אלגברה ב' - פתרון גליון 1

תרגיל 1.3.10; בשלילה, נניח שקיים $m \geq m_0, n \in \mathbb{N}$ כך שהטענה P(n) איננה מתקיימת. אזי $[\mathbf{H}]$ תרגיל 1.3.10; בשלילה, נניח שקיים $m \geq m_0$ כך שהטענה $m \geq m_0$ שאינם מקיימים $m \geq m_0$ איננה $m \geq m_0$ שאינם מקיימים $m \geq m_0$ איננה ריקה.

יהא n_0 איבר מינימלי בקבוצה A, ואז בוודאי:

 $n_0 > m_0 \Rightarrow n_0 - 1 \ge m_0$ and $n_0 - 1 \notin A \Rightarrow P(n_0 - 1)$,

 $n_0 \in A$ ולפי הנחת האינדוקציה (הנחה 2 בנתון), נקבל כי הטענה ולפי הנחת האינדוקציה (הנחה 2 בנתון)

■ הוכחת סעיף ב' דומה, ואתם מתבקשים לשחזר אותה מן ההוכחה של סעיף א'.

:יטב, נוכיח כי: J_n מוגדרות היטב, נוכיח כי: מוגדרות היטב, נוכיח כי: $[\mathbf{H}]$ ($[a] = [b], [c] = [d] \Rightarrow [a+c] = [b+d], [ac] = [bd].$

 $(a+c)-(b+d),ac-bd\in n\mathbb{Z}$ בהיינו, אם $a-b\in n\mathbb{Z}$ וגם $a-b\in n\mathbb{Z}$ הווה סימון לקבוצת כל הכפולות השלמות של n

לפי ההנחה, קיימים שלמים x,y כך ש $b=xn,\,c-d=yn$, ואז:

$$(a+c) - (b+d) = (a-b) + (c-d) = xn + yn = (x+y)n \Rightarrow [a+c] = [b+d];$$

 $ac-bd = ac-cb+cb-bd = c(a-b)+b(c-d) = cxn+byn = (cx+by)n \Rightarrow [ac] = [bd],$

כנדרש. ■

- מוגדרות היטב, נוכל לרשום J_n מרגע שהוכחנו כי הפעולות ב- J_n מוגדרות היטב, נוכל לרשום $[\mathbf{H}]$
- $(1) \quad [i] + [j] = [i+j] = [j+i] = [j] + [i];$
- (2) [i][j] = [ij] = [ji] = [j][i];
- $(3) \quad ([i] + [j]) + [k] = [i + j] + [k] = [(i + j) + k] = [i + (j + k)] = [i] + [j + k] = [i] + ([j] + [k]);$
- (4) ([i][j])[k] = [ij][k] = [(ij)k] = [i(jk)] = [i][jk] = [i]([j][k]);
- $(5) \quad [i]([j]+[k])=[i][j+k]=[i(j+k)]=[ij+ik]=[ij]+[ik]=[i][j]+[i][k];$
- (6) [0] + [i] = [0 + i] = [i];
- (7) $[1][i] = [1 \cdot i] = [i].$
- a=0 תרגיל 1.3.14; בלי הגבלת הכלליות, a הוא שלם תיובי: ברור שהטענה נכונה עבור $[\mathbf{H}]$ הוא שלם תיובי: ברוך שהטענה נכונה עבור a שלילי, נבתין בין שני מקרים:
 - $a^p=-(-a)^p\equiv -(-a)\,mod\,p=a\,mod\,p$ איזוגי: במקרה זה p
 - . כאן $a\equiv (-a)\,mod\,p$ לכל שלם, ואין הבתנה בין ערכים שליליים לערכים חיוביים: $a\equiv (-a)\,mod\,p$

a=1 בכן, נותר להוכיח את הטענה עבור $a\in\mathbb{N}$ ובכן, נותר להוכיח את ובכן, נותר להוכיח אזי גם $a^p\equiv a\ mod\ p$ נראה כעת כי אם $a^p\equiv a\ mod\ p$. נראה כעת כי אם

$$(a+1)^p = \sum_{k=0}^p \binom{p}{k} a^k = a^p + 1 + \sum_{k=1}^{p-1} \underbrace{\frac{p!}{k! \cdot (p-k)!}} \cdot a^k$$

אם נראה כי כל המחוברים בתוך הסכום האחרון מתחלקים בראשוני p, נוכיח בכך את שלב המעבר האינדוקטיבי:

הוא מספר ראשוני, ולכן הוא זר לכל מספר טבעי הקטן ממנו - בפרט p זר לכל מכפלה של טבעיים הקטנים ממנו. מכאן נובע, שעבור p < k < p מתקיים:

$$\underbrace{\left(k!(p-k)!\right)\left|p!\;,\;\;p\right|p!}_{\text{P!}}\ \Rightarrow\ \left(p\cdot k!(p-k)!\right)\left|p!\Rightarrow p\right|\frac{p!}{k!\cdot(p-k)!}.$$

נסכם: הוכחנו כי $(a+1)^p \equiv a^p + 1 \bmod p$. נפעיל את הנחת האינדוקציה על-מנת ($a+1)^p \equiv a^p + 1 \bmod p$.

ובכך סיימנו את ההוכחה. ■