

Politecnico di Milano, A.A. 2016/2017

Software Engineering 2: PowerEnJoy Project Plan

Binosi Lorenzo 876022

 $January\ 22,\ 2017$

Contents

1	Intr	roduct	on									2
	1.1	Revisi	on History \dots									2
	1.2	Purpo	se									2
	1.3											2
	1.4	Defini	tions, acronyms, and abbreviati	ions .								2
	1.5		nce Documents									3
2	Pro	ject si	ze, cost and effort estimation	on								4
	2.1	Size e	$stimation \dots \dots \dots$									4
		2.1.1	Internal Logic Files (ILFs)									6
		2.1.2	External Interface Files (EIFs	s)								7
		2.1.3	External Inputs (EIs) and Ext	ternal	Inq	uir	ies	(E	Qs)		7
		2.1.4	External Outputs (EOs)									9
		2.1.5	Overall estimation									10
	2.2	Cost a	and effort estimation									10
		2.2.1	Scale Factors									11
		2.2.2	Cost Drivers									12
		2.2.3	Effort equation									20
		2.2.4	Schedule estimation			•						20
3	Tas	ks and	schedule									22
4	Res	ource	allocation									25
5	Ris	k man	agement									32
	5.1	Projec	t risks									32
	5.2	Techn	ical risks									32
	5.3	Econo	mical risks									33
\mathbf{A}	App	pendix										34
	A.1	Used	cools									34
	A.2	Hours	of work									34

1 Introduction

1.1 Revision History

Version of this document: 1.0 Last update: 22/01/2017

1.2 Purpose

This document is the Project Plan Document (PPD) for the PowerEnJoy project. Its aim to estimate which are the sizes, the costs and the efforts that should be faced in order to realize the project. According to the estimation made, it will define the required budget, the resources allocation and the schedule of the activities.

The document is written for customers, project managers, developers, testers and all the stakeholders involved in the project implementation.

1.3 Scope

PowerEnJoy is a digital management system for a car-sharing service that exclusively employs electric car. This car rental system provides an alternative solution to public transport, thus being not only eco-friendly, but also simple and reliable. Its implementation should be achieved in a clear and defined way in order to meet the established deadlines, and avoid any further cost.

1.4 Definitions, acronyms, and abbreviations

PPD: Project Plan Document.

ITPD: Integration Test Plan Document.

DD: Design Document.

RASD: Requirements Analysis and Specification Document.

System: the whole software system to be developed, comprehensive of all its parts.

FSM: Functional Size Measurement.

FP: Function Point.

UFP: Unadjusted Function Point.

RET: Record Element.

DET: Data Element.

ILF: Internal Logic File.

EIF: External Interface File.

EI: External Input.

EQ: External Inquiry.

EO: External Output.

SLOC: Source Line Of Code.

REST: REpresentational State Transfer. It's an architectural style and an approach to stateless communications, used in the development of client-server systems.

GUI: Graphical User Interface.

API: Application Programming Interface.

1.5 Reference Documents

This document refers to the following documents:

- Software Engineering 2 project [1].
- PPD assignement [2].
- RASD of the PowerEnJoy project [3].
- DD of the PowerEnJoy project [4].
- ITPD of the PowerEnJoy project [5].
- COCOMO II Model Definition Manual [6].

2 Project size, cost and effort estimation

This section describes which are the main functionalities of PowerEnJoy that allowed us to estimate the expected size, the cost and the required effort of the project.

For the size estimation we will use the **Function Points** approach. It allows to estimate the correspondent amount of lines of code to be written in Java, according to the main functionalities of PowerEnJoy. We won't consider the functionalies of the user interface in order to have a more meaningful and reliable estimation.

For the cost and effort estimation we will use the **COCOMO II** model, relying on the amount of lines of code estimated previously.

2.1 Size estimation

For the size estimation we will refer to the IFPUG 1994 standard [7] which specifies the definitions, rules and steps for applying the IFPUG's functional size measurement (FSM) method.

In order to determine the complexity level, the IFPUG standard classifies each function count into Low, Average and High complexity levels depending on the number of data element types contained and the number of file types referenced. Tables 2.1a, 2.1b and 2.1c reassume the complexity levels for each type of file.

Once determined the complexity of each function, it's possible to define its weight, i.e., the relative effort required to implement it. Table 2.2 reassume the Unadjusted Function Points (UFP) for each complexity level.

	Data Elements				
Record Elements			51+		
1	Low	Low	Avg.		
2-5	Low	Avg. High	Avg. High		
6+	Avg.	High	High		

(a) Complexity estimation for ILFs and EIFs.

