- 1. Udowodnij, że dla dowolnych liczb x_n, x ,
 - $\delta_{x_n} \Rightarrow \delta_x$ wtedy i tylko wtedy, gdy $x_n \to x$.
- 2. Wykaż, że $\frac{1}{n}\sum_{k=1}^n \delta_{k/n} \Rightarrow \lambda,$ gdzie λ jest miarą Lebesgue'a na [0,1].
- 3. Podać przykład rozkładów prawdopodobieństwa μ_n, μ , takich, że $\mu_n \Rightarrow \mu$, ale $\mu_n(A) \nrightarrow \mu(A)$ dla pewnego zbioru A.
- 4. Wykaż, że:
 - a) jeśli $X_n \to X$ p.n., to $X_n \Rightarrow X$;
 - b) jeśli $X_n \to X$ według prawdopodobieństwa, to $X_n \Rightarrow X$;
 - c) jeśli $X_n \Rightarrow c$, gdzie c jest stałą, to $X_n \to c$ według prawdopodobieństwa.
- 5. Zmienne losowe X_n, X przyjmują tylko wartości całkowite.
 - a) Wykaż, że $X_n \Rightarrow X$ wtedy i tylko wtedy gdy $\mathbf{P}(X_n = k) \to \mathbf{P}(X = k)$ dla wszystkich liczb całkowitych k.
 - b) Czy z istnienia granic $\lim_{n\to\infty} \mathbf{P}(X_n=k)$ dla k całkowitych wynika zbieżność X_n wg rozkładu?
- 6. Czy teza punktu a) poprzedniego zadania się zmieni, jeśli zmienne X_n przyjmują wartości wymierne?
- 7. Niech $\operatorname{Bin}(p,n)$ oznacza rozkład Bernoulliego o n próbach z prawdopodobieństwem sukcesu p, a $\operatorname{Poiss}(\lambda)$ rozkład Poissona z parametrem λ . Wykaż, że jeśli $p_n n \to \lambda$, to $\operatorname{Bin}(p_n,n) \Rightarrow \operatorname{Poiss}(\lambda)$.
- 8. Podaj przykład ciągu dystrybuant F_n , zbieżnego punktowo do funkcji, która nie jest dystrybuantą.
- 9. Podaj przykład ciągu zmiennych losowych X_n , zbieżnego wg rozkładu, takiego, że odpowiadający mu ciąg dystrybuant nie zbiega punktowo do dystrybuanty rozkładu granicznego.
- 10. Wykaż, że zmienne losowe mające gęstości mogą zbiegać do stałej.
- 11. Niech X będzie niezdegenerowaną zmienną losową. Wykaż, że zmienne a_nX+b_n zbiegają według rozkładu do zmiennej aX+b wtedy i tylko wtedy gdy $a_n\to a$ i $b_n\to b$.
- 12. Udowodnij, że $\mathcal{N}(a_n, \sigma_n^2) \Rightarrow \mathcal{N}(a, \sigma^2)$ wtedy i tylko wtedy gdy $a_n \to a$, $\sigma_n^2 \to \sigma^2$.

- 1. Niech g_n, g oznaczają odpowiednio gęstości rozkładów prawdopodobieństwa μ_n, μ na \mathbb{R}^n . Wykazać, że jeśli $g_n \to g$ p.w., to $\mu_n \Rightarrow \mu$, ale niekoniecznie na odwrót.
- 2. Wykaż, że rodzina rozkładów normalnych $\mathcal{N}(a_{\alpha}, \sigma_{\alpha}^2)$ jest ciasna wtedy i tylko wtedy gdy $\sup_{\alpha} |a_{\alpha}|, \sup_{\alpha} \sigma_{\alpha}^2 < \infty$.
- 3. Dana jest rodzina rozkładów
 - a) wykładniczych $\{\text{Exp}(\lambda) : \lambda \in A\}, A \subseteq \mathbb{R}_+,$
 - b) jednostajnych $\{U(a,b): a,b \in A, a < b\}, A \subseteq \mathbb{R}.$

Jaki warunek musi spełniać zbiór A, aby ta rodzina była ciasna?

