AGRICULTURE PRODUCTION PREDICTION USING LINEAR REGRESSION

Project: Rice Production Trend Analysis (Mini Regression Project)

Tools Used: Python, Pandas, Matplotlib, scikit-learn

Dataset: World Food Production (CSV format)

Name: Janani D

Date: May 2025

1. Introduction

This project explores rice production trends over the years using linear regression. The aim is to understand how rice production has evolved globally and predict future values using a simple but powerful machine learning model.

2. Tools & Technologies

- Python
- Pandas
- Matplotlib
- Scikit-learn
- Jupyter Notebook

2. Dataset Description

The dataset used for this project includes food production statistics from various countries and years. The key columns are:

- year: Represents the year of production
- country: Name of the country
- rice production: Quantity of rice produced
- · wheat production: Quantity of wheat produced
- · vegetable production: Quantity of vegetables produced

The dataset may also contain other numerical columns representing production data from specific years.

3. Methodology

1. Data Loading & Cleaning:

- Imported the CSV file using Pandas
- Handled missing values by removing incomplete rows

2. Feature Selection:

- Selected year as the independent variable (X)
- Selected rice production as the dependent variable (y)

3. Model Building:

- Applied Linear Regression using scikit-learn
- Trained the model on the data

4. Visualization:

- Created a scatter plot of actual rice production values
- $_{\circ}$ Plotted the regression line to visualize the trend

4. Insights

- Rice production has shown a steady increase over the years.
- The regression line indicates a positive upward trend.
- The model can estimate future production levels, such as predicting production for the year 2024-2030.
- Similar analysis can be applied to wheat and vegetable production trends

5. Visualisations:

```
#STEP-1 LOAIND DATASET
import pandas as pd
df=pd.read_csv(r"C:\Users\janan\Downloads\archive (4)\world_food_production new.csv")
#SHOW 1ST 5 ROWS
print(df.head())
#SEE COLUMN NAMES AND THEIR TYPES
print(df.info())
  year rice_production wheat_production vegetable_production
                                                             Country \
0 1996
                568.7
                               578.6
                                                    542.7
                                                              China
1 1997
                577.1
                                596.2
                                                    551.8
                                                               India
2 1998
               578.8
                               584.8
                                                    572.8 Bangladesh
3 1999
               611.2
                               585.0
                                                    615.2 Indonesia
4 2000
                598.7
                               588.2
                                                    686.6
                                                             Vietnam
   2020 2010 2000 1990
0 211.9 195.8 187.9 189.3
1 178.3 144.0 127.5 111.2
  54.9 50.1 37.6 26.8
3
  54.6 59.3 51.9 45.2
4 42.8 40.0 32.5 19.2
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26 entries, 0 to 25
Data columns (total 9 columns):
# Column
                      Non-Null Count Dtype
---
                       -----
0 year
                       26 non-null
                                     int64
                     26 non-null float64
1 rice production
2 wheat_production
                      26 non-null float64
3 vegetable_production 26 non-null float64
4 Country
                      26 non-null object
5
   2020
                       26 non-null float64
6 2010
                       26 non-null
                                    float64
7
    2000
                       26 non-null
                                     float64
8 1990
                       26 non-null
                                     float64
dtypes: float64(7), int64(1), object(1)
memory usage: 2.0+ KB
None
```

```
#STEP-2:CHECK FOR MISSING VALUES
•[6]:
        print(df.isnull().sum())
        #CLEANING THE DATA
        df.dropna(inplace=True)
        print("Data cleaning was Successful")
        year
        rice production
                                        0
        wheat production
                                        0
        vegetable production
                                        0
        Country
                                        0
        2020
                                        0
        2010
                                        0
        2000
                                        0
        1990
                                        0
        dtype: int64
        Data cleaning was Successful
 [10]: #STEP-3: CONVERT YEAR COLUMN
       df['year']=df['year'].astype(int)
       print("Successfully converted year column to integer")
       Successfully converted year column to integer
 [14]: #STEP-4:FEATURE AND TARGET
       X=df[['year']]
       y=df['rice_production']
       print("The target is to predict the rice production for the upcoming years")
       The target is to predict the rice production for the upcoming years
 [17]: #STEP-5:TRAIN LINEAR REGRESSION MODEL
       from sklearn.linear_model import LinearRegression
       from sklearn.model_selection import train_test_split
       #SPLIT DATA INTO TRAIN AND TEST
       X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
       #CREATE AND TRAIN MODEL
       model=LinearRegression()
       model.fit(X_train,y_train)
 [17]: LinearRegression
      LinearRegression()
```

```
import matplotlib.pyplot as plt
y_pred=model.predict(X_test)

#PLOT ACTUAL VS PREDICTED
plt.scatter(X_test,y_test,color='black',label='Actual')
plt.plot(X_test,y_pred,color='green',linewidth=2,label="Predicted")
plt.xlabel("Year")
plt.ylabel("Production Value")
plt.title("Actual vs Predicted Production")
plt.legend()
plt.grid(True)
plt.show()
```

Actual vs Predicted Production


```
# | VISUALIZATION 2: Trend over years (entire dataset)

df_sorted = df.sort_values('year')

pred_all = model.predict(df_sorted[['year']])

plt.figure(figsize=(10,6))

plt.plot(df_sorted['year'], df_sorted['rice_production'], label="Actual", marker='o')

plt.plot(df_sorted['year'], pred_all, label="Regression Line", color='red')

plt.xlabel("Year")

plt.vlabel("Year")

plt.vlabel("Production Value")

plt.title("Trend of Production Over the Years")

plt.legend()

plt.grid(True)

plt.show()
```

Trend of Production Over the Years

6.Conclusion

This mini-project successfully demonstrates how linear regression can be used to analyze historical data and predict future values. Such analysis is vital in agriculture planning, resource management, and policy-making. As a data analyst, understanding and applying regression techniques like this is a crucial skill.