<u>P6</u> <u>1</u>

Relačná algebra

P6 2

1.1 Základné operácie

Základnými operáciami relačnej algebry sú:

- 1. výber
- 2. projekcia
- 3. kartézsky súčin
- 4. zjednotenie
- 5. rozdiel
- 6. prienik
- 7. delenie
- 8. spojenie

Tieto operácie môžu byť klasifikované z rôznych pohľadov:

- 1. Podľa počtu zdrojových relácií
 - Unárne výber, projekcia
 - **Binárne** kartézsky súčin, prienik, rozdiel, zjednotenie, delenie, spojenie
- 2. Podľa typu operácií
 - **Množinové operácie** zjednotenie, prienik, kartézsky súčin, rozdiel
 - **Relačné operácie** spojenie, delenie, výber, projekcia

1.1.1 VÝBER - SELECTION

Definícia – Elementárna podmienka EC

Elementárnou podmienkou EC nazývame výraz v tvare:

kde operátor je z množiny relačných operátorov $\{=, <, >, <=, >=, \neq\}$.

Poznámka: Hodnotu v podmienke môžeme vyjadriť konštantou, výrazom, alebo atribútom

Definícia – Podmienka C

Podmienkou C nazývame výraz v tvare:

[NOT]
$$EC_1$$
 [{OR | AND |NOT} [[NOT] EC_2]...]

Definícia - Selection

Operácia SELECTION (Výber) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ reláciu $R_2(A_1,A_2, ..., A_n)$ takú, že pre každú n-ticu $t \in R_2$ platí $t \in R_1$ a je splnená podmienka C.

Označenie

a) grafické

a) matematické

$$R_2 = \sigma_c(R_1)$$

P6 4

Príklad 1.1 – Výber
 Vypíšte všetky údaje o predmetoch, ktoré garantuje učiteľ s osobným číslom="KI001"

- a) pomocou operácií relačnej algebry σ_{cis_ucitel="Kl001"}(predmet)
- b) pomocou SQL príkazu SELECT * FROM predmet WHERE cis ucitel = 'KIOO1';

cis_predmet	Nazov	kredity	cis_ucitel
P111	Základy informatiky 1	6	KI001
P211	Základy informatiky 2	6	KI001
A502	C-jazyk	8	KI001

Komutativita výberu

$$\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(R)) = \sigma_{\text{cond2}}(\sigma_{\text{cond1}}(R))$$

Kaskáda výberu (pre konjunkciu)

$$\sigma_{cond1}(\sigma_{cond2}(...(\sigma_{condn}(R)))) = \sigma_{cond1 \text{ AND cond2 AND ...AND condn}}(R)$$

1.1.2 PROJEKCIA - PROJECTION

Definícia - Projection

Operácia PROJECTION (Projekcia) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ reláciu $R_2(B_1,B_2, ..., B_m)$ takú, že množina atribútov $(B_1,B_2, ..., B_m) \subset (A_1,A_2, ..., A_n)$ a pre stupeň relácie R_2 platí m < n a $card(R_2) = card(R_1)$.

Označenie

a) grafické

b) matematické

$$R_2 = \pi_{B1..Bm}(R_1)$$

- Príklad 1.2 Projekcia
 Vypíšte zoznam mien a priezvísk všetkých študentov
- a) pomocou operácií relačnej algebry $\pi_{\text{meno,priezvisko}}(\text{os_udaje})$
- b) pomocou SQL príkazu SELECT meno, priezvisko FROM os udaje;

priezvisko meno Novák Peter Steinmüller Stanislav Tóth János Rátroch Marek Bohuslav Biely Branislav Baláž Kapustný Peter Ďurica Marek Kľúčiar Martin Lukáš Satrapa Ján Krnáč Juraj Papún Andrei Janči Zdeno Svetkovský

...

Stanislava Slámová Erika Lipovská Peter Malík

Kaskáda projekcií

Ak zoznam *zoznam2* atribútov projekcie obsahuje zoznam atribútov *zoznam1*, tak môžeme písať:

$$\pi_{zoznam1}(R) = \pi_{zoznam1}(\pi_{zoznam2}(R))$$

1.1.2.1 KARTÉZSKY SÚČIN – PRODUCT

Definícia - Product

Operácia PRODUCT (Karteziánsky súčin) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ a z relácie $R_2(B_1,B_2, ..., B_m)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$ takú, že obsahuje všetky kombinácie n-tíc, kde pre každú n-ticu t platí:

 $t \in \mathbf{R}_3$ a t je usporiadanou dvojicou $t = t_1, t_2$ ak $t_1 \in \mathbf{R}_1$ a $t_2 \in \mathbf{R}_2$.

