- guiz 5 solutions
- Trajectory Optimization
 - -: Lar/ODP vs Dircol
 - when to what

Buizz 5: Clarping (projecting) solutions

DO NOT DO THIS:

Subaptimal

If a problem has constraints, you cannot simply solve the unconstrained problem and project it on the constraints. If you do this, it will be suboptimal. This is why we can't simply clamp the LQR solution to an optimal control problem with control constraints. Try this for yourself and see.

Trajectory	Optimiz	ation
1 4 30 2 5 3 3 7	$-\rho = -1$	1. (, 4)

problem		Solver
IHLQR MIX	X:TQ X: + U,TR V;	Ricatti, and DARE solver
	×1 : A x: + Bu;	for U:-Kx
V(:,, _,	Stage Cost term. Cost ExiTQ x: + U,TR V: + X,TQ, x, X1: XIC	Ricatti for U;:-K:x;
CVX tegjapt min	*:11 = A; x: + B; u: \$\int \langle \l	and (UX Solver that con hade the costs/constraints (LP, QP, SOCP)
ta a mi ci	$7:t_1 = A_1 \times 1 + B_1 \cup 1$ $h_1(x_i, u_i) = 0 Lineor$ $9: (x_1, u_1) = 0 convex$ $2 don't have to be convex$ $\sum_{i=1}^{n} l_i(x_i, u_i) + l_n(x_n)$:LQR/VDP or VIRCOL
)- h:)	$x_i : x_{ic}$ $x_{ii} : f(x_{ii}, u_{ii})$ honline ar	

 $\begin{array}{lll}
\text{Min} & \sum_{i=1}^{n} l_i(x_i, u_i) + l_n(x_n) \\
\text{Min} & \sum_{i=1}^{n} l_i(x_i, u_i) + l_n(x_n) \\
\text{Min} & \sum_{i=1}^{n} l_i(x_i, u_i) + l_n(x_n)
\end{array}$ $\begin{array}{lll}
\text{Soc} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} \\
\text{Min} & \text{Min} \\
\text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\
\text{Min} & \text{Min} &$

DIRCOL,

Or ; LQR/ODP + constraint handling (ALTRO,: LQR + AL)

iLQR/00P

+ east to implement / east dobug

- + gct a TVLQR controller for free
- + can be very fast
- Constraints are hard, must use somethis like ALTRO
- Only initialize US, so initial guess has to over dynamics + almays dynamically feasible

DIRIOL

- must vie NLP solur (IPOPT, SNOPT), or custon se questial convex programio (SCP) nethod
- + initialize x's, U's, wth, melther
- + explicit us. implicit integrates
- + constraint handling
- + maybe mee robest flow : LOR/ODP + coast raints
- Slower + hm : LOR/ODP
- + 20 H, FOH, onthin I want

DIRCOL

how to use NLP soler

min
$$f(z)$$

$$\frac{1}{2}$$

$$\int_{z}^{x_1} U_1$$

$$\frac{1}{2}$$

$$\int_{z}^{x_2} U_2$$

$$\vdots$$

$$\int_{x_{n-1}}^{x_{n-1}} U_{n-1}$$

$$\frac{1}{2} \leq z \leq \overline{z}$$

DIRCOL will work with either an implicit or explicit integrator. Since we are just writing down our dynamics constraints as equality constraints, we can either use the explicit integration style $f(xi,ui) - x\{i+1\} = 0$, or we can use the implicit integration residual $f(xi,ui,x\{i+1\}) = 0$. Since it doesn't matter to the solver which one we use, we may as well use the implicit one since it's a little more accurate for the same order.

In order to actually use an NLP solver like IPOPT or SNOPT, we have to formulate our problem such that we are solving for a single vector Z. We accomplish this by simply stacking up all of our x's and u's into a Z vector.