

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory

October/November 2012
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use				
Section A					
B7					
B8					
В9					
B10					
Total					

This document consists of 18 printed pages and 2 blank pages.

Section A

For Examiner's Use

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

41	(a)	Define the term <i>element</i> .
		[1]
	(b)	Choose from the following elements to answer the questions below.
		aluminium
		argon
		bromine
		gallium
		helium
		hydrogen
		magnesium
		nitrogen
		oxygen
		sodium
		Each element can be used once, more than once or not at all.
		Which element
		(i) is in Group III and Period 4 of the Periodic Table,
		(ii) has atoms with 8 electrons in their outer shell,
		(iii) is a liquid at room temperature,
		(iv) reduces unsaturated vegetable oils to form a solid product,
		(v) forms an ionic chloride with the formula XCl_2 ,
		(vi) is used in light bulbs?

(c) Draw the electronic structure of an aluminium atom.

For Examiner's Use

[1]

[Total: 8]

	Ships' hul Explain w			e hulls fro		ing.		-	
(c)	Steel is ar								
	Explain th		g of the t	erm <i>alloy</i> .					
	Samples of The table	of iron we	ere placed	l in aqued	ous solutio	ons having	g different	: pH value	es.
	eed of sion/cm r year	0.043	0.029	0.012	0.010	0.010	0.010	0.009	0.006
pe	рН	2	3	4	5	6	8	10	12
	F · ·								
	Describe	how pH a	ffects the	speed of	corrosior	of iron.			

A3 The table below shows both the formulae and boiling points of the first five members of the alcohol homologous series.

For Examiner's Use

alcohol	formula	boiling point /°C	
methanol	CH ₃ OH	65	
ethanol	C ₂ H ₅ OH	79	
propanol	C ₃ H ₇ OH	98	
butanol	C ₄ H ₉ OH	117	
pentanol	C ₅ H ₁₁ OH	138	

(a)	(i)	Deduce the formula of the sixth member of the alcohol homologous series.
	(ii)	Predict the boiling point of this alcohol.
		[1]
(b)	Des	anol can be made industrially by fermentation. scribe one other method of making ethanol industrially, stating the conditions required the reaction.
		[3]
(c)	(i)	Ethanol can be oxidised to ethanoic acid by atmospheric oxygen. Name one other suitable oxidising agent which can be used.
		[1]
	(ii)	Propanol can be oxidised to propanoic acid. Draw the structure for propanoic acid.

[1]

[Total: 7]

A 4	Wat	ater from natural sources, such as lakes and rivers, contains many dissolved substances.					
	(a)	Nan rive	ne two dissolved substances that occur naturally in unpolluted water from lakes and rs.				
			[1]				
	(b)		ution in lakes and rivers can be caused by leaching of fertilisers from farmland. s can cause eutrophication.				
		(i)	Name two ions present in fertilisers which cause eutrophication.				
			[2]				
		(ii)	Describe the essential stages in eutrophication.				
			[4]				
			[Total: 7]				

A5 The diagram below shows the apparatus used to electrolyse aqueous sodium hydroxide in the laboratory.

For Examiner's Use

Electrolysis of the aqueous sodium hydroxide, results in the formation of hydrogen at the cathode (negative electrode) and oxygen at the anode (positive electrode).

(a) Complete the equation for the formation of oxygen at the anode.

.....
$$OH^{-} \rightarrow O_{2} +H_{2}O +$$
 [1]

(b) (i) When the power pack is replaced by a voltmeter, the apparatus acts like a fuel cell. The left hand electrode in the diagram becomes the negative pole of the cell and the right hand electrode becomes the positive pole.

State the direction of the electron flow in the external circuit. Give a reason for your answer.

 	[1]

(ii) In this fuel cell, hydrogen reacts with aqueous hydroxide ions to form water. Construct an equation for this reaction.

[1]

(c) (i) Suggest two advantages of using a fuel cell rather than petrol to power a car.

.....[2]

(ii) Suggest one disadvantage of fuel cells.

.....[1

[Total: 6]

A6 A flow diagram for the manufacture of sulfuric acid is shown below.

For Examiner's Use

(a) In the sulfur burner, a spray of molten sulfur is burned in a furnace. Construct an equation for this reaction. Include state symbols.

