Reti Logiche A AA 2004-2005

Ripasso Algebra di Commutazione

Docente: prof. William FORNACIARI

fornacia@elet.polimi.it www.elet.polimi.it/people/fornacia

Introduzione

- Sistemi digitali
 - ottima immunità ai disturbi
 - facilità realizzativa
 - possibilità di creare metodologie di progetto automatizzabili
 - precisione prevedibile a arbitraria
- Tipi di sistemi
 - custom(antifurto, accensione auto, ...)
 - specializzati ma di uso generale (aritmetici, decoder, MUX)
 - con memoria (macchine a stati finiti, FSM)
 - senza memoria (circuiti combinatori)

Segnali binari

- Rappresentazione fisica (esempi)
 - tensione elettrica V
 - intensità di corrente I
 - potenza ottica P
- Diagramma temporale
 - trascureremo (quasi) sempre i transitori

Algebra di commutazione

- Algebra Boole
 - insieme di elementi K
 - ▶ esistono due funzioni {+, •} che fanno corrispondere a una qualsiasi coppia di elementi di K un elemento di K
 - ▶ Una funzione {⁻}
- Algebra di commutazione
 - ► I valori delle variabili di commutazioni possono assumere solo due valori (0,1), (V,F), (H,L), ...
 - la variabile logica non è un numero binario, gode di diverse proprietà
 - si è trovata una corrispondenza fra gli operatori fondamentali dell'algebra di commutazione e i circuiti digitali

Assiomi dell'algebra di Boole (1)

- K contiene al minimo due elementi a e b tali che a ≠ b
- Chiusura
 - ▶ per ogni $a \in b$ in K: $a+b \subset K$ e $a \cdot b \subset K$
- Proprietà commutativa

$$\triangleright$$
 $a + b = b + a$ e $a \cdot b = b \cdot a$

Proprietà associativa

$$(a + b) + c = a + (b+c) = a + b + c$$

$$ightharpoonup a
ightharpoonup (b
ightharpoonup c) = (a
ightharpoonup b)
ightharpoonup c = a
ightharpoonup b
ightharpoonup c$$

Assiomi dell'algebra di Boole (2)

Indentità

- Esiste un elemento identità rispetto a {+}, tale che a + 0 = a per ogni $a \subset K$
- Esiste un elemento identità rispetto a { }, tale che $a \cdot 1 = a$ per ogni $a \subset K$
- Proprietà distributiva

►
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

▶
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Complemento

Per ogni $a \subset K$ esiste un elemento $a \subset K$ tale che:

$$(a \cdot a') = 0$$

Algebra di commutazione

- L'insieme K è ristretto a solo due elementi K={0, 1}
- Le operazioni logiche fondamentali OR, AND, NOT soddisfano gli assiomi dell'algebra di Boole
- Porte logiche: elementi circuitali corrispondenti

Α	$f(A) = \overline{A}$	Α	В	$f(A,B)=A \cdot B$	Α	В	f(A,B)=A+B
1	0	0	0	0	0	0	0
0	1	0	1	0	0	1	1
U	I	1	0	0	1	0	1
	I	1	1	1	1	1	['] 1

NOT negazione

AND prodotto logico

OR somma logica

Altri operatori di uso comune

- Esistono 16 funzioni di due variabili, corrispondenti alle combinazioni dei vari ingressi
- Le più interessanti sono: XOR, NAND, NOR

Α	В	$f(A,B)=A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	$f(A,B)=\overline{A}$
0	0	1
0	1	1
1	0	1
1	1	0

_A	В	f(A,B)=A+B
0	0	1
0	1	0
1	0	0
1	1	0

NAND

NOR

Algebra di commutazione: proprietà

- La dimostrazione può avvenire
 - mediante analisi esaustiva
 - usando proprietà già definite
- Principio di dualità
 - se vale un'identità booleana, allora vale anche l'identità duale, ottenuta scambiando + con • (somma con prodotto), rendendo naturali le variabili complementate e complementate quelle naturali

$$0 \leftrightarrow 1$$
 e $+ \leftrightarrow \bullet$

 è conseguenza dell'interscambiabilità degli assiomi dell'algebra di Boole

Algebra di commutazione: Riepilogo proprietà

N.	Descrizione	Nome
1	Esistono gli elementi 0,1∈K tali che : A + 0 = A A • 1 = A	Esistenza elementi identità
2	A + B = B + A $A \bullet B = B \bullet A$	Proprietà commutativa
3	$A \bullet (B + C) = A \bullet B + A \bullet C$ $A + (B \bullet C) = (A + B) \bullet (A + C)$	Proprietà distributiva
4	Per ogni $A \in K$, esiste \overline{A} tale che: $A \bullet \overline{A} = 0$ e $A + \overline{A} = 1$	Esistenza dell'inverso

Algebra di commutazione: Riepilogo proprietà

N.	Descrizione	Nome
5	A + (B + C) = (A + B) + C A (BC) = (AB) C	Proprietà associativa
6	A + A = A $A \bullet A = A$	Proprietà dell'idempotenza
7	$\overline{A + B} = \overline{A} \bullet \overline{B}$ $\overline{A \bullet B} = \overline{A} + \overline{B}$	Legge di DeMorgan
8	$\overline{A} = A$	Involuzione

Funzioni logiche vs porte logiche

- Funzione logica a singola uscita $z = f(x_1, x_2, ..., x_n)$
 - Legge che associa un valore binario a tutte le combinazioni delle variabili indipendenti
 - Astrazione che non considera la "dinamica" dei segnali
- Qualunque funzione logica può realizzarsi usando un insieme completo di operatori elementari
 - NAND, NOR, (AND, NOT), (OR, NOT), (AND, OR, NOT)
 - Combinazioni di porte logiche consentono di realizzare le funzioni logiche
- Vedremo anche come trattare i casi con ingressi non completamente specificati e uscite multiple

