INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

- Recursos que permitem obter novos grupos a partir de outros já conhecidos.
- Nota: Um grupo tem mais estrutura do que um semigrupo:
 - resultados mais profundos do que os análogos para semigrupos

▶ Teorema 1: Se G_1 e G_2 são grupos,então $G = G_1 \times G_2$ é um grupo com uma operação definida por:

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2)$$

- **Exemplo:** Sejam G_1 e G_2 o grupo \mathbb{Z}_2 .
 - Nota: $\overline{0}$ e $\overline{1}$ em vez de [0] e [1]
 - Tabela de multiplicação de $G = G_1 \times G_2$:

- G é um grupo de ordem 4 \Rightarrow deve ser isomórfico a V ou a \mathbb{Z}_4
- ▶ Vemos (⇒) que o isomorfismo é a $f: V \to \mathbb{Z}_2 \times \mathbb{Z}_2$ dada por:

$$f(e) = (\overline{0}, \overline{0})$$
 $f(a) = (\overline{1}, \overline{0})$ $f(b) = (\overline{0}, \overline{1})$ $f(c) = (1, 1)$

(GRUPOS DE ORDEM 4)

Tabelas de multiplicação para grupo de ordem 4:

	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
е	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
а	а	е	С	b	а	е	С	b	а	b	С	е	а	С	е	b
b	b	С	е	а	b	С	а	е	b	С	е	а	b	е	С	а
С	b c	b	а	е	С	b	е	а	С	е	a	b	С	b	а	е
	(1)							(3)			(4)					

- Grupos das tabelas (2), (3) e (4) são isomórfi cos.
- De fato, existem exatamente 2 grupos não-isomórifi cos de ordem 4:
 - o grupo da tab. (1) é chamado de "grupo Klein 4" (denotado por V)
 - o grupo da tab. (2) é denotado por Z₄
 - ullet (re-rotulando os elementos de \mathbb{Z}_4 resulta nesta tabela.)

▶ Se repetirmos o exemplo com \mathbb{Z}_2 e \mathbb{Z}_3 , concluiremos que:

$$\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$$

Pode-se mostrar que, em geral:

$$\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_{mn}$$
 se e somente se $\mathsf{GCD}(m,n) = 1$

- O Teorema 1 pode ser estendido para:
 - Se G_1, G_2, \ldots, G_n são grupos, então

$$G = G_1 \times G_2 \times \cdots G_n$$
 também é um grupo.

Exemplo: Seja $B = \{0, 1\}$ o grupo com operação (já) definida por:

- Então $B^n = B \times B \times \cdots \times B$ é um grupo.
- Com operação ⊕ defi nida por:

$$(x_1, x_2, \dots, x_n) \oplus (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

- lacksquare A identidade de B^n é $(0,0,\ldots,0)$.
- Cada elemento é a sua própria inversa.
- ightharpoonup Este grupo é, essencialmente, o mesmo que a Álgebra Booleana B_n
 - só que a operação binária é bem diferente de ∧ e ∨.

- Sob uma relação de congruência, o grupo é visto como um semigrupo.
- A seguir, veremos estruturas quocientes determinadas por uma relação de congruência sobre um grupo.

Teorema 2:

- Seja R uma relação de congruência sobre o grupo (G, *).
- Então o semigrupo $(G/R,\circledast)$ é um grupo.
 - A operação \circledast é definida sobre G/R como:

$$[a] \circledast [b] = [a \circledast b]$$

Prova:

- G é um grupo $\Rightarrow G$ é um monóide $\Rightarrow G/R$ é um monóide
- Só falta provar que cada elemento de G/R tem uma inversa:
 - ullet como $[a] \in G/R$, então $[a^{-1}] \in G/R$ (pois $a^{-1} \in G$)
 - **9** daí: $[a] \circledast [a^{-1}] = [a \circledast a^{-1}] = [e]$
 - de modo que: $[a]^{-1} = [a^{-1}]$
 - ightharpoonup portanto: $(G/R,\circledast)$ é um grupo

HOMOMORFISMOS E ISOMORFISMOS

- Nota: As definições de homomorfismo, isomorfismo e congruência para grupos envolvem apenas as suas estruturas de semigrupos e monóides.
- A seguir, uma conseqüência imediata dos resultados para semigrupos...

Corolário 1(a):

- Se R é uma relação de congruência sobre G, então:
 - a função $f_R: G \to G/R$, dada por: $f_R(a) = [a]$ é um homomorfismo de grupo.

Corolário 1(b):

- Se $f: G \to G'$ é um homomorfismo e:
 - se R é definida por: "a R b sse f(a) = f(b)"
- então:
 - R é uma relação de congruência
 - a função $\overline{f}: G/R \to G'$, dada por: $\overline{f}([a]) = f(a)$ é um isomorfismo do grupo $(G/R, \circledast)$ sobre o grupo (G', *').

