Esercizi 06 — 9 pt

1 — 1 pt

Si consideri la matrice $A=\left[\begin{array}{cc} (5+4\gamma) & (10-2\gamma)\\ (-2\gamma) & \gamma \end{array}\right]$ dipendente da un parametro $\gamma\in\mathbb{C}.$ Per quali valori di $\gamma\in\mathbb{C}$ è applicabile il metodo delle potenze (dirette)?

$|\gamma| \neq 1$

2 — 2 pt

Si consideri la matrice $A=\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 5 \end{bmatrix}$. Si utilizzino appropriatamente

i metodi delle potenze (dirette) e inverse per stimare il numero di condizionamento spettrale di A; per entrambi i metodi si applichino 3 iterazioni partendo dal vettore inziale $\mathbf{x}^{(0)} = \mathbf{1}$. Si riporti il valore del numero di condizionamento così approssimato.

4.4933

3 — 1 pt

Si consideri la matrice $A=\left[\begin{array}{ccc} 11 & 0 & 0\\ 5 & -2 & 0\\ 3 & 0 & -9 \end{array}\right]$. Per quali valori dello shift $s\in\mathbb{R}$

è possibile approssimare l'autovalore $\lambda_2(A) = -9$ tramite il metodo delle potenze inverse con shift?

$$s < -5.5$$

4 — 2 pt

Si consideri la matrice $A=\begin{bmatrix}9&\gamma&0\\\gamma&1&0\\0&0&2\end{bmatrix}$, dipendente da un parametro $\gamma\in\mathbb{R}.$

Quale delle seguenti affermazioni è falsa?

- A) Il metodo della fattorizzazione QR è applicabile per ogni $\gamma \in (-5,5)$.
- B) Se $|\gamma| < 1$, allora i criteri dei cerchi di Gershgorin indicano che vi è un solo autovalore di A in ciascuno dei cerchi nel piano complesso aventi centro in (1,0), (2,0) e (9,0).
- C) Se $|\gamma| > 4$, allora i criteri dei cerchi di Gershgorin indicano che vi è un solo autovalore di A nel cerchio nel piano complesso avente centro in (9,0).
- D) Per $\gamma = 3$, il metodo delle potenze inverse con shift $s \in \mathbb{R}$ risulta applicabile all'approssimazione di $\lambda_2(A)$ se 1 < s < 6, ma $s \neq 2$.

C

5 — 2 pt

Si considerino la matrice $A=\left[\begin{array}{ccc} 15 & 1 & -2\\ 0 & 3 & 1\\ 1 & -1 & 9 \end{array}\right]$ e il metodo delle iterazioni~QR

per approssimare simultaneamente gli autovalori reali e distinti di A, $\left\{\lambda_i(A)\right\}_{i=1}^3$. Si applichino 5 iterazioni del metodo precedente ottenendo la matrice $A^{(5)}$. Si riporti il valore dell'indicatore dell'errore $\widetilde{e}^{(5)} = \max_{i=2,3,j=1,...,i-1} \left| \left(A^{(5)}\right)_{ij} \right|$, tipicamente usato come criterio d'arresto del metodo.

0.1701

6 — 1 pt

Si consideri la funzione $f(x)=1-e^x$ e il metodo di bisezione per l'approssimazione dello zero $\alpha=0$ a partire dall'intervallo iniziale [a,b] contenente α e tale che b-a=4. Si stimi il numero minimo di iterazioni k_{min} necessarie al metodo per garantire un'errore inferiore a $2^{-\gamma}$, dove $\gamma\in\mathbb{N}$ è un parametro.

$2 + \gamma$