Capstone Project - The Battle of the Neighborhoods (Week 2)

Applied Data Science Capstone by IBM/Coursera

Table of contents

- Introduction: Business Problem
- Data
- Methodology
- Analysis
- Results and Discussion
- Conclusion

Introduction: Business Problem

The aim of this project is to find a safe and secure location for opening of commercial establishments in Vancouver, Canada. Specifically, this report will be targeted to stakeholders interested in opening any business place like **Grocery Store** in **Vancouver City**, Canada.

The first task would be to **choose the safest borough** by analysing crime data for opening a grocery store and **short listing a neighbourhood**, where grocery stores are not amongst the most commom venues, and yet **as close to the city as possible**.

We will make use of our data science tools to analyse data and focus on the safest borough and explore its neighborhoods and the 10 most common venues in each neighborhood so that the

best neighborhood where grocery store is not amongst the most common venue can be selected.

Data

Based on definition of our problem, factors that will influence our decission are:

- finding the safest borough based on crime statistics
- finding the most common venues
- choosing the right neighbourhood within the borough

We will be using the geographical coordinates of Vancouver to plot neighbourhoods in a borough that is safe and in the city's vicinity, and finally cluster our neighborhoods and present our findings.

Following data sources will be needed to extract/generate the required information:

- Part 1: Using a real world data set from Kaggle containing the Vancouver Crimes from 2003
 to 2019: A dataset consisting of the crime statistics of each Neighbourhoof in Vancouver
 along with type of crime, recorded year, month and hour.
- Part 2: Gathering additional information of the list of officially categorized boroughs in <u>Vancouver from Wikipedia</u>.: Borough information will be used to map the existing data where each neighbourhood can be assigned with the right borough.
- Part 3: Creating a new consolidated dataset of the Neighborhoods, along with their boroughs, crime data and the respective Neighbourhood's co-ordinates.: This data will be fetched using OpenCage Geocoder to find the safest borough and explore the neighbourhood by plotting it on maps using Folium and perform exploratory data analysis.
- Part 4: Creating a new consolidated dataset of the Neighborhoods, boroughs, and the most common venues and the respective Neighbourhood along with co-ordinates.: This data will be fetched using Four Square API to explore the neighbourhood venues and to apply machine learning algorithm to cluster the neighbourhoods and present the findings by plotting it on maps using Folium.

Part 1: Using a real world data set from Kaggle containing the Vancouver Crimes from 2003 to 2019

Vancouver Crime Report

Properties of the Crime Report

- TYPE Crime type
- YEAR Recorded year
- MONTH Recorded month
- · DAY Recorded day
- · HOUR Recorded hour
- MINUTE Recorded minute
- HUNDRED_BLOCK Recorded block
- NEIGHBOURHOOD Recorded neighborhood
- X GPS longtitude
- Y GPS latitude

Data set URL: https://www.kaggle.com/agilesifaka/vancouver-crime-report/version/2

