

SPECIFICATION FOR APPROVAL

()	Preliminar	y Specification
---	---	------------	-----------------

(●) Final Specification

|--|

BUYER	Dell
MODEL	

SUPPLIER	LG Display Co., Ltd.		
*MODEL	LP133WX2		
Suffix	TLA2		

^{*}When you obtain standard approval, please use the above model name without suffix

	APPROVED BY	SIGNATURE
_	/	
_	/	
_	/	

Please return 1 copy for your confirmation with your signature and comments.

APPROVED BY	SIGNATURE
K. J. Kwon / S.Manager	
REVIEWED BY	
S. W. Paeng / Manager	
PREPARED BY	
H.H.Lee / Engineer	
Product Engineering LG Display Co., I	•

Ver. 1.0 22, Oct, 2008 0/ 28

Contents

No	ITEM	Page
	COVER	l
	CONTENTS	1
	RECORD OF REVISIONS	2
1	GENERAL DESCRIPTION	3
2	ABSOLUTE MAXIMUM RATINGS	4
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	5
3-2	INTERFACE CONNECTIONS	6
3-3	LVDS SIGNAL TIMING SPECIFICATIONS	8
3-4	SIGNAL TIMING SPECIFICATIONS	11
3-5	SIGNAL TIMING WAVEFORMS	11
3-6	COLOR INPUT DATA REFERNECE	12
3-7	POWER SEQUENCE	13
4	OPTICAL SFECIFICATIONS	14
5	MECHANICAL CHARACTERISTICS	17
6	RELIABLITY	21
7	INTERNATIONAL STANDARDS	<u> </u>
7-1	SAFETY	22
7-2	EMC	22
8	PACKING]
8-1	DESIGNATION OF LOT MARK	23
8-2	PACKING FORM	23
9	PRECAUTIONS	24
A	APPENDIX A. Enhanced Extended Display Identification Data	26

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
1.0	22. Oct. 2008	-	Final CAS	1.0
·····				

1. General Description

The LP133WX2 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 13.3 inches diagonally measured active display area with WXGA resolution(1280 horizontal by 800 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP133WX2 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP133WX2 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP133WX2 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	13.3 inches diagonal
Outline Dimension	296.5 (H, Max.) × 192.5(V, Max.) × 3.50(D, Max.) mm
Pixel Pitch	0.2235 mm × 0.2235 mm
Pixel Format	1280 horiz. by 800 vert. Pixels RGB strip arrangement
Color Depth	6-bit, 262,144 colors
Luminance, White	300 cd/m²(Typ., @I _{LED} =19mA)
Power Consumption	0.9W (Logic) / Back Light : 3.3W (typ.@ ILED= 19mA)
Weight	245g(Max.)
Display Operating Mode	Transmissive mode, normally white
Surface Treatment	Anti-Glare treatment of the front Polarizer (Haze 25%)

Ver. 1.0 22, Oct, 2008 3/ 28

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter	Syllibol	Min	Max	Office		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

Ver. 1.0 22, Oct, 2008 4/ 28

3. Electrical Specifications

3-1. Electrical Characteristics

The LP133WX2 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED BL.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter		ımbal		Unit	Notes		
		ymbol	Min	Тур	Max	Offic	Notes
MODULE :							
Power Supply Input Voltage	VCC		3.0	3.3	3.6	V _{DC}	
Power Supply Input Current	I _{CC} Mosaic		-	273		mA	1
Power Consumption	Pc		-	0.9		Watt	1
Differential Impedance	Zm		90	100	110	Ohm	2
LED Backlight :	ED Backlight :						
Operating Current per string	I _{LED}		-	19	-	mA	3
Power Consumption	P _{BL}		-	3.3	3.5	Watt	4
Life Time	[15,000	-	-	Hrs	5

Note)

1. The specified current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition whereas Mosaic pattern is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics. I_{LED} is the current of each LEDs' string, LED backlight has 6 strings on it.
- 4. The LED power consumption shown above does not include power of external LED driver circuit for typical current condition.
- 5. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current.

