NWI-IMC061 – Applied Cryptography

Personalized Appendix, Academic Year 2021–2022

Sequence Number: 18

Appendix to Question 1

Your question will be about EWPC.

The article can be found at https://eprint.iacr.org/2015/1049.pdf (ignore SCT).

Appendix to Question 2

Consider the following parameters: $k=128,\,t=96,\,n=128,\,a=32,$ and b=59. CrAp is depicted below:

Appendix to Question 3

(The personalized appendix continues on the next page!)

Appendix to Question 4

Your question will be about NTS-KEM.

The article can be found at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NTS-KEM-Round2.zip.

The document you need to read within the zip file has path NTSKEM_noKATS\NTSKEM\Supportin g_Documentation\nts-kem.pdf.

Appendix to Question 5

The CGI2 problem is defined as follows.

Let
$$\mathcal{G}$$
 be a graph given by the polynomial $\Gamma = \sum_{1 \leq i \leq j \leq 1041} \alpha_{i,j} x_i x_j$, and let \mathcal{I}_{1041} be the set of isomorphisms on graphs of size 1041.
Let $\mathcal{G}_0, \mathcal{G}_1, \dots, \mathcal{G}_{2^2-1}$ be 2^2 graphs isomorphic to \mathcal{G} , i.e., for each \mathcal{G}_i , $i \in \{0, \dots, 2^2 - 1\}$ there exists an isomorphism $\phi_i \in \mathcal{I}_{1041}$ such that $\mathcal{G}_i = \phi_i(\mathcal{G})$.
Find an isomorphism $\phi^* \in \mathcal{I}_{1041}$ such that $\mathcal{G}_a = \phi^*(\mathcal{G}_b)$ for some $a \neq b$, where $a, b \in \{0, \dots, 2^2 - 1\}$.

The protocol ID_{CGI2} is given below.

The remaining parameters used in your personalized version of the assignment are $\lambda = 192, k = 27$.