

Para maiores informações entre em contato com um dos nossos escritórios.

NSK BRASIL LTDA.

• São Paulo - SP - Escritório Central

Rua Treze de Maio, 1633 - 14º andar - Bela Vista São Paulo - SP - CEP 01327-905 Fax: (0xx11) 3269-4715 / 3269-4720 Home Page: http://www.nsk.com.br

Unidade OEM

e-mail: industria@nsk.com

Automotivo: Comercial: 0xx11) 3269-4762 Engenharia: (0xx11) 3269-4747

Indústria: Comercial: (0xx11) 3269-4757

Engenharia: (0xx11) 3269-4790

Unidade Aftermarket

e-mail: bnsk-engapl@nsk.com

Distribuição: Comercial: (0xx11) 3269-4792

Engenharia: (0xx11) 3269-4769

Indústria Pesada: (0xx11) 3269-4761

Guias. Fusos e

Mecatrônicos: Comercial: (0xx11) 4741-4076

Engenharia: (0xx11) 3269-4771

• Suzano - SP - Fábrica

Av. Vereador João Batista Fitipaldi, 66 - Vila Maluf Suzano - SP - CEP 08685-000 Tel: (0xx11) 4741-4000 Fax: (0xx11) 4748-2355

• Belo Horizonte - MG - Filial

Fax: (0xx31) 3273-4408

Rua Ceará, 1431 - 4º andar - sala 405 Funcionários - Belo Horizonte - MG CEP 30150-311 e-mail: bnsk-bhz@nsk.com Tel: (0xx31) 3274-2477 / 3274-2591

• Joinville - SC - Filial

Rua Blumenau, 178 - sala 910 - Centro Joinville - SC - CEP 89204-250 e-mail: bnsk-joi@nsk.com Tel: (0xx47) 422-5445 / 422-2239 / 433-3627 Fax: (0xx47) 422-2817

• Porto Alegre - RS - Filial

Av. Cristovão Colombo, 1694 - sala 202 - Floresta Porto Alegre - RS - CEP 90560-001 e-mail: bnsk-poa@nsk.com Tel: (0xx51) 3222-1324 / 3346-7851 Fax: (0xx51) 3222-2599

• Recife - PE

Av. Conselheiro Aguiar, 2738 - 6º andar - conj. 604 Boa Viagem - Recife - PE - CEP 51020-020 e-mail: bnsk-rec@nsk.com Tel: (0xx81) 3326-3781 Fax: (0xx81) 3326-5047

• Buenos Aires - Argentina

NSK Argentina Garcia del Rio 2.477, piso 7, oficina A C1429DEA, Buenos Aires, Argentina Teléfono: (54) 11-4704-5100 Lineas Rotativas, (54) 11-4704-0033

Todos os direitos de propriedade total ou parcial desta edição são reservados à NSK Brasil Ltda.

É proibida a reprodução total ou parcial do conteúdo desta obra, por qualquer meio ou processo, sem permissão, por escrito, da NSK Brasil Ltda., e sem a citação da respectiva fonte. A violação dos direitos autorais (Lei nº 9.610/98) é punível como crime estabelecido pelo artigo 184 e parágrafos do Código Penal Brasileiro, bem como pelos artigos 101 a 110 da Lei nº 9.610/98 de 19/02/1998, Lei dos Direitos Autorais.

Produtos de Precisão

Fusos de Esferas Guias Lineares Sistemas Mecatrônicos

Produtos de Precisão

Fusos de Esferas Guias Lineares Sistemas Mecatrônicos

2006

O conteúdo deste catálogo poderá ser alterado sem prévio aviso em função de casos como o do avanço tecnológico. Os dados inseridos foram cuidadosamente verificados, no entanto eximimo-nos

Os dados inseridos foram cuidadosamente verificados, no entanto eximimo-nos da responsabilidade por eventuais erros ou omissões.

Índice

Fusos de Esferas	Recirculantes
	Retificados16
	Laminados
Mancais para Fuso	os de Esferas Recirculantes56
Guias Lineares de	Esferas Recirculantes
	Série LAH86
	Série LAS90
	Série LAU96
	Série LAE98
	Série LAW
	Série TRANSLIDE
	Série RA105
Lubrificantes	110
Sistema de Lubrifi	cação K1112
Monocarrier	
Outros Produtos	

Fábrica Suzano - Brasil

Fábrica Maebashi - Japão Fusos de esferas, guias lineares e motores

Fábrica Akagi - Japão - Fusos de esferas

Fábrica Sōja - Japão - Motores

Fábrica Saitama - Japão - Guias lineares

Desde 1916, quando a NSK produziu seu primeiro rolamento de esferas, durante todos esses anos a NSK vem forjando a imagem de uma empresa líder mundial. Desde

Semicondutores

Máquinas-ferramentas

Automação

o início a ênfase tem sido qualidade e precisão. Componentes de movimento linear e circular, elementos básicos da automação, tais como, fusos de esferas recirculantes, guias lineares, cabeçotes, mandris e contrapontos, e também os produtos eletromecânicos como os servomotores megatorque, robôs cartesianos modulares, atuadores lineares, servomotores lineares e indexadores de alta velocidade fazem parte da linha de fabricação NSK.

Aeroespacial

Robótica

Equipamentos hospitalares

NSK

Fusos de esferas

A NSK é lider mundial absoluto na fabricação de fusos de esferas

Desde 1958 a NSK produziu mais de um milhão de fusos de esferas, tornando-se o maior fornecedor de fusos de esferas de alta qualidade do planeta. Entre os maiores usuários estão, fabricantes de máquinas-ferramentas, semicondutores, aeroespacial, instrumentos médicos e automação industrial. As aplicações destes também são inúmeras, tais como, centros de usinagem, aplicadores de adesivos, robôs industriais, "flaps" de aeronaves, etc.

A NSK emprega somente materiais de alta qualidade e a utilização exclusiva do arco gótico como formato base da rosca propicia uma eficiência superior a 90% e apenas um terço do torque necessário, quando comparado aos fusos de esferas convencionais. Esta construção possibilita movimentos mais suaves, deslocamento preciso, redução do desgate, aumento na vida do equipamento bem como a redução do consumo de energia.

Fusos de esferas retificados

A NSK possui a mais completa linha de fusos de esferas standard com mais de 500 modelos com diâmetros de 4 a 50 mm e cursos de até 2650 mm nas classes de precisão ISO/JIS 3 e 5.

Fusos de esferas laminados

A NSK possui a mais completa linha de fusos de esferas standard com mais de 300 modelos com diâmetros de 10 a 50 mm, passos de 3 a 50 mm e comprimentos de até 4000 mm na classe de precisão ISO/JIS 10.

Fusos de esferas disponíveis

- Fusos de esferas retificado
- O Fusos de esferas laminado
- * Fusos de esferas retificado em aço inoxidável

Passo Diâ.	1	1,5	2	2,5	3	4	5	6	8	10	12	16	20	25	32	40	50
4	•																
6	●*																
8	●*	•	●*														
10			●*	•	0	●*		0									
12			●*	•			●*		0	●*	0						
14						0	• 0		•								
15										●*			●*○				
16			●*	•			•			0		• 0			• 0		
18									0								
20						•	• 0			• 0			• *O			• 0	
25						•	• 0	•		• 0			•	• 0			• 0
28							•	• 0									
32							•	•	•	• 0				•	• •		
36										• 0							
40							•		•	• 0	•					0	
45										•	0						
50										• 0		0					

1 Classificação dos Fusos de Esferas

1.1 Recirculação

O sistema de recirculação é uma importante característica dos fusos de esferas. A NSK oferece três tipos de recirculação: por tubos, defletores e "end cap". O sistema mais comum para os fusos NSK é o de recirculação por tubos, suas principais vantagens são baixo custo e alta rigidez.

1.2 Pré-carga

Existem basicamente 3 tipos de pré-carregamento: porca dupla, offset de passo e interferência das esferas.

Porca dupla com espaçadores (tipo D)

Porca simples com "offset" no passo (tipo Z)

Interferência das esferas (Tipo P)

1.3 Precisão

A precisão do passo dos fusos de esferas NSK é especificada nas tabelas abaixo:

Variações:

 $e_{2\pi}$ = Variação máxima em uma revolução.

e₃₀₀ = Variação máxima em 300 mm de curso.

e = Variação para todo o curso.

Unidade: µm

Curso (mm)		(C3	C5		
de	até	±Ε	е	±Ε	е	
_	100	8	8	18	18	
100	200	10	8	20	18	
200	315	12	8	23	18	
315	400	13	10	25	20	
400	500	15	10	27	20	
500	630	16	12	30	23	
630	800	18	13	35	25	
800	1000	21	15	40	27	
1000	1250	24	16	46	30	
1250	1600	29	18	54	35	
1600	2000	35	21	65	40	
2000	2500	41	24	77	46	
2500	3150	50	29	93	54	

Unidade: µm

0	irau	C3	C5	C10
•	€300	8	18	210
	e _{2π}	6	8	_

Obs. C10 é aplicado somente nos fusos laminados.

1.4 Rotação máxima admissível

Velocidade Crítica

É necessário verificar sempre a velocidade na qual a freqüência natural faz com que o fuso de esferas entre em ressonância. A NSK recomenda não ultrapassar 80% deste valor, sendo esta considerada a velocidade crítica.

Valor de dm.n

Para rotação máxima deve ser considerado também o produto do diâmetro primitivo (mm) pela rotação (rpm), conhecido por dm.n.

Para as classes de precisão C3 e C5 considerar:

 $d_m n \leq 70.000$

Para a classe C10 considerar:

 $d_m n \leq 50.000$

onde:

 d_m = Diâmetro primitivo das esferas no fuso (mm). n = rotação (rpm).

1.5 Estimativa da vida

A vida dos fusos de esferas é expressa pelo número total de revoluções. O total de horas ou distância percorrida também pode ser utilizado. A vida dos fusos de esferas NSK pode ser calculada como segue:

$$L = \left(\frac{C_a}{F_a. f_w}\right)^3 . 10^6$$

$$L_t = \frac{L}{60.n}$$

$$_{-s} = \frac{L.l}{10^6}$$

onde:

L = Vida em revoluções (fadiga do aço).

 L_t = Vida em horas (fadiga do aço).

L_s = Vida (fadiga do aço) (km).

C_a = Capacidade de carga dinâmica (kgf).

 F_a = Carga axial (kgf).

n = Rotação (rpm).

l = Passo (mm).

F_w = Fator de operação.

Condição de operação	Fw
Operação suave sem impactos	1,0 ~ 1,2
Operação normal	1,2 ~ 1,5
Operação com impacto e vibração	1,5 ~ 3,0

1.6 Torque de operação

Torque em velocidade constante

$$T_{1}=\left(\ T_{a}+T_{p}+T_{u} \ \right) x \ \frac{N_{1}}{N_{2}}$$

onde

 T_1 = Torque de acionamento à velocidade constante (kgf.cm)

 $F_a = F + \mu.W$ (kgf), para cargas horizontais

F = Força de corte na direção do fuso de esferas (kgf)

μ = Coeficiente de atrito da superfície de escorregamento

W = Massa em movimento (mesa + peça) (kgf)

T_u = Torque de acionamento dos rolamentos (kgf.cm)

 $N_1 = N$ úmero de dentes da engrenagem 1

N₂ = Número de dentes da engrenagem 2

$$T_a = \frac{F_a.l}{2\pi.\eta_1}$$

l = Passo (cm)

 η_1 = eficiência (0,9 ~ 0,95)

T_p = Torque de pré-carga da porca (kgf.cm)

Torque durante a aceleração

Um elevado torque é necessário quando o fuso de esferas é acelerado na direção da carga axial, este torque é calculado da seguinte forma:

$$T_2 = T_1 + J.\dot{\omega}$$

$$J = J_{m} + J_{G1} + \left(\frac{N_{1}}{N_{2}}\right)^{3} \left[J_{G2} + J_{s} + \frac{W}{q} \left(\frac{l}{2\pi}\right)^{3}\right]$$

onde:

T₂ = Torque máximo de aceleração (kgf.cm)

J = Momento de inércia total (kgf.cm².s²)

J_m = Momento de inércia do motor (kgf.cm².s²)

J_{G1}= Momento de inércia da engrenagem 1 (kgf.cm².s²)

J_{G2}= Momento de inércia da engrenagem 2 (kgf.cm².s²)

J_S = Momento de inércia do fuso de esferas (kgf.cm².s²)

g = Aceleração da gravidade (9,8 x 10² cm/s²)

Verifique o torque máximo do motor para T₂.

1.7 Codificação do Fuso de esferas

Código da Porca: PFT Diâmetro 20 mm x Passo 5 mm

CARACTERÍSTICAS DO FUSO DE ESFERAS							
Código da porca		PFT					
Classe de precisã	10	C5					
Número de voltas		2,5 voltas	s x 2 circuitos				
Diâ. das esferas /	B.C.D.	3,175 mr	n (1/8") / 20,5 mm				
Esferas espaçado	ras	Sim					
Capacidade de	Dinâm	ica C _a	960 (kgf)				
carga	Estátic	a C _{oa}	1750 (kgf)				
Folga axial / pré-c	arga	50 kgf					
Torque da porca (médio)	0,8 kgf.cm					
Vedação		ambas as faces					
Lubrificação de fá	brica	óleo protetivo					

Curso máximo (L ₁ -56)	Código do fuso de esferas
169	W2002SA-3P-C5Z5
219	W2002SA-4P-C5Z5
319	W2003SA-2P-C5Z5
419	W2004SA-2P-C5Z5
519	W2005SA-2P-C5Z5
719	W2007SA-1P-C5Z5

Comprimento da haste			Pro	// ** Linearidade		
L ₁	L_2	L ₃	Compens. T	Desvio E	Variação e	da haste
225	250	335	- 0,005	0,023	0,018	0,045
275	300	385	- 0,007	0,023	0,018	0,045
375	400	485	- 0,009	0,025	0,020	0,055
475	500	585	- 0,011	0,027	0,020	0,070
575	600	685	- 0,014	0,030	0,023	0,085
775	800	885	- 0,019	0,035	0,025	0,110

Observações:

- 1 Utilize mancais NSK para fusos de esferas: WBK15-01 (fixo), WBK15S-01 (livre) WBK15-11 (fixo).Ver página 57.
- 2 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.
- 3 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Código da Porca: PFT Diâmetro 25 mm x Passo 5 mm

CARACTERISTICAS DO FUSO DE ESFERAS						
Código da porca		PFT				
Classe de precisã	.0	C5	C5			
Número de voltas		2,5 voltas	s x 2 circuitos			
Diâ. das esferas /	B.C.D.	3,175 mr	n (1/8") / 25,5 mm			
Esferas espaçado	ras	Sim				
Capacidade de	Dinâm	ica C _a	1070 (kgf)			
carga	Estátic	a C _{oa}	2230 (kgf)			
Folga axial / pré-c	arga	0/55 kgf				
Rigidez da porca	(K _B)	38 kgf.µm				
Torque da porca (médio)	0,9 kgf-cm				
Vedação		ambas as faces				
Lubrificação de fá	brica	óleo protetivo				

Curso máximo (L ₁ -55)	Código do fuso de esferas
165	W2502SA-3P-C5Z5
215	W2502SA-4P-C5Z5
315	W2503SA-2P-C5Z5
415	W2504SA-2P-C5Z5
515	W2505SA-2P-C5Z5
615	W2506SA-1P-C5Z5
715	W2507SA-2P-C5Z5
915	W2509SA-1P-C5Z5
1115	W2511SA-1P-C5Z5

Compr	Comprimento da haste		Forma	Pro	<i></i>		
L ₁	L ₂	L ₃		Compens. T	Desvio E	Variação e	da haste
220	250	349	II	-0,005	0,023	0,018	0,035
270	300	399	II	-0,006	0,023	0,018	0,035
370	400	499	II	-0,009	0,025	0,020	0,040
470	500	599	II	-0,011	0,027	0,020	0,050
570	600	733	I	-0,014	0,030	0,023	0,060
670	700	833	I	-0,016	0,035	0,025	0,075
770	800	933	I	-0,018	0,035	0,025	0,075
970	1000	1133	I	-0,023	0,040	0,027	0,090
1170	1200	1333	I	-0,028	0,046	0,030	0,120

Observações:

- 1 Utilize mancais NSK para fusos de esferas: WBK20-01 (fixo), WBK20S-01 (livre), WBK20-11 (fixo). Ver página 57.
- 2 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.
- 3 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Unidade: mm

Código da Porca: PFT Diâmetro 25 mm x Passo 10 mm

CARACTERÍSTICAS DO FUSO DE ESFERAS							
Código da porca		PFT					
Classe de precisã	.0	C5					
Número de voltas		1,5 voltas	s x 2 circuitos				
Diâ. das esferas /	B.C.D.	4,763 mn	n (3/16") / 25,5 mm				
Esferas espaçado	ras	Sim					
Capacidade de	Dinâm	ica C _a	1190 (kgf)				
carga	Estátic	a C _{oa}	1940 (kgf)				
Folga axial / pré-c	arga	0/60 kgf					
Rigidez da porca	(K _B)	24 kgf.µm					
Torque da porca (médio)	1,4 kgf-cm					
Vedação		ambas as faces					
Lubrificação de fá	brica	óleo protetivo					

Curso máximo (L ₁ -56)	Código do fuso de esferas
289	W2503SA-4P-C5Z10
489	W2505SA-4P-C5Z10
689	W2507SA-4P-C5Z10
889	W2509SA-2P-C5Z10
1089	W2511SA-3P-C5Z10
1389	W2514SA-1P-C5Z10

Com	primento d	la haste	Pro	ecisão do pas	sso	// ** Linearidade
L ₁	L ₂	L ₃	Compens. T	Desvio E	Variação e	da haste
370	400	533	-0,009	0,025	0,020	0,050
570	600	733	-0,014	0,030	0,023	0,060
770	800	933	-0,018	0,035	0,025	0,075
970	1000	1133	-0,023	0,040	0,027	0,090
1170	1200	1333	-0,028	0,046	0,030	0,120
1470	1500	1633	-0,035	0,054	0,035	0,150

Observações:

- 1 Utilize mancais NSK para fusos de esferas: WBK20-01 (fixo), WBK20S-01 (livre), WBK20-11 (fixo).Ver página 57.
- 2 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.
- 3 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Código da Porca: ZFT Diâmetro 32 mm x Passo 10 mm

CARACTERÍS	TICAS D	O FUSO	DE ESFERAS				
Código da porca		ZFT					
Classe de precisã	0	C5					
Número de voltas		2,5 volta	s x 1 circuito				
Diâ. das esferas /	B.C.D.	6,35 mm	(1/4") / 33 mm				
Esferas espaçado	ras	Não					
Capacidade de	Dinâm	ica C _a	2600 (kgf)				
carga	Estátic	a C _{oa}	5510 (kgf)				
Folga axial / pré-c	arga	0 / 200 k	gf				
Rigidez da porca		55 kgf/µr	n				
Torque da porca (médio)	5,5 kgf.c	m				
Vedação		ambas a	s faces				
Lubrificação de fá	brica	óleo protetivo					

