Fonctions réelles d'une variable réelle

Exercice 1. Donner le domaine de définition des fonctions suivantes :

1.
$$\frac{1}{1+x}$$

2.
$$\frac{3}{1+x^2}$$

3.
$$e^{\frac{1}{1-x}}$$

2.
$$\frac{3}{1+x^2}$$
 3. $e^{\frac{1}{1-x}}$ 4. $\ln(1-x)$ 5. $\sqrt{-4x}$

$$5. \sqrt{-4x}$$

Correction exercice 1.

1.
$$\mathbb{R} \setminus \{-1\}$$

$$3. \mathbb{R} \setminus \{1\}$$

5.
$$]-\infty,0]$$

$$2. \mathbb{R}$$

4.
$$]-\infty,1[$$

Exercice 2. Calculer l'image des fonctions suivantes :

1.
$$f(x) = 3x - 2$$
 avec $D_f = \{1, 2, 3, 4\}$ 2. $g(x) = x^2$ avec $D_g = [-5, 5]$

2.
$$g(x) = x^2$$
 avec $D_g = [-5, 5]$

Correction exercice 2.

1.
$$Im(f) = \{1, 4, 7, 10\}$$

2.
$$Im(g) = [0, 25]$$

Exercice 3. Soit la fonction $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 3$.

- 1. Calculer le domaine image de f. 2. Trouver $z \in \mathbb{R}$ tel que f(z) = 35.

Correction exercice 3.

- 1. Lorsque x parcourt \mathbb{R} , $2x^2$ parcourt $[0, +\infty[$ et donc $2x^2 + 3$ parcourt $[3, +\infty[$. On a $\text{Im}(f) = [3, +\infty[$.
- 2. Commençons par remarquer que $35 \in \text{Im}(f)$. Il existe donc au moins un $z \in \mathbb{R}$ satisfaisant f(z) = 35. On résout l'équation suivante :

$$f(z) = 35 \iff 2z^2 + 3 = 35 \iff 2z^2 = 32 \iff z^2 = 16 \iff z = 4 \text{ ou } z = -4$$

Il existe donc deux $z \in \mathbb{R}$ tels que f(z) = 35 : z = -4 et z = 4.

Exercice 4. Soient les fonctions f(x) = (x+1)(x-2) et g(x) = 2x.

1. Calculer $f \circ g$.

2. Calculer $g \circ f$.

Correction exercice 4.

1. On a
$$(f \circ g)(x) = f(g(x)) = (g(x) + 1)(g(x) - 2) = (2x + 1)(2x - 2)$$

2. On a
$$(g \circ f)(x) = g(f(x)) = 2f(x) = 2(x+1)(x-2)$$

Exercice 5. Soient les fonctions $f(x) = x^2 - 1$, g(x) = 3x + 2, et $h(x) = \frac{1}{x}$. Résoudre les équations suivantes sur \mathbb{R} :

1.
$$(f \circ q)(x) = 15$$

2.
$$(g \circ g)(x) = h(x)$$
 3. $(g \circ h)(x) = -4$

$$3. (g \circ h)(x) = -4$$

Correction exercice 5.

1. On résout ce problème sur R

$$(f \circ g)(x) = 15 \iff (g(x))^2 - 1 = 15 \iff (3x+2)^2 - 1 = 15$$

 $\iff (3x+2)^2 = 16 \iff 3x+2 = -4 \text{ ou } 3x+2 = 4$
 $\iff 3x = -6 \text{ ou } 3x = 2 \iff x = -2 \text{ ou } x = \frac{2}{3}$

On a trouvé deux solutions à cette équation : $\{-2, \frac{2}{3}\}$. Vérifions ce résultat : $(f \circ g)(-2) = f(g(-2)) = f(-4) = 15$ et $(f \circ g)(\frac{2}{3}) = f(g(\frac{2}{3})) = f(4) = 15$

2. On résout ce problème sur $\mathbb{R} \setminus \{0\}$ (car h non définie en 0).

$$(g \circ g)(x) = h(x) \iff 3(3x+2) + 2 = \frac{1}{x} \iff 9x + 8 = \frac{1}{x}$$

