THE BEST OF MANY ROBUSTNESS CRITERIA IN DECISION MAKING: FORMULATION AND APPLICATION TO ROBUST PRICING

Jerry Anunrojwong*

Columbia Business School

^{*}with Santiago R. Balseiro and Omar Besbes

- If we know everything: stochastic optimization
- More commonly: we know something but not everything
- Incorporate this partial information in decision making while being "robust" to things we don't know ...
- Hence, robust optimization!
 - A lot of work on robust optimization under different environments (uncertainty descriptions, tractable formulations)
 - Less so on robust optimality criteria

 (i.e. what do we mean when we say robust?)
 - ⇒ focus of this work

- If we know everything: stochastic optimization
- More commonly: we know something but not everything
- Incorporate this partial information in decision making while being "robust" to things we don't know ...
- Hence, robust optimization!
 - A lot of work on robust optimization under different environments (uncertainty descriptions, tractable formulations)
 - Less so on **robust optimality criteria**(i.e. what do we mean when we say robust?)
 - ⇒ focus of this work

- If we know everything: stochastic optimization
- More commonly: we know something but not everything
- Incorporate this partial information in decision making while being "robust" to things we don't know ...
- Hence, robust optimization!

- If we know everything: stochastic optimization
- More commonly: we know something but not everything
- Incorporate this partial information in decision making while being "robust" to things we don't know ...
- Hence, robust optimization!
 - A lot of work on robust optimization under different environments (uncertainty descriptions, tractable formulations)
 - Less so on robust optimality criteria
 (i.e. what do we mean when we say robust?)
 focus of this work!

- If we know everything: stochastic optimization
- More commonly: we know something but not everything
- Incorporate this partial information in decision making while being "robust" to things we don't know ...
- Hence, robust optimization!
 - A lot of work on robust optimization under different environments (uncertainty descriptions, tractable formulations)
 - Less so on robust optimality criteria
 (i.e. what do we mean when we say robust?)

 ⇒ focus of this work!

- If we know everything: stochastic optimization
- More commonly: we know something but not everything
- Incorporate this partial information in decision making while being "robust" to things we don't know ...
- Hence, robust optimization!
 - A lot of work on robust optimization under different environments (uncertainty descriptions, tractable formulations)
 - Less so on robust optimality criteria

 (i.e. what do we mean when we say robust?)
 - \Rightarrow focus of this work!

- Criterion 1: maximin performance (e.g. revenue)
 - Wald (1945), common in the robust OR literature
- Criterion 2: minimax regret
 - Savage (1951), compared to a benchmark, less "conservative"
- Criterion 3: maximin ratio
 - compared to a benchmark, multiplicatively
- In some settings, all criteria are "reasonable" and well-founded.
- In practice, we need one decision. Which one? (Do you have to choose?)

- Criterion 1: maximin performance (e.g. revenue)
 - Wald (1945), common in the robust OR literature
- Criterion 2: minimax regret
 - Savage (1951), compared to a benchmark, less "conservative"
- Criterion 3: maximin ratio
 - compared to a benchmark, multiplicatively
- In some settings, all criteria are "reasonable" and well-founded.
- In practice, we need one decision. Which one? (Do you have to choose?)

- Criterion 1: maximin performance (e.g. revenue)
 - Wald (1945), common in the robust OR literature
- Criterion 2: minimax regret
 - Savage (1951), compared to a benchmark, less "conservative"
- Criterion 3: maximin ratio
 - compared to a benchmark, multiplicatively
- In some settings, all criteria are "reasonable" and well-founded.
- In practice, we need one decision. Which one? (Do you have to choose?)

- Criterion 1: maximin performance (e.g. revenue)
 - Wald (1945), common in the robust OR literature
- Criterion 2: minimax regret
 - Savage (1951), compared to a benchmark, less "conservative"
- Criterion 3: maximin ratio
 - compared to a benchmark, multiplicatively
- In some settings, all criteria are "reasonable" and well-founded.
- In practice, we need one decision. Which one? (Do you have to choose?)

- Criterion 1: maximin performance (e.g. revenue)
 - Wald (1945), common in the robust OR literature
- Criterion 2: minimax regret
 - Savage (1951), compared to a benchmark, less "conservative"
- Criterion 3: maximin ratio
 - compared to a benchmark, multiplicatively
- In some settings, all criteria are "reasonable" and well-founded.
- In practice, we need one decision. Which one? (Do you have to choose?)

- Criterion 1: maximin performance (e.g. revenue)
 - Wald (1945), common in the robust OR literature
- Criterion 2: minimax regret
 - Savage (1951), compared to a benchmark, less "conservative"
- Criterion 3: maximin ratio
 - compared to a benchmark, multiplicatively
- In some settings, all criteria are "reasonable" and well-founded.
- In practice, we need one decision. Which one? (Do you have to choose?)

- Question 1: How good is a prescription derived from one robustness criterion when evaluated against another robustness criterion?
- Question 2: Does there exist a prescription that performs well under all robustness criteria of interest?
 - i.e., can one have the best of the three focal robustness criteria
- Our first step: robust pricing
 (fundamental + well studied separately under 3 criteria)

Takeaways: Robust Pricing

- Question 1: How good is a prescription derived from one robustness criterion when evaluated against another robustness criterion?
- Question 2: Does there exist a prescription that performs well under all robustness criteria of interest?
 - i.e., can one have the best of the three focal robustness criteria?
- Our first step: robust pricing
 (fundamental + well studied separately under 3 criteria)

Takeaways: Robust Pricing

- Question 1: How good is a prescription derived from one robustness criterion when evaluated against another robustness criterion?
- Question 2: Does there exist a prescription that performs well under all robustness criteria of interest?
 - i.e., can one have the best of the three focal robustness criteria?
- Our first step: robust pricing
 (fundamental + well studied separately under 3 criteria)

