

The nonlinear Poisson equation via a Newton-imbedding procedure

Jonathan J. Sarhad

Abstract

This article considers the semilinear boundary value problem given by the Poisson equation, $-\Delta u = f(u)$ in a bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary. For the zero boundary value case, we approximate a solution using the Newton-imbedding procedure. With the assumptions that f , f' , and f'' are bounded functions on \mathbb{R} , with $f' < 0$, and $\Omega \subset \mathbb{R}^3$, the Newton-imbedding procedure yields a continuous solution. This study is in response to an independent work which applies the same procedure, but assuming that f' maps the Sobolev space $H^1(\Omega)$ to the space of Hölder continuous functions $C^\alpha(\bar{\Omega})$, and $f(u)$, $f'(u)$, and $f''(u)$ have uniform bounds. In the first part of this article, we prove that these assumptions force f to be a constant function. In the remainder of the article, we prove the existence, uniqueness, and H^2 -regularity in the linear elliptic problem given by each iteration of Newton's method. We then use the regularity estimate to achieve convergence.

0 Introduction

The goal of this article is to find suitable hypotheses on a function $f \in C^2(\mathbb{R})$ related to attaining a solution to the semilinear boundary value problem given by

$$(*) \begin{cases} -\Delta u &= f(u) & \text{in } \Omega \\ u|_\Gamma &= \phi & \text{on } \Gamma = \partial\Omega, \end{cases}$$

using the Newton-imbedding procedure that is applied in [2]. Here, $f(u)$ is defined as $f \circ u$. *In this sense f can be viewed as a map from a space of real-valued functions to another space of real valued functions via composition.* In addition, $H^k(\Omega)$ is defined as the L^2 functions on Ω having (weak) i^{th} derivatives ($1 \leq |i| \leq k$) which are L^2 functions on Ω . This is the Hilbert space notation substituted for the Sobolev space notation $W^{k,2}(\Omega)$. The space of real-valued functions on Ω which are Hölder continuous with exponent α will be denoted $C^\alpha(\bar{\Omega})$. The author of [2] achieves an H^2 solution when Ω is a domain in \mathbb{R}^3 and Γ is smooth, provided the following assumptions on f hold:

- 1. f is a continuous map from $H^2(\Omega)$ to $L^2(\Omega)$.
- 2. f' and f'' are continuous maps from $H^1(\Omega)$ to $C^\alpha(\bar{\Omega})$, $\alpha \in (0, \frac{1}{2}]$.

- 3. There exists a constant $M > 0$ such that

$$\|f(u)\|_{L^2(\Omega)} \leq M \text{ for all } u \in H^2(\Omega), \quad \|f'(u)\|_{C^\alpha(\bar{\Omega})} \leq M \text{ for all } u \in H^1(\Omega),$$

$$\text{and } \|f''(u)\|_{C^\alpha(\bar{\Omega})} \leq M \text{ for all } u \in H^1(\Omega).$$

- 4. $(-f')$ is positive in the sense that $(-f'(u)v, v) > 0$ for all $0 \neq v \in H^2(\Omega)$

An additional condition in [2] is the choice of a *uniform width* of time intervals in the procedure that ensures convergence, which exists as a consequence of the above assumptions. However, we prove the following theorems in Sections 2 and 3 of this article:

Theorem. 2.1 *If $f : \mathbb{R} \rightarrow \mathbb{R}$ is a map from $H^1(\Omega)$ to $C^0(\bar{\Omega})$ via composition and Ω is a domain in \mathbb{R}^n with $n > 2$, then f is a constant function.*

Theorem. 3.1 *Let $h : \mathbb{R} \rightarrow \mathbb{R}$ map $H^2(\Omega) \cap H_0^1(\Omega)$ to $L^p(\Omega)$ via composition, where $1 \leq p \leq \infty$ and Ω is domain in \mathbb{R}^n . If there exists a constant $M > 0$ such that $\|h(u)\|_{L^p} \leq M$ for all $u \in H^2(\Omega) \cap H_0^1(\Omega)$, then h is a bounded function on \mathbb{R} , i.e. there exists a constant $C > 0$ such that $|h(x)| \leq C$ for all $x \in \mathbb{R}$.*

By Theorem 2.1, the assumption in (2) that f' maps H^1 to C^α forces f' to be a constant function. Theorem 3.1 shows that the uniform bound on $f(u)$ in assumption (3) forces f to be a bounded function on \mathbb{R} . Thus f is shown to be linear and bounded on \mathbb{R} , and is therefore a constant function, reducing the scope of the procedure in [2] to the family of problems given by $-\Delta u = \text{const.}$