Importing all the necessary Libraries

```
In [3]: import numpy as np
import pandas as pd

#Command to install OpenCage Geocoder for fetching Lat and Lng of Neigh
borhood
!pip install opencage
!pip install folium

#Importing OpenCage Geocoder
from opencage.geocoder import OpenCageGeocode

# use the inline backend to generate the plots within the browser
%matplotlib inline
```

```
#Importing Matplot lib and associated packages to perform Data Visualis
ation and Exploratory Data Analysis
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.style.use('ggplot') # optional: for ggplot-like style
# check for latest version of Matplotlib
print ('Matplotlib version: ', mpl. version ) # >= 2.0.0
# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors
#Importing folium to visualise Maps and plot based on Lat and Lng
import folium
#Requests to request web pages by making get requests to FourSquare RES
T Client
import requests
#To normalise data returned by FourSquare API
from pandas.io.json import json normalize
#Importing KMeans from SciKit library to Classify neighborhoods into cl
usters
from sklearn.cluster import KMeans
print('Libraries imported')
/opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages/secretstora
ge/dhcrypto.py:16: CryptographyDeprecationWarning: int from bytes is de
precated, use int.from bytes instead
 from cryptography.utils import int from bytes
/opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages/secretstora
ge/util.py:25: CryptographyDeprecationWarning: int from bytes is deprec
ated, use int.from bytes instead
 from cryptography.utils import int from bytes
Requirement already satisfied: opencage in /opt/conda/envs/Python-3.7-m
```

```
ain/lib/python3.//site-packages (1.2.2)
Requirement already satisfied: backoff>=1.10.0 in /opt/conda/envs/Pytho
n-3.7-main/lib/python3.7/site-packages (from opencage) (1.10.0)
Requirement already satisfied: Requests>=2.2.0 in /opt/conda/envs/Pytho
n-3.7-main/lib/python3.7/site-packages (from opencage) (2.24.0)
Requirement already satisfied: pyopenssl>=0.15.1 in /opt/conda/envs/Pyt
hon-3.7-main/lib/python3.7/site-packages (from opencage) (19.1.0)
Requirement already satisfied: six>=1.4.0 in /opt/conda/envs/Python-3.7
-main/lib/python3.7/site-packages (from opencage) (1.15.0)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/Py
thon-3.7-main/lib/python3.7/site-packages (from Reguests>=2.2.0->openca
ge) (2020.12.5)
Reguirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from Re
quests >= 2.2.0 - sopencage) (1.25.9)
Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/envs/Pyt
hon-3.7-main/lib/python3.7/site-packages (from Requests>=2.2.0->opencag
e) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/envs/Python-
3.7-main/lib/python3.7/site-packages (from Requests>=2.2.0->opencage)
(2.9)
Requirement already satisfied: cryptography>=2.8 in /opt/conda/envs/Pyt
hon-3.7-main/lib/python3.7/site-packages (from pyopenssl>=0.15.1->openc
age) (3.4.7)
Requirement already satisfied: cffi>=1.12 in /opt/conda/envs/Python-3.7
-main/lib/python3.7/site-packages (from cryptography>=2.8->pyopenssl>=
0.15.1->opencage) (1.14.0)
Requirement already satisfied: pycparser in /opt/conda/envs/Python-3.7-
main/lib/python3.7/site-packages (from cffi>=1.12->cryptography>=2.8->p
yopenssl \ge 0.15.1 - sopencage) (2.20)
/opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages/secretstora
qe/dhcrypto.py:16: CryptographyDeprecationWarning: int from bytes is de
precated, use int.from bytes instead
  from cryptography.utils import int from bytes
/opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages/secretstora
ge/util.py:25: CryptographyDeprecationWarning: int from bytes is deprec
ated, use int.from bytes instead
 from cryptography.utils import int from bytes
Collecting folium
  Doublooding folium 0 12 1 nu2 nu2 none any vbl (04 kD)
```

```
DOWNLOAUTH IOCTAM PARTY AND PARTY AN
                                                                                       94 kB 6.1 MB/s eta 0:00:01
Requirement already satisfied: requests in /opt/conda/envs/Python-3.7-m
ain/lib/python3.7/site-packages (from folium) (2.24.0)
Requirement already satisfied: jinja2>=2.9 in /opt/conda/envs/Python-3.
7-main/lib/pvthon3.7/site-packages (from folium) (2.11.2)
Collecting branca>=0.3.0
    Downloading branca-0.4.2-py3-none-any.whl (24 kB)
Requirement already satisfied: numpy in /opt/conda/envs/Python-3.7-mai
n/lib/python3.7/site-packages (from folium) (1.18.5)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from re
quests->folium) (1.25.9)
Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/envs/Pyt
hon-3.7-main/lib/python3.7/site-packages (from requests->folium) (3.0.
4)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/envs/Python-
3.7-main/lib/python3.7/site-packages (from requests->folium) (2.9)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/Py
thon-3.7-main/lib/python3.7/site-packages (from requests->folium) (202
0.12.5)
Requirement already satisfied: MarkupSafe>=0.23 in /opt/conda/envs/Pyth
on-3.7-main/lib/python3.7/site-packages (from jinja2>=2.9->folium) (1.
1.1)
Installing collected packages: branca, folium
Successfully installed branca-0.4.2 folium-0.12.1
Matplotlib version: 3.2.2
Libraries imported
Reading from the Dataset
Due to sheer amount of data(~ 600,000 rows), it was not possible to process all of them
and instead for this project we will be considering the recent crime report of the 2018.
vnc crime df = pd.read csv('https://raw.githubusercontent.com/RamanujaS
VL/Coursera Capstone/master/vancouver crime records 2018.csv', index co
 l=None)
```

```
#Dropping X,Y which represents Lat, Lng data as Coordinates, the data s
eems to be corrupt
vnc_crime_df.drop(['Unnamed: 0','MINUTE', 'HUNDRED_BLOCK', 'X', 'Y'], a
xis = 1, inplace = True)
#vnc_crime_df.columns
vnc_crime_df.head()
```

Out[4]:

	TYPE	YEAR	MONTH	DAY	HOUR	NEIGHBOURHOOD
0	Break and Enter Commercial	2018	3	2	6	West End
1	Break and Enter Commercial	2018	6	16	18	West End
2	Break and Enter Commercial	2018	12	12	0	West End
3	Break and Enter Commercial	2018	4	9	6	Central Business District
4	Break and Enter Commercial	2018	10	2	18	Central Business District

Changing the name of columns to lowercase

Out[5]:

	Туре	Year	Month	Day	Hour	Neighbourhood
0	Break and Enter Commercial	2018	3	2	6	West End
1	Break and Enter Commercial	2018	6	16	18	West End
2	Break and Enter Commercial	2018	12	12	0	West End
3	Break and Enter Commercial	2018	4	9	6	Central Business District
4	Break and Enter Commercial	2018	10	2	18	Central Business District

Total Crimes in different Neighborhoods

```
In [6]: vnc crime df['Neighbourhood'].value counts()
Out[6]: Central Business District
                                      10857
        West End
                                       3031
        Mount Pleasant
                                       2396
        Strathcona
                                       1987
        Kitsilano
                                       1802
        Fairview
                                       1795
        Renfrew-Collingwood
                                       1762
        Grandview-Woodland
                                       1761
        Kensington-Cedar Cottage
                                       1391
        Hastings-Sunrise
                                       1270
        Sunset
                                        967
        Riley Park
                                        866
                                        828
        Marpole
        Victoria-Fraserview
                                        600
        Killarney
                                        565
        0akridge
                                        499
        Dunbar-Southlands
                                        474
        Kerrisdale
                                        417
        Shaughnessy
                                        414
        West Point Grey
                                        372
        Arbutus Ridge
                                        311
        South Cambie
                                        292
        Stanley Park
                                        154
        Musqueam
                                         17
        Name: Neighbourhood, dtype: int64
```

