COMPSCI 367 Tutorial Week 9

1. Write a greatest common divisor definition in Prolog. Define a relation gcd(M, N, S) which is true if and only if the greatest common divisor of M and N is S for any positive integers M, N. We can write a recursive definition of the gcd function:

$$\gcd(N,M) = \begin{cases} 1 & \text{if } N = 1\\ 1 & \text{if } M = 1\\ N & \text{if } M = N\\ \gcd(M,N) & \text{if } N < M\\ \gcd(N-M,M) & \text{otherwise} \end{cases}$$

- **2.** Write a prime number definition in Prolog. Define a relation prime(X) which is true if and only if X is a prime number for any positive integer X.
- 3. Quick sort is a sorting algorithm that arranges elements in a list in ascending order. Given a list L, the algorithm applies divide-and-conquer:
 - (a) Taking the first element A in L as the pivot
 - (b) Partitions the remaining list L into two parts: P_1 and S_1 , such that P_1 contains all elements in L that are smaller than or equal to A, and S_1 contains all elements in L that are bigger than A.
 - (c) Recursively sort P_1 and S_1 to produce two sorted lists P_2 and S_2 , respectively.
 - (d) Then append the resulting lists P_2 with A and with S_2 , and return the result.

Write a Prolog implementation of quick sort. You may want to implement the following:

- $partition(A, List, S_1, P_1)$: this is the partition relation that split List into two sublists S_1 and P_1 using A as the pivot.
- quicksort(List, List'): This is the quicksort relation that is true when List' is the sorted copy of List.

You may also use the append relation defined in class.