In Section 1 of this article, we construct a ‘mesa’ function (see Figure 1 in Section 1) whose existence in $H^1(\Omega)$ will serve as a counterexample to a non-constant mapping. In Section 2, the mesa function is used to prove Theorem 2.1. In Section 3, Theorem 3.1 is proven using a sequence of smooth ‘bump’ functions in H^2 . As a consequence of this, the uniform bounds also imposed in (3) on $f'(u)$ and $f''(u)$ imply that f' and f'' are also bounded functions on \mathbb{R} . In Section 4, we describe and apply the Newton-imbedding procedure to the case of (*) with a zero boundary condition. Of primary importance in the procedure is the following linear boundary value problem,

$$(**) \begin{cases} -\Delta u + q(x)u &= g(x) & \text{in } \Omega \\ u|_\Gamma &= 0 & \text{on } \Gamma, \end{cases}$$

given by each iteration in the Newton-imbedding procedure. Here, $q(x)$ is a positive scaling of $(-f')$ while $g(x)$ depends on f and f' in a manner that allows $g \in L^2$ under our assumptions. The exact hypotheses on q and g will be made precise in Section 4. As in [2], the assumption that $q > 0$ allows for existence and uniqueness for (**) in H^1 , as well as the regularity lifting of the H^1 solution to H^2 . For the remainder of the article, it will be understood that (**) is the general boundary value problem stated above, with the conditions that $g \in L^2$ and $q > 0$. Under the following assumptions on f ,

- I. f is a continuous map from $H^2(\Omega)$ to $L^2(\Omega)$.
- II. f' and f'' are continuous maps from $H^1(\Omega)$ to $L^n(\Omega)$
- III. there exists a constant $M > 0$ such that

$$|f| \leq M, \quad |f'| \leq M, \quad \text{and} \quad |f''| \leq M.$$

- IV. $(-f') > 0$,

we prove existence and uniqueness for $(**)$ in Section 5, and achieve the regularity lifting of an H_0^1 solution of $(**)$ to H^2 in Section 6. These results are summarized in the following theorem:

Theorem. 6.1 *Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary Γ and $n > 2$. Then for $g \in L^2(\Omega)$, $q \in L^n(\Omega)$, and $q > 0$, the linear boundary value problem*

$$(**) \begin{cases} -\Delta u + q(x)u = g(x) & \text{in } \Omega \\ u|_{\Gamma} = 0 & \text{on } \Gamma, \end{cases}$$

has a unique solution $u \in H^2(\Omega) \cap H_0^1$ with

$$\|u\|_{H^2(\Omega)} \leq C(\|g\|_{L^2(\Omega)}),$$

where C depends only on Ω , n , and q .

In Section 7, under an additional assumption (V) concerning the uniform width of time intervals in the procedure, convergence in the procedure is achieved resulting in the following theorem:

Theorem. 7.1 *With Ω a bounded domain in \mathbb{R}^3 with smooth boundary and assumptions (I)-(V), the semilinear boundary value problem,*

$$(*)' \begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ u|_{\Gamma} = 0 & \text{on } \Gamma = \partial\Omega, \end{cases}$$

has a unique solution in $H^2(\Omega) \cap H_0^1(\Omega)$, and hence a continuous solution, which can be approximated by the Newton-imbedding procedure.

1 The Mesa Function

Let Ω be a domain in \mathbb{R}^n with $n > 2$ and let $c \in \Omega$. Since the function will be radially symmetric about c , define $r = |x - c|$ for $x \in \Omega$, and $T > 0$ such that $B(c, T) \subset \subset \Omega$, where $B(c, T)$ denotes the open ball of radius T about c . Also let $a, b \in \mathbb{R}$ with $a < b$, and $\alpha \in (0, \frac{n-2}{2})$. In order to define the function, it is

necessary to decompose the interval $[0, T]$ as follows:

If we let $r_1^+ = \frac{T}{2}$, then there is an s_1^+ such that

$$\frac{1}{(s_1^+)^{\alpha}} - \frac{1}{(r_1^+)^{\alpha}} = b - a.$$

In particular, $0 < s_1^+ < r_1^+$. Setting $s_1^- = \frac{s_1^+}{2}$ allows for an r_1^- such that

$$\frac{1}{(r_1^-)^{\alpha}} - \frac{1}{(s_1^-)^{\alpha}} = b - a.$$

In particular, $0 < r_1^- < s_1^-$. Continuing in this manner, set $r_{m+1}^+ = \frac{r_m^-}{2}$.

Note that $r_{m+1}^+ > 0$ for all m and r_{m+1}^+ goes to zero with $\frac{1}{2^m}$.

Using the above notation, let $U : \Omega \rightarrow \mathbb{R}$ be the radially symmetric piecewise function defined inductively by

$$U(r) = \begin{cases} 0 & , \quad r \geq T \\ (\frac{-2a}{T})r + 2a & , \quad r_1^+ \leq r \leq T \\ \frac{1}{r^{\alpha}} - \frac{1}{(r_m^+)^{\alpha}} + a & , \quad s_m^+ \leq r \leq r_m^+ \\ b & , \quad s_m^- \leq r \leq s_m^+ \\ b - (\frac{1}{r^{\alpha}} - \frac{1}{(s_m^-)^{\alpha}}) & , \quad r_m^- \leq r \leq s_m^- \\ a & , \quad r_{m+1}^+ \leq r \leq r_m^- \end{cases}$$

We will call $U(r)$ a *mesa* function with exponent α . Figure 1, below, is a sketch of a mesa function whose partition points have been altered to show more ‘mesas’.

