

Network Layer

Why layering needed?

Fig 1. Layering Example

Services

- Packetizing
- Routing and Forwarding

Other expected services

- Error Control
- Flow Control
- Congestion Control
- Quality of Service
- Security

Delay Types

Transmission Delay

 $Delay_{tr} = (packet\ length)/(transmission\ rate)$

Propagation Delay

 $Delay_{pg} = (distance)/(propagation speed)$

Processing Delay

 $Delay_{pr} = time\ required\ to\ process\ a\ packet\ in\ router$

Queueing Delay

 $Delay_{qu} = time \ a \ packet \ waits \ in \ input/output \ queues$

Total Delay?

Throughput

Fig 2. Throughput Example

Throughput = $min(TR_1, TR_2, ..., TR_n)$

Bandwidth Vs Throughput

Fig 3(a). Bandwidth

Fig 3(b). Throughput

IPv4 Addresses

IP Address

- 32-bit address
- Address of the connection (interface), not the host/router

Fig 4(a). Router with connections

Binary 10000000 00001011 00000011 00011111 Dotted decimal 128 • 11 • 3 • 31 Hexadecimal 80 0B 03 1F

Information Technology

Fig 4(b). Types of notation

Address space

- Total number of possible addresses = 2^{32}
- Binary notation (base2), dotted-decimal notation (base256), hexadecimal notation (base16)