WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07D 405/12, 405/14, 413/12, 403/12, 409/12, 401/12, 209/20, 307/81, A61K 31/405, 31/34, A61P 25/00, 11/06, 37/00

(11) International Publication Number:

WO 00/37462

(43) International Publication Date:

29 June 2000 (29.06.00)

(21) International Application Number:

PCT/US99/29592

A1

(22) International Filing Date:

14 December 1999 (14.12.99)

(30) Priority Data:

60/112,725

18 December 1998 (18.12.98) US

(71) Applicant (for all designated States except US):
WARNER-LAMBERT COMPANY [US/US]; 201
Tabor Road, Morris Plains, NJ 07590 (US).

(72) Inventors; and

(75) Inventors, Applicants (for US only): CRESWELL, Mark, Wallace [US/US]; 131 East Middle Street, Chelsea, MI 48118 (US). HIGGINBOTTOM, Michael [GB/GB]; 120 Balland Field, Willingham, Cambridgeshire CB4 5JU (GB). HORWELL, David, Christopher [GB/GB]; 8 West Hill, Foxton, Cambridge CB2 6SZ (GB). LEWTHWAITE, Russell, Andrew [GB/GB]; 98 Lucerne Close, Cambridge CB1 9SA (GB). PRITCHARD, Martyn, Clive [GB/GB]; The Maples, 9 Bury Close, St. Ives, Huntingdon, Cambridgeshire PE17 4WB (GB). RAPHY, Jennifer [GB/GB]; 15 Greenhill Park, Thorley Park, Bishops Stortford, Herts CM23 4EW (GB).

(74) Agents: RYAN, M., Andrea; Warner-Lambert Company, 201 Tabor Road, Morris Plains, NJ 07950 (US) et al.

(81) Designated States: AE, AL, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NON-PEPTIDE NK₁ RECEPTORS ANTAGONISTS

$$R + \begin{pmatrix} R^{1} \\ C \end{pmatrix}_{m} \times \begin{pmatrix} R^{3} \\ C \end{pmatrix}_{n} \begin{pmatrix} R^{9} \\ C \end{pmatrix}_{q} \begin{pmatrix} R^{5} \\ C \end{pmatrix}_{q} \begin{pmatrix} R^{6} \end{pmatrix}_{q} \begin{pmatrix} R^{6} \end{pmatrix}_{R^{4}} \begin{pmatrix} C \\ R^{2} \end{pmatrix}_{n} \begin{pmatrix} C \\ R^{4} \end{pmatrix}_{n} \end{pmatrix}_{n} \begin{pmatrix} C \\ R^{4} \end{pmatrix}_{n} \begin{pmatrix} C \\ R^{4} \end{pmatrix}_{n} \begin{pmatrix} C \\ R^{4} \end{pmatrix}_{n} \begin{pmatrix}$$

(57) Abstract

Non-peptide acetamide derivatives of Formula (I) are specific NK_1 antagonists, where R is aryl, R^1 and R^2 are H or alkyl, m, n and q are integers from 0 to 4, X is NR^8 or NHCONH, R^3 and R^9 are H or alkyl, R^4 is naphthyl or indolyl, R^5 and R^2 are H or alkyl, and R^6 is aryl. The compounds are useful agents for treating inflammatory and allergic disorders, pain, anxiety, depression, schizophrenia and emesis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	Si	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
ΑТ	Austria ~	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TŔ	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IТ	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam	-
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2.,	eout we	
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
				-	• •			

5

10

15

25

30

NON-PEPTIDE NK1 RECEPTORS ANTAGONISTS

BACKGROUND OF THE INVENTION

The neurokinins are a family of mammalian neuropeptides that are involved with numerous biological activities such as pain transmission, vasodilation, smooth muscle contraction, bronchoconstriction, activation of the immune system, and neurogenic inflammation. One such neuropeptide known as substance P is widely distributed throughout the peripheral and central nervous system of mammals, and is known to mediate a variety of biological actions via interaction with three neurokinin (NK or tachykinin) receptor types known as NK₁, NK₂, and NK₃.

Substance P binds with higher affinity to the NK₁ receptor than it does to the other receptors. Accordingly, compounds capable of antagonizing the effects of substance P at the NK₁ receptor are useful for treating and controlling disorders mediated by such interactions, including disorders such as anxiety, pain, depression, schizophrenia, and emesis.

Since 1991, a number of high-affinity nonpeptide tachykinin antagonists have been reported; for a review see Sprecher A, et al. (IDrugs, 1:73-91, 1998).

US Patent Nos 5,594,022 and 5,716,979 describe nonpeptides that are relatively specific NK₁ antagonists.

Since substance P mediate various biological actions, including smooth muscle contraction, pain transmission, neuronal excitation, secretion of saliva, angiogenesis, bronchoconstriction, activation of the immune system and neurogenic inflammation via an interaction with NK receptors, preferably NK₁, thus compounds capable of antagonising the effects of substance P at NK₁ receptors will be useful in treating or preventing a variety of: brain disorders including pain (inflammatory, surgical and neuropathic), anxiety, panic, depression, schizophrenia, neuralgia, stress, sexual dysfunction, bipolar disorders, movement disorders, cognitive disorders, obesity and addiction disorders; inflammatory diseases such as arthritis, asthma, bronchitis and psoriasis; gastrointestinal disorders including colitis, Crohn's disease, irritable bowel syndrome, and satiety; allergic responses such as eczema and rhinitis; vascular disorders such as angina and migraine; neuropathological disorders including scleroderma and emesis.

5

10

15

The compounds of the invention, NK₁ receptor antagonists, are useful as antiangiogenic agents for the treatment of conditions associated with aberrant neovascularization such as rheumatoid arthritis, atherosclerosis and tumour cell growth. They will also be useful as agents for imaging NK₁ receptors in vivo in conditions such as ulcerative colitis and Crohn's disease.

SUMMARY OF THE INVENTION

This invention provides NK₁ receptor antagonists characterized as non-peptide acetamide derivatives. The compounds of the invention differ from those of US 5,716,979 or 5,594,022 in that the compounds of Formula I below are not (N-substituted aryl-methyl) carbamates, i.e. they do not have a -O-C(O)-N- link in the backbone; certain final products being more stable than known compounds, they should show improved oral bioavailability and improved CNS penetration. The invention compounds are defined by Formula I:

and the pharmaceutically acceptable salts thereof, wherein

■, •, and ▲ indicate all stereoisomers,

R is:

20 pyridyl,
thienyl,
furyl,
pyrrolyl,
pyrazolyl,
25 quinolyl,
isoquinolyl,

naphthyl, indolyl,

4SDOCID: <WO 0037462A1 1 5

benzofuryl,

benzothiophenyl,

benzimidazolyl, and

benzoxazolyl, wherein each of the foregoing is unsubstituted, mono-, di- or trisubstituted by alkyl, hydroxy, alkoxy, halogen, -CF₃, carboxy, sulfonamide, or nitro;

R can also be:

$$\begin{array}{c} \text{CH}_{3}\text{C} \\ \text{CH}_{3}\text{O} \\ \text{CH}_{2} \\ \text{O} \\ \text{CI} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CI} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text{CI} \\ \text{CI} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \end{array} \begin{array}{c} \text{CH}_{2} \\ \text$$

SDOCID: <WO 0037462A1 I >

BNSDOCID: <WO___0037462A1_i_>

$$CH_{2}$$

$$CH_{2}$$

$$CH_{3}HO$$

$$CH_{3}HO$$

$$CH_{3}HO$$

$$CH_{2}$$

$$CH_{3}HO$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH$$

 R^1 and R^2 are each independently H or C_1 - C_4 alkyl;

m is an integer from 0 to 3;

5 X is NHCONH, or NR⁸ where R⁸ is H or C₁-C₄ alkyl;

R³ is hydrogen or C₁-C₄ alkyl;

n is an integer from 1 to 2;

R⁴ is naphthyl or indolyl, wherein said groups are unsubstituted, mono-, di- or trisubstituted by alkyl, hydroxy or formyl;

15 R^9 is hydrogen or C_1 - C_4 alkyl;

 ${
m R}^5$ and ${
m R}^7$ are each independently hydrogen or $({
m CH}_2)_p {
m R}^{10}$ where:

```
p is an integer of 1 to 3, and
                R<sup>10</sup> is H, CH<sub>3</sub>, CN, OH, OCH<sub>3</sub>, CO<sub>2</sub>CH<sub>3</sub>, NH<sub>2</sub>, NHCH<sub>3</sub>, or N(CH<sub>3</sub>)<sub>2</sub>;
      q is an integer of 0 to 4;
 5
      R<sup>6</sup> is phenyl,
                pyridyl,
                thienyl,
                furyl,
10
                pyrrolyl,
                pyrazolyl,
                imidazolyl,
                quinolyl,
                isoquinolyl,
15
                naphthyl,
                indolyl,
                benzofuryl,
                 benzothiophenyl,
                 benzimidazolyl, or
                 benzoxazolyl, wherein each of the foregoing is unsubstituted, mono-, di- or
20
                 trisubstituted by
                                               alkyl,
                           hydroxy,
                           alkoxy,
                           halogen,
25
                           CF<sub>3</sub>,
                           NO<sub>2</sub>,
                           N(CH_3)_2,
                           OCF<sub>3</sub>,
                           SONH<sub>2</sub>,
 30
                           NH_2
                           CONH<sub>2</sub>,
                           CO<sub>2</sub>CH<sub>3</sub>, or
                           CO<sub>2</sub>H,
                 or R<sup>6</sup> is:
                  straight alkyl of from 1 to 3 carbons,
 35
```

branched alkyl of from 3 to 8 carbons, cycloalkyl of from 5 to 8 carbons or heterocycloalkyl,

each of which can be substituted with up to one or two substituents selected from

5 OH,

CO₂H,

N(CH₃)₂,

NHCH₃ and

CH₃; and

10 R⁵ and R⁶, when joined by a bond, can form a ring;

 R^6 is also

BNSDOCID: <WO 0037462A1 I >

$$X_1$$
 X_1
 X_1

where X_1 represents the rest of the molecule.

Prodrugs of the above are also contemplated such as would occur to one skilled in the art; see Bundgaard, et al, Acta Pharm Suec, 1987; 24: 233-246. For example, a suitable moiety may be attached to a nitrogen of the linker X, to the nitrogen of the NR⁹ linker, or that of an indolyl radical of R⁴.

5 Preferred compounds of the invention are those of Formula I above wherein

R is pyridyl, thienyl, furyl, quinolyl isoquino

isoquinolyl naphthyl, indolyl, benzofuryl,

benzothiophenyl,

benzimidazolyl,
benzoxazolyl, wherein each of the foregoing is unsubstituted, mono-, di- or
trisubstituted by alkyl, hydroxy, alkoxy, halogen, or CF₃,

$$H_3C_S$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CN

$$CH_2$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2

m is an integer from 1 to 3;

5 R⁶ is phenyl
pyridyl,
thienyl,
furyl,
pyrrolyl,
10 quinolyl,
isoquinolyl,
naphthyl,

indolyl,

```
benzofuryl,
              benzothiophenyl,
              benzimidazolyl, or
              benzoxazolyl,
 5
              wherein each of the foregoing is unsubstituted, mono-, di- or trisubstituted by
                      alkyl,
                      hydroxy,
                      alkoxy,
                      halogen,
10
                      CF<sub>3</sub>,
                      NO_2
                      N(CH_3)_2,
                      OCF<sub>3</sub>,
                      SONH<sub>2</sub>,
15
                      NH_2,
                      CONH<sub>2</sub>,
                      CO<sub>2</sub>CH<sub>3</sub>, or
                      CO<sub>2</sub>H,
20
      cycloalkyl of from 5 to 6 carbons or heterocycloalkyl, with up to one or two substituents
      selected from OH,
              CO_2H,
              N(CH_3)_2,
              NHCH3 and
25
              CH3; and
```

R⁵ and R⁶ when joined by a bond can form a ring.

More preferred compounds of the invention are those of Formula I above wherein

```
30
     R is
             pyridyl,
             thienyl,
             furyl,
             quinolyl,
             naphthyl,
```

benzofuryl,

benzothiophenyl,

benzimidazolyl, or

benzoxazolyl, where each of the foregoing is unsubstituted, mono-, di- or trisubstituted by alkyl, hydroxy, alkoxy, halogen, or- CF_3 ,

5

$$H_3C$$
 S CH_2 $CH_$

R¹ and R² are each H;

10 m is an integer from 1 to 3;

 \dot{X} is NR⁸ or NHCONH, where R⁸ is H or methyl;

```
R<sup>9</sup> is hydrogen or alkyl of 1 to 3 carbon atoms;
```

```
R<sup>6</sup> is phenyl,
              pyridyl,
 5
              thienyl,
              furyl,
              pyrrolyl,
              benzimidazolyl, where each of the foregoing is unsubstituted, mono-, di- or
      trisubstituted by
                       alkyl,
10
                       hydroxy,
                       alkoxy,
                       halogen,
                       CF<sub>3</sub>,
15
                       NO<sub>2</sub>,
                       N(CH_3)_2;
              cyclohexyl or heterocycloalkyl, with up to one or two substituents selected from
                       OH,
                       CO<sub>2</sub>H,
20
                       N(CH_3)_2,
                       NHCH<sub>3</sub> and
                       CH<sub>3</sub>; and
```

R⁵ and R⁶, when joined by a bond, can form a ring.

25 The most preferred compounds of the invention have Formula II:

$$R-C-X-C-CO-N-C-R^{6}$$

$$R^{3}$$

$$R^{5}$$

$$C+C-CO-N-C-R^{6}$$

$$R^{7}$$

$$R^{7}$$

$$R^{7}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{7}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{7}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{5}$$

$$R^{7}$$

wherein:

R is benzofuryl,

benzoxazolyl,

5 3-cyanophenyl,

3-nitrophenyl, or

3-trifluoromethylphenyl;

R³ is hydrogen or methyl;

X is NH or NHCONH;

 $10 \quad R^5 \text{ and } R^7 \text{ independently are hydrogen or } CH_2R^{10}, \text{ where } R^{10} \text{ is } H, \text{ } CH_3 \text{ or } OH;$

R⁶ is phenyl,

substituted phenyl,

pyridyl, or,

cyclohexyl;

15 and the pharmaceutically acceptable salts thereof.

Most preferred compounds of the invention are:

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

20 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-4-yl-ethyl)-propionamide, [R-(R*,S*)]

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-[1-(4-nitro-phenyl)-ethyl]-propionamide, [R-(R*,R*)]

2-[(Benzofuran-2-ylmethyl)-amino]-N-(2-hydroxy-1-phenyl-ethyl)-3-(1H-indol-3-yl)-2-

25 methyl-propionamide, [R-(R*,R*)]

- [R-(R*,S*)]2-[(Benzofuran-2-ylmethyl)-amino]-N-(1-cyclohexyl-ethyl)-3-(1H-indol-3-yl)-2-methyl-propionamide
- $[R-(R^*,S^*)]2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-p-tolyl-ethyl)-propionamide$
- 5 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-p-tolyl-ethyl)-propionamide, [R-(R*,S*)]
 - 2-(3-Cyano-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]
 - 3-(1H-Indol-3-yl)-2-(3-nitro-benzylamino)-N-(1-phenyl-ethyl)-propionamide,
- 10 $[R-(R^*,S^*)]$
 - 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-(3-trifluoromethoxy-benzylamino)-propionamide, [R-(R*,S*)]
 - 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-pyridin-4-yl-ethyl)-propionamide, [R-(R*,S*)]
- 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]
 - 2-[(Benzoxazol-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 2-(2-Benzofuran-2-yl-ethylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)], and
- 20 2-(3-Benzofuran-2-ylmethyl-ureido)-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)].

The invention additionally provides pharmaceutical formulations comprising a compound of Formula I admixed with a pharmaceutically acceptable carrier, diluent or excipient therefor.

- 25 Especially preferred formulations comprise a compound of Formula II.
- The invention also provides a method for antagonizing NK₁ receptors in a mammal comprising administering to a mammal an NK₁ binding amount of a compound of Formula I. The invention further provides a method for treating a CNS disorder including pain, anxiety; depression, obesity, or schizophrenia; an allergic or inflammatory disease; a gastrointestinal disorder; a vascular disorder; or a neuropathological disorder including emesis; comprising administering to a mammal in need of treatment an effective amount of a compound of Formula I. An especially preferred method of treatment utilizes a compound of Formula II.

- 18 -

DETAILED DESCRIPTION OF THE INVENTION

Throughout this application, the following abbreviations have the meanings listed below:

Boc tertiary butyloxycarbonyl

5 DCE dichloroethane

DCM dichloromethane

HBTU O-Benzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophosphate

DIPEA N,N-diisopropylethylamine

DMF N,N-dimethylformamide

10 DCC 1,3-dicyclohexylcarbodiimide

EEDQ 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline

EtOAc ethyl acetate

EtOH ethanol

MeOH methanol

15 KOH potassium hydroxide

DIBAL Diisobutylaluminium hydride

NMM N-methyl-morpholine

NMR nuclear magnetic resonance

Trp Tryptophan

The term "alkyl" means a straight or branched hydrocarbon having from one to 12 carbon atoms and includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, undecyl, dodecyl, and the like unless stated specifically otherwise.

The term "cycloalkyl" means a saturated hydrocarbon ring which contains from 3 to 12 carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl except as otherwise stated.

The term "alkoxy" means an alkyl as described above attached through an oxygen atom.

The term "halogen" is chlorine, bromine, fluorine or iodine.

The ring formed by joining R⁵ and R⁶ is from 4 to 6 atoms total and is unsubstituted.

The compounds of Formula I are capable of forming pharmaceutically acceptable acid addition salts. All of these forms are within the scope of the present invention.

Pharmaceutically acceptable acid addition salts of the compound of Formula I include salts derived from inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, hydrofluoric, phosphorous, and the like as well as the salts derived

35

20

25

from nontoxic organic acids, such as the aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy-alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, fluoride, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandalate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the like. For example, see Berge S.M., et al., Pharmaceutical Salts, J. Pharm. Sci., 66:1-19 (1977) incorporated herein by reference.

The acid addition salts of the compounds of Formula I are prepared by contacting the free base form of the compound with a sufficient amount of the desired acid to produce the salt in the conventional manner. Preferably, a compound of Formula I can be converted to an acidic salt by treating an aqueous solution of the desired acid, such that the resulting pH is less than four. The solution can be passed through a C18 cartridge to absorb the compound, washed with copious amounts of water, the compound eluted with a polar organic solvent such as, for example methanol, acetonitrile, aqueous mixtures thereof, and the like, and isolated by concentrating under reduced pressure followed by lyophilisation. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for the purpose of the present invention.

Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms, including hydrated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention.

Certain of the compounds of the present invention possess one or more chiral centers and each center may exist in the R(D) or S(L) configuration. The present invention includes all enantiomeric and epimeric forms as well as the appropriate mixtures thereof

The compounds of the present invention can be prepared and administered in a wide variety of oral and parenteral dosage forms. Thus, the compounds of the present invention can be administered by injection, that is intravenously, intramuscularly, intracutaneously, subcutaneously, intraduodenally, or intraperitoneally. In addition, the compounds of the present invention can be administered by inhalation, for example intranasally. Additionally,

35

10

15

20

25

5

10

15

20

25

30

CID: -WO

0037462411

the compounds of the present invention can be administered transdermally. It will be obvious to those skilled in the art that the following dosage forms may comprise as the active component, either a compound of Formula I or a corresponding pharmaceutically acceptable salt of the compound of Formula I.

For preparing pharmaceutical compositions from the compounds of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, pills, tablets, capsules, cachets, suppositories and dispersible granules. A solid carrier can be one or more substances that may also act as diluents, flavouring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.

In powders, the carrier is a finely divided solid that is in a mixture with the finely divided active component.

In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.

The powders and tablets preferably contain from 5% or 10% to about 70% of the active compound. Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component with or without other carriers, is surrounded by a carrier, which is thus in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.

For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogeneous mixture is then poured into convenient sized moulds, allowed to cool, and thereby to solidify.

Liquid form preparations include solutions, suspensions and emulsions, for example, water or water propylene glycol solutions. For parenteral injection, liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.

Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavours, stabilizing and thickening agents as desired.

Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose sodium carboxymethylcellulose, and other well-known suspending agents.

Also included are solid form preparations that are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavours, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilising agents and the like.

The pharmaceutical preparation is preferably in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet or lozenge itself, or it can be the appropriate number of any of these in packaged form.

The quantity of active component in a unit dose preparation may be varied or adjusted from 0.1 mg to 200 mg, preferably 0.5 mg to 100 mg according to the particular application and the potency of the active component. The composition can, if desired, also contain other compatible therapeutic agents.

In therapeutic use, the highly selective and competitive antagonists of the NK₁ receptor and compounds utilized in the pharmaceutical method of this invention are administered at the initial dosage of about 0.01 mg/kg to about 500 mg/kg daily. A daily dose range of about 0.01 mg/kg to about 100 mg/kg is preferred. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller doses, which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day, if desired.

25

10

15

The compounds of Formula I can be prepared by any several synthetic processes well known to those skilled in the art of organic chemistry.

$$R \xrightarrow{R^{1}} X \xrightarrow{R^{3}} C - CO_{2}H$$

$$R^{2} \qquad (CH_{2})_{n}$$

$$R^{4} \qquad i$$

In a typical synthesis, a carboxylic acid of the formula

$$\begin{array}{c|c}
R^9 & R^5 \\
N & C \\
H & R^7
\end{array}$$

coupled to an amine of the formula

The coupling can be achieved by routine acylation, e.g. by converting the acid to an acid halide, followed by reaction with the amine, or by utilizing a common coupling reagent such as 1,3-dicyclohexylcarbodiimide (DCC) or 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ). The synthesis can be carried out on racemic reactants, to provide invention compounds in racemic form, which can then be resolved by conventional methods, if desired.

Alternatively, the invention compounds can be prepared in optically active form by using enantiomeric reactants.

In a typical synthesis, an optically active acetic acid is first prepared by conventional methods.

Schemes 1-5 illustrate the preparation of intermediates utilized in Examples 1-5, which illustrate the synthesis of specific compounds of Formula I in optically active form.

Scheme 1 describes the synthesis of intermediates I and II, which are required for Examples 1 to 5. The N-terminal benzofuran moiety is introduced by the reductive amination of either tryptophan methyl ester or alpha-methyl-tryptophan methyl ester with benzofuran-2-carboxaldehyde and sodium triacetoxy borohydride in DCM. The methyl ester is then hydrolyzed to the corresponding carboxylic acid with lithium hydroxide.

Scheme 2 describes the synthesis of intermediate III. 3-Acetyl-1-methyl pyrrole is converted to the corresponding oxime by reaction with hydroxylamine sulfate and potassium hydroxide in water/methanol. The oxime is then reduced on palladium on carbon.

Scheme 3 shows the synthesis of intermediate IV. This compound was prepared from (R)-2-phenylglycinol, which was first N-terminal protected as the carbobenzoxy (CBZ)

15

20

5

analogue. The alcohol was then treated with triethylamine and methane sulfonylchloride, followed by dimethylamine to introduce the tertiary amine. Removal of the CBZ protection with hydrogen over Pearlman's catalyst gave the required intermediate.

Scheme 4 describes the synthesis of Examples 1 to 4. Each was prepared by activation of the acid, intermediate I, with HBTU in the presence of DIPEA and then reacting with the required amine in DMF.

The synthesis of Example 5 is outlined in scheme 5. Intermediate I was activated with HBTU in DMF and then coupled with methoxybenzylamine. The methyl ether was then reduced with boron tribromide in DCM.

Scheme 1

i Benzofuran-2-carboxaldehyde, Sodium triacetoxy borohydride, DCM ii LiOH, $\rm H_2O$

SDOCID: <WO 0037462A1 1 >

Scheme 2.

ii H₂, Pd/C, MeOH

Scheme 3.

i) amine, HBTU, DIPEA, DMF

Example number A Amine (RNH₂)

1 R - NH₂C(CH₃)₂Ph
2 R RS Intermediate III
3 R S NH₂CH(CH₃)4-pyridine
4 R R Intermediate IV

BNSDOCID: <WO 0037462A1 I >

IZ Example 5

= R ¥ ¥ Intermediate I Z

i HBTU, DIPEA, Methoxybenzylamine, DMF ii BBr₃, DCM

ISDOCID: «WO 0097469A1 I

Scheme 5

EXAMPLE 1.

