(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

ーディーケイ株式会社内

ーディーケイ株式会社内

東京都中央区日本橋一丁目13番1号 ティ

(72)発明者 矢田 芳雄

(74)代理人 弁理士 石井 陽一

特開平10-161340

(43)公開日 平成10年(1998)6月19日

(51) Int.Cl. ⁶	設別記号		FΙ					
G03G	9/08		G 0 3 G	9/08	374			
	9/083				101			
					371			
					3 7 5			
			審查請求	: 未請求	請求項の数4	FD	(全 7	頁)
(21)出願番号	•	特顧平8-334759	(71) 出願人	• • • • • • • • • • • • • • • • • • • •				
(22)出顧日	ディーディーケイ ² 平成8年(1996)11月29日 東京都中央区日本						蜂1号	
			(72)発明者	伊東	直樹			
				東京都中	中央区日本橋一	丁目13都	蜂1号	ティ

(54) 【発明の名称】 電子写真用磁性トナー

(57)【要約】

【課題】 感光体上でのフィルミングの発生がなく、長 期にわたり高濃度、高画質画像を得ることができる電子 写真用磁性トナーを提供する。

【解決手段】 脂肪酸アルミニウムで表面処理して疎水 化した超微粒子酸化チタン(比表面積80~120m²/ g、疎水化度50~80重量%、アルミナ含有量0.4 ~1. 1重量%)と疎水性シリカとを外添した電子写真 用磁性トナーとする。

,

【特許請求の範囲】

【請求項1】 少なくとも結着樹脂および磁性粉を含有するトナー粒子と、添加剤とで構成された電子写真用磁性トナーにおいて、

前記添加剤が、脂肪酸アルミニウムで表面処理して疎水 化した超微粒子酸化チタンと、疎水化シリカとを含有 し、

前記超微粒子酸化チタンが、比表面積80~120m²/g、疎水化度50~80重量%、アルミナ含有量0.4~1.1重量%である電子写真用磁性トナー。

【請求項2】 前記脂肪酸アルミニウムの脂肪酸部分の 炭素数が15~20である請求項1の電子写真用磁性トナー。

【請求項3】 前記超微粒子酸化チタンの添加量が1重量%未満である請求項1または2の電子写真用磁性トナー。

【請求項4】 平均粒子径が $5\sim12\mu$ m である請求項 $1\sim3$ のいずれかの電子写真用磁性トナー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電子写真法における 静電潜像を現像するための電子写真用磁性トナーに関す る。

[0002]

【従来の技術】近年、電子写真法を用いた機器には複写機の他、プリンター、FAXなどがあるが、これらの現像方式はトナーおよびキャリアなどを用いる2成分方式とキャリアを用いずトナー内部に磁性体を含有するトナーを用いる磁性1成分方式、さらにトナー中に磁性体を用いない非磁性1成分方式が知られている。

【0003】また、現像剤用のトナーは流動性向上の目的でシリカ微粉体、酸化チタン微粉体等が一般に使用されているが、帯電の安定性が十分ではなく、さらに流動性付与の効果も十分に満足できるものではなかった。

【0004】そこで、特開平2-109058号、特開平4-40467号、特開平4-70847号、特開平4-340558号の各公報により酸化チタン微粉体にシリコンオイルやカップリング剤等により表面処理を施し、疎水性を付与し帯電の安定性、流動性、分散性の向上を図る方法が提案されている。

【0005】しかしながら、従来提案されている酸化チタン微粉体は、各環境下における帯電性を安定させる目的で処理剤を多量に使用し疎水化度を上げるため、酸化チタン微粉体が凝集しやすく流動性向上に必ずしも有効ではなく、結果として転写性が悪化したり、クリーニング不良、感光体上のフィルミングが発生するという問題が生じる。また、長期使用により濃度や画質の低下が生じたり、高温多湿下の使用で濃度や画質が低下したりする。

[0006]

【発明が解決しようとする課題】本発明の目的は、感光体表面にフィルミングが発生することなく、長期にわたり安定した高濃度、高画質画像を得ることができる電子写真用磁性トナーを提供することである。

[0007]

【課題を解決するための手段】このような目的は、下記 の本発明によって達成される。

【0008】(1)少なくとも結着樹脂および磁性粉を含有するトナー粒子と、添加剤とで構成された電子写真10 用磁性トナーにおいて、前記添加剤が、脂肪酸アルミニウムで表面処理して疎水化した超微粒子酸化チタンと、疎水化シリカとを含有し、前記超微粒子酸化チタンが、比表面積80~120㎡/g、疎水化度50~80重量%、アルミナ含有量0.4~1.1重量%である電子写真用磁性トナー。

