Odds

Grinnell College

February 7, 2025

What we do today

- ► Introduce odds and probabilities
- Contingency tables
- Odds ratios

Odds and Probability

When dealing with a *binary* event, we often speak in terms of **odds**, a *ratio* of "number of successes" to "number of failures"

success : # failure

This is distinct from the idea of **probabilities**, which give a ratio of the "number of successes" to the number of possible outcomes

success : # total outcomes : # success + # failure

Odds

Suppose we have a 6-sided die, and we are interested in rolls that land on either 1 or 2 (note how we have turned six distinct outcomes into two "events").

$$\mathsf{Die} = \{ 1, 2, 3, 4, 5, 6 \}$$

- ► The *probability* of rolling a 1 or 2 is 1/3
 - 1. There are 6 possible outcomes
 - 2. There are 2 possible successes
 - 3. Probably is 2 / 6 = 1/3
- ▶ The *odds* of rolling a 1 or 2 are 2:4 (or 1:2)
 - 1. There are 2 possible successes
 - 2. There are 4 possible failures
 - 3. The odds of success are 2:4 (or 1:2)

 Grinnell College
 STA-209
 February 7, 2025
 4 / 12

Contingency Tables

A **contingency table** is a special two-way table in which both categorical variables have a binary response

	Event	Non-Event
Exposure	А	В
No Exposure	С	D

Specifically, we have event and non-event (order matters)

Odds Ratio

An **odds ratio** is the ratio of odds between two groups

	Event	Non-Event
Exposure	А	В
No Exposure	С	D

- ▶ The odds of an event for the exposure group are A:B (or A/B)
- ▶ The odds of an event for the no exposure group are C:D (or C/D)

The **odds ratio** for these groups is then the ratio of their odds:

$$OR = \frac{A:B}{C:D} = \frac{A/B}{C/D} = \frac{A \times D}{B \times C}$$

Why Ratios?

Situation 1:

	Event	Non-Event
Exposure	6	2
No Exposure	3	2

Situation 2:

	Event	Non-Event
Exposure	103	2
No Exposure	100	2

- 1. Difference in odds for each situation?
- 2. Ratio of odds for each situation?

Event vs Non-Event

Which column is our "Event" changes how we report our results

Case 1:

	Enjoy Ice Cream	
Age	Yes	No
Child	16	4
Adult	4	8

Case 2:

	Enjoy Ice Cream	
Age	No	Yes
Child	4	16
Adult	8	4

Group Rows

The same is true for which group is in the first row

Case 1:

	Enjoy Ice Cream	
Age	Yes	No
Child	16	4
Adult	4	8

Case 2:

	Enjoy Ice Cream	
Age	No	Yes
Adult	4	8
Child	16	4

Odds Ratio Summary

- Odds and probabilities
- Column/row order matters
- Odds ratios
- ightharpoonup OR > 1, OR = 1, OR < 1
 - OR = 1 implies no association. Why?

Example 1

A report published in 1988 summarizes results of a Harvard Medical School clinical trial determining effectiveness of asprin in preventing heart attacks in middle-aged male physicians

	Myocardial Infarction	
Treatment Status	Attack	No Attack
Placebo	189	10,845
Asprin	104	10,933

- Odds of having a heart attack for placebo:
- Odds ratio for treatment and infarction:
- Associated?

Example 2

The table below shows the results for drivers and passengers in auto accidents in Florida in 2008, according to whether or not the individual was wearing a seat belt.

		Injury	
Sealt-Belt Use	Fatal	Nonfatal	
No	1085	55,623	
Yes	703	441,239	

- Probability of wearing seatbelt conditional on fatality status:
- ▶ Odds of fatality conditional on seat-belt use:
- Associated?