Foundation of Cryptography, Lecture 8 Encryption Schemes

Iftach Haitner, Tel Aviv University

Tel Aviv University.

June 04, 2013

Section 1

Definitions

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **1 G**(1ⁿ) outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2** E(e, m) outputs $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **1 G**(1ⁿ) outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2** E(e, m) outputs $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **1** G(1ⁿ) outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2** E(e, m) outputs $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **1 G**(1ⁿ) outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2** E(e, m) outputs $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- \bullet $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key

• What would we like to achieve?

• What would we like to achieve?

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$$

► Shannon – only for m with $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$$

► Shannon – only for m with $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$$

- ▶ Shannon only for m with $|m| \le |G(1^n)_1|$
- Other concerns, e.g., multiple encryptions, active adversary

Semantic Security

O Ciphertext reveals "no information" about the plaintext

Semantic Security

- O Ciphertext reveals "no information" about the plaintext
- Formulate via the simulation paradigm

Semantic Security

- O Ciphertext reveals "no information" about the plaintext
- Formulate via the simulation paradigm
- Cannot hide the message length

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. the following holds: \forall poly-length dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-length functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$ $| \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] - \Pr_{m \leftarrow \mathcal{M}_n} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] = neg(n)$$

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. the following holds: \forall poly-length dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-length functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$ $| \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$

$$-\Pr_{m \leftarrow \mathcal{M}_n}[\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] = \mathsf{neg}(n)$$

Non-uniform definition

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. the following holds: \forall poly-length dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-length functions $h, f \colon \{0, 1\}^* \mapsto \{0, 1\}^*$ Pr $[A(1^n, 1^{|m|}, h(1^n, m), E_n(m)) = f(1^n, m)]$

$$\begin{aligned} \Big| \Pr_{m \leftarrow \mathcal{M}_{n}, e \leftarrow G(1^{n})_{1}} [\mathsf{A}(1^{n}, 1^{|m|}, h(1^{n}, m), E_{e}(m)) &= f(1^{n}, m)] \\ &- \Pr_{m \leftarrow \mathcal{M}_{n}} [\mathsf{A}'(1^{n}, 1^{|m|}, h(1^{n}, m)) &= f(1^{n}, m)] \Big| = \mathsf{neg}(n) \end{aligned}$$

- Non-uniform definition
- public-key variant A and A' get e

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. the following holds: \forall poly-length dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-length functions $h, f \colon \{0, 1\}^* \mapsto \{0, 1\}^*$

$$\left| \Pr_{m \leftarrow \mathcal{M}_{n}, e \leftarrow G(1^{n})_{1}} [A(1^{n}, 1^{|m|}, h(1^{n}, m), E_{e}(m)) = f(1^{n}, m)] - \Pr_{m \leftarrow \mathcal{M}_{n}} [A'(1^{n}, 1^{|m|}, h(1^{n}, m)) = f(1^{n}, m)] \right| = \operatorname{neg}(n)$$

- Non-uniform definition
- public-key variant A and A' get e
- Reflection to ZK.

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. the following holds: \forall poly-length dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-length functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$

$$\left| \Pr_{m \leftarrow \mathcal{M}_{n}, e \leftarrow G(1^{n})_{1}} [A(1^{n}, 1^{|m|}, h(1^{n}, m), E_{e}(m)) = f(1^{n}, m)] - \Pr_{m \leftarrow \mathcal{M}_{n}} [A'(1^{n}, 1^{|m|}, h(1^{n}, m)) = f(1^{n}, m)] \right| = \operatorname{neg}(n)$$

- Non-uniform definition
- public-key variant A and A' get e
- Reflection to ZK
- We sometimes omit 1^n , $1^{|m|}$

Indistinguishablity of encryptions

• The encryption of two strings is indistinguishable

Indistinguishablity of encryptions

• The encryption of two strings is indistinguishable

Indistinguishablity of encryptions

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

$$\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$$

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

$$\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$$

Non-uniform definition

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

$$\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$$

Non-uniform definition

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

$$\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$$

- Non-uniform definition
- Public-key variant the ensemble contains e

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

We prove the private key case

Indistinguishability Semantic Security

Fix \mathcal{M} , A, f and h, as in Definition 2.