Označenie

a) grafické

b) matematické

$$R_3 = R_1 x R_2$$

- Príklad 1.3- Kartézsky súčin Vypíšte všetky kombinácie mien a priezvísk študentov a čísel predmetov, ktoré je možné si zapísať.
- a) pomocou operácií relačnej algebry

```
\begin{array}{ll} a = \pi_{\text{meno,priezvisko}}(\text{os\_udaje}) & //\text{vyber všetky mená} \\ a \text{ priezviská študentov} \\ b = \pi_{\text{cis\_predmet}}(\text{predmet}) & //\text{vyber všetky čísla predmetov} \\ \text{Kartézsky\_súčin} = a \times b & //\text{vytvor všetky kombinácie} \end{array}
```

ы) pomocou príkazov SQL

```
SELECT meno, priezvisko FROM os_udaje
INTO TEMP a;
```

```
SELECT cis_predmet FROM predmet
INTO TEMP b;
```

SELECT meno, priezvisko, cis_predmet
FROM a,b;

Meno	priezvisko	cis_predmet
Peter	Novák	A501
Stanislav	Steinmüller	A501
János	Tóth	A501
Peter	Novák	A901
Stanislav	Steinmüller	A901
János	Tóth	A901

1.1.2.2 ZJEDNOTENIE - UNION

Definícia - Union

Operácia UNION (zjednotenie) vytvorí z relácie

 $R_1(A_1, A_2, ..., A_n)$ a z relácie $R_2(A_1, A_2, ..., A_n)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

 $t \in R_3$ ak $t \in R_1$, alebo $t \in R_2$

Označenie

a) grafické

ы matematické

$$R_3 = R_1 \cup R_2$$

 $R_3 = UNION (R_1,R_2)$
 $R_3 = R1 UNION R_2$

Definícia – Union kompatibilita

Dve relácie \mathbf{R}_1 a \mathbf{R}_2 sú union kompatibilné, ak majú *totožnú* množinu atribútov.

Príklad 1.4 – Union kompatibilné relácie

```
Ak máme reláciu
Študent_ZA(os_cislo,rod_cislo, st_zameranie,
st_odbor, rocnik, forma, stav, dat_1zapisu,
st_skupina, dat_ukoncenia)
a reláciu
študent_PD(os_cislo,rod_cislo, st_zameranie,
st_odbor, rocnik, forma, stav, dat_1zapisu,
st_skupina, dat_ukoncenia),
```

tak relácie sú union kompatibilné.

Príklad 1.5 – Union nekompatibilné relácie

Ak máme reláciu študent(os_cislo,rod_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia)

a reláciu

študenti(rod_cislo, os_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia),

tak relácie nie sú union kompatibilné, pretože poradie atribútov nie je totožné.

Príklad 1.6 – Union nekompatibilné relácie

Ak máme reláciu

študent(os_cislo,rod_cislo, st_zameranie, st_odbor, rocnik, forma, stav, dat_1zapisu, st_skupina, dat_ukoncenia)

a reláciu

študenti(os_cislo, rod_cislo,st_zameranie, st_odbor, rocnik),

tak relácie nie sú union kompatibilné, pretože počet atribútov nie je totožný.

Príklad 1.7 – Zjednotenie

Vytvorte dve relácie z relácie osobné údaje také, že prvá relácia bude obsahovať mená a priezviská všetkých žien a druhá relácia mená a priezviská všetkých mužov.

Potom napíšte príkaz pre zjednotenie oboch relácií.

a) pomocou operácií relačnej algebry

os_udaje_zeny=
$$\pi_{meno,priezvisko}(\sigma_{rod_cislo[3,3]>4}(os_udaje))$$

os_udaje_muzi=
$$\pi_{meno,priezvisko}(\sigma_{rod_cislo[3,3]<5}(os_udaje))$$

Zjednotenie = os_udaje_zeny ∪ os_udaje_muzi

```
b) pomocou príkazov SQL
```

CREATE TEMP TABLE os_udaje_zeny
SELECT meno, priezvisko
FROM os_udaje
WHERE substr(rod_cislo,3,1) = >4;

CREATE TEMP TABLE os_udaje_muzi
SELECT meno, priezvisko
FROM os_udaje
WHERE substr(rod_cislo,3,1) = <5;

SELECT meno, priezvisko FROM
os_udaje_zeny
UNION
SELECT meno, priezvisko FROM

priezvisko meno Janči Andrei Bohuslav Biely Branislav Baláž Erika Lipovská František Murgaš Jurai Papún Krnáč Ján Tóth János Rátroch Marek Kľúčiar Martin Kapustný Peter Malík Peter Rastislav Kontroš Kováč Rudolf Stanislav Steinmüller

os udaje muzi;

Stanislava	Slámová
Zdeno	Svetkovský
Ľuboš	Lehotský

Komutativita

$$R_1 \cup R_2 = R_2 \cup R_1$$

Asociativita

$$R_1 \cup (R_2 \cup R_3) = (R_1 \cup R_2) \cup R_3$$

1.1.2.3 ROZDIEL - DIFFERENCE

Definícia - Difference

Operácia DIFFERENCE (rozdiel) vytvorí z relácie $R_1(A_1,A_2, ..., A_n)$ a z relácie $R_2(A_1, A_2, ..., A_n)$, tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

$$t \in \mathbf{R}_3$$
 ak $t \in \mathbf{R}_1$ a $t \notin \mathbf{R}_2$.

