DSAIUebung-002 -- AussagenLogik

1 - Using Truth Tables

1a)

To prove the equivalence P = Q where:

- $P \equiv \neg (A \lor B)$
- $Q \equiv \neg A \wedge \neg B$

we will construct a truth table for both P& Q and compare their truth values in all cases. If the truth values for P& Q match in every case, then $P \equiv Q$.

- Build the truth table

The truth table will include columns for $A, B, A \lor B$, $\neg(A \lor B)$, $\neg A, \neg B, \neg A \land \neg B$.

We need to compute the truth values for both formulas based on all possible truth assignments.

Α	В	$A \vee B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$\neg A \land \neg B$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

- Compare

- $P \equiv \neg (A \lor B)$
- $Q \equiv \neg A \wedge \neg B$

From the truth table:

- $P = \neg (A \lor B)$ gives the column $\neg (A \lor B)$.
- $Q = \neg A \land \neg B$ gives the column $\neg A \land \neg B$.
- The truth values of P & Q match in every row of the truth table.

- Conclusion

Since the truth values for P& Q are identical in all cases, we conclude that:

$$P \equiv 0$$

therefor: $\neg (A \lor B) \equiv \neg A \land \neg B$.

1b)

To prove the equivalence P = A where:

- $P \equiv A \Longrightarrow \neg B$
- $Q \equiv \neg (A \land B)$

To show that $P \equiv Q$, we'll construct a truth table and compare the truth values for both P & Q. If the truth values match for all combinations of A & B, then $P \equiv Q$.

- Build the truth table

Α	В	$A \wedge B$	$\neg (A \land B)$	$\neg B$	$A \Longrightarrow \neg B$
Т	T	Т	F	F	F
Т	F	F	Т	Т	Т
F	Т	F	Т	F	Т
F	F	F	Т	Т	T

- Compare
 - $P \equiv A \Longrightarrow \neg B$
 - $Q \equiv \neg (A \land B)$

From the truth table:

• The truth values of $P = A \Longrightarrow \neg B$ match the columns of $Q = \neg (A \land B)$ in every row.

- Conclusion

Since the truth values for P& Q are identical in all cases, we conclude that:

$$P \equiv Q$$

therefor: $A \Longrightarrow \neg B \equiv \neg (A \land B)$.

This equivalence also follows from the properties of implication and De Morgan's laws.

2 - De Morgan's laws

Take a close look at De Morgan's laws.

De Morgan's laws are two important logical equivalences that express the negation of conjunctions and disjunctions:

In simple terms:

The negation of "A or B" is equivalent to "not A and not B."
The negation of "A and B" is equivalent to "not A or not B."

2 a)

Negation of Disjunction:

 $\neg (A \lor B) \equiv \neg A \land \neg B$

Inspired by Diogenes' encounter with Alexander the Great, where he asked Alexander to step aside as he blocked the sun.

- A:
 - "You are a king."
- B:
 - "You have the power to control the sun."
- ¬(A ∨ B):
 - "It is not the case that you are a king or you have the power to control the sun."
- ¬A ∧ ¬B:
 - "You are not a king and you do not have the power to control the sun."

2b)

Negation of Conjunction:

 $\neg (A \land B) \equiv \neg A \lor \neg B$

Inspired by Diogenes' statement: "I am a citizen of the world."

- A:
 - "I am a citizen of Greece."
- B:
 - "I am a citizen of another country."
- ¬(A ∧ B):
 - "It is not the case that I am a citizen of Greece and I am a citizen of another country."
- ¬A ∨ ¬B:
 - "Either I am not a citizen of Greece or I am not a citizen of another country."

3 - From Propositions to Truth Tables

You have the following propositions:

• *A*:

It's cold.

• *B*:

It's breezy.

Use these propositions to recreate the following sentences as propositional formulas and create a truth table for each one!

• It's cold and breezy.

Α	В	A ∧ B
Т	Т	Т
Т	F	F
F	T	F
F	F	F

• It's cold but not breezy.

Α	В	٦A	¬B	¬ A ∧ ¬ B
Т	Т	F	F	F
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

• It's not cold and not breezy.

	Α	В	٦A	¬B	¬A ∧ ¬B
	Т	Т	F	F	F
	Т	F	F	Т	F
•	F	Т	Т	F	F
	F	F	Т	Т	Т

• It's either cold or breezy (or both).

$A B A \lor B$

Α	В	A ∨ B
Т	T	Т
Т	F	Т
F	Т	Т
F	F	F

• It's cold or breezy, but it's not breezy when it's cold.

Α	В	$A \rightarrow B$	¬(A → B)	$(A \lor B) \land \neg (A \to B)$
Т	Т	Т	F	F
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	F	F

• When it's breezy, it's cold.

Α	В	¬B	$\neg B \lor A$
Т	Т	F	Т
Т	F	Т	Т
F	Т	F	F
F	F	Т	Т

4. Translate Complex Sentences

Im Donauparkstadion trinke ich gerne einen Radler oder esse eine Bosna - aber nur wenn sie vegane Würstchen haben! Manchmal konsumiere ich auch beides.*

Aussagenvariablen:

- R = Ich trinke einen Radler im Donauparkstadion.
- \bullet B = Ich esse eine Bosna im Donauparkstadion.
- V = Die Bosna hat vegane Würstchen.

Logische Formel: (R ∨ B) ↔ V

• Mittwochs gehen wir zur Schule und lernen DSAI oder C#, aber nur, wenn es kein Feiertag ist. Wenn es aber Feiertag ist, sind wir unglücklich.

Aussagenvariablen:

- M = Es ist Mittwoch.
- S = Wir gehen zur Schule.
- D = Wir lernen DSAI.
- C = Wir lernen C#.
- F = Es ist Feiertag.
- U = Wir sind unglücklich.

Logische Formel: ((M \rightarrow (S \land (D \lor C))) \land (¬F \rightarrow (S \land (D \lor C)))) \land (F \rightarrow U)