Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет информационных технологий и программирования Кафедра компьютерных технологий

Рыбак Андрей Викторович

Представление структур данных индуктивными семействами и доказательства их свойств

Научный руководитель: Я. М. Малаховски

Санкт-Петербург 2014

Содержание

Введен	ие	5
Глава 1	1. Обзор	6
1.1	Функциональное программирование	6
1.2	Лямбда-исчисление	6
1.3	Лямбда-исчисление с простыми типами	7
1.4	Алгебраические типы данных и сопоставление с образцом	8
	1.4.1 Рекурсивные типы данных	9
	1.4.2 Сопоставление с образцом	9
1.5	Теория типов	9
	1.5.1 Отношение конвертабельности	0
	1.5.2 Интуиционистская теория типов	0
1.6	Унификация	1
1.7	Agda	1
	1.7.1 Сопоставление с образцом по типам с индексами 1	2
1.8	Индуктивные семейства	3
1.9	Использование индуктивных семейств в структурах данных . 1	3
1.1	0 Выводы по главе 1	4
Глава 2	2. Описание реализованной структуры данных	.5
2.1	Постановка задачи	5
2.2	Структура данных «двоичная куча»	5
2.3	Вспомогательные определения	6
	2.3.1 Общие определения	6
	2.3.2 Определение отношений и доказательства их свойств . 1	9
2.4	Модуль Heap	25
	2.4.1 Расширение исходного типа	25
	2.4.2 Тип данных Неар	29
	2.4.3 Функции вставки в кучу	32
	2.4.4 Удаление минимума из полной кучи	5
	2.4.5 Удаление минимума из неполной кучи	6
2.5	Выволы по главе 2	0

Заключение		•	•	•			•	•	•	•	•	•	•							•		4	51
Литература																						4	52

Введение

Структуры данных используются в программировании повсеместно для абстрагирования обработки данных. Свойства структуры данных происходят из инвариантов, которые эта структура данных соблюдает.

Практика показывает, что тривиальные структуры данных и их инварианты хорошо выражаются в форме индуктивных семейств. Мы хотим узнать насколько хорошо эта практика работает и для более сложных структур.

В данной работе рассматривается представление в форме индуктивных семейств структуры данных приоритетная очередь типа «двоичная куча».

Глава 1. Обзор

В данной главе производится обзор предметной области и даются определения используемых терминов.

1.1. Функциональное программирование

Функциональное программирование — парадигма программирования, являющаяся разновидностью декларативного программирования, в которой программу представляют в виде функций (в математическом смысле этого слова, а не в смысле, используемом в процедурном программировании), а выполнением программы считают вычисление значений применения этих функций к заданным значениям. Большинство функциональных языков программирования используют в своём основании лямбда-исчисление (например, Haskell [1], Curry [2], Agda [3], диалекты LISP [4—6], SML [7], OCaml[8]), но существуют и функциональные языки явно не основанные на этом формализме (например, препроцессор языка С и шаблоны в С++).

1.2. Лямбда-исчисление

 $\mathit{Лямбда}$ -исчисление (λ -calculus) — вычислительный формализм с тремя синтаксическим конструкциями, называемыми npe -лямбда-термами:

- вхождение переменной: v. При этом $v \in V$, где V некоторое множество имён переменных;
- лямбда-абстракция: $\lambda x.A$, где x имя переменной, а A прелямбда-терм. При этом терм A называют телом абстракции, а x перед точкой csssisыванием.
- лямбда-аппликация: BC;

и одной операцией *бета-редукции*. При этом говорят, что вхождение переменной является *свободным*, если оно не связано какой-либо абстракцией.

Множество пре-лямбда-термов обозначают Λ^- . Лямбда-термы — это прелямбда-термы, факторизованные по отношению альфа-эквивалентности. Обозначение: $\Lambda = \Lambda^-/=_{\alpha}$.

Альфа-эквивалентность (α -equality) отождествляет два пре-лямбдатерма, если один из них может быть получен из другого путём некоторого корректного переименовывания переменных — переименования не нарушающего отношение связанности.

Два лямбда-терма A и B называются конвертабельными, когда существует две последовательности бета-редукций, приводящих их к общему терму C. Или, эквивалентно, когда термы A и B состоят с друг с другом в рефлексивно-симметрично-транзитивном замыкании отношения бета-редукции, также называемом отношением бета-эквивалентности.

За более подробной информацией об этом формализме следует обращаться к [9] и [10].

1.3. Лямбда-исчисление с простыми типами

Определение 1.1. Пусть U — бесконечное счетное множество, элементы которого мы будем называть *переменными типов*. Множество *простых типов* Π — множество, определенное грамматикой:

$$\Pi ::= U \mid (\Pi \to \Pi)$$

Для обозначения элементов множества Π используют буквы греческого алфавита: $\sigma, \tau \dots$

Определение 1.2. Множество контекстов C — это множество всех множеств

 $^{^1}$ В терминах пре-лямбда-термов это означает замену свободных вхождений в теле A на пре-терм C так, чтобы ни для каких переменных не нарушилось отношение связанности. То есть, в пре-терме A следует корректно переименовать все связанные переменные, имена которых совпадают с именами свободных переменных в C.

пар такого вида:

$$\{x_1:\tau_1,\ldots,x_n:\tau_n\}$$

где $au_1,\dots, au_n\in\Pi$, а $x_1,\dots,x_n\in V$ (переменные из Λ) и $x_i\neq x_j$ если $i\neq j$.

Определение 1.3. Домен контекста $\Gamma = \{x_1 : \tau_1, \dots, x_n : \tau_n\}$:

$$dom(\Gamma) = \{x_1, \dots, x_n\}$$

и $x_i \neq x_j$ при $i \neq j$.

Определение 1.4. Отношение *типизации* (typability) \vdash на множестве $C \times \Lambda \times \Pi$ определяется следующими правилами:

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma, x : \tau \vdash x : \tau} \quad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x . M : \sigma \to \tau} \quad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$$

В первом и втором правиле мы требуем $x \notin \text{dom}(\Gamma)$.

Определение 1.5. Лямбда-исчисление с простыми типами или λ^{\to} — это тройка (Λ, Π, \vdash) . Чтобы отличать данное в этой работе определение системы λ^{\to} от других вариантов, эту систему называют лямбда-исчисление с простыми типами по Карри.

За более подробной информацией об этом формализме следует обращаться к [11] и [10].

1.4. Алгебраические типы данных и сопоставление с образцом

Алгебраический тип данных — вид составного типа, то есть типа, сформированного комбинированием других типов. Комбинирование осуществляется с помощью алгебраических операций — сложения и умножения.

Cумма типов A и B — дизъюнктное объединение исходных типов. Значения типа-суммы обычно создаются с помощью κ онструкторов.

Произведение типов A и B — прямое произведение исходных типов, кортеж типов.

1.4.1. Рекурсивные типы данных

Pекурсивный тип данных — тип данных, в определении которого содержится определяемый тип данных. Например, список элементов типа A:

$$List A = Nil + (A \times List A)$$

В теории [12] для введения рекурсивных типов используются μ -типы. *Сырые* μ -типы вводятся с помощью оператора μ : $\mu X.T$. При этом T может содержать X.

Определение 1.6. Сырой μ -тип T называется *сократимым* (contractive), если для любого подвыражения T вида $\mu X. \mu X_1 ... \mu X_n. S$ тело S не равняется X.

Сырой μ -тип называется просто μ -типом (μ -type), если он сократим.

Пример: список элементов типа A: $List\ A = \mu X.Nil + (A \times X)$.

1.4.2. Сопоставление с образцом

Сопоставление с образцом — способ обработки объектов алгебраических типов данных, который идентифицирует значения по конструктору и извлекает данные в соответствии с представленным образцом.

1.5. Теория типов

 $\it Teopus \, munos$ — раздел математики изучающий отношения типизации вида $M\colon \tau$ и их свойства. M называется $\it mepmom$ или $\it supaxeehuem$, а τ — типом терма M .

Теория типов также изучает правила для *переписывания* термов — замены подтермов в выражениях другими термами. Такие правила также называют правилами *редукции* или *конверсии* термов. Редукцию терма x в терм y записывают: $x \to y$. Также рассматривают транзитивное замыкание отношения редукции: $\stackrel{*}{\longrightarrow}$. Например, термы 2+1 и 3 — разные термы, но первый редуцируется во второй: $2+1 \stackrel{*}{\longrightarrow} 3$. Если для терма x не существует терма y, для которого $x \to y$, то говорят, что терм x — в *нормальной форме*.

1.5.1. Отношение конвертабельности

Два терма x и y называются конвертабельными, если существует терм z такой, что $x \stackrel{*}{\longrightarrow} z$ и $y \stackrel{*}{\longrightarrow} z$. Обозначают $x \stackrel{*}{\longleftrightarrow} y$. Например, 1+2 и 2+1 — конвертабельны, как и термы x+(1+1) и x+2. Однако, x+1 и 1+x (где x — свободная переменная) — не конвертабельны, так как оба представлены в нормальной форме. Конвертабельность — рефлексивно-транзитивносимметричное замыкание отношения редукции.

1.5.2. Интуиционистская теория типов

Интуиционистская теория типов (теория типов Мартина-Лёфа) основана на математическом конструктивизме [13].

Операторы для типов в ИТТ:

- П-тип (пи-тип) зависимое произведение, обобщение типов функций $(X \to Y)$, в которых тип результата зависит от значения аргумента: $\Pi_{x:X}Y(x)$ Например, если $\mathrm{Vec}(A,n)$ тип кортежей из n элементов типа A, $\mathbb N$ тип натуральных чисел, то $\Pi_{n:\mathbb N}$ $\mathrm{Vec}(A,n)$ тип функции, которая по натуральному числу n возвращает кортеж из n элементов типа A.
- Σ -тип зависимая пара $\Sigma_{x:A}B(x)$. Второй элемент в зависимой паре зависит от первого. Например, тип $\Sigma_{n:\mathbb{N}}\operatorname{Vec}(A,n)$ тип пары из числа n и кортежа из n элементов типа A.
- Пусть A множество конструкторов, B селектор на A. Элементы множества A представляют разные способы сформировать элемент в $W_{a:A}B(a)$, а B(a) представляют части дерева, сформированные с помощью a. $W_{a:A}B(a)$ рекурсивный тип, построенный с помощью конструкторов B(a), который можно представить в виде фундированных деревьев (well-founded trees) [14].

Базовые типы в ИТТ: \bot или 0 — пустой тип, не содержащий ни одного элемента; \top или 1 — единичный тип, содержащий единственный элемент.

1.6. Унификация

 $\mathit{Унификатор}$ для термов A и B — подстановка S, действующая на их свободные переменные, такая что $S(A) \equiv S(B)$.

