Class 14: RNASeq Mini Project

Jessica PID: A15647602

Import Data

We need two things "Counts" and "Metadata" (what DESeq calls colData - as it describes the column in Counts)

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
metadata <- read.csv("GSE37704_metadata.csv")</pre>
```

Peak:

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

head(metadata)

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

We want the columns in counts to match the rows in the metadata

colnames(counts)

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
- [7] "SRR493371"

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

We can get rid of the first column in counts to make these match

```
countData <- counts[,-1]</pre>
```

colnames(countData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

all(colnames(countData) == metadata\$id)

[1] TRUE

Data Cleanup

Filter out zero counts

It is standard practice to remove any genes/transcipts that we have no data for -i.e. zero counts in all columns

```
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData[to.keep.inds,]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup for DESup

```
library(DESeq2)
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions</pre>
```

```
gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

```
res <- results(dds)</pre>
```

Inspect Results

head(res)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	0	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216		5.81042e-01
ENSG00000187634	183.2296		0.1402658		2.36304e-03
ENSG00000188976					1.43989e-36
ENSG00000187961	209.6379	0.7297556			3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	lj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			
ENSG00000187634	5.15718e-0)3			
ENSG00000188976	1.76549e-3	35			
ENSG00000187961	1.13413e-0)7			
ENSG00000187583	9.19031e-0	01			
ENSG00000187642	4.03379e-0)1			

Data Visualization

```
library(ggplot2)
plot(res$log2FoldChange, -log(res$padj))
```



```
ggplot(res, aes(x = log2FoldChange, y = -log(padj))) + geom_point() + xlim(-10, 10) + ylim(0)
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

Annotation of genes

First I need to translate my Ensemble IDs in my res object to Entrez and gene symbol formats.

For this i will use the AnnotationDbi package and it's mapIds() function.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

Let's map to "SYMBOL", "ENTREZID", "GENENAME"

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

```
baseMean log2FoldChange
                                          lfcSE
                                                     stat
                                                               pvalue
               <numeric>
                             <numeric> <numeric> <numeric>
                                                            <numeric>
ENSG00000279457
                 29.9136
                             0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                             0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                            -0.6927205 0.0548465 -12.630158 1.43989e-36
                            0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187961 209.6379
ENSG00000187583 47.2551
                             0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642 11.9798
                             0.5428105 0.5215599 1.040744 2.97994e-01
                                                    symbol
                     padj
                                       genename
                                                               entrez
                                    <character> <character> <character>
                 <numeric>
ENSG00000279457 6.86555e-01
                                             NA
                                                        NA
                                                                   NA
ENSG00000187634 5.15718e-03 sterile alpha motif .. SAMD11 148398
```

```
ENSG00000188976 1.76549e-35 NOC2 like nucleolar .. NOC2L 26155 ENSG00000187961 1.13413e-07 kelch like family me.. KLHL17 339451 ENSG00000187583 9.19031e-01 pleckstrin homology .. PLEKHN1 84069 ENSG00000187642 4.03379e-01 PPARGC1 and ESRR ind.. PERM1 84808
```

Before going any further lets focus in on a subset of "top" hits.

We can use as a starting point $\log 2FC$ of +2/-2 and a adjusted p-value of less than 0.05.

```
top.inds <- (abs(res$log2FoldChange) > 2) & (res$padj < 0.05)
top.inds[is.na(top.inds)] <- FALSE</pre>
```

Let's save our "top genes" as a CSV file.

```
top.genes <- res[top.inds,]
write.csv(top.genes, file = "top_geneset.csv")</pre>
```

Now we can do some pathway analysis

```
library(pathview)
library(gage)
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
```

The \mathbf{gage} function wants a vector of importance as input with gene names as labels - KEGG speaks ENTREZ

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

Run gage with these values

keggres <- gage(foldchanges, gsets = kegg.sets.hs)</pre>

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.066915974	144 1	.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8	.961413e-03

hsa04110

```
pathview(foldchanges, pathway.id = "hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/jessicaraygoza/Desktop/Graduate School/BGGN 213/Class14

Info: Writing image file hsa04110.pathview.png

Figure 1: A pathway figure

```
data("go.sets.hs")
data("go.subs.hs")
gobpsets = go.sets.hs[go.subs.hs$BP]
gores <- gage(foldchanges, gsets = gobpsets)</pre>
```

head(gores\$less)

```
p.geomean stat.mean p.val G0:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15 G0:0000280 nuclear division 4.286961e-15 -7.939217 4.286961e-15 G0:0007067 mitosis 4.286961e-15 -7.939217 4.286961e-15
```

```
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
                                                                      exp1
                                        5.841698e-12
GO:0048285 organelle fission
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                         362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.658603e-08
                                                         142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178402e-07
                                                           84 1.729553e-10
```

To run reactome online we need to make a little text file with a gene id per line.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

