Operaciones con números

Realizar la siguiente operación:

$$5 + (3 - 4) \cdot (4 + 7) - 56$$

- Calcular el cociente y el resto de la división 346 : 67. Además calcula con 12 decimales la división.
- Calcular la potencia $(-3)^{45}$.
- Realiza la siguiente operación con fracciones.

$$\frac{1}{3} + \left(4 + \frac{4}{7} \cdot \frac{6}{13}\right)$$

Calcular la raíz cuadrada de 432.

Divisibilidad

- Factorizar en números primos el número 432.
- Di si el número 432 es primo o compuesto.
- Calcula el máximo común divisor 432 y 654.
- Calcula el mínimo común múltiplo de 432 y 564.
- Comprobar que al multiplicar el mcd por el mcm se obtiene lo mismo que al multiplicar los dos números.

Porcentajes y reglas de tres

- Calcular el 23% de 432
- La gasolina cuesta 1.56 euros el litro. Sufre una subida del 15%. Calcula el nuevo precio.
- Un pantalón cuesta 67 euros. Sufre una subida del 20%, después una bajada del 15% y finalmente otra subida del 7%.
- 5 kilos de tomates cuestan 12 euros. Calcula el precio de 13 kilos de tomates. Esto es, resuelve la regla de tres directa

$$5 \longrightarrow 12$$
 $13 \longrightarrow x$

Operaciones con polinomios I

Realizar las siguientes operaciones con polinomios.

•
$$(x^3 - 4x^2 - 1) + (2x^2 - 1)$$

•
$$(x^3 - 4x^2 - 1) \cdot (2x^2 - 1)$$

•
$$(x^3 - 4x^2 - 1)^2$$

$$(x^3-4x^2-1)/(x+6)$$

Operaciones con polinomios II

- Desarrolla la siguiente identidad notable: $(3x 4)^2$.
- Desarrolla la identidad notable $(a + b)^2$ y verifica que coincide con la conocida *fórmula*.
- Haz lo mismo con $(a b)^2$ y con (a + b)(a b).
- Encuentra la identidad notable de la que proviene (esto es, aplica las identidades notables "al revés").

$$4x^2 - 12x + 9$$

Operaciones con polinomios III

- Encuentra todas las raíces del polinomio $x^2 5x + 6$.
- Encuentra todas las raíces del polinomio $x^4 6x^3 + 10x^2 6x + 9$.
- Factorizar el polinomio anterior.
- Calcular el máximo común divisor de los polinomios anteriores.
- Calcular el mínimo común múltiplo de los polinomios anteriores.

Resolución de ecuaciones polinómicas

Resolver las siguientes ecuaciones:

•
$$15x - 5 = 2x + 4$$

$$\frac{x^2 - 3x}{2} + 2 = \frac{x + 12}{6}$$

•
$$x^4 + x^3 - 5x^2 + x - 6 = 0$$

 Encuentra la fórmula de resolución de la ecuación general de segundo grado

$$ax^2 + bx + c = 0$$

• Hacer lo mismo con la ecuación general de tercer grado.

Gráficas de funciones

- Dibuja la gráfica de la función $f(x) = x^2 3x + 2$.
- Dibuja la gráfica de la función $f(x) = x^2 3x + 2$ en el intervalo (-2,3).
- Dibuja la gráfica de las funciones $f(x) = x^2 3x + 2$ y $g(x) = \cos(x)$ en el intervalo (-2,3).
- Dibuja la gráfica de la función $f(x) = \ln(x)$ en el intervalo (-2, 2)
- Resuelve por el método gráfico la ecuación $x^2 4x + 2 = 3x^2 1$ y haz lo mismo con la ecuación equivalente $-2x^2 4x + 2 = -1$.

Operaciones con números complejos

- Sean z = 3 + 4i y w = 5 7i dos números complejos. Calcula su producto.
- Escribe el número complejo cuyo valor absoluto es 16 y su argumento es 1.5 radianes.
- Escribe el número complejo cuyo valor absoluto es 16 y cuyo argumento es 95 grados.
- Sean $z=4_{34^o}$ (el módulo es 3 y el argumento 34 grados) y $w=2_{23^o}$. Realiza su producto y su división y comprueba que en el primer caso los argumentos se suman y en el segundo se restan.

Trigonometría I

- Convertir 23 grados a radianes. Convertir 1.5 radianes en grados.
- Calcular el coseno de 23 grados.
- Calcular el seno de 1.5 radianes. Calcular el coseno de π radianes.
- Calcular el arcotangente de $\sqrt{3}$.
- Calcular el arcoseno de 5 y comprobar que es un número complejo.
- Dibujar la gráfica de la función seno entre -7 y 7.

Trigonometría II

- Utiliza el teorema del coseno para calcular a en el siguiente triángulo.
- Utiliza el teorema del seno para calcular β en el mismo triángulo.
- Calcula el área de un triángulo de lados 5, 7 y 8 utilizando la fórmula de Herón.
- Obtén todas las propiedades que proporciona WolframAlpha de un triángulo con lados 5, 7 y 8.

