(12) UK Patent Application (19) GB (11) 2 393 932 (13) A

(43) Date of A Publication

14.04.2004

(21) Application No:

0221677.8

(22) Date of Filing:

18.09.2002

(71) Applicant(s):

Polymer Engineering Limited (Incorporated in the United Kingdom) 24A Quakers Copplee, Crewe Gates Farm Industrial Estate, CREWE, Cheshire, CW1 1FA,

(72) Inventor(s):

Ernest Kenneth Hammond Nicholas Guy Clarke

(74) Agent and/or Address for Service:
Laurence Shaw & Associates
10th Floor, Metropolitan House,
1 Hagley Road, Edgbaston, BIRMINGHAM,
B16 8TG, United Kingdom

(51) INT CL7:

B29C 70/68 47/02 55/30 65/54 70/52

(52) UK CL (Edition W):

85A AB11 AT18P A1R214D A1R214E A1R214H

A1R314C1F A1R314C2B A1R314C2S A1R314C6 A2B1

A20T17 A20T18

(56) Documents Cited:

GB 2371075 A EP 1134314 A1 GB 2245922 A EP 0461901 A2

EP 1134314 A1

WO 1996/012611 A1

5% 554217954 A1 JP 090174685 A US 5196092 A

JP 020178023 A US 4944087 A US 4476174 A

US 4492063 A US 4354509 A

(58) Field of Search:

UK CL (Edition V) B5A, B5K INT CL⁷ B29C, B29D, B32B, E06B

Other: Online & other databases: WPI EPODOC JAPIO

(54) Abstract Title: Surface preparation

(57) The invention comprises a method of forming a component 1 with a surface 3 suitable for adhesion, the method comprising embedding a relatively flexible material 2 in a plastics material and forming the component 1 from the plastics material, whereby the relatively flexible material 2 is embedded in and covers a surface of the so-formed component 1 in a region where it is intended to adhere a विकास स्टब्स्स स्टब्स स्टब् further object. The component may be a frame member 1 of skin member 6 for the formation of a door. The frame member 1 may be pultruded and the relatively flexible material may be an open weave fabric 2. The material 2 is removed from members 1 and 6 to reveal a clean, abraded surface 3.4 which is suitable to adhere members 1 and 6 together to form the door. Methods of forming a door have also been claimed.

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

Printed on Recycled Paper

FIG. 1A

FIG. 1B

Surface Preparation

5 This invention relates to the preparation of a surface of a component of, say, a door.

renderation of the first of the control of the cont It is known that components formed by processes such as moulding, extrusion or pultrusion may be used for a variety of purposes. Such processes are common in industries which use plastics materials. One such industry is the manufacture of doors for external and internal use.

10

15

20

25

Various patents have been published which propose the use of plastics materials to fabricate doors. In some such patents, plastics materials are used to manufacture a frame or chassis, a foam core and a panel which covers each major Surface of the door. The transfer of the surface of the door of the surface of th

In our co-pending patent application no. 0200498.4 (published as GB-A-2371075) we describe and claim, inter alia, a method of forming a door comprising pultruding a synthetic material having a low coefficient of thermal expansion to form lengths, assembling the lengths to form a framework, and attaching panels to opposed faces of the so-assembled framework.

Pultrusion is a process by which continuous elongate fibres e.g. one of glass, carbon or aramid, Terylene, Nylon or hemp are impregnated into a thermoset resin and pulled through a preformer into a heated die. The shape of the end product is determined by the die, the heat causing the resin to polymerise, e.g. cross link. By using pultrusion, one can obtain lengths which can be cut to size and then joined together to form a frame. The lengths have a good strength/weight ratio. In the context of doors, it is useful to pultrude thermoset material to form the frame because the so-formed frame will consequently have a low coefficient of thermal expansion. If the panels are made from the same material, or of a material having the same property, one can have a door fabricated from components having a substantially uniform coefficient of thermal expansion.

A problem sometimes occurs in moulding, extruding and pultruding operations wherein a surface of a component, to which it is desired to adhere an object, is unsuitable for adhesion. The surface will either be too uneven to provide substantial contact between the surface and the object to be adhered or too smooth to key the adhesive. Preparation of such surfaces subsequent to formation of the component is costly and time-consuming.

15

20

10

5

Accordingly, it is an object of this invention to provide a method to ensure that a surface of a component, to which an object is to be adhered, is suitable for such adhesion.

A first aspect of the invention provides a method of forming a component with a surface suitable for adhesion, the method comprising embedding a relatively flexible material in a plastics material and forming the component from the plastics material, whereby the relatively flexible material is embedded in and covers a surface of the soformed component in a region where it is intended to adhere a further object.

The forming step of the method may comprise co-pultruding the plastics material with the relatively flexible material or co-extruding the plastics material with the relatively flexible material.

