Sheet 15: Series

Definition 1 A series of real numbers is an expression $\sum_{n=1}^{\infty} a_n$, where (a_n) is a real sequence.

Definition 2 (Convergent Series) Let $\sum_{n=1}^{\infty} a_n$ be a series. The sequence of partial sums is defined as

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i.$$

We say that the series $\sum_{n=1}^{\infty} a_n$ converges to s (or $\sum_{n=1}^{\infty} a_n = s$) if $\lim_{n\to\infty} s_n = s$. If such an s exists, we say that $\sum_{n=1}^{\infty} a_n$ is convergent, otherwise it is divergent.

Exercise 3 Reformulate convergence using the Cauchy property.

We say a series $\sum_{n=1}^{\infty} a_n$ is convergent if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n, m > N we have $|s_n - s_m| < \varepsilon$.

Lemma 4 If $\sum_{n=1}^{\infty} a_n$ is a convergent series, the the sequence (a_n) converges to 0.

Proof. Let $\sum_{n=1}^{\infty} a_n = s$. Then the sequence of partial sums (s_n) converges to s and (s_n) is a Cauchy sequence. Thus for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n, m > N we have $|s_n - s_m| < \varepsilon$. But note that $s_{n+1} - s_n = a_n$ so for n > N + 1 we have $|a_n| < \varepsilon$ which means $\lim_{n \to \infty} a_n = 0$.

Lemma 5 Let $\sum_{n=1}^{\infty} a_n$ be convergent with a partial sum sequence (s_n) . Let $n_0 = 0$ and $n_1 < n_2 < \dots$ be a sequence of natural numbers. For $k \in \mathbb{N}$ let

$$b_k = a_{n_{k-1}+1} + \dots + a_{n_k} = \sum_{i=n_{k-1}+1}^{n_k} a_i.$$

Then

$$\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n.$$

Proof. Let $s_{b_k} = \sum_{i=1}^k b_i$ and $s_{a_n} = \sum_{i=1}^n a_i$. Then note that

$$s_{b_k} = \sum_{i=1}^k b_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n_2} a_i + \dots + \sum_{i=n_{k-1}+1}^{n_k} a_i = s_{a_{n_k}}.$$

We know $\sum_{n=1}^{\infty} a_n$ is convergent so (s_{a_n}) converges. Also $(s_{a_{n_k}})$ is a subsequence of (s_{a_n}) so it converges as well (13.12). But $(s_{b_k}) = (s_{a_{n_k}})$ so $\lim_{k \to \infty} s_{b_k} = \lim_{k \to \infty} s_{a_{n_k}}$ which implies

$$\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n.$$

Theorem 6 (Geometric Series) For all t < |1|, we have

$$\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}.$$

Proof. Consider a partial sum of $\sum_{n=0}^{\infty} t^n$,

$$s_k = \sum_{n=0}^k t^n = 1 + t + \dots + t^k = \frac{1 - t^{k+1}}{1 - t} = \frac{1}{1 - t} - \frac{t^k}{1 - t}.$$

But since t < |1| we have $\lim_{k \to \infty} t^k/(1-t) = 0$. So then $\lim_{k \to \infty} s_k = 1/(1-t) + 0$ which means

$$\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}.$$

Theorem 7 The series $\sum_{n=1}^{\infty} 1/n$ is not convergent.

Proof. Suppose that $\sum_{n=1}^{\infty} 1/n$ is convergent. Create a sequence (b_k) as in Lemma 5 such that

$$b_k = \sum_{i=n_{k-1}+1}^{n_k} \frac{1}{n}$$

where $n_k = 2^{k-1}$ for $k \in \mathbb{N}$ and $n_0 = 0$. Note that for $k \ge 2$, b_k has $2^{k-1} - 2^{k-2} = 2^{k-2}$ terms, the smallest of which is $1/2^{k-1}$. Thus, for all $k \ge 2$, $b_k \ge 2^{k-2}/2^{k-1} = 1/2$. Also $b_1 = \sum_{n=1}^{1} 1/n = 1$. So for all $k \in \mathbb{N}$ we have $b_k \ge 1/2$. But then there are infinitely many $k \in \mathbb{N}$ such that $b_k \notin (-1/2; 1/2)$ so $\lim_{k \to \infty} b_k \ne 0$. Thus, $\sum_{k=1}^{\infty} b_k$ is not convergent (15.4). But we know that $\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n$ which is a contradiction (15.5). Thus $\sum_{n=1}^{\infty} 1/n$ is not convergent.

