Connectedness

2015-04-26 11:00

Definition (Separation)

Let X be a topological space. A separation of X is a pair of open sets U, V such that:

Definition (Separation)

Let X be a topological space. A separation of X is a pair of open sets U, V such that:

• $U \cap V = \emptyset$,

Definition (Separation)

Let X be a topological space. A separation of X is a pair of open sets U, V such that:

- $U \cap V = \emptyset$,
- $U \cup V = X$,

Definition (Separation)

Let X be a topological space. A separation of X is a pair of open sets U, V such that:

- $U \cap V = \emptyset$,
- $U \cup V = X$,
- $U \neq \emptyset$, $V \neq \emptyset$

Definition (Separation)

Let X be a topological space. A separation of X is a pair of open sets U, V such that:

- $U \cap V = \emptyset$.
- $U \cup V = X$,
- $U \neq \emptyset$, $V \neq \emptyset$

Definition (Connected space)

A topological space is connected if it has no separation.

Remark

A space is connected if an only if the only subsets that are both open and closed are \emptyset and X.

Remark

A space is connected if an only if the only subsets that are both open and closed are \emptyset and X.

This is because if U, V form a separation, then both are open and closed. Conversely, if $A \subseteq X$ is not the empty set and not X, and is open and closed, then A, X - A form a separation.

Lemma

Let X be a space and Y a subspace of X. Then a separation of Y is a pair of disjoint nonempty sets A, B with union Y, and none containing a limit point of the other.

Lemma

Let X be a space and Y a subspace of X. Then a separation of Y is a pair of disjoint nonempty sets A, B with union Y, and none containing a limit point of the other.

Lemma

Let X be a space and Y a subspace of X. Then a separation of Y is a pair of disjoint nonempty sets A, B with union Y, and none containing a limit point of the other.

• Let A, B be a separation of Y. Then both A, B are open and closed in Y. We have that the closure of A in Y is $\overline{A} \cap Y$, and since A is closed, we have $A = \overline{A} \cap Y$. Since A, B are disjoint, we have $\overline{A} \cap B = \emptyset$.

Lemma

Let X be a space and Y a subspace of X. Then a separation of Y is a pair of disjoint nonempty sets A, B with union Y, and none containing a limit point of the other.

- Let A, B be a separation of Y. Then both A, B are open and closed in Y. We have that the closure of A in Y is $\overline{A} \cap Y$, and since A is closed, we have $A = \overline{A} \cap Y$. Since A, B are disjoint, we have $\overline{A} \cap B = \emptyset$.
- Now, suppose $A, B \subseteq Y$ are disjoint, nonempty, and none containing a limit point of the other. Then $\overline{A} \cap B = \emptyset$, hence $\overline{A} \cap Y = A$. It follows that A is closed in Y, hence B is open in Y.

ullet If X has the indiscrete topology, then X is connected.

- If X has the indiscrete topology, then X is connected.
- If X is a space with only one point, then it is connected.

- If X has the indiscrete topology, then X is connected.
- If X is a space with only one point, then it is connected.
- The subspace $Y = [-1, 0) \cup (0, 1]$ of \mathbb{R} is not connected.

- If X has the indiscrete topology, then X is connected.
- If X is a space with only one point, then it is connected.
- The subspace $Y = [-1, 0) \cup (0, 1]$ of \mathbb{R} is not connected.
- \mathbb{Q} as a subspace of \mathbb{R} is not connected.

Lemma

If A, B form a separation of X, and $Y \subseteq X$ is connected, then either $Y \subseteq A$ or $Y \subseteq B$.

Lemma

If A, B form a separation of X, and $Y \subseteq X$ is connected, then either $Y \subseteq A$ or $Y \subseteq B$.

We have that $Y \cap A$, $Y \cap B$ are both open in Y, they are disjoint and its union is Y. Since Y is connected they cannot be both nonempty, and if $Y \cap A = \emptyset$, then $Y \subset B$.

Lemma

If A, B form a separation of X, and $Y \subseteq X$ is connected, then either $Y \subseteq A$ or $Y \subseteq B$.

We have that $Y \cap A$, $Y \cap B$ are both open in Y, they are disjoint and its union is Y. Since Y is connected they cannot be both nonempty, and if $Y \cap A = \emptyset$, then $Y \subset B$.