 $\iff (9x+8)x = 1 \iff 9x^2 + 8x - 1 = 0$

Cherchons les racines éventuelles de ce polynôme. On calcule son discriminant : $\Delta = 64 - 4 \times 9 \times (-1) = 100 > 0$. Ce polynôme admet donc deux racines réelles : $x_1 = \frac{-8-10}{2\times 9} = -1$ et $x_2 = \frac{-8+10}{2\times 9} = \frac{1}{9}$. Ces racines sont non nulles (rappelez-vous qu'on cherche des solutions sur $\mathbb{R} \setminus \{0\}$), elles sont donc solutions de l'équation.

3. On cherche des solutions sur \mathbb{R}^* (car h est définie sur \mathbb{R}^*)

$$(g \circ h)(x) = -4 \iff \frac{3}{x} + 2 = -4 \iff \frac{3}{x} = -6 \iff \frac{1}{x} = -2 \iff x = -\frac{1}{2}$$

et $-\frac{1}{2} \in \mathbb{R}^*$, donc cette équation admet pour unique solution $-\frac{1}{2}$.

Exercice 6. Soit la fonction $f(x) = \sqrt{2x-1}$.

1. Donner D_f .

2. Calculer $f^{-1}(x)$

Correction exercice 6.

1. La fonction $y\mapsto \sqrt{y}$ est définie pour $y\geq 0$. Dans notre cas, y=2x-1 et $2x - 1 \ge 0 \iff x \ge \frac{1}{2}$. Donc $D_f = [\frac{1}{2}, +\infty[$.

2. Calculons maintenant (si elle existe) l'inverse de f. Pour $y \in \mathbb{R}$, cherchons $x \geq \frac{1}{2}$ tel que

$$y = f(x) \iff y = \sqrt{2x - 1} \iff y^2 = 2x - 1 \iff x = \frac{y^2 + 1}{2}$$

De plus, on a bien $\frac{y^2+1}{2} \geq 0$. Ainsi, pour chaque $y \in \mathbb{R}$, il existe un unique $x = \frac{y^2+1}{2} \in D_f$ tel que f(x) = y. La fonction f est donc inversible et son inverse a pour expression $f^{-1}(x) = \frac{x^2+1}{2}$.

Exercice 7. Soient les fonctions f(x) = 3x + 2, $g(x) = \frac{1}{x}$, $x \neq 0$.

1. (a) Donner $f^{-1}(x)$.

(b) Donner $g^{-1}(x)$. (c) Donner $(g \circ f)^{-1}(x)$.

2. Vérifier que $(q \circ f)^{-1}(x) = (f^{-1} \circ q^{-1})(x) = \frac{1}{2}(\frac{1}{x} - 2)$.

Correction exercice 7.

1. (a) Soit $y \in \mathbb{R}$, cherchons $x \in \mathbb{R}$ tel que

$$f(x) = y \iff 3x + 2 = y \iff 3x = y - 2 \iff x = \frac{y - 2}{3}$$

Pour chaque $y \in R$, il existe un unique $x = \frac{y-2}{3} \in \mathbb{R}$ tel que f(x) = y. La fonction f est donc inversible et on a $f^{-1}(x) = \frac{x-2}{3}$.

(b) Soit $y \in \mathbb{R}^*$, cherchons $x \in \mathbb{R}^*$ tel que

$$y = g(x) \iff y = \frac{1}{x} \iff x = \frac{1}{y}$$

Pour chaque $y \in \mathbb{R}$, il existe un unique $x = \frac{1}{y} \in \mathbb{R}^*$ tel que g(x) = y. La fonciton g est donc inversible et on a $g^{-1}(x) = \frac{1}{x}$.

