

哈爾濱工業大學

第2章 条件概率与独立性

第11讲 二项概率公式

n重伯努利试验

若一个试验只有两个结果:

A和 \bar{A} ,称试验为伯努利试验.

伯努利
Jacob Bernoulli(1654-1705)
瑞士数学家. 伯努利家族代表人物之一, 概率论中的伯努利试验与大数定律都是他提出来的. 被公认为概率论的先驱之一.

n重伯努利试验

- > 设 $P(A) = p (0 , 则<math>P(\overline{A}) = 1 p = q$.
- 将伯努利试验重复、独立地进行n次,称为n重伯努利试验.

每次试验中 P(A)=p保持不变

各次试验的 结果互不影响

人们常把A叫"成功", \overline{A} 叫"失败"

定理1 设每次试验中成功A的概率为p(0 ,则在<math>n重伯努利试验中A恰好发生k次的概率为

$$P_n(k) = C_n^k p^k q^{n-k}$$

其中 p+q=1, k=0,1,...,n.

$$P_n(k) = \mathbf{C}_n^k p^k q^{n-k}$$

证明

设
$$B_k$$
= " n 次试验成功 A 恰好发生 k 次",
$$A_i$$
 = "第 i 次试验成功", \overline{A}_i = "第 i 次试验失败",
$$\boxed{ } D B_k = A_1 A_2 \cdots A_k \overline{A}_{k+1} \cdots \overline{A}_n$$

$$+ A_1 A_2 \cdots A_{k-1} \overline{A}_k A_{k+1} \overline{A}_{k+2} \cdots \overline{A}_n$$

$$+ \cdots \overline{A}_1 \overline{A}_2 \cdots \overline{A}_{n-k} A_{n-k+1} \cdots A_n .$$

求证
$$P_n(k) = C_n^k p^k q^{n-k}$$

证明 设 B_k = "n次试验成功A恰好发生k次",

$$A_i$$
="第 i 次试验成功", \overline{A}_i ="第 i 次试验失败",

则
$$P(A_1A_2\cdots A_k\overline{A}_{k+1}\cdots\overline{A}_n)=$$

$$P(A_1)P(A_2)\cdots P(A_k)P(\overline{A}_{k+1})\cdots P(\overline{A}_n) = p^k q^{n-k}$$
.

同理可得其它项的概率也是 p^kq^{n-k} ,

故
$$P_n(k) = P(B_k) = C_n^k p^k q^{n-k}$$
.

$$\sum P_n(k) = 1.$$

推论
$$\sum_{n=0}^{\infty} P_n(k) = 1$$
. $P_n(k) = C_n^k p^k q^{n-k}$

证明

$$\sum_{k=0}^{n} P_n(k) = \sum_{k=0}^{n} C_n^k p^k q^{n-k} = (p+q)^n = 1.$$

 Θ_1 连续投n次均匀骰子,求6点恰好出现k次的概率 $?(k \leq n)$

 \mathbf{P} 设 \mathbf{A} =每次出现 $\mathbf{6}$ 点, \mathbf{A} =每次不出现 $\mathbf{6}$ 点,

$$P(A) = \frac{1}{6} = p, \ P(\overline{A}) = \frac{5}{6} = q.$$

$$P_n(k) = C_n^k (\frac{1}{6})^k (\frac{5}{6})^{n-k}, (k = 0, 1, \dots, n).$$

例2 某人进行射击,每次射击的命中率为0.08,独立射击50次,求至少命中两次的概率.

解 设A="至少命中两次"

$$P_{50}(k) = C_{50}^{k}(0.08)^{k}(0.92)^{50-k}, k = 0, \dots, 50.$$

所求概率为
$$P(A) = 1 - P_{50}(0) - P_{50}(1)$$

= $1 - (0.92)^{50} - 50 \cdot 0.08 \cdot (0.92)^{49}$
= 0.917.

上式计算较繁琐,下面给出近似公式.

二项概率的泊松(Poisson)逼近定理

定理2 如果 $n\to\infty$, $p\to0$ 使得 $np=\lambda$ 保持为正常数,则

$$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}.$$

对 $k=0,1,2,\cdots$ 一致地成立.

