Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Semestrální práce MPC-AUP

Radim Říha, 221013 Petr Šopák, 221022 Brno, 2023

Zadání:

Technologický proces slouží k pasterizaci kapalin. Nerezová nádrž je vysoká 2000 mm a její objem je přesně 2 m³. Pro přívod materiálu je využito vstupní a pro odvod výstupní potrubí. Vstupní potrubí o průměru DN125 je konstantně tlakováno vstupním materiálem. Výstupní potrubí, rovněž o průměru DN125 je přivedeno do zásobníků, které uchovávají výstupní produkt pro další zpracování. Technologie je vybavena mechanismem pro míchání materiálu uvnitř tanku (mixérem), jehož statický krouticí moment v okamžiku kdy je tank zcela plný je 380 N/m a jehož maximální přípustná rychlost je 40 ot./min. Tento mechanismus je vybaven převodovkou s převodovým poměrem 38:1. Pro ohřev je k technologii připojen tepelný okruh z přidružené výroby (jaderné elektrárny) s plynule regulovatelným jmenovitým výkonem 25 MW. Maximální přípustná teplota veškerých mechanických částí je 95 °C, po jejímž překročení dojde k nenávratným škodám a technologie bude zničena.

Požadavky:

- 1. Nerezová nádrž výška 2000 mm a objem 2 m³
- 2. Vstupní a výstupní potrubí DN125
- 3. Vstupní potrubí je tlakováno konstantně
- 4. Mixér statický krouticí moment 380 N/m, maximální přípustná rychlost 40 ot./min, převodovka 38:1
- 5. Ohřev jmenovitý výkon 25 MW
- 6. Maximální přípustná teplota mechanických částí 95 °C

Schéma:

Obr.1.: Zjednodušený proces pasterizační jednotky

Obr.2.: Process flow diagram pasterizační jednotky

Hazardní stavy a jejich detekce:

stav	detekce stavu
trhlina v nádrži	snímač hladiny kapaliny v nádrži
porucha vstupního ventilu	průtokoměr vstupního potrubí
porucha výstupního ventilu	průtokoměr výstupního potrubí
porucha motoru	snímač otáček hřídele motoru
porucha převodovky nebo míchadla	snímač otáček hřídele motoru
přehřátí motoru	snímač teploty motoru
přehřátí nádrže	snímač teploty kapaliny v nádrži
porucha tepelného okruhu	snímač teploty tepelného okruhu

P&ID diagram:

Obr.3.: P&ID diagram procesní jednotek pro topení a manipulace se vstupní kapalinou

Obr.4.: P&ID diagram procesní jednotky pro čištění tanku vodou a louhem

Použité snímače:

označení	typ	účel
F01.01	FICQ	měření a regulace množství napuštěné kapaliny
F01.02	FIQ	měření množství vypuštěné kapaliny
S01.01	SI	detekce poruchy míchadla nebo převodovky
T01.01	TC	regulace teploty kapaliny v tanku
T01.02	TI	detekce přehřátí motoru
L01.01	LC	regulace výšky hladiny kapaliny v nádrži
L01.02	LM	detekce napuštění maximálního množství kapaliny
T02.01	TC	měření množství tepla předaného z tepelného okruhu do nádrže
T02.02	TC	měření množství tepla předaného z tepelného okruhu do nádrže
F02.01	FICQ	měření množství tepla předaného z tepelného okruhu do nádrže
L03.01	LM	detekce napuštění maximálního množství čisté vody
C03.01	CI	měření koncentrace louhu

Použité akční členy:

×(Tunania.
označení	popis
V01.01	vpouštěcí ventil kapaliny pro pasterizaci do tanku
V01.02	vypouštěcí ventil pasterizované kapaliny z tanku
V01.03	vypouštěcí ventil čisticí kapaliny z tanku
V01.04	přetlakový ventil tanku
A01.01	pasterizační tank
M01.01	motor míchadla
V02.01	vstupní ventil hlavního čerpadla tepelného okruhu
V02.02	výstupní ventil hlavního čerpadla tepelného okruhu
V02.03	vstupní ventil záložního čerpadla tepelného okruhu
V02.04	výstupní ventil záložního čerpadla tepelného okruhu
V02.05	rozdělovací ventil tepelného okruhu
P02.01A	hlavní čerpadlo tepelného okruhu
P02.01B	záložní čerpadlo tepelného okruhu
V03.01	vstupní ventil čisté vody
V03.02	napouštěcí ventil nádrže s čistou vodou
V03.03	oddělovací ventil nádrží
V03.04	napouštěcí ventil nádrže s použitou vodou
V03.05	oddělovací ventil nádrží
V03.06	napouštěcí ventil nádrže s louhem
V03.07	vypouštěcí ventil nádrže s čistou vodou
V03.08	vypouštěcí ventil nádrže s použitou vodou
V03.09	výstupní ventil použité vody
V03.10	vypouštěcí ventil nádrže s louhem
P03.01	čerpadlo nádrží
T03.01	nádrž s čistou vodou
T03.02	nádrž s použitou vodou
T03.03	nádrž s louhem