	Data Elements				
Record Elements	1-5	6-19	20+		
0-1	Low	Low	Avg.		
2-3	Low	Avg.	High		
4+	Avg.	High	High		

(b) Complexity estimation for EOs and EQs.

	Data Elements				
Record Elements	1-4	5-15	16+		
1	Low	Low	Avg.		
2-3	Low	Avg.	Avg. High		
3+	Avg.	High	High		

(c) Complexity estimation for EIs.

Table 2.1: Estimation of complexities for different types of Function Points.

Function Type	Complexity-Weight				
runction Type	Low	Average	High		
Internal Logic Files	7	10	15		
External Interface Files	5	7	10		
External Inputs	3	4	6		
External Outputs	4	5	7		
External Inquiries	3	4	6		

Table 2.2: UFP complexity weights.

2.1.1 Internal Logic Files (ILFs)

The ILFs are those logical files generated, used or mantained by the software system. In our case they include all the information that the system has to store:

- Driver:
 - Driver information
 - CreditCard
- Rent:
 - Rental information
 - RentalEvents
- Car
- SafeArea
- CarAssistance

The Driver Record Element (RET) contains 15 Data Elements (DET's) and the CreditCard RET, which contains 2 DET's. Hence, according to the Table 2.1, the Driver ILF has a low complexity with an amount of 2 RET's and 17 DET's.

The Rent RET contains 6 DET's and the RentalEvent RET, which contains 2 DET's. Hence, the Rent ILF has a low complexity with an amount of 2 RET's and 8 DET's.

The Car, SafeArea and CarAssistance RET's contain respectively 11, 4 and 4 DET's, and their ILFs have a low complexity.

ILF	Complexity	\mathbf{FPs}
Driver	Low	7
Rent	Low	7
Car	Low	7
SafeArea	Low	7
CarAssistance	Low	7
Total		35

Table 2.3: The ILFs complexity and the total Function Points.

2.1.2 External Interface Files (EIFs)

PowerEnJoy needs to interface with 3 services, described in the DD, in order to perform some operations. They are:

SMSGateway: for the SMS dispatching.

EmailSender: for the email dispatching.

PaymentGateway: for the payment execution.

Obviously, each of these services doesn't require too much data, so we can consider their complexity as low.

EIF	Complexity	FPs
SMSGateway	Low	5
EmailSender	Low	5
PaymentGateway	Low	5
Total		15

Table 2.4: The EIFs complexity and the total Function Points.

2.1.3 External Inputs (EIs) and External Inquiries (EQs)

The PowerEnJoy business logic provides a RESTful API for all the core functionalities of the system. All the API requests are completely described in the DD [2.5.3, p. 14] and summarized below. Thanks to this detailed description, the complexity estimation of the EIs and the EQs will be performed accurately.

- User creation: this request allows the creation of a new user. It requires all of the user information as input and doesn't provide any output data. According to Table 2.1c, the EI of the request has an high complexity with an amount of 3 RET's and 12 DET's.
- User's salt bytes retrieval: this request allows to retrieve the user's salt bytes in order to use them for the password hashing. It requires only the username of the user as input and provides the user's salt bytes as output. The EI and the EQ of the request have both a low complexity.
- User deletion: this request allows to delete the user that performs the request. It requires only the credentials of the user (username and

hashed password) as input and doesn't provide any output data. The EI of the request has a low complexity.

- User's rental logbook retrieval: this request allows a user to retrieve his/her rental logbook. It requires only the credentials of the user as input and provides the logbook information as output. The EI and the EQ of the request have both a low complexity. In particular the low complexity of the EQ is given by an amount of 2 RET's and 5 DET's, according to Table 2.1b.
- Available cars' retrieval: this request allows a user to retrieve all the available cars in the nearby area. It requires the credentials of the user and his/her geographical position as input, and provides the data about the available cars as output. The EI and the EQ of the request have both a low complexity.
- Car reservation: this request allows a user to reserve a choosen car. It requires the credentials of the user and the license plate of the car as input, and doesn't provide any output data. The EI of the request has a low complexity.
- Current reservation retrieval: this request allows a user to retrieve the information about the current reservation. It requires the credentials of the user as input and provides the information about the current reservation. The EI and the EQ of the request have both a low complexity.
- Unlocks car: this request allows a user to unlock a reserved car. It requires the credentials of the user and his/her position as input, and doesn't provide any output data. The EI of the request has a low complexity.
- Car heartbeat: this request allows any car to be tracked by the system. It requires all the information about the car status and rent, and doesn't provide any output data. The EI of the request has an high complexity with an amount of 6 RET's and 10 DET's.
- Available safe areas' retrieval: this request allows any car to provide all the available neaby safe areas to the driver. It requires the credentials of the car and its geographical position, and provides the information about the available nearby safe areas. The EI and the EQ of the request have both a low complexity.