泊松(Sim éon-Denis Poisson $1781 \sim 1840$) 是法国数学家、几何学家和物理学家. 泊松定理于1837年由泊松引入的.

泊松(Poisson)

二项概率的泊松逼近定理

在实际计算中,当 $n \ge 10$, $p \le 0.1$ 时,可用近似公式

$$P_n(k) = C_n^k p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}.$$

其中 $\lambda=np$, k=0,1,...n.

当 $n \ge 10$, $p \ge 0.9$ (即 $q \le 0.1$) 时, 可用近似公式

$$P_n(k) = C_n^k p^k (1-p)^{n-k} \approx \frac{[n(1-p)]^{n-k}}{(n-k)!} e^{-n(1-p)}.$$

$$k=0,1,...n.$$

当0.1 时,用正态近似. 在后面学习.

例2 某人进行射击,每次射击的命中率为0.08,独立射击50次,求至少命中两次的概率.

解(续)设A="至少命中两次"

$$P_{50}(k) = C_{50}^{k}(0.08)^{k}(0.92)^{50-k}, k = 0, \dots, 50.$$

$$n = 50, p = 0.08, \lambda = 50 \times 0.08 = 4.$$

所求概率为

$$P(A) = \sum_{k=2}^{50} C_{50}^k 0.08^k (0.92)^{50-k} \approx \sum_{k=2}^{50} \frac{4^k}{k!} e^{-4} \approx \sum_{k=2}^{\infty} \frac{4^k}{k!} e^{-4} = 0.908.$$

查poisson 分布表

附表 1 泊松分布累计概率值表 $\sum_{k=1}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda}$

								k=m K	!
m	λ								
	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1
1	0. 632 12	0.86466	0.950 21	0. 981 68	0. 993 26	0. 997 52	0. 999 09	0. 999 67	0. 999 88
2	0. 264 24	0. 593 99	0.80085	0. 908 42	0. 959 57	0. 982 65	0. 992 71	0. 996 93	0. 998 77
3	0.080 30	0. 323 32	0. 576 81	0. 761 90	0.875 35	0. 938 03	0. 970 36	0. 986 25	0. 993 77
4	0.0189 9	0. 142 88	0.35277	0.56653	0. 734 97	0.848 80	0.918 24	0. 957 62	0. 978 77
5	0.003 66	0.052 65	0. 184 74	0. 371 16	0. 559 51	0. 814 94	0. 827 01	0.900 37	0.945 04
6	0.000 59	0.016 56	0.083 92	0. 214 87	0. 384 04	0. 554 32	0. 699 29	0. 808 76	0.884 31
7	0.000 08	0.004 53	0.033 51	0. 110 67	0. 237 82	0. 393 70	0.55029	0. 686 63	0.793 22
8	0.00001	0.001 10	0.01191	0.051 13	0. 133 37	0. 256 02	0.401 29	0. 547 04	0.676 10
9		0.000 24	0.003 80	0. 021 36	0.068 09	0. 152 76	0. 270 91	0. 407 45	0. 544 35
10		0.000.05	0. 001 10	0. 008 13	0. 031 83	0. 083 92	0. 169 50	0. 283 38	0, 412 59
11									0. 294 01
12		0.000 01							0. 196 99
13									0. 124 23
1.5			0. 000 02	0.000 27	0.002.02	0.008 83	0.027 00	0.003 80	0. 124 23

$$\sum_{k=2}^{\infty} \frac{4^k}{k!} e^{-4} = 0.90842$$

例3 一个工厂某产品的废品率为0.005, 任取1000件,

求(1)不超过5件废品的概率,

(2) 其中至少有两件废品的概率.

 $p = 1000, p = 0.005, \lambda = np = 5$

(1) 设A="废品不超过5件",则

$$P(A) = \sum_{k=0}^{5} P_{1000}(k) \approx \sum_{k=0}^{5} \frac{5^{k}}{k!} e^{-5} = 1 - \sum_{k=6}^{\infty} \frac{5^{k}}{k!} e^{-5} \stackrel{\text{def}}{=} 1 - 0.38404 = 0.61596.$$

例3 一个工厂某产品的废品率为0.005, 任取1000件,

求(1)不超过5件废品的概率,

(2) 其中至少有两件废品的概率.

