The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

Lecture 10

Aryan Mokhtari

Wednesday, October 2, 2019.

Goal: In this lecture we first study operations that preserve the convexity property of a set. Then, we talk about convex functions.

1 Operations that preserve convexity

Several operations preserve convexity. Here are a few:

• Intersection: If C_1 and C_2 are two convex sets, then $C_1 \cap C_1$ remains convex. In fact, the same holds true for arbitrary intersections of convex sets.

Proof. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C}_1 \cap \mathcal{C}_1$, and let \mathbf{x} be a point on the line segment between \mathbf{x}_1 and \mathbf{x}_2 . Then, \mathbf{x} lies in both \mathcal{C}_1 & \mathcal{C}_2 as they are convex. Consequently, $\mathbf{x} \in \mathcal{C}_1 \cap \mathcal{C}_1$.

• Cartesian product: If C_1 and C_2 are two convex sets, then their cartesian product is convex, i.e.

$$\mathcal{C}_1 \times \mathcal{C}_2 = \left\{ \left(egin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}
ight) : \mathbf{x} \in \mathcal{C}_1, \mathbf{y} \in \mathcal{C}_2
ight\}$$

is convex.

Proof. Let
$$\mathbf{u}, \mathbf{v} \in \mathcal{C}_1 \times \mathcal{C}_2$$
 where $\mathbf{u} = \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$, and let $\mathbf{w} = \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{pmatrix} = \lambda \mathbf{u} + (1 - \lambda) \mathbf{v}$. Now, as $\mathbf{w}_1 \in \mathcal{C}_1$ and $\mathbf{w}_2 \in \mathcal{C}_2$, then $\mathbf{w} \in \mathcal{C}_1 \times \mathcal{C}_2$.

• Affine function: Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is an affine function (i.e., can be written as $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then, the image of a convex set \mathcal{C} under f is a convex set, i.e.,

$$\mathcal{S} \subset \mathbb{R}^n$$
 is convex $\Rightarrow f(\mathcal{S}) = \{\mathbf{y} = f(\mathbf{x}) \in \mathbb{R}^m | \mathbf{x} \in \mathcal{S} \}$ is convex

Proof. Let $\mathbf{y}_1, \mathbf{y}_2 \in f(\mathcal{S})$. Then, we know that there exist $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S}$ such that $\mathbf{y}_1 = f(\mathbf{x}_1)$ and $\mathbf{y}_2 = f(\mathbf{x}_2)$. By convexity of the set \mathcal{S} we know that $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{S}$ for $\lambda \in [0, 1]$. Therefore, $\lambda \mathbf{y}_1 + (1 - \lambda)\mathbf{y}_2$ also belongs to the set $f(\mathcal{S})$ as we know that it can be written as $\lambda \mathbf{y}_1 + (1 - \lambda)\mathbf{y}_2 = f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$ and $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{S}$.

1

2 Convex functions

We give three definitions of convex functions: A basic definition that requires no differentiability of the function; a first-order definition of convexity that uses the gradient; and a second-order condition of convexity. We show that (for smooth functions) these three are equivalent. Later in the course, it will be important to deal with non-differentiable functions.

First, we define the set of points where a function is finite.

Definition 1 (Domain of a function). The domain of a function $f : \mathbb{R}^n \to \mathbb{R}$ is denoted dom(f), and is defined as the set of points where a function f is finite:

$$dom(f) = \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) < \infty \}.$$

Definition 2 (Convexity I). A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if dom(f) is convex and for all $\mathbf{x}_1, \mathbf{x}_2 \in dom(f) \subseteq \mathbb{R}^n$, $\lambda \in [0, 1]$, we have:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda) f(\mathbf{x}_2). \tag{1}$$

This inequality is illustrated in Figure 1.

Figure 1: Convex functions

Remark 1. We say that f is concave if -f is convex.

Definition 3 (Strict Convexity). A function $f : \mathbb{R}^n \to \mathbb{R}$ is strictly convex if dom(f) is convex and for all $\mathbf{x}_1, \mathbf{x}_2 \in dom(f) \subseteq \mathbb{R}^n$ where $\mathbf{x}_1 \neq \mathbf{x}_2$ and $\lambda \in (0,1)$, we have:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2) < \lambda f(\mathbf{x}_1) + (1 - \lambda) f(\mathbf{x}_2).$$
 (2)

Show that the following functions are convex:

$$f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x} + b$$

$$f(\mathbf{x}) = \|\mathbf{x}\|_{p}$$

$$f(\mathbf{X}) = \mathbf{tr}(\mathbf{A}^{\top} \mathbf{X}) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

Theorem 1. A convex function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \to \mathbb{R}$ given by $g(t) = f(\mathbf{x} + t\mathbf{y})$ is convex (as a univariate function) for all \mathbf{x} in domain of f and all $\mathbf{y} \in \mathbb{R}^n$.

The theorem simplifies many basic proofs in convex analysis.

Allows us to check convexity of a function by checking convexity of functions of one variable.

Example: Consider the function $f(\mathbf{X}) = -\log \det(\mathbf{X})$ where $dom f = \mathbf{S}_{++}^n$. Consider $\mathbf{X} \in \mathbf{S}_{++}^n$ and $\mathbf{V} \in R^{n \times n}$ and the function $g : \mathbb{R} \to \mathbb{R}$ defined as $g(t) = f(\mathbf{X} + t\mathbf{V})$. Then, we have

$$g(t) = f(\mathbf{X} + t\mathbf{V})$$

$$= -\log \det(\mathbf{X} + t\mathbf{V})$$

$$= -\log \det(\mathbf{X}(\mathbf{I} + t\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2}))$$

$$= -\log \det(\mathbf{X}) - \log \det(\mathbf{I} + t\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2})$$

$$= -\log \det(\mathbf{X}) - \log \prod_{i=1}^{n} (1 + t\lambda_i)$$

$$= -\log \det(\mathbf{X}) - \sum_{i=1}^{n} \log(1 + t\lambda_i),$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2}$. Hence, for any $\mathbf{X} \in \mathbf{S}_{++}^n$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ the function g(t) is convex with respect to t as $-\log$ is a convex function.