(c) On calcule $(g \circ f)(x) = \frac{1}{3x+2}$. Cette fonction est définie sur $\mathbb{R} \setminus \{-\frac{2}{3}\}$ et est à valeurs dans $\mathbb{R} \setminus \{0\}$. Soit $y \in \mathbb{R} \setminus \{0\}$, on cherche $x \in \mathbb{R} \setminus \{-\frac{2}{3}\}$ tel que

$$(g \circ f)(x) = y \iff \frac{1}{3x+2} = y \iff 3x+2 = \frac{1}{y} \iff 3x = \frac{1}{y} - 2 \iff x = \frac{1}{3y} - \frac{2}{3}$$

Pour chaque $y \in \mathbb{R} \setminus \{0\}$, il existe un unique $x = \frac{1}{3y} - \frac{2}{3}$ tel que $y = (g \circ f)(x)$. De plus, pour $y \neq 0$, on a bien $x = \frac{1}{3y} - \frac{2}{3} \neq -\frac{2}{3}$. La fonction $g \circ f$ est donc inversible et son inverse est donnée par $(g \circ f)^{-1}(x) = \frac{1}{3x} - \frac{2}{3}$.

2. Il ne reste qu'à vérifier $(f^{-1} \circ g^{-1})(x) = \frac{1}{3x} - \frac{2}{3}$. Le résultat vient rapidement.

Exercice 8. Simplifier les expressions suivantes :

1.
$$\log(18) - \log(24) - \log(2)$$

3. $\ln(3x^2) + \ln(2x) - \ln(6x^3)$

2.
$$\ln(2) + \ln(3x) - \ln(2x)$$

4. $\log(5x^2) - \log(10x^2) + \log(4x)$

Correction exercice 8. Dans tout cet exercice, on utilise $\ln(a \times b) = \ln a + \ln b$ et $\ln(a^n) = n \ln a$ (et les mêmes relations sont valables avec log à la place de ln).

1.

$$\log(18) - \log(24) - \log(2) = \log(2 \times 3^2) - \log(2^3 \times 3) - \log(2)$$

$$= \log 2 + \log(3^2) - \log(2^3) - \log 3 - \log 2$$

$$= \log 2 + 2\log 3 - 3\log 2 - \log 3 - \log 2$$

$$= -3\log 2 + \log 3$$

2.

$$\ln(2) + \ln(3x) - \ln(2x) = \ln(2) + \ln(3) + \ln(x) - \ln(2) - \ln(x) = \ln(3)$$

3.

$$\ln(3x^2) + \ln(2x) - \ln(6x^3) = \ln(3) + 2\ln(x) + \ln(2) + \ln(x) - \ln(6) - 3\ln(x)$$
$$= \ln(3) + \ln(2) - \ln(2 \times 3)$$
$$= 0$$

4.

$$\log(5x^2) - \log(10x^2) + \log(4x) = \log(5) + 2\log(x) - \log(10) - 2\log(x) + \log(4) + \log(x)$$
$$= \log(x) + \log(5) - \log(2 \times 5) + \log(2^2)$$
$$= \log(x) + \log(2)$$

Exercice 9. Résoudre les équations suivantes :

1.
$$2\ln(x) + 1 = 5$$

4.
$$\ln(e^{2x-1}) = 36$$

7.
$$e^{4x+5} = -4$$

2.
$$\ln(2x+1) = 5$$
 5. $e^{2x+3} = 4$

5.
$$e^{2x+3} = 4$$

$$8. \ e^{2x} - 5e^x + 6 = 0$$

3.
$$\frac{1}{4}\ln(4-3x)=2$$

6.
$$e^{-2x} + 10 = 24$$

9.
$$e^x + e^{-x} = 2$$

Correction exercice 9.

1. Le domaine de définition de $2\ln(x) + 1$ est \mathbb{R}_+^* . On cherche donc x dans \mathbb{R}_+^* tel que

$$2\ln(x) + 1 = 5 \iff 2\ln(x) = 4 \iff \ln(x) = 2 \iff x = e^2$$

(l'équivalence lors de l'application de exp vient du fait que la fonction exponentielle est une bijection de \mathbb{R} vers \mathbb{R}_{+}^{*})

Il existe une unique solution $e^2 \in \mathbb{R}_+^*$ à cette équation.

