

COURSE SYLLABUS

PHY00007 - Physics for Information Technology

1. GENERAL INFORMATION

Course name: Physics for Information Technology

Course name (in Vietnamese): Vật lý cho Công nghệ Thông tin

Course ID: PHY00007

Knowledge block:

Number of credits: 4

Credit hours for theory: 45

Credit hours for practice: 30

Credit hours for self-study: 90

Prerequisite:

Prior-course:

Instructors: Cao Xuân Nam

Lê Quốc Hòa

2. COURSE DESCRIPTION

The Internet of Things (IoT) is a special network of objects or sensors that allow them to connect to each other to collect and exchange data to bring quality of life for people and society.

In this course, we will learn more about the concept of IoT, common electronic circuit boards, research IoT products, build a basic IoT system to control electronic devices.

In addition, with the growing trend of Big Data and Artificial Intelligence, it is essential to understand and apply artificial intelligence knowledge to IoT products.

3. COURSE GOALS

At the end of the course, students are able to

ID	Description	Program LOs
G1	Understand the technical specifications, operating principles of electrical circuits, sensors, electronic	ELO 1.1.2, ELO 1.1.3, ELO 2.4.3,
G2	Fluent in using and programming some popular electronic circuits such as Arduino, ESP 8266, Raspberry Pi 3.	ELO 2.4.5 ELO 1.2.1, ELO 1.3.7
G3	Know how to design 3D models and use 3D printers.	ELO 1.3.7, ELO 2.1.4
G4	Know how to build a basic Internet of Things (IoT) system, using web / mobile to control electrical devices in the house, at school or at work.	ELO 1.3.4, ELO 1.3.6, ELO 2.6.4, ELO 4.1.1, ELO 5.1.1, ELO 5.1.2, ELO 5.1.3, ELO 5.3.1, ELO 5.3.2, ELO 5.3.3
G5	Understand the application of Artificial Intelligence knowledge (Natural language processing, Speech language processing, Digital image processing) processing on Raspberry Pi 3 board.	ELO 1.3.2, ELO 1.4.4
G6	Organize teamwork, tasks assignment and report presentation.	ELO 2.1.4, ELO 2.1.5, ELO 2.1.9, ELO 2.2.2, ELO 2.3.2, ELO 2.3.3, ELO 3.3.4,

4. COURSE OUTCOMES

CO	Description	I/T/U
G1.1	Apply the basic scientific knowledge to explain the structure	I
	and operations of some basic sensors.	

G1.2	Understand and use the basic sensors on popular electronic circuits such as Arduino, ESP8266, Raspberry Pi 3.	I,T,U
G1.3	Understand the terminology correctly. Explain and interpret the terminology of this course. Pronoun terms and use them correctly in context.	I
G2.1	Apply the specialized knowledge and skills to the subjects of this course.	I,T,U
G2.2	Apply the practical problems in social to install the illustrative applications.	I,T,U
G3.1	Understand the principles of 3D model design and expert in use of 3D printers.	I,T,U
G4.1	Install the basic Internet of Things system.	T,U
G4.2	Thinking and solving problems. Students can propose new models and solutions (on the basic of combining and changing the learned models and solutions) to suit the practical requirements.	I,T,U
G5.1	Apply the Artificial Intelligence (AI) knowledge to build Internet of Things systems.	I,T,U
G6.1	Writing and speaking skills, presentation skills related to the subjects of this course.	U
G6.2	Seminar in class, teamwork and team presentation.	U

5. TEACHING PLAN

THEORY

ID	Topic	Course outcomes	Teaching/Learning Activities (samples)	Assessments
----	-------	-----------------	--	-------------

	- Introduction to course content	G1.1	Lecturing
	- Arduino board and embedded	G1.1 G1.2	Demonstration
	programming principles	G1.2	Q&A
	- Structure, operating principles, and		Q&A
1	how to program basic electronic		
	devices such as LED, Button,		
	Resistor, PotentioMeter, Buzzer.		
	- Application: Traffic Light		
	- Operating principles, and how to	G1.2	Lecturing
	control basic sensors such as	G2.1	Demonstration
2	Ultrasonic sensor, Light sensor, PIR	G2.2	Q&A
	sensor Application: Surveillance System		Group Discussion
	- Application. Surventance System		
	- Operating principles, and how to	G3.1	Lecturing
	control basic sensors such as		Demonstration
	Temperature and Humidity sensor Program to display text on LCD		Q&A
3	screen.		Group Discussion
	- Control other electronic devices: 7-		
	segment display, servo, relay		
	- Application: Smart Plant Pot		
	- Design 3D models with Autodesk	G2.2	Case Study
	Fusion 360.	G3.1	Demonstration
4	- How to use 3D printers to print 3D	G6.1	Q&A
	models.	G6.2	
	- Assemble and program a complete	G1.2	Case Study
5	product with Arduino, sensor and		Q&A
	wrapped by 3D model.	G4.1	Group Discussion
		O 7.1	Group Discussion

