Suppose that f is a differentiable mapping of a connected open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and if f'(x) = 0 for every $x \in E$, prove that f is constant in E.

pf.

By Chapter 2, Exercises 23, and 23, \mathbb{R}^n has a countable base by open balls. So every open set can be covered by countably many open balls. Since E is open it follows that for any sequence $\{\mathbf{x}_i\}_{i=1}^{\infty}$ of elements of E, there exists a sequence $\{\delta_i\}_{i=1}^{\infty}$ of positive real numbers such that,

$$E = \bigcup_{i=1}^{\infty} B_{\delta_i}(\mathbf{x}_i) \implies \forall \mathbf{x} \in E, \exists i \in \mathbb{N} : \mathbf{x} \in B_{\delta_i}(\mathbf{x}_i)$$

$$\implies \forall \mathbf{y} \in B_{\delta_i}(\mathbf{x}_i), \ \mathbf{y} \in E$$

$$\implies \forall \mathbf{y} \in B_{\delta_i}(\mathbf{x}_i), \ f'(\mathbf{y}) = 0$$

$$\implies \forall \mathbf{y} \in B_{\delta_i}(\mathbf{x}_i), \ \|f'(\mathbf{y})\| \leq 0$$

$$\forall i \in \mathbb{N}, \ B_{\delta_i}(\mathbf{x}_i) \text{ is a convex open set } \stackrel{9.19}{\implies} \forall \mathbf{a}, \mathbf{b} \in B_{\delta_i}(\mathbf{x}_i), \ |f(\mathbf{b}) - f(\mathbf{a})| \leq 0 |\mathbf{b} - \mathbf{a}| = 0$$

$$\implies \forall \mathbf{a}, \mathbf{b} \in B_{\delta_i}(\mathbf{x}_i), \ f(\mathbf{b}) = f(\mathbf{a}) \tag{0}$$

E is connected, which by definition 2.45 means that E is not a union of two non empty separated set. A pair of separated set A, and B, in \mathbb{R}^n satisfies both $A \cap \overline{B} = \emptyset$, and $\overline{A} \cap B = \emptyset$. So, since E is already contained in a union and E is connected. It means it is not the union of a pair of separated sets. It follows that, since $\mathbf{x}_1 \in E$, both

$$B_{\delta_1}(\mathbf{x}_1) \bigcap \overline{\bigcup_{i=2}^{\infty} B_{\delta_i}(\mathbf{x}_i)} \neq \emptyset$$
 (1)

and

$$\overline{B_{\delta_1}(\mathbf{x}_1)} \bigcap \bigcup_{i=2}^{\infty} B_{\delta_i}(\mathbf{x}_i) \neq \emptyset$$
 (2)

hold. Then by (2),

$$\overline{B_{\delta_1}(\mathbf{x}_1)} \bigcap \bigcup_{i=2}^{\infty} B_{\delta_i}(\mathbf{x}_i) = \bigcup_{i=2}^{\infty} \overline{B_{\delta_1}(\mathbf{x}_1)} \bigcap B_{\delta_i}(\mathbf{x}_i) \neq \emptyset \implies \exists j > 1 : \overline{B_{\delta_1}(\mathbf{x}_1)} \bigcap B_{\delta_j}(\mathbf{x}_j) \neq \emptyset$$

Then
$$\exists \mathbf{y}_0 \in \overline{B_{\delta_1}(\mathbf{x}_1)} \bigcap B_{\delta_j}(\mathbf{x}_j) \implies \mathbf{y}_0 \in \overline{B_{\delta_1}(\mathbf{x}_1)} \text{ and } \mathbf{y}_0 \in B_{\delta_j}(\mathbf{x}_j)$$

$$j > 1 \implies B_{\delta_j}(\mathbf{x}_j) \subset \bigcup_{i=2}^{\infty} B_{\delta_i}(\mathbf{x}_i) \subset \overline{\bigcup_{i=2}^{\infty} B_{\delta_i}(\mathbf{x}_i)}$$

$$\implies \mathbf{y}_0 \in \overline{\bigcup_{i=2}^{\infty} B_{\delta_i}(\mathbf{x}_i)}$$

$$\stackrel{(1)}{\implies} \mathbf{y}_0 \in B_{\delta_1}(\mathbf{x}_1) \implies \mathbf{y}_0 \in B_{\delta_1}(\mathbf{x}_1) \cap B_{\delta_j}(\mathbf{x}_j)$$

$$\stackrel{(0)}{\implies} \forall \mathbf{a} \in B_{\delta_1}(\mathbf{x}_1), \text{ and } \forall \mathbf{b} \in B_{\delta_j}(\mathbf{x}_j), \quad f(\mathbf{a}) = f(\mathbf{y}_0) = f(\mathbf{b})$$

Since $B_{\delta_1}(\mathbf{x}_1)$ and $B_{\delta_j}(\mathbf{x}_j)$ are open balls. So, their union and their intersection is open. Furthermore $B_{\delta_1}(\mathbf{x}_1) \cap B_{\delta_j}(\mathbf{x}_j) \neq \emptyset \implies \overline{B_{\delta_1}(\mathbf{x}_1)} \cap B_{\delta_j}(\mathbf{x}_j) \neq \emptyset$ and $B_{\delta_1}(\mathbf{x}_1) \cap \overline{B_{\delta_j}(\mathbf{x}_j)} \neq \emptyset$. So, $B_{\delta_1}(\mathbf{x}_1)$, and $B_{\delta_1}(\mathbf{x}_1)$ are not separated, therefore $B_{\delta_1}(\mathbf{x}_1) \cup B_{\delta_1}(\mathbf{x}_1)$ is a connected open set. We can re-index as follows $\{\mathbf{x}_k\}_{k=1}^\infty$, and $\{\delta_k\}_{k=1}^\infty$, such that the j gets swapped with 2. And, then we follow the process above to find \mathbf{y}_2 noticing that with the re-indexing, both

$$\overline{B_{\delta_1}(\mathbf{x}_1) \cup B_{\delta_2}(\mathbf{x}_1)} \bigcup_{k=2}^{\infty} B_{\delta_k}(\mathbf{x}_k) \neq \emptyset \quad \text{ and } B_{\delta_1}(\mathbf{x}_1) \cup B_{\delta_2}(\mathbf{x}_1) \overline{\bigcup_{k=2}^{\infty} B_{\delta_k}(\mathbf{x}_k)} \neq \emptyset$$

Then it follows by induction that can find a sequence $\{y_n\}_{n=1}^{\infty}$, and a re-indexing, such that,

$$\forall a, b \in E \quad f(a) = f(b)$$

Therefore, f is constant in E