谐振电路实验报告

2411545 邱凯锐

2025.3.3

1 实验目的

- (1) 了解 RLC 组合交流电路的阻抗对频率的依赖关系。
- (2) 掌握谐振电路的谐振条件及谐振特点。
- (3) 了解谐振曲线的形状与线路 Q 值的关系。

2 实验仪器

- (1) 信号源:F05 型数字合成函数/任意波信号发生器/计数器
- (2) 示波器:OWON XDS3102A
- (3) 7X28A/10 型交流/直流电阻箱 ×2
- (4) BR8/3 型标准电容器 0.1μF (中华人民共和国上海沪光仪器厂)
- (5) 电感线圈 0.1H

3 实验原理

Figure 1: RLC 串联电路

RCL 串联电路的复阻抗为:

$$Z = Z_R + Z_L + Z_C = R + j(\omega L - \frac{1}{\omega C})$$

复阻抗的模:

$$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$

复阻抗的幅角:

$$\varphi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}$$

 φ 角即该电路电流滞后与总电压的相位差。回路中电流 I(有效值) 为:

$$I = \frac{U}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

改变电源频率,当 $\omega L - \frac{1}{\omega C} = 0$ 时, $\varphi = 0$,表明电路中电流 I 和电压 U 同位相,整个电路呈现纯电阻性,这就是串联谐振现象。此时电路总阻抗的 模 Z = R 为最小,如 U 不随 f 变化,电流 I 则达到极大值。

令 ω_0 和 f_0 表示谐振状态下的圆频率和频率,由谐振条件 $\omega L - \frac{1}{\omega C}$ 可得:

$$\omega_0 = \sqrt{\frac{1}{LC}} \quad \vec{\boxtimes} \quad f_0 = \frac{\omega_0}{2\pi}$$

R、L、C 元件上的电压有效值分别为:

$$U_R = IR = \frac{R}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} U$$

$$U_L = I\omega L = \frac{\omega L}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} U$$

$$U_L = I\omega L = \frac{1}{\omega C \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} U$$
(1)

电路发生谐振时,(1)式变为:

$$U_{R} = U$$

$$U_{L} = \frac{\omega_{0}L}{R}U = QU$$

$$U_{L} = \frac{1}{\omega_{0}RC}U = QU$$
(2)

式中 $Q = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$

称 Q 为串联谐振电路的品质因数,R 为串联谐振电路的总电阻。

同时对于 I-f 曲线,通常考查 I 由极大值 I_{max} 下降到 $I_{max}/\sqrt{2}=0.707I_{max}$ 时的两点对应频率 f_1 和 f_2 之差 $\Delta f(\Delta f=f_2-f_1$ 称为通频带宽度)与谐振频率 f_0 的关系,可以证明它们之间的关系满足下式:

$$\frac{\Delta f}{f_0} = \frac{1}{Q}$$

4 实验内容

按电路图联结电路。

- (1) R 置 100Ω , 置 $R'+R_L=100\Omega$ (R_L 为 L 串联损耗电阻,本实验中 $R_L=13\Omega$),保持 U=3.00V 不变,用示波器测出不同频率 f 下的 U_R ,从而作出 I-f 关系曲线,并在谐振频率下测出 U_L 和 U_C 值;由示波器测出 $\varphi-f$ 关系曲线。
- (2) R 置 100Ω , 置 $R'+R_L=300\Omega$, 仍保持 U=3.00V 不变,测出 I-f 曲线,谐振频率下的 U_L 和 U_C 值,以及 $\varphi-f$ 关系曲线。

从上诉曲线上找出谐振频率的测量值 f_{0} 测,由谐振时测得的 U_C (或者 U_L)值求出 Q_{B} 测。将 f_{0} 测和 Q_{B} 测 与理论值 f_{0} 测和 Q_{B} 规 相比较。

