## Problem: System of 1st-Order Equations – Bài Tập: Hệ Phương Trình Bậc Nhất

Nguyễn Quản Bá Hồng\*

#### Ngày 4 tháng 1 năm 2024

#### Muc luc

| 1  | Phương Trình Quy Về Phương Trình Bậc Nhất 1 Ẩn                              | 1  |
|----|-----------------------------------------------------------------------------|----|
| 2  | 1st-Order Equations of 2 Unknowns – Phương Trình Bậc Nhất 2 Ẩn              | 1  |
| 3  | Diophantine Equation – Phương Trình Nghiệm Nguyên                           | •  |
| 4  | System of 1st-Order Equations of 2 Unknowns – Hệ Phương Trình Bậc Nhất 2 Ẩn | 9  |
| 5  | Giải Bài Toán Bằng Cách Lập Hệ Phương Trình                                 | 8  |
| 6  | Miscellaneous                                                               | ę  |
| Tà | ii liệu                                                                     | 1( |

## 1 Phương Trình Quy Về Phương Trình Bậc Nhất 1 Ẩn

[Thá+24, §1, pp. 5–11]: HD1. LT1. LT2. HD2. LT3. HD3. LT4. LT5. 1. 2. 3. 4. 5. 6. See also Problem: 1st-Order Function – Bài Tập: Hàm Số Bậc Nhất  $y = ax + b, a \neq 0^1$ .

# 2 1st-Order Equations of 2 Unknowns – Phương Trình Bậc Nhất 2 Ẩn

 $\boxed{1} \text{ Phương trình bậc nhất 2 ẩn: } ax + by = c \ (1), \ a,b,c \in \mathbb{R}, (a,b) \neq (0,0). \ \boxed{2} \ (x_0,y_0) \in \mathbb{R}^2 \text{ là nghiệm của } (1) \Leftrightarrow (x_0,y_0) \in S \Leftrightarrow ax_0 + by_0 = c. \ \boxed{3} \text{ Tập nghiệm } S \text{ biểu diễn bởi đường thẳng } (d): ax + by = c, \text{ i.e., } S = \{(x,y) \in \mathbb{R}^2 | ax + by = c\} = (d). \ \boxed{4} \text{ Nếu } ab \neq 0 \text{ thì } (d): ax + by = c \Leftrightarrow y = -\frac{a}{b}x + \frac{c}{b} \text{ (hàm số bậc nhất) là đường thẳng cắt cả 2 trực tọa độ } Ox, Oy lần lượt tại 2 điểm } \left(\frac{c}{a},0\right), \left(0,\frac{c}{b}\right). \ \boxed{5} \text{ Nếu } a\neq 0, b=0 \text{ thì } (d): ax + 0y = c \Leftrightarrow x = \frac{c}{a} \text{ là đường thẳng song song hoặc trùng với trực tung } Oy. \ \boxed{6} \text{ Nếu } a=0, b\neq 0 \text{ thì } (d): 0x + by = c \Leftrightarrow y = \frac{c}{b} \text{ là đường thẳng song song hoặc trùng với trực hoành } Ox.$ 

- 1 ([BBN23], VD1, p. 8). Cho phương trình 2x y = 6. (a) Tìm công thức nghiệm tổng quát của phương trình. (b) Vẽ đường thẳng biểu diễn tập nghiệm.
- 2 ([BBN23], VD2, p. 9). (a) Cho phương trình ax + 2y = 4. Xác định  $a \in \mathbb{R}$  để đường thẳng (d) biểu diễn tập nghiệm của phương trình đi qua điểm A(1,1.5). (b) Vẽ 2 đường thẳng (d), (t): -2x + y = -3 trên cùng 1 hệ trục tọa độ. Xác định tọa độ giao điểm của 2 đường thẳng.
- 3 ([BBN23], VD3, p. 9). (a) Tìm nghiệm nguyên của phương trình 2x 3y = 6. (b) Tìm nghiệm nguyên dương của phương trình 2x + 5y = 9.
- 4 ([BBN23], 1.1., p. 10). Trong các cặp số (0,3),(2,1),(1.5,-2),(4,-6),(-2,0), cặp số nào là nghiệm của phương trình: (a) 2x-5y=-1. (b) 3x+4y=-6.
- 5 ([BBN23], 1.2., p. 10). Tìm  $a, b \in \mathbb{R}$  để: (a) Diểm A(0, -3) thuộc đường thẳng 2x + by = -6. (b) Diểm B(-2, 1) thuộc đường thẳng ax + 4y = 8. (c) Diểm C(2.5, 0) thuộc đường thẳng ax 5y = 7.5. (d) Diểm D(2, -4) thuộc đường thẳng 5x + by = -4.
- **6** ([BBN23], 1.3., p. 10). Tìm nghiệm tổng quát của phương trình: (a) 3x 5y = 15. (b) 5x + 0y = -4. (c) 0x + 9y = 27. Vẽ 3 đường thẳng biểu diễn 3 tập nghiệm  $\mathcal{E}$  nhận xét.

<sup>\*</sup>Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

<sup>&</sup>lt;sup>1</sup>URL: https://github.com/NQBH/elementary\_STEM\_beyond/blob/main/elementary\_mathematics/grade\_8/1st\_order\_function/problem/NQBH\_1st\_order\_function\_problem.pdf.

