Machine Learning and Computational Statistics Multiclass

Nhung Le

Intro: This document consists of concepts and exercises related to Multiclass. This document discusses two main approaches One-vs-all and linear multiclass predictor.

1 Key Concepts

- 1. One-vs-All Our approach will assume we have a binary base classifier that returns a score, and we will predict the class that has the highest score.
 - (a) pseudocode for one-vs-all (as shown in the Linear Binary Classifier Review)
 - (b) Examples where one-vs-all fail: when it is too computational expensive (e.g., too many classes, a large time amount required to train one class of n classes.
- 2. Multiclass predictor: Our approach is to reframe multiclass learning such that rather than using a score function for each class, we use one function h(x, y) that gives a compatible score between input x and output y.
 - (a) Reframed multiclass hypothesis space:
 - i. General [discrete] output space: Y
 - ii. Base hypothesis space $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to \mathbf{R}\}$ for h(x,y) gives compatible score between input x and output y
 - iii. Multiclass hypothesis space $\mathcal{F} = \{ f(x) = \arg \max_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \}.$
 - iv. Final prediction function is an $f \in \mathcal{F}$. Each $f \in \mathcal{F}$ has an underlying compatibility score function $h \in \mathcal{H}$.
 - (b) **Compatible score**: Given class-specific score functions h_1, h_2, \dots, h_k , we could define compatible score function as: $h(x, i) = h_i(x), i = 1, \dots, k$
 - (c) Reframed learning in a multiclass hypothesis space:
 - i. Margin of the compatibility score function h on the ith example (x_i, y_i) for class y

$$m_{i,y}(h) = h(x_i, y_i) - h(x_i, y).$$

- ii. Two versions of Hinge Loss:
 - A. Loss on an individual example (x_i, y_i)

$$\ell_1(h, (x_i, y_i)) = \max_{y \in \mathcal{Y} - \{y_i\}} \left(\max \left[0, \Delta(y_i, y) - m_{i, y}(h) \right] \right).$$

B. The generalized hinge loss

$$\ell_2(h,(x_i,y_i)) = \max_{y \in \mathcal{Y}} \left[\Delta(y_i,y) + h(x_i,y) - h(x_i,y_i) \right].$$

- C. if $\Delta(y, y) = 0$ for all $y \in \mathcal{Y}$, then $\ell_2(h, (x_i, y_i)) = \ell_1(h, (x_i, y_i))$. [Hint: Note that $\max_{y \in \mathcal{Y}} \phi(y) = \max \left(\phi(y_i), \max_{y \in \mathcal{Y} \{y_i\}} \phi(y_i)\right)$.]
- iii. Non-negative class-sensitive loss function $\Delta: \mathcal{Y} \times \mathcal{A} \to [0, \infty)$
- iv. Class-sensitive feature mapping $\Psi: \mathcal{X} \times \mathcal{Y} \to \mathbf{R}^d$
- v. Linear class-sensitive score function:

$$h(x,y) = \langle w, \Psi(x,y) \rangle$$

vi. Prediction function $f: \mathcal{X} \to \mathcal{Y}$

$$f_w(x) = \underset{y \in \mathcal{Y}}{\arg\max} \langle w, \Psi(x, y) \rangle$$

- vii. Training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- viii. J(w) be the ℓ_2 -regularized empirical risk function for the multiclass hinge loss for some $\lambda > 0$.

$$J(w) = \lambda ||w||^2 + \frac{1}{n} \sum_{i=1}^{n} \max_{y \in \mathcal{Y}} \left[\Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle \right],$$

- 3. Multiclass Concept Check
- 4. Map a set of linear score functions onto a single linear class-sensitive score function using a class-sensitive feature map. Give some intuition for the value of this feature map (based on features related to the target classes).

The Multivector Construction

• What if we stack w_i 's together:

$$w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{\frac{0, 1}{w_2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)$$

• And then do the following: $\Psi: \mathbb{R}^2 \times \{1,2,3\} \to \mathbb{R}^6$ defined by

$$\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)
\Psi(x,2) := (0,0,x_1,x_2,0,0)
\Psi(x,3) := (0,0,0,0,x_1,x_2)$$

• Then $\langle w, \Psi(x,y) \rangle = \langle w_v, x \rangle$, which is what we want.

Linear Binary Classifier Review

- Input Space: $\mathfrak{X} = \mathbf{R}^d$
- Output Space: $\mathcal{Y} = \{-1, 1\}$
- Linear classifier score function:

$$f(x) = \langle w, x \rangle = w^T x$$

- Final classification prediction: sign(f(x))
- Geometrically, when are sign(f(x)) = +1 and sign(f(x)) = -1?

2 Implementation

2.1 Onv-vs-All Classifier

- 1. We have a BaseEstimator from sklearn (e.g., SVM Linear SVC)
- 2. Fit one classifier for each class, knowing that self.estimators[i] should be fit on class i vs rest. The key here is $y_{onevsall} = 1$ when y =the class.
- 3. Decision function returns the score of each input for each class.
- 4. Prediction function return the class with highest score.

2.2 Linear Multiclass SVM

- 1. Set-up featureMap
- 2. Define the Stochastic gradient descent
 - (a) Objective function for some $\lambda > 0$.

$$J(w) = \lambda ||w||^2 + \frac{1}{n} \sum_{i=1}^{n} \max_{y \in \mathcal{Y}} \left[\Delta(y_i, y) + \langle w, \Psi(x_i, y) - \Psi(x_i, y_i) \rangle \right]$$

(b) J(w) is convex so it has a subgradient at every point. For $\hat{y}_i = \max_{y \in \mathcal{Y}} [\Delta(y_i, y) + \langle w, \Psi(x_i - y) - \Psi(x_i - y_i) \rangle]$

$$g = 2\lambda w + \frac{1}{n} \sum_{i=1}^{n} (\Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i))$$

(c) Stochastic subgradient based on the point (x_i, y_i)

$$g = 2\lambda w + (\Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i))$$

(d) Minibatch subgradient based on the point $(x_i, y_i), \dots, (x_{i+m}, y_{i+m})$

$$g = 2\lambda w + \frac{1}{m} \sum_{j=i}^{i+m-1} (\Psi(x_j, \hat{y}) - \Psi(x_j, y_j))$$

- 3. Fit
- 4. Decision function returns the score of each input for each class.
- 5. Predict function returns the class with the highest score.