



# Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12



### Plan wykładu



### Dioda stabilizacyjna, stabilizator

- Dioda prostownicza, zastosowania
- Energetyczny model pasmowy złącza
- Przebicie złącza P-N
- · Dioda stabilizacyjna
- Stabilizator parametryczny

Elementy elektroniczne I



### Dioda prostownicza



Diody przeznaczone do prostowania prądu przemiennego (małych częstotliwości).

### **Parametry**

- · charakterystyczne:
- napięcie przewodzenia  $U_{\it F}$  przy określonym prądzie przewodzenia  $I_{\it F}$  ( $I_{\it 0}$ ),
- prąd wsteczny  $I_R$  przy napięciu  $U_{RWM}$ ,



- maksymalny średni prąd przewodzenia I<sub>0</sub>,
- powtarzalny szczytowy prąd przewodzenia  $I_{FRM}$  (impulsowy),
- maksymalne napięcie wsteczne  $U_{\it RWM}$ ,
- maksymalna moc strat (admisyjna)  $P_{max}$ ,
- rezystancja termiczna R<sub>th</sub>,
- maksymalna temperatura złącza  $T_{jmax}$ ,
- typowa pojemność złączowa,
- inne.

# Diody prostownicze:

- małej mocy,  $P_a$  < 1 W, - średniej mocy, 1 W <  $P_a$  < 10 W,

Marciniak, "Przyrządy półprzewodnikowe i układy scalone"

- dużej mocy,  $P_a > 10 \text{ W}$ .

Elementy elektroniczne I – dioda

3



### Pomiar charakterystyki diody







 $\ln I_D = \frac{U_D - I_D R_S}{\eta U_T} + \ln I_0$   $I_D R_S = \Delta U$ 

 $I_0$   $1/R_S$   $I_D$ 

Elementy elektroniczne I – złącze P-N



# Prostownik jednopołówkowy







$$\overline{u_{L}} = \frac{1}{T} \int_{0}^{2\pi} U_{l} \sin\omega t dt = \frac{U_{l}}{2\pi} \int_{0}^{\pi} \sin 2\pi f t dt =$$

$$= \frac{U_{l}}{2\pi} \cos 2\pi f t \Big|_{0}^{\pi} = \frac{U_{l}}{2\pi} (1 - (-1)) = \frac{U_{l}}{\pi}$$





$$\tau = R_L C / \!\!\!/ \Rightarrow u_{tpp} \vee$$

https://ea.elportal.pl

Elementy elektroniczne I – zastosowania diod

5

# Prostownik dwupołówkowy







Mała amplituda tętnień:  $R_L \cdot C >> 1/f$ 





https://ea.elportal.pl

Elementy elektroniczne I – zastosowania diod



### Ogranicznik diodowy



Ogranicza wzrost napięcia wyjściowego powyżej określonej wartości







https://ea.elportal.pl

Elementy elektroniczne I – zastosowania diod

7



# Przełącznik diodowy



Klucz – nieliniowy dzielnik napięcia złożony z rezystora i diody









Układy kształtowania charakterystyki przejściowej.

https://ea.elportal.pl

Elementy elektroniczne I – zastosowania diod



# Diodowe układy funkcyjne



### Układ o nieliniowej charakterystyce





$$\begin{split} \mathsf{K} &= \frac{R2}{R1 + R2} \quad \mathsf{K} \, 1 = \frac{R2 \| R3 \| R4}{R1 + R2 \| R3 \| R4} \quad \mathsf{K} \, 2 = \frac{R2 \| R3 \| R4 \| R5 \| R6}{R1 + R2 \| R3 \| R4 \| R5 \| R6} \\ &\quad \mathsf{K} \, 3 = \frac{R2 \| R3 \| R4 \| R5 \| R6 \| R7 \| R8}{R1 + R2 \| R3 \| R4 \| R5 \| R6 \| R7 \| R8} \\ &\quad \mathsf{U} \, 1 = \mathsf{U} \, z \frac{R3}{R3 + R4} \qquad \mathsf{U} \, 2 = \mathsf{U} \, z \frac{R5}{R5 + R6} \qquad \mathsf{U} \, 2 = \mathsf{U} \, z \frac{R7}{R7 + R8} \end{split}$$

https://ea.elportal.pl

Elementy elektroniczne I – zastosowania diod

9



# Diodowe układy funkcyjne



### Układ z symetryczną charakterystyką





https://ea.elportal.pl



### Powielacz napięcia



Transformuje napięcie zmienne na stałe o wyższej wartości



### kaskada Villarda

Zastosowanie: źródła wysokiego napięcia stałego o niewielkiej (ok. 1 mA) wydajności prądowej. Wydajność prądowa zależy od częstości impulsów ze źródła.



