- 1. Write an R code and a Python code to implement the following:
 - (a) generate 5 i.i.d. observations from the uniform random variable on [-0.5,0.5] and compute the sample average.
 - (b) Repeat (a) 1000 times, using the new observations each time.
 - (c) Draw the histogram of the 1000 averages.
 - (d) Do (a)–(c) using 20 observations from the same random variables.
 - (e) Do (a)–(c) using 80 observations from the same random variables.
 - (f) If you draw the three histograms on the same scale, what do you see? Explain what you observe using the LLN.
- 2. Write an R code and a Python code to implement the following:
 - (a) generate 5 i.i.d. observations from the uniform random variable on [-0.5,0.5] and compute the sample average.
 - (b) Repeat (a) 1000 times, using the new observations each time.
 - (c) Draw the histogram of the 1000 averages time square root of 5.
 - (d) Do (a)–(c) using 20 observations from the same random variables, except this time multiply by square root of 20.
 - (e) Do (a)–(c) using 80 observations from the same random variables, except this time multiply by square root of 80.
 - (f) If you draw the three histograms on the same scale, what do you see? Explain what you observe using the CLT.
- 3. Justify the F-test using the asymptotic argument rather than assuming the error term to have the normal distribution.
- 4. Consider the following regression model under i.i.d. sampling:

$$y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$$

where x_{3i} and u_i may be correlated but that x_{2i} and (x_{3i}, u_i) are independent.

- (a) Show that the OLS estimator of β_2 when y_i is regressed on the constant term, x_{2i} , and x_{3i} is consistent and asymptotically normal. Denote this estimator by $\hat{\beta}_2$.
- (b) Show that the OLS estimator of β_2 when y_i is regressed on the constant term and x_{2i} is consistent and asymptotically normal. Denote this estimator by $\tilde{\beta}_2$.
- (c) Discuss the asymptotic relative efficiency of $\hat{\beta}_2$ and $\tilde{\beta}_2$.
- (d) Relate this result to the situation where x_{2i} is randomly given to observation i so that it is independent with (x_{3i}, u_i) . Since x_{3i} corresponds to observed variable, it may be correlated with unobserved variable.
- 5. Consider the following regression model with a measurement error problem:

$$y_i = 1 + x_i^* + z_i + u_i$$

where

$$\begin{pmatrix} x_i^* \\ z_i \\ u_i \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho & 0 \\ \rho & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)$$

and $x_i = x_i^* + v_i$ where $v_i \sim N(0, \sigma_v^2)$ where $\sigma_v^2 = 1$ and $\rho = 0$.

- (a) Generate 100 i.i.d. data from the model above and regress y_i on the constant term, x_i and z_i to verify that there is the attenuation bias. State a way you can simulate data to verify the direction of inconsistency proved in class.
- (b) What will happen to the size of inconsistency if σ_v^2 increases? Verify this by simulating the data with $\sigma_v^2 = 2$.
- (c) What will happen to the size of inconsistency if ρ increases? Verify this by simulating the data with $\rho = 0.5$.
- 6. Consider the following simultaneous equations model

$$\begin{array}{rcl} y_i^S & = & \beta_1^S + \beta_2^S p_i + u_i^S \\ y_i^D & = & \beta_1^D + \beta_2^D p_i + u_i^D \end{array}$$

where

$$\left(\begin{array}{c} u_i^S \\ u_i^D \end{array}\right) \sim N\left(\left(\begin{array}{cc} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} \sigma_S^2 & 0 \\ 0 & \sigma_D^2 \end{array}\right)\right)$$

and p_i is determined via $y_i^S = y_i^D$. Let $y_i = y_i^S = y_i^D$.

- (a) What is the equilibrium p_i in terms of u_i^S and u_i^D ? State clearly the conditions under which the solution exists.
- (b) Obtain the probability limit of the OLS estimator when observed y_i is regressed on the constant term and p_i under the standard assumptions.
- (c) Discuss conditions under which the probability limit of the OLS estimator of the coefficient on p_i equals β_2^S or β_2^D .