Theorem 8 (Alternating Sign Series) Let $\sum_{n=1}^{\infty} a_n$ be a series with the following properties: 1) a_n is positive if n is odd and negative if n is even; 2) $|a_{n+1}| < |a_n|$ for all n; 3) $\lim_{n\to\infty} a_n = 0$. Then $\sum_{n=1}^{\infty} a_n$ is convergent.

Proof. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all n > N we have $|a_n| < \varepsilon$. Let $n \in \mathbb{N}$ such that n > N and n is even. Then $a_{n+1} > 0$. We have $s_{n+1} = s_n + a_{n+1} > s_n$. Also $a_{n+2} < 0$ and $|a_{n+2}| < |a_{n+1}|$ so $a_{n+1} + a_{n+2} > 0$. Then $s_{n+1} > s_{n+1} + a_{n+2} = s_n + a_{n+1} + a_{n+2} > s_n$. So for n > N even we have $s_n \le s_{n+2} \le s_{n+1}$ and a similar proof shows that for n > N odd we have $s_n \ge s_{n+2} \ge s_{n+1}$. Use strong induction on n to show that for k + N even $s_N \le s_{k+N} \le s_{N+1}$. We see that for k = 1 we have $s_N \le s_{N+1} \le s_{N+1}$ which is true since a_{N+1} is positive. We've also shown the case for k = 2. Assume that for n + N even we have $s_N \le s_{N+n} \le s_{N+1}$. Consider s_{N+n+2} . We know $s_{N+n} \le s_{N+n+2} \le s_{N+n+1}$ and $s_{N+n-1} \le s_{N+n+1} \le s_{N+n}$. Combining these three inequalities we have $s_N \le s_{N+n+2} \le s_{N+1}$. Thus for all even N + n we have $s_N \le s_{N+n} \le s_{N+1}$. A similar proof holds to show that for odd N + n we have $s_N \le s_{N+n} \le s_{N+1}$. Since this is true for any N given ε , for any region $(s_N; s_{N+1})$ there are finitely many n with s_n not in the region. Thus $\sum_{n=1}^{\infty} a_n$ is convergent.

Exercise 9 The series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

is convergent.

Proof. Note that for n odd we have $a_n = (-1)^{n+1}/n$ and since n+1 is even and n>0 we have $a_n = 1/n > 0$. For n even n+1 is odd so $a_n = (-1)^{n+1}/n = -1/n < 0$. Also $|a_{n+1}| = 1/(n+1) < 1/n = |a_n|$. Finally we know that $\lim_{n\to\infty} a_n = 0$ (13.4). Since this series fulfills the requirements of Theorem 8, it must be convergent.

Definition 10 A series $\sum_{n=1}^{\infty} a_n$ is called absolutely convergent if the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Lemma 11 $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if and only if there exists $C \in \mathbb{R}$ such that for all $N \in \mathbb{N}$, $\sum_{n=1}^{N} |a_n| \leq C$.

Proof. Suppose that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Let $s_k = \sum_{n=1}^k |a_n|$. Then (s_n) is convergent and therefore bounded (13.15). Thus there exists $C \in \mathbb{R}$ such that for all N we have $s_N = \sum_{n=1}^N |a_n| \le C$.

Now suppose there exists $C \in \mathbb{R}$ such that $s_N \leq C$ for all N. Thus (s_n) is bounded. Note that $s_n = s_{n-1} + |a_n|$ and since $|a_n| \geq 0$ for all n we have (s_n) is an increasing sequence. Since (s_n) is bounded and increasing we know it is convergent (13.18). Thus $\sum_{n=1}^{\infty} |a_n|$ is convergent and so $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Theorem 12 (Comparison Criterion) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series. Suppose there is some N such that for all $n \geq N$ we have $|a_n| \leq |b_n|$. Then if $\sum_{n=1}^{\infty} b_n$ is absolutely convergent so is $\sum_{n=1}^{\infty} a_n$.

Proof. For all $M \geq N$ note that

$$\sum_{n=N}^{M} |a_n| \le \sum_{n=N}^{M} |b_n| \le \sum_{n=1}^{M} |b_n| \le C$$

for some $C \in \mathbb{R}$ because every term in $(|b_n|)$ is greater than or equal to zero (15.11). Also note that

$$\sum_{n=1}^{M} |a_n| \le C + \sum_{n=1}^{N-1} |a_n| \le C'$$

for some $C' \in \mathbb{R}$ because every term of $(|a_n|)$ is greater than or equal to zero. Also note that for $M' < N \le M$ we have

$$\sum_{n=1}^{M'} |a_n| \le \sum_{n=1}^{M} |a_n| \le C'$$

so that for all M we have $\sum_{n=1}^{M} |a_n| \leq C'$. By Lemma 11 $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (15.11).