Označenie

a) grafické

$$R_1 - R_2 \neq R_2 - R_1$$

b) matematické

$$R_3 = R_1 - R_2$$
 $R_3 = R_1$ DIFFERENCE
 R_2
 $R_3 = DIFFERENCE$
 (R_1, R_2)

- Príklad Rozdiel
 - Pomocou operácie rozdiel vypíšte rodné čísla študentov z relácie osobné údaje, ktorí nie sú študentmi druhého ročníka.
- a) pomocou operácií relačnej algebry

$$R_1 = \pi_{rod_cislo}(os_udaje)$$

 $R_2 = \pi_{rod_cislo}(\sigma_{rocnik} = 2(student))$
 $ROZDIEL = R_1 - R_2$

ы) pomocou príkazov SQL

```
SELECT rod_cislo FROM os_udaje
  INTO TEMP R1;

SELECT rod_cislo FROM student
  WHERE rocnik = 2
  INTO TEMP R2;

SELECT * FROM R1
  WHERE rod_cislo NOT IN
    (SELECT rod_cislo FROM R2);
```

rod_cislo 755022/8569 760103/2238 770913/3326 771203/5472 781001/3623 781015/4431 781130/4454 781201/1248

1.1.2.4 PRIENIK – INTERSECTION

Definícia - Intersection

Operácia INTERSECTION (prienik) vytvorí z relácie $R_1(A_1, A_2, ..., A_n)$ a z relácie $R_2(A_1, A_2, ..., A_n)$ tretiu reláciu $R_3(A_1, A_2, ..., A_n)$ takú, že pre každú n-ticu t platí:

 $t \in \mathbf{R}_3$ ak $t \in \mathbf{R}_1$ a súčasne $t \in \mathbf{R}_2$.

Označenie

a) grafické

ы matematické

$$R_3 = R_1 \cap R_2$$

$$R_3 = R_1$$
INTERSECTION R_2

$$R_3 = INTERSECTION$$
(R1, R_2)

Operáciu relačnej algebry prienik je možné vyjadriť pomocou operácie rozdiel, potom pre prienik relácii R₁ a R₂ platí:

$$R_3 = R_1 - (R_1 - R_2)$$
, alebo
 $R_3 = R_2 - (R_2 - R_1)$
alebo

pomocou operácií zjednotenie a rozdiel

$$R_3 = (R_1 \cup R_2) - ((R_1 - R_2) \cup (R_2 - R_1))$$

- Dríklad 1.9 Prienik
 - Pomocou operácie prienik vypíšte všetky rodné čísla študentov z relácie osobné údaje, ktorí sú študentmi druhého ročníka.
- a) pomocou operácií relačnej algebry

```
R_1 = \pi_{rod\_cislo}(os\_udaje)

R_2 = \pi_{rod\_cislo}(\sigma_{rocnik=2}(student))

PRIENIK = R_1 \cap R_2
```

ы) pomocou príkazov SQL

```
SELECT rod_cislo FROM os_udaje
INTO TEMP R1;
```

```
SELECT rod_cislo FROM student
WHERE rocnik = 2
INTO TEMP R2;
```

```
SELECT * FROM R1
WHERE rod_cislo IN
(SELECT rod cislo FROM R2);
```

rod_cislo 771124/3578 790907/1259

791229/5431

800312/7845

800407/3522

Komutativita

$$R_1 \cap R_2 = R_2 \cap R_1$$

Asociativita

$$R_1 \cap (R_2 \cap R_3) = (R_1 \cap R_2) \cap R_3$$

DELENIE - DIVISION

Definícia - Division

Operácia DIVISION (delenie) vytvorí z relácie $D(A_1,A_2,...,A_p,A_{p+1},A_{p+2},...,A_n)$ delením reláciou $d(A_{p+1},A_{p+2},...,A_n)$ tretiu reláciu $Q(A_1,A_2,...,A_p)$ takú, že konkatenáciou $t_Q \in Q$ a $t_d \in d$ dostaneme n-ticu

$$t_D \in D. (t_Q, t_d = t_D)$$

Definícia - Division

Veta

Nech $X = (A_1,A_2, ..., A_p)$ a $Y = (A_{p+1},A_{p+2},...,A_n)$ potom operácia DIVISION (delenie) vytvorí z binárnej relácie D(X,Y) delením unárnou reláciou d(Y) tretiu unárnu reláciu Q(X) takú, že konkatenáciou $t_Q \in Q$ a $t_d \in d$ dostaneme n-ticu $t_D \in D(t_Q, t_d = t_D)$

$$\begin{aligned} D & \div d = R_1 - R_2 \\ k de \\ R_1 &= \pi_{A1,A2, \dots, Ap}(D) \\ R_2 &= \pi_{A1,A2, \dots, Ap}((R_1 \times d) - D) \\ \textit{Veta} \\ D & \div d = R_1 - R_2 \\ k de \\ R_1 &= \pi_X(D) \end{aligned}$$

 $R_2 = \pi_Y((R_1 \times d) - D)$

		DELENIE	
1512	P111	P111	1512
1512	P102	P102	1319
1512	P103	P103	,
1319	P102	<u> </u>	
1319	P103]	
1319	P111]	
1414	P111]	

