

TABLE OF CONTENTS

01

02

03

PROJECT OVERVIEW

A quick recap into the project goals

THE MATHEMATICAL STRUCTURE

The foundation and concepts

OBSERVATIONS AND ANALYSIS

Reports and highlights

04

THE ENGINE

The nuances

05

FINAL REMARKS

Thoughts and feedback

PROJECT OVERVIEW

A quick recap into the project goals

INTENDED GOALS

- Create a factor-based allocation model leveraging a long/short strategy
- Evaluate its sensitivity to various parameters
- Highlight the importance of historical data structure and sudden shifts in the market

THE ENGINE

Called the **FFAEngine**

Leverages the Fama French 3-Factor asset pricing model

THE MATHEMATICAL STRUCTURE

The foundation and concepts

BUILT ON TOP OF THE CAPM

$$\rho_i = \rho_0 + \beta_i^s (\rho_m - \rho_0)$$
$$\beta_i^s = \frac{cov(R_i, R_m)}{\sigma_m^2}$$

ADDS MORE DESCRIPTORS

$$\rho_i = \rho_0 + \beta_i^s (\rho_m - \rho_0) + \beta_i^{smb} \rho_{smb} + \beta_i^{hml} \rho_{hml} + \alpha_i$$

MAXIMIZE RETURNS WHILE MINIMIZING RISK

 $\max_{w \in \mathbb{R}^n}$

s.t.

$$\rho^T \omega - \lambda (\omega - \omega_p)^T \Sigma (\omega - \omega_p)$$

$$\sum_{i=1}^{m} \beta_i^m \omega_i = \beta_T^m$$

$$\sum_{i=1}^{n} \omega_i = 1$$
$$-2 \le \omega_i \le 2$$

TOTAL TIME PERIOD

March 1st 2007 – June 30th 2021

Pre-Crisis

- •March 1st 2007
- •December 31st 2007

In-Crisis

- •January 1st 2008
- •June 30th 2009

Post-Crisis

- •July 1st 2009
- •June 30th 2021

TERM STRUCTURE

NOTATION

$$S_{\rho_L}^{\Sigma_L} \left(\beta_T^m \right)$$

Figure 1.3: Abstract overview of how the term structure features will work to parse historical data

OBSERVATIONS AND ANALYSIS

Reports and Highlights

IMPACT FROM THE TARGET BETA

$$S_{90}^{120} \left(-0.5\right)$$

Performance	Pre-Crisis
PnL	\$72.1052
Daily Mean	0.217849
Volatility	0.0766214
Sharpe Ratio	0.0113728
VaR 95%	-0.115074

$$S_{90}^{120} \left(-0.5\right)$$

Performance	Pre-Crisis
PnL	\$72.1052
Daily Mean	0.217849
Volatility	0.0766214
Sharpe Ratio	0.0113728
VaR 95%	-0.115074

$$S_{90}^{120} \left(-0.5\right)$$

Performance	Pre-Crisis
PnL	\$72.1052
Daily Mean	0.217849
Volatility	0.0766214
Sharpe Ratio	0.0113728
VaR 95%	-0.115074

$S_{90}^{120}(0)$

Performance	Pre-Crisis
PnL	\$101.899
Daily Mean	0.23737
Volatility	0.0774037
Sharpe Ratio	0.0122666
VaR 95%	-0.116931

$S_{90}^{120}(0)$

Performance	Pre-Crisis
PnL	\$101.899
Daily Mean	0.23737
Volatility	0.0774037
Sharpe Ratio	0.0122666
VaR 95%	-0.116931

$S_{90}^{120}(0)$

Performance	Pre-Crisis
PnL	\$101.899
Daily Mean	0.23737
Volatility	0.0774037
Sharpe Ratio	0.0122666
VaR 95%	-0.116931

$S_{90}^{120}\left(1\right)$

Performance	Post-Crisis
PnL	-\$197.539
Daily Mean	-0.775056
Volatility	0.0720079
Sharpe Ratio	-0.043054
VaR 95%	-0.116965

$S_{90}^{120}\left(1\right)$

Performance	Post-Crisis
PnL	-\$197.539
Daily Mean	-0.775056
Volatility	0.0720079
Sharpe Ratio	-0.043054
VaR 95%	-0.116965

$S_{90}^{120}(1)$

Performance	Post-Crisis
PnL	-\$197.539
Daily Mean	-0.775056
Volatility	0.0720079
Sharpe Ratio	-0.043054
VaR 95%	-0.116965

IMPACT FROM THE TERM STRUCTURE

$S_{40}^{240} (0.5)$

Performance	Pre-Crisis
PnL	-\$8.37556
Daily Mean	0.0216064
Volatility	0.076683 I
Sharpe Ratio	0.00112705
VaR 95%	-0.12165

$S_{40}^{240} (0.5)$

Performance	Pre-Crisis
PnL	-\$8.37556
Daily Mean	0.0216064
Volatility	0.0766831
Sharpe Ratio	0.00112705
VaR 95%	-0.12165

$S_{40}^{240} (0.5)$

Performance	Pre-Crisis
PnL	-\$8.37556
Daily Mean	0.0216064
Volatility	0.0766831
Sharpe Ratio	0.00112705
VaR 95%	-0.12165

$S_{200}^{40} (0.5)$

Performance	In-Crisis
PnL	\$897.99
Daily Mean	0.274116
Volatility	0.0640025
Sharpe Ratio	0.0171316
VaR 95%	-0.0995051

$S_{200}^{40} (0.5)$

Performance	In-Crisis
PnL	\$897.99
Daily Mean	0.274116
Volatility	0.0640025
Sharpe Ratio	0.0171316
VaR 95%	-0.099505 I

$S_{200}^{40} (0.5)$

Performance	In-Crisis
PnL	\$897.99
Daily Mean	0.274116
Volatility	0.0640025
Sharpe Ratio	0.0171316
VaR 95%	-0.099505 I

THE ENGINE

The Nuances

INFRASTRUCTURE

FINAL REMARKS

Thoughts and Feedback

SENSITIVITY PARAMETERS

- $\beta_T < 0.5$ worked best
 - Is $\beta_T < 0$ smart in real world?
- Term structures with large window for expected returns provided better calculation of beta coefficients during linear regression
- Look for conditions where portfolio weight rebalancing is not too drastic

SUB-PERIODS ARE EQUALLY IMPORTANT

- In-Crisis period back-testing performed best
 - Important due to project dates (2007 2021)
 - Head of crisis began roughly in 2008
- Close to current time period = Larger historical window
 - Engine requires more drastic shifts in market to smooth volatility of allocation

IMPROVEMENTS TO ENGINE

- Data quality
 - Normalization
- Data quantity
 - Longer historical windows
 - More years prior to crisis
- Feature to apply dual optimization of both term structures
 - Create optimal window based on sub-period

THANK YOU