Thinking about skills/objectives

The idea is to divide along two directions:

- 1. The kind of action the student should be able to perform.
- 2. The topic to which (1) applies

Basic categories of action

- Graphical interpretation: Gi
- Graphics construction: Gc
- Symbolic computation: Sc
- Notation reading: Nr
- Numeric computation: Computer
- Hand computation: Hand
- Establish consistency: Confirm
- Conceptual relationship: \mathbf{Re}
- Recognize and use vocabulary appropriately: Vo

Topics

Functions Fun

- 100. Notation for function creation: inputs, output, parameters, \equiv , makeFun()
- 101. Notation conventions: scalars vs functions
- 102. Evaluation of function
 - a. from formula
 - b. on computer
- 103. Shapes of functions
 - a. slope, concavity, curvature, discontinuity, extrema, monotonic, inflection point
- 104. Pattern-book functions
- 105. Domain and range
- 106. Parameters (basic modeling functions)
 - a. parameters with 'makeFun()
- 107. Input centering e.g $[x-x_0]$
- 108. Input scaling
- 109. Slope at a point
 - a. Directional slope at a point
 - b. Working with contours
- 110. Piecewise functions
- 111. Vector-valued functions (e.g. gradient)
- 112. Table as a function, graph as a function [be able to evaluate, find slope, accumulate]
- 113. Assembling functions
 - a. linear combination (coefficients, scalar multipliers)
 - b. composition
 - c. product
- 114. Partial evaluation (e.g. in anti-derivatives or taking a slice)
- 115. Functions from data
 - a. Splines and other interpolants
 - i. constructing by software
 - ii. when is smoothness necessary (cubic spline) or not wanted (Bezier)
 - b. Fitting by eye for basic modeling functions
 - c. Least squares fitting
 - d. Evaluate function from a table (including multivariate)

- 116. Exponentials
 - a. Interpretation as half-life, doubling-time
 - b. Complex exponentials and interpretation as damped (or growing) sinusoid
 - i. determine frequency from eigenvalues
- 117. Logarithms
 - a. Graphical uses
 - b. Graphics for functions
 - c. slice plot
 - d. contour plot
 - e. surface plot
 - f. vector field
 - g. graphical domain
 - h. paths and constraints
- 118. Parametric description of path as a set of functions of t.

Optimization Opt

- 650. Vocabulary: argmax vs max
- 651. Objective function
- 652. Incommensurate objectives
- 653. Constraints
 - a. Active or not
 - b. Equality and inequality
 - c. Shadow price (Lagrange multiplier)
 - d. constraint functions
 - e. parallel gradients for constraint function and objective function at argmax
- 654. Numerical techniques
- 655. Derivatives and critical points
- 656. Gradient vector points uphill, not necessarily toward optimum
- 657. Gradient ascent/descent algorithm
- 658. Find argmax/min from gradient field
- 659. Find argmax/min from contour plot

Data Dat

- 200. Organization of a data frame
- 201. Point plot
- 202. Estimating function parameters (linear and nonlinear for basic modeling functions)
 - a. straight-line
 - b. exponential
 - c. sinusoid
 - d. gaussian and sigmoid
 - e. distinguish between power-law and exponential
 - f. log axes
- 203. Function as a table
- 204. Residual between response var and output of a model function

Dimension analysis Dim

- 300. Fundamental dimensions
- 301. Compound dimensions and dimensional arithmetic
 - a. invalid operations on dimensional quantities
 - b. Know dimension of basic physical quantities (acceleration, force, energy, power, pressure, area, volume, work=force x distance, energy = power x time, power = force x velocity)

- 302. Determine dimensional consistency
- 303. Unit conversion and flavors of 1
- 304. Dimension of derivatives and anti-derivatives
- 305. Power-law functions

