A STUDY TO DETERMINE THE NEED FOR A STANDARD LIMITING THE HORSEPOWER OF RECREATIONAL BORTS(U) HYLE LABS HUNTSYILLE ALB R WHITE ET AL. SEP 78 MSR-78-12 USCG-D-36-83 DOT-CG-62655-A AD-A152 575 1/3 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANFORD (\$1.00)

Report No. CG-D-36-83

AD-A152 575

A STUDY TO DETERMINE THE NEED FOR A STANDARD LIMITING THE HORSEPOWER OF RECREATIONAL BOATS

OCTOBER 1978

FINAL REPORT

Document is available to the public through the National Technical Information Service,
Springfield, Virginia 22161

Propored for

DEPARTMENT OF TRANSPORTATION UNITED STATES COAST GUARD

Office of Research and Development Washington, D.C. 20593

ITIC FILE COPY

85 03 29 022

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report do not necessarily reflect the official view or policy of the Coast Guard; and they do not constitute a standard, specification, or regulation.

This report, or portions thereof may not be used for advertising or sales promotion purposes. Citation of trade names and manufacturers does not constitute endorsement or approval of such products.

1. Pepart No.	2. Government Accession No.	2 Recipient's Catalog No					
CG-D-36-83	-D-4/52 575						
4. Title and Subtitle		5. Report Date					
A STUDY TO DETERMINE T	HE NEED FOR A STANDARD LIMITING	September 1978					
THE HORSEPOWER OF RECR		6. Performing Organization Code					
		A Performing Organization Recor No.					
7. Authorisi		MSR 78-12					
R. White, C. Stiehl, N	. Whatley, W. Blanton						
9. Performing Gramization Name a	nd Address	14 Work Unit No. (TRAIS)					
Wyle Laboratories							
P. O. Box 1008		DOT-CG-62655-A					
Huntsville, AL 35807		<u></u>					
		13. Type of Report and Period Covered					
12. Sponsaring Agency Name and A		Final Report					
U.S. Department of Trai		February 1977 - April 1978					
United States Coast Gua							
Office of Research and	Development	14 Spansaring Agency Code					
Washington, DC 20590		G-DSA					

io Abstract

This report delineates the efforts undertaken to determine if there is a need for a standard that limits the maximum mounted horsepower on recreational boats. 'A definition of a powering related accident is derived and presented in the form of a decision tree. The steps taken to collect a data base, and an explanation of the computer model designed to aid in organizing and analyzing the data are presented with the results of the analyses. An evaluation of the current standard's effectiveness in predicting powering related accidents is presented along with a list of possible alternative approaches to saving the lives of boaters involved in powering related accidents. Conclusions drawn from the data analysis are presented with recommended considerations for future studies. Results of the study indicate that there are a significant number of lives (over 100) lost each year because of powering related accidents. These results indicate that there is a need for a powering standard. Powering accident mechanisms were identified, and detailed accident scenarios were developed for fatal accidents within the data base. The data indicate that the current standard predicts the high risk and fataltly probability for johnboats which have high ratios of mounted norsepower divided by formula rated horsepower, but is not a good predictor for other boat types currently being manufactured. The standard seems to be less effective for newer boats with larger horsepower engines. The data also indicate regional differences in fatality rates, accident types, and accident probabilities with the Southeast being the highest risk region. A list of alternatives that need further investigation in future effort is presented with cost/benefit predictions for some of the more viable approaches.

IT. Key Mores

d Cistribution Statement

Safe Power, Horsepower, Risk, Power Ratio, Exposure, Effectiveness, Standard, Powering Accident Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Fr. perunty 1 assit at this report	d peculity asset of this page	le No. at Pages 11. 11. 11.
Unclassitied	Unclassified	256

Form DOT F 1700.7 (14)

METRIC CONVERSION FACTORS

	Sympto		,	• •	i <i>2</i>	7	ě				٦.	`T.	Ė						ě :	2					ě	£	5	3 7	<u></u>	2				,•			~			ر د د		
Measures	T. f			1 1		s de la constante de la consta	******				square ien hes	stree establ	Marie miles						•	Spring?	SACE TOPS			•	thurs bureas	prets	41.42	4.5114.	cubic test	1001C 18438				f atu ershe i	temperature	•	7:3	002 391	++-1-1			
Islans from Matte	Multiply by	LENGTH		3 .	7.	`-			4854		•	1.2	70	\$ 2			MASS (weight)		40 0	7.7	-		VOLUME		0 03	2.1	43.	92 0	ží.	-		TEACOLD ATURE (1941)	TENNIONE INTE	9. 5. (then	32i		4	021 7 00	Ţ	0.7	à	
Approximate Cenversions from Matric Measures	When You Know			milianiers	Continuate S		b.icmaters			į	sales centerators	Aquate nellers	Square bridmelers	heutes (10,000 m ²)					ture 10	Anticopy ama	tunnes (1000 hg)			ł	Melitice s	4:0:1	liters	litera	Cubic meters	Cubic metars		15 14		Celsius	lengerature) - O	\$. \$ \$4 . \$ \$ 4 . \$. \$	0. 0. 0.	, i	
	Symbol			ŧ	E (<u>נ</u> ֿ ;				~§	~ _E	` §	2					•	ĩ	-				3	٠ -	-	-	~ _€	-i				٦								
(m) 1 ₁	2 2 (0.19)	etz T	0\$, 4	ir ::	i in	n 323	ų,		• • • • • • • • • • • • • • • • • • •		, et	! 	•	,	(; 3	• :	i Nii	1		ı Hiji	: • : : :!!!	, 1111	. .	· ·	i : **0	:	30	9		\$	• . 1 .	,	٤	**1	2		•		:
,	1.1.1.		• 1.1.1.	[[1	; ' f	7	ľľ	1"	.1.1		!' •	.۱.	('1	' ['	; ;	5	۱,۱	1,,	ì'('¦'		17	` `	{ ` {	۲۰'	, ,	111	Y Y	171	į4	-]]	 	77	·;·	· ; ·	1.1		1. j		1
		Symposi				3	Ę	€.	•			~5	~ _E	~ _é	Ţ	2				• :	2.	-				Ē	ŧ ī			-	-	Ê	Ť.									
Assulas		To find				Leminmeter a	Capitima lata		B. i. Granter b			Suprace Centificates	Bquere Amters	Section Section 5	Square hilometers	hecteres				113						mettifitat &	Pullille.				(ridis)	Collect meters	Lubic owners			Celsius	designed a rated					
isions to Metric h		Multiply by	11.04	HIGHOLD		\$1.	3	٠.	•	AREA		6.5	5	9.0	5.6	₽.0		MASS (weight)		₹ '	\$;		371767	10000		•	2 :	; •	***	5 5	•	100	9/ 0	TEMPERATURE (exect)		5 Steller	Briefe to applying	121				
Applearmate Convolsions to Motific Measures		When You Answ				4.chap	į	. p. q.	••		1	the oction	100 January	Spineta Ageds	Betrar Brende	****	;	Ž		C 3 Tapped	C (***********************************	CALLED IN				last spares a	total common a	front dancas	.	4 100	e al fine	fast	elite parte	TEMPE		f abreadent	and and the					
		115				1	: =	-	·w				· ~_	7,114	7.7					•	ą					÷	100			. :	; ;	· iz								•		

PRE**FACE**

The evaluation of currently existing USCG promulgated standards at a point in time subsequent to their effective date is desirable to understand the changes created within the recreational boating environment and to determine if the intended effects are being generated. This project was initiated to determine if the safe powering standard meets its intended purpose, i.e., reducing the loss-of-life risks for recreational boaters.

ACKNOWLEDGEMENTS

It is traditional for authors of publications to acknowledge those people whose satellite efforts contributed to the finalization of the tabloid. The authors of this report take no exception; however, a special recognition is desired of those people whose articulation of the effort recorded herein significantly contributed to the productivity of this research. Those people whose efforts are so greatly appreciated are: Jack Bowman, Joe Matzkiw, Ron Giuntini, and Bobby Clements of Wyle Laboratories; and Geoff Fuller, Bud Hunt, Lars Granholm, CDR Charles Niederman, Lysle Gray, and CAPT Jack Coulter of the United States Coast Guard.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTR	ODUCTION/BACKGROUND AND SUMMARY	1
	1.2	Background Considerations Project Overview	1 4 5
		1.3.1 Task II - Define, Model, and Analyze Power Related Accidents 1.3.2 Task III - Evaluation of the Current Stand	5
		Effectiveness 1.3.3 Task IV - Preliminary Identification of Alternative Approaches	14 18
		1.3.4 Conclusions and Recommendations	18
	1.4	Report Content	19
2.0	DEFI	NITION AND ANALYSIS OF POWERING RELATED ACCIDENTS	21
	2.1	Definition and Identification of Powering Related Accidents	21
		 2.1.1 Criteria for Defining a Powering Related Accident 2.1.2 Initial Accident Sample 2.1.3 Final Powering Related Accident Definition 2.1.4 Final Accident Sample 	21 27 30 33
	2.2	Development and Validation of Powering Related Accident Model	34
		2.2.1 The PRAM 2.2.2 Validation of the Model 2.2.3 Coded Information and Coding Form 2.2.4 Final Accident Sample 2.2.5 Summary of PRAM	34 36 38 41 42
	2.3	Accident Mechanism Identification and Scenario De	evelopment 44
		2.3.1 Raw Frequency Distributions 2.3.2 Analytical Results 2.3.3 Accident Mechanisms and Scenarios	45 53 69
3.0	EVAL	UATION OF THE CURRENT STANDARD'S EFFECTIVENESS	75
	3.2	Current Standard Non-Powering Related Accident Sample Coded Information and Coding Form Effectiveness Evaluation of the Current Powering	75 76 77 Standard 30
		3.4.1 The Current Standard and Powering Accident 3.4.2 The Current Standard and Powering Accident 3.4.3 The Current Standard and Risk 3.4.4 Accounting for Differences in Pre- and Pos	Severity 87
		Regulation Data 3.4.5 Current Standard Effectiveness by Boat Typ	pe 101

TABLE OF CONTENTS (concluded)

				Page
.0	ADDI	TIONAL A	ANALYSES AND RESULTS	104
	4.6 4.7	Fatalii Fatalii Power f Fatalii Average Risk Ve Poweria	ty Distribution by Region ty Distribution by Boat Type ty distribution by Type of Accident Ratio Distributions Within Geographical Regions ties Resulting From Course Changes, By Region e Horsepower by Region ersus Power Ratio for Johnboats and Accident Severity by Power Ratio for Johnboats sions to Regional Analyses and Other Results	104 106 108 110 112 113 115 118 120
.0	PREL	IMINARY	IDENTIFICATION OF ALTERNATIVE APPROACHES	123
	5.1	Standa	rds Approaches	126
			Horsepower Labeling Alternatives Other Standards Approaches	126 129
	5.2	Educat	ion/Enforcement Alternatives	134
		5.2.1	Education Related Alternatives to Enhance Powering Capacity Labeling Effectiveness	134
		5.2.2	Enforcement Related Alternatives to Enhance Powering Capcity Labeling Effectiveness	j 134
i.0	CONC	LUSIONS	AND RECOMMENDATIONS	137
≀efe	rence	S		140
₹ppe	ndix	A. The	Powering Related Accident Model - Volumes I and II	
/ppe	ndix		ering Related Accident Model (PRAM) Coding tructions for Non-Powering Related Accidents	

A STUDY TO DETERMINE THE NEED FOR A STANDARD LIMITING THE HORSEPOWER OF RECREATIONAL BOATS

1.0 INTRODUCTION/BACKGROUND AND SUMMARY

1.1 Background

Over the past several years, much has been accomplished in the Coast Guard's Boating Safety Program. Among other things, standards have been promulgated in the areas of safe loading, powering, and flotation. Each of these areas is now being reevaluated/analyzed to determine whether the existing standards should be revised and/or continued. This effort concerns itself with the evaluation of the current powering standard formula that has been in effect since November 1972 and the identification of possible alternatives for reducing the number of fatalities associated with powering related accidents in recreational boats.

Curing the late 1960's and early 1970's, the Boating Industry Association and industry representatives made several attempts to establish a viable industry standard for "safe powering" of outboard boats. The results of this effort was an industry standard known as Project H-26 of the American Boat and Yacht Council's (ABYC) "Safety Standards for Small Craft." Project H-26 (Powering of Boats) defines a "formula" and a "test course" method for establishing the maximum horsepower for recreational boats.

Over a period from 1972 to 1975 the Coast Guard expended considerable effort in adapting the industry standards to a federal standard. The first (now existing) standard promulgated by the Coast Guard was modeled after the ABYC Formula Method, and became effective in late 1972. Concurrently, research was being performed by wyle Laboratories, for the Coast Guard, toward obtaining a "performance" standard to supplement or replace the Formula Standard (Reference 1). The report documents research and analysis of various test courses, boat/motor combinations, and several projects which were aimed at defining an appropriate test course for outboard boats.

As a result of this performance study, and of Coast Guard analysis of boating accident data, further work in this area was suspended pending the establishment of a need for a powering standard and/or the establishment of a more appropriate standard in terms of safety. The effort reported on herein was intended to determine this need and to provide the basis for such need using previous research, boating accident data, analysis of existing powering standard effectiveness; and determine whether a new regulation would be more effective in reducing powering related accident:

redicated upon the assumption that a "safely" powered boat must be capable of suting specific maneuvers without exhibiting undesirable instability characterics under full throttle. Many discussions have resulted over this definition. Introttle stability is certainly needed in some situations to avoid loss-of-trol accidents. However, this is not the only type of powering related accident, therefore, not the only characteristic that should be considered. Other racterisites are even more desirable when we address the question of "What is afe boat?"

definition of a safe boat (underway) could be the following:

"A boat is safe under full throttle if, in the process of transacting a specific maneuver or operational mode, the operator has adequate warning of an insafe condition or imminently threatening hazard, such that corrective action can be taken in time to avoid its further development."

ted differently, "a safe boat 'fails' gracefully (becomes unsafe in a slow gression)" as far as stability/maneuvering goes.

addition to developing a more viable definition than this, the principal purpose this phase of the safe powering program is to furnish technical information and ident data analysis to aid Coast Guard management in making the decisions conned in Figure 1-1.

- a seams to the above ends, we have proceeded to:
 - A. Define a "powering related" boating accident.
 - Determine the frequency of occurrence of powering related accidents and predominant "accident mechanisms" (or common event-cause combinations).
 - constants the effectiveness of the present formula in predicting boater rise.
 - []. [dentify possible alternative methods for reducing the number of fatalities resulting from power related accidents.

TOACHE US TAKEN TO MEAN LOME EXCESS OF BENEFITS OVER 60015. ----FANGE OF MANAGEMENT OF 1991 NAMAKING THIS PROJECT DESIGNED TO SUPPORT.

FIGURE 1-1. THE POWERING STANDARD DECISION PROCESS

1.2 Dorviderations

minesearch (Reference 2) performed by Myle Laboratories, Coast Guard in-house earch and other contractors, it is apparent that the "boat/environment/operator tem" presents a very complicated set of interactions.

in type of boat hull has unique underway characteristics. As speed is increased fociently, any boat will eventually reach its threshold of instability, whether i turn or straight ahead mode. The present idea, then, is to limit power such time stability threshold cannot be reached. Herein lies the problem. There no convenient method whereby the threshold stability speed can be predicted and isequently no convenient way of establishing the safe horsepower applicable to a ren boat. Obviously, it can be done for a particular boat if enough money is bedded. This effort would be very costly and, for the average boat builder, it lies tar beyond his capability.

remarkational types are common: flatbottom, shallow to deep V, rounded chine, and toppedral, etc. Each of these hull types has a seemingly endless variety of flow that shapes and, consequently, a variety of performance characteristics.

Think, some of these shapes perform better than others at high speeds or in the Alaborrom john boats have severe maneuvering problems at speeds around to 10 - notes; generally, the V hull family can take speeds in the 40 knot range will condict fairly well and make reasonably well-banked (coordinated) turns; which family over 17 feet in length usually has enough drag that speeds much see the are difficult to obtain regardless of the horsepower. Turns at high see, in W hull boats are very "flat" and, as a result, can produce high lateral ray vectors on occupants. It is apparent that the stability/handling character-turn typical recreational boats are a function of speed and boat type.

The real and costly. Therefore, the Coast Guard must be assured that such the coast Guard has warranted.

The proposition of the present standard is providing little reduction of the present standard is providing little reduction of the present. Independent the existing standard is very inexpensive to make the present and consumer (directly). Simply stated, the total of the prests associated with calculating the norsepower capacity to the prests associated with calculating the norsepower capacity.

1.3.3 Task IV - Preliminary Identification of Alternative Approaches

A was drew ted towards the identification, feasibility analysis, and preon, effectiveness analysis of alternate solution concepts.

Letter 1 the solident chain and thus prevented the accident. Those possible inthat would alter or break the event sequence in the accident chain and that would enhance survivability in the event of an accident were identified analyzing the powering data. Those changes were used to construct alternative satety enhancement concepts and they fall into two general categorians approaches, and 2) education/enforcement alternatives.

on transcriberia, the standards approaches address:

- Persons the current standard
- Developing a new standard
- beststating other standards in lieu of a powering standard

of the measures are intended to make the poater aware of the powering the cost system (in terms of engine size and utilization).

. The pareful not to construe possible fatality reductions as the stimations. For example, powering accident data for pre-1972 the extend potential benefit for implementation of the current construct, the pawering accident data for post-1972 chaft shows little.

1.1.4 Threighbors and Regommendations

A Vit. Into it throughout the performance of this project with it the report process. The most significant general con-

- 4. Determine fatality distribution by "maneuvering" ,plac activity, and "falls overboard" (accident type).
- 5. Determine the mean horsepower for each geographical region for boats in PRAM.

The conductance of these analyses gave rise to the following important points:

- There are regional differences in the powering related fatality distributions with the Southeast region having the highest number of fatalities and the Pacific Coast region having the least.
- Johnboats are a major contributory boat type to powering related fatal it/ statistics with a large percentage of these involving falls overboard.
- "Green's, (including the jounboats) the Southeast region accounted for a primer power ratio than any other region; but also had the lowest transle mounted norsepower engines. This again indicates that the chall, lightweight, hard chine boats with small engines present the power high risks.
- The contrast region accounts for more fatalities resulting from accounts for more fatalities resulting from accounts.
- Objective indicate the para tendencies as johnboats; Noveyen, the

 Objective of past boats in the data base is so small that signal conclusions
 Objective se drawn with a high level of confidence.

• The current powering standard was evaluated in terms of several risk parameters. This showed no increase in risk and non-compliance for post-regulation boats, but considerable increase in risk for pre-regulation boats.

cal explanations are possible for the poserved differences in pre- and post-pattor data, particularly in terms of boat design and engine changes that are $\cos t$ med in the powering formula.

incent powering standard has some validity, as evidenced by its effectiveness ince-1977 points and for johnboats. However, since the promulgation of the ident, it has known no overall effectiveness, indicating the need for investigativeness the rowering regulatory concepts and/or improving the current standard. It was also that the current standard can be modified in order to be more time of the formula, and for centain boat types. A modest attempt was made in this time, the formula, and evaluate its effectiveness for different power-internal mowever, the data indicate that the current standard is not effective all four types, especially recently made boats.

erallet investigation of the regulatory effectiveness including efforts and treatment of the safe powering project can be found in References 3 and 4.

the confiction of the effort to determine the effectiveness of the current now to everal continuous existed. These questions involved explanations as well to entry explicitly gave the indications presented. After discussions which we continue the Guard personnel, it was agreed to pursue the answers to the current this phase of the project.

into the accordance of the contract of the con

on Holosoft determine any differences in fatality distribution in the Lorent Holosoft (areas the Task II report identifies.

The term of a straight distribution by poat type and type of accident.

Fig. 19 Evenity of accident and risk for johnboats. Discuss fatality

10 to 12 to 25 mo 30 related to apparent gunwale neight.

Investigate the differences in power ratio distributions between tour people areas identified in the Task II report.

We have found few statistically significant and engineeringly important measures which indicate that the formula is effective in determining a safe powering level. The most significant indicator found was that, prior to being promoted as a regulation, the formula predicted very accurately the unsafe powering level of boats. This could be true as there are ways of complying with the standard, but still defeating it by altering the configuration of the boat hull. This would indicate that the present formula is good, but must be refined to eliminate the loop holes or inadequacies.

However, for the few statistically significant and engineeringly important measures with positive indications, there were many engineeringly important measures that gave no statistical merit to the present formula. An example is shown by the fact that there is no significant change in the number of fatalities for boats in compliance with boats not in compliance with the existing formula horsepower capacity. This indicates that the current standard does not indicate an unsafe power level, and that a different standard should be promulgated.

Perhaps the most important finding of Task III is contained in the evidence that there does appear to be avenues to pursue that, if developed properly, will greatly increase the safety and well being of the average boater. One must keep in mind, nowever, that for any standard or regulation, there is a group of people who, for various reasons, choose to ignore the rule and not comply with its stipulations. The Safe Powertor, Standard is no exception.

The major is ding, of the evaluation of the effectiveness of the coment powering standard are.

- In terms of accident frequency and severity, the current powering standard is not effective for outboard boats less than 20 ft in length manufactured after 1973.
- From the powering standard appears to have considerable effectiveness for outboard coats less than 20 it in length made prior to 1972, and for annotate in general.
- The current powering standard apparently is <u>not</u> effective for outboards less than 20 ft in length that are not johnboats, when all years of manufacture are considered (i.e., when pre- and post-powering regulation boats are not distinguished).

- Each of three powering ratios considered [i.e., 1)mounted horsepower/
 rated horsepower, 2) mounted horsepower/length of the boat, and 3)
 mounted horsepower/total weight of the system.] were shown to have a
 significant relationship to accident severity, and to accident type,
 when both pre- and post-regulation boats were included.
- It was found that compliance with the current standard was no more frequent for experienced boaters than for the non-experienced. However, boating safety education was shown to lead to greater compliance.
- It was found that the boats in compliance with the current standard were significantly less likely to be involved in a fatal powering accident than those that were not in compliance, when both pre- and post-regulation boats were included.
- Advisent mechanisms were identified and detailed accident scenarios were developed for fatal accidents at five accept nodes.

1.3.2 Task III - Evaluation of the Current Standard Effectiveness

Tair III utilizes the Task II data base to determine if the current standard too finds withheld the accident probability or severity of the accidents experitively associated to inanciwenty (20) feet in length and powered by an outboard modified from the current indicators that measure the effect of the limited of the boater. Numerous tests have been applied to the selection of the present standard increases the safety of the poater in consistency of the poater in some of the poater.

The first time in any recreational poating safety research and development of a standard is the first time in any recreational poating safety research and development of a standard is the most of the and exposure within the entire boating population. By the most end, him confidence level in the results of the analyses on each of the analyses of the analyses of the analyses that the first a true picture of the ancident propensity is promoted. Whenever that it allows analyzed the data for indications of effectiveness, some of any are allowed if faralities, number of addidents, accident rates, and accident each.

these accomplishments and presents some of the conclusions that can be drawn from the data as thus far analyzed.

Having arrived at a definition of a powering related accident and presenting this definition in the form of a decision tree, we have used this tree to identify all of the powering related accidents for the year 1975 (fatal and non-fatal) and all of the fatal powering related accidents for 1976. Over 7500 accidents were reviewed with 450 of these being selected as powering related. It was these accidents that became the sample to be coded in the Powering Related Accident Model (PRAM).

PRAM is a matrix type model that was developed solely for this project from considerable modeling expertise from Wyle personnel, consultations with several persons within the USCG, from previously developed models, and a repetitive review of several previously constructed models. Effectively, PRAM summarizes and organizes the accident data supplied by the selected sample.

PRAM identifies accident mechanisms and provides the information for development of powering related accident scenarios. It is the PRAM data that was used as input to the engineering analyses, the benefit estimations, and the evaluations of effectiveness of powering related concepts (including the present safe powering standard).

To validate the data that would be stored in PRAM, each of the 450 accidents was independently coded by two analysts. The two resulting sets of data were compared by computer checks and a third analyst to alleviate any disagregments between the two data sets. Additionally, random samples from each of the two sets were examined in depth to insure the correctness of all inputed data.

Having analyzed the data in PRAM, several interesting findings have blossomed. Some of these findings are:

- There is a need for a powering standard. This is indicated by the 204 deaths attributable to powering related accidents in 1975 and 1976. along with the associated injuries and property damage.
- Several comparisons of pre- and post-regulation boats in the sample were made. The data indicated that the ratio of mounted to nated horsepower was the came for pre- and post-regulation chaft.

FIG RELIES POWERING MELATED ACCIDENT DECISION TREE

It can be seen that all accidents are potentially "horsepower related or stressors and subsystem environmental effects are to be included in the definition. The intent of the Coast Guard's requirements for defining "power related" accidents appeared to be to arrive at some consistent means of reducing the scope of the accidents to be reviewed under this effort to manageable proportions.

Vast emphasis was placed on the task of defining a powering related accident to make sure that every possible consideration and circumstance was investigated to determine the influence of propulsive power on the event sequence and the regulatory dependency on the man-machine system.

Having defined a power related accident, i.e., having selected a group of accidents to analyze, a statistical matrix model was developed. This development revealed refinements for the definition and started an iterative process which resulted in a highly complex definition and comprehensive model (see Figure 1-5). The complexity of the powering problem is evidenced by the in-depth thought process the analyst must employ to decide if an accident is power related. Once the analyst decides, his thought process is captured in the model and utilized in the evaluation phase of the project.

Although it may appear that the definition and the accident model were independently generated, the two were simultaneously derived through iterative refinements dictated by each other and the insight gained with each update. Section 2.0 discusses the development of the definition and the development of the model. The interdependency and simultaneity of the two should be kept in mind.

The analyses done here answer the question, "Is there a need to investigate the powering standard that is presently in effect?" The answer is asserted in the fact that there were 450 powering related accidents involving 469 boats and resulting in 204 deaths during 1975 and 1976 alone. This is a very significant statistic when one realizes that 1 out of every 14 deaths accounted to recreational poating was directly involved in accidents that the present safe powering regulation is supposed to alleviate. This point in itself provides sufficient reason for in-depth evaluation of the powering problem.

Several major accomplishments have resulted from the efforts on this project and are presented in detail in the subsequent sections. This report summarizes

- D. Speed Horsepower is directly related to the potential for speed.
 Speed, in turn, affects:
 - The reaction time available to the vessel operator to avoid an object.
 - The kinetic energy which must be dissipated during a collision or attempt at stopping the vessel.
 - The inertial forces acting on the boat occupants during sudden maneuvering.
 - The body forces acting on the boat and occupants during steadystate turns.
 - Vessel maneuvering capability.
- in space at any given point in time. Vessel thrust is obviously important for maneuvering capability, trim, heave, heel, and yaw during any maneuver or straight-anead operation. The sudden application of excessive thrust during a low-speed turn can lead to shipping water over the side to which the boat is turning.

Figure 1-4 summarizes the discussion above, showing that horsepower can act on the stressors, subsystem environment, and acceleration/thrust, which, in turn, act according to be occupants and the boat elements, such that powering related accidents can prescript tate.

FT. 4E 1-4. HORSEPOWER AS A FACTOR IN POWERING RELATED ACCIDENTS.

$$S_B = f(B_{SS}, O_{SS}, E_{SS})$$

Further, each subsystem could be expressed as some function of its basic subelements so that:

$$B_{SS} = g(B_{SS_1}, B_{SS_2}, B_{SS_3}, \dots B_{SS_n})$$

$$O_{SS} = h(O_{SS_1}, O_{SS_2}, O_{SS_3}, \dots O_{SS_m})$$

$$E_{SS} = k(E_{SS_1}, E_{SS_2}, E_{SS_2}, \dots E_{SS_p})$$

The point of this is that there are some boundary conditions within which this system exhibits "safety". Sometimes a small deviation in one of the subelements can act as a catalyst in actuating other accident causal factors.

Some potential accident causes that could be acted upon or aggravated by horsepower are as follows:

- A. <u>Stressors</u> Horsepower is directly involved in the generation (both from an amplitude and frequency content) of severe noise, shock, vibration, and windburn effects on the functional capabilities of boat occupants.

 This, in turn, affects their ability to avoid and recover from accidents which may occur on the water.
- E. <u>Subsystem Environment</u> Noise, shock, and vibration choise being a subset of vibration in this case) also act on the boat elements and cause failure of mechanical/hardware components and parts, leading to the occurrence of certain accident types.
- Acceleration Horsepower is directly related to the boat's ability to accelerate, which, in turn, can cause occupants to be thrown overboard. However, acceleration can have the positive effects of allowing the boat to move quickly away from an impending collision and spend minimum time in transition (usually with poor visibility between the displacement and the planning modes of operation).

Also, sudden acceleration or deceleration may lead to a fall overboard or swamping. This partial list illustreates the many ways in which powering can contribute to boating accidents.

The second problem in defining powering related accidents is concerned with the recognition that the effect of powering is dependent upon many other elements.

The basic definition problem can be illustrated in Figure 1-3.

FIGURE 1-3. POWER BOATING SYSTEM

This traces in with that the power boating system is composed of three basic subsection in the coat subsection, operation subsystem, and the environmental subsections and the environmental subsections and the environmental subsections and the environmental subsections.

1.3.1 Task II - Define, Moder, and Analyze Power Related Actions

The purpose of Task II is to define a powering related accident and establish the data base to use in the remainder of the project and in any subsequent analysis. It is, by far, the most important task of the safe powering project. Operationally, defining a powering related accident is equivalent to defining the sample to be coded and analyzed. An incorrect or incomplete definition of power related accidents biases the evaluation of the current standard and its effectiveness in saving people's lives and preserving the integrity of personal property. If the definition is conservative, many accidents will be filtered out, thus giving a false representation of a highly effective standard because of the minimal number of fatalities and property losses registered. Conversely, if the definition is too liberal, it registers fatalities and property losses that could better be prevented by other safety standards such as safe loading, flotation, etc. The definition must, therefore, be as precisely correct in encompassing powering related accidents as is possible to ensure that the results of the effectiveness analysis are realistic and self-meritorious.

The definition of a powering related accident is a complicated and illusive problem. In one sense, we could almost say that any accident which occurs while the boat is underway with power is powering related. Obviously, we cannot accept such a general definition. At the opposite end of the spectrum, powering related accidents could be defined as only those directly attributable to boats operating at full speed.

Common sense tells us that for our results to be meaningful results, the definitions must lie somewhere between these extremes.

Powering may contribute to virtually every type of event-defined accident. For example, excessive speed during a sudden maneuver may result in a capsizing, fall overboard, or swamping. High speed while underway straight ahead may cause excessive pounding and snock which leads to a fall overboard, injury, or collision in which the boat is proceeding too fast for the conditions. Too little as well as too much power may contribute to accidents - for example, in handling large wakes or following seas where obtimum advance speed is critical, and the ability to speed up is important. Furthermore, the link between powering and accidents is not invariably speed. The weight of an excessively large outboard engine may increase the chances of swamping for small boats because of the reduction in freeboard.

FIGURE 1-2. OVERALL PROJECT

\$2.00 per boat, including Coast Guard compliance testing. Assuming 450, boards per year are constructed, then the total cost per year is less than 51 million. Using a cost of \$480,000 per life saved, only two or three lives per year need to be saved in order for the existing standard to be cost effective.

Since the standard was promulgated in November 1972, boating industry market surveys indicate that roughly 2-1/2 million boats have been built which are subject to the standard. Compliance testing performed by Wyle under DOT-CG-31538-A, "Perform Compliance and Defect Testing of Recreational Boats and Associated Equipment," indicates that about 85% of the boats sampled were labeled in compliance. This information contained in the data sample selected for this study indicates that approximately 81% of all boats in the field are in compliance. This, however, includes boats that were built before the effective date of the present standard.

We are aware of the fact that the Boating Industry Association (BIA) Formula standard was in effect prior to the federal standard. If we use BIA estimates of the number or percentage of boats constructed by BIA members and to BIA standards, we can estimate that maybe a third of the boats built prior to 1972 also had a (voluntary) standard in effect (the boats were labeled). From Myle's experience, prior to 1972 the number of dealers who actually limited outboard horsepower to that shown on the BIA labels was small in comparison to the number to do so because of the federal standard. So, in actuality, the situation is quite complicated, and it is difficult to estimate the exact effect of the existing standard (see Reference 3).

1.3 Project Overview

A graphic presentation of this project is shown in Figure 1-2. The dependence of the current standard evaluation and determination of proper alternative concepts on the adequacy of the definition and modeling is clearly seen in the figure. It is extremely important that these tasks are correctly and comprehensively undertaken since any future task, whether under this project or some follow-on project, will attilize them as a starting foundation.

- Power related accidents account for over 100 fatalities per year and approximately six percent of all reported accidents
- The current standard formula is not a good predictor of risk for all boats (i.e., without distinguishing pre- and post-regulation craft) in the powering related accident sample
- The current standard formula appears to be a good predictor of risk for pre-1972 boats and johnboats (all years)
- Regional differences in power accident risks exist
- The potential for significant benefits resulting from amendments to the current standard and/or other approaches exist, pending more detailed analysis

Based upon these conclusions and other findings reported herein, the following major recommendations are offered:

- A theoretical and empirical sensitivity analysis of the current standard formula should be performed
- Field investigations should be conducted in order to verify the assumptions of the analysis in this report, particularly those made with respect to exposure data
- Nationwide Boating Survey (NBS) and Boating Accident Report (BAR) data collection forms should be modified to provide needed powering related data currently not available
- A detailed formulation of the alternative powering safety ennancement concepts, and their associated costs and benefits, should be undertaken

1.4 Report Content

Subsequent sections of this report present the technical approach and analyses supporting these conclusions.

Section 2.0 presents a detailed discussion of the derivation of the definition of a powering related accident and a detailed chronology of the selection of the

accident data analyzed under this project. Additionally, this section presents the development and validation procedures for the computerized <u>Powering Related Accident Model (PRAM)</u> and the analytical results of the analyses on the powering related accident sample. This section concludes with a presentation of the accident mechanisms initiating powering related accidents and scenarios typifying accidents resulting from each mechanism.

Section 3.0 presents a statement of the current standard for the reader's ready reference. Also, this section presents the selection criteria and exhibits for the non-powering related sample. Subsequent to this discussion is a detailed presentation of the efforts to determine the effectiveness of the current standard formula in predicting the risk of having a powering related accident with increasing mounted nonsepower in view of several relevant variables. Interpretations of the results are provided to assist the reader where appropriate.

Lettion 4.0 presents in detail the analyses performed to clarify and assist in explaining the results found in Task III.

Section 5.0 presents a detailed discussion of the preliminary alternatives to , reventing the type of fatalities accounted for in the powering related accidents in our sample.

Section r., presents the conclusions and recommendations derived from the data analysis adming this project.

Appendix A unevents the iterative development of the Powering Related Accident Model (PAAM), and Appendix B presents the instructions utilized to include data from non-sowering related accident reports in the PRAM.

2.0 DEFINITION AND AMALYSIS OF POWERING RELATED ACCIDENTS

2.1 Definition and Identification of Powering Related Accidents

2.1.1 Criteria for Defining a Powering Related Accident

In order to establish a starting point for defining and identifying a powering related accident, it was decided to select a small group of accidents from the USCG accident file and review them for available pertinent data (described below) for the powering project and to determine the categories into which the accidents could be grouped. Three hundred and thirty-five (335) cases were selected at random from the 1975 and 1976 accident files maintained by the U. S. Coast Guard, Washington, D. C. Of these, one hundred and eighty-three (183) were immediately rejected as being non-powering related for one of the following reasons:

- 1. The boat(s) involved were not powered by an engine.
- 2. The boat(s) were not underway.
- 3. The accident was a fire or explosion accident.
- 4. There were no survivors, no witnesses, and no definite indications that the boat was in motion at the time of the accident. (This group did not include: a boat found with the motor in gear and gas tank empty; or a boat found beached with apparent grounding damage and motor in gear, as these would be definite indications that the boat was in motion).

The one hundred and fifty-two (152) accidents remaining were broken down into the following categories:

ACCIDENT DESCRIPTION	YEAR OF 1975	ACCIDENT 1976	TOTAL NUMBER
l. Involving swimmer or skier	2	3	5
2. Hit boat or pier	26	46	72
3. Grounding		5	6
4. Hit tubmerged object	i 5	18	33
5. All other	16	20	<u>36</u>
TOTAL	60	92	152

This total was still too large a sample to be manipulated efficiently by hand. Therefore, those we were attempting to identify accident types, and not predict frequencies, we decided to sample the above categories again to reduce the file

down to a manageable number. Although sampling a sample is not normally a sound statistical procedure, we felt that the probable degradation would not be experienced in the accident-type analysis due to the fact that we would not filter and lose any accident type but would only be limiting the number of accidents in the large categories. The sampling plan for this step was as follows:

ACCIDENT DESCRIPTION	SAMPLE RATE	TOTAL REMAINING
l. Involving swimmer or skier	1 for 1	5
2. Hit boat or pier	1 for 3	24
3. Grounding	1 for 1	6
4. Hit submerged object	1 for 3	12
5. All other	1 for 1	<u>35</u>
TOTAL		82

After reading and reviewing the eighty-two (82) remaining accidents, they were again sorted into the following categories:

- Hit Submerged Object
- 2. Hit Other Boat or Object Did Not See Prior to Accident or Attempt to Avoid
- 3. Hit Other Boat or Object Attempted to Avoid
- 4. Accident Peculiar to Water Skiing
- 5. Falls Overboard
- 6. Swamping/Capsizing Hit Large Waves
- 7. Swamping/Capsizing During Maneuver
- 3. Swamping/Capsizing During Acceleration
- 3. Lost Control Prior to Swamping or Capsizing.