- 4. Wykazać, że jeśli dla wszystkich n, X_n jest niezależne od Y_n oraz X jest niezależne od Y, to $(X_n, Y_n) \Rightarrow (X, Y)$.
- 5. Udowodnij, że jeśli $X_n \Rightarrow X, \, p>0$ oraz $\sup_n \mathbf{E}|X_n|^p < \infty$ to $\mathbf{E}|X|^p < \infty$, ale niekoniecznie $\mathbf{E}|X_n|^p \to \mathbf{E}|X|^p$. Jest to jednak prawdą gdy dla pewnego $\varepsilon>0, \, \sup_n \mathbf{E}|X_n|^{p+\varepsilon}<\infty$.

- 1. Oblicz funkcje charakterystyczne rozkładów
 - i) dyskretnych dwupunktowego, geometrycznego, Bernoulliego, Poissona;
 - ii) ciągłych normalnego, jednostajnego, wykładniczego, dwustronnego wykładniczego.
- 2. Które z następujących funkcji są funkcjami charakterystycznymi: $\cos t,$ $\cos^2 t,\,\frac{1}{4}(1+e^{it})^2,\,\frac{1+\cos t}{2},\,\frac{1}{2-e^{it}}?$
- 3. Przy pomocy funkcji charakterystycznych sprawdź, że jeśli ε_n są niezależnymi symetrycznymi zmiennymi losowymi przyjumjącymi wartości ± 1 , to zmienna losowa $\sum_{n\geqslant 1} 2^{-n} \varepsilon_n$ ma rozkład jednostajny na przedziale [-1,1].
- 4. Niech Xbędzie zmienną losową taką, że $\mathbf{P}(X\in\mathbb{Z})=1.$ Pokaż, że dla każdego $n\in\mathbb{Z},$

$$\mathbf{P}(X=n) = \frac{1}{2\pi} \int_0^{2\pi} e^{-itn} \varphi_X(t) dt.$$

- 5. Pokaż, że kombinacje wypukłe funkcji charakterystycznych są funkcjami charakterystycznymi.
- 6. Wiadomo, że φ jest funkcją charakterystyczną pewnej zmiennej losowej X. Czy funkcjami charakterystycznymi są : φ^2 , Re φ , $|\varphi|^2$, $|\varphi|$?
- 7. Udowodnij, że zmienna losowa X jest symetryczna wtedy i tylko wtedy gdy $\varphi_X(t) \in \mathbb{R}$ dla wszystkich t.

- 1. Zmienne X, Y są niezależne, przy czym X i X+Y mają rozkłady normalne. Udowodnij, że zmienna Y ma także rozkład normalny lub jest stała p.n.
- 2. Zmienne X, Y, ε są niezależne, przy czym X, Y mają rozkład wykładniczy z parametrem λ oraz $\mathbf{P}(\varepsilon = \pm 1) = \frac{1}{2}$. Wykaż, że zmienna X Y ma ten sam rozkład, co zmienna εX .
- 3. Udowodnij, że splot rozkładów Cauchy'ego ma rozkład Cauchy'ego.
- 4. Znajdź zmienne losowe X,Y takie, że $\varphi_{X+Y}=\varphi_X\varphi_Y$ oraz zmienne X,Y są zależne.
- 5. Korzystając z funkcji charakterystycznej oblicz $\mathbf{E}X^k$ dla $X \sim \mathcal{N}(0,1)$.
- 6. Dla $n \geqslant 1$ zmienna X_n ma rozkład geometryczny z parametrem $p_n \in (0,1)$. Wykaż, że jeśli $(a_n)_n$ jest takim ciągiem liczb dodatnich, że $a_n \to 0$, $p_n/a_n \to \lambda > 0$, to zmienne $a_n X_n$ zbiegają słabo do rozkładu wykładniczego z parametrem λ .
- 7. Niech X będzie zmienną o rozkładzie jednostajnym U(-1,1). Rozstrzygnij, czy istnieje zmienna Y, niezależna od X, taka, że rozkłady zmiennych X+Y i 2Y są takie same.
- 8. Udowodnij, że jeśli $\varphi_X''(0)$ istnieje to $\mathbf{E}X^2 < \infty$
- 9. Podaj przykład zmiennych losowych X_n takich, że $\varphi_{X_n} \to \varphi$ punktowo, ale φ nie jest funkcją charakterystyczna żadnego rozkładu na prostej.
- 10. Zmienna X ma funkcję charakterystyczną $\varphi_X(t) = e^{-|t|^{\alpha}}$ dla pewnego $\alpha \in (0,2]$. Co można powiedzieć o rozkładzie zmiennej aX + bY, gdzie $a,b \in \mathbb{R}$, a Y jest niezależną kopią X?