Унификация — процесс поиска унификатора.

1.7. AGDA

Agda [3] — чистый функциональный язык программирования с зависимыми типами. В Agda есть поддержка модулей:

module AgdaDescription where

В коде на Agda широко используются символы Unicode. Тип натуральных чисел — \mathbb{N} .

data \mathbb{N} : Set where

zero: N

 $succ : \mathbb{N} \to \mathbb{N}$

В Agda функции можно определять как mixfix операторы. Пример — сложение натуральных чисел:

```
-+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N}

zero + b = b

succ a + b = \text{succ } (a + b)
```

Символы подчеркивания обозначают места для аргументов.

Зависимые типы позволяют определять типы, зависящие (индексированные) от значений других типов. Пример — список, индексированный своей длиной:

```
data Vec (A : Set) : \mathbb{N} \to Set where nil : Vec A zero
```

cons :
$$\forall \{n\} \rightarrow A \rightarrow \text{Vec } A \ n \rightarrow \text{Vec } A \ (\text{succ } n)$$

В фигурные скобки заключаются неявные аргументы.

1.7.1. Сопоставление с образцом по типам с индексами

Такое определение Vec позволяет нам описать функцию head ДЛЯ такого которая может бросить исключение: списка, не

head:
$$\forall \{A\} \{n\} \rightarrow \text{Vec } A \text{ (succ } n) \rightarrow A$$

У аргумента функции head тип $\operatorname{Vec} A (\operatorname{succ} n)$, то есть вектор, в котором есть хотя бы один элемент. Это позволяет произвести сопоставление с образцом только по конструктору cons:

```
head (cons a as) = a
```

Перепишем тип данных Vec в немного другом виде — заменим индекс на параметр:

```
data Vec-ni (A : Set) (n : \mathbb{N}) : Set where

nil : (n \equiv zero) \rightarrow Vec-ni \ A \ n

cons : \forall \{k\} \rightarrow (n \equiv succ \ k) \rightarrow A \rightarrow Vec-ni \ A \ k \rightarrow Vec-ni \ A \ n
```

Теперь конструкторы nil и cons явно требуют доказательства о длине вектора n. Agda при сопоставлении с образцом на индексированных типах генерирует эти доказательства с помощью унификации [15, 16]. В определении функции head тип аргумента унифицируется с типами конструкторов типа данных Vec и, так как не существует k такого, что zero \equiv succ k, сопоставление производится только по конструктору cons.

1.8. Индуктивные семейства

Определение 1.7. *Индуктивное семейство* [17, 18] — это индуктивный тип данных, который может зависеть от других типов и значений.

Тип или значение, от которого зависит зависимый тип, называют *ин- дексом*.

Одной из областей применения индуктивных семейств являются системы интерактивного доказательства теорем.

Индуктивные семейства позволяют формализовать математические структуры, кодируя утверждения о структурах в них самих, тем самым перенося сложность из доказательств в определения.

1.9. Использование индуктивных семейств в структурах данных

В работах [19, 20] приведены различные подходы в использовании индуктивных семейств в реализации структур данных и доказательств их свойств.

Пример задания структуры данных и инвариантов — тип данных AVL-дерева и тип данных для хранения баланса в AVL-дереве [21].

Если $m \sim n$, то разница между m и n не больше чем один:

data
$$_\sim_: \mathbb{N} \to \mathbb{N} \to \text{Set where}$$

 $\sim+: \forall \{n\} \to n \sim 1 + n$
 $\sim0: \forall \{n\} \to n \sim n$
 $\sim-: \forall \{n\} \to 1 + n \sim n$

В работе [20] представлен способ обобщения упорядоченных структур данных (таких как отсортированные списки и деревья поиска) и использование этого метода для реализации 2-3 деревьев.

1.10. Выводы по главе 1

Рассмотрены некоторые существующие подходы к построению структур данных с использованием индуктивных семейств. Кратко описаны особенности языка программирования Agda.

Глава 2. Описание реализованной структуры данных

В данной главе описывается разработанная функциональная структура данных приоритетная очередь типа «двоичная куча».

2.1. Постановка задачи

Целью данной работы является разработка типов данных для представления структуры данных и инвариантов, а также доказательство этих инвариантов.

Требования к данной работе:

- Разработать типы данных для представления структуры данных
- Реализовать функции по работе со структурой данных
- Используя разработанные типы данных доказать выполнение инвариантов.

2.2. Структура данных «двоичная куча»

Определение 2.1. Двоичная куча или пирамида [22] — такое двоичное подвешенное дерево, для которого выполнены следующие три условия:

- Значение в любой вершине не больше (если куча для минимума), чем значения её потомков.
- На i-ом слое 2^i вершин, кроме последнего. Слои нумеруются с нуля.
- Последний слой заполнен слева направо

На рисунке 2.1 изображен пример кучи.

Рис. 2.1. Пример заполненной кучи для минимума

2.3. Вспомогательные определения

2.3.1. Общие определения

Некоторые общеизвестные определения заимствованы из стандартной библиотеки Agda [23].

module HeapModule where

Тип У пустого типа. ЭТОГО данных ДЛЯ типа нет конструкторов, И, как следствие, нет термов, населяющих ЭТОТ тип.

```
data \perp : Set where
```

```
module Level where

postulate Level : Set

postulate lzero : Level

postulate lsucc : Level → Level

postulate _⊔_ : Level → Level → Level

infixl 6 _⊔_

{-# BUILTIN LEVEL Level #-}

{-# BUILTIN LEVELZERO lzero #-}
```

```
{-# BUILTIN LEVELSUC Isucc #-}
{-# BUILTIN LEVELMAX _u_ #-}
open Level
```

module Function where

Композиция функций.

Из элемента пустого типа следует что-угодно.

```
\perp-elim : \forall {a} { Whatever : Set a} \rightarrow \perp \rightarrow Whatever \perp-elim ()
```

Логическое отрицание.

$$\neg : \forall \{a\} \to \operatorname{Set} a \to \operatorname{Set} a$$
$$\neg P = P \to \bot$$

private

```
module DummyAB \{a \ b\} \{A : Set \ a\} \{B : Set \ b\} where
```

Контрадикция, противоречие: из A и $\neg A$ можно получить любое B.

```
contradiction : A \rightarrow \neg A \rightarrow B
contradiction a \neg a = \bot-elim (\neg a \ a)
```

Контрапозиция

```
contraposition : (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)

contraposition = flip \_\circ\_

open DummyAB public

open Logic public
```

Определения интуиционистской теории типов.

```
module MLTT where
```

Пропозициональное равенство из интуиционистской теории типов [13].

```
infix 4 \equiv  data = \{a\} \{A : Set \ a\} \{x : A\} : A \rightarrow Set \ a where refl : x \equiv x \{-\# BUILTIN EQUALITY = \#-\} \{-\# BUILTIN REFL refl \#-\}
```

Тип-сумма — зависимая пара.

```
record \Sigma {a b} (A : Set a) (B : A \to \operatorname{Set} b) : Set (a \sqcup b) where constructor __,__ field fst : A ; snd : B fst open \Sigma public
```

Декартово произведение — частный случай зависимой пары, Второй индекс игнорирует передаваемое ему значение.

```
\_x\_: \forall \{a \ b\} \ (A : \operatorname{Set} a) \to (B : \operatorname{Set} b) \to \operatorname{Set} (a \sqcup b)
A \times B = \sum A \ (\lambda \_ \to B)
infixr 5 \_x\_\_,\_

module \equiv-Prop where

private

module DummyA \{a \ b\} \ \{A : \operatorname{Set} a\} \ \{B : \operatorname{Set} b\} where
```

Конгруэнтность

пропозиционального

равенства.

```
cong : \forall (f: A \rightarrow B) \{x \ y\} \rightarrow x \equiv y \rightarrow f \ x \equiv f \ y cong f refl = refl open DummyA public open \equiv-Prop public open MLTT public
```

2.3.2. Определение отношений и доказательства их свойств

Чтобы задать порядок элементов в куче, нужно уметь сравнивать элементы. Зададим отношения на этих элементах.

$$Rel_2 : Set \rightarrow Set_1$$

 $Rel_2 A = A \rightarrow A \rightarrow Set$

Трихотомичность отношений меньше, равно и больше: одновременно два элемента могут принадлежать только одному отношению из трех.

data Tri
$$\{A : Set\}$$
 (_<_ == __>_ : Rel₂ A) ($a b : A$) : Set where tri< : $(a < b) \rightarrow \neg (a == b) \rightarrow \neg (a > b) \rightarrow \text{Tri} _<_ == __>_ a b$ tri= : $\neg (a < b) \rightarrow \neg (a == b) \rightarrow \neg (a > b) \rightarrow \text{Tri} _<_ == __>_ a b$ tri> : $\neg (a < b) \rightarrow \neg (a == b) \rightarrow \neg (a > b) \rightarrow \text{Tri} _<_ == __>_ a b$

Введем упрощенный предикат, использующий только два OT-Отношение больше равенство. ношения меньше И заменяется отношением меньше cпереставленными аргументами.

flip₁:
$$\forall$$
 { $A B : Set$ } { $C : Set_1$ } \rightarrow ($A \rightarrow B \rightarrow C$) \rightarrow $B \rightarrow A \rightarrow C$
flip₁ $f a b = f b a$
Cmp: { $A : Set$ } \rightarrow Rel₂ $A \rightarrow$ Rel₂ $A \rightarrow$ Set
Cmp { A } $<$ == = \forall ($x y : A$) \rightarrow Tri ($<$) (==) (flip₁ $<$) $x y$

Задавать высоту кучи будем натуральными числами.

```
data \mathbb{N}: Set where

zero: \mathbb{N}

succ: \mathbb{N} \to \mathbb{N}

{-# BUILTIN NATURAL \mathbb{N} #-}

{-# BUILTIN ZERO zero #-}

{-# BUILTIN SUC succ #-}
```

Тип данных для отношения меньше или равно на натуральных числах.

```
data \mathbb{N} \leq \mathbb{R} = \mathbb{N} where z \leq n : \forall \{n\} \to \text{zero } \mathbb{N} \leq n
```

```
s \le s : \forall \{n \ m\} \to n \ \mathbb{N} \le m \to \operatorname{succ} n \ \mathbb{N} \le \operatorname{succ} m
```

Все остальные отношения определяются через _№__

```
\mathbb{N} < \mathbb{N} \ge \mathbb{N} > \mathbb{N} : \operatorname{Rel}_{2} \mathbb{N}
n \mathbb{N} < m = \operatorname{succ} n \mathbb{N} \le m
n \mathbb{N} > m = m \mathbb{N} < n
n \mathbb{N} \ge m = m \mathbb{N} \le n
```

В качестве примера компаратора — доказательство трихотомичности для отношения меньше для натуральных чисел.

```
lemma-succ-\equiv : \forall {n} {m} \rightarrow succ n \equiv succ m \rightarrow n \equiv m lemma-succ-\equiv refl = refl lemma-succ-\leq : \forall {n} {m} \rightarrow succ (succ n) \mathbb{N} \leq succ m \rightarrow succ n \in \mathbb{N} \leq m lemma-succ-\leq (s\leqs r) = r cmp\mathbb{N} : Cmp {\mathbb{N}} _\mathbb{N} \leq m = m cmp\mathbb{N} zero (zero) = tri= (\lambda ()) refl (\lambda ()) cmp\mathbb{N} zero (succ y) = tri< (s\leqs z\leqn) (\lambda ()) (\lambda ()) (s\leqs z\leqn) cmp\mathbb{N} (succ x) (succ y) with cmp\mathbb{N} x y ... | tri< a \neg b \neg c = tri< (s\leqs a) (contraposition lemma-succ-\equiv \neg b) (contraposition lemma-succ-\equiv \neg b) (s\leqs c) ... | tri= \neg a \rightarrow b \rightarrow c = tri= (contraposition lemma-succ-\leq \neg a) (cong succ a) (contraposition lemma-succ-a) (cong succ a) (contraposition lemma-succ-a)
```

Транзитивность отношения.

