Introduction and motivation

Maximum principles for a class of semilinear parabolic equations and ETD schemes

Zhonghua Qiao

Department of Applied Mathematics, The Hong Kong Polytechnic University

Joint work with

Qiang Du (COLUMBIA), Lili Ju (USC), Xiao Li (USC)

Outline

- Introduction and motivation
 - Maximum principle preserving exponential time differencing (ETD) schemes for the nonlocal Allen-Cahn equation
- 2 Model equation and its maximum principle
 - Abstract framework
 - Examples
- 3 Maximum principle preserving ETD schemes
 - Discrete maximum principle (DMP)
 - Application to phase field models

Outline

- Introduction and motivation
 - Maximum principle preserving exponential time differencing (ETD) schemes for the nonlocal Allen-Cahn equation
- Model equation and its maximum principle
 - Abstract framework
 - Examples
- 3 Maximum principle preserving ETD schemes
 - Discrete maximum principle (DMP)
 - Application to phase field models

Allen-Cahn equation

(Local) Allen-Cahn equation:

$$u_t - \varepsilon^2 \Delta u + u^3 - u = 0. \tag{LAC}$$

As an L^2 gradient flow w.r.t. the free energy functional

$$E_{\text{local}}(u) = \int \left(\frac{1}{4}(u(\mathbf{x})^2 - 1)^2 + \frac{\varepsilon^2}{2}|\nabla u(\mathbf{x})|^2\right) d\mathbf{x},\tag{1}$$

• energy stability:

$$E_{\text{local}}(u(t_2)) \le E_{\text{local}}(u(t_1)), \quad \forall t_2 \ge t_1 \ge 0.$$
 (2)

As a second order reaction-diffusion equation,

maximum principle:

$$||u(\cdot,0)||_{L^{\infty}} \le 1 \quad \Rightarrow \quad ||u(\cdot,t)||_{L^{\infty}} \le 1, \quad \forall t > 0.$$
 (3)

Allen-Cahn equation (continued)

Energy stable schemes:

• Stabilized semi-implicit (SSI) scheme [Shen-Yang, 2010]: find u^{n+1} such that

$$\frac{u^{n+1} - u^n}{\tau} - \varepsilon^2 \Delta_h u^{n+1} + (u^n)^3 - u^n + \kappa (u^{n+1} - u^n) = 0.$$
 (4)

• Exponential time differencing (ETD) scheme [Ju et al., 2015]: find $u^{n+1} = w(\tau)$ with w(t) subject to

$$\begin{cases} \frac{\mathrm{d}w}{\mathrm{d}t} + (\kappa - \varepsilon^2 \Delta_h)w + (u^n)^3 - u^n - \kappa u^n = 0, \ t \in (0, \tau], \\ w(0) = u^n. \end{cases}$$
 (5)

Both schemes are easy to implement and conditionally energy stable.

Introduction and motivation

Allen-Cahn equation (continued)

$$F(u) = \frac{1}{4}(u^2 - 1)^2$$
, $f(u) := F'(u) = u^3 - u$.

What is the condition for energy stability?

$$\kappa \ge \frac{1}{2} \|f'(u)\|_{L^{\infty}}. \tag{6}$$

However,

$$f'(u) = 3u^2 - 1$$
, unbounded in L^{∞} !

Allen-Cahn equation (continued)

$$F(u) = \frac{1}{4}(u^2 - 1)^2$$
, $f(u) := F'(u) = u^3 - u$.

What is the condition for energy stability?

$$\kappa \ge \frac{1}{2} \|f'(u)\|_{L^{\infty}}. \tag{6}$$

However,

$$f'(u) = 3u^2 - 1$$
, unbounded in L^{∞} !

If we have that u is bounded in L^{∞} , then so does f'(u).

Discrete maximum principle (DMP) insures the L^{∞} boundness of u.

Allen-Cahn equation (continued)

Maximum principle preserving schemes:

• first order semi-implicit scheme [Tang-Yang, 2016]:

$$\frac{u^{n+1} - u^n}{\tau} - \varepsilon^2 \Delta_h u^{n+1} + (u^n)^3 - u^n + \kappa (u^{n+1} - u^n) = 0 \quad (7)$$

condition for DMP: $\frac{1}{\tau} + \kappa \geq 2$.

• Crank-Nicolson scheme [Hou-Tang-Yang, 2017]:

$$\frac{u^{n+1} - u^n}{\tau} - \varepsilon^2 \Delta_h \frac{u^{n+1} + u^n}{2} + \frac{(u^{n+1})^3 + (u^n)^3}{2} - \frac{u^{n+1} + u^n}{2} = 0$$
(8)

condition for DMP:
$$\tau \leq \frac{1}{2} \min \left\{ 1, \frac{h^2}{\varepsilon^2} \right\}$$
.

Cahn-Hilliard equation

(Local) Cahn-Hilliard equation:

$$u_t + \varepsilon^2 \Delta^2 u + \Delta (u^3 - u) = 0.$$
 (LCH)

No maximum principle!

Li-Qiao-Tang, SINUM, 2016 Li-Qiao, JSC, 2017 (IMEX Frouier Spectral) Song-Shu, JSC, 2018 (IMEX LDG)

A clean description on the size of the constant κ , in the sense that κ is independent of the L^{∞} bound on the numerical solution.

Nonlocal Allen-Cahn equation

Nonlocal Allen-Cahn (NAC) equation:

$$u_t - \varepsilon^2 \mathcal{L}_\delta u + u^3 - u = 0. \tag{NAC}$$

As an L^2 gradient flow w.r.t. the free energy functional

$$E(u) = \int \left(\frac{1}{4}(u(\mathbf{x})^2 - 1)^2 - \frac{\varepsilon^2}{2}u(\mathbf{x})\mathcal{L}_{\delta}u(\mathbf{x})\right)d\mathbf{x},\tag{9}$$

energy stability:

$$E(u(t_2)) \le E(u(t_1)), \quad \forall t_2 \ge t_1 \ge 0.$$
 (10)

Similar to the case of local Allen-Cahn equation, we can prove

maximum principle:

$$||u(\cdot,0)||_{L^{\infty}} \le 1 \quad \Rightarrow \quad ||u(\cdot,t)||_{L^{\infty}} \le 1, \quad \forall t > 0.$$
 (11)

Nonlocal Allen-Cahn equation (continued)

Nonlocal diffusion operator ($x \in \mathbb{R}^d$):

$$\mathcal{L}_{\delta}u(\mathbf{x}) = \frac{1}{2} \int_{B_{\delta}(\mathbf{0})} \rho_{\delta}(|\mathbf{s}|) \left(u(\mathbf{x} + \mathbf{s}) + u(\mathbf{x} - \mathbf{s}) - 2u(\mathbf{x}) \right) d\mathbf{s}. \quad (12)$$

Kernel $\rho_{\delta}: [0, \delta] \to \mathbb{R}$ is nonnegative and

$$\frac{1}{2} \int_{B_{\delta}(\mathbf{0})} |\mathbf{s}|^2 \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s} = d. \tag{13}$$

Consistency of \mathcal{L}_{δ} with $\mathcal{L}_0 := \Delta$ via [Du et al., 2012]

$$\max_{\mathbf{x}} |\mathcal{L}_{\delta} u(\mathbf{x}) - \mathcal{L}_{0} u(\mathbf{x})| \le C\delta^{2} ||u||_{C^{4}}.$$
 (14)

In particular, in 1-D case,

$$\mathcal{L}_{\delta}u(x) = \frac{1}{2} \int_{-\delta}^{\delta} |s|^2 \rho_{\delta}(|s|) \cdot \frac{u(x+s) + u(x-s) - 2u(x)}{|s|^2} \, \mathrm{d}s. \quad (15)$$

Maximum principle preserving ETD schemes

Nonlocal Allen-Cahn equation (continued)

Our work:

• Du-Ju-Li-Qiao, SIAM J. Numer. Anal., 2019.

Consider the initial-boundary-value problem of the NAC equation

$$u_t - \varepsilon^2 \mathcal{L}_{\delta} u + u^3 - u = 0, \quad \mathbf{x} \in \Omega, \ t \in (0, T],$$

 $u(\cdot, t) \text{ is } \Omega\text{-periodic}, \quad t \in [0, T],$
 $u(\mathbf{x}, 0) = u_0(\mathbf{x}), \quad \mathbf{x} \in \overline{\Omega},$

where $\Omega = (0, X)^d$ is a hypercube domain in \mathbb{R}^d .

Main theoretical results:

- discrete maximum principle;
- maximum-norm error estimates;
- discrete energy stability.

Quadrature-based finite difference discretization

Uniform spatial mesh with the nodes $\{x_i\}$.

The discretization of \mathcal{L}_{δ} is defined by [Du-Tao-Tian-Yang, 2018]

$$\mathcal{L}_{\delta,h}u(\mathbf{x}_{i}) = \frac{1}{2} \int_{B_{\delta}(\mathbf{0})} \mathcal{I}_{h} \left(\frac{u(\mathbf{x}_{i} + \mathbf{s}) + u(\mathbf{x}_{i} - \mathbf{s}) - 2u(\mathbf{x}_{i})}{|\mathbf{s}|^{2}} |\mathbf{s}|_{1} \right) \frac{|\mathbf{s}|^{2}}{|\mathbf{s}|_{1}} \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s}.$$
(16)

where \mathcal{I}_h is the piecewise *d*-multi-linear interpolation.

The matrix $\mathcal{L}_{\delta,h}$ is

- symmetric and negative semi-definite;
- weakly diagonally dominant with all negative diagonal entries.

Quadrature-based finite difference discretization (continued)

Introduce a stabilizing parameter $\kappa > 0$ and define

$$L_h := -\varepsilon^2 \mathcal{L}_{\delta,h} + \kappa \mathbf{I}, \qquad N(U) := \kappa \mathbf{U} + U - U^{.3}. \tag{17}$$

Then, we reach

$$\frac{\mathrm{d}U}{\mathrm{d}t} + L_h U = N(U),\tag{18}$$

whose solution satisfies

$$U(t+\tau) = e^{-L_h \tau} U(t) + \int_0^{\tau} e^{-L_h(\tau-s)} N(U(t+s)) \, \mathrm{d}s. \tag{19}$$

The matrix L_h is

- symmetric and positive definite;
- strictly diagonally dominant with all positive diagonal entries, which implies that $\|e^{-L_h\tau}\|_{\infty} \le e^{-\kappa\tau}$ for any $\kappa, \tau > 0$.

ETD methods for the temporal integration

Uniform time step τ and the nodes $\{t_n = n\tau\}$.

At the time level $t = t_n$, we have

$$U(t_{n+1}) = e^{-L_h \tau} U(t_n) + \int_0^{\tau} e^{-L_h (\tau - s)} N(U(t_n + s)) ds.$$
 (20)

By

- approximating $N(U(t_n + s))$ by $N(U(t_n))$ in $s \in [0, \tau]$,
- calculating the integral exactly,

we have the first order ETD scheme of (NAC):

$$U^{n+1} = e^{-L_h \tau} U^n + \int_0^{\tau} e^{-L_h(\tau - s)} N(U^n) ds$$

= $e^{-L_h \tau} U^n + L_h^{-1} (I - e^{-L_h \tau}) N(U^n).$ (ETD1)

ETD methods for the temporal integration (continued)

At the time level $t = t_n$:

$$U(t_{n+1}) = e^{-L_h \tau} U(t_n) + \int_0^{\tau} e^{-L_h (\tau - s)} N(U(t_n + s)) ds.$$
 (21)

By

• approximating $N(U(t_n + s))$ by a linear interpolation based on $N(U(t_n))$ and $N(U(t_{n+1}))$,

we have the second order ETD Runge-Kutta scheme of (NAC):

$$\begin{cases} U^{n+1} = e^{-L_h \tau} U^n + \int_0^{\tau} e^{-L_h(\tau - s)} \left[\left(1 - \frac{s}{\tau} \right) N(U^n) + \frac{s}{\tau} N(\widetilde{U}^{n+1}) \right] ds, \\ \widetilde{U}^{n+1} = e^{-L_h \tau} U^n + \int_0^{\tau} e^{-L_h(\tau - s)} N(U^n) ds. \end{cases}$$

Discrete maximum principle

For the ETD1 scheme, we prove it by induction:

- $||U^0||_{\infty} \le ||u_0||_{L^{\infty}} \le 1$;
- assume $||U^k||_{\infty} \le 1$, prove $||U^{k+1}||_{\infty} \le 1$.

We have

$$\|U^{k+1}\|_{\infty} \leq \|\mathbf{e}^{-L_{\hbar}\tau}\|_{\infty} \|U^{k}\|_{\infty} + \int_{0}^{\tau} \|\mathbf{e}^{-L_{\hbar}(\tau-s)}\|_{\infty} \, \mathrm{d}s \cdot \|N(U^{k})\|_{\infty}.$$

We can prove

- $\|\mathbf{e}^{-L_h \tau}\|_{\infty} \leq \mathbf{e}^{-\kappa \tau}$ for any $\kappa, \tau > 0$;
- $||N(U^k)||_{\infty} \le \kappa$ when $\kappa \ge 2$.

Then,

$$||U^{k+1}||_{\infty} \le e^{-\kappa \tau} \cdot 1 + \frac{1 - e^{-\kappa \tau}}{\kappa} \cdot \kappa = 1.$$

Discrete maximum principle (continued)

For the ETDRK2 scheme, we have

$$||U^{k+1}||_{\infty} \le ||e^{-L_h \tau}||_{\infty} ||U^k||_{\infty} + \int_{0}^{\tau} ||e^{-L_h(\tau - s)}||_{\infty} ||(1 - \frac{s}{\tau})f(U^k) + \frac{s}{\tau}f(\widetilde{U}^{k+1})||_{\infty} ds.$$

Note that \widetilde{U}^{k+1} is exactly the solution to ETD1 scheme, so

$$\|\widetilde{U}^{k+1}\|_{\infty} \le 1 \quad \Rightarrow \quad \|f(\widetilde{U}^{k+1})\|_{\infty} \le S.$$

For $s \in [0, \tau]$,

$$\left\| \left(1 - \frac{s}{\tau} \right) f(U^k) + \frac{s}{\tau} f(\widetilde{U}^{k+1}) \right\|_{\infty} \le \left(1 - \frac{s}{\tau} \right) \| f(U^k) \|_{\infty} + \frac{s}{\tau} \| f(\widetilde{U}^{k+1}) \|_{\infty} \le S.$$

Then,

$$||U^{k+1}||_{\infty} \le e^{-S\tau} \cdot 1 + \frac{1 - e^{-S\tau}}{S} \cdot S = 1.$$

Discrete energy stability

We define the discretized energy E_h :

$$E_h(U) = \sum_{i=1}^{dN} F(U_i) - \frac{\varepsilon^2}{2} U^T \mathcal{L}_{\delta,h} U, \quad F(s) = \frac{1}{4} (s^2 - 1)^2.$$
 (22)

Discrete energy stability of the ETD1 scheme

Under the condition $\kappa \geq 2$, for any $\tau > 0$, we have

$$E_h(U^{n+1}) \le E_h(U^n).$$

Energy stability for ETD1

Step 1. We have

$$F(U^{n+1}) - F(U^n) = f(U^n)(U^{n+1} - U^n) + \frac{1}{2}f'(\xi)(U^{n+1} - U^n)^2,$$

where $||f'(\xi)||_{\infty} = ||3\xi^2 - 1||_{\infty} \le 2$ since $||\xi||_{\infty} \le 1$ due to DMP. Then, we obtain

$$E_h(U^{n+1}) - E_h(U^n) \le (U^{n+1} - U^n)^T (L_h U^{n+1} - f(U^n)).$$

Step 2. Solve $N(U^n)$ from (ETD1) to get

$$N(U^{n}) = (I - e^{-L_{h}\tau})^{-1}L_{h}(U^{n+1} - U^{n}) + L_{h}U^{n},$$

and then,

$$L_h U^{n+1} - N(U^n) = B_1(U^{n+1} - U^n)$$

with $B_1 = L_h - (I - e^{-L_h \tau})^{-1} L_h$ symmetric and negative definite. So,

$$E_h(U^{n+1}) - E_h(U^n) \le (U^{n+1} - U^n)^T B_1(U^{n+1} - U^n) \le 0.$$

Numerical experiments

We consider the 2-D case.

Setting

•
$$\Omega = (0, 2\pi) \times (0, 2\pi), \varepsilon = 0.1;$$

• kernel:
$$\rho_{\delta}(r) = \frac{6}{\pi \delta^3 r}, r > 0;$$

•
$$N = 512$$
, $\tau = 0.01$;

- random initial data ranging from -0.9 to 0.9 uniformly;
- $\delta = 0$, $\delta = 3\varepsilon$, $\delta = 4\varepsilon$.

Numerical experiments (continued)

From left to right: $\delta=0$ (local), $\delta=3\varepsilon,\,\delta=4\varepsilon.$ Top: maximum norms; bottom: energies.

Recall the proof of the discrete maximum principle

The crucial results are

•
$$\|\mathbf{e}^{-L_h \tau}\|_{\infty} \leq \mathbf{e}^{-\kappa \tau}$$
 for any $\kappa, \tau > 0$,

(This is the result of the strictly diagonal dominance of L_h .)

and

•
$$||N(U)||_{\infty} \le \kappa$$
 when $\kappa \ge 2$, for any U such that $||U||_{\infty} \le 1$.

(This comes from the property of the function $f(u) = u - u^3$.)

Outline

- Introduction and motivation
 - Maximum principle preserving exponential time differencing (ETD) schemes for the nonlocal Allen-Cahn equation
- Model equation and its maximum principle
 - Abstract framework
 - Examples
- 3 Maximum principle preserving ETD schemes
 - Discrete maximum principle (DMP)
 - Application to phase field models

Domain Ω and Banach space X

Consider the domain $\Omega \subset \mathbb{R}^d$ in the following two situations:

- (D1) Ω is an open connected and bounded set with boundary $\partial\Omega$;
- (D2) Ω consists of all nodes in a mesh dividing a set defined as (D1).

Let X be the Banach space consisting of real scalar-valued continuous functions defined on $\overline{\Omega} = \Omega \cup \partial \Omega$ associated with the norm

$$||u|| = \max_{\boldsymbol{x} \in \overline{\Omega}} |u(\boldsymbol{x})|, \quad u \in X.$$

In particular, we consider the following two cases:

(C1) $X = C_0(\overline{\Omega}; \mathbb{R})$ (continuous on $\overline{\Omega}$ and vanishing on $\partial\Omega$); (C2) $X = C_{per}(\overline{\Omega}; \mathbb{R})$ (continuous in \mathbb{R}^d and periodic w.r.t. Ω).

Model equation

Let

- $f: X \to X$ be a nonlinear operator;
- $\mathcal{L}: D(\mathcal{L}) \to X$ be a linear operator, where the domain $D(\mathcal{L})$ is a linear subspace of X.

The model equation is a class of semilinear parabolic equations:

$$u_t = \mathcal{L}u + f[u], \quad t > 0, \tag{23}$$

where $u:[0,\infty)\to X$ is the unknown function subject to the initial condition

$$u(0) = u_0, \quad \text{in } \overline{\Omega}$$
 (24)

and the homogenous Dirichlet boundary condition for Case (C1) or the periodic boundary condition for Case (C2).

Linear operator \mathcal{L}

Main idea: \mathcal{L} should be a generalization of Δ .

Assumption 1

The linear operator \mathcal{L} satisfies the followings:

- (a) $\mathcal{L}: D(\mathcal{L}) \to X$ is closed and the domain $D(\mathcal{L})$ is dense in X;
- (b) there exists $\lambda_0 > 0$ such that $\lambda_0 \mathcal{I} \mathcal{L} : D(\mathcal{L}) \to X$ is surjective;
- (c) it always holds that $\mathcal{L}w(\mathbf{x}_0) \leq 0$ for any $w \in D(\mathcal{L})$ and $\mathbf{x}_0 \in \Omega$ such that

$$w(\mathbf{x}_0) = \max_{\mathbf{x} \in \Omega} w(\mathbf{x})$$
 for Case (C1)
or $w(\mathbf{x}_0) = \max_{\mathbf{x} \in \Omega} w(\mathbf{x})$ for Case (C2).

Linear operator \mathcal{L} (continued)

Lemma 1

Introduction and motivation

Under Assumption 1, it holds that

(i) \mathcal{L} is dissipative, i.e., for any $\lambda > 0$ and any $w \in D(\mathcal{L})$,

$$\|(\lambda \mathcal{I} - \mathcal{L})w\| \ge \lambda \|w\|; \tag{25}$$

(ii) \mathcal{L} is the generator of a contraction semigroup $\{S_{\mathcal{L}}(t)\}_{t\geq 0}$, i.e.,

$$||S_{\mathcal{L}}(t)||_{\mathcal{B}(X)} \leq 1.$$

Main idea: f should be a generalization of $f(u) = u - u^3$.

Assumption 2

The nonlinear operator f acts as a composite function induced by a given one-variable continuously differentiable function $f_0 : \mathbb{R} \to \mathbb{R}$, that is,

$$f[w](\mathbf{x}) = f_0(w(\mathbf{x})), \quad \forall w \in X, \ \forall \mathbf{x} \in \overline{\Omega},$$
 (26)

and there exists $\beta > 0$ such that

$$f_0(\beta) \le 0 \le f_0(-\beta). \tag{27}$$

If f_0 satisfies $f_0(a) \ge 0 \ge f_0(b)$ for some a < b, one can carry out an affine transform to u.

Nonlinear operator f (continued)

Introduce a stabilizing constant $\kappa \geq 0$, and then we obtain

$$u_t + \kappa u = \mathcal{L}u + \mathcal{N}[u], \tag{28}$$

where $\mathcal{N} := \kappa \mathcal{I} + f$. The solution to (28) satisfies

$$u(t+\tau) = e^{-\kappa\tau} S_{\mathcal{L}}(\tau) u(t) + \int_0^{\tau} e^{-\kappa(\tau-s)} S_{\mathcal{L}}(\tau-s) \mathcal{N}[u(t+s)] \, \mathrm{d}s. \tag{29}$$

Requirement on the selection of the stabilizing constant:

$$\kappa \ge \max_{|\xi| \le \beta} |f_0'(\xi)|. \tag{*}$$

Lemma 2

Denote $X_{\beta} = \{w \in X : ||w|| \le \beta\}$. Under Assumption 2 and the condition (*), it holds that

- (i) $\|\mathcal{N}[w]\| \le \kappa \beta$ for any $w \in X_{\beta}$;
- (ii) $\|\mathcal{N}[w_1] \mathcal{N}[w_2]\| \le 2\kappa \|w_1 w_2\|$ for any $w_1, w_2 \in X_\beta$.

Maximum principle

Theorem 1

Given a constant T > 0. Under Assumptions 1 and 2, if the initial data satisfies $||u_0|| \le \beta$, then the model equation has a unique solution $u \in C([0,T];X)$ and satisfies $||u(t)|| \le \beta$ for any $t \in (0,T]$.

Sketch of the proof. For any $t_1 > 0$,

$$u(\tau) = e^{-\kappa \tau} S_{\mathcal{L}}(\tau) u_0 + \int_0^{\tau} e^{-\kappa(\tau - s)} S_{\mathcal{L}}(\tau - s) \mathcal{N}[u(s)] ds, \ \tau \in [0, t_1].$$

Given $v \in C([0, t_1]; X_\beta)$, define a mapping A by setting

$$\mathcal{A}[v](\tau) = \mathrm{e}^{-\kappa \tau} S_{\mathcal{L}}(\tau) u_0 + \int_0^{\tau} \mathrm{e}^{-\kappa(\tau - s)} S_{\mathcal{L}}(\tau - s) \mathcal{N}[v(s)] \, \mathrm{d}s, \ \tau \in [0, t_1].$$

- **Step 1.** Prove $\mathcal{A}[v] \in C([0,t_1];X_\beta)$.
- **Step 2.** Prove \mathcal{A} is a strict contraction if t_1 is sufficiently small.
- **Step 3.** Repeat the same argument on $[t_1, 2t_1], [2t_1, 3t_1], \ldots$

Examples of the nonlinear function f_0

Example 1. Consider the function

$$f_0(s) = \lambda s(1 - s^p), \tag{30}$$

where $\lambda > 0$ and $p \in \mathbb{N}_+$.

- f_0 satisfies $f_0(a) \ge 0 \ge f_0(b)$ with any $a \in [0, 1)$ and $b \ge 1$;
- for even p, one can choose $\beta \ge 1$ to meet Assumption 2.

Special cases:

• Case p = 2 with $\lambda = 1$ gives

$$f_0(s) = s - s^3, (31)$$

the derivative of -F with $F(s) = \frac{1}{4}(s^2 - 1)^2$.

Examples of the nonlinear function f_0 (continued)

Introduction and motivation

Example 2. Consider the Flory-Huggins free energy

$$F(s) = \frac{\theta}{2}[(1+s)\ln(1+s) + (1-s)\ln(1-s)] - \frac{\theta_c}{2}s^2,$$

where θ and θ_c are two constants satisfying $0 < \theta < \theta_c$, and

$$f_0(s) = -F'(s) = \frac{\theta}{2} \ln \frac{1-s}{1+s} + \theta_c s.$$
 (32)

Denote by ρ the positive root of $f_0(\rho) = 0$, i.e.,

$$\frac{1}{2\rho} \ln \frac{1+\rho}{1-\rho} = \frac{\theta_c}{\theta}.$$
 (33)

Then f_0 satisfies Assumption 2 with $\beta \in [\rho, 1)$.

Examples of the linear operator \mathcal{L}

1. Cases in the *infinite* dimensional space

Example 3. Second order elliptic differential operator

$$\mathcal{L}w(\mathbf{x}) = A(\mathbf{x}) : \nabla^2 w(\mathbf{x}) + q(\mathbf{x}) \cdot \nabla w(\mathbf{x}), \tag{34}$$

where $q \in C(\overline{\Omega}; \mathbb{R}^d)$ and $A \in C(\overline{\Omega}; \mathbb{R}^{d \times d})$ is symmetric and positive definite uniformly.

Example 4. Nonlocal diffusion operator

$$\mathcal{L}w(\mathbf{x}) = \int_{\Omega} \rho(\mathbf{x}, \mathbf{y})(w(\mathbf{y}) - w(\mathbf{x})) \, d\mathbf{y}, \tag{35}$$

where $\rho: \Omega \times \Omega \to \mathbb{R}$ is a symmetric nonnegative kernel function, i.e., $\rho(\mathbf{x}, \mathbf{y}) = \rho(\mathbf{y}, \mathbf{x}) \geq 0$.

Examples of the linear operator \mathcal{L} (continued)

1. Cases in the *infinite* dimensional space (continued)

Example 5. Fractional Laplace operator

$$\mathcal{L}w(\mathbf{x}) = \frac{1}{2}\pi^{-\frac{d}{2}-2s} \frac{\Gamma(\frac{d}{2}+s)}{\Gamma(-s)} \int_{\mathbb{R}^d} \frac{w(\mathbf{x}+\mathbf{y}) + w(\mathbf{x}-\mathbf{y}) - 2w(\mathbf{x})}{|\mathbf{y}|^{d+2\alpha}} \, \mathrm{d}\mathbf{y}.$$
(36)

Example 6. Riesz fractional derivative operator

$$\mathcal{L}w(\mathbf{x}) = -\frac{1}{2\cos\frac{\pi\alpha}{2}} \frac{1}{\Gamma(2-\alpha)} \frac{d^2}{dx^2} \int_a^b \frac{w(\xi)}{|x-\xi|^{\alpha-1}} d\xi, \ x \in (a,b).$$
(37)

Examples of the linear operator \mathcal{L} (continued)

2. Cases in the *finite* dimensional space

Example 7. Central difference operator for Laplacian

$$\mathcal{L}_h w(x_i) = \frac{1}{h^2} \big(w(x_{i-1}) - 2w(x_i) + w(x_{i+1}) \big). \tag{38}$$

Example 8. Quadrature-based difference operator

$$\mathcal{L}_{h}w(\mathbf{x}_{i}) = \sum_{\mathbf{0} \neq s_{j} \in B_{\delta}(\mathbf{0})} \frac{w(\mathbf{x}_{i} + \mathbf{s}_{j}) + w(\mathbf{x}_{i} - \mathbf{s}_{j}) - 2w(\mathbf{x}_{i})}{|\mathbf{s}_{j}|^{2}} |\mathbf{s}_{j}|_{1} \beta_{\delta}(\mathbf{s}_{j}),$$
(39)

where

$$\beta_{\delta}(\mathbf{s}_{j}) = \frac{1}{2} \int_{\mathbf{R}_{s}(\mathbf{0})} \psi_{j}(\mathbf{s}) \frac{|\mathbf{s}|^{2}}{|\mathbf{s}|_{1}} \rho_{\delta}(|\mathbf{s}|) \, \mathrm{d}\mathbf{s},$$

Example 9. Fractional difference operator (discretization of (36)). **Example 10.** Mass-lumping finite element approximation for Δ .

Outline

- Introduction and motivation
 - Maximum principle preserving exponential time differencing (ETD) schemes for the nonlocal Allen-Cahn equation
- 2 Model equation and its maximum principle
 - Abstract framework
 - Examples
- 3 Maximum principle preserving ETD schemes
 - Discrete maximum principle (DMP)
 - Application to phase field models

ETD1 scheme and the DMP

Uniform time step τ and the nodes $\{t_n = n\tau\}$. At $t = t_n$, we have

$$u(t_{n+1}) = e^{-\kappa \tau} S_{\mathcal{L}}(\tau) u(t_n) + \int_0^{\tau} e^{-\kappa(\tau - s)} S_{\mathcal{L}}(\tau - s) \mathcal{N}[u(t_n + s)] ds.$$
(40)

By

- approximating $\mathcal{N}[u(t_n+s)] \approx \mathcal{N}[u(t_n)]$ in $s \in [0,\tau]$,
- calculating the integral exactly,

we obtain the first order ETD scheme:

$$v^{n+1} = e^{-\kappa \tau} S_{\mathcal{L}}(\tau) v^n + \left(\int_0^{\tau} e^{-\kappa(\tau - s)} S_{\mathcal{L}}(\tau - s) \, \mathrm{d}s \right) \mathcal{N}[v^n].$$
 (ETD1)

Theorem 2 (Maximum principle of the ETD1 scheme)

Under Assumptions 1–2 and the condition (*), the ETD1 scheme preserves the maximum principle unconditionally, namely, if $||u_0|| \le \beta$, the solution to (ETD1) satisfies $||v^n|| \le \beta$ for any $\tau > 0$.

Higher order ETDRK schemes and the DMPs

Let $P_r(s)$ be an interpolation of $\mathcal{N}[u(t_n+s)]$ on $\{s_k := \frac{k}{r}\tau\}_{k=0}^r$:

$$P_r(s) = \sum_{k=0}^r \ell_{r,k}(s) \mathcal{N}[\tilde{v}^{n+\frac{k}{r}}], \quad s \in [0,\tau],$$

where $\tilde{v}^{n+\frac{k}{r}}$ is an approximated value of $u(t_n + s_k)$.

Higher order ETD Runge-Kutta scheme:

$$v^{n+1} = e^{-\kappa \tau} S_{\mathcal{L}}(\tau) v^n + \int_0^{\tau} e^{-\kappa (\tau - s)} S_{\mathcal{L}}(\tau - s) P_r(s) \, \mathrm{d}s.$$

Could the higher order schemes preserve the maximum principle?

Introduction and motivation

Higher order ETDRK schemes and the DMPs (continued)

In the proof of the DMP, we meet

$$\|v^{k+1}\| \le e^{-\kappa \tau} \|S_{\mathcal{L}}(\tau)\| \|v^k\| + \int_0^{\tau} e^{-\kappa(\tau-s)} \|S_{\mathcal{L}}(\tau-s)\| \|P_r(s)\| \, \mathrm{d}s.$$

The maximum principle would be preserved as long as

$$||P_r(s)|| \le \max\{||\mathcal{N}[\tilde{v}^{n+\frac{k}{r}}]|| : 0 \le k \le r\}, \quad \forall s \in [0, \tau],$$
 (41)

with
$$\|\tilde{v}^{n+\frac{k}{r}}\| \leq \beta$$
 for all $k = 0, 1, ..., r$, which leads to $\|P_r(s)\| \leq \kappa \beta$.

The unique interpolation satisfying (41) corresponds to the case r=1, that is, the linear interpolation

$$P_1(s) = \left(1 - \frac{s}{\tau}\right) \mathcal{N}[\tilde{v}^n] + \frac{s}{\tau} \mathcal{N}[\tilde{v}^{n+1}], \quad s \in [0, \tau].$$

ETDRK2 scheme and the DMP

By

- approximating $\mathcal{N}[u(t_n+s)] \approx P_1(s)$ in $s \in [0,\tau]$,
- calculating the integral exactly,

we obtain the second order ETD Runge-Kutta scheme:

$$\tilde{v}^{n+1} = e^{-\kappa \tau} S_{\mathcal{L}}(\tau) v^n + \left(\int_0^{\tau} e^{-\kappa(\tau - s)} S_{\mathcal{L}}(\tau - s) \, \mathrm{d}s \right) \mathcal{N}[v^n],$$

$$v^{n+1} = e^{-\kappa \tau} S_{\mathcal{L}}(\tau) v^n + \int_0^{\tau} e^{-\kappa(\tau - s)} S_{\mathcal{L}}(\tau - s) \left[\left(1 - \frac{s}{\tau} \right) \mathcal{N}[v^n] + \frac{s}{\tau} \mathcal{N}[\tilde{v}^{n+1}] \right]$$

Theorem 3 (Maximum principle of the ETDRK2 scheme)

Under Assumptions 1–2 and the condition (*), the ETDRK2 scheme preserves the maximum principle unconditionally, namely, if $||u_0|| \le \beta$, the solution to (ETDRK2) satisfies $||v^n|| \le \beta$ for any $\tau > 0$.

Energy stability of ETD schemes for phase field models

Phase field models are derived as the gradient flows w.r.t. the energy

$$E[u] = -\frac{1}{2}(u, \mathcal{L}u)_{L^2(\Omega)} + \int_{\Omega} F(u(\boldsymbol{x})) d\boldsymbol{x},$$

with $F: \mathbb{R} \to \mathbb{R}$ subject to $f_0 = -F'$. We have the energy law:

$$E[u(t_2)] \leq E[u(t_1)], \quad \forall t_2 \geq t_1 \geq 0.$$

Proposition (Energy stability of ETD1 and ETDRK2 schemes)

(i) The solution $\{v^n\}_{n\geq 0}$ to the ETD1 scheme satisfies

$$E[v^{n+1}] \le E[v^n], \quad \forall \, \tau > 0;$$

(ii) Under the assumptions of Theorem 5, the solution $\{v^n\}_{n\geq 0}$ to the ETDRK2 scheme satisfies

$$E[v^n] \le E[v^0] + \widehat{C}(|\Omega|, T, \kappa), \quad \tau \in (0, 1].$$

Conclusion

Model equation:

$$u_t = \mathcal{L}u + f[u]. \tag{**}$$

Main results:

$$\begin{array}{c} \text{maximum} \\ \text{principle} \\ \text{of (**)} \end{array} \left\{ \begin{array}{l} \text{assumption on } \mathcal{L} \\ \text{assumption on } f \end{array} \right\} \begin{array}{l} \text{maximum principle} \\ \text{preserving ETD} \\ \text{schemes for (**)} \end{array}$$

Thanks for your attention!