

TIGER ELECTRONIC CO.,LTD

32W Hi-Fi AUDIO POWER AMPLIFIER TDA2050

DESCRIPTION

The TDA2050 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB audio amplifier. Thanks to its high power capability the TDA2050 is able to provide up to35W true rms power into 4 ohm load @ THD =10%, $Vs = \pm 18V$, f = 1KHz and up to 32W into 8ohm load @THD = 10%, $Vs = \pm 22V$, f = 1KHz. Moreover, theTDA2050 delivers typically 50W music power into 4 ohm load over 1 sec at Vs=22.5V, f = 1KHz. The high power

Outline Drawing

and very low harmonic and crossover distortion (THD = 0.05% typ, @ Vs = $\pm 22V$, Po = 0.1 to 15W, RL=80hm, f = 100Hz to 15KHz) make the device most suitable for both HiFi and high class TV sets.

FEATURE

- High output power(50W music power IEC 268.3 RULES)
- High operating supply voltage (50V)
- Single or split supply operations
- Very low distortion
- Short circuit protection (out to GND)
- Thermal shutdown

PIN CONNECTION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
Supply voltage	Vs	±25	V
Input voltage	Vi	Vs	V
Differential input voltage	Vi	±15	V
Output peak current(internally limited)	Io	5	Α
Power dissipationTcase=75°C	Ptot	25	W
Storage and junction temperature range	Tstg,Tj	-40~+150	°C

ELECTRICAL CHARACTERISTICS(Unless otherwise specified: $Vs=\pm 18V$; f=1KHz; Ta=25°C)

Characteristics	Symbol	Test conditions	Min	Тур	Max	Unit
Supply voltage range	Vs		±4.5		±25	V
Quiescent drain current	Id	$V_S=\pm 4.5V$		30	50	mA
	10	$V_s=\pm 25V$		55	90	
Input bias current	Ib	$V_S=\pm 22V$		0.1	0.5	μΑ
Input offset voltage	Vos	$V_S=\pm 22V$			±15	mV
Input offset current	Ios	$V_S=\pm 22V$			±200	nA
RMS output power		d=0.5%				
		$R_L=4\Omega$	24	28		
		$R_L=8\Omega$		18		
		$V_S=\pm 22V R_L=8\Omega$	22	25		
	D.	d=10%				***
	Po	$R_L=4\Omega$		35		W
		$R_L=8\Omega$		22		
		$V_S=\pm 22V R_L=8\Omega$		32		
		d=10%, T=1s $V_S=\pm 22.5 V R_L=4\Omega$		50		

Continue:

Characteristics	Symbol	Test conditions	Min	Тур	Max	Unit
Total harmonic distortion	d	R _L =4Ω f=1kHz,Po=0.1 to 24W f=100Hz to 10kHz,Po=0.1 to 18W		0.03	0.5 0.5	%
		V _S =±22V R _L =8Ω f=1kHz,Po=0.1 to 20W f=100Hz to 10kHz,Po=0.1 to 15W		0.02	0.5	%
Slew Rate	SR		5	8		$V/\mu s$
Open loop voltage gain	Gv			80		dB
Closed loop voltage gain	Gv		30	30.5	31	dB
Power bandwidth(-3dB)	BW	$R_L=4\Omega$ $Vi=200mV$	20 to 80000		Hz	
Total input noise	en	Curve A B=22Hz to 22kHz		4 5	10	μV
Input resistance(pin 1)	Ri		500			kΩ
Supply voltage rejection	SVR	Rs=22kΩ;f=100Hz Vripple=0.5Vrms		45		dB
Efficiency	η	$Po=28W;RL=4\Omega$		65		%
		$Po=25W; RL=8\Omega$ $Vs=\pm22V$		67		%
Thermal shut-down Junction temperature	Tsd-j			150		°C

Maximum Allowable Power Dissipation vs. Ambient Temperature

APPLICATION CIRCUIT

Split Supply Typical Application Circuit

Single Supply Typical Application Circuit

CHARACTERISTIC CURVES

Output Power vs. Supply Voltage

Distortion vs. Output Power

Output Power vs. Supply Voltage

Distortion vs. Output Power

Distortion vs. Frequency

Distortion vs. Frequency

Quiescent Current vs. Supply Voltage

Supply Voltage Rejection vs. Frequency (Single supply) for Different values of C2 (circuit of fig. 3)

Supply Voltage Rejection vs. Frequency (Single supply) for Different values of C2 (circuit of fig. 3)

Supply Voltage Rejection vs. Frequency

Total Power Dissipation and Efficiency vs. Output Power

Total Power Dissipation and Efficiency vs. Output Power

