

Desenvolvimento de Base de Dados para Treinamento de Redes Neurais de Reconhecimento de Voz Através da Geração de Áudios com Resposta ao Impulso Simuladas por Técnicas de Data Augmentation

Bruno Machado Afonso

bruno.ma@poli.ufrj.br

Departamento de Engenharia Eletrônica e de Computação - Escola Politécnica

Universidade Federal do Rio de Janeiro

12 de julho de 2021

Sumário

- 1 Motivação
- 2 Metodologia
- 3 Resultados
- 4 Conclusão

Motivação

•00000

Crescimento no número de aplicações de algoritmos de processamento de áudio.

- Detecção e reconhecimento de voz
 - Smartphones
 - Automação residencial
 - Comunicação online
- Cancelamento de eco
- Separação de fontes

Deep Learning

Aumento no número de artigos que envolvem deep learning publicados em grandes conferências.

Amostra de Voz em Campo Distante (AVCD)

Sinal de voz anecóico que é corrompido pela reverberação do ambiente fechado e ruído.

(a) Sala anecóica

(b) Sala reverberante

Amostra de Voz em Campo Distante (AVCD)

$$Y(t) = s(t) * h(t) + n(t)$$

 $Y(t) \rightarrow AVCD$

Motivação

000000

- $s(t) \rightarrow \mathsf{Amostra} \; \mathsf{de} \; \mathsf{Voz} \; \mathsf{Anecoica}$
- $h(t) \rightarrow \text{Resposta ao Impulso de Sala (RIR)}$
- $n(t) \rightarrow \text{Sinal de Ruído}$

000000

Representa um modelo acústico de um ambiente para um par fonte/receptor.

Desafios

- Baixa quantidade e variedade de bases de dados contendo RIRs anotadas para treinamento de redes de deep learning.
- Dificuldade para realizar gravações de RIRs (equipamentos especializados, variedade de ambientes, etc.)

Data Augmentation (DA)

Proposta de duas técnicas de data augmentation para gerar AVCDs artificialmente.

- DA para gerar RIRs simuladas (RIRSM)
 - Razão Direto-Reverberante (DRR)
 - Tempo de Reverberação (T60)
- DA para gerar AVCDs, usando RIRSMs e ruídos

Data Augmentation (DA)

As técnicas de DA de RIRSM e AVCDs foram baseadas, respectivamente, nos artigos abaixo.

- [1] "Impulse Response Data Augmentation and Deep Neural Networks for Blind Room Acoustic Parameter Estimation", N. J. Bryan, ICASSP 2020
- [2] "A study on data augmentation of reverberant speech for robust speech recognition", T. Ko et al, ICASSP 2017

$$h_e(t) = egin{cases} h(t), & t_d - t_0 \leq t \leq t_d + t_0 \ 0, & ext{caso contrário.} \end{cases}$$
 $h_l(t) = egin{cases} h(t), & t < t_d - t_0 \ h(t), & t > t_d + t_0 \ 0, & ext{caso contrário.} \end{cases}$

 $h(t) \rightarrow \mathsf{RIR}$

Motivação

 $h_e(t) o$ Resposta inicial

 $h_l(t) o \mathsf{Resposta}$ atrasada

 $t_d \rightarrow$ Tempo levado pelo impulso sonoro da fonte até o receptor

 $t_0 \rightarrow$ Janela de tolerância ($t_0 = 2, 5$ ms, definido por [1])

DA - Razão Direto-Reverberante (DRR)

Definição do DRR:

$$DRR_{dB} = 10 \log_{10} \left(\frac{\sum_{t} h_{e}^{2}(t)}{\sum_{t} h_{l}^{2}(t)} \right)$$

DA do DRR:

$$h'_{e}(t) = \alpha w_{d}(t)h_{e}(t) + [1 - w_{d}(t)]h_{e}(t)$$

 $w_d(t) \rightarrow \text{Janela de Hann de duração } 2t_0$

DA - Razão Direto-Reverberante (DRR)

Substituindo $h_e(t)$ por $h'_e(t)$ na definição do DRR:

$$\alpha^{2} \sum_{t} w_{d}^{2}(t) h_{e}^{2}(t) + 2\alpha \sum_{t} [1 - w_{d}(t)] w_{d}(t) h_{e}^{2}(t) +$$

$$\sum_{t} [1 - w_{d}(t)]^{2} h_{e}^{2}(t) - 10^{DRR_{dB}/10} \sum_{t} h_{l}^{2}(t) = 0$$

O parâmetro α desejado é a raiz de major valor.