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-methyl-1-phenyl-ethyl)-propionamide, (R)

5

Step 1.

Alpha methyl tryptophan methyl ester (26.8g, 0.115mol) and benzofuran-2-carboxaldehyde (17.57g, 0.115mol) were dissolved in DCM (400mL) under an atmosphere of nitrogen and sodium triacetoxyborohydride (34.12g, 0.161mol) was added portionwise over 20 min at 0°C.

The mixture was stirred at room temperature for 2 h and then quenched by the addition of sat. NaHCO₃ (500mL). The organic layer was collected and the aqueous layer was extracted three times with EtOAc. The organics were combined, dried (MgSO₄), filtered, and evaporated to dryness. The residue was crystallized from ether/heptane to give the product (34.13g, 82%); IR (film): 3410, 2948, 1724, 1455, 1253, 1104, 742cm⁻¹; NMR (CDCl₃)& 1.48 (3H, s); 3.18 (1H, d, J=14 Hz); 3.21 (1H, d, J=14 Hz); 3.53 (3H, s); 3.85 (1H, d, J=1 Hz); 3.92 (1H, d, J=14 Hz); 6.55 (1H, s); 7.04-7.59 (9H, m); 8.07 (1H, s); MS; ES+ 363, ES- 361.

Step 2. Intermediate I

The methyl ester from step one (24.94g, 68.8mmol) was dissolved in dioxan (800mL) and aq. LiOH (8.66g, 206 mmol in 400mL) was added. The reaction mixture was stirred overnight at room temperature and then heated to 60°C for 5 h. The mixture was reduced *in vacuo* to a volume of approximately 200ml. Water (1200mL) was added and the reaction was stirred vigorously while it was neutralized with 1N HCl. Ether (1200mL) was added and the mixture was stirred for two h, the precipitate was filtered off, washed with water, ether and dried to give a white solid; (24.5g, 100%); NMR (Dmso-d₆) 1.28 (3H, s); 3.05 (1H, d, J=14 Hz); 3.07 (1H, d, J=14 Hz); 3.33 (2H, br s); 3.87 (2H, s); 6.72 (1H, s); 6.97-7.07 (3H, m); 7.14 (1H, d, J=2Hz); 7.18-7.33 (3H, m); 7.50-7.58 (3H, m); 10.89 (1H, s); MS; ES+ 349, ES- 347.

Step 3.

Intermediate I (0.348 g, 1 mmol), HBTU (0.379 g, 1 mmol), DIPEA (0.35 mL, 2 mmol) and cumylamine (0.20 g, 1.48 mmol) were stirred in DMF (25 mL) for 18 h. The reaction mixture was evaporated and the residue taken up in EtOAc and washed with 10% Na₂CO₃, and brine.

Drying and purification by column chromatography using 20% EtOAc/Heptane gave a white solid (0.285 g, 61%). mp=57-62°C;

NMR (CDCl₃): δ 1.40 (3H, s); 1.70 (6H, s); 1.92 (1H, b s); 3.17 and 3.22 (2H, 2x d, J=14.4,14.6); 3.82 and 3.89 (2H, 2xd, J=14.6, 14.1); 6.46 (1H, s); 7.02-7.68 (15H, m); 8.10 (1H, s); IR (film): 3317,2987, 1661, 1506, 1455cm⁻¹; $[\alpha]_D^{23} = 26.1^\circ$ (c=1, MeOH); MS(ES⁺) 466 (M+1); Analysis calculated for C₃₀H₃₁N₃O₂. 0.25H₂O: C, 76.65; H, 6.75; N, 8.94%. Found: C, 76.73; H, 6.54; N, 8.80%.

EXAMPLE 2.

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-[1-(1-methyl-1H-pyrrol-3-yl)-ethyl]-propionamide, [R-(R*,R*)] and [R-(R*,S*)]

15

20

5

Step 1

3-Acetyl-1-methyl pyrrole (2.00g, 16.2mmol) was dissolved in MeOH (60 mL) and treated with potassium hydroxide (4.10g, 73 mmol) in water (10mL) and hydroxylamine sulfate (4.00g, 24.3mmol) in water (10mL) and stirred for 18 h. The methanol was removed *in vacuo* and the residue was diluted with water and extracted with EtOAc. Drying (MgSO₄) and evaporation gave an off-white solid (1.82g, 81%). (E:Z = 9:1); NMR (CDCl₃): δ 2.17 (3H, s); 3.65 (3H, s); 3.69 (3H, s); 6.39 (1H, m); 6.46 (1H, m); 6.56 (1H, m); 6.58 (1H, m); 6.85 (1H, m); 7.59 (1H, m); 8.10 (1H, bs); IR(film): 3240, 2916, 1644, 1554, 1422, 1257, 892cm⁻¹

25 Step 2 Intermediate III

The oxime from step one (0.25g, 1.8mmol) was dissolved in methanol and 10% Palladium on carbon (50mg) was added. The mixture was shaken under an atmosphere of hydrogen at 35psi and at 30°C for 5 h. Filtering through Kieselguhr and evaporation gave a colorless oil (220

mg) which was a mixture of starting material and product ~1:1. The crude, intermediate III was used in step 3.

Step 3

Intermediate I (0.348g, 1mmol), HBTU (0.379g, 1mmol), DIPEA (0.35mL, 2mmol) and the amine (Intermediate III) (220mg, 1.8mmol) were stirred in DMF (13mL) for 18 h. The reaction mixture was evaporated and the residue taken up in EtOAc and washed with 10%Na₂CO₃, and brine. Drying and purification by column chromatography using 20% EtOAc/Heptane followed by reverse phase chromatography using 50-100% MeOH/H₂O gave a white solid (0.205g, 45%); mp= 53-57°C; NMR (CDCL₃): δ1.35 and 1.43 (3H, 2xd, J=6.6 and 6.6Hz); 1.45 (obs H₂O) and 1.5 (3H, 2xs); 1.89 (1H, bs); 3.21 and 3.22 (2H, 2xs); 3.49 and 3.54 (3H, 2xs); 3.72-3.86 (2H, 2xAB, J=14.4,14.4); 5.05 (1H, m); 6.00 (1H, m); 6.34-7.72 (13H, m); IR (film): 3278, 2969, 1648, 1507, 1455cm⁻¹; MS(ES⁺): 455(M+H) Analysis calculated for C₂₈H₃₀N₄O₄; C, 73.98; H, 6.65; N,12.32%. Found: C, 73.69; H, 6.44; N, 12.12%.

EXAMPLE 3.

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-4-yl-ethyl)-propionamide, [R-(R*,S*)]

Intermediate I (0.174g, 0.5mmol), HBTU (0.190g, 0.5mmol), DIPEA (0.348mL, 2mmol) and the amine (prepared as described in US 5594022) (252mg, 0.6mmol) were stirred in DMF (25mL) for 18 h. The reaction mixture was evaporated and the residue taken up in EtOAc and washed with 10%Na₂CO₃, and brine. Drying and purification by column chromatography using 3%MeOH/DCM gave a white solid (0.14g, 62%). mp=66-69°C; NMR (CDCl₃): δ

5

1.44(3H,d, J= 7.2Hz); 1.50 (3H, s); 1.96 (1H, bs) 3.12 (1H, d, J=14.4Hz) and 3.23 (1H, d, J=14.4Hz); 3.80 (1H, d, J=14.2Hz) and 3.92(1H, d, J=14.2Hz); 5.02 (1H, m); 6.48 (1H, s); 6.89-8.00 (12H, m); 8.03 (1H, s); 8.46(2H, m); IR (film) 3326, 2978, 1660, 1602, 1505, 1455cm⁻¹; MS(ES⁺) 453 (M+1); $[\alpha]_D^{23}$ = -29.0° (c=0.39, MeOH); Analysis calculated for $C_{28}H_{28}N_4O_2$. 0.2H₂O: C, 73.73; H, 6.28; N, 12.28% Found: C, 73.76; H, 6.25; N, 12.08%.

EXAMPLE 4

2-[(Benzofuran-2-ylmethyl)-amino]-N-(2-dimethylamino-1-phenyl-ethyl)-3-(1H-indol-3-yl)-10 2-methyl-propionamide, (R,R)

Step 1

To a solution of (R)-2-phenyl glycinol (2.11g, 15mmol) and benzyl chloroformate (2.35mL, 16.5mmol) in THF (30mL) at 0°C was added triethylamine (2.30mL, 16.5mmol) in THF (5mL). After stirring for 18 h at room temperature, the mixture was filtered and evaporated to a white solid which was purified by column chromatography on silica using 50% EtOAc/heptane, giving a white solid (4.00g, 98%); NMR (CDCl₃): δ 3.88 (2H, m); 4.85 (1H, m); 5.10 (2H, m); 5.48 (1H, m); 7.23-7.40 (10H, m); IR (film): 3324, 2950, 1687, 1540, 1259cm⁻¹;

20 Step 2

15

To a solution of the alcohol from step one (1.00g, 3.68mmol) and triethylamine (1.16mL, 8mmol) in THF (20mL) was added a solution of methane sulphonylchloride (0.31mL, 4.0mmol) in THF (3mL). The mixture was stirred for 1 h. 2M dimethylamine in THF solution. (17mL, 34mmol) was added and the sealed mixture was stirred for 12 days. Evaporation of the solvent and purification by column chromatography using 2% MeOH/DCM gave a yellow oil (0.399g, 36%); NMR (CDCl₃): δ 2.23 (6H, s); 2.35-2.58 (2H, m); 4.64 (1H, bs); 5.06 (2H, m); 5.77 (1H, bs); 7.20-7.40 (10H, m); IR (film): 3330, 2945, 1716, 1538, 1246, 1050cm⁻¹.

Step 3 Intermediate IV

The protected amine from step one (0.226g, 0.75mmol) was dissolved in methanol (30mL) and Pearlman's catalyst (30mg) was added. The mixture was shaken for 2 h at 50 psi and then filtered through kieselguhr. Evaporation gave a yellow syrup (0.127g, 100%); NMR (CDCl₃): δ 2.22-2.51 (8H, m); 4.07 (1H, m); 7.22-7.39 (5H, m).

Step 4

Intermediate I (0.174g, 0.5mmol), HBTU (0.19g, 0.5mmol), DIPEA (0.174mL, 1.0mmol) and the amine (Intermediate IV) (0.12mg, 0.73mmol) were stirred in DMF (15mL) for 18 h. The reaction mixture was evaporated and the residue taken up in EtOAc and washed with $10\%\text{Na}_2\text{CO}_3$, and brine. Drying and purification by column chromatography using 1% MeOH/DCM and reverse phase chromatography using 40-100% MeOH/H₂O gave a white solid (0.10g, 40%). mp= $130\text{-}134^\circ\text{C}$; NMR (CDCl₃) δ 1.44 (3H, s); 2.16 (6H, s); 2.41 (1H, dd, J=5.6, 12.4Hz) and 2.59 (1H, dd, H=10.0, 12.4); 3.17 (2H, s); 3.86 (1H, d, 14.4Hz) and 3.92 (1H, d, J=14.6Hz); 4.95 (1H, m); 6.55 (1H, s); 6.90 (1H, s); 7.09-7.67 (13H, m); 8.01 (1H, s); 8.18, d, J=6.6Hz); IR (film) 3317, 2934, 1658, 1496, 1455cm⁻¹; MS(ES⁺) 482 (M+1); $[\alpha]_D^{23}$ =31.9 (c=0.72, MeOH); Analysis calculated for $C_{31}H_{34}N_4O_2$: C, 75.28; H, 6.93; N, 11.33% Found: C, 75.24; H, 6.92; N, 11.15%.

20

15

10

EXAMPLE 5.

2-[(Benzofuran-2-ylmethyl)-amino]-N-(3-hydroxy-benzyl)-3-(1H-indol-3-yl)-2-methyl-propionamide, R

Step 1

Intermediate I (0.348g, 1mmol), HBTU (0.379g, 1mmol), DIPEA (0.35mL, 2mmol) and 3-methoxybenzylamine (0.206g, 1.5mmol) were stirred in DMF (17mL) for 18 h. The reaction mixture was evaporated and the residue taken up in EtOAc and washed with 10%Na₂CO₃, and brine. Drying and purification by column chromatography using 40% EtOAc/Heptane gave a white solid (0.190g; 41%). mp=42-47°C; NMR (CDCl₃): δ 1.50 (3H, s); 1.90 (1H, bs); 3.20

(1H, d, J= 14.4Hz) and 3.28 (1H, d, J= 14.4Hz); 3.72-3.82 (4H, m); 3.88 (1H, d, J=14.0Hz); 4.37 (2H, d, J=6.0Hz); 6.37 (1H, s); 6.75-7.70 (14H, m); 8.12 (1H, s); IR (film): 3322, 2920, 1654, 1602, 1455, 1256cm⁻¹; MS(ES⁺) 468 (M+1); $[\alpha]_D^{23.5} = -31.3^\circ$ (c=1.01, MeOH); Analysis calculated for $C_{29}H_{29}N_3O_3$: C, 74.50; H, 6.25; N, 8.99%; Found: C, 74.20; H, 6.24; N, 8.78%

Step 2

5

1.0M Boron tribromide in dichloromethane (0.62mL; 0.62mmol) was added dropwise to a solution of the methoxy compound from step one (0.146g; 0.31mmol) in dichloromethane at -70°C under N₂, warmed slowly to room temperature and stirred for 18 h. The mixture was poured onto 10g crushed ice/ 2M HCl (15mL) and stirred for 10 min. Neutralizing with Na₂CO₃, extraction with EtOAc and purification by column chromatography using 40% EtOAc/ heptane gave a white solid (0.115g; 82%). mp=60-69°C; NMR (CDCl₃): δ 1.53 (3H, s); 1.96 (1H, bs); 3.14 (1H, d, J=14.4Hz) and 3.37 (1H, d, J=14.4Hz); 3.81 (1H, d, J=14.0Hz) and 3.93 (1H, d, J=14.0Hz); 4.14-4.50 (2H, m); 5.23 (1H, bs); 6.32-7.82 (15H, m); 8.14 (1H, s); IR (film): 3333, 2907, 1645, 1599, 1520, 1455, 1254cm⁻¹; MS(ES⁺): 454 (M+1); $[\alpha]_D^{23.5}$ = -25.9° (c=0.73, MeOH); Analysis calculated for C₂₈H₂₇N₃O₃. 0.5 H₂O: C, 72.71; H, 6.10; N, 9.08% Found: C, 72.83, 72.86; H, 6.03, 5.96; N, 8.81, 8.83%.

20

15

Scheme 6 describes the synthesis of intermediate V, which is required for Examples 6 to 17.

Boc-tryptophan was coupled to alpha-methylbenzylamine using HBTU activation. The Boc group was removed using formic acid in DCM to give Intermediate V.

Examples 6, 8 and 10 to 21 were prepared by a reductive amination of the relative aldehydes and Intermediate V with sodium triacetoxyborohydride as shown in scheme 7.

Scheme 8 outlines the synthesis of Example 7. 2-Benzofuranacetic acid was reacted with ethyl chloroformate in THF and then reduced with lithium borohydride. The alcohol was then converted to the corresponding mesylate and reacted with Intermediate V to give Example 7.

Scheme 9 describes the synthesis of Example 9. 2-Hydroxymethyl benzimidazole was reacted with bis(4-nitrophenyl) carbonate in DMF to form the cyclic carbamate. This compound was then reacted with intermediate V to give Example 9.

WO 00/37462 PCT/US99/29592

- 35 -

The synthesis of Intermediate VI is shown in scheme 10; the intermediate was used to prepare Example 10. Benzo[b]thiophene-2-carboxylic acid was activated with ethyl chloroformate and then coupled with *N*, *O*-dimethylhydroxylamine. The Weinreb amide was then reduced to the corresponding aldehyde with DIBAL.

The synthesis of Example 22 is described in scheme 11. 2-benzofurancarboxaldehyde was reacted with hydroxylamine in aqueous potassium hydroxide/EtOH. The oxime was then reduced with lithium aluminum hydride to give the amine. The corresponding isocyanate, prepared by reacting the amine with triphosgene in DCM/pyridine, was reacted with 2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide to give Example 22.

Scheme 12 shows the synthesis of the key intermediate VII that was used in the synthesis of Examples 192 to 308. This N-carboxyanhydride was prepared by reacting intermediate I with phosgene in toluene.

5

10

- 36 -

However,
$$A = R$$
 in the resolution $A = R$ intermediate $A = R$ intermediate $A = R$

i. HBTU, DMF, DIPEA, α -methylbenzylamine

■ = R, ▲ = SIntermediate V ii. Formic acid, DCM

Scheme 6:

- 37 -

<u>(</u>

R = H (Intermediate V) or CH₃

i) aldehyde, NaBH(OAc)3, DCE

Scheme 7:

R ²	2-Benzofuran-CH2	2-(4,5-Dimethylfuran)-CH ₂	2-Benzothiophene-CH ₂	3-quinoline-CH ₂	$2-(5-Cl-thiophene)-CH_2$	$(3-SCF_3-Ph)-CH_2$	$(3-CN-Ph)-CH_2$	$(3-NO_2-Ph)-CH_2$	(3-OCF ₃ -Ph)-CH ₂	$(3-OH-Ph)-CH_2$	2-Benzofuran-CH ₂	3-Benzofuran-CH ₂	2-pyrrole-CH ₂	3-pyrazole-CH ₂
አ		I	I	I	I	I	I	I	I	I	CH3	CH3	CH3	CH ₃
Example	9	ω	10	Ξ	12	13	14	15	16	17	18	19	20	21

- 39 -

ii. Ether, CH₃SO₂Cl, NEt₃, Intermediate V

S II Example 7

i. a) NMM, EtOCOCI, THF b) LiBH₄

Scheme 8:

BNSDOCID: <WO 0037462A1 I_> - 40 -

- 40 -

Z

Example 9

i. bis(4-nitrophenyl) carbonate, DMF

ii. Intermediate V, DMF

cheme 9:

i. NMM, EtOCOCI, THF, NHMeOMe

BNSDOCID: <WO__0037462A1_I_>

) = R, **A** = S Example 22

i. a) KOH, NH₂OH, EtOH, H₂O

b) LiAlH₄

2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide ii. triphosgene, DCM, pyridine,

SDOCID: <WO 0037462A1 | :

Scheme 11

Intermediate VII

• 4

.

--- |

NI O

i Phosgene, toluene

Scheme 12:

EXAMPLE 6.

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R- (R^*,S^*)]

Step 1. Intermediate V

5

10

15

20

25

To a stirred solution of Boc-(R)-Trp-OH (6.08g, 0.02mol) in DMF (50mL) was added HBTU (7.59, 0.02mol) and DIPEA (3.57mL, 0.02mol). After 5 min DIPEA (3.57mL, 0.02mol) and (S)-(-)-α-methylbenzylamine in DMF (10mL) was added. After a further 60 min, the solvent was removed under reduced pressure. The residue was taken up in EtOAc (250mL) and washed with brine (50mL), 1N HCl (100mL), saturated NaHCO₃ (3 x 100mL), brine (50mL), dried (MgSO₄), filtered and the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂ (20mL) and formic acid (30mL). The reaction was stirred over night at room temperature before refluxing for 4 h. The solvent was removed under reduced pressure and the product was crystallized from ether. Stirring in EtOAc (100mL) for 4 h and filtration gave pure product (4.17g, 68%). The filtrate was purified by chromatography using EtOAc and then EtOAc/MeOH/NH3(aq) (95:5:0.5) as eluent. Crystallization from ether gave white crystalline solid (0.98g, 16%); mp 142-144°C; $[\alpha_D^{19} = -83.9^{\circ} (c=1, MeOH); IR (film): 3338,$ 3295, 3059, 2975, 2928, 1649, 1518, 1494, 1455, 1342, 1104, 894, 740 cm⁻¹; NMR (CDCl₃): δ 1.44 (3H, d, J=7.1 Hz); 1.51 (2H, s); 2.95 (1H, d.d, J=14.4 and 8.5 Hz); 3.36 (1H, d.d, J=14.4 and 4.4 Hz); 3.74 (1H, d.d, J=8.5 and 4.4 Hz); 5.05-5.15 (1H, m); 6.95 (1H, d, J=2.2 Hz); 7.10-7.38 (8H, m); 7.48-7.52 (1H, m); 7.66-7.69 (1H, m); 7.98 (1H, s); MS m/e (APCI⁺): 309.1 (20%), 308.1 (100%, $M^+ + H$); Analysis calculated for $C_{19}H_{21}N_3O$: C, 74.24; H, 6.89; N, 13.66%. Found: C, 74.07; H, 6.87; N, 13.70%.

Step 2.

To a stirred solution of 2-benzofurancarboxaldehyde (0.73g, 5mmol) in 1,2-dichloroethane (20mL) was added intermediate V (1.54g, 5mmol) followed by sodium triacetoxyborohydride (1.48g, 7mmol). After stirring for 3 h the reaction was cautiously quenched with saturated NaHCO₃ (20mL) and extracted with CH₂Cl₂ (3x 50mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography using 30% EtOAc in heptane as eluent to give pure product as a glass (2.0g, 91%); $[\alpha_D]^{20}$ =+34.0° (c=0.5, MeOH); IR (film): 3316, 3059, 2973, 2925, 1653, 1517, 1455, 1341, 1254, 1104, 1010, 909, 741 cm⁻¹; NMR (CDCl₃): δ 1.38 (3H, d, J=7.1 Hz); 1.93 (1H, s); 2.92 (1H, d.d, J=14.6 and 9.3 Hz); 3.29-3.35 (1H, m); 3.58 (1H, d.d, J=9.3 and 4.2 Hz); 3.75 (1H, d, J=14.9 Hz); 3.82 (1H, d, J=14.9 Hz); 5.07-5.15 (1H, m); 6.36 (1H, s); 6.87 (1H, d, J=2.2 Hz); 7.04-7.08 (1H, m); 7.15-7.35 (10H, m); 7.43-7.45 (1H, m); 7.58-7.64 (2H, m); 7.92 (1H, s); MS m/e (APCI⁺): 439.9 (5%), 438.9 (34%), 437.9 (100%, M⁺ + H), 307.0 (9%); Analysis calculated for C₂₈H₂₇N₃O₂: C, 76.86; H, 6.22; N, 9.60%. Found: C, 77.11; H, 6.31; N, 9.67%.

15

10

5

EXAMPLE 7.

2-(2-Benzofuran-2-yl-ethylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

20

25

Step 1

A solution of N-methylmorpholine (NMM, 5.31g, 52.5mmol) in THF (30mL) was added dropwise over 15 min to a stirred solution of 2-benzofuranacetic acid (8.80g, 50mmol) and ethyl chloroformate (5.70g, 52.5mmol) in THF (150mL, anhydrous) at 0°C. The reaction mixture was stirred for 1 h at room temperature before filtering off the precipitate of NMM.HCl. The filtrate was cooled to 0°C and a solution of lithium borohydride (30mL, 60mmol, 2M in THF) was added dropwise over 30 min. The reaction was allowed to reach room temperature and stirred over night before being cautiously quenched with 1N HCl (100mL) -vigorous effervescence. The THF was removed under reduced pressure and the

aqueous phase was extracted with EtOAc (200mL). The organic phase was washed with 1N HCl, H₂O, saturated NaHCO₃ (x2), brine, and dried (MgSO₄). Removal of solvent under reduced pressure gave intermediate VI (7.74g, 93%). Used in the next step without further purification. IR (film): 3347, 2957, 2887, 1603, 1587, 1455, 1422, 1317, 1252, 1167, 1105, 1049, 945, 926, 881, 854, 807, 751 cm⁻¹; NMR (CDCl₃): δ 1.64 (1H, t, J=6.0 Hz); 3.05 (2H, t, J=6.2 Hz); 4.00 (2H, q, J=6.1 Hz); 6.51 (1H, d, J=1.0 Hz); 7.17-7.25 (2H, m); 7.41-7.44 (1H, m); 7.49-7.52 (1H, m).