Lemma

The union of connected subspaces with a point in common is connected.

Lemma

If A, B form a separation of X, and $Y \subseteq X$ is connected, then either $Y \subseteq A$ or $Y \subseteq B$.

We have that $Y \cap A$, $Y \cap B$ are both open in Y, they are disjoint and its union is Y. Since Y is connected they cannot be both nonempty, and if $Y \cap A = \emptyset$, then $Y \subseteq B$.

Lemma

The union of connected subspaces with a point in common is connected.

Let $X=\cup_{\alpha\in I}A_{\alpha}$ with A_{α} connected, and $x_{0}\in\cap A_{\alpha}$. Let U,V be a separation of X. Suppose $x_{0}\in U$. By the previous lemma, we must have $A_{\alpha}\subseteq U$ for all $\alpha\in I$. But then $V=\emptyset$, which is a contradiction.

More theorems

Theorem

Let $A \subseteq X$ be connected. Then if $B \subseteq X$ is such that $A \subseteq B \subseteq \overline{A}$, then B is also connected.

More theorems

Theorem

Let $A \subseteq X$ be connected. Then if $B \subseteq X$ is such that $A \subseteq B \subseteq \overline{A}$, then B is also connected.

Proof

Suppose that C, D is a separation of B. By a previous lemma, we may assume without loss that $A \subseteq C$. But then $\overline{A} \subseteq \overline{C}$, and, since \overline{C} and D are disjoint and $B \subseteq \overline{A}$, we must have $B \cap D = \emptyset$, which is a contradiction. \square

Let $f: X \to Y$ be a continuous map, with X connected. Then f(X) is connected.

Let $f: X \to Y$ be a continuous map, with X connected. Then f(X) is connected.

Proof

Let Z = f(X), and consider the surjective map $f: X \to Z$, which is also continuous. Let A, B be a separation of Z. Then $f^{-1}(A), f^{-1}(B)$ would form a separation of X, which is impossible. Therefore, there is no separation of Z, hence f(X) is connected. \square

The arbitrary product of connected spaces is connected.

• For the proof, we first prove that if X, Y are connected, then $X \times Y$ is connected.

- For the proof, we first prove that if X, Y are connected, then X x Y is connected.
- Let $(a, b) \in X \times Y$. Then $X \times \{b\}$ and $\{x\} \times Y$ are connected, for all $y \in Y$.

- For the proof, we first prove that if X, Y are connected, then X x Y is connected.
- Let $(a, b) \in X \times Y$. Then $X \times \{b\}$ and $\{x\} \times Y$ are connected, for all $y \in Y$.
- Hence $T_X = (X \times \{b\}) \cup (\{x\} \times Y)$ is connected, since it is the union of two connected spaces with a point in common.

- For the proof, we first prove that if X, Y are connected, then X x Y is connected.
- Let $(a, b) \in X \times Y$. Then $X \times \{b\}$ and $\{x\} \times Y$ are connected, for all $y \in Y$.
- Hence $T_X = (X \times \{b\}) \cup (\{x\} \times Y)$ is connected, since it is the union of two connected spaces with a point in common.
- Then, $X \times Y = \bigcup_{x \in X} T_x$ is the union of connected spaces with the point (a, b) in common.

- For the proof, we first prove that if X, Y are connected, then X x Y is connected.
- Let $(a, b) \in X \times Y$. Then $X \times \{b\}$ and $\{x\} \times Y$ are connected, for all $y \in Y$.
- Hence $T_X = (X \times \{b\}) \cup (\{x\} \times Y)$ is connected, since it is the union of two connected spaces with a point in common.
- Then, $X \times Y = \bigcup_{x \in X} T_x$ is the union of connected spaces with the point (a, b) in common.
- By induction, we obtain that the product of any finite number of connected spaces is connected.

• Now, let X_{α} be a connected space, for $\alpha \in I$. We want to prove that $\prod_{\alpha} X_{\alpha}$ is connected. Choose $b = (b_{\alpha}) \in X$.

