共形映射 第六章

-、选择题:

- 1. 若函数 $w = z^2 + 2z$ 构成的映射将 z 平面上区域 G 缩小,那么该区域 G 是(

 - (A) $|z| < \frac{1}{2}$ (B) $|z+1| < \frac{1}{2}$ (C) $|z| > \frac{1}{2}$ (D) $|z+1| > \frac{1}{2}$

- 2. 映射 $w = \frac{3z i}{z + i}$ 在 $z_0 = 2i$ 处的旋转角为(
 - (A) 0
- (B) $\frac{\pi}{2}$
- (C) π

- 3. 映射 $w = e^{iz^2}$ 在点 $z_0 = i$ 处的伸缩率为(
 - (A) 1
- (B) 2
- (C) e^{-1}
- (D) e
- 4. 在映射 $w = iz + e^{\frac{\pi}{4}i}$ 下,区域 Im(z) < 0 的像为(
 - (A) $\operatorname{Re}(w) > \frac{\sqrt{2}}{2}$

(B) $\text{Re}(w) > -\frac{\sqrt{2}}{2}$

(C) $Im(z) > \frac{\sqrt{2}}{2}$

- (D) $Im(w) > -\frac{\sqrt{2}}{2}$
- 5. 下列命题中,正确的是(
 - (A) $w = z^n$ 在复平面上处处保角(此处n 为自然数)
 - (B) 映射 $w = z^3 + 4z$ 在z = 0处的伸缩率为零
- (C) 若 $w = f_1(z)$ 与 $w = f_2(z)$ 是同时把单位圆|z|<1 映射到上半平面 Im(w) > 0 的

分式线性变换,那么 $f_1(z) = f_2(z)$

- (D) 函数 $w = \bar{z}$ 构成的映射属于第二类保角映射
- 6. 1+i 关于圆周 $(x-2)^2+(y-1)^2=4$ 的对称点是(

(A) 6+i

(B) 4+i

(C) -2+i

(D) i

7. 函数 $w = \frac{z^3 - i}{z^3 + i}$ 将角形域 $0 < \arg z < \frac{\pi}{3}$ 映射为()

(A) |w| < 1

(B) |w| > 1

(C) $\operatorname{Im}(w) > 0$

(D) $\operatorname{Im}(w) < 0$

8. 将点z = 1, i, -1 分别映射为点 $w = \infty, -1, 0$ 的分式线性变换为()

 $(A) w = \frac{z+1}{z-1}$

 $(B) \quad w = \frac{z+1}{1-z}$

(C) $w = e^{\frac{\pi}{2}i} \frac{z+1}{1-z}$

(D) $w = e^{\frac{\pi}{2}i} \frac{z+1}{z-1}$

9. 分式线性变换 $w = \frac{2z-1}{2-z}$ 把圆周 |z|=1 映射为(

 $(A) \quad |w| = 1$

(B) |w|=2

 $(B) \quad |w-1|=1$

 $(D) \quad |w-1|=2$

10. 分式线性变换 $w = \frac{z+1}{1-z}$ 将区域: |z| < 1 且 Im(z) > 0 映射为()

 $(A) -\frac{\pi}{2} < \arg w < \pi$

 $(B) \quad -\frac{\pi}{2} < \arg w < 0$

 $(C) \frac{\pi}{2} < \arg w < \pi$

(D) $0 < \arg w < \frac{\pi}{2}$

11. 设a,b,c,d,为实数且ad-bc<0,那么分式线性变换 $w=\frac{az+b}{cz+d}$ 把上半平面映射为w

平面的()

(A) 单位圆内部

(B) 单位圆外部

(C) 上半平面

(D) 下半平面

12. 把上半平面 Im(z) > 0 映射成圆域 |w| < 2 且满足 w(i) = 0, w'(i) = 1 的分式线性变换

w(z)为(

(

(A)
$$2i\frac{i-z}{i+z}$$
 (B) $2i\frac{z-i}{z+i}$ (C) $2\frac{i-z}{i+z}$ (D) $2\frac{z-i}{z+i}$

(B)
$$2i\frac{z-i}{z+i}$$

(C)
$$2\frac{i-z}{i+z}$$

(D)
$$2\frac{z-i}{z+i}$$

13. 把单位圆|z| < 1 映射成单位圆|w| < 1 且满足 $w(\frac{i}{2}) = 0, w'(0) > 0$ 的分式线性变换w(z) 为

$$(A) \quad \frac{2z-i}{2-iz}$$

(A)
$$\frac{2z-i}{2-iz}$$
 (B) $\frac{i-2z}{2-iz}$ (C) $\frac{2z-i}{2+iz}$

(C)
$$\frac{2z-i}{2+iz}$$

(D)
$$\frac{i-2z}{2+iz}$$

14. 把带形域 $0 < \text{Im}(z) < \frac{\pi}{2}$ 映射成上半平面Im(w) > 0的一个映射可写为(

(A)
$$w = 2e^z$$
 (B) $w = e^{2z}$

(B)
$$w = e^2$$

(C)
$$w = ie$$

(D)
$$w = e^{iz}$$

15. 函数 $w = \frac{e^z - 1 - i}{e^z - 1 + i}$ 将带形域 $0 < \text{Im}(z) < \pi$ 映射为()