After discussing each accident category and the degree of powering involvement in the cause or possible future solution, the following list of accident categories versus degree of powering involvement was derived:

Jignificantly Powering Related

- i. Those accidents where the operator lost directional control of the vessel while it was underway and under power.
- 2. Those accidents where the boat did not respond to the helm as the operator intended while it was under power.

- 3. Those accidents where persons fell overboard or the boat capsized or swamped during a maneuver.
- 4. Those accidents where the boat capsized or swamped and indications exist that its seaworthiness had been degraded by the speed at which it was operating.
- 5. Those accidents where a sudden application of thrust initiated the accident.
- 6. Those accidents where the vessel's kinetic energy contributed significantly to the severity of the accident and <u>no</u> other viable regulatory approach appears to exist.

Tangentially Powering Related

- 1. Those accidents where kinetic energy was a factor but other viable regulatory approaches exist.
- 2. Those accidents involving a material or subsystem failure.
- 3. Those accidents where the operator was unable to detect an object, and a collision occurred, due to visibility problems involving the vessel's trim or heel angle.
- 4. Those accidents where the operator was impaired by powering-related stressors.

Not Powering Related

All other

Based on the foregoing, the following machine sort for the powering related accidents was derived:

```
RUN #1
```

Eliminate if:

Horsepower = zero

or Horsepower = unknown

or Operation at time = racing

or drifting

or drifting, fishing

or drifting, hunting

or drifting, diving or swimming

or drifting, fueling

```
at anchor
                         or
                              at anchor, fishing
                              at anchor, sunting
                         or
                              at anchor, diving or swimming
                              at anchor, fueling
                         or
                              tied to dock
                         or
                              tied to dock, fueling
                         or
                         or
                              unknown
        Type of accident = grounding
                         or fire/explosion (fuel)
                           fire/explosion (other)
      or Cause of accident = load related - hoisting or lowering anchor
                              miscellaneous - equipment failure (steering, throttle,
                              miscellaneous - starting in gear
                         or
                         or
                              unknown
      or Accident descriptors = boat found/body found, no witnesses
                         or improperly moored
                         or carbon monoxide poisoning
      or Cause ≈ failure to detect nazard - submerged object (logs, rocks,
                                                               swimmer, diver, etc.)
      and Property damage = less than $1000
      and Number of drownings = zero
      and Number of other victims = zero
      and Number of injuries = zero
KJħ ≖J
    List if:
         Horsepower = unknown
     or Operation at time = unknown
      or Cause of accident = unknown
Water
```

Ine above was checked against the 82 accidents in our file which we accepted as powering related and the coding as per the 1975 Boating Accident Report (BAR). Frintout. All of the cases we accepted "passed" the above sorting procedure. Manually checking the above criteria against eight random pages (25 cases per page) in the 1975 printout indicated a rejection rate of fifty-four (54%) percent could be expected from the above coding sort. That rejection rate is lower than should be possible for the following reasons:

list entire file by order of state and within state by month and day.

- 1. Accident descriptors are only coded 5% to 10% of the time. Rarely is more than one coded. It was our observation that two or more should be applicable to each accident. As this coding is unreliable, it could not be used for identifying acceptable cases.
- 2. Not all applicable cause codes are always coded and often the cause codes are not appropriately used relative to the series heading. As an example, improper lookout is often coded when the other boat was seen prior to the accident.

It should be noted, however, that of the thirty or so cases we checked, no "major" errors in coding were detected, which is a positive reflection on the coding staff.

After the machine sort criteria was derived, the decision tree shown in Figure 2-1 was derived for sorting the accidents into two groups, 1) powering related (accepts) and 2) not powering related or tangentially powering related (reject) files. The decision tree was tested by having someone unfamiliar with the tree and boating accidents code a number of accidents (15) and check them against our interpretation. 100% agreement was achieved. All 82 cases we accepted were checked against the decision tree, and only one disagreement with our earlier subjective evaluation was noted. The case was unique and the tree accepted it, whereas we rejected it.

Thus, from the above, it can be seen that identifying and defining powering related accidents is an interdependent process. By defining a powering related accident one identifies powering involvement. By identifying the powering involvement, one refines the powering definition. For a candidate accident to survive the iterative selection process, it must show powering involvement at each decision point. These decision points are refined as new events are discovered which demand expansion of the decision tree. Hence, the "small" group of accidents chosen to provide powering related selection criteria did so by providing the powering related definition and identification mechanisms. The definition, therefore, is a multi-event decision tree where an accident that survives the "tree" becomes "identified" as a powering related accident.

FIGURE 2-1. DESISION TREE FOR PUTENTIALLY POWERING RELATED ACCIDENTS.

2.1.2 Initial Accident Sample

Application of the machine sort on the 1975 accident file yielded 3600 accidents to be investigated by coders to determine if they were accepted or rejected by the decision tree. Each of the computer selected accidents was taken through the tree with 1200 of them being accepted as powering related accidents. Upon further analysis and consultation with USCG personnel, it was decided that the definition of a powering related accident needed further refinement; i.e., the sample needed to be reduced in size, particularly in the area of collisions and loading related accidents where the involvement of powering was tangential or secondary in nature.

The result of this further analysis reduced the number of "Accept" cases by 49%. (Those accidents that were originally "Accept" cases but are now "Rejects" are not statistically lost since they will be analyzed under projects in the safe loading and collision area). The decision tree was modified under this effort to that shown in Figure 2-2. The differences between this tree and the original tree are subtle. The first four decisions in the tree are not different. On the non-collision branch (node 13 and below), the change in Figure 2-2 was the addition of the top decision in that branch. This was inserted to reject those accidents where underpowering may have been a significant causal factor, and other accidents that were not related to overpowering. Note that accidents involving boats operating at less than half throttle can be included in the sample, but only if their horsepower per foot of boat length ratio is high. Thus, a small boat with a large engine, which could experience a powering problem at low throttle settings, is included in the sample; i.e., it can be accepted.

For the collision branch of the tree, several changes were made. The concept behind the decisions in the tree in Figure 2-2 was to include those accidents where: 1) the operator theoretically had a chance to avoid the collision (he detected the other boat, etc.), and 2) his speed (lack of time) precluded the execution of an effective avoidance maneuver. Cases where the operator lost control of the boat are still accepted. Cases where the object of the collision was not detected, or the operator did not respond in time because of alcohol or other stressors, or where the environment (waterway, etc.) precluded avoidance were collisions which the decision tree rejected. It should be noted that the decision tree allows for some engineering judgment in cases where the decisions can be surmised but are not directly known.

TIGURE 1-2. REVICES RULERING RELYTER AUTOENT RESIDIAN THEE

The remaining accident sample was then interrogated to determine the case enersiveness of the information available to the coders. A coding sheet was prepared and a trial sample of twenty (20) accidents was processed. Results from the sample indicated that additional information was needed on a few of the key variables in many cases and that a problem existed in the decision tree for nodes involving throttle settings and speed. It was also apparent that the decision tree should allow one to recognize a boat that was being operated at a low throttle setting but, due to the size of the engine, was actually being supplied more horsepower than the boat was able to accommodate safely.

Additional research into the problem of determining whether a boat was over powered according to the present standard formula was apparently hampered here because the coder could not determine a value for "Horsepower in Use" with a high degree of confidence.

Equation (1) was used to obtain the critical throttle setting to exceed the value of one-half the rated horsepower of a given engine (see References 5 and 6).

$$horsepower = K \cdot (rpm)^2 \cdot \epsilon \tag{1}$$

This relationship has been shown to be close to empirical data and allows borderline cases to be processed fuether in the powering related accident decision tree since it credits the operator with using slightly more horsepower than empirical data indicate.

Equation (2) was used to calculate nonsepower in use if speed and weight are known (see Reference 7).

Speed =
$$\frac{160}{\sqrt{\text{Weight/Horsepower In Use}}}$$
 (2)

The relationship of horsepower to throttle setting is shown in Equation (3).

$$u = (1 \text{ Throttle})^{2.5}$$
 (3)

tailed discussion of the derivation of equations and the impact to the present dard evaluation is presented in Appendix A, "The Powering Related Model," whe II. Conversations with members of the Boating Industry Association and the i, review of boat manufacturers' literature, and water tests conducted by Wyle connel led to derivation of the formula for computing horsepower in use for a smengine and throttle setting. This formula was programmed into a calculator the was available to the coders. The analyst could then input rated horsepower mounted horsepower into the calculator and obtain a throttle setting needed to seed one-half of the rated horsepower. The calculator was also programmed to play the horsepower in use and a throttle setting required to produce it on a smengine if the speed of the boat and weight of the boat, motor, and gear are vn. It was found that in most cases, there was enough information about the titual variables in these equations to calculate the desired variables. This insique filled in informative data for variables that the casual observer would allude was unknown or unavailable.

the resolution of problems concerning critical variables, 600 accidents were sined for further processing after processing through the revised decision a shown in Figure 2-2.

2.7.3 Final Powering Pelated Accident Definition

From the preliminary analysis of the 600 accidents, further refinement of the pring Related Secision tree, and therefore, the "Definition," occurred. This secient was neevicusly predicted because of the iterative nature of deciving of two based on expanding applications. The final definition is snown in we 3-1, where an accident is defined as a powering related accident if the secret table but at any of the accept nodes. As one progresses through the transfer, the complexity of the definition and the detailed thought process with a realized in deciding if the accident is accepted at any node becomes and the related the definition is so complex, it is difficult to select any and that the describe a "typical" accident that would be accepted at each that would be selected at each node.

Flacke 2-3. FINAL POWERING RELATED ACCIDENT DESIRION TREE

Helated Accident Scenario Node S

A notineboat was proceeding at a fast rate of speed. While attempting to pass a poat which it was eventaking it hit the wake of the other boat, causing the liventaking poat to go out of control and strike the boat that was being over-taken.

ne sted A cident Scenario Node of

Accest enters a marina area at 3/4 throttle. While proceeding past several society coats, the operator notices one vessel backing out of its dock, directly several se

Person Accordent Scenario Node 12*

The state of speed. As it rounded to the court of the state of speed. As it rounded the state of the court of the court of the state of

es, a co Aucadent Scenario Node 14

The contracting at full power pulling skier. Observer sitting on top to get racing rear of poet varioting skier. Skier falls down, operator to be reported netween to skier and observer falls overcoard, in hit by the contraction and growns on it injured.

1. The proceeding at full power bulling skien. Skiph halis and be the property so hetgen to pick up the skien. In property the boat ships of page the down-size hall ma capsizes. One on bone judgeshis drowns to research.

profit genance in a pro-

egano — jokostowno poly otanone koepade pod bost bost bendtons on Longo vojskom nama ja overtone dva powernou stancom.

TABLE 2-L. (concluded)

	NO. OF ACCIDENTS	REL. PCT.
· 5	7	1.5
-ania	7	1.5
· • ·	7	1.5
	6	1.3
្រុម្មីរីដី /	6	1.3
1	6	1.3
٦d	5	1.1
	5	1.1
1	5	1.1
· · · · · · · · · · · · · · · · · · ·	Ċ	1.1
:	4	0.9
1	4	0.9
· · · · · · · · · · · · · · · · · · ·	;	0.9
	3	U.5
	3	0.6
1	2	0.4
	2	0.4
erse de seguina de la companya della companya della companya de la companya della	£	0.4
	i	0.2
	1	5.2
)	2.3
	:	
	i	
	1	

2.3.1 Raw Face ency Distributions

th of the information presented on the following pages was used to evaluate the rative effectiveness and benefits of powering regulation concepts. This is esented below to show the type of raw data contained within the model. Unique d/or interesting frequencies in the raw data are singled out. Comparisons with e data from non-powering accidents is presented in Sections 3.0 and 4.0.

TABLE 2-2. STATES BY ORDER OF FREQUENCY OF BOATS IN POWERING RELATED ACCIDENTS

STATE	NUMBER OF BOATS	REL. PCT.
alifornia	62	13.2
lorida	37	7.9
ew York	32	6.8
labama	20	4.3
ichigan	20	4.3
ew Jersey	20	4.3
orth Carolina	13	3.8
exas	18	3.8
issouri	17	3.6
outh Carolina	16	3.4
liinois	14	3.0
entucky	24	3.0
onnecticut (13	2.3
eorgiu	10	2.6
regon	. 2	2.6
rizona	10	2.1
ennessee	10	2.1
ipaesci.	٩	1.9
15511 - 1501	<u>o</u>	1.9
nı.	3	1.9
ndiana		1.7

2.3 Accident Mechanism Identification and Scenario Development

previous sections the sample of powering related accidents to be analyzed dentified and defined, and the analysis tool (PRAM) was discussed. This a was coded and the results of that coding are presented herein, with additional analyses. The PRAM data are compatible with SPSS sorting routines and stical packages. Additional analytical subroutines have been written to lake powering ratios and other statistics from the coded PRAM data.

atios that have been used in some of these analyses are: 1) mounted horseover rated horsepower (a ratio greater than one for a boat signifies nonnance with the current standard); 2) mounted horsepower over boat length (hp
t), and, 3) mounted horsepower over total weight (boat + gear + people).
natios reflect measures of compliance with the current standard (ratio 1) and
the measures to be used in alternative powering regulation concepts (ratios 2
). These three power ratios were selected through consultation with Coast
wersennel because of their relevance to the evaluation of the current stantheir potential for the development of new standards and the availability of
meaded information in the data base.

inted nonsepower. A boat that was rated for a 100 hp engine and had a 120 hp engunted on it would have a power ratio number 1 of 1.2. To compute power is, the mounted horsepower is divided by the boat length to the whole foot, the mounted horsepower is divided by the boat length to the whole foot, the mounted horsepower is divided by the boat would generate a consider. Thus, a 120 hp engine on a 15 ft 9 in. boat would generate a consider number 2 of 8.0. The third power ratio is computed by dividing the three constants by the sum of the boat weight, the weight of gear on board, and the people on board. For example, a 120 hp engine mounted on a 850 and the constants of 0.08.

events much of the PRAM data as frequencies for the various codes.

In this, and forms the Powering Related Accident Data Base. The next

Interests more detailed results and discussions of the meanings of

Interests to abolitions. The detailed scenario development and accident mechanisms to attend as culminated later, in Section 2.3.3.

TABLE 2-1. PRAM U TA BY NODE OF ACCEPTANCE

	ERING RELATED ACCEPTANCE DE (BRIEF DESCRIPTION)	NO. OF BCATS	NO. OF RECOVERIES*	NO. OF FATALITIES
5	(lost control)	103	286	3
8	<pre>(no attempt to avoid collision)</pre>	32	88	12
12	<pre>(not enough time to avoid collision)</pre>	52	173	12
14	(fall overboard or capsizing during turn)	72	145	59
15	(sudden application of power)	31	51	22
16	(loss of directional control)	36	72	15
17	(wave over bow)	4.7	123	34
18	(fall overboard due to wave)	52	135	22
19	(capsizing)	44	102	21
the	alities on other boats in selactidents which were not epied in the desision tree			4
	т. , н <u>.</u>	469	1175	204

to form interesting the pelow the true figures because of unknowns are more included and because some entries expedded coding limitations. [1.8], for some boats the code ("9"#8 or more' was used].

ch boat that had a powering related problem was coded in PRAM. In other moders, ch as ARM for example, each victim is coded. Since boats are coded in PRAM, ere may be one boat coded for each accident in the sample, or more than one if e accident involved more than one boat with powering problems. If only one boat a multiple boat accident had a powering problem (according to the powering lated accident decision tree), then that was the only boat that was coded.

e PRAM sample contains 383 boats from accidents in 1975 and 86 boats from fatal cidents in 1976. There are a total of 469 boats coded in PRAM from 450 accidents wo boats were coded from 18 accidents, and three boats were coded from 1 accident).

The probability of recovery at nodes 14 and 15 is lower (0.71 and 0.70, aspectively) than at other nodes. These probabilities are not absolute, since two ears of fatality data are included in PRAM and only one year of recovery data. However, the relative differences indicate the nodes where significant numbers of fatalities are occurring. The probabilities are not absolute, since two ears of fatalities differences indicate the nodes where significant numbers of fatalities are occurring. The fact that at least 31 boats were accepted at each node and not recoveries and fatalities occurred at each node, indicates that the decision ree generates a sample that has data for each kind of powering accident. Each kind of powering accident occurs in the sample with some regularity.

2.2.5 Summary of EPAM

he Powering Related Accident Model was developed to organize and summarize data on the accidents that are powering related. The model can provide scenarios of ommon powering accidents and identify the dominant mechanisms of these accidents. RAM also provides statistics and probabilities on factors relevant to the estimation of potential benefits attributable to alternative powering regulation concepts, ad data to enable the evaluation of engineering solutions to the powering problem.

Il powering accidents in 1975 were included in the PRAM sample, along with all stal powering accidents from 1976. In total, this represents 450 accidents involving 469 boats and 204 fatalities. The large number of accidents and fatalities indicates that powering accidents are a significant problem.

The next five coded variables contain most of the severity information for the accident. Property damage, injuries, and fatalities for the other vessel, if any (fatalities for this vessel were coded earlier) are coded.

Finally, event trees and other detailed information were coded for accidents according to their nodes of acceptance. These variables were created to provide a means of coding the detailed information that is often available in fatal accident reports, and sometimes present in non-fatal accident reports. The sequences of interrelated events in powering accidents are particularly important, and this information is captured in the event trees and other variables that are specific to each node of acceptance. The trees were developed to enable engineering solutions to powering problems by providing data of a detailed nature concerning accident causes.

Solutions (in the form of proposed standards) which break sequences of events in common powering accidents, or break variable interrelationships, may be tested in future research. Their effectiveness can be estimated from the PRAM data. By building this part of the model around the node of acceptance, the key information that was used to decide if the accident should be in the powering related sample is coded.

2.2.4 Final Accident Sample

Wyle proposed to sample at least two to three hundred accidents for PRAM. Originally, it was thought that two years worth of data would have to be screened in order to obtain a sample of powering related accidents of two to three hundred. When the accidents from 1975 were screened initially, approximately 1200 were found to be possible PRAM candidates. Later, revisions in the powering related accident decision tree resulted in reducing this number by about 800 or more accidents. At that point, the Coast Guard and Wyle had a meeting to decide what additional accidents, if any, should be sampled. It was decided that the fatal accidents from 1976 should be sampled to provide more of the detailed information needed for the sequential event trees, and to provide more "known" data points throughout the model, since more data is typically reported in fatal cases. It was felt that the non-fatal data already sampled from 1975 would be sufficient to show differences between fatal and non-fatal powering accidents, if any.

Thus, the PRAM sample includes all powering related accidents from 1975 and all fatal powering related accidents from 1976. These accidents were selected from Coast Guard accident report files using the powering related accident decision tree described earlier.

~					
Sur inan					
wasca now said		1 1 1 1		1 1 1 1	
The Children					
Paces on 23 and 10 and				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					
105: 1012 21		_			
36000	 	+			
145:31 5141 20 30:00 10 10 10 10 10 10 10 10 10 10 10 10 1					
Piece of Sapient				1 1 1	+ +
101604 10 1601911 16019191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 1601919 160191 160191 160191 160191 160191 160191 160191 160191 1601919 160191 160191 160191 160191 160191 160191 160191 160191 1601919 160191 160191 160191 160191 160191 160191 160191 160191 16019191 160191 160191 160191 160191 160191 160191 16019191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160191 160		+ + + + + +			
340131	1 -				
JUDI ON JOJOH JOHNA			-		
11.190/p) /8:0. 53129		-			-
11 Den Paley		- - - - - - - - - - - - - -		 	
		-			
11. Jede J. 16.4 Esten					
Stades Auto		+ + + + + + + + + + + + + + + + + + + +			
This is					
Solver State		7-1-1-1-1		! ! ! ! ! !	
3446	1 4 1 1		1 1 1 1	1 4 4 4 4	
1000			-		4 4 4 4 4
	 	+		 	
THE STATE OF THE S					
Mile Service Miles	} 	+			
1.00	1-1-1-	4-4-4-4		• • • • •	
WAY TO THE TOTAL				. !	
	} - 	+-+-+			
	<u> </u>			• • • • • • • • • • • • • • • • • • •	
The same of the sa		4 4 4 4		न मंगल ल	
The state of the s				1 1 1 1	
Control of the state of the sta		4 4 4 4		į į į į į	1 1 -
The Market Market	}	+			
				+	
Fine Asset				 	
100 (00) (00) (00) (00) (00) (00) (00) (4 4 1 7 7	-		
12.00					
37, 679	 - - -				
2000	 	+			
900					
1					4
	 			+	
1.10	 	+ + + + + + + + + + + + + + + + + + + +	}	 	
1,000	1	• • • •		1 : 1 :	
					
				1 ! ! ! !	
		<u> </u>		1 1 1 1 1	

FIGURE 2-5 PRAM CODING UNCET

in Figure 2-5 and instructions are presented in Volume 11 of the PRAM technical brief (Appendix A). In this section, the types of data to be collected and the coding form will be discussed in general, and a few variables which caused special problems will be presented.

Several bookkeeping variables are included in PRAM and grouped in the first set of columns on the coding sheet. The "boat number" and Foded by variables are included so that accidents could be identified later, and analysts could be consulted, when needed, during the verification process. The state, month, year, and time of the accident are other bookkeeping variables in the same vicinity on the coding sheet, along with the accident type.

Boat variables are then coded in successive columns, including boat type, length, width, hull shape, year of manufacture, and type of power. The speed at the time of the accident, motorwell information, and type of steering controls are coded next. The following four columns are for the relevant information about the motor (manufacturer, horsepower, weight, and maximum rpm). When speed was not stated in the accident report, but the throttle setting and total system weight are known, a program on Wyle's HP-97 was written for the analyst to use in computing the boat's approximate speed (for planing hull craft). It was felt that such an estimate would be preferrable to coding "unknown for speed.

The next several variables to be entered on the coding sheet ("course" through "operator skill/experience") provide some information concerning the particular accident. "Course" and "Powering Behavior" are decision tree variables which indicate intentional and unintentional control activations involving steering and the throttle. Most of the other variables to be entered in this group (water conditions, visibility, etc.) are coded directly as stated on the accident report. The "Node of Acceptance" refers to the nede where the accident was accepted into the PRAM sample in the powering related accident decision tree.

The rated capacities of the coded boat are recorded in the next several columns. Several of these are calculated from other known data using Coast Guard standards and formulas. The weight of gear on board and number of engines in use are coded in order to provide more information concerning overloading and the evaluation of powering regulation alternatives.

orient hegyet by a semitien to consider apparching errors and coding errors. The codes were then recycled for keypunant , the corrections independent, for each of the two coders. The process iterated until two complete duplicate decks of correctivecaged data were obtained. The only way that a keypunching or coding error could survive this verification process undetected would be if the exact mistake where hade twice independently on the same variable. Such an occurrence is a remote . Districtive Even then, approximately fifteen percent of all of the coded accidents intimast ten percent of each group of 50) were liverified code by code by the project leaders (R. white, C. Stiehl, and N. Whatley). When errors in coding or increasing taction were discovered, these were reviewed with all analysts by the project leaders. In the coding of the powering related accidents, the initial disagreement mite (the percentage of disagreements, column by column, in the comparison of the two keypunded decks of coded data) was approximately 10 percent of the columns. Incompare includes keypunching errors, and some variables cover more than one arbann. Thus, the true disagreements between analysts were on the order of 5%. the mich that it agreement (95%) between independent coders using PRAM gives a in a part of that the model does a very good job of capturing the important of matrix of the accidents in a clear manner. Indeed, most of the disagreements true did to the involved cases where one coder was willing to assume a little more or a laracter of theoret an accordent, and roded a value for a variable while the second 1 control "unknown." All of the analysts were questioned as to whether they had from the Auctidents which were not adequately handled by the model; i.e., accidents where the mader had no provision for coding the main thrust or problem in the acci-Destruction and late indicated that there may have been one or two, but that these that in eachiet known. For this problem, boat length, people on board, and 1) In the Le used in an analysis program to determine overloading.

I is the creat real period face validity through the close relationship of the composition of the composition of the quality assurance procedures property as a composition of the compo

. . . The tist out of mailming Form

en transfer in the second of t

FIGURE 2-4. PRAM QUALITY ASSURANCE PROCEDURES

cenetits attributable to alternative powering regulation concepts, as well as to evaluate the effectiveness and need for the present standard. Further details on some of these issues have been developed in Appendix A, particularly in Volume I.

2.2.2 Validation of the Model

The preliminary validation of the model was accomplished through the processing of purposes through PRAM. These scenarios were developed to describe accidents properties of through different acceptance nodes of the powering related accident decision tree (see Section 2.1.3).

Prior to the writing of Volume I of the PRAM technical brief (see Appendix A), 20 mon-fatal accidents were processed through PRAM. The processing of these accidents led to some modifications in the coding instructions for PRAM and the adaptation of a text variables to more adequately reflect the accident data.

Accidents which had been accepted into the PRAM sample were reviewed. Event trees and other detailed accident variables were developed for nodes of acceptance in the powering related accident decision tree which accepted ten or more fatal accidents. As least ten accidents were needed at a node in order to generate enough data to warrent the construction of these variables. These variables were constructed in order to capture as much of the detailed sequential information concerning events in the accident as possible.

In each can be the validity checks described above, a PRAM coding validation protime as described. In any effort of this kind, the model is only as good as the each poly is a 3 procedures developed for the data input validation, and use of the PRAM, the model was developed inrough considerable review of pretice and identification with Coast Guard and other expents. HAPPS to the data in the development stages adds to its external validaty. The real eras for detail and accuracy in defining powering accidents and selecttically in the stage the accident sample also increase the validaty of the data of the last and procedures, the

The PM (1) is also resonance procedurer are discremed in Figure 0-4. Each accident was the received to ensure by my two small/sto. The independent codings were keybunched and was area to example, column by column for discrepancies. The discrepancies were

After PRAM was developed, through reviewing previous modeling efforts. In coming accident data, and consulting with coast Guard personnel, it was present in a two volume technical brief - reproduced in Appendix A. In order to capture some of the sequential dependencies in the events relating to powering accidents, event trees were developed for each type of accident that was accepted into the PRAM sample. Thus, PRAM has many of the good features of a matrix model (flexibility, completeness) and some of the benefits of a tree model (sequential dependencies, interrelationships). Some of PRAM's specifics are denoted in the following paragraphs.

The model codes information by boat. Other models code information by victim (the Accident Recovery Model (ARM), and the Flotation Effectiveness Model (FEM)). Only vessels with significant powering problems were coded in PRAM in Task II. The model is organized so that bookkeeping data are grouped in the first set of columns (month, year, time, accident type, etc.). Boat data concerning the particular boat to be coded are grouped in the next columns (boat type, boat length, etc.). Following the boat data, accident data are coded (course, powering behavior, activity, etc.). Capacity information is then coded (rated horsepower, rated POB capacity, etc.), followed by damage and injury information (damage to vessel, injuries -this vessel, etc.). Finally, event trees and special variables are coded. These variables and event trees are specific to the node of acceptance on the powering related accident decision tree for this boat.

FRAM has been designed to make use of prediction and assessment methodologies developed to ARM and other models. Portions of these existing programs and analysis techniques can be applied directly to PRAM. Additional analyses were designed desired as a for PRAM, which uses routines in Statistical Programs for Social Sciences (SFSE). These analytical techniques were developed primarily for the evaluation of cowering resultation alternatives and benefit estimations using accident severity variables.

In summary, PRAM has been developed using accident data, Wyle expertise developed from provious data analysis efforts, and consultations with the Coast Guard. The model has been designed to perform three functions: 1) to summarize/organize powering related accident data and provide scenarios of common powering related accidents, 2) to identify the dominant mechanisms of these accidents, and 3) to provide statistics and probabilities on all relevant factors and combinations of factors in these accidents. The model was used to facilitate the estimation of

tained a great deal more information for variables to be coded for the model than and non-fatal accidents. We therefore sorted through the 1976 file for powering related accidents involving fatalities. The result was the selection of 86 of these cases to be coded in PRAM. The selection of these yielded a total sample of 450 powering related accidents involving 469 boats (or cases) and 204 fatalities the codel for both years.

Since the definition of a powering related accident and the decision tree are prevent or reduce the sevenity of these accidents.

3.3 Reselopment and Validation of Powering Related Accident Model

In the previous section, the method for selecting powering related accidents was described. This section describes the development and validation of the powering related accident model (PRAM). This model was developed in order to categorize and summarize the accident data. PRAM provides frequency data and other information which can be used to identify prevalent powering related accident mechanisms and event continuations.

2.2.1 The PRAM

Figure 1 decided to procedure outlined previously generated a file of accidents to a silved with respect to powering problems. This file was used, along with the limiting and data analysis expertise, to formulate PRAM. The scenarios was accounted acceptance modes of the powering related model decision tree were likely and that the model could accept the relevant information for them.

For the standard which is very similar to other analysis models developed for the structure; visible. It has many variables, allowing for the coding of all relections of the coding of other known data in the structure at a matrix-like model. In models composed of one or a few large of the coding of the model. In models composed of one or a few large of the coding of the decision at a high node in a tree, the may introducing the coding of information that is known lower in the tree.

The models composed in PRAM. (For further discussion of the differences in these times of a sea Reference 3.)

Power Related Accident Scenario Noca 16*

- A. Operator is proceeding at high speed across a lake. He hits a wave and loses control of the boat, which goes into "dynamic instability" and capsizes. One occupant drowns either due to "sudden drowning," being a nonswimmer, or being hit on the head during the capsize.
- B. Operator is proceeding up narrow waterway at high speed. Rounds a bend and finds boat in path. In attempting to avoid other boat, loses control and capsizes. One occupant drowns or extensive property damage occurs.

Power Related Accident Scenario Node 17

Boat proceeding at high speed encounters large wave which enters over the bow and swamps the boat. One or more occupants drown prior to rescue.

Power Related Accident Scenario Node 18

Boat proceeding at high speed encounters a wave or wake which causes one or more of its occupants to fall overboard or fall within the boat. One or more occupants drown prior to rescue, or is severely injured by the fall within the boat.

Power Related Accident Scenario Node 19

A boat proceeding at high speed encounters a wave or wake which causes the boat to capsize. One or more occupants drown prior to rescue.

2.1.4 Final Accident Sample

After all of the refinements to the decision tree were made, all of the 1200 accidents selected by the machine sort from the 1975 file were reprocessed through the tree. The result was a selection of 383 powering related cases to be processed through the Powering Related Accident Model. It should be noted that each "case" represents a single boat, and that in some multiple-boat accidents, more than one boat experienced powering related problems. Thus, the total number of powering related cases is greater than the actual number of accidents. It was felt that additional cases could be relacted from the 1976 accident file to provide a proader coverage of boater exposure without grossly affecting the total sample size.

^{*} Mote: The scenarios do not encompass the recklessness of boat operators or passengers, which would be hard to overcome by a powering standard.

TABLE 2-3. MONTHS BY ORDER OF FREQUENCY OF BOATS INVOLVED IN POWERING RELATED ACCIDENTS

MONTH	NUMBER OF BOATS	REL. PERCENTAGE
August	94	20
June	81	17.3
July	76	16.2
May	75	16.0
September	34	7.2
April	32	6.8
March	20	4.3
October	18	3.8
February	12	2.6
January	10	2.1
Movember	3	1.7
Jecember	8	1.7
Utknown	1	r.2

the solution of the accidents occur during the five heaviest exposure norths. The propagative is directly proportional to exposure, since 75 of all accidents carried for according to five months.

TABLE 2-4. BOATS INVOLVED IN POWERING RELATED ACCIDENTS BY TIME OF DAY

TIME OF DAY	NUMBER OF BOATS	REL. PERCENTAGE
1600	53	11.3
1730	47	10.0
į ibūd	43	9.2
[[406	41	S.7
1000	47	8.7
1970	32	6.8
1300	31	6.6
1200	31	6.6
2000	28	6.0
1 2200	15	3.2 3.0 3.0
2.53	14	3.6
190 Telescope (1900)	1 - 1 4+	3.0
4.1	;2	2.6
377.48	12	2.6
	12	2.6
V = V + V	10	2.1
• • •	3	1.7
いたい に	5	1.1
	4	0.9
		0.6
en e	3	2.6
	j	0.6 0.0
	j j	0.0
	.9	6.0 2.1
Control of the		2.1

THE LONG TIME OF THEIR DE ACCIDENTS BY TIME OF DAY

TABLE 2-5. ONDER OF BOATS INVOLVED IN POWERING RELATED ACCIDENTS BY ACCIDENT TYPE

ACCIDENT TYPE	NO. OF BOATS	REL. PERCENTAGE
Collision/Grounding	180	38.4
Falls Overboard/Within the Boat	147	31.3
Swamping/Capsizing/Flooding/Sinking	128	27.3
Struck by Propeller	13	2.8
Other	1	0.2

TABLE 2-6. FREQUENCY OF BOATS INVOLVED IN POWERING RELATED ACCIDENTS AND ALL ACCIDENTS* BY TYPE OF BOAT

BOAT TYPE	NO. OF BOATS IN ALL ACCIDENTS*	RELATIVE PERCENTAGE**	NO. BOATS IN P-R ACCIDENTS	RELATIVE PERCENTAGE
Open Motorboat	903	62.7	298	63.5
Carin Motorboat	1717	21.9	49	10.4
migh Performance)	15	3.2
Auxilianv Sail	793	10.1	2	0.4
nousetoat	101	1.3	2	0.4
incerna ak Dowerna		,	7	0.2
· · r _{itin}	510	4.0	5	1.1
orne			Ĉŧ.	18.3
. 15 1.			? ?	2.3

 ^{1,5. 467} for 1976.

^{**} Procentage based only on those boat types listed.

TABLE 2-7. COMPARISON OF NUMBER OF BOATS IN ALL ACCIDENTS*
AND IN POWERING RELATED ACCIDENTS BY BOAT LENGTH CATEGORIES

BUAT LENGTH DATEGORY	NO. OF BOATS IN ALL ACCIDENTS*	RELATIVE PERCENTAGE**	NO. BOATS IN P-R ACCIDENTS	RELATIVE PERCENTAGE
Less than 16 ft	2053	22.9	201	
16 / 25 ft	4549	50.8	227	
25 - 10 ft	1309	14.6	11	
40 An ft	361	4.0		
pp. toet	30	0.3		
ar x ? · · · · · ·	652	7.3	5	1.1

ver 33 of the boats having powering related accidents were boat lengths regulated in the unrest standard.

TABLE 1-0. FREQUENCY OF BOATS IN POWERING RELATED ACCIDENTS BY BOAT WIDTH

SUAL W.STH SEETy	NO. OF BOATS	REL. PERCENTAGE
5	97	20.7
<u>, </u>	74	15.8
	63	13.4
	59	12.6
4.	40	8.5
7 to 3	13	2.8
reaton than 10	12	2.6
•	9	1.9
· w'	102	21.7

THE PROPERTY OF BOATS IN POWERING RELATED ACCIDENTS BY HULL SHAPE

· AN	NUMBER OF BOATS	REL. PERCENTAGE
	39	გ. ა
Note:	78	6.0
Service Cathelinas	17	3.6
$(C_{i})^{-1}$	<u> </u>	1.7
g the set	\$	0.6
Round Botton	1	0.2
	373	79.5

· Land of the same

^{•• ()} we man half the elegantes wed in the table.

Unknowns for this variable are quite high due to lack of manufacturer's information on earlier model boats, and lack of model specification on BARs.

TABLE 2-10. FREQUENCY OF BOATS IN POWERING ACCIDENTS BY YEAR OF MANUFACTURE

YEAR OF MANUFACTURE	NUMBER OF BOATS	REL. PERCENTAGE
1974 1972 1973 1975	53 52 44 39 30	11.3 11.1 9.4 8.3 6.4
1968 1970 1969 1976 Prior to 1968 Unknown	23 19 18 11 98 82	4.9 4.1 3.8 2.3 20.9

At least 42.45 of the boats involved in powering related accidents were built after the effective date of the present standard (the addition of some of the unknowns would increase this figure).

TABLE 2-11. FREQUENCY OF BOATS IN POWERING ACCIDENTS BY TYPE OF POWER

TYPE OF POWER	NO. OF BOATS	RELATIVE	NO. BOATS IN	RELATIVE
	IN ALL ACCIDENTS*	PERCENTAGE**	P-R ACCIDENTS	PERCENTAGE
Jutboard	3955	50.8	323	68.9
170	1299	16.7	70	14.9
Inboard	2405	30.9	61	13.0
Other	129	1.7	15	3.2

Nearly 70 of the boats in powering related accidents were outboards, the type of boats covered by the regulation, whereas only 50.8% of the boats in all accidents were outboards. The percentage of inboard boats in powering related accidents appears to be considerably less than the percentage in all accidents.

