Chương 6

Các bài toán tối ưu trên đồ thị

- ❖ Bài toán tìm đường đi ngắn nhất
- ❖ Bài toán tìm cây khung nhỏ nhất
- ❖ Bài toán tìm luồng cực đại

6.1. Tìm đường đi ngắn nhất

- Thuật toán Dijkstra
- Thuật toán Floyd

Thuật toán Dijkstra để tìm đường đi ngắn nhất từ đỉnh a đến đỉnh z trên đồ thị có trọng số G=(V,E,W) bao gồm việc đánh nhãn cho các đỉnh. Ở mỗi bước, một số đỉnh có nhãn cố định và một số đỉnh có nhãn tam thời. Khi đỉnh z có nhãn cố định Dz thì Dz là độ dài đường đi ngắn nhất.

Bước 1 T=V;
$$D_a = 0$$
; $D_i = \infty$, $v_i \neq a$.

Bước 2 Lặp cho đến khi z ∉ T:

- Lấy ra khỏi T đỉnh v_i có D_i nhỏ nhất
- Đánh nhãn lại cho mọi v_j còn ở T và v_j kề v_i theo công thức:

$$D_j = \min\{D_j, D_i + W_{ij}\}$$

Bảng trình bày có các cột như sau:

T: Tập đỉnh có nhãn tạm thời.

v_i: Đỉnh lấy ra khỏi T ở mỗi bước.

 D_j : Độ dài đường đi ngắn nhất a $\rightarrow v_j$.

Ví dụ. Cho đồ thị G=(V,E,W)

Tìm đường đi ngắn nhất từ v_1 đến v_6 .

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	ı	0	∞	∞	∞	∞	∞

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	ı	0	8	∞	∞	∞	∞

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	8	8	∞	8	∞
{26}	\mathbf{v}_1	0	13	2	∞	8	8

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	∞	∞	∞	∞	∞
{26}	\mathbf{v}_1	0	13	2	8	∞	∞

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	8	∞	∞	∞	∞
{26}	\mathbf{v}_1	0	13	2	∞	∞	∞
{2, 46}	v ₃	-	13	2	7	∞	14

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	8	8	∞	8	∞
{26}	\mathbf{v}_1	0	13	2	8	∞	∞
{2, 46}	v ₃	-	13	2	7	8	14

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	∞	∞	∞	∞	∞
{26}	\mathbf{v}_1	0	13	2	∞	∞	8
{2, 46}	v_3	ı	13	2	7	8	14
{2,5,6}	V_4	1	13	ı	7	10	13

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	_	0	∞	∞	∞	∞	8
{26}	\mathbf{v}_1	0	13	2	∞	∞	∞
{2, 46}	v_3	-	13	2	7	∞	14
{2,5,6}	\mathbf{v}_4	-	13	-	7	10	13

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	∞	∞	∞	∞	∞
{26}	v ₁	0	13	2	∞	8	∞
{2, 46}	\mathbf{v}_3	-	13	2	7	∞	14
{2,5,6}	\mathbf{v}_4	-	13	-	7	10	13
{2, 6}	V ₅	-	13	-	-	10	12

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	8	∞	∞	∞	∞
{26}	\mathbf{v}_1	0	13	2	∞	∞	∞
{2, 46}	\mathbf{v}_3	-	13	2	7	∞	14
{2,5,6}	\mathbf{v}_4	-	13	-	7	10	13
{2, 6}	V ₅	_	13	-	-	10	12

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	8	8	∞	8	∞
{26}	\mathbf{v}_1	0	13	2	∞	8	∞
{2, 46}	v_3	I	13	2	7	8	14
{2,5,6}	V_4	I	13	I	7	10	13
{2, 6}	V ₅	-	13	-	-	10	12
{2}	v_6	-	13	-	_	-	12

 $v_6 \not\in T$, thuật toán dừng. Để lấy đường đi ngắn nhất, dựa vào bảng trên, lần ngược từ v_6 đến v_1 có được đường đi ngắn nhất cần tìm:

$$P=v_6\leftarrow v_5\leftarrow v_4\leftarrow v_3\leftarrow v_1.$$

Độ dài của đường đi ngắn nhất là

$$D_6 = 12$$

T	V _i	D_1	D_2	D_3	D_4	D_5	D_6
{16}	-	0	8	∞	∞	∞	∞
{26}	\mathbf{v}_1	0	13	2	∞	8	∞
{2, 46}	v ₃	-	13	2	7	∞	14
{2,5,6}	v_4	-	13	-	7	10	13
{2, 6}	V ₅	_	13	-	-	10	12
{2}	v ₆	-	13	-	-	-	12

Nhận xét

Để lấy đường đi ngắn nhất từ a đến mọi đỉnh, thay vòng lặp "Lặp cho đến khi z∉T" bởi "Lặp cho đến khi T= Ø".

