Es03: Amplificatore ad emettitore comune con BJT

Gruppo xx.y Mario Rossi, Anna Bianchi [non dimenticate i nomi]

23 ottobre 2150 [idem per la data]

Schema del circuito e misura dei componenti circuitali

Il circuito che implementa un amplificatore ad emettitore comune con BJT é mostrato in figura 1. Il valore dei

Figura 1: Schema circuitale amplificatore ad emettitore comune con BJT.

componenti utilizzati sono (per la nomenclatura riferirsi allo schema di figura 1):

$$R_1 = (\dots \pm \dots) k\Omega$$

$$R_2 = (\dots \pm \dots) k\Omega$$

$$R_C = (\dots \pm \dots) k\Omega$$

$$R_E = (\dots \pm \dots) k\Omega$$

$$C_{in} = (\dots \pm \dots) nF$$

$$C_{out} = (\dots \pm \dots) nF$$

1 Verifica del punto di lavoro

a) Polarizzazione del BJT, misura delle componenti quiescenti

Con V_{IN} sconnesso ed utilizzando il voltmetro digitale rispettivamente con fondo-scala ... per la misura di V_{BE} , ... per quella di V_{CE} e ... per la d.d.p. ai capi di R_C , abbiamo ottenuto i valori riportati in tabella per la misura delle componenti quiescenti di quelle grandezze, confrontati con quelli attesi. Per il calcolo delle incertezze sulle misure di tensione si è considerato....

b) Stima di h_{FE} , verifica della rigidità del partitore

Abbiamo misurato i seguenti valori per le d.d.p. ai capi di R_1 ed R_2 :

$$V_1^Q = (\cdots \pm \ldots) V, \ V_2^Q = (\cdots \pm \ldots) V$$

	misurato	atteso
V_{BE}^{Q}	$(\cdots \pm \ldots) V$	$(\cdots \pm \ldots) V$
V_{CE}^{Q}	$(\cdots \pm \ldots) V$	$(\cdots \pm \ldots)$ V
I_C^Q	$(\cdots \pm \ldots) mA$	$(\cdots \pm \ldots) mA$

Tabella 1: Valori misurati ed attesi per le componenti quiescenti al punto di lavoro del BJT.

da cui, dividendo per le rispettive resistenze e calcolando la differenza, risulta per la corrente quiescente di base:

$$I_1^Q = V_1^Q/R_1 = (\cdots \pm \dots) \mu A, \ I_2^Q = V_2^Q/R_2 = (\cdots \pm \dots) \mu A$$

$$\Rightarrow I_B^Q = I_1^Q - I_2^Q = (\cdots \pm \dots) \mu A$$

Dal rapporto della componente quiescente della corrente di collettore e di quella di base otteniamo infine una stima del guadagno in corrente del transistor di $h_{FE}=\ldots\pm\ldots$

Inserire un commento sulla rigidità del partitore basato sul confronto delle correnti.

2 Risposta a centro-banda

a) Sfasamento

Inviando all' ingresso dell' amplificatore un segnale sinusoidale di frequenza 10 kHz ed ampiezza 200 mV, osserviamo in ingresso/uscita le forme d' onda riportate in figura 2 registrate su Ch1/Ch2 dell' oscilloscopio:

Inserire l'immagine dell'oscilloscopio dopo opportuna regolazione dei fondo-scala.

Figura 2: Segnali di ingresso/uscita per l'amplificatore a centro-banda.

Inserire un commento su quanto osservato ed una misura dello sfasamento tra V_{in} e V_{out} .

b) Misura del guadagno

Fissata la frequenza di V_{IN} al valore precedente, ne abbiamo variato l'ampiezza in un intervallo di linearità dell'uscita. I valori misurati per le ampiezze sono riportati in tabella 2. Spiegare come sono stati ottenuti

Tabella 2: Ampiezza segnali di ingresso/uscita in zona lineare dell' amplficatore

$V_{in} (\mathrm{mV})$	V_{out} (V)
±	±
±	±
±	±
±	±
±	±
±	±
±	±

Mediante interpolazione lineare dei punti misurati otteniamo spiegare con quale funzione avete interpolato i dati il grafico mostrato in figura 3 ed i seguenti parametri del fit:

$$A_v = (\dots \pm \dots)$$

$$\chi^2/ndof = \dots/\dots$$

Inserire sopra il plot di V_{OUT} v
s V_{IN} con la retta di best-fit Inserire sotto il grafico dei residui normalizzati

Figura 3: V_{OUT} in funzione di V_{IN} nella zona di linearità dell'amplificatore, con sovrapposta funzione di best-fit.

c) Limiti di linearità

L' uscita si mantiene lineare finché l' ampiezza dell' ingresso non raggiunge un valore $V_{in} = (\dots \pm \dots) \,\mathrm{mV}$, in corrispondenza del quale si osserva il *clipping* della concavità . . . di V_{out} , come appare nel plot a sinistra di figura 4.

Discutere come in corrispondenza di quel limite il BJT esca dalla zona di linearità.

Clipping di V_{out} sulla sua semi-onda . . .

Clipping di V_{out} su entrambe le semi-onde

Figura 4: Clipping di V_{out} per ampiezza $V_{in} = \dots$ (sinistra) e $V_{in} = \dots$ (destra).

d) Simmetria del clipping e punto di lavoro

Aumentando ulteriormente l'ampiezza dell'ingresso oltre $V_{in} = (\dots \pm \dots)$ mV il segnale di uscita satura anche sulla semi-onda ..., come mostrato a destra in figura 4.

Discutere l'asimmetria del clipping in termini dell'asimmetria del punto di lavoro sulla retta di carico e mettere in relazione ciascuno stato con la polarizzazione del BJT (per una migliore comprensione potrebbe essere utile visualizzare V_B e V_C , quest' ultimo a monte di C_{out} .)

3 Risposta in frequenza

a) Plot di Bode

Mediante l' utilizzo del Network Analyzer abbiamo ottenuto i plot di Bode in ampiezza e fase mostrati in figura 5.

Ottimizzate le scale per una migliore visualizzazione (ad es. conviene per ovvi motivi fissare a 180 gradi l'offset della fase). Fate in modo che sullo screenshot siano leggibili le impostazioni; in caso contrario riportatele esplicitamente nel testo.

Inserire lo screenshot con i plot di Bode

Figura 5: Plot di Bode in ampiezza (sopra) e fase (sotto) per l'amplificatore.

b) Frequenze di taglio

Dal plot precedente abbiamo stimato i seguenti valori per le frequenze di taglio dell' amplificatore:

Spiegate il metodo utilizzato ed il criterio seguito nella stima delle incertezze.

c) Frequenza di taglio inferiore, confronto con il valore atteso

La frequenza di taglio inferiore discende dal filtro passa-alto posto sullo stadio di ingresso dell' amplificatore, il cui valore atteso \grave{e}

 $\bar{f}_H = \text{scrivere formula in termini dei componenti circuitali} = (\pm) \text{Hz}$

Discutere il confronto (accordo o ragioni di eventuali discrepanze) tra f_H ed \bar{f}_H .

d) Andamento ad alte frequenze

Discutere qualitativamente l'andamento del guadagno intorno alla frequenza di taglio superiore sulla base del modello del BJT ad alta frequenza e grossolanamente (ovvero a livello di ordini di grandezza), il suo accordo con quanto atteso.

Conclusioni e commenti finali

Inserire eventuali commenti e conclusioni finali

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.