- 7 ([BBN23], 1.4., p. 10). Tìm nghiệm tổng quát của phương trình: (a) 2x + y = -6. (b) x 2y = 2. Vẽ 2 đường thẳng biểu diễn tập nghiệm của 2 phương trình trên cùng 1 hệ trục tọa độ. Xác định tọa độ giao điểm của 2 đường thẳng.
- 8 ([BBN23], 1.5., p. 11). Tìm nghiệm nguyên của phương trình: (a) x+2y=0. (b) 3x-y=0. (c) 2x-5y=10. (d) 7x+4y=13.
- **9** ([BBN23], 1.6., p. 11). Tìm nghiệm nguyên dương của phương trình: (a) 5x + 3y 13 = 0. (b) 28x + 31y = 273.
- 10 ([BBN23], 1.7., p. 11). Cho đường thẳng (d) : (a-2)x + (2a+3)y a 5 = 0. (a) Xác định a để (d) song song với trục hoành. (b) Xác định a để (d) song song với trục tung. (c) Xác định a để (d) đi qua điểm A(-3,5). (d) Xác định điểm cố định mà (d) luôn đi qua  $\forall a \in \mathbb{R}$ .
- 11 ([BBN23], 1.8., p. 11). Cho 2 đường thẳng  $(d_1)$ : ax 4y = 8,  $(d_2)$ : 5x 10y = b 5. (a) Tính 2016a + 100b khi  $(d_1)$ ,  $(d_2)$  cắt nhau tại A(2, -3). (b) Tính 10a 3b khi 2 đường thẳng  $(d_1)$ ,  $(d_2)$  có vô số điểm chung.
- 12 ([BBN23], 1.9., p. 11). Trên 1 đoạn đường phố thẳng dài 100 m 1 đội công nhân lắp đường ống dẫn nước. Có 2 loại ống, 1 loại dài 3 m, 1 loại dài 5 m. Hỏi có bao nhiều các lắp các ống nước trên đoạn đường đó (các mối nối không đáng kể)?
- 13 ([BBN23], p. 12). 1 người bán hàng phải trả lại cho khách 45000 đồng. Người đó chỉ có 1 tờ 10000 đồng đã trả lại cho khách hàng, còn lại chỉ có 2 loại tiền lẻ là 2000 đồng & 5000 đồng. Cho biết người bán hàng sẽ có các cách nào trả lại tiếp cho khách hàng đúng số tiền trên?
- 14 ([BBN23], p. 12). Chứng minh khoảng cách h từ gốc tọa độ O đến đường thẳng ax + by = c được cho bởi công thức  $h = OH = \frac{|c|}{\sqrt{a^2 + b^2}}$  với H là hình chiếu của O lên đường thẳng.
- **15** ([BBN23], p. 12, Điều kiện để phương trình bậc nhất 2 ẩn có nghiệm nguyên). Chứng minh phương trình ax + by = c,  $a, b, c \in \mathbb{Z}, (a, b) \neq (0, 0)$ , có nghiệm nguyên khi & chỉ khi c : UCLN(a, b).
- Định nghĩa 1 (Điểm nguyên). Trong mặt phẳng tọa độ, điểm  $A(x,y) \in \mathbb{R}^2$  được gọi là điểm nguyên nếu  $x,y \in \mathbb{Z}$ .
- **16** ([BBN23], p. 12). Tìm tất cả các điểm nguyên trên đường thẳng 4x-5y+6=0, nằm giữa 2 đường thẳng: (a) x=-10, x=20. (b) x=a, x=b với  $a,b\in\mathbb{R}$ .
- 17 ([Tuy23], VD20, p. 44). Cho đường thẳng (d): (m+1)x + (m-4)y = 6. (a) Khi m=2,  $v\tilde{e}$  đồ thị (d). (b) Viết công thức tổng quát nghiệm của phương trình  $\mathcal{E}$  tìm nghiệm nguyên của nó.
- **18** ([Tuy23], 126., p. 46). Cho 2 đường thẳng  $(d_1)$ : 3x 2y = m + 3,  $(d_2)$ : (m 5)x + 3y = 6. (a) Tim  $m \in \mathbb{R}$  để  $(d_1)$  cắt  $(d_2)$ . (b) Chứng minh  $\forall m \in \mathbb{R}$  thì  $(d_1)$ ,  $(d_2)$  là 2 đường thẳng phân biệt.
- 19 ([Tuy23], 127., p. 46). Cho đường thẳng  $(d): (2m-1)x + (m-2)y = m^2 3$ . Tìm  $m \in \mathbb{R}$  để: (a) (d) đi qua gốc tọa độ. (b) (d) đi qua điểm A(3,5). (c) (d) cắt mỗi trực tọa độ tại 1 điểm khác gốc. (d) (d) song song với 1 trong 2 trực tọa độ.
- **20** ([Tuy23], 128., p. 46). Cho đường tròn có tâm là gốc tọa độ O bán kính 1 & đường thẳng (d) có phương trình  $3x 4y = m^2 m + 3$ . (a) Tim  $m \in \mathbb{R}$  để đường thẳng tiếp xúc với đường tròn. (b) Tính GTNN của khoảng cách từ O đến đường thẳng (d).
- **21** ([Tuy23], 129., p. 47). Cho 2 đường thẳng  $(d_1)$ :  $(4m-3)x + (m-2)y = m+1, m \neq 2, (d_2)$ : -2x + 3y = 5. Tìm  $m \in \mathbb{R}$  để  $(d_1) \perp (d_2)$ .
- **22** ([Tuy23], 130., p. 47). Cho các đường thẳng  $(d_1): mx + 9y = -3, (d_2): 4x + my = n$ . Đếm số cặp  $(m, n) \in \mathbb{R}^2$  để  $(d_1)$  trùng  $(d_2)$ .
- **23** ([Tuy23], 131., p. 47). Dùng đồ thị để biện luận số nghiệm của phương trình |x+1| + |x-1| = m.
- **24** ([Tuy23], 132., p. 47). Cho đường thẳng (d): 3x + 4y = 21. (a) Viết công thức tổng quát nghiệm của phương trình. (b) Tìm các điểm trên đường thẳng (d) có tọa độ nguyên  $\mathcal{E}$  nằm trong góc phần tư thứ (I).
- **25** ([Bìn23], VD66, p. 5). Cho đường thẳng: d:(m-2)x+(m-1)y=1 với tham số m. (a) Chứng minh đường thẳng d luôn đi qua 1 điểm cố định với mọi giá trị của m. (b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến d lớn nhất.
- **26** ([Bìn23], VD67, p. 6). Tìm các điểm thuộc đường thẳng 3x 5y = 8 có tọa độ là các số nguyên  $\mathcal{E}$  nằm trên dải song song tạo bởi 2 đường thẳng y = 10, y = 20.
- **27** ([Bìn23], 198., p. 8). Xét các đường thẳng d có phương trình: (2m+3)x + (m+5)y + 4m 1 = 0 với tham số m. (a) Vẽ đường thẳng d ứng với m = -1. (b) Tìm điểm cố định mà mọi đường thẳng d đều đi qua.
- **28** ([Bìn23], 199., p. 8). Tìm các giá trị của b, c để các đường thắng 4x + by + c = 0, cx 3y + 9 = 0 trùng nhau.
- **29** ([Bìn23], 200., p. 8). Vẽ đồ thị biểu diễn tập nghiệm của phương trình  $x^2 2xy + y^2 = 1$ .
- **30** ([Bìn23], 201., p. 8). Dường thẳng ax + by = 6 với a > 0, b > 0, tạo với 2 trục tọa độ 1 tam giác có diện tích bằng 9. Tính ab.

