MATH 355 Assignment 2

Instructor: Dr Ryan Hamilton Name: Yifeng Pan UCID: 30063828

Fall 2019

1 Using formal ϵ arguments, prove the following

a $\lim_{n\to\infty} \frac{2n^3-1}{-n^3+1} = -2$.

Let $\epsilon \in \mathbb{R}, \epsilon > 0$. Let $N > \sqrt[3]{1/\epsilon + 1}$. Let $n \in \mathbb{N}, n \geq N$. Now:

$$|a_n - L| = \left| \frac{2n^3 - 1}{-n^3 + 1} + 2 \right| = \left| \frac{2n^3 - 1}{-n^3 + 1} + \frac{-2n^3 + 2}{-n^3 + 1} \right|$$

$$= \left| \frac{1}{-n^3 + 1} \right| = \frac{1}{|1 - n^3|}$$

$$= \frac{1}{n^3 - 1} \text{ (as } n \ge 1)$$

$$\le \frac{1}{N^3 - 1} < \frac{1}{\sqrt[3]{1/\epsilon + 1}^3 - 1} = \frac{1}{1/\epsilon} = \epsilon$$

b $\lim_{n\to\infty} \sqrt{9n^2 - n} - 3n = -\frac{1}{6}$.

Let $\epsilon \in \mathbb{R}$, $\epsilon > 0$. Let $N > \max(\frac{1/(6\epsilon)+1}{18+6\sqrt{8}},1)$. Let $n \in \mathbb{N}$, $n \geq N$. Now:

$$\begin{aligned} |a_n - L| &= \left| \sqrt{9n^2 - n} - 3n + \frac{1}{6} \right| = \left| \frac{-n}{\sqrt{9n^2 - n} + 3n} + \frac{1}{6} \right| = \left| \frac{\sqrt{9n^2 - n} + 3n - 6n}{6(\sqrt{9n^2 - n} + 3n)} \right| \\ &= \left| \frac{\sqrt{9n^2 - n} - 3n}{6(\sqrt{9n^2 - n} + 3n)} \right| = \left| \frac{-n}{6(\sqrt{9n^2 - n} + 3n)^2} \right| \\ &= \frac{n}{6(\sqrt{9n^2 - n} + 3n)^2} = \frac{n}{6(9n^2 - n + 9n^2 + 6n\sqrt{9n^2 - n})} = \frac{1}{6(18n + 6\sqrt{9n^2 - n} - 1)} \\ &< \frac{1}{6(18n + 6\sqrt{9n^2 - n^2} - 1)} \left(\operatorname{as} n > 1 \right) = \frac{1}{6(18n + 6n\sqrt{8} - 1)} = \frac{1}{6(n(18 + 6\sqrt{8}) - 1)} \\ &< 1/(6(\frac{1/(6\epsilon) + 1}{18 + 6\sqrt{8}}(18 + 6\sqrt{8}) - 1)) = 1/(6(1/(6\epsilon) + 1 - 1)) = \frac{1}{6\frac{1}{6\epsilon}} = \epsilon \end{aligned}$$

2 Find a divergent sequence a_n with the property that $\lim_{n\to\infty}(a_{n+p}-a_n)=0$ for every natural number p

Let $a_n=\ln(n)$. Let $\epsilon\in\mathbb{R}, \epsilon>0$. Let $p\in\mathbb{N}$. Let $N\geq p/(e^\epsilon-1)$. Let $n\in\mathbb{N}, n>N$. Now:

$$|a_{n+p} - a_n - L| = |\ln(n+p) - \ln(n)| = \left| \ln(\frac{n+p}{n}) \right|$$

$$= \ln(1 + \frac{p}{n})$$

$$< \ln(1 + \frac{p}{p/(e^{\epsilon} - 1)})$$

$$= \ln(1 + (e^{\epsilon} - 1))$$

$$= \epsilon$$

Where a_n itself is divergent.

3

Show that if $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = L$

Suppose $\lim_{n\to\infty} a_n = L$.

Since a_n is convergent, we know it's bounded. So $\exists M \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, |a_n| \leq M$.

Let $\epsilon \in \mathbb{R}$, $\epsilon > 0$.

Since a_n is convergent to L, we can choose $S\in\mathbb{N}$ such that $\forall s\in\mathbb{N}, s\geq S, |a_n-L|<\frac{\epsilon}{2}.$

Let $N > \max(\frac{2S(M+|L|)}{\epsilon}, S)$. Let $n \in \mathbb{N}, n \geq N$. So $1 \leq S < N \leq n$.

