FLS 6441 - Methods III: Explanation and Causation

Week 6 - Instrumental Variables

Jonathan Phillips

April 2019

Section 1

► What can we do when the treatment assignment mechanism is not 'as-if' random?

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
 - ► Eg. Some people *self-select* into treatment

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
 - ► Eg. Some people *self-select* into treatment
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
 - ► Eg. Some people *self-select* into treatment
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random
- ► An 'instrument' is a variable which assigns treatment in an 'as-if' random way

- ► What can we do when the treatment assignment mechanism is not 'as-if' random?
 - ► Eg. Some people *self-select* into treatment
- Natural experiments focus on a specific component of treatment assignment that is 'as-if' random
- An 'instrument' is a variable which assigns treatment in an 'as-if' random way
 - I.e. Independent of potential outcomes
 - Even if other variables also affect treatment

- ► Example Instruments:
 - ► Rainfall for conflict
 - Sex-composition for effect of third child
 - ► Distance from the coast for exposure to slave trade

► 1. Strong 'First Stage':

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
 Treatment

- ▶ 1. Strong 'First Stage':
- ► Instrument Predicts
 Treatment
- We can assess this with a simple regression: Treatment ~ Instrument

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
 Treatment
- We can assess this with a simple regression: Treatment ~ Instrument
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F — statistic > 10

- ► 1. Strong 'First Stage':
- ► Instrument Predicts
 Treatment
- We can assess this with a simple regression: Treatment ~ Instrument
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F - statistic > 10

▶ 2. Exclusion Restriction

Instrumenting for Institutions

➤ The Instrument ONLY
affects the outcome
through its effect on
treatment, and not directly

▶ 1. Strong 'First Stage':

- ► Instrument Predicts
 Treatment
- We can assess this with a simple regression: Treatment ~ Instrument
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F — statistic > 10

▶ 2. Exclusion Restriction

- The Instrument ONLY affects the outcome through its effect on treatment, and not directly
- ► Formally, cov(Instrument, errors in m D) = 0

▶ 1. Strong 'First Stage':

- ► Instrument Predicts
 Treatment
- We can assess this with a simple regression: Treatment ~ Instrument
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F - statistic > 10

▶ 2. Exclusion Restriction

Instrumenting for Institutions

- The Instrument ONLY
 affects the outcome
 through its effect on
 treatment, and not directly
- Formally, cov(Instrument, errors in m D) = 0
- We cannot test or prove this assumption!

▶ 1. Strong 'First Stage':

- ► Instrument Predicts
 Treatment
- We can assess this with a simple regression: Treatment ~ Instrument
- The instrument should be a significant predictor of treatment
- ► Rule-of-thumb: F — statistic > 10

► 2. Exclusion Restriction

- The Instrument ONLY
 affects the outcome
 through its effect on
 treatment, and not directly
- Formally, cov(Instrument, errors in m D) = 0
- We cannot test or prove this assumption!
- Theory and qualitative evidence needed

► 1. 2-Stage OLS:

- **▶** 1. **2-Stage OLS:**
- Isolate the variation in treatment caused by the instrument:
 D ~ Instrument

- ► 1. 2-Stage OLS:
- Isolate the variation in treatment caused by the instrument:
 - D ~ Instrument
- ► Save the predicted values from this regression:
 D̂ = D ~ Instrument

- **▶** 1. 2-Stage OLS:
- Isolate the variation in treatment caused by the instrument:
 - D ~ Instrument
- ► Save the predicted values from this regression:
 D̂ = D ~ Instrument
- ► Estimate how the predicted values affect the outcome: $Y \sim \hat{D}$

► 1. 2-Stage OLS:

- Isolate the variation in treatment caused by the instrument:
 - D ~ Instrument
- ► Save the predicted values from this regression:
 D̂ = D ~ Instrument
- ► Estimate how the predicted values affect the outcome: $Y \sim \hat{D}$
- ► Interpret the coefficient on D

► 2. All-in-one Package

Instrumenting for Institutions

► 1. 2-Stage OLS:

- Isolate the variation in treatment caused by the instrument:
 - D ~ Instrument
- ► Save the predicted values from this regression:
 D̂ = D ~ Instrument
- ► Estimate how the predicted values affect the outcome: $Y \sim \hat{D}$
- ► Interpret the coefficient on \hat{D}

