Week 4: Model Pre-training and Supervised Fine-tuning

Generative Al
Saarland University – Winter Semester 2024/25

Goran Radanovic

genai-w24-tutors@mpi-sws.org

Outline of the Lecture

- Organizational Updates
- Pre-training: Overview
- Pre-training: Scaling Laws
- Supervised Fine-tuning: Overview
- Supervised Fine-tuning: Parameter-efficient Fine-tuning

Outline of the Lecture

- Organizational Updates
- Pre-training: Overview
- Pre-training: Scaling Laws
- Supervised Fine-tuning: Overview
- Supervised Fine-tuning: Parameter-efficient Fine-tuning

Organizational Updates

- Week 3 assignment deadline extended: Nov 7, 6pm CET (extended by 3 days because of holiday)
- Week 4 assignment deadline: Nov 18, 6pm CET
- Week 5 assignment deadline: Nov 25, 6pm CET

Outline of the Lecture

- Organizational Updates
- Pre-training: Overview
- Pre-training: Scaling Laws
- Supervised Fine-tuning: Overview
- Supervised Fine-tuning: Parameter-efficient Fine-tuning

Pre-Training

Main idea

• Train P_{θ} to predict the next token x_k from the previous tokens $(x_1, x_2, ..., x_{k-1})$ in an unlabeled corpus $\mathcal{D} = (x_1, x_2, ..., x_D)$, i.e., minimize the objective

$$\sum_{k=1}^{D} \operatorname{prediction_loss}(P_{\theta}(\cdot | x_1, ..., x_{k-1}), x_k)$$

Loss function

Optimization

Gradient-based methods

Pre-Training: Overview

Data curation

- Collecting and filtering large scale datasets
- Next few slides: challenges related to data curation

Model architecture and size

- Designing the model architecture and determining the model size
- 3rd part of the lecture: scaling laws

Training infrastructure and recipe

- Ensuring efficient pre-training at large scale
- Pre-training recipe: adjusting context-length and training data
- This lecture does not cover this aspect in detail

Data Curation

Data Source

- D is a large/internet scale dataset
- Obtained by crawling the web ... or use CommonCrawl (> 2.5 billion webpages)

Data Processing

- Data is originally in the html format
- Contains harmful and toxic content
- Contains duplicates and low quality content
- Contains private data and copyrighted data
- Multiple languages and domains

Additional Considerations

- Deciding on data mix
- Selecting annealing data

Data Curation: The Impportance of Filtering

Example: FineWeb Dataset

- 4 different filtering steps applied on 96 snapshots of CommonCrawl
- The size of the dataset: 15 trillion tokens

Outline of the Lecture

- Organizational Updates
- Pre-training: Overview
- Pre-training: Scaling Laws
- Supervised Fine-tuning: Overview
- Supervised Fine-tuning: Parameter-efficient Fine-tuning

Selecting Model Size

Challenge: Given a limited compute budget, what should be the size of our model?

- For a fixed budget, we need to make a trade-off between the model size and the number of training data points
- Model too large ⇒ won't be trained with enough data
- Model too small ⇒ underfitting

Example: Lamma 3 with 405B parameters

- Compute budget of $3.8 \cdot 10^{25}$ FLOPs (Floating Point Operations)
- Layers: 126
- Model dimension: 16384
- Attention heads: 128 ...

"... This leads to a model size that is approximately compute-optimal according to scaling laws on our data for our training budget ..."

