Các bài toán về hàm số liên tục

1. Lý thuyết

a) Hàm số liên tục tại một điểm

Cho hàm số y = f(x) xác định trên K và $x_0 \in K$.

- Hàm số y=f(x) liên tục tại x_0 khi và chỉ khi $\lim_{x\to x_0}f(x)=f(x_0)$.
- Hàm số y = f(x) không liên tục tại x_0 ta nói hàm số gián đoạn tại x_0 .

b) Hàm số liên tục trên một khoảng

- Hàm số y = f(x) liên tục trên một khoảng (a; b) nếu nó liên tục tại mọi điểm x_0 của khoảng đó.
- Hàm số y=f(x) liên tục trên [a; b] nếu nó liên tục trên (a; b) và $\lim_{x\to a^+} f(x)=f(a)$,

$$\lim_{x \to b^{-}} f(x) = f(b)$$

c) Các định lý cơ bản

Định lý 1:

- Hàm số đa thức liên tục trên toàn bộ tập ${\mathbb R}$.
- Các hàm số đa thức, phân thức hữu tỉ, lượng giác liên tục trên từng khoảng xác định của chúng.

Định lý 2: Cho các hàm số y = f(x) và y = g(x) liên tục tại x_0 . Khi đó:

- Các hàm số: y = f(x) + g(x); y = f(x) g(x); y = f(x).g(x) liên tục tại x_0 .
- Hàm số $y = \frac{f(x)}{g(x)}$ liên tục tại x_0 nếu $g(x_0) \neq 0$.

Định lý 3: Cho hàm số y = f(x) liên tục trên [a; b] và f(a).f(b) < 0. Khi đó phương trình f(x) = 0 có ít nhất một nghiệm trên (a; b).

2. Các dạng toán

Dạng 1: Xét tính liên tục của hàm số tại một điểm

Loại 1: Xét tính liên tục của hàm số
$$f(x) = \begin{cases} f_1(x), & \text{khi } x \neq x_0 \\ f_2(x), & \text{khi } x = x_0 \end{cases}$$
 tại $x = x_0$.

Phương pháp giải:

Bước 1: Tính $f(x_0) = f_2(x_0)$.

Bước 2: Tính $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} f_1(x) = L$.

Bước 3: Nếu $f_2(x_0) = L$ thì hàm số f(x) liên tục tại x_0 .

Nếu $f_2(x_0) \neq L$ thì hàm số f(x) không liên tục tại x_0 .

(Đối với bài toán tìm tham số m để hàm số liên tục tại x_0 , ta thay bước 3 thành: Giải phương trình $L = f_2(x_0)$, tìm m)

Ví dụ minh họa:

Ví dụ 1: Xét tính liên tục của hàm số sau tại điểm x = -1.

$$f(x) = \begin{cases} \frac{x^2 + 5x + 4}{x + 1} & \text{khi } x \neq -1\\ 3 & \text{khi } x = -1 \end{cases}$$

Lời giải

Hàm đã cho xác định trên $\mathbb R$.

Ta có: f(-1) = 3

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 + 5x + 4}{x + 1} = \lim_{x \to -1} \frac{(x + 1)(x + 4)}{x + 1} = \lim_{x \to -1} (x + 4) = 3.$$

Ta thấy
$$\lim_{x \to -1} f(x) = f(-1)$$

Vậy hàm số liên tục tại x = -1.

$$\textbf{Ví dụ 2:} \text{ Cho hàm số: } f\left(x\right) = \begin{cases} \frac{\sqrt{x}-1}{x-1} & \text{khi } x \neq 1 \\ m^2x & \text{khi } x = 1 \end{cases}. \text{ Tìm m để hàm số liên tục tại } x =$$

1.

Lời giải

Hàm đã cho xác định trên $[0; +\infty)$.

Ta có

$$f(1) = m^2$$
.

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

Để hàm số liên tục tại
$$x=1$$
 thì $\lim_{x\to 1} f(x) = f(1) \Leftrightarrow m^2 = \frac{1}{2} \Leftrightarrow m = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$.

Vậy
$$m = \pm \frac{\sqrt{2}}{2}$$
.

Loại 2: Xét tính liên tục của hàm số
$$f(x) = \begin{cases} f_1(x), & \text{khi } x \ge x_0 \\ f_2(x), & \text{khi } x < x_0 \end{cases}$$
 tại $x = x_0$.

Phương pháp giải:

Bước 1:

Tính $f(x_0) = f_2(x_0)$.

