This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

日本国 許庁(JP)

訂正有り

許 公 報(B2)

平4-34367

Dint. Cl. 5 A 23 D 7/00

绘別記号 500

庁内整理番号 7229-4B

90公告 平成4年(1992)6月5日

発明の数 1 (全 7頁)

発明の名称 食用脂肪組成物

> **204** 顧 昭60-157964

贈 昭81-83242

29出 顧 昭60(1985)7月17日

@昭61(1986)4月1日

優先権主要 ❷1984年7月17日❸イギリス(GB)❸8418154

伊発明者 ヤノス ポドール **69**発 明 者

オランダ国ザ ハーグ,ペノールデンホウトセペグ 82 ヤン パン ヘテレン オランダ国プラールデインゲン, アカシアドルーフ 14

の出順人 ユニリーパー ナーム オラング国ロツテルダム, パージミースターズ ヤコプブ

ローゼ ペンノートシ レーン 1

ヤーブ

四代 蓮 人 弁理士 山崎 行造 外3名

審 査 官 平田

9参考文献 特開 昭52-114059 (JP, A)

1

の特許請求の範囲

1 1種以上のジグリセリド、又は1種以上のジ グリセリド及び1種以上のモノグリセリドの混合 物を含有する食用脂肪組成物であって、

- (a) ジグリセリド対飽和モノグリセリドの比は 5 8:1を超え、ジグリセリド対不飽和モノグリ セリドの比は5:1を超えること、
- (b) ジグリセリドは全脂肪量を基準にして5~30 重量%の範囲の割合で含まれること、
- リドの飽和脂肪酸残基のレベルはジグリセリド の脂肪酸残基の総重量基準で45%を超えないこ
- は)ジグリセリドのCia-及びCia-飽和脂肪酸残 基のレベルはジグリセリドの脂肪酸残基の総重 15 の食用脂肪組成物。 **量基準で0~35重量%の範囲であること** を特徴とする、上記食用脂肪組成物。
- 2 C₁。~C₂:脂肪酸残基のレベルは 5~35<u>重量</u>% の範囲である、特許請求の範囲第1項記載の食用 脂肪組成物。
- 3 C12-及びC14-飽和脂肪酸残基のレベルは 0 ~15重量%の範囲である、特許讃求の範囲第1項 記載の食用脂肪組成物。

2

- 4 18個以上の炭素原子の鎖長を有する、ジグリ セリドのモノシスー及びジシスー不飽和脂肪酸素 基のレベルは70重量%を超えない、特許請求の範 囲第1項記載の食用脂肪組成物。
- 5 18個以上の炭素原子の鎖長を有する、ジグリ セリドのモノシスー及びジシスー不飽和脂肪酸強 基のレベルは25~65重量%の範囲である、特許請 求の範囲第4項記載の食用脂肪組成物。
- 6 18個以上の炭素原子の鎖長を有するモノート (c) 16~22個の炭素原子の鎖長を有するジグリセ 10 ランス不飽和脂肪酸残基のレベルは 0~70重量% の範囲である、特許請求の範囲第1項記載の食用 脂肪組成物。
 - 7 モノートランス脂肪酸残基のレベルは5~60 重量%の範囲である、特許請求の範囲第6項記載
 - 1個のパルミチン酸又はステアリン酸及び1 個のオレイン酸強基から誘導されたジグリセリ ド、2個のエライジン酸残基から誘導されたジグ リセリド及び1個のエライジン酸及び1個のオレ 20 イン酸からのジグリセリドから成る群から選択さ れたジグリセリドを含む、特許請求の範囲第1項
 - 全脂肪組成物は次の脂肪固体プロフィル:

記載の食用脂肪組成物。

 $N_{10} \le 55$, $N_{20} = 8 \sim 25$, $N_{30} = 0 \sim 6$, $N_{35} = 0$ ~3を有する、特許請求の範囲第1項記載の食用 脂肪組成物。

10 ジグリセリドは20~40°Cの範囲内で溶融す る、特許請求の範囲第1項記載の食用脂肪組成 物。

11 ジグリセリドが、5~35°Cの温度範囲内で 結晶性の脂肪量を基準にして10~20重量%の範囲 の量で含まれる、特許請求の範囲第1項配載の食 用脂肪組成物。

12 ジグリセリド対飽和モノグリセリドの比は 10:1を超え、ジグリセリド対不飽和モノグリセ リドの比は6:1を超える、特許請求の範囲第1 項記載の食用脂肪組成物。