Ver. 1.0 22, Oct, 2008 5/ 28

3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model 20347-140E-12 manufactured by I-PEX.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	VSS	Ground	[LVDS Receiver]
2	CONNTST	Connector test	Siliconworks, SW0618V
3	VDD	Logic power 3.3V (Panel logic, BL logic)	
4	VDD	Logic power 3.3V (Panel logic, BL logic)	[Connector]
5	VDD	Logic power 3.3V (Panel logic, BL logic)	I-PEX 20347-140E–12 or equivalent
6	VEDID	EDID 3.3V power	11 2x 200 11 1102 12 01 0quivaloni
7	TEST	Panel Self Test	[Mating Connector]
8	CLK	EDID clock	I-PEX 20345-#40E-## series
9	DATA	EDID data	or equivalent (micro-coax type)
10	VSS	Ground	
11	VSS	Ground	[Connector pin arrangement]
12	NC	no connect	LCD rear view
13	RIN0-	- LVDS differential data input (R0-R5, G0)	
14	RIN0+	+ LVDS differential data input (R0-R5, G0)	
15	VSS	Ground	1 40
16	RIN1-	- LVDS differential data input (G1-G5, B0-B1)	
17	RIN1+	+ LVDS differential data input (G1-G5, B0-B1)	
18	VSS	Ground	
19	RIN2-	- LVDS differential data input (B2-B5,HS,VS, DE)	
20	RIN2+	+ LVDS differential data input (B2-B5,HS,VS, DE)	
21	VSS	Ground	
22	CLK-	- LVDS differential clock input	
23	CLK+	+ LVDS differential clock input	
24	VSS	Ground	
25	INV_PWM	PWM brightness control	
26	VBL-	LED power return	
27	VBL-	LED power return	
28	VBL-	LED power return	
29	VBL-	LED power return	
30	VBL-	LED power return	
31	NC	no connect	
32	VBL+	7V - 20V LED power source	
33	VBL+	7V - 20V LED power source	
34	VBL+	7V - 20V LED power source	
35	VBL+	7V - 20V LED power source	
36	VBL+	7V - 20V LED power source	
37	CONNTST	Connector test	
38	SMB_CLK	SMBus Clock	
39	SMB_DAT	SMBus Data	
40	VSS	Ground	
	1	-	

Ver. 1.0 22, Oct, 2008 6/ 28

Table 4. BACKLIGHT CONNECTOR PIN CONFIGURATION (CN2)

The LED backlight connector is a model TF12-9S-0.5H, manufactured by Hirose.

Pin	Symbol	Description	Notes
1	Vdc1	LED Cathode (Negative)	1 9
2	Vdc2	LED Cathode (Negative)	
3	Vdc3	LED Cathode (Negative)	
4	Vdc4	LED Cathode (Negative)	
5	Vdc5	LED Cathode (Negative)	
6	Vdc6	LED Cathode (Negative)	
7	NC	No Connection	
8	Vdc(1,2,3,4,5,6)	LED Anode(Positive)	
9	Vdc(1,2,3,4,5,6)	LED Anode(Positive)	

Ver. 1.0 22, Oct, 2008 7/ 28

3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

Ver. 1.0 22, Oct, 2008 8/ 28

< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format

1) LVDS 2 Port

< LVDS Data Format >

Ver. 1.0 22, Oct, 2008 9/ 28

2) LVDS 1 Port

Ver. 1.0 22, Oct, 2008 10/ 28

Condition: VCC =3.3V

Product Specification

3-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 5. TIMING TABLE

ITEM	Symbol		Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	f _{CLK}	65.5	69.0	72.5	MHz	
	Active	tw _{HA}	1280	1280	1280		
Hsync	Period	t _{HP}	1410	1410	1460	tCLK	
	Width-Active	t _{WH}	32	32	48		
	Active	tw _{VA}	800	800	800		
Vsync	Period	t _{VP}	811	816	847	tHP	
	Width-Active	t _{wv}	3	6	9		
	Horizontal back porch	t _{HBP}	50	50	98	+011/	
Data	Horizontal front porch	t _{HFP}	48	48	62	tCLK	
Enable	Vertical back porch	t _{VBP}	5	7	35	+UD	
	Vertical front porch	t _{VFP}	3	3	3	tHP	

