8,7 em 10,0

Universidade Federal de Viçosa

Curso de Ciência da Computação

Igor Lucas Dos Santos Braz - 3865 Otávio Santos Gomes - 3890 Pedro Cardoso De Carvalho Mundim - 3877

Exercício Prático 1 - Pesquisa Operacional (CCF 280)

Primeiro Exercício Prático da disciplina Pesquisa Operacional - CCF 280, do curso de Ciência da Computação da Universidade Federal de Viçosa -Campus Florestal

Professor: Marcus Henrique Soares Mendes

Florestal

2021

SUMÁRIO

Questão 1	1
Variáveis de Decisão	1
Função Objetivo	1
Restrições	1
Modelagem Final	1
Questão 2	2
Variáveis de Decisão	2
Função Objetivo	2
Restrições	2
Modelagem Final	3
Questão 3	4
Variáveis de Decisão	4
Função Objetivo	4
Restrições	4
Modelagem Final	4

Questão 1

Tipo de Sofá	Tempo Gasto na Produção (h) Quantidade de Tecido (m)		Lucro (\$)
Sofá Tradicional (st)	6 horas	16 metros	\$350
Sofá-Cama (sc)	9 horas	12 metros	\$300

- 200 conjuntos de pés de madeira.
- 1566 horas de trabalho.
- 2880 metros de tecido.

Variáveis de Decisão

- > st: número de sofá tradicional a ser produzido pela empresa.
- > sc: número de sofá-cama a ser produzido pela empresa.

Função Objetivo

Maximizar o lucro da empresa.

Matematicamente:

 \rightarrow Maximizar Z = 350st + 300sc

Restrições

Restrição associada à quantidade de horas:

Restrição associada à quantidade de tecido:

Restrição associada à quantidade de pés de madeira:

➤ Não negatividade das variáveis de decisão:

$$st >= 0 e sc >= 0$$

Modelagem Final

Maximizar Z = 350st + 300scSujeito a:

$$>$$
 6st + 9sc <= 1566 (1)

$$> 16st + 12sc \le 2880 (2)$$

$$>$$
 st + sc <= 200 (3)

$$>$$
 st, sc >= 0 (4)

Questão 2

Unidade Residencial	Custo da conexão (\$)	Consumo de água (galão/dia)	Retorno Líquido (\$)	Área ocupada (acres)
Simples (us)	1000	400	10000	2
Dupla (ud)	1200	600	12000	3
Tripla (ut)	1400	840	15000	4
Recreação (rec)	800	450		1

• 800 acres de terreno.

Variáveis de Decisão

> us - número de unidades simples.

> ud - número de unidades duplas.

➤ ut - número de unidades triplas.

rec - número de áreas de recreação.

problema somente na restrição associada à área do terreno ocupada:

colocou isso us * 2 >= 400

(mínimo de 50% do terreno ocupado por unidades simples)

mas deveria ser us >= 0.5 (us+ud+ut), isto é , ao invés do 400 deveria ser (us+ud+ut)

Função Objetivo

Maximizar o lucro.

Matematicamente:

 \rightarrow Maximizar Z = (us * 10000 + ud * 12000 + ut * 15000)

Restrições

- Restrição associada à área do terreno ocupada:
 us * 2 >= 400 (mínimo de 50% do terreno ocupado por unidades simples)
- Restrição associada às ocupações por ruas e utilidades e por construções:
 us * 2 + ud * 3 + ut * 4 + rec * 1 < 800 * 0.85 (15% do terreno será ocupado por ruas e utilidades, o restante pode ser ocupado pelas construções)
- Restrição associada ao abastecimento de água:
 400 * us + 600 * ud + 840 * ut + 450 * rec <= 200000 (capacidade máxima de abastecimento de água 200.000 galões por dia)</p>
- Restrição associada à área de recreação:
 (us + ud + ut) / 200 <= rec (mínimo de 1 área de recreação para cada 200 famílias)
- Não negatividade das variáveis de decisão:

$$us \ge 0$$
, $ud \ge 0$, $ut \ge 0$, $rec \ge 0$

Restrição associada ao custo da Água.
 1000 * us + 1200 * ud + 1400 * ut + 800 * rec >= 100000

Modelagem Final

Maximizar Z = us * 10000 + ud * 12000 + ut * 15000Sujeito a:

- > us * 2 >= 400 (1)
- \rightarrow us * 2 + ud * 3 + ut * 4 + rec * 1 < 800 * 0.85 (2)
- \rightarrow 400 * us + 600 * ud + 840 * ut + 450 * rec <= 200000 (3)
- \rightarrow (us + ud + ut) / 200 <= rec (4)
- \rightarrow us, ud, ut, rec ≥ 0 (5)
- > 1000 * us + 1200 * ud + 1400 * ut + 800 * rec >= 100000 (6)

Questão 3

	Capacidade	Número de _ aeronaves	Número de viagens diárias na rota			
	(passageiros)		1	2	3	4
1	50	5	3	2	2	1
2	30	8	4	3	3	2
3	20	10	5	5	4	2
Número di	iário de cliente	s	1.000	2.000	900	1.200

Tipo de	Custo operacional (\$) por viagem na rota				
aeronave	1	2	3	4	
1	1.000	1.100	1.200	1.500	
2	800	900	1.000	1.000	
3	600	800	800	900	
Penalidade (\$)/ cliente perdido	40	50	45	70	

Variáveis de Decisão

> Xij - i tipo de aeronave, j rota : número de voos por aeronave por rota.

Função Objetivo

Minimizar a penalidade total e o custo operacional total.

Matematicamente:

⇒ Minimizar
$$\mathbf{Z} = \sum_{j=1}^{j=4} \{ [\mathbf{C}\mathbf{j} - \sum_{i=1}^{j=3} (\mathbf{X}\mathbf{i}\mathbf{j} * \mathbf{P}\mathbf{i})] * \mathbf{L}\mathbf{j} \} + \sum_{j=1}^{j=4} \sum_{i=1}^{j=4} (\mathbf{X}\mathbf{i}\mathbf{j} * \mathbf{O}\mathbf{i}\mathbf{j}), \text{ onde:}$$

Cj - j rota : número diário de clientes por rota.

Pi - i tipo de aeronave : capacidade de passageiros por aeronave.

Lj - j rota : penalidade por rota/por cliente.

Oij - i tipo de aeronave, j rota : custo operacional por aeronave por rota.

Restrições

➤ Não negatividade das variáveis de decisão:

$$Xij \ge 0$$

E as restrições de Número de aeronaves por tipo e de Némero de passageiros por rota?

Modelagem Final

Minimizar Z =
$$\sum_{j=1}^{j=4} \{ [Cj - \sum_{i=1}^{i=3} (Xij * Pi)] * Lj \} + \sum_{j=1}^{j=4} \sum_{i=1}^{i=3} (Xij * Oij)$$

Sujeito a:

$$> Xij >= 0 (1)$$