Segurança da Informação – GBC083

Prof. Rodrigo Sanches Miani - FACOM/UFU

Aula passada

Segurança da Informação – GBC083

DES – representação geral

DES – diferenças com a cifra de Feistel

- ▶ Com exceção das permutações inicial (IP) e final (IP-1), o DES tem a estrutura exata de uma cifra de Feistel;
 - Já conhecemos a estrutura de uma cifra de Feistel!
- Dois itens foram esclarecidos:
 - I. Geração das subchaves;
 - 2. Conteúdo da função F.

DES – Geração das subchaves

As subchaves são necessárias por dois motivos:

- 1. Projeto do algoritmo (cifra de produto) envolve uma série de rodadas;
- 2. Usar chaves repetidas (ou até a mesma chave!) em cada uma das rodadas do algoritmo enfraquece a ideia de tornar obscura a relação entre texto claro e texto cifrado.

DES – Geração das subchaves

Algoritmo

- Entrada de 64 bits -> K
- 2. Escolha permutada de 56 bits -> K_p
- 3. Deslocamento circular à esquerda em $K_p \rightarrow K_{pe}$
- 4. Escolha permutada de 48 bits em $K_{pe} \rightarrow K_1$

DES – Rodadas e função F

A função rodada F é o coração de um algoritmo de criptografia simétrica;

▶ O DES faz o seguinte:

- Misturar um trecho do texto claro (RE) com a chave como isso é feito mesmo?
 - > XOR!
- 2. Aplicar substituições no texto que foi misturado com a chave como isso é feito mesmo?
 - ► Tabela de substituição —S-Box (também permitirá diminuir o número de bits)
- 3. Permutações

DES – Segurança (tamanho da chave)

Tamanho de chave (bits)	Cifra	Número de chaves alternativas	Tempo exigido a 10 ⁹ decriptações/s	Tempo exigido a 10 ¹³ decriptações/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2^{55} ns = 1,125 ano	1 hora
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	2^{127} ns = 5,3 × 10^{21} anos	5,3 × 10 ¹⁷ anos
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	2^{167} ns = 5,8 × 10^{33} anos	5,8 × 10 ²⁹ anos
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	2^{191} ns = 9,8 × 10^{40} anos	9,8 × 10 ³⁶ anos
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1,8 × 10^{60} anos	1,8 × 10 ⁵⁶ ano

Princípios de projeto de cifra de bloco

Embora tenha havido muito progresso no projeto de cifras de bloco criptograficamente fortes, os princípios básicos não mudaram tanto desde o trabalho de Feistel e da equipe de projeto do DES, no inicio da década de 1970.

Três aspectos críticos para o projeto de cifra de bloco são:

- Número de rodadas;
- 2. Projeto da função F;
- 3. Algoritmo de geração de subchave.

Tópicos da aula

Segurança da Informação – GBC083

Tópicos da aula

- Breve história sobre o AES
- AES em detalhes?
- Estrutura básica do AES
- Discussão sobre a estrutura do AES
- Expansão da chave
- Discussão

Breve histórico sobre o AES

Segurança da Informação – GBC083

Definição

- O Advanced Encryption Standard ou AES, foi publicado pelo National Institute of Standards and Technology (NIST) em 2001;
- O AES é uma cifra simétrica de bloco elaborada para substituir o DES como o algoritmo padrão de criptografia para diferentes tipos de aplicações.

Cenário antes do AES...

- DES e 3DES;
- DES opera com um tamanho de bloco pequeno (64 bits) e um tamanho de chave ainda menor (56 bits);
- Como o DES já era adotado em muitas aplicações, a solução mais simples foi criar uma variação...
- ▶ 3DES Usar o DES três vezes! Cifrar com a chave I, decifrar com a chave 2 e cifrar com a chave I;
 - A comunidade estudou exaustivamente o algoritmo e a força-bruta sempre acabou sendo a "melhor" opção para os criptoanalistas...

Cenário antes do AES...

- O tamanho da chave aumentou...
- O tamanho do bloco não!
- O DES foi projetado para implementações baseadas em hardware dos anos 70, ou seja, não produz um software muito eficiente;
- ▶ O 3DES acaba sofrendo do mesmo problema.

