IONIZATION CONSTANTS OF ACIDS AND BASES

W. P. Jencks and J. Regenstein

These pK'_a values were taken from the original literature and from several extensive compilations of such data, of which the most important are

Albert, Ionization Constants of Acids and Bases, Methuen, London, 1962.

Bell, The Proton in Chemistry, 2nd ed., Cornell, Ithaca, New York, 1973.

Brown, McDaniel, and Häfliger, in Braude and Nachod, Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.

Kortum, Vogel, and Andrussow, Dissociation Constants of Organic Acids in Aqueous Solution, Butterworths, London, 1961.

Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965.

Yukawa, Ed., Handbook of Organic Structural Analysis, Benjamin, New York, 1965.

A particularly valuable source of dissociation constants obtained under a variety of experimental conditions is provided by Sillen L. G. and Martell, A. E., Eds., *Stability Constants*, Special Publications No. 17 and 25, Chemical Society, London, 1964 and 1971. This compilation also lists association constants of metals for a variety of inorganic and organic ligands.

The compounds selected were those which were thought most likely to be useful to biochemists and chemists and these compilations should be consulted for information on compounds which are not included here.

All values are reported as $pK'_a = -\log K'_a = 14 - pK'_b$. K'_a is the ionization constant

$$\frac{\left[H^{\star}\right]\left[A^{\star}\right]}{\left[HA\right]} \text{ or } \frac{\left[H^{\star}\right]\left[B\right]}{\left[HB^{\star}\right]} \text{ or } \frac{\left[A^{n-1}\right]\left[H^{\star}\right]}{\left[HA^{n}\right]}$$

Temperatures are not indicated because variations of pK'_a with temperature are generally smaller than the variations of the data from different sources for other reasons, but most of the data were obtained at or near 25°. Ionization constants which are reported as thermodynamic values at 25° are indicated with an asterisk, *, but some of these may only represent values measured at low ionic strength.

These pK'_a values and a measured pH should not be used to obtain an exact measure of the ratio of acid to base in a given solution. Ionic strength and specific salt effects, as well as possible errors in the reported pK'_a values, are likely to make such estimates inaccurate. It should be kept in mind that the effect of increasing ionic strength is generally to decrease the apparent pK'_a of neutral and anionic acids and to increase the pK'_a of cationic acids. These effects are particularly large for polyanions, such as phosphates.

There is some intentional redundancy in the tables to facilitate the location of listings for compounds that might be listed in several sections. The pK'_a values for amines refer to the ionization of the conjugate acids of the amines except for a few nitrogen acids, which undergo an acidic ionization.

The pH of a solution at a given ionic strength and temperature is given by

$$pH = pK'_a + log \frac{[base]}{[acid]}$$

ick. Eds.,

·6).

lar.Biology, 2nd ed.,

in which the pK_a^i is measured under the same experimental conditions. The following relationships are useful to have readily available to estimate the ratio of acid to base at a given pH or to estimate the buffer ration of acid required to give a given pH; the compiler keeps a copy of these numbers on his desk.

Controlled the Control of the Contro

Fraction base or acid	рН	Fraction base or acid	рН
5% or 95%	$pK_a' \pm 1.25$	30% or 70%	$pK'_{a} \pm 0.37$
10% or 90%	$pK'_{a \pm 0.95}$	35% or 65%	$pK_a' \pm 0.27$
15% or 85%	$pK_{a}' \pm 0.75$	40% or 60%	$pK_a' \pm 0.18$
20% or 80%	$pK'_{a} \pm 0.60$	45% or 55%	$pK_a \pm 0.09$
2501 2501	-V' + 0 48	50% or 50%	$pK'_a \pm 0$

