

What is claimed is:

- 1 1. An alignment weight, comprising:
 - 2 a body having a first opposing surface and a second opposing surfaces; and
 - 3 a number of depressions formed in the first opposing surface so as to receive
 - 4 pins of a floating pin field when placed on the floating pin field during connection of
 - 5 the floating pin field to a printed circuit board, wherein selected ones of the number
 - 6 of depressions are configured to receive only one of the pins.
- 1 2. The alignment weight of claim 1, wherein the number of depressions are
- 2 formed in rows along a perimeter of the body.
- 1 3. The alignment weight of claim 1, wherein the body comprises a material that
- 2 exhibits substantially no warping during a solder reflow process.
- 1 4. The alignment weight of claim 1, wherein the body further includes a
- 2 number of holes that pass through a thickness of the body.
- 1 5. The alignment weight of claim 4, wherein the holes are disposed in a center
- 2 region of the first opposing surface of the body.
- 1 6. The alignment weight of claim 1, wherein the depressions have a diameter at
- 2 a surface of the body that is greater than a diameter of the depression inside the
- 3 body.
- 1 7. An alignment weight, comprising:
 - 2 a body having a first opposing surface and a second opposing surfaces; and
 - 3 a plurality of depressions formed in the first opposing surface so as to
 - 4 receive pins of a floating pin field when placed on the floating pin field during
 - 5 connection of the floating pin field to a printed circuit board, wherein each of the
 - 6 plurality of depressions are configured to receive only one of the pins of the floating
 - 7 pin field, and wherein the body has a weight sufficient to provide a downward force
 - 8 to secure the pins of the floating pin field in place during a solder reflow process and
 - 9 to maintain the pins of the floating pin field in a substantially straight-up alignment.

1 8. The alignment weight of claim 1, wherein some of the plurality of
2 depressions have an inner diameter smaller than an outer diameter.

1 9. The alignment weight of claim 1, wherein some of the plurality of
2 depressions have an interior angle of less than about 90 degrees.

1 10. The alignment weight of claim 1, wherein some of the plurality of
2 depressions are substantially circular.

1 11. An apparatus, comprising:
2 an alignment weight;
3 a circuit board; and
4 a plurality of pins adjacent the circuit board and a corresponding plurality of
5 depressions in the alignment weight.

1 12. The apparatus of claim 11, further comprising:
2 a field carrier coupled to the plurality of pins.

1 13. The apparatus of claim 11, wherein the alignment weight further includes a
2 plurality of passages that pass through a thickness of the alignment weight.

1 14. The apparatus of claim 13, wherein the plurality of passages are disposed in
2 a center region of a first opposing surface of the alignment weight.

1 15. The apparatus of claim 11, wherein the alignment weight comprises a body
2 having a first opposing surface and a second opposing surfaces, wherein the body
3 has a plurality of passages extending from the first opposing surface to the second
4 opposing surface and located in a center region of the first opposing surface,
5 wherein the corresponding plurality of depressions are disposed in rows about a
6 perimeter of the first opposing surface and configured to receive only one pin of the
7 plurality of pins.

1 16. The apparatus of claim 11, wherein some of the corresponding plurality of
2 depressions have a diameter at a surface of the body that is greater than a diameter
3 of inside the body.