

Comparison: In-Context Learning vs. Traditional Supervised Learning

Aspect	Traditional Supervised Learning	In-Context Learning (ICL)
Prediction function	$\hat{y}_{ ext{test}} = f_{\hat{ heta}}(x_{ ext{test}})$	$\hat{y}_{ ext{test}} = f_{\phi}(X_{ ext{train}}, y_{ ext{train}}, X_{ ext{test}})$
Generalization target	New samples from same distribution	New datasets from distribution $p(\boldsymbol{D})$
Training objective	Optimize $\hat{ heta}$ on single dataset	Learn predictor f_ϕ across many tasks
Loss function	MLE: $-\log p_{ heta}(y\mid x)$	Conditional NLL of test labels given training data
Learning approach	Per-task weight adaptation via SGD	Single model inference via forward pass
Bayesian view	Point estimate: $p(y \mid x, \hat{ heta})$	Posterior predictive: $p(y_{ ext{test}} \mid X_{ ext{train}}, y_{ ext{train}}, X_{ ext{test}})$
Advantages	Efficient inference; strong on large data	No retraining; excels on small data; task generalization