Speech Emotion Recognition

By:-

Parth 41013302717

Kanishk Gupta 41713302717

Abhishek Sharma 41113302717

Contents:

- 1. Introduction
- 2. SER
- 3. Project Objectives Achieved
- 4. SER 2.0
- 5. Objectives of SER 2.0
- 6. Expected challenges
- 7. Dataset
- 8. User Interface
- 9. Hardware
- 10. Project Pipeline
- 11. Tools/Technologies
- 12. References

Introduction

What makes us different from machines?

Introduction

"The best and most beautiful things in the world cannot be seen or even touched. They must be felt with the heart."

- Helen Keller

SER

What is SER?

- SER stands for Speech Emotion Recognition
- Aims to recognize the underlying emotional state of speaker

Project Objectives Achieved

- Built an end-to-end hardware-software solution
- Extracted features such as pitch, loudness, and cepstral coefficients
- Built 1-D CNN based DL Model to recognize emotions of the speaker
- Created a web app and deployed the application
- Displayed model's output on Arduino LCD

PRESENTING The All New

SER 2.0

Objectives Of SER 2.0

- → Redefine Algorithm
- → Improve Model Accuracy
- → Decrease Latency in response
- → Real Time Emotion Recognition
- → Make Model More Generalized
- → Add Speech-To-Text feature
- → Add Live recording Feature in UI
- → Develop New interactive UI/UX
- → Enhance hardware

Expected Challenges

- Augmenting audio datasets for increasing generalizability
- Advanced Feature Selection
- Designing classifier with higher precision and recall
- Integrating all modules to a centralized system.

Dataset

- RAVDESS Dataset, TESS Dataset
- Ryerson Audio-Visual Database of Emotional Speech and Song
- 7356 recording created by 24 professional actors
- Includes calm, happy, sad, angry, fearful, surprise, and disgust expressions

User Interface

- UI to record/input human voice
- To Implement ML Model
- Send/Receive Data to arduino UNO.
- Manage Inputs
- Efficient Load balancing
- Display result

HARDWARE

- Communicating with the model
- Displaying the type of emotion detected.
- Showing the status of the process.
- Speaker for conveying the result.
- Interacting with User Interface

Overview of Data Science Phase

Source: https://www.sciencedirect.com/

Project Pipeline

TOOLS \ TECHNOLOGY

- AWS Cloud:
- Numpy
- Pandas
- TensorFlow
- PyTorch

- Librosa
- Django
- ReactJS
- Pyfirmata
- Arduino IDE

References

- Real-Time Speech Emotion Recognition Using a Pre-trained Image Classification Network: Effects
 of Bandwidth Reduction and Companding 2020 Margaret Lech, Melissa Stolar, Christopher Best,
 Robert Bolia10.3389/fcomp.2020.00014Frontiers in Computer Science
- Livingstone SR, Russo FA (2018) The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS ONE 13(5): e0196391. (https://doi.org/10.1371/journal.pone.0196391.)
- Pinto, Marco Giuseppe de, et al. "Emotions Understanding Model from Spoken Language Using Deep Neural Networks and Mel-Frequency Cepstral Coefficients." 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), 2020. Crossref, doi:10.1109/eais48028.2020.9122698.
- https://arxiv.org/pdf/1912.10458v1.pdf

References

- Automatic Speech Emotion Recognition Using Machine Learning
- Speech Emotion Recognition with Convolutional Neural Network | by Reza
- Emotion Detection from Speech
- Machine Learning Based Emotion Recognition using Speech Signal

