	(τ	1
	ċ		
	÷	=	
ď	†	=	
1	(١	
			_
	ż	-	
	7	Ξ	
ŧ		-	
1	7		
	7		
	ĺ	1	
	(Ţ	
1	Ī		
	0	1	
	-	Ė	
	2	1	
	0	1	
	È	5	
	2	=	_
	ĺ	ĺ	ĺ
	(Į	J
	7		
	į	ļ	
	((3
1		ī	
	-	Ė	
	;		
	5		
	٩	!	
L	-	L	

	Student information	Date	Number of session
	UO: 299874	03/03/2025	5_6
Algorithmics	Surname: Puebla	Escuela de	

Name: Álvaro

Ingeniería

Activity 1. Divide and Conquer by subtraction

Subtraction 1: a = 1 / b = 1 / k = 0

Complexity: $O(n^{k+1}) => O(n^{0+1}) => O(n)$

I cannot prove if the results fit or not with the theoretical complexity.

Due to low runtimes (<50mS) until the overflow arise before time > 50mS.

Subtraction 2: a = 1 / b = 1 / k = 1

Complexity: $O(n^{k+1}) => O(n^{1+1}) => O(n^2)$

In the only >50mS values, the time grows by 4 (22) while the n grows by 2, so yes, it is quadratic as the theoretical value.

The algorithm aborts due to the lack of space as the stack is +- 30000 cells of size, so for a big n and given a waste of O(n), the stack soon, will be full, for a "low" n.

Subtraction 3: a = 2 / b = 1 / k = 0

Complexity: $O(a^{n/b}) => O(2^{n/1}) => O(2^n)$

The theoretical results matches the final result as the n increases by 1, the time multiplies by 2 so for a given n, the next expected time is: 2ⁿ⁺¹

Given that: n=25**TIME=1172**

N2 = 80, N1 = 25, t1 = 1172 mS, color t2 in years?

1 year = 31 556 952 S

Then $t2 = 2^{N2}/2^{N1} * t1 = 2^{N2-N1} * t1 = 2^{55} * 1.172 S \approx 1 338 080 753.37 years for <math>n = 80$

	Student information	Date	Number of session
	UO: 299874	03/03/2025	5_6
Algorithmics	Surname: Puebla		
	Name: Álvaro		

Subtraction 4: $a = 1 / b = 1 / k = 2 -> Complexity: <math>O(n^{k+1}) => O(n^{2+1}) => O(n^3)$

n (10 ²)	Time (mS)
1	1.334
2	10.074
4	7.94
8	619.7
16	4939
32	38968
64	ОоТ

Subtraction 5: $a = 3 / b = 2 / k = 0 -> Complexity: O(a^{n/b}) => O(3^{n/2})$

n	Time (mS)
30	367
32	1088
34	3266
36	9764
38	29183
40	ОоТ

The time grows by a factor of 3 by the increase in 2 of n

Given that: n=38**TIME=29183**

N2 = 80, N1 = 38, t1 = 29183 mS, ¿t2 in years?

1 year = 31 556 952 S

Then t2 = $3^{N2/2}/3^{N1/2} * t1 = 3^{(N2-N1)/2} * t1 = 3^{21} * 29.183 S \approx$ **9673.44652054 years for n = 80**

	Student information	Date	Number of session
	UO: 299874	03/03/2025	5_6
Algorithmics	Surname: Puebla		
	Name: Álvaro		

Activity 2. Divide and Conquer by division

Division 4: $a = 2 / b = 2 / k = 2 -> Complexity: O(n^k) => O(n^2)$

n (10 ³)	Time (mS)
1	7.420
2	29.1
4	115.5
8	456.8
16	1847
32	7243
64	28951
128	ОоТ

Division 5: $a = 4 / b = 2 / k = 0 -> Complexity: O(n^{logb(a)}) => O(n^2)$

n (10³)	Time (mS)
1	23.5
2	93.4
4	372.3
8	1478.1
16	5907
32	23596
64	OoT
128	OoT
4 8 16 32 64	372.3 1478.1 5907 23596 OoT

	Student information	Date	Number of session
	UO: 299874	03/03/2025	5_6
Algorithmics	Surname: Puebla		
	Name: Álvaro		

Activity 3. Two basic examples

VectorSum.java:

n (10 ³)	Time sum1 (mS)	Time sum2 (mS)	Time sum3 (mS)
1	0.00386	0.0171	0. 0309
2	0.007637	0.0329	0.0608
4	0.015316	0.0658	0.1218
8	0.0304	0.1312	0.2471
16	0.0618	StackOverFlow	0.4951
32	0.1223	StackOverFlow	0.9929
64	0.2464	StackOverFlow	1.9614

Fibonacci.java: $a = 4 / b = 2 / k = 0 \rightarrow Complexity: O(n^{logb(a)}) \Rightarrow O(n^2)$

n (10)	Time fib1 (mS)	Time fib2 (mS)	Time fib3 (mS)	Time fib4 (mS)
1	9.0E-5	1.13E-4	1.85E-4	0.002243
2	1.29E-4	1.79E-4	3.49E-4	0.275
3	1.68E-4	2.44E-4	5.04E-4	34.09
4	2.1E-4	3.11E-4	6.55E-4	4186
5	2.47E-4	3.81E-4	8.09E-4	OoT

	Student information	Date	Number of session
	UO: 299874	03/03/2025	5_6
Algorithmics	Surname: Puebla		
	Name: Álvaro		

Activity 5. Calendar

n	t Calendar (mS)
2^1	1.187E-4
2^2	2.392E-4
2^3	5.77E-4
2^4	0.0018452
2^5	0.006646
2^6	0.020016
2^7	0.07114
2^8	0.2697
2^9	1.0704
2^10	4.333
2^11	17.141
2^12	70.79
2^13	609.0
2^14	3407.5

They meet the theoretical complexity as it is $O(n^2)$ as $a=2-b=2-k=2->a < b^k => O(n^k)$

The time should grow by terms of 4 for each time the n doubles. And it does for nearly all.