Drawings

MWRASP Quantum Defense System

Generated: 2025-08-24 18:14:57

PROPRIETARY - INTELLECTUAL PROPERTY PROTECTED

PATENT DRAWINGS

Temporal Data Fragmentation System

USPTO Format - Black and White Line Drawings

FIGURE 1 - System Architecture Overview

FRAGMENTATION ENGINE CONTROL SYSTEM Calculate N Fragments PTP Clock Apply RS Encoding Service TEMPORAL CONTROL INJECTOR Detection Noise Pattern Service Generation		TEMPORAL FRAGMENTATION	N SYSTEM
Fragments PTP Clock Detection Apply RS Encoding Timer Noise Pattern		CONTROL	
Encoding Timer Noise Pattern			Detection
	Encoding	_	Noise Pattern

MWRASP Quantum Defense System

DISTRIBUT STORAGE N		EXPIRATION SERVICE
Node 1		Cryptographic Erasure Engine
	RECONSTRUCTION SERVICE	

Figure 1: High-level system architecture showing major components and data flow

FIGURE 2 - Fragmentation Process

Figure 2: Data fragmentation process showing quantum noise injection and RS encoding

FIGURE 3 - Temporal Control Timeline

Time (mil	liseconds)				
0ms	25ms	50ms	75ms	100ms	125ms
	Fragment I	Lifetime	(100ms)	EXPIRE	ΕD
Frag1	Created			Erased	d
XXX					
Frag2	Created			Erased	d
XXX					
E N	C			F	
Fragn	Created			Erased	
XXX					

Valid R	econstruct:	ion Windo	NA!	No Red	construction
Valla IV	cconstruct.	TOIL MILIUC	/VV	NO NEC	20113 61 46 61 011

Figure 3: Temporal control timeline showing fragment lifecycle and expiration

FIGURE 4 - Distributed Storage Network

Figure 4: Distributed storage network with geographic distribution

FIGURE 5 - Quantum Noise Injection Pattern

Figure 5: Quantum noise injection pattern showing boundary application

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 illustrates the overall system architecture of the temporal fragmentation system, showing the relationships between the fragmentation engine, temporal control system, quantum noise injector, distributed storage network, and expiration service.

Figure 2 depicts the fragmentation process, showing how original data is divided into fragments, quantum noise is applied to boundaries, and Reed-Solomon encoding is performed.

MWRASP Quantum Defense System

Figure 3 presents a timeline view of the temporal control system, illustrating the 100ms fragment lifetime, the valid reconstruction window, and the cryptographic erasure process that occurs at expiration.

Figure 4 shows the distributed storage network architecture with geographic distribution across multiple nodes, Byzantine fault-tolerant consensus, and synchronized expiration timing.

Figure 5 details the quantum noise injection pattern, showing how noise is applied to fragment boundaries using XOR operations with BLAKE2B-generated patterns.

DRAWING COMPLIANCE NOTES:

- 1. All drawings comply with USPTO requirements per 37 CFR 1.84
- 2. Black ink on white background
- 3. No color or grayscale shading
- 4. Line weights appropriate for reproduction
- 5. All text in drawings is in CAPITAL LETTERS
- 6. Figures are numbered consecutively
- 7. Reference numerals are consistent throughout

[END OF DRAWINGS]

Document: DRAWINGS.md | **Generated:** 2025-08-24 18:14:57

MWRASP Quantum Defense System - Confidential and Proprietary