Indistinguishability Semantic Security

Fix \mathcal{M} , A, f and h, as in Definition 2. We construct A' as

Algorithm 5 (A')

Input: 1^n , $1^{|m|}$ and h(m)

- $\bullet \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|m|})$
- **3** Output $A(1^n, 1^{|m|}, h(m), c)$

Indistinguishability Semantic Security

Fix \mathcal{M} , A, f and h, as in Definition 2.

We construct A' as

Algorithm 5 (A')

Input: 1^n , $1^{|m|}$ and h(m)

- $\bullet \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|m|})$
- **3** Output $A(1^n, 1^{|m|}, h(m), c)$

Claim 6

A' is a good simulator for A (according to Definition 2)

Proving Claim 6

For $n \in \mathbb{N}$, let

$$\delta(n) := \left| \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right| \\ - \Pr_{m \leftarrow \mathcal{M}_n} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \right|$$

Proving Claim 6

For $n \in \mathbb{N}$, let

$$\delta(n) := \Big| \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \\ - \Pr_{m \leftarrow \mathcal{M}_n} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big|$$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with

$$\delta(n) \leq \left| \Pr_{e \leftarrow G(1^n)_1} [A(1^n, 1^{|x_n|}, h(1^n, x_n), E_e(x_n)) = f(1^n, x_n)] - \Pr[A'(1^n, 1^{|x_n|}, h(1^n, x_n)) = f(1^n, x_n)] \right|$$

Proving Claim 6

For $n \in \mathbb{N}$, let

$$\delta(n) := \Big| \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \\ - \Pr_{m \leftarrow \mathcal{M}_n} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big|$$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with

$$\delta(n) \leq \left| \Pr_{e \leftarrow G(1^n)_1} [A(1^n, 1^{|x_n|}, h(1^n, x_n), E_e(x_n)) = f(1^n, x_n)] - \Pr[A'(1^n, 1^{|x_n|}, h(1^n, x_n)) = f(1^n, x_n)] \right|$$

Proof: ?

Assume \exists an infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly } \text{s.t. } \delta(n) > 1/p(n)$ for every $n \in \mathcal{I}$.

Assume \exists an infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly } \text{s.t. } \delta(n) > 1/p(n)$ for every $n \in \mathcal{I}$.

The following algorithm contradicts the indistinguishability of (G, E, D) with respect to $\mathcal{M} = \{(x_n, y_n = 1^{|X_n|})\}_{n \in \mathbb{N}}$ and $\{z_n = (1^n, 1^{|X_n|}, h(1^n, x_n), f(1^n, x_n))\}_{n \in \mathbb{N}}$.

Algorithm 8 (B)

Input:
$$z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n)), c$$

Output 1 iff $A(1^n, 1^{|x_n|}, h(x_n), c) = f(1^n, x_n)$

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ and infinite $\mathcal{I} \subseteq \mathbb{N}$, such that

$$\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_n)) = 1 \right] \ge \frac{1}{p(n)} \tag{1}$$

 $\forall n \in \mathcal{I}$.

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ and infinite $\mathcal{I} \subseteq \mathbb{N}$, such that

$$\Pr_{e \leftarrow G(1^n)_1} \left[B(z_n, E_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[B(z_n, E_e(y_n)) = 1 \right] \ge \frac{1}{p(n)}$$
 (1)

 $\forall n \in \mathcal{I}$.

Let $f(1^n, x_n) = 1$ and $f(1^n, y_n) = 0$, and let B'(t) output 1 if B(t) = 1, and a random coin otherwise.

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ and infinite $\mathcal{I} \subseteq \mathbb{N}$, such that

$$\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_n)) = 1 \right] \ge \frac{1}{p(n)} \tag{1}$$

 $\forall n \in \mathcal{I}$.