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - L \right| = \left| \frac{a_1 + a_2 + \dots + a_n - nL}{n} \right|$$

$$= \left| \frac{(a_1 - L) + (a_2 - L) + \dots + (a_n - L)}{n} \right|$$

$$= \left| \frac{\sum_{k=1}^{n} (a_k - L)}{n} \right|$$

$$= \frac{\left| \sum_{k=1}^{n} (a_k - L) \right|}{n}$$

$$\leq \frac{\sum_{k=1}^{n} |a_k - L|}{n} + \frac{\sum_{k=S+1}^{n} |a_k - L|}{n}$$

$$\leq \frac{\sum_{k=1}^{S} |a_k - L|}{n} + \frac{\sum_{k=S+1}^{n} |a_k - L|}{n}$$

$$\leq \frac{\sum_{k=1}^{S} |a_k| + |L|}{n} + \frac{\sum_{k=S+1}^{n} |a_k - L|}{n}$$

$$\leq \frac{S(M + |L|)}{n} + \frac{\sum_{k=S+1}^{n} |a_k - L|}{n}$$

$$< \frac{S(M + |L|)}{n} + \frac{\sum_{k=S+1}^{n} \epsilon/2}{n}$$

$$= \frac{S(M + |L|)}{n} + \frac{\epsilon}{2}$$

$$< \frac{S(M + |L|)}{n} + \frac{\epsilon}{2}$$

$$< \frac{S(M + |L|)}{2S(M + |L|)/\epsilon} + \frac{\epsilon}{2}$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

b Is the converse to the above statement true? Justify your reasoning.

False. Suppose $a_n=(-1)^n$. Then $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=0$ by the Squeeze Theorem. ² But a_n itself is divergent. 3

²Let $c_n = \left|\sum_{k=1}^n a_n\right|, b_n = -c_n.$ $-1 = b_n \leq \sum_{k=1}^n a_n \leq c_n = 1$ for all $n \in \mathbb{N}$. Divide everything by n, then apply Squeeze. $a_n = \{0,1\}$, therefore $a_n = \{0,1\}$, the $a_n = \{0,1\}$ the

4 Suppose x>1 and define a sequence $\{y_i\}$ by $y_1=x$, $y_{k+1}=\frac{1}{2}(y_k+\frac{x}{y_k})$ for $k\geq 1$.

a Show that $y_k-y_{k+1}=\frac{y_k^2-x}{2y_k}$ and $y_{k+1}^2-x=\frac{(y_k^2-x)^2}{4y_k^2}$.

Proposition 1. $y_k - y_{k+1} = \frac{y_k^2 - x}{2y_k}$.

Proof by induction: Base case k = 1:

$$y_k - y_{k+1} = x - \frac{1}{2}(x + \frac{x}{x}) = x - \frac{x+1}{2}$$
$$= \frac{2x - x - 1}{2} = \frac{x - 1}{2}$$
$$= \frac{x^2 - x}{2x} = \frac{y_k^2 - x}{2y_k}$$

Now, suppose $y_k - y_{k+1} = \frac{y_k^2 - x}{2y_k}$ for $k \ge 1$. ⁴

$$y_{k+1} - y_{k+2} = \frac{1}{2}(y_k + \frac{x}{y_k}) - \frac{1}{2}(y_{k+1} + \frac{x}{y_{k+1}})$$

$$= \frac{1}{2}(y_k + \frac{x}{y_k} - y_{k+1} - \frac{x}{y_{k+1}})$$

$$= \frac{1}{2}(\frac{y_k^2 - x}{2y_k} + \frac{x}{y_k} - \frac{x}{y_{k+1}})$$

$$= \frac{1}{2}(\frac{y_k^2}{2y_k} + \frac{x}{y_k}) - \frac{x}{4y_k} - \frac{x}{2y_{k+1}}$$

$$= \frac{1}{2}(\frac{y_k}{2} + \frac{x}{y_k}) - \frac{x}{4y_k} - \frac{x}{2y_{k+1}}$$

$$= \frac{1}{2}(y_k + \frac{x}{y_k}) - \frac{y_k}{4} - \frac{x}{4y_k} - \frac{x}{2y_{k+1}}$$

$$= \frac{y_{k+1}}{2} - \frac{y_k}{4} - \frac{x}{4y_k} - \frac{x}{2y_{k+1}}$$

$$= \frac{2y_{k+1}^2}{2y_{k+1}} - \frac{x}{2y_{k+1}} - \frac{y_k}{4} - \frac{x}{4y_k}$$

