二次曲面复习题

一. 求经过三平行直线

 $L_1: x = y = z, \quad L_2: x - 1 = y = z + 1, \quad L_3: x = y + 1 = z - 1$ 的圆柱面的方程.

- 二. 顶点在原点的二次锥面的方程采用矩阵形式可写为 $XAX^T=0$, 其中 X=(x,y,z), A 为三阶实对称矩阵且 $A\neq 0$. 证明: 当且仅当 $\mathrm{tr}(A)=0$ 时, 该锥面上存在三条两两垂直的直线.
- 三. 给定椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. 求这样的点 P 的轨迹: 过点 P 能向椭球面作三条两两垂直的切线.
- 四. 给定二次曲面 $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 1$. 求这样的点 *P* 的轨迹: 过点 *P* 能作三个两两正交的切平面.
- 五. 证明 $x^2 2z^2 + 5y x + 8z = 0$ 是直纹二次曲面, 并判断曲面类型.
- 六. 已知非退化二次曲面 Σ 过以下九点: A(1,0,0), B(1,1,2), C(1,-1,-2), D(3,0,0), E(3,1,2), F(3,-2,-4), G(0,1,4), H(3,-1,-2), $I(5,2\sqrt{2},8)$. 问 Σ 是哪一类曲面?
- 七. 设 S 为 \mathbb{R}^3 中的抛物面 $z = \frac{1}{2}(x^2 + y^2)$, P = (a, b, c) 为 S 外一固定点, 满足 $a^2 + b^2 > 2c$. 过 P 作 S 的所有切线. 证明: 这些切线的切点落在 同一张平面上.
- 八. 在空间直角坐标系中,设单叶双曲面 Γ 的方程为 $x^2 + y^2 z^2 = 1$. 设 P 为空间中的平面,它交 Γ 于一抛物线 C. 求该平面 P 的法向量与 z 轴的夹角.
- 九. 在空间直角坐标系中, 设马鞍面 S 的方程为 $x^2-y^2=2z$. 设 σ 为平面 $z=\alpha x+\beta y+\gamma$, 其中 α , β , γ 为给定常数. 求马鞍面 S 上点 P 的坐标, 使得过 P 且在马鞍面 S 上的直线均平行于平面 σ .

1