EI	Complexity	\mathbf{FPs}
User creation	High	6
User's salt bytes retrieval	Low	3
User deletion	Low	3
User's rental logbook retrieval	Low	3
Available cars' retrieval	Low	3
Car reservation	Low	3
Current reservation retrieval	Low	3
Unlocks car	Low	3
Car heartbeat	High	6
Available safe areas' retrieval	Low	3
Total		36

Table 2.5: The EIs complexity and the total Function Points.

EQ	Complexity	\mathbf{FPs}
User's salt bytes retrieval	Low	3
User's rental logbook retrieval	Low	3
Available cars' retrieval	Low	3
Current reservation retrieval	Low	3
Available safe areas' retrieval	Low	3
Total		15

Table 2.6: The EQs complexity and the total Function Points.

2.1.4 External Outputs (EOs)

Sometimes the system has to notify the user outside the context of a response. These occasions are:

- Notify the user that his/her rent has been concluded.
- Notify the user that his/her rent cannot be concluded.
- Notify the user that the payment of the rent has been received.
- Notify the user that the payment of the rent hasn't been received.

Like the EIFs, each of these notification doesn't require too much data, so we can consider their complexity as low.

EO	Complexity	\mathbf{FPs}
Rent concluded	Low	4
Rent not concluded	Low	4
Payment received	Low	4
Payment not received	Low	4
Total		16

Table 2.7: The EOs complexity and the total Function Points.

2.1.5 Overall estimation

The following table summarizes the results of our estimation activity:

Function Type	Value
Internal Logic Files	35
External Interface Files	15
External Inputs	36
External Outputs	16
External Inquiries	15
Total	117

Table 2.8: Count of UFPs of our system.

As already said, the estimation made doesn't concern the mobile applications, the web server and the car application. Hence, we can finally convert the UFPs in the total number of lines of Java code.

According to IFPUG, the multiplicator to convert the Unadjusted Function Points to Source Lines of Code for Java is 53.

$$SLOC = 117 * 53 = 6201$$

2.2 Cost and effort estimation

For the cost and the effort estimation we will use the COCOMO II approach. In order to get a feasibile estimation, we suppose that our team has just been made up and is formed by 3 people: Lorenzo, Bob and Alice.

2.2.1 Scale Factors

The scale factors are parameters that concern several aspects regarding the overall experience of our team and the fesibility of the given project. The following table summarize all the scale factors and their values, according to COCOMO II.

Scale Fac-	Very Low	Low	Nominal	High	Very High	Extra
tors						High
PREC	thoroughly	largely	somewhat	generally	largely fa-	thoroughly
	unprece-	unprece-	unprece-	familiar	miliar	familiar
	dented	dented	dented			
SF_j	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	rigorous	occasional	some	general	some con-	general
		relaxation	relaxation	confor-	formity	goals
				mity		
SF_j	5.07	4.05	3.04	2.03	1.01	0.00
RESL	little	some	often	generally	mostly	full
	(20%)	(40%)	(60%)	(75%)	(90%)	(100%)
SF_j	7.07	5.65	4.24	2.83	1.41	0.00
TEAM	very diffi-	some diffi-	basically	largely co-	highly co-	seamless
	cult inter-	cult inter-	coop-	operative	operative	interac-
	actions	actions	erative			tions
			interac-			
			tions			
SF_j	5.48	4.38	3.29	2.19	1.10	0.00
PMAT	Level 1	Level 1	Level 2	Level 3	Level 4	Level 5
	Lower	Upper				
SF_j	7.80	6.24	4.68	3.12	1.56	0.00

Let's explain what's the meaning of each factor and what could be the suitable values in our case.

Precedentedness: reflects the previous experience of our team with the development of large scale projects. Since this is the first project for our team, the value will be low.

Development flexibility: reflects the degree of flexibility in the development process. Since we declared many functional and non functional requirements in the RASD, the value will be low.

Risk resolution: reflects the level of awareness and reactiveness with respect to risks. The risk analysis we performed is quite extensive, so the value will be set to very high.

Team cohesion: reflects how well the development team know each other and work together. As we already said, this is the first project for our team, so the value will be low.

Process maturity: reflects the process maturity of the organization. Untill now, the project has been conducted correctly, so the value will be set to nominal.

The estimated scale factors for our project are shown in Table 2.10.