Ref: [Llama Team, 2024] 11

Simple Scaling Law

Illustrative example of scaling laws:

- Mean estimation: samples $x_1, \dots, x_D \sim \mathcal{N}(\mu, \sigma)$, and estimator $\hat{\mu} = \frac{1}{D} \sum_i x_i$
- Loss: mean squared error $\mathbb{E}[(\mu \hat{\mu})^2]$
- Possible to show that $Loss = \frac{\sigma^2}{D} = \sigma^2 \cdot D^{-1}$ \rightarrow this is a power law
- This means that $\log Loss = -\log D + constant$

Ref: [CS336: Slides]

Scaling Laws for LLMs

We can obtain similar scaling laws for LLMs through experiments

Scaling Laws for LLMs

We can obtain similar scaling laws for LLMs through experiments

Test Loss

Scaling Laws for LLMs

We can obtain similar scaling laws for LLMs through experiments

- So far: Test error as a function of compute, dataset size, or model size when
 increasing one of these, we are not bottlenecked by the other two
- The behavior is predictable:
 - Infer scaling laws using small compute budgets and then infer the optimal model/dataset size for a given compute budget

Determining optimal allocations

- Input: Dataset $\{(N_i, D_i, L_i)\}$, where N_i is the number of parameters D_i is the number of training tokens and L_i is the observed loss
- Objective: Find N and D that minimize loss L(N, D) for a given budget C:

$$\min_{N,D} L(N,D)$$
 s.t. $C = \text{FLOPs}(N,D)$

• Consider L(N,D) of the following form:

Captures:

Entropy of natural text

Suboptimality of function approx.

Suboptimality of optimization

Determining optimal allocations

- **Input**: Dataset $\{(N_i, D_i, L_i)\}$, where N_i is the number of parameters, D_i is the number of training tokens, and L_i is the observed loss
- Objective: Find N and D that minimize loss L(N, D) for a given budget C:

$$\min_{N,D} L(N,D)$$
 s.t. $C = \text{FLOPs}(N,D)$

• Consider L(N,D) of the following form:

$$L(N,D) = \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} + E$$

• Estimate α , β , A, B, and E, by fitting L(N,D) on the dataset $\{(N_i,D_i,L_i)\}$.

Determining optimal allocations

- Input: Dataset $\{(N_i, D_i, L_i)\}$, where N_i is the number of parameters, D_i is the number of training tokens, and L_i is the observed loss
- Objective: Find N and D that minimize loss L(N, D) for a given budget C:

$$\min_{N,D} L(N,D)$$
 s.t. $C = FLOPs(N,D)$

• Consider L(N,D) of the following form:

$$L(N,D) = \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} + B$$

- Fact: Compute C is related to N and D: $C \approx 6ND$
 - This is due to forward and backward pass in backpropagation (See *Computing Gradients)

Determining optimal allocations

- **Input**: Dataset $\{(N_i, D_i, L_i)\}$, where N_i is the number of parameters, D_i is the number of training tokens, and L_i is the observed loss
- **Objective**: Find N and D that minimize loss L(N, D) for a given budget C:

$$\min_{N,D} L(N,D)$$
 s.t. $C = \text{FLOPs}(N,D)$

Consider L(N, D) of the following form:

$$L(N,D) = \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} + E$$

Using $C \approx 6ND$, we obtain:

$$L(N) = \frac{A}{N^{\alpha}} + \frac{B}{C^{\beta}} (6N)^{\beta} + E \qquad L(D) = \frac{A}{C^{\alpha}} (6D)^{\alpha} + \frac{B}{D^{\beta}} + E$$

$$L(D) = \frac{A}{C^{\alpha}} (6D)^{\alpha} + \frac{B}{D^{\beta}} + E$$

Example

• Suppose that $\alpha=0.3478$, $\beta=0.3658$, A=482.01, B=2085.43, and E=2085.43. How does optimal N_{opt} scale with C?

