Alignement multiple

Équipe Bonsai

http://www.lifl.fr/bonsai

année 2012

Définition de l'alignement multiple

Définition de l'alignement multiple

entrée : *k* séquences

```
C A T G C G A G T A G T A G
C A T G G T A G T A G
C C T G G A G T A C G T A G
C A T G A G C G T A G
```

Définition de l'alignement multiple

■ entrée : *k* séquences

```
C A T G C G A G T A G T A G
C A T G G T A G T A G
C C T G G A G T A C G T A G
C A T G A G C G T A G
```

 $lue{}$ sortie : un tableau contenant les k séquences, avec des indels

```
C A T G C G A G T A - G T A G
C A T G - - - G T A - G T A G
C C T G - G A G T A C G T A G
C A T G - - A G - - C G T A G
```

```
TYY1_HUMAN YVCPFDGCNKKFAQSTNLKSHILT--H
YKO8_CAEEL YKCT--VCRKDISSSESLRTHMFKOHH
BASO_HUMAN FQCD--ICKKTFKNACSVKIHHKN-MH
ZG2-9_XENL FVCT--VCGKTYKYKHGLNTHLHS--H
P43_XENBO LKCSVPGCKRSFRKKRALRIHVSE--H
IKAR_MOUSE FECN--MCGYHSQDRYEFSSHITRGEH
TRA1_CAEEL YKCEFADCEKAFSNASDRAKHONR-TH
ZN10_HUMAN YKCN--QCGIIFSQNSPFIVHQIA--H
XFIN_XENLA FRCS--ECSRSFTHNSDLTAHMRK--H
TF3A_BUFAM CKCETENCNLAFTTASNMRLHFKR-AH
ZG58_XENLA FVCT--ECNLSFAGLANLRSHQHL--H
P43_XENBO YRCSYEDCOTVSPTWTALOTHLKK--H
TSH_DROME FRCV--WCKQSFPTLEALTTHMKDSKH
ZN76_HUMAN FRCGYKGCGRLYTTAHHLKVHERA--H
TF3A_BUFAM YRCPRENCDRTYTTKFNLKSHILT-FH
SUHW_DROAN YACK--ICGKDFTRSYHLKRHOKYSSC
ZN76_HUMAN YTCPEPHCGRGFTSATNYKNHVRI--H
SRYC_DROME FKCN--YCPRDFTNFPNWLKHTRR-RH
EVI1_HUMAN YRCK--YCDRSFSISSNLORHVRN-IH
```

TYY1_HUMAN YVCPFDGCNKKFAQSTNLKSHILT--H YKO8_CAEEL YKCT--VCRKDISSSESLRTHMFKOHH BASO_HUMAN FQCD--ICKKTFKNACSVKIHHKN-MH ZG2-9_XENL FVCT--VCGKTYKYKHGLNTHLHS--H P43_XENBO LKCSVPGCKRSFRKKRALRIHVSE--H IKAR_MOUSE FECN--MCGYHSQDRYEFSSHITRGEH TRA1_CAEEL_YKCEFADCEKAFSNASDRAKHONR-TH ZN10_HUMAN YKCN--QCGIIFSQNSPFIVHQIA--H XFIN_XENLA FRCS--ECSRSFTHNSDLTAHMRK--H TF3A_BUFAM CKCETENCNLAFTTASNMRLHFKR-AH ZG58_XENLA FVCT--ECNLSFAGLANLRSHQHL--H YRCSYEDCOTVSPTWTALOTHLKK--H TSH_DROME FRCV--WCKQSFPTLEALTTHMKDSKH ZN76_HUMAN FRCGYKGCGRLYTTAHHLKVHERA--H TF3A_BUFAM YRCPRENCDRTYTTKFNLKSHILT-FH SUHW_DROAN YACK--ICGKDFTRSYHLKRHOKYSSC ZN76_HUMAN YTCPEPHCGRGFTSATNYKNHVRI--H SRYC_DROME FKCN--YCPRDFTNFPNWLKHTRR-RH EVI1_HUMAN YRCK--YCDRSFSISSNLQRHVRN-IH

TYY1_HUMAN YVCPFDGCNKKFAQSTNLKSHILT--H YKO8_CAEEL YKCT--VCRKDISSSESLRTHMFKOHH BASO_HUMAN FQCD--ICKKTFKNACSVKIHHKN-MH ZG2-9_XENL FVCT--VCGKTYKYKHGLNTHLHS--H P43_XENBO LKCSVPGCKRSFRKKRALRIHVSE--H IKAR_MOUSE FECN--MCGYHSQDRYEFSSHITRGEH TRA1_CAEEL_YKCEFADCEKAFSNASDRAKHONR-TH ZN10_HUMAN YKCN--QCGIIFSQNSPFIVHQIA--H XFIN_XENLA FRCS--ECSRSFTHNSDLTAHMRK--H TF3A_BUFAM CKCETENCNLAFTTASNMRLHFKR-AH ZG58_XENLA FVCT--ECNLSFAGLANLRSHQHL--H YRCSYEDCOTVSPTWTALOTHLKK--H TSH_DROME FRCV--WCKQSFPTLEALTTHMKDSKH ZN76_HUMAN FRCGYKGCGRLYTTAHHLKVHERA--H TF3A_BUFAM YRCPRENCDRTYTTKFNLKSHILT-FH SUHW_DROAN YACK--ICGKDFTRSYHLKRHOKYSSC ZN76_HUMAN YTCPEPHCGRGFTSATNYKNHVRI--H SRYC_DROME FKCN--YCPRDFTNFPNWLKHTRR-RH EVI1_HUMAN YRCK--YCDRSFSISSNLQRHVRN-IH