Elementy elektroniczne I – zastosowania diod

11



# Detektor wartości szczytowej



Pozwala mierzyć woltomierzem prądu stałego wartość amplitudy przebiegów zmiennych



Pojemność C ładowana jest przez diodę, duża rezystancja wewnętrzna woltomierza uniemożliwia jej szybkie rozładowanie. Krótkotrwałe zwarcie przycisku RESET powoduje rozładowanie pojemności z małą stałą czasową  $\tau$ = $R_z$ C i przygotowanie układu do nowych pomiarów.



# Diodowy czujnik temperatury





$$I_{\scriptscriptstyle D} = I_{\scriptscriptstyle 0} \Bigg[ \exp \! \left( \frac{U_{\scriptscriptstyle D}}{\eta U_{\scriptscriptstyle T}} \right) \! - \! 1 \, \Bigg]$$

$$U_T = \frac{kT}{q}$$

$$U_D = \eta U_T \ln \frac{I_D}{I_0}$$

$$U_{T} = U_{D1} - U_{D2} = \frac{\eta kT}{q} \ln \frac{I_{D1}}{I_{D2}}$$

$$\frac{dU_T}{dT} = \frac{\eta k}{q} \ln \frac{I_{D1}}{I_{D2}}$$

Elementy elektroniczne I – zastosowania diod



# Wzmacniacz logarytmujący



Wzmacniacz logarytmujący

### Wzmacniacz delogarytmujący



$$I_{1} = I_{D} \qquad U_{WE} = I_{1}R_{1} \qquad U_{WY} = -U_{D} \qquad I_{D} = I_{0} \exp\left(\frac{U_{D}}{\eta U_{T}}\right)$$

$$I_{1} = \frac{U_{WE}}{R_{1}} = I_{0} \exp\left(\frac{-U_{WY}}{\eta U_{T}}\right)$$

$$\downarrow U_{WY} = -\eta U_{T} \ln\left(\frac{U_{WE}}{R_{1}I_{0}}\right)$$

$$I_{1} = I_{D} \qquad U_{WE} = U_{D} \qquad U_{WY} = -I_{1}R_{1}$$

$$U_{WY} = -R_{1}I_{0} \exp\left(\frac{U_{WE}}{\eta U_{T}}\right)$$

$$I_{1} = I_{D} \qquad U_{WE} = I_{D} \qquad U_{WY} = -I_{1}R_{1}$$

$$I_{1} = \frac{U_{WE}}{R_{1}} = I_{0} \exp\left(\frac{-U_{WY}}{\eta U_{T}}\right)$$

$$\downarrow \downarrow$$

$$U_{WY} = -\eta U_T \ln \left( \frac{U_{WE}}{R_i I_0} \right)$$

$$U_{WY} = -R_1 I_0 \exp\left(\frac{U_{WE}}{\eta U_T}\right)$$

Elementy elektroniczne I – zastosowania diod



# Energetyczny model pasmowy złącza



### Przed połączeniem obszarów P i N



Elementy elektroniczne I – złącze P-N

15



# Energetyczny model pasmowy złącza



### Po połączeniu obszarów P i N

Zasady rysowania modelu pasmowego:

- Poziom Fermiego ma jedną, stałą wartość w całym obszarze złącza (z warunku równowagi termodynamicznej).
- W obszarach elektrycznych obojętnie (poza warstwą zaporową) nie zmieniają się koncentracje n i p, tzn. położenie poziomu Fermiego pozostaje takie, jak było w oddzielnych warstwach P i N.
  - Skok  $E_{C}$  i  $E_{V}$  reprezentuje barierę potencjału  $(q\,\varphi_{B}).$



 Poziom Fermiego ma sens średniej energii swobodnej elektronu (w st. równ. termod. musi być ona jednakowa w cąłej bryle półprzewodnika, tj. w całym złączu).

Elementy elektroniczne I – złącze P-N



# Energetyczny model pasmowy złącza



### Stan równowagi termodynamicznej



Elementy elektroniczne I – złącze P-N

17



# Energetyczny model pasmowy złącza



### Polaryzacja w kierunku zaporowym



Brak poziomu Fermiego w warstwie zaporowej.