【0009】(2)前記脂肪酸アルミニウムの脂肪酸部分の炭素数が15~20である上記(1)の電子写真用磁性トナー。

【0010】(3) 前記超微粒子酸化チタンの添加量が 20 1重量%未満である上記(1)または(2)の電子写真 用磁性トナー。

【0011】(4) 平均粒子径が5~12μm である上記(1)~(3) のいずれかの電子写真用磁性トナー。

【0012】なお、特開平4-452号公報には、脂肪酸金属塩で処理した酸化チタンを含有するトナーが開示されている。しかし、ここで開示されるものは非磁性トナーである。したがって、本発明と異なり、酸化チタンの疎水化度、アルミナ含有量については全く記載されていない。

30 [0013]

【発明の実施の形態】以下、本発明について詳細に説明 する。

【0014】本発明の電子写真用磁性トナーは、結着樹脂および磁性粉を含有するトナー粒子と、これに外添された添加剤とで構成されるものである。本発明では、このような外添剤として脂肪酸アルミニウムで表面処理して疎水化した超微粒子酸化チタンと疎水性シリカとを用いる。この場合の超微粒子酸化チタンは、比表面積が80~120㎡/g、疎水化度が50~80重量%、アルミナ含有量が0.4~1.1重量%である。

【0015】このような外添剤を用いることによって、感光体上のフィルミングがなく、長期にわたり、また高温多湿下においても、高濃度、高画質画像を得ることができる。これに対し、比表面積が120㎡/gより大きくなると凝集しやすくなり、クリーニング不良やフィルミングが発生したり、画質低下の原因になる。また、80㎡/gよりも小さくなると流動性が悪化し、トナーの搬送性が悪くなる。これにより画質の低下が見られる。

【0016】さらに、疎水化度が50重量%より小さく なると、各環境下における現像特性の安定が保てなくな

り、特に高温多湿時に濃度低下の発生が見られるようになる。また、80重量%をこえると帯電の安定性が悪化し、特に低湿下でトナーがチャージアップしてしまう。このため連続プリントによる画質の低下が見られる。

【0017】また、超微粒子酸化チタンのアルミナ含有量が0.4重量%未満になると脂肪酸の吸着量が低下し、さらに脂肪酸が2層吸着になり乾燥時凝結が起こり、粗大粒子が生成されてしまう。このため高温多湿下での画質の低下が見られる。また、1.1重量%をこえると酸化チタン微粉体の凝集物が生成されやすくなる。このため連続プリントに耐えない。

【0018】なお、比表面積はBET比表面積を意味 し、エリアメーター(独ストレーライン社製)による定 圧法によって測定された値である。

【0019】また、アルミナ含有量は蛍光X線装置による定量法によって測定された値である。

【0020】疎水化度は以下のように測定する。

【0021】25ml共栓付試験管に所定濃度(重量%)のメタノール溶液を10ml採取する。少量(約10mg)の超微粒子酸化チタンを投入し、沈降の有無を確認する。2.5重量%毎のメタノール溶液で試験し、沈降無重量%~沈降有重量%で疎水化度を表示し、これを疎水化度とする。

【0022】また、疎水性シリカのみの添加では、低温低湿下で磁性トナーの負帯電性が増加する傾向があり、帯電が過大となってカブリが発生する。また、高温多湿下での画質の低下が見られる。一方、超微粒子酸化チタンのみの添加では、磁性トナーの十分な流動性が得られず画像濃度の低下が見られるようになる。また画質が低下してしまう。

【0023】本発明に用いる外添剤についてさらに説明する。脂肪酸アルミニウムで表面処理して疎水化した疎水性超微粒子酸化チタンは比表面積80~120㎡/g、疎水化度50~80重量%、アルミナ含有量0.4~1.1重量%のものである。

【0024】この場合脂肪酸アルミニウムによる表面処理に供せられる酸化チタンは、通常硫酸法によって得られたアナターゼであるが、ルチルであってもよい。そして、その一次粒子の平均粒子径は10~30nm程度であり、表面処理後においてもその一次粒子の平均粒子径は40大きくとも20~40nm程度である。

