AGLA II / Geometrie

Stefan Wiedmann / Verena Spratte – Sommersemester 2021

Aufgabenblatt 14

Vorname	Nachname	1	2	3	4	5	6	Σ	$1/4\Sigma$

Einzelabgabe im Stud.IP: Mittwoch 14.07.2021 bis 18 Uhr.

Geben Sie bitte die Aufgaben 1-3 und die Aufgaben 4-6 je in einer Datei in den zugehörigen Abgabeordner im Stud.IP ab. Verwenden Sie außschließlich die Formate

- NachnameBlatt14A1-3.pdf für die Aufgaben 1 bis 3,
- NachnameBlatt14A4-6.pdf für die Aufgaben 4 bis 6.

Dieses Aufgabenblatt besteht aus einer Klausur des letzten Jahres. Es wird nicht regulär bewertet, Sie können bis zu 40 Bonuspunkte erreichen. Dazu wird die Klausur-Punktzahl ermittelt und durch 4 geteilt.

Versuchen Sie zunächst, die Klausur unter Originalbedingungen und ohne Hilfsmittel zu schreiben! Es werden keine schriftlichen Lösungen oder Erklärvideos zur Verfügung gestellt - die Aufgaben werden in der Saalübung am 15.07., 8:15-10:00 Uhr besprochen.

Klausur zu B.Mat.0026 Geometrie SoSe 2020 Stefan Wiedmann

Klausur am 07.08.2020

Bitte vollständig und lesbar(!) eintragen:

Vorname	
Nachname	
Mat.Nr.	
Studiengang	
Telefonnummer	
Platznummer	

- Die Bearbeitungszeit beträgt 120 Minuten.
- Erlaubte (und benötigte) Hilfsmittel sind Schreibwerkzeuge (kein Bleistift, nur schwarz oder blau).
- Grundlegende Rechenschritte und Begründungen sind jeweils anzugeben. Unzureichende Begründungen können zu Punktabzug führen.
- Nicht links oben in die Ecke schreiben.
- Keine leeren Seiten und Schmierblätter mit abgeben (Können leider nicht bewertet werden).

Es gibt 6 Aufgaben mit je 20 Punkten. Es können also 120 Punkte erreicht werden.

	1	2	3	4	5	6	\sum	Note
Punkte								

Notationen

- $\langle x,y \rangle$: Standard-Skalar
produkt von Vektoren $x,y \in \mathbb{R}^n$ oder \mathbb{C}^n
- $||x||:=\sqrt{\langle x,x\rangle}$: Euklidische Norm eines Vektors $x\in\mathbb{R}^n$ oder \mathbb{C}^n

Aufgabe 1 (6+8+6 Punkte).

1) Sei $g \subseteq \mathbb{R}^2$ die Gerade beschrieben in Parameterform durch

$$g = \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \end{pmatrix} : t \in \mathbb{R} \right\}.$$

Finden Sie einen Vektor $n \in \mathbb{R}^2$ mit

$$g = \left\{ x \in \mathbb{R}^2 : \langle x, n \rangle = c \right\},\,$$

wobei $c \geq 0$ der Abstand von g zum Nullpunkt sein soll (Hesse-Normalform).

2) Zeigen Sie, dass für Vektoren $x, y \in \mathbb{R}^n$ mit ||x|| = ||y|| und $t \in \mathbb{R}$ gilt:

$$||x - ty|| = ||tx - y||.$$

Tipp: Quadrieren!

3) Zeichen Sie die Situation von Teil 2) für t=2 und zwei Vektoren $x,y\in\mathbb{R}^2$ Ihrer Wahl.

Aufgabe 2 (6+8+6 Punkte).

Sei $V=\mathbb{R}^3$ und sei b eine symmetrische Bilinearform auf V, die bezüglich der Standardbasis (e_1,e_2,e_3) von V die Gram-Matrix

$$G = \begin{pmatrix} 1 & -3 & -2 \\ -3 & 2 & -1 \\ -2 & -1 & -3 \end{pmatrix}$$

besitzt.

1) Seien

$$x = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$$
 und $y = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} \in \mathbb{R}^3$.

Berechnen Sie b(x, y).

- 2) Berechnen Sie das Radikal von b.
- 3) Sei $H = \operatorname{Span}(e_2, e_3)$. Zeigen Sie, dass $(H, b|_H)$ eine hyperbolische Ebene ist.

Aufgabe 3 (10 + 10 Punkte).

Sei

$$G = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

- 1) Bestimmen Sie die Signatur von G mit Hilfe des symmetrischen Gauß-Verfahrens.
- 2) Bestimmen Sie die zu G gehörende quadratische Form und bestimmen Sie die Signatur von G mit Hilfe quadratischer Ergänzungen.

Aufgabe 4 (8+7+5 Punkte).

Sei $V = \mathbb{R}^3$ der euklidische 3-dimensionale Raum mit dem Standard-Skalarprodukt und sei (e_1, e_2, e_3) die Standard-Basis. Für $0 \neq a \in \mathbb{R}^3$ sei $s_a : \mathbb{R}^3 \to \mathbb{R}^3$ die Spiegelung an $(\mathbb{R}a)^{\perp}$.

- 1) Begründen Sie, dass $f := s_{e_2} \circ s_{e_1}$ eine Drehung mit Drehachse $\mathbb{R}e_3$ ist.
- 2) Bestimmen Sie die Abbildungsmatrix der Abbildung f bezüglich der Standard-Basis.
- 3) Bestimmen Sie den Drehwinkel der Abbildung f in der Ebene $(\mathbb{R}e_3)^{\perp}$.

Aufgabe 5 (6+14 Punkte).

Sei $V=\mathbb{R}^n$ mit den Standard-Skalarprodukt. Sei $f:\mathbb{R}^n\to\mathbb{R}^n$ eine Abbildung mit $\langle f(v),f(w)\rangle=\langle v,w\rangle$ für alle $v,w\in\mathbb{R}^n$.

- 1) Zeigen Sie, dass f(0) = 0 gilt.
- 2) Zeigen Sie, dass f(tv) = tf(v) für alle $v \in \mathbb{R}^n$ und $t \in \mathbb{R}$ gilt. Hinweis: Betrachten Sie $\langle f(tv) - tf(v), f(tv) - tf(v) \rangle$.

Aufgabe 6 (6+7+7 Punkte).

- 1) Seien $A = [1:2:3], B = [1:0:1], C = [-1:4:3] \in \mathbb{P}^2(\mathbb{R})$. Untersuchen Sie, ob der Punkt C auf der projektiven Geraden g(A, B) durch A und B liegt.
- 2) Sei $Q:=\{(x,y)\in\mathbb{R}^2: x^2+6xy+4y^2=2\}$ eine (affine) Quadrik. Finden Sie durch Homogenisierung die Gleichung der zugehörigen projektiven Quadrik $\tilde{Q}\subseteq\mathbb{P}^2(\mathbb{R})$ und geben Sie die Punkte in "Unendlich", also $\tilde{Q}\smallsetminus Q$ an.
- 3) Sei $g := \{[x : y : z] \in \mathbb{P}^2(\mathbb{R}) : x + y = 0\}$ eine projektive Gerade. Sei $A := \mathbb{P}^2(\mathbb{R}) \setminus g$, die (affine) Ebene, die durch Entfernung der "unendlich fernen" Geraden g entsteht. Ermitteln Sie den Typ der (affinen) Quadrik $\tilde{Q} \cap A$ aus Teil 2).