13 ジグリセリド及び、ジー及びモノグリセリ 15 ドの混合物はモノー、ジー及びトリグリセリドの 混合物の素剤による残留生成物から成り、任意に は分画し、実質的にモノグリセリドを含まないジ グリセリド国分を単離する、特許請求の範囲第1 項記載の食用脂肪組成物。

14 ジグリセリド又はジー及びモノグリセリド 混合物は食用脂肪組成物の脂肪混和物又は脂肪混 和物の成分のグリセロール分解により得る、特許 請求の範囲第1項記載の食用脂肪組成物。

15 ジグリセリド又は、ジー及びモノグリセリ 25 ドの混合物は、

- (i) アルカリ水酸化物及びグリセロール分解 される脂肪重量基準で0.5~3%の範囲のグリ セロール量の存在で食用脂肪又は食用脂肪成分 をエステル交換して得、
- (ii) 所望の場合、科学的又は物理的方法によ りエステル交換中形成される任意の過剰のモノ グリセリドを除去する、

特許請求の範囲第1項記載の食用脂肪組成物。

の範囲第1項記載の食用脂肪組成物。

発明の詳細な説明

本発明は1種以上のジグリセリド、又は1種以 上のジグリセリドおよび1種以上のモノグリセリ ド混合物を含む食用脂肪組成物および脂肪相が前 40 記聞訪組成物を含むパター様の水ーおよび油ー含 有エマルジョンに関する。

. パター様の性質を有する生成物は天然パターの 性質に匹敵する弾性、可塑性および溶融挙動を有 する。

チ。である。

これらの性質および測定に関する引用は例えば ジャーナル・デアリイ・リサーチ (J. Dairy Res.)、8,245(1937)、デーピス ジエー、シ ー、およびザ・ブリテイツシユ・フード・マニユ フアクチャー インダストリアル・リサーチ・イ ンステイチユート (the British Food Manuf. Ind Res.Inst.) ザ・レオロジー・オブ・マーガリ ン・アンド・コンパウンド・クツキング・フアツ 10 " (the Rheology of Margarine and Compound Cooking Fats)、パート I (リサーチ レポート37) およびパートⅡ(リサーチ レポ - ト69), (1956)、プレンテイス ジエー。エイ

天然パターの非常に望ましく、高く評価される 性質の点からみて、この性質を示す安価な代替物 を製造するためにいくつかの試みがなされた。

現在までに得た生成物は十分に満足できるもの ではなく、これらの生産費もしばしば思いとどま 20 らせるものである。さらに、パター様テクスチャ ーおよび溶融性は温度サイクル上に保持されな

本発明者らは上配要件に非常によく適合する特 定脂肪組成物を見出した。

本発明は特定のジグリセリドが脂肪の結晶化挙 動に強い影響を有するという発見に基づく。

本発明による食用脂肪組成物は1種以上のジグ リセリド、又は1種以上のジグリセリドおよび1 種以上のモノグリセリドの混合物を含み、そして

- 30 (a) ジグリセリド対飽和モノグリセリドの比は 8:1を超え、ジグリセリド対飽和モノグリセ リドの比は5:1を超える、
 - (b) ジグリセリドは脂肪給量を規準にして 5~30 重量%の割合で含まれる、
- 1 6 脂肪組成物はパター脂肪を含む、特許請求 35 (c) 16~22個の c 原子の鎖長を有する、このジ グリセリドの飽和脂肪酸残基のレベルはジグリ セリドの脂肪酸残基重量を規準にして45%を超 えない。

ジグリセリド、又はジグリセリドおよびモノグ リセリドの混合物はこれらが添加される脂肪組成 物と同じ温度範囲内で結晶することは重量であ る。ジグリセリド又はジグリセリドおよびモノグ リセリドの混合物は冷蔵庫温度(約5℃)から環 境温度 (25~30°C) の温度範囲内で液状である場

合、脂肪に及ぼすこれらの影響は非常に限定され る。しかし、ジグリセリド又はジグリセリドおよ びモノグリセリドの混合物の溶融点が高すぎる場 合、これは脂肪組成物およびこれから製造したエ マルジョンの官能性(溶験挙動)に有害作用を有 5 する。脂肪組成物中のジグリセリド又はジグリセ リドおよびモノグリセリドの混合物は20~40℃、 好ましくは25~40℃で溶融することは有利であ る。これは上記したCio-as脂肪酸残基のレベルに より主として影響される。これら残基の好ましい 10 ノグリセリドの比は好ましくは6:1を超える。 レベルはジグリセリドの脂肪酸残基の給重量を基 準にして5~35重量%の範囲である。