Curso máximo (L ₁ -100)	Código do fuso de esferas
280	W3203SA-6Z-C5Z10
380	W3204SA-3Z-C5Z10
480	W3205SA-6Z-C5Z10
580	W3206SA-3Z-C5Z10
680	W3207SA-6Z-C5Z10
880	W3209SA-6Z-C5Z10
1080	W3211SA-5Z-C5Z10
1380	W3214SA-6Z-C5Z10
1680	W3217SA-1Z-C5Z10

Compr	imento d	la haste	Forma	Pre	<i></i>		
L ₁	L_2	L ₃		Compens. T	Desvio E	Variação e	da haste
380	380 400 560			- 0,009	0,025	0,020	0,050
480	500	660	II	- 0,012	0,027	0,020	0,060
580	580 600 760			- 0,014	0,030	0,023	0,060
680	700	929	I	- 0,016	0,035	0,025	0,075
780	800	1029	I	- 0,019	0,035	0,025	0,090
980	1000	1229	I	- 0,024	0,040	0,027	0,090
1180	1180 1200 1429		I	- 0,028	0,046	0,030	0,120
1480	1500	1729	I	- 0,036	0,054	0,035	0,150
1780	1800	2029	I	- 0,043	0,065	0,040	0,200

Observações:

- 1 Utilize mancais NSK para fusos de esferas: WBK25-01 (fixo), WBK25S-01 (livre), e WBK25-11 (fixo). Ver página 55.
- 2 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.
- 3 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Código da Porca: DFT Diâmetro 40 mm x Passo 10 mm

CARACTERÍS	TICAS D	O FUSO	DE ESFERAS				
Código da porca		DFT					
Classe de precisã	10	C5					
Número de voltas		2,5 voltas	s x 2 circuitos				
Diâ. das esferas /	B.C.D.	6,35 mm	(1/4") / 41 mm				
Esferas espaçado	ras	Não					
Capacidade de	Dinâm	ica C _a	5300 (kgf)				
carga	Estátic	a C _{oa}	14000 (kgf)				
Folga axial / pré-c	arga	0 / 370 k	gf				
Rigidez da porca		125 kgf/µ	ım				
Torque da porca (médio)	11,0 kgf.	cm				
Vedação		ambas a	s faces				
Lubrificação de fá	brica	óleo prot	etivo				

Curso máximo (L ₁ -193)	Código do fuso de esferas
287	W4004SA-2D-C5Z10
387	W4005SA-4D-C5Z10
487	W4006SA-2D-C5Z10
587	W4007SA-4D-C5Z10
787	W4009SA-4D-C5Z10
987	W4011SA-4D-C5Z10
1187	W4013SA-2D-C5Z10
1387	W4015SA-4D-C5Z10
1587	W4017SA-2D-C5Z10
2187	W4023SA-2D-C5Z10

Compr	imento d	la haste	Forma	Pre	// ** Linearidade		
L ₁	L ₂	L ₃		Compens. T	Desvio E	Variação e	da haste
480	500	687	II	- 0,012	0,027	0,020	0,040
580	600	787	II	- 0,014	0,030	0,023	0,040
680	700	887	II	- 0,016	0,035	0,025	0,050
780	780 800 1069		I	- 0,019	0,035	0,025	0,065
980	1000	1269	I	- 0,024	0,040	0,027	0,080
1180	1200	1469	I	- 0,028	0,046	0,030	0,080
1380	1400	1669	I	- 0,033	0,054	0,035	0,100
1580	1580 1600 1869		I	- 0,038	0,054	0,035	0,100
1780	1780 1800 2069		I	- 0,043	0,065	0,040	0,130
2380	2400	2669	I	- 0,057	0,077	0,046	0,170

- cado óleo lubrificante ou graxa antes de sua utilização.
- 3 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Porca Tipo: ZFD

Diâm. x Passos 25x5 25x10

Unidade em mm

				Des	crições	dos f	usos c	le esfe	ras			Diı	mens	ões	s					
Código do	Diâm.	Passo	wax. D	Diâm. da	Nº de		o. de rga	Pré-carga		D	Compr.	F	lang	е						
fuso de esferas				esfera	circuitos	Dinâm.	Estát.	Carga	Torque	ט		Α	В	G						
		I	(I _t -L)			Ca	Coa	(N)	(N·cm)		_	A	В	G	W	Χ				
W2502SS-1ZY-C5Z5			184																	
W2504SS-3ZY-C5Z5			334																	
W2506SS-2ZY-C5Z5	25	5	534	3,175	1 X 3	9790	22900	740	13,8	40	66	63	11	24	51	5,5				
W2509SS-1ZY-C5Z5				834																
W2512SS-3ZY-C5Z5			1134																	
W2504SS-4ZY-C5Z10			312																	
W2506SS-3ZY-C5Z10			512																	
W2508SS-3ZY-C5Z10	25	10	712	4,762	1 X 2	11400	21400	880	21,5	42	88	69	15	26	55	6,6				
W2511SS-1ZY-C5Z10			1012																	
W2515SS-2ZY-C5Z10			1412																	

		Furo		Dim	ensã	o da h	aste										Rotação
	s de tagem	de lubr.	Curso útil	Comp. total	Por	nta dir	eita	Por	nta ierda	Precis	são do _l	passo		Concentri- cidade da rosca	Batimento da flange	Massa (Kg)	máxima permissível d.n
Υ	Z	Q	It	I ₀	d ₂	l ₂	I ₁	d ₃	l ₃	T	e _p	ν _u	I	J	K		N(rpm)
			250	450		200			0	-0,005	0,023	0,018	0,040			2,1	
			400	650		200			50	-0,009	0,025	0,020	0,060			2,8	
9,5	5,5	M6 X 1	600	950	25,2	250	40	22,4	100	-0,013	0,030	0,023	0,075	0,015	0,011	3,9	2800
			900	1250		250			100	-0,021	0,040	0,027	0,090			4,9	
			1200	1600		300			100	-0,028	0,046	0,030	0,120			6,2	
			400	650		200			50	-0,008	0,025	0,020	0,060			3,0	
			600	950		250			100	-0,012	0,030	0,023	0,075			4,1	
11	6,5	M6 X 1	800	1150	25,2	250	60	21,3	100	-0,017	0,035	0,025	0,090	0,015	0,011	4,8	2800
			1100	1500		300			100	-0,024	0,046	0,030	0,120			6,0	
		1500	1900		300			100	-0,034	0,054	0,035	0,150			7,4		

Observações:

- Utilize mancais NSK para fusos de esferas; páginas 57 à 72.
 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.

Porca Tipo: ZFD

Diâm. x Passos 32x5 32x10

Unidade em mm

				Des	criçõe	s dos 1	usos (de esfe	eras			Dii	mens	sões					
Código do	Diâm.	Passo	Curso Máx.	Diâm. da	Nº de	Cap. de carga		Pré-carga			Compr.	mpr. Flange		е					
fuso de esferas				esfera	circuitos	Dinâm.	Estát.	Carga	Torque	D			_	G					
		ı	(I _t -L)			Ca	Coa	(N)	(N·cm)		L	Α	В	G	W	Х			
W3204SS-3ZY-C5Z5			323																
W3206SS-6ZY-C5Z5			523																
W3209SS-1ZY-C5Z5	32	5	823	3,175	4	14200	40700	1080	19,6	48	77	75	12	29	61	6,6			
W3212SS-3ZY-C5Z5			1123																
W3216SS-1ZY-C5Z5			1523																
W3205SS-3ZY-C5Z10			380																
W3207SS-3ZY-C5Z10			580																
W3210SS-6ZY-C5Z10	32	10	880	6,35	3	25900	52800	1860	49,0	54	120	88	15	34	70	9			
W3214SS-3ZY-C5Z10			1280																
W3218SS-3ZY-C5Z10			1680																

		Furo		ъ.	~								Ba	atiment	os		Datasãa
Furo	s de				ensa	o da h	aste	;					Lineari- Concentri-		Batimento	Massa	Rotação máxima
		lubr.	Curso útil	Comp. total	Por	nta dir	eita		nta Jerda				dade da haste	rosca	da flange	(Kg)	permissível d.n
Υ	Z	Q	l _t	I ₀	d ₂	l ₂	l ₁	d ₃	l ₃	T	e _p	Vu	I	J	K		N(rpm)
			400	650		200			50	-0,009	0,025	0,020	0,060			4,6	
11			600	950		250	40 2		100	-0,013	0,030	0,023	0,075	0,015	0,011	6,4	2180
	6,5	M6 X 1	900	1250	32,3	250		29,4	100	-0,021	0,040	0,027	0,090			8,1	
			1200	1600		300			100	-0,028	0,046	0,030	0,120			10,2	
			1600	2000		300			100	-0,037	0,054	0,035	0,150			12,6	
			500	850		250			100	-0,010	0,027	0,020	0,075			6,2	
			700	1050		250			100	-0,015	0,035	0,025	0,090			7,3	
14 8,	8,5	M6 X 1	1000	1400	32,3	300	60	27,1	100	-0,022	0,040	0,027	0,120	0,019	0,013	9,3	2180
		VIO A I	1400	1870		350		120	-0,032	0,054	0,035	0,150			11,9]	
			1800	2270		350			120	-0,041	0,065	0,040	0,200			14,1	

Observações::

- Utilize mancais NSK para fusos de esferas; páginas 57 à 72.
 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.

Porca Tipo: ZFD

Diâm. x Passos 40x10 50x10

Unidade em mm

				Des	scriçõe	s dos 1	iusos (de esfe	eras			Diı	mens	ões		
Código do	Diâm.	Passo	Curso máx.	Diâm. da	Nº de	Cap.		Pré-	carga	D	Compr.	F	lang	е		
fuso de esferas				esfera	circuitos	Dinâm.	Estát.	Carga	Torque	ט		_	В	G		
		Ι	(I _t -L)			Ca	Coa	(N)	(N·cm)			Α	ם	G	W	Χ
W4007SS-4ZY-C5Z10			557													
W4010SS-6ZY-C5Z10			857													
W4014SS-3ZY-C5Z10	40	10	1257	6,350	4	38400	400 93300	2840	83	62	2 143 1	104	18	40	82	11
W4018SS-4ZY-C5Z10			1657													
W4024SS-3ZY-C5Z10			2257													
W5007SS-1ZY-C5Z10			557													
W5010SS-3ZY-C5Z10			857													
W5015SS-3ZY-C5Z10	50	10	1357	6,350	4	4 43600	122000	3240	108	72	143	114	18	44	92	11
W5020SS-3ZY-C5Z10			1857													
W5026SS-3ZY-C5Z10			2457													

		Furo		D!	~								Dà	umenu	วร		Datasão	
Furo	c do			DIM	iensa	o da h	iaste			Drasia	são do l	Dance	Lineari-	Concentri-			Rotação máxima	
		lubr.	Curso útil	Comp. total	Por	nta dir	eita		nta uerda	Precis	sao do i	Passo		cidade da rosca	Batimento da Flange	Massa (Kg)	permissível d.n	
Υ	Z	Q	It	I ₀	d ₂	l ₂	l ₁	d ₃	l ₃	T	ep	Vu	-1	J	K		N(rpm)	
			700	1100		300			100	-0,015	0,035	0,025	0,065			12,1		
			1000	1400		300			100	-0,022	0,040	0,027	0,080			14,7		
17,5	11	Rc 1/8	1400	1870	40,3	350	60	35,1	120	-0,032	0,054	0,035	0,100	0,019	0,013	18,9	1750	
			1800	2270		350			120	-0,041	0,065	0,040	0,130			22,5		
			2400	2950		400			150	-0,056	0,077	0,046	0,170			28,5		
			700	1100		300			100	-0,015	0,035	0,025	0,065			18,3		
			1000	1400		300			100	-0,022	0,040	0,027	0,080			22,5		
17,5	11	Rc 1/8	1500	2050	50,3	400	60	45,1	150	-0,034	0,054	0,035	0,130	0,019	0,013	31,8	1400	
			2000	2550		400			150	-0,046	0,065	0,040	0,170			38,9		
			2600	3300		500			200	-0,060	0,093	0,054	0,220			49,5		

Observação:

- 1 Utilize mancais NSK para fusos de esferas; páginas 57 à 72.
- 2 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.

Porca Tipo: ZFD

Diâm. x Passos 32x10 40x10 50x10

				Des	criçõe	s dos	fuso	os de	esfer	as				Dim	ens	ões	;	
Código do	Diâm.	Passo	Curso máx.	Diâm. da	Nº de		. de rga	Pré-c	earga	Rigi- dez	Cód.	D	Compr.		F	lang	je	
fuso de esferas				esfera	circuitos	Dinâm.	Estát.	Carga	Torque	uez	Cou.	ע	_	F	Α	В	G	w
		I	(I _t -L)			Ca	Coa	(kgf)	(kgf-cm)	(kgf·µm)			_	Г	~		G	VV
W3205SS-3ZY-C5Z10			380															
W3207SS-3ZY-C5Z10	32		580															
W3210SS-6ZY-C5Z10		10	880	6,350	3 X 1	2640	5380	190	5,0	54	ZDF	54	120	105	88	15	34	70
W3214SS-3ZY-C5Z10	(33,75)		1280	(1/4)														
W3218SS-3ZY-C5Z10			1680															
W4007SS-4ZY-C5Z10			557															
W4010SS-6ZY-C5Z10	40		857															
W4014SS-3ZY-C5Z10		10	1257	6,350	4 X 1	3910	9520	290	8,5	89	ZDF	62	143	125	104	18	40	82
W4018SS-4ZY-C5Z10	(41,75)		1657	(1/4)														
W4024SS-3ZY-C5Z10			2257															
W5007SS-1ZY-C5Z10			557															
W5010SS-3ZY-C5Z10			857															
W5015SS-3ZY-C5Z10	50	10	1257	6,350	4 X 1	4450	12500	330	11,0	111	ZDF	72	143	125	114	18	44	92
W5020SS-3ZY-C5Z10	(51,75)		1657	(1/4)														
W5026SS-3ZY-C5Z10			2257															

			_			Dime	ãa	اماءا	ا م	_					Ba	itimen	tos							
			Furo de						1ast	_		Precisã	io do p	asso				№ dos fusos						
1110	mage	;111	lubr.				_											de esferas						
x l	v	7		da r	osca	lotai	u			<u> </u>	erua				naste	ua rosca		40 0010140						
`\	•		Q	d ₁	It	I ₀	d_2	l ₂	l ₁	d ₃	l ₃	T	Е	е	Ι	J	K							
					500	850		250			100	-0,010	0,027	0,020	0,075			W3205SS-3ZY-C5Z10						
					700	1050		250			100	-0,015	0,035	0,025	0,090			W3207SS-3ZY-C5Z10						
9	14	8,5	M6	32	1000	1400	32,3	300	60	27,1	100	-0,022	0,040	0,027	0,120	0,019	0,013	W3210SS-6ZY-C5Z10						
					1400	1870		350			120	-0,032	0,054	0,035	0,150			W3214SS-3ZY-C5Z10						
					1800	2270		350			120	-0,041	0,065	0,040	0,200			W3218SS-3ZY-C5Z10						
					700	1100		300			100	-0,015	0,035	0,025	0,065			W4007SS-4ZY-C5Z10						
					1000	1400		300			100	-0,022	0,040	0,027	0,080			W4010SS-6ZY-C5Z10						
11	17,5	11	PT	40	1400	1870	40,3	350	60	35,1	120	-0,032	0,054	0,035	0,100	0,019	0,013	W4014SS-3ZY-C5Z10						
			1/8		1800	2270		350			120	-0,041	0,065	0,040	0,130			W4018SS-4ZY-C5Z10						
					2400	2950		400			150	-0,056	0,077	0,046	0,170			W4024SS-3ZY-C5Z10						
					700	1100		300			100	-0,015	0,035	0,025	0,065			W5007SS-1ZY-C5Z10						
					1000	1400		300			100	-0,022	0,040	0,027	0,080	1		W5010SS-3ZY-C5Z10						
11	17,5	11	PT	50	1500	2050	50,3	400	60	45,1	150	-0,034	0,054	0,035	0,130	0,019	0,013	W5015SS-3ZY-C5Z10						
			1/8		2000	2550	00,0	400 00			-	- 00	1	"		70,1	150	-0,046	0,065	0,040	0,170	1		W5020SS-3ZY-C5Z10
					2600	3300		500			200	-0,060	0,093	0,054	0,220	1		W5026SS-3ZY-C5Z10						
	9 111	montage X Y 9 14 11 17,5	9 14 8,5	Montagem de lubr. X Y Z Q 9	Furos de montagem X Y Z Q d1 9 14 8,5 M6 32 11 17,5 11 PT 40 11 17,5 11 PT 50	Furos de montagem Marie Marie	Tempor de montagem Marco de lubr. Dimensões Comp. da rosca total	Turos de	The color of th	Part Part Part Part Part Part Part Part	Puros de	Ponta Pon	Furos de montagem	Precisão do pre	Precisão do passo Precisão Precisão do passo Precisão do passo Precisão P	Part Part	Precisão do passo Concentrate Precisão do passo Concentrate Precisão do passo Concentrate Precisão do passo Concentrate Concentrate Concentrate Precisão do passo Concentrate Concentrate Precisão do passo Concentrate Concentrate Concentrate Precisão do passo Concentrate Concentrate Concentrate Precisão do passo Concentrate Concentrate Concentrate Concentrate Concentrate Concentrate Precisão do passo Concentrate Concen	Precisão do passo Lineari de de lubr. Ponta da rosca Societa de lubr. Ponta da rosca Societa da						

Observação:

- 1 Classe de precisão: Classe ISO 5.
- 2 Utilize mancais NSK para fusos de esferas; páginas 57 à 72.
- 3 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.