Part 2: Gathering additional information about the Neighborhood from Wikipedia

As part of data set Borough which the neighborhood was part of was not categorized, so we will create a dictionary of Neighborhood and based on data in the following <u>Wikipedia page</u>.

```
In [7]: # define the dataframe columns
        column names = ['Neighbourhood', 'Borough']
        # instantiate the dataframe
        vnc neigh bor = pd.DataFrame(columns=column names)
        vnc neigh bor['Neighbourhood'] = vnc crime df['Neighbourhood'].unique()
        neigh bor dict = {'Central Business District':'Central', 'West End':'Ce
        ntral', 'Stanley Park': 'Central', 'Victoria-Fraserview': 'South Vancouve
        r',
                          'Killarney': 'South Vancouver', 'Musqueam': 'South Vanc
        ouver', 'Mount Pleasant': 'East Side', 'Strathcona': 'East Side',
                          'Renfrew-Collingwood': 'East Side', 'Grandview-Woodlan
        d':'East Side', 'Kensington-Cedar Cottage':'East Side', 'Hastings-Sunri
        se':'East Side',
                           'Sunset': 'East Side', 'Riley Park': 'East Side', 'Kits
        ilano':'West Side', 'Fairview':'West Side',
                          'Marpole':'West Side', 'Oakridge':'West Side', 'Dunba
        r-Southlands':'West Side', 'Kerrisdale':'West Side',
                          'Shaughnessy':'West Side', 'West Point Grey':'West Si
        de', 'Arbutus Ridge':'West Side', 'South Cambie':'West Side'}
        for row, neigh in zip(neigh bor dict, vnc neigh bor['Neighbourhood']):
          vnc neigh bor.loc[vnc neigh bor.Neighbourhood == row, 'Borough'] = ne
        igh bor dict.get(row)
        vnc neigh bor.dropna(inplace=True)
        print("Total Neighbourhood Count",len(vnc neigh bor['Neighbourhood']),
        "Borough Count",len(vnc neigh bor['Borough'].unique()))
        vnc neigh bor.head()
```

Total Neighbourhood Count 24 Borough Count 4

Out[7]:

	Neighbourhood	Borough
0	West End	Central
4	Control Business District	Control

- Neighbourhood Borough
 Hastings-Sunrise East Side
- **3** Grandview-Woodland East Side
- 4 Mount Pleasant East Side

Merging the Crime data Table to include Boroughs

```
In [8]: vnc_boroughs_crime = pd.merge(vnc_crime_df,vnc_neigh_bor, on='Neighbour hood')
    vnc_boroughs_crime.head()
```

Out[8]:

	Туре	Year	Month	Day	Hour	Neighbourhood	Borough
0	Break and Enter Commercial	2018	3	2	6	West End	Central
1	Break and Enter Commercial	2018	6	16	18	West End	Central
2	Break and Enter Commercial	2018	12	12	0	West End	Central
3	Break and Enter Commercial	2018	3	2	3	West End	Central
4	Break and Enter Commercial	2018	3	17	11	West End	Central

Further Cleaning the data by dropping rows with invalid data

```
In [9]: vnc_boroughs_crime.dropna(inplace=True)
vnc_boroughs_crime['Borough'].value_counts()
```

Out[9]: Central 14042
East Side 12400
West Side 7204
South Vancouver 1182
Name: Borough, dtype: int64

Methodology

Categorized the methodologysection into two parts:

- Exploratory Data Analysis: Visualise the crime repots in different Vancouver boroughs to idenity the safest borough and normalise the neighborhoods of that borough. We will Use the resulting data and find 10 most common venues in each neighborhood.
- Modelling: To help stakeholders choose the right neighborhood within a borough we will be
 clustering similar neighborhoods using K means clustering which is a form of unsupervised
 machine learning algorithm that clusters data based on predefined cluster size. We will use
 K-Means clustering to address this problem so as to group data based on existing venues
 which will help in the decision making process.

Exploratory Data Analysis

Year

Pivoting the table to better understand the data by crimes per borough

Туре	Break and Enter Commercial	Break and Enter Residential/Other	Mischief	Other Theft	Theft from Vehicle	Theft of Bicycle	Theft of Vehicle	Collision or Pedestrian Struck (with Fatality)
Borough								
Central	787	198	2280	2489	6871	857	245	1
East Side	786	1043	2192	1674	4754	678	605	8
South Vancouver	49	156	187	88	483	36	71	1
West Side	403	1000	1062	696	2838	588	225	3
All	2025	2397	5721	4947	14946	2159	1146	13
4								•

Vehicle

Merging the Pivoted Column with other columns

```
In [14]: vnc_crime_cat.reset_index(inplace = True)
vnc_crime_cat.columns = vnc_crime_cat.columns.map(''.join)
vnc_crime_cat.rename(columns={'YearAll':'Total'}, inplace=True)
# To ignore bottom All in Borough
vnc_crime_cat = vnc_crime_cat.head(4)
vnc_crime_cat
```

Out[14]:

	Borough	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle	YearT Veh
0	Central	787	198	2280	2489	6871	857	
1	East Side	786	1043	2192	1674	4754	678	

	Borough	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle	YearT Veh
2	South Vancouver	49	156	187	88	483	36	
3	West Side	403	1000	1062	696	2838	588	
4								•

Pivoting the table to better understand the data by crimes per neighborhood

Out[15]:

Year

Туре	Break and Enter Commercial	Break and Enter Residential/Other	Mischief	Other Theft	Theft from Vehicle	Theft of Bicycle	Theft of Vehicle	Vehicle Collisic or Pedest Struck (with Fatality
Neighbourhood								
Arbutus Ridge	12	78	49	18	111	12	12	
Central Business District	551	124	1812	2034	5301	640	165	

