Numerical Linear Algebra

Victor Eijkhout

Fall 2020

Justification

Many algorithms are based in linear algebra, including some non-obvious ones such as graph algorithms. This session will mostly discuss aspects of solving linear systems, focusing on those that have computational ramifications.

Linear algebra

- Mathematical aspects: mostly linear system solving
- Practical aspects: even simple operations are hard
 - Dense matrix-vector product: scalability aspects
 - Sparse matrix-vector: implementation

Let's start with the math...

Two approaches to linear system solving

Solve Ax = b

Direct methods:

- Deterministic
- Exact up to machine precision
- Expensive (in time and space)

Iterative methods:

- · Only approximate
- Cheaper in space and (possibly) time
- · Convergence not guaranteed

Really bad example of direct method

Cramer's rule write |A| for determinant, then

$$x_i = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i-1} & b_1 & a_{1i+1} & \dots & a_{1n} \\ a_{21} & \dots & b_2 & \dots & a_{2n} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & \dots & b_n & \dots & a_{nn} \end{vmatrix} / |A|$$

Time complexity O(n!)

Not a good method either

$$Ax = b$$

- Compute explictly A^{-1} ,
- then $x \leftarrow A^{-1}b$.
- Numerical stability issues.
- Amount of work?

A close look linear system solving: direct methods

Gaussian elimination

Example

$$\begin{pmatrix} 6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 3 \end{pmatrix} x = \begin{pmatrix} 16 \\ 26 \\ -19 \end{pmatrix}$$

$$\begin{bmatrix} 6 & -2 & 2 & | & 16 \\ 12 & -8 & 6 & | & 26 \\ 3 & -13 & 3 & | & -19 \end{bmatrix} \longrightarrow \begin{bmatrix} 6 & -2 & 2 & | & 16 \\ 0 & -4 & 2 & | & -6 \\ 0 & -12 & 2 & | & -27 \end{bmatrix} \longrightarrow \begin{bmatrix} 6 & -2 & 2 & | & 16 \\ 0 & -4 & 2 & | & -6 \\ 0 & 0 & -4 & | & -9 \end{bmatrix}$$

Solve x_3 , then x_2 , then x_1

$$6, -4, -4$$
 are the 'pivots'

Pivoting

If a pivot is zero, exchange that row and another. (there is always a row with a nonzero pivot if the matrix is nonsingular) best choice is the largest possible pivot in fact, that's a good choice even if the pivot is not zero: **partial pivoting** (full pivoting would be row *and* column exchanges)

Roundoff control

Consider

$$\begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 + \varepsilon \\ 2 \end{pmatrix}$$

with solution $x = (1,1)^t$

Ordinary elimination:

$$\begin{pmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{pmatrix} x = \begin{pmatrix} 1 + \varepsilon \\ 2 - \frac{1 + \varepsilon}{\varepsilon} \end{pmatrix} = \begin{pmatrix} 1 + \varepsilon \\ 1 - \frac{1}{\varepsilon} \end{pmatrix}.$$

We can now solve x_2 and from it x_1 :

$$\begin{cases} x_2 = (1 - \varepsilon^{-1})/(1 - \varepsilon^{-1}) = 1 \\ x_1 = \varepsilon^{-1}(1 + \varepsilon - x_2) = 1. \end{cases}$$

Roundoff 2

If $\epsilon < \epsilon_{mach}$, then in the rhs 1 + ϵ \to 1, so the system is:

$$\begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

The solution (1,1) is still correct!

Eliminating:

$$\begin{pmatrix} \varepsilon & 1 \\ 0 & 1 - \varepsilon^{-1} \end{pmatrix} x = \begin{pmatrix} 1 \\ 2 - \varepsilon^{-1} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} \varepsilon & 1 \\ 0 & -\varepsilon^{-1} \end{pmatrix} x = \begin{pmatrix} 1 \\ -\varepsilon^{-1} \end{pmatrix}$$

Solving first x_2 , then x_1 , we get:

$$\begin{cases} x_2 = \varepsilon^{-1}/\varepsilon^{-1} = 1 \\ x_1 = \varepsilon^{-1}(1 - 1 \cdot x_2) = \varepsilon^{-1} \cdot 0 = 0, \end{cases}$$

so x_2 is correct, but x_1 is completely wrong.

