Лабораторная работа №3 «Полиморфизм на основе интерфейсов в языке Java»

Скоробогатов С.Ю.

7 апреля 2016 г.

1 Цель работы

Приобретение навыков реализации интерфейсов для обеспечения возможности полиморфной обработки объектов класса.

2 Исходные данные

Стандартная библиотека языка Java содержит «псевдокласс» ¹ Arrays, предоставляющий набор статических методов для манипуляции массивами различных типов. В частности, в классе Arrays имеется метод sort, осуществляющий сортировку массива объектов:

public static void sort(Object[] a)

В языке Java массивы объектов ковариантны. Это значит, что если класс S является подклассом класса T, то массив объектов класса S является подтипом массива объектов класса T. Например, из того, что класс String является подклассом класса Object, следует, что тип String[] является подтипом по отношению к типу Object[]. Тем самым, мы имеем право передавать методу sort массивы любых объектов.

В методе sort реализован вариант алгоритма быстрой стортировки, осуществляющий сравнение объектов путём вызова метода compareTo, объявленного в интерфейсе Comparable<T> стандартной библиотеки языка Java и выполняющего сравнение текущего объекта **this** с объектом obj, переданным этому методу в качестве параметра:

int compareTo(T obj)

При этом compare To возвращает отрицательное число, если **this** меньше obj, положительно число, если **this** больше obj, и 0, если oни равны.

Интерфейс Comparable<T> имеет так называемый *типовый параметр* Т, то есть является *обобщённым* интерфейсом. Его можно параметризовать любым классом, подставив имя класса вместо параметра Т. Тем самым, обобщённый интерфейс фактически представляет собой множество интерфейсов, которые различаются значением типового параметра: Comparable<Object>, Comparable<Integer>, Comparable<String> и т.п.

 $^{^{1}}$ Класс Arrays, как и класс Math, не предназначен для создания объектов, а является по сути хранилищем статических методов.

Обратите внимание на то, что если интерфейс Comparable<T> параметризован некоторым классом SomeClass, то формальный параметр obj метода compareTo будет иметь тип SomeClass:

```
int compareTo(SomeClass obj)
```

Для того чтобы массив объектов некоторого класса SomeClass можно было отсортировать с помощью метода sort класса Arrays, этот класс должен реализовывать интерфейс Comparable SomeClass >. Например, объявим класс FirstLetterString, объекты которого упорядочены по первой букве содержащейся в них строки:

```
public class FirstLetterString implements Comparable<FirstLetterString> {
           private String s;
3
           public FirstLetterString(String s) { this.s = s; }
5
           public String toString() { return s; }
           public int compareTo(FirstLetterString obj) {
                    if (s.length() = 0 \&\& obj.s.length() = 0) return 0;
9
                    else if (s.length() = 0) return -1;
10
                    else if (obj.s.length() = 0) return 1;
11
                    else return s.charAt(0) - obj.s.charAt(0);
12
           }
13
14
     Продемонстрируем сортировку массива объектов класса FirstLetterString:
  import java.util.Arrays;
2
  public class Test {
3
           public static void main(String[] args) {
4
                    FirstLetterString [] a = new FirstLetterString [] {
                            new FirstLetterString ("gamma"),
6
                            new FirstLetterString("beta"),
                            new FirstLetterString("alpha")
                    };
                    Arrays.sort(a);
10
                    for (FirstLetterString s : a) System.out.println(s);
11
12
13
```

3 Задание

Во время выполнения лабораторной работы требуется разработать на языке Java один из классов, перечисленных в таблицах 1 и 2. В классе должен быть реализован интерфейс Comparable<T> и переопределён метод toString.

В методе main вспомогательного класса Test нужно продемонстрировать работоспособность разработанного класса путём сортировки массива его экземпляров.

