Class13: RNASeq Analysis

Alice Lai (PID:A16799081)

The data for today's lab comes from a published RNA-seq experiment where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects (Himes et al. 2014).

Import Data

```
# install.packages("BiocManager")
# BiocManager::install()

# BiocManager::install("DESeq2")

# library(BiocManager)
# library(DESeq2)

counts <- read.csv("airway_scaledcounts.csv", row.names=1)
metadata <- read.csv("airway_metadata.csv")

head(counts)</pre>
```

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG0000000003	1097	806	604		
ENSG0000000005	0	0	0		

ENSG00000000419	781	417	509
ENSG00000000457	447	330	324
ENSG00000000460	94	102	74
ENSG0000000938	0	0	0

head(metadata)

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

Examine Data

Q1. How many genes are in this dataset?

```
nrow(counts)
```

[1] 38694

There are 38694 genes in the dataset.

Q2. How many 'control' cell lines do we have?

```
sum(metadata$dex == "control")
```

[1] 4

```
table(metadata$dex)
```

```
control treated 4 4
```

There are 4 control cell lines.

```
colnames(counts) == metadata$id
```

If you want to know if all the elements of a vector are TRUE we can use the all() function

```
all(colnames(counts) == metadata$id)
```

[1] TRUE

Analysis

I want to compare all "control" and "treated" column. To do this I will find the average of each gene(row) in all "control" column.

```
control.inds <- metadata$dex == "control"

control.counts <- counts[,control.inds]</pre>
```

Now find the mean count value per gene using the apply() function.

```
control.means <- apply(control.counts, 1, mean)</pre>
```

Now do the same for the "treated" column.

```
treated.inds <- metadata$dex == "treated"
treated.counts <- counts[,treated.inds]
treated.means <- apply(treated.counts, 1, mean)</pre>
```

Put these two mean vectors together

```
meancounts <- data.frame(control.means, treated.means)
head(meancounts)</pre>
```

	control.means	treated.means
ENSG0000000003	900.75	658.00
ENSG00000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50

ENSG0000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Let's have a look at the plot

plot(meancounts)

plot(meancounts, log="xy")

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

We most often work with log2 units because they have a more simple interpretation. Here we calculate the log2 fold-change of treated/control values and add it to our wee data frame of results.

```
meancounts$log2fc <- log2(meancounts$treated.means / meancounts$control.means)
head(meancounts)</pre>
```

log2fc	<pre>treated.means</pre>	control.means	
-0.45303916	658.00	900.75	ENSG0000000003
NaN	0.00	0.00	ENSG00000000005
0.06900279	546.00	520.50	ENSG00000000419
-0.10226805	316.50	339.75	ENSG00000000457
-0.30441833	78.75	97.25	ENSG00000000460
-Inf	0.00	0.75	ENSG00000000938

There are some answers like NaN (not a number) and -Inf (minus infinity) that are because there are zero-count genes in the dataset.

```
to.keep.inds <- (rowSums(meancounts[,1:2] == 0) == 0)
```

```
mycounts <- meancounts[to.keep.inds, ]
head(mycounts)</pre>
```

	control.means	treated.means	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000971	5219.00	6687.50	0.35769358
ENSG0000001036	2327.00	1785.75	-0.38194109

Q. How many genes do we have left after filtering the zero-count?

```
nrow(mycounts)
```

[1] 21817

A common threshold for calling a gene "up" or "down" regulated is a $\log 2$ fold change of +2 or -2.

Q. How many "up" regulated genes do we have?

```
sum(mycounts$log2fc >= 2)
```

[1] 314

Q. How many "down" regulated genes do we have?

```
sum(mycounts$log2fc <= -2)</pre>
```

[1] 485

DESeq analysis

We need to do this analysis properly with out inner stats person kept happy

```
library(DESeq2)
```

To use DESeq we need to get our input data in a very particular format

```
dds <- DESeqDataSetFromMatrix(countData = counts,</pre>
                         colData = metadata,
                         design = ~dex)
converting counts to integer mode
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
Run DESeq analysis
  dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns
                  baseMean log2FoldChange
                                              lfcSE
                                                         stat
                                                                  pvalue
                               <numeric> <numeric> <numeric> <numeric>
                 <numeric>
ENSG00000000003 747.194195
                               -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005 0.000000
                                                 NA
                                       NA
                                                           NA
```

ENSG00000000419 520.134160 ENSG00000000457 322.664844 $0.2061078 \quad 0.101059 \quad 2.039475 \ 0.0414026$