- 1. Na campusie uniwersyteckim są dwie restauracja po 120 miejsc każda. Wiadomo, że codziennie 200 osób będzie chciało zjeść obiad, a wyboru restauracji dokonują losowo i niezależnie. Jaka jest szansa, że w którejś restauracji zabraknie miejsc? Ile miejsc należy przygotować w każdej restauracji, by powyższe prawdopodobieństwo było mniejsze od 0,001?
- 2. W pewnym stanie w wyborach prezydenckich głosuje 500.000 osób. Zakładając, że wyborcy głosują na każdego z dwu kandydatów z prawdopodobieństwem 50% jaka jest szansa, że różnica między kandydatami będzie mniejsza niż 100 głosów?
- 3. Na podstawie losowej próby szacujemy procent dorosłych osób popierających pewną partię polityczną. Chcemy by błąd był mniejszy niż 1% z prawdopodobieństwem 0.95? Ile w tym celu musimy przepytać osób? Jak zmieni się odpowiedź, jeśli wiemy, że partię popiera nie więcej niż 10% wyborców?
- 4. Prawdopodobieństwo urodzenia chłopca wynosi 0,517. Jakie jest prawdopodobieństwo, że wśród 10000 noworodków liczba chłopców nie przewyższy liczby dziewcząt?
- Rzucono 1000 razy kostką. Oszacuj prawdopodobieństwo, że suma wyrzuconych oczek będzie zawarta między 3410 a 3590.
- 6. Dane są niezależne zmienne losowe X_1,X_2,\ldots , o wspólnym rozkładzie z wartością oczekiwaną równą 0 i dodatnią wariancją. Wyznacz w zależności od $a,\alpha\in\mathbb{R}$

$$\lim_{n\to\infty} \mathbf{P}\left(\left|\frac{X_1+\ldots+X_n}{n^{\alpha}}\right|>a\right).$$

- 7. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = a) = \mathbf{P}(X_i = 1/a) = 1/2$ dla pewnego a > 1. Wykaż, że zmienne $Z_n = (X_1 X_2 \cdots X_n)^{1/\sqrt{n}}$ są zbieżne według rozkładu i znajdź rozkład graniczny.
- 8. Zmienne losowe X_1, X_2, \ldots są niezależne, mają ten sam rozkład taki, że $\mathbf{E} X_1 = 0$, $\mathrm{Var}(X) = 1$. Zbadaj zbieżność względem rozkładu ciągów

$$U_n = \frac{\sqrt{n}(X_1 + \dots, X_n)}{X_1^2 + \dots + X_n^2}, \quad V_n = \frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}.$$

1. Zmienne X_{λ} mają rozkład Poissona z parametrem λ . Wykaż, że

$$\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}} \to \mathcal{N}(0,1) \text{ według rozkładu gdy } \lambda \to \infty.$$

