${\bf MatIntroMatNat}\\ {\bf OPGAVEFORSIDE}$

Opgave 1, uge 2

Sebastian Winkelmann

September 2019

1.1 TLO 3.4.14

Find løsningerne til den komplekse ligning

$$z^2 + 2(1-i)z + 7i = 0 (1.1)$$

Løsning: Vi kan løse denne som en kompleks andengradsligning ved

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Vi kan altså blot starte med at gange parentesen ud:

$$z^2 + 2(1-i) + 7i = 0 (1.2)$$

$$z^2 + 2z - 2iz + 7i = 0 ag{1.3}$$

$$z^2 + (2 - 2i)z + 7i = 0 (1.4)$$

Vi har den altså på en form som passer ind i $az^2 + bz + c = 0$. Herved kan vi indsætte

$$z = \frac{-(2-2i) \pm \sqrt{(2-2i)^2 - 4 \cdot 1 \cdot 7i}}{2 \cdot 1}$$
 (1.5)

$$z = \frac{(-2+2i) \pm \sqrt{(2^2+2^2i^2-2\cdot 2\cdot 2i)-4\cdot 7i}}{2}$$
 (1.6)

$$z = \frac{(-2+2i) \pm \sqrt{(4-4-8i)-28i}}{2} \tag{1.7}$$

$$z = \frac{(-2+2i) \pm \sqrt{-36i}}{2} \tag{1.8}$$

$$z = \frac{(-2+2i) \pm (6\sqrt{-i})}{2} \tag{1.9}$$

Lad os først regne med +:

$$z = \frac{-2 + 2i + 6\sqrt{-i}}{2} \tag{1.10}$$

$$z = -1 + i - 3\sqrt{i} \tag{1.11}$$

Et tal -i vil have modulus 1 og have argumentet $\theta_{-1} = \frac{3\pi}{2} \wedge \frac{-\pi}{2}$:

$$-i = 1 \cdot e^{-\frac{\pi}{2}i}$$

$$\updownarrow$$

$$\sqrt{-i} = \sqrt{1 \cdot e^{-\frac{\pi}{2}i}}$$

$$\sqrt{-i} = 1 \cdot \sqrt{e^{-\frac{\pi}{2}i}}$$

$$\sqrt{-i} = 1 \cdot e^{-\frac{\pi}{4}i}$$

Vi kan altså konkluderer at det komplekse tal $\sqrt{-i}$ har modulus 1 og argumentet $-\frac{\pi}{4}$. Dette skal ganges med 3, så

$$z_2 = 3 \cdot e^{-\frac{\pi}{4}i}$$

Lad os lave det om til normalform:

$$z_2 = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
$$z_2 = 3\left(\frac{1}{\sqrt{2}} + i\left(-\frac{1}{\sqrt{2}}\right)\right)$$
$$z_2 = \frac{3}{\sqrt{2}} - i\frac{3}{\sqrt{2}}$$

Vi lægger nu blot de to tal sammen. Først løser vi når leddene adderes

$$z_{+} = -1 + i + \frac{3}{\sqrt{2}} - i\frac{3}{\sqrt{2}}$$
$$z_{+} = \left(-1 + \frac{3}{\sqrt{2}}\right) + i\left(1 - \frac{3}{\sqrt{2}}\right)$$

og nu når leddene subtraheres

$$z_{-} = -1 + i - \left(\frac{3}{\sqrt{2}} - i\frac{3}{\sqrt{2}}\right)$$

$$z_{-} = -1 + i - \frac{3}{\sqrt{2}} + i\frac{3}{\sqrt{2}}$$

$$z_{-} = \left(1 - \frac{3}{\sqrt{2}}\right) + i\left(1 + \frac{3}{\sqrt{2}}\right)$$

Vi skal desuden omskrive det til polar form. z_- må ligge i 2. kvadrant ved $\theta_-=\frac{3\pi}{4}$ og z_+ må ligge i 4. kvadrant ved $\theta_+-=-\frac{\pi}{2}\vee\frac{7\pi}{4}$.

