DAVID WIEDEMANN

ALGEBRE LINEAIRE I

Table des matières

	D 1	1	• • •		1	1.		•	
0.1	ROINTION	do	composition	nar l	loc n	าททไา	cations	recinroc	111 <i>0</i> C
0.1	IXCINITOTI	nc	Composition	pui	uco u	ιμμιι	Cullons	recipion	nco

1	Groupes	7
_	Groupes	/

1.1 Le groupe Symmetrique 7

≠ List of Theorems

1	■ Definition (Injectivite)	3
2	■ Definition (Surjectivite)	3
3	■ Definition (Bijectivite)	3
1	♦ Proposition (Injectivite et cardinalite)	2
2	♦ Proposition (Surjectivite et cardinalite)	4
3	♦ Proposition (injectivite et condition)	4
4	♦ Proposition (Surjectivite et condition)	4
6	♣ Lemme (Composition d'applications surjectives et in-	
	jectives)	!
		!
7	♦ Proposition (Inverse d'une composition)	(
		6
4	■ Definition (Notations Injection)	6
5	■ Definition (Notations Surjection)	5
6	Definition (Notations Bijection)	7
7	■ Definition (Groupe abstrait)	8
8	■ Definition (Groupes commutatifs)	(

Lecture 2: Injectivite, Surjectivite et Bijectivite

Tue 15 Sep

■ Definition 1 (Injectivite)

Une application $f: X \mapsto Y$ *est injective* (*injection*) $si \forall y \in$ $Yf^{-1}(\{y\})$ ne possede pas plus d'un element. On note

$$f: X \hookrightarrow Y$$

Remarque: Une condition equivalente d'injectivite:

$$\forall x \neq x' \in X \Rightarrow f(x) \neq f(x')$$

■ Definition 2 (Surjectivite)

Une application $f: X \mapsto Y$ *est surjective* (*surjection*) $si \forall y \in$ $Yf^{-1}(\{y\})$ possede au moins un element.

On note

$$f:X \twoheadrightarrow Y$$

Soit $f^{-1}(\{y\}) \neq \emptyset$, il existe au moins $x \in X$ tq f(x) = yDe maniere equivalente

surjectif
$$\iff$$
 $Im(f) = f(X) = Y$

Alors on a une application

$$"f": X \mapsto Y$$
$$x \mapsto f(x)$$

Cette application est toujours surjective.

■ Definition 3 (Bijectivite)

Une application $f: X \mapsto Y$ *est bijective* (*bijection*) *si elle est injective* et surjective, cad si $\forall y \in Y$, $f^{-1}(\{y\})$ (l'ensemble des antecedents de y par f) possede exactement un element. On note la bijectivite par

$$f: X \simeq Y$$

Si $f: X \simeq Y$, alors on peut identifier les els de X avec ceux de Y:

$$x \in X \leftrightarrow f(x) \in Y$$

Remarque : Si $f: X \hookrightarrow Y$ Y' = f(X) l'application

$$f: X \twoheadrightarrow Y' = f(x)$$

et toujours surjective. et comme f est injective, on obtient une bijection $f: X \simeq Y' = f(X)$ entre X et f(X).

X peut etre identifie a f(X).

- $Id_X : \underbrace{X \mapsto X}_{x \mapsto x}$ est bijective
- $x \in \mathbb{R}_{\geq 0} \mapsto x^2 \in \mathbb{R}_{\geq 0}$ est inj et bijective.
- $\mathcal{P} \simeq \{0,1\}^X = \mathcal{F}(X,\{0,1\})$

Exercice

 $C: \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$

$$(m,n) \simeq \frac{1}{2}((m+n)^2 + m + 3n)$$

Montrer la bijectivite.

Dans ce qui suit, soient X et Y des ensembles finis possedant respectivement |X| et |Y| elements et $f:X\mapsto Y$ une application entre ces ensembles. On a les proprietes suivantes :

♦ Proposition 1 (Injectivite et cardinalite)

Si $f: X \hookrightarrow Y$ est injective alors $|X| \leq |Y|$

♦ Proposition 2 (Surjectivite et cardinalite)

Si $f : \rightarrow Y$ est surjective alors $|X| \ge |Y|$.

