Beyond Search: Statistical Topic Models for Text Analysis

ChengXiang Zhai

Department of Computer Science University of Illinois at Urbana-Champaign

http://www.cs.uiuc.edu/homes/czhai

Search is a means to the end of finishing a task

Example Task 1: Comparing News Articles

What's in common? What's unique?

Common Themes	"Vietnam" specific	"Afghan" specific	"Iraq" specific
United nations		•••	
Death of people			

Example Task 2: Compare Customer Reviews

Common Themes	"IBM" specific	"APPLE" specific	"DELL" specific
Battery Life	••••		
Hard disk			•••
Speed			

Which laptop to buy?

Example Task 3: Identify Emerging Research Topics

Example Task 4: Analysis of Topic Diffusion

How did a discussion of a topic in blogs spread?

Sample Task 5: Opinion Analysis on Blog Articles

Query="Da Vinci Code"

Tom Hanks, who is my favorite movie star act the leading role.

protesting... will lose your faith by watching the movie.

a good book to past time.

... so sick of people making such a big deal about a fiction **book**

What did people like/dislike about "Da Vinci Code"?

Questions

- Can we model all these analysis problems in a Yes! general way?
- Can we solve these problems with a unified Yes! approach?
- How can we bring users into the loop? Yes!

Solutions: Statistical Topic Models

Rest of the talk

- Overview of Statistical Topic Models
- Contextual Probabilistic Latent Semantic Analysis (CPLSA)
- Text Analysis Enabled by CPLSA
- From Search Engines to Analysis Engines

What is a Statistical LM?

- A probability distribution over word sequences
 - p("Today is Wednesday") ≈ 0.001
 - p("Today Wednesday is") ≈ 0.000000000001
 - $p("The\ eigenvalue\ is\ positive")$ ≈ 0.00001
- Context/topic dependent!
- Can also be regarded as a probabilistic mechanism for "generating" text, thus also called a "generative" model

The Simplest Language Model (Unigram Model)

- Generate a piece of text by generating each word independently
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Parameters: $\{p(w_i)\}\ p(w_1)+...+p(w_N)=1$ (N is voc. size)
- Essentially a multinomial distribution over words
- A piece of text can be regarded as a sample drawn according to this word distribution

Text Generation with Unigram LM

(Unigram) Language Model θ **Sampling** Document d $p(\mathbf{w}|\boldsymbol{\theta})$ text 0.2mining 0.1 Text mining assocation 0.01 Topic 1: paper clustering 0.02 Text mining food 0.00001 Given θ , p(d| θ) varies according to d food 0.25 Topic 2: Food nutrition nutrition 0.1 Health paper healthy 0.05 diet 0.02

Estimation of Unigram LM

language model as topic representation?

Language Model as Text Representation: Early Work

- 1961: H. P. Luhn's early idea of using relative frequency to represent text [Luhn 61]
- 1976: Robertson & Sparck Jones' BIR model [Robertson & Sparck Jones 76]
- 1989: Wong & Yao's work on multinomial distribution representation [Wong & Yao 89]

Luhn, H. P (1961) The automatic derivation of information retrieval encodements from machine-readable texts. In A. Kent (Ed.), *Information Retrieval and Machine Translation*, Vol. 3, Pt 2., pp. 1021-1028.

- S. Robertson and K. Sparck Jones. (1976). *Relevance Weighting of Search Terms*. JASIS, 27, 129-146.
- S. K. M. Wong and Y. Y. Yao (1989), A probability distribution model for information retrieval. *Information Processing and Management*, 25(1):39--53.

Language Model as Text Representation: Two Important Milestones in 1998~1999

- 1998: Language model for retrieval (i.e., query likelihood scoring [Ponte & Croft 98] (and also independently [Hiemstra & Kraaij 99])
- 1999: Probabilistic Latent Semantic Analysis (PLSA) [Hofmann 99]

- J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In *Proceedings of ACM-SIGIR 1998*, pages 275-281.
- D. Hiemstra and W. Kraaij, Twenty-One at TREC-7: Ad-hoc and Cross-language track, In *Proceedings of the Seventh Text REtrieval Conference (TREC-7)*, 1999. Thomas Hofmann: Probabilistic Latent Semantic Analysis. UAI 1999: 289-296

Probabilistic Latent Semantic Analysis (PLSA)

[Hofmann 99]

Thomas Hofmann, **Probabilistic Latent Semantic Indexing**, *Proceedings of ACM SIGIR 1999*, pp. 50-57, 1999.

Parameter Estimation

Maximizing data likelihood:

 $\Lambda^* = \arg\max_{\Lambda} \log(P(Data \mid Model))$

Parameter Estimation using EM algorithm

Prior set by users

Pseudo-Counts

- ipod ?
 nano ?
 music ?
 download ?
 apple ?
- movie ?
 harry ?
 potter ?
 actress ?
 music ?