**31** ([Bìn23], 202., p. 8). Cho đường thẳng d: (m+2)x - my = -1 với tham số m. (a) Tìm điểm cố định mà d luôn đi qua. (b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến d lớn nhất.

**32** ([Bìn23], 203., p. 8). Trong hệ trực tọa độ Oxy, A(1,1), B(9,1). Viết phương trình của đường thẳng  $d \perp AB$  & chia  $\Delta OAB$  thành 2 phần có diện tích bằng nhau.

**33** ([Bìn23], 204., p. 8). Tìm các điểm nằm trên đường thẳng 8x + 9y = -79, có hoành độ  $\mathscr E$  tung độ là các số nguyên  $\mathscr E$  nằm bên trong góc vuông phần tư III.

**34** ([Bìn23], 205., p. 8). Cho 2 điểm A(3,17), B(33,193). (a) Viết phương trình của đường thẳng AB. (b) Có bao nhiêu điểm thuộc đoạn thẳng AB & có hoành độ & tung độ là các số nguyên?

**35** ([Bìn23], 206., p. 8). (a) Vẽ đồ thị hàm số  $d: y = \frac{3}{2}x + \frac{7}{4}$ . (b) Có bao nhiều điểm nằm trên cạnh hoặc nằm trong tam giác tạo bởi 3 đường thẳng x = 6, y = 0, d.

#### 3 Diophantine Equation – Phương Trình Nghiệm Nguyên

# 4 System of 1st-Order Equations of 2 Unknowns – Hệ Phương Trình Bậc Nhất 2 $\mathring{\rm A}{\rm n}$

1 Hệ phương trình bậc nhất 2 ẩn:  $a, b, a', b' \in \mathbb{R}$ ,

$$\begin{cases} ax + by = c, & (d), (a, b) \neq (0, 0), \\ a'x + b'y = c', & (d'), (a', b') \neq (0, 0), \end{cases}$$
(1)

có 1 nghiệm  $\Leftrightarrow$  (d) cắt  $(d') \Leftrightarrow \frac{a}{a'} \neq \frac{b}{b'}$ , vô nghiệm  $\Leftrightarrow$   $(d) \parallel (d') \Leftrightarrow \frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$ , vô số nghiệm  $\Leftrightarrow$   $(d) \equiv (d') \Leftrightarrow \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$ .  $\boxed{2}$  Phương pháp thế: Biểu diễn 1 ẩn theo ẩn kia. Biến hệ phương trình thành hệ mới có 1 phương trình 1 ẩn. Giải phương trình 1 ẩn rồi suy ra nghiệm của hệ.  $\boxed{3}$  Phương pháp cộng đại số: Nhân 2 vế của 2 phương trình với 1 số thích hợp để các hệ số của 1 ẩn nào đó trong 2 phương trình bằng nhau hoặc đối nhau. Dùng quy tắc cộng được hệ mới có 1 phương trình 1 ẩn. Giải phương trình 1 ẩn rồi suy ra nghiệm của hệ.  $\boxed{4}$  Giải hệ phương trình bằng phương pháp định thức/Cramer: Đặt  $D=ab'-a'b, D_x=b'c-bc', D_y=c'a-ca'$ . Nếu  $D\neq 0$ , hệ (1) có 1 nghiệm duy nhất  $(x,y)=\left(\frac{D_x}{D},\frac{D_y}{D}\right)=\left(\frac{b'c-bc'}{ab'-a'b},\frac{c'a-ca'}{ab'-a'b}\right)$ . Nếu D=0,  $(D_x,D_y)\neq (0,0)$ , hệ (1) vô nghiệm. Nếu  $D=D_x=D_y=0$ , hệ (1) có vô số nghiệm. Biểu thức pq'-p'q gọi là 1 định thức cấp 2. Phương pháp định thức rất có lợi trong việc giải & biện luận hệ phương trình bậc nhất nhiều ẩn.

[Thá+24, §2, pp. 12–18]: HD1. LT1. HD2. LT2. HD3. LT3. LT4. 1. 2. 3. 4. 5. 6. [Thá+24, §3, pp. 19–25]: HD1. LT1. LT2. LT3. HD2. LT4. HD3. LT5. LT6. 1. 2. 3. 4. 5. 6. 7.

**36** ([BBN23], H1, p. 14). Doán số nghiệm của hệ phương trình:

$$\begin{cases} y = 2x - 3, \\ y = 2 - 3x. \end{cases}$$

37 ([BBN23], H2, p. 14). Đoán số nghiệm của hệ phương trình:

$$\begin{cases} x + y = 5, \\ 4x + 4y = 5. \end{cases} \begin{cases} x - y = 5, \\ -4x + 4y = -20. \end{cases}$$

**38** ([BBN23], H3, p. 14). Biện luận theo 2 tham số  $a, b \in \mathbb{R}$  số nghiệm của hệ phương trình:

$$\begin{cases} ax - 3y = b, \\ 4x - 3y = 5. \end{cases}$$

**39** ([BBN23], H4, p. 14). Biện luận theo 2 tham số  $m, n \in \mathbb{R}$  số nghiệm của hệ phương trình:

$$\begin{cases} y = mx - 4, \\ y = -3x + n. \end{cases} \begin{cases} mx - y = 6, \\ x - \frac{1}{3}y = n. \end{cases}$$

**40** ([BBN23], H5, p. 14). D/S? Nếu sai, sửa cho đúng. (a) 2 hệ phương trình bậc nhất 2 ẩn vô nghiệm thì tương đương với nhau. (b) 2 hệ phương trình bậc nhất 2 ẩn cùng có vô số nghiệm thì tương đương với nhau.

**41** ([BBN23], VD1, p. 15). Cho 2 hệ phương trình:

$$\begin{cases} 2x + 2y = m, & x - y = 2, \\ x + y = 6. & mx - 4y = 12. \end{cases}$$

(a) Chứng minh với m=4 thì 2 hệ tương đương với nhau. (b) Chứng minh với m=2 thì 2 hệ không tương đương với nhau. (c) Tìm tất cả  $m \in \mathbb{R}$  để 2 hệ tương đương với nhau.

