Step-1

Consider a matrix A with Eigen values $|\lambda_i| > 1$ and $|\lambda_i| < 1$. The powers A^k approach zero if all $|\lambda_i| < 1$, and they blow up if any of the $|\lambda_i| > 1$.

Let *B* and *C* be two matrices defined as follows:

$$B = \begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix}$$
$$C = \begin{bmatrix} 5 & 7 \\ -3 & -4 \end{bmatrix}$$

Determine the Eigen values of *B* and *C* and show the following:

$$B^4 = I$$
$$C^3 = -I$$

Step-2

To find the Eigen values of *B* do the following calculations:

$$\det(B - \lambda I) = 0$$

$$(3 - \lambda)(3 - \lambda) + 10 = 0$$

$$\lambda^{2} + 1 = 0$$

$$\lambda = \pm i$$

Therefore, Eigen values of matrix *B* is $\lambda = \pm i$.

Step-3

Eigen values of matrix B^4 will be λ^4 .

$$\lambda^4 = 1$$

This shows that $B^4 = I$.

Step-4

To find the Eigen values of \mathcal{C} do the following calculations:

$$\det(C - \lambda I) = 0$$

$$(5 - \lambda)(-4 - \lambda) + 21 = 0$$

$$\lambda^2 - \lambda + 1 = 0$$

$$\lambda = e^{\pm i\pi/3}$$

Therefore, Eigen values of matrix *C* is $\lambda = e^{\pm i\pi/3}$.

Step-5

Eigen values of matrix C^3 will be λ^3 .

$$\lambda^{3} = \left(e^{\pm i\pi/3}\right)^{3}$$
$$= e^{\pm i\pi}$$
$$\lambda^{3} = -1$$

This shows that $C^3 = -I$.