$$= \frac{2y_{k+1}^2 - x}{2y_{k+1}} - \frac{1}{4}(y_k + \frac{x}{y_k})$$

$$= \frac{2y_{k+1}^2 - x}{2y_{k+1}} - \frac{y_{k+1}}{2}$$

$$= \frac{2y_{k+1}^2 - x}{2y_{k+1}} - \frac{y_{k+1}^2}{2y_{k+1}}$$

$$= \frac{y_{k+1}^2 - x}{2y_{k+1}} - \frac{y_{k+1}^2}{2y_{k+1}}$$

$$= \frac{y_{k+1}^2 - x}{2y_{k+1}} - \frac{y_{k+1}^2}{2y_{k+1}}$$

Proposition 2. $y_{k+1}^2 - x = \frac{(y_k^2 - x)^2}{4u^2}$.

Proof:

$$y_{k+1}^{2} - x = \left(\frac{1}{2}(y_{k} + \frac{x}{y_{k}})\right)^{2} - x$$

$$= \frac{1}{4}(y_{k}^{2} + \left(\frac{x}{y_{k}}\right)^{2} + 2y_{k}\frac{x}{y_{k}}) - x$$

$$= \frac{1}{4}(y_{k}^{2} + \frac{x^{2}}{y_{k}^{2}} + 2x) - x$$

$$= \frac{y_{k}^{2} + \frac{x^{2}}{y_{k}^{2}} + 2x - 4x}{4}$$

$$= \frac{y_{k}^{4} + x^{2} - 2xy_{k}^{2}}{4y_{k}^{2}}$$

$$= \frac{(y_{k}^{2} - x)^{2}}{4y_{k}^{2}} \quad \Box$$

⁴Not concise. Apparently I did'nt need induction, but I can't be bothered to redo it.

b Show that $y_k \ge 1$ and $y_k^2 \ge x$ for each $k \ge 1$.

Lemma 1. $y_k > 0, \forall k \in \mathbb{N}$.

Proof by induction: Base case: $y_1=x>1>0$. Now suppose $y_k>0$ for $k\geq 1$. So $y_{k+1}=\frac{y_k+x/y_k}{2}>\frac{x/y_k}{2}>0$, as x>0 and $y_k>0$.

Lemma 2. $\{y_k\}$ is decreasing.

Proof by induction: We need to prove $y_k - y_{k+1} \ge 0, \forall k \in \mathbb{N}$. Base case: $y_1 - y_2 = x - \frac{x+1}{2} = \frac{2x-x-1}{2} = \frac{x-1}{2} \ge 0$ (as $x \ge 1$). Now, suppose $y_k - y_{k+1} \ge 0$ for $k \ge 1$. From (Proposition 1, 2), we know $y_k - y_{k+1} = \frac{y_k^2 - x}{2y_k}$ and $y_{k+1}^2 - x = \frac{(y_k^2 - x)^2}{4y_k^2}$.

$$\begin{aligned} y_{k+1} - y_{k+2} &= \frac{y_{k+1}^2 - x}{2y_{k+1}} = \frac{\frac{(y_k^2 - x)^2}{4y_k^2}}{2y_{k+1}} = \frac{(y_k^2 - x)^2}{8y_k^2y_{k+1}} \\ (y_k^2 - x)^2 &\geq 0 \\ 8y_k^2 &> 0 \text{ (Lemma 1)} \\ y_{k+1} &> 0 \text{ (Lemma 1)} \\ & \therefore y_{k+1} - y_{k+2} = \frac{(y_k^2 - x)^2}{8y_k^2y_{k+1}} \geq 0 \end{aligned}$$

Corollary 1. $y_k \leq x, \forall k \in \mathbb{N}$.

Proof: We know $y_1 = x$ and $\{y_k\}$ is decreasing (Lemma 2), therefore $y_k \leq x, \forall k \in \mathbb{N}$.

Proposition 3. $y_k \geq 1, \forall k \in \mathbb{N}$.

