Lecture - 7 Graphs Algorithms CS313E - Elements of Software Design

Kia Teymourian

05/11/2022

Agenda

- 1. Graphs and Graph Representations
- 2. Graph Search Problem
- 3. Breadth-First Search (BFS)
- 4. Depth-First Search (DFS)

Graphs

Graph data are present in many applications, for example the following applications are dealing with graph data:

- ▶ Web Crawling and Web search
- Social Network, e.g. Friends-Of-Friend network (Goal Community detection)
- ▶ Computer Networks.
- Reference Counting in Memory Garbage Collection (based on graphs between allocated memories)

Graph Representations

A graph has two ingredients, Vertices and Edges.

- \triangleright V = A Set Vertices (Vertex singular)
- \triangleright **E** = **A** Set of Edges, each edge is a vertex pair (v, w).

Figure: Representations of an undirected graph G with 6 vertices and 6 edges.

Directed and Undirected Graphs

- **Directed Graph** has edges that are ordered pair of vertices.
- Undirected Graph has edges that are unordered pair of vertices.

Figure: An Example Undirected Graph G with 6 vertices and 6 edges.

Figure: An example directed graph G with 6 vertices and 9 edges

Adjacency-matrix Representation of a Graph

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	1	0	0	0	1	0
3	0	0	0	0	1	1
4	1	0	0	0	0	0
5	0	1	1	0	0	1
6	0	0	1	0	1	0 0 1 0 1 0

Figure: Representations of an undirected graph G with 6 vertices and 6 edges using adjacency-matrix representation of G.

- ▷ One disadvantage of adjacency-matrix representation is that it requires a large memory space to store it.
- \triangleright If the graph has |V| number of vertices, it requires $\Theta(n^2)$ memory space for storage.

Adjacency-list representation

Figure: Representations of an undirected graph G with 6 vertices and 6 edges using an adjacency-list representation of G.

- \triangleright The required memory space for adjacency list storage is $\Theta(V+E)$, the total sum of the number of edges and vertices.
- ▶ In python programing, we can store it adjacency lists in a simple dictionary of list/set values.
- ▷ Vertex can be any hashable object in python for example integer or tuple. One advantage is that we can store multiple graphs on the same vertices set.

Adjacency-Matrix representation of the directed Graph G.

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	1	0	1	1
4	0	1	0	0	1	0
5	0	0	0	0	0	1
6	0	1 0 0 1 0	0	0	0	0

Figure: The adjacency-matrix representation of the directed Graph G.

In the adjacency matrix, we start from rows of the matrix, matrix values equal to 1 define that there is a an edge between the vertices.

Adjacency-List representation of the directed Graph G.

Figure: An adjacency-list representation of the directed Graph G.

▶ In the adjacency list the order defines the direction of the edges.

Graph Search Problem

Sometimes we have applications that require to explored the entire graph. It means to \dots

- \triangleright find a path from a start vertex S to a desired destination vertex.
- \triangleright visit all vertices or edges of a graph , or visit only a subset that can be reached from start S.

Breadth-First Search (BFS)

The goal of the Breath-First-Search (BFS) Algorithm is to explore the entire graph level-by-level from a start vertex S

- \triangleright Start point is vertex S
- \triangleright Start $level = \{S\}$ initialization of the level set.
- Next, find out which other vertices can be reached from the start.
 level_i = {All reachable edges with one step}
- ▷ Build the next level by using all outgoing edges, and ignoring visited vertices from previous levels.

05/11/202

BSF Python

```
from collections import defaultdict
# Function to print a BFS of graph
def BFS(s, adj):
    i = 1 # set the start level to 1
    level = defaultdict(list) # A dict for levels of our
        visits
    # A queue for BFS
    frontier = []
    # Mark the source node as
    frontier.append(s)
    level[s] = 1
    while frontier:
    # Get the frontier and print it.
    s = frontier.pop(0)
    print(s. end = "")
    # Get all adjacent vertices of the
    # If it is not been visited, has no levels
    for i in adi[s]:
        if i not in level:
        frontier.append(i)
        level[i] = i
    i += 1 # increment the level up
    print("\nLevels are:", dict(level), "\n")
```

Listing 1: BSF in Python

BSF Python RUN

```
RUN
graph = defaultdict(list)
graph [0]. append (1) \# 0 \longrightarrow 1
graph [0]. append (2) # 0 --> 2
graph[2].append(3) \# 2 \longrightarrow 3
graph [1]. append (3) # 1 --> 3
graph [3]. append (4) # 3 --> 4
BFS(1, graph)
1 3 4
Levels are: {1: 1, 3: 3, 4: 4}
```