► 2. All-in-one Package

Instrumenting for Institutions

 Use an all-in-one package, eg. ivreg in the AER package

► 1. 2-Stage OLS:

- Isolate the variation in treatment caused by the instrument:
 - D ∼ Instrument
- ► Save the predicted values from this regression:
 D̂ = D ~ Instrument
- ► Estimate how the predicted values affect the outcome: $Y \sim \hat{D}$
- ► Interpret the coefficient on \hat{D}

► 2. All-in-one Package

- Use an all-in-one package, eg. ivreg in the AER package
- ► Specify the formula: Y D|Instrument

► Types of IV Regressions:

- ► Types of IV Regressions:
 - 1. **Biased Regression:** The regression ignoring omitted variable bias: $Y \sim D$

- ▶ Types of IV Regressions:
 - 1. **Biased Regression:** The regression ignoring omitted variable bias: $Y \sim D$
 - 2. **First-Stage Regression:** Checking the instrument is valid: $D \sim IV$

- ► Types of IV Regressions:
 - 1. **Biased Regression:** The regression ignoring omitted variable bias: $Y \sim D$
 - 2. **First-Stage Regression:** Checking the instrument is valid: $D \sim IV$
 - 3. **IV Regression:** All-in-one estimate of the effect of treatment on the outcome: $Y \sim D|IV$

- ► Types of IV Regressions:
 - 1. **Biased Regression:** The regression ignoring omitted variable bias: $Y \sim D$
 - First-Stage Regression: Checking the instrument is valid: D ~ IV
 - 3. **IV Regression:** All-in-one estimate of the effect of treatment on the outcome: $Y \sim D|IV$
 - 4. **2-Stage Least Squares:** Two linear regressions: correct coefficient, wrong p-value: $D \sim IV$, $Y \sim \hat{D}$

- ► Types of IV Regressions:
 - 1. **Biased Regression:** The regression ignoring omitted variable bias: $Y \sim D$
 - First-Stage Regression: Checking the instrument is valid: D ~ IV
 - 3. **IV Regression:** All-in-one estimate of the effect of treatment on the outcome: $Y \sim D|IV$
 - 4. **2-Stage Least Squares:** Two linear regressions: correct coefficient, wrong p-value: $D \sim IV$, $Y \sim \hat{D}$
 - 5. **Reduced-Form Regression:** Estimate of the Instrument on the Outcome, ignoring treatment: $Y \sim IV$

► IV Interpretation:

- ► IV Interpretation:
 - ► Your coefficient is a causal estimate ONLY for units that were actually treated **because of the instrument**

- ► IV Interpretation:
 - Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
 - ► They don't tell us about the causal effect for other units that never responded to the instrument

- ► IV Interpretation:
 - Your coefficient is a causal estimate ONLY for units that were actually treated because of the instrument
 - They don't tell us about the causal effect for other units that never responded to the instrument

Local Average Treatment Effect (LATE)

The Average Treatment Effect among the subset of units who are treated because of the instrument $(D_i|Z_i=0)=0$ and $(D_i|Z_i=1)=1$

Section 2

► Sometimes field experiments don't work perfectly

- Sometimes field experiments don't work perfectly
 - ► Eg. We offer free health insurance to families at random, but some decline

- Sometimes field experiments don't work perfectly
 - Eg. We offer free health insurance to families at random, but some decline
 - What is the Treatment Assignment Mechanism?

- Sometimes field experiments don't work perfectly
 - Eg. We offer free health insurance to families at random, but some decline
 - What is the Treatment Assignment Mechanism?
 - ► Those that decline treatment are *different* to those that accept (eg. richer)

- Sometimes field experiments don't work perfectly
 - Eg. We offer free health insurance to families at random, but some decline
 - What is the Treatment Assignment Mechanism?
 - Those that decline treatment are different to those that accept (eg. richer)
- We cannot just compare units that actually received treatment to those that did not

- Sometimes field experiments don't work perfectly
 - ► Eg. We offer free health insurance to families at random, but some decline
 - What is the Treatment Assignment Mechanism?
 - Those that decline treatment are different to those that accept (eg. richer)
- We cannot just compare units that actually received treatment to those that did not
- ► Those groups are no longer 'balanced'

- Sometimes field experiments don't work perfectly
 - Eg. We offer free health insurance to families at random, but some decline
 - What is the Treatment Assignment Mechanism?
 - Those that decline treatment are different to those that accept (eg. richer)
- We cannot just compare units that actually received treatment to those that did not
- ► Those groups are no longer 'balanced'
- Omitted variable bias has returned!

