

Studying Internet Outages form Data and Control Plane

Anant Shah, Ela Sienkiewicz, Christos Papadopoulos {akshah,ela,christos}@cs.colostate.edu

Background and Motivation

- Past research has shown at any given time 0.3% of internet is unavailable
- Outages can be detected using either data or control plane traffic
- Since all outages are not visible in both planes, we need ways to correlate outages from both planes and better understand relationships

Methodology

- We collect outages detected by the Trinocular^[1] project (3.5M /24s)
- We then fetch BGP updates from RouteViews for prefixes covering given /24s
- Finally, we map how each data plane outage was seen by peers in RouteViews

[1] L. Quan et al. "Trinocular: Understanding Internet Reliability through Adaptive Probing", SIGCOMM'13

[2] A. Shah et al. "Disco: Fast, Good, and Cheap Outage Detection", TMA'17

* Contributed by Yingnan Liu, Randy Paffenroth (Worcester Polytechnic Institute)

Preliminary Findings

- In many cases, a large churn of BGP updates is observed before and after outage
- However, there are cases where either no BGP churn is seen or no data plane outage is seen

Modeling BGP Activity

 Can we mathematically model BGP activity during outage?

Data Matrix Adds and Withdraws in [-45min,0min] Adds and Withdraws in [+60min,+120min] -120 -90 -60 -30 0 +30 +60 +90 +120

 PCA analysis shows PC component values clustered during outages*

Visualization

- Prototype visualization of the outages on Google Maps at: iodb.netsec.colostate.edu
- Supports BGP prefix and country based queries

Further Directions

- Provide more statistics on how often overlap in outages occurs per peer
- Use data plane outage from RIPE Atlas^[2]
- API to query findings in near-real time