TD 1. Analyse : généralités.

a) Montrer que, pour tous réels $x, y: 2xy \le x^2 + y^2$. Exercice 1.

b) En déduire que, pour tous réels $a, b, c: a^2 + b^2 + c^2 \ge ab + bc + ac$

Exercice 2. À l'aide de l'inégalité triangulaire et sans faire de cas selon le signe des quantités qui apparaissent, montrer que pour tous réels x et y:

$$|x| + |y| \le |x + y| + |x - y|.$$

Exercice 3. Simplifier, pour tous réels a et b tels que $a \ge b \ge 0$, la quantité suivante :

$$\sqrt{a + 2\sqrt{a - b}\sqrt{b}} + \sqrt{a - 2\sqrt{a - b}\sqrt{b}}.$$

Exercice 4. Montrer que l'expression $x^4 - 3x^2 + 2$ admet un minimum sur \mathbb{R} et le calculer.

Exercice 5. Montrer que pour tout $n \in \mathbb{N}$:

$$(2n+3)\sqrt{n+1} \le (2n+1)\sqrt{n} + 3\sqrt{n+1}.$$

Exercice 6. Montrer que, pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{2\sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}<\frac{1}{2\sqrt{n}}.$$

Exercice 7. Résoudre les équations ou inéquations suivantes :

a)
$$\sqrt{x-4\sqrt{x-4}} = 1$$
 b) $|2x-4| \le |x-1|$

b)
$$|2x-4| < |x-1|$$

c)
$$x-1 \le \sqrt{x+2}$$

d)
$$x - \sqrt{x} - 2 \ge 0$$

Exercice 8. Démontrer que pour tout $x \in \mathbb{R}$: $e^x + e^{-x} \ge 2 + x^2$.

Exercice 9. On pose, pour tout x > 0, $f(x) = \frac{x^2 + 2}{2x}$.

Montrer, sans étude de fonction, que pour tout $x \in [\sqrt{2}, 2], f(x) \in [\sqrt{2}, 2]$.

Indication: On pourra traduire le résultat à montrer par deux inégalités à démontrer.

Exercice 10. Soient x et y des réels de]-1,1[.

- a) Montrer que -1 < xy < 1.
- b) Montrer que $\frac{x+y}{1+xu} \in]-1,1[.$

Indication: On pourra étudier, pour y fixé, la fonction $f_y: t \mapsto \frac{t+y}{1+ty}$.

Exercice 11. Soit f la fonction définie par $f(x) = \ln(e^{2x} - 3e^x + 2)$.

- 1°) Déterminer le domaine de définition D de f, puis dresser son tableau de variations.
- **2°)** Simplifier, pour tout $x \in D$, l'expression f(x) 2x. En déduire $\lim_{x\to+\infty} f(x) - 2x$ et interpréter graphiquement.
- 3°) Tracer la courbe de f.

Exercice 12. Factoriser : $x^3 - 4x^2 + 5x - 2$.

Exercice 13. Dans chacun des cas suivants, donner le domaine de définition de f, son domaine de dérivabilité et sa dérivée.

 $\mathbf{1}^{\circ}$) $f(x) = \ln(\ln x)$

2°)
$$f(x) = xg\left(\frac{1}{x}\right)$$
, où $g: \mathbb{R} \to \mathbb{R}$ est dérivable.

$$3^{\circ}) \ f(x) = e^{\sqrt{\ln x}}$$

4°)
$$f(x) = x^x$$
 (à étudier sur \mathbb{R}_+^*)

5°)
$$f(x) = x^{\sqrt{x^2-1}}$$

Exercice 14. On pose $f(x) = x^{\frac{\ln(\ln x)}{\ln x}}$. Déterminer le domaine de définition de f et simplifier f(x).

Exercice 15. Résoudre les équations ou inéquations suivantes :

a)
$$\ln \frac{x+3}{4} = \frac{1}{2} (\ln x + \ln 3)$$
 b) $3^{2x} - 2^{x+\frac{1}{2}} = 2^{x+\frac{7}{2}} - 3^{2x-1}$ c) $x^{\sqrt{x}} = \sqrt{x}^x$ d) $\ln |x-1| - 2 \ln |x| + \ln |x+1| < 1$

b)
$$3^{2x} - 2^{x + \frac{1}{2}} = 2^{x + \frac{7}{2}} - 3^{2x - 1}$$

c)
$$x^{\sqrt{x}} = \sqrt{x}^x$$

d)
$$\ln|x-1| - 2\ln|x| + \ln|x+1| < 1$$

Exercice 16. Calculer les limites suivantes :

a)
$$\lim_{x \to +\infty} \sqrt{x} - \ln(x)$$

b)
$$\lim_{x \to 0} \frac{1}{\sqrt{x}} + \ln(x)$$

a)
$$\lim_{x \to +\infty} \sqrt{x} - \ln(x)$$
 b) $\lim_{x \to 0} \frac{1}{\sqrt{x}} + \ln(x)$ c) $\lim_{x \to +\infty} \frac{e^{2x} (\ln x)^3}{x^4}$ d) $\lim_{x \to +\infty} \frac{x^2 \ln x}{e^{\sqrt{x}}}$ e) $\lim_{x \to +\infty} e^{x^2} - e^x$ f) $\lim_{x \to +\infty} \frac{\ln x \cdot \ln(\ln x)}{x}$

d)
$$\lim_{x \to +\infty} \frac{x^2 \ln x}{e^{\sqrt{x}}}$$

e)
$$\lim_{x \to +\infty} e^{x^2} - e^x$$

f)
$$\lim_{x \to +\infty} \frac{\ln x \cdot \ln (\ln x)}{x}$$

Exercice 17. Pour quels réels x peut-on écrire $\cos x = \sqrt{1 - \sin^2 x}$?

Exercice 18. Résoudre les équations suivantes sur \mathbb{R} :

a)
$$\cos x = \sin x$$

b)
$$\cos(x) + \sqrt{3}\sin(x) = 0$$

c)
$$\sqrt{2}\cos(2x) = \cos(x) - \sin(x)$$

d)
$$2\sin^2(x) - \sqrt{3}\sin(2x) = 3$$

e)
$$\cos 4x + \cos 5x + \cos 6x = 0$$

Exercice 19. (Entraînement) Résoudre les équations suivantes sur \mathbb{R} :

a)
$$\cos^2 x = \frac{3}{4}$$

$$b) \sin(2x) + \sin(x) = 0$$

$$4 c) 2 cos2(2x) - 3 cos(2x) = -1 e) cos(3x) + sin(x) = 0$$

d)
$$\sin(2x) + \sin\left(\frac{\pi}{3} + 3x\right) = 0$$

$$e) \cos(3x) + \sin(x) = 0$$

f)
$$3\tan(x) = 2\cos(x)$$

g)
$$2\cos(4x) + \sin(x) = \sqrt{3}\cos(x)$$

$$h) 2\sin(x) + \sin(3x) = 0$$

Exercice 20. Résoudre les inéquations suivantes sur \mathbb{R} :

a)
$$2\sin^2 x + 3\sin x - 2 \le 0$$
 b) $\cos x - \cos(2x) \ge 0$

2

Exercice 21. On pose, pour tout réel x, $f(x) = \sin^2 x - \sin x + 2$.

- 1°) Calculer $f(\pi x)$ pour $x \in \mathbb{R}$. Justifier alors qu'il suffit d'étudier f sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 2°) Dresser le tableau de variation de f sur cet intervalle.
- 3°) Tracer la courbe représentative de f.