Označenie

a) grafické

b) matematické

$$Q = D \div d$$

Priklad 1.10

Vypíšte osobné čísla všetkých študentov, ktorí majú zapísané oba predmety: P202 a P301.

```
a) riešenie číslo 1 - pomocou príkazov SQL
```

```
SELECT cis_predmet FROM predmet
WHERE predmet.cis_predmet = "P202" OR
    predmet.cis_predmet = "P301"
INTO TEMP menovatel;
```

```
SELECT COUNT(*) pocet FROM menovatel
INTO TEMP pocet_v_menovateli;
```

```
SELECT unique os_cislo, cis_predmet FROM
zap_predmety
WHERE cis_predmet IN
     (SELECT cis_predmet FROM menovatel)
INTO TEMP st_pr;
```

```
SELECT os_cislo, COUNT(*) pocet
FROM st_pr
GROUP BY os_cislo
INTO TEMP pocet st pr;
```

```
SELECT os_cislo
  FROM pocet_st_pr z, pocet_v_menovateli
y
WHERE z.pocet = y.pocet;
```

b) riešenie číslo 2 - pomocou príkazov relačnej algebry

$$\begin{split} & \textbf{menovatel} = \sigma_{cis_predmet="P202" \ OR} \\ & cis_predmet="P301" (\pi_{cis_predmet}(\textbf{predmet})) \\ & \textbf{xxx} = \sigma_{unique}(\pi_{os_cislo,cis_predmet}(\textbf{zap_predmety} \\ & cis_predmet \textbf{menovatel})) \\ & yyy = \sigma_{unique}(\pi_{os_cislo}(\textbf{xxx})) \\ & zzz = \pi_{os_cislo}((yyy \times menovatel) - xxx) \\ & PODIEL = yyy - zzz \end{split}$$

```
c) riešenie číslo 2 - pomocou príkazov SQL
 SELECT cis predmet FROM predmet
   WHERE cis predmet = "P202"
       OR cis predmet = "P301"
   INTO TEMP menovatel;
 SELECT UNIQUE os cislo , cis predmet
   FROM zap predmety
   WHERE cis predmet IN
  (SELECT cis predmet FROM menovatel)
   INTO TEMP xxx;
 SELECT unique os cislo FROM xxx
   INTO TEMP yyy;
 SELECT os cislo FROM yyy, menovatel
   WHERE cis predmet NOT IN
(SELECT cis predmet FROM xxx
 WHERE xxx.os cislo = yyy.os cislo)
   INTO TEMP zzz;
 SELECT os cislo FROM yyy
   WHERE os cislo NOT IN
       (SELECT os cislo FROM zzz);
os_cislo
```

1.1.2.5 SPOJENIE - JOIN

Definícia - Join

Operácia JOIN (spojenie) vytvorí z relácie

 $R_1(X, A_1,A_2, ..., A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu $R_3(X,A_1,A_2,...,A_n, X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ a pre hodnoty atribútov X platí $t_1.X=t_2.X$, potom n-tica $t \in R_3$ má atribúty

 $\mathsf{t} = t_1..X \;,\; t_1..A_1 \;,\; t_1..A_2 \;,\; \ldots,\; t_1..A_n \;,\; t_2..X \;,\; t_2..B_1,\; t_2..B_2,\; \ldots,\; t_2..B_{\underline{w}}.$

SPOJENIE						
1512 P103	P102 Algebra	1512 P103 P103 Matematická analýza 1				
1512 P102	P103 Matematická analýza 1	1512 P102 P102 Algebra				
1319 P103	P111 Základy informatiky 1	1319 P103 P103 Matematická analýza 1				

Pri operácii spojenie je potrebné si uvedomiť, že množiny atribútov, cez ktoré sa spojenie realizuje môžu, ale nemusia mať rovnaké mená, ale vždy musia mať rovnakú doménu.

Označenie

a) grafické

ы matematické

$$R_3 = \aleph_{1 \quad c} R_2$$

$$R_3 = R_1 \text{ JOIN}_C R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, C)$$

Poznámka

V prípade, že množiny atribútov, cez ktoré sa realizuje spojenie majú rovnaké mená, nie je nutné pri operátore spojenia uvádzať podmienku vyjadrujúcu spojenie atribútov dvoch relácií.

Označenie v prípade rovnakých mien atribútov

a) grafické

b) matematické

$$R_3 = \mathbb{R}_1 \quad R_2$$

$$R_3 = R_1 \text{ JOIN } R_2$$

$$R_3 = \text{JOIN } (R_1, R_2)$$

Operáciu relačnej algebry spojenie je možné vyjadriť pomocou operácií kartézsky súčin a výber. V tom prípade pre spojenie $R_3 = R_1$ C R_2 platí:

$$R_3 = \sigma_C(R_1 \times R_2)$$

Príklad 1.11 – Spojenie s použitím rovnakých mien atribútov

```
SELECT os_udaje.*,student.* FROM os_udaje, student WHERE os udaje.rod cislo=student.rod cislo
```

Príklad 1.12 – Spojenie s použitím rôznych mien atribútov

V prípade, že by v relácii študent atribút, v ktorom bude uložené rodné číslo mal meno RC, príklad spojenia by vyzeral nasledovne:

```
SELECT os_udaje.*,student.* FROM
os_udaje, student
WHERE os_udaje.rod_cislo=student.rc;
```

Pomocou operácie spojenie, spojte nasledovné relácie R_1 a R_2

```
R_1 = \pi_{rod\_cislo, meno, priezvisko}(os\_udaje)

R_2 = \pi_{os\_cislo, rod\_cislo, rocnik, st\_skupina}(student)
```