- Têm uma forma muito especial...
- Seja H um subgrupo de um grupo G e seja $a \in G$:
 - o coset à esquerda de H em G determinado por a é o conjunto:

$$aH = \{ah \mid h \in H\}$$

• o coset à direita de H em G, determinado por a, é o conjunto:

$$Ha = \{ ha \mid h \in H \}$$

ullet dizemos que um subgrupo H de G é **normal** se:

$$aH = Ha, \quad \forall a \in G$$

- ▶ Nota: "Ha = aH" não é o mesmo que "ha = ah"
 - só se sabe que ha = ah' aonde h' é algum elemento em H

- \blacksquare Computando todos os cosets à esquerda de um subgrupo H em G:
 - Suponha que $a \in H$:
 - então $aH \subseteq H$, pois H é subgrupo (de G)
 - além disto:
 - \cdot se $h \in H$, então h = ah', aonde: $h' = a^{-1}h \in H$
 - · de modo que: $H \subseteq aH$.
 - Conclusão: quando computando todos os cosets de H, não é preciso computar aH para $a \in H$
 - (pois será sempre H)

- **Exemplo 1(/3):** Seja G o grupo de simetrias S_3 já visto (=>).
 - O subconjunto $H = \{f_1, g_2\}$ é um subgrupo de G.
 - ullet Computando todos os cosets à esquerda de H em G:
 - se $a \in H$ então: aH = H
 - ightharpoonup portanto: $f_1H=g_2H=H$
 - além disto:

$$f_2H = \{f_2, g_1\}$$

$$f_3H = \{f_3, g_3\}$$

$$g_1H = \{g_1, f_2\} = f_2H$$

$$g_3H = \{g_3, f_3\} = f_3H$$

Portanto, todos os cosets à esquerda de H em G que são distintos são:

$$H$$
, f_2H e f_3H

(EXEMPLOS DE GRUPOS)

Exemplo (relembrando):

$$S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\}$$

$$= \{\{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{1, 3, 2\}, \{3, 2, 1\}, \{2, 1, 3\}\}\}$$

• A operação de composição sobre S_3 produz a seguinte tabela de multiplicação:

0	$ f_1 $	f_2	f_3	q_1	q_2	q_3
	f_1	$\frac{32}{f_{\odot}}$	$\frac{f_0}{f_0}$	01	00	
J1	$\int \int 1$	J2	J3	g_1	92	93
f_2	$\int f_2$	f_3	f_1	g_3	g_1	g_2
f_3	f_3	f_1	f_2	g_2	g_3	g_1
g_1	g_1	g_2	$ \begin{array}{c} f_3 \\ f_1 \\ f_2 \\ g_3 \\ g_1 \\ g_2 \end{array} $	f_1	f_2	f_3
g_2	g_2	g_3	g_1	f_3	f_1	f_2
g_3	g_3	g_1	g_2	f_2	f_3	f_1

Exemplo 2(/3): Sejam H e G como no exemplo anterior:

$$H = \{f_1, g_2\}$$

$$G = S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\}$$

$$= \{\{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{1, 3, 2\}, \{3, 2, 1\}, \{2, 1, 3\}\}$$

Considere o seguinte coset à direita:

$$Hf_2 = \{f_2, g_3\}$$

- Mas vimos que: $f_2H = \{f_2, g_1\}.$
- **■** Logo: H não é um subgrupo normal de G.

- **Exemplo 3(/3):** Mostre que se G é um grupo abeliano, todo subgrupo de G é um subgrupo normal.
 - Sejam:
 - ullet H um subgrupo de G
 - \bullet $a \in G$
 - \bullet $h \in H$
 - Então, como G é abeliano: ha = ah
 - de modo que: Ha = aH
 - ullet o que implica que H é um subgrupo normal de G.

Teorema 3:

- Sejam:
 - $m extcolor{}{}$ uma relação de congruência sobre um grupo G
 - H = [e] (a classe de equivalência que contém e),
- Então:
 - $m{ ilde{\square}} \ H$ é um subgrupo normal de G
 - ightharpoonup para cada $a \in G$, vale:

$$[a] = aH = Ha$$

● Prova: (⇒)

- **Prova:** Sejam a e b elementos quaisquer em G.
 - Uma vez que R é uma relação de equivalência:

$$b \in [a]$$
 se e somente se $[b] = [a]$

■ Também (pelo Teorema 2) G/R é um grupo.

$$\Rightarrow$$
 [b] = [a] se e somente se [e] = [a]⁻¹[b] = [a⁻¹b]

$$\Rightarrow b \in [a]$$
 se e somente se $H = [e] = [a^{-1}b]$

$$\Rightarrow b \in [a]$$
 se e somente se $a^{-1}b \in H$ ou: $b \in aH$

$$\Rightarrow$$
 $[a] = aH, \forall a \in G$

Pode-se mostrar, da mesma forma, que:

$$b \in [a]$$
 se e somente se $H = [e] = [b][a]^{-1} = [ba^{-1}]$

- ullet o que equivale a afi rmar que [a] = Ha
- **Portanto:** [a] = aH = Ha e H é normal.

