

Data Platform Architectures & Machine Learning Operations (MLOps)

Dr. Christoph Gröger Arnold LutschRobert Bosch GmbH
IoT & Digitalization - Data Strategy

Prof. Dr. Jan Kirenz HdM Stuttgart

Data platform architectures & MLOps

Modul-Nr: 338025-338027

SWS/ECTS: 5/10

Prüfungsform: PP

Projektpartner:

Dr. Christoph Gröger Arnold Lutsch Robert Bosch GmbH

Themenschwerpunkte

- Datenplattformarchitektur
- Open Source Technologien (bspw. Delta Lake, Kubeflow, TFX)
- Machine Learning
 Operations
- Entwicklung in Python

Im Rahmen des Projekts soll mit Hilfe von Open-Source-Software eine prototypische state-of-the-art **Data Lake bzw. Datenplattformarchitektur** (bspw. Lakehouse) für die Realisierung unterschiedlicher Machine Learning Anwendungsfälle konzipiert und implementiert werden.

In der Architektur sollen für eine möglichst umfassende Automatisierung des **Machine Learning Lifecycles** Komponenten der Disziplin **Machine Learning Operations (MLOps)** berücksichtigt werden (bspw. feature store, model registry, data pipelines).

"... [we need to] help companies progress on their Al journey, from one-off Al experimentation to gaining a robust organization-wide capability that acts as a source of competitive agility and growth."

Accenture (2019)

The Proof of Concept Factory

Most companies...

- ... conduct AI experiments and pilots but achieve a low scaling success rate
- ... have significant AI under investments, yielding low returns

80-85% PoC Factory

How crucial is scaling AI to your business?

of executives say they won't achieve their growth objectives without scaling AI.

of executives believe they risk going out of business in 5 years if they don't scale Al.

of executives acknowledge they know how to pilot, but struggle to scale AI across the business. "[...] Al is currently done in an insular fashion leading to a polyglot and heterogeneous enterprise data landscape. This makes systematic data management, comprehensive data democratization and an overall data governance considerably challenging and prevents the wide-spread use of Al in industrial enterprises."

Insular AI and Enterprise Data Landscape

DWH: Data Warehouse, ERP: Enterprise Ressource Planning, MES: Manufacturing Execution System, ML: Machine Learning, RDBS: Relational Database System

Machine Learning Lifecycle, Data Platform Architectures & Machine Learning Operations (MLOps)

Lifecycle

of an ML System

Plan | Data | Model | Deployment

Source: Kirenz (2021) Prof. Dr. Jan Kirenz

Data platform architectures

Evolution

https://databricks.com/de/wp-content/uploads/2020/12/cidr_lakehouse.pdf

First generation platforms

Current two-tiers architectures

Lakehouse platform

Data platform architectures

Architecture aspects

Aspects

- Oconceptual and physical
- Only conceptual, implementation through individual layers

Example

DLAF Layer	AIRPORTS DL [Ma17a]
A. Infrastructure	Hadoop (HDFS, MapReduce), Apache Flume, Apache Spark, Apache Oozie, Apache Pig, Apache Atlas, R Studio, Shiny, Apache Sqoop
B. Data Storage	Single File System
C. Data Flow	Data are ingested as streams, but processed as batches
D. Data Modeling	Raw Messages, AIRPORTS Data Model
E. Data Organization	Four Zone Architecture
F. Data Processes	Processing Pipeline for Messages (ETL Processes), Processes for Ingestion and Use
G. Metadata Management	Managed by Apache Atlas
H. Data Security & Privacy	Tracking manipulation of data
I. Data Quality	Tracking manipulation of data, Quality through Zones

Data platforms

for industrial enterprises

Core elements of a data ecosystem for industrial enterprises

Source: Gröger (2021)

ML platform @ Spotify

Reference architecture

The Winding Road to Better Machine Learning Infrastructure Through Tensorflow Extended and Kubeflow

os://engineering.atspolify.com/2019/12/13/the-winding-mad-to-hetter-machine-learning-infrastructure-through-tensorfing-extended-and-kutheflog

Source: Baer & Ngahane (2019) Prof. Dr. Jan Kirenz

Machine learning operations (MLOps)

- ML Engineering culture and practice that aims at unifying ML System development (Dev) and ML system operations (Ops)
- Tools and principles to support workflow standardization and automation through the ML system lifecycle.

Source: Nvidia (2021) https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/

Source: Salama, Kazmierczak & Schut (2021) Prof. Dr. Jan Kirenz

MLOps

Introduction

Learn the basics of MLOps

https://cloud.google.com/resources/mlopswhitepaper

MLOps Core technical capabilities

Source: Salama, Kazmierczak & Schut (2021)

Prof. Dr. Jan Kirenz

Introduction to Machine Learning Operations

Source: Keating (2020) Prof. Dr. Jan Kirenz

MLOps demo (including Kubeflow)

MLOps in Azure

Reference architectures

https://azure.microsoft.com/de-de/services/machine-learning/mlops/

https://docs.microsoft.com/en-us/azure/ architecture/reference-architectures/ai/ mlops-python

Source: Microsoft (2021) Prof. Dr. Jan Kirenz

Resources

- Armbrust, M., Ghodsi, A., Xin, R. & Zaharia, M. (2021). Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing and Advanced Analytics. 11th Annual Conference on Innovative Data Systems Research (CIDR '21), January 11–15, 2021, Online
- Baer, J. & Samuel Ngahane, S. (2019). The Winding Road to Better Machine Learning Infrastructure Through Tensorflow Extended and Kubeflow.
- Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B. The Data Lake Architecture Framework: A Foundation for Building a Comprehensive Data Lake Architecture. In: Proceedings of the 19th Conference for Database Systems for Business, Technology and Web (BTW), pp. 351-370. https://dx.doi.org/10.10420/jbtw2021-19
- Gröger, C. (2021). There Is No Al Without Data. Industry Experiences on the Data Challenges of Al and Call for a Data Ecosystem for Industrial Enterprises. In: Communications of the ACM, 2021, to appear. https://doi.org/10.1007/j.j.com/page
- Kirenz, J. (2021). MLOps with Tensor Flow Extended & Kubeflow. Presentation