### VERSUCH NUMMER

# TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

# Inhaltsverzeichnis

| 1 | Auswertung |                                                        |   |
|---|------------|--------------------------------------------------------|---|
|   | 1.1        | Charakteristik des Zählrohrs                           | 3 |
|   | 1.2        | Totzeitbestimmung anhand eines Oszilloskopes           | 5 |
|   | 1.3        | Totzeitbestimmung anhand der Zwei-Quellen-Methode      | 5 |
|   | 1.4        | Berechnung der pro Teilchen freigesetzter Ladungsmenge | 6 |
| 2 | Disk       | kussion                                                | 7 |

# 1 Auswertung

#### 1.1 Charakteristik des Zählrohrs

Um die Charakteristik des Zählrohrs zu untersuchen, wird eine  $\beta$ -Quelle vor das Fenster des Zählrohrs gestellt und unter Variations der Betriebsspannung U die Zählrate gemessen. Die gemessenen Werte finden sich in folgender Tabelle.

 ${\bf Tabelle~1:}$ gemessene Impulse in Abhängigkeit der Spannung

|          | 1          |
|----------|------------|
| U [V]    | N [Imp]    |
| 320.0000 | 9672.0000  |
| 330.0000 | 9689.0000  |
| 340.0000 | 9580.0000  |
| 350.0000 | 9837.0000  |
| 360.0000 | 9886.0000  |
| 370.0000 | 10041.0000 |
| 380.0000 | 9996.0000  |
| 390.0000 | 9943.0000  |
| 400.0000 | 9995.0000  |
| 410.0000 | 9980.0000  |
| 420.0000 | 9986.0000  |
| 430.0000 | 9960.0000  |
| 440.0000 | 10219.0000 |
| 450.0000 | 10264.0000 |
| 460.0000 | 10174.0000 |
| 470.0000 | 10035.0000 |
| 480.0000 | 10350.0000 |
| 490.0000 | 10290.0000 |
| 500.0000 | 10151.0000 |
| 510.0000 | 10110.0000 |
| 520.0000 | 10255.0000 |
| 530.0000 | 10151.0000 |
| 540.0000 | 10351.0000 |
| 550.0000 | 10184.0000 |
| 560.0000 | 10137.0000 |
| 570.0000 | 10186.0000 |
| 580.0000 | 10171.0000 |
| 590.0000 | 10171.0000 |
| 600.0000 | 10253.0000 |
| 610.0000 | 10368.0000 |
| 620.0000 | 10365.0000 |
| 630.0000 | 10224.0000 |
| 640.0000 | 10338.0000 |
| 650.0000 | 10493.0000 |
| 660.0000 | 10467.0000 |
| 670.0000 | 10640.0000 |
| 680.0000 | 10939.0000 |
| 690.0000 | 11159.0000 |
| 700.0000 | 11547.0000 |

Diese sind mit der Messunsicherheit  $\Delta N = \sqrt{N}$  in folgender Grafik dargestellt.



**Abbildung 1:** Anzahl der gemessenen Impulse in Abhängigkeit von der Spannung am Zählrohr

Das Plateau erstreckt sich circa von 370 V bis 640 V und wurde mit einer linearen Regression  $f=a\cdot U+b$  mit den Koeffizienten  $a=1.262\pm0.218$  und b= gefittet. Die daraus resultierende Plateau-Steigerung beträgt  $1.262\pm0.218$  % pro 100 V. Für einen Reibungslosen Ablauf der folgenden Versuchsteile kann eine Spannung zwischen 370 V und 640 V gewählt werden.

#### 1.2 Totzeitbestimmung anhand eines Oszilloskopes

Die Zeit zwischen dem ersten und zweiten Puls beträgt nach der Momentaufnahme des Oszilloskops  $T\approx 130\,\mathrm{s}.$ 

#### 1.3 Totzeitbestimmung anhand der Zwei-Quellen-Methode

Für die Totzeitbestimmung wurden 120 Sekunden lang zunächst die Impulse  $N_1$  einer einzelnen  $^{204}$ Tl-Quelle gemessen, dann die Impulse  $N_{1+2}$  von zweien und dann die<br/>jenigen

der Letzeren. Folgende Werte wurden gemessen:

$$\begin{split} N_1 &= 800 \pm 28 \, \mathrm{Imp}/s \\ N_2 &= 638 \pm 25 \, \mathrm{Imp}/s \\ N_{1+2} &= 1321 \pm 36 \, \mathrm{Imp}/s \end{split}$$

Die Totzeit kann näherungsweise durch die in der Theorie hergeleitete Formel

$$T \approx \frac{N_1 + N_2 - N_{1+2}}{2N_1N_2} = (1, 15 \pm 0, 47) \cdot 10^{-4} \mathrm{s}$$

bestimmt werden. Die Fehlerfortpflanzung wurde mit Phython Uncertainties berechnet.

#### 1.4 Berechnung der pro Teilchen freigesetzter Ladungsmenge

Es wurde neben der Impulsanzahl in größeren Abständen auch der Zählrohrstrom gemessen. Dafür wurden die Werte in Tabelle 2 mit einer Genauigkeit von  $\Delta I=0,05\mu\mathrm{A}$  ermittelt.

Tabelle 2: Messwerte Zählrohrstrom.

|      | -r . 1     | <b>5</b> 101        |
|------|------------|---------------------|
| U[V] | $I[\mu A]$ | $Z[10^{10}]$        |
| 350  | 0,3        | $1,\!14\ \pm0,\!21$ |
| 400  | 0,4        | $1,49 \pm 0,22$     |
| 450  | 0,7        | $2,55 \pm 0,27$     |
| 500  | 0,8        | $2,95 \pm 0.29$     |
| 550  | 1,0        | $3,67 \pm 0,34$     |
| 600  | 1,3        | $4,74 \pm 0,40$     |
| 650  | 1,4        | $4,99 \pm 0,42$     |
| 700  | 1,8        | $5,\!85\ \pm0,\!45$ |

Durch die Beziehung

$$Z = \frac{I \cdot \Delta t}{e_0 \cdot N}$$

lässt sich somit die Zahl Z der freigesetzten Ladungen pro eingefallenen Teilchen bestimmen.

In der Grafik 2 sind die Werte aus Tabelle 2 für die Zahl Z auch nochmal graphisch dargestellt.



Abbildung 2: Plot.

Der Fehler von Z wird anhand der Gaußschen Fehlerfortpflanzung

$$\Delta Z = Z * \sqrt{\left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta N}{N}\right)^2}$$

bestimmt.

# 2 Diskussion