设: $\Delta \subseteq \Gamma$, Δ 为有穷集, 从而有 $k \in \mathcal{N}$ 使得 $\Delta \subseteq \{(x > S^n O) | n = 0, 1, 2, ..., k$ 设 $N = \{\mathbb{N}, O, Suc, >\}$ 为算术的标准模型 期中Suc(x) = x + 1. >为大于关系 令 σ 为 \mathbb{N} 上赋值使 $\sigma(x) = k + 1$ 从而 $\mathbb{N} \models_{\sigma} (x > S^n(o))(n = 0, 1, 2, ..., k)$ 故 $\mathbb{N} \models_{\sigma} \Delta \mathbb{P} \Delta \mathbb{P}$ 可满足 由紧致性定理知 Γ 可满足.

$\mathbf{2}$

设 $\Gamma \models \phi$

反设不存在Γ的有穷子集 Δ 使 Δ \models ϕ 从而对任何Γ的有穷子集 Δ 有 Δ \models ϕ 因此对任何Γ的有穷子集 Δ 有 Δ \cup { \neg ϕ } 可满足故Γ \cup { \neg ϕ } 的任何有穷子集可满足,由紧致性定理知Γ \cup { \neg ϕ } 可满足,设m \models \cup { \neg ϕ } 从而Γ \models ϕ 知道m \models ϕ 矛盾!

3

4

只需证每个有穷图可4色则无穷图可四色. 设MAP为一张无穷地图,令全体国家的集合为 $a_i|i\in I,$ 这里 $|I|\geq\aleph_0$. 设一阶语言 \mathcal{L} 由一下构成 (1)常元: $\{a_i|i\in I\}$ (2)一元谓词: $C_k(x)(k=1,2,3,4)\{C_k(x)$ 表示x着k色} (3)二元谓词: $g(x,y)\{g(x,y)$ 表示x与y有大于0的公关边界}. 令 $Q=\{< i,j>|i,j\in I\}$ 且在MAP中 a_i 与 a_j 有大于0的公关边界. 令 $\Gamma=\{q(a_i,a_j)|< i,j>\in Q\}$ $\cup \{ \neg q(a_i,a_j)|< i,j>\notin Q\}$ $\cup \{ \forall x(c_1(x) \lor$ 反设,对任何 $m\in N$ 都存在结构m=(M,I)使 $m<|M|<\aleph_0$ 且 $m\models \neg \varpi$

 $n \to m = (2 \rightarrow m = (3)m = 1)$

 $\diamondsuit \varphi_n$ 为 $\exists x_1 \exists x_2 ... \exists x_n (\lor_{0 < i < j \le n} \neg (x_i \doteq x_j))$

```
\begin{array}{l} \diamondsuit Q = \{ < i, j > | i, j \in I \} \\ \text{且在MAP} + a_i = a_j \\ \text{有大于0} \\ \text{的公关边界.} \\ \diamondsuit \Gamma = \{ q(a_i, a_j) | < i, j > \in Q \} \\ \cup \{ \forall x (c_1(x) \lor ) \\ \\ \text{反设, 对任何} m \in N \text{ 都存在结构} m = (M, I) \\ \text{使} \\ m < |M| < \aleph_0 \text{ } \\ \text{且} m \models \neg \varpi \\ \diamondsuit \varphi_n \text{ 为} \\ \text{∃} x_1 \\ \text{∃} x_2 \ldots \\ \text{∃} x_n (\lor_{0 < i < j \le n} \neg (x_i \doteq x_j)) \\ \text{易见}(1) m \models \varphi_n \Rightarrow |M| \geq n. \quad (2) \\ \text{当} m < n \\ \text{时}, \varphi_2 \ldots \Rightarrow |M| \geq \aleph_0 \\ \diamondsuit \Gamma = \{ \neg \varphi, \varphi, \ldots, \varphi_n, \ldots \} = \{ \neg \varphi \} \cup \{ \varphi_n | n \in N^+ \} \\ \text{对于有穷集} S \subseteq \Gamma, \text{ 有k使} S \subseteq \{ \neg \varphi, \varphi, \ldots, \varphi_n, \ldots \} \\ \text{从而由反设知S有模型,因此由紧致定理知,} \Gamma \text{ 有模型,} \\ \text{改为} m' \models \{ \varphi_1, \ldots, \varphi_n \ldots \}, \\ \text{因此} m' \models \neg \varphi \text{ 与题设矛盾.} \\ \end{array}
```

6

```
反设存在这样的\Sigma.令\{C_n|n\in N\}为新常元
集,令\mathbb{L}'\doteq\mathbb{L}\cup\{C_n|n\in N\},
\Sigma'\doteq\Sigma\cup\{R(C_{n+1}),C_n\},\neg(C_{n+1}\doteq C_n)|n\in N\}
因为\Sigma有一个无穷模型,所以\Sigma'的任何有穷子集有
model,从而\Sigma'有model,say,m,因此
m\models\Sigma,令R_M为_{\rm i}, (C_n)_M为a_n从而
a_0>a_1>a_2...为无穷下降链,从而
a_n|n\in N has no the least element.
故R_m并非M上的良序.矛盾
```