Step2

5

To an ice-cold solution of alcohol VI (1.62g, 10mmol) and NEt₃ (1.01g, 10mmol) in ether 10 (50mL, anhydrous) was added a solution of methanesulphonyl chloride (1.20g, 10.5mmol) dropwise over 5 min. The ice bath was removed and the reaction was stirred at room temperature for 30 min before filtering off the NEt₃.HCl. The ether was removed under reduced pressure. To a portion of the mesylate (240mg, 1mmol) dissolved in toluene (50mL, 15 anhydrous) was added amine V. The reaction was refluxed for 48 h, a further equivalent of NEt₃ was added, and reflux was continued for a further 48 h. The reaction mixture was cooled and washed with 1N NaOH, the organic layer was dried (MgSO₄), and solvent removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 20% EtOAc in heptane as eluent and then on reverse phase silica using 70% MeOH in H₂O as 20 elan. Product crystallized on drying in vacuum oven to give pure product (82mg, 18%); mp 105-107°C; $[\alpha]_D^{22}$ =-1.2° (c=0.25, MeOH); IR (film): 3305, 3058, 2924, 2851, 1651, 1515, 1455, 1356, 1342, 1252, 1166, 1105, 742 cm⁻¹; NMR (CDCl₃): δ 1.37 (3H, d, J=7.1 Hz); 1.57 (1H, s); 2.72-2.97 (5H, m); 3.28-3.34 (1H, m); 3.44-3.48 (1H, m); 5.07-5.15 (1H, m); 6.06 (1H, s); 6.75 (1H, d, J=2.2 Hz); 7.06-7.33 (11H, m); 7.40-7.44 (1H, m); 7.51 (1H, d, J=8.5 Hz); 7.62-7.65 (2H, m); MS m/e (ES⁺): 453.1 (33%), 452.2 (100%, M^+ + H); Analysis 25 calculated for C₂₉H₂₉N₃O₂: C, 77.14; H, 6.47; N, 9.31%. Found: C, 77.06; H, 6.48; N, 9.30%.

EXAMPLE 8.

30 2-[(4,5-Dimethyl-furan-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

To a stirred solution of the 4,5-dimethyl-2-furaldehyde (124mg, 1mmol) in 1,2-dichloroethane intermediate V (307mg, 1mmol) followed (20mL)added triacetoxyborohydride (424mg, 2mmol). After stirring over night the reaction was cautiously quenched with saturated NaHCO₃ (20mL) and extracted with CH₂Cl₂ (2 x 20mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 25% EtOAc in heptane as eluent to give pure product as a glass (196mg, 47%); $[\alpha]_D^{21}$ =+18.6° (c=0.5, MeOH); IR (film): 3312, 3059, 2971, 2922, 1651, 1516, 1455, 1342, 1220, 1106, 741 cm⁻¹; NMR (CDCl₃): δ 1.44 (3H, d, J=6.8 Hz); 1.60-1.90 (1H, br.s); 1.83 and 2.06 (each 3H, s); 2.89 (1H, d.d, J=14.6 and 9.3 Hz); 3.26-3.32 (1H, m); 3.49 (1H, d, J=14.4 Hz); 3.50-3.54 (1H, m); 3.58(1H, d, J=14.4 Hz); 5.08-5.16 (1H, m); 5.76 (1H, s); 6.89 (1H, d, J=2.2 Hz); 7.01-7.11 (1H, m); 7.17-7.36 (7H, m); 7.62-7.65 (2H, m); 7.95 (1H, s); MS m/e (ES $^+$): 417.3 $^-$ (31%), 416.3 (100%, M^+ + H), 308.3 (34%); Analysis calculated for $C_{26}H_{29}N_3O_2.0.2H_2O$: C, 74.51; H, 7.07; N, 10.03%. Found: C, 74.43; H, 6.82; N, 10.03%.

EXAMPLE 9.

2-[(1H-Benzoimidazol-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-20 propionamide, [R-(R*,S*)]

10

Step 1

A solution of 2-hydroxymethyl benzimidazole (1.19g, 8mmol) and bis(4-nitrophenyl) carbonate (2.43g, 8mmol) in DMF (20mL, anhydrous) was stirred for 12 h at room temperature. The DMF was removed under reduced pressure and the residue stirred in ether (50mL) for 2 h. Filtration and washing with ether (50mL) gave crystalline intermediate VII (1.04g, 74%); IR (film): 1819, 1623, 1592, 1568, 1486, 1445, 1411, 1369, 1359, 1147, 1106, 1076, 1009, 997, 941, 862, 847, 765, 750, 741 cm⁻¹; NMR (CDCl₃): δ 5.49 (2H, s); 7.42-7.50 (2H, m); 7.79-7.84 (1H, m); 7.88-7.93 (1H, m).

10

15

Step2

The product from step 1 (174mg, 1mmol) and intermediate V (307mg, 1mmol) were dissolved in DMF (10mL, anhydrous) and stirred at 60°C for 10 h. The solvent was removed under reduced pressure and the residue was purified by chromatography on reverse phase silica using 60% MeOH in H₂O as eluent. The solvent was removed under reduced pressure and the residue was crystallized from EtOAc to give pure product (396mg, 91%); mp 148-152.5°C; [α]_D²¹=+24.2° (*c*=0.5, MeOH); IR (film): 3300, 3058, 2923, 1651, 1520, 1455, 1340, 1271, 1235, 1218, 1109, 1013, 909, 739 cm⁻¹; NMR (CDCl₃): δ 1.31 (3H, d, J=7.1 Hz); 2.00-2.50 (1H, br.s); 3.04 (1H, d.d, J=14.4 and 8.8 Hz); 3.29 (1H, d.d, J=14.4 and 5.2 Hz); 3.50 (1H, d.d, J=8.8 and 5.2 Hz); 3.94 (1H, d, J=15.9 Hz); 4.04 (1H, d, J=15.9 Hz); 5.03-5.10 (1H, m); 6.85 (1H, d, J=7.8 Hz); 6.99 (1H, d, J=2.2 Hz); 7.10-7.30 (10H, m); 7.20-7.70 (1H, br.s); 7.42 (1H, d, J=8.1 Hz); 7.66 (1H, d, J=7.8 Hz); 8.06 (1H, s); 8.80-9.20 (1H, br.s); MS m/e (ES⁺): 439.3 (28%), 438.3 (100%, M⁺ + H); Analysis calculated for C₂₇H₂₇N₅O: C, 74.12; H, 6.22; N, 16.01%. Found: C, 74.04; H, 6.19; N, 15.95%.

25

20

EXAMPLE 10

2-[(Benzo[b]thiophen-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide

Step 1

10

15

20

A solution of NMM (2.309mL, 21mmol) in THF (10mL) was added dropwise to a stirred ice cooled solution of benzo[b]thiophene-2-carboxylic acid (3.56g, 20mmol) and ethyl chloroformate (2.008mL, 21mmol) in THF (150mL) over 15mins. The reaction mixture was stirred at room temperature for 1 h before adding *N*, *O*-dimethylhydroxylamine hydrochloride (2.146g, 22mmol) and NMM (2.419mL, 22mmol). The reaction was stirred at room temperature over night. The solvent was removed under reduced pressure. The residue was taken up in EtOAc (100mL) and washed with 2N HCl (3 x 100mL), 2N NaOH (100mL), H₂O, brine, dried (MgSO₄), and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 30% EtOAc in heptane as eluent. Crystallization from ether/heptane gave pure product (3.24g, 73%).

To a stirred solution of the Weinreb amide (2.06g, 9.3mmol) in THF (100mL, anhydrous) under nitrogen at 0°C was added diisobutylaluminum hydride (11mL, 11mmol, 1M in CH₂Cl₂) dropwise. After 20 min the reaction mixture was poured onto ice cold 2N HCl and extracted with ether. The organic phase was washed with brine, dried (MgSO₄), and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 5% EtOAc in heptane as eluent to give solid benzo[b]thiophene-2-carboxaldehyde (Intermediate VI) (665mg, 44%). IR (film): 1669, 1592, 1516, 1431, 1255, 1224, 1135, 840, 747, 725 cm⁻¹; NMR (CDCl₃): δ7.42-7.54 (2H, m); 7.91 (1H, d, J=8.1 Hz); 7.95(1H, d, J=7.8 Hz); 8.04 (1H, s); 10.12 (1H, s).

Step 2

To a stirred solution of the benzo[b]thiophene-2-carboxaldehyde (Intermediate VI) (162mg, 1mmol) in 1,2-dichloroethane (20mL) was added intermediate V (307mg, 1mmol) followed by sodium triacetoxyborohydride (424mg, 2mmol). After stirring over night the reaction was cautiously quenched with saturated NaHCO₃ (20mL) and extracted with CH₂Cl₂ (2 x 20mL).

The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 20% EtOAc in heptane as eluent. Crystallization from ether/heptane gave pure product (305mg, 67%); mp 102-108 °C; $[\alpha]_D^{21}$ =+51.4° (c=0.5, MeOH); IR (film): 3311, 3059, 2925, 1651, 1515, 1456, 743 cm⁻¹; NMR (CDCl₃): δ 1.40 (3H, d, J=7.1 Hz); 1.97 (1H, s); 2.99 (1H, d.d, J=14.7 and 8.8 Hz); 3.35 (1H, d.d, J=14.4 and 4.2 Hz); 3.59 (1H, d.d, J=8.5 and 4.4 Hz); 3.94 (2H, m); 5.07-5.16 (1H, m); 6.91-6.93 (2H, m); 7.06-7.11 (1H, m); 7.17-7.37 (9H, m); 7.50 (1H, d, J=8.5 Hz); 7.60 (1H, d.d, J=7.0 and 1.6 Hz); 7.65 (1H, d, J=8.1 Hz); 7.72-7.76 (1H, m); 7.95 (1H, s); MS m/e (ES⁺): 476.1 (60%, M⁺ + Na), 454.1 (100%, M⁺ + H), 402.2 (25%); (ES⁻): 453.2 (25%), 452.1 (100%, M⁻ - H); Analysis calculated for C₂₈H₂₇N₃OS: C, 74.14; H, 6.00; N, 9.26; S, 7.07%. Found: C, 74.27; H, 6.16; N, 9.31; S, 7.11%.

EXAMPLE 11.

3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-[(quinolin-3-ylmethyl)-amino]-propionamide, [R-15 (R*,S*)]

Method as for Example 10, step 2. The residue was purified by chromatography on normal phase silica using 2% MeOH in CH₂Cl₂ as eluent. Crystallization from EtOAc/heptane gave pure product (340mg, 76%); mp 161-163°C; $[\alpha]_D^{22}$ =+40° (c=0.5, MeOH); IR (film): 3280, 3055, 2972, 2926, 1655, 1515, 1497, 1456, 1342, 1127, 742 cm⁻¹; NMR (CDCl₃): δ 1.40 (3H, d, J=7.1 Hz); 1.90 (1H, s); 2.96 (1H, d.d, J=14.7 and 9.0 Hz); 3.36 (1H, d.d, J=14.5 and 4.5 Hz); 3.53-3.56 (1H, m); 3.78 (1H, d, J=13.7 Hz); 3.92 (1H, d, J=13.7 Hz); 5.08-5.16 (1H, m); 6.90 (1H, d, J=2.2 Hz); 7.03-7.08 (1H, m); 7.15-7.20 (1H, m); 7.23-7.37 (6H, m); 7.43 (1H, d J=8.3 Hz); 7.49-7.51 (1H, m); 7.59-7.72 (4H, m); 8.02 (1H, s); 8.04 (1H, d, J=8.3 Hz); 8.66 (1H, d, J=2.2 Hz); MS m/e (ES⁺): 471.1 (31%, M⁺ + Na), 449.1 (100%, M⁺ + H); Analysis

20

25

calculated for $C_{29}H_{28}N_4O$: C, 77.65; H, 6.29; N, 12.49%. Found: C, 78.02; H, 6.30; N, 12.48%.

EXAMPLE 12

5 2-[(5-Chloro-thiophen-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

Method as for Example 10, step 2. The residue was dissolved in aqueous acetonitrile and 10 acidified using formic acid before being purified by chromatography on reverse phase silica using 40% CH₃CN in H₂O (0.1% formic acid in mobile phases) as eluent. The solvent was removed under reduced pressure and the residue was suspended between EtOAc and saturated NaHCO₃. The EtOAc was dried (MgSO₄) and the solvent was removed under reduced pressure to give pure product as a glass (245mg, 56%); $[\alpha]_D^{22}$ =+26.2° (c=0.5, MeOH); IR 15 (film): 3307, 3059, 2973, 2925, 1652, 1515, 1455, 1342, 1230, 1105, 1061, 1000, 796, 742 cm⁻¹; NMR (CDCl₃): δ 1.43 (3H, d, J=6.8 Hz); 1.85 (1H, s); 2.96 (1H, d.d, J=14.7 and 8.5 Hz); 3.31 (1H, d.d, J=14.5 and 4.5 Hz); 3.49-3.53 (1H, m); 3.71-3.79 (2H, m); 5.07-5.15 (1H, m); 6.50 (1H, d, J=3.7 Hz); 6.65 (1H, d, J=3.9 Hz); 6.91 (1H, d, J=2.4 Hz); 7.09-7.14 (1H, m); 7.18-7.39 (8H, m); 7.63 (1H, d, J=7.6 Hz); 7.98 (1H, s); MS m/e (ES⁺): 437.9 (100%, M^+ + 20 H); Analysis calculated for C₂₄H₂₄N₃OSCl: C, 65.81; H, 5.52; N, 9.59; Cl, 8.09; S, 7.32%. Found: C, 65.54; H, 5.45; N, 9.40; Cl, 7.85; S, 7.42%.

EXAMPLE 13.

25 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-(3-trifluoromethylsulfanyl-benzylamino)-propionamide, [R-(R*,S*)]

To a stirred solution of 3-(trifluoromethylthio)benzaldehyde (72mg, 0.55mmol) in 1,2-dichloroethane (20mL) was added intermediate V (154mg, 0.5mmol) followed by sodium triacetoxyborohydride (148mg, 0.7mmol). After stirring over night the reaction was cautiously quenched with saturated NaHCO₃ (20mL) and extracted with CH₂Cl₂ (3 x 50mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 30% EtOAc in heptane as eluent. The solvent was removed under reduced pressure to give pure product as a glass (193mg, 77%); IR (film): 3306, 3058, 2972, 2923, 1651, 1516, 1456, 1342, 1114, 743 cm⁻¹; NMR (CDCl₃): δ 1.41 (3H, d, J=6.8 Hz); 1.60-1.90 (1H, br.s); 2.96 (1H, d.d, J=14.5 and 8.9 Hz); 3.32 (1H, d.d, J=14.4 and 4.4 Hz); 3.48 (1H, d.d, J=8.9 and 4.5 Hz); 3.62 (1H, d, J=13.9 Hz); 3.76 (1H, d, J=13.7 Hz); 5.08-5.16 (1H, m); 6.91 (1H, d, J=2.2 Hz); 7.07-7.48 (13H, m); 7.60 (1H, d, J=7.8 Hz); 7.97 (1H, s); MS m/e (ES⁺): 499.4 (32%), 498.4 (100%, M⁺ + H); Analysis calculated for C₂₇H₂₆N₃OSF₃.0.25H₂O: C, 64.59; H, 5.32; N, 8.37; S, 6.39%. Found: C, 64.69; H, 5.34; N, 8.30; S, 6.27%.

EXAMPLE 14.

2-(3-Cyano-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

N E

10

15

20

Method as for Example 13. Chromatography on normal phase silica using 45% EtOAc in heptane as the eluent and subsequent removal of the solvent under reduced pressure gave pure product as a glass (130mg, 62%); IR (film): 3312, 3059, 2973, 2924, 2229, 1652, 1516, 1456, 1342, 1231, 1101, 743 cm⁻¹; NMR (CDCl₃): δ 1.42 (3H, d, J=6.8 Hz); 1.87 (1H, s); 2.91 (1H, d.d, J=14.5 and 9.2 Hz); 3.32 (1H, d.d, J=14.5 and 4.0 Hz); 3.41 (1H, d.d, J=9.0 and 4.4 Hz); 3.58 (1H, d, J=14.2 Hz); 3.76 (1H, d, J=14.2 Hz); 5.08-5.17 (1H, m); 6.94 (1H, d, J=2.2 Hz); 7.07-7.12 (1H, m); 7.19-7.45 (12H, m); 7.58 (1H, d, J=8.1 Hz); 8.05 (1H, s); MS m/e (ES⁺): 424.4 (30%), 423.4 (100%, M⁺ + H); (ES⁻): 422.3 (30%, M⁻), 421.3 (100%, M⁻ - H); Analysis calculated for $C_{27}H_{26}N_4O$: C, 76.75; H, 6.20; N, 13.26%. Found: C, 76.58; H, 6.14; N, 13.24%.

EXAMPLE 15.

3-(1H-Indol-3-yl)-2-(3-nitro-benzylamino)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

15

20

25

10

To a stirred solution of 3-nitrobenzaldehyde (332g, 2.2mmol) in 1,2-dichloroethane (60mL) was added intermediate V (614mg, 2mmol) followed by sodium triacetoxyborohydride (594mg, 2.8mmol). After stirring over night the reaction was cautiously quenched with saturated NaHCO₃ (20mL) and extracted with CH₂Cl₂ (3 x 50mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 45% EtOAc in heptane as eluent. The solvent was removed under reduced pressure to give pure product as a glass (648mg, 73%); IR (film): 3317, 2925, 1652, 1526, 1456, 1349, 733 cm⁻¹;NMR (CDCl₃): δ 1.43 (3H, d, J=6.8 Hz); 1.85-1.95 (1H, br.s); 2.90 (1H, d.d, J=14.5 and 9.1 Hz); 3.33 (1H, d.d, J=14.4 and 4.4 Hz); 3.43 (1H, d.d, J=9.0 and 4.5 Hz); 3.65 (1H, d, J=14.2 Hz); 3.83 (1H, d, J=14.2 Hz); 5.09-5.17 (1H, m); 6.94 (1H, d, J=2.4 Hz); 7.06 (1H, t, J=7.5 Hz); 7.18 (1H, t, J=7.5 Hz); 7.22-7.40 (10H, m); 7.87 (1H, m); 7.97-8.10 (2H, m); MS m/e (ES⁺): 444.4

(30%), 443.4 (100%, M^+ + H); Analysis calculated for $C_{26}H_{26}N_4O_3$: C, 70.57; H, 5.92; N, 12.66%. Found: C, 70.55; H, 5.88; N, 12.67%.

EXAMPLE 16.

5 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-(3-trifluoromethoxy-benzylamino)-propionamide, [R-(R*,S*)]

10 Method as for Example 13. Chromatography on normal phase silica using 35% EtOAc in heptane as the eluent and subsequent removal of the solvent under reduced pressure gave pure product as a glass (130mg, 54%); IR (film): 3307, 3060, 2974, 2925, 1652, 1589, 1516, 1495, 1456, 1260, 1217, 1164, 1012, 743 cm⁻¹; NMR (CDCl₃): δ 1.40 (3H, d, J=6.8 Hz); 1.60-2.00 (1H, br.s); 2.97 (1H, d.d, J=14.7 and 8.8 Hz); 3.29-3.35 (1H, m); 3.48 (1H, d.d, J=8.8 and 4.6 Hz); 3.62 (1H, d, J=13.9 Hz); 3.74 (1H, d, J=13.9 Hz); 5.07-5.15 (1H, m); 6.91 (1H, d, J=2.2 Hz); 6.96-7.39 (13H, m); 7.63 (1H, d, J=7.8 Hz); 7.97 (1H, m); MS m/e (ES⁺): 483.4 (30%), 482.4 (100%, M⁺ + H); Analysis calculated for C₂₇H₂₆N₃O₂F₃: C, 67.35; H, 5.44; N, 8.73%. Found: C, 67.31; H, 5.43; N, 8.67%.

20 EXAMPLE 17.

2-(3-Hydroxy-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

15

20

25

Method as for Example 13. Chromatography on normal phase silica using 40% EtOAc in heptane as the eluent and subsequent removal of the solvent under reduced pressure gave pure product as a glass (94mg, 45%); IR (film): 3317, 3059, 2975, 2926, 1645, 1589, 1520, 1456, 1266, 1159, 743 cm⁻¹; NMR (CDCl₃): δ 1.40 (3H, d, J=7.1 Hz); 1.70-1.90 (1H, br.s); 2.89 (1H, d.d, J=14.5 and 9.4 Hz); 3.33 (1H, d.d, J=14.7 and 4.2 Hz); 3.49-3.54 (1H, m); 3.53 (1H, d, J=13.9 Hz); 3.69 (1H, d, J=13.9 Hz); 5.00-5.20 (2H, m); 6.28 (1H, d, J=1.7 Hz); 6.60 (1H, d, J=7.6 Hz); 6.65 (1H, d.d, J=7.9 and 2.0 Hz); 6.89 (1H, d, J=2.2 Hz); 7.06 (1H, t, J=7.8 Hz); 7.09-7.13 (1H, m); 7.19-7.52 (7H, m); 7.54 (1H, d, J=8.5 Hz); 7.64 (1H, d, J=8.5 Hz); 8.05 (1H, m); MS m/e (ES⁺): 415.4 (30%), 414.4 (100%, M⁺ + H); Analysis calculated for C₂₆H₂₇N₃O₂: C,75.52; H, 6.58; N, 10.16%. Found: C, 75.28; H, 6.61; N, 10.03%.

EXAMPLE 18.

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

To a stirred solution of 2-benzofurancarboxaldehyde (3.19g, 21.8mmol) in 1,2-dichloroethane (150mL) was added 2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide (prepared as described by Boyle S. *et al.*, <u>Bioorg. Med. Chem.</u> 2:357, 1994) (5g, 15.6mmol), followed by sodium triacetoxyborohydride (6.6mg, 31.2mmol). After stirring over night the reaction was cautiously quenched with 2N NaOH (150mL) and extracted with CH₂Cl₂ (3 x 200mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 30% EtOAc in heptane as eluent and then on reverse phase silica using 70% MeOH in H₂O as eluent. Crystallization from ether gave pure product (5.55g, 79%); mp 118-121°C: [α]_D²⁰=+12.5° (*c*=1, MeOH); IR (film): 3329, 3059, 2975, 2926, 1652, 1506, 1455, 1371,

10

15

20

25

1354, 1342, 1255, 1170, 1105, 1010, 938, 743 cm⁻¹; NMR (CDCl₃): δ 1.47 (3H, s); 1.47 (3H, d, J=6.8 Hz); 1.89 (1H, s); 3.16 (2H, s); 3.78 (1H, br.d, J=12.9 Hz); 3.86 (1H, d, J=14.4 Hz); 5.05-5.13 (1H, m); 6.43 (1H, s); 6.87 (1H, d, J=2.2 Hz); 7.09-7.40 (11H, m); 7.47-7.50 (1H, m); 7.65 (1H, d, J=7.8 Hz); 7.92 (1H, d, J=7.8 Hz); 7.96 (1H, s); MS m/e (ES⁺): 453.1 (30%), 452.1 (100%, M⁺ + H), 393.2 (15%); Analysis calculated for $C_{29}H_{29}N_3O_2$: C, 77.14; H, 6.47; N, 9.30%. Found: C, 77.14; H, 6.42; N, 9.36%.

EXAMPLE 19.