Takeaways: Robust Pricing

- Question 1: How good is a prescription derived from one robustness criterion when evaluated against another robustness criterion?
- Question 2: Does there exist a prescription that performs well under all robustness criteria of interest?
 - i.e., can one have the best of the three focal robustness criteria?
- Our first step: robust pricing
 (fundamental + well studied separately under 3 criteria)

Takeaways: Robust Pricing

Related Work

- robust pricing
 - Bergemann and Schlag (2008), Eren and Maglaras (2010),
 Carrasco et al. (2018), Wang et al. (2024), Chen et al. (2022), ...
- robust decision making under uncertainty
 - Wald (1945) for maximin revenue
 - Savage (1951) for minimax regret
 - Borodin and El-Yaniv (2005) for maximin ratio
- robust optimization multiple objectives
 - Iancu and Trichakis (2014) for Pareto efficiency
 - Armbruster and Delage (2015) for uncertain utilities

Problem Formulation

ROBUST PRICING

- lacktriangle A seller wants to sell an item to a buyer, valuation $\sim F$.
- If the seller knows F precisely, deterministic posted-price mech is optimal $\mathsf{OPT}(F) = \max_p p\bar{F}(p).$
- lacktriangle Here, the seller does not know F, only that $F \in \mathscr{F}$
 - support, moments, quantiles

ROBUST PRICING

- lacktriangle A seller wants to sell an item to a buyer, valuation $\sim F$.
- If the seller knows F precisely, deterministic posted-price mech is optimal $\mathsf{OPT}(F) = \max_p p\bar{F}(p).$
- Here, the seller does not know F, only that $F \in \mathscr{F}$ support, moments, quantiles

ROBUST PRICING

- lacktriangle A seller wants to sell an item to a buyer, valuation $\sim F$.
- If the seller knows F precisely, deterministic posted-price mech is optimal $\mathsf{OPT}(F) = \max_p p\bar{F}(p).$
- lacksquare Here, the seller does not know F, only that $F\in\mathscr{F}$
 - support, moments, quantiles

ROBUST CRITERIA

- lacksquare By Myerson, any incentive-compatible mechanism is a price CDF Φ .
- lacktriangle Given a mechanism Φ and a distribution F, define

$$\begin{split} \mathsf{Revenue}(\Phi,F) &:= \mathbb{E}_{p \sim \Phi, v \sim F} \left[p \mathbf{1}(v \geq p) \right] \\ &= \int \int_{s \leq v} s d\Phi(s) dF(v), \\ \mathsf{Regret}(\Phi,F) &:= \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi,F), \\ \mathsf{Ratio}(\Phi,F) &:= \frac{\mathsf{Revenue}(\Phi,F)}{\mathsf{OPT}(F)}. \end{split}$$

$$\begin{split} \theta_{\mathsf{Revenue}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Revenue}(\Phi, F) \\ \theta_{\mathsf{Regret}}^*(\mathscr{F}) &:= \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \mathsf{Regret}(\Phi, F), \\ \theta_{\mathsf{Ratio}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Ratio}(\Phi, F). \end{split}$$

Robust Criteria

- lacksquare By Myerson, any incentive-compatible mechanism is a price CDF Φ .
- lacktriangle Given a mechanism Φ and a distribution F, define

$$\begin{split} \mathsf{Revenue}(\Phi, F) &:= \mathbb{E}_{p \sim \Phi, v \sim F} \left[p \mathbf{1}(v \geq p) \right] = \int \int_{s \leq v} s d\Phi(s) dF(v), \\ \mathsf{Regret}(\Phi, F) &:= \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi, F), \\ \mathsf{Ratio}(\Phi, F) &:= \frac{\mathsf{Revenue}(\Phi, F)}{\mathsf{OPT}(F)}. \end{split}$$

$$\begin{split} \theta_{\mathsf{Revenue}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Revenue}(\Phi, F) \\ \theta_{\mathsf{Regret}}^*(\mathscr{F}) &:= \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \mathsf{Regret}(\Phi, F), \\ \theta_{\mathsf{Ratio}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Ratio}(\Phi, F). \end{split}$$

ROBUST CRITERIA

- By Myerson, any incentive-compatible mechanism is a price CDF Φ .
- lacktriangle Given a mechanism Φ and a distribution F, define

$$\begin{split} \operatorname{Revenue}(\Phi,F) &:= \mathbb{E}_{p \sim \Phi, v \sim F} \left[p \mathbf{1}(v \geq p) \right] \\ &= \int \int_{s \leq v} s d\Phi(s) dF(v), \\ \operatorname{Regret}(\Phi,F) &:= \operatorname{OPT}(F) - \operatorname{Revenue}(\Phi,F), \\ \operatorname{Ratio}(\Phi,F) &:= \frac{\operatorname{Revenue}(\Phi,F)}{\operatorname{OPT}(F)}. \end{split}$$

$$\begin{split} \theta_{\mathsf{Revenue}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Revenue}(\Phi, F) \\ \theta_{\mathsf{Regret}}^*(\mathscr{F}) &:= \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \mathsf{Regret}(\Phi, F), \\ \theta_{\mathsf{Ratio}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Ratio}(\Phi, F). \end{split}$$