TYY1_HUMAN_YVCPFDGCNKKFAQSTNLKSHTLT--H YKO8_CAEEL YKCT--VCRKDISSSESLRTHMFKOHH BASO_HUMAN FQCD--ICKKTFKNACSVKIHHKN-MH ZG2-9_XENL FVCT--VCGKTYKYKHGLNTHLHS--H P43_XENBO LKCSVPGCKRSFRKKRALRIHVSE--H IKAR_MOUSE FECN--MCGYHSQDRYEFSSHITRGEH TRA1_CAEEL_YKCEFADCEKAFSNASDRAKHONR-TH ZN10_HUMAN YKCN--QCGIIFSQNSPFIVHQIA--H XFIN_XENLA FRCS--ECSRSFTHNSDLTAHMRK--H TF3A_BUFAM CKCETENCNLAFTTASNMRLHFKR-AH ZG58_XENLA FVCT--ECNLSFAGLANLRSHQHL--H YRCSYEDCOTVSPTWTALOTHLKK--H TSH_DROME FRCV--WCKQSFPTLEALTTHMKDSKH ZN76_HUMAN FRCGYKGCGRLYTTAHHLKVHERA--H TF3A_BUFAM YRCPRENCDRTYTTKFNLKSHILT-FH SUHW_DROAN YACK--ICGKDFTRSYHLKRHOKYSSC ZN76_HUMAN YTCPEPHCGRGFTSATNYKNHVRI--H SRYC_DROME FKCN--YCPRDFTNFPNWLKHTRR-RH EVI1_HUMAN YRCK--YCDRSFSISSNLQRHVRN-IH

modélisation : motif Prosite

$$C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H$$

```
HWGQCGGI---GYSGCKTCTSGTTCQYSNDYYSQCL
HYGQCGGI---GYSGPTVCASGTTCQVLNPYYSQCL
OWGOCGGI---GYTGSTTCASPYTCHVLNPYYSQCY
VWGQCGGQ---NWSGPTCCASGSTCVYSNDYYSQCL
LYGQCGGA---GWTGPTTCQAPGTCKVQNQWYSQCL
IWGQCGGN---GWTGATTCASGLKCEKINDWYYQCV
VWGQCGGN---GWTGPTTCASGSTCVKQNDFYSQCL
DWAQCGGN---GWTGPTTCVSPYTCTKQNDWYSQCL
QWGQCGGQ---NYSGPTTCKSPFTCKKINDFYSQCQ
RWQQCGGI---GFTGPTQCEEPYICTKLNDWYSQCL
HWAQCGGI---GFSGPTTCPEPYTCAKDHDIYSQCV
LYEQCGGI---GFDGVTCCSEGLMCMKMGPYYSQCR
VWAQCGGQ---NWSGTPCCTSGNKCVKLNDFYSQCQ
PYGQCGGM---NYSGKTMCSPGFKCVELNEFFSQCD
AYYOCGGSKSAYPNGNLACATGSKCVKONEYYSOCV
EYAACGGE---MFMGAKCCKFGLVCYETSGKWSQCR
```

extrait de Prosite, entrée PS00562

extrait de Prosite, entrée PS00562

extrait de Prosite, entrée PS00562

HWGQCGGI---GYSGCKTCTSGTTCQYSNDYYSQCL HYGQCGGI---GYSGPTVCASGTTCQVLNPYYSQCL QWGQCGGT---GYTGSTTCASPYTCHVLNPYYSQC VWGQCGGQ---NWSGPTCCASGSTCVYSNDYYSQC LYGQCGGA---GWTGPTTCQAPGTCKVQNQWYS TWGQCGGN---GWTGATTCASGLKCEKINDWYY VWGQCGGN---GWTGPTTCASGSTCVKQNDFYSQCL DWAQCGGN---GWTGPTTCVSPYTCTKQNDWYS QWGQCGGQ---NYSGPTTCKSPFTCKKINDFYSQC RWQQCGGI---GFTGPTQCEEPYICTKLNDWYS HWAQCGGI---GFSGPTTCPEPYTCAKDHDIYSQC LYEOCGGI---GFDGVTCCSEGLMCMKMGPYYSOCR VWAQCGGQ---NWSGTPCCTSGNKCVKLNDFYSQCQ PYGQCGGM---NYSGKTMCSPGFKCVELNEFFSQCD AYYOCGGSKSAYPNGNLACATGSKCVKONEYYSOCV EYAACGGE---MFMGAKCCKFGLVCYETSGKWSQCR