^{5 5.3-35} for 1976.

^{**} Basel upon only those categories used in the table.

TABLE 2-12. FREQUENCY OF BOATS IN POWERING ACCIDENTS 34 Deciden

SPEED (MPH)	NUMBER OF BOATS	REL. PERCENTAGE
0-16	51	10.9
21-30	40	8.5
11-20	22	4.7
31 - 40	13	2.0
41-50	6	1.3
Unk., but Increasing	16	3.4
nk but Decreasing	15	3.2
OF NOWE	306	65.2

of those loads where the speed was known, hearly 70% were traveling at speeds openably thought to be safe for most water craft.

TABLE 2-13. FREQUENCY OF BOATS IN POWERING ACCIDENTS BY TYPE OF STEERING CONTROLS

ALCEING COMIROLS	NUMBER OF BOATS	REL. PERCENTAGE
Relate Steering	353	75.3
green iled from Eng.	96	20.5
in the contract	20	4.3

The of the accidents in the data base there is indication that the operator to the accident; however, he the cases were the indication that he did attempt to change course, there is also be accident that he did not lose control of the boat in making his corrections at those cases.

The acceptance of the sample, the ancident did not occur during an intentional of the page, and for approximately 20 of the cases, it was not known if the continuous stempted to change course. Even half of the operators who did attempt to make lowers in these accidents did not lose control of their boats. Loss of extra glann, an intentional course change accounted for about 22% of the data, to the causes of loss of control being the operator being displaced to one option, tation while executing the paneuver, or waves and wakes, etc.

2.3.2 Analytical Results

Section 2.3.1 presented the basic results of the coding of the PRAM sample, one variable at a time. In this section, the discussion will concentrate on those variables and variable combinations that provide significant input to the identification of powering accident mechanisms, the development of powering accident scenarios, and the evaluation of powering regulation concepts.

The powering related accidents and the accidents reported in CG-357 are broken down by geographic region in Figure 2-7. The regions are comprised of the states shown below:

Region 1	Region 2	Region 3	Region 4
Washington	North Dakota	Maine	Texas
Oregon	South Dakota	New Hampshire	Arkansas
California	Nebraska	Vermont	Louisiana
Idaho	Kansas	Massachusetts	Tennessee
Nevada	Minnesota	Connecticut	Mississippi
Arizona	Iowa	Rhode Island	Alabama
Montana	Missouri	New York	North Carolina
Wyoming	Wisconsin	Pennsylvania	South Carolina
Utah	Illinois	New Jersey	Georgia
Colorado	Indiana	Delaware	Florida
New Mexico	Michigan	Maryland	
Alaska	Ohio	West Virginia	
Hawaii		Virginia	
		Kentucky	
		Washington, DC	

The powering problem has a regional character. In the categorization of the PRAM data by states, Alabama, North Carolina, and South Carolina (all southeastern states) ranked fourth, seventh, and tenth in powering accident, respectively. The same states ranked fourteenth, tenth, and twentieth in overall boating accidents according to CG-357 data for 1976. Meanwhile, Washington and Maryland, which were both in the ten states with the most accidents in 1976 (eighth and ninth, respectively), tied for twenty-eighth in the rankings for powering

1. ALL ACCIDENTS FROM CG-357 (1975) BY GEOGRAPHIC REGION

B. POLEKING ACCIDENTS (FROM PRAM DATA BASE) BY REGGRAPHIC REGION

FIGURE 1-11 GEOGRAPHIC BREAKDOWNS

accidents. The tendency for southeastern states to have more powering tents can be shown by the data in the two maps of Figure 2-7. The southeastern states represent approximately one-third of the powering accidents. Meanwhile, the north central region represents less than one-fifth of the powering problem.

This variable was singled out to be used early in this section merely to indicate the complicated nature of modeling, regulating, and predicting the powering problem. Based on these data (state) one could predict, just from knowing that an accident occurred in the southeast as opposed to the north central area, that it was nearly twice as likely that it was a powering accident. And yet, it is difficult to conceive of incorporating region of the country into a powering standard.

Accident Mechanism Variables

The next section will describe accident mechanisms and scenarios in detail for each PRAM accept node. In this subsection, general variables relating to powering accident mechanisms will be presented.

As snown in Section 2.3.1, there are three basic accident types in the PRAM sample. Collisions, capsizings/swampings (including floodings and sinkings), and falls within the boat or overboard count for 455 of the 469 boats in the PRAM sample (97%). Thus, the mechanisms for these accident types, identified in the safe loading projects, collision projects, and in-depth collision and capsizing/swamping investigations, are applicable to powering. However, the powering accident mechanisms and scenarios represent special subgroups within each of these accident types.

Speed was unknown in 306 (65%) of the cases; therefore, nothing can be stated with confidence about its role in these accidents. This large number of unknowns occurred despite the fact that speed was estimated when throttle setting and total weight were known.

For 401 cases (86% of the total) the operator did not change throttle setting or this information was unknown. For those who did change throttle setting, 44 increased power and 23 decreased power (one unknown as to increase or decrease).

water conditions could have been a factor for about half of the accidence lm - 50%), with 38% of the boats in choppy or rough conditions, and 12% in y rough conditions or a swift current. For the cases reported in CG-357 re water conditions were known (1976 data, carlier data not available), were in calm water, 36% were in choppy or rough conditions, and 8% were strong currents. The wind was strong or at a storm level in only 50 (11%) the cases, and was calm, light, or moderate otherwise. For the known cases onted in CG-357 (1976), 13% were in strong or storm level winds, with the mainder in calm, light, or moderate winds.

reported above, indicate that a variety of accident mechanisms have to be sombed in order to account for all powering accident scenarios. The data conted in the preceding paragraphs show that it is not true that a few values a few variables will describe the conditions that are dominant in powering contents. More detailed accident data are presented for each accept node in a next section, and commonalities (sources for potential accident prevention against and standards) are called out there, when possible.

verity/Effectiveness Variables

e fact that 204 fatalities are included in the PRAM sample and over 1000 victims, disates the magnitude of the powering problem. Several variables were included TAM morgan to indicate the cost of these accidents in damage, injuries, and were included in order to allow the evaluation of regularly concepts, including the present standard.

Equation of location each of the powering natios identified previously were obtained a arc shown on succeeding pages. Figure 2-8 shows the number of boats at each applications for mounted horsepower divided by nated horsepower (the latter is described by the formula in the powering standard). For the purposes of the latter and all abouts were used, including those that were built before 1972. Some the alder boats were in compliance with the regulation before it was adopted. A covering standard, if effective, should prevent many powering accidents, if an reduce the severity of them when they do occur. Figure 2-8 shows that a react in the PRAM sample were in compliance with the powering standard and

FIGURE 2-8. FREQUENCY PLOT FOR MOUNTED HP/RATED HP FOR BOATS IN PRAM

owering accidents anyway. If the standard were very effective, then cary of accidents would have been prevented. While these data cannot stand alone, are suggestive of the fact that many powering accidents are not prevented, by compliance with the current standard.

will-independs the same data for boats built prior to 1972 and after 1972, separately. The curves are nearly identical. The current powering standard out after the distribution of powering ratios for boats involved in those tents. As shown in the figure, the mean for power ratio number one (mounted apower: rated norsepower) was the same for pre-regulation and post-regulation. This mean (0.85) makes sense intuitively, since many boaters may buy an interest sust slightly less horsepower than the boat is rated for, rather by the greater than the rating. These data can be broken down still further distribution of power ratio number one is tabled only for outboards with a length (i.e., only for those to whom the standard applies) the data able the result. A chi-square test* shows no significant relationship between of poats and power ratio ($\chi^2=1.66$, four degrees of freedom, p.0.75). This lates no length in the distribution of power ratios after the regulation was ed for the boats involved in powering accidents.

number of this square tests are used in this report. The purpose of this tooter to the fixed describe the tests that were performed, and some of the properant to some tests. When one wishes to determine the significance of differences were too the more groups, a chi-square test may be used. The hull hypothesis as that these are no differences in the frequencies observed in the frequen-

It is also not the data table. More specifically, the hypothesis under test is that the two (or more) groups differ with respect to some characteristic matrices with respect to the relative frequency with which group members fall eleman categories. The hypothesis is tested by counting the number of cases with a group which fall in the various categories, and comparing the proportion cases from the proportion of cases from the proportion as an acceptable probability of Type I error. The alternative stress that is accepted when H is rejected is that there are differences

reen groups in the observed frequencies in various categories. The differences be further examined by inspection. In some cases, the contribution to the chiefe algorithm from a single comparison (one category) is enough to make the repositional significant. In these cases, such a category obviously is used to a significant difference between the two groups.

* (continued)

en the data table is a breakdown of frequencies in a 2x2 contingency table, the st is computed as,

$$\frac{N(1AD-BC1-\frac{N}{2})^{2}}{(A+B)(C+C)(A+C)(B+D)}, df=1$$

ere A, B, C, and D are the table entries. For a larger data table, with r rows d k columns,

$$= \sum_{j=1}^{K} \sum_{i=1}^{r} \frac{(0_{ij} - \bar{\epsilon}_{ij})^{2}}{\bar{\epsilon}_{ij}}, \quad df = (r-1)(k-1)$$

ere θ_{ij} is the observed frequency in cell (i,j) and E_{ij} is the expected frequency W_{ij} is the expected frequency W_{ij} . The W_{ij} 's are computed by multiplying the marginal total for row i by emarginal total for column j and dividing by the total of all the frequencies in e table. When the W_{ij}^2 value has been computed, then a statistical table of the stribution function for W_{ij}^2 is consulted to determine the critical W_{ij}^2 value based on the degrees of freedom and the desired level of significance. When the computed W_{ij}^2 statistic exceeds the value that has been found in the table, then W_{ij}^2 decreases of the value that has been found in the table, then W_{ij}^2 decreases W_{ij}^2 accepted. In this report, we have chosen W_{ij}^2 0.05.

consequence test on a 2x2 contingency table is often referred to as a "chi-square st for association" since the rejection of the null hypothesis implies some sociation between the two categorized variables; i.e., knowledge of one provides me information as to the probable value taken by the other. It also indicates at the cell by cell probabilities are different, such as in Table 2-19 of this port. A chi-square test on a 2xn contingency table is often referred to as a ni-square test for two independent samples" and results in a comparison of the distributions across categories. The rejection of H_0 in this case implies that le distributions are not the same. These are the two major types of chi-square ests used in this report.

le interested reader is referred to:

Signal, Sidney, Nonparametric Statistics for the Behavioral Sciences, New York: McGraw-Hill, 1956.

Hayes, William, Statistics, New York: Holt, Rinehart and Winston, 1963.

winer, B. . . <u>Statistical Principles in Experimental Design</u>, New York: McGraw-Hill. 1971.

TIBERT CHARL FREE ENGK AT LITER HOMENTED RECEASED FOR THE HOMENTED BY THE PROPERTY OF THE PROP

coident mechanism that is identified at this node is improper loading ee water in the boat. A typical scenario is:

A boat is proceeding at a fairly high rate of speed in rough water. As the amount of water that splashes into the boat increases, its loading effect increases and the rolling motion of the boat causes the water to slosh from side to side. Soon the operator is unable to maintain his course and a wave from the side of the boat causes the boat to capsize. Without PFDs, the victims soon drown or in some cases are trapped under the overturned boat.

ode 18

accidents accepted at Node 18 include falls within the boat and falls board that result from a wave or wake. The most frequently encountered dent mechanism for these accidents is unexpected boat movement. A typical ario for this mechanism is:

a) A boat is proceeding at a fairly high rate of speed with the occupants all seated in their seats or otherwise in good positions when, without sufficient warning, the boat makes a drastic movement because of the encroachment of a wave or wake. One or more of the occupants finds that the movement was of sufficient magnitude to throw him into the water, where, without a PFD, he soon drowns. In many cases, the occupants' or the operators' reactions have been impaired because of their ingestion of alcohol.

slightly fewer cases, the same accident mechanism is involved in the same e of accident portrayed in the above scenario with the exception that one more of the occupants contribute to the fall overboard by sitting on the k of a seat, on the gunwale, standing-up, or otherwise being in a poor ition within the boat. The results are often the same and the victim unders without a PFD.

Hode 19

accidents accepted at Node 19 involve capsizings that are caused by a wave wake. The accident machanism that is identified here is collision with a e. A typical scenario is:

A hoat is proceeding at a fairly high rate of speed and encounters rough water which enters the boat over the bow or side as the boat is doing too fast to follow the rolling motion of the water. With the boat being filled with water, the amount of freeboard is lowered and the boat eventually capsizes because of the continuing action of the waves. Without PFDs and, in many cases, being hampered by the ingestion of alcohol, the victims soon drown.

to prevent it from cranking when it is in gear and when the engine is cranked, the sudden surge tosses the occupant out of the boat. The victim, then, is either cut by the propeller, or drowns because he is not a good swimmer and is not wearing a PFD.

Node 17

socidents accepted at Node 17 involve boats which were swamped by a wave over the bow or side. The accident mechanism frequently encountered soscillatory momentum along the pitch axis. A typical scenario for an it involving this mechanism is:

A boater proceeds against strong current or rough water caused by weather or other boat traffic. Because of the poor judgment on his load placement or the speed with which he should plough through. dynamic oscillations of the boat are forced out of phase with the waves. This condition worsens until a wave crashes over the bow, flooding the boat and drowning the engine. Free water in the boat compounds the problem by reducing freeboard and the oscillations finally reach such magnitude that the boat capsizes. Without PFDs, the occupants are soon victims of drowning.

r accident that is frequently encountered involving the same accident ism (i.e., oscillatory momentum about the pitch axis) is portrayed in ename:

A boater is proceeding at high speed and rapidly encounters rough water. Unable to stop, the boater jumps the first wave only to find the bow of his boat pitching under the top of the next wave. That wave crashes over the bow, fills the boat with water, and drowns the engine. The boat then capsizes and sinks, leaving the non-PFD wearing occupants in the free water and drowning.

ere were a few accidents accepted to Node 14 that involved another accidents chanism. This mechanism is impact of wave or wake from the side. A typical enario for these accidents is:

a skier. The skier falls or the operator otherwise decides to make a turn-around maneuver without reducing speed. While in the turn, the boat is nit by a wave or wake resulting in a capsizing or swamping of the boat. Since the occupants are not wearing PFDs, one or more become drowning victims.

Node 15

ose accidents accepted at Node 15 involve a sudden application of power ather intentional or unintentional. The most frequently encountered accident chanism here is sudden transverse acceleration. A typical scenario for an eident involving this mechanism is:

a) Several persons are out pleasure cruising. The operator stops to drift for awhile or is proceeding along at idle speed. The operator decides to initiate more power and because of his misjudgment or his lack of experience, doesn't realize that this action will result in an occupant's dislocation or a collision or otherwise catastrophic action. One or more of the occupants ends up in the water without a PFD and dies either from drowning or from injuries received as the accident initiated.

other accident mechanism identified at this node is starting motor in gear.* typical scenario for accidents initiated by this mechanism is:

b) During a normal day's boating the operator experiences trouble with the engine (a weak battery prevents electric start, or perhaps the engine just isn't running right). The operator or a passenger attempts to crank the engine by hand. The engine has no lock out

Note: These accidents were included in the sample because "starting in gear" was not originally stated or noded as the primary cause of the accident.

FILLAE 2-12. FREQUENCY DISTRIBUTION BY NODE OF ACCEPTANCE

2.3.3 Accident echanisms and Scenarios

The development of the provisions in PRAM for identifying the accident mechansims that initiate powering related accidents, and the detailed scenarios for the accident mechansims, is described in detail in Appendix A. This section uses these provisions to provide an indication of the relative frequency of occurrence of each mechanism. The distribution of powering related accidents by node of acceptance is shown in Figure 2-11.

Accident mechanisms and scenarios were derived for those accidents that were accepted at Nodes 14, 15, 17, 18, and 19 on the powering-related accident decision tree.

Node 14

Those accidents accepted at Node 14 involve capsizings, swampings, and falls overboard during intentional changes in direction (course changes). The most frequently encountered accident mechanism for these accidents was excessive lateral acceleration. A typical scenario for this mechanism is:

a) A boat is proceeding along its way at a fairly high rate of speed with one or more occupants improperly seated (i.e., sitting on a seat back, on the gunwale, or on the deck), and not wearing a personal flotation device (PFD). The operator starts to make a sharp (i.e., approximately 90°) turn and one or more of the occupants falls overboard, is nit by the boat or its propeller, and is killed or seriously hurt.

Slightly less often the same accident mechanism (excessive lateral acceleration) is involved in a scenario such as:

A boat is proceeding along its way at a fairly high rate of speed with its occupants properly seated in their seats but still not wearing 250s. The operator starts to make a sharp turn and one or more of the occupants are thrown out by the violent action of the boat. The overboard victim is then hit by the boat or its propeller and is killed.

TABLE 2-21. HORSEPOWER: BOAT LENGTH VS. FATAL AND NONFATAL ACCIDENTS

RATIO #2

		NUMBER C	F BOATS	
	0-3	3-6	6-9	9+
FATAL ACCIDENTS	82	40	17	25
NONFATAL ACCIDENTS	56	88	85	70

OTE: There are 6 unknowns for this tabulation.

is with the other powering ratios before, the chi-square statistic for association in Table 2-22 is statistically significant (χ^2 =11.51, degrees of freedom = 2, 0.005), indicating that the distribution of boats in fatal accidents across powering ratio number three is different from the distribution for nonfatal accidents. The differences in the distributions are due to the fact that the boats in fatal accidents are more heavily concentrated in the lowest (0-0.1) category, while the poats in nonfatal accidents tend to be in the lowest or middle category.

Inus, all three power ratios have some predictive power in terms of severity, when severity is measured in terms of fatal versus nonfatal accidents.

This section has presented some analytical results from PRAM, many of which will be expanded in Section 3.0 when comparisons are made between powering and non-powering accidents. The next section deals with detailed accident data. Descriptions of the accident mechanisms are presented along with scenarios which reflect dominant powering problems.

TABLE 2-22: HORSEPOWER: TOTAL BOAT WEIGHT VS. FATAL AND NONFATAL ACCIDENTS

RATIO #3

		NUMBER OF BOATS		
	0-0.1	0.1-0.2	0.2+	
FATAL ACCIDENTS	104	31	6	
NONFATAL ACCIDENTS	114	77	13	

MOTE: There are 124 unknowns for this tabulation.

is tabled below for fatal and nonfatal accidents. Some categories were collapsed to provide ample sample sizes in each cell of a crosstabulation.

The chi-square statistic for association for Table 2-20 is statist cally significant (χ^2 =9.39, degrees of freedom = 2, p<0.01), and indicates that the distribution of thats in fatal accidents across powering ratio number one is different from the distribution in nonfatal accidents. It appears, based upon these data, that the formula used in the current standard may bear some relationship to the severity (in terms of the distribution of fatalities by power ratio) of a powering accident; however, these data do not include exposure correlations or separate the pre- and post-regulation boats.

TABLE 2-20. MOUNTED/RATED HORSEPOWER FOR FATAL AND NONFATAL ACCIDENTS

RATIO #1

	чии	MBER OF BOATS	
	LESS THAN 0.5	0.5 to 1.0	OVER 1.0
FATAL ACCIDENTS	14	60	25
NONFATAL ACCIDENTS	13	170	36

NOTE: There are 151 unknowns for this tabulation.

The chi-square statistic for association in Table 2-21 is very significant (χ^2 =54.85, degrees of freedom = 3, p<0.001), and indicates that the distribution of boats in fatal accidents across powering ratio number two is different from the distribution in nonfatal accidents. In particular, the boats with low norsenower: boat length ratios in the PRAM data (6-9) are more likely to be in nonfatal accidents. (Again, this does not contain exposure information and includes boats built before and after the effective date of the regulation.) These two categories contributed 34.75 and 15.69 to the - statistic, respectively.

TABLE 2-19. BOATING SAFETY EDUCATION VS. COMPLIANCE

OPERATOR EDUCATION	NUMBER OF BOATS IN COMPLIANCE (MOUNTED HP: RATED HP < 1)	NUMBER OF NON- COMPLIANCE BOATS
None	134	41
At Least One Course	83	8

NOTE: There are 203 unknowns in this tabulation.

Severity Variables

The powering related accidents coded in PRAM account for 200 fatalities on the vessels coded and 4 fatalities on other vessels. These four additional deaths were from boats which were involved in a powering accident, but had no powering problem themselves. These boats may have had a collision with a boat that was coded in PRAM. The fact that there were only four fatalities on these other boats indicates that when multiple boats are involved in a powering accident (there were 26 total fatalities from boats involved in collisions in the powering sample) the fatalities are often people from the boat with the powering problem.

The total damage to the vessels coded in PRAM is between \$220,000 and \$440,000. When the tamage to other vessels (ones that the PRAM boats collided with) is setween \$25,000 and \$65,000. Thus, the total property damage is between one-quarter and one-half million dollars. These figures are based upon summing the lower bounds) and upper (for upper bounds) values for the codes used for each one-time the data base (see Appendix B).

The state of incapacitation, and two people permanently disabled. These control to not express the magnitude of the powering problem as strongly as the 204 that seaths attributable to powering accidents in 1975 and 1976.

The one wwon natios defined previously were prosstabulated with fatal versus confuse at idents in the PRAM data base. Presumably, if the natios measure a convenient tor having powering accidents, they might also measure the severity of the accident to a convenient of the powering neasure is high, this might indicate a convenient powering accident than if it were low. Each of these powering nation

TABLE 2-17. HORSEPOWER PER TOTAL BOAT WEIGHT VS. ACCIDENT TYPE

	HP/TOTAL WEIGHT		
	LESS THAN 0.1	GREATER THAN 0.1	
Collisions	52	49	
Capsizings/Swampings	86	23	
All Others	77	55	

NOTE: There are 127 unknowns for this tabulation.

If experience with the vessel involved in the accident is cross tabulated with compliance or non-compliance with the current standard, the data in Table 2-18 result.

TABLE 2-18. COMPLIANCE VS. EXPERIENCE WITH THIS BOAT

OPERATOR EXPERIENCE WITH THIS BOAT	NUMBER OF BOATS IN COMPLIANCE (MOUNTED HP/RATED HP < 1)	NUMBER OF NON- COMPLIANCE BOATS
0-100 hrs.	76	18
100+ hrs.	94	21

NOTE: There are 260 unknowns for this tabulation.

The corrected Chi-square statistic for association in this table is non-significant ($\chi^2<0.01$), indicating no association between experience with this boat and a tendency for non-compliance in the PRAM sample. A similar result is found for total boating experience ($\chi^2<0.01$). When the data for boating safety education are tabulated (see Table 2-19), the corrected chi-square statistic for association is significant ($\chi^2=7.59$, 1 degree of freedom, 0.005 < p < 0.01). This indicates that operators in the PRAM sample who had some formal boating safety instruction were much less likely to be in the non-compliance category than boaters with no boating safety education. This is indicative of a concern for general safety awareness and education on the part of the boater.

TABLE 2-15. ACCIDENT TYPE VS. COMPLIANCE WITH CURRENT STANDARD

	(POWER RATIO #1 ≤ 1.0) BOATS IN COMPLIANCE	(POWER RATIO #1 > 1.G) NOT IN COMPLIANCE
Collisions	113	16
Capsizings/Swampings	60	21
All Others	84	24

NOTE: There are 151 unknowns for this tabulation.

Accident type is crosstabulated with power ratio number two (nonsepower per foot of boat length) in Table 2-16. The χ^2 statistic for these variables is very significant [-66.70, degrees of freedom = 6, p=0.001). It indicates that the proportion of toats involved in the three accident type categories differs from one category of held ratio to another. Capsizings and swampings are less frequent in the table as the horsepower per foot ratio increases. However, one must keep in mind that accidents initiated by water over the stern are not included in this sample.

TABLE 2-16. HORSEPOWER PER FOOT OF BOAT LENGTH VS. ACCIDENT TYPE

	HP/FT			·····
	0-3	3-6	6-9	9+
Collisions	21	51	53	52
lagsizings, Swampings	66	25	22	14
1 All others	51	52	27	29

MCTE: There are 6 unknowns for this tabulation.

NOTE: 124 BOATS HAD UNKNOWN POWER RATIO NUMBER THREE

FIGURE 2-11. FREQUENCY PLOT FOR HORSEPOWER : TOTAL BOAT WEIGHT

Accident type is crosstabulated with compliance or noncompliance with the current standard (mounted horsepower/rated horsepower less than 1.0 = compliance) in Table 2-15. Several categories in each variable were collapsed in order to provide ample sample sizes in each cell for a chi-square test of association. The statistic (-6.84, degrees of freedom = 2, 0.05·p<0.025) is significant and indicates that boats in compliance with the current powering standard are distributed differently than boats not in compliance. For the noncompliance boats, collisions is the less frequent accident type, while for boats in compliance, this is the most frequent accident type. The contribution of these two cells to the chi-square statistic is 3.82 (p(χ^2 _3.84)=0.05 for 2 df), indicating that the category of collisions is the major source of the differences between the two groups.

MOTE: SP/ft unknown for six boats.

FI -- -1. EREQUENCY PLOT FOR HORSEPOWER PER FOOT OF BOAT LENGTH

TABLE 2-14. POWER RATIO NUMBER ONE DISTRIBUTION FOR PRE- AND POST-REGULATION GOTBOARDS UNDER 20 FEET IN LENGTH

	RATIO OF MOUNTED HP: RATED HP				
	.2550	.5075	.75-1.0	1.0-1.25	1.25<
Pre-Regulation	6	31	35	16	10
Post-Regulation	9	26	28	12	11

NOTE: Entries are the number of boats in the PRAM sample in each category. Unknowns (151) are not listed in the table.

Powering ratio number two (mounted horsepower divided by boat length) was computed for all boats in the PRAM sample. These data are plotted in Figure 2-10. The data are spread throughout all categories of horsepower per foot, with significant numbers of boats in each category. The fact that there are many boats with a high ratio of horsepower per foot (greater than ten to one) indicates that this measure might hold some promise as a regulatory measure in the limiting case of a very high ratio. That is, this measure takes on high values for many boats that were in powering accidents, and may be able to provide a means to discriminate powering accident craft and other craft. The determination of the effectiveness of such a concept is discussed in subsequent sections with these data compared to similar data for non-powering accidents.

A third ratio that was computed was horsepower divided by the total weight of the system (boat weight plus equipment/gas weight plus persons weight). These frequencies for powering ratio number three are plotted in Figure 2-11. This ratio shows little promise for a powering standard based upon the data from boats in powering accidents. Nearly two-thirds of the boats with a known ratio of horsepower to total boat weight were in the lowest ratio category. This means that this measure needs to be very accurately obtained in the lower end of the scale (ratios below 0.1) in order to discriminate between powering accident craft and other craft, or it dies not discriminate well in any cases.

relationships between important variables in the model. Several of these, including speed versus boat type and people on board versus rated persons capacity, contained so many unknowns (over 85%) that the tables were meaningless. These are not included in this report. However, several comparisons were made involving accident type, powering ratios, and operator skill/experience.

3.0 EVALUATION OF THE CURRENT STANDARD'S EFFECTIVENESS

Having defined a powering related accident and selected a group of these for investigation, some method was needed to evaluate the reason why the current safe powering standard had not prevented the fatalities associated with accidents. To do this, a group of accidents that was not determined to be initiated by overpowering needed to be selected and compared to the powering related 'accidents.

Additionally, there was a need to investigate accidents involving boats that were built before the effective date of the present regulation to determine if the regulation had any effect on altering mounted horsepower tendencies. Beneficial alterations should be reflected in a decrease in fatalities or accident propensity for boats built after the effective date of the regulation.

This section describes the process of selecting the non-powering related accidents and the results of the comparisons with the powering related accidents conducted to determine the effectiveness of the current standard in predicting or preventing fatalities associated with excessive horsepower outboard engines being mounted on recreational boats that are less than twenty (20) feet in length.

3.1 Current Standard

The current standard formula, as stated in Federal Register, Volume 37, Number 151, Title 33, Part 183, Subpart D, and reprinted here for ready reference, stipulates:

"The maximum horsepower marked on a boat must not exceed the horsepower capacity determined as follows:

(b) Locate horsepower capacity corresponding to the factor in Table 183.53.

(c) If the horsepower capacity in Table 183.53 is not an even multiple of 5, it may be raised to the next even multiple of 5.

For flat bottom hard chine boats with a factor of 52 or less, the research capacity must be reduced by one horsepower capacity increment labeled 33.53.

⁽a) Compute a factor by multiplying the boat length in feet by the maximum transom width in feet including spray rails if spray rails act as chines or part of the planing surface. If the boat does not have a full transom, the transom width is the broadest beam in the aftermost quarter length of the boat.

TABLE 183.53 - OUTBOARD BOAT HORSEPOWER CAPACITY COMPUTE: FACTOR = BOAT LENGTH X TRANSOM WIDTH

If factor (nearest integer) is	0-35	36-39	40-42	43-45	46-52
Horsepower capacity is	3	5	7-1/2	10	15

NOTE: For flat bottom hard chine boats, with factor of 52 or less, reduce one capacity increment (e.g. 5 to 3)

		No remote steering, or less than 20" transom		
If factor is over 52.5 and the boat nas	Remote steering and at least 20" transom height	For flat bottom hard chine boats	For other boats	
Horsepower capacity is (raise to nearest multiple of 5)	(2 X Factor) - 90	(0.5 X Factor) - 15	(0.8 X Factor - 25	

This regulation applies to all outboard motor powered boats, less than twenty (20) feet in length and manufactured after November 1, 1972.

One must keep in mind, however, that the November 1, 1972 date is not a precise sate for boats marked with horsepower capacities. This results from the fact that there were standards within the industry, promoted by the ABYC and BIA, in effect prior to this date. Also, some manufacturers, in anticipation of the standard, marked their boats according to the formula prior to the effective date. This is important to remember when comparing the accident probabilisties for boats under the regulation and boats not under the regulation.

3.2 Non-Powering Related Accident Sample

To establish an accident file that contained non-powering related accidents that cosely correlated the distribution of the powering related accidents with research to type of boat and power, regions of the country, and severity (fatal vs. con-fatal), the 1975 and 1976 USCG accident files in Washington, D. C., were carryeyed and a representative group of accidents was selected.

The trumpest and meticulous effort conducted in Task II and discussed in Section of this report to define a powering related accident showed additional menit with I case to defining a non-powering accident.

The accidents were considered to be non-powering related if they were rejected at any node on the powering related accident decision tree. The total number of accidents selected was determined so as to approximate the sample size of powering related accidents; the actual number was 400.

The accidents were selected manually from the files such that the ratio of fatal to non-fatal accidents, the percentages of outboard motors, and the distribution over the country for the non-powering related sample matched the powering related sample. This allowed the analysts to test the powering and non-powering samples equally without having to weight values because of small sample size. Such equality greatly increases the confidence one places on statistical significances in comparisons.

One significant difference between the powering related and the non-powering related samples is that all of the non-powering related accidents in our sample were taken from the 1975 accident file; whereas, eighty-six (86) of the fatal accidents in the powering related sample occurred in 1976. This fact does not negatively affect the validity of our analyses, since the two years can be isolated in our coding and the 1976 fatal accidents were intended to increase the event sequence information at various "accept" nodes to better identify the accident mechanisms and scenarios in the Task II effort.

Of the 400 accidents selected for the non-powering related sample, 235 were non-fatal accidents and 165 involved one or more deaths. Comparisons and cross-tabulations between the samples are discussed in Section 3.4 with interesting and significant findings being pointed out.

3.3 Coded Information and Coding Form

Because of the size of the non-powering accident sample, it was evident that a great deal of time could be saved during the coding effort if the information to be coded could be streamlined. Since the purpose of the non-powering related sample was to compare the probability of accidents between boats in compliance with the standard and boats not in compliance, it appeared that some of the bookkeeping information (such as state, month, day and time) would be of little value. Also, it was clear that information unique to powering related accidents would not be coded for non-powering accidents.

Since many crosstabulations of variables between the powering and non-powering samples would be required, the same coding sheet format was utilized for both samples to simplify the computer programming. The resultant coding sheet, shown in Figure 3-1, and coding instructions for the samples were identical with the exception that the coders were instructed to skip over the nonrequired variables and leave the columns for those variables blank on the coding sheet.

The coding instructions for coding the non-powering related accidents are presented in Appendix B of this report.

The same information was coded similarly for each variable regardless of whether it was a powering or non-powering accident. The variables and their columnar positions that were not coded for non-powering related accidents are:

Column(s)	Variable Name
5 & 6	State in which the accident happened.
7 & 8	Month when the accident happened.
9 à 10	Day of the month.
13 & 14	Time of day of the accident.
25	Motorwell.
26	Steering controls.
27	Motor manufacturer.
33 & 34	Maximum engine rpm.
35	Course.
36 & 37	Powering behavior.
41	Body of water.
43	Visibility.
44	Wind.
75 thru 80	Event trees.

It may appear that some of the variables that were not coded for the non-powering related accidents would be beneficial information for determining overall boating trends; however, that information is contained in boating survey reports for all reported boats and accidents. It is more beneficial to use the more complete survey information than draw conclusions from a small sample if the information is readily available. Therefore, we reduced the amount of time required to code

			-	- 1	+4	4	4	-;	-	<u>-</u>			•	1	**					-	
		1	~	11 -		4		-1	+			_;	-	-,	-			-			
		i				4					4	_	_		-1	_					_
	25	i			•			-1		_	7	•			-	•			•	-	-
	200																				
	-26.0	-			-;		7	4	. !	_		٦	_	- •	_	-		-	_	_	
	75.70	'	1		-	-1	7	4	-1		_i	٦	-	-	-	- .			-		-
																				_	
	3	-	-		-		4	4	-	4	-:	- i	-	-	٦	٦,				_	_
100 A	Sc. Sc.					(_	7		~			-			-			
	1 200							-+-	-								. ,				
	146134		زر								1						- -				
	23.91	<u></u>	-1		4	4	-		í		4	-				-!		-	-		-
	AA . 64	-		, ,			- i-	_	」	+	- +-									_	
	*:c. c3.	-					1			+	1					-				1	
	3	-				-	7	-	4			1			-	4	-		-	-,	-
	المراجع والمراجع والم									_				_			_		_		
	and at the	1			_				-1	•	!				•					-	
	F		4	,	_	4				-	4		٦			_:			_	-	
	h 100	1						i]	4	i		••		1				•	
	Chere's Sand			-1 -4	_	-	- i	-;-		4	7										
		4	-		'	4	4	4			-1	-	4			<u>.</u>	-	-	-	<u> </u>	- :
	The state of the s								1							+-					
								<u> </u>		 -	-	-									
	HISTORY IN							<u> </u>							+						
	1	<u> </u>																			
			1																		
		-				.;			٠-	-		- 1	-	_				-			
			-					t t		-	-		- -		-			-			
			-				-:			.,	-		-			-		-		-	
			-				-:							-	-				-	-	
		T T	-										- - -	-				-		-	
		T T											-	-	-					-	-
		T T				7 7 1 1							-	-				-		-	
		T T				1 1							-		-					-	
		T T																		-	
		T T									-		-							-	
		T T																			
		T T																			
		T T				-4															
		T T																			
		T T						-4						-							
		T T						-4						-							
								-4						-							
								1													
								1					-								
								1					-								
								1					-								
								1					-								
					-			1					-								
					-			1					-								
				-				1					-					-			
				-				1					-					-			

FIGURE 3-1. THE NON-POWERING RELATED ACCIDENT CODING FORM

the non-powering accident sample without losing any valuable information that could be included in the BARs.

Results of some of the earlier analyses and discussions with Wyle and USCG personnel indicated that the johnboats presented a particularly unique problem. To more clearly ascertain if this was a sound conclusion, the entire accident sample (both powering and non-powering) was reviewed and each boat was coded by whether or not it was a johnboat type. Additionally, the weight of the boat hull for each boat in the sample was coded.

The information required to determine the power ratios for each boat in the sample was included to establish the number of boats in compliance with the powering regulation and the significant difference (if any) of power ratios for boats involved in powering and non-powering related accidents.

The following sections discuss the results of the analyses performed in evaluating the current standard.

3.4 Effectiveness Evaluation of the Current Powering Standard

There are several ways in which the current powering regulation may be shown to be effective. It may result in reducing the frequency (number) of powering accidents. It may result in reducing the severity of such accidents, without necessarily affecting their frequency. Finally, it may reduce the powering accident rate; i.e., it may reduce the number of accidents and/or deaths per 100,000 hours of boating activity or per 100,000 boats. On succeeding pages, each of these approaches to current powering standard effectiveness are investigated. Modifications to the current standard are also evaluated. The modifications that are considered represent merely multiplying the rated horsepower by varying constants. Comparisons are made between powering and non-powering data.

An important conceptual distinction is needed in order to fully comprehend the discussions that follow. The distinction is between statistical significance and importance (or practical significance). While there may be a statistically reliable difference in the average distance of a Hank Aaron home run as opposed to a Mickey Mantle home run, the difference is not important (nor practically significant) since the end result of any home run is the same. With respect to the powering accident

data, the difference between the chances of having a powering accident with a 10 hp engine as opposed to the chances of having a non-powering accident may be statistically significant with non-powering accidents being much more likely to occur. However, such a difference is unimportant (and not practically significant) because it merely means that powering accidents are unlikely when the boat has a very small engine. Issues such as these will arise in the analyses that follow.