Corollary 13 (Quotient Criterion) Let $\sum_{n=1}^{\infty} a_n$ be a series. Suppose that there is an $N \in \mathbb{N}$ and 0 < r < 1, such that $|a_{n+1}/a_n| \le r$ for all $n \ge N$. Then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Proof. Use induction on n to show that $|a_{N+n}| \leq |a_N| r^n$. For the base case, n=1 we have $|a_{N+1}| \leq |a_N| r$ by assumption. Assume that for $n \in \mathbb{N}$ we have $|a_{N+n}| \leq |a_N| r^n$ so $|a_{N+n}| r \leq |a_N| r^{n+1}$. Then note that $|a_{N+n+1}| \leq |a_N| r^{n+1}$ as desired. Thus for $n \geq N$ we have $|a_n| \leq |a_N| r^{n-N}$. Let $b_n = |a_N| r^{n-N}$. Then for n > N we have $|a_n| \leq |a_N| r^{n-N} = |a_N| r^{n-N} = |a_N| r^{n-N} = |a_N| r^{n-N}$.

$$\sum_{n=1}^{\infty} |a_N r^{n-N}| = \sum_{n=0}^{\infty} |a_N| r^{n-N+1} = |a_N| r^{-N+1} \sum_{n=0}^{\infty} r^n$$

and so $\sum_{n=1}^{\infty} b_n$ is absolutely convergent by Theorem 6, because r > 0 and because $|a_N| r^{-N+1}$ is a constant value (15.6). Thus, by Theorem 12 we have $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Definition 14 Let $\sum_{n=1}^{\infty} a_n$ be a series. A reordering of $\sum_{n=1}^{\infty} a_n$ is a series of the form $\sum_{n=1}^{\infty} b_n$, where $b_n = a_{f(n)}$ for some bijection $f: \mathbb{N} \to \mathbb{N}$.

Lemma 15 Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series, and let $\sum_{n=1}^{\infty} b_n$ be a reordering of it. Then for every $k \in \mathbb{N}$ there exists $L \in \mathbb{N}$ such that for all $l \geq L$,

$$\left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n \right| \le \sum_{n=k+1}^{\infty} |a_n|.$$

Proof. Let $g: \mathbb{R} \to \mathbb{R}$ be a function such that g(x) = |x|. We know that since g is continuous, for a sequence (a_n) , if $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} |a_n| = |a|$ (13.7). We have $\sum_{n=1}^{\infty} a_n$ is absolutely convergent so $|\sum_{n=1}^{\infty} a_n| = \lim_{n\to\infty} |s_n|$. Then use induction on n to show that $|s_n| \le \sum_{k=1}^n |a_k|$. For n=1 we have $|s_1| = |a_1| = \sum_{k=1}^1 |a_1|$. Assume that for $n \in \mathbb{N}$, $\sum_{k=1}^n |a_k| \ge |s_n|$. Then

$$\sum_{k=1}^{n+1} |a_k| = \sum_{k=1}^{n} |a_k| + |a_{n+1}| \ge |s_n| + |a_{n+1}| \ge |s_n + a_{n+1}| = |s_{n+1}|$$

by the triangle inequality and our inductive hypothesis (9.36). Therefore we have

$$\left| \sum_{n=1}^{\infty} a_n \right| \le \sum_{n=1}^{\infty} |a_n|.$$

Let $k \in \mathbb{N}$ and consider the sets $A = \{a_n \mid n \leq k\}$ and $S = \{f(n) \mid n \leq k\}$. Let $L = \sup S$. Consider $l \geq L$ and let $B = \{b_n \mid n \leq l\}$ and $T = \{n \mid b_n \in B\}$. Finally let $C = \{a_n \mid n \notin T\}$. Make a new sequence c_n where n is the nth element of C. Note that by definition, $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n$. Then

$$\left| \sum_{n=1}^{\infty} c_n \right| = \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n \right| \le \sum_{n=1}^{\infty} |c_n| \le \sum_{k=1}^{\infty} |a_n|.$$

The last inequality holds because (c_n) is the sequence (a_n) , but with at least k terms missing.

