CHIFFREMENT ET SIGNATURE NUMÉRIQUE D'EL GAMAL

Léo Besson, Nathan Naudé et Ludovic Thai Lycée Fénelon Sainte-Marie - TIPE 2018

Sommaire

1	Le d	cryptosystème d'El Gamal				
	1.1	Le Groupe $(\mathbb{Z}/p\mathbb{Z}^*,\times)$				
	1.2	Chiffrement d'El Gamal				
	1.3	Signature d'El Gamal				
	1.4	Problème du logarithme discret				
_						
2		olication : mise en place d'une messagerie sécurisée				
	2.1	GitHub				
	2.2	Génération des nombres premiers				
		2.2.1 Méthode déterministe				
		2.2.2 Méthode probabiliste : test de Miller-Rabin				
	2.3	Recherche des générateurs du groupe $(\mathbb{Z}/p\mathbb{Z}^*,\times)$				
	2.4	Les opérations élémentaires				
		2.4.1 Puissance modulaire				
		2.4.2 Inverse modulaire				
	2.5	L'algorithme de chiffrement symétrique : le DES				
		2.5.1 Présentation du DES				
		2.5.2 Principe de fonctionnement				
		2.5.3 Générations des sous-clés				
		2.5.4 Processus de chiffrement				
		2.5.5 Processus de déchiffrement				
	2.6	Architecture client-serveur				
3	Ana	llyse de la messagerie sécurisée				
	3.1	Attaque du cryptosystème d'El Gamal				
		3.1.1 Algorithme de Shanks				
		3.1.2 Calcul de l'indice				
	3.2	Comparaison avec le chiffrement RSA				
		3.2.1 Fonctionnement du RSA				
		3.2.2 Attaque du cryptosystème RSA : l'algorithme rho de Pollard				
		3.2.3 Attaque du cryptosystème RSA : le crible algébrique				
	3.3	Attaque sur la signature d'El Gamal				
		3.3.1 Rappel sur la signature d'El Gamal				
		3.3.2 L'attaque sur la signature				
4	\mathbf{Pro}	ogrammes (Python 3)				
	4.1	Chiffrement et signature numérique d'El Gamal				
	4.2	Génération des nombres premiers : méthode déterministe et méthode probabiliste				
		(Miller-Rabin)				
	4.3	Opérations élémentaires				
	4.4	Data Encryption Standard (DES)				
	4.5	Client-serveur				
		4.5.1 Serveur				
		4.5.2 Client				
	4.6	Attaques du cryptosystème d'El Gamal : algorithme de Shanks et calcul de l'indice . 38				
	4.7	RSA				
	4.8	Attaques du cryptosystème RSA : Crible algébrique et algorithme rho de Pollard 40				

1 Le cryptosystème d'El Gamal

1.1 Le Groupe $(\mathbb{Z}/p\mathbb{Z}^*, \times)$

Le groupe $(\mathbb{Z}/p\mathbb{Z}^*,\times)$, avec p **premier**, vérifie les propriétés d'un **groupe commutatif** :

- ullet x est une loi de composition interne
- Associativité: $\forall (a, b, c) \in (\mathbb{Z}/p\mathbb{Z}^*)^3$, $(a \times b) \times c$ $[p] = a \times (b \times c)$ [p]
- Element neutre : $\forall a \in \mathbb{Z}/p\mathbb{Z}^*$, $a \times 1$ $[p] = 1 \times a$ [p] = a [p]
- Tout élément de $\mathbb{Z}/p\mathbb{Z}^*$ est $symétrisable : \forall a \in \mathbb{Z}/p\mathbb{Z}^* \exists a^{-1} \in \mathbb{Z}/p\mathbb{Z}^* \mid a \times a^{-1} [p] = a^{-1} \times a [p] = 1$ (p étant premier, d'après le petit théorème de Fermat, a^{-1} existe)
- Commutativité: $\forall (a,b) \in (\mathbb{Z}/p\mathbb{Z}^*)^2$, $a \times b [p] = b \times a [p]$

1.2 Chiffrement d'El Gamal

Le chiffrement d'El Gamal (1984) est une variante du protocole Diffie-Hellman qui repose sur le problème du logarithme discret (cf. §1.4).

Soit p un nombre **premier** et g un élément **générateur** de $(\mathbb{Z}/p\mathbb{Z}^*,\times)$.

Le destinataire B dispose :

- d'une clé privée s qui appartient à l'ensemble $\{1, \ldots, p-1\}$
- d'une clé publique égale à g^s [p]

Lorsque A veut transmettre un message chiffré à B, il doit :

- 1. Choisir un **aléa** k dans $\{1, \ldots, p-1\}$.
- 2. Calculer la **clé de session** $K = (g^s)^k$ [p].
- 3. Chiffrer son message M à l'aide d'un **algorithme de chiffrement symétrique** quelconque (DES par exemple) pour obtenir le cryptogramme C (dans la présentation originale de ce système, le message M était un élément de $(\mathbb{Z}/p\mathbb{Z}^*, \times)$ et le chiffrement consistait simplement en une multiplication par K modulo p).
- 4. Transmettre le couple (q^k, C) . La quantité q^k étant l'**entête** du cryptogramme.

Pour déchiffrer le message, B doit :

- 1. Calculer la **clé de session** $K = (g^k)^s$ [p] à l'aide de l'entête et de sa clé privée.
- 2. Déchiffrer le message C en utilisant le **même algorithme de (dé)chiffrement symétrique** que A à l'aide de K.

1.3 Signature d'El Gamal

Ce **mécanisme de signature** repose aussi sur la difficulté du problème du logarithme discret $(cf. \S 1.4)$.

Paramètres:

- un nombre **premier** p et un **générateur** g du groupe multiplicatif de $(\mathbb{Z}/p\mathbb{Z}^*,\times)$
- la clé privée est un entier non nul x dans $\{1, \ldots, p-2\}$
- la clé publique est g^x [p]
- le message condensé h

Calcul d'une signature :

- 1. Choisir un entier k aléatoire dans $\{1, \ldots, p-1\}$, premier avec p-1.
- 2. Calculer $r = g^k [p]$.
- 3. Résoudre l'équation dite équation de signature d'inconnue s: h=xr+ks dans $\mathbb{Z}/(p-1)\mathbb{Z}^*.$

La solution de l'équation de signature est : $s=(h-rx)k^{-1}$ dans $(\mathbb{Z}/(p-1)\mathbb{Z}^*,\times)$. La signature du message de condensé h est le couple (r,s). La vérification de la signature consiste à tester l'égalité $g^h=(g^x)^r\times r^s$ dans $(\mathbb{Z}/p\mathbb{Z}^*,\times)$.

1.4 Problème du logarithme discret

Toute la **sécurité** du cryptosystème d'El Gamal repose sur le fait qu'il est "difficile" de **trouver** l'entier \mathbf{k} à partir de g^k [p] dans $(\mathbb{Z}/p\mathbb{Z}^*, \times)$: c'est ce qu'on appelle le **problème du logarithme** discret.

2 Application : mise en place d'une messagerie sécurisée

2.1 GitHub

GitHub est un service d'hébergement et de gestion de projets en ligne que nous avons utilisé pour gérer les codes sources de nos programmes. Les programmes, codés en Python 3 dans le cadre des TIPE, sont en *Open Source* à l'adresse github.com/ludothai/TIPE-2018.

2.2 Génération des nombres premiers

2.2.1 Méthode déterministe

- 1. Choix d'un nombre p aléatoire de taille n.
- 2. Test des entiers inférieurs à \sqrt{p} comme diviseurs de p.
- 3. Si aucun entier divise p, alors p est premier.