Robust Criteria

- lacksquare By Myerson, any incentive-compatible mechanism is a price CDF Φ .
- lacktriangle Given a mechanism Φ and a distribution F, define

$$\begin{split} \operatorname{Revenue}(\Phi,F) &:= \mathbb{E}_{p \sim \Phi, v \sim F} \left[p \mathbf{1}(v \geq p) \right] \\ &= \int \int_{s \leq v} s d\Phi(s) dF(v), \\ \operatorname{Regret}(\Phi,F) &:= \operatorname{OPT}(F) - \operatorname{Revenue}(\Phi,F), \\ \operatorname{Ratio}(\Phi,F) &:= \frac{\operatorname{Revenue}(\Phi,F)}{\operatorname{OPT}(F)}. \end{split}$$

$$\begin{split} & \mathcal{P}^*_{\mathsf{Revenue}}(\mathscr{F}) := \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Revenue}(\Phi, F), \\ & \theta^*_{\mathsf{Regret}}(\mathscr{F}) := \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \mathsf{Regret}(\Phi, F), \\ & \theta^*_{\mathsf{Ratio}}(\mathscr{F}) := \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Ratio}(\Phi, F). \end{split}$$

Robust Criteria

- lacksquare By Myerson, any incentive-compatible mechanism is a price CDF Φ .
- lacktriangle Given a mechanism Φ and a distribution F, define

$$\begin{split} \operatorname{Revenue}(\Phi,F) &:= \mathbb{E}_{p \sim \Phi, v \sim F} \left[p \mathbf{1}(v \geq p) \right] \\ &= \int \int_{s \leq v} s d\Phi(s) dF(v), \\ \operatorname{Regret}(\Phi,F) &:= \operatorname{OPT}(F) - \operatorname{Revenue}(\Phi,F), \\ \operatorname{Ratio}(\Phi,F) &:= \frac{\operatorname{Revenue}(\Phi,F)}{\operatorname{OPT}(F)}. \end{split}$$

$$\begin{split} \theta_{\mathsf{Revenue}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Revenue}(\Phi, F), \\ \theta_{\mathsf{Regret}}^*(\mathscr{F}) &:= \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \mathsf{Regret}(\Phi, F), \\ \theta_{\mathsf{Ratio}}^*(\mathscr{F}) &:= \max_{\Phi \in \mathscr{M}} \min_{F \in \mathscr{F}} \mathsf{Ratio}(\Phi, F). \end{split}$$

Given that the revenue, regret, ratio all have different scales, we evaluate *relative* performance across criteria.

Fix an uncertainty set ${\mathscr F}.$ The relative performances of a given mechanism Φ ar

$$\begin{split} \mathsf{RelPerf}(\Phi, \mathsf{Revenue}, \mathscr{F}) &= \frac{\mathsf{WorstRevenue}(\Phi, \mathscr{F})}{\theta_{\mathsf{Revenue}}^*} \\ \mathsf{RelPerf}(\Phi, \mathsf{Regret}, \mathscr{F}) &= \frac{\theta_{\mathsf{Regret}}^*}{\mathsf{WorstRegret}(\Phi, \mathscr{F})}, \\ \mathsf{RelPerf}(\Phi, \mathsf{Ratio}, \mathscr{F}) &= \frac{\mathsf{WorstRatio}(\Phi, \mathscr{F})}{\theta_{\mathsf{Ratio}}^*}. \end{split}$$

Given that the revenue, regret, ratio all have different scales, we evaluate *relative* performance across criteria.

Fix an uncertainty set \mathcal{F} .

The relative performances of a given mechanism Φ are

$$\begin{split} \text{RelPerf}(\Phi, \mathsf{Revenue}, \mathscr{F}) &= \frac{\mathsf{WorstRevenue}(\Phi, \mathscr{F})}{\theta_{\mathsf{Revenue}}^*} \\ \text{RelPerf}(\Phi, \mathsf{Regret}, \mathscr{F}) &= \frac{\theta_{\mathsf{Regret}}^*}{\mathsf{WorstRegret}(\Phi, \mathscr{F})}, \\ \text{RelPerf}(\Phi, \mathsf{Ratio}, \mathscr{F}) &= \frac{\mathsf{WorstRatio}(\Phi, \mathscr{F})}{\theta_{\mathsf{Ratio}}^*}. \end{split}$$

Given that the revenue, regret, ratio all have different scales, we evaluate *relative* performance across criteria.

Fix an uncertainty set \mathscr{F} .

The relative performances of a given mechanism $\boldsymbol{\Phi}$ are

$$\begin{split} \operatorname{RelPerf}(\Phi, \operatorname{Revenue}, \mathscr{F}) &= \frac{\operatorname{WorstRevenue}(\Phi, \mathscr{F})}{\theta_{\operatorname{Revenue}}^*}, \\ \operatorname{RelPerf}(\Phi, \operatorname{Regret}, \mathscr{F}) &= \frac{\theta_{\operatorname{Regret}}^*}{\operatorname{WorstRegret}(\Phi, \mathscr{F})}, \\ \operatorname{RelPerf}(\Phi, \operatorname{Ratio}, \mathscr{F}) &= \frac{\operatorname{WorstRatio}(\Phi, \mathscr{F})}{\theta_{\operatorname{Ratio}}^*}. \end{split}$$

Given that the revenue, regret, ratio all have different scales, we evaluate *relative* performance across criteria.

Fix an uncertainty set \mathscr{F} .

The relative performances of a given mechanism $\boldsymbol{\Phi}$ are

$$\begin{split} \text{RelPerf}(\Phi, \mathsf{Revenue}, \mathscr{F}) &= \frac{\mathsf{WorstRevenue}(\Phi, \mathscr{F})}{\theta_{\mathsf{Revenue}}^*}, \\ \text{RelPerf}(\Phi, \mathsf{Regret}, \mathscr{F}) &= \frac{\theta_{\mathsf{Regret}}^*}{\mathsf{WorstRegret}(\Phi, \mathscr{F})}, \\ \text{RelPerf}(\Phi, \mathsf{Ratio}, \mathscr{F}) &= \frac{\mathsf{WorstRatio}(\Phi, \mathscr{F})}{\theta_{\mathsf{Ratio}}^*}. \end{split}$$

Given that the revenue, regret, ratio all have different scales, we evaluate *relative* performance across criteria.

