Asymptotic Normality of MLE: Multivariate Case

Seung Bong Jung

October 2021

In this note, we prove the asymptotic normality of MLE $\hat{\theta}$ in case $\Theta \subset \mathbb{R}^d$, where Θ is a parameter space. Recall the following regular conditions.

- (R0) The parameter θ is identifiable in Θ .
- (R1) The density $f(\cdot;\theta)$ have common support \mathfrak{X} .
- (R2) The parameter space is open in \mathbb{R}^d .
- (R3) The log-density pdf log $f(x;\theta)$ is twice differentable as a function of θ for all $x \in \mathfrak{X}$.
- (R4) For any statistic $u(X_1, \ldots, X_n)$ with finite expectation, the integral

$$E_{\theta}(u(X_1,\ldots,X_n)) = \int_{\mathfrak{X}^n} u(x_1,\ldots,x_n) \prod_{i=1}^n f(x_i;\theta) \prod_{i=1}^n dx_i$$

is twice differentiable under the integral sign.

- (R5) The Fisher Information $I(\theta)$ exists and is invertible for all $\theta \in \Theta$.
- (R6) The likelihood equation $\dot{l}(\theta) = 0$ has the unique solution $\hat{\theta}$ and the solution is a consistent estimator of θ .
- (R7) For all $\theta \in \Theta$, there exists a function $M(\cdot)$ with $E_{\theta}M(X_1) < \infty$ such that

$$\max_{\theta \in \Theta} \max_{1 \le h, i, j \le d} \left| \frac{\partial^3}{\partial \theta_h \partial \theta_j \partial \theta_j} \log f(X_1; \theta) \right| \le M(X_1), \mathcal{E}_{\theta} M(X_1) < \infty.$$

Under these conditions, we attain asymptotic normality of MLE when $d \geq 2$. The proof is essentially the same with the case when d = 1.

Theorem. Under (R0)-(R7) and assuming $\hat{\theta}$ is MLE of θ , show that

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{d}{\to} N(0, I(\theta)^{-1})$$
 for all $\theta \in \Theta$ in P_{θ} - probability.

Proof. Let $S(\theta) = \frac{1}{n}\ell(\theta)$, where $\ell(\theta) = \sum_{i=1}^{n} \log f(X_i; \theta)$. Write $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_d)^t$ and $\theta = (\theta_1, \dots, \theta_d)^t$. Then, by definition of MLE,

$$0 = \dot{S}(\hat{\theta}) = \dot{S}(\theta) + \ddot{S}(\theta)(\hat{\theta} - \theta) + \frac{1}{2}\tilde{S}(\theta^*)(\hat{\theta} - \theta), \tag{1}$$

for some $\theta^* = (\theta_1^*, \dots, \theta_d^*)^t \in \Theta$ such that $|\theta_i^* - \theta_i| \leq |\hat{\theta}_i - \theta_i|$ for $i = 1, 2, \dots, d$. Here $\tilde{S}(\theta) = (s_{ij}(\theta))_{1 \leq i, j \leq d}$ is $d \times d$ matrix for $\theta \in \Theta$, where

$$s_{ij}(\theta) = \frac{1}{n} \left(\frac{\partial^3 \ell}{\partial \theta_j^2 \partial \theta_i} (\hat{\theta}_j - \theta_j) + \sum_{l=j,k \neq j} \frac{\partial^3 \ell}{\partial \theta_k \partial \theta_j \partial \theta_i} (\hat{\theta}_k - \theta_k) + \sum_{k=j,l \neq j} \frac{\partial^3 \ell}{\partial \theta_j \partial \theta_l \partial \theta_i} (\hat{\theta}_l - \theta_l) \right)$$

Suppose $\tilde{S}(\theta) = o_p(1)$. Note that $\ddot{S}(\theta) = -I(\theta) + o_p(1)$ under P_{θ} by weak law of large numbers (WLLN) and $\sqrt{n}\dot{S}(\theta) \stackrel{d}{\to} N(0, I(\theta))$ by CLT. With these facts, (1) implies that

$$0 = \dot{S}(\theta) + [\ddot{S}(\theta) + \frac{1}{2}\tilde{S}(\theta^*)](\hat{\theta} - \theta)$$
$$= \dot{S}(\theta) + [-I(\theta) + o_p(1)](\hat{\theta} - \theta)$$

and so

$$[I(\theta) + o_p(1)](\hat{\theta} - \theta) = \dot{S}(\theta),$$

$$\sqrt{n}[I_d + o_p(1)](\hat{\theta} - \theta) = \sqrt{n}I(\theta)^{-1}\dot{S}(\theta) \stackrel{d}{\to} N(0, I(\theta)^{-1}).$$
(2)