The most important results of the analyses in this section are: 1) the current standard appears to have some potential effectiveness if one looks at boats built prior to 1972 (outboards, less than 20 ft, but pre-regulation), and 2) the effectiveness does not carry over into the post-regulation boats. For boats (outboards, less than 20 ft) built after 1972, the current standard does not relate to accident severity or frequency. Explanations are offered as to why the pre-1972 data indicate that the standard has potential effectiveness and why the post-1972 data indicate that the promulgation of the standard had no noticeable effect on boating accidents.

3.4.1 The Current Standard and Powering Accident Frequency

If the current standard is effective, one might expect that those in compliance with the standard would be less likely to have a powering accident than those not in compliance (assuming similar exposure). Table 3-1 presents the theoretical distribution of data for an "ideal" powering standard, where no one who complies with the standard has a powering accident. The closer the data come to this configuration for the current standard, the more effective it is.

TABLE 3-1. THEORETICAL DATA DISTRIBUTION FOR AN IDEAL POWERING STANDARD

	HAD A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	0	Х
Not In Compliance	Х	Х

Table 3-2 presents the data from PRAM for all outboard boats less than 20 ft in length. The data indicate that those boats in compliance with the current standard are less likely to have a powering accident than those not in compliance (corrected $\chi^2_{(1)} = 4.878$, p < 0.05). This indicates that compliance with the standard may be effective in reducing powering accidents. If these data are

eparated into pre- and post regulation distributions, a somewhat different result is depicted.

TABLE 3-2 PRAM DATA DISTRIBUTION FOR CURRENT STANDARD

	HAD A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	118	124
Not In Compliance	62	37

Note: Boats listed as being manufactured in 1972 are omitted.

Tables 3-3 and 3-4 present the same breakdown as Table 3-2, except for the preregulation and post regulation (pre-1972 and post-1972) boats. The data for boats made in 1972 are not included because the standard took effect during the year (was a 1972 boat made before or after it took effect?), and many manufacturers anticipated the standard in thier 1972 boats. The data in Table 3-3 show a marginally significant relationship between compliance with the standard and the probability of a powering accident as opposed to non-powering accident (corrected $\chi^2_{(1)}$ =3.215, 0.10-p-0.05). The data in Table 3-4 show no such relationship (Fisher exact p=0.144).* Thus, the overall relationship in Table 3-2 is based primarily upon the standard's effectiveness as measured by pre-1972 boats, and hides the fact that no effectiveness can be demonstrated for post-1972 craft.

^{*} The fisher exact test is applied in the same situations where a χ^2 test for a 2x2 contingency table is often used. The null hypothesis is the same. The Fisher exact test, however, is more accurate. However, it is cumbersome to compute in cases other than those where the total sample size is small. Wyle has programmable calculators that can compute Fisher exact probabilities for tables that do not exceed the computational capacity of the machines. When that capacity is exceeded, χ^2 tests are used instead. Table 3-4 was the first case in this report where the frequencies were small enough to permit the computation of a Fisher exact probability on an HP-67 or HP-97. The interested reader is referred to Non-Parametric Statistics, by Siegel, referenced earlier.

TABLE 3-3. PRE-1972 DATA DISTRIBUTION FOR CURRENT STANDARD

	HAD A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	72	81
Not In Compliance	36	22

TABLE 3-4. POST-1972 DATA DISTRIBUTION FOR CURRENT STANDARD

	HAD A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	46	43
Not In Compliance	26	15

The data for Tables 3-2, 3-3, and 3-4 were dichotomized by whether or not the boats in question were in compliance with the current standard. This was determined by computing a power ratio, defined as the mounted engine horsepower divided by the boat rated engine horsepower. A power ratio of 1.0 or less was in compliance with the current standard. The standard could be revised to accept larger or smaller horsepowers by accepting larger or smaller ratios. This would be equivalent to multiplying the current boat rated horsepower by varying constants. Thus, if the power ratio criterion were changed to 0.5, then the mounted norsepower would have to be one-half or less of the current boat rated horsepower (as determined by the formula) to be in compliance.

The data were broken down further (as shown in Tables 3-5, 3-6 and 3-7) to show the changes in the distributions of power ratios for powering and non-powering accidents. If the standard were relevant to the problem of powering accidents, then those boats in powering accidents should have (generally) higher power ratios than those in non-powering accidents.

The results reflect the same phenomena as before. Table 3-5 shows an overall difference in the distributions of power ratios for the powering and non-powering accidents $(\frac{1}{(5)} \approx 21.834)$, p<0.001). Table 3-6 shows a statistically significant difference in the distributions for the pre-1972 data $(\frac{1}{(5)} \approx 15.113)$, p<0.01), while

This means that there is a tendency for the power ratios for the boats powering accidents to be higher than for those in non-powering accidents for its made before 1972, but not for newer boats. The first category in Table 3-6-0.5) contributed 9.06 to the overall χ^2 for the table.

nce the standard was passed, it has not differentiated the powering and non-powing accident data by power ratio, or by accident frequency.

TABLE 3-5. POWER RATIO BY TYPE OF ACCIDENT FOR ALL BOATS

	POWER RATIO					
	0-0.5	0.5-0.75	0.75-1	1-1.25	1.25-1.5	Over 1.5
d a Non-Powering Accident	33	33	58	11	16	10
d a Powering Accident	14	50	54	25	13	24

ite: 128 unknowns

TABLE 3-6. POWER RATIO BY TYPE OF ACCIDENT FOR PRE-1972 BOATS

	POWER RATIO					
	0-0.5	0.5-0.75	0.75-1	1-1.25	1.25-1.5	Over 1.5
d a Non-Powering Accident	21	22	38	8	10	4
d a Powering Accident	6	31	35	16	10	10

TABLE 3-7. POWER RATIO BY TYPE OF ACCIDENT FOR POST-1972 BOATS

	POWER RATIO					
	0-0.5	0.5-0.75	0.75-1	1-1.25	1.25-1.5	Over 1.5
d a Non-Powering Accident	12	11	20	3	6	6
d a Powering Accident	8	19	19	9	3	14

he analysis above leads to similar analyses for various regulatory criteria using he same formula. In other words, does multiplying the formula by a constant equivalent to changing the power ratio criterion for compliance from 1.0 to the

instant) result in a more effective standard in terms of accident frequency. The lalyses performed in Tables 3-3 and 3-4 were repeated for varying power ratio literia. In each case, the relationship was observed and compared to the ideal elationship shown in Table 3-1. Figure 3-2 presents the results of those speated statistical comparisons, and includes the data presented earlier for the current standard. On this figure, the low points (near 0.05 or below on the redinate) indicate that the corresponding regulation criterion (abscissa) differitiates powering and non-powering accidents well.

ne pre-1972 data in Figure 3-2 indicate that the formula had moderate or stronger ffectiveness at several criteria (0.25, 0.5, 1.0, 1.5, 1.75, 2.0). The low alues (0.25 and 0.5 to some extent) correspond to severely limiting horsepower n small boats. Obviously, if horsepowers were severely limited (say to the order f a few pounds of thrust), fewer powering accidents would result. Thus, the tatistical significance of those data points is not important. The upper points 1.75 and 2.0) correspond to regulating only against severely overpowered boats. bviously, if a boater could not meet these lenient criteria, then he would be ery likely to have a powering accident. Here again, the results are statistically ignificant, out not important. The data for the current standard, as reported efore, also show moderate effectiveness, and this result is important. It shows hat the observed relationship (in Table 3-3) between the standard and having a owering or non-powering accident was unlikely to have happened by chance.

or the post-1972 data, only one point is in the significant region (0.05 or less), not that is for the power ratio criterion of 0.25. This corresponds to saying that owering accidents would be prevented if all post-1972 boats were allowed only one-uarter of their rated horsepower. This result is statistically significant, but of important since such a criterion would be impractical.

inally, if the current standard is effective, then a larger percentage of the re-regulation boats should be in the powering sample than the percentage of ost-regulation boats in that sample. The data in Table 3-8 indicate that such a elationship does not exist in the PRAM data. The breakdowns of pre- and post-egulation boats for the powering and non-powering accident samples were nearly dentical (corrected $\chi^2_{(1)} = 0.315$, p > 0.5).

FIGURE 3-2. POWERING/MON-POWERING VS. COMPLIANCE/NON-COMPLIANCE FOR ALL BOATS BY REGULATION CRITERION

TABLE 3-8. TYPE OF ACCIDENT BY AGE OF BOAT

	AAU A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
egulation Boats	72	81
Regulation Boats	46	43

[:] Table considers only those boats with ratio one being less than unity.

no matter how the criterion is changed, using the present powering standard formula), compliance with the standard does not differentiate powering and powering accident frequency, nor the power ratios for boats in those accis, for boats manufactured after the promulgation of the standard.

3.4.2 The Current Standard and Powering Accident Severity

e from the question of preventing or reducing the frequency of powering dents, the effectiveness of the current standard in reducing the severity of ring accidents must be explored. This issue can be addressed by comparing powering accident severity to the observed power ratio. If the standard mula) correlates well with powering accident severity, then the accidents lying boats with high ratios should be more severe than those involving low os. Ideally, if the standard were a perfect measure of severity, then those comply with it would survive, and those that did not comply would be more by to die. Table 3-9 presents the theoretical distribution of data for the I standard. The current standard is evaluated in succeeding tables against adeal.

TABLE 3-9. IDEAL DISTRIBUTION OF SEVERITY DATA (IN TERMS OF FATALITIES) FOR POWERING ACCIDENTS

	IN COMPLIANCE	NOT IN COMPLIANCE
Had a Non-Fatal Accident	Х	Х
Had a Fatal Accident	0	X

hese analyses, severity is dealt with in terms of fatalities. Data were d in PRAM on the property damage, injuries, and other losses associated with ring accidents. However, using a number of \$480,000 per life, the non-lity losses amounted to less than the equilalent of two lives lost, while

ities for powering accidents in PRAM totalled 204 lives lost. Thus, is other than lives lost represent less than 1.5% of the severity of accidents. Therefore, only fatalities are included in these analyses.

10 shows the distribution of fatal and non-fatal accidents for pre-1972 the PRAM sample that are outboards, less than 20 ft, and in powering s. No statistically significant relationship exists in these data exact p=0.359). Similarly, Table 3-11 shows the same breakdown for 2 boats. These data are also statistically insignificant (Fisher exact 3).

TABLE 3-10. SEVERITY DATA FOR POWERING ACCIDENTS FOR CURRENT STANDARD FOR PRE-1972 BOATS

	IN COMPLIANCE	NOT IN COMPLIANCE
a Non-Fatal Accident	48	22
a Fatal Accident	24	14

TABLE 3-11. SEVERITY DATA FOR POWERING ACCIDENTS FOR CURRENT STANDARD FOR POST-1972 BOATS

	IN COMPLIANCE	NOT IN COMPLIANCE
a Non-Fatal Accident	29	14
. + Fac.: Accident	17	12

thems of the regulation criterion is varied? Figure 3-3 shows the statis-criticance (ordinates near 0.05 or below are significant) of using different ratio criteria in terms of differentiating levels of severity. For 1972 data, the power ratio of 1.25 (= mounted horsepower : formula rated mer) correlates well with severity. The boats that exceeded this ratio critical data were much more likely to have a fatal accident than those host-regulation (post-1972) data.

neme was some indication that a modification of the current standard nounted np/rated np - 1.25 as compliance criterion) might provide a good

A STUDY TO DETERMINE THE NEED FOR A STANDARD LIMITING THE HORSEPOWER OF RECREATIONAL BOATS(U) MYLE LABS HUNTSYILLE ALA R MHITE ET AL. SEP 78 MSR-78-12 USCG-D-36-83 DOT-CG-62655-A F/G 13/12 AD-A152 575 2/3 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

FIGURE 3-3. BOATS IN POWERING ACCIDENTS: FATAL VS. NON-FATAL (SEVERITY) BY REGULATION CRITERION

FIGURE 3-4. BOATS IN NON-POWERING ACCIDENTS: FATA: VS. NON-FATAL (SEVERITY) BY REGULATION CRITERION

relationship with powering accident severity, the same kind of analyses were performed for non-powering accidents. There is no a priori reason to expect any relationship between compliance with a modification of the current standard and non-powering accident severity. Figure 3-6 presents the results of the non-powering accident severity analyses for outboards less than 20 ft in length, for pre- and post-regulation craft. For the post-1972 data, only the criterion of 1.75 generates a statistically significant result (ordinate \leq 0.05). This result is difficult to interpret since a boater who has more than 1.5 times the rated horsepower on his boat may violate other safety precepts which result in his being in a non-powering fatal accident. In any case, there is no relationship between the current standard (a criterion of 1.0) and severity in the pre- or post-regulation data.

Severity and frequency analyses can be combined by analyzing the pre- and post-regulation data for fatal accidents only. Ideally, if the current standard were extremely effective, then there would be no fatal accidents for boats which complied with it, as shown in Table 3-12. The data for pre- and post-regulation outboard boats of 20 ft or less were analyzed by varying power ratio criteria. These data were statistically compared to the i-eal shown in Table 3-12. This was done by comparing the actual 2x2 contingency data with the "ideal" (meaning no fatalities for those in compliance) 2x2 contingency table having the same marginal totals. The test statistic (or measure) used was a x- goodness-of-fit test, where the "ideal" table was considered the null hypothesis (i.e., the "expected" distribution). The results are shown in Figure 3-5, where a low ordinate (mean or below 0.05) means that the corresponding criterion (abscissa) has a strong association on the type indicated in Table 3-12 for fatal accidents.

FIGURE 3-5. POWERING/NON-POWERING VS. COMPLIANCE/NON-COMPLIANCE FOR FATAL AUCIDENTS BY REGULATION CRITERIO.

TABLE 3-12. THEOREVICAL FATAL ACCIDENT DISTRIBUTION FOR IDEAL STANDARD

	HAD A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	0	Х
Not In Compliance	χ	Х

Figure 3-5 indicates that the current standard has a weak (marginally statistically significant) relationship of the type described in Table 3-12 for the pre-1972 data, and no relationship for the post-1972 data. For other regulatory criteria (0.5, 1.75, and 2.0), stronger associations are indicated in the pre-1972 data. However, as explained previously, these criteria are impractical. Therefore, the statistical significance of their associations is not important. None of the criteria are statistically significant for the post-1972 data.

The conclusion of these analyses is that the current powering standard does not nave a significant relationship to severity data (in terms of fatalities) for post-regulation boats. Certain modifications to the standard show some indications of associations with severity for pre-1972 data. These results seem to contradict the results stated in the previous section, where boats in powering arciderts which did not comply with the current standard were shown to have a agen broken probability of experiencing a fatality. However, that analysis did not presk out only those boats covered by the standard (outboards of less than In from length, and and not differentiate pre- and post-regulation craft. The relative ship that was reported previously did not hold up when these additional factors were and used in the analyses. The conclusion stated in the first sentence of this parakraum states that the current powering standard does not bear a signifreant of Billoning to powering accident fatalities for post-1972 boats. This does not the consider, that there are not other factors (besides powering problems). or its base. Contempoted to those fatalities that were found in the accident recont. There were powering additiont vistims who did not wear PFDs, did not know row to lwim, etc. Such victims occurred in both the pre-regulation and post-regulafilen ditil and vet, the standard appears to have a significant relationship to Teventh, for pre-religiation boats and not for post-regulation boats.

3.4.3 The Current Standard and Risk

As mentioned earlier, there are several ways to evaluate the effectiveness of the current standard. One of those ways was to analyze the risk associated with difterent power ratios. In this section, risk will be defined as number of boats in powering accidents per 1,000,000 boat hours at each power ratio, and the number of fatalities in powering accidents per 1,000,000 boat nours at each power ratio. The plots of risk versus power ratio for these two types of risks would then be called risk functions. Regardless of the type of risk, the risk should increase as the power ratio increases if the current powering standard is effective. Figure 3-6 shows some possible relationships between risk and the power ratio (as determined by the formula). Curve C, with the upward bend occurring at or near a ratio of 1.0, would indicate that the current standard is very effective.

FIGURE 3-6. ALTERNATIVE RISK VS. POWERING RATIO CURVES

The relationship between risk and powering ratio in Figure 3-6 is:

Some point above which the risk of an accident occurring increases substantially with increasing norsepower. However, it is quite possible that people intuitively recognize that limit and only the rate "NUT" approaches it. The other possibility is that even boats which are overpowered into the potentially high risk range under certain conditions are not operated at full power under those conditions by the prudent boating public. Certainly most boats are over-powered in some conditions which are regularly encountered (maneuvering in crowded anchorages), yet most people proceed at less tran full throttle in crowded areas.

- CURVE B = Positive, but Line 1/2 Increasing with Horsebower 1/2 ssibility is particularly plausible. It could be that the risk of powering accidents increases with increasing power, if for no other reason than the increase in potential for serious damage from collisions at high speeds; yet, due to increasing driver attentiveness and prudence with increasing speed, a dramatic increase in risk rever occurs.
- CURVE C = Positive, With an Excessive Increase at Some Point This possibility could be brought on if people "push" their boats into ranges of dynamic instability without consideration of the risks; or if collision accident risk is a function of speed raised to some power higher than one.

The PRAM data were used to generate the number of fatalities and number of boats in powering accidents. The Nationwide Boating Survey for 1973 was used to generate estimates for the total number of boating hours (exposure) for all powered boats, and all outboards under 20 ft in length. The latter number was estimated by adding the exposure data for motorized canoes, outboards, and motorized rowboats and johnboats.

There are several assumptions in these analyses. One is that the 1973 Nationwide Boating Survey exposure data are accurate and that they represent the boats from the PPAM sample. The non-powering accident boats in PRAM were used to estimate the percentage of boating exposure nouns at each power ratio in the population, then the NBS data were broken sown by power ratio according to the percentages in the non-powering data. This involves two assumptions. One is that the non-powering accident courts are not related to lower ratio and reflect bodulition characteristics. This assumption was partially checked in Section 3.4.2 and was not assault if it. Arotren assumption is that usats with low power natios are used about as more as those with norm power nation. Such assumptions are required in this errors. If it, realized that one on home of these assumptions may not reflect the true nature of the copulation data, in expresses in the 1925 NBS.

Figure is the entropies of a contract plant matrix above for the norther of powering a contract of a contract plant of a contract of a contract plant of a contract of a contract plant of a contract plant of a contract of a contract plant of a con

FIGURE 3-7. RISK FUNCTIONS: FATALITIES PER 1,000,000 BOATING HOURS

· Æ

outboards less than 20 ft in length for the latter curve). The beat intering exponential curve is plotted for each set of points.*

The data show that the risk function for all boats in the powering sample (<u>including pre-1972 boats</u>) is much like curve C in Figure 3-6. It indicates that the standard is effective. The risk function for post-1972 boats less than 20 ft in length is much like curve A in Figure 3-6, indicating minimal, if any, effectiveness. The results in Figure 3-7 agree with previous sections: the current standard has shown no effectiveness since it was promulgated.

Figure 3-3 presents the risk versus power ratio curves for the number of boats in powering accidents per 1,000,000 hours of exposure. As before, the data are shown for all boats in the powering sample and for only outboards under 20 ft in length. The pest fitting exponential curves for each set of data are plotted. Figure 3-8 also agrees with all previous results. It shows a strongly increasing risk function for all boats (including pre-1972 boats) and a negligible function for boats to which the standard applies (post-1972 outboards less than 20 ft in length). Figure 3-8 also shows that the current standard has not been effective since regeral implementation in 1972.

Figures 3-7 and 3-8 contain "best-fitting" curves that were obtained using standard regression analyses, such as might be found in Statistical Principles in Experimental Design, B.J. Winer, New York: McGraw-Hill, 1971; Regression Analysis by Example, S. Chatterjee and B. Rice, New York: Wiley and Sors, 1977; and Introduction to Mathemacical Statistics, P.G. Hoel, New York: Wiley and Sons, 1966. As was stated in the Hoel reference (page 175), "If a scatter diagram in the x, y plane indicates that a straight line will not fit a set of points satisfactorily because of the nonlinearity of the relationship. it may be possible to find some simple curve that will yiels a satisfactory fit. Since in investigator alwyas strives to explain relationships as simply as possible, with the restrict on that his explanation be consistent with previous knowledge, he will prefer to use a simple type of curve. It follows, therefore, that the type of curve to use will depend largely on the amount of theoretical information one has concerning the relationship, and thereafter on convenience." The statistic reads the coefficient of determination and indicates the quality of fit achieved by the regression. This statistic can obtain values between O and 1, with the statistic indicating a better and better fit of the regression as it approaches i. The value of re-corresponds to the proportion of the variance in y accounted for by the regression on x. The type of exponential curve that has been fit to the data (using an HP-97 programmable calculator). was $\gamma = 1e^{DX}$. In Figures 3-7 and 3-8 the exponential curves gave a better fit to the data than a linear fit, based upon the statistic re-

should be noted that none of the curves in Figures 3-7 and 3-8 fit the data ry well; i.e., they do not account for much of the variance in risk values. e trends and differences in the curves are obvious, however. The fact that e computed curve in Figure 3-8 for the boats to which the standard apply approxites a linear relationship with a slightly negative slope should not be interested literally, since the precise values in the regression equation for that the corve (or the other curves in Figures 3-7 and 3-8) are not meaningful. What important is the shape of that curve (relatively flat) and the others, and the saning of those shapes as described above.

3.4.4 Accounting for Differences in Pre- and Post-Regulation Data

proughout these analyses, it has become very clear that there are vast differnces in the effectiveness of the current standard for pre- and post-regulation oats. If one were to look only at the pre-regulation data, then it would ppear that the standard had some potential for measuring the frequency and everity of powering accidents. If one were to look at the post-regulation ata, the standard appears to have little or no relationship with the powering roblem.

mere are many possible reasons for the lack of effectiveness of the current tundard on post-1972 boats. Older boats may be used less often or in a different manner than newer boats. Boaters may have more experience with older boats, and sherefore, have fewer accidents. Many similar post hoc explanations can be terrived in terms of activity, use, experience, and behavior. However, it is difficult to conceive of such variables accounting for the large observed differences in a few years.

no explanation is that engine and boat manufacturers may have found ways to nonease the horsepower on the boat that were not anticipated in the current standard. Figure 3-9 shows the same hull with two different deck arrangements, re-top set of drawings might represent the boat before the standard was enacted in 1972. The pottom set of drawings might represent the same boat after the tardard was enacted. Although the hull shape is essentially the same for both cats, the lower boat would be rated for a larger engine because of the measureer is used in the formula (ϵ_1 and ϵ_3). These measurements are increased in the

FIGURE 3-8. RISK FUNCTION: BOATS IN POWERING ACCIDENTS FER 1,000,000 BOATING HOURS

FIGURE 300. BOAT TESTON CHANGED

THE CONTRACT OF THE CONTRACT O

4.6 Averag Honsepower by Region

Table 4-6 presents the data for the rear horsepower by region in the powering related accident data. The horsepower distribution for each region is shown in figure 4-6, by percentage of the powering related accident boats in that region and by the frequency (number of cases). The data clearly show that the Southeast powering related accidents involve boats with smaller horsepower much more frequently than in other regions. This is shown by the number of cases where the horsepower was less than or equal to 25 hp and by the percentage of all powering related cases in the region where this was true. The Southeast was the only region in which the mean horsepower of the boats in powering related accidents was less than 100 hp (see Table 4-6). The West is shown to have more highly powered boats in its regional powering accidents. This is shown by the large hean horsepower in the West (see Table 4-6) and by Figure 4-6. Nearly 30% of all the boats that were involved in powering related accidents in the West had horsepowers of over 200 hp.

TABLE 4-6. HORSEPOWER BY REGION FOR BOATS IN POWERING RELATED ACCIDENTS

REGION	NO. OF CASES (KNOWN HORSEPOWER,	MEAN HORSEPOWER	NO. OF CASES	NO. OF CASES = 25 HP	
west.	105	171.33	36 (34%)	7 (75)	
George Jantina	• • • • • • • • • • • • • • • • • • •	106.53	51 (54-)	21 (22)	
wrt wast	I'o (i unk)	127.35	67 (55)	(17)	
Suther t	.52	39.80	102 (67)	42 (20)	

Note: A total of six boats were not in a prescribed region.

4.5 Fatalities Resulting From Course Changes. By Region

possible reason for regional differences in fatality rates for powering related idents is the type of water being navigated. For small nivers and narrow waters, a larger number of course changes (turns) may result in falls within the boat, is overboard, and capsizings. It was noted earlier that these types of accidents e very common in the powering related sample. Regional differences could be due some regions having more narrow waterways (run-off waters) and requiring more arse changes.

PRAM fatality data were proken down by region for those accidents which involvant intentional change of course on the part of the operator (see Figure 4-5). The were 94 such fatalities (nearly half of all powering related fatalities). The atheast accounted for over 41% of the powering related fatalities assoc ated with tentional course changes, while the West accounted for less than 11%. This sugsts that the use of streams, small rivers, and other narrow and winding waterways the Southeast may contribute to the high powering related fatality rate for that gion. The type of boat and activity also play a role in how the intentional change course affects the boat's occupants, but the data are suggestive of the course above problem.

FIGURE 4-5. FOWERING RELATED CHANGE OF LOURSE FATALITIES BY REGION

FIGURE 1-4. DISTRIBUTION OF POWER RATIOS BY REGION

Å

4.4 Power Ratio Distributions Within Geographical Regions

Table 4-5 and Figure 4-4 show the natio of nounted horsepower to nated nonsepower (the power natio) for all boats in powering related accidents (in 1975 and 1976, by designablic region. The West, which had the lowest fatality nate (see Section 17, which has the lowest average power natio. The Southeast, which had the highest futurity nate, also has the highest average power natio (see Table 4-5). The table also shows that the percentage of boats not in compliance with the current standard increases as one heads down the table from the West to the Southeast.

the lowers in Figure 4-4 show that, for all regions, the most frequent power ratio istructory for the boats in powering related accidents was 0.5 to 1.0. The most the limit ingle value was 1.0, which was obtained when the boater had mounted an east e that marched the boat's nated horsepower capacity. The distributions for the lest, borth Central, and Northeast regions are very similar. The distribution the one scutheast is distinguishable because there were fewer boats in that region is the compliance categories (0-0.5 and 0.5-1.0), and more boats in the non-compliance categories (particularly 1.0-1.5 and 1.5-2.0).

TAP : 4-5: POWER RATIO BY PEGION FOR POWERING RELATED ACCIDENTS

	: No. OF : No NowNS	NO. WHERE POWER RATIO WAS KNOWN	MEAN POWER RATIO	NO. IN COMPLIANCE	NO. NOT IN :OMP: JANCE
		r ·	0.336	55 (17.)	3 (13)
and the second second	14	! ! !	0.913	50 (33.)	12 (17)
the war 🐧		J2	1.044	70 (75.)	20 (72)
7 * 1 * 1.	÷ ;	; ; ;	1.008	57 (5¢)	48 (42)

it is a contract of sex poats were not in the of the prescribed militars.

TABLE 4-3. POWERING RELATED FATALITIES BY ACCIDENT TYPE

Number of Powering Related Fatalities	Percent of Total Powering Related Fatalities
26	13
85	42%
85	42%
3	1.
0	0.0
_5	2.5
204	100%
	Powering Related Fatalities 26 85 85 0

TABLE 4-4. ACCIDENT TYPE BY BOAT TYPE FOR POWERING RELATED FATALITIES

		dent Type		
Boat Type	Collisions	Capsizings/ Swampings	Falls Overboard or Within	Struck by Boat or Prop
Johnboats	1	47	25	0
High Performance Boats	1	1	3	0
Open Powerboats	20	20	41	ŝ
Cabin Motortoats	2	13	ō	G
Bussboats	2	2	10	Э

TABLE 4-2. POWERING RELATED FATALITIES BY BOAT TYPE

Boat Type	Number of Powering Related Fatalities	Percent of Total Powering Related Fatalities
Johnboats	73	36.
High Performance Boats	5	2
Open Powerboats	64	41,
Cabin Motorboats	20	10.
Bassboats	14	7 .
Unƙ nown	8	4
All Others	0	0.
TOTAL	204	100%

The data indicate that over one-third of all the boats involved in powering related accidents are johnboats, which are prevalent in the Southeast. High performance boats, which are prevalent in the Southwest, represent only 24 of the powering related accidents.

4.3 Fatality Distribution by Type of Accident

The fatality data for PRAM were broken down by accident type, as shown in Table 4-3. Falls overboard and capsizings/swampings account for 84 of the bowering related fatalities.

Table 4-4 shows the crosstabulation of powering related fatalities by hoat type and accident type for those that were known on both variables (196 of the 204 powering related fatalities). The table shows that over half of the powering related capsizings and swampings involve johnboats. Over 43 of the capsizing/ swamping and falls overboard accidents combined (the accident types that account for 34 of the fatalities) involve johnboats.

FIGURE 4-3. POWERING FATALITIES PER 1,000,000 BOATING HOURS BY GEOGRAPHIC REGION (USING 1973 NBS DATA FOR EXPOSURE)

Data from other ABS regions were similarly broken down to permute equal to the matter four regions in this report.

boating hours) for each region. The ordering of the regions water reject to fatality rate is the same as it was for fatalities in france 4-2 souther to use the 'worst," West was the "best," etc.). However, the inclusion of expectata shows that the regional differences are not as great as figure 4-2 would appear. That is, one of the reasons that the Southeast experiences as many consequence; fatalities than the West is that there is more exposure in the Southeast to low regional differences do persist in Figure 4-3, and the analyses that to low in this section will attempt to demonstrate some of the possible reasons why these regional differences in powering fatalities occur.

4.2 Fatality Distribution by Boat Type

Regional differences in fatality rates in powering related accidents may be due to any of several reasons. Boat types vary by regions (see Table 4-1) and powering related accidents could be more dominant in some boat types than in others. The PRAM fatality data were broken down by boat type. The results are snown in Table 4-2.

TABLE 4-1.	BOAT TYPE	DISTRIBUTION	BY REGION	(PERCENT)

Boat Type	Pacific	Great Lakes	New England	S.East	Total of All Regions
High Performance	7.6	4.2	2.7	-	3.2
Open Powerboat	61.0	61.1	64.9	ð	62.0
Cabin Motorboat	16.2	7.4	13.5	5.9	10.4
Johnboat	5.7	25.3	16.2	23.3	15.1
Bass Boat	-	1.1	1.3	5.3	2.4
Auxiliary Sail, Powered Canoe/Kayak Houseboat Inflatable (powered)	4.8	1.1	-	ú.7	1.5
nknown	<u>3.e</u>	<u>-</u>	0.9	3.3	2,4
Total No. of Soats in Region	195	9 5	111	152	463*
Percentage of All Powering Boats	22.7	20,5	23.9	32.0	100.3

^{*} Note: A total of six boats were not in one of the prescribed regions.

FIGURE 4-1. ALL FATALITIES BY GEOGRAPHIC REGION (INCLUDES 1975 AND 1976 CG-357 DATA FOR THE 48 STATES)

FIGURE 4-2. POWERING FATALITIES BY GEOGRAPHIC REGION (INCLUDES ALL 1975 AND 1976 POWERING FATALITIES)

4.0 ADDITIONAL ANALYSES AND RESULTS

The results of the Task III effort to evaluate the effectiveness of the Junrent standard formula in predicting risk with increasing mounted norsepower gave rise to several questions. The questions centered on issues related to the fact that the current standard appeared to be more effective for some coat types than for others. The variations in prominent boat types across regions would suggest regional differences in powering accidents. These issues are investigated using PRAM data in this section.

4.1 Fatality Distribution By Region

Figures 4-1 and 4-2 show the distribution of all fatalities (in CG-357) by geographic region, and the distribution of powering related fatalities by geographic region, respectively. The data for two regions are strikingly different in Figure 4-2 than the data for the same regions in Figure 4-1: the West and the Southease. There are relatively few powering related deaths in the West, considering the percentage of all fatalities that occur there. The Southeast accounts for nearly half of all powering related fatalities, despite the fact that less than one-third of all fatalities occur there.

The exposure data for the geographic regions was obtained from the Nationwide coal og hunvey (1973). These data were used to generate fatality nation for each design, but region (the number of powering fatalities divided by the intern of coathod cans times 1,000,000 = the number of cowering fatalities. His cook of nowared coath, and the data were grouped advanting to the regions at detined in this report, and the data were grouped advanting to the regions at detined in this report, which take use adjusted. For example, the has region fine-structure count, one wist times states that are in the Newtoeast region is this report, one wist satisfies had are nother and the Newtoeast region in this report. The under of beats in this report, the way are deed to the promotional to the experience to reach state within this continuous report, the way are deed to the experience as the Northeast in this report, of the Coathout the Southeast in the Northeast in the Southeast Table.

TABLE 3-15. COMPLIANCE VS. TYPE OF ACCIDENT FOR ALL BOATS OF 16 FT OR LESS

	HAD A POWERING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	92	101
Not In Compliance	58	34

TABLE 3-13. TYPE OF ACCIDENT VS. COMPLIANCE FOR JOHNBOATS

	HAD A POWEPING ACCIDENT	HAD A NON-POWERING ACCIDENT
In Compliance	45	59
Not in Compliance	26	19

Note: These data include 1972 boats.

Table 3-14 presents the data for all other outboards less than 20 ft in length (non-johnboats). The data indicate no significant relationship between compliance and type of accident for outboards that are not johnboats (corrected χ_{11}^2 - 0.162, p \times 0.75). This result, combined with Table 3-13, indicates that the overall effectiveness of the current standard is reflected primarily in its effectivenesss for johnboats, since it shows no relationship in other outboards.

TABLE 3-14. TYPE OF ACCIDENT VS. COMPLIANCE FOR OUTBOARDS LESS THAN 20 FT IN LENGTH THAT ARE NOT JOHNBOATS

	HAD A POWERING ACCIDENT	HAO A NON-POWERING ACCIDENT
In Compliance	90	ôì
Not in Compliance	43	3.1

Vote: These data include no 1972 boats.

Table 3-16 presents data for all boats less than or equal to 16 ft in length, and shows a stabilishbally significant relationship between compliance and type of a cident (corrected $\chi_{11}^2 = 5.307$, p < 0.025). This means that ocats under 16 ft is length which comply with the current standard are more likely to be in the supering sample, while those that do not comply are more likely to be in the lowering sample. The relationship for boats under 16 ft is related to the easilt reported previously for johnboats, since most johnboats are under 16 ft length. This comparison is very similar to Table 3-2 in Section 3.4.1, which was too toats less than 20 ft in length.

lower set of drawings without changing the boat's performance appreciably. Measures such as L_2 and W_2 , however, do not change. Thus, a manufact and increase the horsepower capacity of ms boat by flaring its bow and transom sides, without changing its performance characteristics. In effect, this circumvents the intent of the formula.

Similarly, engine manufacturers can rate their engines at a non-maximal rpm enabling the boater to buy an engine that is capable of more than the rated horsepower at higher rpm.

Consequently, the passage of the powering standard may have resulted in creating an opportunity to increase power ratings that are not reflected in the formula. The formula would then <u>not</u> be effective for those post-regulatory boats and engines, since it would not apply.

These issues will be discussed briefly in the next section, and in greater detail in the evaluation of alternative concepts.

3.4.5 Current Standard Effectiveness By Boat Type

Previous data analyses have indicated that the current standard is not effective for outboards less than 20 ft in length built after 1972. However, it may be effective for some boat types or lengths and not for others. For example, does the current standard reflect powering accident likelihood for johnboats and other flatbottomed boats?

The data for johnboats were separated from the outboard data. An analysis similar to that in Section 3.4.1 was then performed, where all johnboats were categorized according to whether the boat was in compliance with the current standard and the kind of accident that the boat was in (powering or non-powering). The data are shown in Table 3-13. These data show a statistically significant relationship of the type indicated in Table 3-1 between type of accident and compliance for johnboats. That is, in powering accidents, johnboats are much more likely to have been overpowered (according to the formula) than in non-powering accidents (Fisher exact p = 0.0279). Johnboats are not as susceptible to design changes that artificially increase nated horsepower (see Section 3.4.4) as other boat types.

4.7 Risk Versus Fawer Ratio for Johnboats

Data reported in earlier sections indicated that powering related accidents are more prevalent in the Southeast and on boats with relatively small horsepower (when compared to other boat types). These data suggest that johnboats, which are prevalent in the Southeast, may represent a large portion of the powering related accident problem.

