Uge 9

Danny Nygård Hansen

1. november 2023

7.5 • \bigoplus Betragt sandsynlighedsmålet μ på $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ givet ved

$$\mu = \frac{\sum_{i=1}^{n} \ell_i \delta_i}{\sum_{i=1}^{n} \ell_i},$$

og lad $f(i) = x_i$ for $1 \le i \le n$ og f(i) = 0 ellers. Da er $f \in I$ (næsten) sikkert, så det ønskede følger af Jensens ulighed og Opgave 5.4.

7.6 • ☜

(a) For at se at $\mathcal{L}^0(\mu)$ er et vektorrum, bemærk at

$$\{|\alpha f| \ge t\} = \{|f| \ge |\alpha|^{-1}t\},\$$

og at

$$\{|f+g|\geq t\}\subseteq \{|f|\geq \tfrac{t}{2}\}\cup \{|g|\geq \tfrac{t}{2}\}.$$

At $\mathcal{L}^{\infty}(\mu)$ er et vektorrum, følger nærmest direkte af definitionen.

(b) Hvis $f \in \mathcal{L}^{\infty}(\mu)$ og $|f| \le R \mu$ -n.o., så er

$$\int_X |f|^p \, \mathrm{d}\mu \le R^p \mu(X) < \infty.$$

Det er desuden oplagt at $\mathcal{L}^{\infty}(\mu) \subseteq \mathcal{L}^{0}(\mu)$ hvis μ er endeligt.

Vi har desuden $\mathcal{L}^p(\mu) \subseteq \mathcal{L}^0(\mu)$ for $p \in (0, \infty)$ (jf. Bemærkning 7.3.3(3)), så i alt er $\mathcal{L}^q(\mu) \subseteq \mathcal{L}^p(\mu)$ hvis $p \leq q$ for alle $p, q \in [0, \infty]$, såfremt μ er et endeligt mål (jf. også Sætning 7.3.2(ii)). Inklusionen $\mathcal{L}^p(\mu) \subseteq \mathcal{L}^0(\mu)$ for $p \in (0, \infty]$ gælder for alle μ , men derudover gælder ingen generelle inklusioner mellem \mathcal{L}^p -rum (se f.eks. Opgave 7.10).

Bemærk også at f.eks. $x \mapsto e^{1/x}$ er \mathcal{L}^0 (på det *endelige* interval (0,1]) men ikke \mathcal{L}^p for noget p > 0. Derudover er ikke alle målelige funktioner \mathcal{L}^0 , f.eks. $x \mapsto x$ på \mathbb{R} . Men hvis μ er endeligt, da er enhver målelig funktion f i $\mathcal{L}^0(\mu)$: For da er $\bigcap_{n \in \mathbb{N}} \{|f| \ge n\} = \emptyset$, så $\lim_{n \to \infty} \mu(\{|f| \ge n\}) = 0$ pr. kontinuitet.

(c) Hvis f.eks. $f,g \in \mathcal{L}^{\infty}(\mu)$ og $|f| \le R_f$ og $|g| \le R_g$ μ -n.o., da er $|f+g| \le R_f + R_g$ μ -n.o., så

$$||f+g||_{\infty} \le R_f + R_g.$$

Da R_f og R_g var virkårligt valgt, følger det at $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

7.3 • Gentag beviset for Markovs ulighed, men benyt at $1 \le \psi(|f|)/\psi(t)$. ■

7.4 • <

- (a) For den første ulighed, lad $\varphi(t) = \sqrt{1+t^2}$. Denne er kontinuert på (0,1], diffentiabel på (0,1), og $\varphi''(t) = (1+t^2)^{-3/2} > 0$, så φ er konveks pr. Korollar 7.1.3. For den anden ulighed, bemærk at $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ for alle $a,b \in [0,\infty)$.
- (b) Vi beskriver først hvordan man formaliserer længden af en kurve. Hvis $I \subseteq \mathbb{R}$ er et interval, kaldes en kontinuert funktion $f: I \to \mathbb{R}^d$ for en sti i \mathbb{R}^d , og billedet f(I) af f kaldes en kurve. Antag at I = [a,b]. En partition af [a,b] er en mængde $P = \{t_0, \ldots, t_n\}$ af tal så

$$a = t_0 < \cdots < t_n = b$$
.

Lad $\mathcal{P}[a,b]$ betegne mængden af partitioner af [a,b]. Vi indfører da tallet

$$L_f(P) = \sum_{i=1}^n ||f(t_i) - f(t_{i-1})||.$$

Geometrisk er $L_f(P)$ længden af det indskrevne polygon med hjørner i punkterne $f(t_0), ..., f(t_n)$. Vi siger at f er rektificerbar hvis tallet

$$L_f(a,b) := \sup\{L_f(P) \mid P \in \mathcal{P}[a,b]\}\$$

er endeligt. I så fald kaldes $L_f(a,b)$ for *længden* af f. Man kan vise at hvis f er kontinuert differentiabel, så er f rektificerbar og

$$L_f(a,b) = \int_a^b ||f'|| \, \mathrm{d}\lambda.$$

Betragt nu tilfældet d = 2 og skriv $f = (f_1, f_2)$. Hvis $f_1(t) = t$, da er

$$||f'(t)||^2 = f_1'(t)^2 + f_2'(t)^2 = 1 + f_2'(t)^2,$$

så

$$L_f(a,b) = \int_a^b \sqrt{1 + (f_2')^2} \,\mathrm{d}\lambda.$$

Hvis f er voksende, da er f' ikke-negativ. Den geometriske fortolkning af opgaven er da at længden af grafen for f er mindst længden af diagonal mellem (0,0) og (1,1), og højst den samlede længde af linjestykkerne fra (0,0) til (1,0) og fra (1,0) til (1,1).

7.11 • 🖘

(a) Antag at $0 \le \alpha \le \beta$. Hvis $\alpha = \beta$, er

$$(\alpha + \beta)^p - \beta^p = 2^p \alpha^p - \alpha^p \le 2\alpha^p - \alpha^p \le \alpha^p.$$

Antag i stedet at $\alpha \leq \beta$. Funktionen $t \mapsto t^p$ er differentiabel på $(\beta, \alpha + \beta)$ og kontinuert på $[\beta, \alpha + \beta]$, så middelværdisætningen giver et $\xi \in (\beta, \alpha + \beta)$ så $(\alpha + \beta)^p - \beta^p = p\xi^{p-1}\alpha \leq \alpha^p$.

Sæt
$$\alpha = |x|$$
 og $\beta = |y|$.

(b) Trekantsuligheden følger af del (a).