Notas de Cálculo Avanzado

Ramiro Dibur

Índice

1.	Teoría de Conjuntos		2
	1.1.	Relaciones	2
	1.2.	Conjuntos ordenados	3
	1.3.	Reticulados	4
	1.4.	Reticulados finitos	6
	1.5.	Morfismos de orden	7
	1.6.	Cardinalidad	9
	1.7.	Axioma de elección y lema de Zorn	13
	1.8.	Aritmética de cardinales	14
2.	Espacios métricos		
	2.1.	Sucesiones convergentes	20
3.	Prác	ticas	22

1 Teoría de Conjuntos

Lo básico de teoría de conjuntos (definición de conjunto, partes de un conjunto, intersección, unión, ...) es algo ya visto en Álgebra I y utilizado frecuentemente en Álgebra Lineal. Por lo tanto, no vamos a ver nada al respecto.

1.1 Relaciones

Si bien relaciones lo vimos en Álgebra I, amerita un breve repaso de las definiciones y propiedades básicas.

Definición 1.1. Una *relación* binaria \mathcal{R} entre A y B es un subconjunto de $A \times B$. Decimos que $a\mathcal{R}b$ si $(a,b) \in A \times B$.

En particular, vamos a tratar con las relaciones en $A \times A$, a las cuales les decimos simplemente relaciones en A.

Un ejemplo clásico de relación es la relación de igualdad en un conjunto A, definida como el conjunto $\{(a,a) \mid a \in A\}$. En otras palabras, cada elemento de A está relacionado únicamente consigo mismo, y no con ningún otro elemento.

Nos interesa categorizar algunas relaciones en particular.

Definición 1.2. Una relación \mathcal{R} en A es de *equivalencia* si satisface las siguientes propiedades:

- **Reflexiva**: Para todo $a \in A$, se cumple que aRa.
- **Simétrica**: Para todo $a, b \in A$, si aRb, entonces bRa.
- **Transitiva**: Para todo $a, b, c \in A$, si aRb y bRc, entonces aRc.

La relación de igualdad cumple la definición de relación de equivalencia de forma trivial. Otra relación de equivalencia que no es trivial es la congruencia módulo n.

Ejemplo 1.1. Decimos que $m, n \in \mathbb{Z}$ son congruentes módulo $N \in \mathbb{N}$ si ambos tienen el mismo resto al dividirlos por N y la

denotamos como

$$m \equiv n \pmod{N}$$
.

La demostración de que es una relación de equivalencia le queda al lector.

Por otro lado, tenemos las relaciones de orden.

Definición 1.3. Una relación \mathcal{R} en A es de *orden* si satisface las siguientes propiedades:

- **Reflexiva**: Para todo $a \in A$, se cumple que aRa.
- Anti-simétrica: Para todo $a, b \in A$, si aRb y bRa, entonces a = b.
- **Transitiva**: Para todo $a, b, c \in A$, si aRb y bRc, entonces aRc.

De ahora en adelante, utilizaremos \leq para denotar a una relación de orden arbitraria.

Estas relaciones son las que nos interesan en Cálculo Avanzado. Un ejemplo trivial de relación de orden son los números reales $\mathbb R$ junto con la relación \leq . Otra relación quizás no tan aparente es la de los naturales N junto con la divisibilidad.

Ejemplo 1.2. Sean $m, n \in \mathbb{N}$. Decimos que m divide a n si el resto de n al dividirlo por m es 0 y lo denotamos como

$$m \mid n$$
.

La demostración queda para el lector.

1.2 Conjuntos ordenados

Veamos la definición de un conjunto ordenado.

Definición 1.4. Decimos que un conjunto A junto con una relación de orden \leq es un *conjunto ordenado* (o *poset*) y lo denotamos como (A, \leq) .

La palabra poset viene del inglés "partially ordered set".

Definición 1.5. Sea (A, \preceq) un conjunto ordenado. Si para todo $a, b \in A$ se cumple $a \preceq b$ o $b \preceq a$, decimos que A es un conjunto *totalmente ordenado* (o *cadena*). Sino, decimos que es un conjunto *parcialmente ordenado*.

Algunos ejemplos de orden parcial son:

- El conjunto de partes de un conjunto junto con el orden de inclusión $(\mathcal{P}(X), \subseteq)$.
- El conjunto de los números naturales junto con la relación de divisibilidad $(\mathbb{N}, |)$.

Y otros ejemplos de conjuntos totalmente ordenados:

- El conjunto de los números reales junto con la relación de orden usual (\mathbb{R}, \leq) .
- El conjunto de las palabras en un diccionario ordenadas alfabéticamente.

1.3 Reticulados

Definición 1.6. Decimos que un conjunto ordenado (\mathcal{O}, \preceq) es un *reticulado* si para todo $a, b \in \mathcal{O}$ existen:

- Un *supremo* denotado como $a \lor b$, que es el menor elemento de \mathcal{O} que es mayor o igual que $a \lor b$.
- Un *infimo* denotado como $a \wedge b$, que es el mayor elemento de \mathcal{O} que es menor o igual que a y b.

Algunos ejemplos de reticulados son:

- El conjunto de partes de un conjunto $(\mathcal{P}(X), \subseteq)$, donde el supremo es la unión de conjuntos $A \vee B = A \cup B$ y el ínfimo es la intersección $A \wedge B = A \cap B$.
- El conjunto de números enteros (\mathbb{Z} , \leq), donde el supremo es el máximo de dos números $a \lor b = \max(a, b)$ y el ínfimo es el mínimo $a \land b = \min(a, b)$.

