GAMBRO DASCO S.P.A.

GAMBRO RF MODULE

Model: RFMOD

30 April 2009

Report No.: SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 (This report supersedes SL08102903-HID-026R2 (15.225 & RSS-210))

Modifications made to the product: None

This Test Report is Issued Under the Authority of:								
a.	Bu							
Choon Sian Ooi	Leslie Bai							
Test Engineer	Engineering Reviewer							

SIEMIC, INC.
Accessing global markets

Page

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 Issue Date 30 April 2009 Page 2 of 39 www.siemic.com

SIEMIC ACREDITATION DETAILS: A2LA Lab Code: 2742.01

ACCREDITED LABORATORY

A2LA has accredited

SIEMIC LABORATORIES

San Jose, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).

SEAL SEAL SEAL ASSESSED TO SEAL ASSESSED

Presented this 11th day of July 2008.

President For the Accreditation Council Certificate Number 2742.01 Valid to September 30, 2010

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial# Issue Date SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 3 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: ISO Guide 65 for US TCB

THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION

ACCREDITED PRODUCT CERTIFICATION BODY

A2LA has accredited

SIEMIC INC.

San Jose, CA

for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996 General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), IDA (Singapore) and IC (Canada) requirements.

SEAL WEST TOP CONTROLLY TO SECURITY TO SEC

Presented this 9th day of January 2009.

President

For the Accreditation Council Certificate Number: 2742.02 Valid to: September 30, 2010

For the product certification schemes to which this accreditation applies, please refer to the certification body's Scope of Accreditation.

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 4 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

December 20, 2007

Registration Number: 783147

SIEMIC Laboratories 2206 Ringwood Avenue, San Jose, CA 95131

Attention: Leslie Bai

Re: Measurement facility located at San Jose

3 & 10 meter site

Date of Renewal: December 20, 2007

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

Serial# Issue Date Page

OUR FILE: 46405-4842

Submission No: 126429

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 5 of 39 www.siemic.com

SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

Industry Industrie

May 23rd, 2008

Siemic Inc. 2206 Ringwood Ave. San Jose CA 95131

Attention: Leslie Bai

Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a new site numbering scheme in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your record.

- Your primary code is: 4842
- The company number associated to the site(s) located at the above address is: 4842A
- The table below is a summary of the changes made to the unique site registration number(s):

New Site	Obsolete Site	Description of Site	Expiry Date
Number	Number		(YYYY-MM-DD)
4842A-1	4842-1	3m Chamber	2010-05-23

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.c Please reference our file and submission number above for all correspondence.

Yours sincerely,

S. Proulx

Test & Measurement Specialist Certification and Engineering Bureau 3701 Carling Ave., Building 94 Ottawa, Ontario K2H 8S2

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 6 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

Voluntary Control Council for Interference by Information Technology Equipment 7F NOA Bidg, 2-3-5, Assbudsi, Minsto-Ku, Tokyo, Japan, 105-0041 Tet+81-3-5575-3138 Fax:81-3-5575-3137 http://www.voci.orip

February 12, 2004

TO: SIEMIC, INC.

Membership NO: 2195

We confirmed your payment for annual membership fee and admission fee. Thank you very much for your remitting.

Please find enclosed VCCI documents. As admission fee and annual membership fee were confirmed, your company registered as VCCI official member.

From now on, it is possible for your company to submit conformity verification report or/and application for registration of measurement facilities.

Please find necessary forms for your submission from VCCI web-site, www.vcci.or.jp

When you submit conformity verification report, please submit to Ms. Yoko Inagaki / inagaki@voci.or.jp and application for registration of measurement facilities, please submit to Mr. Masaru Denda / denda@voci.or.jp

Their address, phone and fax number are absolutly same as L. Please refer address indicated on top right-hand corner of this page.

If you have any other questions regarding membership, feel free to contact me. Thank you very much.

Best Regards,

Naoko Hori (Ms.) VCCI hori®vcci.or.jp

Enclosure

Serial# Issue Date SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 7 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927

Certificate

This is to certify that the Quality Management System

SIEMIC, Inc.

2206 Ringwood Avenue San Jose, California 95131 U.S.A

has been authorized to carry out Japan Specified Radio Equipment test by order and under supervision of RF Technologies Co., Ltd. according to Notification No.88 of Radio Law.

