Jegyzőkönyv ^a fényelhajlás vizsgálatáról (10)

Készítette: Tüzes Dániel

Mérés ideje: 2008-10-22, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-11-05

A mérés célja

A feladat a fényelhajlás segítségével vizsgálni réseket illetve vékony akadályokat, a mérés segítségével meghatározni azok jellemző paramétereit, méreteit.

Elvi alapok

A mérés során többfajta akadályt állítunk a fény útjába, és mindegyik jelenség magyarázatához felhasználjuk a fény hullámtermészetét. A Huygens-Fresnel elv szerint nemcsak optikai rácson, de már egyetlen hajszálon és résen is kimutatható a fény hullámtermészete. A mérés során a vörös színtartományban üzemelő hélium-neon lézert használunk.

• Fraunhofer-elhajlás

Ha a fény hullámhosszával összemérhető nagyságú résen halad keresztül a fény, a résből kijövő fény úgy viselkedik, mintha a résből, mint pontszerű fényforrásból jönne. A rés méretének növelésével ez egyre kevésbé lesz igaz, és egyre inkább egyenesen halad tovább a lézerfény. Ha a résre merőlegesen érkezik a fénysugár, elméleti megfontolásokkal tudhatjuk, hogy a minimumhelyek x_n távolsága a főmaximumoktól $x_n = n\frac{\lambda L}{a}$, ahol λ a fény hullámhossza, értéke $\lambda = 632,8nm \pm 0,1nm$, L a rész-ernyő távolsága, a a rés szélessége, $n \in \mathbb{Z} \setminus \{0\}$. A képlet egyik feltétele, hogy $L \gg a$. Megmérve x_n ek értékét, annak m meredekségéből meghatározhatjuk a rés a szélességét: $a = \frac{\lambda L}{m}$.

Kettős rés

Hasonló a helyzet az előbbihez. Itt az előző esetben kapott intenzitás-eloszlás megszorzódik egy olyan taggal, mely a két rés távolságára jellemző, ugyanis a két résből kijövő fénysugarak interferálnak egymással. Feltételezve, hogy a rések távolsága nagyobb, mint szélességük, az előző esethez képest egy "cikk-cakkot" kapunk az eredeti görbénkre, vagyis egy finomabb struktúrával is rendelkező görbét kapunk, melynek burkolója az előző esetben kapott görbe. Az újonnan kapott zérus-helyekből, az ún., másodosztályú minimumhelyeiből meghatározható a rések távolsága, az elsőosztályú minimumhelyekből pedig mint előző esetben, a rések szélessége. Ismét elméleti megfontolásokkal kapjuk, hogy a másodminimumok helyzete $x_k = k\frac{\lambda L}{d}, k \in \{\mathbb{Z}+1/2\}\setminus\{0\}$.

Vékony akadály

A Fraunhofer-elhajlással analóg ez a mérés, csak itt pont, hogy a rés nem ereszti át a fényt. Tekinthetjük ezt egyfajta komplementernek. A Babinet-elv szerint akadály és komplementere a távoli ernyőn ugyanolyan függvényekkel írhatók le, kivéve a geometriai optika szerint várt kép helyét.

Elméleti megfontolásokkal kapjuk, hogy az
$$I$$
intenzitás értéke $I = I_0 \left[\frac{\sin \left(\frac{\pi a}{\lambda L} (x - x_0) \right)}{\frac{\pi a}{\lambda L} (x - x_0)} \right]^2 + \frac{\pi a}{\lambda L}.$

• Fresnel-elhajlás egyenes élen

A mérés során egy vékony, egyenes élre világítunk rá. A geometriai optika szerint azt várjuk, hogy az árnyék kezdete diszkrét, 1db egyenes vonal. Azonban a hullámegyenlet gömbhullám megoldásaiból kiszámolható, és gyakorlatban igazolandó, hogy az ernyő világos térfelén az árnyékoz közeledve egyre inkább ingadozik az intenzitás, a sötét oldalon pedig exponálisan lecseng.

