Char	Freq	Prob.	Range	$\operatorname{CumFreq}$
		Total (CumFreq=	10
\mathbf{S}	5	5/10 = 0.5	[0.5, 1.0)	5
W	1	1/10 = 0.1	[0.4, 0.5)	4
Ι	2	2/10 = 0.2	[0.2, 0.4)	2
M	1	1/10 = 0.1	[0.1, 0.2)	1
ш	1	1/10 = 0.1	[0.0, 0.1)	0

Table 2.46: Frequencies and Probabilities of Five Symbols.

Char.		The calculation of low and high
S	L	$0.0 + (1.0 - 0.0) \times 0.5 = 0.5$
	Η	$0.0 + (1.0 - 0.0) \times 1.0 = 1.0$
W	L	$0.5 + (1.0 - 0.5) \times 0.4 = 0.70$
	Η	$0.5 + (1.0 - 0.5) \times 0.5 = 0.75$
I	$_{\rm L}$	$0.7 + (0.75 - 0.70) \times 0.2 = 0.71$
	Η	$0.7 + (0.75 - 0.70) \times 0.4 = 0.72$
S	L	$0.71 + (0.72 - 0.71) \times 0.5 = 0.715$
	Η	$0.71 + (0.72 - 0.71) \times 1.0 = 0.72$
S	L	$0.715 + (0.72 - 0.715) \times 0.5 = 0.7175$
	Η	$0.715 + (0.72 - 0.715) \times 1.0 = 0.72$
ш	L	$0.7175 + (0.72 - 0.7175) \times 0.0 = 0.7175$
	Η	$0.7175 + (0.72 - 0.7175) \times 0.1 = 0.71775$
M	$_{\rm L}$	$0.7175 + (0.71775 - 0.7175) \times 0.1 = 0.717525$
	Η	$0.7175 + (0.71775 - 0.7175) \times 0.2 = 0.717550$
I	L	$0.717525 + (0.71755 - 0.717525) \times 0.2 = 0.717530$
	Η	$0.717525 + (0.71755 - 0.717525) \times 0.4 = 0.717535$
S	L	$0.717530 + (0.717535 - 0.717530) \times 0.5 = 0.7175325$
	Η	$0.717530 + (0.717535 - 0.717530) \times 1.0 = 0.717535$
S	L	$0.7175325 + (0.717535 - 0.7175325) \times 0.5 = 0.71753375$
	Η	$0.7175325 + (0.717535 - 0.7175325) \times 1.0 = 0.717535$

Table 2.47: The Process of Arithmetic Encoding.

Char.	Code-low		Range
S	0.71753375 - 0.5	5 = 0.2175337	5/0.5 = 0.4350675
W	0.4350675 - 0.4	= 0.0350675	/0.1 = 0.350675
Ι	0.350675 - 0.2	= 0.150675	/0.2 = 0.753375
\mathbf{S}	0.753375 - 0.5	= 0.253375	/0.5 = 0.50675
\mathbf{S}	0.50675 - 0.5	= 0.00675	/0.5 = 0.0135
ш	0.0135 - 0	= 0.0135	/0.1 = 0.135
M	0.135 - 0.1	= 0.035	/0.1 = 0.35
Ι	0.35 - 0.2	= 0.15	/0.2 = 0.75
\mathbf{S}	0.75 - 0.5	= 0.25	/0.5 = 0.5
\mathbf{S}	0.5 - 0.5	=0	/0.5 = 0

Table 2.49: The Process of Arithmetic Decoding.

Char	Prob. Range			Char	Prob.	Ra	nge
a_1	0.001838	[0.998162,	1.0)	eof	0.000001	[0.999999,	1.0)
a_2	0.975	[0.023162, 0.998]	162)	a_1	0.001837	[0.998162,	0.999999)
a_3	0.023162	[0.0, 0.023]	162)	a_2	0.975	[0.023162,	0.998162)
				a_3	0.023162	[0.0,	0.023162)
(a)						(b)	

Table 2.50: (Skewed) Probabilities of Three Symbols.

a_2	$0.0 + (1.0 - 0.0) \times 0.023162 = 0.023162$
	$0.0 + (1.0 - 0.0) \times 0.998162 = 0.998162$
a_2	$0.023162 + .975 \times 0.023162 = 0.04574495$
	$0.023162 + .975 \times 0.998162 = 0.99636995$
a_1	$0.04574495 + 0.950625 \times 0.998162 = 0.99462270125$
	$0.04574495 + 0.950625 \times 1.0 = 0.99636995$
a_3	$0.99462270125 + 0.00174724875 \times 0.0 = 0.99462270125$
	$0.99462270125 + 0.00174724875 \times 0.023162 = 0.994663171025547$
a_3	$0.99462270125 + 0.00004046977554749998 \times 0.0 = 0.99462270125$
	$0.99462270125 + 0.00004046977554749998 \times 0.023162 = 0.994623638610941$

Table 2.51: Encoding the String $a_2a_2a_1a_3a_3$.