$$\begin{aligned} |z_{+}| &= \sqrt{\left(-1 + \frac{3}{\sqrt{2}}\right)^{2} + \left(1 - \frac{3}{\sqrt{2}}\right)^{2}} \\ |z_{+}| &= \sqrt{\left(\frac{3\sqrt{2} - 2}{2}\right)^{2} + \left(2 - \frac{3\sqrt{2}}{2}\right)^{2}} \\ |z_{+}| &= \sqrt{\frac{22 - 12\sqrt{2}}{4} + \frac{22 - 12\sqrt{2}}{4}} \\ |z_{+}| &= \sqrt{\frac{44 - 24\sqrt{2}}{4}} \\ |z_{+}| &= \sqrt{11 - 6\sqrt{2}} \\ |z_{+}| &= \sqrt{\left(3 - \sqrt{2}\right)^{2}} \\ |z_{+}| &= 3 - \sqrt{2} \end{aligned}$$

Forskellene som er mellem z_+ og z_- kan også benyttes her, så vi har at

$$|z_{-}| = \sqrt{2} + 3$$

Alt dette kan vi benytte til at omskrive til polær/eksponentialform:

$$z_{+} = (3 - \sqrt{2})e^{i\frac{7\pi}{4}} \tag{1.12}$$

og

$$z_{-} = (\sqrt{2} + 3)e^{i\frac{3\pi}{4}} \tag{1.13}$$

Vi kan indtegne dette

Figur 1.1: De to løsninger indtegnet i den komplekse plan. z_- og z_+ .HåndtegnetiMathcha

1.2 Funktion

 $Betragt\ funktionen$

$$f(x) = \frac{3x^2 - x - 2}{x^2 + 4x + 3}, \quad x \in [0, \infty)$$
(1.14)

1.2.a Tegn funktionens graf med Maple

1.2.b Udregn den afledede f'(x) og vis, at den er positiv for alle $x \in [0, \infty)$

Vi kan differentiere f ved at udnytte kvotientreglen, således at

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Vi kan hermed udregne f'(x):

$$f'(x) = \frac{(x^2 + 4x + 3) \cdot \frac{d}{dx}(3x^2 - x - 2) - (3x^2 - x - 2) \cdot \frac{d}{dx}(x^2 + 4x + 3)}{(x^2 + 4x + 3)^2}$$

$$f'(x) = \frac{(x^2 + 4x + 3) \cdot (6x - 1) - (3x^2 - x - 2) \cdot (2x + 4)}{(x^2 + 4x + 3)^2}$$

$$f'(x) = \frac{((6x^3 + 24x^2 + 18x) - (x^2 + 4x + 3)) - ((6x^3 - 2x^2 - 4x) + (12x^2 - 4x - 8))}{(x^2 + 4x + 3)^2}$$

$$f'(x) = \frac{6x^3 + 23x^2 + 14x - 3 - (6x^3 + 10x^2 - 8x - 8)}{(x^2 + 4x + 3)^2}$$

$$f'(x) = \frac{6x^3 + 13x^2 + 22x + 5}{(x^2 + 4x + 3)^2}$$

$$f'(x) = \frac{13x^2 + 22x + 5}{(x^2 + 4x + 3)^2}$$

Det er rimelig tydeligt at nævneren ikke kan blive negativ, i og med der er tale om kvadratet af en størrelse $(n^2 \geq 0, n \in \mathbb{R})$. I kraft af at alle led i tælleren er positive, da må enhver $x_0 \geq$ give et positivt tal. Det kan derfor udelukkes at der ved $x \in [0, \infty)$ skulle være et tilfælde hvor f'(x) < 0. Vi kan desuden udregne dens grænseværdi ved at finde største potens, og dividere igennem med denne eksponent. Den største eksponent er i nævneren, da der efter opløsning af parentes vil stå x^4 . Vi har altså tilnærmelsesvist

$$\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \frac{13x^2 + 22x + 5}{x^4 + 8x^3 + 22x^2 + 24x + 9}$$
$$\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \frac{13x^{-2} + 22x^{-3} + 5x^{-4}}{x^0 + 8x^{-1} + 22x^{-2} + 24x^{-3} + 9x^{-4}}$$
$$\lim_{x \to \infty} f'(x) = \frac{0}{1} = 0$$