Trans :
$$\{A : \operatorname{Set}\} \to \operatorname{Rel}_2 A \to \operatorname{Set}$$

Trans $\{A\}$ $rel = \{a \ b \ c : A\} \to (a \ rel \ b) \to (b \ rel \ c) \to (a \ rel \ c)$

Симметричность отношения.

Symmetric :
$$\forall \{A : \operatorname{Set}\} \to \operatorname{Rel}_2 A \to \operatorname{Set}$$

Symmetric $_rel_ = \forall \{a \ b\} \to a \ rel \ b \to b \ rel \ a$

Предикат P учитывает (соблюдает) отношение _rel_

Respects:
$$\forall \{\ell\} \{A : Set\} \rightarrow (A \rightarrow Set \ell) \rightarrow Rel_2 A \rightarrow Set$$
_
 $P \text{ Respects } _rel_ = \forall \{x \ y\} \rightarrow x \ rel \ y \rightarrow P \ x \rightarrow P \ y$

Отношение P соблюдает отношение rel .

Respects₂ :
$$\forall$$
 {A : Set} \rightarrow Rel₂ A \rightarrow Rel₂ A \rightarrow Set
P Respects₂ _rel_ =
(\forall {x} \rightarrow P x Respects _rel_) ×
(\forall {y} \rightarrow flip P y Respects _rel_)

Тип данных для обобщенного отношения меньше или равно.

data _<=_ {
$$A : Set$$
} {_<_ : $Rel_2 A$ } {_==_ : $Rel_2 A$ } : $Rel_2 A$ where
le : $\forall \{x \ y\} \rightarrow x < y \rightarrow x <= y$
eq : $\forall \{x \ y\} \rightarrow x == y \rightarrow x <= y$

Обобщенные функции минимум и максимум.

min max :
$$\{A : Set\} \{ _<_ : Rel_2 A \} \{ _==_ : Rel_2 A \}$$

 $\rightarrow (cmp : Cmp _<_ _==_) \rightarrow A \rightarrow A \rightarrow A$
min $cmp \ x \ y$ with $cmp \ x \ y$
... $| tri<__ = x$

Лемма: элемент меньше или равный двух других элементов меньше или равен минимума из них.

lemma-<=min :
$$\{A : Set\} \{_<_ : Rel_2 A\} \{_==_ : Rel_2 A\}$$

 $\{cmp : Cmp _<_ ==_ \} \{a \ b \ c : A\}$
 $\rightarrow (_<=_ \{_<_ =_<_ \} \{_==_ \} a \ b)$
 $\rightarrow (_<=_ \{_<_ =_<_ \} \{_==_ \} a \ c)$
 $\rightarrow (_<=_ \{_<_ =_<_ \} \{_==_ \} a \ (min \ cmp \ b \ c))$

lemma-<=min {cmp = cmp} {_} {b} {c} ab ac with cmp b c
... | tri<___ = ab
... | tri=__ = ac
... | tri>__ = ac

Функция — минимум из трех элементов.

```
min3: \{A : Set\} \{ \le : Rel_2 A \} \{ == : Rel_2 A \}

\rightarrow (cmp : Cmp \le == ) \rightarrow A \rightarrow A \rightarrow A \rightarrow A

min3 cmp \ x \ y \ z  with cmp \ x \ y

... | tri < = = min \ cmp \ y \ z
```

Аналогичная предыдущей лемма для минимума из трех элементов.

```
lemma-<=min3 : \{A : Set\} \{ \_<\_ : Rel_2 A \} \{ \_==\_ : Rel_2 A \}
\{ cmp : Cmp \_<\_ \_==\_ \} \{ x \ a \ b \ c : A \}
\rightarrow (\_<=\_ \{ \_<\_ = \_<\_ \} \{ \_==\_ \} x \ a )
```

Леммы lemma-<=min и lemma-<=min3 понадобятся при доказательстве соотношений между элементами, из которых составляются новые кучи при их обработке.

Отношение _<=_ соблюдает отношение равенства _==_, с помощью которого оно определено.

```
resp<= : \{A: Set\} \{\_<\_: Rel_2 A\} \{\_==\_: Rel_2 A\}

\rightarrow (resp: \_<\_ Respects_2 \_==\_) \rightarrow (trans==: Trans \_==\_)

\rightarrow (sym==: Symmetric \_==\_)

\rightarrow (\_<=\_ \{A\}\{\_<\_\}\{\_==\_\}) Respects_2 \_==\_

resp<= \{A\}\{\_<\_\}\{\_==\_\} resp trans sym = left, right where

left: \forall \{a \ b \ c: A\} \rightarrow b == c \rightarrow a <= b \rightarrow a <= c

left b=c (le a < b) = le (fst resp \ b=c \ a < b)

left b=c (eq a=b) = eq (trans \ a=b \ b=c)

right b=c (le a < b) = le (snd resp \ b=c \ a < b)

right b=c (eq a=b) = eq (trans \ (sym \ b=c) \ a=b)
```

Транзитивность отношения _<=_.

```
trans<=: \{A : Set\} \{\_<\_ : Rel_2 A\} \{\_==\_ : Rel_2 A\}

\rightarrow \_<\_ Respects_2 \_==\_

\rightarrow Symmetric \_==\_ \rightarrow Trans \_==\_ \rightarrow Trans \_<\_
```

```
→ Trans (_<=_ {A} {_<_} {_==_})

trans<= r s t== t< (le a<b) (le b<c) = le (t<a<b b<c)

trans<= r s t== t< (le a<b) (eq b=c) = le (fst r b=c a<b)

trans<= r s t== t< (eq a=b) (le b<c) = le (snd r (s a=b) b<c)

trans<= r s t== t< (eq a=b) (eq b=c) = eq (t== a=b b=c)
```

2.4. Модуль Неар

Модуль, в котором мы определим структуру данных куча, параметризован исходным типом, двумя отношениями, определенными для этого типа, _<_ и _==_. Также требуется симметричность и транзитивность _==_, транзитивность _<_, соблюдение отношением _<_ отношения _==_ и

```
module Heap (A : Set) (_<_ _==_ : Rel<sub>2</sub> A) (cmp : Cmp _<_ _==_)

(sym== : Symmetric _==_) (trans== : Trans _==_)

(trans< : Trans _<_) (resp : _<_ Respects<sub>2</sub> _==_)

where
```

2.4.1. Расширение исходного типа

Будем индексировать кучу минимальным элементом в ней, для того, чтобы можно было строить инварианты порядка на куче исходя из этих индексов. Так как в пустой куче нет элементов, то мы не можем выбрать элемент, который нужно указать в индексе. Чтобы решить эту проблему, расширим исходный тип данных, добавив элемент, больший всех остальных. Тип данных для расширения исходного типа.

```
data expanded (A : Set) : Set where \# : A \rightarrow \text{ expanded } A \rightarrow \text{ элемент исходного типа}
```

top : expanded A -- элемент расширение

Теперь нам нужно аналогичным образом расширить отношения заданные на множестве исходного типа. Тип данных для расширения отношения меньше.

```
data \_<E_\_: Rel<sub>2</sub> (expanded A) where
base : \forall \{x \ y : A\} \rightarrow x < y \rightarrow (\# x) < E \ (\# y)
ext : \forall \{x : A\} \rightarrow (\# x) < E \ top
```

Вспомогательная лемма, извлекающая доказательство для отношения элементов исходного типа из отношения для элементов расширенного типа.

```
lemma-\langle E : \forall \{x\} \{y\} \rightarrow (\# x) \langle E (\# y) \rightarrow x \langle y \}
lemma-\langle E (base r) = r \rangle
```

Расширенное отношение меньше — транзитивно.

```
trans<E : Trans _<E_

trans<E {#_} {#_} {#_} a<b b<c =

base (trans< (lemma-<E a<b) (lemma-<E b<c))

trans<E {#_} {top} _ _ = ext

trans<E {#_} {top} {_} _ ()

trans<E {top} {_} ()_
```

Тип данных расширенного отношения равенства.

```
data \_=E_\_: Rel<sub>2</sub> (expanded A) where
base : \forall \{x \ y\} \rightarrow x == y \rightarrow (\# x) = E (\# y)
ext : top =E top
```

Расширенное отношение равенства — симметрично и транзитивно.

```
sym=E : Symmetric _=E_
   sym=E (base a=b) = base (sym==a=b)
   sym=E ext = ext
   trans=E: Trans =E
   trans=E (base a=b) (base b=c) = base (trans== a=b b=c)
   trans=E ext ext = ext
Отношение _<Е_ соблюдает отношение _=Е_.
   respE : \_<E\_Respects_2 \_=E\_
   respE = left, right where
     left : \forall \{a \ b \ c : \text{expanded } A\} \rightarrow b = E \ c \rightarrow a < E \ b \rightarrow a < E \ c
     left \{\# \} \{\# \} \{\# \} \{\text{base } rI \} (base r2) = base (fst resp r1 \ r2)
      left \{\#\} \{top\} \{top\} ext ext = ext
      left {_} {#_} {top} () _
      left {_} {top} {#__} () _
     left {top} {_} {_} ()
      right: \forall \{a \ b \ c : \text{expanded } A\} \rightarrow b = E \ c \rightarrow b < E \ a \rightarrow c < E \ a
      right \{\#\} \{\#\} \{\#\} (base r1) (base r2) = base (snd resp r1 r2)
      right {top} {#_} {#_} _ ext = ext
      right {_} {#_} {top} () _
     right {_} {top} {_} _()
Отношение
                      меньше-равно
                                                ДЛЯ
                                                             расширенного
                                                                                        типа.
   \_\leq\_: Rel<sub>2</sub> (expanded A)
   \leq = \leq {expanded A} {\leqE_} {\leqE_}
```

