Physik für Mediziner

Prof. Jürg Osterwalder HS 2011

Michal Sudwoj

Geschrieben in Xel¥TEX

Inhaltsverzeichnis

l	Vorlesungsnotizen														
0	Wozu Physik für Mediziner?														
1	Mec 1.1	hanik Kinema 1.1.1 1.1.2 1.1.3 1.1.4	atik	5 5 6 6 6 6											
II	An	hänge		8											
Index															
Tol	Oo .			10											

Michal Sudwoj 1 Stand: 20. September 2011

Teil I Vorlesungsnotizen

Kapitel o

Wozu Physik für Mediziner?

Physik = Lehre der Naturgesetze

1. Mensch & Tier: Teil der Natur \rightarrow Verständnis des Organismus

Bsp.:

- Hüftgelenk → Mechanik, Festigkeitslehre
- Auge → Optik
- Reizübertragung (Nerven) → Elekrizität
- Blutzirkulation → Strömungslehre
- 2. Diagnostik-/Theraoiewerkzeuge \rightarrow physikalische Apparate

Bsp.:

- Röntgenapparatur, CT, MRI \rightarrow Verstehen der Resultate \rightarrow Schutz von Patient + Personal
- 3. Besondere Berufsbilder

@**(1)**

KAPITEL O. WOZU PHYSIK FÜR MEDIZINER?

- Gerichtsmediziner
- Sicherheit, Unfallverhütung
- Strahlenschutz
- 4. Analytisches Denken! Probleme lösen: (Diagnose, Entscheidungen treffen)

Michal Sudwoj **©(1)** 4

Kapitel 1

Mechanik

1.1 Kinematik

Beschreibung von Bewegungen einfachster Fall:

- geradlinige Bahn (1D)
- gleichförmige Bewegung

1.1.1 Weg-Zeit-Diagramm

$$\tan \alpha = \frac{\Delta s}{\Delta t} \stackrel{!}{=} v$$

 $\mathsf{konst}.\,\mathsf{Steigung}\,\mathsf{von}\,s(t) \implies \mathsf{konst}.\,v$

1.1.2 Geschwindigkeit

Def.: Geschwindigkeit:

$$v = \frac{\Delta s}{\Delta t}$$
$$[v] = \frac{m}{s}$$

1.1.3 Geschwindigkeits-Zeit Diagramm

Graph

$$v(t)=rac{\Delta s}{\Delta t}$$
 Fläche $=v\cdot\Delta t=\Delta s\,!\,=\,$ zurückgelegter Weg

1.1.4 Nicht-gleichförmige Bewegungen

 $\label{eq:Graph_Constraint}$ Geschwindigkeit v(t)

$$\overline{v}=rac{\Delta s}{\Delta t}= ext{ mittlere Geschwindigkeit zw. }t_1 ext{ und }t_2$$
 $v(t_1)=\lim_{t_1 o t_2}rac{\Delta s}{\Delta t} \underset{ ext{Math.}}{=} s'(t)$ $v(t)=s'(t)$

Schreibweise

$$\Delta t \rightsquigarrow dt$$

$$v(t) = s'(t) =: \frac{ds}{dt}$$

1. Ableitung

v(t): Momentangeschwindigkeit

Bsp.: v nimmt gleichmässig zu:

Graph

Fläche
$$\stackrel{!}{\underset{\mathsf{Math.}}{=}} \int_{t_1}^{t_2} v(t) \, \mathrm{d}t$$

Graph_Änderung der Geschwindigkeit mit der Zeit:

Def.: Beschleunigung:

$$a = \frac{\Delta v}{\Delta t}$$
$$[a] = \frac{m}{s^2}$$

Fall:

- gleichförmige Beschleunigung: $a={\sf konst.}$
- beliebige Funktion a(t)

Graph_analog:

$$a(t) = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$a(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}s}{\mathrm{d}t}\right) = s''(t) =: \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$$

Teil II Anhänge

Index

Beschleunigung, **7**

Geschwindigkeit, **6**

Todo list

Diagram	 •						•	•	•	•				•			•			5
Graph	 																			5
Graph																				
Graph	 																			6
Graph																				7
Graph																				