Discrete Distributions

Distrtibution	PMF	E[X]	Var(X)	
Bernoulli(p)	p(0) = 1 - p, p(1) = p	p	p(1-p)	
$\mathrm{Binom}(n,p)$	$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(pe^t + 1 - p)^n$
$\operatorname{Poisson}(\lambda)$	$p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$	λ	λ	$\exp\{\lambda(e^t-1)\}$
$\operatorname{Geometric}(p)$	$p(k) = (1-p)^{k-1}p$	1/p	$\frac{1-p}{p^2}$	

Continuous Distributions

Distrtibution	PDF $f(x)$	CDF F(x)	E[X]	Var(X)	MGF M(t)
$\mathrm{Uniform}(\alpha,\beta)$			$\frac{\alpha+\beta}{2}$	$\frac{(\beta-\alpha)^2}{12}$	
$N(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$	$\Phi(x)$: see table	μ	σ^2	$\exp(\mu t + \sigma^2 t^2/2)$
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}, x \ge 0$	$1 - e^{-\lambda x}, x \ge 0$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - t}$