Theorem 16 (Abel Resummation Theorem) Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series, and let $\sum_{n=1}^{\infty} b_n$ be a reordering of it. Then $\sum_{n=1}^{\infty} b_n$ absolutely convergent and

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n.$$

Proof. Let $k \in \mathbb{N}$ and consider the sets $A = \{a_n \mid n \leq k\}$ and $S = \{f(n) \mid n \leq k\}$ Let $L = \sup S$ and let $B = \{b_n \mid n \leq L\} \subseteq \{a_n \mid n \leq L\}$ since $L \geq k$. Then

$$\sum_{n=1}^{L} |b_n| \le \sum_{n=1}^{L} |a_n| \le C$$

for some $C \in \mathbb{R}$ (15.11). Note that L is always some value greater than or equal to k and so as k increases, so does L. But also $(|b_n|)$ is an increasing sequence and so for any value L' < L we have $\sum_{n=1}^{L'} |b_n| \le \sum_{n=1}^{L} |b_n| \le C$. Thus every partial sum of $\sum_{n=1}^{\infty} |b_n|$ is bounded and thus $\sum_{n=1}^{\infty} b_n$ is absolutely convergent (15.11). Now consider $\sum_{n=k+1}^{\infty} |a_n| = \sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{k} |a_n|$ (15.5). Take the limit as k goes to infinity. We have

$$\lim_{k \to \infty} \sum_{n=k+1}^{\infty} |a_n| = \lim_{k \to \infty} \left(\sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{k} |a_n| \right) = \sum_{n=1}^{\infty} |a_n| - \lim_{k \to \infty} s_k = 0.$$

But then we have

$$\lim_{l \to \infty} \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n \right| = \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n \right| \le \lim_{n \to \infty} \sum_{n=k+1}^{\infty} |a_n| = 0$$
 (15.15).

Thus,

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n.$$

Theorem 17 Let $\sum_{n=1}^{\infty} a_n$ be a convergent, but not absolutely convergent series. Then for all $c \in \mathbb{R}$ there exists a reordering $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ such that

$$\sum_{n=1}^{\infty} b_n = c.$$

Proof. Let $A = \{a_n \mid n \in \mathbb{N}\}$. Then A is nonempty and bounded, so $\sup A$ exists (6.11, 13.15). Suppose that for any positive term of (a_n) there are infinitely many terms greater than or equal to it. Consider some term $a_k > 0$ and the region $(-a_k; a_k)$. Then there are infinitely many terms of (a_n) which are not in $(-a_k; a_k)$. But then (a_n) does not converge to zero which means $\sum_{n=1}^{\infty} a_n$ is not convergent (13.4). This is a contradiction and so for all positive terms of (a_n) there are finitely many terms greater than or equal to it. A similar proof holds to show that for a negative term of (a_n) , there are finitely many terms less than or equal to it.

We have $\sum_{n=1}^{\infty} a_n = a$ for some $a \in \mathbb{R}$. Assume that $a_n = 0$ for finitely many n. We can order the positive elements of (a_n) in decreasing order and the negative elements of (a_n) in increasing order because there are finitely many positive or negative terms of (a_n) greater than or less than any given term respectively. Define (x_k) where x_k is the kth positive element of (a_n) and (y_k) where y_k is the kth negative element of (a_n) . Then for all $k \in \mathbb{N}$ we have $y_k < 0 \le x_k$. Suppose there are finitely many negative terms of (a_n) . Then there exists a largest element, j, of $\{n \mid a_n < 0\}$ so that

$$\sum_{k=1}^{j} y_k = q \text{ and } \sum_{k=1}^{j} |y_k| = -q$$

for some $q \in \mathbb{R}$ because $y_k < 0$ for all k. Then we have

$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{\infty} x_k + \sum_{k=1}^{j} y_k$$

and so

$$\sum_{k=1}^{\infty} x_n = \sum_{k=1}^{\infty} |x_k| = a - q.$$

This follows from Lemma 5 (15.5). But then

$$(a-q)+q=\sum_{k=1}^{\infty}|x_k|+\sum_{k=1}^{j}|y_k|=\sum_{n=1}^{\infty}|a_n|$$

which means $\sum_{n=1}^{\infty} a_n$ is absolutely convergent which is a contradiction. Thus there are infinitely many terms of (y_k) and a similar proof shows there are infinitely many terms of (x_k) .

Let $c \in \mathbb{R}$. Now suppose that for all $j \in \mathbb{N}$ we have $\sum_{k=1}^{j} x_k \leq c$. Since $x_k > 0$ for all k, we have the partial sums of $\sum_{k=1}^{\infty} x_k$ are bounded and increasing so it must converge to x for some $x \in \mathbb{R}$ (13.18). Suppose that $\sum_{k=1}^{\infty} |y_k| = y$ for some $y \in \mathbb{R}$. Then $\sum_{n=1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = x + y$ which is a contradiction (15.16). Thus $\sum_{k=1}^{\infty} y_k$ is not absolutely convergent so there exists $l \in \mathbb{N}$ such that $\sum_{k=1}^{l} |y_k| > c$ (15.11). But since $y_k < 0$ for all k we have $-c < \sum_{k=1}^{l} y_k$.

