Python是著名的"龟叔"Guido van Rossum在1989年圣诞节期间,为了打发无聊的圣诞节而编写的一个编程语言。

现在,全世界差不多有600多种编程语言,但流行的编程语言也就那么20来种。如果你听说过TIOBE排行榜,你就能知道编程语言的大致流行程度。这是最近10年最常用的10种编程语言的变化图:

总的来说,这几种编程语言各有千秋。C语言是可以用来编写操作系统的贴近硬件的语言,所以,C语言适合开发那些追求运行速度、充分发挥硬件性能的程序。而Python是用来编写应用程序的高级编程语言。

当你用一种语言开始作真正的软件开发时,你除了编写代码外,还需要很多基本的已经写好的现成的东西,来帮助你加快开发进度。比如说,要编写一个电子邮件客户端,如果先从最底层开始编写网络协议相关的代码,那估计一年半载也开发不出来。高级编程语言通常都会提供一个比较完善的基础代码库,让你能直接调用,比如,针对电子邮件协议的SMTP库,针对桌面环境的GUI库,在这些已有的代码库的基础上开发,一个电子邮件客户端几天就能开发出来。

Python就为我们提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作"内置电池(batteries included)"。用Python开发,许多功能不必从零编写,直接使用现成的即可。

除了内置的库外,Python还有大量的第三方库,也就是别人开发的,供你直接使用的东西。当然,如果你开发的代码通过很好的封装,也可以作为第三方库给别人使用。

许多大型网站就是用Python开发的,例如YouTube、<u>Instagram</u>,还有国内的<u>豆瓣</u>。很多大公司,包括Google、Yahoo等, 甚至<u>NASA</u>(美国航空航天局)都大量地使用Python。

龟叔给Python的定位是"优雅"、"明确"、"简单",所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序。

总的来说,Python的哲学就是简单优雅,尽量写容易看明白的代码,尽量写少的代码。如果一个资深程序员向你炫耀他写的晦涩难懂、动不动就几万行的代码,你可以尽情地嘲笑他。

那Python适合开发哪些类型的应用呢?

首选是网络应用,包括网站、后台服务等等;

其次是许多日常需要的小工具,包括系统管理员需要的脚本任务等等;

另外就是把其他语言开发的程序再包装起来,方便使用。

最后说说Python的缺点。

任何编程语言都有缺点, Python也不例外。优点说过了, 那Python有哪些缺点呢?

第一个缺点就是运行速度慢,和C程序相比非常慢,因为Python是解释型语言,你的代码在执行时会一行一行地翻译成CPU能理解的机器码,这个翻译过程非常耗时,所以很慢。而C程序是运行前直接编译成CPU能执行的机器码,所以非常快。

但是大量的应用程序不需要这么快的运行速度,因为用户根本感觉不出来。例如开发一个下载MP3的网络应用程序,C程序的运行时间需要0.001秒,而Python程序的运行时间需要0.1秒,慢了100倍,但由于网络更慢,需要等待1秒,你想,用户能感觉到1.001秒和1.1秒的区别吗?这就好比F1赛车和普通的出租车在北京三环路上行驶的道理一样,虽然F1赛车理论时速高达400公里,但由于三环路堵车的时速只有20公里,因此,作为乘客,你感觉的时速永远是20公里。

第二个缺点就是代码不能加密。如果要发布你的Python程序,实际上就是发布源代码,这一点跟C语言不同,C语言不用发布源代码,只需要把编译后的机器码(也就是你在Windows上常见的xxx.exe文件)发布出去。要从机器码反推出C代码是不可能的,所以,凡是编译型的语言,都没有这个问题,而解释型的语言,则必须把源码发布出去。

这个缺点仅限于你要编写的软件需要卖给别人挣钱的时候。好消息是目前的互联网时代,靠卖软件授权的商业模式越来越少了,靠网站和移动应用卖服务的模式越来越多了,后一种模式不需要把源码给别人。

再说了,现在如火如荼的开源运动和互联网自由开放的精神是一致的,互联网上有无数非常优秀的像Linux一样的开源代码,我们千万不要高估自己写的代码真的有非常大的"商业价值"。那些大公司的代码不愿意开放的更重要的原因是代码写得太烂了,一旦开源,就没人敢用他们的产品了。

大家都那么忙, 哪有阔功夫破解你的烂代码

当然, Python还有其他若干小缺点,请自行忽略,就不一一列举了。

因为Python是跨平台的,它可以运行在Windows、Mac和各种Linux/Unix系统上。在Windows上写Python程序,放到Linux上也是能够运行的。

要开始学习Python编程,首先就得把Python安装到你的电脑里。安装后,你会得到Python解释器(就是负责运行Python程序的),一个命令行交互环境,还有一个简单的集成开发环境。

2.x还是3.x

目前,Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的,因为现在Python正在朝着3.x版本进化,在进化过程中,大量的针对2.x版本的代码要修改后才能运行,所以,目前有许多第三方库还暂时无法在3.x上使用。

为了保证你的程序能用到大量的第三方库,我们的教程仍以2.x版本为基础,确切地说,是2.7版本。请确保你的电脑上安装的Python版本是2.7.x,这样,你才能无痛学习这个教程。

在Mac上安装Python

如果你正在使用Mac,系统是OS X 10.8或者最新的10.9 Mavericks,恭喜你,系统自带了Python 2.7。如果你的系统版本低于10.8,请自行备份系统并免费升级到最新的10.9,就可以获得Python 2.7。

查看系统版本的办法是点击左上角的苹果图标,选择"关于本机":

在Linux上安装Python

如果你正在使用Linux,那我可以假定你有Linux系统管理经验,自行安装Python 2.7应该没有问题,否则,请换回Windows系统。

对于大量的目前仍在使用Windows的同学,如果短期内没有打算换Mac,就可以继续阅读以下内容。

在Windows上安装Python

首先,从Python的官方网站python.org下载最新的2.7版本,网速慢的同学请移步国内镜像。

然后,运行下载的MSI安装包,在选择安装组件的一步时,勾上所有的组件:

特别要注意选上pip和Add python.exe to Path,然后一路点"Next"即可完成安装。

默认会安装到c:\Python27目录下,然后打开命令提示符窗口, 敲入python后, 会出现两种情况:情况一:

看到上面的画面,就说明Python安装成功!

