1. Введение в математическую статистику

Мат. статистика - теория статистических решений. Основная задача - по экспериментальным данным высказать суждение о природе случайного явления (Оптимальное стат. решение).

Пример 1. В городе N жителей, среди них M заболевших. В результате осмотра n жителей выявлено m заболевших. Как можно оценить М?

1.1. Сходимости случайных величин и векторов

Пусть $\xi, \{\xi_n\}$ - случайные векторы размерности m. Тогда

- 1. $\xi_n \xrightarrow{a.s.} \xi$, если $P(\lim_{n\to\infty} \xi_n = \xi) = 1$
- 2. $\xi_n \to^p \xi$, если $\forall \varepsilon > 0P(|\xi_n \xi| > 0) \to 0, n \to \infty$
- 3. $\xi_n \to^d \xi$, если $\forall f(x): R^n \to R$ огр. и непр. выполнено: $Ef(\xi_n) \to Ef(\xi), n \to \infty$

Теорема 1. Пусть $\xi, \{\xi_n\}_{n=1}^{\infty}$ - CB. Тогда $\xi_n \to^d \xi \Leftrightarrow F_{\xi_n} \to^w F_{\xi} \Leftrightarrow F_{\xi_n} \Rightarrow F_{\xi}$

Теорема 2. Пусть ξ , $\{\xi_n\}_{n=1}^{\infty}$ - случайные векторы размерности т. Пусть $F_{\xi}(x)$ непрерывна. Тогда $\xi_n \to^d$ $\xi \Leftrightarrow \forall x \in R^m F_{\xi_n} \to F_{\xi}, n \to \infty$

Теорема 3 <0 соотношении видов сходимости>. Пусть $\xi, \{\xi_n\}_{n=1}^{\infty}$ - случайные векторы размерности m.

- 1. $\xi_n \to^{a.s.} \xi \Rightarrow \xi_n \to^p \xi$
- 2. $\xi_n \to^p \xi \Rightarrow \xi_n \to^p \xi$

Доказательство.

1). Пусть $\xi_n \to^{a.s.} \xi$

$$\Leftrightarrow \forall j = 1 \dots m \xi_n^{(j)} \to^{a.s.} \xi^{(j)} \Rightarrow \forall j = 1 \dots m \xi_n^{(j)} \to^p \xi^{(j)} \Leftrightarrow \xi_n \to^p \xi$$

2). Док-во полностью аналогично 1-мерному случаю (для СВ).

Теорема 4 <без доказательства>. Пусть $\xi, \{\xi_n\}_{n=1}^{\infty}$ - случайные векторы размерности т. Если $\xi_n \to^p \xi$, то существует такая $\{\xi_n k\}$, что $\xi_n k \to a.s.$ ξ

Теорема 5 <3БЧ>. Пусть $\{\xi_n\}_{n=1}^{\infty}$ - непрер. СВ с условием $D\xi_n \leq C$. Положим $S_n = \xi_1 + \ldots + \xi_n$. Тогда $\frac{S_n - ES_n}{n} \to^p 0$

Теорема 6 <УЗБЧ>.

 $\Pi y cmb \ \{\xi_n\}_{n=1}^{\infty}$ - нез. о.р. CB с ограниченной дисперсией. Обозначим S_n (аналогично). Тогда $\frac{S_n - ES_n}{n} \to a.s.$ 0

Теорема 7 <Центрально-предельная>.

Пусть $\{\xi_n\}_{n=1}^\infty$ - непрер. CB с условием $0 < D\xi_n = \sigma^2 < +\infty$. обозначим S_n аналогично, $E\xi_n = a$. Тогда $\frac{S_n - ES_n}{\sqrt{DS_n}} \to^d N(0,1)$

Теорема 8 <0 наследовании сх-ти>.

 $\Pi y cm$ ь $\xi, \{\xi_n\}_{n=1}^\infty$ - случайные векторы размерности m.

- 1. Если $\xi_n \to^{a.s.} \xi$ и $h(x): R^m \to R^l$ такова, что h непрерывна почти всюду относительно распределения ξ . Т.е. $\exists B \in B(R^m) : h(x)$ непрерывна на B и $P(\xi \in B) = 1$. Тогда $h(\xi_n) \to^{a.s.} h(\xi)$
- 2. Если $\xi_n \to^p \xi$ и $h(x): R^m \to R^l$ такова, что h непрерывна почти всюду относительно распределения ξ . Torda $h(\xi_n) \to^p h(\xi)$
- 3. Если $\xi_n \to^d \xi$ и $h(x): R^m \to R^l$ непрерывна. Тогда $h(\xi_n) \to^d h(\xi)$

Доказательство.

- 1. $1 \ge P(\lim_{n \to \infty} h(\xi_n) = h(\xi)) = P(\lim_{n \to \infty} h(\xi_n) = h(\xi), \xi \in B) \ge P(\lim_{n \to \infty} \xi_n = \xi, \xi \in B) = 1 \Rightarrow P(\lim_{n \to \infty} h(\xi_n) = h(\xi)) = 1$
- 2. Пусть $h(\xi_n) \not\to^p h(\xi)$. Тогда $\exists \varepsilon_0 > 0 : \exists$ подпослед. $\xi_n k, \exists \delta_0 > 0 : P(|h(\xi_n k) h(\xi)| > \varepsilon_0) \ge \delta_0 \forall k$. Но $\xi_n k \to^p \xi \Rightarrow$ есть еще подпослед. $\xi_{nk_s} \to^{a.s.} \xi, s \to \infty$
- 3. Возьмем $f(x): R^m \to R^m$ -огр, непрер. ф-я. $Ef(h(\xi_n)) \to^? Ef(h(\xi))$. Но f(h(x)) непрерывная ограниченная в R^n и $\xi_n \to^d \xi$. Отсюда $Ef(h(\xi_n)) \to Ef(h(\xi)) \Rightarrow h(\xi_n) \to^d h(\xi)$

Лемма 1 <Слуцкого>. Пусть $\xi_n \to^d \xi, \eta_n \to^d c = const$ - CB. Тогда: $\xi_n + \eta_n \to^d \xi + c$; $\xi_n \eta_n \to^d c \xi$