C-G-G-x(4,7)-G-x(3)-C-x(5)-C-x(3,5)-[NHG]-x-[FYWM]-x(2)-Q-C

extrait de Prosite, entrée PS00562

les 4 cystéines sont impliquées dans des liaisons di-sulfures

HWGQCGGI---GYSGCKTCTSGTTCQYSNDYYSQCL HYGQCGGI---GYSGPTVCASGTTCQVLNPYYSQCL QWGQCGGT---GYTGSTTCASPYTCHVLNPYYSQC VWGQCGGQ---NWSGPTCCASGSTCVYSNDYYSQC LYGQCGGA---GWTGPTTCQAPGTCKVQNQWYS TWGQCGGN---GWTGATTCASGLKCEKINDWYY VWGQCGGN---GWTGPTTCASGSTCVKQNDFYSQCL DWAQCGGN---GWTGPTTCVSPYTCTKQNDWYS QWGQCGGQ---NYSGPTTCKSPFTCKKINDFYSQC RWQQCGGI---GFTGPTQCEEPYICTKLNDWYS HWAQCGGI---GFSGPTTCPEPYTCAKDHDIYSQC LYEOCGGI---GFDGVTCCSEGLMCMKMGPYYSOCR VWAQCGGQ---NWSGTPCCTSGNKCVKLNDFYSQCQ PYGQCGGM---NYSGKTMCSPGFKCVELNEFFSQCD AYYOCGGSKSAYPNGNLACATGSKCVKONEYYSOCV EYAACGGE---MFMGAKCCKFGLVCYETSGKWSQCR

extrait de Prosite, entrée PS00562

$$C-G-G-x(4,7)-G-x(3)-C-x(5)-C-x(3,5)-[NHG]-x-[FYWM]-x(2)-Q-C$$

les 4 cystéines sont impliquées dans des liaisons di-sulfures

Structure d'ARN

Structure d'ARN

on dispose d'une famille d'ARN possédant la même structure

Structure d'ARN

- on dispose d'une famille d'ARN possédant la même structure
- pour un appariement de la structure donné :

si une base mute dans la structure d'ARN, la base qui s'y apparie doit muter aussi ...

contruction de l'alignement multiple

```
G A G C - C C A G U U C - A G G A C - U C U U C
```

2 détection de positions corrélées

1 contruction de l'alignement multiple

```
G A G C - C C A G U U C - A G G A C - U C U U C A A U C A C C C A U -
```

2 détection de positions corrélées

 $\tt GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\tt GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\operatorname{\mathsf{GGGGGCATAGCTCAGCT}}-\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGT}}-\operatorname{\mathsf{CGTCGGTTCGATCCCGTCTGCCTCCACCA}}$ GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---

 $\operatorname{\mathsf{GGGGA}}$ ATTAGCTCAGCT- $\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\operatorname{\mathsf{GGGGA}}$ ATTAGCTCAGCT- $\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---

 $\operatorname{\mathsf{GGGGA}}$ ATTAGCTCAGCT- $\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\operatorname{\mathsf{GGGGA}}$ ATTAGCTCAGCT- $\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\tt GGGGCCATAGCTCAGCTGGGGAGAGCGCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---$ GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

 $\operatorname{\mathsf{GGGGA}}$ ATTAGCTCAGCT- $\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\operatorname{\mathsf{GGGGA}}$ ATTAGCTCAGCT- $\operatorname{\mathsf{GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

 $\tt GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA $\tt GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---$ GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCCGTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGCTTCGATCCCGCATAGCTCCACCA GGGGAATTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCAGCGGTTCGATCCCGCTATTCTCCA---GGGGCCTTAGCTCAGTC-GGTAGAGCACTGCCTTTGCAAGGCAGATGTCAGGGGTTCGATTCCCCTAGGCTCCA---GGGGGTATAGCTCAGTT-GGTAGAGCGCTGCCTTTGCAAGGCAGAAGTCAGCGGTTCGATTCCGCTTACCCCCA---GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGGTTCGATCCCGCATAGCTCCACCA GGGGCTATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCTGCGCTTCGATCCCGCATAGCTCCACCA GGGGCCATAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGGAGTTCGATCCTCCTTGGCTCCACCA GGGGCCATAGCTCAGCTGGGGAGAGCGCCTGCCTTGCACGCAGGAGGTCAACGGTTCGATCCCGTTTGGCTCCA---GGGGCATTAGCTCAGCT-GGGAGAGCGCCTGCTTTGCACGCAGGAGGTCAGCGGTTCGATCCCGCTATTCTCCACCA GGGGCCGTAGCTCAGCT-GGGAGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA GGGGCCGTAGCTCAGCT-GG-AGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTTCGATCCCGTCCGGCTCCACCA

Structure secondaire de l'ARNt

Structure secondaire de l'ARNt

Démarche

Alignement 2 à 2

Deux séquences quelconques

Détecter une similarité syntaxique

Y a-t-il une **fonction** commune?

Alignement multiple

Famille de séquences avec la même fonction

À quelle conservation syntaxique cela correspond-il?