- Now, let X_{α} be a connected space, for $\alpha \in I$. We want to prove that $\Pi_{\alpha} X_{\alpha}$ is connected. Choose $b = (b_{\alpha}) \in X$.
- Given $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$, we define $X(\alpha_1, \ldots, \alpha_n)$ as the subspace of X with points such that $x_{\alpha} = b_{\alpha}$ for $\alpha \notin \{\alpha_1, \ldots, \alpha_n\}$.

- Now, let X_{α} be a connected space, for $\alpha \in I$. We want to prove that $\prod_{\alpha} X_{\alpha}$ is connected. Choose $b = (b_{\alpha}) \in X$.
- Given $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$, we define $X(\alpha_1, \ldots, \alpha_n)$ as the subspace of X with points such that $x_{\alpha} = b_{\alpha}$ for $\alpha \not\in \{\alpha_1, \ldots, \alpha_n\}$.
- We have that $X(\alpha_1, \ldots, \alpha_n)$ is homeomorphic to $X_{\alpha_1} \times \cdots \times X_{\alpha_n}$, and so it is connected.

- Now, let X_{α} be a connected space, for $\alpha \in I$. We want to prove that $\prod_{\alpha} X_{\alpha}$ is connected. Choose $b = (b_{\alpha}) \in X$.
- Given $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$, we define $X(\alpha_1, \ldots, \alpha_n)$ as the subspace of X with points such that $x_{\alpha} = b_{\alpha}$ for $\alpha \not\in \{\alpha_1, \ldots, \alpha_n\}$.
- We have that $X(\alpha_1, \ldots, \alpha_n)$ is homeomorphic to $X_{\alpha_1} \times \cdots \times X_{\alpha_n}$, and so it is connected.
- Let Y be the subspace of X that is the union of all $X(\alpha_1, \ldots, \alpha_n)$, for $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$ finite. Then Y is connected, as is the union of connected spaces with the point b in common.

- Now, let X_{α} be a connected space, for $\alpha \in I$. We want to prove that $\Pi_{\alpha} X_{\alpha}$ is connected. Choose $b = (b_{\alpha}) \in X$.
- Given $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$, we define $X(\alpha_1, \ldots, \alpha_n)$ as the subspace of X with points such that $x_{\alpha} = b_{\alpha}$ for $\alpha \not\in \{\alpha_1, \ldots, \alpha_n\}$.
- We have that $X(\alpha_1, \ldots, \alpha_n)$ is homeomorphic to $X_{\alpha_1} \times \cdots \times X_{\alpha_n}$, and so it is connected.
- Let Y be the subspace of X that is the union of all $X(\alpha_1, \ldots, \alpha_n)$, for $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$ finite. Then Y is connected, as is the union of connected spaces with the point b in common.
- We finally prove that $\overline{Y} = X$. Let $x = (x_{\alpha}) \in X$, and $U = \prod U_{\alpha}$ be a basis element of the product topology. We have that $U = X_{\alpha}$ for all $\alpha \in I \{\alpha_1, \ldots, \alpha_n\}$.

- Now, let X_{α} be a connected space, for $\alpha \in I$. We want to prove that $\prod_{\alpha} X_{\alpha}$ is connected. Choose $b = (b_{\alpha}) \in X$.
- Given $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$, we define $X(\alpha_1, \ldots, \alpha_n)$ as the subspace of X with points such that $x_{\alpha} = b_{\alpha}$ for $\alpha \notin \{\alpha_1, \ldots, \alpha_n\}$.
- We have that $X(\alpha_1, \ldots, \alpha_n)$ is homeomorphic to $X_{\alpha_1} \times \cdots \times X_{\alpha_n}$, and so it is connected.
- Let Y be the subspace of X that is the union of all $X(\alpha_1, \ldots, \alpha_n)$, for $\{\alpha_1, \ldots, \alpha_n\} \subseteq I$ finite. Then Y is connected, as is the union of connected spaces with the point b in common.
- We finally prove that $\overline{Y} = X$. Let $x = (x_{\alpha}) \in X$, and $U = \prod U_{\alpha}$ be a basis element of the product topology. We have that $U = X_{\alpha}$ for all $\alpha \in I \{\alpha_1, \ldots, \alpha_n\}$.
- Let $y=(y_{\alpha})$ defined as $y_{\alpha}=x_{\alpha}$ for $\alpha\in\{\alpha_1,\ldots,\alpha_n\}$, and $y_{\alpha}=b_{\alpha}$ otherwise. Then $y\in X(\alpha_1,\ldots,\alpha_n)$, so $Y\cap U\neq\emptyset$.