6	- Capstone project proposal	G4.1		Seminar:
	presentation.	G4.2		All
	- Introduce Esp8266 / Esp32.	G1.3	Lecturing	
	- Esp8266 / Esp32 as a web server.	G2.1	Demonstration	
7		G2.2		
		G4.1		
		G4.2		
	- Mid-term exam	G2.1	Lecturing	Midterm
	- Introduction to IoT Concept and IoT	G2.2	Case Study	exam: A41
	Ecosystem	G4.1	Q&A	
8	- Introduction to NodeRED IDE	G4.2		
	- Build a web/mobile application using NodeRED to control	G6.1		
	electronic devices via local wireless	G6.2		
	network.			
	- Introduction to MQTT, a data	G2.1	Lecturing	
	transmission and reception protocol.	G2.2	Q&A	
9	- Communication between	G5.1		
	Esp8266/Esp32 and NodeRED web			
	server.			
	- Integration of Third-Party Support	G2.1	Case study	
	Services such as IFTTT,	G2.2	Demonstration	
10	OpenWeatherMap, ThingSpeak,	G5.1	Q&A	
	Firebase, NTP Server.	G6.1		
		G6.2		
	- Advanced thematic: Artificial		Q&A	Interview:
11	Intelligence (AI) in IoT			A21
	- Final Review			

LABORATORY

ID	Торіс	Course outcomes	Teaching/Learning Activities (samples)	Assessments
	Traffic Light	G1.2		
1	- Led	G2.1	Demonstrate	
	- Button	G2.2	Q&A	LW1
	Garage	G1.2	Demonstrate	
2	- Ultrasonic sensor	G2.1	Q&A	LW2
	- Buzzer	G2.2		
	Security	G1.2	Demonstrate	
3	- Passive Infrared	G2.1	Q&A	LW3
	sensor	G2.2		2.113
	- Potentiometer			
	Temperature	G1.2	Demonstrate	
4	- Temperature	G2.1	Q&A	LW4
	sensor	G2.2		
	- LCD			
5	Design 3D	G3.1	Demonstrate	LW5
	- Clock		Q&A	20
	Event logs	G1.2		
6	- NodeRED	G1.3	Demonstrate	LW6
0	- NodeRED	G4.1	Q&A	LWO
	dashboard	G4.2		
	Weather station	G1.2	Demonstrate	
7	- OpenWeatherMap	G1.3	Q&A	LW7
'	service	G4.1		LW/
	- Gauge	G4.2		

	Data Visualization	G1.2	Demonstrate	
8	- Cloud ThingSpeak	G1.3	Q&A	LW8
8	- Chart	G4.1		LWO
		G4.2		
	Push Notification	G1.2	Demonstrate	
9	- IFTTT service	G1.3	Q&A	LW9
9	- MQTT	G4.1		LW9
		G4.2		
10	Summary			

6. ASSESSMENTS

ID	Торіс	Description	Course outcomes	Ratio (%)
A1	Seminars			15%
A11	Capstone project's prototype	Presentation in class		15%
		Q&A		
		Submit the document		
A2	Projects			40%
A21	Capstone project	Interview		40%
		Demo final product		
		Q&A		
		Submit the document		
A3	Laboratory			20%
A31	Lab Assignments: LW1,	Submit code and report		20%
	LW2, LW3, LW4, LW5,			
	LW6, LW7, LW8, LW9			

A4	Exam		25%
A41	Mid-term exam	Paper test in class	25%

7. **RESOURCES**

Textbooks

- Slides of lecture
- "Build a Home Automation System for \$100", Rui Santos, 2019.

Others

- Raspberry Pi beginner's guide. Website: https://www.raspberrypi.org/magpi-issues/MagPi49.pdf
- Raspberry Pi Projects Book. Website: https://www.raspberrypi.org/magpiissues/Projects Book v1.pdf

8. GENERAL REGULATIONS & POLICIES

- All students are responsible for reading and following strictly the regulations and policies of the school and university.
- Students who are absent for more than 3 theory sessions are not allowed to take the exams.
- For any kind of cheating and plagiarism, students will be graded 0 for the course. The incident is then submitted to the school and university for further review.
- Students are encouraged to form study groups to discuss on the topics. However, individual work must be done and submitted on your own.