CLAIMS

1	1. A beam refraction apparatus, comprising:
2	an input fiber that carries an input beam;
3	a wavelength dispersive element coupled to the input fiber, the
4	wavelength dispersive element spreading the input beam in at least one
5	dimension as a function of wavelength and generating a dispersed beam;
6	a controllable grating reflecting the dispersed beam to the
7	wavelength dispersive element and generating a recombined beam, the
8	controllable grating providing a controllable reflectivity as a function of
9	wavelength;
10	an output fiber that receives the recombined beam; and
11	a collimating optical member coupled to the input and output fiber
12	that passes the input beam and the recombined beams in parallel and
13	opposite directions.
1	2. The apparatus of claim 1, wherein the collimating optical
2	member is a dual fiber collimator.
1	3. The apparatus of claim 1, wherein the collimating optical
2	member includes a prism.
1	4. The apparatus of claim 1, wherein the collimating optical
2	member includes a pair of mirrors.
1	5. The apparatus of claim 1, wherein the collimating optical
2	member includes at least one cylindrical lens.
1	6. The apparatus of claim 1, further comprising:
2	a walk-off crystal positioned adjacent to the collimating optical
3	member.

1	7. The apparatus of claim 6, further comprising:	
2	a half-wave plate positioned adjacent to the walk-off crystal.	
1	8. The apparatus of claim 1, further comprising:	
2	a reflector positioned along an optical path of the collimating optical	al
3	member, the reflector directing at least a portion of the input beam to the	
4	controllable grating.	
1	9. The apparatus of claim 1, wherein the reflector is a turning	
2	mirror.	
1	10. The apparatus of claim 1, wherein the wavelength dispersive	.
2	element includes at least one microelectromechanical device.	
1	11. The apparatus of claim 10, wherein the	
2	microelectromechanical device includes one or more micro mirrors.	
1	12. The apparatus of claim 10, wherein the	
2	microelectromechanical device includes one or more cantilevers.	
1	13. The apparatus of claim 10, wherein the	
2	microelectromechanical device includes one or more light controlling	
3	devices.	
1	14. The apparatus of claim 10, wherein the	
2	microelectromechanical device includes one or more one or more	
3	deformable grating modulators.	
1	15. The apparatus of claim 1, wherein the controllable grating is	
2	an array with a diffraction efficiency that is controlled as a function of	
3	position on the array.	

1	16. The apparatus of claim 1, wherein the controllable grating is
2	an array of ribbons.
1 2	17. The apparatus of claim 1, wherein the controllable grating is a micromachined grating device.
1	18. The apparatus of claim 1, further comprising:
2	a lens positioned between the wavelength dispersive element and the
3	controllable grating.
	·
1	19. A beam refraction apparatus, comprising:
2	an input fiber that carries an input beam;
3	a wavelength dispersive element coupled to the input fiber, the
4	wavelength dispersive element spreading the input beam in at least one
5	dimension as a function of wavelength and generating a dispersed beam;
6	a controllable grating reflecting the dispersed beam to the
7	wavelength dispersive element and generating a recombined beam, the
8	controllable grating providing a controllable reflectivity as a function of
9	wavelength;
10	an output fiber that receives a first portion of the recombined beam
11	from the controllable grating;
12	a detector array positioned to receive a second portion of the
13	recombined beam from the controllable grating.
1	20. The apparatus of claim 19, further comprising:
2	a focusing lens positioned between the detector array and the
3	controllable grating.
1	21. The apparatus of claim 20, further comprising:

2	a collimating optical member coupled to the input and output fibers
3	that passes the input beam and the first portion of the recombined beams in
4	parallel and opposite directions.
1	22. The apparatus of claim 19, wherein the waveler at

- 1 22. The apparatus of claim 19, wherein the wavelength 2 dispersive element includes at least one microelectromechanical devices.
- 23. The apparatus of claim 22, wherein the
 microelectromechanical device includes one or more micro mirrors.
- 24. The apparatus of claim 22, wherein the
 microelectromechanical device includes one or more cantilevers.
- 25. The apparatus of claim 22, wherein the
 microelectromechanical device includes one or more acousto-optic
 modulator.
- 26. The apparatus of claim 22, wherein the
 microelectromechanical device includes one or more light controlling
 devices.
- 1 27. The apparatus of claim 22, wherein the 2 microelectromechanical device includes one or more one or more 3 deformable grading modulators.
- 1 28. The apparatus of claim 19, wherein the controllable grating is 2 an array with a diffraction efficiency that is controlled as a function of 3 position on the array.
- 1 29. The apparatus of claim 19, wherein the controllable grating is 2 an array of ribbons.

1	The apparatus of claim 19, wherein the controllable grating is
2	a micromachined grating device.
1	31. A dynamic channel equalizer, comprising:
2	an input fiber that carries an input beam;
3	a wavelength dispersive element coupled to the input fiber, the
4	wavelength dispersive element spreading the input beam in at least one
5	dimension as a function of wavelength and generating a dispersed beam;
6	a controllable grating reflecting the dispersed beam to the
7	wavelength dispersive element and generating a recombined beam, the
8	controllable grating providing a controllable reflectivity as a function of
9	wavelength;
10	an output fiber that receives a first portion of the recombined beam
11	from the controllable grating; and
12	a beam expander coupled to the input fiber makes the input beam
13	and makes it larger in one direction and compresses the output beam.
1	32. The apparatus of claim 31, wherein the wavelength
2	dispersive element includes at least one microelectromechanical device.
1	33. The equalizer of claim 32, wherein the
2	microelectromechanical device includes one or more micro mirrors.
1	34. The equalizer of claim 32, wherein the
2	microelectromechanical device includes one or more cantilevers.
1	35. The equalizer of claim 32, wherein the
2	microelectromechanical device includes one or more light controlling
3	devices.

1	36. The equalizer of claim 32, wherein the
2	microelectromechanical device includes one or more one or more
3	deformable grating modulators.
1	37. The apparatus of claim 31, wherein the controllable grating is
2	an array with a diffraction efficiency that is controlled as a function of
3	position on the array.
1	
1	38. The apparatus of claim 31, wherein the controllable grating is
2	an array of ribbons.
1	39. A dynamic spectral companyation apparatus
	traymame spectral compensation spparatus, comprising:
2	a sensor that measures power in a selected spectral region and
3	produces a signal in response to the measured power; and
4	a dynamic gain equalizer that receives the signal from the sensor,
5	and modifies the selected spectral region by attenation in a wavelength
6	dependent manner until the selected spectrum region reaches a target
7	spectrum, wherein the selected spectrum region is modified in response to
8	the received signal.