*tremedabers

UNIT 8: Inheritance and Evolution

Recommended Prior Knowledge: Knowledge Basic knowledge of cell structure is required, and also an understanding of the processes involved in sexual reproduction.

Context: This Unit builds on the topic of sexual reproduction, covered in Units 6 and 7.

Outline: The Unit begins with the introduction of several new terms, before moving on to genetics and inheritance. Variation, affected by both genotype and phenotype, is investigated, before considering the ideas of natural selection and evolution.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
III	Define the following terms: <i>chromosome</i> ;	Students should know that a chromosome	The Human Genome Project	
3.1	gene; allele; haploid and diploid nuclei	is a length of DNA, and that each	http://www.genome.gov/page	
		chromosome carries a large number of	.cfm?pageID=10001694	
		genes. They may be interested to discuss		
		the human genome project, which is	Introduction to chromosomes	
		mapping all the genes on the human	http://gslc.genetics.utah.edu/	
		chromosomes.	units/basics/tour/	
		They may already have met the terms		
		haploid and diploid when considering the		
		processes involved in sexual reproduction.		
		A haploid cell is one with a single set of		
		chromosomes (for example a gamete)		
		while a diploid cell has two complete sets.		
		Meiosis produces haploid cells from diploid.		
		It is important to use the terms 'gene' and		
		'allele' correctly right from the start. If this is		
		done, students find them easy to use, and		
		there is no reason for confusion! At IGCSE		
		level, it is enough to define a gene as a		
		length of DNA giving instructions for a		
		certain characteristic. However, you may		
		prefer to say that a gene carries		
		instructions for making a particular protein.		
		An allele is a variety of a gene, and many		
		genes have many different alleles.		
Ш	Define the following terms: genotype;	It is best to consider the meanings of these	Genotype and phenotype	

terms before thinking about inheritance and explained with reference to a particular characteristic. Choose something simple, and that is likely to appeal to students, such as coat colour of an animal. The example does not have to be real. It should involve a gene with two alleles, one dominant and one recessive. Students should learn that one letter is used to represent these alleles, with an upper case letter for the dominant allele and a lower case letter for the dominant allele and a lower case letter for the coessive allele. They will already know that most cells are diploid, so should be able to understand that they therefore carry two copies of each gene. They can work out for themselves the three possible combinations of alleles, and think about what colours will result from them. Hence the terms genotype, phenotype, homotype, benotype, and the terms genotype, phenotype, and the story of the transport			1	I	
	3.4		with reference to a particular characteristic. Choose something simple, and that is likely to appeal to students, such as coat colour of an animal. The example does not have to be real. It should involve a gene with two alleles, one dominant and one recessive. Students should learn that one letter is used to represent these alleles, with an upper case letter for the dominant allele and a lower case letter for the recessive allele. They will already know that most cells are diploid, so should be able to understand that they therefore carry two copies of each gene. They can work out for themselves the three possible combinations of alleles, and think about what colours will result from them. Hence the terms genotype, phenotype, homozygous and heterozygous can be introduced and defined. It is a good idea to spend some time with such examples, and ensure that students are thoroughly confident using the terminology, before beginning to think		
III Calculate and predict the results of One or more of the examples used to The genetics of PKU	III	Calculate and predict the results of	One or more of the examples used to	The genetics of PKU	
3.4 monohybrid crosses involving 1 : 1 and 3 illustrate the meanings of the above terms http://www.ess.sunysb.edu/tr		•	· ·		

