Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks

Александра Рябинина

12 марта 2018

Задача

Задача генерации последовательности токенов произвольной длины

- Image captioning problem
- Constituency Parsing
- Speech Recognition

Задача

• Обучающая выборка: $\{X^i, Y^i\}_{i=1}^N$

$$ullet$$
 Обучающая выборка: $\{X',Y'\}_{i=1}^{N}$ $ullet$ $\log P(Y|X) = \sum_{t=1}^{T} \log P(y_t|y_{t-1},X) = \sum_{t=1}^{T} \log P(y_t|h_t,\theta)$

$$ullet$$
 $egin{aligned} ullet h_t = egin{cases} f(X, heta), & ext{если } t = 1 \ f(h_{t-1}, y_{t-1}, heta), & ext{иначе} \end{cases}$

Проблема

- Во время обучения модель использует реальные данные
- Во время генерации модель использует синтетические данные, сгенерированные ей самой
- Модель склонна к накоплению ошибки: ранняя ошибка в генерации последовательности используется в качестве входа для генерации следующего токена

Scheduled Sampling

Механизм сэмплирования y_t i-го минибатча:

- ullet С вероятностью ϵ_i используем y_{t-1}
- ullet С вероятностью $1-\epsilon_i$ используем \hat{y}_{t-1}

Уменьшаем ϵ_i от 1 до 0 по следующим расписаниям:

- Linear decay: $\epsilon_i = \max(\epsilon, k ci)$
- Exponential decay: $\epsilon_i = k^i, i < 1$
- ullet Inverse sigmoid decay: $\epsilon_i = rac{k}{k + \exp(rac{i}{k})}, k \geq 1$

Decay Schedules

Эксперименты

Image Captioning

Table 1: Various metrics (the higher the better) on the MSCOCO development set for the image captioning task.

Approach vs Metric	BLEU-4	METEOR	CIDER
Baseline	28.8	24.2	89.5
Baseline with Dropout	28.1	23.9	87.0
Always Sampling	11.2	15.7	49.7
Scheduled Sampling	30.6	24.3	92.1
Uniform Scheduled Sampling	29.2	24.2	90.9
Baseline ensemble of 10	30.7	25.1	95.7
Scheduled Sampling ensemble of 5	32.3	25.4	98.7

- Inverse sigmoid decay schedule for ϵ_i
- 2015 MSCOCO image captioning challenge: первое место

Эксперименты

Constituency Parsing

Table 2: F1 score (the higher the better) on the validation set of the parsing task.

Approach	F1
Baseline LSTM	86.54
Baseline LSTM with Dropout	87.0
Always Sampling	-
Scheduled Sampling	88.08
Scheduled Sampling with Dropout	88.68

ullet Inverse sigmoid decay schedule for ϵ_i

Эксперименты

Speech Recognition

Approach	ϵ_s	ϵ_e	Next Step FER	Decoding FER
Always Sampling	0	0	34.6	35.8
Scheduled Sampling 1	0.25	0	34.3	34.5
Scheduled Sampling 2	0.5	0	34.1	35.0
Scheduled Sampling 3	0.9	0.5	19.8	42.0
Baseline LSTM	1	1	15.0	46.0

- При тестировании используют beam search decoding (beam size 10)
- ullet Linear decay schedule for ϵ_i

Идеи для будущей работы

- Способ обучения модели не точный не учитываются градиенты вероятностей, с которыми сэмплируются токены
- Исследование лучших стратегий сэмплирования, в том числе используя уверенность модели

Выводы

- Стандартный способ обучения RNN отличается от того, как мы используем модель во время генерации, что приводит к накоплению ошибки на этапе тестирования
- Изменяется процедура обучения, во время которой каждый ground truth токен иногда заменяется на предыдущее предсказание модели
- Эксперименты показывают улучшение качества на этапе предсказания, не увеличивая время обучения

Статья

 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, 2015