**42** ([BBN23], VD2, p. 15). Cho 2 hệ phương trình:

$$\begin{cases} 2x - y = 4, \\ -x + 3y = 3. \end{cases} \begin{cases} mx - y = 4, \\ 2x + ny = 16. \end{cases}$$

- (a) Tìm nghiệm của hệ 1 bằng cách vẽ đồ thị của 2 đường thẳng trong hệ. (b) Tìm  $m, n \in \mathbb{R}$  để 2 hệ tương đương với nhau.
- **43** ([BBN23], VD3, p. 16). Cho hệ phương trình:

$$\begin{cases} 2x = 4, \\ -3x + 4y = -2. \end{cases}$$

(a) Đoán số nghiệm của hệ. (b) Tìm tập nghiệm của hệ bằng phương pháp đồ thị. (c) Vẽ thêm đường thẳng x + 2y = 4 trên cùng hệ trục tọa độ. Nhận xét về nghiệm của hệ phương trình:

$$\begin{cases} x + 2y = 4, \\ -3x + 4y = -2. \end{cases}$$

Giải hệ này bằng phương pháp thế để kiểm tra.

**44** ([BBN23], VD4, p. 17). *Giải hệ phương trình:* 

$$\begin{cases} x - 2y = 1, \\ (m^2 + 2)x - 6y = 3m, \end{cases}$$

trong các trường hợp: (a) m = -1. (b) b0. (c) m = 1. (d)  $m \in \mathbb{R}$ .

**45** ([BBN23], VD5, p. 17). Giải hệ phương trình:

$$\begin{cases} \sqrt{6}x + \sqrt{2}y = 2, \\ \frac{x}{\sqrt{2}} - \frac{y}{\sqrt{3}} = -\frac{1}{\sqrt{6}}, \end{cases}$$

- (a) Bằng phương pháp thế. (b) Bằng phương pháp cộng đại số.
- **46** ([BBN23], VD6, p. 18). Cho 2 hê phương trình:

$$\begin{cases} \frac{x}{4} + \frac{y}{3} = \frac{1}{2}, \\ 0.25x + 0.5y = 1. \end{cases} \begin{cases} \sqrt{2}ax + \sqrt{3}by = 5, \\ -\sqrt{3}ax + \sqrt{2}by = 5\sqrt{6}. \end{cases}$$

- (a) Giải hệ 1 bằng phương pháp cộng đại số. (b) Biết 2 hệ tương đương với nhau. Tìm a,b.
- **47** ([BBN23], VD7, p. 19). Giải hệ phương trình:

$$\begin{cases} \frac{2}{2x+1} - \frac{5}{2y-1} = 8, \\ \frac{3}{2x+1} - \frac{2}{2y-1} = 1. \end{cases}$$

**48** ([BBN23], VD8, p. 19). Giải hệ phương trình:

$$\begin{cases} |x+2| + |y-1| = 4, \\ |x+2| - y = 1. \end{cases}$$

49 ([BBN23], 2.1., p. 20). Không cần vẽ hình, cho biết số nghiệm của hệ phương trình:

$$\begin{cases} y = -5x + 8, \\ y = 3x - 2. \end{cases} \begin{cases} 1.2x + 5.4y = 15, \\ 1.2x + 5.4y = -7. \end{cases} \begin{cases} 5x - y = 10, \\ x - \frac{1}{5}y = 2. \end{cases}$$

**50** ([BBN23], 2.2., p. 20). Cho hệ phương trình:

$$\begin{cases} 2x + y = 7, \\ x - 2y = -4. \end{cases}$$

(a) Tìm tập nghiệm của hệ 1 bằng phương pháp đồ thị. (b) Nghiệm của hệ 1 có phải là nghiệm của phương trình 2.5x - 3y = -4 hay không? (c) Liệu hệ 1 có tương đương với hệ

$$\begin{cases} x - 2y + 4 = 0, \\ x - 2y - 4 = 0. \end{cases}$$

**51** ([BBN23], 2.3., p. 20). Cho 2 hệ phương trình:

$$\begin{cases} x - 2y = 2, \\ -x + y = -3. \end{cases} \begin{cases} mx - ny = 8, \\ 2mx + 3ny = 26. \end{cases}$$

- (a) Tìm nghiệm của hệ 1 bằng phương pháp đồ thị. (b) Tìm  $m, n \in \mathbb{R}$  để 2 hệ tương đương với nhau.
- **52** ([BBN23], 2.4., p. 20). Giải hệ phương trình bằng phương pháp thế:

$$\begin{cases} 2x - y = 10, \\ 4x + 5y = -8. \end{cases} \begin{cases} \frac{x}{3} + \frac{y}{4} = 4, \\ x + y = 14. \end{cases}$$

53 ([BBN23], 2.5., p. 20). Giải hệ phương trình bằng phương pháp cộng đại số:

$$\begin{cases} 2x - y = 8, \\ 3x + 1.5y = 3. \end{cases} \begin{cases} -2x + 3y = 11, \\ 4x - 6y = 14. \end{cases} \begin{cases} 2x - \frac{2y}{\sqrt{2} + 1} = \sqrt{12}, \\ x - (\sqrt{2} - 1)y = \sqrt{3}. \end{cases}$$

**54** ([BBN23], 2.6., p. 20). *Giải hệ phương trình:* 

$$\begin{cases} \frac{5x+3}{9} + \frac{4x-y}{3} = 4, \\ \frac{2x-5y}{6} - \frac{2x-4y}{3} = 2. \end{cases}$$

- **55** ([BBN23], 2.7., p. 20). Xác định  $a, b \in \mathbb{R}$  để đồ thị hàm số y = ax + b đi qua 2 điểm A(3, -4), B(-1, 4).
- **56** ([BBN23], 2.8., p. 21). Giải hệ phương trình:

$$\begin{cases} \frac{10}{x+3y} + \frac{7}{x-3y} = 3, \\ \frac{15}{x+3y} - \frac{14}{x-3y} = 1. \end{cases} \begin{cases} 2\sqrt{x-2} - 5\sqrt{y+1} = -4, \\ \sqrt{x-2} + 3\sqrt{y+1} = 9. \end{cases} \begin{cases} (x+2)^2 - 2(y-1)^3 = 25, \\ 3(x+2)^2 + 5(y-1)^3 = -13. \end{cases}$$

**57** ([BBN23], 2.9., p. 21). Giải hệ phương trình:

$$\begin{cases} 1.5|x-1|-2|y+2| = -3, \\ \frac{|x-1|}{4} + \frac{|y+2|}{6} = 1. \end{cases} \begin{cases} x-2y = 3, \\ |x-y| + |x+4y-5| = 8. \end{cases}$$