4 4 4

AMINO ACIDS

Compound	р <i>Қ</i> ′	Reference	Compound	р <i>К</i> ,	Reference
Alanine	2.34, 9.69	6	α-Aminotricarballylic acid	2 10 2 40	
N-Acetyl-	3.72	97	w-Ammotricar Danylle acid	2.10, 3.60, 4.60, 9.82	99
Amide	8.02	991	o-Aminovaleric acid	4.201 659 27	1120
3-(2-Aminoethyldithio)-	8.28, 9.30	99	2-Anilinoethylsulphonic acid	3.80	99
Carbamyl-	3.89	99	Arginine	12.48, 2.17,	6 .
N-Ethyl-	2.22, 10.22	99	· ·	9.04	
N-Methyl-	2.22, 10.19	99	Argininosuccinic acid	> 12. 1.62,	ेक मान्यू क
N-n-Propyl-	2.21, 10.19	99	·	9.58, 2.70,	5. 5.6 (13.4) 5.
β-(2-Pyridyl)-	1.37,4.02,9.22	99	f	4.26	
β-(3-Pyridyl)-	1.77, 4.64, 9.10	99	Asparagine	2.02, 8.8	6
β-(4-Pýridyl)- · β-Alanine	4.85	99	z-Hydroxy-	2.28, 7.20	99
N-acetyl-	3.60. 10.19	6	β-Hydroxy-	2.09, 8.29	99
Carbamyi-	4.44	129	Aspartic acid	2.09, 3.86, 9.8	2 99
Allothreonine	4.49	, 129 _~	Diamide	7.00	99
O-Methyl-	2.11, 9.01	99 99	Hydroxy-	1.91, 3.51, 9,1	1 99
y-Aminoacetoacetic ácid	1.92. 8.90	99	Azaserine	8.55 _{00-\$}	101
α-Aminoadipic acid	2.9, 8.3	101	•	40-1-16± 7 ≦[1]	33.
2-Aminobenzoic acid	2.14, 4.21 2.19, 4.95	99		Lunies	99
N. N-Dimethyl-	1.4, 8.49	99			99
3-Hydroxy-	5.19, 10.12	99	γ-Butyrobetaine	3.94	99
N-Methyl-	1.97, 5.34	99	Canaline	2.40-, 3.70,	99
3-Aminobenzoic acid	3.29, 5.10	99	Canavanine	9.20	
4-Aminobenzoic acid	2.50, 4.87	99	L-Citrulline	2.50, 6.60, 9.25	99
4-Aminobutylphosphonic acid	2.55, 7.55, 10.9	99	Creatine	2.43, 9.41	99
4-Aminobutylsulphonic acid	10.65	99	Creatinine	2.67, 11.02	6
α-Aminobutyric acid	2.55, 9.60	6	Cycloserine	4.84. 9.2	6
Carbamoyl-2-amino-n-butyric	3.89	129	Cysteine	1 4.4. 7.4 1 10.78, 1.71,	101
γ-Aminobutyric acid	4.23, 10.43	6 '	cysteme 7	8.33	6
Carbamyl-	4.68	129	Ethyl ester	6.69, 9.17	99
2-Aminobutyric acid	2.27, 9.68	99	Methyl ester	6.56, 8.99	99
o-Amino-n-caproic acid	2.33	129	S-Ethyl-	1.94, 8.69	99
e-Aminocaproic acid	4.37	129	S-Methyl-	8.75	99