导数
$$L(N) = \frac{A}{N^{\alpha}} + \frac{B}{C^{\beta}} (6N)^{\beta} + E$$

• By setting $\frac{dL(N)}{dN} = 0$, we obtain:

$$\alpha \frac{A}{N_{opt}^{\alpha+1}} = \beta \frac{B}{C^{\beta}} 6^{\beta} N_{opt}^{\beta-1} \longrightarrow N_{op} \propto C^{\frac{\beta}{\alpha+\beta}} \approx C^{0.513} \longrightarrow \text{Power law}$$

- For $C = 5.76 \cdot 10^{23}$, we obtain $N_{opt} \approx 72B$
- We can analogously obtain $D_{opt} \propto C^{\frac{\alpha}{\alpha+\beta}} \approx C^{0.487}$
- ≈ For every doubling of model size, the number of training tokens should double

The efficient frontier is shown in blue

• **Remark**: On the previous slide, we used different coefficients α , β , A, B, E!

Other Approaches

- Other approaches to determining scaling laws yield similar results.
- Approach I: Vary the number of training steps for a fixed family of models, and extract an estimate of the minimum loss for a given budget. Identify the model size that achieves the minimum loss.
 - Approach II: For each compute budget from a set of compute budgets, vary the model size and identify which one achieves the minimum loss for that budget.
 - Fit scaling laws based on the optimal model sizes obtained for the compute budgets.

Week 4 Assignment

A reading assignment: a paper that explains Approach I and Approach II.

An exercise on scaling laws where the amount of available data is constrained.

Quiz – Scaling Laws

Q: Do scaling laws hold for other architectures (e.g., LSTMs)?

Transformers asymptotically outperform LSTMs due to improved use of long contexts

Quiz – Scaling Laws

Q: Where to choose from if we account for inference costs?

- **Reminder**: gradient update rule for loss $\mathcal{L}(\theta)$: $\theta \leftarrow \theta \text{learn_rate} \cdot \nabla_{\theta} \mathcal{L}(\theta)$
- We can use backpropagation to obtain $\nabla_{\theta} \mathcal{L}(\theta)$
- A simplified illustration (based on layered feedforward NN):

Forward pass

• If we only have 1 parameter per layer and h_i are scalars, what is $\frac{\partial \mathcal{L}(\theta)}{\partial \theta_i}$?

By the chain rule:
$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta_2} = \frac{\partial z_2}{\partial \theta_2} \cdot \frac{\partial \mathcal{L}(\theta)}{\partial z_2}$$

- **Reminder**: gradient update rule for $los \mathcal{L}(\theta)$: $\theta \leftarrow \theta learn_rate \cdot \nabla_{\theta} \mathcal{L}(\theta)$
- We can use backpropagation to obtain $\nabla_{\theta} \mathcal{L}(\theta)$
- A simplified illustration (based on layered feedforward NN):

Forward pass

If we only have 1 parameter per layer and h_i are scalars, what is $\frac{\partial \mathcal{L}(\theta)}{\partial \theta_i}$?

By the chain rule:
$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta_2} = h_1 \boxed{\frac{\partial \mathcal{L}(\theta)}{\partial z_2}}$$

Information that we calculate from the future layers

- Reminder: gradient update rule for loss $\mathcal{L}(\theta)$: $\theta \leftarrow \theta \text{learn_rate} \cdot \nabla_{\theta} \mathcal{L}(\theta)$
- We can use *backpropagation* to obtain $\nabla_{\theta} \mathcal{L}(\theta)$
- A simplified illustration (based on layered feedforward NN):

- Reminder: gradient update rule for loss $\mathcal{L}(\theta)$: $\theta \leftarrow \theta \text{learn_rate} \cdot \nabla_{\theta} \mathcal{L}(\theta)$
- We can use backpropagation to obtain $\nabla_{\theta} \mathcal{L}(\theta)$

Compute requirements

- For one data input, about 6 · number of parameters
- In the forward pass, matrix multiplications are a dominant factor: each parameter is associated with 1 multiplication and 1 summation
- The cost of the backward pass is approx. 2 times the cost of the forward pass.

Memory requirements

• Weights, gradients, optimizer states, activations, etc.

Outline of the Lecture

- Organizational Updates
- Pre-training: Overview
- Pre-training: Scaling Laws
- Supervised Fine-tuning: Overview
- Supervised Fine-tuning: Parameter-efficient Fine-tuning

Why Fine-tuning?

