

Universidad Nacional de Loja

PERIODO ACADÉMICO: OCTUBRE 2019 - MARZO 2020 PRACTICA #3

ASIGNATURA: SIMULACIÓN

RESULTADO DE APRENDIZAJE DE LA PRÁCTICA: Identifica las distribuciones de probabilidad

y generación de variables aleatorias TIEMPO PLANIFICADO: 3 HORAS

NUMERO DE ESTUDIANTES: PARALELO COMPLETO (Paralelo A y B)

1. TEMA: Generadores de variables aleatorias (método de la transformada inversa)

2. OBJETIVOS:

- Comprende el método de la transformada inversa para la generación de variables aleatorias.
- Identifica las distribuciones de probabilidad para variables aleatorias.
- Usa los conocimientos aprendidos en teoría para su posterior aplicación práctica.

3. RECURSOS NECESARIOS:

- Java, Netbeans o Eclipse.
- Computador de Laboratorios

4. INSTRUCCIONES:

- Prohibido consumo de alimentos
- Prohibido equipo de diversión, celulares etc.
- Prohibido jugar
- Prohibido mover o intercambiar los equipos de los bancos de trabajo
- Prohibido sacar los equipos del laboratorio sin autorización.
- Ubicar los equipos y accesorios en el lugar dispuesto por el responsable del laboratorio, luego de terminar las prácticas.
- Uso adecuado de equipos

5. ACTIVIDADES POR DESARROLLAR:

6.

1. Utilice la prueba de chi-cuadrada para determinar, con un nivel de confianza del 95% que tipo de distribución siguen los datos:

1	2	0	1	2
1	0	0	1	2
2	1	1	1	1
2	0	2	2	1
1	1	2	1	1
0	0	0	1	1
0	1	0	0	1
0	2	0	1	2
0	1	1	1	0
0	0	0	1	0

Datos:

n	50
m	3
٨	0,84
nConfianza	0,95
alfa	0.05
gl	2
X_{crit}^2	5,9915

Hipótesis:

H0: Los números generados siguen una distribución probabilidad poisson

H1: Los números generados siguen otro tipo de distribución

$$P(\mathbf{0}x = \mathbf{0}, \mathbf{1}) = \frac{(2.71^{-0.84} * 0.84^{\circ})}{0!} + \frac{(2.71^{-0.84} * 0.84^{\circ})}{1!} = 0.7943$$

$$P(x = 2.3) = \frac{(2.71^{-0.84} * 0.54^{2})}{2!} + \frac{(2.71^{-0.84} * 0.54^{8})}{3!} = 0.1950$$

$$P(x = 4, inf) = \frac{(2.71^{-0.84}*0.84^4}{4!} + + \frac{(2.71^{-0.84}*0.84^3}{5!} = 0.0105$$

Intervalos	O_i	p(x)	$E_i = n * p(x)$	$C = \frac{(E_i - O_i)^1}{(E_i)}$
0-1	18	0.7943	39.715	0.002
2-3	22	0.1950	9.75	0.006
4-5	10	0.0105	0.525	0.522
Total	50	1	50	0.53

$$X_{calc}^{2}$$
=0.53

Los resultados nos Indican que no se puede rechazar la hipótesis H0 de que la variable aleatoria se comporta de acuerdo con una distribución de Poisson, con una media de 0.84.

- 2. Determine, con un nivel de confianza de 90%, qué tipo de distribución siguen los datos. Utilice la prueba de Kolmogorov-Smirnov
- 3. 16.032, 24.076, 18.825, 19.364, 17.532, 16.713, 12.858, 16.452, 28.501, 16.939, 16.463, 21.151, 14.817, 18515, 14.240, 24.154, 16.677, 18.739, 14.206, 17.487, 22.658, 22.240, 17.926, 24.477, 17.673, 14.702, 27.014, 19.916, 16.238, 19.501, 18.590, 17.471, 16.537, 22.422, 13.373, 12.165 16.597, 20.795, 25.924, 18.587, 19.929, 23.960, 14.417, 21.971, 20.549, 21.404, 18.874, 25.354, 18.338, 24.509

16,032	24,076	18,825	19,364	17,532	16,713	12,858	16,452	28,501	16,939
16,463	21,151	14,817	18,515	14,24	24,154	16,677	18,739	14,206	17,487
22,658	22,24	17,926	24,447	17,673	14,702	27,014	19,916	16,238	19,501
18,59	17,471	16,537	22,422	13,373	12,165	16,597	20,795	25,924	18,587
19,929	23,96	14,417	21,971	20,549	21,404	18,874	25,354	18,338	24,509