【0025】表面処理の工程は、次のとおりである。すなわち、原料となる通常含水物である酸化チタンを分散調整し洗浄して乾燥後焼成し、この後分散し粉砕し、さらに分級する。この分級したものに脂肪酸アルミニウムを所定量添加して処理し洗浄して乾燥し、所定の熱処理、粉砕の工程を経て、上述の疎水性超微粒子酸化チタンが得られる。

【0026】この場合用いられる脂肪酸アルミニウムと しては特に制限はなく、次のような脂肪酸のアルミニウ ム化合物が使用できる。すなわち脂肪酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、セロチン酸、アラキン酸、モンン酸、メリシン酸、セロチン酸、のカードン酸、アクセル酸等の飽和脂肪酸、アクリル酸、クロトン酸、イソクロトン酸、ウンデシレン酸、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、プロピオール酸、ステアロール酸等の不飽和脂肪酸などが挙げられる。

【0027】なかでも炭素数15~20の脂肪酸、とりわけ飽和脂肪酸が好ましく、具体的にはペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸などである。特にステアリン酸などが実用上好ましい。

【0028】磁性トナーにおける脂肪酸アルミニウムで表面処理して疎水化した超微粒子酸化チタンの添加量は1重量%未満であることが好ましく、さらには0.05~0.9重量%、特には0.1~0.8重量%であることが好ましい。このような添加量とすることで、本発明の効果が向上する。これに対し、添加量が多すぎると、トナーの導電度が高くなり、帯電が低下し、濃度低下の原因となりやすい。

【0029】また、本発明において外添剤として脂肪酸アルミニウムで表面処理して疎水化した超微粒子酸化チタンとともに用いられる疎水性シリカは公知のものを用いればよく、特に制限はない。必要に応じて、カップリング剤、シリコーンオイル等で表面を処理したものを使用してもよい。

【0030】疎水性シリカとしては、その平均粒子径 (粒子が球状でないときは投影面積を円に換算したとき の直径)が5~20nmであるものを用いることが好まし

【0031】また、磁性トナーにおける疎水性シリカの 添加量は0.1~5重量%、さらには0.3~2.0重 量%であることが好ましい。このような添加量とするこ とで、本発明の効果が向上する。これに対し、添加量が 多くなると低温低湿下で磁性トナーの負帯電が過大にな りカブリが発生しやすくなり、添加量が少なくなると磁 性トナーの十分な流動性が得られなくなる。

【0032】本発明の磁性トナーは、前述のような外添 剤が添加されたトナー粒子で構成されるが、本発明のト ナー粒子は少なくとも結着樹脂と磁性粉とを内添剤とし て含有しており、結着樹脂としては、例えば、従来トナ ーに用いられるものはいずれも使用可能であるが、特に スチレ系共重合樹脂が好適である。スチレン系共重合樹 50 脂は、スチレン系単量体と共重合可能なビニル系単量体 5

との共重合反応より得られるものである。

【0033】この場合、共重合可能な単量体としては、スチレンおよびその誘導体、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸ローブチル、アクリル酸αーエチルへキシル、アクリル酸αーヒドロキシエチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸ローブチル、メタクリル酸イソプロピル、メタクリル酸ローブチル、メタクリル酸イソブチル、メタクリル酸ローベキシル、メタクリル酸ラウリル、メタクリル酸αーヒドロキシエチル、メタクリル酸ラウリル、メタクリル酸αーヒドロキシエチル、メタクリル酸ヒドロキシプロピルなどのアクリル酸エステル、またはメタクリル酸エステル類、その他、ビニルエステル類、エチレン系オレフィン類、エチレン系不飽和カルボン酸類などが挙げられる。

【0034】この他、ポリエステル樹脂も使用可能である。ポリエステル樹脂は、多塩基酸成分と多価アルコール成分の縮重合反応により得られるものである。

【0035】この場合の多塩基酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セベシン酸、メレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸に代表される、脂肪族ポリカルボン酸、脂環族ポリカルボン酸およびその無水物が挙げられる。

【0036】また、多価アルコールとしては、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4ーブタンジオール、1,5ーペンタンジオール、1,6ーヘキサンジオール、1,7ーヘプタンジオール、1,8ーオクタンジオール、1,9ーノナン30ジオール、1,10ーテカンジオール、ピナコール、ヒドロベンゾイン、ベンズピナコール、シクロペンタンー1,2ージオール、シクロヘキサンー1,2ージオール、シクロヘキサンー1,4ージオールに代表される脂肪族ポリアルコール、芳香族ポリアルコール、脂環族ポリアルコールが挙げられる。

