Ψηφιακή Σχεδίαση

Ψηφιακά Συστήματα και Δυαδικοί Αριθμοί

Βαρτζιώτης Φώτιος

Ψηφιακά Συστήματα

- Ψηφιακή Εποχή
- Ψηφιακοί Υπολογιστές
 - Γενικού Σκοπού
 - Πολλές επιστημονικές, βιομηχανικές και εμπορικές εφαρμογές
- Ψηφιακά Συστήματα
 - Ψηφιακά Τηλέφωνα
 - Ψηφιακή τηλεόραση
 - Φορητές συσκευές
- Διαχείριση διακριτών στοιχείων πληροφορίας
 - Για παράδειγμα, {1, 2, 3, ...} και {A, B, C, ...}...

Δυαδικό Ψηφιακό Σήμα

- Τα διακριτά στοιχεία πληροφορίας αναπαρίστανται με τιμές φυσικών μεγεθών που ονομάζονται σήματα.
- Τα πιο κοινά σήματα είναι τα ηλεκτρικά, όπως οι τάσεις και τα ρεύματα.
- Στα περισσότερα ψηφιακά συστήματα, τα σήματα αναπαρίστανται με
 - Δύο διακριτές τιμές ηλεκτρικών μεγεθών ή
 - Δύο διακριτές περιοχές τιμών ηλεκτρικών μεγεθών.
- Τα σήματα αυτά ονομάζονται Δυαδικά.
- Οι τιμές των δυαδικών σημάτων αναφέρονται ως:
 - Ψηφία 0 και 1
 - Λέξεις (Σύμβολα) False (F) και True (T)
 - Λέξεις (Σύμβολα) Low (L) και High (H)
 - Λέξεις On και Off

Αναλογικό και Ψηφιακό Σήμα

- Αναλογικό Σύστημα
 - Οι φυσικές ποσότητες ή τα σήματα μπορούν να λαμβάνουν συνεχείς τιμές συναρτήσει του χρόνου.
- Ψηφιακό Σύστημα
 - Οι φυσικές ποσότητες ή τα σήματα μπορούν να λαμβάνουν μόνο διακριτές τιμές.

Δεκαδικό Σύστημα Αρίθμησης

- Bάση (radix) = 10
 - 10 ψηφία { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
- Θέση Ψηφίου
 - Ακέραιος & Κλάσμα
- βάρος Ψηφίου
 - Βάρος = (Βάση) Θέση
 - Мέтро
 - Άθροισμα των γινομένων"Ψηφίο x Βάρος"
- Αναπαράσταση

Οκταδικό Σύστημα Αρίθμησης

- Bάση = 8
 - 8 ψηφία { 0, 1, 2, 3, 4, 5, 6, 7 }
- Βάρη
 - Βάρος = (Βάση) Θέση
- О М Е ТРО
 - Άθροισμα των γινομένων "Ψηφίο x Βάρος"
- Αναπαράσταση

Δυαδικό Σύστημα Αρίθμησης

- Bάση = 2
 - 2 Ψηφία { 0, 1 }, καλούνται και Dinary digits ή "bits"
- Bapn
 - Βάρος = (Βάση) Θέση
- М'ётро
 - ► Άθροισμα των γινομένων "Ψηφίο **x** Βάρος"
- Αναπαράσταση

$$1 *2^{2}+0 *2^{1}+1 *2^{0}+0 *2^{-1}+1 *2^{-2}$$

$$= (5.25)_{10}$$

$$(101.01)_{2}$$

$$1 0 1 1$$

$$1 1 0 0 0 1 0 1$$

Δεκαεξαδικό Σύστημα Αρίθμησης

- Bάση = 16
 - 16 Ψηφία { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Βάρη
 - $B \dot{a} ρ ος = (B \dot{a} σ η) Θ \dot{b} σ η$
- Μέτρο
 - Άθροισμα των γινομένων "Ψηφίο x Βάρος"
- Αναπαράσταση

