Practicing partial differentiation

TOTAL POINTS 5

1.Question 1

In this quiz, you will practice doing partial differentiation, and calculating the total derivative. As you've seen in the videos, partial differentiation involves treating every parameter and variable that you aren't differentiating by as if it were a constant.

Keep in mind that it might be faster to eliminate multiple choice options that can't be correct, rather than performing every calculation.

Given $f(x,y) = \pi x^3 + xy^2 + my^4$, with mm some parameter, what are the partial derivatives of f(x,y) with respect to x and y?

1 / 1 point

- \frac{\partial f}{\partial x} = $3\pi x^2 + y^2$, \frac{\partial f}{\partial y} = $2xy + 4my^3$
- \frac{\partial f}{\partial x} = $3\pi x^2 + y^2 + my^4$, \frac{\partial f}{\partial y} = $3\pi x^2 + y^2 + my^4$

2.Question 2

Given $f(x,y,z) = x^2y + y^2z + z^2xf(x,y,z)=x^2y+y^2z+z^2x$, what are \frac{\partial f{\partial f}{\partial f}{\partial

1 / 1 point

O

$$\frac{\hat{x} = 2xy + y^2z + z^2x\partial_x\partial_f = 2xy + y2z + z2x, \\ frac{\hat{y} = x^2 + 2yz + z^2x\partial_y\partial_f = x2 + 2yz + z2x, \\ frac{\hat{y} = x^2 + 2yz + z^2x\partial_y\partial_f = x2 + 2yz + z2x, \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + 2zx} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + z2x} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + z2x} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + 2zx\partial_z\partial_f = x2y + y2 + z2x} \\ \bullet \\ frac{\hat{y} = x^2y + y^2 + z^2\partial_x\partial_f = x2y + z^2\partial_x\partial$$

 $\frac{partial f}{partial y} = x^2 + 2yz\partial_y\partial_f = x^2 + 2yz$

 $\frac{partial f}{partial z} = y^2 + zx \partial_z \partial_f = y^2 + zx$

3.Question 3

Given $f(x,y,z) = e^{2x}\sin(y)z^2 + \cos(z)e^xe^y f(x,y,z) = e^2x\sin(y)z^2 + \cos(z)e^x e^y$, what are $\frac{f}{\sqrt{x}}, \frac{f}{\sqrt{y}}$ and $\frac{f}{\sqrt{x}}, \frac{f}{\sqrt{y}}$ and $\frac{f}{\sqrt{x}}$.

1 / 1 point

O

 $\frac{partial f}{partial x} = 4e^{2x}\cos(y)z -\sin(z)e^xe^y\partial x\partial f = 4e^2x\cos(y)z -\sin(z)e^xe^y$ $\begin{aligned} & \left\{ \left(x \right) - \sin(z) e^{x} - \sin(z) e^{x} - \sin(z) e^{x} - \sin(z) e^{x} \right\} \end{aligned}$ $\frac{partial f}{partial z} = 4e^{2x}\cos(y)z -\sin(z)e^xe^y\partial_z\partial_f = 4e^2x\cos(y)z -\sin(z)e^xe^y$ \bigcirc $\frac{partial f}{partial x} = 2e^{2x}\sin(y)z^2 + \cos(z)e^y\partial_x\partial_f = 2e^2x\sin(y)z^2 + \cos(z)e^y$ $\frac{partial f}{partial y} = e^{2x}\cos(y)z^2 + \cos(z)e^x\partial_y\partial_f = e^2x\cos(y)z^2 + \cos(z)e^x$ $\frac{partial f}{partial z} = 2e^{2x}\sin(y)z - \sin(z)e^xe^y\partial_z\partial_f = 2e^2x\sin(y)z - \sin(z)e^xe^y$ \bigcirc \frac{\partial f}{\partial X $2e^{2x}\sin(y)z^2$ $\cos(z)e^xe^y\partial x\partial f$ $=2e2x\sin(y)z2+\cos(z)exey$, $\frac{partial f}{partial y} = e^{2x}\cos(y)z^2 + \cos(z)e^xe^y\partial_y\partial_z = e^2x\cos(y)z^2 + \cos(z)e^xe^y$ $\frac{partial f}{partial z} = 2e^{2x}\sin(y)z + \sin(z)e^xe^y\partial_z\partial_t = 2e^x\sin(y)z + \sin(z)e^xe^y$

(€):

 $\begin{aligned} & \left\{ \left(x \right) = 2e^{2x} \right\} \\ & = 2e^{2x} \left(y \right) \\ & = 2e^{2x}$

 $\frac{1}{2x}\cos(y)z^2 + \cos(z)e^xe^y\partial_y\partial_z = e^x\cos(y)z^2 + \cos(z)e^xe^y\partial_y\partial_z = e^x\cos(y)z^2 + \cos(z)e^xe^y$

 $\frac{1}{2} = 2e^{2x} \sin(y)z - \sin(z)e^xe^y \partial_z \partial_f = 2e^2x \sin(y)z - \sin(z)e^xe^y$

4.Question 4

Recall the formula for the total derivative, that is, for f(x,y), x = x(t)f(x,y), x=x(t) and y = y(t)y=y(t), one can calculate $\frac{df}{dt} = \frac{f(x,y)}{dt}$ + $\frac{dy}{dt} = \frac{dy}{dt}$.

