Multi Object Tracking and Segmentation

Presented By

Kathakoli Sengupta & Harsh Sharma

Introduction

Multi-object Tracking and Segmentation(MOTS) is a domain that still requires extensive research since the scores of the current models available are not sufficient for real-world driving. We aim to build an efficient model for solving the same problem statement in BDD100K challenge

Goal Of Project

Aim: To develop an efficient multi-object tracking and segmentation network

- Evaluate State of the Art on MOTS task (PCAN, UNINEXT)
- 2. To evaluate the YOLOv8 based modular tracking method
- 3. Develop MaskDINO based modular tracking module
- 4. To run inference of instance segmentation and tracking methods on BDD100K data

Method Type-1 Specialised Models

PCAN: Prototypical Cross Attention

Method Type-2 Best of Both Worlds(Seg+Track)

Deep OC-SORT

StrongSORT

Result

Overall Result						
Segmentation Metric	Tracking model	MOTSP	IDF1			
PCAN		66.2%	44.8%			
YOLOv8-segm*	DeepOC SORT	55.3%	37.6%			
MaskDINO*	DeepOC SORT	60.4%	40.2%			
	StrongSORT	58.7%	39.4%			
	OCSORT	57.7%	35.3%			
* Segmentation model does not have a "rider" class + Class "train" not present in validation data						

Per Category Score						
Category	MaskDINO + DeepOC SORT		PCAN			
	MOTSP	IDF1	MOTSP	IDF1		
Pedestrian	81.2%	44.0%	74.6%	45.8%		
Rider*	0.0%	0.0%	73.5%	44.3%		
Car	87.4%	77.8%	84.3%	73.2%		
Truck	91.1%	58.8%	85.1%	55.6%		
Bus	90.4%	60.6%	85.1%	62.2%		
Train+	NaN	Nan	NaN	Nan		
Motorcycle	51.9%	25.4%	50.8%	26.2%		
Bicycle	82.1%	44.2%	75.8%	50.7%		
Overall	60.4%	40.2%	66.2%	44.8%		

MOTSP: Multi Object Tracking and Segmentation Precision

IDF1: ID tracking F1 score

Visualisations

PCAN

MaskDINO+ DeepOCSort

MaskDINO+ OCSort

MaskDINO+ StrongSort

Video Link:

https://drive.google.com/file/d/19wnls3wUwLb7Nv6aer5NhKJXEDVIU9c4/view?usp=share_link

Future Work

- Our dataset has Rider class but MaskDINO does not have the same. We will include Rider as a separate class in MaskDINO. Our score is expected to automatically increase in that case.
- We are working to replace the appearance model in DeepOCSort by a transformer based model to detect even fine features during ReID.
- We will compare our method with unified model with UniNext and Unicorn.

Thank You!!