Homework 1

Thu Nguyen
14 April, 2019

Problem 1

Part A

```
### Part A
chisq.power = function( k, t, n, B = 2000) {
  # k: parameter for probability under HO: Unif(1/2k)
  # t: parameter for probability under H1
  # n: number of data points
  # B: number of simulations
  # binary vector R of length B
 R <- numeric(B)
  # Probability vector under Alternative Hypothesis, H1
 h1_probvector <- numeric(2*k)</pre>
  \# if j \le k
 for (j in 1:k) {
   h1_probvector[j] \leftarrow 1/(2*k) + t
  # if j > k
 for (j in (k+1):(2*k)) {
   h1_probvector[j] \leftarrow 1/(2*k) - t
  # Monte Carlo simulation
 for (b in 1:B) {
    # samples from MC simulation generated based on H1 pdf of size 2k
   MCsamples <- sample( 1:(2*k), n, replace = TRUE, prob = h1_probvector)
    # convert MC simulatin to frequency table
   MCsamples <- table(MCsamples)</pre>
    # Chi-squared test of the MCsamples: if p-val <= .05, R[b] = 1
   if (chisq.test(MCsamples)$p.value <= .05) {</pre>
     R[b] = 1
   } else {
      R[b] = 0
   }
 }
  # Proportion of Correctly Rejecting HO given H1
 return(sum(R)/B)
```

Part B

```
### Part B
# vector of different sample size n
n \leftarrow c(50, 100, 500, 1000)
\# k = 6, as given in question
k <- 6
# sequence vector of t: 0 < t < 1/2k
t \leftarrow seq(0+.002, 1/(2*k) - .002, by = .002)
# null\ vector\ of\ powers\ of\ length(t):\ power=f(t)
powers <- numeric(length(t))</pre>
# layout plots 2x2
par(mfrow = c(2,2))
# loop over different sample size n
for (j in 1:length(n)) {
  # loop over different t to find corresponding power of that t
  for (i in 1:(length(t))) {
    powers[i] <- chisq.power(k, t[i], n[j])</pre>
    i <- i + 1
  }
  # plots
  plot(t, powers, type = 'l', xlab = 't', ylab = 'power',
       main = append('Power Curve, given sample size', n[j]))
}
```

Power Curve, given sample size 50

Power Curve, given sample size 100

Power Curve, given sample size 500

Power Curve, given sample size 1000

Problem 2

Data pre-processing

```
# Problem 2
# Preprocess data
mydata <- read.table('natality-california-2017.txt', header = TRUE)
save(mydata, file = 'natality-california-2017.rda')
load('natality-california-2017.rda')

# Vector of Female births
femalebirths <- mydata[1:36,5]
# Vector of Male births
malebirths <- mydata[37:72,5]
# Joint matrix of Female & Male births
jointbirths <- rbind(femalebirths, malebirths)</pre>
```

Some exploratory plots

Female and Male births across counties in California: Side-by-side

Female and Male births across counties in California

Comments

From the barplot above, there does not seem to be considerable differences between the number of births between females and males across California counties.

Hypothesis Test:

Let p_i be the probability of a girl being born in county i, where i is 1 of the 36 counties in California.

$$H_0:(p_1,p_2,\ldots,p_{36})=(p_1^0,p_2^0,\ldots,p_{36}^0):p_1^0=p_2^0=\cdots=p_{36}^0$$

$$H_1:(p_1,p_2,\ldots,p_{36})\neq(p_1^0,p_2^0,\ldots,p_{36}^0):p_1^0=p_2^0=\cdots=p_{36}^0$$

Chi-squared test:

Chi-squared test
chisq.test(jointbirths)

Pearson's Chi-squared test

data: jointbirths
X-squared = 41.285, df = 35, p-value = 0.215

Comments

Given the p value of .215, for any level of significance less than 21.5%, we would fail to reject H_0 : The chances of a baby being born a girl are the same across counties in California.