Proof by induction: Base case: $y_1 = x \ge 1$. Now, suppose $y_k \ge 1$ for $k \ge 1$. So

$$y_{k+1} = \frac{1}{2}(y_k + \frac{x}{y_k})$$

$$= \frac{1}{2}y_k + \frac{1}{2}\frac{x}{y_k}$$

$$\geq \frac{1}{2} + \frac{1}{2}\frac{x}{y_k}$$

$$\geq \frac{1}{2} + \frac{1}{2}\frac{x}{x} \text{ (Corollary 1: } y_k \leq x\text{)}$$

$$= 1$$

Proposition 4. $y_k^2 \ge x, \forall k \in \mathbb{N}$.

Proof by induction: Base case: $y_k^2=x^2>x$ as x>1. Now, suppose $y_k^2\geq x$ for $k\geq 1$. From (Proposition 2), we know $y_{k+1}^2-x=\frac{(y_k^2-x)^2}{4y_k^2}$. So,

$$y_{k+1}^2 = \frac{(y_k^2 - x)^2}{4y_k^2} + x$$
$$(y_k^2 - x)^2 \ge 0$$
$$4y_k^2 \ge 4x > 4 > 0$$
$$\therefore \frac{(y_k^2 - x)^2}{4y_k^2} \ge 0$$
$$\therefore y_{k+1}^2 \ge 0 + x = x$$

c By applying the Monotone Convergence Theorem, prove that y_k converges and find its limit.

Since y_k is decreasing (Lemma 2) and 1 is a lower bound of y_k (Proposition 3), y_k is convergent by MCT.

To find the limit:

$$L=\frac{1}{2}(L+\frac{x}{L})$$

$$2L=L+\frac{x}{L}$$

$$L^2=x$$

$$L=+\sqrt{x} \ \ (\text{as 1 is a lower bound})$$

5 For the following sets of real numbers, calculate all interior points, boundary points, accumulation points and isolated points. Are they open, closed or compact (or several or none)?

a $S = \mathbb{Q} \cap (0,1)$.

 $\operatorname{int}(S)=\varnothing$. Proof: Suppose $x\in\operatorname{int}(S)$. Then $\exists \epsilon>0$ so that $N_{\epsilon}(x)\subseteq S$. Now, the interval $(x-\epsilon,x+\epsilon)$ is uncountable. Therefore $(x-\epsilon,x+\epsilon)=N_{\epsilon}(x)\not\subseteq \mathbb{Q}$, so $N_{\epsilon}(x)\not\subseteq S\subseteq \mathbb{Q}$. Contradiction. Therefore there exists no such x, and $\operatorname{int}(S)=\varnothing$.

 $S' = [0,1]. \text{ Proof: If } x < 0 \text{ or } x > 1, \text{ let } \epsilon = \frac{\min(|x-1|,|x-0|)}{2} > 0. \text{ It's easy to see that } N^*_{\epsilon}(x) \cap S = \varnothing. \text{ Therefore } S' \subseteq [0,1]. \text{ Now, suppose } x \in [0,1). \text{ Let } \epsilon > 0. \text{ Since } x, x + \epsilon, 1 \in \mathbb{R}, \text{ and } x < \min(1, x + \epsilon), \exists q \in \mathbb{Q} \text{ such that } x < q < \min(1, x + \epsilon)^5. \text{ Since } q \in \mathbb{Q}, q < 1, q > x \geq 0, \text{ so } q \in S. \text{ Therefore } q \in ((x - \epsilon, x + \epsilon) \setminus \{x\}) \cap S = N^*_{\epsilon}(x) \cap S. \text{ Therefore } [0,1) \subseteq S'. \text{ Now, suppose } x = 1. \text{ Similarly, } \exists p \in \mathbb{Q} \text{ such that } \max(0,1-\epsilon)$

 $\begin{array}{ll} \operatorname{bd}(S) = [0,1]. \text{ Proof: Since } \overline{S} = S \cup S' = S', \text{ so } S' = \overline{S} = S \cup \operatorname{bd}(S), \text{ so } \operatorname{bd}(S) \subseteq S' = [0,1]. \text{ Now, let } \epsilon > 0. \text{ Suppose } x \in [0,1]. \text{ Since } (x - \epsilon, x + \epsilon) \text{ is uncountable, so } N_{\epsilon}(x) \not\subseteq \mathbb{Q} \text{ which is countable. Since } S \subseteq \mathbb{Q}, \text{ so } N_{\epsilon}(x) \not\subseteq S. \text{ Therefore } N_{\epsilon}(x) \cap S \neq N_{\epsilon}(x). \text{ Therefore } N_{\epsilon}(x) \cap (\mathbb{R} \setminus S) \neq \varnothing. \text{ Now, since } x \in [0,1] = S', \text{ so } N_{\epsilon}^*(x) \cap S \neq \varnothing. \text{ Therefore } [0,1] \subseteq \operatorname{bd}(S). \text{ Therefore } \operatorname{bd}(S) = [0,1]. \end{array}$

Isolated points: $S \setminus S' = (\mathbb{Q} \cap (0,1)) \setminus [0,1] = \emptyset$.