- **58** ([BBN23], 2.10., p. 21). Biết 1 đa thức  $P(x) \in \mathbb{R}[x]$  bằng đa thức 0 khi  $\mathcal{E}$  chỉ khi tất cả các hệ số của nó bằng 0. Tìm các giá trị của  $a,b \in \mathbb{R}$  để đa thức  $P(x) = (\sqrt{a-1} + 3\sqrt{b-2} 9)x + 2\sqrt{a-1} 5\sqrt{b-2} + 4$  bằng đa thức 0.
- **59** ([BBN23], 2.11., p. 21). Cho hệ phương trình:

$$\begin{cases} x - my = 3, \\ mx - 9y = 2m - 3. \end{cases}$$

(a) Giải hệ phương trình với m=1. (b) Xác định  $m\in\mathbb{R}$  để hệ có nghiệm duy nhất, đồng thời thỏa mãn điều kiện x>y.

**Định lý 1** (Bézout). Số dư trong phép chia đa thức f(x) cho nhị thức x - a bằng giá trị của đa thức f(x) tại x = a, i.e., f(a).

**Hệ quả 1.** Da thức f(x) : x - a khi  $\mathcal{E}$  chỉ khi f(a) = 0.

- **60** ([BBN23], VD1, p. 22). Tim  $m, n \in \mathbb{R}$  sao cho đa thức  $f(x) = mx^3 + (2m-1)x^2 (m+2n-3)x + 4n : x^2 1$ .
- **61** ([BBN23], VD2, p. 22). Tim  $m, n \in \mathbb{R}$  sao cho đa thức  $f(x) = mx^3 + (m-3)x^2 (2m+n-4)x (m+5n-2) \stackrel{.}{:} (x-1)(x+2)$ .

**62** ([BBN23], VD, p. 23). *Giải hệ phương trình:* 

$$\begin{cases} x - 2y + 3z = 6, \\ 2x + y - z = 1, \\ 2x - 3y + 4z = 8. \end{cases} \begin{cases} \frac{2}{x} + \frac{5}{y} - \frac{6}{z} = 5, \\ \frac{3}{x} - \frac{2}{y} + \frac{4}{z} = -8, \\ \frac{1}{x} - \frac{1}{y} + \frac{2}{z} = -3. \end{cases} \begin{cases} x + y + z = 5, \\ y + z + t = 9, \\ z + t + x = 7, \\ t + x + y = 24. \end{cases} \begin{cases} 4(x + y) = 3xy, \\ 12(y + z) = 5yz, \\ 3(z + x) = 2zx. \end{cases}$$

**63** ([BBN23], VD, p. 24). Giải hệ phương trình:

$$\begin{cases} x^2 - xy + y^2 = 7, \\ x^3 + y^3 = 35. \end{cases} \begin{cases} x + y + z = 4, \\ x + 2y + 3z = 5, \\ x^2 + y^2 + z^2 = 14. \end{cases} \begin{cases} x^2 + y^2 = 2.5xy, \\ x - y = 0.25xy. \end{cases} \begin{cases} x^3 + y^3 = 7, \\ xy(x+y) = -2. \end{cases}$$

64 ([Bìn23], VD68, p. 9). Cho hệ phương trình với tham số a

$$\begin{cases} (a+1)x - y = a+1, \\ x + (a-1)y = 2. \end{cases}$$

- (a) Giải hệ phương trình với a = 2. (b) Giải & biện luận hệ phương trình. (c) Tìm các giá trị nguyên của a để hệ phương trình có nghiệm nguyên. (d) Tìm các giá trị nguyên của a để nghiệm của hệ phương trình thỏa mãn điều kiện x + y nhỏ nhất.
- **65** ([Bìn23], VD69, p. 10). Tìm  $a, b, c \in \mathbb{Z}$  thỏa mãn cả 2 phương trình 2a + 3b = 6, 3a + 4c = 1.
- **66** ([Bìn23], VD70, p. 10). Cho 2 đường thẳng: d: 2x 3y = 4, d': 3x + 5y = 2. Tìm trên trục Ox điểm có hoành độ là số nguyên dương nhỏ nhất, sao cho nếu qua điểm đó ta dựng đường vuông góc với Ox thì đường vuông góc ấy cắt 2 đường thẳng d, d' tai 2 điểm có toa đô là các số nguyên.
- 67 ([Bìn23], VD71, p. 11). Giải hệ phương trình với 3 ẩn x,y,z & các tham số a,b,c khác nhau đôi một:

$$\begin{cases} a^{2}x + ay + z = 5, \\ b^{2}x + by + z = 5, \\ c^{2}x + cy + z = 5. \end{cases}$$

Giải hệ phương trình:

**68** ([Bìn23], 207., p. 12).

$$\begin{cases} (x+3)(y-5) = xy, \\ (x-2)(y+5) = xy, \end{cases} \begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{3}{4}, \\ \frac{1}{6x} + \frac{1}{5y} = \frac{2}{15}. \end{cases}$$

**69** ([Bìn23], 208., p. 12).

$$\begin{cases} \frac{x}{y} - \frac{x}{y+12} = 1, \\ \frac{x}{y-12} - \frac{x}{y} = 2, \end{cases} \qquad \begin{cases} 4(x+y) = 5(x-y), \\ \frac{40}{x+y} + \frac{40}{x-y} = 9. \end{cases}$$

**70** ([Bìn23], 209., p. 12).

$$\begin{cases} |x-2|+2|y-1|=9, \\ x+|y-1|=-1, \end{cases} \begin{cases} x+y+|x|=25, \\ x-y+|y|=30. \end{cases}$$

**71** ([Bìn23], 210., p. 12). Tìm các giá trị của  $a \in \mathbb{R}$  để 2 hệ phương trình tương đương:

$$\begin{cases} 2x + 3y = 8, \\ 3x - y = 1, \end{cases} \begin{cases} ax - 3y = -2, \\ x + y = 3. \end{cases}$$

72 ([Bìn23], 211., p. 12). Tìm các giá trị của  $m \in \mathbb{R}$  để nghiệm của hệ phương trình sau là 2 số dương:

$$\begin{cases} x - y = 2, \\ mx + y = 3. \end{cases}$$

**73** ([Bìn23], 212., p. 12). Chứng minh tam giác tạo bởi 3 đường thẳng  $y = 3x - 2, y = -\frac{1}{3}x + \frac{4}{3}, y = -2x + 8$  là tam giác vuông cân.

