姓名 分数

一、选择题:1~8 小题,每小题 4 分,共 32 分. 下列每题给出的四个选项中,只有一个选项是符合题目

(1)设函数 $f(x) = \int_{-x}^{x} \ln(2+t) dt$,则 f'(x)的零点个数为

上册,P33,51 题

(A)0.

(B)1.

(C)2.

(D)3.

(2)函数 $f(x,y) = \arctan \frac{x}{y}$ 在点(0,1)处的梯度等于

上册,P71,47 题

(A)*i*.

(B)-i.

(C) *i*.

(D) -i.

(3)在下列微分方程中,以

 $y = C_1 e^x + C_2 \cos 2x + C_3 \sin 2x (C_1, C_2, C_3)$ 为任意常数)

为通解的是

(A) y''' + y'' - 4y' - 4y = 0.

上册,P132,22 题

(C) y''' - y'' - 4y' + 4y = 0.

(B) v''' + v'' + 4v' + 4v = 0. (D) y''' - y'' + 4y' - 4y = 0.

(4)设函数 f(x)在 $(-\infty, +\infty)$ 内单调有界, (x_n) 为数列,下列命题正确的是

上册,P12,29 题

(A)若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛.

(B)若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 收敛.

(C)若 $\{f(x_n)\}$ 收敛,则 $\{x_n\}$ 收敛.

(D)若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 收敛.

(5)设A为n阶非零矩阵,E为n阶单位矩阵,若 $A^3 = O$,则

上册,P152,10 题

(A)E-A不可逆,E+A不可逆. (C)**E**-**A**可逆,**E**+**A**可逆.

(B)**E**-A不可逆**,E**+A可逆**.** (D)E-A可逆,E+A不可逆.

=1 在正交变换下

(6)设 \mathbf{A} 为3阶实对称矩阵,如果二次曲面方程 $(x,y,z)\mathbf{A}$ $|_{\mathbf{y}}$

的标准方程的图形如图所示,则 A 的正特征值的个数为 上册,P197,7 题

(A)0.

(B)1. (D)3.

2008年全国硕士研究生入学统一考试数学一试题

(C)2.

(7)设随机变量 X,Y 独立同分布,且 X 的分布函数为 F(x),则 $Z=\max\{X,Y\}$ 的分布函数为 上册,P228,22题

 $(A)F^{2}(x).$

(B)F(x)F(y).

 $(C)1-[1-F(x)]^2$.

(D) $\lceil 1 - F(x) \rceil \lceil 1 - F(y) \rceil$.

(8)设随机变量 $X \sim N(0,1)$, $Y \sim N(1,4)$,且相关系数 $\rho_{_{XY}} = 1$,则

上册,P234,15 题

(A)P(Y=-2X-1)=1.

(B) $P{Y=2X-1}=1$.

(C) $P{Y=-2X+1}=1$.

(D) $P{Y=2X+1}=1$.

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9) 微分方程 xy' + y = 0 满足条件 y(1) = 1 的解是 y =.

上册,P128,7题

(10)曲线 $\sin xy + \ln(y-x) = x$ 在点(0,1)处的切线方程为 .

上册,P23,22 题

43 •

(11)已知幂级数 $\sum_{n=0}^{\infty} a_n (x+2)^n$ 在 x=0 处收敛,在 x=-4 处发散,则幂级数 $\sum_{n=0}^{\infty} a_n (x-3)^n$ 的收敛域为_

上册,P114,17 题

(12)设曲面 Σ 是 $z = \sqrt{4-x^2-y^2}$ 的上侧,则 $\iint xy dy dz + x dz dx + x^2 dx dy =$ ______.

上册,P102,65 题

(13)设A为 2 阶矩阵, α_1 , α_2 为线性无关的 2 维列向量, $A\alpha_1$ =0, $A\alpha_2$ =2 α_1 + α_2 ,则A的非零特征值为_____.

上册,P184,8 题

(14)设随机变量 X 服从参数为 1 的泊松分布,则 $P\{X=E(X^2)\}=$

上册,P214,15 题

三、解答题:15~23 小题,共94分.解答应写出文字说明、证明过程或演算步骤。

(15)(本颢满分9分)

求极限 $\lim_{x \to 0} \frac{[\sin x - \sin(\sin x)]\sin x}{x^4}$

上册,P8,19题

(16)(本题满分9分)

计算曲线积分

$$\int_{L} \sin 2x dx + 2(x^2 - 1) y dy,$$

其中 L 是曲线 $y = \sin x$ 上从点(0,0)到点(π ,0)的一段.

上册,P90,41 题

(17)(本颢满分11分)

已知曲线 C: $\begin{cases} x^2 + y^2 - 2z^2 = 0, \\ x + y + 3z = 5, \end{cases}$ 求曲线 C 上距离 xOy 面最远的点和最近的点.

上册,P66,32 题

(18)(本题满分10分)

设函数 f(x)连续,

(I)利用定义证明函数 $F(x) = \int_{-x}^{x} f(t) dt$ 可导,且 F'(x) = f(x);

(|||)当 f(x)是以 2 为周期的周期函数时,证明

$$G(x) = 2 \int_{0}^{x} f(t) dt - x \int_{0}^{2} f(t) dt$$

也是以2为周期的周期函数.

上册,P46,27 题

(19)(本题满分11分)

将函数 $f(x)=1-x^2(0 \le x \le \pi)$ 展开成余弦级数,并求 $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

上册,P125,46 题

(20)(本题满分10分)

设 α, β 为3维列向量,矩阵 $A = \alpha \alpha^{T} + \beta \beta^{T}$,其中 α^{T}, β^{T} 分别是 α, β 的转置.证明:

(Ⅱ)若 α,β线性相关,则 r(A)<2.

上册,P165,16 题

(21)(本颢满分12分)

设n元线性方程组Ax = b,其中

$$\mathbf{A} = \begin{pmatrix} 2a & 1 & & & & & \\ a^2 & 2a & 1 & & & & \\ & a^2 & 2a & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & a^2 & 2a & 1 \\ & & & & a^2 & 2a \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

(I)证明行列式 $|A| = (n+1)a^n$;

2008年全国硕士研究生入学统一考试数学一试题

(Ⅱ)当 a 为何值时,该方程组有唯一解,并求 x1;

(Ⅲ)当 a 为何值时,该方程组有无穷多解,并求通解.

上册,P143.8 题

(22)(本题满分11分)

设随机变量 X 与 Y 相互独立,X 的概率分布为 $P(X=i) = \frac{1}{3}(i=-1,0,1)$,Y 的概率密度为

$$f_Y(y) = \begin{cases} 1, & 0 \leq y \leq 1, \\ 0, & 其他, \end{cases}$$
 记 $Z = X + Y.$

(I)求
$$P\left\{Z \leqslant \frac{1}{2} \mid X=0\right\}$$
;

(|||)求 Z的概率密度 $f_z(z)$.

上册,P227,21 题

(23)(本题满分11分)

设 X_1, X_2, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的简单随机样本. 记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, T = \overline{X}^{2} - \frac{1}{n} S^{2}.$$

- (I)证明 $T \stackrel{}{=} \mu^2$ 的无偏估计量;
- (\parallel)当 μ =0, σ =1时,求DT.

上册,P238,6 题

答案速查

一、选择题

(1)(B). (2)(A). (3)(D). (4)(B). (5)(C). (6)(B). (7)(A). (8)(D).

二、填空题

 $(9)\frac{1}{x}$. (10)y=x+1. (11)(1,5]. $(12)4\pi$. (13)1. $(14)\frac{1}{2e}$.

三、解答题

 $(15)\frac{1}{6}$. $(16)-\frac{1}{2}\pi^2$. (17)最远的点为(-5,-5,5),最近的点为(1,1,1).

(18)证明略. (19)
$$f(x) = 1 - \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} \cos nx$$
, $0 \leqslant x \leqslant \pi$; $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$.

(20)证明略.

(21)([)证明略. ([]) $a \neq 0$, $x_1 = \frac{n}{(n+1)a}$. ([])a = 0, $x = (0,1,0,\cdots,0)^{\mathsf{T}} + k(1,0,\cdots,0)^{\mathsf{T}} (k)$ 为任意常数).

(22)([])
$$\frac{1}{2}$$
. ([[]) $f_Z(z) = \begin{cases} \frac{1}{3}, & -1 \leqslant z < 2, \\ 0, & 其他. \end{cases}$

(23)(I)证明略. (II) $DT = \frac{2}{n(n-1)}$.

姓名 分数

一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

(1) 当 $x \rightarrow 0$ 时, $f(x) = x - \sin ax$ 与 $g(x) = x^2 \ln(1 - bx)$ 是等价无穷小量,则

上册,P15,36 题

(A)
$$a=1,b=-\frac{1}{6}$$
.

(B)
$$a=1,b=\frac{1}{6}$$
.

(C)
$$a = -1, b = -\frac{1}{6}$$
.

$$(a)a = -1, b = -1$$

(2)如图,正方形 $\{(x,y) \mid |x| \leq 1, |y| \leq 1\}$ 被其对角线划分为四个区域 D_k

$$(k=1,2,3,4)$$
, $I_k = \iint_{D_k} y \cos x dx dy$, $\lim_{1 \le k \le 4} \{I_k\} = 0$

(A)
$$I_1$$
. (B) I_2 .

$$(C)I_3$$
.

(D)
$$I_4$$
.

(3)设函数 y = f(x) 在区间[-1,3]上的图形如图所示,则函数 F(x) =

$$\int_{-x}^{x} f(t) dt$$
 的图形为

F(x)

2009 年全国硕士研究生入学统一考试数学一试题

(4)设有两个数列
$$\{a_n\}$$
, $\{b_n\}$,若 $\lim a_n=0$,则

上册,P112,11 题

$$(A)$$
当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

(B)当
$$\sum_{n=1}^{\infty} b_n$$
 发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散.

(C)当
$$\sum_{n=0}^{\infty} |b_n|$$
收敛时, $\sum_{n=0}^{\infty} a_n^2 b_n^2$ 收敛.

(D)当
$$\sum_{n=1}^{\infty} |b_n|$$
发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散.

(5)设 $\alpha_1, \alpha_2, \alpha_3$ 是3维向量空间 \mathbf{R}^3 的一个基,则由基 $\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{3}\alpha_3$ 到基 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 的过渡矩阵为

上册,P167,21题

(A)
$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$$
. $\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{6} \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{6} \end{bmatrix}$

(B)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 1 & 0 & 3 \end{bmatrix}$$
.

(D)
$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$

(6)设A,B均为 2 阶矩阵, A^* , B^* 分别为A,B的伴随矩阵. 若|A|=2,|B|=3,则分块矩阵 $\begin{pmatrix} O & A \\ R & O \end{pmatrix}$ 的伴随矩阵为

上册,P149,4 题

(A)
$$\begin{pmatrix} \mathbf{O} & 3\mathbf{B}^* \\ 2\mathbf{A}^* & \mathbf{O} \end{pmatrix}$$
.

(B)
$$\begin{pmatrix} \mathbf{O} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{O} \end{pmatrix}$$
.

(C)
$$\begin{pmatrix} \mathbf{O} & 3\mathbf{A}^* \\ 2\mathbf{B}^* & \mathbf{O} \end{pmatrix}$$
.

$$(A) \begin{pmatrix} \mathbf{O} & 3\mathbf{B}^* \\ 2\mathbf{A}^* & \mathbf{O} \end{pmatrix} . \qquad (B) \begin{pmatrix} \mathbf{O} & 2\mathbf{B}^* \\ 3\mathbf{A}^* & \mathbf{O} \end{pmatrix} . \qquad (C) \begin{pmatrix} \mathbf{O} & 3\mathbf{A}^* \\ 2\mathbf{B}^* & \mathbf{O} \end{pmatrix} . \qquad (D) \begin{pmatrix} \mathbf{O} & 2\mathbf{A}^* \\ 3\mathbf{B}^* & \mathbf{O} \end{pmatrix} .$$

(D)1.

(7)设随机变量 X 的分布函数为 $F(x)=0.3\Phi(x)+0.7\Phi\left(\frac{x-1}{2}\right)$,其中 $\Phi(x)$ 为标准正态分布的分布函数,则 EX=

上册,P231,7题

(A)0.

(B)0.3.

(C)0.7.

(8)设随机变量 X 与 Y 相互独立,且 X 服从标准正态分布 N(0,1),Y 的概率分布为 $P(Y=0) = P(Y=1) = \frac{1}{2}$. 记 $F_z(z)$ 为随机变量 Z=XY 的分布函数,则函数 $F_z(z)$ 的间断点个数为 上册,P228,23 题

- 二、填空题:9~14 小题,每小题 4 分,共 24 分.
- (9)设函数 f(u,v)具有二阶连续偏导数,z=f(x,xy),则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.

上册,P59,18 题

- (10)若二阶常系数齐次线性微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x) e^x$,则非齐次方程 y'' + ay' + by = x满足条件 y(0)=2, y'(0)=0 的解为 y= . 上册,P131,19题
- (11)已知曲线 $L: y = x^2 (0 \le x \le \sqrt{2})$,则 $\int_{\mathbb{R}^2} x \, ds = \underline{\hspace{1cm}}$.

上册,P82,24 题

(12)设 Ω ={ $(x,y,z)|x^2+y^2+z^2 \le 1$ },则 $\int z^2 dx dy dz = ____.$

上册,P81,21 题

(13)若 3 维列向量 α , β 满足 $\alpha^{\mathsf{T}}\beta=2$, 其中 α^{T} 是 α 的转置,则矩阵 $\beta\alpha^{\mathsf{T}}$ 的非零特征值为_

上册,P184,9 题

- (14)设 X_1, X_2, \dots, X_m 为来自二项分布总体 B(n, p)的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差. 若 \overline{X} 十 kS^2 为 np^2 的无偏估计量,则 k=上册, P243,10 题
- 三、解答题:15~23 小题,共94分. 解答应写出文字说明、证明过程或演算步骤.
- (15)(本题满分9分)

求二元函数 $f(x,y)=x^2(2+y^2)+y\ln y$ 的极值.

上册,P64,28 题

(16)(本题满分9分)

设 a_n 为曲线 $y=x^n$ 与 $y=x^{n+1}$ ($n=1,2,\cdots$) 所围成区域的面积,记 $S_1=\sum_{n=1}^{\infty}a_n$, $S_2=\sum_{n=1}^{\infty}a_{2n-1}$,求 S_1 与 S_2 的值.

上册,P119,27 题

(17)(本题满分11分)

椭球面 S_1 是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 绕 x 轴旋转而成,圆锥面 S_2 是由过点 (4,0) 且与椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 相切的直线绕 x 轴旋转而成.

- (I)求 S₁ 及 S₂ 的方程;
- (\mathbb{I})求 S_1 与 S_2 之间的立体的体积.

上册,P54,11 题

- (18)(本题满分11分)
 - (I)证明拉格朗日中值定理:若函数 f(x)在[a,b]上连续,在(a,b)内可导,则存在 $\xi \in (a,b)$,使得 $f(b) f(a) = f'(\xi)(b-a)$.
 - ($\| \cdot \|$)证明:若函数 f(x)在 x=0 处连续,在(0, δ) (δ >0)内可导,且 $\lim_{x\to 0^+} f'(x)=A$,则 $f'_+(0)$ 存在,且 $f'_+(0)=A$.