- b) pomocou príkazov SQL

```
SELECT rod cislo,
    meno,
    priezvisko
      FROM os udaje
       INTO TEMP r1;
SELECT os cislo,
    rod cislo,
    rocnik,
    st skupina
      FROM student
       INTO TEMP r2;
    SELECT r1.*, r2.*
    FROM r1, r2
    WHERE
    r1.rod cislo =
    r2.rod cislo;
```

```
SELECT ou.rod_cislo,
    meno, priezvisko,
    os_cislo,
    st.rod_cislo,
rocnik,
st_skupina
FROM os_udaje ou,
    student st
WHERE
    ou.rod_cislo
    =st.rod_cislo;
```

800312/7845	Stanislav	Steinmüller	1469	800312/7845	2	5Z021
810514/5341	Branislav	Baláž	1567	810514/5341	1	5Z013
781015/4431	Peter	Kapustný	1319	781015/4431	3	5ZA31
800407/3522	Marek	Ďurica	1555	800407/3522	2	5Z022
791229/5431	Martin	Kľúčiar	1402	791229/5431	2	5Z023
771124/3578	Lukáš	Satrapa	1096	771124/3578	2	5Z023
771203/5472	Ján	Krnáč	1103	771203/5472	4	5ZI41
790310/2145	Juraj	Papún	1333	790310/2145	3	5ZA32
791225/7452	Rastislav	Kontroš	1448	791225/7452	1	5P011
755022/8569	Erika	Lipovská	807	755022/8569	1	5Z013

SQL 99

SELECT

```
ou.rod_cislo, meno, priezvisko,
os_cislo, st.rod_cislo,rocnik,
st_skupina
FROM os_udaje as ou,
INNER JOIN student as st
ON ou.rod_cislo=st.rod_cislo;
```

1.1.3 Ďalšie varianty operácie spojenia

V literatúre sa môžeme stretnúť s ďalšími operáciami relačnej algebry, ktoré sú rozšírením základných operácií relačnej algebry a sú to:

- a) prirodzené spojenie
- b) theta spojenie
- c) equi spojenie
- d) inequi spojenie
- e) externé spojenie
- f) polospojenie (semi spojenie)

1.1.3.1 PRIRODZENÉ SPOJENIE - NATURAL JOIN

Definícia – Prirodzené spojenie - Natural join

Operácia NATURAL JOIN (prirodzené spojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X, tretiu reláciu

 $R_3(X,A_1,A_2,...,A_n,B_1,B_2,...,B_m)$ takú, že

ak $t_1 \in \mathbf{R}_1$ a ak $t_2 \in \mathbf{R}_2$ a pre hodnoty atribútov \mathbf{X} platí $t_1.\mathbf{X} = t_2.\mathbf{X}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ má atribúty $\mathbf{t} = \mathbf{t}_1.\mathbf{X}$, $\mathbf{t}_1.\mathbf{A}_1$, $\mathbf{t}_1.\mathbf{A}_2$, ..., $\mathbf{t}_1.\mathbf{A}_n$, $\mathbf{t}_2.\mathbf{B}_1$, $\mathbf{t}_2.\mathbf{B}_2$, ..., $\mathbf{t}_2.\mathbf{B}_m$, pričom atribúty s rovnakými menami *sa neopakujú*.

Označenie

a) grafické

ы matematické

$$R_3 = \aleph_1 \quad _N R_2$$

$$R_3 = R_1 \text{ JOIN}_N R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, N)$$

- Príklad 1.15 Prirodzené spojenie
 Vypíšte pre každého študenta nasledovné údaje:
 rodné číslo, meno, priezvisko, osobné číslo, ročník,
 študijná skupina
 (Spravte teda to isté, čo v príklade 1.11, ale s potlačením duplicity stĺpca rodné číslo).
- a) pomocou operácií relačnej algebry $R_1 = \pi_{rod_cislo, meno, priezvisko}(os_udaje)$ $R_2 = \pi_{os_cislo, rod_cislo, rocnik, st_skupina}(student)$ SPOJENIE $R_1 = R_1 = R_2$

ы) pomocou SQL príkazov

```
SELECT rod cislo,
meno,
       priezvisko
  FROM os udaje
  INTO TEMP r1;
SELECT os cislo,
rod cislo,
       rocnik,
st skupina
 FROM student
  INTO TEMP r2;
SELECT
r1.*, r2.os cislo,
       r2.rocnik,
r2.st skupina
  FROM r1, r2
 WHERE
   r1.rod cislo =
   r2.rod cislo;
```

rod_cislo	meno	priezvisko	os_cislo	rocnik	st_skupina
801106/3456		Novák	1512	1	5Z012
800312/7845	Stanislav	Steinmüller	1469	2	5Z021
790907/1259		Tóth	1414	2	5Z021
755022/8569	Erika	Lipovská	807	1	5Z013

