Régression multiple

Introduction

- Étudier la liaison entre une "variable à expliquer" quantitative Y et une suite de "variables explicatives" quantitatives $X_1 \dots X_p$
- Une variable quantitative Y est modélisée par plusieurs variables quantitatives X_i (j = 1, ..., p)

Modèle

 Les données sont supposées provenir de l'observation d'un échantillon statistique de taille n (n > p + 1) de R^(p+1):

$$-(x_{1i}, \ldots, x_{ji}, \ldots, x_{pi}, y_i) i = 1, ..., n.$$

$$- Y = b_0 + b_1 X_1 + ... + b_p X_p + \varepsilon$$

$$- y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_p x_{pi} + \varepsilon_i$$

- b_j = coefficients de régression fixes, sont supposés constants (mais inconnus)
- ε = sont des termes d'erreur, non observés, indépendants et identiquement distribués, ils sont aléatoires N (0, σ^2). :
 - de moyenne 0
 - d'écart type σ

Vocabulaire

- Y
 - Variable à expliquer
 - Variable dépendante
 - Variable endogène
- X₁ X₂ ... X_p
 - Variables explicatives
 - Variables indépendantes
 - Variables exogènes

Représentation matricielle des

$$\mathbf{X} = \begin{pmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1p} \\ \vdots & & \vdots & & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & & \vdots & & \vdots \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{np} \end{pmatrix}$$

- x_{ij} représente la valeur prise par la variable explicative j sur l'unité statistique i.
- Le vecteur $y = (y_1 ... y_i ... y_n)'$ représente les valeurs prises par la variable dépendante sur les n unités statistiques.

Représentation matricielle des données

 Dans la plupart des applications, on supposera également que la première variable est la constante,

$$\mathbf{X} = \begin{pmatrix} 1 & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{pmatrix}$$

Régression multiple: exemples

Expliquer IIIIII	en fonction de
Prix d'un appartement	Superficie standing quartier sécurité proximité de commerce
Prix d'une voiture	cylindrée taille vitesse maximum origine niveau de finition
Prévoir des ventes	Dudget de recherche l'investissements l'investis

Estimation des paramètres du modèle: le modèle

- L'écriture du modèle linéaire conduit à supposer que l'espérance de Y appartient au sous-espace de Rⁿ engendré par {1, X₁, ..., X_p} où 1 désigne le vecteur de Rⁿ constitué de "1".
- Nous considérons donc que y_i est la réalisation d'une variable aléatoire Y_i définie par :

$$-Y_{i} = b_{0} + b_{1}X_{i1} + ... + b_{p} X_{ip} + \varepsilon_{i}$$

Estimation des paramètres: b_0 b_1 ... b_p

• Nous recherchons les estimations : $\hat{b_0}\hat{b_1}...\hat{b_p}$ des paramètres b_0 b_1 ... b_p permettant de reconstituer au mieux les données y_i à partir des observations des p variables X_1 ... X_p pour l'individu i

Éléments de solution

- La résolution du problème passe par la résolution d'un système de (p + 1) équations à inconnues
- Elle peut se présenter sous forme matricielle en utilisant les notations matricielles ci-dessous:

$$\mathbf{Y}' = \begin{bmatrix} \mathbf{Y}_{1} \\ \vdots \\ \mathbf{Y}_{i} \\ \vdots \\ \mathbf{Y}_{n} \end{bmatrix} \qquad \begin{pmatrix} \mathbf{X} \\ (\mathbf{n}, p+1) \\ \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{X}_{11} & \dots & \mathbf{X}_{1p} \\ \vdots & \vdots & & \\ 1 & \mathbf{X}_{i1} & \dots & \mathbf{X}_{ip} \\ \vdots & \vdots & & \\ 1 & \mathbf{X}_{n1} & \dots & \mathbf{X}_{np} \end{bmatrix}$$

$$\mathbf{b'} = \begin{bmatrix} b_1 \\ \vdots \\ b_i \\ \vdots \\ b_p \end{bmatrix} \qquad \qquad \mathbf{\epsilon'} = \begin{bmatrix} \mathbf{\epsilon}_1 \\ \vdots \\ \mathbf{\epsilon}_i \\ \vdots \\ \mathbf{\epsilon} \end{bmatrix}$$

