```
!sudo apt-get install -y
!sudo fc-cache -fv
!rm ~/.cache/matplotlib -rf

%matplotlib inline
import pandas as pd
import numpy as nd
import matplotlib
import matplotlib
import warnings
warnings.filterwarnings('ignore')
wine_data = pd.read_csv("/content/wine.csv", encoding="UTF-8")
wine_data.head(10)
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5

wine_data.boxplot(column = "pH", by = "quality") <Axes: title={'center': 'pH'}, xlabel='quality'> Boxplot grouped by quality pH 4.0 3.8 8 φ 3.6 3.4 3.2 3.0 ᢐ 8 ╆ 2.8 -5 ż 3

plt.scatter(x=wine_data['fixed acidity'], y=wine_data['density'])

quality

[5] wine_data.corr()												
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рн	sulphates	alcohol	quality
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668	0.124052
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288	-0.390558
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903	0.226373
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075	0.013732
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141	-0.128907
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658	-0.069408	-0.050656
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947	-0.205654	-0.185100
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506	-0.496180	-0.174919
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648	0.205633	-0.057731
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000	0.093595	0.251397
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633	0.093595	1.000000	0.476166
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.057731	0.251397	0.476166	1.000000

[7] wine_data = pd.read_csv("/content/wine.csv", encoding="UTF-8")
 print(wine_data.columns)

[8] wine_info = wine_data[['fixed acidity','volatile acidity','pH','alcohol']]
 wine_info.describe()

	fixed acidity	volatile acidity	рН	alcohol
count	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	3.311113	10.422983
std	1.741096	0.179060	0.154386	1.065668
min	4.600000	0.120000	2.740000	8.400000
25%	7.100000	0.390000	3.210000	9.500000
50%	7.900000	0.520000	3.310000	10.200000
75%	9.200000	0.640000	3.400000	11.100000
max	15.900000	1.580000	4.010000	14.900000


```
[11] import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score, classification_report
[12] wine_data = pd.read_csv("/content/wine.csv", encoding="UTF-8")
[14] X = wine_data.drop(['quality'], axis=1)
    y = wine_data['quality'] # the target class
      # Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
      rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
      # Train the model
rf_clf.fit(X_train, y_train)
      y_pred = rf_clf.predict(X_test)
      # Evaluate the model
      accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
print(classification_report(y_test, y_pred))
      Accuracy: 0.659375
                          precision
                                           recall f1-score support
                     3
                                 0.00
                                               0.00
                                                              0.00
                                 0.00
                                                0.00
                                                              0.00
                                                                               10
                                                0.75
                                                                              130
                                 0.72
                                                              0.73
                      6
                                 0.63
                                                0.69
                                                              0.66
                                                                              132
                                 0.63
                                                0.52
                                                              0.57
                                 0.00
                                                0.00
                                                              0.00
                      8
                                                                                5
                                                              0.66
                                                                              320
           accuracy
                                 0.33
                                                0.33
                                                              0.33
                                                                              320
          macro avg
      weighted avg
                                 0.63
                                                0.66
                                                              0.64
                                                                              320
```

```
Seems that the support values suggested are imbalanced. Some classes have more values for accurate predictions and others
  dont. This time, I will use XGBoost.
[16] !pip install xgboost
        Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (2.0.2)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.23.5)
Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.11.3)
[18] import pandas as pd
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
from sklearn.preprocessing import LabelEncoder
        # Load data
wine_data = pd.read_csv("./wine.csv", encoding="UTF-8")
        # Prepare data
X = wine_data.drop('quality', axis=1)
y = wine_data['quality']
        # Reindex classes to start from 0
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
        # Split data
X_train, X_test, y_train_encoded, y_test_encoded = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
        # Initialize XGBoost Classifier
xgb_clf = XGBClassifier(use_label_encoder=False, eval_metric='mlogloss')
        # Train the model
xgb_clf.fit(X_train, y_train_encoded)
        # Make predictions
y_pred_encoded = xgb_clf.predict(X_test)
y_pred = label_encoder.inverse_transform(y_pred_encoded)
        # Evaluation
print("Accuracy:", accuracy_score(y_test_encoded, y_pred_encoded))
print(classification_report(y_test_encoded, y_pred_encoded))
        Accuracy: 0.696875
                              precision recall f1-score support
                          0
                                       0.00
                                                        0.00
                                                                         0.00
                                                        0.00
                                                                         0.00
                                                                                             10
                                       0.00
                                       0.75
                                                        0.80
                                                                         0.78
                                                                                            130
                                       0.68
                                                        0.73
                                                                         0.70
                                                                                            132
                                        0.64
                                                        0.55
                                                                         0.59
                                       0.00
                                                        0.00
                                                                         0.00
              accuracy
                                                                         0.70
                                                                                           320
             macro avg
                                       0.34
                                                        0.35
                                                                         0.34
                                                                                            320
                                       0.67
        weighted avg
                                                        0.70
                                                                         0.68
                                                                                            320
```