你看到提示符>>>就表示我们已经在Python交互式环境中了,可以输入任何Python代码,回车后会立刻得到执行结果。 现在,输入exit()并回车,就可以退出Python交互式环境(直接关掉命令行窗口也可以!)。

情况二:得到一个错误:

'python'不是内部或外部命令,也不是可运行的程序或批处理文件。

这是因为Windows会根据一个Path的环境变量设定的路径去查找python.exe,如果没找到,就会报错。如果在安装时

漏掉了勾选Add python.exe to Path,那就要手动把python.exe所在的路径C:\Python27添加到Path中。如果你不知道怎么修改环境变量,建议把Python安装程序重新运行一遍,记得勾上Add python.exe to Path。 小结

学会如何把Python安装到计算机中,并且熟练打开和退出Python交互式环境。

当我们编写Python代码时,我们得到的是一个包含Python代码的以.py为扩展名的文本文件。要运行代码,就需要Python解释器去执行.py文件。

由于整个Python语言从规范到解释器都是开源的,所以理论上,只要水平够高,任何人都可以编写Python解释器来执行Python代码(当然难度很大)。事实上,确实存在多种Python解释器。

CPython

当我们从<u>Python官方网站</u>下载并安装好Python 2.7后,我们就直接获得了一个官方版本的解释器: CPython。这个解释器是用C语言开发的,所以叫CPython。在命令行下运行python就是启动CPython解释器。

CPython是使用最广的Python解释器。教程的所有代码也都在CPython下执行。

IPython

IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。

CPython用>>>作为提示符,而IPython用In [序号]:作为提示符。

PyPy

PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用<u>JIT技术</u>,对Python代码进行动态编译(注意不是解释),所以可以显著提高Python代码的执行速度。

绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解<u>PyPy和CPython的不同点</u>。

Jython

Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。

IronPython

IronPython和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。

小结

Python的解释器很多,但使用最广泛的还是CPython。如果要和Java或.Net平台交互,最好的办法不是用Jython或 IronPython,而是通过网络调用来交互,确保各程序之间的独立性。

本教程的所有代码只确保在CPython 2.7版本下运行。请务必在本地安装CPython(也就是从Python官方网站下载的安装程序)。

此外,教程还内嵌一个IPython的Web版本,用来在浏览器内练习执行一些Python代码。要注意两者功能一样,输入的代码一样,但是提示符有所不同。另外,不是所有代码都能在Web版本的IPython中执行,出于安全原因,很多操作(比如文件操作)是受限的,所以有些代码必须在本地环境执行代码。

现在,了解了如何启动和退出Python的交互式环境,我们就可以正式开始编写Python代码了。

在写代码之前,请千万不要用"复制"-"粘贴"把代码从页面粘贴到你自己的电脑上。写程序也讲究一个感觉,你需要一个字母一个字母地把代码自己敲进去,在敲代码的过程中,初学者经常会敲错代码,所以,你需要仔细地检查、对照,才能以最快的速度掌握如何写程序。

在交互式环境的提示符>>>下,直接输入代码,按回车,就可以立刻得到代码执行结果。现在,试试输入100+200,看看计算结果是不是300:

>>> 100+200 300

很简单吧, 任何有效的数学计算都可以算出来。

如果要让Python打印出指定的文字,可以用print语句,然后把希望打印的文字用单引号或者双引号括起来,但不能混用单引号和双引号:

>>> print 'hello, world' hello, world

这种用单引号或者双引号括起来的文本在程序中叫字符串,今后我们还会经常遇到。

最后,用exit()退出Python,我们的第一个Python程序完成!唯一的缺憾是没有保存下来,下次运行时还要再输入一遍代码。

小结

在Python交互式命令行下,可以直接输入代码,然后执行,并立刻得到结果。

在Python的交互式命令行写程序,好处是一下就能得到结果,坏处是没法保存,下次还想运行的时候,还得再敲一遍。

所以,实际开发的时候,我们总是使用一个文本编辑器来写代码,写完了,保存为一个文件,这样,程序就可以反复 运行了。

现在,我们就把上次的'hello, world'程序用文本编辑器写出来,保存下来。

那么问题来了: 文本编辑器到底哪家强?

推荐两款文本编辑器:

一个是Sublime Text,免费使用,但是不付费会弹出提示框:

一个是Notepad++,免费使用,有中文界面:

请注意,用哪个都行,但是<mark>绝对不能用Word和Windows自带的记事本。Word</mark>保存的不是纯文本文件,而记事本会自作聪明地在文件开始的地方加上几个特殊字符(UTF-8 BOM),结果会导致程序运行出现莫名其妙的错误。

安装好文本编辑器后,输入以下代码:

print 'hello, world'

注意print前面不要有任何空格。然后,选择一个目录,例如C:\Workspace,把文件保存为hello.py,就可以打开命令行窗口,把当前目录切换到hello.py所在目录,就可以运行这个程序了:

C:\Workspace>python hello.py
hello, world

也可以保存为别的名字,比如abc.py,但是必须要以.py结尾,其他的都不行。此外,文件名只能是英文字母、数字和下划线的组合。

如果当前目录下没有hello.py这个文件,运行python hello.py就会报错:

python hello.py
python: can't open file 'hello.py': [Errno 2] No such file or directory

报错的意思就是,无法打开hello.py这个文件,因为文件不存在。这个时候,就要检查一下当前目录下是否有这个文件了。

请注意区分命令行模式和Python交互模式:

看到类似c:\>是在Windows提供的命令行模式,看到>>>是在Python交互式环境下。

在命令行模式下,可以执行python进入Python交互式环境,也可以执行python hello.py运行一个.py文件,但是在Python交互式环境下,只能输入Python代码执行。

直接运行py文件

还有同学问,能不能像.exe文件那样直接运行.py文件呢?在Windows上是不行的,但是,在Mac和Linux上是可以的,方法是在.py文件的第一行加上:

#!/usr/bin/env python

然后,通过命令:

\$ chmod a+x hello.py

就可以直接运行hello.py了,比如在Mac下运行:

```
Last login: Sun Dec 15 18:44:13 on ttys000
Mavericks:~ michael$ ./hello.py
hello, world
Mavericks:~ michael$
```

小结

用文本编辑器写Python程序,然后保存为后缀为.py的文件,就可以用Python直接运行这个程序了。

Python的交互模式和直接运行.py文件有什么区别呢?

直接输入python进入交互模式,相当于启动了Python解释器,但是等待你一行一行地输入源代码,每输入一行就执行一行。

直接运行.py文件相当于启动了Python解释器,然后一次性把.py文件的源代码给执行了,你是没有机会输入源代码的。

用Python开发程序,完全可以一边在文本编辑器里写代码,一边开一个交互式命令窗口,在写代码的过程中,把部分代码粘到命令行去验证,事半功倍!前提是得有个27'的超大显示器!

输出

用print加上字符串,就可以向屏幕上输出指定的文字。比如输出'hello, world',用代码实现如下:

>>> print 'hello, world'

print语句也可以跟上多个字符串,用逗号";"隔开,就可以连成一串输出:

>>> print 'The quick brown fox', 'jumps over', 'the lazy dog'
The quick brown fox jumps over the lazy dog

print会依次打印每个字符串,遇到逗号","会输出一个空格,因此,输出的字符串是这样拼起来的:

print也可以打印整数,或者计算结果:

>>> print 300 300 >>> print 100 + 200 300

因此,我们可以把计算100 + 200的结果打印得更漂亮一点:

>>> print '100 + 200 =', 100 + 200 100 + 200 = 300

注意,对于100 + 200, Python解释器自动计算出结果300,但是,'100 + 200 ='是字符串而非数学公式, Python把它视为字符串,请自行解释上述打印结果。

输入

现在,你已经可以用print输出你想要的结果了。但是,如果要让用户从电脑输入一些字符怎么办?Python提供了一个raw input,可以让用户输入字符串,并存放到一个变量里。比如输入用户的名字:

>>> name = raw_input()
Michael

当你输入name = raw_input()并按下回车后,Python交互式命令行就在等待你的输入了。这时,你可以输入任意字符,然后按回车后完成输入。

输入完成后,不会有任何提示,Python交互式命令行又回到>>>状态了。那我们刚才输入的内容到哪去了?答案是存放到name变量里了。可以直接输入name查看变量内容:

>>> name
'Michael'

什么是变量?请回忆初中数学所学的代数基础知识:

