HOMEWORK 2

JESSE COBB - 2PM SECTION

1.5.3 c. Proof. Solving by the contrapositive, let x be even, so that x = 2k for some $k \in \mathbb{Z}$. We will prove that if this assumption is correct $4 \mid x^2$. Since $x=2k, x^2=(2k)^2=4k^2=2h$ where $h=k^2$ is an integer. Thus we've proved by the contrapositive that if $4 \nmid x^2$ then x is odd. d. Proof. Solving by the contrapositive, let both x and y be odd, so that x=2k+1 and y=2j+1 for some $k,j\in\mathbb{Z}$. We'll prove that if this assumption is correct xy is odd. Since x = 2k + 1 and y = 2j + 1, then xy = (2k+1)(2j+1) = 4kj+2j+2k+1 = 2(2kj+j+k)+1 = 2h+1 where h = 2kj + j + k is an integer. Thus we've proved through the contrapositive that if x + y is even then x or y have to be even. e. *Proof.* Solving by the contrapositive, let x and y have different parity then, without loss of generality, assume x is even and y is odd so that x = 2k and y = 2i+1 for some $k, j \in \mathbb{Z}$. So that x+y = 2k+2i+1 = 2(k+j)+1 = 2h+1where h = k + j is an integer. Thus we've proved through the contrapositive that if x + y is even then x and y must be the same parity. f. Proof. Solving by the contrapositive, let at least x or y be odd. Without loss of generality consider the following cases: Case 1: If x is odd and y is even, such that x = 2k + 1 and y = 2j for $k, j \in \mathbb{Z}$ then xy = (2k+1)2j = 4kj + 2j = 2(2kj+j) = 2h where h = 2kj + j is an integer. Case 2: If x and y are both even, such that x = 2k and y = 2j for $k, j \in \mathbb{Z}$ then xy = (2k)2j = 4kj = 2(2kj) = 2h where h = 2kj is an integer. Thus we've proved by the contrapositive that if xy is odd then x and ymust both be odd. g. Proof. Solving by the contrapositive, let x be odd, so that x = 2k + 1 for some $k \in \mathbb{Z}$. We'll show that $8 \mid x^2 - 1$ if the assumption is true. Since x = 2k + 1 then $x^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4(k^2 + k) =$ 4k(k+1). Since a(a+1) is even for any integer 4k(k+1) = 4*2(h) = 8hwhere $h \in \mathbb{Z}$ therefore $x^2 - 1 = 8h$ if x is odd. Thus we've proved through the contrapositive that if $8 \nmid x^2 - 1$ then x is even. h. Proof. Solving by the contrapositive, let $z \mid z$ so that z = xk for some $k \in \mathbb{Z}$. Then yz = y(xk) = x(yk) = xj where j = yk is an integer. Thus we've proved by contrapositive that if $x \nmid yz$ then $x \nmid z$. d. Proof. Solving by the contrapositive, let the real number x be greater than 1.5.4or equal to 1, $x \ge 1$. Therefore $x - 1 \ge 0$ which implies $x^2 - x \ge 0$ since x is always positive. This is equivalent to $(x+1)(x-1) \geq 0$. Thus we've proved through the contrapositive that if (x+1)(x-1) < 0 then x < 1. \square e. Proof. Solving by the contrapositive, let the real number x then assume $3 \ge x \ge 1$. Since $3 \ge x$ then $0 \ge x-3$ and since $1 \le x$ then $0 \le x-1$. With these equivalence statement we can conclude the $0 \ge (x-3)(x-1) \implies$

 $0 \ge x^2 - 4x + 3 \implies -3 \ge x^2 - 4x \implies -3 \ge x(x - 4)$. Thus we've proved through contrapositive that if x(x - 4) > 0 then x < 1 or x > 3.

