Teorema de Norton

Ex: Teorema de Nonton

Ex: Teorema de Nonton N= ? - Cálcula de In: $3[I_N + 2(I_N - 2) = 1]$

Ex: Teorema de Nonton N= ? → Cálcula de In: √× 3√

Ex: Teorema de Nonton N= ? → Cálculo de RN: 1sc $R_{N} = 3 + 2 = 5\Omega$ Ex: Teorema de Nonton Cincuito equivalente de NORTON:

$$N = (2115). I_{N} = \frac{100}{1}$$
 $N = (2115). I_{N} = \frac{100}{1}$
 $N = (2115). I_{N} = \frac{100}{1}$

-> Relação entre os modelos de Therenin e Norton The Russ of the Ru

EXECT CIB 15 2Ω * Teorema da máxima transferência de potência RTIA VTD TND RNZ ZRL NL I IND RNZ ZRL

* Teorema da máxima transferência de potência VTA FRL NL I INM RNZ ZRL $P_{L} = R_{L} \cdot i_{L}^{2} = R_{L} \cdot \frac{V_{TH}}{(R_{TH} + R_{L})^{2}}$ $P_{Lukx} = R_{L} \cdot \frac{V_{TH}}{R_{L}^{*}}$ R_{C} *Fazerdo $\frac{dP_L = 0}{dR_L} = > V_{TH} \left(R_{TH} + R_L^* \right) - 2R_L V_{TH} \left(R_{TH} + R_L^* \right) = 0$ $R_L^* = R_{TH} \quad \text{ou} \quad R_L^* = R_N$

PLNKX = VTH 4RTH

Cinc.

Linear PL = RL.
$$\frac{2}{R_{L} + R_{L}}$$
 $\frac{2}{R_{L} + R_{L}}$
 $\frac{2}{R_{L} + R_{L}}$
 $\frac{2}{R_{L} + R_{L}}$

Voltando! Exect Ci0 15 21 M_{Λ} W Calculo de R_L = R_{TH}; $R_{L} = R_{TH} = (1+2)||3$