

## Algorithms and Data Structures

Lecture 5 More issues on algorithm analysis

### Jiamou Liu The University of Auckland



## Plan for Today

There are a number of caveats which concern the validity of algorithm analysis. We finalise this section by discussing these issues.

- What amounts to an elementary operation?
- How is input size measured?
- What happens if there are many inputs of a given size?

## **Elementary Operations**

#### In previous lecture:

- Adding two numbers takes
   O(1) time
- Multiplying two numbers takes O(1) time

#### In real life:

- Only when integers a, b can fit into a machine word can they be added/multiplied in O(1) time.
- Nowadays a machine word length is typically 64 bits, so the integers needs to be no bigger than  $2^{63} \approx 9.22 \times 10^{18}$ .

**Question.** When do we need to add/multiply large numbers?

- Cryptography: Public-key cryptography algorithms typically operate on integers with hundreds of digits.
- Scientific computing: Arbitrary-precision arithmetic are performed on numbers whose digits of precision are limited only by the available memory of the host system

**Question.** What should be done when adding/multiplying large numbers?

- Use variable-length arrays to store digits in a number.
- Design algorithms that perform arithmetic operations on the variable-length arrays.

**Example.** Adding two large numbers is not an elementary operation:

| Addition Table |   |    |    |    |    |    |    |    |    |    |
|----------------|---|----|----|----|----|----|----|----|----|----|
| +              | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| 0              | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| 1              | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 2              | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
| 3              | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| 4              | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 |
| 5              | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |
| 6              | 6 | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 7              | 7 | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 8              | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 9              | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |



**Example.** Suppose that integers a, b are stored as two arrays a[0..n-1] and b[0..n-1].

The following algorithm performs addition and outputs an array s[0..n] storing a + b:

The algorithm above takes time  $\Theta(n)$ .

### **Example.** Consider the FASTFIB algorithm introduced in Lecture 2.

```
1: function FASTFIB(integer n)
        if n < 0 then return 0
 3:
        else if n = 0 then return 0
 4:
        else if n = 1 then return 1
 5: else
 6:
            a \leftarrow 1
                                                          \triangleright stores F(i) at bottom of loop
 7: b \leftarrow 0
                                                      \triangleright stores F(i-1) at bottom of loop
    for i \leftarrow 2 to n do
 8:
 9:
                t \leftarrow a
                a \leftarrow a + b
10:
                h \leftarrow t
11:
12:
         return a
```

**Fact.** Each Fibonacci number F(n) contains roughly  $\Theta(n)$  digits.

If the numbers *a*, *b* are stored as arrays, and + performs ADDITION algorithm, then FASTFIB will have running time

$$1+2+3+\cdots+n$$
 which is  $\Theta(n^2)$ 



Nevertheless, in this course, we will assume "+", "X" are elementary

by default,

unless stated otherwise.

### Input Size

#### Definition

The input size of an algorithm is the number of bits taken to store the input of the algorithm.

**Example.** ADDITION algorithm: The input size n is the length of the numbers a and  $b^1$ .

The running time  $\Theta(n)$  is stated with respect to the input size n.

<sup>&</sup>lt;sup>1</sup>Assuming they have the same length.

### **Recall.** Two algorithms for computing Fibonacci numbers:

| Algorithm | Running Time (asymptotic) |
|-----------|---------------------------|
| SLOWFIB   | $\Omega(1.618^{n})$       |
| FASTFIB   | $\Theta(n)$               |

**Recall.** Two algorithms for computing Fibonacci numbers:

| Algorithm | Running Time (asymptotic) |
|-----------|---------------------------|
| SLOWFIB   | $\Omega(1.618^n)$         |
| FASTFIB   | $\Theta(n)$               |

**Mistake:** The "n" above is in fact input value, not its size.

**E.g.** We usually use binary encoding for the input:

| Value | Binary | Size            |
|-------|--------|-----------------|
| 2     | 10     | 2               |
| 3     | 11     | 2               |
| 5     | 101    | 3               |
| 15    | 1111   | 4               |
| x     | _      | $\Theta(\lg x)$ |

### Example.

- We use a different symbol, *x*, to denote the input value (i.e., the previous *n*).
- We now use n to denote the size of x, i.e., say  $\lg x$ .
- Then  $x = 2^n$ .