U is bounded and has compact support, so is trivially in $L^2(\Omega)$. It remains to show that it has (weak) first derivatives in $L^2(\Omega)$. The proposed first derivatives are given by

Figure 1: Artist's depiction of a mesa function

$$U_{x_i}(r) = \begin{cases} 0 & , \quad r \geq T \\ \frac{-2a}{T} & , \quad r_1^+ \leq r \leq T \\ \frac{-\alpha x_i}{r^{\alpha+2}} & , \quad s_m^+ \leq r \leq s_m^+ \\ 0 & , \quad s_m^- < r \leq s_m^+ \\ \frac{\alpha x_i}{r^{\alpha+2}} & , \quad r_m^- < r \leq s_m^- \\ 0 & , \quad r_{m+1}^+ < r \leq r_m^- . \end{cases}$$

Away from zero, on each annulus of the decomposed Ω , the expressions in U_{x_i} are classical derivatives of their corresponding expressions in $U(r)$. Let $\phi \in C_0^\infty(\Omega)$ and fix N . Integrating $U\phi_{x_i}$ by parts over the annuli given by $[r_1^+, T]$, $[s_m^+, r_m^+]$, $[s_m^-, s_m^+]$, $[r_m^-, s_m^-]$, and $[r_{m+1}^+, r_m^-]$ for $m = 1, \dots, N$ and recalling that $U \equiv 0$ for $r \geq T$, gives

$$\int_{\Omega - B(c, r_{N+1}^+)} U\phi_{x_i} dx = - \int_{\Omega - B(c, r_{N+1}^+)} U_{x_i}\phi dx + \int_{\partial B(c, r_{N+1}^+)} U\phi \rho^i dS,$$

where $\rho = (\rho^1, \dots, \rho^n)$ is the inward pointing normal on $\partial B(c, r_{N+1}^+)$.

Let $u(r) = \frac{1}{r^\alpha}$. Note that $|U_{x_i}| \leq |u_{x_i}|$, so that $|DU| \leq |Du|$.

Following the line of argument [1, p.246] given by L. Evans, since $\alpha < n - 1$, $|Du| = \frac{\alpha}{r^{\alpha+1}} \in L^1(\Omega)$ and therefore $|DU| \in L^1(\Omega)$.

Letting $N \rightarrow \infty$ (and thus $r_{N+1}^+ \rightarrow 0$),

$$\left| \int_{\partial B(c, r_{N+1}^+)} U \phi \rho^i dS \right| \leq \|U\phi\|_\infty \int_{\partial B(c, r_{N+1}^+)} \rho^i dS \leq M(r_{N+1}^+)^{n-1} \rightarrow 0,$$

$$\text{hence } \int_{\Omega} U \phi_{x_i} dx = - \int_{\Omega} U_{x_i} \phi dx.$$

Therefore U_{x_i} is a (weak) derivative of U . Moreover, since $\alpha < \frac{n-2}{2}$,

following the argument in [1, p.246], $|Du| \in L^2(\Omega)$ and thus $|DU| \in L^2(\Omega)$ and $U(r) \in H^1(\Omega)$. The following lemma summarizes the above discussion:

Lemma 1.1 *If Ω is a domain in \mathbb{R}^n with $n > 2$, and $U(r)$ is a mesa function with exponent $\alpha < \frac{n-2}{2}$, then $U(r) \in H^1(\Omega)$.*

2 Constant Mapping

Theorem. 2.1 *If $f : \mathbb{R} \rightarrow \mathbb{R}$ is a map from $H^1(\Omega)$ to $C^0(\bar{\Omega})$ via composition and Ω is a domain in \mathbb{R}^n with $n > 2$, then f is a constant function.*

Proof. Suppose on the contrary, that f is not constant and assumes distinct values at a and b . Without loss of generality, assume that $a < b$. Let $c \in \Omega$ and T be such that $B(c, T) \subset \subset \Omega$. Since $n > 2$, there exists α such that $0 < \alpha < \frac{n-2}{2}$. Let $U(r)$ be the mesa function centered at c , with exponent α , support in $B(c, T)$, and prescribed maximum and minimum, b and a , respectively. By the above lemma, $U(r) \in H^1(\Omega)$. Using the notation in the previous section for the domain of $U(r)$, it holds that for any $\delta > 0$ there exists an N such that $[s_N^-, s_N^+] \subset B(c, \delta)$ and $[r_{N+1}^+, r_N^-] \subset B(c, \delta)$. Note that $f \circ U \equiv f(b)$ on $[s_N^-, s_N^+]$ and $f \circ U \equiv f(a)$ on $[r_{N+1}^+, r_N^-]$. Since the measure of the above intervals is strictly positive, $f \circ U$ has no continuous representative. In other words, the oscillations of $f \circ U$ do not diminish in any neighborhood of c . This contradicts the hypothesis that f maps U to a continuous function. \square

Now, as an immediate application of Theorem 2.1, the assumption in (2) that f' maps H^1 into continuous functions forces f' to be constant.