Code	Name	Factor	Value
PREC	Precedentedness	Low	4.96
FLEX	Development flexibility	Low	4.05
RESL	Risk resolution	Very High	1.41
TEAM	Team cohesion	Low	4.38
PMAT	Process maturity	Nominal	4.68
Total	$E = 0.91 + 0.01 \times \Sigma$	$\sum_{i} SF_{i}$	1.1048

Table 2.10: Scale factors for our project.

2.2.2 Cost Drivers

• Required software reliability:

this is the measure of the extent to which the software must perform its intended function over a period of time. Since our system has been thought to provide a further and timely transport service, its reliability must be high.

	RELY Cost Drivers										
RELY	slightly	easily re-	moderate	high finan-	risk to hu-						
Descriptors	inconve-	coverable	recov-	cial loss	man life						
	nience	losses	erable								
			losses								
Rating level	Very low	Low	Nominal	High	Very High	Extra					
						High					
Effort mul-	0.82	0.92	1.00	1.10	1.26	n/a					
tipliers											

• Database size:

this cost driver attempts to capture the effect large test data requirements have on product development. The rating is determined by calculating $\mathrm{D/P}$, the ratio of bytes in the testing database to SLOC in the program. We suppose to reach at least 5GB of bytes in the testing database, so the value of the $\mathrm{D/P}$ ratio will be about 800 (high).

	DATA Cost Drivers										
DATA De-		Testing	10	100	DP >						
scriptors		DB	≤D/P≤	≤D/P≤	1000						
		bytes/pgm	100	1000							
		SLOC <									
		10									
Rating level	Very low	Low	Nominal	High	Very High	Extra					
						High					
Effort mul-	n/a	0.90	1.00	1.14	1.28	n/a					
tipliers											

• Product complexity:

this cost driver attempts to capture the average complexity of the following areas: control operations, computational operations, device-dependent operations, data management operations and user interface management operations. Our estimation doesn't include the mobile applications, the web server and the car application. For this reason we are not able to estimate correctly this driver, hence we set its value to nominal.

CPLX Cost Driver										
Rating level	Very low	Low	Nominal	High	Very High	Extra High				
Effort multipliers	0.73	0.87	1.00	1.17	1.34	1.74				

• Required reusability:

this cost driver accounts for the additional effort needed to construct components intended for reuse on current or future projects. This effort is consumed with creating more generic design of software, more elaborate documentation, and more extensive testing

to ensure components are ready for use in other applications. Our project relies on many Java EE tools and components, and the coded part is strictly related to the project itself. Hence, the value will be low.

	RUSE Cost Driver										
RUSE		None	Across	Across	Across	Across					
Descriptors			project	program	product	multiple					
					line	product					
						lines					
Rating level	Very low	Low	Nominal	High	Very High	Extra					
						High					
Effort mul-	n/a	0.95	1.00	1.07	1.15	1.24					
tipliers											

• Documentation match to life-cycle needs:

this cost driver is evaluated in terms of the suitability of the projects documentation to its life-cycle needs. Considering the purpose of our system, its maintenance phase will be extremely important. For this reason, we have to provide an accurate documentation in order to minimize any further effort. Hence, the value of this driver will be very high.

	DOCU Cost Driver											
DOCU De-	Many	Some	Right-	Excessive	Very ex-							
scriptors	life-cycle	life-cycle	sized to	sized to for life-								
	needs	needs	life-cycle cycle		life-cycle							
	uncovered	uncovered	needs	needs	needs							
Rating level	Very low	Low	Nominal	High	Very High	Extra						
						High						
Effort mul-	0.81	0.91	1.00	1.11	1.23	n/a						
tipliers												

• Execution time constraint:

this is a measure of the execution time constraint imposed upon a software system. The rating is expressed in terms of the percentage of available execution time expected to be used by the system or subsystem consuming the execution time resource. Even if the sofware of our system is not too complex, we are expecting a high

amount of users which use our service every day. For this reason the value will be very high.

		TIN	ME Cos	t Driv	er		
TIME			\leq	50%	70% use of	85% use of	95% use of
Descriptors			use	of	available	available	available
			availa	ble	execution	execution	execution
			execution		time	time	time
			time				
Rating level	Very low	Low	Nomi	nal	High	Very High	Extra
							High
Effort mul-	n/a	n/a	1.00		1.11	1.29	1.63
tipliers							

• Storage constraint:

this rating represents the degree of main storage constraint imposed on a software system or subsystem. In other words, it describes the expected amount of storage usage with respect to the availability of the hardware. Our system continuously store information about users and rents, so the usage percentage of the available storage will be extremely high.

