Electronic Circuits for Mechatronics (ELCT 609)

Spring 2021

Lecture 1: Course Introduction

Course Instructor: Dr. Eman Azab

COURSE TEAM

Course Instructor: Dr. Eman Azab

Office: C3:315, Email: eman.azab@guc.edu.eg

Teaching Assistant: M.Sc. Eng. Mohamed Elhadad

Office: C3.2XX, Email: mohamed.elhadad@guc.edu.eg

Teaching Assistant: M.Sc. Eng.: Yasmine Massoud

Office: C3.2XX, E-mail: yasmin-.massoud@guc.edu.eg

COURSE SCHEDULE & ASSESSMENT

Course Material	Source	
One Lecture per Week	Every Tuesday face-to-face & VOD	
One Tutorial Bi- weekly	Check your Group Schedule Hybrid Tutorials face-to-face & VOD	

Evaluation Method	Grades	
Assignments	10%	
Quizzes	15%	
Project	15%	
Midterm	20%	
Final	40%	

Course Instructor: Dr. Eman Azab

Course Guidelines & Prerequisites

- Quizzes and Assignments are best 2 out of 3
- Course Prerequisites:
 - Electric Circuits I
 - Electric Circuits II
- What did you learn in ELCT I and II??
 - how to build and analyze electric circuits
 - I-V characteristics of Passive and Active Elements

Course Instructor: Dr. Eman Azab

Course Objectives

- Introduce Electronic circuit components, such as:
 - Diodes
 - Transistors

- Learn their Physical structure and I-V characteristics
- Electronic Circuits Analysis
- How to build Electronic Circuits?
- Electronic Circuits applications

Tentative Course Schedule

Week	Lecture	Description	
1	Introduction & P-N Junctions (Diodes)	Course Overview and Diodes physical structure (Electrically Controlled Switch)	
2 &3	P-N Junctions (Diodes): Circuit Analysis and Applications	· · · · · · · · · · · · · · · · · · ·	
4	Bipolar Junction Transistor: Physical Structure and I-V Characteristics	Transistor Physical Structure and its circuit analysis while using DC sources (Attention: related to Diodes)	
5	Bipolar Junction Transistor Application: Analog Amplifiers	Amplifiers Circuit Analysis (How the transistor behaves when additional AC sources are used?) Ex.: Microphone	
6	MOS-FET Transistor: Physical Structure and I-V Characteristics	Transistor Physical Structure and its circuit analysis while using DC sources (Attention: Similar to Bipolar Transistor)	
	Mid-term Exam	All topics up to week 6 will be included	
7	MOS-FET Transistor Application: Analog Amplifiers	Amplifiers Circuit Analysis (How the MOS-FET transistor behaves when additional AC sources are used?)	
8 & 9	Frequency Response of Amplifiers	Amplifiers response to different input signal frequencies	
10 &11	Differential Amplifiers and Current Sources	Differential input/output Amplifiers, (How can we design a constant Current Source using Transistors?)	
12	Analog Signal Processing Applications	Amplifiers, Adder, Multiplieretc.	
	Final Exam	All topics will be included	

Course Instructor: Dr. Eman Azab

Tentative Course Evaluation Schedule

Week	Assignment	Quiz	Project
4		Quiz 1: Diodes	
5	Assignment 1: Bipolar Junction Transistor Amplifiers Analysis		
8		Quiz 2: MOS-FET DC and AC Analysis	Practical Project (in Addition to
9	Assignment 2: Frequency Response of Amplifiers		Theoretical and Simulation Analysis are included)
11		Quiz 3: Differential Amplifier	
12	Assignment 3: Analog Signal Processing Applications		

Course Instructor: Dr. Eman Azab

References

- 1. "Electronic Principles", Malvino & Bates
- 2. "Microelectronics Circuits", Sedra & Smith
- 3. "Electronic Devices and Circuits", Bogart, Beasley & Rico
- 4. "Microelectronic Circuits Analysis and Design", Rashid
- "Analysis and Design of Analog Integrated Circuits", Gray, Hurst, Lewis & Meyer
- 6. "Fundamentals of Microelectronics", Razavi
- 7. "Analog Integrated Circuit Design", Johns & Martin

Electronic Circuits

Introduction

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

C

Definition

What is meant by Electric Circuit?

- A closed path in which current flows in conducting material
- Current flows in presence of a Voltage/Current source.
- Contains discrete components like R,L & C
- Elements of electric circuits are connected through wires

Current flows through a conducting material

Prof. Dr. Yasser Hegazy Lectures (ELCT II)

Definition

- What is meant by Electronic Circuit?
 - A closed path in which current flows as charges in gas,
 vacuum or semiconductor material
 - Current flows in presence of a Voltage/Current source
 - Contains components like Diodes, Transistors etc.
 - Circuit Components can be integrated on a smallsized chip (Integrated Circuit (IC))

Current flows through a Semiconducting material

Course Instructor: Dr. Eman Azab

- First Transistor 1947
- Bell Labs, Point Contact Transistor

Course Instructor: Dr. Eman Azab

Discrete Transistors

Course Instructor: Dr. Eman Azab Contact: eman.azab@guc.edu.eg

13

- First Silicon planar IC chip
- Made by R. Noyce of Fairchild Camera in 1961
- A flip-flop circuit containing <u>Six</u> devices

- Intel 8742 Die
- 8-bit Microcontroller
- CPU at 12 MHz
- 128 bytes of RAM
- 2048 bytes of EPROM
- I/O Pins
- Source: Intel Corporation

Electronic Systems

- Why we need Electronic Circuits?
 - For any Information Signal processing Application, Ex.
 Cars Electronic ABS System

Information processing (by Electronic control unit)

Source: http://www.cdxetextbook.com/brakes/brake/abs/abscomponents.html