$$1*16^{2}+14*16^{1}+5*16^{0}+7*16^{1}+10*16^{2}$$
=(485.4765625)₁₀
(1E5.7A)₁₆

Δυνάμεις του 2

n	2 ⁿ
0	$2^0=1$
1	$2^1=2$
2	$2^2=4$
3	$2^3 = 8$
4	24=16
5	25=32
6	26=64
7	27=128

	n	2 ⁿ
\	8	28=256
	9	2 ⁹ =512
	10	$2^{10} = 1024$
	11	211=2048
	12	212=4096
	20	$2^{20} = 1M$
	30	$2^{30} = 1G$
	40	2 ⁴⁰ =1T

Kilo

Mega

Giga

Tera

Πρόσθεση

Δεκαδική Πρόσθεση

Δυαδική Πρόσθεση

Πρόσθεση ανά στήλη

Δυαδική Αφαίρεση

Δανειζόμαστε μια "Βάση" όταν χρειάζεται..

Δυαδικός Πολλαπλασιασμός

Bit επί bit

			1	0	1	1	1
X				1	0	1	0
			0	0	0	0	0
		1	0	1	1	1	
	0	0	0	0	0		
1	0	1	1	1			
1	1	1	0	0	1	1	0

Μετατροπές Συστημάτων

Δεκαδικός (Ακέραιος) σε Δυαδικό

- 1. Διαιρέστε τον αριθμό με τη 'Βάση' (=2)
- 2. Θεωρείστε το υπόλοιπο (0 ή 1) σαν συντελεστή
- 3. Διαιρέστε το πηλίκο με τη 'Βάση' και επαναλάβετε το 2° βήμα
- 4, Επαναλάβετε το 3° βήμα έως ότου μηδενιστεί το πηλίκο

Παράδειγμα: (13)₁₀

1	U		
	Πηλίκο	Υπόλοιπο	Συντελεστής
13 /2 =	6	1	$a_0 = 1$
6 / 2 =	3	0	$\mathbf{a}_1 = 0$
3 / 2 =	1	1	$a_2 = 1$
1 / 2 =	0	1	$a_3 = 1$
Απάν	τηση:	$(13)_{10} = (a_3)_{10}$	$a_2 a_1 a_0)_2 = (1101)_2$
		7	
		MSB	LSB

Δεκαδικός (Κλάσμα) σε Δυαδικό

- . Πολλαπλασιάστε τον αριθμό με τη 'Βάση' (=2)
- 2. Θεωρείστε το ακέραιο μέρος (0 ή 1) του αποτελέσματος σαν συντελεστή
- 3. Πολλαπλασιάστε το κλασματικό μέρος του αποτελέσματος με τη 'Βάση' και επαγαλάβετε το 2° βήμα.
- 4. Επαναλάβετε το 3° βήμα έως ότου μηδενιστεί το κλασματικό μέρος ή επιτύχετε την επιθυμητή ακρίβεια.

Παράδειγμα: (0.625)₁₀

		Ακέραι	05	Κλάσμα	Συντελεστής
0.625	* 2 =	1		25	$a_{-1} = 1$
0.25	* 2 =	0		5	$a_{-2} = 0$
0.5	* 2 =	1		0	$a_{-3} = 1$

Απάντηση:
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

MSB LSB

Δεκαδικός σε Οκταδικό

Παράδειγμα: $(175)_{10}$

	Πηλικο	Υπολοιπο	Δυντελεστης
175 / 8 =	21	7	$a_0 = 7$
21 / 8 =	2	5	$a_1 = 5$
2 /8=	0	2	$a_2 = 2$

Απάντηση: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$

Παράδειγμα: (0.3125)₁₀

		Ακέραιος	Κλάσμα	Συντελεστής
0.3125	* 8 =	2	. 5	a ₋₁ = 2
0.5	* 8 =	4 .	. 0	$a_{-2} = 4$