Mudanças são necessárias...

Qual a melhor forma para propor um novo algoritmo de criptografia que, potencialmente, seria o novo padrão?

Call for proposals!

- ▶ Em 1997 o NIST lançou um *call for proposals* (chamada de propostas pública) para propor um novo algoritmo de criptografia simétrica;
- O algoritmo deveria ter uma segurança igual ou melhor do que o 3DES e ser significativamente mais eficiente do que ele;
- A chamada definiu os seguintes termos:
 - Tamanho de bloco de 128 bits
 - Tamanhos de chave de 128, 192 e 256 bits

Call for proposals!

- A primeira rodada de avaliação terminou com 15 propostas aprovadas;
- ▶ A segunda rodada diminuiu esse número para 5;
- Após um novo processo de avaliação (em uma conferência), o algoritmo Rijndael levou a maioria dos votos;
- Após novos testes e apresentações dos 5 finalistas, o NIST anunciou em outubro de 2000 a vitória do Rijndael.
 - Dois pesquisadores belgas: Dr. Joan Daemen and Dr. Vincent Rijmen

Call for proposals - Critérios

- Diversos critérios foram usados para avaliar os algoritmos ao longo dos anos:
 - Segurança resistência do algoritmo a diferentes ataques de criptoanálise;
 - Custo computacional
 - Possibilidade de implementação em hardware e software
 - Cifrar x decifrar
 - ▶ Entre outros...
- De forma geral, o Rijandael teve um bom desempenho em praticamente todos os quesitos.

Call for proposals – Mais um?!

Temos um novo "Call for proposals" sobre algoritmos criptográficos em andamento?

Call for proposals – Mais um?!

Temos um novo "Call for proposals" sobre algoritmos criptográficos em andamento?

▶ Sim! Qual o intuito? AES está com problemas?

Novo - Call for proposals

- Post-quantum cryptography ou criptografia quântica!
- A ideia da chamada é buscar algoritmos resistentes a computação quântica;
- https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals

Novo - Call for proposals

- A chamada foi lançada em abril de 2016;
- O processo ainda está acontecendo e em 2022 a lista com os algoritmos selecionados foi divulgada;
- Isso mostra a preocupação dos órgãos de regulação com a criptografia.

Novo - Call for proposals

Date	
Feb 24-26, 2016	NIST Presentation at PQCrypto 2016: Announcement and outline of NIST's Call for Submissions (Fall 2016), Dustin Moody
April 28, 2016	NIST releases NISTIR 8105, Report on Post-Quantum Cryptography
Dec 20, 2016	Formal Call for Proposals
Nov 30, 2017	Deadline for submissions
Dec 4, 2017	NIST Presentation at AsiaCrypt 2017: <i>The Ship Has Sailed: The NIST Post-Quantum Crypto "Competition"</i> , <i>Dustin Moody</i>
Dec 21, 2017	Round 1 algorithms announced (69 submissions accepted as "complete and proper")
Apr 11, 2018	NIST Presentation at PQCrypto 2018: Let's Get Ready to Rumble - The NIST PQC "Competition", Dustin Moody
April 11-13, 2018	First PQC Standardization Conference - Submitter's Presentations
January 30, 2019	Second Round Candidates announced (26 algorithms)
March 15, 2019	Deadline for updated submission packages for the Second Round
May 8-10, 2019	NIST Presentation at PQCrypto 2019: Round 2 of the NIST PQC "Competition" - What was NIST Thinking? (Spring 2019), <i>Dustin Moody</i>
August 22-24, 2019	Second PQC Standardization Conference
2020/2021	Round 3 begins or select algorithms

Draft Standards Available

2022/2024

AES em detalhes?

Segurança da Informação – GBC083

Como o AES será apresentado?

- Comparada às cifras de chave pública como a RSA ou a cifra simétrica DES, a estrutura do AES é bastante complexa e não pode ser explicada tão facilmente;
- O AES, em particular, trabalha com uma aritmética em uma estrutura algébrica conhecida como corpo.

Como o AES será apresentado?

Compreender com detalhes cada uma das operações do AES envolve ter uma boa noção sobre operações em corpos finitos – o que está fora do escopo desse curso!