2-[(Benzofuran-3-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

To a stirred solution of 3-benzofurancarboxaldehyde (146mg, 1mmol) (Ind. J. Chem., Vol. 31B, 1992, 526) in 1,2-dichloroethane (10mL) was added 2-amino-3-(1H-indol-3-yl)-2methyl-N-(1-phenyl-ethyl)-propionamide (321mg, 1mmol) followed triacetoxyborohydride (424mg, 2mmol). After stirring over night at room temperature another portion of sodium triacetoxyborohydride (424mg, 2mmol) was added. The reaction was heated to reflux for 4 h. Cooled to room temperature and cautiously quenched with saturated NaHCO₃ (100mL) and extracted with CH₂Cl₂ (3 x 20mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 25% EtOAc in heptane as eluent. Crystallization from ether/heptane gave pure product (232mg, 51%); mp 104-106°C: $[\alpha]_D^{23}$ =-13.4° (c=1, MeOH); IR (film): 3418, 3314, 3058, 2976, 2927, 1652, 1505, 1452, 1371, 1354, 1341, 1279, 1266, 1186, 1095, 1010, 858, 743 cm⁻¹; NMR (CDCl₃): δ 1.40 (3H, d, J=6.8 Hz); 1.52 (3H, s); 1.71 (1H, s); 3.15 (1H, d, J=14.4 Hz); 3.27 (1H, d, J=14.4 Hz); 3.80 (1H, d, J=13.2 Hz); 3.88 (1H, d, J=13.2 Hz); 5.01-5.09 (1H, m); 6.79 (1H, d, J=2.2 Hz); 7.07-7.40 (12H, m); 7.44 (1H d.d, J=8.3 and 0.7 Hz); 7.65 (1H, d, J=7.8 Hz); 7.68 (1H, d, J=8.1 Hz); 7.93 (1H, s); MS m/e (ES⁺): 452.1 (100%, M⁺ + H); Analysis calculated for $C_{29}H_{29}N_3O_2$: C, 77.14; H, 6.47; N, 9.30%.

Found: C, 76.91; H, 6.39; N, 9.26%.

5

EXAMPLE 20.

3-(1H-Indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-2-[(1H-pyrrol-2-ylmethyl)-amino]-propionamide, [R-(R*,S*)]

10

15

20

25

To a stirred solution of 2-pyrrolecarboxaldehyde (71mg, 0.75mmol) in 1,2-dichloroethane (10mL) was added 2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide (161mg, 0.5mmol) followed by sodium triacetoxyborohydride (424mg, 2mmol). After stirring over night at room temperature the reaction was cautiously quenched with saturated NaHCO₃ (50mL) and extracted with CH₂Cl₂ (2 x 50mL). The combined organic phases were dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using 40% EtOAc in heptane as eluent. Crystallization from ether/heptane gave pure product (50mg, 25%); mp 123-133°C; $[\alpha]_D^{23} = (c=1, MeOH)$; IR-(film): 3314, 2976, 2926, 2852, 1651, 1511, 1455, 909, 736 cm⁻¹; NMR (CDCl₃): δ 1.41 (3H, d, J=6.8 Hz); 1.45 (3H, s); 3.14 (1H, d, J=14.4 Hz); 3.29 (1H, d, J=14.4 Hz); 3.70 (1H, d, J=13.1 Hz); 3.76 (1H, d, J=12.9 Hz); 5.02-5.10 (1H, m); 5.97 (1H, s); 6.07-6.09 (1H, m); 6.58-6.60 (1H, m); 6.74 (1H, d, J=2.2 Hz); 7.10-7.35 (8H, m); 7.41 (1H d, J=7.6 Hz); 7.65 (1H, d, J=7.8 Hz); 7.89 (2H, s); MS m/e (ES⁺): 423.2 (20%, M⁺ + Na); 402.2 (30%); 401.2 (100%, M⁺ + H); 322.2 (40%); Analysis calculated for C₂₅H₂₈N₄O: C, 74.97; H, 7.05; N, 13.99%. Found: C, 74.83; H, 7.05; N, 13.95%.

EXAMPLE 21.

3-(1H-Indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-2-[(2H-pyrazol-3-ylmethyl)-amino]-propionamide, [R-(R*,S*)]

5

10

15

20

25

To a stirred solution of pyrazole-3-carboxaldehyde (96mg, 1mmol, supplied as dimer) in pyridine (10mL)was added 2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)propionamide (161mg, 0.5mmol) followed by sodium triacetoxyborohydride (848mg, 4mmol). After stirring over night at room temperature another portion of sodium triacetoxyborohydride (424mg, 2mmol) was added. After stirring over night at room temperature the pyridine was removed under reduced pressure. The residue was taken up in CH₂Cl₂ (100mL) and saturated NaHCO₃. The aqueous phase was extracted with CH₂Cl₂ (100mL). The combined organic phases were washed with brine (50mL), dried (MgSO₄), and the solvent was removed under reduced pressure. The residue was initially purified by chromatography on normal phase silica using 95% EtOAc in heptane as eluent. The solvent was removed under reduced pressure and the residue was dissolved in aqueous acetonitrile and acidified using formic acid. Purification by chromatography on reverse phase silica using 25% CH₃CN in H₂O (0.1 % formic acid in mobile phases) as eluent gave pure product. The solvent was removed under reduced pressure and the residue was suspended between EtOAc and saturated NaHCO3. The EtOAc was dried (MgSO₄) and the solvent was removed under reduced pressure to give pure product as a glass (20mg, 10%); IR (film): 3260, 3059, 2979, 2927, 1651, 1515, 1456, 1374, 1266, 1105, 1048, 1011, 932, 741 cm⁻¹; NMR (DMSO-d₆): δ 1.22 (3H, s); 1.35 (3H, d, J=6.8 Hz); 2.26 (1H, s); 2.96-3.05 (2H, m); 3.50-3.75 (2H, m); 4.93 (1H, s); 6.10 (1H, s); 6.89-6.93 (2H, m); 7.00-7.04 (1H, m); 7.18-7.32 (6H, m); 7.35 (0.5H, s); 7.52 (1H, d, J=7.8 Hz); 7.60 (0.5H, s); 8.05-8.20 (1H, m); 10.82 (1H, s); 12.52 (0.5H, s); 12.73 (0.5H, s); MS m/e (ES⁺): 424.1 (27%); 402.1 $(100\%, M^{+} + H).$

EXAMPLE 22.

2-(3-Benzofuran-2-ylmethyl-ureido)-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

5

Step 1

10 To a stirred solution of potassium hydroxide (6.6g, 100mmol, 85%) and hydroxylamine (3.66, 52.5mmol) in **EtOH** (100mL, 95%) and water (100mL)added was benzofurancarboxaldehyde (7.34g, 50mmol). Stirred for 48 h before removing the EtOH under reduced pressure. The aqueous phase was saturated with NaCl and then extracted with EtOAc (2 x 300mL). The combined organic phases were dried (MgSO₄) and the solvent removed 15 under reduced pressure. Crystallization from ether gave pure oxime (7.2g, 89%).

To an ice-cold solution of the oxime (3.22g, 20mmol) in THF (150mL, anhydrous) was added dropwise a solution of lithium aluminum hydride (20mL, 20mmol, 1M in THF) under an atmosphere of nitrogen. Reaction mixture allowed to reach room temperature and stirred over night. Reaction mixture cautiously quenched using water. Added 5N NaOH, and aqueous phase extracted with EtOAc (2 x 100mL). The combined organic layers were washed with brine, dried (MgSO₄), and the solvent was removed under reduced pressure. The residue was purified by chromatography on normal phase silica using EtOAc as eluent to give intermediate. IX (1.75g, 59%).

25 Step 2

20

A solution of the amine prepared in step 1 (1.358g, 9.23mmol) and pyridine (1.46, 18.5mmol) in CH₂Cl₂ (20mL, anhydrous) was added dropwise over 20 min to an ice cooled solution of triphosgene (0.96, 3.23mmol). Reaction mixture allowed to reach room temperature. After 30

10

15

25

30

min, solvent removed under reduced pressure. The residue was taken up in EtOAc, filtered, and solvent removed under reduced pressure to give isocyanate (1.60g, 100%). IR (film): 2256 cm⁻¹. A solution of the isocyanate (1.038g, 6mmol) and 2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide (1.926g, 6mmol) in THF (50mL, anhydrous) was stirred at room temperature for 5 min. The solvent was removed under reduced pressure. The residue was taken up in EtOAc and washed with 1N HCl (3x 20mL), saturated Na₂CO₃ (30mL), brine (30mL), dried MgSO₄, and the solvent removed under reduced pressure. The residue was purified by chromatography on reverse phase silica using 65% MeOH in H₂O as eluent. Crystallization from MeOH/H₂O gave pure product (1.35g, 45%). mp 176-178°C; $[\alpha]_D^{22}$ = +30.4° (c=1, MeOH); IR (film): 3321, 3058, 2978, 2932, 1645, 1558, 1506, 1495, 1445, 1253, 741 cm⁻¹; NMR (CDCl₃): δ 1.35 (3H, d, J=6.8 Hz); 1.61 (3H, s); 3.20 (1H, d, J=14.6 Hz); 3.54 (1H, d, J=14.6 Hz); 4.38 (1H, d.d, J=16.0 and 6.0 Hz); 4.45 (1H, d.d, J=15.9 and 6.1 Hz); 4.78 (1H, t, J=6.0 Hz); 4.97 (1H, s); 4.95-5.05 (1H, m); 6.49 (1H, s); 6.76 (1H, d, J=2.4 Hz); 7.00 (1H, d, J=7.6 Hz); 7.05-7.10 (1H, m); 7.13-7.28 (9H, m); 7.38 (1H, d, J=8.1 Hz); 7.48-7.50 (1H, m); 7.57 (1H, d, J=7.8 Hz); 7.74 (1H, s); MS m/e (APCI⁺): 496.3 (30%); 495.2 (100%, M^+ + H); 477.2 (7%); 374.2 (7%); 322.3 (17%); Analysis calculated for C₃₀H₃₀N₄O₃: C, 72.85; H, 6.11; N, 11.32%. Found: C, 73.09; H, 6.08; N, 11.35%.

EXAMPLES 23 TO 191 (see Table 2 below)

20 Intermediate VII, N-[b]benzofuranylmethyl-R-α-methyl-tryptophan-N-carboxyanhydride

Intermediate I (5.23g, 15mmol) was stirred in toluene (50mL) under nitrogen and heated to 55°C. Phosgene in toluene (37mL, 75mmol) was added in one portion and as soon as the temperature had returned to 55°C dry THF (150mL) was added rapidly dropwise. Stirring was continued for 30 min and the reaction was then cooled, the solvent removed *in vacuo*. The residue taken up in ether (50mL) and filtered and evaporated to dryness several times until a solid was obtained; (6.15g, 100%); IR (film): 3418, 1844, 1771, 1455, 1397, 1251, 986, 746cm⁻¹; NMR (CDCl₃) 1.64 (3H, s); 3.31 (1H, d, J=15 Hz); 3.44 (1H, d, J=15 Hz); 4.45 (1H, d J=16Hz); 4.81 (1H, d, J=16 Hz); 6.77 (1H, s); 6.94 (1H, d J=2.8 Hz); 7.14-7.58 (8H, m); 8.16 (1H, s).

General procedure for array synthesis of Examples 23 to 191

10

15

20

25

30

A 40-well DTI synthesizer rack (US 5324483) was loaded with 40 DTI vials (12 mL). To each vial 0.15 - 0.21 mmol of an amine or amine HCl salt was added. The rack was placed in a Cyberlab Liquid Handling Robot and to each vial 0.10 mmol N-[b]benzofuranylmethyl-R-\alphamethyl-tryptophan-N-carboxyanhydride (0.227 M in THF) was added. To those vials that contained amine HCl salts, 0.15 mmol triethylamine (0.254 M in THF) was added, in order to liberate the free amines. THF was then added to each vial to make up the total volume to 3 mL. The vials were placed in a 40-well DTI synthesizer equipped with a heating block, 40 condensers and a nitrogen manifold. The synthesizer was kept under a continuous flow of nitrogen and was shaken at 65°C on an orbital shaker for 2 days. The reactions were monitored by TLC (10% CH₃CN in CH₂Cl₂). The vials in which the reaction had gone to completion were taken out. To the remaining vials CH₃CN (2mL) was added each and these were shaken at 85°C for 19 h. The vials in which the reaction had gone to completion were taken out. To the remaining vials pyridine (1mL) was added each and these were shaken at 105°C for 6 h followed by 15 h at 65°C. The vials were then concentrated at reduced pressure in a Speedvac and were purified by chromatography over a 12 mL LC-Si SPE cartridge containing 2 g silica (elution with 10% CH₃CN in CH₂Cl₂ followed by 20% CH₃CN in CH₂Cl₂, 5% methanol in CH₂Cl₂, 10% methanol in CH₂Cl₂, 20% methanol in CH₂Cl₂ and 50% methanol in CH₂Cl₂, depending on the polarity of the products). The products were subjected to LC-MS. Those products which did contain the desired molecular ion, but were not sufficiently pure (typically < 85%) were further purified by prep HPLC on a C18 reversed phase preparative column. The HPLC-purified products were re-analyzed by LC-MS to determine the purity. The 40 final products were analyzed by ¹H NMR.

EXAMPLES 192 TO 308 (see Table 3 below)

Intermediate II

Step 1

The compound was prepared as described for Intermediate I, step 1; (20.5g, 59%); NMR (CDCl₃) 2.10 (1H, s); 3.18 (2H, m); 3.60 (3H, s); 3.80-4.00 (2H, m); 6.43 (1H, s); 7.03-7.60 (9H, m); 8.00 (1H, s).

Step 2

The compound was prepared as described for Intermediate I; (7.02g, 85%); NMR (DMSO-D₆) 3.01-3.12 (2H, m); 3.52 (1H, m); 3.80 (1H, d, J=15 Hz); 3.80 (1H, d, J=14.8 Hz); 6.61 (1H, s); 6.93-7.54 (9H, m); 10.82 (1H, s).

5

10

15

20

25

General procedure for array synthesis of Examples 192 to 308 (see Table 4 below)

A 40-well DTI synthesizer rack was loaded with 40 Kimble vials (10 mL). To each vial approximately 0.34 g (0.10 mmol) N-[b]benzofuranylmethyl-R-tryptophan was added followed by 1.5 equivalent of an amine or amine HCl salt. The rack was placed in a Cyberlab Liquid Handling Robot and to each vial 1.0 equivalent of HBTU (0.4 M in DMF) was added followed by 1.5 equivalent of diisopropylethylamine (0.5 M in DMF). To those vials, which contained amine HCl salts, an additional equivalent of diisopropylethylamine was added. DMF was added to make the total volume up to 1.5 mL. The vials were capped and the rack was shaken on an orbital shaker at room temperature for 3 h. To each vial, water (1mL) was added and the mixtures were purified on 3 mL LC-18 reversed phase SPE cartridges containing 500 mg of sorbent, using an ASPEC XL4 robot. The cartridges were conditioned with methanol (4mL) followed by methanol/water 1:1 (4mL). Water (1mL) was loaded onto the cartridges and the crude reaction mixtures were loaded into the water layer. The cartridges were washed with water (4mL) and methanol/water 1:1 (4mL) and were eluted with methanol (4mL). The methanol fractions were concentrated and the products were subjected to LC-MS. Those products which did contain the desired molecular ion, but were not sufficiently pure (typically < 90%) were further purified by prep HPLC on a C18 reversed phase preparative column. The HPLC-purified products were re-analyzed by LC-MS to determine the purity. The 40 final products were analyzed by ¹H NMR.

EXAMPLES 309 TO 405 (see Table 5 below)

General procedure for array synthesis of Examples 309 to 405

The N-terminal derivatives where prepared from 2-amino-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, prepared as described by Boyle S., et al., <u>Bioorg. Med. Chem.</u> 2:357 (1994), or from 2-amino-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide (Intermediate V), using the procedure of Siegel M.G., et al., <u>Tet. Lett.</u> 38: 3357, (1997).

Because the compounds are potent ligands to the NK₁ receptor, they are effective at displacing substance P at that position, and therefore are useful for treating biological conditions otherwise mediated by substance P. Accordingly, compounds capable of antagonising the effects of substance P at NK₁ receptors will be useful in treating or preventing a variety of brain disorders including pain (inflammatory, surgical and neuropathic), anxiety, panic, depression, schizophrenia, neuralgia, stress, sexual dysfunction, bipolar disorders, movement disorders, cognitive disorders, and addiction disorders; inflammatory diseases such as arthritis, asthma, and psoriasis; gastrointestinal disorders including colitis, Crohn's disease, irritable bowel syndrome and satiety; allergic responses such as eczema and rhinitis; vascular disorders such as angina and migraine; neuropathological disorders including scleroderma and emesis. The compounds of the invention, NK₁ receptor antagonists, are also useful as anti-angiogenic agents, for the treatment of conditions associated with aberrant neovascularization such as rheumatoid arthritis, atherosclerosis and tumour cell growth. They will also be useful as agents for imaging NK₁ receptors in vivo in conditions such as ulcerative colitis and Crohn's disease.

15

20

25

30

5

10

The compounds of the present invention are highly selective and competitive antagonists of the NK₁ receptor. They have been evaluated in an NK₁-receptor binding assay which is described below.

Human lymphoma IM9 cells were grown in RPMI 1640 culture medium supplemented with 10% fetal calf serum and 2mM glutamine and maintained under an atmosphere of 5% CO₂. Cells were passaged every 3-4 days by reseeding to a concentration of 4-8 x 10⁶ / 40 ml per 175 cm² flask. Cells were harvested for experiments by centrifugation at 1000 g for 3 min. Pelleted cells were washed once by resuspension into assay buffer (50mM Tris HCl pH 7.4, 3mM MnCl₂, 0.02% BSA, 40mg/mL bacitracin, 2mg/mL chymostatin, 2mM phosphoramidon, 4mg/mL leupeptin) and repeating the centrifugation step before resuspending at a concentration of 2.5 x 10⁶ cells/mL assay buffer. Cells (200ml) were incubated with [¹²⁵I]Bolton-Hunter substance P (0.05-0.1 nM), in the presence and absence of varying concentrations of test compounds for 50 min at 21°C. Non-specific binding (10% of the total binding observed under these conditions) was defined by 1mM [Sar⁹, Met(0₂)¹¹] substance P. Reactions were terminated by rapid filtration under vacuum onto GF\C filters presoaked in 0.2% PEI for 1-2 h, using a Brandel cell harvester. Filters were washed with 6 x 1ml ice-cold Tris HCl (50mM, pH 7.4) and radioactivity bound determined

using a gamma counter. Results were analyzed using iterative curve fitting procedures in RS1 or Graphpad Inplot.

Table 1: In Vitro Human NK₁ Receptor Binding Assay

Example No	NK ₁ binding
	IC ₅₀ (nM)
1	591
2	23
3	6
4	1213
5	295
6	0.7
7	3.3
8	27
9	112
10	51
11	46
12	14
13	35
14	4.7
15	>10,000
16	9.1
17	344
18	4.4
19	58
20	815
21	1808
22	2.9

5 Similar binding data are presented in Tables 2-5 for specific invention compounds.

Table 2: Examples 23-191

Ex.	Name	Yield	Mol.	lcms %	lems Rt	IC ₅₀ (nM)
		(mg)	ion	purity	(min)	hNK_1
23	2-[(Benzofuran-2-ylmethyl)-amino]-3	19,7	439	100	3,07	1284
	(1H-indol-3-yl)-2-methyl-N-pyridin-2					
	ylmethyl-propionamide					
24	2-[(Benzofuran-2-ylmethyl)-amino]-	23,5	439	100	2,6	547
	3-(1H-indol-3-yl)-2-methyl-N-					
	pyridin-3-ylmethyl-propionamide	•				
25	2-[(Benzofuran-2-ylmethyl)-amino]-	41,9	439	100	2,6	131
	3-(1H-indol-3-yl)-2-methyl-N-					
	pyridin-4-ylmethyl-propionamide					
26	2-[(Benzofuran-2-ylmethyl)-amino]-	18,4	430	100	5,2	1011
	N-cyclohexyl-3-(1H-indol-3-yl)-2-					
	methyl-propionamide					
27	2-[(Benzofuran-2-ylmethyl)-amino]-	24,6	444	100	5,81	311
	N-cyclohexylmethyl-3-(1H-indol-3-					
	yl)-2-methyl-propionamide					
28	2-[(Benzofuran-2-ylmethyl)-amino]-	26,5	438	97	4,6	44
	N-benzyl-3-(1H-indol-3-yl)-2-					
	methyl-propionamide			•		
29	2-[(Benzofuran-2-ylmethyl)-amino]-	43,1	468	82	3,22	7
	N-(2-hydroxy-1-phenyl-ethyl)-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
30	2-[(Benzofuran-2-ylmethyl)-amino]-	43,3	486	74	5,81	17
	N-[1-(4-chloro-phenyl)-ethyl]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide				-	
31	2-[(Benzofuran-2-ylmethyl)-amino]-	29,4	502	100	6,05	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	naphthalen-1-yl-ethyl)-propionamide					
32	2-[(Benzofuran-2-ylmethyl)-amino]-	40,1	502	100	5,96	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	naphthalen-1-yl-ethyl)-propionamide					

		·				
33	2-[(Benzofuran-2-ylmethyl)-amino]-	44,4	470	100	5,11	9
	N-[1-(4-fluoro-phenyl)-ethyl]-3-(1H-					
	indol-3-yl)-2-methyl-propionamide		-			
34	2-[(Benzofuran-2-ylmethyl)-amino]-	23,8	497	100	5,07	14
	3-(1H-indol-3-yl)-2-methyl-N-[1-(4-					
	nitro-phenyl)-ethyl]-propionamide					
35	2-[(Benzofuran-2-ylmethyl)-amino]-	27,8	482	100	4,86	31
	3-(1H-indol-3-yl)-N-[1-(4-methoxy-					
	phenyl)-ethyl]-2-methyl-	•				
	propionamide					
36	N-[1-(2-Amino-phenyl)-ethyl]-2-	25,8	467	100	4,45	1620
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
37	N-[1-(3-Amino-phenyl)-ethyl]-2-	25,5	467	100	3,7	364
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
38	N-[1-(4-Amino-phenyl)-ethyl]-2-	22,5	467	100	3,2	141
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-				•	
	propionamide					
39	2-[(Benzofuran-2-ylmethyl)-amino]-	48,3	495	100	5,26	863
	N-[1-(4-dimethylamino-phenyl)-					
	ethyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
40	2-[(Benzofuran-2-ylmethyl)-amino]-	25,3	495	100	5,18	1065
	N-[1-(3-dimethylamino-phenyl)-					
	ethyl]-3-(1H-indol-3-yl)-2-methyl-					-
	propionamide					•
41	2-[(Benzofuran-2-ylmethyl)-amino]-	17	458	100	4,89	19
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	thiophen-3-yl-ethyl)-propionamide					
42	2-[(Benzofuran-2-ylmethyl)-amino]-	34,5	452	100	5,06	261
	3-(1H-indol-3-yl)-2-methyl-N-(1-					•
	phenyl-ethyl)-propionamide					

43	2-{[2-[(Benzofuran-2-ylmethyl)-	28,5	500	10	9,4	3613
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	propionylamino]-methyl}-4-					
	hydroxy-pyrimidine-5-carboxylic	•			-	
	acid					
44	2-[(Benzofuran-2-ylmethyl)-amino]-	43,9	453	90	6,85	151
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	pyridin-3-yl-ethyl)-propionamide					
45	2-[(Benzofuran-2-ylmethyl)-amino]-	43	453	95	7,15	913
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	pyridin-2-yl-ethyl)-propionamide					
46	2-[(Benzofuran-2-ylmethyl)-amino]-	49,5	506	95	10,2	1560
	N-(2,4-dichloro-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					
47	2-[(Benzofuran-2-ylmethyl)-amino]-	52,6	531	95	6,66	7616
	3-(1H-indol-3-yl)-2-methyl-N-[2-(4-					
	sulfamoyl-phenyl)-ethyl]-					
	propionamide					
48	N-(2-Amino-6-fluoro-benzyl)-2-	49,3	471	95	8,68	6423
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-			•		
	propionamide					
49	2-[(Benzofuran-2-ylmethyl)-amino]-	4,9	460	95	8,22	1550
	N-(2-hydroxy-cyclohexylmethyl)-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
50	2-[(Benzofuran-2-ylmethyl)-amino]-	44,4	468	95	7,6	1333
	N-(2-hydroxy-2-phenyl-ethyl)-3-					
	(1H-indol-3-yl)-2-methyl-				-	
	propionamide					
51	2-[(Benzofuran-2-ylmethyl)-amino]-	31,1	574	95	10,32	179
	N-(3,5-bis-trifluoromethyl-benzyl)-					
	3-(1H-indol-3-yl)-2-methyl-					
	propionamide					

