Stochasticity saves leukemia patients during antibody based immunotherapy.

Modelling dynamics of undetectable disease in leukemias concerning therapy.

Introduction

eliminate CD19+ B cells

- Series of specific lesions in white blood cell precursors leads to acute lymphoblastic leukemia (ALL)
- ALL is a malignant disease and leads to differentiation arrest and abnormal proliferation of white blood cells.
- Primary treatment for ALL is chemotherapy, which combines anti-leukemic drues targeting cell proliferation.
- Most adults with ALL experience a relapse in the course of the treatment and disease doesn't respond favorably to chemotherapy
- Relansed ALL nationts are then advised for immunotherany
- . Bi-specific T cell engager (BiTE) monoclonal antibody drives CD3+ T cells to
- Within 3 days of immunotherapy CD19+ cell counts drop below 1 cell/µl; thus, the system is driven by random fluctuations.

Δim

- Formulate a stochastic model capturing randomness of the system.
- Simulate chemotherapy and immunotherapy
- Study effect of randomness on the treatment outcome.

Model

	Description	Laker	Aprilla Carrier	SCACE S	Monoclassactive techni	
S F T ₁ T ₂	slowly problemating cells rapidly problemating cells activated sytotoxic T cells de-activated sytotoxic T cells		$S \longrightarrow S + S$ $F \longrightarrow F + F$ $S \longrightarrow F$ $F \longrightarrow S$	r _E S r _F F p _{EF} S p _{FE} F	$\mathbf{r}^1 = (1, 0, 0, 0)$ $\mathbf{r}^2 = (0, 1, 0, 0)$ $\mathbf{r}^3 = (-1, 1, 0, 0)$ $\mathbf{r}^4 = (1, -1, 0, 0)$	(2) (3) (4)
to ty han his	birth rate constants convention rate constants	5 · 10 ⁻² , 10 ⁻¹ day ⁻¹ 10 ⁻³ , 10 ⁻² day ⁻¹	$S \longrightarrow \phi$ $F \longrightarrow \phi$	m _E S mr F	$\mathbf{r}^0 = (-1,0,0,0)$ $\mathbf{r}^6 = (0,-1,0,0)$	(A) (N)
Hg, Hy Pair Pile	death rate constants de-activation and de-activation rate constants, respectively	10 ⁻² , 5 · 10 ⁻¹ day ⁻¹ 5 · 10 ⁻¹ , 10 ⁻¹ day ⁻¹	$S \longrightarrow \phi$ $F \longrightarrow \phi$	$a r_X S$ $a r_Y F$	$\mathbf{r}^2 = (-1, 0, 0; 0)$ $\mathbf{r}^4 = (0, -1, 0; 0)$	(2) (N)
o n	efficacy of chemotherapy drug serial killing efficacy of T cells	3 6 oells	$T_d + S \longrightarrow T_a + S$ $T_d + F \longrightarrow T_a + F$ $T_a + aS \longrightarrow T_d$	Par To F Par To (2)	$\mathbf{r}^0 = (0, 0, 1, -1)$ $\mathbf{r}^{10} = (0, 0, 1, -1)$ $\mathbf{r}^{11} = (-a, 0, -1, 1)$	(9) (20) (11)
Table 1: Symbols used in the model.			$T_a + aF \longrightarrow T_d$ Table		$x^{12} = (0, -n, -1, 1)$ wed in the model.	(12)

State of the system $x = (S, F, T_a, T_d)$

Master equation

 $\partial_t \Pr(\mathbf{x}, t) = r_V (S - 1) \Pr(\mathbf{x} - \mathbf{r}^2, t) + r_V (F - 1) \Pr(\mathbf{x} - \mathbf{r}^2, t)$ $+ \; m_{S} \; (S+1) \; \Pr(\mathbf{x} - \mathbf{r}^{1}, t) + m_{F} \; (F+1) \; \Pr(\mathbf{x} - \mathbf{r}^{s}, t)$ + p_{SF} (S+1) Pr $(\mathbf{x}-\mathbf{r}^2,t)$ + p_{FS} (F+1) Pr $(\mathbf{x}-\mathbf{r}^6,t)$ $+ \alpha r_V (S+1) Pr(x-r^2,t) + \alpha r_V (F+1) Pr(x-r^2,t)$ + p_{da} $(T_d + 1)$ S $Pr(x - r^2, t) + p_{da}$ $(T_d + 1)$ F $Pr(x - r^{10}, t)$ $+ p_{ad} (T_a + 1) \begin{pmatrix} S \\ - \end{pmatrix} Pr(x - x^{11}, t) + p_{ad} (T_a + 1) \begin{pmatrix} F \\ - \end{pmatrix} Pr(x - x^{12}, t)$ $-[(r_S + m_S + p_{SF} + \alpha \ r_S)S + (r_F + m_F + p_{FS} + \alpha \ r_F)F] \ Pr(x, t)$

Fokker-Planck equation

 $\partial_t \Pr(\pi, t) = [(\alpha - 1) r_0 + (\alpha - 1) r_0 + m_0 + m_0 + n_{10} + n_{10}) \Pr(\pi, t)$ $+\left\{ \left[1+\alpha\right]\,r_{S}+m_{S}+p_{SF}-p_{FS}+\left[\left(\alpha-1\right)\,r_{S}+m_{S}+p_{SF}\right]\,S-p_{FS}\,F\right\}\,\partial_{S}\,\Pr(x,t)$ + $\{[1 + \alpha] r_F + m_F + p_{FS} - p_{SF} + [(\alpha - 1) r_F + m_F + p_{FS}] F - p_{SF} S\} \partial_F Pr(x, t)$ $+\frac{1}{2}\{[(1 + \alpha) r_S + m_S + p_{SF}] S + p_{FS} F\} \partial_{SS} Pr(x, t)$

 $+\frac{1}{2}[[(1 + \alpha) r_F + m_F + p_{FS}] F + p_{SF} S] \partial_{FF} Pr(x, t)$

Conclusion

- · Significant variation is observed in tumor cell numbers at the end of treatment Tumor population faced extinction during treatment that were subject to chance
- Differences in treatment outcome can lead to a broad diversity of post-treatment. responses as tumor cell numbers, and the fraction of slow cells serve as an initial condition for a potential relapse.

 $-\left[(p_{ab}~S~+p_{bb}~F)T_d+(p_{ad}\begin{pmatrix}S\\u\end{pmatrix}~+p_{ad}\begin{pmatrix}F\\u\end{pmatrix})T_a\right]~\Pr(x,t)$

