FUNDAMENTALS OF DATA MINING

Clustering & Frequent Pattern Mining

Semiha Hazel Çavuş 150115045 Zeynep Kumralbaş 150115051

Problem Definition

❖ Analyze 3 clustering algorithms on 'seeds data set'.

*Analyze 3 frequent pattern mining algorithms.

Seeds Data Set

Kernels belonging to 3 different varieties of wheat:

- **❖**Kama
- **❖**Rosa
- Canadian

70 samples for each class

Data Set: Attributes, Data Characteristics

- >Area, A
- ➤ Perimeter, P
- ➤ Compactness, C=4*pi*A/P^2
- Length of kernel

- ➤ Width of kernel
- >Asymmetry coefficient
- Length of kernel Groove

Number of instances: 210 Number of attributes: 7

Attribute characteristics: real valued, continuous

Data Preprocessing

➤ No missing values

➤ All values are normalized into 0-1

IDE/Environment

Environment:

IDE:

Libraries

K-Means: Determining Number of Clusters

K-Means: Parameters

Parameters of Kmeans method:

- n_clusters=3
- init='k-means++'
- n_initint, default=10
- max_iterint, default=300
- tolfloat, default=1e-4

sklearn.cluster.Kmeans(n_clusters=3)

K-Means: Original Clusters

K-Means: Clusters

AGNES: Dendrogram Parameters

dendrogram(linkage(data, method='ward', metric='euclidean'))

Different linkage types [1]

AGNES: Finding Termination Condition

AGNES: Parameters

AgglomerativeClustering parameters:

- n_clusters=None
- distance_threshold=3
- affinity='euclidean'
- linkage='ward')

AGNES: Original Clusters

AGNES: Clusters

DBSCAN: Heuristic^[2] for Choosing Epsilon

- ✓ Calculate distances between each point and its kth nearest neighbour.
- ✓ Sort distances in descending order.
- ✓ Plot the k-dist graph, where x axis is the point indexes and y-axis is the distances.
- ✓ Find the elbow on the graph and set epsilon to corresponding distance.

Rule of thumb [3]: $MinPts \ge dimension + 1$ k = MinPts - 1 MinPts = 2*dimension

DBSCAN: Original Clusters

DBSCAN: k-dist Graph

DBSCAN: k-dist Graph

20

Eps = 0.24 $min_samples = 14$

DBSCAN: Clusters

 $min_samples = 25$

21

Comparison of Clustering Algorithms

Frequent Pattern Mining: Transaction Encoding

	Bread	Butter	Cheese	Coffee Powder	Ghee	Lassi	Milk	Panner	Sugar	Sweet	Tea Powder	Yougurt
0	False	True	True	True	True	True	False	False	False	False	False	True
1	False	False	False	True	True	False	False	False	False	False	False	False
2	False	True	True	False	False	True	False	False	False	False	True	False
3	True	True	True	True	False	False	False	True	False	False	True	False
4	False	True	True	True	False	False	False	False	True	True	False	True
12521	True	False	True	False	False	False	True	True	True	False	False	False
12522	True	False	True	True	False	False	False	False	True	False	False	False
12523	True	False	True	False	False	False	True	False	False	False	False	True
12524	True	False	True	False	True	False	False	False	True	False	False	True
12525	True	False	False	False	False	False	False	True	False	False	False	True

Apriori

Apriori parameters:

- dataFrame
- $min_support = 0.2$
- use_colnames = True

```
itemsets
support
0.441162
                            (Milk)
                                   0.202698
                                                          (Sweet, Bread)
0.439885
                            (Ghee)
                                   0.202140
                                                       (Yougurt, Cheese)
                   (Coffee Powder)
0.439805
                                   0.201980
                                                          (Butter, Ghee)
0.439326
                         (Yougurt)
                                    0.201980
                                                         (Bread, Cheese)
0.437809
                           (Bread)
                                    0.201900
                                                       (Butter, Yougurt)
0.437730
                           (Sweet)
                                   0.201900
                                                        (Sugar, Yougurt)
0.437650
                           (Sugar)
                                    0.201820
                                                 (Bread, Coffee Powder)
0.437570
                          (Butter)
                                                          (Panner, Ghee)
                                    0.201421
0.437171
                          (Cheese)
                                                  (Milk, Coffee Powder)
                                   0.201022
0.434616
                          (Panner)
                                   0.200942
                                                (Coffee Powder, Cheese)
0.433658
                           (Lassi)
0.429746
                      (Tea Powder)
                                   0.200942
                                                           (Milk, Bread)
             (Coffee Powder, Ghee)
0.205812
                                    0.200862
                                                           (Sugar, Ghee)
0.205652
                    (Sweet, Lassi)
                                    0.200623
                                                         (Milk, Yougurt)
0.205253
                   (Butter, Sugar)
                                   0.200543
                                                 (Lassi, Coffee Powder)
0.204614
                     (Milk, Sugar)
                                   0.200543
                                                           (Milk, Sweet)
0.203976
          (Coffee Powder, Yougurt)
                                   0.200463
                                                           (Lassi, Ghee)
0.203577
                   (Panner, Bread)
                                    0.200463
                                                            (Milk, Ghee)
0.203018
                   (Butter, Sweet)
                                    0.200144
                                                        (Bread, Yougurt)
0.202698
                     (Milk, Lassi)
                                    0.200064
                                                          (Bread, Lassi)
```