1.2.c Bestem $\lim_{n\to\infty} f(n)$

$$\lim_{n\to\infty}f(n)=\lim_{n\to\infty}\frac{3n^2-n-2}{n^2+4n+3}$$

Igen finder vi den største potens, og dividerer alle led med denne eksponent

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} \frac{\frac{3x^2 - x - 2}{x^2}}{\frac{x^2 + 4x + 3}{x^2}}$$

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{1 + \frac{4}{x} + \frac{3}{x^2}}$$

$$\lim_{n \to \infty} f(n) = \frac{\lim_{n \to \infty} (3 - \frac{1}{x} - \frac{2}{x^2})}{\lim_{n \to \infty} (1 + \frac{4}{x} + \frac{3}{x^2})}$$
Da
$$\lim_{x \to \infty} \frac{1}{x} = 0 \text{ simplificeres udtrykket}$$

$$\lim_{n \to \infty} f(n) = \frac{3}{1}$$

$$\lim_{n \to \infty} f(n) = \frac{3}{1}$$

$$\lim_{n \to \infty} f(n) = 3$$

1.2.d Bestem værdimængden for f

Vi har allerede bestemt den øvre grænse for f i sektion 1.2.c. Den nedre grænse for funktionen f kan ikke findes som et ekstremumspunkt, da der i forvejen er blevet vist at f'(x) > 0 når $x \ge 0$. Da funktionen i dens definitionsmængde er monoton tiltagende, vil vi således have værdimængden

$$V_f = \left\{ y \in \mathbb{R} \middle| -\frac{2}{3} \le y < 3 \right\} \tag{1.15}$$

da

$$f(0) = \frac{3x^2 - x - 2}{x^2 + 4x + 3}$$

$$f(0) = \frac{3(0)^2 - 0 - 2}{0^2 + 4(0) + 3}$$

$$f(0) = \frac{0 - 0 - 2}{0 + 0 + 3}$$

$$f(0) = \frac{-2}{3}$$

1.2.e Lad $\epsilon=0.1$. Bestem en værdi af N, som kan anvendes i TL Definisjon 4.3.1, når denne definition benyttes på grænseovergangen i (c). Gentag for $\epsilon=0.01$

Vi vil undersøge for hvilken værdi N der vil gælde at

$$|f(n) - 3| < 0.1$$

når $n \geq N$.

$$\left| \frac{3n^2 - n - 2}{n^2 + 4n + 3} - 3 \right| < 0.1, \quad n \ge 0$$

$$\downarrow \\ n = 126.844$$

Vi kan dobbelttjekke resultatet

$$\frac{3(126.844)^2 - 126.844 - 2}{126.844^2 + 4(126.844) + 3} \approx 2.90000$$

Vi vil undersøge for hvilken værdi N der vil gælde at

$$|f(n) - 3| < 0.01$$

når $n \ge N$.

$$\left| \frac{3n^2 - n - 2}{n^2 + 4n + 3} - 3 \right| < 0.01, \quad n \ge 0$$

$$\downarrow \\ n = 1296.85$$

Vi kan dobbelttjekke resultatet

$$\frac{3(1296.85)^2 - 1296.85 - 2}{1296.85^2 + 4(1296.85) + 3} \approx 2.99000$$

Altså har vi at $N_{\epsilon=0.1} \le 126.844$ og $N_{\epsilon=0.01} \le 1296.85$.

1.3 (ii) Banklån

Et lån i banken på L kroner forrentes med en årlig rente r. Efter det første år skyldes der L(1+r) på lånet. Tilskriver banken i stedet rente to gange om året, skyldes der efter første halve år L(1+r/2).

1.3.a Hvor meget skyldes der i sidstnævnte tilfælde på lånet efter det første år?