ジグリセリドのその他の特性、特にCuーおよ びCu-飽和脂肪酸残基のレベル、モノーシスお よびジーシス不飽和脂肪酸残基のレベルおよび最 15 ことができる。 後にモノートランス不飽和脂肪酸残基のレベルは 注意が必要である。

一般にCutーおよびCutー飽和脂肪酸残基のレベ ルは 0 ~35重量%の範囲であり、好ましくはでき るだけ低く、特に0~15重量%にすべきである。

18個以上の炭素原子の鎖長を有する、ジグリセ リドのモノーシスおよびジーシス不飽和脂肪酸残 基のレベルは一般に70重量%を超えることなく、 好ましくは25~65重量%の範囲である。

ンス不飽和脂肪酸残基のレベルは0%でもよい が、70%を超えるべきではなく、好ましくは5~ 60重量%の範囲である。

本発明の目的に対し好ましいジグリセリドは1 個のパルミチン酸又はステアリン酸残基および1 個のオレイン酸残基からのジグリセリド、 2個の エライジン酸残基からのジグリセリドおよび1個 のエライジン酸ーおよびオレイン酸残基からのジ グリセリドから成る群から選択される。

量は好ましくは全脂肪組成物を基準にして、理想 的には5~35℃の温度範囲で結晶する組成物の脂 肪量を規準にして10~20重量%の範囲である。

上記規定内のいくつかのジグリセリドの組み合 せは使用することができる。これらの組み合せか 40 む。これらの脂肪はそれ自体既知方法で混和し、 ら一般に次の値:

 $N_{10} < 55$, $N_{20} = 8 \sim 25$, $N_{20} = 0 \sim 6$, $N_{25} =$ 0~3に相当する許容できる脂肪固体プロフィル (NMRにより各種温度で測定した固体脂肪%) を有する脂肪組成物を製造できる。

ジグリセリドは純粋化学化合物として、又は飽 和および不飽和モノグリセリドを含む混合物とし て脂肪組成物に導入することができる。

モノグリセリドはジグリセリドの性能に対し負 の作用を有するらしい。飽和モノグリセリドは不 飽和モノグリセリドよりさらに負の作用を有す る。ジグリセリド対飽和モノグリセリドの比は好 ましくは10:1を超え、ジグリセリド対不飽和モ

本発明の目的に対し有用なジグリセリド又はモ ノグリセリドおよびジグリセリド混合物はモノグ リセリドの蒸溜による残留生成物から成り、任意 にはさらに分画し、精製ジグリセリドを単離する

脂肪組成物に添加される脂肪の部分又は脂肪組 成分のグリセロール分解によりジグリセリドを製 造することは有用であり、非常に有利である。

本発明による脂肪組成物のジグリセリドは脂肪 20 組成物の脂肪又は脂肪成分をアルカリ水酸化物お よび0.5~3重量%(グリセロール分解した脂肪 <u>重量規</u>準)の範囲のグリセロール量およびアルカ リグリセロレート又はアルカリエタノしールのよ うな通例のエステル交換触媒の存在で、エステル 18個以上の炭素原子の鎖長を有するモノートラ 25 交換することにより得たジグリセリド混合物から 成ることが好ましい。

> エステル交換中形成された過剰のモノグリセリ ドはクロマトグラフイのような物理的方法、又は 例えばモノグリセリドを加水分解に導く条件でア 30 ルカリにより混合物を処理し、次に生成した石鹼 をそこから除去することにより化学的方法により 除去することができる。

本発明による食用脂肪組成物の製造に使用され る油脂は動物又は植物起源であり、例えばパーム パター様性質を付与するに敵するジグリセリド 35 油、ラウリン脂肪、大豆油、ヒマワリ油、ベニパ ナ油、ナタネ油、メイズ油、魚油、タロー、ラー ド、パター脂肪(以上は水素添加形又は非水素添 加形)で、乾性又は湿性分画により得た画分およ びこれらの脂肪から得たエステル交換混合物を含 例えば「マーガリン」、エー、ジェー、アンデル セン アンド ウイリアムス、第2改訂版、パー ガモン プレスに記載のような適当なマーガリン 脂肪混和物を製造することができる。

7

本発明者らはジグリセリドの使用が硬質脂肪、 特に酪農パターの展延性に特に有利な効果を有す ることを認めた。パターの展延性はジグリセリド の存在により非常に促進されるらしい。