Απάντηση: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_8$

Δυαδικός από / σε Οκταδικό

 \Rightarrow 8 = 2³

Κάθε ομάδα των 3 bits αναπαριστά ένα οκταδικό ψηφίο

Octal	Binary
0	000
1	0 0 1
2	010
3	0 1 1
4	100
5	101
6	110
7	111

Δουλεύει και προς τις δύο κατευθύνσεις (Binary to Octal & Octal to Binary)

Δυαδικός από / σε Δεκαεξαδικό

- -16 = 24
- Κάθε ομάδα των 4 bits αναπαριστά ένα δεκαεξαδικό ψηφίο

Παράδειγμα: Θεωρείστε μηδενικά στις κενές θέσεις

 $(10110.01)_2$ $(16 . 4)_{16}$

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
C	1100
D	1101
Е	1110
F	1111

Δουλεύει και προς τις δύο κατευθύνσεις (Binary to Hex & Hex to Binary)

Οκταδικό από / σε Δεκαεξαδικό

Μετατροπή στο Δυαδικό σαν ενδιάμεσο βήμα

Παράδειγμα: $2 6 . 2)_{8}$ Θεωρείστε Θεωρείστε μηδεγικά μηδενικά $(010110.010)_{2}$

Δουλεύει και προς τις δύο κατευθύνσεις (Octal to Hex & Hex to Octal)

Δεκαδικοί, Δυαδικοί, Οκταδικοί και Δεκαεξαδικοί

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

- Υπάρχουν δύο (2) τύποι συμπληρωμάτων για κάθε αριθμητικό σύστημα με βάση r
 - Το συμπλήρωμα ως προς τη βάση, και
 - Το συμπλήρωμα ως προς τη μειωμένη βάση.
- Συμπλήρωμα ως προς μειωμένη βάση Συμπλήρωμα ως προς (r-1)
 - Δοθέντος ενός αριθμού N σε βάση r με n ψηφία, το συμπλήρωμα ως προς (r-1) ορίζεται ως

$$(r^{n}-1)-N$$

- Παράδειγμα για 6-ψήφιους δεκαδικούς αριθμούς:
 - ▼ το συμπλήρωμα ως προς 9 είναι (rⁿ 1)–N = (106–1)–N = 999999–N
 - το συμπλήρωμα ως προς 9 του 546700 είναι 999999-546700 = 453299
- /Παράδειγμα για 7-ψήφιους δυαδικούς αριθμούς:
 - το συμπλήρωμα ως προς 1 είναι (rⁿ − 1) − N = (2⁷−1)−N = 11111111−N
 - ▼ το συμπλήρωμα ως προς 1 του 1011000 είναι 1111111-1011000 = 0100111
 - Παρατήρηση:
 - Η αφαίρεση από τον αριθμό (rⁿ − 1) δεν περιλαμβάνει κρατούμενα
 - Το συμπλήρωμα ως προς μειωμένη βάση μπορεί να υπολογιστεί ψηφίο ψηφίο
 - Για δυαδικούς: 1 − 0 = 1 και 1 − 1 = 0

- Συμπλήρωμα ως προς 1 (Συμπλήρωμα ως προς μειωμένη βάση)
 - Όλα τα '0' γίνονται '1'
 - Όλα τα '1' γίνονται '0'

Παράδειγμα (10110000)₂

 \Rightarrow (01001111)₂

Αν προσθέσεις έναν αριθμό και το συμπλήρωμά του ως προς 1 ...

 $10110000 \\ + 01001111 \\ \hline 11111111$

Συμπλήρωμα ως προς τη βάση

Το συμπλήρωμα ως προς r ενός n-ψηφίου αριθμού \mathbf{N} στη βάση r ορίζεται ως r^n-N για $N\neq \mathbf{0}$ και $\mathbf{0}$ για $N=\mathbf{0}$. Συγκρίνοντας το με το συμπλήρωμα ως προς (r-1), βλέπουμε ότι το συμπλήρωμα ως προς r προκύπτει αν προσθέσουμε το 1 στο συμπλήρωμα ως προς (r-1), αφού $r^n-N=[(r^n-1)-N]+1$.