Complexité : $O(\sqrt{10^n})$

2.2.2 Méthode probabiliste : test de Miller-Rabin

- 1. Choix d'un nombre p aléatoire de taille n.
- 2. Effectuer k tests de Miller-Rabin.
- 3. Si tous les tests sont des succès alors p est pseudo-premier et a une probabilité de ne pas être premier de $\frac{1}{4^k}$; sinon on choisit un nouveau p aléatoire et on recommence.

Complexité : $O(n^2)$

FIGURE 1 – Fonctionnement du test de primalité de Miller-Rabin

Détails théoriques du test :

Si p est premier alors $\mathbb{Z}/p\mathbb{Z}$ est un corps (résultat du cours qui s'obtient avec le théorème de Bezout). On s'intéresse à l'équation :

$$x^2 = 1$$

dans $\mathbb{Z}/p\mathbb{Z}$. Comme c'est un corps, c'est en particulier un anneau intègre. En factorisant l'équation ci-dessus sous la forme :

$$(x-1)(x+1) = 0$$

on s'aperçoit que les seules solutions de cette équation, par intégrité, sont 1 et -1. (1)

Soit p premier.

On écrit p sous la forme :

$$p = 2^s \times d + 1$$

(s est le nombre maximal de fois que l'on peut mettre 2 en facteur dans p-1). Soit a (appelé $t\acute{e}moin\ de\ Miller$) dans $\mathbb{Z}/p\mathbb{Z}$, on pose la suite $(b_i)_{0\leq i\leq s}$ avec $b_i=a^{2^i}\times d$ Par le petit théorème de Fermat, on sait que $b_s\equiv 1[p]$. On montre grâce à (1) que s'il existe k tel que b_k ne soit pas congru à 1 modulo p alors il existe un indice $i\in\{k,\ldots,s-1\}$ tel que $b_i\equiv -1[p]$. (2)

En effet, posons $i = \sup \{j \mid b_j \text{ ne soit pas congru à 1 modulo } p\}$. Un tel nombre existe car b_k n'est pas congru à 1 modulo p (l'ensemble que l'on considère est non vide), et pour tout $j \geq s$, $b_i \equiv 1[p]$ (l'ensemble est majoré par s). Ainsi, on a $i \in \{0, \ldots, s-1\}$. D'autre part $b_i^2 = b_{i+1} \equiv 1[p]$. D'après (1), $b_i \equiv -1[p]$. La première possibilité est exclue par définition de i. Donc $b_i \equiv 1[p]$.

Le test de Miller-Rabin consiste à calculer la suite des b_i pour voir si elle vérifie bien (2). On dit que p passe le test si les b_i satisfont effectivement (2). Si p ne passe pas le test alors on est sûr que p n'est pas premier sinon on ne peut rien dire. Il reste à itérer ce processus avec plusieurs témoins de Miller, l'heuristique du système étant "plus p passe de tests, plus il a de chances d'être premier".

L'efficacité de ce test vient du fait que le nombre de témoins "menteurs", c'est-à-dire les témoins qui permettent à p de passer le test alors qu'il n'est effectivement pas premier, est inférieur à 1/4 du nombre d'entiers inférieurs à p.

2.3 Recherche des générateurs du groupe $(\mathbb{Z}/p\mathbb{Z}^*,\times)$

Pour mettre en place le cryptosystème d'El Gamal, il faut avoir à disposition un **nombre** p **premier très grand** (au moins 100 chiffres) et ensuite **trouver un générateur** g du groupe $(\mathbb{Z}/p\mathbb{Z}^*, \times)$. Nous avons choisi de **prendre le problème à l'envers** en cherchant d'abord l'élément générateur g puis un très grand nombre premier p.

Les nombres de Sophie Germain sont des nombres q tel que :

- q est premier
- 2q + 1 est aussi premier

En partant de cette idée, nous avons **expérimenté une méthode** pour **trouver un couple de nombre premier** très grand, qui offre la possibilité de mettre en place le cryptosystème efficacement.

FIGURE 2 – Méthode de recherche des générateurs

Tout d'abord il faut trouver un nombre q premier puis chercher un nombre p premier de la forme p = kq + 1, en faisant varier k. En testant cette méthode sur machine, nous avons conjecturé qu'il est toujours possible de trouver p qui convient avec des valeurs de k de l'ordre de quelques centaines (la valeur maximale atteinte par k était 5000).

Grâce à cette méthode, les facteurs de p-1 sont maintenant connus (ce qui est presque impossible avec un nombre à 200 chiffres pris au hasard) et peu nombreux. En effet les facteurs de p-1 sont tous les nombres qui se mettent sous la forme z ou zq où z est un diviseur de k. D'après le théorème de Lagrange tous ces nombres sont susceptibles d'être l'ordre d'un élément de $(\mathbb{Z}/p\mathbb{Z}^*,\times)$.

Dès lors, si r est l'ordre d'un élément x et si r n'est pas un diviseur de k (ce que nous pouvons tester facilement) alors r s'écrit sous la forme zq et est donc très grand (de l'ordre de grandeur p à log(k) près). x est ainsi le générateur d'un sous-groupe de $(\mathbb{Z}/p\mathbb{Z}^*, \times)$ et possède le même nombre d'éléments que $(\mathbb{Z}/p\mathbb{Z}^*, \times)$ en ordre de grandeur.

En implémentant cette méthode, nous nous sommes aperçus qu'il est aisé de trouver un élément x générateur d'un grand sous-groupe de $(\mathbb{Z}/p\mathbb{Z}^*,\times)$.

2.4 Les opérations élémentaires

2.4.1 Puissance modulaire

Méthode : Exponentiation rapide en base 2

Variables:

— **res** : résultat

— \mathbf{a} : base à la puissance 2^i avec i l'indice de la boucle en cours

Etapes:

- 1. Conversion de l'exposant en binaire.
- 2. On parcourt l'exposant en binaire (ième coefficient) : si le coefficient vaut 1 on multiplie le résultat par a et on en extrait le reste modulo n. Puis on met a au carré.
- 3. On retourne le résultat.

Complexité : O(log(a))

FIGURE 3 – Schéma du calcul d'une puissance modulaire

2.4.2 Inverse modulaire

Méthode : Algorithme d'Euclide étendu (recherche des coefficients de l'équation de Bézout) Le but est de calculer r_i, u_i, v_i tel que $r_i = u_i a + v_i p$

Etapes:

Tant que
$$r_i \neq 0$$

Faire
$$q = \lfloor \frac{r_i - 1}{r_i} \rfloor$$

$$r_{i+1} = r_{i-1} - qr_i$$

$$u_{i+1} = u_{i-1} - qu_i$$

$$v_{i+1} = v_{i-1} - qv_i$$

Retourner u_i

En effet, $1 = u_i a + v_i p$ donc $u_i a \equiv 1[p]$

Complexité : $O((log(p))^2)$

FIGURE 4 – Schéma du calcul d'une inverse modulaire

2.5 L'algorithme de chiffrement symétrique : le DES

2.5.1 Présentation du DES

Le "DES" qui signifie *Data Encryption Standard* est un algorithme de chiffrement qui permet de **chiffrer un message** à partir de la clé de chiffrement qui lui ait fourni. On dit que c'est un algorithme de chiffrement **symétrique** car les étapes pour chiffrer et déchiffrer les messages sont les mêmes.

L'algorithme DES est un algorithme de **chiffrement par bloc** puisqu'il transforme des blocs de 64 bits en d'autres blocs de 64 bits en manipulant des clés individuelles de 64 bits ramenées à 56 bits (un bit de chaque octet peut être utilisé pour le contrôle de parité).

2.5.2 Principe de fonctionnement

Une fois qu'un message (binaire) est découpé et complété en bloc de 64 bits, on applique le DES (fonction f sur la Figure) à chaque bloc avant de les rassembler en un seul bloc constituant le message crypté.

