Por último, usamos la sustitución trigonométrica $w = \sqrt{\frac{c^2}{a^2 - c^2}} \tan \theta$ para terminar la integración. La solución final se simplifica a 4π , verificándose así el teorema de Gauss-Bonnet.

- 9. Aplicar la fórmula (3) de esta sección y simpli-
- 11. Aplicar la fórmula (2) de esta sección y simplificar; $K = -h''/[(1+(h')^2)^2h]$.

Ejercicios de repaso del Capítulo 7

- **1.** (a) $3\sqrt{2}(1-e^{6\pi})/13$.
 - (b) $-\pi\sqrt{2}/2$.
 - (c) $(236158\sqrt{26}-8)/35\cdot(25)^3$.
 - (d) $8\sqrt{2}/189$.
- **3.** (a) $\frac{2}{\pi} + 1$. (b) -1/2.
- **5.** $2a^3$.
- **7.** (a) Una esfera de radio 5 centrada en (2, 3, 0); $\Phi(\theta, \phi) = (2 + 5\cos\theta \sin\phi, 3 + 5\sin\theta \sin\phi,$ $5\cos\phi$; $0 \le \theta \le 2\pi$; $0 \le \phi \le \pi$.
 - (b) Un elipsoide con centro en (2,0,0) y con $0 < \theta < 2\pi, 0 < \phi < \pi$.
- $\mathbf{\Phi}(\theta,\phi) = (2 + (1/\sqrt{2})3\cos\theta\sin\phi, 3\sin\theta\sin\phi, 3\cos\phi).$
 - (c) Un hiperboloide elíptico de una hoja y con $0 \le \theta \le 2\pi, -\infty < z < \infty$

$$\Phi(\theta, z) = \left(\frac{1}{2}\sqrt{8 + 2z^2}\cos\theta, \frac{1}{3}\sqrt{8 + 2z^2}\sin\theta, z\right).$$

- **9.** $A(\mathbf{\Phi}) = \frac{1}{2} \int_0^{2\pi} \sqrt{3\cos^2\theta + 5} \, d\theta$; $\mathbf{\Phi}$ describe la parte superior de un cono con secciones transversales horizontales elípticas.
- **11.** $11\sqrt{3}/6$.
- **13.** $\sqrt{2}/3$.
- **15.** $5\sqrt{5}/6$.
- **17.** (a) $(e^y \cos \pi z, xe^y \cos \pi z, -\pi xe^y \sin \pi z)$.
- **19.** $\frac{1}{2}(e^2+1)$.
- **21.** $\mathbf{n} = (1/\sqrt{5})(-1,0,2), 2z x = 1.$
- **23.** 0.

- **25.** Si $\mathbf{F} = \nabla \phi$, entonces $\nabla \times \mathbf{F} = \mathbf{0}$ (al menos si ϕ es de clase C^2 ; véase el Teorema 1 de la Sección 4.4). El Teorema 3 de la Sección 7.2 demuestra que $\int_{\mathbf{c}} \nabla \phi \cdot d\mathbf{s} = 0$ porque \mathbf{c} es una curva cerra-
- **27.** (a) 24π .
- (b) 24π .
- (c) 60π .
- **29.** (a) $[\sqrt{R^2+p^2}(z_0-z_1)]/p$.
 - (b) $\sqrt{2z_0(R^2+p^2)/p^2q}$

Capítulo 8

Sección 8.1

$$\mathbf{1.} \ \ \gamma(t) = \left\{ \begin{array}{ll} (2t-1,-t+1), & t \in [0,1] \\ (2t-1,2t-2), & t \in [1,2] \\ (-4t+11,-t+4), \, t \in [2,3] \end{array} \right.$$

- **3.** 8.
- **5.** 8.
- **7.** 61.
- **9.** -8.
- **11.** (a) 0.

- (c) 0.
- (b) $-\pi R^2$.
- (d) $-\pi R^2$.

- **13.** $3\pi a^2$.
- **15.** $3\pi/2$.
- **17.** $3\pi(b^2-a^2)/2$.
- **19.** (a) Ambos lados son 2π . (b) 0.
- **21.** 0.
- **23.** πab .
- **25.** Un segmento horizontal divide la región en tres regiones a las que se puede aplicar el teorema de Green; emplear el Ejercicio 16 o la técnica de la Figura 8.1.5.
- **27.** $9\pi/8$
- **29.** Si $\varepsilon > 0$, existe un $\delta > 0$ tal que $|u(\mathbf{q}) u(\mathbf{p})| < \varepsilon$ cuando $\|\mathbf{p} - \mathbf{q}\| = \rho < \delta$. Parametrizar $\partial B_{\rho}(\mathbf{p})$ por $\mathbf{q}(\theta) = \mathbf{p} + \rho(\cos\theta, \sin\theta)$. Entonces