An assessment of the laboratory was conducted according to the "Procedure and Conditions for Appointments of 2,4GHz Band Low power data communications system that Bluetooth and Wireless LAN test with reference to ISO/IEC 17025 by an RF Technologies Co., Ltd. auditor.

Audit Report No. MRF050927

Kazuyuki Sarashina

Auditor

RF Technologies Co., Ltd.

Audit Date September 27th, 2005 Toshihiro fkegami

President

RF Technologies Co., Ltd.

Issued Date October 5th, 2005

This Certificate is valid until September 26th 2006 or next schedule audit.

No:006 Registered Certification Body RF Technologies Co., Ltd. 472, Nippa-cho, Kohoku-ku, Yokohuma, 223-0057, Jupan

Serial# Issue Date Page SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 8 of 39 www.siemic.com

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032

시험기관지정서 Certificate

of Designated Testing Laboratory

지정번호(No.) : KR0032

시험기관명 : (주)현대교정인증기술원

(Name of Lab.) (Hunchi Calibration & Certification Technologies Co., Ltd.)

주 소 : 경기도 이천시 부발음 아미리 산136-1

(Address) (136-1, Ami-ri, Buhal-esp, Ichean-si, Kyanggi-Do, Korea)

2206 Ringwood Avenue San Jose, CA, USA.

시험문야 및 범위 : 유선(Telecommunication Part)

(Area & Category) 무선(Radio Communication Part)

전자와장배(EMI): 미국지사 포함 전자과내성(EMS): 미국지사 포함

전기안전(Safety) 전자파흡수율(SAR)

위 기관을 정보통신기기시험기관지정및관리등에관한규칙에 의해 정보통신기기시험기관으로 지정합니다.

> This is to certify that the above mentioned laboratory is designated

as the testing laboratory in accordance with the Regulations on Designation of Testing Laboratory for Information and Communication Equipment.

2005년(Year) 74(Month) 54(Date

전파연구소

Director General of Radio Research Daboratory Ministry of Information and Communication Republic of Korea

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 9 of 39

 www.siemic.com

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE Mational Institute of Standards and Technology Galthersburg, Maryland 20899-

April 17, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Ministry of Information and Communication's Radio Research Laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC Laboratories

Identification No.: US0160

Scope:

Coverage	Standards	Date of Recognition
Electro Magnetic Interference	RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8(KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedure for Electromagnetic Interference	April 13, 2006
Electro Magnetic Susceptibility	RRE Notice No. 2005-130: Technical Requirements for Electromagnetic Susceptibility Annex 1–7(KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11). RRL Notice No. 2005-132: Conformity Assessment Procedure for Electromagnetic Susceptibility	April 13, 2006

You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Mr. Jogindar (Joe) Dhillon at (301) 975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

3 auc

cc: Jogindar Dhillon

NIST

Serial# SL08 Issue Date 30 A Page 10 o

www.siemic.com

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 10 of 39

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gathersburg, Maryland 20898-

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designation information is as follows:

BSMI number: SL2-IN-E-1130R (Must be applied to the test reports)

- U.S Identification No: US0160
- Scope of Designation: CNS 13438
- Authorized signatory: Mr. Leslie Bai

Pand of acce

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

cc: Jogindar Dhillon

Serial# Issue Date Page SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 11 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gathersburg, Maryland 20899-

August 8, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bair

I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipet's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA.

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines:

- Your laboratory's assigned 6-digit U.S. identification number is US0160. You should reference this number in your correspondence.
- The scope of designation is limited to LP0002. Your designation will remain in force as long as your accreditation remains valid for the scope of designation.

If you have any questions please contact Mr. Jogindar Dhillon via email at dhillon@nist.gov or via fax at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at http://ts.nist.gov/mra. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman

Group Leader, Standards Coordination and Conformity Group

ec: Jogindar Dhillon

Z al

Serial# Issue Date <u>Pag</u>e

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 12 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

Laboratorio Valentín V. Rivero

México D.F. a 16 de octubre de 2006.

