John Ehlers

www.mesasoftware.com www.mesa-systems.com ehlers@mesasoftware.com

TAOTN 2002

John Ehlers

- Pioneer of MESA studies
- FuturesTruth has ranked his S&P, Bond, and Currency trading systems #1
- Winner 27 Readers' Choice Awards from Stocks & Commodities magazine
- Author of MESA and Trading Market Cycles
- Author of Rocket Science for Traders

Agenda

- Theory
 - Random Walk and the Basis for Market Modes
 - Basic Tools Averages and Momentums
- How MESA Trades the Market Modes
- How MESA can make good indicators better by making them adaptive
- Fisher Transform
 - How to enhance your current indicators

Drunkard's Walk

- I relate the market to known physical phenomena
 - Smoke plume for Trend Modes
 - Meandering river for Cycle Modes
- Both randomness and short term cycles can arise from the solution to the random walk problem
- Solution is the "Diffusion Equation" for Trend Modes
- Solution is the "Telegraphers Equation" for Cycle Modes

Diffusion Equation

- "Drunkard's Walk" is a special form of the random walk problem
 - The drunk flips a coin to determine right or left with each step forward
 - The random variable is direction
- The Diffusion equation is the solution
 - describes smoke coming from a smokestack
- The smoke plume is analogous to market conditions
 - Breeze bends the plume to an average trendline
 - Plume widens with distance distant predictions are less accurate
 - Smoke density is analogous to prediction probability the best estimator is the average

Telegraphers' Equation

- Modify the "Drunkard's Walk" problem
 - Coin flip decides whether the drunk will reverse his direction, regardless of the direction of the last step
 - The random variable is now momentum, not direction
- Solution is now the Telegrapher's Equation
 - Describes the electric wave on a telegraph wire
 - Also describes a meandering river
- A river meander is a short term cycle
 - Random probability exists (Diffusion Equation) <u>IF:</u>
 - Individual meanders are overlaid
 - Or a long data span is taken

The Market is similar to a meandering river

John Ehlers

- Both follow the path of least resistance
- Rivers attempt to keep a constant water slope maintains the conservation of energy.
- Conservation of Energy produces the path of least resistance
 - Paths of uniform resistance look like pieces of sinewayes
- Market Forces (greed, fear, profit, loss, etc.) are similar to physical forces, producing paths of uniform resistance.
- Think about how the masses ask the question:
 Will the market change?

OR

Will the trend continue?

Market Modes

- My market model only has two modes
 - Trend Mode
 - Cycle Mode
- Market Cycles can be measured
- If the cycles are removed from the data, the residual must be the Trend

Measuring Spectra is Difficult

- Must Measure a Triple infinity of Variables Simultaneously
 - Frequency
 - Amplitude
 - Phase
- Potential measurement techniques:
 - Count bars between successive highs (or lows)
 - FFT
 - MESA
 - Hilbert Transform

FFT

- Constraints:
 - Data is a representative sample of an infinitely long wave
 - Data must be stationary over the sample time span
 - Must have an integer number of cycles in the time span
- Assume a 64 day time span
 - Longest cycle period is 64 days
 - Next longest is 64 / 2 = 32 days
 - Next longest is 64 / 3 = 21.3 days
 - Next longest is 64 / 4 = 16 days
- Result is poor resolution gaps between measured cycles

FFT (continued)

John Ehlers

Paradox:

- The only way to increase resolution is to increase the data length
- Increased data length makes realization of the stationarity constraint highly unlikely
 - 256 data points are required to realize a 1 bar resolution for a 16 bar cycle (right where we want to work)

Conclusion:

FFT measurements are not suitable for market analysis

Still Not Convinced?

Spectrum Amplitude is converted to color

MESA

FFT

Theoretical 24 Bar Cycle

Treasury Bonds

MESA Indicates and Trades Both Market Modes

MESA Customer Feedback

John Ehlers

"The results I have achieved are very impressive. In the course of my investigations, I've discovered that most stocks can be traded in the cycle-mode *OR* trend-mode - rarely both."

