Système éducatif actuel

Mohamed Khalil Fadhlaoui

2024-05-09

Introduction

L'éducation occupe une place centrale dans la société tunisienne, tant sur le plan culturel que sur le plan socio-économique. Cependant, malgré les progrès réalisés au fil des décennies, le système éducatif tunisien a été confronté à plusieurs défis. Ce projet vise étudier les différents avis des tunisiens sur l'éducation d'une manière générale et sur le système éducatif actuel en particulier, afin d'identifier ses lacunes.

Statistiques descriptives

Importation des données:

```
library(readxl)

## Warning: le package 'readxl' a été compilé avec la version R 4.3.3

edu <- read_excel("C:/Users/User/Desktop/Projet/education.xlsx")

## New names:
## * '' -> '...1'
```

Répartition selon le sexe

Répartition par genre

Selon les résultats de l'enquête, sur un total de 34 personnes interrogées, 53% sont des femmes. Cela peut indiquer une légère majorité des hommes parmi la population.

Répartition selon l'age

Répartition par âge

La majorité des personnes interrogées sont agées entre 18 et 25 ans.

Répartition par catégorie socioprofessionnelle

```
colors <- c("#003f5c", "#2f4b7c", "#665191", "#a05195")
barplot(table(edu$'Catégorie socioprofessionnelle'), col=colors, ylim=c(0, 40),
main="Répartition par spécialité", xlab="Catégorie socioprofessionnelle", ylab="Nombre")</pre>
```

Répartition par spécialité

La majorité des personnes interrogées sont des étudiants.

Analyse en Composantes Principales

Matrice de corrélation

```
library(corrplot)

## Warning: le package 'corrplot' a été compilé avec la version R 4.3.3

## corrplot 0.92 loaded

X=as.matrix(edu[,c(29:46)])
M<-cor(X)
library(RColorBrewer)
corrplot(M, type="upper", order="hclust",
col=brewer.pal(n=8, name="RdBu"))</pre>
```


- q21: le système éducatif actuel répond aux besoins des apprenants
- q22: le système éducatif actuel prépare les apprenants au marché du travail
- q23: le système éducatif actuel utilise des méthodes d'évaluations efficaces pour mesurer les progrès des apprenants
- q24: le système éducatif actuel comporte des enseignants qui sont adéquatement formés pour répondre aux besoins des apprenants
- q25: le système éducatif actuel fournit des opportunités égales d'apprentissage
- q26: le système éducatif actuel encourage l'innovation pédagogique et les nouvelles méthodes d'enseignement
- q27: le système éducatif actuel prépare les apprenants à s'adapter aux changements sociaux et technologiques
- q28: le système éducatif actuel promeut la diversité culturelle et l'inclusion
- q29: le système éducatif actuel soutient le bien-être émotionnel et mental des apprenants
- q210: le système éducatif actuel valorise les compétences non académiques telles que la créativité, la collaboration et la résolution des problèmes
- q211: le système éducatif actuel tient compte des différentes intelligences et styles d'apprentissage des apprenants
- q212: le système éducatif actuel prépare les apprenants à la gestion de leurs argents et à la prise de décision financière
- q213: le système éducatif actuel encourage la participation citoyenne et le respect des droits de l'homme
- q214: le système éducatif actuel emploie convenablement les technologies émergentes

- q215: le système éducatif actuel permet aux individus de se former et de se reconvertir tout au long de leur vie professionnelle
- q216: le système éducatif actuel tient compte des apprenants ayant des besoins spécifiques (situation de handicap, les élèves à haut potentiel, \dots)
- q217: le système éducatif actuel accorde une importance à la pratique
- q218: le système éducatif actuel encourage les apprenants à développer leur créativité et imagination

Interprétation:

La matrice de corrélation suggère que "q27" et "q214" sont des variables étroitement liées, tandis que "q214" et "q216" sont moins liées.

