DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Definicija planarnog grafa

Ojlerova formula

Tvrđenje Kuratovskog

Tema 1

Definicija planarnog grafa

Planarni grafovi

Definicija

Graf je planaran ako može biti nacrtan u ravni tako da mu se grane ne seku. Za takvu reprezentaciju grafa kažemo da je planarna.

Primer

- (1) Da li je K_4 planaran graf?
- (2) Da li je Q_3 planaran graf?
- (3) Da li je $K_{3,3}$ planaran graf?
- (4) Da li je K_5 planaran graf?

Tema 2

Ojlerova formula

Ojlerova formula

Teorema

Neka je $G=(V,E),\,|E|=m\geq 2,$ povezan planaran prost graf sa f oblasti u njegovoj planarnoj reprezentaciji. Tada je

$$f = |E| - |V| + 2.$$

Dokaz.

Posmatraćemo G_1, \ldots, G_m

- G_i je podgraf grafa G, za svako $i \in \{1, \ldots, m\}$,
- G_i ima granu incidentnu sa bar jednim čvorom u $G_{i-1},\, 2\leq i\leq m.$

Treba pokazati da G_i zadovoljava Ojlerovu formulu za svako $i \in \{1, ..., m\}$.

Ojlerova formula

Definition

Stepen oblasti D, u oznaci st(D) je broj grana na rubu te oblasti. Ako se grana pojavljuje dva puta na rubu, ona se računa dva puta.

Neka je $|V| \geq 3$.

$$2|E(G)| = \sum_{1 \le i \le f} \operatorname{st}(D_i) \ge 3 \cdot f \tag{1}$$

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora, onda je

$$|E| \le 3|V| - 6.$$

Primer

Graf K_5 nije planaran.

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora, onda je

$$|E| \le 3|V| - 6.$$

Primer

Graf K_5 nije planaran.

Dokaz.

$$|V(K_5)| = 5$$
 $|E(K_5)| = {5 \choose 2} = 10$

Ako je K_5 planaran, onda je $10 \le 3 \cdot 5 - 6 = 9$.

Posledica

Ako je G=(V,E) povezan planaran prost graf sa bar 3 čvora i G nema konture dužine 3, onda je

$$|E| \le 2|V| - 4.$$

Primer

Graf $K_{3,3}$ nije povezan.

Posledica

Ako je G = (V, E) povezan planaran prost graf sa bar 3 čvora i G nema konture dužine 3, onda je

$$|E| \le 2|V| - 4.$$

Primer

Graf $K_{3,3}$ nije povezan.

Dokaz. Sve konture u $K_{3,3}$ su parne dužine ne manje od 4.

$$|V(K_{3,3})| = 6$$
 $|E(K_5)| = \frac{3 \cdot 6}{2} = 9.$

Ako je $K_{3,3}$ planaran, onda je $9 \le 2 \cdot 6 - 4 = 8$.

Tema 3

Tvrđenje Kuratovskog

Homeomorfni grafovi

Definicija

Ako umesto grane uv dodamo novi čvor w i grane uw i wv, kazaćemo da smo kreirali novi graf primenom elementarne deobe na polazni graf.

Definicija

Grafovi $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ su homeomorfni ako mogu biti dobijeni od istog grafa sukcesivnom primenom elementarne deobe.

Tvrđenje Kuratovskog

Teorema

Graf G nije planaran ako i samo ako sadrži podgraf koji je homeomorfan sa $K_{3,3}$ ili K_5 .

Primer

Petersenov graf nije planaran.

e (a) (b) H $(c) K_{3,3}$

TOTAL TIME OTREPHO