Fix an uncertainty set \mathscr{F} .

The relative performances of a given mechanism $\boldsymbol{\Phi}$ are

$$\begin{split} \mathsf{RelPerf}(\Phi, \mathsf{Revenue}, \mathscr{F}) &= \frac{\mathsf{WorstRevenue}(\Phi, \mathscr{F})}{\theta_{\mathsf{Revenue}}^*}, \\ \mathsf{RelPerf}(\Phi, \mathsf{Regret}, \mathscr{F}) &= \frac{\theta_{\mathsf{Regret}}^*}{\mathsf{WorstRegret}(\Phi, \mathscr{F})}, \\ \mathsf{RelPerf}(\Phi, \mathsf{Ratio}, \mathscr{F}) &= \frac{\mathsf{WorstRatio}(\Phi, \mathscr{F})}{\theta_{\mathsf{Ratio}}^*}. \end{split}$$

Best of Many Robustness Criteria

Rather than fixing the mechanisms to be one of the focal mechanisms, we directly optimize over all mechanisms.

The relative performance of Φ over all criteria is

$$\begin{split} & \operatorname{RelPerf}(\Phi, \operatorname{All}, \mathscr{F}) \\ &= \min_{F \in \mathscr{F}} \min \left\{ \frac{\operatorname{Revenue}(\Phi, F)}{\theta_{\operatorname{Revenue}}^*}, \frac{\theta_{\operatorname{Regret}}^*}{\operatorname{Regret}(\Phi, F)}, \frac{\operatorname{Ratio}(\Phi, F)}{\theta_{\operatorname{Ratio}}^*} \right\}, \end{split}$$

We solve

$$c^*(\mathscr{F}) = \max_{\Phi \in \mathscr{M}} \mathsf{RelPerf}(\Phi, \mathsf{AII}, \mathscr{F})$$

BEST OF MANY ROBUSTNESS CRITERIA

Rather than fixing the mechanisms to be one of the focal mechanisms, we directly optimize over all mechanisms.

The relative performance of Φ over all criteria is

$$\begin{split} & \operatorname{RelPerf}(\Phi, \operatorname{All}, \mathscr{F}) \\ &= \min_{F \in \mathscr{F}} \min \left\{ \frac{\operatorname{Revenue}(\Phi, F)}{\theta_{\operatorname{Revenue}}^*}, \frac{\theta_{\operatorname{Regret}}^*}{\operatorname{Regret}(\Phi, F)}, \frac{\operatorname{Ratio}(\Phi, F)}{\theta_{\operatorname{Ratio}}^*} \right\}, \end{split}$$

We solve

$$c^*(\mathscr{F}) = \max_{\Phi \in \mathscr{M}} \mathsf{RelPerf}(\Phi, \mathsf{All}, \mathscr{F})$$

BEST OF MANY ROBUSTNESS CRITERIA

Rather than fixing the mechanisms to be one of the focal mechanisms, we directly optimize over all mechanisms.

The relative performance of $\boldsymbol{\Phi}$ over all criteria is

$$\begin{split} & \operatorname{RelPerf}(\Phi, \operatorname{All}, \mathscr{F}) \\ &= \min_{F \in \mathscr{F}} \min \left\{ \frac{\operatorname{Revenue}(\Phi, F)}{\theta_{\operatorname{Revenue}}^*}, \frac{\theta_{\operatorname{Regret}}^*}{\operatorname{Regret}(\Phi, F)}, \frac{\operatorname{Ratio}(\Phi, F)}{\theta_{\operatorname{Ratio}}^*} \right\}, \end{split}$$

We solve

$$c^*(\mathscr{F}) = \max_{\Phi \in \mathscr{M}} \mathsf{RelPerf}(\Phi, \mathsf{AII}, \mathscr{F}).$$

Reformulation via Linear Programs

Unifying revenue, regret, and ratio with λ -regret

worst case
$$\lambda\text{-regret}$$
 of Φ is
$$= \max_{F \in \mathscr{F}} \left[\lambda \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi, F) \right]$$

$$\min \max_{\Phi \in \mathscr{M}} \lambda - \mathsf{regret} \text{ is } = \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \left[\lambda \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi, F) \right]$$

Prop. Revenue is $\lambda=0$. Regret is $\lambda=1$. Ratio is λ such that minimax λ -regret is zero.

Unifying revenue, regret, and ratio with λ -regret

worst case
$$\lambda\text{-regret}$$
 of Φ is
$$= \max_{F \in \mathscr{F}} \left[\lambda \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi, F) \right]$$

$$\min \max_{\Phi \in \mathscr{M}} \lambda - \mathsf{regret} \text{ is } = \min_{\Phi \in \mathscr{M}} \max_{F \in \mathscr{F}} \left[\lambda \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi, F) \right]$$

Prop. Revenue is $\lambda=0$. Regret is $\lambda=1$. Ratio is λ such that minimax λ -regret is zero.

