Nome _

imero ______(

GRUPO I - Neste grupo, não deve indicar os cálculos. Cada questão ou alínea vale 1 valor.

- 1. O valor do $\int_1^2 x^2 \ dx + \int_2^6 (-x+6) \ dx$ é o valor da área limitada pelas seguintes curvas:
- 2. Escreva o valor do seguinte integral: $\int_1^e \ln x \ dx =$
- 3. Usando coordenadas polares, o integral que permite calcular a área da porção de círculo $(x-1)^2 + y^2 \le 1$ compreendida entre as rectas y = x e y = -x é:
- 4. Os pontos de intersecção da curva $\rho^2 = 2\cos(2\theta)$, com a circunferência $\rho = 1$ são:
- 5. Considere a função f definida por $f(x) = -x^2 + 1$ em [0,1], f(x) = 2 em]1,2] e f(x) = x 2 em]2,3]. Então $\int_0^3 f(x) dx =$
- 6. Seja $h(x) = \int_{1/x}^0 \sqrt{1+t^4} dt$. Então $h'(x) = \underline{\hspace{1cm}}$
- 7. Considere a região plana limitada pelas curvas y = x e $y = x^2$. O integral que permite calcular o volume obtido pela rotação, em torno de OX, desta região é
- 8. O comprimento do arco de curva $y = \frac{2}{3}x^{3/2}$, para $x \in [0, 8]$, calcula-se determinando o valor do seguinte integral definido:
- 9. Com a substituição definida por $x-2=z^3$, tem-se:

$$\int_{x=}^{x=} \frac{(x-2)^{1/3}}{3+(x-2)^{2/3}} dx = \int_{1}^{3}$$

Nota: escreva os limites de integração no primeiro integral e a função integranda no segundo integral

10. Escreva o termo geral da seguinte série, completando o 2º membro da igualdade apresentada:

$$\frac{2}{\pi} + \frac{3}{\pi^2} + \frac{4}{\pi^3} + \dots = \sum_{n=1}^{+\infty}$$

- 11. Diga se é convergente ou divergente a série $\sum_{n=1}^{+\infty} \frac{3^n(2n+1)}{n!}$, indicando qual o critério que aplicou
- 12. Diga se é convergente ou divergente a série $\sum_{n=1}^{+\infty} \frac{(-1)^n (n+5)}{\pi^n}$, indicando qual o critério que aplicou

GRUPO II - Nas perguntas seguintes apresente todos os cálculos.

1. A parábola $y^2=2x$ divide o círculo $x^2+y^2\leq 8$ em duas partes. Calcule a área da parte que está totalmente inserida no plano x>0.

2. Calcule $\int_{x=0}^{x=8} \frac{x \ dx}{\sqrt{x+1}}$, usando a mudança de variável definida por $x+1=z^2$, com z>0.

3. Estude, quanto à convergência, o integral impróprio $\int_0^3 \frac{dx}{(x-1)^2}$.