Class 8: Breast Cancer Mini Project

Yvonne Yu A16333006

About

Today's lab we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin.

Data Input

```
# Save your input data file into your Project directory
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	texture_mean	perimeter_mean	area_mean	n
842302	M	17.99	10.38	122.80	1001.0	0
842517	M	20.57	17.77	132.90	1326.0	0
84300903	M	19.69	21.25	130.00	1203.0	0
84348301	М	11.42	20.38	77.58	386.	1
84358402	М	20.29	14.34	135.10	1297.0)
843786	M	12.45	15.70	82.57	477.	1
	${\tt smoothness_mean}$	compa	ctness_mean co	ncavity_mean c	oncave.po:	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f	ractal_	_dimension_mea	n radius_se te	xture_se]	perimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069		0.0599	9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445

84358402	0.1809		0.05883		0.7813	5.438
843786	0.2087		0.07613		0.8902	2.217
	area_se smoothne	_		•	_	
842302		006399	0.04904			0.01587
842517		005225	0.01308			0.01340
84300903		006150	0.04006			0.02058
84348301		009110	0.07458			0.01867
84358402		011490	0.02461			0.01885
843786		007510	0.03345			0.01137
	symmetry_se frac	_	_	_	ture_worst	
842302	0.03003	0.0	006193	25.38	17.33	
842517	0.01389	0.0	03532	24.99	23.41	
84300903	0.02250	0.0	04571	23.57	25.53	
84348301	0.05963	0.0	09208	14.91	26.50	
84358402	0.01756	0.0	05115	22.54	16.67	
843786	0.02165	0.0	05082	15.47	23.75	
	perimeter_worst	area_worst	smoothness	s_worst compa	ctness_wors	t
842302	184.60	2019.0		0.1622	0.665	6
842517	158.80	1956.0		0.1238	0.186	6
84300903	152.50	1709.0		0.1444	0.424	:5
84348301	98.87	567.7		0.2098	0.866	3
84358402	152.20	1575.0		0.1374	0.205	0
843786	103.40	741.6		0.1791	0.524	.9
	concavity_worst	concave.poi	.nts_worst	symmetry_wor	st	
842302	0.7119		0.2654	0.46	01	
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.66	38	
84358402	0.4000		0.1625	0.23	64	
843786	0.5355		0.1741	0.39	85	
fractal_dimension_worst						
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

Q1. How many observations/patients/individual/samples are in this dataset?

nrow(wisc.df)

[1] 569

```
Q2. How many of the observations have a malignant diagnosis?
  sum(wisc.df$diagnosis == "M")
[1] 212
  table(wisc.df$diagnosis)
 В
      Μ
357 212
     Q3. How many variables/features in the data are suffixed with '_mean'?
  inds <- grep("_mean", colnames(wisc.df))</pre>
  length(inds)
[1] 10
  colnames(wisc.df[,(grep("_mean", colnames(wisc.df)))])
 [1] "radius_mean"
                                "texture_mean"
                                                           "perimeter_mean"
 [4] "area_mean"
                                "smoothness_mean"
                                                           "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
                                                           "symmetry_mean"
[10] "fractal_dimension_mean"
```

Initial Analysis

Before analysis I want to take out the expert diagnoses column (aka the answer) from our dataset.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)

[1] M M M M M M
Levels: B M</pre>
```

	radius mean textu	re mean perimet	er mean area mea	an smoothness_mean		
842302	_ 17.99	10.38	122.80 1001			
842517	20.57	17.77	132.90 1326			
84300903	19.69	21.25	130.00 1203			
84348301	11.42	20.38	77.58 386			
84358402	20.29	14.34	135.10 1297			
843786	12.45	15.70	82.57 477			
				mean symmetry_mean		
842302	0.27760	0.3001	0.14	•		
842517	0.07864	0.0869	0.07	7017 0.1812		
84300903	0.15990	0.1974	0.12	2790 0.2069		
84348301	0.28390	0.2414	0.10	0.2597		
84358402	0.13280	0.1980	0.10	0.1809		
843786	0.17000	0.1578	0.08	0.2087		
	fractal_dimension	_mean radius_se	e texture_se per	imeter_se area_se		
842302	0.	07871 1.0950	0.9053	8.589 153.40		
842517	0.	05667 0.5435	0.7339	3.398 74.08		
84300903	0.	05999 0.7456	0.7869	4.585 94.03		
84348301	0.	09744 0.4956	1.1560	3.445 27.23		
84358402	0.	05883 0.7572	0.7813	5.438 94.44		
843786	0.	07613 0.3349	0.8902	2.217 27.19		
	smoothness_se com	pactness_se con	cavity_se concav	re.points_se		
842302	0.006399	0.04904	0.05373	0.01587		
842517	0.005225	0.01308	0.01860	0.01340		
84300903	0.006150	0.04006	0.03832	0.02058		
84348301	0.009110	0.07458	0.05661	0.01867		
84358402	0.011490	0.02461	0.05688	0.01885		
843786	0.007510	0.03345	0.03672	0.01137		
symmetry_se fractal_dimension_se radius_worst texture_worst						
842302	0.03003	0.006193	3 25.38	17.33		
842517	0.01389	0.003532	24.99	23.41		
84300903	0.02250	0.004571	23.57	25.53		
84348301	0.05963	0.009208	14.91	26.50		
84358402	0.01756	0.005115	22.54	16.67		
843786	0.02165	0.005082	2 15.47	23.75		
<pre>perimeter_worst area_worst smoothness_worst compactness_worst</pre>						
842302	184.60	2019.0	0.1622	0.6656		
842517	158.80	1956.0	0.1238	0.1866		
84300903	152.50	1709.0	0.1444	0.4245		

