FEUILLE 10 : GÉOMÉTRIE

I EXERCICES DE GÉOMÉTRIE DU PLAN

Exercice 1

Dans le plan muni d'un repère orthonormé direct on considère les points A(1;1), B(-1;2) et C(0;1).

- a. Déterminer une équation cartésienne des droites (AB), (AC) et (BC).
- **b.** Déterminer une équation cartésienne de la droite passant par A et perpendiculaire à (BC).
- c. Déterminer une équation cartésienne de la droite passant par A et dirigée par \overrightarrow{BC} .
- **d.** Donner la distance de A à (BC).

Exercice 2

Dans le plan muni d'un repère orthonormé direct on considère les points A(1;3) et B(2;-1).

- a. Déterminer une équation cartésienne du cercle de diamètre [AB].
- **b.** Déterminer une équation cartésienne du cercle de centre A et de rayon 2.
- c. Déterminer l'intersection de ces deux cercles.

Exercice 3

Soient A, B et C trois points non alignés du plan.

a. Déterminer l'ensemble des points M du plan tels que

$$\overrightarrow{AB} \cdot \overrightarrow{CM} + \overrightarrow{AC} \cdot \overrightarrow{MB} + \overrightarrow{AM} \cdot \overrightarrow{BC} = 0$$

b. En déduire que les hauteurs d'un triangles sont concourantes.

Exercice 4

Soient A et B des points du plan, I le milieu de [AB] et $k \in \mathbb{R}^+$.

a. Déterminer l'ensemble des points M du plan tels que

$$MA^2 - MB^2 = k$$

b. Montrer que pour tout point M du plan

$$MA^2 + MB^2 = 2MI^2 + 2AI^2$$

 \mathbf{c} . En déduire l'ensemble des points M du plan tels que

$$MA^2 + MB^2 = k$$

Exercice 5

Dans le plan muni d'un repère orthonormé direct, on considère le point A de coordonnées (-1;2) et la droite $\mathscr D$ de représentation paramétrique $\left\{ \begin{array}{l} x=1+t\\ y=3-2t \end{array} \right.$

- a. Déterminer une équation cartésienne de \mathscr{D} .
- **b.** Calculer la distance de A à \mathcal{D} .
- c. Déterminer une équation de la perpendiculaire à \mathcal{D} passant par A.

Exercice 6

Soient A, B et C trois points non alignés du plan. Montrer que :

$$\frac{AB}{\sin\left(\widehat{ACB}\right)} = \frac{CA}{\sin\left(\widehat{CBA}\right)} = \frac{BC}{\sin\left(\widehat{BAC}\right)}$$

Exercice 7

Soient OABC et OPQR deux carrés distincts du plan tels que O, C et P sont alignés.

Soit M le point d'intersection des droites (PA) et (BQ).

Montrer que les points R, M et C sont alignés.

Exercice 8

Le plan est muni d'un repère orthonormé direct. Déterminer l'ensemble des points équidistants des droites \mathcal{D}_1 et \mathcal{D}_2 d'équations respectives :

$$3x + 4y - 2 = 0$$
 et $-x + 2y + 3 = 0$

II EXERCICES DE GEOMETRIE DANS L'ESPACE

Dans l'ensemble des exercices l'espace est muni d'un repère orthonormé direct $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$.

Exercice 9

Soient t un réel, P_1, P_2 et P_3 les plans d'équations respectives :

$$x + ty - z + 1 = 0$$
, $(1+t)x + 3y + 4z - 2 = 0$ et $y + (2t+4)z - (2t+2) = 0$

Déterminer les valeurs de t pour lesquelles les trois plans contiennent une même droite.

Exercice 10

On considère les vecteurs $\overrightarrow{u}\begin{pmatrix}1\\2\\-1\end{pmatrix}$, $\overrightarrow{v}\begin{pmatrix}1\\0\\1\end{pmatrix}$ et $\overrightarrow{w}\begin{pmatrix}1\\-\frac{1}{2}\\0\end{pmatrix}$. Déterminer :

$$\mathbf{a.} \ \overrightarrow{u} \cdot \overrightarrow{v} \quad \mathbf{b.} \ \overrightarrow{u} \cdot \overrightarrow{w} \quad \mathbf{c.} \ \overrightarrow{w} \cdot \overrightarrow{v} \quad \mathbf{d.} \ [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] \quad \mathbf{e.} \ \overrightarrow{u} \wedge \overrightarrow{v} \quad \mathbf{f.} \ \overrightarrow{u} \wedge \overrightarrow{w} \quad \mathbf{g.} \ \overrightarrow{w} \wedge \overrightarrow{v}$$

Exercice 11

On considère les points A(1;1;1), B(1;0;-2), C(0;-1;2) et D(1;2;3).