Definition

A totally ordered set L is called a <u>linear continuum</u> if it satisfies the following:

Definition

A totally ordered set L is called a <u>linear continuum</u> if it satisfies the following:

• L has the least upper bound property.

Definition

A totally ordered set L is called a <u>linear continuum</u> if it satisfies the following:

- L has the least upper bound property.
- If x < y, there is z such that x < z < y.

Definition

A totally ordered set L is called a <u>linear continuum</u> if it satisfies the following:

- L has the least upper bound property.
- If x < y, there is z such that x < z < y.

Theorem

If L is a linear continuum, then L is connected in the order topology. (Hence, every interval and every ray in L is connected.)

• We say that a subset $Y \subseteq L$ is convex if $a, b \in Y$ with a < b implies $[a, b] \subseteq Y$. We will prove that any convex subset Y of L is connected.

- We say that a subset $Y \subseteq L$ is convex if $a, b \in Y$ with a < b implies $[a, b] \subseteq Y$. We will prove that any convex subset Y of L is connected.
- Suppose that $Y = A \cup B$, with A, B open in Y, disjoint and nonempty. Let $a \in A$, $b \in B$, and assume that a < b.

- We say that a subset $Y \subseteq L$ is convex if $a, b \in Y$ with a < b implies $[a, b] \subseteq Y$. We will prove that any convex subset Y of L is connected.
- Suppose that $Y = A \cup B$, with A, B open in Y, disjoint and nonempty. Let $a \in A$, $b \in B$, and assume that a < b.
- Since Y is convex, we have $[a, b] \subseteq Y$. Then [a, b] is the union of the disjoint nonempty sets A_0 , B_0 given by:

$$A_0 = A \cap [a, b]$$
 $B_0 = B \cap [a, b]$

- We say that a subset $Y \subseteq L$ is convex if $a, b \in Y$ with a < b implies $[a, b] \subseteq Y$. We will prove that any convex subset Y of L is connected.
- Suppose that $Y = A \cup B$, with A, B open in Y, disjoint and nonempty. Let $a \in A$, $b \in B$, and assume that a < b.
- Since Y is convex, we have $[a, b] \subseteq Y$. Then [a, b] is the union of the disjoint nonempty sets A_0 , B_0 given by:

$$A_0 = A \cap [a, b]$$
 $B_0 = B \cap [a, b]$

• Note that A_0 , B_0 are open in [a, b], and thus form a separation of [a, b].

- We say that a subset $Y \subseteq L$ is convex if $a, b \in Y$ with a < b implies $[a, b] \subseteq Y$. We will prove that any convex subset Y of L is connected.
- Suppose that $Y = A \cup B$, with A, B open in Y, disjoint and nonempty. Let $a \in A$, $b \in B$, and assume that a < b.
- Since Y is convex, we have $[a, b] \subseteq Y$. Then [a, b] is the union of the disjoint nonempty sets A_0 , B_0 given by:

$$A_0 = A \cap [a, b]$$
 $B_0 = B \cap [a, b]$

- Note that A_0 , B_0 are open in [a, b], and thus form a separation of [a, b].
- The interval [a, b] is a subspace of L. Therefore the topology on [a, b] is the order topology.

- We say that a subset $Y \subseteq L$ is convex if $a, b \in Y$ with a < b implies $[a, b] \subseteq Y$. We will prove that any convex subset Y of L is connected.
- Suppose that $Y = A \cup B$, with A, B open in Y, disjoint and nonempty. Let $a \in A$, $b \in B$, and assume that a < b.
- Since Y is convex, we have $[a, b] \subseteq Y$. Then [a, b] is the union of the disjoint nonempty sets A_0 , B_0 given by:

$$A_0 = A \cap [a, b]$$
 $B_0 = B \cap [a, b]$

- Note that A_0 , B_0 are open in [a, b], and thus form a separation of [a, b].
- The interval [a, b] is a subspace of L. Therefore the topology on [a, b] is the order topology.
- Let $c = \sup A_0$. Then $c \in [a, b]$.

