Advanced Data Analytics Week 1: SNE

Ian T. Nabney

Limitations of PCA: embedding MNIST

PCA without colour coding

Local structure

- Stress metric measures all distances, but squared terms mean that large distances dominate.
- Similarly, techniques such as PCA consider the global representation.
- But is this how we see the data? Think back to Ware's book.
- Arguable that we actually understand neighbourhoods best.

Stochastic Neighbourhood Embedding

 Start by converting Euclidean distances into conditional probability that represent similarities

$$p_{j|i} = \frac{\exp\left(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2\right)}$$
(1)

where σ_i^2 is the variance of a Gaussian centred on \mathbf{x}_i . We set $p_{i|i} = 0$.

We create a similar metric in the low-dimensional space

$$q_{j|i} = \frac{\exp\left(-\|\mathbf{y}_i - \mathbf{y}_j\|^2\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{y}_i - \mathbf{y}_j\|^2\right)}$$
(2)

• If the mapped points \mathbf{y}_i and \mathbf{y}_j correctly model the similarity between the high-dimensional datapoints \mathbf{x}_i and \mathbf{x}_j , the conditional probabilities $p_{j|i}$ and $q_{j|i}$ will be equal. Measure the mismatch using the Kullback-Leibler divergence

$$C = \sum_{i} KL(P_{i}||Q_{i}) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}},$$
 (3)

where P_i represents the conditional probability over all other datapoints given data point \mathbf{x}_i and similarly for Q_i . Minimise the cost function using gradient descent (and partial derivatives).

Interpreting the cost function

- Different types of error in the pairwise distances in the low-dimensional map are not weighted equally.
- There is a large cost for using widely separated map points to represent nearby datapoints (i.e., for using a small $q_{j|i}$ to model a large $p_{i|i}$).
- There is only a small cost for using nearby map points to represent widely separated datapoints.

Blue contours show a bimodal distribution $p(\mathbf{X})$ and the red contours correspond to a single Gaussian distribution $q(\mathbf{Y})$ that minimises the KL-divergence KL(p||q).

Optimising the cost function

The gradient has a surprisingly simple form

$$\frac{\partial C}{\partial y_i} = \sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$
(4)

and the update equation with a momentum term

$$\mathbf{Y}^{(t)} = \mathbf{Y}^{(t-1)} - \eta \frac{\partial C}{\partial y_i} + \beta(t) (\mathbf{Y}^{(t-1)} - \mathbf{Y}^{(t-2)})$$
 (5)

- Physically, the gradient may be interpreted as the resultant force created by a set of springs between the map point \mathbf{y}_i and all other map points \mathbf{y}_j . All springs exert a force along the direction $(\mathbf{y}_i \mathbf{y}_j)$.
- The force exerted by the spring between \mathbf{y}_i and \mathbf{y}_j is proportional to its length, and also proportional to its stiffness, which is the mismatch $(p_{j|i}-q_{j|i}+p_{i|j}-q_{i|j})$ between the pairwise similarities of the data points and the map points.

Optimising σ_i

- It is not likely that there is a single value of σ_i that is optimal for all datapoints in the data set because the density of the data is likely to vary.
- In dense regions, a smaller value of σ_i is usually more appropriate than in sparser regions.
- SNE performs a binary search for the value of σ_i that produces a P_i with a fixed perplexity that is specified by the user.
- Perplexity is defined as

$$Perp(P_i) = 2^{H(P_i)}$$
 where $H(P_i) = -\sum_{j} p_{j|i} \log_2 p_{j|i}$. (6)

• The perplexity can be interpreted as a smooth measure of the effective number of neighbours. The performance of SNE is fairly robust to changes in the perplexity, and typical values are between 5 and 50.

Effect of perplexity

Crowding problem

- In high dimension we have more room, so points can have a lot of different neighbours while this is more difficult in lower dimension.
- This is the crowding problem we don't have enough room to accommodate all neighbours. This is one of the biggest problems with SNE.
- t-SNE solution: Change the Gaussian in *Q* to a heavy-tailed distribution.
- If Q changes slower, we have more 'wiggle room'to place points at.

Symmetric SNE

- Introduce two elements to address the crowding problem.
- Replace conditional probabilities $p_{i|i}$ by joint probabilities p_{ii} .

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n} \quad \text{and} \quad q_{ij} = \frac{\exp\left(-\|\mathbf{y}_i - \mathbf{y}_j\|^2\right)}{\sum_{k \neq l} \exp\left(-\|\mathbf{y}_k - \mathbf{y}_l\|^2\right)} \quad (7)$$

The gradient is simpler and faster to compute

$$\frac{\partial C}{\partial \mathbf{y}_i} = 4 \sum_j (p_{ij} - q_{ij})(y_i - y_j). \tag{8}$$

t-SNE

t-distribution Stochastic Neighbourhood Embedding

- Student-t density $p(x) \propto (1 + \frac{x^2}{\nu})^{-(\nu+1)/2}$ which goes to zero much slower than a Gaussian. Choice of $\nu=1$ is equivalent to the Cauchy distribution.
- Equivalent to averaging Gaussians with a specific prior over σ^2 . Removes need to optimise σ_i .
- Redefine q_{ij} but leave p_{ij} the same. This allows a moderate distance in the high-dimensional space to be faithfully modeled by a much larger distance in the map and so it eliminates the unwanted attractive forces between map points that represent moderately dissimilar datapoints.

$$q_{ij} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$
(9)

I. T. Nabney

t-SNE Gradient

Gradient of t-SNE

Experiments

MNIST

- Randomly selected 6,000 images
- $28 \times 28 = 784$ pixels

Olivetti faces

- 400 images (10 per individual)
- $92 \times 112 = 10,304$ pixels

COIL-20

- 20 different objects and 72 equally spaced orientations, yielding a total of 1,440 images
- $32 \times 32 = 1024$ pixels

Use PCA to reduce dimensionality of data to 30.

Experimental parameters

Technique	Cost function parameters
t-SNE	Perp = 40
Sammon mapping	none
Isomap	k = 12
LLE	k = 12

Table 1: Cost function parameter settings for the experiments.

MNIST t-SNE

MNIST Sammon

MNIST Isomap

MNIST local linear embedding (LLE)

Olivetti faces

COIL-20 results

Conclusions

- Both the computational and the memory complexity of t-SNE are $O(n^2)$, but the technique makes it possible to successfully visualize large real-world data sets with limited computational demands.
- We can reduce complexity from $O(N^2)$ to $O(N \log N)$ via Barnes Hut (tree-based) algorithm.
- Experiments on a variety of data sets show that t-SNE outperforms existing state-of-the-art techniques for visualizing a variety of real-world data sets.
- No functional mapping.

