	tcaagtcct	gggtctgcag		1080
gagaggaggg		gttccaatgt	ctccctgacc	ctggacatgt	gcactccggg	ctgcaacag		1140
gagggcttgc		gctatctcat	gtccccacgt	gaggagtcgg	cccgcgagta	ctgtctcag		1200
gcetccctgt		tcetccaa	agaagagctt	cataaaaagg	ccctgtgacc	tttctgtctg		1260
caggcggaaat		tctttaaaat	ccccatgaac	tttgggatc	cgaaagagta	cgacatccct		1320
gggctgggtc		ggaagaaccg	gtacaaaacc	atacttccca	acccttcacag	cagagtgtgt		1380
ctgacccac		cagaccctga	cgaccctctg	atgttctaca	tcaatgccaa	ctacatccgg		1440
cctggacttgc		gctggccgca	gggctatgg	ggggaggaga	aggtgtacat	cgccactcag		1500
ggacccatcg		tcagcacgg	cgccgacttc	tggcgcatgg	tgtggcagga	gcacacgc		1560
atcattgtca		tgatcaccaa	catcgaggag	atgaacgaga	aatgcaccga	gtattggccg		1620
gaggagcagg		tggcgtacga	cggtgtttag	atactgtgc	agaaagtcat	tcacacggag		1680
gattaccggc		tgcgactcat	ctccctcaag	atgtggactg	aggagcggagg	cctgaagcat		1740
tactgggtca		catcctggcc	cgaccagaag	accccgac	ggggccccc	actcctgcac		1800
ctgggtcgccc		agggtggagga	ggcagcccg	caggaggggc	cccactgtgc	ccccatcatc		1860
gtccactgc		gtgcaggat	tgggaggacc	ggctgttca	ttgcccac	catctgtgc		1920
cagcagtc		ggcaggaggg	tgtatgtggac	atcttgaaga	ccacgtgc	gttccgtcag		1980
gacagggcgc		gcatgtatca	gacatgcgag	cgttacagg	ttgtgcacca	ctgtatgac		2040
ctctacaaa		agcagctgtc	ccaccagtcc	ccagaatgac	tgcgttctc	ctacaagggtt		2100
ctctgggcac		tgcccagcct	gagtctggc	cctcaccac	ggccctgcct	cggttctgg		2160
gcctgtccccc		cgcttcctcc	ccttcagtc	gctccctctg	tcctctgtca	gcctggccct		2220
accccttaccc		tccagcattt	cttcccttac	tgtacatatt	ggggagtggg	gggcagggtc		2280

gggaagggac atgccaggcc aggcctgggg cccccggggcc tgacccacac cacgcagacc 2340
 ccgggctcca gttttaacg atggttccat caatacctga tccagaatgt ttccgtgcta 2400
 cactttgtgt cctgctgcaa tgtgttctgt ctgtccatcc atctctgccc tctgtaccgg 2460
 acactgtgtc tcctcagccca ggaaggggta atgagctcca gcccctaagc aaccggactt 2520
 gcctgcctcg gcctcaccccg cacttctccc aaaaggcaga tgacggggag ttaggcattgg 2580
 gagagctccag aaggtcacca gagagcttc agctgaggga gagttctcta ggttgagtg 2640
 ggcacatcacag ccaggggtggc ctctgggtgt cagatgtct caggagggtg cccagcctgt 2700
 gaggcactgg caaggtaggg ggcagatggg gcatggagaa cccagaggat ctaggcccctg 2760
 ttggggaggg gaggggagct caagggttgg gtggggactc agcccagatc tacgtgagac 2820
 atttttctgt tgcactgtgg gaaagccttc ccagaagtct cactgcgtgt tgctctgcgt 2880
 gtgttcccat gtccatgcgt gtgtttagag cccatcagga gggcatgcata gactctttgg 2940
 caacatgttat tatcttggag ccacgtgtt ttattgtca ctttaaatat ttatcccacg 3000
 gcagacagag acatttggtg tcttttata attcgctcgt ggtcattgaa tagagcaata 3060
 aacggagcat tttgagcaaa accaaaaaaa aaaaaagggg cg 3102