Guess the affiliation

Estimate the params

I downloaded
the music of
the movie
harry potter to
my ipod nano

Context Features of a Document

A General View of Context

Empower PLSA with Context [Mei & Zhai 06]

- Make topics depend on context variables
- Text is generated from a contextualized PLSA model (CPLSA)
- Fitting such a model to text enables a wide range of analysis tasks involving topics and context

Qiaozhu Mei, ChengXiang Zhai, **A Mixture Model for Contextual Text Mining**, *Proceedings of the 2006 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, (**KDD'06**), pages 649-655

Contextual Probabilistic Latent Semantics Analysis

Comparing News Articles

Iraq War (30 articles) vs. Afghan War (26 articles)

The common theme indicates that "United Nations" is involved in both wars

↑			
	Cluster 1	Cluster 2	Cluster 3
Common	united 0.042 nations 0.04	killed 0.035 month 0.032	
Theme		deaths 0.023	
Iraq	n 0.03 Weapons 0.024	troops 0.016 hoon 0.015	
Theme	Inspections 0.023	sanches 0.012	
	Northern 0.04 alliance 0.04	taleban 0.026 rumsfeld 0.02	
Afghan	kabul 0.03 taleban 0.025	hotel 0.012 front 0.011	
Theme	aid 0.02	•••	

Collection-specific themes indicate different roles of "United Nations" in the two wars

Spatiotemporal Patterns in Blog Articles

- Query= "Hurricane Katrina"
- Topics in the results:

Government Response	New Orleans	Oil Price	Praying and Blessing	Aid and Donation	Personal
bush 0.071	city 0.063	price 0.077	god 0.141	donate 0.120	i 0.405
president 0.061	orleans 0.054	oil 0.064	pray 0.047	relief 0.076	my 0.116
federal 0.051	new 0.034	gas 0.045	prayer 0.041	red 0.070	me 0.060
government 0.047	louisiana 0.023	increase 0.020	love 0.030	cross 0.065	am 0.029
fema 0.047	flood 0.022	product 0.020	life 0.025	help 0.050	think 0.015
administrate 0.023	evacuate 0.021	fuel 0.018	bless 0.025	victim 0.036	feel 0.012
response 0.020	storm 0.017	company 0.018	lord 0.017	organize 0.022	know 0.011
brown 0.019	resident 0.016	energy 0.017	jesus 0.016	effort 0.020	something 0.007
blame 0.017	center 0.016	market 0.016	will 0.013	fund 0.019	guess 0.007
governor 0.014	rescue 0.012	gasoline 0.012	faith 0.012	volunteer 0.019	myself 0.006

Spatiotemporal patterns

Theme Life Cycles ("Hurricane Katrina")

Theme Snapshots ("Hurricane Katrina")

Week5: The theme fades out in most states

Theme Life Cycles (KDD Papers)

Theme Evolution Graph: KDD

Multi-Faceted Sentiment Summary (query="Da Vinci Code")

	Neutral	Positive	Negative
	Ron Howards selection of Tom Hanks to play Robert Langdon.	Tom Hanks stars in the movie, who can be mad at that?	But the movie might get delayed, and even killed off if he loses.
Facet 1: Movie	Directed by: Ron Howard Writing credits: Akiva Goldsman	Tom Hanks, who is my favorite movie star act the leading role.	protesting will lose your faith by watching the movie.
	After watching the movie I went online and some research on	Anybody is interested in it?	so sick of people making such a big deal about a FICTION book and movie.
Facet 2: Book	I remembered when i first read the book, I finished the book in two days.	Awesome book.	so sick of people making such a big deal about a FICTION book and movie.
	I'm reading "Da Vinci Code" now.	So still a good book to past time.	This controversy book cause lots conflict in west society.

Separate Theme Sentiment Dynamics

"book"

"religious beliefs"

Event Impact Analysis: IR Research

Theme: retrieval models

0.1599 term relevance 0.0752 weight 0.0660 feedback 0.0372 independence 0.0311 model 0.0310 frequent 0.0233 probabilistic 0.0188 0.0173 document

Many Other Variations

- Latent Dirichlet Allocation (LDA) [Blei et al. 03]
 - Impose priors on topic choices and word distributions
 - Make PLSA a generative model
- Many variants of LDA!
- In practice, LDA and PLSA variants tend to work equally well for text analysis [Lu et al. 11]

[Blei et al. 02] D. Blei, A. Ng, and M. Jordan. *Latent dirichlet allocation*. In T G Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

Yue Lu, Qiaozhu Mei, ChengXiang Zhai. Investigating Task Performance of Probabilistic Topic Models - An Empirical Study of PLSA and LDA, *Information Retrieval*, vol. 14, no. 2, April, 2011.

