

FAST REED-SOLOMON INTERACTIVE ORACLE PROOFS of PROXIMITY

Tiago Martins

Formerly an Aerospace student @IST Currently, a Researcher @Three Sigma

Three Sigma

Venture builder firm focused on **blockchain engineering**, **research**, **and investment**.

Mission

Advance the adoption of blockchain technology. Contribute for the healthy development of crypto/web3.

LIBRARIES

If you haven't, please install Python ≤ 3.10 and the libraries **NumPy** and **Galois**. Check the GitHub repository for more:

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

ZERO KNOWLEDGE

Zero Knowledge Proofs enable public consensus on private data!

INTERACTIVE PROOF

Scalable Transparent ARguments of Knowledge

Section Break

Diving into the Math

BLOCKCHAIN SETTING

A non-necessarily honest prover wants to indirectly settle some **private** data in the blockchain with a ZK proof.

A verifier must check whether that data corresponds to honest computations and transactions.

BLOCKCHAIN SETTING

STARKs operate over low-degree polynomials.

How?

Valid computations correspond to the evaluation table of low-degree polynomials.

Section Break

Polynomials

PROBLEM EXAMPLE

Trace index k	Group element x	Trace polynomial $f(x)$
0	$x_0 = g^0$	3
1	$x_1 = g^1$	9
2	$x_2 = g^2$	81
3	$x_3 = g^3$	6561
4	$x_4 = g^4$	43046721
5	$x_5 = g^5$	1853020188851841

$$f(\underbrace{x_{k+1}}) = (f(x_k))^2$$
 for $x_k \in \{x_0, x_1, x_2, x_3, x_4\}$

Example:
$$f(x_1) = 9 = (f(x_0))^2 = 3^2$$

PROBLEM EXAMPLE

$$f(\underbrace{x_{k+1}}_{q x_k}) = (f(x_k))^2$$
 for $x_k \in \{x_0, x_1, x_2, x_3, x_4\}$

which implies that

$$f(gx) - (f(x))^2 = 0$$
 for $x \in \{x_0, x_1, x_2, x_3, x_4\}$

which in turn implies that

$$p_0(x) = \frac{f(gx) - (f(x))^2}{(x - x_0)(x - x_1)(x - x_2)(x - x_3)(x - x_4)}$$

is a polynomial of degree $deg(p_0) = 2 deg(f) - 5$.

POLYNOMIAL

$$p(x) = \sum_{n=0}^{N-1} c_n x^n$$

$$\underbrace{\begin{bmatrix} p(x_0) \\ p(x_1) \\ \vdots \\ p(x_{N-1}) \end{bmatrix}}_{\mathbf{p}} = \begin{bmatrix} 1 & x_0 & \dots & x_0^{N-1} \\ 1 & x_1 & \dots & x_1^{N-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{N-1} & \dots & x_{N-1}^{N-1} \end{bmatrix} \underbrace{\begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{bmatrix}}_{\mathbf{c}}$$

FAST FOURIER TRANSFORM TO EVALUATE POLYNOMIALS

$$x \in \mathbb{G}$$

$$\mathbf{p} = \mathtt{FFT}(\mathbf{c})$$

$$\mathbf{c} = \mathtt{iFFT}(\mathbf{p})$$

FAST FOURIER TRANSFORM to EVALUATE POLYNOMIALS

HANDS-ON!

Files:

Base.ipynb

FFT for function evaluation.ipynb

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

Three Sigma

Section Break

Let's FRI

DEGREE RESPECTING PROJECTION

$$egin{array}{llll} \mathbf{c} &=& egin{bmatrix} c_0, & & c_1, & & c_2, & & c_3, & & \dots, & c_{N-2}, & & c_{N-1} & \end{bmatrix} \ \mathbf{c}_{ ext{even}} &=& egin{bmatrix} c_0, & & & c_2, & & \dots, & c_{N-2} & & \end{bmatrix} \ \mathbf{c}_{ ext{odd}} &=& egin{bmatrix} c_1, & & c_3, & & \dots, & & c_{N-1} & \end{bmatrix} \end{array}$$

$$\operatorname{len}(\mathbf{c}) = N$$
 $\operatorname{len}(\mathbf{c}_{\operatorname{even}}) = N/2$
 $\operatorname{len}(\mathbf{c}_{\operatorname{odd}}) = N/2$