Παράδειγμα: Βάση-10

Το συμπλήρωμα ως προς 10 του 012398 είναι 987602 Το συμπλήρωμα ως προς 10 του 246700 είναι 753300

Παράδειγμα: Βάση-2

Το συμπλήρωμα ως προς 2 του 1101100 είναι 0010100 Το συμπλήρωμα ως προς 2 του 0110111 είναι 1001001

- Συμπλήρωμα ως προς 2 (Συμπλήρωμα ως προς τη βάση)
 - Υπολογίστε το συμπλήρωμα ως προς 1 και μετά προσθέστε 1,
 - ή αντιστρέψτε όλα τα bits αριστερά του πρώτου '1' που συναντάμε ξεκινώντας από δεξιά

Παράδειγμα

Αριθμός: 10110000 101110000 101110000 101010000 101010000

- Αφαίρεση με Συμπληρώματα
 - Η αφαίρεση δύο n-ψήφιων αριθμών χωρίς πρόσημο, M –
 N, στη βάση r μπορεί να γίνει ως εξής:
 - Προσθέστε στον μειωτέο **M** το συμπλήρωμα ως προς **r** του αφαιρετέου **N**, δηλαδή υπολογίστε το $M + (r^n N) = M N + r^n$
 - Εάν M ≥ N, το άθροισμα θα έχει ένα τελικό κρατούμενο rⁿ, το οποίο μπορεί να παραληφθεί. Ο αριθμός που απομένει είναι το αποτέλεσμα M N.
 - ► Εάν M < N, το άθροισμα έχει μηδενικό τελικό κρατούμενο, και ισούται με rⁿ (N M), το οποίο είναι το συμπλήρωμα ως προς r του (N M). Για να πάρουμε το αποτέλεσμα σε ποιο οικεία μορφή, υπολογίζουμε το συμπλήρωμα ως προς r του αθροίσματος και τοποθετούμε στην αρχή ένα αρνητικό πρόσημο.

- Παράδειγμα με Δεκαδικούς
 - Χρησιμοποιώντας το συμπλήρωμα ως προς 10, υπολογίστε το

- Παράδειγμα με Δεκαδικούς
 - Χρησιμοποιώντας το συμπλήρωμα ως προς 10, υπολογίστε το

$$3250 - 72532$$

Απάντηση: - (συμπλήρωμα ως προς 10 του 30718) = - **69282**

Παράδειγμα με Δυαδικούς (με χρήση του συμπληρώματος ως προς 2)

	Παράδειγμα 1	X - Y		
	X=	1010100		
	Y=	1000011	1010100	
	Συμπλήρωμα ως προς 2 του Υ=	0111101	+0111101	
Άθρ		ροισμα =	10010001	
	Παράλειψη του τελικού κρατού	-1000000		
	Апо	άντηση =	0010001	

Παράδειγμα 2	Y - X	
X=	1010100	
Y=	1000011	1000011
Συμπλήρωμα ως προς 2 του X=	0101100	+0101100
Δεν υπάρχει τελικό κρατούμενο -	Άθροισμα=	1101111
Συμπλήρωμα ως προς	0010001	
	Απάντηση=	-(0010001)

Παράδειγμα με Δυαδικούς (με χρήση του συμπληρώματος ως προς 1)

Trapacet pa pe Zeachees (MC VDI JOIL I	oo oopiii/iiipw
Παράδειγμα 1		X - Y
X=	1010100	
Y=	1000011	1010100
Συμπλήρωμα ως προς 1 του Υ=	0111100	+0111100
Ä	θροισμα =	10010000
Παράλειψη του τελικού κρατο	ούμενου 2 ⁷	-10000000
Пр	οόσθεση 1	+1
A ⁻	Απάντηση =	
Παράδειγμα 2		Y - X
X=	1010100	
Y=	1000011	1000011
Συμπλήρωμα ως προς 1 του X=	οος 1 του X= 0101011	
Δεν υπάρχει τελικό κρατούμενο - Άθροισμα=		1101110
Συμπλήρωμα ως προς	1 тоо Y - X=	0010001
	Απάντηση=	-(0010001)