Таблица 1: Варианты классов

1	Класс нормализованных дробей с естественным порядком на множестве
	рациональных чисел.
2	Класс последовательностей целых чисел с лексикографическим порядком.
3	Класс последовательностей char 'ов с порядком на основе количества букв 'a'.
4	Класс полиномов с порядком на основе суммы коэффициентов производной.
5	Класс состоящих из слов предложений с порядком на основе количества слов в
	предложении.
6	Класс знаковых целых чисел с порядком на основе суммы цифр десятичного
	представления.
7	Класс пар целых чисел с порядком на основе наибольшего общего делителя пары.
8	Класс последовательностей char 'ов с порядком на основе близости первой
	латинской гласной буквы к началу последовательности.
9	Класс последовательностей целых чисел с порядком на основе количества пиков в
	последовательности.
10	Класс отрезков прямых на плоскости с порядком на основе длины отрезка.
11	Класс состоящих из слов предложений с порядком на основе средней длины слова
	в предложении.
12	Класс знаковых целых чисел с порядком на основе количества единичных бит в
	двоичном представлении.
13	Класс пар целых чисел с порядком на основе наименьшего общего кратного чисел
	пары.
14	Класс матриц с порядком на основе ранга матрицы.
15	Класс последовательностей целых чисел с порядком на основе максимальной
	суммы подпоследовательности (алгоритм Кадана).
16	Класс треугольников с порядком на основе площади треугольника.
17	Класс состоящих из слов предложений с порядком на основе максимальной длины
	слова в предложении.
18	Класс целых чисел с порядком на основе количества простых делителей.
19	Класс квадратных трёхчленов с порядком на основе суммы корней
	соответствующего квадратного уравнения.
20	Класс последовательностей целых чисел с порядком на основе количества обменов,
	которые нужно выполнить, чтобы отсортировать последовательность пузырьком.
21	Класс последовательностей целых чисел с порядком на основе разности
	максимального и минимального числа.
22	Класс знаковых целых чисел с порядком на основе количества младших нулевых
	бит в двоичном представлении числа.
23	Класс состоящих из слов предложений с порядком на основе близости слова
	минимальной длины к началу предложения.
24	Класс целых чисел с порядком на основе количества различных цифр в
	десятичном представлении.
25	Класс последовательностей char 'ов с порядком на основе максимального значения
	префиксной функции.

Таблица 2: Варианты классов

26	Класс последовательностей целых чисел с порядком на основе количества
	различных чисел в последовательности.
27	Класс квадратных уравнений с порядком на основе количества действительных
	корней уравнения.
28	Класс многоугольников с порядком на основе максимальной длины стороны
	многоугольника.
29	Класс точек в трёхмерном пространстве с порядком на основе близости точки к
	началу координат.
30	Класс пар векторов в трёхмерном пространстве с порядком на основе длины их
	векторного произведения.
31	Класс четырёхугольников на плоскости с порядком на основе суммы длин
	диагоналей.
32	Класс пар окружностей с порядком на основе расстояния между точками
	пересечения окружностей (при совпадении окружностей считать расстояние
	нулевым, при непересечении – бесконечным).
33	Класс стеков целых чисел с порядком на основе максимального значения на стеке.
34	Класс последовательностей булевских значений с порядком на основе длины самой
	длинной подпоследовательности, состоящей из одинаковых значений.
35	Класс четырёхугольников на плоскости с порядком на основе площади
	четерёхугольника.
36	Класс векторов прозвольной размерности с порядком на основе длины вектора.
37	Класс пар комплексных чисел с порядком на основе произведения чисел пары.
38.	Класс предложений, состоящих из слов, разделённых пробелами и запятыми, с
	порядком на основе максимального количества слов, между которыми нет запятой.
39.	Класс последовательностей целых чисел с порядком на основе максимального
	количества одинаковых подряд идущих чисел.
40.	Класс предложений, состоящих из разделённых пробелами слов, с порядком на
	основе количества слов, представляющих целые числа в десятичной записи.
41.	Класс программ, написанных на языке С, с порядком на основе суммарной длины
	комментариев в программе.
42.	Класс последовательностей целых чисел с порядком на основе количества простых
10	чисел в составе последовательности.
43	
44	
45	
46	
47	
48	
49	
50	