2. Udowodnij, że

$$\lim_{n \to \infty} e^{-n} \sum_{k \le n} \frac{n^k}{k!} = \frac{1}{2}.$$

- 3. Udowodnij, że układ trójkątny $X_{n,k} = \frac{X_k}{\sqrt{n}}$, $1 \le k \le n$, gdzie X_n , $n = 1, 2, \ldots$, są niezależnymi zmiennymi losowymi o tym samym rozkładzie, spełnia warunek Lindeberga.
- 4. Zmienne X_1,X_2,\ldots są niezależne przy czym $\mathbf{P}(X_k=k)=\mathbf{P}(X_k=-k)=1/2.$ Niech $\sigma_n^2=\sum_{k=1}^n \mathrm{Var}(X_k).$ Zbadaj zbieżność według rozkładu ciągu

$$\frac{X_1 + \ldots + X_n}{\sigma_n}.$$

5. Powiemy, że układ trójkątny $(X_{n,k})$ spełnia warunek Lyapunowa,

$$\lim_{n \to \infty} \frac{1}{\sigma_n^{2+\delta}} \sum_{k=1}^{k_n} \mathbf{E} |X_{n,k} - \mathbf{E} X_{n,k}|^{2+\delta} = 0.$$

Wykazać, że warunek Lyapunowa implikuje warunek Lindeberga.

6. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi, takimi, że

$$\mathbf{P}(X_n = \pm 1) = \frac{1}{2}(1 - \frac{1}{n^2}), \quad \mathbf{P}(X_n = \pm n) = \frac{1}{2n^2}.$$

Wykazać, że

$$\frac{X_1 + \ldots + X_n}{\sqrt{n}} \Rightarrow \mathcal{N}(0, 1),$$

ale $Var(X_n) \to 2$.

- 7. Niech X będzie całkowalną z kwadratem zmienną losową, taką, że $X \sim \frac{Y+Z}{\sqrt{2}}$, gdzie Y, Z niezależne kopie X. Wykazać, że X ma rozkład $\mathcal{N}(0, \sigma^2)$.
- 8. Wyznacz funkcję charakterystyczną wektora losowego AX+b zakładając, że znamy funkcję charakterystyczną wektora X.
- 9. Podaj przykład dwu zmiennych X,Y o rozkładzie $\mathcal{N}(0,1)$ takich, że $\mathrm{Cov}(X,Y)=0,$ ale X i Y nie są niezależne.

- 1. Zmienne τ i σ są momentami zatrzymania względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Wykaż, że $\tau \vee \sigma$, $\tau \wedge \sigma$, $\tau + \sigma$ są momentami zatrzymania. Czy $\tau 1$, $\tau + 1$ też są momentami zatrzymania?
- 2. Zmienne losowe (X_n) są adaptowalne względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że następujące zmienne losowe są momentami zatrzymania dla dowolnego zbioru borelowskiego B:
 - a) $\tau_1 = \inf\{n : X_n \in B\}$ pierwsza wizyta w zbiorze B,
 - b) $\tau_k = \inf\{n > \tau_{k-1} : X_n \in B\}, k = 2, 3, \ldots k$ -ta wizyta w zbiorze B.
- 3. Niech τ i σ będą momentami zatrzymania względem $(\mathcal{F}_n)_{n=0}^{\infty}$. Wykaż, że a) jeśli $\tau \equiv t$, to $\mathcal{F}_{\tau} = \mathcal{F}_t$,
 - b) jeśli $\tau < \sigma$, to $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$,
 - c) $A \in \mathcal{F}_{\tau}$ wtedy i tylko wtedy gdy $A \in \mathcal{F}$ oraz $A \cap \{\tau = t\} \in \mathcal{F}_{t}$ dla wszystkich t.
- 4. Zmienne τ i σ są momentami zatrzymania względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że $\{\tau < \sigma\}, \{\tau \leqslant \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$ oraz $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$.
- 5. Podaj przykład momentu zatrzymania τ , takiego, że $\sigma(\tau) \neq \mathcal{F}_{\tau}$.
- 6. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{E}|X_i| < \infty$ dla wszystkich i. Udowodnij, że $M_n = X_1 X_2 \cdots X_n$ jest martyngałem względem $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ wtedy i tylko wtedy gdy $\mathbf{E} X_i = 1$ dla wszystkich i lub $X_1 = 0$ p.n..
- 7. Niech X_n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i średniej $0, \mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Zdefiniujmy

