Module LU2IN003 Parcours génériques Exercices de Base semaine 10

Alix Munier Kordon et Maryse Pelletier

Exercice(s)

Exercice 1 - Parcours génériques d'un graphe non orienté

On considère le graphe non orienté $G_0 = (V_0, E_0)$:

Question 1

Le graphe G_0 admet-il un parcours ? Justifier la réponse.

Solution:

Non, car G_0 n'est pas connexe.

On considère le graphe non orienté $G_1 = (V_1, E_1)$:

Question 2

Donner trois parcours génériques de G_1 , l'un partant du sommet 1, un autre du sommet 9 et un troisième du sommet 5. **Solution**:

Trois, parmi bien d'autres:

(1, 2, 3, 4, 5, 6, 7, 8, 9)

(9, 8, 6, 5, 7, 4, 2, 1, 3)

(5,6,2,1,4,7,3,8,9)

Question 3

La liste (1, 2, 5, 3, 4, 6, 7, 8, 9) est-elle un parcours générique de G_1 ? Justifier la réponse.

Solution:

Non, car le sommet 5 est visité alors qu'il n'est voisin d'aucun sommet déjà visité.

Exercice 2 – Graphe de liaison associé à un parcours

Soit G=(V,E) un graphe non orienté et L un sous-parcours d'origine $s\in V$. On rappelle que $\mathcal{A}(L)=(V(L),H(L))$ est un graphe de liaison associé au parcours L si tout sommet $v\in V(L)\setminus \{s\}$ a pour prédécesseur un sommet $u\in V(L)$ tel que u est situé avant v dans L et $\{u,v\}\in E$.

Ouestion 1

On considère le graphe non orienté G_1 défini dans l'exercice 1. Dessiner un graphe de liaison associé au parcours (6, 8, 5, 7, 4, 2, 3, 1, 9). Est-il unique?

Solution:

Le graphe de liaison n'est pas unique, on pourrait choisir 4 comme prédécesseur de 2.

Une arborescence est un graphe orienté G tel que :

- le graphe non orienté associé à G est un arbre,
- -G possède une racine.

Un sommet r est une racine d'un graphe orienté G si, pour tout sommet x de G, il existe un chemin de r à x.

Question 2

Soit G = (V, E) un graphe non orienté et $L = (s_1, \ldots, s_n)$ un parcours d'origine $s_1 \in V$. Démontrer que tout graphe de liaison associé à L est une arborescence de racine s.

Solution:

Soit A = (V, H) un graphe de liaison associé à L. Tout graphe de liaison est construit de la manière suivante : tout sommet $s_i \in V \setminus \{s_1\}$ a pour unique prédécesseur un sommet $s_j \in V$ tel que s_j est situé avant s_i dans L et $\{s_j, s_i\} \in E$ (on remarque donc que j < i). On pose alors $p(s_i) = s_j$ et $H = \{(p(s_i), s_i), i \in \{2, ..., n\}\}$.

Pour $1 \le j \le n$, soient alors $V_j = \{s_1, \ldots, s_j\}$ et $H_j = \{(p(s_i), s_i) \mid s_i \in V_j \setminus \{s_1\}\}$. Montrons par récurrence faible sur j que $\mathcal{A}_j = (V_j, H_j)$ est une arborescence de sommets V_j et de racine $s = s_1$. Soit alors A_j le graphe non orienté associé à \mathcal{A}_j dont les sommets sont V_j et les arêtes correspondent aux arcs de H_j .

Base : pour $j=1, A_1=(\{1\},\emptyset)$ est une arborescence de sommets $\{1\}$ et de racine s, la propriété est donc vérifiée.

Induction : Supposons que la propriété soit vraie pour une valeur $j \in \{1, \dots, n-1\}$.

- Pour construire A_{j+1} , on ajoute le sommet s_{j+1} à V_j et l'arc $(p(s_{j+1}), s_{j+1})$, à H_j . Par hypothèse de récurrence, A_j est un arbre. Comme on lui ajoute un sommet s_{j+1} et une arête $\{p(s_{j+1}), s_{j+1}\}$, on ne crée pas de cycle et de plus A_{j+1} est connexe. A_{j+1} est donc un arbre.
- Par hypothèse de récurrence, s est une racine de A_j . Par conséquent, il existe un chemin de s à tout sommet s_i de V_j dans A_j . Dans A_{j+1} , il y a un arc $(p(s_{j+1}), s_{j+1})$, donc il y a un chemin (passant par $p(s_{j+1})$) de s à s_{j+1} . On en conclut que s est une racine de A_{j+1} .

Conclusion: La propriété est donc vérifiée par récurrence faible.

On a montré que A = (V, H) est une arborescence.