♦ Proposition 3 (injectivite et condition)

Si $f: X \hookrightarrow Y$ et $|X| \ge |Y|$ alors |Y| = |X| et f bijective.

♦ Proposition 4 (Surjectivite et condition)

Si $f: X \rightarrow Y$ et |X| < |Y| alors |Y| = |X| et f bijective.

♣ Propriete 5 (Bijectivite)

Si f bijective, on peut lui associer une application reciproque:

$$f^{-1}: Y \mapsto X$$
$$y \mapsto x$$

tel que
$$f^{-1}(\{y\}) = \{x\}$$
, x unique.

0.1 Relation de composition par les applications reciproques

$$-f: X \simeq Y \text{ et } f^{-1}: Y \simeq X$$

$$f^{-1} \circ f : X \mapsto Y \mapsto X = Id_X.$$

En effet, $\forall x \in X$ si on pose y = f(x)

on a
$$f^{-1}(y) = x = f^{-1}(f(x)) = x$$

$$- f \circ f^{-1} : Y \mapsto X \mapsto Y$$

$$f \circ f^{-1} = Id_Y$$

$$- (f^{-1})^{-1} = f$$

$$-f: X \simeq Y \text{ et } g: Y \simeq Z$$

Alors $g \circ f : X \mapsto Z$ est bijective et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Lemme 6 (Composition d'applications surjectives et injectives)

- 1. Si f et g sont injectives, $g \circ f$ est injective.
- 2. Si f et g sont surjectives, $g \circ f$ est surjective.
- 3. Si f et g sont bijectives, $g \circ f$ est bijective et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Proof

1.
$$g \circ f : X \mapsto Y \mapsto Z$$

 $x \mapsto g(f(x))$

 $\forall z \in Z$ on veut montrer que $(g \circ f)^{-1}(\{z\})$ a au plus un element

$$(g \circ f)^{-1}(\{z\}) = \{x \in X | g(f(x)) = z\}$$

si $g(f(x)) = z \Rightarrow f(x) \in g^{-1}(\{z\})$

l'ensemble $\{x \in X | g(f(x)) = z\}$ est contenu dans $g^{-1}(\{z\})$ et donc possede au plus 1 element. Si cet ensemble est vide on a fini $(g \circ f)^{-1}(\{z\}) = \emptyset$. Si $g^{-1}(\{z\}) \neq \emptyset$ alors $g^{-1}(\{z\}) = \{y\}$ et $x \in (g \circ f)^{-1}(\{z\})$ verifie

$$f(x) = y \Rightarrow x \in f^{-1}(\{y\})$$

Comme f^{-1} est injective $f^{-1}(\{y\})$ possede au plus un element.

Et donc $g^{-1}(f^{-1}(\{z\}))$ a au plus 1 element car g est surjective

- 2. Surjectivite: Exercice
- 3. Bijectivite: si f et g sont bijectives g ∘ f est bijective. f et g sont inj ⇒ g ∘ f inj.
 f et g sont surj ⇒ g ∘ f surj
 Si f et g sont bij ⇒ g ∘ f est injective et surjective

♦ Proposition 7 (Inverse d'une composition)

On veut montrer que $\forall z \in Z$

 \Rightarrow *g* \circ *f* bijective.

$$X := (g \circ f)^{-1}(z) = f^{-1} \circ g^{-1}(z) \underbrace{=}_? f^{-1}(g^{-1}(z)) = x'$$

Proof

$$g \circ f(x) = g(f(x)) = z$$
$$g \circ f(f^{-1}(g^{-1}(z))) = g(f(f^{-1}(g^{-1}(z))))$$
$$= g(f \circ f^{-1}(g^{-1}(z)))$$

Or on sait que

$$f \circ f^{-1} = g \circ g^{-1} Id_Y$$

et donc

$$g(f \circ f^{-1}(g^{-1}(z))) = g(g^{-1}(z)) = z = (g \circ f)(x)$$

On a donc montre que

$$(g \circ f)(x) = z = (g \circ f)(x')$$

 \Rightarrow x et x' on la meme image par $g \circ f$ et comme $g \circ f$ est injective x = x'. Donc $\forall z \in Z(g \circ f)^{-1}(z) = f^{-1} \circ g^{-1}(z)$.