 $\mathbf{p} = 1000, p = 0.005, np = 5$

(2) 设B="至少有两件废品",则

$$P(B) = 1 - P_{1000}(0) - P_{1000}(1) \approx 1 - \frac{5^{0}}{0!} e^{-5} - \frac{5}{1!} e^{-5}$$

$$= \sum_{k=0}^{1000} \frac{5^{k}}{k!} e^{-5} \approx \sum_{k=0}^{\infty} \frac{5^{k}}{k!} e^{-5} = 0.95957.$$

二项分布与泊松分布概率分布图

$$n = 5, p = 0.8, \lambda = 4$$

$$n = 5, p = 0.8, \lambda = 4$$
 $n = 50, p = 0.08, \lambda = 4$

n越大,p越小, 泊松分布近似二 项分布效果越好

1 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?

解

设 C={抽查的人患有癌症}, A={试验结果是阳性},

则 C表示"抽查的人不患癌症".

求P(C|A).

$$P(C) = 0.005, P(\bar{C}) = 0.995, P(A \mid C) = 0.95, P(A \mid \bar{C}) = 0.04$$

由贝叶斯公式,可得

$$P(C \mid A) = \frac{P(C)P(A \mid C)}{P(C)P(A \mid C) + P(\overline{C})P(A \mid \overline{C})}$$

代入数据计算得: $P(C \mid A) = 0.1066$

现在来分析一下结果的意义.

- 1. 这种试验对于诊断一个人是否患有癌症有无意义?
- 2. 检出阳性是否一定患有癌症?

1. 这种试验对于诊断一个人是否患有癌症有无意义?

如果不做试验,抽查一人,他是患者的概率:P(C)=0.005

患者阳性反应的概率是0.95,若试验后得阳性反应,则根据试验得来的信息,此人是患者的概率为 $P(C \mid A) = 0.1066$

从0.005增加到0.1066,将近增加约21倍.

说明这种试验对于诊断一个人是否患有癌症有意义.

2. 检出阳性是否一定患有癌症? 试验结果为阳性,此人确患癌症的概率为 $P(C \mid A)=0.1066$

即使你检出阳性,尚可不必过早下结论你有癌症,这种可能性只有10.66% (平均来说,1000个人中大约只有107人确患癌症),此时医生常要通过再试验来确认.

2 某人忘记了电话号码的最后一位数字,因而他随意地拨号. 求他拨号不超过三次而接通电话的概率. 若已知最后一位数字是奇数, 那么此概率又是多少?

解 设Ai = "第i次接通电话",i = 1,2,3,B = "拨号不超过3次接通电话",则事件B的表达式为 $B = A_1 + \bar{A_1}A_2 + \bar{A_1}\bar{A_2}A_3$

$$P(B) = P(A_1) + P(\overline{A_1}A_2) + P(\overline{A_1}\overline{A_2}A_3)$$

$$= P(A_1) + P(\overline{A_1})P(A_2 \mid \overline{A_1}) + P(\overline{A_1})P(\overline{A_2} \mid \overline{A_1})P(A_3 \mid \overline{A_1}\overline{A_2})$$

$$= \frac{1}{10} + \frac{9}{10} \times \frac{1}{9} + \frac{9}{10} \times \frac{8}{9} \times \frac{1}{8} = \frac{3}{10}.$$

解2
$$P(B) = 1 - P(\bar{A}_1 \bar{A}_2 \bar{A}_3) = 1 - \frac{9}{10} \cdot \frac{8}{9} \cdot \frac{7}{8} = \frac{3}{10}$$

若已知最后一位数字是奇数,则

$$= P(A_1) + P(\overline{A}_1)P(A_2 \mid \overline{A}_1) + P(\overline{A}_1)P(\overline{A}_2 \mid \overline{A}_1)P(A_3 \mid \overline{A}_1\overline{A}_2)$$

$$= \frac{1}{5} + \frac{4}{5} \times \frac{1}{4} + \frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} = \frac{3}{5}$$

1. 条件概率

$$P(A | B) = \frac{P(AB)}{P(B)}, P(B) > 0.$$

2. 乘法公式

$$P(AB) = P(A)P(B|A) = P(B)P(A|B).$$

 $P(A) > 0, P(B) > 0.$

条件概率性质 设 P(B) > 0.