- 1.5.6 d. Proof. Let a-b be odd such that a-b=2k+1 for $k \in \mathbb{Z}$. Seeking a contradiction, assume a+b is even such that a+b=2j for some integer j. Therefore $a-b=2k+1 \implies a-b+2b=2k+1 \implies 2j+2b=2k+1 \implies 2(j+b)=2k+1 \implies 2h=2k+1$ where h=j+b is an integer. This results in a contradiction showing that an even number (2h) is equal to an odd number (2k+1). Therefore the claim follows that if a-b is odd then a+b must be odd.
 - e. Proof. Let a < b and ab < 3 for $a,b \in \mathbb{Z}$ where a,b > 0. Seeking a contradiction, assume $a \neq 1$. Since ab < 3 then 0 < b < 3 which implies 0 < a < 2. This means the only valid value for a is 1 which contradicts our assumption. Thus we've proved the claim if a < b and ab < 3 then a = 1.
- 1.5.7 a. *Proof.* Assume a and b are positive integers. Therefore $a \mid b$ if and only if:

$$b = ak$$
 where $k \in \mathbb{Z} \iff$
 $bc = ack \iff$
 $ac \mid bc$

Since the final statement is true all the previous statements are true including $a \mid b$. Thus we've proved the claim that $ac \mid bc$ if and only if $a \mid b$.

- b. *Proof.* Let a and b be positive integers. We'll prove that $a+1 \mid b$ and $b \mid b+3$ if and only if a=2 and b=3.
 - (\Longrightarrow) Assume that $a+1 \mid b$ and $b \mid b+3$ so that b=(a+1)k and b+3=bj for some $k,j \in \mathbb{Z}$. Then $(a+1)k+3=(a+1)kj \Longrightarrow ak+k+3=akj+kj \Longrightarrow 3=ak(j-1)+k(j-1) \Longrightarrow 3=h(a+1) \Longrightarrow a+1 \mid 3$. This requires a+1 to be 1 or 3, where 1 is impossible since it would require a=0, therefore a=2. Thus b=3k which means $3 \mid b$ and 3=b(j-1)=bh where $b \mid 3$ which means that b=3.
 - (\iff) Now assume, for the reverse direction, that a=2 and b=3. This means $a+1=3 \implies a+1 \mid 3$ which means $a+1 \mid b$ and $b \mid b+3$ since $3 \mid 6$.

Thus we've proved that $a+1 \mid b$ and $b \mid b+3$ if and only if a=2 and b=3 by showing their implications in both directions are true.

- 1.5.9 *Proof.* Seeking a contradiction, for the natural number n assume $\frac{n}{n+1} \le \frac{n}{n+2}$. Since $n \ge 1$ we can say that $\frac{1}{n+1} \le \frac{1}{n+2} \implies n+2 \le n+1 \implies 2 \le 1$ which is a contradiction. Thus the claim stands that for any natural number n $\frac{n}{n+1} > \frac{n}{n+2}$.
- 1.5.10 *Proof.* Seeking a contradiction, assume that $\sqrt{5}$ is rational such that $\sqrt{5} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$. Then $5 = \frac{a^2}{b^2} \implies a^2 = 5b^2$. By the fundamental theorem of arithmetic a should have k factors of the prime factor 5 where $k \in \mathbb{Z}$. Thus a^2 should have 2k prime factors of 5. Similarly b^2 should have 2j prime factors of 5 where $j \in \mathbb{Z}$. Therefore we have a contradiction as a^2 has 2k factors of 5 and $5b^2$ has 2j + 1 factors of 5. Thus the claim follows that $\sqrt{5}$ is irrational. \square
- 1.5.11 *Proof.* Assume for the real numbers x, y, and z between 0 and 1 that 0 < x < y < z < 1. Seeking a contradiction we'll assume that the distance between

each number, x, y, and z, is a space greater than or equal to $\frac{1}{2}$. So we say that a=x-0 is the distance from 0 to x, b=y-x is the distance from x to y, c=z-y is the distance from y to z, where $a,b,c\in\mathbb{R}$ and a+b+c<1. If we set $x\approx 0$ then $a\approx 0$ leaving us with b+c<1. However we get a contradiction when stating that $b\geq \frac{1}{2}$ and $c\geq \frac{1}{2}$, as at their lowest values we still end with $\frac{1}{2}+\frac{1}{2}<1$ which is false. Thus by contradiction we can conclude that at least two of the real numbers, x,y, and z, between 0 and 1 must be within $\frac{1}{2}$ units of one another.