Tính giới hạn trái:
$$\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^-} f_2(x) = L_1$$

Tính giới hạn phải:
$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} f_1(x) = L_2$$

Bước 2:

Nếu $L = L_1$ thì hàm số liên tục bên trái tại x_0 .

Nếu $L = L_2$ thì hàm số liên tục bên phải tại x_0 .

Nếu $L=L_1=L_2$ thì hàm số liên tục tại x_0 .

(Nếu cả 3 trường hợp trên không xảy ra thì hàm số không liên tục tại x_0)

* Đối với bài toán tìm m để hàm số liên tục tại x_0 ta giải phương trình: $L=L_1=L_2$. Tìm m.

Ví dụ minh họa:

Ví dụ 1: Cho hàm số
$$f(x) = \begin{cases} \frac{x + \sqrt{x+2}}{x+1} &, \text{ khi } x > -1 \\ 2x+3 &, \text{ khi } x \leq -1 \end{cases}$$

Xét tính liên tục của hàm số tại x = -1.

Lời giải

Ta có:

$$f(-1) = 2 \cdot (-1) + 3 = 1$$

$$\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} (2x + 3) = 1.$$

$$\lim_{x \to (-1)^{+}} f(x) = \lim_{x \to (-1)^{+}} \frac{x + \sqrt{x + 2}}{x + 1}$$

$$= \lim_{x \to (-1)^+} \frac{x^2 - x - 2}{(x+1)(x-\sqrt{x+2})}$$

$$= \lim_{x \to (-1)^+} \frac{(x+1)(x-2)}{(x+1)(x-\sqrt{x+2})}$$

$$= \lim_{x \to (-1)^+} \frac{x-2}{x - \sqrt{x+2}} = \frac{3}{2}.$$

Ta thấy
$$\lim_{x\to(-1)^+} f(x) \neq \lim_{x\to(-1)^-} f(x)$$
.

Vậy hàm số gián đoạn tại x = -1.

Ví dụ 2: Cho hàm số:
$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{|x - 1|} & \text{khi } x \neq 1 \\ m & \text{khi } x = 1 \end{cases}$$
. Tìm m để hàm số liên tục tại

x = 1

Lời giải

Ta có:
$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{|x - 1|} & \text{khi } x \neq 1 \\ m & \text{khi } x = 1 \end{cases}$$

Khi đó:
$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 1} & \text{khi } x > 1 \\ m & \text{khi } x = 1 \\ \frac{x^2 - 3x + 2}{-(x - 1)} & \text{khi } x < 1 \end{cases}$$

Hay:
$$f(x) = \begin{cases} x-2 & \text{khi } x > 1 \\ m & \text{khi } x = 1 \end{cases}$$
 (vì $x^2 - 3x + 2 = (x-2)(x-1)$)
$$2 - x & \text{khi } x < 1$$

Ta có: f(1) = m

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x - 2) = -1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2 - x) = 1$$

Để hàm số liên tục tại x = 1 thì $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$

Khi đó: 1 = m = -1 (vô lý)

Vậy không tồn tại m để hàm số liên tục tại x = 1.

Dạng 2: Xét tính liên tục của hàm số trên một khoảng

Phương pháp giải:

Bước 1: Xét tính liên tục của hàm số trên các khoảng đơn

Bước 2: Xét tính liên tục của hàm số tại các điểm giao

Bước 3: Kết luận.

Ví dụ minh họa:

Ví dụ 1: Cho hàm số
$$y = f(x) = \begin{cases} \frac{1-x}{\sqrt{2-x}-1} & \text{khi } x < 1 \\ 2x & \text{khi } x \ge 1 \end{cases}$$
. Xét sự liên tục của hàm số.

Lời giải

Hàm số xác định và liên tục trên $(-\infty;1)$ và $(1;+\infty)$.

Xét tính liên tục tại x = 1

$$f(1) = 2.1 = 2.$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1 - x}{\sqrt{2 - x} - 1} = \lim_{x \to 1} \frac{(1 - x)(\sqrt{2 - x} + 1)}{2 - x - 1} = \lim_{x \to 1} (\sqrt{2 - x} + 1) = 2$$

Ta thấy $\lim_{x\to 1} f(x) = f(1)$ nên hàm số liên tục tại x = 1.

Vậy hàm số liên tục trên $\mathbb R$.

$$\textbf{Ví dụ 2: Cho hàm số f}\left(x\right) = \begin{cases} \frac{3-\sqrt{9-x}}{x} &, \ 0 < x < 9 \\ m &, \ x = 0 \end{cases} . \text{ Tìm m để hàm số liên tục trên} \\ \frac{3}{x} &, \ x \ge 9 \end{cases}$$

 $[0;+\infty).$

Lời giải

Với
$$x \in (0,9)$$
: $f(x) = \frac{3 - \sqrt{9 - x}}{x}$ xác định và liên tục trên $(0,9)$.