<210> 24

<211> 5612

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7483934CB1

<400> 24

cgaaagagtg actccaagtc agccctaaac acccataaccc acccccaccc cctgtcagct 60
 ctgacaggcc aagectgggc gctagaaccc cgcgccagaa ggccggggca cacactccag 120
 cgtacacgcg cggacacgtg cgggtgtcca gagccgggtgg gagaggcgct gtaccatct 180
 gacaggagag gaagggtggag cgcagagaag tcagggtcac gtgtggggcc gaccctcatg 240
 gccctgagca aagggtcgcg gctgctgggg cgccctgggg ccgagggggg ctgtagcggt 300
 ctgctggagg cgccggggcccg cgacgactgc ctgctgttc agggccggcac ggtggccacg 360
 ctggacgact gcctgctgtt cgaggccggc acgggtggcca cgctggctcc agaagaaaag 420
 gaagtcatta aaggacagta tggcaagctc acggacgcgt acggctgcct gggggagctg 480
 aggctgaaat ctggtggcac gtctctgagc ttccctgggtgt tggtgacagg ctgcacatct 540
 gtggggcagaa ttccagatgc tgaatctac aaaatcaactg ccactgactt ttaccctt 600
 caggaagagg ccaaggagga ggaacgcctc atagcttga agaaaatctt cagctcgggg 660
 gtgttctatt tctcatggcc aaacgttggg tctcgctttt acctgactgt ccgcacgcag 720
 aacgaggggg atgacagctc tgaatggggg aactccttct tctggaaacca gctgttgcac 780
 gtgcccttga ggcagcacca ggtgagctgc tgtgactggc tgctgaagat catctcgccc 840
 gtggtcacca tccgcaccgt gtatgcctcc cacaagcagg ccaaggcctg cctcgtctct 900
 cgcgttagt gtgagcgcac aggcaactgc ttccacaccc gtggcgtgaa cgacgacggc 960
 catgtgttca acttcgttga gagacgacgat atgatttaca tggacgtatgg agtgcattct 1020
 ttgttccaga tcagaggctc gtttccctgt ttctgggaaac agccagggtt tcaggttaggt 1080
 tccccatcatc tgagacttca caaaggcctg gaaggccat tccctgcctt cgacaggcac 1140
 atgggtcttc tgaaggagca gtacggggcag caggtggctc tgaaccttctt gggaaagcaga 1200
 ggcggagagg aggtgtcaa cagaggcctc aagaagctgc tctgggctt ttgccacgcg 1260
 ggcgacacgc ctatgttca ttttacttc catcagtttgc ccaaagggttga gaagcttagag 1320
 aaattggaga cccttcttgc ggcacagtta aagctgcact gggaaagactt cgatgtgttc 1380
 acaaaggggg agaacgtcag tccacgtttt cagaaaggca ctttgcggat gaactgtt 1440
 gactgcctgg accgaaccaa cactgtgcag agcttcatcg cgctcgaggt cctgcattct 1500
 cagctcaaga ccctggggct gaggtaaaaa cccatcggtt accgcttgcgtt ggagtccctc 1560
 aaaggccatgt ggtcttgc gggccacagg ctgagcaagg tggttccacagg cagcagagcc 1620
 ctggaaaggga aggcaagggt gggggagctg aaggatggag cccgggtccat gtctcgaaacc 1680
 atccatgttca acttottcga cgggggtgaag caggaggccca tcaagctgt gctgggttggg 1740
 gacgtctacg gcgaggaggtt ggcacacaaa gggggcatgc tgctggacag cacggcgtc 1800
 ctggtacttc ccaggatcct gaaagctatg actgagctc agtccgaat cacaatattc 1860
 aacggatcc ggattgttat ggggacctgg aacgtgaacg gaggaaagca gttccggagc 1920
 aacgtctca ggacggccga gctgacagac tggctgctcg actcgcccca gctctcgaa 1980
 gctaccgact cccaggatgtc cagcagccca gctgacatat ttgctgttggg gtttgaagag 2040
 atgggttcaat tgagcgcagg gaatattgtc aatgccagta ctaccaacaa gaagatgtgg 2100
 ggtgaacagc ttccagaaagc catctcacgc tctcatagat acattctgtt gacttcggca 2160
 cagctggtg gcgctgtct ttatatctt gtacgtccat accatgtccc gttcatcagg 2220
 gacgttagccca tcgacacagt gaagacggc atgggggca aggccgggaa caagggcgcc 2280

