Calculus III 2D Integration Problem Requiring Change of Variables and Jacobian

Integrate $f(x,y) = x^2 + y^2$ over the region, R , bounded by $-\frac{1}{4}x \le y \le \frac{2}{3}x$ and $\sqrt{y^2 + 2} \le x \le \sqrt{y^2 + 7}$.

$$\iint\limits_R (x^2 + y^2) dA = ?? \qquad \underline{\text{ANSWER USING HYPERBOLIC SUBSTITUTION:}} \text{ Let } x = h \cosh(\alpha) \text{ and } y = h \sinh(\alpha) \ .$$

The integrand becomes $x^2 + y^2 = h^2(\cosh^2(\alpha) + \sinh^2(\alpha)) = h^2(1 + 2\sinh^2(\alpha))$.

The first boundary constraints become: $-\frac{1}{4} \le \frac{y}{x} \le \frac{2}{3}$ or $-\frac{1}{4} \le \tanh(\alpha) \le \frac{2}{3}$ or $-\tanh^{-1}(\frac{1}{4}) \le \alpha \le \tanh^{-1}(\frac{2}{3})$.

The second set of boundary constraints become:

$$x^2 - y^2 = 2$$
 or $h^2 = 2$ or $h = \sqrt{2}$ and $x^2 - y^2 = 7$ or $h^2 = 7$ or $h = \sqrt{7}$. Therefore, $\sqrt{2} \le h \le \sqrt{7}$.

For our definition of
$$x$$
 and y , the Jacobian is: $J = \begin{vmatrix} \cosh(\alpha) & h \sinh(\alpha) \\ \sinh(\alpha) & h \cosh(\alpha) \end{vmatrix} = h(\cosh^2(\alpha) - \sinh^2(\alpha)) = h$.

Therefore:

$$\iint_{R} (x^{2} + y^{2}) dA = \int_{-\tanh^{-1}(1/4)}^{\tanh^{-1}(2/3)} \int_{\sqrt{2}}^{\sqrt{7}} h^{2} (1 + 2\sinh^{2}(\alpha)) h dh d\alpha \text{ where } h dh d\alpha = dA$$

$$= \int_{-\tanh^{-1}(1/4)}^{\tanh^{-1}(2/3)} (1 + 2\sinh^{2}(\alpha)) d\alpha \int_{\sqrt{2}}^{\sqrt{7}} h^{3} dh$$

$$= \frac{1}{4} (49 - 4) \int_{-\tanh^{-1}(1/4)}^{\tanh^{-1}(2/3)} (1 + 2\sinh^{2}(\alpha)) d\alpha$$

$$= \frac{45}{4} \int_{-\tanh^{-1}(1/4)}^{\tanh^{-1}(2/3)} \cosh(2\alpha) d\alpha = \frac{45}{8} (\sinh(2\tanh^{-1}(2/3)) - \sinh(-2\tanh^{-1}(1/4))$$

$$= \frac{45}{8} (\sinh(2\tanh^{-1}(2/3)) + \sinh(2\tanh^{-1}(1/4))$$

$$= \frac{45}{8} (2\sinh(\tanh^{-1}(2/3)) \cosh(\tanh^{-1}(2/3)) + 2\sinh(\tanh^{-1}(1/4))$$

$$= \frac{45}{8} (2\sinh(\tanh^{-1}(2/3)) \cosh(\tanh^{-1}(2/3)) + 2\sinh(\tanh^{-1}(1/4) \cosh(\tanh^{-1}(1/4)))$$

$$= \frac{45}{8} (2\frac{2\times 3}{3^{2} - 2^{2}} + \frac{1\times 4}{4^{2} - 1^{2}}) = \frac{45}{4} * \frac{22}{15} = \frac{33}{2} \quad \text{{See note below}}$$

Note: $\sinh(2\Theta) = 2\sinh(\Theta)\cosh(\Theta)$ and $\sinh(\tanh^{-1}(a/b)) = \frac{a}{\sqrt{b^2 - a^2}}$ and $\cosh(\tanh^{-1}(a/b)) = \frac{b}{\sqrt{b^2 - a^2}}$

So,
$$\sinh(2\tanh^{-1}(\frac{a}{b})) = 2\sinh(\tanh^{-1}(\frac{a}{b}))\cosh(\tanh^{-1}(\frac{a}{b})) = \frac{2ab}{b^2 - a^2}$$

ANSWER USING POLAR COORDINATES: Let $x = r\cos(\theta)$ and $y = r\sin(\theta)$.

The integrand becomes $x^2 + y^2 = r^2$.

The first boundary constraints become: $-\frac{1}{4} \le \frac{y}{x} \le \frac{2}{3}$ or $-\frac{1}{4} \le \tan(\theta) \le \frac{2}{3}$ or $-\tan^{-1}(\frac{1}{4}) \le \theta \le \tan^{-1}(\frac{2}{3})$.

The second set of boundary constraints become:

$$x^2 - y^2 = 2$$
 or $r^2(\cos^2(\theta) - \sin^2(\theta)) = 2$ or $r^2(\cos(2\theta)) = 2$ and therefore $r = \sqrt{2}/\sqrt{\cos(2\theta)}$

Similarly, for the outer limit of r , we get $r = \sqrt{7} / \sqrt{\cos(2\theta)}$.

The polar coordinate integral thus becomes: $\int_{-\tan^{-1}(1/4)}^{\tan^{-1}(2/3)} \int_{\sqrt{2}/\sqrt{\cos(2\theta)}}^{\sqrt{7}/\sqrt{\cos(2\theta)}} r^2 r dr d\theta$

$$\int_{-\tan^{-1}(1/4)}^{\tan^{-1}(2/3)} \int_{\sqrt{2}/\sqrt{\cos(2\theta)}}^{\sqrt{7}/\sqrt{\cos(2\theta)}} r^2 r dr d\theta = \int_{-\tan^{-1}(1/4)}^{\tan^{-1}(2/3)} d\theta \left[\frac{1}{4} r^4 \right]_{\sqrt{2}/\sqrt{\cos(2\theta)}}^{\sqrt{7}/\sqrt{\cos(2\theta)}} = \frac{45}{4} \int_{-\tan^{-1}(1/4)}^{\tan^{-1}(2/3)} \sec^2(2\theta) d\theta$$

$$=\frac{45}{8} \left[\tan(2\theta) \right]_{-\tan^{-1}(1/4)}^{\tan^{-1}(2/3)} = \frac{45}{8} \left[\tan(2\tan^{-1}(2/3)) + \tan(2\tan^{-1}(1/4)) \right]$$

Using the double angle formula for tangent, $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$, yields

$$= \frac{45}{8} \left[\frac{2 \times \frac{2}{3}}{1 - \frac{4}{9}} + \frac{2 \times \frac{1}{4}}{1 - \frac{1}{16}} \right] = \frac{33}{2}$$

Note: Why didn't we use the Jacobian for this substitution? We did! The replacement of $dA = dxdy = rdrd\theta$ has the factor of r that comes from the Jacobian for the polar substitution of variables.

For $x = r\cos(\theta)$ and $y = r\sin(\theta)$ the Jacobian is:

$$J = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r\left(\cos^2(\theta) + \sin^2(\theta)\right) = r \text{ which is exactly the extra } r \text{ that is required.}$$