

SEQUENCE LISTING

<110> Tobin, Elaine
Wang, Zhi-Yong
Sun, Lin
The Regents of the University of California

<120> Phytochrome Regulated Transcription Factor for Control
of Higher Plant Development

<130> 023070-124200US

<140> US 10/084,553

<141> 2002-02-25

<150> US 08/843,572

<151> 1997-04-18

PSR #5-

<160> 27

<170> PatentIn Ver. 2.1

<210> 1
<211> 4344
<212> DNA
<213> Arabidopsis thaliana

<220>
<223> phytochrome-regulated transcriptional factor CCA1
genomic clone

<220>
<221> exon
<222> (1332)..(1370)

<220>
<221> intron
<222> (1371)..(1448)

<220>
<221> exon
<222> (1449)..(1560)

<220>
<221> intron
<222> (1561)..(1648)

<220>
<221> exon
<222> (1649)..(1710)

<220>
<221> intron
<222> (1711)..(2189)

<220>
<221> exon
<222> (2190)..(2384)

```
<220>
<221> intron
<222> (2385)..(2471)

<220>
<221> exon
<222> (2472)..(2645)

<220>
<221> intron
<222> (2646)..(2728)

<220>
<221> exon
<222> (2729)..(3610)

<220>
<221> intron
<222> (3611)..(3680)

<220>
<221> exon
<222> (3681)..(4043)

<400> 1
gcagtggttc acttacaaga acctggtctt caaaccagac aggttaacca attctctctt 60
taactctgtg tttggttgca tgtaatactg agaatggaag actcaaattc tcgaggaaat 120
tgtttgttat ctgttcagg gaggcttgtt ttgagaaggt caagagcaca tacaaagaca 180
tattagggag cagctgaatc aaaggaggaa gaagaagaag aagagcctt ttgaggccat 240
tcatgaattt gaatgaagga tatcaaaaga atctaacaca aaggccacgt ctttccttca 300
atctttcctt cttgttaacta aataatttc atcctttctc tctctctgtc tctggtcttt 360
tttagctcaa agtatcatcc atttatgtca aagtgttgta aattcctcaa gactatatat 420
gagatgtttt gtttcatttt cccaaaatttc aaactttgtc cccatttagt cttctaccct 480
tcatgcattgg ttagcttagc ttaatgctga actgttgaat aacgatatgg gcctttagt 540
aaaagaacaa aacctttagg gtctaaaaaa aataagccca atataaaaact atggcccaa 600
taagtttagg tccatttagag tgtgagaata gcgcgtgtag tgaaccgcac gagaatgcgc 660
gttcgattgt tggtaagta gtcgtctaga ttcccgggtc cactgatgtt tctagtgtat 720
cagacacgtg tcgacaaact ggtgggagag attaacgatc ttaagtaggt cccactagat 780
caagatatta taacgaatttgc acctttttaa ctttcaggt agtccccgaa ctcgtggcct 840
agaataacaa gaaggttgtg aacaagtgtga tgttaagatg gacaagaatg taacttgaac 900
aaaagctgaa tcatcttttc agccactagt atgttgacat atggcagttt cttttgttagc 960
ctcgaaataaa ataaattaaa aagtttgagg ttaaagataa ttatagtggc tgagatttct 1020
ccatccgtt agcttctggc ctctttctt tgtttcatttgc atcaaaagca aatcacttct 1080
```

tcttcttcatt cttctcgatt tcttactgtt ttcttatcca acgaaatctg gaattaaaaa 1140
 tggaaatctt atcgaatcca agctgattt gtttcttca ttgaatcatc tctctaaagg 1200
 tacttaagat tgatttattg tcatggctt tcttattgtt tcatgaataa cttgacttga 1260
 ttgtttttg ttttgtggat tagtggatt ttgtaaagag aagatctgaa gttgtgtaga 1320
 ggagcttagt g atg gag aca aat tcg tct gga gaa gat ctg gtt att aag 1370
 Met Glu Thr Asn Ser Ser Gly Glu Asp Leu Val Ile Lys
 1 5 10