Транзитивность меньше-равно следует из свойств отношений _=E_ и _<E_:

```
trans≤: Trans _≤_

trans≤ = trans<= respE sym=E trans=E trans<E

resp≤: _≤_ Respects<sub>2</sub> _=E_

resp≤ = resp<= respE trans=E sym=E
```

Вспомогательная лемма, извлекающая доказательство равенства элементов исходного типа из равенства элементов расширенного типа.

```
lemma-=E : \forall \{x\} \{y\} \rightarrow (\# x) = E (\# y) \rightarrow x == y
lemma-=E (base r) = r
```

```
Трихотомичность для _{E_u} = E_u.
```

```
cmpE : Cmp {expanded A} _<E_ _=E_ 

cmpE (# x) (# y) with cmp \, x \, y 

cmpE (# x) (# y) | tri< a \, b \, c = 

tri< (base a) (contraposition lemma-=E b) (contraposition lemma-<E c) 

cmpE (# x) (# y) | tri= a \, b \, c = 

tri= (contraposition lemma-<E a) (base b) (contraposition lemma-<E c) 

cmpE (# x) (# y) | tri> a \, b \, c = 

tri> (contraposition lemma-<E a) (contraposition lemma-=E b) (base c) 

cmpE (# x) top = tri< ext (\lambda ()) (\lambda ()) 

cmpE top (# y) = tri> (\lambda ()) (\lambda ()) ext 

cmpE top top = tri= (\lambda ()) ext (\lambda ())
```

Функция — минимум для расширенного типа.

```
minE : (x \ y : \text{expanded } A) \rightarrow \text{expanded } A
minE = min cmpE
```

Функция — минимум из трех элементов расширенного типа — частный случай ранее определенной общей функции.

```
min3E : (expanded A) \rightarrow (expanded A) \rightarrow (expanded A) \rightarrow (expanded A) min3E x y z = min3 cmpE x y z
```

Леммы для сравнения с минимумами для элементов расширенного типа.

```
lemma-<=minE : \forall \{a \ b \ c\} \rightarrow a \le b \rightarrow a \le c \rightarrow a \le (\text{minE} \ b \ c)
lemma-<=minE = lemma-<=min {expanded A}{_<E__}{_=E__}{cmpE}}
lemma-<=min3E : \forall \{x \ a \ b \ c\} \rightarrow x \le a \rightarrow x \le b \rightarrow x \le c
\rightarrow x \le (\text{min3E} \ a \ b \ c)
lemma-<=min3E = lemma-<=min3 {expanded A}{_<E__}{_=E__}{cmpE}}
```

2.4.2. Тип данных Неар

Вспомогательный тип данных для индексации кучи — куча полная или почти заполненная.

```
data HeapState : Set where full almost : HeapState
```

Тип данных для кучи, индексированный минимальным элементом кучи, высотой и заполненностью.

```
data Heap: (expanded A) \rightarrow (h: \mathbb{N}) \rightarrow HeapState \rightarrow Set where
```

У пустой кучи минимальный элемент — top, высота — ноль. Пустая куча — полная.

```
eh: Heap top zero full
```

Мы хотим в непустых кучах задавать порядок на элементах — элемент в узле меньше либо равен элементов в поддеревьях. Мы можем упростить этот инвариант, сравнивая элемент в узле только с корнями поддеревьев. Порядок кучи задается с помощью двух элементов отношения $_ \le : i$ и j, которые говорят от том, что значение в корне меньше-равно значений в корнях левого и правого поддеревьев соответственно. На рисунке 2.2 схематично изображены конструкторы типа данных Heap.

Полная куча высотой n+1 состоит из корня и двух куч высотой n.

```
nf: \forall \{n\} \{x \ y\} \rightarrow (p : A) \rightarrow (i : (\# p) \le x) \rightarrow (j : (\# p) \le y)

\rightarrow (a : \text{Heap } x \ n \text{ full})

\rightarrow (b : \text{Heap } y \ n \text{ full})

\rightarrow \text{Heap } (\# p) \text{ (succ } n) \text{ full}
```

Куча высотой n+2, у которой нижний ряд заполнен до середины, состоит из корня и двух полных куч: левая высотой n+1 и правая высотой n.

```
nd: \forall \{n\} \{x \ y\} \rightarrow (p : A) \rightarrow (i : (\# p) \le x) \rightarrow (j : (\# p) \le y)

\rightarrow (a : \text{Heap } x \text{ (succ } n) \text{ full)}

\rightarrow (b : \text{Heap } y \ n \text{ full)}

\rightarrow \text{Heap } (\# p) \text{ (succ (succ } n)) \text{ almost}
```

Куча высотой n+2, у которой нижний ряд заполнен меньше, чем до середины, состоит из корня и двух куч: левая неполная высотой n+1 и правая полная высотой n.

```
nl: \forall \{n\} \{x \ y\} \rightarrow (p : A) \rightarrow (i : (\# p) \le x) \rightarrow (j : (\# p) \le y)

\rightarrow (a : \text{Heap } x \text{ (succ } n) \text{ almost)}

\rightarrow (b : \text{Heap } y \ n \text{ full)}

\rightarrow \text{Heap } (\# p) \text{ (succ (succ } n)) \text{ almost}
```


Рис. 2.2. Конструкторы типа данных Неар

Неполная куча высотой n+2, у которой нижний ряд заполнен больше, чем до середины, состоит из корня и двух куч: левая полная высотой n+1 и правая неполная высотой n+1.

$$\operatorname{nr}: \forall \ \{n\} \ \{x \ y\} \to (p : A) \to (i : (\# \ p) \le x) \to (j : (\# \ p) \le y)$$

 \rightarrow (a: Heap x (succ n) full)

 \rightarrow (*b* : Heap *y* (succ *n*) almost)

 \rightarrow Heap (# p) (succ (succ n)) almost

Замечание: высота любой неполной кучи больше нуля.

lemma-almost-height : $\forall \{m \ h\} \rightarrow \text{Heap} \ m \ h \text{ almost} \rightarrow h \ \mathbb{N} > 0$

lemma-almost-height (nd $_ _ _ _) = s \le s z \le n$

lemma-almost-height (nl $_$ $_$ $_$) = s \leq s z \leq n

lemma-almost-height (nr $_ _ _ _) = s \le s z \le n$

Функция — просмотр минимума в куче.

```
peekMin: \forall \{m \ h \ s\} \rightarrow \text{Heap} \ m \ h \ s \rightarrow (\text{expanded} \ A)
peekMin eh = top
peekMin (nd p_{---}) = \# p
peekMin (nf p_{---}) = \# p
peekMin (nl p_{---}) = \# p
peekMin (nr p_{---}) = \# p
```

2.4.3. Функции вставки в кучу

Функция вставки элемента в полную кучу.

```
finsert : \forall \{h m\} \rightarrow (z : A) \rightarrow \text{Heap } m h \text{ full }
  \rightarrow \Sigma HeapState (Heap (minE m (# z)) (succ h))
finsert \{0\} z eh = full, nf z (le ext) (le ext) eh eh
finsert \{1\} z (nf p i j eh eh) with cmp p z
... | trialmost,
  nd p (le (base p < z)) j (nf z (le ext) (le ext) eh eh) eh
... | tri= _p=z _= almost,
  nd z (eq (base (sym==p=z))) (le ext) (nf p i j eh eh) eh
... | tri> \_ z almost ,
  nd z (le (base z < p)) (le ext) (nf p i j eh eh) eh
finsert z (nf p i j (nf x i<sub>1</sub> j<sub>1</sub> a b) c) with cmp p z
finsert z (nf p i j (nf x i<sub>1</sub> j<sub>1</sub> a b) c) | tri< p<z___
  with finsert z (nf x i_1 j_1 a b)
  | \text{lemma-} = \min E \{ \# p \} \{ \# x \} \{ \# z \} i (\text{le (base } p < z)) 
... | full , newleft | ll = almost, nd p ll j newleft c
... | almost , newleft | ll = almost , nl p ll j newleft c
finsert z (nf p i j (nf x i_1 j_1 a b) c) | tri= p=z
```

```
with finsert p (nf x i_1 j_1 a b)
      | lemma-\leq=minE (snd resp\leq (base p=z) i) (eq (base (sym==p=z)))
      | snd resp\leq (base p=z) i
    ... | full | , newleft | l1 | l2 = almost , nd z l1 l2 newleft c
    ... | almost , newleft | l1 | l2 = almost , nl z l1 l2 newleft c
   finsert z (nf p i j (nf x i<sub>1</sub> j<sub>1</sub> a b) c) | tri> _ _ z < p
      with finsert p (nf x i_1 j_1 a b)
      | \text{lemma-} = \text{minE} (\text{trans} \le (\text{le (base } z < p)) i) (\text{le (base } z < p)) | i)
    ... | full , newleft | ll = almost , nd z ll (trans \leq (le (base z < p)) j) newleft c
    ... | almost , newleft | ll = almost ,
      nl z ll (trans\leq (le (base z < p)) j) newleft c
Вставка элемента в неполную кучу.
   ainsert : \forall {h m} → (z : A) → Heap m h almost
      \rightarrow \Sigma HeapState (Heap (minE m (# z)) h)
   ainsert z (nd p i j a b) with cmp p z
   ainsert z (nd p i j a b) | tri< p < z _ _
      with finsert z b | lemma-\leq=minE j (le (base p \leq z))
    ... | full , nb | l1 = full , nf p i l1 a nb
   ... | almost , nb | l1 = almost , nr p i l1 a nb
   ainsert z (nd p i j a b) | tri= p=z
      with finsert p \mid b \mid snd resp\leq (base p=z) i
      | lemma-\leq=minE (snd resp\leq (base p=z) j) (eq (base (sym==p=z)))
    ... | full , nb | l1 | l2 = full , nf z l1 l2 a nb
    ... | almost , nb | l1 | l2 = almost , nr z l1 l2 a nb
   ainsert z (nd p i j a b) | tri> \_ \_ z < p
      with finsert p \mid b \mid trans \le (le (base z < p)) i
      | lemma-\leq=minE (trans\leq (le (base z \leq p)) j) (le (base z \leq p))
    ... | full , nb | l1 | l2 = full , nf z l1 l2 a nb
    ... | almost , nb | l1 | l2 = almost , nr z l1 l2 a nb
```

```
ainsert z (nl p i j a b) with cmp p z
ainsert z (nl p i j a b) | tri< p<z _ _
  with ainsert z a | lemma-\leq=minE i (le (base p \leq z))
... | full , na | l1 = almost , nd p l1 j na b
... | almost , na \mid ll = almost , nl p ll j na b
ainsert z (nl p i j a b) | tri= _p=z
  with ainsert p \mid a \mid \text{lemma-} = \min E \text{ (snd resp} \leq \text{(base } p = z) i \text{)}
     (eq (base (sym==p=z))) | snd resp\leq (base p=z) j
... | almost , na \mid l1 \mid l2 = almost , nl z l1 l2 na b
ainsert z (nl p i j a b) | tri> \_ \_ z < p
  with ainsert p \mid a \mid \text{lemma-} = \min E \text{ (trans} \leq \text{ (le (base } z < p)) i)
     (le (base z < p)) | trans \leq (le (base z < p)) j
... | full , na \mid ll \mid l2 = almost , nd z \mid l1 \mid l2 \mid na \mid b
... | almost , na \mid l1 \mid l2 = almost , nl z l1 l2 na b
ainsert z (nr p i j a b) with cmp p z
ainsert z (nr p i j a b) | tri< p<z _ _
  with ainsert z b | lemma-\leq=minE j (le (base p \leq z))
... | full , nb | l1 = full , nf p i l1 a nb
... | almost , nb | l1 = almost , nr p i l1 a nb
ainsert z (nr p i j a b) | tri= _p=z
  with ainsert p b | snd resp\leq (base p=z) i
  | lemma-\leq=minE (snd resp\leq (base p=z) j) (eq (base (sym==p=z)))
... | full , nb | l1 | l2 = full , nf z l1 l2 a nb
... | almost , nb | l1 | l2 = almost , nr z l1 l2 a nb
ainsert z (nr p i j a b) | tri> \_ \_ z < p
  with ainsert p \mid b \mid \text{trans} \leq (\text{le (base } z < p)) \mid i
  | lemma-\leq=minE (trans\leq (le (base z \leq p)) j) (le (base z \leq p))
```

```
... | full |nb| l1 | l2 = full | nf z l1 l2 a nb

... | almost |nb| l1 | l2 = almost | nr z l1 l2 a nb
```