■ El conjunto de divisores de un número natural n con la relación de divisibilidad (D(n), |), donde el supremo es el mínimo común múltiplo $a \lor b = \text{mcm}(a, b)$ y el ínfimo es el máximo común divisor $a \land b = \text{mcd}(a, b)$.

Observación. En un reticulado no necesariamente existe el supremo de un conjunto infinito. Por ejemplo, en el reticulado (\mathbb{N}, \leq) , el conjunto de los números enteros positivos no tiene un supremo, ya que no existe un número entero que sea mayor o igual a todos los números positivos.

Lo cual nos lleva a la siguiente definición.

Definición 1.7. Un reticulado (\mathcal{O}, \preceq) es *completo* si para todo subconjunto no vacío de \mathcal{O} existe su supremo e ínfimo.

Algunos ejemplos de reticulados completos son:

- El conjunto de partes de un conjunto $(\mathcal{P}(X), \subseteq)$, ya que para cualquier colección de subconjuntos, siempre existen la unión (supremo) y la intersección (ínfimo).
- El conjunto de números reales extendido con $+\infty$ y $-\infty$ ($\mathbb{R} \cup \{-\infty, +\infty\}$, \leq), donde cualquier subconjunto tiene un supremo e ínfimo.

A continuación veremos algunas propiedades básicas de reticulados las cuales no voy a demostrar.

Proposición 1.1. Sea (\mathcal{O}, \preceq) un reticulado. Entonces, las siguientes propiedades son verdaderas:

- 1. **Idempotencia:** $a \lor a = a$ y $a \land a = a$.
- 2. Conmutatividad: $a \lor b = b \lor a$ y $a \land b = b \land a$.
- 3. **Asociatividad:** $(a \lor b) \lor c = a \lor (b \lor c) \ y \ (a \land b) \land c = a \land (b \land c)$.
- 4. **Absorción:** $a \lor (a \land b) = a \ y \ a \land (a \lor b) = a$.

1.4 Reticulados finitos

Tal como dice el nombre:

Definición 1.8. Un reticulado (\mathcal{O}, \preceq) es *finito* si \mathcal{O} es finito.

Los reticulados finitos los podemos representar con un *diagrama de Hasse*. Un diagrama de Hasse es un grafo donde cada vértice representa un elemento y las aristas, una relación entre dos elementos.

Por ejemplo, consideremos el reticulado (D(18),|). Lo podemos representar con un diagrama de Hasse de la siguiente manera:

Figura 1: Diagrama de Hasse del reticulado (D(18), |).

Notemos que únicamente están conectados los vértices x e y para los cuales no existe z tal que $x \mid z \mid y$. Y las aristas siempre van hacia arriba.

A su vez, el diagrama de Hasse nos facilita ver una propiedad interesante: todo reticulado finito es completo.

Proposición 1.2. Sea (\mathcal{O}, \preceq) un reticulado *finito* y no vacío. Entonces es completo.

Demostración. Sea $X = \{x_1, x_2, \dots, x_n\}$ un subconjunto de \mathcal{O} . Procedemos por inducción en el cardinal del subconjunto.

Para |X| = 1, el supremo de X es su único elemento.

Supongamos que para todo subconjunto con cardinal menor a n existe supremo. Defino $Y = \{x_1, x_2, \dots, x_{n-1} \lor x_n\}$. Por definición de supremo,

$$x_1, x_2, \ldots, x_{n-2} \leq \sup Y$$
,

y también

$$x_{n-1}, x_n \leq x_{n-1} \vee x_n \leq \sup \Upsilon$$
.

Por lo tanto

$$x_1, x_2, \ldots, x_n \leq \sup Y$$
,

Entonces, sup Y es cota superior de X. Sea c una cota superior de X. En particular, $x_{n-1} \lor x_n \preceq c$ ya que $x_{n-1}, x_n \preceq c$. Por lo tanto, c también es una cota de Y, entonces sup $Y \preceq c$. Demostrando que sup $X = \sup Y$. La demostración para el ínfimo es análoga.

1.5 Morfismos de orden

Consideremos una función entre conjuntos ordenados

$$f:(A, \preceq_A) \to (B, \preceq_B).$$

Por comodidad, directamente vamos a escribir

$$f:A\to B$$
.

Y además utilizaremos el mismo símbolo \leq para \leq_A y \leq_B . Por lo general no genera confusión, pero en el caso que sí, se aclarará qué orden se utiliza.

Definición 1.9. Sean A y B conjuntos ordenados. Decimos que una función $f:A\to B$ es un *morfismo de orden* (o *creciente*) si se cumple que

si
$$a \leq a'$$
 en A , entonces $f(a) \leq f(a')$ en B .

Y decreciente si se cumple que

si
$$a \leq a'$$
 en A , entonces $f(a) \succeq f(a')$ en B .

Por ejemplo, la función Id : $(\mathbb{N},|) \to (\mathbb{N},\leq)$ es un morfismo de orden, ya que si $m \mid n$ entonces $m \leq n$.

Observación. No necesariamente es verdadera la vuelta. Esto se ve fácil con el ejemplo de arriba si tomamos m=2 y n=3, $2\leq 3$ pero $2\nmid 3$.

Para eso definimos un isomorfismo de orden.

Definición 1.10. Sean A y B conjuntos ordenados. Decimos que una función *biyectiva* $f:A\to B$ es un *isomorfismo de orden* si se cumple que

$$a \leq a'$$
 si y sólo si $f(a) \leq f(a')$.

Observación. Esto es lo mismo que decir que f y f^{-1} son ambas morfismos de orden.

