2.1 Definitions and Examples

- **2a)** We have that $(1\ 2)(1\ 3) = (1\ 3\ 2)$, thus closure isn't satisfied. We also have no identity element.
- **2b)** We have that $(sr^2)(sr^2) = (sr^2)(r^{-2}s) = s^2 = e$, thus closure isn't satisfied. We also have no identity element.
- **6)** Let G be an abelian group. Since |e| = 1, we have that the set of torsion elements in G is non-empty. Now, suppose $x, y \in G$ have finite orders m and n respectively, then mn is also finite and $(xy)^{mn} = x^{mn}y^{mn} = (x^m)^n(y^n)^m = e$, thus $|xy| \le mn$ and xy is a torsion element and closure is satisfied. Additionally, $|x^{-1}| = |x| = n$, thus x^{-1} is a torsion element and inverses exist. Thus, the torsion elements of G satisfy the subgroup criterion.
- 9) Since all matrices in $SL_n(F)$ have non-zero determinant, we have that $SL_n(F) \subset GL_n(F)$. Let $A, B \in SL_n(F)$, thus $\det(A) = \det(B) = 1$. Since $\det(AB) = \det(A) \det(B) = 1$, we have closure. We also have that A is invertible, thus there exists A^{-1} where $AA^{-1} = E$, but $\det(AA^{-1}) = \det(A) \det(A^{-1}) = \det(E) = 1$, thus $\det(A^{-1}) = \det(E) / \det(A) = 1$, thus $A^{-1} \in SL_n(F)$ and inverses are satisfied. Consequently, $SL_n(F) \leq GL_n(F)$.
- **10a)** Fix a group G and subgroups $H, K \leq G$. Clearly $H \cap K$ is non-empty since they both contain e. Let $x, y \in H \cap K$, thus $x, y \in H$ and $x, y \in K$. By closure, we have that $xy \in H$ and $xy \in K$, thus $xy \in H \cap K$. We also have that $x^{-1} \in H$ and $x^{-1} \in K$, thus $x^{-1} \in H \cap K$, thus $H \cap K$ satisfies the subgroup criterion.

2.2 Centralizers and Normalizers, Stabilizers and Kernels

- 2) Given a group G, we have $C_G(Z(G)) = \{g \in G : gag^{-1} = a \text{ for all } a \in Z(G)\}$, but since every element in G commutes with every element in Z(G), we have that $C_G(Z(G)) = G$. Since $C_G(A) \subseteq N_G(A)$ for all subsets $A \subseteq G$, we have $G \subseteq N(Z(G))$, thus $G = N_G(Z(G))$.
- **5a)** We have $(1\ 2\ 3)(1\ 3\ 2) = (1)$, so $C_G(A) = A$.
- **6a)** Fix a subgroup $H \leq G$. Since H is a group, it suffices to show that $H \subseteq N_G(H)$. Fix $a \in H$, then aH = H, thus $aHa^{-1} = (aH)a^{-1} = Ha^{-1} = H$, which shows that $a \in N_G(H)$, thus $H \subseteq N_G(H)$.
- **6b)** Let G be an abelian group and $H \leq G$ a subgroup, then H is also abelian and $C_G(H) = G$, thus $H \subseteq C_G(H)$. Since H is a group, we have $H \leq C_G(H)$.

2.3 Cyclic Groups and Cyclic Subgroups

- 1) We have that $\langle 1 \rangle$, $\langle 3 \rangle$, $\langle 5 \rangle$, $\langle 9 \rangle$, $\langle 15 \rangle \leq \mathbb{Z}/45\mathbb{Z}$. If $m \mid n$, then $\langle m \rangle \leq \langle n \rangle$.
- 3) Since $48 = 2^4 \times 3$, any number ≤ 48 without a 2 or 3 in its prime factorization generates $\mathbb{Z}/48\mathbb{Z}$.
- **12a** For all n, we have $(0,0)^n = (0,0)$, $(1,1)^n = (0,0)$ or (1,1), $(0,1)^n = (0,1)$ or (0,0), and $(1,0)^n = (1,0)$ or (0,0), thus no element in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ generates the group.
- **12b)** Fix $(a, k) \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$, then there exists no $n \in \mathbb{N}$ where $(a, k)^n = (a, 2k)$, so this group is not cyclic.
- **19)** Fix a group H where $h \in H$ and suppose $\phi : \mathbb{Z} \to H$ is a homomorphism where $\phi(1) = h$. Clearly $\phi(0) = e$. If n > 0, then $\phi(n) = \phi(1+1+\cdots+1) = \phi(1)\phi(1)\cdots\phi(1) = h^n$, and if n < 0 we have $\phi(n) = \phi(-|n|) = \phi(|n|)^{-1} = (h^n)^{-1} = h^{-n}$. Consequently, we are forced to define ϕ as $n \mapsto h^n$, thus ϕ is unique.