设正方形的边长为a,则正方形的面积为 $a \times a$ 。把边长a看做一个变量,我们就可以根据a的值计算正方形的面积,比如:

若a=2,则面积为a xa = 2x2 = 4;

若a=3.5,则面积为a x a = 3.5 x 3.5 = 12.25。

在计算机程序中,变量不仅可以为整数或浮点数,还可以是字符串,因此,name作为一个变量就是一个字符串。

要打印出name变量的内容,除了直接写name然后按回车外,还可以用print语句:

>>> print name Michael

有了输入和输出,我们就可以把上次打印'hello, world'的程序改成有点意义的程序了:

```
name = raw_input()
print 'hello,', name
```

运行上面的程序,第一行代码会让用户输入任意字符作为自己的名字,然后存入name变量中;第二行代码会根据用户的名字向用户说hello,比如输入Michael:

C:\Workspace> python hello.py
Michael
hello, Michael

但是程序运行的时候,没有任何提示信息告诉用户:"嘿,赶紧输入你的名字",这样显得很不友好。幸好,raw input可以让你显示一个字符串来提示用户,于是我们把代码改成:

```
name = raw_input('please enter your name: ')
print 'hello,', name
```

再次运行这个程序, 你会发现, 程序一运行, 会首先打印出please enter your name:, 这样, 用户就可以根据提示, 输入名字后, 得到hello, xxx的输出:

C:\Workspace> python hello.py
please enter your name: Michael
hello, Michael

每次运行该程序,根据用户输入的不同,输出结果也会不同。

在命令行下,输入和输出就是这么简单。

小结

任何计算机程序都是为了执行一个特定的任务,有了输入,用户才能告诉计算机程序所需的信息,有了输出,程序运行后才能告诉用户任务的结果。

输入是Input,输出是Output,因此,我们把输入输出统称为Input/Output,或者简写为IO。

raw_input和print是在命令行下面最基本的输入和输出,但是,用户也可以通过其他更高级的图形界面完成输入和输出,比如,在网页上的一个文本框输入自己的名字,点击"确定"后在网页上看到输出信息。

Python是一种计算机编程语言。计算机编程语言和我们日常使用的自然语言有所不同,最大的区别就是,自然语言在不同的语境下有不同的理解,而计算机要根据编程语言执行任务,就必须保证编程语言写出的程序决不能有歧义,所以,任何一种编程语言都有自己的一套语法,编译器或者解释器就是负责把符合语法的程序代码转换成CPU能够执行的机器码,然后执行。Python也不例外。

Python的语法比较简单,采用缩进方式,写出来的代码就像下面的样子:

```
# print absolute value of an integer:
a = 100
if a >= 0:
    print a
else:
    print -a
```

以#开头的语句是注释,注释是给人看的,可以是任意内容,解释器会忽略掉注释。其他每一行都是一个语句,当语句以冒号":"结尾时,缩进的语句视为代码块。

缩进有利有弊。好处是强迫你写出格式化的代码,但没有规定缩进是几个空格还是Tab。按照约定俗成的管理,应该始终坚持使用4个空格的缩进。

缩进的另一个好处是强迫你写出缩进较少的代码,你会倾向于把一段很长的代码拆分成若干函数,从而得到缩进较少的代码。

缩进的坏处就是"复制一粘贴"功能失效了,这是最坑爹的地方。当你重构代码时,粘贴过去的代码必须重新检查缩进是否正确。此外,IDE很难像格式化Java代码那样格式化Python代码。

最后,请务必注意,Python程序是大小写敏感的,如果写错了大小写,程序会报错。

数据类型

计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值。但是,计算机能处理的远不止数值,还可以处理文本、图形、音频、视频、网页等各种各样的数据,不同的数据,需要定义不同的数据类型。在Python中,能够直接处理的数据类型有以下几种:

整数

Python可以处理任意大小的整数,当然包括负整数,在程序中的表示方法和数学上的写法一模一样,例如:1,100,-8080,0,等等。

计算机由于使用二进制,所以,有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9, a-f表示,例如: 0xff00, 0xa5b4c3d2, 等等。

浮点数

浮点数也就是小数,之所以称为浮点数,是因为按照科学记数法表示时,一个浮点数的小数点位置是可变的,比如, 1.23×10^9 和 12.3×10^8 是相等的。浮点数可以用数学写法,如 1.23×10^9 ,等等。但是对于很大或很小的浮点数,就必须用科学计数法表示,把10用e替代, 1.23×10^9 就是1.23e9,或者12.3e8,0.000012可以写成1.2e-5,等等。

整数和浮点数在计算机内部存储的方式是不同的,整数运算永远是精确的(除法难道也是精确的?是的!),而浮点数运算则可能会有四舍五入的误差。

字符串

字符串是以"或""括起来的任意文本,比如'abc', "xyz"等等。请注意, "或""本身只是一种表示方式, 不是字符串的一部分, 因此, 字符串'abc'只有a, b, c这3个字符。如果'本身也是一个字符, 那就可以用""括起来, 比如"፲'m OK"包含的字符是፲, ', m, 空格, O, K这6个字符。

如果字符串内部既包含,又包含"怎么办?可以用转义字符\来标识,比如:

```
'I\'m \"OK\"!'
```

表示的字符串内容是:

T'm "OK"!

转义字符\可以转义很多字符,比如\n表示换行,\t表示制表符,字符\本身也要转义,所以\\表示的字符就是\,,可以在Python的交互式命令行用print打印字符串看看:

```
>>> print 'I\'m ok.'
I'm ok.
>>> print 'I\'m learning\nPython.'
I'm learning
Python.
>>> print '\\n\\'
\
```

如果字符串里面有很多字符都需要转义,就需要加很多\,为了简化,Python还允许用r''表示''内部的字符串默认不转义,可以自己试试:

如果字符串内部有很多换行,用\n写在一行里不好阅读,为了简化,Python允许用'''...'''的格式表示多行内容,可以自己试试:

```
>>> print '''line1
... line2
... line3'''
line1
line2
line3
```

上面是在交互式命令行内输入,如果写成程序,就是:

```
print '''line1
line2
line3'''
```

多行字符串 · · · · · · · · · 还可以在前面加上r使用,请自行测试。

布尔值

布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值,要么是True,要么是False,在Python中,可以直接用True、False表示布尔值(请注意大小写),也可以通过布尔运算计算出来:

```
>>> True
True
>>> False
False
>>> 3 > 2
True
>>> 3 > 5
False
```

布尔值可以用and、or和not运算。

and运算是与运算,只有所有都为True, and运算结果才是True:

```
>>> True and True
True
>>> True and False
False
>>> False and False
False
```

or运算是或运算,只要其中有一个为True, or运算结果就是True:

```
>>> True or True
True
>>> True or False
True
>>> False or False
False
```

not运算是非运算,它是一个单目运算符,把True变成False,False变成True:

```
>>> not True
False
>>> not False
```

布尔值经常用在条件判断中,比如:

```
if age >= 18:
    print 'adult'
else:
    print 'teenager'
```

空值

空值是Python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

此外,Python还提供了列表、字典等多种数据类型,还允许创建自定义数据类型,我们后面会继续讲到。

变量

变量的概念基本上和初中代数的方程变量是一致的,只是在计算机程序中,变量不仅可以是数字,还可以是任意数据 类型。

变量在程序中就是用一个变量名表示了,变量名必须是大小写英文、数字和 的组合,且不能用数字开头,比如:

a = 1

变量a是一个整数。

t 007 = 'T007'