The running time of SLOWFIB and FASTFIB algorithms:

| Algorithm | Running Time (in <i>x</i> ) | Running (in <i>n</i> ) |
|-----------|-----------------------------|------------------------|
| SLOWFIB   | $\Omega(1.618^x)$           | $\Omega(1.618^{2^n})$  |
| FASTFIB   | $\Theta(x)$                 | $\Theta(2^n)$          |

#### Question.

- Now FASTFIB is in fact an exponential time algorithm!
- Can you design a polynomial time algorithm to solve this problem?



In this course, from now on, we will use n to denote

the size of the input, not the value of input.

# Different Inputs of a Given Size

- Input value ≠ input size
- With the same input size, there may be many input values: **E.g.**, n = 3 corresponds to values

• An algorithm may have different running time on different inputs of size *n*.

#### Definition

Let algo be an algorithm and n denote the input size.

- The worst-case running time of algo maps *n* to the maximum running time of algo on any input with size *n*.
- The average-case running time of algo maps *n* to the average running time of algo on all inputs with size *n*.
- The best-case running time of algo maps *n* to the minimum running time of algo on any input with size *n*.

**Example.** In many cases, the worst-case, average-case, and best-case running time are the same.

The worst-case, average-case, and best-case running times are all  $\Theta(n)$ .

### **Example (count leading zero).** We want to solve this problem:

- INPUT: A 0/1-valued array a[0..n − 1],
- OUTPUT: The number of 0s before the first 1; or the length of the array
  if there is no 1.

E.g.

| INPUT         | OUTPUT |
|---------------|--------|
| [0,0,1,0,0,1] | 2      |
| [0,0,0,0,0,0] | 6      |
| [1,0,0,1,0,1] | 0      |

We can solve the problem using a simple algorithm:

```
function ZERO(arrays a[0..n-1])
j \leftarrow 0
count \leftarrow 0
while a[j] = 0 do
count \leftarrow count + 1
j \leftarrow j + 1
return count
```

### **Example.** Continued from above

```
function ZERO(arrays a[0..n-1])
j \leftarrow 0
count \leftarrow 0
while a[j] = 0 do
count \leftarrow count + 1
j \leftarrow j + 1
return count
```

### Asymptotic analysis of running time:

- **Best-case**: When a[1] = 1, the **while**-loop terminates straightaway. So running time  $\Theta(1)$ .
- Worst-case: When a[0..n-1] contains no 1, the while-loop repeats n iterations. So running time  $\Theta(n)$ .
- **Average-case**: We need to analyse the running time for all possible input of size *n*.

**Average-case**: We need to analyse the running time for all possible input of size n.

- There are in total  $2^n$  possible inputs (0/1-valued arrays a[0..n-1])
- For i = 1, ..., n, there are precisely  $2^{n-i}$  arrays of the form  $[0, ..., 0, 1, \star, ..., \star]$ . Each array will run i iterations of while-loop.
- There is 1 array with n 0s  $[0,0,\ldots,0]$ .

Sum of the number of while-loop iterations over all inputs:

$$n + \sum_{i=1}^{n} i2^{n-i} = n + 2^{n-1} + 2 \times 2^{n-2} + 3 \times 2^{n-3} + \dots + n \times 2^{0}$$

- One can easily prove by induction that  $\sum_{i=1}^{n} i2^{n-i} = 2^{n+1} n 2$  (you can try for yourself).
- Thus the average running time is

$$\frac{n + \sum_{i=1}^{n} i2^{n-i}}{2^n} = \frac{2^{n+1} - 2}{2^n} \le 2 \text{ which is } O(1)$$

**Question.** What are the pros and cons of worst and average case analysis?



# Worst-case running time :

- Worst-case bounds are valid for all instances. Important for mission-critical applications.
- Worst-case bounds are often easier to derive mathematically.

# Worst-case running time :



- Worst-case bounds can hugely exceed expected running time and have little predictive or comparative value.
- Average-case running time is often more realistic, provided the algorithm will run on "random" data and we are risk-tolerant.



### In this course, we will mostly perform

worst-case running time analysis, and we will discuss average-case only for special algorithms.

Lecture 5 More issues on algorithm analysis

### Final word on algorithm analysis:

- Algorithms are meant to be implemented and used.
- The mathematical analysis of running time give us insights on the theoretical limitations of the algorithm under idealised assumptions.
- But how the algorithm actually performs in practice can only be seen empirically.

### Summary



### Here is a list of the main points covered in this lecture

- What amounts to an elementary operation?
  - Operations over data that fit into a machine word.
- How is input size measure?
  - *n* denotes the number of bits used to store the input, not the value of the input.
- What happens if there are many inputs of a given size?
  - Best-case, worst-case, average-case running time analysis.