本発明は特にマーガリン タイプおよび脂肪の 5 少ないスプレッド タイプ (例えば20~60%の鮨 助を含む)の食用油ーおよび水ー含有エマルジョ ンの製造に関する。これらの脂肪相は上記脂肪組 成物を含み、好ましくはエマルジョンの連続相を 権成する。

このようなエマルジョンは水性相と脂肪相を乳 化し、こうして得たエマルジョンを冷却およびワ ーキング、例えばポーテータ装置又は当業者に周 知の任意の他の装置での処理を含む組織化処理に かけることにより、それ自体既知方法で製造され 15 9%、12%のジグリセリドを得た。 る。生成物はO/Wエマルジョンから出発して転 換し、W/Oエマルジョンを得ることにより製造 することもできる。

本発明は次例で例示される。

次例ではマーガリンは本発明による脂肪組成物 84% (又は比較のために使用する脂肪組成物)、 レシチン0.16%、ペータ カロチン0.10%、脱脂 乳0.6%、塩1%および水約14.14%から製造し

マーガリンは3つの表面かき取り熱交換器(A ーユニツト) および2つの結晶化器(Cーユニツ ト) から成る装置を次の順序

で配列して使用し、上記組成物を冷却および可塑 30 同じ組成であつた。 化することにより製造した。

脂肪組成物に含まれるジグリセリドのもつとも 関係のある脂肪酸レベルは次例に配載し、ジグリ セリド対不飽和モノグリセリドの比およびジグリ セリド対鮑和モノグリセリドの比は表2に示す。

マーガリン試料は3日貯蔵した:

- (a) 5℃、恒温で、
- (b) 貯蔵条件を変えて:

5℃で12時間、その後20℃で12時間。

マーガリンは客観的測定および可塑性/弾性テ 40 クスチャーおよび5℃の溶融性(特配しない限 り)に関し、パターとの相似性について熱練パネ ルにより評価された。

例I~I

脂肪混和物は:

- (1) 35重量%の硬質ナタネ油 (m.p.30°C)、0.1% のNaOHおよび量を変えた(下記)グリセロ ールの存在で、135℃の温度で20分ランダム エステル交換し、エステル交換混合物は1%り ン酸溶液により処理し、中和し、洗滌し、1%
- 源白土により105℃、20分漂白した、 (2) 25<u>重量</u>%の硬質大豆油 (m.p.36°C)、
- (3) 10重量%のパーム油、
- 10 (4) 30重量%のヒマワリ油

から製造した。

(1)のグリセロール量は0.7~1.7%に変え、成分 (1)の重量を規単にして約16%、24%、33%のジグ リセリドおよび全脂肪混和物を規準にして 6%、

モリグリセリドの相当量は全脂肪混和物の重量 で0.6%、1.0%および1.2%であった。

比較目的で2つの脂肪混和物AおよびB、2つ のマーガリンAおよびBを製造した。脂肪混和物 20 Aは0.2%のグリセロールを使用し、実質的にす べてのモノーおよびジグリセリドはシリカカラム 上でクロマトグラフィにより除去し、0.1%より 少ないジグリセリドおよび0.05%より少ないモノ グリセリドのレベルを有する全脂肪混和物を得た 25 ことを除いて、例 I ~ I と実質的に同じ組成であ つた。

脂肪混和物Bは0.2%のグリセロールを使用し 1.5%のジグリセリドおよび0.2%のモノグリセリ ドを生成したことを除いて、例Ⅰ~■と実質的に

両比較例はジグリセリドが低レベルではパター 様性を得る目的に対しては無効であることを示 す。さらに、熟練パネルが知覚した口内溶融性 (塩遊離および粘度) は本発明による例と比較し 35 て貧弱であつた。

脂肪組成物の特性および各種マーガリンの評価 の結果は表1に示す。

テクスチヤーはステンレス傷ナイフを使用し、 生成物をパン上に展延して評価した。

口内溶融性は100秒一の剪断速度で、ハーケ粘 度計で生成物の粘度を測定(34℃、30分テンパリ ング後) することにより評価した。

別の方法は塩遊離温度、すなわち、すべての塩 がマーガリンから遊離する温度を測定することに

あつた。これは1gのマーガリンを100gの水によ り撹拌し、25°Cから40°Cに1°C/分で温度を上げ て測定する。遊離塩は電気伝導度で測定する。

表では:

|本Nー値はJ.A.O.C.S.、1971(1948)、7頁記載の 5 す。点数4は貧弱、5は可、6は可~良、7は良 NMRにより測定した脂肪固体含量を反映する。 *

