

Database Security

Database CIA:

- Confidentiality
- Integrity
- Availability

Databases have several systems in place to:

- maintain privacy
- prevent data corruption and
- ensure availability

Two-Phase Commit

 Allows simultaneous write access to a database without risk of data corruption.

Request phase

- > Upload proposed changes to database
- > DBMS locks needed records. If it can't lock them, it changes nothing and aborts the transaction.

Commit phase

➤ Changes all the records it has locked and returns a success code. If anything goes wrong, it reverses and changes it has made

DB Access Control

- DBMSs use ACLs or permission attributes to control who reads from and writes to the database, tables, columns.
- Implements DAC, MAC (users may not be given permission to change permissions for other users).
- Should be set up according to the principle of least privilege.

Granting Permission

GRANT SELECT ON users TO EvilHacker

Can also grant DELETE, INSERT, UPDATE

Can grant permissions to ALL, PUBLIC

Discretionary Access Control (DAC) Permission

 DAC can be implemented by creating a user-specific view and granting GRANT rights to it's "owner"

CREATE VIEW user_alice
AS SELECT * from users where name='Alice';
GRANT SELECT ON user alice to Alice with GRANT OPTION;

Removing Permission

- If a user gets demoted or leaves the organisation, permissions to the database must be removed before they can retaliate:
 - REVOKE SELECT ON users FROM Alice;
- This has a cascade effect of removing permissions from everyone who was approved by Alice

Database Encryption

- Sensitive data should be encrypted before storing it in the database.
- Some databases store data in plain text or human-readable form, so an attacker with hard-drive access can read data without using the DBMS
- DBMSs offer a range of encryption and decryption functions ranging from symmetric keys to public-private crypto.