gtcggcatcc gcttccagtt ccacagcacc agcttctgct tcatatgtag tcacacctgacg 2340
 gcccggcagt cccaggtgaa ggagcggaat gaagactaca aggagatcac ccagaaactc 2400
 tgcttcccaa tggggagaaa tggggatatttct catgattatg tattttggtg tggcgatttc 2460
 aactaccgca ttgatcttac ttatgttgcggaa gtcttctatt ttgtttaaacg ccaagactgg 2520
 aagaaacttc tggaaatttga tcaactacag ctacagaaaat caagtggaaa aatttttaag 2580
 gactttcacg aaggagccat taacttttggc cccacccata agtatgacgt tggctcagcc 2640
 gcctacgata caagcgacaa atgcccgcacc cccggcttggc cagacagggt gctgtggtgg 2700
 aggaagaaaac atcccccttgc taaaacagct ggagaactca accttctaga cagtgtatca 2760
 gatgttgcaca cccaaagtca acacacacccgg tctcttggc ccctgcagta ttatggcgt 2820
 gcggagactac aaggctctga tcacagaccc gtgcggcga tcgtggaggt ggaagttcag 2880
 gaagtcgatg tgggtgctcg ggagagggtt ttccaggaaag tgccttcctt ccaggggcccc 2940
 ctggatgcca ctgtttagt aaacccatcaa tcaccgaccc tagaagagaa aaacgagttt 3000
 ccagaggacc tgcgtactga gtcatgcag accttggggc gttatgggac aatttttctt 3060
 gtcaggatca accaaggccaa gatgcttgcg acttttgcag acagtcaactc ggctctcagt 3120
 gtcctggacg tggacggat tgggtgatgaa ggcagagcag tgaagattag accgaagacc 3180
 aaggactggc tggaaagggtt gcgagaggag atcattcgga aacgagacag catggcccc 3240
 gtgtctccca ctgcacactc ctgttttgcg gaggaaaact ttgacttccac aagtttggac 3300
 tatgagtca aaggggatat tcttgcggac gatgaaagact acttttgcag acagtcaactc ggctctcagt 3360
 cagcctgggg tctcgacag tgaactcggtt ggagacgacc tctctgtatgt ccicggcccc 3420
 acagactggc ctccctcccg caagtccatc gctctccacca aaaagaagca gcatccaacg 3480
 tacaagatg acgcggaccc ggtggagctc aagcgggcgg tggaaagccgt cggggagttc 3540
 cgccaccgtt ctccgagcag gtctcttgcg gtcccaacc gacctcgcc acctcaaccc 3600
 ccgcagagac ccccccctcc aaccgggtt aatgggaaaa agtccgcttcc agatgcgtcc 3660
 atctccctccg gcacccatgg gcagtttca attttgcaga cggcaagact tctaccagga 3720
 gcacccatcggc aacccatccaa ggctcggaact ggaataagta aacccatataa tgtcaaggcag 3780
 atcaaaacca ccaatgcacc gggggcggaa gcagaatcc ggtgtcttcc ggaagccaga 3840
 ggaggtgcct ccgaagaagc cctaagtgcg gtggggccaa gggaccccttga agcatccct 3900
 gaaccagagc ccacaccggg ggcagccaaa ccagagaccc cacaggccgc cccactccct 3960
 ccccgctggc ccccaaccggc agtttcttgcg atcaagaagc caacccctttag aaggacagga 4020
 aagccctgtt caccggaaagc aacgttttgcg caacagactg tecattttac aatcgggcccc 4080
 ccggagacaa gcggttggcgc ccctccgtc gtgcagccccc ctcgagttccc tcctgttccc 4140
 aaaccaagaa catttcagcc tggggaaagct gcagagaggc caagccacag gaagccagca 4200
 tcagacgaag cccctccctgg ggcaggaggcc tctgtgccac cacctcttggc ggcggccct 4260
 ctttgtccca aggttccccc gaggaggaaag aagtccatccc ccgcagccctt ccacccatcgg 4320
 gtcctgcaga gcaacagccca gcttctccag ggcctcaactt acaatagcag tgacagcccc 4380
 tctgggcacc caccgtccgc gggcaccgtc ttcccaacaag gggacttttct cagcacttca 4440
 tctgctacaa gccccccatcggc cgtatggcacc aaagcgatga agccagaggc agcccccactt 4500
 ctttgttattt atcaggaccc cttcttgcgaa cttcttcacc accctaaact gttgaataac 4560
 acttggctt ctaagagctc agaccctttg gactcaggaa ccaggaggccc caaaagagat 4620
 cccatagacc cagtgtcagc tggcgcttca gtcgcacccggc cagactgtcc accagatcat 4680
 gaacacaaaaa ccttaggtca ctgggtgacca atcagtgcggc aagaaaaagag gacagcactg 4740
 cagggttttgc acccactggc aaaaacatga ctgagcagct ttgaaggctg cagtcctata 4800
 gaatgcatac cttccctccct ctagacatcc ctccaccaga agagacatctt atttaaaggc 4860
 acactggccca aaacgtttgt gcatctgtca ctctctgtc gtttacaaa atcgtgtctc 4920
 ttatttcgttca agatgtttac tcaagccacca aaatataattt cactcaaggc ttgtacatct 4980
 gaagtttgc tttcaaggaa tggggacccctt cctgttaaat tcgggttatg gattttaaaga 5040
 aaggaatcta gccaatgagg tccaagaagtt tctcaccat tgaattttta aatggctt 5100
 cagttcatgt tgcgttgcgtt gtagatgttgcgtt atttgcatt tacagatttgc 5160
 gtataacattt ttggggagcc acctgttgcgtt tgatgttataa agtaaggattt agagaaaagag 5220
 gtcgttgcgtt ccatttagtgcgtt ccacttacccaa aaggttacaa aaaatcagag 5280
 tcggaaaggcggc cccaaatggcgtt ctagtgcgtt acttagactgtt acatcccccattt gaggcccttcat 5340
 gtttaagtgtt gtacatgtgc gtttacccgtt atgatgttgcgtt aatccccgggg gacccgggtgg 5400
 cttatccacc atctatccat tactataatc ctgagccatg gttgtctact gaaaccaattt 5520
 tccatgcata ccacataaaaaa gcacacacgtt cg 5580
 tccatgcata ccacataaaaaa gcacacacgtt cg 5612