FP-Growth

itemsets support FP-Growth parameters: 0.441162 (Milk) 0.202698 (Sweet, Bread) 0.439885 (Ghee) 0.202140 (Yougurt, Cheese) 0.439805 (Coffee Powder) 0.201980 (Butter, Ghee) dataFrame 0.439326 (Yougurt) 0.201980 (Bread, Cheese) 0.437809 (Bread) 0.201900 (Butter, Yougurt) 0.437730 (Sweet) 0.201900 (Sugar, Yougurt) • $min_support = 0.2$ 0.437650 (Sugar) 0.201820 (Bread, Coffee Powder) 0.437570 (Butter) (Panner, Ghee) 0.201421 0.437171 (Cheese) (Milk, Coffee Powder) 0.201022 0.434616 (Panner) use_colnames = True 0.200942 (Coffee Powder, Cheese) 0.433658 (Lassi) 0.429746 (Tea Powder) 0.200942 (Milk, Bread) (Coffee Powder, Ghee) 0.205812 0.200862 (Sugar, Ghee) 0.205652 (Sweet, Lassi) 0.200623 (Milk, Yougurt) 0.205253 (Butter, Sugar) 0.200543 (Lassi, Coffee Powder) 0.204614 (Milk, Sugar) 0.200543 (Milk, Sweet) 0.203976 (Coffee Powder, Yougurt) 0.200463 (Lassi, Ghee) 0.203577 (Panner, Bread) 0.200463 (Milk, Ghee) 0.203018 (Butter, Sweet) 0.200144 (Bread, Yougurt) 0.202698 (Milk, Lassi)

0.200064

(Bread, Lassi)

Eclat

Eclat parameters:

• $min_support = 0.2$

```
['Yougurt', 'Cheese'] : 0.2021
['Milk'] : 0.4412
                                     ['Bread', 'Cheese'] : 0.202
['Ghee']: 0.4399
                                     ['Butter', 'Ghee']: 0.202
['Coffee Powder']: 0.4398
                                     ['Butter', 'Yougurt']: 0.2019
['Yougurt'] : 0.4393
                                     ['Sugar', 'Yougurt'] : 0.2019
['Bread'] : 0.4378
['Sweet'] : 0.4377
                                     ['Bread', 'Coffee Powder'] : 0.2018
['Sugar'] : 0.4376
                                     ['Panner', 'Ghee']: 0.2014
['Butter'] : 0.4376
                                     ['Milk', 'Coffee Powder']: 0.201
['Cheese'] : 0.4372
                                     ['Coffee Powder', 'Cheese']: 0.2009
['Panner'] : 0.4346
                                     ['Milk', 'Bread'] : 0.2009
['Lassi'] : 0.4337
                                     ['Sugar', 'Ghee']: 0.2009
['Tea Powder'] : 0.4297
                                     ['Milk', 'Yougurt'] : 0.2006
['Coffee Powder', 'Ghee']: 0.2058
                                     ['Lassi', 'Coffee Powder']: 0.2005
['Sweet', 'Lassi'] : 0.2057
                                     ['Milk', 'Sweet'] : 0.2005
['Butter', 'Sugar'] : 0.2053
                                     ['Lassi', 'Ghee']: 0.2005
['Milk', 'Sugar']: 0.2046
                                     ['Milk', 'Ghee'] : 0.2005
['Coffee Powder', 'Yougurt']: 0.204
                                     ['Bread', 'Yougurt']: 0.2001
['Panner', 'Bread'] : 0.2036
                                     ['Bread', 'Lassi']: 0.2001
['Butter', 'Sweet'] : 0.203
['Milk', 'Lassi'] : 0.2027
['Sweet', 'Bread']: 0.2027
```

Performance Comparison

THANKS FOR LISTENING