10-Aminodecylphosphonic acid	8.0, 11.25	99 , .	Cystine	1.65, 7.85	6.
10-Aminodecylsulphonic acid	11.35	99	L-Cystine diamide	5.93, 6.90	99
10-Amino-n-dodecanoic acid	4.648	99 .	2,4-Diaminobutyric acid	1.85, 8.28,	99
Aminoethylphosphoric acid	2.45, 7.0, 10.8	99		10.50	
2-Aminoethylsulphonic acid	8.95	99	2,3-Diaminopropionic acid	1.23, 6.73, 9.56	99
6-Aminohexanoic acid	4.50	136	2,7-Diaminosuberic acid	1.84, 2.64,	99
α-Aminoisobutyric acid	4.37. 10.81	99	15t 4 t	9.23.9.89	
Carbamyi-	2.36, 10.21	6	3-Dimethylaminopropionic acid	9.85	. 99
a-Aminoisocaproic acid	4.46 2.33	129	Formamidinoglutaric acid	2.7, 4.4, 11.3	99
a-Aminoisovaleric acid	2.33	129	Formamidinoacetic acid Glutamic acid	2.6, 11.5	99
δ-Aminolaevulinic acid	4.05, 8.90	129	Diethyl ester	2.19, 4.25, 9.67	6
Aminomethylphosphonic acid	2.35, 5.9	99 99	y-Monobenzyl ester	7.04	99
Aminomethylsulphonic acid	5.75	99	2-Monoethyl ester	2.17, 9.00	99
a-Amino-6-methyl-n-valeric	2.32	129	:-Monoethyl ester	3.85, 7.84 2.15, 9.19	99
acid		127	Glutamine	2.17, 9.13	99
1-Aminonaphthalene-2-	1.71	99	Glycine	2.34, 9.6	6 6
sulphonic acid			N-Acetyl-	3.67	99
2-Aminonaphthalene-1-	2.35	99	N,N-bis(2-Hydroxyethyl)-	2.50, 8.11	99
sulphonic acid			N-n-Butyl-	2.35, 10.25	99
3-Amino-1-naphthoic acid	2.61, 4.39	99	Carbamyl-	3.88*	97
4-Aminopentanoic acid	3.97, 10.46	99	Chloroacetyl-	3.38*	97
5-Aminopentylsulphonic acid	10.95	99	N.N-Diethyl-	2.04, 10.47	99
4-Aminophenylacetic acid	3.60, 5.26	99	Dihydroxyethyl-	*80.8	97
2-Aminophenylarsonic acid 2-Aminophenylboric acid	3.77, 8.66	99	N.N-Dimethyl-	2.08-, 9.80	99
β-Aminopnenyiooric acid	4.53, 9.31	99	N-Ethyl-	2.34*, 10.23	99
4-Aminosalicylic acid	3.55*. 10.23* 1.78, 3.63	97	Ethyl ester	7.83	99
· · · · · · · · · · · · · · · · · · ·	1.70. 3.03	99	Formyl-	3.4.5*	97
Thermodynamic value.			N-Isobutyl- Methyl ester	2.35, 10.12	99'
	•		memyi estei	7.73	99