Pre-training enables model to understand language, but not necessarily to follow instructions

Prompt:

Create a shopping list from this recipe:

Trim the ends off zucchini. Cut zucchini in half lengthwise; scoop out pulp, leaving 1/2-in. shells. Finely chop pulp. In a skillet, cook beef, zucchini pulp, onion, mushrooms and peppers over medium heat until meat is no longer pink; drain. Remove from the heat. Add 1/2 cup cheese, ketchup, salt and pepper; mix well. Spoon into the zucchini shells. Place in a greased 13x9-in. baking dish. Sprinkle with remaining cheese.

Labeler demonstration

ucchini, beef, onion, mushroom, peppers, cheese, ketchup, salt, pepper

GPT-3 175B completion:

Bake, uncovered, at 350° for 20-25 minutes or until zucchini is tender and cheese is melted.

InstructGPT 175B completion:

Bake, uncovered, at 350° for 20-25 minutes.

- 8 zucchini squash, ends trimmed
- 1 pound ground beef
- 1 cup finely chopped zucchini pulp
- 1 small onion, chopped
- 8 ounces diced mushrooms
- 1 sweet red or green pepper, diced
- 1/2 cup grated cheese
- 1/4 cup ketchup
- Salt and pepper to taste
- 1 cup shredded cheese

Why Fine-tuning?

Human evaluations of the outputs

Ref: [Ouyng et al., 2021] 31

Supervised Fine-tuning

Main idea

• Now the dataset is labelled: $\mathcal{D} = \{(x_p, y)\}$

Examples:

Alignment: x_p can be an instruction and y can be a demonstration

Downstream task: x_p can be a text and y can be a summary

• The same objective (next token prediction) and loss as in pre-training, but only applied over response y

$$\max_{\theta} \sum_{(x_n, y) \in \mathcal{D}} \sum_{k=1}^{|y|} \log P_{\theta}(y_k | x_p, y_1, ..., y_{k-1})$$

Supervised Fine-tuning

Main idea

• Now the dataset is labelled: $\mathcal{D} = \{(x_p, y)\}$

Examples:

Alignment: x_p can be an instruction and y can be a demonstration

Downstream task: x_p can be a text and y can be a summary

• The same objective (next token prediction) and loss as in pre-training, but only applied over response y

Week 4 Assignment

SFT for Shakespeare completion and text summarization

Note: There are other forms of fine-tuning

- Continued pre-training: continue pre-training on a specific domain
- Preference-based fine-tuning: Next lecture

Ref: [Book, 2024] 33

Fine-tuning Quiz

Q: Suppose that we have 100 downstream tasks to consider. How would you finetune GPT3 175B for these 100 tasks?

Week 4 Assignment

An exercise demonstrating the importance of parameter-efficient fine-tuning.

Ref: [Hu et al., 2021] 34

Outline of the Lecture

- Organizational Updates
- Pre-training: Overview
- Pre-training: Scaling Laws
- Fine-tuning: Overview
- Fine-tuning: Parameter-efficient Fine-tuning

Parameter-efficient Fine-tuning

- Reduce the number of trainable parameters. Different approaches, e.g.:
 - Prefix-tuning: Prepends special tokens with trainable embeddings to the input
 Adapter Layers: Add trainable layers to the transformer network
 ...