Veamos algunos ejemplos de isomorfismos de orden:

- La función $f: (\mathbb{R}, \leq) \to (\mathbb{R}_{>0}, \leq)$ tal que $f(x) = e^x$.
- La función $f: (\mathbb{Z}, \leq) \to (2\mathbb{Z}, \leq)$ tal que f(x) = 2x.
- La función $f: (\mathcal{P}(X), \subseteq) \to (\mathcal{P}(X), \supseteq)$ tal que $f(A) = X \setminus A$.

A continuación demostramos el teorema del punto fijo para reticulados completos.

Teorema 1.1. Sea (\mathcal{O}, \preceq) un reticulado *completo* y sea $f : \mathcal{O} \to \mathcal{O}$ un *morfismo de orden*. Entonces, existe $x \in \mathcal{O}$ tal que f(x) = x.

Demostración. Sea $A = \{x \in \mathcal{O} \mid x \leq f(x)\}$. Como \mathcal{O} es un reticulado completo, considero $s = \sup A$. Recordemos que, para todo $a \in A$, $a \leq s$. Y como f es creciente, para todo $a \in A$,

$$f(a) \leq f(s)$$
.

Por definición de A, $a \leq f(a)$ y a su vez $f(a) \leq f(s)$, entonces, para todo $a \in A$,

$$a \leq f(s)$$
.

O sea, f(s) es cota superior de A. Por definición del supremo, $s \leq f(s)$ y entonces $s \in A$. A la desigualdad $s \leq f(s)$ le aplicamos f y obtenemos

$$f(s) \leq f(f(s)).$$

Por lo tanto, $f(s) \in A$; entonces tenemos $f(s) \leq s$ y $s \leq f(s)$, lo cual implica que f(s) = s.

1.6 Cardinalidad

Definición 1.11. Decimos que un conjunto A es *finito* si es vacío o existe una biyección $f : [n] \to A$. Definimos #A = n y $\#\emptyset = 0$. Además, A es *infinito* si no es finito.

Observación. La definición de #A tiene sentido dado que $f : [m] \to [n]$ es biyectiva si y sólo si m = n.

Definición 1.12. Decimos que A es *numerable* si existe una biyección $f: \mathbb{N} \to A$. Además, si A es numerable o finito decimos que es *contable*.

Algunos ejemplos de conjuntos numerables son:

- El conjunto 2N.
- El conjunto de números primos.
- Los conjuntos \mathbb{Z} y \mathbb{Q} .

Definición 1.13. Si existe $f: A \rightarrow B$ biyectiva, entonces se dice que A y B son *coordinables* y lo denotamos como $A \sim B$.

Observación. Todo conjunto numerable es coordinable con $\mathbb N$ y viceversa.

Lema 1.1. Todo subconjunto $A \subseteq \mathbb{N}$ es contable.

Demostración. Si A es finito, entonces ya estamos. Supongamos que A es infinito. Defino la función $f: \mathbb{N} \to A$ tal que $f(1) = \min A$ y

$$f(n+1) = \min(A - \{f(1), f(2), \dots, f(n)\}).$$

Como A es infinito, f está bien definida. Además, f es claramente una biyección. Por lo tanto, A es contable. \Box

Proposición 1.3. Sea X un conjunto *numerable*. Si existe $f: X \rightarrow Y$ sobreyectiva, entonces Y es contable.

Demostración. Si $X \neq \mathbb{N}$ simplemente consideramos una biyección de \mathbb{N} a X. Entonces, podemos suponer que $X = \mathbb{N}$.

Sea $f: X \rightarrow Y$ sobreyectiva. Definimos la función

$$g: Y \to \mathbb{N}$$
 tal que $y \mapsto \min f^{-1}(y)$.

La función g está bien definida porque f es sobreyectiva, lo que garantiza que $f^{-1}(y) \neq \emptyset$ para todo $y \in Y$. Como g es inyectiva, la restricción $g|_{\text{Im }g}$ es biyectiva. Dado que encontramos una biyección entre Y y un subconjunto de \mathbb{N} , demostramos que Y es contable. \square

Ejemplo 1.3. Los conjuntos $\mathbb{N} \times \mathbb{N}$ y \mathbb{N} son coordinables.

Solución. Definimos la función

$$\Phi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 tal que $\Phi(m, n) = 2^m 3^n$.

Dada la factorización única de los naturales, $\mathbb{N} \times \mathbb{N}$ es coordinable con un subconjunto de \mathbb{N} . Por lo tanto, es contable. Claramente, como Im Φ no es finito, $\mathbb{N} \times \mathbb{N}$ es numerable.

Ejemplo 1.4. Los conjuntos \mathbb{N} y \mathbb{R} no son coordinables.

Solución. Supongamos que $\mathbb{N} \sim \mathbb{R}$. Para facilitarnos la vida, podemos considerar la biyección $g: \mathbb{R} \to (0,1)$ dada por $g(x) = \frac{\tan^{-1}(x)}{\pi} + \frac{1}{2}$.

Figura 2: Gráfico de la función $g(x) = \frac{\tan^{-1}(x)}{\pi} + \frac{1}{2}$.

