Reprogramming the Web_Relay_Con V2.0 HW-584 Network Module

November 15, 2020

Code Rev 20201116 0256 and higher

Introduction

Did you buy one (or more) of these Network Modules and then find disappointment in the software on the board?

- All of the modules have the same MAC address. That's a problem if you want more than one on your network. And the supplier does not give you a way to change the MAC.
- If you change the IP Address the device returns to its default IP Address when it power cycles. That makes it pretty much useless even if you only put one on your network unless you're OK with it always having IP Address 192.168.1.4.

I was disappointed enough that I decided to reprogram the device to provide a web server interface that let's you change the IP Address, Gateway (Default Router) Address, Netmask, Port number (a REAL port number), and MAC Address. I also added the ability for the device to remember all these settings through a power cycle. Any Relay settings you make are also saved through a power cycle.

Code Rev 20201116 0256 and higher: Added support for MQTT.

The code is designed to compile into four different configurations:

- 1) 16 Outputs You can control 16 Relays
- 2) 8 Outputs / 8 Inputs You can control 8 Relays and monitor 8 digital inputs
- 3) 16 Inputs You can monitor 16 digital inputs
- 4) 8 Outputs / 8 Inputs with MQTT support

NOTE 1: The software provided in this project only works with the "Web_Relays_Con V2.0 HW-584" which is based on the STM8S-005 processor and ENC28J60 ethernet controller. I haven't tried it with any other version of the hardware. I think the V.1 FC-160 is based on a Nuvoton processor and this code and the tools are incompatible.

NOTE 2: I am not in any way associated with the manufacturer of this device. I only wrote code to run on it for my own hobby purposes, and I am making it available for other hobbyists.

NOTE 3: If you're looking to buy these modules the best source I've found is eBay. Best search term is "ENC28J60 Network Module". I've also seen them on Amazon, Banggood, and Aliexpress. In some cases they show photos of both the V.1 and V2.0 versions, but don't provide a way of specifying which one you want. You may need to communicate with the seller to be sure you'll get the V2.0 device.

Thank You!

Many thanks to Carlos Ladeira for his help with user interface ideas, many hours of testing, and his patience during development of the MQTT version of this code. We've ended up with a much better project as a result.

Document License

Copyright (C) 2020 Michael Nielson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Change Log

June 20, 2020 – Initial Release

August 2, 2020 – Added descriptions of "8 Output / 8 Input" and "16 Input" configurations.

August 6, 2020 – Added a note to make sure people know they don't need to set up a development environment unless they need to change the code.

August 20, 2020 – Added a note on editing the .stp file

November 16, 2020 – Major change: Added MQTT support

Other changes:

- Changed the GUI to have a Configuration page in place of the former Address Settings page
- Moved the device Name input field to the new Configuration page
- Moved the Relay Invert control to the new Configuration page
- Added an Input Invert control
- Added the ability to select whether all relays retain their state, are all forced off, or are all forced on when a power cycle occurs. This is in the "Config" settings added to the Configuration page.
- Added the ability to select whether the Ethernet interface operates in Half or Full Duplex.
- Added the ability to configure settings for MQTT Broker IP Address and Port.
- Added the ability to provide options MQTT ID and Password information.
- Added MQTT connection status indicators in the Configuration page.
- Fixed several corner case bugs in the web server code that were causing anomalous behavior in browsers.

Table of Contents

Introduction	1
Thank You!	
Document License	2
Change Log	
Table of Contents	
Screen Shots and Usage - 16 Output Configuration	5
Screen Shots and Usage - 8 Output / 8 Input Configuration	
Screen Shots and Usage - 16 Input Configuration	17
Screen Shots and Usage – 8 Output 8 Input Configuration with MQTT	23
Notes on Config Settings	26
Notes on MQTT	29
Programming the Module	
Setting Up a Development Environment	45
Notes on Compiling Different Configurations	46
Notes on the MAC Address	47
Network Module Schematic	49
Notes on Interfacing to Relay Modules	51
Notes on Inputs	
Pinouts of the Configurations	
Code Credits	60
Documentation License Note	63

Screen Shots and Usage - 16 Output Configuration

IO Control

16 Output Configuration

Use caution when changing the above. If you make a mistake you may have to restore factory defaults by holding down the reset button for 10 seconds.

Make sure the MAC you assign is unique to your local network. Recommended is that you just increment the lowest octet and then label your devices for future reference.

If you change the highest octet of the MAC you MUST use an even number to form a unicast address. 00, 02, ... fc, fe etc work fine. 01, 03 ... fd, ff are for multicast and will not work.

Code Revision 20201116 0256

Reboot NOTE: Reboot may cause the relays to cycle.

Refresh IO Control Network Statistics Help

16 Output Configuration

Help Page 1

An alternative to using the web interface for changing relay states is to send relay specific html commands. Enter http://IP:Port/xx where

- IP = the device IP Address, for example 192.168.1.4
- Port = the device Port number, for example 8080
- xx = one of the codes below:

```
00 = Relay-01 OFF 09 = Relay-05 OFF
                                      17 = Relay-09 OFF
                                                          25 = Relay-13 OFF
01 = Relay-01 ON
                   10 = Relay-05 ON
                                       18 = Relay-09 ON
                                                          26 = Relay-13 ON
02 = Relay-02 OFF
                   11 = Relay-06 OFF
                                      19 = Relay-10 OFF
                                                          27 = Relay-14 OFF
03 = Relay-02 ON
                   12 = Relay-06 ON
                                      20 = Relay-10 ON
                                                          28 = Relay-14 ON
                   13 = Relay-07 OFF
                                                          29 = Relay-15 OFF
04 = Relay-03 OFF
                                      21 = Relay-11 OFF
05 = Relay-03 ON
                   14 = Relay-07 ON
                                      22 = Relay-11 ON
                                                          30 = Relay-15 ON
07 = Relay-04 OFF
                   15 = Relay-08 OFF
                                                          31 = Relay-16 OFF
                                      23 = Relay-12 OFF
08 = Relay-04 ON
                   16 = Relay-08 ON
                                      24 = Relay-12 ON
                                                          32 = Relay-16 ON
55 = All Relays ON
```