λ -REGRET LINEAR PROGRAM

Fix a mechanism Φ and the uncertainty set to be some known moments m_i and quantiles (q_i, r_i) on a known grid $\mathscr{G} \subseteq [0, 1]$:

$$\mathscr{F} = \left\{ F \in \Delta(\mathscr{G}) : \int v^i dF(v) = m_i \ \forall i, \ \bar{F}(r_j) = q_j \ \forall j \right\}$$

Then the worst case λ -regret of Φ is from this LP:

$$\begin{split} & \min_{\theta, \alpha(\cdot), \beta(\cdot)} \theta \\ & \text{s.t. } \theta \geq \sum_{i \in \mathscr{I}} \alpha_i(p) m_i + \sum_{j \in \mathscr{J}} \beta_j(p) q_j \quad \forall p \in \mathscr{G} \\ & \lambda p \mathbf{1}(v \geq p) - \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_i(p) v^i - \sum_{j \in \mathscr{J}} \beta_j(p) \mathbf{1}(v \geq r_j) \leq 0 \end{split}$$

λ -REGRET LINEAR PROGRAM

Fix a mechanism Φ and the uncertainty set to be some known moments m_i and quantiles (q_i, r_i) on a known grid $\mathscr{G} \subseteq [0, 1]$:

$$\mathscr{F} = \left\{ F \in \Delta(\mathscr{G}) : \int v^i dF(v) = m_i \ \forall i, \ \bar{F}(r_j) = q_j \ \forall j \right\}$$

Then the worst case λ -regret of Φ is from this LP:

$$\begin{split} & \underset{\theta,\alpha(\cdot),\beta(\cdot)}{\min} \ \theta \\ & \text{s.t.} \ \ \theta \geq \sum_{i \in \mathscr{I}} \alpha_i(p) m_i + \sum_{j \in \mathscr{J}} \beta_j(p) q_j \quad \forall p \in \mathscr{G} \\ & \lambda p \mathbf{1}(v \geq p) - \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_i(p) v^i - \sum_{j \in \mathscr{J}} \beta_j(p) \mathbf{1}(v \geq r_j) \leq 0 \end{split}$$

Proof of λ -regret Linear Program

PROOF OF λ -REGRET LINEAR PROGRAM

$$\min_{F \in \mathscr{F}} \quad \lambda \mathsf{OPT}(F) - \mathsf{Revenue}(\Phi, F)$$

PROOF OF λ -REGRET LINEAR PROGRAM

$$\min_{F \in \mathscr{F}} \quad \lambda \underbrace{\mathsf{OPT}(F)}_{\max_{p} \int \mathbf{1}(v \geq p) dF(v)} - \underbrace{\mathsf{Revenue}(\Phi, F)}_{\int \int_{s \leq v} s d\Phi(s) dF(v)}$$

Proof of λ -regret Linear Program

$$\min_{F \in \mathscr{F}} \max_{p} \quad \lambda p \mathbf{1}(v \geq p) dF(v) - \int \int_{s \leq v} s d\Phi(s) dF(v)$$

PROOF OF λ -REGRET LINEAR PROGRAM

$$\min_{\theta} \quad \theta \text{ s.t.}$$

$$\theta \geq \max_{F \in \mathscr{F}} \lambda p \mathbf{1}(v \geq p) dF(v) - \int \int_{s \leq v} s d\Phi(s) dF(v) \quad \forall p$$

PROOF OF λ -REGRET LINEAR PROGRAM

LP duality for each price p of OPT, then epigraph.

$$\min_{F \in \mathscr{F}, \theta} \ \theta \text{ s.t.}$$

$$\theta \geq \max_{F \in \mathscr{F}} \lambda p \mathbf{1}(v \geq p) dF(v) - \int \int_{s \leq v} s d\Phi(s) dF(v) \quad \forall p$$

Because \mathscr{F} is linear, we dualize the LP of $\max_{F \in \mathscr{F}}$ for each p with dual variables $\alpha_i(p)$ for moments, $\beta_j(p)$ for quantiles, giving our results.

How does a mechanism Φ that is robustly optimized to one criterion (e.g. regret) performs under another (e.g. ratio)?

We can solve an LP to get a specific Φ for the first criterion, and solve another LP to evaluate it under the second. But there might be many possible optimal solutions ...

We take the *worst case approach*. Because all 3 criteria can be written as λ -regret, we solve the *cross regret* problem:

$$\begin{split} R^*_{\lambda_{\text{new}}}(\mathscr{F}, (\lambda_{\text{old}}, r_{\text{old}})) &= \min_{\Phi \in \mathscr{M}_{\text{old}}} R^{\Phi}_{\lambda_{\text{new}}}(\mathscr{F}) \\ \text{where } \mathscr{M}_{\text{old}} &= \left\{\Phi : R^{\Phi}_{\lambda_{\text{old}}}(\mathscr{F}) \leq r_{\text{old}}\right\}. \end{split}$$

Using the LP formulation for λ -regret we have before, this is also an LP.

How does a mechanism Φ that is robustly optimized to one criterion (e.g. regret) performs under another (e.g. ratio)?

We can solve an LP to get a specific Φ for the first criterion, and solve another LP to evaluate it under the second. But there might be many possible optimal solutions ...

We take the *worst case approach*. Because all 3 criteria can be written as λ -regret, we solve the *cross regret* problem:

$$\begin{split} R^*_{\lambda_{\text{new}}}(\mathscr{F}, (\lambda_{\text{old}}, r_{\text{old}})) &= \min_{\Phi \in \mathscr{M}_{\text{old}}} R^{\Phi}_{\lambda_{\text{new}}}(\mathscr{F}) \\ \text{where } \mathscr{M}_{\text{old}} &= \left\{\Phi : R^{\Phi}_{\lambda_{\text{old}}}(\mathscr{F}) \leq r_{\text{old}}\right\}. \end{split}$$

Using the LP formulation for λ -regret we have before, this is also an LP

How does a mechanism Φ that is robustly optimized to one criterion (e.g. regret) performs under another (e.g. ratio)?

We can solve an LP to get a specific Φ for the first criterion, and solve another LP to evaluate it under the second. But there might be many possible optimal solutions ...

