	Marcelo Alvarez	
	Resumen LTC PEP 1	2. Lógica proposicional (LP)
	Proposición - Consecuencia	
	premios	Inducción estructural
	Conectores lógicos	· Caso base : La estructura más simple
	~ 7 no	* Hipótesis inductiva: Suposición de que la propiedad
	V	es verdadera para todas las
	Λ y	Subestructuras más pequeñas.
	-> si, entonces / implica	
١.		paro la estructura simple,
1.	Deducción natural	entonces demostrar que también lo
	premisa 1, premisa 2, I conclusión Secuente	es para la estructura completa.
		🕰 Las estructuras de la inducción estructural
	Un secuente es válido si encontramos una prueba	Operan recursivamente (descomponen una estructura en
	para él.	Partes mas pequeñas)
		T
	Reglas	Inducción fuerte
1.		· Caso base: Caso para el primer número natural
	L> Introducción: A, B => A ^ B	(0 o 1 , dependiendo de la propiedad)
	Ls Eliminación : A A B => A, B	· Paso inductivo: Suponer que la propiedad es verdadera
		para todos los números naturales
2.	disyunción v	menores o iguales a K.
	L> Introducción: A => A v B B => A ^ B	• Caso inductivo: demostrar que la propiedad es válida
	Lo Eliminación. A v B , $\begin{bmatrix} A \\ \vdots \\ X \end{bmatrix}$, $\begin{bmatrix} B \\ \vdots \\ X \end{bmatrix}$ => X	para K+1
	Lo Eliminación. A v B , A , B => X	
3.	implicancia ->	Clausula de Forma Canónica (CFC)
	L> Introducción: A => A -> B	L> Forma estandarizada de presentar una FBF.
	L ₂ Introducción: A => A → B	Hay dos tipos:
	L> Eliminación: A -> B A => B	
	L> Modus Tollens: A→ B, ~B => ~A	• FNC : Conjunción de disyunción de literales
		Ejemplo: (pvq) A (rv~s) A
4.	negación ~	
	L> Introducción: A => ~A	• FND: disyunción de conjunción de literales
	L> Introducción: A : L A : L	Ejemplo: (p \ q) \ (r \ ~s) \ \
	Lo Eliminación: A, ~A => L	1 7/ 5
		* Para saber si una fórmula es una FBF, hay que hacer
		un ana lisis sintactico.

Formula satisfacible	Es decir, encontrar que $\Sigma \cup \{\sim \psi\}$ es inconsistente
L> Una formula es satisfacible si existe alguna asignación	
a sus variables que haga que toda la formula sea	L> Metodo de DPR
Verdadera.	1. Transformar $\Sigma \cup \{-\psi\}$ a FNC. $(p \rightarrow q) \iff \gamma p$
-> Valide Z	2. Aplicar la regla de resolución hasta que ya no se
Tautología : La formula siempre es V	pueda mas, o hasta que se encuentre una clausula vacia.
Contradicción: La fórmula siempre es F	Regla de resolución
Contingencia: Es posible que la formula sea V o F	
	L> Si tengo una clausula que tenga a un literal, y otra
Notación de satisfacibilidad	clausula que tenga su negación, entonces puedo "inferir"
	Una nueva clausula que contenga los literales restantes.
σ = φ valuación	
6 1- 5	3. Si encontramos una clausula vacía, entonces hemos
o = Z valuación C - conjunto de fórmulas	demostrado que Σ)= Ψ. Si no, no se pudo demostrar.
Notación de Validez:	
Ι= Ψ	3. Lógica de primer orden (LPO)
Significa que una formula es valida para cualquier o	Recordemos que:
	L> LP asume que el mundo solo tiene hechos
Inferencia	L> LPO asume que el mundo tiene objetos, predicados y funi
L> Cuando todas las premisas sean verdaderas,	(o relaciones)
entonces la conclusión sera válida.	Cuantificadores lógicos
	L> V : para todo universal
Φ_1, \dots, Φ_n	L> 3 : existe a lo menos uno existencial
Ψ -	
Entonces, Y es una conservencio lógica de	Diferencia entre predicados y funciones.
