Mathematical Formulae for Electrical and Computer Engineers

Edited by:
Loh Ai Poh

Tan Woei wan

Contents

1	Alg	ebra	1
	1.1	Factors	1
	1.2	Partial fractions	1
	1.3	Law of indices	2
	1.4	Logarithm	2
	1.5	Quadratic Formula	3
	1.6	Arithmetic Progression	3
	1.7	Geometric Progression	4
	1.8	Series	4
2	Geo	ometry	5
3	Trig	gonometry	6
	3.1	Definitions	6
	3.2	Signs and variations of trigonometric functions	6
	3.3	Identities	7
	3.4	Compound angle addition and subtraction formula	7
	3.5	Double angles	7
	3.6	Products of sines or cosines into sums or differences	8
	3.7	Sums or differences of sines or cosines into products	8
	3.8	Polar Form	8
	3.9	Complex exponent forms : imaginary form	9
4	Hyp	perbolic Function	10
	4.1	Definitions	10
	4.2	Identities	10
5	Cor	nplex Numbers	11

6	Differentiation	12
7	Integration	14
8	Differential Equations	15
	8.1 First order differential equations	 15
	8.2 Second order differential equations	 16
9	Laplace Transform	18
	9.1 Definition	 18
	9.2 Laplace Transform Pairs	 18
	9.3 Laplace Transform rule	 19
10	0 Fourier Series	20

Algebra

1.1 Factors

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2bc + 2ca + 2ab$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} + b^{3} + c^{3} - 3abc = (a+b+c)(a^{2} + b^{2} + c^{2} - bc - ca - ab)$$

1.2 Partial fractions

Provided that the numerator f(x) is of less degree than the relevant denominator, the following identities are typical examples of partial fraction expansion:

• only distinct linear factors :

$$\frac{f(x)}{(x+\alpha_1)\dots(x+\alpha_n)} = \frac{A_1}{x+\alpha_1} + \dots + \frac{A_n}{x+\alpha_n}$$

• repeated linear factors :

$$\frac{f(x)}{(x+\alpha)^n} = \frac{A_1}{x+\alpha} + \ldots + \frac{A_n}{(x+\alpha)^n}$$

• a quadratic factor :

$$\frac{f(x)}{(\alpha_1 x^2 + \beta_1 x + \gamma_1)(\alpha_2 x^2 + \beta_2 x + \gamma_2)} = \frac{Ax + B}{(\alpha_1 x^2 + \beta_1 x + \gamma_1)} + \frac{Cx + D}{(\alpha_2 x^2 + \beta_2 x + \gamma_2)}$$

1.3 Law of indices

$$a^{m} \times a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(a^{m})^{n} = a^{mn}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$a^{0} = 1$$

$$\sqrt[n]{a^{m}} = a^{m/n}$$

$$\sqrt[n]{a^{b}} = \sqrt[n]{a} \times \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

1.4 Logarithm

Definition: If $y = a^x$, then

$$x = \log_a y$$
 ("log y to base a")
 $y = a^{\log_a x}$

Logarithmic rules

$$\log(a \times b) = \log a + \log b$$

$$\log\left(\frac{a}{b}\right) = \log a - \log b$$

$$\log(x^a) = a \log x$$

$$\log(y)^{1/n} = \frac{\log y}{n}$$

$$\log_b a = \frac{\log_c a}{\log_c b} \quad \text{(Change of base)}$$

$$\log(a + jb) = \log\sqrt{a^2 + b^2} + j \tan^{-1} \frac{b}{a}$$

1.5 Quadratic Formula

If $ax^2 + bx + c = 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 4ac > 0$, then $ax^2 + bx + c = 0$ yields two real and distinct roots.
- If $b^2 4ac = 0$, then $ax^2 + bx + c = 0$ yields two real and equal roots.
- If $b^2 4ac < 0$, then $ax^2 + bx + c = 0$ yields a pair of complex conjugate roots.