Hipótesis

H0: Los números generados pertenecen a una distribución Uniforme H1: Los números generados pertenecen a otra distribución

1121 200 Hamieros Benerados persenecen a ona aistinuado

Mayor	Menor	gl	D	М
28,501	12,165	49	0,1942	49

$$PEAi = \frac{1}{(b-a)}(x_2 - x_1)$$

$$PEAi = \frac{1}{(28,501 - 12,165)}(14 - 12) = 0,12243$$

$$PEAi = \frac{1}{(28,501 - 12,165)} (16 - 14) = 0,12243$$

$$PEAi = \frac{1}{(28,501 - 12,165)} (18 - 16) = 0,12243$$

Intervalos	Oi	Poi	POAi	PEAi	POAi-PEAi
1214	3	0,06	0,06	0,12243	0,06243
1416	5	0,1	0,16	0,12243	0,03757
16—18	14	0,28	0,44	0,12243	0,31757
18—20	11	0,22	0,66	0,12243	0,53757
20—22	5	0,1	0,76	0,12243	0,63757
22—24	4	0,08	0,84	0,12243	0,71757
24—26	6	0,12	0,96	0,12243	0,83757
26—28	1	0,02	0,98	0,12243	0,85757
28—30	1	0,02	1	0,12243	0,87757
30—inf	0	0	1	0,12243	0,87757
Total	50	1		С	0,87757

C= 0,87757

El valor estadística de prueba, c=0,8792 comparado con el valor de tabla crítico, D=0,17253, indica que se rechaza H0 (DISTRIBUCION UNIFORME) ya que c >D.

4. Genere mediante el método de la transformada inversa, 100 números aleatorios para las siguientes distribuciones de probabilidad.

a.
$$p(x) = \frac{1}{5} \left(\frac{4}{5}\right)^{x-1} \text{ para } x = 1,2,3...$$

$$\int_{0}^{x} \frac{1}{5} \left(\frac{4}{5}\right)^{x-1} dx \longrightarrow \frac{1}{5} \int_{0}^{x} \left(\frac{4}{5}\right)^{x-1} dx \longrightarrow \frac{1}{5} \int_{0}^{x} \left(\frac{4}{5}\right)^{x} \left(\frac{4}{5}\right)^{x} dx \longrightarrow \frac{1}{5} \int_{0}^{x} \left(\frac{4}{5}\right)^{x} dx \longrightarrow \frac{1}{5} \int_{0}^{x} \left(\frac{4}{5}\right)^{x} dx \longrightarrow \frac{1}{5} \int_{0}^{x} \left(\frac{4}{5}\right)^{x} dx \longrightarrow \frac{1}{4} \times \frac{\frac{4^{x}}{5}}{\ln\left(\frac{4}{5}\right)} \left\{ \frac{x}{5} \right\}$$

$$\frac{1}{4} \left[\frac{\left(\frac{4}{5}\right)^{x}}{\ln\left(\frac{4}{5}\right)} - \frac{\left(\frac{4}{5}\right)^{0}}{\ln\left(\frac{4}{5}\right)} \right] \longrightarrow \frac{1}{4} \left(\frac{\left(\frac{4}{5}\right)^{x}}{\ln\left(\frac{4}{5}\right)} - \frac{1}{\ln\left(\frac{4}{5}\right)} \right) = ri$$

$$\frac{1}{4} \left(\frac{\left(\frac{4}{5}\right)^{x}}{\ln\left(\frac{4}{5}\right)} - 1 \right) = ri \longrightarrow \left(\frac{\left(\frac{4}{5}\right)^{x}}{\ln\left(\frac{4}{5}\right)} - 1 \right) = 4ri \times \ln\frac{4}{5}$$

$$\frac{4^{x}}{5} - 1 = 4ri * \ln \frac{4}{5} \quad - \Rightarrow \frac{4^{x}}{5} = 4ri * \ln \frac{4}{5} + 1$$

$$\ln \frac{4^{x}}{5} = \ln \left(4ri * \ln \frac{4}{5} + 1 \right) \longrightarrow x \ln \frac{4}{5} = \ln \left(4ri * \ln \frac{4}{5} + 1 \right)$$
$$x = \frac{\ln \left(4ri * \ln \frac{4}{5} + 1 \right)}{\ln \frac{4}{5}}$$

Datos para obtener los números uniformes con el generador mixto

Generador mixto				
a	37			
С	97			
X0	12			
mod	100			

i	ri	х
1	0,41	2,04190
2	0,14	0,59821
3	0,15	0,64415
4	0,52	2,79587
5	0,21	0,93019
6	0,74	4,84126
7	0,35	1,67851
8	0,92	7,71391
9	0,01	0,04018
10	0,34	1,62071
11	0,55	3,02559
12	0,32	1,50731
13	0,81	5,75273
14	0,94	8,18520
15	0,75	4,96066
16	0,72	4,61160
17	0,61	3,52372
18	0,54	2,94770
19	0,95	8,44083
20	0,12	0,50770
21	0,41	2,04190
22	0,14	0,59821
23	0,15	0,64415
24	0,52	2,79587
25	0,21	0,93019
26	0,74	4,84126
27	0,35	1,67851
28	0,92	7,71391
29	0,01	0,04018
30	0,34	1,62071
31	0,55	3,02559

32	0,32	1,50731
33	0,81	5,75273
34	0,94	8,18520
35	0,75	4,96066
36	0,72	4,61160
37	0,61	3,52372
38	0,54	2,94770
39	0,95	8,44083
40	0,12	0,50770
41	0,41	2,04190
42	0,14	0,59821
43	0,15	0,64415
44	0,52	2,79587
45	0,21	0,93019
46	0,74	4,84126
47	0,35	1,67851
48	0,92	7,71391
49	0,01	0,04018
50	0,34	1,62071
51	0,55	3,02559
52	0,32	1,50731
53	0,81	5,75273
54	0,94	8,18520
55	0,75	4,96066
56	0,72	4,61160
57	0,61	3,52372
58	0,54	2,94770
59	0,95	8,44083
60	0,12	0,50770
61	0,41	2,04190
62	0,14	0,59821
63	0,15	0,64415
64	0,52	2,79587
65	0,21	0,93019
66	0,74	4,84126
67	0,35	1,67851
68	0,92	7,71391
69	0,01	0,04018
70	0,34	1,62071
71	0,55	3,02559
72	0,32	1,50731
73	0,32	5,75273
74	0,94	8,18520
75	0,75	4,96066
76	0,73	4,61160
77	-	3,52372
	0,61	
78 79	0,54 0,95	2,94770 8,44083
	-	
80	0,12	0,50770

81	0,41	2,04190
		·
82	0,14	0,59821
83	0,15	0,64415
84	0,52	2,79587
85	0,21	0,93019
86	0,74	4,84126
87	0,35	1,67851
88	0,92	7,71391
89	0,01	0,04018
90	0,34	1,62071
91	0,55	3,02559
92	0,32	1,50731
93	0,81	5,75273
94	0,94	8,18520
95	0,75	4,96066
96	0,72	4,61160
97	0,61	3,52372
98	0,54	2,94770
99	0,95	8,44083
100	0,12	0,50770

_

b.
$$\frac{1}{2} \left(\frac{1}{2}\right)^x para 1,2,3,...$$

$$\int_{0}^{x} \frac{1}{2} \left(\frac{1}{2}\right)^{x} dx \longrightarrow \frac{1}{2} \int_{0}^{x} \left(\frac{1}{2}\right)^{x} dx \longrightarrow \frac{1}{2} \frac{\left(\frac{1}{2}\right)^{x}}{\ln \frac{1}{2}} \begin{Bmatrix} x \\ 0 \end{Bmatrix}$$

$$\frac{1}{2} \left(\frac{\left(\frac{1}{2}\right)^x}{\ln \frac{1}{2}} - \frac{\left(\frac{1}{2}\right)^0}{\ln \frac{1}{2}} \right) \longrightarrow \frac{1}{2} \left(\frac{\left(\frac{1}{2}\right)^x}{\ln \frac{1}{2}} - \frac{1}{\ln \frac{1}{2}} \right) \longrightarrow \frac{1}{2} \left(\frac{\left(\frac{1}{2}\right)^x - 1}{\ln \frac{1}{2}} \right)$$

$$\frac{1}{2} \left(\frac{\left(\frac{1}{2}\right)^{x} - 1}{\ln \frac{1}{2}} \right) = ri \longrightarrow \left(\frac{\left(\frac{1}{2}\right)^{x} - 1}{\ln \frac{1}{2}} \right) = 2ri \longrightarrow \left(\frac{1}{2}\right)^{x} - 1 = 2ri * \ln \frac{1}{2}$$

$$\ln\frac{1}{2}^{x} = \ln\left(2ri * \ln\frac{1}{2} + 1\right) \longrightarrow x \ln\frac{1}{2} = \ln\left(2ri * \ln\frac{1}{2} + 1\right)$$

$$x = \frac{\ln\left(2ri * \ln\frac{1}{2} + 1\right)}{\ln\frac{1}{2}}$$

Generador mixto				
а	7			
С	97			
X0	33			
mod	100			

i	ri	x
1	0,28	0,70878
2	0,33	0,88224
3	0,18	0,41414
4	0,63	2,98126
5	0,28	0,70878
6	0,33	0,88224
7	0,18	0,41414
8	0,63	2,98126
9	0,28	0,70878
10	0,33	0,88224
11	0,18	0,41414
12	0,63	2,98126
13	0,28	0,70878
14	0,33	0,88224
15	0,18	0,41414
16	0,63	2,98126
17	0,28	0,70878
18	0,33	0,88224
19	0,18	0,41414
20	0,63	2,98126
21	0,28	0,70878
22	0,33	0,88224
23	0,18	0,41414
24	0,63	2,98126
25	0,28	0,70878
26	0,33	0,88224
27	0,18	0,41414
28	0,63	2,98126
29	0,28	0,70878
30	0,33	0,88224
31	0,18	0,41414
32	0,63	2,98126
33	0,28	0,70878
34	0,33	0,88224
35	0,18	0,41414
36	0,63	2,98126
37	0,28	0,70878

38	0,33	0,88224
39	0,18	0,41414
40	0,63	2,98126
41	0,28	0,70878
42	0,33	0,88224
43	0,18	0,41414
44	0,63	2,98126
45	0,28	0,70878
46	0,33	0,88224
47	0,18	0,41414
48	0,63	2,98126
49	0,28	0,70878
		·
50	0,33	0,88224
51	0,18	0,41414
52	0,63	2,98126
53	0,28	0,70878
54	0,33	0,88224
55	0,18	0,41414
56	0,63	2,98126
57	0,28	0,70878
58	0,33	0,88224
59	0,18	0,41414
60	0,63	2,98126
61	0,28	0,70878
62	0,33	0,88224
63	0,18	0,41414
64	0,63	2,98126
65	0,28	0,70878
66	0,33	0,88224
67	0,18	0,41414
68	0,63	2,98126
69	0,03	0,70878
		0,88224
70	0,33	<u> </u>
71	0,18	0,41414
72	0,63	2,98126
73	0,28	0,70878
74	0,33	0,88224
75	0,18	0,41414
76	0,63	2,98126
77	0,28	0,70878
78	0,33	0,88224
79	0,18	0,41414
80	0,63	2,98126
81	0,28	0,70878
82	0,33	0,88224
83	0,18	0,41414
84	0,63	2,98126
	-,	,

85	0,28	0,70878
86	0,33	0,88224
87	0,18	0,41414
88	0,63	2,98126
89	0,28	0,70878
90	0,33	0,88224
91	0,18	0,41414
92	0,63	2,98126
93	0,28	0,70878
94	0,33	0,88224
95	0,18	0,41414
96	0,63	2,98126
97	0,28	0,70878
98	0,33	0,88224
99	0,18	0,41414
100	0,63	2,98126

c.
$$p(x) = p(1-p)^x - 1$$
 para x= 1,2,3,...,n

5. Obtenga mediante el método de la transformada inversa, la expresión matemática para generar variables aleatorias que sigan las funciones de densidad indicadas.

a.
$$f(x) = \frac{x}{5}e^{-\frac{x^2}{10}} para \ x \ge 0$$

$$\int_{0}^{x} \frac{\left(-\frac{x^2}{10}\right)}{\int_{0}^{x} x \cdot e} dx$$

$$u = x\frac{2}{10}; \ du = -\frac{1}{10} 2x \ dx$$

$$-\frac{5du}{x} = dx$$

$$-\frac{5du}{x} = dx$$

$$-1 \int_{0}^{x} e^{u} \left(-\frac{5}{x}\right) du$$

$$-1 \int_{0}^{x} e^{u} du$$

$$-1 e^{u}$$

$$-e^{-\frac{x^2}{10}}$$

$$-\left(-e^{-\frac{a^2}{10} - e^{-\frac{0^2}{10}}}\right)$$

$$-\left(-e^{-\frac{a^2}{10} - 1}\right)$$

$$ri = \left(-e^{-\frac{a^2}{10} + 1}\right)$$

$$-ri + 1 = e^{-\frac{a^2}{10}}$$

$$\ln(-ri + 1) = e^{-\frac{a^2}{10}}$$

$$-\ln(ri+1) = \frac{x^2}{10}\ln(e)$$

$$\sqrt{-\ln(-ri+1)(10)} = \sqrt{x^2}$$

$$\sqrt{-\ln(-ri+1)(10)} = x$$

En donde x ≥0:

$$-\ln(-ri+1)(10) \ge 0$$

$$\ln(-ri+1) \ge 0$$

$$\ln(-ri+1) \ge \ln(e^{0})$$

$$\ln(-ri+1) \ge \ln(1)$$

$$\ln(f(x)) \ge \ln(g(x))$$

$$x \le f(x); g(x) > 0$$

$$-ri+1 \ge 1$$

$$-ri+1-1 \le 1-1$$

$$ri \le 0$$

b.
$$f(x) = 36x^2e^{-12x^8}para \ x \ge 0$$

$$\int_{0}^{a} 36x^{2} * e^{-12x^{3}} dx$$

$$36 \int_{0}^{a} x^{2} * e^{-12x^{3}} dx$$

$$u = -12x^{3}$$

$$du = -12 * 3x^{2} dx$$

$$du = -36x^{2} dx$$

$$\frac{du}{-36x^{2}} = dx$$

$$36 \int_{0}^{a} x^{2} * e^{xt} \frac{du}{-36x^{2}}$$

$$\frac{36}{-36} \int_{0}^{a} e^{xt} du$$

$$-e^{xt}$$

$$-e^{-12x^{3}}$$

$$-(e^{-12x^{3}} - e^{-120^{3}})$$

$$-(e^{-12x^{3}} - 1)$$

$$-e^{-12a^{3}} + 1$$

$$1 - e^{-12a^{3}}$$

$$ri = 1 - e^{-12x^{3}}$$

$$ri = 1 - e^{-12x^{3}}$$

$$ri = 1 - e^{-12x^{3}}$$

$$ln(-ri + 1) = -12x^{3}ln(e)$$

$$\frac{ln(-ri + 1)}{-12} = \sqrt[3]{x^{3}}$$

$$\frac{ln(-ri + 1)}{-12} = x$$

6. INVESTIGACIÓN COMPLEMENTARIA (a elaborar por el estudiante) Investigar sobre el método Anderson Darling.

Prueba de Anderson Darling

Fue conocida en 1954, esta prueba tiene como propósito corroborar si una muestra de variables aleatorias proviene de una población con una distribución de probabilidad específica. Trata de una modificación de la prueba de kolmogorovsmirnov, aunque tiene la virtud de detectar las discrepancias en los extremos de las distribuciones. La principal desventaja que es necesario calcular los valores críticos para cada distribución. Esta es muy sensible en los extremos de la distribución, por lo que debe ser usada con mucho cuidado en distribuciones con límite inferior acotado, y no es confiable para distribuciones de tipo discreto.

7. CONCLUSIONES (a elaborar por el estudiante)

 Para poder realizar la prueba de Anderson Darling es necesario calcular los valores críticos para cada distribución

8. RECOMENDACIONES (elaborar por el estudiante)

PROCEDIMIENTOS PARA ANDERSON -DARLING:

- 1. Obtener n datos de la variable aleatoria a analizar.
- 2. Calcular la media y la varianza de los datos.
- 3. Organizar los datos en forma ascendente: Yi i=1,2....,n.
- 4. Ordenar los datos en forma descendente Yn+1-i i = 1,2...,n.
- 5. Establecer explícitamente la hipótesis nula, proponiendo una distribución de probabilidad.
- 6. Calcular la probabilidad esperada acumulada para cada número Yi, PEA(Yi), y la probabilidad esperada acumulada para cada número, PEA(Yn+1-i), a partir de la función de probabilidad propuesta.
- 7. Calcular el estadístico de prueba:

$$A^{2}n = -[n + \frac{1}{n}\sum_{i=1}^{n}(2i - 1)\{1nPEA(Yi) + 1n(1 - PEA(Y_{n+1-i})\}]$$

- 8. Ajustar el estadístico de prueba de acuerdo con la distribución de probabilidad propuesta.
- 9. Definir el nivel de significancia de la prueba α, y determinar su valor crítico.
- 10. Comparar el estadístico de prueba con el valor crítico. Si el estadístico de prueba es menor el valor crítico no se puede rechazar la hipótesis nula.

BIBLIOGRAFÍA:

- Simulación matemática: aplicaciones en la ingeniería. (2010). ANI Academia Nacional de Ingeniería.
- Simulación : Un Enfoque Práctico, 2a. Edición de la 4a. en Inglés by Raúl Coss Bu

Ing. Marlon Santiago Viñan Ludeña Mg. Sc DOCENTE CIS