EHB 335E Midterm – Group A (ITU ID Last digits 0, 1, and 6 only)

10 December 2020

2) In the amplifier below, $C_1=10~\mu F$ and $C_2=0.1~\mu F$ are coupling capacitors. Consider $g_{m1}=10~mS$, $g_{m2}=2~mS$, $R_F=50~k\Omega$, $R_{sig}=150~\Omega$, $R_S=100~\Omega$, $R_1=1k\Omega$, and $R_2=R_L=40k\Omega$. Assume $V_A=\infty$ and $\lambda=0$. You can write the voltage gain expressions by properly indicating to what they correspond.

- a) Find the lower corner frequency (-3 dB) expression of the cascaded amplifier by first applying the Miller Effect followed by the short-circuit time constants method.
- b) If an ideal (zero rise time) periodic pulse with an on-time of $T_D = 1 \, ms$ is applied at the input of the amplifier, find the tilt observed in the output signal.