	STOR Cost Driver										
STOR De-			<u> </u>	50%	70% use of	85% use of	95% use of				
scriptors			use	of	available	available	available				
			available		storage	storage	storage				
			storag	ge							
Rating level	Very low	Low	Nomi	nal	High	Very High	Extra				
							High				
Effort mul-	n/a	n/a	1.00		1.05	1.17	1.46				
tipliers											

• Platform volatility:

for what concerns the core system, we don't expect our fundamental platforms to change very often. Hence, the value of this cost driver will be low.

	PVOL Cost Driver										
PVOL Descriptors		Major change every 12 mo., minor change every 1 mo.	Major: 6mo; minor: 2wk.	Major: 2mo, minor: 1wk	Major: 2wk; mi- nor: 2 days						
Rating level	Very low	Low	Nominal	High	Very High	Extra High					
Effort multipliers	n/a	0.87	1.00	1.15	1.30	n/a					

• Analyst capability:

the major attributes that should be considered in this rating are analysis and design ability, efficiency and thoroughness, and the ability to communicate and cooperate. Being new to the development of large scale projects, the parameter is set to nominal.

	ACAP Cost Driver										
ACAP De-	15th per-	35th per-	55th per-	75th per-	90th per-						
scriptors	centile	centile	centile	centile	centile						
Rating level	Very low	Low	Nominal	High	Very High	Extra					
						High					
Effort mul-	1.42	1.19	1.00	0.85	0.71	n/a					
tipliers											

• Programmer capability:

this evaluation should be based on the capability of the programmers as a team rather than as individuals. Our team is composed by competent people which have never worked as team, so the value of this driver will be set to nominal.

PCAP Cost Driver									
PCAP De- 15th per- 35th per- 55th per- 75th per- 90th per-									
scriptor	scriptors centile centile centile centile centile								

Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul-	1.34	1.15	1.00	0.88	0.76	n/a
tipliers						

• Application experience:

the rating for this cost driver is dependent on the level of applications experience of the project team developing the software system or subsystem. Our team have some experience in the development of Java applications, but haven't developed any Java EE applications yet. For this reason, the parameter will be set to low.

		AP	EX Cost Driv	ver		
APEX De-	\leq 2	6 months	1 year	3 years	6 years	
scriptors	months					
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul-	1.22	1.10	1.00	0.88	0.81	n/a
tipliers						

• Platform experience:

our team have previous experiences with the development of database and servers, hence the parameter will be set to nominal.

		PLI	EX Cost Driv	ver		
PLEX De-	\leq 2	6 months	1 year	3 years	6 years	
scriptors	months					
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul-	1.19	1.09	1.00	0.91	0.85	n/a
tipliers						

• Language and tool experience:

our team have some experience in the development of Java applications, but haven't developed with Java EE tools yet. For this reason, the parameter will be set to nominal.

		LTI	EX Cost Driv	ver		
LTEX	\leq 2	6 months	1 year	3 years	6 years	
Descriptors	months					
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul-	1.20	1.09	1.00	0.91	0.84	n/a
tipliers						

• Personnel continuity:

this driver is evaluated in terms of the projects annual personnel turnover. Being this our first project, the value of this driver will be set to low.

		PCO	ON Cost Driv	/er		
PCON De-	48% / year	24% / year	12% / year	6% / year	3% / year	
scriptors						
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul-	1.29	1.12	1.00	0.90	0.81	n/a
tipliers						

• Usage of software tools:

Our application environment is complete and well integrated, so we'll set this parameter as high.

		TO	OL Cost Driv	ver		
TOOL De-	edit, code,	simple,	basic	strong,	strong,	
scriptors	debug	frontend,	life-cycle	mature	mature,	
		backend	tools,	life-cycle	proactive	
		CASE,	mod-	tools,	life-cycle	
		little inte-	erately	mod-	tools, well	
		gration	integrated	erately	integrated	
				integrated	with pro-	
					cesses,	
					methods,	
					reuse	
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High

Effort mul-	1.17	1.09	1.00	0.90	0.78	n/a
tipliers						

• Multisite development:

even if the people of our team lives in different cities, we have collaborated relying hugely on wideband Internet services including social networks and emails. For this reason, we're going to set this parameter to very high.

