Machine Learning course, advanced track

Lecture 15: Generative models

Radoslav Neychev

MIPT 13.12.2019

References

This lecture structure was inspired a lot by the <u>series of Habr posts on Autoencoders</u> and <u>GANs in Keras</u>

Outline

- Generative models overview
- Simple Autoencoders (not generative models!)
- Variational Autoencoders (VAE)
 - Conditional VAE
- Generative Adversarial Networks
 - Conditional GAN

And a lot of gif images.

Generative models taxonomy

Generative models taxonomy

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Simple example: PCA

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

PCA performance on MNIST

16 components

Convolutional performance on MNIST

7 x 7 latent space

Homotopy between samples

10 steps between samples

In original feature space (28 x 28):

• In latent space (7 x 7):

Latent space structure

VAE intuition

Denote distributions $\,Q(z)\,$ and $\,P(z|X)$.

Kullback-Leibler divergence is defined as

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

Applying the Bayes rule:

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

Applying the Bayes rule:

$$\mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

Applying the Bayes rule:

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\log P(X) - \mathcal{D}\left[Q(z|X)\|P(z|X)\right] = E_{z\sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X)\|P(z)\right]$$

 $\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$

This equation is the core of Variational Autoencoders

Structure of the latent space

VAE so far

VAE so far

Encoder

VAE so far

Reparametrization trick

Reparametrization trick

VAE manifold

Epoch: 0

Structure of the latent space

VAE latent space distribution

Conditional VAE intuition

Conditional VAE

cVAE manifold

cVAE manifold

Transferring style with cVAE

Once again

cVAE latent space distribution

GAN

Training GAN

Training GAN

Gradient flows to **Gen** with **Dis** weights freezed to fool the Discriminator

Optimization process in GAN

GAN manifold

Label: all Batch: 0

Conditional GAN

cGAN manifolds

```
5555555555
5555555555
55555555555
5555555555
5555555555
555555555555
ょくらくらくらちちちちちち
ょくくくくくく5555555
ょくくくくくくとちちちちちち
ょくくくくくく5555555
५५५५५५५५5555555
ょくよくよくよく 5 5 5 5 5 5 5 5
5555555555
555555
```

```
クククワフフフフフフフ
クククククフフフフフフ
```

Some more combinations

Simple GAN

VAE/GAN

VAE/GAN original illustration

Q & A and farewell

(We still will write some code!)

This was the last lecture. Thank you for your attention.

Our course took 28 weeks and almost a year.

Machine Learning and Deep Learning worlds are very big, and we have only peeked at them. But it is still a lot.

It was not always smoothly, but we hope the journey was interesting.

Good luck