

TFG del Grado en Ingeniería Informática

JIZT

Presentado por Diego Miguel Lozano en la Universidad de Burgos — 26 de enero de 2021 Tutores: Dr. Carlos López Nozal y Dr. José Francisco Díez Pastor

D. nombre tutor, profesor del departamento de nombre departamento, área de nombre área.

Expone:

Que el alumno D. Diego Miguel Lozano, con DNI 71307413-F, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado "JIZT - Generación de resúmenes abstractivos en la nube mediante Inteligencia Artificial.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 26 de enero de 2021

 V° . B° . del Tutor: V° . B° . del Tutor:

D. Carlos López Nozal D. José Francisco Díez Pastor

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Índice general	III
Índice de figuras	IV
Índice de tablas	v
Introducción	1
Objetivos del proyecto	3
Conceptos teóricos 3.1. Secciones	6
Aspectos relevantes del desarrollo del proyecto	11
Trabajos relacionados	13
Conclusiones y Líneas de trabajo futuras	15
Bibliografía	17

		_
	_	figuras
Indice	ne.	HOHRAS
HILL	uc	iiguius

Índice de tablas

3.1. Herramientas y tecnologías utilizadas en cada parte del proyecto

Introducción

El término Inteligencia Artificial (IA) fue acuñado por primera vez en la Conferencia de Dartmouth hace ahora 65 años, esto es, en 1956 [1]. Sin embargo, ha sido en los últimos años cuando su presencia e importancia en la sociedad han crecido de manera exponencial.

Uno de los campos históricos dentro de la AI, es el Procesamiento del Lenguaje Natural (NLP, por sus siglas en inglés), cuya significación se hizo patente con la aparición del célebre Test de Turing [2], en el cual un interrogador debe discernir entre un humano y una máquina conversando con ambos por escrito a través de una terminal.

Hasta los años 80, la mayor parte de los sistemas de NLP estaban basados en complejas reglas escritas manualmente [3], las cuales conseguían generalmente modelos muy lentos, poco flexibles y con baja precisión. A partir de esta década, como fruto de los avances en Aprendizaje Automático (Machine Learning), fueron apareciendo modelos estadísticos, consiguiendo notables avances en campos como el de la traducción automática.

En la última década, el desarrollo ha sido aún mayor debido a factores como el aumento masivo de datos de entrenamiento (principalmente provenientes de la web), avances en la capacidad de computación (*Graphic Processing Units* o GPUs) y el progreso dentro del área de la Algoritmia [4].

No obstante, ha sido desde la aparición del concepto de "atención" en 2015 [5, 6] cuando el campo del NLP ha comenzado a conseguir resultados cuanto menos sorprendentes [7, 8].

TODO: por qué JIZT (acercar estos modelos al público general).

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Conceptos teóricos

En aquellos proyectos que necesiten para su comprensión y desarrollo de unos conceptos teóricos de una determinada materia o de un determinado dominio de conocimiento, debe existir un apartado que sintetice dichos conceptos.

Algunos conceptos teóricos de LATEX¹.

3.1. Secciones

Las secciones se incluyen con el comando section.

Subsecciones

Además de secciones tenemos subsecciones.

Subsubsecciones

Y subsecciones.

3.2. Referencias

Las referencias se incluyen en el texto usando cite [wiki:latex]. Para citar webs, artículos o libros [koza92].

¹Créditos a los proyectos de Álvaro López Cantero: Configurador de Presupuestos y Roberto Izquierdo Amo: PLQuiz

3.3. Imágenes

Se pueden incluir imágenes con los comandos standard de LATEX, pero esta plantilla dispone de comandos propios como por ejemplo el siguiente:

Figura 3.1: Autómata para una expresión vacía

3.4. Listas de items

Existen tres posibilidades:

3.5. TABLAS 7

- primer item.
- segundo item.
- 1. primer item.
- 2. segundo item.

Primer item más información sobre el primer item.

Segundo item más información sobre el segundo item.

3.5. Tablas

Igualmente se pueden usar los comandos específicos de LATEXo bien usar alguno de los comandos de la plantilla.

