

We will prove the following theorem in this section.

[Theorem 7.1] Regret Bound of UCBVI.

UCBVI achieves the following regret bound:

Regret:= $E\left[\sum_{k=0}^{K-1} (V^*(S_0) - V^{T_k^R}(S_0))\right]$ $\leq 20 \, \text{H}^2 \, \text{s} \, \sqrt{AK \cdot \ln(SAH^2k^2)} = \hat{O}(H^2 \, \text{s} \, \sqrt{AK})$

Note: the dependency on H is not tight. By modifying the reward bonus using Bernstein inequity, we could tighten it.

[Lemma 7.2] State-action wise model error.

Fix $S \in (0,1)$. For all $k \in \{0,\dots,k-1\}$, $s \in S$, $a \in A$, $h \in \{0,\dots,H-1\}$, with prob. $\geqslant 1-8$, we have that for any $f \colon S \to [0,H]$:

 $|(\hat{P}_{h}^{k}(\cdot|s,a) - P_{h}(\cdot|s,a))'f| \leq 8H\sqrt{S\ln(SAHK/S)/N_{h}^{k}(s,a)}$

Pf: 1) We consider a fixed tuple (s,a,k,h,f) first. Recall the definition of $\hat{P}_{h}^{k}(s,a)$,

 $\hat{P}_{h}^{k}(\cdot|s,a)'f = \sum_{i=0}^{k-1} \mathbb{1}\{(S_{h}^{i}, a_{h}^{i}) = (s,a)\} f(S_{h+1}^{i}) / N_{h}^{k}(s,a)$

Define $\mathcal{H}_{h,i}$ as the history from iter 0 to iter i including time step h.

Define $X_i = 1 \{(S_h^i, a_h^i) = (s, a)\} [f(S_{h+1}^i) - E_{s'} - p_k(s, a)[f(s')]],$ we now show X_i is a martingale difference sequence.

(i) $E[X_i|H_{k,i}] = E[f(S_{k+1}^i) - E_{s'}P_k(s,a)[f(s')]|H_{k,i}]$ or 0

= 0

A grain air - reall to determined by H.

Since $I(S_i, U_k) = (S_i, \alpha_j)$ is accumined of J(k, i).

(ii) We have $|I_i| = 0$ for $(S_i^i, \alpha_k^i) \neq (S_i, \alpha_j)$. $|I_i| \leq H$ for $(S_i^i, \alpha_k^i) = (S_i, \alpha_j)$.

Then I_i is a martingule difference sequence. B

Then X_i is a martingule difference sequence. By Azuma-Hoeffding's inequality: with prob. > 1-8, we have: $|\sum_{k=1}^{k-1} X_i| = |\sum_{k=1}^{k-1} 1_i^s(S_i, Q_i^s) = (S_i, Q_i^s) + (S_i, Q_i^s) = N_i^s(S_i, Q_i^s) + N_i^s(S_i, Q_i^s) + N_i^s(S_i, Q_i^s) = N_i^s(S_i, Q_i^s) + N_i^s($

 $|\sum_{i=0}^{R-1} X_i| = |\sum_{i=0}^{R-1} 1 \{ c \leq k, a_k \} = (s, a_k) \} \{ (s_{k+1}) - N_k(s, a_k) = (s, a_k) \} \{ (s, a_k) = (s, a_k) \} \{ (s_{k+1}) - N_k(s, a_k) = (s, a_k) \}$ $\leq 2H \sqrt{N_k^R(s, a_k) |n(1/8)|}$

Apply union bound over $s \in S$, $\alpha \in A$, $h \in \{0, \dots, H-1\}$, $k \in \{0, \dots, k-1\}$, with prob $\geq 1 \leq s$.