1.5.12 a. C, the proof is all over the place. This is neither a proof by contrapositive (if m is even m^2 is even), not a proof by contradiction (show contradiction of: if m^2 is even assume m is odd), and also not a direct proof as it assumes the opposite of what the proof asks for (m^2 is odd). It is partially correct as the claim is correct by the following proof:

Proof. Solving by the contrapositive, assume the integer m is even such that m=2k for some $k \in \mathbb{Z}$. Then $m^2=(2k)^2=2*2k^2=2j$ where $j=2k^2$ is an integer. Thus by proving the contrapositive we can say that if m^2 is odd m is odd.

- 1.6.1 b. Proof. Since $15m+12n=3 \implies 5m+4n=1 \implies 5m=1-4n$. Assume m=1 and n=-1, then 15m+12n+3 turns into 15-12=3 which is true. Thus we've proved that there exists integers m and n that satisfy 15m+12n=3.
 - d. Proof. Since $15m + 12n = 1 \implies 3(5m + 4n) = 1 \implies 3k = 1$ where k = 5m + 4n is an integer. This is a contradiction as $3 \nmid 1$. Thus we've proved that there exists no integers m, n that satisfy 15m + 12n = 1. \square
- 1.6.4 a. Proof. Suppose x = 41 then $x^2 + x + 41 = 41^2 + 41 + 41 = 43(41)$. This disproves the statement that for all integers x, $x^2 + x + 41$ is prime as 43(41) clearly has at least one other factor besides itself and 1.
 - b. *Proof.* For all real numbers x there exists a real number y that satisfies the statement x+y=0. Since $x+y=0 \implies y=-x \in \mathbb{R}$. Thus we've proved that there always exists at least one real number y that satisfies x+y=0.
 - c. Proof. Suppose the real numbers x=2 and y=1. Then $y^x>x \implies 1>2$ which is clearly a contradiction. Thus we've disproved that for all real numbers x>1 and y>0, $y^x>x$.
 - d. Proof. Suppose the integers a=4, b=2, and c=2. Then this fulfills the assumption that $a \mid bc$, as $2 \cdot 4k$ for some $k \in \mathbb{Z}$ where k=1. However this fails both $a \mid b$ and $a \mid c$ as $2 \neq 4j$ and $2 \neq 4l$ for some $j, l \in \mathbb{Z}$. Thus we have disproved the statement that if an integer a divides the product of two integers b and c then a must also divide one of the other integers b or c.
- 1.6.6 a. *Proof.* The natural number n is greater than or equal to 1 by definition of a natural number. Since $n \ge 1 \implies 1 \ge \frac{1}{n}$. Thus we've proved for all natural numbers $n, \frac{1}{n} \le 1$.
 - b. *Proof.* Assume there exists a natural number n that $\frac{1}{n} < .13$. Based on assumptions $\frac{1}{.13} < n$. Therefore there exists a natural number M that n > M as long as there exists a natural number $m \le \frac{1}{.13}$ which is true

- since $7 \le 1.13$. Thus we've proved there exists natural numbers M and n that satisfy n > M and $\frac{1}{n} < .13$.
- e. *Proof.* Assume there exists a natural number n. If this is the case, there will also exist a natural number k = n + 1 which implies that k > n. Thus we've proved that there exists no largest natural number since there will always exist a natural number k that is 1 greater the natural number n. \square
- f. Proof. Assume there exists a positive real number x such that x > 0. If this is the case, there will also exist a positive real number $y = \frac{x}{2}$ which implies y < x since both x and y are positive. Thus we've proved that there exists no largest natural number since there will always exist a real number y that is half the size of any real number x.
- i. Proof. We'll prove there exists a natural number K that for all greater real numbers r, so that r > K, then $\frac{1}{r^2} < 0.01$. $\frac{1}{r^2} < 0.01 \implies 100 < r^2 \implies 10 < r \lor -10 > r$. This proves that K = 10, therefore if r > K = 10 then $\frac{1}{r^2} < 0.01$. Thus we've proved that there exists a natural number K that for all greater real numbers r then $\frac{1}{r^2} < 0.01$.
- k. Proof. We'll prove there exists an odd integer M, so that M=2k+1 where $k\in\mathbb{Z}$, that for all greater real numbers r, so that r>M, then $\frac{1}{2r}<0.01$. Since $\frac{1}{2r}<0.01$ then $100<2r\implies50< r$ and $50\le51$ then let M=51 as 51=2(25)+1. Then all real numbers r greater than M=51 is implicitly greater than 50 fulfilling 50< r therefore implying $\frac{1}{2r}<0.01$. Thus we've proved there exists an odd integer M that for all greater real numbers r then $\frac{1}{2r}<0.01$.
- 2.1.4 a. False
 - b. True
 - c. False
 - d. True
 - e. True
 - f. False
 - g. True
 - h. False
 - i. False
 - j. True
- 2.1.5 a. True
 - b. True
 - c. True
 - d. True
 - e. False
 - f. True
 - g. False
 - h. False
 - i. False
 - j. False
 - k. True
 - l. True
- 2.1.6 a. $A \subseteq B, B \nsubseteq C$, and $A \subseteq C$ $A = \{1\}, B = \{1, 2\}, C = \{1, 3\}$

