CS 520 Theory of Programming Language

03/17 - 03/31, 2021

Chap2: The simple Imperative Language. 1. Overview / Motivation. 1) Many high-level design principles imprevative comp.), applicative comp., 00 principle. State ... variables.

Computation proceeds function application.

as a mon mechanism for computation. by road/write of. variables.

(2) y:=0; x:=0; (while (x<n) do. (y:=y+x); (x:=x+1)) --- example.

(3) Domain theory. ... denotational (while true do skip)

semantics in the prevence of while.

Systactic Sugar. Quality of denotational semantic. (Soundness, Full abstraction, adequacy) 2. Syptax. abstract syptax, abstract grammar. < mtexp > := ... | (var) < boolerp > := ... | (intexp) = (intexp) | The boolexp) | --... (comm) := skip | <var>:= <ndexp> | <comm> = <comm> 1 if theolexp) then (comm) else (comm) 1 colite (budexp) do (comm). Syntax-dreed def. Structural moduction all available are mittal algebra / frish do maton thees. pecarise me 3. Donotational somenties --. What is a potential issue? I-I: <comm) -> S I while b do c I = [of b then (c3 while b do c) else stop]. I while b do c I I while b do c I ... = F(Iwhile b do cI) is a fixed point of the function F 9: N - N can be defined by a program. g(x) = 741. ... No fixed point. domain theory ... approxi. theory of computability. that focusies on the Mit of communication (in order to produce a finite amount of inf. in the astpet, a program only needs a frite amount of info, in the

Thout.)

4. Domain theory when does a function F have
4. Domain theory when dover a function F have a fixed point? 1) High level neuristic. approx order.
- Set with some structure, =.
- Functions between such wets that proserve ture structure.
Def. A partal order on a set S is a binary helaton on S s.t
) (reflexive) x = x for all x ∈ S;
$(x,x) \in \Xi$
2) (transitue) x Ezy x y Ez => x Ez for all x.y.z ES;
2) (anti-symmetry) x Ey x y Ex => x=y, for all x,y es.
A set S with a partal order E is called posset or partally ordered cat

A posset (S, E) is a predomain if every chain has the least upper bound $(x_n)_{n \in \mathbb{N}} = (x_0, x_1, x_2, \dots)$ s.t. $x \in x_1 \in x_2 \dots$ Man = Was sit. 1) xn = y for all no ner. N=0 2). ∀y'∈S Aprodomani (S, E) 13 a domain (D, E) if suEy for all my if it has the heast element, which we denote by I. (LEX for all xES.).

(P1, E) (P2, E) --- predomains.

 $f: P_1 \longrightarrow P_2$

1) f is monotone if it preserves = relation

(Axioxs Ebi X'EXS =) f(x) = bot(xs))

(2) When I is monotone, we say that I is continuous it

it preserves the least upper bound of every

chain infi

(H chain (In) in Pi ... x. EXI Exz = ...

the sham (f(xn))n. in Pz has f(L) En) as its

least apper bound.

f(Uzn) = Uf(zn)

3) Suppose (PI, E), (P2, E) que domans.

A function f:P1-P2 13 strict: if f(Li) = L2.

- rusunitores tom Ei 7 W_+= 10=0 X1=5 Xr= H , XP=P , ... $\int_{-\infty}^{\infty} dx = 1 \qquad f(\int_{-\infty}^{\infty} dx) = f(1) = 1$ $\int (2\pi) = \int (2\pi) = T \qquad \qquad \prod_{n} \int (2\pi) = \prod_{n} T$) of is automatically conti-七(□1/2) = □十(xm) 2(m/ 3m) = m/2(4m) € T(xm) Eff xn) for all m

There bound.

There bound.

There is a line of the control of the contr

the [Least Fixed Point Then].

(D, E, 1) -... domain f:D -D -- continuous fn.

 $\Rightarrow \exists x \in D \quad \text{s.t.} \quad i) \quad f(x) = x$ $\Rightarrow \forall y : f(y) = y \Rightarrow x = y .$ $\Rightarrow \forall y : f(y) = y \Rightarrow x = y .$

Pro. 5. We construct I as follows. ①. $T = f(T) = f_s(T) = \cdots$ chair $(f_n(T))^n$. tome. / t 13 meno. 2 least apper bound $x = \coprod f'(1)$ Ze z a fixed yours? Yer f(x) = f(Uf"(1)) $= \prod_{n=0}^{N=0} \mathcal{L}(\mathcal{L}_{\mu}(\tau_{2})) = \prod_{n=0}^{N=0} \mathcal{L}_{\nu+1}(\tau_{2})$ = 1 t, (7) = 1. Italt? Pick yED st. f(y)=y. y is upper bound of (fr(+))_n-TEY 2005 Etch = 2. F(1) = F(4) = 4 Sme I is the least up. bound of the chain,

Y Z XC

 Γ