Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
```

Importing Datasets

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\stations
df

Out[2]:

	id	name	address	lon	lat	elevation
0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
19	28079056	Pza. Fernández Ladreda	Pza. Fernández Ladreda - Avda. Oporto	-3.718728	40.384964	604
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

Data Cleaning and Data Preprocessing

```
df=df.dropna()
In [3]:
In [4]: df.columns
Out[4]: Index(['id', 'name', 'address', 'lon', 'lat', 'elevation'], dtype='object')
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 24 entries, 0 to 23
        Data columns (total 6 columns):
                        Non-Null Count Dtype
             Column
                        -----
                                       ----
         0
             id
                        24 non-null
                                        int64
         1
                        24 non-null
                                        object
             name
         2
             address
                        24 non-null
                                        object
         3
             lon
                        24 non-null
                                        float64
         4
             lat
                        24 non-null
                                       float64
             elevation 24 non-null
                                       int64
        dtypes: float64(2), int64(2), object(2)
        memory usage: 1.3+ KB
```

```
In [6]: data=df[['id', 'lon']]
data
```

Out[6]:

	id	lon
0	28079004	-3.712247
1	28079008	-3.682319
2	28079011	-3.677356
3	28079016	-3.639233
4	28079017	-3.713322
5	28079018	-3.731853
6	28079024	-3.747347
7	28079027	-3.580031
8	28079035	-3.703172
9	28079036	-3.645306
10	28079038	-3.707128
11	28079039	-3.711542
12	28079040	-3.651522
13	28079047	-3.686825
14	28079048	-3.690367
15	28079049	-3.682583
16	28079050	-3.688769
17	28079054	-3.612117
18	28079055	-3.580747
19	28079056	-3.718728
20	28079057	-3.660503
21	28079058	-3.774611
22	28079059	-3.609072
23	28079060	-3.689761

Line chart

In [7]: data.plot.line(subplots=True)

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [8]: data.plot.line()

Out[8]: <AxesSubplot:>

Bar chart

In [9]: b=data[0:50]

```
In [10]: b.plot.bar()
```

Out[10]: <AxesSubplot:>

Histogram

In [11]: data.plot.hist()

Out[11]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [12]: data.plot.area()
```

Out[12]: <AxesSubplot:>

Box chart

```
In [13]: data.plot.box()
```

Out[13]: <AxesSubplot:>

Pie chart

```
In [16]: b.plot.pie(y='id')
```

Out[16]: <AxesSubplot:ylabel='id'>

Scatter chart

```
In [17]: data.plot.scatter(x='id' ,y='lon')
```

Out[17]: <AxesSubplot:xlabel='id', ylabel='lon'>


```
In [18]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 24 entries, 0 to 23
          Data columns (total 6 columns):
                           Non-Null Count Dtype
           #
               Column
           0
               id
                           24 non-null
                                             int64
           1
               name
                           24 non-null
                                             object
           2
               address
                           24 non-null
                                             object
           3
               lon
                           24 non-null
                                             float64
           4
               lat
                           24 non-null
                                             float64
               elevation 24 non-null
                                             int64
          dtypes: float64(2), int64(2), object(2)
          memory usage: 1.3+ KB
In [19]: df.describe()
Out[19]:
                           id
                                   lon
                                             lat
                                                   elevation
           count 2.400000e+01 24.000000 24.000000
                                                  24.000000
           mean 2.807904e+07
                             -3.679019 40.434616 658.333333
             std 1.799094e+01
                              0.049324
                                        0.043022
                                                  38.295949
            min 2.807900e+07
                              -3.774611 40.347139
                                                 599.000000
            25% 2.807902e+07
                              -3.711718 40.405489
                                                 625.500000
            50%
                2.807904e+07
                              -3.687797 40.431875
                                                 661.000000
            75% 2.807905e+07
                              -3.649968 40.465331
                                                 687.000000
            max 2.807906e+07 -3.580031 40.518058 728.000000
In [20]: | df1=df[['id', 'name', 'address', 'lon', 'lat', 'elevation']]
```

EDA AND VISUALIZATION

In [21]: sns.pairplot(df1[0:50])