Given that $f(x,y) = \frac{x}{y}$, x(t) = tf(x,y) = yx, x(t) = t, and $y(t) = \sin(t)y(t) = \sin(t)$, calculate the total derivative $\frac{df}{dt}$.

1 / 1 point

⊚

 \bigcirc

 $\label{eq:frac} $$ \int dt = \frac{1}{2 \cdot \sin(t)} - \frac{\sin(t)}{\sin^2(t)} dt dt = 2t \sin(t) 1 - \sin(t) t$

O

 $\label{eq:cost} $$ \left\{df\right\}\left\{dt\right\} = \left\{1\right\}\left\{2\right\} + \left\{sin(t)\right\} + \left\{sin(t)\right\}\left\{sin(t)\right\}\left\{sin(t)\right\} + \left\{sin(t)\right\} + \left$

 \circ

 $\label{eq:frac} $$ \frac{df}{dt} = -\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t}}$

5.Question 5

Recall the formula for the total derivative, that is, for f(x,y,z), x = x(t), y = y(t)f(x,y,z), x=x(t), y=y(t) and z = z(t)z=z(t), one can calculate $\frac{df}{dt} = \frac{df}{dt} + \frac{df}{dt} + \frac{df}{dt} = \frac{df}{dt} + \frac{df}{dt} + \frac{df}{dt} = \frac{df}{dt} + \frac{df}{dt} +$

Given that $f(x,y,z) = \cos(x)\sin(y)e^{2z}$, x(t) = t+1, y(t) = t-1, $z(t) = t^2f(x,y,z)=\cos(x)\sin(y)e^{2z}$, x(t)=t+1, y(t)=t-1, z(t)=t+1, z(t)=t+

1 / 1 point

0

```
\begin{aligned} & \left\{ \text{df} \right\} \left\{ \text{dt} \right\} = \left[ -\sin(t+1) \sin(t-1) + \cos(t+1) \cos(t-1) + 2 \cos(t+1) \sin(t-1) \right] e^{2t^2} \\ & = \left[ -\sin(t+1) \sin(t-1) + \cos(t+1) \cos(t-1) + 2 \cos(t+1) \sin(t-1) \right] e^{2t^2} \end{aligned}
```

 \odot

 $\begin{aligned} & \left\{ \text{df} \right\} \left\{ \text{dt} \right\} = \left[-\sin(t+1) \sin(t-1) + \cos(t+1) \cos(t-1) + 4t \cos(t+1) \sin(t-1) \right] e^{2t^2} \\ & = \left[-\sin(t+1) \sin(t-1) + \cos(t+1) \cos(t-1) + 4t \cos(t+1) \sin(t-1) \right] e^{2t^2} \end{aligned}$

0

 $\begin{aligned} & \left\{ \text{df} \right\} \left\{ \text{dt} \right\} = \left[\left(\cos(t+1) \right) + \left(\cos(t+1) \right) + 4t \left(\cos(t+1) \right) \right] e^{2t^2} \\ & = \left[\cos(t+1) \sin(t-1) + \cos(t+1) \cos(t-1) + 4t \cos(t+1) \sin(t-1) \right] e^{2t^2} \end{aligned}$

 \circ

 $\left\{ df \right\} \left\{ dt \right\} = [-(t+1) \sin(t+1) \sin(t-1) + (t-1) \cos(t+1) \cos(t+1) + 4t \cos(t+1) \sin(t-1)] e^{2t^2} dt dt = [-(t+1) \sin(t+1) \sin(t-1) + (t-1) \cos(t+1) \cos(t+1) \cos(t+1) \sin(t-1)] e^{2t^2} dt dt = [-(t+1) \sin(t+1) \sin(t-1) + (t-1) \cos(t+1) \cos(t+1) \sin(t-1)] e^{2t^2} dt dt = [-(t+1) \sin(t+1) \sin(t+1) \sin(t-1) + (t-1) \cos(t+1) \cos(t+1) \sin(t-1)] e^{2t^2} dt dt = [-(t+1) \sin(t+1) \sin(t+1) \sin(t-1) + (t-1) \cos(t+1) \cos(t+1) \cos(t+1) \sin(t-1)] e^{2t^2} dt dt = [-(t+1) \sin(t+1) \sin(t+1) \sin(t-1) + (t-1) \cos(t+1) \cos(t+1) \sin(t-1)] e^{2t^2} dt dt = [-(t+1) \sin(t+1) \sin(t+1) \sin(t+1) \cos(t+1) \cos(t+1)$