• Suppose $c \in B_0$. Given that $c \neq a$, we have that either c = b or $c \in (a, b)$.

- Suppose $c \in B_0$. Given that $c \neq a$, we have that either c = b or $c \in (a, b)$.
- In any case, we have that there is $d \in [a, b]$ such that $(d, c] \subseteq B_0$.

- Suppose $c \in B_0$. Given that $c \neq a$, we have that either c = b or $c \in (a, b)$.
- In any case, we have that there is $d \in [a, b]$ such that $(d, c] \subseteq B_0$.
- Hence d is an upper bound of A_0 , which contradicts the choice of c.

- Suppose $c \in B_0$. Given that $c \neq a$, we have that either c = b or $c \in (a, b)$.
- In any case, we have that there is $d \in [a, b]$ such that $(d, c] \subseteq B_0$.
- Hence d is an upper bound of A_0 , which contradicts the choice of c.
- Then $c \in A_0$. Given that $c \neq b$, we have that either c = a or $c \in (a, b)$.

- Suppose $c \in B_0$. Given that $c \neq a$, we have that either c = b or $c \in (a, b)$.
- In any case, we have that there is $d \in [a, b]$ such that $(d, c] \subseteq B_0$.
- Hence d is an upper bound of A_0 , which contradicts the choice of c.
- Then $c \in A_0$. Given that $c \neq b$, we have that either c = a or $c \in (a, b)$.
- In any case, we have that there is d such that $[c, d) \subseteq A_0$.

- Suppose $c \in B_0$. Given that $c \neq a$, we have that either c = b or $c \in (a, b)$.
- In any case, we have that there is $d \in [a, b]$ such that $(d, c] \subseteq B_0$.
- Hence d is an upper bound of A_0 , which contradicts the choice of c.
- Then $c \in A_0$. Given that $c \neq b$, we have that either c = a or $c \in (a, b)$.
- In any case, we have that there is d such that $[c, d) \subseteq A_0$.
- By Property 2 of linear continuum, there is z such that c < z < d. But this contradicts that c is upper bound of A_0 .

Connected subsets of $\mathbb R$

Corollary

 $\mathbb R$ is connected, and so is every interval and ray in $\mathbb R$.

Connected subsets of $\mathbb R$

Corollary

 $\mathbb R$ is connected, and so is every interval and ray in $\mathbb R$.

Theorem

If X and Y are linear continuum, and Y is bounded above and below, then $X \times Y$ is a linear continuum with dictionary order.

Intermediate value theorem

Theorem

Let $f: X \to Y$ be a continuous map, where X is connected and Y is ordered and has the order topology. Suppose that $a, b \in X$ and $y \in Y$ are such that f(a) < y < f(b). Then there is $c \in X$ such that f(c) = y.

• A path on a space X from $x \in X$ to $y \in X$ is a continuous function $f: [a, b] \to X$ from some interval $[a, b] \subseteq \mathbb{R}$, such that f(a) = x, f(b) = y.

- A path on a space X from $x \in X$ to $y \in X$ is a continuous function $f: [a, b] \to X$ from some interval $[a, b] \subseteq \mathbb{R}$, such that f(a) = x, f(b) = y.
- A space X is path-connected if for every $x, y \in X$ there is a path from x to y.

- A path on a space X from $x \in X$ to $y \in X$ is a continuous function $f: [a, b] \to X$ from some interval $[a, b] \subseteq \mathbb{R}$, such that f(a) = x, f(b) = y.
- A space X is path-connected if for every $x, y \in X$ there is a path from x to y.

Theorem

If X is path-connected, then it is connected.

- A path on a space X from $x \in X$ to $y \in X$ is a continuous function $f: [a, b] \to X$ from some interval $[a, b] \subseteq \mathbb{R}$, such that f(a) = x, f(b) = y.
- A space X is path-connected if for every $x, y \in X$ there is a path from x to y.

Theorem

If X is path-connected, then it is connected.

Examples

The converse is not true, see $[0, 1] \times [0, 1]$ with dictionary order and the *deleted comb space*.