

GEOMETRÍA

Capítulo 10

POLÍGONOS

MOTIVATING | STRATEGY

POLÍGONOS

Definición: Es la reunión de tres o más segmentos consecutivos coplanares tal que cada dos segmentos consecutivos solo se intersecan en un extremo y sean no colineales.

NOTACIÓN: POLÍGONO ABCDEFGH

VÉRTICES : A,B,C,D,E,F,G y H

LADOS: AB, BC,CD, DE,EF, FG,GH y AH

DIAGONALES: BD, BE, BF,...

Nombre de los polígonos según el números de lados

Número de lados	Nombre de los Polígonos
3	TRIÁNGULO
4	CUADRILÁTERO
5	PENTÁGONO
6	HEXÁGONO
7	HEPTÁGONO HEPTÁGONO
8	OCTÁGONO o OCTÓGONO
9	NONÁGONO O ENEÁGONO
10	DECÁGONO
11	ENDECÁGONO o UNDECÁGONO
12	DODECÁGONO
15	PENTADECÁGONO
20	ICOSÁGONO

Teoremas para todo polígono convexo

1. Suma de medidas de los ángulos internos (Si).

$$Si = 180^{\circ} (n - 2)$$

2. Suma de medidas de los ángulos externos (Se).

3. Número total de diagonales (ND).

$$ND = \frac{n(n-3)}{2}$$

NOTA:

n = número de lados = número de vértices = número de ángulos internos

CLASIFICACIÓN DE LOS POLÍGONOS

POLÍGONO EQUILÁTERO

POLÍGONO EQUIÁNGULO

Pentágono Equiángulo

POLÍGONO REGULAR

Hexágono Regular

Teoremas solo para Polígono Equiángulos y Regulares

- 1. Medida de un ángulo interno (i).
- i i $i = \frac{180^{\circ} (n-2)}{n}$

2. Medida de un ángulo exterior (e).

NOTA

n = número de lados = número de vértices = número de ángulos internos

1. Calcule la suma de las medidas de los ángulos interiores de un heptágono.

Suma de las medidas de los ángulos Interiores

$$Si = 180^{\circ}(n - 2)$$

$$Si = 180^{\circ}(7 - 2)$$

$$Si = 180^{\circ}(5)$$

$$Si = 900^{\circ}$$

2β

2. Hallar el valor de β

Suma de las medidas de los ángulos exteriores

Se = 360°

60°

80°

100°

$$2\beta + 50^{\circ} + \beta + 60^{\circ} + 100^{\circ} = 360^{\circ}$$

 $3\beta + 210^{\circ} = 360^{\circ}$
 $3\beta = 150^{\circ}$

$$\beta = 50^{\circ}$$

3. La suma de medidas de ángulos interiores de un polígono es de 2340°. Calcule el número total de diagonales de dicho polígono.

DATO:

Suma medidas de los ángulos interiores es de 2340°

Entonces:

$$Si = 180^{\circ}(n - 2)$$

$$180^{\circ} (n-2) = 2340^{\circ}$$

$$n-2 = 13$$

$$n = 15$$

Piden:

Número total de diagonales

$$ND = \frac{n(n-3)}{2}$$
 $n = 15$

$$ND = \frac{15(15-3)}{2} = \frac{15(12)}{2}$$

$$ND = 90$$

4. ¿En qué polígono se cumple que la suma de las medidas de los ángulos interiores es el nónuplo de la suma de las medidas de los ángulos exteriores?

Piden: el polígono

Suma de medidas de los ángulos internos

$$Si = 180^{\circ}(n - 2)$$

Suma de medidas de los ángulos externos

DATO:

Si = 9 (Se)
$$180^{\circ} (n-2) = 9 (360^{\circ})$$

$$(n-2) = 18$$

$$n = 20$$

Icoságono

HELICO | PRACTICE

5. En un polígono equiángulo, la medida de un ángulo interior es igual al quíntuple de la medida de un ángulo exterior. Calcule el número de diagonales de dicho polígono.

i = 5e

Entonces:

$$e + 5e = 180^{\circ}$$

$$6e = 180^{\circ}$$

$$e = 30^{\circ}$$

$$n=\frac{360^{\circ}}{e}$$

$$n=\frac{360^{\circ}}{30^{\circ}}$$

$$n = 12$$

POLÍGONO EQUIÁNGULO es aquel polígono que tiene sus ángulos internos de igual medida.

Piden:

Número total de diagonals:

$$ND = \frac{n(n-3)}{2}$$

$$ND = \frac{12 (12 - 3)}{2} = \frac{12 (9)}{2}$$

ND = 54

6. Se muestra en el techo una lámpara formada por hexágonos reguladores. Halle el valor de α .

Medida del ángulo externo

$$e = \frac{360^{\circ}}{n}$$

HEXÁGONO REGULAR

$$\beta = \frac{360^{\circ}}{6}$$

$$\beta = 60^{\circ}$$

7. Andrés diseñó un novedoso portarretratos en el que ha empleado polígonos regulares, tal como se muestra en la figura. Calcule la m<ABP.

Debemos calcular m<APB = x

HEXÁGONO:
$$e = \frac{360^{\circ}}{6} = 60^{\circ} \implies i = 60^{\circ}$$

OCTÁGONO:
$$e = \frac{360^{\circ}}{8} = 45^{\circ} \implies i = 135^{\circ}$$

$$\mu = 135^{\circ} - 60^{\circ} = 75^{\circ}$$

$$\Rightarrow$$
 x + x + 75°= 180°

$$x = 150^{\circ}$$