A mérési módszer ismertetése

Valamennyi mérés során számítógép és elektronikus mérőberendezés állt a rendelkezésemre, így a mérés kevés emberi beavatkozással járt. A mérés során a gép csak a fényforrás-tárgy, tárgy-ernyő távolságot nem tudta lemérni, így csak ezek manuális lemérésére volt szükség. Megemlítendő még, hogy a Fresnel-elhajlás egyenes élen esetében egy nyalábtágítót helyeztem a lézer útjába.

A mérést a számítógépen lehetett elindítani. A mérési eszköz és a számítógép elrendezése miatt szükséges volt a méréseket megismételni: első alkalommal az ernyő releváns területének meghatározása, második alkalommal ezen rész részletezése volt a cél.

Az egyes mérések után, a számítógépen található programokkal a szükséges információk kinyerhetőek voltak, és a kapott eredményeket grafikusan is lehetett ábrázolni.

Mérési eredmények, hibaszámítás

• Fraunhofer-elhajlás

A mérés során az A jelű réssel mértem. Az egyes minimumokhoz tartozó helyzetet az alábbi táblázat tartalmazza:

A kapott eredményből a rés-ernyő távolság alapján meghatározható a már ismertetett formula szerint a rés nagysága. Ebben az esetben L értéke L=(2395+49) mm, leolvasási pontossága ± 10 mm. Így a rés szélessége a=0,134 mm. A hibát az ernyő távolságából, a lézer hullámhosszából és a meredekség pontatlanságából számolhatunk. $\delta m=0,4\%, \delta\lambda\approx 0, \delta L=0,4\%$, így $\Delta a=\pm 0,001$ mm. Az egyenes-illesztés hibája okozza a legnagyobb hibát, a hullámhossz hibája pedig gyakorlatilag 0.

kettős rés vizsgálata

A mérés során az A jelű kettősrést használtam. Az egyes első-osztályú minimumokhoz tartozó helyzetet az alábbi táblázat tartalmazza:

Az eredményeket grafikusan is ábrázoltam:

Jelen esetben az ernyő távolsága a réstől $L=(2395+49)\,mm$ volt. A mérések alapján a már ismert formula szerint $a=0,126\,mm$, melynek hibáját az előzővel azonos módon határozhatjuk meg. $\delta m=0,8\%, \delta\lambda\approx 0, \delta L\approx 0,4\%$, így a rés hibájára $\Delta a=\pm 0,002\,mm$.

Az egyes másodosztályú minimumokhoz tartozó helyzeteket az alábbi táblázatban foglalom össze:

Az eredményeket az alábbi grafikon is szemlélteti:

Az ábráról látható, hogy a meredekség-illesztés hibája várhatóan a legnagyobb lesz.

A korábbi ismereteink szerint a meredekségből meghatározható a rések távolsága, ennek értéke d=0.571mm. A hiba az előzőek alapján: $\delta m=2.2\%$, $\delta \lambda\approx 0$, $\delta L=0.4\%$, így a rések távolságának a hibája $\Delta d=0.015mm$. A minimumok helyzete igen közel voltak egymáshoz, ezen mértekhez képest a berendezés által megkülönböztetett két pont távolsága már nem volt elhanyagolható, és a kis távolságokon a zaj is nagyobb hibát eredményez. Ezek indokolják a nagy hibát a meredekségre.

vékony akadályon való elhajlás

A mérési eredményekre a programmal történő illesztés során $\frac{\pi a}{\lambda L}$ értékét változtatjuk, melynek értékére kaptam, hogy $\frac{\pi a}{\lambda L} = 0.2139 \frac{1}{mm}$, így $L = (2395 + 49) \, mm$ felhasználásával a hajszál vastagsága $a = 0.1053 \, mm$, a hajszál-ernyő hibájából pedig az eltérés $\Delta a = 0.0004$. Megjegyzem, hogy $\frac{\pi a}{\lambda L}$ illesztett értékének a hibája empirikusan sokkal nagyobb, valamint számos pont (elsősorban a maximum közeliek) elhagyásával végeztem az illesztést.

Fresnel-elhajlás egyenes élen

A mérés során az ernyő-él távolsága L=1755mm volt, a lézer-ernyő távolsága pedig 2680mm. A mérési eredményeket a mellékelt grafikon tartalmazza.

Mellékletek

[1]: Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.