Exercice 3 - Algorithme de calcul d'un parcours d'un graphe non orienté

On rappelle l'algorithme de calcul d'un parcours vu en cours :

```
Require: Un graphe non orienté G=(V,E), un sommet s Ensure: Un parcours L des sommets L:=(s), \mathcal{B}=\mathcal{B}(L) while \mathcal{B}\neq\emptyset do Choisir un sommet u\in\mathcal{B} L:=L+(u) \mathcal{B}:=\mathcal{B}(L) end while
```

Question 1

Appliquer cet algorithme au graphe G_1 défini dans l'exercice 1, en partant du sommet 7. Préciser, à chaque itération, le sommet u choisi dans \mathcal{B} (s'il y a plusieurs choix possibles, on prendra le sommet de plus petit numéro), le sousparcours L, la valeur de la bordure \mathcal{B} de L. Les valeurs de L et \mathcal{B} sont celles obtenues à chaque itération en fin du corps de boucle.

Solution:

```
Initialement : L=(7), \mathcal{B}=\{3,6\}

Itération 1 : u=3, L=(7,3), \mathcal{B}=\{6,1,4\}

Itération 2 : u=1, L=(7,3,1), \mathcal{B}=\{6,4,2\}

Itération 3 : u=2, L=(7,3,1,2), \mathcal{B}=\{6,4\}

Itération 4 : u=4, L=(7,3,1,2,4), \mathcal{B}=\{6,5\}

Itération 5 : u=5, L=(7,3,1,2,4,5), \mathcal{B}=\{6\}

Itération 6 : u=6, L=(7,3,1,2,4,5,6), \mathcal{B}=\{8\}

Itération 7 : u=8, L=(7,3,1,2,4,5,6,8), \mathcal{B}=\{9\}

Itération 8 : u=9, L=(7,3,1,2,4,5,6,8,9), \mathcal{B}=\emptyset

L'algorithme est terminé, il a calculé le parcours (7,3,1,2,4,5,6,8,9).
```

Question 2

À faire à la maison. Appliquer l'algorithme au graphe G_1 en partant d'un autre sommet ou en suivant une autre stratégie lorsque plusieurs choix sont possibles dans \mathcal{B} (par exemple, prendre le sommet de plus grand numéro, ou choisir le premier sommet qui a été ajouté à \mathcal{B} , ou le dernier ajouté, etc.).

Solution:

Pas de solution donnée.

Exercice 4 – Complexité du calcul d'un parcours générique

On considère un graphe non orienté connexe G=(V,E) ayant n sommets et m arêtes. Le but de cet exercice est d'évaluer la complexité du calcul d'un parcours générique. On suppose que :

- L est stocké dans une liste circulaire doublement chaînée;
- la bordure \mathcal{B} est stockée dans un tableau $B[1 \dots n]$ à valeurs dans $\{0,1\}$ et tel que B[u]=1 si $u \in \mathcal{B}$;
- le graphe non orienté est représenté par une matrice sommet-sommet, une matrice sommet-arête ou des listes d'adjacences. On notera par la suite V une liste simplement chaînée contenant tous les voisins d'un sommet $u \in V$.

Ouestion 1

Décrire un algorithme qui permet de calculer la bordure $\mathcal{B}(L)$ d'un sous-parcours L. On pourra utiliser V pour stocker les voisins d'un sommet $u \in V$.

Solution:

Au départ, $\mathcal{B} = \emptyset$. Il faut calculer, pour tout sommet $u \in L$, l'ensemble de ses voisins $V = \Gamma(u)$ pour les ajouter à la bordure si ils ne sont pas dans L. Cela donne en pseudo-code :

Require: Un graphe non orienté G = (V, E), une liste L

```
Ensure: La bordure \mathcal{B}(L)
   \mathcal{B} = \emptyset
   for all u \in L do
       V := \Gamma(u)
       for all v \in V do
          if v \notin L then
              \mathcal{B} := \mathcal{B} \cup \{v\}
          end if
       end for
   end for
```

Question 2

On note cv(u) la complexité pour calculer et stocker dans V l'ensemble des sommets adjacents à u. Que vaut cv(u)en fonction de la représentation de G?

Solution:

- Si G est représenté par une matrice sommet-sommet, cv(u) est en $\Theta(n)$.
- Si G est représenté par une matrice sommet-arête, cv(u) est en $\mathcal{O}(mn)$.
- Si G est représenté par des listes d'adjacence, cv(u) est en $\Theta(d(u))$.

Question 3

Calculez la complexité du calcul de la bordure $\mathcal{B}(L)$ pour un sous-parcours L de k éléments en fonction de cv. **Solution:**

- Pour $u \in L$ fixé, la boucle interne du calcul de la bordure est exécutée d(u) fois. Tester si $v \notin L$ est en $\mathcal{O}(k)$ et l'instruction $\mathcal{B} := \mathcal{B} \cup \{v\}$ est en $\Theta(1)$. Donc la complexité de la boucle interne est en $\mathcal{O}(k \times d(u))$.
- Le corps de la boucle externe est donc en $\mathcal{O}(k \times d(u) + cv(u))$. Elle est exécutée pour tous les éléments de L, elle est donc en $\mathcal{O}(k^2 \times d(u) + k \times cv(u))$.