(A)
$$Re(w) > 0$$

(B)
$$Re(w) > 0$$
 (C) $|w| < 1$

(C)
$$|w| < 1$$

(D)
$$|w| > 1$$

、填空题

1. 若函数 f(z) 在点 z_0 解析且 $f'(z_0) \neq 0$,那么映射 w = f(z) 在 z_0 处具有______

2. 将点z = 2, i, -2分别映射为点w = -1, i, 1的分式线性变换为______

- 3. 把单位圆|z| < 1 映射为圆域|w-1| < 1 且满足w(0)=1, w'(0)>0 的分式线性变换w(z)=1
- 4. 将单位圆|z|<1映射为圆域|w|<R的分式线性变换的一般形式
- 5. 把上半平面 Im(z) > 0 映射成单位圆 |w(z)| < 1 且满足 $w(1+i) = 0, w(1+2i) = \frac{1}{3}$ 的分式

线性变换的 w(z) =______

- 6. 把角形域 $0 < \arg z < \frac{\pi}{4}$ 映射成圆域|w| < 4的一个映射可写为____
- 7. 映射 $w = e^z$ 将带形域 $0 < \text{Im}(z) < \frac{3\pi}{4}$ 映射为____
- 8. 映射 $w = z^3$ 将扇形域: $0 < \arg z < \frac{\pi}{3}$ 且 |z| < 2 映射为
- 9. 映射 $w = \ln z$ 将上半 z 平面映射为___
- 10. 映射 $w = \frac{1}{2}(z + \frac{1}{z})$ 将上半单位圆: |z| < 2 且 Im(z) > 0 映射为
- 三、设 $w_1(z) = \frac{a_1z + b_1}{c_1z + d_1}, w_2(z) = \frac{a_2z + b_2}{c_2z + d_2}$ 是两个分式线性变换,

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}^{-1} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- 试证 1. $w_1(z)$ 的逆变换为 $w_1^{-1}(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$;

 2. $w_1(z)$ 与 $w_2(z)$ 的复合变换为 $w_1[w_2(z)] = \frac{az + b}{cz + d}$.

四、设 z_1 与 z_2 是关于圆周 Γ :|z-a|=R的一对对称点,试证明圆周 Γ 可以写成如下形式

五、求分式线性变换w(z),使|z|=1映射为|w|=1,且使z=1,1+i映射为 $w=1,\infty$.

六、求把扩充复平面上具有割痕: $\operatorname{Im}(z) = 0$ 且 $-\infty < \operatorname{Re}(z) \le 0$ 的带形域 $-\pi < \operatorname{Im}(z) < \pi$ 映射成带形域 $-\pi < \operatorname{Im}(w) < \pi$ 的一个映射.

七、设b>a>0,试求区域D:|z-a|>a且|z-b|<b到上半平面 $\mathrm{Im}(w)>0$ 的一个映射w(z).

八、求把具有割痕: $\operatorname{Im}(w) = 0$ 且 $\frac{1}{2} \le \operatorname{Re}(z) < 1$ 的单位圆 |z| < 1 映射成上半平面的一个映射.

九、求一分式线性变换,它把偏心圆域 $\left\{z:|z|>1$ 且 $|z-1|<\frac{5}{2}\right\}$ 映射为同心圆环域1<|w|< R,并求 R 的值.

十、利用儒可夫斯基函数,求把椭圆 $\frac{x^2}{5^2} + \frac{y^2}{4^2} = 1$ 的外部映射成单位圆外部 |w| > 1 的一个映射.

—、1. (B)

2. (D)

3. (B)

4. (A)

5. (D)

6. (C) 11. (D) 7. (A) 12. (B) 8. (C) 13. (C) 9. (A) 14. (B) 10. (D) 15. (C)

二、1. 保角性与伸缩率的不变性

2.
$$w = \frac{z - 6i}{3iz - 2}$$

3. 1+z

4.
$$w = \operatorname{Re}^{i\theta} \frac{z-a}{1-az}$$
 (θ 为实数, $|a| < 1$)

5.
$$\frac{z-1-i}{z-1+i}$$

6.
$$w = 4e^{i\varphi} \frac{z^4 - \lambda}{z^4 - \overline{\lambda}}$$
 (φ 为实数, $\operatorname{Im}(\lambda) > 0$)

7. 角形域
$$0 < \arg w < \frac{3\pi}{4}$$

8. 扇形域0 < arg w < π且 |w| < 8

9. 带形域 0 < Im(w) < π

10. 下半平面 Im(w) < 0

五、
$$w = \frac{(i-1)z+1}{-z+(1+i)}$$
.

$$m = \ln (e^z - 1).$$

七、
$$w = \exp\left\{\frac{b\pi i}{b-a}\frac{z-2a}{z}\right\}$$

$$N, w = \left(\frac{1 + \sqrt{\frac{2z - 1}{2 - z}}}{1 - \sqrt{\frac{2z - 1}{2 - z}}}\right)^{2}.$$

九、
$$w = \frac{4z+1}{z+4}e^{i\theta}$$
 (9为实数), $R = 2$

$$+, w = \frac{1}{9}(z + \sqrt{z^2 - 9}).$$