Cálculo de límites

- Calcular $\lim_{x\to 2} 3x^2 3$
- Calcular $\lim_{x\to 0^+} \frac{1}{x}$
- Calcular $\lim_{x \to \infty} \frac{3x^2 4x}{2x^2 5}$
- Calcular $\lim_{x \to 0} \frac{\sin(x)}{x}$
- Calcular $\lim_{h\to 2} \frac{\cos(a+h) \cos(a)}{h}$

Cálculo de derivadas

- Calcular la derivada de $f(x) = 4x^4 3x$
- Calcular la derivada de orden 5 de la función $f(x) = \cos(x^2)$
- Calcular la derivada, con respecto a la variable x, (las otras letras se consideran como constantes) de la función $f(x) = A\cos(w \cdot x + b)$
- Calcular, utilizando la definición, la derivada de la función $f(x) = x^4$. Esto es, calcula el siguiente límite

$$\lim_{h\to 0}\frac{(x+h)^4-x^4}{h}$$

Integrales

- Calcular $\int \cos(2x) dx$
- Calcular $\int_0^5 \cos(2x) dx$
- Calcular $\int_1^\infty \frac{1}{x^2} \, \mathrm{d}x$
- Calcular la integral doble $\int_0^3 \int_{-1}^3 \cos(x) y^2 dx dy$
- Calcular $\int_0^1 \frac{1}{\sqrt{x}} dx$
- Calcular el área que forma la función $f(x) = x^3$ con el eje x y las rectas verticales x = -3 y x = 3.

Vectores

- Obtener la representación gráfica de los vectores (4,1) y (4,1,6).
- Realizar la operación 2(2,3) + 3(1,-2).
- Realizar la operación 2(2,3,1) + 3(1,-2,2)
- Calcular el producto escalar de (3,5,1) y (2,-1,9).
- Calcular el producto vectorial $(3,5,1) \times (2,-1,9)$.
- Calcular $((3,5,1)\times(2,-1,9))\cdot(1,2,3)$

Logaritmos

- Calcular el logaritmo neperiano (o natural) de 6.
- Calcula $log_2(19)$ y comprueba la fórmula de cambio de base.
- Desarrolla la expresión ln $\left(\frac{a^3 \cdot \sqrt{b^5}}{c^2}\right)$.
- Calcular ln(-3) y comprobar que es un número complejo. Calcular también ln(0) e interpretar el resultado.

16 / 20

Teoría de números I. División y mcd

- Calcula el cociente y el resto de la división 342 : 65
- Calcula el cociente y el resto de la división 120! : 5⁹⁰
- Calcular los divisores de 2205. Calcular los divisores comunes de 2205 y 3600.
- Calcular el máximo común divisor de 2205 y 3600. Comprobar que es igual al producto de los factores comunes al menor exponente.
- Calcular el mcm de 2205 y 3600. Comprobar que se obtiene multiplicando todos los factores al mayor exponente.
- Comprobar en el caso anterior que la multiplicación del *mcm* y del *mcd* da el producto de los números.
- Comprobar el lema de Bezout en el caso del par 2205 y 3600.
- Resolver la ecuación diofántica 2205x + 3600y = 90

Teoría de números II. Primos

- Comprueba si el número 568 es primo. En caso contrario encuentra un número primo cercano a él.
- Calcula todos los números primos entre el 100 y el 300.
- Descomponer el número 568 en factores primos.
- Calcula el primo número 50 de la lista de los números primos.
- Escribe una lista los números primos que ocupan las posiciones de la 110 a la 125 en la serie de los número primos.
- Calcula la cantidad de números primos menores o iguales que 4000. En notación matemática equivale a calcular $\pi(4000)$

Teoría de números III. Aritmética modular

- Encuentra el representante de 569 en \mathbb{Z}_{43} .
- Suma, resta y multiplica los números 23 y 32 en \mathbb{Z}_{43} .
- Calcular el inverso de 23 en \mathbb{Z}_{43} y comprueba que es el inverso. Intenta calcular el inverso de 2 en \mathbb{Z}_{42}
- Aplicar el teorema de Bezout para calcular el inverso de 23 en \mathbb{Z}_{43} .
- Comprobar el teorema de Fermat en \mathbb{Z}_{43} .
- Comprobar el teorema de Wilson en \mathbb{Z}_{43} .
- Calcular el orden de 14 en \mathbb{Z}_{43} .
- Comprobar que 12 es una raíz primitiva en Z₄₃.

Teoría de números IV. Funciones aritméticas

- Encuentra todos los divisores de 568. Cuéntalos con la función τ y súmalos utilizando la función σ . Suma también los cubos de los divisores de 568. Comprueba que 496 es un número perfecto.
- Comprueba con los números 81 y 23 que las funciones τ y σ son multiplicativas.
- Factoriza los números 568 y 30 y aplica la función μ de Moebius.
- ullet Comprueba con 81 y 23 que μ es multiplicativa.
- Calcular $\phi(81)$ y $\phi(568)$
- Comprobar que ϕ es multiplicativa con 81 y 23.