Với
$$x \in (9; +\infty)$$
: $f(x) = \frac{3}{x}$ xác định và liên tục trên $(9; +\infty)$.

Với x = 9, ta có
$$f(9) = \frac{3}{9} = \frac{1}{3} = \lim_{x \to 9^{+}} f(x)$$

$$va \lim_{x \to 9^{-}} f(x) = \lim_{x \to 9^{-}} \frac{3 - \sqrt{9 - x}}{x} = \frac{3 - \sqrt{9 - 9}}{9} = \frac{1}{3}$$

Ta thấy $\lim_{x\to 9^-} f(x) = \lim_{x\to 9^+} f(x) = f(9)$ nên hàm số liên tục tại x=9.

Với x = 0 ta có f(0) = m.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{3 - \sqrt{9 - x}}{x} = \lim_{x \to 0^+} \frac{3^2 - 9 + x}{x \left(3 + \sqrt{9 - x}\right)} = \lim_{x \to 0^+} \frac{1}{3 + \sqrt{9 - x}} = \frac{1}{6}.$$

Để hàm số liên tục trên $[0;+\infty)$ thì hàm số phải liên tục tại x=0

$$\Rightarrow \lim_{x \to 0^{+}} f(x) = f(0) \Leftrightarrow m = \frac{1}{6}.$$

Vậy m = $\frac{1}{6}$ thì hàm số liên tục trên $[0;+\infty)$.

Dạng 3: Chứng minh phương trình có nghiệm

Phương pháp giải:

Sử dụng định lý: Cho hàm số y = f(x) liên tục trên [a; b] và f(a).f(b) < 0. Khi đó phương trình f(x) = 0 có ít nhất một nghiệm trên (a; b).

Chú ý: Đa thức bậc n có tối đa n nghiệm trên $\mathbb R$.

- * Chứng minh phương trình f(x) = 0 có ít nhất một nghiệm.
- Tìm hai số a và b sao cho hàm số f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0.
- Phương trình f(x) = 0 có ít nhất một nghiệm $x_0 \in (a;b)$
- * Chứng minh phương trình f(x) = 0 có ít nhất k nghiệm
- Tìm k cặp số a_i ; b_i sao cho các khoảng $(a_i;b_i)$ **rời nhau** và $f(a_i).f(b_i) < 0$; i=1;2;... k.
- Phương trình f(x) = 0 có ít nhất một nghiệm $x_i \in (a_i; b_i)$.

Khi đó f(x) = 0 có ít nhất k nghiệm.

Ví dụ minh họa:

Ví dụ 1: Phương trình: $x^4 - 3x^3 + x - \frac{1}{8} = 0$ có bao nhiều nghiệm thuộc khoảng (-1; 3).

b) Phương trình $2x + 6\sqrt[3]{1-x} = 3$ có bao nhiều nghiệm.

Lời giải

a) Xét hàm số $f(x) = x^4 - 3x^3 + x - \frac{1}{8}$ liên tục trên [-1; 3].

Ta có:
$$f(-1) = \frac{23}{8}$$
; $f(0) = -\frac{1}{8}$; $f(\frac{1}{2}) = \frac{1}{16}$; $f(1) = -\frac{9}{8}$; $f(3) = \frac{23}{8}$.

Ta thấy:

f(-1).f(0) < 0, phương trình có ít nhất 1 nghiệm thuộc (-1; 0)

$$f(0).f(\frac{1}{2}) < 0$$
, phương trình có ít nhất 1 nghiệm thuộc $(0;\frac{1}{2})$

$$f\left(\frac{1}{2}\right)$$
. $f\left(1\right) < 0$, phương trình có ít nhất 1 nghiệm thuộc $\left(\frac{1}{2};1\right)$

f(1).f(3) < 0, phương trình có ít nhất 1 nghiệm thuộc (1; 3)

Do đó phương trình có ít nhất 4 ngiệm thuộc khoảng (-1; 3).

Mặt khác phương trình bậc 4 có tối đa bốn nghiệm.

Vậy phương trình có đúng 4 nghiệm thuộc khoảng (-1; 3).

b) Đặt $t=\sqrt[3]{1-x} \Longrightarrow x=1-t^3$. Khi đó phương trình đã cho có dạng $2t^3-6t+1=0$ Xét hàm $f(t)=2t^3-6t+1$ liên tục trên $\mathbb R$.