Question 4

En déduire la complexité du calcul d'un parcours générique $L=(v_1,\ldots,v_n)$ en fonction de cv.

Initialement L a un élément, sa taille augmente de 1 à chaque tour de boucle et l'algorithme s'arrête lorsque $\mathcal{B} = \emptyset$, c'est-à-dire lorsque L a n éléments. Pour L de taille k, il faut calculer le coût des trois instructions suivantes :

```
(1) Choisir un sommet u dans B
(2) L := L + (u)
(3) B := B(L)
```

Les instructions (1) et (2) sont en $\Theta(1)$. La troisième instruction est en $\mathcal{O}(k^2 \times d(u) + k \times cv(u))$. Si on note $L = (v_1, \dots, v_n)$ le parcours obtenu, la complexité au total est en $\mathcal{O}(\sum_{i=1}^n i \times cv(v_i) + \sum_{i=1}^n d(u_i) \times i^2)$. Elle est donc en $\mathcal{O}(n \times \sum_{i=1}^{n} cv(v_i) + n^2 \sum_{i=1}^{n} d(u_i))$, ce qui correspond à $\mathcal{O}(n \times \sum_{i=1}^{n} cv(v_i) + n^3)$.

Question 5

En déduire la complexité en fonction de la représentation.

- Si G est représenté par une matrice sommet-sommet, $\sum_{i=1}^{n} n = n^2$, on obtient donc du $\mathcal{O}(n^3)$;
- Si G est représenté par une matrice sommet-arête, $\sum_{i=1}^{n} mn = mn^2$, on obtient $\mathcal{O}(mn^3)$; Si G est représenté par des listes d'adjacence, $\sum_{i=1}^{n} d(i) = 2m$ on obtient donc du $\mathcal{O}(n^3 + nm)$.

20 avril 2020 (C)

Exercice 5 – Parcours génériques d'un graphe orienté

On considère le graphe orienté $G_2 = (V_2, A_2)$:

Question 1

Le graphe G_2 admet-il un parcours ? Justifier la réponse.

Solution:

Non, car G_2 n'a pas de racine.

On considère le graphe orienté $G_3=(V_3,A_3)$:

Question 2

Quelles sont les racines du graphe G_3 ? Pour chaque racine, donner un parcours générique de G_3 .

Solution:

Les racines de G_3 sont 1, 2, 3 et 4.

Parcours générique de G_3 (par exemple) :

(1, 3, 4, 2, 5, 6, 7, 8, 9)

(3,4,2,1,5,6,7,8,9)

(4, 2, 1, 3, 5, 6, 7, 8, 9)

(2, 1, 3, 4, 5, 6, 7, 8, 9)

Question 3

La liste (1, 2, 5, 3, 4, 6, 7, 8, 9) est-elle un parcours générique de G_3 ? Justifier la réponse.

Solution:

Non, car le sommet 2 est visité alors qu'il n'est successeur d'aucun sommet déjà visité.

Exercice 6 – Graphes orientés particuliers

Question 1

Soit G = (V, A) un graphe orienté ayant n sommets.

- 1. On suppose que G est composé d'un unique circuit élémentaire. Combien G admet-il de parcours ? Les décrire.
- 2. On suppose que G est composé d'un unique chemin élémentaire. Combien G admet-il de parcours? Les décrire.

Solution:

- 1. Soit (x_1, \ldots, x_n, x_1) le circuit élémentaire de G, alors G admet n parcours qui sont : (x_1, \ldots, x_n) , (x_2, \ldots, x_n, x_1) , ..., $(x_n, x_1, \ldots, x_{n-1})$.
- 2. Soit (x_1, \ldots, x_n) le chemin élémentaire de G, alors G admet un seul parcours parcours qui est : (x_1, \ldots, x_n) .

Exercice 7 – Algorithme de calcul d'un parcours d'un graphe orienté

Soit G = (V, A) un graphe orienté.

Question 1

Comment faut-il définir la bordure d'un sous-parcours L dans le cas d'un graphe orienté pour que l'algorithme de calcul rappelé dans l'exercice 2 reste valable pour un graphe orienté?

Solution:

La bordure d'un sous-parcours L est l'ensemble des sommets de V qui ne sont pas visités par L et qui sont successeurs d'un sommet visité par L.

