

Sets Ex 1.4 Q1

- (i) False, \because the two sets A and B need not be comparable.
- (ii) False, $\,\,:\,\,$ {1} is a finite subset of the infinite set N of natural numbers.
- (iii) True, : the order (or cardinal number) of any subset of a set is less than or equal to the order of the set. (order (or cardinal number) of a set is the number of elements in the set).
- (iv) False, $\ \cdot \$ the empty set ϕ has no proper subset.
- (v) False, $: \{a,b,a,b,...\} = \{a,b\}$ (repetition is not allowed)
 - $\therefore \{a,b,a,b,...\}$ is a finite set.
- (vi) True, $\,\,\cdot\,\,\,$ equivalent sets have the same cardinal number.
- (vii) False,

One knows that if the cardinal number of a set A is n, then the power set of A denoted by P(A) which is the set of all subsets of A, has the cardinal number 2^n .

If the cardinal number of A is infinite, then the cardinal number of P(A) is also infinite. Hence, the above statement is true provided the set is infinite.

Sets Ex 1.4 Q2

- (ii) False, $|\cdot|$ a is an element and not a subset of the set $\{b,c,a\}$.
- (iv) True, $\, \cdot \cdot \,$ repetition is not allowed in a set.
- (v) False, ∇ the set $\{x: x+8=8\}$ is the single ton set $\{0\}$ which is not the null set ϕ .

Sets Ex 1.4 Q3

We have,

$$A = \left\{x : x \text{ satisfies } x^2 - 8x + 12 = 0\right\}$$

$$= \left\{x : x^2 - 6x - 2x + 12 = 0\right\}$$

$$= \left\{x : x (x - 6) - 2 (x - 6) = 0\right\}$$

$$= \left\{x : (x - 6) (x - 2) = 0\right\}$$

$$= \left\{x : x = 6, 2\right\}$$

$$= \left\{6, 2\right\}$$

$$B = \left\{2, 4, 6\right\}$$

$$C = \left\{2, 4, 6, 8, \ldots\right\}$$

$$D = \left\{6\right\}$$

We know that if E and F are two sets, then E is a subset of F. i.e., $E \subseteq F$ if $X \in E \Rightarrow X \in F$. E is called a proper subset of F if E is strictly contained in F and is denoted by $E \subseteq F$.

Clearly,

$$D \subset A \big\{ \because 6 \in D \text{ and } 6 \in A \big\}$$

$$A \subset B \big\{ \because 2, 6 \in A \text{ and they also belong to } B \big\}$$
 Similarly, $B \subset C$

Hence, $D \subset A \subset B \subset C$.

********** END ********