CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: BAYESIAN NETWORKS

♦ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- Efficient, intuitive, and modular representation of probability distributions
 - Represent joint and conditional distributions
- Structured and efficient inference
 - Answer probability and MAP queries
- BN structure represents correlation but can be used to answer causality questions under certain conditions

AN EXAMPLE

- Five binary variables
 - Earthquake, Burglary, Alarm, MaryCalls, JohnCalls
- Assume the following
 - E and B are uncorrelated
 - E and M are related only through A; similarly, E, J, and A
 - B and M are related only through A; similarly, B, J, and A
 - M and J are directly related through A; undirectly related through E and B; otherwise, M and J are unrelated
- One approach
 - Represent and estimate the full joint P(E, B, A, M, J)
 - How many independent parameters?
 - What can you tell about the relationships between the variables?
- Alternative approach
 - Bayesian network (next slide)

BURGLARY EXAMPLE

4

Possible Queries

- \circ P(B | J = true)
- \circ $P(B \mid M = true, J = true)$
- \circ P(M | B = true)
- \circ P(M | B = false)
- \circ $P(M,J \mid B = true)$
- \circ P(M | J = true)
- **o** ...

WE'LL COVER

- Bayesian networks (in detail)
 - https://en.wikipedia.org/wiki/Bayesian_network
- Hidden Markov Models (in detail)
 - https://en.wikipedia.org/wiki/Hidden_Markov_model
- Dynamic Bayesian networks (brief)
 - https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
- Influence diagrams (in detail)
 - https://en.wikipedia.org/wiki/Influence_diagram
- Causal networks (brief)

BAYESIAN NETWORKS

- Random variables = nodes
- Direct relationships = directed edges
- BNs capture independencies
 - More compact than full joint representation
- Graphs provide
 - Graph theory / efficient reasoning
 - Intuition

DIRECTED GRAPHS

- A graph consists of nodes and edges
- **Nodes:** $X = \{X_1, X_2, ..., X_n\}$
- \circ Undirected Edge: $X_i X_j$
- \circ Directed Edge: $X_i \rightarrow X_j$
- A graph is **directed** if its *all* edges are directed

RELATIONSHIPS

- $\circ X_i \rightarrow X_j$
 - X_i is the parent
 - X_i is the **child**
- \circ X_i is an **ancestor** of X_j if there is a directed path from X_i to X_i
- X_i is a **descendant** of X_j if there is a directed path from X_i to X_i
- Nondescendants(X_i) = $X \setminus Descendants(X_i)$

BAYESIAN NETWORK FACTORIZATION

$$P(X_1,...,X_n) = \prod_i P(X_i | Pa(X_i))$$

BURGLARY EXAMPLE

10 ind US 3

CS 581 - Advanced Artificial Intelligence - Illinois Institute of Technology

INDEPENDENCIES

- X is independent of its non-descendants given its parents
 - $X \perp Non-descendants(X) \mid Parents(X)$
- D-separation

Independencies — D-separation

- Definition: Observed ≡ Its value is known
- Causal trail
 - $X \rightarrow Y \rightarrow Z$; E.g., Burglary \rightarrow Alarm \rightarrow MaryCalls
 - X and Z are independent if Y is observed
- Evidential trail
 - $X \leftarrow Y \leftarrow Z$; E.g., MaryCalls \leftarrow Alarm \leftarrow Burglary
 - X and Z are independent if Y is observed
- Common cause
 - $X \leftarrow Y \rightarrow Z$; E.g., JohnCalls \leftarrow Alarm \rightarrow MaryCalls
 - X and Z are independent if Y is observed
- Common effect
 - $X \rightarrow Y \leftarrow Z$; E.g., Burglary \rightarrow Alarm \leftarrow Earthquake
 - X and Z are marginally independent, but they become dependent if Y or any of Y's descendants are observed

EXAMPLES

- o X causes Y and Y causes Z; no direct relationship between X and Z
 - $\bullet \quad X \to Y \to Z$
 - Nothing is marginally independent of each other
 - Z⊥X | Y
- Y causes both X and Z; no direct relationship between X and Z
 - $X \leftarrow Y \rightarrow Z$
 - Nothing is marginally independent of each other
 - Z ⊥ X | Y
- Both X and Z cause Y; no direct relationship between X and Z
 - $X \rightarrow Y \leftarrow Z$
 - X and Z are marginally independent
 - X and Z become dependent when the value of Y is known

Independence \Leftrightarrow Factorization

- Independence ⇒ Factorization
- Factorization ⇒ Independence

REASONING PATTERNS

Causal reasoning

- From causes to effects
 - E.g., Burglary to Alarm to MaryCalls
 - E.g., Intelligence to Grade to Letter

Evidential reasoning

- From effects to the causes
 - E.g., JohnCalls to Alarm to Earthquake
 - E.g, Letter to Grade to Difficulty

Explaining away/inter-causal reasoning

- Causes of a common effect interact
 - E.g., Earthquake, Burglary, and Alarm (and Alarm's descendants)
 - E.g., Difficulty, Intelligence, and Grade (and Grade's descendants)