As one alternative, the forming step of the method may comprise moulding, for example Resin Transfer Moulding (RTM) or the like.

The relatively flexible material is preferably an open weave fabric. The plastics material is preferably a thermoset plastics material and is preferably selected from one of GRP, vinyl ester, polyester, phenolic or epoxy resin.

The component may be an integer of a frame, for example a frame from which a door is to be constructed or the component may be a panel to provide the fascia of a door. Both panels and frame integers may be constructed using the method.

t kanadigi germenty to to to to general and the design and to be to the entry of the transfer and the entry of

15

20

25

10

5

Method comprising co-pultruding a plastics material with a relatively flexible material to form a frame member wherein the relatively flexible material is at least partially embedded within the surface of the frame member, cutting the frame member to length and joining a plurality of frame members together to form a frame, removing the relatively flexible material from the surface and adhering a panel to that surface.

A yet further aspect of the invention provides a method of forming a door, the method comprising moulding a plastics material to form a panel for a door with a relatively flexible material embedded within the surface of the panel along the edges thereof, removing the relatively flexible material from the surface and adhering the panel to a frame.

Preferably the open weave fabric is formed from glass fibres or from Terylene. In a preferred embodiment, the open weave fabric has from 3.9 – 11.8 threads per centimetre (10 to 30 threads per inch) in both the warp and weft, most preferably 7.8 threads/cm (20 threads per inch) in both directions.

A further aspect of the invention provides a mathod of forming a door, the method comprising:

- forming frame members by pultruding plastics material;
- forming a core and assembling frame members about edges of the core;
 - forming a plastics skin to be applied over the frame and core; and
 - joining the skin to at least the frame by an adhesive

 and characterised by including a detachable layer on a surface of each frame

 member or the skin or both to provide surface deformations to the underlying

 plastics surface, the detachable layer being removed prior to application of the

 adhesive, the deformations providing sites to key the adhesive whereby the

 strength of the bond formed exceeds that of the frame or the skin.

The invention also comprises a component for a door, and a door formed by the above-described methods.

In order that the invention may be more fully understood, it will now be explained by way of example only and with reference to the accompanying drawings, in which:

25

10

Figure 1A is a perspective view of a frame member formed by the invention;

Figure 1B is the frame member of Figure 1A after partial removal of a surface layer; and

Figure 2 is a transverse section through part of a door made in accordance with the invention.

5

Referring to the Figures, there is shown a profile 1 formed from pultruded thermoset plastics material. The profile 4 is co-pultruded with an open-weave fabric material 2 to cover a surface 3 of the profile 1, the fabric material 2 being fed into the pultrusion die with the plastics material.

10

15

Rovings of elongate fibres are advanced towards the die head and, just before entering the head, are sprayed or otherwise soaked in or with resin. The open-waeve fabric material 2 is fed to the die head to enter with the resin soaked rovings. The rovings with the fabric material 2 emerge from the die head having been forced to adopt the desired shape. During passage through the head, the fabric material 2 is displaced towards the surface of the plastics resin by the rovings.

Consequently, the fabric material 2 is located just below the surface 3 of the profile 1 and is visible.

20

Lengths of profile 1 are cut to the appropriate size and adhered together to form a rectangular framework. The lengths of profile 1 may be assembled around a core material 5.

25

A skin 6 is formed from a thermoset material by RTM. An open-weave fabric material is placed within the mould prior to the RTM operation at the edges of the

mould. During RTM, the skin 6 is formed with the open weave fabric material being embedded therein at the edges of the skin 6.

Arrows A and B indicate the extent to which the open weave fabric 2 covers the surface of the profile 1 and the skin 6.

fabric material 2 is removed from the assembled profiles 1 and skins 6 to reveal a clean, abraded surface 3, 4 which is suitable to adhere the components 1, 6 together.

The surface 3, 4 is of exposed virgin material. Any loose material from the profile 1 and skin 6 is removed by rubbing or blowing air over the surface thereof. An adhesive, such as an acrylate or polyurethane, is spread over the areas to be adhered 3, 4 and the two components 1, 6 are brought together.

Because the material 2 is open weave, the plastics material is able to flow between the threads of the material 2 during the component forming process. This ensures that the surface of the profile and skin, subsequent to material 2 removal, is formed with a plurality of raised "islands". The height of these "islands" is typically 0.254 – 0.381 mm, although larger or smaller heights can be achieved by altering the thickness of the material. Therefore, the islands and associated recesses provided on the respective surfaces 3, 4 ensure that each surface 3, 4 is eminently suitable to key an adhesive.

20

It has been found in delamination and shear tests that the strength of the
adhesive bond formed is so great in the inventive method that the profile 1 or skin 6 will
fail before the adhesive bond.

