Problem Set 3 Solutions

Due: Monday, September 26

Reading Assignment: Sections 4.0-4.3, 4.5, 4.6

Problem 1. [18 points]

(a) [4 pts] Use the Pulverizer to find integer values of x, y that satisfy 71x + 50y = 1. What is the inverse of 71 modulo 50 (Write the inverse as a number in the set $\{1, 2, ..., 49\}$?

Solution.

x	y	$\operatorname{rem}\left(x,y\right)$	=	$x - q \cdot y$
71	50	21	=	$71 - 1 \cdot 50$
50	21	8	=	$50 - 2 \cdot 21$
			=	$50 - 2 \cdot (71 - 1 \cdot 50)$
			=	$-2 \cdot 71 + 3 \cdot 50$
21	8	5	=	$21 - 2 \cdot 8$
			=	$(71 - 1 \cdot 50) - 2 \cdot (-2 \cdot 71 + 3 \cdot 50)$
			=	$5 \cdot 71 - 7 \cdot 50$
8	5	3	=	8 - 5
			=	$(-2 \cdot 71 + 3 \cdot 50) - (5 \cdot 71 - 7 \cdot 50)$
			=	$-7 \cdot 71 + 10 \cdot 50$
5	3	2	=	5 - 3
			=	$(5 \cdot 71 - 7 \cdot 50) - (-7 \cdot 71 + 10 \cdot 50)$
			=	$12 \cdot 71 - 17 \cdot 50$
3	2	1	=	3-2
			=	$(-7 \cdot 71 + 10 \cdot 50) - (12 \cdot 71 - 17 \cdot 50)$
				10 71 + 27 50
			=	$-19 \cdot 71 + 27 \cdot 50$
2	1	0		

Hence we have x = -19, y = 27. Considering the equation modulo 50, we have that $-19 \cdot 71 \equiv 1 \pmod{50}$. Thus the inverse of 71 mod 50 is 31, as $31 \equiv -19 \pmod{50}$.

(b) [4 pts] Use the Pulverizer to find integer values of x, y that satisfy 43x + 64y = 1. What is the inverse of 64 modulo 43 (Write the inverse as a number in the set $\{1, 2, ..., 42\}$?

Solution.

Hence we have x = -2, y = 3. Considering the equation modulo 43, we have that $-2.64 \equiv 1 \pmod{43}$. Thus the inverse of 64 mod 43 is 41, as $41 \equiv -2 \pmod{43}$.

(c) [4 pts] Prove that $2 \mid (n)(n+1)$ for all integers n.

Solution. We may solve this problem in cases on whether n is even or odd.

- 1. If n is even, then 2|n so 2|(n)(n+1).
- 2. If n is odd, then let n = 2k 1 for some $k \in \mathbb{Z}$. Then n + 1 = 2k, so 2|(n + 1). Thus, 2|(n)(n + 1).

(d) [6 pts] Prove that $3! \mid (n)(n+1)(n+2)$ for all integers n.

Solution. From part c, we know that $2|(n)(n+1) \ \forall n \in \mathbb{Z}$. Thus, we only need to show that 3|(n)(n+1)(n+2). We again solve this problem in cases.

- 1. Suppose 3|n. Then 3|(n)(n+1)(n+2).
- 2. Suppose n leaves a remainder 1 when divided by 3, then let n = 3k + 1 for some $k \in \mathbb{Z}$. Now n + 2 = 3k + 1 + 2 = 3(k + 1) and so 3|n + 2. Thus 3|(n)(n + 1)(n + 2).
- 3. Suppose n leaves a remainder 2 when divided by 3, then let n = 3k + 2 for some $k \in \mathbb{Z}$. Now n + 1 = 3k + 2 + 1 = 3(k + 1) and so 3|n + 1. Thus 3|(n)(n + 1)(n + 2).

Although we won't ask you to prove it, this formula from parts c, d actually generalizes to $k! \mid (n)(n+1) \cdot \ldots \cdot (n+k-1)$. As an extra challenge, see if you can prove it yourself.

Problem 2. [20 points] Prove the following statements about divisibility.

(a) [4 pts] If $a \mid b$, then $\forall c, a \mid bc$

Solution. If $a \mid b$, then there is some positive integer k such that b = ak. But then, bc = akc = a(kc), which is a multiple of a.