2.4.4. Удаление минимума из полной кучи

Вспомогательный тип данных.

```
data OR (A B : Set) : Set where
orA : A \rightarrow OR A B
orB : B \rightarrow OR A B
```

Слияние двух полных куч одной высоты.

```
fmerge: \forall \{x \ y \ h\} \rightarrow \text{Heap} \ x \ h \ \text{full} \rightarrow \text{Heap} \ y \ h \ \text{full}
\rightarrow \text{OR} \ (\text{Heap} \ x \ \text{zero} \ \text{full} \times (x \equiv y) \times (h \equiv \text{zero}))
(\text{Heap} \ (\text{minE} \ x \ y) \ (\text{succ} \ h) \ \text{almost})
fmerge eh eh = orA (eh , refl , refl)
fmerge (nf x \ i_1 \ j_1 \ a \ b) (nf y \ i_2 \ j_2 \ c \ d) \mid \text{tri} < x < y \ \_ with fmerge a \ b
... \mid \text{orA} \ (\text{eh} \ , \text{refl}) = \text{orB} \ (\text{nd} \ x \ (\text{le} \ (\text{base} \ x < y)) \ j_1 \ (\text{nf} \ y \ i_2 \ j_2 \ c \ d) \ \text{eh})
... \mid \text{orB} \ ab = \text{orB}
(\text{nr} \ x \ (\text{le} \ (\text{base} \ x < y)) \ (\text{lemma-} < = \text{minE} \ i_1 \ j_1) \ (\text{nf} \ y \ i_2 \ j_2 \ c \ d) \ ab)
fmerge (nf x \ i_1 \ j_1 \ a \ b) (nf y \ i_2 \ j_2 \ c \ d) \mid \text{tri} = \ x = y \  with fmerge c \ d
... \mid \text{orA} \ (\text{eh} \ , \text{refl}) = \text{orB}
(\text{nd} \ y \ (\text{eq} \ (\text{base} \ (sym = = x = y))) \ j_2 \ (\text{nf} \ x \ i_1 \ j_1 \ a \ b) \ \text{eh})
... \mid \text{orB} \ cd = \text{orB}
(\text{nr} \ y \ (\text{eq} \ (\text{base} \ (sym = = x = y))) \ (\text{lemma-} < = \text{minE} \ i_2 \ j_2) \ (\text{nf} \ x \ i_1 \ j_1 \ a \ b) \ cd)
```

fmerge (nf $x i_1 j_1 a b$) (nf $y i_2 j_2 c d$) | tri> _ _ y < x with fmerge c d

```
... | orA (eh , refl , refl) = orB (nd y (le (base y < x)) j_2 (nf x i_1 j_1 a b) eh)

... | orB cd = orB

(nr y (le (base y < x)) (lemma-<=minE i_2 j_2) (nf x i_1 j_1 a b) cd)
```

Извлечение минимума из полной кучи.

```
fpop : \forall \{m \ h\} \rightarrow \text{Heap } m \text{ (succ } h) \text{ full } \rightarrow \text{OR}
(\Sigma \text{ (expanded } A) \text{ (} \lambda x \rightarrow \text{(Heap } x \text{ (succ } h) \text{ almost)} \times (m \leq x)\text{))}
(Heap top h full)
```

```
fpop (nf _ _ _ eh eh) = orB eh

fpop (nf _ i j (nf x i_1 j_1 a b) (nf y i_2 j_2 c d))

with fmerge (nf x i_1 j_1 a b) (nf y i_2 j_2 c d)

... | orA (() , _ , _)

... | orB res = orA ((minE (# x) (# y)) , res , lemma-<=minE i j)
```

2.4.5. Удаление минимума из неполной кучи

Составление полной кучи высотой h+1 из двух куч высотой h и одного элемента.

```
makeH : \forall \{x \ y \ h\} \rightarrow (p : A) \rightarrow \text{Heap} \ x \ h \ \text{full} \rightarrow \text{Heap} \ y \ h \ \text{full}
\rightarrow \text{Heap} \ (\text{min3E} \ x \ y \ (\# \ p)) \ (\text{succ} \ h) \ \text{full}
makeH p \ \text{eh} \ \text{eh} = \text{nf} \ p \ (\text{le} \ \text{ext}) \ (\text{le} \ \text{ext}) \ \text{eh} \ \text{eh}
makeH p \ (\text{nf} \ x \ i \ j \ a \ b) \ (\text{nf} \ y \ i_1 \ j_1 \ c \ d) \ | \ \text{tri} < x < y \ \_ \ | \ \text{with} \ cmp \ x \ p
makeH p \ (\text{nf} \ x \ i \ j \ a \ b) \ (\text{nf} \ y \ i_1 \ j_1 \ c \ d) \ | \ \text{tri} < x < y \ \_ \ | \ \text{tri} < x < p \ \_ \ |
with makeH p \ a \ b
... | res = \text{nf} \ x \ (\text{lemma-<=min3E} \ i \ j \ (\text{le} \ (\text{base} \ x < p))) \ (\text{le} \ (\text{base} \ x < y))
res \ (\text{nf} \ y \ i_1 \ j_1 \ c \ d)
```

```
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri< x < y _ | | tri= _x = p _ =
  nf p (eq (base (sym == x = p))) (le (base (snd resp x = p x < y)))
     (\text{nf } x i j a b) (\text{nf } y i_1 j_1 c d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri< x < y _ | tri> _ _ p < x =
  nf p (le (base p < x)) (le (base (trans 
     (\text{nf } x i j a b) (\text{nf } y i_1 j_1 c d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y with cmp y p
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | tri< y < p _ =
  nf y (eq (base (sym == x = y))) (lemma-\langle =min3E i_1 j_1 (le (base y < p)))
     (\text{nf } x \ i \ j \ a \ b) \ (\text{makeH} \ p \ c \ d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | tri= y=p =
  \inf p \text{ (eq (base (trans== (sym== y=p) (sym== x=y))))}
     (eq (base (sym==y=p))) (nf x i j a b) (nf y i_1 j_1 c d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | tri> p<y=
  nf p (le (base (fst resp (sym == x = y) p < y))) (le (base p < y))
     (\text{nf } x i j a b) (\text{nf } y i_1 j_1 c d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri> _ _ y < x with cmp y p
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri> _ _ y < x | tri< y < p _ _ =
  nf y (le (base y < x)) (lemma-\leq=min3E i_I j_I (le (base y < p)))
     (\text{nf } x \ i \ j \ a \ b) \ (\text{makeH} \ p \ c \ d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri> _ y<x | tri= _ y=p _ =
  nf p (le (base (snd resp y=p y < x))) (eq (base (sym==y=p)))
     (\text{nf } x i j a b) (\text{nf } y i_i j_i c d)
makeH p (nf x i j a b) (nf y i_1 j_1 c d) | tri> _ y < x | tri> _ p < y = x
  nf p (le (base (trans< p < y y < x))) (le (base p < y))
     (\text{nf } x i j a b) (\text{nf } y i_i j_i c d)
```

```
lemma-resp: \forall \{x \ y \ a \ b\} \rightarrow x == y \rightarrow (\# x) \le a \rightarrow (\# x) \le b
\rightarrow (# y) \leq minE a b
lemma-resp x=y i j = lemma-<=minE (snd resp\leq (base x=y) i)
(snd resp\leq (base x=y) j)
lemma-trans: \forall \{x \ y \ a \ b\} \rightarrow y < x \rightarrow (\# x) \le a \rightarrow (\# x) \le b
\rightarrow (# y) \leq minE a b
lemma-trans y < x \ i \ j = \text{lemma-} < = \text{minE} \ (\text{trans} \le (\text{le } (\text{base } y < x)) \ i)
(\text{trans} \le (\text{le } (\text{base } y < x)) j)
```