LESUIE BAI DIRECTOR OF CERTIFICATION SIEMIC LABORATORIES, INC. ACCESSING GLOBAL MARKETS PRESENTE

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para la cual adjunto a este escrito encontrara el Acuerdo en idioma inglés y espeñol prelenado de los cuales le pido sea revisado y en su caso corregido, para que si esta de acuerdo poder firmarlo para mandario con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho acuerdo.

Aprovecho este escrito para mencionarle que nuestro intermediario gestor será la empresa Isatel de México. S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo relacionado a la evaluación de la conformidad y que quenta con amplia experiencia en la gestoria de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Me despido de ustad enviêndole un cordial saludo y esperando sus comentarios al Acuerdo que nos poupa

Atentamente:

Ing. Faustino Conez González Gerente Teanico del Laboratorio de

CANTEN.

Culturie T1 Historiess Condess C410 Mayers D7 Tel. 5294-696 con 12 Peess Fax 5264 0466

Serial#

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 Issue Date 30 April 2009 Page 13 of 39

www.siemic.com

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

Your Ref 來商權號: Our Ref 本局權號: D23/16 V

Telephone **RES** : (852) 2961 6320 (852) 2838 5004 Fax No 圖文傳真:

E-mail 電郵地址:

20 July 2005

Mr. Leslie Bai Director of Certification. SIEMIC Laboratories 2206 Ringwood Avenue San Jose, California 95131 USA

Dear Mr. Bai,

Application of Recognised Testing Agency (RTA)

Referring your submission of 28 June 2005 in relation to the application of RTA, I am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA):

Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA

Scope of recognition (HKTA Specifications):

1001, 1002, 1004, 1006, 1007, 1008

1010, 1015, 1016

1022, 1026, 1027, 1029

1030, 1031, 1032, 1033, 1034, 1035, 1039

1041, 1042, 1043, 1045, 1047, 1048

2001

You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA 1411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment*, can be downloaded from OFTA's homepage http://www.ofta.gov.hk/tec/information-notes.html.

If you have any queries, please do not hesitate to contact me.

Yours sincerely,

(K K Sin) for Director-General

of Telecommunications

Office of the Telecommunications Authority 29/F Wu Chung House 213 Queen's Road East Wan Chai Hong Kong

香港灣仔皇后大道東 213 號胡忠大廈 29 字樓

http://www.ofta.gov.hk

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 14 of 39

 www.siemic.com

This page has been left blank intentionally.

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 15 of 39

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	17
2	TECHNICAL DETAILS	18
3	MODIFICATION	19
4	TEST SUMMARY	20
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	21
ANNE	X A. TEST INSTRUMENT & METHOD	31
ANNE	EXIC LISER MANUAL BLOCK & CIRCUIT DIAGRAM	30

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 16 of 39

 www.siemic.com

This page has been left blank intentionally.

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 17 of 39

 www.siemic.com

1 Executive Summary & EUT information

The purpose of this test programmed was to demonstrate compliance of the HID Global Corp., model:RFMOD against the current Stipulated Standards. Gambro RF Module have demonstrated compliance with the FCC 15.225 2008 & RSS-210 Issue 7: 2007.

HID Global Corp. is the applicant and claimed manufacturer of this tested product. For the detailed description of this product, please refer to the Gambro RF Module User Manual submitted as another Exhibit to this application.

The equipment under test radio operating frequency is 13.56 MHz.

The test has demonstrated that this unit complies with stipulated standards.

EUT Information

EUT Description

The RFMODis an inductive proximity card reader intended to be used in access control systems, parking systems and other applications using RFID readers. It is capable of reading 13.56 MHz

inductive tags.

Model No : RFMOD Serial No : N/A Input Power : 5 VDC

Classification

Per Stipulated

RFID Reader

Test Standard

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 18 of 39

 www.siemic.com

2 <u>TECHNICAL DETAILS</u>									
Purpose	Compliance testing of Gambro RF Module RFMOD with stipulated standard								
Applicant / Client	GAMBRO DASCO S.p.A.								
Manufacturer	GAMBRO DASCO S.p.A. Via Modenese,66 Medolla, Modena 41036 Italy								
Laboratory performing the tests	SIEMIC Laboratories								
Test report reference number	SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0								
Date EUT received	11 November 2008								
Standard applied	47 CFR §15.225: 2008 & RSS 210 Issue 7: 2007								
Dates of test (from - to)	17-21 November 2008								
No of Units:	1								
Equipment Category:	DXX								
Trade Name:	Gambro RF Module								
Model:	RFMOD								
RF Operating Frequency (ies)	13.56 MHz (RFID)								
Number of Channels :	1								
Modulation :	AM Modulation								
FCC ID:	XD3-RFMOD								
IC ID :	8313A-RFMOD								