gtaaattaac taaattttag ggggaagatg attgttttag gtgtcaaaga ttgagaattt 1430
 taatgaaact tgatatacg act cggtt aag cca tat acg ata aca aag ctttgcg 1481
 Thr Arg Lys Pro Tyr Thr Ile Thr Lys Gln Arg
 15 20

gaa agg tgg act gag gaa gaa cat aat aga ttc att gaa gct ttg agg 1529
 Glu Arg Trp Thr Glu Glu His Asn Arg Phe Ile Glu Ala Leu Arg
 25 30 35 40

ctt tat ggt aga gca tgg cag aag att gaa gttgattttt atttcccttt 1580
 Leu Tyr Gly Arg Ala Trp Gln Lys Ile Glu
 45 50

atatgtctta ttttttgtt ttgcagaggt ttgtcttcaa actgattgc ttttttcat 1640
 ttggacag aa cat gta gca aca aaa act gct gtc cag ata aga agt cac 1689
 Glu His Val Ala Thr Lys Thr Ala Val Gln Ile Arg Ser His
 55 60

gct cag aaa ttt ttc tcc aag gtaaaatcggtt ttaattttga aatgatgttc 1740
 Ala Gln Lys Phe Ser Lys
 65 70

tcatcttcatt tggcttaatg cttaagactt attgaaagcc aggcaagttt tctgcttcatt 1800
 ttgcttcatt gtcaggagat agatagatta cgtttttaga gtttagtaat gagcaataag 1860
 tcttaaaata gttggagaaa tgacgagatg taatcggtttt ctgttttttgcctataatc 1920
 ttgttaatcc acaaacatgt acatagattc ttccagaagaa tgtagtttc tttagattct 1980
 tcagataaac ttgtgtcttc ttaccgatc tgaggttagtg gcaaaagtgg gctgagtgtct 2040
 agaaaattttt gaatgttcct tgtgataagc catagaggta aaccattttt gatTTccag 2100
 ttctgtcatt taaacttgatt aggtgtcatt agattttgtt ttgtttacgt ttgttttagag 2160
 ggtaacaaaa ctactctcat ctctctcag gta gag aaa gag gct gaa gct aaa 2213
 Val Glu Lys Glu Ala Glu Ala Lys
 75

gggtt gta gct atg ggt caa gcg cta gac ata gct att cct cct cca cggtt 2261
 Gly Val Ala Met Gly Gln Ala Leu Asp Ile Ala Ile Pro Pro Pro Arg
 80 85 90 95

cct aag cgt aaa cca aac aat cct tat cct cga aag acg gga agt gga 2309
 Pro Lys Arg Lys Pro Asn Asn Pro Tyr Pro Arg Lys Thr Gly Ser Gly
 100 105 110