【0037】その他の樹脂としては、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエーテル樹脂、ポリビニルアルコール樹脂、ポリエチレン、エチレン酢酸ビニル 40 共重合体、ポリプロピレンなどが挙げられる。

【0038】これらの樹脂は、1種類だけを用いてもよいが、必要に応じて2種類以上混合して用いることもできる。

【0039】さらに、これらの樹脂の製造法としては、 溶液重合法、懸濁重合法、乳化重合法、塊状重合法、熱 重合法、接触重合法、高圧重合法、低圧重合法、および これらの重合法の適当な組み合わせなど、従来公知の重 合法において製造が可能である。

【0040】一方、磁性粉としては、鉄、マンガン、コ 50 他の添加剤を含んでもよい。荷電制御剤は、帯電極性、

バルト、ニッケル、クロムなどの金属ないし、それらの合金や、酸化クロム、三二酸化鉄、四三酸化鉄、などの金属酸化物や、一般式MO・Fe2 O3 (MはFe、Mn、Co、Ni、Mg、Zn、Cd、Ba、Li等の1価または2価の金属群より選ばれる1種または2種以上の金属)で表されるフェライトなど、従来より磁性材料として知られているものはいずれも使用可能である。

【0041】そして、磁性粉は、平均粒子径 $0.01\sim 10\mu$ m、特に $0.05\sim 3\mu$ m であることが好ましい。平均粒子径が小さくなると、磁性トナーの磁力が低くなるため、トナー落ちが発生する傾向にある。一方平均粒子径が大きくなると、画像濃度が低下し、画像品質が劣化する傾向にある。

【0042】この場合、平均粒子径は、下記の方法により測定する。BET一点法により島津科学機器製マイクロメリテックス フローソープ2300形を用いて、比表面積(BET一点法)Swを実測する。そして、粒度と比表面積の関係から、以下の式に従い、平均粒子径Dを求めればよい。

20 [0043] Sw= [Σ ni4 π (Di/2)²]/ [Σ ni ρ (4/3) π · (Di/2)³]=6/ ρ ·

-S w ; 比表面積

Di;粒子径

ni;粒子の数

ρ ;粉体の密度

 $D = 6 / \rho \cdot Sw$

また磁性トナー粒子中の磁性粉含有量は20~70重量%、特に30~60重量%であることが好ましい。磁性粉含有量が少なくなると、磁性トナーとしての磁力が低下するため、解像度の劣化、カブリの増大等の画像劣化が生じ、磁性粉含有量が多くなると、帯電性能が低下し画像濃度の低下および定着性が悪化する傾向にある。

【0044】本発明における磁性トナーの平均粒子径は $5\sim12\mu m$ であることが好ましく、平均粒子径が大きくなると解像度が悪化し、高画質の画像が得られなくなり、平均粒子径が小さくなると、磁性トナーの流動性が悪化し磁性トナーが凝集しやすくなり画像品質が劣化する。

【0045】磁性トナーの平均粒子径の測定には、コールターカウンタ法により、測定値の体積粒子径を算出し、その50%平均粒子径を平均粒子径とする。コールターカウンタ法においては、電解液としてイソトンII(コールターエレクトロニクス社製)を用い、例えばアパチャー径100μmのコールターカウンターTAーII(コールターエレクトロニクス社製)を用いて体積基準の測定を行う。

【0046】本発明における現像剤用の磁性トナー粒子には必要に応じて内添剤として荷電制御剤、およびその他の添加剤を含んでもよい。 荷露制御剤は、 豊電極性

帯電量等を制御するために、必要に応じて添加される。本発明では目的とする極性、帯電量に応じて公知の荷電制御剤を選択すればよく、特に制限はない。例えば、金属錯塩アゾ系染料、ニグロシン系染料等が挙げられるが、これらは要求特性に応じて選択されるものである。このような荷電制御剤はトナー粒子中0.05~10重量部程度であることが好ましい。

【0047】また、色調整顔料として0.1~10重量 部のカーボンブラックを添加してもよい。

【0048】また、トナー粒子に内添されるその他の添 10 加剤としては、ワックス、ポリエチレン、ポリプロピレン等のオレフィン類またはシリコンオイルを用いることができる。ワックスは離型剤として、オフセット防止のために必要に応じて添加される。本発明では用いるワックスに特に制限はなく、公知の種々のワックス、例えばポリエチレンワックス、ポリプロピレンワックス、シリ*

*コーンワックス等を用いればよいが、これらは要求特性 に応じて選択されるものである。これらのワックスの含 有量はトナー粒子中0.5~20重量部であることが好ましい。

