MA1101 - Functions

BIRMD

- Let $X, Y \neq \emptyset$. A relation $R \subseteq X \times Y$ between X and Y is said to be a function if for every $x \in X$, there exist a unique $y_x \in Y$ such that $(x, y_x) \in R$.
- For $X, Y \neq \emptyset$, $f: X \to Y$ be a function, then:
 - 1. X is said to be a Domain
 - 2. Y is said to be Co-Domain
 - 3. $f(x) = y_x$ is said to be *image* of x in Y.
 - 4. $f(X) := \{f(x) \in Y \mid x \in X\}$ is called *Range* of function.
- Equality of Function: For $X, Y, A, B \neq \emptyset$, $f: X \to Y$ and $g: A \to B$ are two functions. Then f = g if
 - 1. X = A;
 - 2. Y = B;
 - 3. f(x) = g(x) for all $x \in X$ (or A).
- For $X, Y \neq \emptyset$, $f: X \to Y$ be a function, then:
 - 1. **Injection:** f is one-one/injective iff for $x_1, x_2 \in X$, $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.
 - 2. Surjection: f is onto/surjective iff $\forall y \in Y, \exists x \in X \mid f(x) = y$.
 - 3. **Bijection:** f is bijective iff f is both surjective and injective.
- Composition of Function: Let $X, Y, Z \neq \emptyset$, and let $f: X \to Y$ and $g: Y \to Z$ be two functions, then the composition function $g \circ f: X \to Z$ is defined as

$$(g \circ f)_{(x)} := g(f(x)), \quad \forall \ x \in X$$

• Inverse of Function: Let $X, Y \neq \emptyset$ and $f: X \to Y$ be a bijection. The inverse of f is the function $f^{-1}: X \to Y$ defined as

$$f^{-1}(y) = x$$
, where $y = f(x), \forall y \in Y$

- Identity Function: $Id_X : X \to X$ is called *identity* function, if $Id_X(x) = x$ for all $x \in X$.
- Theorem: Let $X, Y \neq \emptyset$ and $f: X \to Y$ be a bijection. Then, $f^{-1} \circ f = \operatorname{Id}_X$ and $f \circ f^{-1} = \operatorname{Id}_Y$
- **Theorem:** Let $X, Y \neq \emptyset$ and $f: X \rightarrow Y$. Then, if
 - 1. $\exists g: Y \to X \mid g \circ f = \mathrm{Id}_X$, then f is injective.
 - 2. $\exists h: Y \to X \mid f \circ h = \mathrm{Id}_Y$, then f is surjective.

If both such g, h exists together, then f is bijective and $g = h = f^{-1}$

- Image and Inverse Image: Let $X, Y \neq \emptyset$ and $f: X \to Y$. Let $A \subseteq X$ and $B \subseteq Y$, then we define
 - 1. the *image* of A as $f(A) := \{ f(x) \mid x \in A \}$
 - 2. the inverse image of B as $f^{-1}(B) := \{x \in X \mid f(x) \in B\}$
- **Theorem:** Let $X, Y \neq \emptyset$ and $f: X \rightarrow Y$. Let $A, B \subseteq X$ and $C, D \subseteq Y$, then
 - 1. $f(A \cup B) = f(A) \cup f(B)$; $f(A \cap B) = f(A) \cap f(B)$
 - 2. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$; $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$