Score d'un alignement multiple

- doit rendre compte de la qualité de l'alignement multiple
- habituellement les colonnes sont considérées indépendantes
 - ⇒ la somme des scores associés à chaque colonne

somme des paires (Sum of Pairs)

$$SP(m_i) = \sum_{1 \leq j < k \leq n} s(m_i^j, m_i^k)$$

 $m_i =$ la i-ème colonne de l'alignement $m_i^j = j$ -ème aa dans la colonne i

Exemple

jeu de scores :

$$s(x,x)=1$$
, $s(x,y)=-1$, $s(x,-)=s(-,x)=-2$, $s(-,-)=0$

A A C G T A C G A T A

Somme des paires

Définition alternative (équivalente)

- lacksquare α : alignement multiple pour les séquences s_1,\ldots,s_n
- lacksquare α_{ij} : projection de l'alignement pour s_i et s_j

$$SP(\alpha) = \sum_{1 \le i < j \le n} score(\alpha_{ij})$$

Exemple

jeu de scores :

$$s(x,x)=1$$
, $s(x,y)=-1$, $s(x,-)=s(-,x)=-2$, $s(-,-)=0$

Algorithme exact

\Rightarrow par programmation dynamique

- alignement deux à deux ⇒ chemin dans une matrice de dimension 2
- alignement multiple de n séquences \Rightarrow chemin dans une matrice de dimension n

Algorithme exact

⇒ par programmation dynamique

- alignement deux à deux ⇒ chemin dans une matrice de dimension 2
- alignement multiple de n séquences \Rightarrow chemin dans une matrice de dimension n

C G T - G - G T A -- - - A G ⇒ impossible de l'utiliser en pratique.

pprox 100 ans pour 8 séquences de 100bp.

Utilisation d'heuristiques

Definition (Heuristique)

Algorithme utilisant des règles simples pour diminuer l'espace de recherche des solutions (mais ne donnant pas forcément la meilleure solution)

- Clustal (le plus populaire : Clustal, ClustalW, Clustal-Omega)
- Dialign2 (complémentaire à Clustal)
- T-coffee, Muscle, Pima, Multalin, MA-FFT...

⇒ autant de programmes qui produisent des alignements différents!

Alignement basé sur un arbre guide

- idée : reconstruire l'alignement multiple à partir d'un arbre guide (clusters)
 - feuilles = séquences
 - noeuds = alignements
- partir des feuilles puis remonter dans l'arbre
 - utilisation de la technique de profile alignment ⇒ produire un seul alignement multiple avec deux (par prog. dyn.)

 $\begin{array}{c} \mathsf{MultAlin} \\ \mathsf{CLUSTer} + \mathsf{ALignement} \Rightarrow \mathsf{CLUSTAL} \end{array}$

MultAlin

F. Corpet, 1988

principe:

- 1 calcule une matrice de similarité des paires
- construit un arbre de clustering hierarchique (UPGMA)
- 3 construit l'alignement multiple en suivant l'arbre
- 4 reconstruit une arbre de clustering hierarchique avec les nouveaux alignements paire à paire issus de l'alignement trouvé
- 5 réitère le processus jusqu'à stabilisation de l'arbre de clustering

MultAlin - fonctionnement de UPGMA

- agglomère les 2 séquences de score maximal (~ distance minimale dans UPGMA)
- calcule les nouveaux scores entre ce cluster et les autres en faisant la moyenne

$$s(C_1, C_2) = \frac{1}{\operatorname{Card}(C_1) \times \operatorname{Card}(C_2)} \sum_{c \in C_1, c' \in C_2} s(c, c')$$

① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

	1	2	3	4
1		6	0	2
2			0	3
(1) (2) (3) (4)				4
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

```
scores (Mach = 1, Mismatch =-1, Indel = -1)
```

	1	2	3	4
1		6	0	2
2			0	3
(1) (2) (3) (4)				4
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

```
scores (Mach = 1, Mismatch =-1, Indel = -1)
```

	1	2	3	4
1		6	0	2
2			0	3
(1) (2) (3) (4)				4
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	2	3	4
1		6	0	2
2			0	3
3 4				4
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

	1	2	3	4
1		6	0	2
2			0	3
(1) (2) (3) (4)				4
4				

- ① TACCATGA
- ② TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

	1	2	3	4		12	3	4
1		6	0	2	12		0	2.5
2			0	3	3	١.		4
② ③ ④				4	4			
4						'		

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

	1	2	3	4		12	3	4
1		6	0	2	①② ③		0	2.5
2			0	3	3			4
② ③ ④				4	4			
4	١.							

- 1 TACCATGA
- ② TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- **1** calcul des meilleurs alignements 2 à 2 :

scores (Mach =
$$1$$
, Mismatch = -1 , Indel = -1)

	1	2	3	4		12	3	4
1		6	0	2	①② ③		0	2.5
2			0	3	3	١.		4
3				4	4	١.		
(1) (2) (3) (4)						'		

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

	1	2	3	4		12	3	4
1		6	0	2	①② ③		0	2.5
2		Ĭ.	0	3	3	١.		4
② ③ ④				4	4			
4						'		

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	2	3			12	3	4
1		6	0	2	①② ③		0	2.5
2			0	3	3	١.		4
(1) (2) (3) (4)				4	4			
4)		_	_			'		

- ① TACCATGA
- 2 TACCATGA

- 3 GACGA-C-CA
- ④ GACCATCTCA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

	1	2	3	4		12	3	4		1 2	34
1		6	0	2	12		0	2.5	12		1.25
2			0	3	3			4	34		
2 3 4				4	4	i					
4	١.										

