- Base Model
 - The foundation of predation modelling
 - Simple nonlinear system: 4 parameters
 - Easy to analyze
 - All solutions are centers
 - Accurate?... generally not
 - O What can we do to improve it?
- Logistic Lotka-Volterra (LLV)
 - Logistic growth: Constrain resources of the prey (a more realistic assumption)
 - o Still a somewhat simple model
 - Varied dynamics saddles, nodes, spirals
 - No periodic solutions!
- Food Chain System
 - Extension to 3 dimensions
 - A given species almost always interacts with more than one other species
 - Varied dynamics centers, stable/unstable spirals
 - Non-isolated fixed points!

$$\dot{x} = \alpha x - \beta x y$$

$$\dot{y} = \delta xy - \gamma y$$

$$\dot{x} = \alpha x \left(1 - \frac{x}{k} \right) - \beta x y$$

$$\dot{y} = \delta xy - \gamma y$$

$$\dot{x} = \alpha x - \beta x y$$

$$\dot{y} = \delta xy - \gamma y - \mu zy$$

$$\dot{z} = nyz - pz$$

Linear analysis was applied to the fixed points of each system in order to determine stability and behavior

To get a a better idea of the structure of the system, numerical integration was used to plot solutions and phase portraits

Base Model

LLV

Food Chain

