Chapter 1 Functions and Limits

1.3 New Functions from Old Functions

Transformations of Functions.

Translation.

Vertical and Horizontal Shifts Suppose c > 0. To obtain the graph of

y = f(x) + c, shift the graph of y = f(x) a distance c units upward y = f(x) - c, shift the graph of y = f(x) a distance c units downward y = f(x - c), shift the graph of y = f(x) a distance c units to the right y = f(x + c), shift the graph of y = f(x) a distance c units to the left

Stretching and reflecting.

Vertical and Horizontal Stretching and Reflecting Suppose c>1. To obtain the graph of

y=cf(x), stretch the graph of y=f(x) vertically by a factor of c y=(1/c)f(x), shrink the graph of y=f(x) vertically by a factor of c y=f(cx), shrink the graph of y=f(x) horizontally by a factor of c y=f(x/c), stretch the graph of y=f(x) horizontally by a factor of c y=-f(x), reflect the graph of y=f(x) about the x-axis y=f(-x), reflect the graph of y=f(x) about the y-axis

EXAMPLE 1 Given the graph of $y = \sqrt{x}$, use transformations to graph $y = \sqrt{x} - 2$, $y = \sqrt{x - 2}$, $y = -\sqrt{x}$, $y = 2\sqrt{x}$, and $y = \sqrt{-x}$.

Combinaisons of Functions.

Adding.

$$(f+g)(x) = f(x) + g(x)$$

Substracting.

$$(f-g)(x) = f(x) - g(x)$$

Domain:

 $Dom(f) \cap Dom(g)$

Domain:

 $Dom(f) \cap Dom(g)$

Multiplying.

$$(fg)(x) = f(x)g(x)$$

Dividing.

$$(f/g)(x) = f(x)/g(x)$$

Domain:

 $Dom(f) \cap Dom(g)$

Domain:

Dom(f) - Dom(g)

Example. Find the domain of the function $f(x) = \sqrt{x} + \sqrt{2-x} \ .$

Example Find the domain of the function $f(x) = \frac{x^2}{x-1}$.

Composite of two functions (Composition).

Definition Given two functions f and g, the **composite function** $f \circ g$ (also called the **composition** of f and g) is defined by

$$(f \circ g)(x) = f(g(x))$$

Domain:

Dom(g)

EXAMPLE 6 If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$.

EXAMPLE 9 Given $F(x) = \cos^2(x + 9)$, find functions f, g, and h such that $F = f \circ g \circ h$.