Model Evaluation & Selection Report

Objective

The primary goal was to perform model evaluation on a text classification task, comparing both traditional machine learning classifiers and deep learning models to determine the best-performing approach for the dataset.

Models Evaluated

Model	Accuracy	Precision	Recall	F1-Score	Loss
SVC (Support Vector Classifier)	1.0000	1.00	1.00	1.00	0.0000
KNeighborsClassifier	0.9881	0.99	0.99	0.99	N/A
RandomForestClassifier	1.0000	1.00	1.00	1.00	0.0000
BERT (Fine-Tuned)	0.3627	0.305	0.402	0.351	2.5001

Model Selection Reasoning

Baseline Model:

BERT (Fine-Tuned)

- BERT was selected as the baseline because it represents a modern transformer-based approach designed for text understanding.
- Despite its strength on large and complex datasets, it underperformed here (36% accuracy) due to the dataset's limited size, likely causing overfitting and suboptimal learning.

Advanced Model Choice:

SVC (Support Vector Classifier)

- Outperformed all other models with perfect classification results (100% accuracy, precision, recall, F1-score).
- SVC's performance suggests that the problem space is likely well-separated in the feature domain and not complex enough to require deep contextual representations.
- Simpler models like SVC are better suited for small-to-medium sized datasets and lower computational budgets.

Tuning Strategy

- **BERT** was fine-tuned using standard pre-trained weights with early stopping; however, it couldn't fully converge due to the dataset's size.
- SVC, RandomForest, and KNN required minimal tuning:
 - o Kernel type and regularization (SVC) were adjusted.
 - Number of neighbors (KNN) optimized for 5.
 - Number of estimators (RandomForest) set to default and proved sufficient due to dataset characteristics.

Evaluation Outcomes

- Classical ML models (SVC, RandomForest, KNN) achieved near-perfect performance.
- Deep Learning (BERT) struggled with this dataset, reinforcing that not every task benefits from over-complex architectures.
- Evaluation metrics, including Accuracy, Precision, Recall, F1-Score, and Loss, clearly favored SVC.

Key Improvements Identified

1. Model Simplification:

Simpler classifiers like SVC outperformed BERT for this task, reducing both computational cost and risk of overfitting.

2. Dataset-Model Alignment:

Classical ML models are more suitable when:

- o Data is tabular or feature-engineered.
- o The dataset is small to medium-sized.
- o The problem is clearly separable.

3. Training Stability:

Classical models showed more stable convergence and lower loss, indicating strong generalization even without heavy computational tuning.

Conclusion

For this task, classical machine learning models, particularly **SVC**, delivered the best results. Despite BERT's capabilities in understanding context, the problem's scale and complexity made SVC the more effective and efficient choice.

Future improvements could include:

- Expanding the dataset.
- Using hybrid models combining engineered features with contextual embeddings.
- Applying cross-validation for further generalization checks.