Por lo tanto, basta con demostrar que no existe una biyección entre \mathbb{N} y (0,1). Sea $f:\mathbb{N}\to(0,1)$ una biyección tal que

$$f(1) = 0.a_{11}a_{12}a_{13}...$$

$$f(2) = 0.a_{21}a_{22}a_{23}...$$

$$f(3) = 0.a_{31}a_{32}a_{33}...$$

Consideramos el número definido por agarrar los dígitos de la diagonal y sumarle 1 si es menor que 9 o restarle 1 si es 9. Nos queda el número

$$0.a'_{11}a'_{22}a'_{33}\dots$$

Este número es distinto f(n) en el n-ésimo dígito decimal. Lo cual es absurdo, ya que si f es biyectiva debería existir un natural m tal que $f(m) = 0.a'_{11}a'_{22}a'_{33}\dots$ Por lo tanto, demostramos que $\mathbb N$ no es coordinable con $\mathbb R$.

Probaremos el teorema de Schröder–Bernstein que va a facilitarnos la vida significativamente. Hasta ahora, para verificar si dos conjuntos eran coordinables era necesario encontrar una biyección entre los conjuntos. Esto nos ahorra tener que encontrar la biyección y sólo nos requiere encontrar dos funciones inyectivas.

Teorema 1.2. Sean $f: X \hookrightarrow Y \ y \ g: Y \hookrightarrow X$ funciones *inyectivas*. Entonces, existe una biyección $h: X \to Y$.

Demostración. La idea detrás de esta demostración es particionar a los conjuntos X e Y en A, B y A', B', respectivamente, de forma tal que

$$A \cap B = A' \cap B' = \emptyset$$
,

y

$$A \cup B = X$$
 y $A' \cup B' = Y$,

y además

$$f(A) = A'$$
 y $f(B) = B'$.

Figura 3: Partición de los conjuntos X e Y en A, B y A', B'.

Esto se reduce a encontrar $A \subseteq X$ tal que

$$X - g(Y - f(A)) = A.$$

Definimos $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ tal que $\Phi(A) = X - g(Y - f(A))$. Lo cual nos da la siguiente ecuación,

$$\Phi(A) = A$$
.

Veamos que Φ es un morfismo de orden con en $(\mathcal{P}(X), \subseteq)$. Sean X_0 y X_1 subconjuntos de X. Supongamos que $X_0 \subseteq X_1$. Entonces,

$$X_0 \subseteq X_1$$

$$f(X_0) \subseteq f(X_1)$$

$$Y - f(X_0) \supseteq Y - f(X_1)$$

$$g(Y - f(X_0)) \supseteq g(Y - f(X_1))$$

$$X - g(Y - f(X_0)) \subseteq X - g(Y - f(X_1))$$

$$\Phi(X_0) \subseteq \Phi(X_1)$$

probando que Φ es un morfismo de orden. Y como ya sabemos, $(\mathcal{P}(X), \subseteq)$ es un reticulado completo. Por lo tanto, podemos utilizar el teorema del punto fijo, dándonos un $A \subseteq X$ tal que $\Phi(A) = A$.

Ejemplo 1.5. El conjunto $\{0,1\}^{\mathbb{N}}$ es coordinable con \mathbb{R} .

Solución. Probamos que $\{0,1\}^{\mathbb{N}} \sim [0,1] \sim \mathbb{R}$.

Para $\{0,1\}^{\mathbb{N}} \hookrightarrow [0,1]$ tomamos la escritura en base 10. Y para $[0,1] \hookrightarrow \{0,1\}^{\mathbb{N}}$ tomamos la escritura en base 2.

Teorema 1.3. Todo conjunto X no es coordinable con $\mathcal{P}(X)$.

Demostración. Supongamos que $X \sim \mathcal{P}(X)$. Entonces, existe una función biyectiva $f: \mathcal{P}(X) \to X$. Sea

$$Y = \{ x \in X \mid x \notin g(X) \}.$$

Consideramos $y = f(Y) \in X$. Como f es biyectiva, $f^{-1}(y) = Y$. Con esto llegamos a un absurdo.

Si
$$y \in Y$$
, entonces $y \notin f^{-1}(y) = Y$.
Si $y \notin Y$, entonces $y \in f^{-1}(y) = Y$.

En ambos casos, llegamos a un absurdo. Entonces, nuestra suposición inicial de que $X \sim \mathcal{P}(X)$ es falsa.

1.7 Axioma de elección y lema de Zorn

En estas notas (y en la cursada) se acepta el axioma de elección y el principio de buena ordenación. El axioma de elección postula lo siguiente.

Axioma de elección. Sea $\mathcal F$ una familia de conjuntos no vacíos y disjuntos dos a dos. Entonces, existe una función $f:\mathcal F\to \bigcup \mathcal F$ tal que $f(A)\in A$ para todo $A\in \mathcal F$.

Otras formulaciones equivalentes son:

(I) Sea X un conjunto. Existe una función

$$f: \mathcal{P}(X) - \{\emptyset\} \to X$$

tal que $f(A) \in A$ para todo $A \in \mathcal{P}(X)$.

(II) El producto cartesiano de conjuntos no vacíos es no vacío.

El axioma de elección también es equivalente al principio de buena ordenación.

Principio de buena ordenación. Todo conjunto puede ser dotado de un orden tal que todo subconjunto no vacío tiene un

elemento mínimo. A este tipo de orden se le llama orden bueno.

Aceptando el axioma de elección (y en consecuencia el principio de buen ordenamiento) se puede demostrar el lema de Zorn.

Lema de Zorn. Son equivalentes:

- (I) Sea (A, \preceq) un conjunto parcialmente ordenado tal que toda cadena de A tiene cota superior. Entonces, A tiene un elemento maximal.
- (II) Sea (A, \preceq) un conjunto parcialmente ordenado tal que toda cadena de A tiene supremo. Entonces, A tiene un elemento maximal.
- (III) Todo conjunto parcialmente ordenado tiene una cadena maximal.

