Question Bank 1 (Analysis of stresses and Mohr's Circle)

- 1. Given the state of stress is: $\sigma_x = 800 \text{MPa}$, $\sigma_y = -200 \text{MPa}$, $\tau_{xy} = 200 \text{MPa}$. Determine -- (a) Principal stresses (b) the stresses on a plane makes 60° clockwise to the plane of principal stresses. Center is located at (300,0), Point A = (800, 200). Results: (a) At principal plane stresses are: (838,0) MPa, 10.9°; (b) The stresses are: (223, -332) MPa.
- 2. Find the principal normal and maximum shearing stresses and show them on a properly oriented element for the state of stress (in MPa) shown in Table 1. by (a) analytically and (b) Mohr's circle of stresses.
- 3. Given the state of stress is: $\sigma_x = 800 \text{MPa}$, $\sigma_y = -200 \text{MPa}$, $\tau_{xy} = 200 \text{MPa}$. Determine -- (a) Principal stresses (b) the stresses on a plane makes 60° clockwise to the plane of A.
- 4. Construct a Mohr's circle for the particular case of biaxial tension where $\sigma_X = \sigma_Y$. What is the maximum shear stress in such case?
- 5. Direct tensile stresses of 120 MN/m^2 and 70 MN/m^2 act on a body on mutually perpendicular planes. What is the magnitude of the shearing stress that can be applied so that major principle stress at the point does not exceed 135 MN/m^2 ? Determine the value of major principle stress and the maximum shear stress.
- 6. An element is subjected to the principal stresses $\sigma_1 = \sigma_x = 40 MPa$ and $\sigma_2 = \sigma_y = -30 MPa$. Compute the stress components of planes on planes whose normal are at $+30^{\circ}$ and $+120^{\circ}$ with the x-axis. Show your answers on a complete sketch of differential element.
- 7. A rectangular block of material is subjected to a tensile stress of 110N/mm² on one plane and a tensile of 47 N/mm² on a plane at right angles to the former. Each of the above stresses is accompanies by a shear stress of 63N/mm². Determine the principal stresses, principal planes and the maximum shear stresses.
- 8. At a point in a strained material, the principal stresses are 100 N/mm² (T) and 40 N/mm² (C). Determine the resultant stress in magnitude and direction in a plane inclined at 600 to the axis of major principal stress. What is the maximum intensity of shear stress in the material at the point?
- 9. The stresses at a point in a strained material is $\sigma_x = 200 \text{ N/mm}^2$, $\sigma_y = -150 \text{N/mm}^2$ and $\tau = 80 \text{ N/mm}^2$. Solve for the principal plane and principal stress using graphical method and verify with the analytical results.
- 10. The principal stresses in the wall of a container are 40 MN/m² and 80 MN/m². Determine the normal, shear and resultant stresses in magnitude and direction in a plane, the normal of which makes an angle of 30o with the direction of maximum principal stress.
- 11. An elemental cube is subjected to tensile stresses of 30 N/mm² and 10 N/mm² acting on two mutually perpendicular planes and a shear stress of 10N/mm2 on these planes. Draw the mohr's circle of stresses and determine the magnitudes and direction of principal stresses and also the greatest shear stress.
- 12. For the elements illustrated in Fig. 1 calculate the stress components on the inclined planes.
- 13. Direct tensile stresses of 120 MN/m² and 70 MN/m² act on a body on mutually perpendicular planes. What is the magnitude of the shearing stress that can be applied so that major principle stress at the point does not exceed 135 MN/ m²? Determine the value of major principle stress and the maximum shear stress.

Fig. 1.

Element.	$\sigma_{\rm X}$	σ_{y}	τ_{XY}
1.	60	20	0
2.	-30	50	-40
3.	200	0	80
4.	20	30	20