Roundoff 3

Pivot first:

$$\begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 + \epsilon \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 - \epsilon \end{pmatrix}$$

Now we get, regardless the size of epsilon:

$$x_2 = \frac{1-\varepsilon}{1-\varepsilon} = 1, \quad x_1 = 2 - x_2 = 1$$

LU factorization

Same example again:

$$A = \begin{pmatrix} 6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 3 \end{pmatrix}$$

2nd row minus $2\times$ first; 3rd row minus $1/2\times$ first; equivalent to

$$L_1Ax = L_1b,$$
 $L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix}$

(elementary reflector)

LU₂

Next step: $L_2L_1Ax = L_2L_1b$ with

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$

Define $U = L_2L_1A$, then A = LU with $L = L_1^{-1}L_2^{-1}$ 'LU factorization'

LU3

Observe:

$$L_{1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix} \qquad L_{1}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Likewise

$$L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \qquad L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

Even more remarkable:

$$L_1^{-1}L_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1/2 & 3 & 1 \end{pmatrix}$$

Can be computed in place! (pivoting?)

Solve LU system

 $Ax = b \longrightarrow LUx = b$ solve in two steps: Ly = b, and Ux = y

Forward sweep:

$$\begin{pmatrix} 1 & & & \emptyset \\ \ell_{21} & 1 & & & \\ \ell_{31} & \ell_{32} & 1 & & \\ \vdots & & \ddots & & \\ \ell_{n1} & \ell_{n2} & & \cdots & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Solve LU system

 $Ax = b \longrightarrow LUx = b$ solve in two steps: Ly = b, and Ux = y

Forward sweep:

$$\begin{pmatrix} 1 & & & \emptyset & \\ \ell_{21} & 1 & & & \\ \ell_{31} & \ell_{32} & 1 & & \\ \vdots & & \ddots & & \\ \ell_{n1} & \ell_{n2} & & \cdots & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$y_1 = b_1, \quad y_2 = b_2 - \ell_{21} y_1, \dots$$

Solve LU 2

Backward sweep:

$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ & u_{22} & \dots & u_{2n} \\ & & \ddots & \vdots \\ \emptyset & & & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Solve LU 2

Backward sweep:

$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ & u_{22} & \dots & u_{2n} \\ & & \ddots & \vdots \\ \emptyset & & & u_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$x_n = u_{nn}^{-1} y_n, \quad x_{n-1} = u_{n-1}^{-1} (y_{n-1} - u_{n-1n} x_n), \dots$$

Computational aspects

Compare:

Matrix-vector product:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \leftarrow \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad \begin{pmatrix} a_{11} & & \emptyset \\ \vdots & \ddots & \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Solving LU system:

$$\begin{pmatrix} a_{11} & & \emptyset \\ \vdots & \ddots & \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

(and similarly the *U* matrix)

Compare operation counts. Can you think of other points of comparison? (Think modern computers.)

Short detour: Partial Differential Equations

Second order PDEs; 1D case

$$\begin{cases} -u''(x) = f(x) & x \in [a, b] \\ u(a) = u_a, u(b) = u_b \end{cases}$$

Second order PDEs; 1D case

$$\begin{cases} -u''(x) = f(x) & x \in [a, b] \\ u(a) = u_a, u(b) = u_b \end{cases}$$

Using Taylor series:

$$u(x+h)+u(x-h)=2u(x)+u''(x)h^2+u^{(4)}(x)\frac{h^4}{12}+\cdots$$

so

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + O(h^2)$$

Numerical scheme:

$$-\frac{u(x+h)-2u(x)+u(x-h)}{h^2}=f(x,u(x),u'(x))$$

This leads to linear algebra

$$-u_{xx} = f \to \frac{2u(x) - u(x+h) - u(x-h)}{h^2} = f(x, u(x), u'(x))$$

Equally spaced points on [0,1]: $x_k = kh$ where h = 1/(n+1), then

$$-u_{k+1} + 2u_k - u_{k-1} = -h^2 f(x_k, u_k, u'_k)$$
 for $k = 1, ..., n$

Written as matrix equation:

$$\begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_1 + u_0 \\ f_2 \\ \vdots \end{pmatrix}$$

Second order PDEs; 2D case

$$\begin{cases} -u_{xx}(\bar{x}) - u_{yy}(\bar{x}) = f(\bar{x}) & x \in \Omega = [0, 1]^2 \\ u(\bar{x}) = u_0 & \bar{x} \in \delta\Omega \end{cases}$$

Now using central differences in both *x* and *y* directions.