Execution de la fonction PCA.

```
library(FactoMineR)

## Warning: le package 'FactoMineR' a été compilé avec la version R 4.3.3

library(factoextra)

## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
res.pca=PCA(X,ncp = 4,graph= F)
```

Choix du nombre d'axes à retenir

```
head(res.pca$eig)
         eigenvalue percentage of variance cumulative percentage of variance
## comp 1 9.1495835
                                 50.831020
                                                                     50.83102
## comp 2 1.5848538
                                  8.804743
                                                                     59.63576
## comp 3 1.1465864
                                  6.369924
                                                                     66.00569
## comp 4 0.9879117
                                  5.488399
                                                                     71.49409
## comp 5 0.8268772
                                  4.593762
                                                                     76.08785
## comp 6 0.7867763
                                  4.370980
                                                                     80.45883
fviz_eig(res.pca, addlabels = TRUE) +
ggtitle("Diagramme de l'éboulis : Valeurs propres")
```


Interprétation

- 1-Critère de Kaiser: On retiendrait les composantes principales dont la valeur propre est supérieure à 1,ce qui signifie qu'on va retenir les trois premières composantes principales.
- 2-Critère du taux d'inertie cumulée: On remarque que le taux d'inertie cumulé des 2 premiers axes est de 59.63% qui est un taux important compte tenu du fait que nous avons 18 variables: on va donc, d'après ce critère, retenir les 2 premiers axes.
- 3-Critère du coude : On remarque que le coude se trouve au niveau du deuxième axe (voir 'Diagramme de l'éboulis'), d'après ce critère, on devrait retenir les 2 premiers axes.

Conclusion: Nous pourrions retenir les deux premières composantes principales qui expliquent environ 59.63% de l'inertie totale.

Interpretation de la carte des variables :

res.pca\$var\$coord

```
## Q21 0.7995252 0.18457733 -0.41746296 -0.11280130
## Q22 0.6931195 0.26443140 -0.35733015 -0.10745481
## Q23 0.7481718 0.45323147 -0.12767786 -0.01434287
```

```
## q24  0.6934914  0.13784301  -0.14971869  0.23098124
       ## q25
       0.7501906
                 0.25687061
                            0.17992306 -0.04541679
## q27
       0.7283314
                 0.13331181
                            0.45858277
                                        0.11256631
       0.6324989 0.08954503 -0.18474587
                                        0.42346571
## q29 0.7714673 -0.12535744 -0.24560575 -0.14610450
## q210 0.6897524 -0.29434648 0.01176699 -0.28207372
## q211 0.7088244 -0.46184041
                            0.12587004 -0.29384026
## q212 0.8126274 0.13119867
                            0.10279798
                                        0.08800401
## q213 0.5669011 0.35782426
                            0.30733536 0.32638188
## q214 0.7036129 -0.06609102
                            0.30128843 -0.13881856
## q215 0.6942936 -0.33255975
                            0.21853785
                                        0.33446193
## q216 0.5875740 -0.46719161 -0.41131383 0.31089275
## q217 0.7606341 -0.31191141 0.19318021 -0.06416232
## q218 0.8001090 -0.32806853 -0.03687649 -0.05223324
```

fviz_pca_var(res.pca,shadow=TRUE)

Interprétation:

Sur la première composante principale, on peut observer une forte contribution des variables "q21", "q29", "q212" et "q218". Ces variables sont donc fortement corrélées à la première composante principale.

Sur la deuxième composante principale, les variables "q23", "q211" et "216" sont les plus corrélées.

Ces observations indiquent que les variables qui contribuent le plus à la première composante principale sont celles qui sont liées aux besoins matériels et réels des apprenants. Les variables qui contribuent le plus à la deuxième composante principale sont celles qui sont liées aux besoins spécifiques des apprenants.

Tableau des cosinus carrés des variables sur les axes de l'ACP

theme_minimal()

```
res.pca$var$cos2
##
            Dim.1
                        Dim.2
                                    Dim.3
                                                 Dim.4
## q21 0.6392406 0.034068789 0.174275320 0.012724133
## q22  0.4804147  0.069923963  0.127684836  0.011546536
## q23  0.5597611  0.205418767  0.016301637  0.000205718
## q24  0.4809303  0.019000694  0.022415685  0.053352331
## q25  0.3997404  0.165616815  0.001389974  0.179867121
## q26  0.5627860  0.065982509  0.032372308  0.002062685
## q27  0.5304666  0.017772039  0.210298153  0.012671175
## q28  0.4000548  0.008018313  0.034131038  0.179323207
## q29 0.5951619 0.015714487 0.060322185 0.021346525
## q210 0.4757583 0.086639849 0.000138462 0.079565585
## q211 0.5024321 0.213296563 0.015843267 0.086342100
## q212 0.6603632 0.017213092 0.010567424 0.007744706
## q213 0.3213768 0.128038202 0.094455024 0.106525133
## q214 0.4950711 0.004368023 0.090774719 0.019270593
## q215 0.4820436 0.110595985 0.047758793 0.111864781
## q216 0.3452432 0.218267996 0.169179068 0.096654303
## q217 0.5785642 0.097288725 0.037318595 0.004116803
## q218 0.6401745 0.107628963 0.001359876 0.002728311
fviz_pca_var(res.pca, col.var = "cos2")+
 scale_color_gradient2(low="white" ,mid="blue" ,
high="red", midpoint = 0.6)+
```