变量t 007是一个字符串。

Answer = True

变量Answer是一个布尔值True。

在Python中,等号=是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同类型的变量,例如:

a = 123 # a是整数 print a a = 'ABC' # a变为字符串 print a

这种变量本身类型不固定的语言称之为动态语言,与之对应的是静态语言。静态语言在定义变量时必须指定变量类型,如果赋值的时候类型不匹配,就会报错。例如Java是静态语言,赋值语句如下(//表示注释):

int a = 123; // a是整数类型变量 a = "ABC"; // 错误: 不能把字符串赋给整型变量

和静态语言相比, 动态语言更灵活, 就是这个原因。

请不要把赋值语句的等号等同于数学的等号。比如下面的代码:

x = 10 y = y + 2

如果从数学上理解x = x + 2那无论如何是不成立的,在程序中,赋值语句先计算右侧的表达式x + 2,得到结果12,再赋给变量x。由于x之前的值是10,重新赋值后,x的值变成12。

最后,理解变量在计算机内存中的表示也非常重要。当我们写:

a = 'ABC'

时, Python解释器干了两件事情:

- 1. 在内存中创建了一个'ABC'的字符串;
- 2. 在内存中创建了一个名为a的变量,并把它指向'ABC'。

也可以把一个变量a赋值给另一个变量b,这个操作实际上是把变量b指向变量a所指向的数据,例如下面的代码:

a = 'ABC'
b = a
a = 'XYZ'
print b

最后一行打印出变量b的内容到底是'ABC'呢还是'XYZ'?如果从数学意义上理解,就会错误地得出b和a相同,也应该是'XYZ',但实际上b的值是'ABC',让我们一行一行地执行代码,就可以看到到底发生了什么事:

执行a = 'ABC',解释器创建了字符串'ABC'和变量a,并把a指向'ABC':

执行b = a,解释器创建了变量b,并把b指向a指向的字符串'ABC':

执行a = 'XYZ',解释器创建了字符串'XYZ',并把a的指向改为'XYZ',但b并没有更改:

所以,最后打印变量b的结果自然是'ABC'了。

常量

所谓常量就是不能变的变量,比如常用的数学常数π就是一个常量。在Python中,通常用全部大写的变量名表示常量:

PI = 3.14159265359

但事实上PI仍然是一个变量,Python根本没有任何机制保证PI不会被改变,所以,用全部大写的变量名表示常量只是一个习惯上的用法,如果你一定要改变变量PI的值,也没人能拦住你。

最后解释一下整数的除法为什么也是精确的,可以试试:

>>> 10 / 3 3

你没有看错,整数除法永远是整数,即使除不尽。要做精确的除法,只需把其中一个整数换成浮点数做除法就可以:

>>> 10.0 / 3 3.33333333333333

因为整数除法只取结果的整数部分,所以Python还提供一个余数运算,可以得到两个整数相除的余数:

>>> 10 % 3

无论整数做除法还是取余数,结果永远是整数,所以,整数运算结果永远是精确的。

小结

Python支持多种数据类型,在计算机内部,可以把任何数据都看成一个"对象",而变量就是在程序中用来指向这些数据对象的,对变量赋值就是把数据和变量给关联起来。

字符编码

我们已经讲过了,字符串也是一种数据类型,但是,字符串比较特殊的是还有一个编码问题。

因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理。最早的计算机在设计时采用8个比特(bit)作为一个字节(byte),所以,一个字节能表示的最大的整数就是255(二进制1111111=十进制255),如果要表示更大的整数,就必须用更多的字节。比如两个字节可以表示的最大整数是65535,4个字节可以表示的最大整数是4294967295。

由于计算机是美国人发明的,因此,最早只有127个字母被编码到计算机里,也就是大小写英文字母、数字和一些符号,这个编码表被称为ASCII编码,比如大写字母A的编码是65,小写字母z的编码是122。

但是要处理中文显然一个字节是不够的,至少需要两个字节,而且还不能和ASCII编码冲突,所以,中国制定了GB2312编码,用来把中文编进去。

你可以想得到的是,全世界有上百种语言,日本把日文编到Shift_JIS里,韩国把韩文编到Euc-kr里,各国有各国的标准,就会不可避免地出现冲突,结果就是,在多语言混合的文本中,显示出来会有乱码。

因此,Unicode应运而生。Unicode把所有语言都统一到一套编码里,这样就不会再有乱码问题了。

Unicode标准也在不断发展,但最常用的是用两个字节表示一个字符(如果要用到非常偏僻的字符,就需要4个字节)。现代操作系统和大多数编程语言都直接支持Unicode。

现在,捋一捋ASCII编码和Unicode编码的区别: ASCII编码是1个字节,而Unicode编码通常是2个字节。

字母A用ASCII编码是十进制的65, 二进制的01000001;

字符0用ASCII编码是十进制的48,二进制的00110000,注意字符'0'和整数0是不同的;

汉字中已经超出了ASCII编码的范围,用Unicode编码是十进制的20013,二进制的01001110 00101101。

你可以猜测,如果把ASCII编码的A用Unicode编码,只需要在前面补0就可以,因此,A的Unicode编码是000000000010000001。

新的问题又出现了:如果统一成Unicode编码,乱码问题从此消失了。但是,如果你写的文本基本上全部是英文的话,用Unicode编码比ASCII编码需要多一倍的存储空间,在存储和传输上就十分不划算。

所以,本着节约的精神,又出现了把Unicode编码转化为"可变长编码"的UTF-8编码。UTF-8编码把一个Unicode字符根据不同的数字大小编码成1-6个字节,常用的英文字母被编码成1个字节,汉字通常是3个字节,只有很生僻的字符才会被编码成4-6个字节。如果你要传输的文本包含大量英文字符,用UTF-8编码就能节省空间:

字符 ASCII Unicode UTF-8

A 01000001 00000000 01000001 01000001

从上面的表格还可以发现,UTF-8编码有一个额外的好处,就是ASCII编码实际上可以被看成是UTF-8编码的一部分,所以,大量只支持ASCII编码的历史遗留软件可以在UTF-8编码下继续工作。

搞清楚了ASCII、Unicode和UTF-8的关系,我们就可以总结一下现在计算机系统通用的字符编码工作方式:

在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传输的时候,就转换为UTF-8编码。

用记事本编辑的时候,从文件读取的UTF-8字符被转换为Unicode字符到内存里,编辑完成后,保存的时候再把Unicode转换为UTF-8保存到文件:

浏览网页的时候,服务器会把动态生成的Unicode内容转换为UTF-8再传输到浏览器:

所以你看到很多网页的源码上会有类似<meta charset="UTF-8"/>的信息,表示该网页正是用的UTF-8编码。

Python的字符串

搞清楚了令人头疼的字符编码问题后,我们再来研究Python对Unicode的支持。

因为Python的诞生比Unicode标准发布的时间还要早,所以最早的Python只支持ASCII编码,普通的字符串'ABC'在Python内部都是ASCII编码的。Python提供了ord()和chr()函数,可以把字母和对应的数字相互转换:

```
>>> ord('A')
65
>>> chr(65)
'A'
```