**74** ([Bin23], 213., p. 13). Tim các giá trị của  $m \in \mathbb{R}$  để hệ phương trình sau vô nghiệm, vô số nghiệm:

$$\begin{cases}
2(m+1)x + (m+2)y = m-3, \\
(m+1)x + my = 3m+7.
\end{cases}$$

**75** ([Bìn23], 214., p. 13). Cho hệ phương trình với tham số m:

$$\begin{cases} mx + 2y = 1, \\ 3x + (m+1)y = -1. \end{cases}$$

- (a) Giải hệ phương trình với m = 3. (b) Giải  $\mathcal{E}$  biện luận hệ phương trình theo m. (c) Tìm các giá trị nguyên của m để nghiệm của hệ phương trình là các số nguyên.
- **76** ([Bìn23], 215., p. 13). Cho hệ phương trình với tham số m:

$$\begin{cases} (m-1)x + y = 3m - 4, \\ x + (m-1)y = m. \end{cases}$$

- (a) Giải & biên luân hệ phương trình theo m. (b) Tim các giá tri nguyên của m để nghiêm của hệ phương trình là các số nguyên.
- (c) Tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất.
- 77 ([Bìn23], 216., p. 13). Cho hệ phương trình với tham số m:

$$\begin{cases} x + my = m + 1, \\ mx + y = 3m - 1. \end{cases}$$

- (a) Giải & biện luận hệ phương trình theo m. (b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
- 78 ([Bìn23], 217., p. 13). Các số không âm x, y, z thỏa mãn hệ phương trình:

$$\begin{cases} 4x - 4y + 2z = 1, \\ 8x + 4y + z = 8. \end{cases}$$

- (a) Biểu thị x, y theo z. (b) Tìm GTNN, GTLN của biểu thức A = x + y z.
- **79** ([Bìn23], 218., p. 13). Tìm  $a, b, c \in \mathbb{Z}$  thỏa mãn hệ phương trình:

$$\begin{cases} 2a + 3b = 5, \\ 3a - 4c = 6. \end{cases}$$

- **80** ([Bìn23], 219., p. 14). Tìm trên trục tung các điểm có tung độ là số nguyên, sao cho nếu qua điểm đó ta dựng đường vuông góc với trục tung thì đường vuông góc ấy cắt 2 đường thẳng: d: x + 2y = 6, d': 2x 3y = 4 tại các điểm có tọa độ là các số nguyên.
- 81 ([Bìn23], 220., p. 14). Tìm trên trục hoành các điểm có hoành độ là số nguyên sao cho nếu qua điểm đó ta dựng đường thẳng vuông góc với trục hoành thì đường vuông góc ấy cắt cả 3 đường thẳng sau tại các điểm có tọa độ là các số nguyên:  $d_1: x-2y=3, d_2: x-3y=2, d_3: x-5y=-7$ .

Giải hệ phương trình ẩn x, y, z:

82 ([Bìn23], 221., p. 14).

$$\begin{cases} x+y+z=11, \\ 2x-y+z=5, \\ 3x+2y+z=14, \end{cases} \begin{cases} x+y+z+t=4, \\ x+y-z-t=8, \\ x-y+z-t=12, \\ x-y-z+y=16. \end{cases}$$

83 ([Bìn23], 222., p. 14).

$$\begin{cases} x + y + z = 12, \\ ax + 5y + 4z = 46, \\ 5x + ay + 3z = 38, \end{cases} \begin{cases} ax + y + z = a^2, \\ x + ay + z = 3a, \\ x + y + az = 2. \end{cases}$$

**84** ([Bìn23], 223., p. 14).  $a, b, c \in \mathbb{R}$  là tham số,  $a + b + c \neq 0$ .

$$\begin{cases} (a+b)(x+y) - cz = a - b, \\ (b+c)(y+z) - ax = b - c, \\ (c+a)(z+x) - by = c - a. \end{cases}$$

**85** ([Bìn23], 224., p. 14). Giải hệ phương trình với 3 tham số  $a, b, c \in \mathbb{R}$  đôi một khác nhau,  $a + b + c \neq 0$ :

$$\begin{cases} ax + by + cz = 0, \\ bx + cy + az = 0, \\ cx + ay + bz = 0, \end{cases} \begin{cases} ax + by + cz = a + b + c, \\ bx + cy + az = a + b + c, \\ cx + ay + bz = a + b + c. \end{cases}$$

86 ([Bìn23], 225., p. 14).

$$\begin{cases} x^2 + xy + xz = 2, \\ y^2 + yz + xy = 3, \\ z^2 + xz + yz = 4. \end{cases}$$

