Update for the Week of January 26, 2015

Figure 1: After adjusting precisely how we weight stacking contributions from different spectra, we show the results of stacking with different thresholds for what constitutes saturated absorption ($\tilde{\sigma}_{\rm N}$ (top row), $3\tilde{\sigma_{\rm N}}$ (middle), and $5\tilde{\sigma}_{\rm N}$ (bottom row)). We also vary the minimum redshift of a pixel for a corresponding dark gap to be included between the different columns. We consider dark gaps with $L_{\rm gap} < 300$ km/s (dashed), $L_{\rm gap} > 100$ km/s, 300 km/s, 500 km/s, 1000 km/s.

Figure 2: This figure is the same as Figure 1 except that we have excluded one spectrum that was contributing significantly more stacks than the others.

Figure 3: This figure is the same as Figure 1 except that we have stacked Ly α transmission based on dark gaps in Ly β .

Figure 4: This figure is the same as Figure 1 except that we have stacked Ly α transmission based on dark gaps in Ly β and excluded one spectrum that was contributing significantly more stacks than the others.

Figure 5: The above figure shows a stack of the transmission outside of small dark gaps (dashed red) and large dark gaps (solid) with error bars corresponding to $\frac{1}{\sigma_{\mu}^2} = \sum_i \frac{1}{\bar{\alpha} \sigma_{N,red}^2 + \sigma_F^2}$.

Figure 6: The left-hand figure shows the distribution of weightings for the individual contributions to the stacks. The right-hand figure shows the number of stacks contributed to the overall average from each spectrum as a function of the spectrum's redshift. This suggests that a spectrum near $z \approx 6$ may be dominating the stack. We re-generate Figure 1 after excluding this spectrum to obtain Figure 4.

Figure 7: The left-hand figure shows the number of stacks that each spectra contributed as a function of the redshift of the spectrum. This is done only for $L_{\rm dark} > 1200$ km/s. The right-hand figure shows the threshold for which a pixel in smoothed spectrum is consistent with saturated absorption, let's call it $f_{\rm thresh} \equiv t\tilde{\sigma}_N$, where we have been using t=3. Together, these could be consistent with the idea that large initial stacked transmission is due to large threshold transmissions for a pixel to no longer be consistent with saturated absorption. If this was the case, we would expect the initial stacked transmission to be $\bar{f}_{\rm initial} \approx \frac{1}{\sum N_i w_i} \sum_i N_{\rm contributions,i} w_i f_{\rm thresh,i}$. We evaluate this weighted average for $L_{\rm min}=1000$ km/s and find $\bar{f}_{\rm initial,guess}=0.26$. This should be compared to the largest-L curve in the middle-left panel of Figure 1. Repeating estimates with other $L_{\rm min}$, we find $f_{\rm initial,guess}\approx 0.21$, and 0.16 for $L_{\rm min}=500$ km/s and 300 km/s, respectively. The same number for $z_{\rm min}=5.5$ are $f_{\rm initial,guess}\approx .1$, .07, and .07.

Figure 8: The above figure shows the ratio of the smoothed noise variance to the unsmoothed noise variance as a function of the ratio of the original bin width to the FWHM of the Gaussian that we smoothed by. For comparison, we also snow 1/FWHM, since the shape of this curve should be similar.

Figure 9: The above figure shows several different quasar continuum composite templates. We have indicated the wavelengths of the Ly β line (left), OVI line (middle), and Ly α line (right). It seems that all templates show emission corresponding to the OVI line.