Λογική Σχεδίαση, Κεφ. 1-29

- Χρειαζόμαστε έναν τρόπο αναπαράστασης αρνητικών δυαδικών ακεραίων,
- Συνήθως χρησιμοποιούμε ένα bit αριστερά του αριθμού (Αναπαράσταση προσημασμένου μεγέθους),
- Έχουμε συμφωνήσει το bit '0' να αναπαριστά θετικούς και το bit '1' να αναπαριστά αρνητικούς αριθμούς
- Υπάρχει και άλλος τρόπος. Το σύστημα προσημασμένου συμπληρώματος που διευκολύνει τις αριθμητικές πράξεις σε ένα ψηφιακό σύστημα
- Παράδειγμα:

Αναπαράσταση προσημασμένου μεγέθους	10001001
Αναπαράσταση προσημασμένου συμπληρώματος ως προς 1	11110110
Αναπαράσταση προσημασμένου συμπληρώματος ως προς 2	11110111

 Ο παρακάτω πίνακας παραθέτει όλους τους πιθανούς δυαδικούς αριθμούς τεσσάρων bit με πρόσημο στις τρεις προαναφερθείσες αναπαραστάσεις

Δεκαδικός	Προσημασμένο Συμπλήρωμα ως προς 2	Προσημασμένο Συμπλήρωμα ως προς 1	Προσημασμένο Μέγεθος
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

- Αριθμητική πρόσθεση δύο αριθμών
 - Στο σύστημα προσημασμένου μεγέθους:
 - Ακολουθεί τους κλασικούς κανόνες της αριθμητικής. Εάν τα πρόσημα είναι ίδια, προσθέτουμε τα μεγέθη των αριθμών και δίνουμε στο άθροισμα το κοινό πρόσημο. Εάν τα πρόσημα είναι διαφορετικά, αφαιρούμε το μικρότερο μέγεθος από το μεγαλύτερο και δίνουμε στη διαφορά το πρόσημο που έχει το μεγαλύτερο μέγεθος.
 - Στο σύστημα του συμπληρώματος ως προς 2
 - Προσθέτουμε απλά τους δύο αριθμούς, συμπεριλαμβανομένων των bit που έχουν τον ρόλο του πρόσημου.
 - Εάν τα bit πρόσημου παράγουν κρατούμενο, αυτό αγνοείται.

Παράδειγμα

+ 6	00000110	- 6	11111010
<u>+13</u>	00001101	<u>+13</u>	<u>00001101</u>
+ 19	00010011	+ 7	00000111
+ 6	00000110	-6	11111010
<u>-13</u>	<u>11110011</u>	<u>-13</u>	<u>11110011</u>
-7	11111001	- 19	11101101

- Αριθμητική αφαίρεση δύο αριθμών
 - Στο σύστημα του συμπληρώματος ως προς 2:
 - Υπολογίστε το συμπλήρωμα ως προς 2 του αφαιρετέου και προσθέστε το στον μειωτέο, συμπεριλαμβάνοντας στην πρόσθεση τα bit πρόσημου. Δηλ:

$$(\pm A) - (+B) = (\pm A) + (-B)$$

 $(\pm A) - (-B) = (\pm A) + (+B)$

Παράδειγμα:

$$(-6) - (-13)$$
 \longrightarrow $(11111010 - 11110011)$ \longrightarrow $(11111010 + 00001101)$ \longrightarrow $00000111 (+7)$