$$Z_0 = 0, \quad Z_n = \sum_{k=1}^n X_{k-1} X_k$$

Udowodnij, że (Z_n, \mathcal{F}_n) jest martyngałem.

- 8. Niech $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, gdzie X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o jednakowym rozkładzie takim, że $\mathbf{E}X_i^2 < \infty$. Znajdź liczby a_n, b_n dla których $S_n^2 + a_n S_n + b_n$ jest martyngałem względem \mathcal{F}_n .
- 9. Niech $t \in \mathbb{R}$ oraz X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o rozkładzie normalnym $\mathcal{N}(0,1)$. Przyjmijmy $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Znajdź wszystkie ciągi (a_n) takie, że $(e^{itS_n + a_n}, \mathcal{F}_n)$ jest martyngałem.

7

- 1. Ciąg (X_n) jest martyngałem. Zbadaj, czy są pod- bądź nadmartyngałami ciągi:
 - a) $(|X_n|^p)_n \ p \ge 1;$
 - b) $(X_n \wedge a)_n$;
 - c) $(X_n \vee a)_n$;
 - d) $(X_n^3)_n$.
- 2. Niech (X_n, \mathcal{F}_n) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że jest on martyngałem wtedy i tylko wtedy gdy dla dowolnego ograniczonego momentu zatrzymania τ , $\mathbf{E}X_{\tau} = \mathbf{E}X_0$.
- 3. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = 1) = p = 1 \mathbf{P}(X_i = -1)$. Przyjmując $S_0 = 0$ $S_n = \sum_{i=1}^n X_i$ znajdź wszystkie liczby rzeczywiste λ dla których λ^{S_n} jest martyngałem względem filtracji generowanej przez (X_n) .
- 4. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą symetryczną i niesymetryczną.
- 5. Niech X_1, X_2, \ldots będą niezależnymi zmienymi losowymi takimi, że $P(X_i = \pm 1) = 1/2, S_n = X_1 + X_2 + \ldots + X_n$ oraz $\tau = \inf\{n : S_n = 1\}$. Wykaż, że $\mathbf{E}\tau = \infty$.
- 6. Oblicz średni czas oczekiwania na ruinę któregoś z graczy w grze orła i reszkę monetą symetryczną i niesymetryczną.
- 7. X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o wspólnym rozkładzie takim, że $EX_i^2 < \infty$. Udowodnij, że dla dowolnego momentu zatrzymania względem filtracji generowanej przez (X_n) takiego, że $\mathbf{E}\tau < \infty$ zachodzi $\mathbf{E}(S_\tau \tau \mathbf{E}X_1)^2 = \mathbf{E}\tau \mathrm{Var}(X_1)$. Czy wzór ten musi być prawdziwy bez założenia o skończoności $\mathbf{E}\tau$?
- 8. Gracz A dysponuje nieskończonym kapitałem. Ile wynosi średni czas oczekiwania na wygranie 1 zł. przez A w grze orła i reszkę
 - a) monetą symetryczną
 - b) monetę niesymetryczną.
- 9. Rzucamy kostką tak długo, aż otrzymamy wszystkie oczka. Znaleźć wartość średnią sumy wyrzuconych oczek.