84348301	98.87	567.7		0.2098	0.8663
84358402	152.20	1575.0		0.1374	0.2050
843786	103.40	741.6		0.1791	0.5249
	concavity_worst	concave.poi	nts_worst	symmetry_worst	
842302	0.7119		0.2654	0.4601	
842517	0.2416		0.1860	0.2750	
84300903	0.4504		0.2430	0.3613	
84348301	0.6869		0.2575	0.6638	
84358402	0.4000		0.1625	0.2364	
843786	0.5355		0.1741	0.3985	
fractal_dimension_worst					
842302		0.11890			
842517		0.08902			
84300903		0.08758			
84348301		0.17300			
84358402		0.07678			
843786		0.12440			

Clustering

We can try a kmeans() clustering first.

```
km <- kmeans(wisc.data, centers = 2)
table(km$cluster)</pre>
```

1 2 438 131

Cross-table

```
table(km$cluster, diagnosis)
```

diagnosis B M 1 356 82 2 1 130 Let's try hclust(). the key input required for hclust() is a dinstance matrix as produced by the dist() function.

```
hc <- hclust(dist(wisc.data))
hc</pre>
```

Call:

hclust(d = dist(wisc.data))

Cluster method : complete
Distance : euclidean

Number of objects: 569

I can make a tree like figure

```
plot(hc)
```

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Do we need to scale the data?

We can look at the sd of each column (original variable)

```
round(apply(wisc.data, 2, sd))
```

```
radius mean
                                    texture mean
                                                           perimeter mean
             area_mean
                                smoothness mean
                                                         compactness mean
                    352
                            concave.points_mean
        concavity_mean
                                                            symmetry_mean
                                                                         0
fractal_dimension_mean
                                       radius_se
                                                               texture_se
                                               0
                                                                         1
          perimeter_se
                                         area_se
                                                            smoothness_se
                      2
                                              45
        compactness_se
                                    concavity_se
                                                        concave.points_se
                      0
                                                                         0
                           fractal_dimension_se
           symmetry_se
                                                             radius_worst
                      0
                                                0
                                                                         5
         texture_worst
                                perimeter_worst
                                                               area_worst
                                                                       569
                              compactness_worst
      smoothness_worst
                                                          concavity_worst
  concave.points_worst
                                  symmetry_worst fractal_dimension_worst
                      0
                                                0
```

Yes we need to scale. We will run prcomp() with scale=TRUE.

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
```

```
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)

ggplot(res, aes(PC1, PC2, col = diagnosis)) + geom_point()</pre>
```


Combining Methods

Clusterng on PCA Results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method= "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector, I need to "cut" the tree with the cutree() function.

```
grps <- cutree(hc, k = 2)
```

Q. How many patients in each group?

```
table(grps)
```

grps 1 2 203 366

Prediction

We can use our PCA result (model) to make predictions, that is take new unseen data and project it on to our new PC variables.

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                      PC5
                                                                 PC6
                                                                            PC7
     2.576616 -3.135913
                          1.3990492 -0.7631950
[1,]
                                                2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                      0.8193031
            PC8
                      PC9
                                PC10
                                          PC11
                                                     PC12
                                                               PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                     PC16
                                 PC17
                                             PC18
                                                          PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
```

```
[2,] 0.1299153
                0.1448061 -0.40509706
                                        0.06565549
                                                    0.25591230 -0.4289500
           PC21
                      PC22
                                 PC23
                                             PC24
                                                         PC25
                                                                      PC26
     0.1228233 0.09358453 0.08347651
[1,]
                                        0.1223396
                                                   0.02124121
                                                               0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
                         PC28
                                       PC29
             PC27
                                                    PC30
     0.220199544 -0.02946023 -0.015620933
                                             0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(res$PC1, res$PC2, col = grps)
  points(npc[,1], npc[,2], col = "blue", pch = 16, cex = 3)
  text(npc[,1], npc[,2], labels=c(1,2), col = "white")
```


Q. Which of the patients would I prioritize for more follow up?

Patient 2 would be prioritized because the points were identified to be malignant.

Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.