Với bảng trên, thêm một bước nữa có được đường đi ngắn nhất từ v₁ đến mọi đỉnh.

Nhận xét

- Cũng có thể đánh cho mỗi đỉnh v_j một cặp nhãn $[D_i, v_i]$ với:
- D_j là độ dài đường đi ngắn nhất a $\rightarrow v_j$.
- v_i là đỉnh trước v_i trên đường đi ngắn nhất.
- Nhãn thứ hai để lấy đường đi ngắn nhất.
- Cách này gần với cài đặt chương trình.
- Với ví dụ trên. Có bảng sau:

6.1.1. Thuật toàn Dijkstra										
T	T v_1		v_3	\mathbf{v}_4	V_5	v ₆				
{16}	$[0,v_1]$	$[\infty, \mathbf{v}_1]$	$[\infty, v_1]$	$[\infty, v_1]$	$[\infty, v_1]$	$[\infty, \mathbf{v}_1]$				

 $[2,v_1]$

*

 $[\infty, \mathbf{v}_1]$

 $[7,v_3]$

*

 $[\infty, v_1]$

 $[\infty, \mathbf{v}_1]$

 $[10,v_4]$

*

 $[\infty, v_1]$

 $[14,v_3]$

 $[13,v_4]$

 $[12,v_5]$

*

{2..6}

 $\{2, 4..6\}$

 $\{2,5,6\}$

 $\{2, 6\}$

{2}

*

 $[13,v_1]$

 $[13,v_1]$

 $[13,v_1]$

 $[13,v_1]$

 $[13,v_1]$

6.1.2. Thuật toán Floyd

Để tìm đường đi ngắn nhất giữa mọi cặp đỉnh và lưu độ dài trong chính ma trận trọng số $A=(a_{ij})n_x n$.

Thuật toán thực hiện *n* bước.

Bước k đặt $a_{ij}=\min\{a_{ij}, a_{ik}+a_{kj}\}$

6.1.2. Thuật toán Floyd

```
void Floyd()
 for (k=0; k<n; k++)
      for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            if (a[i][k] + a[k][j] < a[i][j])
                  a[i][j] = a[i][k] + a[k][j];
```

6.2. Tìm cây khung nhỏ nhất

- Các khái niệm
- Các định lý
- Thuật toán Prim
- Thuật toán Kruskal

6.2.1. Các khái niệm

- Cây là đồ thị vô hướng liên thông không chu trình.
- Cho đồ thị vô hướng G = (V,E), *cây khung T* của đồ thị G là đồ thị con chứa tất cả các đỉnh của G và T là một cây.
- Cho đồ thị vô hướng G = (V,E,W), cây khung nhỏ nhất của đồ thị G là cây khung có trọng số nhỏ nhất trong tất cả các cây khung của G.

6.2.2. Các định lý

- Định lý 1. Giả sử T=(V,E) là đồ thị vô hướng n đỉnh. Khi đó các mệnh đề sau tương đương:
- (1) T là cây;
- (2) T không chứa chu trình và có *n-1* cạnh;
- (3) T liên thông và có *n-1* cạnh;
- Định lý 2.
- G có cây khung khi và chỉ khi G liên thông.

Bước 1
$$T=\{v\}; v bất kỳ$$

Bước 2 Lặp n-1 lần:

- Tìm đỉnh rìa v có cạnh e nối T với w(e) nhỏ nhất.
- Đưa v và e vào T.

Ví dụ. Cho đồ thị có ma trận trọng số sau

	v1	v2	v3	v4	v5	v6
v1	0	33	17	∞	∞	∞
v2	33	0	18	20	∞	∞
v3	17	18	0	16	4	∞
v4	8	20	16	0	9	8
v5	∞	∞	4	9	0	14
v6	∞	∞	∞	8	14	0

[18,v3]

*

(4,6)

(3,2)

6.2.	6.2.3. I huật toan Prim										
E_{T}	v1	v2	v3	v4	v5	v6					
_	*	[33,v1]	[17,v1]	[∞,v1]	[∞,v1]	$[\infty, v1]$					
(1,3)	_	[18,v3]	*	[16,v3]	[4,v3]	[∞,v1]					
(3,5)	_	[18,v3]	-	[9,v5]	*	[14,v5					
(5,4)	_	[18,v3]	-	*	-	[8,v4]					

*

Cũng có thể trình bày trực quan. Ví dụ.

Cũng có thể trình bày trực quan. Ví dụ.

Cây khung nhỏ nhất T với W(T)=11

6.2.4. Thuật toán Kruskal

 $Bur\acute{o}c$ II</t

- Tìm cạnh e có trọng số nhỏ nhất và đưa vào T không tạo chu trình.
- Đưa e vào T.