(b) [4 pts] If $a \mid b$ and $a \mid c$, then $a \mid sb + tc$.

Solution. If $a \mid b$, then there is some positive integer j such that b = aj. Similarly, there is some positive integer k such that c = ak. But then, we can rewrite the right side as s(aj) + t(ak). But we can rewrite this as a(js) + a(kt) = a(js + kt), which is a multiple of a.

(c) $[4 \text{ pts}] \forall c, a \mid b \Leftrightarrow ca \mid cb$

Solution. If $a \mid b$, then there is some positive integer k such that b = ak. But then, we can rewrite cb = c(ak) = ca(k), from which it follows that cb is a multiple of ca. So the implication is true. Conversely, if $ca \mid cb$ then there is some positive integer k such that cb = cak. We can cancel c from both sides to conclude that $a \mid b$.

(d) $[4 \text{ pts}] \gcd(ka, kb) = k \gcd(a, b)$

Solution. Let s,t be coefficients so that $s(ka) + t(kb) = \gcd(ka,kb)$. We can factor out the k so that $\gcd(ka,kb) = k(sa+tb)$. We now argue that $sa+tb = \gcd(a,b)$. Suppose it were not. Then, there is some smaller positive linear combination of a,b with coefficients s' and t' so that $s'a+t'b=\gcd(a,b)$. But then, if we multiply this by k, we find that $0 < ks'a + kt'b = s'(ka) + t'(kb) < s(ka) + t(kb) = \gcd(ka,kb)$. This is a contradiction with the definition of the \gcd , so $sa+tb=\gcd(a,b)$, and we can conclude that $\gcd(ka,kb)=k\gcd(a,b)$.

(e) [4 pts] Prove that for integers a, b, c, d and $n \ge 1$, $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$ implies $ac \equiv bd \pmod{n}$.

Solution. We want to show that $n \mid (ac - bd)$ and we know that $n \mid (a - b)$ and $n \mid (c - d)$. Thus we consider (ac - bd) = (ac - bc) + (bc - bd) = c(a - b) + b(c - d). We have that $n \mid c(a - b) + b(c - d)$, and so the claim follows.

Problem 3. [22 points] In this problem, we are going to walk through a proof of Wilson's theorem, which states the following:

Theorem 1 (Wilson's Theorem). If p is a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

(a) [2 pts] Verify that Wilson's theorem holds for p = 2, 3.

Solution. For p = 2, we have that $(2 - 1)! = 1 \equiv -1 \pmod{2}$. For p = 3, we have that $(3 - 1)! = 2 \equiv -1 \pmod{3}$.

(b) [6 pts] Prove the following theorem about the existence and uniqueness of modular inverses for prime modulos.

Theorem 2. If p is a prime, show that for all a, if gcd(a, p) = 1, then there exists some unique b such that $ab \equiv 1 \pmod{p}$ and $b \in \{1, 2, \dots p - 1\}$.

There are two components to this proof (1) to show that such a b exists and (2) that there is a unique b.

Hint: To show that b exists, consider that since gcd(a, p) = 1, there exist integers b, c such that ab + pc = 1. What happens if you consider this equation modulo p?

Solution. Since, gcd(a, p) = 1, we know that there exist integers b, c such that ab + pc = 1 (The Pulverizer helps us find these integers for given values of a, p). Now if we consider the equation modulo p. That is

$$1 = ab + pc \equiv ab \pmod{p}$$

Now we find b' such that $b' \equiv b \pmod{p}$ and $b' \in \{1, 2, \dots p-1\}$. Therefore, we can conclude that b' is the inverse of a modulo p. So such an inverse exists. Now we show that such an inverse is unique.

Suppose that there are two integers b, b' such that $ab \equiv ab' \equiv 1 \pmod{p}$ with $b, b' \in \{1, 2, \dots, p-1\}$. Then we have that $p \mid ab - ab'$, and so $p \mid (b-b')$ since $p \nmid a$. However, since $b, b' \in \{1, 2, \dots, p-1\}$, this is only possible if b = b', and hence the inverse is unique.

(c) [6 pts] Let p be a prime number. Prove that for integer a, $a^2 \equiv 1 \pmod{p}$ if and only if $a \equiv \pm 1 \pmod{p}$.

Hint: Consider $a^2 - 1 = (a+1)(a-1)$.