acg atc ctt atg tca aaa acg ggt gtt aat gat gga aaa gag tcc ctt	2357
Thr Ile Leu Met Ser Lys Thr Gly Val Asn Asp Gly Lys Glu Ser Leu	
115 120 125	
gga tca gaa aaa gtg tcg cat cct gag gtgatttca tggcatatg	2404
Gly Ser Glu Lys Val Ser His Pro Glu	
130 135	
gcatctttt gcagtgtgtc acattgctcc tcatgttatt aatacagatt gtgtgcttcg	2464
tttatag atg gcc aat gaa gat cga caa caa tca aag cct gaa gag aaa	2513
Met Ala Asn Glu Asp Arg Gln Gln Ser Lys Pro Glu Glu Lys	
140 145 150	
act ctg cag gaa gac aac tgt tca gat tgt ttc act cat cag tat ctc	2561
Thr Leu Gln Glu Asp Asn Cys Ser Asp Cys Phe Thr His Gln Tyr Leu	
155 160 165	
tct gct gca tcc tcc atg aat aaa agt tgt ata gag aca tca aac gca	2609
Ser Ala Ala Ser Ser Met Asn Lys Ser Cys Ile Glu Thr Ser Asn Ala	
170 175 180	
agc act ttc cgc gag ttc ttg cct tca cgg gaa gag gtaaaaaaca	2655
Ser Thr Phe Arg Glu Phe Leu Pro Ser Arg Glu Glu	
185 190	
atcttcatt gctatttgag gtttaagac gattagtaact tttcatgaaa ctaaaaccgt	2715
gggggaataa cag gga agt cag aat aac agg gta aga aag gag tca aac	2764
Gly Ser Gln Asn Asn Arg Val Arg Lys Glu Ser Asn	
195 200 205	
tca gat ttg aat gca aaa tct ctg gaa aac ggt aat gag caa gga cct	2812
Ser Asp Leu Asn Ala Lys Ser Leu Glu Asn Gly Asn Glu Gln Gly Pro	
210 215 220	
cag act tat ccg atg cat atc cct gtg cta gtg cca ttg ggg agc tca	2860
Gln Thr Tyr Pro Met His Ile Pro Val Leu Val Pro Leu Gly Ser Ser	
225 230 235	
ata aca agt tct cta tca cat cct tca gag cca gat agt cat ccc	2908
Ile Thr Ser Ser Leu Ser His Pro Pro Ser Glu Pro Asp Ser His Pro	
240 245 250	
cac aca gtt gca gga gat tat cag tcg ttt cct aat cat ata atg tca	2956
His Thr Val Ala Gly Asp Tyr Gln Ser Phe Pro Asn His Ile Met Ser	
255 260 265 270	
acc ctt tta caa aca ccg gct ctt tat act gcc gca act ttc gcc tca	3004
Thr Leu Leu Gln Thr Pro Ala Leu Tyr Thr Ala Ala Thr Phe Ala Ser	
275 280 285	
tca ttt tgg cct ccc, gat tct agt ggt ggc tca cct gtt cca ggg aac	3052
Ser Phe Trp Pro Pro Asp Ser Ser Gly Gly Ser Pro Val Pro Gly Asn	
290 295 300	
tca cct ccg aat ctg gct gcc atg gcc gca gcc act gtt gca gct gct	3100
Ser Pro Pro Asn Leu Ala Ala Met Ala Ala Ala Thr Val Ala Ala Ala	
305 310 315	

agt gct tgg tgg gct gcc aat gga tta tta cct tta tgt gct cct ctt Ser Ala Trp Trp Ala Ala Asn Gly Leu Leu Pro Leu Cys Ala Pro Leu 320 325 330	3148
agt tca ggt ggt ttc act agt cat cct cca tct act ttt gga cca tca Ser Ser Gly Gly Phe Thr Ser His Pro Pro Ser Thr Phe Gly Pro Ser 335 340 345 350	3196
tgt gat gta gag tac aca aaa gca agc act tta caa cat ggt tct gtg Cys Asp Val Glu Tyr Thr Lys Ala Ser Thr Leu Gln His Gly Ser Val 355 360 365	3244
cag agc cga gag caa gaa cac tcc gag gca tca aag gct cga tct tca Gln Ser Arg Glu Gln Glu His Ser Glu Ala Ser Lys Ala Arg Ser Ser 370 375 380	3292
ctg gac tca gag gat gtt gaa aat aag agt aaa cca gtt tgt cat gag Leu Asp Ser Glu Asp Val Glu Asn Lys Ser Lys Pro Val Cys His Glu 385 390 395	3340
cag cct tct gca aca cct gag agt gat gca aag ggt tca gat gga gca Gln Pro Ser Ala Thr Pro Glu Ser Asp Ala Lys Gly Ser Asp Gly Ala 400 405 410	3388
gga gac aga aaa caa gtt gac cgg tcc tcg tgt ggc tca aac act ccg Gly Asp Arg Lys Gln Val Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro 415 420 425 430	3436
tcg agt agt gat gat gtt gag gcg gat gca tca gaa agg caa gag gat Ser Ser Asp Asp Val Glu Ala Asp Ala Ser Glu Arg Gln Glu Asp 435 440 445	3484
ggc acc aat ggt gag gtg aaa gaa acg aat gaa gac act aat aaa cct Gly Thr Asn Gly Glu Val Lys Glu Thr Asn Glu Asp Thr Asn Lys Pro 450 455 460	3532
caa act tca gag tcc aat gca cgc cgc agt aga atc agc tcc aat ata Gln Thr Ser Glu Ser Asn Ala Arg Arg Ser Arg Ile Ser Ser Asn Ile 465 470 475	3580
acc gat cca tgg aag tct gtg tct gac gag gtacttactt ggactaaaga Thr Asp Pro Trp Lys Ser Val Ser Asp Glu 480 485	3630
tcaacttcct ttatttcaaa tcattttctc atataaatat tgtacattcg ggt cga Gly Arg 490	3686
att gcc ttc caa gct ctc ttc tcc aga gag gta ttg ccg caa agt ttt Ile Ala Phe Gln Ala Leu Phe Ser Arg Glu Val Leu Pro Gln Ser Phe 495 500 505	3734
aca tat cga gaa gaa cac aga gag gaa gaa caa caa caa gaa caa Thr Tyr Arg Glu Glu His Arg Glu Glu Gln Gln Gln Glu Gln 510 515 520	3782
aga tat cca atg gca ctt gat ctt aac ttc aca gct cag tta aca cca Arg Tyr Pro Met Ala Leu Asp Leu Asn Phe Thr Ala Gln Leu Thr Pro 525 530 535	3830