S is not open, as $S \neq \emptyset = \operatorname{int}(S)$.

S is not closed, as $S \neq [0,1] = S'$. 6

S is not compact, as S is not closed: (Heine-Borel)

$$\begin{array}{ll} \mathbf{b} & \{x\in\mathbb{Q}|x=\frac{k}{2^n} \text{ where } n,k\in\mathbb{N}\cup\{0\} \text{ and } 0\leq k\leq \\ & 2^n\}. \end{array}$$

Let S be the above set. It's easy to see that $S \neq \emptyset$.

Lemma 3. $S \subsetneq [0,1]$,or equivalently $S \neq [0,1] \land S \subseteq [0,1]$.

Proof: Let $x \in S$. Since $x = k/2^n$ and $0 \le k \le 2^n$, so $0 \le x \le 1$. Therefore $S \subseteq [0,1]$. Since [0,1] is uncountable, and $S \subseteq \mathbb{Q}$ is countable, so $S \ne [0,1]$. Therefore $S \subseteq [0,1]$.

 $\operatorname{int}(S) = \varnothing$. Proof is word-for-word identical to the interior proof in (5a).

 $S'=[0,1]. \text{ Proof: If } x<0 \text{ or } x>1, \text{ let } \epsilon=\frac{\min(|x-1|,|x-0|)}{2}>0. \text{ It's easy to see that } N^*_{\epsilon}(x)\cap S=\varnothing. \text{ Therefore } S'\subseteq[0,1]. \text{ Now, suppose } x\in[0,1). \text{ Let } \epsilon>0. \text{ Choose } n\in\mathbb{N}\cup\{0\} \text{ such that } 0<\frac{1}{2^n}<\epsilon^{7}, \text{ where } \bigcup_{k=0}^{2^n-1}[\frac{k}{2^n},\frac{k+1}{2^n})=[0,1), \text{ and each } [\frac{k}{2^n},\frac{k+1}{2^n}) \text{ is disjoint from each other. Since } x\in[0,1), \text{ find the unique } j \text{ such that } x\in[\frac{j}{2^n},\frac{j+1}{2^n}), \text{ where } j\in\mathbb{N}\cup\{0\}, 0\leq j\leq 2^n-1. \text{ Therefore } \frac{j+1}{2^n}\in S. \text{ Now, } |\frac{j+1}{2^n}-x|=\frac{j+1}{2^n}-x\leq \frac{j+1}{2^n}-\frac{j}{2^n}=\frac{1}{2^n}<\epsilon, \text{ where } \frac{j+1}{2^n}\neq x. \text{ Therefore } [0,1)\subseteq S'. \text{ Similarly we can prove } (0,1]\subseteq S'. \text{ Therefore } [0,1]=[0,1)\cup(0,1]\subseteq S'\cup S'=S'. \text{ Therefore } S'=[0,1].$

 $\mathrm{bd}(S) = [0,1]$. Proof is word-for-word identical to the boundary proof in (5a)

Isolated points: $S \setminus S' = \emptyset$, as $S \subseteq [0,1] = S'$.

S is not open, as $S \neq \emptyset = \operatorname{int}(S)$.

S is not closed, as $S \neq [0,1] = S'$.

S is not compact, as S is not closed: (Heine-Borel)

⁵From: Assignment 1, Problem (5a)

⁶Property of closeness.

⁷A corollary of the Archimedean Property

Yifeng Pan UCID: 30063828

6 Construct a sequence a_n so that the set of subsequential limits S is the integers \mathbb{Z} .

Let

$$a_n = (0, 0, 1, 0, 1, -1, 0, 1, -1, 2, 0, 1, -1, 2, -2, \dots)$$

where every "column" 8 is a subsequence of $a_{n_k}=c, \forall n_k$ where $c\in\mathbb{Z}$. Therefore $\mathbb{Z}\subseteq\sup(a_n)$. If a_{n_k} contains infinite elements from >1 "columns" of a_n , then a_{n_k} won't be cauchy (set $\epsilon=1/2$), therefore not convergent. Therefore there are no other elements in $\sup(a_n)$ besides \mathbb{Z} . Therefore $\sup(a_n)=\mathbb{Z}$.