Solution. This follows almost directly from the hint. If we have $a^2 \equiv 1 \pmod{p}$, then we must have that $p \mid (a^2 - 1)$. So $p \mid (a + 1)(a - 1)$. However, since p is prime, we can conclude $p \mid (a + 1)$ or $p \mid (a - 1)$. Hence $a \equiv \pm 1 \pmod{p}$.

The other direction follows since if $a \equiv \pm 1 \pmod{p}$, then we have that $p \mid (a+1)$ or $p \mid (a-1)$ and so $p \mid (a^2-1)$ as desired.

(d) [8 pts] Prove Wilson's theorem using the above parts.

Hint: Use theorem 2 to pair up the integers in the expansion of (p-1)! with their inverses. Based on part c, which integers don't get paired?

Solution. Consider the integers in the expansion of (p-1)!. Each of these integers is in the set $\{1,2,\ldots p-1\}$, and so we can pair each integer with its unique inverse modulo p as we proved in theorem 2. Thus we will have pairs of integers $a,b\in\{1,2,\ldots p-1\}$ such that $ab\equiv 1\pmod p$. However, we must account for the case where a=b. This implies that $a^2\equiv 1\pmod p$. However, by part c, we know that there are only two such numbers in the set $\{1,2,\ldots p-1\}$ for which $a^2\equiv 1\pmod p$. Namely a=1,(p-1). Hence we have that $(p-1)!\equiv 1\cdot (p-1)\pmod p$. This means that $(p-1)!\equiv -1\pmod p$ as desired.

Problem 4. [20 points] The following parts can be solved using Fermat's little theorem, which states that for integers a, p such that gcd(a, p) = 1, $a^{p-1} \equiv 1 \pmod{p}$.

(a) [2 pts] Find $3^{31} \pmod{7}$.

Solution. By a direct application of Fermat's little theorem, $3^6 \equiv 1 \pmod{7}$. Therefore, $3^{30} \equiv 1 \pmod{7}$. Thus $3^{31} \equiv 3^{30} \cdot 3 \equiv 1 \pmod{7}$.

(b) [4 pts] Prove that $7 \mid n^6 - 1$ for all integers n such that gcd(n,7) = 1.

Solution. As gcd(n,7) = 1, we have that $n^6 \equiv 1 \pmod{7}$ by Fermat's little theorem. By definition, this means that $7 \mid n^6 - 1$.

(c) [6 pts] Prove that $42 \mid n^7 - n$ for all integers n.

Solution. We have that

$$n^{7} - n = n(n^{6} - 1) = n(n^{3} + 1)(n^{3} - 1) = n(n + 1)(n - 1)(n^{2} + n + 1)(n^{2} - n + 1)$$

We can use part d of problem 1 on this problem set to conclude that $3! \mid n(n+1)(n-1)$. So we have that $6 \mid n^7 - n$ for all integers n. Now we need to show that $7 \mid n^7 - n$ for all integers n. Suppose that $7 \mid n$, then we are done. Now if we assume that $7 \nmid n$, then $\gcd(7, n) = 1$. Then we can use the previous part of this problem to conclude that $7 \mid n^6 - 1$ and so $7 \mid n^7 - n$.

(d) [8 pts] Prove that $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is an integer $\forall n \in \mathbb{Z}$.

Solution. We first take a common denominator.

$$\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15} = \frac{3n^5 + 5n^3 + 7n}{15}$$
$$= \frac{n(3n^4 + 5n^2 + 7)}{15}$$

Now all we need to show is that $15 \mid n(3n^4 + 5n^2 + 7)$ for all integers n. We first show that $3 \mid n(3n^4 + 5n^2 + 7)$. If $3 \mid n$, then we are done. Otherwise, $\gcd(n,3) = 1$. In this case, by Fermat's little theorem we have that $n^2 \equiv 1 \pmod{3}$. Thus we have that

$$3n^4 + 5n^2 + 7 \equiv 2 + 1 \equiv 0 \pmod{3}$$

Thus we have that $3 \mid n(3n^4 + 5n^2 + 7)$ for all integers n.