55 = All Relays ON

56 = All Relays OFF

The following are also available:

- 60 = Show Relay Control page
- 61 = Show Address Settings page
- 63 = Show Help Page 1
- 64 = Show Help Page 2
- 65 = Flash LED
- 66 = Show Statistics
- 91 = Reboot
- 99 = Show Short Form Relay Settings

Next Help Page

16 Output Configuration

Help Page 2

IP Address, Gateway Address, Netmask, Port, and MAC Address can only be changed via the web interface. If the device becomes inaccessible you can reset to factory defaults by holding the reset button down for 10 seconds. Defaults:

IP 192.168.1.4 Gateway 192.168.1.1 Netmask 255.255.255.0 Port 08080 MAC c2-4d-69-6b-65-00

Config Field:

- 1st character: Output Invert 0 = off, 1 = on
- 2nd character: Input Invert 0 = off, 1 = on
- 3rd character: Output Retain Control:
- --- 0 = Turn OFF all outputs on power cycle
- --- 1 = Turn ON all outputs on power cycle
- --- 2 = Retain previous state of all outputs on power cycle (default)
- 4th character: Full/Half Duplex Ethernet Control:
- --- 0 = Half duplex (default)
- --- 1 = Full duplex

IO Control

16 Output Configuration

Network Statistics

Values shown are since last power on or reset

0000055767	Dropped packets at the IP layer
0000056015	Received packets at the IP layer
0000000212	Sent packets at the IP layer
0000000000	Packets dropped due to wrong IP version or header length
0000000000	Packets dropped due to wrong IP length, high byte
0000000000	Packets dropped due to wrong IP length, low byte
0000000000	Packets dropped since they were IP fragments
0000000000	Packets dropped due to IP checksum errors
0000000000	Packets dropped since they were not ICMP or TCP
0000000000	Dropped ICMP packets
0000000000	Received ICMP packets
0000000000	Sent ICMP packets
0000000000	ICMP packets with a wrong type
0000000000	Dropped TCP segments
0000000251	Received TCP segments
0000000215	Sent TCP segments
0000000000	TCP segments with a bad checksum
0000000000	TCP segments with a bad ACK number
0000000000	Received TCP RST (reset) segments
0000000000	Retransmitted TCP segments
0000000000	Dropped SYNs due to too few connections avaliable
0000000000	SYNs for closed ports, triggering a RST

IO Control | Clear Statistics

16 Output Configuration

Screen Shots and Usage - 8 Output / 8 Input Configuration

8 Output / 8 Input Configuration

Use caution when changing the above. If you make a mistake you may have to restore factory defaults by holding down the reset button for 10 seconds.

Make sure the MAC you assign is unique to your local network. Recommended is that you just increment the lowest octet and then label your devices for future reference.

If you change the highest octet of the MAC you MUST use an even number to form a unicast address. 00, 02, ... fc, fe etc work fine. 01, 03 ... fd, ff are for multicast and will not work.

Code Revision 20201116 0256

Reboot NOTE: Reboot may cause the relays to cycle.

Refresh IO Control Network Statistics Help

8 Output / 8 Input Configuration

Help Page 1

An alternative to using the web interface for changing relay states is to send relay specific html commands. Enter http://IP:Port/xx where

- IP = the device IP Address, for example 192.168.1.4
- Port = the device Port number, for example 8080
- xx = one of the codes below:

```
00 = Relay-01 OFF 09 = Relay-05 OFF

01 = Relay-01 ON 10 = Relay-05 ON

02 = Relay-02 OFF 11 = Relay-06 OFF

03 = Relay-02 ON 12 = Relay-06 ON

04 = Relay-03 OFF 13 = Relay-07 OFF

05 = Relay-03 ON 14 = Relay-07 ON

07 = Relay-04 OFF 15 = Relay-08 OFF

08 = Relay-04 ON 16 = Relay-08 ON

55 = All Relays ON

56 = All Relays OFF
```

The following are also available:

- 60 = Show IO Control page
- 61 = Show Address Settings page
- 63 = Show Help Page 1
- 64 = Show Help Page 2
- 65 = Flash LED
- 66 = Show Statistics
- 67 = Clear Statistics
- 91 = Reboot
- 99 = Show Short Form IO Status

Next Help Page

8 Output / 8 Input Configuration

Help Page 2

IP Address, Gateway Address, Netmask, Port, and MAC Address can only be changed via the web interface. If the device becomes inaccessible you can reset to factory defaults by holding the reset button down for 10 seconds. Defaults:

IP 192.168.1.4 Gateway 192.168.1.1 Netmask 255.255.255.0 Port 08080 MAC c2-4d-69-6b-65-00

Config Field:

- 1st character: Output Invert 0 = off, 1 = on
- 2nd character: Input Invert 0 = off, 1 = on
- 3rd character: Output Retain Control:
- --- 0 = Turn OFF all outputs on power cycle
- --- 1 = Turn ON all outputs on power cycle
- --- 2 = Retain previous state of all outputs on power cycle (default)
- 4th character: Full/Half Duplex Ethernet Control:
- --- 0 = Half duplex (default)
- --- 1 = Full duplex

IO Control

8 Output / 8 Input Configuration

Network Statistics

Values shown are since last power on or reset

0000055767	Dropped packets at the IP layer
0000056015	Received packets at the IP layer
0000000212	Sent packets at the IP layer
0000000000	Packets dropped due to wrong IP version or header length
0000000000	Packets dropped due to wrong IP length, high byte
0000000000	Packets dropped due to wrong IP length, low byte
0000000000	Packets dropped since they were IP fragments
0000000000	Packets dropped due to IP checksum errors
0000000000	Packets dropped since they were not ICMP or TCP
0000000000	Dropped ICMP packets
0000000000	Received ICMP packets
0000000000	Sent ICMP packets
0000000000	ICMP packets with a wrong type
0000000000	Dropped TCP segments
0000000251	Received TCP segments
0000000215	Sent TCP segments
0000000000	TCP segments with a bad checksum
0000000000	TCP segments with a bad ACK number
0000000000	Received TCP RST (reset) segments
0000000000	Retransmitted TCP segments
0000000000	Dropped SYNs due to too few connections avaliable
0000000000	SYNs for closed ports, triggering a RST
IO Control CI	and Captinging

IO Control | Clear Statistics

8 Output / 8 Input Configuration

Screen Shots and Usage - 16 Input Configuration

16 Input Configuration

Use caution when changing the above. If you make a mistake you may have to restore factory defaults by holding down the reset button for 10 seconds.