 4 - Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Série A Pontas Não Usinadas Porca Tipo: ZFT Diâm. x Passos

32x5

ESPECIFIC/	ÇÕES DOS FUS	OS DE ESFERAS
Diâm. do eixo / S	entido de giro	32 X 5 / Direita
Pré-carga / Recir	culação	Pré-carga Z / Tipo tubo
Diâmetro das es	feras / B.C.D.	3,175 mm / 32,5 mm
Número de volta	ıs	2,5 voltas X 2 circuitos
Classe de precis	são	C5 / Z
Capacidade	Dinâmico Ca	18500 (kgf)
de carga (kgf)	Estático C _{0a}	56100 (kgf)
Pré carga (kgf)		1270 kgf
Torque da porca	, médio	23,5 (kgf.cm)
Esferas espaçad	doras	nenhum
Lubrificação de	fábrica	Veja Obs. 2
Volume interno d	a castanha (cm ³)	10

Unidade em mm

	C	urso	Com	primento da l	naste	
Código do fuso de esferas	Nominal	Máximo (Lt-Tam da castanha)	L ₁	L ₂	L ₃	Formato da usinagem
W3202SA-2Z-C5Z5	150	194	280	300	460	II
W3203SA-2Z-C5Z5	250	294	380	400	560	II
W3204SA-2Z-C5Z5	350	394	480	500	660	II
W3205SA-2Z-C5Z5	450	494	580	600	760	II
W3206SA-2Z-C5Z5	550	594	680	700	929	I
W3207SA-2Z-C5Z5	650	694	780	800	1029	
W3209SA-2Z-C5Z5	850	894	980	1000	1229	
W3211SA-2Z-C5Z5	1050	1094	1180	1200	1429	I
W3214SA-2Z-C5Z5	1350	1394	1480	1500	1729	

Pr	ecisão do pas	so	11**		Rotação n	náxima permis	sível (rpm)	
			Linearidade	Massa		Velocida	de crítica	
Т	e _p	Vu	da haste	(Kg)	d.n	Fixo suportado	Fixo - Fixo	
-0,007	0,023	0,018	0,040	3,5		-	-	
-0,009	0,025	0,020	0,050	4,1		-	-	
-0,012	0,027	0,020	0,060	4,7]	-	-	
-0,014	0,030	0,023	0,060	5,3		-	-	
-0,016	0,035	0,025	0,075	6,1	2180	-	-	
-0,019	0,035	0,025	0,090	6,7		-	-	
-0,024	0,040	0,027	0,090	7,9		-	-	
-0,028	· · ·	0,030	0,120	9,0		-	-	
-0,036		 				10,8		2040

Observação:

- 1 Utilize Mancais NSK para fusos de esferas: WBK25-01 (fixo), WBK25S-01 (livre), WBK25-11 (fixo). Ver página 55.
- 2 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização.

1. Tabela de Produtos

Modelo de castanha	Formato	da castanha	Pág
RNFTL	annunua an	Castanha com flange, recirculação por tubo	40 42
RNFBL	3333333333	Circular com flange	44
RNCT	2222222	Rosca em V (sem flange) tipo projeção do tubo	38
RNSTL	inananan M. mininana	Tipo quadrado	50
RNFCL		Circular em flange	46
			48

2. Características

- Entrega rápida: a Série R é padrão e de pronta entrega
- Porca esférica e haste do fuso intercabiáveis: os componentes eixo e porca para a montagem do fuso são vendidos separadamente e possuem em todos os casos, encaixe perfeito. O jogo axial máximo pós-montagem é mostrado nas tabelas dimensionais. (Pág. 40 ~ 47).
- Baixo custo: o fuso é fabricado por laminação. Isto garante preços inferiores aos fabricados em sistemas de precisão.
- Séries amplas: há 128 tipos de combinações de montagem de porcas nas séries. Cada combinação tem de dois a três comprimentos diferentes de fuso.

3. Precisão

- Precisão de passo: classe ISO 10 (v₃₀₀ = 0,210).
- Axial play (Folga Axial): variável de acordo com a dimensão da castanha, veja as tabelas de dimensionamento.

4. Número de Referência

5. Combinação de diâmetro de Eixo/Passo:

A tabela abaixo indica códigos de modelos de castanhas e os números das páginas que devem ser consultadas.

Diâmetro do eixo (mm)	3	4	5	6	8	10	12	16	20	25	32	40	50	64	80
10	O40 ▲38			O40 ●44											
12					O40 ●44		○42 * 46								
14		○40 ●44 ▲38 □50	○40 ●44 ▲38 □50												
15									*46						
16						O40		○42 * 46			* 48				
18					○40 ●44 ▲38 □50			1.10							
20		○40 ●44 ▲38 □?				○40 ●44 □50			○42 * 46			*48			
25		○40 ●44 ▲38 □50				○40 ●44 ▲38 □50				○42 * 46			*48		
28			○40 ●44 ▲38 □50												
32						○40 ●44 ▲38 □50					○42 * 46			*48	
36						○40 ●44 ▲38 □48									
40						O40 ●44 ▲38						○42 * 46			*48
45							○40 ▲38 □50								
50						O40 ▲38		O40 ▲38					*46		

O: RNFTL ●: RNFBL ▲: RNCT □: RNSTL *: RNFCL

Série R - Fusos de Esferas Laminados - Classe de Precisão C10 RNCT Diâmetro 10 mm x 3 mm até Diâmetro 50 mm x 16 mm

		-	L		<u>R</u> /	U		
Código da	Diâmetro	Passo	Diâmetro	B.C.D.	Número	Capacidad Dinâmica	e de carga Estática	Folga
porca	nominal		das esferas	2.0.2.	de voltas	kgf	kgf	axial máx.
	d	ı	Dw	d _m	Tontao	Coa	Ca	THO AT
RNCT1003A3.5	10	3	2,381	10,65	3,5 x 1	385	685	0,10
RNCT1404A3.5	14	4	2,778 (7/64)	14,5	3,5 x 1	545	1100	0,10
RNCT1405A2.5	14	5	3,175 (1/8)	14,5	2,5 x 1	535	990	0,10
RNCT1808A3.5 RNCT1808A3.5S	18	8	4,762 (3/16)	18,5	3,5 x 1	1350	2630	0,15
RNCT2005A2.5 RNCT2005A2.5S	20	5	3,175 (1/8)	20,5	2,5 x 1	650	1450	0,10
RNCT2505A5 RNCT2505A5S	25	5	3,175 (1/8)	25,5	2,5 x 2	1310	3710	0,10
RNCT2510A5 RNCT2510A5S	25	10	6,350 (1/4)	26	2,5 x 2	3240	7170	0,20
RNCT2806A5 RNCT2806A5S	28	6	3,175 (1/8)	28,5	2,5 x 2	1380	4140	0,10
RNCT3210A5 RNCT3210A5S	32	10	6,350 (1/4)	33,75	2,5 x 2	3640	9410	0,20
RNCT3610A5 RNCT3610A5S	36	10	6,350 (1/4)	37	2,5 x 2	3890	10400	0,20
RNCT4010A7 RNCT4010A7S	40	10	6,350 (1/4)	41,75	3,5 x 2	5460	16800	0,20
RNCT4512A5 RNCT4512A5S	45	12	7,144 (9/32)	46,5	2,5 x 2	5060	15000	0,23
RNCT5010A7 RNCT5010A7S	50	10	6,350 (1/4)	51,75	3,5 x 2	6060	21000	0,20
RNCT5016A5	50	16	9,525	52	25 x 2	10200	29900	0.23

- 2 Comprimento máximo da haste pode ser ligeiramente superior ao nominal $l_{\rm s}$.
- 3 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo

2,5 x 2

10200

29900

0,23

Codificação da haste

RS 25 10 A 20

Haste e porca vendidos separadamente		
opq w		p p
	L _s	Unidade: mm

			Dim	ensõe	es da	porca				Di	mensão da haste	
D.E.	Comp.	Dimensã da rosca		Pro	jeção tubo	do	Diâ. veda		Vedações	Diâ. mín.	Comp. da haste	Código da haste
D	L	M	В	U	٧	R	S	T		dr	$l_{ m s}$	
20	38	M18 x 1,0	10	15	15	7	_	-	Não	8	400 800	RS 1003A
25	43	M24 x 1,0	10	19	20	7	_	-	Não	11,5	500 1000	RS 1404A
30	45	M26 x 1,5	10	22	21	8	_	-	Não	11	500 1000	RS 1405A
34	58	M32 x 1,5	12	27	27	14	_ 28,5	_ 2,5	Não Sim	13,5	500 1000 1500	RS 1808A
40	48	M36 x 1,5	12	28	27	10	_ 29,5	_ 2,5	Não Sim	17	500 1000 2000	RS 2005A
42	69	M40 x 1,5	15	28	31	10	- 34,5	_ 2,5	Não Sim	22	1000 2000 2500	RS 2505A
44	92	M42 x 1,5	15	34	37	17	_ 38,5	_ 2,5	Não Sim	19	1000 2000 2500	RS 2510A
50	79	M45 x 1,5	15	33	34	10	- 37,5	_ 2,5	Não Sim	25	1000 2000 2500	RS 2806A
55	97	M50 x 1,5	18	39	42	17	_ 45,5	_ 2,5	Não Sim	27	1000 2000 3000	RS 3210A
60	98	M55 x 2,0	18	42	46	17	_ 50,5	- 3	Não Sim	30	1000 2000 3000	RS 3610A
65	125	M60 x 2,0	25	44	50	20	– 54,5	- 3	Não Sim	35	2000 3000 4000	RS 4010A
70	124	M65 x 2,0	30	47	55	20	- 60,5	- 3	Não Sim	39	2000 3000 4000	RS 4512A
80	140	M75 x 2,0	40	52	59	20	- 64,5	- 3	Não Sim	45	2000 3000 4000	RS 5010A
85	158	M80 x 2,0	40	57	63	25	- 68,5	- 3	Não Sim	42	2000 3000 4000	RS 5016A

ser aplicado óleo lubrificante ou graxa antes de sua utilização.

- 4 A inclusão de vedações não alteram as dimensões da porca.
- 5 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

RNCT5016A5S

Série R - Fusos de Esferas Laminados - Classe de Precisão C10 RNFTL Diâmetro 10 mm x 3 mm até Diâmetro 50 mm x 16 mm

$\frac{RS}{l_s} = \frac{25}{10} A \frac{20}{l_s \times 100}$	
Haste e porca vendidos separadamente	
\$64m	pφ
· Ls	
	Unidade: mm

Codificação da haste

	-		-		-			
Código da	Diâmetro nominal	Passo	Diâmetro das esferas	B.C.D.	Número de	Capacidade Dinâmica kgf	e de carga Estática kgf	Folga axial
porca	d	l	D_{w}	$d_{\scriptscriptstyle \mathrm{M}}$	voltas	C _{OA}	C _A	máx.
RNFTL1003A3.5	10	3	2,381 (3/32)	10,65	3,5 x 1	385	685	0,10
RNFTL1404A3.5	14	4	2,778 (7/64)	14,5	3,5 x 1	545	1100	0,10
RNFTL1405A2.5	14	5	3,175 (1/8)	14,5	2,5 x 1	535	990	0,10
RNFTL1808A3.5 RNFTL1808A3.5S	18	8	4,762 (3/16)	18,5	3,5 x 1	1350	2630	0,15
RNFTL2005A2.5 RNFTL2005A2.5S	20	5	3,175 (1/8)	20,5	2,5 x 1	650	1450	0,10
RNFTL2505A5 RNFTL2505A5S	25	5	3,175 (1/8)	25,5	2,5 x 2	1310	3710	0,10
RNFTL2510A2.5 RNFTL2510A2.5S	25	10	6,350 (1/4)	26	2,5 x 1	1790	3590	0,20
RNFTL2510A5 RNFTL2510A5S	25	10	6,350 (1/4)	26	2,5 x 2	3240	7170	0,20
RNFTL2806A2.5 RNFTL2806A2.5S	28	6	3,175 (1/8)	28,5	2,5 x 1	760	2070	0,10
RNFTL2806A5 RNFTL2806A5S	28	6	3,175 (1/8)	28,5	2,5 x 2	1380	4140	0,10
RNFTL3210A5 RNFTL3210A5S	32	10	6,350 (1/4)	33,75	2,5 x 2	3640	9410	0,20
RNFTL3610A2.5 RNFTL3610A2.5S	36	10	6,350 (1/4)	37	2,5 x 1	2140	5200	0,20
RNFTL3610A5 RNFTL3610A5S	36	10	6,350 (1/4)	37	2,5 x 2	3890	10400	0,20
RNFTL4010A7 RNFTL4010A7S	40	10	6,350 (1/4)	41,75	3,5 x 2	5460	16800	0,20
RNFTL4512A5 RNFTL4512A5S	45	12	7,144 (9/32)	46,5	2,5 x 2	5060	15000	0,23
RNFTL5010A7 RNFTL5010A7S	50	10	6,350 (1/4)	51,75	3,5 x 2	6060	21000	0,20
RNFTL5016A5 RNFTL5016A5S	50	16	9,525 (3/8)	52	2,5 x 2	10200	29900	0,23

		Dimensões da porca										nensão da haste	
Ø E.	Comp.		Flang	е	Fu	iro	Pro	ojeção tubo	do	Vedações	Diâ. mín.	Comp. da haste	Código da haste
D	L	Α	В	G	W	Х	U	V	R		$d_{\rm R}$	$l_{ m s}$	
20	34	40	6	15	30	4,5	15	15	7	Não	8	400 800	RS 1003A
25	43	50	10	19	40	4,5	19	20	7	Não	11,5	500 1000	RS 1404A
30	45	50	10	22	40	4,5	22	21	8	Não	11	500 1000	RS 1405A
34	58	63	12	27	49	6,6	27	27	14	Não Sim	13,5	500 1000 1500	RS 1808A
40	46	60	10	28	50	4,5	28	27	10	Não Sim	17	500 1000 2000	RS 2005A
42	66	71	12	28	57	6,6	28	31	10	Não Sim	22	1000 2000 2500	RS 2505A
	62	80	15	34	62	9	34	37	17	Não Sim	19	1000 2000 2500	RS 2510A
44	92	80	15	34	62	9	34	37	17	Não Sim	19	1000 2000 2500	RS 2510A
	55	79	15	33	65	6,6	33	34	10	Não Sim	25	1000 2000 2500	RS 2806A
50	79	79	15	33	65	6,6	33	34	10	Não Sim	25	1000 2000 2500	RS 2806A
55	97	97	18	39	75	11	39	42	17	Não Sim	27	1000 2000 3000	RS 3210A
	68	102	18	42	80	11	42	46	17	Não Sim	30	1000 2000 3000	RS 3610A
60	98	102	18	42	80	11	42	46	17	Não Sim	30	1000 2000 3000	RS 3610A
65	120	114	20	44	90	14	44	50	20	Não Sim	35	2000 3000 4000	RS 4010A
70	116	130	22	47	100	18	47	55	20	Não Sim	39	2000 3000 4000	RS 4512A
80	122	140	22	52	110	18	52	59	20	Não Sim	45	2000 3000 4000	RS 5010A
85	146	163	28	57	125	22	57	63	25	Não Sim	42	2000 3000 4000	RS 5016A

Obs.: 1 - Os tubos de recirculação não interferem com dimensões maiores que U, V e R.

- 2 Comprimento máximo da haste pode ser ligeiramente superior ao nominal $\it l_{\rm s}$.
- 3 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo

ser aplicado óleo lubrificante ou graxa antes de sua utilização

- 4 A inclusão de vedações não alteram as dimensões da porca.
- 5 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Série R - Fusos de Esferas Laminados - Classe de Precisão C10 RNFTL Diâmetro 12 mm x 12 mm até Diâmetro 40 mm x 40 mm

Codificação da haste

RS 25 10 A 20

 $l_{\rm s}$ \times 100

Unidade em mm

	Diâmetro	_	Diâmetro		Número	Capacidad		Folga
Código da	nominal	Passo	das esferas	B.C.D.	de	Dinâmica kgf	Estática kgf	axial
porca	d	l	D _w	$d_{\scriptscriptstyle ext{M}}$	voltas	C _{OA}	C _A	máx.
RNFTL 1212A3	12	12	2.381 (3/32)	12,65	1,5 X 2	340	640	0,10
RNFTL 1616A3 RNFTL 1616A3S	16	16	2.778 (7/64)	16,65	1,5 X 2	500	985	0,10
RNFTL 2020A3 RNFTL 2020A3S	20	20	3.175 (1/8)	20,75	1,5 X 2	715	1570	0,10
RNFTL 2525A3 RNFTL 2525A3S	25	25	3.969 (5/32)	26	1,5 X 2	1070	2450	0,12
RNFTL 3232A3 RNFTL 3232A3S	32	32	4.762 (3/16)	33,25	1,5 X 2	1560	3780	0,15
RNFTL 4040A3 RNFTL 4040A3S	40	40	6.350 (1/4)	41,75	1,5 X 2	2490	6280	0,20

			Dim	ensõe	es da p	orca					Din	nensão da haste	
Ø E.	Comp.		Flang	е	Fu	iro	Pro	ojeção tubo	do	Vedações	Diâ. mín.	Comp. da haste	Código da haste
D	L	Α	В	G	W	Х	U	٧	R		$d_{\scriptscriptstyle m R}$	l_{s}	
24	44	44	8	17	34	4,5	17	16	5	-	10,1	400 800	RS1212A
30	50	55	10	22	43	6,6	22	22	7	- Sim	13,5	500 1000 1500	RS1616A
35	59	68	12	25	52	9	25	27	8	Sim	17,3	500 1000 2000	RS2020A
45	69	80	12	31	63	9	31	32	10	Sim	22	1000 2000 2500	RS2525A
55	84	100	15	37	80	11	37	40	12	Sim	28	1000 2000 3000	RS3232A
70	103	120	18	46	95	14	46	49	15	- Sim	35	2000 3000 4000	RS4040A

- **Obs.:** 1 Os tubos de recirculação não interferem com dimensões maiores que U, V e R. 2 Comprimento máximo da haste pode ser ligeiramente superior ao nominal l_s .