Elementy elektroniczne I – złącze P-N



# Energetyczny model pasmowy złącza



### Polaryzacja w kierunku przewodzenia



Brak poziomu Fermiego w warstwie zaporowej – przy polaryzacji złącza jest to obszar o zakłóconej równowadze termodynamicznej – pojęcie poziomu Fermiego nie ma w tym obszarze sensu.

Elementy elektroniczne I – złącze P-N

19



### Przebicie złącza P-N



Zjawisko gwałtownego wzrostu prądu przy polaryzacji złącza <u>w kierunku zaporowym</u> napięciem większym niż tzw. napięcie przebicia.

- Przebicie Zenera
- Przebicie lawinowe



| napięcie<br>przebicia                       | dla krzemu                            | rodzaj<br>przebicia  | poziom<br>domieszkowania          |
|---------------------------------------------|---------------------------------------|----------------------|-----------------------------------|
| $U_Z < 4\frac{E_g}{q}$                      | $U_z$ < 5 V                           | Zenera               | złącza silnie<br>domieszkowane    |
| $4\frac{E_g}{q} \le U_Z \le 6\frac{E_g}{q}$ | $5 \text{ V} \le U_Z \le 7 \text{ V}$ | Zenera i<br>lawinowe | średnia koncentracja<br>domieszek |
| $U_Z > 6\frac{E_g}{q}$                      | $U_Z > 7 \text{ V}$                   | lawinowe             | złącza słabo<br>domieszkowane     |

Elementy elektroniczne I – dioda stabilizacyjna



### Przebicie złącza P-N



Przebicie Zenera – zachodzi w złączach silnie domieszkowanych (P<sup>+</sup>-N<sup>+</sup>)



Elementy elektroniczne I – dioda stabilizacyjna



### Przebicie złącza P-N



Przebicie lawinowe Silne pole elektryczne rozpędza swobodny nośnik ładunku, który zderza się z atomem sieci krystalicznej – rozerwanie wiązań kowalencyjnych (jonizacja zderzeniowa) – powstaje para elektron-dziura, która również jest przyspieszana i może doprowadzić do kolejnej jonizacji zderzeniowej – <u>powielanie lawinowe</u>.

> Jeśli  $l_d >> l_n$  ,  $l_p$  – lawinowe powielanie liczny nośników,  $l_n, l_p$  – droga swobodna nośników (między kolejnymi zderzeniami).



Gęstość prądu:  $J=J_{_{0}}M_{_{p}}$  $J_0$  – gęstość prądu przed przebiciem

$$M_p = \frac{1}{1 - \left(\frac{U}{U_p}\right)^n}$$
  $n$  - współczynnik, dla Si: 2...6

Oba przebicia nie powodują bezpośrednio uszkodzenia złącza, dopóki w obwodzie zewnetrznym jest odpowiednie ograniczenie prądu. Brak ograniczenia spowoduje wydzielenie się zbyt dużej mocy (ciepła) i zniszczenie złącza.



# Wpływ temperatury na napięcie przebicia



### Przebicie Zenera

# $TWU_Z < 0$

Marciniak, "Przyrządy półprzewodnikowe i układy scalone

 $TWU_Z > 0$ 

Przebicie lawinowe

Względna zmiany napięcia stabilizacji od temperatury:

$$TWU_{Z} = \frac{1}{U_{Z}} \frac{\Delta U_{Z}}{\Delta T}$$

Mechanizm wpływu temperatury na przebicie:

$$T\mathcal{A} \to E_g \mathcal{A} \to I_d \mathcal{A} \to I_D \mathcal{A}$$

 $T /\!\!\!/ \!\!\!>$  amplituda drgań atomów sieci $\!\!/ \!\!\!/ \!\!\!>$ prawdopodobieństwo zderzeń $\nearrow l_{n,p} \lor \rightarrow$  $E_{\mathit{Kn,p}} \!\!\! \vee \!\!\! > \mathsf{powielanie\ lawinowe} \!\!\! \vee \!\!\! > \!\!\! I_D \!\!\! \vee \!\!\! >$ 

Elementy elektroniczne I – dioda stabilizacyjna

23



### Dioda stabilizacyjna



Diody przeznaczone do zastosowań w układach stabilizacji napięć, jako źródła napięć odniesienia.