- **a.** Calculer AB, AC et BC.
- **b.** Donner une représentation paramétrique de la droite passant par A et dirigée par \overrightarrow{BC} .
- c. Montrer que A, B et C ne sont pas alignés, et déterminer une équation cartésienne du plan \mathscr{P} passant par A, B et C.
- **d.** Donner une représentation paramétrique de \mathscr{P} .
- e. Donner une équation cartésienne du plan passant par A et orthogonal à (BC).
- **f.** Donner une représentation paramétrique de (AB).
- \mathbf{g} . Donner des équations cartésiennes de (AB).
- **h.** Déterminer la distance de A à (BC).
- i. Déterminer la distance de D à \mathscr{P} .

Exercice 12

On considère les points
$$A(3;1;2)$$
, $B(1;4;2)$ et $C(1;9;0)$, et les vecteurs $\overrightarrow{n} \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$

On définit le plan \mathscr{P} passant par A et de vecteur normal \overrightarrow{n} , la droite \mathscr{D} passant par B et dirigée par \overrightarrow{u} , et la sphère \mathscr{S} de centre C et passant par A.

- a. Montrer que \mathscr{D} est strictement parallèle à \mathscr{P} .
- **b.** Calculer la distance de C à \mathscr{P} .
- c. Déterminer le rayon de la sphère \mathscr{S} et en déduire l'intersection de \mathscr{S} et \mathscr{P} .
- **d.** Déterminer une représentation paramétrique de \mathcal{D} et une équation cartésienne de \mathcal{S} , puis en déduire l'intersection de \mathcal{D} et \mathcal{S} .

Exercice 13

On considère les plans \mathscr{P}_1 et \mathscr{P}_2 d'équations respectives : x+y-2z-1=0 et 2x-y+z+1=0. Calculer la distance du point M(1;3;-2) à la droite d'intersection des plans \mathscr{P}_1 et \mathscr{P}_2 .

Exercice 14

On considère les points :
$$A(1;1;1)$$
, $B(2;0;-1)$, $C(0;-2;1)$, $D\left(\frac{3\sqrt{6}}{4};\frac{3\sqrt{2}}{4};\frac{3\sqrt{2}}{2}\right)$ et $E\left(\sqrt{6};\sqrt{6};2\right)$.

- a. Déterminer les coordonnées cylindriques des points A, B et C.
- b. Déterminer les coordonnées sphériques des points D et E.

c. Soient
$$\overrightarrow{u} = \frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}, \overrightarrow{v} = \frac{\overrightarrow{i} - \overrightarrow{j}}{\sqrt{2}}$$
 et $\overrightarrow{w} = \frac{\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}}{\sqrt{6}}$.

Montrer que $\mathscr{R} = (A, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est un repère orthonormé de l'espace et déterminer les coordonnées de B et C dans ce repère.

Exercice 15

On considère les points A(0; -1; 2), B(2; 0; -1), C(1; -2; 1), D(5; 0; -3) et E(1; 1; 1).

- **a.** Justifier que A, B et C définissent un plan, de même que A, D et E.
- **b.** Montrer que D et E n'appartiennent pas au plan (ABC).
- c. Déterminer une équation cartésienne du plan (ABC) et du plan (ADE).
- **d.** Déterminer l'intersection de (ABC) avec (ADE) et le plan \mathcal{P}_1 , d'équation x + y + 1 = 0.
- **e.** Déterminer l'intersection de (ABC) avec (ADE) et le plan \mathscr{P}_2 , d'équation x y + z = 0.
- **f.** Déterminer l'intersection de (ABC) avec (ADE) et le plan \mathcal{P}_3 , d'équation 2x + y + z + 1 = 0.
- g. Déterminer l'intersection de $\mathcal{P}_1, \mathcal{P}_2$ et \mathcal{P}_3 .

Exercice 16

On considère les droites \mathcal{D}_1 et \mathcal{D}_2 admettant pour représentations paramétriques respectives :

$$\begin{cases} x = 1 + 3t \\ y = -5t \\ z = 2 + 4t \end{cases}$$
 et
$$\begin{cases} x = 1 + t \\ y = -1 + t \\ z = -2 - t \end{cases}$$

Déterminer la perpendiculaire commune à \mathcal{D}_1 et \mathcal{D}_2 .