Δυαδικοί Κώδικες

- ► Κώδικας BCD
 - Ένας αριθμός με Ν δεκαδικά ψηφία, απαιτεί 4N bit στο BCD.
 - Ο δεκαδικός 396, αποτελείται από 12bits στο BCD ως 0011 1001
 0110, όπου κάθε ομάδα των 4 bits αντιπροσωπεύει ένα δεκαδικό ψηφίο.
 - Ένας δεκαδικός αριθμός στο BCD είναι ο ίδιος με τον αντίστοιχο δυαδικό αριθμό μόνο όταν ο αριθμός έχει τιμές μεταξύ 0 και 9.
 - Οι δυαδικές ακολουθίες bit 1010 1111 δεν χρησιμοποιούνται και δεν έχουν νόημα στο BCD.

Δεκαδικό Ψηφίο	Ψηφίο BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Δυαδικοί Κώδικες

- Παράδειγμα:
 - Δεκαδικός 185:

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_{2}$$

- Πρόσθεση δύο μονοψήφιων αριθμών στο BCD:
 - Εάν το αποτέλεσμα της πρόσθεσης είναι ≥ 1010 τότε πρέπει να προσθέσουμε σε αυτό το 0110

4	0100	4	0100	8	1000
<u>+ 5</u>	<u>+ 0101</u>	<u>+8</u>	<u>+1000</u>	<u>+9</u>	<u>+1001</u>
9	1001	12	1100	17	10001
			<u>+ 0110</u>		<u>+ 0110</u>
			10010		10111

Δυαδικοί Κώδικες

- Παραδείγματα:
 - Έστω η πρόσθεση 184 + 576 = 760 στο δεκαδικό. Να γίνει η πρόσθεση στο BCD:

BCD	1	1		
	0001	1000	0100	184
	+0101	<u>0111</u>	<u>0110</u>	+576
Δυαδικό άθροισμα	0111	10000	1010	
Πρόσθεση 6		<u>0110</u>	<u>0110</u>	
BCD άθροισμα	0111	0110	0000	760

Έστω η πρόσθεση: (+375) + (-240) = +135

0	375
<u>+9</u>	<u>760</u>
0	135

Χρησιμοποιήστε το συμπλήρωμα ως προς 10 του αριθμού BCD

Άλλοι Δυαδικοί Κώδικες

Δεκαδικό Ψηφίο	BCD 8421	2421	Συν - 3	8, 4, -21
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
	1011	0110	0001	0010
Αχρείαστοι	1100	0111	0010	0011
Συνδυασμοί	1101	1000	1101	1100
	1110	1001	1110	1101
	1111	1010	1111	1110

Κώδικας Gray

- Το πλεονέκτημα του είναι ότι για κάθε ακολουθία του κώδικα αλλάζει μόνο ένα bit πηγαίνοντας από τον έναν αριθμό στον άλλο.
 - Εντοπισμός σφαλμάτων.
 - Αναπαράσταση αναλογικών δεδομένων.
 - Σχεδιασμός χαμηλής ισχύος.

Δεκαδικό Ψηφίο
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Κώδικας Χαρακτήρων ASCII

- American Standard Code for Information Interchange Δημοφιλής κώδικας που χρησιμοποιείται για την αναπαράσταση πληροφορίας με τη μορφή κειμένου.
- Χρησιμοποιεί 7-bits για να αναπαραστήσει:
 - 94 χαρακτήρες και σύμβολα.
 - 34 χαρακτήρες ελέγχου.
- Κάποιοι από τους χαρακτήρες ελέγχου χρησιμοποιούνται για τη μορφοποίηση του κειμένου (π.χ. BS = Backspace, CR = carriage return).
- Άλλοι χαρακτήρες ελέγχου χρησιμοποιούνται σαν διαχωριστές πληροφοριών κ.α. (π.χ. οι STX και ETX δηλώνουν έναρξη και τέλος κειμένου για fax).