Interprétation:

On peut voir que les variables "q21", "q29", "q212" et "q218" ont des cosinus élevés pour la première dimension de l'ACP, ce qui indique qu'elles contribuent fortement à la formation de cette dimension. De même, les variables "q23", "q211" et "q216" ont des cosinus élevés pour la deuxième dimension de l'ACP

La carte des individus

```
fviz_pca_ind(res.pca,geom = "text",col.ind="cos2")+
scale_color_gradient2(low="blue", mid="white",
high="red", midpoint=0.5)
```


ACM

```
library(FactoMineR)
library(factoextra)
l.active<-edu[8:13]
res.mca <- MCA (l.active, graph = FALSE)</pre>
```

Visualisation et interpretation :

dim 5 5.296258e-02

dim 6 2.025016e-32

```
res.mca$eig

## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 5.564159e-01 5.564159e+01 55.64159
## dim 2 1.664639e-01 1.664639e+01 72.28798
## dim 3 1.218638e-01 1.218638e+01 84.47436
## dim 4 1.022939e-01 1.022939e+01 94.70374
```

100.00000

100.00000

5.296258e+00

2.025016e-30

```
library(ggplot2)
library(factoextra)
fviz_eig(res.mca, addlabels = TRUE) +
  ggtitle("Diagramme de l'éboulis : Valeurs propres")
```

Diagramme de l'éboulis : Valeurs propres

Interprétation

- 1-Critère de Kaiser: seule la première dimension répond à ce critère, ce qui signifie qu'elle est la plus importante pour expliquer les données.
- 2-Critère du taux d'inertie cumulée: les deux premières dimensions cumulent une proportion de variance d'environ 45.8%, ce qui suggère que ces deux dimensions sont importantes pour expliquer les données.
- 3-Critère du coude : On peut voir que le coude se situe après la deuxième composante principale, ce qui indique que l'on peut se contenter de retenir les deux premières composantes principales.

Interprétation de la première carte des modalités

Représentation de la première carte des modalités

```
fviz_mca_var(res.mca,
  col.var = "contrib", # Couleur en fonction de la contribution
  gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), # Choix de couleurs
  repel = TRUE, # Évite le chevauchement des labels
  ggtheme = theme_minimal() # Style du graphique
)
```

Variable categories – MCA

dimdesc(res.mca, axes=1:2, proba=0.05)\$`Dim 1`

```
## Link between the variable and the categorical variable (1-way anova)
R2
                                                                     p.value
## droit fondamental
                                                        0.9239050 1.835742e-19
## obligatoire pour tous les enfants
                                                       0.9239050 1.835742e-19
## influence positivement les opportunités professionnelles 0.6085043 5.365266e-08
## Les parents doivent être impliqués
                                                       0.4360358 2.142804e-05
## gratuite à tous les niveaux
                                                       0.4360358 2.142804e-05
##
## Link between variable and the categories of the categorical variables
## obligatoire pour tous les enfants=obligatoire pour tous les enfants_non
## droit fondamental=droit fondamental_non
```

```
## influence positivement les opportunités professionnelles=influence positivement les opportunités pro
## Les parents doivent être impliqués=Les parents doivent être impliqués_Non
## gratuite à tous les niveaux=gratuite à tous les niveaux_non
## gratuite à tous les niveaux=gratuite à tous les niveaux_oui
## Les parents doivent être impliqués=Les parents doivent être impliqués_oui
## influence positivement les opportunités professionnelles=influence positivement les opportunités pro
## obligatoire pour tous les enfants=obligatoire pour tous les enfants_oui
## droit fondamental=droit fondamental_oui
##
## obligatoire pour tous les enfants=obligatoire pour tous les enfants_non
## droit fondamental=droit fondamental_non
## influence positivement les opportunités professionnelles=influence positivement les opportunités pro
## Les parents doivent être impliqués=Les parents doivent être impliqués_Non
## gratuite à tous les niveaux_gratuite à tous les niveaux_non
## gratuite à tous les niveaux=gratuite à tous les niveaux_oui
## Les parents doivent être impliqués=Les parents doivent être impliqués_oui
## influence positivement les opportunités professionnelles=influence positivement les opportunités pro
## obligatoire pour tous les enfants=obligatoire pour tous les enfants_oui
## droit fondamental=droit fondamental_oui
```

Interpretation: l'axe 1 dans cette analyse ACM semble être un axe des critères de l'éducation.

