SVKM'S NMIMS Nilkamal School of Mathematics, Applied Statistics & Analytics

Master of Science (Statistics & Data Science)

PRACTICAL 8:AMAZON SAGEMAKER

Name: Shreya Nadkarni

SAP ID: 86062300047

Roll No: A042

1)Creating IAM ROLE and assigning sagemaker permission

IAM Role is created.

2) creating s3 bucket named mygroup2

3)open Amazon SageMaker console

Select Notebook instances and click create notebook instances

Here we will assign the IAM role created earlier i.e fraud_detection

4) CREATE A JUPYTER NOTEBOOK

Notebook is created

- 1. Open Jupyter or JupyterLab according to the interface needed.
- 2. Go to File menu->Choose New-> Notebook.

3. Select Kernel as 'conda_python3'

Deploying the model (Here it is stored in s3 bucket that we had created)

```
from IPython.display import FileLink, FileLinks
display("Click link below to view the XGBoost Training report", FileLink("CreateXgboostReport/xgboost_report.html"))

download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-2024-10-24-09-29-24-130/rule-output/CreateXgboostReport/xgboost-reports/EvaluationMetrics.json to CreateXgboostReport/xgboost-reports/EvaluationMetrics.json to CreateXgboostReport/xgboost-reports/EvaluationMetrics.json download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-2024-10-24-09-29-24-130/rule-output/CreateXgboostReport/xgboost-reports/FeatureImportance.json to CreateXgboostReport/xgboost-reports/FeatureImportance.json to CreateXgboostReport/xgboost-reports/EatureImportance.json to CreateXgboostReport/xgboost-reports/EatureImportance.json to CreateXgboostReport/xgboost-2024-10-24-09-29-24-130/rule-output/ProfilerReport/profiler-output/profiler-report.jpynb to ProfilerReport/profiler-output/profiler-report.jpynb download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-download: s3://sagemaker-us-east-1-975050009706/demo-sagemaker-xgboost-adult-income-prediction/xgboost_model/sagemaker-xgboost-2024-10-24-09-29-24-130/rule-output/CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json to CreateXgboostReport/xgboost-reports/ConfusionMatrix.json
```

```
from sagemaker.debugger import Rule, ProfilerRule, rule_configs
from sagemaker.session import TrainingInput

s3_output_location='s3://{}/{}/{}'.format(bucket, prefix, 'xgboost_model')

container=sagemaker.image_uris.retrieve("xgboost", region, "1.2-1")
print(container)

xgb_model=sagemaker.estimator.Estimator(
    image_uri=container,
    role=role,
    instance_count=1,
    instance_type='ml.m4.xlarge',
    volume_size=5,
    output_path=s3_output_location,
    sagemaker_session=sagemaker.Session(),
    rules=[
        Rule.sagemaker(rule_configs.create_xgboost_report()),
        ProfilerRule.sagemaker(rule_configs.ProfilerReport())
]
)
```

```
In [18]: xgb_predictor.endpoint_name
Out[18]: 'sagemaker-xgboost-2024-10-24-09-34-02-816'
In [19]: import numpy as np
            def predict(data, rows=1000):
    split_array = np.array_split(data, int(data.shape[0] / float(rows) + 1))
    predictions = ''
                 predictions
for array in split_array:
    predictions = ','.join([predictions, xgb_predictor.predict(array).decode('utf-8')])
return np.fromstring(predictions[1:], sep=',')
In [20]: import matplotlib.pyplot as plt
            predictions=predict(test.to_numpy()[:,1:])
plt.hist(predictions)
            plt.show()
              3500
              3000
              2500
              2000
              1500
              1000
                500
                        0.0
                                        0.2
                                                       0.4
                                                                       0.6
                                                                                                       1.0
                                                                                       0.8
```

```
In [21]: import sklearn
           cutoff=0.5
           print(sklearn.metrics.confusion_matrix(test.iloc[:, 0], np.where(predictions > cutoff, 1, 0))) print(sklearn.metrics.classification_report(test.iloc[:, 0], np.where(predictions > cutoff, 1, 0)))
           [[4670 356]
             [ 480 1007]]
                              precision
                                              recall f1-score support
                          0
                                    0.91
                                                 0.93
                                                              0.92
                                                                          5026
                                    0.74
                                                 0.68
                                                              0.71
                                                                          1487
                 accuracy
                                                              0.87
                                                                          6513
                                    0.82
                                                 0.80
               macro avg
                                                              0.81
                                                                          6513
           weighted avg
                                    0.87
                                                                          6513
                                                 0.87
                                                              0.87
```