gtt gat gat caa gag gag aag aga aac aca gga ttt ctt gga atc gga	3878
Val Asp Asp Gln Glu Glu Lys Arg Asn Thr Gly Phe Leu Gly Ile Gly	
540 545 550	
tta gat gct tca aag cta atg agt aga gga aga aca ggt ttt aaa cca	3926
Leu Asp Ala Ser Lys Leu Met Ser Arg Gly Arg Thr Gly Phe Lys Pro	
555 560 565 570	
tac aaa aga tgt tcc atg gaa gcc aaa gaa agt aga atc ctc aac aac	3974
Tyr Lys Arg Cys Ser Met Glu Ala Lys Glu Ser Arg Ile Leu Asn Asn	
575 580 585	
aat cct atc att cat gtg gaa cag aaa gat ccc aaa cgg atg cgg ttg	4022
Asn Pro Ile Ile His Val Glu Gln Lys Asp Pro Lys Arg Met Arg Leu	
590 595 600	
gaa act caa gct tcc aca tga gactctattt tcatctgatc tgttgttgt	4073
Glu Thr Gln Ala Ser Thr	
605	
actctgtttt taagtttca agaccactgc tacatttct ttttcttttgggcctttgt	4133
atttgtttcc ttgtccatag tcttcctgtt acatttgact ctgtatttttcaacaaatca	4193
taaactgttt aatctttttt tttccaacct ggaaagaact tcactcaagg ggctttgtt	4253
cttgatatat gcaaacgaca gagttccaaa acgtaatctt agcccatcca tcaccctaa	4313
gttgcctcat aactcataag taagcacaaa a	4344

<210> 2
<211> 608
<212> PRT
<213> *Arabidopsis thaliana*
<223> phytochrome-regulated transcriptional factor CCA1

Met Glu Thr Asn Ser Ser Gly Glu Asp Leu Val Ile Lys Thr Arg Lys	
1 5 10 15	
Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Glu Glu His	
20 25 30	
Asn Arg Phe Ile Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Lys	
35 40 45	
Ile Glu Glu His Val Ala Thr Lys Thr Ala Val Gln Ile Arg Ser His	
50 55 60	
Ala Gln Lys Phe Phe Ser Lys Val Glu Lys Glu Ala Glu Ala Lys Gly	
65 70 75 80	
Val Ala Met Gly Gln Ala Leu Asp Ile Ala Ile Pro Pro Pro Arg Pro	
85 90 95	
Lys Arg Lys Pro Asn Asn Pro Tyr Pro Arg Lys Thr Gly Ser Gly Thr	
100 105 110	
Ile Leu Met Ser Lys Thr Gly Val Asn Asp Gly Lys Glu Ser Leu Gly	
115 120 125	
Ser Glu Lys Val Ser His Pro Glu Met Ala Asn Glu Asp Arg Gln Gln	
130 135 140	
Ser Lys Pro Glu Glu Lys Thr Leu Gln Glu Asp Asn Cys Ser Asp Cys	
145 150 155 160	
Phe Thr His Gln Tyr Leu Ser Ala Ala Ser Ser Met Asn Lys Ser Cys	
165 170 175	