PEPTIDES

Compound	p <i>K</i> ′₃	Reference	Compound	pK_{\bullet}^{r}	Reference
Ala-Ala-(LD)	3.12, 8.30	27	Glv-Ala-Ala (LD)	3.30, 8.17	27
Ala-Ala-(LL)	3.30, 8.14	27	Glv-Ala-Ala (LL)	3.38, 8.10	27
Ala-Ala-Ala-(3D)	3.39, 8.06	27	Gly-Ala-Ala-Gly	3.30, 7.93	99
Ala-Ala-Ala-(DLL)	3.37, 8.06	27	Gly-Asp	2.81, 4.45, 8.60	99
Ala-Ala-Ala-(DLLL)	3.42, 7.99	27	Gly-asparagine	2.82, 7.20	99
Ala-Ala-(3L)	3.39, 8.03	27	Gly-Gly	3.06, 8.13	6
Ala-Ala-Ala-(4L)	3.42, 7.94	27	Gly-Gly-cystine	2.71, 7.94	99
Ala-Ala-Ala-(LDL)	3.31, 8.13	27	Gly-Gly-Gly	3.26, 7.91	23
Ala-Ala-Ala-(LDLL)	3.22, 7.99	27	Gly-His	6.79, 8.20	99
Ala-Ala-(LLD)	3.37, 8.05	27	Gly-Leu	3.10, 8.41	99
Ala-Ala-Ala-(LLDL)	3.24, 7.93	27	Gly-Pro	2.81, 8.65	99
Ala-Gly	3.16, 8.24	27	Gly-sarcosine	2.98. 8.57	99
Ala-Gly-Gly	3.19, 8.15	99	Gly-Ser	2.92, 8.10	99
Ala-Lys-Ala-(3L)	3.15, 7.65, 10.30	27	Gly-Ser-Gly	3.23, 7.99	99
Ala-Lys-Ala-(LDL)	3.33, 7.97, 10.36	27	Gly-Trp	8.06	99
Ala-Lys-Ala-(LDLL)	3.32, 8.01, 10.37	27	Gly-Tyr	2.93, 8.45, 10.49	99
Ala-Lys-Ala-(LLD)	3.29, 7.84, 10.49	27	Gly-Val	3.15, 8.18	99
Ala-Lys-Ala-Ala-(4L)	3.58, 8.01, 10.58	27	His-Gly	2.36, 6.27, 8.57	99
Ala-Lys-Ala-Ala-Ala-(5L)	3.53, 7.75, 10.35	27	His-His	5.54, 6.80, 7.82	99
Ala-Lys-Ala-Ala-Ala-(LDLL)		27	Leu-asparagine	2.83, 8.23	99
β -Ala-I-methylhistidine	2.64, 7.04, 9.49	99	Leu-Tyr	2.87, 8.36, 10.28	99
Ala-Pro	3.04, 8.38	99	Lys-Ala-(LD)	3.00, 7.74, 10.63	27
β-Ala-Bis	2.73, 6.87, 9.73	99	Lys-Ala-(LL)	3.22, 7.62, 10.70	27
Anserine	7.0, 2.65, 9.5	6	Lys-Glu	2.98, 4.47, 8.45,	99
Asparaginyl-Gly	2.90, 7.25	99		11.30	
Asp-Asp	2.70, 3.40, 4.70 8.26	99	Lys-Lys-(LD)	2.85, 7.53, 9.92 10.98	27
α-Aspartyl-histidine ,	2.45, 3.02, 6.82,	99	Lys-Lys-(LL)	3.01, 7.53, 10.05	27
A Amentul bindidi-	7.98	00	Land Land (2a)	11.01	27
β -Aspartyl-histidine	1.93, 2.95, 6.93, 8.72	99	Lys-Lys-(3L)	3.08, 7.34, 9.80, 10.54, 11.32	_
Asp-Gly	2.10, 4.53, 9.07	99	Lys-Lys-(LDD)	2.94, 7.14, 9.60,	27
Asp-Tyr	2.13, 3.57, 8.92,	99		10.38, 11.09	
	10.23		Lys-Lys-(LDL)	2.91, 7.29, 9.79,	27
Carnosine	6.83, 9.51	6		10.54, 11.42	
Cys-Cys	2.65, 7.27, 9.35,	99	Met-Met	2.22, 9.27	99
	10.85		Methyl-Leu-Gly	3.29, 7.82	99
Cys-Gly-Gly	3.13, 6.36, 6.95	99	Phe-Ala-Arg	2.60, 7.54, 12.43	99
Cys-Gly-Gly-Gly	3.21, 6.01, 6.87	99	Phe-Gly	3.13, 7.62	99
L-Cystinylcystine	1.87, 2.94, 6.53,	99	Phenylalanylglycine amide	6.72	99
	7.66		Pro-Gly	3.19, 8.97	99
N.N-Dimethylglycyl-glycine		99	Sarcosyl-Gly	3.14, 8.66	99
N.N-Dimethyl-leucyl-	7.78	99	Sarcosyl-Leu	3.15, 8.67	99
glycine			Sarcosylsarcosine	2.89, 9.18	99
Glutaminyl-glutamic acid	3.14, 4.38, 7.62	99	Ser-Gly	3.10, 7.33	99
Glutaminyl-glycine	3.15, 7.52	99	Ser-Leu	3.08, 7.45	99
- Glutathione	3.59, 8.75, 9.65	77	Tyr-Tyr	3.52, 7.68, 9.80,	99
Glutathione, oxidized	3.15, 4.03, 8.57,	77	Val Ch	10.26	
Chy Ale (a) (e)	9.54		Val-Gly	3.23. 8.00	99
Gly-Ala (L), (D)	3.17, 8.23	27			