7 Suppose S is closed set of real numbers with no isolated points. Show that S is uncountable.

Suppose $S \neq \emptyset$ 9 is closed with no isolated points.

Lemma 4. S = S'

Proof: Since S is closed, we know $S = \overline{S} = S \cup S' \to S' \subseteq S$. Since S has no isolated points, we know $S \setminus S' = \varnothing \to S \subseteq S'$. Therefore S = S'.

Lemma 5. S is not finite.

Proof: Choose some $\epsilon_1 > 0$. Since $x_1 \in S'$, $\exists x_2 \in S$ such that $0 < |x_1 - x_2| < \epsilon_1$. Now let $\epsilon_2 = \frac{|x_1 - x_2|}{4} > 0$. Since $x_2 \in S'$, $\exists x_3 \in S$ such that $0 < |x_2 - x_3| < \epsilon_2$. We repeate to construct $\{x_n\} \subseteq S$ and $\{\epsilon_n\} \subseteq \mathbb{R}$ for $n \in \mathbb{N}$, where $\epsilon_n = \frac{|x_{n-1} - x_n|}{n^2}$ and x_n is chosen such that $|x_{n-1} - x_n| < \epsilon_{n-1}$.

Theorem 1. S is uncountable.

Proof: 10 Suppose S is denumerable. Then let $\{s_n\}$ be some denumeration of S where $n\in\mathbb{N}.$ So $\{s_n\}=S=S'.$ Now, we define $\{K_n\}, n\in\mathbb{N}$ recursively: Let $\epsilon_1>0.$ Let $K_1=N_{\epsilon_1}(s_1)$ where $s_1\in K_1\cap S\neq\varnothing.$ Now, for $n\geq 2$: Since S=S' and $K_{n-1}\cap S\neq\varnothing$, $\exists \epsilon_n\in\mathbb{R}, \epsilon_n<\epsilon_{n-1}$ and $x\in K_{n-1}\cap S'$ such that $K_n=N_{\epsilon_n}(x)$ has the properties: $\overline{K_n}\subseteq K_{n-1}, \stackrel{13}{\longrightarrow}$ and $s_{n-1}\notin\overline{K_n}$. 14 is Since $x\in K_n\cap S$, $K_n\cap S\neq\varnothing$, Since $\forall n,\overline{K_n}$ is some bounded and closed interval, $\overline{K_n}$ is compact.

Now, we define $\{T_n\}$ such that $T_n=\overline{K_n}\cap\{s_n\}$ where $n\in\mathbb{N}$. Since $\overline{K_n}$ is compact and $\{s_n\}=S$ is closed, T_n is compact. Since $K_n\subseteq\overline{K_n}$ and $K_n\cap S\neq\varnothing$, we know $T_n\neq\varnothing$. Since $\overline{K_n}\supseteq K_n\supseteq\overline{K_{n+1}}$, we know $T_n\supseteq T_{n+1}$. Since $s_n\notin\overline{K_{n+1}}$, we know $s_n\notin T_{n+1}$. Since $\forall s_n\in\{s_n\},s_n\notin T_{n+1},\bigcap_{n=1}^\infty T_n=\varnothing$. This violates Cantor's Intersection Theorem. Therefore S is not denumerable. Therefore S is uncountable.

Citations

Principles of Mathematical Analysis by Walter Rudin ISBN 0-07-085613-3

Proofread by Devin Kwok (UCID: 10016484).

⁸Columns can be defined explicitly using Triangle Numbers.

 $^{{}^9}$ If $S=\varnothing$, then S is closed with no isolated points and finite, therefore countable.

 $^{^{10}\}mbox{I}$ got the idea for this proof from Baby Rudin, Theorem 2.43.

 $^{^{11}}x$ doesn't necessarily equal to s_n . If $s_n \not\in K_{n-1}$, then choose some other element as $S \cap K_{n-1} \neq \emptyset$.

 $^{^{12}}$ In other words, we can choose x to making K_n smaller regardless of where s_n is.

 $^{^{13}}x\in K_{n-1}\cap S'$, K_{n-1} is an open interval, and ϵ_n can be arbitrarily small.

 $^{^{14}}s_{n-1}$ is an accumulation point. Choose some point near s_{n-1} , then choose ϵ_n to be much smaller than the difference of the two.

¹⁵ If $s_{n-1} \not\in K_{n-1}$ then this case is trival.