		SIT	TE Cost Drive	er		
SITE Col-	Intern-	Multi-city	Multi-city	Same city	Same	Fully col-
location	ational	and multi-	or multi-	or metro	build-	located
Descriptors		company	company	area	ing or	
					complex	
SITE Com-	Some	Individual	Narrow	Wideband	Wideband	Interactive
munications	phone,	phone, fax	band	electronic elect.		multime-
Descriptors	mail		email	communi-	comm.,	dia
				cation	occasional	
					video conf.	
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul-	1.22	1.09	1.00	0.93	0.86	0.80
tipliers						

• Required development schedule:

this rating measures the schedule constraint imposed on the project team developing the software. Untill now, all the deadlines have been met, hence the parameter is set to nominal.

		SCI	ED Cost Driv	er		
SCED De-	75% of	85% of	100% of	130% of	160% of	
scriptors nominal		nominal	nominal	nominal	nominal	
Rating level	Very low	Low	Nominal	High	Very High	Extra
						High
Effort mul- 1.43 1.14		1.14	1.00	1.00	1.00	n/a
tipliers						

The estimated cost drivers for our project are shown in Table 2.28.

Code	Cost Driver	Factor	Value
RELY	Required software reliability	High	1.10
DATA	Database size	High	1.14
CPLX	Product complexity	Nominal	1.00
RUSE	Required reusability	Low	0.95
DOCU	Documentation match to life-cycle needs	Very High	1.23
TIME	Execution time constraint	Very High	1.29
STOR	Storage constraint	Extra High	1.46
PVOL	Platform volatility	Low	0.87
ACAP	Analyst capability	Nominal	1.00
PCAP	Programmer capability	Nominal	1.00
APEX	Application experience	Low	1.10
PLEX	Platform experience	Nominal	1.00
LTEX	Language and tool experience	Nominal	1.00
PCON	Personnel continuity	Low	1.12
TOOL	Usage of software tools	High	0.90
SITE	Multisite development	Very High	0.86
SCED	Required development schedul	Nominal	1.00
Total	$EAF = \prod_{i} C_{i}$		2.2895

Table 2.28: Cost drivers for our project.

2.2.3 Effort equation

This final equation gives us the effort estimation measured in Person-Months (PM):

$$Effort = A * EAF * KSLOC^{E}$$

where:

The total effort results in 50.5 person-months.

2.2.4 Schedule estimation

According to COCOMO II, the schedule estimation is given by the following formula:

Duration =
$$3.67 * Effort^F$$

where:

$$B = 0.91$$

 $F = 0.28 + 0.2 * (E - B) = 0.31896$

The duration calculated results in a total of **12.82** months. The average number of people required for the development time is given by the following formula:

We would need 4 people in order to complete the project in about 13 months, but since our team consists of 3 people, a reasonable development time would be about 17 months. This last value is obviously calculated turning around the last formula.

3 Tasks and schedule

In this section we are going to provide which are the tasks and the subtasks required by the project to be completed. For the documentation, which includes RASD, DD, ITPD and PP, we will consider the deadlines given by the Software Engneering 2 course and, for all that concern the development and the post-development, we will consider the immediately following period.

The final schedule is now summarized and completely described in the following figures.

- RASD [04/10/2016 13/11/2016]
- DD [14/11/2016 11/12/2016]
- ITPD [12/12/2016 15/01/2017]
- PP [16/01/2017 22/01/2017]
- Documents review [23/01/2017 21/02/2017]
- Presentation [22/01/2017]
- Development [23/01/2017 25/08/2017]
- Deployment [26/08/2017 10/10/2017]
- Maintenance [11/10/2017 undetermined]

4 Resource allocation

In this section we are going to provide a possible resources allocation for the schedule defined in the previous section. Tasks and subtasks will be divided between the three member of our team, i.e., our resources, which have been introduced in Section 2.2.

It's important to note that a subtask could be performed by all the members of the team because, the decisions made and the knowledge obtained at the completion of the subtask, could be essential in order to perform other subtasks.

Nome	Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
Lorenzo							-
□ • RASD							
Initial draft of goals							
Stakeholders identification							
Initial draft of functional requirements							
 Initial draft of non functional requirements 							
 Initial draft of assumptions 							
 Initial draft of use cases and activity diagr 							
Refinement on goals					$\overline{}$		
Refinement of functional requirements					ш		
Refinement of non functional requirements					ш		
Refinement of assumptions							
Refinement of use cases and activity diagr							
Final goals							
Final functional requirements							
Final non functional requirements							
Final assumptions							
Final use cases and activity diagrams							
Document writing							
Final refinements							
⊡ ● DD							
High level draft of architecture							
Components identification							
Subcomponents identification							
Tools and frameworks identification							
Refinement of architecture							
Initial draft of interfaces							
Final architecture design							
Refinement of interfaces							
Document writing							
Final interfaces							
 Final refinements 							
⊟ • ITPD							
 Integration testing approach selection 							
 Initial draft of Integration testing sequence 							
 Refinement of integration testing sequence 							
 Final integration testing sequence 							
 Tools and frameworks identification 							
Final refinement							
⊟ o PP							
Risk analysis							
 Size, cost and effort estimation 							
 Tasks and schedule definition 							
 Document writing 							
Documents review							
Presentation							
☐ ● Development				1			
 Subcomponents development 							
Code error fixing							
Components development							
Software integration testing							
Subsystem integration testing							
System testing							
Final refinements						шш	
Release		ПП			Ш	Ш	Ш
□		Ш		_	-	Ш	Ш
System deployment		ш			Ш	Ш	ш
Alpha testing					ш	Ш	
Start-up			1111				
Maintenance							