Here I_d is $d \times d$ identity matrix and we used Slutsky's theorem for the last equation in (2). Thus if we show that $\tilde{S}(\theta) = o_p(1)$, we're done. Hence it suffices to show $\tilde{S}(\theta) = o_p(1)$. Observe that $\tilde{S}(\theta) = o_p(1)$ if and only if $s_{ij}(\theta) = o_p(1)$. Take a sequence $\{\epsilon_n\}_{n=1}^{\infty}$ such that $\epsilon_n \geq \epsilon_{n+1} \geq 0$ and $\epsilon_n \to 0$ as $n \to \infty$. By (**R6**), there exists $\delta > 0$ and $N \in \mathbb{N}$ such that $P_{\theta}(||\hat{\theta} - \theta|| > \delta) < \epsilon_n$ for all $n \geq N$. Then for any C > 0,

$$P_{\theta}(|s_{ij}(\theta)| > C) \leq P_{\theta}(|s_{ij}(\theta)| > C, ||\hat{\theta} - \theta|| > \delta) + P_{\theta}(|s_{ij}(\theta)| > C, ||\hat{\theta} - \theta|| \leq \delta)$$

$$\leq P_{\theta}(||\hat{\theta} - \theta|| > \delta) + P_{\theta}(|s_{ij}(\theta)| > C, ||\hat{\theta} - \theta|| \leq \delta)$$

$$\leq \epsilon_n + P_{\theta}(|s_{ij}(\theta)| > C, ||\hat{\theta} - \theta|| \leq \delta). \tag{3}$$

Let $l_m(\theta) = \log f(X_m; \theta)$. If $|s_{ij}(\theta)| > C$, $||\hat{\theta} - \theta|| \le \delta$,

$$C < |s_{ij}(\theta)| \le \frac{1}{n} \left(\left| \frac{\partial^{3} \ell}{\partial \theta_{j}^{2} \partial \theta_{i}} \right| \cdot |\hat{\theta}_{j} - \theta_{j}| + \sum_{l=j,k \neq j} \left| \frac{\partial^{3} \ell}{\partial \theta_{k} \partial \theta_{j} \partial \theta_{i}} \right| \cdot |\hat{\theta}_{k} - \theta_{k}| + \sum_{k=j,l \neq j} \left| \frac{\partial^{3} \ell}{\partial \theta_{j} \partial \theta_{l} \partial \theta_{i}} \right| \cdot |\hat{\theta}_{l} - \theta_{l}| \right)$$

$$\le \frac{\delta}{n} \left(\sum_{m=1}^{n} \left| \frac{\partial^{3}}{\partial \theta_{j}^{2} \partial \theta_{i}} l_{m}(\theta) \right| + \sum_{m=1}^{n} \sum_{l=j,k \neq j} \left| \frac{\partial^{3}}{\partial \theta_{k} \partial \theta_{j} \partial \theta_{i}} l_{m}(\theta) \right| + \sum_{m=1}^{n} \sum_{k=j,l \neq j} \left| \frac{\partial^{3}}{\partial \theta_{j} \partial \theta_{l} \partial \theta_{i}} l_{m}(\theta) \right| \right)$$

$$\le \frac{\delta}{n} \left(\sum_{m=1}^{n} M(X_{m}) + 2(d-1) \sum_{m=1}^{n} M(X_{m}) \right)$$

$$= \frac{\delta(2d-1)}{n} \sum_{m=1}^{n} M(X_{m})$$

and this gives

$$\frac{C}{\delta(2d-1)} \le \frac{1}{n} \sum_{m=1}^{n} M(X_m). \tag{4}$$

By (3) and (4),

$$\limsup_{n \to \infty} P_{\theta}(|s_{ij}(\theta)| > C) \le \limsup_{n \to \infty} P_{\theta}\left(\frac{C}{\delta(2d-1)} \le \frac{1}{n} \sum_{m=1}^{n} M(X_m)\right) + \limsup_{n \to \infty} \epsilon_n$$

$$\le \frac{\delta(2d-1)}{C} \cdot \mathcal{E}_{\theta} M(X_1) \tag{5}$$

Here we used Markov's inequality for the second inequality in (5). Since (5) holds for arbitrary $\delta > 0$, one may conclude that $\limsup_{n\to\infty} P_{\theta}(|s_{ij}(\theta)| > C) = 0$, which implies $\lim_{n\to\infty} P_{\theta}(|s_{ij}(\theta)| > C) = 0$ as $0 \le \liminf_{n\to\infty} P_{\theta}(|s_{ij}(\theta)| > C) \le \limsup_{n\to\infty} P_{\theta}(|s_{ij}(\theta)| > C) = 0$. Therefore, $s_{ij}(\theta) = o_p(1)$, which concludes the proof.