CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN TECHNIQUES

0/1 Knapsack Problem: Dynamic Programming Algorithm:

Time Complexity

Pseudo-Polynomial Time Algorithms

Space Complexity

Limitations

Problem Variants


```
Known (Atomic) Solutions: P(0, w)=0 for all w and P(k, 0)=0 for all k
Recursive structure: P(k,w) =
      Profit(k,w)
// assume output array Pf[0..N][0..Wmax]
// assume array wt[1..N] of weights and p[1..N] of prices
   for (k=0; k<=N; k++) Pf[k,0] = 0;
    for (w=0; w<=Wmax; w++) Pf[0,w] = 0;
    for (k = 1; k \le N; k++)
      for (w=1; w<=Wmax; w++)
        Pf[k,w] = (wt[k] > w) ? Pf[k-1,w] :
                 max(Pf[k-1,w], Pf[k-1,w-wt[k]]+p[k]);
```

2/4/2016

```
CSIS, BITS, Pila
```

- Time Complexity: O (N*Wmax)
 - Is this polynomial time? Why or Why not?
 - What if Wmax is O(2^N)?
- Pseudo-polynomial time algorithms
 - Complexity is defined in terms of max. input size
 - o e.g. N*Wmax is polynomial in the size of the set of items

```
EXAMPLE - 0/1 KNAPSACK - DP SOLUTION
Profit(k,w)
// assume output array Pf[0..N][0..Wmax]
  assume array wt[1..N] of weights and p[1..N] of prices
   for (k=0; k<=N; k++) Pf[k,0] = 0;
    for (w=0; w<=Wmax; w++) Pf[0,w] = 0;
    for (k = 1; k<=N; k++)
      for (w=1; w<=Wmax; w++)
          Pf[k,w] = (wt[k] > w) ? Pf[k-1,w] :
                   max(Pf[k-1,w], Pf[k-1,w-wt[k]]+p[k]);
```

- Space Complexity: O(N*Wmax)
 - Can this be reduced? If so, how? If not why not?
- P[k,_] is dependent only on P[k-1]
 - At any time only 2 rows (index k and k-1) are needed.
- <u>Exercise</u>: Rewrite the procedure after pruning unwanted rows in the profit matrix.

```
EXAMPLE - 0/1 KNAPSACK - DP SOLUTION
```

- P[k,_] is dependent only on P[k-1]
 - At any time only 2 rows (index k and k-1) are needed.
- What about columns? Can they be pruned?
 - Number of columns needed at any time: 1+max_j w_j
- Exercise: Rewrite the procedure after pruning unwanted rows and columns in the profit matrix

- Validity of assumptions:
 - What if weights are not integers?
 - Rational numbers? Real numbers?

- Validity of assumptions:
 - What if weights are not integers?
 - Rational numbers? Real numbers?
- Consider weights to be rationals
 - o i.e. normalized fractions of the form (p_i / q_i)
 - Multiply all weights by lcm_i (q_i)
 - o All (scaled) weights are integers:
 - Scaling weights does not affect profits.
 - Impact on complexity:
 - o Time : $N * (Icm_i(q_i) * Wmax)$
 - o Space: $2 * (1+max_j(w_j)) * lcm_j(q_j)$

- Integer weights can also be normalized (i.e. scaled)
 - If Integer weights are divided by $gcd_j(w_j)$ the time and space complexities can be reduced by the same factor.
 - o When is this useful?
 - Are there ways reducing the complexity factor dependent on weights?
 - o Relook at the recurrence relation.