Single-Source Shortest Paths

Shortest-path problem

- 在一圖上找出兩點間最短路徑。
- G=(V, E)是一個Weighted Directed Graph (加權有向圖)
- V:Vertex (node) 節點
- E: edge (link) 連線 or arc (有向 邊)
- Weight function w: E→R界定出每個邊的權重。
- 以 $p = (v_0, v_1, ..., v_k)$ 表一個自 v_0 到 v_k 的 Path (路徑)。
- · Shortest path 最短路徑

Shortest-path problem

- $\mathbf{p} = (\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k)$
- 定義路徑長度 weight of path

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

·定義自u到v的最短距離

 $\delta(u, v) = \Big\{ \min\{w(p) : u \to v\}, \exists a \text{ path from } u \text{ to } v. \Big\}$ ∞ , otherwise.

Shortest-Path Variants

Shortest-Path problems

- shortest path from s to each vertex ν . (e.g. BFS) Single-source shortest-paths problem: Find the
- Single-destination shortest-paths problem: Find a shortest path to a given *destination* vertex t from each vertex ν .
- Single-pair shortest-path problem: Find a shortest path from u to v for given vertices u and v.
- All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v.

Ľ,

Optimal Substructure Property

Theorem: Subpaths of shortest paths are also shortest paths Let $P_{1k} = \langle v_I, ..., v_k \rangle$ be a shortest path from v_I to v_k

Let $P_{ij} = \langle v_i, ..., v_j \rangle$ be subpath of P_{1k} from v_i to v_j for any i, j

Then P_{ii} is a shortest path from v_i to v_j

Optimal Substructure Property

Proof: By cut and paste

- If some subpath were not a shortest path
- We could substitute a shorter subpath to create a shorter total path
- Hence, the original path would not be shortest path

Shortest-path tree rooted at s

- (根於8之最短路經樹) G'=(V', E'), 滿足下列三點 對應於圖G=(V, E) 的 Shortest-path tree rooted at s
- -V,是S可達的點集合V′⊆V°
- G'是一個以s為根的 Rooted Tree。
- 在G'中s到v的simple path即為G中s到v的最短路

Shortest-path tree rooted at s範例

Original Graph G

Shortest-path tree rooted at s

Negative-weight edges

- No problem, as long as no negative-weight cycles are reachable from the source
- Otherwise, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.

Predecessor graph

指向v的vertex (vertices), 稱為v的predecessor(s) $\vec{z} \mathcal{L} \vec{k} \pi[v] \circ e.g. \pi[w] = s.$ (s)

- 對一圖C=(Λ, E),根據一個表π來建構的子圖 (subgraph) $G_{\pi}=(V_{\pi}, E_{\pi})$, 满足以下條件:
- $-\pi[s]=NIL$,且 $s\in V_{\pi}$ 。設定起始節點
- 若 $\pi[v] \neq NIL 則 (\pi[v], v) \in E_{\pi}$ 且 $v \in V_{\pi}$ 。
- Shortest-path tree rooted at s是Predecessor graph的

Predecessor graph 範例

$\pi[s]$	$\pi[t]$	$\pi[u]$	$\pi[v]$	$\pi[w]$	$\pi[x]$	$\pi[y]$	$\pi[z]$
	S	NIL	t	S	t	X	Λ

Original Graph G Shortest-path tree rooted at s Single-Source Shortest Paths

Initialize-Single-Source演算法

- 已知之自S至V的最短距 定義變數d[v]代表目前
- 定義變數 而[v]代表目前 己知自S至V的最短路徑 上,V之前的那一點 (predecessor) 。
- $\pi[v]=NIL$, d[s]=0**初始時**, d[v]=∞,
- 已知之外,其餘均設為 即除自S到S的最短路徑

Initialize-Single-Source (G, S) for each vertex veV[G]

 $\pi[v] \leftarrow NIL$ do d[v]

d[s]**♦**0

Single-Source Shortest Paths

Relaxation 演算法

- 主要的目的在於利用有向邊(n, v)的資訊來更新目 前所知的最短路徑。
- 目前最近距離d[v]
- 考慮新的邊(n, v)的新距離 d[u]+w(u,v) Relax(u, v, w)

[n]p

Relaxation 範例

Triangle Inequality

Lemma 1: for a given vertex s \hat{I} V and for every edge (u,v) \hat{I} E,

- $\delta(s, v) \le \delta(s, u) + w(u, v)$
- 三角不等式(Triangle inequality): 對所有的邊(u, v), \delta(s, v) $\leq \delta(s, u) + w(u, v) \circ$

Proof: shortest path $s \sim v$ is no longer than any other path.