52					0 1/	- 10 000
	2-[(Benzofuran-2-ylmethyl)-amino]-	39,3	459	95	9,16	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[2-(1-					
	methyl-pyrrolidin-2-yl)-ethyl]-		•			
50	propionamide					
53	2-[(Benzofuran-2-ylmethyl)-amino]-	42	452	90	8,9	262
	3-(1H-indol-3-yl)-2-methyl-N-					
	phenethyl-propionamide					
54	2-[(Benzofuran-2-ylmethyl)-amino]-	23,2	466	90	9,95	834
	N-(2,3-dimethyl-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					
55	2-[(Benzofuran-2-ylmethyl)-amino]-	49	468	95	8,95	643
	3-(1H-indol-3-yl)-N-(3-methoxy-					
	benzyl)-2-methyl-propionamide					
56	N-[2-(4-Amino-phenyl)-ethyl]-2-	49	467	90	7,31	3228
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
57	2-[(Benzofuran-2-ylmethyl)-amino]-	7	458	95	10,73	290
	N-(1-cyclohexyl-ethyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
58	2-[(Benzofuran-2-ylmethyl)-amino]-	27	466	90	9,95	624
	3-(1H-indol-3-yl)-2-methyl-N-(1-p-					
	tolyl-ethyl)-propionamide					
59	2-[(Benzofuran-2-ylmethyl)-amino]-	46	522	90	9,61	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(3-					
	trifluoromethoxy-benzyl)-					
	propionamide					
60	2-[(Benzofuran-2-ylmethyl)-amino]-	10	481	90	9,16	964
	N-(4-dimethylamino-benzyl)-3-(1H-					_
	indol-3-yl)-2-methyl-propionamide					•
61	2-[(Benzofuran-2-ylmethyl)-amino]-	48,4	456	90	8,74	61
	N-(4-fluoro-benzyl)-3-(1H-indol-3-					
	yl)-2-methyl-propionamide					
62	N-(4-Amino-benzyl)-2-	32,3	453	90	7,29	837
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-					

	propionamide					
63	2-[(Benzofuran-2-ylmethyl)-amino]-	21,6	466	75	9,95	58
05	3-(1H-indol-3-yl)-2-methyl-N-(1-	21,0	700	,,,	7,75	30
	phenyl-propyl)-propionamide					
64	2-[(Benzofuran-2-ylmethyl)-amino]-	50,2	472	90	9,3	76
04	N-(4-chloro-benzyl)-3-(1H-indol-3-	30,2	4/2	70	7,5	70
	yl)-2-methyl-propionamide					
65	2-[(Benzofuran-2-ylmethyl)-amino]-	43,9	516	90	9,43	700
05	N-(2-bromo-benzyl)-3-(1H-indol-3-	13,5	310	70	2,.5	700
	yl)-2-methyl-propionamide					
66	2-[(Benzofuran-2-ylmethyl)-amino]-	40,9	522	90	9,69	3444
00	3-(1H-indol-3-yl)-2-methyl-N-(4-	.0,>	322	70	,,,,	3
	trifluoromethoxy-benzyl)-					•
	propionamide					
67	2-[(Benzofuran-2-ylmethyl)-amino]-	18,8	466	92	9,94	3
	3-(1H-indol-3-yl)-2-methyl-N-(1-p-	·			·	
	tolyl-ethyl)-propionamide					
68	2-[(Benzofuran-2-ylmethyl)-amino]-	48,9	468	90	8,41	312
	3-(1H-indol-3-yl)-N-(4-methoxy-			•		
	benzyl)-2-methyl-propionamide					
69	2-[(Benzofuran-2-ylmethyl)-amino]-	44,7	453	95	7,68	112
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	pyridin-2-yl-ethyl)-propionamide					
70	2-[(Benzofuran-2-ylmethyl)-amino]-	38,1	458	90	10,45	216
	N-(2-cyclohexyl-ethyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
71	2-[(Benzofuran-2-ylmethyl)-amino]-	40	452	90	9,13	144
	3-(1H-indol-3-yl)-2-methyl-N-(4-					-
	methyl-benzyl)-propionamide					
72	2-[(Benzofuran-2-ylmethyl)-amino]-	43,2	516	90	9,43	18
	N-(3-bromo-benzyl)-3-(1H-indol-3-					
	yl)-2-methyl-propionamide					

72	0.00	-25.0				
73	2-[(Benzofuran-2-ylmethyl)-amino]-	35,2	468	90	7,56	1229
	N-(2-hydroxy-2-phenyl-ethyl)-3-					
	(1H-indol-3-yl)-2-methyl-		-			
	propionamide					
74	2-[(Benzofuran-2-ylmethyl)-amino]-	16	506	90	9,51	12
	3-(1H-indol-3-yl)-2-methyl-N-(3-					
	trifluoromethyl-benzyl)-	•				
	propionamide					
75	2-[(Benzofuran-2-ylmethyl)-amino]-	48,1	528	100	7,06	>10,000
	N-(1,2-diphenyl-ethyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
76	2-[(Benzofuran-2-ylmethyl)-amino]-	28	405	50	2,01	3696
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	methylamino-ethyl)-propionamide					
77	2-[(Benzofuran-2-ylmethyl)-amino]-	20	472	100	6,19	17
	N-(3-chloro-benzyl)-3-(1H-indol-3-					
	yl)-2-methyl-propionamide					
78	2-[(Benzofuran-2-ylmethyl)-amino]-	9,2	485	50	1,93	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-					
	(1,3,5-triaza-tricyclo[3.3.1.1>3,7]-					
	dec-7-yl)-propionamide				•	
79	2-[(Benzofuran-2-ylmethyl)-amino]-	30,1	534	100	6,84	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[1-					
	methyl-2-(3-trifluoromethyl-phenyl)-					
	ethyl]-propionamide					
80	2-[(Benzofuran-2-ylmethyl)-amino]-	22,4	529	100	5,9	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	phenyl-2-pyridin-2-yl-ethyl)-					
	propionamide					-
81	4-{[2-[(Benzofuran-2-ylmethyl)-	37,4	526	100	5,59	>10,000
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	propionylamino]-methyl}-3-					
	methoxy-benzoic acid methyl ester					
82	2-[(Benzofuran-2-ylmethyl)-amino]-	8,5	432	100	6,51	1144
	3-(1H-indol-3-yl)-2-methyl-N-	•				
	(1,2,2-trimethyl-propyl)-					

	propionamide	<u></u>				
83	2-[(Benzofuran-2-ylmethyl)-amino]-	27,5	419	100	3,61	3519
	N-(2-dimethylamino-ethyl)-3-(1H-	·				
	indol-3-yl)-2-methyl-propionamide					
84	4-[2-[(Benzofuran-2-ylmethyl)-	5	544	100	1,62	>10,000
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	propionylamino]-3-(4-chloro-					•
	phenyl)-butyric acid	•				
85	2-[(Benzofuran-2-ylmethyl)-amino]-	11,3	479	100	3,73	2443
	3-(1H-indol-3-yl)-2-methyl-N-(3-					•
	oxo-2,3-dihydro-1H-isoindol-1-yl)-					
	propionamide					
86	2-[(Benzofuran-2-ylmethyl)-amino]-	24,7	460	100	2,58	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[2-(2-					
	oxo-imidazolidin-1-yl)-ethyl]-					
	propionamide					
87	2-[(Benzofuran-2-ylmethyl)-amino]-	38,9	551	100	4,63	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[3-(4-					
	pyridin-2-yl-piperazin-1-yl)-propyl]-			•		
	propionamide					
88	2-[(Benzofuran-2-ylmethyl)-amino]-	33,4	515	100	4,58	>10,000
	N-[4-(2,6-dimethyl-piperidin-1-yl)-					
	butyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
89		21,2	527	100	8,88	6735
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	piperidin-1-ylmethyl-cyclohexyl)-				-	
	propionamide					
90	2-[(Benzofuran-2-ylmethyl)-amino]-	8,2	456	100	3,07	>10,000
	N-[2-(1H-imidazol-4-yl)-1-methyl-					
	ethyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide			·····		

91	2. I(Pangafuran 2 - denathar) and in-1	20.1	472	100	2.07	> 10,000
91	2-[(Benzofuran-2-ylmethyl)-amino]-	28,1	473	100	3,07	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[3-(2-					
	oxo-pyrrolidin-1-yl)-propyl]-					
00	propionamide	,	222	• • •		
92	2-[(Benzofuran-2-ylmethyl)-amino]-	17,6	390	100	4,96	2285
	3-(1H-indol-3-yl)-N-isopropyl-2-					
0.0	methyl-propionamide		. -			
93	2-[(Benzofuran-2-ylmethyl)-amino]-	17,6	473	100	3,29	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[1-					
	methyl-2-(2-oxo-pyrrolidin-1-yl)-					
_	ethyl]-propionamide					
94	2-[(Benzofuran-2-ylmethyl)-amino]-	30,6	501	100	3,27	>10,000
	N-{4-(2,5-dimethyl-pyrrolidin-1-yl)-					
	butyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
95	N-[2-(5-Amino-1H-imidazol-4-yl)-	19,2	471	100	3,5	>10,000
	2-oxo-ethyl]-2-[(benzofuran-2-				,	
	ylmethyl)-amino]-3-(1H-indol-3-yl)-					
_	2-methyl-propionamide					
96	2-[(Benzofuran-2-ylmethyl)-amino]-	4,6	461	100	2,26	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[2-(2-			•	• .	
	oxo-oxazolidin-3-yl)-ethyl]-					
	propionamide					
97	2-[(Benzofuran-2-ylmethyl)-amino]-	30	442	100	2,26	>10,000
	N-[2-(1H-imidazol-4-yl)-ethyl]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
98	2-[(Benzofuran-2-ylmethyl)-amino]-	34,5	528	100	2,26	>10,000
	N-(2,2-diphenyl-ethyl)-3-(1H-indol-					-
٠	3-yl)-2-methyl-propionamide					
99	2-[(Benzofuran-2-ylmethyl)-amino]-	17,9	459	100	2,26	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[2-(2-					
	oxo-pyrrolidin-1-yl)-ethyl]-					
	propionamide					

100	2-[(Benzofuran-2-ylmethyl)-amino}-	7,2	473	100	2,26	390
	3-(1H-indol-3-yl)-2-methyl-N-(5-	,			_,	
	nitro-furan-2-ylmethyl)-					
	propionamide	•				
101	2-[(Benzofuran-2-ylmethyl)-amino]-	19,4	456	100	2,27	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[2-(5-	ŕ				,
	methyl-1H-imidazol-4-yl)-ethyl]-					
	propionamide					
102	2-[(Benzofuran-2-ylmethyl)-amino]-	18,9	549	90	8,66	>10,000
	N-[1-(3-dimethylamino-phenyl)-				•	
	cyclopentylmethyl]-3-(1H-indol-3-					
	yl)-2-methyl-propionamide					
103	2-[(Benzofuran-2-ylmethyl)-amino]-	0,4	478	77	0 05	74
	N-(1H-benzoimidazol-2-ylmethyl)-					
	3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
104	2-[(Benzofuran-2-ylmethyl)-amino]-	8,3	458	100	0 06	8
	N-(1-cyclohexyl-ethyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
105	2-[(Benzofuran-2-ylmethyl)-amino]-	13,2	510	69	0 05	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-			•		
	phenyl-[1,3]dioxolan-2-ylmethyl)-					
	propionamide					
106	2-[(Benzofuran-2-ylmethyl)-amino]-	5,7	507	100	0 06	4630
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	methyl-1,2,3,4-tetrahydro-					
	isoquinolin-3-ylmethyl)-					
	propionamide					
107	. , , ,	14	464	100	0 05	4145
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	phenyl-cyclopropyl)-propionamide					
108		0,6	493	100	0 05	4566
	3-(1H-indol-3-yl)-2-methyl-N-					
	(1,2,3,4-tetrahydro-isoquinolin-3-					
	ylmethyl)-propionamide					

109	2-[(Benzofuran-2-ylmethyl)-amino]-	30,3	512	100	0 06	279
	N-(2,5-dichloro-thiophen-3-					
	ylmethyl)-3-(1H-indol-3-yl)-2-					
	methyl-propionamide				•	
110	2-[(Benzofuran-2-ylmethyl)-amino]-	19,7	478	100	0 05	1141
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-cyclopropylmethyl)-					
	propionamide					
111	2-[(Benzofuran-2-ylmethyl)-amino]-	1	478	100	0 08	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-					
	(1,2,3,4-tetrahydro-naphthalen-2-yl)-					
	propionamide					
112	2-[(Benzofuran-2-ylmethyl)-amino]-	3	483	100	0 06	12
	3-(1H-indol-3-yl)-2-methyl-N-(3-					
	nitro-benzyl)-propionamide					
113	2-[(Benzofuran-2-ylmethyl)-amino]-	10,1	464	100	0 05	463
	N-indan-2-yl-3-(1H-indol-3-yl)-2-					
	methyl-propionamide					
114	2-[(Benzofuran-2-ylmethyl)-amino]-	2,5	472	90	0 05	128
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	thiophen-2-yl-propyl)-propionamide				•	
115	2-[(Benzofuran-2-ylmethyl)-amino]-	11,5	442	95	0 05	154
	N-(2-furan-2-yl-ethyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
116	2-[(Benzofuran-2-ylmethyl)-amino]-	5,6	460	100	0 05	>10,000
	N-(1-hydroxy-cyclohexylmethyl)-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
117	2-[(Benzofuran-2-ylmethyl)-amino]-	14,2	482	100	0 06	- >10,000
	N-(1-furan-2-yl-cyclobutylmethyl)-					•
	3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
118	2-[(Benzofuran-2-ylmethyl)-amino]-	15	492	100	0 06	45
	N-[1-(5-chloro-thiophen-2-yl)-					
	ethyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide					

		· ·	,			
119	2-[(Benzofuran-2-ylmethyl)-amino]-	4,1	483	100	0 07	89
	3-(1H-indol-3-yl)-2-methyl-N-(4-					
	nitro-benzyl)-propionamide					
120	2-[(Benzofuran-2-ylmethyl)-amino]-	0,7	506	94	0 06	2652
	N-[2-(1H-indazol-3-yl)-1-methyl-				÷	
	ethyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide					•
121	2-[(Benzofuran-2-ylmethyl)-amino]-	15	441	100	0 05	654
	3-(1H-indol-3-yl)-2-methyl-N-(2-	•				
	pyrrol-1-yl-ethyl)-propionamide					
122	2-[(Benzofuran-2-ylmethyl)-amino]-	8,7	526	100	0 08	442
	N-[1-(2,5-dichloro-thiophen-3-yl)-					
	ethyl]-3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
123	2-[(Benzofuran-2-ylmethyl)-amino]-	7,3	499	63	0 04	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-[2-					
	(octahydro-indol-1-yl)-ethyl]-					
	propionamide					
124	2-[(Benzofuran-2-ylmethyl)-amino]-	2,6	497	100	0 07	92
	3-(1H-indol-3-yl)-2-methyl-N-[1-(4-					
	nitro-phenyl)-ethyl]-propionamide			•		
125	2-[(Benzofuran-2-ylmethyl)-amino]-	29,5	459	97	0 04	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	piperidin-1-yl-ethyl)-propionamide					
126	2-[(Benzofuran-2-ylmethyl)-amino]-	28	448	95	0 07	6794
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	methyl-[1,3]dioxolan-2-ylmethyl)-					
	propionamide				-	
127	2-[(Benzofuran-2-ylmethyl)-amino]-	23,9	427	100	0 05	191
	N-furan-2-ylmethyl-3-(1H-indol-3-					•
	yl)-2-methyl-propionamide					
128	2-[(Benzofuran-2-ylmethyl)-amino]-	31,7	461	95	0 03	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	morpholin-4-yl-ethyl)-propionamide					

129	2-[(Benzofuran-2-ylmethyl)-amino]-	37,7	452	100	0 06	43
	3-(1H-indol-3-yl)-2-methyl-N-(3-					
	methyl-benzyl)-propionamide		-			
130	2-[(Benzofuran-2-ylmethyl)-amino]-	37,8	464	100	0 05	163
	N-indan-1-yl-3-(1H-indol-3-yl)-2-					
	methyl-propionamide					
131	2-[(Benzofuran-2-ylmethyl)-amino]-	31,6	487	100	0 08	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	methyl-2-piperidin-1-yl-propyl)-					
	propionamide					
132	2-[(Benzofuran-2-ylmethyl)-amino]-	24,6	476	97	0 02	6035
	3-(1H-indol-3-yl)-2-methyl-N-[2-(2-					
	thioxo-imidazolidin-1-yl)-ethyl]-					
	propionamide					
133	2-[(Benzofuran-2-ylmethyl)-amino]-	5	480	87	0 06	4479
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	methyl-2-phenyl-propyl)-					
	propionamide					
134	2-[(Benzofuran-2-ylmethyl)-amino]-	27,3	456	100	0 02	5368
	N-(3-imidazol-1-yl-propyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide				•	
135	2-[(Benzofuran-2-ylmethyl)-amino]-	13,5	432	100	0 03	1205
	3-(1H-indol-3-yl)-2-methyl-N-					
	(tetrahydro-furan-2-ylmethyl)-					
	propionamide					
136	2-[(Benzofuran-2-ylmethyl)-amino]-	26,6	446	95	0 02	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	methyl-tetrahydro-furan-2-					
	ylmethyl)-propionamide					-
137	2-[(Benzofuran-2-ylmethyl)-amino]-	33,6	444	96	0 03	100
	3-(1H-indol-3-yl)-2-methyl-N-					
	thiophen-2-ylmethyl-propionamide					
138	2-[(Benzofuran-2-ylmethyl)-amino]-	25,4	432	96	0 02	4867
	3-(1H-indol-3-yl)-2-methyl-N-					
	(tetrahydro-furan-2-ylmethyl)-					
	propionamide					

						
139	2-[(Benzofuran-2-ylmethyl)-amino]-	41,7	474	93	0 05	99
	N-(2,5-difluoro-benzyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
140	2-[(Benzofuran-2-ylmethyl)-amino]-	31,8	466	100	0 05	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	phenyl-propyl)-propionamide					
141	N-(4-Amino-naphthalen-1-	11,6	503	95	0 03	2337
	ylmethyl)-2-[(benzofuran-2-					
	ylmethyl)-amino]-3-(1H-indol-3-yl)-					
	2-methyl-propionamide					
142	2-[(Benzofuran-2-ylmethyl)-amino]-	19,3	498	96	0 03	1961
	N-(2,3-dimethoxy-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					
143	2-[(Benzofuran-2-ylmethyl)-amino]-	32,9	468	96	0 02	>10,000
	N-[2-(4-hydroxy-phenyl)-ethyl]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
144	2-[(Benzofuran-2-ylmethyl)-amino]-	16,4	446	94	0 02	>10,000
	N-(1-hydroxymethyl-cyclopentyl)-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide			~		
145	2-[(Benzofuran-2-ylmethyl)-amino]-	35,9	453	97	0 01	1301
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	pyridin-3-yl-ethyl)-propionamide					
146	2-[(Benzofuran-2-ylmethyl)-amino]-	0,8	444	90	0 02	3587
	N-[1-(4,5-dihydro-furan-2-yl)-ethyl]-					
	3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
147	2-[(Benzofuran-2-ylmethyl)-amino]-	18,5	460	98	0 02	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	piperazin-1-yl-ethyl)-propionamide					
148	2-[(Benzofuran-2-ylmethyl)-amino]-	34,7	478	93	0 03	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-					
	(1,2,3,4-tetrahydro-naphthalen-1-yl)-					
	propionamide					
						· · · · · · · · · · · · · · · · · · ·

		-				
149	2-[(Benzofuran-2-ylmethyl)-amino]-	31,8	490	75	0 02	>10,000
	N-(2,5-dimethoxy-2,5-dihydro-					
	furan-2-ylmethyl)-3-(1H-indol-3-yl)-		•			
	2-methyl-propionamide					
150	2-[(Benzofuran-2-ylmethyl)-amino]-	32,4	466	95	0 04	2621
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	phenyl-propyl)-propionamide					
151	2-[(Benzofuran-2-ylmethyl)-amino]-	2,4	489	100	0 02	1213
	3-(1H-indol-3-yl)-2-methyl-N-					
	quinolin-3-ylmethyl-propionamide					
152	4-[2-[(Benzofuran-2-ylmethyl)-	9	510	94	0 01	>10,000
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	propionylamino]-3-phenyl-butyric					
	acid					
153	2-[(Benzofuran-2-ylmethyl)-amino]-	6,9	514	100	0 01	3555
	N-[2-hydroxy-2-(4-hydroxy-3-					
	methoxy-phenyl)-ethyl]-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					
154	2-[(Benzofuran-2-ylmethyl)-amino]-	6,1	431	5	0 04	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-					
	pyrrolidin-3-ylmethyl-propionamide				•	
155	2-[(Benzofuran-2-ylmethyl)-amino]-	25,2	445	93	0 02	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	pyrrolidin-1-yl-ethyl)-propionamide					
156	2-[(Benzofuran-2-ylmethyl)-amino]-	1,4	445	3	0 05	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-					
	piperidin-4-ylmethyl-propionamide					
157	2-[(Benzofuran-2-ylmethyl)-amino]-	38,2	452	95	0 02	455
	3-(1H-indol-3-yl)-2-methyl-N-(2-					-
	methyl-benzyl)-propionamide					-
158	2-[(Benzofuran-2-ylmethyl)-amino]-	21,4	464	96	0 02	2567
	N-indan-1-yl-3-(1H-indol-3-yl)-2-					
	methyl-propionamide					
159	2-[(Benzofuran-2-ylmethyl)-amino]-	7	492	92	0 01	3757
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	pyridin-3-yl-cyclobutylmethyl)-					

	propionamide			 -		
160	2-[(Benzofuran-2-ylmethyl)-amino]- 3-(1H-indol-3-yl)-2-methyl-N-(1- thiophen-2-yl-cyclohexyl)-	6,1	511	100	0 03	>10,000
	propionamide					
161	2-[(Benzofuran-2-ylmethyl)-amino]-	12,3	484	100	0 01	>10,000
	N-[2-(3,4-dihydroxy-phenyl)-ethyl]-					
	3-(1H-indol-3-yl)-2-methyl-					
	propionamide					
162	2-[(Benzofuran-2-ylmethyl)-amino]-	8,7	466	95	0 02	42
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-propyl)-propionamide					
163	2-[(Benzofuran-2-ylmethyl)-amino]-	16,9	466	80	0 07	166
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
164	oxo-2-phenyl-ethyl)-propionamide	<i>5 5</i>	5.42	10	0.06	> 10,000
104	2-[(Benzofuran-2-ylmethyl)-amino]- N-(5-hydroxy-4-oxo-4H-pyran-2-	5,5	542	10	0 06	>10,000
	ylmethyl)-3-(1H-indol-3-yl)-2-					
	methyl-propionamide					
165	2-[(Benzofuran-2-ylmethyl)-amino]-	38,1	456	100	0 08	>10,000
100	N-bicyclo[2.2.1]hept-2-ylmethyl-3-	50,1		100	0 00	10,000
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
166	2-[(Benzofuran-2-ylmethyl)-amino]-	41,9	456	95	0 07	37
	N-(3-fluoro-benzyl)-3-(1H-indol-3-					
	yl)-2-methyl-propionamide				_	
167	2-[(Benzofuran-2-ylmethyl)-amino]-	23,2	474	100	0 07	29.
	N-(3,4-difluoro-benzyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
168	2-[(Benzofuran-2-ylmethyl)-amino]-	42,8	490	95	0 08	230
	N-(2-chloro-4-fluoro-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					