Ile	Glu	Thr	Ser	Asn	Ala	Ser	Thr	Phe	Arg	Glu	Phe	Leu	Pro	Ser	Arg
180								185					190		
Glu	Glu	Gly	Ser	Gln	Asn	Asn	Arg	Val	Arg	Lys	Glu	Ser	Asn	Ser	Asp
195								200					205		
Leu	Asn	Ala	Lys	Ser	Leu	Glu	Asn	Gly	Asn	Glu	Gln	Gly	Pro	Gln	Thr
210						215					220				
Tyr	Pro	Met	His	Ile	Pro	Val	Leu	Val	Pro	Leu	Gly	Ser	Ser	Ile	Thr
225						230				235				240	
Ser	Ser	Leu	Ser	His	Pro	Pro	Ser	Glu	Pro	Asp	Ser	His	Pro	His	Thr
								245		250				255	
Val	Ala	Gly	Asp	Tyr	Gln	Ser	Phe	Pro	Asn	His	Ile	Met	Ser	Thr	Leu
							260		265			270			
Leu	Gln	Thr	Pro	Ala	Leu	Tyr	Thr	Ala	Ala	Thr	Phe	Ala	Ser	Ser	Phe
							275		280			285			
Trp	Pro	Pro	Asp	Ser	Ser	Gly	Gly	Ser	Pro	Val	Pro	Gly	Asn	Ser	Pro
						290		295			300				
Pro	Asn	Leu	Ala	Ala	Met	Ala	Ala	Ala	Thr	Val	Ala	Ala	Ala	Ser	Ala
						305		310			315			320	
Trp	Trp	Ala	Ala	Asn	Gly	Leu	Leu	Pro	Leu	Cys	Ala	Pro	Leu	Ser	Ser
							325			330			335		
Gly	Gly	Phe	Thr	Ser	His	Pro	Pro	Ser	Thr	Phe	Gly	Pro	Ser	Cys	Asp
						340			345			350			
Val	Glu	Tyr	Thr	Lys	Ala	Ser	Thr	Leu	Gln	His	Gly	Ser	Val	Gln	Ser
							355		360			365			
Arg	Glu	Gln	Glu	His	Ser	Glu	Ala	Ser	Lys	Ala	Arg	Ser	Ser	Leu	Asp
							370		375			380			
Ser	Glu	Asp	Val	Glu	Asn	Lys	Ser	Lys	Pro	Val	Cys	His	Glu	Gln	Pro
							385		390			395			400
Ser	Ala	Thr	Pro	Glu	Ser	Asp	Ala	Lys	Gly	Ser	Asp	Gly	Ala	Gly	Asp
							405			410			415		
Arg	Lys	Gln	Val	Asp	Arg	Ser	Ser	Cys	Gly	Ser	Asn	Thr	Pro	Ser	Ser
							420		425			430			
Ser	Asp	Asp	Val	Glu	Ala	Asp	Ala	Ser	Glu	Arg	Gln	Glu	Asp	Gly	Thr
							435		440			445			
Asn	Gly	Glu	Val	Lys	Glu	Thr	Asn	Glu	Asp	Thr	Asn	Lys	Pro	Gln	Thr
							450		455			460			
Ser	Glu	Ser	Asn	Ala	Arg	Arg	Ser	Arg	Ile	Ser	Ser	Asn	Ile	Thr	Asp
							465		470			475			480
Pro	Trp	Lys	Ser	Val	Ser	Asp	Glu	Gly	Arg	Ile	Ala	Phe	Gln	Ala	Leu
							485			490			495		
Phe	Ser	Arg	Glu	Val	Leu	Pro	Gln	Ser	Phe	Thr	Tyr	Arg	Glu	Glu	His
							500		505			510			
Arg	Glu	Glu	Gln	Gln	Gln	Gln	Glu	Gln	Arg	Tyr	Pro	Met	Ala	Leu	
							515		520			525			
Asp	Leu	Asn	Phe	Thr	Ala	Gln	Leu	Thr	Pro	Val	Asp	Asp	Gln	Glu	Glu
							530		535			540			
Lys	Arg	Asn	Thr	Gly	Phe	Leu	Gly	Ile	Gly	Leu	Asp	Ala	Ser	Lys	Leu
							545		550			555			560
Met	Ser	Arg	Gly	Arg	Thr	Gly	Phe	Lys	Pro	Tyr	Lys	Arg	Cys	Ser	Met
							565			570			575		
Glu	Ala	Lys	Glu	Ser	Arg	Ile	Leu	Asn	Asn	Asn	Pro	Ile	Ile	His	Val
							580		585			590			
Glu	Gln	Lys	Asp	Pro	Lys	Arg	Met	Arg	Leu	Glu	Thr	Gln	Ala	Ser	Thr
							595		600			605			