• in particular the path that takes the shortest path $s \sim v$ and then takes cycle (u,v)

最短路徑與 Relaxation的性質

δ(s, v) ≤ d[v],即d[v]總是s→v的最短距離上限。 旦d[v]=δ(s, v), 則Relaxation不會更改d[v]值 上限性質(Upper-Bound property):

8(s, n):s 到n 的最短距離 d[n]: 目前算得 s 到n 的最短距離

最短路徑與Relaxation的性質

如果s到v並無路徑,則 $d[v] = \delta(s, v) = \infty$ 。 無路徑性質

若s→v的最短路徑包含邊(n, v)且d[u]=δ(s, u) 最短 則此時執行Relax(u, v, w)會使得d[v]=δ(s, v)。 收斂性質(convergence property):

Single-Source Shortest Paths

收斂性質(convergence property)

假定Graph上存在從vertex(X)指向vertex(Y)之edge(X,Y),並且從起點vertex走到vertex(Y)之最 短路徑包含渲條edge。

distance[X] $= \delta(S,X)$,那麼在對edge(X,Y)進行 Relax()後,必定得到從vertex(S)走到vertex (Y)之最短路徑,並更新 $\mathsf{distance[V]} = \delta(S,Y)$,而且至此之後, $\mathsf{distance[V]}$ 將不會再被更 若在對edge(X,Y)進行 Relax() 之前,從vertex(S)到達vertex(X)的path就已經滿足最短路徑,

 $=\delta(S,X)$,那麼,此時對 $\operatorname{edge}(X,Y)$ 進行 $\operatorname{\mathsf{Relax}}()$,必定能得到從 $\operatorname{vertex}(S)$ 走到 $\operatorname{vertex}(Y)$ 之最 如圖五(a),Path = S - X - Y是從vertex(S)走到vertex(Y)的最短路徑,並且在對edge(X,Y)進行 Relax() 之前,從vertex(S)走到vertex(X)之path已經是最短路徑, distance[X 短路徑, distance[Y] $=\delta(S,Y)$ 。

Single-Source Shortest Paths

收斂性質(convergence property)

但是若從vertex(S)走到vertex(Y)之最短路徑不包含edge(X,Y),那麼即使在對edge(X,Y)做 Relax () 之前, distance[X] 已經等於 $\delta(S,X)$, distance[Y] 仍然不更新。

這表示, $\mathsf{distance[V]}$ 已經等於 $\delta(S,Y)$,如圖五 (b) 。或者,從 $\mathsf{vertex}(S)$ 走到 $\mathsf{vertex}(Y)$ 之最短 路徑會從其他vertex走到vertex(Y)。

最短路徑與Relaxation的性質

• Path-relaxation性質:

 $\forall v p = (v_0, v_1, \dots, v_k)$ 是一個自 $s = v_0 \rightarrow v_k$ 的最短路徑 則依序執行Relax(V₀,V₁,W), Relax(V₁,V₂,W),... $Relax(v_{k-1},v_k,w)$ 會使得 $d[v_k]=\delta(s,v_k)$ 。

• Predecessor graph性質:

d[v]=δ(s, v)時,此時對應的Predecessor graph G_π即 當經過一連串的Relaxation後,對所有的點A 是一個 Shortest-path tree rooted at s。

Path-relaxation property

考慮一條從vertex(0)到vertex(K)之路徑 $P:v_0-v_1-\ldots-v_K$,如果在對 path $\operatorname{2-edge}$ Relax ()的順序中,曾經出現edge(v_0,v_1)、edge(v_1,v_2)、…、edge(v_{K-1},v_K)的順序,那麼這條path一定 是最短路徑,滿足 $\mathsf{distance}[\mathtt{K}] = \delta(v_0, v_K)$ 。

有對其餘哪一條edge進行 Relax(), distance[2] 必定會等於 $\delta(0,2)$,因為 ${f Convergence}$ 在對edge(v₁,v₂)進行 Relax() 之前,只要已經對edge(v_o,v₁)進行過 Relax(),那麼,不管還 property •

Convergence property,只要在對edge(1,2)進行 Relax() 之前,已經對edge(0,1)進行 Relax (),如此便保證Path: 0-1-2一定是最短路徑,此時再對 $\operatorname{edge}(2,3)$ 進行 $\operatorname{Relax}()$,便能找 例如,現有一條從vertex(o)走到vertex(3)之最短路徑為Path:0-1-2-3,根據 $\widehat{=}$ $[Path:0-1-2-3 \circ$

換言之,只要確保 Relax() 的過程曾經出現「edge(0,1)->edge(1,2)->edge(2,3)」的順序,不需 理會中間是否有其他edge進行 Relax(),則使有也不影響最後結果。

• 例如,Relax()順序:「edge(2,3)->edge(0,1)->edge(2,3)->edge(1,2)->edge(2,3)」 仍可以得到最短路徑, $\mathsf{distance[3]} = \delta(0,3)$ 。

Bellman-Ford 演算法

可以計算出沒有負迴圈的圖之最短路徑

Bellman-Ford(G,w,s)

{ Initialize-Single-Source(G,s) | Initialize-Single-

for i = 1 to |V-1|

do for each edge (u, v) EE

do Relex(u,v,w)

 $\pi[v]$

d[s]**♦**0

do d[v]

for each vertex

 $V \in V[G]$

Source (G, S)

for each edge $(u,v) \in E$

do if d[v]>d[u]+w(u,v)

then return false

11代表有負迴圈

//代表計算成功

return true

Single-Source Shortest Paths

Bellman-Ford演算法運作範例

Initialize-Single-Source (G, S)