The bowering related accident sample was screened to select those accidents that involved johnboats (from all regions). Risk functions for those boats were clotted versus the boats' power ratios (mounted horsepower/rated horsepower). In Figure 4-7, the number of fatalities per 1,000,000 boating hours (from Nationwide Boating Survey, 1973) at each power ratio was plotted separately for jonnboats and all boats in the powering related accident sample. The best fitting expocential for the joinboat data is not a very good fit ($r^2 = 0.3$), but it is better than the best linear or logarithmic fit (r=0.2 in both cases - see foothote conterning Figures 3-7 and 3-8). The data points are based upon a relatively small sample of johnboats at each power ratio. Despite the fact that the curve goes not account for such of the variation in the data, the risk associated with johnboats in powering related accidents is greater than that for all boats at almost every lower ratio. This is particularly true for those johnboats that are not in cominitiance with the current standard (power ratio + 1.0), which experience several itties the risk of an "average" boat at the same power ratio. Since the Southeast contains aparoximately 40, of the gonnboads in the U.S. (Naticewicz Scating Survey, 973). The minim powering related fatality misk associated with jointpats may account for the fact that powering related fatalities occur more often in the Southeast. As defore to Figures 3-7 and 3-8, the precise parameter values for these curves are not as important as the shapes of the curves, and the differences in shape, which are Hastiv Millerned from the finare.

Figure 440 presents the nick data for comboats and for all boats in powering related applicables on tems of the number of coats having a powering related acrident per .201, 40 coating hours. In this case, the accident hate for gonnboats exceeds the hate for an inversage boat at every power ratio. As before, the hisk goes up sequeficiently for those comboats that were not in compliance with the current standard.

FOWER RATIO (MODINTED HORSEPOWER/RATED HORSEPOWER)

FIRE 4-7. RISK PERSOS POWER RATIOS FOR JOHNBOATS: FATALITIES

POWER PATTO (MOUNTED HORSEPOWER/RATED HORSEPOWER)

FIGURE 4-8. RISK VERSUS POWER RATIOS FOR JOHNBOATS: ACCIDENTS

4.3 Powering Accident Severity by Power Ratio for Johnboats

The powering related accident data were sorted by boat type and power ratio. Then the severity of each accident was computed (using the lower values for each severity rode). Thus, Table 4-7 below shows the total severity of accidents at each power ratio (mounted horsepower/rated horsepower) for each boat type. This table does not present an accurate picture of the severity data, unless it is tempered with exposure data. The severity was divided by the boating exposure at each power ratio for jonnboats and all boats combined. The result was the set of graphs in Figure 4-9 (thousands of dollars in severity of powering related accidents per 1,000 boating hours of exposure by power ratio). For these computations, a human life was valued at \$480,000. The graphs show a marked increase in severity with increasing power ratio for johnboats. This function was much steeper than the same plot for all boats. In both cases, an exponential curve fit was better than either linear or logarithmic (greater r^2), but still accounted for only about 25 percent of the variation in the data. (See footnote corresponding to Figures 3-7 and 3-8). As before, the general shape and differences in the curves are much more important than the precise parameter values.

TABLE 4-1. SEVERITY (IN \$1,000 INCREMENTS) BY BOAT TYPE AND POWER RATIO

74 WEV RATIO		1. 5- 1. 33,	0,53- 1,76			1.25 - 1.50	1.50- 1.75	1.71-	Greatem Trap	- ;• i
			`,	ຳກຸບົ	924	4	r.	***		
e to the second				45,044	1.042	:.730	∔ ⊎ő			• • • •
m King Kangaran		4.4	;, ~\p	4,254	0	1.392	.*	7	2	
	:.	Fire ind	5.7.	j.564	a',∔wi)	2,3~2	2. %	2,352		
			.;	3,3;	4.ci)	4.5.)	912	,	• • •	. ,7 %.
** <u></u>			ر.	;		Ć,	1	,		
	į	* , *, . , .	, (a , (a	57.55	17, 340	1,958	4, 50	1.150		.1

FIGURE 4-9. SEVERITY BY POWER RATIO FOR DIFFERENT BOAT TYPES

4.9 Conclusions to Regional Analyses and Other Results

The preceding pages have shown that regional differences exist in the cowering related accident data. Subsequent analyses attempted to account for these regional differences in terms of boat type differences, water type differences can make of course changes necessary to navigate the waters), and accident type differences. The results were:

- The distribution of powering related fatalities by geographic region is very different from the distribution of all fatalities by geographic region. The West accidents had relatively few powering fatalities while the Southeast accounted for hearly half of the powering fatalities.
- The Southeast had a nigh powering fatality rate (the number of fatalities per 1,000,000 boating hours) when compared to other regions.
- Johnswats accounted for over one-third of the boats involved in powering related accidents, while open powerboats accounted for over 40 percent.
- Swampings and capsizings (42 \ and falls overboard or within the boat 42 , were the dominant accident types in powering related incidents.
- Over half of the powering related apsizings, and over 43 percent of the Japsizings and falls overboard (combined) involved johnboats.
- The rean power ratio (mounted nonsepower divided by rated nonsepower) was the highest in the Southeast, and the mean power ratio for a boat in a powering related accident in the Northeast and the Southeast was not in compliance with the current powering standard.
- The Southeast accounted for over 41 percent of the powering fatalities is actated with intentional counter imanges (turns), while the West end intentional intentional counter half of the powering related turns than in accidents involving intentional course changes.
- The near consepowers by region on the powering related accidents were some or more powers by region of k. and lower in regions with higher of ky. The coutreast was the only region with hear non-solution ander

100 np. However, different types of boats are used in different regions, and some perform differently than others when equipped with norsepowers above their formula rated norsepower.

• In terms of risk of an accident, risk of a fatality, and severity of an accident, as the power ratio increases on johnboats in the powering related accidents, the risk or severity increases. The risks (accidents or fatalities per 1,000,000 boating nours) for johnboats were much higher than for an "average" boat in the data base.

5.0 PRELIMINARY IDENTIFICATION OF ALTERNATIVE APPROACHES

The RBS R&D development process, as depicted in Figure 5-1, calls for the identification, feasibility analysis, and preliminary effectiveness analysis of alternate solution concepts after the completion of the cause identification phase. In the present effort, it was decided to include a preliminary identification of alternate approaches task in the cause identification phase, in order to ensure that any concepts identified by the researchers working with the accident data were properly documented for use in the alternative concepts phase of the project. This section documents the concepts we have identified, and provides any readily available data we had concerning the rough magnitude of the accidents to which each idea is applicable.

As a means of structuring this section, Figure 5-2 depicts the interrelationship of the man, the machine, and the environment in an accident situation.

In most accidents, a change in the environment, the operator, or the boat could mave "broken" the accident chain and thus prevented the accident. Since there is little that the Coast Guard can directly do to "regulate" the environment, we have organized our alternative concepts into standards concepts aimed at the boat, and possible educational or enforcement approaches aimed at the operator. It should be noted that the choice of approaches is not easy. There is a big diffarence between promulgating a standard or education program and achieving the "inange" in that in operator performance desired. Factors to be considered include: the coverage' achieved (while standards, assuming high compliance, can reach rearly are boats of the type under consideration manufactured after a diver date. education program coverage is not presently as widespread and has a definite problem realness "beaters" who ere not interested in becoming proficient at their hoppy); The reliable by materials degrade with time; boaters "educated" may well not inecally, on thoose to disherward, the Lafety heisage they received,; the cost, and one inipat of things of ner factors, agostional operator risk-taking, etc.,, will partial continuity remate the effect of the action. Some of these faction mentioned can be quantified to cour algorishmal study as an god to canademe t decision has not. Eithers just be decided based solely on management subjective plagment of coursely

Figure 141, Termani - Februari Program Develorment Drowing George Seden Finctions and interface Documents

FIGURE RAD. REPREATIONAL BOATING SYSTEMS AND RELATIONSHIPS

5.1 Standards Approaches

r section on standards approaches has been subdivided into sections on alternatives affecting mounted horsepower and other alternatives to powering related action prevention, such as start-in-gear protection or non-skid surfaces.

5.1.1 Horsepower Labeling Alternatives

Hore going further, some discussion of the present standard and its interrelaconsnip with other boating safety standards is in order. The present standard, , he federal level of enforcement, is a labeling criteria. It provides informacan to the consumer unncerning the nonsepower capacity of his boat as defined by tandant. Inerefore, it might be more purely identified as an educational in the arther than a standards approach. There is no federal requirement that of the control of the consequence of the control of ... in in the mower inglists independent of the History regions and regions of the most independent ones, as the one shates have operation from sance saws which date of the legal to while an evendowerel poat. The meath, industry Association has leed a tive in y by the envirage to selected with a line, over the horsed war distracted in and a sygn if requested to do a first the container, due to recent and a bar of, two conducting tourth, we have been told that howe dealer incommunities They are ally promobile the calling of overpowered mags. They do all of and the contractions, the Mabel information has in practice provided a con-All the stronger grows the mounted correspower of poats.

The respecting perhapsing some research has indicated that the standard continues to product our perhapsion, safe never and nonsectivening of the respect to not unable years serve a secondary safety or return. Both continues of the romagness requires knowledge of the nonequest from the source of the nonequest from the secondard continues and the nonequest for a secondard continues and the se

board in most accidents with larger boats. Therefore, as a practical in the, even large (#50) percentage increases in power, probably do not significantly increase accident or decrease recovery probabilities. Nevertheless, in the absence of federal formulation or other required means of determining norsepower capacity, the employed for consumer information labeling of the safe horsepower or safe engine weight used in determining load capacity and flotation capability would have to be provided.

with the preceding in mind, we have identified the following alternatives for labeling of outboard horsepower capacity for boats other than johnboats (as the present standard appears effective for johnboats):

Eliminate the present formula standard but require labeling of manufacturer getermined norsepower capacity. This approach would assume that no cost-effective capacity discriminator (test course or formula) could be identified. As the loading and flotation regulations require a nonsepower, or engine weight limitation of some sont, safe horse-power capacity information would still be required, but the limit would be set by the manufacturer using any method he chooses. This is essentially the system which presently exists for inboards - the manufacturer establishes his own horsepower limit, but must use the corresponding engine weight in determining load capacity and flotation requirements.

The internal action of this approach might be that it could result in the defacto continuation of the present formula does to manufacturer as such it about, considerations.

Improve a new standard using test courses. Based on the action to contained in this report, tentative performance of terms that wests under power could be developed and a test course to measure the contracts under power could be developed. Passifail on terms would trem the processor and the test course, validated for internal condition of under entain validative. The partier is easily said, but on the dependence of the difficult and expensive to accomplish.

Once a performance criterion to established, developing a test source and pass/fail criteria to test it is reasonably straightforward. Unfortunately, developing one which minimizes the influence of changes in driver skills and judge's experience as not as easy. One alternative is to use electro-mechanical "drivers" and "judges," but the resulting criteria would essentially require each manufacturer to submit his entire line to a test lab that could afford the instrumentation for testing. The resulting expense of self-certification might well destroy the viability of the approach. This leaves two alternatives:

Develop a tompula based on the test course results and premulgate of. This will be preduced in more detail later.

The later and some enviative formula and a test course, and allow a manufacturer to relativentify by either method, but require him to include which he to reed compliance test cours down. The label, for instance, would say:

Maximum Horsebuners.

135

- * By test course retrod
 - 9 1
- * By formula method

would allow a manufacturer who felt has innovative design who set a higher nonsequiven than the formula actions to establish the same time. Head dance method. At the same time. Head dance then appear who is instead to posstring his nonsepower hatting will be the the same time and save the expense of undergoing the homoepower tests.

1. 1 1 - 4 - 5 rank something one of two methods:
The new tombulation of two methods:

The control of the co

- The lide configuration hot in the marketplace, or in the centification to accomplete and accernative formulas derived.
- 2) Dased or a tigent data. A formula could, theoretically, so derived to incountry various bower ratios" for the powering and conpower-incorrelated successed samples until a valid predictor of risk was uncovered. Unless some theoretical consideration on test course results were used to first identify candidate ratios, this would amount to a "fishing" expedition with little probability of success. The limitations of the accident data also would limit this approach to relatively simple formulations. As in the test course formula approach, an analysis of the susceptibility, or actual validity of the natio as upposed to simple statistical correlation, of the natio to "rule beating" or applicability to changing design parameters would have to be investigated.

5.1.2 Other Standards Approaches

There are several possible alternatives that can be pursued to prevent the accident, accepted at the various nodes on the decision tree. Some of the alternatives are intuitively povious in their identification, but are not effective enough in reality and initiality according to the number of fatalities associated with the powering problem.

The content of the content earlier that the major significance in the cowering related to action of the content lives four and not in property durings losses. The colline of a confident during as indicated in our powering related updates the colline sent sample as indicated in our powering related updates the colline at life at the colline at indicates the colline of a life at the colline of lives saves.

the athen hand, the post attach a conferency value on the cost of faptementance as formative approximation and extensions in the cost to the sample. Then and the provider, we have the order that the number of lives saved by the anti-cost entation. We have one on the \$480,000 ten life as that choose neglected tool.

TABLE OF CONTENTS

- 1.J INTRODUCTION
- 1 1 DEFINITION OF A POWERING-RELATED ACCIDENT
 - L.1 Initial Sorting Of The 1978 Accordents
 - 1.2 The Final Definition Of A Powering-Related Accident
 - 2.3 Accident Scenarios Which Would Be Accepted
- SRELIMINARY PRAM
- 4. DODING OF CO ACCIDENT SAMPLE
- 600 THE POWERING-RELATED ACCIDENT MODEL

ABOTRACT

The powering project will include: defining powering-related accidents, collecting a sample of such accidents and coding them through a powering-related accident model TPRAM), identifying accident mechanisms, and formulating and evaluating powering standard concepts, including the present standard. Progress through the development of PRAM is reported in this technical brief. Operationally, defining a powering-related accident is equivalent to defining the sample to be coded through PRAM. This was accomplished through engineering analysis of the problem in consultation with Coast Guard personnel. A decision tree was developed which is presented and discussed in this report. A preliminary PRAM was developed and tested by the coding of 20 accidents. The results of that coding are presented, along with recommendations for the final form of PRAM, and for the processing of the remainder of the accidents in the total sample.

PREFACE

This document is the first of two volumes constituting a technical brief on the Powering-Related Accident Model (PRAM). Since the coding of the 20 accident sample through PRAM, several new developments in the powering project have occurred, necessitating a second volume. Volume 2 will detail these further developments in the areas of the powering-related accident decision tree, the nature of the total sample in terms of severity, and PRAM. In addition, the data needs for the evaluation of powering accidents will be reviewed in terms of the event and sequencing information that can only be obtained from in-depth investigations, some fatal accident reports, and field studies.

APPENDIX A. THE POWERING RELATED ACCIDENT MUDEL VOLUMES I AND II

WYLE LABORATORIES MARINE TECHNOLOGY STAFF

TECHNICAL BRIEF 77-5

THE POWERING-RELATED ACCIDENT MODEL

VOLUME I

57

3. Jamistian Strent Robert L. White

11/2/1377

Work Performed Under Contract No. 007-00-62555-4

REFERENCES

- 1. White, R. W., J. O. Bowman, S. L. Patrick, <u>Standard Analysis Powering/Performance Evaluation Using Test Course Methods Volumes I and II;</u> Contract DOT-CG-40672-A, March 1974.
- 2. "RBS R&D Background Information for Bidders," USCG, December 1974.
- conen, S. S., et al, <u>Regulatory Effectiveness Methodology Phase II</u>
 Research. First Interim Report to USCG. Contract DOT-CG-42333-A.
- 4. Ouren, S. B., Regulatory Effectiveness Methodology Phase I Research, Contract DOT-CG-42333-A, July 1976.
- Don't Tealer John, High Speed Motor Boats, Nautical Publishing Co., 1969.
- finely, Francis, S., <u>Skene's Elements of Yacht Design</u>, Dodd, Mead and Co., 1973.
- Large Linusay, "Cost-Effective Propeller Size," <u>Motorboat Magazine</u>, 1847, 4, No. 1, January 1977.

- 1) What is the rated to epower capacity stated to the control of the control o
- 2) What is the horsepower rating of the engine you currently have mounted on your boat?
- 3/ Is your boat classified as a bass boat or fish and ski boat?
- 4) Were your boat and engine purchased separately or as a package?
- A comprehensive definition of a bass boat and a jonnboat should be developed and the BAR form and NBS questionnaire should be modified to include these as two additional types of boats. The definition should include considerations for future design changes.
- Engines should be aynamometer tested and rated under the same constraints regardless of manufacturer.
- A sensitivity analysis of the safe powering formula should be conducted using test courses related to the powering related accident scenarios for empirical varification. It is possible that the formula can be adjusted to reflect its potential effectiveness as demonstrated in the pre-regulation data.
- The present formula should be retained for establishing the norsepower livit for johnboats, and possibly other boat types.
- a Pre-apprident data base should be expanded to include 1917 for later's accidents in order to determine the effects of large, power-symmed engines, and the increase in the bass boat population.
- Frein investigations within the identified regions should be londucted number paper an obating seasons to verify the assumptions made on expanded during this phase of the project (i.e., collect real-world power ratio data). These data should provide valuable input to equipational/enforcement concepts as well.

The current standard formula was derived empirically from tests involving classically styled boats running small (less than 80 hp) outboard engines. This inherently indicates non-effectiveness for systems not included in the empirical derivation (i.e., flared-hull boats and/or high horsepower engines).

Test course methods (themselves extrapolated beyond their derivation criteria considerations) do not substantiate the point of "safeness" for outboards less than 20 feet in length. This is substantiated in the results of the tests conducted by the BIA and ABYS in Naples, Florida, in October, 1977 on boats equipped with V-6 outboard motors.

There are regional variances in the probability of having a powering related accident and the probability of having a powering related fatality. The Southeast region was the region with the highest risk. The regional differences can be accounted for in terms of boat types (johnboats, prevalent in the Southeast, naving considerably higher powering accident and fatality risk than other boat types) and water types (many powering accidents and fatalities result from intentional course changes, such as might be required on the small streams and covers of which there are many in the Southeast.

Firstpottom/nard chine boats with relatively low internal freeboard (passenger compartment floor to gunwale) dimensions are the most frequently encountered boats involved in falls overboard during meaneuvers. The most significant resulting in the most fatalities) accident mechanisms identified by the sample sata involved nigh longitudinal or lateral accelerations and unexpected boat overents.

It is the property damages are reportedly due to collisions in which the operation has lost control of the boat. This appears to be a result of accident reporting since, in most cases, insurance claims are involved.

read the results of this study, several recommendations are unged:

• The NBS questionnaire should be revised to include several questions that will supply much of the needed but missing boating information. The recommended questions are:

6.0 CONCLUSION AND RECOMMENDATIONS

The definition of a powering related accident is a complicated tatrix of decisions, each requiring a judgmental decision on power involvement. Such a definition has been derived and applied to all reported accidents for 1975 and to all reported fatal accidents for 1976. Powering related accidents, as we have defined them, account for approximately six (5) percent of all reported accidents. This percentage involves, on the average, the loss of over 100 lives per year on the o. S. waterways. This is a conservative estimate, as the definition filters out such accidents as "grounding" and "hit submerged object." Although these types of accidents are not initiated (in most cases) by excessive power, nowering may increase the severity of these types to the loss of life level.

Several comparisons of pre- and post-regulation boats in the sample were made with the data indicating that the ratio of mounted horsepower to formula rated horsepower was the same for pre- and post regulation craft. This indicates that, after being promulgated as a government standard, the present formula had little effect on changing the powering tendencies of the average boater in the accident sample.

It was found that compliance with the current standard was no more frequent for experienced coaters than for non-experienced. However, boating safety education as shown to lead to greater compliance.

The current standard formula is not a good predictor of risk (defined as the probability of having an accident, for most over if the interior describes the probability of having an accident, for most over if the interior describes to be formula does not predict the impact of poat hair describe on most above the water line and allows higher norsepower natings for flared than or and streamlined poats innegancless of the absence of change in poat to water interfaces.

The number's sweethic standurd formula was evaluated in terms of several risk panaoster of the truen sum (so wellow thichese in risk with non-compliance for bastregulation os ass, but considerable increase on risk for pre-regulation boats.

- a) If sound labeling criteria are developed and related to powering related accidents either through test courses and/or formulas based on test course results or accident risk data:
 - Change overpowering to prima facie evidence of negligent operation on federal waters
 - Encourage states to follow suit on state and joint jurisdiction waters
- b) If no sound labeling criteria are developed relative to powering accidents but a labeling criterion remains:
 - 1. Advise states that federal horsepower limitations are important relative to overloading and flotation only, except for johnboats.

For jonnboats, in any event:

1. Encourage states to step up passage or enforcement of overpowering regulations for lightweight, hard chine boats (use definition in powering standards) as most johnboats accidents occur on inland, joint and state jurisdiction waters.

5.2 Education/Enforcement Alternatives

Two sets of education and enforcement related alternatives were identified as part of this effort. The first set are alternatives aimed at maximizing the effectiveness of the powering capacity labeling alternatives, the second set identifies common operator errors in powering related accidents which may or may not be addressed in present education or enforcement programs.

5.2.1 Education Related Alternatives to Enhance Powering Capacity Labeling Effectiveness

The following alternatives were identified under this category:

- a) If a sound labeling criterion is developed and related to powering related accidents either through test courses and/or formulas based on test course results or accident risk data and in any event for johnboats:
 - 1. Advise on the dangers of overpowering beyond the capacity stated on the label, including the susceptibility to powering, loading, and flotation recovery related accidents.
 - 2. If a new, relatively simple, formula is developed, advise owners of existing boats on how they can calculate their new, improved, maximum norsepower capacity. Be careful to note dangers of increasing capacity as a result of the calculation due to loading and flotation considerations.
- b) If no sound labeling criteria can be developed:
 - Advise on the dangers of having engine weights above those shown on the dapacity plates relative to loading and flotation related accidents.
 - Advise on means of avoiding or recovering from "powering related" accidents.
 - 5.2.2 Enforcement Related Alternatives to Enhance Powering Capacity Labeling Effectiveness

The following alternatives were identified under this category:

1	`,		

	Applicant Accept Modes											
	5	â	1 12			16	1.7	٦,	19			
	1		·	unber	of Fat	alitie						
JIHER STANDARD APPROACHES	2	1 11	, 2		22	15	34	- 22	24			
Speed limits	ĸ			Х	1	х		.(
limit on trim ungle (this effectively limits net available horsebower)		۸			1	λ						
Non-skid dassenger compartment surfaces					×	*						
Rail and/or guards				X	, X							
Greater seat to gunwale dimensions (sides above passenger CG)				, x	X	ı		4	х			
variable ratio Steering	1		;	, ,	+							
Spank advance limiter to reduce Lacceleration rates				х	х		•					
Innust vector laterally indicator					X	#			-			
when uperator to boat system introduction course								۸	λ.			
come stant (ock-outs (no stant-in- ean even if hand chanked)					X			******				
Tantro. Station Standards	1 /	x	χ.		1	~						
Ministry maneuvering space at locks and amina's	х	ķ		1								
Proportional turottle	,	,	х		x							
Les poserver laws		ν.	X	 -	+							
Cito plane surfaces	· · ·		χ.	· 	*			•				
Pevishan to Inghtthy standard http://www.sectors.com/spaces/formations/et/ estimates.web.and-havenabesets.com/task. http://www.sectors.com/spaces/formations/et/		x	₹.			•		*				
Tuthous on go fundasations The same states	·	·	***	*	4		.,					
Talling to the way he sharp interview.				τ,	+	*****		····				
The Control of the Co	!		+	۸.	-							
Section Flags 1 of wdvel					•							
n ne nom ne manaer folgrown out		*										
i vastien vient halpis e vivinent. Saus seen vient seen et en vivinent in de Selge van	<u> </u>	·		·			4					
in in hater havigation income The grant Termina		+ :				•	· .		•			
Les fermanistes, formedulies, buw Light anterent Marinant Light (1987)	.						·					
par la lie de la la la la la casa communa de la compansión de la la compansión de la compan		• • -							•			
A Company of the Comp	ļ				-	•	· ·		•			
the subtract AC side (v) many first about the substitute of the su	-		** ~ ,		·•			.				
etwice Antibro State Laws	-	•	· · · · · · - ·		•	•	• -					
Sign System Medicates.			 -									
	1		-•					• •				
Fride Section 10	-				-				•= · • •			
								•				
Tytatosa firoment wat							· ·					
son Contains												
State with the entry of AMARCA	Ĭ.				-			·				
Commence of the Commence of th	<u> </u>			<i></i>								

For those accidents accepted at node 14, possible approaches other than improved rails and guards can be identified. One possible approach is imposition of proportional steering ratios. This would result in a softer initiated turn and seemabs forewarn the passengers of the forthcoming change in direction allowing them the time to initiate restraining actions. The maximum benefit to be realized from this approach according to our sample is approximately seven lives per year. It is means that in order to be cost effective, the one-time cost per boat must be less than \$6.90. This approach has some disadvantages in that the avoidance laneuver is nampered by the additional movements required of the operator. This means that any benefits realized here may be offset by an increase in the support of collisions.

A rist of several standard approaches that could be investigated in a future effort its presented in Table 5-1 along with the number of possible lives to be saved as regreated in our sample data.

encasement is not the solution. The leaves 29 total lives to be saved in two years.

Now, one must consider that by their nature, guard rails will result in a certain amount of bodily injury to the persons that are being kept in the boat. This must be deducted from the benefit. However, we will disregard this deduction here.

The disadvantage to this alternative lies in the costs to the consumer. An estimate of the cost of adding hand rails (based on wholesale catalog pricing of presently available railing hardware and including nuts, bolts, screws and a nominal labor estimate) runs on the order of \$150 to \$200 per boat considering an average length of 16 ft. Using the number of boats sold in 1977 as a base, the costs for outboards (per year) is somewhere between \$50.4 million and \$67.2 million and for inboard/outdrives between \$12.6 million and \$16.8 million.*

The total cost per year to the consumer is then between \$63 and \$84 million dollars. The costs would have to be reduced to approximately \$16 per boat in order to be cost effective.

If the benefit to society is to be compared to the cost, then both must be expressed in terms of dollars. Various dollar values have been assigned to a humar life during various research programs. For the purpose of illustration, a value of \$480,000 is chosen.

in the entire population of registered boats is assumed to have the improved rails and quards, then:

Multiplizing this number by the expected life of a boat (15 years), a one-time test per boat is potained.

we can upply the above nationale to the fatalities at each node of acceptance and determine the benefits/costs of various other standard approaches.

^{*} These numbers are based on the beating industry Martine Market Survey for 1977.

from is not to be construed as promoting a theory that lives of boaters are important in a monetary sense only.)

There are two approaches to standard promulgation when attempting to save boaters' lives. Basically standards fall into one of two categories: 1) standards to premote accidents, and 2) standards that preserve the capability to recover from the accident. Both categories have been investigated by the Coast Guard. Obviously, many of the boaters counted as fatalities in the powering related accident sample about have been saved through recovery measures such as would exist through recovery type standards such as PFD usage, mandatory swimming instruction, level flotation, and others. However, the primary attention here should be placed on accident premotion instead of recovery.

The prevention category, there are alternative approaches that cross over the second separation between various nodes of acceptance and may therefore save a second of those lives documented in different nodes. Examples of these are:

Servined addition has been addressed earlier. Beverage control is a state enforcement shocken with extremely high costs.

proved rank forquards could be considered a viable alternative. Requiring courts there in incorporate these into the design of their boats could acssibly a a portion of those fatalities listed under nodes 14 and 18.

The papering Lample there were 50 fatalities listed under node 14 and 22 listed to be moved to 30 these nodes involve falls overboard. However, there are the research of the two nodes. The total number of fatalities which to at both nodes is 80. Also, since the present formula works for reports, we subtract those (27 fatalities) from the number. (These cases were written by the formula to become accidents.) Part of those 53 remaining (10) were the result of days trings and swampings leaving (43) that could possibly have been dayed had they not gone over the side. However, approximately 30% of these intributed to their fall by being in a poor position. It must be assumed that they is the end of these day of these services as any 30% would not have been helped unless they were fencased? It this is a sorie way for them to be disposted. Common sense distates that

THE POWERING-A: LATED ACCIDENT MODEL

1.0 INTRODUCTION

The objectives of the safe powering project are: 1) to determine the need for a standard limiting the nonsebower of recreational boats, and 2) to determine whether there is a need to improve the present standard or develop a new one.

Basically, there are two major work elements in obtaining each of the objectives listed above. First, powering-related accidents must be defined. This type of accident is not as easily defined as others, and this work element is critical in determining the need for a powering standard and evaluating alternative standard concepts. Second, through accident data analysis, the need for a powering standard should be determined. The definition obtained in the first work element is used to define the sample of data to be analyzed. The powering related accident model (PRAM) is developed as part of the second work element. It is an analytical tool to be used to summarize and manipulate the accident data. Provided a significant number of powering accidents do occur, PRAM will enable the description of these accidents in terms of the prominent accident mechanisms.

The two work elements that enable the attainment of the second objective above are: It evaluate the effectiveness of the present powering requirement, and 2) evaluate the effectiveness of other possible powering regulations. Through this phase of the project questions such as, 'Does the present standard prevent powering accidents?", and "Would another standard prevent powering accidents which might occur under the present requiation?" should be answered.

This technical brief provides an accounting of the progress to date in authorized the first objective, that of determining the need for a powering standard. The development of the definition of a powering-related accident is tetanled and the final form of the definition (a decision tree for accepting accident; in the sample for PRAM) is described, including scenarios of accidents that would be included. The development of PPAM is putlined to the point of the goding of 20 accidents to test the model.

The results and implications of the coding of that sample are analyzed. Suggestions and revisions for PRAM are discussed, along with the proposed approach to the coding of the entire powering-related accident sample.

2.0 DEFINITION OF A POWERING-RELATED ACCIDENT

The important first step in the powering project was to define a powering-related accident. This task was complicated by the fact that powering-related accidents occur in many, if not all, of the common accident types (e.g., collisions, falls overboard, capsizings, etc.).

As a start toward the definition of powering-related accidents, a list of situations which were significantly or tangentially related to powering was made. This list is shown below:

Significantly Powering-Related

- 1. Those accidents where the operator lost directional control of the vessel while it was underway and under power.
- 2. Those accidents where the boat did not respond to the helm as the operator intended while it was under power.
- Those accidents where persons fell overboard or the boat capsized or swamped during a maneuver.
- 4. Those accidents where the boat capsized or swamped and indications exist that its seaworthiness had been degraded by the speed at which it was operating.
- Those accidents where a sudden application of thrust initiated the accident.
- cantly to the severity of the accident and no other viable regulatory approach appears to exist.

<u> Tangentially Powering-Related</u>

- Those accidents where kinetic energy was a factor but other viable regulatory approaches exist.
- Those accidents involving a material or subsystem failure.
- Those accidents where the operator was unable to detect an object,

- and a collision occurred, due to visibility problems involving the vessel's trim or heel angle.
- Those accidents where the operator was impaired by powering-related stressors.

Not Powering-Related

All others.

2.1 Initial Sorting of the 1975 Accidents

Through consultations with the Coast Guard and further analysis of the problem, a decision tree was developed for the sorting of the 1975 boating accidents reported to the Coast Guard into the potentially powering-related accidents and all others. This tree is shown in Figure 1. It rejects a large number of accidents at the top of the tree that are not powering-related (those involving boats that were not powered or were not underway, etc.). The later decisions in the tree involve the accident mechanisms and the involvement of speed, power, and thrust in those mechanisms. This tree was used to perform an initial sort of the 1975 accident data, and to select the potentially powering-related accidents from those data.

In order to minimize the number of accidents to be read and sorted, the Coast Guard's computerized data system was used to cull those accidents which were easily eliminated from consideration. If the boat had no engine, or horsepower was unknown, or (in some cases) the boat was not underway, then the computer could eliminate these accidents from consideration guickly.

Wyle personnel applied the decision tree shown in Figure I to the accidents that survived the computer sort. A sample of approximately 1200 accidents were "accepted" from the initial population (before the computer sort) of approximately 6300 reported cases. Records were kept of the number of accidents accepted/rejected at each node.

FIGURE 1. POTENTIALLY POWERING-RELATED ACCIDENT DECISION TREE

2.2 The Final Definition of a Powering-Related Accident

Upon further analysis and consultation with USCG personnel, it was decided that the definition of a powering-related accident needed further refinement; i.e., the sample needed to be reduced further, particularly in the areas of collisions and loading-related accidents where the involvement of powering was tangential or secondary in nature.

The result of the further analysis was the final definition of a powering-related accident. The final decision tree is shown in Figure 2. Any accident which is processed to an "accept" node in this decision tree is considered a powering-related accident.

The differences between Figure 1 and Figure 2 are subtle. The first four decisions in the tree are not different. On the non-collision branch (node 13 and below), the change in Figure 2 was the addition of the top decision in that branch. This was inserted to reject those accidents where underpowering may have been a significant causal factor, and other accidents that were not related to overpowering. Note that accidents involving boats operating at less than nalf throttle can be included in the sample, but only if their norsepower per foot of boat length ratio is nigh. Thus, a small boat with a large engine, which could experience a powering problem at low throttle settings, is included in the sample; i.e., it can be accepted.

For the collision branch of the tree, several changes were made. The concept behind the decisions in the tree in Figure 2 was to include those accidents where: 1) the operator theoretically had a chance to avoid the collision the detected the other boat, etc.), and 2) his speed (lack of time) precluded the execution of an effective avoidance maneuver. Cases where the operator lost control of the boat are still accepted. Cases where the object of the collision was not detected, or the operator did not respond in time because of alcohol or other stressors, or where the environment (waterway, etc.) precluded avoidance were collisions which the decision tree rejected. It should be noted that the decision tree allows for some engineering judgment in cases where the decisions can be summitted but are not directly known.

FIGURE 1. FINAL POWERING RELATED ACCIDENT DESISION TREE $A\!-\!6$

This decision tree (Figure 2) was used to code the node of acceptance for the 20 accidents in the PRAM evaluation sample (see next section) and will be used prior to and during the coding of all accidents reviewed by the analysts for PRAM.

2.3 Accident Scenarios Which Would Be Accepted

Example scenarios have been developed for each of the "accept" nodes in the decision tree (Figure 2). These are listed below in order to illustrate the meanings of each of the decisions in the tree. The examples are not intended to be all-inclusive but illustrative.

- NODE 5: A motorboat was proceeding at a fast rate of speed. While attempting to pass a boat which it was overtaking it hit the wake of the other boat, causing the overtaking boat to go out of control and strike the boat that was being overtaken.
- NODE 8: A boat enters a marina area at 3/4 throttle. While proseeding past several docked boats, the operator notices one vessel backing out of its dock, directly in his path. Before he can react to the situation, the collision occurs.
- NOCE 12: A motorboat was proceeding up a river at a fast rate of speed. As it rounded a bend in the river, the operator noticed another post heading towards him. Both boats attempted to turn away from the impending collision, but could not. The boats collided as the turns were being executed.
- NODE :4: An operator is proceeding up a narrow waterway at night speed. He rounds a bend and finds a boat in his path. In turning to avoid the other boat, he loses control and capsizes. One occupant drowns or extensive property damage occurs.
- NOSE 15: An operator applies full throttle suddenly while a passencer is snifting from one seat to another. The passenger falls overboard and drowns before the operator can return to pick him up.
- NODE 16. An operator is proceeding at high speed across a lake. He hits a wave and loses control of the boat, which goes into

"dynamic instability" and capsizes. One occupant drowns either due to "sudden drowning," being a non-swimmer, or being hit on the head during the capsizing.

MODE 17: A boat proceeding at high speed encounters a large wave which enters over the bow and swamps the boat. One or more occupants drown prior to rescue.

NODE 18: A boat is on plane, and while it is traversing a large wave at an angle, one passenger is knocked down, causing a severe nead injury.

NODE 19: A boat proceeding at high speed encounters a wave or wake which capsizes the boat. One or more occupants drown prior to rescue.

3.0 PRELIMINARY PRAM

upon the completion of the sorting of the 1975 accidents, the powering-related accident model (PRAM) was developed. This model was designed to summarize the accident data in an organized fashion to allow for the identification of powering-related accident mechanisms and the evaluation of the potential benefits attributable to alternative powering regulation concepts.

Through a review of the powering accident decision tree and the resulting sample of 1200 accidents, as well as several consultations with USCG personnel, several key decisions were made as to the content, form, and purpose of PRAM. PRAM was built using analytical techniques similar to those used in previous successful data modeling efforts (CAM - the collision accident model, and ARM - the accident recovery model). Three purposes were identified for PRAM: 1) to summarize/organize powering-related accidents, accident data and provide scenarios of common powering-related accidents, 21 to identify the dominant mechanisms of these accidents, and 3) to provide statistics and probabilities on all relevant factors and combinations of factors in these accidents in order to facilitate the estimation of potential benefits attributable to alternative powering regulation concepts. In reviewing the accident data and purposes of PRAM, it was

determined that sequential dependencies in powering-related accidents would be difficult to identify, if they were present. This suggested that PRAM should be a matrix-like model, concentrating on the conditions surrounding the powering-related accidents and their interrelationships, rather than upon sequential dependencies (a more tree-like approach). Thus, from the outset, PRAM was conceived as a model with many variables coded as separate entities and relationships indicated by the ability to organize the data in many ways. This approach allows PRAM to be flexible in the ways that information can be categorized, which should prove to be beneficial when the benefit estimations are performed.