Interpretation: l'axe 2 dans cette analyse ACM semble être un axe d'importance de l'apprentissage continu.

Interprétation de la première carte des individus

Représentation de la première carte des individus

```
fviz_mca_ind (res.mca,select.ind = list(cos2 = 0.4),
  repel = TRUE,
  ggtheme = theme_minimal ())
```


Classification

```
new<-edu[29:46]
c<-dist(scale(new),method="euclidean")
h<- hclust(c, method="ward.D2")
plot(h, hang = -1, cex =0.6)</pre>
```

Cluster Dendrogram

c hclust (*, "ward.D2")

```
library(FactoMineR)
res.HCPC<-HCPC(new, consol=TRUE, graph=F)

## Warning: Unknown or uninitialised column: 'call'.

## Unknown or uninitialised column: 'call'.

plot.HCPC(res.HCPC,choice='tree', title ='Hierarchical tree')</pre>
```


On peut choisir 3 classes

Arbre hiérarchique:

```
plot.HCPC(res.HCPC, choice = 'map', draw.tree=FALSE, title ='Factor map')
```

Factor map


```
## Warning in title(main, sub, ...): "centres.plot" n'est pas un paramètre
## graphique

## Warning in title(main, sub, ...): "angles" n'est pas un paramètre graphique

## Warning in plot.xy(xy.coords(x, y), type = type, ...): "centres.plot" n'est pas
## un paramètre graphique

## Warning in plot.xy(xy.coords(x, y), type = type, ...): "angles" n'est pas un
## paramètre graphique
```

plot.HCPC(res.HCPC, choice = '3D.map', ind.names=FALSE, centres.plot=FALSE, angles=60, title='Hierarchica

