

Surface Impact on Oxide Interface

Reporter: Pei Yuxiang

Group member: Cai Jun Chen Zhenlan Pei Yuxiang Wang Tianyi

Contents

- Background
- Measurement Preparation
- Results
- Discussion
- Future plan

Background

Correlated oxide interfaces

A high-mobility electron gas at the LaAlO₃/SrTiO₃ heterointerface

A. Ohtomo^{1,2,3} & H. Y. Hwang^{1,3,4}

¹Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA

²Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan

³Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan

⁴Department of Advanced Materials Science, University of Tokyo, Kashiwa,

Chiba, 277-8651, Japan

Background

- Tuning the 2DEG at the interface
- Apply strain
- Oxygen plasma exposure
- Biased AFM probe

Surface environment?

Sample preparation

Sample Assemble

LAO/STO Sample

Self-made Chip

Double Side Tape

Assemble

Wire Bonding

West Bond Lead Joint Machine

Measure instrument

NI PXI 1033 DAQ card

Oxford MFP-3D Infinity AFM

Sample Holder

Measure Program

Lock-in Amplifier

Monitor Conductance

Surface AFM Image

Initial Interface Conductivity

Sample Character			Interface conductivity		
3uc LAO/STO	Insulating	5mm*5mm	4.8 nS	(208 MΩ)	(Pin 2-3)
5uc LAO/STO	conductive	5mm*5mm	217.9 uS	$(4.59k\Omega)$	(Pin 2-3)
8uc LAO/STO	conductive	5mm*5mm	13.1 uS	(76 kΩ)	(Pin 2-3)
STO Substrate	Insulating	5mm*5mm	4.2 nS	(238 MΩ)	(Pin 2-3)

PS: without special statement, we only use pin 2-3 in later measurement

Surface Treatment (Drip Directly)

Surface Treatment: on STO Substrate

Conductance Jump (about 30nS) decrease quickly after liquid evaporation

Exclude the impact of solvent's conductance.

Surface Treatment: Drip on LAO/STO Surface

Larger Conductance Jump (100~300 nS) decrease after liquid evaporation

Have impact on the interface.

Surface Treatment: N₂ gun blow after dripping

Surface Treatment: SAP

Water 5uc LAO/STO

217.2uS to 232uS

Ethanol 5uc LAO/STO

218.5uS to 221uS

Surface Treatment: SAP

Conductance change by SAP Different solvent on different thickness samples

Discussion

Electronic Reconstruction Mechanism

Surface Treatment :Light Stimulate

Surface Treatment: Annealing

Put 8uc Sample into a quartz vessel

Anneal at 350°C, 0.01MPa oxygen

Annealing furnace

Conductance switch: 12uS

11.8nS

OV contribute much.

Surface Treatment: on Sample after Annealing

Large Jump from 11.8nS to 330nS but decrease quickly

Discussion

OV contribution

Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces governed by surface protonation Keith A. Brown et.al

Future plan

- More solvents with different polarity
- Light of different wavelengths
- Solutions to find the impact of ions
- Difference between PLD and MBE samples
- Decay time
- ...

Thanks!

Acknowledgements:

Experimental work at Chenglab is supported by Mengke Ha, Qing Xiao and Prof. Cheng

References

- 1. Control of electronic conduction at an oxide heterointerface using surface polar adsorbates Yanwu Xie et.al
- 2. Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces governed by surface protonation Keith A. Brown et.al
- 3. Tailoring LaAlO3/SrTiO3 Interface Metallicity by Oxygen Surface Adsorbates Weitao Dai et.al
- 4. "Water-cycle" mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface Feng Bi et.al

Polar catastrophe

Does not explain 2DEL formation in (110) LAO/STO samples, which have no polar discontinuity