

PHYS 5319-001: Math Methods in Physics III

Instructor: Dr. Qiming Zhang

Office: CPB 336

Phone: 817-272-2020

Email: zhang@uta.edu

Hints of Programming

- Make a backup of your code before modifying
- Constantly save while editing
- Comments and documentation
- Use descriptive names for variables/functions
- Declare all variables (no implicit in FORTRAN: Implicit none)
- Compiler may make errors, too
- Avoid using "go to"
- Use statements (labels) as less as possible

Numerical integration

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} f(x_i)w_i$$

where

N: # of subintervals

 w_i : sum weight for *i-th* subinterval

x_i: a point in *i-th* subinterval

How to choose points/weights?

Newton-Cotes methods

$$h = \frac{b - 4}{|v - 1|}$$

Trapezoid rule:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}f_{1} + hf_{2} + hf_{3} + \dots + hf_{N-1} + \frac{h}{2}f_{N} + O(h^{2}f'')$$

Simpson rule (N: odd integer)

$$\int_{a}^{b} f(x)dx = \frac{h}{3}f_{1} + \frac{4h}{3}f_{2} + \frac{2h}{3}f_{3} + \dots + \frac{4h}{3}f_{N-1} + \frac{h}{3}f_{N} + O(h^{4})$$

Pseudo codes

Trapezoid rule

```
SUBROUTINE TRAPZD (FUNC, A, B, S, N)
IF (N.EQ.1) THEN
  PRINT*, 'NOT ENOUGH POINTS FOR TRAPEZOID'
  RETURN
ELSE
  TNM=N-1
 DEL=(B-A)/TNM \longrightarrow k
  X=A+DEL
  SUM=0.
  DO J=2, N-1
    SUM=SUM+FUNC(X)
    X=X+DEL
  ENDDO
  S=0.5*(FUNX(A)+FUNC(B))+SUM
  S=S*DEL
ENDIF
RETURN
END
```

Pseudo codes

Simpson rule

```
c Simpson's rule
        subroutine simpson(f, min, max, i)
        Integer i, n
        Real*8 interval, min, max, simpson, x
        if(i.eq.1.or.mod(i,2).ne.1) then
          pring*, 'odd number (>1) of points for Simpson'
          stop
        endif
        simpson=0
        interval = ((max-min) / (i-1))
c loop for odd points
        Do n=2, (i-1), 2
          x = interval * (n-1) + min
          simpson = simpson + 4*f(x)
        enddo
c loop for even points
        Do n=3, (i-1), 2
          x = interval * (n-1) + min
          simpson = simpson + 2*f(x)
        enddo
c add the endpoints
        simpson = simpson + f(min) + f(max)
        simpson=simpson*interval/3
        Return
        End
```

Gaussian Quadratures

non-uniform intervals

For a function
$$f(x)$$
, $\int_a^b W(x) f(x) dx \approx \sum_{j=1}^N w_j f(x_j)$

where W(x) is the "weight" function in an orthogonal polynomials, don't mess with the real weight w_i

e.g. to do
$$\int_{-1}^{+1} \frac{\exp(-\cos^2 x)}{\sqrt{1-x^2}} dx$$

may choose $W(x) = \frac{1}{\sqrt{1-x^2}}$ in (-1,1) window, called **Gaussian-Chebyshev** integration.

The name is usually related the corresponding orthogonal polynomials' integral weight. (recall Math-1 class)

Table 5.1 Orthogonal Polynomials Generated by Gram-Schmidt Orthogonalization of $u_n(x) = x^n$, n = 0, 1, 2, ...

