Modelli di PL: miscelazione

- Problema della dieta
- ► Miscelazione di carburanti

Problema della dieta

- ▶ Una dieta prescrive fabbisogni minimi giornalieri di nutrienti: carboidrati (150 g), proteine (50 g) e grassi (70 g).
- questi sono assunti da cinque alimenti base: pane, latte, uova, carne, dolce.
- ightharpoonup i contenuti (g) di nutrienti in 100~g di ciascun alimento sono i seguenti

	pane	latte	uova	carne	dolce
carboidrati	80	4	0	0	80
proteine	0	10	50	60	0
grassi	14	60	35	20	20

ightharpoonup il costo (EURO) per 100g di ciascun alimento, e la sua dose massima giornaliera, sono:

	pane	latte	uova	carne	dolce
costo	0.3	0.5	1.5	3	2
dose max (g)	100	120	50	300	100

Formulare il problema di PL che permetta di decidere la dieta di costo minimo

- ightharpoonup variabili decisionali: x_1,x_2,x_3,x_4,x_5 numero di porzioni da 100g di ciascun alimento da assumere giornalmente
- funzione obiettivo: costo della dieta

	pane	latte	uova	carne	dolce
costo (EUR)	0.3	0.5	1.5	3	2

$$\min 0.3x_1 + 0.5x_2 + 1.5x_3 + 3x_4 + 2x_5$$

▶ vincoli sui nutrienti

	pane	latte	uova	carne	dolce	fabbisogni (g)
carboidrati	80	4	0	0	80	150
proteine	0	10	50	60	0	50
grassi	14	60	35	20	20	70

$$80x_1 + 4x_2 + 80x_5 \ge 150$$
$$10x_2 + 50x_3 + 60x_4 \ge 50$$
$$14x_1 + 60x_2 + 35x_3 + 20x_4 + 20x_5 \ge 70$$

vincoli sulle dosi max

				carne	dolce
dose max (g)	100	120	50	300	100

$$x_1 \leq 1$$

$$x_2 \le 1.2$$

$$x_3 \le 0.5$$

$$x_4 \le 3$$

$$x_5 \le 1$$

▶ vincoli di non negatività

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Modello di PL

$$\begin{aligned} &\min 0.3x_1 + 0.5x_2 + 1.5x_3 + 3x_4 + 2x_5\\ &\text{s.t.} \\ &80x_1 + 4x_2 + 80x_5 \geq 150\\ &10x_2 + 50x_3 + 60x_4 \geq 50\\ &14x_1 + 60x_2 + 35x_3 + 20x_4 + 20x_5 \geq 70\\ &0 \leq x_1 \leq 1\\ &0 \leq x_2 \leq 1.2\\ &0 \leq x_3 \leq 0.5\\ &0 \leq x_4 \leq 3\\ &0 \leq x_5 \leq 1 \end{aligned}$$

Miscelazione di carburanti

- Una raffineria produce tre tipi di carburante, A, B, C, miscelando quattro componenti base.
- la disponibilità ed il costo unitario di ciascun componente sono:

componente	disponibilità (lt.)	costo (Euro/lt.)
1	3.000	3
2	2.000	6
3	4.000	4
4	1.000	5

i diversi carburanti sono ottenuti variando le percentuali dei vari componenti con le seguenti restrizioni:

	1	2	3	4	ricavo/lt.
\overline{A}	$\leq 30\%$ $\leq 50\%$ $\geq 70\%$	$\ge 40\%$	$\leq 50\%$	-	5.5
B	$\leq 50\%$	$\stackrel{-}{\geq} 10\%$			4.5
C	$\geq 70\%$				3.5

Formulare il problema di PL che permetta di massimizzare il profitto complessivo

- lacktriangledown variabili decisionali: x_{ij} litri di componente $i,\ i=1,2,3,4$ nel carburante $j,\ j=A,B,C$
- funzione obiettivo: profitto = ricavi costi ricavi:

$$5.5(x_{1A} + x_{2A} + x_{3A} + x_{4A}) + 4.5(x_{1B} + x_{2B} + x_{3B} + x_{4B}) +$$

$$+3.5(x_{1C} + x_{2C} + x_{3C} + x_{4C})$$

costi:

$$(3x_{1A} + 6x_{2A} + 4x_{3A} + 5x_{4A}) + (3x_{1B} + 6x_{2B} + 4x_{3B} + 5x_{4B})$$
$$+ (3x_{1C} + 6x_{2C} + 4x_{3C} + 5x_{4C})$$

funzione obiettivo:

$$\begin{array}{c} \max \ \ 2.5x_{1A} - 0.5x_{2A} + 1.5x_{3A} + 0.5x_{4A} + 1.5x_{1B} - 1.5x_{2B} + 0.5x_{3B} - 0.5x_{4B} \\ 0.5x_{1C} - 2.5x_{2C} - 0.5x_{3C} - 1.5x_{4C} \end{array}$$

vincoli sulla disponibilità dei componenti

componente	disponibilità (lt.)
1	3.000
2	2.000
3	4.000
4	1.000

$$x_{1A} + x_{1B} + x_{1C} \le 3000$$

$$x_{2A} + x_{2B} + x_{2C} \le 2000$$

$$x_{3A} + x_{3B} + x_{3C} \le 4000$$

$$x_{4A} + x_{4B} + x_{4C} \le 1000$$

Formulazione (cont.)

vincoli sulla composizione delle miscele

	1	2	3	4
\overline{A}	$\leq 30\%$	$\geq 40\%$	$\leq 50\%$	-
B	$\leq 50\%$	$\geq 10\%$		
C	$\geq 70\%$			

$$x_{1A} \le 0.3(x_{1A} + x_{2A} + x_{3A} + x_{4A})$$

$$x_{2A} \ge 0.4(x_{1A} + x_{2A} + x_{3A} + x_{4A})$$

$$x_{3A} \le 0.5(x_{1A} + x_{2A} + x_{3A} + x_{4A})$$

$$x_{1B} \le 0.5(x_{1B} + x_{2B} + x_{3B} + x_{4B})$$

$$x_{2B} \ge 0.1(x_{1B} + x_{2B} + x_{3B} + x_{4B})$$

$$x_{1C} \ge 0.7(x_{1C} + x_{2C} + x_{3C} + x_{4C})$$

vincoli di non negatività

$$x_{i,j} \ge 0,$$
 $i = 1, 2, 3, 4; j = A, B, C$