<210> 3

<211> 2254

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:full-length
CCAl cDNA clone 25 constructed joining 5' and 3'
fragments of clones 21 and 24

<400> 3
tgagatttct ccattccgt agttctggc ctctttctt tgtttatttgc atcaaaagca 60
aatcacttct tcttcttctt cttctcgatt tcttactgtt ttcttatcca acgaaatctg 120
gaattaaaaaa tggaatcttt atcgaatcca agctgatttt gtttcttca ttgaatcatc 180
tctctaaagt ggaattttgt aaagagaaga tctgaagttt tgtagaggag ctttagtgatg 240
gagacaattt cgtctggaga agatctgtt attaagactc ggaagccata tacgataaca 300
aagcaacgtg aaagggtggac tgaggaagaa cataatagat tcattgaagc tttgaggcct 360
tatggtagag catggcagaa gattgaagaa catgttagcaa caaaaactgc tgtccagata 420
agaagtcaacg ctcagaaattt tttctccaag gtagagaaag aggctgaagc taaaggtgt 480
gtatgggtc aagcgctaga catagctatt cctccctccac ggcctaagcg taaaaccaac 540
aatccttatac ctcgaaaagac gggaaagtggc acgatccctt tgtcaaaaac gggtgtgaat 600
gatggaaaag agtcccttgg atcagaaaaaa gtgtcgcatc ctgagatggc caatgaagat 660
cgacaacaat caaaggctga agagaaaact ctgcaggaag acaactgttc agattgtttc 720
actcatcagt atctctctgc tgcattccatc atgaataaaaa gttgtataga gacatcaaac 780
gcaaggactt tccgcgagtt cttgccttca cgggaagagg gaagtcaagaa taacagggta 840
agaaaaggagt caaactcaga tttgaatgca aaatctctgg aaaacggtaa tgagcaagga 900
cctcagactt atccgatgca tatccctgtt cttagtgcatt tggggagctc aataacaagt 960
tctctatcac atcctccatc agagccagat agtcatcccc acacaggcgc aggagattat 1020
cagtcgttcc ctaatcatat aatgtcaacc cttttacaaa caccggctct ttatactgcc 1080
gcaacttccg cctcatcatt ttggcctccc gattcttagt gtggctcacc tggtccaggg 1140
aactcaccc cgaatctggc tgccatggcc gcagccactg ttgcagctgc tagtgcttgg 1200
tgggctgcca atggattatt acctttatgt gctccttta gttcaggtgg tttcactagt 1260
catcctccat ctactttgg accatcatgt gatgttaggtt acacaaaagc aagcacttta 1320
caacatgggt ctgtgcagag ccgagagacaa gaacactccg aggcatcaaa ggctcgatct 1380
tcactggact cagaggatgt tgaaaataag agttaaaccag tttgtcatga gcagccttct 1440
gcaacacctg agagtgtgc aaagggttca gatggagcag gagacagaaa acaagttgac 1500
cggtcctcggt gtggctcaaa cactccgtcg agtagttagt atgtttaggc ggatgcata 1560
gaaaggcaag aggtatggcac caatggtgag gtggaaagaaaa cgaatgaaga cactaataaa 1620
cctcaaactt cagagtccaa tgacgcccc agtagaatca gctccaaat aaccgatcca 1680
tggaaagtctg tgcgtacga gggtcgaatt gccttccaaag ctctctctc cagagaggtt 1740
ttggccgcaaa gtttacata tcgagaagaa cacagagagg aagaacaaca acaacaagaa 1800
caaagatatc caatggact tgatcttac ttcacagctc agttaacacc agttgatgt 1860
caagaggaga agagaaaacac aggattctt ggaatcgat tagatgttc aaagctaatg 1920
agtagaggaa gaacaggttt taaaccatac aaaagatgtt ccatggaaagc caaagaaaagt 1980
agaatcctca acaacaatcc tattcatttcat gtggaaacaga aagatccaa acggatgcgg 2040
ttggaaactc aagcttccac atgagactt attttcatct gatctgttgc ttgtactctg 2100
tttttaagtt ttcaagacca ctgctacatt ttcttttctt tttgaggcct ttgtattttgt 2160
ttccttgccttcc atagtcttcc tgtaacacattt gactctgtat tattcaacaa atcataaaact 2220
gttaatctt ttttttccca aaaaaaaaaaaa aaaa 2254