We take the *worst case approach*. Because all 3 criteria can be written as λ -regret, we solve the *cross regret* problem:

$$\begin{split} R^*_{\lambda_{\text{new}}}(\mathscr{F}, (\lambda_{\text{old}}, r_{\text{old}})) &= \min_{\Phi \in \mathscr{M}_{\text{old}}} R^{\Phi}_{\lambda_{\text{new}}}(\mathscr{F}) \\ \text{where } \mathscr{M}_{\text{old}} &= \left\{ \Phi : R^{\Phi}_{\lambda_{\text{old}}}(\mathscr{F}) \leq r_{\text{old}} \right\}. \end{split}$$

Using the LP formulation for λ -regret we have before, this is also an LP

How does a mechanism Φ that is robustly optimized to one criterion (e.g. regret) performs under another (e.g. ratio)?

We can solve an LP to get a specific Φ for the first criterion, and solve another LP to evaluate it under the second. But there might be many possible optimal solutions ...

We take the *worst case approach*. Because all 3 criteria can be written as λ -regret, we solve the *cross regret* problem:

$$\begin{split} R^*_{\lambda_{\mathsf{new}}}(\mathscr{F}, (\lambda_{\mathsf{old}}, r_{\mathsf{old}})) &= \min_{\Phi \in \mathscr{M}_{\mathsf{old}}} R^\Phi_{\lambda_{\mathsf{new}}}(\mathscr{F}) \\ \text{where } \mathscr{M}_{\mathsf{old}} &= \left\{\Phi : R^\Phi_{\lambda_{\mathsf{old}}}(\mathscr{F}) \leq r_{\mathsf{old}}\right\}. \end{split}$$

Using the LP formulation for λ -regret we have before, this is also an LP

How does a mechanism Φ that is robustly optimized to one criterion (e.g. regret) performs under another (e.g. ratio)?

We can solve an LP to get a specific Φ for the first criterion, and solve another LP to evaluate it under the second. But there might be many possible optimal solutions ...

We take the *worst case approach*. Because all 3 criteria can be written as λ -regret, we solve the *cross regret* problem:

$$\begin{split} R^*_{\lambda_{\text{new}}}(\mathscr{F},(\lambda_{\text{old}},r_{\text{old}})) &= \min_{\Phi \in \mathscr{M}_{\text{old}}} R^{\Phi}_{\lambda_{\text{new}}}(\mathscr{F}) \\ \text{where } \mathscr{M}_{\text{old}} &= \left\{\Phi: R^{\Phi}_{\lambda_{\text{old}}}(\mathscr{F}) \leq r_{\text{old}}\right\}. \end{split}$$

Using the LP formulation for λ -regret we have before, this is also an LP.

We want the highest $c\in[0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Revenue}(\Phi, F) \geq c \cdot \theta_{\mathsf{Revenu}}^* \\ & \underset{F \in \mathscr{F}}{\max} \ \mathsf{Regret}(\Phi, F) \leq \theta_{\mathsf{Regret}}^* / c \\ & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Ratio}(\Phi, F) \geq c \cdot \theta_{\mathsf{Ratio}}^*. \end{split}$$

Fix c. Compute the θ^* 's first. ($\theta^*_{Regret} = optimal minimax regret, etc.)$

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

We want the highest $c \in [0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} \min_{F \in \mathscr{F}} \mathsf{Revenue}(\Phi, F) &\geq c \cdot \theta^*_{\mathsf{Revenue}} \\ \max_{F \in \mathscr{F}} \mathsf{Regret}(\Phi, F) &\leq \theta^*_{\mathsf{Regret}}/c \\ \min_{F \in \mathscr{F}} \mathsf{Ratio}(\Phi, F) &\geq c \cdot \theta^*_{\mathsf{Ratio}}. \end{split}$$

Fix c. Compute the $heta^*$'s first. $(heta^*_{\mathsf{Regret}} = \mathsf{optimal}$ minimax regret, etc.)

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

We want the highest $c \in [0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Revenue}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Revenue}} \\ & \underset{F \in \mathscr{F}}{\max} \ \mathsf{Regret}(\Phi, F) \leq \theta^*_{\mathsf{Regret}}/c \\ & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Ratio}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Ratio}}. \end{split}$$

Fix c. Compute the $heta^*$'s first. $(heta^*_{\mathsf{Regret}} = \mathsf{optimal}$ minimax regret, etc.)

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

We want the highest $c \in [0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} \min_{F \in \mathscr{F}} & \operatorname{Revenue}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Revenue}} \\ & \max_{F \in \mathscr{F}} \operatorname{Regret}(\Phi, F) \leq \theta^*_{\mathsf{Regret}}/c \\ & \min_{F \in \mathscr{F}} \operatorname{Ratio}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Ratio}}. \end{split}$$

Fix c. Compute the θ^* 's first. ($\theta^*_{Regret} = optimal minimax regret, etc.)$

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

We want the highest $c \in [0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Revenue}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Revenue}} \\ & \underset{F \in \mathscr{F}}{\max} \ \mathsf{Regret}(\Phi, F) \leq \theta^*_{\mathsf{Regret}}/c \\ & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Ratio}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Ratio}}. \end{split}$$

Fix c. Compute the θ^* 's first. ($\theta^*_{\text{Regret}} = \text{optimal minimax regret, etc.})$

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

We want the highest $c \in [0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Revenue}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Revenue}} \\ & \underset{F \in \mathscr{F}}{\max} \ \mathsf{Regret}(\Phi, F) \leq \theta^*_{\mathsf{Regret}}/c \\ & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Ratio}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Ratio}}. \end{split}$$

Fix c. Compute the θ^* 's first. ($\theta^*_{\text{Regret}} = \text{optimal minimax regret, etc.})$

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

We want the highest $c \in [0,1]$ s.t. there exists a mechanism Φ that is a factor of c from optimal θ^* for all 3 criteria:

$$\begin{split} & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Revenue}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Revenue}} \\ & \underset{F \in \mathscr{F}}{\max} \ \mathsf{Regret}(\Phi, F) \leq \theta^*_{\mathsf{Regret}}/c \\ & \underset{F \in \mathscr{F}}{\min} \ \mathsf{Ratio}(\Phi, F) \geq c \cdot \theta^*_{\mathsf{Ratio}}. \end{split}$$

Fix c. Compute the θ^* 's first. ($\theta^*_{\text{Regret}} = \text{optimal minimax regret, etc.})$

For each constraint, rewrite it as λ -regret and use LP duality as before \to LP feasibility problem.

