Le 7 novembre 2012, 8h30 – 10h30.

Les documents et appareils électroniques (calculatrices et téléphones en particulier) sont interdits. Les réponses doivent être justifiées de façon claire et précise.

Exercice 1. Soit (E,d) une espace métrique. Pour toute partie A de E, on définit son diamètre par

$$\delta(A) = \sup \{d(x, y), x \in A, y \in A\}.$$

Par convention, on pose $\delta(\emptyset) = 0$. Notons qu'éventuellement, $\delta(A)$ peut être infini. Soient A et B deux parties de E.

- (1) Démontrer que $\delta(A) = 0$ si et seulement si A contient au plus un point.
- (2) Si $A \subset B$, comparer $\delta(A)$ et $\delta(B)$.
- (3) Démontrer que $\delta(A) = \delta(\overline{A})$.
- (4) Si $A \cap B \neq \emptyset$, démontrer que $\delta(A \cup B) \leq \delta(A) + \delta(B)$.
- (5) Si $A \cap B = \emptyset$, la propriété de la question (4) est-elle vraie?

Exercice 2. Soit (E, d) un espace métrique. Pour toute partie A de E, on note ∂A la frontière de A définie par $\partial A = \overline{A} \setminus \mathring{A}$.

- (1) Montrer que $\partial A = \emptyset$ si et seulement si A est ouverte et fermée.
- (2) Si A est fermée, montrer que ∂A est d'intérieur vide.
- (3) Démontrer que A est ouverte si et seulement si $A \cap \partial A = \emptyset$.
- (4) Démontrer que A est fermée si et seulement si $\partial A \subset A$.
- (5) Démontrer que $\partial(A) \subset \partial A$.
- (6) Démontrer que $\partial(\partial(\partial A)) = \partial(\partial A)$.

Exercice 3. Soit (E,d) un espace métrique compact. Soit $f:E\longrightarrow E$ une application vérifiant

$$\forall x \in E, \quad \forall y \in E \quad \text{tels que} \quad x \neq y, \quad d(f(x), f(y)) < d(x, y).$$

- (1) Soit ϕ l'application de E dans \mathbb{R} définie par $\phi(x) = d(x, f(x))$. Cette application est-elle continue?
- (2) On pose $m = \inf \{ \phi(x), x \in E \}$. Démontrer que m = 0.
- (3) En déduire que f admet un unique point fixe dans E.
- (4) Si E n'est pas compact, le résultat de la question (3) subsiste-t-il?

Exercice 4. On pose, pour tout entier $n \in \mathbb{N}$, $M_n(\mathbb{R})$ l'ensemble des matrices réelles carrées de taille n, et $M_n(\mathbb{C})$ l'ensemble des matrices complexes carrées de taille n. On définit

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}), \quad \det(M) \neq 0 \},$$

 $SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}), \quad \det(M) = 1 \},$
 $GL_n(\mathbb{C}) = \{ A \in M_n(\mathbb{C}), \quad \det(M) \neq 0 \}.$

- (1) $GL_n(\mathbb{R})$ est-il ouvert dans $M_n(\mathbb{R})$?
- (2) $SL_n(\mathbb{R})$ est-il fermé dans $M_n(\mathbb{R})$?
- (3) $GL_n(\mathbb{R})$ est-il connexe?
- (4) Le complémentaire de $GL_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ est-il connexe?
- (5) On souhaite prouver dans cette question que $GL_n(\mathbb{C})$ est connexe. Pour cela, on rappelle tout d'abord que toute matrice carrée complexe est trigonalisable.
 - (a) Soit $A \in GL_n(\mathbb{C})$. Démontrer qu'il existe un chemin continu dans $GL_n(\mathbb{C})$ reliant A à une matrice B diagonalisable ayant le même spectre que A.
 - (b) Soit B une matrice de $GL_n(\mathbb{C})$ diagonalisable. Démontrer qu'il existe un chemin continu dans $GL_n(\mathbb{C})$ reliant B à la matrice identité.
 - (c) En déduire que $GL_n(\mathbb{C})$ est connexe.