$\Sigma = \{ \varphi_1, \dots, \varphi_n \}$	
	Los predicados son mapeos de un objeto a un V
Σ = Ψ	L> Las funciones son mapeos de muchos a un obj
Teorema de deducción	Vocabulario L = { fp, p2,, pm,}, ff1, f2,, fm
	{c ₁ , c ₂ ,, c _m ,}}
$\Sigma = (\Psi \rightarrow \Psi)$ si y sólo si $\Sigma \cup \{\Psi\} = \Psi$ nos permite	[C ₁ , C ₂ ,, C _m ,, 5]
	V
Demostración por Resolución (DPR)	Variables -> Se utilizan en predicados y func
Se basa en el principio de contradicción.	L> Pueden estar ligadas a algún
Si queremos demostrar que Σ F Ψ, entonces	cuantificador o ser libres
asumimos que ~ y es verdadero, y buscamos una contradicción	$\mathbb{Z}_{jemplo}: P(x, y) \land \forall z Q(z)$

```
Una variable puede ser libre y ligada a la vez
                                                                                Formas Normales
     E_{iemplo}: P(x) + \forall x Q(x)
                                                                                · FNC : conjunción de cláusulas
                                                                                · FND: disyunción de clausulas duales
                  Lo La variable es libre para P
                                                                                · FNR: ninguna variable es libre y ligada a la vez
                  Lo La variable es ligada para Q
                 Este ejemplo es contradictorio, así que
                                                                                               · Cada cuantificador actúa sobre una variable distinta
                                                                                · FNP: los cuantificadores estan solo al comienzo
                 estas "x" deben ser distintas
                  Renombramiento: P(v) + VxQ(x)
                                                                                               L> Ejemplo :
                                                                                                             ∃y ∀x [P(x) ^ Q(y)]
                                                                                • FNS FNP pero sin existenciales
     Ejercicio propuesto de renombramiento:
                                                                                              L> Ejemplo: \forall x \, \forall y \, \forall z \, [P(x) \, \wedge \, R(y) \, \vee \, Q(z))]
         \forall \times (P(x) \rightarrow \exists \times (Q(x) \rightarrow \forall \times (R(x)))
  ∠=> ∀x(P(x) → ∃y(Q(y) → ∀= (R(z)))
                                                                               Convertir a FNP
                                                                                1. Rectificar
 Términos -> ejemplos.
                                                                                      Ax6 = Ax6[x/x]
                                                                                      3×Ψ = 3yΨ[x/y]
                       x, y, Z suma(x,s), Sucesor (sucesor (1))
                                                                               2. Eliminar bicondicionales y condicionales
                                                                                      \varphi \longleftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)
Una fórmula puede ser
                                                                                      φ → ψ ≡ ~ φ v ψ
  L> Cerrada: no tiene
                                       Variables
                                                   libres
  La Abierta: si tiene al menos
                                                   una variable libre
                                                                                     Interiorizar negaciones
                                                                                      ~(4 × 4) = (~4 × ~4)
 y tambień se pueden clasificar en:
                                                                                      \sim (\Psi \wedge \Psi) = (\sim \Psi \wedge \sim \Psi)
                                             P(t1, ..., tk)
  Lo Fórmulas atómicas ->
                                                                                         ~~ \psi = \psi
                 bien formadas -> Incluyen a las atómicas
  Lo Fórmulas
                                                                                      ~ V × V
       Lo A diferencia de LP, ahora se incluyen
                                                                                      ~×∀ ≡ ∀x~Ψ
          4. Exteriorizar cuantificadores
Equivalencias