2. Le domaine de définition de $\ln(2x+1)$ est $]-\frac{1}{2},+\infty[$. On cherche donc $x>-\frac{1}{2}$ tel que

$$\ln(2x+1) = 5 \iff 2x+1 = e^5 \iff 2x = e^5 - 1 \iff x = \frac{e^5 - 1}{2}$$

(l'équivalence lors de l'application de exp vient du fait que la fonction exponentielle est une bijection de \mathbb{R} vers \mathbb{R}_{+}^{*})

3. La fonction $\frac{1}{4}\ln(4-3x)$ est définie sur $]-\infty,\frac{4}{3}[$. On cherche $x<\frac{4}{3}$ tel que

$$\frac{1}{4}\ln(4-3x) = 2 \iff \ln(4-3x) = 8 \iff 4-3x = e^8 \iff -3x = e^8 - 4 \iff x = \frac{4}{3} - \frac{e^8}{3}$$

4. e^{2x-1} est à valeur dans \mathbb{R}_+^* où ln est définie. La fonction $\ln(e^{2x-1})$ est définie sur \mathbb{R} et on a $\ln(e^{2x-1}) = 2x - 1$. On cherche $x \in \mathbb{R}$ tel que

$$\ln(e^{2x-1}) = 36 \iff 2x - 1 = 36 \iff x = \frac{37}{2}$$

5.

$$e^{2x+3} = 4 \iff 2x+3 = \ln(4) \iff x = \frac{\ln(4) - 3}{2}$$

(l'équivalence lors de l'application de ln vient du fait que cette fonction est une bijection de \mathbb{R}_+^* vers \mathbb{R})

6.

$$e^{-2x} + 10 = 24 \iff e^{-2x} = 14 \iff -2x = \ln(14) \iff x = -\frac{1}{2}\ln(14)$$

(l'équivalence lors de l'application de ln vient du fait que cette fonction est une bijection de \mathbb{R}_+^* vers \mathbb{R})

- 7. La fonction exponentielle est à valeurs dans \mathbb{R}_+^* et $-4 \notin \mathbb{R}_+^*$. Il n'existe donc aucun $x \in \mathbb{R}$ tel que $e^{4x+5} = -4$: cette équation n'a pas de solution.
- 8. On effectue le changement de variables $t = e^x$.

$$e^{2x} - 5e^x + 6 = 0 \iff t^2 - 5t + 6 = 0$$

On calcule le discriminant de ce polynôme : $\Delta=25-24=1>0$. Ce polynôme admet donc deux racines réelles $t_1=\frac{5-1}{2}=2$ et $t_2=\frac{5+1}{2}=3$. Donc

$$e^{2x} - 5e^x + 6 = 0 \iff e^x = 2 \text{ ou } e^x = 3 \iff x = \ln(2) \text{ ou } x = \ln(3)$$

Cette équation admet deux solutions : ln(2) et ln(3).

9. On effectue le changement de variables $t = e^x$.

$$e^{x} + e^{-x} = 2 \iff e^{2x} - 2e^{x} + 1 = 0 \iff t^{2} - 2t + 1 = 0$$

On calcule le discriminant de ce polynôme : $\Delta = 0$. Il admet donc une unique racine (double) : $t_0 = -1$. Donc

$$e^x + e^{-x} = 2 \iff e^x = -1$$

On a $e^x > 0$ et donc on ne peut pas avoir $e^x = -1$. Cette équation n'admet donc aucune solution.

Exercice 10. Tracer les graphes des fonctions suivantes :

1.
$$ln(x) + 1$$

2.
$$\ln(x-2)$$
 3. $\ln(-x)$

3.
$$\ln(-x)$$

4.
$$\ln(x+2)$$

4.
$$\ln(x+2)$$
 5. $\ln(1-x)$

Correction exercice 10.