3-5. Signal Timing Waveforms

Ver. 1.0

22, Oct, 2008

3-6. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

									Inp	out Co	olor D	ata							
Color			3	RE	ΞD				GREEN				BLUE						
								MSE					LSB						LSB
	T	R 5	R 4	R 3	R 2	R 1	R 0	G 5	G 4	G 3	G 2	G 1		B 5	B 4	В3	B 2	B 1	B 0
	Black	0	0	0		0	0	0		0	0	0	0	0		0	0	0	0
	Red	1	1	1	1	1	1	0	0		0	0	0	0		0		0	0
	Green	0	0	0	0		0	1 	1				1	0		0		0	0
Basic	Blue	0	0	0		0	0	0			0	0	0	1	. 1 	1	1	1	1
Color	Cyan	0	0	0		0	0	1 	1	. 1 			1	1	. 1 	1	. 1 	1 	1
	Magenta	1	1	1	. 1	1	1	0	0	0	0	0	0	1	1	1	. 1	1	1
	Yellow	1	1	1	. 1	1		1	1	1				0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN					 														
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE		·····			 														
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	1	0
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	 1	1	 1	1	·····

Ver. 1.0 22, Oct, 2008 12/28

3-7. Power Sequence

Table 7. POWER SEQUENCE TABLE

Parameter		Value		Units
	Min.	Тур.	Max.	
T ₁	-	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Please avoid floating state of interface signal at invalid period.
- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 3. Lamp power must be turn on after power supply for LCD and interface signal are valid.

Ver. 1.0 22, Oct, 2008 13/ 28

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 20 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, f_{V} =60Hz, f_{CLK} = 69.0MHz, ILED = 19mA

Doromotor	C) made al		Values		Llaita	Notes
Parameter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio	CR	400		-		1
Surface Luminance, white	L _{WH}	250	300	-	cd/m ²	2
Luminance Variation	δ_{WHITE}	-	1.4	1.6		3
Response Time	Tr _R + Tr _D		16	25	ms	4
Color Coordinates]	
RED	RX	0.562	0.592	0.622	l	
	RY	0.321	0.351	0.381		
GREEN	GX	0.312	0.342	0.372		
	GY	0.521	0.551	0.581		
BLUE	ВХ	0.119	0.149	0.179		
	BY	0.093	0.123	0.153		
WHITE	WX	0.283	0.313	0.343		
	WY	0.299	0.329	0.359]	
Viewing Angle	[]	5
x axis, right(Φ=0°)	Θr	65	70		degree	
x axis, left (Φ=180°)	Θl	65	70	-	degree	
y axis, up (Φ=90°)	Θu	50	55	-	degree	
y axis, down (⊕=270°)	Θd	50	55	-	degree	
Gray Scale						6

Ver. 1.0 22, Oct, 2008 14/ 28

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, \dots L_5)$$

3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{ WHITE}} = \frac{\text{Maximum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \ \dots \ \mathsf{L}_{13})}{\text{Minimum}(\mathsf{L}_{1}, \mathsf{L}_{2}, \ \dots \ \mathsf{L}_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

*
$$f_{V} = 60Hz$$

Gray Level	Luminance [%] (Typ)
LO	0.10
L7	0.40
L15	2.70
L23	8.60
	21.8
L39	37.0
	53.6
L55	74.7
L63	100

Ver. 1.0 22, Oct, 2008 15/ 28

FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Ver. 1.0 22, Oct, 2008 16/ 28

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP133WX2. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	296.0 ± 0.5mm					
Outline Dimension	Vertical	192.0 ± 0.5mm					
	Depth	3.50mm(Max.)					
Bezel Area	Horizontal	289.28mm					
Dezei Area	Vertical	182mm					
Active Diepley Area	Horizontal	286.08mm					
Active Display Area	Vertical	178.80 mm					
Weight	245g(Max.)						
Surface Treatment	Anti-Glare treatment of the front Polarizer (Haze 25%)						

Ver. 1.0 22, Oct, 2008 17/ 28

<FRONT VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm

(50)

0)

Keep Out Area(80x80)

(01)

Product Specification

<REAR VIEW>
Note) Unit:[mm], General tolerance: ± 0.5mm

CN-0X283C-56252-712-0001-XXX D/PN: 0X283C

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

* PPID Label Revision:

It is subject to change with Dell event. Please refer to the below table for detail.

