1 Theorem about uniqueness of a transitive reduction for a transitive and asymmetric relation

Теорема

Для любого транзитивного и антисимметричного r, если r^- существует, оно единственно.

Доказательство

Рассмотрим два сокращения r_1^- и r_2^- . Если они различны, то существует некоторая пара $(a,b) \in r_1^- \setminus r_2^-$. Так как $r_1^- \subseteq r$, то $(a,b) \in (r_2^-)^*$. Тогда a и b соединены в r_2^- направленным путем p. Возьмем произвольный элемент c из p_2 . Тогда должен существовать направленный путь p_1 из a в b через c в r_1^- . Проверим возможные варианты: либо a или b принадлежат p_1 либо оба принадлежат p_1 только в качестве начала/конца. В первом случае, должен существовать цикл, поэтому, так как r асимметрично, a=c или b=c - что неверно, во втором случае существует кратчайший путь в r_1^- , что неверно, потому что r_1^- - минимально и не содержит кратчайших путей.

2 Semantically equivalent propositional formulas: distributivity, and De-Morgan laws

Определение

Формулы $\phi(v_1, \ldots, v_n)$ и $\psi(v_1, \ldots, v_n)$ называются **семантически эквивалентными**, тогда и только тогда, когда при любом означивании $\gamma: \{v_1, \ldots, v_n\} \to \{0, 1\}$ верно, что

$$\gamma(\phi) = \gamma(\psi)$$

Отношение семантической эквивалентности $\sim \subseteq L^2_{prop}$ обозначается следующим образом:

 $\phi \sim \psi \stackrel{def}{\Leftrightarrow} \phi$ и ψ семантически эквивалентны

Замечание

Формулы $\phi(v_1, \ldots, v_n)$ и $\psi(v_1, \ldots, v_n)$ семантически эквивалентны \Leftrightarrow тогда и только тогда, когда их таблицы истинности совпадают.

Предложение

Отношение семантической эквивалентности - это отношение эквивалентности, т.е. оно является рефлексивным, транзитивным и симметричным.

Доказательство

Рефлексивность, симметричность и транзитивность следуют из соответствующих свойств равенства =.

Лемма 1

Следующие формулы семантически эквивалентны:

- 1. $(v_1 \bullet v_1) \sim v_1$ идемпотентность •
- 2. $(v_1 \bullet v_2) \sim (v_2 \bullet v_1)$ коммутативность \bullet
- 3. $(v_1 \bullet (v_2 \bullet v_3)) \sim ((v_1 \bullet v_2) \bullet v_3)$ ассоциативность \bullet

где
$$\bullet \in \{\land, \lor\}$$

Доказательство

Доказывается сравнением соответствующих таблиц истинности.

Лемма 2

Следующие формулы семантически эквивалентны:

- 1. $\neg \neg v_1 \sim v_1$
- 2. $(v_1 \to v_2) \sim (\neg v_1 \lor v_2)$,
- 3. $(v_1 \wedge (v_2 \vee v_3)) \sim ((v_1 \wedge v_2) \vee (v_1 \wedge v_3))$ дистрибутивность \wedge над \vee
- 4. $(v_1 \wedge (v_2 \vee v_3)) \sim ((v_1 \wedge v_2) \vee (v_1 \wedge v_3))$ дистрибутивность \vee над \wedge

- 5. $\neg(v_1 \land v_2) \sim (\neg v_1 \lor \neg v_2)$ Закон де Моргана
- 6. $\neg(v_1 \lor v_2) \sim (\neg v_1 \land \neg v_2)$ Закон де Моргана

Доказательство

Доказывается сравнением соответствующих таблиц истинности.

3 Correctness theorem for the predicate calculus

Теорема (корректность $PredC_{\sigma}$)

Если секвенция s является выводимой, то s тождественно истинна.

Доказательство

Доказательство проводится индукцией по высоте дерева вывода s. Основание индукции: s - аксиома. тождественная истинность секвенций $\phi \vdash \phi, \vdash \top$ и $\vdash (x=x)$ очевидна. Тождественная истинность секвенции $x=y, (\phi)_x^z \vdash (\phi)_y^z$ также очевидна. Шаг индукции. Предположим, что утверждение верно для всех деревьев вывода высоты < n, и рассмотрим дерево вывода T высоты n. Тогда

$$T = \frac{T_1 \dots T_n}{s}$$

Пусть $s_i = r(T_i)$ - корни деревьев T_i . По предположению индукции все секвенции s_i тождественно истинны. Необходимо доказать тождественную истинность s. Известно, что $\frac{s_1...s_n}{s} \in R_{PC}$ является правилом вывода. Проверим, что все правила вывода $\operatorname{PredC}_{\sigma}$ сохраняют тождественную истинность: если $\frac{s_1...s_n}{s}$ является правилом вывода $\operatorname{PredC}_{\sigma}$ и все s_i тождественно истинны, то s также тождественно истинно. Для правил вывода $\operatorname{PredC}_{\sigma}$, имеющих тот же вид, что и правила вывода исчисления высказываний, доказательство аналогично их доказательству в исчислении высказываний. Следовательно, достаточно проверить только правила с кванторами. Возьмем, например, правило $\frac{\Gamma\vdash \phi}{\Gamma\vdash \forall x \phi}$ при условии, что $x \notin FV(\Gamma)$. Пусть $\Gamma \vdash \phi$ - тождественно истинна. Предположим, что $\Gamma \vdash \forall x \phi$ не является тождественно истинной. Тогда существует такая структура \mathcal{M} и означивание $\gamma : FV(\Gamma \cup \{\phi\})$, что $\mathcal{M} \models \Gamma[\gamma]$ и $\mathcal{M} \not\models \forall x \phi$.

По определению это означает, что существует такой элемент $a \in M$, что $\mathcal{M} \not\models \phi[\gamma_a^x]$. Поскольку $x \notin FV(\Gamma)$ и $\mathcal{M} \models \Gamma[\gamma]$, $\mathcal{M} \models \Gamma[\gamma_a^x]$. По условию секвенция $\Gamma \vdash \phi$ тождественно истинна, следовательно, $\mathcal{M} \models \phi[\gamma_a^x]$ - противоречие. Остальные 3 правила рассматриваются аналогично. \square