主讲人:邓哲也

线性同余方程组

从现在开始我们将会讨论线性同余方程组。

第一种:有两个以上的不同模的一元线性同余方程;

第二种:变元数大于 1,方程数大于 1,但是方程的模相同。

中国剩余定理的引入

下面取自成书于公元 3 世纪晚期的《孙子算经》的问题。 求一个数,它被 3 除余 1,被 5 除余 2,被 7 除余 3。 这也就等价于如下方程组:

$$x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{5}$$

$$x \equiv 3 \pmod{7}$$

```
设 m_1, m_2, …, m_r 是两两互素的正整数,则同余方程组 x\equiv a_1\pmod{m_1} x\equiv a_2\pmod{m_2} … x\equiv a_r\pmod{m_r} 有模 M=m_1m_2…m, 的唯一解。
```

首先我们构造同余方程组的一个联立解。

令
$$M_k = M / m_k = m_1 m_2 \cdots m_{k-1} m_{k+1} \cdots m_r$$
 由于 $(M_k, m_k) = 1$,因此可以求得 M_k 模 m_k 的一个逆 y_k 。 所以 $M_k y_k \equiv 1 \pmod{m_k}$ 现在构造一个

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_r M_r y_r$$

x 就是这 r 个同余方程的联立解。

$$\mathbf{x} = \mathbf{a}_1 \mathbf{M}_1 \mathbf{y}_1 + \mathbf{a}_2 \mathbf{M}_2 \mathbf{y}_2 + \cdots + \mathbf{a}_r \mathbf{M}_r \mathbf{y}_r$$

正确性显然。

还需要证明唯一性。

如果 x_0 和 x_1 都是解。

那么 $x_0 \equiv x_1 \equiv a_k \pmod{m_k}$, 所以 $m_k \mid (x_0 - x_1)$

因此 $M \mid (x_0 - x_1)$

故 $x_0 \equiv x_1 \pmod{M}$

$$x \equiv 1 \pmod{3}$$

 $x \equiv 2 \pmod{5}$
 $x \equiv 3 \pmod{7}$
现在回到开头的那个方程组,首先有 M = 105
 $M_1 = 35$, $M_2 = 21$, $M_3 = 15$
 $y_1 = 2$, $y_2 = 1$, $y_3 = 1$
因此 $x \equiv 1 * 35 * 2 + 2 * 21 * 1 + 3 * 15 * 1$
 $\equiv 157$
 $\equiv 52 \pmod{105}$

迭代法

$$x \equiv 1 \pmod{5}$$

 $x \equiv 2 \pmod{6}$
 $x \equiv 3 \pmod{7}$
由第一个等式得到 $x = 5t + 1$, 其中 t 是整数
把这个表达式带入第二个同余方程, 得到
 $5t + 1 \equiv 2 \pmod{6}$
解出 $t \equiv 5 \pmod{6}$
因此有 $t = 6u + 5$
所以 $x = 5(6u+5)+1 = 30u + 26$

迭代法

$$x \equiv 1 \pmod{5}$$

 $x \equiv 2 \pmod{6}$
 $x \equiv 3 \pmod{7}$
把 $x = 30u + 26$ 带入第三个方程,得到
 $30u + 26 \equiv 3 \pmod{7}$
解得 $u \equiv 6 \pmod{7}$
说明 $u = 7v + 6$
那么 $x = 30u + 26 = 30(7v + 6) = 210v + 206$
也即 $x \equiv 206 \pmod{210}$

下节课再见