	Year							
Туре	Break and Enter Commercial	Break and Enter Residential/Other	Mischief	Other Theft	Theft from Vehicle	Theft of Bicycle	Theft of Vehicle	Vehicle Collisic or Pedest Struck (with Fatality
Neighbourhood								
Dunbar- Southlands	8	106	81	31	199	16	9	
Fairview	138	73	233	297	692	245	55	
Grandview- Woodland	148	162	304	215	634	110	123	
Hastings- Sunrise	48	117	195	107	607	52	74	
Kensington- Cedar Cottage	62	145	255	148	541	69	71	
Kerrisdale	24	97	49	9	172	13	11	
Killarney	34	72	90	31	240	19	33	
Kitsilano	106	165	320	154	755	189	51	
Marpole	44	125	134	75	290	34	39	
Mount Pleasant	205	124	353	493	822	232	67	
Musqueam	0	4	3	0	4	2	2	
Oakridge	19	123	64	63	164	18	18	
Renfrew- Collingwood	91	156	243	472	569	37	92	
Riley Park	35	122	140	53	378	52	39	
Shaughnessy	12	120	41	0	187	10	11	
South Cambie	22	42	41	38	111	19	8	
Stanley Park	6	2	8	0	109	14	3	

	Year							
Туре	Break and Enter Commercial	Break and Enter Residential/Other	Mischief	Other Theft	Theft from Vehicle	Theft of Bicycle	Theft of Vehicle	Vehicle Collisic or Pedest Struck (with Fatality
Neighbourhood								
Strathcona	160	124	527	81	821	108	76	
Sunset	37	93	175	105	382	18	63	
Victoria- Fraserview	15	80	94	57	239	15	36	
West End	230	72	460	455	1461	203	77	
West Point Grey	18	71	50	11	157	32	11	
All	2025	2397	5721	4947	14946	2159	1146	
4								•

Merging the Pivoted Column with other columns

```
In [20]: vnc_crime_neigh.reset_index(inplace = True)
    vnc_crime_neigh.columns = vnc_crime_neigh.columns.map(''.join)
    vnc_crime_neigh.rename(columns={'YearAll':'Total'}, inplace=True)
    vnc_crime_neigh.head()
```

Out[20]:

	Neighbourhood	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle	
0	Arbutus Ridge	12	78	49	18	111	12	

	Neighbourhood	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle
1	Central Business District	551	124	1812	2034	5301	640
2	Dunbar- Southlands	8	106	81	31	199	16
3	Fairview	138	73	233	297	692	245
4	Grandview- Woodland	148	162	304	215	634	110
4							>

Pandas describe() is used to view some basic statistical details like percentile, mean, std etc. of a data frame or a series of numeric values.

In [21]: vnc_crime_cat.describe()

Out[21]:

		YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle	Year of Ve
C	ount	4.000000	4.000000	4.00000	4.000000	4.000000	4.000000	4.00
m	ean	506.250000	599.250000	1430.25000	1236.750000	3736.500000	539.750000	286.50
	std	354.409721	488.189427	997.26572	1060.087221	2723.536977	353.955153	226.11
	min	49.000000	156.000000	187.00000	88.000000	483.000000	36.000000	71.00
	25%	314.500000	187.500000	843.25000	544.000000	2249.250000	450.000000	186.50
	50%	594.500000	599.000000	1627.00000	1185.000000	3796.000000	633.000000	235.00
,	75%	786.250000	1010.750000	2214.00000	1877.750000	5283.250000	722.750000	335.00

		YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle	Year of Ve
	max	787.000000	1043.000000	2280.00000	2489.000000	6871.000000	857.000000	605.00
4								•

Expolring the data by Visualising

Sorting the data by crimes per neighborhood

```
In [22]: vnc_crime_neigh.sort_values(['Total'], ascending = False, axis = 0, inp
lace = True )
    crime_neigh_top5 = vnc_crime_neigh.iloc[1:6]
    crime_neigh_top5
```

Out[22]:

		Neighbourhood	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle
	1	Central Business District	551	124	1812	2034	5301	640
	22	West End	230	72	460	455	1461	203
	11	Mount Pleasant	205	124	353	493	822	232
	19	Strathcona	160	124	527	81	821	108
	9	Kitsilano	106	165	320	154	755	189
4								+

Five Neighborhoods with highest crime

Five Neighborhoods with lowest crime

Out[24]:

	Neighbourhood	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle
23	West Point Grey	18	71	50	11	157	32
0	Arbutus Ridge	12	78	49	18	111	12

	Neighbourhood	YearBreak and Enter Commercial	YearBreak and Enter Residential/Other	YearMischief	YearOther Theft	YearTheft from Vehicle	YearTheft of Bicycle
17	South Cambie	22	42	41	38	111	19
18	Stanley Park	6	2	8	0	109	14
12	Musqueam	0	4	3	0	4	2
4							>

Borough is Vancouver with Highest Crime

Year

Туре	Break and Enter Commercial	Break and Enter Residential/Other	Mischief	Other Theft	Theft from Vehicle	Theft of Bicycle	Theft of Vehicle	Collision or Pedestrian Struck (with Fatality)
Borough								
Central	787	198	2280	2489	6871	857	245	1
East Side	786	1043	2192	1674	4754	678	605	8
South Vancouver	49	156	187	88	483	36	71	1
West Side	403	1000	1062	696	2838	588	225	3
All	2025	2397	5721	4947	14946	2159	1146	13
4								•
	_cat.coca e_cat.rena	mns = vnc_crim				. , 0 11	,	