- ① TACCATGA
- 2 TACCATGA

- 3 GACGA-C-CA
- ④ GACCATCTCA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

	1	2	3	4		12	3	4		1 2	34
1		6	0	2	12		0	2.5	12		1.25
2			0	3	3	.		4	34		
3				4	4	.					
4										12	3)4)
	'									/	
										12	34
		12				12	34			/\	/ \
		/\				/ \	/ \		(1 2	3 4
		1 2	0			1 2	3 4	D	`	_ •	• •

- ① TACCATGA
- ② TACCAT-A

- 3 GACGA-C-CA
- ④ GACCATCTCA

- ① TACCATGA ② TACCATA 3 GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach =
$$1$$
, Mismatch = -1 , Indel = -1)

									•			
		1	2	3	4		12	3	4		1 2	34
	1		6	0	2	12		0	2.5	12		1.25
	2			0	3	3	١.		4	34		
	3				4	4	١.				'	
	4						'				123	(4)
		'									/	\
											12	34
			12				12	34			/\	/ \
			/\				/\	/\		(1) (2)	(3) (4)
			1 2	0		(1 2	3 (4	`		
			•	,						1	TACC	ATGA
		(1)	TACC	ATGA		3	GAC	GA-C-	-CA	2		ATA
② TACCATGA						4	GAC	CATCI	CA	3		A-C-CA

- GACCATCTCA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

construction d'un arbre de clustering (et de l'alignement) :

	1	2	3	4		12	3	4		1 2	34
1		6	0	2	12		0	2.5	12		1.25
2			0	3	3			4	34		
3				4	4						_
4										123	(4)
	'									/	\
										12	34
		12				12	34			/ \	/ \
		/\				/\	/\		(1) (2)	(3) (4)
		1 2	0		(1	2	3	4)		1) (2)	3
	1		ATGA		3 4				① ②	TACC	ATGA ATA
	2	TACC	:AT-A		•	GAC	DAIGI	CA	3	GACG	A-C-CA

3 nouvelle matrice des scores et on recommence :

GACCATCTCA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ GACCATCTCA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

2 construction d'un arbre de clustering (et de l'alignement) :

	1	2	3	4		12	3	4		1 2	34
1		6	0	2	12		0	2.5	12		1.25
2			0	3	3			4	34		
3				4	4						_
4										123	(4)
										/	\
										12	34
		(1)(2)				12	34			/ \	/ \
		/ \				/\	/\		(i) (2)	(3) (4)
		(I) (2			(1 (2)	(3)	4)	(3 4
		(I) (2	V						1	TAGG	ATGA
	1)	TAGG	11 TO 1		(3)	GAC	GA-C-	-CA	2		
	-		CATGA		4						ATA
	2	TACC	:AT-A		4	GAC	CATCT	CA	3	GACG	A-C-CA

- 3 nouvelle matrice des scores et on recommence :
 - ① TACCAT--GA
 - 2 TACCAT---A
 - ③ GACGAC--CA
 - GACCATCTCA

GACCATCTCA

① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	2	3	4
1		6	0	5
2			0	3
(1) (2) (3) (4)				3
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

```
scores (Mach = 1, Mismatch = -1, Indel = -1)
```

	1	2	3	4
1		6	0	5
2			0	3
(1) (2) (3) (4)				3
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

```
scores (Mach = 1, Mismatch = -1, Indel = -1)
```

	1	2	3	4
1		6	0	5
2			0	3
(1) (2) (3) (4)				3
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

	1	2	3	4
1		6	0	5
2			0	3
(2) (3) (4)				3
4				

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

	1	2	3	4
1		6	0	5
2			0	3
(1) (2) (3) (4)				3
4				-

- 1 TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

	1	2	3	4		12	3	4
1		6	0	5	12		0	4
2			0	3	3			3
3 4				3	4	١.		
4	١.							

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- **1** calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

	1	2	3	4		12	3	4
1		6	0	5	12		0	4
2			0	3	3	١.		3
3 4				3	4	١.		
4								

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$= 1$$
, Mismatch $= -1$, Indel $= -1$)

		2				12	3	4
1		6	0	5	12			4
2			0	3	(1)(2) (3)	١.		3
① ② ③ ④				3	4	١.		
4	١.							

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	2	3	4		12	3	4
1		6	0	5 3	12		0	4
2		6	0	3	12 3 4	١.		3
(1) (2) (3) (4)				3	4	١.		
4	١.							

- ① TACCATGA
- 2 TACCAT-A

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	2	3	4		12	3	4
1		6	0	5	12		0	4
2			0	3	(1)(2) (3)	١.		3
3 4				3	4			
4								

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	2	3	4		12	3	4		124	3
1		6	0	5	12		0	4	124		1
2			0	3	3			3	3		
23				3	4	١.				ļ.	
4	١.					1					

- ① TACCATGA
- ② TACCAT-A

- 1 TACCAT-GA
- 2 TACCAT--A
 - TACGATCGA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

	1	(2)	(3)	(4)		12	(3)	(4)
1		6	0	5	12		0	4
2			0	3	3			3
3 4				3	4			
4						•		

- ① TACCATGA
- 2 TACCAT-A

- ① TACCAT-GA② TACCAT--A
- ② T
 - TACGATCGA

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- 1 calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

								•			,		
	1	2	3	4		12	3	4		124	3		
1		6	0	5	12		0	4	124		1		
2			0	3	3			3	3				
3				3	4					ı,			
4		_				1				1234)		
	1									/\			
										124			
						124				/ \ \			
					/\				12				
						12			/	· \	\		
	12	9)				/\	\		(I)	(2) (4)	(3)		
	/ \	\				/ \	1		①	2 4	3		
	1	2			(1) (2)	4				- ~.		
									1	TACCA			
	1	TACC	CATGA		1		CAT-		2	TACCA			
	② TACCAT-A				② TACCATA				TACGATCGA				
© IACOAI A					4	TACGATCGA				GACGA	CC-A		