Results

0.2

0.0 +

0.2

0.4

median ν

0.6

 Φ_{Regret}^*

 Φ_{Ratio}^*

 Φ_{All}^*

0.8

PRICE CDFs (MECHANISMS) FOR MEAN $\mu=0.5$

Additional	Uniformly Robust	Focal Mechanisms		
Information	Mechanism	revenue	regret	ratio
mean	92%	58%	44%	68%
mean and variance	86%	51%	49%	71%
	61%			41%
	58%	33%		

Additional	Uniformly Robust	Focal Mechanisms		
Information	Mechanism	revenue	regret	ratio
mean	92%	58%	44%	68%
mean and variance	86%	51%	49%	71%
median	61%	34%	0%	41%
	58%	33%		

Additional	Uniformly Robust	Focal Mechanisms		
Information	Mechanism	revenue	regret	ratio
mean	92%	58%	44%	68%
				71%
median	61%	34%	0%	41%
lower bound	58%	33%	0%	31%

Additional	Uniformly Robust	Focal Mechanisms		
Information	Mechanism	revenue	regret	ratio
mean	92%	58%	44%	68%
				71%
	61%			41%
lower bound	58%	33%	0%	31%

CONCLUSION

- We propose general formulations to investigate **criteria-overfitting** in robust decision making.
- We analyze the case of **robust pricing** nontrivial LPs.
- Mechanisms robust for one criterion can perform badly under another criterion.
- There exist "uniformly robust" mechanisms that perform almost as good as the best across criteria.
- Results depend on the structure of the problem
 - investigating these systematically is future work

CONCLUSION

- We propose general formulations to investigate criteria-overfitting in robust decision making.
- We analyze the case of **robust pricing** nontrivial LPs.
- Mechanisms robust for one criterion can perform badly under another criterion.
- There exist "uniformly robust" mechanisms that perform almost as good as the best across criteria.
- Results depend on the structure of the problem
 - investigating these systematically is future work

CONCLUSION

- We propose general formulations to investigate criteria-overfitting in robust decision making.
- We analyze the case of **robust pricing** nontrivial LPs.
- Mechanisms robust for one criterion can perform badly under another criterion.
- There exist "uniformly robust" mechanisms that perform almost as good as the best across criteria.
- Results depend on the structure of the problem
 - investigating these systematically is future work

CONCLUSION

- We propose general formulations to investigate criteria-overfitting in robust decision making.
- We analyze the case of **robust pricing** nontrivial LPs.
- Mechanisms robust for one criterion can perform badly under another criterion.
- There exist "uniformly robust" mechanisms that perform almost as good as the best across criteria.
- Results depend on the structure of the problem
 - investigating these systematically is future work

CONCLUSION

- We propose general formulations to investigate **criteria-overfitting** in robust decision making.
- We analyze the case of **robust pricing** nontrivial LPs.
- Mechanisms robust for one criterion can perform badly under another criterion.
- There exist "uniformly robust" mechanisms that perform almost as good as the best across criteria.
- Results depend on the structure of the problem
 - investigating these systematically is future work!

Appendix

Worst Case Cross-Criterion Performances

$\mathscr{F}=$ known support [0,1], mean μ

		Evaluated Criterion		
Mean		revenue	regret	ratio
Mechanism	revenue	1.00	0.58	0.75
Criterion	regret	0.45	1.00	0.44
	ratio	0.68	0.93	1.00

Table: The uncertainty set is known mean information $\mathscr{F}_{\mu}^{\text{mean}}$. Each cell is $\min_{\mu \in \mathbb{G}} \text{RelPerf}(\Phi^*_{\text{MechanismCriterion}}(\mathscr{F}_{\mu}^{\text{mean}}), \text{EvaluatedMetric}, \mathscr{F}_{\mu}^{\text{mean}})$, the performance of a mechanism optimized for one criterion (row) when evaluated under another criterion (column).

$\mathscr{F}=$ known support [0,1], mean $\mu,$ stdev $\sigma=0.20$

		Evaluated Criterion		
Mean & Variance		revenue	regret	ratio
Mechanism	revenue	1.00	0.51	0.67
Criterion	regret	0.49	1.00	0.58
	ratio	0.78	0.71	1.00

Table: The uncertainty set is known first two moments (mean and variance) information $\mathscr{F}_{\mu,\sigma}^{\text{mean+var}}$. Each cell is

 $\label{eq:min_policy} \min_{\mu,\sigma\in\mathbb{G}} \mathsf{RelPerf}(\Phi_{\mathsf{MechanismCriterion}}^*(\mathscr{F}_{\mu,\sigma}^{\mathsf{mean+var}}), \mathsf{EvaluatedMetric}, \mathscr{F}_{\mu,\sigma}^{\mathsf{mean+var}}), \ \mathsf{the} \\ \mathsf{performance} \ \mathsf{of} \ \mathsf{a} \ \mathsf{mechanism} \ \mathsf{optimized} \ \mathsf{for} \ \mathsf{one} \ \mathsf{criterion} \ \mathsf{(row)} \ \mathsf{when} \ \mathsf{evaluated} \\ \mathsf{under} \ \mathsf{another} \ \mathsf{criterion} \ \mathsf{(column)}.$

$\mathscr{F}=$ known support [0,1], median ν

		Evaluated Criterion		
Median		revenue	regret	ratio
Mechanism	revenue	1.00	0.41	0.34
Criterion	regret	0.00	1.00	0.00
	ratio	0.41	0.52	1.00

Table: The uncertainty set is known median information $\mathscr{F}_{\nu}^{\mathrm{median}}$. Each cell is $\min_{\nu \in \mathbb{G}} \mathrm{RelPerf}(\Phi_{\mathrm{MechanismCriterion}}^*(\mathscr{F}_{\nu}^{\mathrm{median}}),$ EvaluatedMetric, $\mathscr{F}_{\nu}^{\mathrm{median}})$, the performance of a mechanism optimized for one criterion (row) when evaluated under another criterion (column).