Esempio: rilevatore di maggioranza

- Progettare un circuito logico a 3 ingressi (A,B,C) e una uscita U che assuma valore 1 quando, all'ingresso, il numero degli 1 supera il numero degli 0
- L'attenzione è sugli 1 della tabella di verità

	_A	В	С	U	$U = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$
Tabella	0	0	0	0	U - ADC + ADC + ADC + ADC
	0	0	1	0	
di verità	0	1	0	0	
	0	1	1	1	ABC
	1	0	0	0	_ / /
	1	0	1	1	ABC'
	1	1	0	1	$\longrightarrow ABC$
	1	1	1	1	\longrightarrow ABC

Rilevatore di maggioranza: Rappresentazione circuitale

$$U = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

Rilevatore di magg.: soluzione duale (1)

L'attenzione è sugli 0 della tabella di verità

Α	В	C	U	_
0	0	0	0	A+B+C
0	0	1	0	$\longrightarrow A + B + C$
0	1	0	0	$A + \overline{B} + C$
0	1	1	1	
1	0	0	0	$\overline{A} + B + C$
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$U = (\overline{A} + B + C) \bullet (A + \overline{B} + C) \bullet (A + B + \overline{C}) \bullet (A + B + C)$$

Rilevatore di magg.: soluzione duale (2)

$$U = (\overline{A} + B + C) \bullet (A + \overline{B} + C) \bullet (A + B + \overline{C}) \bullet (A + B + C)$$

Reti Combinatorie: def. generale

- Circuito privo di retroazioni, formato collegando porte logiche OR, AND e NOT
- Se m = 1 la rete combinatoria si dice "a uscita singola", altrimenti si dice "a uscite multiple"

- Simulazione del funzionamento
 - si assegnano valori agli ingressi della rete propagandoli in avanti, fino a determinare il valore logico dell'uscita

Equivalenza fra EB e reti combinatorie

- A ogni RC($x_1, x_2, ..., x_n$) a una uscita e a n ingressi $x_1, x_2, ..., x_n$, si può sempre assegnare una e una sola espressione booleana EB($x_1, x_2, ..., x_n$) a n variabili $x_1, x_2, ..., x_n$, tale che per qualsiasi assegnamento A tra i 2^n possibili (e viceversa)
 - dato un assegnamento A agli ingressi x₁, x₂, ..., x_n della rete combinatoria RC si ha RC(A) = EB |_A
 - ▶ dato un assegnamento A alle variabili $x_1, x_2, ..., x_n$ dell'espressione booleana EB si ha EB $|_A = RC(A)$

Costruzione dell'EB a partire da RC

$$\begin{cases} p &= x+q \\ q &= y\cdot r \\ f &= p\cdot z \end{cases} \qquad \begin{cases} p &= x+q \\ q &= y\cdot \left(\overline{z}\right) \\ r &= \overline{z} \\ f &= p\cdot z \end{cases} \qquad \begin{cases} p &= x+\left(y\cdot \left(\overline{z}\right)\right) \\ q &= y\cdot \left(\overline{z}\right) \\ r &= \overline{z} \\ f &= p\cdot z \end{cases} \qquad \begin{cases} p &= x+\left(y\cdot \left(\overline{z}\right)\right) \\ q &= y\cdot \left(\overline{z}\right) \\ r &= \overline{z} \\ f &= p\cdot z \end{cases} \qquad \begin{cases} p &= x+\left(y\cdot \left(\overline{z}\right)\right) \\ q &= y\cdot \left(\overline{z}\right) \\ r &= \overline{z} \\ f &= \left(x+\left(y\cdot \left(\overline{z}\right)\right)\right)z \end{cases}$$

$$f = (x + y \bullet \overline{z}) \bullet z$$

Livelli di una RC

- Funzione a due livelli
 - contiene solo due livelli di operatori annidati (trascurando la negazione)
- Funzione a più livelli
 - contiene più livelli di operatori annidati (trascurando la negazione)
- Esempi (2 e 3 liv.) $f = x + y \bullet \overline{z}$ $f = x + y \bullet (\overline{z} + u)$
- Il numero di livelli influenza (si vedrà)
 - costo realizzativo
 - velocità circuito

Equivalenze fra funzioni booleane

- Due funzioni booleane $(x_1, x_2, ..., x_n)$ e $g(x_1, x_2, ..., x_n)$, a $n \ge 1$ variabili, sono *equivalenti* se e solo se ammettono la stessa tabella delle verità
- Esempio

$$f(x, y, z) = x + y \cdot z$$

$$g(x, y, z) = x + \overline{x} \cdot y \cdot z$$

Le due RC sono *funzionalmente* equivalenti ma sono *differenti*, per es. in termini di costo

Esempio di criterio di scelta: #letterali

- Criterio di costo (dei letterali) di una rete combinatoria a due livelli
 - costo = # degli ingressi nel primo livello della rete
 - vale solo per per funzioni booleane a 2 livelli
- Data una funzione booleana, esistono più (infinite) reti combinatorie che la realizzano
- Problema
 - sintetizzare la rete comb. di costo minimo
- Esempio $f(x, y, z) = x + y \cdot z$ costo(f) = 1 + 2 = 3 $g(x, y, z) = x + x \cdot y \cdot z$ costo(g) = 1 + 3 = 4