MultAlin - exemple 2

- ① TACCATGA ② TACCATA ③ GACGACCA ④ TACGATCGA
- **1** calcul des meilleurs alignements 2 à 2 :

scores (Mach
$$=$$
 1, Mismatch $=$ -1, Indel $=$ -1)

construction d'un arbre de clustering (et de l'alignement) :

									- (_		,
		1	2	3	4		12	3	4		124	3
_	1		6	0	5	12		0	4	124		1
	2			0	3	3	١.		3	3		
	3			_	3	4					!	
	4		-	-		-	1 -	-	-		1234	
	_		•	•	•						/\	
											124	
							124				/\	
							/ \			Œ	(2) \ \	\
							12			(<u>I</u>	~ \	\
		12	0				(I)(2)			_/	\ \	\
		/ \	\				/ \	\		1	2 4	3
		(1)	(2)			(1 2	4				
		_	_							1	TACCAT	Γ-GA
		(1)	TACC	ATGA		1	TAC	CAT-	GA	2	TACCAT	ΓA
		②		AT-A		2	TAC	CAT-	-A	4	TACGAT	ΓCGA
		٧	IACC	, н 1 – н		(4)	TAC	GATC	GΑ	3	GACGAC	CC-A

CLUSTAL

Thompson et al., 1994

principe:

- 1 calcule une matrice de similarité des paires par prog. dyn.
- 2 convertit les similarités en distances
- 3 construit l'arbre guide (méthode du Neighbor-Joining)
- 4 aligne progressivement les noeuds de l'arbre par ordre décroissant de similarité

CLUSTAL - exemple

Etape 1

calcul des scores de similarité de tous les alignements

s3

s4

cgagccattgtagctac-tg

cga-ccattgtagctacctg

cga-g--ccattgtagctactg

cgatgagtcactgt-g--actg

tableau des scores d'alignement :

ſ		s ₁	s 2	5 3	<i>S</i> ₄
ſ	s 1		2	0	17
ſ	s 2	2		14	0
ĺ	s 3	0	14		-1
Ì	<i>S</i> ₄	17	0	-1	

$$n$$
 séquences $\downarrow \frac{n(n-1)}{2}$ calculs

construction de l'arbre guide

arbre obtenu avec l'algorithme de Neighbor-Joining

dendrogramme

regroupement des séquences suivant leur similarité à partir de la matrice des scores 2 à 2.

Etape 3

construction de l'alignement multiple final

"Once a gap, always a gap."

ClustalW est optimisé pour les protéines

- Pondération des séquences en fonction de leur sur- ou sousreprésentation
- Adaptation des matrices de similarité au fil de l'algorithme en fonction de la divergence des séquences à aligner BLOSUM 80 pour aligner les séquences proches,
 - BLOSUM 50 pour aligner des séquences distantes, par exemple.
- Pénalités de gaps spécifiques à chaque résidu.
 Par exemple, les glycines sont davantage susceptibles d'avoisiner un gap que les valines.
- Pénalités de gaps réduites dans les régions hydrophiles
 Encourage la formation de gaps dans des boucles plutôt que dans des régions structurées.
- Pénalités de gaps augmentées dans le voisinage d'autres gaps Evite la formation de petits gaps voisins, au profit de longs gaps

Paramètres de Clustal

- Slow/Fast : qualité des alignements 2 à 2
- Matrice de similarité (PAM, BLOSUM, Gonnet)
- Pénalités de gaps :
 - Ouverture et d'extension de gaps
 - Distance de voisinage entre deux gaps
 - Gaps hydrophiles
 - Ouvertures de gaps spécifiques

Arbre guide : autres méthodes - Muscle

Arbre guide : autres méthodes - MA-FFT

FFT: Fast Fourier Transform

- Progressive alignment :
 - 1/2 arbre UPGMA à l'aide d'un distance rapide (k-mots).
 - 2/2 construction guidée d'un 1er alignement multiple (FFT-NS1).
- Iterative refinement :
 - 1 réutiliser la matrice de distance de FFT-NS1 pour refaire un alignement multiple (FFT-NS2).
 - 2 heuristique de réalignement par groupes (FFT-NSi).

alignement multiple de *n* séquences

alignement multiple de n séquences

construction de l'arbre guide $\implies \frac{n(n-1)}{2}$ "comparaisons" (alignements, distances par k-mots)

alignement multiple de n séquences

 $\textit{construction de l'arbre guide} \implies \frac{n(n-1)}{2} \; \textit{``comparaisons''} \; (\textit{alignements, distances par k-mots})$

Construction très longue si n > 1000 séquences

(l'alignement est souvent plus rapide que la construction de l'arbre guide).

alignement multiple de n séquences

 $construction \ de \ l'arbre \ guide \implies \frac{n(n-1)}{2} \ \ "comparaisons" \ (\text{alignements, distances par } \textit{k-mots})$

Construction très longue si n > 1000 séquences

(l'alignement est souvent plus rapide que la construction de l'arbre guide).

