STATISTIQUES À DEUX VARIABLES E02

EXERCICE N°1

Le tableau ci-dessous donne l'évolution du SMIC horaire brut de 2015 à 2019.

Année: x_i	2015	2016	2017	2018	2019
SMIC horaire: y_i (en \in)	9,61	9,67	9,76	9,88	10,03

Source: https://www.insee.fr/fr/statistiques/1 375188

- 1) Représenter le nuage de points de la série statistique dans un repère orthogonal. On prendra comme unités graphiques
- 1 cm pour 1 an sur l'axe des abscisses en prenant pour origine 2014 et
- 10 cm pour 1 € sur l'axe des ordonnées en prenant pour origine 9,40 €.
- 2) Déterminer l'équation réduite de la droite Δ d'ajustement de y en x par la méthode des moindres carrés. Les coefficients a et b seront arrondis à 10^{-3} près.
- 3) Représenter la droite Δ sur le graphique de la question 1).
- 4) Déterminer, par le calcul, le SMIC horaire brut estimé pour l'année 2025.
- 5) Déterminer, par le calcul, à partir de quelle année on peut estimer que le SMIC horaire brut dépassera 10,90€.

EXERCICE N°2

Indiquer si les affirmations suivantes sont vraies ou fausses, puis justifier.

- 1) Voici le nuage de points d'une série statistique à deux variables. Un ajustement affine de ce nuage de points est envisageable.
- d'une série statistique à deux variables.

 La droite d'équation y=0.5x+2 réalise un bon

ajustement affine.

2) Voici le nuage de points

- 3) Voici le nuage de points d'une série statistique à deux variables. G est le point moyen du nuage.
- La droite Δ est la droite d'ajustement par la méthode des moindres carrés.

EXERCICE N°3

Pour chacune des deux séries statistiques à deux variables suivantes, répondre aux questions.

Série n°1							
\boldsymbol{x}_{i}	1	2	3	4	5		
${\mathcal Y}_i$	123	129	135	140	145		

Série n°2							
t_i	18	20	21	25	28	30	
N_i	24	44	62	100	132	14	

- 1) Déterminer les coordonnées du point moyen G.
- 2) Déterminer, à l'aide de la calculatrice l'équation de Δ , la droite d'ajustement par la méthode des moindres carrés (coefficients arrondis à 10^{-3} près).
- 3) Vérifier que $G \in \Delta$.
- 4) Déterminer les coordonnées d'un autre point appartenant à Δ .

STATISTIQUES À DEUX VARIABLES E02

EXERCICE N°1

Le tableau ci-dessous donne l'évolution du SMIC horaire brut de 2015 à 2019.

Année: x_i	2015	2016	2017	2018	2019
SMIC horaire: y_i (en \in)	9,61	9,67	9,76	9,88	10,03

Source: https://www.insee.fr/fr/statistiques/1 375188

- 1) Représenter le nuage de points de la série statistique dans un repère orthogonal. On prendra comme unités graphiques
- 1 cm pour 1 an sur l'axe des abscisses en prenant pour origine 2014 et
- 10 cm pour 1 € sur l'axe des ordonnées en prenant pour origine 9,40 €.
- 2) Déterminer l'équation réduite de la droite Δ d'ajustement de y en x par la méthode des moindres carrés. Les coefficients a et b seront arrondis à 10^{-3} près.
- 3) Représenter la droite Δ sur le graphique de la question 1).
- 4) Déterminer, par le calcul, le SMIC horaire brut estimé pour l'année 2025.
- 5) Déterminer, par le calcul, à partir de quelle année on peut estimer que le SMIC horaire brut dépassera 10,90€.

EXERCICE N°2

Indiquer si les affirmations suivantes sont vraies ou fausses, puis justifier.

- 1) Voici le nuage de points d'une série statistique à deux variables. Un ajustement affine de ce nuage de points est envisageable.
- d'une série statistique à deux variables.

 La droite d'équation y=0.5x+2 réalise un bon

ajustement affine.

2) Voici le nuage de points

- 3) Voici le nuage de points d'une série statistique à deux variables. G est le point moyen du nuage.
- La droite Δ est la droite d'ajustement par la méthode des moindres carrés.

EXERCICE N°3

Pour chacune des deux séries statistiques à deux variables suivantes, répondre aux questions.

Série n°1							
\boldsymbol{x}_{i}	1	2	3	4	5		
${\mathcal Y}_i$	123	129	135	140	145		

Série n°2							
t_i	18	20	21	25	28	30	
N_i	24	44	62	100	132	14	

- 1) Déterminer les coordonnées du point moyen G.
- 2) Déterminer, à l'aide de la calculatrice l'équation de Δ , la droite d'ajustement par la méthode des moindres carrés (coefficients arrondis à 10^{-3} près).
- 3) Vérifier que $G \in \Delta$.
- 4) Déterminer les coordonnées d'un autre point appartenant à Δ .