		project) Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
		Nome	Glagrio	Lugilo	Agosto	Setterribre	Ottobre	140 4 6 11 10 1 6	Dicembre
Θ Δ									
_ '	9	RASD							
		Initial draft of goals							
		Stakeholders identification							
		Initial draft of functional requirements							
		 Initial draft of non functional requirements 							
		 Initial draft of assumptions 							
		 Initial draft of use cases and activity diagr 							
		 Meetings with local government 							
		 Refinement on goals 					ш		
		 Refinement of functional requirements 							
		 Refinement of non functional requirements 	;						
		 Refinement of assumptions 							
		 Refinement of use cases and activity diagr 							
		Final goals							
		Final functional requirements							
		Final non functional requirements							
		Final assumptions							
		Final use cases and activity diagrams							
		Final refinements							
= (0	DD				$\overline{}$			
		High level draft of architecture							
		Components identification							
		Subcomponents identification							
		Tools and frameworks identification							
		Refinement of architecture							
		Initial draft of mockups							
		Final architecture design							
		Refinement of mockups				++			
		Final algorithms							
		Final refinements							
= (0	ITPD							
		 Integration testing approach selection 							
		 Initial draft of Integration testing sequence 	\perp						
		 Refinement of integration testing sequence 	:						
		 Final integration testing sequence 							
		 Tools and frameworks identification 							
		 Final refinement 							
= (0	PP							
		Risk analysis							
		 Size, cost and effort estimation 							
		Tasks and schedule definition							
	0	Documents review	$\overline{}$						
		Development			$\overline{}$				
		Tools and framework obtainment							
		Subcomponents development							
		Code error fixing							
		Components development			\blacksquare				111
								+++++	+++
		Software integration testing Subsystem integration testing							+++
		Subsystem integration testing							+++
		System testing					++++	+++++	
		Final refinements	4						
= (0	Deployment	++++	++++	++++	4	•	++++	+++
		System deployment	4444		++++		+++	+++++	
		Alpha testing Meetings with personnel							

		project	 Giugno	l Luglio	 Agosto	Settembre	Ottobre	Novembre	Dicembre
9 E	Dala	Nome							-
	∘ R/	ASD.							
		Initial draft of goals							
		Stakeholders identification							
		Initial draft of functional requirements							
		Initial draft of non functional requirements							
		Initial draft of assumptions							
		Initial draft of use cases and activity diagr							
		Refinement on goals							
		Refinement of functional requirements							
		Refinement of non functional requirements							
		Refinement of assumptions							
		Refinement of use cases and activity diagr							
		Final goals							
		Final functional requirements							
		Final non functional requirements							
		Final assumptions							111
		Final use cases and activity diagrams							\mathbf{H}
		Alloy modellation		ш			ш		
		Final refinements							
Θ (o DI								
	0	High level draft of architecture							
		Components identification		т			ш	$^{\rm mm}$	
		Subcomponents identification					ш	$^{\rm mm}$	
		Tools and frameworks identification						$^{\rm mm}$	
	0	Refinement of architecture					ш	ш	
	0	Initial draft of algorithms					ш	$\overline{}$	
		Final architecture design						$\overline{}$	
		Refinement of algorithms						$\overline{}$	
	0	Final algorithms							
	0	Final refinements							
=	⊚ IT	PD							
	0	Integration testing approach selection							
	0	Initial draft of Integration testing sequence							
	0	Refinement of integration testing sequence							
	0	Final integration testing sequence							
	0	Tools and frameworks identification							
	0	Final refinement							
Ξ (⊕ PF	_							
	0	Risk analysis		шШ			$\perp \perp \perp \perp$	$\perp \perp \perp \perp \perp$	
	0	Size, cost and effort estimation		шШ			$\perp \perp \perp \perp$	$\perp \perp \perp \perp \perp$	
	0	Tasks and schedule definition					ш		
		ocuments review		шШ			$\perp \perp \perp$	\square	
Ξ (□ Deli	evelopment			$\overline{}$		ш		
		External components obtainment		шШ			$\perp \perp \perp$	\square	
		Subcomponents development							
		Code error fixing				\cdots	$\perp \perp \perp$		
		Components development			++++	$\perp \perp \perp \perp$	$\perp \perp \perp \perp$	+++++	
		Software integration testing				$\perp \perp \perp \perp$	$\perp \perp \perp$		
		Subsystem integration testing				++++	+++		
		System testing	$\perp \perp \perp \perp$	ш		++++	+++	+++++	
		Final refinements		шШ			шШ	\cdots	
Ξ (eployment		ш				+++++	
		System deployment		ш			$\perp \perp \perp$	+++++	
	0	Alpha testing		шш			ш.	$\perp \perp \perp \perp \perp$	
	0	Mobile applications distribution							