3 Uniform Bounds

For this Section we assume Ω is a domain in \mathbb{R}^n .

Theorem. 3.1 *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ map $H^2(\Omega) \cap H_0^1(\Omega)$ to $L^p(\Omega)$ where $1 \leq p \leq \infty$. If there exists a constant $M > 0$ such that $\|f(u)\|_{L^p} \leq M$ for all $u \in H^2(\Omega) \cap H_0^1(\Omega)$, then f is a bounded function on \mathbb{R} , i.e. there exists a constant $C > 0$ such that $|f(x)| \leq C$ for all $x \in \mathbb{R}$.*

Proof. Let $p < \infty$. Suppose on the contrary, that f is not bounded. Then there exists a sequence, $\{x_k\}_{k=1}^\infty$ in \mathbb{R} such that $|f(x_k)| > k$. Let $y_0 \in \Omega$ and r such that $B = B(y_0, r) \subset \subset \Omega$. Set $B_{\frac{1}{2}} = B(y_0, \frac{r}{2})$. Choose a smooth function, γ , such that $\gamma \equiv 1$ on $B_{\frac{1}{2}}$, $\gamma \equiv 0$ on $\Omega - B$, and $0 \leq \gamma \leq 1$. Define the smooth function u_k on Ω by $u_k = x_k \gamma$. Then $u_k \in H^2(\Omega) \cap H_0^1(\Omega)$ for all k and

$$\|f(u_k)\|_{L^p(\Omega)} \geq \|f(u_k)\|_{L^p(B_{\frac{1}{2}})} = \|f(x_k)\|_{L^p(B_{\frac{1}{2}})} > k |B_{\frac{1}{2}}|^{\frac{1}{p}}.$$

Choosing k_0 large enough such that $k_0 |B_{\frac{1}{2}}|^{\frac{1}{p}} > M$ gives a contradiction. If $p = \infty$, a similar computation holds, choosing $k_0 > M$. \square

Remark: Since the C^α norm has the L^∞ norm as a summand, Theorem 5.1 with $p = \infty$ suffices to show that a uniform bound on $\|f(u)\|_{C^\alpha}$ implies f is bounded. Therefore the assumptions made in [2], imply that f , f' , and f'' are bounded functions. Moreover, under the same assumptions, as shown in the previous Section, f is linear. In this case f is a constant, reducing the scope of the procedure to problems given by $-\Delta u = const$.

4 Newton-imbedding Procedure

The Newton-imbedding procedure we wish to apply to

$$(*)' \begin{cases} -\Delta u &= f(u) & \text{in } \Omega \\ u|_\Gamma &= 0 & \text{on } \Gamma = \partial\Omega, \end{cases}$$

has two parts. It is well described in [2], but recalled here for clarity. The procedure first imbeds the problem in a one-parameter family of problems,

$$-\Delta u = tf(u) \quad \text{in } \Omega$$

with $u = 0$ on Γ and parameter $t \in [0, 1]$. We set

$$F_t(u) = \Delta u + tf(u).$$

Solving $(*)'$ is then a matter of solving $F_1(u) = 0$. Let $u(x, t)$ be the solution to $F_t(u) = 0$. Starting with $t_0 = 0$, the problem is solved with solution $u(x, 0)$ in Ω .

Observe that with boundary value zero imposed, $u(x, 0)$ is uniquely determined as $u(x, 0) \equiv 0$. To solve $F_{t_1}(u) = 0$, $u(x, 0)$ is taken as an initial approximation and the standard Newton's method is applied. With convergence, the solution $u(x, t_1)$ to $F_{t_1}(u) = 0$ is achieved. The function $u(x, t_1)$ is then used as an initial approximation for $F_{t_2}(u) = 0$ and so on for increasing times t_j . Thus the solutions are pushed along with increasing times using Newton's method with the goal of reaching $t = 1$ in finitely many time shifts. Let $u_0(x, t_j) = u(x, t_{j-1})$, the initial approximation for $F_{t_j}(u) = 0$ and $u_m(x, t_j)$ be the m^{th} iteration of Newton's method at time t_j . In the following discussion, the argument of the u_m 's will be suppressed. We will also temporarily use the symbol D for the Frechet derivative in contrast to its usual use as the gradient. Note that

$$DF_{t_j}(u_m)[w] = \Delta w + t_j Df(u_m)[w] \quad \text{and} \quad Df(u_m)[w] = f'(u_m)w$$

for $w \in H^2(\Omega)$ and that the $(m+1)^{\text{th}}$ iterate in the Newton approximation is given by

$$DF_{t_j}(u_m)[u_{m+1} - u_m] = -F_{t_j}(u_m).$$

In this case, the $(m+1)^{\text{th}}$ iteration at time t_j yields the following linear problem:

$$(**) \begin{cases} -\Delta u_{m+1} + (-t_j f'(u_m))(u_{m+1}) &= t_j(f(u_m) - f'(u_m)u_m) & \text{in } \Omega \\ u_{m+1}|_\Gamma &= 0 & \text{on } \Gamma. \end{cases}$$