Слияние поддеревьев которой последний кучи, ряд ИЗ y середины, определенной конструктором nd. заполнен ДО

```
ndmerge: \forall \{x \ y \ h\} \rightarrow \text{Heap } x \text{ (succ (succ } h)) \text{ full } \rightarrow \text{Heap } y \text{ (succ } h) \text{ full }
   \rightarrow Heap (minE x y) (succ (succ (succ h))) almost
```

```
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) with cmp x y
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri< x < y _ with fmerge a b
ndmerge (nf x i j a b) (nf y i_l j_l c d) | tri< x < y_l | orA (_ , _ , ())
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri< x < y _ | or B x_1 =
  nl x (lemma-<=minE i j) (le (base x < y)) x_i (nf y i_i j_i c d)
```

```
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y with fmerge c d
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | orA (eh, refl, refl)
  with fmerge a b
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | orA (eh, refl, refl)
  | or A (eh, refl, ())
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | orA (eh, refl, refl)
```

```
ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | or B cd with fmerge a b
    ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | orB cd | orA (x=y, ())
    ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri= x=y | orB cd | orB ab =
      nl y (lemma-resp x=y i j) (lemma-\leq=min3E i_1 j_1 (eq (base (sym==x=y))))
         ab (makeH x c d)
    ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri> _ _ y < x with fmerge a b
    ndmerge (nf x i j a b) (nf y i_1 j_1 c d) | tri> _ _ y < x | orA (_ , _ , ())
    ndmerge (nf x i j a b) (nf y i_I j_I c d) | tri> _ _ y < x | orB ab =
      nl y (lemma-trans y < x i j) (lemma-\leq min3E i_1 j_1 (le (base y < x)))
         ab (makeH x c d)
Слияние неполной кучи высотой h+2 и полной кучи высотой h+1 или h+2.
    afmerge: \forall \{h \ x \ y\} \rightarrow \text{Heap} \ x \text{ (succ (succ } h)) \text{ almost}
      \rightarrow OR (Heap y (succ h) full) (Heap y (succ (succ h)) full)
      \rightarrow OR (Heap (minE x y) (succ (succ h)) full)
         (Heap (minE x y) (succ (succ (succ h))) almost)
    afmerge (nd x i j (nf p i_1 j_1 eh eh) eh) (or A (nf y i_2 j_2 eh eh)) with cmp x y
    ... | \text{tri} < x < y \_ = \text{orA (nf } x \text{ } i \text{ (le (base } x < y)))
      (\text{nf } p i_1 j_1 \text{ eh eh}) (\text{nf } y i_2 j_2 \text{ eh eh}))
    ... | \text{trie} \_x = y \_ = \text{orA} \text{ (nf } y \text{ (eq (base } (sym == x = y))))}
      (snd resp\leq (base x=y) i) (nf x (le ext) (le ext) eh eh) (nf p i_I j_I eh eh))
    ... | \text{tri} > \_ y < x = \text{orA (nf } y \text{ (le (base } y < x)))
      (\text{trans} \le (\text{le } (\text{base } y < x)) i) (\text{nf } x j j \text{ eh eh}) (\text{nf } p j_l j_l \text{ eh eh}))
    afmerge (nd x i j (nf p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
```

ab (nf x (le ext) (le ext) eh eh)