1.6 Arithmetic Progression

If a =first term, d =common difference, n =number of terms and l =last term, then the arithmetic progression is

$$a, a+d, a+2d, a+3d, \dots, a+(n-1)d, \dots, l$$
 Sum of n terms $=\frac{n}{2}\left[2a+(n-1)d\right]$
$$=\frac{n}{2}(a+l)$$

1.7 Geometric Progression

If a =first term, r =common ratio and n =number of terms, then the geometric progression is :

$$a, ar, ar^2, ar^3, \dots, ar^{n-1}, \dots$$
 Sum of n terms
$$= \begin{cases} \frac{a(r^n-1)}{r-1}, & r>1\\ \frac{a(1-r^n)}{1-r}, & r<1 \end{cases}$$
 Sum to infinity when $r<1=\frac{a}{1-r}$

1.8 Series

Binomial series:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \dots$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots$$
 (valid for $-1 < x < 1$)

Exponential series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

 $e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots$

Taylor's expansion:

$$f(x+a) = f(x) + af'(x) + \frac{a^2}{2!}f''(x) + \frac{a^3}{3!}f'''(x) + \dots$$

Maclaurin's form:

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$$

Chapter 2

Geometry

Equation of a straight line joining (x_1, y_1) and (x_2, y_2) :

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} = m$$
 or
$$y-y_1 = m(x-x_1)$$

$$y = mx+c \quad \text{where } m = \text{ gradient and } c = y\text{-intercept}$$

Equation of a circle, center at (x_0, y_0) , radius r :

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Equation of an ellipse, center at (x_0, y_0) , semi-axes a and b :

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

Pythagoras Theorem:

$$c^2 = a^2 + b^2$$

Trigonometry

3.1 Definitions

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sin A}{\cos A}$$

$$\csc A = \frac{1}{\sin A} = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\sec A = \frac{1}{\cos A} = \frac{\text{hypotenuse}}{\text{adjacent}}$$

$$\cot A = \frac{1}{\tan A} = \frac{\text{adjacent}}{\text{opposite}}$$

3.2 Signs and variations of trigonometric functions

Quadrant	$\sin A$	$\cos A$	$\tan A$	$\cot A$	$\sec A$	$\operatorname{cosec} A$
т	+	+	+	+	+	+
	0 to 1	1 to 0	$0 \text{ to } \infty$	∞ to 0	$1 \text{ to } \infty$	∞ to 1
TT	+	_	_	_	_	+
II	1 to 0	0 to -1	$-\infty$ to 0	$0 \text{ to } -\infty$	$-\infty$ to -1	$1 \text{ to } \infty$
111	_	_	+	+	_	_
III	0 to -1	-1 to 0	$0 \text{ to } \infty$	∞ to 0	$-1 \text{ to } -\infty$	$-\infty$ to -1
13.7	_	+	_	_	+	_
IV	-1 to 0	0 to 1	$-\infty$ to 0	0 to $-\infty$	∞ to 1	$-1 \text{ to } -\infty$

3.3 Identities

$$\sin^2 A + \cos^2 A = 1$$

$$1 + \tan^2 A = \sec^2 A$$

$$\cot^2 A + 1 = \csc^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(-A) = -\sin A$$

$$\cos(-A) = +\cos A$$

$$\tan(-A) = -\tan A$$

3.4 Compound angle addition and subtraction formula

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

3.5 Double angles

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\sin 3A = 3 \sin A - 4 \sin^3 A$$

$$\cos 3A = 4 \cos^3 A - 3 \cos A$$

$$\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$$

3.6 Products of sines or cosines into sums or differences

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

3.7 Sums or differences of sines or cosines into products

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = 2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

3.8 Polar Form

$$a\sin x + b\cos x = R\sin(x + \phi)$$

where
$$R = \sqrt{a^2 + b^2}$$

 $\theta = \tan^{-1} \frac{b}{a}$
 $\sin \phi = \frac{b}{R}$
 $\cos \phi = \frac{a}{R}$

3.9 Complex exponent forms: imaginary form

$$\cos x = \frac{e^{jx} + e^{-jx}}{2} \qquad e^{jx} = \cos x + j\sin x$$

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j} \qquad e^{-jx} = \cos x - j\sin x \ j = \sqrt{-1}$$

Hyperbolic Function

4.1 Definitions

$$\sinh A = \frac{e^A - e^{-A}}{2}$$

$$\cosh A = \frac{e^A + e^{-A}}{2}$$

$$\tanh A = \frac{e^A - e^{-A}}{e^A + e^{-A}}$$

cosech
$$A = \frac{1}{\sinh A} = \frac{2}{e^A - e^{-A}}$$

sech $A = \frac{1}{\cosh A} = \frac{2}{e^A + e^{-A}}$
coth $A = \frac{1}{\tanh A} = \frac{e^A + e^{-A}}{e^A - e^{-A}}$