THIOLS

Compound	. p <i>K</i> ₌	Reference	Compound	р <i>К</i> ',	Reference
N-Acetylcysteine N-Acetyl-β-mercaptoiso- leucine	10 20	112 112	o-Mercaptophenylacetic aci 2-Mercaptopropionic acid Methyl cysteine	d 4.28, 7.67 4.32, 10.30 6.5, (7.5)	59 153 819003 A
N-Acetylpenicillamine O-Aminothiophenol	9.90 6.59	112 81	Methyl-[β-diethylaminoethy sulfide		5
p-Chlorothiophenol	. 7.50	81	Methyl thioglycolate	7.8	23
- Cysteine	1.8, 8.3, 10.8		p-Nitrobenzenethiol	5.1	58
Cysteine ethyl ester Cysteinylcysteine	6.53, 9.05 2.65, 7.27,	112 23	Penicillamine Thiocyanic acid	7.90, 10.42 1.84	112
Cystemyleysteme	9.35, 10.85		Thioglycolic acid	3.67, 10.31	123 St. 1
1-Diethylamino-butane-(4)	10.1	5	Thiophenol	7.8, 6.52	59, 81, 82
I-Diethylamino-hexane-(6)	. 10.1	5 ,	Pentafluoro-	2.68	155
I-Diethylamino-propane-(3)	8.0. 10.5	5	p-Me-	6.82	157 157
N-Diethyl-cysteamine N-Dimethyl-cysteamine	7.8, 10.75 7.95, 10.7	5 5	p-OMe- m-Me-	6.77 6.66	157
N-Dipropyl-cysteamine	8.00, 10.8	5	m-OMe-		osan ist ationit
Ethyl mercaptan	10.50	81	p-Cl-	6.13	157
- Glutathione	2.12, 3.59,	23	p-Br-	6.02	157
DL-Homocysteine	8.75, 9.65 8.70, 10.46	112	m-Cl- p-COMe-	5.78 5.33	157 157
2-Mercaptoethanesulfonate	7.53 (9.1)	81	<i>p-</i> COMe- <i>m-</i> NO ₂ -	5.33 5.24	157
Mercaptoethanol	9.5	23	p-NO ₂ -	4.71, 4.50	157
Mercaptoethylamine	8.6, 10.75	23	I-Thio-D-sorbitol	9.35	81
. N-B-Mercaptoethylmorpholi		5	N-Trimethyl cysteine	8.6	23
N-β-Mercaptoethylpiperidine β-Mercaptoisoleucine	7.95, 11.05 8.10, 10.6	5 112			
X = -H	-S-	-SH	X = -H	1s- 1	-SH
X(CH ₂) ₂ SH 12.0	13.96	10.75	X(CH ₂) ₃ SH —	13.24	11.14
$X(CH_2)_4SH$ 12.4	13.25	11.50	X(CH ₂) ₃ SH -	13.27	1! 82
Compound	p <i>K</i> ′₃	Reference	Compound	p <i>K</i> ' _a	Reference
Mercaptans, RSH			1-C4H9-	11.05	82
R	0.43	82	(CH ₃) ₂ CH-	10.86*	103 103
C ₆ H ₅ CH ₂ - HOCH ₅ CH(OH)CH ₅ -	9.43 9.51	82 82	(CH ₃) ₃ C- HOCH ₃ CH ₃ -	11. 22* 9.72	103
CH,=CHCH,-	9.96	82	CH ₁ CONHCH ₂ CH ₂ -	9.92	103
n-C ₄ H ₉ -	10.66	82	OCOCH.	10.68*	103
I-C ₅ H ₁₁ -	11.21	82	OCOCH2CH2-	10.84*	103
C ₂ H ₃ OCOCH ₂ - C ₂ H ₃ OCH ₂ CH ₂ -	7.95 9.38	82 82	o-TOCOC ₆ H ₄ - p-TOCOC ₆ H ₄ -	8.88 * 5.80 *	103 103
HOCH ₂ CH(OH)CH ₂ -	9.66	82 82	p-, ococ ₆ n ₄ - CH ₃ CO-	3.62*	103
n-C ₃ H	10.65	82		• •	

[•] Thermodynamic value.