Figure 5 – Découpage en blocs pour le chiffrement DES

Le DES est constitué de **2 parties**. Tout d'abord il y a la **génération des 16 sous-clés** de 48 bits à partir d'une clé de 64 bits, puis le **processus de chiffrement** pour chaque bloc de 64 bits.

2.5.3 Générations des sous-clés

A partir d'une clé de 64 bits, 16 sous-clés nécessaires au chiffrement sont générées.

Après une **permutation initiale PC-1** (où les bits de fin d'octet sont notamment enlevés), la clé de 64 bits est **réduit** en une clé de 56 bits. Ces 56 bits sont ensuite **partagés en 2 blocs** A0 et B0 de 28 bits. Ces 2 blocs vont subir **16 itérations** pour **générer les 16 sous-clés**.

Tout d'abord chaque bloc va subir un nombre de décalage à gauche D_i , selon l'indice i de l'itération, formant ainsi 2 nouveaux blocs de 28 bits. Ces derniers vont servir à :

- la génération de la **prochaine sous-clé**
- générer la sous clé K_i : les deux blocs de 28 bits sont rassemblés pour former un bloc de 56 bits qui va subir une permutation PC-2, donnant ainsi la clé K_i

En répétant 16 fois le processus, on obtient alors les 16 sous-clés numérotées de 1 à 16.

FIGURE 6 – Génération des sous-clés

2.5.4 Processus de chiffrement

Le chiffrement DES, constitué de permutations et de substitutions, peut être découpé en 3 étapes :

- 1. permutation initiale du bloc
- 2. 16 itérations appelées Ronde
- 3. permutation finale

Après une **permutation initiale Pi**, le bloc de 64 bits est **séparé en 2 blocs** de 32 bits (G0 à gauche et D0 à droite) qui vont effectuer **16 itérations** appelées *Ronde*. Chaque *Ronde* prend donc en entrée 2 blocs de 32 bits (un bloc à droite et un bloc à gauche) et retourne en sortie 2 autres blocs de 32 bits :

- le bloc de gauche en sortie est le bloc de droite en entrée.
- le bloc de droite en sortie est obtenue de la manière suivante : le bloc de droite en entrée est d'abord étendu en un bloc de 48 bits à l'aide de la fonction d'extension E, puis un OU exclusif est effectué entre le bloc étendu et la sous-clé Ki correspondant à l'itération. Ce nouveau bloc de 48 bits passe ensuite par une fonction de substitution S avant de réaliser un OU exclusif avec le bloc de gauche en entrée pour donner le bloc de droite en sortie.

Enfin, après les 16 *Rondes*, les blocs de 32 bits (G16 et D16) sont regroupés pour reformer un bloc de 64 bits qui va subir une **permutation finale Pf**, donnant ainsi un bloc crypté.

FIGURE 7 - Chiffrement DES

Fonction de substitution S:

La fonction de substitution S prend en entrée un bloc de 48 bits et renvoie en sortie un bloc de 32 bits

Tout d'abord, le bloc de 48 bits est **décomposé en 8 blocs** de 6 bits, avec chaque bit numéroté de 1 à 6. Ensuite, pour chacun des 8 blocs de 6 bits, un nombre de 4 bits est retourné après **substitution** par un coefficient (entier) de la matrice S_i (i allant de 1 à 8) correspondante. La sélection du coefficient se fait de la manière suivante :

- les bits 1 et 6 correspondent aux 2 bits de positionnement ligne, convertis en entier pour donner le **numéro de ligne** de la matrice S_i
- les bits 2 à 5 correspondent aux 4 bits de positionnement *colonne*, convertis en entier pour donner le **numéro de colonne** de la matrice S_i

Une fois l'entier récupéré dans la matrice S_i associée, celui ci est converti en nombre binaire de 4 bits.

Enfin, les 8 nombres binaires de 4 bits sont **concaténés pour former un bloc de 32 bits** qui va subir une permutation P avant d'effectuer le *OU exclusif* avec le bloc de gauche.

FIGURE 8 – Fonction de substitution S

2.5.5 Processus de déchiffrement

Le processus de déchiffrement est identique au processus de chiffrement à une exception près : les 16 sous-clés sont utilisées dans l'ordre inverse. Ainsi la clé K_{16} devient la clé K_{17} puis la clé K_{15} devient la clé K_{2} etc...

2.6 Architecture client-serveur

Architecture Client-Serveur est l'architecture utilisée pour la majorité des communications sur internet. Le module "socket" de Python est utilisé pour ouvrir des connexions utilisant le **protocole TCP/IP**. Le serveur est donc repéré par son adresse IP et le port qu'il dédie à la messagerie. Une programmation dite "en parallèle" est mise en place à l'aide du module **Thread** de Python pour permettre la réception et l'envoi simultané de messages.

Procédure de Handshake:

A chaque **connexion d'un client** sur le serveur, il doit renseigner **un pseudo** qui permettra aux autres utilisateurs de l'identifier, et **une clé publique**. Le serveur **stocke ces informations et les rend accessibles** aux autres utilisateurs.

Le serveur est donc bien un **canal public** puisque tous les utilisateurs peuvent accéder à tous les messages, même ceux qui ne leur sont pas adressés. D'où l'importance du cryptage.

FIGURE 9 – Schéma de fonctionnement du serveur

Figure 10 – Schéma de fonctionnement du client

3 Analyse de la messagerie sécurisée

3.1 Attaque du cryptosystème d'El Gamal

3.1.1 Algorithme de Shanks

Il s'agit d'un algorithme de calcul du logarithme discret.

"Pas de bébé, pas de géant.", Shanks

Soit G un groupe cyclique d'ordre N et g un générateur. Et ant donné un élément x dans G, il s'agit de **trouver l'entier** a **tel que** $x=g^a$. On pose $K=\lceil \sqrt{N} \rceil$. L'idée est de parcourir les éléments de G de deux façons :

- lors du premier parcours, à pas-de-bébé, on établit la liste des puissances successives du générateur : $A = \{g^i \mid i = 0, 1, ..., K 1\}$
- lors du second parcours, à pas-de-géant, on saute de K en K : $B=\{xg^{-Kj}\mid j=0,1,...,K-1\}$

Ces deux listes ont nécessairement un **élément commun** $g^i = xg^{-Kj}$, c'est-à-dire $x = g^{i+Kj} = g^a$ qui correspond à la division euclidienne de a par K.

La complexité de l'algorithme est exponentielle puisqu'il nécessite le stockage de \sqrt{N} éléments et en moyenne $\frac{1}{2}\sqrt{N}$ calculs avant de trouver l'élément commun à A et à B.

Figure 11 – Fonctionnement de l'algorithme de Shanks

3.1.2 Calcul de l'indice

Algorithme le plus efficace actuellement mais difficile à implémenter dont la complexité est sous-exponentielle.

3.2 Comparaison avec le chiffrement RSA

3.2.1 Fonctionnement du RSA

Le système RSA (1977) est un cryptosystème qui repose sur le **problème de factorisation des** grands entiers. C'est sans doute le plus populaire des systèmes à clés publiques.

La clé privée est constituée de deux nombres premiers p et q et d'un entier d premier avec $\phi(n) = (p-1) \cdot (q-1)$.

La clé publique est constituée du produit n de p et q et d'un entier e inverse de d modulo $\phi(n)$.

L'ensemble des messages est l'ensemble U_n des éléments inversibles modulo n.

L'opération de chiffrement est l'élévation à la puissance e modulo n. L'entier e étant l'exposant public.

L'opération de déchiffrement est l'élévation à la puissance d. L'entier d étant l'exposant privé. D'après le théorème d'Euler, la composition de ces deux opérations est l'identité.