Principe des moindres carrés

 La régression de y en X consiste à chercher un vecteur de coefficients de régression :

$$b = (b_1, ..., b_i, ..., b_p)$$

 qui permet d'ajuster au mieux les y_i par les x_{ij} au sens où la somme des carrées des résidus est minimisée. La régression s'écrit :

$$y_i = b_1 + b_2 x_{i2} + \dots + b_j x_{ij} + \dots + b_p x_{ip} + e_i$$
$$= \sum_{j=1}^p b_j x_{ij} + e_i, i = 1, \dots, n.$$

 Cette équation peut s'écrire de manière matricilelle : y = Xb + e.

Principe des moindres carrés

 La somme des carrés des résidus est le critère à minimiser

$$Q(b_1, \dots, b_p) = \sum_{i=1}^n e_i^2$$

$$= \sum_{i=1}^n \left[y_i - (b_1 + b_2 x_{i2} + \dots + b_j x_{ij} + \dots + b_p x_{ip}) \right]^2$$

$$= \sum_{i=1}^n \left(y_i - \sum_{j=1}^p b_j x_{ij} \right)^2.$$

Principe des moindres carrés

 Il est cependant plus facile d'utiliser une écriture matricielle. Comme on peut écrire

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\mathbf{b} = \begin{pmatrix} y_1 - \sum_{j=1}^p b_j x_{1j} \\ \vdots \\ y_i - \sum_{j=1}^p b_j x_{ij} \\ \vdots \\ y_n - \sum_{j=1}^p b_j x_{nj} \end{pmatrix}$$

Moindres carrés : solution

• la régression de y en X au sens des moindres carrés consiste à chercher l'ajustement qui minimise en b : $O(b) = \sum_{n=0}^{n} e^{2}$

minimise en b:
$$Q(b_1, \dots, b_p) = Q(\mathbf{b}) = \sum_{i=1}^n e_i^2$$

= $\mathbf{e}' \mathbf{e} = (\mathbf{y} - \mathbf{X} \mathbf{b})' (\mathbf{y} - \mathbf{X} \mathbf{b})$
= $||\mathbf{y} - \mathbf{X} \mathbf{b}||^2$.

• Remarquons que Q(b) peut egalement s'écrire

$$Q(\mathbf{b}) = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}\mathbf{b} - \mathbf{b}'\mathbf{X}'\mathbf{y} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b}$$
$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{X}\mathbf{b} + \mathbf{b}'\mathbf{X}'\mathbf{X}\mathbf{b},$$

car y 'Xb = b 'X'y

Moindres carrés : solution

 Le vecteur de coefficient de régression au sens des moindres carrés est donné par

$$b = (X'X)^{-1} X'y$$

• sous réserve que la matrice X'X soit inversible.

Démonstration

 Calculons le vecteur des dérivées partielles Q(b) par rapport à b,

$$\frac{\partial Q(b)}{\partial b} = \frac{\partial y'y}{\partial b} - \frac{\partial 2y'Xb}{\partial b} + \frac{\partial b'X'Xb}{\partial b}$$
$$= 0 - 2X'y + 2X'Xb = 2X'Xb - 2X'y$$

 En annulant le vecteur des dérivées partielles, on obtient un système de p équations à p inconnues

$$\frac{\partial Q(b)}{\partial b} = 2X'Xb - 2X'y = 0$$

Démonstration

- ce qui donne : $\mathbf{X}'\mathbf{X}\mathbf{b} = \mathbf{X}'\mathbf{y}$.
- En faisant l'hypothèse que X'X est inversible, on peut déterminer b :

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{y}.$$

• Pour montrer que l'on a bien obtenu un minimum, on calcule la matrice hessienne des dérivées secondes $\partial^2 Q(\mathbf{b})$

 $\mathbf{H} = \frac{\partial^2 Q(\mathbf{b})}{\partial \mathbf{b} \partial \mathbf{b}'} = 2\mathbf{X}'\mathbf{X}.$

 Cette matrice est définie positive, on a donc bien un minimum.

