[1]:	To construct the data, seven geometric parameters of wheat kernels were measured: 1. area A, 2. perimeter F, 3. compactness C = 4*pi*A/P^2, 4. length of kernel, 5. width of kernel, 6. asymmetry coefficient 7. length of kernel groove. Relevant Papers: M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik, S. Zak, 'A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images', in: Information Technologies in Biomedicine, Pka Pietka, Jacek Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 2010, pp. 15-24. Please use this data to finish the following tasks. 1. Explore the data set (10 points) 2. Use K-means clustering to group the seed data. (30 points) 3. Use different linkage type for Hierarchical clustering to the seed data, which linkage type give the best result? (30 points) 4. Use DBscan clustering group the seed data and find the best epses and min_samples value. (30 points) """ "\Created on Pri Oct 28 10:42:10 2022\n\ngauthor:Brandon Botzer btb5103\n\n\nData Set Information:\n\nThe ined group comprised kernels belonging to three different varieties \nof wheat: Kama, Rosa and Canadian, 70 ments each, randomly selected for \nthe experiment. High quality visualization of the internal kernel stru hwas detected using a soft X-ray technique. It is non-destructive and \nconsiderably cheaper than other mophisticated inaging techniques like \nscanning microscopy or laser technique, The images were recorded or
[2]:	ophisticated imaging techniques like \nscanning microscopy or laser technology. The images were recorded or 3x18 cm X-ray KODAK plates. Studies were conducted using combine harvested \nwheat grain originating from the content of the polish Academy of Sciences in Lublin. In the tribute Information:\n\nTo construct the data, seven geometric parameters of wheat kernels were \nmeasure 1. area A, \n 2. perimeter P, \n 3. compactness C = 4*pi*A/P^2, \n 4. length of kernel, \n idth of kernel, \n 6. asymmetry coefficient \n 7. length of kernel groove. \n\n\n \n\n\n \nRelevant Pape \nmeasure \nimpack Algorithm for Features Analysis of \n X-ray Images', in: Information Technologies in Biomedicine, Ewa ka, \n Jacek Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 2010, pp. 15-24.\n \n\n\n\n\n\n\n\n\nPlease use thi a to finish the following tasks.\n\n 1. Explore the data set (10 points)\n 2. Use K-means clustering roup the seed data. (30 points)\n 3. Use different linkage type for Hierarchical clustering to the seed a, \n which linkage type give the best result? (30 points)\n 4. Use DBscan clustering group the seed and find the best epses \n and min_samples value. (30 points)\n \n" import os import numpy as no import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics
	<pre>#set the read path readpath = "J:\DSDegree\PennState\DAAN_862\Week 11\Homework" #change the directory os.chdir(readpath) #This data set does not have a header for the column names #Set the column names for the data frame column_names = ["area", "perimeter", "compactness", "length_kernel",</pre>
[3]:	<pre>#Bring the seed variables by themselves as a data frame seeds = df.iloc[:, :7] #1. Explore the data set (10 points) corr_val = seeds.corr() #plot a correlation matrix plt.matshow(corr_val) plt.title("Correlation Matrix") plt.colorbar() plt.xticks(range(7), list(seeds.columns)) plt.yticks(range(7), list(seeds.columns)) #get some info about the seeds data frame print("\nData frame information:\n") print(seeds.info()) print(seeds.describe())</pre>
	<pre>#the data should be clean but I'll still check for duplicates dups = seeds.duplicated() print("\nAre there any duplicates?\n" + str(dups.max())) Data frame information: <class 'pandas.core.frame.dataframe'=""> RangeIndex: 209 entries, 0 to 208 Data columns (total 7 columns): # Column Non-Null Count Dtype</class></pre>
	dtypes: float64(7) memory usage: 11.6 KB None area perimeter compactness length_kernel width_kernel \ count 209.000000 209.000000 209.000000 209.000000 209.000000 mean 14.845550 14.557943 0.870999 5.627890 3.258349 std 2.916545 1.308949 0.023686 0.444029 0.378603 min 10.590000 12.410000 0.808100 4.899000 2.630000 25% 12.260000 13.450000 0.856700 5.262000 2.941000 50% 14.340000 14.290000 0.873500 5.520000 3.232000 75% 17.320000 15.730000 0.887900 5.980000 3.562000 max 21.180000 17.250000 0.918300 6.675000 4.033000 mean 3.707278 5.408971 std 1.503657 0.492487 min 0.765100 4.519000 50% 3.600000 5.224000 50% 3.600000 5.224000 50% 3.600000 5.224000 50% 3.600000 5.224000 50% 3.600000 5.224000
	3.60000 5.224000 75% 4.773000 5.877000 max 8.456000 6.550000 Are there any duplicates? False Correlation Matrix arqueriowetherograms area perimeter compactness length_kernel width_kernel width_kernel asymmetry length_grove length_grove -0.2