4.2 Identities

$$\cosh^2 A - \sinh^2 A = 1$$

$$1 - \tanh^2 A = \operatorname{sech}^2 A$$

$$\coth^2 A - 1 = \operatorname{cosech}^2 A$$

Complex Numbers

$$z = x + jy \text{ where } j = \sqrt{-1}$$

$$= r(\cos \theta + j \sin \theta)$$

$$= r \angle \theta$$

$$= re^{j\theta}$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = arg z = \theta_1$$

$$= \tan^{-1} \frac{b}{a} = \sin^{-1} \frac{y}{|z|} = \cos^{-1} \frac{x}{|z|}$$

Addition: (a + bj) + (c + dj) = (a + c) + (b + d)j

Subtraction: (a+bj)-(c+dj)=(a-c)+(b-d)j

Multiplication: $z_1 z_2 = r_1 r_2 \angle (\theta_1 + \theta_2)$

Division : $\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle (\theta_1 - \theta_2)$

De Moivre's theorem : $[r \angle]^n = r^n \angle n\theta = r^n (\cos n\theta + j \sin n\theta)$

Differentiation

Function	Derivative	Function	Derivative
x^n	nx^{n-1}	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\log_e n$	$\frac{1}{x}$	$\log_a x$	$\frac{1}{x \log_e a}$
e^{cx}	ce^{cx}	$a^x (a > 0)$	$a^x \log_e a$
$\sin x$	$\cos x$	$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$	$ \cos x$	$-\csc x \cot x$
$\sec x$	$\sec x \tan x$	$\cot x$	$-\csc^2 x$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$		

Product rule:

When y = uv and u and v are functions of x, then

$$\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$$

Quotient rule:

When $y = \frac{u}{v}$ and u and v are functions of x, then

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Chain rule:

If u is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Implicit differentiation:

$$\frac{d}{dx}[f(y)] = \frac{d}{dy}[f(y)] \times \frac{dy}{dx}$$

Maximum and minimum values:

If y = f(x), then the stationary points are found by solving $\frac{dy}{dx} = 0$.

Let a solution of $\frac{dy}{dx} = 0$ be x = a. If the value of $\frac{d^2y}{dx^2}$ when x = a is :

- positive, the point is a minimum point.
- negative, the point is a maximum point.
- zero, the point is a point of inflexion (saddle point).

Integration

Function	Integral	Function	Integral
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{x}$	$\log_e x $
e^x	e^x	$\frac{f'(x)}{f(x)}$	$\log_e f(x) $
$\sin x$	$-\cos x$	$\cos x$	$\sin x$
$\tan x$	$\log_e \sec x $	$\csc x$	$\log_e \tan \frac{x}{2} $
$\sec x$	$\log_e \tan(\frac{\pi}{4} + \frac{x}{2}) $	$\cot x$	$\log_e \sin x $
$\frac{1}{a^2 - x^2} \left(x < a \right)$	$\frac{1}{2a}\log_e\frac{a+x}{a-x}$	$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$

Integration by parts: If u and v are both functions of x, then

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Differential Equations

8.1 First order differential equations

1. $\frac{dy}{dx} = f(x)$ or $P\frac{dy}{dx} + Q = 0$, P and Q being functions of x only.

$$P\frac{dy}{dx} + Q = 0$$
 can be written as $\frac{dy}{dx} = -\frac{Q}{P} = f(x)$

Solution:
$$y = \int f(x) dx$$

2. If $\frac{dy}{dx} = f(y)$ or $P\frac{dy}{dx} + Q = 0$, P and Q being functions of y only.

$$P\frac{dy}{dx} + Q = 0$$
 can be written as $\frac{dy}{dx} = -\frac{Q}{P} = f(y)$

Solution:
$$\int dx = \int \frac{dy}{f(y)}$$

3. Separation of variables : $\frac{dy}{dx} = f(x) \cdot f(y)$

Solution:
$$\int \frac{dy}{f(y)} = \int f(x) dx$$

4. Homogeneous first order differential equation : $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$

Solution:

- Introduce the new independent variable $v = \frac{y}{x}$.
- Then, y = vx and $\frac{dy}{dx} = v(1) + x\frac{dv}{dx}$ by the product rule.
- Substitute y = vx and $dydx = v(1) + x\frac{dv}{dx}$ in $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ to obtain a separable differential equation. Solve the separable differential equation.
- Solution is obtained by replacing v by $\frac{y}{x}$

5. Linear first order differential equation : $\frac{dy}{dx} + P(x)y = Q(x)$

Solution:

- \bullet Determine the integrating factor (I.F.) : $e^{-P(x)dx}$
- Substitute the I.F. into the equation : $ye^{-P(x)dx} = \int Q(x)e^{-P(x)dx} dx$,
- $ye^{P(x)dx}$ will be an exact differential and $\int Q(x)e^{P(x)dx} dx$ can be integrated