Vehicle

```
# To ignore bottom All in Borough
vnc_crime_cat = vnc_crime_cat.head(4)
vnc_crime_cat
```

Out[27]:

	Borough	Break and Enter Commercial	Break and Enter Residential	Mischief	Other	Theft from Vehicle	Theft of Bicycle	Theft of Vehicle	Collision or Pedestrian Struck (with Fatality)	Pe
0	Central	787	198	2280	2489	6871	857	245	1	
1	East Side	786	1043	2192	1674	4754	678	605	8	
2	South Vancouver	49	156	187	88	483	36	71	1	
3	West Side	403	1000	1062	696	2838	588	225	3	
4										•

Vahicla

Based on exploratory data analysis it is clear that South Vancouver has the lowest crimes

Since South Vancouver has very little number of neighborhoods and opening a commercial establishment would not be viable, we can choose the next borough with lowest crime which is West Side.

Different types of crimes recorded in the West Side Borough

West side was chosen because crime type Break and enter Commercial is also low amongst other crimes types which makes West Side ideal destination for opening of

commercial establishments

```
In [29]: vnc ws df = vnc crime cat[vnc crime cat['Borough'] == 'West Side']
          vnc ws df = vnc ws df.sort values(['Total'], ascending = True, axis =
         0)
         vnc ws = vnc ws df[['Borough','Theft of Vehicle', 'Break and Enter Comm
         ercial', 'Break and Enter Residential', 'Mischief', 'Other',
                          'Theft from Vehicle','Vehicle Collision or Pedestrian
          Struck (with Fatality)', 'Theft of Bicycle',
                          'Vehicle Collision or Pedestrian Struck (with Injury)'
         11
         vnc ws.set index('Borough',inplace = True)
         ax = vnc ws.plot(kind='bar', figsize=(10, 6), rot=0)
         ax.set ylabel('Number of Crimes')
         ax.set xlabel('Borough')
         ax.set title('Different Kind of Crimes in West Side Borough')
         for p in ax.patches:
             ax.annotate(np.round(p.get height(),decimals=3),
                          (p.get x()+p.get width()/3., p.get height()),
                         ha='center',
                         va='center',
                         xytext=(5, 10),
                         textcoords='offset points',
                         fontsize = 14
             ax.legend(loc='upper left', bbox to anchor=(1.00, 0.5))
         plt.show()
```


Part 3: Creating a new consolidated dataset of the Neighborhoods, along with their boroughs, crime data and the respective Neighbourhood's co-ordinates.:

This data will be fetched using OpenCage Geocoder to find the safest borough and explore the neighbourhood by plotting it on maps using Folium and perform exploratory data analysis.

Restricting the rows in the data frame to only those with West side as Borough

```
vnc ws neigh['Neighbourhood'].unique()
         Number of Neighbourhoods in West Side Borough 10
Out[30]: array(['Shaughnessy', 'Fairview', 'Oakridge', 'Marpole', 'Kitsilano',
                 'Kerrisdale', 'West Point Grey', 'Arbutus Ridge', 'South Cambi
         e',
                 'Dunbar-Southlands'], dtype=object)
         Creating a new Data frame with Lat, Lng being fetched from OpenCage geocoder
In [31]: Latitude = []
         Longitude = []
         Borough = []
         Neighbourhood = vnc ws neigh['Neighbourhood'].unique()
         key = '830323b5ca694362904814ff0a11b803'
         geocoder = OpenCageGeocode(key)
         for i in range(len(Neighbourhood)):
             address = '{}, Vancouver, BC, Canada'.format(Neighbourhood[i])
             location = geocoder.geocode(address)
             Latitude.append(location[0]['geometry']['lat'])
             Longitude.append(location[0]['geometry']['lng'])
             Borough.append('West Side')
         print(Latitude, Longitude)
         #print('The geograpical coordinate of Vancouver City are {}, {}.'.forma
         t(latitude, longitude))
         [49.2463051, 49.2619557, 49.2266149, 49.2092233, 49.2694099, 49.220984
         8, 49.2681022, 49.2463051, 49.2464639, 49.237864] [-123.1384051, -123.1
         304084, -123.1229433, -123.1361495, -123.155267, -123.1595484, -123.202
         6425, -123.159636, -123.1216027, -123.1843544]
```

Glimpse of the new Data Frame with Neighborhoods in West Side Borough of Vancoouver along with centroid of their co-ordinates

Out[32]:

	Neighbourhood	Borough	Latitude	Longitude
0	Shaughnessy	West Side	49.246305	-123.138405
1	Fairview	West Side	49.261956	-123.130408
2	Oakridge	West Side	49.226615	-123.122943
3	Marpole	West Side	49.209223	-123.136150
4	Kitsilano	West Side	49.269410	-123.155267
5	Kerrisdale	West Side	49.220985	-123.159548
6	West Point Grey	West Side	49.268102	-123.202642
7	Arbutus Ridge	West Side	49.246305	-123.159636
8	South Cambie	West Side	49.246464	-123.121603
9	Dunbar-Southlands	West Side	49.237864	-123.184354

Fetching the Geographical co-ordinates of Vancouver to plot on Map

```
In [33]: address = 'Vancouver, BC, Canada'
    location = geocoder.geocode(address)
    latitude = location[0]['geometry']['lat']
    longitude = location[0]['geometry']['lng']
```

```
print('The geograpical coordinate of Vancouver, Canada are {}, {}.'.for
mat(latitude, longitude))
```

The geograpical coordinate of Vancouver, Canada are 49.2608724, -123.11 39529.