 $|\sum_{i=0}^{kt} 1f(S_{h}^{i}, \alpha_{h}^{i}) = (s, a) f(S_{h+1}^{i}) - N_{h}^{s}(s, a) E_{s'} p_{h}(s, a) Ef(s')]|$ $\leq 2H \sqrt{N_{h}^{k}(s, a)} \ln(SAKH/S)$

2 Next to cover all $f: S \rightarrow [0, H]$.

Note $\|f\|_2 \le H\sqrt{S}$ for all f, there exist a ε -net $N\varepsilon$ with $|N\varepsilon| \le (1+2H\sqrt{S}/\varepsilon)^S$ s.t. for any $f\varepsilon[0,H]^S$, \exists $f' \in N\varepsilon$ s.t. $||f-f'||_2 \le \varepsilon$. [This is obvious since $[0,H]^S$ is obvious]

Then we have

 $| \sum_{k=0}^{k-1} 1_{\{(S_{h}^{i}, a_{k}^{i}) = (S_{h}, a)\}} f(S_{h+1}^{i}) / N_{k}^{k}(S_{h}, a) - E_{S'} P_{k}(S_{h}, a) [f(S'_{1})] |$

 $\leq |\sum_{i=0}^{k-1} 1\{(s_{i},a_{k})=(s_{i}a_{i})\}^{i}(s_{k+1})/N_{k}^{k}(s_{i}a_{i}) - E_{s_{i}}P_{k}(s_{i}a_{i})[f'(s')]|$

 $+ \left| \sum_{i=0}^{k-1} 1_i^{k} (S_{k}^{i}, Q_{k}^{i}) = (S, Q_{i})^{k} (f(S_{k+1}^{i}) - f'(S_{k+1}^{i})) / N_{k}^{k} (S, Q_{i}) \right|$

+ | Es'~Ph(s,a)(f(s')-f'(s'))|

< 2H \SIn (SAKH(1+2H\s/\varepsilon^2)/8)/Nk(s,a) +2E

Since $\xi^2 - |\nabla \xi|$, $|f(s) - f'(s)|^2 \le \xi^2 \Rightarrow |f(s) - f'(s)| \le \xi$.

Now we set $\xi^2 = 1/K$ and use the fact that $N_{k}^{k}(s, a) \le K$ we have:

| $\sum_{k=0}^{\infty} \| f(S_k^k, a_k^k) = (s, a)^{\frac{1}{2}} f(S_{k+1}^k) \| N_k^k(s, a) - E_{s'} p_k(s, a) [f(s')] \|$ $\leq 2H \sqrt{\frac{S \ln (SAKH(1+2HK\sqrt{S}/8))}{N_k^k(s, a)}} + \frac{2}{\sqrt{K}}$ $\leq 4H \sqrt{\frac{S \ln (4H^2S^2k^2A/8)}{N_k^k(s, a)}}$ $\leq 8H \sqrt{\frac{S \ln (HSkA/8)}{N_k^k(s, a)}}$ Which completes the proof of Lemma 7.2

Lemma 7.31 State-action wise average model error under V^* . Fix $\delta \in (0,1)$. For all $k \in \{0,\dots,k-1\}$, with prob. $\geq 1-\delta$: $|\hat{P}_k^k(\cdot|s,a) \cdot V_{h+1}^* - P_k(\cdot|s,a) \cdot V_{h+1}^*| \leq 2H \sqrt{\ln(SAHN/\delta)/N_k^b(s,a)}$

Pf: Although we can bound the LHS by Lemma 7.2, since V^* is independent with data collected during learning, we can get a tighter upper bound.

O Consider a fixed tuple s,a,k,h first $\widehat{P}_{h}^{k}(\cdot|s,a) \bigvee_{h+1}^{*} = \frac{1}{N_{h}^{k}(s,a)} \stackrel{k-1}{\underset{i=0}{\stackrel{}{=}}} 1_{i}^{k}(S_{h}^{i},\alpha_{h}^{i}) = (s,a)^{k} \bigvee_{h+1}^{*}(S_{h+1}^{i})$ We define

 $T_{i}=1$ { $(S_{k}^{i}, Q_{k}^{i})=(S_{i}, Q_{i}^{j})$ $V_{k+1}^{*}(S_{k+1}^{i})-E[1$ { $(S_{k}^{i}, Q_{k}^{i})=(S_{i}, Q_{i}^{j})$ $V_{k+1}^{*}(S_{k+1}^{i})$ } $V_{k+1}^{*}(S_{k+1}^{i})-E[1]$