- O objetivo é mostrar o funcionamento, em linhas gerais, do AES;
 - Ilustrar algumas decisões de projetos que o diferenciam do DES e permitem que ele seja adotado como padrão em se tratando de criptografia simétrica.

Estrutura básica do AES

Segurança da Informação – GBC083

Entradas

- AES recebe como entrada:
- Um bloco de texto de 128 bits (16 bytes);
- 2. Uma chave que pode ter 128, 192 ou 256 bits (16, 24 e 32 bytes).

Representação do bloco de texto claro/cifrado

- O bloco de texto em claro/cifrado é representado como uma matriz de bytes 4x4;
- Esse bloco é copiado para um array Estado, que é modificado a cada etapa do processo de cifrar/decifrar;

Representação da chave

- A chave também é representada como uma matriz (4x4, 4x6, 4x8);
- Assim como no DES, chaves intermediárias (de rodada) devem ser geradas;
- As chaves intermediárias devem ter 128 bits pois o AES trabalha sob todo o bloco de texto claro/cifrado.

k_0	k_4	k_8	k ₁₂							
k_1	k ₅	k9	k ₁₃		w_0	$oxed{w_1 w_2}$	2110	• • •	21/42	111/42
k_2	k ₆	k ₁₀	k ₁₄				ω_2		$\left egin{array}{c c} w_{42} & w \end{array}\right $	W43
k ₃	k ₇	k ₁₁	k ₁₅							

- O AES possui N rodadas com N dependendo do tamanho da chave;
- N=10 rodadas para o AES-128
- N=12 rodadas para o AES-192
- ▶ N=14 rodadas para o AES-256

Pergunta!

Porque o número de rodadas aumenta de acordo com o número de chaves?

Pergunta!

Porque o número de rodadas aumenta de acordo com o número de chaves?

Resposta:

- mais rodadas => mais segurança
- Como a chave é maior, é preciso um número maior de rodadas para que os bits "extras" da chave possam atingir de maneira adequada o texto cifrado.
- ▶ Decisão de projeto para cada aumento de 32 bits de chave, uma rodada foi inserida.

- Transformação inicial
 - AddRoundKey
- As primeiras N-I rodadas consistem em quatro funções de transformações distintas
 - SubBytes
 - ShiftRows
 - MixColumns
 - AddRoundKey
- 3. A última rodada consiste de três funções
 - SubBytes
 - ShiftRows
 - AddRoundKey

Resumo

Tamanho da chave (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Tamanho do bloco de texto claro (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Número de rodadas	10	12	14
Tamanho da chave de rodada (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Tamanho da chave expandida (words/bytes)	44/176	52/208	60/240

Resumo

Tamanho da chave (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Tamanho do bloco de texto claro (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Número de rodadas	10	12	14
Tamanho da chave de rodada (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Tamanho da chave expandida (words/bytes)	44/176	52/208	60/240

Alguém saberia dizer a razão da chave expandida ter esse tamanho??

Discussão sobre a estrutura do AES

Segurança da Informação – GBC083

Estrutura do AES - Feistel

- Notem que o AES não é uma cifra de Feistel!
- Lembrem-se que na cifra de Feistel metade do bloco de dados é usada para modificar a outra metade e depois elas são invertidas;
- ▶ O AES processa o bloco de dados (claro/cifrado) inteiro como uma única matriz durante cada rodada.

Estrutura do AES - Feistel

- Apesar de não ser uma cifra de Feistel, o modelo básico de cifra de produto está lá...
 - XOR do bloco com a chave
 - 2. Difusão e confusão sob o bloco
 - 3. XOR do bloco com a chave
 - 4. E assim por diante...
- Esse processo mostrou-se bem seguro ao longo do tempo.

Estrutura do AES - Simplicidade

- A estrutura do algoritmo é bem simples:
 - I. Mistura o texto com a chave;
 - 2. Nove rodadas com as quatro funções (permutação e confusão)
 - 3. Décima rodada com três funções

Outros algoritmos concorrentes não possuíam essa simplicidade no fluxo de execução ou nos componentes que formam as funções principais.

