

清华大学电子工程系

最优化方法作业 11

作者: 罗雁天

学号**:** 2018310742

日期: 2018年12月7日

1

给定函数 $f(x) = (6 + x_1 + x_2)^2 + (2 - 3x_1 - 3x_2 - x_1x_2)^2$, 求在点 $\hat{x} = [-4, 6]^T$ 处的牛顿方向和最速下降方向

解. 计算 $\nabla f(x)$ 和 $\nabla^2 f(x)$ 如下:

$$\nabla f(x) = \begin{bmatrix} 2(6+x_1+x_2) + 2(2-3x_1-3x_2-x_1x_2)(-3-x_2) \\ 2(6+x_1+x_2) + 2(2-3x_1-3x_2-x_1x_2)(-3-x_1) \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} 2(x_2^2 + 6x_2 + 10) & 2(2x_1x_2 + 6(x_1+x_2) + 8) \\ 2(2x_1x_2 + 6(x_1+x_2) + 8) & 2(x_1^2 + 6x_1 + 10) \end{bmatrix}$$
(1.1)

所以, $\nabla f(\hat{x})$ 和 $\nabla^2 f(\hat{x})$ 为:

$$\nabla f(\hat{x}) = \begin{bmatrix} -344 \\ 56 \end{bmatrix}$$

$$\nabla^2 f(\hat{x}) = \begin{bmatrix} 164 & -56 \\ -56 & 4 \end{bmatrix}$$

$$\nabla^2 f(\hat{x})^{-1} = -\frac{1}{2480} \begin{bmatrix} 4 & 56 \\ 56 & 164 \end{bmatrix}$$
(1.2)

- (i) \hat{x} 处的牛顿方向为 $d = -\nabla^2 f(\hat{x})^{-1} \nabla f(\hat{x}) = \left[\frac{22}{31}, -\frac{126}{31}\right]^T$
- (ii) \hat{x} 处的最速下降方向为 $d = \nabla f(\hat{x}) = [344, -56]^T$

2

设有函数 $f(x) = \frac{1}{2}x^TAx + b^Tx + c$, 其中 A 为对称正定矩阵。又设 $x^{(1)} \neq \bar{x}$ 可表示为 $x^{(1)} = \bar{x} + \mu p$, 其中 \bar{x} 是 f(x) 的极小点,p 是 A 的属于特征值 λ 的特征向量。证明:

(1)
$$\nabla f(x^{(1)}) = \mu \lambda p$$
 (2.1) 如果从 $x^{(1)}$ 出发,沿最速下降方向做一维搜索,则一步达到极小点 \bar{x}

证明. (1) 计算 $\nabla f(x) = Ax + b$,由于 \bar{x} 是 f(x) 的极小值点,因此 $\nabla f(\bar{x}) = A\bar{x} + b = 0$,将 $x^{(1)} = \bar{x} + \mu p$ 带入得:

$$\nabla f(x^{(1)}) = A(x^{(1)}) + b$$

$$= A(\bar{x} + \mu p) + b$$

$$= A\mu p + A\bar{x} + b$$

$$= \mu A p = \mu \lambda p$$

$$(2.2)$$

(2) 由 (1) 中的结论,从 $x^{(1)}$ 出发进行一维搜索, $x^{(2)} = x^{(1)} - \beta \nabla f(x^{(1)}) = \bar{x} + (1 - \beta \lambda) \mu p$ 由于 A 对称正定,因此 $\lambda > 0$,因此取 $\beta = 1/\lambda$ 即可一步迭代达到极小点 \bar{x}

设 A 为 n 阶实对称正定矩阵,证明 A 的 n 个互相正交的特征向量 $p^{(1)}, p^{(2)}, \cdots, p^{(n)}$ 关于 A 共轭

证明. 设 $Ap^i=\lambda_i p^{(i)}, i=1,2,\cdots,n$, 已知 $p^{(i)T}p^{(j)}=0, i\neq j$, 因此对于任意 $i\neq j, i,j=1,2,\cdots,n$ 都有:

$$p^{(i)T}Ap^{(j)} = p^{(i)T}\lambda_j p^{(j)} = \lambda_j p^{(i)T}p^{(j)} = 0$$
(3.1)