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 4
ctgttatgct taagaagttc aatgt

<210> 5
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 5
ccaccctcga gtagaacact tattcat

27

<210> 6
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR 5' primer
for pXCA-21, pXCA-24 and pXCA-25

<400> 6
ggccgggatc caattcgatcg acccacgat

29

<210> 7
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR 5' primer
for pXCA-23

<400> 7
taaagggttc catatgggtc aagcgctag

29

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR 3' primer
for pXCA-21, pXCA-24, pXCA-25 and pXCA-23

<400> 8
atagaattctt cgagttatg catgcgg

27

<210> 9
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:nearly perfect
10-bp repeated sequence protected from cleavage

<400> 9 aaamaatcta	10
<210> 10 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:sequence of protected region	
<400> 10 aaacaatcta aaccccaaaa aaaatctatg a	31
<210> 11 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:one copy of repeated sequence	
<400> 11 aaaaatct	8
<210> 12 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:PCR amplification 5' primer	
<400> 12 gaagttgtct agaggagcta agtg	24
<210> 13 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:PCR amplification 3' primer	
<400> 13 atgtggatcc ttgagttcc aaccgc	26
<210> 14 <211> 88 <212> DNA <213> Artificial Sequence	

<220>
<223> Description of Artificial Sequence:double-stranded
A2 DNA probe fragment of Lhcb*3 promoter

<400> 14
aatctgcgaa gtgcgagcca ttaaccacgt aagcaaacaa acaatctaaa ccccaaaaaaa 60
aatctatgac tagccaatag caacctca 88

<210> 15
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:WT1 probe

<400> 15
agcaaacaaa caatctaaac cccaaaaaaa atctatgact 40

<210> 16
<211> 88
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:m1 mutant probe

<400> 16
aatctgcgaa gtgcgagcca ttaaccacgt aagcgagtta acaagcgaaa ccccagaata 60
catctatgac tagccaatag caacctca 88