Le principe de la signature RSA est d'inverser les rôles des exposants e et d par rapport à leur utilisation dans le schéma de chiffrement. L'exposant privé d sert à chiffrer le condensé h du message. Seul le détenteur de la clé privée peut le faire. La signature est le résultat de ce chiffrement : $\sigma = h^d$. La vérification consiste à tester $\sigma^e = h$.

3.2.2 Attaque du cryptosystème RSA: l'algorithme rho de Pollard

L'idée de l'algorithme Rho est la suivante : si on parvient à trouver deux entiers distincts x et x' inférieurs à n et tels que $x \equiv x'[p]$, alors x - x' est multiple de p. Comme n est également multiple de p, le PGCD de x - x' et n sera multiple de p, ce qui signifie qu'il sera égal à p ou n. Ainsi, on teste successivement des paires (x, x') d'entiers de [0, n - 1] jusqu'à trouver une paire telle que le PGCD de x - x' et n est supérieur à n.

Complexité : $O(n^{\frac{1}{4}})$

FIGURE 12 – Fonctionnement de l'algorithme rho de Pollard

3.2.3 Attaque du cryptosystème RSA: le crible algébrique

Algorithme le plus efficace actuellement mais difficile à implémenter dont la complexité est sous-exponentielle.

3.3 Attaque sur la signature d'El Gamal

3.3.1 Rappel sur la signature d'El Gamal

Paramètres:

- un nombre **premier** p et un **générateur** g du groupe multiplicatif de $(\mathbb{Z}/p\mathbb{Z}^*,\times)$
- la **clé privée** est un entier non nul x dans $\{1, \ldots, p-2\}$
- la clé publique est g^x [p]
- le message condensé h

Calcul d'une signature :

- 1. Choisir un entier k aléatoire dans $\{1, \ldots, p-1\}$, premier avec p-1.
- 2. Calculer $r = q^k [p]$.
- 3. Résoudre l'équation dite équation de signature d'inconnue s: h = xr + ks dans $\mathbb{Z}/(p-1)\mathbb{Z}^*.$

La solution de l'équation de signature est : $s=(h-rx)k^{-1}$ dans $(\mathbb{Z}/(p-1)\mathbb{Z}^*,\times)$. La signature du message de condensé h est le couple (r,s). La vérification de la signature consiste à tester l'égalité $g^h=(g^x)^r\times r^s$ dans $(\mathbb{Z}/p\mathbb{Z}^*,\times)$.

3.3.2 L'attaque sur la signature

L'aléa de signature k doit être autant confidentiel que la clé privée, car la connaissance de ce dernier (en plus des données publiques) permet de remonter jusqu'à la clé privée x. En effet si x est connu, et connaissant (r,s) (données publiques) alors il est aisé de trouver la solution x à : $x = (h - ks)r^{-1}$ dans $(\mathbb{Z}/(p-1)\mathbb{Z}^*, \times)$ (si r et p-1 sont premiers entre eux).

Par ailleurs, il est crucial que l'aléa de signature k soit différent pour chaque message. Dans le cas contraire, on peut également remonter à la clé privée x.

En effet si le même k est utilisé pour deux messages différents m_1 et m_2 , de signature (r_1, s_1) et (r_2, s_2) , alors il est possible de remonter à k et donc à x. k est solution des deux équations suivantes dans $(\mathbb{Z}/(p-1)\mathbb{Z}^*, \times)$:

- $\bullet \ m_1 = xr + ks_1$
- $\bullet \ m_2 = xr + ks_2$

Donc k est solution de : $k(s_1 - s_2) \equiv m_2 - m_1$ [p-1], qui est facilement résoluble si $s_1 - s_2$ et p-1 sont premiers entre eux.

4 Programmes (Python 3)

4.1 Chiffrement et signature numérique d'El Gamal

```
from random import randint
2
    from math import log
3
    #cryptosysteme El Gamal
4
5
6
    def chiffrement(p,g,cle_dest,message_clair,sign):
7
        k1=randint(1,p-1)
        cle_sess=puissmod(cle_dest,k1,p)
8
9
        message_crypt=(message_clair*cle_sess)%p
        entete=puissmod(g,k1,p)
10
11
        if sign:
12
            r,s=signature(p,g,k1,message_crypt)
            return r,s,entete,message_crypt
13
14
        else:
15
            return entete,message_crypt
16
17
    def dechiffrement(p,g,cle_priv,entete,message_crypt):
18
        cle_sess=puissmod(entete,cle_priv,p)
        message_clair=(message_crypt*inversmod(cle_sess,p))%p
19
20
        return message_clair
21
22
    def signature(p,g,k1,message_crypt):
23
        k2=randint(1,p-1)
24
        k2inv=inversmod(k2,p-1)
25
        while type(k2inv)==str: #tant que le k aleatoire n'est pas
       inversible mod p-1
            k2=randint(1,p-1)
26
            k2inv=inversmod(k2,p-1)
27
28
        r=puissmod(g,k2,p)
29
        h=message_crypt
30
        s=((h-k1*r)*k2inv)%(p-1)
31
        return r,s
32
33
    def verification_signature(p,g,r,s,entete,message_crypt):
34
        h=message_crypt
35
        a=puissmod(g,h,p)
36
        b=(puissmod(entete,r,p)*puissmod(r,s,p))%p
37
        if a==b:
38
            return True
39
        else:
40
            return False
41
    def generation_cle(p,g):
42
43
        """p premier,g generateur"""
```

```
cle_priv=randint(1,p-1)
cle_publ=puissmod(g,cle_priv,p)
return cle_priv,cle_publ
```

4.2 Génération des nombres premiers : méthode déterministe et méthode probabiliste (Miller-Rabin)

```
import random as rd
1
2
    from time import perf_counter
    import math
4
    ## Generation d'un nombre premier de maniere deterministe
5
6
7
    def est_premier(n):
8
      if n == 2 or n == 3: return True
9
      if n < 2 or n\%2 == 0: return False
10
      if n < 9: return True
11
      if n%3 == 0: return False
12
      r = int(n**0.5)
      f = 5
13
      while f <= r:</pre>
14
        if n%f == 0: return False
15
        if n\%(f+2) == 0: return False
16
17
        f += 6
18
      return True
19
20
    def premier(n): # Plus appliquable au dela de 20 chiffres
21
        while n>10:
22
             if est_premier(n):
23
                 return n
24
            n = 1
25
    def premier_Pollard(n):
26
        eps=10**(-100)
27
28
        while n>10:
             if (n-1)/2-int((n-1)/2) < eps:
29
                 if est_premier(int((n-1)/2)):
30
31
                     if est_premier(n):
32
                          return n
33
            n = 1
34
35
    ## Generation d'un nombre premier basee sur le test de primalite de
        Miller-Rabin
36
37
    def MillerRabin_generation(b): #longueur en base 10 du nombre
       premier (proba pas premier 10**-300)
38
        i = 0
39
        while True:
40
41
            n=rd.choice([1,3,5,7,9]) #candidat premier
             for k in range(1,b-1) :
42
                 n+=rd.randint(0,9)*10**k
43
```

```
44
             n+=rd.randint(1,9)*10**b
45
             if MillerRabin_test(n,500):
46
                 return i,n
47
48
    def MillerRabin_temoin(a,n):
49
        \#Calcul de s et d tels que n-1=2**s*d
50
        d=(n-1)//2
51
        s=1
52
        while d%2==0:
53
             d=d//2
54
             s+=1
55
        #Premier test
56
        x=puissmod(a,d,n)
        if x==1 or x==n-1:
57
             return False
58
59
        #Boucle principale
60
        while s>1:
61
             x = x * * 2 \% n
62
             if x==n-1:
                 return False
63
64
             s-=1
65
        return True
66
67
    def MillerRabin_test(n,k): #primalite de n a tester et k nombre de
       boucles
        for t in range(k):
68
             a=rd.randint(2,n-2)
69
70
             if MillerRabin_temoin(a,n):
                 return False
71
72
        return True
73
74
    ## Fabriquer un generateur g et un grand nombre premier p associe
75
76
    def generateur_ElGamal(n):
        while True:
77
78
             q=MillerRabin_generation(n)[1]
             for k in range(2,500):
79
80
                 p=k*q+1
                 if MillerRabin_test(p,100):
81
82
                      while True:
83
                          g=rd.randint(2,p) #Candidat generateur
84
                          i=1
85
                          grandordre=True
86
                          while grandordre:
                               if puissmod2(g,i,p)==1:
87
88
                                   grandordre=False
89
                               elif i<k:</pre>
90
                                   i += 1
```

```
91
                              else:
92
                                  return p,g
93
94
    def generateur_RSA(n):
95
         while True:
96
             q=MillerRabin_generation(n)[1]
             for k in range(1,500):
97
98
                 p=k*q+1
                 if MillerRabin_test(p,100):
99
100
                      return p
```

