ROS

RESEARCH ARTICLE

SUPPLEMENTAL MATERIAL

Oxidative Stress Caused by an SOD1 Deficiency Triggers the Accumulation of Oxidatively Modified Carbonic Anhydrase II in Erythrocytes

Takujiro Homma and Junichi Fujii

Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan

Correspondence: tkhomma@med.id.yamagata-u.ac.jp (T.H.), jfujii@med.id.yamagata-u.ac.jp (J.F.)

Homma T and Fujii J. Reactive Oxygen Species 6(16):289–298, 2018; ©2018 Cell Med Press http://dx.doi.org/10.20455/ros.2018.847 (Received: April 3, 2018; Accepted: April 14, 2018)

SUPPLEMENTAL FIGURE 1. Levels of oxidized proteins in WT and SOD1-KO RBCs under culture conditions. Proteins were extracted from WT and SOD1-KO RBCs at 0, 24, and 48 h after isolation, and subjected to Oxyblot analysis or immunoblotting. A representative Oxyblot analysis of WT and SOD1-KO RBCs is shown (Top). The same blot was reprobed with an anti-CAII antibody to determine the total CAII protein (Bottom).

RESEARCH ARTICLE

SUPPLEMENTAL FIGURE 2. Levels of oxidized proteins in WT RBCs after proteasomal inhibition. RBCs from WT mice treated with DMSO or MG132 (10 μ M) for 24 h, and subjected to Oxyblot analysis or immunoblotting. The representative immunoblots probed with antibodies against DNP and CAII are shown.