Polynomials	Scalar Products	Table
Legendre	$\int_{-1}^{1} P_n(x) P_m(x) dx = 2\delta_{mn}/(2n+1)$	Table 15.1
Shifted Legendre	$\int_{0}^{1} P_{n}^{*}(x) P_{m}^{*}(x) dx = \delta_{mn}/(2n+1)$	Table 15.2
Chebyshev I	$\int_{-1}^{1} T_n(x) T_m(x) (1 - x^2)^{-1/2} dx = \delta_{mn} \pi / (2 - \delta_{n0})$	Table 18.4
Shifted Chebyshev I	$\int_{0}^{1} T_{n}^{*}(x) T_{m}^{*}(x) [x(1-x)]^{-1/2} dx = \delta_{mn} \pi/(2 - \delta_{n0})$	Table 18.5
Chebyshev II	$\int_{-1}^{1} U_n(x)U_m(x)(1-x^2)^{1/2}dx = \delta_{mn}\pi/2$	Table 18.4
Laguerre	$\int_{0}^{\infty} L_{n}(x)L_{m}(x)e^{-x}dx = \delta_{mn}$	Table 18.2
Associated Laguerre	$\int_{0}^{\infty} L_n^k(x) L_m^k(x) e^{-x} dx = \delta_{mn}(n+k)!/n!$	Table 18.3
Hermite	$\int_{-\infty}^{\infty} H_n(x)H_m(x)e^{-x^2}dx = 2^n \delta_{mn}\pi^{1/2}n!$	Table 18.1

But,
$$\int_a^b W(x) f(x) dx \approx \sum_{j=1}^N w_j f(x_j)$$
 is not our usual integration form

Define
$$g(x) \equiv W(x)f(x)$$
 and $v_j \equiv w_j/W(x_j)$

The above integral becomes

$$\int_{a}^{b} g(x) dx \approx \sum_{i=1}^{N} v_{i} g(x_{i}) \qquad \qquad \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{N} f(x_{i}) w_{i}$$

Question: How to choose abscissas/weights?

Long story but doable!

Next slide

Also, accuracy?

If f(x) is a polynomial with the highest order less than N, the integration is exact.

Gaussian Quadratures (con't)

Say, the orthogonal polynomial is $p_N(x)$, the $\{x_j\}$ are its roots, i.e. $p_N(x_j)=0$

For example, Legendre polynomials

Due to the symmetric/antisymmetric function, only half (+) are given.

	TABLE
	n = 2
$x_1 = 0.577350269189626$	
	n = 3
$x_0 = 0.0000000000000000$	<i>n</i> -0
$x_1 = 0.774596669241483$	
	n = 4
$x_1 = 0.339981043584856$	n - 4
$x_1 = 0.861136311594053$	
W2 01001100011031000	_
	n = 5
$x_0 = 0.000000000000000000000000000000000$	
$x_1 = 0.538469310105683$	
$x_2 = 0.906179845938664$	
	n = 6
$x_1 = 0.238619186083197$	
$x_2 = 0.661209386466265$	
$x_3 = 0.932469514203152$	
	n = 7
$x_0 = 0.0000000000000000$	
$x_1 = 0.405845151377397$	
$x_2 = 0.741531185599394$	
$x_3 = 0.949107912342759$	
	n = 8
$x_1 = 0.183434642495650$,,
$x_2 = 0.525532409916329$	
$x_3 = 0.796666477413627$	
$x_4 = 0.960289856497536$	
	n = 9
$x_0 = 0.000000000000000000000000000000000$	n-9
$x_1 = 0.324253423403809$	
$x_2 = 0.613371432700590$	
$x_3 = 0.836031107326636$	
$x_4 = 0.968160239507626$	
_	n = 10
$x_1 = 0.148874338981631$	n = 10
$x_1 = 0.148874338981031$ $x_2 = 0.433395394129247$	
$x_1 = 0.433393394129247$ $x_3 = 0.679409568299024$	
$x_4 = 0.865063366688985$	
$x_4 = 0.973906528517172$	

Function W(x)

Define
$$\langle f|g\rangle \equiv \int_a^b W(x)f(x)g(x)dx$$

[a,b] is the interval that p_N defined

Gauss-Legendre:

$$W(x) = 1 \qquad -1 < x < 1$$

$$(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$$

Gauss-Hermite:

$$W(x) = e^{-x^2} \qquad -\infty < x < \infty$$

$$H_{j+1} = 2xH_j - 2jH_{j-1}$$

Gauss-Chebyshev:

$$W(x) = (1 - x^2)^{-1/2} - 1 < x < 1$$

$$T_{j+1} = 2xT_j - T_{j-1}$$

Gauss-Jacobi:

$$W(x) = (1 - x)^{\alpha} (1 + x)^{\beta} - 1 < x < 1$$

Gauss-Laguerre:

$$W(x) = x^{\alpha} e^{-x} \qquad 0 < x < \infty$$

$$(j+1)L_{j+1}^{\alpha} = (-x+2j+\alpha+1)L_{j}^{\alpha} - (j+\alpha)L_{j-1}^{\alpha}$$