上册,P35,58 题

(19)(本题满分 10 分)

计算曲面积分 $I = \iint_{\Sigma} \frac{x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$ 其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧. 上册,P102,66 题

(20)(本题满分11分)

设

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}.$$

- (I)求满足 $A\xi_2 = \xi_1, A^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (Ⅱ)对(Ⅰ)中的任意向量 ξ_2 , ξ_3 ,证明 ξ_1 , ξ_2 , ξ_3 线性无关.

上册,P173,10 题

(21)(本题满分11分)

设二次型

$$f(x_1,x_2,x_3)=ax_1^2+ax_2^2+(a-1)x_3^2+2x_1x_3-2x_2x_3$$
.

- (\top)求二次型 f 的矩阵的所有特征值;
- (\parallel)若二次型 f 的规范形为 $y_1^2 + y_2^2$,求 a 的值.

上册,P198,8题

(22)(本题满分11分)

袋中有1个红球,2个黑球与3个白球. 现有放回地从袋中取两次,每次取一个球. 以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.

上册,P219,6 题

(23)(本题满分 11 分)

设总体 X 的概率密度为

$$f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, & x > 0, \\ 0, & \text{ 其他,} \end{cases}$$

其中参数 $\lambda(\lambda > 0)$ 未知, X_1,X_2,\dots,X_n 是来自总体 X 的简单随机样本.

(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量.

上册,P242,7题

答案速查

一、选择题

- (1)(A), (2)(A), (3)(D), (4)(C), (5)(A), (6)(B), (7)(C), (8)(B),
- 二、填空题
- $(9)xf_{12}''+f_2'+xyf_{22}''. (10)x(1-e^x)+2. (11)\frac{13}{6}. (12)\frac{4}{15}\pi. (13)2. (14)-1.$

三、解答题

- (15)极小值 $f(0,\frac{1}{e}) = -\frac{1}{e}$. (16) $S_1 = \frac{1}{2}$; $S_2 = 1 \ln 2$.
- (17)(I) S_1 的方程为 $\frac{x^2}{4} + \frac{y^2 + z^2}{3} = 1$; S_2 的方程为 $(x-4)^2 4y^2 4z^2 = 0$. (II)体积为 π .
- (18)证明略. (19)4π.

(20)(I)
$$\xi_2 = \left(-\frac{1}{2}, \frac{1}{2}, 0\right)^{\mathrm{T}} + C_1(1, -1, 2)^{\mathrm{T}}$$
或 $\xi_2 = \begin{bmatrix} -\frac{1}{2} + C_1 \\ \frac{1}{2} - C_1 \\ 2C_1 \end{bmatrix}$,其中 C_1 为任意常数;

$$\xi_3 = C_2(-1,1,0)^{\mathrm{T}} + C_3(0,0,1)^{\mathrm{T}} + \left(-\frac{1}{2},0,0\right)^{\mathrm{T}}$$
 或 $\xi_3 = \begin{bmatrix} -\frac{1}{2} - C_2 \\ C_2 \\ C_3 \end{bmatrix}$,其中 C_2 , 为任意常数.

(Ⅱ)证明略.

(21)([]) $\lambda_1 = a, \lambda_2 = a+1, \lambda_3 = a-2.$ ([])a=2.

 $(22)(I)\frac{4}{9}$.

(II)

Y X	0	1	2
0	$\frac{1}{4}$	1/3	1 9
1	1/6	19	0
2	$\frac{1}{36}$	0	0

$$(23)(1)\hat{\lambda}_1 = \frac{2}{\overline{X}}. \quad (1)\hat{\lambda}_2 = \frac{2}{\overline{X}}.$$

姓名 分数

一、选择题:1~8 小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

 $(1)极限 \lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x =$

上册,P8,20 题

(A)1.

(B) e.

 $(C)e^{a-b}$.

(D) e^{b-a} .

(2)设函数 z=z(x,y)由方程 $F\left(\frac{y}{x},\frac{z}{x}\right)=0$ 确定,其中 F 为可微函数,且 $F_2\neq 0$,则 $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=0$

上册,P61,22 题

(A)r

(B)z.

(C)-x.

(D) -z.

(3)设m,n均是正整数,则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[m]{x}} dx$ 的敛散性

上册,P44,19 题

(A)仅与 m 的取值有关.

(B)仅与n的取值有关.

(C)与m,n的取值都有关.

(D)与m,n的取值都无关.

 $(4) \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$

上册,P73,4 题

$$(A) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy.$$

(B)
$$\int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$
.

$$(C)\int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy.$$

(D)
$$\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$
.

(5)设 \mathbf{A} 为 $m \times n$ 矩阵, \mathbf{B} 为 $n \times m$ 矩阵, \mathbf{E} 为m 阶单位矩阵, 若 $\mathbf{A}\mathbf{B} = \mathbf{E}$,则

上册,P158,28 题

(A)r(A)=m, r(B)=m.

(B) $r(\mathbf{A}) = m, r(\mathbf{B}) = n$.

 $(C)r(\mathbf{A}) = n, r(\mathbf{B}) = m.$

(D) $r(\mathbf{A}) = n, r(\mathbf{B}) = n$.

(6)设A为4阶实对称矩阵,且 $A^2+A=0$. 若A的秩为3,则A相似于

上册,P188,15 题

$$(A) \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0 \end{bmatrix} .$$

(C)
$$\begin{bmatrix} 1 & & & & \\ & -1 & & & \\ & & -1 & & \\ & & & 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -1 & & & & \\ & -1 & & & \\ & & -1 & & \\ & & & 0 & \end{bmatrix}$$

(7)设随机变量 X 的分布函数

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}, & 0 \le x < 1, \\ 1 - e^{-x}, & x \ge 1, \end{cases}$$

2010年全国硕士研究生入学统一考试数学一试题

 $\mathbb{N}P(X=1)=$

(A)0.

(B) $\frac{1}{2}$.

 $(C)\frac{1}{2}-e^{-1}$.

(D)1 $-e^{-1}$.

(8)设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为[-1,3]上均匀分布的概率密度, 若

$$f(x) = \begin{cases} af_1(x), & x \leq 0, \\ bf_2(x), & x > 0 \end{cases} (a > 0, b > 0)$$

为概率密度,则 a,b 应满足

上册,P211,2 题

(A) 2a + 3b = 4.

(B) 3a + 2b = 4.

(C)a+b=1. (D)a+b=2.

二、填空题:9~14小题,每小题4分,共24分.

(9)设
$$\begin{cases} x = e^{-t}, \\ y = \int_0^t \ln(1+u^2) du, \quad M \frac{d^2 y}{dx^2} \Big|_{t=0} = \underline{\hspace{1cm}}.$$

上册,P21,17 题

上册,P215,16 题

 $(10)\int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} \, dx = \underline{\qquad}.$

上册,P43,16 题

(11)已知曲线 L 的方程为 $y=1-|x|(x\in[-1,1])$,起点是(-1,0),终点为(1,0),则曲线积分 $\int_L xy dx + x^2 dy = \int_L xy dx + x^2 dx + x^$

上册,P91,42 题

(12)设 $\Omega = \{(x,y,z) \mid x^2 + y^2 \le z \le 1\},$ 则 Ω 的形心的竖坐标z =_____.

上册,P107,77 题

(13)设 $\alpha_1 = (1,2,-1,0)^T$, $\alpha_2 = (1,1,0,2)^T$, $\alpha_3 = (2,1,1,a)^T$. 若由 α_1 , α_2 , α_3 生成的向量空间的维数为 2,则 $a=(1,2,-1,0)^T$

上册,P167,22 题

(14)设随机变量 X 的概率分布为 $P(X=k) = \frac{C}{k!}$, $k=0,1,2,\cdots$,则 $E(X^2) = \underline{\qquad}$. 上册, P231,8 题

三、解答题:15~23 小题,共94分. 解答应写出文字说明、证明过程或演算步骤

(15)(本题满分10分)

求微分方程 $y''-3y'+2y=2xe^x$ 的通解.

上册,P131,20 题

(16)(本颢满分10分)

求函数 $f(x) = \int_{0}^{x^{i}} (x^{2} - t)e^{-t} dt$ 的单调区间与极值.

上册,P27,34 题

(17)(本题满分10分)

([)比较

$$\int_0^1 |\ln t| \left[\ln(1+t)\right]^n \mathrm{d}t = \int_0^1 t^n |\ln t| \, \mathrm{d}t (n=1,2,\cdots)$$

的大小,说明理由;

(Ⅱ)记

$$u_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt (n = 1, 2, \dots),$$

求极限 $\lim u_n$.

上册,P10,26 题

(18)(本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

上册,P115,21题

(19)(本题满分10分)

2010年全国硕士研究生入学统一考试数学一试题

设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 处的切平面与 xOy 面垂直,求点 P 的轨迹 C. 并 计算曲面积分 $I = \iint_{\mathbb{R}} \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} \mathrm{d}S$,其中 Σ 是椭球面 S 位于曲线 C 上方的部分. 上册,P95,49 题

(20)(本题满分11分)

设
$$\mathbf{A} = \begin{bmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{bmatrix}, \mathbf{b} = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}$$
. 已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在两个不同的解.

- (**I**)求 λ,a;
- (||)求方程组 Ax=b 的通解.

上册,P174,11 题

(21)(本题满分11分)

已知二次型 $f(x_1,x_2,x_3)=\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}$ 在正交变换 $\mathbf{x}=\mathbf{Q}\mathbf{y}$ 下的标准形为 $y_1^2+y_2^2$,且 \mathbf{Q} 的第 3 列为 $\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)^{\mathrm{T}}$.

- ([)求矩阵 A;
- (|||)证明 A+E 为正定矩阵,其中 E 为 3 阶单位矩阵.

上册,P198,9 题

(22)(本题满分11分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = Ae^{-2x^{2}+2xy-y^{2}}, -\infty < x < +\infty, -\infty < y < +\infty,$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

上册,P221,10题

(23)(本题满分11分)

设总体 X 的概率分布为

\overline{X}	1	2	3
P	$1-\theta$	θ — θ ²	$ heta^2$

答案速查

一、选择题

(1)(C). (2)(B). (3)(D). (4)(D). (5)(A). (6)(D). (7)(C). (8)(A).

二、填空题

(9)0. (10) -4π . (11)0. (12) $\frac{2}{3}$. (13)6. (14)2.

三、解答题

 $(15)y = C_1 e^x + C_2 e^{2x} - x(x+2)e^x$,其中 C_1 , C_2 为任意常数.

(16) f(x) 的单调增加区间为(-1,0)和 $(1,+\infty)$;单调减少区间为 $(-\infty,-1)$ 和(0,1). f(x)的极小值为 $f(\pm 1)=0$;极大值为 $f(0)=\frac{1}{2}\left(1-\frac{1}{6}\right)$.

(17)(
$$[]$$
) $\int_{0}^{1} |\ln t| [\ln(1+t)]^{n} dt \leqslant \int_{0}^{1} t^{n} |\ln t| dt$.理由略. ($[]$) $\lim_{n \to \infty} u_{n} = 0$.

(18)收敛域为[-1,1];和函数为 $x \arctan x (-1 \le x \le 1)$.

(19)点
$$P$$
 的轨迹 C 的方程为
$$\begin{cases} 2z - y = 0, \\ x^2 + \frac{3}{4}y^2 = 1; \end{cases} I = 2\pi.$$

$$(20)(I)\lambda = -1, a = -2. \quad (I) \mathbf{x} = \frac{1}{2} \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} + k \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, 其中 k 为任意常数.$$

$$(22)A = \frac{1}{\pi}; f_{Y|X}(y|x) = \frac{1}{\sqrt{\pi}} e^{-(x-y)^2}, -\infty < x < +\infty, -\infty < y < +\infty.$$

$$(23)a_1=0, a_2=a_3=\frac{1}{n}; DT=\frac{(1-\theta)\theta}{n}.$$

姓名	分数	
XI.17	7J 3X	

			灶石	万蚁
一、选择题:1~8小题,每小题	4分,共32分.下列每题给	出的四个选项中,只有一个	`选项是符合题目	目要求的.
(1)曲线 $y=(x-1)(x-2)^2(x-1)(x-2)^2$	(x-4)4 的拐点是			下册,P23,2
(A)(1,0).	(B)(2,0).	(C)(3,0).	(D) $(4,0)$.	
(2)设数列 $\{a_n\}$ 单调减少 $\lim_{n\to\infty}a_n$	$=0, S_n = \sum_{k=1}^n a_k (n=1,2,\cdots)$)无界,则幂级数 $\sum_{n=1}^{\infty} a_n(x-1)$	- 1)" 的收敛域为	1
				F册 P81,2 题
(A)(-1,1].	(B) $[-1,1)$.	(C)[0,2).	(D) $(0,2]$.	
(3)设函数 $f(x)$ 具有二阶连续	导数,且 $f(x) > 0, f'(0) =$	0 ,则函数 $z=f(x)\ln f(y)$	在点(0,0)处取往	导极小值的一个
充分条件是			٦	·册,P61,1 题
(A) $f(0) > 1, f''(0) > 0$.		(B) $f(0) > 1, f''(0) < 0$.		
(C) $f(0) < 1, f''(0) > 0$.		(D) $f(0) < 1, f''(0) < 0$.		
$(4) 设 I = \int_0^{\frac{\pi}{4}} \ln(\sin x) dx, J =$	$= \int_0^{\frac{\pi}{4}} \ln(\cot x) \mathrm{d}x, K = \int_0^{\frac{\pi}{4}} 1$	$n(\cos x)dx$,则 I , J , K 的大	大小关系为 7	√册, P35,1 题
(A) I < J < K.		(B) $I < K < J$.		
(C)J < I < K.		(D) $K < J < I$.		
(5)设A为3阶矩阵,将A的	第2列加到第1列得矩阵	FB , 再交换 B 的第 2 行 $\frac{1}{2}$	可第 3 行得单位	拉矩阵. 记 P_1 =
$ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \boldsymbol{P}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} $	$\left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right]$,则 $A=$		下	·册 P116,1 题
$(\mathbf{A})\mathbf{P}_1\mathbf{P}_2$.		(B) $P_1^{-1}P_2$.		
(C) P_2P_1 .		(D) $P_2 P_1^{-1}$.		
(6)设 $A=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4)$ 是4	阶矩阵, A^* 为 A 的伴随矩阵	年. 若(1,0,1,0) [™] 是方程组	Ax=0的一个基	基础解系,则
$A^* x = 0$ 的基础解系可为			下	册,P124,2 题

下册,P171,1 题

 $(D)\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\alpha}_4.$

 $(A) f_1(x) f_2(x).$

 $(A)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_3.$

(B) $2f_2(x)F_1(x)$.

 $(C)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3.$

(C) $f_1(x)F_2(x)$.

(D) $f_1(x)F_2(x)+f_2(x)F_1(x)$.