 - 3 Os fusos de esferas NSK vêm de fábrica lubrificados com óleo protetivo, devendo ser aplicado óleo lubrificante ou graxa antes de sua utilização
 - 4 A inclusão de vedações não alteram as dimensões da porca.
 - 5 Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

NSK

Série R - Fusos de Esferas Laminados - RNFBL

(Furo para lubrificação) Q Vedação (ambos os lados) Eixo provisório B (C) L W

Sistema de Recirculação por Tubo, Castanha Flangeada

Unidade em mm

Código da porca	Diâmetro nominal	Passo	Diâmetro das esferas	B.C.D.	Número de voltas	Capacidad Dinâmica kgf	Estática kgf	Folga axial máx.	Ø E.
	d	l	D_{w}	d _M		C _{OA}	C _A	IIIux.	U
RNFBL 1006A2.5S	10	6	2.381	10.65	2.5X1	2830	4810	0.10	26
RNFBL1208A2.5S	12	8	2.778	12.65	2.5X1	3730	6560	0.10	29
RNFBL1404A3.5S	14	4	2.778	14.5	3.5X1	5370	10800	0.10	31
RNFBL1405A2.5S	14	5	3.175	14.5	2.5X1	5260	9720	0.10	32
RNFBL1808A3.5S	18	8	4.762	18.5	3.5X1	13200	25800	0.15	50
RNFBL2005A2.5S	20	5	3.175	20.5	2.5X1	6360	14200	0.10	40
RNFBL2010A2.5S	20	10	4.762	21.25	2.5X1	10900	21800	0.15	52
RNFBL2505A2.5S		_			2.5X1	7070	18200		
RNFBL2505A5S	25	5	3.175	25.5	2.5X2	12800	36300	0.10	43
RNFBL2510A2.5S	0.5	10	0.05	00	2.5X1	17500	35200	0.00	60
RNFBL2510A5S	25	10	6.35	26	2.5X2	31800	70300	0.20	60
RNFBL2806A2.5S	00	_	0.475	00.5	2.5X1	7430	20300	0.10	50
RNFBL2806A5S	28	6	3.175	28.5	2.5X2	13500	40600	0.10	50
RNFBL3210A2.5S	00	40	0.05	00.75	2.5X1	19700	46100	0.00	07
RNFBL3210A5S	32	10	6.35	33.75	2.5X2	35700	92200	0.20	67
RNFBL3610A2.5S		40	0.05	07	2.5X1	21000	51000	0.00	70
RNFBL3610A5S	36	36 10	6.35	37	2.5X2	38100	102000	0.20	70
RNFBL4010A5S	40	10	6.35	41.75	2.5X2	40100	116000	0.20	76

		Dimensões da Castanha								Tubo d	trans.	D	imensões	do Eixo	Peso
-	Flang	е	Cor	np.	Fu Pass	ro ante	Furo de	lubr.	Massa (kg)	Diâm. ext.	Furo		omp. da haste	Código da	eixo
Α	Н	В	L	(C)	W	Х	Q	Т	(Ng)	d ₀	di		Ls	haste	(Kg)
42	29	8	36	3	34	4.5	M3X0.5	5.0	0.16	8.1	6.1	400	800	RS1006A**	0.56
45	32	8	44	3	37	4.5	M3X0.5	5.5	0.21	9.6	7.6	400	800	RS1208A**	0.81
50	37	10	40	4	40	4.5	M6X1	5.0	0.25	11.5	9.5	500	1000	RS1404A**	1.02
50	38	10	40	4	40	4.5	M6X1	5.0	0.26	11.0	9.0	500	1000	RS1405A**	1.00
80	60	12	61	4	65	6.6	M6X1	6.0	1.00	13.6	11.6	500	1000 1500	RS1808A**	1.60
60	46	10	40	4	50	4.5	M6X1	5.0	0.37	17.0	14.6	500	1000 2000	RS2005A**	2.17
82	64	12	61	5	67	6.6	M6X1	6.0	1.05	16.2	13.8	500	1000 2000	RS2010A**	2.18
67	50	10	40 55	4	55	5.5	M6X1	5.0	0.40	22.0	19.6	1000	2000 2500	RS2505A**	3.47
96	72	15	66 96	5	78	9.0	M6X1	7.5	1.52 1.99	19.0	16.6	1000	2000 2500	RS2510A**	3.13
80	60	12	47 65	5	65	6.6	M6X1	6.0	0.70 0.87	25.0	22.6	1000	2000 2500	RS2806A**	4.47
103	78	15	67 97	5	85	9.0	M6X1	7.5	1.72 2.25	27.0	24.6	1000	2000 3000	RS3210A**	5.53
110	82	17	69 99	5	90	11.0	M6X1	8.5	1.97 2.53	30.0	27.6	1000	2000 3000	RS3610A**	6.91
116	88	17	99	5	96	11.0	M6X1	8.5	2.86	35.0	31.8	2000	3000 4000	RS4010A**	8.87

Obs.: 1. Castanha e eixos vendidos separadamente.

^{2.} Itens de estoque não apresentam tratamento superficial. A NSK providencia o tratamento com *coating* de fosfato a pedido do cliente.

^{3.} A vedação para hastes com o diâmetro de 14 mm ou menos é feito com resina sintética. Para diâmetros de 16 mm ou mais a vedação é do tipo "Brush-seal".

Série R - Fusos de Esferas Laminados - RNFCL

(Furo para lubrificação) Q Eixo provisório 4-X Furo passante

Recirculação Interna, Castanha Flangeada

Unidade em

	D:0 .		B10 .		NI.	Capacidad	e de carga		
Código da porca	Diâmetro nominal	Passo	Diâmetro das esferas	B.C.D.	Número de voltas	Dinâmica kgf	Estática kgf	Folga axial	Ø E.
porca	d	l	$D_{ m w}$	$d_{\scriptscriptstyle m M}$	VOILAS	C _{OA}	$C_{\scriptscriptstyle m A}$	máx.	D
RNFCL 1212A3	12	12	2.381	12.65	1.7X2	3740	6640	0.10	26
RNFCL 1212A6	12	12	2.301	12.00	1.7X4	6780	13300	0.10	20
RNFCL 1520A3 RNFCL 1520A3S	15	20	3.175	15.5	1.7X2	6730	12300	0.10	33
RNFCL 1616A3									
RNFCL 1616A3S	4.0	40	0.770	10.05	1.7X2	5430	10400	0.40	
RNFCL 1616A6	16	16	2.778	16.65	4 7 / 4	0000	00000	0.10	32
RNFCL 1616A6S					1.7X4	9860	20800		
RNFCL 2020A3					1.7X2	7810	16500		
RNFCL 2020A3S	20	20	3.175	20.75	1.77.2	7010	10000	0.10	39
RNFCL 2020A6			00	200	1.7X4	14200	33000	00	
RNFCL 2020A6S									
RNFCL 2525A3 RNFCL 2525A3S					1.7X2	11700	25800		
RNFCL 2525A55	25	25	3.969	26				0.12	47
RNFCL 2525A6S					1.7X4	21200	51500		
RNFCL 3232A3					4 7//0	47400	40500		
RNFCL 3232A3S	32	32	4.762	33.25	1.7X2	17100	40500	0.15	58
RNFCL 3232A6	32	32	4.702	33.23	1.7X4	31000	81000	0.15	50
RNFCL 3232A6S					1.774	31000	01000		
RNFCL 4040A3					1.7X2	27200	67900		
RNFCL 4040A3S	40	40	6.35	41.75			0.000	0.20	73
RNFCL 4040A6					1.7X4	49300	136000		
RNFCL 4040A6S RNFCL 5050A3									
RNFCL 5050A3					1.7X2	40600	106000		
RNFCL 5050A6	50	50	7.938	52.25				0.25	90
RNFCL 5050A6S					1.7X4	73700	212000		

	Dimensões da porca									Tubo de	transp.		Dimensão d	la haste	Peso	
	Flang	je	С	om	o.	Furo de	pass.	Furo de	lubr.	Massa (kg)	Diâm. externo	Furo		omp. da haste	Código da	eixo
Α	Н	В	Е	Ln	M	W	Х	Q	Т	(kg)	d ₀	di		Ls	haste	(Kg)
44	28	6	9	30	-	35	4.5	M3X0.5	3.0	0.12	10.1	8.1	400	800	RS1212A**	0.74
51	35	10	11	45	3	42	4.5	M6X1	5.0	0.28	12.2	10.2	500	1000 1500	RS1520A**	1.15
53	34	10	10	38	3 -	42	4.5	M6X1	5.0	0.23	13.5	11.5	500	1000 1500	RS1616A**	1.37
62	41	10	11.5	46	3 -	50	5.5	M6X1	5.0	0.37	17.3	14.9	500	1000 2000	RS2020A**	2.19
74	49	12	13	55	3 -	60	6.6	M6X1	6.0	0.62	22.0	19.6	1000	2000 2500	RS2525A**	3.43
92	60	12	16	70	3 -	74	9	M6X1	5.5	1.10	28.0	25.6	1000	2000 3000	RS3232A**	5.71
114	75	15	19.5	85	3.5 - 3.5	93	11	M6X1	6.5	2.09	35.0	31.8	200	3000 4000	RS4040A**	8.82
135	92	20	21.5	107	3.5 - 3.5	112	14	M6X1	7.0	3.90	44.0	40.8	200	3000 4000	RS5050A**	13.81

Obs.: 1. Castanha e eixos vendidos separadamente.

Série R - Fusos de Esferas Laminados - RNFCL

Recirculação Interna, Castanha Flangeada

Unidade em mm

Código da	Diâmetro nominal	Passo	Diâmetro das esferas	B.C.D.	Número de	Capacidad Dinâmica	Estática	Folga axial	Ø E.
porca	d	l	D _w	d _M	voltas	kgf C _{OA}	kgf C _A	máx.	D
RNFCL 1632A2					0.7X4	4600	8460		
RNFCL 1632A2S RNFCL 1632A3 RNFCL 1632A3S	16	32	2.778	16.65	1.7X2	5430	10400	0.10	32
RNFCL 1632A6 RNFCL 1632A6S					1.7X4	9860	20800		
RNFCL 2040A2 RNFCL 2040A2S					0.7X4	6610	13600		
RNFCL 2040A3 RNFCL 2040A3S	20	40	3.175	20.75	1.7X2	7810	16500	0.10	38
RNFCL 2040A6 RNFCL 2040A6S					1.7X4	14200	33000		
RNFCL 2550A2 RNFCL 2550A2S					0.7X4	9870	21200		
RNFCL 2550A3 RNFCL 2550A3S	25	50	3.969	26	1.7X2	11700	25800	0.12	46
RNFCL 2550A6 RNFCL 2550A6S					1.7X4	21200	51500		
RNFCL 3264A3 RNFCL 3264A3S					1.7X2	11700	40.500		
RNFCL 3264A6 RNFCL 3264A6S	32	64	4.762	33.25	1.7X4	31000	81000	0.15	58
RNFCL 4080A3 RNFCL 4080A3S					1.7X2	27200	67900		
RNFCL 4080A6 RNFCL 4080A6S	40	80	6.350	41.75	1.7X4	49300	136000	0.20	73

			Dim	ense	ões (s da porca do passante Furo de lub					Tubo de	transp.	Dimensões da	haste	Peso
ı	Flanç	ge	C	omp).	do pas	ro ssante	Furo de	lubr.	Massa (kg)	Diâm. externo	Furo	Comp. da haste	Código da haste	eixo
Α	Н	В	Е	L_{n}	M	W	Х	Q	Т	(149)	d ₀	di	L _S	Haste	(Kg)
				34	3					0.21					
50	34	10	10	66	3	41	4.5	M6X1	5.5	0.33	13.5	11.5	500 1000 1500	RS1632A**	1.34
				66	3					0.33					
				41	3					0.31					
58	40	10	11	81	3	48	5.5	M6X1	5.5	0.53	17.3	14.9	500 1000 1500 2000	RS2040A**	2.15
				81	3					0.33					
				50	3					0.53					
70	48	12	13	100	3	58	6.6	M6X1	7.0	0.91	22.0	19.6	1000 2000 2500	RS2550A**	3.37
				100	3					0.91					
92	60	12	15.5	126	3 - 3	74	9	M6X1	7.5	1.76	28.0	25.6	1000 2000 3000 4000	RS3264A**	5.63
114	75	15	19	158	- 2.5	30	11	M6X1	10	3.44	35.0	31.8	2000 3000 4000 5000	RS4080A**	8.69

Obs.: 1. Castanha e eixos vendidos separadamente.

Haste do fuso

Peso

Série R - Fusos de Esferas Laminados - RNSTL

Sistema de Recirculação por Tubo, Porca Quadrada (passos curtos e médios)

Dimensões da porca

			Diâm.			Num.	Cap. d	e carga	Folga		
Código da porca	Diâm. nominal	Passo	das esferas	B.C.D.	Diâm. prim.	de voltas	Diâm. kgf	Estat. kgf	axial máx.		Largura
	d	l	$D_{\rm w}$	d _m	dr		COA	C_A		Ln	W
RNSTL 1404A3.5S	14	4	2,778	14,5	11,5	3.5 x 1	5370	10800	0.10	38	34
RNSTL 1405A2.5S	14	5	3,175	14,5	11,0	2.5 x 1	5260	9720	0.10	38	34
RNSTL 1808A3.5S	18	8	4,762	18,5	13,6	3.5 x 1	13200	25800	0.15	56	48
RNSTL 2005A2.5S	20	5	3,175	20,5	17,0	2.5 x 1	6360	14200	0.10	38	48
RNSTL 2010A2.5S	20	10	4,762	21,25	16,2	2.5 x 1	10900	21800	0.15	58	48
RNSTL 2505A2.5S	25	5	3,175	25,5	22,0	2.5 x 1	7070	18200	0.10	35	60
RNSTL 2510A5S	25	10	6,35	26	19,0	2.5 x 2	31800	70300	0.20	94	60
RNSTL 2806A2.5S	28	6	3,175	28,5	25,0	2.5 x 1	7430	20300	0.10	42	60
RNSTL 2806A5S	20		0,170	20,0	20,0	2.5 x 2	13500	40600	0.10	67	60
RNSTL 3210A2.5S	32	10	6,35	33,75	27,0	2.5 x 1	19700	46100	0.20	64	70
RNSTL 3210A5S	52	10	0,55	33,73	27,0	2.5 x 2	35700	92200	0.20	94	70
RNSTL 3610A2.5S	36	10	6,35	37	30,0	2.5 x 1	21000	51000	0.20	64	86
RNSTL 3610A5S			0,00	0,	00,0	2.5 x 2	38100	102000		96	86
RNSTL 4512A5S	45	12	7,144	46,5	39,0	2.5 x 2	49600	147000	0.23	115	100

Alt. do centro	F	uro	do pa	assan	te	Furo de lubr.			Massa (kg)	Diâm. exter.	Diâm. inter.	Con	Comp da haste		Cód. da haste	da haste (kg)
Н	Α	В	С	J	K	Е	F	U		d ₀	di		Ls			(119)
13	22	26	8	M4	7	7	3	20	0.20	11,5	9,5	500	10000		RS1404A**	1,02
13	22	26	8	M4	7	7	3	21	0.20	11,0	9,0	500	10000		RS1405A**	1,00
17	35	35	10.5	M6	10	8	3	26	0.31	13,6	11,6	500	10000	15000	RS1808A**	1,60
17	22	35	8	M6	9	6	2	27	0.24	17,0	14,6	500	10000	20000	RS2505A**	2,17
18	35	35	11.5	M6	10	10	2	28	0.35	16,2	13,8	500	10000	20000	RS2510A**	2,18
20	22	40	6.5	M8	10	6	0	27	0.31	22,0	19,6	1000	20000	25000	RS2505A**	3,47
23	60	40	17	M8	12	10	0	32	1.32	19,0	16,6	1000	20000	25000	RS2510A**	3,13
22	18	40	12		12	۰	0	20	0.65	05.0	00.6	1000	00000	05000	DC0006 A **	4.47
22	40	40	13.5	M8	12	8	0	32	1.04	25,0	22,6	1000	20000	25000	RS2806A**	4,47
26	45	50	9.5		10	4.0	•	00	1.12	07.0	04.0	1000			D000404**	o
26	60	50	17	M8	12	10	0	38	1.75	27,0	24,6	1000	20000	30000	RS3210A**	5,53
29	45	60	9.5						1.76						200010144	
29	60	60	18	M10	16	11	0	41	2.64	30,0	27,6	1000	20000	30000	RS3610A**	6,91
36	75	75	20	M12	20	13	0	46	1.22	39,0	35,8	2000	30000	25000	RS4512A**	11,16

Obs.: 1. Castanha e eixos vendidos separadamente.

Configuração de Usinagem de Pontas Pontas de Usinagem Padrão - Recomendadas

Unidade em mm

Diâm.	Ass. do	rolam.	Passo		Lado de	acion.	Vedação	Furo hex	agonal	Char	nfro		
do eixo	Diâmetro externo	Comp.	Rosca nominal	Comp.	Diâmetro externo	Comp.	Diâmetro externo	Dist. entre arestas	Profund.	Dist. entre arestas	Comp.	Mancal reco	mendado
d	d ₁	L ₁	m ₁	mL ₁	d ₂	L ₂	d ₃	В	h	Н	S	No. de re	ferência
4	6	22,5	M6 X 0,75	7	4,5	7,5	9,5			8	4,5	WBK06-01A	WBK06-11
6	6	22,5	M6 X 0,75	7	4,5	7,5	9,5			8	4,5	WBK06-01A	WBK06-11
8	8	27	M8X1	9	6	10	11,5			10	5,5	WBK08-01A	WBK08-11
10	8	27	M8 X 1	9	6	10	11,5			10	5,5	WBK08-01A	WBK08-11
12	10	30	M10 X 1	10	8	15	14			12	6,5	WBK10-01A	WBK10-11
14	12	30	M12 X 1	10	10	15	15	4	6	12	6,5	WBK12-01A	WBK12-11
15	12	30	M12 X 1	10	10	15	15	4	6	12	6,5	WBK12-01A	WBK12-11
16	12	30	M12 X 1	10	10	15	15	4	6	12	6,5	WBK12-01A	WBK12-11
20	15	40	M15 X 1	15	12	20	19,5	5	7	17	8,5	WBK15-01A	WBK15-11
20	17	81	M17 X 1	23	12	29	20	5	7	22	10	WBK ²	17DF-31
25	20	53	M20 X 1	16	15	27	25	6	8	22	10	WBK20-01	WBK20-11
23	20	81	M20 X 1	23	15	39	25	6	8	22	10	WBK2	20DF-31
28	20	53	M20 X 1	16	15	27	25	6	8	22	10	WBK20-01	WBK20-11
20	20	81	M20 X 1	23	15	39	28	6	8	24	12	WBK2	20DF-31
	25	62	M25 X 1,5	20	20	33	32	8	10	27	12	WBK25-01	WBK25-11
32	25	89	M25 X 1,5	26	20	51	32	8	10	27	12	WBK2	25DF-31
	25	104	M25 X 1,5	26	20	51	32	8	10	27	12	WBK2	5DFD-31
36	30	89	M30 X 1,5	26	25	61	36	10	12	30	13	WBK	30DF-31
30	30	104	M30 X 1,5	26	25	61	36	10	12	30	13	WBK3	0DFD-31
40	30	89	M30 X 1,5	26	25	61	40	10	12			WBK	30DF-31
40	30	104	M30 X 1,5	26	25	61	40	10	12			WBK3	0DFD-31
45	35	92	M35 X 1,5	30	30	63	45	12	14			WBK35DF-31	
45	35	107	M35 X 1,5	30	30	63	45	12	14			WBK35DFD-31	
	40	92	M40 X 1,5	30	35	78	50	14	18			WBK4	10DF-31
50	40	107	M40 X 1.5	30	35	78	50	14	18			WBK4	0DFD-31

Nota: 1. Mancal recomendado: os números em parênteses são os rolamentos recomendados

Unidade em mm

Diâmetro da	Rolar	nento	Rosca para po	rca trava	Cana	al de Ane	l Trava	Furo hexa	agonal	
haste do fuso	Diâmetro externo	Comp.	Dim. nominal	Comp.	Largura	Diâm. do canal	Posição do canal	Dist. entre arestas	Profund.	Mancal recomendado
d	d ₃	L ₃	m ₂	mL_2	n	dn	nL	В	h	recomendado
8	6	9	-	-	0,8	5,7	6,8	-	-	WBK08S-01
10	6	9	-	-	0,8	5,7	6,8	-	-	WBK08S-01
12	8	10	-	-	0,9	7,6	7,9	-	-	WBK10S-01
14	10	22(12)	-	-	1,15	9,6	9,15	4	6	WBK12S-01
15	10	22(12)	-	-	1,15	9,6	9,15	4	6	WBK12S-01
16	10	22(12)	-	-	1,15	9,6	9,15	4	6	WBK12S-01
20	15	25(13)	-	-	1,15	14,3	10,15	5	7	WBK15S-01
	20	19	-	-	1,35	19	15,35	6	8	WBK20S-01
25	20	53	M20X1	16	-	-	-	6	8	WBK20-01 WBK20-11
	20	81	M20 X 1	23	-	-	-	6	8	WBK20DF-31
	20	19	-	-	1,35	19	15,35	6	8	WBK20S-01
28	20	53	M20 X 1	16	-	-	-	6	8	WBK20-01 WBK20-11
	20	81	M20 X 1	23	-	-	-	6	8	WBK20DF-31
	25	20	-	-	1,35	23,9	16,35	8	10	WBK25S-01
32	25	62	M25 X 1,5	20	-	-	-	8	10	WBK25-01 WBK25-11
	25	89	M25 X 1,5	26	-	-	-	8	10	WBK25DF-31
36	25	20	-	-	1,35	23,9	16,35	10	12	(6205)
30	25	89	M25 X 1,5	26	-	-	-	10	12	WBK30DF-31
40	30	22	-	-	1,75	28,6	17,75	10	12	(6206)
40	30	89	M30 X 1,5	26	-	-	-	10	12	WBK30DF-31
45	35	25	-	-	1,75	33	18,75	12	14	(6207)
45	35	92	M35 X 1,5	30	-	-	-	12	14	WBK35DF-31
50	40	25	-	-	1,95	38	19,95	14	18	(6208)
50	40	92	M40 X 1,5	30	-	-	-	14	18	WBK40DF-31

Mancais de Fusos de Esferas (usinagens recomendadas)

As dimensões das configurações de ponta de haste são mostradas na tabela abaixo para cargas baixas e equipamentos pequenos. Adicione uma largura do espaçador à dimensão L1 abaixo, quando usar um espaçador para o fuso esférico laminado.