Hierarchical tree on the factor map

description des classes par les variables:

```
res.HCPC$desc.var
##
## Link between the cluster variable and the quantitative variables
Eta2
                    P-value
## q26 0.6139613 3.915416e-07
## q212 0.5885808 1.050534e-06
## q211 0.5789171 1.505562e-06
## q27 0.5753273 1.717285e-06
## q215 0.5168834 1.267084e-05
## q210 0.4984056 2.267077e-05
## q23 0.4620291 6.710589e-05
## q218 0.4350705 1.431894e-04
## q217 0.4311454 1.594114e-04
## q214 0.4229488 1.989861e-04
## q29 0.4214960 2.068946e-04
## q21 0.4096079 2.835815e-04
## q28 0.3773664 6.465529e-04
## q213 0.3563394 1.081889e-03
## q25 0.3347647 1.803502e-03
## q24 0.3321429 1.916882e-03
```

```
## q22 0.3081090 3.315766e-03
## q216 0.2233437 1.988601e-02
## Description of each cluster by quantitative variables
## -----
          v.test Mean in category Overall mean sd in category Overall sd
                                                 0.7806247 0.8764508
## q217 -2.226437
                          1.8750
                                    2.235294
## q214 -2.279328
                         1.7500
                                    2.147059
                                                  0.7500000 0.9434715
## q216 -2.352278
                         2.0625
                                    2.500000
                                                 0.9662266 1.0073261
## q25 -2.482197
                         1.6250
                                    2.088235
                                                 0.5994789 1.0107553
## q29 -2.617778
                         1.4375
                                    1.911765
                                                 0.6091746 0.9812251
                                  2.147059
## q218 -2.816541
                         1.6250
                                                0.6959705 1.0038852
                                   2.382353
## q22 -3.085004
                         1.8125
                                                0.6343057 1.0004324
## q213 -3.097803
                                                0.8992184 0.9705882
                         2.0625
                                   2.617647
## q24 -3.190127
                          1.8750
                                    2.411765
                                                 0.6959705 0.9112902
                                   2.294118
## q215 -3.235464
                         1.6875
                                                 0.8454843 1.0154516
## q28 -3.419081
                         2.0625
                                    2.735294
                                                 0.9662266 1.0657453
## q21 -3.559814
                         1.9375
                                   2.558824
                                                 0.5555122 0.9453035
                                   2.088235
## q27 -3.591835
                         1.4375
                                                 0.6091746 0.9812251
## q23 -3.737195
                         1.5625
                                  2.205882
                                                0.6091746 0.9324040
                                   1.882353
## q212 -3.789659
                         1.1875
                                                0.3903124 0.9930555
                                              0.4330127 1.0141729
                                  2.029412
## q26 -4.162322
                         1.2500
            p.value
## q217 2.598496e-02
## q214 2.264759e-02
## q216 1.865882e-02
## q25 1.305749e-02
## q29 8.850431e-03
## q218 4.854382e-03
## q22 2.035494e-03
## q213 1.949613e-03
## q24 1.422103e-03
## q215 1.214453e-03
## q28 6.283291e-04
## q21 3.711180e-04
## q27 3.283574e-04
## q23 1.860847e-04
## q212 1.508544e-04
## q26 3.150279e-05
## $'2'
       v.test Mean in category Overall mean sd in category Overall sd p.value
## q23 2.252466
                      2.642857
                                              0.7178483 0.9324040 0.02429283
                                  2.205882
## q21 2.243092
                      3.000000
                                  2.558824
                                                0.8451543 0.9453035 0.02489088
                                                0.8237545 1.0141729 0.02573716
                      2.500000
## q26 2.230155
                                  2.029412
## q28 2.160133
                      3.214286
                                  2.735294
                                                0.7726181 1.0657453 0.03076240
## q24 1.972252
                      2.785714
                                  2.411765
                                                0.7726181 0.9112902 0.04858088
##
## $'3'
         v.test Mean in category Overall mean sd in category Overall sd
## q211 4.364398
                  3.75 1.852941
                                               0.4330127 0.9117647
                                                 0.4330127 0.9074852
## q210 4.045059
                           3.75
                                   2.000000
                                                0.4330127 0.8764508
## q217 3.625159
                           3.75
                                   2.235294
```

```
## q214 3.563815
                            3.75
                                     2.147059
                                                   0.4330127 0.9434715
                            3.75
## q27 3.552444
                                     2.088235
                                                   0.4330127 0.9812251
                                                   0.0000000 1.0154516
## q215 3.523840
                            4.00
                                     2.294118
## q212 3.416934
                            3.50
                                     1.882353
                                                   0.5000000 0.9930555
## q29 3.395256
                            3.50
                                     1.911765
                                                   0.5000000 0.9812251
## q218 3.349345
                                     2.147059
                            3.75
                                                   0.4330127 1.0038852
## q26 3.041623
                                     2.029412
                                                   0.5000000 1.0141729
                            3.50
## q25 2.929831
                            3.50
                                     2.088235
                                                   0.8660254 1.0107553
## q213 2.447221
                            3.75
                                     2.617647
                                                   0.4330127 0.9705882
## q23 2.348939
                            3.25
                                     2.205882
                                                   0.8291562 0.9324040
## q21 2.088460
                            3.50
                                     2.558824
                                                   0.8660254
                                                              0.9453035
                                     2.500000
## q216 2.082362
                            3.50
                                                   0.5000000 1.0073261
## q28 1.997161
                            3.75
                                     2.735294
                                                   0.4330127 1.0657453
##
            p.value
## q211 1.274732e-05
## q210 5.231001e-05
## q217 2.887835e-04
## q214 3.655036e-04
## q27 3.816707e-04
## q215 4.253407e-04
## q212 6.333061e-04
## q29 6.856448e-04
## q218 8.100288e-04
## q26 2.353062e-03
## q25 3.391460e-03
## q213 1.439627e-02
## q23 1.882701e-02
## q21 3.675636e-02
## q216 3.730941e-02
## q28 4.580770e-02
```

Interprétation:

^{*} Le cluster 1 privilégie l'aspect pratique et léemploi de la technologie dans le système éducatif.

^{*} Le cluster 2 privilégie les besoins des apprenants et la qualité de leur formation.

^{*} Le cluster 3 privilégie la prise en compte des différentes intelligences et des compétences non académique des apprenants.