Herramientas	App AngularJS	API REST	BD	Memoria
HTML5	X			
CSS3	X			
BOOTSTRAP	X			
JavaScript	X			
AngularJS	X			
Bower	X			
PHP		X		
Karma + Jasmine	X			
Slim framework		X		
Idiorm		X		
Composer		X		
JSON	X	X		
PhpStorm	X	X		
MySQL			X	
PhpMyAdmin			Χ	
Git + BitBucket	X	X	X	X
MikT _E X				X
TEXMaker				X
Astah				X
Balsamiq Mockups	X			
VersionOne	X	X	X	X

Tabla 3.1: Herramientas y tecnologías utilizadas en cada parte del proyecto

Técnicas y herramientas

Esta parte de la memoria tiene como objetivo presentar las técnicas metodológicas y las herramientas de desarrollo que se han utilizado para llevar a cabo el proyecto. Si se han estudiado diferentes alternativas de metodologías, herramientas, bibliotecas se puede hacer un resumen de los aspectos más destacados de cada alternativa, incluyendo comparativas entre las distintas opciones y una justificación de las elecciones realizadas. No se pretende que este apartado se convierta en un capítulo de un libro dedicado a cada una de las alternativas, sino comentar los aspectos más destacados de cada opción, con un repaso somero a los fundamentos esenciales y referencias bibliográficas para que el lector pueda ampliar su conocimiento sobre el tema.

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Este apartado sería parecido a un estado del arte de una tesis o tesina. En un trabajo final grado no parece obligada su presencia, aunque se puede dejar a juicio del tutor el incluir un pequeño resumen comentado de los trabajos y proyectos ya realizados en el campo del proyecto en curso.

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.

Bibliografía

- [1] "Daniel Crevier. AI: The tumultuous history of the search for artificial intelligence. NY: Basic Books, 1993. 432 pp. (Reviewed by Charles Fair)". En: Journal of the History of the Behavioral Sciences 31.3 (1995), págs. 273-278. DOI: https://doi.org/10.1002/1520-6696(199507)31:3<273::AID-JHBS2300310314>3.0.CO;2-1. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/1520-6696%28199507%2931%3A3%3C273%3A%3AAID-JHBS2300310314%3E3.0.CO%3B2-1. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6696%28199507%2931%3A3%3C273%3A%3AAID-JHBS2300310314%3E3.0.CO%3B2-1.
- [2] A. M. TURING. "I.—COMPUTING MACHINERY AND INTELLIGENCE". En: *Mind* LIX.236 (oct. de 1950), págs. 433-460. ISSN: 0026-4423. DOI: 10.1093/mind/LIX.236.433. eprint: https://academic.oup.com/mind/article-pdf/LIX/236/433/30123314/lix-236-433.pdf. URL: https://doi.org/10.1093/mind/LIX.236.433.
- [3] Pamela McCorduck. *Machines Who Think*. USA: W. H. Freeman y Co., 1979. ISBN: 0716710722.
- [4] Joachim Rahmfeld. Recent Advances in Natural Language Processing. Sep. de 2019. URL: https://venturebeat.com/2021/01/06/ai-models-from-microsoft-and-google-already-surpass-human-performance-on-the-superglue-language-benchmark/. Último acceso: 26/01/2020.
- [5] Thang Luong, Hieu Pham y Christopher D. Manning. "Effective Approaches to Attention-based Neural Machine Translation". En: *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.* Lisbon, Portugal: Association for Computational Linguistics,

18 BIBLIOGRAFÍA

- sep. de 2015, págs. 1412-1421. DOI: 10.18653/v1/D15-1166. URL: https://www.aclweb.org/anthology/D15-1166.
- [6] Dzmitry Bahdanau, Kyunghyun Cho y Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].
- [7] Thomas Macaulay. Someone let a GPT-3 bot loose on Reddit it didn't end well. Oct. de 2020. URL: https://thenextweb.com/neural/2020/10/07/someone-let-a-gpt-3-bot-loose-on-reddit-it-didnt-end-well. Último acceso: 26/01/2020.
- [8] Kyle Wiggers. AI models from Microsoft and Google already surpass human performance on the SuperGLUE language benchmark. Enc. de 2021. URL: https://venturebeat.com/2021/01/06/ai-models-from-microsoft-and-google-already-surpass-human-performance-on-the-superglue-language-benchmark/. Último acceso: 26/01/2020.