Listing 2: Run of BSF

Algorithm 1 BFS(G,s)

```
1: for each vertex u \in G.V - \{s\} do
     u.color = WHITE
2:
3: u.d = \infty
   u.\pi = NIL
5: end for
6: s.color = GRAY, s.d = 0, s.\pi = NIL
7: Q = \emptyset
8: ENQUEUE(Q,s)
9: while Q \neq \emptyset do
       u = DEQUEUE(Q)
10:
       for each v \in G.Adj[u] do
11:
          if v.color == WHITE then
12:
             v.color = GRAY
13:
             v.d = u.d + 1
14:
15:
              v.\pi = u
              ENQUEUE(Q, v)
16:
          end if
17:
       end for
18:
       u.color = BLACK
19:
20: end while
```

Analysis of BFS

- \triangleright Each vertex the set V only one time, and as next for the frontier only once. Because we ignore the visited vertices in each level. Base case is V = S the start position.
- ▶ This means that we loop through the adjacency list adj[V] only once. $time = \sum_{v \in V} |adj[v]|$ will be |E| number of edges for the directed graph and 2|E| for undirected graphs
 This results in O(E) time
- \triangleright We write O(V+E) to also include list of vertices unreachable from v (not assigned levels).
- This will be in total LINEAR TIME.

Shortest Path

The shortest path means that we are looking to find for every vertex v, the fewest edges to get from an start vertex s to v

$$shortestPath(s, v) = \begin{cases} level[v] & \text{if } v \text{ assigned level} \\ \infty & \text{if there is no path} \end{cases}$$

The level[v] provides the number of edges to get from a start vertex s to a vertex v.

To find the shortest path, the path is:

- \triangleright we need to take v and
- $\triangleright parent[v]$ parent of v and
- \triangleright parent[parent[v]] parent of parent of v and
- \triangleright and so on, until start vertex s is reached or nothing reaching (No paths exists)

05/11/2022 21 / 43

Depth-First Search (DFS)

- \triangleright The goal is to explore a Graph G.
- \triangleright For example to find a path from start vertex S to a destination vertex v.
- ▶ The depth-First Search algorithm execution is similar to exploring a maze, you would follow up a path until you get stuck and then go back to find a new path.

We can summarize the steps as follows:

- Follow up a path until there is no more paths to follow.
- Backtrack along breadcrumbs until we are back to a point that we have unexplored neighbor
- 8 Recursive explore
- Mark the vertices to not repeat a vertex.

- ▶ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▶ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ➤ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ➤ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- \triangleright Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ➤ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▶ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- \triangleright Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

- ▶ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- \triangleright Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ➤ Timestamps within vertices indicate discovery time/finishing times

- ▷ As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise).
- \triangleright Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges.
- ▶ Timestamps within vertices indicate discovery time/finishing times

DFS

Algorithm 2 DFS

```
2: u.color = WHITE

3: u.\pi = NIL

4: end for

5: time = 0

6: for each vertex u \in G.V do

7: if u.color = WHITE then

8: DFS-VISIT(G,u)

9: end if
```

1: for each vertex $u \in G.V$ do

- \triangleright Lines 1–3: Paint all vertices white and initialize their π attributes to NIL.
- ▶ Line 5: Reset the global time counter.
- \triangleright Lines 6–10: Check each vertex in V, when white, visit it using DFS-VISIT().

DFS-VISIT(G, u)

12: u.f = time

DFS-VISIT(G, u) visits the vertex u. Vertex u becomes the root of a new tree in the depth-first forest.

Algorithm 3 DFS-VISIT(G, u)

```
1: time = time + 1
                                                  ▷ increments the global variable time
2: u.d = time
                             > records the new value of time as the discovery time u:d
3: u.color = GRAY

▷ paints u gray

4: for each v \in G.Adj[u] do
                                                                   \triangleright Explore edge (u, v)
       if v.color == WHITE then
                                                Examine each vertex v adjacent to u
5:
    v.\pi = u
6:
          DFS - VISIT(G, v)

    Recursively visit v if it is white

       end if
9. end for
10: u.color = BLACK
                                                               \triangleright blacken u; it is finished
11. time = time + 1
```

Every vertex u has been assigned a discovery time u.d and a finishing time u.f .

Analysis of DFS

- ▶ We call DFS-VISIT with a vertex S only once because parent[s] is set. This results that the time in DFS-VISIT is $\sum_{s \in V} |Adj[s]| = O(E)$
- \triangleright DFS outer loop adds just another linear time into it O(V) which results that total run time be O(V+E) Linear Time.

Simulation Links

- Depth-First Search (DFS)
 https://www.cs.usfca.edu/~galles/visualization/DFS.html
- https://visualgo.net/en/dfsbfs?slide=1

Readings from CLRS Book (Introduction to Algorithms, 3rd Edition)

Chapter 22 Graphs

- ▶ Section 22.1 Representations of graphs
- ▶ Section 22.2 Breadth-first search
- ▶ Section 22.3 Depth-first search