Name : Jeruganti Ameesha Trainer name : satinnder

Mail id: ameeshajeruganti@gmail.com

DAY 01: [14-06-2024]

1. Differences between dual core and quad core:

Dual-Core processors are those processing units that have two cores. A core is like a processing part that can complete a single time at a point in time so dual-core means that processing can be done at a faster rate. Dual-core processing systems allow performing more than one function at a time.

Quad-Core processors are those processing systems that have four cores so it is capable of performing a number of tasks at the same time means it provides the power of parallel processing. These processing systems are much faster than any other processing system.

Following is a table of differences between Dual Core and Quad Core Processors:

	Dual-Core	Quad-Core
1.	It consists of 2 cores, each designated to perform a specific task.	It consists of 4 cores which give the ability to perform multiple jobs concurrently.
2.	Resource-efficient as it uses less power as compared to Quad-core systems.	Resource utilization is more as compared to dual-core because the number of cores is more.
3.	The clock speed and computation capability are slower than Quad-core.	It is much faster than dual-core systems and computational efficiency is high.
4.	Parallel processing capability is not available in these processors.	It has 4 cores which give it the capability of parallel computing.
5.	The graphic support of the dual-core system is weak and it cannot run heavy graphics.	The graphic support of the quad-core system is high and it is used to run heavy graphics.
6.	The hardware of these processors does not get heated as they produce little heat.	Heat ejection is high and due to this, these processors make the hardware gets heated.
7.	The performance of dual-core processing systems is good.	The performance of dual-core processing systems is better.
8.	Not good for tasks like video editing or animations.	Easily handles the task of video editing and animations.

2. Difference between Intel Core i5 and i7

- Corei5 processors use the DMI bus type, while Corei7 uses the QPI bus type.
- Core i5 Processor is dual-core or quad-core, whereas Core i7 processor is dual-core, quad-core, and hex-core processor architectures.
- Hyper-Threading is not possible in Core i5 processors, but it is possible in Core i7 processors.
- The clock speed of Core i5 is 1.2-3.6 GHz, while the clock speed of corei7 is 1.3-3.5 GHz.
- size of Core i5 is 3MB-6MB. On the other hand, the cache size of Core i7 is 4MB-8MB.
- The battery of the Core i5 processor last for 14 hours and 45 but the battery of the Core i7 processor last for 10 hours and 49 minutes.
- i5 processors offer embedded options, but i7 processor does not offer an embedded option.

Day 02: [17-06-2024]

Task: Write Ip Address

	N	H H H
18	- 522	0 0 0
	572	128 0 0
19		190 0
110	- 572	236: 0 0
Ju	362	000
112	- 522	ado A
113	512	SIG N
116	25	323
115	- 255	921 000
116	- 522	0 0.226
117	226	191 1
	255	D. O.
118	325	
119	520	A
130		
121	7 522	
122	- 215	522 523 0
123	- 355	355 254.0
194	- 255	955 955.0
125	- 255	255 255 128
126	- 255	752 525 194
127	- 525	522 522 531
128	725 / -	255 255 240
129	- 255	819. 226 226
130	- 255	226 226 226
131	- 255	255 776 776

Binary To Decimal Conversion

128	(64	32		16	8	4	2
1	=		Answe	<u>ers</u>				
1 0	0 =		0 146		1	0	0	1
0 1	=	1	119	1	1	0	1	1
1 1	=	1	255	1	1	1	1	1
1 1	=	1	197	0	0	0	1	0
1 0	=	1	246	1	1	0	1	1
0 1	=	0	19	0	1	0	0	1
1 1	=	0	129	0	0	0	0	0
0 1	=	0	49	1	1	0	0	0
0 0	=	1	120	1	1	1	0	0
1 0	=	1	240	1	1	0	0	0
0 1	=	0	59	1	1	1	0	1
0 1	=	0	7	0	0	0	1	1