### **Parametry**

- · charakterystyczne:
- napięcie przewodzenia  $U_F$  przy określonym prądzie przewodzenia  $I_F\left(I_F\right)$ ,
- prąd wsteczny  $I_R$  przy określonym napięciu wstecznym  $U_R$ ,
- napięcie stabilizacji (Zenera) U<sub>z</sub> zwykle dla  $I = 0,1I_{Zmax}$ ,  $-TWU_Z$  temp. współczynnik nap. stab.,
- rezystancja dynamiczna  $r_z$ ,
- dopuszczalne graniczne:
- maksymalny stały prąd przewodzenia
- maksymalny prąd stabilizacji I<sub>Zmax</sub>,
- maksymalna moc strat  $P_{max}$  (dla  $T_a$ =25°C),
- maksymalna temperatura złącza  $T_{imax}$ .

$$I_{Z\max} = P_{\max} / U_Z$$





# Dioda stabilizacyjna



Parametry - BZX85 ...



### Absolute Maximum Ratings (T,=25°C)

|                                            | Symbols          | Values | Units |
|--------------------------------------------|------------------|--------|-------|
| Zener current see Table "Characteristics"  |                  |        |       |
| Power dissipation at T <sub>amb</sub> =25℃ | P <sub>tot</sub> | 1.3 1) | w     |
| Junction temperature                       | т,               | 200    | °C    |

| Type V <sub>c</sub> | Zener voltage range 1) |                  |                                   | Dynamic resistance                                     |      | Reverse leakage<br>current          |      | Temp. coefficient<br>of Zener voltage |              |
|---------------------|------------------------|------------------|-----------------------------------|--------------------------------------------------------|------|-------------------------------------|------|---------------------------------------|--------------|
|                     | V                      | l <sub>z</sub> , | for V <sub>zr</sub> <sup>23</sup> | r <sub>er</sub> and r <sub>ep</sub> at I <sub>24</sub> |      | I <sub>R</sub> 29 at V <sub>R</sub> |      | TK <sub>vz</sub>                      |              |
|                     | V                      | mA               | V                                 | Ω                                                      | Ω    | mA                                  | uA   | v                                     | %/K          |
| BZX85/C 2V7         | 2.7                    | 80               | 2.5 2.9                           | <20                                                    | <400 | 1                                   | <150 | 1                                     | -0.080.05    |
| BZX85/C 3V0         | 3.0                    | 80               | 2.8 3.2                           | <20                                                    | <400 | 1                                   | <100 | 1                                     | -0.080.05    |
| BZX85/C 3V3         | 3.3                    | 70               | 3.1 3.5                           | <20                                                    | <400 | 1                                   | <40  | 1                                     | -0.080.05    |
| BZX85/C 3V6         | 3.6                    | 60               | 3.4 3.8                           | <15                                                    | <500 | 1                                   | <20  | 1                                     | -0.080.05    |
| BZX85/C 3V9         | 3.9                    | 60               | 3.7 4.1                           | <15                                                    | <500 | - 1                                 | <10  | - 1                                   | -0.070.02    |
| BZX85/C 4V3         | 4.3                    | 50               | 4.0 4.6                           | <13                                                    | <500 | 1                                   | <3   | - 1                                   | -0.07 +0.01  |
| BZX85/C 4V7         | 4.7                    | 45               | 4.4 5.0                           | <13                                                    | <600 | 1                                   | <3   | - 1                                   | -0.03 +0.04  |
| BZX85/C 5V1         | 5.1                    | 45               | 4.8 5.4                           | <10                                                    | <500 | 1                                   | <1   | 1.5                                   | -0.01 +0.04  |
| BZX85/C 5V6         | 5.6                    | 45               | 5.2 6.0                           | <7                                                     | <400 | 1                                   | <1   | 2                                     | 0 +0.045     |
| BZX85/C 6V2         | 6.2                    | 35               | 5.8 6.6                           | <4                                                     | <300 | 1                                   | <1   | 3                                     | +0.01 +0.05  |
| BZX85/C 6V8         | 6.8                    | 35               | 6.4 7.2                           | <3.5                                                   | <300 | - 1                                 | <1   | 4                                     | +0.015 +0.00 |

http://pdf.datasheetcatalog.com/datasheet/good-ark/BZX85C6V8.pdf



Elementy elektroniczne I – dioda stabilizacyjna

25



### Dioda stabilizacyjna



Właściwości stabilizacyjne – rezystancja dynamiczna



 ${\it r_z}$  określa nachylenie charakterystyki diody w zakresie przebicia.

