2011-(02)feb-09: dag 7

Först mer om funktioner

En <u>inversfunktion</u> till $f: X \rightarrow Y$ är en funktion $g: Y \rightarrow X$ så att

$$f \circ g = id_Y \text{ och } g \circ f = id_X \text{ (id}_Y(y) = y \text{ för alla y i Y)}$$

Inversfunktionen skrivs f^{-1} .

f kallas invertabel (eller inverterbar) om f^{-1} existerar.

Om f är invertabel:

$$f(x_1) = f(x_2) \Rightarrow \underbrace{f^{-1}(f(x_1))}_{x_1} = \underbrace{f^{-1}(f(x_2))}_{x_2}$$

Så f injektiv.

För $y \in Y$ gäller $f(f^{-1}(y)) = y$, y godtyckligt, så f surjektiv.

Det vill säga f är en bijektion.

Och omvänt f bijektion:

Definiera g:
$$x = g(y) \Leftrightarrow y = f(x)$$

("vänd pilarna")

Sats: $f: X \rightarrow Y$ är invertabel omm den är en bijektion.

Man ser att om f, g är invertabla $\begin{cases} f: X \rightarrow Y \\ g: Y \rightarrow Z \end{cases}$

så är $g \circ f : X \to Z$ invertabel och $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Om X är ändlig och $f: X \to Y$ är en bijektion så är tydligen |X| = |Y|, de har samma kardinalitet. |X| = n betyder att det finns en bijektion $f: \{1, 2, 3, ..., n\} \to X$.

Också för oändliga mängder. Vi säger att X och Y har samma kardinalitet, |X| = |Y| omm det dinns en bijektion $f : X \rightarrow Y$.

Definition:

X är <u>uppräknelig</u> om det finns en bijektion $f : \mathbb{N} \to X$.

Observera att $\mathbb{N} = \{\mathbf{0}, 1, 2, ...\}$ är lika stor som $\mathbb{Z}_+ = \{\mathbf{1}, 2, ...\}$ ty en bijektion $f : \mathbb{N} \to \mathbb{Z}_+$ ges av f(x) = x + 1.

$$|\mathbb{N}| = |\mathbb{Z}_+|$$

Och
$$\mathbb{N} = A \cup B$$
, $A = \{0, 2, 4, ...\}$, $B = \{1, 3, 5, ...\}$

 $A \cap B = \emptyset$ (disjunkta)

$$|A \cup B| = |A| = |B| > 0$$

 $|A| = |B| = |\mathbb{N}|$

$$f(x) = x + 1$$
 $g: \mathbb{N} \to A$ $g(x) = 2x$

 \mathbb{R} , de reella talem, är inte uppräknelig; den är överuppräknelig.

Ty: Antag att $f : \mathbb{N} \to \mathbb{R}$ är en bijektion.

$$f(1) = ..., \underline{a_{11}} a_{12} a_{13}...$$
 decimalbråk som inte slutar med 999... ($\overline{9}$) $f(2) = ..., a_{21} \underline{a_{22}} a_{23}...$

$$f(3) = ..., a_{31}a_{32}\underline{a_{33}}...$$

Betrakta $x = 0,g(a_{11})g(a_{22})g(a_{33})$

$$g(0) = 1$$

 $g(d) = 0$, $d = 1, 2, 3, ..., 9$

då $x \neq f(n)$ för alla n ty olika n:e decimal. f inte surjektiv.

Motsägelse!

Men $|\mathbb{Q}| = |\mathbb{N}|$, de rationella tlen är uppräkneliga.

$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$

Oavsett vilken punkt som väljs kommer den kommas fram till.

|X| < |Y| betyder att det finns en injektion $f: X \to Y$, men inte en surjektion.

Sats: $|A| < |\mathcal{P}(A)|$, alla mängder A.

Ty: Det finns en bijektion $g : A \rightarrow \mathcal{P}(A)$

|X| < |Y|: det finns en injektion : $X \rightarrow Y$ det finns inte en bijektion.

 $g(a) = \{a\}$

Låt $f: A \to \mathcal{P}(A)$. Vi ska se att f inte är en surjektion med $B = \{a \in A \mid a \notin f(a)\} \in \mathcal{P}(A)$.

För alla $a \in A$: $a \in B \Leftrightarrow a \notin f(a)$

Om f(b) = B: $b \in B \Leftrightarrow b \notin f(b) = B$ Motsägelse!

 $b \in A$: f är inte surjektiv

Binära <u>relationer</u> på en mängd \Re en binär relation på mängden X för alla a, b \in X är a \Re b sant eller falskt.

Exempel: $| \leq | \leq | \equiv_m |$ på \mathbb{Z}

 \subseteq \subset |A| = |B| A \cap B $\neq \emptyset$ på mängder

Formellt definieras ofta

$$\mathfrak{R} = \{(a, b) \in X^2 \mid a \ \mathfrak{R} \ b\} \subseteq X^2 \ (= X \times X)$$

Beskrivs ibland med en graf

betyder b $\Re c$ sant det vill säga (a, b) $\in \Re$.

Kan också beskrivas med en matris

Viktiga egenskaper för binära relationer:

 \Re reflexiv:

$$x \Re x \forall x \in X$$
 exempel: $| \leq = \equiv_m$

 \Re symmetrisk:

$$x \mathcal{R} y \Leftrightarrow y \mathcal{R} x$$

exempel: $= \equiv_m$

 \Re antisymmetrisk:

$$x \mathcal{R} y \wedge y \mathcal{R} x \Rightarrow x = y$$
 exempel: $\leq \subseteq |$

 \Re transitiv:

$$x \mathcal{R} y, y \mathcal{R} z \Rightarrow x \mathcal{R} z$$
 exempel: \geq =

 \Re kallas en <u>ekvivalensrelation</u> omm den är reflexiv, symmerisk och transitiv.

Exempel:
$$= \equiv_m |\cdot| = |\cdot|$$

En sådan delar X i <u>ekvivalensklasses</u> (disjunkta) $(y = \{x \in X \mid x \Re y\})$

Ett exempel på en sådan är ≡_m

 \Re kallas en <u>partialordning</u> omm den är reflexiv, antisymmetrisk och transitiv.

Exempel:

$$\subseteq$$
 (för $\mathcal{P}(Y)$)

|:

Inga cykler (sluta kurvor) av längen > 1.

I samband med partialordning (≤ eller dylikt)

Ett element $a \in X$ (med partialordning \leq) kallas <u>minimalt</u> om inget mindre:

$$x \le a \Rightarrow x = a$$

Minst om det är mindre än alla:

$$a \leq x \forall x \in X$$

Minimal det finns inget minsta

a minst ⇒ a minimalt a minst ⊭ a minimalt

På samma sätt; maximalt, störst.

Om $x \le z$, $y \le z$ är z en <u>övre begränsning</u> till X, Y (Det finns även <u>undre begränsning</u>.)

Exempel: gemensam delare |.