

BERLIN BUCH - GREEN CAMPUS

BERLIN BUCH

18,2 km², 12.892 EW

708 EW/km²

- Campus
- Großsiedlung
- •HELIOS
- Weitere Kliniken
- Entwicklungsgebiet
- Stadtteil

6.500 Arbeitsplätze, 6.000 WE

KONKRET: ZENTRALISIERUNG KÄLTE

Antrieb über Gas-BHKW

WAS BISHER GESCHAH (1)

- Projektskizze Klimaschutzkonzept beim BMU im Frühjahr 2011 durch FEE, Inbitec, AK Wirtschaft LA21 Pankow -> keine Aufforderung zur Antragsabgabe
- Projektskizze zu EnEff:Stadt durch FEE, Kommentare durch PTJ zur Fokussierung im Nov 2011 -> Neuaufnahme Antragsverfahren
- Netzwerktreffen LA21 am 24.11. mit Workshop zu Buch -> dringender Bedarf mit Akteuren zu sprechen
- Verschiedene Gespräche mit BBB, HowoGe, MDC im Dez 2011 zur Erfassung des Iststandes -> Verabredung
- Gespräch mit MdB über Antragschancen -> Aufforderung zur Konkretisierung
- Besuch des EnEff:Stadt Kongresses 17./18. Jan in HH -> Aussicht auf weitere Konkretisierung der Antragsbedingungen
- Gespräch bei der Berliner EnergieAgentur 27. Jan -> Abgrenzung bei der weiteren Vorgehensweise

WAS BISHER GESCHAH

- Abstimmungen mit MDC, BBB, Helios, VE -> Ableitung von Fragestellungen, Bekenntnis zu Gesamtprojekt
- Strategieprozess mit der THW -> Interesse an einem gem. Antrag mit Buch
- Neuerliche Abstimmung mit PTJ -> Zeitplan zur weiteren Vorgehensweise
- Abstimmung mit LA21 im BA Pankow, Überarbeitung Projektskizze zur Abstimmung mit AK Wirtschaft LA 21
- Abstimmungen mit AK Wirtschaft LA21 -> Teilleistungen zur Bürgerbeteiligung und Motivation können im UA übernommen werden

TECHNISCHE HOCHSCHULE WILDAU

- 4.200 Studenten
- 58 Professoren
- 3 Fachbereiche Wirtschaft Technik Verwaltung
- Kernkompetenzen Logistik Telematik Life-Science Biosystem.-techn. Opt. Technologien Energiesysteme

THW - STRUKTUR KOMPETENZPROFIL

Konkrete
Anwendungsbereiche

Integrationsfelder

WAS WIR ERREICHEN WOLLEN

- uns kennen lernen
- EnEff:Stadt verstehen
- Berlin Buch in den Zusammenhang von Energiepolitik und Energieforschung stellen
- Relevante Themen für die eigene Zukunft fokussieren
- Antragssystematik abstimmen
- Projektskizze überarbeiten
- Mit PTJ sprechen
- Bezirk gewinnen
- Gespräch mit PTJ
- Aufforderung zur Antragsstellung nach Gespräch mit BMWi

SIEDLUNGSSTRUKTURMERKMALE

Max-Dellbrück-Centrum für molekulare Medizin (MDC) Forschungsinstitut für molekulare Pharmakologie (FMP)

Fördergesellschaft Erneuerbare Energien e.V.

41 Baufelder

Flächenbilanz (Baufelder)

Bestandsgebäude (17)

Geplante Gebäude (19)

□ Expansionsgebiet (5)

Green Campus

Grundfläche

123.800 m²

74.230 m²

11.420 m²

GRZ: 0.3 - 0.7

GFZ: 1,0 - 2,6

NF 125.700 m²

114.059 m²

27.420 m²

CAMPUS FLÄCHENENTWICKLUNG

WOHNEN IN BUCH

Fünf Eigentümer **HOWOGE** (50%), EWG (22%), GSW, Porgrana,

gehören 96% der Wohnungen mit

337.100 m² Wfl.

Baualter

1945-66	6%
1967-73	11%
1974-76	19%
1977-81	34%
1982-89	30%

- Gesobau
- EWG Berlin-Pankow
- Wohnungsbaugen.
 Wilhelmsruh
- GSW
- Porgrana
 Immobilienmanagement
 GmbH
- Private Eigentümer (Verwaltung DKB)
- Land Berlin

HOWOGE WOHNUNGEN

3.127 WE wurden 2009 durch die HOWOGE übernommen.

Sie umfassen ca. 200.000 m² Wohnfläche

Und benötigen rund 25 GWh Wärme (125 kWh/m²=95 RH + 30 WW)

Der Anschlusswert beträgt rund 15 MW (75 W/m²)

Nach der umfangreichen Sanierung wird der Wärmebedarf halbiert

Die Kosten betragen zurzeit rund 1 €/m² Mon. und werden durch die Sanierung um ca. 30 Ct gesenkt.