1. Niech $(\varepsilon_n)_n$ będzie ciągiem niezależnych symetrycznych zmiennych losowych o wartościach ± 1 . Wykaż, że

$$Z_n := e^{a(\varepsilon_1 + \dots + \varepsilon_n) - (na^2/2)}.$$

jest nadmartyngałem względem $\sigma(\varepsilon_1,\ldots,\varepsilon_n)$. Zbadaj zbieżność ciągu (Z_n) prawie na pewno i w L_1 .

2. Niech X_1,X_2,\dots będą niezależne o rozkładzie jednostajnym na [0,2]. Wykaż, że

$$M_n = \prod_{k=1}^n X_k$$

tworzą martyngał (względem filtracji generowanej przez $X_n)$ zbieżny do 0 prawie na pewno, ale nie w ${\cal L}_1$.

- 3. Podaj przykład martyngału X_n takiego, że $X_n \to 0$ p.n. oraz $\mathbf{E}|X_n| \to \infty$.
- 4. Wykaż, że jeśli (X_i) i (Y_i) są jednostajnie całkowalne, to dla dowolnych $a,b\in\mathbb{R},\ (aX_i+bY_i)$ jest jednostajnie całkowalny.
- 5. Znajdź jednostajnie całkowalny ciąg X_n taki, że $\mathbf{E}\sup_n |X_n| = \infty$.
- 6. Niech $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ spełnia warunek $\lim_{x \to \infty} \frac{\varphi(x)}{x} = \infty$. Wykaż, że jeśli $\sup_i \mathbf{E} \varphi(|X_i|) < \infty$ to (X_i) jest jednostajnie całkowalny.

- 1. Dwa jednorodne łańcuchy Markowa $(X_n), (Y_n)$ z macierzą przejścia P są niezależne. Udowodnij, że $Z_n = (X_n, Y_n)$ też jest łańcuchem Markowa i znajdź jego macierz przejścia.
- 2. Zmienne $\varepsilon_0, \varepsilon_1, \ldots$ są niezależne oraz $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$. Czy ciągi $X_n = \varepsilon_n \varepsilon_{n+1}, Y_n = \varepsilon_n + \varepsilon_{n+1}$ są łańcuchami Markowa?
- 3. (X_n) jest łańcuchem Markowa o wartościach w E. Czy dla dowolnej funkcji $f: E \to E$, $(f(X_n))$ musi być łańcuchem Markowa?
- 4. Zmienne X_0, X_1, \ldots są niezależne oraz $\mathbf{P}(X_i=1)=1-\mathbf{P}(X_i=-1)=p\in(0,1), \, S_n=X_1+X_2+\ldots+X_n, \, M_n=\max(S_1,S_2,\ldots,S_n).$ Które z ciągów $|S_n|, M_n, M_n-S_n$ są łańcuchami Markowa? Znajdź odpowiednie macierze przejścia.
- 5. Dany jest zbiór przeliczalny E i funkcje borelowskie $\varphi_n: E \times \mathbb{R} \to E$, $n=1,2,\ldots$ (przyjmujemy, że wszystkie podzbiory E są mierzalne). Zmienne losowe X_0 o wartościach w E i U_1,U_2,\ldots o wartościach rzeczywistych są niezależne. Udowodnij, że ciąg $(X_n)_{n=0}^\infty$ zdefiniowany rekurencyjnie wzorem $X_{n+1}=\varphi_n(X_n,U_n)$ jest łańcuchem Markowa.