Ta có
$$f(-2) = -3$$
, $f(0) = 1$, $f(1) = -3$, $f(2) = 5$.

Ta thấy:

f(-2).f(0) = -3 < 0, phương trình có một nghiệm $t_1 \in (-2;0)$. Khi đó

$$X_1 = 1 - t_1^3, X_1 \in (1,9).$$

f(0).f(1) = - 3 < 0, phương trình có một nghiệm $\, \boldsymbol{t}_2 \in (0;1)$. Khi đó

$$x_2 = 1 - t_2^3, x_2 \in (0;1).$$

f(1).f(2) = -15 < 0, phương trình có một nghiệm $t_3 \in (1;2)$. Khi đó

$$x_3 = 1 - t_3^3, x_3 \in (-7;0).$$

Do đó phương trình $2t^3 - 6t + 1 = 0$ có ít nhất 3 nghiệm thuộc (-2; 2).

Mà phương trình bậc 3 có tối đa 3 nghiệm

Suy ra, phương trình $2t^3 - 6t + 1 = 0$ có đúng 3 nghiệm thuộc (-2; 2).

Vậy phương trình $2x + 6\sqrt[3]{1-x} = 3$ có ít nhất 3 nghiệm thuộc (-7; 9).

Ví dụ 2: Chứng minh rằng phương trình $(1 - m^2)x^5 - 3x - 1 = 0$ luôn có nghiệm với mọi m.

Lời giải

Xét hàm số
$$f(x) = (1 - m^2)x^5 - 3x - 1$$

Ta có: $f(0) = -1$ và $f(-1) = m^2 + 1$
nên $f(-1).f(0) = -(m^2 + 1) < 0, \forall m \in \mathbb{R}$

Mặt khác: $f(x) = (1 - m^2)x^5 - 3x - 1$ là hàm đa thức nên liên tục trên [-1; 0] Suy ra, phương trình $(1 - m^2)x^5 - 3x - 1 = 0$ có ít nhất một nghiệm thuộc (-1; 0). Vậy phương trình $(1 - m^2)x^5 - 3x - 1 = 0$ luôn có nghiệm với mọi m.

3. Bài tập tự luyện

Câu 1. Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x} - 2}{x - 4} & \text{khi } x \neq 4 \\ \frac{1}{4} & \text{khi } x = 4 \end{cases}$$
.

Khẳng định nào sau đây đúng nhất

- **A.** Hàm số liên tục tại x = 4.
- **B.** Hàm số liên tục tại mọi điểm trên tập xác định nhưng gián đoạn tại x = 4.
- C. Hàm số không liên tục tại x = 4.
- D. Tất cả đều sai.

Câu 2. Cho hàm số
$$f(x) = \begin{cases} \frac{x + \sqrt{x+2}}{x+1} & \text{, khi } x > -1 \\ 2x+3 & \text{, khi } x \leq -1 \end{cases}$$
.

Khẳng định nào sau đây đúng nhất:

- **A.** Hàm số liên tục tại $x_0 = -1$.
- B. Hàm số liên tục tại mọi điểm.
- **C.** Hàm số gián đoạn tại $x_0 = -1$.
- D. Tất cả đều sai.

Câu 3. Cho hàm số
$$f(x) = \begin{cases} \frac{x+1+\sqrt[3]{x-1}}{x} & \text{thi } x \neq 0 \\ 2 & \text{thi } x = 0 \end{cases}$$

Khẳng định nào sau đây đúng nhất

- **A.** Hàm số liên tục tại $x_0 = 0$.
- **B.** Hàm số liên tục tại mọi điểm nhưng gián đoạn tại $x_0 = 0$.
- C. Hàm số liên tục tại mọi điểm.

D. Tất cả đều sai.

Câu 4. Cho hàm số $f(x) = \sqrt{x^2 - 4}$. Chọn câu **đúng** trong các câu sau:

- (I) f(x) liên tục tại x = 2.
- (II) f(x) gián đoạn tại x = 2.
- (III) f(x) liên tục trên đoạn [-2; 2].

A. Chỉ (I) và (III).

B. Chỉ (I).

C. Chỉ (II).

D. Chỉ (II) và

(III).

Câu 5. Cho hàm số $f(x) = \frac{x+2}{x^2-x-6}$. Khẳng định nào sau đây đúng nhất.