1.8 Aritmética de cardinales

Cuando trabajamos con cardinales de conjuntos, para probar que dos conjuntos tienen el mismo cardinal es necesario establecer una biyección o inyecciones hacia ambos lados. Sin embargo, encontrar la función en particular puede ser molesto a veces. Para esto sirve la aritmética de cardinales. Nos ahorra el trabajo de encontrar una función en particular y nos permite trabajar con cardinales generales.

Definición 1.14. Decimos que dos conjuntos A y B tienen el mismo *cardinal* si existe una función biyectiva $f: A \rightarrow B$ y lo denotamos como |A| = |B|.

Por ejemplo, si A es un conjunto numerable, entonces

$$|A| = |\mathbb{N}|.$$

En general, como hay algunos cardinales que son más ocurrentes, los denotamos de una forma especial.

Definición 1.15. Denotamos

- El cardinal de $\mathbb N$ como \aleph_0 .
- ullet El cardinal de ${\mathbb R}$ como ${\mathfrak c}$.

Observación. Si A es numerable, entonces su cardinal es \aleph_0 .

Definición 1.16. Sean A y B conjuntos. Si existe una función inyectiva $f: A \hookrightarrow B$, entonces $|A| \leq |B|$.

Si bien tratamos con funciones inyectivas, podríamos haber utilizado funciones sobreyectivas para las definiciones; ya que, si existe $f: A \hookrightarrow B$ inyectiva y $A \neq \emptyset$, entonces existe $g: B \twoheadrightarrow A$ sobreyectiva.

A continuación veremos una suerte de tricotomía pero para los cardinales. Para la demostración de este teorema, es necesario el lema de Zorn.

Teorema 1.4. Sean X e Y conjuntos no vacíos. Existe $f: X \hookrightarrow Y$ inyectiva o existe $g: Y \hookrightarrow X$ inyectiva.

Demostración. Consideramos el conjunto ordenado

$$\mathcal{A} = \{ (A, f_A) \mid f_A : A \subseteq X \hookrightarrow Y \text{ es inyectiva} \}$$

con el orden $(A, f_A) \leq (B, f_B)$ si $A \subseteq B$ y $f_B|_A = f_A$. Queremos utilizar el lema de Zorn, para eso necesitamos probar que toda cadena de \mathcal{A} tiene cota superior.

Sea $\mathcal{C}=\{(A_i,f_{A_i})\}_{i\in I}$ una cadena de \mathcal{A} . Consideremos el par (A,f_A) donde

$$A = \bigcup_{i \in I} A_i$$

y

$$f_A: A \to Y$$
 donde $f_A(a) = f_{A_i}(a)$ si $a \in A_i$.

Es evidente que $(A_i, f_{A_i}) \leq (A, f_A)$ para todo $i \in I$.

Probemos que f_A está bien definida ya que, para cualesquiera A_i , A_j de $\mathcal C$ tales que $A_i\subseteq A_j$ (sin pérdida de generalidad), $f_{A_j|_{A_i}=f_{A_i}}$.

Veamos que $A \in \mathcal{A}$. Claramente $A \subseteq X$. Probemos que f_A es inyectiva. Sean $a, a' \in A$ tales que $f_A(a) = f_A(a')$. Entonces, existe

un $i \in I$ tal que $a, a' \in A_i$, ya que C es una cadena. Por lo tanto, obtenemos

$$f_{A_i}(a) = f_{A_i}(a'),$$

y por invectividad de f_{A_i} , a = a'. Lo cual prueba que f_A es invectiva. Entonces, como $A \in \mathcal{A}$, tenemos que \mathcal{C} está acotado superiormente.

Como toda cadena de $\mathcal A$ está acotada superiormente, por el lema de Zorn, existe un elemento maximal. Sea (B, f_B) un elemento maximal. Necesariamente, dom $f_B = X$ o Im Y, del caso contrario (B, f_B) no sería maximal. Si dom $f_B = X$, ya conseguimos nuestra función inyectiva. Si Im Y, entonces definimos $f: Y \hookrightarrow X$ donde $f(y) = f_B^{-1}(y).$

Observación. Esto es equivalente a decir que, para dos conjuntos X e Y cualesquiera, $|X| \le |Y|$ o $|X| \ge |Y|$.

Proposición 1.4. Sea A un conjunto *infinito*. Entonces, existe una partición de A tal que todas las partes son numerables. Es

$$A = \bigsqcup_{i \in I} A_i,$$

donde A_i es numerable para todo $i \in I$.

Demostración. La demostración de esta proposición no la incluyo.

Volviendo a los cardinales.

Definición 1.17. Sean A y B conjuntos disjuntos (por praciticidad). Si a = |A| y b = |B|, entonces

- $a + b = |A \cup B|.$ $a \cdot b = |A \times B|.$
- $a^b = |A^B|.$

Podemos operar como lo esperaríamos.

Proposición 1.5. Sean *a*, *b*, *c* cardinales. Entonces:

■ a + b = b + a.

- $a \cdot b = b \cdot a$.
- (a+b)+c=a+(b+c).
- $(a \cdot b) \cdot c = a \cdot (b \cdot c).$
- $\bullet a \cdot (b+c) = a \cdot b + a \cdot c.$
- $a^{b+c} = a^b \cdot a^c.$
- $a^{b^c} = a^{b \cdot c}$.

Demostración. Las propiedades se deducen directamente de las definiciones de suma y producto de cardinales, utilizando las propiedades correspondientes de las uniones disjuntas y los productos cartesianos de conjuntos.

