Homework 3

Problem 1

Let A denote a person to be a liar, and B denote the test identifies the person to be a liar. Obviously, we have

$$P(A) = 0.05$$

$$P(B|A) = 0.94$$

$$P(B|A^c) = 0.08$$

According to Bayes' Law,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$
$$= \frac{0.94 \times 0.05}{0.94 \times 0.05 + 0.08 \times 0.95}$$
$$= 0.382$$

Problem 2

Proof. Because A and B are conditionally independent given any C_i ,

$$P(AB|C_i) = \frac{P(AB)}{P(C_i)}$$

= $P(A|C_i)P(B|C_i), i = 1, 2, ..., M$ (1)

Because B and C_i are independent,

$$P(B|C_i) = P(B) \tag{2}$$

Combining (1) and (2), we have

$$P(AB) = \sum_{i=1}^{M} P(AB|C_i)$$
$$= \sum_{i=1}^{M} P(A|C_i)P(B|C_i)$$
$$= P(B)\sum_{i=1}^{M} P(A|C_i)$$
$$= P(A)P(B)$$

Problem 3

Let A,B,C denote a day to be rainy, heavy traffic and being late respectively. Thus

$$P(A) = \frac{1}{3}$$

$$P(B|A) = \frac{1}{2}$$

$$P(B|A^c) = \frac{1}{4}$$

$$P(C|AB) = \frac{1}{2}$$

$$P(C|A^cB^c) = \frac{1}{8}$$

$$P(C|AB^c) = P(C|A^cB) = \frac{1}{4}$$

$$\begin{split} &P(C) \\ = &P(C|AB)P(AB) + P(C|A^cB^c)P(A^cB^c) + P(C|AB^c)P(AB^c) + P(C|A^cB)P(A^cB) \\ = &P(C|AB)P(B|A)P(A) + P(C|A^cB^c)(1 - P(A))(1 - P(B|A^c)) + \\ &P(C|AB^c)P(A)(1 - P(B|A)) + P(C|A^cB)(1 - P(A))P(B|A^c) \\ = &\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} + \frac{1}{8} \times \frac{2}{3} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} + \frac{1}{4} \times \frac{2}{3} \times \frac{1}{4} \\ = &\frac{11}{48} \end{split}$$

2

Problem 4

a.

Proof. Denote C_n be the event that $A \subseteq B$ and D_i represent the event that the ith number $\{i \in A, i \in B \text{ or } i \notin A, i \notin B \text{ or } i \notin A, i \in B\}$ Obviously,

$$C_n = D_1 \cap D_2 \cap \ldots \cap D_n$$

 D_i is independent of D_j , $i \neq j, i, j = 1, 2, ..., n$, and

$$P(D_i) = \frac{3}{4}$$

Thus,

$$P(C_n) = P(D_1 \cap D_2 \cap ... \cap D_n)$$
$$= P(D_1)P(D_2)...P(D_n)$$
$$= (\frac{3}{4})^n$$

b.

Proof. Similarly, denote C_n be the event that $A \cap B = \emptyset$ and D_i represent the event that the *i*th number $\{i \in A, i \notin B \text{ or } i \notin A, i \notin B \text{ or } i \notin A, i \in B\}$ Accordingly, We have

$$C_n = D_1 \cap D_2 \cap \dots \cap D_n$$

 D_i is independent of D_j , $i \neq j, i, j = 1, 2, ..., n$, and

$$P(D_i) = \frac{3}{4}$$

Thus,

$$P(C_n) = P(D_1 \cap D_2 \cap \dots \cap D_n)$$
$$= P(D_1)P(D_2)\dots P(D_n)$$
$$= (\frac{3}{4})^n$$

Problem 5

Proof.

$$\begin{split} P(A|A \cup B) &= \frac{P(A \cap (A \cup B))}{P(A \cup B)} \\ &= \frac{P(A)}{P(A \cup B)} \\ &= \frac{P(A \cap B) + P(A \cap B^c)}{P(A \cap (A \cup B)) + P(A^c \cap (A \cup B))} \\ &= \frac{P(A \cap B) + P(A \cap B^c)}{P(A \cap B) + P(A \cap B^c) + P(A^c \cap B)} \end{split}$$

Lemma 0.1. For any $a, b, c \geqslant 0$

$$\begin{aligned} \frac{a+b}{a+b+c} &\geqslant \frac{b}{b+c} \\ \Leftrightarrow &(a+b)(b+c) \geqslant b(a+b+c) \\ \Leftrightarrow &ab+bc+ac+b^2 \geqslant ab+bc+b^2 \\ \Leftrightarrow ∾ \geqslant 0 \end{aligned}$$

Let
$$a = P(A \cap B), b = P(A \cap B^c), c = P(A^c \cap B)$$
. We have

$$\begin{split} &P(A|A \cup B) \\ &= \frac{P(A \cap B) + P(A \cap B^c)}{P(A \cap B) + P(A \cap B^c) + P(A^c \cap B)} \\ &\geqslant \frac{P(A \cap B)}{P(A \cap B) + P(A^c \cap B)} \\ &= \frac{P(AB)}{P(B)} \\ &= P(A|B) \end{split}$$