所以,
$$p^{(1)}, p^{(2)}, \dots, p^{(n)}$$
 关于 A 共轭

4

设 A 为对称正定矩阵, 非零向量 $p^{(1)}, p^{(2)}, \dots, p^{(n)} \in E^n$ 关于矩阵 A 共轭。证明:

(1)
$$x = \sum_{i=1}^{n} \frac{p^{(i)T} A x}{p^{(i)T} A p^{(i)}} p^{(i)}, \forall x \in E^{n}$$
(2)
$$A^{-1} = \sum_{i=1}^{n} \frac{p^{(i)} p^{(i)T}}{p^{(i)T} A p^{(i)}}$$
(4.1)

证明. (1) 由题设可知,非零向量 $p^{(1)}, p^{(2)}, \dots, p^{(n)} \in E^n$ 线性无关,所以可以构成 E^n 的一组基, 因此可以将 x 表示为其线性组合的形式:

$$x = \sum_{i=1}^{n} \lambda_i p^{(i)} \tag{4.2}$$

对上式两边左乘 $p^{(i)T}A$,又由于 $p^{(i)T}Ap^{(j)}=0, \forall i\neq j$,因此:

$$p^{(i)T}Ax = p^{(i)T} \sum_{i=1}^{n} \lambda_i A p^{(i)}$$

= $\lambda_i p^{(i)T} A p^{(i)}$ (4.3)

所以:

$$\lambda_i = \frac{p^{(i)T} A x}{p^{(i)T} A p^{(i)}} \tag{4.4}$$

带入4.2中即可得到:

$$x = \sum_{i=1}^{n} \frac{p^{(i)T} A x}{p^{(i)T} A p^{(i)}} p^{(i)}, \forall x \in E^{n}$$
(4.5)

(2) 不妨设 $A^{-1} = [\beta_1, \beta_2, \dots, \beta_n]$,则由第一问的结论:

$$\beta_j = \sum_{i=1}^n \frac{p^{(i)T} A \beta_j}{p^{(i)T} A p^{(i)}} p^{(i)} = \sum_{i=1}^n \frac{p^{(i)} p^{(i)T} A \beta_j}{p^{(i)T} A p^{(i)}}, \forall j = 1, 2, \dots, n$$

$$(4.6)$$

所以:

$$A^{-1} = [\beta_{1}, \beta_{2}, \cdots, \beta_{n}]$$

$$= \sum_{i=1}^{n} \frac{p^{(i)}p^{(i)T}A[\beta_{1}, \beta_{2}, \cdots, \beta_{n}]}{p^{(i)T}Ap^{(i)}}$$

$$= \sum_{i=1}^{n} \frac{p^{(i)}p^{(i)T}AA^{-1}}{p^{(i)T}Ap^{(i)}}$$

$$= \sum_{i=1}^{n} \frac{p^{(i)}p^{(i)T}I}{p^{(i)T}Ap^{(i)}}$$

$$= \sum_{i=1}^{n} \frac{p^{(i)}p^{(i)T}I}{p^{(i)T}Ap^{(i)}}$$

$$= \sum_{i=1}^{n} \frac{p^{(i)}p^{(i)T}I}{p^{(i)T}Ap^{(i)}}$$
(4.7)

即:

$$A^{-1} = \sum_{i=1}^{n} \frac{p^{(i)}p^{(i)T}}{p^{(i)T}Ap^{(i)}}$$
(4.8)

5

设有非线性规划问题:

$$\min \quad \frac{1}{2}x^T A x
s.t. \quad x \ge b$$
(5.1)

其中 A 为 n 阶对称正定矩阵。设 \bar{x} 是问题的最优解,证明: \bar{x} 与 $\bar{x}-b$ 关于 A 共轭证明.由于此优化问题是凸规划问题,KKT 条件如下:

$$\begin{cases}
A\bar{x} - w^T = 0 & (5.2a) \\
w(\bar{x} - b) = 0 & (5.2b) \\
w \ge 0 & (5.2c)
\end{cases}$$

由式5.2a可得 $w = \bar{x}^T A$, 带入式5.2b得, $\bar{x}^T A (\bar{x} - b) = 0$, 即 \bar{x} 与 $\bar{x} - b$ 关于 A 共轭