Neural Network Function Approximation

Map of RL Algorithms

Model-Free Model-Based Learn Q SARSA Policy Gradient MLMBTRL (Learn T,R)

Tabular

This Time

Challenges in Reinforcement Learning:

- Exploration vs Exploitation
- Credit Assignment
- Generalization

$$ypprox f_{ heta}(x)$$

Previously, Linear:

$$f_{ heta}(x) = heta^ op eta(x)$$

Previously, Linear:

$$f_{ heta}(x) = heta^{ op} eta(x)$$
 interpolation weight

Previously, Linear:

$$f_{ heta}(x) = heta^ op eta(x)$$

e.g.
$$\beta_i(x) = \sin(i \pi x)$$

AI = Neural Nets

Neural Nets are just another function approximator

$$h(x) = \sigma(Wx + b)$$

$$\sqrt{2} \left(\sqrt{(1)} \times + b^{(1)} \right) + b^{(2)}$$

$$\Theta = \left(\mathcal{W}_{3}^{(3)} \mathcal{W}_{2}^{(2)} \mathcal{W}_{1}^{(1)} \mathcal{E}_{2}^{(2)} \mathcal{E}_{3}^{(1)} \right)$$

$$h(x) = \sigma(Wx + b)$$

$$f_{\varphi}(x) = h^{(z)} \left(h^{(i)}(x)\right) = W^{(i)} \sigma^{(z)} \left(W^{(z)} \sigma^{(i)} \left(W^{(i)} x + b^{(i)}\right) + b^{(z)}\right)$$

Nonlinearities

9

$$heta^* = rg\min_{ heta} \sum_{(x,y) \in \mathcal{D}} l(f_{ heta}(x),y)$$

$$heta^* = rg\min_{ heta} \sum_{(x,y) \in \mathcal{D}} l(f_{ heta}(x), y)$$

Stochastic Gradient Descent: $heta \leftarrow heta - \alpha \widehat{
abla_{ heta} l(f_{ heta}(x), y)}$

$$f \cdot g \cdot h = f(g(h(x)))$$

figih = f(g(h(x))) Chain Rule

$$\frac{\partial f(g(h(x)))}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g(h))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x)))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h(x))}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}} = \frac{\partial f(g)}{\partial g}\Big|_{g_{0}} \frac{\partial g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g(h)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial x}\Big|_{x_{0}}$$

$$\frac{\partial f(g)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}}$$

$$\frac{\partial f(g)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}}$$

$$\frac{\partial f(g)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}} \frac{\partial h(x)}{\partial h}\Big|_{h_{0}}$$

$$\dot{y} = \dot{W}^{(2)} \sigma (W^{(1)} \times + b^{(1)}) + b^{(2)}$$

$$\frac{\partial l}{\partial W^{(2)}} = \frac{\partial l}{\partial \hat{y}} \left(\frac{\partial \hat{y}}{\partial W^{(2)}} \right) = \frac{\partial l}{\partial \hat{y}} \left(\frac{\partial (W^{(1)})}{\partial W^{(2)}} \right)$$

$$56D$$

$$W^{(2)} \leftarrow W^{(2)} - \alpha \frac{\partial l}{\partial W^{(2)}}$$

Backprop
$$\hat{y} \quad \theta_{2} \times + \theta_{1} \qquad \ell(\hat{y}, y) = (\hat{y} - y)^{2}$$

$$x \qquad \qquad \times \qquad c_{1}$$

$$\frac{\partial \ell}{\partial \theta_1} = \frac{\partial \ell}{\partial c_2} \frac{\partial c_2}{\partial y_{\text{pred}}} \frac{\partial y_{\text{pred}}}{\partial \theta_1} = -85,000 \cdot 1 \cdot 1 = -85,000$$

$$\frac{\partial \ell}{\partial \theta_2} = \frac{\partial \ell}{\partial c_2} \frac{\partial c_2}{\partial y_{\text{pred}}} \frac{\partial y_{\text{pred}}}{\partial c_1} \frac{\partial c_1}{\partial \theta_2} = -85,000 \cdot 1 \cdot 1 \cdot 2500 = -2.125 \times 10^8$$

a "fast and furious" approach to training neural networks does not work and only leads to suffering. Now, suffering is a perfectly natural part of getting a neural network to work well, but it can be mitigated by being thorough, defensive, paranoid, and obsessed with visualizations of basically every possible thing. The qualities that in my experience correlate most strongly to success in deep learning are patience and attention to detail.

Keep calm and lower your learning rate

- Andrej Karpathy

Adaptive Step Size: RMSProp

$$\hat{S}^{(k+1)} = y \hat{S}^{(k)} + (1-y)(g^{(k)} \odot g^{(k)})$$
element-wise product

$$\Theta_{i}^{(k+1)} = \Theta_{i}^{(k)} - \frac{\alpha}{\epsilon + \sqrt{\hat{S}_{i}^{(k+1)}}} \mathcal{G}_{i}^{(k)}$$

Adaptive Step Size: ADAM

(Adaptive Moment Estimation)

gradient descent — momentum

Figure 5.5. Gradient descent and the momentum method compared on the Rosenbrock function with b = 100; see appendix B.6.

biased decaying momentum
$$v^{(k+1)} = y_v v^{(k)} + (1-y_v) g^{(k)}$$

biased decaying sq. grad. $S^{(k+1)} = y_s S^{(k)} + (1-y_s) (g^{(k)} \bigcirc g^{(k)})$
Corrected decaying momentum \hat{v}

On Your Radar: Regularization

On Your Radar: Regularization

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \sum_{(x,y)\in\mathbf{D}} \ell(f_{\boldsymbol{\theta}}(x),y) - \beta \|\boldsymbol{\theta}\|^2$$

On Your Radar: Regularization

$$\underset{\boldsymbol{\Theta}}{\operatorname{arg\,min}} \sum_{(x,y)\in\mathbf{D}} \ell(f_{\boldsymbol{\Theta}}(x),y) - \beta \|\boldsymbol{\Theta}\|^2$$

e.g. Batch norm, layer norm, dropout

On Your Radar: Skip Connections (Resnets)

Resources

OpenAl Spinning up