Data Link Layer

		Protocol Description	Which the link transmits useful information.	Bits	Max Windo	SN Range	Note
				NS	w Size		
Flow	Stop-and-	Source transmits frame		1	W = 1		$G = \frac{T_{prop}}{}$
Control	Wait	 Destination receives frame and replies with 	$U = \frac{1}{}$				$u = \frac{u}{T_{frame}}$
		ACK	1+2a				
		 Source waits for ACK before sending next 					$T = \frac{Distance}{}$
		frame					1 prop - C
		 Destination can stop flow by not sending 					
		ACK					$T_{e} = \frac{Length}{}$
	Sliding	 Sender can send up to W frames without 	$(1, W \ge 1 + 2a)$	k	2^k	$[0, 2^k - 1]$	Bit Rate
	Window	receiving ACK	U = $W < 1 + 2a$				No.
		 ACK includes number of next frame expected 	(1+2a)'				Note:
							in calculation
ARQ	Stop-and-	 Destination sends an ACK if frame received 		1	1		• unify all the units in
	Wait	correctly	$II = \frac{1-P}{P}$				calculation
		 Source transmits next frame if ACK is 	1+2a				calculation
		received; otherwise, if no ACK is received					T
		within timeout, resource retransmits the					$U = \frac{T_{Tunne}}{T}$
		frame					r cycle
	Go-Back-N	 Source transmits frames sequentially based 		k	$2^{k} - 1$	$[0, 2^k - 1]$	$U = \frac{1}{R}$
		on sliding window	$\begin{pmatrix} 1-P & W>1+2a \end{pmatrix}$				Note:
		 Destination sends ACK normally for error- 	II = $1 + 2aP'$ $II = 1 + 2aP'$				 U is normalized
		free frames; otherwise, it sends NAK	_ 				throughput
		 Source retransmits that frame with all 					 R is transmission
		subsequent frames if NAK is received					rate
	Selective-	 Receiver informs transmitter of rejected 		k	2^{k-1}	$[0, 2^k - 1]$	 r is throughput
	Reject	frame n by sending 'SREJ n'	$\begin{pmatrix} 1-P, & W \ge 1+2a \end{pmatrix}$				
		 After receiving an erroneous frame, 	$U = \begin{cases} W(1-P) & W < 1 + 2\alpha \end{cases}$				
		subsequent frames are accepted by receiver	((1+2a)'				
		and buffered					

Local Area Network

CSMA/CA (802.11)	CSMA/CD (Ethernet)	CSMA	Aloha	MAC Protocols
		Non- Persistent P- Persistent 1- Persistent	Slotted Pure	ocols
 Must sense channel before transmission 	 Must sense channel before transmission 	Must sense channel before transmission	• None	Carrier Sensing
Sender: • If sense channel idle for DIFS, then transmit entire frame (no CD). • If sense channel busy, then start random backoff time. Transmits when timer expires. • If no ACK, increase random backoff interval Receiver: • If frame received OK, return ACK after SIFS	The same as CSMA	 When a busy channel is sensed, a station defers for a random period of time before next sense When a busy channel is sensed, a station continues to sense until the channel turns idle. Then, with probability p, it transmits, and with probability 1 - p, it defers to next time slot. A special case of P-Persistent where p = 1 	 Each transmits in a slot immediately with probability p Each transmits immediately with probability p 	Transmission Protocol Frame Transmission
 No collision detection due to hidden terminal 	When a collision is detected, transmissions are aborted to reduce the channel wastage.		 When a collision is detected, the colliding frames are transmitted up to their last bits. 	Collision Detection
Multi-Access Reservation • Use random-access with mini-frame (v unit of time) to reserve the channel • If reservation successful, transmit u unit of data frame $ \frac{u}{u+v/S_r} = \frac{u}{(u-v) + \frac{v}{S_r}} \frac{u+v/S_r}{u+v/S_r} $ Total data $ \frac{u}{v} = \frac{u}{u+v/S_r} = \frac{u+v}{u+v/S_r} $ Data bit in No Yes Yes	$S = \frac{1}{1 + 6.44a}$ $a = \frac{T_{Prop}}{T_{frame}}$		$S = Np(1-p)^{(N-1)}$ = Ge^{-G} $S = Np(1-p)^{2(N-1)}$ = Ge^{-2G}	Throughput/ Utilization
servation access with m annel successful, tr $\frac{u}{u+v/S_r}$	Min • T Bina • Ir is d A R			Note
ransmit u unit or u unit	Minimum Frame Size • $T_{frame} \ge 2\tau$ • In i-th retransmission, the slot is chosen from a uniformly distributed random variable R , in the range of $[0, 2^K - 1]$, where $K = \min(i, 10)$.		Number of Stations: N Probability of Attempt: p Attempt Rate: $G = Np$	Ö
nit of time) to of data frame $\frac{u+v}{u+v/S_r}$ $u+v$ Yes	size I Backoff ission, the slot a uniformly lom variable of $[0, 2^K - 1]$, $(i, 10)$.		::: N :mpt: p = Np	

Queuing Theory and MISC

Queue	Key	Diagram	Input Parameter	Statistics	Note
Model	Components				
M/M/1	M/M/1/∞/FCFS	\	λ : mean packet arrival	Queue Statistics:	 Splitting Poisson
		F	rate (packet/sec)	$\rho = \frac{\lambda}{m}$: system utilization	Process:
		-	μ : mean packet service		 Merging Poisson
		Access Selvice	rate (packet/sec)	$I = \frac{1}{\mu - \lambda}$: average delay	Processes
			Note: $\lambda < \mu$	$N = \frac{\rho}{1-\rho}$: average queue occupancy	 M/M/1 departure
				$T_q = \frac{\dot{ ho}}{\mu - \lambda}$: average queuing delay	process: Poisson process with rate λ
				Delay Components for Packet:	 Queue with feedback
				 Average residual service time: ρ/μ 	
				 Average waiting time for early 	
				arrival: $(N-\rho)/\mu$	
				 Average service time: 1/μ 	
				• Total delay: $T = \frac{\rho}{r} + \frac{N-\rho}{r} + \frac{1}{r}$	

Network Design Patterns	HDLC Frame Exchange Sequence	Network Reliability	Packet Transmission Delay in Pipeline
Communication Module	High-Level Strategy	 Link failure probability: b 	Assumptions
 Communication tunnel 	 One side first 	 Link success probability: 	 N bits, m packets
 Flow control & error control 	 The other next 	r = 1 - b	 Header: Lbits/packet
Layering Structure		 Links in series 	 Transmission rate: R bps
Four interfaces		$r = \prod^{n} (1 - h)$	# of hops: h
• NEWS		$\prod_{i=j}$	End-to-End Delay: no queuing
Separation of Mechanism and Policy		 Links in parallel 	$\frac{N}{N+1}$ $\frac{N}{N+1}$
 Policy: when to do 		$b = \prod^n b$	$+(h-1) \times$
Mechanism: how to do		$1 \mid 1_{i=1}$	X X