Income	Treatment Assignment	Treatment Status
Rich	1	0
Poor	0	0
Poor	0	0
Poor	1	1
Rich	1	0
Poor	0	0
Poor	1	1
Rich	0	0
Poor	0	0

With an instrument and treatment we can divide our units into four types:

Treatment Status if Instrument=0	Treatment Status if Instrument=1	Unit Type
0	1	Complier
0	0	Never-taker
1	1	Always-taker
1	0	Defier

With an instrument and treatment we can divide our units into four types:

Treatment Status if Instrument=0	Treatment Status if Instrument=1	Unit Type
0	1	Complier
0	0	Never-taker
1	1	Always-taker
1	0	Defier

$D_i(Z_i=0)$	$D_i(Z_i=1)$	Type?
0	1	
0	0	
0	1	
1	0	
1	1	
0	0	
0	1	
1	0	

► Simple difference-in-means estimates are biased

- Simple difference-in-means estimates are biased
- But we can still use the randomized component of treatment as an instrumental variable

- ► Simple difference-in-means estimates are biased
- But we can still use the randomized component of treatment as an instrumental variable

Local Average Treatment Effect (LATE)

The Average Treatment Effect among compliers

► LATE just means we don't learn anything about Never-takers and Always-takers from our Instrumental Variable

- ► Simple difference-in-means estimates are biased
- But we can still use the randomized component of treatment as an instrumental variable

Local Average Treatment Effect (LATE)

The Average Treatment Effect among compliers

- ► LATE just means we don't learn anything about Never-takers and Always-takers from our Instrumental Variable
- ► Because the instrument doesn't do anything to affect treatment for these units

- ► Simple difference-in-means estimates are biased
- But we can still use the randomized component of treatment as an instrumental variable

Local Average Treatment Effect (LATE)

The Average Treatment Effect among compliers

- ► LATE just means we don't learn anything about Never-takers and Always-takers from our Instrumental Variable
- ► Because the instrument doesn't do anything to affect treatment for these units
- Never-takers and Always-takers are balanced across treatment assignment and do not affect the difference-in-means

- ► Simple difference-in-means estimates are biased
- But we can still use the randomized component of treatment as an instrumental variable

Local Average Treatment Effect (LATE)

The Average Treatment Effect among compliers

- ► LATE just means we don't learn anything about Never-takers and Always-takers from our Instrumental Variable
- ► Because the instrument doesn't do anything to affect treatment for these units
- Never-takers and Always-takers are balanced across treatment assignment and do not affect the difference-in-means
- We also need to assume Defiers don't exist

- ► Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat Analysis

- ► Two methodologies for Experiments with Non-Compliance
- ► 1. Intention-to-Treat Analysis
- ► The Effect of Treatment Assignment (the Instrument) on the Outcome

- ► Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat Analysis
- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $\rightarrow Y_i \alpha + \beta Z_i + \epsilon_i$

- ► Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat Analysis
- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $ightharpoonup Y_i \alpha + \beta Z_i + \epsilon_i$
- ▶ A BIASED estimate (<LATE estimate)</p>

- ► Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat Analysis
- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $ightharpoonup Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► Two methodologies for Experiments with Non-Compliance
- 1. Intention-to-Treat Analysis
- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $ightharpoonup Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► 2. LATE Instrumental Variables Analysis
- ► The Effect of Treatment on the Outcome

► Two methodologies for Experiments with Non-Compliance

▶ 1. Intention-to-Treat Analysis

- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $ightharpoonup Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► The Effect of Treatment on the Outcome
- $ightharpoonup Y_i \alpha + \beta D_i | Z_i + \epsilon_i$