Classification	No Change	1st Revision	2nd Revision	 9th Revision	
SST(WS)	X00	X01	X02	 A09	
PT(ES)	X10	X11	X12	 A19	
ST(CS)	X20	X21	X22	 A29	
XB(MP)	A00	A01	A02	 A09	

Ver. 1.0 22, Oct, 2008 20/ 28

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 6ms for all six faces)
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

Ver. 1.0 22, Oct, 2008 21/ 28

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

Ver. 1.0 22, Oct, 2008 22/ 28

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

		А	В	С	D	Е	F	G	Н	I	J	К	L	М
--	--	---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	C

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 20 pcs

b) Box Size : 422mm \times 340mm \times 257mm

Ver. 1.0 22, Oct, 2008 23/ 28

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm\ 200mV(Over\ and\ under\ shoot\ voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

Ver. 1.0 22, Oct, 2008 24/ 28

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 1.0 22, Oct, 2008 25/ 28

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

	Byte	Byte		Value		Value				
	(Dec)	(Hex)	Field Name and Comments		ex)	(Bin)				
	0		Header	0	0	0000 0000				
	1	01	Header	F	F	1111 1111				
	2	02	Header	F	F	1111 1111				
Header	3	03	Header	F	F	1111 1111				
sa	4	04	Header	F	F	1111 1111				
H	5	05	Header	F	F	1111 1111				
	6	06	Header	F	F	1111 1111				
	7	07	Header	0	0	0000 0000				
	8	08	EISA manufacture code (3 Character ID) LGD	3	0	0011 0000				
	9	09	EISA manufacture code (Compressed ASC [])	E	4	1110 0100				
	10	0 <i>9</i>	Panel Supplier Reserved - Product Code 0145h	4	5	0100 0101				
ıct	11	0B	(Hex. LSB first)	0	1	0000 0001				
qı	12				0	0000 0001				
rc	13		0C LCD Module Serial No - Preferred but Optional ("0" If not used) 0 0D LCD Module Serial No - Preferred but Optional ("0" If not used) 0							
//	14		LCD Module Serial No - Preferred but Optional ("0" If not used) LCD Module Serial No - Preferred but Optional ("0" If not used)		0	0000 0000				
or	15			0	0	0000 0000				
Vendor / Product		0F	LCD Module Serial No - Preferred but Optional ("0" If not used)	0	0					
Ve	16	10	Week of Manufacture : 00 weeks	0	0	0000 0000				
	17	11	Year of Manufacture 2008 year	1	2	0001 0010 0000 0001				
	18	12	EDID structure version # = 1	0	1					
	19	13	EDID revision # = 3	0	3	0000 0011				
~	20	14	Video input Definition = Digital signal	9	0	1001 0000				
Display	21	15	Max H image size (Rounded cm) = 29 cm	1	D	0001 1101				
isp	22	16	Max V image size (Rounded cm) = 18 cm	1	2	0001 0010				
D.	23	17	Display gamma = (gamma*100)-100 = Example:(2.2*100)-100=120 = 2.2 Gamma	7	8	0111 1000				
	24	18	Feature Support (no_DPMS, no_Active Off/Very Low Power, RGB color display, Timing BLK 1,no_GTF)	0	A	0000 1010				
	25	19	Red/Green Low Bits (RxRy/GxGy)	D	F	1101 1111				
ct	26	1A	Blue/White Low Bits (BxBy/WxWy)	4	5	0100 0101				
qn	27	1B	Red X Rx = 0.585	9	5	1001 0101				
ro	28	1C	Red Y Ry = 0.353	5	A	0101 1010				
'P	29	1D	Green X $Gx = 0.331$	5	4	0101 0100				
Vendor / Product	30	1E	Green Y Gy =0.554	8	D	1000 1101				
ρq	31	1F	Blue X $Bx = 0.149$	2	6	0010 0110				
'er	32	20	Blue Y By = 0.113	1	D	0001 1101				
1	33	21	White X Wx =0.313	5	0	0101 0000				
	34	22	White Y Wy =0.329	5	4	0101 0100				
tb id	35	23	Established timing 1 (00h if nt used)	0	0	0000 0000				
Estab lished	36	24	Established timing 2 (00h if nt used)	0	0	0000 0000				
E tis	37	25	Manufacturer's timings (00h if nt used)	0	0	0000 0000				
	38	26	Standard timing ID1 (01h if not used)	0	1	0000 0001				
	39	27	Standard timing ID1 (01h if not used)	0	1	0000 0001				
	40	28	Standard timing ID2 (01h if not used)	0	1	0000 0001				
	41	29	Standard timing ID2 (01h if not used)	0	1	0000 0001				
0	42	2A	Standard timing ID3 (01h if not used)	0	1	0000 0001				
مخ	43	2B	Standard timing ID3 (01h if not used)	0	1	0000 0001				
uin	44	2C	Standard timing ID4 (01h if not used)	0	1	0000 0001				
Ţ.	45	2D	Standard timing ID4 (01h if not used)	0	1	0000 0001				
1 J	46	2E	Standard timing ID5 (01h if not used)	0	1	0000 0001				
an	47	2F	Standard timing ID5 (01h if not used)	0	1	0000 0001				
Standard Timing ID	48	30	Standard timing ID6 (01h if not used)	0	1	0000 0001				
ta	49	31	Standard timing ID6 (01h if not used)	0	1	0000 0001				
S	50	32	Standard timing ID7 (01h if not used)	0	1	0000 0001				
	51	33	Standard timing ID7 (01h if not used)	0	1	0000 0001				
	52	34	Standard timing ID8 (01h if not used)	0	1	0000 0001				
	53	35	Standard timing ID8 (01h if not used)	0	1	0000 0001				
			6 - 4 (4 - 11 - 11 - 11 - 11 - 11 - 11 -	,	_					