【0049】本発明の電子写真用磁性トナーは、内添剤を含有するトナー粒子に前述のような外添剤を添加し、ヘンシェルミキサーやV型プレンダー等の高速混合機によって混合することにより製造することができる。

[0050]

【実施例】以下、本発明の具体的実施例を比較例ととも に挙げ、本発明を詳細に説明する。しかし、これらは、 何ら本発明を限定するものではない。

【0051】以下の実施例および比較例において添加剤 として用いた疎水性超微粒子酸化チタンを表1に示す。

[0052]

【表1】

表 1

	3X 1							
	表面处理剤	比表面積 (m²/g)	疎水化度 (重量%)	アルミナ含有量 (重量%)				
Α	ステアリン酸アルミニウム	106.9	60.0	0.90				
В	ステアリン酸アルミニウム	85.6	72.5	1.03				
c_	ステアリン酸アルミニウム	113.1	52.5	0.52				
D*	ステアリン酸アルミニウム	130.5*	57.5	0.73				
E*	ステアリン酸アルミニウム	71.2*	60.0	0.86				
F*	ステアリン酸アルミニウム	109.9	42.5*	0.49				
G*	ステアリン酸アルミニウム	93.2	85.0*	1.05				
H*	ステアリン酸アルミニウム	101.4	52.5	0.31*				
I*	ステアリン酸アルミニウム	102.7	57.5	1.29*				
J*	環状シリコーンオイル*	95.0	52.5	0.80				
K*	アミノシラン*	98.0	52.5	0.81				

※た。

[0055]

*本発明の範囲外.

【0053】実施例1

下記のトナー組成物をヘンシェルミキサーにて十分混合し、熱溶解混練機にて混練後、冷却し、ハンマーミルにて粗粉砕を行った。その後、ジェットインパクトミルにて微粉砕を行った後、過剰の微粉域を風力分級機にて除去後、ヘンシェルミキサーにて下記の外添剤を混合し ※

トナー組成物;

・磁性粉

6 5 重量部

磁性トナーの平均粒子径は9 µm であった。

・スチレンーブチルアクリル系樹脂

100重量部

【0054】その後、過剰の粗粉域を風力分級機にて除

去し、所定の粒子径分布の磁性トナー粒子を得た。この

・ポリプロピレンワックス

4 重量部

・荷電制御剤(アゾ系色素のCr錯体)

0.5重量部

外添剤;

(トナー組成物100重量部に対して)

・疎水性シリカ

1.0重量部

・疎水性超微粒子酸化チタンA

0.3重量部

ナーを得た。この磁性トナーの平均粒子径は9μmであ

実施例2

実施例1において、外添剤の疎水性超微粒子酸化チタン AをBに変更する以外は、実施例1と同様にして磁性ト 50

【0056】実施例3

-5-

った。

, 🛡

実施例 1 において、外添剤の疎水性超微粒子酸化チタン A をC に変更する以外は、実施例 1 と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は 9 μ m であった。

【0057】比較例1

実施例1において、外添剤を疎水性シリカのみ添加する 以外は、実施例1と同様にして磁性トナーを得た。この 磁性トナーの平均粒子径は9μm であった。

【0058】比較例2

実施例 1 において、外添剤の疎水性超微粒子酸化チタン 10 AをDに変更する以外は、実施例 1 と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は $9~\mu$ m であった。

【0059】比較例3

実施例1において、外添剤の疎水性超微粒子酸化チタン AをEに変更する以外は、実施例1と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は9μmであった。

【0060】比較例4

実施例1において、外添剤の疎水性超微粒子酸化チタン AをFに変更する以外は、実施例1と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は9μm であった。

【0061】比較例5

実施例1において、外添剤の疎水性超微粒子酸化チタン AをGに変更する以外は、実施例1と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は $9~\mu$ m であった。

【0062】<u>比較例6</u>

実施例1において、外添剤の疎水性超微粒子酸化チタン 30 AをHに変更する以外は、実施例1と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は9μm であった。

【0063】比較例7

実施例 1 において、外添剤の疎水性超微粒子酸化チタン A を I に変更する以外は、実施例 1 と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は 9 μ m であった。

【0064】比較例8

実施例1において、外添剤の疎水性超微粒子酸化チタン 40 AをJに変更する以外は、実施例1と同様にして磁性ト

ナーを得た。この磁性トナーの平均粒子径は $9 \mu m$ であった。

【0065】比較例9

実施例1において、外添剤の疎水性超微粒子酸化チタン A を K に変更する以外は、実施例1と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は9 μ m であった。

