Digital Electronics Question Paper Solution

Section A

Q 1- Illustrate with examples cyclic, reflective and self-complementary nature of codes. Also design a 4-bit binary to gray and gray to binary code converter circuits with minimum number of NAND gates

Solution -

Cyclic Codes - Cyclic codes are those in which each successive code word differs from preceding one in only one-bit position. They are also called unit distance codes.

e.g. Gray code in shafter

[1.5 Marks]

Reflective Codes – A reflective code is a binary code in which the n significant bits for code words 2^n Through $2^{n+1}-1$ are the mirror images of those for 0 through 2^n-1 . e.g Gray code [1.5 Marks]

Self-complementary Codes – A code is said to be self-complementary if the code word of the 9's complement of N i.e. 9-N can be obtained from the code word of N by interchanging all the 0s and 1s. e.g. 2421,5211,642-3, 84-2-1 and XS-3. [1.5 Marks]

Design of 4 bit binary to gray -- [3 Marks] — Page 351-353 (FoDC by Anand Kumar)

Design of 4 bit gray to binary -- [3 Marks]

NAND Gate Realization

[2 Marks]

Q 2- Design a counter that goes through the prime number states 0, 1, 3, 5, 7, 11, N, 0, 1... using D flip flop where N=17. If N=60, how many flip-flops are required. Also, Distinguish between Ring counter and Johnson counter. Comment on the states.

Solution – Counter States are 0,1,3,5,7,11,13,17, 0,1,.....

$Q \rightarrow$	Design	ob con	unter	\rightarrow	0, 1	1,2,3,	5,7,11,	13,17,50
	Present			t st	ate	l	Pegi	ined
	1200	Q Q Q O	Q ⁺			2', Q;	Dy D3	\mathcal{D}_2 \mathcal{D}_1 \mathcal{D}_0
		000	0	0		0 1	0 0	0 0 1
		0 1 0	0	0	0	11		011
	000	1 1	0	0	1	01	00	101
	0 0 =	L 0 1	0	0	1	11	00	111
ć	0 0	1 1	0	1	0	11	01	0-12
C) 1 0	11	0	1	1	0 1	01	101
	1 1	01	1	0	0	0 1	10	
1	- 0 (001	0	0	0	00	00	000
By &	Solving	K-maj	5 - 5	var	iabl	'e →		
		$D_4 =$				_		
$D_3 = Q_3 \overline{Q_2} + Q_2 Q_1$								
$D_2 = Q_3 \overline{Q_2} + \overline{Q_3} Q_2 Q_1 + Q_1 Q_0 Q_2$								
		$D_1 =$	$\overline{\mathbb{Q}_3} \mathbb{Q}_2$	+ 4), Q.	+ 03 0	2+04	Q3 Q2 Q1 Q0
		Do =	$Q_1 + 1$	Q2+6	23+	\mathbb{Q}_{o}		

[7 Marks]

If N=60, how many flip-flops are required. - 6 Flip- Flops

[0.5 Marks]

Distinguish between Ring counter and Johnson counter.

[4 Marks]

Comment on the states.

[1 Marks]

Section B

Q3 - Obtain a minimized expression for the following Boolean expression using K Map and implement the same using minimum number of NAND gate.

$$F(A,B,C,D) = \sum m(2,3,6,9,12) \cdot \sum d(5,8,15)$$

If F1 = $\sum m(1,2,4,7)$ and F2 = $\sum m(3,5,6,7)$, implement them using 3 to 8 line decoder. Comment on their logic operations.

Solution -

[5 +2 Marks]

$$F1 = \sum m(1,2,4,7) = Sum \text{ and } F2 = \sum m(3,5,6,7) = Carry Out - [1 Marks]$$

Diagram Implementation of 3-8 Decoder

[4.5 Marks]

$$S = \overline{A}\overline{B}C_{in} + \overline{A}\overline{B}\overline{C}_{in} + A\overline{B}\overline{C}_{in} + ABC_{in} = A \oplus B \oplus C_{in} = \Sigma m(1, 2, 4, 7)$$
and
$$C_{out} = \overline{A}BC_{in} + A\overline{B}C_{in} + AB\overline{C}_{in} + ABC_{in} = AB + (A \oplus B)C_{in} = \Sigma m(3, 5, 6, 7)$$

Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 line decoder. The implementation is shown in Figure 7.71. The decoder generates the 8 minterms for A, B, C_{in} . The OR gate for output S forms the logical sum of minterms 1, 2, 4 and 7. The OR gate for C_{out} forms the logical sum of the minterms 4, 5, 6 and 7.

Figure 7.71 Logic diagram of a full adder using a decoder.

Q4 - Explain the working of Successive Approximation and Flash type analog to digital converter. Which one is the fastest and why? How many bits are required for a DAC so that full scale output is 15 V and resolution 200 mV.

Solution -

working of Successive Approximation and Flash type analog to digital converter. [3 + 3 Marks]

Fastest and Why? - Flash type

[0.5 + 1 Marks]

resolution =
$$\frac{1}{\text{no. of steps}}$$
 \Rightarrow 200 \times 10⁻³ = $\frac{1}{\text{no. of steps}}$
no. of steps = $\frac{1}{200 \times 10^{-3}}$ = 2ⁿ - 1
 $2^n - 1 = 5 \Rightarrow 2^n = 6$
 $n = log_2 6 = 2.58 \cong 3bits$ [5 Marks]

Q5 - Distinguish between Mealy and Moore model. Design a synchronous sequential circuit using Mealy model and D Flip flops which produces an output Z=1, when "1011" is detected. Assume Overlapping Detection is used.

Solution -

Distinguish between Mealy and Moore model

[5 Marks]

Design of Sequence Detector

[3+1+1+2.5=7.5 Marks]

PS	NS (Y ₁ Y ₂)	O/P (z)		
y ₁ y ₂	x = 0	x = 1	x = 0	x = 1	
$A \rightarrow 0 \ 0$	0 0	0 1	0	0	
$B \rightarrow 0 1$	1 0	0 1	0	0	
$C \rightarrow 1 0$	0 0	1 1	0	0	
$D \rightarrow 1 1$	1 0	0 1	0	1	

[1 Marks]

Table 13.19 Example 13.9: Excitation table

PS		I/P	NS		I/P t	o FFs	O/P
y ₁	y ₂	x	Y	Y ₂	$\overline{D_1}$	D ₂	z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	0	0	0	0	0
1	0	no our li	_	1	. 1	1	0
1	1			0	1	0	0
1	1	add to the	0	1	0	1	1

[1 Marks]

[2.5 Marks]