Make sure the MAC you assign is unique to your local network. Recommended is that you just increment the lowest octet and then label your devices for future reference.

If you change the highest octet of the MAC you MUST use an even number to form a unicast address. 00, 02, ... fc, fe etc work fine. 01, 03 ... fd, ff are for multicast and will not work.

Code Revision 20201116 0256

Reboot NOTE: Reboot may cause the relays to cycle.

Refresh IO Control Network Statistics Help

16 Input Configuration

Help Page 1

REST commands

Enter http://IP:Port/xx where

- IP = the device IP Address, for example 192.168.1.4
- Port = the device Port number, for example 8080
- xx = one of the codes below:
- 60 = Show IO Control page
- 61 = Show Address Settings page
- 63 = Show Help Page 1
- 64 = Show Help Page 2
- 65 = Flash LED
- 66 = Show Statistics
- 67 = Clear Statistics
- 91 = Reboot
- 99 = Show Short Form IO Status

Next Help Page

16 Input Configuration

Help Page 2

IP Address, Gateway Address, Netmask, Port, and MAC Address can only be changed via the web interface. If the device becomes inaccessible you can reset to factory defaults by holding the reset button down for 10 seconds. Defaults:

IP 192.168.1.4 Gateway 192.168.1.1 Netmask 255.255.255.0 Port 08080 MAC c2-4d-69-6b-65-00

Config Field:

- 1st character: Output Invert 0 = off, 1 = on
- 2nd character: Input Invert 0 = off, 1 = on
- 3rd character: Output Retain Control:
- --- 0 = Turn OFF all outputs on power cycle
- --- 1 = Turn ON all outputs on power cycle
- --- 2 = Retain previous state of all outputs on power cycle (default)
- 4th character: Full/Half Duplex Ethernet Control:
- --- 0 = Half duplex (default)
- --- 1 = Full duplex

IO Control

16 Input Configuration

Network Statistics

Values shown are since last power on or reset

0000055767	Dropped packets at the IP layer
0000056015	Received packets at the IP layer
0000000212	Sent packets at the IP layer
0000000000	Packets dropped due to wrong IP version or header length
0000000000	Packets dropped due to wrong IP length, high byte
0000000000	Packets dropped due to wrong IP length, low byte
0000000000	Packets dropped since they were IP fragments
0000000000	Packets dropped due to IP checksum errors
0000000000	Packets dropped since they were not ICMP or TCP
0000000000	Dropped ICMP packets
0000000000	Received ICMP packets
0000000000	Sent ICMP packets
0000000000	ICMP packets with a wrong type
0000000000	Dropped TCP segments
0000000251	Received TCP segments
0000000215	Sent TCP segments
0000000000	TCP segments with a bad checksum
0000000000	TCP segments with a bad ACK number
0000000000	Received TCP RST (reset) segments
0000000000	Retransmitted TCP segments
0000000000	Dropped SYNs due to too few connections avaliable
0000000000	SYNs for closed ports, triggering a RST
IO Control CI	one Statistics

IO Control | Clear Statistics

16 Input Configuration

Screen Shots and Usage – 8 Output 8 Input Configuration with MQTT

8 Output / 8 Input Configuration with MQTT

8 Output 8 Input Configuration with MQTT

Notes on Config Settings

The Config Settings field on the Configuration page lets you modify operation of the code as follows:

Output and Input Invert:

The Output and Input Invert settings let you accommodate logic reversals in your external circuitry.

Relay Output Power Cycle Setting:

The Relay Output power cycle setting lets you define how you want the relay output control pins handled in event of a power cycle. "0" will cause all pins to enter the "OFF" state in event of a power loss and restart. "1" will cause all pins to enter the "ON" state in

event of a power loss and restart. "2" will cause all pins to return to their state prior to the power loss. Actual logic level on the pins are as defined by the "Invert" setting.

IMPORTANT: Due to the limited number of times the EEPROM can be written you should set the 'Retain' ("2") state only if you expect the relay outputs to change infrequently, such as in home lighting controls. If you expect the relays to change frequently, for example a holiday light display, you should select "0" or "1" as the power cycle setting.

Why? The EEPROM is rated for about 100,000 writes (although it can probably take many more than that). That sounds like a lot, but if it was written once every 10 seconds you would hit 100,000 writes in about 11 days. Using a "0" or "1" setting won't perform any writes to the EEPROM (because there is no need to remember the relay state through a power cycle). But a "2" setting will write the EEPROM with every relay output change.

The "2" Retain setting is really meant to make sure the relay states are remembered for less frequent changes like home lamp controls, motor controls, and other similar "a few times a day" control activities. If relay states change infrequently (say, 10 times per day) the EEPROM will last at least 27 years with Retain turned on.

Full / Half Duplex Setting:

The Half / Full Duplex support setting lets you determine the Ethernet communication method. This setting defaults to Half Duplex because that is the most reliable setting for the ENC28J60 Ethernet chip used on the Network Module board. Since all the Ethernet transactions that will occur with the module are small and infrequent there is no real performance advantage to using Full Duplex.

During test it was found that Cisco business level switches exhibited Half Duplex timing that the ENC28J60 cannot handle, the symptom being a device disconnect (and automatic recovery) every few hours. This isn't the fault of the Cisco switch, rather it appears to be the fault of errata in the ENC28J60. During test it was determined that we could get around this issue seen in the Cisco switch configuration by enabling Full Duplex mode in the ENC28J60. While there was concern that this would not work (due to chip spec notes and online discussion over the years), it seemed to run error free. There may be other switches which show the same issue. Again, the reason it Full Duplex works may be the very low messaging rate used with the Network Module which eliminates the need for flow control.