1. Dla łańcuchów Markowa o przestrzeni stanów $\{1,2,3,4\}$ i poniższych macierzach przejścia znajdź wszystkie stany nieistotne i wszystkie zamknięte zbiory stanów.

$$a) \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{array} \right) \quad b) \left(\begin{array}{cccc} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

- 2. Wykaż, że łańcuch Markowa jest nieprzywiedlny wtedy i tylko wtedy gdy nie ma właściwego zamkniętego podzbioru stanów.
- 3. Wykaż, że jeśli y jest stanem chwilowym to $\sum_{n=0}^{\infty} p_{x,y}(n) < \infty$ dla wszystkich x, w szczególności $\lim_{n\to\infty} p_{x,y}(n)=0$.
- 4. Wykaż, że skończony łańcuch Markowa ma przynajmniej jeden stan powracający.
- 5. Zbadaj powracalność symetrycznego błądzenia losowego w \mathbb{Z}^k .
- 6. Zbadaj okresowość łańcuchów o poniższych macierzach przejścia:

$$a) \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \quad b) \left(\begin{array}{ccc} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

- 7. Jednorodny łańcuch Markowa o przestrzeni stanów $\{0,1,2\ldots\}$ ma macierz przejścia $(p_{n,m})_{n,m\geqslant 0}$ taką, że $p_{0,1}=1,\ p_{n,n+1}=1-p_{n,n-1}=p$ dla $n=1,2\ldots$, gdzie $p\in (0,1)$. W zależności do parametru p wyznacz wszystkie rozkłady stacjonarne.
- 8. W dwu urnach znajduje się łącznie n kul. W każdej chwili wybieramy losowo kulę i przenosimy ją do innej urny. Znajdź rozkład stacjonarny liczby kul w pierwszej urnie.
- 9. W powiecie N. syn piekarza zostaje piekarzem z prawdopodobieństwem 3/4, a syn niepiekarza z prawdopodobieństwem 1/100. Jakie jest prawdopodobieństwo, że wnuk piekarza jest piekarzem? A potomek w n-tym pokoleniu? Jaki procent mężczyzn w N. jest piekarzem (zakładamy dla uproszczenia, że każdy mieszkaniec N. ma dokładnie jednego syna)?

- 1. Po wierzchołkach sześcianu porusza się w sposób losowy mucha w każdym kroku z prawdopodobieństwem 1/3 przenosi się do jednego z sąsiednich wierzchołków. Oblicz prawdopodobieństwo, że mucha powróci do punktu wyjścia nie odwiedzając wcześniej przeciwległego wierzchołka oraz średnią liczbę kroków jakie zajmie jej powrót do punktu wyjścia.
- 2. Macierz przejścia łańcucha Markowa $(X_n)_n$ na przestrzeni $S=\{1,2,3,4\}$ dana jest następująco:

$$\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} \\
\frac{2}{3} & 0 & 0 & \frac{1}{3} \\
0 & \frac{2}{3} & \frac{1}{3} & 0
\end{array}\right).$$

- a) Zakładając, że $X_0=1$ p.n. oblicz prawdopodobieństwo tego, że X_n będzie w stanie 2 przed stanem 4.
- b) Zakładając, że $X_0=3$ p.n. oblicz wartość oczekiwaną czasu dojścia do stanu 2.
- c) Wyznacz rozkład stacjonarny.
- d) Czy łańcuch jest okresowy? Czy jest nieprzywiedlny?
- 3. Rzucamy symetryczną monetą aż do momentu, gdy wyrzucimy pod rząd cztery orły. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
- 4. Rzucamy kostką tak długo, aż pojawi się ciąg 16 lub 66. Jakie jest prawdopodobieństwo, że ciąg 16 pojawi się wcześniej?
- 5. Zmienne Y_0,Y_1,Y_2,\ldots są niezależne i mają ten sam rozkład geometryczny z parametrem $\frac{1}{2}$. Ciąg zmiennych X_1,X_2,\ldots jest określony następująco: $X_0\equiv 1$ p.n., a dla $n\geqslant 0$,

$$X_{n+1} = \begin{cases} 1 & \text{jeśli } Y_n = 1, \\ X_n Y_n & \text{jeśli } Y_n \neq 1. \end{cases}$$

- a) Wykaż, że $(X_n)_n$ jest nieprzywiedlnym łańcuchem Markowa.
- b) Czy ten łańcuch jest okresowy?
- c) Udowodnij, że wszystkie stany są powracające.