# § 22. 商空間

輪講#10

2025-03-25

# 同值関係

Motivation まず,一般の集合に対して商集合を定義する.

定義:集合X上の二項関係とは, $X^2$ の部分集合Rのことである.

 $(x,y) \in R$  のことを  $x \sim y$  などと略記することもある.

定義:集合X上の二項関係 $\sim$ が同値関係であるとは,次が満たされるとき:

反射律  $\forall a \in X, a \sim a$ .

対称律  $\forall a, b \in X, a \sim b \Rightarrow b \sim a.$ 

推移律  $\forall a, b, c \in X, a \sim b \land b \sim c \Rightarrow a \sim c.$ 

§ 22. 商空間 2025-03-25 1/9

# 同值関係

Xを空でない集合とする.

- **例:自明な同値関係** 空でない集合 X 上の二項関係  $R=X^2$  は同値関係.  $A = X^2$  が すべての  $A, b \in X$  について  $A \sim b$ .
- **例:相当関係** 空でない集合 X 上の二項関係  $R = \{(x,x) \mid x \in X\}$  は同値関係.  $a \sim b \Leftrightarrow a = b$ .
- 例:有理数  $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$  上の二項関係  $R = \{((m,n),(m',n')) \mid mn' = m'n\}$  は同値関係.  $\rightsquigarrow \frac{m}{n} = \frac{m'}{n'}$ 
  - (反射律) (m,n) に対して mn = mn だから  $(m,n) \sim (m,n)$ .
  - (対称律)  $mn' = m'n \Rightarrow m'n = mn'$  だから  $(m,n) \sim (m',n') \Rightarrow (m',n') \sim (m,n)$ .
  - ・ (推移律)  $(m,n) \sim (m',n'), (m',n') \sim (m'',n'') \Rightarrow mn' = m'n, m'n'' = m''n'$  であり, $mn'' = \left(\frac{n}{n'}m'\right)\left(\frac{m''}{m'}n'\right) = nm''$ .

例 ℝ上の二項関係 ≤は同値関係でない. ヘッシ 対称律に反する.

§ 22. 商空間 2025-03-25 2/9

# 同值類

定義: 空でない集合 X 上の二項関係  $\sim$  がある.  $a \in X$  に対して,X の部分集合

$$C(a) = [a] = \{x \in X \mid a \sim x\}$$

を a の同値類 といい,各  $x \in C(a)$  を C(a) の代表元という.

**定理**: 任意の  $a \in X$  に対して, $a \in C(a)$ . 特に C(a) は空でない.

§ 22. 商空間 2025-03-25

3/9

# 同值類

定理:次は互いに同値.

- (a)  $a \sim b$
- (b) C(a) = C(b)
- (c)  $C(a) \cap C(b) \neq \emptyset$

#### **Proof**:

- (a)  $\Rightarrow$  (b)  $x \in C(a)$  とすると  $x \sim a$ . 推移律より  $x \sim b$ . 逆も同様.
- (b) ⇒ (c) 同値類は空でないことによる.
- (c)  $\Rightarrow$  (a)  $x \in C(a) \cap C(b)$  がとれて, $x \sim a, x \sim b$  が成立する.対称律と推移律より  $a \sim b$ .

 $Remark \sim による同値類全体は <math>X$  を互いに素な部分集合の和に分解する.

§ 22. 商空間 2025-03-25 4/9

## 商集合

**定義**:集合 X 上の二項関係  $\sim$  に対して, $\sim$  による同値類全体は X の分割になる.これを  $\sim$  による X の**商集合** といい, $X/\sim$  と書く.

 $x \in X$  を  $C(x) \in X/\sim$  に対応させる全射  $\pi: X \to X/\sim$  を**自然な射影**という.

§ 22. 商空間 2025-03-25 5/9

## 部分集合による商空間

定理: 線型空間 V の部分空間 W に対して, $x \sim y \coloneqq (x - y \in W)$  は V 上の同値関係である.

#### **Proof:**

反射律 
$$x - x = 0 \in W$$
 より  $[x] = [x]$ .  
対称律  $x - y \in W \Rightarrow y - x \in W$  より  $[x] = [y] \Rightarrow [y] = [x]$ .  
推移律  $x - y \in W \land y - z \in W \Rightarrow x - z \in W$  より  $[x] = [y] \land [y] = [z] \Rightarrow [x] = [z]$ 

Remark  $V/\sim$ をV/Wと書く.

§ 22. 商空間 2025-03-25 6/9

## 部分集合による商空間

**定理**: 線型写像  $+:V/W\times V/W\to V/W, :K\times V/W\to V/W$  で,次の図式を可換にするものがただ一つ存在する. これにより V/W は線型空間をなし,これを**商空間**という.



**Proof**:  $x, y \in V$  に対して [x] + [y] = [x + y] と定義すると,[x] = [x'], [y] = [y] なら [x + y] = [x' + y'] であることから,定理中の + が well-defined であることが言える. · も同様.

§ 22. 商空間 2025-03-25 7/9

## 商空間の次元

定理:  $\dim(V/W) = \dim V - \dim W$ .

#### **Proof:**

 $\dim W = 0$  のとき V/W = V だから成立.

 $\dim W = \dim V$  のとき V = W だから成立.

 $\mathbf{0} < \dim W < \dim V$  のとき W の基底  $x_1, \cdots, x_m$  を  $x_{m+1}, \cdots, x_n$  により延長して V の基底とする.このとき, $[x_{m+1}], \cdots, [x_n]$  は一次独立である.実際, $\sum_{m < i} c_i [x_i] = [0] \Rightarrow \left[\sum_{m < i} c_i x_i\right] = [0] \Rightarrow \sum_{m < i} c_i x_i \in W$  だから  $\sum_{i \le m} c_i x_i = \sum_{m < i} c_i x_i$  なる  $(c_i)_{i \le m}$  が存在し,これは V 上の一次 関係式だから  $c_i = 0$  (for  $\forall i$ ) となる.また, $[x_{m+1}], \cdots, [x_n]$  は V/W を生成する.実際, $[x] \in V/W$  に対し  $x \in V$  より  $x = \sum_i c_i x_i$  なる  $c_i \in K$  がとれて, $x - \sum_{m < i} c_i x_i = \sum_{i \le m} c_i x_i \in W$  より  $[x] = \left[\sum_{m < i} c_i x_i\right] = \sum_{m < i} c_i [x_i]$  と書ける. $\vdots$   $(V/W) = \dim V - \dim W$ .

§ 22. 商空間 2025-03-25 8/9

# 準同型定理

定理: 線型写像  $f: V \to W$  について, $V/\operatorname{Ker} f \simeq \operatorname{Im} f$ .

**Proof**:  $[x] \in V / \operatorname{Ker} f$  に対して  $f(x) \in \operatorname{Im} f$  を対応させる線型写像 [f] が well-defined であることと,同型であることを示す.

まず,[x]=[x'] つまり  $x-x'\in {\rm Ker}\, f$  なら f(x)-f(x')=f(x-x')=0 と なるから,[f] は well-defined.

また,次元定理より  $\dim V / \operatorname{Ker} f = \dim V - \dim \operatorname{Ker} f = \dim \operatorname{Im} f$  だから $V / \operatorname{Ker} f \simeq \operatorname{Im} f$ .

Remark 準同型定理はさらに一般化され、代数学のいたるところに登場する.

§ 22. 商空間 2025-03-25 9/9