Série N°1

Exercice N°1 (à faire): Remplir le tableau suivant :

Décimal	Binaire	Octal	Hexadécimal	BCD
5				
	1101			
				10110
			A23,C09	
		13.5		
35				
	10011,11101			
			3E	
				10000101
89,0625				
	10101010101010			

Exercice N°2: (à faire)

Coder en binaire et en gray (binaire réfléchi) le nombre (31)₁₀.

A partir du code gray de(31)₁₀, déduire le codage en gray des nombres(32)₁₀, (33)₁₀.

Exercice $N^{\circ}3$: (à faire)

- 1. Donner les représentations en complément à deux des nombres décimaux suivants.
- $(122)_{10}$ sur un octet
- \diamond (2025)₁₀ sur seize bits. Peut-on le coder sur onze bits ?
- \bullet (-78)₁₀ sur deux octets
- \bullet (-700)₁₀ sur deux octets
 - 2. Donner les représentations décimales des nombres binaires suivants codés en complément à 2.
- **♦** (00110101) (codé sur un octet)
- ❖ (0111010110001101) (codé sur deux octets)
- ❖ (10100110) (codé sur un octet).

Exercice $N^{\circ}4$: (à faire)

- 1. Effectuer les additions suivantes des nombres relatifs (représentés en CA2) :
- (a) $0110\ 1011 + 1011\ 1101$
- (b) $1001\ 0110 + 1111\ 1011$
- (c) $0110\ 11111 + 0001\ 1001$
- (d) $1000\ 0010 + 1010\ 1011$

vérifier le résultat des calculs en décimal. Indiquer le dépassement et la retenue. Que peut-on conclure ?

- 2. Réaliser les opérations suivantes sur 5 bits en utilisant le CA2 (étudier les cas de dépassement)
- a) +9+8 b) -7-13 c) +15-1 d) -15+1
- 3. Donner la traduction à laquelle correspond le mot 8A50 codé en hexadécimal, selon qu'on le lit comme :
 - -un entier signé
 - -un entier représenté en C2
- 4. Effectuer les opérations suivantes sur 12 bits (y compris le bit du signe), avec la représentation des nombres négatifs en complément à 2. Préciser s'il y a débordement.

a)
$$(205)_8 - (8F5)_{16} = ?$$

b)
$$(84F)_{16} - (0F5)_{16} = ?$$

Exercice N°5:

Effectuer les opérations suivantes dans la base 16.

A43C+5BCD; 2345+54EB; 9F4B+BFFF

Exercice N° 6: (à faire)

Soient $A = (1110111)_{gray}$ et $B = (110010)_{gray}$

- a. Donner la valeur binaire de A et B
- b. Effectuer l'opération C= A B en complément à 2 sur 8 bits
- c. Préciser s'il y a dépassement de capacité ou non.

Exercise N°7: (à faire comme un exemple en cours)

- 1/ En code ASCII (41)16 correspond à 'A' et (30)16 correspond à '0', sans l'utilisation de la table du code ASCII déduire le codage du message suivant : Covid-19
- 2/ Décoder le message suivant :4269656E76656E757320656E204D49