VE lieft Wärme an Howoge Wärme, die die Wärme im Gebäude effizient verteilen.

FERNWÄRME(GAS)VERSORGUNG BUCH

FERNWÄRME(GAS)VERSORGUNG BUCH

Baujahr 1974 (Turbine 1962) 130 MWth, 5 MWel seit 2004

4 Dampferzeuger a 16,9 MW Basis Öl EL, 4 HW Erzeuger je 15,5 MW Basis Gas (neue Brenner 1995)

Nutzung Wärme Deponie Schwanebeck (8 MW, 43.000 MWh)

39 km Wärmenetz mit 2.900 m³ Inhalt 190.000 MWh/a Wärme, 17.000 MWh Strom

ABWASSERENTSORGUNG BUCH

LASTGÄNGE ELEKTROENERGIE CAMPUS

Wirkleistung [MW], Blindleistung [kvar]

Dezember 2010

Max: 1,965 MW, 982 MWh

Max: 230 kvar, 72 Mvar

Mai 2011

2,32 MW, 1.110 MWh

330 kvar, 98 Mvar

JAHRESDAUERLINIE STROM [kW]

ELEKTROENERGIE VERSORGUNGSSTRUKTUR

ENTWICKLUNG ANSCHLUSSWERTE ELT

e-Eigenerzeugung und f-Fremdbezug

ANSCHLUSSWERTE WÄRME

WÄRMENETZ BESTAND

ENTWICKLUNG RAUM- UND PROZESSWÄRME

ERSTE AUSBAUSTUFE VERSORGUNG MDC

12.800 kW, 1,7 MW GT (3.000 h), 1,6 MW BHKW (8.000 h)

ZWEITE AUSBAUSTUFE

18.200 kW, 2x1,7 MW GT (7.700/1.400 h), 2x1,6 MW BHKW (8.760/3.605 h)

LEITBILD

Vom Masterplan zum flexiblen, prozessualen Modell Geprägt durch einen Konsens unter den Nutzern Vom Wissen zum Handeln

- Nachhaltigkeit ist ein gesellschaftlicher Prozess
- Sie hat einen ganzheitlichen, integrativen Ansatz
- Sie basiert auf den Schüsselthemen Ökologie, Soziales und Ökonomie
- Sie ist als offener, stetiger Prozess zu verstehen

RAHMEN: ENTWICKLUNG ENDENERGIE [PJ]

als Grundlage aller Entwicklungen muss der Energieeinsatz bei wachsendem Wohlstand minimiert werden

RAHMEN: ENTWICKLUNG PRIMÄRENERGIE [PJ]

BUCH AKTUELL

- Energie satt
- Sanierungsniveau mittelmäßig
- Neubauten maximal auf Stand EnEV 2002 (?)
- Wärmebereitstellung viel Fernwärme, Basis Öl, kaum KWK
- Stromversorgung übergeordnetes Netz (aber eigenes MS-Netz veraltet)
- kaum erneuerbare Energien
- Schwierigkeiten mit gemeinsamen Projekten
- Grundlagenermittlung
- Finanzierungsbedarf

WAS BLEIBT

- Effizienter Energieeinsatz (KWKK)
- Erneuerbare Energien (100%)
- die nicht nur Arbeit (kWh) sondern auch zeitgerecht Leistung (kW) anbieten können.
- Dezentrale Deckung von Bedarf und Angebot
- Sehr niedriger Raumheizungsbedarf (Heizung < 40kWh/m² PE)
- Gebäude, die Energie erzeugen
- Bioenergie als Regelenergie
- BioMethan als eine zweite Universalenergie aber auch
- Mehr Naturnähe, Lebensqualität und "cradle to cradle"

ZIELE DEUTSCHLAND 2050

2t CO2 je Person (Ziel: 1t)

50% erneuerbar

3.500 W/Person

(Ziel: 2.000 W)

875 W für Wohnen 790 W für Verkehr

STROMVERSORGUNG AKTUELLER VERLAUF

Juliwoche

Quelle: FEE Innovationsforum 2010, Prof. Quaschning

STROMVERSORGUNG 2020

ausgewählter 2-Wochen-Verlauf fluktuierender Energien

Quelle: Leitstudie 2010

DIE WIRKLICHEN HERAUSFORDERUNGEN

EE-Prognose 2030

Potenziale, EE-Allokation, Umweltbilanzen

Marktdesign

Rechtsrahmen, Kapazitätsmärkte, Börse, Preisbildung, OTC

Bedarfsdeckung, Netzstabilität, Kosten, Regionalität, Interdependenz, Akzeptanz

Wärme-Strom

- Ausbau EE-Wärme
- Gebäudeeffizienz
- •Überschneidungen
- •Flexibilitätsreserven aus dem Wärmemarkt