Using Folium to plot Vancouver City's West Side Borough and it's Neighborhoods

```
In [34]: van map = folium.Map(location=[latitude, longitude], zoom start=12)
         # add markers to map
         for lat, lng, borough, neighborhood in zip(ws_neig_geo['Latitude'], ws_
         neig geo['Longitude'], ws neig geo['Borough'], ws neig geo['Neighbourho
         od']):
             label = '{}, {}'.format(neighborhood, borough)
             label = folium.Popup(label, parse html=True)
             folium.CircleMarker(
                 [lat, lng],
                 radius=5,
                 popup=label,
                 color='red',
                 fill=True.
                 fill color='#3186cc',
                 fill opacity=0.7,
                 parse html=False).add to(van map)
         van map
```

Out[34]:

Part 4: Creating a new consolidated dataset of the Neighborhoods, boroughs, and the most common venues and the respective Neighbourhood along with co-ordinates.:

This data will be fetched using Four Square API to explore the neighbourhood venues and to apply machine learning algorithm to cluster the neighbourhoods and present the findings by plotting it on maps using Folium.

Setting Up Foursquare Credentials

```
In [56]: #Four Square Credentials

CLIENT_ID = 'blabla'
CLIENT_SECRET = 'blabla'
VERSION = '20191101'
LIMIT = 100

print('Your credentails:')
print('CLIENT_ID: ' + CLIENT_ID)
print('CLIENT_SECRET:' + CLIENT_SECRET)

Your credentails:
CLIENT_ID: blabla
CLIENT_SECRET:blabla
```

Defining a function to fetch top 10 venues around a given neighborhood

```
In [36]: def getNearbyVenues(names, latitudes, longitudes, radius=500):
             venues list=[]
             for name, lat, lng in zip(names, latitudes, longitudes):
                 print(name)
                 # create the API request URL
                 url = 'https://api.foursquare.com/v2/venues/explore?&client id=
         {}&client secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                     CLIENT ID,
                     CLIENT SECRET,
                     VERSION,
                     lat,
                     lng,
                      radius,
                     LIMIT)
                 # make the GET request
                 results = requests.get(url).json()["response"]['groups'][0]['it
         ems'l
                 # return only relevant information for each nearby venue
                 venues list.append([(
                     name,
                     lat.
                     lng,
                     v['venue']['name'],
                     v['venue']['categories'][0]['name']) for v in results])
             nearby venues = pd.DataFrame([item for venue list in venues list fo
         r item in venue list])
             nearby venues.columns = ['Neighbourhood',
                            'Neighborhood Latitude',
                            'Neighborhood Longitude',
                            'Venue',
                            'Venue Category']
```

return(nearby_venues)

Generating Venues

Shaughnessy
Fairview
Oakridge
Marpole
Kitsilano
Kerrisdale
West Point Grey
Arbutus Ridge
South Cambie
Dunbar-Southlands

Data frame containing venues for each neighborhood in West Side

```
In [38]: print(vnc_ws_venues.shape)
vnc_ws_venues.head()
```

(161, 5)

Out[38]:

	Neighbourhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Category
0	Shaughnessy	49.246305	-123.138405	Printspot	Print Shop
1	Shaughnessy	49.246305	-123.138405	Devonshire Park	Park
2	Shaughnessy	49.246305	-123.138405	Bus Stop 50209 (10)	Bus Stop

	Neighbourhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Category
3	Shaughnessy	49.246305	-123.138405	Clever Wedding Photographer Vancouver	Photography Studio
4	Shaughnessy	49.246305	-123.138405	Bus Stop 50206 (10)	Bus Stop

Venue Count per neighborhood

```
In [39]: vnc_ws_venues.groupby('Neighbourhood').count().drop(['Neighborhood Lati
tude','Neighborhood Longitude','Venue Category'], axis = 1)
```

Out[39]:

Venue

Neighbourhood	
Arbutus Ridge	9
Dunbar-Southlands	12
Fairview	19
Kerrisdale	4
Kitsilano	47
Marpole	34
Oakridge	9
Shaughnessy	6
South Cambie	14
West Point Grey	7

```
In [40]: print('There are {} uniques categories.'.format(len(vnc_ws_venues['Venu
e Category'].unique())))
```

There are 82 uniques categories.

Modelling

One Hot Encoding to Analyze Each Neighborhood

```
In [41]: # one hot encoding
vnc_onehot = pd.get_dummies(vnc_ws_venues[['Venue Category']], prefix=
"", prefix_sep="")

# add neighborhood column back to dataframe
vnc_onehot['Neighbourhood'] = vnc_ws_venues['Neighbourhood']

# move neighborhood column to the first column
fixed_columns = [vnc_onehot.columns[-1]] + list(vnc_onehot.columns[:-1])
vnc_onehot = vnc_onehot[fixed_columns]
vnc_onehot.head()
```

Out[41]:

	Neighbourhood	American Restaurant	Asian Restaurant	BBQ Joint	Bakery	Bank	Bar	Beach	Breakfast Spot	Bubble Tea Shop
0	Shaughnessy	0	0	0	0	0	0	0	0	0
1	Shaughnessy	0	0	0	0	0	0	0	0	0
2	Shaughnessy	0	0	0	0	0	0	0	0	0
3	Shaughnessy	0	0	0	0	0	0	0	0	0
4	Shaughnessy	0	0	0	0	0	0	0	0	0

