Getting Started with Machine Learning in Python

Julian Gold, DataX Data Scientist, CSML Wednesday, September 25, 2024 at 4:30-6:00 PM

https://github.com/PrincetonUniversity/python_machine_learning

What is machine learning?

A computer observes some data, builds a model based on the data, and uses the model as both a hypothesis about the world and a piece of software that can solve problems.

Why use machine learning?

Why not just program the model?

- you may not know the model
- you want the model to be flexible and adapt as you have new data

Why use <u>classical</u> machine learning?

- You want a physically interpretable model
- Your data isn't images
- You have a simple-ish problem

Supervised Machine Learning

Computer observes input-output pairs and learns a function that maps input to output.

Labeled data

Supervised Machine Learning

Training set of N input-output pairs:

$$(X_1,y_1), (X_2,y_2), ... (X_N,y_N)$$

where each pair was generated by an unknown function y = f(X).

Goal: learn a function h that approximates the true function f.

Unsupervised Machine Learning

Computer learns patterns/structure in input data.

• Without labels.

Unsupervised Machine Learning

Training set of N inputs:

 $X_1, X_2, \ldots X_N$

Goal: learn structure/patterns in the data

Supervised Machine Learning

- You have simulated data where you know the truth
- You have data labeled by a human

Unsupervised Machine Learning

- You have experimental data
- You want to explore / visualize the data

Common algorithms

Supervised	Unsupervised
Regression	Clustering
Classification	Dimensionality Reduction

Common algorithms

Supervised	Unsupervised
Regression	Clustering
Classification	Dimensionality Reduction

Regression

Training set of N input-output pairs:

 $(X_1,y_1), (X_2,y_2), ... (X_N,y_N)$

where desired output value is a continuous value.

Goal: learn a function that approximates the true function *f*.

input-output pairs:

- X_i , BMI
- y_i , diabetes progression

Diabetes dataset: sklearn.datasets.load_diabetes

Goal: learn a function h that approximates the true function f:

Predicted diabetes progression: $\hat{y} = h(x)$

$$y = b + mx$$

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}$$

$$\beta = \begin{bmatrix} b \\ m \end{bmatrix}$$

$$y = X\beta$$

Ordinary Least Squares

Compute the vector β that minimizes:

$$\sum_{i}^{N} (y_i - X_i \beta)^2$$

Evaluate the generalizability of the model with a test set of M input-output pairs:

$$(X_1,y_1), (X_2,y_2), ... (X_M,y_M)$$

Test set data is not included in the training set.

Gaussian Process Regression

input-output pairs:

- \bullet χ_i
- $y_i = \sin(x_i) + \text{Gaussian noise}$

Goal: learn a function h that approximates the true function f:

$$\hat{y} = h(x)$$

Gaussian Process Regression

A regression method where the prediction is probabilistic

- Gaussian
- compute empirical confidence intervals

sklearn.gaussian_process.GaussianProcessRegressor

Carl Eduard Rasmussen and Christopher K.I. Williams, "Gaussian Processes for Machine Learning", MIT Press 2006.

Examples of problems in your area of research where *regression* could be used?

Common algorithms

Supervised	Unsupervised
Regression	Clustering
Classification	Dimensionality Reduction

Classification

Training set of N input-output pairs:

 $(X_1,y_1), (X_2,y_2), ... (X_N,y_N)$

where <u>desired output value</u> is a discrete value.

Goal: learn a function h that approximates the true function f.

Classification

input-output pairs:

- $X_i = \{x_{i,1}, x_{i,2}\}$
- y_i , class label, either 1 or -1

Goal: learn a function h that approximates the true function f:

predicted class label, $\hat{y} = h(x_1, x_2)$

Support Vector Classification

Calculate the line that separates the classes with the maximal margin.

Margin: area between two parallel lines that separate the two classes of data.

- 3-D: plane
- > 3-D : hyperplane

sklearn.svm.SVC

Support Vector Classification

What if the data are not linearly separable?

Minimize a function that is a sum over values for all training data:

- 0 if on correct side of margin
- value proportional to the distance from the margin

sklearn.svm.SVC

Support Vector Classification

Evaluate the generalizability of the model with a test set of M input-output pairs:

$$(X_1,y_1), (X_2,y_2), ... (X_M,y_M)$$

Test set data is not included in the training set.

Accuracy =
$$\frac{1}{M} \sum_{i}^{M} (\hat{y}_i = y_i)$$

sklearn.svm.SVC

K-Nearest Neighbors

Classification is computed from a simple majority vote of the nearest neighbors of each point.

Does not construct a general model; instead stores the training data.

sklearn.neighbors.KNeighborsClassifier

K-Nearest Neighbors

Classification is computed from a simple majority vote of the nearest neighbors of each point.

Does not construct a general model; instead stores the training data.

At left, the case where k = 5.

sklearn.neighbors.KNeighborsClassifier

Examples of problems in your area of research where *classification* could be used?

Common algorithms

Supervised	Unsupervised
Regression	Clustering
Classification	Dimensionality Reduction

Clustering

Training set of N inputs:

 $X_1, X_2, ... X_N$.

Goal: identify M clusters in the data.

Clustering

input:

 \bullet x_1, x_2

Goal: identify M clusters in the data: $predicted\ class\ label = h(x_1, x_2)$

K-means Clustering

- requires the number of clusters to be specified
- separate samples in M clusters of equal variance
- choose centroids that minimize the inertia or within-cluster sum-of-squares

$$\sum_{i=0}^{N} \min_{\mu_j \in C} (x_i - \mu_j)^2$$

K-means Clustering

- requires the number of clusters to be specified
- separate samples in M clusters of equal variance
- choose centroids that minimize the inertia or within-cluster sum-of-squares

$$\sum_{i=0}^{N} \min_{\mu_j \in C} (x_i - \mu_j)^2$$

Examples of problems in your area of research where *clustering* could be used?

Common algorithms

Supervised	Unsupervised
Regression	Clustering
Classification	Dimensionality Reduction

Dimensionality Reduction

Training set of N inputs pairs:

 $X_1, X_2, ... X_N$.

Goal: data exploration / visualization

Principal Component Analysis

- First principal component: line that minimizes the average squared perpendicular distance from the points to the line.
- Second principal component: line orthogonal to first principal component, that does the same.

• Use the principal components to perform a change of coordinate system.

sklearn.decomposition.PCA

Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space". Philosophical Magazine. 2 (11): 559–572.

Principal Component Analysis

Dimensionality Reduction

input:

• $x_1, x_2, \dots x_{64}$

Goal: visualize the data in two dimensions

$$\hat{x}_1, \hat{x}_2 = h(x_1, x_2, \dots x_{64})$$

Principal Component Analysis

The data set projected down onto the first two principal components

sklearn.decomposition.PCA

Principal Component Analysis

The data set projected down onto the first two principal components, with labels.

sklearn.decomposition.PCA

Examples of problems in your area of research where dimensionality reduction could be used?