DEGREE RESPECTING PROJECTION

$$egin{array}{llll} {f c} &=& [c_0, & c_1, & c_2, & c_3, & \ldots, & c_{N-2}, & c_{N-1} \ {f c}_{
m even} &=& [c_0, & c_2, & \ldots, & c_{N-2} \ {f c}_{
m odd} &=& [& c_1, & c_3, & \ldots, & c_{N-1} \ {f c}_{
m new} &=& [c_0 z_{
m even} + & c_1 z_{
m odd}, & c_2 z_{
m even} + & c_3 z_{
m odd}, & \ldots, & c_{N-2} z_{
m even} + & c_{N-1} z_{
m odd} \] \end{array}$$

$$\mathrm{len}(\mathbf{c}_{\mathrm{new}}) = N/2$$
 $\mathbf{c}_{\mathrm{new}} = \mathbf{c}_{\mathrm{even}} \, z_{\mathrm{even}} + \mathbf{c}_{\mathrm{odd}} \, z_{\mathrm{odd}}$ $\mathbf{c}_{\mathrm{new}} = \mathbf{c}_{\mathrm{[::2]*z_even}} + \mathbf{c}_{\mathrm{[1::2]*z_odd}}$

FRI COMMIT PHASE

For each FRI layer $i \geq 0$ such that $d_i > 1$:

- ▶ 1. the verifier selects random $z_{i,\text{even}}$ and $z_{i,\text{odd}}$,
 - 2. the prover defines $p_{i+1}(x)$ through the degree respecting projection $\mathbf{c}_{i+1} = \mathbf{c}_{i,\text{even}} z_{i,\text{even}} + \mathbf{c}_{i,\text{odd}} z_{i,\text{odd}}$,
 - 3. the prover commits to the polynomial evaluation $\mathbf{p}_{i+1} = \text{FFT}(\mathbf{c}_{i+1}),$
 - 4. the degree bound reduces as $d_{i+1} = d_i/2$.

At the end, the prover commits to a constant C allegedly equal to the last polynomial.

HANDS-ON!

Files:

FRI Commit.ipynb

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

Three Sigma

DRP wo/ COEFFICIENTS

$$p_i(x) = \sum_{n=0}^{N-1} c_{i,n} x^n \qquad p_i(-x) = \sum_{n=0}^{N-1} (-1)^n c_{i,n} x^n$$

$$p_{i+1}(x) = \sum_{n=0}^{N/2-1} c_{i+1,n} x^n \quad \text{where} \quad \mathbf{c}_{i+1} = \mathbf{c}_{i,\text{even}} z_{i,\text{even}} + \mathbf{c}_{i,\text{odd}} z_{i,\text{odd}}$$

$$p_{i+1}(x^2) = \underbrace{\frac{p_i(x) + p_i(-x)}{2}}_{g(x^2)} z_{i,\text{even}} + \underbrace{\frac{p_i(x) - p_i(-x)}{2x}}_{h(x^2)} z_{i,\text{odd}}$$

FRI QUERY PHASE

The verifier samples a random x. The verifier queries for $p_0(x)$, and, subsequently, for each FRI layer $i \geq 0$ such that $d_i > 1$:

- ▶ 1. the verifier queries for $p_i(-x)$ and $p_{i+1}(x^2)$,
 - 2. the verifier computes $g(x^2)$ and $h(x^2)$ from $p_i(x)$ and $p_i(-x)$,
 - 3. the verifier checks whether $p_{i+1}(x^2) = g(x^2) z_{i+1,\text{even}} + h(x^2) z_{i+1,\text{odd}}$,
 - 4. set $x \leftarrow x^2$.

At the end, the verifier checks whether the last value equals the constant C:

HANDS-ON!

Files:

FRI Query.ipynb

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

Three Sigma

Three Sigma

- ☑ info@threesigma.xyz
- threesigma.xyz
- @threesigma_xyz
- in /company/three-sigma

