Deep Learning (Introduction)

Sadegh Eskandari

Department of Computer Science, University of Guilan eskandari@guilan.ac.ir

Today ...

- Biological Neurons
- Artificial Neurons
- Multi-Layer Perceptron
- Training a Single Neuron
- Training an MLP (Backpropagation)

Biological Neurons

- Dendrites receive impulses (synapses) from other cells.
- o The cell body fires (sends signal) if the received impulses are more than a threshold.
- Signal travels through the axon and is delivered to other cells via axon terminals

Biological Neurons

Multiple layers in a biological neural network of human cortex

Source: Montesinos López, O.A., Montesinos López, A. and Crossa, J., 2022. Fundamentals of Artificial Neural Networks and Deep Learning. In Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 379-425). Springer, Cham.

Biological Neurons

The postnatal development of the human cerebral cortex

Source: https://developingchild.harvard.edu/

Artificial Neurons

Artificial Neurons

Regular Activation Functions (ϕ)

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Leaky ReLU

 $\max(0.1x, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Multi-Layer Perceptron (MLP): Notations

3-Layer Fully-Connected Artificial Neural Network

Multi-Layer Perceptron (MLP): Notations

3-Layer Fully-Connected Artificial Neural Network

 $w_{i\, j}^{\, l}$ The weight of edge from neuron i of layer l-1 to neuron j of layer l

Multi-Layer Perceptron (MLP): Notations

3-Layer Fully-Connected Artificial Neural Network

Training a Single Neuron

$$o = \varphi\left(\sum_{j=1}^{n} w_j x_j\right) = \varphi(\mathbf{w}^T \mathbf{x})$$

$$\mathbf{X} = (x_{1}, x_{2}, ..., x_{N})^{T}$$

$$\mathbf{x}_{i} = (x_{i1}, x_{i2}, ..., x_{in})^{T}$$

$$\mathbf{y} = (y_{1}, y_{2}, ..., y_{N})^{T}$$

Training data

N: num of data

n: dimension of each data point

Step 1: Loss function

$$l_i = (y_i - o_i)^2 = (y_i - \varphi(\mathbf{w}^T \mathbf{x}_i))^2$$
$$L = \sum_{i=1}^{N} l_i$$

Step 2: The objective function

$$w^* = \arg\min_{\mathbf{w}} L$$

Step 3: Optimization

Initialize
$$\boldsymbol{w}$$
 for $iter = 1$ to K :
$$\nabla_{\boldsymbol{w}} L = \left[\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, ..., \frac{\partial L}{\partial w_n}\right]$$
$$\boldsymbol{w}_{new} = \boldsymbol{w}_{old} - \gamma \nabla_{\boldsymbol{w}} L$$

- \circ As we know, $abla_W L$ plays a central role in finding the optimal parameters of model
- But calculating the gradients in multi-layer neural networks is not a trivial task!!

Solution: Backpropagation (Rumelhart et al., 1986a)

$$f(x, y, z) = (x + y)z$$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$ $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

$$e.g. x = -2, y = 5, z = -4$$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$f(x, y, z) = (x + y)z$$

$$z \xrightarrow{-4}$$

$$z \xrightarrow{$$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$ $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$ $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Computational Graphs: A simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$ $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial v}$, $\frac{\partial f}{\partial z}$

Chain Rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$
Upstream
gradient
Local
gradient

Computational Graphs: A simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$ $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial v}$, $\frac{\partial f}{\partial z}$

Chain Rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$
Upstream
gradient
Upstream
gradient

Computational Graphs: A simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$ $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial v}$, $\frac{\partial f}{\partial z}$

Chain Rule:

