MA23303 - DISCRETE MATHEMATICS

IAT II - PRACTICE PROBLEMS

PART - A

1. Define Connected graph. Test whether the following graph is connected.

- 2. Give an example of a graph which is not Eulerian but Hamiltonian.
- 3. If G is a simple graph with $\delta(G) \ge \frac{|V(G)|}{2}$ then show that G is connected.
- 4. Let *Z* be the group of integers with binary operation *defined by a * b = a + b 2, for all $a, b \in Z$. Find the identity element of the group (Z, *).
- 5. Show that every cyclic group is abelian.
- 6. Let $f:(G, *) \to (G', \Delta)$ be a group homomorphism. Then prove that $[f(a)]^{-1} = f(a^{-1}) = [f(a)]^{-1} = f(a^{-1}), \forall a \in G$.
- 7. Draw the Hasse Diagram for $(D_{24}, /)$.
- 8. Prove that $a \lor (a \land b) = a$.
- 9. Prove that a lattice with five elements is not a Boolean algebra.
- 10. Define Modular lattice with an example.

PART - B

11. Find an Euler path or an Euler circuit, if it exists in each of the following three graphs. If it does not exist, explain why?

- 12. State and Prove Necessary and Sufficient condition for existence of Euler Graph.
- 13. Prove that, if G is a simple connected graph with $n \ge 3$ vertices and $\delta(u) \ge \frac{n}{2}$, for all $u \in V(G)$, then G is Hamiltonian graph.
- 14. Prove that a connected graph has an Euler path if and only if it has exactly two vertices of odd degree.
- 15. Prove that $(Z_5, +_5)$ is an abelian group.
- 16. State and Prove Lagrange's theorem.
- 17. Show that intersection two normal subgroups is a normal subgroup.
- 18. Prove that every finite group of order n is isomorphic to a permutation group of degree n.
- 19. Show that (Z, \bigoplus, \bigcirc) is a commutative ring with identity, where the operation \bigoplus and \bigcirc are defined, for any $a, b \in Z$ as $a \bigoplus b = a + b 1$ and $a \bigcirc b = a + b ab$.
- 20. Consider the Lattice D_{105} with the partial ordered relation, "divides" then (i) draw the Hasse diagram of D_{105} (ii) find the complement of each element of D_{105} (iii) find the set of atoms of D_{105} (iv) find the number of subalgebras of D_{105} .
- 21. Determine whether the following partial ordering sets with the Hasse diagrams are lattices.

- 22. Prove that Every chain is a distributive Lattice.
- 23. Prove that the De Morgan's laws are valid in a Boolean Algebra.
- 24. In a Boolean Algebra, prove the following: (i) $a \le b$ (ii) a * b' = 0 (iii) $a' \oplus b = 1$ (iv) $b' \le a'$.