Note 1: The spec for the chip indicates that Full/Half Duplex auto-negotiation DOES NOT work. However, experimentation showed that both Full and Half Duplex worked with the limited number of unmanaged switches on hand. Problems were only found running Half Duplex with the Cisco managed switch.

Note 2: If you choose to use the Full Duplex setting note that the spec says the Switch port the device is connected to MUST be manually configured for Full Duplex operation ... even though our testing did not show that to be the case. Of course we had a limited number of switches and this might be an issue on some other switch.

Note3: Feel free to experiment with this setting at your own risk to see what works best in your network configuration. I recommend you use Half Duplex and only try Full Duplex if you have issues.

Notes on MQTT

This is not a tutorial on MQTT as there are a lot of great resources online to bring you up to speed if you are just getting started with this protocol. Here I am only including notes on the tools and methods used in test of the MQTT functionality on the Network Module.

Configuration Settings:

First a discussion of the Configuration page parameters associated with MQTT

At this date the MQTT Broker Server must be specified in the form of an IP Address (as opposed to a URL). In future versions I may be able to allow use of a URL for the Broker Server.

The MQTT Port is self explanatory. The MQTT default value of 1883 automatically appears, but you can enter any port number you have assigned to MQTT on your Broker Server.

Security:

The MQTT Username and MQTT Password are optional and only required if you've set up your Broker to require them.

IMPORTANT: SSL/TSL are NOT implemented due to memory restrictions. I haven't found any implementations that are small enough to fit in the flash space available on the Network Module, so I don't expect this to ever be possible.

If security is really important due to the need to access MQTT on the device from the internet I suggest using access to your internal MQTT Broker Server in a secure way, then letting the Broker Server pass all messages on your internal network. You don't have to do it this way, but this is a suggestion for improving security rather than just exposing the device to the internet.

Tools and test methods:

Tools used in development and test of the MQTT functionality:

- The Mosquitto Broker was used on a Windows 10 laptop and worked very well with the Network Module.
- Chrome with MQTTLens was used at various points to provide a manual MQTT subscribe and publish interface.
- NodeRed was used to drive automated MQTT messages.
- Carlos Ladeira used Home Assistant in concert with NodeRed and the Mosquitto Broker in a Linux environment to perform extensive long run testing.

You aren't restricted to the above. Any tools and interfaces that are MQTT compliant should work just as well. But if you are just getting started I can recommend the above as a good place to start.

MQTT Status Indicators:

The MQTT Status indicators show connection progress with the MQTT Server and Broker:

- Box 1 Indicates that the MQTT Connection process has started.
- Box 2 Indicates a successful ARP reply from the Server.
- Box 3 Indicates a successful TCP connection with the Server.
- Box 4 Indicates the MQTT Broker has responded (Connect phase)
- Box 5 Indicates initial communications with the Broker has completed successfully (initial subscribe and publish messages completed).

Once all 5 boxes are green the Network Module is connected to the Broker and normal MOTT communications can proceed.

Reminder regarding the Relay Output power cycle setting:

A reminder regarding the relay relay output power cycle setting in the Config settings on the Configuration page: If you select 'Retain' (ie, "2" - retain the states if a power cycle occurs) then the Relay states are written to the EEPROM every time a relay changes state. If you anticipate a lot of relay state changes you may wear out the EEPROM with too many changes to the relay states.

Network Module Subscriptions:

Once the Network Module connects to the Broker it will Subscribe to the following topics:

```
"NetworkModule/<devicename>/on"
```

Where <devicename> is the Name you gave the module on the Configuration page.

Network Module Publish Status:

The Network Module will Publish the following topic messages:

```
"NetworkModule/<devicename>/status"
```

Payload: "online"

"NetworkModule/<devicename>/status"

Payload: "offline"

Any client using the Network Module can Subscribe to

"NetworkModule/<devicename>/status" to receive the Network module online / offline messages.

Network Module Pin State Publish Messages:

The Network Module will Publish the following topic messages to the Broker when any Input or Ouput pin changes state:

```
"NetworkModule/<devicename>/in-on
```

Payload: <input #>

Where \leq input #> = 01 to 08. The Publish occurs for any input pin that changes state from "off" to "on".

"NetworkModule/<devicename>/in-off"

Payload: <input #>

Where \leq input #> = 01 to 08. The Publish occurs for any input pin that changes state from "on" to "off".

"NetworkModule/<devicename>/out-on"

Payload: <output #>

Where <output #> = 01 to 08. The Publish occurs for any output pin that changes state from "off" to "on".

[&]quot;NetworkModule/<devicename>/off"

[&]quot;NetworkModule/<devicename>/state-req"

```
"NetworkModule/<devicename>/out-off"
```

Payload: <output #>

Where <output #> = 01 to 08. The Publish occurs for any output pin that changes state from "on" to "off".

"NetworkModule/<devicename>/state"

Payload: 2 byte binary pin values

This message is only published in response to a "state-req" topic message (see below in the "Client Publish Commands to the Network Module" section). The payload consists of two bytes with the bits organized as follows:

First byte:

Bit 7 = Pin 16 (Input 8) state
Bit 6 = Pin 15 (Input 7) state

Bit 5 = Pin 14 (Input 6) state

Bit 4 = Pin 13 (Input 5) state

Bit 3 = Pin 12 (Input 4) state Bit 2 = Pin 11 (Input 3) state

Bit 1 = Pin 10 (Input 2) state

Bit 0 = Pin 9 (Input 1) state

Second byte:

Bit 7 = Pin 8 (Relay 8) state

Bit 6 = Pin 7 (Relay 7) state

Bit 5 = Pin 6 (Relay 6) state

Bit 4 = Pin 5 (Relay 5) state Bit 3 = Pin 4 (Relay 4) state

Bit 3 = Pin 4 (Relay 4) state Bit 2 = Pin 3 (Relay 3) state

Bit 1 = Pin 2 (Relay 2) state

Bit 0 = Pin 1 (Relay 1) state

A Client using the Network Module should Subscribe to the above topics to receive Input and Output pin state changes.