Unidade em mm

Referência	Assento do	rolamento	Rosca de tra	vamento	Assento d	e vedação	Chanfro
	d ₁	L ₁	m ₁	mL ₁	d_2	N	C ₁
WBK06-**	6	22,5	M6X0,75	7	9,5	3,5	0,2
WBK08-**	8	27	M8X1	9	11,5	4	0,2
WBK10-**	10	30	M10X1	10	14	6	0,2
WBK12-**	12	30	M12X1	10	15	6	0,2
WBK15-**	15	40	M15X1	15	19,5	5	0,3
WBK17-**	17	46	M17X1	17	24	7	0,3
WBK20-**	20	53	M20X1	16	25	10	0,3
WBK25-**	25	62	M25X1,5	20	32	14	0,5
WBK04R-11	4	15	M4X0,5	7,5	-	-	0,3
WBK06R-11	6	17	M6X0,75	7,5	-	-	0,3

Unidade em mm

Referência	Assento de	o rolamento	Dimensões	de canal de	travamento	Chanfro
Tioloronoia	d ₃	L ₂	n	dn	nL	C ₂
WBK08S-**	6	9	0,8	5,7	6,8	0,2
WBK10S-**	8	10	0,9	7,6	7,9	0,2
WBK12S-**	10	22	1,15	9,6	9,15	0,5
WBK15S-**	15	25	1,15	14,3	10,15	0,5
WBK17S-**	17	16	1,15	16,2	13,15	0,5
WBK20S-**	20	19	1,35	19	15,35	0,5
WBK25S-**	25	20	1,35	23,9	16,35	0,5

NSK

Mancais para fusos de esferas

Acessórios

Os acessórios utilizados com o fuso de esferas estão disponíveis para pronta entrega.

1. Classificação

Os mancais para fusos de esferas são classificados em categorias segundo sua forma. Selecione o tipo apropriado para sua aplicação.

Aplica	ção	Formato	Aplicação	Rolamento aplicado	Pág
			Lado de acionamento	Rolamento de contato angular	60
	Quadrado		Lado de apoio	Rolamento de uma carreira de esferas	63
Equipamentos leves			Lado de apolo	Rolamento de uma carreira de esferas	?
	Circular		Lado de acionamento	Rolamento de contato angular	?
				Rolamento de contato angular	?
Máquinas operatrizes - Carga alta	Circular		Lado de acionamento	Rolamento de contato angular para torque	66

Obs.: 1. Porca para travamento do fuso de esferas incluído no conjunto de mancalização.

2. Codificação do Mancal

3. Acessórios

Os mancais da NSK já contam com todos os acessórios necessários para a montagem com rigidez dos fusos de esferas nas mais diversas aplicações.

Lado	de acionamento	La	do de apoio
Peça	Descrição	Peça	Descrição
1	Carcaça do rolamento	5	Carcaça do rolamento
2	Espaçador	6	Rolamento
3	Porca trava	7	Anel trava
4	Parafuso prisioneiro		

Especificações de mancais para uso geral

Lade	o fixo de mancali	zação		Lac	do de apoio	
Referência	Carga Cap. de carga dinâmica C _a [N]	Limite de carga [N]	Torque máx. de partida [N.cm]	Referência	Ref. do rolamento	Direção de carga axial
WBK06-01A (quadrado) WBK06-11 (circular)	2670	1040	0,49	-	-	-
WBK08-01A (quadrado) WBK08-11 (circular)	4400	1450	0,88	WBK08S-01 (quadrado)	606ZZ	2260
WBK10-01A (quadrado) WBK10-11 (circular)	6600	2730	1,9	WBK10S-01 (quadrado)	608ZZ	3300
WBK12-01A (quadrado) WBK12-11 (circular)	7100	3040	2,1	WBK12S-01 (quadrado)	6000ZZ	4550
WBK15-01A (quadrado) WBK15-11 (circular)	7600	3380	2,3	WBK15S-01 (quadrado)	6002ZZ	5600
WBK17-01A (quadrado)	13400	5800	2,8	WBK17S-01 (quadrado)	6203ZZ	9550
WBK20-01 (quadrado) WBK20-11 (circular)	17900	8240	5,4	WBK20S-01 (quadrado)	6204ZZ	12800
WBK25-01 (quadrado WBK25-11 (circular)	20200	10000	7,2	WBK25S-01 (quadrado)	6205ZZ	14000
WBK04R-11 (quadrado) WBK06R-11 (circular)	615 1280	490 930	0,59 0,59	-	-	1 1

Especificações de mancais limpos

Lade	o fixo de mancali	zação		Lac	do de apoio		
	Carga	axial	Torque			Direção de carga axial	
Referência	Cap. de carga dinâmica C _a [N]	Limite de carga [N]	máx. de partida [N.cm]	Referência	Ref. do rolamento		
WBK08-01C (quadrado) WBK08-11C (circular)	3100	1100	0,52	WBK08S-01C	606VV	2260	
WBK10-01C (quadrado) WBK10-11C (circular)	4250	1364	1,1	WBK10S-01C	608VV	3300	
WBK12-01C (quadrado) WBK12-11C (circular)	4700	2443	1,2	WBK12S-01C	6000VV	4550	
WBK15-01C (quadrado) WBK15-11C (circular)	5100	2757	1,3	WBK15S-01C	6002VV	5600	

Unidades de Mancais (para cargas baixas e equipamentos pequenos)

Lado Fixo - Tipo Quadrado

Número de referência	Torque de aperto da porca trava (ref.) [N.cm]	Torque de aperto do prisioneiro da porca trava [N.cm]
WBK06-**	245	69 (M3)
WBK08-**	490	69 (M3)
WBK10-**	930	147 (M4)
WBK12-**	1370	147 (M4)
WBK15-**	2350	147 (M4)
WBK17-**	3145	147 (M4)
WBK20-**	4700	147 (M4)
WBK25-**	8400	490 (M6)

Unidade em mm

Nº de referência		Mancal fixo (tipo quadrado)									
para uso geral	d	Α	В	С	D	E	F	J			
WBK06-01A	6	42	25	13	20	18	12	20			
WBK08-01A	8	52	32	17	26	25	14	23			
WBK10-01A	10	70	43	25	35	36	17	30			
WBK12-01A	12	70	43	25	35	36	19	30			
WBK15-01A	15	80	50	30	40	41	22	31			
WBK17-01A	17	86	64	39	55	50	24	44			
WBK20-01	20	95	58	30	45	56	30	52			
WBK25-01	25	105	68	35	25	66	36	61			

K	L	N	Р	Q	W	X	Υ	Z	M
5,5	-	3,5	-	-	30	5,5	9,5	11	M6X0,75
7	-	4	•	-	38	6,6	11	12	M8X1
5,5	24	6	-	-	52	9	14	11	M10X1
5,5	24	6	-	-	52	9	14	11	M12X1
12	25	5	-	-	60	11	17	15	M15X1
7	35	7	19	8	68	9	14	11	M17X1
10	42	10	22	10	75	11	17	15	M20X1
13	48	14	30	9	85	11	não aplicável		M25X1,5

Mancal de Apoio (para cargas baixas e equipamentos pequenos)

Mancal de Apoio Lado Livre - Tipo Quadrado

Unidade em mm

Nº de referência		Mancal de Apoio (tipo quadrado)										
para uso geral	d_2	R	Α	В	С							
WBK08S-01	6	15	52	32	17							
WBK10S-01	8	20	70	43	25							
WBK12S-01	10	20	70	43	25							
WBK15S-01	15	20	80	50	30							
WBK17S-01	17	23	86	64	39							
WBK20S-01	20	26	95	58	30							
WBK25S-01	25	30	105	68	35							

D	Е	W	Х	Υ	Z		
26	25	38	6,6	11	12		
35	36	52	9	14	11		
35	36	52	9	14	11		
40	41	60	9	14	11		
55	50	68	9	14	11		
45	56	75	11	17	15		
25	66	85	11	não aplicável			

Mancal de Fixação Lado de Acionamento (para cargas baixas e equipamentos pequenos)

Mancal de Apoio Lado de Acionamento - Tipo Redondo

Número de referência	Torque de aperto da porca trava (ref.) [N.cm]	Torque de aperto do prisioneiro de porca trava [N.cm]
WBK06-**	245	69 (M3)
WBK08-**	490	69 (M3)
WBK10-**	930	147 (M4)
WBK12-**	1370	147 (M4)
WBK15-**	2350	147 (M4)
WBK17-**	3145	147 (M4)
WBK20-**	4700	147 (M4)
WBK25-**	8400	490 (M6)

Unidade em mm

Nº de referência		Mancal de apoio (tipo redondo)											
para uso geral	d ₁	Α	С	D ₁	Е	F	Н	J	K				
WBK06-11	6	28	35	22	20	5,5	13	7	3,5				
WBK08-11	8	35	43	28	23	7	14	9	4				
WBK10-11	10	42	52	34	27	7,5	17	10	5				
WBK12-11	12	44	54	36	27	7,5	17	10	5				
WBK15-11	15	52	63	40	32	12	17	15	6				
WBK20-11	20	68	85	57	52	10	30	22	10				
WBK25-11	25	79	98	53	57	13	30	27	10				

L	N	Р	Q	U	W	Х	Υ	Z	М
9,5	6,5	4,5	2,5	12	28	2,9	5,5	3,5	M6X0,75
10	8	5	4	14	35	3,4	6,5	4	M8X1
12	8,5	6	4	17	42	4,5	8	4	M10X1
12	8,5	6	4	19	44	4,5	8	4	M12X1
11	14	8	7	22	50	5,5	9,5	6	M15X1
20	14	14	8	30	70	6,6	11	10	M20X1
20	20	17	10	36	80	9	15	13	M25X1,5

Unidade: mm

Mancal para Fusos de Esferas (para fusos de capacidade de carga alta)

Para Rolamento com furo $d \le 30$	<u>para rolam</u>	ento com	turo e

Código do mancal		Dimensões do mancal															
	d	D	D ₁	D ₂	L	L ₁	L ₂	Α	W	X	Υ	Z	d1*	l*	V*	P*	Q*
WBK17DF-31	17	70	106	72	60	32	15	80	88	9	14	8,5	45	3	58	M5	10
WBK20DF-31	20	70	106	72	60	32	15	80	88	9	14	8,5	45	3	58	M5	10
WBK25DF-31	25	85	130	90	66	33	18	100	110	11	17,5	11	57	4	70	M6	12
WBK25DFD-31	23	03	130	90	81	48		100	110	'''	17,5	'''	37			IVIO	12
WBK30DF-31	30	85	130	90	66	33	18	100	110	11	175	11	57	4	70	M6	12
WBK30DFD-31	30	03	130	90	81	48	10	100	110		17,5		0,		70	IVIO	12
WBK35DF-31					66	33											
WBK35DFD-31	35	95	142	102	81	48	18	106	121	11	17,5	11	69	4	80	M6	12
WBK35DFF-31					96	48											
WBK40DF-31					66	33											
WBK40DFD-31	40	95	142	102	81	48	18	106	121	11	17,5	11	69	4	80	M6	12
WBK40DFF-31					96	48											

Capacidade de carga dinâmica	Limite de carga axial	Pré-carga	Rigidez axial	Torque de acionamento	trava			Dimensões da espiga				
Ca (kgf)	(kgf)	(kgf)	kgf/µm	kgf.cm	M	D ₃	L ₃	d	M	L ₄	L ₅	
2240	2710	220	75	1,5	M17 x 1,0	37	18	17	M17 x 1,0	81	23	
2240	2710	220	75	1,5	M20 x 1,0	40	18	20	M20 x 1,0	81	23	
2910	4150	320	100	2,5	M25	45	20	25	M25	89	26	
4700	8300	440	150	3,0	x 1,5		20	20	x 1,5	104	20	
2980	4400	340	105	2,5	M30	50	20	30	M30 x 1,5	89	26	
4850	8800	460	155	3,5	x 1,5	30	20	30		104		
3150	5100	390	120	3,0	M35				M35	92		
5150	10200	530	175	4,0	x 1,5	55	22	35	x 1,5	107	30	
5150	10200	780	240	5,5	Α 1,0				х ,,с	122		
3250	5300	400	125	3,0						92		
5250	10600	540	185	4,0	M40 x 1,5	60	22	40	M40 x 1,5	107	30	
5250	10600	800	245	5,5	7 1,5				X 1,5	122		

Porca Trava (simples)

Visando um perfeito funcionamento do conjunto de rolamentos que suportam os fusos de esferas, a NSK desenvolveu dois modelos de porcas travas com precisão especial para fusos de esferas.

Código da porca	M	D	F	В	d	С	Р	Torque de aperto (referência)
WBK06L-01	M6 x 0,75	14,5	12	5	10	2,7	M3 (com pastilha metálica)	25 kgf-cm
WBK08L-01	M8 x 1,0	17	14	6,5	13	4	M3 (com pastilha metálica)	50 kgf-cm
WBK10L-01	M10 x 1,0	20	17	8	16	5	M4 (com pastilha metálica)	95 kgf-cm
WBK12L-01	M12 x 1,0	22	19	8	17	5	M4 (com pastilha metálica)	140 kgf-cm
WBK15L-01	M15 x 1,0	25	22	10	21	6	M4 (com pastilha metálica)	240 kgf-cm
WBK20L-01	M20 x 1,0	35	30	13	26	8	M4 (com pastilha metálica)	480 kgf-cm
WBK25L-01	M25 x 1,5	42	36	16	34	10	M6 (com pastilha metálica)	860 kgf-cm

Retificada (face X rosca)

Código da porca	М	D	В	d ₁	d ₂	d ₃	d ₄	d ₅	С	Р	Torque de aperto (referência)
WBK17L-31	M17 x 1,0	37	18	30	18	27	4,3	4	10	M6	550 kgf-cm
WBK20L-31	M20 x 1,0	40	18	30	21	30	4,3	4	10	M6	750 kgf-cm
WBK25L-31	M25 x 1,5	45	20	40	26	35	4,3	4	11	M6	1350 kgf-cm
WBK30L-31	M30 x 1,5	50	20	40	31	40	4,3	5	11	M6	2000 kgf-cm
WBK35L-31	M35 x 1,5	55	22	50	36	45	4,3	5	12	M6	3000 kgf-cm
WBK40L-31	M40 x 1,5	60	22	50	41	50	4,3	5	12	M6	4000 kgf-cm

Obs: Após apertar a porca, apertar o parafuso trava com torque suficiente para deformar a pastilha metálica.

Guias lineares

No início dos anos 80, os fabricantes de máquinas-ferramentas em todo o mundo começaram a substituir os barramentos convencionais por guias lineares de alta precisão, alta rigidez e suavidade de deslocamento. Neste momento a NSK começou a produzir guias lineares que iam de encontro a estas características. A experiência em movimentação linear e redução de atrito adquirida com a produção de rolamentos e fusos de esferas, logo fizeram da NSK um líder na produção de guias lineares.

O uso do arco gótico pela NSK nas guias lineares permite um grande ângulo de contato com redução de folga, o que fornece uma capacidade de carga elevada com movimento suave, e o mais importante, um perfeito posicionamento das esferas entre o trilho e os patins, o que é impossível de se obter quando se usa o raio simples normalmente utilizado pelos outros fabricantes.

NSK

A NSK oferece uma grande variedade de modelos de guias lineares para cada tipo de aplicação.

Série LH

Auto-alinhante, alta capacidade de carga, ideal para aplicações em automação industrial.

- Patins intercambiáveis.
- Alta capacidade de carga.
- Seis modelos diferentes de patins.
- Disponível com e sem pré-carga.
- Disponível também em aço inoxidável.

Série LS

Auto-alinhante de perfil baixo, alta capacidade de carga, indicado para aplicações em automação industrial com pouca altura disponível.

- Perfil baixo.
- Três classes de precisão.
- Quatro modelos diferentes de patins.
- Auto-alinhante.
- Patins intercambiáveis.
- Disponível com ou sem pré-carga.
- Disponível também em aço inoxidável.

Série LW

Possui trilho largo, possibilitando a utilização de apenas um trilho, devido a sua superior capacidade de suportar movimentos laterais.

- Alta capacidade de suportar movimentos laterais.
- Três classes de pré-carga.
- Patins intercambiáveis.

Série LE

Série miniatura com trilho largo, possibilitando a utilização de apenas um trilho devido a sua superior capacidade de suportar movimentos laterais.

- Três classes de pré-carga.
- Patins intercambiáveis.
- Disponível também em aço inoxidável.

Série LU

Tamanho miniatura, idealizada para redução de tamanho com economia de energia.

- Trilhos com largura nominal de 5 a 15 mm.
- Disponíveis também em aço inoxidável.
- Patins intercambiáveis.

Série RA

Guia de rolos cruzados com alta capacidade da carga, ideais para aplicações que exigem rigidez e suavidade de movimentos.

- Trilhos com largura de 25 a 65 mm.
- Equipados com selo alto lubrificante K1.

Translide

- Alta capacidade de retenção de Partículas.
- Equipados com Selo Alto Lubrificante K1.

1 Capacidade de Carga Estática

1.1 Definição (C₀)

Quando parado ou em baixa velocidade, guias de rolamento são submetidas a excessiva carga ou impacto e, uma deformação permanente pode ocorrer entre os elementos rolantes e a superfície da pista. Esta deformação permanente torna-se um empecilho para um funcionamento suave se ultrapassar um certo limite. Capacidade de carga estática C₀ é a carga à qual esta deformação permanente entre o elemento rolante e a pista no ponto de contato é de 0,0001 vezes o diâmetro do elemento rolante.