Valeurs ajustées et résidus

 Le vecteur des valeurs ajustées est le vecteur des prédictions ou estimations de y au moyen de X et de b, c'est-à-dire

$$\mathbf{y}^* = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

 Le vecteur des valeurs ajustées peut être interprété comme la projection de y sur le sous-espace engendré par les colonnes de la matrice X.

Valeurs ajustées et résidus

 Le vecteur des résidus est la différence entre y et y*.

$$\mathbf{e} = \mathbf{y} - \mathbf{y}^* = \mathbf{y} - \mathbf{X}\mathbf{b}$$
$$= \mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$= (\mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y}.$$

Valeurs ajustées et résidus

Propriété

- $-y = y^* + e$,
- y* est une combinaison linéaire des colonnes de X,
- y* et e sont orthogonaux,
- e est orthogonal avec toutes les colonnes de X,
 c'est-à-dire e'X = 0.

Géométrie

• La régression est la projection \hat{Y} de Y sur l'espace vectoriel Vect $\{1, X_1, \ldots, X_p\}$; de plus $R^2 = \cos 2 \ (\theta)$.

Variance de régression et variance résiduelle

- Soit le vecteur de Rⁿ contenant n fois la moyenne de la variable y : $\bar{\mathbf{y}} = (\bar{y}, \dots, \bar{y})'$.
- La variance peut être définie simplement par :

$$s_y^2 = \frac{1}{n} (\mathbf{y} - \bar{\mathbf{y}})' (\mathbf{y} - \bar{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$$

• La variance de régression est la variance des valeurs ajustées :

$$s_Y^2 = \frac{1}{n} (\mathbf{y}^* - \bar{\mathbf{y}})' (\mathbf{y}^* - \bar{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^n (y_i^* - \bar{y})^2.$$

• La variance résiduelle est la variance des résidus :

$$s_e^2 = \frac{1}{n} \mathbf{e}' \mathbf{e} = \frac{1}{n} (\mathbf{y} - \mathbf{y}^*)' (\mathbf{y} - \mathbf{y}^*) = \frac{1}{n} \sum_{i=1}^n (y_i - y_i^*)^2 = \frac{1}{n} \sum_{i=1}^n e_i^2.$$

Coefficient de détermination

Le coefficient de détermination vaut

$$R^2 = \frac{s_Y^2}{s_y^2} = 1 - \frac{s_e^2}{s_y^2}$$

- Il est important de noter que le R² ne peut être calculé que si la régression inclut une constante. Si ce n'est pas le cas, le R² peut prendre des valeurs négatives.
- La racine carrée du coefficient de détermination est appelée le coefficient de corrélation multiple entre la variable à expliquer Y et les variables explicatives X₁, ... X_p.

Propriétés

$$R^2 = \frac{S. C. expliquée}{S. C. totale}$$

= 1 -
$$\frac{S. C. résiduelle}{S. C. totale}$$

$$0 \le R^2 \le 1$$

R² proche de 1 signifie :

Y est "bien expliquée" par les variables X₁ ... X_k

La précision des résultats

- On montre que cette précision est liée à celle de s_{γ}^{2} .
- Plus s_Y² est faible, plus les coefficients ont des chances d'être estimés précisément.
- A chaque estimation d'un coefficient, est associé un écart-type estimé à partir des données traitées (en général noté erreur-type).
- On peut comparer ces erreurs-types aux coefficients estimés.