with $cmp \ x \ y \mid$ ndmerge (nf $p_1 \ i_1 \ j_1 \ a_1 \ b_1$) (nf $p_2 \ i_2 \ j_2 \ a_2 \ b_2$)

```
... | \operatorname{tri} \langle x \langle y \_ | ab = \operatorname{orB} (\operatorname{nl} x (\operatorname{lemma-} \langle = \min E i j) (\operatorname{le} (\operatorname{base} x \langle y))) |
  ab (\text{nf } y i_3 j_3 c d))
... | tri= x=y | ab = orB (nl y (lemma-resp x=y i j))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym == x = y)))) <math>ab (makeH x c d))
... | tri >  y < x | ab = orB (nl y (lemma-trans <math>y < x i j)
  (lemma-\leqmin3E i_3 j_3 (le (base y < x))) ab (makeH x c d))
afmerge (nl x i j (nd p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid afmerge \ (nd \ p_1 \ i_1 \ j_1 \ a_1 \ b_1) \ (or A \ (nf \ p_2 \ i_2 \ j_2 \ a_2 \ b_2))
... | \operatorname{tri} \langle x \langle y \_ | \operatorname{orA} ab = 
  orA (nf x (lemma-<=minE i j) (le (base x<y)) ab (nf y i_3 j_3 c d))
... | tri< x < y _ | orB ab =
  orB (nl x (lemma-\leq=minE i j) (le (base x \leq y)) ab (nf y i_3 j_3 c d))
... | tri= _x=y_ | or A ab = or A
  (nf y (lemma-resp x=y i j) (lemma-\langle =min3E i_3 j_3 (eq (base (sym==x=y))))
     ab (makeH x c d)
... | tri= _x=y_ | orB ab = orB
  (nl y (lemma-resp x=y i j) (lemma-<=min3E i_3 j_3 (eq (base (sym==x=y))))
     ab (makeH x c d)
... | tri> \_ \_ y < x | orA ab = orA
  (nf y (lemma-trans y < x i j) (lemma-\leq=min3E i_3 j_3 (le (base y < x)))
     ab (makeH x c d)
... | tri> \_ \_ y < x | orB ab = orB
  (nl y (lemma-trans y < x i j) (lemma-\leq min3E i_3 j_3 (le (base y < x)))
     ab (makeH x c d)
afmerge (nl x i j (nl p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
  with cmp x y | afmerge (nl p_1 i_1 j_1 a_1 b_1) (or A (nf p_2 i_2 j_2 a_2 b_2))
... | tri< x < y_{-} | or A ab =
  or A (nf x (lemma-\leq=min E i j) (le (base x\leqy)) ab (nf y i<sub>3</sub> j<sub>3</sub> c d))
... | tri< x < y_{-} | orB ab =
```

```
orB (nl x (lemma-\leq=minE i j) (le (base x \leq y)) ab (nf y i_3 j_3 c d))
... | \text{tri} = x = y | \text{orA } ab = \text{orA } (\text{nf } y \text{ (lemma-resp } x = y | i | j))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym == x = y)))) <math>ab (makeH x c d))
... | tri= x=y | orB ab = orB (nl y (lemma-resp x=y i j)
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y)))) ab (makeH x c d))
... | tri >  y < x | or A <math>ab = or A (nf y (lemma-trans y < x i j))
  (lemma-\leq=min3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
... | tri >  y < x | or B  ab = or B  (nl y (lemma-trans y < x i j))
  (lemma-\leq=min3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
afmerge (nl x i j (nr p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
  with cmp x y | afmerge (nr p_1 i_1 j_1 a_1 b_1) (or A (nf p_2 i_2 j_2 a_2 b_2))
... | tri< x < y_{-} | or Aab =
  orA (nf x (lemma-<=minE i j) (le (base x<y)) ab (nf y i_3 j_3 c d))
... | tri< x < y_ | or B ab =
     orB (nl x (lemma-\leq=minE i j) (le (base x \leq y)) ab (nf y i_3 j_3 c d))
... | \text{tri} = x = y | \text{orA } ab = \text{orA } (\text{nf } y \text{ (lemma-resp } x = y | i | j))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym == x = y)))) <math>ab (makeH x c d))
... | tri= \_x=y \_ | orB ab = orB (nl y (lemma-resp x=y i j)
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym == x = y)))) ab (makeH x c d))
... | tri >  y < x | or A <math>ab = or A (nf y (lemma-trans y < x i j))
  (lemma-\leq=min3E i_3 j_3 (le (base y < x))) ab (makeH x c d))
... | tri> \_ y < x | orB ab = orB (nl y (lemma-trans y < x i j)
  (lemma-\leqmin3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
afmerge (nr x i j (nf p_1 i_1 j_1 a_1 b_1) (nd p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid afmerge (nd p_2 \ i_2 \ j_2 \ a_2 \ b_2) (orB (nf p_1 \ i_1 \ j_1 \ a_1 \ b_1))
... | tri < x < y_{-} | (or A ab) =
  orA (nf x (le (base x < y)) (lemma-\leq=minE ji) (nf y i_3 j_3 cd) ab)
... | tri < x < y_{-} | (orB \ ab) =
```

```
orB (nl x (lemma-\leq=minE ji) (le (base x\leq y)) ab (nf yi_3j_3cd))
... | \text{tri} = x = y | (\text{orA } ab) = \text{orA } (\text{nf } y (\text{lemma-resp } x = y | j | i))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y)))) ab (makeH x c d))
... | tri= x=y | (orB ab) = orB (nl y (lemma-resp x=y j i))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y)))) ab (makeH x c d))
... | tri >  y < x | (or A ab) = or A (nf y (lemma-trans <math>y < x j i)
  (lemma-\leq=min3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
... | \text{tri} >  y < x | (\text{orB } ab) = \text{orB } (\text{nl } y (\text{lemma-trans } y < x j i))
  (lemma-\leq=min3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
afmerge (nr x i j (nf p_1 i_1 j_1 a_1 b_1) (nl p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
  with cmp x y | afmerge (nl p_2 i_2 j_2 a_2 b_2) (orB (nf p_1 i_1 j_1 a_1 b_1))
... | tri < x < y _ | (or A ab) =
  orA (nf x (le (base x < y)) (lemma-\leq=minE ji) (nf yi_3j_3cd) ab)
... | tri < x < y_{-} | (orB ab) =
  orB (nl x (lemma-\leq=minE ji) (le (base x \leq y)) ab (nf yi_3j_3cd))
... | \text{tri} = x = y | (\text{orA } ab) = \text{orA } (\text{nf } y (\text{lemma-resp } x = y | j i))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym == x = y)))) ab (makeH x c d))
... | tri= x=y | (orB ab) = orB (nl y (lemma-resp x=y j i))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y)))) ab (makeH x c d))
... | \text{tri} > \_ y < x | (\text{orA } ab) = \text{orA } (\text{nf } y (\text{lemma-trans } y < x j i))
  (lemma-\leq=min3E i_3 j_3 (le (base y < x))) ab (makeH x c d))
... | \text{tri} > _ y < x | (\text{orB } ab) = \text{orB } (\text{nl } y (\text{lemma-trans } y < x j i)
  (lemma-\leqmin3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
afmerge (nr x i j (nf p_1 i_1 j_1 a_1 b_1) (nr p_2 i_2 j_2 a_2 b_2)) (or A (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid afmerge (nr p_2 \ i_2 \ j_2 \ a_2 \ b_2) (orB (nf p_1 \ i_1 \ j_1 \ a_1 \ b_1))
... | tri < x < y_{-} | (or A ab) =
  orA (nf x (le (base x < y)) (lemma-\leq=minE ji) (nf y i_3 j_3 cd) ab)
... | tri < x < y_{-} | (orB \ ab) =
```

```
orB (nl x (lemma-\leq=minE ji) (le (base x\leq y)) ab (nf yi_3j_3cd))
... | \text{tri} = x = y | (\text{orA } ab) = \text{orA } (\text{nf } y (\text{lemma-resp } x = y | j i))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y)))) ab (makeH x c d))
... | tri= x=y | (orB ab) = orB (nl y (lemma-resp x=y j i))
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y)))) ab (makeH x c d))
... | tri > _ y < x | (or A ab) = or A (nf y (lemma-trans y < x j i)
  (lemma-\leq=min3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
... | \text{tri} >  y < x | (\text{orB } ab) = \text{orB } (\text{nl } y (\text{lemma-trans } y < x j i))
  (lemma-\leq=min3E i_3 j_3 (le (base y \leq x))) ab (makeH x c d))
afmerge (nd x i j (nf p i_1 j_1 eh eh) eh) (orB (nf y i_2 j_2 c d)) with cmp x y
... | tri< x<y _ _ =
  orB (nd x (le (base x < y)) i (nf y i_2 j_2 c d) (nf p i_1 j_1 eh eh))
... | tri= _x=y _= orB (nd y)
(lemma-\leq=min3E i_2 j_2 (eq (base (sym == x = y)))) (snd resp<math>\leq (base x = y) i)
(\text{makeH } x c d) (\text{nf } p i_1 j_1 \text{ eh eh}))
... | tri> _ _ y<x = orB (nd y (lemma-<=min3E i_2 j_2 (le (base y<x)))
  (\text{trans} \leq (\text{le (base } y < x)) i) (\text{makeH } x c d) (\text{nf } p i_1 j_1 \text{ eh eh}))
afmerge (nd x i j (nf p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid ndmerge (nf p_1 \ i_1 \ j_1 \ a_1 \ b_1) (nf p_2 \ i_2 \ j_2 \ a_2 \ b_2)
... | tri < x < y _ | ab =
  orB (nr x (le (base x < y)) (lemma-\leq=minE i j) (nf y i_3 j_3 c d) ab)
... | tri= _x=y_ | ab = orB (nr y)
  (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
  (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri> _ _ y<x | ab = orB (nr y)
  (lemma-\leq=min3E i_3 j_3 (le (base y < x)))
  (lemma-trans y < x i j) (makeH x c d) ab)
```

```
afmerge (nl x i j (nd p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
   with cmp \ x \ y \mid afmerge \ (nd \ p_1 \ i_1 \ j_1 \ a_1 \ b_1) \ (or A \ (nf \ p_2 \ i_2 \ j_2 \ a_2 \ b_2))
... | \operatorname{tri} \langle x \langle y \_ | (\operatorname{orA} ab) = \operatorname{orB} (\operatorname{nd} x (\operatorname{le} (\operatorname{base} x \langle y))) |
   (lemma-\leq=minE i j) (nf y i_3 j_3 c d) ab)
... | tri < x < y _ | (orB ab) = orB (nr x (le (base x < y)))
   (lemma-\leq=minE i j) (nf y i_3 j_3 c d) ab)
... | tri = x = y | (orA ab) = orB (nd y)
   (lemma-\leqmin3E i_3 j_3 (eq (base (sym == x = y)))) (lemma-resp <math>x = y i j)
      (makeH x c d) ab<math>)
... | \text{tri} = x = y | (\text{orB } ab) = \text{orB } (\text{nr } y)
   (lemma-\leqmin3E i_3 j_3 (eq (base (sym == x = y)))) (lemma-resp x = y i j)
      (makeH x c d) ab<math>)
... | tri> \_ y < x | (or Aab) = or B (nd y
   (lemma-\leq=min3E i_3 j_3 (le (base y < x))) (lemma-trans y < x i j) (makeH x c d) ab)
... | tri> \_ y < x | (orB ab) = orB (nr y)
   (lemma-<=min3E i_3 j_3 (le (base y < x))) (lemma-trans y < x i j) (makeH x c d) ab)
afmerge (nl x i j (nl p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
   with cmp \ x \ y \mid afmerge (nl p_1 \ i_1 \ j_1 \ a_1 \ b_1) (or A (nf p_2 \ i_2 \ j_2 \ a_2 \ b_2))
... | \operatorname{tri} \langle x \langle y \_ | (\operatorname{orA} ab) = \operatorname{orB} (\operatorname{nd} x (\operatorname{le} (\operatorname{base} x \langle y))) |
   (lemma-\leq=minE i j) (nf y i_3 j_3 c d) ab)
... | \operatorname{tri} \langle x \langle y \_ | (\operatorname{orB} ab) = \operatorname{orB} (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x \langle y))) |
   (lemma-\leq=minE i j) (nf y i<sub>3</sub> j<sub>3</sub> c d) ab)
... | tri= x=y | (orA ab) = orB
   (nd y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
   (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | tri= _x=y_| | (orB \ ab) = orB
   (nr y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
   (\text{lemma-resp } x=y \ i \ j) \ (\text{makeH} \ x \ c \ d) \ ab)
... | \text{tri} > \_ y < x | (\text{orA } ab) = \text{orB}
   (nd y (lemma-\leq=min3E i_3 j_3 (le (base y\leqx)))
```

```
(lemma-trans y < x i j) (makeH x c d) ab)
... | \text{tri} > \_ y < x | (\text{orB } ab) = \text{orB}
  (nr y (lemma-\leq=min3E i_3 j_3 (le (base y\leqx)))
  (lemma-trans y < x i j) (makeH x c d) ab)
afmerge (nl x i j (nr p_1 i_1 j_1 a_1 b_1) (nf p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid afmerge \ (nr \ p_1 \ i_1 \ j_1 \ a_1 \ b_1) \ (or A \ (nf \ p_2 \ i_2 \ j_2 \ a_2 \ b_2))
... | tri< x < y_{-} | (or A ab) = or B
  (\text{nd } x \text{ (le (base } x < y)) \text{ (lemma-<=} \min E i j) (\text{nf } y i_3 j_3 c d) ab)
... | tri< x < y _ | | (orB ab) = orB
  (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x < y)) (\operatorname{lemma-} = \min E i j) (\operatorname{nf} y i_3 j_3 c d) ab)
... | tri= _x=y_| | (orA ab) = orB
  (nd y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
  (lemma-resp x=y i j) (makeH x c d) ab)
... | tri= _x=y_ | (orB ab) = orB
  (nr y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
  (lemma-resp x=y i j) (makeH x c d) ab)
... | tri> _ _ y < x | (orA ab) = orB
  (nd y (lemma-\leq=min3E i_3 j_3 (le (base y\leqx)))
  (lemma-trans y < x i j) (makeH x c d) ab)
... | tri> _{-} y<x | (orB ab) = orB
  (nr y (lemma-\leq=min3E i_3 j_3 (le (base y\leqx)))
  (lemma-trans y < x i j) (makeH x c d) ab)
afmerge (nr x i j (nf p_1 i_1 j_1 a_1 b_1) (nd p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid afmerge \ (nd \ p_2 \ i_2 \ j_2 \ a_2 \ b_2) \ (or B \ (nf \ p_1 \ i_1 \ j_1 \ a_1 \ b_1))
... | tri < x < y_{-} | (or A ab) = or B
  (\text{nd } x \text{ (le (base } x < y)) \text{ (lemma-<=} \min E j i) (\text{nf } y i_3 j_3 c d) ab)
... | tri< x < y _ | | (orB ab) = orB
  (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x < y)) (\operatorname{lemma-} = \min E j i) (\operatorname{nf} y i_3 j_3 c d) ab)
```

```
... | tri= _x=y_| | (orA ab) = orB
  (nd y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
  (lemma-resp x=y j i) (makeH x c d) ab)
... | tri= _x=y_| | (orB ab) = orB
  (nr y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
  (lemma-resp x=y j i) (makeH x c d) ab)
... | \text{tri} > \_ y < x | (\text{orA } ab) = \text{orB}
  (nd y (lemma-\leqmin3E i_3 j_3 (le (base y < x))) (lemma-trans y < x j i)
     (\text{makeH } x \ c \ d) \ ab)
... | tri> _{-} y<x | (orB ab) = orB
  (nr y (lemma-\leqmin3E i_3 j_3 (le (base y < x))) (lemma-trans y < x j i)
     (makeH x c d) ab<math>)
afmerge (nr x i j (nf p_1 i_1 j_1 a_1 b_1) (nl p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
  with cmp \ x \ y \mid afmerge (nl p_2 \ i_2 \ j_2 \ a_2 \ b_2) (orB (nf p_1 \ i_1 \ j_1 \ a_1 \ b_1))
... | tri < x < y_{-} | (or A ab) = or B
  (\text{nd } x \text{ (le (base } x < y)) \text{ (lemma-<=} \min E j i) (\text{nf } y i_3 j_3 c d) ab)
... | \operatorname{tri} \langle x \langle y \_ | (\operatorname{orB} ab) = \operatorname{orB} \rangle
  (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x < y)) (\operatorname{lemma-} = \min E j i) (\operatorname{nf} y i_3 j_3 c d) ab)
... | tri= _x=y_| | (orA ab) = orB
  (nd y (lemma-\leq=min3E i_3 j_3 (eq (base (sym == x = y)))) (lemma-resp <math>x = y j i)
     (\text{makeH } x \ c \ d) \ ab)
... | tri= _x=y_ | (orB ab) = orB
  (nr y (lemma-\leqmin3E i_3 j_3 (eq (base (sym== x=y)))) (lemma-resp x=y j i)
     (makeH x c d) ab)
... | tri> _ _ y<x | (orA ab) = orB
  (nd y (lemma-\leqmin3E i_3 j_3 (le (base y < x))) (lemma-trans y < x j i)
     (makeH x c d) ab<math>)
... | \text{tri} > \_ y < x | (\text{orB } ab) = \text{orB}
  (nr y (lemma-\leqmin3E i_3 j_3 (le (base y \leq x))) (lemma-trans y \leq x j i)
     (makeH x c d) ab<math>)
```

```
afmerge (nr x i j (nf p_1 i_1 j_1 a_1 b_1) (nr p_2 i_2 j_2 a_2 b_2)) (orB (nf y i_3 j_3 c d))
       with cmp x y | afmerge (nr p_2 i_2 j_2 a_2 b_2) (orB (nf p_1 i_1 j_1 a_1 b_1))
    ... | tri< x < y_{-} | (orA ab) = orB
       (\text{nd } x \text{ (le (base } x < y)) \text{ (lemma-<=} \min E j i) (\text{nf } y i_3 j_3 c d) ab)
    ... | tri< x < y_{-} | (orB \ ab) = orB
       (\operatorname{nr} x (\operatorname{le} (\operatorname{base} x < y)) (\operatorname{lemma-} = \min E j i) (\operatorname{nf} y i_3 j_3 c d) ab)
    ... | tri= _x=y_| | (orA ab) = orB
       (nd y (lemma-\leq=min3E i_3 j_3 (eq (base (sym== x=y))))
       (\text{lemma-resp } x=y \ j \ i) \ (\text{makeH } x \ c \ d) \ ab)
    ... | tri= _x=y_ | (orB ab) = orB
       (nr y (lemma-\leqmin3E i_3 j_3 (eq (base (sym== x=y))))
       (lemma-resp x=y \ j \ i) (makeH x \ c \ d) ab)
    ... | tri> _ _ y<x | (or A ab) = or B
       (nd y (lemma-\leq=min3E i_3 j_3 (le (base y < x)))
       (lemma-trans y < x j i) (makeH x c d) ab)
    ... | tri> _ _ y < x | (orB \ ab) = orB
       (nr y (lemma-\leq=min3E i_3 j_3 (le (base y\leqx)))
       (lemma-trans y < x \ j \ i) (makeH x \ c \ d) ab)
Извлечение минимума из неполной кучи.
    apop : \forall \{m h\} \rightarrow \text{Heap } m \text{ (succ } h) \text{ almost }
       \rightarrow OR (\Sigma (expanded A) (\lambda x \rightarrow (Heap x (succ h) almost) \times (m \le x)))
          (\Sigma \text{ (expanded } A) (\lambda x \rightarrow (\text{Heap } x \text{ } h \text{ full}) \times (m \leq x)))
    apop (nd \{x = x\} p i j a eh) = orB (x, a, i)
    apop (nd \underline{i} j (nf x i_1 j_1 a b) (nf y i_2 j_2 c d))
       with cmp x y | ndmerge (nf x i_1 j_1 a b) (nf y i_2 j_2 c d)
    ... | tri < _ _ _ | res = orA (# x , res , i)
    ... | tri= _ _ | res = orA (# y, res, j)
    ... | tri > _ _ _ | res = orA (# y, res, j)
```

```
apop (nl _i _i (nd _i _i _i (nf _i _i eh eh) eh) (nf _i _i eh eh))
  with cmp x z.
... | tri\langle x \langle z \rangle = orB (# x , nf x i_I (le (base x \langle z \rangle))
  (nf y (le ext) (le ext) eh eh) (nf z (le ext) (le ext) eh eh), i)
... | tri= _x=z_ = orB (\# z,
  nf z (eq (base (sym = x = z))) (snd resp\leq (base x = z) i_i)
     (\text{nf } x \text{ (le ext) (le ext) eh eh) (nf } y \text{ (le ext) (le ext) eh eh) }, j)
... | tri> _{-}z < x = orB (\# z, nf z)
  (le (base z < x)) (trans \leq (le (base z < x)) i_i)
  (nf x (le ext) (le ext) eh eh) (nf y (le ext) (le ext) eh eh), j)
apop (nl _{-}ij (nd xi_{1}j_{1} (nf yi_{2}j_{2}a_{2}b_{2}) (nf zi_{3}j_{3}a_{3}b_{3})) (nf ti_{4}j_{4}cd))
  with cmp x t | ndmerge (nf y i_2 j_2 a_2 b_2) (nf z i_3 j_3 a_3 b_3)
... | tri< x < t_{-} | res = orA (# x, nl x)
  (lemma-\leq=minE i_1 j_1) (le (base x \leq t))
  res (nf t i_4 j_4 c d), i)
... | tri= _x=t_ | res = orA (# t, nl t)
  (snd resp\leq (base x=t) (lemma-\leq=minE i_1 j_1))
  (lemma-\leq=min3E i_4 j_4 (eq (base (sym== x=t)))) res (makeH x c d), j)
... | tri > _ _ t < x | res = orA (# t, nl t)
  (lemma-trans t < x i_1 j_1)
  (lemma-\leq=min3E i_4 j_4 (le (base t \leq x))) res (makeH x c d), j)
apop (nl \underline{i} j (nl x i_1 j_1 a b) (nf y i_2 j_2 c d))
  with cmp x y | afmerge (nl x i_1 j_1 a b) (or A (nf y i_2 j_2 c d))
... | tri < \_ \_ | orA res = orB (\# x, res, i)
... | tri= _ _ _ | orA res = orB (# y, res, j)
... | tri> _ _ | or A res = or B (# y, res, j)
... | tri< _ _ | orB res = orA (# x , res , i)
... | tri= _ _ _ | orB res = orA (# y, res, j)
```

```
... | \text{tri} \rangle _ _ _ | \text{orB } res = \text{orA } (\# y, res, j)
apop (nl \underline{i} \underline{j} (nr \underline{x} \underline{i}, \underline{j}, \underline{a} \underline{b}) (nf \underline{y} \underline{i}, \underline{j}, \underline{c} \underline{d}))
   with cmp x y | afmerge (nr x i_1 j_1 a b) (or A (nf y i_2 j_2 c d))
... | tri < _ _ | orA res = orB (# x , res , i)
... | tri=\_\_ | orA res = orB (# y, res, j)
... | \text{tri} >  _ _ | \text{orA } res = \text{orB } (\# y, res, j)
... | tri < _ _ | orB res = orA (# x, res, i)
... | tri= _ _ | orB res = orA (# y, res, j)
... | tri > _ _ _ | orB res = orA (# y, res, j)
apop (nr \underline{i} j (nf x i_1 j_1 a b) (nd y i_2 j_2 c d))
  with cmp y x \mid afmerge (nd y i_2 j_2 c d) (orB (nf x i_1 j_1 a b))
... | tri < _ _ | orA res = orB (# y, res, j)
... | tri= _ _ _ | orA res = orB (\# x, res, i)
... | tri >  _ _ | orA res = orB (# <math>x, res, i)
... | tri < \_ \_ | orB res = orA (# y, res, j)
... | tri= \_ \_ | orB res = orA (# x, res, i)
... | tri> \_ \_ | orB res = orA (# x, res, i)
apop (nr \underline{i} j (nf x i_1 j_1 a b) (nl y i_2 j_2 c d))
  with cmp y x \mid afmerge (nl y i_2 j_2 c d) (orB (nf x i_1 j_1 a b))
... | tri < \_ \_ | or A res = or B (\# y, res, j)
... | tri = _ _ _ | orA res = orB (# x, res, i)
... | \text{tri} \rangle _ _ _ | \text{orA } res = \text{orB } (\# x, res, i)
... | tri < _ _ | orB res = orA (# y, res, j)
... | tri= \_ | orB res = orA (# x, res, i)
... | tri> \_ \_ | orB res = orA (# x, res, i)
apop (nr \underline{i} j (nf x i_1 j_1 a b) (nr y i_2 j_2 c d))
   with cmp y x \mid afmerge (nr y i_2 j_2 c d) (orB (nf x i_1 j_1 a b))
... | tri < _ _ | orA res = orB (# y, res, j)
... | tri= _ _ | or A res = or B (# x, res, i)
... | tri \rangle _ _ _ | orA res = orB (\# x, res, i)
```

```
... | tri< _ _ _ | orB res = orA (# y , res , j)

... | tri= _ _ | orB res = orA (# x , res , i)

... | tri> _ _ | orB res = orA (# x , res , i)
```

