Psync: A Partially Synchronous Langauge for Fault-Tolerant Distributed Algorithms

Authors: Cezara Dragoi, Thomas A. Henzinger, Damien Zufferey

Presented by: Abhishek A. Singh

PSYNC

1

Domain Specific Language

2

Based on Heard-Of Model

 Which views asynchronous faulty systems as synchronous systems with an adverserial component 3

Implemented as an embedding in Scala

4

Created for modelling, programming& verification of distributed faulttolerant algorithms

Heard-of Model

- O Algorithms structured in communication closed rounds.
- Each round consists of two consecutive operations: Send and Update
- Two components in the model:
 - Set of Processes
 - O Adversarial environment: which determines whether messages are received or not
- Each process has a Heard-of set: HO
- Each round is communication closed: all messages sent in a round are either received or dropped

The Heard-of set (HO)

- Abstraction for the asynchronous and faulty behavior of the network.
- O HO Is a set of processes.
- O In a round:
 - \bigcirc Process **p** receives a message from **q** if **q** sent a message to process **p** and **q** \in HO(**p**)
- O HO+Rounds => Abstract notion of time + control structure for programmers

Runtime model

- Based on timeouts
- O Send, Wait, Update, Move to next round, Repeat

Example: LastVoting

LastVoting: Execution

(a) An asynchronous, faulty execution of the LastVoting

(b) Corresponding indistinguishable lockstep execution

LastVoting: in PSync

```
interface
        init(v: Int); out(v: Int)
    variable
        x: Int; ts: Int; vote: Int
        ready: Boolean; commit: Boolean
6
        decided: Boolean: decision: Int
8
    //auxiliary function: rotating coordinator
    def coord(phi: Int): ProcessID =
10
        new ProcessID((phi/phase.length) % n)
11
12
    //initialization
13
    def init(v: Int) =
14
15
        x := v
        ts := -1
16
        ready := false
17
        commit := false
18
        decided := false
```

```
val phase = Array[Round]( //the rounds
      Round /* Collect */ {
        def send(): Map[ProcessID, (Int,Int)] =
            return MapOf(coord(r) \rightarrow (x, ts))
        def update(mbox: Map[ProcessID, (Int,Int)]) =
5
            if (id = coord(r) \land mbox.size > n/2)
                vote := mbox.valWithMaxTS
                commit := true }.
8
      Round /* Candidate */ {
9
        def send(): Map[ProcessID, Int] =
10
            if (id = coord(r) ∧ commit) return
11
                  broadcast(vote)
            else return Ø
12
        def update(mbox: Map[ProcessID, Int]) =
13
            if (mbox contains coord(r))
14
                x := mbox(coord(r))
15
               ts := r/4 \}.
16
      Round /* Quorum */ {
        def send(): Map[ProcessID, Int] =
18
            if (ts = r/4) return MapOf(coord(r) \rightarrow x)
19
            else return Ø
20
        def update(mbox: Map[ProcessID, Int]) =
21
            if (id = coord(r) \land mbox.size > n/2)
22
                ready := true },
23
      Round /* Accept */ {
24
        def send(): Map[ProcessID, Int] =
25
            if (id = coord(r) \lambda ready) return broadcast(vote)
26
            else return Ø
        def update(mbox: Map[ProcessID, Int]) =
28
            if (mbox contains coord(r) ∧ ¬decided)
29
                decision := mbox(coord(r))
30
                out(decision)
31
32
                decided := true
            ready := false
33
            commit := false })
34
```

PSync Syntax

```
\begin{array}{lll} \textit{program} & ::= & \textit{interface variable}^* \; \textit{init phase} \\ \textit{interface} & ::= & \textit{init: type} \rightarrow () \; \; (\textit{name: type} \rightarrow ())^* \\ \textit{variable} & ::= & \textit{name: type} \\ \textit{init} & ::= & \textit{init: type} \rightarrow () \\ \textit{phase} & ::= & \textit{round}^+ \\ \textit{round}_\mathsf{T} & ::= & \textit{send:} () \rightarrow [P \mapsto \mathsf{T}] \; \; \textit{update:} [P \mapsto \mathsf{T}] \rightarrow () \end{array}
```

Lockstep execution

Definition 5 (Lockstep execution). Given a PSYNC program \mathcal{P} and a non-empty set of processes P, a lockstep execution of \mathcal{P} is the sequence $*A_0s_1A_1s_2\ldots$ such that

- $*A_0s_1$ is the result of the INIT rule;
- $\forall i. \ s_i A_i s_{i+1} \ satisfy \ the \ SEND \ or \ the \ UPDATE \ rule;$
- the environment assumptions on HO-sets are satisfied.

The set of lockstep executions of \mathcal{P} is denoted by $\llbracket \mathcal{P} \rrbracket_{ls}$.

Indistinguishability

- Defined in terms of a transition system.
- Transition system is intended to reflect an instance of execution

Definition 1 (Indistinguishability). Given two executions π and π' of a transition system TS, a process p cannot distinguish locally between π and π' , denoted $\pi \simeq_p \pi'$, iff the projection of both executions on p agree up to finite stuttering, i.e., $\pi|_p \equiv \pi'|_p$.

Two executions π and π' are indistinguishable, denoted $\pi \simeq \pi'$, iff no process can distinguish between them, i.e., $\forall p \in P$. $\pi \simeq_p \pi'$.

Definition 2 (Indistinguishable systems). A system TS_1 is indistinguishable from a system TS_2 denoted $TS_1 \supseteq TS_2$ iff they are defined over the same set of processes and for any execution $\pi \in [TS_1]$ there exists an execution $\pi' \in [TS_2]$ such that $\pi \simeq_{W,L} \pi'$ where $W = V_1 \cap V_2$ and $L = A_1 \cap A_2$.

Distributed clients

Definition 3 (Distributed client). ¹ Let $TS_i = (\{p_i\}, V_i, A_i, s_0^i, T_i)$ be the transition system associated with a client process, with $A_i \cap A_j = \emptyset$ for all $1 \le i \ne j \le n$. Formally, the transitions system associated with the client is $C_{TS} = (P, V, A, s_0, T)$, where $P = \{p_1, p_2, \dots p_n\}, V = \biguplus_i V_i, A = \bigcup_i A_i, s_0 = (s_0^1, \dots, s_0^n),$ and $T \subseteq \Sigma \times A \times \Sigma$, with $\Sigma = [P \to V \to \mathcal{D}]$, such that $\Sigma(p_i) \in [V_i \to \mathcal{D}]$, and $(s, B, s') \in T$ iff for every $b \in B \cap A_i$ $(s(p_i), b, s'(p_i)) \in T_i$ and each processes takes at most one transition.

All distributed clients as commutative by definition

Observational refinement

Definition 4 (Observational Refinement). Let TS_1 and TS_2 be two transition systems and a common interface I. Then, TS_1 refines TS_2 w.r.t. I denoted $TS_1 \sqsubseteq_I TS_2$, if for any client C,

 $\mathsf{Runs}(C(\mathit{TS}_1)) \subseteq \mathsf{Runs}(C(\mathit{TS}_2)).$

O TS1 observationally refines TS2 if every run of a client that uses TS1 is also a run of the same client using TS2.

Theorem 1. Let TS_1 and TS_2 be two systems with a common interface I. If $TS_1 \supseteq TS_2$ then $TS_1 \sqsubseteq_I TS_2$.

Indistinguishability is equivalent with sequential consistency