EXEMPLES

Exemple 1: cigarette

constante	TAR (mg)	IICOTINE (mg	WEIGHT (g)	CO (mg)
1	14.1	0.86	0.9853	13.6
1	16	1.06	1.0938	16.6
1	8	0.67	0.928	10.2
1	4.1	0.4	0.9462	5.4
1	15	1.04	0.8885	15
1	8.8	0.76	1.0267	9
1	12.4	0.95	0.9225	12.3
1	16.6	1.12	0.9372	16.3
1	14.9	1.02	0.8858	15.4
1	13.7	1.01	0.9643	13
1	15.1	0.9	0.9316	14.4
1	7.8	0.57	0.9705	10
1	11.4	0.78	1.124	10.2
1	9	0.74	0.8517	9.5
1	1	0.13	0.7851	1.5
1	17	1.26	0.9186	18.5
1	12.8	1.08	1.0395	12.6
1	15.8	0.96	0.9573	17.5
1	4.5	0.42	0.9106	4.9
1	14.5	1.01	1.007	15.9
1	7.3	0.61	0.9806	8.5
1	8.6	0.69	0.9693	10.6
1	15.2	1.02	0.9496	13.9
1	12	0.82	1.1184	14.9

X'X

24	275.6	19.88	23.0921
275.6	3613.16	254.177	267.46174
19.88	254.177	18.0896	19.266811
23.0921	267.46174	19.266811	22.3637325

• (X'X)⁻¹

ľ	6.56299	0.06290	-0.93908	-6.71991
ı	0.06290	0.02841	-0.45200	-0.01528
ı	-0.93908	-0.45200	7.86328	-0.39900
L	-6.71991	-0.01528	-0.39900	7.50993

X'Y

289.7 3742.85 264.076 281.14508

 $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$

-0.55170 0.88758 0.51847 2.07934

constante tar nicotine weight

Diagnostic graphique

Y observé vs. Y prédit

Diagnostic graphique

• Y observé vs. résidu

Exemple 2: Hauteur de neige

 Dans l'exemple qui suit nous réalisons une régression multiple pour expliquer la hauteur de neige en fonction de l'altitude, de la rugosité, de la pente, de l'orientation, de la latitude et de la longitude

H_NEIGE	vecteur	altitude	rugosite	pente	orient.	lat	long.
95	1	2768	252	22	324	8760219	438465.0625
150	1	4108	333	29	308	8760195	438474.0625
4	1	4045	62	5	249	8760168	438480.0625
0	1	4572	85	8	14	8760135	438489.0625
0	1	4614	115	10	63	8760105	438495.0625
80	1	4321	176	16	130	8760072	438498.0625
95	1	3886	72	6	199	8760039	438504.0625
20	1	4206	57	5	32	8760012	438507.0625
90	1	4192	266	23	197	8759985	438513.0625
10	1	4051	69	6	113	8759955	438519.0625
10	1	3746	62	5	149	8759922	438519.0625
50	1	3789	42	3	218	8759895	438525.0625
45	1	3771	44	4	53	8759865	438531.0625
60	1	3796	48	4	101	8759838	438534.0625
55	1	3885	77	7	332	8759811	438537.0625
3	1	4295	113	10	18	8759787	438540.0625
33	1	4467	147	13	50	8759760	438546.0625
0	1	4764	12	1	276	8759730	438552.0625
35	1	4313	38	3	350	8759703	438552.0625
45	1	4387	40	3	46	8759673	438558.0625

• Le produit X'X:

20.0000	81976.0000	2110.0000	183.0000	3222.0000	175198869.0000	8770339.2500
81976.0000	339594498.0000	8487334.0000	736618.0000	12861325.0000	718104679425.0000	35947950323.5000
2110.0000	8487334.0000	366956.0000	32036.0000	386290.0000	18483638688.0000	925244282.8750
183.0000	736618.0000	32036.0000	2799.0000	33323.0000	1603083666.0000	80246258.4375
3222.0000	12861325.0000	386290.0000	33323.0000	771684.0000	28224580695.0000	1412891754.3750
175198869.0000	718104679425.0000	18483638688.0000	1603083666.0000	28224580695.0000	1534732185500860.0000	76827675778567.3000
8770339.2500	35947950323.5000	925244282.8750	80246258.4375	1412891754.3750	76827675778567.3000	3845942542298.3300

• $(X'X)^{-1}$:

42548515331.8374	73.5283	-569.7835	4096.6641	-164.4807	-3668.8247	-23739.2652
73.5284	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000
-569.7830	0.0000	0.0047	-0.0535	0.0000	0.0001	0.0003
4096.6572	-0.0001	-0.0535	0.6061	0.0005	-0.0004	-0.0014
-164.4807	0.0000	0.0000	0.0005	0.0000	0.0000	0.0001
-3668.8247	0.0000	0.0001	-0.0004	0.0000	0.0003	0.0020
-23739.2657	0.0000	0.0003	-0.0014	0.0001	0.0020	0.0133

• X'y:

880)
3458800	3
140963	3
1224	4
181900	J
7708792743	3
385887448	3

 Donc (X'X)⁻¹X'y donne les termes de l'équation multiple :

— Constante : -6111180.498

- Altitude: -0.03526

Rugosité : 1.0379

- Pente: -7.6228

– Orientation : 0.0907

Latitude : 0.5191

Longitude : 3.6401

Exemple 3: Production, travail et capital

• Les données présentées dans le tableau ci-dessous concernent 9 entreprises de l'industrie chimique. Nous cherchons à établir une relation entre la production y_i , les heures de travail x_{i1} et le capital utilisé x_{i2} .

Entreprise	Travail	Capital	Production
	(heures)	(machines/heures)	(100 tonnes)
i	x_{i1}	x_{i2}	y_i
1	1 100	300	60
2	1 200	400	120
3	1 430	420	190
4	1500	400	250
5	1 520	510	300
6	1620	590	360
7	1800	600	380
8	1820	630	430
9	1800	610	440

Le modèle de régression linéaire multiple avec
 2 variables explicatives est donc :

$$y = b_0 + b_1 x_1 + b_2 x_2 + \varepsilon$$

La notation matricielle :

$$y = X\beta + \varepsilon$$

$$\mathbf{y} = \begin{bmatrix} 60 \\ 120 \\ 190 \\ 250 \\ 360 \\ 380 \\ 430 \\ 440 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & 1100 & 300 \\ 1 & 1200 & 400 \\ 1 & 1430 & 420 \\ 1 & 1500 & 400 \\ 1 & 1520 & 510 \\ 1 & 1620 & 590 \\ 1 & 1800 & 600 \\ 1 & 1820 & 630 \\ 1 & 1800 & 610 \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \\ \varepsilon_6 \\ \varepsilon_7 \\ \varepsilon_8 \\ \varepsilon_9 \end{bmatrix}$$

Nous allons calculer le vecteur des estimateurs
 β_b défini par l'égalité suivante :

$$\beta_b = (^tXX)^{-1t}Xy.$$

Donc

$$(^{\mathbf{t}}\mathbf{X}\mathbf{X}) = \begin{bmatrix} 9 & 13\,790 & 4\,460 \\ 13\,790 & 21\,672\,100 & 7\,066\,200 \\ 4\,460 & 7\,066\,200 & 2\,323\,600 \end{bmatrix}$$

$$(^{\mathbf{t}}\mathbf{X}\mathbf{X})^{-1} = \begin{bmatrix} 6,304\,777 & -0,007\,800 & 0,011\,620 \\ -0,007\,800 & 0,000\,015 & -0,000\,031 \\ 0,011\,620 & -0,000\,031 & 0,000\,072 \end{bmatrix}$$

• Et

$${}^{\mathbf{t}}\mathbf{X}\mathbf{y} = \begin{bmatrix} 2530 \\ 4154500 \\ 1378500 \end{bmatrix}$$

Ainsi

$$\widehat{\beta} = \begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \\ \widehat{\beta}_2 \end{bmatrix} = (^{\mathbf{t}}\mathbf{X}\mathbf{X})^{-1\mathbf{t}}\mathbf{X}\mathbf{y} = \begin{bmatrix} -437,714 \\ 0,336 \\ 0,410 \end{bmatrix}$$

 L'équation des moindres carrés de notre modèle est donc:

$$\hat{y}(x_1, x_2) = -437,714 + 0,336 x_1 + 0,410 x_2$$