LECTURE 13: GRAPH REPRESENTATION LEARNING

Machine Learning with Networks

Classical ML tasks in networks:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Example: Node Classification

Example: Node Classification

Classifying the function of proteins in the interactome!

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel protein-protein interactions. *Nature*.

Example: Link Prediction

Example: Link Prediction

Content recommendation is link prediction!

Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!

Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning
in networks!

Example

Zachary's Karate Club Network:

Input

Output

Image from: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. *KDD.*

Why Is It Hard?

- Modern deep learning toolbox is designed for simple sequences or grids.
 - CNNs for fixed-size images/grids....

RNNs or word2vec for text/sequences...

Why Is It Hard?

- But networks are far more complex!
 - Complex topographical structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point (i.e., the isomorphism problem)
- Often dynamic and have multimodal features.

NODE EMBEDDINGS

Embedding Nodes

Intuition: Find embedding of nodes to d-dimensions so that "similar" nodes in the graph have embeddings that are close together.

Setup

- □ Assume we have a graph G:
 - □ V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - No node features or extra information is used!

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.

Embedding Nodes

Learning Node Embeddings

- Define an encoder (i.e., a mapping from nodes to embeddings)
- Define a node similarity function (i.e., a measure of similarity in the original network).
- Optimize the parameters of the encoder so that:

similarity
$$(u, v) \approx \mathbf{z}_v^\top \mathbf{z}_u$$

Two Key Components

Encoder maps each node to a low-dimensional vector.

 ${\rm ENC}(v) = \mathbf{z}_v \quad \text{embedding}$ node in the input graph

Similarity function specifies how relationships in vector space map to relationships in the original network.

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

$$\text{ENC}(v) = \mathbf{Z}\mathbf{v}$$

$$\mathbf{Z} \in \mathbb{R}^{d imes |\mathcal{V}|}$$

matrix, each column is node embedding [what we learn!]

$$\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$$

indicator vector, all zeroes except a one in column indicating node *v*

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup.

i.e., each node is assigned a unique embedding vector.

□ E.g., node2vec, DeepWalk, LINE

How to Define Node Similarity?

- Key distinction between "shallow" methods is how they define node similarity.
- E.g., should two nodes have similar embeddings if they....
 - are connected?
 - share neighbors?
 - have similar "structural roles"?
 - □ … Ś

- Join adjacency matrix and features;
- Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

- Issues with this idea:
 - $lackbox{0}(N)$ parameters
 - Not applicable to graphs of different sizes
 - Not invariant to node ordering

Three Approaches

- 1. Adjacency-based similarity
- 2. Multi-hop similarity
- 3. Random walk approaches

High-level structure and material from:

• <u>Hamilton et al. 2017</u>. Representation Learning on Graphs: Methods and Applications. *IEEE Data Engineering Bulletin on Graph Systems*.

Material based on:

Ahmed et al. 2013. <u>Distributed Natural Large Scale Graph Factorization</u>.

- Similarity function is just the edge weight between u and v in the original network.
- Intuition: Dot products between node embeddings approximate edge existence.

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

- Find embedding matrix $\mathbf{Z} \in \mathbb{R}^{d \times |V|}$ that minimizes the loss \mathcal{L}
 - E.g., Use stochastic gradient descent (SGD) as a general optimization method.
 - Highly scalable, general approach

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}\|^2$$

□ Drawbacks:

- \square O($|V|^2$) runtime. (Must consider all node pairs.)
 - Can make O([E]) by only summing over non-zero edges and using regularization (e.g., Ahmed et al., 2013)
- \square O(|V|) parameters! (One learned vector per node).
- Only considers direct, local connections.

e.g., the blue node is obviously more similar to green compared to red node, despite none having direct connections.

Material based on:

- Cao et al. 2015. <u>GraRep: Learning Graph Representations with Global Structural Information</u>. *CIKM*.
- Ou et al. 2016. <u>Asymmetric Transitivity Preserving Graph Embedding</u>. *KDD.*

- Idea: Consider k-hop node neighbors.
 - E.g., two or three-hop neighbors.

- Red: Target node
- Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
- Blue: 2-hop neighbors
 - A²
- Purple: 3-hop neighbors
 - A^3

$$oldsymbol{\square}$$
 Basic idea: $\mathcal{L} = \sum_{(u,v) \in V imes V} \|\mathbf{z}_u^ op \mathbf{z}_v - \mathbf{A}_{u,v}^k\|^2$

Train embeddings to predict k-hop neighbors.

Another option: Measure overlap between node neighborhoods.

- Example overlap functions:
 - Jaccard similarity

$$\mathcal{L} = \sum_{\substack{(u,v) \in V \times V \\ \text{embedding similarity}}} \|\mathbf{z}_u^{\top} \mathbf{z}_v - \mathbf{S}_{u,v}\|^2$$

$$= \sum_{\substack{(u,v) \in V \times V \\ \text{embedding similarity}}} \|\mathbf{z}_v^{\top} \mathbf{z}_v - \mathbf{S}_{u,v}\|^2$$

$$= \sum_{\substack{(u,v) \in V \times V \\ \text{embedding similarity}}} \|\mathbf{z}_v^{\top} \mathbf{z}_v - \mathbf{S}_{u,v}\|^2$$

 \square $S_{u,v}$ is the neighborhood overlap between u and v (e.g., Jaccard overlap).

Summary so far

□ Basic idea so far:

- 1) Define pairwise node similarities.
- 2) Optimize low-dimensional embeddings to approximate these pairwise similarities.

□ Issues:

- **Expensive:** Generally $O(|V|^2)$, since we need to iterate over all pairs of nodes.
- **Brittle:** Must hand-design deterministic node similarity measures.
- \blacksquare Massive parameter space: O(|V|) parameters

Random Walk Approaches

Material based on:

- Perozzi et al. 2014. <u>DeepWalk: Online Learning of Social Representations</u>.
 KDD.
- Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

Random-walk Embeddings

 $\mathbf{z}_u^ op \mathbf{z}_v pprox$

and vco-occur on a random walk over the network

Random-walk Embeddings

Estimate probability of visiting node V on a random walk starting from node U using some random walk strategy R.

 Optimize embeddings to enco these random walk statistics.

Why Random Walks?

- Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higherorder neighborhood information.
- Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that cooccur on random walks.

Random Walk Optimization

- 1. Run short random walks starting from each node on the graph using some strategy R.
- 2. For each node u collect $N_R(u)$, the multiset* of nodes visited on random walks starting from u.
- 3. Optimize embeddings to according to:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

* $N_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks.

Random Walk Optimization

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

- Intuition: Optimize embeddings to maximize likelihood of random walk co-occurrences.
- Parameterize $P(v | \mathbf{z}_u)$ using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)}$$

Random Walk Optimization

Putting things together:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$
 sum over all sum over nodes v predicted probability of u and v co-occurring on walks starting from u random walk

Optimizing random walk embeddings = Finding embeddings \mathbf{z}_{n} that minimize \mathbf{L}

Random Walks: Summary

- 1. Run short random walks starting from each node on the graph using some strategy R.
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.
- 3. Optimize embeddings to according to:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

Summary so far

- Basic idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
 - Adjacency-based (i.e., similar if connected)
 - Multi-hop similarity definitions.
 - Random walk approaches.

Summary so far

- □ So what method should I use..?
- □ No one method wins in all cases.... (<u>Goyal and Ferrara</u>, <u>2017 survey</u>).
- □ Random walk approaches are generally more efficient (i.e., O(|E|) vs. $O(|V|^2)$)
- In general: Must choose def'n of node similarity that matches application!