DS n°5 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Suites

Donner un exemple de suite réelle divergente u pour laquelle il existe un unique réel ℓ tel que toutes les suites extraites convergentes de u convergent vers ℓ .

Soit la suite (u_n) telle que $u_0 = 1$, $u_1 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+2} - 2u_{n+1} + 2u_n = 0$. Alors, pour tout $n \in \mathbb{N}$,

$$u_n = \boxed{ \qquad \qquad } . \tag{2}$$

Soit la suite (v_n) telle que $v_0=0$ et pour tout $n\in\mathbb{N},\,v_{n+1}=2v_n-1.$ Alors, pour tout $n\in\mathbb{N},$

$$v_n = \boxed{ . \tag{3}}$$

On considère une suite réelle v vérifiant : $\forall n \in \mathbb{N}, v_{n+1} = v_n^2 + \frac{3}{16}$.

Alors v converge si et seulement si $v_0 \in$ (4)

En cas de convergence, $v_n \xrightarrow[n \to +\infty]{}$ (5)

Algèbre

Donner le plus-petit sous-groupe de $(\mathbb{R}, +)$ contenant à la fois 4 et 6.

Soit $A = \left\{ \frac{p}{2q+1} \mid (p,q) \in \mathbb{Z} \times \mathbb{N} \right\}$. A est-il un sous-anneau de $(\mathbb{Q}, +, \times)$ (répondre par **OUI** ou **NON**)?

Déterminer l'ensemble A^{\times} des éléments inversibles de A pour \times .

$$A^{\times} = \boxed{ (8)}$$

Soit l'endomorphisme de $\mathbb{R}^{\mathbb{N}}: \varphi: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$. Alors $(u_n)_{n \in \mathbb{N}} \mapsto (u_{n+2} + 4u_{n+1} + 4u_n)_{n \in \mathbb{N}}$

$$\operatorname{Ker} \varphi = \tag{9}$$

Limites de fonctions et continuité

Calculer les limites de fonctions suivantes (écrire PAS DE LIMITE le cas échéant) :

$$x^{(x^x)} \xrightarrow[x \to 0]{} \tag{10}$$

$$\left[\operatorname{sh}\left(\frac{\sin(x)}{x}\right) \right] \xrightarrow[x \to +\infty]{} \tag{11}$$

$$x\left(\sqrt{x+\sqrt{x+1}} - \sqrt{x+\sqrt{x-1}}\right) \xrightarrow[x \to +\infty]{}$$
 (12)

$$\tan\left(\frac{e^{2x} - e^{-2x}}{x}\right) \xrightarrow[x \to 0]{} \tag{13}$$

$$\mathbf{1}_{\mathbb{R}^*} \left(x^2 \cos \left(\frac{1}{x} \right) \right) \xrightarrow[x \to 0]{} \tag{14}$$

$$(1+x)^{1/x} \xrightarrow[x \to +\infty]{} \tag{15}$$

— FIN —