PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-170380

(43)Date of publication of application: 21.06.1994

(51)Int.Cl.

CO2F 1/58

(21)Application number : 04-353054

(71)Applicant: MORITA KAGAKU KOGYO KK

(22) Date of filing: 10.12.1992

(72)Inventor: MOCHIDA YOSHIHARU

(54) FIXATION OF FLUORINE IN WASTE SOLUTION CONTAINING FLUOROPHOSPHATE

(57)Abstract:

PURPOSE: To reduce the concn. of fluorine in a waste soln. containing a fluorophosphate ion to a low numerical value using relatively inexpensive chemicals by a means capable of being executed in an industrially easy manner.

CONSTITUTION: Sulfuric acid is added to the waste soln. generated when hexafluorophosphate is produced so that the concn. of sulfuric acid becomes 35wt.%. This waste soln. is treated at 80° C for 2hr under stirring. Next, when calcium hydroxide is added until the pH of the soln. becomes 11, the concn. of residual fluorine in the soln. is reduced to 20ppm.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平6-170380

(43)公開日 平成6年(1994)6月21日

(51)Int.Cl.⁵

識別記号

FI

技術表示箇所

C 0 2 F 1/58

ZAB M

審査請求 未請求 請求項の数1(全 3 頁)

(21)出願番号

(22)出願日

特願平4-353054

平成 4年(1992)12月10日

(71)出願人 390024419

森田化学工業株式会社

大阪府大阪市中央区高麗橋 2丁目 6番10号

(72)発明者 持田 好晴

大阪府大阪市中央区高麗橋 2丁目 6番10号

森田化学工業株式会社内

(74)代理人 弁理士 福田 進

(54)【発明の名称】 フルオロリン酸イオンを含む廃液中のフッ素固定方法

(57)【要約】

【目的】フルオロリン酸イオンを含む廃液中のフッ素 を、比較的安価な薬品を使用し、工業的に容易に実施で きる手段でもって、低い数値まで減少させる。

【構成】へキサフルオロリン酸塩製造の際に発生した廃液に、硫酸濃度が35重量%となるよう硫酸を加え、これを攪拌しながら80℃の処理温度で2時間加熱処理する。次に、水酸化カルシウムを溶液のpHが11を示すまで添加すると、溶液中の残留フッ素濃度は20ppm にまで減少する。

【特許請求の範囲】

【請求項1】フルオロリン酸イオンを含む廃液に、硫酸 濃度が25~35重量%程度になるよう硫酸を加えて20~80 ℃の処理温度で0.5~2時間程度加熱処理した後、カル シウム化合物を加えることにより、フッ素をフッ化カル シウムとして固定することを特徴とするフルオロリン酸 イオンを含む廃液のフッ素固定方法。

1

【発明の詳細な説明】

[0001]

の用途が増加している。例えば、ヘキサフルオロリン酸 リチウムはリチウム 2 次電池の電解質として、ヘキサフ ルオロリン酸アンモニウムは電子写真の感光体として使 用されるなど、製造量、消費量とも増えている。しか し、これらの場合に生じるフルオロリン酸イオンを含む 廃液は、単にカルシウム塩を添加するだけでは、フッ素 を充分に固定することはできない。そこで、フッ素の新 しい固定技術の開発が望まれている。本発明はこの固定 方法に関するものである。

[0002]

【従来の技術】フッ素を含む廃液を処理してフッ素を固 定するには、廃液にカルシウム化合物を加え、フッ素を 不溶性のフッ化カルシウムとする方法が行われている。 また、ホウフッ化物を含む廃液中のフッ素は、このよう な方法では固定できないため、例えば、アルミニウム化 合物を加えて加熱し、フッ素をフッ化アルミニウムやア ルミニウム錯塩に変換した後、カルシウム塩を加えて固 定する方法が行われている(例えば、特公昭54-18064号 公報、特公昭54-5628 号公報)。

[0003]

【発明が解決しようとする課題】しかし、フルオロリン 酸イオンを含む廃液は、このいずれの方法でも、フッ素 濃度を数百ppm 以下にすることはできない。本発明は、 フルオロリン酸イオンを含む廃液中のフッ素を、比較的 安価な薬品を使用し、工業的に容易に実施できる手段で もって、低い数値まで減少させる方法を提供しようとす るものである。

[0004]

【課題を解決するための手段】フルオロリン酸イオン は、水溶液中で安定しており、アルカリ水溶液で煮沸し 40 ても分解しない。酸性溶液中では、ごくゆっくり分解す るとされている (ADVANCES IN FLUORINE CHEMISTRY Vo 1.5 第216 頁(1965)参照]。しかし、本発明者は鋭意 研究の結果、ある濃度以上の硫酸溶液がフルオロリン酸 イオンを、比較的短時間に分解することを見出して、本 発明を完成させるに至ったものである。