4.3 Opérations élémentaires

```
def puissmod(a,d,n):
        """a**d mod n"""
2
3
        #iteratif : beaucoup plus efficace (10^-5) 600 chiffres ->
       0.025 s
        dbin=bin(d)
4
        L=[int(dbin[-i-1]) for i in range(len(dbin)-2)]
5
6
        res=1
        while L!=[]:
8
            k=L.pop(0)
9
            if k>0:
10
                res=res*a%n
            a = a * * 2\%n
11
12
        return res
13
14
    def inversmod(a,p):
        """a**(-1) mod p"""
15
        #algorithme d'Euclide etendu (solution de l'equation de Bezout)
16
17
        r1,u1,v1,r2,u2,v2=a,1,0,p,0,1
18
        while r2!=0:
19
20
            q=r1//r2
            21
22
        if r1!=1:
            return "pas inversible"
23
        else:
24
25
            if u1<1:</pre>
26
                while u1<1:
27
                    u1+=p
28
            if u1>p:
29
                while u1>p:
30
                    u1-=p
31
            return u1
```

4.4 Data Encryption Standard (DES)

```
# ******* ENCODAGE DES CARACTERES *********
2
3
    #Codage du message: 1 caractere = 8 bits
4
    def encodage(m):
        """Message en STRING retourne en binaire 8 bits (table AISCII)
5
6
        if type(m) != str :
7
            raise TypeError
8
        M = list(m) # on split tout en caracteres individuels
9
        Mord = [ord(M[i]) for i in range(len(M))]
        Mbin = [bin(Mord[i]) for i in range(len(M))]
10
        # traitement du Mbin pour enlever le 'Ob' du debut et taille
11
       constante
12
        Mfin = []
        for binaire in Mbin:
13
            binaire=binaire[2:]
14
            n=len(binaire)
15
            if n>8:
16
17
                return 'Erreur len(binaire)'
            for i in range(8-n): # complete avec des zeros
18
                Mfin.append(0)
19
20
            for i in binaire:
21
                Mfin.append(int(i))
22
        return Mfin
23
    def decodage(M):
24
25
        n=len(M)//8
        Mfin=[str(i) for i in M]
26
        Mbin = []
27
        for i in range(n):
28
29
            binaire=Mfin[i*8]
30
            for j in range(1,8):
31
                binaire+=Mfin[i*8+j]
32
            Mbin.append(binaire)
        Mord=[int(binaire,2) for binaire in Mbin]
33
        Mchr=[chr(i) for i in Mord]
34
35
        m=Mchr[0]
36
        for i in range(1,len(Mchr)):
37
            m+=Mchr[i]
38
        return m
39
40
    # ******* GENERATION DES CLES ********
41
42
43
    def permutationCP1(K):
44
        """Effectue la permutation initiale de la cle de 64 bits,
```

```
retourne les listes GO et DO"""
        if len(K) != 64 : return "Erreur len(K)"
45
46
        else:
47
            K1 = \lceil \rceil
             CP1 = [57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
48
49
                  10, 2,59,51,43,35,27,19,11, 3,60,52,44,36,
50
                  63,55,47,39,31,23,15, 7,62,54,46,38,30,22,
51
                  14, 6,61,53,45,37,29,21,13, 5,28,20,12, 4]
52
             for i in CP1:
                 K1.append(K[i-1])
53
54
             return K1[:28], K1[28:]
55
56
    def decalageGauche(L, n):
        """ Decale les elements de la liste L de n places vers la
57
       GAUCHE"""
58
        Ldec = []
59
        for i in range(len(L)-n):
60
            Ldec.append(L[i+n])
61
        for i in range(n):
62
             Ldec.append(L[i])
63
        return Ldec
64
65
    def regroupe(G,D):
        return G+D
66
67
68
    def permutationCP2(K):
        """Effectue la permutation CP2 du bloc de 56 bits en un bloc de
69
        48 bits qui est la cle Ki"""
        if len(K) != 56 : return "Erreur len(K)"
70
71
        else:
72
            Ki = []
             CP2 = [14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
73
74
                  23,19,12, 4,26, 8,16, 7,27,20,13, 2,
75
                  41,52,31,37,47,55,30,40,51,45,33,48,
                  44,49,39,56,34,53,46,42,50,36,29,32]
76
77
             for i in CP2:
78
                 Ki.append(K[i-1])
79
             return Ki
80
81
    def genKey(K):
        """ Retourne les 16 cles Ki a partir de la cle de 64 bits"""
82
        decalage = [1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1] #
83
       Nombre de decalage a gauche pour les 16 iterations (de 0 a 15)
        cles = []
84
        #verification cle est de 64 bits:
85
        if checkBINn(K, 64) == False: return "Erreur sur la cle
86
       initilale K"
87
        # permutation initiale CP1:
```

```
88
         G, D = permutationCP1(K)
89
         if checkBINn(G, 28) == False: return "Erreur sur la cle
        initiale G"
         if checkBINn(D, 28) == False: return "Erreur sur la cle
90
        initiale D"
91
         for i in range (16):
92
             Gi = decalageGauche(G, decalage[i])
             Di = decalageGauche(D, decalage[i])
93
94
             Ki = permutationCP2(regroupe(Gi, Di))
             if checkBINn(Ki, 48) == False: return "Erreur sur la cle Ki
95
96
             cles.append(Ki)
97
             G = Gi
             D = Di
98
99
         return cles
100
101
     def checkBINn(L, n):
102
         """ verifie que la liste L est une liste contenant n elements
        binaire (0 ou 1)"""
         binaire = [0,1]
103
104
         if len(L) == n:
105
             for i in range(len(L)):
                  if L[i] not in binaire:
106
                      return False
107
             return True
108
109
         else:
110
             return False
111
112
     def gen(n):
         return ([(i+1)*10 for i in range(n)])
113
114
115
     # ******** PERMUTATIONS *******
116
117
118
     def permutation_initiale(L):
         """Permute les elements de L selon l'ordre de permutation
119
        defini par PI"""
120
         PI=[58,50,42,34,26,18,10, 2,
121
             60,52,44,36,28,20,12, 4,
122
             62,54,46,38,30,22,14, 6,
123
             64,56,48,40,32,24,16, 8,
124
             57,49,41,33,25,17, 9, 1,
             59,51,43,35,27,19,11, 3,
125
126
             61,53,45,37,29,21,13, 5,
             63,55,47,39,31,23,15, 7] #Liste de permutation initiale
127
128
         Q=[L[i-1] for i in PI]
         return Q
129
130
```

```
131
     def scindement2(L):
132
         """Retourne le scindement de L en 2 listes GO et DO de de 32
        bits"""
133
         return L[0:32], L[32:64]
134
135
     def permutation_inverse(L):
         """Permute les elements de L selon l'ordre de permutation
136
        defini par PII = permutation initiale inverse"""
         PII=[40,8,48,16,56,24,64,32,
137
               39,7,47,15,55,23,63,31,
138
139
              38,6,46,14,54,22,62,30,
140
              37,5,45,13,53,21,61,29,
141
               36,4,44,12,52,20,60,28,
142
              35,3,43,11,51,19,59,27,
143
              34,2,42,10,50,18,58,26,
144
              33,1,41, 9,49,17,57,25]
145
         Q=[L[i-1] for i in PII]
146
         return Q
147
148
     # ******** RONDE ******
149
150
     def expansion(D):
         """Etend les 32 bits du bloc DO en 48 bits dans Q"""
151
         E=[32, 1, 2, 3, 4, 5,
152
             4, 5, 6, 7, 8, 9,
153
             8, 9,10,11,12,13,
154
155
             12,13,14,15,16,17,
156
            16,17,18,19,20,21,
157
            20,21,22,23,24,25,
            24,25,26,27,28,29,
158
            28,29,30,31,32, 1]
159
160
         Q = [D[i-1] \text{ for } i \text{ in } E]