8.2 Second order differential equations

Linear homogeneous second order differential equations

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

- Form the characteristic equation : $am^2 + bm + c = 0$
- If the roots of the complementary equation are
 - real and distinct i.e. $m = \alpha$ and $m = \beta$, then the general solution is

$$y = Ae^{\alpha x} + Be^{\beta x}$$

- real and equal i.e. $m = \alpha$ twice, then the general solution is

$$y = e^{\alpha x}(A + Bx)$$

- complex i.e. $m = \alpha \pm j\beta$, then the general solution is

$$y = e^{\alpha x} (A \sin \beta x + B \cos \beta x)$$

 \bullet Constants A and B are determined from initial conditions.

Linear non-homogeneous second order differential equations

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

The total solution of this type of differential equation is made up of :

• The general solution of the homogeneous second order differential equation

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

• The particular integral, which depends on f(x). The following table lists the trial particular integral to use for various f(x).

f(x)	Trial particular integral		
f(x) = constant	$\bullet y = k$		
	• $y = kx$ when general solution contains a		
	constant		
$f(x) = L + Mx + Nx^2 + \dots$	$\bullet y = a + bx + cx^2 + \dots$		
$f(x) = Ae^{\alpha x}$	• $y = ke^{\alpha}x$		
	• $y = kxe^{\alpha x}$ when general solution contains $e^{\alpha x}$		
	• $y = kx^2 e^{\alpha x}$ when general solution contains		
	$xe^{\alpha x}$, and so on		
$f(x) = \alpha \sin px + \beta \cos x$	$\bullet y = a\sin px + b\cos px$		
α or β may be zero	• $y = x(a \sin px + b \cos px)$ when general solution		
	contains $\sin px$ and/or $\cos px$		

Laplace Transform

9.1 Definition

$$\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$$

9.2 Laplace Transform Pairs

f(t)	\Leftrightarrow	F(s)
$\delta(t)$	\Leftrightarrow	1
U(t)	\Leftrightarrow	$\frac{1}{s}$
tU(t)	\Leftrightarrow	$\frac{1}{s^2}$
$e^{-at}U(t)$	\Leftrightarrow	$\frac{1}{s+a}$
$[\sin at] U(t)$	\Leftrightarrow	$\frac{a}{s^2 + a^2}$
$[\cos at] U(t)$	\Leftrightarrow	$\frac{s}{s^2 + a^2}$
$e^{-at}\sin bt U(t)$	\Leftrightarrow	$\frac{b}{(s+a)^2 + b^2}$
$e^{-at}\cos bt U(t)$	\Leftrightarrow	$\frac{s+a}{(s+a)^2+b^2}$
$te^{-at}U(t)$	\Leftrightarrow	$\frac{1}{(s+a)^2}$

9.3 Laplace Transform rule

• Transform of Derivatives :

$$\mathcal{L}\{f'(t)\} = sF(s) - f(0)$$

• Transform of Derivative of order n:

$$\mathcal{L}\{f^n(t)\} = s^n F(s) - \sum_{k=0}^{n-1} s^{n-1-k} f^k(0)$$

• Transform of an Integral :

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$$

• Derivative of Transforms

$$F'(s) = \mathcal{L}\{-tf(t)\}$$
 and
$$\frac{\mathrm{d}^n}{\mathrm{d}s^n}F(s) = (-1)^n\mathcal{L}\{t^nf(t)\}$$

• Shift in the time-domain function :

$$\mathcal{L}\{f(t-t_0)U(t-t_0)\} = e^{-st_0}F(s)$$

• Shift in the s-domain function :

$$\mathcal{L}\{e^{-\alpha t}f(t)\} = F(s+\alpha)$$

• Initial Value Theorem :

$$\lim_{s \to \infty} sF(s) = f(0^+) = \lim_{t \to 0^+} f(t)$$

• Final Value Theorem (FVT):

$$\lim_{s \to 0} sF(s) = \lim_{t \to \infty} f(t)$$

FVT is applicable only if the signal is a finite constant value, i.e. $\lim_{t\to\infty} f(t) = constant$

Fourier Series

The Fourier series corresponding to a periodic function f(x) of period 2π is

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where for the range $-\pi$ to π

$$a_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 1, 2, 3, ...)$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, ...)$$

For functions of any period 2L, the Fourier series is

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \right)$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx \qquad (n = 1, 2, 3, ...)$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx \qquad (n = 1, 2, 3, ...)$$