Python在后来添加了对Unicode的支持,以Unicode表示的字符串用u'...'表示,比如:

```
>>> print u'中文'
中文
>>> u'中'
u'\u4e2d'
```

写u'中'和u'\u4e2d'是一样的,\u后面是十六进制的Unicode码。因此,u'A'和u'\u0041'也是一样的。

两种字符串如何相互转换?字符串'xxx'虽然是ASCII编码,但也可以看成是UTF-8编码,而u'xxx'则只能是Unicode编码。

把u'xxx'转换为UTF-8编码的'xxx'用encode('utf-8')方法:

```
>>> u'ABC'.encode('utf-8')
'ABC'
>>> u'中文'.encode('utf-8')
'\xe4\xb8\xad\xe6\x96\x87'
```

英文字符转换后表示的UTF-8的值和Unicode值相等(但占用的存储空间不同),而中文字符转换后1个Unicode字符将变为3个UTF-8字符,你看到的\xe4就是其中一个字节,因为它的值是228,没有对应的字母可以显示,所以以十六进制显示字节的数值。len()函数可以返回字符串的长度:

```
>>> len(u'ABC')
3
>>> len('ABC')
3
>>> len(u'中文')
2
>>> len('\xe4\xb8\xad\xe6\x96\x87')
6
```

反过来,把UTF-8编码表示的字符串'xxx'转换为Unicode字符串u'xxx'用decode('utf-8')方法:

```
>>> 'abc'.decode('utf-8')
u'abc'
>>> '\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
u'\u4e2d\u6587'
>>> print '\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
中文
```

由于Python源代码也是一个文本文件,所以,当你的源代码中包含中文的时候,在保存源代码时,就需要务必指定保存为UTF-8编码。当Python解释器读取源代码时,为了让它按UTF-8编码读取,我们通常在文件开头写上这两行:

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
```

第一行注释是为了告诉Linux/OS X系统,这是一个Python可执行程序,Windows系统会忽略这个注释;

第二行注释是为了告诉Python解释器,按照UTF-8编码读取源代码,否则,你在源代码中写的中文输出可能会有乱码。

如果你使用Notepad++进行编辑,除了要加上# -*- coding: utf-8 -*-外,中文字符串必须是Unicode字符串:

申明了UTF-8编码并不意味着你的.py文件就是UTF-8编码的,必须并且要确保Notepad++正在使用UTF-8 without BOM编码:

如果.py文件本身使用UTF-8编码,并且也申明了# -*- coding: utf-8 -*-, 打开命令提示符测试就可以正常显示中文:

格式化

最后一个常见的问题是如何输出格式化的字符串。我们经常会输出类似'亲爱的xxx你好!你xx月的话费是xx,余额是xx'之类的字符串,而xxx的内容都是根据变量变化的,所以,需要一种简便的格式化字符串的方式。

在Python中,采用的格式化方式和C语言是一致的,用%实现,举例如下:

```
>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'
```

你可能猜到了,%运算符就是用来格式化字符串的。在字符串内部,%s表示用字符串替换,%d表示用整数替换,有几个%?占位符,后面就跟几个变量或者值,顺序要对应好。如果只有一个%?,括号可以省略。

常见的占位符有:

%d 整数

%f 浮点数

%s 字符串

%x 十六进制整数

其中,格式化整数和浮点数还可以指定是否补0和整数与小数的位数:

```
>>> '%2d-%02d' % (3, 1)
' 3-01'
>>> '%.2f' % 3.1415926
'3.14'
```

如果你不太确定应该用什么, %s永远起作用, 它会把任何数据类型转换为字符串:

```
>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'
```

对于Unicode字符串,用法完全一样,但最好确保替换的字符串也是Unicode字符串:

```
>>> u'Hi, %s' % u'Michael' u'Hi, Michael'
```

有些时候,字符串里面的%是一个普通字符怎么办?这个时候就需要转义,用%%来表示一个%:

```
>>> 'growth rate: %d %%' % 7 'growth rate: 7 %'
```

小结

由于历史遗留问题,Python 2.x版本虽然支持Unicode,但在语法上需要'xxx'和u'xxx'两种字符串表示方式。

Python当然也支持其他编码方式,比如把Unicode编码成GB2312:

```
>>> u'中文'.encode('gb2312')
'\xd6\xd0\xce\xc4'
```

但这种方式纯属自找麻烦,如果没有特殊业务要求,请牢记仅使用Unicode和UTF-8这两种编码方式。

在Python 3.x版本中,把'xxx'和u'xxx'统一成Unicode编码,即写不写前缀u都是一样的,而以字节形式表示的字符串则必须加上b前缀: b'xxx'。

格式化字符串的时候,可以用Python的交互式命令行测试,方便快捷。

```
Python内置的一种数据类型是列表: list。list是一种有序的集合,可以随时添加和删除其中的元素。
比如,列出班里所有同学的名字,就可以用一个list表示:
>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']
变量classmates就是一个list。用len()函数可以获得list元素的个数:
>>> len(classmates)
3
用索引来访问list中每一个位置的元素,记得索引是从0开始的:
>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
>>> classmates[3]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range
当索引超出了范围时,Python会报一个IndexError错误,所以,要确保索引不要越界,记得最后一个元素的索引
是len(classmates) - 1。
如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素:
>>> classmates[-1]
'Tracy'
以此类推,可以获取倒数第2个、倒数第3个:
>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'
>>> classmates[-4]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range
当然,倒数第4个就越界了。
list是一个可变的有序表,所以,可以往list中追加元素到末尾:
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']
也可以把元素插入到指定的位置,比如索引号为1的位置:
>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']
要删除list末尾的元素,用pop()方法:
>>> classmates.pop()
'Adam'
>>> classmates
```

['Michael', 'Jack', 'Bob', 'Tracy']

要删除指定位置的元素,用pop(i)方法,其中i是索引位置:

```
>>> classmates.pop(1)
'Jack'
>>> classmates
['Michael', 'Bob', 'Tracy']
```

要把某个元素替换成别的元素,可以直接赋值给对应的索引位置:

```
>>> classmates[1] = 'Sarah'
>>> classmates
['Michael', 'Sarah', 'Tracy']
```

list里面的元素的数据类型也可以不同,比如:

```
>>> L = ['Apple', 123, True]
```

list元素也可以是另一个list,比如:

```
>>> s = ['python', 'java', ['asp', 'php'], 'scheme'] >>> len(s) 4
```

要注意s只有4个元素,其中s[2]又是一个list,如果拆开写就更容易理解了:

```
>>> p = ['asp', 'php']
>>> s = ['python', 'java', p, 'scheme']
```

要拿到'php'可以写p[1]或者s[2][1],因此s可以看成是一个二维数组,类似的还有三维、四维.....数组,不过很少用到。

如果一个list中一个元素也没有,就是一个空的list,它的长度为0:

```
>>> L = []
>>> len(L)
```

tuple

另一种有序列表叫元组: tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:

```
>>> classmates = ('Michael', 'Bob', 'Tracy')
```

现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0],classmates[-1],但不能赋值成另外的元素。

不可变的tuple有什么意义?因为tuple不可变,所以代码更安全。如果可能,能用tuple代替list就尽量用tuple。

tuple的陷阱: 当你定义一个tuple时,在定义的时候,tuple的元素就必须被确定下来,比如:

```
>>> t = (1, 2)
>>> t
(1, 2)
```

如果要定义一个空的tuple,可以写成():