169	2-[(Benzofuran-2-ylmethyl)-amino]-	11,2	467	100	0 06	6016
	N-(4,6-dimethyl-pyridin-3-					
	ylmethyl)-3-(1H-indol-3-yl)-2-		-			
	methyl-propionamide					•
170	2-[(Benzofuran-2-ylmethyl)-amino]-	49,6	533	100	0 08	2384
	N-(5-bromo-2-hydroxy-benzyl)-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
171	4-{[2-[(Benzofuran-2-ylmethyl)-	28,7	482	95	0 06	>10,000
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	propionylamino]-methyl}-benzoic					
	acid					
172	2-[(Benzofuran-2-ylmethyl)-amino]-	36,8	458	100	0 07	153
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	thiophen-2-yl-ethyl)-propionamide					
173	2-[(Benzofuran-2-ylmethyl)-amino]-	36,3	475	90	0 06	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(2-					
	morpholin-4-yl-2-oxo-ethyl)-					
	propionamide					
174	N-Benzo[1,3]dioxol-5-ylmethyl-2-	45,7	482	100	0 07	94
	[(benzofuran-2-ylmethyl)-amino]-3-				•	
	(1H-indol-3-yl)-2-methyl-					
	propionamide					
175	2-[(Benzofuran-2-ylmethyl)-amino]-	21,4	507	90	0 08	96
	N-(3,4-dichloro-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					
176	2-[2-[(Benzofuran-2-ylmethyl)-	44,3	453	100	0 07	1763
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	propionylamino]-3-(1H-imidazol-4-					-
	yl)-propionic acid methyl ester					
177	2-[(Benzofuran-2-ylmethyl)-amino]-	24,6	490	100	0 08	444
	N-(4-chloro-2-fluoro-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					
178	N-(3-Amino-benzyl)-2-	36,2	453	100	0 06	1373
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-					

	propionamide					
179	2-[(Benzofuran-2-ylmethyl)-amino]- N-(2,4-diamino-pyrimidin-5- ylmethyl)-3-(1H-indol-3-yl)-2-	3,1	470	56	0 06	5917
180	methyl-propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- N-(2-fluoro-benzyl)-3-(1H-indol-3-	42	456	95	0 07	266
181	yl)-2-methyl-propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- N-(2,4-difluoro-benzyl)-3-(1H-indol-	23,4	474	100	0 07	269
182	3-yl)-2-methyl-propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- N-(3,4-dihydroxy-benzyl)-3-(1H-	4,1	470	90	0 06	>10,000
183	indol-3-yl)-2-methyl-propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- N-[1-hydroxymethyl-2-(1H-imidagal 4-yl) othyll 2 (1H indol 2	1,7	472	33	0 05	>10,000
184	imidazol-4-yl)-ethyl]-3-(1H-indol-3-yl)-2-methyl-propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- N-(2-hydroxy-cyclohexylmethyl)-3- (1H-indol-3-yl)-2-methyl-	36,4	460	100	0 07	>10,000
185	propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- 3-(1H-indol-3-yl)-2-methyl-N-(3- morpholin-4-yl-propyl)-	28,5	475	100	0 06	>10,000
186	propionamide 2-[(Benzofuran-2-ylmethyl)-amino]- N-(2-hydroxy-benzyl)-3-(1H-indol- 3-yl)-2-methyl-propionamide	8, 5	454	81	0 07	84
187		42,2	486	100	0 07	131

188	N-(2-Amino-4-methoxy-benzyl)-2-	10	483	96	0 06	2282
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-2-methyl-					
	propionamide				•	
189	2-[(Benzofuran-2-ylmethyl)-amino]-	47	472	94	0 07	1129
	N-(2-chloro-benzyl)-3-(1H-indol-3-					
	yl)-2-methyl-propionamide					
190	2-[(Benzofuran-2-ylmethyl)-amino]-	41,6	474	97	0 07	3537
	N-(2,6-difluoro-benzyl)-3-(1H-indol-					
	3-yl)-2-methyl-propionamide					
191	2-[(Benzofuran-2-ylmethyl)-amino]-	24,4	490	99	0 07	55
	N-(3-chloro-4-fluoro-benzyl)-3-(1H-					
	indol-3-yl)-2-methyl-propionamide					

Table 3: Examples 192-308

Ex.	Name	Yield	Mol.	lcms %	lems Rt	IC ₅₀ (nM)
		(mg)	ion	purity	(min)	hNK_1
192	2-[(Benzofuran-2-ylmethyl)-amino]-	26	425	100	3,94	1981
	3-(1H-indol-3-yl)-N-pyridin-2-				•	
	ylmethyl-propionamide					
193	2-[(Benzofuran-2-ylmethyl)-amino]-	27	446	94	1,04	>10,000
	3-(1H-indol-3-yl)-N-(2-piperazin-1-					
	yl-ethyl)-propionamide					
194	2-[(Benzofuran-2-ylmethyl)-amino]-	41	464	100	5.63,	703
	3-(1H-indol-3-yl)-N-(1,2,3,4-				5.80	
	tetrahydro-naphthalen-1-yl)-					
	propionamide	•			,	-
195	2-[(Benzofuran-2-ylmethyl)-amino]-	23	450	100	5,39	1750
	N-indan-1-yl-3-(1H-indol-3-yl)-					
	propionamide					
196	2-[(Benzofuran-2-ylmethyl)-amino]-	36	458	100	5,67	92
	3-(1H-indol-3-yl)-N-(1-thiophen-2-					
	yl-propyl)-propionamide					

197	2-[(Benzofuran-2-ylmethyl)-amino]-	44	488	99	6,77	933
	3-(1H-indol-3-yl)-N-(1-naphthalen-					
	1-yl-ethyl)-propionamide					
198	2-[(Benzofuran-2-ylmethyl)-amino]-	31	445	99	2,27	>10,000
	3-(1H-indol-3-yl)-N-[2-(1-methyl-					
	pyrrolidin-2-yl)-ethyl]-propionamide					
199	2-[(Benzofuran-2-ylmethyl)-amino]-	39	454	100	5,11	130
	3-(1H-indol-3-yl)-N-(4-methoxy-					
	benzyl)-propionamide				•	
200	2-[(Benzofuran-2-ylmethyl)-amino]-	34	508	96	6,19	355
	3-(1H-indol-3-yl)-N-(3-					
	trifluoromethoxy-benzyl)-					
	propionamide					
201	2-[(Benzofuran-2-ylmethyl)-amino]-	21	442	100	1,22	>10,000
	N-(3-imidazol-1-yl-propyl)-3-(1H-					
	indol-3-yl)-propionamide					
202	2-[(Benzofuran-2-ylmethyl)-amino]-	6	417	98	4,3	2184
	3-(1H-indol-3-yl)-N-pyrrolidin-3-					
	ylmethyl-propionamide					
203	2-[(Benzofuran-2-ylmethyl)-amino]-	22	431	96	1,26	>10,000
	3-(1H-indol-3-yl)-N-piperidin-4-			•		
	ylmethyl-propionamide					
204	2-[(Benzofuran-2-ylmethyl)-amino]-	18	460	100	5,53	68
	N-(2,5-difluoro-benzyl)-3-(1H-indol-					
	3-yl)-propionamide					
205	2-[(Benzofuran-2-ylmethyl)-amino]-	10	475	97	4,27	2315
	3-(1H-indol-3-yl)-N-quinolin-3-					
	ylmethyl-propionamide					
206	2-[(Benzofuran-2-ylmethyl)-amino]-	16	428	98	2,3-1	6681
	N-[2-(1H-imidazol-4-yl)-ethyl]-3-					
	(1H-indol-3-yl)-propionamide		400	• •		
207	2-[(Benzofuran-2-ylmethyl)-amino]-	43	489	98	6,76	591
	3-(1H-indol-3-yl)-N-(1-naphthalen-					
	1-yl-ethyl)-propionamide					

208	2-[(Benzofuran-2-ylmethyl)-amino]-	31	458	100	5,94	15
	3-(1H-indol-3-yl)-N-[1-(5-methyl-					
	thiophen-2-yl)-ethyl]-propionamide					
209	2-[(Benzofuran-2-ylmethyl)-amino]-	35	438	100	5,74	82
	3-(1H-indol-3-yl)-N-(4-methyl-					
	benzyl)-propionamide					
210	2-[(Benzofuran-2-ylmethyl)-amino]-	36	452	100	5,98	337
	3-(1H-indol-3-yl)-N-(1-p-tolyl-					
	ethyl)-propionamide					
211	2-[(Benzofuran-2-ylmethyl)-amino]-	21	432	100	5	>10,000
	N-(1-hydroxymethyl-cyclopentyl)-3-					
	(1H-indol-3-yl)-propionamide					
212	2-[(Benzofuran-2-ylmethyl)-amino]-	18	427	96	5,21	658
	3-(1H-indol-3-yl)-N-(2-pyrrol-1-yl-					
	ethyl)-propionamide					
213	2-[(Benzofuran-2-ylmethyl)-amino]-	28	447	100	1,39	1256
	3-(1H-indol-3-yl)-N-(2-morpholin-4-					
	yl-ethyl)-propionamide					
214	2-[(Benzofuran-2-ylmethyl)-amino]-	39	467	9 9	4,3	4015
	N-(4-dimethylamino-benzyl)-3-(1H-					
	indol-3-yl)-propionamide				•	
215	2-[(Benzofuran-2-ylmethyl)-amino]-	9	498	97	6,61	70
	N-(2,5-dichloro-thiophen-3-					
	ylmethyl)-3-(1H-indol-3-yl)-					
	propionamide					
216	2-[(Benzofuran-2-ylmethyl)-amino]-	2	459	11	5,07	>10,000
	3-(1H-indol-3-yl)-N-(5-nitro-furan-					
	2-ylmethyl)-propionamide		,			
217	2-[(Benzofuran-2-ylmethyl)-amino]-	44	481	99	4.46,	- 819
	N-[1-(4-dimethylamino-phenyl)-				4.78	·
	ethyl]-3-(1H-indol-3-yl)-					
	propionamide					
218	2-[(Benzofuran-2-ylmethyl)-amino]-	20	560	85	7,14	294
	N-(3,5-bis-trifluoromethyl-benzyl)-					
	3-(1H-indol-3-yl)-propionamide					

219	2-[(Benzofuran-2-ylmethyl)-amino]-	17	502	96	6,96	31
	N-(3-bromo-benzyl)-3-(1H-indol-3-					
	yl)-propionamide	·				
220	2-[(Benzofuran-2-ylmethyl)-amino]-	38	452	100	6,16	2
	3-(1H-indol-3-yl)-N-(1-p-tolyl-					
	ethyl)-propionamide					
221	2-[(Benzofuran-2-ylmethyl)-amino]-	37	469	100	5,67	23
	3-(1H-indol-3-yl)-N-(4-nitro-					
	benzyl)-propionamide	٠				
222	2-[(Benzofuran-2-ylmethyl)-amino]-	30	431	100	1,64	>10,000
	3-(1H-indol-3-yl)-N-(2-pyrrolidin-1-					
	yl-ethyl)-propionamide					·
223	2-[(Benzofuran-2-ylmethyl)-amino]-	36	418	100	4,65	>10,000
	3-(1H-indol-3-yl)-N-(tetrahydro-					
	furan-2-ylmethyl)-propionamide					
224	2-[(Benzofuran-2-ylmethyl)-amino]-	9	450	100	6,05	2902
	3-(1H-indol-3-yl)-N-(2-phenyl-					
	cyclopropyl)-propionamide					
225	2-[(Benzofuran-2-ylmethyl)-amino]-	32	458	97	7,07	1341
	N-(1-cyclohexyl-1-methyl-ethyl)-3-					
	(1H-indol-3-yl)-propionamide			~		
226	2-[(Benzofuran-2-ylmethyl)-amino]-	33	430	100	6,23	. 54
	N-cyclohexylmethyl-3-(1H-indol-3-					
	yl)-propionamide					
227	2-[(Benzofuran-2-ylmethyl)-amino]-	41	481	96	5.05,	182
	N-[1-(3-dimethylamino-phenyl)-				5.36	
	ethyl]-3-(1H-indol-3-yl)-					
	propionamide				-	
228	2-[(Benzofuran-2-ylmethyl)-amino]-	31	492	100	6,63	82
	3-(1H-indol-3-yl)-N-(3-					
	trifluoromethyl-benzyl)-					
	propionamide					
229	2-[(Benzofuran-2-ylmethyl)-amino]-	39	476	98	6,4	33
	N-(3-chloro-4-fluoro-benzyl)-3-(1H-				-	
	indol-3-yl)-propionamide					
	- 2-2 & - 2					

230	2-[(Benzofuran-2-ylmethyl)-amino]-	38	441	100	5,54	21
	3-(1H-indol-3-yl)-N-[1-(1-methyl-					
	lH-pyrrol-3-yl)-ethyl]-propionamide					
231	2-[(Benzofuran-2-ylmethyl)-amino]-	35	425	100	0 04	790
	3-(1H-indol-3-yl)-N-pyridin-3-					
	ylmethyl-propionamide					
232	2-[(Benzofuran-2-ylmethyl)-amino]-	30	430	100	0 06	63
	3-(1H-indol-3-yl)-N-thiophen-2-					
	ylmethyl-propionamide					
233	2-[(Benzofuran-2-ylmethyl)-amino]-	37	452	100	0 07	1998
	3-(1H-indol-3-yl)-N-(2-phenyl-					
	propyl)-propionamide					
234	2-[(Benzofuran-2-ylmethyl)-amino]-	37	438	100	0 07	75
	3-(1H-indol-3-yl)-N-(1-phenyl-					
	ethyl)-propionamide					
235	2-[(Benzofuran-2-ylmethyl)-amino]-	40	456	100	0 07	3
	N-[1-(4-fluoro-phenyl)-ethyl]-3-(1H-					
	indol-3-yl)-propionamide					
236	2-[(Benzofuran-2-ylmethyl)-amino]-	41	444	100	0 07	7
	3-(1H-indol-3-yl)-N-(1-thiophen-3-					
	yl-ethyl)-propionamide				•	
237	2-[(Benzofuran-2-ylmethyl)-amino]-	38	435	0	010	5341
	3-(1H-indol-3-yl)-N-(2-oxo-2-					
	phenyl-ethyl)-propionamide					
238	2-[(Benzofuran-2-ylmethyl)-amino]-	34	442	100	0 07	89
	N-(2-fluoro-benzyl)-3-(1H-indol-3-					
	yl)-propionamide					
239	2-[(Benzofuran-2-ylmethyl)-amino]-	36	450	100	0 07	243
	N-indan-2-yl-3-(1H-indol-3-yl)-				-	
	propionamide					•
240	2-[(Benzofuran-2-ylmethyl)-amino]-	33	425	100	0 04	196
	3-(1H-indol-3-yl)-N-pyridin-4-					
	ylmethyl-propionamide					
241	2-[(Benzofuran-2-ylmethyl)-amino]-	29	444	100	0 07	2
	N-(1-cyclohexyl-ethyl)-3-(1H-indol-					
	3-yl)-propionamide					

242	2-[(Benzofuran-2-ylmethyl)-amino]-	39	438	100	0 07	170
	3-(1H-indol-3-yl)-N-(2-methyl-					
	benzyl)-propionamide					
243	2-[(Benzofuran-2-ylmethyl)-amino]-	44	478	100	0 07	15
	N-[1-(5-chloro-thiophen-2-yl)-					
	ethyl]-3-(1H-indol-3-yl)-					
	propionamide					
244	2-[(Benzofuran-2-ylmethyl)-amino]-	38	442	100	0 07	12
	N-(4-fluoro-benzyl)-3-(1H-indol-3-					
	yl)-propionamide					
245	2-[(Benzofuran-2-ylmethyl)-amino]-	32	483	100	0 07	3
	3-(1H-indol-3-yl)-N-[1-(4-nitro-					
	phenyl)-ethyl]-propionamide					
246	2-[(Benzofuran-2-ylmethyl)-amino]-	39	438	100	0 07	77
	3-(1H-indol-3-yl)-N-phenethyl-					
	propionamide					
247	2-[(Benzofuran-2-ylmethyl)-amino]-	33	444	100	0 07	56
	3-(1H-indol-3-yl)-N-(2-thiophen-2-					
	yl-ethyl)-propionamide					
248	2-[(Benzofuran-2-ylmethyl)-amino]-	37	442	100	0 07	6
	N-(3-fluoro-benzyl)-3-(1H-indol-3-			7		
	yl)-propionamide					
249	2-[(Benzofuran-2-ylmethyl)-amino]-	43	454	100	0 06	607
	N-(2-hydroxy-1-phenyl-ethyl)-3-					
	(1H-indol-3-yl)-propionamide					
250	2-[(Benzofuran-2-ylmethyl)-amino]-	36	464	100	0 05	3413
	N-(1H-benzoimidazol-2-ylmethyl)-					
	3-(1H-indol-3-yl)-propionamide					
251	2-[(Benzofuran-2-ylmethyl)-amino]-	4	428	95	0 06	129
	N-(2-furan-2-yl-ethyl)-3-(1H-indol-					
	3-yl)-propionamide					
252	2-[(Benzofuran-2-ylmethyl)-amino]-	37	438	100	0 07	33
	3-(1H-indol-3-yl)-N-(3-methyl-					
	benzyl)-propionamide					

						
253	2-[(Benzofuran-2-ylmethyl)-amino]-	25	464	81	0 07	3327
	3-(1H-indol-3-yl)-N-(1,2,3,4-					
	tetrahydro-naphthalen-2-yl)-					
	propionamide				•	
254	2-[(Benzofuran-2-ylmethyl)-amino]-	37	424	100	0 06	22
	N-benzyl-3-(1H-indol-3-yl)-					
	propionamide					
255	2-[(Benzofuran-2-ylmethyl)-amino]-	41	468	100	0 07	9
	3-(1H-indol-3-yl)-N-[1-(4-methoxy-					
	phenyl)-ethyl]-propionamide					
256	2-[(Benzofuran-2-ylmethyl)-amino]-	5	440	68	0 05	>10,000
	N-(2-hydroxy-benzyl)-3-(1H-indol-					
	3-yl)-propionamide					
257	2-[(Benzofuran-2-ylmethyl)-amino]-	35	466	100	0 07	>10,000
	3-(1H-indol-3-yl)-N-(2-methyl-2-					
	phenyl-propi)-propionamide					
258	2-[(Benzofuran-2-ylmethyl)-amino]-	38	458	100	0 07	46
	N-(4-chloro-benzyl)-3-(1H-indol-3-					
	yl)-propionamide					
259	2-[(Benzofuran-2-ylmethyl)-amino]-	39	452	100	0 07	21
	3-(1H-indol-3-yl)-N-(1-phenyl-				•	
	propyl)-propionamide					
260	2-[(Benzofuran-2-ylmethyl)-amino]-	32	469	100	0 06	14
	3-(1H-indol-3-yl)-N-(3-nitro-					
	benzyl)-propionamide					
261	2-[(Benzofuran-2-ylmethyl)-amino]-	31	414	100	0 06	406
	N-furan-2-ylmethyl-3-(1H-indol-3-	•				
	yl)-propionamide					
262	2-[(Benzofuran-2-ylmethyl)-amino]-	41	450	100	0 07	- 86
	N-indan-1-yl-3-(1H-indol-3-yl)-					
	propionamide					
263	2-[(Benzofuran-2-ylmethyl)-amino]-	36	458	100	0 07	9
	N-(3-chloro-benzyl)-3-(1H-indol-3-				501	
	yl)-propionamide					
	J.) propromining					

264	2-[(Benzofuran-2-ylmethyl)-amino]-	44	472	100	0 07	7
	N-[1-(4-chloro-phenyl)-ethyl]-3-					
	(1H-indol-3-yl)-propionamide	-			_	
265	2-[(Benzofuran-2-ylmethyl)-amino]-	41	452	96	0 07	328
	3-(1H-indol-3-yl)-N-(1-methyl-1-					
	phenyl-ethyl)-propionamide					
266	2-[(Benzofuran-2-ylmethyl)-amino]-	39	442	100	0 07	633
	N-bicyclo[2.2.1]hept-2-ylmethyl-3-					
	(1H-indol-3-yl)-propionamide	٠				
267	N-Benzo[1,3]dioxol-5-ylmethyl-2-	40	468	100	0 06	55
	[(benzofuran-2-ylmethyl)-amino]-3-					
	(1H-indol-3-yl)-propionamide					
268	2-[(Benzofuran-2-ylmethyl)-amino]-	39	460	91	0 07	10
	N-(3,4-difluoro-benzyl)-3-(1H-indol-					
	3-yl)-propionamide					
269	2-[(Benzofuran-2-ylmethyl)-amino]-	9	439	92	0 04	9
	3-(1H-indol-3-yl)-N-(1-pyridin-4-yl-	-			•	
	ethyl)-propionamide					
270	2-[(Benzofuran-2-ylmethyl)-amino]-	19	432	100	0 04	>10,000
	N-(2-hydroxy-cyclohexyl)-3-(1H-					
	indol-3-yl)-propionamide			~		
271	2-[(Benzofuran-2-ylmethyl)-amino]-	33	468	98	0 05	196
	3-(1H-indol-3-yl)-N-[2-(4-methoxy-					
	phenyl)-ethyl]-propionamide					
272	2-[(Benzofuran-2-ylmethyl)-amino]-	42	468	99	0 05	336
	N-(1-hydroxymethyl-2-phenyl-					
	ethyl)-3-(1H-indol-3-yl)-		•			
	propionamide					
273	2-[(Benzofuran-2-ylmethyl)-amino]-	15	432	9 9	0 04	>10,000
	N-(4-hydroxy-cyclohexyl)-3-(1H-					
	indol-3-yl)-propionamide					
274	2-[(Benzofuran-2-ylmethyl)-amino]-	21	456	97	0 05	264
	N-[2-(2-fluoro-phenyl)-ethyl]-3-(1H-					
	indol-3-yl)-propionamide	•				

.