161
         return Q
162
163
     def XOR(b1,b2):
         """OU exclusif entre 2 bits b1 et b2"""
164
165
         if b1==1:
166
              if b2 == 1:
167
                  return 0
168
              else:
169
                  return 1
         elif b2==1:
170
171
              return 1
172
         else:
173
              return 0
174
     def XORL(Dprime,K):
175
176
         """Ou exclusif entre Dprime et cle K (48 bits)"""
```

```
DO = []
177
         for i in range(len(Dprime)):
178
179
             D0.append(XOR(Dprime[i], K[i]))
180
         return DO
181
182
     def scindement8(D0):
183
         """Scinde le bloc de 48 en 8 blocs de 6"""
184
         return [D0[0:6], D0[6:12], D0[12:18], D0[18:24], D0[24:30], D0
        [30:36], D0[36:42], D0[42:48]]
185
186
     def selection1(D01):
187
         """Selection pour D01"""
188
         S1 = [[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
189
             [ 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8],
190
             [4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
191
             [15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13]]
192
         ligne = int(str(D01[0]*10 + D01[5]), 2)
193
         colonne = int(str(D01[1]*1000 + D01[2]*100 + D01[3]*10 + D01
        [4]), 2)
194
         return S1[ligne][colonne]
195
196
     def selection2(D02):
         """Selection pour D02"""
197
198
         S2 = [[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
199
             [3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5],
             [0,14,7,11,10,4,3,1,5,8,12,6,9,3,2,15],
200
201
             [13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9]]
         ligne = int(str(D02[0]*10 + D02[5]), 2)
202
203
         colonne = int(str(D02[1]*1000 + D02[2]*100 + D02[3]*10 + D02
        [4]), 2)
204
         return S2[ligne][colonne]
205
     def selection3(D03):
206
         """Selection pour D03"""
207
         S3 = [[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
208
             [13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1],
209
210
             [13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
             [ 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12]]
211
212
         ligne = int(str(D03[0]*10 + D03[5]), 2)
213
         colonne = int(str(D03[1]*1000 + D03[2]*100 + D03[3]*10 + D03
        [4]), 2)
214
         return S3[ligne][colonne]
215
216
     def selection4(D04):
         """Selection pour D04"""
217
         S4=[[7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15],
218
             [13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9],
219
220
             [10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4],
```

```
221
             [3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14]]
222
         ligne = int(str(D04[0]*10 + D04[5]), 2)
223
         colonne = int(str(D04[1]*1000 + D04[2]*100 + D04[3]*10 + D04
        [4]), 2)
224
         return S4[ligne][colonne]
225
226
     def selection5(D05):
227
         """Selection pour D05"""
228
         S5 = [[2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9],
229
             [14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6],
230
             [4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14],
231
             [11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3]]
232
         ligne = int(str(D05[0]*10 + D05[5]), 2)
233
         colonne = int(str(D05[1]*1000 + D05[2]*100 + D05[3]*10 + D05
        [4]), 2)
234
         return S5[ligne][colonne]
235
     def selection6(D06):
236
237
         """Selection pour D06"""
238
         S6 = [[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
239
             [10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8],
240
             [ 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6],
241
             [4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13]
242
         ligne = int(str(D06[0]*10 + D06[5]), 2)
         colonne = int(str(D06[1]*1000 + D06[2]*100 + D06[3]*10 + D06
243
        [4]), 2)
244
         return S6[ligne][colonne]
245
     def selection7(D07):
246
         """Selection pour D07"""
247
         S7 = [[4, 1, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
248
249
             [13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6],
             [1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
250
251
             [ 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12]]
252
         ligne = int(str(D07[0]*10 + D07[5]), 2)
253
         colonne = int(str(D07[1]*1000 + D07[2]*100 + D07[3]*10 + D07
        [4]), 2)
254
         return S7[ligne][colonne]
255
256
     def selection8(D08):
         """Selection pour D08"""
257
         S8=[[13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7],
258
259
             [1, 5, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
260
             [7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8],
             [ 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11]]
261
         ligne = int(str(D08[0]*10 + D08[5]), 2)
262
         colonne = int(str(D08[1]*1000 + D08[2]*100 + D08[3]*10 + D08
263
        [4]), 2)
```

```
264
         return S8[ligne][colonne]
265
266
     def quatre(chaine):
         """ transforme un nombre (en str) en liste contenant chaque
267
        chiffre en int ET normalise en liste de 4 elements avec des 0
        devants"""
         L = []
268
269
         for i in chaine:
270
             L.append(int(i))
         n = len(L)
271
272
         if n > 4:
273
             return 'Erreur longueur liste'
274
         else:
             for i in range(4-n):
275
276
                  L.insert(0, int(0))
277
         return L
278
279
     def somme(D01, D02, D03, D04, D05, D06, D07, D08):
280
         """Rassemble les valeurs obtenues, cree la table de 32 bits"""
281
         Valeurs = [selection1(D01), selection2(D02), selection3(D03),
        selection4(D04), selection5(D05), selection6(D06), selection7(
        D07), selection8(D08)]
         ValeursBIN = [bin(Valeurs[i])[2:] for i in range(8)]
282
283
         ValeursBINlist =[]
284
         for i in range(8):
             ValeursBINlist.append(quatre(ValeursBIN[i]))
285
         table32 = []
286
         for i in range(8):
287
             table32 = table32 + ValeursBINlist[i]
288
         return table32
289
290
291
     def selection(D0):
         """Etape de selection d'une liste DO de 48 bits en une liste de
292
         32 bits"""
         #verification
293
         if checkBINn(D0, 48) == False : return "Erreur LO"
294
295
         #scindement :
296
         D0i = scindement8(D0)
297
         return somme(D0i[0], D0i[1], D0i[2], D0i[3], D0i[4], D0i[5],
        D0i[6], D0i[7])
298
299
     def permutation32(L):
         P = [16, 7, 20, 21, 29, 12, 28, 17,
300
301
               1,15,23,26, 5,18,31,10,
302
               2, 8,24,14,32,27, 3, 9,
              19,13,30, 6,22,11, 4,25,]
303
         Q = [L[i-1] \text{ for } i \text{ in } P]
304
305
         return Q
```

```
306
307
     # ******* ENCODAGE CLE *******
308
309
310
     def intbin(K):
         """ Retourne l'entier positif K en binaire dans une liste L"""
311