2 Espacios métricos

Definición 2.1. Un *espacio métrico* es un par (X,d), donde X es un conjunto y d : $X \times X \to \mathbb{R}_{\geq 0}$ una función llamada *distancia* (o *métrica*), que satisface las siguientes propiedades para todo $x, y, z \in X$:

- 1. d(x,y) = d(y,x).
- 2. $d(x,z) \le d(x,y) + d(y,z)$.
- 3. d(x,y) = 0 si y sólo si x = y.

Una función $d: X \times X \to \mathbb{R}_{\geq 0}$ es una pseudo-métrica si cumple la simetría, la desigualdad triangular y si además cumple que

si
$$x = y$$
, entonces $d(x, y) = 0$.

Observación. Como se cumple la desigualdad triangular, también se cumple

- $d(x_1,x_n) \leq d(x_1,x_2) + d(x_2,x_3) + \cdots + d(x_{n-1},x_n).$
- $|d(x,z)-d(y,z)| \le d(x,y).$

Veamos algunos ejemplos de espacios métricos.

Ejemplo 2.1.

- Para cualquier conjunto X, la *métrica discreta* está definida por $d(x,y) = \delta_{xy} = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$.
- Si (X,d) es un espacio métrico, entonces $d'(x,y) = \min(d(x,y),1)$ también es una métrica en X, llamada métrica acotada equivalente.
- Si $(V, \langle \cdot, \cdot \rangle)$ es un espacio vectorial con producto interno (sobre \mathbb{R} o \mathbb{C}), entonces $||x|| = \sqrt{\langle x, x \rangle}$ es una norma, y d(x,y) = ||x-y|| es una métrica inducida por la norma.
- El espacio $C([a,b],\mathbb{R})$ de funciones continuas $f:[a,b]\to\mathbb{R}$. Junto con la norma
 - L^2 : $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$.
 - $\bullet ||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$

Definición 2.2. Definimos

$$B(x,r) = \{ y \in X \mid d(x,y) < r \}$$

como la *bola abierta* centrada en *x* con radio *r*. Análogamente, la *bola cerrada* es

$$\overline{B}(x,r) = \{ y \in X \mid d(x,y) < r \}.$$

Esto nos lleva a la definición de entorno.

Definición 2.3. Un *entorno* de $x \in X$ es un subconjunto $V \subseteq X$ tal que $x \in V$ y existe una bola $B(x,r) \subseteq V$.

Observación. Notemos que B(x,r) siempre es un entorno de x.

Damos la definición de alguna terminología que utilizaremos más adelante.

Definición 2.4. Sea $A \subseteq X$. Definimos

■ El *interior* de *A* como

$$A^{\circ} = \{x \in X \mid \exists r > 0 \text{ tal que } B(x,r) \subseteq A\}.$$

■ La *clausura* de *A* como

$$\overline{A} = \{x \in X \mid \forall r > 0, B(x,r) \cap A \neq \emptyset\}.$$

■ La *frontera* de *A* como

$$\partial A = \overline{A} - A^{\circ}$$
.

■ El *exterior* de *A* como

$$\operatorname{ext} A = (X - A)^{\circ}.$$

Además,

- Si $A = A^{\circ}$, entonces decimos que A es *abierto*.
- Si $A = \overline{A}$, entonces decimos que A es *cerrado*.

Definimos dos términos relacionados a la distancia.

Definición 2.5. Sea $A \subseteq X$. Definimos el *diámetro* de A como

$$diam(A) = \sup_{a,b \in A} d(a,b).$$

Y la distancia entre un punto y un conjunto.

Definición 2.6. Sea $x \in X$ y $A \subseteq X$. Definimos la *distancia* entre x y A como

$$d(x,A) = \inf_{a \in A} d(x,a).$$

2.1 Sucesiones convergentes

Definición 2.7. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en X. Decimos que $\lim_{n\to\infty}x_n=x$ (o $x_n\xrightarrow[n\to\infty]{}x$) si para todo $\varepsilon>0$, existe $N\in\mathbb{N}$ tal que $n\geq N$ implica $d(x_n,x)<\varepsilon$.

Observación. Es equivalente tomar $d(x_n, x) \leq \varepsilon$.

Proposición 2.1. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en X. Si

$$\lim_{n\to\infty} x_n = x \quad y \quad \lim_{n\to\infty} x_n = y,$$

entonces x = y.

Demostración. Sea ε > 0. Entonces, existe $N ∈ \mathbb{N}$ tal que

$$d(x_n, x) \leq \frac{\varepsilon}{2}$$
 y $d(x_n, y) \leq \frac{\varepsilon}{2}$

para todo $n \ge N$. Por lo tanto,

$$0 \le d(x,y) \le d(x,x_n) + d(x_n,y) < \varepsilon.$$

Entonces, d(x, y) = 0 lo que implica que x = y.

Definición 2.8. Una sucesión $(x_n)_{n\in\mathbb{N}}$ en X es una *sucesión de Cauchy* si para todo $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que $n, m \geq N$ implica $d(x_n, x_m) < \varepsilon$.

Proposición 2.2. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en X. Si (x_n) converge, entonces es de Cauchy.

Demostración. Sea $\lim_{n\to\infty} x_n = x$ y sea $\varepsilon > 0$. Por definición de límite, existe $N \in \mathbb{N}$ tal que $d(x_n, x) < \frac{\varepsilon}{2}$, para todo $n \ge N$. Entonces,

$$d(x_n, x_m) \leq d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Por lo tanto, (x_n) es una sucesión de Cauchy.

Definición 2.9. Un espacio métrico (X,d) se dice *completo* si toda sucesión de Cauchy tiene límite en X.

