江 苏 大 学

2012年硕士研究生入学考试初试试题 (A 卷)

科目代码: 834 科目名称: 电子技术 满分: 150 分

注意:①认真阅读答题 纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿

纸上均无效; ③本试题纸须随答题纸一起装入试题袋中交回!

一、逻辑门电路见图 1。TTL 门电路的电源电压 $V_{\rm CC}=5$ V,CMOS 门电路的电源电压 $V_{\rm DD}=9$ V。 试根据 C 的不同取值,将电压表读数填入表 1。 (本题 16 分)

 $G_1 \cdot G_2 \cdot G_3 : TTL \times 3$

图 1

表 1						
C	V_1	V_2				
0						
1						

- 二、电路如图 2 所示。要求:
- (本题 20 分)
- (1) 分析图 2(a)电路, 写出 Y 的逻辑表达式;
- (2) 改用 8 选 1 数选器 CT74LS151 实现 Y, 允许输入反变量, 在图 2(b)中连线, 并转移上答 题纸。

三、设图 3 触发器的初始状态 Q=0,试画出在 CP 信号连续作用下触发器 Q 端的电压波形。 设 CP 的频率 f_{cp} =0.5kHz,试问 Q 端的信号频率 f_{Q} =? (本题 14 分)

四、MSI 同步 10 进制加法计数器 CT74LS160 的功能如表 2 所示。 (本题 15 分)

持

(1) 试分析图 4 所示电路为几进制计数器;

1

(2) 试不增加器件数目,用反馈归零法将该电路改接成31进制计数器;

				输	λ.					输	出	-
\overline{CR}	\overline{LD}	$CT_{\mathtt{P}}$	CT_{T}	CP	D_0	D_1	D_2	D_3	Q_0	Q_1	Q_2	Q_3
0	ф	ф	ф	ф	ф	ф	ф	ф	0	0	0	0
1	0	ф	ф	†	d_0	d_{1}	d_2	d_3	d_0	d_1	d_2	d_3
1	1	1	1	1	ф	ф	ф	ф	8421 码	10 进	生制加	法计数
1	1	0	ф	ф	ф	ф	ф	ф		保	持	

表 2 MSI 同步 10 进制加法计数器 CT74LS160 的功能表

图 4

- 五、CC7555 定时器的功能如表 3,利用它构成的电路如图 5 所示。试解答:(本题 20 分)
 - (1) 分析图 5 电路的工作原理;
 - (2) 该 CC7555 定时器组成什么电路;
 - (3) 画出相应的输出波形,转移上答题纸,并问输出脉冲的幅值 U_{Om} 约为多少。

表 3 集成 CC7555 定时器功能表

6 (U _{TH})	2 ($U_{\overline{1R}}$)	$4(\overline{R})$	3 (<i>OUT</i>)	7(开关管)				
ϕ >2 $V_{\rm DD}/3$ <2 $V_{\rm DD}/3$ ϕ	ϕ $>V_{\rm DD}/3$ $>V_{\rm DD}/3$ $< V_{\rm DD}/3$	L(低电平) H(高电平) H(高电平) H(高电平)	L(低电平) L(低电平) 原状态 H(高电平)	导通 导通 原状态 截止				

六、电路如图 6 所示。图中 $R_{\rm B1}$ =13kΩ, $R_{\rm B2}$ =5.6kΩ, $R_{\rm C}$ =3kΩ, $R_{\rm E1}$ =2.7kΩ, $R_{\rm E2}$ =300Ω, $R_{\rm L}$ =6kΩ。 VT 的 β =49, $U_{\rm BE}$ =0.6V,+ $V_{\rm CC}$ =+12V。

- (1) 计算静态工作点Q;
- (2) 画出微变等效电路图。求交流性能指标 $A_{\rm u}$, $R_{\rm o}$, $R_{\rm i}$;
- (3) 如欲使 u_0 输出不失真幅度最大,文字说明 Q 点应设置在何处? (本题 20 分)

七、判断图 7 各个电路中引入的总体交流反馈是何种极性,如果是负反馈,指出其类型(要求在图中标注瞬时电位极性,须在答题纸上另行画图)。 (本题 18 分)

图 7

八、分析图 8 电路,求出其输出电压 u_0 与输入电压 u_{I1} 、 u_{I2} 的函数关系式。 (本题 12 分)

图 8

九、判断图 9a、b、c 电路能否产生振荡(要求在图上标出瞬时极性或作扼要说明)?若能,写出振荡器的全称,若不能,则加以改进,使之能产生振荡。

(本题 15 分)