5 Risk management

The PowerEnJoy project could face several risks during and after its development, so it's important to consider them in order to avoid any waste of resources. These risks can be divided into 3 main groups: project risks, technical risks and economical risks.

5.1 Project risks

Lack of experience: the team is developing its first project. This will probably slow down the development of the project.

Misunderstanding of the assignment: the final product could be different from the one intended by the customer (in our case, by the professor). In order to avoid this risk, it's important to keep a good communication between the two parties, clarifying all of those aspects which are not completely clear.

Delays over the expected deadlines: for some reasons, the project could require more time than expected. If that happens, we should provide, within the final deadlines, a release which contains at least the core functionalities. All the missing functionalities will be developed later on.

Requirements incompleteness: requirements could be not completely defined. This could generate issues or errors later on, forcing the team to review certain aspects and slowing down the development of the project.

5.2 Technical risks

Components infeasibility: components could be infeasible. In our case, the component which we should worry about the most is the car. It is equipped with a computer and many devices, so it couldn't be possible to provide enough charge to the entire car system. If that happens, we should find another way to manage the car and, considering that we are close to the deployment phase, it could cost a lot of resources.

Scalability issues: the system has been thought to be scalable, but we could not be able to obtain the necessary hardware because of economical reasons. We can avoid this through a good statistical analysis.

- External components issues: our system performs some tasks through external services (payments handling, sms dispatching). Changes in term and conditions on these services could pose serious financial or technical problems. In the worst case, we would have to change service and interface the new one with our system.
- **Data loss:** data can be lost because of hardware failures or misconfigured software. This risk can be prevented implementing an automated backup system.

5.3 Economical risks

- **Technology innovation:** due to a strong market competition, we could be forced to conform our system to new technologies in order to preserve our position on the market.
- **Regulation change:** local and state regulators could change at any time. In the worst case, our service could become infeasible according to the procedures and time limits laid down by law. This risk can be partially avoided by a good feasibility study.
- **Bankruptcy:** the costs for the development, deployment and maintenance could be higher than expected. They could be also higher than the introit of software sales, so we could end in bankruptcy. This risk can be avoided by a good project estimation.
- **Insurance laws:** changes in insurance laws could make the insurance premiums cost-prohibitive for our system to continue covering them. This risk can't be prevented at all.
- Tax laws: changes in tax laws could render our service to customers and businesses no longer more attractive than other solutions, as car leasing or car ownership. This risk can't be prevented at all.

A Appendix

A.1 Used tools

Tools used to create the PPD:

• MikTex

Distribution of the typesetting system LaTeX. http://miktex.org/

• GanttProject

Free project scheduling and management application. http://www.ganttproject.biz/

• GitHub desktop

Desktop application of the web-based Git repository hosting service. Used to collaborate in the team and to have a track of the changes. https://desktop.github.com/

A.2 Hours of work

This is the time spent redacting the PPD:

• Lorenzo Binosi - 30 hours

References

- [1] Software Engineering 2 Project, AA 2016/2017 Goal and approach, schedule and rules
- [2] Software Engineering 2 Project, AA 2016/2017 Assignments 4
- [3] Lorenzo Binosi, Software Engineering 2: PowerEnJoy Requirements Analysis and Specification Document
- [4] Lorenzo Binosi, Software Engineering 2: PowerEnJoy Design Document.
- [5] Lorenzo Binosi, Software Engineering 2: PowerEnJoy Integration Testing Plan Document.

- [6] COCOMO II Model Definition Manual, Version 2.1, 1995 2000, Center for Software Engineering, USC. http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_ modelman2000.0.pdf
- [7] IFPUG 1994 Function Point Counting Practices Manual, Release 4.0, 1994.