                                                                                     Si x no es libre en 4
                                                                                        Por la izquierda: ∀xφ n ψ = ∀x(φn ψ)
           \neg \forall x \varphi x
                           equivale a
                                             \exists x \neg \varphi x
                                                                                                             (\psi \wedge \psi) \times E = \psi \wedge \psi \times E
           \neg \exists x \varphi x
                           equivale a
                                             \forall x \neg \varphi x
                                                                                     · Por la derecha: Y x Yx Y = Yx(Yxy)
           \forall x \varphi x
                           equivale a
                                             \neg \exists x \, \neg \varphi x
            \exists x \varphi x
                           equivale a
                                              \neg \forall x \neg \varphi x
                                                                                                             (Y A Y) XE = YXE A Y
      \neg \forall x (\varphi x \to \psi x)
                           equivale a
                                          \exists x \neg (\varphi x \rightarrow \psi x)
                                                                                     y lo mismo con la disyunción
                           equivale a
                                           \exists x (\varphi x \land \neg \psi)
                                        \neg \exists x \, \neg (\varphi x \to \neg \psi x)
      \forall x \ (\varphi x \to \neg \psi x)
                           equivale a
                           equivale a
                                           \neg \exists x (\varphi x \wedge \psi x)
                                           \forall x \varphi x \wedge \forall x \psi x
       \forall x (\varphi x \wedge \psi x)
                           equivale a
       \exists x \ (\varphi x \lor \psi x)
                                           \exists x \varphi x \vee \exists x \psi x
                           equivale a
```

C . F116	
Convertir a FNS	Algoritmo de Robinson
1. Transformar a FNP	L> Algoritmo de <u>resolución</u> , es decir,
2. Skolemi zación	prveba que Σ = φ
Los existenciales se eliminan de isquierda a derecha	L> Nos ayuda a encontrar, de ser posible,
L> Si el existencial está al principio, entonces:	el UMG
] x γ(x) => γ(c) ο γ(h(c)) Cambiar x por constante, ο por función de constante	
de constante L> Si el existencial no esta al principio, entonces:	Sean E y F dos términos que queremos unificar.
$\forall x \forall y \exists z \forall \omega S(x,y,z,\omega) => \forall x \forall y \forall w S(x,y, f(x,y),\omega)$	Consideramos inicialmente $E_0 = \sigma_0(E)$ y $F_0 = \sigma_0(F)$
función que dependa de las variables anteriores	oo = {}
De: Cianaión	. C: F . E . I . F
Unificación	1. Si Ex = Fx entonces E y F son unificables,
L> Sustitución: Asignar un valor a una variable,	y un UMG es $\sigma - \sigma_k \dots \sigma_0$.
reemplazándola en toda la fórmula.	El termino Ex es el unificado.
$L_{>}$ t { x/s } : reemplazar todas las ocurrencias de z por s ent	Si se cumple, el proceso termina aguí.
Lo A{x/s}: reemplazar todas las ocurrencias libres de	
x por s en A	2. Si Ex 7 Fx , se busca el primer par de discordancia
· Dos expresiones son unificables si lienen un unificador	entre Fx y Fx.
· t es una instancia común de t1 y t2 si existe	Sea éste D _K
una sustitución θ tal que $t=t_1\theta=t_2\theta$	
	3. Si Dk contiene una variable y un término, pasamos
Para que to y to sean unificables:	al siquiente paso. En otro caso, los terminos no son
· Mismo símbolo de relación e.g. P(x) y P(46x))	
	Unificables.
γ y f(x) no son Unificables	4. Si la variable aparece en el termino, EyF no se unifican
dos valores diferentes no pueden Sustituir ax	
11 C M. C	y termina el proceso.
Unificador Más General (UMG)	
L> Un unificador θ va a ser más general que	5. Construinos una nueva sustitución que vincule
Un unificador T $(\theta > T)$ Si existe otro	la variable con el termino de DK
unification λ tal que: $t_1 \theta \lambda = t_2 T$	Esta sustitución es o _{k+1} .
	Y dos nuevos terminos $E_{k+1} = \sigma_{k+1} E_k$
L> Un unificador θ es el UMG si $\theta > \tau$ para	FK+1 = 0H+1 FK
Cualquier unificador T aplicable.	(STI) D'ING
	El UMG será
En resumen, el UMG es aquel que unifica dos	$\sigma = \sigma_0 \sigma_{0-1} \dots \sigma_0$
expresiones en la menor Cantidad de Sustituciones.	