This is the problem

$$(**) \begin{cases} -\Delta u + q(x)u &= g(x) & \text{in } \Omega \\ u|_\Gamma &= 0 & \text{on } \Gamma, \end{cases}$$

stated in the introduction with

$$q = -t_j f'(u_m), \quad g = t_j[f(u_m) + f'(u_m)u_m], \quad \text{and} \quad v = u_{m+1}.$$

Initially, a weak solution in H_0^1 is desired, so it makes sense that u be in H_0^1 and that f and f' should be defined on H_0^1 . However, as will be shown in Section 6, an H_0^1 solution to $(**)$ is also in H^2 . In light of this, f and f' need only be defined on H^2 . Note that if f maps H^2 to L^2 and f' maps H^2 to L^n , then g is in L^2 for all dimensions $n > 2$, via the Sobolev imbedding theorem. Indeed, since u is in H^1 , u is again in $L^{\frac{2n}{n-2}}$ and the Hölder inequality gives

$$\int_{\Omega} [f'(u)u]^2 \leq C \|f'(u)\|_{L^n}^2 \|u\|_{L^{\frac{2n}{n-2}}}^2.$$

To fullfill the positivity condition on q in $(**)$, we impose that $-f' > 0$. Now, at each time $t_j > 0$ and for all m , the m^{th} step in the iteration at time t_j is a model for $(**)$.

For the remainder of the article, we assume Ω is a bounded domain in $\mathbb{R}^{n>2}$ with smooth boundary Γ and make the following assumptions (I)-(IV) on the nonlinear function f :

- I. f is a continuous map from $H^2(\Omega)$ to $L^2(\Omega)$.
- II. f' and f'' are continuous maps from $H^1(\Omega)$ to $L^n(\Omega)$
- III. there exists a constant $M > 0$ such that

$$|f| \leq M, \quad |f'| \leq M, \quad \text{and} \quad |f''| \leq M.$$

- IV. $(-f') > 0$.

Remark: There is a redundancy and lack of ‘sharpness’ in assumptions (I) and (II), given (III). Indeed, if the functions f , f' , and f'' are bounded, they naturally map to bounded functions on Ω , and hence to $L^\infty(\Omega)$ which is contained in $L^p(\Omega)$ for all $p \geq 1$ since Ω is bounded. The reason for stating L^2 explicitly is that it is a *familiar* assumption for framing weak solutions to linear elliptic problems. The bounds on the functions are not necessary to existence and uniqueness in (**), nor to the regularity lifting of the H_0^1 solution to H^2 . Moreover, the L^2 hypothesis on f and the L^n hypothesis on f' are sufficient for existence and uniqueness and the regularity lifting. For a more general treatment of elliptic equations with measurable coefficients, see [3].

5 Existence and Uniqueness

For this Section, we assume (I), (II), and (IV). To prove existance and uniqueness for (**) in $H_0^1(\Omega)$ (H^1 functions with zero on the boundary), the Riesz Representation theorem is sufficient. We seek a unique solution in $H_0^1(\Omega)$. The associated energy form for (**) is

$$B(u, v) = \int_{\Omega} Du Dv + quv.$$

It is well defined on $H_0^1(\Omega)$. Indeed, since $n > 2$ and $u, v \in H_0^1(\Omega)$, then $u, v \in L^{\frac{2n}{n-2}}(\Omega)$ by the Sobolev imbedding theorem. Also since Ω is bounded, if $q \in L^n(\Omega)$, then $q \in L^{\frac{n}{2}}(\Omega)$. Note that

$$\frac{2}{n} + \frac{n-2}{2n} + \frac{n-2}{2n} = 1.$$

Therefore by Hölder’s inequality, quv is integrable over Ω with

$$\int_{\Omega} |quv| \leq \|q\|_{L^{\frac{n}{2}}} \|u\|_{L^{\frac{2n}{n-2}}} \|v\|_{L^{\frac{2n}{n-2}}}.$$

This inequality combined with the Sobolev inequality

$$\|u\|_{L^{\frac{2n}{n-2}}} \leq C \|u\|_{H_0^1}$$

gives

$$|B(u, v)| \leq C\|u\|_{H_0^1}\|v\|_{H_0^1}$$

where $C > 0$ is dependent on Ω , n , and $\|q\|_{L^{\frac{n}{2}}}$ but not on u and v . By the Poincaré inequality and the positivity of q , we have

$$\|u\|_{H_0^1}^2 \leq C \int_{\Omega} |Du|^2 \leq C \int_{\Omega} |Du|^2 + qu^2 = CB(u, u)$$

where $C > 0$ is dependent on n and Ω but not on u . Since $f \in L^2(\Omega)$, it is a bounded linear functional on $H_0^1(\Omega)$ [1]. Since $B(u, v)$ is an inner product on H_0^1 , the Riesz Representation theorem provides a unique $u^* \in H_0^1(\Omega)$ such that

$$B(u^*, v) = \int_{\Omega} fv \quad \text{for all } v \in H_0^1.$$

In other words, u^* is the unique weak solution to $(**)$ in H_0^1 .

