2. Posture detection

1.MediaPipe Pose

MediaPipe Pose is an ML solution for body pose tracking with high fidelity. Through BlazePose research, 33 3D coordinates and full background segmentation masks are inferred from RGB video frames. This study also provides dynamic support for the ML Kit pose detection API.

The landmark model in the MediaPipe pose predicted the positions of 33 pose coordinates (see figure below).

0. nose 1. left_eye_inner 2. left_eye left_eye_outer 4. right_eye_inner 5. right_eye 6. right_eye_outer 7. left_ear 8. right_ear mouth_left 10. mouth_right 11. left_shoulder right_shoulder 13. left_elbow 14. right_elbow 15. left_wrist

16. right_wrist

17. left_pinky 18. right_pinky 19. left_index 20. right_index 21. left_thumb 22. right_thumb 23. left_hip 24. right_hip 25. left_knee 26. right_knee 27. left_ankle 28. right_ankle 29. left_heel 30. right_heel 31. left_foot_index 32. right_foot_index

2. Posture detection

1) Start up

Input following command:

ros2 run yahboomcar_mediapipe 02_PoseDetector

2) Code

Code path:

~/orbbec_ws/src/yahboomcar_mediapipe/yahboomcar_mediapipe/02_PoseDetector.py

```
#!/usr/bin/env python3
# encoding: utf-8
#import ros lib
import rclpy
from rclpy.node import Node
from geometry_msgs.msg import Point
import mediapipe as mp
#import define msg
from yahboomcar_msgs.msg import PointArray
#import commom lib
import cv2 as cv
import numpy as np
import time
print("import done")
class PoseDetector(Node):
    def __init__(self, name,mode=False, smooth=True, detectionCon=0.5,
trackCon=0.5):
        super().__init__(name)
        self.mpPose = mp.solutions.pose
        self.mpDraw = mp.solutions.drawing_utils
        self.pose = self.mpPose.Pose(
            static_image_mode=mode,
            smooth_landmarks=smooth,
            min_detection_confidence=detectionCon,
            min_tracking_confidence=trackCon )
        self.pub_point =
self.create_publisher(PointArray,'/mediapipe/points',1000)
        self.lmDrawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 0,
255), thickness=-1, circle_radius=6)
        self.drawSpec = mp.solutions.drawing_utils.DrawingSpec(color=(0, 255,
0), thickness=2, circle_radius=2)
    def pubPosePoint(self, frame, draw=True):
        pointArray = PointArray()
        img = np.zeros(frame.shape, np.uint8)
        img_RGB = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
        self.results = self.pose.process(img_RGB)
        if self.results.pose_landmarks:
            if draw: self.mpDraw.draw_landmarks(frame,
self.results.pose_landmarks, self.mpPose.POSE_CONNECTIONS, self.lmDrawSpec,
self.drawSpec)
            self.mpDraw.draw_landmarks(img, self.results.pose_landmarks,
self.mpPose.POSE_CONNECTIONS, self.lmDrawSpec, self.drawSpec)
            for id, lm in enumerate(self.results.pose_landmarks.landmark):
                point = Point()
                point.x, point.y, point.z = lm.x, lm.y, lm.z
                pointArray.points.append(point)
        self.pub_point.publish(pointArray)
```

```
return frame, img
    def frame_combine(slef,frame, src):
        if len(frame.shape) == 3:
            frameH, frameW = frame.shape[:2]
            srcH, srcW = src.shape[:2]
            dst = np.zeros((max(frameH, srcH), frameW + srcW, 3), np.uint8)
            dst[:, :framew] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        else:
            src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
            frameH, frameW = frame.shape[:2]
            imgH, imgW = src.shape[:2]
            dst = np.zeros((frameH, frameW + imgW), np.uint8)
            dst[:, :framew] = frame[:, :]
            dst[:, frameW:] = src[:, :]
        return dst
def main():
   print("start it")
    rclpy.init()
    pose_detector = PoseDetector('pose_detector')
    capture = cv.VideoCapture(0)
    capture.set(6, cv.VideoWriter.fourcc('M', 'J', 'P', 'G'))
    capture.set(cv.CAP_PROP_FRAME_WIDTH, 640)
    capture.set(cv.CAP_PROP_FRAME_HEIGHT, 480)
    print("capture get FPS : ", capture.get(cv.CAP_PROP_FPS))
   pTime = cTime = 0
    index = 3
   while capture.isOpened():
        ret, frame = capture.read()
        # frame = cv.flip(frame, 1)
        frame, img = pose_detector.pubPosePoint(frame,draw=False)
        if cv.waitKey(1) \& 0xFF == ord('q'): break
        cTime = time.time()
        fps = 1 / (cTime - pTime)
        pTime = cTime
        text = "FPS : " + str(int(fps))
        cv.putText(frame, text, (20, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0,
255), 1)
        dist = pose_detector.frame_combine(frame, img)
        cv.imshow('dist', dist)
        # cv.imshow('frame', frame)
        # cv.imshow('img', img)
    capture.release()
    cv.destroyAllWindows()
```