Let $f(1^n, x_n) = 1$ and $f(1^n, y_n) = 0$, and let B'(t) output 1 if B(t) = 1, and a random coin otherwise.

Claim 9

 $\forall n \in \mathcal{I} \text{ and } t_n \in \{x_n, y_n\}$

$$\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}'(z_n, E_e(t_n)) = f(1^n, t_n) \right] \ge \frac{1}{2} + \frac{1}{p(n)}$$

Assume \exists PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$ and infinite $\mathcal{I} \subseteq \mathbb{N}$, such that

$$\Pr_{e \leftarrow G(1^n)_1} \left[B(z_n, E_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[B(z_n, E_e(y_n)) = 1 \right] \ge \frac{1}{p(n)} \quad (1)$$

 $\forall n \in \mathcal{I}$.

Let $f(1^n, x_n) = 1$ and $f(1^n, y_n) = 0$, and let B'(t) output 1 if B(t) = 1, and a random coin otherwise.

Claim 9

 $\forall n \in \mathcal{I} \text{ and } t_n \in \{x_n, y_n\}$

$$\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}'(z_n, E_e(t_n)) = f(1^n, t_n) \right] \ge \frac{1}{2} + \frac{1}{p(n)}$$

Proof?

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define $A(1^n, 1^{\ell(n)}, z_n, c)$ to return $B'(z_n, c)$.

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define $A(1^n, 1^{\ell(n)}, z_n, c)$ to return $B'(z_n, c)$.

By Claim 9

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m) \right] \ge \frac{1}{2} + \frac{1}{p(n)}$$
(2)

 $\forall n \in \mathcal{I}$.

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define $A(1^n, 1^{\ell(n)}, z_n, c)$ to return $B'(z_n, c)$.

By Claim 9

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), \mathsf{E}_e(m)) = f(1^n, m) \right] \ge \frac{1}{2} + \frac{1}{p(n)} \tag{2}$$

 $\forall n \in \mathcal{I}$.

But

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m) \right] \le \frac{1}{2}$$
 (3)

for any A' and any $n \in \mathbb{N}$

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and PPTM B.

$$\begin{aligned} & \big| \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \\ & - \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \big| = \mathsf{neg}(n) \end{aligned}$$

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and PPTM B.

$$\begin{aligned} & \big| \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \\ & - \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

Different length messages

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and PPTM B.

$$\begin{aligned} & \big| \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \\ & - \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

- Different length messages
- Semantic security version

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and PPTM B.

$$\begin{aligned} & \big| \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \\ & - \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

- Different length messages
- Semantic security version
- Public-key definition

Multiple Encryption in the Public-Key Model

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Multiple Encryption in the Public-Key Model

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B,

$$\{x_{n,1},\ldots x_{n,t(n)},y_{n,1},\ldots,y_{n,t(n)}\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}},\,\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}.$$

Multiple Encryption in the Public-Key Model

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B,

$$\{x_{n,1},\ldots x_{n,t(n)},y_{n,1},\ldots,y_{n,t(n)}\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}},\,\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}.$$
 It follows that for some function $i(n)\in[t(n)]$

$$\begin{aligned} & \left| \Pr[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}), \dots, E_e(y_{n,t(n)})) = 1] \\ & - \Pr[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})) = 1] \right| \\ & > \mathsf{neg}(n) \end{aligned}$$

where in both cases $e \leftarrow G(1^n)_1$

Algorithm 12 (B')

Input: 1ⁿ, $z_n = (i(n), x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}), e, c$ Return B $(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$

Algorithm 12 (B')

Input: 1ⁿ,
$$z_n = (i(n), x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}), e, c$$

Return B $(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$

B' is critically using the public key

Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length n+i (see Lecture 2, Construction 15).

Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length n+i (see Lecture 2, Construction 15).

Construction 14

- $G(1^n)$ outputs $e \leftarrow \{0,1\}^n$,
- $\mathsf{E}_e(m)$ outputs $g^{|m|}(e) \oplus m$
- ullet D_e(c) outputs $g^{|c|}(e) \oplus c$

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof:

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it.