SQL99

Špeciálny prípad

Ak relácie R a S sú UNION kompatibilné tak:

$$R \cap S = R \bowtie S$$

THETA JOIN

Definícia –Theta join

Operácia THETA JOIN (Θ - spojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu $R_3(X,A_1,A_2,...,A_n,X,B_1,B_2,...,B_m)$ takú, že

ak $t_1 \in R_1$ a ak $t_2 \in R_2$ a pre hodnoty atribútov X platí $t_1.X \odot t_2.X$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ má atribúty $\mathbf{t} = \mathbf{t}_1.\mathbf{X}$, $\mathbf{t}_1.\mathbf{A}_1$, $\mathbf{t}_1.\mathbf{A}_2$, ..., $\mathbf{t}_1.\mathbf{A}_n$, $\mathbf{t}_2.\mathbf{X}$ $\mathbf{t}_2.\mathbf{B}_1$, $\mathbf{t}_2.\mathbf{B}_2$,..., $\mathbf{t}_2.\mathbf{B}_m$, pričom operátor \mathbf{e} nadobúda hodnotu z množiny relačných operátorov $\{=,<,>,<=,>=,\neq\}$.

Označenie

a) grafické

b) matematické

$$R_3 = \aleph_1 \quad_{\theta} R_2$$

$$R_3 = R_1 \text{ JOIN}_{\theta} R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, \theta)$$

a reláciu

Príklad 1.16 [Codd90]
Predpokladajme, že máme reláciu
Výrobok (cis_vyrobku, nazov, mnozstvo)

Objednávka (cis_odberatela, cis_vyrobku, poz_mnostvo).

V prípade, že požiadavka je formulovaná nasledovne:

SELECT vyrobok.*, objednavka.*
FROM vyrobok, objednavka
WHERE
vyrobok.mnozstvo<objednavka.poz_mnozstvo

Výsledná relácia bude obsahovať atribúty z oboch relácií a tie n-tice, kde požadované množstvo je väčšie ako množstvo vyrobených výrobkov.

1.1.3.2 EQUI JOIN

Definícia – Equi join

Operácia EQUI JOIN je takou *operáciou o spojenia*, kde operátor o nadobúda hodnotu relačného operátora =.

Označenie

a) grafické

b) matematické

$$R_3 = \mathbb{R}_{1 \quad E} R_2$$

$$R_3 = R_1 \text{ JOIN}_E R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, E)$$

1.1.3.3 INEQUI JOIN

Definícia – Inequi join

Operácia INEQUI JOIN je takou *operáciou* Θ -spojenia, kde operátor Θ nadobúda hodnotu z množiny relačných operátorov $\{<,>,<=,>=,\neq\}$.

Označenie

a) grafické

b) matematické

$$R_3 = \mathbb{R}_1 \quad _{\bar{\mathbb{E}}} R_2$$

$$R_3 = R_1 \text{ JOIN}_{\bar{\mathbb{E}}} R_2$$

$$R_3 = \text{JOIN} (R_1, R_2, \bar{\mathbb{E}})$$

1.1.3.4 EXTERNAL JOIN

Definícia – External join - FULL

Operácia EXTERNAL JOIN – FULL (Vonkajšie spojenie - úplné) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,...,A_a,X,B_1,B_2,...,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$

potom n-tica $t \in R_3$ má atribúty $t = t_1.X$, $t_1.A_1$, $t_1.A_2$, ..., $t_1.A_a$, $t_2.X$, $t_2.B_1$, $t_2.B_2$, ..., $t_2.B_m$ a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota $t_1.X \notin \{\text{hodnôt } t_2.X\}$
- alebo hodnota $t_2.X \notin \{\text{hodnôt } t_1.X\}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice \mathbf{t} .

Označenie – grafické

Príklad 1.17 – External join FULL
Pomocou príkazov SQL realizujte úplné vonkajšie spojenie relácií r1 a r2 definovaných nasledovnými SELECT-ami:

```
SELECT UNIQUE os_cislo ,cis_predmet FROM zap_predmety INTO TEMP r1;

SELECT cis_predmet, nazov FROM predmet INTO TEMP r2;
```

Riešenie

```
SELECT r1.*, r2.*
FROM r1, OUTER r2
WHERE r1.cis_predmet=r2.cis_predmet
UNION
SELECT r1.*, r2.*
FROM OUTER r1, r2
WHERE r1.cis predmet=r2.cis predmet;
```

		<u> </u>	
		r2.cis_predme	
os_cislo	r1.cis_predmet	t	nazov
		A502	C-jazyk
			Časti elektronických
		A506	systémov
		A601	Matematické programovanie
		•••	
807	P202	P202	Matematická analýza 2
807	P203		, , , , , , , , , , , , , , , , , , ,
807	P211	P211	Základy informatiky 2
			Praktikum z programovania
807	V101	V101	1
			·
1448	P111	P111	Základy informatiky 1
1448	P202	P202	Matematická analýza 2
1448	P203	. 202	matematicka analyza z
1469	P203		
1469	P301	P301	Pravdepodobnosť
1469	P303	P303	Matematická analýza 3
1512	P102	P102	Algebra
1512	P103	P103	Matematická analýza 1
1512	P111	P111	Základy informatiky 1
1545	P103	P103	Matematická analýza 1
1545	P202	P202	Matematická analýza 2
1545	P203	1 202	matemationa analyza z
1555	P202	P202	Matematická analýza 2
1555	P203	1 202	matematicka anaryza z
1555	P301	P301	Pravdepodobnosť
1555	P303	P303	
		L 202	Matematická analýza 3
1559	P201		
1559	P203		
	•••		•••