<210> 17
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:m2 probe

<400> 17
taaccacgt agcgagttaa caagcgaaac cccaaaaaaa ac 42

<210> 18
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:m3 probe

<400> 18
ttaaccacgt aagcaaacaa acaatctaaa ccccagaata cac 43

<210> 19
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:m4 probe

<400> 19
agcaaacaaa caatataaac cccaaaaaaaa atttatgact

40

<210> 20
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:WT2 probe

<400> 20
actaaacgat aaaacaaaaa tcttaaaatc caatgaatga

40

<210> 21
<211> 52
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:CCA1 residues
24-75

<400> 21
Arg Glu Arg Trp Thr Glu Glu Glu His Asn Arg Phe Ile Glu Ala Leu
1 5 10 15
Arg Leu Tyr Gly Arg Ala Trp Gln Lys Ile Glu Glu His Val Ala Thr
20 25 30
Lys Thr Ala Val Gln Ile Arg Ser His Ala Gln Lys Phe Phe Ser Lys
35 40 45
Val Glu Lys Glu
50

<210> 22
<211> 55
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Myb repeat
sequence from Solanum tuberosum (St1)

<400> 22
Gly Val Pro Trp Thr Glu Glu Glu His Arg Met Phe Leu Leu Gly Leu
1 5 10 15
Gly Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ala Arg Asn Tyr Val
20 25 30
Ile Ser Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys Tyr Phe
35 40 45

Ile Arg Gln Ser Asn Met Ser
50 55

<210> 23
<211> 53
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Myb repeat
sequence from human (HMyb, CMyb))

```

<400> 23
Lys Thr Ser Trp Thr Glu Glu Glu Asp Arg Ile Ile Tyr Gln Ala His
      1           5           10          15
Lys Arg Leu Gly Asn Arg Trp Ala Glu Ile Ala Lys Leu Leu Pro Gly
      20          25          30
Arg Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg
      35          40          45
Lys Val Glu Gln Glu
      50

```

<210> 24
<211> 53
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Myb repeat
sequence from Drosophila melanogaster (DMyb)

```

<400> 24
Lys Thr Ala Trp Thr Glu Lys Glu Asp Glu Ile Ile Tyr Gln Ala His
      1           5           10          15
Leu Glu Leu Gly Asn Gln Trp Ala Lys Ile Ala Lys Arg Leu Pro Gly
      20          25          30
Arg Thr Asp Asn Ala Ile Lys Asn His Trp Asn Ser Thr Met Arg Arg
      35          40          45
Lys Tyr Asp Val Glu
      50

```

```
<210> 25
<211> 53
<212> PRT
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence:Myb repeat
sequence from Zea mays (ZmC1)

```

<400> 25
Arg Gly Asn Ile Ser Tyr Asp Glu Glu Asp Leu Ile Ile Arg Leu His
      1           5           10          15
Arg Leu Tyr Gly Asn Arg Trp Ser Leu Ile Ala Gly Arg Leu Pro Gly
      20          25          30
Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Ser Thr Leu Gly Arg
      35          40          45

```

Arg Ala Gly Ala Gly
50

<210> 26
<211> 52
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Myb repeat
sequence from Saccharomyces cerevisiae (YBAS1)

<400> 26
Leu Arg Glu Trp Thr Leu Glu Glu Asp Leu Asn Leu Ile Ser Lys Val
1 5 10 15
Lys Ala Tyr Gly Thr Lys Trp Arg Lys Ile Ser Ser Glu Met Glu Phe
20 25 30
Arg Pro Ser Leu Thr Cys Arg Asn Arg Trp Arg Lys Ile Ile Thr Met
35 40 45
Val Val Arg Gly
50

<210> 27
<211> 52
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Myb repeat
sequence from Arabidopsis thaliana (AtGl1)

<400> 27
Lys Gly Asn Phe Thr Glu Gln Glu Glu Asp Leu Ile Ile Arg Leu His
1 5 10 15
Lys Leu Leu Gly Asn Arg Trp Ser Leu Ile Ala Lys Arg Val Pro Gly
20 25 30
Arg Thr Asp Asn Gln Val Lys Asn Tyr Trp Asn Thr His Leu Ser Lys
35 40 45
Lys Leu Val Gly
50