Ver. 1.0 22, Oct, 2008 26/ 28

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

	Byte (Dec)	Byte (Hex)	Field Name and Comments		lue (ex)	Value (Bin)
	54	36	Pixel Clock/10,000 (LSB) 69 MHz @ 60Hz	F	4	1111 0100
	55	37	Pixel Clock/10,000 (MSB)	1	A	0001 1010
	56	38	Horizontal Active (lower 8 bits) 1280 Pixels	0	0	0000 0000
	57	39	Horizontal Blanking(Thp-HA) (lower 8 bits) 130 Pixels	8	2	1000 0010
I.	58	3A	Horizontal Active / Horizontal Blanking(Thp-HA) (upper 4:4bits)	5	0	0101 0000
# .	59	3B	Vertical Avtive 800 Lines	2	0	0010 0000
Timing Descriptor #1	60	3C	Vertical Blanking (Tvp-HA) (DE Blanking typ.for DE only panels) 16 Lines	1	0	0001 0000
rip	61	3D	Vertical Active: Vertical Blanking (Tvp-HA) (upper 4:4bits)	3	0	0011 0000
ssc	62	3E	Horizontal Sync. Offset (Thfp) 48 Pixels	3	0	0011 0000
Dε	63	3F	Horizontal Sync Pulse Width (HSPW) 32 Pixels	2	0	0010 0000
g_{i}	64	40	Vertical Sync Offset(Tvfp): Sync Width (VSPW) 3 Lines: 6 Lines	3	6	0011 0110
тi	65	41	Horizontal Vertical Sync Offset/Width (upper 2bits)	0	0	0000 0000
Ti	66	42	Horizontal Image Size (mm) 286 mm	1	E	0001 1110
	67	43	Vertical Image Size (mm) 179 mm	В	3	1011 0011
	68	44	Horizontal Image Size / Vertical Image Size	1	0	0001 0000
	69	45	Horizontal Border = 0 (Zero for Notebook LCD)	0	0	0000 0000
	70	46	Vertical Border = 0 (Zero for Notebook LCD)	0	0	0000 0000
	71	47	Non-Interlace, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_NEG)	1	8	0001 1000
	72	48	Pixel Clock/10,000 (LSB) 69 MHz @ 60Hz	F	4	1111 0100
7.5	73 74	49	Pixel Clock/10,000 (MSB) Horizontal Active (lower 8 bits) 1280 Pixels	1	A	0001 1010 0000 0000
	75	4A		0	2	
	76	4B	Horizontal Blanking(Thp-HA) (lower 8 bits) 130 Pixels	8	0	1000 0010 0101 0000
	77	4C	Horizontal Active / Horizontal Blanking(Thp-HA) (upper 4:4bits) Vertical Avtive 800 Lines	5	0	0101 0000 0010 0000
r +	78	4D 4E	Vertical Blanking (Tvp-HA) (DE Blanking typ.for DE only panels) 16 Lines	1	0	0001 0000
pto	79	4E 4F	Vertical Active: Vertical Blanking (Tvp-HA) (upper 4:4bits)	3	0	0001 0000
ïų	80	50	Horizontal Sync. Offset (Thfp) 48 Pixels	3	0	0011 0000
Timing Descriptor #2	81	51	Horizontal Sync Pulse Width (HSPW) 32 Pixels	2	0	0010 0000
D	82	52	Vertical Sync Offset(Tvfp): Sync Width (VSPW) 3 Lines: 6 Lines	3	6	0011 0110
ng	83	53	Horizontal Vertical Sync Offset/Width (upper 2bits)	0	0	0000 0000
m	84	54	Horizontal Image Size (mm) 286 mm	1	E	0001 1110
I	85	55	Vertical Image Size (mm) 179 mm	В	3	1011 0011
	86	56	Horizontal Image Size / Vertical Image Size	1	0	0001 0000
	87	57	Horizontal Border = 0 (Zero for Notebook LCD)	0	0	0000 0000
	88	58	Vertical Border = 0 (Zero for Notebook LCD)	0	0	0000 0000
	89	59	Non-Interlace, Normal display, no stereo, Digital Separate (Vsync_NEG, Hsync_NEG)	1	8	0001 1000
	90	5A	Flag	0	0	0000 0000
	91	5B	Flag	0	0	0000 0000
	92	5C	Flag	0	0	0000 0000
	93	5D	Data Type Tag : Alphanumeric Data String (ASCII String)	F	E	1111 1110
	94	5E	Flag	0	0	0000 0000
Timing Descriptor #3	95		Dell P/N 1st Character = X	7	8	0111 1000
or	96	60	Dell P/N 2nd Character = 2	3	2	0011 0010
ipt	97	61	Dell P/N 3rd Character = 8	3	8	0011 1000
cr	98	62	Dell P/N 4th Character = 3	3	3	0011 0011
Ses	99	63	Dell P/N 5th Character = C	6	3	0110 0011
g I	100	64	EDID Revision Build Name = MP (X-build), Revision # = A00	8	0	1000 0000
и'n	101	65	Manufacturer P/N = 1	3	1	0011 0001
ï	102	66	Manufacturer $P/N = 3$	3	3	0011 0011
I	103	67	Manufacturer $P/N = 3$	3	3	0011 0011
	104	68	Manufacturer P/N = W	5	7	0101 0111
	105	69	Manufacturer P/N = X	5	8	0101 1000
	106	6A	Manufacturer $P/N = 2$	3	2	0011 0010
	107	6B	Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC II code 0Ah,set remaining char = 20h)	0	A	0000 1010