5 rows × 83 columns

```
In [42]: vnc_onehot.shape
```

Out[42]: (161, 83)

```
In [43]: vnc ws grouped = vnc onehot.groupby('Neighbourhood').mean().reset index
           vnc ws grouped
Out[43]:
                                             Asian
                                                        BBQ
                               American
                                                                                                  Br€
               Neighbourhood
                                                               Bakery
                                                                                           Beach
                                                                          Bank
                                                       Joint
                              Restaurant Restaurant
                                                             0.000000
                                                                      0.000000 0.000000
                 Arbutus Ridge
                                0.000000
                                           0.000000 0.000000
                                                                                         0.000000
                                                                                                   0.0
            0
                      Dunbar-
            1
                                0.000000
                                           0.000000
                                                    0.000000
                                                             0.000000
                                                                      0.000000 0.000000
                                                                                         0.000000
                   Southlands
                                                             0.000000 0.000000 0.000000
                                                                                        0.000000
            2
                      Fairview
                                0.000000
                                           0.052632 0.052632
            3
                    Kerrisdale
                                0.000000
                                           0.000000
                                                    0.000000
                                                             0.000000
                                                                      0.000000 0.000000
                                                                                         0.000000
            4
                     Kitsilano
                                0.042553
                                           0.021277 0.000000
                                                             0.085106
                                                                      0.000000 0.000000
            5
                                0.000000
                      Marpole
                                                    0.000000
                                                             0.000000
                                                                      0.029412 0.029412
                                                                                        0.000000
                                                                                                   0.0
            6
                     Oakridge
                                0.000000
                                           0.000000
                                                    0.000000
                                                             0.000000
                                                                      0.000000 0.000000
                                                                                         0.000000
                                                                                                   0.0
            7
                 Shaughnessy
                                0.000000
                                           0.000000
                                                    0.000000
                                                             0.000000 0.000000 0.000000
                                                                                        0.000000
                                                                                                   0.0
                 South Cambie
                                0.000000
                                           0.000000
                                                    0.000000
                                                             0.000000
                                                                      0.071429 0.000000
                                                                                         0.000000
                                                                                                   0.0
            9 West Point Grey
                                0.000000
                                                             0.000000 0.000000 0.000000 0.000000
                                           0.000000
                                                    0.000000
                                                                                                  0.0
           10 rows × 83 columns
           vnc ws grouped.shape
In [44]:
Out[44]: (10, 83)
           Top 5 most common venues across neighborhoods
In [45]:
           num top venues = 5
           for hood in vnc ws grouped['Neighbourhood']:
                print("----"+hood+"----")
```

```
temp = vnc ws grouped[vnc ws grouped['Neighbourhood'] == hood].T.re
set index()
   _temp.columns = ['venue','freq']
   temp = temp.iloc[1:]
   temp['freq'] = temp['freq'].astype(float)
   temp = temp.round({'freg': 2})
    print(temp.sort values('freq', ascending=False).reset index(drop=Tr
ue).head(num top venues))
    print('\n')
----Arbutus Ridge----
           venue freq
    Liquor Store 0.11
1 Discount Store 0.11
    Dance Studio 0.11
     Coffee Shop 0.11
4 Sandwich Place 0.11
----Dunbar-Southlands----
                 venue freq
         Grocery Store 0.25
          Liquor Store 0.17
2 Gym / Fitness Center 0.08
   Japanese Restaurant 0.08
           Coffee Shop 0.08
----Fairview----
                venue frea
          Coffee Shop 0.11
0
1
    Korean Restaurant 0.05
     Asian Restaurant 0.05
3 Japanese Restaurant 0.05
    Indian Restaurant 0.05
----Kerrisdale----
        venue freq
         Park 0.25
```

```
Cate 0.25
         Pool 0.25
  Golf Course 0.25
        Plaza 0.00
----Kitsilano----
                venue freq
               Bakery 0.09
  American Restaurant 0.04
2
     Sushi Restaurant 0.04
           Food Truck 0.04
      Ice Cream Shop 0.04
----Marpole----
                venue freq
     Sushi Restaurant 0.09
             Bus Stop 0.09
1
          Pizza Place 0.06
  Japanese Restaurant 0.06
         Dessert Shop 0.06
----Oakridge----
                venue freq
   Light Rail Station 0.11
      Bubble Tea Shop 0.11
1
2
       Sandwich Place 0.11
          Coffee Shop 0.11
  Sporting Goods Shop 0.11
---Shaughnessy----
               venue freq
            Bus Stop 0.33
                Park 0.17
1
          Print Shop
                     0.17
  Photography Studio
                     0.17
      Chocolate Shop 0.17
```

venue freq
Coffee Shop 0.29
Sushi Restaurant 0.07
Shopping Mall 0.07
Vietnamese Restaurant 0.07
Malay Restaurant 0.07

----West Point Grey--venue freq
Sandwich Place 0.14
Harbor / Marina 0.14
Gym / Fitness Center 0.14
Gym 0.14
Disc Golf 0.14

Now let's create the new dataframe and display the top 10 venues for each neighborhood.

```
In [46]: def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)
    return row_categories_sorted.index.values[0:num_top_venues]

In [47]: num_top_venues = 10
    indicators = ['st', 'nd', 'rd']
    # create columns according to number of top venues
    columns = ['Neighbourhood']
    for ind in np.arange(num_top_venues):
```