b.
$$A \subseteq B, B \subseteq C$$
, and $C \subseteq A$
 $A = \{1\}, B = \{1\}, C = \{1\}$

c.
$$A \nsubseteq B, B \nsubseteq C$$
, and $A \subseteq C$
 $A = \{1\}, B = \{2\}, C = \{1, 3\}$

d.
$$A \subseteq B, B \nsubseteq C$$
, and $A \nsubseteq C$
 $A = \{1\}, B = \{1, 3\}, C = \{2\}$

- 2.1.8 *Proof.* Assume the sets exist A, B, and C and let $A \subseteq B$ and $B \subseteq C$. Therefore all elements $x \in A$ and because $A \subseteq B$ all elements $x \in B$. Finally, since $B \subseteq C$ makes all all elements $x \in C$. Since A is entirely made up of all elements x and $x \in C$ then $A \subseteq C$. Thus we've shown $A \subseteq C$ if $A \subseteq B$ and $B \subseteq C$.
- 2.1.11 a. *Proof.* Assume for all real numbers x that $\frac{3x}{4} 2 > 10 \iff \frac{3x}{4} > 12 \iff x > \frac{48}{3} \iff x > 16 \iff x \in (16, \infty).$
 - b. *Proof.* We'll prove that $\{x \in \mathbb{R}, |x-4|=2|x|-2\} = \{-6,2\}$ by showing $\{x \in \mathbb{R}, |x-4|=2|x|-2\} \subseteq \{-6,2\}$ and $\{x \in \mathbb{R}, |x-4|=2|x|-2\} \supseteq \{-6,2\}$. Assume that all real numbers x satisfy $|x-4|=2|x|-2 \Longrightarrow (x-4)^2 = 4(|x|-1)^2 \Longrightarrow x^2-8x+16 = 4x^2-8|x|+4 \Longrightarrow 0 = 3x^2-8|x|+8x-12.$

Case 1: if $x \ge 0$ then $0 = 3x^2 - 12$ and therefore $0 = x^2 - 4 \implies x = 2$. x = 2 can only be 2 for this case

Case 2: if x < 0 then $0 = 3x^2 + 16x - 12$ and therefore $x = \frac{-16 \pm \sqrt{16^2 - 4(3)(-12)}}{6} = \frac{-16 \pm \sqrt{400}}{6} = -\frac{8}{3} \pm \frac{10}{3} = -6$ or $\frac{2}{3}$. Thus x can only be equal to 6 for this case. Thus we've shown that the only real numbers x that satisfy satisfy |x - 4| = 2|x| - 2 are all of the elements of $\{-6, 2\}$. Therefore we've proved that $\{x \in \mathbb{R}, |x - 4| = 2|x| - 2\} = \{-6, 2\}$.

- 2.1.14 a. $\mathcal{P}(\{0, \triangle, \Box\}) = \{\emptyset, \{0\}, \{\triangle\}, \{\Box\}, \{0, \triangle\}, \{0, \Box\}, \{\triangle, \Box\}, \{0, \triangle, \Box\}\}\}$
 - b. $\mathcal{P}(\{S, \{S\}\}) = \{\emptyset, \{S\}, \{\{S\}\}, \{S, \{S\}\}\}\}$
- 2.1.15 a. False
 - b. True
 - c. False
 - d. True