

Tarea 4opti - Ejercicios de optimización

Optimización (Universidad Autónoma de Nuevo León)

Escanea para abrir en Studocu

FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

OPTIMIZACIÓN. TAREA 04.

Catedrático: Ing. Cristina Sari Villegas Guzmán. Alumna: Mariana Alessandra Espinosa Flores. Carrera: IAS. Matrícula:1975291.

Semestre: ENERO-JUNIO 2022.

13 de Mayo del 2022, San Nicolás de los Garza, Nuevo León.

Salc					rivote				· Secretary
001 100	60 X1	50 X2	SZ	SA	SI	-H A1	S3	1-M	Zmax= Gox1 +
OS1 182, 50x2 6/	5 0	0	1/5	-1/5	1	-4/5	0	1/501	
50x2 (7 0S3 182)	5 0	1	-3/5	2/5	0	3/5	0		(5/2) 8 + 1X
60x1 4		0	- 1/5 2/5	4/5	0	1/5	1	-4/50	
132	0	0	-6	-3/5	0	+M	0	3/5 + M + 16	5x1 + 2x2 > :
				4	0	+6	0	+ 16	Sale
		CA.	2	En	ma	9		OK I	0)
38-[2-4]	3 5 3]= 182/	5 36	-[7-1/	3151	3]=18	2/5 2	- [7-2/2	3/5/3] = 6/5-[-2MH
1111	13M-10	11513	1 - 01	1+132					
M - [-1	1-5/2	13]=	15 G	-[-1/3	-1/5/	3]=-	1/5 0	-[-1-?	/3]5/3]=2/5
M - [-1-	T4/2 2	1-10)	13/3	= UM-	6	1/ /5	, 7	41 -17	(A) (AM-
(-2/5M	- 70)-	13/5/	15/5/5	5 /3-[1510	7312	15	15 1	3 [2/3 - 2/3 5/3] -3
A1:0-6	11-4/3/	5/3 7	-4/5	400 -	1.2/	2/5/2	7 2	100	310y11
A2:-1/3+	4/3	2/3/5/	3]=1/3	590-2/3	3-[1/	3-7/3/	5137	4/5	1/3-[2/3 - 2/3 /5/3]-
				ALIVOIC				1	
Sale	60 X1	\$0 X2	82	S4	\$1	AT	83	H-	Sale
	0 5		1/2	0	1/6	-1/2	0	0	7
ACA \						2.			
054	3 0	5/2		11	0	3/2	0	710	185 / 180
083	3 0	-20	10	00	0	-1/-	1	710	(1) 1A4
	3 1	3/2	-1/2	0	0	-1/2	1	71	(1) 1A44 (3)8 330
0S3 (8 60x1	3 1	-2 3/2 40	-1/2	0	0	-1/-	1	710	(1) 1A4
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	100 JAH 1000 880 1000 JAH 1000 JAH
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	100 JAH 1000 880 1000 JAH 1000 JAH
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	(1) 1A44 (3)8 330
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	100 JAH 1000 880 1000 JAH 1000 JAH
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	100 JAH 1000 880 1000 JAH 1000 JAH
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	100 JAH 1000 880 1000 JAH 1000 JAH
0\$3 60x1 180	3 1	-2 3/2 40	-1/2	Forma	0	-1 -1/2 +30	100	71 0 0 M	100 JAH 1000 880 1000 JAH 1000 JAH

