M.Sc. Data Science Analysis - HW 1

Note: Copying will not be tolerated.

- 1. Prove that $\lim_{n\to\infty}\frac{2n}{n+3}=2$ by showing that for every $\epsilon>0$, one can find N such that $\left|\frac{2n}{n+3}-2\right|<\epsilon$ for all $n\geq N$.
- 2. For each of the following sequences $\{x_n\}_{n=0}^{\infty}$, say if they are convergent or divergent. If they converge, find the limit. If they diverge, explain why.
 - (a) $x_n = \frac{n^5 + 12}{n^3}$
 - (b) $x_n = \frac{n^2}{n+5}$
 - (c) $x_n = \cos\left(\frac{n\pi}{2}\right)$
- 3. (a) For any $a, b \in \mathbb{R}$ show that $||a| |b|| \le |a b|$. Use this to show that if sequence $\{x_n\}_{n=1}^{\infty}$ converges to L, then sequence $\{|x_n|\}_{n=1}^{\infty}$ converges to |L|.
 - (b) Give an example of a sequence $\{x_n\}_{n=1}^{\infty}$ such that the sequence $\{|x_n|\}_{n=1}^{\infty}$ converges but $\{x_n\}_{n=1}^{\infty}$ does not. (Thus the converse of part (a) is not true, in general.)
 - (c) Finally, show that if $\{|x_n|\}_{n=1}^{\infty}$ converges to zero, then $\{x_n\}_{n=1}^{\infty}$ also converges to zero.
- 4. In each of the following exercises:
 - Find the derivative of the given function using the limit of the Newton quotient as $h \to 0$;
 - find the slope of the given curve at the indicated point;
 - find the equation of the tangent line at the given point.
 - (a) $y = x^2 + 2x$ at (-1, -1);
 - (b) $y = \frac{1}{x+1}$ at (1,2).
- 5. Find the derivatives of the following functions:
 - (a) $x^{1/2} 8x^4 + x^{-1}$
 - (b) $(2x^2+1)\left(\frac{1}{x^2}+4x+8\right)$
 - (c) $\frac{x^5 + 1}{(x^2 + 1)(x + 7)}$
 - (d) $e^{\cos x}$
 - (e) $\log(e^x + \sin x)$
 - (f) $\frac{1}{(3x-1)^4}$
- 6. Find dy/dx:
 - (a) $y^2 + 2x^2y + x = 0$
 - (b) $(y-x)^2 = 2x + 4$
- 7. A ladder 17 ft long leans against a vertical wall. If the lower end of the ladder is being moved away from the foot of the wall at the rate of 3 ft/sec, how fast is the top descending when the lower end is 8 ft from the wall?