After additional analysis of the accident data and further consultations with USCG personnel, a preliminary PRAM (including coding instructions) was designed. This model included information in each of the following areas:

Accordent	Identification	Number
76 - 46116	A delicit (Cucion)	HUNDE

Coder (Wyle analyst)

State

Month

Year

Time (of the accident)

Boat Type

Boat Length

Boat width

Hull Image

Year of Munufacture of the boat

Type of Power

Body of Water

water Conditions

Speed (at the time of accident)

Trim Tabs? (yes or no)

Motorwell? (yes or no)

Helm Location

Type of Steering Controls

Type of Throttle Controls

Type of Propeller

Motor Manufacturer

Horsepower (in use)

Motor Weight

Maximum Engine RPM

People on Board

Activity 'at the time of accident)

Rated Horsepower

The reader to referred to. Penson: Fintuing Revices Research-Phase I, by I. Doi: D. Stren: M. Pfauth. and R. MacNetl: report to USCS for contract No. DOT-03-42333-A. T.D. D. Duiy 1376, pages 1-1 to 1-32; and Requisions Sfractiveness Methodology-Phase II Research, Interim Report, by S. Doren. R. Stunting and D. Strani, record to USCS for contract No. DOT-03-42033-A. T.D. D. March 1377, Mages 0-27.

Visibility

Dorik

Number of Survivors

Number of Fatalities

Operator Skill/Experience
Operator Fatigue/Stress

Weight of Gear on Board

Rated Weight of People on Board

Rated Total Weight

Rated Motor Weight

Powering Ratios: HP: 1/10 ft.

HP: 10 1b. Boat Wt.

HP: 10 lb. Total Wt.

HP: Rated HP

Course Tree (a decision tree to code information on course changes prior to and during the accident).

Powering Behavior Tree (a decision tree to code information on throttle settings used prior to and during the accident).

Load Distribution Tree (a decision tree to code information about possible loading problems and the engine's involvement in them).

Node of Acceptance (the node in Figure 2 which was the "accept" node for this accident).

This information was to be coded using the computer coding sheet shown in Figure 3. Instructions for the proper ways to code each of these variables can be found in the PRAM Analyst's Guide (Appendix A). This guide includes the powering-related accident decision tree, a copy of the coding sheet, and databled instructions on the coding of each variable. The version of CRAM that is found in Appendix A was used in the trial Coding of 20 powering-related accidents.

4.0 CODING OF 20 ACCIDENT SAMPLE

A trial sample of 20 powering-related accidents was processed through the preliminary PRAM in order to test the appropriateness of the model. It was anticipated that the preliminary PRAM would need to be refined in order to model the accident data. Some variables may have requested information that was simply unavailable in the data base. The sample of 20 accidents was processed in order to identify those areas where PRAM should be revised.

32 30 31																						
1 20:0																						
11	÷				_	-,						-						_	_		-	7
		-		_	_				_	_	4		4	_								_]
10.70	_	-		-	-	_	_	_	~ :	_	_	_	_:		-	-	_	_	_	-	_	7
13.00	<u>.</u>	~	~-	~	-	~		_			7	7	-			~	-	-	-	-	-	4
																						╗
	7	~	~	~	~	-	-	_	-	_	-	1	-		~	-	-	-	-	-		7
	÷	-		-	7		_		_	_		4	-	_		_	_	_			_	1
	÷	-		-	~		_		-	4	-	4	_	-	-	_	-	-	_	_	_	4
	Ī																					
			~		~	~					_	_	-	_	-	_	_	_				
	<u> </u>			~	~	_					-			_	٦		_	-	-		_	4
	11.1	-	-		-	~	~	-				-	_	-	-	-	-		~	-	_	1
	<u> </u>																					+
1 2 3	=	_		-		~	~			_	_	-	_		-	_	-		_	_		
		_	_	_		_					_	_	_	_	-		_	_	_		-	1
The second second	<u> </u>																					4
																						-
	_	-	-	-	~		-	~	-	-	_	=		_	-		-		-	-	-	7
1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		_		-	~		~	_			_	_	_	-		_	_				Ŀ
	-	-	-4	_	-	~,	~	~	-		-	-	-	7	-	-	_	_	_		_	4
																						4
													-									\dashv
																						<u> </u>
															_				_			
	<u>.</u>																					-
19	<u> </u>											<u> </u>										4
20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					-																	#
	1				-			-	~				_				-	_			-	1
	<u> </u>	_			-		ī	_			1.		-	7		_	-	7			_	1
200 000	<u> </u>												-									۲
40 40 500 500 500 500 500 500 500 500 50	-	-	-		-	-	••	-			-	-	٠,	-	-	-	-	•	-	-	-	7
		_	-	-		_	-4			~		_	_		-	-,	-					
																						4
Marie and the	=	-	-	-4	-	-			-	• •	-	~	-	-	-	-	-	-		-	-	7
																						7
	<u> </u>	-	-	_		-		-		~		~	_	_	7	-		_	_	_	_	
The second second																						4
																			~			-
	<u> </u>																					
というだけの変わ	<u> </u>														_							
																						4
	-												<u> </u>									-1
																						-
		-	-	-	-	-		_	-	-	-+	4	-		_	-	-4	_	-	4	~	긤
																						╗
S. Million									_	-	_	_	7		7	_			-	_	_	
- January	سيسا																					-
	·																					÷
1 11 11 61																						7
, , , , , , , , , , , , , , , , , , ,	_	-	•	_		_					.,		~1	~	-	~	_		-			
	-			-	-			٠,	_			-		_		_	_		-	-	_	1
				-	-	_		•	-	-	-	-	-	~	-	~	-		-	-	-	4
	_				-		-	-	-				:	~	-	-	-		-	-	-	_1
									٠,				٦.		_	~	_					
- Spr.			·-																			_
																					<u> </u>	–
•	-	-		-	-	-			_	~	-	~-	-	~	-	_		~	-	-	-	4
_		-	-	-	-	-	-	-	-		-			~	-	-	~	-	~	-	-	- 1
`									_													

FIGURE 3. PRELIMINARY PRAM CODING SHEET

Results of the coding of these 20 accidents are reported below, and their implications for PRAM are outlined in the next section (5.0 The Powering-Related Accident Model).

Preliminary PRAM Results

Number of Accidents Coded: 20

Conputer Column(s)	Variable				
35-36	States:	Alabama	1	New York	4
		Arizona	1	North Carolina	3
		Illinois	1	Oregon	2
		Indiana	1	Pennsylvania	2
		Iowa	1	Tennessee	1
		Massachusetts	1	Virginia	2
07-08	Months:	March !		July 5	
		April 1		August 6	
		May 1		September 3	
		June 3			
11-12	Year:	20 from 1975			
13-14	Time:				
		00:01-03:00)	12:01-15:00 8	
		03:01-06:00	}	15:01-18:00 7	
		06:01-09:00)	18:01-21:00 3	
		09:01-12:00	1	21:01-24:00 0	
17	Accident Ty	/pe:			
		Collisions	17	Struck by Boat	or Prop. 1
		Falls Overboar	rd 1		
16	Boat Type:				
		Open Power 1	9	Cabin Cruiser	1

```
lomputer
lolumn(s)
              <u> Variable</u>
  17-18
              Boat Length:
                          14 ft. 12
                                              17 ft. 1
                                              18 ft. 2
                          15 ft. 1
                          16 ft. 4
              Boat Width:
     19
                          0-3 ft. 1
                                              6 ft. 1
                            4 ft. 8
                                               unknown 7
                            5'ft. 3
     20
              Hull Shape: 20 Unknown
  27-32
              Year of Manufacture:
                          1959-53 3
                          1984-68 7
                          1969-73 7
                          unknown 3
              Type of Power: 20 Subblands
              Speedi
                          20+30 mpn
                          Unknown, but increasing 4
                          Jnknown
                                                15
     25
              Did the boat have trim tabs? 20 unknown
              inditie boat have a motorwell? 20 unknown
              Heim Location: 20 unknown
     23
              Oteening Controls: 20 unknown
```

```
puter
            Variable
umn s
  25
           Inrottle/shift Control Levers: 20 unknown
  30
            Type of Controls: 20 unknown
  31
            Type of Propeller: 20 unknown
  32
            Motor Manufacturer:
                       Mercury 3
                                           Chrysler
                       Johnson 2
                                            Unknown
                       Evinrude 4
                                            Other
; - 3 <sup>-</sup>
           Horsepower:
                        0-30 5
                                           91-120 1
                       31-60 6
                                          121-150
                       61-90 7
                                           151+
£-37
           Motor Weight:
                       38-100 lbs. 1
                       150+ ibs.
                      Unknown
           Maximum Engine RPM:
                       5500
                       4800
                               1.5
                       unknown
  . `
            Dourse: Did operator attempt to change course?
                       inknown :
                       ٠,٥
                                7
                       195
                                     2nd operator lose control?
                                         ves 7...
                                              less of control due to:
                                                   Too difficult a manuever
                                                   Jaknowa
```

,, _ · ..

Variable Name Description and Coding Instructions 1.5 Enter the last two digits of the year in which the accident Year occurred. Time Code the two digits (in military time; i.e., 00-24 nours) corresponding to the time, to the nearest nour, that the accident began. Code the time of the capsizing, for example, when a boat capsizes and the people are not recovered for ic nours. Accident Type Code the primary (first) accident type. For example, if there is a collision causing someone to fall out of the boat, all people on board are coded as victims of a collision, not a falls overboard. Similarly, if a personfalls out of a johnboat causing it to capsize, throwing a second person into the water, both victims are coded as falls overboard, since that was the primary cause of the accident. Occassionally more than one accident nappens consecutively in time. A person might fall overboard, and a second person (coming to his aid) might be struck by the boat or prop. These two incidents would best be coded as separate accidents. These types of accidents will require judgment, and other analysts should be consulted if there is any doubt. = collisions/groundings 2 * swampings/capsizings/floodings/sinkings 3 = fires and explosions 4 = falls overboard/falls within the boat 5 = struck by boat or propeller 5 = other Boat Type Code the single digit that corresponds to the best description of the boat involved. i = hiph senformance boat l = open Jowerboat 3 = cabin motorcoat 4 = auxiliany sani f = cande/kayak | powered 5 = houseboat la inflatable 3 = unknown 9 = other Sade the Tenath of the boat as a two digit number Emeasured to Boat Cardth the hearest foot . For all appraishts, code "boat data" for the appropriate that. For falls eventoand, this would be the poat that one victim left. For not by the boat or prob, this would be the boat that did the hitting. Buat White Cade the one dripts number that corresponds to the boat's maximum wisth imeasured to the hearest foot) = 0+3 ft. 5 4 3 55. 6 = 9 ft. = 4 fg. = 10 ft. 2 = 5 =5.

B = unknown

9 = creater than 10 ft.

3 = 4 --1

FRAM Loding Instructions

Once you have decided that it ident is acceptable for PRAM. The submove on the coding sheet completely for that accident using the following tructions.

umn(s)	Variable Name	Descriptio	n and Coding In	structions	3	
01 02 03	Accident #	This is the used to refer to will be "0 of the upper an acceptanext seque black print."	need PRAM all ime			
64	Coded By	The analys	t who codes each	n particul git code h	ar accident shoul ere. Codes are:	d
		0= Mark Pe	erry Burnell moth	4= Bob Wh 5= Jack B 6= Olivia 7= Nona W	iite Bowman Corder	
06 06	State				ie for the state wood the list below:	here
	Alabama Arkansas Colorado Cist. of Colum Hawaii Indiana Kentucky Maryland Michasota Michany New Hambshire Car Cork Care Pennsylvania Joseph Carota Tun Nashington Nyoseina	27 24 24 25 26 24 46	Alaska Jalifornia Connecticut Florida Isano Towa Louistana Massachusetts Mississippi Lornsska New Jersey North Carolina Oklahoma Rhode Island Tennessee Vermont West Vinginia	09 12 16 19 22 25 28 31 34 37 40 44 47 50	Colorado Delaware Georgia Illinois Kansas Maine Michigan Missouri Nevada New Mexico North Dakota Oracon Usuch Carolina Telas Linginia	04 08 10 13 17 20 23 25 29 32 35 41 45 48 55
) je	Marine S.	enter the Both ent of ALL TIME OF BESAN.	acumnomiate 5wo counnes /31∈Janu RIENTES VARIABUS	aight cod Vary, etc. ES, CODE T	ie fan tou month w , 12≃Secember : N HE TIME THAT THE	nen the OTE: FOR ACCIDENT
);; 10	01/	Enter the accident (accinopriate two Ci≆the lat of th	aigit upd ne month,	de for the day of lets.} Don't forge	the t the D.

Formall applicable variables, some unknown as 3, 88, or 888. For some of the onees 3 toes not correspond to unknown.

APPENDIX A

P.R.A.M.* ANALYST'S GUIDE

USCG 61700

C. Christian Stiehl

(* an abbreciation for Powering-Related Accident Model)

The pages that follow contain much of the information you will need to analyze accidents for PRAM and fill out the code sheets.

The first page has a decision tree that you should use to decide whether an accident should be coded in PRAM or not. Whatever your decision may be, you should write "rejected at node ____ " or "accepted at node ____ " on the front of the BAR. If the accident was rejected, set it aside. If the accident was accepted, then continue coding the information for that accident until the coding has been completed.

Succeeding pages show you exactly now to code all of the information required by PRAM. A row on the coding sheet is to be filled out for each accident coded into PRAM. The first page of this section is a reduced sample coding sheet for PRAM.

The last couple of pages show the duality assurance procedures for PRAM. These should be head and understood before coding begins.

project leaders, and 3) has all the necessary information to do his job. It should also be noted that all accidents (BARs) are retained, including those that are not accepted by the powering-related accident decision tree. The rejected accident reports are retained, and the node of rejection is recorded. This is done so that particular kinds of accidents may be used in future comparisons with PRAM data, and so that an overall comparison of powering-related accidents to other kinds of accidents can be made. PRAM will have many uses, even beyond those described in this technical brief. The major conclusion of this phase of the powering project is that a viable Powering-Related Accident Model has been constructed and modified through engineering judgment and test on the data. Once the approval of the Coast Guard is obtained, PRAM will be complete and the coding of the overall sample will commence.

The motorwell and steering control coding instructions will be changed to allow the judgment of the analysts to be used. For example, it is unlikely that a twelve foot johnboat has a motorwell. Similarly, it is very likely that the steering controls for an outboard of over 50 HP will be remote. The new codings will be:

Code

Did the boat have a motorwell?

0 = No 1 = Yes

2 ≈ Unknown, but pretty sure

"No"

3 = Unknown, but pretty sure

"Yes"

8 = Unknown

0 = Controlled from engine

1 = Remote Steering Wheel (push-pull type of connection)

2 = Remote Steering Wheel (other)

3 = Tiller

4 = 0ther

5 = Unknown, but pretty sure "Remote"

5 = Joknown, but pretty sure "Controlled from engine"

3 = Unknown

Finally, all accidents involving more than one boat, wherein more than one boat will be processed through PRAM, will be numbered starting from 900. All other accidents coded into PRAM will be numbered from 001.

These changes and amendments—will be incorporated into the PRAM Analyst's Guide (see Appendix A). Upon the approval of the final version of PRAM by the Coast Guard, the coding of the entire data base of powering-related accidents will proceed.

The quality assurance procedures for the PRAM coding can be found at the end of the PRAM Analyst's Guide (Appendix A). Briefly, these procedures assure that the analyst: 1) is well-trained, 2) is checked by qualified

Speed (Column 23) now has the following codes:

```
0 = 0-10 miles per hour
```

The instructions for coding the motor weight capacity have been revised to include representative weights for outboards that are given in the Coast Guard's level flotation test procedures. The analysts will be instructed to code the motor weight capacity as before, if it is known. If the motor weight capacity is unknown, but the norsepower capacity (outboard) is known, then the following codes will be used:

Horsepower Capacity	Motor Weight Capacity	Code
0.1 to 2	25	03
2.1 to 3.9	35	04
4.0 to 7.0	55	06
7.1 to 15.0	75	08
15.1 to 25	100	10
25.1 to 45	155	16
45.1 to 80	240	24
30.7 to 150	135	32
150 1 to 250	420	42

The instructions for coding the motor weight have also been revised. The new codes are as follows (engines weighing 87 lbs. or less are coded as before, see Appendix A):

 $^{1 = 11-20 \}text{ mpn}$

 $^{2 = 21-30 \}text{ mph}$

 $^{3 = 31-40 \}text{ mph}$

 $^{4 = 41-50 \}text{ mph}$

 $^{5 = 51-60 \}text{ mph}$

^{5 =} greater than 60 mph

^{7 =} unknown, but increasing speed

^{3 =} unknown

^{9 =} unknown, but decreasing speed

od = Un⊁nown

^{39 = 88-170} pounds

^{90 = 100-150} pounds

^{9 = 50+200} pounds

^{90 ≠ 200+250} pounds

 $^{33 = 250-300 \}text{ pounds}$

^{94 = 300-350} pounds

^{95 =} greater than 350 pounds

^{93 =} not applicable (1/0, or inboard)

	<u> </u>																				
	÷									_											
70																					
46.	-	-	-	-1	¬	-	4	7	_ i	-	4	-	-	_	-		-	_:	_ i	-	_
70 . 40 . 40	elule.	-	~		-	-1	-	4	-	-	7	-	-	-	1	-	_	-	-	-	-
	<u> </u>	_			_	-	_		7	7											_
70000	- 1					·····					7		_							 ∔	
30000	11:15:	-		-	7	7	7	7	7	1	7	-	-	7	-,	7	-	7	_	7	_
/ Co				7	<u> </u>	7	그		_	4		7	-								
300 300 00 00 00 00 00 00 00 00 00 00 00	<u> </u>	ب	-	ب	4	4	-	+	4	4	4	4	4	-	-	-	4	-	4	4	7
								+		4	<u> </u>	1	-					-	4		
- VA VA.	<u> </u>	7				_	1	4		ユ	ユ	4			1	7			-	ユ	
ا دهوم من المراد ومن مروز	-1.1.	7	-	-	4	-		4	-	7	4	4	-	-	-	4	- i	4	4	1	-
	- 1		٦.		7	7		-	4	1			_=	1	7	-	- -	-	-		7
	\$1 \$1	-	-	1	-		7	7	1	1	4	\neg	_	_	4	4		_	-	1	1
South State of the			<u> </u>			_			+	-		<u>-</u>			 -			 -		÷	<u> </u>
									i				<u> </u>								
/ / W / / W									\Box												
	-; -					- 			_	+	-				-		-	 -			-
2017 80 8 50 1 2 50 4 8 50 4 8 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											1				1						
300	- I								_							!					
	= = = = = = = = = = = = = = = = = = = =	-	-	_	-	7		7	-	7	-	-	_	-	-		7	-	7		7
Mad all Eller	<u> </u>	_						- :		-	-			-			-				
NAM ON SUFFEE									_		<u> i </u>			- 1	 -				<u> </u>	<u> </u>	
140 0 10 10 N									-			-			_					<u> </u>	
10.0						<u> </u>	۳,		ند	7	٦						_	_		-	_
3 07 3. 14	1111	-	-	_	_	-	~		4	-		7	4				-	-	-	_	
				-			-			-		-									
	A VIE	~	_			7	7]	7 7	7	7	7	7	=		_	I	_	_	_	_
	<u>11</u> 2.					<u> </u>			<u> </u>	-			!								
													1								
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																					
	3	-		-	-		-	-		~	-	-	-		-		-	-	-	=	-
													- :	-			<u></u>				
35	÷1	_		1		-	1	ı	7	1	-	7	7	4		_	_	-	_		
								-		<u> </u>		<u> </u>	<u> </u>								
					-				1	+				1							
	: 1	_			_						-			-	_						_
/ / (0)							<u> </u>				<u> </u>	<u> </u>							. .		
	<u> </u>	_	_ •	-		-			7	4	1		4					_		-	_
	21			_				-		7		4		_							
1								-+													
	-	-		-	-	-	-	-	-	1-	-	4	~		~		_	-	-	-	
	=	-							7												
																			:		
	 -																				
1	-	-	7	_						-	7	~	٦	4	-	1	7			7.	-
	••	~		-	-	_	_			-	7	-	-	-	~		-	_	~**		_

FIGURE 4. REVISED PRAM CODING SHEET

New coding procedures have been developed for these two variables. If the new procedures do not result in fewer unknowns, then these two variables may be deleted in the future.

The objectives for this project include not only the evaluation of the present powering standard, but also the evaluation of alternative concepts. This is why several powering ratios are included in PRAM. One may prove to be a more predictive indicator of the potential for a powering-related accident than the others. All powering ratios will be calculated (all listed in the preliminary PRAM) for each accident by the computer, when the relevant information is available. Thus, the ratios will no longer be calculated or coded by the accident analysts.

Transom height and maximum transom width were considered as variables which could be added to PRAM. However, a quick inspection of the 20 sample accidents revealed that these variables would be unknown in all cases. Also, the number of engines in use at the time of the accident will be added to PRAM.

The coding of speed will be changed to allow incrementing the speed by 10 mpn up to 60 mph. The coding of motor weights will be revised to agree with current standardized criteria by norsepower; i.e., 150 HP = 310 lb. The course variable tree will be revised to include information as to why the operator lost control of the boat. Finally, accidents involving more than one boat, when two (or more, of these boats will be included in PGAM, will be numbered in a special way. The specific coding changes are shown below.

Changes in PRAM Coding

Since several variables have been deleted from the preliminary PRAM, fewer columns of the computer coding sneet are needed to code all of the information. The final PRAM loding sneet is snown in Figure 4 with the columns labeled appropriately. For most of the variables that remain, from the preliminary PRAM, the coding instructions are the same as they were previously; nowever, some have been modified.

The new variable of "Number of Engines In Use" (Column 61 on the coding sheet) is coded as follows: 1 = 1 engine in use, 2 = 2 engines in use, 3 = 3 or more engines in use, 3 = 3 or more engines in use, 3 = 3 or more engines.

FORMAL BOATING EDUCATION

		None	Aux.	Red Cross	Other	Unknown
POWERING RATIO	0.5 - 0.60	3	2	0	0	0
(HP/Rated HP)	0.7 - 0.30	2	0	0	1	1
(m) nacca m y	0.9 - 1.00	2	0	0	0	0
	1.5 - 1.60	0	1	0	0	0
	3.3 - 3.40	1	Э	0	0	0
	Unknown	4	0	1	2	0

involving associations between variables. The next section will describe the final version of PRAM, after modifications suggested by the Coast Guard and by the processing of the sample of 20 accidents.

5.0 THE POWERING-RELATED ACCIDENT MODEL

The variables listed below were included in the preliminary PRAM, but little or no information was available in the boating accident reports for these variables:

hull Shape	Speed
Trim Tabs	Motorwell
Heim Location	Steering Controls
Throttle/Shift Levers	Type of Propeller
Load Distribution	Fatigue/Stress
Rated Total weight Capacity	Rated Persons Capacity
Rated Motor Weight	Powering Ratio: HP/.1715. 3oat Wt.
Powering Ratio HP/.1 15. Total Wt.	

Since the coding of information with respect to these variables requires time and effort on the part of the analysts, without significant return in terms of usable information), most of them will be deleted from the final version of PRAM. Speed, Rated Persons Weight Capacity, Rated Total weight Capacity, and Rated Motor Weight will be retained. These variables are of Daramount importance in understanding the powering problem, and in computing powering ratios. Also, the motorwell and steering control variables will be retained, at least for the coding of the first one hundred accidents.

Computer Column(s)	Variables					
73-74	Powering Ratios:					
	нР/10	ft.	0.1	2	0.5	7
			0.2	4	0.6	2
			0.3	3	1.0	1
			0.4	7		
75 - 76	HP/.1 15. Boat	Weigh	nt Uni	known	17	
				0.9	1	
				1.0	1	
				1.2	1	
77-78	HP/.1		ប្រ	known	18	
				0.3	1	
				0.6	1	
79-90	FP/Rated HP		Un	known	7	
			0.5	- C.ó	5	
			ე.7	- 0.8	4	
			0.9	- 1.0	2	
			1.5	- 1.6	1	
			3.3	- 3.4	7	

The purtose of this section was to present the preliminary PRAM and show the results of the coding of a sample of 20 accidents. It is not intended that any meaning be ascribed to the results based upon such a small sample, other than their meaning in terms of the appropriateness and usefulness of the model. These tabulations on two or more variables are easily accomplished using PRAM. An example is snown below, using the fourth powering ratio (HP/rated HP) and the operator's formal boating education as the cross-tabulated variables. Such a table might be used to evaluate the effects of different types of coating safety education on the tendency to be overpowered (HP/rated HP>1) and in a powering-related accident. In this manner, PRAM can provide tabulations of data that relate to many questions, particularly those

```
Computer
Column(s)
               <u>Variable</u>
  56-58
(continued)
              Formal Boating Education:
                                                      none 12
                                         Auxiliary Course
                                            Power Squadron
                                                 Red Cross
                                                     State
                                                             0
                                                     Other
                                                             3
                                            More than One
                                                   Unknown
    59
              Operator Fatigue/Stress:
                           Unknown
                                     18
                                              None
                                                       2
  50-61
               Rated Horsepower:
                           Unknown
                                                  121 - 150
                           0 - 30
                                                  151 - 180
                                                               1
                           31 - 60
                           61 - 90
                                     2
                           91 - 120 2
               Rated Weight Capacity of POB: 20 unknown
  62-63
  54-56
               Rated Total Weight Capacity: 20 unknown
  67-68
               Rated Weight Capacity of the Motor: 20 unknown
  69-71
               Weight of Gear on Board (estimate):
                                              2
                           1000 - 1100
                           1101 - 1200
                                             10
                                              5
                           1201 - 1300
                           1301 - 1400
```

1401 - 1500

```
Computer
Column(s)
               Variable
               Visibility:
     50
                                   17
                            Good
                                    1
                            Fair
                                     2
                            Poor
     51
                Wind:
                                        7
                            None
                            Light
                             Moderate
                Number of Recoveries:
      52
                                                    3 - 8
                             0 - 0
                                                    4 - 3
                             1 - 2
                             2 - 7
                Number of Fatalities: 0 - 20 (No fatalities)
      53
                 Node of Acceptance:
   54-55
                                                    15 - 1
                             5 - 12
                                                    18 - 2
                             8 - 2
                            12 - 3
                 Operator Skill/Experience:
   56-58
                             With this Boat: under 20 hrs.
                                                                3
                                                  20-100 hrs.
                                                                 3
                                                                 3
                                                 100-500 hrs.
                                                               11
                                                      unknown
                                                                 4
                                                under 20 hrs.
                 With Boats of this type:
                                                                 3
                                                  20-100 hrs.
                                                                 2
                                                 100-500 hrs.
                                                                 6
                                                over 500 hrs.
                                                                 5
                                                      unknown
```

```
Computer
                <u>Variables</u>
Column(s)
               Powering Behavior: Did the operator change the throttle?
  41-42
                                      13
                            Unknown
                                       3 Final throttle setting was..unknown 3
                            No
                                         , Operator increased power, final
                                          throttle setting was...unknown
                              Yes 4
                                                                                1
                                                                  high
                                          Operator decreased power, final
                                                                                1
                                          throttle setting was...unknown
                Load Distribution: 20 unknown
   43-44
   45-46
                People on Board:
                            1 - 2
                                                   3 - 8
                                                   4 - 3
                            2 - 7
      47
                Activity:
                            Pleasure Cruising
                                                             13
                            Water Skiing
                            Docking
                            Leaving dock, getting underway
                Body of Water:
       :2
                             River, Creek, Channel 10
                                                     7
                             Lake, Swamp
                                                     2
                             Bay, Inlet, Harbor
                             Unknown
                Water Conditions:
       43
                             Calm 12
                                                 Choppy/Rougn
```

Column's' Variable Name Description and Coding Instructions Hull Shape Code the one digit that best corresponds with this of the boat's hull, using the figure below. O = Deep V (9 greater than [3°) T = Semi V (3 less than 18°) Transom 2 = Cathedral or tri-hull 3 = Flatbottom 4 = Roundbottom 5 = Other 5 = unknown Soce the last two digits of the year that the boat was Year of Manufacture manufactured(model year). of boat) Type of Power 23 Code one digit corresponding to the type of power in use. 1 = 3utboard 2 = 1/03 = Incoard 0 = Other <u>:</u> : loeed Code one sight which best corresponds to what is known about 0 ≈ 0-10 miles per hour 5 = Unknown, but greater than 20mbh 1 = 10-20mpn 2 = 20-00mpn 3 = 00-40mpn 5 = Unknown, but reducing speed 7 = Unknown, but increasing speed 3 ≠ unknown 4 = greiter than 40mpn 9 = Unknown, but changing speed Did the boat have thim teas? Code 0 = No 1 = /95 B = Unknown Code C = %c Its the cost have a motorwell? : = /es $\beta = 10$ known using the figure below, code the one didit which best Heim Location departnes the location of the reim stattom that was is use. Note that the figure givides the ocat into thirds, and givide the will and aft sections of the ocat into things. Flybridges 요즘은 121년의 사용 사용하실수요 ⁶ = Pomward - Amrisento scampdand 2 = Amhiishno denten និភាពដូច្នេក។<u>។</u> 3 = Amhash S bort itanonard = Aft. 200 recard 5 = 2ft | centar 6 = 2ft, cont = Amissnis, lateral position JEKESWS ≟ = Unknown 9 = 0shen of0/2nnisge, ess., ingageres (integlis) Code the admissionnate one digit code is lighthol at from endine Remote pregnance wheel coush outly type of connection 2 = Pemote itaeninu whee' lithen 4 = 35546 2 = 10200gm

Column(s) Variable Name Description and Coding Instructions

30 Throttle/Snift Code the one digit which best describes the throttle and smift controls.

0 = Manual

1 = Electric

2 = Hydraulic

3 = Other

S = Jnknown

31 Type of Propeller - Code the one digit which best describes the type of propeller in use, using the decision tree shown below.

Motor Manufacturer Code the one digit that corresponds to the motor manufacturer.

0 = Mercury Marine(Mercruiser) = 5 = Clinton or McCulloch

: = Johnson 6 = Eska

2 = Evinrude 7 = Volvo Penta

3 = Chrysler 8 = Unknown

4 = 0MC9 = Other (including Sears, etc.

Sade the horsebower of the engine(s) in use. If more than one monsepower endine was in use, then code the combined nonsepower.

lode the weight of the motor (in pounds). Remember that "SS" means unknown. For this variable, codes (weights, above δT Motor weight shall be used as follows:

38 = Unknown

39 = 38-100 pounds

Note: Code the complined 90 = 101-150 pounds weight if more than 31 = greater than 150 pounds one engine was used.

99 = not applicable (1/0, or 1.)

Jolumn(s) Variable Name Description and Coding Instructions

38 Maximum Engine RPM Code the maximum engine rom as a two digit number by determining the maximum engine rpm and then dividing it by 100. Remember that "38" is unknown. For any maximum rpm over 8700, use the following codes:

8701 - 10,000 use 89 greater than 10,000, use 90

40 Course Choose the appropriate one digit code from the decision tree shown below:

Tylumnia – Lannable Name – Description and Ouding Instructions

2) Powering Behavior - Choose the appropriate two digit code from the decision

tree shown below:

Powering Sensyton Tree

in shown below:

Column si Variable Name Description and Coding Instructions -u'l Snace

Code the one digit that best corresponds with the shape of the boat's null, using the figure below.

-ransom

O = Deep v (@ greater than 13°) 1 = Semi V (3 less than 18°)

2 = Cathedral or tri-null

3 = Flatbottom

4 = Roundbottom

5 = Other

6 = unknown

Code the last two digits of the year that the boat was vear of 22 manufactured (model year). Manufacture (of boat)

Code one digit corresponding to the type of power in use. Type of Power

> 2 = 1/03 = Indoard 0 = 0ther 1 = 0utboard

Code one digit which best corresponds to what is known about Speed the boat's speed.

S = 0-10 miles per hour | 5 = Unknown, but greater than 20mbn

5 * Unknown, but reducing speed 1 = 10-20m.pn 2 = 20-30mpn7 = Unknown, but increasing speed 3 = 30-40 mpm8 = Unknown

4 = greater than 40mpn 9 = Unknown, but changing sceed

£ ≠ Unknown 25 Did the boat have trim tabs? Code 0 = No 1 = Yes

: = /es 3 * Unknown 25 Did the boat have a motorwell? Code 0 * No

27 using the figure below, code the one sight which best -elm Location describes the location of the relm station that was is use. Note that the figure divides the poat into thirds, and divides the mid and aft sections of the boat into thirds. Flyzhiages

are coded as "other."

0 = Forward

= Amidship/stancoard

= Amadship/dertam

🖃 Amidship, bort

4 = 4ft/stanocard

5 = 4ft/ center

 $\mathcal{E} = Aft/$ port

7 = Amioship, lateral position

unkhown

3 # Unknown

9 - Other Iflybridge, atc.

Steeming Controls Code the appropriate one digit code

0 * Controlled from engine
1 * Remote steering wheel (push/pull type of connection
2 * Remote steering wheel (other)

3 = Tiller

i = Other

3 = Unknown

Trinopt eland shift compress on the same leven ? Code 0 = No. 1 = res. 3 = Unk

```
Column(s) Variable Name Description and Coding Instructions
                              if the operator had 50 hours of experience on bull. It
                              this type, 150 hours of experience on other boats, and
                              had had no formal boating safety courses, then he would
                              be coded "120."
                              For Experience (both types):
                                                                    For Education:
                              0 = Under 20 hours
                                                                    0 = None
                              1 = 20-100 \text{ nours}
                                                                    1 = USCG Abxiliary Course
                              2 = 100-500 \text{ hours}
                                                                    2 = Power Squadron Course
                              3 = Over 500 hours
                                                                    3 = Red Cross Course
                                                                    4 = State Course
                              4 = Exact number unknown, but
                                   operator is known to have
                                                                    5 = Other Course
                                                                    6 = More than one course
                                   considerable experience
                              8 = Unknown
                                                                    8 = Unknown
   59
                                           Choose the one digit code from the list that
            Operator Fatigue/stress
                              best describes the environmental conditions to which the
                              operator had been exposed.
                              0 = No known stressors
                                                            5 = Fatiguing activities (swimming,
                               l = High noise levels
                                                                etc.) on the boating outing
                               2 = Inree hours or more
                                                            6 = Fatiguing activities before the
                                                                 boating outing
                                   exposure to the sun.
                               3 = some amount of alcohol 7 = Other
                                                            8 = Unknown
                                   incested
                               4 * Considerable shock & 9 * More than one of the stressors
                                                                 listed above in 1-6.
                                   vibration
    ćθ
            Rated Horsepower
                                    Code two digits corresponding to the rated horsepower
                              divided by 10.
            Rated Weight Capacity of POB. Code two digits corresponding to the rated
                               rated weight of the people on board (persons capacity)
                              divided by 10, up to a code of 88. "88" is used for unknown. "89" for this variable means a persons capacity
                              of from 1001 to 1500 pounds. "99" stands for not
                               applicable (boats which are not rated).
            Rated Total Weight Capacity Code three digits corresponding to the rated total weight capacity of the boat, divided by 10. Recall
    55
                              that "888" stands for unknown, and "999" means not applicable (boats which are not rated). "889" is used for
                               boats whose total weight capacity exceeds $870 pounds.
            Rated weight Capacity of the Motor. Code two digits corresponding to the
                               rated weight of the motor divided by 10. Recall that
                               "88" stands for unknown, and "99" stands for not
                              applicable (I/O, inpoards).
            weight of Gear On Board. Code the weight of the gear on board divided by IC as a three digit number. Include the weights of all
                              items on board other than the people and the motor. As examples: (ESTIMATE)
                              Full gas tank (approx. 40 lbs.)
Small fce chest-full (@ 10-25 lbs.)
Large fce chest-full (@ 30-50 lbs.)
                              Anchor (@ 20 les )
                              Battery '3 45 'bs.
                              Anchor "the and other line
                               3ki equipment
                              Fishing equipment/hunting equipment and datch
                              PFDs and Navigational Aids (compass, flashlight, charts, etc.
```

Description and Coding Instructions Column(s) Variable Name 72 31ank 73 Powering Ratio #1 Code the appropriate digits for each of four powering ratios as shown below. For all of the powering ratios 74 "88" is unknown, and "89" means a value greater than 8.749. Code horsepower per 0.1 ft as a two digit number where the decimal point is between the two coded numbers. For example, a 90 np engine on a 12 ft boat would be: $\frac{90}{12} \times \frac{1}{10} = 0.75$ and gets coded "08" The same engine on an 8 ft boat would be coded "ll". The code for horsepower per 0.1 ft should be written in columns 73 and 74. Horsepower per pound of boat weight is coded in columns 75 Powering Ratio #2 75 and 76, where the horsepower per 10 pounds of boat 76 weight. Code this information as a two digit number, where a decimal point is between the two numbers. For example, if a 120 hp engine were on a bass boat which weighed 850 pounds (boat weight only), then: $\frac{120}{350} \times \frac{10}{1} = 1.41$ which would be coded "14" Similarly, if the same engine were on a boat which weighed 1500 bounds, it would be coded "08." Recall that "38" is used to code unknown, and "89" codes any number greater than 3.749. Powering Ratio #3 Horsepower per total boat weight and gear/engine/beople weight is coded in columns 77 and 78. Code this information by dividing the horsepower by the total boat+etc. weight and multiplying by 10. For example, for the 120 no engine used above, the boat may weigh 850 pounds, be carrying 300 bounds of gas and gear, and 400 bounds of beoble. Thus. $\frac{120}{1550} \times \frac{10}{1} = 0.77$ which would be coded "98" On the 1500 pound boat, with the same 700 pounds of gear, gas and people on board, this ratio would be 0.55 and would be coded "96". Recall that '38" is unknown, and "39" means a ratio greater than 8.749. Powering Ratio #4: Finally, the natio of the actual nonsepower in use to the rated horsebower for the boat is coded in columns 79 and 10 So, if the boat had a 100 hp outboard on it, and was hated for a 100 no endine, this ratio you'd be $\frac{120}{120}$ = .2 and would be based 112" Recall that for all of these natios, "88" stands for unknown, "89" is used for any ratio greater than

8.749, and '99" is used when this hatio is not applicable - such as when coding information for a toat which has no horsebower hating or limitation therefore, ho actual hated horsebower hatio.