- **1** Eviter ces $\mathcal{O}(n^2)$ comparaisons $\to \mathcal{O}(n \log(n))$
- 2 Utilisation d'un alignement simple de *profils-HMM* (voir prochain cours) plutôt que de blocks d'alignements.

À partir des alignements locaux

- idée : repérer des similarités locales fortes entre les séquences
- typiquement : les diagonales du dotplot
- incorporer les diagonales dans l'alignement multiple
- conséquence : les gaps inter-diagonales sont considérés moins importants

 $Dlagonal + ALIGNment \Rightarrow DIALIGN$

DIALIGN

Morgenstern et al., 1996

principe:

- alignement des paires avec optimisation des poids des diagonales
- 2 tri des diagonales selon leur poids et leur chevauchement
- 3 reconstruction gloutonne
 - insertion des diagonales par poids décroissants
 - vérification de la consistance avec les diagonales déjà introduites
- 4 recommencer

DIALIGN

■ Étape 1 : détection des diagonales dans les paires de séquences

- Étape 2 : sélection d'un ensemble cohérent de diagonales pour construire l'alignement
 - pas de croisements
 - pas de chevauchements
 - y I A F L F A W D d
 L A c F I F g s s w e d F M F A E D -

CLUSTAL vs. DIALIGN

Exemple (C. Notre-Dame)

GARFIELD THE LAST FAT CAT GARFIELD THE FAT CAT GARFIELD THE VERY FAST CAT THE FAT CAT

CLUSTAL vs. DIALIGN

Exemple (C. Notre-Dame)

GARFIELD THE LAST FAT CAT GARFIELD THE FAT CAT GARFIELD THE VERY FAST CAT THE FAT CAT

Alignement fourni par Clustal

seq1	GARFIELDTHELASTFA-TCAT
seq2	GARFIELDTHEFA-TCAT
seq3	GARFIELDTHEVERYFASTCAT
seq4	THEFA-TCAT

CLUSTAL vs. DIALIGN

Exemple (C. Notre-Dame)

GARFIELD THE LAST FAT CAT GARFIELD THE FAT CAT GARFIELD THE VERY FAST CAT THE FAT CAT

Alignement fourni par Clustal

seq1	GARFIELDTHELASTFA-TCAT
seq2	GARFIELDTHEFA-TCAT
seq3	GARFIELDTHEVERYFASTCAT
seq4	THEFA-TCAT

Alignement fourni par Dialign2

```
seq1 GARFIELD THE LAST FA-T CAT
seq2 GARFIELD THE ---- FA-T CAT
seq3 GARFIELD THE VERY FAST CAT
seq4 ------ THE ---- FA-T CAT
```

Quelle méthode utiliser? (1/2)

```
\Rightarrow cela dépend du type de séquences à aligner \dots
```

BaliBASE : base de données d'alignements multiples pour benchmark

- plus de 150 familles de protéines
- alignements basés sur la structure secondaire
 - Référence 1 séquences équidistantes avec différents niveaux de conservation
 - Référence 2 protéines homologues + 1 séquence orpheline
 - Référence 3 sous-groupes avec moins de 25% d'identité entre les groupes
 - Référence 4 extensions N/C-terminales
 - Référence 5 insertions internes
 - Référence 6 répétitions internes
 - Référence 7 protéines transmembranaires
 - Référence 8 permutations de domaines
- *Réf. 1, 2 et 3 :* préférer **Clustal** à **Dialign2**
- Réf. 4 et 5 : préférer Dialign2 à Clustal

Quelle méthode utiliser? (2/2)

alignements corrects à plus de 90%

- plus les séquences sont divergentes, moins le résultat est fiable
 - quand le taux d'identité est supérieur à 35%, toutes les méthodes sont satisfaisantes
 - twilight zone : 10-20 % identité

 Aucune méthode n'assure un alignement avec plus de 50% de correction
- Clustal a tendance à autoriser moins de gaps que Dialign2
- similarité locale : Dialign2
- similarité globale : Clustal

Pas de méthode universelle Pas de confiance aveugle vis-à-vis du résultat obtenu

Exemple: domaine SH3

SH3 (Src homology 3) domains are often indicative of a protein involved in signal transduction related to cytoskeletal organization. The SH3 domain has a characteristic fold which consists of five or six beta- strands arranged as two tightly packed anti-parallel beta sheets. The linker regions may contain short helices.

Prosite PS50002

Séquences	s à aligner	longueur
======	=======	=======
1aboA	P00520	57
1ycsB	P04637	60
1pht	P27986	80
1ihvA	P00383	49
1vie	P12497	51

- séquences courtes
- similarité faible (< 25%) et diffuse

SH3 - Véritable Alignement

basé sur l'alignement des éléments de structure secondaire

```
1aboA
       -NLFVALYDfvasgdntlsitkGEKLRVLgynhn-----
       kGVIYALWDyepqnddelpmkeGDCMTIIhrede-----
1ycsB
1pht
       gYQYRALYDykkereedidlhlGDILTVNkgslvalgfsd
       -NFRVYYRDsrd-----pvwkGPAKLLWkg-----
1ihvA
       -drvrkksga-----awqGQIVGWYctnlt-----
1vie
1aboA
       ----gEWCEAQt--kngqGWVPSNYITPVN-----
1ycsB
       ----deiEWWWAR1--ndkeGYVPRNLLGLYP-----
1pht
       gqearpeeiGWLNGYnettgerGDFPGTYVEYIGrkkisp
       ----eGAVVIQd--nsdiKVVPRRKAKIIRd----
1ihvA
       ----peGYAVESeahpgsvQIYPVAALERIN-----
1vie
```

