Chapter 5: 1bd, 3bd, 4, 6, 17, 18, 27.

Additional suggested exercises: 29, 31, 32, 33.

Due date: Friday, 10/10

(Exercise numbers correspond to the printed textbook, generated from 2013/08/16 source files.)

1. Write the following permutations in cycle notation.

(b)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$

Solution: (b) (14)(35) (d) (24)

3. Express the following permutations as products of transpositions; identify them as even or odd.

(b) (156)(234) (d) (17254)(1423)(154632)

Solution:

- (b) (16)(15)(24)(23) is even. (d) (14)(15)(12)(17)(13)(12)(14)(12)(13)(16)(14)(15) is even.
- **4.** Find $(a_1, a_2, \ldots, a_n)^{-1}$.

Solution: We will verify that the permutation $f = (a_1, a_2, \ldots, a_n)(a_n, a_{n-1}, \ldots, a_1)$ is the identity map f(x) = x, and thus the inverse of (a_1, a_2, \ldots, a_n) is $(a_n, a_{n-1}, \ldots, a_1)$. Indeed, if x is not in the set $\{a_1, \ldots, a_n\}$, then clearly f(x) = x. If x is in the set $\{a_1, \ldots, a_n\}$, say $x = a_j$, then

$$f(x) = f(a_j) = (a_1, a_2, \dots, a_n)(a_n, a_{n-1}, \dots, a_1) a_j$$
$$= (a_1, a_2, \dots, a_n) a_{j-1}$$
$$= a_j = x$$

6. Find all of the subgroups in A_4 . What is the order of each subgroup?

Solution: First recall that the 12 elements of A_4 are

$${e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)}.$$

With the exception of the (improper) subgroup A_4 , and the Klein 4 subgroup

$$V_4 = \{e, (12)(34), (13)(24), (14)(23)\}$$
 (of order 4),

the other eight subgroups are cyclic. They are

$$\langle (123) \rangle = \{e, (123), (132)\}$$
 (order 3)
 $\langle (124) \rangle = \{e, (124), (142)\}$ (order 3)
 $\langle (134) \rangle = \{e, (134), (143)\}$ (order 3)
 $\langle (234) \rangle = \{e, (234), (243)\}$ (order 3)
 $\langle (12)(34) \rangle = \{e, (12)(34)\}$ (order 2)
 $\langle (13)(24) \rangle = \{e, (13)(24)\}$ (order 2)
 $\langle (14)(23) \rangle = \{e, (14)(23)\}$ (order 2)
 $\langle (e) \rangle = \{e\}$ (order 1)

17. Prove that S_n is nonabelian for $n \geq 3$.

Solution: Note that, for every $n \geq 3$, the permutations (123) and (12) belong to S_n . Therefore, if we can show that these two elements do not commute, then we will have proved that S_n is nonabelian when $n \geq 3$. Indeed,

$$(123) \cdot (12) = (13) \neq (23) = (12) \cdot (123).$$

18. Prove that A_n is nonabelian for $n \geq 4$.

Solution: Note that, for every $n \geq 4$, the permutations (123) and (12)(34) belong to A_n . Therefore, if we can show that these two elements do not commute, then we will have proved that A_n is nonabelian when $n \geq 4$. Indeed,

$$(123) \cdot (12)(34) = (134) \neq (243) = (12)(34) \cdot (123).$$

27. Let G be a group and define a map $\lambda_g: G \to G$ by $\lambda_g(a) = ga$. Prove that λ_g is a permutation of G.

Solution: We must show that λ_g is a bijection (i.e., a one-to-one and onto map). The map λ_g is clearly one-to-one, since $\lambda_g(a) = \lambda_g(b)$ means ga = gb, so $g^{-1}ga = g^{-1}gb$, so a = b. The map λ_g is onto since, for any $x \in G$, we can find a $y \in G$ with $\lambda_g(y) = x$. Indeed, let $y = g^{-1}x$, which belongs to G. Then, $\lambda_g(y) = \lambda_g(g^{-1}x) = x$.

Additional suggested exercises: 29, 31, 32, 33.

29. Recall that the *center* of a group G is

$$Z(G) = \{ g \in G : gx = xg \text{ for all } x \in G \}.$$

Find the center of D_8 . What about the center of D_{10} ? What is the center of D_n ?

- **31.** For α and β in S_n , define $\alpha \sim \beta$ if there exists an $\sigma \in S_n$ such that $\sigma \alpha \sigma^{-1} = \beta$. Show that \sim is an equivalence relation on S_n .
- **32.** Let $\sigma \in S_X$. If $\sigma^n(x) = y$, we will say that $x \sim y$.
 - (a) Show that \sim is an equivalence relation on X.
 - (b) If $\sigma \in A_n$ and $\tau \in S_n$, show that $\tau^{-1}\sigma\tau \in A_n$.
 - (c) Define the *orbit* of $x \in X$ under $\sigma \in S_X$ to be the set

$$\mathcal{O}_{x,\sigma} = \{ y : x \sim y \}.$$

Compute the orbits of α, β, γ where

$$\alpha = (1254)$$

$$\beta = (123)(45)$$

$$\gamma = (13)(25).$$

- (d) If $\mathcal{O}_{x,\sigma} \cap \mathcal{O}_{y,\sigma} \neq \emptyset$, prove that $\mathcal{O}_{x,\sigma} = \mathcal{O}_{y,\sigma}$. The orbits under a permutation σ are the equivalence classes corresponding to the equivalence relation \sim .
- (e) A subgroup H of S_X is transitive if for every $x, y \in X$, there exists a $\sigma \in H$ such that $\sigma(x) = y$. Prove that $\langle \sigma \rangle$ is transitive if and only if $\mathcal{O}_{x,\sigma} = X$ for some $x \in X$.
- **33.** Let $\alpha \in S_n$ for $n \geq 3$. If $\alpha\beta = \beta\alpha$ for all $\beta \in S_n$, prove that α must be the identity permutation; hence, the center of S_n is the trivial subgroup.