Client Publish Commands to the Network Module:

A client can send one of the following Publish messages to the Broker, and because the Network Module has Subscribed to these topics it will receive the messages from the Broker:

"NetworkModule/<devicename>/on"

Payload: <output #>

Where $\langle \text{output } \# \rangle = 01$ to 08. The result will be that the corresponding output (relay) will turn on.

"NetworkModule/<devicename>/off"

Payload: <output #>

Where $\langle \text{output } \# \rangle = 01$ to 08. The result will be that the corresponding output (relay) will turn off.

"NetworkModule/<devicename>/state-req"

Payload: none

The result of this Publish is that the Network Module will generate a "NetworkModule/<devicename>/state" response. See above in the "Network Module Pin State Publish Messages" section.

Programming the Module

Assuming you have the Web_Relays_Con V2.0 HW-584 and all you want to do is apply this firmware the following describes the process.

IMPORTANT NOTE: In the steps below you'll turn off the Read Out Protection bit on the Network Module. This will ERASE the program currently in the device. It will only work again after you successfully reprogram it. DO THIS AT YOUR OWN RISK.

Remember there are 3 configurations of the firmware. When the appropriate step in the process comes up you'll need to pick the configuration you want.

1) Prepare your Network Module: Install a 4 pin header on the board (see photo)

2) Buy the Programmer: Purchase a ST-Link V2 (see photo). If you are patient you can get one from China in about a month for about \$3.50. Or in less than a week from within the US for about \$6.00 (assuming you are in North America). Price estimates are as of June 2020. Search on Google, Amazon, eBay, etc.

The ST-Link V2 is required to reprogram the Network Module. It is a USB to SWIM interface module supported by free software from STMicroelectronics. You'll need a four wire Dupont cable if you don't already have one. Some sellers ship the module with a cable. The Dupont cable is just a simple four wire cable with female push connectors on each end (as shown in the photo below).

The ST-Link V2 modules come in several colors so pick the color you like.

3) Obtain and Install Free Software: All of my development work was on the Windows 10 OS. If you are using Linux you will have a little more homework to do on your own, but I don't think there is much difference. For Windows you'll need to download and install the following files:

en.stsw-link009.zip You'll find the above at https://www.st.com/en/development-tools/stsw-link009.html

en.stvp-stm8.zip

You'll find the above at https://www.st.com/en/development-tools/stvp-stm8.html

You'll need to create an account at st.com to get the above software. It's free but they want an email address to contact you. When you try to download the software you'll be asked for your account credentials and given the option to create an account. By providing my email address I've gotten some invitations to online programming seminars but otherwise no spam. Not much hassle.

The stsw-link009 software is the driver to operate the ST-Link V2.

The stvp-stm8 software is a development utility and the programmer specific to the STM8 processor. When you install en.stvp-stm8 you'll get two programs:

- 1) ST Visual Develop
- 2) ST Visual Programmer (STVP)

I only used STVP even when developing the code. And if you are only reprogramming your devices STVP is the only tool you'll need.

4) Copy the Program: Now that you've installed the necessary software you need to copy the STVP Project file and the Binary file from GitHub that will be programmed into the Network Module.

On my Windows 10 machine the project was located in the following directory:

C:/Users/Mike/Documents/COSMIC/FSE Compilers/CXSTM8/NetworkModule

If you locate your copy of the project files in a similar Documents file location this should minimize the tinkering you have to do. And should you decide to modify the program you'll already have an appropriate directory set up.

The STVP programmer needs a ".stp" and ".sx" file pair to program the Network Module. Depending on the functionality you are looking for you'll need to copy one of the following pairs of files into your Documents directory. Or you can copy all of them and select the configuration you want in a later step.

16 Output Configuration:

NetworkModule-16Out.stp - The STVP project file NetworkModule-16Out.sx - The NetworkModule binary file

8 Output / 8 Input Configuration:

NetworkModule-8Out.stp - The STVP project file NetworkModule-8Out.sx - The NetworkModule binary file

16 Input Configuration:

NetworkModule-16In.stp - The STVP project file NetworkModule-16In.sx - The NetworkModule binary file

8 Output / 8 Input Configuration with MQTT:

NetworkModule-8OutMQTT.stp - The STVP project file NetworkModule-8OutMQTT.sx - The NetworkModule binary file

These are the only files you need to copy from the GitHub project account if you only want to program your module and you are not jumping right into code modifications.

IMPORTANT: Since the path to your "Documents" directory will be different than mine (if for no other reason than your user ID is different than "Mike), you may need to **edit the .stp file to match your directory path**. Open the .stp file with NotePad or NotePad++ and look for the following. Edit it to match the path to your .sz file.

30 FileO=C:\Users\Mike\Documents\COSMIC\FSE_Compilers\CXSTM8\NetworkModule\NetworkModule.sx

I use NotePad++ and have it set to show the CR/LF at the end of the line. If you use NotePad as your text editor you won't see that.

Telling STVP where your files are:

Since your User name on your Windows machine is probably not "Mike" you'll need to start STVP, click on "**Project/Open**", and browse for the .stp file that you copied to your **Documents/...** directory. Once you open the project file STVP should automatically load the .sx file from that same directory.

Setting up ST-Link Communication:

The project file contains various settings that enable the ST-Link V2 to communicate with your target board. They should already be set for you, but just in case the following is how I had them set:

Under "Edit/Preferences":

Properties	×
□ Blank check before programming (when available) ☑ Verify after programming	OK Saved
 ✓ Clear memory before loading a file □ Erase device memory before programming (when available) ✓ Display a popup window when an error occurs □ Log activity 	Cancel
Log file :	Browse

(Continued)

Under "Configure/Configure ST Visual Programmer"

If the above looks OK you are ready to program the Network Module.

Setting up the Hardware to allow programming:

First, attach the ST-Link V2 to your Network Module as follows:

Apply power to your Network Module. You should be using a 5V power supply connected to the power pins on the Network Module.

Plug the ST-Link V2 into your PC USB port.

If STVP is not already running, start it now.