SH3 - Alignement fourni par Clustal

```
    1aboA
    -NLFV-ALYDFVASGDNTLSITKGEKLRV-----LGYNHNG

    1ycsB
    KGVIY-ALWDYEPQNDDELPMKEGDCMTI-----IHREDED

    1pht
    -GYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQ

    1ihvA
    -----NFRVYYRDSRD--PVWKGPAKLL------WKGEG

    1vie
    -----DRVRKKSG--AAWQGQIVGW------YCTNL
```

```
    1aboA
    -----EWCEA--QTKNGQGWVPSNYITPVN-----

    1ycsB
    EI----EWWWA--RLNDKEGYVPRNLLGLYP-----

    1pht
    EARPEEIGWLNGYNETTGERGDFPGTYVEYIGRKKISP

    1ihvA
    -----AVVIQ--DNSDIKVVPRRKAKIIRD----

    1vie
    TP---EGYAVESEAHPGSVQIYPVAALERIN-----
```

SH3 - Alignement fourni par Dialign2

```
1aboA
      n-LFVALYDFVASGDNTLSITKGEKLRVL-----
        VIYALWDYEPQNDDELPMKEGDCMTIIhr----EDEDEI-----
1vcsB
      gyQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDgqearpeei
1pht
1ihvA
                  SRDPVWKGPAKLLWKGEGAVVIQDNSDI-----
1vie
              -----DRVRKKSGaa-W-----QGQI-----
1aboA
       ----GYNhngEWCEAQTKNGQGWV-----PSNYItp------VN
       -----EWWWARLNDKEGYV-----PRNLLgLYP-----
1ycsB
       gwlnGYN-----ETTGERGDF-----PGTYV-EYigRKKIsp--
1pht
1ihvA
       -----KV------V-----PRr-----KAKTTRd-
1vie
       -----VGWYCTNLTPEGYAveseahPGSVQ-IYPv-AALERIN
```

Exemple : 5 protéines, domaine HLH

domaine helix - loop - helix

Séquences à aligner: longueur:

- 1) HEN1-Human
- 2) CBF1-Yeast
- 3) HES5-Mouse
- 4) INO4-Yeast
- 5) ESC1-Yeast

- -----
- 133 351
- 167
- . _ .
- 151
- 413

- longueurs dissemblables
- similarité locale

helix-loop-helix, alignement Clustal

AGPDGAGPGG
PGGGQARGPEPGEPGRKDLQHLSREERRRRRATAKYRTA
LAICYISYLNHVLDV LASANEKLQEELGNAYKEIEYMKRVLRKEGIEYEDMHTHKKQEMERKSTRSDNPHEA LPLDKSTKSSKWGLLTRAIQYIEQLKSEQVALEAYVKSLENMQSNKEVTKGT PGAAPQPARSSAKAAAAAVSTSRQPACGLWRPW

helix-loop-helix, alignement Dialign2 (1/2)

m	NSLANNNKLS
MT	${\tt nsyplstpssfqhgqtrlppinclaepfnrpqpwhsnsaapaSSSPTSATLS}$
	LPPTHSETESGFSDCGGGAGPDgagpggpgggqargegatLKGTQSQYESGLTSNKDEKGSDdedasvaeaavaatvnytdliqgQED
	VPPTNSTTSQAsakhsavphrssqfqsttltpsttDSS
	NTSLEGMTSSPMESTQQSKNdmliplaehdrg
STDVSSSDSVSTSASSSNASNTVSVTSPASSSATPLPNQPSQQqflvs	kndafttfvhsvhNTPMQQSMYVPQQQTSHSSGasyqnesanppvqspmqys

helix-loop-helix, alignement Dialign2 (2/2)

KSLHQDYSEGYSwc1QEAVQFLTLHAasdtqmk11yhfqrppapaapakeppapgaapqparssakaaaaavstsrqpacglwrpw

Résumé des méthodes

Méthode	ldée	Stratégie	
MSA	Extension de l'algorithme	Simultanée	
DCA	de Needlemen et Wunsh	Simultanee	
Clustal			
PIMA	Ajout successif de		
PILEUP	séquences ou groupes	Progressive	
MULTALIGN	de séquences		
Dialign			
Saga/Coffee	Réalignment lors de		
PRRN	l'ajout successif de		
HMMT	séquences ou groupes	Itérative	
MUSCLE	de séquences		
MA-FFT	de Jequences		

Passage à l'échelle

la comparaison de génomes

- **I** taille de séquences bien plus longue ($1000 \mathrm{bp} \rightarrow > 1000000 \mathrm{bp}$)
- présence de réarrangements/duplications (combinées)

La comparaison de génomes

⇒ autant de programmes qui produisent des alignements différents!

Différentes écoles :

- MGA (Bielefeld)
- MUMmer (Baltimore/Celera genomics)
- Lagan, Multilagan (Standford)
- MAUVE (Wisconsin-Madison)
- GLASS AVID (Berkeley)
- et bien d'autres ...