Char.	Code-low		Range	
a_2	0.99462270125 - 0.02316	32 = 0.9714617012	25/0.975	= 0.99636995
a_2	0.99636995 - 0.023162	= 0.97320795	/0.975	= 0.998162
a_1	0.998162 - 0.998162	= 0.0	/0.00138	= 0.0
a_3	0.0 - 0.0	= 0.0	/0.023162	2 = 0.0
a_3	0.0 - 0.0	= 0.0	/0.023162	2 = 0.0

Table 2.52: Decoding the String $a_2a_2a_1a_3a_3$.

a_3	$0.0 + (1.0 - 0.0) \times 0.0 = 0.0$
	$0.0 + (1.0 - 0.0) \times 0.023162 = 0.023162$
a_3	$0.0 + .023162 \times 0.0 = 0.0$
	$0.0 + .023162 \times 0.023162 = 0.000536478244$
a_3	$0.0 + 0.000536478244 \times 0.0 = 0.0$
	$0.0 + 0.000536478244 \times 0.023162 = 0.000012425909087528$
a_3	$0.0 + 0.000012425909087528 \times 0.0 = 0.0$
	$0.0 + 0.000012425909087528 \times 0.023162 = 0.0000002878089062853235$
eof	$0.0 + 0.0000002878089062853235 \times 0.9999999 = 0.0000002878086184764172$
	$0.0 + 0.0000002878089062853235 \times 1.0 = 0.0000002878089062853235$

Table 2.53: Encoding the String $a_3a_3a_3a_3\mathrm{eof.}$

Char.	Code—low		Range
a ₃ 0.00000	02878086184764172-0	$=\!0.0000002878086184764172$	/0.023162 = 0.00001242589666161891247
a_3 0.00001	242589666161891247-	0=0.00001242589666161891247	7/0.023162=0.000536477707521756
a_3 0.00053	6477707521756-0	=0.000536477707521756	/0.023162=0.023161976838
a_3 0.02316	1976838-0.0	=0.023161976838	/0.023162=0.999999
eof 0.99999	9-0.999999	=0.0	/0.000001=0.0

Table 2.54: Decoding the String $a_3a_3a_3a_3\mathrm{eof}.$

1	2	3	4	5
\mathbf{S}	$L = 0+(1 - 0)\times0.5 = 0.5$	5000		5000
	$H = 0 + (1 - 0) \times 1.0 = 1.0$	9999		9999
W	$L = 0.5 + (15) \times 0.4 = 0.7$	7000	7	0000
	$H = 0.5 + (15) \times 0.5 = 0.75$	7499	7	4999
Ι	$L = 0 + (0.5 - 0) \times 0.2 = 0.1$	1000	1	0000
	$H = 0 + (0.5 - 0) \times 0.4 = 0.2$	1999	1	9999
\mathbf{S}	$L = 0 + (1 - 0) \times 0.5 = 0.5$	5000		5000
	$H = 0 + (1 - 0) \times 1.0 = 1.0$	9999		9999
\mathbf{S}	$L = 0.5 + (1 - 0.5) \times 0.5 = 0.75$	7500		7500
	$H = 0.5 + (1 - 0.5) \times 1.0 = 1.0$	9999		9999
П		7500	7	5000
	$H = .75 + (175) \times 0.1 = .775$	7749	7	7499
М	$L = 0.5 + (.755) \times 0.1 = .525$	5250	5	2500
	$H = 0.5 + (.755) \times 0.2 = 0.55$	5499	5	4999
Ι	$L = .25 + (.525) \times 0.2 = 0.3$	3000	3 3	0000 4999
	$H = .25 + (.525) \times 0.4 = .35$	3499	3	
S		2500		2500
c	$H = 0.0 + (0.5 - 0) \times 1.0 = 0.5$	4999	0750	4999
S		3750 4999	3750	4999
	$H = .25 + (.525) \times 1.0 = 0.5$	4999		4999

Table 2.55: Encoding "SWISS∟MISS" by Shifting.

Here are all the decoding steps for our example:

- Initialize Low=0000, High=9999, and Code=7175.
- index= [(7175-0+1) × 10-1]/(9999-0+1) = 7.1759 → 7. Symbol "S" is selected.

2.14 Arithmetic Coding

117

Low = $0 + (9999 - 0 + 1) \times 5/10 = 5000$. High = $0 + (9999 - 0 + 1) \times 10/10 - 1 = 9999$.