[4]:	#2. Use K-means clustering to group the seed data. (30 points) #I will start this using k = 3 #I will later show using the elbow method that k = 3 is correct from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler #Normalize independent variables for the seed data #make the scaler object scaler = MinMaxScaler() seed_X = scaler.fit_transform(seeds) y = df.type #build the k-Means object kmeans = KMeans(n_clusters = 3, random_state=226)
[5]:	<pre>#fit and predict the clusters y_seed_pred = kmeans.fit_predict(seed_X) #Get metrics print("\nMetrics for K-Means at k = 3:") print(" Homogentiy: " + str(metrics.homogeneity_score(y, y_seed_pred))) print(" Completeness: " + str(metrics.completeness_score(y, y_seed_pred))) print(" Adjusted Rand Score: " +</pre>
	<pre>#I'll comment the loop out later and ony show one plot of this """ for i in range (0,7): for j in range(0,7): if i != j: centers = kmeans.cluster_centers_</pre>
[5]: [6]:	<pre>plt.xlabel(seeds.columns[i]) plt.ylabel(seeds.columns[j]) plt.legend() """ "\nfor i in range (0,7):\n for j in range(0,7):\n if i != j: \n\n centers = kmeans.cln centers_\n centers_a = centers[:, i]\n centers_b = centers[:, j]\n \n plt.figure()\n # predicted categories (c = y_pred).\n plt.scatter(seed_X[:, i],</pre>
[6]:	<pre># predicted categories (c = y_pred). plt.scatter(seed_X[:, 6], seed_X[:, 4], c = y_seed_pred,</pre>
[7]:	#Use the elbow method to show that $k = 3$ is the proper choice #computing distances from two inputs from scipy.spatial.distance import cdist #set up a range of k values k_vals = range(1,10)
	<pre>#set an empty list for the mean dispersions meanDisp = [] for k in k_vals: #build the K-Means object with the variable n_clusters kmeans = KMeans(n_clusters=k) #fit the data via K-means kmeans.fit(seed_X) #from the sklearn book (Hackeling 2nd ed., pg. 208) #Find the average minimum distance to the cluster centers #shows if you've done a good job with clustering #if K = number of points then this would be zero meanDisp.append(sum(np.min(cdist(seed_X, kmeans.cluster_centers_,</pre>
[7]:	plt.figure() plt.plot(k_vals, meanDisp, 'bx-') plt.xlabel("K") plt.ylabel("Average Dispersion") plt.title("Elbow plot to show best K value") C:\Users\btb51\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by ting the environment variable OMP_NUM_THREADS=1. warnings.warn(Text(0.5, 1.0, 'Elbow plot to show best K value') Elbow plot to show best K value 0.60 0.55
[8]:	#3. Use different linkage type for Hierarchical clustering to the seed data, # which linkage type give the best result? (30 points) from sklearn.cluster import AgglomerativeClustering #Using linkage = 'average' hier1 seed pred = AgglomerativeClustering(n clusters=3,
	#Get metrics print("\nMetrics for Hierarchical using Average Linkage:") print(" Homogentiy: " + str(metrics.homogeneity_score(y, hierl_seed_pred))) print(" Completeness: " + str(metrics.completeness_score(y, hierl_seed_pred))) print(" Adjusted Rand Score: " +
	<pre>den = dendrogram(Z_avg, leaf_font_size = 8) Metrics for Hierarchical using Average Linkage: Homogentiy: 0.49095617606258773 Completeness: 0.7252345398264144 Adjusted Rand Score: 0.5079770294939454 Silhouette Score: 0.33007475633536437</pre> 12 10 0.8 0.6 0.4 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
[9]:	#Using linkage = 'complete' hier2_seed_pred = AgglomerativeClustering(n_clusters=3,
10]:	Adjusted Rand Score: 0.5651989291978214 Silhouette Score: 0.362782119361832 #Using linkage = 'ward' hier3_seed_pred = AgglomerativeClustering(n_clusters=3,
11]:	Adjusted Rand Score: 0.6521911239329006 Silhouette Score: 0.39063836643092875 #Based on the metrics run, the Ward Linkage performs the best for clustering #this data set having the highest silohette score (amoung other values) #Plot the different Hierarchical Clusterings linkage types plt.figure(figsize = (12,12)) plt.subplot(221) plt.scatter(seed_X[:, 6], seed_X[:, 4], c = y) plt.title('Clustering results') plt.ylabel("Width_kernal") plt.xlabel("Length_Grove") plt.subplot(222) plt.scatter(seed_X[:, 6], seed_X[:, 4], c = hierl_seed_pred) plt.title('Average_Linkage')
	<pre>plt.ylabel("Width_kernal") plt.xlabel("Length_Grove") plt.subplot(223) plt.scatter(seed_X[:, 6], seed_X[:, 4], c = hier2_seed_pred) plt.title('Complete Linkage') plt.ylabel("Width_kernal") plt.xlabel("Length_Grove") plt.subplot(224) plt.scatter(seed_X[:, 6], seed_X[:, 4], c = hier3_seed_pred) plt.title('Ward_Linkage') plt.ylabel("Width_kernal") plt.xlabel("Length_Grove") plt.xlabel("Length_Grove") plt.subplots_adjust(wspace = 0.2)</pre> Clustering results Average Linkage
	0.8 - 0.6 - 0.6 - 0.8 - 0.6 - 0.8 - 0.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.0 - 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 10 - 0.