Rentetilskrivning sker ved at sætte parentesen (1 + r/2) op i antallet af terminer, n. Vi kan altså udregne det ved et år (to årlige terminer):

$$L_2 = L(1+r/2)(1+r/2) = L(1+r/2)^2$$
(1.16)

Ved n rentetilskrivninger/terminer om året, da vil der efter første år være en gæld på:

$$L_n = L(1 + r/n)^n (1.17)$$

Grunden til at man finder gældens størrelse efter n terminer på denne måde er, at når renten er r så skal man gange det originale beløb med 1 + r. Således

$$L_n = L \cdot (1 + r/n) \cdot (1 + r/n) \cdot \underbrace{\qquad \qquad }_{n} \cdot (1 + r/n)$$

1.3.b Jo flere årlige rentetilskrivninger jo større er gælden efter første år

Vi kan lave en funktion i Maple som viser gælden efter n terminer når lånets størrelse L=100 og renten r=10%. Plottes i domænet [0,3] da funktionen alligevel flader ud.

$$f(n) := 100 \left(1 + \frac{0.1}{n} \right)^n$$
$$f := n \mapsto 100 \left(1 + \frac{0.1}{n} \right)^n$$
$$plot(f(n), n = 0..3)$$

Det er altså tydeligt at der tale om en monoton tiltagende funktion som konvergerer. Forskellen i størrelse på gæld er dog minimal. Lad os først se ved n = 1:

$$L_1 = 100 \left(1 + \frac{0.1}{1} \right)^1 = 100 \cdot 1.1 = 110 \tag{1.18}$$

og nu når n=2

$$L_2 = 100 \left(1 + \frac{0.1}{2} \right)^2 = 100 \cdot 1.05^2 = 100 \cdot 1.1025 = 110.25$$
 (1.19)

Der er altså tale om en meget lille forskel. Ikke desto mindre er der en forskel, og gælden bliver således større jo flere rentetilskrivninger der er årligt.

1.3.c Argumenter for, at gælden efter første år enten divergerer mod uendelig eller konvergerer, når antallet af rentetilskrivninger n går mod uendelig (kontinuert rentetilskrivning)

Rentetilskrivningsfunktionen $R(n) = (1 + r/n)^n$ vil konvergere. Det giver desuden fint logisk mening at når renten bliver splittet op i mindre og mindre dele, så vil det blive meget småt. Det er desuden definitionen af eksponentialfunktionen:

$$\lim_{x \to x} \left(1 + \frac{1}{x} \right)^x = e$$

så der må tilsvarende være en grænseværdi her. Vi kan vise dette ved at tage en grænseværdi:

$$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} L(1 + r/n)^n$$

$$= L \lim_{n \to \infty} \exp\left(\log\left((1 + r/n)^n\right)\right)$$

$$= L \lim_{n \to \infty} \exp\left(n\log\left(1 + r/n\right)\right)$$

$$= L \exp\lim_{n \to \infty} \left(n\log\left(1 + r/n\right)\right)$$

Vi kan benytte l'Hôpitals regel

$$= L \exp \left(\lim_{n \to \infty} \left(\frac{\log (1 + r/n)}{1/n} \right) \right)$$

Da $\log 1 = 0$ giver udtrykket $\frac{0}{0}$.

$$= L \exp\left(\lim_{n \to \infty} \left(\frac{r \cdot n}{n+r}\right)\right)$$
$$= L \exp\left(r \lim_{n \to \infty} \left(\frac{n}{n+r}\right)\right)$$

Dividerer igennem med n

$$= L \exp\left(r \lim_{n \to \infty} \left(\frac{n/n}{n/n + r/n}\right)\right)$$

$$= L \exp\left(r \lim_{n \to \infty} \left(\frac{1}{1 + r/n}\right)\right)$$

$$= L \exp\left(r \left(\frac{1}{1 + 0}\right)\right)$$

$$= L \exp\left(r \cdot 1\right)$$

$$= Le^{r}$$