Geralmente, este (C₀) é usado como uma permissão máxima de carga estática sobre o patim. Para alguns tipos de serviço, o valor obtido pela divisão do C₀ pelo coeficiente de carga estática permissível (f_s) é usado como limite. Este fator é mostrado na tabela abaixo:

Serviço	F _s mínimo
Vibração ou impacto	1,5 ~ 3,0
Uso normal	1,0 ~ 2,0

2 Capacidade de Carga Dinâmica

2.1 Definição (C)

As pistas de rolamento e os elementos rolantes estão sujeitos a cargas repetitivas e uma escamação por fadiga provavelmente ocorrerá com o decorrer do tempo. Esta é a vida que pode ser estimada e utilizada como base durante a fase de projeto.

A vida em relação à fadiga do material é a distância total de operação que 90% de um grupo de guias lineares idênticas, sob as mesmas condições de carga, atinge antes de falhar por escamação. Quando as condições de operação são constantes, a vida por fadiga pode ser pelo tempo de operação.

O valor de C está especificado nas tabelas de dimensões (como a NSK utiliza aço desgaseificado a vácuo, este valor torna-se 1,1 a 1,3 vezes maior).

2.2 Cálculo da vida

Existe uma relação entre a capacidade de carga dinâmica (C), a carga de trabalho (F) e a vida (L) em quilômetros, quando as guias lineares são utilizadas corretamente, com curso contínuo e adequadamente lubrificadas.

Guias de esferas

Guias de rolos

$$L = 50 \text{ x} \left(\frac{C}{F} \right)^3$$

$$L = 50 \text{ x} \left(\frac{C}{F}\right)^3$$

$$L = 50 \text{ x} \left(\frac{C}{F}\right)^{\frac{10}{3}}$$

É também conveniente expressar a vida pelo tempo, quando usada em condições constantes, esta pode ser calculada através da equação abaixo:

$$L_h = \frac{50 \times 10^3}{60 \times l \times n} \left(\frac{C}{F}\right)^3 \qquad \text{ou} \qquad L_h = \frac{50 \times 10^3}{60 \times V} \left(\frac{C}{F}\right)^3$$

onde:

L_h = Vida em horas

n = Ciclos (cpm)

l = Curso (m)

V = Velocidade (m/min)

2.3 Fator de carga

As cargas sobre os patins, as quais são determinadas através dos cálculos, tornam-se maiores devido a efeitos mecânicos como vibração ou impacto. Dessa forma, a carga sobre o patim deve considerar este fator.

$$F = f_w.F_c$$

onde:

F = Carga sobre o patim

f_w = Fator de carga

F_c = Carga teórica

Serviço	f _W mínimo
Operação suave sem impacto	1,0 ~ 1,2
Uso normal	1,2 ~ 1,5
Vibração ou impacto	1,5 ~ 3,0

NSK

3 Carga Flutuante

3.1 Cargas e distâncias percorridas devem ser divididas em passos

Distância 1 sob carga 1 Distância 2 sob carga 2

Distância n sob carga n

A carga média F_m é calculada abaixo:

$$F_{m} = \sqrt[3]{\frac{1}{L}} \left(F_{1}^{3} L_{1} + F_{2}^{3} L_{2} + \dots + F_{n}^{3} L_{n} \right)$$

onde

F_m= Carga média flutuante (kgf)

L = Distância total do rolamento $(\sum l_n)$ (m)

3.2 Flutuação linear de carga

$$F_{m} \cong \frac{1}{3} \left(F_{min} + 2F_{máx} \right)$$

onde:

F_{mín} = Carga flutuante mínima

F_{máx} = Carga flutuante máxima

3.3 Flutuação senoidal da carga

$$F_m \cong 0.65 F_{máx}$$

 $F_m \cong 0.75 F_{máx}$

4 Cálculo da Vida para Cargas Combinadas em Duas Direções

Quando existir cargas laterais S e radiais R, a vida deve ser calculada como é mostrado a seguir, considerando-se as duas direções de carga:

4.1 Para séries de igual capacidade de carga (LU e LE)

Se
$$R \geqslant S$$

$$L = 50 \left\{ \frac{C}{f_w (R + 0.5S)} \right\}^3$$

Se
$$R < S$$

$$L = 50 \left\{ \frac{C}{f_w \left(S + 0.5R \right)} \right\}^3$$

4.2 Para séries de alta capacidade de carga vertical (LH, LS e LW)

Se
$$R \geqslant S$$

$$L = 50 \left\{ \frac{C - 0.06 \frac{S}{R} C}{f_w (R + 0.5S)} \right\}^3$$

$$L = 50 \left\{ \begin{array}{c} 0.88 \text{ C} + 0.06 \frac{\text{S}}{\text{R}} \text{ C} \\ \hline f_w \text{ (S} + 0.5\text{R)} \end{array} \right\}$$

5 Cálculo da Vida do Sistema

Quando muitas guias lineares formam um conjunto, a vida do sistema é determinada pelo conjunto que está em pior situação.

Nesta figura, a vida do patim II mais próximo a carga W é usado para determinar a vida de todo o sistema.

6 Abrangência da Matéria-Prima em Relação à Vida

A utilização de aço desgaseificado a vácuo estende a vida de 1,5 a 3 vezes em relação à vida calculada.

7 Correção da Carga em Função da Dureza

Para assegurar a utilização total da performance das guias lineares, os elementos rolantes e as pistas de rolamento devem possuir uma dureza da ordem de $58 \sim 62 H_B C$. Quando não for atingida a dureza apropriada devido às características do material (aço inoxidável), deve ser utilizado o fator de correção para a capacidade de carga.

$$C_H = f_H.C$$

 $C_{0H} = f_{0H}.C_0$

onde:

C_H = Capacidade de carga dinâmica corrigida em função da dureza

f_H = Fator de correção devido a dureza

 C_{0H} = Capacidade de carga estática corrigida em função da dureza

 $f_{\rm OH}$ = Fator de correção estática devido a dureza

Fator de correção da dureza

No caso do usuário preparar as superfícies da pista, este deve assegurar que haja dureza suficiente para as pistas.

8 Cálculo da Carga Incorporada à Máquina

A seguir, demonstramos algumas formas de calcular a carga incorporada.

Quando estas cargas forem associadas, a carga em cada patim pode ser acrescida ou reduzida (devendo ser observadas as considerações pertinentes).

Na figura abaixo consideramos o peso do corpo em movimento (W), as cargas externas (F) e a reação de apoio (Pi).

Lay-out de montagem	Carga em cada Patim e deslocamento do ponto A
$ \begin{array}{c c} & Z \\ F & W & \delta z \end{array} $	$P_1 = \frac{W+F}{4} + \frac{W \cdot y_0 + F y_1}{2l_2} + \frac{W x_0 + F x_1}{2l_1}$
VA V	$P_2 = \frac{W+F}{4} + \frac{W \cdot y_0 + F y_1}{2l_2} - \frac{W x_0 + F x_1}{2l_1}$
P ₁ P ₃ P ₂ P ₄	$P_3 = \frac{W+F}{4} - \frac{W \cdot y_0 + F y_1}{2l_2} + \frac{W x_0 + F x_1}{2l_1}$
$ \begin{array}{c c} x_1 \\ \hline A \end{array} \qquad \delta y $	$P_4 = \frac{W+F}{4} - \frac{W \cdot y_0 + F y_1}{2l_2} - \frac{W x_0 + F x_1}{2l_1}$
X P_1 W P_2 X P_3 P_4	
δx - " " " 1	
A F δz	$P_1 = \frac{W}{4} + \frac{Wx_0 + Fz_1}{2l_1} + \frac{Wy_0}{2l_2}$
N V	$P_2 = \frac{W}{4} - \frac{Wx_0 + Fz_1}{2l_1} + \frac{Wy_0}{2l_2}$
P ₁ P ₃ P ₂ P ₄	$P_3 = \frac{W}{4} + \frac{Wx_0 + Fz_1}{2l_1} - \frac{Wy_0}{2l_2}$
x_1 y δy	$P_4 = \frac{W}{4} - \frac{Wx_0 + Fz_1}{2l_1} - \frac{Wy_0}{2l_2}$
x ₀	$P_{1S} = P_{3S} = \frac{Fy_1}{2l_1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{2S} = P_{4S} = -\frac{Fy_1}{2l_1}$
P_{3} P_{4} P_{4} P_{4}	
②	

Lay-out de montagem	Carga em cada Patim e deslocamento do ponto A
δz	$P_1 = \frac{W}{4} + \frac{Wx_0}{2l_1} + \frac{Wy_0 + Fz_1}{2l_2}$
P ₃ P ₄ P ₁ P ₂	$P_2 = \frac{W}{4} - \frac{Wx_0}{2l_1} + \frac{Wy_0 + Fz_1}{2l_2}$
χ ₁	$P_3 = \frac{W}{4} + \frac{Wx_0}{2l_1} - \frac{Wy_0 + Fz_1}{2l_2}$
P_{1}	$P_4 = \frac{W}{4} - \frac{Wx_0}{2l_1} - \frac{Wy_0 + Fz_1}{2l_2}$
X	$P_{1S} = P_{3S} = \frac{F}{4} + \frac{Fx_1}{2l_1}$
Vista A	$P_{2S} = P_{4S} = \frac{F}{4} - \frac{Fx_1}{2l_1}$
③ δx	Cala manlayera Za
Aceleração →	Sob aceleração
P ₁ P ₃ W P ₂ P ₄	$P_1 = P_3 = \frac{1}{4} W + \frac{l_3}{2l_1} \cdot \frac{V}{gt_1} W$
	$P_2 = P_4 = \frac{1}{4} W - \frac{l_3}{2l_1} \cdot \frac{V}{gt_1} W$
P_1 P_2 P_3 P_4	g: Aceleração da gravidade V: Velocidade
90	l ₃ : Distância entre fuso de esferas e a força F
	Sob velocidade constante
(4) Tempo	$P_1 = P_2 = P_3 = P_4 = \frac{W}{4}$
$\delta x \leftarrow \int \delta z$	$P_1 = \frac{W}{2} - \frac{(l_2 - l_1)F}{l_1}$
P ₁ W P ₂	$P_2 = \frac{W}{2} + \frac{Fl_2}{l_1}$
$\begin{array}{c c} \hline p_1 & W & \overline{p_2} & \overline{f} \\ \hline & l_1 & \\ \hline & l_2 & \\ \hline \end{array}$	
<u> </u>	

Lay-out de montagem	Carga em cada patim e deslocamento do ponto A
ðx / δy	$P_1 = P_2 = \frac{FY_1 - WY_0}{2l_2}$
P ₁₅	$P_3 = P_4 = -\frac{FY_1 - WY_0}{2l_2}$
P ₁ P ₂ P ₂	$P_{1S} = P_{2S} = P_{3S} = P_{4S} = \frac{W - F}{4}$
P ₃ P ₄ P ₄	
6	
δx δy	$P_1 = P_3 = \frac{FY_1 - WY_0}{2l_1}$
A P _{1s}	$P_2 = P_4 = -\frac{FY_1 - WY_0}{2l_1}$
P ₂₅ P ₂₅ P ₃₅	$P_{1S} = P_{3S} = \frac{FX_1 - WX_0}{2l_1}$
P _i P _{is}	$P_{2S} = P_{4S} = \frac{FX_1 - WX_0}{2l_1}$
⑦	

9 Exemplos de Cálculos

9.1 A figura abaixo mostra um dispositivo de mandrilamento de trabalho contínuo com uma força F provocada pela ação de furar

Calcular a vida para a condição de serviço abaixo:

$$P_1 = \frac{400}{4} + \frac{(-200) \times 200}{2 \times 300} + \frac{400 \times 50}{2 \times 250} \approx 73 \text{ kgf}$$

$$P_{1S} = \frac{(-200) \times 50}{2 \times 300} \cong -17 \text{ kgf}$$

Carga equivalente = $73 + 0.5 \times 17 = 82 \text{ kgf}$

$$P_2 \cong 207 \text{ kgf}$$

$$P_{2S} \cong 17 \text{ kgf}$$

Carga equivalente = $207 + 0.5 \times 17 = 216 \text{ kgf}$

$$P_3 \cong -7 \text{ kgf}$$

$$P_{3S} \cong -17 \text{ kgf}$$

Carga equivalente = $17 + 0.5 \times 7 = 21 \text{ kgf}$

$$P_4 \cong 127 \text{ kgf}$$

$$P_{4S} \cong 17 \text{ kgf}$$

Carga equivalente = $127 + 0.5 \times 17 = 136 \text{ kgf}$

A vida em relação à fadiga do material será
$$L = 50 \text{ x} \left(\frac{1740}{1.2 \text{ x } 216}\right)^3 \cong 15.130 \text{ km}$$

9.2 Na figura a seguir, o exemplo de cálculo com dois eixos combinados comumente usados em robôs e máquinas-ferramentas

A força F atua como na figura abaixo

Como podemos visualizar, é possível separar esta combinação, casos 6 e 7.

$$P_{1a} = \frac{F_{m} Y_{1a} - WY_{0a}}{2 l_{2a}} = \frac{25 \times 240 - 400 \times 200}{2 \times 300} = -123 \text{ kgf}$$

 $P_{2a} = -123 \text{ kgf}$

 $P_{3a} = 123 \text{ kgf}$

 $P_{4a} = 123 \text{ kgf}$

$$\frac{\text{W - F}_{\text{m}}}{4}$$
 $\frac{400 - 25}{4}$

 $P_{2sa} = 94 \text{ kgf}$

 $P_{3sa} = 94 \text{ kgf}$

 $P_{4sa} = 94 \text{ kgf}$

Vida para guia linear da mesa (L)

$$L = 50 \text{ x} \left(\frac{2570}{1,2 \text{ x } 170} \right)^3 \cong 99.970 \text{ km}$$

$$P_{1b} = \frac{F_{m} Y_{1b} - WY_{0b}}{2 l_{2b}} = \frac{25 \times 260 - 400 \times 320}{2 \times 350} = -170 \text{ kgf}$$

$$P_{1sb} = \frac{F_m X_{1b} - WX_{0b}}{2 l_{2b}} = \frac{25 \times 280 - 400 \times 280}{2 \times 350} = -150 \text{ kgf}$$

Carga equivalente = 245 kgf

$$P_{2b} = 173 \text{ kgf}$$
 $P_{2sb} = 151 \text{ kgf}$

$$P_{3b} = -173 \text{ kgf}$$
 $P_{3sb} = -151 \text{ kgf}$

$$P_{4b} = 173 \text{ kgf}$$
 $P_{4sb} = 151 \text{ kgf}$

$$L = 50 \text{ x} \left(\frac{2570}{1,2 \text{ x } 248} \right)^3 \cong 32.007 \text{ km}$$

10 Codificação das Guias Lineares

11 Tipo de Trilho

LH	Série de alta capacidade de carga (standard)
LS	Série de perfil baixo, auto-alinhante e intercambiável (standard)
LU	Série miniatura de alta precisão
LY	Série de alta rigidez (sob encomenda)
LW	Série de extrema largura
LE	Série estrutural miniatura

12 Seção do Trilho

13 Código de Montagem

14 Classe de Precisão

Classe	Erro máximo de paralelismo							
Classe	500 mm							
PN	19 µm	23 µm						
P6	12 µm	16 µm						
P5	6 μm	9 μm						
P4	3 µm	5 μm						
P3	2 μm	2,5 µm						

unidade µm

Classe de precisão		PN	P	6 F	P5	P4	P3
Altura da montagem H	dois trilhos	+80	+40) +	20	+10	+10
Variação da altura H	quatro patins	25	15	5	7	5	3
Largura de montagem W2	trilho principal	+100	+50) +	25	+15	+15
Variação da montagem W2	dois patins	30	20)	10	7	3

15 Classe de Pré-Carga

Z1	Extraleve ≅ 0,01 C
Z2	Leve ≅ 0,025 C
Z3	Média ≅ 0,05 C
Z4	Pesada ≅ 0,07 C

Guias Lineares Série LAH - Intercambiável

LAH-AN: Alta Capacidade de Carga LAH-BN: Extra Capacidade de Carga

INTERCAMBIÁVEL

Para valores de pré-carga diferentes do padrão, os prazos de entrega poderão ser mais longos, consulte a NSK ou seu distribuidor.

	Dimensões do trilho				oupuoidado do ourga						-				
	L	ımen	soes ao triind	•		Dinâmica	Estática	Torque estát. máx. kgf.m			Patim	Trilho	Modelo		
W_1	H ₁	F	d x D x h	G	L ₀ máx.	C (kgf)	Co (kgf)	M _{RO}	M _{PO}	M _{YO}	kgf	kgf/m			
						1775	3316	22	18	15	0,33		LAH20AN		
20	18	60	60	6 x 9,5 x 8,5	20	3960	2397	5153	34	42	36	0,48	2,6	LAH20BN	
						2612	4600	36	32	27	0,55		LAH25AN		
23	22	60	7 x 11 x 9	20	3960	2520	7244	56	73	62	0,82	3,6	LAH25BN		
								3163	5255	50	36	29	0,77		LAH30AN
28	26	80	9 x 14 x 12	20	4000	4693	9336	88	105	88	1,30	5,2	LAH30BN		
					20 4000	4846	8214	96	75	64	1,50		LAH35AN		
34	29	80	9 X14 x 12	20		4000	6275	11930	140	156	130	2,10	7,2	LAH35BN	
						8265	14285	216	177	148	3,00		LAH45AN		
45	38	105	14 x 20 x 17	22,5	3990	10102	19081	291	306	257	3,90	12,3	LAH45BN		
						12142	20204	367	306	256	4,70		LAH55AN		
53	44	120	16 x 23 x 20	30	3960	14897	26938	494	525	443	6,10	16,9	LAH55BN		
						18469	28673	629	505	423	7,70		LAH65AN		
63	53	150	18 x 26 x 22	35	3900	23979	41836	913	1030	862	10,8	24,3	LAH65BN		

Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Capacidade de carga

Guias Lineares Série LAH - Intercambiável

LAH-EM Z: Capacidade de Carga Alta

LAH-GM Z: Capacidade de Carga Extra (patim longo)

INTERCAMBIÁVEL

Para valores de pré-carga diferentes do padrão, os prazos de entrega poderão ser mais longos, consulte a NSK ou seu distribuidor.