SQL99

```
SELECT r1.*, r2.*
FROM r1 FULL OUTER JOIN r2
ON r1.cis_predmet = r2.cis_predmet
```

Oracle

```
SELECT r1.*, r2.*
  FROM r1+, r2
WHERE r1.cis_predmet = r2.cis_predmet
UNION
SELECT r1.*,r2.*
  FROM r1, r2+
WHERE r1.cis_predmet = r2.cis_predmet;
```

Definícia – External join - LEFT

Operácia EXTERNAL JOIN – LEFT (vonkajšie spojenie - l'avé) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,\ldots,A_a,X,B_1,B_2,\ldots,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ potom n-tica $t \in R_3$ má atribúty $t=t_1..X,\ t_1..A_1,\ t_1..A_2,\ldots,t_1..A_a,t_2.X,\ t_2..B_1,\ t_2..B_2,\ldots,t_2..B_m$ a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota t₂.X ∉ {hodnôt t₁.X}
 potom n-tica t ∈ R₃ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice t.

Označenie – grafické

Príklad 1.18 – Externé spojenie LEFT
Pomocou príkazov SQL realizujte ľavé vonkajšie spojenie relácií r1 a r2 definovaných v predchádzajúcom príklade 1.17:

```
SELECT r1.*,r2.*
FROM OUTER r1, r2
WHERE r1.cis_predmet=r2.cis_predmet;
```

Os_cisl	r1.cis_predme	r2.cis_predme	
0	t	t	nazov
945	P111	P111	Základy informatiky 1
1381	P111	P111	Základy informatiky 1
1414	P111	P111	Základy informatiky 1
1448	P111	P111	Základy informatiky 1
1512	P111	P111	Základy informatiky 1
 1333	 P602	 P602	 Číslicové počítače
1381	P609	P609	Manažment
1301	F009	A601	
1333	A602	A602	Matematické programovanie
			Databázové systémy
1381	A602	A602	Databázové systémy
1612	A602	A602	Databázové systémy
		V502	Právo 1
		V601	Právo 2
		A702	Operačné systémy*
		A709	%Marketing
1103	A806	A806	Riadenie počítačom
			Základy programovania vo
		V719	Win.
 945	A904	A904	Prognostika

```
SQL99
```

```
SELECT r1.*,r2.*
FROM r1 LEFT OUTER JOIN r2
ON r1.cis_predmet = r2.cis_predmet;
```

ORACLE

```
SELECT r1.*,r2.*
FROM r1+, r2
WHERE r1.cis_predmet = r2.cis_predmet;
```

Definícia – External join - RIGHT

Operácia EXTERNAL JOIN - RIGHT(vonkajšie spojenie - pravé) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$, ktoré majú spoločnú množinu atribútov X tretiu reláciu

 $R_3(X,A_1,A_2,\ldots,A_a,X,B_1,B_2,\ldots,B_m)$ takú, že ak $t_1 \in R_1$ a ak $t_2 \in R_2$ potom n-tica $t \in R_3$ má atribúty $t=t_1..X,t_1..A_1,t_1..A_2,\ldots,t_1..A_a$, $t_2..X$, $t_2..B_1$, $t_2..B_2,\ldots,t_2..B_m$ a ak pre hodnoty atribútov X platí:

- $t_1.X=t_2.X$
- alebo hodnota $t_1.X \notin \{\text{hodnôt } t_2.X\}$

potom n-tica $\mathbf{t} \in \mathbf{R}_3$ nadobúda NULL hodnoty pre chýbajúce atribúty n-tice \mathbf{t} .

Označenie – grafické

□ Príklad 1.19 – OUTER RIGHT

Pomocou príkazov SQL realizujte úplné vonkajšie spojenie relácií r1 a r2 definovaných v príklade 1.17:

```
SELECT r1.*,r2.*
FROM r1, OUTER r2
WHERE r1.cis predmet=r2.cis predmet;
```

	r1.cis_predm	r2.cis_predme	
os_cislo	et	t	nazov
807	P202	P202	Matematická analýza 2
807	P203		•
807	P211	P211	Základy informatiky 2
			Praktikum z
807	V101	V101	programovania 1
007	V 10 1	V 10 1	programovama r
1545	 P103	 P103	 Matematická analýza 1
1545	P202	P202	
		P202	Matematická analýza 2
1545	P203	D000	Matamatialit analita o
1555	P202	P202	Matematická analýza 2
1555	P203		
1555	P301	P301	Pravdepodobnosť
1555	P303	P303	Matematická analýza 3
1559	P201		
1559	P203		
1567	P202	P202	Matematická analýza 2
1567	P203		-
			Praktikum z
1567	V201	V201	programovania 2
COT QQ	• .	• .	F 3. 3

SQL99

SELECT r1.*,r2.*

FROM r1 RIGHT OUTER JOIN r2

ON r1.cis predmet = r2.cis predmet;

ORACLE

SELECT r1.*,r2.*

FROM r1, r2+

WHERE r1.cis_predmet = r2.cis_predmet;

1.1.3.5 SEMI JOIN

Definícia – Semi join

Operácia SEMI JOIN (polospojenie) vytvorí z relácie $R_1(X,A_1,A_2,...,A_n)$ a z relácie $R_2(X,B_1,B_2,...,B_m)$ tretiu reláciu $R_3(X,A_1,A_2,...,A_n)$ takú,

$$\check{z}e\ t_1\in R_1\ a\ t_2\in R_2$$

ak pre n-ticu $\mathbf{t}_1 \in \mathbf{R}_1$ existuje spojenie *aspoň* s jednou n-ticou $\mathbf{t}_2 \in \mathbf{R}_2$, potom $\mathbf{t}_1 \in \mathbf{R}_3$.

