Curso: Engenharia de Computação/Ciência da Computação Profa. Polyana Santos Fonseca Nascimento

Disciplina: Lógica Digital

EXERCÍCIO - VALIDADE DE ARGUMENTOS MEDIANTE REGRAS DE INFERÊNCIA: ARGUMENTAÇÃO

Justifique os passos de cada demonstração abaixo, indicando que premissas e que Regra de Inferência (sigla) foi utilizada em cada passo:

- a) 1. $(r \to \sim p) \land (s \to r)$ (P) 2. s (P) 3. $s \to r$ 4. r
 - 5. $r \rightarrow \sim p$ 6. $\sim p$
- b) 1. $\sim s \to a \land b$ (P) 2. $\sim p \land \sim s$ (P) 3. $\sim q \to \sim b$ (P) 4. $q \land a \to \sim r$ (P)
 - 5. ~s 6. a ^ b
 - 7. b 8. q 9. a 10. q ^ a

11. ∼r

- c) 1. $(c \to b) \land (c \lor d)$ (P) 2. $a \land \sim b$ (P) 3. $d \lor e \to f$ (P)
 - 3. $d \lor e \rightarrow f$ 4. $c \rightarrow b$ 5. $\sim b$
 - 6. ~c 7. c v d 8. d 9. d v e 10. f

11. $f \lor x$

- d) 1. $x \lor (y \to z)$ (P) 2. $\sim f \to (z \to g)$ (P) 3. $(x \to f) \land \sim f$ (P)
 - 4. $\sim f$ 5. $z \rightarrow g$ 6. $x \rightarrow f$ 7. $\sim x$ 8. $y \rightarrow z$
- 9. $y \rightarrow g$ e) 1. $c \wedge d \rightarrow a \vee b$ 2. $(p \rightarrow q) \wedge (a \vee b \rightarrow \sim (p \rightarrow q))$ 3. $\sim r \rightarrow c \wedge d$

(P)

(P)

(P)

- 4. $(r \rightarrow d) \land (a \rightarrow \sim d)$ 5. $a \lor b \rightarrow \sim (p \rightarrow q)$ 6. $p \rightarrow q$ 7. $\sim (a \lor b)$ 8. $\sim r \rightarrow a \lor b$ 9. r
- 10. $r \rightarrow d$ 11. d12. $a \rightarrow \sim d$ 13. $\sim a$

- f) 1. $b \rightarrow c$ (P) 2. $\sim d \land e$ (P) 3. $a \rightarrow d$ (P) 4. $a \lor b$ (P) 5. $c \lor d$ 6. $\sim d$ 7. c
- 8. $c \land (a \lor b)$ g) 1. a (P) 2. $b \rightarrow j$ (P) 3. $\sim l \land \sim j$ (P) 4. $\sim b \rightarrow \sim k$ (P)
 - 5. ~j 6. ~b 7. ~k 8. a ∧ ~k

8. ~m

8. $p \land \sim s$

- h) 1. $(x \to \sim y) \land (m \to k)$ (P) 2. $\sim y \to \sim z$ (P) 3. $(x \to \sim z) \to \sim k$ (P) 4. $x \to \sim y$ 5. $x \to \sim z$ 6. $\sim k$ 7. $m \to k$
- h) 1. $s \lor p$ (P) 2. $a \to r$ (P) 3. $(a \to q) \to \sim s$ (P) 4. $r \to q$ (P) 5. $a \to q$ (P) 6. $\sim s$ 7. p
- i) 1. $x + 8 = 12 \lor x \ne 4$ (P) 2. $x = 4 \land y < x$ (P) 3. $x+8=12 \land y < x \rightarrow y+8 < 12$ (P) 4. y < x5. x = 4
 - 6. x + 8 = 127. $x + 8 = 12 \land y < x$ 8. y + 8 < 12
- j) 1. $x = 3 \rightarrow x > y$ (P) 2. $x \neq 3 \rightarrow z = 5$ (P) 3. $(x = 3 \rightarrow x < z) \rightarrow x \ge z$ (P) 4. $x > y \rightarrow x < z$ (P) 5. $x = 3 \rightarrow x < z$ (P) 6. $x \ge z$ 7. $x \ne 3$
 - 8. z = 59. $z = 5 \lor z > 5$

- k) 1. $x \neq 6 \rightarrow (x = 2 \lor x = 8)$
 - 2. $2x + 3y = 21 \land x \neq 6$
- (P) (P)
- 3. $x = 2 \rightarrow y = 9$
- (P) (P)
- 4. $x = 8 \rightarrow y = 1$ 5. $x \ne 6$

- 6. $x = 2 \lor x = 8$
- 7. $y = 9 \lor y = 1$
- 1) 1. $((w \rightarrow a) \land (z \rightarrow y)) \rightarrow w \lor z$ 2. $a \lor y \rightarrow (d \rightarrow (x \leftrightarrow s) \lor b)$ 3. $(w \rightarrow b) \land (z \rightarrow a)$ 4. $(a \rightarrow y) \land (b \rightarrow a)$ 5. $(x \leftrightarrow s) \lor b \rightarrow c$

 - (P) (P)
 - (P)
 - (P)
 - 6. w → b
 - 7. $b \rightarrow a$
 - 8. $w \rightarrow a$
 - 9. $z \rightarrow a$
 - 10. $a \rightarrow y$
 - 11. $z \rightarrow y$
 - 12. $(w \rightarrow a) \land (z \rightarrow y)$
 - 13. w \lor z
 - $\textbf{14. a} \lor \textbf{y}$
 - 15. d \rightarrow (x \leftrightarrow s) \lor b
 - 16. $d \rightarrow c$