0.0245269 0.145145 0.168982 0.8658106

```
-0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000460
                 87.682625
ENSG00000000938
                  0.319167
                               -1.7322890 3.493601 -0.495846 0.6200029
                     padj
                <numeric>
ENSG00000000003
                 0.163035
ENSG0000000005
ENSG00000000419
                 0.176032
ENSG00000000457
                 0.961694
ENSG00000000460
                 0.815849
ENSG00000000938
                       NA
```

I want to make a figure showing an overview of all my results to date. A plot of **log2 fold change** vs the **p-value** (adjusted p-value)

```
plot(res$log2FoldChange, -log(res$padj))

# Add some cut-off lines
abline(v=-2, col="red")
abline(v=2, col="red")
abline(h=-log(0.05), col="red")
```



```
# Setup our custom point color vector
mycols <- rep("gray", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

# Volcano plot with custom colors
plot( res$log2FoldChange, -log(res$padj),
    col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )

# Cut-off lines
abline(v=c(-2,2), col="gray", lty=2)
abline(h=-log(0.1), col="gray", lty=2)</pre>
```


Add annotation data

we want to add on gene symbols (gene names) as well as other common identifiers from major databases for all our genes of interest.

```
# BiocManager::install("AnnotationDbi")
  # BiocManager::install("org.Hs.eg.db")
  library("AnnotationDbi")
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                   "MAP"
[16] "OMIM"
                                    "ONTOLOGYALL"
                                                   "PATH"
                                                                  "PFAM"
                    "ONTOLOGY"
[21] "PMID"
                                    "REFSEQ"
                                                                  "UCSCKG"
                    "PROSITE"
                                                   "SYMBOL"
[26] "UNIPROT"
  head(res)
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 6 columns
                  baseMean log2FoldChange
                                               lfcSE
                                                                  pvalue
                                                          stat
                 <numeric>
                                <numeric> <numeric> <numeric> <numeric>
ENSG00000000003 747.194195
                               -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005
                  0.000000
                                                  NA
                                                            NA
                                                                      NA
ENSG00000000419 520.134160
                                0.2061078 0.101059
                                                      2.039475 0.0414026
ENSG00000000457 322.664844
                                0.0245269 0.145145 0.168982 0.8658106
ENSG00000000460
                 87.682625
                               -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938
                               -1.7322890 3.493601 -0.495846 0.6200029
                  0.319167
                     padj
                <numeric>
ENSG00000000003
                0.163035
ENSG00000000005
                       NA
ENSG00000000419
                 0.176032
ENSG00000000457
                 0.961694
```

My IDs are in the rownames(res) and they are from ENSEMBL.

0.815849

NA

ENSG00000000460

ENSG00000000938

```
res$symbol <- mapIds(org.Hs.eg.db,</pre>
                       keys=rownames(res), # Our genenames
                       keytype="ENSEMBL", # The format of our genenames
                       column="SYMBOL",
                                          # The new format we want to add
                       multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res)
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 7 columns
                  baseMean log2FoldChange
                                             lfcSE
                                                        stat
                                                                pvalue
                 <numeric>
                               <numeric> <numeric> <numeric> <numeric>
ENSG00000000003 747.194195
                               -0.3507030 0.168246 -2.084470 0.0371175
ENSG00000000005
                  0.000000
                                      NA
                                                NA
                                                          NA
                                                                    NA
ENSG00000000419 520.134160
                              0.2061078 0.101059 2.039475 0.0414026
ENSG00000000457 322.664844
                               0.0245269 0.145145 0.168982 0.8658106
ENSG00000000460 87.682625
                              -0.1471420 0.257007 -0.572521 0.5669691
ENSG00000000938
                  0.319167
                              -1.7322890 3.493601 -0.495846 0.6200029
                              symbol
                    padj
                <numeric> <character>
ENSG0000000000 0.163035
                              TSPAN6
ENSG00000000005
                                TNMD
                      NA
ENSG00000000419 0.176032
                                DPM1
ENSG00000000457 0.961694
                               SCYL3
ENSG00000000460 0.815849
                               FIRRM
ENSG00000000938
                                 FGR.
                      NA
We also want "GENENAME" and "ENTREZID"
  res$genename <- mapIds(org.Hs.eg.db,
                       keys=row.names(res),
                       column="GENENAME",
                       keytype="ENSEMBL",
                       multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