: 1 ratios	can now be taken further. Use correctly	acy/genetics.html	
	drawn genetic diagrams right from the start,		
	and do not let students take short cuts! The	Inheritance patterns in	
	correct way to set out a genetic cross is	monogenic disorders	
	shown on page 20 of the syllabus.	http://www.gig.org.uk/educati	
	Students should be reminded that gametes	on2.htm	
	are haploid cells, and therefore carry only		
	one copy of each gene. They can be asked		
	to work out what kind of gametes will be		
	produced by organisms with a range of		
	different genotypes.		
	It is good practice, and avoids confusion, if		
	a circle is drawn around each gamete		
	genotype when writing out a genetic cross.		
	Discourage students from automatically		
	writing down two gametes from each		
	parent. This is only necessary if the parent		
	is heterozygous and producing two		
	different kinds of gamete. If it is		
	homozygous, then only one kind of gamete		
	is made, and only one needs to be written		
	down.		
	Next, they can be introduced to the idea of		
	random fertilisation, in which any kind of		
	gamete from the male parent can fuse with		
	any kind of gamete from the female parent.		
	The offspring now have two copies of each		
	gene again. Drawing lines from gamete to		
	gamete often causes errors to be		
	introduced, and a simple		
	diamond or square, with gametes along the		
	sides and offspring genotypes in the boxes,		
	is more likely to avoid errors.		
	Ensure that students understand that what		
	they have worked out is the probability of		
	particular genotypes being produced. The		
	fact that, for example, four different		
	genotypes are present amongst the		
	offspring does not mean that the parents		

		will have four children!		
Ш	Explain codominance and inheritance of	Codominance is, in many ways, easier to	Coat colour in Great Danes	
3.4	A, B, AB, O blood groups (IA, IB and 1o).	deal with than dominance. It is easy for	http://www.greatdanerescuei	
		students to imagine that a combination of	nc.com/PrimaryColor.html	
		two different alleles will produce an effect		
		that is a mixture of both of them. The	ABO genetics	
		correct use of symbols should be	http://www.people.virginia.ed	
		encouraged; where codominance exists,	u/~rjh9u/abo.html	
		the gene is shown with an upper case		
		letter, with superscripts to represent the		
		different alleles.		
		The genetics of the A, B, AB and O blood		
		groups is a good example of codominance,		
		but it is also more complex than what has		
		gone before because there are now three		
		different alleles of the gene to consider,		
		rather than just two. It is therefore helpful to		
		write down a list of all the possible		
		genotypes and the resulting phenotypes		
		before attempting to deal with any crosses.		
		Ensure that the correct symbols, as used in		
		the syllabus, are automatically used by		
		students. They should not take the easy way out by writing A and B instead of IA		
		and la.		
III	Describe the inheritance of sex in	The inheritance of sex can be dealt with in		
3.1	humans (XX, XY).	the same way as the inheritance of genes,		
0	Trainane (70%, 70%).	but this time the symbols X and Y are used		
		to indicate whole chromosomes, not alleles		
		of a gene. Students should be able to draw		
		genetic crosses to show that you would		
		expect equal numbers of males and		
		females to be born.		
III	Describe continuous and discontinuous	Extension students will already be familiar	Variation – continuous and	
3.5	variation as influenced by the	with the A, B, AB and O blood groups, but	discontinuous	
	environment and genes, illustrated by	these will need introducing for Core	http://www.bbc.co.uk/scotlan	
	height and A, B, AB and 0 blood groups	students. They are a good example of	d/revision/biology/inheritance	
	in humans.	discontinuous variation. Students can draw	/variation_and_genetics_and	
		bar charts to show the relative proportions	_society_rev.shtml	

of people with these four blood groups. They will not find it difficult to understand that everyone fits into one of these four categories, with no in-betweens, and this is therefore an example of discontinuous variation. They could then be asked to think of other examples of discontinuous variation, and may think of gender. Continuous variation can be illustrated by almost anything that is measurable on a human - height, length of middle finger or wrist circumference will each give a good range of results and not cause any embarrassment! Leaves or other plant material can also be used to generate a range of results. Students will realise that they are dealing with something that behaves differently from blood groups; now there are no clear-cut categories, but a whole range of values. To show them graphically, they will need to decide on 6 or 7 ranges and then draw up a tally chart to show how many values fit into each range. These can then be plotted on a histogram. A common misconception is that 'continuous variation' means something that changes through your life. Although this is true of the measurements students are likely to have made to illustrate this, it is not the correct meaning of the term. Use other features, such as hair or eye colour, to emphasise the real meaning of continuous variation. Students should be able to work out for themselves that, while discontinuous variation is caused purely by genes, continuous variation often involves influence by the environment as well.