Estrutura do AES - Funções

- SubBytes: utiliza uma S-box para realizar uma substituição byte a byte do bloco (confusão);
 - Quantas S-box o DES tinha mesmo?
- ShiftRows: permutação sobre as linhas (difusão);
- MixColumns: operação sobre as colunas cada coluna passará por uma multiplicação (difusão);
- AddRoundKey: um XOR bit a bit simples do bloco atual com uma parte da chave expandida.

Estrutura do AES – Funções – Sbox (cifrar)

		у															
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
x	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	OB	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	OF	BO	54	BB	16

Estrutura do AES – Funções – Sbox (decifrar)

		у															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
х	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	OB	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	В6	92
	5	6C	70	48	50	FD	ED	В9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	OF	02	C1	AF	BD	03	01	13	8A	6B
	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	В4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1A	71	1D	29	C5	89	6F	В7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	C	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	BO	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

Estrutura do AES - Decifrar

- Assim como na maioria das cifras em bloco, o algoritmo para decifrar o texto utiliza a chave expandida em ordem reversa;
- Porém, o algoritmo de decifrar não é igual ao do algoritmo de cifrar. Isso é uma consequência da estrutura do AES em particular.

Estrutura do AES - Decifrar

Alguém tem um palpite sobre como a decifragem do AES deveria funcionar?

Estrutura do AES - Decifrar

- Cada um dos estágios (ou funções) deve ser facilmente reversível;
 - Essa é uma diferença para a cifra de Feistel;
 - Isso exige uma implementação diferente para o algoritmo de decifragem.
- Isso permitirá que entre cada um dos estágios (figura que descreve a estrutura do AES) o **Estado** é o mesmo para a função de cifrar e decifrar.

Estrutura do AES – última rodada

- A omissão da função MixColumns na última rodada foi uma decisão de projeto dos pesquisadores;
- A principal justificativa foi o desempenho;
 - A difusão proporcionada pelo MixColumns não chegaria ao próximo round, pois não existe um novo round...

Estrutura do AES – última rodada

- Os autores demonstraram que tal omissão não impacta na segurança do algoritmo;
- Contudo, alguns pesquisadores mostram que tal omissão pode enfraquecer o algoritmo;
- https://eprint.iacr.org/2010/041.pdf

Expansão da chave

Segurança da Informação- GBC083

- O algoritmo de expansão da chave utiliza como entrada uma palavra (chave!) de 128 bits (16 bytes ou 4 palavras – I coluna);
- A saída do algoritmo será um vetor de 1408 bits ou 176 bytes ou 44 palavras;
- Isso é suficiente para gerar II subchaves, uma para o AddRoundKey inicial e as outras I0 para serem usadas nas rodadas.
 - Porque?

- A chave original é copiada para as primeiras quatro posições de palavras do vetor de 44 palavras;
- O restante do vetor é preenchido com quatro palavras de cada vez;

3. Três das quatro palavras são simplesmente um XOR da palavra imediatamente anterior (w[i-1]) e da palavra quatro posições atrás (w[i-4]);

- 4. A outra palavra (múltiplas de 4 última coluna) é preenchida da seguinte forma (usando a função "g", presente no slide anterior):
 - a) O primeiro byte vira o último byte;
 - b) Todos os quatro bytes passam por uma substituição;
 - c) A nova palavra passa por um XOR com uma constante da rodada;
 - d) Finalmente, um novo XOR é feito entre o resultado do passo 6 com a palavra quatro posições atrás (w[i-4]).

Raciocínio por trás do algoritmo

- Resistente a ataques conhecidos;
- Desempenho;
- Conhecer uma parte da chave ou da chave da rodada não permite o cálculo de muitos outros bits dela.

Roteiro de estudos

- Leitura das seções 5.2, 5.3, 5.4, 5.5 e 5.6 do livro "Criptografia e segurança de redes. Princípios e práticas". William Stallings;
 - Alguns detalhes das operações estão por lá mas não foram vistos aqui. É importante que seja feito um filtro na leitura das seções.
- 2. Estudo das vídeo-aulas referentes ao tópico 7;
- 3. Assistir o seguinte vídeo sobre o AES:
 - https://www.youtube.com/watch?v=gP4PqVGudtg
- Resolução do TP3

Roteiro de estudos

Outras referências:

- http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
- https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
- https://medium.com/@mstahir/how-aes-algorithm-works-701ef5cebc7c

