TF-IDF Vectorization

TF-IDF stands for Term Frequency–Inverse Document Frequency. It transforms textual data (like movie overviews or genres) into numerical vectors, highlighting terms that are important in a specific movie but uncommon across all movies.

Key-points

We combine fields like **title**, **overview**, **genres**, **cast**, **crew**, **keywords** into one text blob per movie.

We apply TF-IDF to convert this text into a **high-dimensional vector**.

Common words across many movies get lower weight (like "the" or "film").

Unique, meaningful words like "wizard", "mission", "time travel" get higher scores.

■ What is Term Frequency (TF)?

TF measures how often a word appears in a single document.

Example – Movie 1 Overview:

"The wizard enters the magical school of Hogwarts."

Term	TF (count in movie 1)
wizard	1
magical	1
school	1
hogwarts	1
the	2

What is Inverse Document Frequency (IDF)?

IDF gives higher weight to rare words and penalizes common words across all movies.

Let's say we have **3 movies**:

Word		Appears in how many movies?	IDF Score
wizard	1		High
hogwarts	1		High
the	3		Low
school	2		Medium

Rare words \rightarrow high IDF \rightarrow more important Common words \rightarrow low IDF \rightarrow less useful

TF-IDF Calculation (Simplified)

TF-IDF=TF×IDF\text{TF-IDF} = \text{TF} \times \text{IDF}TF-IDF=TF×IDF

Term	TF	IDF	TF-IDF (Importance)
wizard	1	High	☆ High
the	2	Low	▼ Low
hogwarts	1	High	★ High

Cosine Similarity

Cosine Similarity measures how similar two movies are by comparing the angle between their TF-IDF vectors.

Why We Use It:

- We want to recommend movies with similar themes, tone, or plot.
- Cosine similarity gives high score to vectors (movies) pointing in the same direction

 even if their magnitudes differ.

Example:

• Cars vector vs. Cars 2 vector → small angle → high similarity

• Cars vs. Shawshank Redemption → large angle → low similarity

Jaccard Evaluation

Jaccard Similarity compares two **sets** — in our case, the **genres** of two movies.

Jaccard (A, B) = ($|A \cap B|$)/ ($|A \cup B|$)

Why We Use It:

- After recommending movies using cosine similarity, we filter results based on genre similarity.
- We ensure the recommendations are not just textually similar, but **thematically** aligned.

Example:

- Input Movie Genres: {"Drama", "Fantasy", "Mystery"}
- Recommended Movie Genres: {"Drama", "Fantasy", "Romance"}

Jaccard score = 2/4 -> This shows as Good thematic overlap

We **discard movies with Jaccard < 0.2** to improve recommendation quality.

Combined flow

User inputs a movie

|
Get its TF-IDF vector
|
Find cosine similarity to all other movies
|
Filter by genre using Jaccard similarity

Return Top-N most similar & relevant movies