$\mathscr{F} = \text{KNOWN SUPPORT } [a, 1]$

		Evaluated Criterion		
Lower Bound		revenue	regret	ratio
Mechanism	revenue	1.00	0.41	0.33
Criterion	regret	0.00	1.00	0.00
	ratio	0.31	0.53	1.00

Table: The uncertainty set is known lower bound information $\mathscr{F}_a^{\operatorname{LB}}$. Each cell is $\min_{a\in\mathbb{G}}\operatorname{RelPerf}(\Phi_{\operatorname{MechanismCriterion}}^*(\mathscr{F}_a^{\operatorname{LB}}),$ EvaluatedMetric, $\mathscr{F}_a^{\operatorname{LB}})$, the performance of a mechanism optimized for one criterion (row) when evaluated under another criterion (column).

Randomized Mechanisms

Deterministic Pricing Results (Relative Performances Across Parameter Values)

Deterministic Pricing Results (Optimal Prices Across Parameter Values)

Omitted LP Formulations

CROSS-REGRET LP

$$\begin{split} \min_{\substack{\Phi,\,\theta\\ \alpha \text{ new},\,\beta \text{ new}\\ \alpha \text{ old}},\beta \text{ old}} \theta \\ \text{s.t. } \theta &\geq \sum_{i \in \mathscr{I}} \alpha_{\text{new},i}(p) m_i + \sum_{j \in \mathscr{J}} \beta_{\text{new},j}(p) q_j \quad \forall p \in \mathscr{G} \\ \\ \lambda_{\text{new}} p \mathbf{1}(v \geq p) - \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_{\text{new},i}(p) v^i - \sum_{j \in \mathscr{J}} \beta_{\text{new},j}(p) \mathbf{1}(v \geq r_j) \leq 0 \quad \forall v, p \in \mathscr{G} \\ \\ r_{\text{old}} &\geq \sum_{i \in \mathscr{I}} \alpha_{\text{old},i}(p) m_i + \sum_{j \in \mathscr{J}} \beta_{\text{old},j}(p) q_j \quad \forall p \in \mathscr{G} \\ \\ \lambda_{\text{old}} p \mathbf{1}(v \geq p) - \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_{\text{old},i}(p) v^i - \sum_{j \in \mathscr{J}} \beta_{\text{old},j}(p) \mathbf{1}(v \geq r_j) \leq 0 \quad \forall v, p \in \mathscr{G} \\ \\ \Phi \text{ is a CDF.} \end{split}$$

Uniformly Robust LP Feasibility

There exists a mechanism Φ that achieves $(\theta_{\mathsf{Revenue}}, \theta_{\mathsf{Regret}}, \theta_{\mathsf{Ratio}})$ if and only if the following linear problem in variables $\alpha_{\mathsf{Revenue}}, \alpha_{\mathsf{Regret}}, \alpha_{\mathsf{Ratio}}, \beta_{\mathsf{Revenue}}, \beta_{\mathsf{Regret}}, \beta_{\mathsf{Ratio}}, \Phi$ is feasible:

$$\begin{split} &\sum_{i \in \mathscr{I}} \alpha_{\mathsf{Revenue},i}(p) m_i + \sum_{j \in \mathscr{J}} \beta_{\mathsf{Revenue},j}(p) q_j \leq -\theta_{\mathsf{Revenue}} \quad \forall p \in \mathscr{G} \\ &\sum_{i \in \mathscr{I}} \alpha_{\mathsf{Regret},i}(p) m_i + \sum_{j \in \mathscr{J}} \beta_{\mathsf{Regret},j}(p) q_j \leq \theta_{\mathsf{Regret}} \quad \forall p \in \mathscr{G} \\ &\sum_{i \in \mathscr{I}} \alpha_{\mathsf{Ratio},i}(p) m_i + \sum_{j \in \mathscr{J}} \beta_{\mathsf{Ratio},j}(p) q_j \leq 0 \quad \forall p \in \mathscr{G} \\ &- \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_{\mathsf{Revenue},i}(p) v^i - \sum_{j \in \mathscr{J}} \beta_{\mathsf{Revenue},j}(p) \mathbf{1}(v \leq r_j) \leq 0 \quad \forall v, p \in \mathscr{G} \\ &p \mathbf{1}(v \geq p) - \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_{\mathsf{Regret},i}(p) v^i - \sum_{j \in \mathscr{J}} \beta_{\mathsf{Regret},j}(p) \mathbf{1}(v \leq r_j) \leq 0 \quad \forall v, p \in \mathscr{G} \\ &\theta_{\mathsf{Ratio}} p \mathbf{1}(v \geq p) - \int_{s \leq v} s d\Phi(s) - \sum_{i \in \mathscr{I}} \alpha_{\mathsf{Ratio},i}(p) v^i - \sum_{j \in \mathscr{J}} \beta_{\mathsf{Ratio},j}(p) \mathbf{1}(v \leq r_j) \leq 0 \quad \forall v, p \in \mathscr{G} \end{split}$$

 Φ is a CDF,