

3.2 SVM is a Convex OP

Machine Learning 1: Foundations

Marius Kloft (TUK)

- Convex Optimization Problems (OPs)
- 2 SVM is a Convex OP
- 3 How to Solve Convex OPs and SVM

Making the SVM Convex

Assume that the data is linearly separable. Then it holds:

Theorem

The linear hard-margin SVM from last week, that is,

$$\max_{\gamma,b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d: \mathbf{w} \neq 0} \ \gamma \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge \|\mathbf{w}\| \ \gamma$$

can be equivalently rewritten in convex form as given below:

Linear hard-margin SVM in convex form

$$\min_{\boldsymbol{b} \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{w}\|^2$$
s.t.
$$1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b) \le 0 \quad \forall i = 1, ..., n$$

Core Idea of the Proof

The SVM results in a linear classifier $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$, the parameters (\mathbf{w}, b) of which are not unique:

$$\forall \lambda > 0: \ \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b) = \text{sign}(\underbrace{\lambda \mathbf{w}}_{=:\mathbf{w}_{\lambda}}^{\top}\mathbf{x} + \underbrace{\lambda b}_{=:b_{\lambda}}). \quad (\star)$$

Idea: if it helps, we could restrict in the SVM OP our search for \mathbf{w} to \mathbf{w} s that have some nice norm, and we would—by (\star) —still search the space of all linear classifiers.

For reasons that will become clear below, we choose the restriction $\|\mathbf{w}\| = 1/\gamma$, by setting $\lambda := \frac{1}{\|\mathbf{w}\|\gamma}$.

Proof (1/2)

$$\max_{\gamma,b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^{d}:\mathbf{w}\neq0} \gamma \quad \text{s.t.} \quad y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b) \geq \|\mathbf{w}\| \gamma$$

$$\stackrel{(a),(b)}{\iff} \min_{\gamma>0,b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^{d}:\mathbf{w}\neq0} \frac{1}{2\gamma^{2}} \quad \text{s.t.} \quad y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b) \geq \|\mathbf{w}\| \gamma$$

$$\stackrel{\forall \lambda>0}{\iff} \min_{\gamma>0,b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^{d}:\mathbf{w}\neq0} \frac{1}{2\gamma^{2}} \quad \text{s.t.} \quad y_{i}(\lambda\mathbf{w}^{\top}\mathbf{x}_{i}+\lambda b) \geq \lambda \|\mathbf{w}\| \gamma$$

$$\stackrel{(c)}{\iff} \min_{\gamma>0,b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^{d}:\mathbf{w}\neq0} \frac{1}{2\gamma^{2}} \quad \text{s.t.} \quad y_{i}(\lambda\mathbf{w}^{\top}\mathbf{x}_{i}+b) \geq \lambda \|\mathbf{w}\| \gamma$$

$$\stackrel{\lambda:=\frac{1}{\|\mathbf{w}\|^{\gamma}}}{\iff} \min_{\gamma>0,b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^{d}:\mathbf{w}\neq0} \frac{1}{2\gamma^{2}} \quad \text{s.t.} \quad y_{i}(\frac{\mathbf{w}^{\top}\mathbf{x}_{i}}{\|\mathbf{w}\|^{\gamma}}+b) \geq 1$$

$$\stackrel{(d)}{\iff} \min_{b\in\mathbb{R},\tilde{\mathbf{w}}\in\mathbb{R}^{d}} \frac{1}{2} \|\tilde{\mathbf{w}}\|^{2} \quad \text{s.t.} \quad y_{i}(\tilde{\mathbf{w}}^{\top}\mathbf{x}_{i}+b) \geq 1$$

$$\iff \min_{b\in\mathbb{R},\mathbf{w}\in\mathbb{R}^{d}} \frac{1}{2} \|\mathbf{w}\|^{2} \quad \text{s.t.} \quad 1-y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b) \leq 0$$

Proof (2/2)

In the former derivation we use the following arguments:

- (a) Maximizing γ gives the same solution as minimizing $1/2\gamma^2$.
- (b) Because the data is separable, there exists (\mathbf{w}, b, γ) with $\gamma > 0$ satisfying all constraints.
- (c) $b \in \mathbb{R}$ is an unconstrained variable.
- (d) We substitute $\tilde{\mathbf{w}} := \frac{\mathbf{w}}{\|\mathbf{w}\|_{\gamma}}$, from which it follows:

$$\|\tilde{\boldsymbol{w}}\| = \left\|\frac{\mathbf{w}}{\|\mathbf{w}\|\gamma}\right\| = \frac{\|\mathbf{w}\|}{\|\mathbf{w}\|\gamma} = 1/\gamma.$$

Soft-margin SVM

Similar, we can formulate a soft-margin SVM as convex optimization problem:

Linear soft-margin SVM in convex form

$$\min_{b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d, \boldsymbol{\xi} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
s.t.
$$1 - \xi_i - y_i (\mathbf{w}^\top \mathbf{x}_i + b) \le 0, \quad -\xi_i \le 0 \quad \forall i = 1, \dots n$$

How to solve?

From now on, when we speak about soft-margin SVMs, we will mean the problem given on this slide. Although it is not mathematically equivalent to the non-convex soft-margin SVM introduced in the previous lecture, is in the same spirit and easier to deal with, thanks to its convexity.

How to Solve SVM?

We could just put our (convex) SVM OP into one of the many solvers out there for convex optimization problems.

▶ In Python: library CVXOPT is a standard

Problem: CVXOPT is very powerful, but rather slow

⇒ For big data we need a faster solution