Ejemplo 2.2. Sea (X, δ) un espacio métrico con la métrica discreta. Entonces, (X, δ) es completo.

Solución. Toda sucesión de Cauchy en (X, δ) es eventualmente constante. Por lo tanto, converge a un elemento de X.

3 Prácticas

Esta sección está dedicada a la resolución de los ejercicios de las prácticas de la materia. Los ejercicios no necesariamente están bien resueltos.

Práctica 1: Posets, cardinalidad, lema de Zorn

Ejercicio 1. Probar que todo reticulado completo tiene máximo y mínimo.

Solución. Sea (\mathcal{O}, \preceq) un reticulado completo. Por definición de reticulado completo, todo subconjunto tiene supremo e ínfimo. Por lo tanto, sup $\mathcal{O} \in \mathcal{O}$ existe, y para todo $x \in \mathcal{O}$, $x \preceq \sup \mathcal{O}$. Similarmente, ínf $\mathcal{O} \in \mathcal{O}$ existe, y para todo $x \in \mathcal{O}$, ínf $\mathcal{O} \preceq x$. Así, sup \mathcal{O} es el máximo y ínf \mathcal{O} es el mínimo de \mathcal{O} .

Ejercicio 2. Probar que toda cadena es un reticulado distributivo.

Solución. Sea (\mathcal{C}, \preceq) una cadena, es decir, un conjunto totalmente ordenado. Para demostrar que es un reticulado distributivo, debemos verificar que para cualesquiera $x,y,z\in\mathcal{C}$, se cumple:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 y $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

En una cadena, dado que cualquier par de elementos es comparable, el supremo e ínfimo son iguales al máximo y mínimo, respectivamente. Por lo tanto, la distributividad es trivial.

Ejercicio 3. Sea *L* un conjunto parcialmente ordenado con la propiedad de que todo subconjunto no vacío acotado superiormente tiene supremo. Probar que todo subconjunto no vacío acotado inferiormente tiene ínfimo.

Solución. Sea $A \subseteq L$ un subconjunto no vacío acotado inferiormente por $x \in L$. Sea B el conjunto de cotas inferiores de A. Como x es cota inferior de A, sabemos que B no es vacío. Además, para todo $a \in A$

y $b \in B$, se cumple que $b \le a$; es decir, todo elemento de A es cota superior de B.

Como B no es vacío y está acotado superiormente, por hipótesis, sup B existe. Dado que sup B es cota inferior de A y que es la mayor de las cotas inferiores, obtenemos que sup $B = \inf A$.

Ejercicio 4. Probar que en cualquier reticulado todo subconjunto finito no vacío tiene supremo e ínfimo.

Demostración. Probamos únicamente para el supremo, ya que la demostración para el ínfimo es análoga.

Vayamos por inducción en |X|. Para |X|=1, sup X es el único elemento de X.

Sea |X| = n. Supongamos que todo subconjunto no vacío con cardinal menor a n posee supremo. Consideremos los conjuntos

$$X = \{x_1, x_2, \dots, x_n\}$$
 e $Y = \{x_1, x_2, \dots, x_{n-2}, x_{n-1} \vee x_n\}$.

Notemos que |Y| = n - 1; por lo tanto, existe sup Y. Como

$$x_1, x_2, \ldots, x_{n-2} \leq \sup Y$$

y

$$x_{n-1}, x_n \leq x_{n-1} \vee x_n \leq \sup \Upsilon$$
,

tenemos que sup Y es cota superior de X. Sea c una cota superior de X. Entonces,

$$x_1, x_2, \ldots, x_{n-2} \le c$$

y

$$x_{n-1}, x_n \leq c$$

por lo que c es cota superior de x_{n-1}, x_n . Por definición de supremo, $x_{n-1} \lor x_n \le c$. O sea, c también es cota superior de Y. Esto nos dice que sup $Y \le c$.

Por lo tanto, sup Y es cota superior de X y para toda cota superior c de X, sup $Y \le c$. Entonces, sup $X = \sup Y$.

Ejercicio 5. Sea *L* un reticulado, probar que son equivalentes:

(i)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 para cualesquiera $x, y, z \in L$:

(ii)
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$
 para cualesquiera $x,y,z \in L$.

Solución. Probamos únicamente (i) \Rightarrow (ii), la vuelta es análoga. Supongamos que $x \land (y \lor z) = (x \land y) \lor (x \land z)$ para cualesquiera $x,y,z \in L$. Calculamos

$$\overbrace{(x \lor y)}^{=y'} \land (x \lor z) = y' \land (x \lor z)
= (y' \land z) \lor (y' \land x)
= ((x \lor y) \land z) \lor ((x \lor y) \land x)
= ((x \land z) \lor (y \land z)) \lor x
= (x \lor (x \land z)) \lor (y \land z)
= x \lor (y \land z).$$

Por lo tanto, $x \lor (y \land z) = (x \lor y) \land (x \lor z)$, como queríamos demostrar.

Ejercicio 6. Sea L un conjunto ordenado en el cual todo subconjunto no vacío tiene máximo y mínimo. Probar que L es una cadena finita.

Solución. Probemos que L es una cadena. Sean $x,y \in L$. Como el subconjunto $\{x,y\} \subseteq L$, por hipótesis, tiene máximo y mínimo. Es decir, $x \preceq y$ o $y \preceq x$. Entonces, L es una cadena. Supongamos que L es infinito. Entonces, existe un subconjunto $\{x_1, x_2, \ldots\}$ infinito tal que $x_i \preceq x_{i+1}$ para todo $i \in \mathbb{N}$, por lo que no tiene máximo. La demostración es análoga para el mínimo.