Question 2

Appliquer l'algorithme du cours au graphe G_3 défini dans l'exercice 3 en utilisant la définition de la bordure étendue aux graphes orientés. L'origine à considérer est le sommet 4. Préciser, à chaque itération, le sommet u choisi dans \mathcal{B} (s'il y a plusieurs choix possibles, on prendra le sommet de plus petit numéro), le sous-parcours L et la valeur de la bordure \mathcal{B} de L. Les valeurs de L et \mathcal{B} sont celles obtenues à chaque itération en fin du corps de boucle.

Solution:

```
Initialement : L=(4), \mathcal{B}=\{2,5\}

Itération 1 : u=2, L=(4,2), \mathcal{B}=\{5,1,6\}

Itération 2 : u=1, L=(4,2,1), \mathcal{B}=\{5,6,3\}

Itération 3 : u=3, L=(4,2,1,3), \mathcal{B}=\{5,6,7\}

Itération 4 : u=4, L=(4,2,1,3,5), \mathcal{B}=\{6,7\}

Itération 5 : u=5, L=(4,2,1,3,5,6), \mathcal{B}=\{7,8\}

Itération 6 : u=6, L=(4,2,1,3,5,6,7), \mathcal{B}=\{8,9\}

Itération 7 : u=8, L=(4,2,1,3,5,6,7,8), \mathcal{B}=\{9\}

Itération 8 : u=9, L=(4,2,1,3,5,6,7,8,9), \mathcal{B}=\emptyset

L'algorithme est terminé, il a calculé le parcours (4,2,1,3,5,6,7,8,9).
```

Question 3

- 1. Quelle est la définition du graphe de liaison associé à un parcours générique dans le cas d'un graphe orienté G?
- 2. Donnez un graphe de liaison pour le parcours L = (3, 4, 2, 1, 5, 6, 7, 8, 9) du graphe G_3 . Est-il unique?

Solution:

- 1. A(L) = (V, H) est un graphe de liaison associé au parcours L si tout sommet $v \in V \{s\}$ a pour unique prédécesseur un sommet $u \in V$ tel que u est visité avant v dans L et $(u, v) \in A$.
- 2. Deux graphes de liaisons associés au parcours L = (3, 4, 2, 1, 5, 6, 7, 8, 9) sont représentés à la suite. Les arcs en pointillés ne sont pas des arcs du graphe de liaison.

Question 4

À faire à la maison. Appliquer l'algorithme au graphe G_3 en partant d'un autre sommet ou en suivant une autre stratégie lorsque plusieurs choix sont possibles dans \mathcal{B} (par exemple, prendre le sommet de plus grand numéro, ou choisir le premier sommet qui a été ajouté à \mathcal{B} , ou le dernier ajouté, etc.).

Exercice 8 – Existence d'un parcours d'un graphe orienté

Soit G = (V, A) un graphe orienté.

Question 1

Soit G un graphe orienté de parcours $L = (s_1, \ldots, s_n)$. Montrez qu'il existe un chemin de s_1 à s_i pour tout $i \in \{1, \ldots, n\}$. Cette démontration peut se faire par récurrence sur i.

Solution:

Posons $r = s_1$ et montrons, par récurrence forte sur i qu'il existe un chemin de r à s_i , pour tout $1 \le i \le n$.

Base: C'est vrai pour i = 1, puisque $r = s_1$.

Induction : Soit $1 < i \le n$ tel qu'il existe un chemin de r à s_j , pour tout $1 \le j < i$. Puisque L est un parcours, il existe j < i tel que s_i est un successeur de s_j . Par hypothèse de récurrence, il existe un chemin γ de r à s_j . La concaténation de γ et de l'arc (s_j, s_i) est un chemin de r à s_i .

Conclusion : il existe un chemin de s_1 à s_i pour tout $i \in \{1, \ldots, n\}$.

Question 2

Montrer par l'absurde que, si r est une racine d'un graphe orienté G l'algorithme de construction d'un parcours générique permet de construire un parcours L de G.

Solution:

Supposons que r est une racine et que l'algorithme ne permet pas de construire un parcours. C'est qu'il existe un sous-parcours $L=(v_1,\ldots,v_k)$ avec k< n et tel que $\mathcal{B}(L)=\emptyset$.

Soit alors v un sommet de V qui n'est pas dans L. r est une racine, donc il existe un chemin de r à v. Comme $v_1 \in L$ et que $v \notin L$, il existe un arc $(u,v) \in A$ avec $u \in L$ et $v \notin L$, et donc $v \in \mathcal{B}(L)$, ce qui est impossible car $\mathcal{B}(L) = \emptyset$.

Question 3

Démontrez que, pour tout graphe non orienté G, G possède un parcours si et seulement si G possède une racine. **Solution**:

On démontre les deux implications séparément.

 $A \Rightarrow B$: Si G possède un parcours, alors, d'après la question 1, s_1 est une racine de G.

 $B \Rightarrow A$: La question 2 a montré que, si r est une racine, on peut toujopurs contruire un parcours générique.