- (1) $0 \le P(A \mid B) \le 1$;
- (2) $P(S | B) = 1, P(\emptyset | B) = 0;$
- (3)设A₁,A₂,…互不相容,则

$$P((A_1 + A_2 + \cdots) | B) = P(A_1 | B) + P(A_2 | B) + \cdots$$

- (4) P(A | B) = 1 P(A | B);
- (5) $P((A_1 A_2) | B) = P(A_1 | B) P(A_1 A_2 | B);$

$$A_1 \supset A_2 \Rightarrow P(A_1 \mid B) \ge P(A_2 \mid B);$$

(6)
$$P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1 A_2 \mid B)$$
.

3. 全概率公式

设 $A_1,A_2,...,A_n$ 是两两互斥的事件,且 $P(A_i)>0$,(i=1,2,...,n),若对任一事件B,有 $(A_1+A_2+...+A_n)\supset B$,则

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

4. 贝叶斯公式

且
$$P(B) > 0$$
,则
$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{n} P(A_j)P(B|A_j)}$$

5. 事件的独立性

- (1) A与B相互独立 $\iff P(AB) = P(A)P(B)$,
- (2) 若P(B)>0或P(A)>0,则A与B相互独立 \iff

$$P(A|B) = P(A) \otimes P(B|A) = P(B)$$

- (3) 定理 A = B相互独立 $\Leftrightarrow A = B$ 相互独立 $\Leftrightarrow \overline{A} = B$ 相互独立 $\Leftrightarrow \overline{A} = B$ 相互独立.
- (4) 若P(A)=0或=1,则A与任意事件独立;
- (5) 若P(A)>0,P(B)>0.则A,B相互独立与A,B互不相容不能同时成立.

(6)
$$P(AB) = P(A)P(B)$$
 A,B,C $P(AC) = P(A)P(C)$ 两两独立 $P(BC) = P(B)P(C)$

A,B,C相互独立

(7) n个事件独立

相互独立 ____ 两两独立

$$P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k})$$

$$C_n^2 + C_n^3 + \cdots + C_n^n = (1+1)^n - C_n^1 - C_n^0 = 2^n - n - 1.$$

- (8) 若事件 A_1, A_2, \dots, A_n 相互独立,则事件 $\hat{A}_1, \hat{A}_2, \dots, \hat{A}_n$ 也相互独立,其中 $\hat{A}_i = A_i$ 或 $\hat{A}_i = \bar{A}_i$.

6. 二项概率公式

应用条件: n重伯努力试验 $P_n(k) = C_n^k p^k q^{n-k}$ 其中 p+q=1, k=0,1,...,n.

4.某人有两盒火柴,吸烟时从任一盒中取一个火柴,经过若干时间后发现一盒火柴已用完,若最初两盒中各有n根火柴,求这时另一盒中还有r根火柴的概率。

- 5 设实验室器皿中产生甲乙两类细菌的机会相同,且产生k个细菌的概率为 $p_k = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1.2, \cdots, 求(1)$ 产生了乙类细菌但没有甲类细菌的概率;
 - (2) 在已产生了细菌但没有乙类细菌的条件下,有两个甲类细菌的概率 \mathbf{p} \mathbf{p}

$$(1)P(\overline{A}B) = \sum_{k=1}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} \left(\frac{1}{2}\right)^{k} = \sum_{k=1}^{\infty} \frac{(\lambda/2)^{k}}{k!} e^{-\lambda} = e^{-\lambda} (e^{\lambda/2} - 1)$$

$$(2)P(A_2 \mid A\overline{B}) = \frac{\lambda^2}{2}e^{-\lambda} \left(\frac{1}{2}\right)^2 / \left[e^{-\lambda}(e^{\lambda/2} - 1)\right] = \frac{\lambda^2}{8} / \left(e^{\lambda/2} - 1\right)$$

$$e^x = \sum_{l=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

谢 谢!