Ejercicio 7. Sea P un poset en el cual el máximo tamaño de una cadena es k. Probar que P se puede escribir como unión de k anticadenas, y no se puede con menos de k anticadenas.

Solución. Construimos las anticadenas A_1, A_2, \ldots, A_k de la siguiente forma:

$$A_1 = \text{maximales de } P \quad \text{y} \quad A_n = \text{maximales de } P - \bigcup_{i=1}^{n-1} A_i, n \leq k.$$

Después de k pasos, el proceso termina. Entonces, $P = \bigcup_{i=1}^{k} A_i$.

Sea C una cadena de tamaño k. Cada elemento de C debe pertenecer a una anticadena distinta; por lo tanto, hay por lo menos k anticadenas.

Ejercicio 8. Dar un ejemplo de una función biyectiva entre dos posets que sea morfismo de orden pero no sea isomorfismo.

Solución. La función Id : $(\mathbb{N}, |) \to (\mathbb{N}, \leq)$. Si $a \mid b$, entonces $a \leq b$. Y $2 \leq 3$ sin embargo $2 \nmid 3$.

Ejercicio 9. Sean P_1 una cadena, P_2 un poset cualquiera y $f: P_1 \to P_2$ una función inyectiva que es morfismo de orden. Probar que si $a,b \in P_1$ cumplen que $f(a) \leq f(b)$, entonces $a \leq b$.

Solución. Sean $a, b \in P_1$ tales que $f(a) \leq f(b)$. Como P_1 es una cadena, sabemos que $a \leq b$ o $b \leq a$.

Supongamos, por contradicción, que $b \prec a$. Dado que f es un morfismo de orden, $f(b) \prec f(a)$ (si f(b) = f(a) entonces, por inyectividad, a = b lo cual es absurdo). Pero esto contradice nuestra suposición inicial de que $f(a) \leq f(b)$.

Por lo tanto, la suposición de que $b \prec a$ es falsa, y debemos tener $a \preceq b$.

Ejercicio 10. Sean L_1 y L_2 dos reticulados y $f: L_1 \to L_2$ un isomorfismo de orden. Probar que se cumple $f(a \lor b) = f(a) \lor f(b)$ para cualesquiera $a, b \in L_1$.

Solución. Sean $a, b \in L_1$. Queremos probar que $f(a \lor b) = f(a) \lor f(b)$.

Como $a \leq a \vee b$ y $b \leq a \vee b$ en L_1 , y f es un morfismo de orden, tenemos que $f(a) \leq f(a \vee b)$ y $f(b) \leq f(a \vee b)$ en L_2 . Por lo tanto, $f(a \vee b)$ es una cota superior de f(a) y f(b).

Sea s una cota superior de f(a) y f(b) en L_2 . Entonces, $f(a) \leq s$ y $f(b) \leq s$. Aplicando f^{-1} (que también es un morfismo de orden), obtenemos $a \leq f^{-1}(s)$ y $b \leq f^{-1}(s)$. Esto significa que $f^{-1}(s)$ es una cota superior de a y b en L_1 .

Como $a \lor b$ es el supremo de a y b en L_1 , entonces $a \lor b \preceq f^{-1}(s)$. Aplicando f a ambos lados, obtenemos $f(a \lor b) \preceq f(f^{-1}(s)) = s$.

Por lo tanto, $f(a \lor b)$ es una cota superior de f(a) y f(b), y toda cota superior s de f(a) y f(b) es mayor o igual que $f(a \lor b)$. Esto significa que $f(a \lor b)$ es el supremo de f(a) y f(b) en L_2 , es decir, $f(a \lor b) = f(a) \lor f(b)$.

Ejercicio 11. Sea \sim una relación de equivalencia sobre un conjunto A. Para cada $a \in A$ se define el conjunto $[a] = \{b \in A : a \sim b\}$. Probar que:

- (a) Para todo par de elementos $a_1, a_2 \in A$ vale que $[a_1] = [a_2]$ o $[a_1] \cap [a_2] = \emptyset$.
- (b) $A = \bigcup_{a \in A} [a]$.

Solución. (a) Sean $a_1, a_2 \in A$. Supongamos que $[a_1] \cap [a_2] \neq \emptyset$. Entonces, existe $b \in A$ tal que $b \in [a_1]$ y $b \in [a_2]$. Esto significa que $b \sim a_1$ y $b \sim a_2$. Por la propiedad simétrica de la relación de equivalencia, $a_1 \sim b$ y $b \sim a_2$. Por la propiedad transitiva, $a_1 \sim a_2$.

Ahora, sea $x \in [a_1]$. Entonces, $x \sim a_1$. Como $a_1 \sim a_2$, por transitividad, $x \sim a_2$. Por lo tanto, $x \in [a_2]$, lo que implica que $[a_1] \subseteq [a_2]$. De manera similar, podemos demostrar que $[a_2] \subseteq [a_1]$. Por lo tanto, $[a_1] = [a_2]$.

(b) Sea $x \in A$. Como \sim es reflexiva, $x \sim x$, lo que implica que $x \in [x]$. Por lo tanto, $x \in \bigcup_{a \in A} [a]$. Esto demuestra que $A \subseteq \bigcup_{a \in A} [a]$. Por otro lado, si $x \in \bigcup_{a \in A} [a]$, entonces existe $a \in A$ tal que $x \in [a]$, lo que implica que $x \in A$. Esto demuestra que $\bigcup_{a \in A} [a] \subseteq A$. Por lo tanto, $A = \bigcup_{a \in A} [a]$.