Problem 3

```
chisq.perm.test = function(tab, B = 2000) {
  # Obeserved statistic from tab: as reference
 Dobserved <- chisq.test(tab)$stat</pre>
  # Dimensions of tab
 nrows <- nrow(tab)</pre>
 ncols <- ncol(tab)</pre>
  # Index each categorical element in rows and columns
  # Vector of numbers in each row
  # null rows
 rows <- numeric(nrows)</pre>
  totalrows <- numeric(0)</pre>
  # vector of 1s, 2s, 3s, 4s, indicating row number of original tab
 for (i in 1:nrows) {
   rows[i] <- sum(tab[i,])</pre>
    totalrows <- c(totalrows, rep.int(i, times = rows[i]))</pre>
  # Vector of numbers in each column
  columns <- numeric(ncols)</pre>
  totalcols <- numeric(0)</pre>
  # vector of 1s, 2s, 3s, 4s, indicating column number of original tab
 for (i in 1:ncols) {
    columns[i] <- sum(tab[,i])</pre>
    totalcols <- c(totalcols, rep.int(i, times = columns[i]))</pre>
  # counter of #(stat > Doberved)
  count <- 0
  # vector of permutations' Chi-sq. test-stat
 D <- numeric(0)</pre>
  # Total counts of tab
  total <- sum(tab[,])</pre>
 for (b in 1:B) {
    # fix x-values
   x <- totalrows
    # randomly shuffle y-values
   y <- sample(totalcols, total, replace = FALSE)
    # new data.frame of the shuffling/permutation
```

```
matrixperm <- cbind(x, y)</pre>
    # matrixpermcount: count the pairs after permutations
    # null matrixpermcount of only zeros
    matrixpermcount <- matrix(0, nrow = nrows, ncol = ncols)</pre>
    # After permutation: Rearrange into matrixpermcount
    # index of x for each row: row 1-4
    for (x in 1:nrows) {
      # index of y for each column: column 1-4
      for (y in 1:ncols) {
        # index of m for looping through each row in matrixperm
        for (m in 1:total) {
          # Comparing & sorting the indexed cells (1,1), (2,2), ...
          # Once located the right cells, count #(occurances)
          if (all(matrixperm[m,] == c(x, y)) == TRUE) {
            # all TRUE <=> cell located
            # increase count in the cell in new location
            matrixpermcount[x, y] <- matrixpermcount[x, y] + 1</pre>
          }
        }
      }
    }
    # Chi-sq test-statistic for that permutation
    D[b] <- chisq.test(matrixpermcount)$stat</pre>
    # Compare Chi-sq test-statistic from the permutation
    # with Oberserved test-statistic
    # if D_perm > D_obs: increase count
    if (D[b] >= Dobserved) {
      count = count + 1
    }
  # Proportion of permutation returning test-statistic more extreme
  # than D obs
  return((count+1)/(B+1))
}
Testing on the HairEyeColor dataset
tab <- apply(HairEyeColor, c(1,2), sum)</pre>
tab
       Eye
        Brown Blue Hazel Green
Hair
                       15
  Black
           68
                20
                       54
                             29
  Brown
          119
                84
  Red
           26
                17
                       14
                             14
  Blond
                94
                       10
                             16
chisq.perm.test(tab)
[1] 0.0004997501
```

6

Problem 4

Part A

Data pre-processing

```
load('school-improvement-2010.rda')
# Filter out selected columns
df <- mydat[,c('State', 'Model.Selected')]
# Frequency table of State vs. Model.Selected
mytable <- table(df$State, df$Model.Selected)
# Filter out rows & columns of Os only
mytable <- mytable[c(1:38, 40:50),2:5]</pre>
```

Some exploratory plots

```
# Plot: Overview comparison across the 4 models
par(mfrow = c(1,1))
barplot(mytable, beside = T, main = 'Models and States')
```

Models and States

Plots: per Model.Selected

```
# Remove names
model <- colnames(mytable)
colnames(mytable) <- NULL
rownames(mytable) <- NULL</pre>
```

```
par(mfrow = c(2,1))
for (i in 1:4) {
  temp <- mytable[,i]
  barplot(temp, main = model[i])
}</pre>
```

Closure

Restart

Transformation

Turnaround

Plots: per State, for 16 random states

```
par(mfrow = c(2,4))
k <- round(runif(16,1,49),0)
for (i in 1:16) {
    k <- k[i]
    temp <- mytable[i,]
    pie(temp, radius = 1)
}</pre>
```


Comments

From the barplot above, there seems to be differences in the distributions of models versus the states where the schools are located.

Hypothesis Test:

 H_0 : No Association: the model selected and the state are independent

 H_1 : Association: the model selected and the state are not independent

Chi-squared test:

```
# Chi-squared test
chisq.test(mytable)
```

Pearson's Chi-squared test

```
data: mytable
X-squared = 378.37, df = 144, p-value < 2.2e-16</pre>
```

Comments

Given the p value of 2.2e - 16, which is extremely small, for any reasonable significance level such as $\alpha = .05$, we would reject H_0 : there appears reasons that the model selected and the state where the school is located are not independent, and thus there is an association.

Part B

Yes, it is applicable to use calibration by permutation in this case.

```
# Apply calibration by permutation
chisq.perm.test(mytable)
```

[1] 0.0004997501

Comments

The p value is now 0.0004997501, which is considerably larger than the p value from Chi-squared test. However, the p value is still considerably small, meaning for any reasonable significance level such as $\alpha = .05$, we would reject H_0 : there appears reasons that the model selected and the state where the school is located are not independent, and thus there is an association.