[1]

(b) In the converter, the following reaction occurs:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H = -197 \text{ kJ/mol}$$

The yield of SO_3 is 95% at 450 °C and atmospheric pressure.

(i) Name the catalyst used in this reaction.

[1]

(ii) Explain why increasing the pressure shifts the position of equilibrium further to the right.

(iii) Explain why the reaction is carried out at atmospheric pressure even though an increase in pressure shifts the position of equilibrium further to the right.

F 4 7	
171	
 1 ' 1	

(iv) Explain why the reaction is carried out at 450°C and not at a higher or lower temperature.

.....

(c) Sulfuric acid is formed from sulfur trioxide in two stages. Firstly, the sulfur trioxide, SO_3 , is absorbed in concentrated sulfuric acid to form oleum, $H_2S_2O_7$.

For Examiner's Use

$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$

The oleum is then mixed with water to form sulfuric acid. Construct an equation for this reaction.

[1]

(d) Aqueous sulfuric acid is titrated with aqueous sodium hydroxide.

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

It requires $28.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol/dm^3}$ aqueous sodium hydroxide to neutralise $9.50\,\mathrm{cm^3}$ of sulfuric acid.

Calculate the concentration, in mol/dm³, of the aqueous sulfuric acid.

Give your answer to 3 significant figures.

concentration of the aqueous sulfuric acid mol/dm³ [3]

[Total: 11]

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

В7	Tin	is a r	metal in Group IV of the Periodic Table.
	(a)	Dra	w a labelled diagram to show the structure of a metal.
	(b)	Exp	lain why metals
	(-)	(i)	conduct electricity,
		(ii)	are malleable
			[2]
	(c)	prod This	high temperatures, tin reacts with steam to form $tin(II)$ oxide, SnO, and one other duct. It is reaction is reversible. The other product is a gas which gives a 'pop' with a lighted splint.
		(i)	Construct an equation for this reaction.
			[1]
		(ii)	Tin(II) oxide is an amphoteric oxide. Explain the meaning of the term <i>amphoteric oxide</i> .
			[1]
	(d)	(i)	Concentrated nitric acid reacts with tin to form $\mathrm{tin}(\mathrm{IV})$ oxide, SnO_2 , nitrogen dioxide and water. Construct an equation for this reaction.

[1]

For Examiner's Use	Nitric acid contains nitrate ions. Describe a test for nitrate ions. Give the result of a positive test.	(11)
	[3]	
	[Total: 10]	

B8	Peti	roleu	m is separated into fractions by fractional distillation.
	(a)	Ехр	lain how fractional distillation separates petroleum into different fractions.
			[3]
	(b)		refinery gas fraction contains the first four members of the alkane homologous
		(i)	Explain the meaning of the term <i>homologous series</i> .
			[2]
		(ii)	Draw the structure, showing all atoms and bonds, of the two isomers of butane, the fourth member of the alkane homologous series.
			[2]
	(c)	Cor	nstruct an equation for the complete combustion of hexane, C ₆ H ₁₄ .
			[1]

(a)		en long-chained alkanes are cracked in an oil refinery, shorter-chained alkanes and enes are formed.
	(i)	Explain why the process of cracking needs to be carried out.
		[1]
	(ii)	Describe a chemical test to distinguish between an alkane and an alkene.
		test
		result[1]
		[Total: 10]

(a)	Det	fine the term <i>relative atomic mass</i> .
		[1]
(b)		e relative atomic mass of magnesium can be determined in the laboratory by finding volume of hydrogen given off when magnesium reacts with hydrochloric acid.
		$Mg + 2HCl \rightarrow MgCl_2 + H_2$
	acio	36 g of magnesium reacts at room temperature and pressure with excess hydrochloric d to produce $36 \mathrm{cm}^3$ of hydrogen. nole of any gas at room temperature and pressure occupies $24 \mathrm{dm}^3$. ow by calculation that the relative atomic mass of magnesium is 24 .
		[3]
(c)	Mag	[3] gnesium reacts with oxygen in the air to form magnesium oxide.
(c)	Ма	
(c)	Mag	gnesium reacts with oxygen in the air to form magnesium oxide.
(c)		gnesium reacts with oxygen in the air to form magnesium oxide. $2 \text{Mg + O}_2 \longrightarrow 2 \text{MgO}$ If the yield of the reaction is 75% calculate the mass of magnesium oxide formed
(c)		gnesium reacts with oxygen in the air to form magnesium oxide. $2 \text{Mg + O}_2 \longrightarrow 2 \text{MgO}$ If the yield of the reaction is 75% calculate the mass of magnesium oxide formed
(c)		gnesium reacts with oxygen in the air to form magnesium oxide. $2 \text{Mg + O}_2 \longrightarrow 2 \text{MgO}$ If the yield of the reaction is 75% calculate the mass of magnesium oxide formed
		gnesium reacts with oxygen in the air to form magnesium oxide. $2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}$ If the yield of the reaction is 75% calculate the mass of magnesium oxide formed when 12 kg of magnesium burns in excess air.