$$r_z = \frac{\partial U_Z}{\partial I_Z} = \frac{\Delta U_Z}{\Delta I_Z} \bigg|_{(U_Z, I_Z)}$$

Dla idealnej diody:  $r_{z} 
ightarrow 0$ 



S. Kuta "Elementy i układy elektroniczne"

Elementy elektroniczne I – dioda stabilizacyjna



# Dioda stabilizacyjna



### Właściwości stabilizacyjne



$$U_{WE} - IR - U_{WY} = 0$$
 
$$I = \frac{U_{WE} - U_{WY}}{R}$$
 
$$\Delta I = \frac{\Delta U_{WE} - \Delta U_{WY}}{R}$$







Zadaniem stabilizatora jest zmniejszenie amplitudy  $u_{WE}$  do małych amplitud  $u_{WY}$  (stabilizowanego), czyli uniezależnienie  $u_{WY}$  od zmian  $u_{WE}$  oraz od zmian obciążenia.

Elementy elektroniczne I – dioda stabilizacyjna

27



# Dioda stabilizacyjna



Modele odcinkowo liniowe





### Stabilizator bez obciążenia



idealna charakterystyka diody stabilizacyjnej





Elementy elektroniczne I – dioda stabilizacyjna



# Stabilizator parametryczny





### Stabilizator z obciążeniem



idealna charakterystyka diody stabilizacyjnej









Stabilizator z obciążeniem



Wpływ zmian  $u_{\mathit{WE}}$  na  $u_{\mathit{WY}}$  przy  $R_{\mathit{L}} = \mathrm{const}$ 

rzeczywista charakterystyka diody stabilizacyjnej





Elementy elektroniczne I – dioda stabilizacyjna

31



# Stabilizator parametryczny



Współczynnik stabilizacji napięciowej (rzeczywista ch-ka diody stabilizacyjnej)







$$S_{U} = \frac{\Delta u_{WY}}{\Delta u_{WE}}\bigg|_{R_{t} = const} = \frac{r_{z} \parallel R_{L}}{R + r_{z} \parallel R_{L}}$$

Dla  $r_{-} \ll R_{T}$  i  $R \gg r_{-}$  (zwykle)

$$S_U = \frac{r_z}{R + r_z} = \frac{1}{\frac{R}{r} + 1} = \frac{r_z}{R}$$

Im mniejszy tym lepiej!

Elementy elektroniczne I – dioda stabilizacyjna





Charakterystyka wyjściowa (obciążenia)  $\left. u_{\mathit{WY}}(i_L) \right|_{u_{\mathit{WE}}=const}$ 

$$u_{WY}(i_L)\Big|_{u_{WE}=cons}$$



$$R_L = -\frac{\Delta u_{WY}}{\Delta i_L}\bigg|_{u_{WE} = const}$$

$$R_L \to \infty \Rightarrow i_L = 0 \Rightarrow i_Z = i_{Z \text{max}} \Rightarrow u_{WY \text{max}}$$



$$R_L \lor \to i_L \land \to i_Z \lor \to u_{WY} \lor$$

$$R_L \to \min \Rightarrow i_{L \max} \Rightarrow i_Z = i_{Z \min} \Rightarrow u_{WY \min}$$

Elementy elektroniczne I – dioda stabilizacyjna



### Stabilizator parametryczny



Stabilizator z obciążeniem – wpływ zmian  $R_L$  na  $u_{\mathit{WY}}$  przy  $u_{\mathit{WE}}$ =const



rzeczywista charakterystyka diody stabilizacyjnej









### Projektowanie stabilizatora



$$I_{Z\,\mathrm{min}} o \,\,$$
 (z ch-ki diody)  $U_{\!\scriptscriptstyle D} = U_{\!\scriptscriptstyle Z}$  – dioda w zakresie stabilizacji

$$U_{wr} = 2$$

$$R_{\rm min} = \frac{U_{\it WE} - U_{\it Z}}{I_{\it Z\, max}} \quad - \, {\rm ogranicza} \,\, I_{\it Z} \,\, {\rm do \,\, bezpiecznej \,\, wartości} \,\, (I_{\it Zmax})$$

$$\mathrm{Dla}\;R_L<\infty:\quad I_{Z\,\mathrm{min}}\to I_{L\,\mathrm{max}} \Rightarrow I_{Z\,\mathrm{max}}=I_{Z\,\mathrm{min}}+I_{L\,\mathrm{max}}$$