6 Regularity

With the same hypotheses as in the previous Section, we wish to lift the regularity of the unique solution to $(**)$ from H_0^1 to H^2 , with the estimate controlled by the L^2 norm of $g(x)$. Theorem 6.3.4 (Boundary H^2 -regularity) in [1] gives the desired regularity lifting of a solution to $(**)$ when $q \in L^\infty$. However, the L^∞ condition is only used in factoring out $\|q\|_{L^\infty}$ from the following integral to find, for $u, v \in H^1$ and $\epsilon > 0$ in Cauchy's inequality,

$$\int |quv| \leq \|q\|_{L^\infty} \int |uv| \leq C \left(\frac{1}{2\epsilon} \|u\|_{L^2}^2 + \frac{\epsilon}{2} \|v\|_{L^2}^2 \right).$$

The L^n hypothesis on q provides,

$$\begin{aligned} \int |quv| &\leq \frac{1}{2\epsilon} \|cu\|_{L^2}^2 + \frac{\epsilon}{2} \|v\|_{L^2}^2 \leq \frac{1}{2\epsilon} \left(\|q\|_{L^n}^2 \|u\|_{L^{\frac{2n}{n-2}}}^2 \right) + \frac{\epsilon}{2} \|v\|_{L^2}^2 \\ &\leq C \left(\frac{\epsilon}{2} \|u\|_{H^1}^2 + \frac{\epsilon}{2} \|v\|_{L^2}^2 \right) \leq C \left(\frac{\epsilon}{2} \|Du\|_{L^2}^2 + \frac{\epsilon}{2} \|v\|_{L^2}^2 \right) \end{aligned}$$

by Hölder's inequality, the Sobolev imbedding theorem and Poincaré's inequality. By the above estimates, we have also

$$\int (cu)^2 \leq M \|Du\|_{L^2}^2.$$

Following the line of reasoning in [1], the result for $q \in L^n$ is a sufficient replacement for the estimate for L^∞ to get the regularity estimate,

$$\|u\|_{H^2(\Omega)} \leq C (\|g\|_{L^2(\Omega)} + \|u\|_{H^1(\Omega)})$$

where C depends only on Ω and n and q . Now, recalling the second energy estimate above,

$$\|u\|_{H^1(\Omega)}^2 \leq CB(u, u) = C \int_{\Omega} gu \leq C \left(\frac{1}{2} \|g\|_{L^2(\Omega)}^2 + \frac{1}{2} \|u\|_{L^2(\Omega)}^2 \right).$$

since u is a weak solution to (**). The last inequality is given by Cauchy's inequality with $\epsilon = 1$. Also since u is a unique solution, the L^2 norm of u is controlled by the L^2 norm of g by Theorem 6.2.6 in [1]. Therefore,

$$\|u\|_{H^2(\Omega)} \leq C \|g\|_{L^2(\Omega)},$$

where C depends only on Ω , n , and more significantly, q .

To summarize the results in Sections 5 and 6, we have:

Theorem. 6.1 *Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary Γ and $n > 2$. Then for $g \in L^2(\Omega)$, $q \in L^n(\Omega)$, and $q > 0$, the linear boundary value problem*

$$(**) \begin{cases} -\Delta u + q(x)u &= g(x) & \text{in } \Omega \\ u|_{\Gamma} &= 0 & \text{on } \Gamma, \end{cases}$$

has a unique solution $u \in H^2(\Omega) \cap H_0^1$ with

$$\|u\|_{H^2(\Omega)} \leq C(\|g\|_{L^2(\Omega)}),$$

where C depends only on Ω , n , and q .

7 Convergence

In the previous two Sections, it was shown that (**) is uniquely solvable in H^1 and the solution is *a priori* in H^2 with estimate controlled by the forcing term g . Recalling that (**) represents an arbitrary iteration of Newton's method at time t_j , the linear equation solved by the difference, $u_{m+1} - u_m$ for $m > 1$, is given by

$$\begin{aligned} &-\Delta(u_{m+1} - u_m) + (-t_j f'(u_m))(u_{m+1} - u_m) \\ &= t_j(f(u_m) - f(u_{m-1}) - f'(u_{m-1})(u_m - u_{m-1})) && \text{in } \Omega \\ &\quad u_{m+1} - u_m = 0 && \text{on } \Gamma. \end{aligned}$$