(3) 1 (30) 1 2 (30)

(2) / j 1 (10) 1 2 (10) 1 1 (10) 1

(8)设随机变量 X 与 Y 相互独立,且 EX 与 EY 存在,记 $U=\max\{X,Y\}$, $V=\min\{X,Y\}$,则 $E(UV)=\max\{X,Y\}$,则 $E(UV)=\max\{X,Y\}$,则 $E(UV)=\max\{X,Y\}$,则 $E(UV)=\max\{X,Y\}$, $E(UV)=\max\{X,Y\}$, E

(7)设 $F_1(x)$ 与 $F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$ 与 $f_2(x)$ 是连续函数,则必为概率密度的是

(B) $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$.

下册,P184,8 题

 $(A)EU \cdot EV.$

(B) $EX \cdot EY$.

(C) $EU \cdot EY$.

(D) $EX \cdot EV$.

2011 年全国硕士研究生入学统一考试数学一试题

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9)曲线 $y = \int_0^x \tan t dt \left(0 \leqslant x \leqslant \frac{\pi}{4}\right)$ 的弧长 $s = \underline{\hspace{1cm}}$.

下册,P53,5 题

(10) 微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0) = 0 的解为 $y = _____.$

下册,P70,3 题

下册,P54,1题

(13)若二次曲面的方程 $x^2 + 3y^2 + z^2 + 2axy + 2xz + 2yz = 4$ 经正交变换化为 $y_1^2 + 4z_1^2 = 4$,则 a =

下册,P149,1 题

(14)设二维随机变量(X,Y)服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2)=$ _____.

下册,P181,2题

三、解答题:15~23 小题,共94分,解答应写出文字说明、证明过程或演算步骤,

(15)(本题满分10分)

求极限 $\lim_{x\to 0} \left[\frac{\ln(1+x)}{x}\right]^{\frac{1}{e^{'}-1}}$.

下册,P5,6 题

(16)(本颗满分9分)

设函数 z=f[xy,yg(x)],其中函数 f 具有二阶连续偏导数,函数 g(x)可导,且在x=1 处取得极值g(1)=1.

求
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=1 \ x=1}}$$
 下册,P58,3 题

(17)(本颢满分10分)

求方程 karctan x-x=0 不同实根的个数,其中 k 为参数.

下册,P29,1题

(18)(本题满分10分)

(I)证明对任意的正整数 n,都有 $\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$ 成立;

(Ⅱ)设

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n (n = 1, 2, \dots),$$

证明数列 $\{a_n\}$ 收敛.

下册,P9,4 题

(19)(本题满分11分)

已知函数 f(x,y)具有二阶连续偏导数,且

$$f(1,y) = 0, f(x,1) = 0, \iint_{\mathbb{R}} f(x,y) dxdy = a,$$

其中

$$D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

计算二重积分

$$I = \iint_D xy f''_{xy}(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

下册,P69,8题

(20)(本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1,0,1)^T$, $\boldsymbol{\alpha}_2 = (0,1,1)^T$, $\boldsymbol{\alpha}_3 = (1,3,5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1,1,1)^T$, $\boldsymbol{\beta}_2 = (1,2,3)^T$, $\boldsymbol{\beta}_3 = (3,4,a)^T$ 线性表示.

(I)求 a 的值;

(II)将 β₁,β₂,β₃ 用 α₁,α₂,α₃ 线性表示.

下册,P120,1题

(21)(本题满分11分)

设A为3阶实对称矩阵,A的秩为2,且

$$\mathbf{A} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

- ([)求 A 的所有特征值与特征向量;
- (Ⅱ)求矩阵 A.

下册,P146,1 题

(22)(本题满分11分)

设随机变量 X 与 Y 的概率分布分别为

X	0	1
P	<u>1</u> 3	<u>2</u> 3

Y	-1	0	1
P	1/3	$\frac{1}{3}$	$\frac{1}{3}$

 $\coprod P(X^2 = Y^2) = 1.$

- (\top)求二维随机变量(X,Y)的概率分布;
- (**II**)求 *Z*=*XY* 的概率分布;
- (Ⅲ)求X与Y的相关系数 ρ_{xy} .

下册,P176,2题

(23)(本题满分11分)

设 X_1 , X_2 , ..., X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本, 其中 μ_0 已知, $\sigma^2 > 0$ 未知, \overline{X} 和 S^2 分别表示样本 均值和样本方差.

- (I)求参数 σ^2 的最大似然估计 $\hat{\sigma}^2$;
- (\parallel)计算 $E(\hat{\sigma}^2)$ 和 $D(\hat{\sigma}^2)$.

下册,P193,4 题

答案速查

一、选择题

(1)(C), (2)(C), (3)(A), (4)(B), (5)(D), (6)(D), (7)(D), (8)(B),

二、填空题

 $(9)\ln(1+\sqrt{2})$. $(10)e^{-x}\sin x$. (11)4. $(12)\pi$. (13)1. $(14)\mu(\sigma^2+\mu^2)$.

三、解答题

- $(15)e^{-\frac{1}{2}}. \quad (16)f_1'(1,1)+f_{11}''(1,1)+f_{12}''(1,1).$
- (17)当 k≤1 时,方程只有一个实根;当 k>1 时,方程有且仅有 3 个不同的实根.
- (18)证明略, (19)a
- (20)($\underline{\mathbf{I}}$)a=5. ($\underline{\mathbf{I}}$) $\boldsymbol{\beta}_1=2\boldsymbol{\alpha}_1+4\boldsymbol{\alpha}_2-\boldsymbol{\alpha}_3$; $\boldsymbol{\beta}_2=\boldsymbol{\alpha}_1+2\boldsymbol{\alpha}_2$; $\boldsymbol{\beta}_3=5\boldsymbol{\alpha}_1+10\boldsymbol{\alpha}_2-2\boldsymbol{\alpha}_3$.

$$(21)(1)-1$$
 是 A 的一个特征值,其对应的全部特征向量为 k_1 $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, k_1 为任意非零常数; 1 是 A 的一个特征

值,其对应的全部特征向量为 k_2 $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, k_2 为任意非零常数; 0 也是 A 的一个特征值,其对应的全部特征向量为

$$k_3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, k_3 为任意非零常数. ([[) $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

(22)(I)

Y	-1	0	1
0	0	1/3	0
1	$\frac{1}{3}$	0	1/3

([])

Z	-1	0	1
P	1/3	1/3	1/3

 $(\|\|)\rho_{XY} = 0.$

(23)
$$([])\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$$
. $([])E(\hat{\sigma}^2) = \sigma^2$, $D(\hat{\sigma}^2) = \frac{2\sigma^4}{n}$.

姓名 分数

一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

(1)曲线 $y = \frac{x^2 + x}{x^2 - 1}$ 的渐近线的条数为

(A)0.

(B)1.

(C)2.

(D)3.

(2)设函数

$$f(x) = (e^x - 1)(e^{2x} - 2) \cdots (e^{nx} - n),$$

其中 n 为正整数,则 f'(0)=

下册,P15,1 题

 $(A)(-1)^{n-1}(n-1)!$.

(B) $(-1)^n(n-1)!$.

 $(C)(-1)^{n-1}n!$.

(3)如果函数 f(x,y)在点(0,0)处连续,那么下列命题正确的是

下册,P56,5题

- (A)若极限 $\lim_{x\to 0} \frac{f(x,y)}{|x|+|y|}$ 存在,则 f(x,y)在点(0,0)处可微.
- (B)若极限 $\lim_{x\to 0} \frac{f(x,y)}{x^2+y^2}$ 存在,则 f(x,y)在点(0,0)处可微.
- (C)若 f(x,y)在点(0,0)处可微,则极限 $\lim_{x\to 0} \frac{f(x,y)}{|x|+|y|}$ 存在.
- (D)若 f(x,y)在点(0,0)处可微,则极限 $\lim_{x\to 0\atop y\to 0} \frac{f(x,y)}{x^2+y^2}$ 存在.

(4)设 $I_k = \int_{0}^{k\pi} e^{x^2} \sin x dx (k=1,2,3)$,则有

(A) $I_1 < I_2 < I_3$.

(C) $I_2 < I_3 < I_1$.

(5)设 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\boldsymbol{\alpha}_4 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, 其中 c_1 , c_2 , c_3 , c_4 为任意常数,则下列向量组线性相关的为

下册,P118,2 题

 $(A)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3.$

 $(B)\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_4.$

 $(C)\alpha_1,\alpha_3,\alpha_4.$

(6)设A为3阶矩阵,P为3阶可逆矩阵,且 $P^{-1}AP = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix}$.若 $P = (\alpha_1, \alpha_2, \alpha_3), Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3), y$

 $(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} . \qquad (B) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} . \qquad (C) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} . \qquad (D) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$

2012年全国硕士研究生入学统一考试数学一试题

(7)设随机变量 X = Y 相互独立,且分别服从参数为 1 与参数为 4 的指数分布,则 P(X < Y) = 下册,P(X <

(B) $\frac{1}{2}$.

 $(C)\frac{2}{2}$.

(8)将长度为1m的木棒随机地截成两段,则两段长度的相关系数为

下册,P185,11题

(B) $\frac{1}{2}$.

(C) $-\frac{1}{2}$.

(D)-1.

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9) 若函数 f(x) 满足方程 f''(x)+f'(x)-2f(x)=0 及 $f''(x)+f(x)=2e^x$,则 f(x)=

下册,P71,5 题

(10) $\int_{0}^{2} x\sqrt{2x-x^{2}} dx =$ ______.

下册,P40,4 题

 $(11)\operatorname{grad}\left(xy+\frac{z}{y}\right)\Big|_{(2,1,1)} = \underline{\qquad}.$

下册,P89,5题

(12)设 $\Sigma = \{(x,y,z) | x+y+z=1, x \ge 0, y \ge 0, z \ge 0\},$ 则 $\int_{\mathbb{R}} y^2 dS =$ ______.

下册, P96,1题 下册,P122,2题

(13)设 α 为3维单位列向量,E为3阶单位矩阵,则矩阵 $E-\alpha\alpha^{T}$ 的秩为 (14)设A,B,C是随机事件,A与C互不相容, $P(AB) = \frac{1}{2}$, $P(C) = \frac{1}{3}$,则 $P(AB|\overline{C}) = _______$

下册,P168,4 题

三、解答题:15~23 小题,共94分. 解答应写出文字说明、证明过程或演算步骤.

(15)(本颢满分10分)

证明: $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1)$.

下册,P28,3 题

(16)(本题满分10分)

求函数 $f(x, y) = xe^{-\frac{x^2+y^2}{2}}$ 的极值.

下册,P61,2题

(17)(本颢满分10分)

求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

下册,P84,6 题

(18)(本题满分10分)

已知曲线 $L: \begin{cases} x = f(t), \\ y = \cos t \end{cases} (0 \le t < \frac{\pi}{2})$,其中函数 f(t)具有连续导数,且 f(0) = 0, $f'(t) > 0 \left(0 < t < \frac{\pi}{2}\right)$. 若曲线 L 的切线与x 轴的交点到切点的距离恒为 1,求函数 f(t) 的表达式, 并求以曲线 L D x 轴和 y 轴为边界的区域 的面积. 下册,P76,2题

(19)(本题满分10分)

已知 L 是第一象限中从点(0,0)沿圆周 $x^2 + y^2 = 2x$ 到点(2,0),再沿圆周 $x^2 + y^2 = 4$ 到点(0,2)的曲线段,计算 曲线积分 $I = \int_{1}^{\infty} 3x^2 y dx + (x^3 + x - 2y) dy$. 下册,P92,3 题

(20)(本题满分11分)

$$\tilde{\mathbf{X}}^{n}_{\mathbf{X}} \mathbf{A} = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{bmatrix}, \boldsymbol{\beta} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}.$$

2012年全国硕士研究生入学统一考试数学一试题

(I)计算行列式 | A | ;

(Ⅱ)当实数 a 为何值时,方程组 $Ax=\beta$ 有无穷多解,并求其通解.

下册,P126,2 题

(21)(本题满分11分)

已知
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{bmatrix}$$
,二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{A}) \mathbf{x}$ 的秩为 2.

- (I)求实数 a 的值;
- (Ⅱ)求正交变换 x=Qy 将 f 化为标准形.

下册,P150,4 题

(22)(本题满分11分)

设二维离散型随机变量(X,Y)的概率分布为

X	0	1	2
0	1/4	0	1/4
1	0	$\frac{1}{3}$	0
2	$\frac{1}{12}$	0	$\frac{1}{12}$

- (])求 $P\{X=2Y\}$;
- ($\|$) 求 Cov(X-Y,Y).

下册,P175,1题

(23)(本题满分11分)

设随机变量 X 与 Y 相互独立,且分别服从正态分布 $N(\mu,\sigma^2)$ 与 $N(\mu,2\sigma^2)$,其中 σ 是未知参数且 $\sigma>0$. 记 Z=X-Y.

- (I)求 Z的概率密度 $f(z;\sigma^2)$;
- (\parallel)设 Z_1, Z_2, \dots, Z_n 为来自总体 Z 的简单随机样本,求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
- (III)证明 $\hat{\sigma}^2$ 为 $\hat{\sigma}^2$ 的无偏估计量.

下册,P195,7题

答案速查

一、选择题

(1)(C). (2)(A). (3)(B). (4)(D). (5)(C). (6)(B). (7)(A). (8)(D).

二、填空题

 $(9)e^{x}$. $(10)\frac{\pi}{2}$. (11)i+j+k. $(12)\frac{\sqrt{3}}{12}$. (13)2. $(14)\frac{3}{4}$.

三、解答题

(15)证明略.

 $(16) f(1,0) = \frac{1}{\sqrt{e}}$ 为 f(x,y)的极大值; $f(-1,0) = -\frac{1}{\sqrt{e}}$ 为 f(x,y)的极小值.

(17)收敛域为(-1,1);和函数
$$S(x) = \begin{cases} \frac{1+x^2}{(1-x^2)^2} + \frac{1}{x} \ln \frac{1+x}{1-x}, 0 < |x| < 1, \\ 3, & x = 0. \end{cases}$$

 $(18) f(t) = \ln(\sec t + \tan t) - \sin t$; 所求区域的面积为 $\frac{\pi}{4}$.

 $(19)\frac{\pi}{2}-4$.

(20)(
$$I$$
)1 $-a^4$. (I)当 $a=-1$ 时有无穷多解,其通解为 $x=\begin{bmatrix}0\\-1\\0\\0\end{bmatrix}+k\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$,其中 k 为任意常数.

(21)(I)
$$a$$
=-1. (II)正交变换为 x = Qy =
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix} y.$$

 $(22)(1)\frac{1}{4}. (1)-\frac{2}{3}.$

(23)([]) $f(z;\sigma^2) = \frac{1}{\sqrt{6\pi\sigma^2}} e^{-\frac{z^2}{6\sigma^2}}, -\infty < z < +\infty.$ ([]) $\hat{\sigma}^2 = \frac{1}{3n} \sum_{i=1}^n Z_i^2.$ ([])证明略.

姓名 分数

一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,

(1)已知极限 $\lim_{r \to \infty} \frac{x - \arctan x}{r^k} = c$,其中 k, c 为常数,且 $c \neq 0$,则

下册,P4,1 题

(A) $k=2, c=-\frac{1}{2}$.

(B) $k=2, c=\frac{1}{2}$.

(C) $k=3, c=-\frac{1}{2}$.

(D) $k=3, c=\frac{1}{2}$.