```
log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control
DataFrame with 6 rows and 9 columns
```

	baseMean	log2FoldCha	nge	lfcSE	stat	pvalue
	<numeric></numeric>	<numer:< td=""><td>ic></td><td><numeric></numeric></td><td><numeric></numeric></td><td><numeric></numeric></td></numer:<>	ic>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG0000000003	747.194195	-0.35070	030	0.168246	-2.084470	0.0371175
ENSG0000000005	0.000000		NA	NA	NA	NA
ENSG00000000419	520.134160	0.20610	078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.02452	269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.14714	420	0.257007	-0.572521	0.5669691
ENSG00000000938	0.319167	-1.73228	890	3.493601	-0.495846	0.6200029
	padj	symbol			genename	entrez
	<numeric></numeric>	<character></character>		<cl< td=""><td>naracter></td><td><pre><character></character></pre></td></cl<>	naracter>	<pre><character></character></pre>
ENSG00000000003	0.163035	TSPAN6		tetra	aspanin 6	7105
ENSG00000000005	NA	TNMD		ter	nomodulin	64102
ENSG00000000419	0.176032	DPM1 o	doli	.chyl-phos	phate m	8813
ENSG00000000457	0.961694	SCYL3 S	SCY1	like pse	ıdokina	57147
ENSG00000000460	0.815849	FIRRM I	FIGN	IL1 intera	cting r	55732
ENSG00000000938	NA	FGR I	FGR	proto-onco	ogene,	2268

Let's save our results in a new csv file

```
write.csv(res, file="class13_results.csv")
```

Pathway analysis

```
# BiocManager::install( c("pathview", "gage", "gageData") )
```

```
library(pathview)
  library(gage)
  library(gageData)
  data(kegg.sets.hs)
  # Examine the first 2 pathways in this kegg set for humans
  head(kegg.sets.hs, 2)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
              "1066"
                       "10720" "10941"
 [1] "10"
                                         "151531" "1548"
                                                           "1549"
                                                                    "1551"
 [9] "1553"
              "1576"
                       "1577"
                                "1806"
                                         "1807"
                                                           "221223" "2990"
                                                  "1890"
[17] "3251"
              "3614"
                       "3615"
                                "3704"
                                         "51733"
                                                  "54490"
                                                           "54575"
                                                                    "54576"
[25] "54577" "54578" "54579" "54600"
                                                  "54658"
                                         "54657"
                                                           "54659"
                                                                    "54963"
[33] "574537" "64816" "7083"
                                "7084"
                                         "7172"
                                                  "7363"
                                                           "7364"
                                                                    "7365"
[41] "7366"
              "7367"
                       "7371"
                                "7372"
                                         "7378"
                                                  "7498"
                                                           "79799"
                                                                    "83549"
                       "9"
[49] "8824"
              "8833"
                                "978"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
       7105
                  64102
                               8813
                                          57147
                                                      55732
                                                                   2268
-0.35070302
                     NA 0.20610777 0.02452695 -0.14714205 -1.73228897
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  head(keggres$less)
                                                         p.geomean stat.mean
hsa05332 Graft-versus-host disease
                                                      0.0004250461 -3.473346
hsa04940 Type I diabetes mellitus
                                                      0.0017820293 -3.002352
hsa05310 Asthma
                                                      0.0020045888 -3.009050
hsa04672 Intestinal immune network for IgA production 0.0060434515 -2.560547
hsa05330 Allograft rejection
                                                      0.0073678825 -2.501419
```

hsa04340	Hedgehog signaling pathway		0.0133239547	-2.248547
			p.val	q.val
hsa05332	Graft-versus-host disease		0.0004250461	0.09053483
hsa04940	Type I diabetes mellitus		0.0017820293	0.14232581
hsa05310	Asthma		0.0020045888	0.14232581
hsa04672	Intestinal immune network for	IgA production	0.0060434515	0.31387180
hsa05330	Allograft rejection		0.0073678825	0.31387180
hsa04340	Hedgehog signaling pathway		0.0133239547	0.47300039
			set.size	exp1
hsa05332	Graft-versus-host disease		40 0.00	004250461
hsa04940	Type I diabetes mellitus		42 0.00	017820293
hsa05310	Asthma		29 0.00	020045888
hsa04672	Intestinal immune network for	IgA production	47 0.00	060434515
hsa05330	Allograft rejection		36 0.00	073678825
hsa04340	Hedgehog signaling pathway		56 0.0	133239547

pathview(gene.data=foldchanges, pathway.id="hsa05310")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/aliceee/Desktop/BIMM 143/class13

Info: Writing image file hsa05310.pathview.png

