TECHNISCHE UNIVERSITÄT BERLIN

SS 01

Institut für Mathematik

Stand: 24. Oktober 2001

Ferus/Frank/Krumke König/Leschke/Peters/ v. Renesse

Lösungen zur Oktober-Klausur vom 08.10.2001 (Verständnisteil) Analysis II für Ingenieure

1. Aufgabe

(5 Punkte)

Es gilt: $N_f(c) = \{(x,y) \in \mathbb{R}^2 : f(x,y) = c\}$. Die Funktion f ist also auf $N_f(c)$ konstant c. Damit ist c lokales Maximum und Minimum von f eingeschränkt auf $N_f(c)$. Sollte zu einem bestimmten Niveau c die Niveaumenge $N_f(c)$ leer sein, so existiert kein Extremum von f auf $N_f(c)$.

2. Aufgabe

(5 Punkte)

- P_1 : Ist kein Extremalpunkt von f, da $grad f(P_1) = (0,0)$ ist und die Eigenwerte -3 und 5 von $H_f(P_1)$ verschiedenes Vorzeichen haben.
- P_2 : Dieser Punkt ist kein Extremalpunkt von f, da $\operatorname{grad} f(P_2) \neq (0,0)$ ist.
- P_3 : Ist ein lokales Minimum von f, da $grad f(P_3) = (0,0)$ ist und der Eigenwert 1 von $H_f(P_3)$ positiv ist.

3. Aufgabe

(5 Punkte)

Da -f das Potential zum Vektorfeld $\vec{v} = \operatorname{grad} f$ ist, kann das Integral direkt berechnet werden als Potentialdifferenz zwischen Anfangs- und Endpunkt der Kurve.

$$\int_{\gamma} \vec{v} \ \vec{ds} = -f(0,0,0) + f(0,0,3) = 6$$

4. Aufgabe

(5 Punkte)

Die Voraussetzungen des Satzes von Stokes sind erfüllt, die positive Orientierung der Randkurve K bezüglich der Fläche F vermeidet einen möglichen Vorzeichenwechsel. Also gilt:

$$\iint\limits_{\Sigma} \operatorname{rot} \vec{v} \ \vec{dO} = \int_K \vec{v} \ \vec{ds} = 2.$$