Network Layer

goals:

- understand principles behind network layer services:
 - routing (path selection)
 - how a router works
- instantiation and implementation in the Internet

Overview:

- network layer services
- routing principle: path selection
- hierarchical routing
- IP
- what's inside a router?

Network layer functions

- transport packet from sending to receiving hosts
- network layer protocols in every host, router

important functions:

- path determination: route taken by packets from source to dest. Routing algorithms
- switching: move packets from router's input to appropriate router output

Interplay between routing and forwarding

The internet model

- routers: no state about end-to-end connections
 - no network-level concept of 'connection'
- packets typically routed using destination hostID
 - packets between same source-destination pair may take different paths

Routing

Routing protocol

Goal: determine good path (sequence of routers) through network from source to destination.

Graph abstraction for routing algorithms:

- graph nodes are routers
- graph edges are physical links
 - link cost: delay, \$ cost, or congestion level

good' path:

- typically means minimum cost path
- other definitions possible

Routing Algorithm classification

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- link state algorithms

Decentralized:

- router knows
 physically-connected
 neighbours, link costs to
 neighbours
- iterative process of computation, exchange of info with neighbours
- distance vector algorithms

Static or dynamic? Static:

routes change slowly over time

Dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

Notation:

- □ c(x,y): link cost from node x
 to y; = ∞ if not direct
 neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
1 Initialization:
  N' = \{u\}
   for all nodes v
     if v adjacent to u
5
       then D(v) = c(u,v)
     else D(v) = \infty
6
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
    update D(v) for all v adjacent to w and not in N' :
12
      D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>∙</mark>	2,U	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw <					4,y
5	uxyvwz 🗲					

Dijkstra's algorithm: example (2)

Resulting shortest-path tree from u:

Resulting forwarding table in u:

destination	link		
V	(u,v)		
X	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

Dijkstra's algorithm, discussion

Algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

Oscillations possible:

e.g., link cost = amount of carried traffic

<u>Distance Vector Routing Algorithm</u>

Bellman-Ford algorithm

iterative:

- continues until no nodes exchange info.
- self-terminating: no signal to stop

asynchronous:

nodes need not exchange info/iterate in lock step!

distributed:

each node communicates only with directly-attached neighbours

Distance Table data structure

- each node has its own
- row for each possible destination
- column for each directly-attached neighbor to node
- example: in node X, for destination Y via neighbor Z:

$$\begin{array}{rcl}
X & = & \text{distance } from \ X \text{ to} \\
Y, via \ Z \text{ as next hop} \\
& = & \text{c}(X,Z) + \min_{W} \{D^{Z}(Y,W)\}
\end{array}$$

Distance Table: example

$$D(C,D) = c(E,D) + \min_{W} \{D^{D}(C,w)\}$$

$$= 2+2 = 4$$

$$D(A,D) = c(E,D) + \min_{W} \{D^{D}(A,w)\}$$

$$= 2+3 = 5_{loop!}$$

$$D(A,B) = c(E,B) + \min_{W} \{D^{B}(A,w)\}$$

$$= 8+6 = 14_{loop!}$$

<u>Distance table gives routing</u> <u>table</u>

D	E ()	st to d	lestina B	tion via D			Outgoing link to use, cost
	Α	1	14	5		Α	A,1
ation	В	7	8	5	ation	В	D,5
destination	С	6	9	4	destination	С	D,4
	D	4	11	2		D	D,2

Distance table — Routing table

<u>Distance Vector Routing: overview</u>

Iterative, asynchronous: each local iteration caused by:

- local link cost change
- message from neighbour: its least cost path change from neighbor

Distributed:

- each node notifies
 neighbours only when its
 least cost path to any
 destination changes
 - neighbours then notify their neighbours if necessary

Each node:

wait for (change in local link cost of msg from neighbor) recompute distance table if least cost path to any destination has changed, notify neighbors

<u>Distance Vector Algorithm:</u>

At all nodes, X:

- 1 Initialization:
- 2 for all adjacent nodes v:
- 3 $D^{X}(*,v)$ =infinite (the * operator means "for all rows")
- $\begin{array}{cc} X \\ D \end{array} (v,v) = c(X,v) \end{array}$
- 5 for all destinations, y
- 6 send min DX (y,w) to each neighbor (w over all X's neighbors)

<u>Distance Vector Algorithm (cont.):</u>

```
8 loop
    wait (until I see a link cost change to neighbor V
10
         or until I receive update from neighbor V)
11
12
    if (c(X,V) changes by d)
13
    /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
for all destinations y: D^{X}(y,V) = D^{X}(y,V) + d
16
17
     else if (update received from V wrt destination Y)
18
    /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its min<sub>w</sub> DV(Y,w) */
20 /* call this received new value is newval */
      for the single destination y: D^{X}(Y,V) = c(X,V) + newval
21
22
    if we have a new \min_{W} D^{X}(Y,w) for any destination Y send new value of \min_{W} D^{X}(Y,w) to all neighbors
23
24
25
26 forever
```

<u>Distance Vector Algorithm: example</u>

Distance Vector Algorithm: example

	ď	cost via
d e	х	2 ∞
s t	Z	œ (1)

$$\begin{array}{c|cccc}
Z & cost via \\
X & Y \\
d & X & 7 \\
e & X & 7 \\
s & Y & \infty & 1
\end{array}$$

$$D^{X}(Y,Z) = c(X,Z) + min_{W}\{D^{Z}(Y,w)\}$$

= 7+1 = 8

$$D^{X}(Z,Y) = c(X,Y) + min_{W} \{D^{Y}(Z,w)\}$$

= 2+1 = 3

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates distance table (line 15)
- if cost change in least cost path, notify neighbours (lines 23,24)

"good news travels fast"

Distance Vector: link cost changes

Link cost changes:

- good news travels fast
- bad news travels slow -'count to infinity' problem!

Distance Vector: poisoned reverse

If Z routes through Y to get to X:

- Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