Decimal To Binary Conversion

128 =	64 255	32	16 8	3 4	2	1	
1	1	1	0	1	1	1	0
=	238						
0	0	1	0	0	0	1	0
=	34						
0	1	1	1	1	0	1	1
=	123						
0	0	1	1	0	0	1	0
=	50						
1	1	1	1	1	1	1	1
=	255						
1	1	0	0	1	0	0	0
=	200						
0	0	0	0	1	0	1	0
=	10						
1	0	0	0	1	0	1	0
=	138						
0	0	0	0	0	0	0	1
=	1						
0	0	0	0	1	1	0	1
=	13						
1	1	1	1	1	0	1	0
=	250						
0	1	1	0	1	0	1	1
=	107						

1	1	1	0	0	0	0	0
=	224						
0	1	1	1	0	0	1	0
=	114						
1	1	0	0	0	0	0	0
=	192						

Address Class Identification

Address	Class
10.250.1.1	<u>A</u>
150.10.15.0	<u>B</u>
192.14.2.0	<u>C</u>
148.17.9.1	<u>B</u>
193.42.1.1	<u>C</u>
126.8.156.0	<u>A</u>
220.200.23.1	<u>C</u>
230.230.45.58	<u>D</u>
177.100.18.4	<u>B</u>
119.18.45.0	<u>A</u>
249.240.80.78	<u>E</u>

Network Addresses

Using the IP addres and suubnet mask shown write out the network address

188.10.18.2 255.255.0.0	<u>188.10.0.0</u>
10.10.48.80 255.255.255.0	10.10.48.0
192.149.24.191 255.255.255.0	192.149.24.0
1.0000000000000000000000000000000000000	

150.203.23.19

255.255.0.0	150.203.0.0
10.10.10.10 255.0.0.0	10.0.0.0
186.13.23.110 255.255.255.0	186.13.23.0
223.69.230.250 255.255.0.0	223.69.0.0
200.120.135.15 255.255.255.0	200.120.135.0

Host Addresses

Using the IP address and suubnet mask shown write out the host address

188.10.18.2 255.255.0.0	0.0.18.2
10.10.48.80 255.255.255.0	0.0.0.80
222.49.49.11 255.255.255.0	0.0.0.11
128.23.230.19 255.255.0.0	0.0.230.19
10.10.10.10 255.0.0.0	0.10.10.10

200.113.123.11 255.255.255.0	0.0.0.11
223.169.23.20 255.255.0.0	0.0.23.20

Default Subnet Masks

Write the correct default subnet mask for each of the following addresses:

177.100.18.4	255.255.0.0
119.18.45.0	<u>255.0.0.0</u>
191.249.234.191	255.255.0.0
223.23.223.109	255.255.255.0
10.10.250.1	255.0.0.0
126.123.23.1	<u>255.0.0.0</u>
223.69.230.250	255.255.255.0
192.12.35.105	255.255.255.0
77.251.200.51	<u>255.0.0.0</u>
189.210.50.1	255.255.0.0
88.45.65.35	<u>255.0.0.0</u>
128.212.250.254	<u>255.255.0.0</u>

- /8 255.0.0.0
- /9 255.128.0.0
- /10 255.192.0.0
- /11 255.224.0.0
- /12 255.240.0.0
- /13 255.248.0.0
- /14 255.252.0.0
- /15 255.254.0.0
- /16 255.255.0.0
- /17 255.255.128.0
- /18 255.255.192.0
- /19 255.255.224.0
- /20 255.255.240.0
- /21 255.255.248.0
- /22 255.255.252.0
- /23 255.255.254.0
- /24 255.255.255.0
- /25 255.255.255.128
- /26 255.255.255.192
- /27 255.255.255.224
- /28 255.255.255.240
- /29 255.255.255.248

/30 - 255.255.255.252

/31 - 255.255.255.254

/32 - 255.255.255.255

DAY 03 [18-06-2024]

LAB - 01:

LAB - 02

Router - Pc

Pc - Router

LAB - 03

LAB - 04

DAY 04[19-06-2024]

LAB - 01

LAB - 02

Static Router R1:-

Static Router R2:-

DAY 05[20-06-2024]

Task - 01

OSI MODEL:-

OSI stands for Open Systems Interconnection, where open stands to say non-proprietary. It is a 7-layer architecture with each layer having specific functionality to perform. All these 7 layers work collaboratively to transmit the data from one person to another across the globe. The OSI reference model was developed by ISO – 'International Organization for Standardization', in the year 1984.