Ausgleich

- Speicher
- ·Bedarf / KWK
- Lastmanagement
- Power to Gas

Netzinfrastruktur

•Um- und Ausbau

Mob.-Strom

- Umbau Förderstruktur
- Nutzungspfade Biokraftstoffe
- Ausbau E-Mo

WÄRMEBEDARF NICHTWOHNGEBÄUDE

Jahres-Primärenergiebedarf nach EnEV [kWh/m²]

ZENTRAL ODER DEZENTRAL?

DEZENTRAL UND ANGEPASST

GROBEINSCHÄTZUNG

- Wohnungen, öff. Gebäude, Kliniken und Campus verwenden ca.
 82.000 MWh Wärme und 46 Mio. kWh Strom (Endenergie).
- Hinzu kommen rund 69.000 MWh für Benzin und Diesel durch den vorhandenen Bestand an PKW, die sich zu insgesamt 125.000 MWh inkl. Wirtschaftsverkehr ergänzen.
- Dafür werden rund 390.000 MWh Primärenergie eingesetzt (102.000 für Wärme und 144.000 für Stromproduktion in Buch und anderswo sowie 143.000 für Mineralöl).
- Lediglich 7% davon werden aus BHKW-Abwärme der Deponie Schwanebeck und dem Bioanteil in Kraftstoffen erneuerbar gedeckt.

SYSTEMATIK

Energieträger

Anwendungsbereiche

ERSTE ZIELSETZUNG

- Der Zubau auf dem Campus wird durch hocheffiziente Gebäude zukunftsfähig gemacht.
- Der Primärenergieeinsatz für Kälte wird minimiert und zunehmend erneuerbar bereitgestellt.
- Die künftigen Gebäudesanierungen werden am Europäischen Gebäudestandard orientiert.
- Der in Kraft-Wärme-Kopplung erzeugte Strom wird erhöht.
- Der Primärenergieeinsatz soll damit bis 2030 um 30% gesenkt werden.
- Der Anteil erneuerbarer Energieträger soll bis dahin auf 50% gebracht werden.
- Dafür sollen die wirtschaftlich attraktivsten Technologien gewählt und mit den Nutzern sozialverträglich zum Einsatz gebracht werden.

ARBEITSPAKETE ENERGIEKONZEPT

- A. Vertiefung Entscheidungsgrundlagen
- B. Profilierungskonzept Gesundheit-Energie-Innovation
- C. Erarbeitung von Modellprojekten zur strukturellen Optimierung
- D. Umsetzung von Entwürfen und Beginn der Integration neuer Technolgien
- E. Zusammenarbeit mit den Akteuren im Stadtteil und anderen Bezirken

EINE GUTE FEE

- Gründung vor 17 Jahren in Ost-Berlin
- Wissenschaftliche Kompetenz, persönliche Überzeugung und wirtschaftliche Not als Geburtshelfer
- Heute 168 Mitglieder (Personen, Unternehmen und Wiss. Institutionen), zur Hälfte in Berlin-Brandenburg
- Vorstand aus Unternehmern, wiss. Beirat, Geschäftsstelle im Innovationspark Wuhlheide, fünf ständige Arbeitsgruppen
- Gründungs- und Vorstandsmitglied des Bundesverbandes Bioenergie
- Vertreter der deutschen Unternehmen für Vergasung von Biomasse
- Unterstützung von Innovationsprozessen und Verbreitung von Ergebnissen auf nationalen und internationalen Tagungen
- Träger des FEE Innovationspreises Energie
- Hauptkompetenzen in den Bereichen thermochemische Vergasung, biogene Gase/ Brennstoffzellen, BioMethan und Energieeffizienz.
- Akkreditiert bei KompetenznetzeDeutschland

EIN NETZWERK VON GRUPPEN UND KREISEN

- Bundesweite Arbeitsgruppe "Vergasung von Biomasse" (seit 1994)
- Bundesweite Arbeitsgruppe "Biogene Gase – Brennstoffzellen" (seit 2001)
- Bundesweites "BioMethan-Kuratorium" (zusammen mit dem BBK, seit 2008)
- Arbeitskreis "Innovationen in Solartechnologien" (seit 2009)
- Arbeitskreis "Energieeffizienz in Gebäuden und Siedlungen"

WIR FREUEN UNS AUF DIE ZUSAMMENARBEIT

Dr. Georg Wagener-Lohse Köpenickerstr. 325, 12555 Berlin, 0173 53 53 105 www.fee-ev.de