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Namely,

$$|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]| > \mathsf{neg}(n)$$
(4)

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Namely,

$$\left|\Pr[\mathsf{B}(z_n,g^{\ell(n)}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,g^{\ell(n)}(U_n)\oplus y_n)=1]\right|>\mathsf{neg}(n)$$
(4)

Hence, B yields a (non-uniform) distinguisher for g

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Namely,

$$|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]| > \mathsf{neg}(n)$$
(4)

Hence, B yields a (non-uniform) distinguisher for g

Claim 16

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Namely,

$$|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]| > \mathsf{neg}(n)$$
(4)

Hence, B yields a (non-uniform) distinguisher for g

Claim 16

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof:

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n,y_n\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ and $\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}$ be the triplet that realizes it. Namely,

$$|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]| > \mathsf{neg}(n)$$
(4)

Hence, B yields a (non-uniform) distinguisher for g

Claim 16

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof: Take $x_{n,1} = x_{n,2}$, $y_{n,1} \neq y_{n,2}$ and let B be the algorithm that on input (c_1, c_2) , outputs 1 iff $c_1 = c_2$.

Section 2

Constructions

Suffice to encrypt messages of some fixed length (here the length is n).

Suffice to encrypt messages of some fixed length (here the length is n). Let \mathcal{F} be a (non-uniform) length preserving PRF

Suffice to encrypt messages of some fixed length (here the length is n). Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 17

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Suffice to encrypt messages of some fixed length (here the length is n). Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 17

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Claim 18

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a multiple messages

Suffice to encrypt messages of some fixed length (here the length is n). Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 17

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r,e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Claim 18

 $(\mathsf{G},\mathsf{E},\mathsf{D})$ has private-key indistinguishable encryptions for a multiple messages

Proof:

Let (G, f, Inv) be a (non-uniform) TDP, and let b be an hardcore predicate for it.

Let (G, f, Inv) be a (non-uniform) TDP, and let b be an hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Let (G, f, Inv) be a (non-uniform) TDP, and let b be an hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 20

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Let (G, f, Inv) be a (non-uniform) TDP, and let b be an hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 20

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

 We believe that public-key encryptions schemes are "more complex" than private-key ones

Section 3

Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CCA):
 The adversary can also ask for decryptions of certain messages

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CCA):
 The adversary can also ask for decryptions of certain messages

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CCA):
 The adversary can also ask for decryptions of certain messages
- In the public-key settings, the adversary is also given the public key

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CCA):
 The adversary can also ask for decryptions of certain messages
- In the public-key settings, the adversary is also given the public key

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CCA):
 The adversary can also ask for decryptions of certain messages
- In the public-key settings, the adversary is also given the public key
- We focus on indistinguishability, but each of the above definitions has an equivalent semantic security variant.

CPA Security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2), n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 21 ($Exp_{A,n,z}^{CPA}(b)$)

- 2 $(m_0, m_1, s) \leftarrow A_1^{E_{\theta}(\cdot)}(1^n, z)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CPA Security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2), n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 21 ($Exp_{A,n,z}^{CPA}(b)$)

- 2 $(m_0, m_1, s) \leftarrow A_1^{E_{\theta}(\cdot)}(1^n, z)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Definition 22 (private key CPA)

(G, E, D) has indistinguishable encryptions in the private-key model under CPA attack, if \forall PPT A₁, A₂, and poly-bounded $\{z_n\}_{n\in\mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^{CPA}(0) = 1] - \Pr[\exp_{A,n,z_n}^{CPA}(1) = 1]| = neg(n)$$

• public-key variant...