Dimensões do trilho				Capacidade de carga					Pe	SO			
Differsoes do triffo						Dinâm.	Estát.	Torque (Torque estát. máx. kgf.m			Trilho	Modelo
W ₁	H ₁	F	d x D x h	G	L ₀ máx.	C (kgf)	Co (kgf)	M _{RO}	M _{PO}	M _{YO}	kgf	kgf/m	
						1775	3316	22	18	16	0,45		LAH20EMZ
20	18	60	6 x 9,5 x 8,5	20	3960	2397	5153	34	42	35	0,65	2,6	LAH20GMZ
						2612	4693	36	32	27	0,63	3,6	LAH25EMZ
23	22	60	7 x 11 x 9	20	3960	3520	7244	56	73	62	0,93		LAH25GMZ
					0 4000	3622	6428	60	50	43	1,20	5,2	LAH30EMZ
28	26	80	9 x 14 x 12	20		4693	9336	88	105	88	1,60		LAH30GMZ
						4846	8214	96	77	64	1,70		LAH35EMZ
34	29	80	9 X14 x 12	20	4000	6275	11938	140	156	130	2,40	7,2	LAH35GMZ
						8265	14285	216	170	148	3,00		LAH45EMZ
45	38	105	14 x 20 x 17	22,5	3990	10100	19000	291	306	257	3,90	12,3	LAH45GMZ
	44	100	10 00 00		2000	12140	20204	367	306	256	5,00	100	LAH55EMZ
53	44	120	16 x 23 x 20	30	3960	14800	26000	494	525	443	6,50	16,9	LAH55GMZ
60	53	150	10 × 06 × 00	35	2000	18460	28673	629	495	423	10,0		LAH65EMZ
63	53	150	18 x 26 x 22	35	3900	23979	41836	913	1030	862	14,1	24,3	LAH65GMZ

Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Guias Lineares Série LAS LAS-AL: Capacidade de Carga Alta

INTERCAMBIÁVEL

Para valores de pré-carga diferentes do padrão, os prazos de entrega poderão ser mais longos, consulte a NSK ou seu distribuidor.

* LIS 15 1600 - Z (M3 - (3,5 X 6 X 4,5) LIS 15 1600 TZ (M4 - (4,5 X 7 X 5,3)

Dimensões do trilho						Capaci	idade de	Pe	so				
					Dinâm.	Estát.	Torque estát. máx. kgf.m			Patim	Trilho	Modelo	
W ₁	H ₁	F	d x D x h	G	L ₀ máx.	C (kgf)	Co (kgf)	M _{RO}	M _{PO}	M _{YO}	kgf	kgf/m	
15	12,5	60	4,5 x 7 x 5,3	20	2000 (1700)	852	1724	8	7	6	0,20	1,4	LAS15AL
20	15,5	60	6 x 9,5 x 8,5	20	3960 (3500)	1193	2397	16	13	11	0,28	2,3	LAS20AL
23	18	60	7 x 11 x 9	20	3960 (3500)	1918	3724	29	26	22	0,51	3,1	LAS25AL
28	23	80	7 x 11 x 9	20	4000 (3500)	2938	5612	53	44	37	0,85	4,8	LAS30AL
34	27,5	80	9 x 14 x 12	20	4000 (3500)	4081	7602	88	70	59	1,25	7,0	LAS35AL

Obs.: 1 - Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

^{2 - (}L0 máx.) para AÇO INOXIDÁVEL.

Guias Lineares Série LAS LAS-CL: Capacidade de Carga Média

INTERCAMBIÁVEL

Para valores de pré-carga diferentes do padrão, os prazos de entrega poderão ser mais longos, consulte a NSK ou seu distribuidor.

Modelo	Dim.	de mont	agem			Dime	ensõe	s do	patim			Graxe	eira	
	Н	Е	W ₂	W	BxJ	L	L ₁	J ₁	K	Т	MxPxI	Bujão	T ₁	N
LAS15CL	24	4,6	9,5	34	26	40,4	23,6	11,8	19,4	10	M4 x 0,7 x 6	ø 3 (Furo passante)	6	3
LAS20CL	28	6	11	42	32	47,2	30	15	22	12	M5 x 0,8 x 7	M6 x 0,75	5,5	11
LAS25CL	33	7	12,5	48	35	59,4	38	19	26	12	M6 x 1,0 x 9	M6 x 0,75	7	11
LAS30CL	42	9	16	60	40	67,4	42	21	33	13	M8 x 1,25 x 12	M6 x 0,75	8	11
LAS35CL	48	10,5	18	70	50	77	49	24,5	37,5	14	M8 x 1,25 x 12	M6 x 0,75	8,5	11

	D:	~ .					Capaci	idade de	e carga		Pe	so	
	Dime	ensoe	es do trilho			Dinâm.	Estát.	Torque (estát. má	x. kgf.m	Patim	Trilho	Modelo
W ₁	H ₁	F	d x D x h	G	L ₀ máx.	C (kgf)	Co (kgf)	M _{RO}	M _{PO}	M _{YO}	kgf	kgf/m	
15	12,5	60	3,5 x 6 x 4,5	20	2000 (1700)	551	928	4	2	2	0,14	1,4	LS15CL
20	15,5	60	6 x 9,5 x 8,5	20	3960 (3500)	806	1367	9	4	4	0,19	2,3	LS20CL
23	18	60	7 x 11 x 9	20	3960 (3500)	1295	2122	16	9	7	0,34	3,1	LS25CL
28	23	80	7 x 11 x 9	20	4000 (3500)	1908	3020	28	14	11	0,58	4,8	LS30CL
34	27,5	80	9 x 14 x 12	20	4000 (3500)	2653	4081	47	22	18	0,86	7,0	LS35CL

Obs.: 1 - Produto importado. Consulte a NSK para informações sobre estoque disponív-

^{2 - (}L0 máx.) para AÇO INOXIDÁVEL.

Guias Lineares Série LAS LAS-FL: Capacidade de Carga Alta

INTERCAMBIÁVEL

LAS25EMZ 33

LAS30EMZ

LAS35EMZ

7 | 25 | 73

42 9

31

48 10,5 33 100

90

Para valores de pré-carga diferentes do padrão, os prazos de entrega poderão ser mais longos, consulte a NSK ou seu distribuidor.

60 12,5 26

15 37,5

72 x 40 | 96,4 | 71 | 15,5 | 33

108 80

7 x 10

9 x 12

11

12

M6 x 0,75

M6 x 0,75

7 | 11

8 11

M6 x 0,75 8,5 11

60 x 35 81,4

82 x 50

		ъ.	~				Capac	idade de	e carga		Pe	so	
		DIN	nensões do	triinc		Dinâm.	Estát.	Torque (estát. má	x. kgf.m	Patim	Trilho	Modelo
W ₁	H ₁	F	d x D x h	G	L ₀ máx.	C (kgf)	Co (kgf)	M _{RO}	M _{PO}	M _{YO}	kgf	kgf/m	
15	12,5	60	3,5 x 6 x 4,5	20	2000 (1700)	852	1724	8	7	6	0,26	1,4	LS15FL
20	15,5	60	6 x 9,5 x 8,5	20	3960 (3500)	1193	2397	16	13	11	0,35	2,3	LS20FL
23	18	60	7 x 11 x 9	20	3960 (3500)	1198	3724	29	26	22	0,66	3,1	LS25FL
28	23	80	7 x 11 x 9	20	4000 (3500)	2938	5612	53	44	37	1,20	4,8	LS30FL
34	27,5	80	9 x 14 x 12	20	4000 (3500)	4081	7602	88	70	59	1,70	7,0	LS35FL

Obs.: 1 - Produto importado. Consulte a NSK para informações sobre estoque disponível

^{2 - (}L0 máx.) para AÇO INOXIDÁVEL.

Guias Lineares Série LAU

LAU-AR: Miniatura LAU-TR: Miniatura

Modelo	Dim.	de mon	tagem			D	imensões do pa	tim				Dim	. do tr	ilho
	Н	Е	W ₂	W	L	BxJ	MxPxI	B ₁	L ₁	J ₁	K	W ₁	H ₁	F
LAU09 AR LAU09 TR	10	2,2	5,5	20	30	15 x ¹³ 10	M2 x 0,4 x 2,5 M3 x 0,5 x 3	2,5	20	3,5 5	7,8	9	5,5	20
LAU12 AR LAU12 TR	13	3	7,5	27	35,2	20 x 15	M2,5 x 0,45 x 3 M3 x 0,5 x 3,5	3,5	21,8	3,4	10	12	7,5	25
LAU15 AR-K (aço inox)	16	4	8,5	32	43,6	25 x 20	M3 x 0,5 x 4	3,5	27	3,5	12	15	9,5	40

B !	~			Capaci	dade d	e carga		Pe	so	
Dimen	soes o	o trilho	Dinâm.	Estát.	Torque	estát. máx	. (kgf.m)	Patim	Trilho	Modelo
d x D x h	G	L ₀ máx.	C (kgf)	Co (kgf)	M _{RO}	M _{PO}	M _{YO}	(gf)	(gf/100 mm)	
2,6 x 4,5 x 3 3,5 x 6 x 4,5	7,5	(600)***	179	226	1	0,7	0,7	17	35	LAU09 AR LAU09 TR (1)
3 x 5,5 x 3,5 3,5 x 6 x 4,5	10	(800)***	288	357	2,2	1,2	1,2	38	65	LAU12 AR LAU12 TR
3,5 x 6 x 4,5	15	2000 (1000)***	566	673	5	2,6	2,6	70	105	LAU15 AR

Obs.: 1 - Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil

^{***} Dimensão do trilho Aço Inox

Guias Lineares Série LAE

LAE-AR: Miniatura LAE-TR: Miniatura

	Dim	da					Din	nensõe	s do pati	m		
Modelo	Dim.	ue mon	tagem	w	В		MxPxI	0				К
	Н	Е	W ₂	VV	В	J	WXPXI	B ₁		L ₁	J ₁	N.
LAE09 ARS LAE09 ARS	12	4	6	30	21	12	M2,6 x 0,45 x 3 (M3 x 0,5 x 3)	4,5	39	27,6	7,8	8
LAE12ARS	14	4	8	40	28	15	M3 x 0,5 x 4	6	44	31	8	10
LAE15 ARS	16	4	9	60	45	20	M4 x 0,7 x 4,5	7,5	55	38,4	9,2	12

				Dim	ensõe	es do trilho			С	apacio	dade o	de car	ga	Pe	eso	
			_	_		d D b			Dinâm.	Estát.	Torque	estát. máx	c. (kgf.m)	Patim	Trilho	Modelo
V	V ₁	H ₁	F	B ₂	B ₃	d x D x h	G	L ₀ max	C (kgf)	C0 (kgf)	M _{RO}	M _{PO}	M _{YO}	(gf)	(gf/100 mm)	
																LE09 AL
1	8	7,5	30	-	9	3,5 x 6 x 4,5	10	800	250	380	3,3	1,7	1,7	40	95	LE09 TL
2	24	8,5	40	-	12	4,5 x 8 x 4,5	15	1000	360	540	6,0	2,4	2,4	75	140	LE12 AL
	2	9,5	40	23	9,5	4,5 x 8 x 4,5	15	1200	630	890	17,7	4,9	4,9	150	275	LE15 AL

Obs.: 1 - Produto importado. Consulte a NSK para informações sobre estoque disponível no Brasil.

Guias Lineares Série LAW LAW-EL: Trilho largo

	Mo	onta	gem					Pati	m									
Modelo							Din	nensões de fur	ação							Grax	eira	
Modelo																		
	Н	Е	W ₂	W	L	В	J	MxPxI	l ₂	Q	B ₁	L ₁	J ₁	K	Т	Dim. de furo	T ₁	N
LAW17	17	2,5	13,5	60	51,4	53	26	M4X0,7X6	3,2	3,3	3,5	35	4,5	14,5	6	ø3	4	3
LAW21	21	3	15,5	68	58,8	60	29	M5X0,8X8	3,7	4,4	4	41	6	18	8	M6X0,75	4,5	11
LAW27	27	4	19	80	74	70	40	M6X1X10	6	5,3	55	56	8	23	10	M6X0,75	6	11
LAW35	35	4	25,5	120	108	107	60	M8X1,25X14	9	6,8	6,5	84	12	31	14	M6X0,75	8	11
LAW50	50	4,5	36	162	104,6	144	80	M10X1,5X18	14	8,6	9	108	14	45,5	18	Rc1/8	14	14

				Trilho				(Capacid	ade de	e carga	1	Diâm.	Ma	ssa
				Furo de			Comp.	Dinâm.	Estát.	Mome	ento es	tático		Patim	Trilho
				montagem			máximo	С	Co	M _{RO}	M _{PO}	M _{YO}	esferas		
W_1	H ₁	B ₂	F	d x D x h	B ₃	G	L _{0max}	(k	gf)		(kgf.m))	D _W	(kg)	(kg/m)
33	8,7	18	40	4,5x7,5x5,3	7,5	15	1000	5600	11300	135	44	37	2381	0,2	2,1
37	10,5	22	50	4,5x7,5x5,3	7,5	15	1600	6450	13900	185	66	55	2381	0,3	2,9
42	15	24	60	4,5x7,5x5,3	9	20	2000	12800	26900	400	171	143	3175	0,5	4,7
69	19	40	80	7x11x9	14,5	20	2400	33000	66500	1690	645	545	4762	1,5	9,6
90	24	60	80	9x14x12	15	20	3000	61500	11700	3900	1530	1280	6350	4,0	15,8

NSK

Novo Modelo de Guia Linear Translide

Codificação

	Monta	agem					Dimens	ões do	patim						
						Furo	rosqueado			Gra	xeira				
Modelo	H ^{±0,1}	Е	W	L	В	J	MxPxI	l ₂	K	Tam. do parafuso	T ₁	N	W ₁	H₁	F
TAS20AN	30	3	44	87	32	36	M5X0,8X8	50	27	M6X0,75	6,5	(14)	20	15	120
TAS25AN	40	4	48	100	35	35	M6X1X9	58	36	M6X0,75	9,5	(14)	23	20	120
TAS30AN	45	6,5	60	115	40	40	M8X1,25X10	70	38,5	M6X0,75	9,5	(14)	28	25	160
TAS35AN	55	8	70	135,8	50	50	M8X1,25X12	81,8	47	M6x0,75	12	(14)	34	30	160

		Dimensões o	lo trilho			Capa	cidade de	carga		Diam. da esfera	Mas	ssa
Tipo	I	Tipo II	G		Dinâmico	Estático	Torque e	stát. máx	. (kgf.m)		Patim	Trilho
			recomen-	máximo						D _W		
d x D	x h	M ₂ x P x I ₂	dado	L _{0max*}	С	C ₀	M _{RO}	M _{PO}	M _{YO}		(kg)	(kg/m)
6X9,5X	⟨8,5	M5X0,8X8	20	2920	15700	19100	196	137	137	4762	0,37	2,1
7X11	X9	M6X1X9	20	4000	21800	26000	320	217	217	5556	0,47	3,4
9X14X	(12	M8X1,25X12	20	4040**	31000	37500	565	395	395	6350	0,77	5,3
9X14X	(12	M8X1,25X12	20	4040**	46500	53000	970	635	635	7937	1,3	7,7

Aplicação

Adequado para equipamentos de movimentação linear: linhas de produção automotiva, máquinas de marcenaria, portas automáticas, etc.

Precauções no Uso do Translide™

Por favor, siga as precauções abaixo para sua segurança:

- Temperatura ambiente: máxima de 50°C (80°C, instantânea), Velocidade máxima: 150 m/min
- Precisão de montagem permitida: Paralelismo de ajuste: 100 μm, Variação de altura de dois ajustes: 500 μm/500 mm.
- Não utilize apenas um trilho.
- Nunca utilize em ambientes onde estiverem presentes solventes desengraxantes.
- Especifique o tratamento de superfície para o Translide quando for exposto à água ou óleo reaproveitado.
- Evite qualquer impacto nas tampas das extremidades do patim, pois as mesmas são feitas de plástico.
- As esferas cairão se o patim for removido do trilho. Consulte a NSK se você precisar remover o patim da esfera do trilho.

Resultado do Teste de Durabilidade

Deterioração na superfície áspera não é observada nas pistas das esferas de um trilho depois de percorrer a distância da vida estimada

Comparação da superfície áspera antes e depois do teste.

NSK

Guias Lineares de Rolos Série RA

Codificação

Tipo Quadrado RA-AN Alta Capacidade de Carga RA-BN Extra Capacidade de Carga

	Dim.	de mor	ntagem					Dimen	sões	do patin	n					
Modelo														Grax	eira	
	Н	Ε	W ₂	W	L	В	J	MxPxI	B ₁	L ₁	J ₁	K	Т	Bujão	T ₁	N
RA35AN RA35BN	55	6,5	18	70	123,8 152	50	50 72	M8X1,25X12	10	83,2 111,4	16,6 19,7	48,5	15	M6X0,75	15	11
RA45AN RA45BN	70	8	20,5	86	154 190	60	60 80	M10X1,5X17	13	105,4 141,4	22,7 30,7	62	17	Rc1/8	20	14
RA55AN RA55BN	80	9	23,5	100	184 234	75	75 95	M12X1,75X18	12,5	128 178	26,5 41,5	71	18	Rc1/8	21	14

	Dimensões do trilho								Capacidade de carga					
					G Comprim Dinâmico Estático Torque estático máximo (N.m)				Patim	Trilho				
W_1	H ₁	F	d x D x h	B ₃	(recomendado)	L _{0max}	C (N)	C _O (N)	M _{RO}	M _{PO}	M _{YO}	(kg)	(kg/m)	
34	31	40	9X14X12	17	20	3000	53300 67400	129000 175000	2810 3810	1800 3250	1800 3250	1,6 2,1	6,8	
45	38	52,5	14X20X17	22,5	22,5	3000	92800 116000	229000 305000	6180 8240	4080 7150	4080 7150	3,0 4,1	10,9	
53	43,5	60	16X23X20	26,5	30	3000	129000 168000	330000 462000	10200 14300	7060 13600	7060 13600	4,9 6,7	14,6	

Tipo Flange RA-EM Capacidade de Carga Alta RA-GM Capacidade de Carga Extra

	ntagem		Dimensões do patim													
Modelo	н	Е	W ₂	W	٦	В	J	J ₂	M x P x L ₁ (L ₂)	Q x L ₁ (L ₂)	B ₁	L ₁	J ₁	J_3	K	Т
RA35EM RA35GM	48	6,5	33	100	123,8 152	82	62	52	M10 x 1,5 x 13 (7)	8,6x13 (7)	9	83,2 11,4	10,6 24,7	15,6 29,7	41,5	12
RA45EM RA45GM	60	8	37,5	120 190	154	100	80	60	M12 x 1,75 x 15 (10,5)	10,5 x 15 (10,5)	10	105,4 141,4	12,7 30,7	22,7 40,7	52	13
RA55EM RA55GM	70	9	43,5	140	184 234	116	95	70	M14 x 2 x 18 (13)	12,5 x 18 (13)	12	128 178	16,5 41,5	29 54	61	15

							Dimens	Capacidade de carga					Peso				
_	Graxeira							G		Comprim. máximo	Dinâm.	Estát.	Torque estát. máx. (N.m)		x. (N.m)	Patim	Trilho
	Bujão	T ₁	N	W ₁	H ₁	F	d x D x h	B ₃	(recomendado)	L _{OMax}	C (N)	C _O (N)	M _{RO}	M _{PO}	M _{YO}	(kg)	(kg/m)
М	16 x 0,75	8	11	34	31	40	9 x 14 x 12	17	20	3000	53300 67400	129000 175000	2810 3810	1800 3250	1800 3250	1,7 2,3	6,8
	R _C 1/8	10	14	45	38	52,5	14 x 20 x 17	22,5	22,5	3000	92800 116000	229000 305000	6180 8240	4080 7150	4080 7150	3,2 4,3	10,9
	R _C 1/8	11	14	53	43,5	60	16 x 23 x 20	26,5	30	3000	129000 168000	330000 462000	10200 14300	7060 13600	7060 13600	5,4 7,5	14,6

NSK

Lubrificantes

Bomba de Graxa

Modelo NSK HGP

 Massa
 .393 g

 Comprimento
 .200 mm

 Largura
 .200 mm

 Diâmetro
 .Ø 38,1

Bomba de graxa

Bicos aplicadores

① Bomba de Graxa

2 Bico aplicador tipo reto

Graxa	Espessante	Óleo básico	Viscosidade do óleo base (mm²/s) 40°C		
AV2	Lítio	Mineral	130	-10 ~ 110	Geral
LR3	Lítio	Sintético	30	-30 ~ 130	Fusos de esferas com alta velocidade e carga média
PS2	Lítio	Mineral + sintético	15	-50 ~ 110	Baixa temperatura com regime ininterrupto

Disponível em tubos de 80g.