 Ο κώδικας American Standard Code for Information Interchange (ASCII) για χαρακτήρες, σύμβολα και χαρακτήρες ελέγχου

				b7b6b5				
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	× .	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	**	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB		7	G	W	g	W
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	水	:	J	Z	j	Z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	١	1	Ì
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	٨	n	~
1111	SI	US	1	?	0	-	0	DEL

- Κώδικας Ανίχνευσης Σφάλματος
 - Για τον εντοπισμό σφαλμάτων στην μετάδοση και την επεξεργασία δεδομένων, προστίθεται μερικές φορές ένα όγδοο bit, το bit ισοτιμίας, σε κάθε χαρακτήρα του κώδικα ASCII για να υποδείξει την ισοτιμία του.
 - Το bit ισοτιμίας είναι ένα πρόσθετο bit σε μια ακολουθία που καθιστά τον συνολικό αριθμό των 1 είτε άρτιο είτε περιττό. Παράδειγμα:
 - Θεωρείστε τους παρακάτω δύο χαρακτήρες ASCII και την περιττή και άρτια ισοτιμία τους:

	Με άρτια ισοτιμία	Με περιττή ισοτιμία
ASCII $A = 1000001$	01000001	11000001
ASCII T = 1010100	11010100	01010100

Δυαδική Αποθήκευση και Καταχωρητές

- Καταχωρητές
 - Το δυαδικό κελί (binary cell) είναι μια διάταξη με δύο σταθερές καταστάσεις, ικανή να αποθηκεύσει ένα bit (0 ή 1) πληροφορίας.
 - Ο καταχωρητής (register) είναι μια ομάδα δυαδικών κελιών. Ένας καταχωρητής με n κελιά μπορεί να αποθηκεύσει οποιαδήποτε διακριτή ποσότητα πληροφοριών των n bits.

n κελιά $> 2^n πιθανοί συνδυασμοί$

- Μεταφορά περιεχομένου καταχωρητή (Register Transfer)
 - Μεταφορά της αποθηκευμένης πληροφορίας από έναν καταχωρητή, σε έναν άλλο καταχωρητή.
 - Η μια από τις δύο βασικές λειτουργίες σε ένα ψηφιακό σύστημα.

Παράδειγμα Ψηφιακού Υπολογιστή

Μεταφορά Πληροφορίας

Μεταφορά περιεχομένου καταχωρητή

Επεξεργασία Πληροφορίας

- Η δεύτερη βασική λειτουργία σε ένα ψηφιακό σύστημα.
 - Κυκλωματικά στοιχεία αναλαμβάνουν να επεξεργαστούν bit πληροφορίας
 - Διάταξη φόρτωσης αποθήκευσης

```
LD R1;
LD R2;
ADD R3, R2, R1;
SD R3;
```

Επεξεργασία δυαδικών πληροφοριών

- Ορισμός της Δυαδικής Λογικής
 - Η δυαδική λογική συμπεριλαμβάνει δυαδικές μεταβλητές (δηλαδή μεταβλητές που παίρνουν 2 διακριτές τιμές) και ένα σύνολο από λογικές πράξεις.
 - Οι μεταβλητές συμβολίζονται με γράμματα (του αγγλικού αλφάβητου συνήθως), όπως Α, Β, C, x, y, z, κτλ, και μπορούν να έχουν μόνο 2 τιμές: 1 και 0,
 - Υπάρχουν τρεις βασικές λογικές πράξεις:
 - AND, OR, Kai NOT.

Πίνακες Αληθείας, Λογικές Εκφράσεις, Λογικές Πύλες

AND

X	у	\mathcal{Z}
0	0	0
0	1	0
1/	0	0
/1	1	1

$$z = x \bullet y = x \ y$$

$$x$$
 $-z$

OR

X	у	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$z = x + y$$

NOT

X	Z
0	1
1	0

$$z = \overline{x} = x'$$

$$x \longrightarrow z$$

Κυκλώματα Μεταγωγής

- Λογικές πύλες
 - Παράδειγμα δυαδικών σημάτων

Σήματα στην είσοδο και την έξοδο των πυλών

Πύλες με περισσότερες από 2 εισόδους