The stencil view of things

Sparse matrix from 2D equation

The stencil view is often more insightful.

Matrix properties

- · Very sparse, banded
- Factorization takes less than n^2 space, n^3 work
- Symmetric (only because 2nd order problem)
- Sign pattern: positive diagonal, nonpositive off-diagonal (true for many second order methods)
- Positive definite (just like the continuous problem)
- Constant diagonals: only because of the constant coefficient differential equation
- Factorization: lower complexity than dense, recursion length less than N.

Sparse matrices

Sparse matrix storage

Matrix above has many zeros: n^2 elements but only O(n) nonzeros. Big waste of space to store this as square array.

Matrix is called 'sparse' if there are enough zeros to make specialized storage feasible.

Compressed Row Storage

$$A = \begin{pmatrix} 10 & 0 & 0 & 0 & -2 & 0 \\ 3 & 9 & 0 & 0 & 0 & 3 \\ 0 & 7 & 8 & 7 & 0 & 0 \\ 3 & 0 & 8 & 7 & 5 & 0 \\ 0 & 8 & 0 & 9 & 9 & 13 \\ 0 & 4 & 0 & 0 & 2 & -1 \end{pmatrix} . \tag{1}$$

Compressed Row Storage (CRS): store all nonzeros by row, their column indices, pointers to where the columns start (1-based indexing):

val	10	-2	3	9	3	7	8	7	3 · ·	. 9	13	4	2	-1
col_ind	1	5	1	2	6	2	3	4	1 · ·	. 5	6	2	5	6
	ro	row_ptr		1	3	6	9	13	17	20	٦.			

Sparse matrix operations

Most common operation: matrix-vector product

```
for (row=0; row<nrows; row++) {
    s = 0;
    for (icol=ptr[row]; icol<ptr[row+1]; icol++) {
        int col = ind[icol];
        s += a[aptr] * x[col];
        aptr++;
    }
    y[row] = s;
}</pre>
```

Operations with changes to the nonzero structure are much harder!

Indirect addressing of x gives low spatial and temporal locality.

Exercise: sparse coding

What if you need access to both rows and columns at the same time? Implement an algorithm that tests whether a matrix stored in CRS format is symmetric. Hint: keep an array of pointers, one for each row, that keeps track of how far you have progressed in that row.

Fill-in

Fill-in: index (i,j) where $a_{ij} = 0$ but $\ell_{ij} \neq 0$ or $u_{ij} \neq 0$.

Fill-in is a function of ordering

 $igl \setminus * \ \emptyset$ After factorization the matrix is dense.

Can this be permuted?

LU of a sparse matrix

$$\begin{pmatrix}
4 & -1 & 0 & \dots & | & -1 & \\
-1 & 4 & -1 & 0 & \dots & | & 0 & -1 & \\
& \ddots & \ddots & \ddots & | & \ddots & \\
& -1 & 0 & \dots & | & -1 & 4 & -1 & \\
0 & -1 & 0 & \dots & | & -1 & 4 & -1
\end{pmatrix}$$

$$\Rightarrow \begin{pmatrix}
4 & -1 & 0 & \dots & | & -1 & \\
4 - \frac{1}{4} & -1 & 0 & \dots & | & -1/4 & -1 & \\
& \ddots & \ddots & \ddots & | & \ddots & \\
& & -1/4 & \dots & | & 4 - \frac{1}{4} & -1 & \\
& & -1 & 0 & \dots & | & -1 & 4 & -1
\end{pmatrix}$$

Exercise: LU of a band matrix

Suppose a matrix *A* is banded with *halfbandwidth p*:

$$a_{ij}=0$$
 if $|i-j|>p$

Derive how much space an LU factorization of *A* will take if no pivoting is used. (For bonus points: consider partial pivoting.)

Can you also derive how much space the inverse will take? (Hint: if A = LU, does that give you an easy formula for the inverse?)