This is (**) with

$$v = u_{m+1} - u_m, \quad q = -t_j f'(u_m),$$

$$g = t_j(f(u_m) - f(u_{m-1}) - f'(u_{m-1})(u_m - u_{m-1})),$$

and a zero boundary condition. Indeed, using the same argument as at the end of Section 3, it is clear that $g \in L^2$. For $m = 0$, by the definition of u_0 at time t_j , the problem satisfied by $u_1 - u_0$ is

$$\begin{aligned} & -\Delta(u_1 - u_0) + (-t_j f'(u_0))(u_1 - u_0) \\ &= (t_j - t_{j-1})f(u_0) \quad \text{in } \Omega \\ & u_1 - u_0 = 0 \quad \text{on } \Gamma, \end{aligned}$$

and is again a model for (**). To facilitate the convergence estimates to follow, it will be helpful to use Taylor's theorem to simplify g . Similar to the application of a mean value theorem used in [2], for $m > 1$, g can be written as

$$g = t_j(u_m - u_{m-1})^2 \int_{(0,1)} f''(\tau u_m + (1-\tau)u_{m-1})(1-\tau)d\tau.$$

Theorem 6.1 and the boundedness of f'' give the estimate,

$$\begin{aligned} \|u_{m+1} - u_m\|_{H^2} &\leq C \|t_j(u_m - u_{m-1})^2 \int_{(0,1)} f''(\tau u_m + (1-\tau)u_{m-1})(1-\tau)d\tau\|_{L^2} \\ &\leq \frac{Ct_j M}{2} \|(u_m - u_{m-1})^2\|_{L^2} \\ &\leq \frac{Ct_j M}{2} \|(u_m - u_{m-1})\|_{L^4}^2. \end{aligned}$$

Before progressing with the estimate, it is important to discuss the dependence on dimension. For dimensions $n = 3$ and $n = 4$, the L^4 norm is controlled by the H^1 norm, by the Sobolev imbedding theorem, which in turn is controlled by the H^2 norm. For dimensions $n = 5, 6, 7$, and 8 , the L^4 norm is controlled by the H^2 norm, via the more general Sobolev inequality [1,p.270]. The subsequent calculations do not depend on which dimension $n \in (3, 4, 5, 6, 7, 8)$ is assumed. However, only in dimension $n = 3$ does the general Sobolev theorem assure that our H^2 solution is indeed continuous. For $n = 5, 6, 7$, and 8 , the H^2 solution is respectively, L^{10} , L^6 , $L^{\frac{14}{3}}$, and L^4 . To continue with the convergence estimate, for $n \in (3, 4, 5, 6, 7, 8)$, we have

$$\frac{Ct_j M}{2} \|(u_m - u_{m-1})\|_{L^4}^2 \leq \frac{Ct_j M C_s}{2} \|(u_m - u_{m-1})\|_{H^2}^2$$

where C_s is the constant from the Sobolev theorem and only depends on Ω and n . Since in Theorem 6.1, C depends on $\|f'(u_m(x, t_j))\|_{L^n}$ and hence m and t_j , we invoke the boundedness of f' . Therefore $\|f'(u_m(x, t_j))\|_{L^n}$ is bounded by some constant $C > 0$, uniformly over m and t_j . Let $K = \frac{C M C_s}{2}$. Inductively,

$$\|u_{m+1} - u_m\|_{H^2} \leq (t_j K \|u_1 - u_0\|_{H^2})^{2^m - 1} \|u_1 - u_0\|_{H^2}$$

and therefore for $s \in \mathbb{N}$,

$$\|u_{m+s} - u_m\|_{H^2} \leq [a^{2^{m+s-1}-1} + \dots + a^{2^m-1}] \|u_1 - u_0\|_{H^2}$$

where $a = t_j K \|u_1 - u_0\|_{H^2}$. If t_j is chosen such that $a < 1$, then the positive expression in brackets above is bounded from above by the tail end of a convergent geometric series, and therefore goes to zero as $m \rightarrow \infty$. We have now shown that u_m is a Cauchy sequence in the Banach space $H^2(\Omega)$, and therefore converges to some $u^* \in H^2(\Omega)$. As stated in [2], due to the continuity of f and the boundedness of f' , it is clear that u^* satisfies

$$(*)' \begin{cases} -\Delta u &= t_j f(u) & \text{in } \Omega \\ u|_\Gamma &= 0 & \text{on } \Gamma \end{cases}$$

almost everywhere and that the uniqueness of the solution u^* follows from the uniqueness of the solution $u_m(x, t_j)$ to $(**)$ for each m and t_j . One additional assumption is necessary for t_j to be chosen as above, as well as for progressing to $t = 1$ in finitely many applications of Newton's method. Assumption (V) will be a condition on the width of the time intervals $t_j - t_{j-1}$. To make this precise we look at the problem satisfied by $u_1 - u_0$ at time t_j and apply Theorem 6.1 and the boundedness of f and f' to estimate,

$$\|u_1 - u_0\|_{H^2} \leq C \|(t_j - t_{j-1})f(u_0)\|_{L^2}$$

$$\leq C(t_j - t_{j-1}) \|f(u_0)\|_{L^2} \leq MC(t_j - t_{j-1}).$$

If $A = MC$, then A depends on the bounds on f and f' , the volume of Ω , and n , but not on t_j . In the following inequality,

$$Kt_j \|u_1 - u_0\|_{H^2} \leq KA(t_j - t_{j-1}) < 1,$$

the condition for convergence was that the leftmost expression be < 1 . Since $t_j \leq 1$ for all j , it suffices to make the assumption (V):

- V. For each $j \geq 1$, $t_j - t_{j-1} < \frac{1}{KA}$

As KA only depends on Ω , $p = 2$, n , and M , (and in particular, not j), KA gives a uniform bound on the time intervals, and therefore $t = 1$ is attainable after finitely many applications of Newton's method. When Ω is a domain in \mathbb{R}^3 , the H^2 solution is then continuous by the general Sobolev imbedding theorem. We now list assumptions (I)-(V) and state the main result.

