Mathematical Foundations

MFE Spring 2021

Assignment 5

Student Name: Rick Wuebker

ID: richard_wuebker

Solved in team: No

1. Probability Spaces

Consider the state space $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, with the associated σ -algebra $\mathcal{F} = 2^{\Omega}$, and probability measures \mathbb{P} and \mathbb{Q} defined by:

(a) Are \mathbb{P} and \mathbb{P} equivalent probability measures?

No, \mathbb{P} and \mathbb{Q} are not equivalent because they disagree on which events have 0 probability, specifically $\mathbb{Q}(\omega_2) = 0$ however $\mathbb{P}(\omega_2) = 0.1$.

What is the Radon-Nikodym derivative $\frac{d\mathbb{Q}}{d\mathbb{P}}$?

$$L(\{\emptyset\}) = 0 \qquad L(\{\omega_1\}) = \frac{0.1}{0.4} = 0.25$$

$$L(\{\omega_2\}) = \frac{0}{0.1} = 0 \qquad L(\{\omega_3\}) = \frac{0.5}{0.1} = 5$$

$$L(\{\omega_4\}) = \frac{0.4}{0.4} = 1.00 \qquad L(\{\omega_1, \omega_2\}) = \frac{0.1+0.0}{0.4+0.1} = 0.2$$

$$L(\{\omega_1, \omega_3\}) = \frac{0.1+0.5}{0.4+0.1} = 1.2 \qquad L(\{\omega_1, \omega_4\}) = \frac{0.1+0.4}{0.4+0.4} = 0.625$$

$$L(\{\omega_2, \omega_3\}) = \frac{0.0+0.5}{0.1+0.1} = 2.5 \qquad L(\{\omega_1, \omega_4\}) = \frac{0.0+0.4}{0.1+0.4} = 0.8$$

$$L(\{\omega_3, \omega_4\}) = \frac{0.5+0.4}{0.1+0.4} = 1.80 \qquad L(\{\omega_1, \omega_2, \omega_3\}) = \frac{0.1+0.0+0.5}{0.4+0.1+0.4} = 1.00$$

$$L(\{\omega_1, \omega_2, \omega_4\}) = \frac{0.1+0.0+0.4}{0.4+0.1+0.4} = 0.556 \qquad L(\{\omega_1, \omega_3, \omega_4\}) = \frac{0.1+0.5+0.4}{0.4+0.1+0.4} = 1.111$$

$$L(\{\omega_2, \omega_3, \omega_4\}) = \frac{0+0.5+0.4}{0.1+0.1+0.4} = 1.5 \qquad L(\{\Omega\}) = 1$$

2. Measurability

Consider the state space $\Omega=\mathbb{R}$, with the σ -algebra $\mathcal{F}=\{(-\infty,0],(0,\infty),\emptyset,\mathbb{R}\}$, and the random variable $X:\Omega\to\mathbb{R}$ defined by:

$$X(\omega) = \begin{cases} 3 & \omega < 0 \\ 5 & \omega \ge 0 \end{cases}$$

(a) Is X \mathcal{F} measurable?

No. Consider the interval I=[4,10], then $X^{-1}(I)=[0,\infty)\notin\mathcal{F}$

3. Stochastic Integration

(a) Given that the company chooses a fixed investment strategy $I \equiv k$, between time 0 and T, derive an expression for what the value of of the project at time T is. The value should be expressed as a function of W_T , k, μ and σ .

$$V_T = \mu k \int_0^T dt + \sigma k \oint_0^T dW_t$$

$$V_T = \mu kT + \sigma kW_T$$

(b) Assume that the company must determine a constant investment strategy at t = 0, $I \equiv k$. What value of k should the company choose?

$$U = E(V_T) - \frac{\gamma}{2} Var(V_T)$$

$$U = \mu kT - \frac{\gamma}{2}\sigma^2 k^2 T$$

$$\frac{dU}{dk} = \mu T - \gamma \sigma^2 kT = 0$$

$$\gamma \sigma^2 kT = \mu T$$

$$k = \frac{\mu}{\gamma \sigma^2}$$

 $\frac{d^2U}{(dk)^2} = -\gamma\sigma^2T < 0$ so we have found a local maximum.

4. Ito's Lemma

(a) Consider the stochastic process:

$$dX_t = \mu dt + \sigma dW_t$$

Find a closed form expression for Q, defined by the stochastic integral:

$$Q = \oint_0^T 3X_t(\mu X_t + \sigma^2)dt + 3X_t \sigma dW_t$$

by postulating a function $G(t, W_t)$ that satisfies:

$$dG_t = 3X_t(\mu X_t + \sigma^2)dt + 3X_t^2 \sigma dW_t$$

and using the definition of the stochastic integral in class to get:

$$Q = G(T, W_T) - G(0, W_0)$$

There are only a few terms in the differential so I will guess $G_t = 0$.

$$dG_t = 3\mu X_t^2 dt + 3\sigma^2 X_t dt + 3X_t^2 \sigma dW_t = G_X dX + \frac{1}{2}G_{XX}(dX)^2$$

$$dG_{t} = 3X_{t}^{2}(\mu dt + \sigma dW_{t}) + \frac{1}{2}6X_{t}\sigma^{2}dt = G_{X}dX + \frac{1}{2}G_{XX}(dX)^{2}$$

$$dG_t = 3X_t^2 dX + \frac{1}{2}6X_t (dX)^2 = G_X dX + \frac{1}{2}G_{XX} (dX)^2$$

$$\implies G_X = 3X^2 \qquad G_{XX} = 6X$$

Possible solution: $G(t, W_t) = X_t^3 = (X(0) + \mu t + \sigma W_t)^3$

$$Q = G(T, W_T) - G(0, W_0) = (X(0) + \mu T + \sigma W_T)^3 - X(0)^3$$