【0066】比較例10

実施例1において、外添剤を疎水性超微粒子酸化チタン Aのみとし、これを0.5重量部とする以外は実施例1 と同様にして磁性トナーを得た。この磁性トナーの平均 粒子径は9 μm であった。

【0067】実施例4

実施例1において、外添剤の疎水性超微粒子酸化チタンAを0.3重量部から1.2重量部に変更する以外は、 実施例1と同様にして磁性トナーを得た。この磁性トナーの平均粒子径は9μmであった。

【0068】 (プリントテスト) 上記のように、得られた磁性トナーをを市販のレーザービームプリンター (8 20 枚/分機) にて5000枚のプリントテストを実施し、常温常湿 (20℃60%RH) 下における初期および5000枚プリント時点の画像濃度、画像品質、ならびに高温多湿 (32.5℃80%RH) 下における初期の画像濃度、画像品質(画質)を評価した。また、常温常湿での感光体上のフィルミングも評価した。

【0069】測定ないし評価方法は以下のとおりとした。

【0070】画像濃度;反射濃度計(マクベス社)で測定し評価を行った。

(0 【0071】感光体上のフィルミング;5000枚プリント後の感光体表面を目視でチェックすることにより評価した。

【0072】画質; 非画像部のカブリ、トナーの飛び散り、文字の中抜け、解像度トータルの評価で、◎を良好とし、×を不良とし、◎○△▲×の5段階評価を行った。なお、△が実用可能なレベルである。

【0073】結果を表2に示す。なお表中の評価における「一」はフィルミング発生により感光体に傷がつき評価不能であることを表す。

40 [0074]

【表2】

丧 2

			常温常湿				高温多湿		
	酸化チタン	シリカ 添加量	初期		5000 校		EGNAME L	初期	
	(重型部)	(重量部)	濃度	面質	濃度	画質	感光体上 フィルミング	濃度	画質
実施例 1	A(0.3)	1.0	1.46	(©	1.45	0	なし	1.38	0
実施例 2	B(0.3)	1.0	1.45	0	1.43	0	なし	1.40	0
実施例 8	C(0.3)	1.0	1.45	0	1.45	0	なし	1.37	0
比較例 1**	-	1.0	1.47	0	1.36	•	なし	1.35	
比較例 2	D(0.3)	1.0	1.47	0	-		発生	1.37	0
比較例 8	E(0.3)	1.0	1.43	0	1.34	•	なし	1.33	A
比較例 4	F(0.3)	1.0	1.44	0	1.42	0	なし	1.18	×
比較例 5	G(0.3)	1.0	1.46	0	1.30	A	なし	1.42	0
比較例 6	H(0.3)	1.0	1.45	0	1.32	۵	なし	1.30	•
比較例7	I(0.3)	1.0	1.43	0	_	-	発生	1.35	Δ
比較例8	J(0.3)	1.0	1.46	0	_	_	発生	1.38	0
比較例 9	K(0.3)	1.0	1.48	©		_	発生	1.36	0
比較例 10	A(0.5)	-	1.30	0	1.21	•	なし	1.20	•
実施例 4	A(1.2)	1.0	1.42	0	1.40	Δ	なし	1.36	0

** このほか低温低湿(10℃20%RH)下でカブリ発生

【0075】表2から本発明の効果は明らかである。このほか、比較例1の磁性トナーでは、低温低湿(10 \mathbb{C} 20 %RH)下でのカブリの発生が著しいものであった。

【0076】なお、実施例1~3において、磁性トナー粒子の外添剤の疎水性超微粒子酸化チタンを得る際の脂肪酸アルミニウムをステアリン酸アルミニウムからペンタデシル酸、パルミチン酸、ヘプタデシル酸、アラキン酸の各アルミニウム化合物にそれぞれかえたところ、実施例1~3と同等の良好な結果が得られた。

[0077]

【発明の効果】以上述べたように本発明の電子写真用磁性トナーは、トナー粒子に、疎水性シリカと、脂肪酸アルミニウムで表面処理して疎水化した分散性、流動性付与効果の優れた疎水性超微粒子酸化チタンとを含有させることにより流動性、帯電安定性の良好なものとなる。【0078】よって、本発明の電子写真用磁性トナーは、感光体表面にフィルミングが発生することなく、長期にわたり安定した高濃度、高画質の画像を得ることが30できる。