We have $E(X_i|H_{h,i}) = 0$, $|X_i| \le H$. Using Azuma-Hoeffding inequality, with $Prob. \ge 1-8$

 $|\sum_{i=0}^{k-1} \mathbf{X}_{i}| = |\sum_{i=0}^{k-1} \mathbf{1}_{i}^{s}(S_{i}^{k}, \alpha_{k}^{i}) = (s, \alpha_{i})^{s} V_{h_{H}}^{*}(S_{i_{H_{i}}}^{i_{H_{i}}}) - N_{h_{i}}^{k}(s, \alpha_{i}) E_{s_{i_{h_{i}}}} V_{h_{H_{i}}}^{*}(s_{i_{h_{i}}})|$ $\leq 2H \sqrt{N_{h_{i}}^{k}(s, \alpha_{i}) \ln(1/8)}$

Divide $N_h^k(s,a)$ on both side and use the fact $P_h^*V = E_{s_n}P_h(V_{h+1}^*)$ we have:

 $|\widehat{P}_{h}(\cdot|s,a)'V_{h+1}^{*} - \widehat{P}_{h}(\cdot|s,a)'V_{h+1}^{*}| \leq 2H\sqrt{\ln(1/8)/N_{h}^{k}(s,a)}$ with union bound over S,A, [N], [H], we conclude the Pf \square

Now we condition on Emodel (Lemma 7.2 & 7.3) being true. We study the effect of reward bonus: We want TC^k to be optimal under $\Gamma h + bk^k$ and empirical Pk, i.e. we want $\hat{V}_0^k(S_0) \neq \hat{V}_0^k(S_0)$ for all S_0 .

[Lemma 7.4] Optimism.

Assume Emodel is true. For all episode k we have $\hat{V}_{o}^{k}(S_{o}) \geqslant V_{o}^{*}(S_{o})$, $\forall S_{o} \in S$ where $\hat{V}_{o}^{k}(S_{o})$ follows VI.

Pf: By induction.

(i) At time step H: $\hat{V}_{H}^{k}(s) = V_{H}^{*}(s) = 0$ for all s (ii) Starting at k+1, assuming that $\hat{V}_{h+1}^{k}(s) \ni V_{h+1}^{*}(s)$ for $\forall s$ Consider any $s, a \in S \times A$. First, if $Q_{h}^{k}(s,a) = H$, then $Q_{h}^{k}(s,a) \geqslant Q_{h}^{*}(s,a)$

 $\hat{Q}_{h}^{R}(s,a) - \hat{Q}_{h}^{*}(s,a) = b_{h}^{k}(s,a) + \hat{P}_{h}^{k}(\cdot|s,a) \cdot \hat{V}_{h+1}^{k} - \hat{P}_{h}^{*}(\cdot|s,a) \hat{V}_{h+1}^{*}$ $\geq b_{h}^{k}(s,a) + (\hat{P}_{h}^{k}(\cdot|s,a) - \hat{P}_{h}^{*}(\cdot|s,a)) \hat{V}_{h+1}^{*}$ $\geq b_{h}^{k}(s,a) - 2H \sqrt{\frac{\ln(SAHK/8)}{N_{k}^{R}(s,a)}} \quad (Lemma 7.3)$ ≥ 0

口

Then we have $V_h^k(s) > V_h^*(s)$ $\forall s$.

[Lemma 7.5] Consider $T^{R} = \int S_{h}^{R}, \alpha_{h}^{k} \gamma_{h=0}^{H-1}$ for $k=0, \dots, k-1$: $\sum_{k=0}^{K-1} \frac{H-1}{h=0} 1/\sqrt{N_{h}^{R}(S_{h}^{R}, \alpha_{h}^{R})} \leq 2H\sqrt{SAK}$

Pf: LHS =
$$k=1$$
 $\sqrt{N_{k}^{k}(S_{k}^{k}, \alpha_{k}^{k})}$ $\frac{1}{N_{k}^{k}(S_{k}, \alpha_{k}^{k})}$

$$= \sum_{h=0}^{\infty} \sum_{(S,\alpha)} \sum_{i=1}^{\infty} \sqrt{i}$$

$$\leq 2 \sum_{h=0}^{H-1} \sum_{(S,\alpha)} \sqrt{N_{h}^{k}(S,\alpha)} \left(\frac{1}{1^{\frac{1}{k}}} = \frac{2}{2\sqrt{1}} \in \frac{2}{\sqrt{1^{\frac{1}{k}}}} = 2\sqrt{1^{\frac{1}{k}}} - 2\sqrt{1^{\frac{1}{k}}} \right)$$

$$\leq \sum_{h=0}^{H-1} \sqrt{SA} \sum_{S,\alpha} N_{h}^{k}(S,\alpha) \quad \text{Cauchy ineq.}$$

$$= H \sqrt{SAK}$$

Now we turn back to prove Th. 7.1:

Pf [Th. 7.1]:

Consider episode k and history Hck.

① We bound $V^* - V^{\pi^k}$.

$$V_0^*$$
 (So) - $V_0^{\pi^k}$ (So)

$$\leq \hat{V}_0^k(S_0) - V_0^{\pi^k}(S_0)$$

$$= \widehat{Q}_o^k(S_o, \pi^k(S_o)) - Q_o^{\pi^k}(S_o, \pi^k(S_o))$$

$$-(r_{o}(S_{o},\pi^{\flat}(S_{o}))+P_{o}(\cdot|S_{o},\pi^{\flat}(S_{o}))\cdot V_{i}^{\pi^{\flat}})$$

$$= b_{k}^{k}(S_{0}, \pi^{k}(S_{0})) + (\hat{\mathcal{P}}_{o}^{k}(\cdot|S_{o}, \pi^{k}(S_{o})) - P_{o}(\cdot|S_{o}, \pi^{k}(S_{o}))) \cdot \bigvee_{i}^{k}$$

+
$$P_{o}(\cdot|s_{o},\pi^{\flat}(s_{o}))\cdot(\hat{V}_{i}^{\flat}-V_{i}^{\pi^{\flat}})$$

$$= \sum_{k=0}^{H-1} E_{s,\alpha} \sim d_k^{\pi^k} \left[b_k^k(s,\alpha) + (\hat{P}_k^k(\cdot|s,\alpha) - P_k(\cdot|s,\alpha)) \cdot \hat{V}_{h+1}^k \right]$$
 (*)

With Lemma 7.2:

RHS of (*)
$$\leq \sum_{h=0}^{H-1} E_{s,a} \wedge d_{h}^{\pi k} \left[b_{h}^{R} (s_{i,a}) + 8H_{\sqrt{s}} Sln(sAHK/8) / N_{h}^{R} (s_{i,a}) \right]$$

$$\leq \sum_{h=0}^{H-1} E_{s_{h},a_{h}} \wedge d_{h}^{\pi k} \left[lo H_{\sqrt{s}L/N_{h}^{R}(s_{i,a})} \right]$$

$$= lo H_{\sqrt{s}L} E_{\sqrt{s_{h}}} \left[lo H_{\sqrt{s}L/N_{h}^{R}(s_{i,a})} \right] H_{ck}$$

where L=In(SAHK/S)

② By summing all episodes together:

$$E\left[\begin{array}{c} \stackrel{k-1}{\geq} V_{*}^{*}(s_{0}) - V_{0}^{\pi^{k}}(s_{0}) \right]$$

 $E\left[\begin{array}{c} \sum_{k=0}^{k-1} V_{o}^{*}(s_{0}) - V_{o}^{\pi k}(s_{0}) \right]$

= $E[I[8model]] = V_0(50) - V_0(50) = I[I[8model]] = V_0(50) - V_0(50) - V_0(50) = I[I[8model]] = V_0(50) - V_0(50) = I[I[8model]] = V_0(50) - V_0(50) = I[8model]] = V_0(50) - V_0(50) = V_0(50) =$

 Π

which completes the proof of Th. 7.1.