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date Issue Date Page
 30 April 2009 Programment (19 of 39 www.siemic.com)

3 MODIFICATION

NONE

Serial# SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 Issue Date 30 April 2009 Page 20 of 39

TEST SUMMARY 4

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

RFID Reader

Test Results Summary

Test Sta	ndard	Description	Pass / Fail	
47 CFR Part 15.225: 2008	RSS 210 Issue 7: 2007	- Description		
15.203		Antenna Requirement	Pass	
15.207(a)	RSS Gen(7.2.2)	Conducted Emissions Voltage	Pass	
15.225(a)	RSS210(A2.6)	Limit in the band of 13.553 – 13.567 MHz	Pass	
15.225(b)	RSS210(A2.6)	RSS210(A2.6) Limit in the band of 13.410 – 13.553 MHz and 13.567 – 13.710 MHz		
15.225(c)	RSS210(A2.6)	Limit in the band of 13.110 – 13.410 MHz and 13.710 – 14.010 MHz	Pass	
15.225(d), 15.209	RSS210(A2.6)	Limit outside the band of 13.110 – 14.010 MHz	Pass	
15.225(e)	RSS210(A2.6)	Frequency Stability	Pass	
	RSS-210(5.9.1)	Occupied Bandwidth	Pass	

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

Page

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 Issue Date 30 April 2009 Page 21 of 39 www.siemic.com

MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.
- The RFID antenna is integral to the main board permanently to the device which meets the requirement. (See Internal photographs submitted as another Exhibit)

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 22 of 39

www.siemic.com

5.2 Conducted Emissions Voltage

Requirement(s): 47 CFR §15.207

Requirement:

	Conducted lim	it (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

4. Environmental Conditions Temperature

Temperature 28°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

Test Date: November 17-21 2008 Tested By: Choon Sian Ooi

Results: Pass

AC Line

Quasi-Peak Limit

Average Limit

Phase Line Plot at 120Vac, 60Hz

Frequency (MHz)	QP Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Avg Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Line
13.56	39.72	60.00	PASS	-20.28	37.11	50.00	PASS	-12.89	Phase
2.19	30.36	56.00	PASS	-25.64	25.03	46.00	PASS	-20.97	Phase
25.06	35.50	60.00	PASS	-24.50	32.71	50.00	PASS	-17.29	Phase
0.23	32.28	62.42	PASS	-30.14	26.53	52.42	PASS	-25.89	Phase
1.89	24.69	56.00	PASS	-31.31	18.32	46.00	PASS	-27.68	Phase
24.88	26.39	60.00	PASS	-33.61	21.53	50.00	PASS	-28.47	Phase

Serial# Issue Date Page SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 24 of 39

Quasi-Peak Limit

Average Limit

Neutral Line Plot at 120Vac, 60Hz

Frequency (MHz)	QP Value (dBμV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Avg Value (dBµV)	Class B Limit (dB)	Pass / Fail	Margin (dB)	Line
25.06	41.80	60.00	PASS	-18.20	39.50	50.00	PASS	-10.50	Neutral
13.56	38.38	60.00	PASS	-21.62	35.68	50.00	PASS	-14.32	Neutral
2.21	30.18	56.00	PASS	-25.82	19.84	46.00	PASS	-26.16	Neutral
1.88	28.96	56.00	PASS	-27.04	24.16	46.00	PASS	-21.84	Neutral
1.58	25.54	56.00	PASS	-30.46	18.50	46.00	PASS	-27.50	Neutral
24.68	29.61	60.00	PASS	-30.39	24.01	50.00	PASS	-25.99	Neutral

Issue Date 3

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 30 April 2009 25 of 39 www.siemic.com

5.3 Radiated Emission < 30MHz (9kHz - 30MHz, H-Field)

Requirement(s): 47 CFR §15.225 & RSS-210 (A2.6)

Procedures: For < 30MHz, Radiated emissions were measure

For < 30MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the centre of the loop. The measuring bandwidth was set to 10 kHz. (Note: During testing the receive antenna was rotated about its axis to maximize the emission from the EUT.)