	Complete Linkage 1.0 -
12]:	#4. Use DBscan clustering group the seed data and find the best epses # and min_samples value. (30 points) from sklearn.cluster import DBSCAN #build the model and fit predict the clusters db_y_seed_pred = DBSCAN(eps = 0.2, min_samples=5,).fit_predict(seed_X) #Get metrics print("\nMetrics for DBSCAN with eps = 0.2 and min_samples = 5:") print(" Homogentiy: " + str(metrics.homogeneity_score(y, db_y_seed_pred))) print(" Completeness: " + str(metrics.completeness_score(y, db_y_seed_pred))) print(" Adjusted Rand Score: " + str(metrics.adjusted_rand_score(y, db_y_seed_pred))) print(" Silhouette Score: " +
13]:	<pre>str(metrics.silhouette_score(seed_X, db_y_seed_pred,</pre>
	<pre>for n in min_sampels: #set up the DBSCAN model model = DBSCAN(eps = e, min_samples = n) #Get the predicted clusters db_y_seed_pred_temp = model.fit_predict(seed_X) #find the number of clusters n_clusters = np.unique(model.labels_).size #get the sihouellette metrics #Check if there is just one cluster, this will error the Silhouette #so if there is only one cluster this is a bad score and will #equal 0 (assuming there is more than one cluster) if n_clusters == 1: results.append((e,n,np.nan, n_clusters)) else: score = metrics.silhouette_score(seed_X, db_y_seed_pred_temp,</pre>
	<pre>#store the score results results.append((e, n, score, n_clusters)) #put results in to a data frame res_hold = pd.DataFrame(results, columns = ["epses",</pre>
	The Silhouette scores from the first DBSCAN search: epses min_samples sil_score n_clusters 0
14]:	15 0.4
	<pre>epses_inc = 0.05 min_samp_inc = 1 while check == False: #make and empty list to store results results = [] #make the 'epses' and 'min_samples' grid epses_hold = [r_epses-(2*epses_inc),</pre>
	<pre>#run over the search grid manually for e in epses_hold: for n in min_sampels_hold: #set up the DBSCAN model model = DBSCAN(eps = e, min_samples = n) #Get the predicted clusters db_y_seed_pred_temp = model.fit_predict(seed_X) #find the number of clusters n_clusters = np.unique(model.labels_).size #get the sihouellette metrics #Check if there is just one cluster, this will error the Silhouette #so if there is only one cluster this is a bad score and will #equal 0 (assuming there is more than one cluster)</pre>
	<pre>#equal 0 (assuming there is more than one cluster) if n_clusters == 1: results.append((e,n,np.nan, n_clusters)) else: score = metrics.silhouette_score(seed_X, db_y_seed_pred_temp,</pre>
	<pre>if r_sil_score_temp > r_sil_score: #a better score has been found. Reassign the reference vals and go again r_sil_score = r_sil_score_temp r_epses = r_epses_temp r_min_samp = r_min_samp_temp elif r_sil_score_temp <= r_sil_score: #No improvements have been made. Hit the flag and break the loop check = True #reset the reference scores res = res_temp best_clusters = res.n_clusters[res.sil_score.idxmax()] print("\nThe Silhouette scores from the last DBSCAN search:\n") print(res) print("\nThe best DBSCAN values are:") print("\nThe best DBSCAN values are:") print(" epses: " + str(r_epses))</pre>
	<pre>print(" epses:</pre>