

Этикетка

Микросхема 1564ТМ7ТЭП

КСНЛ.431253.004 ЭТ

Микросхема интегральная 1564ТМ7ТЭП Функциональное назначение: 4-х разрядная защелка

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Таблица назначения выводов

No	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	1 Q 1	Инверсный выход 1-го триггера 1-ой группы	9	2Q2	Выход 2-го триггера 2-ой группы
2	1D1	Вход 1-го триггера 1-ой группы	10	2Q1	Вход 1-го триггера 2-ой группы
3	1D2	Вход 2-го триггера 1-ой группы	11	$2\overline{\overline{Q}}1$	Инверсный выход 1-го триггера 2-ой группы
4	2CLK	Управление 2-ой группой триггеров	12	0V	Общий
5	V_{CC}	Питание	13	1CLK	Управление 1-ой группой триггеров
6	2D1	Вход 1-го триггера 2-ой группы	14	$1\overline{Q}2$	Инверсный выход 2-го триггера 1-ой группы
7	2D2	Вход 2-го триггера 2-ой группы	15	1Q2	Выход 2-го триггера 1-ой группы
8	2\overline{Q2}	Инверсный выход 2-го триггера 2-ой группы	16	1Q1	Выход 1-го триггера 1-ой группы

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

Наименование параметра, единица измерения, режим измерения	Буквенное		Норма	
	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B I_{O} = 20 MKA	$U_{ m OL\; max}$	-	0,10	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 мкА		-	0,10	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} =4,0 MA		-	0,26	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		-	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$ m U_{OHmin}$	1,9	-	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 mkA		4,4	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		3,98	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		5,48	-	
3. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/	
4. Входной ток высокого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$ m I_{IH}$	-	0,1	
5. Ток потребления, мкА, при				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	3,0	
6. Динамический ток потребления, мА, при:				
$U_{CC} = 6.0 \text{ B}, f = 1.0 \text{ M}\Gamma_{II}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{OCC}	-	1,0	

8. Время задержки распространения при включении и выключении, нс,			
при: $U_{CC} = 2,0 \text{ B, } C_L = 50 \Pi \Phi$	t _{PHL1,} t _{PLH1}	-	175
	t _{PHL2,} t _{PLH2}	-	154
	t _{PHL3} , t _{PLH3}	-	203
	t _{PHL4} , t _{PLH4}	-	175
$U_{CC} = 4,5 \text{ B, } C_L = 50 \text{ п}\Phi$	t _{PHL1} , t _{PLH1}	-	35
	t _{PHL2} , t _{PLH2}	-	31
	t _{PHL3} , t _{PLH3}	-	41
	t _{PHL4} , t _{PLH4}	-	35
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$	t _{PHL1} , t _{PLH1} t _{PHL2} , t _{PLH2} t _{PHL3} , t _{PLH3} t _{PHL4} , t _{PLH4}	- - -	34 27 35 31
9. Входная емкость, п Φ , при: $U_{CC} = 0$ В	C _I	-	15 (входы 4, 13) 10 (входы 2, 3, 6, 7)

Время задержки распространения сигнала при включении и выключении, t_{PHL} , t_{PLH}

 $t_{PHL,1}, t_{PLH1}$ – от входа данных D к выходу Q $t_{PHL,2}, t_{PLH2}$ – от входа данных D к выходу \overline{Q} t_{PHL3}, t_{PLH3} – от входа разрешения CLK к выходу Q t_{PHL4}, t_{PLH4} – от входа разрешения CLK к выходу \overline{Q}

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г. в том числе: г/мм на 16 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-15ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТМ7ТЭП соответствуют техническим условиям АЕЯР.431200.424-15ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по от от дата)	
Место для питампа ОТК	Место для штампа П

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.