(2) 曲面 $x^2 + \cos xy + yz + x = 0$ 在点(0,1,-1) 外的切平面方程为

下册,P88,1 题

(A)x-y+z=-2.

(B)x+y+z=0.

(C)x-2y+z=-3

(D)x - y - z = 0.

(3)设 $f(x) = \left| x - \frac{1}{2} \right|, b_n = 2 \int_0^1 f(x) \sin n\pi x dx (n = 1, 2, \dots).$ 令 $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x, \bigcup S\left(-\frac{9}{4}\right) = \sum_{n=1}^{\infty} b_n \sin n\pi x$

下册,P87,1题

下册,P91,2 题

下册,P121,3 题

 $(A)I_1$.

(B) I_2 .

(A) $\frac{3}{4}$. (B) $\frac{1}{4}$. (C) $-\frac{1}{4}$. (D) $-\frac{3}{4}$.

(4)设 $L_1: x^2 + y^2 = 1, L_2: x^2 + y^2 = 2, L_3: x^2 + 2y^2 = 2, L_4: 2x^2 + y^2 = 2$ 为四条逆时针方向的平面曲线. 记

$$I_i = \oint_{\Gamma} \left(y + \frac{y^3}{6} \right) dx + \left(2x - \frac{x^3}{3} \right) dy (i = 1, 2, 3, 4),$$

 $M \max\{I_1, I_2, I_3, I_4\} =$

 $(C)I_2$.

(D) I_4 .

(5)设A,B,C均为n阶矩阵,若AB=C,且B可逆,则

- (A)矩阵C的行向量组与矩阵A的行向量组等价.
- (B)矩阵 C的列向量组与矩阵 A的列向量组等价.
- (C)矩阵 C的行向量组与矩阵 B的行向量组等价.
- (D)矩阵 C的列向量组与矩阵 B的列向量组等价.

 $(1 \quad a \quad 1) \quad (2 \quad 0 \quad 0)$ (6)矩阵 $\begin{vmatrix} a & b & a \end{vmatrix}$ 与 $\begin{vmatrix} 0 & b & 0 \end{vmatrix}$ 相似的充分必要条件为 $\begin{bmatrix} 1 & a & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

下册,P138,2题

 $(A)_a = 0, b = 2.$

 $(B)_a = 0, b$ 为任意常数.

(C)a=2,b=0.

(D)a=2,b 为任意常数,

(7)设 X_1, X_2, X_3 是随机变量,且

 $X_1 \sim N(0,1), X_2 \sim N(0,2^2), X_3 \sim N(5,3^2),$ $p_i = P\{-2 \le X_i \le 2\} (i=1,2,3),$

下册,P172,5 题

(A) $p_1 > p_2 > p_3$.

(B) $p_2 > p_1 > p_3$.

(C) $p_3 > p_1 > p_2$.

(D) $p_1 > p_3 > p_2$.

2013年全国硕士研究生入学统一考试数学一试题

(8)设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$, 给定 $\alpha(0 < \alpha < 0.5)$, 常数 c 满足 $P(X > c) = \alpha$, 则 $P(Y > c^2) = \alpha$

下册,P189,4 题

 $(A)_{\alpha}$

 $(B)1-\alpha$

 $(C)2\alpha$.

(D)1 -2α .

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9)设函数 y=f(x)由方程 $y-x=e^{x(1-y)}$ 确定,则 $\lim_{n} f(\frac{1}{x})-1 = ____.$

下册,P16,2题

(10)已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解,则该方程的通解 下册,P71,6 题

(11)设 $\begin{cases} x = \sin t, \\ y = t\sin t + \cos t \end{cases}$ (t 为参数),则 $\frac{d^2 y}{dx^2} \Big|_{t=\frac{\pi}{4}} = \underline{\qquad}$.

下册,P19,1题

(12) $\int_{-\infty}^{+\infty} \frac{\ln x}{(1+x)^2} dx = \underline{\qquad}$.

下册,P50,1题

(13)设 \mathbf{A} =(a_{ij})是 3 阶非零矩阵, $|\mathbf{A}|$ 为 \mathbf{A} 的行列式, A_{ij} 为 a_{ij} 的代数余子式. 若 a_{ij} + A_{ij} =0(i,j=1,2,3),则 $|\mathbf{A}|$ =

下册,P113,5 题

(14)设随机变量Y服从参数为1的指数分布,a为常数且大于零,则 $P{Y \le a+1 | Y>a}$ =

下册,P171,2题

三、解答题:15~23 小题,共94分,解答应写出文字说明、证明过程或演算步骤,

(15)(本题满分10分)

计算 $\int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx$,其中 $f(x) = \int_{0}^{x} \frac{\ln(t+1)}{t} dt$.

下册,P41,9 题

(16)(本颢满分10分)

设数列 $\{a_n\}$ 满足条件:

$$a_0 = 3, a_1 = 1, a_{n-2} - n(n-1)a_n = 0 (n \ge 2),$$

S(x)是幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的和函数.

(I)证明 S''(x) - S(x) = 0:

(Ⅱ)求 S(x)的表达式.

下册,P85,7题

(17)(本题满分10分)

求函数 $f(x,y) = \left(y + \frac{x^3}{2}\right) e^{x+y}$ 的极值.

下册,P61,3 题

(18)(本颢满分10分)

设奇函数 f(x)在 $\lceil -1,1 \rceil$ 上具有二阶导数,且 f(1)=1.证明:

- (])存在 $\xi \in (0,1)$,使得 $f'(\xi)=1$;
- (II)存在 $\eta \in (-1,1)$,使得 $f''(\eta)+f'(\eta)=1$.

下册,P32,1题

(19)(本颢满分10分)

设直线 L 讨 A(1,0,0) , B(0,1,1) 两点 , 将 L 绕 z 轴旋转一周得到曲面 Σ , Σ 与平面 z=0 , z=2 所用成的 τ 体 为Ω.

(I)求曲面 Σ 的方程;

(Ⅱ)求 Ω 的形心坐标.

下册,P105,4 题

(20)(本题满分11分)

设 $\mathbf{A} = \begin{pmatrix} 1 & a \\ 1 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & b \end{pmatrix}$. 当 a, b 为何值时, 存在矩阵 C 使得 AC - CA = B, 并求所有矩阵 C.

下册,P130,6 题

(21)(本题满分11分)

设二次型 $f(x_1,x_2,x_3)=2(a_1x_1+a_2x_2+a_3x_3)^2+(b_1x_1+b_2x_2+b_3x_3)^2$,记

$$oldsymbol{lpha} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{bmatrix}, oldsymbol{eta} = egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}.$$

- (I)证明二次型 f 对应的矩阵为 $2\alpha\alpha^{T} + \beta\beta^{T}$;
- (\parallel)若 α , β 正交且均为单位向量,证明 f 在正交变换下的标准形为 $2y_1^2 + y_2^2$.

(22)(本题满分11分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3, \\ 0, & \text{ 其他.} \end{cases}$$

令随机变量
$$Y =$$
 $\begin{cases} 2, & X \leqslant 1, \\ X, & 1 < X < 2, \\ 1, & X \geqslant 2. \end{cases}$

- (I) 求 Y 的分布函数;
- (**I**) 求概率 *P*{*X*≤*Y*}.
- (23)(本题满分11分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{\theta^2}{x^3} e^{-\frac{\theta}{x}}, & x > 0, \\ 0, & 其他, \end{cases}$$

其中 θ 为未知参数且大于零. X_1, X_2, \dots, X_n 为来自总体X 的简单随机样本.

- (I)求 θ 的矩估计量;
- (\blacksquare)求 θ 的最大似然估计量.

下册,P153,6 题

下册,P173,2 题

下册,P191,1题

答案谏杳

一、选择题

- (1)(D). (2)(A). (3)(C). (4)(D). (5)(B). (6)(B). (7)(A). (8)(C).
- 二、填空题
- (9)1. (10) $C_1e^x + C_2e^{3x} xe^{2x}$,其中 C_1 , C_2 为任意常数. (11) $\sqrt{2}$. (12) $\ln 2$. (13)-1. (14) $1 \frac{1}{e}$.

三、解答题

- (15)8 -2π -4ln 2. (16)([)证明略. ([]) $S(x) = 2e^x + e^{-x}$.
- (17)极小值为 $f(1,-\frac{4}{3})=-e^{-\frac{1}{3}}$. (18)证明略.
- (19)($\underline{1}$) $x^2 + y^2 2z^2 + 2z = 1$. ($\underline{1}$)(0,0, $\frac{7}{5}$).
- (20)当且仅当 a=-1 且 b=0 时,存在满足条件的矩阵 C,且 $C=\begin{pmatrix} 1+k_1+k_2 & -k_1 \\ k_1 & k_2 \end{pmatrix}$,其中 k_1 , k_2 为任意常数.
- (21)证明略.

(22)([)
$$F_{Y}(y) = \begin{cases} 0, & y < 1, \\ \frac{y^{3} + 18}{27}, & 1 \leq y < 2, & (| | |) \frac{8}{27}. \\ 1, & y \geq 2. \end{cases}$$
(23)([) θ 的矩估计量为 $\frac{1}{n} \sum_{i=1}^{n} X_{i}.$ ([]) θ 的最大似然估计量为 $\frac{2n}{\sum_{i=1}^{n} \frac{1}{X_{i}}}.$

分数

一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,

(1)下列曲线中有渐近线的是

下册,P26,3 题

 $(A) y = x + \sin x$.

(B) $y = x^2 + \sin x$.

(C) $y=x+\sin\frac{1}{x}$.

(D) $y = x^2 + \sin \frac{1}{x}$.

(2)设函数 f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上

下册,P28,2 题

(A)当 $f'(x) \geqslant 0$ 时, $f(x) \geqslant g(x)$.

(B)当 $f'(x) \ge 0$ 时, $f(x) \le g(x)$. (D)当 $f''(x) \ge 0$ 时, $f(x) \le g(x)$.

(C)当 $f''(x) \ge 0$ 时, $f(x) \ge g(x)$. (3)设 f(x,y)是连续函数,则 $\int_{-\infty}^{1} dy \int_{-\infty}^{1-y} f(x,y) dx =$

下册,P66,2题

(A)
$$\int_{0}^{1} dx \int_{0}^{x-1} f(x,y) dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy$$
.

(B)
$$\int_0^1 dx \int_0^{1-x} f(x,y) dy + \int_{-1}^0 dx \int_{-\sqrt{1-x^2}}^0 f(x,y) dy$$
.

(C)
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) dr.$$

(D)
$$\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{1} f(r\cos\theta, r\sin\theta) r dr.$$

(4)若
$$\int_{-\pi}^{\pi} (x-a_1\cos x-b_1\sin x)^2 dx = \min_{a,b \in \mathbb{R}} \left\{ \int_{-\pi}^{\pi} (x-a\cos x-b\sin x)^2 dx \right\}$$
,则 $a_1\cos x+b_1\sin x = a_1\cos x$

下册,P87,2题

 $(A) 2\sin x$.

(B) $2\cos x$.

(C) $2\pi \sin x$.

(D) $2\pi\cos x$.

下册,P111,1题

 $(A)(ad-bc)^2$

(B) $-(ad-bc)^2$.

 $(C)a^2d^2-b^2c^2$.

(6)设 α_1 , α_2 , α_3 均为3维向量,则对任意常数k,l,向量组 α_1 + $k\alpha_3$, α_2 + $l\alpha_3$ 线性无关是向量组 α_1 , α_2 , α_3 线性无关 下册,P118,3 题

(A)必要非充分条件.

(B)充分非必要条件.

(C)充分必要条件.

(D)既非充分也非必要条件.

(7)设随机事件 A 与 B 相互独立,且 P(B)=0.5, P(A-B)=0.3,则 P(B-A)=0.3

下册,P168,3 题

(A)0.1.

(D)0, 4.

(8)设连续型随机变量 X_1 与 X_2 相互独立且方差均存在, X_1 与 X_2 的概率密度分别为 $f_1(x)$ 与 $f_2(x)$, 随机变量 Y_1

的概率密度为 $f_{Y_1}(y) = \frac{1}{2} [f_1(y) + f_2(y)]$,随机变量 $Y_2 = \frac{1}{2} (X_1 + X_2)$,则

下册,P184,9 题

(A) $EY_1 > EY_2$, $DY_1 > DY_2$.

(B) $EY_1 = EY_2$, $DY_1 = DY_2$.

 $(C)EY_1 = EY_2, DY_1 < DY_2.$

(D) $EY_1 = EY_2$, $DY_1 > DY_2$.

二、填空题:9~14小题,每小题4分,共24分.

(9)曲面 $z=x^2(1-\sin y)+y^2(1-\sin x)$ 在点(1,0,1)处的切平面方程为

下册,P88,2题

(10)设 f(x)是周期为 4 的可导奇函数,且 $f'(x)=2(x-1),x\in[0,2]$,则 f(7)=

(13)设二次型 $f(x_1,x_2,x_3) = x_1^2 - x_2^2 + 2ax_1x_3 + 4x_2x_3$ 的负惯性指数为 1,则 a 的取值范围是

下册,P39,1题

(11) 微分方程 $xy' + y(\ln x - \ln y) = 0$ 满足条件 $y(1) = e^3$ 的解为 y = .

下册,P70,2题

(12)设L 是柱面 $x^2+y^2=1$ 与平面 y+z=0 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分 $\oint z \, \mathrm{d}x$ 下册,P101,2题

+ y dz = .

下册,P159,1 题

(14)设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, & \theta < x < 2\theta, \\ 0, & \text{ 其他,} \end{cases}$$

其中 θ 是未知参数 $,X_1,X_2,\cdots,X_n$ 为来自总体X的简单随机样本. 若 $c\sum^n X_i^2$ 是 θ^2 的无偏估计,则c=______.

下册,P197,1题

三、解答题:15~23 小题,共94分.解答应写出文字说明、证明过程或演算步骤。

(15)(本题满分10分)

求极限
$$\lim_{x\to +\infty} \frac{\int_{1}^{x} \left[t^{2}\left(e^{\frac{1}{t}}-1\right)-t\right] dt}{x^{2} \ln\left(1+\frac{1}{x}\right)}.$$

下册,P6,8 题

(16)(本题满分10分)

设函数 y = f(x)由方程

$$y^3 + xy^2 + x^2y + 6 = 0$$

确定,求 f(x)的极值.

下册,P23,5 题

(17)(本题满分10分)

设函数 f(u)具有二阶连续导数, $z=f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}.$$

若 f(0)=0, f'(0)=0, 求 f(u)的表达式.

下册,P74,2题

(18)(本题满分10分)

设 Σ 为曲面 $z=x^2+y^2(z\leq 1)$ 的上侧,计算曲面积分

$$I = \iint_{\mathbb{R}} (x-1)^3 \, dy dz + (y-1)^3 \, dz dx + (z-1) \, dx dy.$$

下册,P98,5 题

(19)(本题满分10分)

设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n - a_n = \cos b_n$,且级数 $\sum_{n=0}^{\infty} b_n$ 收敛.

(I)证明 $\lim a_n = 0$;

(\mathbb{I})证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

下册,P79,1题

(20)(本题满分11分)

设
$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{bmatrix}$$
, \mathbf{E} 为 3 阶单位矩阵.