Bico Aplicador

Modelo	Desenho	Aplicação
NSK HGPNZ1	R1/8	LS 20~35 LH 20~85 LY 25~65 LW 21~50
NSK HGPNZ2	R1/8	LS 20~35 LH 20~85 LY 25~65 LW 21~50
NSK HGPNZ3	30 11 M6×1.0 0 0 155	LS 15 LY 15 e 20 LW 17
NSK HGPNZ4	\$1.5 C C 1.36	LU 05~15 LE 05~15
NSK HGPNZ5	14HEX. 14HEX. R1/8	LS 20~35 LH 20~85 LY 25~65 LW 21~50
NSK HGPNZ6	Rp1/8 14HEX. R1/8	Extensão flexível
NSK HGPNZ7	Rp1/8 12HEX. R1/8	Extensão rígida

Sistema de Lubrificação K1_® NSK

A grande capacidade de lubrificação do sistema K1 e seu tamanho compacto fornecem um gigantesco aumento na performance das guias lineares, gerando alta durabilidade com ausência de manutenções periódicas. As unidades K1 unem um sistema de lubrificação eficiente enquanto protegem o meio ambiente.

O que a NSK quer dizer quando fala em alta durabilidade com ausência de manutenções periódicas?

Um fuso de esferas ou uma guia linear equipados com um sistema K1 não necessitam manutenção de relubrificação por 5 anos ou 10.000 km em média.

O que é uma unidade K1_® NSK?

A unidade K1® NSK é fabricada a partir de uma resina porosa impregnada com óleo lubrificante, formando uma unidade integral pré-moldada.

Um puro óleo lubrificante é depositado cuidadosamente sobre o trilho ou haste quando o sistema K1 é movimentado sobre as superfícies de rolamento.

A poliolefina é um material utilizado em embalagens alimentares em substituição ao vinil, pois este pode gerar dioxinas tóxicas.

Óleo lubrificante

Este é produzido a partir de um óleo mineral com uma viscosidade de 100 cSt.

1. Características

1.1 Longa durabilidade, livre de manutenções periódicas

Ideal para linhas de produção de automóveis e autopeças.

1.2 Prevenção contra a poluição do ambiente pelo óleo lubrificante

Ideal para dispositivos médicos, indústria alimentícia, cristais líquidos e semicondutores.

1.3 Efetivo em ambientes onde o lubrificante é contaminado ou removido por água

Ideal para mecanismos industriais que trabalham em contato direto com água, máquinas para construção civil e indústria alimentícia.

1.4 Eficiência mantida em ambientes contaminados por poeira

Ideal para ambientes onde o lubrificante é absorvido ou contaminado durante o processo, como em máquinas para madeira.

2. Desempenho

Confira as vantagens do sistema de lubrificação K1® NSK, nos resultados dos testes de campo.

2.1 Teste de durabilidade em alta velocidade sem lubrificante

Os resultados do teste de durabilidade em alta velocidade sem lubrificante são

mostrados na figura. Enquanto a guia linear sem lubrificante não consegue operar mesmo que por curtos períodos sem se danificar, a simples instalação do sistema K1_® NSK faz com que a mesma quia seja capaz de operar por mais de 25.000 km sem nenhum problema.

2.2 Teste de durabilidade com contaminação por cavacos de madeira (serragem)

A utilização de cavacos de madeira (serragem) geram uma condição de teste de durabilidade extremamente severa, tendo em vista a capacidade da serragem absorver o lubrificante depositado sobre as pistas de rolamento, além de contaminá-lo profundamente. Mesmo assim ,as guias lineares equipadas com o sistema K1® NSK obtiveram o dobro da durabilidade das equipadas com vedações comuns, mesmo quando instaladas vedações duplas.

2.3 Teste de durabilidade com contaminação por água

O teste de contaminação por água consiste em submergir o sistema completamente por 24 horas, uma vez por semana e operá-lo por no mínimo 2700 km. Enquanto a guia linear sem o sistema K1 se desgastou rapidamente e estava em estado de falha eminente, as guias equipadas com o sistema K1 apresentavam apenas 1/3 do desgaste por abrasão (veja tabela 1).

Tabela 1 - Condições de desgaste por abrasão das esferas e pistas após percorrido 2.700 km

Condição de lubrificação	Pista de rolamento do patim	Pista de rolamento	Esferas do trilho
Com K1	16 ~ 18 µm	2 ~ 3 μm	6 ~ 8 μm
Sem K1	30 ~ 45 μm	9 ~11 μm	17 ~ 25 μm

Vantagens

- Eliminação do sistema de lubrificação (bomba de óleo, tubulações e conectores).
- Aumento do período de relubrificação.
- Facilidade de manutenção.
- Eliminação de vazamentos, separação do óleo.
- Eliminação da contaminação do fluido de corte pelo óleo lubrificante e vice-versa.
- Atende as especificações da FDA (agência americana de controle de alimentos e medicamentos).

Vedação

Vedação Dupla

Modelo de guia linear	Vedação dupla	Incremento de espessura (V) (mm)
LH20	LH20WS-01	2,5
LH25	LH25WS-01	2,8
LH30	LH30WS-01	3,6
LH35	LH35WS-01	3,6
LH45	LH45WS-01	4,3
LH55	LH55WS-01	4,3
LH65	LH65WS-01	4,9

Raspador metálico

Modelo de guia linear	Vedação dupla	Incremento de espessura (V) (mm)
LH20	LH20PT-01	2,9
LH25	LH25PT-01	3,2
LH30	LH30PT-01	4,2
LH35	LH35PT-01	4,2
LH45	LH45PT-01	4,9
LH55	LH55PT-01	4,9
LH65	LH65PT-01	5,5

Tampas para trilhos

Tampas para trilhos

	Modelo de guia linear	Dimensão do parafuso	Código da tampa
l	LH20	M5	L45800005-003
	LH25	M6	L45800006-003
	LH30	M8	L45800008-003
	LH35	IVIO	L45800008-003
ı	LH45	M12	L45800012-003
ı	LH55	M14	L45800014-003
ı	LH65	M16	L45800016-003
	LS15	M3	L45800003-003

Rolamento Linear

Os rolamentos lineares NSK são os sistemas de movimento lineares mais populares, sendo largamente aplicados em sistemas lineares com cargas leves, de fácil manuseio e baixo custo.

Características

- O reduzido nível de resistência ao atrito dos rolamentos lineares NSK apresentam as seguintes vantagens:
 - 1.1 Redução da resistência ao deslocamento axial.
 - 1.2 Movimento suave em função do baixo coeficiente de atrito.
 - 1.3 Redução do fenômeno de "stick-slip".
 - 1.4 Baixo consumo de energia.
 - 1.5 Precisão de movimento duradoura devido ao baixo desgaste.
 - 1.6 Grande confiabilidade.

2. Lubrificação simplificada

Devido às características de rolamento, uma quantidade mínima de lubrificante se faz necessária.

- 2.1 Fácil lubrificação.
- 2.2 Freqüência de lubrificação reduzida.
- 2.3 Os mecanismos se mantém limpos devido à baixa quantidade de óleo requerida.

- 3.1 Grande gama de velocidades.
- 3.2 Construção simplificada.
- 4. Projeto simples e de fácil manutenção
- 5. Custos de projeto e manutenção reduzidos

Madala				_		_	0	Nº de	Peso	Capac.	de carga
Modelo	d	D	В	Bn	m	D _n	Carreiras	carreiras	(gf)	C (kgf)	C _o (kgf)
LB8NY	8	15	24	15	1,15	14,3	1,5	4	14	12	23
LB10NY	10	19	29	19	1,35	18	2,381	4	25	21	36
LB12NY	12	21	30	20	1,35	20	2,381	4	28	27	51
LB16NY	16	28	37	23	1,65	26,6	3,175	4	63	45	65
LB20NY	20	32	42	27	1,65	30,3	3,175	5	88	62	103
LB50NY	50	80	100	68	2.7	76.5	6.35	6	1770	420	725

Monocarrier

Módulo de automação compacto incorporando guia linear e fuso de esferas em uma única peça.

- Repetibilidade de ± 0,01 mm.
- Velocidade de 500 mm/s.
- Cargas horizontais de até 60 kgf.
- Baixo custo.

Construção

Características

Precisão

Curso (cm)	Repetibilidade (mm)	Precisão de montagem (H) (mm)	Folga máx. (mm)
5			
10			
15		± 0,014	
20			
25	± 0,010		. 0.000
30	7 20,010	. 0.016	± 0,020
40		± 0,016	
50		. 0.020	
60		± 0,020	
80		± 0,023	

Codificação do Monocarrier

Opcionais

MCM05

Curso	Passo		Dime	ensão	(mm)	Nº de furos	GD ²	Peso
(mm)	(mm)	Monocarrier nº	L ₁	L ₂	L ₃	n	(kgf.cm ²)	(kgf)
50	10	MCM05005H10-000A	232	180	150	4	0,14	1,4
100	10	MCM05010H10-000A	282	230	200	5	0,16	1,6
150	10	MCM05015H10-000A	332	280	250	6	0,18	1,8
200	10	MCM05020H10-000A	382	330	300	7	0,20	2,0
250	10	MCM05025H10-000A	432	380	350	8	0,22	2,2
000	10	MCM05030H10-000A	400	400	400		0,25	0.0
300	20	MCM05030H20-000A	482	430	400	9	0,37	2,3
400	10	MCM05040H10-000A	500	500	500	44	0,29	0.7
400	20	MCM05040H20-000A	582	530	500	11	0,41	2,7
500	10	MCM05050H10-000A	000	000	000	40	0,34	0.4
500	20	MCM05050H20-000A	682	630	600	13	0,46	3,1
000	10	MCM05060H10-000A	700 700 700				0,39	0.5
600	20	MCM05060H20-000A	782	730	700	15	0,50	3,5

Especificações do fuso de esferas									
Diâmetro (mn	Diâmetro (mm)								
Passo (mm)		10	20						
Nº de voltas		1,5 x 1	1,5 x 1						
Capacidade	Dinâmica Ca	230	230						
de carga (kgf)	Estática Coa	385	385						
Folga axial (n	0,020								

Espe	Especificações da guia linear								
Capac. de	Dinâmica C _a	74	40						
carga (kgf)	Estática Coa	11	10						
Pré-carga (kg	gf)	7							
Carga de		M _{RO}	23						
momento		M _{PO}	9						
máximo (kgf.	m)	M _{YO}	9						

Obs.: 1) A graxa é inserida na porca e na guia linear. 2) Curso máximo = normal + (22,5 X 2) mm

120

2- Orifício de lubrificação

MCM08

4-M4×0.7 61.5
8 mm de 38
profundidade \ B

8 2 4
44 \$\displaystyle{\phi}\$ \displaystyle{\phi}\$ \disp
54
78
80

Curso	Passo		Dime	Dimensão (mm)		Nº de furos	GD ²	Peso	
(mm)	(mm)	Monocarrier nº	L ₁	L ₂	L ₃	n	(kgf.cm ²)	(kgf)	
100	10	MCM08010H10-000A	335	270	200	3	0,47	4,6	
200	10	MCM08020H10-000A	435	370	300	4	0,58	5,5	
000	10	MCM08030H10-000A		470	400	_	0,69	0.5	
300	20	MCM08030H20-000A	535	35 470	400	5	1,07	6,5	
400	10	MCM08040H10-000A	635		500		0,79	7.4	
400	20	MCM08040H20-000A		570	500	6	1,18	7,4	
500	10	MCM08050H10-000A					_	0,90	
500	20	MCM08050H20-000A	735	670	600	7	1,28	8,4	
	10	MCM08060H10-000A					1,01	9,3	
600	20	MCM08060H20-000A	835	770	700	8	1,39		
	10	MCM08070H10-000A					1,10		
700	20	MCM08070H20-000A	935	870	800	9	1,50	10,5	
	10	MCM08080H10-000A		.=.			1,22		
800	20	MCM08080H20-000A	1035	970	900	10	1,60	11,2	

Especifi	cações do fus	so de esfe	eras		
Diâmetro (mn	15				
Passo (mm)		10	20		
Nº de voltas		2,5 x 1	1,5 x 1		
Capacidade	Dinâmica Ca	720	465		
de carga (kgf)	Estática Coa	1300	790		
Folga axial (n	Folga axial (mm)				

Especificações da guia linear								
Capac. de	Dinâmica C	1460						
carga (kgf)	Estática Co	23	320					
Pré-carga (kg	gf)	15						
Carga de		M _{RO}	74					
momento		M _{PO}	28					
máximo (kgf.	m)	M _{YO}	28					

Curso	Passo	Monocarrier nº	Dime	Dimensão (mm)		Nº de furos	GD ²	Peso	
(mm)	(mm)	Monocarrier n=	L ₁	L ₂	L ₃	n	(kgf.cm ²)	(kgf)	
200	10	MCM10020H10-000A	462	380	300	4	1,73	9,5	
000	10	MCM10030H10-000A	500	400	400	_	2,09	44.0	
300	20	MCM10030H20-000A	562	480	400	5	2,68	11,2	
400	10	MCM10040H10-000A	000	500			2,45	100	
400	20	MCM10040H20-000A	662	580	500	6	3,04	12,9	
500	10	MCM10050H10-000A	700			_	2,81	44.0	
500	20	MCM10050H20-000A	762	680	600	7	3,40	14,6	
000	10	MCM10060H10-000A	962	200 700	780 700		3,17	16,3	
600	20	MCM10060H20-000A	862	2 780		8	3,76		
700	10	MCM10070H10-000A	000	000		0	3,53	10.0	
700	20	MCM10070H20-000A	962	880	800	9	4,12	18,0	
000	10	MCM10080H10-000A	1000	000	000	40	3,89	40.7	
800	20	MCM10080H20-000A	1062	980	900	10	4,48	19,7	
000	10	MCM10090H10-000A	1100	1000	1000	44	4,25		
900	20	MCM10090H20-000A	1162	1080	1000	11	4,83	21,4	
1000	10	*MCM10100H10-000A	1000	1100	1000	44	4,61	00.4	
1000	20	*MCM10100H20-000A	1262	1180	1000	11	5,20	23,1	

MCM10

Especificações do fuso de esferas								
Diâmetro (mn	n)	2	0					
Passo (mm)		10	20					
Nº de voltas		2,5 x 1 1,5 x						
Capacidade	Dinâmica Ca	1110	720					
de carga (kgf)	Estática Coa	2210	1290					
Folga axial (n	nm)	0,0	20					

Especificações da guia linear								
Capac. de	Dinâmica C	20	000					
carga (kgf)	Estática Co	30	000					
Pré-carga (kg	gf)	20						
Carga de		M _{RO}	119					
momento		M_{PO}	43					
estático (kgf.	estático (kgf.m)							

Obs.: 1) A graxa é inserida na porca e na guia linear. 2) Curso máximo = normal + (22,5 X 2) mm.

3) A dimensão G para os modelos com (*) é de 90 mm.

Outros Produtos de Precisão

Cabeçotes, Fusos e Contrapontos

- Fusos de precisão para retíficas.
- Cartuchos para centros de usinagem.
- Cabeçotes para mandriladoras.
- Contrapontos rotativos.

Série SA - Cabeçote para Retífica de Interno

Cód. do cabeçote	Rotação máx. (rpm)	Precisão de giro*	Α	В	С	D	Е	F
SA500	40000	3µm ^{ou menos}	50	180	40	21	7	7,938
SA600	30000	3µm	60	220	48	28	8	11,113
SA700	20000	3µm	70	250	69	42	9	17,463
SA800	16000	5µm	80	280	73	56	9	20,638
SA800	13500	5µm	90	320	84	63	9	23,813

^{*}Precisão de giro na extremidade do eixo do equipamento

Série SC - Cabeçote para Retífica de Externo e Superfícies

Cód. do cabeçote	Rotação máx. (rpm)	-	Α	В	С	D	E	F	G	Н	К
SC5500	6400	3µm ^{ou menos}	50	180	47	56	65 ~ 90	9,5 ~13	15,5	41	22,23
SC6500	5000	3µm	60	220	63	70	75 ~ 115	13 ~19	17	51	31,75
SC7500	3800	3µm	70	250	73	90	100 ~ 150	16 ~ 25	24	70	38,1
SC8500	3200	5µm	80	280	83	110	125 ~180	19 ~ 32	24	80	63,5

	Cód. do cabeçote	Rotação máx. (rpm)	•	Α	В	С	D	E	F	G	Н	К
	SC5501	5700	3µm ^{ou menos}	50	180	47	60	65 ~ 100	9,5 ~13	15,5	41	22,23
Ī	SC6501	4600	3µm	60	220	48	80	75 ~ 125	13 ~19	17	51	31,75
	SC7501	3200	3µm	70	250	69	110	150 ~ 180	16 ~ 19	24	70	76,2
	SC8501	2800	5µm	80	280	73	130	150 ~205	19 ~ 25	24	80	76,2

^{*}Precisão de giro na extremidade do eixo do equipamento

Série SF - Cabeçote para Retífica de Externo e Surperfícies

Anotações

Cód. do cabeçote	Rotação máx. (rpm)	•	Α	В	C	D	E	F	G	Н	K
SF5500	7500	3µm ^{ou menos}	50	180	47	48	~ 100	38	13	32	25,4
SF6500	6400	3µm	60	220	48	56	~ 125	45	15	35	31,75
SF7500	5700	3µm	70	250	64	63	~ 180	50	15	39	38,1
SF8500	5000	5µm	80	280	64	70	~205	50	15	39	38,1

^{*}Precisão de giro na extremidade do eixo do equipamento

Velocidade dos modelos SC e SF

Quando a velocidade do motor atingir 3000 rpm e a correia de acionamento do motor for de diâmetro 120mm e a dimensão máxima de rebolo utilizado deve ser a cota (E), isto significará que a velocidade de operação será de 1800 mm/min. Caso haja alguma operação que seja diferente desta máxima a ser aplicada, por favor consulte a NSK Brasil antes de executá-la.