Poznámka

Základná operácia Polospojenia predpokladá, že výsledná relácia bude obsahovať n-tice len z prvej z relácií, ktoré sú operandami. Ale podobne ako pri Vonkajšom spojení aj pri polospojení rozlišujeme pravé, alebo ľavé polospojenie, z čoho vyplýva, že výsledná relácia je tvorená len výskytmi n-tíc tej relácie, ktorá je vo výraze umiestnená vpravo (pravé polospojenie), resp. vľavo (ľavé polospojenie). Z toho vyplýva, že základná operácia Polospojenia je vlastne definovaná ako Ľavé polospojenie.

Označenie – grafické

a) Semi join – LEFT

b) Semi join – RIGHT

Priklad 1.20 - Lavé polospojenie

SELECT UNIQUE os_udaje.* FROM os_udaje,
student

WHERE

os_udaje.rod_cislo=student.rod_cislo

Priklad 1.21 - Pravé polospojenie

SELECT UNIQUE student.*

FROM os_udaje, student

WHERE

os_udaje.rod_cislo=student.rod_cislo

1.1.4Ďalšie operácie relačnej algebry

V literatúre sa môžeme stretnúť s ďalšími operáciami relačnej algebry, ktoré sú rozšírením základných operácií relačnej algebry a sú to:

- a) doplnok
- b) split

1.1.4.1 COMPLEMENT

Definícia - Complement

Operácia COMPLEMENT (doplnok) vytvorí z relácie $R_1(A_1,A_2,...,A_n)$ reláciu $R_2(A_1,A_2,...,A_n)$ takú, že $t_2 \in R_2$ obsahuje *všetky* n-tice, ktoré patria do Kartézskeho súčinu hodnôt domén atribútov relácie R_1 a $t_2 \notin R_1$.

Označenie

a) grafické

$$R_2 = NOT (R_1)$$

$$R_2 = COMP (R_1)$$

$$R_2 = \neg R_1$$

Príklad 1.22

Nech existuje relácia R(A,B), pričom doména atribútu A = $\{1,2,3\}$ a doména atribútu B = $\{x,y,z,w\}$ a nech relácia R má nasledovné n-tice:

Α	В
1	Χ
1	у
1	Z
2	W

Potom výsledok operácie doplnok je relácia, ktorá má nasledovné n-tice:

Α	В
1	W
2	X
2	Υ
2	Z
3	Z X
3	Υ
2 2 2 3 3 3	Z W
3	W
3	VV

1.1.4.2 SPLIT

Definícia - Split

Operácia split vytvorí z relácie $R_1(A_1,A_2...A_n)$ dve relácie $R_2(A_1,A_2...A_n)$ a $R_3(A_1,A_2...A_n)$ také, že pre každé $t \in R_1$ platí:

- t patrí do práve jednej z relácií R₂ a R₃
- ak pre t je splnená podmienka C, potom $t \in R_2$
- ak pre t *nie je splnená* podmienka C, potom $t \in \mathbb{R}_3$

Označenie

a) grafické

ы matematické

$$R_2 = \sigma_c R_1$$

$$R_3 = \sigma_{\neg c} R_1$$

□ Príklad 1.14 - Split

Vytvorte reláciu, ktorá obsahuje zoznam mien, priezvísk a rodných čísel všetkých osôb z relácie osobné údaje. Potom ju pomocou operácie split rozdeľte na dve relácie – muži a ženy.

a) pomocou operácií relačnej algebry

$$R_1 = \pi_{\text{meno, priezvisko,rod_cislo}}(\text{os_udaje})$$
 $R_2 = \sigma_{\text{rod_cislo}[3,3]>4} R_1$ //ženy
 $R_3 = \sigma_{\text{rod_cislo}[3,3]>4} R_1$ //muži

ы) pomocou SQL príkazov

```
SELECT meno, priezvisko, rod_cislo
FROM os_udaje
    INTO TEMP r1;
SELECT * FROM r1
    WHERE rod cislo[3,3]>4 ; //ženy
```

meno	priezvisko	rod_cislo
Stanislava	Slámová	796123/5471
Erika	Lipovská	755022/8569

```
SELECT * FROM r1
WHERE rod_cislo[3,3]<=4; //muži
```

meno	priezvisko	rod_cislo
Peter	Novák	801106/3456
Stanislav	Steinmüller	800312/7845
János	Tóth	790907/1259
Marek	Rátroch	810130/3695
Bohuslav	Biely	781201/1248
Branislav	Baláž	810514/5341

R&lačná algebra a kalkul

Peter	Kapustný	781015/4431
Marek	Ďurica	800407/3522
Martin	Kľúčiar	791229/5431
 Ján	Krnáč	771203/5472