Now we show that $5 \mid n(3n^4 + 5n^2 + 7)$ for all integers n. Again if $5 \mid n$, then we are done. Otherwise, $\gcd(n,5) = 1$. In this case, by Fermat's little theorem we have that $n^4 \equiv 1 \pmod{5}$. Thus we have that

$$3n^4 + 5n^2 + 7 \equiv 3 + 2 \equiv 0 \pmod{5}$$

Thus we have that $5 \mid n(3n^4 + 5n^2 + 7)$ for all integers n.

Hence we have that $15 \mid n(3n^4 + 5n^2 + 7)$ for all integers n.

Problem 5. [20 points]

Prove that the greatest common divisor of three integers a, b, and c is equal to their smallest positive linear combination; that is, the smallest positive value of sa + tb + uc, where s, t, and u are integers.

Solution. Let m be the smallest positive linear combination of a, b, and c. We'll prove that $m = \gcd(a, b, c)$ by showing both $\gcd(a, b, c) \le m$ and $m \le \gcd(a, b, c)$.

First, we show that $gcd(a, b, c) \leq m$. By the definition of common divisor, gcd(a, b, c) divides a, b, and c. Therefore, for every triple of integers s, t, and u:

$$gcd(a, b, c) \mid sa + tb + uc$$

Thus, in particular, gcd(a, b, c) divides m, and so $gcd(a, b, c) \leq m$.

Now we show that $m \leq \gcd(a, b, c)$. We do this by showing that $m \mid a$. Symmetric arguments show that $m \mid b$ and $m \mid c$, which means that m is a common divisor of a, b, and c. Thus, m must be less than or equal to the *greatest* common divisor of a, b, and c.

All that remains is to show that $m \mid a$. By the division algorithm, there exists a quotient q and remainder r such

$$a = q \cdot m + r$$
 (where $0 \le r < m$)

Now m = sa + tb + uc for some integers s and t. Subtituting in for m and rearranging terms gives:

$$a = q \cdot (sa + tb + uc) + r$$

$$r = (1 - qs)a + (-qt)b + (-qu)c$$

We've just expressed r as a linear combination of a, b, and c. However, m is the *smallest positive* linear combination and $0 \le r < m$. The only possibility is that the remainder r is not positive; that is, r = 0. This implies $m \mid a$.

Problem 6. [20 points] In this problem, we will investigate numbers which are squares modulo a prime number p. These numbers are referred to quadratic residues of p.

(a) [5 pts] An integer n is a quadratic residue of p if there exists another integer x such that $n \equiv x^2 \pmod{p}$. Prove that $x^2 \equiv y^2 \pmod{p}$ if and only if $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$. (Hint: This is similar to problem 3c)

Solution. $x^2 \equiv y^2 \pmod{p}$ iff $p \mid x^2 - y^2$. But $x^2 - y^2 = (x - y)(x + y)$, and since p is a prime, this happens iff either $p \mid x - y$ or $p \mid x + y$, which is iff $x \equiv y \pmod{p}$ or $x \equiv -y \pmod{p}$.

(b) [5 pts] The following is a simple test we can perform to see if a number $n \not\equiv 0 \pmod{p}$ is a quadratic residue of p for odd primes p.

Theorem 3 (Euler's Criterion). :

- 1. n is a quadratic residue of p if and only if $n^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.
- 2. n is quadratic non-residue p if and only if $n^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

This can be proved completely using Wilson's theorem and part a of this problem. However for this part prove the following: If n is a quadratic residue of p, then $n^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Solution. If n is a quadratic residue p, then there exists an a such that $a^2 \equiv n \pmod{p}$. Consequently,

$$n^{\frac{p-1}{2}} \equiv a^{p-1} \equiv 1 \pmod{p}$$

by Fermat's theorem.

(c) [10 pts] Assume that $p \equiv 3 \pmod{4}$ and $n \equiv x^2 \pmod{p}$. Find one possible value for x, expressed as a function of n and p. (Hint: Write p as p = 4k + 3 and use Euler's Criterion. You might have to multiply two sides of an equation by n at one point.)

Solution. From Euler's Criterion:

$$n^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

We can write p = 4k + 3, so $\frac{p-1}{2} = \frac{4k+3-1}{2} = k+1$. As a result, $n^{2k+1} \equiv 1 \pmod{p}$, so $n^{2k+2} \equiv n \pmod{p}$. This can be rewritten as $(n^{k+1})^2 \equiv n \pmod{p}$, so

$$n^{k+1} = n^{\frac{p-3}{4}+1}$$

is one possible value of x.