The OSI model provides a theoretical foundation for understanding network communication. However, it is usually not directly implemented in its entirety in real-world networking hardware or software. Instead, specific protocols and technologies are often designed based on the principles outlined in the OSI model to facilitate efficient data transmission and networking operations.

Number	Layers name	Protocols name
	1 Application	FTP,TELNET,DHCP,HTTP,DNS,POP3,SMTP
	2 Presentation	SSL(secure socket layerr)
	3 Session	TCP,RTP
	4 Transport	TCP,UPD
	Network	lpv4,lpv6
	Datalink	PPP(point to poi ,PPPT(point to p telling)
	7 Physical	Hub,Repeaters,cables

TCP/IP MODEL:-

The TCP model stands for Transmission Control Protocol, whereas IP stands for Internet Protocol. A number of protocols that make the internet possibly comes under the TCP/IP model. Nowadays, we do not hear the name of the TCP/IP model much, we generally hear the name of the IPv4 or IPv6, but it is still valid. This model consists of 4 layers. Now, we will look at the diagrammatic representation of the TCP/IP model.

DIFFERENCE BETWEEN TCP/IP AND OSI MODEL?

Task - 02

Port#	Protocol		
21	FTP Control		
20	FTP Data		
23	Telnet		
25	SMTP		
53	DNS		
80	HTTP		
110	POP3		
143	IMAP		
443	HTTPS		

OSI Layer	Protocol	Port Number(s)				
Application (Layer H		80 (TCP)				
	HTTPS	443 (TCP)				
	FTP	21 (TCP for control), 20 (TCP for data)			
	SMTP	25 (TCP), 587 (TCP for submission), 465 (TCP for SMTPS)				
	POP3	110 (TCP), 995 (TCP for POP3S)				
	IMAP	143 (TCP), 993 (TCP for IMAPS)				
	DNS	53 (TCP/UDP)	,			
	Telnet	23 (TCP)				
	SSH	22 (TCP)				
	SNMP		es), 162 (UDP for tra	ps)		
	NTP	123 (UDP)				
	LDAP	389 (TCP/UDP), 636	(TCP for LDAPS)			
	TFTP	69 (UDP)				
	IRC	194 (TCP)				
	SIP	5060 (TCP/UDP), 5061 (TCP for SIP over TLS)				
	RDP	3389 (TCP)				
	DHCP	67 (UDP server), 68	(UDP client)			
	Syslog	514 (UDP)				
	MQTT	1883 (TCP), 8883 (TCP for MQTT over SSL)				
	XMPP	5222 (TCP), 5223 (TCP for XMPP over SSL)				
	RTSP	554 (TCP/UDP)				
	Microsoft SQL S	ficrosoft SQL Serv 1433 (TCP)				
	MySQL	3306 (TCP)				
	IPP	631 (TCP/UDP)				
	SMTPS	465 (TCP)				
	IMAPS	993 (TCP)				
	POP3S	995 (TCP)				
Presentation (Laye	SSL/TLS	Often associated w	ith HTTPS (443), FT	PS (990)		

	MIME	N/A
	JPEG	N/A
	GIF	N/A
	ASCII	N/A
	XML	N/A
	JSON	N/A
Session (Layer 5)	NetBIOS	137 (UDP for name service), 138 (UDP for datagram service), 139 (TCP for session service)
	PPTP	1723 (TCP)
	RPC	135 (TCP/UDP)
Transport (Layer 4)	TCP	N/A (Protocol itself)
	UDP	N/A (Protocol itself)
	SCTP	N/A (Protocol itself)
	DCCP	N/A (Protocol itself)
	BGP	179 (TCP)
	RIP	520 (UDP)
Network (Layer 3)	IP.	N/A
	ICMP	N/A
	IGMP	N/A
	OSPF	89 (Protocol itself)
	ARP	N/A
Data Link (Layer 2)	Ethernet	N/A
	PPP	N/A
	HDLC	N/A
	Frame Relay	N/A
	ATM	N/A
	FDDI	N/A
	MAC	N/A
Physical (Layer 1)	Ethernet (cabling a	N/A
	Wi-Fi	N/A
	Fiber Optic Commu	N/A
	Bluetooth	N/A
	USB	N/A
		N/A
	ISDN	N/A
	Coaxial Cable	N/A