2. $index = [(7175 - 5000 + 1) \times 10 - 1]/(9999 - 5000 + 1) = 4.3518 \rightarrow 4$. Symbol "W" is selected.

Low = $5000 + (9999 - 5000 + 1) \times 4/10 = 7000$. High = $5000 + (9999 - 5000 + 1) \times 5/10 - 1 = 7499$.

After the 7 is shifted out, we have Low=0000, High=4999, and Code=1753.

3. $index = [(1753 - 0 + 1) \times 10 - 1]/(4999 - 0 + 1) = 3.5078 \rightarrow 3$. Symbol "I" is selected. Low = $0 + (4999 - 0 + 1) \times 2/10 = 1000$. High = $0 + (4999 - 0 + 1) \times 4/10 - 1 = 1999$. After the 1 is shifted out, we have Low=0000, High=9999, and Code=7533.

4. $index = [(7533 - 0 + 1) \times 10 - 1]/(9999 - 0 + 1) = 7.5339 \rightarrow 7$. Symbol "S" is selected. Low = $0 + (9999 - 0 + 1) \times 5/10 = 5000$. High = $0 + (9999 - 0 + 1) \times 10/10 - 1 = 9999$.

5. $index = [(7533 - 5000 + 1) \times 10 - 1]/(9999 - 5000 + 1) = 5.0678 \rightarrow 5$. Symbol "S" is selected.

 $\text{Low} = 5000 + (9999 - 5000 + 1) \times 5/10 = 7500. \text{ High} = 5000 + (9999 - 5000 + 1) \times 10/10 - 1 = 9999.$

6. $index = [(7533 - 7500 + 1) \times 10 - 1]/(9999 - 7500 + 1) = 0.1356 \rightarrow 0$. Symbol " \square " is selected.

Low = 7500+(9999-7500+1)×0/10 = 7500. High = 7500+(9999-7500+1)×1/10-1 = 7749.

After the 7 is shifted out, we have Low=5000, High=7499, and Code=5337.

7. $index = [(5337 - 5000 + 1) \times 10 - 1]/(7499 - 5000 + 1) = 1.3516 \rightarrow 1$. Symbol "M" is selected.

 $Low = 5000 + (7499 - 5000 + 1) \times 1/10 = 5250$. High = $5000 + (7499 - 5000 + 1) \times 2/10 - 1 = 5499$.

After the 5 is shifted out we have Low=2500, High=4999, and Code=3375.

8. index= $[(3375 - 2500 + 1) \times 10 - 1]/(4999 - 2500 + 1) = 3.5036 \rightarrow 3$. Symbol "I" is selected.

 $\label{eq:low} \begin{array}{l} \text{Low} = 2500 + (4999 - 2500 + 1) \times 2/10 = 3000. \ \text{High} = 2500 + (4999 - 2500 + 1) \times 4/10 - 1 = 3499. \end{array}$

After the 3 is shifted out we have Low=0000, High=4999, and Code=3750.

- 9. $index = [(3750 0 + 1) \times 10 1]/(4999 0 + 1) = 7.5018 \rightarrow 7$. Symbol "S" is selected. Low = $0 + (4999 0 + 1) \times 5/10 = 2500$. High = $0 + (4999 0 + 1) \times 10/10 1 = 4999$.
- 10. index= $[(3750 2500 + 1) \times 10 1]/(4999 2500 + 1) = 5.0036 \rightarrow 5$. Symbol "S" is selected.

 $\label{eq:low} \begin{array}{l} \text{Low} = 2500 + (4999 - 2500 + 1) \times 5/10 = 3750. \ \text{High} = 2500 + (4999 - 2500 + 1) \times 10/10 - 1 = 4999. \end{array}$

1	2	3	4	5
1	$L=0+(1 - 0)\times0.0 = 0.0$	000000	0	000000
	$H=0+(1 - 0)\times0.023162 = 0.023162$	023162	0	231629
2	$L=0+(0.231629-0)\times0.0 = 0.0$	000000	0	000000
	$H=0+(0.231629-0)\times0.023162=0.00536478244$	005364	0	053649
3	$L=0+(0.053649-0)\times0.0 = 0.0$	000000	0	000000
	$H=0+(0.053649-0)\times0.023162=0.00124261813$	001242	0	012429
4	$L=0+(0.012429-0)\times0.0 = 0.0$	000000	0	000000
	$H=0+(0.012429-0)\times0.023162=0.00028788049$	000287	0	002879
5	$L=0+(0.002879-0)\times0.0 = 0.0$	000000	0	000000
	$H=0+(0.002879-0)\times0.023162=0.00006668339$	000066	0	000669

Table 2.56: Encoding $a_3a_3a_3a_3a_3$ by Shifting.