- (I)求方程组 Ax=0 的一个基础解系;
- (||)求满足 AB = E 的所有矩阵 B.

下册,P127,3 题

(21)(本题满分11分)

证明
$$n$$
 阶矩阵
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
 与
$$\begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{bmatrix}$$
 相似.

下册,P140,7题

(22)(本题满分11分)

设随机变量 X 的概率分布为 $P\{X=1\}=P\{X=2\}=\frac{1}{2}$. 在给定 X=i 的条件下,随机变量 Y 服从均匀分布 U(0,i)(i=1,2).

- (I)求Y的分布函数 $F_Y(y)$;
- ([[)求 EY.

下册,P174,3 题

(23)(本题满分11分)

设总体 X 的分布函数为

$$F(x;\theta) = \begin{cases} 1 - e^{-\frac{x^2}{\theta}}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 θ 是未知参数且大于零. X_1, X_2, \dots, X_n 为来自总体X 的简单随机样本.

- (I)求 EX 与 $E(X^2)$;
- (II)求 θ 的最大似然估计量 $\hat{\theta}_n$;
- (III)是否存在实数 a,使得对任何 $\varepsilon > 0$,都有 $\lim P\{|\hat{\theta}_n a| \gg \varepsilon\} = 0$?

下册,P196,9 题

答案速查

一、选择题

(1)(C), (2)(D), (3)(D), (4)(A), (5)(B), (6)(A), (7)(B), (8)(D).

二、填空题

(9)2x-y-z-1=0. (10)1. (11) xe^{2x+1} . (12) π . (13) [-2,2]. (14) $\frac{2}{5n}$.

三、解答题

(15) $\frac{1}{2}$. (16) 极小值为 f(1) = -2. (17) $f(u) = \frac{1}{16} (e^{2u} - e^{-2u} - 4u)$. (18) -4π . (19)证明略.

(20)(
$$I$$
)方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的一个基础解系为 $\boldsymbol{\alpha} = \begin{bmatrix} -1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$

(21)证明略.

$$(22)(I)F_{Y}(y) = \begin{cases} 0, & y < 0, \\ \frac{3y}{4}, & 0 \leq y < 1, \\ \frac{1}{2} + \frac{y}{4}, & 1 \leq y < 2, \\ 1, & y \geqslant 2. \end{cases} (II)\frac{3}{4}$$

(23)([)
$$EX = \frac{\sqrt{\pi\theta}}{2}$$
; $E(X^2) = \theta$. ([]) $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i^2$. ([])存在, $a = \theta$. 理由略.

分数

一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

线 y = f(x)的拐点个数为

下册,P23,3 题

(A)0.

(B)1.

(C)2.

(D)3.

(2)设 $y = \frac{1}{2}e^{2x} + \left(x - \frac{1}{3}\right)e^{x}$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^{x}$

的一个特解,则

(A)a = -3, b = 2, c = -1.

(B)
$$a=3,b=2,c=-1$$
.

 $(C)_a = -3, b = 2, c = 1.$

(D)
$$a=3,b=2,c=1$$
.

(3)若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x=\sqrt{3}$ 与 x=3 依次为幂级数 $\sum_{n=1}^{\infty} na_n(x-1)^n$ 的

下册,P81,3题

(A)收敛点,收敛点.

(B)收敛点,发散点.

(C)发散点,收敛点,

(D)发散点,发散点.

(4)设 D 是第一象限中由曲线 2xy=1,4xy=1 与直线 $y=x,y=\sqrt{3}x$ 围成的平面区域,函数 f(x,y)在 D 上连续,

则
$$\iint_D f(x,y) dx dy =$$

下册,P65,1题

(A) $\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{2\pi+2}}^{\frac{1}{\sin 2\theta}} f(r\cos \theta, r\sin \theta) r dr.$

(B) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} f(r\cos \theta, r\sin \theta) r dr.$

(C) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{2\sin 2\theta}}^{\frac{1}{\sin 2\theta}} f(r\cos \theta, r\sin \theta) dr.$ (D) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{2\sin 2\theta}}^{\frac{1}{2\sin 2\theta}} f(r\cos \theta, r\sin \theta) dr.$

(5)设矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 1 & 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ d \\ d \end{bmatrix}$. 若集合 $\Omega = \{1,2\}$,则线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有无穷多解的充分必要条件为

下册,P126,1题

(A) $a \notin \Omega, d \notin \Omega$.

(B) $a \notin \Omega, d \in \Omega$.

(C) $a \in \Omega, d \notin \Omega$.

(D) $a \in \Omega, d \in \Omega$.

(6)设二次型 $f(x_1, x_2, x_3)$ 在正交变换 x = Py 下的标准形为 $2y_1^2 + y_2^2 - y_3^2$,其中 $P = (e_1, e_2, e_3)$. 若 $Q = (e_1, -e_3, e_3)$ 下册,P149,2题 e_2),则 $f(x_1,x_2,x_3)$ 在正交变换 x=Qy 下的标准形为

(A) $2y_1^2 - y_2^2 + y_3^2$.

(B) $2y_1^2 + y_2^2 - y_3^2$.

(C) $2y_1^2 - y_2^2 - y_3^2$.

(D) $2y_1^2 + y_2^2 + y_3^2$.

(7)若A,B为任意两个随机事件,则

下册,P167,1题

 $(A)P(AB) \leq P(A)P(B)$.

(B) $P(AB) \geqslant P(A)P(B)$.

(C) $P(AB) \leqslant \frac{P(A) + P(B)}{2}$.

(D) $P(AB) \geqslant \frac{P(A) + P(B)}{2}$.

2015 年全国硕士研究生招生考试数学一试题

(8)设随机变量 X,Y 不相关,且 EX=2,EY=1,DX=3,则 E[X(X+Y-2)]=

(B)3.

下册,P181,1题

(D)5.

二、填空题:9~14 小题,每小题 4 分,共 24 分.

 $(9) \lim_{x \to 2} \frac{\ln(\cos x)}{x^2} = \underline{\hspace{1cm}}$

下册,P4,2 题

 $(10) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) dx = \underline{\qquad}.$

(11)若函数 z=z(x,y)由方程 $e^z+xyz+x+\cos x=2$ 确定,则 dz

下册,P59,6题

(12)设 Ω 是由平面x+y+z=1与三个坐标平面所围成的空间区域,则(x+2y+3z)dxdydz=______.

下册,P68,5 题

下册,P112,4 题

(14)设二维随机变量(X,Y)服从正态分布 N(1,0;1,1;0),则 P(XY-Y<0)=下册,P177,4 题

三、解答题:15~23 小题,共94分.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

设函数 $f(x) = x + a \ln(1+x) + bx \sin x$, $g(x) = kx^3$. 若 f(x) = g(x)在 $x \to 0$ 时是等价无穷小, 求 a,b,k 的值.

下册,P12,4 题

(16)(本题满分10分)

设函数 f(x)在定义域 I上的导数大于零. 若对任意的 $x_0 \in I$,曲线 y = f(x)在点 $(x_0, f(x_0))$ 处的切线与直线 $x=x_0$ 及 x 轴所围成区域的面积恒为 4,且 f(0)=2,求 f(x)的表达式. 下册,P76,1题

(17)(本题满分10分)

已知函数 f(x,y)=x+y+xy,曲线 $C:x^2+y^2+xy=3$,求 f(x,y)在曲线 C上的最大方向导数.

下册,P89,6题

(18)(本题满分10分)

(])设函数 u(x), v(x)可导,利用导数定义证明 [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x);

(II) 设函数 $u_1(x), u_2(x), \dots, u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \dots u_n(x)$, 写出 f(x)的求导公式.

下册,P18,8题

(19)(本题满分10分)

已知曲线 L 的方程为 $\begin{cases} z = \sqrt{2 - x^2 - y^2}, \\ z = x. \end{cases}$ 起点为 $A(0, \sqrt{2}, 0),$ 终点为 $B(0, -\sqrt{2}, 0),$ 计算曲线积分

$$I = \int_{L} (y+z) dx + (z^{2} - x^{2} + y) dy + x^{2} y^{2} dz.$$

下册,P102,3 题

(20)(本题满分11分)

设向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 为 \mathbf{R}^3 的一个基, $\boldsymbol{\beta}_1 = 2\boldsymbol{\alpha}_1 + 2k\boldsymbol{\alpha}_3, \boldsymbol{\beta}_2 = 2\boldsymbol{\alpha}_2, \boldsymbol{\beta}_3 = \boldsymbol{\alpha}_1 + (k+1)\boldsymbol{\alpha}_3$.

(I)证明向量组 β_1 , β_2 , β_3 为 \mathbb{R}^3 的一个基;

(Ⅱ)当k为何值时,存在非零向量 ξ 在基 α_1 , α_2 , α_3 与基 β_1 , β_2 , β_3 下的坐标相同,并求所有的 ξ .

下册,P162,4 题

(21)(本题满分11分)

设矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{bmatrix}$$
相似于矩阵 $\mathbf{B} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{bmatrix}$.

- (T) 求 a,b 的值;
- (\parallel)求可逆矩阵 P,使 $P^{-1}AP$ 为对角矩阵.
- (22)(本题满分11分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0, \\ 0, & x \leq 0. \end{cases}$$

对 X 进行独立重复的观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观测次数.

- (T) 求 Y 的概率分布;
- (Ⅱ)求 EY.

下册,P182,3 题

下册,P139,5 题

(23)(本题满分11分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \leq x \leq 1, \\ 0, & 其他, \end{cases}$$

其中 θ 为未知参数. X_1, X_2, \dots, X_n 为来自该总体的简单随机样本.

- (I)求 θ 的矩估计量;
- (Ⅱ)求 θ 的最大似然估计量.

下册,P192,3 题

答案速查

一、选择题

 $(1)(C). \quad (2)(A). \quad (3)(B). \quad (4)(B). \quad (5)(D). \quad (6)(A). \quad (7)(C). \quad (8)(D).$

二、填空题

$$(9) - \frac{1}{2}$$
. $(10)\frac{\pi^2}{4}$. $(11) - dx$. $(12)\frac{1}{4}$. $(13)2^{n+1} - 2$. $(14)\frac{1}{2}$.

三、解答题

$$(15)a = -1, b = -\frac{1}{2}, k = -\frac{1}{3}. \quad (16)f(x) = \frac{8}{4-x}, x \in I. \quad (17)3.$$

- (18)(Ⅰ)证明略
- $(19)\frac{\sqrt{2}}{2}\pi$. (20)(1)证明略. (1) 当 k=0 时, $\boldsymbol{\xi}=c(\boldsymbol{\alpha}_1-\boldsymbol{\alpha}_3)$,c 为任意非零常数.

(21)(
$$| \mathbf{I} |)a=4,b=5$$
. ($| \mathbf{I} |)\mathbf{P} = \begin{bmatrix} 2 & -3 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$.

(22)(
$$\prod P\{Y=k\}=(k-1)\left(\frac{7}{8}\right)^{k-2}\left(\frac{1}{8}\right)^{2}, k=2,3,\cdots.$$
 ($\prod 16$.

(23)(\mathbb{I}) θ 的矩估计量 $\hat{\theta}=2\overline{X}-1$. (\mathbb{I}) θ 的最大似然估计量 $\hat{\theta}=\min\{X_1,X_2,\cdots,X_n\}$.

姓名 分数

一、选择题:1~8 小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

(1) 若反常积分 $\int_{0}^{+\infty} \frac{1}{r^{a}(1+r)^{b}} dx$ 收敛,则

下册,P50,2 题

(A) $a < 1 \exists b > 1$.

(B)a>1 $\exists b$ >1.

(C) $a < 1 \perp a + b > 1$.

(D) $a > 1 \coprod a + b > 1$.

(2)已知函数 $f(x) = \begin{cases} 2(x-1), & x < 1, \\ \ln x, & x \ge 1, \end{cases}$,则 f(x)的一个原函数是

下册,P39,2 题

(B)
$$F(x) = \begin{cases} (x-1)^2, & x < 1 \\ x(\ln x + 1) - 1, & x > 1 \end{cases}$$

$$(A)F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x - 1), & x \ge 1. \end{cases}$$

$$(B)F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x + 1) - 1, & x \ge 1. \end{cases}$$

$$(C)F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x + 1) + 1, & x \ge 1. \end{cases}$$

$$(D)F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x - 1) + 1, & x \ge 1. \end{cases}$$

(3)若 $y=(1+x^2)^2-\sqrt{1+x^2}$, $y=(1+x^2)^2+\sqrt{1+x^2}$ 是微分方程 y'+p(x)y=q(x)的两个解,则 q(x)=

下册,P72,9 题

 $(A)3x(1+x^2).$

(B) $-3x(1+x^2)$.

 $(C)\frac{x}{1+x^2}$.

(D) $-\frac{x}{1+x^2}$.

(4) 已知函数 $f(x) = \begin{cases} x, & x \leq 0, \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n}, n = 1, 2, \dots, \end{cases}$

下册,P16,4题

下册,P140,6 题

(A)x=0 是 f(x)的第一类间断点.

(B)x=0 是 f(x)的第二类间断点.

(C) f(x)在 x=0 处连续但不可导.

(D) f(x)在 x=0 处可导.

(5)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是

(B) A^{-1} 与 B^{-1} 相似.

(C)**A**+**A**^T与**B**+**B**^T相似.

(D) $A + A^{-1} = B + B^{-1}$ 相似.

(6)设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$,则 $f(x_1, x_2, x_3) = 2$ 在空间直角坐标下表示的二 次曲面为 下册,P162,3 题

(A)单叶双曲面.

 $(A)A^{T}$ 与 B^{T} 相似.

(B)双叶双曲面.

(C)椭球面.

(D)柱面.

(7)设随机变量 $X \sim N(\mu, \sigma^2)(\sigma > 0)$,记 $p = P\{X \leq \mu + \sigma^2\}$,则

下册,P172,4 题

(A) ρ 随着 μ 的增加而增加.

(B) p 随着 σ 的增加而增加.

(C)p 随着 μ 的增加而减少.

(D) p 随着 σ 的增加而减少.

(8)随机试验 E 有三种两两不相容的结果 A_1 , A_2 , A_3 , 且三种结果发生的概率均为 $\frac{1}{2}$. 将试验 E 独立重复做 2 次, X表示 2 次试验中结果 A_1 发生的次数,Y 表示 2 次试验中结果 A_2 发生的次数,则 X 与 Y 的相关系数为

下册,P185,12 题

(A) $-\frac{1}{2}$. (B) $-\frac{1}{3}$. (C) $\frac{1}{3}$.

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9)
$$\lim_{t \to 0} \frac{\int_{0}^{t} t \ln(1 + t \sin t) dt}{1 - \cos x^{2}} = \underline{\qquad}$$

下册,P4,3 题

(10) 向量场 $\mathbf{A}(x,y,z) = (x+y+z)\mathbf{i} + xy\mathbf{j} + z\mathbf{k}$ 的旋度 rot $\mathbf{A} =$

下册,P104,1题

(11)设函数 f(u,v)可微,z=z(x,y)由方程 $(x+1)z-y^2=x^2 f(x-z,y)$ 确定,则 dz

下册,P59,7题

(12)设函数 $f(x) = \arctan x - \frac{x}{1 + ax^2}$,且 f'''(0) = 1,则 a =____

下册,P21,5题

(13)行列式 $\begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \end{vmatrix} = \underline{\qquad}.$

下册,P112,2题

(14)设 x_1,x_2,\dots,x_n 为来自总体 $N(\mu,\sigma^2)$ 的简单随机样本,样本均值 $\overline{x}=9.5$,参数 μ 的置信度为 0.95 的双侧置信 区间的置信上限为 10.8,则 μ 的置信度为 0.95 的双侧置信区间为_ 下册,P199,3 题

三、解答题:15~23 小题,共94分.解答应写出文字说明、证明过程或演算步骤.