LoRA: Low-Rank Adaptation

- Main idea: Encode finetuning parameter increment $\Delta \theta$ using a much smaller set of parameters ϕ
- The SFT objective is to optimize ϕ using the next-token prediction loss:

$$\max_{\phi} \sum_{(x_p, y) \in \mathcal{D}} \sum_{k=1}^{|y|} \log P_{\theta + \Delta\theta(\phi)}(y_k | x_p, y_1, \dots, y_{k-1})$$

Parameter-efficient Fine-tuning

- Reduce the number of trainable parameters. Different approaches, e.g.:
 - Prefix-tuning: Prepends special tokens with trainable embeddings to the input
 - Adapter Layers: Add trainable layers to the transformer network
 - •

KORA: Low-Rank Adaptation

- Main idea: Add trainable rank decomposition matrices
- Illustration:

Parameter-efficient Fine-tuning

LoRA: Low-Rank Adaptation

- Freeze pretrained model the model weights are not updated
- For a weight matrix $W \in \mathbb{R}^{d \times k}$, define trainable matrices $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$, with $r \ll d$ and $r \ll k$
 - We can choose which matrices W, typically from the self-attention module
- Modified forward pass: $h = Wx + s \cdot \Delta Wx = Wx + s \cdot BAx$, where s is a scalar, which is often defined through r
- Train only A and B: A is initialized with a random Gaussian initialization, while B is initially set to $\mathbf{0}$
- For different tasks: Use the same W but different A and B!

Week 4 Assignment

An exercise on the storage-efficiency of LoRA.

Quiz – LoRA

Q: Consider GPT3 175B. What is the memory usage reduction if we set r=1? Can we train it on H100 GPU with 80GB?

Model weights also need to be stored!

- ... but the memory is reduced for optimizer states and gradients.
- Quantization can reduce the memory requirement for model weights

Quantization

Basic idea

- Quantize weights when storing them
- Dequantize them when needed, e.g., for inference

Example

Quantizing 32-bit floating point tensor into 8-bit int tensor

Quantization:
$$\mathbf{X}^{Int8} \leftarrow \text{round} \left(\frac{127}{\text{absmax}(\mathbf{X}^{FP32})} \cdot \mathbf{X}^{FP32} \right) = \text{round} \left(c \cdot \mathbf{X}^{FP32} \right)$$

Book to the property of the prope

- Quantization can be done block-wise, each having its own quant. constant c_B
 - Motivation: if one element of X^{FP32} has a large value, many quantization bins (integer values) are not utilized
 4. 块级量化 (Block-wise Quantization)

问题:如果

中某些值很大,则小的数值信息可能丢失,导致精度下降

*Quantization: QLoRA (Optional)

QLoRA:

A quantized version of LoRA with a specific type of quantization

Week 4 Assignment

Optional: reading materials and an exercise on QLoRA

Summary

- Pre-training is not only about self-supervised learning: data curation, selecting model architecture, pre-training recipe
- We can utilize scaling laws to determine which models to train
- Importance of fine-tuning: pre-training does not suffice for creating helpful assistants
- Supervised fine-tuning: useful for alignment and adaptation to downstream tasks
- Parameter-efficient fine-tuning can reduce the memory footprint
- Next lecture: preference-based fine-tuning for alignment!

References

- Radford et al., Improving Language Understanding by Generative Pre-Training, 2018.
- Llama Team, The Llama 3 Herd of Models, 2024.
- Kaplan et al., Scaling Laws for Neural Language Models, 2020.
- Hofmann et al., Training Compute Optimal Language Models, 2022.
- Besiroglu et al., Chinchilla Scaling: A Replication Attempt, 2024.
- Muennighoff et al., Scaling Data-constrained Language Models, 2023.
- Penedo et al., The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale, 2024.
- Ouyang et al., Training Language Models to Follow Instructions with Human Feedback, 2022.
- Hu et al., LoRA: Low-Rank Adaptation of Large Language Models, 2021.
- Book: Jurafsky and Martin, Speech and Language Processing, 2024.
- Dettmers et al., QLoRA: Efficient Finetuning of Quantized LLMs, 2023.

Acknowledgements: The content of this lecture is partly based on lectures from Stanford courses CS336 (https://stanford-cs336.github.io/spring2024/) and CS229 (more specifically, the guest lecture: https://www.youtube.com/watch?v=9vM4p9NN0Ts).