► Two methodologies for Experiments with Non-Compliance

▶ 1. Intention-to-Treat Analysis

- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $ightharpoonup Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► The Effect of Treatment on the Outcome
- $ightharpoonup Y_i \alpha + \beta D_i | Z_i + \epsilon_i$
- ► An UNBIASED estimate

► Two methodologies for Experiments with Non-Compliance

▶ 1. Intention-to-Treat Analysis

- The Effect of Treatment Assignment (the Instrument) on the Outcome
- $ightharpoonup Y_i \alpha + \beta Z_i + \epsilon_i$
- A BIASED estimate (<LATE estimate)
- ► For the FULL sample

- ► The Effect of Treatment on the Outcome
- $ightharpoonup Y_i \alpha + \beta D_i | Z_i + \epsilon_i$
- ► An UNBIASED estimate
- ► Only for COMPLIERS

➤ The 'Strong First-Stage' assumption here requires that treatment assignment affects treatment for at least some people

- ➤ The 'Strong First-Stage' assumption here requires that treatment assignment affects treatment for at least some people
- The 'Exclusion Restriction' assumption requires that potential outcomes depend on treatment and not treatment assignment
 - Eg. An always-taker has the same outcome if they are assigned to treatment or control (because they are always actually treated)

Section 3

- ► Acemoglu & Robinson (2001)
 - Theory: Non-electoral institutions (property rights, rule of law, checks and balances) cause accountability and growth

- ► Acemoglu & Robinson (2001)
 - ► **Theory:** Non-electoral **institutions** (property rights, rule of law, checks and balances) cause accountability and growth
- ▶ What is the inferential problem here?

- ► Acemoglu & Robinson (2001)
 - Theory: Non-electoral institutions (property rights, rule of law, checks and balances) cause accountability and growth
- ▶ What is the inferential problem here?
- Can we run a field experiment?

- ► Acemoglu & Robinson (2001)
 - Theory: Non-electoral institutions (property rights, rule of law, checks and balances) cause accountability and growth
- ▶ What is the inferential problem here?
- Can we run a field experiment?
- ► Can we find a natural experiment?

► They need an Instrumental Variable that:

- ► They need an Instrumental Variable that:
 - 1. First Stage:

- ► They need an Instrumental Variable that:
 - 1. First Stage: Predicts Institutions

- ► They need an Instrumental Variable that:
 - 1. First Stage: Predicts Institutions
 - 2. Exclusion Restriction:

- ▶ They need an Instrumental Variable that:
 - 1. First Stage: Predicts Institutions
 - Exclusion Restriction: Only affects growth through institutions
- ► They *argue* that Settler (soldier) mortality rates are an appropriate instrument

Population:

Sample:

Sample: Ex-colonies

Sample: Ex-colonies

Treatment:

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control:

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Instrument:

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Instrument: Settler (soldier) mortality rates

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Instrument: Settler (soldier) mortality rates

Treatment Assignment Mechniams:

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Instrument: Settler (soldier) mortality rates

Treatment Assignment Mechniams: Messy! But high settler

mortality rates led to extractive institutions

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Instrument: Settler (soldier) mortality rates

Treatment Assignment Mechniams: Messy! But high settler

mortality rates led to extractive institutions

Outcome:

Sample: Ex-colonies

Treatment: 'Settler' Institutions in ex-colonies (measured by

'risk of expropriation' index 1985-95)

Control: 'Extractive' institutions

Instrument: Settler (soldier) mortality rates

Treatment Assignment Mechniams: Messy! But high settler

mortality rates led to extractive institutions

Outcome: Growth rates in 1995

First Stage Supporting Evidence:

Exclusion Restriction Supporting Evidence:

Disease environment doesn't affect human capital/growth directly because locals have adapted

Exclusion Restriction Supporting Evidence:

Disease environment doesn't affect human capital/growth directly because locals have adapted

Control for possible correlates - geography, climate, etc.

Methodology:

Institutions_i =
$$\alpha + \beta_0 Settler_Mortality_i + \epsilon_i$$

 $Growth_i = \alpha + \beta_1 Institutions_i + \epsilon_i$

Results: Improving Nigeria's institutions to Chile's level would raise GDP 7-fold