Ban đầu sắp xếp cạnh có trọng số tăng dần

6.2.4. Thuật toán Kruskal

Ví dụ.

6.2.4. Thuật toán Kruskal

Sắp xếp các cạnh tăng dần trọng số

е	(2,4)	(3,7)	(1,3)	(2,5)	(3,6)	(4,5)	(1,2)	(4,7)	(6,7)	(5,7)	(1,4)
		1									
e _T	1	2	3	4	5	-	6	-	-	-	-

Cây T tìm gồm 6 cạnh sau:

(2,4), (3,7), (1,3), (2,5), (3,6), (1,2).

6.2.4. Thuật toán Kruskal

Cây khung nhỏ nhất T với W(T)=11

6.1+2.

Tìm đường đi ngắn nhất Tìm cây khung nhỏ nhất

DOTHI.CPP

6.3. Tìm luông cực đại

- * Các khái niệm
- Thuật toán Ford-Fulkerson

6.3.1. Các khái niệm

- Mạng là đồ thị có hướng, có trọng số G=(V,E,C)
- G liên thông yếu (bỏ hướng thì liên thông).
- Có duy nhất một đỉnh s không có cung vào gọi là đỉnh phát và duy nhất một đỉnh t không có cung ra gọi là đỉnh thu.
- Mỗi cung (i,j) được gán một số cij ≥0 gọi là khả năng thông qua của cung (i,j).

6.3.1. Các khái niệm

- $Lu\delta ng$ F= (f_{ij}) trên mạng G=(V,E,C) là việc gán cho mỗi cung (i,j) một số f_{ij} thoả mãn:
 - Mọi cung (i,j) có: $0 \le f_{ij} \le c_{ij}$
 - Mọi đỉnh v_i khác s và t có tổng luồng vào và ra bằng nhau.
 - Từ đó có: Tổng luồng ra khỏi s bằng tổng luồng vào t gọi là *giá trị của luồng*, ký hiệu v_F.
 - Luồng cực đại trên mạng G là luồng có giá trị lớn nhất trong tất cả các luồng trên G.

- Bước 1
 Bước 2
 Lặp cho đến khi hết đường tăng luồng:
 - Tìm đường tăng luồng P từ s đến t,
 với lượng tăng luồng ∂.
 - Tăng luồng dọc theo P một lượng ∂ .

Đường tăng luồng P tìm được có dạng

P: $s \rightarrow ... \rightarrow i \rightarrow j \rightarrow ... \rightarrow t$ thì (i,j) là cung thuận.

P: $s \rightarrow ... \rightarrow i \leftarrow j \rightarrow ... \rightarrow t$ thì (j,i) là cung nghịch.

Bước tìm đường tăng luồng P có thể dùng cách đánh nhãn như sau:

- Đặt nhãn s là ∞.
- Lặp cho đến khi t có nhãn Ôt: khi đỉnh v_i vừa có nhãn thì đánh nhãn cho mọi v_j kề v_i nếu thỏa mãn một trong hai trường hợp sau:

- a) Nếu có cung (i,j) và c_{ij} f_{ij} >0 thì đặt ∂_j =min { ∂_i , c_{ij} f_{ij} }, nạp cung thuận (i,j) vào P.
- b) Nếu có cung (j,i) và $f_{ji}>0$ thì đặt $\partial_j = \min\{\partial_i, f_{ji}\}$, nạp cung nghịch (j,i) vào P.
- Khi t có nhãn ∂t thì lượng tăng luồng $\partial = \partial t$. Tăng luồng xong xóa nhãn.

Tăng luồng dọc theo P một lượng $\widehat{\mathcal{O}}$ theo công thức:

F _{ij} ' = Fij + ∂	nếu (i,j) là cung thuận
$F_{ji}' = F_{ji} - \partial$	nếu (i,j) là cung nghịch
Fij	nếu (i,j) ngoài P

Vi du. Cho mạng G=(V,E,C)

$$P_1: s \rightarrow 2 \rightarrow 4 \rightarrow t, \partial_1 = 1.$$

$$P_2: s \rightarrow 2 \rightarrow 5 \rightarrow t, \partial_2 = 2.$$

$$P_3: s \rightarrow 3 \rightarrow t, \partial_3 = 2.$$

$$P_4: s \rightarrow 3 \rightarrow 4 \rightarrow t, \partial_4 = 1.$$

$$P_5: s \rightarrow 4 \leftarrow 2 \rightarrow 5 \rightarrow t, \partial_5 = 1.$$

Hết đường tăng luồng, $F_{max} = 7$. Lát cắt cực tiểu $V_1 = \{s,3,4\}, V_2 = \{t,2,5\}$.