- I. f is a continuous map from $H^2(\Omega)$ to $L^2(\Omega)$.
- II. f' and f'' are continuous maps from $H^1(\Omega)$ to $L^n(\Omega)$
- III. there exists a constant $M > 0$ such that

$$|f| \leq M, \quad |f'| \leq M, \quad \text{and} \quad |f''| \leq M.$$

- IV. $(-f') > 0$,
- V. For each $j \geq 1$, $t_j - t_{j-1} < \frac{1}{KA}$

Theorem. 7.1 With Ω a bounded domain in \mathbb{R}^3 with smooth boundary and assumptions (I)-(V), the semilinear boundary value problem,

$$(*)' \begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ u|_\Gamma = 0 & \text{on } \Gamma = \partial\Omega, \end{cases}$$

has a unique solution in $H^2(\Omega) \cap H_0^1(\Omega)$, and hence a continuous solution, which can be approximated by the Newton-imbedding method.

8 Conclusion

The goal for improving this procedure is to weaken the assumptions on f and f' . In particular, to eliminate the boundedness or equivalently the uniform boundedness of $f(u)$ and $f'(u)$. To do this requires a function f such that $f(u_m(x, t))$ does not grow too fast in L^2 norm as t increases and such that $f'(u_m(x, t))$ does not grow too fast in L^n norm as m and t increase. If the boundedness of f is dropped from the assumptions, a linear function would be allowed, but assumption (IV) would force it to be decreasing. Since the spectrum of $-\Delta$ is positive, $(*)'$ is then solved uniquely with $u \equiv 0$ (which is achieved vacuously in the procedure). An example of a function satisfying (I)-(IV) is

$$f(x) = \cot^{-1}(x)$$

whose derivatives are

$$f'(x) = \frac{-1}{1+x^2} \quad \text{and} \quad f''(x) = \frac{2x}{(1+x^2)^2}.$$

Similarly, if $\epsilon > 0$, $A > 0$, and $h, k \in \mathbb{R}$, then

$$A \cot^{-1} \left(\frac{x-h}{\epsilon} \right) + k$$

represents a family of functions, each of which satisfy (I)-(IV). A subset of this family, given by

$$f_\epsilon(x) = \frac{1}{\pi} \cot^{-1} \left(\frac{x}{\epsilon} \right) - 1,$$

is of interest since

$$f_\epsilon(x) \rightarrow -H \quad \text{as} \quad \epsilon \rightarrow 0$$

$$f'_\epsilon(x) = \frac{-\epsilon}{\epsilon^2 + x^2} \rightarrow -\delta \quad \text{as} \quad \epsilon \rightarrow 0,$$

where H is the Heaviside function and δ is the Dirac delta function and the arrows imply at least pointwise convergence and possibly a more refined limit. It is natural to ask whether the Newton-imbedding procedure can be carried out in a distributional setting with $f = -H$ and whether f_ϵ produces a meaningful approximation to the Heaviside function for small ϵ . More generally, if \mathcal{P} is the class of functions which satisfy (I)-(IV), it is of interest as to which functions exist in a suitable closure of \mathcal{P} . In this case, ‘suitable closure’ can be taken to mean one whose functions allow for the application of the Newton-imbedding procedure in possibly a distributional or more general setting, and produce a solution which can be approximated by applying the procedure to a function in \mathcal{P} .

Acknowledgement

First, I would like to thank Professor Congming Li at the University of Colorado, Boulder for discussion and encouragement. In addition I am grateful for the feedback from Professor James P. Kelliher at the University of California, Riverside and John Huerta at the University of California, Riverside. Finally I would like to thank my advisor, Professor Michel L. Lapidus, for continual support in all of my mathematical endeavors.

References

- [1] Evans, Lawrence C., *Partial Differential Equations*, Graduate Studies in Mathematics **19**, Amer. Math. Soc., Providence, RI, (1998).
- [2] Hsiao, George C., A Newton-imbedding procedure for solutions of semi-linear boundary value problems in Sobolev spaces, *Complex Variables and Elliptic Equations*, Nos.8-11, **51** 1021-1032, (2006).
- [3] Neil S. Trudinger, Linear elliptic operators with measurable coefficients, *Ann. Scuola. Norm. Sup. Pisa, Sci. Fis. Mat.*, **27**, No.3, 265-308, (1973).