(15)(本颢满分10分)

已知平面区域 $D = \left\{ (r, \theta) \middle| 2 \leqslant r \leqslant 2(1 + \cos \theta), -\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2} \right\}$, 计算二重积分 $\iint_{\mathbb{R}} x \, dx \, dy$.

(16)(本颢满分10分)

设函数 y(x)满足方程 y''+2y'+ky=0,其中 0 < k < 1.

(I)证明反常积分 $\int_{-\infty}^{+\infty} y(x) dx$ 收敛;

(II)若y(0)=1,y'(0)=1,求 $\int_{0}^{+\infty}y(x)dx$ 的值.

下册,P50,4 题

(17)(本题满分10分)

设函数 f(x,y)满足 $\frac{\partial f(x,y)}{\partial x}$ = $(2x+1)e^{2x-y}$,且 f(0,y)=y+1, L_t 是从点(0,0)到点(1,t)的光滑曲线. 计算曲

线积分 $I(t) = \int_{L} \frac{\partial f(x,y)}{\partial x} dx + \frac{\partial f(x,y)}{\partial y} dy$,并求 I(t)的最小值.

下册, P95,4题

(18)(本颢满分10分)

设有界区域 Ω 由平面 2x+y+2z=2 与三个坐标平面围成, Σ 为 Ω 整个表面的外侧,计算曲面积分

$$I = \iint_{\Sigma} (x^2 + 1) \, \mathrm{d}y \, \mathrm{d}z - 2y \, \mathrm{d}z \, \mathrm{d}x + 3z \, \mathrm{d}x \, \mathrm{d}y.$$

下册,P98,6 题

(19)(本题满分10分)

已知函数 f(x)可导,且 $f(0)=1,0 < f'(x) < \frac{1}{2}$. 设数列 $\{x_n\}$ 满足 $x_{n+1}=f(x_n)(n=1,2,\cdots)$. 证明:

(I)级数 $\sum_{n=1}^{\infty} (x_{n+1}-x_n)$ 绝对收敛;

(II)lim x_n 存在,且 0<lim x_n <2.

下册,P80,2题

(20)(本题满分11分)

设矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 2 \\ 1 & a \\ -a-1 & -2 \end{pmatrix}.$$

当 a 为何值时,方程 AX=B 无解、有唯一解、有无穷多解? 在有解时,求解此方程.

下册,P128,4 题

(21)(本题满分11分)

已知矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

- (I)求A⁹⁹;
- (II)设3阶矩阵 $B=(\alpha_1,\alpha_2,\alpha_3)$ 满足 $B^2=BA$. 记 $B^{100}=(\beta_1,\beta_2,\beta_3)$,将 β_1,β_2,β_3 分别表示为 $\alpha_1,\alpha_2,\alpha_3$ 的线性 组合. 下册,P145,2题
- (22)(本题满分11分)

设二维随机变量(X,Y)在区域 $D=\{(x,y)|0 < x < 1, x^2 < y < \sqrt{x}\}$ 上服从均匀分布,令

$$U = \begin{cases} 1, & X \leq Y, \\ 0, & X > Y. \end{cases}$$

- (I)写出(X,Y)的概率密度;
- (II)问U与X是否相互独立?并说明理由;
- (III)求 Z=U+X 的分布函数 $F_Z(z)$.

下册,P179,3 题

(23)(本题满分11分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta, \\ 0, & 其他, \end{cases}$$

其中 $\theta \in (0, +\infty)$ 为未知参数. X_1, X_2, X_3 为来自总体 X 的简单随机样本,令

$$T = \max\{X_1, X_2, X_3\}.$$

- (I)求 T的概率密度;
- (Π)确定 a,使得 aT 为 θ 的无偏估计.

下册,P198,2题

答案谏杳

一、选择题

(1)(C), (2)(D), (3)(A), (4)(D), (5)(C), (6)(B), (7)(B), (8)(A),

 $(9)\frac{1}{2}. \quad (10)\mathbf{j} + (y-1)\mathbf{k}. \quad (11) - dx + 2dy. \quad (12)\frac{1}{2}. \quad (13)4 + 3\lambda + 2\lambda^2 + \lambda^3 + \lambda^4. \quad (14)(8.2, 10.8).$

(15) $\frac{32}{3}$ +5π. (16)([)证明略. ([]) $\frac{3}{k}$. (17)I(t)= $e^{2^{-t}}+t$;I(2)=3 是 I(t)在($-\infty$, $+\infty$)上的最小值.

(18)
$$\frac{1}{2}$$
. (19)证明略. (20) 当 $a \neq 1$ 且 $a \neq -2$ 时, $AX = B$ 有唯一解, 且 $X = \begin{bmatrix} 1 & \frac{3a}{a+2} \\ 0 & \frac{a-4}{a+2} \\ -1 & 0 \end{bmatrix}$; 当 $a = 1$ 时,

AX = B有无穷多解,且 $X = \begin{vmatrix} -1 & -1 \end{vmatrix} + \begin{vmatrix} k_1 & k_2 \end{vmatrix}$,其中 k_1 , k_2 为任意常数;当a = -2时,AX = B 无解.

$$(21)(1)\mathbf{A}^{99} = \begin{pmatrix} 2^{99} - 2 & 1 - 2^{99} & 2 - 2^{98} \\ 2^{100} - 2 & 1 - 2^{100} & 2 - 2^{99} \\ 0 & 0 & 0 \end{pmatrix}. \quad (1) \begin{cases} \mathbf{\beta}_{1} = (2^{99} - 2)\mathbf{\alpha}_{1} + (2^{100} - 2)\mathbf{\alpha}_{2}, \\ \mathbf{\beta}_{2} = (1 - 2^{99})\mathbf{\alpha}_{1} + (1 - 2^{100})\mathbf{\alpha}_{2}, \\ \mathbf{\beta}_{3} = (2 - 2^{98})\mathbf{\alpha}_{1} + (2 - 2^{99})\mathbf{\alpha}_{2}. \end{pmatrix}$$

(22)(I) $f(x,y) = \begin{cases} 3, & (x,y) \in D, \\ 0, & \text{其他.} \end{cases}$ (II)U 与 X 不相互独立;理由略.

姓名 分数

一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

下册,P13,1 题

(A) $ab = \frac{1}{2}$.

(C)ab=0.

(2)设函数 f(x)可导,目 f(x)f'(x)>0,则

下册,P27,1题

(A) f(1) > f(-1).

(B) f(1) < f(-1).

(C) |f(1)| > |f(-1)|.

(D) |f(1)| < |f(-1)|.

(3)函数 $f(x,y,z)=x^2y+z^2$ 在点(1,2,0)处沿向量 n=(1,2,2)的方向导数为

下册,P89,4题

(A)12.

(B)6.

(4)甲、乙两人赛跑, 计时开始时, 甲在乙前方 10(单位; m)处. 图中, 实线表示甲的速度曲线 $v=v_1(t)(单位; m/s)$, 處线表示乙的速度曲线 $v=v_0(t)$,三块阴影部分面积的数值依次为 10,20,3. 计时开始后乙追上甲的时刻记为 下册,P53,7题

t₀(单位:s),则

 $(A)t_0 = 10.$ $(C)_{t_0} = 25$.

(D) $t_0 > 25$.

(B) $15 < t_0 < 20$.

(5)设 α 为n 维单位列向量,E 为n 阶单位矩阵,则

下册,P116,3 题

 $(A)E-\alpha\alpha^{T}$ 不可逆.

(B) $\mathbf{E} + \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}}$ 不可逆.

(C)**E** $+2\alpha\alpha^{T}$ 不可逆.

 $(D)E-2\alpha\alpha^{T}$ 不可逆.

(6)已知矩阵 $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \mathbf{M}$

下册,P137,1 题

(A)**A**与**C**相似,**B**与**C**相似.

(B)**A**与**C**相似,**B**与**C**不相似.

(C)**A**与**C**不相似,**B**与**C**相似.

(D)A与C不相似,B与C不相似.

2017年全国硕士研究生招生考试数学一试题

(7)设 A,B 为随机事件. 若 $0 < P(A) < 1,0 < P(B) < 1,则 <math>P(A|B) > P(A|\overline{B})$ 的充分必要条件是

下册,P168,5 题

 $(A)P(B|A)>P(B|\overline{A}).$

(B) $P(B|A) < P(B|\overline{A})$.

 $(C)P(\overline{B}|A)>P(B|\overline{A}).$

(D) $P(\overline{B}|A) < P(B|\overline{A})$.

(8)设 X_1 , X_2 ,…, X_n ($n\geqslant 2$)为来自总体 $N(\mu,1)$ 的简单随机样本,记 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$,则下列结论中不正确的是

下册,P188,1题

$$(A) \sum_{i=1}^{n} (X_i - \mu)^2$$
 服从 χ^2 分布.
 $(B) 2 (X_n - X_1)^2$ 服从 χ^2 分布.

(B)2
$$(X_n - X_1)^2$$
 服从 χ^2 分布

$$(C)$$
 $\sum_{i=1}^{n} (X_i - \overline{X})^2$ 服从 χ^2 分布. $(D) n (\overline{X} - \mu)^2$ 服从 χ^2 分布.

$$(D)n(\overline{X}-\mu)^2$$
 服从 χ^2 分有

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9)已知函数 $f(x) = \frac{1}{1+x^2}$,则 $f^{(3)}(0) = \underline{\hspace{1cm}}$.

下册,P21,6 题

(10)微分方程 y''+2y'+3y=0 的通解为 y=

下册,P71,4 题

(11)若曲线积分 $\int_{L} \frac{x dx - ay dy}{x^2 + y^2 - 1}$ 在区域 $D = \{(x, y) \mid x^2 + y^2 < 1\}$ 内与路径无关,则 a =______. 下册, P94, 1 题

(12)幂级数 $\sum_{n=0}^{\infty} (-1)^{n-1} n x^{n-1}$ 在区间(-1,1)内的和函数 S(x) =______.

下册,P84,5 题

(13)设矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
, $\mathbf{\alpha}_1$, $\mathbf{\alpha}_2$, $\mathbf{\alpha}_3$ 为线性无关的 3 维列向量组,则向量组 $\mathbf{A}\mathbf{\alpha}_1$, $\mathbf{A}\mathbf{\alpha}_2$, $\mathbf{A}\mathbf{\alpha}_3$ 的秩为______.

下册,P122,1 题

(14)设随机变量 X 的分布函数为 F(x)=0. $5\Phi(x)+0$. $5\Phi\left(\frac{x-4}{2}\right)$,其中 $\Phi(x)$ 为标准正态分布函数,则 EX=

下册,P183,5 题

三、解答题:15~23 小题,共94分. 解答应写出文字说明、证明过程或演算步骤.

(15)(本颢满分10分)

设函数 f(u,v)具有二阶连续偏导数, $y=f(e^x,\cos x)$,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

下册,P57,2题

(16)(本颢满分10分)

$$\Re \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n} \right).$$

下册,P7,1题

(17)(本题满分10分)

已知函数 y(x)由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 确定,求 y(x)的极值.

下册,P24,6 题

(18)(本题满分10分)

设函数 f(x)在区间[0,1]上具有二阶导数,且 f(1)>0, $\lim_{x\to 0} \frac{f(x)}{x}<0$. 证明:

([])方程 f(x)=0 在区间(0,1)内至少存在一个实根;

($\| f(x) f''(x) + \| f'(x) \|^2 = 0$ 在区间(0,1)内至少存在两个不同实根.

下册,P30,2题

(19)(本题满分10分)

设薄片型物体 S 是圆锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 割下的有限部分,其上任一点的密度为 $\mu(x, y, z) =$ $9\sqrt{x^2+y^2+z^2}$. 记圆锥面与柱面的交线为 C.

2017年全国硕士研究生招生考试数学一试题

- (I)求 C在 xOy 平面上的投影曲线的方程;
- (Ⅱ)求 S 的质量 M.

下册,P106,6 题

(20)(本题满分11分)

设 3 阶矩阵 $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$ 有 3 个不同的特征值,且 $\boldsymbol{\alpha}_3 = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$.

- (I)证明 r(A) = 2;
- ([])若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求方程组 $Ax = \beta$ 的通解.

下册,P131,8题

(21)(本题满分11分)

设二次型 $f(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + ax_3^2 + 2x_1x_2 - 8x_1x_3 + 2x_2x_3$,在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$,求 a 的值及一个正交矩阵 \mathbf{Q} .

(22)(本题满分11分)

设随机变量 X,Y 相互独立,且 X 的概率分布为 $P\{X=0\}=P\{X=2\}=\frac{1}{2}$,Y 的概率密度为

$$f(y) = \begin{cases} 2y, & 0 < y < 1, \\ 0, & \text{ i.e.} \end{cases}$$

(「) 求 $P{Y \leqslant EY}$;

(**||**)求 Z=X+Y 的概率密度.

下册,P179,2题

(23)(本题满分11分)

某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的. 设 n 次测量结果 X_1 , X_2 , \dots , X_n 相互独立且均服从正态分布 $N(\mu, \sigma^2)$,该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu|$ $(i=1,2,\dots,n)$. 利用 Z_1 , Z_2 , \dots , Z_n 估计 σ .

- (T)求 Z_1 的概率密度;
- (Ⅱ)利用一阶矩求 σ 的矩估计量;
- (Ⅲ)求σ的最大似然估计量.

下册,P195,8 题

答案速查

一、选择题

(1)(A), (2)(C), (3)(D), (4)(C), (5)(A), (6)(B), (7)(A), (8)(B),

二、填空题

(9)0. $(10)e^{-x}(C_1\cos\sqrt{2}x+C_2\sin\sqrt{2}x)$,其中 C_1 , C_2 为任意常数. (11)-1. $(12)\frac{1}{(1+x)^2}$.

(13)2. (14)2.

三、解答题

$$(15)\frac{dy}{dx}\Big|_{x=0} = \frac{\partial f(1,1)}{\partial u}; \frac{d^2y}{dx^2}\Big|_{x=0} = \frac{\partial f(1,1)}{\partial u} + \frac{\partial^2 f(1,1)}{\partial u^2} - \frac{\partial f(1,1)}{\partial v}. \quad (16)\frac{1}{4}.$$

(17)y(-1)=0 是 y(x)的极小值; y(1)=1 是 y(x)的极大值. (18)证明略.

(19)([) 所求方程为
$$\begin{cases} x^2 + y^2 = 2x, \\ z = 0. \end{cases}$$
 ([]) $M = 64$.

