Flows in Networks: Maxflow-Mincut

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Understand the relationship between flows and cuts.
- Produce a cut with size matching that of a maximum flow.
 - Identify when a flow is maximum.

Problem

In order to find maxflows, we need a way of verifying that they are optimal. In particular, we need techniques for bounding the size of the maxflow.

Idea

Recall our original example:

Idea

Find a bottleneck for the flow. All flow needs to cross the bottleneck.

Cuts

Definition

Given a network G, a cut C, is a set of vertices of G so that C contains all sources of G and no sinks of G.

The size of a cut is given by

$$|\mathcal{C}| := \sum_{e \text{ out of } \mathcal{C}} C_e$$

Example

Network *G*.

Example

Cut C.

Example

Edges cut. Total size 8000.

Problem

What is the size of the cut below?

Solution

1 + 2 + 3 = 6.

Bound

Lemma

Let G be a network. For any flow f and any cut C,

$$|f| \leq |\mathcal{C}|$$
.

Proof

$$|f| = \sum_{v \text{ source}} \left(\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e \right)$$

$$= \sum_{v \in \mathcal{C}} \left(\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e \right)$$

$$= \sum_{e \text{ out of } \mathcal{C}} f_e - \sum_{e \text{ into } \mathcal{C}} f_e$$

$$\leq \sum_{e \text{ out of } \mathcal{C}} C_e = |\mathcal{C}|.$$

Bounds

In other words, for any cut C, we get an upper bound on the maxflow. In particular,

Maxflow $\leq |\mathcal{C}|$.

Bounds

In other words, for any cut \mathcal{C} , we get an upper bound on the maxflow. In particular,

Maxflow
$$\leq |\mathcal{C}|$$
.

Question: Is this bound good enough?

Bounds

In other words, for any cut C, we get an upper bound on the maxflow. In particular,

Maxflow
$$\leq |\mathcal{C}|$$
.

Question: Is this bound good enough? Surprisingly, it is...

Maxflow-Mincut

Theorem

For any network G,

$$\max_{\text{flows f}} |f| = \min_{\text{cuts } \mathcal{C}} |\mathcal{C}|.$$

Maxflow-Mincut

Theorem

For any network G,

$$\max_{\text{flows f}} |f| = \min_{\text{cuts } \mathcal{C}} |\mathcal{C}|.$$

In other words, there is always a cut small enough to give the correct upper bound.

A Special Case

What happens when Maxflow = 0?

- There is no path from source to sink.
- Let C be the set of vertices reachable from sources.
- There are no edges out of C.
- So |C| = 0.

The General Case

- \blacksquare Let f be a maxflow for G.
- Note that G_f has maxflow 0.
- There is a cut C with size 0 in G_f .
- Claim: $|\mathcal{C}| = |f|$.

Proof

$$|f| = \sum_{e \text{ out of } \mathcal{C}} f_e - \sum_{e \text{ into } \mathcal{C}} f_e$$

$$= \sum_{e \text{ out of } \mathcal{C}} C_e - \sum_{e \text{ into } \mathcal{C}} 0$$

$$= |\mathcal{C}|.$$

Conclusion

- We have found an f and C with |f| = |C|.
- By Lemma, cannot have larger |f| or smaller |C|.
- So max $|f| = \min |C|$.

Summary

- Can always check if flow is maximal by finding matching cut.
- f a maxflow only if there is no source-sink path in G_f .
- We will use this in an algorithm next time.