"BikeSmart" Project Requirements Draft 2

This document describes the architecture, requirements, and design of the "BikeSmart" Project - designed and implemented by the *Treadsetters* team.

Treadsetters

Saili Raje, Lead

Joel Dick

Chris Karcher

Duncan Sommer

Oliver Townsend

Revision History

Version Number	Primary Author(s)	Version Description	Date Completed
1.0	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Initial Version with user stories	1/23/15
1.1	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Added system architecture and glossary	1/29/15
1.2	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Added user stories and updated system architecture overview	2/22/15
1.3	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Updated glossary. Added "bike circle" feature	2/22/15
1.4	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Updated list of user stories and added wireframe mockups	2/22/15
2.0	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Current Revision	2/22/15

Table of Contents

Introduction

There is no existing platform that allows a bicycle to communicate with other devices via the Internet. Such a system will need to solve power and connectivity issues related to an embedded system on a bike. Our team is designing BikeSmart, a database for mobile bike information to enable developers to create profitable applications for users ranging from the casual commuter to the professional cyclist. This project will also act as a proof of concept for further integration of bikes into the Internet of Things.

Glossary of Terms

Embedded System - an embedded system is a computer system with a dedicated function within a larger mechanical system, such as a bicycle. For this project, for prototyping purposes, we will be using a Motorola Moto G smartphone.

Internet of Things (IoT) - the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure.

Parse - a cloud based application engine that allows developers to receive and distribute information and messages to devices on the internet.

Bike Circle - a group that contains users and bikes. If you join a bike circle, or approve /someone to join a circle, you/that person automatically gets permission to request to use your bike and gets access to your bikes information (location, past rides, etc.)

As a user	Description	Time to Implement	Priority (0→8)
Login	login to online service to view data generated by bike	2 hours	8
Identity	associate my identity with a bike	1 hour	8
Add friends	add other users to my bike circles	4 hours	4
Request bike	request bike from another user	3 hours	4
Store bike's data	store my bike's data (location, tire pressure, etc.) in cloud	4 hours	8
Share data	share my data with others	4 hours	4
Control privacy	control the privacy of my data and who gets to see/use it	4 hours	4
Graphic interface	access an intuitive graphic interface that presents collected data in easy to understand manner	8 hours	2
Download more apps	download more applications that can be used with my bike's data	4-12 hours (depending how many apps we choose to make)	4
Cross-platform	interact with BikeSmart system from multiple platforms (Android, iOS, Web, desktop)	10-40 hours (Depending how many platforms we choose to develop on)	2

As a developer	Description	Time to Implement	Priority (0→8)
Access bike data	access multiple sources of data on the bike, make sure can receive info and readings from various sensors	4 hours	8
Build additional apps	build applications on top of BikeSmart platform using Parse database	10-40 hours depending	4
Design/integrate sensors	be able to design and add new sensors to be used with the BikeSmart platform	5-15 hours	4-8

As a group admin	Description	Time to Implement	Priority (0→8)
Approve/add users	be able to approve and add people to bike circles	4 hours	4
Remove users	be able to remove users from bike circle	2 hours	4
Change circle privacy settings	modify data permissions for users in/outside the bike circle	10 hours	1
Add administrators	promote other members of bike circle to administrator status	5 hours	2

As a Bike Owner	Description	Time to Implement	Priority (0→8)
Add a bike to my account	functionality that allows bike owner to add a bike to their bike circle	4 hours	8
Set a bike in your bike list as the default bike	set a bike as default, should show up as the first bike in your list	2 hours	2
Change your bike's status as public or private	if user owns the bike, they can change its status as public or private, if it's public, people that the bike has been shared with can view its data/location if it's private, they can't	2 hours	5
Add/approve other users to my bike	be able to approve and add people to bike circles	4 hours	4
View data generated by my bike	users should see bike data displayed on the "dashboard"	4 hours	8
Control the privacy of data associated with bikes I own	Change what people you've shared your bike with can see (only location, no location, etc.)	8 hours	4
View data from bikes shared with me	if a bike has been shared with me (and is public) the data generated by it should be displayed in my dashboard	4 hours	4
Be notified if my bike is being moved by someone who is not me	if a bike's location changes and it's a certain distance away from me (meaning that I'm not the one moving	8 hours	8

	it) I should be notified		
Enable/disable security systems for my bike	Turn on/off bike theft feature	2 hours	6
Be notified if my bike's tire pressure falls below a threshold	Utilize bluetooth sensor data to trigger certain events/notifications.	2 hours	3

As a bike	Description	Time to Implement	Priority (0→8)
Collect data	collect location data from built in GPS	2 hours	8
Connect to Bluetooth sensors	connect to Bluetooth sensors	2-4 hours	4
Collect data from Bluetooth sensors	collect data from Bluetooth sensors, process if necessary	4 hours	4
Push to cloud	push data from sensors to cloud	2 hours	4
Pair with lock	pair with an electronic lock to control physical access to bike	5 hours	1

System architecture overview

This system will be comprised of:

- An Android service that runs on an embedded system simulated by a mobile phone that captures data from the bike, stores it locally, and sends it to a cloud database intermittently while minimizing power consumption.
- A backend database running on a remote server that will receive and process data, then distribute the data to remote clients.
- At least one specialized mobile application that will utilize the data provided by the database to deliver content to a Bikesmart user.
- A frontend web interface which gathers content from the remote server and presents it in a clear and organized manner to users.

UML Diagram

This diagram is a visual representation of the bikesmart system. It includes activities, methods, components, and intra-system relationships.

Mockups/Wireframes

Potential Obstacles

A foreseeable obstacle is how to standardize human and bike activity. Ideally, we'll be pushing almost any kind of data imaginable to users' cloud accounts and maybe even from bike to bike. Bike to bike communication is certainly going to be possible in the near future with Qualcomm's LTE direct technology on the horizon. Assuming other smart bike competitor companies will begin to emerge, it will be useful to have our bike be able to interact with a bike or bike database built by another company. How would we ensure stable and reliable communication between two or more bikes/bike networks without any form of standardization in data communication?

Another obstacle, of course, is privacy. At a high level, all connections made with the Parse database are made with HTTPS and SSL and it will reject all non-HTTPS connections. This completely absolves any need to worry about man in the middle attacks. At a lower level, we will be taking advantage of Parse's Access Control Lists (ACLs). ACLs allow developers to control who can access which sets of data through these lists. Lists contain objects and each object has a list of users and roles including what permissions that user or role has.

Finally, another hurdle we might not be able to tackle very elegantly is the inclusion of a physical lock. For the purposes of the project, we will most likely just have a boolean variable that controls whether or not one can unlock/use the phone screen that's attached to the bike. The bike will have to

be unlocked using the user app through a secure login of the owner of that particular bike.

Prototyping code and test cases (Source Code)

https://github.com/sraje/CAPSTONE

Appendices/Technologies Used

- Parse Application Engine and API
- Google Location API
- Android SDK
- Pivotal Tracker
- Github