(20)(
$$I$$
)证明略. (I) $x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + k \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$,其中 k 为任意常数.

$$(21)a = 2; \mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}. \quad (22)(1)^{\frac{4}{9}}. \quad (1)^{\frac{4}{9}} f_{z}(z) = \begin{cases} z, & 0 < z < 1, \\ z - 2, & 2 < z < 3, \\ 0, & \text{ i.e.} \end{cases}$$

$$(23)(1)f_{Z}(z) = \begin{cases} \frac{2}{\sqrt{2\pi}\sigma} e^{-\frac{z^{2}}{2\sigma^{2}}}, & z \geqslant 0, \\ 0, & z < 0. \end{cases} (1) 矩估计量 \hat{\sigma} = \frac{\sqrt{2\pi}}{2} \overline{Z}. \quad (1) 最大似然估计量 \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}}.$$

姓名	分数

TELLE OF CONC. ALCOHOL: NO. C. N. L. N. A. C. H. C. N. L. N. C. N. C. L. C. N. C. L. C. N. C.	一、选择题:1~8 小题,	每小题 4分,共32分	. 下列每题给出的四个选项中	,只有一个选项是符合题目要求的
---	---------------	-------------	----------------	-----------------

(1)下列函数中,在x=0处不可导的是

下册,P16,3 题

(A) $f(x) = |x| \sin |x|$.

(B)
$$f(x) = |x| \sin \sqrt{|x|}$$
.

(C) $f(x) = \cos|x|$.

(D)
$$f(x) = \cos \sqrt{|x|}$$
.

(2)过点(1,0,0),(0,1,0),且与曲面 $z=x^2+y^2$ 相切的平面为

(A)z=0 = x+y-z=1.

(B)
$$z=0$$
与 $2x+2y-z=2$.

(C)x = y = x + y - z = 1.

(D)
$$x = y = 2x + 2y - z = 2$$
.

(3) $\sum_{n=0}^{\infty} (-1)^n \frac{2n+3}{(2n+1)!} =$

下册,P83,3 题

(A) $\sin 1 + \cos 1$.

(B)
$$2\sin 1 + \cos 1$$
.

(C) $2\sin 1 + 2\cos 1$.

(D)
$$2\sin 1+3\cos 1$$
.

(4)设
$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} \mathrm{d}x, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{\mathrm{e}^x} \mathrm{d}x, K = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\sqrt{\cos x}) \mathrm{d}x,$$
则

下册,P35,2题

(A)M>N>K.

(B)
$$M > K > N$$
.

(C)K>M>N.

(D)
$$K>N>M$$
.

下册,P142,9题

$$(A) \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(B)
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(D) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(6)设A,B 为n 阶矩阵,记r(X) 为矩阵X 的秩,(X Y)表示分块矩阵,则

下册,P123,3 题

 $(A)r(A \quad AB) = r(A)$.

(B)r(A BA) = r(A).

(C) $r(\mathbf{A} \ \mathbf{B}) = \max\{r(\mathbf{A}), r(\mathbf{B})\}.$

 $(D)r(\mathbf{A} \quad \mathbf{B}) = r(\mathbf{A}^{\mathsf{T}} \quad \mathbf{B}^{\mathsf{T}}).$

(7)设随机变量 X 的概率密度 f(x) 满足 f(1+x) = f(1-x),且 f(x) = 0.6,则 f(x) = 0.6

下册,P169,9 题

(A)0.2.

(B)0.3.

(D)0.5.

(8)设总体 X 服从正态分布 $N(\mu,\sigma^2)$. X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本,据此样本检验假设: $H_0:\mu=$

(C)0.4.

 μ_0 , $H_1: \mu \neq \mu_0$, \emptyset

下册,P200,4 题

(A)如果在检验水平 α =0.05 下拒绝 H_0 ,那么在检验水平 α =0.01 下必拒绝 H_0 .

(B)如果在检验水平 α =0.05 下拒绝 H_0 ,那么在检验水平 α =0.01 下必接受 H_0 .

(C)如果在检验水平 α =0.05 下接受 H_0 ,那么在检验水平 α =0.01 下必拒绝 H_0 .

(D)如果在检验水平 α =0.05 下接受 H_0 ,那么在检验水平 α =0.01 下必接受 H_0 .

二、填空题:9~14 小题,每小题 4 分,共 24 分.

(9)若
$$\lim_{t\to 0} \left(\frac{1-\tan x}{1+\tan x}\right)^{\frac{1}{\sin kx}} = e, \text{则 } k = ____.$$

下册,P7,10题

(10)设函数 f(x)具有 2 阶连续导数. 若曲线 y=f(x)过点(0,0)且与曲线 $y=2^x$ 在点(1,2)处相切,则 $\int_0^1 x f''(x) dx =$

下册,P104,2题

(12)设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_{-} xy ds =$ ______.

(13)设2阶矩阵 A 有两个不同特征值, α_1 , α_2 是 A 的线性无关的特征向量,且满足 $A^2(\alpha_1+\alpha_2)=\alpha_1+\alpha_2$,则|A|=

下册,P113,7题

(14)设随机事件 A 与 B 相互独立,A 与 C 相互独立, $BC = \emptyset$. 若 $P(A) = P(B) = \frac{1}{2}$, $P(AC|AB \cup C) = \frac{1}{4}$,则

下册,P168,6 题

三、解答题:15~23 小题,共94分.解答应写出文字说明、证明过程或演算步骤.

(15)(本颢满分10分)

求不定积分
$$\int e^{2x} \arctan \sqrt{e^x - 1} dx$$
.

下册,P39,3 题

(16)(本颢满分10分)

将长为 2 m 的铁丝分成三段,依次围成圆、正方形与正三角形. 三个图形的面积之和是否存在最小值? 若存 下册,P64,7题 在,求出最小值.

(17)(本题满分10分)

设 Σ 是曲面 $x = \sqrt{1-3v^2-3z^2}$ 的前侧,计算曲面积分

$$I = \iint_{\mathbb{R}} x \, \mathrm{d}y \, \mathrm{d}z + (y^3 + 2) \, \mathrm{d}z \, \mathrm{d}x + z^3 \, \mathrm{d}x \, \mathrm{d}y.$$

下册, P98, 7题

(18)(本题满分10分)

已知微分方程 y'+y=f(x),其中 f(x)是 R 上的连续函数.

(I)若 f(x)=x,求方程的通解;

(II)若 f(x)是周期为 T的函数,证明:方程存在唯一的以 T为周期的解.

下册,P75,5 题

(19)(本题满分10分)

设数列 $\{x_n\}$ 满足 $:x_1>0, x_n e^{x_{n+1}}=e^{x_n}-1 (n=1,2,\cdots)$. 证明 $\{x_n\}$ 收敛,并求 $\lim x_n$.

下册,P10,5 题

(20)(本颢满分11分)

设实二次型 $f(x_1,x_2,x_3)=(x_1-x_2+x_3)^2+(x_2+x_3)^2+(x_1+ax_3)^2$,其中 a 是参数.

(I)求 $f(x_1,x_2,x_3)=0$ 的解;

($\|$)求 $f(x_1, x_2, x_3)$ 的规范形.

下册,P157,1题

(21)(本颢满分11分)

已知
$$a$$
 是常数,且矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{bmatrix}$ 可经初等列变换化为矩阵 $\mathbf{B} = \begin{bmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$.

(I)求 a;

2018年全国硕士研究生招生考试数学一试题

(|||)求满足AP=B的可逆矩阵P.

下册,P129,5 题

(22)(本题满分11分)

设随机变量 X 与 Y 相互独立,X 的概率分布为 $P\{X=1\}=P\{X=-1\}=\frac{1}{2}$,Y 服从参数为 λ 的泊松分布. 令 Z=XY.

- ([])求Cov(X,Z);
- (**I**) 求 Z 的概率分布.

下册,P178,1 题

(23)(本题满分11分)

设总体 X 的概率密度为

$$f(x;\sigma) = \frac{1}{2\sigma} e^{-\frac{|x|}{\sigma}}, -\infty < x < +\infty,$$

其中 $\sigma \in (0, +\infty)$ 为未知参数 $, X_1, X_2, \dots, X_n$ 为来自总体X的简单随机样本.记 σ 的最大似然估计量为 $\hat{\sigma}$.

- (I)求 σ̂;
- (Ⅱ)求 Eô和 Dô.

下册,P193,5 题

答案速查

一、选择题

(1)(D). (2)(B). (3)(B). (4)(C). (5)(A). (6)(A). (7)(A). (8)(D).

二、填空题

(9) -2. (10)2(ln 2-1). (11) $\mathbf{i}-\mathbf{k}$. (12) $-\frac{\pi}{3}$. (13) -1. (14) $\frac{1}{4}$.

三、解答题

$$(15)\frac{1}{2}e^{2x}\arctan\sqrt{e^x-1}-\frac{1}{6}(e^x+2)\sqrt{e^x-1}+C$$
,其中 C 为任意常数. $(16)\frac{1}{\pi+4+3\sqrt{3}}$ m^2 .

$$(17)\frac{14\pi}{45}$$
. $(18)(1)y=C_1e^{-x}+x-1(C_1$ 为任意常数). ([])证明略.

(19)证明略; $\lim_{n\to\infty} x_n = 0$.

(20)([1) 当
$$a \neq 2$$
 时, $f(x_1, x_2, x_3) = 0$ 的解为 $\mathbf{x} = \mathbf{0}$; 当 $a = 2$ 时, $f(x_1, x_2, x_3) = 0$ 的解为 $\mathbf{x} = k \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$, k 为任意

常数

($\| \cdot \|$) 当 $a \neq 2$ 时, $f(x_1, x_2, x_3)$ 的规范形为 $y_1^2 + y_2^2 + y_3^2$;当 a = 2 时, $f(x_1, x_2, x_3)$ 的规范形为 $y_1^2 + y_2^2$.

(21)([])2. ([])
$$P = \begin{pmatrix} 3-6k_1 & 4-6k_2 & 4-6k_3 \\ -1+2k_1 & -1+2k_2 & -1+2k_3 \\ k_1 & k_2 & k_3 \end{pmatrix}$$
,其中 k_1 , k_2 , k_3 为任意常数, $k_2 \neq k_3$.

(22)([)
$$\lambda$$
. ([) $P\{Z=0\}=\mathrm{e}^{-\lambda}; P\{Z=n\}=\mathrm{e}^{-\lambda}\frac{\lambda^{|n|}}{2 \cdot |n|!}, n=\pm 1, \pm 2, \cdots$.

$$(23)(\ \underline{\ })\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} |X_i|. \quad (\ \underline{\ }) E \hat{\sigma} = \sigma, D \hat{\sigma} = \frac{\sigma^2}{n}.$$

姓名_____ 分数____

一、选择题:1~8 小题,每小题 4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

1. 当 $x \rightarrow 0$ 时,若 $x - \tan x$ 与 x^k 是同阶无穷小,则 k =

下册,P11,1 题

A. 1.

B. Z.

C. 3.

D. 4.

2. 设函数 $f(x) = \begin{cases} x \mid x \mid , x \le 0, \\ x \mid x, x > 0, \end{cases}$ 则 x = 0 是 f(x) 的

下册,P22,1题

A. 可导点,极值点.

B. 不可导点,极值点.

C. 可导点,非极值点.

D. 不可导点,非极值点.

3. 设 $\{u_n\}$ 是单调增加的有界数列,则下列级数中收敛的是

下册,P78,3 题

A.
$$\sum_{n=1}^{\infty} \frac{u_n}{n}$$
.

B.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{u_n}$$
.

C.
$$\sum_{n=1}^{\infty} \left(1 - \frac{u_n}{u_{n+1}} \right)$$
.

D.
$$\sum_{n=1}^{\infty} (u_{n+1}^2 - u_n^2)$$
.

4. 设函数 $Q(x,y) = \frac{x}{v^2}$. 如果对上半平面(y > 0)内的任意有向光滑封闭曲线 C都有 $\oint_C P(x,y) dx + Q(x,y) dy = 0$,

那么函数 P(x,y) 可取为

下册, P94,2题

A.
$$y - \frac{x^2}{y^3}$$
.

B.
$$\frac{1}{y} - \frac{x^2}{y^3}$$
.

$$C. \ \frac{1}{x} - \frac{1}{y} \ .$$

D.
$$x - \frac{1}{y}$$

5. 设 A 是 3 阶实对称矩阵, E 是 3 阶单位矩阵, E $A^2 + A = 2E$, 且 |A| = 4, 则二次型 $x^T A x$ 的规范形为

下册,P158,2题

A. $y_1^2 + y_2^2 + y_3^2$.

B.
$$y_1^2 + y_2^2 - y_3^2$$

C. $y_1^2 - y_2^2 - y_3^2$.

D.
$$-y_1^2 - y_2^2 - y_3^2$$
.

6. 如图所示,有3张平面两两相交,交线相互平行,它们的方程

$$a_{i1}x + a_{i2}y + a_{i3}z = d_i (i = 1, 2, 3)$$

组成的线性方程组的系数矩阵和增广矩阵分别记为A.A.y则

下册,P161,2题

A. $r(A) = 2, r(\bar{A}) = 3$.

B. $r(A) = 2 \cdot r(\overline{A}) = 2$.

C. $r(A) = 1, r(\overline{A}) = 2$.

D. $r(A) = 1, r(\overline{A}) = 1$.

7. 设 A, B 为随机事件,则 P(A) = P(B) 的充分必要条件是

下册,P167,2题

A. $P(A \cup B) = P(A) + P(B)$.

B. P(AB) = P(A)P(B).

C. $P(A\overline{B}) = P(B\overline{A})$.

D. $P(AB) = P(\overline{A}\overline{B})$.

8. 设随机变量 X 与 Y 相互独立,且都服从正态分布 $N(\mu, \sigma^2)$,则 $P\{|X-Y| < 1\}$

下册,P172,6题

A. 与 μ 无关,而与 σ^2 有关.

C. 与 *μ*,σ² 都有关.

B. 与 μ 有关,而与 σ^2 无关.

D. 与 μ,σ² 都无关.

二、填空题:9~14 小题,每小题 4 分,共 24 分.

9. 设函数 f(u) 可导, $z = f(\sin y - \sin x) + xy$,则 $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} =$ ______. 下册,P57,1 题

10. 微分方程 $2yy'-y^2-2=0$ 满足条件 y(0)=1 的特解 y= . 下册, P70,1 题

11. 幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n$ 在 $(0, +\infty)$ 内的和函数 S(x) =______. 下册,P83,4 题

12. 设 Σ 为曲面 $x^2 + y^2 + 4z^2 = 4(z \ge 0)$ 的上侧,则 $\int_{\mathbb{R}} \sqrt{4 - x^2 - 4z^2} \, dx dy = _____.$ 下册,P97,4 题

13. 设 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$ 为 3 阶矩阵. 若 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性无关,且 $\boldsymbol{\alpha}_3 = -\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$,则线性方程组 $\mathbf{A} \mathbf{x} = \mathbf{0}$ 的通解为

下册,P125,3 题

14. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & x < 2, \end{cases}$ F(x) 为 X 的分布函数, EX 为 X 的数学期望,则

 $P\{F(X) > EX - 1\} =$ _____.

下册,P171,3 题

三、解答题:15~23 小题,共94分. 解答应写出文字说明、证明过程或演算步骤.

15. (本题满分10分)

设函数 y(x) 是微分方程 $y' + xy = e^{-\frac{1}{2}}$ 满足条件 y(0) = 0 的特解.