Inference in Bayesian Networks

- There are several methods, some are exact and some are approximate
- We will study two in this class
 - Variable elimination
 - Message passing

VARIABLE ELIMINATION

• Let

- V be the set of all variables, Q be the set of query variables, E be the set of evidence variables
- $P(\mathbf{Q} \mid \mathbf{E})$ be the query
- 1. Write down the joint dist. using the Bayesian network structure
- 2. Set the variables in \mathbf{E} to their respective values
- 3. Sum over all variables in $V \setminus (Q \cup E)$
 - a) Pick an order for variables in $V \setminus (Q \cup E)$
 - b) For each variable V_i in $V \setminus (Q \cup E)$, create a new factor by
 - Multiplying all the factors that contains V_i, and
 - Summing over possible values of V_i
- 4. Normalize the last remaining factor (this step is unnecessary if **E** is empty)

IRRELEVANT

- Let
 - V be the set of all variables, Q be the set of query variables, E be the set of evidence variables
 - $P(\mathbf{Q} \mid \mathbf{E})$ be the query
- \circ *Y* ∈ $V \setminus \{Q \cup E\}$ is irrelevant iff
 - $Y \notin Ancestors \ of \{Q \cup E\}$
 - o or
 - $Y \perp Q \mid E$
- Examples

VARIABLE ELIMINATION EXAMPLES

• See OneNote

Message Passing

- Junction tree algorithm
- See OneNote for an example

Message Passing - motivation

- We are interested in multiple marginal/conditional probabilities
- In variable elimination, we define our target upfront and then eliminate the others
- If we need probabilities for other variables, there is no apparent way of reusing shared computations
- o In the student example, assume that I'm interested in P(G) and P(L). What are some of the shared computations?

EXAMPLE

Calculate P(H) using variable elimination

Now, calculate P(G) using variable elimination

VARIABLE ELIMINATION AS GRAPH TRANSFORMATION

- First, construct the moral graph
- Then, eliminate variables so that each elimination introduces the fewest number of edges
- Take note of the factors

EXAMPLE - MORALIZE

ELIMINATION ORDER: H, G, F, C, B, D, E, A

CLUSTER GRAPH

- A cluster graph U for a set of factors Φ over X is an undirected graph, each of whose nodes are associated with a cluster $C_i \subseteq X$.
- A cluster graph must be family preserving each factor $\phi \in \Phi$ must be associated with a cluster C_i , denoted as $\alpha(\phi)$, such that $\text{Scope}[\phi] \subseteq C_i$.
- Each edge between a pair of clusters C_i and C_j is associated with a sepset $S_{ij} \subseteq C_i \cap C_j$

RUNNING INTERSECTION PROPERTY

- Let \mathcal{T} be a cluster tree. \mathcal{T} has running intersection property if, whenever there is a variable X such that $X \in C_i$ and $X \in C_j$, then X is also in every cluster in the unique path in \mathcal{T} between C_i and C_j .
- A cluster tree that satisfies the running intersection property is also called the *join/clique/junction tree*.
- **Theorem**: A cluster tree obtained through a run of variable elimination satisfies the running intersection property; that is, it is a clique tree.

30

EXAMPLE CLIQUE TREE

31

CONSTRUCT A CLIQUE TREE

- 1. Moralize the graph
- 2. Pick a variable elimination order
- 3. Eliminate the variables, noting the maximal cliques
- 4. The cliques are the nodes of the tree
- 5. Until a tree is formed (i.e., n-1 edges are added)
 - a) Connect two disconnected components by a maximal size sepset

ELIMINATION ORDER: H, G, F, C, B, D, E, A

33

VARIABLE ELIMINATION ON JUNCTION TREE

Message passing on Junction tree

- Clusters receive from and send messages to its neighbors
- Each message pass consists of elimination of one or more variables
- A cluster C_i is ready to send a message to its neighbor C_j , when it receives messages from its *all other* neighbors
- \circ A message from C_i to C_i is computed as follows
 - C_i multiples all the factors assigned to it, and all the messages it received from its *other* neighbors
 - It sums out $C_i \setminus S_{ii}$

A MESSAGE

$$\delta_{i \to j} = \sum_{C_i \setminus S_{ij}} \left(\left(\prod_{\phi: \alpha(\phi)=i} \phi \right) \times \left(\prod_{k \in (Nb_i - \{j\})} \delta_{k \to i} \right) \right)$$

BELIEF

$$\beta_i = \left(\prod_{\phi:\alpha(\phi)=i} \phi\right) \times \left(\prod_{k \in Nb_i} \delta_{k \to i}\right)$$

LINEAR GAUSSIAN EXERCISE

Given

- $p(X) \sim N(\mu_X; \sigma_X^2)$
- $p(Y \mid X) \sim N(\beta_0 + \beta_1 \mu_X; \sigma_Y^2)$

Calculate

- p(Y)
- p(Y | X = 5)
- p(X | Y = 5)
- p(X,Y)