Project Proposal: NeuraCareAl

Project Objective

NeuraCareAl is a unified Al health assistant that combines **custom-trained deep learning models** and **LLM-powered reasoning** to:

- Detect **brain tumors** from MRI scans using trained models.
- Offer emotion-based mental health support via webcam.
- Analyze medical reports and images to provide next-step guidance.
- Generate personalized treatment plans using user data.
- Predict **health risks** and suggest preventive actions.
- Enable **telehealth** interaction via an intelligent chatbot.

This project supports the NeuraViaHacks pillars:

- **Detect** → Brain tumor detection, risk prediction
- Connect → Chatbot, emotion detection, telehealth
- Personalize → Treatment plans, mental health nudges, user profiling

Features Overview

#	Feature	Tech Stack	Purpose
1	Brain Tumor Detection	Custom Trained CNN (PyTorch/TensorFlow)	Early detection of brain tumors from MRI
2	Medical Report Analyzer	LangChain + Ollama	Interpret MRI/X-ray findings and suggest next actions
3	Health Assistant Chatbot	LangChain + Ollama	Talk with users, answer medical queries
4	Health Risk Prediction	LLM + prompt logic	Predict user risks (stroke, diabetes, etc.)
5	Personalized Treatment Plan	LangChain + LLM	Al-generated wellness plan per user profile
6	Emotion Detection via Webcam	DeepFace + LLM	Detect emotion → Recommend self- care or talk to bot

#	Feature	Tech Stack	Purpose
7	Streamlit Interface	Streamlit	Clean UI for user interaction
8	Workflow Orchestration	LangGraph	Multi-step task chaining
9	Backend API	FastAPI	Interface between frontend, models, and DB
10	Database	SQL (PostgreSQL/SQLite)	Store all user data, scans, interactions

Technologies Used

Category	Tools
AI/ML	PyTorch/TensorFlow (Tumor Detection), DeepFace (Emotion)
LLMs	Ollama (Mistral/LLaMA3), LangChain
Workflow	LangGraph
Backend	FastAPI
Frontend	Streamlit
OCR	Tesseract (for report parsing)
Database	PostgreSQL or SQLite
Containerization	Docker (optional for deployment)

Feature Details

1. Brain Tumor Detection

- Custom-trained model (CNN on BRATS2020 or similar dataset)
- Input: MRI scan (DICOM/PNG/JPG)
- Output:

```
{
  "tumor_detected": true,
  "tumor_type": "Glioblastoma",
```

```
"confidence": "94.2%"
```

• Tech: PyTorch/TensorFlow, FastAPI, Streamlit

2. Medical Report Analyzer

- Input: MRI summary, lab reports (text or OCR)
- Process: Extracts diagnosis, uses LLM for advice
- Output:

```
"diagnosis": "Left frontal meningioma",
   "recommendation": "Consult neurosurgeon. Avoid strenuous activity."
}
```

• Tech: LangChain + Ollama (LLM), Tesseract OCR

3. Health Assistant Chatbot

- LLM-based assistant trained on health prompts
- Memory-based, context-aware chat
- Tools: symptom lookup, health Q&A

4. Health Risk Prediction

- Input: Age, gender, lifestyle, history
- LLM Prompt: Predict risk of major diseases
- Output:

```
{
  "stroke": "High Risk",
  "diabetes": "Moderate Risk"
}
```

5. Personalized Treatment Plan

- LLM-generated plan using:
 - Age, gender, BMI
 - Diagnoses
 - Mental/emotional health
- Output:

```
{
  "Day 1": "Start Medication X, 30-minute walk",
  "Day 2": "MRI checkup, 2L hydration"
}
```

6. Emotion Detection via Webcam

- Real-time facial emotion recognition
- Output:

```
"emotion": "sad",
"confidence": 91.4%,
"suggestion": "You seem down. Take a break, go for a walk or journate
```

• Tools: OpenCV + DeepFace + LangChain

7. LangGraph Workflow Example

```
graph TD
A[User Uploads MRI] --> B[Grok Model Predicts Tumor]
B --> C[Diagnosis + Confidence]
C --> D[LLM Suggests Next Steps]
D --> E[Treatment Plan Generated]
E --> F[Chatbot Follows Up with Support]
```

File Structure

```
neura-care-ai/
 — backend/
   — main.py ← FastAPI entry
     — routes/
      - scan.py
      - report.py
      - emotion.py
      - chat.py
     - services/
      - tumor model.py
       - emotion detector.py
      - llm tools.py
      - report parser.py
      treatment planner.py
   └ db/
       - models.py
       — database.py
  - workflows/
   — pipeline.py ← LangGraph orchestration

    trained model.pth ← Trained CNN

  - frontend/
   — app.py ← Streamlit app
   - components/
       - uploader.py
       - chatbot ui.py
       - emotion webcam.py
       - report input.py
 requirements.txt
 Dockerfile
 - README.md
```

Database Tables

```
users(id, name, age, email, gender, history)
scans(id, user_id, image_path, result, tumor_type, confidence)
reports(id, user id, content, extracted diagnosis, recommendation)
```

```
treatments(id, user_id, plan_json, created_at)
interactions(id, user_id, query, response)
emotions(id, user id, emotion, confidence, timestamp)
```

Deployment Strategy

- Dockerized App for easy local/cloud deployment
- Optional GPU instance (AWS/GCP) for model inference
- Ollama model hosted locally or via LangChain agent
- Frontend served via **Streamlit Sharing**, or internal server

Security & Privacy

- JWT authentication
- Role-based access (Patient, Doctor, Admin)
- HIPAA-style handling of PHI
- Local inference ensures data doesn't leave system

Project Timeline

Week	Goal
1	FastAPI setup, user login, Streamlit UI
2	Train and integrate brain tumor model
3	Add LLM chatbot + LangChain memory
4	Report analysis & treatment planning
5	Emotion detection & recommendation
6	Full integration, testing, polish, deploy

Summary

NeuraCareAl is an innovative health-tech platform that:

• **Detects** critical health issues like brain tumors.

- Connects patients to support via chatbot & emotional Al.
- **Personalizes** care using language models and patient data.

It uses **real Al** — not just APIs — by training its own tumor detection model and combining it with the power of **LLMs**, **LangGraph**, **and LangChain**