Other Uses of Topic Models for Text Analysis

- Topic analysis on social networks [Mei et al. 08]
- Opinion Integration [Lu & Zhai 08]
- Latent Aspect Rating Analysis [Wang et al. 10]

Qiaozhu Mei, Deng Cai, Duo Zhang, ChengXiang Zhai. **Topic Modeling with Network Regularization**, *Proceedings of the World Wide Conference 2008* (**WWW'08**), pages 101-110.

Yue Lu, ChengXiang Zhai. **Opinion Integration Through Semi-supervised Topic Modeling**, *Proceedings of the World Wide Conference 2008* (**WWW'08**), pages 121-130.

Hongning Wang, Yue Lu, ChengXiang Zhai. Latent Aspect Rating Analysis on Review Text Data: A Rating Regression Approach, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'10), pages 115-124, 2010.

Topic Modeling + Social Networks: who work together on what?

Authors writing about the same topic form a community Separation of 3 research communities: IR, ML, Web

Topic Model for Opinion Integration

How to digest all?

Two Kinds of Opinions

Expert opinions

- CNET editor's review
- Wikipedia article
- Well-structured
- Easy to access
- Maybe biased
- Outdated soon

Ordinary opinions

- Forum discussions
- Blog articles
- Represent the majority
- Up to date
- Hard to access
- fragmental

Generate an Integrative Summary

Methods

Semi-Supervised Probabilistic Latent Semantic Analysis (PLSA)

- The aspects extracted from expert reviews serve as clues to define a conjugate prior on topics
- Maximum a Posteriori (MAP) estimation
- Repeated applications of PLSA to integrate and align opinions in blog articles to expert review

Results: Product (iPhone)

Opinion Integration with review aspects

	Review article		Similar opinio	ns	Supplem	Supplementary opinions		
	You can make		N/A		metho	methods for unlocking the		
	emergency calls, but				iPhone h	iPhone have emerged on the		
	you can't use any			_	Unlock/h	Unlock/hack past few weeks		s,
	other functions C		onfirm the		iPhone involve t		involve tinkerin	g
_	Activation opin		ions from the		with the iPhone hardware.		ne hardware	
	rated battery life hours talk time, 24		review	ature	Playing r	elativ	ely high bitrate	
			Up to 8 Hours	of Talk	VGA H.2	VGA H.264 videos, our iPhone		
	hours of music		Time, 6 Hours	of	lasted al	lasted almost exactly 9 freaking		ng
	playback, 7 hours of		Internet Use,	7 Hours	hours of	hours of continuous playback		
	video playback, and 6		of Video Playk	oack or	with cell	with cell and WiFi on (but		
	hours on Internet use.		24 Hours of A	udio	Bluetoo	Bluetoo		
			Playback			Additional info under real usage		
	Pattory				•	uno	iei ieai usage	

Battery

Results: Product (iPhone)

Opinions on extra aspects

support	Supplementary opinions on extra aspects					
15	1	have heard of iASignan iP and the activate your phone with activate iPhone activate iPhone				
13	Cisco has owned the trademark 2000, when it acquired InfoGoriginally registered the name			rk on the name "iPhone" since iPhone trademark originally owned by		
13	look at 10	A better choice for	tpho	hone, a hones like the Nokia N95 have iPhone can't current		

Results: Product (iPhone)

Support statistics for review aspects

Latent Aspect Rating Analysis

Hotel Palomar Chicago: Traveler Reviews

How to infer aspect ratings?

Jul 11, 2010 | Trip type: Couples NEW

Save Review

My ratings for this hotel

 O Value ®®®® Rooms

Sleep Quality

Stayed for a weekend in July. Walked everywhere, enjoyed the comfy bed and quiet hallways, more

terrific service and gorgeous facility

Jul 7, 2010 | Trip type: Family NEW

Save Review

My ratings for this hotel

 Rooms **◎ ◎ ◎ ◎ ○** Location Cleanliness **⊚⊚⊚⊚** Sleep Quality

I stayed at the Palomar with my young daughter for three nights June 17-20, 2010 and absolutely loved the hotel. The room was one of the nicest I've ever stayed in (My daughter loved the Fuji jetted tub so much that she wanted to take 2 baths a day!) in terms of decor, design, and size. (It compared favorably to... more

How to infer aspect weights?

Solution: Latent Rating Regression Model

Topic model for aspect discovery

Aspect-Based Opinion Summarization

Table 6: Aspect-based Comparative Summarization (Hotel Max in Seattle)

Aspect	Summary	Rating		
Value	Truly unique character and a great location at a reasonable price Hotel Max was an excellent choice for our recent three night stay in Seattle.	3.1		
vaiae	Overall not a negative experience, however considering that the hotel industry is very much in the impressing business there was a lot of room for improvement.	1.7		
	We chose this hotel because there was a Travelzoo deal where the Queen of Art room was	3.7		
Room	\$139.00/night.			
	Heating system is a window AC unit that has to be shut off at night or guests will roast.	1.2		
	The location ,a short walk to downtown and Pike Place market , made the hotel a good	3.5		
Location	choice.			
	when you visit a big metropolitan city, be prepared to hear a little traffic outside!	2.1		
	You can pay for wireless by the day or use the complimentary Internet in the business center	2.7		
Business Service	behind the lobby though.			
	My only complaint is the daily charge for internet access when you can pretty much connect	0.9		
	to wireless on the streets anymore.			

