1 (2 punts) Trobeu els nombres reals x tals que:

$$|2 - x^2| < 1$$
.

Representeu sobre la recta real el conjunt de solucions i digueu si tal conjunt és fitat superiorment i/o inferiorment. En cas afirmatiu, trobeu-ne el suprem i/o l'ínfim.

Resolució:

Els càlculs són:

$$|2-x^2|<1 \Leftrightarrow -1<2-x^2<1 \Leftrightarrow -3<-x^2<-1 \Leftrightarrow 1< x^2<3 \Leftrightarrow 1<|x|<\sqrt{3}$$
 és a dir,

$$x \in (-\sqrt{3}, -1) \cup (1, \sqrt{3}).$$

Una representació gràfica

El conjunt de solucions és fitat superiorment i inferiorment, el suprem és $\sqrt{3}$ i l'ínfim és $-\sqrt{3}$.

- **2** Sigui $\{a_n\}$ una successió tal que $a_1=1/2$ i $a_{n+1}=(a_n)^2$ si $n\geq 1$.
 - a) $(1 \ punt)$ Doneu la definició de successió fitada. Proveu que per a tot $n \geq 1$ es verifica $0 \leq a_n \leq 1/2$.
 - b) (1 punt) Doneu la definició de successió decreixent. Proveu que $\{a_n\}$ és decreixent.
 - c) $(1 \ punt)$ Proveu que $\{a_n\}$ és convergent. Calculeu el seu límit.

Resolució:

a) Una successió $\{a_n\}$ és fitada si i només si és fitada superiorment i inferiorment, és a dir, existeixen h, k reals tals que $h \leq a_n \leq k$ per a tot $n \in N$.

Demostrarem per inducció que $0 \le a_n \le 1/2$, per a tot $n \ge 1$.

- i) Per a n = 1, es verifica que $0 \le a_1 \le 1/2$, ja que $a_1 = 1/2$.
- ii) Cal demostrar que si $n \ge 1$, $0 \le a_n \le 1/2 \implies 0 \le a_{n+1} \le 1/2$. El raonament és el següent: $0 \le a_n \le 1/2 \Rightarrow 0 \le (a_n)^2 \le 1/4 < 1/2 \Rightarrow 0 \le a_{n+1} \le 1/2$.

Per tant, és cert per a tot $n \ge 1$ que $0 \le a_n \le 1/2$.

b) Una successió $\{a_n\}$ és decreixent si i només si $a_{n+1} \leq a_n$ per a tot $n \in \mathbb{N}$.

En el nostre cas, tenint en compte que el quadrat de tot nombre x de l'interval [0,1] és més petit o igual que x i l'apartat anterior:

$$0 \le a_n \le 1/2 \le 1 \Rightarrow (a_n)^2 \le a_n \Rightarrow a_{n+1} \le a_n$$

per a tot $n \in N$, per tant la successió és decreixent.

c) Els apartats (a) i (b) mostran que $\{a_n\}$ és monòtona decreixent i fitada inferiorment; segons el teorema de la convergencia monòtona la successió $\{a_n\}$ és convergent.

Sigui $L = \lim_{n \to +\infty} a_n$, llavors

$$L = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} a_{n+1}$$
 i $a_{n+1} = (a_n)^2 \implies L^2 = L \implies L = 0$ o $L = 1$.

Però $L = \lim_{n \to +\infty} a_n$ no pot ser 1 perquè tots els termes de la successió són menors o iguals que 1/2. Per tant el límit de la successió és 0.

- **3** Considereu les corbes $y = \ln(x)$ i y = (x-1)(x-3).
 - a) (1 punt) Representeu les dues corbes en una mateixa gràfica.
 - b) $(1 \ punt)$ Fent ús del Teorema de Rolle justifiqueu que les corbes donades no es tallen en més de dos punts.
 - c) (2 punts) Trobeu els dos punts d'intersecció de les dues corbes, un d'ells de manera exacta i l'altre amb una precisió de 0.01 fent servir el mètode de la tangent (Newton-Raphson) amb $x_0=3$.
 - d) (1 punt) Doneu un exemple d'una funció no constant tal que el mètode de la tangent (Newton-Raphson) doni un zero de la funció en la primera iteració independentment del punt inicial.

Resolució:

a) Representació gràfica:

- b) Demostració per reducció a l'absurd: Sigui $f(x) = \ln(x) (x-1)(x-3)$, f és contínua i derivable per a tot x > 0. Suposem que hi ha 3 punts $0 < x_1 < x_2 < x_3$ tals que $f(x_1) = f(x_2) = f(x_3) = 0$, pel Teorema de Rolle existirien $c_1 \in (x_1, x_2)$ i $c_2 \in (x_2, x_3)$ tals que $f'(c_1) = f'(c_2) = 0$. Però la derivada de f només té un zero en $(0, +\infty)$: $f'(x) = 0 \Rightarrow \frac{1}{x} 2x + 4 = 0 \Rightarrow 2x^2 4x 1 = 0$, que només té una solució positiva $(x = (2 + \sqrt{6})/2)$, això contradiu el fet que $\exists c_1, c_2 < 0, c_1 \neq c_2, f'(c_1) = f'(c_2) = 0$. Per tant les corbes no es tallen en més de dos punts.
- c) Una solució és x=1, ja que per x=1 es té $\ln(x)=0$ i (x-1)(x-3)=0. Per calcular l'altre, apliquem el mètode de Newton-Raphson $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$ amb $x_0=3$, i s'obtenen els valors $x_1=3.6591\ldots, x_2=3.5095\ldots, x_3=3.5011\ldots$ Es verifica que $|x_3-x_2|<0.01$ i que $|f(x_3)|<0.01$, per tant l'altra solució amb una precisió de 0.01 és $x\simeq 3.50$.
- d) f(x) = mx + n, per qualssevol nombres reals m, n. Per exemple f(x) = 3x.