         if type(K) != int: return "Erreur type K"
312
         if K < 0: return "Erreur 'K est negatif'"</pre>
313
         kbinstr = list(bin(K))
314
315
         kbinstr = kbinstr[2:]
316
         # kbin = [int(kbinstr[i]) for i in range(len(kbinstr))]
317
         kbin = [int(i) for i in kbinstr]
318
         return kbin
319
320
    def binint(L):
         """ Retourne la liste binaire L en entier positif """
321
         if checkBINn(L, len(L)) == False : return "Erreur liste L"
322
323
         N = 
324
         for i in range(len(L)):
             N+=str(L[i])
325
326
         return int(N,2)
327
     def min64(L):
328
         """ Verifie et normalise avec des O devants la liste L tel que
329
        contienne au moins 64 bits """
         if len(L)>63:
330
331
             return L
332
         else:
333
             n = len(L)
             Q = L[:]
334
             Q.reverse()
335
             for i in range(64-n):
336
                 Q.append(int(0))
337
338
             Q.reverse()
             return Q
339
340
341
     # ******** FONCTIONS DE DECOUPAGE ********
342
343
344
     espace = [0, 0, 1, 0, 0, 0, 0] #(ord 32) Caractere [espace] en
        binaire 8 bits AISCII
345
346
     def decoupe64(1):
         """ decoupe une chaine binaire en bloc de 64 bits et completant
347
         les vides par des 'espaces' """
         B = [] #Liste BLOCs, resultat
348
349
         L = 1[:] #copie L
350
         n = len(L)
```

```
351
         r = n \% 64 # reste de la division euclidienne de n par 64
         nesp = (64-r)//8 #nombre de caractee 'espace' a ajouter pour
352
        complater L
         if r != 0 : #si len(L) n'est pas un multiple de 64, on complate
353
         L avec des 'espaces'
354
             for i in range(nesp): #on ajoute le caractare 'espace' nesp
         fois
355
                 L+=espace
356
         q = len(L) // 64 \# quotient : [nombre elements de L]/64 =
        nombre de sous liste a creer
357
         for i in range(q):
358
             SB =[] #Sous bloc (temp)
359
             for j in range (64):
360
                 SB.append(L.pop(0)) #on pop et on ajoute en meme temps
361
             B.append(SB)
362
         return B
363
364
     def assembler(B):
365
         """regroupe liste contenant des sous-listes (bloc de 64) en une
         liste"""
366
         L = [] #resultat
         for i in range(len(B)):
367
             L+=B[i]
368
369
         return L
370
371
     # ******* FONCTION DE VERIFICATION ********
372
373
374
     def checkBINn(L, n):
         """ verifie que la liste L est une liste contenant n elements
375
        binaire (0 ou 1)"""
         binaire = [0,1]
376
         if len(L) == n:
377
378
             for i in range(len(L)):
                 if L[i] not in binaire:
379
                     return False
380
381
             return True
382
         else:
383
             return False
384
385
386
     # ******** MAIN *******
387
388
     def DESc(M, K):
         """ Crypte le message M (binaire de 64 bits) avec la cle K (
389
        binaire de 64 bits) par la methode du DES"""
         #Verification
390
391
         if checkBINn(M, 64) == False: return 'Erreur M'
```

```
392
         if checkBINn(K, 64) == False: return 'Erreur K'
393
         #Calcul des cles
394
         key = genKey(K)
         MPI = permutation_initiale(M)
395
396
         #scindement
397
         G,D = scindement2(MPI)
398
         #initialisation de la ronde
         Gi = G
399
400
         Di = D
401
         #ronde
402
         for i in range (16):
403
             Dexpand = expansion(Di)
404
             Xi = XORL(Dexpand, key[i])
             Si = selection(Xi)
405
406
             Ti = permutation32(Si)
407
             Gi, Di = Di, XORL(Gi, Ti)
408
         #regroupement INVERSE
409
         R = Di + Gi
410
         #permutation inverse
411
         return permutation_inverse(R)
412
413
414
     def DESd(M, K):
         """ Decrypte le message M (binaire de 64 bits) avec la cle K (
415
        binaire de 64 bits) par la methode du DES"""
         #Verification
416
         if checkBINn(M, 64) == False: return 'Erreur M'
417
418
         if checkBINn(K, 64) == False: return 'Erreur K'
         #Calcul des cles
419
420
         key = genKey(K)
         key.reverse()
421
422
         MPI = permutation_initiale(M)
423
         #scindement
424
         G,D = scindement2(MPI)
425
         #initialisation de la ronde
         Gi = G
426
         Di = D
427
428
         #ronde
429
         for i in range (16):
430
             Dexpand= expansion(Di)
             Xi = XORL(Dexpand, key[i])
431
             Si = selection(Xi)
432
             Ti = permutation32(Si)
433
434
             Gi, Di = Di, XORL(Gi, Ti)
         #regroupement INVERSE
435
         R = Di + Gi
436
437
         #permutation inverse
438
         return permutation_inverse(R)
```

```
439
440
441
442
    def aide():
       print("----")
443
       print("************ FONCTIONEMENT **********")
444
       print("----")
445
446
       print()
447
       print("FONCTION CRYPTAGE DES(m, K)")
448
       print("_____")
       print("--> permet de crypter un message m avec K")
449
450
       print("1. m est un message en clair - str")
451
       print("2. K est la cle de cryptage - entier naturel")
452
       print()
453
       print()
       print("FONCTION DECRYPTAGE DES_(M, K)")
454
455
       print("_____")
       print("--> permet de decrypter un message M cryte avec K")
456
457
       print("1. M est un message crypte avec K - liste de contenant
      des 0 et 1")
       print("2. K est la cle de decryptage - entier naturel")
458
459
       print("----")
460
       461
       print("-----")
462
463
     -----
464
465
466
    def DES(m, K):
       """ Crypte le message m (str) avec la cle K (entier), retourne
467
      liste binaire correpondant a m crypter en AISCII """
       #Verification:
468
       if type(m) != str: return "Erreur type m"
469
470
       if type(K) != int: return "Erreur type K"
       Kentiere = intbin(K)
471
       Kentiere = min64(Kentiere) #pour avoir une cle binaire de
472
      taille 64 bits minimum
       Kentiere.reverse()
473
474
       key = Kentiere[:64]
       M = decoupe64(encodage(m))
475
       n = len(M) # nombre de blocs de 64 bits
476
       Mc = [] # M crypte
477
       for i in range(n):
478
           Mc.append(DESc(M[i], key))
479
480
       return assembler(Mc)
481
482
    def DES_(M, K):
483
       """ Crypte le message m (str) avec la cle K (entier), retourne
```

```
liste binaire correpondant a m crypter en AISCII """
484
         #Verification:
485
         if checkBINn(M, len(M)) == False : return "Erreur M"
486
         if type(K) != int: return "Erreur type K"
         Kentiere = intbin(K)
487
         Kentiere = min64(Kentiere) #pour avoir une cle binaire de
488
        taille 64 bits minimum
         Kentiere.reverse()
489
490
         key = Kentiere[:64]
491
         print("Cle =", K,"-->", "key =",key )
         print()
492
         Mc = decoupe64(M)
493
         Mclair = [] # M decrypte
494
         for i in range(n):
495
             Mclair.append(DESd(Mc[i], key))
496
         return decodage(assembler(Mclair))
497
498
     print("Entrer 'aide()' pour le fonctionnement")
499
```

