PRML Assignment-1

IIT Jammu

January 31, 2025

Submission Guidelines

- Submission Deadline: February 7, 2025, 11:59 PM.
- File Format: All submissions should be in PDF format.
- **Code Submission:** If any programming or plots are required, submit a zip file containing:
 - A Python script (.py).
 - Output graphs (if applicable) in PNG or PDF format.
- Plagiarism Policy:
 - Students are strictly prohibited from copying from each other.
 - All submissions will be checked for plagiarism using automated tools.
 - If plagiarism is detected, the submission will be marked as invalid.
- Late Submission Policy: Late submissions will not be accepted unless prior approval is granted.

Question 1: Bayes Classifier

Problem Statement

Consider a classification problem where we have two classes ω_1 and ω_2 , with given prior probabilities and class-conditional probability distributions. You are provided with the following priors:

$$P(\omega_1) = 0.6, \quad P(\omega_2) = 0.4$$

The conditional probability densities for a feature \boldsymbol{x} given a class are modeled as Gaussian distributions:

$$p(x|\omega_1) = \mathcal{N}(\mu_1, \sigma_1^2)$$

where $\mu_1 = 5$, $\sigma_1 = 1.5$.

$$p(x|\omega_2) = \mathcal{N}(\mu_2, \sigma_2^2)$$

where $\mu_2 = 8$, $\sigma_2 = 2.0$.

Tasks

1. Compute the Posterior Probabilities

Use Bayes theorem to compute $P(\omega_1|x)$ and $P(\omega_2|x)$ for values of x in the range [0, 15].

Formula

$$P(\omega_j|x) = \frac{P(x|\omega_j)P(\omega_j)}{P(x)}$$

where:

$$P(x) = P(x|\omega_1)P(\omega_1) + P(x|\omega_2)P(\omega_2)$$

2. Plot the Graph

Plot the posterior probabilities $P(\omega_1|x)$ and $P(\omega_2|x)$ on the same graph. Mark the decision boundary where:

$$P(\omega_1|x) = P(\omega_2|x)$$

3. Decision Rule

Classify x as belonging to ω_1 if:

$$P(\omega_1|x) > P(\omega_2|x)$$

and vice versa. Shade the decision regions in the graph to clearly differentiate between the two classes.

Question 2: Minimum Error Rate Classification

Problem Statement

A factory uses an automated sorting system to classify objects into two categories, defective (ω_1) and non-defective (ω_2) . The prior probabilities of these categories are:

$$P(\omega_1) = 0.3, \quad P(\omega_2) = 0.7$$

The probability density functions of the weight x for each class are given by:

$$p(x|\omega_1) = \frac{1}{\sqrt{2\pi(1.2)^2}} e^{-\frac{(x-4)^2}{2(1.2)^2}}$$

$$p(x|\omega_2) = \frac{1}{\sqrt{2\pi(1.5)^2}} e^{-\frac{(x-6)^2}{2(1.5)^2}}$$

Tasks

- 1. Compute the posterior probabilities $P(\omega_1|x)$ and $P(\omega_2|x)$ for $x \in [0, 10]$.
- 2. Determine the decision boundary where $P(\omega_1|x) = P(\omega_2|x)$.
- 3. Plot the class-conditional densities $p(x|\omega_1)$ and $p(x|\omega_2)$ on the same graph.
- 4. Plot the posterior probabilities $P(\omega_1|x)$ and $P(\omega_2|x)$ on another graph and mark the decision boundary.
- 5. Discuss the misclassification rate if the decision boundary is shifted slightly.

Question 3: Bayesian Decision Theory with Loss Function

Problem Statement

A bank uses a machine learning system to classify loan applicants into two risk categories:

High Risk
$$(\omega_1): P(\omega_1) = 0.4$$
, Low Risk $(\omega_2): P(\omega_2) = 0.6$

The probability density functions for a feature **credit score x^{**} given each class are modeled as:

$$p(x|\omega_1) = \frac{1}{\sqrt{2\pi(20)^2}} e^{-\frac{(x-550)^2}{2(20)^2}}$$

$$p(x|\omega_2) = \frac{1}{\sqrt{2\pi(25)^2}} e^{-\frac{(x-700)^2}{2(25)^2}}$$

A decision rule is used to minimize the expected loss. The loss function is:

Decision	Actual Class ω_1	Actual Class ω_2
Classify as High Risk (α_1)	0	2
Classify as Low Risk (α_2)	5	0

Tasks

- 1. Compute the posterior probabilities $P(\omega_1|x)$ and $P(\omega_2|x)$.
- 2. Compute the expected loss for both actions $R(\alpha_1|x)$ and $R(\alpha_2|x)$.
- 3. Find the decision boundary where the expected loss is equal for both actions.
- 4. Plot the expected loss functions $R(\alpha_1|x)$ and $R(\alpha_2|x)$.
- 5. Discuss how the decision boundary changes if the prior probability of highrisk applicants increases.

Question 4: Risk Minimization with Three Classes

Problem Statement

A self-driving car must classify objects into three categories:

- Pedestrian (ω_1)
- Vehicle (ω_2)
- Empty Road (ω_3)

The prior probabilities for each class are:

$$P(\omega_1) = 0.2$$
, $P(\omega_2) = 0.5$, $P(\omega_3) = 0.3$

The feature vector \boldsymbol{x} (distance from LiDAR sensor) follows normal distributions:

$$p(x|\omega_1) = \mathcal{N}(x; 2, 0.5)$$

$$p(x|\omega_2) = \mathcal{N}(x; 5, 1.0)$$

$$p(x|\omega_3) = \mathcal{N}(x; 10, 1.5)$$

A loss function is defined as follows:

Decision	Pedestrian (ω_1)	Vehicle (ω_2)	Empty Road (ω_3)
Predict Pedestrian (α_1)	0	5	10
Predict Vehicle (α_2)	3	0	7
Predict Empty Road (α_3)	8	6	0

Tasks

- 1. Compute the posterior probabilities $P(\omega_1|x),\,P(\omega_2|x),$ and $P(\omega_3|x).$
- 2. Compute the expected loss for each action.
- $3.\ \,$ Find the optimal decision boundary that minimizes the risk.
- 4. Plot the decision boundaries and label regions for different classes.
- 5. Discuss the effect of increasing the penalty for misclassifying a pedestrian.