III D	Define <i>mutation.</i>	Mutation can be defined as an	Down's syndrome as an	
3.5		unpredictable change in the DNA content	example of mutation	
	Describe mutation as a source of	of a cell. It can affect a single gene, or	http://www.bbc.co.uk/scotlan	
v	variation, as shown by Down's syndrome.	whole chromosomes, and can happen at	d/revision/biology/inheritance	
		any stage, not only during cell division.	/variation_and_genetics_and	
	Outline the effects of radiation and	Ionising radiation and mustard gas can	_society_rev.shtml	
	chemicals on the rate of mutation.	be given as examples of factors that may		
		cause mutations.		
		Down's syndrome is used to illustrate a		
		mutation that occurs during cell division,		
		and that affects the number of		
		chromosomes in a cell. Students could look		
		at karyotypes of people with Down's		
		syndrome, and compare them with		
		karyotypes of males and females with the		
		normal number of chromosomes.		
	Describe sickle cell anaemia and explain	Sickle cell anaemia can be explained as	Sickle cell disease	
3.5 if	ts incidence in relation to that of malaria.	the result of a mutation in the gene that	http://www.cuhk.edu.hk/med/	
		codes for the production of haemoglobin.	paf/slides/hematolo/xv-	
		The effects of this on the carriage of	<u>19.htm</u>	
		oxygen, and the consequences for		
		respiring cells in body tissues, can be	Inheritance of sickle cell	
		discussed. Its inheritance can also be	anaemia	
		considered. Students will need to know a	http://www.sicklecellsociety.o	
		little about malaria. They can then look at	rg/education.htm	
		maps showing the distribution of malaria		
		and of sickle cell anaemia, and begin to		
		think of why these should be so similar.		
		The story is not a simple one, and will give		
		plenty of food for thought for Extension students. It is a good way to introduce the		
		ideas of selection pressures, and natural		
		selection.		
		SCICUIUII.		

III 3.6	Describe the role of artificial selection in the production of varieties of animals and plants with increased economic importance. Define natural selection as the passing on of genes by the best adapted organisms Assess the importance of natural selection as a possible mechanism for evolution Describe variation and state that competition leads to differential survival of, and reproduction by, those organisms best fitted to the environment	Students are already aware that variation occurs within populations of organisms, and they will not find it difficult to think how humans may choose a particular variety of an animal or plant, and use this to breed from. Real or imaginary examples can be used to illustrate this. It should be made clear that this selection needs to continue for many generations, and does not produce immediate results. If students have already considered the sickle cell anaemia story, they will already have thought about the ideas of differential survival and selection. Here, they can think a little more widely, perhaps using imaginary examples to think about how competition for scarce resources could lead to some individuals being more likely to survive and breed than others. These will pass on their alleles to their offspring, so that the alleles that confer the advantageous characteristics gradually become more common. Over time, this could lead to a change in the overall characteristics of the species.	Simulated evolution http://home.pacbell.net/s- max/scott/simevol.html	
III 3.6	Describe the development of strains of antibiotic resistant bacteria as an example of natural selection	The development of antibiotic-resistant strains of bacteria makes a good example to illustrate the ideas in the previous section.	Antibiotic resistance http://www.hpa.org.uk/infecti ons/topics_az/wfhfactsheets/ WFHantib.htm	
III 3.7	Define genetic engineering as taking a gene from one species and putting it into another species Explain why, and outline how, human insulin genes were put in to bacteria using genetic engineering	Use simple diagrams of bacteria containing circular DNA to show how a section of human DNA can be inserted into the bacterial DNA. Explain that DNA can be cut in certain places using different restriction enzymes to select the correct gene. If the same	Description of human insulin production http://www.tiscali.co.uk/reference/encyclopaedia/hutchinson/m0007839.html	

	restriction enzyme is used to cut the	
	bacterial DNA then the ends of the human	
	and bacterial DNA will stick together.	