If the NetworkModule.stp project is not already loaded, load it now (click on "Project/Open", and browse for the .stp file that you copied to your Documents/... directory). Give it 10 or 20 seconds to load the .sx file.

If you see "out of range" messages like the following this is NOT an error. It would have been nice if the messages were more informative, but they are just telling you that the indicated addresses are in non-programmable areas of the chip during program load. The addresses shown are typically in EEPROM and RAM.

```
> Loading file C:\Users\Mike\Documents\COSMIC\FSE_Compilers\CXSTM8\MQTT-Network |
FILE : line 961: Address 0x4000 is out of range and is ignored!
FILE : line 961: Address 0x4001 is out of range and is ignored!
FILE : line 961: Address 0x4002 is out of range and is ignored!
FILE : line 961: Address 0x4003 is out of range and is ignored!
FILE : line 961: Address 0x4004 is out of range and is ignored!
FILE : line 961: Address 0x4005 is out of range and is ignored!
FILE : line 961: Address 0x4006 is out of range and is ignored!
```

Once the program is successfully loaded in the programmer you will see a message like this (although the checksum will likely be different than what you see here).

```
FILE: line 964: Address OxD is out of range and is ignored!
FILE: line 964: Address OxE is out of range and is ignored!
FILE: line 964: Address OxF is out of range and is ignored!
< File successfully loaded. File Checksum Ox297EE9
```

Clear the ROP Bit:

If this is the first time you are programming your Network Module you will need to clear the Read Out Protection (ROP) bit. If you don't clear the ROP any attempt to program the Network Module will give you a "This device is protected" message. How to clear the ROP bit:

In the STVP main window click on the "Option Byte" tab

(Continued)

Make sure "Read Out Protection OFF" is selected in this drop down.

Next click on "Program / Current Tab". This will clear the ROP bit and allow you to reprogram the device. IMPORTANT: CLEARING THE ROP BIT ERASES THE CODE IN THE NETWORK MODULE. After you clear the ROP bit you MUST reprogram the Network Module to make it useful again.

Programming the Device:

Next select "Program / Current Tab"

If you got an error message while attempting to program the Network Module:

- a) Make sure the RST connection is in place.
- b) Make sure the power supply connected to the Network Module is providing 5V.
- c) Make sure you have good connections from the ST-Link V2 to the Network Module.
- d) You might have to unplug the ST-Link V2 from the USB port on your PC and plug it back in again.
- e) You might have to stop the STVP program, unplug and replug the ST-Link V2, then restart the STVP program.
- f) If you have 16 relays connected to your Network Module I suggest disconnecting them while reprogramming. If you have a very robust power supply it may be possible to leave them connected. The Network Module will be reset a couple of times during programming, and this may cause the relays to simultaneously turn on and off. Whether this interferes with programming depends on whether your power supply can handle the surge caused by the relay coils.

Generally I haven't had to do any of the above as I seldom saw an error. But on occasion I saw an error message that the link was not working, and the above tinkering got it working again.

(Continued)

If you see a message indicating programming success you are ready to attempt to connect to the Network Module via the Ethernet connector.

- a) Disconnect the RST wire between the ST-Link V2 and the Network Module. You can also disconnect the other wires, or leave them connected for the time being.
- b) Connect the Ethernet cable. I suggest you do this the first time without using your network. Make a direct Ethernet cable connection from the Network Module to your PC and attempt to access it at 192.168.1.4:8080. If the connection does not work check your IPV4 Ethernet settings on the PC and set it to use IP address 192.168.1.100 (not DHCP). If you don't know how to do this Google it. Here's a helpful link:

https://stevessmarthomeguide.com/setting-up-static-ip-address-windows-10/

While the device is directly connected to your PC you can use your browser to make address setting changes on the Network Module that are appropriate to your network. Then you can connect the device to your network, return your PC to its original Ethernet settings, and attempt to access the device.

Setting Up a Development Environment

NOTE: You don't need to do this if you are going to use the binaries (.stp and .sx files) I already created.

If you want to change the code for your own use I assume you have some experience with coding and the tools typically involved. I used the tools described in the previous sections for actual programming of the device, and used the Cosmic tools for the development environment. To duplicate this you'll want the following:

1) **Download and install the Cosmic Compiler:** Use the one that is specifically for the STM8 devices. Start at this website

https://www.st.com/en/development-tools/cxstm8.html#product-details

Click on Product Details and follow the link to the "partner website". From there you can download the compiler. The compiler is free. They will send you a 1-year license, but I think you can renew over and over. Note that the license is specific to the machine you install it on.

As an FYI, even though my PC is x64, the tools installed in this directory: C:/Program Files (x86)/COSMIC/FSE_Compilers/

2) Download and install the following library from st.com:

en.stsw-stm8069.zip You'll find it at

https://www.st.com/en/embedded-software/stsw-stm8069.html

NOTE: I included this library in the files included with the project so you may not need this step if you copy all the files from GitHub. This is the STM8S_StdPeriph_Driver directory.

3) Copy the Program: With the above installed the next step is to copy the entire project from GitHub into your Documents directory. On my Windows 10 machine the project was located in the following directory:

C:/Users/Mike/Documents/COSMIC/FSE_Compilers/CXSTM8/NetworkModule Of course you will likely have a different user ID.

Start the Cosmic tools by double clicking on the NetworkModule.prjsm8 file. You should be on your way.

A note about my coding style: My coding is not particularly esoteric or convoluted. I try to keep it simple to read and understand even if that is less efficient. And I put a lot of comments in, particularly if I had to do things to make the code work that didn't fully make sense to me. Sometimes that stuff happens and my intention is to come back and look at it again later. So, feel free to modify and "do it your way". I'm not proud as long as it works.

Notes on Compiling Different Configurations

NOTE: You don't need to do this if you are going to use the binaries (.stp and .sx files) I already created.

