

# United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

# Final Exam, Trimester: Spring 2024

Course Code: CSE 113/EEE 2113; Course Title: Electrical Circuits

Total Marks: 40; Duration: 2 hours

Any examinee found adopting unfair means would be expelled from the trimester/ program as per UIU disciplinary rules.

### **Question 1: Answer all the questions**

(10 Marks)

Use the superposition theorem to **determine** the value of  $V_x$  for the circuit shown in **Figure** [8+2]1. Also, the 8-ohm resistor absorbs power from both independent sources. Analyze the CO<sub>3</sub> circuit and **determine** which independent source in this circuit supplies most of the power to the 8-ohm resistor.



Figure 1

## **Question 2: Answer all the questions.**

(10 Marks)

For the circuit shown in **Figure 2**, answer the following questions:

[4+3+

i) **Determine** the **Thevenin equivalent** circuit at the **a-b** terminal.

- 31 CO<sub>3</sub>
- ii) Suppose, your friend suggests that if you connect a 20V-40W bulb across a-b terminal, then you will get maximum bulb intensity. Is he right? If not, then calculate the resistance of the bulb that would get maximum intensity.
- iii) Determine the maximum power delivered to the bulb that would be connected across the **a-b** terminal.



Figure 2

### **Question 3: Answer all the questions**

(10 Marks)

For the circuit shown in **Figure 3**, where  $v_g(t) = 247.49 \cos(1000t + \pi/4)$  [3+3+

i) **Determine** the total impedance of the circuit.

2+2]

ii) **Determine** the current through the  $100\Omega$  resistor using the current division rule.

CO<sub>4</sub>

- iii) **Determine** the voltage  $V_{ab}(t)$  using VDR.
- iv) **Determine** by how much degree the voltage,  $V_{ab}(t)$  is leading the source voltage,  $v_g(t)$ .



## Question 4: Answer all the questions.

(10 Marks)

Answer the following questions for the circuit shown in **Figure 4 (a-b)**:

[5+5]

i) Calculate the rms value of the periodic voltage shown in Figure 4a.





Figure 4a

ii) Now, **use** this rms value as the maximum amplitude of the sinusoidal voltage source in the circuit shown in Figure 4b. **Determine**  $I_0(t)$  and average real power absorbed by the 2-ohm resistor in the circuit. The angular frequency is 100 rad/s in the circuit.