(d)		en magnesium is heated with silicon, magnesium silicide, ${\rm Mg}_2{\rm Si}$, is formed. gnesium silicide reacts with water to form silane, ${\rm SiH}_4$, and magnesium oxide.	For Examiner's Use
	(i)	Construct an equation for the reaction of magnesium silicide with water.	
	(ii)	Silane has a structure similar to methane. Draw a 'dot-and-cross' diagram for silane. Show only the outer shell electrons.	
	(iii)	[1] Silane reacts with oxygen to form silicon dioxide and water. Construct an equation for this reaction.	
		[1]	
		[Total: 10]	

B10 Limestone consists mainly of the compound calcium carbonate. (a) Explain why limestone is used in the blast furnace for the extraction of iron. Include any relevant equations in your answer. **(b)** Group II carbonates decompose on heating. The temperatures at which some Group II carbonates decompose are given in the table below. Group II carbonate decomposition temperature /°C barium carbonate 1360 900 calcium carbonate 540 magnesium carbonate strontium carbonate 1280 Which one of these carbonates is least likely to decompose on heating? Describe how the thermal stability of these carbonates changes with the reactivity of the metal.

The mea	speed of reaction of calcium carbonate with hydrochloric acid can be calculated by asuring the volume of gas given off at various time intervals.	For Examiner's Use
(i)	Draw a labelled diagram of the apparatus you could use to follow the course of this reaction.	
	[0]	
(ii)	State and explain the effect of the following on the volume of a fixed mass of gas increasing the pressure, increasing the temperature.	
	[3]	
	[3] [Total: 10]	
	mea (i)	(ii) State and explain the effect of the following on the volume of a fixed mass of gas increasing the pressure, increasing the temperature.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

ū DATA SHEET F

						F	he Perio	dic Tabl	The Periodic Table of the Elements Group	Elemen	ts						
=												≡	2	>	>	\blacksquare	0
							1 Hydrogen										4 Heli um
Beryllum 4						,						11 Boron	12 C Carbon 6	14 N itrogen 7	16 Oxygen	19 T Fluorine 9	20 Ne Neon 10
24 Mg Magnesium	I											27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine	40 Ar Argon
40 45 48 48 Calcium Scandium 20 21 22	45 Sc candium	48 T Titanium		51 V Vanadium 23	CC Chromium 24	55 Wn Manganese 25	56 Fe Iron	59 Co Cobalt	59 X Nickel	64 Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
88 89 91 Sr Y Zr Strontum Yttrium Zirconium 38 40 40	89 ×	91 Zr Zirconium 40	l	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	HO1 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium	Sn Tin 50	Sb Antimony 51	128 Te Tellurium	127 I lodine	131 Xe Xenon 54
139 La Lanthanum 57 *	139 La Lanthanum 57 *	178 Hf Hafnium 72		181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Irdium	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth	209 Po Polonium 84	210 At Astatine 85	222 Rn Radon 86
226 227 Ra AC Radium Actinium t	227 Ac Actinum 89																
* 58–71 Lanthanoid series † 90–103 Actinoid series	oid series d series			140 Ce Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	Yb Ytterbium 70	175 Lu Lutetium 71
a a = relative atomic mass X = atomic symbol b = atomic (proton) number	= relative atomic mass = atomic symbol = atomic (proton) number	ic mass ool n) number		232 Th Thorium 90	Pa Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Pu Plutonium 94	243 Am Americium 95	247 Cm Curium	247 BK Berkelium	251 Californium 98	252 ES Einsteinium 99	257 Fm Fermium 100	258 Md Mendelevium 101	No No belium	260 Lr Lawrencium 103

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).