- 1) Compilation of the different configurations of the code (16 Out, 8Out/8In, 16In) is selected with the "GPIO_SUPPORT" define in the uipopt.h file. You also need to set the MQTT option if wanted. Read the notes in the uipopt.h file carefully to make sure the options you select are compatible. For instance, if you compile MQTT you can only use GPIO_SUPPORT2 and you must not include UIP_STATISTICS or HELP_SUPPORT 0 there isn't enough memory in the device for those options with MQTT.
- 2) Compilation of any particular version will result in .stp and .sx files named "NetworkModule.stp" and "NetworkModule.sx". Rename those as appropriate to "NetworkModule -16Out", "NetworkModule -8Out", "NetworkModule -16In" or "NetworkModule 8OutMQTT" depending on what you compiled.

Notes on the MAC Address

When new the Network Modules all have the same MAC address. This obviously doesn't work when you try to put more than one on a network.

A MAC address is only used within your network. Your router(s) and switch(es) use the MAC address as the means of uniquely addressing all the hardware in your network. The MAC address does not appear outside your network so it only needs to be unique to YOUR network, not to the entire world. This being the case, you only need to make sure that any MAC address you put in the Network Module does not conflict with any other hardware in your local network.

The default MAC address value in the code provided is just a random value with the exception that it has the two least significant bits of the most significant octet arranged to make it a "Unicast" and "Locally Administered Address (LAA)" as illustrated here:

All other bits and octets in the MAC address can be anything you want as long as you set the two bits above as shown.

Despite this being a LAA MAC address there is still some very remote possibility it will conflict with some other hardware you have on your network. You can search on Google to find methods of finding all MAC addresses on your network – the method you choose will depend on your level of expertise. Generally this is not required, and if you suspect a conflict you may just find it easier to try a different MAC address on the Network Module. Maybe make the middle fours octets something you fancy.

A good reference for MAC address explanations is here:

https://en.wikipedia.org/wiki/MAC_address

Network Module Schematic

I traced out the parts of the Network Module that are pertinent to developing the new software. I did not trace ALL connections as my intention was not to reverse engineer the hardware design. My intention was only to fix the inadequate function of the software. The schematic may be useful should you decide to improve on the software I've provided. Some notes:

- There are a number of capacitors connecting power and ground. These are left out of the schematic.
- The VCAP pin on the processor was not traced.
- Unused pins or pins that did not appear to be a necessary part of the functionality were programmed to be inputs with pull-ups. These are shown as disconnected on the schematic even if there was a component attached.
 - There are some components connected to the Port B pins. I suspect the original code used these to identify if the board was "8 port" or "16 port".
- I didn't trace out most of the pins on the ENC28J60, as I knew the design worked and did not need to do any modifications. Some notes:
 - The SPI interface on the ENC28J60 is not connected to the SPI interface on the STM8S005. Ordinary port pins on the STM8S005 are used to "bit bang" the SPI interface. Not very fast, but this is not an Ethernet performance design so it works just fine.
 - o The –WOL pin does not appear to be connected.
 - o The CLKOUT pin is not connected.
- If you dig into the STM8S005 specification you'll find that most pins that I show simply as "port pins" can be defined for other uses. I didn't include all that information in the component drawing as it just creates confusion in this context. The Network Module uses all the pins as "port pins", so that is all I show.
- The STM8S005 operates on its internal 16MHz clock. It does not have an external crystal or clock source.

Notes on Interfacing to Relay Modules

There are two things to be cautious of when attaching relay modules to the Network Module.

Power Distribution

The first thing to consider is supplying power to the relay modules. The basic design of the Network Module is intended to provide +5V power to the relay modules via the pin header that also provides the relay control signals. This works well for just a few relays (up to 3 or 4). This connection method is illustrated here:

If you attach more relays you need to make sure that there is sufficient current supplied by your +5V power supply attached to the Network Module AND you need to make sure the method used to send power to the relay modules is adequate. This is particularly important if you are transferring power via a ribbon cable.

If you don't think you can provide adequate power to the relay modules via the Network Module relay header you can consider a couple of options:

1) Connect +5V power only at the Relays, and let the power/signal header send +5V back to the Network module.

2) Use separate +5V power supplies on the Network Module and Relay Modules. If you do this you'll need to disconnect the +5V power connection between the headers.

Type of Relay Module

The second consideration is the type of relay modules you attach. The SM8S processor on the Network Module operates at 3V and its outputs are connected directly to the relay control header. So, you need to avoid inadvertently causing +5V feedback from the relay modules to the 3V output pins of the processor that exceed the processor specifications (check the spec, but the short version is: Max 3.3V and/or limit to 4mA per pin, AND limit to 20mA across all pins). The reason this is a concern is because the SM8S output pins have overvoltage protection diodes that can provide a current path if a voltage higher than 3.3V appears on the pin when it is not in an active pull-down state. To visualize this here is a drawing illustrating the output pin:

Focus on the Protection Diode. There is also a protection diode to ground, but it is not a concern in this discussion so I left it out. If any of the relay modules can provide a current path from a higher voltage through the chip pin (when the pin is not pulling down) then there is the potential for damage. Knowing this let's look at typical relay module designs.

a) **Opto-isolated relay boards:** If you use opto-isolated relay boards there should not be a concern as long as the relay boards are designed to operate at a voltage no higher than 5V. The typical design of these relay modules looks like this:

Note that in fact this relay module can provide a current path from +5V, through the photo emitter diode of the opto-isolator, through the visible LED, through the 1K resistor, then to the SM8S output pin via the "IN1" connection. But this will still work and here is why:

- The difference in voltage from the 5V supply to the SM8S output pin is 5V 3V. But about 0.7V is dropped across the photo emitter diode. Then another 0.7V is dropped across the LED. And about 0.3V is dropped across the protection diode in the SM8S. The result is that there is only 5 3 0.7 0.7 0.3 = 0.3V potential across the 1K resistor. This will result in about 300 uA of current flowing through the path. This is not enough current to damage the SM8S and not enough current to cause the relay module to operate. So while not ideal it works.
- If your relay module does not have the LED in the trigger signal path as shown in the drawing above it might still work, but you'll have to test it to verify. The difference is that the 0.7 volt drop across the LED is missing from the equation so about 1mA will flow into the output pin of the SM8S. That won't hurt the SM8S, but it might cause the opto-isolator to operate in turn preventing the relay from releasing or causing the relay to release intermittently.

b) Non-isolated relay module, Active HIGH trigger signal: Some relay modules do not have opto-isolators. If they are of a design that has an active high trigger signal then the typical design has a 1K ohm resistor feeding the base of a NPN transistor. This type of relay module should operate just fine when connected directly to the Network Module, although you'll find that the logic seems reversed and you may have to set or clear the "Invert" function in the Relay Control page of the GUI.