- A. Hàm số liên tục trên R.
- **B.** Hàm số liên tục tại mọi $R\setminus\{-2, 3\}$ và hàm số gián đoạn tại x = -2, x = 3.
- C. Hàm số liên tục tại x = -2; x = 3.
- **D.** Tất cả đều sai.

Câu 6. Tìm m để các hàm số f(x) = $\begin{cases} \frac{\sqrt[3]{x-2}+2x-1}{x-1} & \text{khi } x \neq 1 \\ 3m-2 & \text{khi } x = 1 \end{cases}$ liên tục trên \mathbb{R} .

A. m = 1

B. $m = \frac{13}{9}$ **C.** m = 2

D. m = 0

Câu 7. Tìm m để các hàm số f (x) = $\begin{cases} \frac{\sqrt{x+1}-1}{x} & \text{khi } x>0 \\ 2x^2+3m+1 & \text{khi } x\leq 0 \end{cases}$ liên tục trên $\mathbb R$.

A. m = 1

D. m = 0

Câu 8. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt[3]{x+7} - \sqrt{3x+1}}{x-1} & \text{khi } x \neq 1 \\ ax & \text{khi } x = 1 \end{cases}$

Tìm a để hàm số liên tục tại $x_0 = 1$.

A. $\frac{-2}{3}$.

B. 2.

D. -2.

Câu 9. Cho hàm số $f(x) = \begin{cases} a^2x^2 & \text{khi } x \le \sqrt{2}, a \in \mathbb{R} \\ (2-a)x^2 & \text{khi } x > \sqrt{2} \end{cases}$

Giá trị của a để f(x) liên tục trên R là: **A.** 1 hoặc 2. **B.** 1 hoặc -1. **C.** -1 hoặc 2. **D.** 1 hoặc -2. **Câu 10.** Cho hàm số f $(x) = \begin{cases} \frac{x^2 - 3}{x - \sqrt{3}} & \text{khi } x \neq \sqrt{3} \\ 2\sqrt{3} & \text{khi } x = \sqrt{3} \end{cases}$ Tìm khẳng định đúng trong các khẳng định sau:

(I). f(x) liên tục tại $x = \sqrt{3}$.

(II). f(x) gián đoạn tại $x = \sqrt{3}$.

(III). f(x) liên tục trên R **A.** Chỉ (I) và (II). **B.** Chỉ (II) và (III). **C.** Chỉ (I) và (III). **C.** Chỉ (I) và (III). **C.** Chỉ (I) và (III).

I. f(x) liên tục trên đoạn [a; b] và f(a).f(b)<0 thì phương trình f(x)=0 có nghiệm.

Câu 12. Cho phương trình $2x^4 - 5x^2 + x + 1 = 0$ (1) .Chon khẳng định đúng trong các

Câu 13. Số nghiệm thực của phương trình: $2x^3 - 6x + 1 = 0$ thuộc khoảng (- 2; 2) là:

Câu 14. Cho phương trình $x^3 + ax^2 + bx + c = 0$ (1) trong đó a, b, c là các tham số

C. 2.

C. Cả I và II đúng.

D. Cả I và II

D. 3.

II. f(x) không liên tục trên [a; b] và $f(a).f(b) \ge 0$ thì phương trình f(x) = 0 vô

B. Chỉ II đúng.

A. Phương trình (1) không có nghiệm trong khoảng (-1; 1).

B. Phương trình (1) không có nghiệm trong khoảng (-2; 0).

C. Phương trình (1) chỉ có một nghiệm trong khoảng (-2; 1).

D. Phương trình (1) có ít nhất hai nghiệm trong khoảng (0; 2).

B. 1.

thực. Chọn khẳng định đúng trong các khẳng định sau:

B. Phương trình (1) có ít nhất một nghiệm với mọi a, b, c.

A. Phương trình (1) vô nghiệm với mọi a, b, c.

nghiệm.

sai.

A. 0.

A. Chỉ I đúng.

khẳng định sau:

C. Phương trình (1) có ít nhất hai nghiệm với mọi a, b, c.

D. Phương trình (1) có ít nhất ba nghiệm với mọi a, b, c.

Câu 15. Cho hàm số $f(x) = x^3 - 1000x^2 + 0,01$. Phương trình f(x) = 0 có nghiệm thuộc khoảng nào trong các khoảng sau đây?

I. (-1; 0).

II. (0; 1).

III. (1; 2).

A. Chỉ I.

B. Chỉ I và II.

C. Chỉ II.

D. Chỉ III.

Bảng đáp án

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	A	C	В	A	В	В	В	A	D	C	A	D	D	В	В