4.5 Client-serveur

4.5.1 Serveur

```
# Threads
1
2
   from threading import Thread
3
4
    class ThreadServeurClient(Thread):
5
6
7
        def __init__(self,connexion_principale,connexion_client,
       L_connexions):
            Thread.__init__(self)
9
            self.connexion_principale=connexion_principale
            self.connexion_client=connexion_client
10
11
            self.L_connexions=L_connexions
12
            self.pseudo=''
13
14
        def run(self):
            self.connexion_client.send('Entrez votre pseudo : '.encode
15
       ())
            self.pseudo=self.connexion_client.recv(1024).decode()
16
            print( 'Client '+str(self.connexion_client.getsockname())+'
17
        alias '+self.pseudo)
18
            Continue=True
            while Continue :
19
                message_recu=self.connexion_client.recv(1024).decode()
20
21
                if message_recu == 'Deconnexion':
22
                     Continue=False
23
                     self.L_connexions.remove(self.connexion_client)
24
                else:
25
                     for client in self.L_connexions:
                         if client != self.connexion_client:
26
27
                             client.send((self.pseudo+' : '+message_recu
       ).encode())
28
            self.connexion_client.send(b"Deconnexion")
            print("Deconnecte avec le client {}".format(self.pseudo))
29
30
            self.connexion_client.close()
31
32
    # Serveur
33
   import sys
34
    import socket
35
36
37
   hote='' # vide car le serveur accepte toutes les connexions
   port = 12800
38
39
40
    connexion_principale = socket.socket(socket.AF_INET, socket.
```

```
SOCK_STREAM)
    connexion_principale.bind((hote, port))
41
42
    connexion_principale.listen(5)
    connexion_principale.settimeout(20)
43
    print("Le serveur ecoute a present sur le port {}".format(port))
44
45
46
    L_connexions = []
47
   try:
48
        connexion_client, infos_connexion = connexion_principale.accept
       ()
49
    except socket.timeout:
50
        print("Il n'y a pas de clients : Deconnection")
51
        connexion_principale.close()
        sys.exit()
52
53
    print("Connecte avec le client {}".format(infos_connexion))
54
    L_connexions.append(connexion_client)
    ThreadServeurClient(connexion_principale,connexion_client,
55
       L_connexions).start()
56
    while L_connexions != []:
57
58
        try:
59
            connexion_client, infos_connexion = connexion_principale.
       accept()
60
        except socket.timeout :
61
            continue
62
        print("Connecte avec le client {}".format(infos_connexion))
        L_connexions.append(connexion_client)
64
        ThreadServeurClient(connexion_principale,connexion_client,
       L_connexions).start()
65
    print("Il n'y a plus de clients : Deconnection")
66
    connexion_principale.close()
67
68
    sys.exit()
69
 4.5.2
       Client
   # Threads
    from threading import Thread
2
3
4
    class ThreadClientReception(Thread):
```

def run(self):

5

8

9

def __init__(self,connexion_serveur):

self.connexion_serveur=connexion_serveur

Thread.__init__(self)

```
11
            Continue=True
12
            while Continue:
13
                message_recu=self.connexion_serveur.recv(1024).decode()
14
                print(message_recu)
15
                 if message_recu == 'Deconnexion':
16
                     Continue=False
17
            self.connexion_serveur.send(b'Deconnexion')
18
19
    class ThreadClientEmission(Thread):
20
21
        def __init__(self,connexion_serveur):
22
            Thread.__init__(self)
23
            self.connexion_serveur=connexion_serveur
24
25
        def run(self):
26
27
            while True:
28
                message=input()
29
                 try:
                     self.connexion_serveur.send(message.encode())
30
31
                 except:
32
                     break
33
34
    # Client
35
   import sys
36
37
    import socket
38
    hote = "localhost" #Remplacer par l'adresse IP
39
    port = 12800
40
41
42
    connexion_serveur = socket.socket(socket.AF_INET, socket.
       SOCK_STREAM)
43
    connexion_serveur.connect((hote, port))
    print("Connexion etablie avec le serveur sur le port {}".format(
44
       port))
45
    thread_reception=ThreadClientReception(connexion_serveur)
46
47
    thread_emission=ThreadClientEmission(connexion_serveur)
48
    Continue=True
49
50
    thread_reception.start()
    thread_emission.start()
51
52
53 thread_reception.join()
    sys.exit()
54
```

4.6 Attaques du cryptosystème d'El Gamal : algorithme de Shanks et calcul de l'indice

```
from math import exp, sqrt, log
1
2
3
    #Logarithme discret naif
4
    def lognaif(p,g,x):
5
        for i in range(p):
6
7
             if puissmod(g,i,p) == x:
8
                 return i
9
10
    #Pas de bebe,pas de geant (SHANKS)
11
12
    def shanks(p,g,x): #retourne n tel que x=g**n mod p
        K = int(sqrt(p)) + 1
13
        c=inversmod(puissmod(g,K,p),p)
14
        A=[(puissmod(g,i,p),i) for i in range(1,K)]
15
        A.sort(key=lambda x:x[0])
16
        b = x
17
18
        for j in range(K):
             if b<int(p/2): #On parcours A dans l'ordre croissant
19
20
21
                 while i < K - 2 and b > A[i][0]:
22
                      i += 1
23
                 if A[i][0]==b:
                      return A[i][1]+K*j
24
25
                 else:
26
                      b=(b*c)%p
27
             else: #On parcours A dans l'ordre decroissant
28
                 i = K - 2
                 while i>0 and b<A[i][0]:
29
30
                     i = 1
                 if A[i][0]==b:
31
                    return A[i][1]+K*j
32
33
                 else:
34
                     b=(b*c)%p
35
    #Calcul de l'indice (Complexe)
36
37
38
    def Modele_CalculIndice(i,j,pas):
39
        for x in range(i,j,pas):
             print(x,exp(sqrt(2*log(10**x)))*sqrt(log(log(10**x)))),sep='
40
       ; ')
```

4.7 RSA

```
# Donnees :
    # Privees : p, q, d premier avec (p-1)*(q-1)=phi(p*q)
    # Publiques : n=p*q, e tel que e*d=1 mod phi(n)
3
4
    def pgcd(a,b): #algorithme d'Euclide
5
        while a%b!=0:
6
7
             a,b=b,a\%b
8
        return b
9
10
    def generateur(n):
        while True:
11
12
             q=MillerRabin_generation(n)
             for k in range(1,500):
13
14
                 p=k*q+1
15
                 if MillerRabin_test(p,100):
16
                      return p
17
18
    def RSA_generation(n):
19
        p=generateur(n)
        q=generateur(n) #pas B friable
20
21
        phi = (p-1)*(q-1)
22
        e=3
23
        while pgcd(e,phi)!=1:
24
             e += 2
25
        d=inversmod(e,phi)
26
        n=p*q
27
        return n,e,d
28
29
    def RSA_chiffrement(m,e,n):
30
        c=puissmod(m,e,n)
31
        return c
32
33
    def RSA_dechiffrement(c,d,n):
34
        m=puissmod(c,d,n)
35
        return m
36
37
    def RSA_signature(h,d,n):
38
        s=puissmod(h,d,n)
39
        return s
40
    def RSA_verification(s,h,e,n):
41
42
        if puissmod(s,e,n) == h:
43
             return True
44
        else:
             return False
45
```

4.8 Attaques du cryptosystème RSA : Crible algébrique et algorithme rho de Pollard

```
from math import exp, sqrt, log
2
    from fractions import gcd
3
    # Attaque p-1 de Pollard
4
5
    def Pollard_p_1(n, B):
6
7
        a=2
8
        for i in range(2,B+1):
9
             a=puissmod(a,i,n)
        d=\gcd(a-1, n)
10
        if d>1 and d<n:</pre>
11
12
             return d
13
        return None
14
    def Pollard_rho(n, x1=1, f=lambda x: x**2+1):
15
16
        y=f(x)%n
17
18
        p = gcd(y-x,n)
        while p==1:
19
20
             x=f(x)%n
21
             y=f(f(y))%n
22
             p=gcd(y-x,n)
23
        if p==n:
24
             return None
25
        return p
26
    #Crible algebrique : Complexe
27
28
    def Modele_CribleAlgebrique(i,j,pas):
29
30
        for x in range(i,j,pas):
31
             print(x, exp(((64/9)*log(10**x))**(1/3)*(log(log(10**x)))
       **(2/3)),sep=';')
```