#### 5 Giải Bài Toán Bằng Cách Lập Hệ Phương Trình

- Giải bài toán bằng cách lập hệ phương trình: Buớc 1: Lập hệ phương trình: Chọn 2 đại lượng chưa biết làm ẩn, đặt đơn vị & điều kiện thích hợp của ẩn. Biểu diễn các đại lượng chưa biết khác trong bài toán theo ẩn. Lập hệ 2 phương trình biểu thị sự tương quan giữa các đại lượng trong bài toán. Buớc 2: Giải hệ phương trình. Buớc 3: Chọn kết quả phù hợp & kết luận. 2 Các dạng toán: Toán chuyển động đều/không đều, toán năng suất lao động, toán về quan hệ giữa các số, ...
- 87 ([BBN23], H1–H2, p. 26). So sánh các bước giải toán bằng cách lập hệ phương trình với các bước giải bài toán bằng cách lập phương trình.
- 88 ([BBN23], VD1, p. 26). 1 ôtô xuất phát từ A dự định đến B lúc 11:00. Cùng thời gian xuất phát từ A: Nếu vận tốc tăng 10 km/h thì xe đến B lúc 10:00. Nếu vận tốc giảm 10 km/h thì xe đến B lúc 12:30. Tính vận tốc dự định của xe, quãng đường AB  $\mathcal{E}$  giờ xuất phát từ A.
- 89 ([BBN23], VD2, p. 27). 2 người dự định làm chung 1 công việc & hoàn thành trong 6 h. Khi thực hiện người thứ nhất đã làm 1 mình trong 2 h thì người thứ 2 mới cùng làm chung do đó phải 4 h 48 ph nữa công việc mới hoàn thành. Nếu mỗi người làm 1 mình thì bao lâu xong công việc?
- 90 ([BBN23], VD3, p. 27). Tìm 1 số có 2 chữ số biết trung bình cộng của nó với số viết theo thứ tự ngược lại bằng 77 & số đó hơn số viết theo thứ tự ngược lại 18 đơn vị.
- **91** ([BBN23], VD4, p. 28). Nếu giảm chiều dài 1 thửa ruộng hình chữ nhật 5 m & tăng chiều rộng của thửa ruộng ấy thêm 5 m thì thửa ruộng thành hình vuông. Nếu tăng chiều dài của thửa ruộng đó thêm 5 m & tăng chiều rộng thêm 8m thì diện tích thửa ruộng tăng thêm 640 m². Tính các kích thước của thửa ruộng đó.
- 92 ([BBN23], VD5, p. 28). 2 bến sông A, B cách nhau 50 km. 1 canô chạy xuôi từ A đến B, nghỉ tại bến B trong 1 h rồi quay lại A hết tất cả 5 h 10 ph. 1 canô thứ 2 cũng khởi hành từ A với vận tốc riêng bằng vận tốc riêng của canô thứ nhất. Cùng lúc canô thứ 2 khởi hành từ A, 1 bè nứa trôi từ A theo dòng nước. Canô thứ 2 đi được nửa quãng đường AB rồi quay lại ngay thì gặp bè nứa tại 1 điểm cách A là  $8\frac{1}{3}$  km. Biết cả đi & về 2 canô đi với vận tốc riêng không đổi. Tính vận tốc riêng của 2 canô & vân tốc dòng nước.
- 93 ([BBN23], VD6, p. 29). 100 con vịt, gà cùng thỏ, chó. Tất cả có 270 chân. Số chó hơn thỏ là 7. Số vịt hơn gà 15. Tính số con mỗi loại.
- 94 ([BBN23], 3.1., p. 30). 1 ôtô tải & 1 ôtô khách cùng khởi hành 1 lúc từ 2 đầu quãng đường AB dài 285 km. Ôtô khách khởi hành từ A, đi được 1 h phải dừng lại nghỉ trên đường 30 ph sau đó đi tiếp 1 h 30 ph nữa thì gặp ôtô tải đi từ B đến. Biết vận tốc ôtô khách hơn vận tốc ôtô tải là 15 km/h. Tính vận tốc mỗi ôtô.
- 95 ([BBN23], 3.2., p. 30). Trên 1 dòng sông, canô thứ nhất xuôi dòng 84 km & ngược dòng 50 km hết 5 h 30 ph, canô thứ 2 xuôi dòng 56 km & ngược dòng 60 km hết 5 h. Biết vận tốc riêng của 2 canô bằng nhau. Tính vận tốc riêng của 2 canô & vận tốc dòng nước.
- 96 ([BBN23], 3.3., p. 30). Theo kế hoạch 2 tổ sản xuất 800 sản phẩm trong thời gian nhất định. Do cải tiến kỹ thuật, tổ 1 vượt mức 20%, tổ 2 vượt mức 30% nên cả 2 tổ sản xuất trong thời gian quy định được là 1010 sản phẩm. Tính số sản phẩm được giao theo kế hoạch của mỗi tổ.
- 97 ([BBN23], 3.4., p. 30). 2 vòi nước cùng chảy vào 1 bể nước sau 4 h được 90% bể. Nếu vòi thứ nhất chảy trong 2 h rồi bị khóa, vòi thứ 2 chảy tiếp 3 h thì được 55% bể. Hỏi nếu mỗi vòi chảy 1 mình sau bao lâu thì đầy bể?
- 98 ([BBN23], 3.5., p. 30). Tìm 1 số có 2 chữ số biết chữ số hàng đơn vị hơn chữ số hàng chục 2 đơn vị. Nếu ta thêm chữ số 0 vào giữa 2 chữ số thì được số có 3 chữ số hơn 2 lần số có 2 chữ số ban đầu 472 đơn vị.
- 99 ([BBN23], 3.6., p. 30). 1 thư viện nhà trường có 2 tủ sách. Nếu chuyển 100 quyển từ tủ thứ nhất sang tủ thứ 2 thì số sách 2 tủ bằng nhau. Nếu chuyển 300 quyển từ tử thứ 2 sang tủ thứ nhất đồng thời tủ thứ 2 cho mượn 100 cuốn thì số sách còn lại của tủ thứ 2 bằng nửa số sách có trong tủ thứ nhất. Lúc đầu mỗi tủ có bao nhiêu cuốn sách?