DA - Tempo de Reverberação (T60)

Definição do T60:

$$\begin{cases} t_i, \text{ onde } h(t_i) = max(h(t)) \\ t_f, \text{ onde } 10 \log_{10} \left(h^2(t_i) - h^2(t_f) \right) = 60 \text{dB} \\ \text{T60} = t_f - t_i \end{cases}$$

Modelo de $h_i(t)$:

$$h_m(t) = Ae^{-(t-t_o)/\tau}n(t)u(t-t_o) + \sigma n(t)$$

 $A \rightarrow Ganho da RIR$

 $au
ightarrow \mathsf{Taxa}$ de decaimento

 $\sigma \rightarrow$ Desvio padrão do ruído de chão

 $n(t) \rightarrow \text{Ruído gaussiano padrão}$

 $t_o \rightarrow \text{Balor temporal onde } h_l(t) \text{ tem seu primeiro valor não nulo}$

 $u(t) \rightarrow \text{Degrau unitário}$

DA - Tempo de Reverberação (T60)

Taxa de decaimento:

$$T60 = \ln(1000)\tau T_s$$

 $T_s \rightarrow \text{Tempo de amostragem}$

DA do T60:

Motivação

$$h'_{l}(t) = h_{l}(t)e^{-(t-t_{o})\frac{\tau-\tau_{d}}{\tau\tau_{d}}}$$

RIRSM completa:

$$h'(t) = h'_{e}(t) + h'_{l}(t)$$

DA - Amostra de Voz em Campo Distante (AVCD)

Modelo de uma AVCD:

$$S_{cd}[t] = S_a[t] * h[t] + \sum_i n_{pi}[t] * h[t] + n_f[t]$$

 $S_a[t] \rightarrow$ Amostra de Voz Anecóica (AVA)

 $h[t] \rightarrow \mathsf{RIRSM}$

 $n_p[t] \rightarrow \text{Sinal de Ruído Pontual (SRP)}$

 $n_f[t] \rightarrow \text{Sinal de Ruído de Fundo (SRF)}$

DA - Amostra de Voz em Campo Distante (AVCD)

Primeira etapa: Adição do SRP

$$S_r[t] = S_a[t] * h[t] + \alpha \operatorname{offset}(n_{pi}[t] * h[t], o_t)$$

OBS: $SNR_t = SNR(S_r[t], \alpha(n_{pi}[t] * h[t])) \rightarrow Razão Sinal-Ruído alvo$

 $S_a[t] o ext{Amostra de Voz Anecóica (AVA)}$

 $h[t] \rightarrow \mathsf{RIRSM}$

 $n_{pi}[t] \rightarrow \mathsf{SRP}$

 $\alpha \to \text{Fator}$ de correção da intensidade de $n_{pi}[t]$ para obter o SNR_t offset $(X, o_t) \to \text{Deslocamento}$ de X para uma posição dentro do intervalo de $S_a[t]$

Resultados

Segunda etapa: Adição do SRF

$$S_{cd}[t] = S_r[t] + \alpha n_f[t]$$

OBS: $SNR_t = SNR(S_{cd}[t], \alpha n_t[t]) \rightarrow Razão Sinal-Ruído alvo$

 $S_r[t] \rightarrow \text{Amostra de Voz Reverberada} + \text{SRP}$ $n_f[t] \to \mathsf{SRF}$

Conclusões

Motivação

- Em grande parte, os resultados alcançados estão condizentes com os valores esperados.
- Discrepância nos valores de T60 podem ser explicados pelas diferenças de implementação entre este projeto e [1].
- Avaliação empírica das sensações subjetivas de "distância" e "eco" condizentes com as modificações esperadas.

Trabalhos Futuros

Motivação

- Implementação de uma metodologia de data augmentation de T60 mais próxima à usada no artigo [1].
- Comparação entre as RIRs geradas com a metodologia implementada e RIRs geradas através de programas de simulação acústicas (RAIOS [3]).
- Proposta de um modelo de rede de deep learning para estimação de T60 e DRR em AVCDs para observação da eficácia das RIRs como aprimoradoras do treinamento de redes neurais.

000

Obrigado!

Referências

- N. J. Bryan. "Impulse Response Data Augmentation and Deep [1] Neural Networks for Blind Room Acoustic Parameter Estimation". Em: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 1-5. DOI: 10.1109/ICASSP40776.2020.9052970.
- T. Ko et al. "A study on data augmentation of reverberant speech [2] for robust speech recognition". Em: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017, pp. 5220-5224. DOI: 10.1109/ICASSP.2017. 7953152.
- Roberto Tenenbaum et al. "Hybrid method for numerical simu-[3] lation of room acoustics: Part 2-validation of the computational code RAIOS 3". Em: Journal of the Brazilian Society of Mechanical Sciences and Engineering 29 (abr. de 2007). DOI: 10.1590/S1678-58782007000200013.