值求出 $Q_{\rm HM}$ 。将 $f_{\rm OM}$ 和 $Q_{\rm HM}$ 与理论值 $f_{\rm OM}$ 和 $Q_{\rm HH}$ 相比较。 在两条曲线上,找到谐振峰两旁的 $I_{max}/\sqrt{2}$ 值所相应的频率 $f_{\rm 1}$ 和 $f_{\rm 2}$,算出 Q 值,并于理论值比较。

Figure 2: 实验装置

5 实验数据

Table 1: $R' + R_L = 100\Omega$

频率(Hz)	电压 U(V)	电流 I(mA)	相位 φ (角度值)	(弧度制)
600	123	1. 23	-89	-1. 553297222
800	204	2.04	-83	-1. 448580556
1000	307	3. 07	-78	-1. 361316667
1200	501	5. 01	-71	-1. 239147222
			Continue	d on next page

Table 1 - continued from previous page

频率(Hz)	电压 U(V)	电流 I(mA)	相位 φ (角度值)	(弧度制)
1400	937	9. 37	-51	-0. 890091667
1500	1260	12.6	-30	-0. 523583333
1550	1400	14	-14	-0. 244338889
1570	1440	14.4	-7	-0. 122169444
1590	1460	14.6	-1	-0. 017452778
1610	1450	14.5	6	0. 104716667
1630	1420	14.2	12	0. 209433333
1650	1370	13. 7	19	0. 331602778
1700	1220	12.2	32	0. 558488889
1900	717	7. 17	59	1. 029713889
2100	508	5.08	69	1. 204241667
2300	383	3.83	75	1. 308958333
2500	309	3.09	79	1. 378769444
2700	270	2. 7	80	1. 396222222

Table 2: $R' + R_L = 300\Omega$

频率(Hz)	电压 U(V)	电流 I(mA)	相位 φ (角度值)	(弧度制)
600	127	1. 27	-79	-1. 378769444
800	197	1. 97	-76	-1. 326411111
1000	285	2.85	-68	-1. 186788889
1200	432	4. 32	-56	-0. 977355556
1400	622	6. 22	-33	-0. 575941667
1500	712	7. 12	-16	-0. 279244444
1550	733	7. 33	-5	-0. 087263889
1570	738	7. 38	-3	-0. 052358333
1590	740	7. 4	0	0
1610	739	7. 39	3	0. 052358333
1630	735	7. 35	4	0.069811111
1650	728	7. 28	11	0. 191980556
1700	703	7. 03	18	0. 31415
1900	553	5. 53	40	0. 698111111
2100	437	4. 37	52	0. 907544444
2300	351	3. 51	61	1.064619444
2500	293	2. 93	66	1. 151883333
2700	258	2. 58	70	1. 221694444

Table 3: 谐振频率下 U_C 和 U_L 的值

组别	$U_C(V)$	$U_L(V)$
1	14.3	14. 4
2	7. 2	7. 2

Figure 3: I-f 曲线 $(R'+R_L=100\Omega)$

Figure 4: $\varphi - f$ 曲线 $(R' + R_L = 100\Omega)$

Table 4: f(KHz) 值比较

组别	f_{0} 理	f_{0}	f_1	f_2
1	1.59	1.58	1.43	1. 76
2	1.59	1.59	1.30	1.95

Figure 5: I-f 曲线 $(R'+R_L=300\Omega)$

Figure 6: $\varphi - f$ 曲线 $(R' + R_L = 300\Omega)$

Table 5: Q 值比较

组别	$Q_{\oplus \overline{\Xi}}$	$Q_{\oplus M1} = \frac{U_C}{U}$	$Q_{\oplus M2} = rac{f_0}{\Delta f}$
1	4. 99	4.81	4.82
2	2.50	2.41	2.45

总结

本次实验较为成功地完成了实验目标,成功测出 I-f 以及 $\varphi-f$ 曲线,

谐振频率 f_0 和品质因数 Q 的测量值与理论值也较为接近。 同时通过本次实验,我对示波器、信号源等电路设备的使用有了初步的认 识,了解了相关的使用事项,为日后的实验课打好了基础。