A typical active-high relay module circuit design:

The reason this module works with the Network Module is because it has no path from +5V back to the SM8S output pin..

c) Non-isolated relay module, Active LOW trigger signal: This is another relay module design that does not have opto-isolators. This design typically has an active low trigger signal, and the typical design has a 1K ohm resistor feeding the base of a PNP transistor. A typical relay module design looks like this:

This design is problematic in that the PNP transistor is connected to 5V, and when the Network Module control signal goes to a high state a reverse current flow (also known as an injected current flow) will travel from +5V through the PNP transistor, through the 1K resistor, and into the SM8S output pin. Analyzing this path:

- The difference in voltage from the 5V power supply to the SM8S output pin is 5V 3V. About 0.7V is dropped across the PNP transistor, and about 0.3V is dropped across the protection diode in the SM8S. The result is that there is 5 3 0.7 0.3 = 1V potential across the 1K resistor. This will result in about 1mA of current flowing through the path. This is not enough current to damage the SM8S, but it is in the active region of the PNP transistor. This may not allow the relay to turn off or the relay may operate intermittently. If this is the case and you are unable to get a more compatible relay module you will need to provide a voltage shifting buffer between the Network Module and the Relay Module.
- If the relay module you have places the LED in series with the PNP transistor the module may work better due to the voltage drop across the LED. However, there may still be enough current to cause the PNP transistor and the relay to operate intermittently. All you can do is give it a try.

Notes on Inputs

If you use the code configurations that provide digital inputs you'll need to be careful about the voltage you put on the input pin. The pins are directly connected to the SM8S processor. The processor operates at 3V, so you'll need to limit the high level voltage applied to the pin to 3V, or limit the current to no more than 1 mA.

Each input pin has a weak pull-up applied internal to the SM8S processor. The pull-up has a typical resistance equivalent of 60Kohm, but can range from 30Kohm to 80Kohm.

Some recommendations:

- 1) If you are using 3V logic to drive the input pin you should be able to directly connect it.
- 2) If your driver circuitry might place more than 3V on the input pin you can do one of the following:
 - a) Use open collector devices or level translators to prevent putting more than 3V on the input pin.
 - b) Use relay contacts to ground the input pin, relying on the SM8S pull-up to take the pin high. This might not be adequate if the wiring to the input pin is long or is subject to electrical interference.
 - c) Put a 1Kohm resistor between the driver logic and the input pin, but be sure the driver cannot exceed 5V. This isn't ideal, but should limit any current driven into the SM8S to an acceptable level and still achieve adequate logic levels at the SM8S input.

Pinouts of the Configurations

Following are the pin definitions for the three firmware configurations.

16 Output Configuration

Silks	cree	en o	n BJ2	2
GND	0	0	GND	
9	0	0	1	Relay 1
10	0	0	2	Relay 2
11	0	0	3	Relay 3
12	0	0	4	Relay 4
13	0	0	5	Relay 5
14	0	0	6	Relay 6
15	0	0	7	Relay 7
16	0	0	8	Relay 8
5V	0	0	5V	
	GND 9 10 11 12 13 14	GND 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0	GND 0 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0	9 0 0 1 10 0 0 2 11 0 0 3 12 0 0 4 13 0 0 5 14 0 0 6 15 0 0 7

8 Output / 8 Input Configuration

16 Input Configuration

Silkscreen on BJ2

	GND	0	0	GNE)
Input 9	9	0	0	1	Input 1
Input 10	10	0	0	2	Input 2
Input 11	11	0	0	3	Input 3
Input 12	12	0	0	4	Input 4
Input 13	13	0	0	5	Input 5
Input 14	14	0	0	6	Input 6
Input 15	15	0	0	7	Input 7
Input 16	16	0	0	8	Input 8
	5V	0	0	5V	

Code Credits

This project borrows heavily from the work of Simon Kueppers "MicroWebServer" project available on GitHub. Extract of Simon Kueppers' code sharing statement:

- * Author: Simon Kueppers
- * Email: simon.kueppers@web.de
- * Homepage: http://klinkerstein.m-faq.de

*

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>.

Copyright 2008 Simon Kueppers

* are met:

Simon Kueppers work in turn borrows heavily from the work of Adam Dunkels uIP project, also available on GitHub and other locations. Extract of Adam Dunkels' code sharing statement:

```
***

*\file

* The uIP TCP/IP stack code.

*\author Adam Dunkels <adam@dunkels.com>

*/

/*

* Copyright (c) 2001-2003, Adam Dunkels.

* All rights reserved.

* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
```

- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.

- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.

*

- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS" AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
- * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
- * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
- * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
- * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.

*/

With the addition of the MQTT Interface the following statement is applicable:

MIT License

Copyright(c) 2018 Liam Bindle

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

I am likewise making my code available with this statement:

- Author: Michael Nielson
- Email: nielsonm.projects@gmail.com

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

See the GNU General Public License at http://www.gnu.org/licenses/.

Copyright 2020 Michael Nielson

Documentation License Note

And now for the GNU Free Documentation License (follows on the next page). If you read the short preamble the typical user will know all you really need to know.

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not

explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that

translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take

reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

- A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
- B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified Version,
 together with at least five of the principal authors of the Document (all of its
 principal authors, if it has fewer than five), unless they release you from this
 requirement.
- C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
- D. Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
- F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
- G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
- H. Include an unaltered copy of this License.
- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These

may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

- K. For any section Entitled "Acknowledgements" or "Dedications", Preserve
 the Title of the section, and preserve in the section all the substance and tone
 of each of the contributor acknowledgements and/or dedications given
 therein.
- L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
- M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
- N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
- · O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be

used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.