

Advanced Computer VisionWeek 11

Nov. 15, 2022 Seokju Lee

Object Recognition in the Past: Face Detection

Face Detection

Slide windows of different sizes across image.

At each location, **decide** the sample whether it is face or not.

Face Detection Framework

For each window:

Features: Which features represent faces well?

Classifier: How to construct a <u>face model</u> and <u>efficiently</u> classify features as face or not?

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Features for Face Detection

What are Good Features?

Interest points (e.g., edges, corners, SIFT)?

Facial components (e.g., templates)?

+ Must be extremely fast to compute!

(Need to process millions of windows in an image)

Haar Features

Set of correlation responses to **Haar** filters

Discriminative Ability of Haar Features

Haar features are **sensitive** to **directionality** of patterns!

$$V_A = 16$$

$$V_A = 0$$

$$V_A = -127$$

Detecting Faces of Different Size

Compute Haar features at **different scales** to detect faces of different sizes!

Computing a Haar Feature

White = 1, Black = -1

Response to Filter H_A at location (i, j):

$$V_A[i,j] = \sum_{m} \sum_{n} I[m-i,n-j] H_A[m,n]$$

 $V_A[i,j] = \sum$ (pixel intensities in white area)

 $-\sum$ (pixels intensities in black area)

Computing Integral Image

Image I

Integral Image II

 $V_A = \sum (pixel intensities in white) - \sum (pixel intensities in black)$ = $(II_O - II_T + II_R - II_S) - (II_P - II_Q + II_T - II_O)$

= (2061-329+98-584) - (3490-576+329-2061) = 64

Computational Cost: Only 7 additions

Haar Features Using Integral Images

Integral image needs to be computed **once** per test image.

Allows **fast** computations of Haar features.

Haar filters

Haar features

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Classifier for Face Detection

Classifier for Face Detection

Given the **features** for a window,

How to **decide** whether it contains a face or not?

Feature Space

Haar features \mathbf{f} (a vector) at a pixel is a point in an n-D space, $\mathbf{f} \in \mathbb{R}^n$

Training data of **face**

Training data of **non-face** (Caltech 101)

Find the **nearest** training sample using L^2 distance and assign its label.

Find the **nearest** training sample using L^2 distance and assign its label.

Test image (true negative)

(Caltech 101)

Find the **nearest** training sample using L^2 distance and assign its label.

(false positive)

(Caltech 101)

Larger the training set, more robust the NN classifier!

Training data of **face**

Larger the training set, **slower** the NN classifier!

Training data of **face**

Decision Boundary

A simple decision boundary **separates** face and non-face.

Training data of **non-face** (Caltech 101)

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Support Vector Machine (SVM)

A linear decision boundary in 2D space is a 1D line.

A linear decision boundary in 2D space is a 1D line.

Equation of Line:

$$w_1 f_1 + w_2 f_2 + b = 0$$

$$\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} + b = 0$$

$$\mathbf{w}^T\mathbf{f} + b = 0$$

A linear decision boundary in 3D space is a 2D plane.

Equation of Plane:

$$w_1 f_1 + w_2 f_2 + w_3 f_3 + b = 0$$

 $\mathbf{w}^T \mathbf{f} + b = 0$

A linear decision boundary in n-D space is a (n-1)-D hyperplane.

Equation of Hyperplane:

$$w_1 f_1 + w_2 f_2 + \dots + w_n f_n + b = 0$$
$$\mathbf{w}^T \mathbf{f} + b = 0$$

Decision Boundary (w, b)

What is the **optimal** decision boundary?

Evaluating a Decision Boundary

Margin or **safe zone**: The width that the boundary could be increased by, before hitting a feature point.

→ Choose decision boundary with **maximum** margin!

Support Vector Machine (SVM)

Classifier optimized to **maximize** margin.

Support vectors: **Closest** data samples to the boundary.

→ Decision boundary & margin are only dependent on support vectors!

Support Vector Machine (SVM)

Given:

- k training images $\{I_1, I_2, ..., I_k\}$ and their Haar features $\{\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_k\}$.
- k corresponding labels $\{\lambda_1, \lambda_2, ..., \lambda_k\}$, where $\lambda_j = +1$ if I_j is a face and $\lambda_i = -1$ if I_i is a face.

Find:

- Decision boundary $\mathbf{w}^T \mathbf{f} + b = 0$
- with maximum margin ρ

$$\mathbf{w}^T\mathbf{f} + b = 0$$

Finding Decision Boundary (w, b)

For each training sample $(\mathbf{f}_i, \lambda_i)$:

If
$$\lambda_i = +1$$
: $\mathbf{w}^T \mathbf{f}_i + b \ge \rho/2$
If $\lambda_i = -1$: $\mathbf{w}^T \mathbf{f}_i + b \le -\rho/2$ $\lambda_i(\mathbf{w}^T \mathbf{f}_i + b) \ge \rho/2$

Finding Decision Boundary (w, b)

For each training sample $(\mathbf{f}_i, \lambda_i)$:

If
$$\lambda_i = +1$$
: $\mathbf{w}^T \mathbf{f}_i + b \ge \rho/2$
If $\lambda_i = -1$: $\mathbf{w}^T \mathbf{f}_i + b \le -\rho/2$ $\lambda_i(\mathbf{w}^T \mathbf{f}_i + b) \ge \rho/2$

If S is the set of support vectors,

Then for every support vector $s \in \mathcal{S}$: $\lambda_s(\mathbf{w}^T\mathbf{f}_s + b) = \rho/2$

$$\lambda_s(\mathbf{w}^T\mathbf{f}_s + b) = \rho/2$$

Numerical methods exist to find \mathbf{w}, b and \mathcal{S} that maximize ρ

Classification Using SVM

Given: Haar features f for an image window and SVM parameters $\mathbf{w}, b, \rho, \mathcal{S}$

Classification:

Compute
$$d = \mathbf{w}^T \mathbf{f} + b$$

If:
$$\begin{cases} d \geq \rho/2 & \text{Face} \\ d > 0 \text{ and } d < \rho/2 & \text{Probably face} \\ d < 0 \text{ and } d > -\rho/2 & \text{Probably non-face} \\ d \leq -\rho/2 & \text{Non-face} \end{cases}$$

Experiments

Face detection & SVM

Updated codes are available in https://view.kentech.ac.kr/f088fa7f-874e-44bc-bd6d-6084b42dfdf7

\$ python face.py

\$ python svm.py