(1)求 $\nu(x)$:

(2)求曲线 y = y(x) 的凹凸区间及拐点.

下册,P75,3 题

16. (本题满分 10 分)

设 a,b 为实数,函数 $z = 2 + ax^2 + by^2$ 在点(3,4)处的方向导数中,沿方向 l = -3i - 4j 的方向导数最大,最大值为 10.

(1)求a,b;

(2)求曲面 $z = 2 + ax^2 + by^2$ ($z \ge 0$)的面积.

下册,P104,3 题

17. (本题满分 10 分)

求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

下册,P52,2题

18. (本颢满分10分)

设
$$a_n = \int_0^1 x^n \sqrt{1-x^2} \, dx (n=0,1,2,\dots).$$

(1)证明:数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2}a_{n-2}$ $(n=2,3,\cdots);$

(2)求 $\lim_{n\to\infty}\frac{a_n}{a_{n-1}}$.

下册,P8,3 题

19. (本题满分10分)

设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2$ (0 $\leq z \leq 1$) 与平面 z=0 围成的锥体,求 Ω 的形心坐标.

下册,P105,5 题

20. (本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1,2,1)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (1,3,2)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (1,a,3)^{\mathrm{T}}$ 为 \mathbf{R}^3 的一个基, $\boldsymbol{\beta} = (1,1,1)^{\mathrm{T}}$ 在这个基下的坐标为 $(b,c,1)^{\mathrm{T}}$.

(1)求a,b,c;

(2)证明 α_2 , α_3 , β 为 \mathbf{R}^3 的一个基,并求 α_2 , α_3 , β 到 α_1 , α_2 , α_3 的过渡矩阵.

下册,P163,5 题

2019 年全国硕士研究生招生考试数学一试题

21. (本题满分11分)

已知矩阵
$$\mathbf{A} = \begin{bmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{bmatrix}$$
 与 $\mathbf{B} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & \mathbf{y} \end{bmatrix}$ 相似.

- (1)求x,y;
- (2)求可逆矩阵 P 使得 $P^{-1}AP = B$.

下册,P143,10 题

22. (本题满分11分)

设随机变量 X 与 Y 相互独立,X 服从参数为 1 的指数分布,Y 的概率分布为 P(Y=-1) = p,P(Y=1) = 1 - p(0 ,令 <math>Z = XY.

- (1)求 Z 的概率密度;
- (2) p 为何值时, X 与 Z 不相关?
- (3) *X* 与 *Z* 是否相互独立?

下册,P187,2题

23. (本题满分11分)

设总体 X 的概率密度为

$$f(x;\sigma^2) = \begin{cases} \frac{A}{\sigma} e^{-\frac{(x-y)^2}{2\sigma}}, & x \geqslant \mu, \\ 0, & x < \mu, \end{cases}$$

其中 μ 是已知参数, $\sigma > 0$ 是未知参数,A是常数. X_1, X_2, \dots, X_n 是来自总体X的简单随机样本.

- (1)求A;
- (2)求 σ^2 的最大似然估计量.

下册,P194,6 题

答案速查

一、选择题

1. C. 2. B. 3. D. 4. D. 5. C. 6. A. 7. C. 8. A.

二、填空题

9. $\frac{y}{\cos x} + \frac{x}{\cos y}$. 10. $\sqrt{3}e^x - 2$. 11. $\cos \sqrt{x}$. 12. $\frac{32}{3}$. 13. $\mathbf{x} = k(1, -2, 1)^T$, $k \in \mathbf{R}$. 14. $\frac{2}{3}$.

三、解答题

15. (1) $y = xe^{\frac{x^2}{2}}$. (2) 曲线 y = y(x) 在($-\sqrt{3}$,0) 及($\sqrt{3}$, $+\infty$) 内是凹的,在($-\infty$, $-\sqrt{3}$) 及(0, $\sqrt{3}$) 内是凸的. 拐点为($-\sqrt{3}$, $-\sqrt{3}e^{-\frac{1}{7}}$),(0,0),($\sqrt{3}$, $\sqrt{3}e^{-\frac{1}{7}}$).

16. (1)
$$a = -1, b = -1$$
. (2) $\frac{13\pi}{3}$.

17.
$$\frac{e^{\pi}+1}{2(e^{\pi}-1)}$$
.

19.
$$\left(0, \frac{1}{4}, \frac{1}{4}\right)$$
.

20. (1)
$$a = 3, b = 2, c = -2$$
. (2)
$$\begin{bmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$
.

21. (1)
$$x = 3, y = -2$$
. (2) $\begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & -2 \\ 0 & 0 & -4 \end{pmatrix}$.

22.
$$(1) f_Z(z) = \begin{cases} pe^z, & z < 0, \\ (1-p)e^{-z}, z \ge 0. \end{cases}$$
 $(2) p = \frac{1}{2}.$ $(3) X 与 Z 不相互独立.$

23.
$$(1)A = \sqrt{\frac{2}{\pi}}$$
. $(2)\hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2$.

姓名 分数

一、选择题: $1 \sim 8$ 小题,每小题 4 分,共 32 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.

1. 当 $x \rightarrow 0^+$ 时,下列无穷小量中最高阶的是

下册,P11,2题

$$A. \int_0^x (e^{t^2} - 1) dt.$$

$$B. \int_0^x \ln(1+\sqrt{t^3}) dt.$$

$$C. \int_0^{\sin x} \sin t^2 dt.$$

$$D. \int_0^{1-\cos x} \sqrt{\sin^3 t} \, \mathrm{d}t.$$

2. 设函数 f(x) 在区间(-1,1) 内有定义,且 $\lim f(x) = 0$,则

下册, P17,5 题

B. 当
$$\lim_{x\to 0} \frac{f(x)}{x^2} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导.

C. 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$.

D. 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$.

3. 设函数
$$f(x,y)$$
 在点 $(0,0)$ 处可微, $f(0,0) = 0$, $n = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right)$, 非零向量 $\alpha 与 n$ 垂直, 则

A.
$$\lim_{(x,y)\to(0,0)} \frac{|\mathbf{n}\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在.

B.
$$\lim_{(x,y)\to(0,0)} \frac{\mid \mathbf{n}\times(x,y,f(x,y))\mid}{\sqrt{x^2+y^2}}$$
 存在.

C.
$$\lim_{(x,y)\to(0,0)} \frac{|\boldsymbol{a}\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在.

D.
$$\lim_{(x,y)\to(0,0)} \frac{|\boldsymbol{\alpha}\times(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在.

4. 设 R 为幂级数 $\sum a_n x^n$ 的收敛半径,r 是实数,则

下册,P82,4题

下册,P117,2题

A. 当
$$\sum_{n=1}^{\infty} a_{2n} r^{2n}$$
 发散时, $|r| \geqslant R$.

B. 当
$$\sum_{n=1}^{\infty}a_{2n}r^{2n}$$
 收敛时, $|r| \leqslant R$.

C. 当
$$|r| \geqslant R$$
 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散.

D. 当
$$|r| \leqslant R$$
 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛.

5. 若矩阵 A 经初等列变换化成 B,则

B. 存在矩阵
$$P$$
, 使得 $BP = A$.

A. 存在矩阵 P, 使得 PA = B. C. 存在矩阵 P, 使得 PB = A.

D. 方程组
$$Ax = 0$$
 与 $Bx = 0$ 同解.

6. 已知直线 $l_1: \frac{x-a_2}{a_1} = \frac{y-b_2}{b_1} = \frac{z-c_2}{c_1}$ 与直线 $l_2: \frac{x-a_3}{a_2} = \frac{y-b_3}{b_2} = \frac{z-c_3}{c_2}$ 相交于一点. 记向量 $\boldsymbol{\alpha}_i = \begin{bmatrix} a_i \\ b_i \end{bmatrix}$, $i = \frac{a_1}{c_2}$

1,2,3,则

下册,P161,1题

 $A. \alpha_1$ 可由 α_2 , α_3 线性表示.

B. α_2 可由 α_1 , α_3 线性表示.

 $C. \alpha_3$ 可由 α_1, α_2 线性表示.

D. **α**₁, **α**₂, **α**₃ 线性无关.

2020 年全国硕士研究生招生考试数学一试题

7. 设 A,B,C 为三个随机事件,且

$$P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0, P(AC) = P(BC) = \frac{1}{12},$$

则 A,B,C 中恰有一个事件发生的概率为

下册,P169,7题

A.
$$\frac{3}{4}$$
. B. $\frac{2}{3}$.

B.
$$\frac{2}{3}$$
.

C.
$$\frac{1}{2}$$
.

D.
$$\frac{5}{12}$$
.

8. 设 X_1, X_2, \dots, X_{100} 为来自总体 X 的简单随机样本,其中 $P(X=0) = P(X=1) = \frac{1}{2}$. $\Phi(x)$ 表示标准正态分布

函数,则利用中心极限定理可得 $P\left\{\sum_{i=0}^{100} X_i \leq 55\right\}$ 的近似值为

下册,P199,1 题

В.
$$\Phi(1)$$
.

$$-\phi(0,2)$$
, D, $\phi(0,2)$.

二、填空题:9~14小题,每小题4分,共24分.

9.
$$\lim_{x \to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1 + x)} \right] = \underline{\hspace{1cm}}$$
.

下册,P4,4 题

10. 读
$$\begin{cases} x = \sqrt{t^2 + 1}, \\ y = \ln(t + \sqrt{t^2 + 1}), \end{cases}$$
 则
$$\frac{d^2 y}{dx^2} \Big|_{t=1} = \underline{\qquad}.$$

下册,P20,2 题

11. 若函数 f(x) 满足 f''(x) + af'(x) + f(x) = 0 (a > 0) ,且 f(0) = m, f'(0) = n,则 $\int_{0}^{+\infty} f(x) dx =$ ______.

下册,P75,4 题

12. 设函数 $f(x,y) = \int_0^{xy} e^{xt^2} dt$,则 $\frac{\partial^2 f}{\partial x \partial y}\Big|_{(t,y)} = \underline{\qquad}$.

下册,P55,2题

13. 行列式
$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}.$$

下册,P112,3 题

14. 设 X 服从区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的均匀分布, $Y = \sin X$,则 $\operatorname{Cov}(X, Y) = \underline{\hspace{1cm}}$.

下册,P185,10题

三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤

15. (本题满分 10 分)

求函数
$$f(x,y) = x^3 + 8y^3 - xy$$
 的极值.

下册,P62,4 题

16. (本题满分 10 分)

计算曲线积分
$$I = \int_L \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy$$
,其中 $L \neq x^2 + y^2 = 2$,方向为逆时针方向.

下册, P92,4 题

17. (本题满分 10 分)

设数列 $\{a_n\}$ 满足 $a_1=1,(n+1)a_{n+1}=\left(n+\frac{1}{2}\right)a_n$,证明:当 |x|<1时,幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 收敛,并求其和函数.

下册,P86,9题

18. (本题满分 10 分)

设
$$\Sigma$$
 为曲面 $z=\sqrt{x^2+y^2}$ $(1\leqslant x^2+y^2\leqslant 4)$ 的下侧, $f(x)$ 是连续函数,计算
$$I=\iint_{\underline{z}}[xf(xy)+2x-y]\mathrm{d}y\mathrm{d}z+[yf(xy)+2y+x]\mathrm{d}z\mathrm{d}x+[zf(xy)+z]\mathrm{d}x\mathrm{d}y.$$

下册,P99,9题

19. (本题满分 10 分)

2020 年全国硕士研究生招生考试数学一试题

设函数 f(x) 在区间[0,2] 上具有连续导数, f(0) = f(2) = 0, $M = \max_{x \in \mathbb{R}^{3}} \{ |f(x)| \}$. 证明:

- (1) 存在 $\xi \in (0,2)$,使得 | $f'(\xi)$ | > M;
- (2) 若对任意的 $x \in (0,2)$, $|f'(x)| \leq M$,则 M = 0.

下册,P33,3 题

20. (本题满分11分)

设二次型 $f(x_1,x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$ 经正交变换 $\binom{x_1}{x_2} = \mathbf{Q}\binom{y_1}{y_2}$ 化为二次型 $g(y_1,y_2) = ay_1^2 + 4y_1y_2 + by_2^2$,

其中 $a \ge b$.

- (1) 求 a,b 的值;
- (2) 求正交矩阵 Q.

下册,P155,8题

21. (本题满分11分)

设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量且不是 A 的特征向量.

- (1) 证明 **P** 为可逆矩阵;
- (2) 若 $\mathbf{A}^2 \boldsymbol{\alpha} + \mathbf{A} \boldsymbol{\alpha} 6 \boldsymbol{\alpha} = \mathbf{0}$,求 $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$,并判断 \mathbf{A} 是否相似于对角矩阵.

下册,P138,3 题

22. (本题满分11分)

设随机变量 X_1 , X_2 , X_3 相互独立,其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},Y=X_3X_1+(1-X_3)X_2$.

- (1) 求二维随机变量(X_1 ,Y) 的分布函数,结果用标准正态分布函数 $\Phi(x)$ 表示;
- (2) 证明随机变量 Y 服从标准正态分布.

下册,P180,4 题

23. (本题满分11分)

设某种元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t \geqslant 0, \\ 0, & \text{ 其他}, \end{cases}$$

其中 θ, m 为参数且大于零.

- (1) 求概率 $P\{T > t\}$ 与 $P\{T > s + t \mid T > s\}$,其中 s > 0, t > 0;
- (2) 任取 n 个这种元件做寿命试验,测得它们的寿命分别为 t_1,t_2,\dots,t_n . 若 m 已知,求 θ 的最大似然估计值 $\hat{\theta}$.

下册,P191,2 题

答案速查

一、选择题

1, D. 2, C. 3, A. 4, A. 5, B. 6, C. 7, D. 8, B.

二、填空题

9. -1. 10. $-\sqrt{2}$. 11. am + n. 12. 4e. 13. $a^2(a^2 - 4)$. 14. $\frac{2}{\pi}$.

三、解答题

15. 极小值为
$$f(\frac{1}{6}, \frac{1}{12}) = -\frac{1}{216}$$
.

16.
$$I = \tau$$

17. 证明略.
$$S(x) = 2\left(\frac{1}{\sqrt{1-x}} - 1\right)$$
.

18.
$$I = \frac{14}{3}\pi$$
.

19. 略.

20. (1)
$$a = 4, b = 1$$
. (2) $\mathbf{Q} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -3 & -4 \end{pmatrix}$.

21. (1) 略. (2)
$$\mathbf{P}^{-1}\mathbf{AP} = \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$$
;**A** 可相似于对角矩阵.

22. (1)(
$$X_1$$
, Y) 的分布函数为 $F(x,y) = \frac{1}{2}\Phi(x)\Phi(y) + \frac{1}{2}\Phi(\min\{x,y\})$. (2) 略.

23. (1)
$$P\{T > t\} = e^{-\frac{t^n}{\theta^m}}; P\{T > s + t \mid T > s\} = e^{-\frac{(s+t)^m - s^m}{\theta^m}}.$$
 (2) $\hat{\theta} = \left(\frac{1}{n} \sum_{i=1}^n t_i^m\right)^{\frac{1}{m}}.$