Ver. 1.0 22, Oct, 2008 27/ 28

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)		Value (Bin)	
	108	6C	Flag	0	0	0000 0000	
	109	6 D	Flag	0	0	0000 0000	
	110	6E	Flag	0	0	0000 0000	
	111	6F	Data Type Tag: Alphanumeric Data String (ASCII String)	F	E	1111 1110	
*	112	70	Flag	0	0	0000 0000	
.#4	113	71	SMBUS Value(Step #1) = 10 nits	0	8	0000 1000	
tor	114	72	SMBUS Value(Step #2) = 17 nits	0	E	0000 1110	
i.	115	73	SMBUS Value(Step #3) = 24 nits	1	4	0001 0100	
sci	116	74	SMBUS Value(Step #4) = 30 nits	1	9	0001 1001	
De,	117	75	SMBUS Value(Step #5) = 60 nits	3	3	0011 0011	
Timing Descriptor	118	76	SMBUS Value(Step #6) = 120 nits	6	6	0110 0110	
iin	119	77	SMBUS Value(Step #7) = 190 nits	A	1	1010 0001	
in	120	78	SMBUS Value(Step #8) = 300 nits (Typically = FFh, Max nits)	F	F	1111 1111	
7	121	79	Single channel LVDS, No RTC support	0	1	0000 0001	
	122	7A	BIST support	0	1	0000 0001	
	123	7B	(If<13 char> 0Ah, then terminate with ASC II code 0Ah,set remaining char = 20h)	0	A	0000 1010	
	124	7C	(If<13 char> 0Ah, then terminate with ASC II code 0Ah,set remaining char = 20h)	2	0	0010 0000	
	125	7D	(If<13 char> 0Ah, then terminate with ASC II code 0Ah,set remaining char = 20h)	2	0	0010 0000	
Checksum	126	7 E	Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0)	0	0	0000 0000	
Chec	127	7 F	Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0)	A	E	1010 1110	

Ver. 1.0 22, Oct, 2008 28/ 28