- 100 ([BBN23], 3.7., p. 30). 1 đội xe vận tải chở 256 tấn hàng trên 29 xe gồm 3 loại: Xe 4 bánh, mỗi xe chở 5 tấn hàng, xe 4 bánh mỗi xe chở 8 tấn hàng, xe 6 bánh mỗi xe chở 11 tấn hàng. Tổng số bánh xe là 144 bánh. Tính số xe mỗi loại.
- 101 ([BBN23], 3.8., p. 30). Tính diện tích hình thang có chiều cao 12 m. Biết nếu giảm đáy lớn 4 m, tăng đáy nhỏ 5 m & tăng chiều cao 3 m thì diện tích tăng thêm 60 m². Nếu chiều cao hình thang không là 12 m mà bằng hiệu của 2 đáy thì diện tích hình thang bằng 87.5 m².
- 102 ([BBN23], BT1, p. 31, Ai Cập 3000 B.C.). Chia 100 đấu lúa mì cho 5 người sao cho người thứ 2 nhận được hơn người thứ nhất 1 số lúa bằng số lúa mà người thứ 3 nhận được hơn người thứ 2, người thứ 4 hơn người thứ 3 & người thứ 5 hơn người thứ 4. Thêm vào đó 2 người đầu tiên nhận được 1 số lúa ít hơn 7 lần số lúa của 3 người còn lại. Tính số lúa mỗi người nhận.
- 103 ([BBN23], BT2, p. 31). Ngựa & La đi cạnh tranh nhau & cùng chở vật nặng trên lưng. Ngựa than thở về hành lý quá nặng của mình. La đáp: "Cậu than thở nỗi gì? Nếu tôi lấy của cậu 1 bao thì hành lý của tôi nặng gấp đôi của cậu. Còn nếu cậu lấy ở trên lưng tôi 1 bao thì hành lý của cậu mới bằng của tôi." Tính số bao Ngựa & La mang.
- 104 ([BBN23], p. 32). Trăm trâu trăm cỏ. Trâu đứng ăn 5. Trâu nằm ăn 3. Lọm khọm trâu già. 3 con 1 bó. Tính số trâu đứng, trâu nằm, & trâu già.
- 105 ([BBN23], p. 32). Ngày xuân dạo chơi chợ phiên. Chỉ có 1 tiền (= 60 đồng) mua đủ trái cây. Cam 3 đồng 1 trái đây. Quýt đường 5 trái trả ngay 1 đồng. Doan Hùng bưởi đó vô song. 5 đồng 1 quả cùng không đắt nào. 1 giờ liệu đã liệu mua sao. Cả cam, quýt, bưởi vừa vào 100.
- 106 ([Bìn23], VD72., p. 15). Điểm trung bình của 100 học sinh trong 2 lớp 8A, 8B là 7.2. Tính điểm trung bình của các học sinh mỗi lớp, biết số học sinh lớp 8A gấp rưỡi số học sinh lớp 8B & điểm trung bình của lớp 8B gấp rưỡi điểm trung bình của lớp 8A.
- 107 ([Bìn23], VD73., p. 15). Giả sử có 1 cánh đồng cỏ dày như nhau, mọc cao đều như nhau trên toàn bộ cánh đồng trong suốt thời gian bò ăn cỏ trên cánh đồng ấy. Biết 9 con bò ăn hết cỏ trên cánh đồng trong 2 tuần, 6 con bò ăn hết cỏ trên cánh đồng trong 4 tuần. Hỏi bao nhiêu con bò ăn hết cỏ trên cánh đồng trong 6 tuần? (mỗi con bò ăn số cỏ như nhau).
- 108 ([Bìn23], 226..., p. 16). Có 45 người gồm bác sĩ & luật sư, tuổi trung bình của họ là 40. Tính số bác sĩ, số luật sư, biết tuổi trung bình của các bác sĩ là 35, tuổi trung bình của các luật sư là 50.
- 109 ([Bìn23], 227..., p. 16). Trong 1 hội trường có 1 số ghế băng, mỗi ghế băng quy định ngồi 1 số người như nhau. Nếu bớt 2 ghế băng & mỗi ghế băng ngồi thêm 1 người thì thêm được 8 chỗ. Nếu thêm 3 ghế băng & mỗi ghế băng ngồi rút đi 1 người thì giảm 8 chỗ. Tính số ghế băng trong hội trường.
- 110 ([Bìn23], 228..., p. 17). Có 2 loại quặng sắt: quặng loại I chứa 70% sắt, quặng loại II chứa 40% sắt. Trộn 1 lượng quặng loại I với 1 lượng quặng loại II thì được hỗn hợp quặng chứa 60% sắt. Nếu lấy tăng hơn lúc đầu 5 tấn quặng loại I & lấy giảm hơn lúc đầu 5 tấn quặng loại II thì được hỗn hợp quặng chứa 65% sắt. Tính khối lượng mỗi loại quặng đem trộn lúc đầu.
- 111 ([Bìn23], 229..., p. 17). Cho thêm 1 kg nước vào dung dịch A thì được dung dịch B có nồng độ acid là 20% (nồng độ acid là  $t\mathring{y}$  số của khối lượng acid so với khối lượng dung dịch). Sau đó lại cho thêm 1 kg acid vào dung dịch B thì được dung dịch C có nồng độ acid là  $33\frac{1}{3}$ %. Tính nồng độ acid trong dung dịch A.
- 112 ([Bin23], 230..., p. 17). 2 vòi nước cùng chảy vào 1 bể trong 1 giờ thì được  $\frac{3}{10}$  bể. Nếu vòi I chảy trong 3 giờ, vòi II chảy trong 2 giờ thì mới được  $\frac{4}{5}$  bể. Hỏi mỗi vòi chảy 1 mình thì trong bao lâu bể sẽ đầy?
- 113 ([Bìn23], 231..., p. 17). Lúc 7:00, An khởi hành từ A để đến gặp Bích tại B lúc 9:30. Nhưng đến 9:00, An được biết Bích bắt đầu đi từ B để đến C (không nằm trên quãng đường AB) với vận tốc bằng 3.25 lần vận tốc của An. Ngay lúc đó, An tăng thêm vận tốc 1km/h & khi tới B, An đã đi theo đường tắt đến C cùng 1 lúc. Nếu Bích cũng đi theo đường tắt như An thì Bích đến B trước An là 2 giờ. Tính vận tốc lúc đầu của An.
- 114 ([Bìn23], 232..., p. 17, Newton's problem). 1 cánh đồng cỏ dày như nhau, mọc cao đều như nhau trên toàn bộ cánh đồng & trong suốt thời gian bò ăn cỏ trên cánh đồng ấy. Biết 75 con bò ăn hết cỏ trên 60 a đồng cỏ trong 12 ngày, 81 con bò ăn hết cỏ trên 72 a đồng cỏ đó trong 15 ngày. Hỏi bao nhiêu con bò ăn hết cỏ trên 96 a đồng cỏ trong 18 ngày? 1 a = 100 m².
- 115 ([Bìn23], 233..., p. 17). Tìm 1 số có 2 chữ số biết nếu lấy bình phương của số đó trừ đi bình phương của số gồm chính 2 chữ số của số phải tìm viết theo thứ tự ngược lại thì được 1 số chính phương.
- 116 ([Bìn23], 234..., p. 17). 3 tổ nhân công A, B, C có tuổi trung bình lần lượt là 37, 23, 41. Tuổi trung bình của 2 tổ A, B là 29, tuổi trung bình của 2 tổ B, C là 33. Tính tuổi trung bình của cả 3 tổ.

#### 6 Miscellaneous

[Thá+24, BTCCI, pp. 26-27]: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

### Tài liệu

- [BBN23] Vũ Hữu Bình, Nguyễn Xuân Bình, and Phạm Thị Bạch Ngọc. *Bồi Dưỡng Toán 9 Tập 2.* Tái bản lần thứ 7. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 167.
- [Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 2. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 290.
- [Thá+24] Đỗ Đức Thái, Lê Tuấn Anh, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. *Toán 9 Cánh Diều Tập 1*. Nhà Xuất Bản Giáo Dục Việt Nam, 2024, p. 127.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.