Peter S. Campbell

MESA Can Improve Even the Best Indicators by Making Them Adaptive

Basic Technical Tools

- Moving Averages
 - Smooth the data
 - Analogous to the Integral in Calculus
- Momentum Functions (Differences)
 - Sense rate of change
 - Analogous to the Derivative in Calculus
- All indicators are combinations of these tools

Moving Averages

John Ehlers

CONCLUSIONS:

- 1. Moving Averages smooth the function
- 2. Moving Averages Lag by the center of gravity of the observation window
- 3. Using Moving Averages is always a tradeoff between smoothing and lag

Momentum Functions

John Ehlers

CONCLUSIONS:

- 1. Momentum can NEVER lead the function
- 2. Momentum is always more disjoint (noisy)

FIR Filters

Frequency is the Reciprocal of Cycle Period

- Must have at least 2 samples per cycle
 - Nyquist Criteria

- Shortest period allowed is a 2 bar cycle
 - This is the Nyquist Frequency
- Normalized frequency is 2 / Period

FIR Filters

John Ehlers

Symmetrical FIR Filter Lag is (N - 1) / 2 for all frequencies

Simple 4 bar moving average where a = [1 1 1 1] / 4

Delay is 1.5 bars Notches out 2 & 4 bar cycles

Tapering the coefficients reduces the sidelobe amplitude

For a 3 tap filter where a = [1 2 1] / 4

Delay is 1 bar Notches out only a 2 bar cycle

Special FIR Filters of Interest to Traders

John Ehlers

Four tap filter a = [1 2 2 1] /6

lag is 1.5 bars notches 2 & 3 bar cycles

Five tap filter a = [1 2 3 2 1] /9

lag is 2 bars notches only 3 bar cycle

Six tap filter a = [1 2 3 3 2 1] /12

lag is 2.5 bars notches 2, 3, & 4 bar cycles

Isolating the Cycle Component

John Ehlers

Create a Bandpass filter

Low Pass for Smoothing High Pass to remove the Trend

Method: Take a two bar momentum of a 6 bar Tapered FIR Filter

[1 2 3 3 2 1]/12 -[1 2 3 3 2 1]/12

[1 2 2 1 -1 -2 -2 -1] / 12

How the Cycle Component Looks

Capture the Cycle Turning Points with the Cycle Delayed One Bar

Cycle Does Not Require Adjustable Parameters

Fisher Transformation John Ehlers **27**

Many Indicators Assume a Normal Probability Distribution

- Example CCI
 - by Donald Lambert in Oct 1980 Futures Magazine
- CCI = (Peak Deviation) / (.015* Mean Deviation)
- Why .015?
 - Because 1 / .015 = 66.7
 - 66.7 is (approximately) one standard deviation
 - IF THE PROBABILITY DENSITY FUNCTION IS NORMAL

What are Probability Density Functions?

John Ehlers

A Square Wave only has two values

A Square Wave is untradeable with conventional Indicators because the switch to the other value has occurred before action can be taken

A PDF can be created by making the waveform with beads on parallel horizontal wires. Then, turn the frame sideways to see how the beads stack up.

A Sinewave PDF is not much different from a Squarewave PDF

Probably one reason why trading cycles has such a bad reputation.

The Fisher Transform Generates Waves Having Nearly a Normal PDF

•
$$Y = .5*ln((1 + X) / (1 - X))$$

where $-1 \le X \le 1$

Fisher Transform Converts a Sinewave PDF to a Normal PDF

Real World Fisher Transform PDFs

John Ehlers

12 Year PDF of Treasury Bond Futures

Fisher Transform PDF of 12 Year Treasury Bond Data

Fisher Transform Code is Simple

- Compute Normalized Price Channel
- Apply Transform

```
Inputs: Price((H+L)/2),
Len(5);

Vars: MaxH(0),
MinL(0),
Fish(0);

MaxH = Highest(Price, Len);
MinL = Lowest(Price, Len);

Value1 = .33*2*((Price - MinL)/(MaxH - MinL) - .5) + .67*Value1[1];
If Value1 > .999 then Value1 = .999;
If Value1 < -.999 then Value1 = -.999;

Fish = .5*Log((1 + Value1)/(1 - Value1)) + .5*Fish[1];

Plot1(Fish, "Fisher");
Plot2(Fish[1], "Trigger");
```

Fisher Transform Turning Points are Sharper and Have Less Lag

Fisher Transform Channel Has Fewer Whipsaws Than StochasticRSI

Fisher Transform Can Sharpen the Real StochasticRSI Turning Points

Conclusions

- The Drunkard's Walk is the underpinning for identifying inefficiencies in the Trend Mode and Cycle Mode
- You have seen how MESA trades both Modes
- Your indicators and systems can be improved by making them adaptive to the measured cycles
- You have Simple FIR Filters for data smoothing in your Toolbox
 - You have a simple way to see the Cycle Component
- You can more accurately identify turning points by modifying the PDF using the Fisher Transform