It will further be appreciated that by forming a component with the fabric layer 2 adjacent a surface to be adhered to, that surface 3, 4 is kept both clean and dry.

Only one of the components (profile 1 and skin 6) need be formed with the fabric layer 2.

landersynty ei megenhagsselbage såksaggi i Magneriland fra jallage beskender malage den salde besk

Claims

1. A method of forming a component with a surface suitable for adhesion, the method comprising embedding a relatively flexible material in a plastics material and forming the component from the plastics material, whereby the relatively flexible material is embedded in and covers a surface of the so-formed component in a region where it is intended to adhere a further object.

5

20

- A method according to Claim 1, wherein the forming step comprises co-pultruding
 the plastics material with the relatively flexible material.
 - A method according to Claim 1, wherein the forming step comprises co-extruding the plastics material with the relatively flexible material.
- example Resin Transfer Moulding (RTM) or the like.
 - 5. A method of forming a door, the method comprising co-pultruding a plastics material with a relatively flexible material to form a frame member wherein the relatively flexible material is at least partially embedded within the surface of the frame member, cutting the frame member to length and joining a plurality of frame members together to form a frame, removing the relatively flexible material from the surface and adhering a panel to that surface.
- 6. A method of forming a door, the method comprising moulding a plastics material to form a panel for a door with a relatively flexible material embedded within the

surface of the panel along the edges thereof, removing the relatively flexible material from the surface and adhering the panel to a frame.

- 7. A method of forming a door, the method comprising:
- forming frame members by pultruding plastics material;
 - forming a core and assembling frame members about edges of the core;
 - o forming a plactics skin to be applied over the frame and core; and
- joining the skin to at least the frame by an adhesive
 and characterised by including a detachable layer on a surface of each frame

 member or the skin or both to provide surface deformations to the underlying
 plastics surface, the detachable layer being removed prior to application of the
 adhesive, the deformations providing sites to key the adhesive whereby the
 strength of the bond formed exceeds that of the frame or the skin.
- 15 8. A door formed by the method of Claim 5 or Claim 6 or Claim 7.
 - A plastics component for a door having a relatively flexible material embedded in a surface thereof.
- 10. A component according to Claim 9, wherein the relatively flexible material is an open weave fabric.
 - 11. A component according to Claim 10, wherein the open weave fabric is formed from glass fibres or from Terylene.

- 12. A component according to Claims 10 or 11, wherein the open weave fabric has from 3.9 11.8 threads per centimetre (10 to 30 threads per inch) in both the warp and weft, most preferably 7.8 threads/cm (20 threads per inch) in both directions.
- 13. A component according to Claim 10, 11 or 12 formed from a thermoset plastics material, preferably selected from one of GRP, vinyl ester, polyester, phenolic or epoxy resin.
 - 14. A component according to any of Claims 9 to 13 in the form of a frame member.

10

- 15. A component according to any of Claims 9 to 13 in the form of a panel.
- 16. A method substantially as hereinbefore described.
- 17. A component substantially as hereinbefore described with reference to Figures 1A, 1B and 2.

LS/CM/P03646GB

20 13 September 2002

Amendments to the claims have been filed as follows

- 1. A method of forming a component with a surface suitable for adhesion, the method comprising embedding a relatively flexible open weave fabric material in a plastics material and forming the component from the plastics material, whereby the relatively flexible material is embedded in and covers a surface of the so-formed component in a region where it is intended to adhere a further object.
- A method according to Claim 1, wherein the forming step comprises co-pultruding
 the plastics material with the relatively flexible, open weave fabric material.
 - 3. A method according to Claim 1, wherein the forming step comprises co-extruding the plastics material with the relatively flexible open weave fabric material.
- 15 4: A method according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding; for continuous according to Claim 1, wherein the forming step comprises moulding (RTM) according to Claim 1, wherein the first continuous according to Claim 1, which is continuous acco
- 5. A method of forming a door, the method comprising co-pultruding a plastics material with a relatively flexible open weave fabric material to form a frame member wherein the relatively flexible open weave fabric material is at least partially embedded within the surface of the frame member, cutting the frame member to length and joining a plurality of frame members together to form a frame, removing the relatively flexible open weave fabric material from the surface and adhering a panel to that surface.