Reviewer Behavior Analysis & Personalized Ranking of Entities

Table 4: User behavior analysis

People like expensive hotels because of ___ good service

	Expensive Hotel		Cheap Hotel		
Aspect	5 Star	3 Star	5 Star	1 Star	
Value	0.134	0.148	0.171	0.093	
Room	0.098	0.162	0.126	0.121	
Location	0.171	0.074	0.161	0.082	
Cleanliness	0.081	0.163	0.116	0.294	
Service	(0.251)	0.101	0.101	0.049	

People like cheap hotels because of good value

Query: 0.9 value

0.1 others

Non-Personalized

Personalized

Table 10:	Personalized	Hotel	Ranking
-----------	--------------	-------	---------

	Hotel	Overall Rating	Price	Location
1	Majestic Colonial	5.0	339	Punta Cana
	Agua Resort	5.0	753	Punta Cana
	Majestic Elegance	5.0	537	Punta Cana
_	→ Grand Palladium	5.0	277	Punta Cana
	Iberostar	5.0	157	Punta Cana
	Elan Hotel Modern	5.0	216	Los Angeles
	Marriott San Juan Resort	4.0	354	San Juan
	Punta Cana Club	5.0	409	Punta Cana
	Comfort Inn	5.0	155	Boston
	Hotel Commonwealth	4.5	313	Boston

How can we extend a search engine to leverage topic models for text analysis?

How should we extend a search engine to support text analysis in general?

Analysis Engine based on Topic Models

Beyond Search: Toward a General Analysis Engine

Challenges in Building a General Analysis Engine

- What is a "task" and how can we formally model a task? (task vs. intent vs. information needs)
- How to design a task specification language?
- How do we design a set of general analysis operators to accommodate many different tasks?
- What does ranking mean in an analysis engine (ranking terms, documents, topics, operators)?
- What should the user interface look like?
- How can we seamlessly integrate search and analysis?
- How should we evaluate an analysis engine?
- ...

Analysis Operators

Examples of Specific Operators

- C={D1, ..., Dn}; S, S1, S2, ..., Sk subset of C
- Select Operator
 - Querying(Q): $C \rightarrow S$
 - Browsing: C→S
- Split
 - Categorization (supervised): C→ S1, S2, ..., Sk
 - Clustering (unsupervised): C→ S1, S2, ..., Sk
- Interpret
 - $-C \times \theta \rightarrow S$
- Ranking
 - $-\theta$ x Si \rightarrow ordered Si

Compound Analysis Operator: Comparison of K Topics

Interpret(Compare(Select(T1,C), Select(T2,C),...Select(Tk,C)),C)

Compound Analysis Operator: Split and Compare

Interpret(Compare(Split(S,k)),C)

BeeSpace System

Sarma, M.S., et al. (2011) BeeSpace Navigator: exploratory analysis of gene function using semantic indexing of biological literature. *Nucleic Acids Research*, 2011, 1-8, doi:10.1093/nar/gkr285.

Automation-Confidence (AC) Tradeoff

Confidence in service

Automation-Generality (AG) Tradeoff

Automation-Confidence Tradeoff: Dining Analogy

Serve Raw-Food

Need further processing, but flexible for making different dishes

Serve Cooked Dishes

Directly useful for a task, But would be worse if it's not the right dish

Automation-Generality Tradeoff: Dining Analogy

What's the right paradigm? Need both paradigms?

Buffet Paradigm

Basic Components + Infinite Combination

Food Court Paradigm

Finite Choices of Complete Packages

Summary

- Statistical topic models are promising general tools for supporting text analysis
- Next-generation search engines should go beyond search to seamlessly support text analysis and better help users complete their tasks
- Many challenges to be solved:
 - Task modeling
 - Task specification language
 - New analysis operators
 - New ranking models
 - New interface issues
 - New evaluation challenges
 - Automation-Generality (AG) tradeoff & Automation-Confidence (AC) tradeoff

— ...

Looking Ahead...

Text Analysis/Mining

Databases & Data Mining

Visualization

Natural Language Processing

Information Retrieval

Acknowledgments

- Collaborators: Qiaozhu Mei, Yue Lu, Hongning Wang, Jiawei Han, Bruce Croft, and many others
- Funding

Thank You!

Questions/Comments?