Weight w_i

Once the abscissas $x_1, x_2, ..., x_N$ are known, w_i i=1,2,...,N, can be obtained

$$\begin{bmatrix} p_0(x_1) & \dots & p_0(x_N) \\ p_1(x_1) & \dots & p_1(x_N) \\ \vdots & & \vdots \\ p_{N-1}(x_1) & \dots & p_{N-1}(x_N) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{bmatrix} = \begin{bmatrix} \int_a^b W(x)p_0(x)dx \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Alternatively,

$$w_j = \frac{\langle p_{N-1} | p_{N-1} \rangle}{p_{N-1}(x_j) p_N'(x_j)}$$

where $p'_N(x_j)$ is $\frac{dp_N}{dx}$ at j-th node of $p_N(x)$.

Gauss-Legendre

$$W(x) = 1; -1 < x < 1$$
If we need to calculate
$$\iint_{a}^{b} f(x) dx \approx \sum_{i=1}^{N} f(x_{i}) w_{i}$$
Rescale x to x'

Rescale x to x'

$$x' = -1 + 2\frac{x-a}{b-a}$$

Or

$$x = \frac{b-a}{2}x' + \frac{a+b}{2}$$

The new $x' \in [-1, +1]$

Pseudo codes

Gauss-Legendre

```
for W= 16
```

```
SUBROUTINE QGAUS (FUNC, A, B, SS)
DIMENSION X(5), W(5)
DATA X/.1488743389, .4333953941, .6794095682, .8650633666, .9739065285
DATA W/.2955242247,.2692667193,.2190863625,.1494513491,.0666713443
XM=0.5*(B+A)
XR = 0.5*(B-A)
SS=0
DO J=1.5
  DX=XR*X(J)
  SS=SS+W(J)*(FUNC(XM+DX)+FUNC(XM-DX))
ENDDO
SS=XR*SS
RETURN
END
```

Note: an arbitrary interval [A, B] is rescaled to [-1, 1] in the code!

```
SUBROUTINE GAULEG (X1, X2, X, W, N)
       REAL*4 X1, X2, X(N), W(N)
C given the lower and upper limits of the integration, X1 and X2,
C and N (n-points Gaussian), this routine returns arrays X(1:N)
\mathbb{C} and \mathbb{W}(1:\mathbb{N}), the adscissas and weights of
C the Gauss-Legendre n-point quadrature formula.
       PARAMETER (EPS=3.E-14)
      M = (N+1)/2
       XM=0.5*(X2+X1)
       XL=0.5*(X2-X1)
       DO 12 I=1, M
         Z=COS(3.141592654*(I-.25)/(N+.5))
         CONTINUE
           P1=1.D0
           P2 = 0.D0
           DO J=1,N
              P3=P2
             P2 = P1
              P1=((2.0*J-1.0)*Z*P2-(J-1.0)*P3)/J
           ENDDO
           PP=N*(Z*P1-P2)/(Z*Z-1.0)
           Z1=Z
           Z=Z1-P1/PP
         IF (ABS (Z-Z1).GT.EPS) GO TO 1
         X(I) = XM - XL \times Z
         X(N+1-I)=XM+XL*Z
         W(I) = 2.0 \times XL/((1.0 - Z \times Z) \times PP \times PP)
         W(N+1-I) = W(I)
       ENDDO
       RETURN
       END
```

Homework-1 due next Tuesday (June 22nd)

$$V_{H} = \frac{1}{4\pi \xi_{o}} \left(\frac{f(r')}{|\vec{r} - \vec{r}'|} \right)^{3}$$

$$W_{i} = \frac{1}{4\pi \xi_{o}} \left(\frac{f(\vec{r}')}{|\vec{r} - \vec{r}'|} \right)^{3}$$

$$W_{i} = \frac{1}{4\pi \xi_{o}} \left(\frac{f(\vec{r}')}{|\vec{r} - \vec{r}'|} \right)^{3}$$