	<u> </u>					
275	2-[(Benzofuran-2-ylmethyl)-amino]-	38	514	100	0 05	2157
	N-(2-benzylsulfanyl-1-					
	hydroxymethyl-ethyl)-3-(1H-indol-					
	3-yl)-propionamide					
276	2-[(Benzofuran-2-ylmethyl)-amino]-	10	416	84	0 05	655
	N-cyclohexyl-3-(1H-indol-3-yl)-					
	propionamide ;					
277	2-[(Benzofuran-2-ylmethyl)-amino]-	17	474	96	0 05	2198
	N-(2-cyclohexyl-1-hydroxymethyl-					
	ethyl)-3-(1H-indol-3-yl)-					
	propionamide					
278	2-[(Benzofuran-2-ylmethyl)-amino]-	33	452	88	0 05	2379
	3-(1H-indol-3-yl)-N-(3-phenyl-					
	propyl)-propionamide					
279	2-[(Benzofuran-2-ylmethyl)-amino]-	8	493	86	0 06	30
	N-(3,4-dichloro-benzyl)-3-(1H-					
	indol-3-yl)-propionamide					
280	2-[(Benzofuran-2-ylmethyl)-amino]-	25	477	97	0 05	2540
	3-(1H-indol-3-yl)-N-[2-(1H-indol-3-					
	yl)-ethyl]-propionamide					
281	2-[(Benzofuran-2-ylmethyl)-amino]-	28	483	93	0 05	51
	3-(1H-indol-3-yl)-N-[2-(4-nitro-					
	phenyl)-ethyl]-propionamide					
282	2-[(Benzofuran-2-ylmethyl)-amino]-	30	487	98	0 06	833
	N-[2-(4-chloro-phenyl)-1-methyl-					
	ethyl]-3-(1H-indol-3-yl)-					
	propionamide					
283	2-[(Benzofuran-2-ylmethyl)-amino]-	9	492	91	0 06	420
	3-(1H-indol-3-yl)-N-(4-				-	• .
	trifluoromethyl-benzyl)-					
	propionamide					
284	2-[(Benzofuran-2-ylmethyl)-amino]-	33	456	98	0 05	62
	N-[2-(4-fluoro-phenyl)-ethyl]-3-(1H-					
	indol-3-yl)-propionamide	-				
				_		

285	2-[(Benzofuran-2-ylmethyl)-amino]-	32	483	99	0 05	246
	3-(1H-indol-3-yl)-N-[1-(4-nitro-					
	phenyl)-ethyl]-propionamide					
286	4-{[2-[(Benzofuran-2-ylmethyl)-	6	474	62	0 05	>10,000
	amino]-3-(1H-indol-3-yl)-				•	
	propionylamino]-methyl}-					
	cyclohexanecarboxylic acid					
287	2-[(Benzofuran-2-ylmethyl)-amino]-	36	449	99	0 06	35
	N-(cyano-phenyl-methyl)-3-(1H-	*				
	indol-3-yl)-propionamide		•			
288	2-[(Benzofuran-2-ylmethyl)-amino]-	32	472	99	0 06	136
	N-[2-(4-chloro-phenyl)-ethyl]-3-					
	(1H-indol-3-yl)-propionamide					
289	2-[(Benzofuran-2-ylmethyl)-amino]-	35	468	99	0 05	209
	N-(1-hydroxymethyl-2-phenyl-					
	ethyl)-3-(1H-indol-3-yl)-					
	propionamide					
290	2-[(Benzofuran-2-ylmethyl)-amino]-	37	517	100	0 06	8
	N-[1-(4-bromo-phenyl)-ethyl]-3-					
	(1H-indol-3-yl)-propionamide					
291	2-[(Benzofuran-2-ylmethyl)-amino]-	29	468	96	0 05	1337
	3-(1H-indol-3-yl)-N-[2-(3-methoxy-					
	phenyl)-ethyl]-propionamide					
292	2-[(Benzofuran-2-ylmethyl)-amino]-	3	492	90	0 06	1126
	3-(1H-indol-3-yl)-N-(2-					
	trifluoromethyl-benzyl)-					
	propionamide					
293	2-[(Benzofuran-2-ylmethyl)-amino]-	33	456	96	0 05	55
	N-[2-(3-fluoro-phenyl)-ethyl]-3-(1H-				-	
	indol-3-yl)-propionamide					100
294	2-[(Benzofuran-2-ylmethyl)-amino]-	15	444	86	0 06	58
	N-(1-cyclohexyl-ethyl)-3-(1H-indol-					
	3-yl)-propionamide					
295	2-[(Benzofuran-2-ylmethyl)-amino]-	34	482	99	0 06	3531
	3-(1H-indol-3-yl)-N-(1-					
	methoxymethyl-2-phenyl-ethyl)-					

	propionamide					
296	2-[(Benzofuran-2-ylmethyl)-amino]-	16	484	98	0 06	1338
	N-(2-benzylsulfanyl-ethyl)-3-(1H-					
	indol-3-yl)-propionamide					
297	2-[(Benzofuran-2-ylmethyl)-amino]-	36	491	100	0 05	3612
	3-(1H-indol-3-yl)-N-[2-(1H-indol-3-					
	yl)-1-methyl-ethyl]-propionamide					
298	2-[(Benzofuran-2-ylmethyl)-amino]-	22	458	99	0 06	221
	N-(2-chloro-benzyl)-3-(1H-indol-3-					
	yl)-propionamide					
299	2-[(Benzofuran-2-ylmethyl)-amino]-	28	454	93	0 05	4
	N-(2-hydroxy-1-phenyl-ethyl)-3-					
	(1H-indol-3-yl)-propionamide					
300	2-[(Benzofuran-2-ylmethyl)-amino]-	10	452	98	0 06	256
	3-(1H-indol-3-yl)-N-(2-p-tolyl-					
	ethyl)-propionamide					
301	2-[(Benzofuran-2-ylmethyl)-amino]-	12	460	98	0 06	53
	N-(2,4-difluoro-benzyl)-3-(1H-indol-					
	3-yl)-propionamide				•	
302	2-[(Benzofuran-2-ylmethyl)-amino]-	25	503	98	0 06	174
	N-(2-bromo-benzyl)-3-(1H-indol-3-					
	yl)-propionamide					
303	2-[(Benzofuran-2-ylmethyl)-amino]-	7	510	88	0 06	17
	N-(3-fluoro-5-trifluoromethyl-					
	benzyl)-3-(1H-indol-3-yl)-					
	propionamide					
304	[2-[(Benzofuran-2-ylmethyl)-	36	482	100	0 06	- 43
	amino]-3-(1H-indol-3-yl)-					-
	propionylamino]-phenyl-acetic acid					
	methyl ester					
305	2-[(Benzofuran-2-ylmethyl)-amino]-	30	454	99	0 06	400
	3-(1H-indol-3-yl)-N-(2-phenoxy-	-				
	ethyl)-propionamide	•				

306 N-(4-Amino-benzyl)-2-	32	439	99	0 04	639
[(benzofuran-2-ylmethyl)-amino]-3-					
(1H-indol-3-yl)-propionamide	_				
307 2-[(Benzofuran-2-ylmethyl)-amino]-	36	466	99	0 06	392
3-(1H-indol-3-yl)-N-(1-methyl-3-					
phenyl-propyl)-propionamide					
308 2-[(Benzofuran-2-ylmethyl)-amino]-	6	440	94	0 05	731
N-(3-hydroxy-benzyl)-3-(1H-indol-					
3-yl)-propionamide	•				

Table 4: Examples 309-359

5

Ex.	Name	Yield	Mol.	lcms %	lems Rt	IC ₅₀ (nM)
		(mg)	ion	purity	(min)	hNK_1
309	3-(1H-Indol-3-yl)-2-methyl-2-	30,51	462	50	6,44	169
	[(naphthalen-2-ylmethyl)-amino]-N-					
	(1-phenyl-ethyl)-propionamide					
310	3-(1H-Indol-3-yl)-2-methyl-N-(1-	37,02	413	83	4,74	3325
	phenyl-ethyl)-2-[(pyridin-2-			•		
	ylmethyl)-amino]-propionamide					
311	3-(1H-Indol-3-yl)-2-methyl-N-(1-	31,53	463	84	5,96	88
	phenyl-ethyl)-2-[(quinolin-2-					
	ylmethyl)-amino]-propionamide					
312	2-[(Furan-3-ylmethyl)-amino]-3-	28	402	78	4,9	1820
	(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
313	3-(1H-Indol-3-yl)-2-methyl-N-(1-	41,02	452	8	6,02	50
	phenyl-ethyl)-2-[(pyridin-4-					-
	ylmethyl)-amino]-propionamide					
314	2-[(Furan-2-ylmethyl)-amino]-3-	27,6	402	74	4,82	141
	(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide	<u></u>				

315	3-(1H-Indol-3-yl)-2-methyl-N-(1-	3,13	463	12	3,78	1068
	phenyl-ethyl)-2-[(quinolin-3-	•			,	
	ylmethyl)-amino]-propionamide					
316	2-[(1H-Benzoimidazol-2-ylmethyl)-	58,59	452	16	4,63	>10,000
	amino]-3-(1H-indol-3-yl)-2-methyl-				•	•
	N-(1-phenyl-ethyl)-propionamide					
317	3-(1H-Indol-3-yl)-2-[(5-methoxy-	33,16	482	75	7,29	>10,000
	benzofuran-2-ylmethyl)-amino]-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
318	3-(1H-Indol-3-yl)-2-[(isoquinolin-4-	8,84	463	55	3,28	1596
	ylmethyl)-amino]-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
319	3-(1H-Indol-3-yl)-2-[(6-methoxy-	5,15	482	65	7,22	2098
	benzofuran-2-ylmethyl)-amino]-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
320	3-(1H-Indol-3-yl)-2-methyl-N-(1-	20,2	413	72	2,51	5972
	phenyl-ethyl)-2-[(pyridin-3-					
	ylmethyl)-amino]-propionamide					
321	2-{2-[2-(1,3-Dioxo-1,3-dihydro-	20,67	552	96	0 05	3040
	isoindol-2-yl)-acetylamino]-					
	ethylamino}-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
322	2-(3-Furan-2-yl-allylamino)-3-(1H-	2,88	428	47	0 05	91
	indol-3-yl)-2-methyl-N-(1-phenyl-					
	ethyl)-propionamide		•			•
323	3-(1H-Indol-3-yl)-2-methyl-N-(1-	28,74	519	69	0 05	3183
	phenyl-ethyl)-2-[2-(pyridin-2-		,			
	ylmethoxy)-benzylamino]-					
	propionamide					
324	3-(1H-Indol-3-yl)-2-methyl-N-(1-	32,96	519	88	0 04	2971
	phenyl-ethyl)-2-[2-(pyridin-3-	•				
	ylmethoxy)-benzylamino]-					
	propionamide					

325	3-(1H-Indol-3-yl)-2-methyl-N-(1-	42,66	504	77	0 06	72
	phenyl-ethyl)-2-[(5-styryl-furan-2-					
	ylmethyl)-amino]-propionamide					
326	2-(4-Chloro-3-methylsulfamoyl-	8,05	539	83	0 05	4827
	benzylamino)-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
327	5-(4-{[2-(1H-Indol-3-yl)-1-methyl-	7,02	556	92	0 05	>10,000
	l-(1-phenyl-ethylcarbamoyl)-					
	ethylamino]-methyl}-phenoxy)-2,2-					
	dimethyl-pentanoic acid					
328	3-(1H-Indol-3-yl)-2-methyl-2-{[4-	17,49	498	86	0 07	>10,000
	(4-methyl-pent-2-enyl)-cyclohex-3-					
	enylmethyl]-amino}-N-(1-phenyl-					
	ethyl)-propionamide					
329	(2-{[2-(1H-Indol-3-yl)-1-methyl-1-	16,92	499	95	0 05	4188
	(1-phenyl-ethylcarbamoyl)-					
	ethylamino]-methyl}-phenyl)-					
	carbamic acid ethyl ester	•				
330	2-(4-Chloro-2-methylsulfamoyl-	7,56	539	89	0 05	1100
	benzylamino)-3-(1H-indol-3-yl)-2-			~		
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
331	2-[4-(2-Dimethylamino-ethoxy)-	24,9	499	65	0 03	>10,000
	benzylamino]-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
332	2-(2,3-Diphenyl-propylamino)-3-	10,84	516	98	0 06	4944
	(1H-indol-3-yl)-2-methyl-N-(1-				-	
	phenyl-ethyl)-propionamide					
333	3-(1H-Indol-3-yl)-2-methyl-N-(1-	16,98	516	98	0 06	3606
	phenyl-ethyl)-2-[(1-phenyl-1H-					
	indol-2-ylmethyl)-amino]-					
	propionamide	•				

					 	
334	3-(1H-Indol-3-yl)-2-methyl-N-(1-	19,88	527	74	0 06	>10,000
	phenyl-ethyl)-2-[4-(4-phenyl-					
	piperidin-1-yl)-benzylamino]-		•			
	propionamide					
335	3-(1H-Indol-3-yl)-2-methyl-N-(1-	38,16	571	65	0 06	>10,000
	phenyl-ethyl)-2-[4-(2-pyrrolidin-1-					
	yl-ethoxy)-benzylamino]-					
	propionamide					
336	2-(4-Chloro-3-sulfamoyl-	5,2	525	79	0 03	4229
	benzylamino)-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
337	4-{[2-(1H-Indol-3-yl)-1-methyl-1-	20,24	525	81	0 04	1920
	(1-phenyl-ethylcarbamoyl)-					
	ethylamino]-methyl}-benzoic acid					
	methyl ester					
338	2-(2,3-Diphenyl-allylamino)-3-(1H-	20,13	470	99	0 05	>10,000
	indol-3-yl)-2-methyl-N-(1-phenyl-					
	ethyl)-propionamide					
339	2-(3-Benzo[1,3]dioxol-5-yl-	24,74	514	54	0 06	343
	allylamino)-3-(1H-indol-3-yl)-2-				•	
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
340	2-[3-(4-Benzyloxy-phenyl)-	24,64	482	72	0 05	4912
	allylamino]-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
341	2-(4-Benzyloxy-benzylamino)-3-	32,02	544	62	0 06	>10,000
	(1H-indol-3-yl)-2-methyl-N-(1-			-		_
	phenyl-ethyl)-propionamide					
342	Toluene-4-sulfonic acid 3-{[2-(1H-	20,65	518	96	0 06	5091
	indol-3-yl)-1-methyl-1-(1-phenyl-					
	ethylcarbamoyl)-ethylamino]-					
	methyl}-phenyl ester					

343	2-[(Benzofuran-2-ylmethyl)-amino]-	23,9	582	93	0 06	13
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					•
344	2-(3-Benzyloxy-benzylamino)-3-	33,15	518	89	0 06	185
	(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
345	3-(1H-Indol-3-yl)-2-methyl-2-(4-	31,61	458	90	0 06	609
	methylsulfanyl-benzylamino)-N-(1-					
	phenyl-ethyl)-propionamide					
346	2-[(Anthracen-9-ylmethyl)-amino]-	17,46	512	73	0 07	>10,000
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
347	3-(1H-Indol-3-yl)-2-methyl-2-(4-	36,52	504	95	0 06	3382
	phenoxy-benzylamino)-N-(1-phenyl-					
	ethyl)-propionamide					
348	2-[(Biphenyl-4-ylmethyl)-amino]-3-	30,82	488	93	0 06	5562
	(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
349	2-[(Benzo[1,3]dioxol-5-ylmethyl)-	33,19	456	94	0 06	356
	amino]-3-(1H-indol-3-yl)-2-methyl-					
	N-(1-phenyl-ethyl)-propionamide			•		
350	2-[2-(4-Chloro-phenylsulfanyl)-	21,92	554	90	0 07	>10,000
	benzylamino]-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
351	3-(1H-Indol-3-yl)-2-methyl-N-(1-	22,24	514	88	0 07	>10,000
	phenyl-ethyl)-2-(4-styryl-					
	benzylamino)-propionamide				-	
352	2-(2,6-Dimethyl-octa-2,6-	30,03	458	44	0 07	2212
	dienylamino)-3-(1H-indol-3-yl)-2-					•
	methyl-N-(1-phenyl-ethyl)-					
	propionamide					
353	3-(1H-Indol-3-yl)-2-methyl-2-{[5-	38,51	523	82	0 06	13
	(4-nitro-phenyl)-furan-2-ylmethyl]-	·-				
	amino}-N-(1-phenyl-ethyl)-					
	propionamide					

354	2-[(9H-Fluoren-2-ylmethyl)-amino]-	27,91	500	92	0 06	1731
	3-(1H-indol-3-yl)-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
355	3-(1H-Indol-3-yl)-2-[(1H-indol-3-	9,83	451	69	0 06	1047
	ylmethyl)-amino]-2-methyl-N-(1-					
	phenyl-ethyl)-propionamide					
356	3-(1H-Indol-3-yl)-2-methyl-2-(2-	33,02	508	86	0 07	>10,000
	pentyl-3-phenyl-allylamino)-N-(1-					
	phenyl-ethyl)-propionamide					
357	3-(1H-Indol-3-yl)-2-methyl-N-(1-	18,91	418	97	0 0 5	548
	phenyl-ethyl)-2-[(thiophen-2-					
	ylmethyl)-amino]-propionamide					
358	3-(1H-Indol-3-yl)-2-methyl-N-(1-	18,79	418	99	0 05	598
	phenyl-ethyl)-2-[(thiophen-3-					
	ylmethyl)-amino]-propionamide					
359	3-(1H-Indol-3-yl)-2-methyl-N-(1-	7,47	413	79	0 04	3712
	phenyl-ethyl)-2-[(pyridin-4-					
	ylmethyl)-amino]-propionamide					

Table 5: Examples 360-405

5

Ex.	Yield	Mol.	lcms %	lems	IC ₅₀ (nM)
-				Rt	
	(mg)	ion	purity	(min)	hNK,
360 2-(3-Furan-2-yl-allylamir	o)-3-(1H- 12,16	414	59	0 06	>10,000
indol-3-yl)-N-(1-phenyl-e	thyl)-				•
propionamide					-
361 3-(1H-Indol-3-yl)-N-(1-p	nenyl- 14,01	505	79	0 04	729
ethyl)-2-[2-(pyridin-3-ylr	nethoxy)-				
benzylamino]-propionam	ide				
362 3-(1H-Indol-3-yl)-N-(1-p	nenyl- 39,92	490	36	0 08	>10,000
ethyl)-2-[(5-styryl-furan-	2				
ylmethyl)-amino]-propio	namide				

363	2-(4-Chloro-3-methylsulfamoyl-	18,8	526	86	0 06	490
	benzylamino)-3-(1H-indol-3-yl)-N-					
	(1-phenyl-ethyl)-propionamide	-				
364	5-(4-{[2-(1H-Indol-3-yl)-1-(1-	12,49	543	79	0 07	1247
	phenyl-ethylcarbamoyl)-					
	ethylamino]-methyl}-phenoxy)-2,2-					
	dimethyl-pentanoic acid					
365	2-{[4-(4-Hydroxy-4-methyl-pentyl)-	31,21	503	42	0 07	5278
	cyclohex-3-enylmethyl]-amino}-3-					
	(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
	propionamide					
366	3-(1H-Indol-3-yl)-2-{[4-(4-methyl-	38,13	484	65	0 09	4046
	pent-2-enyl)-cyclohex-3-					
	enylmethyl]-amino}-N-(1-phenyl-					
	ethyl)-propionamide					
367	(2-{[2-(1H-Indol-3-yl)-1-(1-phenyl-	4,86	485	82	0 07	236
	ethylcarbamoyl)-ethylamino]-					
•	methyl}-phenyl)-carbamic acid ethyl					
	ester					
368	2-(2-Chloro-4-morpholin-4-yl-	14,38	518	84	0 07	2239
	benzylamino)-3-(1H-indol-3-yl)-N-			•		
	(1-phenyl-ethyl)-propionamide					
369	2-(4-Chloro-2-methylsulfamoyl-	53,07	526	83	0 06	450
	benzylamino)-3-(1H-indol-3-yl)-N-					
	(1-phenyl-ethyl)-propionamide					
370	2-(2,3-Diphenyl-propylamino)-3-	11,18	502	73	0 08	534
	(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
	propionamide					
371	3-(1H-Indol-3-yl)-2-[(4-oxo-4H-	16,18	466	66	0 07	>10,000
	chromen-3-ylmethyl)-amino]-N-(1-					-
	phenyl-ethyl)-propionamide					
372	3-(1H-Indol-3-yl)-2-[(1-oxo-1,2,3,9-	9	523	26	0 08	>10,000
	tetrahydro-4-thia-9-aza-fluoren-2-					
	ylmethyl)-amino]-N-(1-phenyl-	*				
	ethyl)-propionamide				•	

373	3-(1H-Indol-3-yl)-2-[(5-methyl-4-	17,38	506	2	0 07	507
	oxo-6-phenyl-4H-pyran-3-ylmethyl)-					
	amino]-N-(1-phenyl-ethyl)-				-	
	propionamide					
374	4-{[2-(1H-Indol-3-yl)-1-(1-phenyl-	33,82	456	95	0 06	1914
	ethylcarbamoyl)-ethylamino]-					
	methyl}-benzoic acid methyl ester					
375	3-(1H-Indol-3-yl)-N-(1-phenyl-	28,55	495	76	0 05	165
	ethyl)-2-[(2-propyl-5-pyrrol-1-yl-					
	3H-imidazol-4-ylmethyl)-amino]-					
	propionamide					
376	2-(2,3-Diphenyl-allylamino)-3-(1H-	14,27	500	76	0 08	>10,000
	indol-3-yl)-N-(1-phenyl-ethyl)-					
	propionamide					
377	2-(3-Benzo[1,3]dioxol-5-yl-	14,52	468	57	0 07	593
	allylamino)-3-(1H-indol-3-yl)-N-(1-					
	phenyl-ethyl)-propionamide					
378	2-[3-(4-Benzyloxy-phenyl)-	8,68	530	64	0 09	932
	allylamino]-3-(1H-indol-3-yl)-N-(1-					
	phenyl-ethyl)-propionamide					
379	2-(4-Benzyloxy-benzylamino)-3-	15,05	504	80	0 08	587
	(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
	propionamide					
380	3-(1H-Indol-3-yl)-2-(3-naphthalen-	11,18	476	46	0 08	500
	1-yl-propylamino)-N-(1-phenyl-					
	ethyl)-propionamide					
381	Toluene-4-sulfonic acid 3-{[2-(1H-	24,84	568	92	0 08	>10,000
	indol-3-yl)-1-(1-phenyl-					•
	ethylcarbamoyl)-ethylamino]-					-
	methyl}-phenyl ester					
382	2-(3-Benzyloxy-benzylamino)-3-	44,62	504	91	0 08	>10,000
	(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
	propionamide					
383	3-(1H-Indol-3-yl)-2-(4-	39,33	444	69	0 07	252
	methylsulfanyl-benzylamino)-N-(1-					
	phenyl-ethyl)-propionamide					

384	3-(1H-Indol-3-yl)-2-(4-phenoxy-	32,52	490	83	0 08	2350
	benzylamino)-N-(1-phenyl-ethyl)-	•				
	propionamide					
385	2-[(Biphenyl-4-ylmethyl)-amino]-3-	24,28	474	90	0 08	1463
	(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					•
	propionamide					
386	2-[(Benzo[1,3]dioxol-5-ylmethyl)-	41,91	442	78	0 06	240
	amino]-3-(1H-indol-3-yl)-N-(1-					
	phenyl-ethyl)-propionamide					
387	2-[2-(4-Chloro-phenylsulfanyl)-	48,88	541	96	0 09	201
	benzylamino]-3-(1H-indol-3-yl)-N-					
	(1-phenyl-ethyl)-propionamide					
338	3-(1H-Indol-3-yl)-N-(1-phenyl-	12,14	500	66	0 09	>10,000
	ethyl)-2-(4-styryl-benzylamino)-					
	propionamide					
389	2-(2,6-Dimethyl-octa-2,6-	50,41	444	5	0 08	2573
	dienylamino)-3-(1H-indol-3-yl)-N-					
	(1-phenyl-ethyl)-propionamide					
390	3-(1H-Indol-3-yl)-2-{[5-(4-nitro-	7,86	509	44	0 07	50
	phenyl)-furan-2-ylmethyl]-amino}-					
	N-(1-phenyl-ethyl)-propionamide			•		
391	2-[(9H-Fluoren-2-ylmethyl)-amino]-	37,84	486	85	0 08	846
	3-(1H-indol-3-yl)-N-(1-phenyl-					
	ethyl)-propionamide					
392	2-[(2,5-Dimethyl-1-phenyl-1H-	5,27	491	3	0 08	>10,000
	pyrrol-3-ylmethyl)-amino]-3-(1H-					
	indol-3-yl)-N-(1-phenyl-ethyl)-					
	propionamide				•	
393	3-(1H-Indol-3-yl)-N-(1-phenyl-	03 2	399	71	0.04	802
	ethyl)-2-[(pyridin-3-ylmethyl)-					•
	amino]-propionamide					
394	3-(1H-Indol-3-yl)-2-[(naphthalen-2-	03 7	448	88	0 06	158
	ylmethyl)-amino]-N-(1-phenyl-					
	ethyl)-propionamide	-				