- Combinando o Teorema 3:
 - "Se R é uma relação de congruência sobre um grupo G, então: [a] = a[e]."
- com o Corolário 1(a):
 - ullet "Se R é uma relação de congruência sobre G, então:
 - $f_R: G \to G/R$, dada por $f_R(a) = [a]$, é um homomorfi smo de grupo."
- notamos que, neste caso:
 - G/R consiste dos cosets à esquerda de N=[e]
 - ullet (ou seja: ao juntarmos todos os cosets à esquerda de [e], obteremos G/R)
 - ullet e a operação em G/R é dada (simplesmente) por:

$$(aN)(bN) = [a] \circledast [b] = [ab] = abN$$

• Frequentemente, escrevemos G/R como G/N.

- Teorema 4:
 - Sejam:
 - $oldsymbol{\mathscr{D}}$ N um subgrupo normal de um grupo G
 - ightharpoonup R a seguinte relação sobre G:

a R b se e somente se $a^{-1}b \in N$

- Então:
 - (a) R é uma relação de congruência sobre G
 - (b) N é a classe de equivalência [e] relativa a R
 - · ("e" é a identidade de G)

Prova: (⇒)

- **Prova de (a) (1/2)**: (" a relação $a R b \Leftrightarrow a^{-1}b \in N$ é de congruência")
 - ightharpoonup R é uma relação de equivalência sobre G:
 - $m{\rho}$ R é reflexiva: a R a, pois: $a^{-1}a = e \in N$
 - ightharpoonup R é simétrica: seja a R b:
 - então: $a^{-1}b \in N$
 - · mas: $(a^{-1}b)^{-1} = b^{-1}a \in \mathbb{N}$ (pois N é subgrupo)
 - \cdot de modo que: b R a
 - R é transitiva: sejam a R b e b R c:

 - \cdot de modo que: a R c
- Continuação da prova de (a) ⇒

- **Prova de (a) (2/2)**: (" a relação $a R b \Leftrightarrow a^{-1}b \in N$ é de congruência")
 - R é uma relação de congruência sobre G:
 - ullet suponha que $a\ R\ b$ e $c\ R\ d$:
 - \cdot então: $a^{-1}b \in N$ e $c^{-1}d \in N$
 - · N é normal: Nd = dN "($\forall n_1 \in N, \exists n_2 \in N \mid n_1d = dn_2$)"
 - em particular, como $a^{-1}b \in N$, temos: $a^{-1}b\mathbf{d} = \mathbf{d}n_2$, para algum $n_2 \in N$
 - · o que permite escrever:

$$(ac)^{-1}bd = (c^{-1}a^{-1})(bd) = c^{-1}(a^{-1}b)d = (c^{-1}d)n_2 \in \mathbb{N}$$

- · de modo que: ac R bd.
- $lap{Prova de (b)} \Rightarrow$

- **Prova de (b)**: (" se: $a R b \Leftrightarrow a^{-1}b \in N$, então: N = [e]")
 - Seja $x \in N$:
 - então $x^{-1}e = x^{-1} \in N$ (pois N é subgrupo)
 - de modo que: x R e e, portanto: $x \in [e]$
 - ullet logo: $N \subseteq [e]$
 - Conversamente:
 - se $x \in [e]$, então x R e
 - ullet de modo que: $x^{-1}e=x^{-1}\in N$
 - ullet então: $x\in N$ e $[e]\subseteq N$
 - Logo: N = [e]

- \blacksquare (Por Teoremas 3+4) Se G é um grupo qualquer:
 - as classes de equivalência relativas a uma relação de congruência sobre G são sempre cosets de algum subgrupo normal de G.
- Conversamente:
 - os cosets de todo subgrupo normal de G são apenas classes de equivalência relativas a alguma relação de congruência sobre G.

- O Corolário 1(b) pode agora ser escrito como:
 - Sejam:
 - f um homomorfismo de um grupo (G,*) sobre um (G',*').
 - o **kernel** de f dado por: $\ker(f) = \{a \in G \mid f(a) = e'\}$
 - Então:
 - (a) ker(f) é um subgrupo normal de G
 - (b) o grupo quociente $G/\ker(f)$ é isomórfico a G'.
- Prova: segue de Corolário 1 + Teorema 3, pois:
 - ullet se R é a relação de congruência sobre G dada por:
 - a R b se e somente se f(a) = f(b)
 - pode-se mostrar que: ker(f) = [e].

- **Exemplo:** Seja o homomorfismo f de \mathbb{Z} sobre \mathbb{Z}_n : f(m) = [r]
 - ullet aonde r é o resto quando m é dividido por n
 - Neste caso:
 - o inteiro m em \mathbb{Z} pertence a $\ker(f)$ sse f(m) = [0]
 - ullet ou seja, sse m é um múltiplo de n
 - $ule{portanto:} \ker(f) = n\mathbb{Z}$

Final deste item.

Dica: fazer exercícios sobre Produtos e Quocientes de Grupos...