```
>>> t = ()
>>> t
()
```

但是,要定义一个只有1个元素的tuple,如果你这么定义:

```
>>> t = (1)
>>> t
1
```

定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。

所以,只有1个元素的tuple定义时必须加一个逗号,,来消除歧义:

```
>>> t = (1,)
>>> t
(1,)
```

Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

最后来看一个"可变的"tuple:

```
>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])
```

这个tuple定义的时候有3个元素,分别是'a','b'和一个list。不是说tuple一旦定义后就不可变了吗?怎么后来又变了?别急,我们先看看定义的时候tuple包含的3个元素:

当我们把list的元素'A'和'B'修改为'X'和'Y'后,tuple变为:

表面上看,tuple的元素确实变了,但其实变的不是tuple的元素,而是list的元素。tuple一开始指向的list并没有改成别的list,所以,tuple所谓的"不变"是说,tuple的每个元素,指向永远不变。即指向'a',就不能改成指向'b',指向一个list,就不能改成指向其他对象,但指向的这个list本身是可变的!

理解了"指向不变"后,要创建一个内容也不变的tuple怎么做?那就必须保证tuple的每一个元素本身也不能变。

小结

list和tuple是Python内置的有序集合,一个可变,一个不可变。根据需要来选择使用它们。

条件判断

计算机之所以能做很多自动化的任务, 因为它可以自己做条件判断。

比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现:

```
age = 20
if age >= 18:
    print 'your age is', age
    print 'adult'
```

根据Python的缩进规则,如果if语句判断是True,就把缩进的两行print语句执行了,否则,什么也不做。

也可以给if添加一个else语句, 意思是, 如果if判断是False, 不要执行if的内容, 去把else执行了:

```
age = 3
if age >= 18:
    print 'your age is', age
    print 'adult'
else:
    print 'your age is', age
    print 'teenager'
```

注意不要少写了冒号:。

当然上面的判断是很粗略的,完全可以用elif做更细致的判断:

```
age = 3
if age >= 18:
    print 'adult'
elif age >= 6:
    print 'teenager'
else:
    print 'kid'
```

elif是else if的缩写,完全可以有多个elif,所以if语句的完整形式就是:

if语句执行有个特点,它是从上往下判断,如果在某个判断上是True,把该判断对应的语句执行后,就忽略掉剩下的elif和else,所以,请测试并解释为什么下面的程序打印的是teenager:

```
age = 20
if age >= 6:
    print 'teenager'
elif age >= 18:
    print 'adult'
else:
    print 'kid'
```

if判断条件还可以简写,比如写:

```
if x:
print 'True'
```

只要x是非零数值、非空字符串、非空list等,就判断为True,否则为False。

循环

Python的循环有两种,一种是for...in循环,依次把list或tuple中的每个元素迭代出来,看例子:

```
names = ['Michael', 'Bob', 'Tracy']
for name in names:
    print name
```

执行这段代码,会依次打印names的每一个元素:

Michael Bob Tracy

所以for x in ...循环就是把每个元素代入变量x, 然后执行缩进块的语句。

再比如我们想计算1-10的整数之和,可以用一个sum变量做累加:

```
sum = 0
for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
    sum = sum + x
print sum
```

如果要计算1-100的整数之和,从1写到100有点困难,幸好Python提供一个range()函数,可以生成一个整数序列,比如range(5)生成的序列是从0开始小于5的整数:

```
>>> range(5)
[0, 1, 2, 3, 4]
```

range(101)就可以生成0-100的整数序列, 计算如下:

```
sum = 0
for x in range(101):
    sum = sum + x
print sum
```

请自行运行上述代码,看看结果是不是当年高斯同学心算出的5050。

第二种循环是while循环,只要条件满足,就不断循环,条件不满足时退出循环。比如我们要计算100以内所有奇数之和,可以用while循环实现:

```
\begin{array}{l} \text{sum} = 0 \\ n = 99 \\ \text{while } n > 0 \text{:} \\ \text{sum} = \text{sum} + n \\ n = n - 2 \\ \text{print sum} \end{array}
```

在循环内部变量n不断自减,直到变为-1时,不再满足while条件,循环退出。

再议raw input

最后看一个有问题的条件判断。很多同学会用raw_input()读取用户的输入,这样可以自己输入,程序运行得更有意思:

```
birth = raw_input('birth: ')
if birth < 2000:
    print '00前'
else:
    print '00后'</pre>
```

输入1982,结果却显示00后,这么简单的判断Python也能搞错?

当然不是Python的问题,在Python的交互式命令行下打印birth看看:

```
>>> birth
'1982'
>>> '1982' < 2000
False
>>> 1982 < 2000
True
```

原因找到了!原来从raw_input()读取的内容永远以字符串的形式返回,把字符串和整数比较就不会得到期待的结果,必须先用int()把字符串转换为我们想要的整型:

birth = int(raw input('birth: '))

再次运行,就可以得到正确地结果。但是,如果输入abc呢?又会得到一个错误信息:

Traceback (most recent call last):

ValueError: invalid literal for int() with base 10: 'abc'

原来int()发现一个字符串并不是合法的数字时就会报错,程序就退出了。

如何检查并捕获程序运行期的错误呢?后面的错误和调试会讲到。

小结

条件判断可以让计算机自己做选择, Python的if...elif...else很灵活。

if salary >= 10000:

print

elif salary >=5000:

print

else:

print

循环是让计算机做重复任务的有效的方法,有些时候,如果代码写得有问题,会让程序陷入"死循环",也就是永远循环下去。这时可以用Ctrl+C退出程序,或者强制结束Python进程。

请试写一个死循环程序。

dict

Python內置了字典: dict的支持, dict全称dictionary, 在其他语言中也称为map, 使用键-值(key-value)存储, 具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

```
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]
```

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个"名字"-"成绩"的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

```
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95
```

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael', dict在内部就可以直接计算出Michael对应的存放成绩的"页码",也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

```
>>> d['Adam'] = 67
>>> d['Adam']
```

由于一个key只能对应一个value, 所以, 多次对一个key放入value, 后面的值会把前面的值冲掉:

```
>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
```

如果key不存在, dict就会报错:

```
>>> d['Thomas']
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
KeyError: 'Thomas'
```

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

```
>>> 'Thomas' in d
```

二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

```
>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1
```

注意: 返回None的时候Python的交互式命令行不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

```
>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}
```

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较, dict有以下几个特点:

- 1. 查找和插入的速度极快,不会随着key的增加而增加;
- 2. 需要占用大量的内存,内存浪费多。

而list相反:

- 1. 查找和插入的时间随着元素的增加而增加;
- 2. 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是**不可变对象**。

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

```
>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
```

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

```
>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])
```

注意,传入的参数[1, 2, 3]是一个list,而显示的set([1, 2, 3])只是告诉你这个set内部有1, 2, 3这3个元素,显示的[]不表示这是一个list。

重复元素在set中自动被过滤:

```
>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])
```

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

```
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])
```

通过remove (key) 方法可以删除元素:

```
>>> s.remove(4)
>>> s
set([1, 2, 3])
```

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

```
>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])
```

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部"不会有重复元素"。试试把list放入set,看看是否会报错。

再议不可变对象

上面我们讲了, str是不变对象, 而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

```
>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']
```

而对于不可变对象,比如str,对str进行操作呢:

```
>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'
```

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

```
>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'
```

要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc':

当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对 象并返回,这样,就保证了不可变对象本身永远是不可变的。

小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。 tuple虽然是不变对象,但试试把(1, 2, 3)和(1, [2, 3])放入dict或set中,并解释结果。

我们知道圆的面积计算公式为:

$S = \pi r^2$

当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:

r1 = 12.34 r2 = 9.08 r3 = 73.1 s1 = 3.14 * r1 * r1 s2 = 3.14 * r2 * r2 s3 = 3.14 * r3 * r3

当代码出现有规律的重复的时候,你就需要当心了,每次写3.14 * x * x不仅很麻烦,而且,如果要把3.14改成3.14159265359的时候,得全部替换。

有了函数,我们就不再每次写s = 3.14 * x * x,而是写成更有意义的函数调用s = area_of_circle(x),而函数area of circle本身只需要写一次,就可以多次调用。

基本上所有的高级语言都支持函数,Python也不例外。Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。

抽象

抽象是数学中非常常见的概念。举个例子:

计算数列的和,比如: $1 + 2 + 3 + \dots + 100$,写起来十分不方便,于是数学家发明了求和符号 \sum ,可以把 $1 + 2 + 3 + \dots + 100$ 记作:

100

\sum_{n}

n=

这种抽象记法非常强大,因为我们看到∑就可以理解成求和,而不是还原成低级的加法运算。

而且,这种抽象记法是可扩展的,比如:

100

$$\sum (n^2+1)$$

n=1

还原成加法运算就变成了:

$$(1 \times 1 + 1) + (2 \times 2 + 1) + (3 \times 3 + 1) + ... + (100 \times 100 + 1)$$

可见,借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题。

写计算机程序也是一样,函数就是最基本的一种代码抽象的方式。

Python内置了很多有用的函数,我们可以直接调用。

要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数abs,只有一个参数。可以直接从Python的官方网站查看文档:

http://docs.python.org/2/library/functions.html#abs

也可以在交互式命令行通过help(abs)查看abs函数的帮助信息。

调用abs函数:

```
>>> abs (100)
100
>>> abs (-20)
20
>>> abs (12.34)
```

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你: abs()有且仅有1个参数,但给出了两个:

```
>>> abs(1, 2)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)
```

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息: str是错误的参数类型:

```
>>> abs('a')
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'
```

而比较函数cmp(x, y)就需要两个参数,如果x<y,返回-1,如果x==y,返回0,如果x>y,返回1:

```
>>> cmp(1, 2)
-1
>>> cmp(2, 1)
1
>>> cmp(3, 3)
```

数据类型转换

Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:

```
>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> unicode(100)
u'100'
>>> bool(1)
True
>>> bool('')
False
```

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个"别名":

```
>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1
```

小结

调用Python的函数,需要根据函数定义,传入正确的参数。如果函数调用出错,一定要学会看错误信息,所以英文很重要!

在Python中,定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写 函数体,函数的返回值用return语句返回。

我们以自定义一个求绝对值的my_abs函数为例:

```
def my_abs(x):
    if x >= 0:
        return x
    else:
        return -x
```

请自行测试并调用my abs看看返回结果是否正确。

请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过 条件判断和循环可以实现非常复杂的逻辑。

如果没有return语句,函数执行完毕后也会返回结果,只是结果为None。

return None可以简写为return。

空函数

如果想定义一个什么事也不做的空函数,可以用pass语句:

```
def nop():
    pass
```

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以 先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

```
if age >= 18: pass
```

缺少了pass,代码运行就会有语法错误。

参数检查

调用函数时,如果参数个数不对,Python解释器会自动检查出来,并抛出TypeError:

```
>>> my_abs(1, 2)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: my abs() takes exactly 1 argument (2 given)
```

但是如果参数类型不对,Python解释器就无法帮我们检查。试试my abs和内置函数abs的差别:

```
>>> my_abs('A')
'A'
>>> abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'
```

当传入了不恰当的参数时,内置函数abs会检查出参数错误,而我们定义的my_abs没有参数检查,所以,这个函数定义不够完善。

让我们修改一下 my_abs 的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance实现:

```
def my_abs(x):
    if not isinstance(x, (int, float)):
        raise TypeError('bad operand type')
    if x >= 0:
```

```
return x else:
    return -x
```

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

```
>>> my_abs('A')
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
   File "<stdin>", line 3, in my_abs
TypeError: bad operand type
```

错误和异常处理将在后续讲到。

返回多个值

函数可以返回多个值吗?答案是肯定的。

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

import math

```
def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny
```

这样我们就可以同时获得返回值:

```
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0
```

但其实这只是一种假象, Python函数返回的仍然是单一值:

```
>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)
```

原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。

小结

定义函数时,需要确定函数名和参数个数;

如果有必要,可以先对参数的数据类型做检查:

函数体内部可以用return随时返回函数结果:

函数执行完毕也没有return语句时,自动return None。

函数可以同时返回多个值,但其实就是一个tuple。

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

默认参数

我们仍以具体的例子来说明如何定义函数的默认参数。先写一个计算x²的函数:

```
def power(x):
    return x * x
```

当我们调用power函数时,必须传入有且仅有的一个参数x:

```
>>> power(5)
25
>>> power(15)
225
```

现在,如果我们要计算 \mathbf{x}^3 怎么办?可以再定义一个 $\mathbf{power3}$ 函数,但是如果要计算 \mathbf{x}^4 、 \mathbf{x}^5 ……怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算 x^n ,说干就干:

```
def power(x, n):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s
```

对于这个修改后的power函数,可以计算任意n次方:

```
>>> power(5, 2)
25
>>> power(5, 3)
125
```

但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码无法正常调用:

```
>>> power(5)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: power() takes exactly 2 arguments (1 given)
```

这个时候,默认参数就排上用场了。由于我们经常计算 \mathbf{x}^2 ,所以,完全可以把第二个参数 \mathbf{n} 的默认值设定为2:

```
def power(x, n=2):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s
```

这样,当我们调用power(5)时,相当于调用power(5,2):

```
>>> power(5)
25
>>> power(5, 2)
25
```

而对于n > 2的其他情况,就必须明确地传入n,比如power (5, 3)。

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面):

二是如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入name和gender两个参数:

```
def enroll(name, gender):
    print 'name:', name
    print 'gender:', gender
```

这样,调用enroll()函数只需要传入两个参数:

```
>>> enroll('Sarah', 'F')
name: Sarah
gender: F
```

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

```
def enroll(name, gender, age=6, city='Beijing'):
    print 'name:', name
    print 'gender:', gender
    print 'age:', age
    print 'city:', city
```

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

```
>>> enroll('Sarah', 'F')
Student:
name: Sarah
gender: F
age: 6
city: Beijing
```

只有与默认参数不符的学生才需要提供额外的信息:

```
enroll('Bob', 'M', 7)
enroll('Adam', 'M', city='Tianjin')
```

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调 用还是复杂调用,函数只需要定义一个。

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7), 意思是,除了name, gender这两个参数外,最后1个参数应用在参数age上, city参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'), 意思是, city参数用传进去的值, 其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数,传入一个list,添加一个END再返回:

```
def add_end(L=[]):
    L.append('END')
    return L
```

当你正常调用时,结果似乎不错:

```
>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
```

```
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']
```

当你使用默认参数调用时,一开始结果也是对的:

```
>>> add_end()
['END']
```

但是,再次调用add end()时,结果就不对了:

```
>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']
```

很多初学者很疑惑,默认参数是[],但是函数似乎每次都"记住了"上次添加了'END'后的list。

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

所以,定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

```
def add_end(L=None):
    if L is None:
        L = []
    L.append('END')
    return L
```

现在,无论调用多少次,都不会有问题:

```
>>> add_end()
['END']
>>> add_end()
['END']
```

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意 个,还可以是0个。

我们以数学题为例子,给定一组数字a,b,c......,请计算 $a^2 + b^2 + c^2 + \dots$ 。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c.....作为一个list或tuple传进来,这样,函数可以定义如下:

```
def calc(numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum
```

但是调用的时候,需要先组装出一个list或tuple:

```
>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84
```

如果利用可变参数,调用函数的方式可以简化成这样:

```
>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84
```

所以,我们把函数的参数改为可变参数:

```
def calc(*numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum
```

定义可变参数和定义list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

```
>>> calc(1, 2)
5
>>> calc()
```

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

```
>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
```

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

```
>>> nums = [1, 2, 3]
>>> calc(*nums)
```

这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

```
def person(name, age, **kw):
    print 'name:', name, 'age:', age, 'other:', kw
```

函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

```
>>> person('Michael', 30)
name: Michael age: 30 other: {}
```

也可以传入任意个数的关键字参数:

```
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
```

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

```
>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=kw['city'], job=kw['job'])
```

```
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
当然,上面复杂的调用可以用简化的写法:

>>> kw = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **kw)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}
```

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。

比如定义一个函数,包含上述4种参数:

```
def func(a, b, c=0, *args, **kw):
    print 'a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw
```

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

```
>>> func(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> func(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> func(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> func(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
```

最神奇的是通过一个tuple和dict,你也可以调用该函数:

```
>>> args = (1, 2, 3, 4)
>>> kw = {'x': 99}
>>> func(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'x': 99}
```

所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

小结

Python的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

默认参数一定要用不可变对象,如果是可变对象,运行会有逻辑错误!

要注意定义可变参数和关键字参数的语法:

*args是可变参数, args接收的是一个tuple;

**kw是关键字参数,kw接收的是一个dict。

以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入: func(1, 2, 3),又可以先组装**list或tuple**,再通过*args传入: func(*(1, 2, 3));

关键字参数既可以直接传入: func(a=1, b=2), 又可以先组装dict, 再通过**kw传入: func(**{'a': 1, 'b': 2})。

使用*args和**kw是Python的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

 $\operatorname{fact}(n) = n! = 1 \ x \ 2 \ x \ 3 \ x \dots x \ (n\text{-}1) \ x \ n = (n\text{-}1)! \ x \ n = \operatorname{fact}(n\text{-}1) \ x \ n$

所以, fact (n) 可以表示为n x fact (n-1), 只有n=1时需要特殊处理。

于是, fact (n) 用递归的方式写出来就是:

```
def fact(n):
      if n==1:
    return 1
return n * fact(n - 1)
```

上面就是一个递归函数。可以试试:

```
>>> fact(1)
>>> fact(5)
120
>>> fact(100)
```

如果我们计算fact(5),可以根据函数定义看到计算过程如下:

```
==>> fact(5)
=>> 5 * fact(4)
==>> 5 * (4 * fact(3))
==>> 5 * (4 * (3 * fact(2)))
==>> 5 * (4 * (3 * (2 * fact(1))))
==>> 5 * (4 * (3 * (2 * 1)))
==>> 5 * (4 * (3 * 2))
==>> 5 * (4 * (3 * 2))
==>> 5 * (4 * 6)
==>> 5 * (4 * 6)
   ===> 120
```

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈 帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试fact(1000):

```
>>> fact(1000)
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in fact
File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded
```

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个 栈帧,不会出现栈溢出的情况。

上面的fact (n) 函数由于return n * fact (n - 1) 引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

```
return fact iter(n. 1)
def fact_iter(num, product):
    return fact iter(num - 1, num * product)
```

可以看到, return fact_iter(num - 1, num * product)仅返回递归函数本身, num - 1和num * product在函数调用前就会被计算,不影响函数调用。

fact (5) 对应的fact_iter (5, 1) 的调用如下:

```
===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
```

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact (n) 函数改成尾递归方式,也会导致栈溢出。

小结

使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

Python标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

比如构造一个1, 3, 5, 7, ..., 99的列表, 可以通过循环实现:

```
L = []
n = 1
while n <= 99:
    L.append(n)
    n = n + 2</pre>
```

取list的前一半的元素,也可以通过循环实现。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍Python中非常有用的高级特性,一行代码能实现的功能,决不写5行代码。

```
取一个list或tuple的部分元素是非常常见的操作。比如,一个list如下:
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
取前3个元素,应该怎么做?
笨办法:
>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']
之所以是笨办法是因为扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
>>> r = []
>>> n = 3
>>> for i in range(n):
    r.append(L[i])
>>> r
['Michael', 'Sarah', 'Tracy']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操
作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略:
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Sarah', 'Tracy']
类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
记住倒数第一个元素的索引是-1。
切片操作十分有用。我们先创建一个0-99的数列:
>>> L = range(100)
>>> L
[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
后10个数:
```

>>> L[-10:]

[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前11-20个数:

>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]

[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3] (0, 1, 2)

字符串'xxx'或Unicode字符串u'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数,其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

小结

有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

```
for (i=0; i<list.length; i++) {
    n = list[i];
}</pre>
```

可以看出,**Python**的for循环抽象程度要高于**Java**的for循环,因为**Python**的for循环不仅可以用在**list或tuple**上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以 迭代,比如dict就可以迭代:

```
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print key
...
a
c
b
```

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.itervalues(),如果要同时迭代key和value,可以用for k, v in d.iteritems()。

由于字符串也是可迭代对象,因此,也可以作用于for循环:

```
>>> for ch in 'ABC':
... print ch
...
A
B
C
```

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是 list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

```
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
```

最后一个小问题,如果要对**list**实现类似**Java**那样的下标循环怎么办?**Python**内置的enumerate函数可以把一个**list**变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

```
>>> for i, value in enumerate(['A', 'B', 'C']):
... print i, value
...
0 A
1 B
2 C
```

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

```
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print x, y
...
1 1
2 4
```

小结

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

```
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用range(1, 11):
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做? 方法一是循环:
>>> L = []
>>> for x in range(1, 11):
      L.append(x * x)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐, 而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上i的断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0] [4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
三层和三层以上的循环就很少用到了。
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
>>> import os # 导入os機块、模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Work
for循环其实可以同时使用两个甚至多个变量,比如dict的iteritems()可以同时迭代key和value:
因此,列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']
最后把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
小结
运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。
思考:如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:
>>> L = ['Hello', 'World', 18, 'Apple', None]
>>> [s.lower() for s in L]
Traceback (most recent call last):
    File "<stdin", line 1, in <module>
AttributeError: 'int' object has no attribute 'lower'
使用内建的isinstance函数可以判断一个变量是不是字符串:
>>> x = 'abc'
>>> y = 123
>>> isinstance(x, str)
True >>> isinstance(y, str)
```

请修改列表生成式,通过添加if语句保证列表生成式能正确地执行。