Out[47]:

	Neighbourhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	
0	Arbutus Ridge	Coffee Shop	Shopping Mall	Discount Store	Fast Food Restaurant	Sandwich Place	Seafood Restaurant	Dance Studio	
1	Dunbar- Southlands	Grocery Store	Liquor Store	Japanese Restaurant	Coffee Shop	Pet Store	Café	Bus Stop	
2	Fairview	Coffee Shop	Japanese Restaurant	Park	Pet Store	Pharmacy	Pizza Place	Nail Salon	F
3	Kerrisdale	Café	Park	Golf Course	Pool	Yoga Studio	Disc Golf	Discount Store	F
4	Kitsilano	Bakery	Japanese Restaurant	Sushi Restaurant	Coffee Shop	Food Truck	French Restaurant	Ice Cream Shop	F
4)	•

Cluster Neighbourhoods

```
In [48]: # set number of clusters
         kclusters = 5
         vnc grouped clustering = vnc ws grouped.drop('Neighbourhood', 1)
         # run k-means clustering
         kmeans = KMeans(n clusters=kclusters, random state=0).fit(vnc grouped c
         lustering)
         # check cluster labels generated for each row in the dataframe
         kmeans.labels [0:10]
Out[48]: array([4, 4, 0, 2, 0, 0, 0, 1, 0, 3], dtype=int32)
In [49]: # add clustering labels
         neighborhoods venues sorted.insert(0, 'Cluster Labels', kmeans.labels )
         vancouver merged = ws neig geo
         # merge toronto grouped with Vancouver data to add latitude/longitude f
         or each neighborhood
         vancouver merged = vancouver merged.join(neighborhoods venues sorted.se
         t index('Neighbourhood'), on='Neighbourhood')
         vancouver merged.head()
Out[49]:
```

	Neighbourhood	Borough	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue
0	Shaughnessy	West Side	49.246305	-123.138405	1	Bus Stop	Park	Photography Studio
1	Fairview	West Side	49.261956	-123.130408	0	Coffee Shop	Japanese Restaurant	Park
2	Oakridge	West Side	49.226615	-123.122943	0	Coffee Shop	Sandwich Place	Vietnamese Restaurant
3	Marpole	West	49.209223	-123.136150	0	Sushi	Bus Stop	Japanese

Analysis

Examining the resulting Clusters

Cluster 1

Out[51]:

	Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8 C
1	West Side	Coffee Shop	Japanese Restaurant	Park	Pet Store	Pharmacy	Pizza Place	Nail Salon	Re

	Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8 C
2	West Side	Coffee Shop	Sandwich Place	Vietnamese Restaurant	Light Rail Station	Fast Food Restaurant	Sushi Restaurant	Sporting Goods Shop	т
3	West Side	Sushi Restaurant	Bus Stop	Japanese Restaurant	Dessert Shop	Coffee Shop	Pizza Place	Chinese Restaurant	Ţ
4	West Side	Bakery	Japanese Restaurant	Sushi Restaurant	Coffee Shop	Food Truck	French Restaurant	Ice Cream Shop	A Re
8	West Side	Coffee Shop	Shopping Mall	Cantonese Restaurant	Vietnamese Restaurant	Bank	Grocery Store	Park	Re
4									•

Cluster 2

Out[52]:

	Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue		5th Most Common Venue	6th Most Common Venue		8th Most Common Venue
0	West Side	Bus Stop	Park	Photography Studio	Chocolate Shop	Print Shop	Grocery Store	Gym	Disc Golf
4									•

Cluster 3

Out[53]:

		Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	
	5	West Side	Café	Park	Golf Course	Pool	Yoga Studio	Disc Golf	Discount Store	Falafel Restaurant F	
	4									•	
	Clu	ster 4									
In [54]:							l <mark>uster L</mark> ouver_me			ancouver]]	
Out[54]:											
		Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	Common	Common (
	6	West Side	Harbor / Marina	Gym / Fitness Center	Gym	Disc Golf	Sandwich Place	Performing Arts Venue	Park	Yoga Studio	
	4									•	
	Cluster 5										
In [55]:							l <mark>uster L</mark> ouver_me			ancouver	
Out[55]:		Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	Commo	n Commo	n Comm	on Comm	on Common	
	7	West Side	Coffee Shop	Shopping Mall	Discount Store					•	

	Borough	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
9	West Side	Grocery Store	Liquor Store	Japanese Restaurant	Coffee Shop	Pet Store	Café	Bus Stop	Gym
4									>

Results and Discussion

The objective of the business problem was to help stakeholders identify one of the safest borough in Vancouver, and an appropriate neighborhood within the borough to set up a commercial establishment especially a Grocery store. This has been achieved by first making use of Vancouver crime data to identify a safe borugh with considerable number of neighborhood for any business to be viable. After selecting the borough it was imperative to choose the right neighborhood where grocery shops were not among venues in a close proximity to each other. We achieved this by grouping the neighborhoods into clusters to assist the stakeholders by providing them with relavent data about venues and safety of a given neighborhood.

Conclusion

We have explored the crime data to understand different types of crimes in all neighborhoods of Vancouver and later categorized them into different boroughs, this helped us group the neighborhoods into boroughs and choose the safest borough first. Once we confirmed the borough the number of neighborhoods for consideration also comes down, we further shortlist the neighborhoods based on the common venues, to choose a neighborhood which best suits the business problem.