Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Informatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny

Sprawozdanie z ćwiczenia nr 29

Fale podłóżne w ciałach stałych.

1 Wstęp

1.1 Cele ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla prętów różnych materiałów na podstawie pomiarów ich częstotliwości harmonicznych.

1.2 Wprowadzenie teoretyczne

1.2.1 Fala podłóżna

Fala podłóżna jest to fala powstająca przez gwałtowne wychylenie ciała z położenia równowagi oraz dalszemu jego drganiu aż do momentu odzyskania równowagi. Szybkość rozchodzenia się tej fali zależy od bezwładności i sprężystości ciała.

1.2.2 Moduł Younga

Wielkość charakteryzującą sprężystość materiału, będąca jego integralną częścią nazywamy modułem Younga oraz oznaczamy go jako E. Ogólny wzór na moduł Younga określa się jako stosunek naprężenia σ do względnego odkszałcenia liniowego ε materiału:

$$E = -\frac{\sigma}{\varepsilon} \tag{1}$$

Po uwzględnieniu, że ćwiczenie przeprowadzane jest na prętach materiałów, analizie rozchodzenia się fali podłóżej w pręcie oraz prawa Hooke'a uzyskujemy wzór:

$$E = 4\rho l^2 f^2 \tag{2}$$

gdzie ρ to gęstość materiału, l - długość pręta oraz f częstotliwość fali podłużnej. Tego wzoru będziemy używać do wykonania ćwiczenia.

2 Wykonanie ćwiczenia

3 Opracowanie danych pomiarowych

3.1 Analiza niepewności

4 Podsumowanie