

Quantum Tetris Rulebook

Delete quantum-state blocks (|0>, |1>, |+>, |->) by connecting three blocks of same states! Quantum states change when gate blocks (|H>, |X>, |Z>) touch to its top.

Detailed Rule:

- \cdot $\lceil \leftarrow \downarrow \rightarrow \rfloor$: move, $\lceil \uparrow \rfloor$ rotate, $\lceil Enter \rfloor$ drop to bottom, $\lceil p \rfloor$ pause
- · Gate blocks vanish when they hit the floor.
- · Gradual acceleration of falling speed as quantum-state blocks are deleted.

Quantum-State Block

0 |0> state

1 |1> state

+ |+> state |+> = $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

 $|-\rangle$ state $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Effect of Gate Block

Effect of Gate Block				
	0> state	1> state	+> state	│─> state
H gate i.e. 0>⇌ +> 1>⇌ ->	$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	$ \begin{array}{c} H \\ \downarrow \\ 1 \\ H 1\rangle = -\rangle \end{array} $	H = 0 $H = 0$	$\begin{matrix} H \\ \downarrow \\ - \end{matrix} \qquad \begin{matrix} 1 \\ H - \rangle = 1\rangle \end{matrix}$
X gate i.e. 0>⇌ 1>	$\begin{array}{c} X \\ \downarrow \\ 0 \\ \downarrow \\ X 0\rangle = 1\rangle \end{array}$	$\begin{array}{c} X \\ \downarrow \\ 1 \\ \rangle = 0\rangle \end{array}$	$\downarrow \\ + \qquad + \\ X +\rangle = +\rangle$	$\begin{array}{c} X \\ \downarrow \\ - \\ X - \rangle = - - \rangle \end{array}$
Z gate i.e. +>~ ->	$ \begin{array}{c} Z \\ \downarrow \\ 0 \\ Z 0\rangle = 0\rangle \end{array} $	$ \begin{array}{c} Z \\ \downarrow \\ 1 \\ Z 1\rangle = - 1\rangle \end{array} $	Z $+$ $Z +\rangle = -\rangle$	$Z = +$ $Z -\rangle = +\rangle$

Play the game and understand the rule of quantum computer! Aim for a chain of seven!

Future Plan

Extra Rule

- Add Y gate, |i>, |-i> state
- Consider ± sign of state
- Add entangle gate (CX)

Spread Strategy

- Deploy smartphone application
- Add online match mode