Calculus operations Cal

- 400. Vocabulary
- 401. With-respect-to input
- 402. Notations: $\partial_t x$, \dot{x} , $\frac{dx}{dt}$, $\frac{\partial x}{\partial t}$
- 403. Accumulation Acc
 - a. Symbolic anti-differentation
 - i. pattern book functions
 - ii. basic modeling functions (simple chain rule)
 - b. Appropriate notation
 - c. Constant of integration (also form from antiD())
 - d. Definite integral, net change
 - e. Numerical integration and anti-differentiation
 - f. "Area under a curve" and why it's signed area
 - g. Fundamental theorem
 - i. relationship between differentiation and anti-differentiation
 - ii. confirm anti-derivative by differentiation
 - h. Estimate from graph
 - i. anti-differentiation: output is a function
 - j. integration: output is a quantity
 - k. antiD() in R and how to evaluate it for definite integral
 - l. calculating work by integrating force over distance
 - m. calculate energy by integrating power over time
 - n. calculate center of mass, centroid, moment of inertia
 - o. find probability that random variable is in a range
 - p. discounting

404. Differentiation **Dif**

- a. Symbolic differentiation
 - i. pattern book functions
 - ii. basic modeling functions (simple chain rule)
 - iii. chain rule
 - iv. product rule
 - v. sum rule
 - vi. by computer
- b. Numerical differentiation
- c. Second and higher-order derivatives
- d. Partial derivatives
 - i. first order
 - ii. second-order, including mixed partials
- e. Gradient vector
 - i. relationship to contours
- f. Order of smoothness
- g. Relationship to velocity and acceleration
- h. output is a function
- i. identifying monotonicity, concavity, curvature, critical points
- j. tangents: line, circle, polynomial
- 405. Argmax finding

Other operations

- 500. Zero finding (and inversion, solution)
- 501. Find zeros of linear functions by hand
- 502. Simultaneous zeros (e.g. crossings of nullclines)
- 503. Iteration
 - a. improvement
 - b. Newton method

Calculus theory Theory

- 600. Vocabulary
- 601. Slope function
- 602. Finite-difference approximation to derivative
 - a. limit definition of a derivative
- 603. Euler accumulation
- 604. Value/Existence for a limit
- 605. Taylor polynomials
 - a. Pick center x_0
 - b. Memorize for sin(), cos(), exp()
 - c. Compute error for a given input, characterize error as a function of $x x_0$.
- 606. Local linear approximation
- 607. Differentials
- 608. Instantaneous vs average rate of change

Approximation Approx

- 700. Vocabulary
- 701. Polynomials
 - a. linear, interaction, quadratic terms
- 702. Linearization
- 703. Low-order polynomial approximation

Linear algebra Lal

- 800. Vocabulary
- 801. Acceleration, position, momentum, velocity are vector quantities
- 802. Vectors are rootless, have just direction and magnitude
- 803. Vector operations (add, scale, dot product)
- 804. Matrices
- 805. Target problem
- 806. Eigenvectors and eigenvalues
- 807. Subspace
 - a. Is a vector a member of a subspace? (numerically)
 - b. Projection
 - c. Residual

Dynamics Dyn

- 900. Dynamical system as set of first-order differential equations
- 901. Numerical integration from initial condition
- 902. Symbolic integration:
 - a. first-order linear
 - b. eigenvalues, characteristic values and stability
 - c. exponential ansatz

- d. linear combinations of solutions are solutions in linear systems
- 903. Flows
- 904. Trajectories
- 905. Time series
- 906. Nullclines
- 907. Unlimited and limited growth models, logistic growth
- 908. Bifurcation (appearance and disappearance of fixed points in 1-D)
- 909. Classic models: predator-prey, SIR
- 910. Force-balance and equivalence to pair of first-order differential equations
- 911. Identify physical quantities (resistance, restoring force) in force-balance

Probability Prob

- 1000. meaning of random variable, event
- 1001. probability density vs relative density
- 1002. normalization of relative density
- 1003. expected value, variance, standard deviation,

Computer Comp

- 1100. Translate math formula into R formula and vice versa
- 1101. Construct a function with parameters
 - a. set default values for parameters
- 1102. Graphics layers

Modeling concepts Mod

- 1200. Different models for different purposes
- 1201. Frameworks:
 - a. low-order polynomials
 - i. which terms are appropriate
 - ii. constructing from first principles
 - iii. constructing from data
 - iv. limitations for modeling (dog chasing squirrel)
 - b. differential equations
- 1202. Modeling cycle