機器學習 Simple Linear Regression

授課老師:林彦廷

- 一個應變數與一個自變數間之線性關係,此模型 稱之為簡單線性迴歸模型
- •迴歸分析是將研究的變數區分為應變數及自變數, 並建立應變數(Y)為自變數(X)之函數模型,然後 再根據樣本所得的資料來估計函數模型的參數, 其主要目的:
 - 是用來解釋資料過去的現象
 - •利用自變數(X)來預測應變數(Y)未來可能產生之數值。

1	YearsExpe Salary		
2	1.1	39343	
3	1.3	46205	
4	1.5	37731	
5	2	43525	
6	2.2	39891	
7	2.9	56642	
8	3	60150	
9	3.2	54445	
10	3.2	64445	
11	3.7	57189	
12	3.9	63218	
13	4	55794	
14	4	56957	
15	4.1	57081	
16	4.5	61111	
17	4.9	67938	
18	5.1	66029	

$$y = b_0 + b_1^*x$$

$$Salary = b_0 + b_1$$
Experience

· 簡單線性迴歸係數b₀、b₁之估計量

$$b_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\mathbf{b}_0 = \overline{y} - \mathbf{b}_1 \overline{x}$$
,其中 x_1, x_2, \dots, x_n 不全相等

$$\frac{\overline{x}}{=-\frac{\sum_{i=1}^{n}x_{i}}{n}} \qquad \overline{y}=-\frac{\sum_{i=1}^{n}y_{i}}{n}$$

X	4	5	9	12
у	9	8	6	3

$$\bar{x} = (4+5+9+12)/4 = 7.5$$
 $\bar{y} = (9+8+6+3)/4 = 6.5$

$$b_1 = \frac{(4-7.5)(9-6.5) + (5-7.5)(8-6.5) + (9-7.5)(6-6.5) + (12-7.5)(3-6.5)}{(4-7.5)^2 + (5-7.5)^2 + (9-7.5)^2 + (12-7.5)^2} = -0.707$$

$$b_0 = 6.5 - (-0.707) \times 7.5 = 11.803$$

由此可得此樣本迴歸直線為 $\hat{y} = 11.803 - 0.707x$

THE END

ytlin@mail.nptu.edu.tw