Axioms of Probability

1.1 Sample Space and Events

Definition. The set of all possible outcomes of an experiment is called the *sample* space of the experiment and is denoted by Ω .

Example. If the experiment consists of tossing two dice, then the sample space is

$$\Omega = \{(i,j): i,j \in \{1,2,3,4,5,6\}\}.$$

Definition. Let Ω be a sample space of an experiment. A family Σ of subsets of Ω is called a σ -algebra on Ω if the following conditions hold.

- (a) $\Omega \in \Sigma$.
- (b) For all $E \in \Sigma$, $\Omega \setminus E \in \Sigma$.
- (c) If E_1, E_2, \ldots is a sequence of elements in Σ , then

$$\bigcup_{i=1}^{\infty} E_i \in \Sigma.$$

Definition. If Σ is a σ -algebra on Ω , then (Ω, Σ) is called a *measurable space*, and a subset of Ω that belongs to Σ is called an *event*.

Theorem 1.1. Let I be an index set such that for each $i \in I$, Σ_i is a σ -algebra on Ω . Then

$$\Sigma^* = \bigcap_{i \in I} \Sigma_i$$

is also a σ -algebra on Ω .

Proof.

- (a) Since $\Omega \in \Sigma_i$ for each $i \in I$, it follows that $\Omega \in \Sigma$.
- (b) We have

$$E \in \Sigma$$
 \Rightarrow $E \in \Sigma_i$ for each $i \in I$
 \Rightarrow $\Omega \setminus E \in \Sigma_i$ for each $i \in I$
 \Rightarrow $\Omega \setminus E \in \Sigma$.

(c) We have

$$E_1, E_2, \dots \in \Sigma \quad \Rightarrow \quad E_1, \dots, E_2 \in \Sigma_i \text{ for each } i \in I$$

$$\Rightarrow \quad \bigcup_{j=1}^{\infty} E_j \in \Sigma_i \text{ for each } i \in I$$

$$\Rightarrow \quad \bigcup_{j=1}^{\infty} E_j \in \Sigma.$$

Definition. Let Φ be a family of subsets of Ω . Then the σ -algebra generated by Φ , denoted by $\sigma(\Phi)$, is the intersection of all σ -algebras that contains Φ .

Example. Let Φ be the collection of all open intervals on \mathbb{R} . Then the σ -algebra generated by Φ is called the *Borel algebra* of \mathbb{R} , denoted by \mathcal{B} .

1.2 Axioms of Probability

Definition. Two events E and F are mutually exclusive if $E \cap F = \emptyset$.

Definition. Let (Ω, Σ) be a measurable space. A function $P : \Sigma \to \mathbb{R}$ is called a probability function and (Ω, Σ, P) is a probability space if the following conditions hold.

- (a) For all $E \in \Sigma$, $P(E) \ge 0$.
- (b) $P(\Omega) = 1$.
- (c) If E_1, E_2, \ldots is a sequence of events that are pairwise mutually exclusive, then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

Theorem 1.2. Let (Ω, Σ, P) be a probability space. Let $E, F \in \Sigma$. Then $P(F \setminus E) = P(F) - P(E \cap F)$.

Proof. Since $E \cap F$ and $F \setminus E$ are mutually exclusive, we have

$$P(F) = P((E \cap F) \cup (F \setminus E)) = P(E \cap F) + P(F \setminus E).$$

Thus,
$$P(F \setminus E) = P(F) - P(E \cap F)$$
.

Corollary. $P(\Omega \setminus E) = 1 - P(E)$ holds for any event E, implying $P(\emptyset) = 0$.

Corollary. If $E \subseteq F$, then $P(E) \leq P(F)$ because $P(F) - P(E) = P(F \setminus E) \geq 0$.

Theorem 1.3 (Inclusive-exclusive Principle). Let (Ω, Σ, P) be a probability space. If $E_1, \ldots, E_n \in \Sigma$, then

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{1 \leq i_{1} < \dots < i_{r} \leq n} P(E_{i_{1}} \cap \dots \cap E_{i_{r}}).$$

Proof. The proof is by induction on n. The theorem holds for n=0 and n=1 trivially. For n=2, since $E_1 \cap E_2$ and $E_1 \setminus E_2$ are mutually exclusive, we have

$$P(E_1) = P((E_1 \cap E_2) \cup (E_1 \setminus E_2)) = P(E_1 \cap E_2) + P(E_1 \setminus E_2).$$

Thus, since $E_1 \setminus E_2$ and E_2 are mutually exclusive, we have

$$P(E_1 \cup E_2) = P((E_1 \setminus E_2) \cup E_2)$$

= $P(E_1 \setminus E_2) + P(E_2)$
= $P(E_1) - P(E_1 \cap E_2) + P(E_2)$.

Now suppose that the theorem holds for some $n \geq 2$, and we prove that the theorem is true for n + 1. Since $E_1 \cup \cdots \cup E_n$ and E_{n+1} are mutually exclusive, we have

$$P(E_1 \cup \cdots \cup E_n \cup E_{n+1}) = P(E_1 \cup \cdots \cup E_n) + P(E_{n+1}) - P((E_1 \cup \cdots \cup E_n) \cap E_{n+1}),$$

where the first term can be written as

$$P(E_1 \cup \dots \cup E_n) = \sum_{r=1}^n (-1)^{r+1} \sum_{1 \le i_1 < \dots < i_r \le n} P(E_{i_1} \cap \dots \cap E_{i_r}),$$

and the last term can be written as

$$P((E_{1} \cup \cdots \cup E_{n}) \cap E_{n+1})$$

$$= P((E_{1} \cap E_{n+1}) \cup \cdots \cup (E_{k} \cap E_{n+1}))$$

$$= \sum_{s=1}^{n} (-1)^{s+1} \sum_{1 \leq i_{1} \cdots \leq i_{s} \leq n} P((E_{i_{1}} \cap E_{n+1}) \cap \cdots \cap (E_{i_{s}} \cap E_{n+1}))$$

$$= \sum_{s=1}^{n} (-1)^{s+1} \sum_{1 \leq i_{1} \cdots \leq i_{s} \leq n} P(E_{i_{1}} \cap \cdots \cap E_{i_{s}} \cap E_{n+1})$$

$$= -\sum_{r=2}^{n+1} (-1)^{r+1} \sum_{1 \leq i_{1} \cdots \leq i_{r-1} \leq n} P(E_{i_{1}} \cap \cdots \cap E_{i_{r-1}} \cap E_{i_{r}}).$$

Now we consider r, which is the number of sets in each intersection. The second term is actually the case with r = 1, and the last term consists of the cases with $r \geq 2$. Thus,

$$P(E_{n+1}) - P((E_1 \cup \dots \cup E_n) \cap E_{n+1}) = \sum_{r=1}^n (-1)^{r+1} \sum_{\substack{1 \le i_1 \dots \le i_{r-1} \le n \\ i_r = n+1}} P(E_{i_1} \cap \dots \cap E_{i_r}).$$

Furthermore, note that the first term consists of the case where E_{n+1} does not appear in the intersection, while the difference above consists of the case where E_{n+1} appears in the intersection. Thus, by summing up all terms, we have

$$P(E_1 \cup \dots \cup E_n \cup E_{n+1}) = \sum_{r=1}^{n+1} (-1)^{r+1} \sum_{1 \le i_1 \le \dots \le i_r \le n+1} P(E_{i_1} \cap \dots \cap E_{i_r}),$$

which completes the proof.

Example. For any three events E_1, E_2, E_3 , we have $P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3) - P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1) + P(E_1 \cap E_2 \cap E_3)$.

1.3 Sample Spaces with Equally Likely Outcomes

Theorem 1.4. Let $\Omega = \{\omega_1, \ldots, \omega_n\}$ be a finite sample space and let P be a probability function such that $P(\{\omega_i\}) = P(\{\omega_j\})$ for $i, j \in \{1, \ldots, n\}$. Then for each event $E \subseteq \Omega$ with |E| = k, we have

$$P(E) = \frac{k}{n}.$$

Proof. Let p denote the probability of each elementary event $\{\omega_i\}$ for all $i \in \{1, \ldots, n\}$. Then we have

$$1 = P(\Omega) = P\left(\bigcup_{i=1}^{n} \{\omega_i\}\right) = \sum_{i=1}^{n} P(\{\omega_i\}) = np.$$

Thus,

$$p = \frac{1}{n}.$$

Let $E = \{\omega_{i_1}, \ldots, \omega_{i_k}\}$. Then

$$P(E) = P\left(\bigcup_{r=1}^{k} \{\omega_{i_r}\}\right) = \sum_{r=1}^{k} P(\{\omega_{i_r}\}) = \frac{k}{n}.$$

Conditional Probability and Independence

2.1 Conditional Probability

Definition. Let (Ω, Σ, P) be a probability space. If E is an event with P(E) > 0, then define

$$P(F \mid E) = \frac{P(E \cap F)}{P(E)}$$

for any event F.

Theorem 2.1. Let (Ω, Σ, P) be a probability space. If E is an event with P(E) > 0, then the function $P_E : \Sigma \to \mathbb{R}$ is a probability function if

$$P_E(F) = P(F \mid E)$$

for any event F.

Proof. For events E and F,

$$P_E(F) = \frac{P(E \cap F)}{P(E)} \ge 0.$$

Moreover,

$$P_E(\Omega) = \frac{P(E \cap \Omega)}{P(E)} = \frac{P(E)}{P(E)} = 1.$$

If F_1, F_2, \ldots is a sequence of events that are piecewise mutually exclusive, then

$$P_E\left(\bigcup_{i=1}^{\infty} F_i\right) = \frac{P\left(E \cap \bigcup_{i=1}^{\infty} F_i\right)}{P(E)} = \frac{P\left(\bigcup_{i=1}^{\infty} (E \cap F_i)\right)}{P(E)} = \sum_{i=1}^{\infty} \frac{P(E \cap F_i)}{P(E)} = \sum_{i=1}^{\infty} P_E(F_i).$$

Thus, P_E is a probability function.

2.2 Bayes' Formula

Definition. A partition of Ω is a family of nonempty events such that each element in Ω is in exactly one of these events.

Theorem 2.2. Let E_1, \ldots, E_n form a partition of Ω such that $P(E_i) > 0$ for each $i \in \{1, \ldots, n\}$. Then for any event F,

$$P(F) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i).$$

Proof. Since

$$F = F \cap \Omega = F \cap \bigcup_{i=1}^{n} E_i = \bigcup_{i=1}^{n} (F \cap E_i),$$

it follows that

$$P(F) = P\left(\bigcup_{i=1}^{n} (F \cap E_i)\right) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i).$$

Theorem 2.3 (Bayes' Formula). Let E_1, \ldots, E_n form a partition of Ω such that $P(E_j) > 0$ for each $j \in \{1, \ldots, n\}$. Then for any event F with P(F) > 0, for any $i \in \{1, \ldots, n\}$, we have

$$P(E_i \mid F) = \frac{P(F \mid E_i)P(E_i)}{\sum_{i=1}^{n} P(F \mid E_i)P(E_i)}.$$

Proof. By Theorem 2.2, we have

$$P(E_i \mid F) = \frac{P(E_i \cap F)}{P(F)} = \frac{P(F \mid E_i)P(E_i)}{\sum_{j=1}^n P(F \mid E_j)P(E_j)}.$$

2.3 Independence

Definition. Let E_1, \ldots, E_n be events in a probability space (Ω, Σ, P) .

• E_1, \ldots, E_n are independent if

$$P\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} P(E_i)$$

holds for any nonempty subset I of $\{1, \ldots, n\}$.

• E_1, \ldots, E_n are dependent if they are not independent.

Definition. Let E_1, \ldots, E_n and F be events in a probability space (Ω, Σ, P) , where P(F) > 0. Then E_1, \ldots, E_n are independent given event F if

$$P\left(\bigcap_{i\in I} E_i \mid F\right) = \prod_{i\in I} P(E_i \mid F)$$

holds for any nonempty subset I of $\{1, \ldots, n\}$.

Discrete Random Variables

3.1 Discrete Random Variables

Definition. Let $X : \Omega \to \mathbb{R}$ be a function in a probability space (Ω, Σ, P) . Then X is called a random variable if $X^{-1}(S) \in \Sigma$ for all $S \in \mathcal{B}$, where

$$X^{-1}(S) = \{ \omega \in \Omega : X(\omega) \in S \}.$$

Remark. Since each $S \in \mathcal{B}$ is mapped to a event $X^{-1}(S) \in \Sigma$, we will use conditions related to ramdom variables to denote events. For example,

$$P(-1 \le X \le 1) = P(\{\omega \in \Omega : -1 \le X(\omega) \le 1\}).$$

Definition. A random variable X is a discrete random variable if there is a countable set $S \subseteq \mathbb{R}$ such that $P(X \in S) = 1$.

Definition. Let X be a random variable in a probability space (Ω, Σ, P) . The probability mass function $p_X : \mathbb{R} \to \mathbb{R}$ of X is defined as

$$p_X(x) = P(X = x)$$

for each $x \in \mathbb{R}$.

3.2 Expectation and Variance

Definition. Let X be a discrete random variable in a probability space (Ω, Σ, P) . Then the *expectation* of X, denoted by E[X], is defined as follows.

• If X is nonnegative, i.e, $X(\omega) \geq 0$ for each $\omega \in \Omega$, then

$$E[X] = \sum_{x \in X(\Omega)} x \cdot p_X(x).$$

• Otherwise, we define $E[X] = E[X^+] - E[X^-]$, where $X^+ = \max\{X,0\}$ and $X^- = \max\{-X,0\}$.

Theorem 3.1. Let X and Y be discrete random variables in a probability space (Ω, Σ, P) . If both E[X] and E[Y] exist, then the following statements are true.

- (a) E[aX] = aE[X] for $a \in \mathbb{R}$.
- (b) E[X + Y] = E[X] + E[Y].

Proof.

(a) First, suppose that $a \geq 0$. If X is nonnegative, then so is aX. Thus, we have

$$E[aX] = \sum_{x \in X(\Omega)} ax \cdot p_X(x) = aE[X].$$

If X is not nonnegative, by the fact that $(aX)^+ = aX^+$ and $(aX)^- = aX^-$, we have

$$E[aX] = E[aX^{+}] - E[aX^{-}] = aE[X^{+}] - aE[X^{-}] = aE[X].$$

since X^+ and X^- are nonnegative. Thus the statement holds for $a \ge 0$.

For the case that a < 0, note that since $(-X)^+ = X^-$ and $(-X)^- = X^+$, it follows that

$$E[-X] = E[X^{-}] - E[X^{+}] = -E[X].$$

Thus, we have

$$E[aX] = E[(-a)(-X)] = -aE[-X] = aE[X].$$

(b) To be completed.

Definition. Let X be a discrete random variable in a probability space (Ω, Σ, P) . Then the *variance* of X is defined as

$$Var(X) = E[(X - E[X])^2].$$

Theorem 3.2. Let X be a discrete random variable. Then $Var(X) = E[X^2] - (E[X])^2$. *Proof.* It is proved by

$$Var(X) = E[(X - E[X])^{2}]$$

$$= E[X^{2} - 2X \cdot E[X] + (E[X])^{2}]$$

$$= E[X^{2}] - 2E[X] \cdot E[X] + (E[X])^{2}$$

$$= E[X^{2}] - (E[X])^{2}.$$

3.3 Bernoulli and Binomial Random Variables

Definition. Let $0 \le p \le 1$. A random variable X is called a Bernoulli random variable with parameter p if $p_X(1) = p$ and $p_X(0) = 1 - p$.

Theorem 3.3. Let X be a Bernoulli random variable with parameter p.

- (a) E[X] = p.
- (b) Var(X) = p(1-p).

Proof. Since p(0) + p(1) = 1, we have p(x) = 0 for $x \notin \{0, 1\}$.

(a) We have

$$E[X] = \sum_{x: p_X(x) > 0} x \cdot p_X(X) = 1 \cdot p + 0 \cdot (1 - p) = p.$$

(b) By (a), we have

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$= (1^{2} \cdot p + 0^{2} \cdot (1 - p)) - p^{2}$$

$$= p - p^{2}$$

$$= p(1 - p).$$

Definition. Let n be a nonnegative integer and $0 \le p \le 1$. A random variable X is called a *binomial random variable* with parameter (n, p), if

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

for each $x \in \{0, \ldots, n\}$.

Theorem 3.4. Let X be a binomial random variable with parameter (n, p).

- (a) E[X] = np.
- (b) Var(X) = np(1-p).

Proof. We have p(x) = 0 for $x \notin \{0, ..., n\}$ because

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = (p+(1-p))^{n} = 1.$$

Also, we have the fact that

$$E[X^{k}] = \sum_{x=0}^{n} x^{k} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} x^{k} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= np \sum_{x=1}^{n} x^{k-1} \binom{n-1}{x-1} p^{x-1} (1-p)^{n-x}$$

$$= np \sum_{y=0}^{n-1} (y+1)^{k-1} \binom{n-1}{y} p^{y} (1-p)^{(n-1)-y}$$
(*)

holds for positive integer k.

(a) By (*), the expectation of X is given by

$$E[X] = np \sum_{y=0}^{n-1} {n-1 \choose y} p^y (1-p)^{(n-1)-y} = np.$$

(b) By (*), we have

$$E[X^{2}] = np \sum_{y=0}^{n-1} (y+1) \binom{n-1}{y} p^{y} (1-p)^{(n-1)-y} = np((n-1)p+1).$$

Thus, the variance of X is given by

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$= np((n-1)p+1) - (np)^{2}$$

$$= np(1-p).$$

3.4 Poisson Random Variables

Theorem 3.5. Let $\lambda > 0$. For integer $n \geq \lambda$, let X_n be a binomial random variable with parameter $(n, \lambda/n)$. Then for nonnegative integer x, we have

$$\lim_{n \to \infty} p_{X_n}(x) = e^{-\lambda} \cdot \frac{\lambda^x}{x!}.$$

Proof. For $n \geq \lambda$, we have

$$p_{X_n}(x) = \frac{n!}{(n-x)! \cdot x!} \cdot \left(\frac{\lambda}{n}\right)^x \left(\frac{n-\lambda}{n}\right)^{n-x}$$

$$= \frac{\lambda^x}{x!} \cdot \frac{n!}{(n-x)! \cdot (n-\lambda)^x} \cdot \left(\frac{n-\lambda}{n}\right)^n$$

$$= \frac{\lambda^x}{x!} \cdot \prod_{i=1}^x \frac{n+1-i}{n-\lambda} \cdot \left(1-\frac{\lambda}{n}\right)^n.$$

Thus,

$$\lim_{n \to \infty} p_{X_n}(x) = \frac{\lambda^x}{x!} \cdot \prod_{i=1}^x \left(\lim_{n \to \infty} \frac{n+1-i}{n-\lambda} \right) \cdot \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = \frac{\lambda^x}{x!} \cdot e^{-\lambda}.$$

Definition. Let $\lambda > 0$. A random variable X is called a *Poisson random variable* with parameter λ , if

$$p_X(x) = e^{-\lambda} \cdot \frac{\lambda^x}{r!}$$

holds for any nonnegative integer x.

Theorem 3.6. Let X be a Poisson random variable with parameter λ .

- (a) $E[X] = \lambda$.
- (b) $Var(X) = \lambda$.

Proof. We have $p_X(x) = 0$ for $x \notin \{0, 1, 2, \dots\}$ because

$$\sum_{x=0}^{\infty} p_X(x) = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} \cdot e^{\lambda} = 1.$$

where the second equality follows from the fact that $e^t = \sum_{k=0}^{\infty} t^k / k!$ for $t \in \mathbb{R}$.

(a) We have

$$E[X] = \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^{\infty} x \cdot \frac{e^{-\lambda} \lambda^x}{x!} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} = \lambda e^{-\lambda} \sum_{y=0}^{\infty} \frac{\lambda^y}{y!} = \lambda.$$

(b) Since

$$\begin{split} E[X^2] &= \sum_{x=0}^{\infty} x^2 \cdot \frac{e^{-\lambda} \lambda^x}{x!} \\ &= \sum_{x=1}^{\infty} x^2 \cdot \frac{e^{-\lambda} \lambda^x}{x!} \\ &= \lambda \sum_{x=1}^{\infty} x \cdot \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!} \\ &= \lambda \sum_{y=0}^{\infty} (y+1) \cdot \frac{e^{-\lambda} \lambda^y}{y!} \\ &= \lambda (\lambda+1), \end{split}$$

we have

$$Var(X) = E[X^2] - (E[X])^2 = \lambda(\lambda + 1) - \lambda^2 = \lambda.$$

3.5 Geometric and Negative Binomial Random Variables

Definition. Let $0 \le p \le 1$. A random variable X is called a geometric random variable with parameter p, if

$$p_X(x) = p \cdot (1-p)^{x-1}$$

holds for any positive integer x.

Definition. Let r be a nonnegative integer and $0 \le p \le 1$. A random variable X is called a *negative binomial random variable* with parameter (r, p), if

$$p_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$

holds for any integer $x \geq r$.

Theorem 3.7. Let X be a negative binomial random variable with parameter (r, p).

- (a) E[X] = r/p.
- (b) $Var(X) = r(1-p)/p^2$.

Proof. We have $p_X(x) = 0$ for $x \notin \{r, r+1, r+2, \dots\}$ because

$$\sum_{x=r}^{\infty} p_X(x) = \sum_{x=r}^{\infty} {x-1 \choose r-1} p^r (1-p)^{x-r}$$

$$= \sum_{x=r}^{\infty} {r \choose x-r} p^r (-(1-p))^{x-r}$$

$$= p^r \sum_{y=0}^{\infty} {r \choose y} (-(1-p))^y$$

$$= p^r (1-(1-p))^{-r}$$

$$= 1,$$

where the second equality follows from

$$\begin{pmatrix} x-1 \\ r-1 \end{pmatrix} = \begin{pmatrix} x-1 \\ x-r \end{pmatrix} = \begin{pmatrix} -r \\ x-r \end{pmatrix} \cdot (-1)^{x-r}.$$

- (a) To be completed.
- (b) To be completed.

3.6 Hypergeometric Random Variables

Definition. Let n, K, N be nonnegative integers with $n \leq N$ and $K \leq N$. A random variable X is called a hypergeometric random variable with parameter (n, K, N) if

$$p_X(x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$

holds for any integer $x \in \{0, 1, \dots, K\}$.

Remark. A hypergeometric random variable with parameter (1, K, N) is a Bernoulli random variable with parameter K/N.

Remark. A hypergeometric random variable X with parameter (n, K, N) can be seen as the number of successes in n draws without replacement from a population of size N that contains K objects that represent success.

Remark. If N and K are large compared to n, then a hypergeometric random variable X with parameter (n, K, N) behaves like a binomial random variable with parameter (n, K/N).

Continuous Random Variables

4.1 Continuous Random Variables

Definition. A random variable X is a continuous random variable if there exists a nonnegative function $f_X : \mathbb{R} \to \mathbb{R}$ such that

$$P(X \in S) = \int_{S} f_X(x) dx$$

holds for any $S \in \mathcal{B}$. The function f_X is called a *probability density function* of X.

Theorem 4.1. Let X be a continuous random variable in a probability space (Ω, Σ, P) . Then $p_X(a) = 0$ for $a \in \mathbb{R}$.

Proof. It is proved by

$$p_X(a) = P(X = a) = \int_a^a f_X(x) dx = 0.$$

Definition. The cumulative distribution function F_X of a random variable X is defined by

$$F_X(x) = P(X \le x)$$

for all $x \in \mathbb{R}$.

Theorem 4.2. Let X be a continuous random variable in a probability space (Ω, Σ, P) . If f_X is a probability density function of X, then

$$F_X(x) = \int_{-\infty}^x f_X(t)dt.$$

holds for all $x \in \mathbb{R}$.

Proof. For all $x \in \mathbb{R}$, we have

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt.$$

4.2 Expectation and Variance

4.3 Uniform Random Variables

Definition. Let a, b be real numbers with a < b. A continuous random variable X is called a *uniform random variable* with parameters (a, b) if the function $f_X : \mathbb{R} \to \mathbb{R}$ with

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

for $x \in \mathbb{R}$ is a probability density function of X.

4.4 Normal Random Variables

Definition. Let μ, σ be real numbers with $\sigma \geq 0$. A continuous random variable X is called a *normal random variable* with parameters (μ, σ^2) if the function $f_X : \mathbb{R} \to \mathbb{R}$ with

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$

for $x \in \mathbb{R}$ is a probability density function of X.