The limit is converted from microvolt/meter to decibel microvolt/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss(dB) -

Distance Correction Factor

Temperature: 28 °C Relative humidity: 50 % Pressure: 1019 mbar

Tested by: Choon Sian Ooi Test Date: November 17-21 2008

Results: Pass

.

Loop Antenna Positioned at 0 degrees, Azimuth 0 degrees with RFID activated

Frequency	Raw Amplitude @ 10m	Measure	Ant. Height	Ant. Factor	Cable Loss	Pre Amp Gain	Distance Correction Factor	Corrected Amplitude @ 30m	Limits Part 15.209 & Part 15.225	Margin
(MHz)	(dBµV/m)	(Avg/QP)	(m)	(dB)	(dB)	(dBm)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)
13.56	36.4	Peak	2	35.4	0.3	27.2	19.08	25.82	84	-58.18
27.12	19.2	Peak	1.5	34.2	0.3	27.2	19.08	7.42	29.54	-22.12

Table 1

Loop Antenna Positioned at 90 degrees, Azimuth 90 degrees with RFID activated

Frequency	Raw Amplitude @ 10m	Measure	Ant. Height	Ant. Factor	Cable Loss	Pre Amp Gain	Distance Correction Factor	Corrected Amplitude @ 30m	Limits Part 15.209 & Part 15.225	Margin
(MHz)	(dBµV/m)	(Avg/QP)	(m)	(dB)	(dB)	(dBm)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)
13.56	33.41	Peak	2	35.4	0.3	27.2	19.08	22.83	84	-61.17
27.12	18.95	Peak	1.5	34.2	0.3	27.2	19.08	7.17	29.54	-22.37

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 26 of 39

 ***Water signific com**

5.4 Radiated Emissions > 30 MHz (30MHz - 1 GHz, E-Field)

Requirement(s): 47 CFR §15.209; 47 CFR §15.225(d) & RSS-210 (A2.6)

Procedures: For > 30MHz, Radiated emissions were measured according to ANSI C63.4. The EUT was

set to transmit at the highest output power. The EUT was set 10 meter away from the measuring antenna. The Log periodic antenna was positioned 1 meter above the ground from the centre of the antenna. The measuring bandwidth was set to 120 kHz. (Note: During testing the receive antenna was raise from 1~4 meters to maximize the emission from the

EUT.)

The limit is converted from microvolt/meter to decibel microvolt/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF (dB) + Cable Loss(dB) -

Distance Correction Factor

Temperature: 28 °C Relative humidity: 50 % Pressure: 1019 mbar

Tested by: Choon Sian Ooi Test Date: November 17-21 2008

Results: Pass

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date Issue Date Page
 30 April 2009 27 of 39 27

Frequency (MHz)	QP (dBμV/m)	Azimuth (Degrees)	Ant. Height (cm)	Ant. Polarity (H/V)	Limit @10m (dBµV/m)	Margin (dBµV/m)
162.74	29.80	260.00	160.00	Н	33.04	-3.24
54.20	26.17	351.00	114.00	V	29.54	-3.37
40.69	25.78	68.00	154.00	Н	29.54	-3.76
189.86	28.57	219.00	169.00	V	33.04	-4.47
298.33	29.90	115.00	176.00	Н	35.54	-5.64
67.78	22.90	359.00	101.00	Н	29.54	-6.64
203.38	25.78	303.00	222.00	Н	33.04	-7.26
311.83	27.57	40.00	118.00	Н	35.54	-7.97
81.36	20.86	40.00	106.00	V	29.54	-8.68
406.82	25.18	307.00	106.00	Н	35.54	-10.36
244.10	24.98	280.00	238.00	Н	35.54	-10.56
325.39	22.09	295.00	101.00	V	35.54	-13.45
149.19	18.61	194.00	122.00	V	33.04	-14.43
176.29	18.28	96.00	347.00	Н	33.04	-14.76
135.61	15.43	216.00	164.00	V	33.04	-17.61

Serial# SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 Issue Date 30 April 2009 Page 28 of 39

www.siemic.com

5.5 Frequency Stability

Requirement(s): 47 CFR §15.225(e) & RSS-210 (A2.6)

Procedures: Frequency Stability was measured according to 47 CFR §2.1055. Measurement was taken

with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in

hertz. A voltmeter was used to monitor when varying the voltage.