【0005】本発明は、フルオロリン酸イオンを含む廃 液中のフッ素を固定するに当って、フルオロリン酸イオ ンを含む廃液に、硫酸濃度が25~35重量%程度になるよ う硫酸を加えて20~80℃の処理温度で0.5 ~ 2 時間程度 50 加熱処理した後、カルシウム化合物を加えることによ り、フッ素をフッ化カルシウムとして固定する。

【0006】すなわち、本発明は、フルオロリン酸イオ ンを含有する水溶液に硫酸を添加し、加熱処理すると、 フッ素はカルシウム化合物により、容易にフッ化カルシ ウムとなることをもとにしている。

【0007】本発明の方法をさらに詳しく説明する。フ ルオロリン酸イオンを含む廃液に、硫酸濃度が25~35重 量%好ましくは30~35重量%になるように硫酸を添加す 【産業上の利用分野】フルオロリン酸塩は、近時産業上 10 る。攪拌しながら、これを20~80℃好ましくは50~80℃ に0.5~2時間保った後、カルシウム化合物を添加する と、溶液中のフッ素を百数十ppm ~数十ppm にまで減少 できる。この際の硫酸は、フルオロリン酸イオンをフッ 化カルシウムに転化しやすいフッ酸とリン酸に加水分解 するものと推定される。

> 【0008】廃液に加える硫酸の濃度は、20重量%では 処理後の溶液中の残留フッ素濃度が1000ppm に近く、実 用的でないが、25重量%以上になるとかなり有効であ る。しかし、まだ100ppm以上であり充分であるとはいえ 20 ない。30重量%から35重量%では50ppm 以下になり、実 用上問題はない。35重量%を越すと、カルシウム化合物 で処理した際に生成する硫酸カルシウム、フッ化カルシ ウム、リン酸カルシウムなどの沈澱が多くなり、攪拌が むつかしくなるため、実用的でない。

【0009】処理温度は、20~80℃である。50℃以上に なると、処理後の溶液中のフッ素濃度は100ppm以下にな る。80℃では50ppm 以下になる。80℃を越えると、処理 中に溶液が濃縮されすぎて後段のカルシウム処理がやり にくくなる。

【0010】加熱時間は、0.5 時間未満では不足する。 0.5~2時間好ましくは1~2時間がよい。2時間を越 えると溶液が濃縮されすぎて後段のカルシウム処理がや りにくくなる。

【0011】フルオロリン酸イオンを加水分解するに は、塩酸でも可能と考えられるが、塩酸は加熱処理の際 に塩化水素ガスが発生し、また、後段のカルシウム化合 物処理、特に、水酸化カルシウム処理では塩素は固定で きず、排水として流出するなど実用的といい難い。ま た、リン酸はかかる欠点はないが、フルオロリン酸イオ ンの加水分解を充分に促進することができない。従っ て、硫酸が唯一の実用的な酸であるということができ る。

【0012】フッ素を固定するには、塩化カルシウムな どのカルシウム塩類でもよいが、酸性物質を中和する意 味で水酸化カルシウムが最も適している。

[0013]

【実施例】以下、実施例をあげて本発明をさらに詳細に 説明する。

【0014】実施例1

ヘキサフルオロリン酸塩製造の際発生した廃液(PFs と

3

して86700ppm、F として68200ppm含有)に、硫酸を加え、硫酸濃度が35重量%となるよう調整した。これを攪拌しながら2時間80℃に保ち、次に、水酸化カルシウムを加え、pH11に調整し生じた沈澱をろ過し、ろ液中の残*

実施例	硫酸濃度	処理温度
	(wt%)	(\mathcal{C})
2	25	80
3	30	20
4	30	50
5	30	80
6	30	80
7	30	80

[0017]

【比較例】比較例は、以下の通りである。

【0018】比較例1

実施例1と同一の廃液に水酸化カルシウムを加え、pH11に調整し室温で3日間攪拌を続けた。生じた沈澱をろ過し、ろ液中の残留フッ素を測定すると2870ppmであった。

【0019】比較例2

実施例1と同一の廃液にリン酸を加え、リン酸濃度が30

*留フッ素を測定すると20ppm であった。

【0015】実施例2~6

実施例1に準じて行った別の実施例を次に示す。

[0016]

処理時間	残留フッ素濃度
(min)	(ppm)
120	170
120	150
120	75
60	56
120	36
30	94

%になるよう調整し、以下実施例1と全く同じ処理を行った結果、ろ液中の残留フッ素濃度は1115ppmであった。

[0020]

【発明の効果】本発明によれば、比較的安価な薬品を使用し、工業的に容易に実施できる手段でもって、フルオロリン酸イオンを含む廃液中のフッ素を低い数値まで減20 少させ得る効果がある。