Now consider the sequence (a'_n) where $a'_n = a_n$ if $a_n < 0$ and 0 if $a_n \ge 0$. Then a partial sum of

$$\sum_{n=1}^{\infty} a'_n \text{ is } s_{a'_n} = \sum_{k=1}^n a_k - \sum_{k=1}^{n'} x_k$$

supposing there are n' positive terms in the first n terms of (a_n) . Then if we consider $\lim_{n\to\infty} s_{a'_n}$ we simply have a-x since n' will go to ∞ as n does. Hence

$$\sum_{n=1}^{\infty} a'_n = \sum_{k=1}^{\infty} y_k + 0 = a - x.$$

Thus $\sum_{k=1}^{\infty} y_k$ is convergent, but we just showed that the partial sums of this series are unbounded which is a contradiction (13.15). Thus, for $c \in \mathbb{R}$ there exists $j \in \mathbb{N}$ such that $\sum_{k=1}^{j} x_k > c$. A similar proof shows that for $c \in \mathbb{R}$ there exists $j \in \mathbb{N}$ such that $\sum_{k=1}^{j} y_k < c$

Define a reordering of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ where the first n_1 terms of b_n are the least number of terms of (x_k) such that $\sum_{k=1}^{n_1} x_k > c$. Then let the next n_2 terms be the least number of terms of (y_k) such that $\sum_{k=1}^{n_1} x_k + \sum_{k=1}^{n_2} y_k < c$. Note that we can always do this because the partial sums of

$$\sum_{k=1}^{\infty} x_k \text{ and } \sum_{k=1}^{\infty} y_k$$

are unbounded. Then for odd $i \in \mathbb{N}$, n_i is the least number of terms of (x_k) such that

$$\sum_{n=1}^{n_i} b_n = \sum_{k=1}^{n_i} x_k + \sum_{k=1}^{n_{i-1}} y_k > c$$

and for even i, n_i is the least number of terms of (y_k) such that

$$\sum_{n=1}^{n_i} b_n = \sum_{k=1}^{n_{i-1}} + \sum_{k=1}^{n_i} y_k < c.$$

Let $s_k = \sum_{n=1}^k b_n$. Note that s_k for k between n_i and n_{i+1} for $i \in \mathbb{N}$ is between s_{n_i} and $s_{n_{i+1}}$ because the terms of b_n change sign at n_i . Consider some region (p;q) such that $c \in (p;q)$. Since the least number of elements of (y_k) are added to $s_{n_{i-1}}$ so that $s_{n_i} < c$, we have $|c - s_{n_i}|$ is always less than or equal to the absolute value of some element of (y_k) . Suppose that $p > s_{n_i}$ for an infinite number of odd i. Then |c - p| is less than or equal to an infinite number of absolute values of terms of (y_k) . But then if we consider some $|y_k| > |c - p|$ there are an infinite number of n such that $|y_n| > |y_k|$. This is a contradiction and so $p > s_{n_i}$ for finitely many odd i. But also for all s_{n_i} with odd i there are finitely many s_k such that i < k < i + 1 because the positive and negative partial sums are unbounded. Thus there are finitely many n such that $s_n < p$. A similar proof shows that there are finitely many n with $s_n > q$ so there are finitely many n with $s_n \ne (p;q)$. Therefore $\lim_{n\to\infty} s_n = c$ and so

$$\sum_{n=1}^{\infty} b_n = c.$$

If there are infinitely many n such that $a_n = 0$ the change b_n so that a zero term is added to each n_i th partial sum. This will not change the resulting series convergence.

Theorem 18 Show that if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then it is convergent.

Proof. Let $\varepsilon > 0$. Note that since $\sum_{n=1}^{\infty} |a_n|$ is convergent, the sequence of partial sums is Cauchy (14.5). Thus there exists N such that for all n, m > N we have

$$\left|\sum_{i=1}^n a_i - \sum_{i=1}^m a_i\right| = \left|\sum_{i=m}^n a_i\right| \le \left|\sum_{i=m}^n |a_i|\right| = \left|\sum_{i=1}^n |a_i| - \sum_{i=1}^m |a_i|\right| < \varepsilon.$$

Thus the partial sums of $\sum_{n=1}^{\infty} a_n$ are also cauchy which means $\sum_{n=1}^{\infty} a_n$ is convergent (14.5).