Opis projektu

Testowany system służy do zarządzanie siecią elektroenergetyczną. W takim rodzaju sieci mogą mieć miejsce różne nieprzewidziane okoliczności i oczekuje się, że system będzie w stanie działać poprawnie niezależnie od ich wystąpienia.

Przypadek testowy

Każdy przypadek testowy posiada:

- Zdefiniowaną strukturę sieci
- Zdefiniowane parametry wedle których system steruje siecią
- Zdefiniowany parametr testowy

Warunki przejścia testu

By test został uznany za zaliczony wymagane jest

- Zapewnienie Ciągłej dostawy energii (liczba energii wywarzanej nie może być mniejsza niż zużywanej)
- Wykonanie testu w czasie nie większym niż uprzednio zdefiniowany
- Utrzymanie parametru testowego powyżej założonego poziomu

Ocena wyniku testu

Każdy test który zostanie uznany za zaliczony jest oceniany wedle wzoru:

 $ocena = p_{uzyskany} - p_{oczekiwany}$

Stosowanie takiej miary daje obraz jak dobrze system radzi sobie z zadaną sytuacją.

Testy

System by był uznany za w pełni funkcjonalny musi spełnić następujące warunki

- Posiadać zaimplementowane wszystkie potrzebne funkcje
- Funkcje mają działać w czasie umożliwiającym praktyczne wykorzystanie systemu
- System musi sprawdzać się w zadanych mu scenariuszach testowych

Test funkcjonalne

Testy funkcjonalne obejmują funkcjonalność systemu. Miarą którą przyjmujemy za wynik testu jest czas reakcji systemu. System reagujący w czasie zbyt wolnym niż oczekiwany jest bezużyteczny.

Szablon testu

Nazwa testu	Testowana funkcja	Maksymalny dopuszczalny czas wykonania	Uzyskany czas wykonania	Ocena

Test obciążeniowe

Jeśli system zawiera wszystkie niezbędne funkcje należy go przetestować w scenariuszach uwzględniających przypadki z czasu rzeczywistego.

Parametr testowy opisuje którą cechę sieci poddajemy obserwacji.

Przykładowe parametry sieci które można poddać testowaniu

- 1. Ilość energii produkowanej przez poszczególne źródła
- 2. Obciążenie źródeł energii
- 3. Obciążenie linii przesyłowych
- 4. Ilość traconej energii
- 5. Nadwyżka produkowanej energii
- 6. Nadwyżka energii produkowana przez dany rodzaj źródła energii
- 7. Całkowita pozostała ilość energii pozostała we wszystkich zbiornikach energii w sieci

Szablon testu obciążeniowego

Nazwa testu	Parametr testowy	Próg akceptacji	Uzyskany wynik	Ocena

Testy niezawodnościowe

Po przeprowadzeniu wszystkich testów należy sprawdzić niezawodność sieci. W tym celu stosuje się uzyskane przez testy oceny. Niezawodna sieć powinna przechodzić testy z dużym zapasem co zapewnia jej niezawodność w razie nieprzewidzianych sytuacji.

Test niezawodnościowy jest definiowany poprzez parametr który opisuje testy których oceny bierzemy pod uwagę.

Szablon testu niezawodnościowego

OZUDIOII tostu 11	icza w oumoscio w ce	20		
Nazwa testu	Badane testy	Próg akceptacji	Uzyskany wynik	Ocena