PRAM Quality Assurance Procedures

The accidents that are coded into PRAM will be processed by one analyst. That is, each individual accident report will be coded by only one person. At the early phases of coding (for approximately the first 20 accidents) the analysts' work will be thoroughly reviewed by the project leaders (R. White and C. Stiehl) for quality and adherence to the intent and instructions of the model. Thereafter, a sample of five from each group of fifty accidents that are coded will be reviewed by the project leaders.

When all of the accidents have been coded, two decks will be independently keypunched. These two decks will be compared using Wyle's "Check Decks" program to find keypunching discrepancies. The discrepancies will be reviewed by the project leaders and analysts to arrive at a consensus coding. Then both decks will be corrected. The final product of this procedure will be a complete set of coded data, relatively free of keypunching errors. The only way that a keypunching error could survive this procedure would be if the exact mistake were made twice independently. The diagram on the next page depicts the entire process.

Coding Steps for PRAM

If you are the analyst, about to code data for PRAM, you should:

- 1. Check with the project leaders to make sure you have the correct sample of accidents to code.
- 2. Check each accident against the decision tree for acceptance. If the accident is rejected, write the node of rejection on it. If it is accepted, write the next sequential accident number in the PRAM sample on it, and the node of acceptance.
- 3. Tode all of the required information on the data sheet for the accident, according to the instructions on previous pages, and consulting with the project leaders if any questions arise.
- 4. When you have completed a group of accidents to be codes, take the completed data sheets and the BARs that were accepted to the project leaders for review. Then proceed with the next group of accidents to be processed.
- 5. When errors are made (either in coding or keypunching) the project leaders will review these with the analyst in order to make sure that the correct information is coded on the computer cards. This may require some rereading of the BARs on your part, and perhaps some recoding.

WYLE LABORATORIES MARINE TECHNOLOGY STAFF

TECHNICAL BRIEF 77-5

THE POWERING-RELATED ACCIDENT MODEL

VOLUME II

Бу

Christian Stiehl

October 1977

Work Performed Under Contract No. CCT-CG-62665-4

PREFACE

This document is the second of two volumes constituting a technical brief on the Powering-Related Accident Model (PRAM). It details further developments in the powering-related accident decision tree and PRAM, after the initial coding of a sample of 20 accidents. Severity variables and other information needs for PRAM are discussed, along with the sequential event trees which have been developed.

ABSTRACT

The powering project will include: defining powering-related accidents, collecting a sample of such accidents and coding them through a powering-related accident model (PRAM), identifying accident mechanisms, and formulating and evaluating powering standard concepts, including the present standard. Additional progress in the development of PRAM since the first volume of this technical brief is reported in this document. Operationally, defining a powering-related accident is equivalent to defining the sample to be coded through PRAM. This was accomplished through engineering analysis of the problem in consultation with Coast Guard personnel. A decision tree was developed in Volume I, which is amended and discussed in this report.

Significant improvements in PRAM are discussed in this volume, including: the addition of accident severity information, the inclusion of sequential event trees for accidents and other detailed accident scenario information, the enlarging of the PRAM sample to include 1976 fatalities, and the improvement of the quality assurance procedures.

TABLE OF CONTENTS

		rage no.
0	INTRODUCTION	1
Ç	THE POWERING-RELATED ACCIDENT DECISION TREE	2
С	THE POWERING-RELATED ACCIDENT MODEL	10
	3.1 Sevenity Variables	10
	3.2 Event Trees	11
	3.3 The PRAM Sample	21
	3.4 <u>Quality Assurance Procedures</u>	23
. C	REFERENCES	26
ope	endik A - PRAM Analystis Guide (revised)	27
ากค	encix B - PRAM Throttle Setting Program	46

THE POWERING-RELATED ACCIDENT MODEL

1.0 INTRODUCTION

The objectives of the safe powering project are: 1) to determine the need for a standard limiting the horsepower of recreational boats, and 1) to determine whether there is a need to improve the present standard or develop a new one.

As part of attaining the first objective, powering-related accidents were defined using a decision tree. Most of the development of this tree was discussed in Volume I. Volume II will present some minor modifications to the decision tree and discussion of the reasons for these changes.

Data are presented concerning the nodes of the decision tree where fatal and non-fatal accidents from 1975 tended to be accepted. The fact that 96 fatal accidents (involving 117 deaths) and 185 non-fatal accidents were accepted, indicates that there is a significant potential benefit to be gained by reducing these accidents. It remains to be determined if (or how) limiting norsepower might play a role in the reduction of these accidents.

The Powering-Related Accident Model (PRAM) has been devised in order to rode: the powering accidents, allow for the development of scenarios that describe significant numbers of unese accidents, and provide data to a low benefit estimations for alternative powering regulatory concepts. In preport shows that significantly more information is available concerning the fatal accidents. In order to be useful in providing the direction for engineering solutions to the powering problems, PRAM must include some accounting of the dynamics of the accidents, beyond the description of the circumstances. The bulk of this type of information will be gathered primarily from fatal accidents.

AD-A152 575		A S THE	A STUDY TO DETERMINE THE NEED FOR A STANDARD LIMITING THE HORSEPOWER OF RECREATIONAL BOATSCU) WYLE LABS HUNTSYILLE ALA R WHITE ET AL. SEP 78 MSR-78-12							3.	3/3		
UNCLASSIFIED		ÜŠČ	G-D-36	-83 D	OT-CG-	62655-	-A			F/G	13/12	NL	
	Ì												
		Î				END							
						DFIC							
						DI IL							

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

2.0 THE POWERING-RELATED ACCIDENT DECISION TREE

Figure 1 shows the powering-related accident decision tree as shown in Volume I of this technical brief. A problem exists in this tree in the decisions made in the vicinity of nodes 13 and 9. The decisions (as shown in Figure 1) are based upon throttle setting and horsepower per foot of boat length. The intent of these nodes was to allow those boats that were operating at more than half throttle and those involving boats which were at less than half throttle but perhaps overpowered to be passed on through the tree. The basic thought was to include heavily overpowered boats even though they might be at less than half throttle. The problem with the decision tree shown in Figure 1 is that it might reject accidents that should be included.

Consider the following two cases:

<u>Case 1</u>	<u>Case 2</u>			
2 ft jonnboat	12 ft johnboat			

10 nr encine

20 hp engine slightly less than 1/2 throttle

Case 1 would be accepted by the tree in Figure 1, and Case 2 would be rejected. However, Case 2 probably represents a more severe powering problem. To correct this, the tree has been changed to: 1) still accept all those greater than 1/2 throttle, 2) if less than 1/2 throttle, then sheek to see if horsepower in use is greater than 1/2 of rated horsepower (accept if "yes"), 3) if throttle setting is unknown, then accept if mounted has rated has 1. This makes the tree more complicated at this point, but solves the problem illustrated by the example. Figure 1 shows the changes that would be incorporated at node 13. Figure 3 shows the changes to be incorporated in the vicinity of node 9.

The new section tree calls for the analyst to use a pocket-sized computer to see sales. These are accidents where the throttle setting was known to be less than 50° throttle. The critical decision then is whether or

FIGURE 1. POWERING-RELATED ACCIDENT DECISION TREE A-41

FIGURE 2. CHANGES AT NODE 13

FIGURE 3. CHANGES AT NODE 9

not half of the rated horsepower was in use. For example, a boat that is rated for 30 horsepower may have a 100 horsepower motor mounted on it. The analyst would input these two numbers and the calculator would display a throttle setting (0.468 in this case). If the throttle setting in the accident was greater than or equal to that in the display, then the accident would be passed on to the next node. Otherwise, it would be rejected. The calculator is programmed to use a simple exponential relationship between rpm and horsepower in use to compute the throttle setting needed (with the mounted horsepower) to exceed one-half of the rated horsepower. A flow chart for this program is shown in Figure 4 (see also Appendix 8. PRAM Throttle Setting Program).

The formula that was used was derived from the boating literature and telephone conversations with Mr. David Beach of BIA and Mr. Lysle Gray of the USCG. Typical horsebower and prop load curves are shown in Figure 5 (see Reference 1). These curves allow the calculation of the norsepower in use for a given engine and throttle setting.

The final powering-related decision tree, including the changes at nodes 3 and 13, is shown in Figure 5. Accidents which are accepted by this decision process are defined to be powering-related.

FIGURE 4. FLOW CHART FOR PRAY THROTTLE SETTING PROGRAM

FIGURE 5. HORSEPOWER MS. THROTTLE SETTING (see Reference 1)

FIRURE 6. FINAL POWERING-RELATED ACCIDENT DESIGNIN TREE
A-47

3.0 THE POWERING-RELATED ACCIDENT MODEL

PRAM has been modified since the completion of Volume I of this technical prief. Severity information has been added, so benefit estimates can be generated at a later date, and so that other variables can be correlated with severity. All of the accidents in the sample that were accepted at nodes 12, 14, 15, 16, 17, 18, and 19 will be processed through the revised powering-related accident decision tree (Figure 5) during coding. It is anticipated that a percentage (pernaps as much as 5%) of these accidents will now be rejected at nodes 9, 13, 21, and 22. Those accidents which were previously rejected at nodes 9 and 13 of Figure 1 will be rechecked to intermine if they should remain rejected under the new decision tree. It is not anticipated that the overall sample size will change appreciably, but these accidents must be rechecked since the decision tree has been modified.

Most of the information coded in PRAM in the version in Volume I of this reconnect prief was population and background information concerning the occurring accidents. Few of the variables included detailed sequential information about the accident causes. One reason for this was that over 300 of the accidents in the PPAM sample were non-fatal accidents, and little sequencial information was available. Event trees have been developed for the accident nodes which processed a significant number of accidents. In this course of nodes where few fatalities were accepted, detailed event trees accepted that it seveloped because the information needed was not available. The course trees that were developed are presented in section 3.2.

3.1 Severity Variables

Living His dealing with injuries, fatalities, and property damage suffered a Helphic of powering additions have been incorporated into PRAM. These days is still be used to perform dost, benefit analyses for the current will be used to perform dost, benefit analyses for the current will be used dowering regulations, and posurply for evaluations of effectives in the constraint proposed, standard may reduce the devent. If powering-related accidents instead of or in addition to prevent the accidents.

For the boat that has been accepted through the powering-related accident decision tree, the damage to the vessel and the number and extent of the injuries to persons on that vessel are coded. The codes and coding instructions for these variables can be found in Appendix A (Revised PRAM Analyst's Guide). They are coded in columns 66 through 69 on the PRAM coding sheet (Figure 7).

Severity information is also coded for other vessels which may have been involved in the accident but are not included in the PRAM sample. The number of fatalities, damage to vessel(s), and injuries are coded. The codes and coding instructions for these variables are found in Appendix A, for columns 70 through 74. If the accident involved only one vessel, then these columns are coded all zeros. If the second (or other) vessel is also included in the PRAM sample, then severity information relevant to it is included in its coding, and a "9" in column 70 indicates that fact for this boat.

3.2 Event Trees

Sequential event trees have been developed for nodes 14, 15, 17, 18 and 19. Not enough data was available at other nodes of the powering-related accident decision tree (see Section 3.3 PRAM Sample). These event trees were developed in order to capture some of the detailed sequential information concerning powering-related accidents that is available primarily in fatal accident reports. The thees were developed to enable engineering solutions to powering problems by providing data of a detailed nature about the causes of these accidents and the relationships between events. Solutions (in the form of proposed standards) can be proposed and tested for breaking one or several accident sequences. The effectiveness of the current standard can be similarly analyzed. The five nodes indicated above were the nodes of acceptance for 12 or more fatal accidents each from the 1975 data, and therefore provided a significant amount of mata for constructing event trees. More trees may be constructed, and these may be refined, when the fatal powering-related applicants from 1975 have been phocessed (see Section 3.3 The PRAM Cample). The trees will be included in PRAM and coded in a manner very similar to other variables.

.....

Node 14

Accidents accepted at this node involve capsizings, swampings, and dails overboard during intentional changes in direction (course changes). For these accidents, three additional types of information are coded: the type of turn, the type of event that caused boaters' lives to be at risk, and the significant contributing factors in the accident. The coding instructions are shown on the following pages and will be added to the PRAM Analyst's Guide.

FOR ACCIDENTS ACCEPTED AT NODE 14:

Column(s)	Variable	Description/Codes
75	Turn	Choose the best description. The turn was:
		 "Normal" - often less than 90°, not "snarp" for the boat's speed.
		 "Sharp" - often near 90°, sharp for the boat's speed.
		3) "Turn around" - a turn of 180° to 360°
		4) Unknown
77	Node 14 Tree	Process the accident as far down this tree as possible, and enter the appropriate code. If the accident involved multiple victims, code the two best descriptors side by side in columns 75 and 77. If the accident involved one fatality and one or more others, code the fatality as the code in column 76. If only one victim was involved, then code 0 in column 75. Consult project leader before using any "other" codes.

APPENDIX A. PRAM* ANALYST'S GUIDE

(Revised)

August 1977

USCG 61700

C. Christian Stiehl

(* an abbreviation for Powering-Related Accident Model)

The pages that follow contain much of the information you will need to analyze accidents for PRAM and fill out the code sneets.

The first page has a decision tree that you should use to decide whether an accident should be coded in PRAM or not. Whatever your decision may be, you should write "rejected at node _____" or "accepted at node _____" on the front of the BAR. If the accident was rejected, set it aside. If the accident was accepted, then continue coding the information for that accident until the coding has been completed.

Succeeding pages show you exactly now to code all of the information required by PRAM. A row on the coding sheet is to be filled out for each accident coded into PRAM. The first page of this section is a reduced sample coding sheet for PRAM.

The last couple of pages show the quality assurance procedures for PPAM. These should be read and understood before coding begins.

1 - m.

4.0 REFERENCES

T. Lord, Lindsay, 'Cost-Effective Propeller Size." <u>Motorpoat</u>, January, 1977.

TIBURE TO CAMPLING PLAN FOR NON-POWERING ACCIDENTS

FIGURE 8. NON-POWERING ACCIDENTS BY GEOGRAPHIC REGION

process will continue until two complete duplicate decks of correctly coded data are obtained. The only way that a keypunching or coding error could survive such a verification process would be if the exact mistake were made twice independently or the same variable in the same accident. The probability of such an occurrence is remote. As before, a further check is provided against this possibility since the project leaders (R. White. C. Stiehl, and N. Whatley) will review a sample of 10% of each batch of accidents that is coded. When errors in coding or interpretation are discovered, there will be reviewed with the analysts by the project leaders.

The comparisons of the non-powering sample to the powering-related sample will be made only for those boat types which are currently covered by the standard. Provided enough detailed data is available from the accident reports, these comparisons may be made within individual boat types (or other sub-categories of variables) in order to evaluate the relative effectiveness of the standard in various domains.

Exposure data will be gained from several sources and estimated from others. The exposure data is critical for a detailed evaluation of risk and standard effectiveness. The non-powering accident sample will provide some data concerning exposure, and allow a comparison to the exposure data estimated from other sources. This comparison will indicate the tendency (or lack of it) for overpowered boats to be in non-powering accidents. After the completion of PRAM and the analyses of powering ratios for boats in powering-related and non-powering accidents, the collection, estimation, and analyses of exposure data represent the next significant step in the analysis of the effectiveness of the current powering standard.

A total of 500 non-powering accidents will be sampled, including 200 fatal accidents and 300 non-fatal accidents (these are the approximate total sample sizes for fatal and non-fatal powering-related accidents). Accidents will be selected in order to be representative in terms of geographic region and boat type. Figure 8 snows the sampling plan by geographic region.

The 500 accidents will be sampled such that 52.5% are outboards and 37.5% are other boat types. These percentages match the breakdown within the powering-related sample for those coats covered by the present standard and those that are not covered. Figure 3 depicts the sampling plan for the 500 non-powering accidents.

3.4 Quality Assurance Procedures

The PRAM quality assurance procedures outlined in Volume I of this technical chief have been amended to include further verification of the coded information. Each accident will be processed independently by two analysts. The independent codings will then be keypunched and compared by a computer profining for discrepancies. The discrepancies will be checked for keypunching and roding errors, and recycled for keypunching the corrected codes. This

probabilities of death, injury, and property damage when the accidents do occur. Such a standard may or may not demonstrably reduce accident frequency, but it may reduce accident severity significantly. The analyses of fatal and non-fatal accidents will allow results such as those described to surface when they are present.

Table 1 indicates that there are several fatalities at nodes 14, 15, 17, 18, and 19. Accident Event Trees have been developed to code important sequential information for accidents accepted at these nodes. The event trees were described earlier in this technical brief. The fatal accidents provide much of the information needed for processing data in the event trees, while the non-fatal accidents typically do not. For this reason, all powering related fatal accidents from 1976 will be sampled and coded. This will provide detailed input for the event trees and may provide a large enough sample size at other accept nodes to increase the number of event trees in PRAM.

The Non-Powering Accident Sample

A sample of non-powering-related accidents will be collected and analyzed for two reasons: 1) these data will be compared to the powering-related sample in terms of the ratio of mounted horsepower to rated horsepower, and 2) comparisions may be made involving other powering ratios or other variables.

Dowering-related accident to a significant degree, then the powering ratios for the boats in the powering-related sample should be higher chart types covered by the standard). If there is no significant difference in the powering ratios for the two samples, then either the standard does not effectively measure the risk of involvement in a powering-related accident, or poats that are overpowered are just as likely to be in a nor-rowering accident. The second explanation means that the standard measure a general accident propensity, measures of exposure (nours of operation, number of overpowered boats, etc.) may be needed to normalize the comparisons.

3.3 The PRAM Sample

The sample of powering related accidents to be used in PRAM includes all 1975 accidents in the Coast Guard files that survive the decision tree (Figure 4), and all 1976 fatal accidents that are accepted by that decision tree. At the writing of this technical brief, only the 1975 data had been sampled. Table 1 snows that a total of 381 accidents were accepted from the 1975 data as powering related, including 96 fatal accidents (involving 117 fatalities) and 285 non-fatal accidents.

TABLE 1. 1975 PRAM SAMPLE BY NODE OF ACCEPTANCE

	PFAM Node of Acceptance	Number of Fatal Accidents	Number Non-Fatal Accidents
5	(Lost control)	1	93
5	(No attempt to avoid collision)	1	19
12	(Attempted to avoid, not enough time)	7	33
14	(Fall overboard/capsizing during maneuver)	22	23
15	(Sudden application of power)	13	11
16	(Loss of directional control)	9	24
:7	(Wave over bow)	18	25
. 8	(Fall overboard due to wave)	16	30
19	(Capsizing)	<u> 10</u>	27
	TOTAL	96	285

From the table it is clear that the fatal accidents are not distributed in the same manner as the non-fatal accidents by node of acceptance. For example, nearly one-third of the non-fatal accidents were accepted at node 5, while only 15 of the fatal accidents were accepted at that node. Collisions account for approximately 50% of the non-fatal sample, but only 10% of the fatal sample. This necessitates the inclusion of both fatal and non-fatal accidents in the analyses of the powering problem, since the potential exists for different causes and countarmeasures for each. While it is true that in terms of potential benefits one fatal accident may be weighted as equivalent to as many as 50 non-fatal accidents, the differences in accept nodes indicate different powering problems, what may be a solution to the cause of certain powering accidents may have no bearing in the causes of other powering accidents. One possible senerit from such analyses in the finding of a regulation or standard that minimizes the

Column(s) Variable

Description/Codes

- B) Improper or excessive loading was a factor in this accident.
- Poor equipment (poor condition) was a factor in this accident.

79 Node 19 Tree

Process the accident as far down the tree as possible. Do not use the "other" code without consulting a project leader.

The processed that have been constructed are intended to provide more detailed information about the accidents. The trees will undoubtedly be amended as more accidents are processed through PRAM. Whenever an analyst presents a case to a project leader that is potentially coded as "other" in one of the trees, the project leader will consider amending the tree to include a node for that particular type of scenario. The ordering of the contributing factors for each acceptance node (each tree) is different. These factors were ordered to reflect their importance and the availability of the information at each node, after reading a sample of accidents at each node.

Node 19

The accidents that are accepted at node 19 include capsizings caused by a wave or wake. Detailed related factors and accident scenario descriptions are coded. The coding instructions are snown on successive pages and will be included in the PRAM Analyst's Guide.

FOR ACCIDENTS ACCEPTED AT NODE 19:

Column(s)	<u>Variable</u>	Description/Codes
76 76 77 79	Contributing Factors	Choose the contributing factors in this accident. If less than four apoly, right hand justify and insert 0's in left hand column(s). Read down the list in order and code the first four that apply. In order. Thus, the codes from 75-73 should be ascending.
		 Poor operator judgment: inexperience, mis- judgment of his or boat's abilities, etc.
		2) Lack of PFDs on lack of PFD use was a factor.
		 Operator was unable to outrun or escape stern wave, wake that he knew was coming
		4) Excessive speed was a factor in the accident.
		5. Rough water was a factor in the accident.
		 Alcohol was a factor in the accident.
		3) More flotation (beyond basic, or any if there was none) would have helped.

Node 18

These accidents include falls within the boat and falls overboard that result from a wave or a wake. For these accidents, detailed codes have been developed for contributing factors in the accidents and for the nature of the fall. The coding instructions are on the pages that follow and will be incorporated into the PRAM Analyst's Guide.

FOR ACCIDENTS ACCEPTED AT NODE 18

Column(s)	Variable	Description/Codes
75 76 73	Contributing Factors	Choose the contributing factors in this accident. If less than four apply, right hand justify and insert 0's in left hand column(s). Read down the list in order and code the first four that apply, in order. Thus, the codes from 75-78 should be ascending.
		 Hit by the boat or prop after fall.
		The fall led to a capsizing or swamping.
		3) Improper loading or excessive loading was a a factor in this accident.
		4) Excessive speed was a factor in this accident.
		 Poor equipment (poor condition) was a factor in this accident.
		6) Lack of PFDs or lack of PFD use was a factor in this accident.
		7) Lack of flotation for boat (or lack of level flotation) was a factor: i.e., more flotation would have definitely helped.
		6) Collision with another vessel or object after the initial accident.
		 Alcohol involvement on the part of operator or others.
7)	Node 13 Thee	Process the accident as fan down this thee as possible. Note that no '8" is used. Do not code an "other" without discussing the accident with a project leader

- 2) Strong current and/or rough water was a factor.
- 3) Operator inexperience was a factor.
- 4) Lack of PFDs or failure to use them was a factor.
- 5) Alcohol was a factor.
- 6) Poor operator judgment was a factor.
- 7) More flotation (beyond 0, or beyond basic) would have helped.
- 3) A capsizing followed the swamping.
- Poor equipment (poor condition) was a factor in this accident.

73 Node 17 Tree

Process the accident as far down this tree as possible. The loading decisions involved primarily loads at the bow or gunwale, but these decisions may be based upon the overall load if the loading distribution within the boat isn't known.

Column(s)	<u>Variable</u>		Description/Codes
7.0 7.0 9.0	Contributing Factors	cide just Read thre	ose the contributing factors in this acent. If less than three apply, right hand tify and insert 0's in left hand column(s). I down the list in order and code the first see that apply, in order. Thus, the codes in 78-80 should be ascending.
		1)	Hit by boat or prop after initial accident.
		2)	Stood up, improperly seated, or otherwise not in a proper position.
		3)	Handling gear (engine, line, anchor, fishing, etc.).
		4)	Engine trouble/control trouble, poor conditions.
		5)	Lack of PFDs, or not using PFDs.
		€)	Lack of flotation, more flotation in boat would have helped.
		7)	Collision occurred after initial accident.
		٤)	Boat was out of control after the accident (underway, not drifting).
		9)	Alconol was involved.

:00e

These accidents involve boats which were swamped by a wave or wake over the box or side. For these accidents, the contributing factors and some details concerning the reasons for the swampings are coded. The coding instructions are or the pages that follow and these will be included in the PRAM Analystis Guide.

FOR ACCIDENTS ACCEPTED AT NODE 17:

Column 3"	Variable	Description/Codes
76 74 77 73	Contributing Factors	Choose the contributing factors in this accident. If less than four apply, right hand justify and insert 0's in left hand column(s). Read down the list in order and code the first four that apply, in order. Thus the codes from 75-78 should be ascending.
		1) Speed was a factor, it was excessive considering the circumstances.

FOR ACCIDENTS ACCEPTED AT MOLE 15:

Column(s)	Variable	Description/Codes
75	Circumstances	Was the vessel:
		 Just getting underway from a stopped or slow speed situation (intentional or otherwise)
		2) Increasing speed, but already underway
		3) Unknown
76	Operator Intentions	Was the change in speed:
		1) Intentional
		2) Unintentional
		3) Unknown
77	Node 15 Tree	Process the accident as far down this tree as possible. Do not use an "other" code without consulting a project leader.

<u>Columnis,</u>	Variable	Description/Codes						
7.6 7.9 9.0	Contributing Factors	Choose the contributing factors in this accident. If less than three apply, right nand justify and insert 0's in left hand column(s). Read down the list in order and code the first three that apply, in order. Thus, the codes from 78-89 should be ascending.						
		 Hit by boat or prop after initial in cident. 	n -					
		2) Lack of PFDs or Tack of PFD use.						
		 Excessive speed was a factor in the accident. 						
		 Boat's own wake contributed to the accident. 						
		5) A wave contributed to the accident.						
		6' Unitamilarity with controls or numan factors problem with controls.						
		 Collision with another vessel or object(s) after initial incident. 						
		6) Lack of flotation for boat (or lack of level flotation for boat); i.e., more boat flotation would definitely have nelped.						
		છે) Alcohol involvement on the part of						

As specific excepted at this mode are initiated by a sudden application of power, in these application of committances under which the power was applied using underway, etc.), whether the sudden application of power was intentional, detailed scenario information about the circumstances causing the strong pages and significant contributing factors are all coded for the circumstances causing to be at hisk, and significant contributing factors are all coded for the circumstances causing to the strong pages and will be such as the RRAM Analyst a Guide.

operator or others.

_																					
Trent Trees	7	-		-		7	1.1	-	7	-4	!	1-1	-		-	_			-	_	-
	1 1	-1	-	-	-	7	4	1	7			1.1	7 7	-	1	-	_	_	-	_	-
1651.6 Store :	<u>-</u> .	-	-	-,		<u>-</u> .	7	7	7.			7.	-	-		~	_	_	-	_	-
2000 10 10 10 10 10 10 10 10 10 10 10 10																					
	-	-	_	_	-	7 -	7	1-1	-i -	1		<u>.</u> .	-	_	-	-	_	-	-	_	_
106 31 31 31 31 31 31 31 31 31 31 31 31 31	_	1.	_	_		7	1	1	4	-	7	1 1	_	-	-		_	-	-	_	_
10 10 10 10																					
.06.		-	-1	7	-	٠.,	4			4	1.	-		_		-,		-	-	7	_
المان				+	-		+	-		_	-	-		_					_		
6:00 09:64 6:00 09:64	1) 1) 1)			-1				- }-	-	-						_	_		_		
39. 19. 39. 14 39. 19. 19. 19. 19. 19. 19. 19. 19. 19. 1	<u>-21</u> -2	÷ -	1. 1	⊣	T		1-1	7 7	-	-	1	-	-	-	-	-	-		-	-	-
300,20,00		~		-	_		_	-		-		-	-	-	-	-	-	-			_
135 1 January 44 56 1		-		-	_			7			-	-	_	-	-		-	-	-	-	-
40.14 2.00 CA: 72								- 1		<u> </u>		<u>-</u>			_						
200	21-42	1 1	-	1.1		1.1	=	<u>-</u>	7	_	1-1	-	-	_	=	_	_	_	_	-	_
7 7 7000	= ==		-	-	-	4	٦	-	-	_	_	_	-	_	-	-		-	-	-	_
	; † :																_				
	<u> </u>																				
					<u> </u>																
															 -						
700	<u>;</u>													_						_	
24.31																					
34		_			_										-				-		
		-				_		-	_			-		_	-	<u>-</u>				_	
	_	-	_			_		-	-	-		-	_	-· 	-	- -	_	-	-	-	-
	——- ——-																				
															_		_				
195 - 20,																					
																_					
1																	_				
															_						
					-			-	_				_								
the second												<u> </u>		-							-
			·			-		-			_										
						-								_			_		-		
	-	-		-	-	-	-		_	-	-	-	-	-	-	-	-	-	-	-	-
	_			_		_		_		_				_			_		_	_	

PRAM Coding Instructions

Once you have decided that an accident is acceptable for PRAM, then fill out one row on the coding sheet completely for that accident using the following instructions.

CARD 1

Column(s)	Variable Name	Description and Coding Instructions
C1 02 03	Boat Number	This is the number of the boat in our sample. It is used to identify the accident in case we should ever need to refer to it again. The first boat coded into PRAM will be "OOI;" and the next will be "OO2," etc., until all of the appropriate accidents have been coded. Each time an acceptable accident is found, it should have the next sequential boat number written on it in bold black printing. All accidents involving more than one boat, wherein more than one boat will be processed through PRAM, will be numbered starting from 900. For each accident of this type, skip to the next multiple of 5 for the starting number. Thus, for the second accident having more than one boat in PRAM, the boat numbers would be 905, 906, etc. For the third accident, 910, 911, etc. Therefore, for boat numbers under 900, there was one boat per accident with a powering-related problem, and for numbers over 899, there were multiple boats per accident with powering-related problems.
24	Coded By	The analyst who codes each particular accident should enter his personal one digit code here. Codes are: 0 = Mark Perry
) <u>5</u>)6	State	Enter the appropriate two digit code for the state where the accident occurred, according to the list below.

<u> Columnis) Variable Name</u>	Decompation and Coding Instructions
---------------------------------	-------------------------------------

41abama	61	Alaska	02	Arizona	C4
² rkansas	05	California	96	Colorado	98
Colorado	08	Connecticut	09	Delaware	10
Dist. of Columbia	11	Florida	7.2	Georcia	7.3 7.7
Hawa i i	י 5	Idano	7.6	Illinois	7. 7
indiara	18	Iowa	19	Kansas	
Kentucky	21	Louistana	22	Maine	23
Manyland	24	Massachusetts	25	Michigan	26
Minnesota	27	Mississippi	28	Missouri	29
Montana	30	Neprask-	37	Nevada	208692697
New mampshire	33	New Insey	34	New Mexico	35
hew York	36	North Carolina	37	North Dakota	39
Ĵr io	39	Oklanoma	40	Oreacn	47
Pennsylvania	42	Rhode Island	44	South Carelina	45
Bruth Dakota	46	Tennessee	47	Texas	49
13 r	49	Vermont	50	Virginia	57
Washington	53	West Vinginia	54	Wisconsin	55 55 56
wyomina	56	•		Unknown	38

...

when the accident occurred (0) = January, etc....
12 = December). NOTE: FOR ALL THE TIME ORIENTED VARIABLES, CODE THE TIME THAT THE ACCIDENT BEGAN. Unknown = 85

Day

Enter the appropriate two digit code for the day of the accident (01 = 1st of the month, etc.). Don't forget the 3. Unknown = 88

Yea

Enter the last two digits of the year in which the accident occurred. Unknown = 88

~ . . <u>.</u>

Code the two digits (in military time, i.e., 10 = 24 nouns) corresponding to the time, to the bearest hour, that the accident began. Code the time of the capsizing, for example, when a boat captizes and the beoble are not recovered for 10 hours. Round up from the half hour, i.e., 22:30 is coded as 123.11 Unknown = 38

Accordent Type

Code the primary ifirst actident type. For example, if there is a collision causing someone to fall out of the occi. All beoble on board are coded as victims of a collision, not a falls evenboard. Cimilarl, if a pensor falls out of a joinboat causing it to capsize, throwing a second person into the water poth victims are coded as falls evenboard, since that was the orimany cause of the accident. Occasionally more than one accident happens consecutively in time. A pensor might fall by rosand, and a second pensor comming the size might be struck by the boat on problems. Code the finct elect.

Column(s)	Variable Name	Description and Coding Instructions
15	Accident Type (continued)	<pre>1 = collision/grounding 2 = swamping/capsizing/flooding/sinking 3 = fires and explosions 4 = falls overboard/falls within the boat 5 = struck by boat or propeller 6 = other 8 = unknown</pre>
16	Boat Type	Code the single digit that corresponds to the best description of the boat involved.
		<pre>1 = high performance boat 2 = open powerboat 3 = cabin motorboat 4 = auxiliary sail 5 = canoe/kayak (powered) 6 = nouseboat 7 = inflatable (powered) 8 = unknown 9 = other</pre>
13	Boat Length	Code the length of the boat as a two digit number, ignoring inches. For example, a 15' 11-1/2" boat would be coded "15." For all accidents, code "boat data" for the appropriate boat. For falls overboard, this would be the boat that the victim left. For nit by the boat or prop, this would be the boat that did the hitting. Unknown = 88.
19	Soat Width	Code the one digit number that corresponds to the poat's maximum width (measured to the hearest foot. rounding up from 6". $5 = 3 \text{ ft}$ $1 = 4 \text{ ft}$ $2 = 5 \text{ ft}$ $7 = 10 \text{ ft}$
		3 = 5 ft $3 = unknown4 = 7$ ft $9 = greaten than 10 ft$
· -	Hull Shape	Code the one digit that best corresponds with the shape of the boat's hull, using the figure below.
	Tonsier	<pre>0 = Deep+V (3 greater than 18°) 1 = Demi-V (3 less than 18°) 2 = Duthedral on thi-null 3 = Flatbottom 4 = Poundbottom 5 = Other 5 = Unknown</pre>

Column (3.)	Variable Name	Description and Coging Instructions
		Code the last two digits of the year that the boar was manufactured (model year). Unknown = 55
£ 3	Type of Power	Code one digit corresponding to the type of power in use.
		0 = 3 then: $1 = 0$ utboard: $2 = 1/0$: $3 = 3$ hotens. $8 = 3$ nkhown
	Speed	Code one digit which best corresponds to what is known about the boat's speed.
		0 = 0-10 mph
	lia the boat maye a motorwell	0 = Nn. 1 = Yes: 8 = Unknown
· .	Steering Control:	Code the appropriate one digit code
		1 = Controlled from engine, including those where it is not centain but the analyst is precoy dure.
		2 = Results steering, of any type, including those where it is not certain but the abslight in theits sure.
		3 = M1012+
		4 = 0+e.
		<pre>2 = Unknow*</pre>
		Use cost First pan engine to use its to the following mode of uterming isn't specifies. Use the First to the cost tive (jornocat) suggests to large office of the engine of under 20 mp.
		Code the one chyst that connesponds it inhous manufactures.
		<pre>1 * Mencony Manine (Menchansen) 1 * uon vin 2 * Pinne de 2 * Orn Dia 3 * OM) 6 * Dianton in MaCallican 7 * Eva 6 * Over Senta 7 * Over Senta 7 * Over Senta</pre>

Column(s)	<u> Variable Name</u>	Description and Coding Instructions	
28 29 30	Horsepower	Code the norsepower of the engine(s) in use. If more than one engine was in use, then code the combined horsepower. Round down to the nearest whole number. Unknown = 888	
31 32	Motor Weight	Code the weight of the motor (in pounds). Remember that "88" means unknown. For this variable, if the motor weight is known, then code the motor weight divided by 10. If the weight is not known, but the manufacturer is known, then use the outboard blue book to determine the motor weight. If the manufacturer is not known, use the chart below. For decimals, round to the nearest whole number, rounding up for 0.5.	

NOTE: CODE THE COMBINED WEIGHT IF MORE THAN ONE ENGINE WAS USED.

Motor HP	Motor Weight (1b)
2.0- 4.5	3C
5.0 - ∋.0	50
9.1- 15.0	60
15.1- 29.0	100
30 .0- 39.9	135
1 0.0- 49.9	150
50.0- 59.9	180
60.0- 69.9	200
70.0- 79.9	220
80.0 - 99.9	250
100.0-135.0	250

Maximum Engine gom Sode the maximum engine nom as a two digit number by determining the maximum engine nom and dividing it by 100. Round to the hearest 500 nom, nounding up if at 230 on 750. If the engine have its unknown, then use the guide below. Unknown = 33. For any nom over 3700, use 89.

If the motor manufacturer is known, use the outboard blue book. If the manufacturer is unknown, but the norsepower is known, use the following table.