Out[21]: <seaborn.axisgrid.PairGrid at 0x1814e1f27f0>


```
In [24]: | sns.distplot(df1['id'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWar
ning: `distplot` is a deprecated function and will be removed in a future version.
Please adapt your code to use either `displot` (a figure-level function with simila
r flexibility) or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)

Out[24]: <AxesSubplot:xlabel='id', ylabel='Density'>

In [25]: sns.heatmap(df1.corr())

Out[25]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [26]: x=df[['id']]
  y=df['elevation']

In [27]: from sklearn.model_selection import train_test_split
  x train,x test,y train,y test=train test split(x,y,test size=0.3)
```

Linear Regression

```
In [28]:
         from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[28]: LinearRegression()
In [29]: | lr.intercept
Out[29]: -10043641.837007152
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[30]:
             Co-efficient
               0.357715
          id
         prediction =lr.predict(x_test)
         plt.scatter(y test,prediction)
Out[31]: <matplotlib.collections.PathCollection at 0x18150ae9bb0>
```


ACCURACY

```
In [32]: lr.score(x_test,y_test)
Out[32]: -0.4286690092552836
In [33]: lr.score(x_train,y_train)
Out[33]: 0.03214202174913028
```

Ridge and Lasso

```
In [34]: from sklearn.linear_model import Ridge,Lasso
In [35]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[35]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
In [36]: rr.score(x_test,y_test)
Out[36]: -0.4283479389212217

In [37]: rr.score(x_train,y_train)
Out[37]: 0.03214190424205121

In [38]: la=Lasso(alpha=10)
    la.fit(x_train,y_train)
Out[38]: Lasso(alpha=10)
In [39]: la.score(x_test,y_test)
Out[39]: -0.4144698759213483
```

Accuracy(Lasso)

```
In [40]: la.score(x_train,y_train)
Out[40]: 0.0319060238163732
```

Accuracy(Elastic Net)

```
In [41]: from sklearn.linear_model import ElasticNet
     en=ElasticNet()
     en.fit(x_train,y_train)

Out[41]: ElasticNet()

In [42]: en.coef_
Out[42]: array([0.35563738])

In [43]: en.intercept_
Out[43]: -9985303.982509833
```

```
In [44]: prediction=en.predict(x_test)
In [45]: en.score(x_test,y_test)
Out[45]: -0.42769432950583486
```

Evaluation Metrics

```
In [46]: from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

37.17529917322099
1939.8796702160532
```

Logistic Regression

44.0440650964015

```
In [47]: from sklearn.linear model import LogisticRegression
In [48]:
         feature_matrix=df[['id']]
         target_vector=df[ 'elevation']
In [49]: | feature_matrix.shape
Out[49]: (24, 1)
In [50]: | target_vector.shape
Out[50]: (24,)
In [51]:
         from sklearn.preprocessing import StandardScaler
In [52]: | fs=StandardScaler().fit_transform(feature_matrix)
In [53]:
         logr=LogisticRegression(max_iter=10000)
         logr.fit(fs,target_vector)
Out[53]: LogisticRegression(max iter=10000)
In [54]: observation=[[1]]
         prediction=logr.predict(observation)
In [55]:
         print(prediction)
         [604]
```

Random Forest

```
In [60]: | from sklearn.ensemble import RandomForestClassifier
In [61]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[61]: RandomForestClassifier()
In [62]: | parameters={'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n estimators':[10,20,30,40,50]
In [63]:
         from sklearn.model selection import GridSearchCV
         grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model selection\ split.py:666: U
         serWarning: The least populated class in y has only 1 members, which is less than n
         _splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[63]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [64]: grid search.best score
Out[64]: 0.125
```

```
In [65]: rfc_best=grid_search.best_estimator_
In [66]: from sklearn.tree import plot_tree
    plt.figure(figsize=(80,40))
    plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','o']
Out[66]: [Text(2232.0, 1087.2, 'gini = 0.875\nsamples = 9\nvalue = [3, 0, 1, 2, 2, 0, 0, 2, 0, 2, 2, 1, 0, 1\n0]\nclass = a')]
```

Conclusion

Accuracy

Linear Regression:0.03214202174913028

Ridge Regression:0.03214190424205121

Lasso Regression:0.0319060238163732

ElasticNet Regression:-0.42769432950583486

Logistic Regression:0.1666666666666666

Random Forest:0.125

Logistic Regression is suitable for this dataset