Simple Linear Regression

Often we are interested simultaneously in two or more random variables of a random experiment rather than one variable. For example, we might be interested in...

- the voltage signals at two points in a circuit at some specific time
- the repeated measurement of a certain quantity such as the repeated measurement ("sampling") of the amplitude of an audio or video signal that varies with time
- Daily average temperature and power usage
- Number of hours spent studying and test score
- Dosage of a drug and blood pressure

If two random variables are not independent, we learned to quantify the nature and strength of the

There are two types of variables in regression.

Independent variable (x)

- A predictor variable
- A manipulated variable in experiments
- The proposed cause

Response (Dependent) variable (Y)

- An outcome variable (measured at the end of an experiment)
- A non-manipulated variable
- The proposed effect
- Does the power usage depend on the daily average temperature?

Y=Power usage x = Daily average temperature Does the dosage of a drug have an effect on the blood pressure? Y=Blood pressure = x = Dosage of drug

Can the voltage signal at point A in a circuit explain and predict the voltage signal at point B of the same circuit at a given specific time?

Y = Voltage signal at Point B

"Goals" of Regression

- Describe the relationship between independent (x) and dependent (y) variables
- Based on the identified relationship, predict the y-value for given x-value

Regression model to predict x-value for a given x-value.

There could be more than one independent variable in a real regression analysis.

However, only **one** independent variable will be used in the **Simple Regression** analysis.

Further, linear regression analysis fits only a straight line for the relationship.

"All models are wrong, but some are useful" --- George Box

Slope

What is the mathematical equation for a straight line between Y and X variables?

les?

F=32+9 C

 $Y = \Theta_0 + \Theta_1 \times$

This is an equation that describes an exact (deterministic) relationship between y and x.

For example, consider the relationship between Temperature in Fahrenheit and temperature in Celsius.

There is exactly one y-value for a single x-value in a deterministic relationship.

There are NO such relationships in Statistics.

In the real life, there are many sources of randomness (or variation):

- Measurement noise
- The linear regression model might be an approximation to a much more complicated and possibly unknown relationship
- Other factors (variables) not used in the regression model

Randomness means the same value of x variable does not always give the same value for the y variable. (Non-deterministic)

Ex 4: Consider the following 10 measurements on the distance to a transmitter (x) and strength of

wireless signal (y).

_		
i	x (m)	y (dB)
1	13	34.4
2	1	38.4
3	17	30.4
4	19	29.7
5	14	30.1
6	15	33.9
7	15	32.8
8	8	35.2
9	(13)	34.9
10	3	36.8

```
%Create matrix of data %
D = [13 \ 34.4;
                      38.4;
                              17
                                  30.4;
                                          19
                                              29.7;
                                                       14
                                                           30.1;
     15 33.9;
                 15
                      32.8;
                                  35.2;
                                           13
                                               34.9;
                                                           36.8]
% Create a Scatterplot of Two Numerical Variables %
figure
% scatter(x,y)
scatter(D(:,1), D(:,2), '*r')
xlabel('Distance to Transmitter (in meters)')
ylabel('Wireless Signal Strength (in dB)')
title('Scatterplot of Signal Strength versus Distance to
Transmitter')
1sline % To get the Least Squares line on the scatterplot %
% Compute correlation of Two Numerical Variables %
% corr(x,y)
corr(D(:,1), D(:,2));
fprintf('Correlation Coefficient = %g \n', corr(D(:,1), D(:,2)))
Correlation Coefficient = -0.885064
```


The scatterplot shows that there is a negative medium to strong linear relationship.

This is confirmed by the correlation of -0.885.