3-(1H-Indol-3-yl)-N-(1-phenyl-	02 9	399	74	0 05	>10,000
ethyl)-2-[(pyridin-2-ylmethyl)-					
amino]-propionamide					_
3-(1H-Indol-3-yl)-N-(1-phenyl-	04 3	404	98	0 05	1073
ethyl)-2-[(thiophen-2-ylmethyl)-					
amino]-propionamide					
2-(3,4-Dimethoxy-benzylamino)-3-	03 3	458	65	0 05	>10,000
(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
propionamide					
2-(3,5-Bis-trifluoromethyl-	04 3	534	94	0 07	>10,000
benzylamino)-3-(1H-indol-3-yl)-N-					
(1-phenyl-ethyl)-propionamide					
2-(3,5-Difluoro-benzylamino)-3-	03 5	434	92	0 06	140
(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
propionamide					
2-(3-Chloro-benzylamino)-3-(1H-	03 4	432	86	0 06	13
indol-3-yl)-N-(1-phenyl-ethyl)-					
propionamide					
2-(3-Fluoro-benzylamino)-3-(1H-	03 4	416	87	0 06	39
indol-3-yl)-N-(1-phenyl-ethyl)-					
propionamide				`	
2-[(Furan-3-ylmethyl)-amino]-3-	03 0	388	84	0 05	881
(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
propionamide					
3-(1H-Indol-3-yl)-N-(1-phenyl-	0 07	426	85	0 06	3907
ethyl)-2-(3-phenyl-propylamino)-					
propionamide					
3-(1H-Indol-3-yl)-N-(1-phenyl-	03 2	404	81	0 05	2390
ethyl)-2-[(thiophen-3-ylmethyl)-					-
amino]-propionamide					
2-[(Furan-2-ylmethyl)-amino]-3-	03 2	388	86	0 06	429
(1H-indol-3-yl)-N-(1-phenyl-ethyl)-					
propionamide					
	ethyl)-2-[(pyridin-2-ylmethyl)-amino]-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-[(thiophen-2-ylmethyl)-amino]-propionamide 2-(3,4-Dimethoxy-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 2-(3,5-Bis-trifluoromethyl-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 2-(3,5-Difluoro-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 2-(3-Chloro-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 2-(3-Fluoro-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 2-[(Furan-3-ylmethyl)-amino]-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-(3-phenyl-propylamino)-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-[(thiophen-3-ylmethyl)-amino]-propionamide 2-[(Furan-2-ylmethyl)-amino]-3-	ethyl)-2-[(pyridin-2-ylmethyl)- amino]-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-[(thiophen-2-ylmethyl)- amino]-propionamide 2-(3,4-Dimethoxy-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3,5-Bis-trifluoromethyl- benzylamino)-3-(1H-indol-3-yl)-N- (1-phenyl-ethyl)-propionamide 2-(3,5-Difluoro-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Chloro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Fluoro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-[(Furan-3-ylmethyl)-amino]-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-(3-phenyl-propylamino)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-((thiophen-3-ylmethyl)- amino]-propionamide 2-[(Furan-2-ylmethyl)-amino]-3- 03 2	ethyl)-2-[(pyridin-2-ylmethyl)- amino]-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-[(thiophen-2-ylmethyl)- amino]-propionamide 2-(3,4-Dimethoxy-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3,5-Bis-trifluoromethyl- pernylamino)-3-(1H-indol-3-yl)-N- (1-phenyl-ethyl)-propionamide 2-(3,5-Difluoro-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Chloro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Fluoro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Fluoro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-[(Furan-3-ylmethyl)-amino]-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-(3-phenyl-propylamino)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-((thiophen-3-ylmethyl)- amino]-propionamide 2-[(Furan-2-ylmethyl)-amino]-3- 03 2 388	ethyl)-2-[(pyridin-2-ylmethyl)- amino]-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-[(thiophen-2-ylmethyl)- amino]-propionamide 2-(3,4-Dimethoxy-benzylamino)-3- 03 3 458 65 (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3,5-Bis-trifluoromethyl- 04 3 534 94 benzylamino)-3-(1H-indol-3-yl)-N- (1-phenyl-ethyl)-propionamide 2-(3,5-Difluoro-benzylamino)-3- 03 5 434 92 (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Chloro-benzylamino)-3-(1H- 03 4 432 86 indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Fluoro-benzylamino)-3-(1H- 03 4 416 87 indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-[(Furan-3-ylmethyl)-amino]-3- 03 0 388 84 (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)- propionamide	ethyl)-2-[(pyridin-2-ylmethyl)- amino]-propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- amino]-propionamide 2-(1,4-Dimethoxy-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3,5-Bis-trifluoromethyl- benzylamino)-3-(1H-indol-3-yl)-N- (1-phenyl-ethyl)-propionamide 2-(3,5-Difluoro-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3,5-Difluoro-benzylamino)-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Chloro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-(3-Fluoro-benzylamino)-3-(1H- indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 2-[(Furan-3-ylmethyl)-amino]-3- (1H-indol-3-yl)-N-(1-phenyl-ethyl)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-(3-phenyl-propylamino)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-(3-phenyl-propylamino)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-(3-phenyl-propylamino)- propionamide 3-(1H-Indol-3-yl)-N-(1-phenyl- ethyl)-2-((thiophen-3-ylmethyl)- amino]-propionamide 2-[(Furan-2-ylmethyl)-amino]-3- 03 2 388 86 0 066

As noted above, the compounds of formula I will be best utilized in the form of pharmaceutical formulations. The following examples further illustrate specific formulations that are provided by the invention.

5

EXAMPLE 406 Tablet Formulation

Ingredient	Amount
3-[(benzofuran-2-ylmethyl)-amino]-3-(IH-indol-3-yl)-2-	
methyl-N-(1-phenyl-ethyl)-propionamide,[R-(R*,S*)]	50 mg
potato starch	100 mg
talc	50 mg
magnesium carbonate	20 mg
dextrose	20 mg
	240 mg

The above ingredients are blended to uniformity and pressed into a tablet.

Such tablets are administered to human subjects from one to four times a day for treatment of pain, depression and schizophrenia.

- 104 -

EXAMPLE 407

Capsules

Ingredient		<u>Amount</u>
	The compound of Example 5	200 mg
	Corn starch Sodium benzoate talc	100 mg
		10 mg
		50 mg
		360 mg

The ingredients are blended to uniformity and encapsulated into gelatin telescoping capsules. The capsules are administered to a human at the rate of one to three each day for treatment of rheumatoid arthritis, atheroclerosis, aberrant neovascularization, and for the inhibition of tumor cell growth.

We claim:

1. A compound of Formula I

$$R + \begin{pmatrix} R^{1} & R^{3} & R^{9} & R^{5} \\ -C & CO - N & -C & C^{2} \\ -C & CO - N & R^{7} & R^{6} \\ -C & R^{2} & (CH_{2})_{n} & R^{7} & R^{6} \end{pmatrix}$$

$$(CH_{2})_{n} = R^{6}$$

5 or a pharmaceutically acceptable salt thereof, wherein

■, •, and ▲ indicate all stereoisomers,

R is:

pyridyl,

thienyl,

10 furyl,

pyrrolyl,

pyrazolyl,

quinolyl,

isoquinolyl,

15 naphthyl,

indolyl,

benzofuryl,

benzothiophenyl,

benzimidazolyl, and

benzoxazolyl, wherein each of the foregoing is unsubstituted, mono-, di- or trisubstituted by

alkyl,

hydroxy,

alkoxy,

25 halogen,

-CF₃,

carboxy,

sulfonamide, or nitro; R can also be:

$$\begin{array}{c} H_{3}C, NH \\ CH_{3}O \\ CH_{2} \\ O \\ CI \\ \end{array}$$

$$\begin{array}{c} CH_{3}C \\ CH_{2} \\$$

BNSDOCID: <WO___0037462A1_I_>

(ر

BNSDOCID: <WO 0037462A1_1_1_>

 R^1 and R^2 are each independently H or $C_1\text{-}C_4$ alkyl;

m is an integer from 0 to 3;

5

X is NHCONH , or NR 8 where R 8 is H or C $_1$ -C $_4$ alkyl;

 R^3 is hydrogen or C_1 - C_4 alkyl;

10 n is an integer from 1 to 2;

R⁴ is naphthyl or indolyl, wherein said groups are unsubstituted, mono-, di- or trisubstituted by alkyl, hydroxy or formyl;

15 R^9 is hydrogen or C_1 - C_4 alkyl;

```
{\rm R}^5 and {\rm R}^7 are each independently hydrogen or (CH2) _p{\rm R}^{10} where:
                        p is an integer of 1 to 3, and
                        R<sup>10</sup> is H, CH<sub>3</sub>, CN, OH, OCH<sub>3</sub>, CO<sub>2</sub>CH<sub>3</sub>, NH<sub>2</sub>, NHCH<sub>3</sub>, or N(CH<sub>3</sub>)<sub>2</sub>;
 5
      q is an integer of 0 to 4;
      R6 is phenyl,
               pyridyl,
10
               thienyl,
               furyl,
               pyrrolyl,
               pyrazolyl,
               imidazolyl,
15
               quinolyl,
               isoquinolyl,
               naphthyl,
               indolyl,
               benzofuryl,
               benzothiophenyl,
20
               benzimidazolyl, or
               benzoxazolyl, wherein each of the foregoing is unsubstituted, mono-, di- or
               trisubstituted by
                        alkyl,
25
                        hydroxy,
                         alkoxy,
                         halogen,
                         CF<sub>3</sub>,
                        NO_2,
30
                         N(CH_3)_2,
                         OCF<sub>3</sub>,
```

SONH₂,

NH₂,

CONH₂,

CO₂CH₃, or

CO₂H,

5

15

or R6 is:

straight alkyl of from 1 to 3 carbons,

branched alkyl of from 3 to 8 carbons,

cycloalkyl of from 5 to 8 carbons, or

10 heterocycloalkyl,

each of which can be substituted with up to one or two substituents selected from

OH,

CO₂H,

 $N(CH_3)_{2}$

NHCH₃ and

CH₃; and

 R^5 and R^6 , when joined by a bond, can form a ring;

 R^6 is also

_

where X₁ represents the rest of the molecule.

2. A compound of Claim I wherein R is selected from:

5 pyridyl,

thienyl,

furyl,

quinolyl

isoquinolyl

10 naphthyl,

indolyl,

benzofuryl,

benzothiophenyl,

benzimidazolyl,

benzoxazolyl, wherein each of the foregoing is unsubstituted, mono-, di- or trisubstituted by alkyl, hydroxy, alkoxy, halogen, or CF₃,

$$H_3C_S$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CN

m is an integer from 1 to 3;

R⁶ is phenyl

5 pyridyl,
thienyl,
furyl,
pyrrolyl,
quinolyl,
10 isoquinolyl,
naphthyl,
indolyl,

```
benzofuryl,
              benzothiophenyl,
              benzimidazolyl, or
              benzoxazolyl,
 5
              wherein each of the foregoing is unsubstituted, mono-, di- or trisubstituted by
                       alkyl,
                       hydroxy,
                        alkoxy,
                       halogen,
                       CF<sub>3</sub>,
10
                       NO_2
                       N(CH_3)_2,
                       OCF<sub>3</sub>,
                       SONH<sub>2</sub>,
15
                        NH_2,
                        CONH<sub>2</sub>,
                        CO<sub>2</sub>CH<sub>3</sub>, or
                        CO_2H,
```

20 cycloalkyl of from 5 to 6 carbons or heterocycloalkyl, with up to one or two substituents selected from OH,

CO₂H,

 $N(CH_3)_2$,

NHCH₃ and

 CH_3 ; and

R⁵ and R⁶ when joined by a bond can form a ring.

- 3. A compound according to Claim 2 wherein R¹ and R² each are hydrogen.
- 30 4. A compound according to Claim 3 wherein X is NR⁸.

5

5. A compound according to Claim 4 wherein

R is pyridyl, thienyl,

furyl,

quinolyl,

naphthyl,

benzofuryl,

benzothiophenyl,

benzimidazolyl, or

benzoxazolyl, where each of the foregoing is unsubstituted, mono-, di- or trisubstituted by alkyl, hydroxy, alkoxy, halogen, or-CF₃,

$$H_3C_S$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CN

$$CH_2$$
 CH_2 CH_2 CH_2

```
R<sup>1</sup> and R<sup>2</sup> are each H;
     m is an integer from 1 to 3;
     X is NR<sup>8</sup> or NHCONH, where R<sup>8</sup> is H or methyl;
     R<sup>9</sup> is hydrogen or alkyl of 1 to 3 carbon atoms;
     R<sup>6</sup> is phenyl,
              pyridyl,
              thienyl,
              furyl,
              pyrrolyl,
10
              benzimidazolyl,
                       where each of the foregoing is unsubstituted, mono-, di- or trisubstituted by
                                alkyl,
                       hydroxy,
                       alkoxy,
15
                       halogen,
                       CF<sub>3</sub>,
                       NO_2, or
                       N(CH_3)_2;
              cyclohexyl or heterocycloalkyl, with up to one or two substituents selected from
                       OH,
20
                       CO<sub>2</sub>H,
                       N(CH_3)_2,
                       NHCH<sub>3</sub> and
                       CH<sub>3</sub>; and
```

- 25 R⁵ and R⁶, when joined by a bond, can form a ring.
 - 6. A compound of the Formula II

wherein:

R is benzofuryl,

benzoxazolyl,

5 3-cyanophenyl,

3-nitrophenyl, or

3-trifluoromethylphenyl;

R³ is hydrogen or methyl;

X is NH or NHCONH;

10 R⁵ and R⁷ independently are hydrogen or CH₂R¹⁰, where R¹⁰ is H, CH₃ or OH;

R⁶ is phenyl, substituted phenyl, pyridyl, or, cyclohexyl;

- 15 and the pharmaceutically acceptable salts thereof.
 - 7. A compound of Claim 6 selected from:

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-pheñyl-ethyl)-propionamide, [R-(R*,S*)]

20 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-4-yl-ethyl)-propionamide, [R-(R*,S*)]

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-[1-(4-nitro-phenyl)-ethyl]-propionamide, [R-(R*,R*)]

- 2-[(Benzofuran-2-ylmethyl)-amino]-N-(2-hydroxy-1-phenyl-ethyl)-3-(1H-indol-3-yl)-2-methyl-propionamide, [R-(R*,R*)]
- $[R-(R^*,S^*)]2-[(Benzofuran-2-ylmethyl)-amino]-N-(1-cyclohexyl-ethyl)-3-(1H-indol-3-yl)-2-methyl-propionamide$
- 5 [R-(R*,S*)]2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-p-tolyl-ethyl)-propionamide
 - 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-p-tolyl-ethyl)-propionamide, [R-(R*,S*)]
 - 2-(3-Cyano-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide,
- 10 $[R-(R^*,S^*)]$
 - 3-(1H-Indol-3-yl)-2-(3-nitro-benzylamino)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]
 - 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-(3-trifluoromethoxy-benzylamino)-propionamide, [R-(R*,S*)]
- 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-pyridin-4-yl-ethyl)-propionamide, [R-(R*,S*)]
 - 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]
 - 2-[(Benzooxazol-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide
- 20 2-(2-Benzofuran-2-yl-ethylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)] and
 - 2-(3-Benzofuran-2-ylmethyl-ureido)-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)].
- 25 8. A pharmaceutical formulation comprising a compound of Claim I admixed with a pharmaceutically acceptable diluent, carrier or excipient.
 - 9. A formulation according to Claim 8 employing a compound of Formula II

$$R-C-X-C-CO-N-C-R^{6}$$

$$CH_{2}$$

$$R^{3}$$

$$CH_{2}$$

$$R^{5}$$

$$R^{6}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{7}$$

wherein:

R is benzofuryl,

benzoxazolyl,

5 3-cyanophenyl,

3-nitrophenyl, or

3-trifluoromethylphenyl;

R³ is hydrogen or methyl;

X is NH or NHCONH;

10 R⁵ and R⁷ independently are hydrogen or CH₂R¹⁰, where R¹⁰ is H, CH₃ or OH;

R⁶ is phenyl,

substituted phenyl,

pyridyl, or,

cyclohexyl;

- or a pharmaceutically acceptable salts thereof.
 - 10. A formulation according to Claim 9 employing a compound selected from :

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]

20 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-4-yl-ethyl)-propionamide, [R-(R*,S*)]

2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-[1-(4-nitro-phenyl)-ethyl]-propionamide, [R-(R*,R*)]

2-[(Benzofuran-2-ylmethyl)-amino]-N-(2-hydroxy-1-phenyl-ethyl)-3-(1H-indol-3-yl)-2-

25 methyl-propionamide, [R-(R*,R*)]

- [R-(R*,S*)]2-[(Benzofuran-2-ylmethyl)-amino]-N-(1-cyclohexyl-ethyl)-3-(1H-indol-3-yl)-2-methyl-propionamide
- [R-(R*,S*)]2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-2-methyl-N-(1-p-tolyl-ethyl)-propionamide
- 5 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-p-tolyl-ethyl)-propionamide, [R-(R*,S*)]
 - 2-(3-Cyano-benzylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]
 - 3-(1H-Indol-3-yl)-2-(3-nitro-benzylamino)-N-(1-phenyl-ethyl)-propionamide,
- 10 $[R-(R^*,S^*)]$
 - 3-(1H-Indol-3-yl)-N-(1-phenyl-ethyl)-2-(3-trifluoromethoxy-benzylamino)-propionamide, [R-(R*,S*)]
 - $2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-pyridin-4-yl-ethyl)-propionamide,\\ [R-(R^*,S^*)]$
- 2-[(Benzofuran-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)]
 2-[(Benzooxazol-2-ylmethyl)-amino]-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide
 2-(2-Benzofuran-2-yl-ethylamino)-3-(1H-indol-3-yl)-N-(1-phenyl-ethyl)-propionamide, [R-
 - (R^*,S^*)] and
- 20 2-(3-Benzofuran-2-ylmethyl-ureido)-3-(1H-indol-3-yl)-2-methyl-N-(1-phenyl-ethyl)-propionamide, [R-(R*,S*)].
 - 11. A method for antagonizing the NK₁ receptor in a mammal comprising administering a compound of Claim 1.
 - 12. A method for treating a CNS disorder in a mammal in need of treatment comprising administering an effective amount of a compound of Claim 1.
- 13. A method according to Claim 12 wherein the CNS disorder is selected from pain, anxiety, depression or schizophrenia.

25

- 14. A method according to Claim 12 wherein the CNS disorder is selected from neuralgia, stress, sexual dysfunction, bipolar disorders, movement disorders, cognitive disorders, obesity, and addiction disorders.
- 5 15. A method for treating an allergic or inflammatory disorder in a mammal in need of treatment comprising administering an effective amount of a compound of Claim 1.
- 16. A method according to Claim 15 wherein the allergic or inflammatory disorder is selected from arthritis, asthma, bronchitis, psoriasis, eczema, rhinitis, colitis or Crohn's disease.
 - 17. A method for treating a neuropathological disorder in a mammal in need of treatment comprising administering an effective amount of a compound of Claim 1.
- 15 18. A method according to Claim 17 wherein the neuropathological disorder is selected from scleroderma or emesis.

Inte ional Application No PCT/US 99/29592

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D405/12 C07D CO7D403/12 CO7D409/12 CO7D405/14 C07D413/12 C07D307/81 A61K31/405 A61K31/34 C07D401/12 CO7D209/20 A61P37/00 A61P25/00 A61P11/06 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,A WO 99 52903 A (WARNER-LAMBERT COMPANY) 1 - 1821 October 1999 (1999-10-21) page 3, line 25 -page 5, line 25 WO 98 07718 A (WARNER-LAMBERT COMPANY) A 1-18 26 February 1998 (1998-02-26) page 2, line 13 -page 5, line 25 WO 95 33744 A (WARNER-LAMBERT COMPANY) 1-18 Y 14 December 1995 (1995-12-14) page 4, line 10 -page 10, line 26 Y WO 95 14017 A (ELI LILLY AND COMPANY) 1-18 26 May 1995 (1995-05-26) page 3, line 10 -page 6, line 30 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : T later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18/05/2000 10 May 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Kyriakakou, G

Form PCT/ISA/210 (second sheet) (July 1992)

1

Inte _donal Application No PCT/US 99/29592

	· · · · · · · · · · · · · · · · · · ·	PCT/US 99/29592
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 443 132 A (FUJISAWA PHARMACEUTICAL CO., LTD) 28 August 1991 (1991-08-28) page 3	1–18
Y	US 5 716 979 A (DAVID CHRISTOFFER HORWELL ET AL.) 10 February 1998 (1998-02-10) cited in the application column 2, line 30 -column 6, line 65	1-18
Υ	US 5 594 022 A (DAVID C. HORWELL ET AL.) 14 January 1997 (1997-01-14) column 2, line 21 -column 6, line 51	1-18
Υ	HONGBO QI ET AL.: "L-TRYPTOPHAN UREA AMIDES AS NK1/NK2 DUAL ANTAGONISTS" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 8, 1998, pages 2259-2262, XP004137257 the whole document	1-18
Y	DAVID C. HORWELL ET AL.: "quantitative Structure-Activity relationships (QSARs) of N-terminus Fragments of NK1 tachykinin Antagonists: A comparison of Classical QSARs and three-Dimensional QSARs from Similarity Matrices" J. MED. CHEM., vol. 38, no. 22, 1995, pages 4454-4462, XP002041962 the whole document	1-18
Υ .	SOLO GOLDSTEIN ET AL.: "Bioactive conformations of peptides and mimetics as milestones in drug design: Investigation of Nk1 receptor antagonists" LETTERS IN PEPTIDE SCIENCE, vol. 2, 1995, pages 125-134, XP000650996 the whole document	1-18
	•	
	·	
		-1
		·
	i "	į.

1

...emational application No.

PCT/US 99/29592

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)	
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X	Claims Nos.: 11-18 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 11-18 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
2. [Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
This Int	temational Searching Authority found multiple inventions in this international application, as follows:	
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	energia. Se terranga
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	2-1 1
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	•
Remai	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

Information on patent family members

Inte Jonal Application No PCT/US 99/29592

	atent document		Publication				99/29592
	tient document in search repor	nt	Publication date	·	Patent family member(s)		Publication date
WO	9952903	Α	21-10-1999	AU	3011499	A	01-11-1999
WO	9807718	Α	26-02-1998	AU	4146697	Α	06-03-1998
				EP	0920424		09-06-1999
				NO	990788		19-02-1999
				PL	331710		02-08-1999
WO	9533744	Α	14-12-1995	AU	693898	В	09-07-1998
				AU	2595095	Α	04-01-1996
				CA	2187531	Α	14-12-1995
		4		EP	0764163	Α	26-03-1997
				JP	10501228		03-02-1998
				NZ	287284		28-10-1998
	•			US	5610176		11-03-1997
		·	···	ZA	9504609	Α	26-01-1996
WO	9514017	Α	26-05-1995	AU	1098895		06-06-1995
				AU	9725598		25-02-1999
				CA	2176735		26-05-1995
				CN	1141043		22-01-1997
				CZ	9601410		11-12-1996
				EP	0729468		04-09-1996
		,		FI	962074		15-05-1996
				HU	76269		28-07-1997
				JP	9505304		27-05-1997
				NO	962012		08-07-1996
				NZ	276638		28-07-1998
				PL	314487		16-09-1996
				SG	52654		28-09-1998
				US US	5670499 5684033		23-09-1997 04-11-1997
				ZA	9408926		10-05-1996
EP	443132	Α	28-08-1991	AT	98651		15-01-1994
				AU	640185		19-08-1993
				AU	6801090		27-06-1991
				CA	2032864		23-06-1991
				CN	1064080		02-09-1992
	_			CN	1159949	A	24-09-1997
	-			DE	69005286	D	27-01-1994
				DE	69005286	T	21-04-1994
		•		DK	443132		24-01-1994
				ES	2060910		01-12-1994
			i .	FI	906204		23-06-1991
			•	HK	18696		09-02-1996
				HU	56581		30-09-1991
				HU	9500376		28-08-1995
				ΙE	64570		23-08-1995
				JP	2560919		04-12-1996
				JP	4210996		03-08-1992
				KR	180223		01-04-1999
				NO	177535		26-06-1995
				PT	96324		30-09-1991
				RU	2055078		27-02-1996
				US	5468731		21-11-1995
		·		ZA	9009901	A 	30-10-1991
	5716979	Α	10-02-1998	US	5594022	_	14-01-1997

Information on patent family members

Inti Jonel Application No PCT/US 99/29592

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
US 5716979 A	\	US 5981755 A	09-11-1999	
		US 5856354 A	05-01-1999	
		AU 687754 B	05-03-1998	
		AU 5005593 A	15-03-1994	
		EP 0655055 A	31-05-1995	
·		JP 8500361 T	16-01-1996	
	•	NZ 255721 A	24-06-1997	
		WO 9404494 A	03-03-1994	
US 5594022 A	\ 14-01-1997	US 5981755 A	09-11-1999	
j.		US 5716979 A	10-02-1998	
		US 5856354 A	05-01-1999	
		AU 687754 B	05-03-1998	
•	•	AU 5005593 A	15-03-1994	
		EP 0655055 A	31-05-1995	
	•	JP 8500361 T	16-01-1996	
		NZ 255721 A	24-06-1997	
		WO 9404494 A	03-03-1994	

.

• •