Bellman-Ford演算法運作範例

Single-Source Shortest Paths

Bellman-Ford演算法分析

- 正確性
- path tree rooted at s中一步可及的path正確計算出 對所有的邊作一次Relaxation則可將在Shortest-
- 由path-relaxation性質,做完|V|-1次之後,所有 的Shortest simple path終點v,d[v]= $\delta(s,v)$ 。

Bellman-Ford演算法分析

- 就時間複雜度的分析如下
- Initialize-Single-Source花去O(|V|)的時間。
- 對所有的邊做了O(|V|)次的Relaxation, 花去 0(|V||E|)的時間。
- 最後花去O(|E|)的時間檢查是否有負迴圈
- 故總共花去O(|V||E|)的時間。

Single-source shortest paths in DAGs

• DAG (directed access graph)

- 就是不存在cycle的directed graph

Single-Source Shortest Paths

Topologically sort 拓樸排序法

- edge(X,Y),那麼在Topological Sort中,vertex(X)一定出現 若在DAG上,存在一條從vertex(X)指向vertex(Y)的 在vertex(Y)之前。
- Topological Sort可能不唯一。

Single-source shortest paths in DAGs

```
    DAG (directed access graph)
```

Relaxation,可較短的時間內計算出最短路徑。 跟Bellman-Ford不同的是,按照特定的順序作

```
DAG-Shortest-Path(G,w,s)
```

```
Initialize-Single-Source (G, s)
{ Topologically sort V[G]
```

for each u taken in topological order do for each veadj[u]

do Relax(u,v,w)

以上演算法僅需O(|V|+|E|)的時間

Single-Source Shortest Paths

Single-Source Shortest Paths

Single-Source Shortest Paths

DAG-Shortest-Path 操作範例

Single-Source Shortest Paths

Dijkstra 演算法

0 僅能處理無負邊(no negative weight arc)的圖 比Bellman-ford演算法快,也是藉由挑選特定順序 來做Relaxation來達成目的。

利用Priority queue來實做 (Greedy Method)。

主要關鍵想法:利用收斂性質

The single-source shortest path problem

shortest paths from v_0 to all destinations

25

Dijkstra演算法

```
Q: Priority queue with d as the key
                                                                             Initialize-Single-Source(G,s)
                                                                                                                                                                                                              do Relax(u,v,w)
                                                                                                                                                                                     for each veadj[u]
                                                                                                                                                          u=Extract-Min(Q)
                                                                                                                                 while Q is not empty
                        Dijkstra(G,w,s)
                                                                                                        Q=V[G]
                                                                                                                                                            ф
```

Algorithm 3-4 Dijkstra's algorithm to generate single-source shortest paths

A directed graph G = (V, E) and a source vertex v_0 . For each edge $(u, v) \in E$, there is a non-negative number c(u, v) associated with it. Input:

$$|V| = n + 1.$$

Output: For each $v \in V$, the length of a shortest path from v_0 to v.

$$S := \{v_0\}$$

For i := 1 to n do

Begin

If
$$(v_0, v_i) \in E$$
 then

$$L(\nu_i) := c(\nu_0, \nu_i)$$

else

$$L(\nu_i) := \infty$$

7

For i := 1 to n do

Begin

Choose u from V - S such that L(u) is the smallest

$$S := S \bigcup \{u\}$$
 (* Put *u* into S^*)

For all w in V - S do

$$L(w) := \min(L(w), L(u) + c(u, w))$$

 End

Dijkstra's algorithm

Time complexity: $O(n^2)$

集合	C={}	$C=\{1\}$	$C=\{1,2\}$	$C=\{1, 2, 6\}$	$C=\{1, 2, 4, 7\}$	$C=\{1, 2, 3, 6, 7\}$	$C=\{1, 2, 3, 5, 6, 7\}$	$C=\{1, 2, 3, 4, 5, 6, 7\}$
8	8	8	8	8	69	51	50	<u>20</u>
7	8	15	15	15	15	15	15	15
9	8	14	14	14	14	14	14	14
5	8	8	8	44	35	34	34	34
4	8	8	8	8	8	8	45	45
3	8	8	33	32	32	32	32	32
2	8	<u>6</u>	6	6	6	6	6	6
1	0	0	0	0	0	0	0	0

由陣列找尋順序為8→5→3→6→1,所以最短路徑為1→6→3→5→8

 ∞

|

9

5

4

3

~

3

9

8

到點8的最短路徑:

Single-Source Shortest Paths

Dijkstra演算法操作範例

Dijkstra演算法操作範例

Dijkstra演算法分析

依照使用的Priority duene實做方式不同,會有不 同的執行時間

使用Linear array來實做,消耗O(|V|²)的時間

使用Binary heap來實做,消耗O(|E|log|V|)的時間

使用Fibonacci heap來實做,消耗O(|E|+|V|log|V|)的 時間

Fibonacci heaps

- 也是forest (min tree or max tree組成)
- 各層的sibilings使用circular doubly linked list

- 有以下的operations:
- Insert O(1), find min O(1), delete min O(log n), decrease O(1), merge O(1)
- 除了delete min外, 其他都可以"平均"達到O(1)!