In the Specification

Please replace the paragraph beginning on Page 8, line 25 with the following amended paragraph:

In the described manufacturing environment, a customer places a customer order for one or more products, such as an information handling system. A customer may be an individual or a business entity. The product(s) are built according to the specifications provided by the customer in the customer order and may include one or more components. Generally each component is a commodity that is mass-produced and unspecialized. For example, the customer ordering an information handling system may specify several components such as a processor, monitor, printer, and so on, each of which is mass-produced. The customer order specifies the particular components to be assembled to provide the information handling system product. As part of the order, the customer identifies a desired delivery schedule, such as next day deliver, three day deliver, etc.

Please replace the paragraph beginning on Page 12, line 20 with the following amended paragraph:

The timeline shows three examples of planning blocks that occur during an example time period: planning block 310A beginning at time 0:00, planning block 310B beginning at time 2:00, and planning block 310C beginning at time 2:00 4:00. For illustration purposes, planning block 310A is shown prior to any delivery of material to the manufacturing line. Planning blocks 310B and 310C illustrate scheduling after some material has been delivered by hubs to the manufacturing lines. This material from hubs was requested from the hubs during a preceding planning block. For example, for planning block 310C, available inventory includes in-house inventory of materials that were requested as a result of the plan developed during the execution of planning module 310B and delivered during hub delivery block 330B 330. Available inventory also includes materials available from external material sources, as shown in external inventory data.

Please replace the paragraph beginning on Page 14, line 8 with the following amended paragraph:

A material delivery schedule (i.e., a material replenishment execution schedule) is developed from the work schedule and the manufacturing requirements so that all materials to be used in manufacturing an item are available at the operation and/or manufacturing line at the time needed for manufacturing the item. The material replenishment execution schedule may include staggered delivery of materials to the manufacturing line as items are being manufactured, as long as the material is available at the operation and/or manufacturing line when it is needed (See, e.g., MRE-A MRE-A1 to A3, MRE-B MRE-B1 to B3, MRE-C MRE-C1 and MRE-D MRE-D1).

Please replace the paragraph beginning on Page 18, line 1 with the following amended paragraph:

WIP Tracking and Control module 620 controls work in progress (WIP) in the various manufacturing lines of the manufacturer, such as manufacturing line 242. When a customer 150 250 places a customer order, WIP Tracking and Control module 620 stores the customer order in WIP data 622 which is available to Scheduling module 675.

Please replace the paragraph beginning on Page 21, line 10 with the following amended paragraph:

The term automated data warehouse is used to refer collectively to WIP data 622, which provides a outstanding customer orders and a current available work-in-progress inventory of materials in work in progress and not in storage; in-house inventory data 662, which provides a current available in-house inventory of materials for materials that are in stockrooms and at operations but not in work-in-progress, external inventory 652, which provides a current available external inventory at suppliers and hubs; in-transit inventory 672, which provides a current available in-transit inventory; and scheduling data 632, which provides other types of data needed to produce the work schedule and the material delivery schedule. The term current state of the available inventory includes current available work-in-progress inventory; current available in-transit inventory; current available in-house inventory, and current available external inventory. The available inventory included in the automated data warehouse is updated continuously from its respective sources. For example, WIP data 632 622 is updated by WIP

tracking and control module continuously. In the preferred embodiment, data from each of these respective sources is updated no less than every ten minutes.

Please delete the paragraph beginning on Page 23, line 26 as follows:

Referring to Figure 9, a process flow from order to ship complete is shown. More specifically, when an order is received, the order entry process is instantiated at step 910. Once the order entry is completed then the system determines in production status and available to build visibility at step 920.

Please delete the paragraph beginning on Page 24, line 1 as follows:

Next the demand fulfillment system 610 schedules a build cycle to take into account a desired shipping schedule of the order at step 930. More specifically, this build cycle is based upon a geographic region of the order, the order size and a ship code relative to a hub sort cut time for the order. The demand fulfillment system 610 schedules time of day orders based upon a priority-status as compared to the standards of new orders and SLC parts that are allocated. Reno fulfillment center (RFC) orders have a modified due date to ensure an accurate relative position in the available to build (ATB) quoue. RFC orders are built earlier because they have more internal processing time (e.g., the transit time from the factory to the fulfillment center). Orders traveling to the fulfillment center are set with an artificially expedited start time to compensate for their travel time to the fulfillment center.

Please delete the paragraph beginning on Page 24, line 12 as follows:

Next, a pull of the parts to fulfill to order is performed at step 940.—Next, the system is built at step 945. After the system is built, factors are analyzed to determine whether the system is a candidate for time of day shipping. Factors that are considered include, e.g., ship codes that are associated with the system and the order size. The ship codes include, e.g., next day, 2d day, 3d day and 3—5 day shipping codes. Once the order is determined to be a candidate for the time of day shipping, then the order is shuttled from the manufacturing line to the appropriate shipping facility at step 960. Once the order arrives at the appropriate shipping facility, then the order is completed and shipped according to the time of day functionality at step 970.

Please replace the paragraph beginning on Page 26, line 3 with the following amended paragraph:

Referring to Figure 11, a more detailed flow chart of a factory scheduling process is shown. More specifically, when an order is received at step 1110, the order is reviewed to determine whether the order is a candidate for time of day scheduling (i.e., for dynamic logistics routing) at step 1112. Factors that are considered when determining whether an order is a candidate for time of day scheduling include the destination state of the order, the ship mode of the order, the time that the factory planner rescheduling would begin, the size of the order and the age of the order. If the order is not a candidate for time of day scheduling, then the order is scheduled by planning module 630 without time of day considerations.