F888 - Física do Estado Sólido PROVA 1 - 20. semestre 2009

1-Ligação Iônica. Seja U_{ij} a energia interação entre os átomos i e j e U_i a soma sobre todas as interações envolvendo o i-ésimo átomo, $U_i = \sum_{j\neq i} U_{ij}$. Consideramos apenas a interação eletrostática entre os átomos mais uma parte repulsiva tipo exponencial que atua apenas nos primeiros vizinhos:

$$U_{ij} = \lambda \exp(-R/\rho) - \frac{q^2}{R}$$
 (entre os primeiros vizinhos)
= $\pm \frac{q^2}{p_{ij}R}$ (todos os outros átomos)

onde ρ e λ são constantes, R é a distância entre os primeiros vizinhos, p_{ij} são constantes que dependem da distância entre os átomos, o sinal positivo refere-se a interação entre átomos iguais e o negativo entre átomos diferentes.

- (a) (1,0 ponto) Seja z o número de primeiros vizinhos, A a constante de Madelung (definida positivamente), calcule a posição de equilíbrio do sistema, R_0 .
- (b) (0,5 pt.) Encontre a energia total para uma rede com 2N átomos (e N ligações iônicas), $U_{tot} = NU_i$, no equilíbrio em função de R_0, q, ρ, N, A .
- **2-Rede recíproca.** (1,0 pt.) Considere a rede cristalina bidimensional com vetores de rede \vec{a}_1 e \vec{a}_2 , conforme mostrado na figura abaixo.
 - (a) Esquematize a rede recíproca.
- (b) Expresse os vetores da rede recíproca em termos dos vetores de rede dados.
- (c) Desenhe a primeira zona de Brillouin (célula de Wigner-Seitz da rede recíproca).

Figure 1: Rede cristalina retangular.

3-Fator de estrutura. Considere a liga de cobre e ouro, $AuCu_3$. Acima da temperatura crítica de 390°C os átomos encontram-se distribuídos aleatoriamente em uma estrutura cristalina tipo fcc, com cada sítio tendo a probabilidade 1/4 de ser ocupado por um átomo de Au e 3/4 por um átomo de Cu. Assumindo que a distribuição é completamente aleatória, podemos assumir que a rede da liga metálica é equivalente a uma rede ocupada por um átomo médio composto pela média de ocupação de cada átomo. Para temperaturas abaixo da temperatura crítica, a liga forma uma rede ordenada, com os átomos de Au ocupando os vértices do cubo da fcc e os átomos de Cu ocupando as faces da fcc, (ver figura abaixo). Considere f_{Au} e f_{Cu} os fatores de espalhamento atômico dos átomos de Au e de Cu respectivamente. Os átomos que compõe a célula primitiva da fcc encontram-se nas posições (0,0,0), $\frac{a}{2}(1,1,0)$, $\frac{a}{2}(0,1,1)$ e $\frac{a}{2}(1,0,0)$ onde a é a aresta do cubo.

Figure 2: (a) Célula unitária da liga $AuCu_3$ com distribuição aleatória e (b) ordenada.

- (a) (1,0 pt.) Calcule o fator de estrutura da rede desordenada do $AuCu_3$ acima da temperatura crítica. Discuta o resultado.
- (b) (1,0 pt.) Calcule o fator de estrutura da rede ordenada, abaixo da temperatura crítica. Discuta o resultado.
- (c) (1,0 pt.) Considere a condição de Bragg de espalhamento, $\lambda = 2d_{hkl}\sin\theta$, onde $d_{hkl} = a/\sqrt{N}$ e $N = h^2 + k^2 + l^2 = 1,2,3,...$ para redes cúbicas. Considere a energia dos raios X incidentes fixa (i.e., λ é constante). Esquematize a posição relativa e intensidade relativa dos picos de Bragg dos ítens (a) e (b) em função de θ . Considere as ssete primeiras reflexões. Despreze eventual dependência angular nos fatores de espalhamento atômico f_{Au} e f_{Cu} . Comente o resultado.

4-Forças de van-der-Waals. O modelo clássico para as forças de vander-Waals considera a interação entre dois osciladores harmônicos simples idênticos (dipolos oscilantes) a uma separação R. Cada dipolo consiste de um par de cargas opostas com separação entre as cargas igual a x_1 e x_2 respectivamente para os dois dipolos. A força restauradora agindo entre cada par de cargas é proporcional a k. O Hamiltoniano H_0 para os dois osciladores sem levar em consideração a interação entre as cargas é

$$H_0 = \frac{p_1^2}{2m} + \frac{1}{2}kx_1 + \frac{p_2^2}{2m} + \frac{1}{2}kx_2$$

e a contribuição da energia de interação, H_1 para as cargas pode ser aproximada considerando $R\gg x_1,x_2$ na forma

$$H_1 \approx -\frac{2e^2x_1x_2}{R^3}$$

(a) (0,9 pt.) Mostre que a transformação de coordenadas

$$x_{s} = \frac{1}{\sqrt{2}}(x_{1} + x_{2})$$

$$x_{a} = \frac{1}{\sqrt{2}}(x_{1} - x_{2})$$

$$p_{s} = \frac{1}{\sqrt{2}}(p_{1} + p_{2})$$

$$p_{a} = \frac{1}{\sqrt{2}}(p_{1} - p_{2})$$

desacopla a energia total $H=H_0+H_1$ em uma contribuição simétrica e outra anti-simétrica.

- (b) (0,8 pt.) Calcule as frequências ω_1 e ω_2 dos modos de vibração normais simétricos e anti-simétricos. Calcule as frequências ω_1 e ω_2 expandindo em série de Taylor para $R^3k/2e^2 \gg 1$ muito grande e limite a expansão até o termo de segunda ordem em $2e^2/kR^3$.
- (c) (0,8 pt.) Encontre a energia total do sistema acoplado ($U = -\frac{1}{2}\hbar(\omega_s + \omega_a)$) e mostre que ela é a energia do sistema desacoplado diminuída de um termo $-c/R^6$ onde c é uma constante.
- **5-Fator de estrutura.** (a) (1,0 pt.) Assuma que todos os fatores de forma iônicos f_l na equação $I = \sum_{l,l'} f_l f_{l'}^* e^{i\vec{q}\cdot(\vec{R}_l \vec{R}_{l'})}$ são reais. Mostre que os dados do espalhamento de raios X farão com que todos os cristais assemelhem-se a cristais centro-simétricos, mesmo quando não for o caso (lei de Friedel).
- (b) (1,0 pt.) Considere que um cristal que não é centro-simétrico e com dois átomos diferentes por célula unitária, separados por uma distância R. Seja f_0 e f_1 os fatores de espalhamento atômico dos dois átomos quando a frequência do raio X incidente está longe da energia de absorção. Assuma agora que a frequência de raios X é escolhida próxima de um valor ω_0 para o qual um dos átomos tenha uma ressonância de absorção (átomo na origem, por exemplo). Assuma que, nesse caso, a dependência da absorção com a frequência possa ser modelada com o átomo comportando-se como uma massa e uma mola com um fator de amortecimento. Nesse caso, o fator de espalhamento pode ser escrito em termos de uma amplitude de espalhamento e uma fase na forma: $f(\omega) \sim f_0/(\omega \omega_0 + i\eta)$. Mostre que a intensidade de espalhamento contém agora a informação que permite deduzir se o cristal é ou não centro-simétrico.