Limit: $\pm 0.01\%$ of 13.56 MHz = 1356 Hz

Temperature: 28 °C Relative humidity: 50 % Pressure: 1019 mbar

Tested by: Choon Sian Ooi Test Date: November 17-21 2008

Results: Pass

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within ± 0.01% of the operating frequency over a temperature variation of -20°C to +50°C at normal supply voltage.

Reference Frequency: 13.56098 MHz at -20°C and +50°C

Temperature	Measured Freq.	Freq. Drift	Freq. Deviation	Pass/Fail	
(°C)	(MHz)	(Hz)	(Limit: 0.01%)		
50	13.56095	-30	<0.01	Pass	
40	13.56095	-30	<0.01	Pass	
30	13.56097	-10	<0.01	Pass	
20	Reference				
10	13.56100	20	<0.01	Pass	
0	13.56102	40	<0.01	Pass	
-10	13.56095	-30	<0.01	Pass	
-20	13.56091	-70	<0.01	Pass	

Table 10

Frequency Stability versus Input Voltage: The Frequency tolerance of the carrier signal shall be maintained within \pm 0.01%, the frequency of the transmitter was measured at 85% and at 115% of the rated power supply voltage at 20°C environmental temperature.

Carrier Frequency: 13.56098 MHz at 20°C at 5VDC

Measured Voltage ±15% of nominal (DC)	Measured Freq. (MHz)	Freq. Drift (Hz)	Freq. Deviation (Limit: 0.01%)	Pass/Fail
5.75	13.56097	10	<0.01	Pass
4.25	13.56095	30	<0.01	Pass

5.6 Occupied Bandwidth

Requirement(s): RSS-210 (5.9.1)

Procedures: Occupied Bandwidth was measured according to RSS-210 (5.9.1). Measurement was taken

with spectrum analyzer. The spectrum analyzer bandwidth and span was set to read in

hertz.

Temperature: 28 °C Relative humidity: 50 % Pressure: 1019 mbar

Tested by: Choon Sian Ooi Test Date: November 17-21 2008

Results: Pass

Plots: 99% bandwidth

Plots: 20dB bandwidth

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 31 of 39

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Due
Conducted Emissions			
R & S Receiver	ESIB 40	100179	04/25/2009
R&S LISN	ESH2-Z5	861741/013	04/27/2009
CHASE LISN	MN2050B	1018	04/26/2009
Radiated Emissions			
R & S Receiver	ESIB 40	100179	04/25/2009
Sunol Sciences, Inc. antenna (30MHz~2GHz)	JB1	A030702	01/04/2009
ETS-Lingren Loop Antenna	6512	00049120	05/13/2009
DMM	Fluke	73III	05/01/2009
Variac	KRM	AEEC-2090	See Note
Environment Chamber	Test Equity	1007Н	01/24/2009

Note: Functional Verification

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$ (Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96 i.e. **7.96 dB below limit**

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION

EUT Characterisation

EUT characterisation, over the frequency range from 100kHz – 1GHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred; clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS) at 10m distance.

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 Serial# Issue Date 30 April 2009 34 of 39 Page

www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 or to 360 or with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)

And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be guasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to guasi peak detector function.

Annex B. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A

NOTE: No special supporting equipment are used or needed during testing to achieve compliance.

Block Configuration Diagram for Radiated Emission

Block Configuration Diagram for Conducted Emission

 Serial#
 \$L08102903-HID-026R2 (15.225 & RSS-210) Rev1.0

 Issue Date
 30 April 2009

 Page
 38 of 39

Annex B i. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation		
Emissions Testing	The EUT was controlled by itself.		
Others Testing	The EUT was controlled by itself.		

Serial# SL08102903-HID-026R2 (15.225 & RSS-210) Rev1.0 lssue Date Page 30 April 2009 39 of 39

Annex C USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment