Álgebra Conmutativa Computacional

F. J. Lobillo

2022/2023

Índice general

1.	Anillos e Ideales	4
	1.1. Anillos conmutativos	4
	1.2. Subanillos e ideales	7
	1.3. Morfismos de anillos	11
	1.4. Anillo de fracciones	13
	Ejercicios sobre Anillos	16
2.	Sistemas de Ecuaciones y Variedades Afines	18
	2.1. Polinomios en varias variables	18
	2.2. Órdenes admisibles	22
	2.3. Propiedades de los polinomios	26
	2.4. Espacio afín y ecuaciones polinómicas	28
	2.5. Variedades afines	31
	2.6. Representación paramétrica de variedades	34
	Ejercicios sobre Sistemas de ecuaciones y variedades afines.	36
3.	Bases de Gröbner y Algoritmos Básicos	39
	3.1. Ideales en \mathbb{N}^n	39
	3.2. División en $\mathbb{F}[x_1,\ldots,x_n]$	40
	3.3. Bases de Gröbner y Teorema de la base de Hilbert	45
	3.4. Algoritmo de Buchberger	47

		Aplicación: Sistema de Posicionamiento Global (GPS) cicios sobre Bases de Gröbner y Algoritmos Básicos	55 58
4.	Elin	ninación e Implicitación	61
	4.1.	Órdenes de eliminación	61
	4.2.	Eliminación de variables	62
	4.3.	Implicitación (cuerpo infinito)	66
	4.4.	Implicitación (cuerpo finito)	73
		cicios sobre Eliminación e Implicitación	74
5.	Var	iedades Irreducibles y Descomposición	77
	5.1.	Teorema de los ceros de Hilbert	77
	5.2.	Radical de un ideal	81
		Cocientes de ideales y saturación	84
	5.4.	Variedades irreducibles	88
	5.5.	Descomposición de variedades	91
	5.6.	Descomposición primaria de ideales	93
	Ejer	cicios sobre Variedades Irreducibles y Descomposición .	96
6.		nensión	101
	6.1.	Dimensión de Krull	101
	6.2.	Dimensión de un ideal en \mathbb{N}^n	102
	6.3.	Función de Hilbert de un ideal	107
	6.4.	Dependencia entera	108
	6.5.	Teoremas de Cohen y Seidenberg	112
	6.6.	Independencia algebraica y función de Hilbert	114
	6.7.	Normalización de Noether	117
	6.8.	Dimensión de Krull e independencia algebraica	121
	Ejer	cicios sobre Dimensión	127
		DINC NUMBER	

Capítulo 1

Anillos e Ideales

1.1

Anillos conmutativos

Definición 1.1. Un *anillo* es un conjunto R sobre el que hay definidas dos operaciones $+: R \times R \to R$ y $\cdot: R \times R \to R$ (denominadas suma y producto) que satisfacen las siguientes propiedades:

Asociativa de la suma. Para cualesquiera $r, s, t \in R$,

$$r + (s+t) = (r+s) + t.$$

Conmutativa de la suma. Para cualesquiera $r, s \in R$,

$$r+s=s+r.$$

Elemento neutro para la suma. Existe un elemento $0 \in R$ tal que

$$r + 0 = r$$

para cualquier $r \in R$.

Elemento opuesto para la suma. Para cualquier $r \in R$, existe $-r \in R$ tal que

$$r+(-r)=0.$$

Asociativa del producto. Para cualesquiera $r, s, t \in R$,

$$r(st) = (rs)t.$$

Elemento neutro para el producto. Existe $1 \in R$, tal que

$$r1 = 1r = r$$

para todo $r \in R$.

Distributiva de la suma respecto del producto. Para todos $r, s, t \in R$,

$$r(s+t) = rs + rt$$
 y $(r+s)t = rt + st$.

Un anillo se dice conmutativo si satisface la propiedad

Conmutativa del producto. Para cualesquiera $r, s \in R$,

$$rs = sr$$
.

Proposición 1.2. Los elementos neutros para la suma y el producto son únicos. El opuesto de un elemento es único.

Demostración. Si $0,0' \in R$ son elementos neutros para la suma

$$0 = 0 + 0' = 0'.$$

La unicidad del elemento neutro para el producto es análoga. Si -r, r' son opuestos para r,

$$-r = -r + 0 = -r + (r + r') = (-r + r) + r' = 0 + r' = r'.$$

Definición 1.3. Dado un anillo conmutativo R, un elemento r es una unidad si tiene inverso para el producto, es decir, si existe $r^{-1} \in R$ tal que

$$rr^{-1} = 1.$$

El conjunto de la unidades se denota $\mathcal{U}(R)$. Se dice que $r \in R$ es un divisor de cero si existe $s \in R \setminus \{0\}$ tal que rs = 0.

Proposición 1.4. Sea R un anillo. Para cualesquiera $r, s \in R$,

- 1. r0 = 0,
- 2. (-r)s = -(rs) = r(-s),
- 3. $si \ r \in \mathcal{U}(R)$, $su \ inverso \ es \ único$,
- 4. $si \ r, s \in \mathcal{U}(R), \ rs \in \mathcal{U}(R) \ y \ (rs)^{-1} = s^{-1}r^{-1}$.

Demostración. Para cualquier $r \in R$,

$$0 = -(r0) + r0 = -(r0) + r(0+0) = -(r0) + (r0+r0) = (-(r0) + r0) + r0 = 0 + r0 = r0.$$

Dado que

$$(-r)s + rs = (-r + r)s = 0s = 0,$$

se tiene que (-r)s=-(rs) por la unicidad del opuesto. La unicidad del inverso es análoga a la unicidad del opuesto. Finalmente

$$rs(s^{-1}r^{-1}) = r(ss^{-1})r^{-1} = r1r^{-1} = rr^{-1} = 1,$$

de donde $s^{-1}r^{-1}=(rs)^{-1}$ y $rs\in\mathcal{U}\left(R\right)$.

Definición 1.5. Un anillo conmutativo en el que 0 es el único divisor de cero recibe el nombre de *dominio de integridad*. Observemos que R es dominio de integridad si y solo si para cualesquiera $r, s \in R$, si rs = 0 entonces r = 0 o s = 0.

Un *cuerpo* es un anillo conmutativo en el que todo elemento no nulo es una unidad, es decir, $\mathcal{U}(R) = R \setminus \{0\}$.

Ejemplo 1.6. Son anillos conmutativos \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , R[x] donde R es un anillo conmutativo, \mathbb{Z}_n , \mathbb{F}_q . De los anteriores, \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F}_q son cuerpos.

Ejemplo 1.7. Sean A_1 , A_2 dos anillos. Es un ejercicio rutinario comprobar que $A_1 \times A_2$ es un nuevo anillo en el que las operaciones se realizan componente a componente, es decir,

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

У

$$(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

El cero y el uno de este nuevo anillo son, respectivamente, $(0_1, 0_2)$ y $(1_1, 1_2)$, y el opuesto se calcula

$$-(a_1,a_2)=(-a_1,-a_2).$$

V.Z

Subanillos e ideales

Definición 1.8. Dado un anillo A, un subconjunto $B \subseteq A$ es un subanillo si

■ $0 \in B \text{ y } 1 \in B;$

- dados $a, b \in B$, $a b \in B$;
- dados $a, b \in B$, $ab \in B$.

Es inmediato comprobar que un subanillo vuelve a ser un anillo con las operaciones heredadas. Pero no todo subconjunto que sea un anillo con las operaciones heredadas es un subanillo, como vamos a comprobar con el siguiente ejemplo.

Ejemplo 1.9. En \mathbb{Z}_6 consideramos el subconjunto $\{0,2,4\}$. Es sencillo verificar que $\{0,2,4\}$ es cerrado para la suma, opuesto y producto. Como

$$4 \times 0 = 0, 4 \times 2 = 2, 4 \times 4 = 4,$$

tenemos que $\{0, 2, 4\}$ es un anillo en el que el elemento neutro para el producto es 4.

En adelante, y salvo que específicamente se indique lo contrario, todos los anillos tratados en este curso son anillos conmutativos.

Definición 1.10. Dado un anillo conmutativo A, un subconjunto no vacío $I\subseteq A$ es un ideal si

- dados $a, b \in I$, $a + b \in I$;
- dados $a \in I$ y $b \in A$, $ab \in I$.

Se denota por $I \leq A$.

Observación 1.11. Si $a, b \in I$, entonces $a - b = a + (-1)b \in I$, por lo que I es un subgrupo aditivo de A.

Proposición 1.12. Sea A un anillo conmutativo y sea $I \subseteq A$ un subgrupo aditivo. I es un ideal de A si y sólo si A/I es un anillo conmutativo con respecto a las operaciones (a+I)+(b+I)=(a+b)+I y (a+I)(b+I)=ab+I.

Demostraci'on. Por ser I un subgrupo aditivo sólo tenemos que ocuparnos de que el producto está bien definido. Supongamos que a+I=a'+I, es decir, $a-a'\in I$. Si I es ideal, a+I=a'+I y b+I=b'+I tenemos que

$$ab - a'b' = ab - a'b + a'b - a'b' = (a - a')b + a'(b - b') \in I$$

luego el producto está bien definido. Recíprocamente, si el producto está bien definido tenemos que (0+I)(b+I)=0+I, por tanto, si $a\in I$

$$ab + I = (a + I)(b + I) = (0 + I)(b + I) = 0 + I,$$

es decir, $ab \in I$, lo que implica que I es un ideal.

Definición 1.13. Un ideal $P \subseteq A$ en un anillo conmutativo se dice primo si, para cualesquiera $a, b \in A$, si $ab \in P$ entonces $a \in P$ o $b \in P$. Un ideal $M \subseteq A$ de un anillo conmutativo se dice maximal si no existe otro ideal $J \subseteq A$ tal que $M \subseteq J \subseteq A$.

Dados ideales I, J < A, se define

$$I+J=\{x+y\mid x\in I,y\in J\}$$

У

$$IJ = \{x_1y_1 + \dots + x_ty_t \mid x_i \in I, y_i \in J, 1 \le i \le y\}$$

Proposición 1.14. I + J, $I \cap J$ e IJ son ideales de A. I + J es el menor ideal que contiene tanto a I como a J. $IJ \subseteq I \cap J$.

Demostración. Ejercicio.

Dado $F \subseteq A$, definimos

$$\langle F \rangle = \{a_1f_1 + \cdots + a_sf_s \mid a_1, \ldots, a_s \in A, f_1, \ldots, f_s \in F\}$$

Proposición 1.15. $\langle F \rangle$ es el menor ideal de A que contiene a F.

Demostración. Es inmediato comprobar que si un ideal contiene a F, debe contener a $\langle F \rangle$. Comprobemos que es un ideal. Sean $a_1 f_1 + \cdots + a_s f_s, b_1 g_1 + \cdots + b_t g_t \in \langle F \rangle$. Tenemos que

$$(a_1 f_1 + \dots + a_s f_s) + (b_1 g_1 + \dots + b_t g_t) =$$

 $a_1 f_1 + \dots + a_s f_s + b_1 g_1 + \dots + b_t g_t \in \langle F \rangle.$

Por otra parte, si $a \in A$ y $a_1 f_1 + \cdots + a_s f_s \in \langle F \rangle$,

$$a(a_1f_1+\cdots+a_sf_s)=(aa_1)f_1+\cdots+(aa_s)f_s\in\langle F\rangle,$$

lo que demuestra que $\langle F \rangle$ es un ideal.

Definición 1.16. $\langle F \rangle$ recibe el nombre de ideal generado por F. Por convenio, $0 = \langle \emptyset \rangle$. Un ideal I se dice finitamente generado si existen $f_1, \ldots, f_s \in I$ tales que $I = \langle f_1, \ldots, f_s \rangle$.

Si es necesario hacer referencia al anillo, también se emplean las siguientes notaciones:

$$\langle F \rangle = {}_{R} \langle F \rangle = \langle F \rangle_{R} = RF = Rf_{1} + \cdots + Rf_{s},$$

la última en el caso $F = \{f_1, \dots, f_s\}.$

Proposición 1.17. Sean $I = \langle F \rangle$ y $J = \langle G \rangle$. Entonces $I + J = \langle F \cup G \rangle$ y $IJ = \langle fg \mid f \in F, g \in G \rangle$.

Demostración. Ejercicio.

Teorema 1.18. Para un anillo R las siguientes afirmaciones son equivalentes:

1. R satisface la Condición de Cadena Ascendente, es decir, dada una cadena de ideales $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_k \subseteq \cdots$, existe n tal que $I_n = I_m$ para todo $m \ge n$.

2. Todo ideal de R es finitamente generado.

Demostración. Ejercicio.

Recordemos que un anillo R es Noetheriano si satisface las condiciones equivalentes del Teorema 1.18.

Morfismos de anillos

1.3

Definición 1.19. Sean A y B dos anillos. Una aplicación $f: A \to B$ es un morfismo de anillos si f(0) = 0, f(1) = 1, f(a+b) = f(a) + f(b) y f(ab) = f(a)f(b).

Observaci'on1.20. Como consecuencia de la definición, si $f:A\to B$ es un morfismo de anillos tenemos que

$$0 = f(0) = f(b + (-b)) = f(b) + f(-b),$$

luego f(-b) = -f(b) para cualquier $b \in A$. En consecuencia,

$$f(a-b) = f(a+(-b)) = f(a) + f(-b) = f(a) - f(b),$$

luego f es morfismo de grupos abelianos.

Proposición 1.21. Sea $f: A \to B$ un morfismo de anillos. Entonces $\operatorname{im}(f)$ es un subanillo de B y $\operatorname{ker}(f)$ un ideal de A. Además $\operatorname{im}(f) \cong A/\operatorname{ker}(f)$.

Demostración. Es sencillo comprobar que $\operatorname{im}(f)$ es un subanillo. Como f es un morfismo de grupos abelianos, es también inmediato que $\ker(f)$ es un subgrupo abeliano de A. Si $a \in \ker(f)$ y $b \in A$,

$$f(ab) = f(a)f(b) = 0f(b) = 0,$$

luego $ab \in \ker(f)$, lo que implica que $\ker(f)$ es un ideal de A. Por último definimos $\phi: A/\ker(f) \to \operatorname{im}(f)$ mediante $\phi(a+\ker(f)) = f(a)$. Esta aplicación está bien definida porque si $a+\ker(f)=a'+\ker(f)$,

$$\phi(a + \ker(f)) = f(a) = f(a - a' + a')$$

= $f(a - a') + f(a') = f(a') = \phi(a' + \ker(f)).$

Es sencillo comprobar que ϕ es un morfismo de anillos biyectivo. \Box

Dos ideales $I, J \leq A$ se dicen coprimos si A = I + J.

Lema 1.22. Sean I, J, K ideales de A. Entonces I + J = A e I + K = A si y sólo si $I + (J \cap K) = A$.

Demostración. Es inmediato que si $I+(J\cap K)=A$ tenemos que I+J=A e I+K=A. Supongamos por tanto que I+J=A e I+K=A. Existen $a,a'\in I$ $b\in J$ y $c\in K$ tales que 1=a+b y 1=a'+c. Por tanto

$$1 = a + b = a + b(a' + c) = a + ba' + bc = (a + ba') + bc \in I + (J \cap K),$$

luego $I + (J \cap K) = A$.

Teorema 1.23 (Teorema Chino del Resto). Sean I_1, \ldots, I_t ideales de A coprimos dos a dos, es decir $I_i + I_j = A$ para cualesquiera $i \neq j$. Entonces $A/(I_1 \cap \cdots \cap I_t) \cong (A/I_1) \times \cdots \times (A/I_t)$.

Demostración. Sea $f:A \to (A/I_1) \times \cdots \times (A/I_t)$ el morfismo de anillos definido por $f(a)=(a+I_1,\ldots,a+I_t)$. Veamos que es sobreyectivo. Para ello, dados $a_1,\ldots,a_t \in A$ tenemos que encontrar un $x \in A$ tal que $x+I_i=a_i+I_i$ para cada $1 \le i \le t$. Aplicando iteradamente el Lema 1.22, tenemos que $A=I_i+\bigcap_{j\ne i}I_j$, por lo que existen $b_i \in I_i$ y $c_i \in \bigcap_{j\ne i}I_j$ tales que $1=b_i+c_i$. Sea $x=a_1c_1+\cdots+a_tc_t$. Dado que

$$x + I_i = a_1 c_1 + \dots + a_t c_t + I_i = a_i c_i + I_i$$

= $a_i (1 - b_i) + I_i = a_i - a_i b_i + I_i = a_i + I_i$,

tenemos que f es sobreyectiva. Por otra parte, f(a) = 0 si y solo si $a \in I_i$ para cualquier $1 \le i \le t$, de donde $\ker(f) = I_1 \cap \cdots \cap I_t$. El teorema se sigue por tanto de la Proposición 1.21.

1.4

Anillo de fracciones

Sea R un dominio de integridad conmutativo y $S \subseteq R$ un conjunto multiplicativamente cerrado, es decir, $1 \in S$ y $s, t \in S \Rightarrow st \in S$. En $R \times S$ definimos la siguiente relación binaria:

$$(r,s) \sim (r',s') \iff rs' = r's.$$

Lema 1.24. La relación \sim es una relación de equivalencia.

Demostración. Ejercicio.

Denotamos por $r/s = \frac{r}{s}$ a la clase de equivalencia $\frac{de(r,s)}{r} \in R \times S$ mediante la relación \sim . El conjunto cociente $\frac{(R \times S)}{r} \sim$ se denota $\frac{Q_S(R)}{r} \circ RS^{-1}$.

F. J. Lobillo

En $R \times S$ definimos la siguiente aritmética

$$(a,b) + (c,d) = (ad + bc,bd), (a,b)(c,d) = (ac,bd).$$

Lema 1.25. Si $(a,b) \sim (a',b')$ y $(c,d) \sim (c',d')$, entonces $(a,b) + (c,d) \sim (a',b') + (c',d')$ y $(a,b)(c,d) \sim (a',b')(c',d')$.

Demostración. De las siguientes identidades, ab'=a'b, cd'=c'd, deducimos que

$$(ad+bc)b'd'=adb'd'+bcb'd'$$

= $a'bdd'+bb'c'd=(a'd'+b'c')bd$,

luego $(ad + bc, bd) \sim (a'd' + b'c', b'd')$. Además

$$(ac)(b'd') = (ab')(cd') = (a'b)(c'd) = (a'c')(bd),$$

luego
$$(ac,bd) \sim (a'c',b'd')$$
.

Como consecuencia del lema anterior, las operaciones definidas en $R \times S$ pueden extenderse a $Q_S(R)$.

Proposición 1.26. $(Q_S(R), +, \cdot)$ es un dominio conmutativo.

Demostración. Ejercicio.

El morfismo

$$R o Q_S(R), \quad \left[r\mapsto rac{r}{1}
ight]$$

es un morfismo inyectivo de anillos, por lo que podemos identificar R como subanillo de $Q_S(R)$. Bajo esta identificación tenemos la siguiente proposición.

Proposición 1.27. $\mathcal{U}(R) \cup S \subseteq \mathcal{U}(Q_S(R))$.

Demostración. Ejercicio.

Teorema 1.28. Sea $f: R \to T$ un morfismo de anillos tal que $f(S) \subseteq \mathcal{U}(T)$. Existe un único morfismo de anillos $\overline{f}: Q_S(R) \to T$ tal que $\overline{f}(r) = f(r)$ para cualquier $r \in R$.

Demostración. Como f es un morfismo de anillos, si rs'=r's tenemos que f(r)f(s')=f(r')f(s), por tanto $f(r)f(s)^{-1}=f(r')f(s')^{-1}$ dado que $f(S)\subseteq \mathcal{U}(T)$. En consecuencia el morfismo $\overline{f}:Q_S(R)\to T$ definido por $\overline{f}(\frac{r}{s})=f(r)f(s)^{-1}$ está bien definido. Es sencillo comprobar que \overline{f} es morfismo de anillos. Supongamos que $g:Q_S(R)\to T$ satisface también que g(r)=f(r) para cualquier $r\in R$. Si $s\in S$, $1=g\left(\frac{s}{s}\right)=g(s)g\left(\frac{1}{s}\right)=f(s)g\left(\frac{1}{s}\right)$, por lo que $f(s)^{-1}=g\left(\frac{1}{s}\right)$. En consecuencia $g\left(\frac{r}{s}\right)=g(r)g\left(\frac{1}{s}\right)=f(r)f(s)^{-1}=\overline{f}\left(\frac{r}{s}\right)$.

Sea $P \leq R$ un ideal primo. Observemos que $R \setminus P$ es multiplicativamente cerrado. En este caso, el anillo de fracciones se denota $Q_{R \setminus P}(R) = Q_P(R)$. Dado que R es un dominio, $\{0\}$ es un ideal primo. Se emplea la notación $Q_{cl}(R) = Q_{\{0\}}(R)$.

Corolario 1.29. $Q_{cl}(R)$ es un cuerpo.

Ejercicios sobre Anillos

Todos los anillos considerados en esta relación de ejercicios son conmutativos salvo que se especifique lo contrario.

Ejercicio 1.1. Dados anillos A_1 y A_2 , comprueba que $A_1 \times A_2$ con las operaciones definidas en el Ejemplo 1.7 es un anillo. Calcula sus unidades $\mathcal{U}(A_1 \times A_2)$.

Ejercicio 1.2. Un elemento $e \in A$ se dice idempotente si $e^2 = e$. Demuestra que si e es idempotente, 1 - e también lo es. Demuestra que $A = Ae \oplus A(1-e)$, es decir, A = Ae + A(1-e) y $\{0\} = Ae \cap A(1-e)$.

Ejercicio 1.3. Un elemento $x \in A$ se dice nilpotente si $x^n = 0$ para algún $n \in \mathbb{N}$. Demuestra que si x es nilpotente, 1 - x y 1 + x son unidades de A.

Ejercicio 1.4. Demuestra que el conjunto de los elementos nilpotentes de un anillo conmutativo A es un ideal.

Ejercicio 1.5. Sea $p \in \mathbb{Z}$ primo y sea $R = \left\{ \frac{m}{n} \in \mathbb{Q} \mid p \nmid n \right\}$. Demuestra que R es un subanillo.

Ejercicio 1.6. Demuestra la Proposición 1.14.

Ejercicio 1.7. Demuestra la Proposición 1.17.

Ejercicio 1.8. Demuestra que I(J+K)=IJ+IK para ideales $I,J,K\leq A$. ¿Es cierta la identidad $I\cap (J+K)=(I\cap J)+(I\cap K)$?

Ejercicio 1.9. Demuestra que si I + J = A, entonces $IJ = I \cap J$.

Ejercicio 1.10. Demuestra el Teorema 1.18.

Ejercicio 1.11. Demuestra que $\langle p \rangle \subseteq \mathbb{Z}$ es un ideal primo si y solo si p es un número primo.

Ejercicio 1.12. Demuestra que $P \leq A$ es primo si y solo si A/P es un dominio de integridad. Demuestra que $M \leq A$ es maximal si y solo si A/M es un cuerpo.

Ejercicio 1.13. Demuestra el Lema 1.24.

Ejercicio 1.14. Demuestra la Proposición 1.26.

Ejercicio 1.15. Demuestra la Proposición 1.27.

F. J. Lobillo

Bibliografía

- [1] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases. A Computational Approach to Commutative Algebra. Number 141 in Graduate Texts in Mathematics. Springer Science+Business Media, 1993.
- [2] David A. Cox, John Little, and Donald O'Shea. *Ideals, Varieties, and Algorithms*. Undergraduate Text in Mathematics. Springer, fourth edition, 2015.
- [3] Ernst Kunz. Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, 1985.
- [4] Serge Lang. *Undergraduate Algebra*. Undergraduate Text in Mathematics. Springer, second edition, 1990.