1. Faire les tracer avec tikz ...

Exercice 11. Pour des réels a, b et β ($\beta \neq 0$), calculer la dérivée des fonctions suivantes (x est la variable):

1.
$$a^{x^2} (a > 0)$$
 4. e^{ax+b}

4.
$$e^{ax+b}$$

7.
$$tan(x)$$

10.
$$\arcsin(x)$$

2.
$$(ax + b)^{\beta}$$

2.
$$(ax + b)^{\beta}$$
 5. $\cos(ax + b)$ 8. $\frac{e^{x} + e^{-x}}{2}$ 3. $\ln(ax + b)$ 6. $\sin(ax + b)$ 9. $\frac{e^{x} - e^{-x}}{2}$

8.
$$\frac{e^x + e^{-x}}{2}$$

11.
$$\arccos(x)$$

3.
$$\ln(ax+b)$$

$$6. \sin(ax+b)$$

9.
$$\frac{e^x - e^{-x}}{2}$$

12.
$$\arctan(x)$$

Correction exercice 11.

- 1. Il s'agit de la composée des fonctions $f(x) = a^x = e^{x \ln(a)}$ et $g(x) = x^2$. Leurs dérivées valent $f'(x) = \ln(a)a^x$ et g'(x) = 2x. La dérivée de la fonction a^{x^2} $(f \circ g)(x)$ vaut donc $f'(g(x)) \times g'(x) = 2\ln(a)xa^{x^2}$
- 2. On a $(ax+b)^{\beta} = e^{\beta \ln(ax+b)} = (f \circ g)(x)$ avec $f(x) = x^{\beta} = e^{\beta \ln(x)}$ et g(x) = ax+b. Les dérivées de ces fonctions valent $f'(x) = \beta e^{\beta \ln(x)} \times \frac{1}{x} = \beta x^{\beta-1}$ et g'(x) = a. La dérivée de cette fonction vaut donc $f'(g(x)) \times g'(x) = \beta a(ax+b)^{\beta-1}$.
- 3. On note $f(x) = \ln(ax + b)$. Par dérivée d'une composée de fonctions, on a $f'(x) = \frac{a}{ax+b}.$
- 4. On note $f(x) = e^{ax+b}$. Par derivée d'une composée de fonctions, on a f'(x) = ae^{ax+b} .
- 5. Idem: $-a\sin(ax+b)$
- 6. Idem: $a\cos(ax+b)$

7. On écrit la fonction tan comme $\tan(x) = \frac{\sin(x)}{\cos(x)}$. En dérivant le quotient de fonctions, on a

$$\tan'(x) = \frac{\sin'(x)}{\cos(x)} - \frac{\cos'(x)\sin(x)}{\cos^2(x)} = 1 - \frac{\sin^2(x)}{\cos^2(x)} = 1 - \tan^2(x).$$

- 8. Il s'agit de la fonction $\cosh(x) = \frac{e^x + e^{-x}}{2}$. On obtient facilement $\cosh'(x) =$ $\frac{e^x - e^{-x}}{2} = \sinh(x).$
- 9. Il s'agit de la fonction $\sinh(x) = \frac{e^x e^{-x}}{2}$. On obtient facilement $\sinh'(x) = \frac{e^x e^{-x}}{2}$ $\frac{e^x + e^{-x}}{2} = \cosh(x).$
- 10. L'arcsinus est défini comme étant la fonction inverse du sinus. Sur un certain intervalle, on a $\arcsin(\sin(x)) = x$. En dérivant cette expression, on obtient $\arcsin'(\sin(x))\cos(x) = 1$ et donc $\arcsin'(\sin(x)) = \frac{1}{\sqrt{1-\sin^2(x)}}$. Notez que l'on a utilisé la formule de trigonométrie $\cos^2(x) + \sin^2(x) = 1$. Par changement de variables, on a alors $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$.

Notez que l'on peut aussi utiliser la formule de la dérivée de l'inverse d'une fonction : $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$ avec $f(x) = \sin(x)$. De plus, pour compléter cette démonstration, on peut montrer que $\cos(\arcsin(x)) = \sqrt{1-x^2}$: ces deux foncitons ont la même image en 0 et ont pour dérivée ...

!! TODO: voir comment montrer cette égalité.