5

- 6. A method of forming a door, the method comprising moulding a plastics material to form a panel for a door with a relatively flexible open weave fabric material embedded within the surface of the panel along the edges thereof, removing the relatively flexible open weave fabric material from the surface and adhering the panel to a frame.
- A method of forming a door, the method comprising:

5

20

- forming frame members by pultruding plastics material;
- forming a core and assembling frame members about edges of the core;
- forming a plastics skin to be applied over the frame and core; and
 - joining the skin to at least the frame by an adhesive

 and characterised by including a detachable open weave fabric layer on a

 surface of each frame member or the skin or both to provide surface

 deformations to the underlying plastics surface, the detachable open weave

 fabric player being removed, prior to application of the adhesive, the

deformations providing sites to key the adhesive whereby the strength of the

- 8. A door formed by the method of Claim 5 or Claim 6 or Claim 7.
- A plastics component for a door having a relatively flexible open weave fabric material embedded in a surface thereof.
- 10. A component according to Claim 9, wherein the open weave fabric is formed fromglass fibres or from Terylene.

- 11. A component according to Claims 9 or 10, wherein the open weave fabric has from 3.9 11.8 threads per centimetre (10 to 30 threads per inch) in both the warp and weft, most preferably 7.8 threads/cm (20 threads per inch) in both directions.
- 12. A component according to Claim 9, 10 or 11 formed from a thermoset plastics material, preferably selected from one of GRP, vinyl ester, polyester, phenolic or epocy resin.
 - 13. A component according to any of Claims 9 to 12 in the form of a frame member.

10

- 14. A component according to any of Claims 9 to 12 in the form of a panel.
- 15. A method substantially as hereinbefore described.
- 15 16. A component substantially as hereinbefore described with reference to Figures 1A

 1B and 2.

Application No: Claims searched:

GB 0221677.8

7, 8 (in part)

Examiner: Date of search:

Monty Siddique 15 September 2003

Patents Act 1977: Further Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance		
Y		GB 2371075 A	(POLYMER ENGINEERING) pultruding 1 GF plastics material to form door frame members 10 for attachment to edges of core 1, applying skins 2 to adhesive containing deformations 17 for forming a door etc.	
. Y	7, 8	WO 96/12611 A1	(OMNIGLAS) pultruded frame member with a peelable layer 41	
Y	7, 8	JP 2178023 A	(HITACHI) pultrusion of plastics to form a moulding with a peelable layer to reveal a layer with formations	
A		US 4492063	(SCHOCK & CO) extruded frame members with embedded elements	

Categories:

x	Document indicating tack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating tack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

B5A; B5K

Worldwide search of patent documents classified in the following areas of the IPC7:

B29C; B29D; B32B; E06B

The following online and other databases have been used in the preparation of this search report:

WPI EPODOC JAPIO

Application No: Claims searched: GB 0221677.8 1-4, 9 at least

Examiner: Date of search: Monty Siddique 20 March 2003

Patents Act 1977: Search Report under Section 17

Category	Relevant to claims	Identity of document and	passage or figure of particular relevance
х	1, 4, 9 at least	EP 1134314 A1	(HEXCEL) flexible assembly with fibrous layer embedded in resin but having portions exposed at the surface for adhering; see also drawing
x	1, 3, 9 at least	EP 0461901 A2	(AMERICAN COLLOID) flexible structural support member embedded in a major outer surface plasticised composition (clay composition), which is extruded
x	1, 9, 10 at least	US 5196092	(ALBANY INTERNATIONAL) portions of fibres of mesh embedded in plastics and extending beyond surface
X	1, 9 at least	JP 9174685 A	(BRIDGESTONE) flexible joint with embedde reinforcing material with exposed surface for adhesion
X	9 at least	JP 61062487 A	(NISSAN) flexible urethane foam embedded in seat cushions for cars
х	9 at least	GB 2245922 A	(COLEBRAND) mesh embedded in flexible ti adjacent surface 2 with part of mesh exposed
х	9 at least	GB 2237452 A	(ROGERS) flexible circuit 14 embedded in moulded plastics
X	9 at least	EP 0154121 A1	(CONTINENTAL GUMMI) strip 15 embedde in extruded elastomeric body
x	9 at least	DE 4217934 A1	(BURKHART) plastics strips embedded in plastics foam
x	9 at least	US 4476174	(TENEX CORPORATION) flexible plastics strip embedded in and laminated to a plastics web
x	9 at leas	US 4354509	(SIEMENS) flexible plastics parts embedded plastics

Categories:

Application No: Claims searched:

GB 0221677.8 1-4, 9 at least Examiner: Date of search:

Monty Siddique 20 March 2003

X Document indicating lack of novelty or inventive step

Y Document indicating lack of inventive step if combined with one or more other documents of same category.

& Member of the same patent family

A Document indicating technological background and/or state of the art.

P Document published on or after the declared priority date but before the filing date of this invention.

E Patent document published on or after, but with priority date earlier than, the filing date of this application.

70. To see Louis School School Control of Scantis:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

B5A

Worldwide search of patent documents classified in the following areas of the IPC7:

B29C

The following online and other databases have been used in the preparation of this search report:

WPI EPODOC JAPIO

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.