Engine HP	Makimum som
0-4 y	4000
	4 8 () (
7, 7 - 10, 7	5570
11 or over	5807

	Š.	Variable Name

Description and Coding Instructions

35 Course

Choose the appropriate one digit code from the decision tree.

- *Note : Sode "No" if the accident happened very quickly and there is no evidence to the contrary. Code "Yes" of there is any intentional movement of the steering wheel. An operator who must turn the wheel to stay on a heading (because of waves, etc.), is intentionally "changing course" with respect to the steering wheel.
- *Note 2. For codes 4 through 9 the analyst must decide the best fitting code when more than one may apply. For example, dynamic instability might be caused by a large wave, and might be best coded at 9 in that panticular case. Great care should be taken in these decisions.

Description and Coding Instructions

36 Powering 37 Behavior Choose the appropriate two digit code from the decision tree shown below.

Starting the engine in gear is not a change in throttle setting. "Cruising" does not imply that the throttle setting was over 3/4. The questions in the tree refer to the period of time immediately prior to the accident, not several minutes before. The word "gunned" is interpreted as a high throttle setting. An operator who is attempting to get a water skier up is assumed to be at full throttle. If the analyst knows the speed in mph and the total weight of the boat + people + gear (approximately), then the throttle setting can be obtained by using a computer/calculator program which can be obtained from a project leader (C. Stiehl. R. White. or N. Whatley - see Appendix 3).

Column(s)	Variable Name	Decemberion and Coding Trainvertons
39 38	People on Board	Code two didits for the number of people on board the boat the sure to right-hand justify; i.e., code 1 as "CI"). For falls overboard, the falls overboard victim(s) is counted as one of the people or board. Water skiers are not counted as PC3, nor are any other people who are not from this poat. 88 = unknown.
40	Activity	Code the approposate digit for the activity at the time of the accident. Water skiing includes the boat, the skier, manuevering to bick up the skier, etc. Trying to take off and get a water skien $ub=7$. Project leader approval must be obtained in order to use a "9".
		<pre>Semanthing other than those on the sist</pre>
		<pre>5 = Skin d wind on swimming (principal activity,</pre>
2.1	Body of Wa te r	Code on Tronnisce digit.
		ો ક સંપ્રાત્ય ૧૯૯૩ માં Shummel, etc. (often fres e Weller
		The Lare point on an a Great Lake,, swamp, etc. 7 # Preat Lar
		<pre>3 # Spashallos : Inlet, sound, marcon, witerway,</pre>
3.	water Conditions	Sode the appropriate digit
		D = 0.00 D = Obcook incline D = Uwaft inuncert D = Uenu incuce D = Uchnoyr
t.	1,12111,	under the covers of utpoles that is lift no viristifficants formation to the BAR fee a civitation late. See that is under the contradicts what is white the contradicts what is white the contradicts and here as uters. Here contrades the best

Column(s)	Variable Name	Description and Coding Instructions
		0 = Good 1 = Fair 2 = Poor 8 = Unknown
44	Wind	Code the appropriate digit.
		<pre>0 = None 1 = Light (less than or eq. 6 mph) 2 = Moderate (7 thru 14 mph) 3 = Strong (15 thru 24 mph) 4 = Storm (25 mph or more) 8 = Unknown</pre>
45	Number of Recoveries	Code with one digit the number of people on the boat who survived the accident, where "3" means unknown, and "9' stands for more than 7. Water skiers and others involved in the accident, whether from this boat or not, are included here.
46	Number of Fatalities	Code with one digit the number of people on the boat who died in the accident, where '3" stands for unknown, and "9" means more than 7. Water skiers and others involved in the accident, whether from this boat or not are included here.
		NOTE: Columns 45 and 46 should sum to at least the number of POB, and probably more.
13	Node of Acceptance	Code as a two digit number the node on the PPAM accident decision tree where this accident was accepted.
43 50 51	Operator Skill/ Experience	Code three digits for this variable. The first digit corresponds to the operator's experience in this particular boat, or boats of this type. The second digit corresponds to the operator's total experience in boats. The third digit corresponds to what is known about the formal boating safety education of the operator. For example, if the operator had 50 hours of experience on boats of this type, 150 hours of total experience on boats, and had no formal boating safety courses, then he would be coded "100."

Description and Coding Instructions Variable Number Column(s) For Experience (This Boat): 0 =Under 20 hours 1 - 20-100 hours 2 = 100-500 hours3 = 0ver 500 hours 8 = Unknown For Experience (Total): 0 = Under 20 hours 1 = 20-100 hours2 = 100-500 hours3 = 0ver 500 hours 4 = Exact number unknown, but operator is known to have considerable experience 8 = Unknown For Education: 0 = None1 = USCG Auxiliary Course 2 = Power Squadron Course 3 = Red Cross Course 4 = State Course 5 = Other Course (including professional licenses) 6 = More than one course 7 = Yes, but particular course unknown 8 = Unknown 52 53 4 Rated Code three digits corresponding to the rated Horsepower horsepower. 888 = Unknown Rated Weight Sode two digits corresponding to the rated weight of the people on board (persons capacity) Capacity of divided by 10, up to a code of S8. "83" is POB used for unknown. "89" for this variable means a persons capacity of from 1001 to 1500 bounds. "99" stands for not applicable (boats which are not rated). Code three digits corresponding to the rated Rated Total 53 total weight capacity of the boat, divided by Weight Capacity 10. "888" stands for unknown, and "999 means not applicable (boats which are not rated . "989" is used for boats whose total

weight capacity exceeds 8870 bounds.

Column(s)	Variable Name	Description an	<mark>d Coding Instruc</mark>	<u>stions</u>
50 51	Rated Weight Capacity of The Motor	Code two aigits coweight of the moto stands for unknown applicable (I/O. i capacity is unknow (outboard) is knowill be used:	r divided by 10., and "99" stand nboards). If the n, but the horse	. "88" is for not ne motor weight epower capacity
		Rated Horsepower Capacity	Motor Weight Capacity	Code
		0.1 to 2 2.1 to 3.9 4.0 to 7.0 7.1 to 15.0 15.1 to 25 25.1 to 45 45.1 to 80 30.1 to 150 150.1 to 250	35 55 75 100 166	03 04 06 08 10 16 24 32 42
	Weight of Gear on Board		t number. Indiand and other than conknown. As expended from the control of the co	de the weights the decole and ambles. The second of the condition then calculate lows: The user the coand.
		110 K POB = AS. 3		

olumnis Janiable Name John Sign and Coc no instructions i ≖ i jamo n use 55 No. of Engines 2 = 1 indire. in use in Use $\frac{1}{3} = 3$ in more engines in use 8 = 0 */ * * in coloniary harage to the vessel, use the 55 Damage to cude up to the subjects to the cost of negatining inis Vessei the was all, in whomas otherwise, use the code which itsinicannesponds to the known camage. The resident to the time of the arms on out what the cost would be today. the Armondon and what the cost would be today. For evaluation the BAR states that the damage was similar and ATC scondent, DO NOT finding the confliction of the confliction of the confliction of the any significantly valued behavior of the confliction of the c

them in the code TOM should be used on a construction of the construction of the BAR and in states, and in the code construction as BAR and information of each sent in a BAR and information of the code contractable (causicine, ecol), then the code can departure unless there is evidently to the common departure. For collinsions, fined the code of property of the code of 1 if no construction for the code of 1 if no code of property the code of the code of the code of 1 in a code of the code of the code of 1 in a code of 1 in a

- i en l'exemple de l'uchâtoméd g∈location de l'uchâtoméd. L'illimate
- A file to to the content of title can income the content of a content of the conten
- goden, se se se santa de la composition de de de de la composition de de de de de la composition della composition della

in the state of th

Joinn's Variable Name

Description and Coding Instructions

injured. For the third digit code the most severe injury among those who were injured. If only one person was injured, then the least and most severe codes should be the same. If no one was injured, then use 0 for the least severe injury and for the most severe injury. Injuries include purhas proken limbs, effects of exposure/hypothermia, etc.

No. of People Injured (Column 67)

0 = 0

] = '

2 = 2

3 = 3

1 - 1

5 = 5

£ = 3

7 = 7 or more

8 # OKSOWE

9 = Cakhown, but some were intured

Sevenity (Column 68 - Cleast - and b3 - Tost)

) = "finor cuts and profess, or less, to ungaitment

in Outs, abrasions, bruises reduiring treatment

2 = Infunces resulting in 24 rouns on less of incapacitation imassing work, etc.

3 = Injuries resulting in more than 34 nounc

nowakantation, and up to one week

4 = Injunter reculting in one week to move month

6 * Intunte Tresulting to the no the remains of the apathology

More transity memors, but but the rest

The Termanens issuability, but not a inchess

1 a nkrown

🕠 🖘 kermultent Kisabtinby, bilkomesy on bunmaness blub

ldrane : Town 7e; ⊝°'s the control order deut is confided the samage to the control vector in this addition. NOTE: It the control where is not this addition and size of AACH, then cote 3000000 the observe of the control of t

Holmer new try loss of centures, property on the control of the co

Variable Name

Description and Coding Instructions

Number of Recoveries

Code with one digit the number of people on the boat who survived the accident, where "8" means unknown, and "9" stands for more than 7. Water skiers and others involved in the accident, whether from this boat or not, are included here.

Number of Fatalities

Code with one digit the number of people on the boat who died in the accident, where "8" stands for unknown, and "9" means more than 7. Water skiers and others involved in the accident, whether from this boat or not are included here.

NOTE: Columns 45 and 46 should sum to at least the number of POB, and probably more.

Loge of Acceptance

Code as a two digit number the node on the PRAM accident decision tree where this accident was accepted.

Experience

Operator Skill/ Code three digits for this variable. The first digit corresponds to the operator's experience in this particular boat, or boats of this type. The second digit corresponds to the operator's total experience in boats. The third digit corresponds to what is known about the formal boating safety education of the operator. For example, if the operator had 50 hours of experience on boats of this type, 150 hours of total experience on boats, and had had no formal boating safety courses, then he would be coded "120."

> NOTE: For operator total experience find median of each rance checked in the experience columns on the BAR and add the two. If only one experience block is snown on BAR, use that figure for total experience and 3 for experience this boat.

For Experience (This Boat):

- 0 = Under 25 hours
- 1 = 20 100 nours
- 2 = 100-500 nours
- 3 = Over 500 nours
- 3 = Unknown

$\frac{\operatorname{umin}(s)}{s}$	<u>Variable Name</u>	Description and Coding Instruction
33 34 35 36 37		Leave th ese colu mns blank
39 38	People on Board	Code two shaits for the number of people on board the boat (to sure to right-hand justify; i.e., code las "Ol"). For falls overboard, the falls overboard victim(s) is counted as one of the people on board. Water skiers are not counted as POB, nor are any other people who are not from this boat. S8 = unknown.
10	Activity	Code the appropolate digit for the activity at the time of the accident. Water skiling includes the boat, the skier, manuevering to pick up the skier, atc. Trying to take off and get a water skier up = 7. Project leader approval must be obtained in order to use a "N".
		<pre>0 = Something other than those on the list</pre>
11		Leave this column blank.
**2	Water Conditions	Code the appropriate digit 0 = Calm 2 = Choppy/rough 3 = Swift current 4 = Very rough 8 = Unknown
43		Leave this column blank.
44		Leave this column blank.

<u>.mn (s)</u>	Variable Name	Description and Coding Instructions
:1 :- :2	Year of Manu- facture of Boat	Code the last two digits of the year that the boat was manufactured (model year). Unknown = 88
13	Type of Power	Code one digit corresponding to the type of power in use. "Other" includes jet boats, air boats.
		0 = Other;
24	Speed	Code one digit which best corresponds to what is known about the boat's speed.
		0 = 0-10 mpn $5 = 51-60$ mph $1 = 11-20$ mpn $6 = Unknown$, but greater than 60 mph $2 = 21-30$ mph $7 = Unknown$, but increasing speed $3 = 31-40$ mph $8 = Unknown$ $9 = Unknown$, but decreasing speed
ည်ခဲ		Leave this column blank
<u>. 5</u>		Leave this column blank
27		Leave this column blank
23 29 30	Horsepower	Code the horsepower of the engine(s) in use. If more than one engine was in use, then code the combined horsepower. Round down to the nearest whole number. Unknown = 888
3.2	Motor Weblint	Code the weight of the motor (in pounds). Remember that "83" means unknown. For this variable, if the motor weight is known, then code the motor weight divided by 10. If the weight is not known, but the manufacturer is known, then use the outboard blue book to determine the motor weight. If the manufacturer is not known, use the chart below. For decimals, round to the nearest whole number, rounding up for 0.5.
		MOTER CODE THE COMPINED WEIGHT IF MORE THAN ONE

NOTE: CODE THE COMBINED WEIGHT IF MORE THAN ONE ENGINE WAS USED.

Motor HP	Motor Weight (1b)
2.0- 4.5	30
5.0- 9.0	50
9.1- 15.0	6 0
15.1- 29.0	100
30.0- 79.3	135
40.0= 49.0	150
50.0- 53.1	180
60.4- 69.9	200
70. "= 30. V	220
a6.9- 9∀.÷	250
100.0-100.0	260

Column(s)	Variable Name	Description and Coding Instruction
15	Accident Type (continued)	<pre>1 = collision/grounding 2 = swamping/capsizing/flooding/sinking 3 = fires and explosions 4 = falls overboard/falls within the boat 5 = struck by boat or propeller 6 = other 8 = unknown</pre>
ĩó	Boat Type	Code the single digit that corresponds to the best description of the boat involved.
		<pre>1 = high performance boat 2 = open powerboat 3 = cabin motorboat 4 = auxiliary sail 5 = canoe/kayak (powered) 6 = houseboat 7 = inflatable (powered) 8 = unknown 9 = other</pre>
17 18	Boat Length	Code the length of the boat as a two digit number, ignoring inches. For example, a 15' 11-1/2" boat would be coded "15." For all accidents, code "boat data" for the appropriate boat. For falls overboard, this would be the boat that the victim left. For hit by the boat or prop, this would be the boat that did the hitting. Unknown = 88.
; a	Soat Width	Code the one digit number that corresponds to the boat's maximum width (measured to the meanest foot, rounding up from 6".
		0 = 3-3 ft $5 = 8$ ft 1 = 4 ft $6 = 9$ ft 2 = 5 ft $7 = 10$ ft 3 = 6 ft $3 = $ unknown 4 = 7 ft $9 = $ greater than 10 ft
26	Hull Shape	Code the one digit that best corresponds with the shape of the boat's null, using the figure colow.
[ranson	<pre>3 = Deep-V (3 greater than [8]) 1 = Semi-V (3 less than [8]) 2 = Cathedral or tri-hull 3 = Flatbottom 4 = Roundbottom 5 = Other 8 = Unknown</pre>

<u>plumn(s) Variable Name</u>

Description and Coding Instructions

Alabama	01	Alaska	0.2	f	0.4
Arkansas	05		02	Arizona	04
		California	9 6	Colorado	SO
Colorado	80	Connecticut	09	Delaware	10
Dist. of Columbia	11	Florida	12	Georgia	13
dawasi	15	Idaho	16	Illinois	17
Indiana	18	Iowa	19	Kansas	20
Kentucky	21	Louisiana	22	Maine	23
Marviand	24	Massachusetts	25	Michigan	26
Minnesota	27	Mississippi	28	Missouri	29
Montana	30	Nebraska	31	Nevada	32
New Hampshire	33	New Jersey	34	New Mexico	35
iew York	36	North Carolina	37	North Dakota	38
Onio	39	Oklahoma	40	Oregon	41
Pennsylvania	42	Rhode Island	44	South Carolina	45
South Dakota	46	Tennessee	47	Texas	48
utan	49	Vermont	50	Virginia	51
Washington	53	West Virginia	54	Wisconsin	55
Wyoning	56	,		Unknown	38

Coast Guard Controlled Water But Not a State 63

Leave these columns blank

Leave these columns blank

Year

Enter the last two digits of the year in which the accident occurred. Unknown = 88

Leave these columns blank

Accident Type

Code the primary (first) accident type. For example, if there is a collision causing someone to fall out of the boat, all people on board are coded as victims of a collision, not a falls overboard. Similarly, if a person falls out of a johnboat causing it to capsize, throwing a second person into the water both victims are coded as falls overboard, since that was the primary cause of the accident. Occasionally more than one accident happens consecutively in time. A person might fall overboard, and a second person (coming to his aid) might be struck by the boat or prop. Code the first event.

APPENDIX B. POWERING RELATED ACCIDENT MODEL (PRAM) CODING INSTRUCTIONS FOR NON-POWERING RELATED ACCIDENTS

PRAM Coding Instructions

Once you have decided that an accident is acceptable for PRAM, then fill out one row on the coding sheet completely for that accident using the following instructions.

CARD 1

Column(s)	Variable Name	Description and Coding Instructions
01 92 93	Boat Number	This is the number of the boat in our sample. It is used to identify the accident in case we should ever need to refer to it again. The first boat coded into PRAM will be "001;" and the next will be "002," etc., until all of the appropriate accidents have been coded. Each time an acceptable accident is found, it should have the next sequentia; boat number written on it in bold black printing. All accidents involving more than one boat, wherein more than one boat will be processed through PRAM, will be numbered starting from 900. For each accident of this type, skip to the next multiple of 5 for the starting number. Thus, for the second accident having more than one boat in PRAM, the boat numbers would be 905, 906, etc. For the third accident, 910, 911, etc. Therefore, for boat numbers under 900, there was one boat per accident with a powering-related problem, and for numbers over 899, there were multiple boats per accident with powering-related problems. For two boat collisions in non-powering, use sequential numbers in normal order, i.e., do not use 9XX.
04	Coded By	The analyst who codes each particular accident should enter his personal one digit code mere. Codes are:
		0 = Mark Perry 4 = 30b white 1 = Fran Orr 5 = Paula White 2 = Benny Smith 6 = Gay Parrott 3 = Chris Stienl 7 = Nona Whatley 9 = Bob Douglas
J5		Leave these columns blank.

υĠ

STEP #	EY ENTRY	PRAM PR	COGRAM LIST	ring (H) s	P-97) STEP	KEY ENTRY	KLY C 1		√3
	2.							-	
· · · · · · · · · · · · · · · · · · ·	-	97 -*4							
	• •	•34 51		06	50				
3.1	.L5_i	2: []							
• •	7.7	+ j. 4 - £ d		-					
	<u>.</u>	ø_ :-							
		-6.2 85		-					
	1	51 51							
:: :::		-63 83		07	70				
	7 7 71	-1+ 1E-1:		F					
	771 7227	21 15							
•		-12 -5 80		-					
		£7		<u> </u>					
	- : - :	-:•		}			•	ı	
	- • • •	75 B1 -35							
		0:		}	80		 		
	•	ਦੇਵ ਭ ਵ							
	•	£1.7	ĺ	Ļ					
		- <u>1</u> -	}						
	÷ ·		j				<u></u>		
		8₹ v. *2•		-		 	· 		
		t' 		jõ	₩0		<u> </u>		
	-	pt =		}		 	 		
	•	₹ . ₹.		Ţ.				: 4	
		.:-:.		È		1		i i	
		-;-							
4		5.						1	
				ļ.	00			1	
				k - 1				1 -	
-			-	H		 	-	1	
<u></u>			-	7.4				1	
1350			4	1.		<u> </u>	,	4	
-			→ →	Į.				4	
			1	<u>}</u>				, - 1	
		<u> </u>	-	,					
				REGIS	TEDE			1	
			11			16			
100	- •) Na	.25 le	4 3	<u></u>	56	ĮŠ.	,Se	
-								12	
		.€	<u> </u>	!'				<u> </u>	

User Instructions

2

PRAM

For Decision Tree: /For Po Rated Hp Mounted Hp/ Speed /For "Powering Behavior":

STEP	INSTRUCTIONS	INPUT DATA UNITS	KEYS	OUTPUT DATA UNITS
	Load the program			0.00
2	For use in conjunction with the PRAM decision	Rated Hp	A	Fated Hip
	tree, input the rated horsepower and press			(on printer)
	A. The calculator will display the rated		(
	II. and the amount and 1/2 the metad II. on			1 '2 Rated H
•	Hr on the printer and 1/2 the rated Hp on the display.			on display)
	the Gistay.		·	
				<u> </u>
. <u>-</u>	input mounted horsepower and press (B.	Mounted H	PB	Mounted Ho
				(on printer)
				Critica.
				Throttle
				Setting on
•				
-	ki ar samuni samun in in is mis is misma ki anamana mana anama mana manamanananananan an in manaman man			display)
	· · · · · · · · · · · · · · · · · · ·			130.4
	The same of the sa			
=	TOR FOWERING BEHAVIOR START HERE.	Speec	<u> </u>	Speed on
	nout the speed in mon) and press (C.			printer
	The calculator will stop for the next input	<u>-</u> -i	ing of the fi	
	yuthin a second or two.			Spend on
				display
-	input total onet weight and press !'R.'S.	T. Boa: Wt.	. R.'S	T. Boat Wit.
	ne calculator will stop for the next input			(on printer)
	within a second or two.			
				h
				tio in use
-				101. 013016
		-		
	. Liput miluntus angma norkapawar and prass	Norwes 🖼	p R/S	Nounted Ho
				on printer
	·			
	و ينينجمو وي ا			Tarittie ,
				Bettingion
			,	printer
	·			dienia 🖰
	. ــ مو موسر . م ب حصصت . م م م			
~	To use the program for the delicition tree again.	·		
	""turk to step 2; for the "Fowering Benavior"		urn to step 4.	
				 ,

Program Description

Program Title PRAM			ï
Name C. Christian Stiehl		Date 9.2 77	
Address Wyle Laboratories			
T ty	State	Zip Cude	:

Program Description, Equations, Variables, etc.

This program serves two purposes. First, it allows the analyst to input the rated and mounted horsepowers for a boat, and calculate the critical throttle setting (in terms of horottle) which must be exceeded for more than 1/2 of the rated horsepower to be in use. The calculator outputs this critical throttle setting with the first part of this program. If the analyst knows that the throttle setting for this boat in the accident in question was less than the calculator's output, then the accident (boat) is rejected from the PRAM sample. If the throttle setting execeeds that shown on the calculator, then the case is processed further in the PRAM decision tree. Example:

laput	Action	Output: Display	Frinter
25 rate l Hol	oress "A"	12.5	25.0
The mounted Hol	press B	-	75.0
•	•	0.488). ∔8૩

The second part of the program allows the analyst to compute the throttle setting for a most planing hall) when the speed, total boat weight, and mounted horsebower are known. This information is used to determine the coding for the Powering Behavior time in PRAN. The analyst inputs the three variables listed above, and the calculator contoutes the innotitle setting. Example:

Transit .	Action	Output: Display	Printer
4 smeet in mobil	press "C"	1600	49.3
(.) total weight)	press "R S	1;2,5	1:00.0
je inspuntou Holi e	oress R S		
•	•	၅့နှစ္	j, -2;

travelling at the stated speed with the stated engine size and total boat weight.

Operating units and Warnings 2.3 which is the program uses the relationship: $(^{\sigma}_i H p) = (^{n}_i H p) = (^$

The second part of the program user. Speed = 160 SQR T(Wt. (Hb)) — to get the normalization and the speciment above to obtain the approximate through section.

APPENDIX B. PRAM THROTTLE SETTING PROGRAM

This program was designed to be used by analysts in deciding whether certain accidents should be rejected or processed further in the powering-related accident decision tree, and in the coding of some accidents. In accidents there are cases where the throttle setting was known and was less than 1/2 throttle. In these cases, the program will help with the decision tree. The program requires knowledge of the mounted and rated norsepower for the boat. The analyst must, upon supplying this information to the calculator, decide if the boat's throttle setting exceeded that shown on the calculator's display. If so, it is processed further in the decision tree; otherwise, it is rejected.

The first part of the program uses the relationship that the percentage of nonzepower in use is approximately equal to the percentage of full throttle setting raised to the 2.5 power. This relationship can be expressed as shown in Equation [1], where throttle setting is replaced by rpm (up to maximum recommended rpm) and percentage of nonsepower in use is replaced by the nonsepower in use (prop. load curve), and K is a constant.

$$HP = K \cdot (rem)^{2.5} \tag{1}$$

This relationship has been shown to be close to empirical data (see Figure 5). It will allow borderline cases to be processed furnter in the powering-related accident decision tree since it credits the operator with using slightly more nonsepower (particularly at low throttle settings) than the empirical case indicate.

The second part of this program allows the analyst to code the final throttle setting for the variable "Powering Behavior" (columns 36 and 37) when the mounted horsepower, speed, and total weight of the boat are known. This part of the charges uses the approximate relationship shown in Equation (2) to calculate the horsepower in use, and uses the relationship shown in Equation (3) to compute the throttle setting.

$$\Psi F = (...Throttle)^{2.5}$$
 (3)

PRAM Quality Assurance Procedures

The accidents that are coded into PRAM will be processed to two analysts. That is, each individual accident report will be coded by only two people. At the early phases of coding (for approximately the first 50 accidents) the analysts' work will be thoroughly reviewed by the project leaders 18. White, N. Whatley, C. Stiehl) for quality and adherence to the intent and instructions of the model. Thereafter, a sample of five from each croup of 50 accidents that are coded will be reviewed by the project leaders.

When all of the accidents have been coded, two decks will be independently keypunched, one for each analyst. These two decks will be compared using Myle's 'Check Decks' program to find keypunching and coding discrepancies. The discrepancies will be reviewed by the project leaders and analysts to annive at a consensus coding. Then both decks will be corrected. The final product of this procedure will be two complete sets of coded data, relatively free of keypunching errors. The only way that a keypunching error could carrive this procedure would be if the exact mistake were made twice independently. The diagram on the next page depicts the entire process.

Coding Steps for PRAM

If you are the analyst, about to code data for PRAM. you should:

- Theck with the project leaders to make sure you have the correct sample of accidents to code.
- 20 Some all of the required information on the data sheet for the accident, according to the instructions on previous pages, and consulting with the project leader if any questions arise.
- When you have completed a group of accidents to be coded, take the completed data sheets and the BARs that were accepted to the project leaders for review. Then proceed with the next orm to of accidents to be processed.
- sher errors are made (either in coding or keypunching) too project leaders will review these with the analyst in order to make sure that the correct information is coded on the computer cands. This may require some rereading of the BARs or your part, and perhaps some recoding.

Column(s)	<u>Variable Name</u>	Description and Coding Instructions
		<pre>3 = Injuries resulting in more than 24 nours incapacitation, and up to one week 4 = Injuries resulting in one week to one month of incapacitation 5 = Injuries resulting in one to six months of incapacitation 6 = More than six months, but not permanent 7 = Permanent disability, but not blindness 8 = Unknown 9 = Permanent disability, blindness or blindness plus</pre>
74	No. of Fatalities	Code the total number of fatalities on the other vessel(s) using the codes below:
	(Other Vessel(s))	0 = 0 1 = 1 2 = 2 3 = 3 4 = 4 5 = 5 6 = 6 7 = 7 8 = Unknown 9 = More than 7
		CARD 2
01 02 03	Boat Number	This is the PRAM case number
3₩	Jonnboat	Code as follows:
		<pre>0 = Not a jonntoat 1 = Is a jonnboat 2 = Is a bass boat 8 = Unknown</pre>
زِي	Boat Weight	Code the weight of the boat (only) divided by 10
Эв 07		888 Means Unknown 999 Means greater than 10,300 lb

Column(s) Variable Name

Description and Coding Instructions

may be zero damage. The code "O" should not be used unless the analyst is certain that there were no damages. If no information is given, and the accident was a collision, then the code "7" is assumed. THERE IS NO "UNKNOWN" CODE FOR THIS VARIABLE. Consult with a project leader if you feel that "unknown" is the proper code.

- 0 = No damage
- 1 = Slight damage, scratched gelcoat, etc., \$200 or less
- 2 = Moderate damage, little or no structural damage. Perhaps several scratches and a bent prob, some fiberglass work, etc., up to \$500
- 3 = Considerable damage, some structural damage, fiberglass and/or interior work, up to
- 4 = Severe damage, boat may be a total loss, up to \$4000
- 5 = Severe damage, up to \$6000
- 5 = Severe damage, over \$6000
- 7 = Some damage, but extent unknown

Note that a total loss of a johnboat, for example, might be classified as "3", or even "2," if it only cost a few hundred dollars.

Infunies (Other Code the Louny data for the other vessel(s) vessel(s) in this admirent, remembering the quidelines established for the previous coding of injuries. if no one was injured, code "0" in columns 71 inrough 73.

- a Tormore
- 5 = Un. 76.5
- 9 = unknown, 0 to tome were injuried

Severation Tolumns 72 - "least" -, and 73 - "most":

- O = Mirror buts and bruises, or less, no treatment
- 1 = luts, abrisions, bruises requiring treatment
- 2 = loringes resulting in 24 hours or less of incapacitation imissing work, etc.)

Column(s)	Variable Name	Description and Coding Instructions
		For experience (Total):
		<pre>0 = Under 20 hours 1 = 20-100 hours 2 = 100-500 hours 3 = Over 500 hours 4 = Exact number unknown, but operator is</pre>
		For Education:
		<pre>0 = None 1 = USCG Auxiliary Course 2 = Power Squadron Course 3 = Red Cross Course 4 = State Course 5 = Other Course (including professional licenses) 6 = More than one course 7 = Yes, but particular course unknown 8 = Unknown</pre>
52 53 54	Rated Horsepower	Code three digits corresponding to the rated horsepower.
J.,		888 = Unknown
55 56	Rated Weight Capacity of POB	Code two digits corresponding to the rated weight of the people on board (persons capacity) divided by No. "88" is used for unknown 139" for this variable means a persons capacity of from 1001 to 1500 pounds. "99" stand non not applicable (boats which are not rate? It is a code "87" for 380 to 899 lbs. and John code "96" for 980 to 1000 lbs. If given in number of persons, multiply by 160 lbs.
57 58 59	Rated Total Weight Capacity	Code three digits corresponding to the raced total weight capacity of the boat, divided by 10. "888" stands for unknown, and "999" Heans not applicable (boats which are not rated). "889" is used for boats whose total weight capacity exceeds 3870 pounds.

Column(s)	Variable Name	Description and	Coding Instruc	tions
60 67	Rated Weight Capacity of The Motor	Code two digits corweight of the motor stands for unknown, applicable (I/O, in capacity is unknown (outboard) is knowill be used:	"88" s for not e motor weight power capacity	
		Rated Horsepower Capacity	Motor Weight Capacity	Code
		0.1 to 2 2.1 to 3.9 4.0 to 7.0 7.1 to 15.0 15.1 to 25 25.1 to 45 45.1 to 30 80.1 to 150 150.1 to 250	25 35 55 75 100 155 240 315 420	03 04 06 08 10 16 24 32
Weight of Gear Code the weight of the on Board 10 as a three digit no of all items on board the motor. 888 = Unkn (ESTIMATE) Full gas tank (approx Small ice chest-full Large ice chest-full Anchor (@ 20 lbs.) Battery (@ 45 lbs.) Anchor line and other Ski equipment (@ 10 l Fishing equipment/hum PFDs and Navigational etc. (@ 15 lbs.)			t number. Incluand other than tunknown. As example as e	de the weights ne people and imples: os.) ot and catch (@ 25 lbs.' ss, flashlight, charts,
		If the items on bo the weight of gear	ard are unknown on board as fo	, then calculate Hows:
		For joinnboats or 0 25 x POB = Mt. (in	/B's less than lbs.) of gear (16' use: on board.
		For boats 16 feet (25 x POB) + 100 =	or longer use: Wt. (in lbs.)	of dear on board.
		For boats with mor (10 x POB) = Wt. 9		

Column(s)	Variable Name	Description and Coding Instructions
65	No. of Engines in Use	<pre>1 = 1 Engine in use 2 = 2 Engines in use 3 = 3 or more engines in use 8 = Unknown</pre>
66	Damage to This Vessel	In coding the damage to the vessel, use the code that corresponds to the cost of repairing the vessel, if known; otherwise, use the code which best corresponds to the known damage. The "cost" refers to the cost at the time of the accident, not what the cost would be today. For example, if the BAR states that the damage was \$100 in a 1970 accident, DO NOT figure the inflation in that number, but code it as is. The cost includes any significantly valued personal property as well as damage to the boat, if any such loss is reported (including the loss of any valuable gear that may have been on board). The code "0" should be used only when "no damage" is specifically stated, and not when such boxes in a BAR are left blank. If the accident is a fall overboard, with no subsequent mishaps (capsizing, etc.), then assume zero damages unless there is evidence to the contrary. For collisions, fires, and capsizings, assume a code of 7 if no damage information is given. THERE IS NO UNKNOWN CODE FOR THIS VARIABLE. Consult with one of the project leaders if you feel that "unknown" is the proper code for a particular case.
		<pre>0 = No damage (specifically stated) 1 = Slight damage, scratched gelopar seat,</pre>
57 68 69	Injuries This Vessel	For the first digit, code the number of people who were injured (do NOT include those who died). For the second digit, use the code corresponding to the least severe injury among those who were

Column(s) Variable Name

Description and Coding Instructions

injured. For the third digit code the most severe injury among those who were injured. If only one person was injured, then the least and most severe codes should be the same. If no one was injured, then use 0 for the least severe injury and for the most severe injury. Injuries include burns, broken limbs, effects of exposure/hypothermia, etc.

No. of People Injured (Column 67)

- 0 = 0
-] =]
- 2 = 2
- $3 \approx 3$
- 4 = 1
- 5 = 5
- 6 = 6
- 7 = 7 or more
- 8 = Unknown
- 9 = Unknown, but some were injured

Severity (Column 68 - "least" - and 69 - "most")

- 0 = Minor cuts and bruises, or less, no treatment
- 1 = Cuts, abrasions, bruises requiring treatment
- 2 = Injuries resulting in 24 hours or less of incapacitation (missing work, etc.)
- 3 = Injuries resulting in more than 24 hours
 incapacitation, and up to one week
- 4 = Injuries resulting in one week to one month or incapacitation
- 5 = Injuries resulting in one to six morans of incapacitation
- 6 = More than six months, but not permanent
- 7 = Permanent disability, but not blindness
- 3 = Unknown
- 9 = Permanent disability, blindness or blindness plus

70 Damage to Other Vessel's)

Use the code that best describes the damage to the other vessel(s) in this accident. NOTE: If the other vessel(s) in this accident are also in PRAM, then code "90000" in columns 70 through 74. If there is no other vessel(s) in this accident, other than the one being coded, then use "600000" in columns 70 through 74.

As before, the loss of personal property or gear is included as damage. Uncomplicated falls overboard resulting from a collision

Column(s) Variable Name

Description and Coding Instructions

may be zero damage. The code "0" should not be used unless the analyst is certain that there were no damages. If no information is given, and the accident was a collision, then the code "7" is assumed. THERE IS NO "UNKNOWN" CODE FOR THIS VARIABLE. Consult with a project leader if you feel that "unknown" is the proper code.

0 = No damage

1 = Slight damage, scratched gelcoat, etc.,
\$200 or less

- 2 = Moderate damage, little or no structural damage. Perhaps several scratches and a bent prop, some fiberglass work, etc., up to \$500
- 3 = Considerable damage, some structural damage, fiberglass and/or interior work, up to \$2000
- 4 = Severe damage, boat may be a total loss, up to \$4000
- 5 = Severe damage, up to \$6000 6 = Severe damage, over \$6000
- 7 = Some damage, but extent unknown

Note that a total loss of a johnboat, for example, might be classified as "3", or even "2," if it only cost a few hundred dollars.

71 Injuries (Other 72 Vessel(s))

Code the injury data for the other vessel(s) in this accident, remembering the guidelines established for the previous coding of injuries. If no one was injured, code "0" in columns 71 through 73.

0 = 0

1 = 1

2 = 2

3 = 3

4 = 4

5 = 5

6 = 6

7 = 7 or more

8 = Unknown

9 = Unknown, but some were injuried

Severity (Columns 72 - "least" -, and 73 - "most")

- 0 = Minor cuts and bruises, or less, no treatment
- 1 = Cuts, abrasions, bruises requiring treatment
- 2 = Injuries resulting in 24 hours or less of incapacitation (missing work, etc.)

Column(s)	Variable Name	Description and Coding Instructions
74		<pre>3 = Injuries resulting in more than 24 hours incapacitation, and up to one week 4 = Injuries resulting in one week to one month of incapacitation 5 = Iniuries resulting in one to six months of incapacitation 6 = More than six months, but not permanent 7 = Permanent disability, but not blindness 8 = Unknown 9 = Permanent disability, blindness or blindness plus Code the total number of fatalities on the other vessel(s) using the codes below: 0 = 0 1 = 1 2 = 2 3 = 3 4 = 4 5 = 5 6 = 6 7 = 7 8 = Unknown 9 = More than 7</pre>
75 76 77 73 79 80		Leave these columns blank.
		CARS 2
01 02 03	Boat Number	This is the PRAM case Number
04	Johnboat	Code as follows:
		0 = Not a johnboat 1 = Is a johnboat 2 = Is a bass boat 3 = Unknown
J5 06	Boat weight	Code the weight of the boat (only) divided by 10
07		883 means unknown 999 means greater than 10,000 lbs

END

FILMED

5-85

DTIC