11. L'arccosinus est défini comme étant l'inverse de la fonction cosinus. On peut utiliser la même méthodologie qu'à la question précédente. Sur un certain intervalle $\arccos(\cos(x)) = x$. En dérivant : $-\sin(x)\arccos'(\cos(x)) = 1$ et donc $\arccos'(\cos(x)) = \frac{-1}{\sin(x)} = \frac{-1}{\sqrt{1-\cos^2(x)}}$ et donc $\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}$.

!! Nettoyer la démo pour l'inverse des fonctions trigo : il faut notamment spécifier les itervalles sur lesquels on travaille.

12. De la même façon : $\arctan(\tan(x)) = x$ et donc $\arctan'(\tan(x))(1 - \tan^2(x)) = 1$ et donc $\arctan'(x) = \frac{1}{1-x^2}$.

Exercice 12. Calculer la limite en $+\infty$ des fonctions suivantes :

1.
$$3x^4 - x^3 + 5x^2 + x - 1$$
 3. $\frac{x^3 - 4x^2 + 1}{x^5 + 2}$
2. $\frac{3x^2 - 2x + 1}{x + 4}$ 4. $\frac{3x + \sqrt{x}}{x - 1}$

$$3. \ \frac{x^3 - 4x^2 + 1}{x^5 + 2}$$

$$5. \ \sqrt{x^2 + 4x - 1} - 2x$$

2.
$$\frac{3x^2-2x+}{x+4}$$

4.
$$\frac{3x+\sqrt{x}}{x-1}$$

6.
$$\sqrt{x+1} - \sqrt{x-1}$$

Correction exercice 12.

1. La limite en l'infini d'un polynôme est donnée par son monôme de plus haut degré. Comme $\lim_{x\to+\infty} 3x^4 = +\infty$, alors on a $\lim_{x\to+\infty} 3x^4 - x^3 + 5x^2 + x - 1 =$ $+\infty$.

- 2. La limite en l'infini d'un quotien de polynômes est donnée par la limite du quotien des monômes de plus haut degré. Ainsi, $\lim_{x\to+\infty} \frac{3x^2-2x+1}{x+4} = \lim_{x\to+\infty} \frac{3x^2}{x} = +\infty$!! quotien ou quotient??
- 3. Idem: $\lim_{x \to +\infty} \frac{x^3 4x^2 + 1}{x^5 + 2} = \lim_{x \to +\infty} \frac{x^3}{x^5} = 0$.
- 4. Ici on peut séparer la fraction en deux : $\frac{3x+\sqrt{x}}{x-1} = \frac{3x}{x-1} + \frac{\sqrt{x}}{x-1}$. De plus, $\lim_{x \to +\infty} \frac{3x}{x-1} = \frac{3x}{x-1} + \frac{\sqrt{x}}{x-1}$ 3 et $\lim_{x\to+\infty} \frac{\sqrt{x}}{x-1} = \lim_{x\to+\infty} \frac{1}{\sqrt{x}-\frac{1}{\sqrt{x}}} = 0$. Ainsi, en sommant les deux limites : $\lim_{x \to +\infty} \frac{3x + \sqrt{x}}{x - 1} = 3.$
- 5. On peut traiter ce cas en majorant la fonction. On a, pour x suffisamment grand, $x^2+4x-1 \le \frac{9}{4}x^2$ et donc (par croissance de la racine carrée) $\sqrt{x^2+4x-1} \le \frac{3}{2}x$. Ainsi, pour x suffisamment grand, $\sqrt{x^2+4x-1}-2x \leq -\frac{x}{2}$. On a, de plus, $\lim_{x\to+\infty}-\frac{x}{2}=-\infty$. Par majoration, on a donc $\lim_{x\to+\infty}\sqrt{x^2+4x-1}-2x=$
- 6. !! TODO!!

Exercice 13. Calculer les limites suivantes :

1. de
$$\frac{x^2-4x+3}{x^2+3x-4}$$
 en $x=1$

1. de
$$\frac{x^2-4x+3}{x^2+3x-4}$$
 en $x=1$ 2. de $\frac{\cos(x)-1}{x}$ en $x=0$

Correction exercice 13.

1. !! TODO!!