2.5. Выводы по главе 2

Разработаны типы данных для представления структуры данных двоичная куча. Реализованы функции для обработки кучи. Доказано сохранение инвариантов порядка на элементах и сбалансированности.

Заключение

Представленный в данной работе подход к представлению инвариантов — по одному конструктору на каждый случай инварианта — приводит к неприятному разрастанию функций по обработке структуры данных. Но данный подход позволил написать простые доказательства с помощью интерактивной системы Agda-mode, использующей систему типов для указания типа требуемого терма. Хотелось бы уметь обобщать такие представления инвариантов для упрощения доказательств и уменьшения объема кода.

Литература

- 1. The Haskell Programming Language. http://www.haskell.org/haskellwiki/Haskell.
- 2. A Truly Integrated Functional Logic Language. http://www-ps.informatik.uni-kiel.de/currywiki/.
- 3. Agda language. http://wiki.portal.chalmers.se/agda/pmwiki.php.
- 4. *IEEE*. IEEE Std 1178-1990, IEEE Standard for the Scheme Programming Language. IEEE, 1991. ISBN: 1-55937-125-0. http://standards.ieee.org/reading/ieee/std_public/description/busarch/1178-1990_desc.html.
- 5. *Hickey R.* The Clojure programming language / DLS. Под ред. Johan Brichau. ACM, 2008. C. 1. ISBN: 978-1-60558-270-2.
- 6. Abelson H., Sussman G. J. Structure and Interpretation of Computer Programs. MIT Press, 1985. ISBN: 0-262-51036-7.
- 7. *Milner R.*, *Tofte M.*, *Macqueen D.* The Definition of Standard ML. Cambridge, MA, USA: MIT Press, 1997. ISBN: 0262631814.
- 8. OCaml. http://ocaml.org/.
- 9. *Thompson S.* Type theory and functional programming. International computer science series. Addison-Wesley, 1991. C. I—XV, 1—372. ISBN: 978-0-201-41667-1.
- 10. Sørensen M. H. B., Urzyczyn P. Lectures on the Curry-Howard Isomorphism. 1998.
- 11. Church A. A Formulation of the Simple Theory of Types // J. Symb. Log. 1940. №2. C. 56—68.
- 12. Pierce B. C. Types and Programming Languages. Cambridge, MA, USA: MIT Press, 2002. ISBN: 0-262-16209-1.
- 13. Martin-Löf P. Intuitionistic Type Theory. Bibliopolis, 1984. ISBN: 88-7088-105-9.
- 14. *Abbott M.*, *Altenkirch T.*, *Ghani N.* Representing Nested Inductive Types Using W-Types / ICALP. Под ред. Josep Díaz, Juhani Karhumäki, Arto Lepistö и Donald Sannella. T. 3142. Lecture Notes in Computer Science. Springer, 2004. C. 59—71. ISBN: 3-540-22849-7.
- 15. McBride C., McKinna J. The view from the left // J. Funct. Program. 2004. №1. C. 69—111.
- 16. *Pfenning F.* Unification and Anti-Unification in the Calculus of Constructions / In Sixth Annual IEEE Symposium on Logic in Computer Science. 1991. C. 74—85.
- 17. *Dybjer P.* Inductive Families // Formal Asp. Comput. 1994. №4. C. 440—465.
- 18. Atkey R., Johann P., Ghani N. Refining Inductive Types // Logical Methods in Computer Science. 2012. №2.
- 19. Xi H., Pfenning F. Dependent Types in Practical Programming / POPL. Под ред. Andrew W. Appel и Alex Aiken. ACM, 1999. C. 214—227. ISBN: 1-58113-095-3.
- 20. McBride C. How to Keep Your Neighbours in Order. https://personal.cis.strath.ac.uk/conor.mcbride/Pivotal.pdf.
- 21. *McBride C.*, *Norell U.*, *Danielsson N. A.* The Agda standard library AVL trees. http://agda.github.io/agda-stdlib/html/Data.AVL.html.
- 22. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to Algorithms, Second Edition. The MIT Press и McGraw-Hill Book Company, 2001. ISBN: 0-262-03293-7, 0-07-013151-1.
- 23. The Agda standard library. http://agda.github.io/agda-stdlib/html/README.html.