**5℃のC-値はJ.A.O.C.S.、36(1959)、345 ~348頁記載のg/ぱで表わした生成物の硬さを 反映する。

+パネルのテクスチヤー点数は1~10の点数で示 ~優、8およびそれ以上はきわめて優秀である。

表	发					
	比較脂肪 組成物A	比較脂肪 組成物B	例 I	例Ⅱ	例重	#IV
%グリセロール、(1)に対し	0,2	0.2	0.7	1.2	1.7	1.2
%ジグリセリド、脂肪混和物に対し	<0.1	1.5	6	9	12	11
%モノグリセリド	<0.05	0, 2	0.6	1.0	1.2	0.35
N-值*						
N ₁ • °C	42,0	42.0	45, 4	42.1	42,2	43,6
N. •℃	21.3	21.0	21.3	19,4	17.7	19,2
N₄•℃	3,6	3,3	3,6	2,9	2.4	5,0
N.°C	0.2	0.0	0.5	0.0	0.0	0.3
C-*C**	1650	1650	1740	1830	1950	1750
テクスチヤーパネル点数	(+):					•
5℃貯蔵	2,0	3,0	6,5	6,5	7.5	7.0
5℃/20℃変更貯蔵	2.2	2,8	6.0	6,5	7.8	7.2
粘度、34℃ (mPas)	180	135	106	90	80	95
塩遊離温度、℃	37.5	37.8	37.0	36,3	34,8	35,8

例IV

17%のパーム油、m.p.36℃まで水素添加した大 25 を示す。 豆油33%、およびm.p.28℃まで水素添加した大豆 油75%および25%のパーム油のエステル交換混合 物50%から脂肪混和物を製造した。エステル交換 は例1~直記載のように1%のグリセロールによ モノグリセリドを形成した。モノグリセリドの部 分は100°C、1時間、モノグリセリドで計算して 20%過剰の1N NaOHで処理することにより除去 した。NaOH処理後エステル交換成分は21%の 有した。

例【記載の方法により製造したマーガリンは良 好なパター様テクスチヤーおよび例面のマーガリ ンより僅かに劣る溶融挙動を示した。

脂肪組成物の特性およびマーガリン評価の結果 40 は表1に示す。

例V

本例は比較的高レベルのモノーシスーおよびジ ーシスー不飽和ジグリセリドを有するジグリセリ

ドを含む場合、パター様性は満足度の少ないこと

脂肪組成物は:

- (1) 30重量%の硬質ナダネ油 (m.p.30°C)、
- (2) 25重量%の要質大豆油 (m.p.36°C)、
- (3) 10重量%の硬質大豆油 (m.p.28°C)、
- り行なつた。22%のジグリセリドおよび2.4%の 30(4)1.5%のグリセロールおよび98.5%のヒマワ り油のランダム エステル交換混合物を35重量 %

から製造した。

脂肪混和物はヒマワリ油由来の11%のジグリセ ジグリセリドおよび0.7%のモノグリセリドを含 35 リドおよび約1.3%のモノグリセリドを含有した。 マーガリンは例Ⅰ~Ⅳのものより明らかに少な いパター様テクスチヤー性質を示した(テクスチ ヤーに対するパネル点数は3で、5℃および20℃ に貯蔵条件を変更した後は4)。

脂肪混和物の脂肪固体プロフィルは次の通りで

 $N_{10}=42.1$, $N_{20}=20.8$, N_{20} =40, N₂₅=0.6 例VI

本例は比較的高レベルのC12-14飽和脂肪酸を有 するジグリセリドが製造される場合、パター様性 が例I~IVより明らかに少ないことを示す。

次の脂肪混和物:

- -25%の硬質ナタネ油 (m.p.30°C)、
- -10%のパーム油、
- -5%のヒマワリ油、
- -25%の硬質大豆油 (m.p.36℃)、
- -70%のココナツ油および1.0%のグリセロー ルによりエステル交換した30%の大豆油の混合物 10 なり低い)。 **₹35%**

を製造するために例【の一般手順に従つた。

脂肪混和物は13%のジグリセリドおよび1.5% のモノグリセリドを含有した。

テクスチヤー性(パネル点数):

生成物を5℃で貯蔵する場合43,5℃および20 ℃に貯蔵温度を変えた後5.3。

脂肪混和物の脂肪固体プロフイルは:

N₁₀=39、N₂₀=18.7、N₂₀=3.1、N₂₅=0.2であ った。

例证

例【記載の一般手順を次の脂肪混和物について 反復した:

(1) m.p.65℃まで硬化した大豆油14%、

ココナツ油25%。

m.p.36℃まで硬化した大豆油66%、

mn28℃まで硬化し、1%のグリセロールに よりエステル化した大豆油5%

からなる混合物を60%、

(2) 40%のヒマワリ油。

最終脂肪混和物は14%のジグリセリドおよび 0.9%のモノグリセリドを含有した。マーガリン は非常にすぐれたパター様性質を示した(パネル 点数: 5℃貯蔵後7.0、温度を変えた(5℃およ 5 び20℃) 貯蔵後7.0。

脂肪固体プロフィルは:

 $N_{10}=35$, $N_{20}=13.5$, N_{20}

=27、Nas=0.0であつた。

塩遊離温度は33℃であった (これは体温よりか

例证~X

15

例I記載の一般手順を次の脂肪混和物により反 復した:

- (i) 完全硬化パーム油 (m.p.58℃) から製造した 4. 8、および16%のジグリセリド、
- (2) ジーおよびモノグリセリドは溶離液としてへ キサンを使用し、酸化アルミニウム上でクロマ トグラフイにより実質的に除去した、例【の脂 防混和物を84~96%。
- 結果(例Iと比較して)は表3に要約する。硬 20 さの差を除くために、これらすべてが約1000g/ dのC一値を有する試料を異る温度でパネルに供 した。

完全硬化パーム油からのジグリセリドの増加% 25 を有する試料は(温度を変えた貯蔵後)パター様 性の減少を示す。さらに、溶酸性は許容しえない 程悪かつた(高粘度、塩遊離なし)。これらの悪 い性質はジグリセリドの高レベルのCie-as脂肪酸 (飽和) によるものであつた。

. 4 7 7 100e	表			2	•		
	I — II	IA	V	VI	W	W-X	XI
c ₁₆₋₂₂	14.1	26, 3	10,5	13,7	24,2	97.4	40.5
C ₁₂₋₁₄	0.4	0.5	0,2	46, 5	16.8	1.3	14.2
C _{18:1} cis	32,4	62.2	88.5	36.4	27.8	0.4	30.1
c _{18:1} ,							
トランス	52,0	8.2	_	_	28.9	0.6	3,0
その他	1.1	2,8	0.8	3,6	2,3	0.3	11.7
dg/モノ(山)		•					
(+)	12	45	9	24	28	>100	43,0

14

	<u>1-m</u>		v	VI	W	W-X	XI
dg/€/(s)							
(#)	69	>100	>100	14	37	>100	27.0
(+) ジグリセリド対不飽和モノグリセリドの比							

(卄) ジグリセリド対飽和モノグリセリドの比

	表	3	3		1
	6 91		比較例		(
	<u> </u>	W	IX	X	(
ジグリセリド (%)	0.2	4	8	16	10
モノグリセリ ド (%)	0.1	0.3	0.6	1.4	
N ₁ o	42.0	41.6	43.7	49, 4	
N ₂ o	21.3	23,3	25.7	32,3	15
N _o o	3, 6	7.4	10.1	17.0	13
Nos	0.2	3,2	6, 3	13,4	
<u>温度およびテキスチャー評</u>					
C一值(g/cd)	10°C	10°C	17.5°C	20°C	20
テクスチヤー パネル点 数	1000	1050	1000	1000	
5℃貯蔵	3,5	5,6	6,6	5,5	
5℃/20℃ 貯蔵	2,8	4.0	4.0	2,0	
粘度、34℃ (』Pas)	180	280	400	>600	25
塩遊離温度	35, 4°C	>40℃	>40°C	>40°C	
例XI 例I記載の	一般手順名	を次の脂肪	仿混和物 (こついて	
7 ac-et					

反復した:

- (1) 85%のパター脂肪 (新鮮パターから分離)、
- (2) 15%のパター脂肪、1%のグリセロール添加 後エステル交換。エステル交換脂肪は25%のジ グリセリドおよび2.1%のモノグリセリド含有。 例 I 記載の方法により上記脂肪混和物から製造 した修正パターの性質は新鮮酪農パターと比較し た。

例XIによる修正パターのパター様テクスチャーおよび溶融性は新鮮パターのものに非常に相似したが、修正パターは特に15℃以下で展延性がはるかに良かつた。