So fors legged machines
1) Passive walkers walker to control 1 2) Powered machines walker to be place
hopper 3 = foot placement P, Q - controlled once per step.
T ' '
7 2 - set the lorque
Low-lerd or joint level control, find Z(t) Trajectory tracking
(i) PIP (i) Control partitioning
under-actuation
actuator < joint 2 0, 02 7 2 0, 02

walker with a hip torque

$$M(\alpha) \stackrel{\sim}{\circ} + C(\alpha, \alpha) \stackrel{\sim}{\circ} + G(0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$= Bu$$

$$M \stackrel{\sim}{\circ} + N(\alpha, \alpha) = Bu$$

$$\stackrel{\wedge}{\circ} = Bu$$

Use partial feed back Linearization

9, 02

X

R. 2

Try to track or as best as we can (joint-land)

Then hope that O1 is stable over the time scale of a step.

e, a, , a, a = 4

Poincare nigo 4-1=3 eigenvalues = 3 Using PFL: 1 = eigenvalue