L'ensemble des applications entre X et Y seran note

$$\mathcal{F}(X,Y) = HOM_{ENS}(X,Y) = Y^X$$

■ Definition 4 (Notations Injection)

L'ensemble des applications injectives sera note

$$INJ_{ENS}(X,Y)$$

■ Definition 5 (Notations Surjection)

L'ensemble des applications surjectives sera note

$$SURJ_{ENS}(X,Y)$$

■ Definition 6 (Notations Bijection)

L'ensemble des applications bijectives sera note

$$BIJ_{ENS}(X,Y) = Iso_{ENS}(X,Y)$$

 $Si\ il\ s'agit\ d'une\ bijections\ de\ X\ vers\ Y=X\ alors$

$$Hom_{ENS}(X, X) = END_{ENS}(X) = AUT_{ENS} = ISO_{ENS}(X)$$

On appelle cet ensemble aussi parfois l'ensemble des permutations de X.

Groupes

1.1 Le groupe Symmetrique

Voici un exemple d'un groupe, le groupe des bijections muni de la composition.

X ensemble

$$Bij(X, X) = Bij(X)$$

Clairement $\{Id_X\} \subset Bij(X) \Rightarrow Bij(X) \neq \emptyset$.

Supposons $f, g \in Bij(X)$, alors

$$f,g\mapsto g\circ f\in Bij(X)$$

On dispose donc de cette loi de composition :

$$\circ: \begin{cases} Bij(X) \times Bij(X) & \longrightarrow Bij(X) \\ (g,f) & \longrightarrow g \circ f \end{cases}$$

o est associative :

 $f, g, h \in Bij(X)$, alors

$$(f \circ g) \circ h = f \circ (g \circ h) = f \circ g \circ h$$

 Id_X est neutre : $\forall f \in Bij(X)$

$$f \circ Id_X = Id_X \circ f = f$$

Donc

$$x \in X(f \circ Id_X)(x) = f(Id_X(x)) = f(x)$$

Pour chaque element f on trouve une reciproque notee f^{-1} tel que

$$f^{-1} \circ f = Id_X = f \circ f^{-1}$$

Toutes ces proprietes font de

$$Bij(X) = Aut_{ENS}(X)$$

un groupe

■ Definition 7 (Groupe abstrait)

Un groupe $(G, \star, e_G, \cdot^{-1})$ *est la donnee d'un quadruple forme*

- d'un ensemble G non-vide
- d'une application (appellee loi de composition interne) \star tq

$$G \times G \mapsto G$$

 $(g,g') \mapsto \star(g,g') =: g \star g'$

- d'un element $e_G \in G$ (element neutre)
- de l'application d'inversion \cdot^{-1}

$$G \mapsto G$$
$$g \mapsto g^{-1}$$

ayant les proprietes suivantes

- Associativite: $\forall g, g', g'' \in G, (g \star g') \star g'' = g \star (g''').$
- Neutralite $e e_G : \forall g \in G, g \star e_G = e_G \star g = g$.

— Inversibilite : $\forall g \in G, g^{-1} \star g = g \star g^{-1} = e_G$.

Quelques exemples :

- $(Bij(X), \circ, Id_X, \cdot^{-1})$ est un groupe.
- $(\mathbb{Z}, +, 0, -\cdot)$ est un groupe.
- $(Q \setminus \{0\}, \times, 1, \cdot^{-1})$ est un groupe.
- $(\{1, -1\}, \times, 1, \cdot^{-1})$ est un groupe.

■ Definition 8 (Groupes commutatifs)

Un groupe $(G, \star, e_G, \cdot^{-1}$ *est dit commutatif si* \star *possede la propriete* supplementaire de commutativite :

$$\forall g, g' \in Gg \star g' = g' \star g$$

Exemple Les groupes $(\mathbb{Z},+)$ ou $(\mathbb{Q}\setminus\{0\},x)$ sont des groupes commutatifs.

Par contre si X possede au moins 3 elements Bij(X) n'est pas commutatif.