- public-key variant...
- The scheme from Construction 17 has indistinguishable encryptions in the private-key model under CPA attack (for short, private-key CPA secure)

- public-key variant...
- The scheme from Construction 17 has indistinguishable encryptions in the private-key model under CPA attack (for short, private-key CPA secure)
- The scheme from Construction 19 has indistinguishable encryptions in the public-key model under CPA attack (for short, public-key CPA secure)

- public-key variant...
- The scheme from Construction 17 has indistinguishable encryptions in the private-key model under CPA attack (for short, private-key CPA secure)
- The scheme from Construction 19 has indistinguishable encryptions in the public-key model under CPA attack (for short, public-key CPA secure)
- In both cases, definitions are not equivalent

CCA Security

Experiment 23 ($Exp_{A,n,z}^{CCA1}(b)$)

- 2 $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$

CCA Security

Experiment 23 ($Exp_{A,n,z}^{CCA1}(b)$)

- 2 $(m_0, m_1, s) \leftarrow A_1^{E_{\theta}(\cdot), D_{d}(\cdot)}(1^n, z)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Experiment 24 ($Exp_{A,n,z_n}^{CCA2}(b)$)

- **2** $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_e(\cdot),D_d^{-c}(\cdot)}(1^n,s,c)$

Definition 25 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n\in\mathbb{N}}$:

$$|\Pr[\mathsf{Exp}^{\mathsf{X}}_{\mathsf{A},n,\mathsf{Z}_n}(0)=1] - \Pr[\mathsf{Exp}^{\mathsf{X}}_{\mathsf{A},n,\mathsf{Z}_n}(1)=1]| = \mathsf{neg}(n)$$

Definition 25 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n\in\mathbb{N}}$:

$$|\operatorname{Pr}[\operatorname{Exp}_{A,n,z_n}^{\chi}(0)=1]-\operatorname{Pr}[\operatorname{Exp}_{A,n,z_n}^{\chi}(1)=1]|=\operatorname{neg}(n)$$

• The public key definition is analogous

• Is the scheme from Construction 17 private-key CCA1 secure?

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 26

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n)).^a$
- $\mathsf{E}'_{e,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c,t)$: if $Vrfy_k(c,t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume for simplicity that the encryption and decryption keys are the same.

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 26

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n)).^a$
- $\mathsf{E}'_{e,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c,t)$: if $Vrfy_k(c,t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume for simplicity that the encryption and decryption keys are the same.

Theorem 27

Construction 26 is a private-key CCA2-secure encryption scheme.

Theorem 27

Construction 26 is a private-key CCA2-secure encryption scheme.

Proof: ?

Public-key CCA1

Public-key CCA1

```
Let (G, E, D) be a public-key CPA scheme and let (P, V) be a \mathcal{NIZK} for \mathcal{L} = \{(c_0, c_1, pk_0, pk_1) : \exists (m, z_0, z_1) \text{ s.t. } c_0 = \mathsf{E}_{pk_0}(m, z_0) \land c_1 = \mathsf{E}_{pk_1}(m, z_1)\}
```

Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a \mathcal{NIZK} for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) \colon \exists (m, z_0, z_1) \text{ s.t. } c_0 = \mathsf{E}_{pk_0}(m, z_0) \land c_1 = \mathsf{E}_{pk_1}(m, z_1)\}$

Construction 28 (The Naor-Yung Paradigm)

- $G'(1^n)$:
 - **1** For $i \in \{0, 1\}$: set $(sk_i, pk_i) \leftarrow G(1^n)$.
 - 2 Let $r \leftarrow \{0, 1\}^{\ell(n)}$, and output $pk' = (pk_0, pk_1, r)$ and $sk' = (pk', sk_0, sk_1)$
- \bullet $\mathsf{E}'_{pk'}(m)$:
 - For $i \in \{0,1\}$: $c_i = \mathbb{E}_{pk_i}(m,z_i)$, where z_i is a uniformly chosen string of the right length
 - 2 $\pi \leftarrow P((c_0, c_1, pk_0, pk_1), (m, z_0, z_1), r)$
 - Output (c_0, c_1, π) .
- $\mathsf{D}'_{sk'}(c_0,c_1,\pi)$: If $\mathsf{V}((c_0,c_1,pk_0,pk_1),\pi,r)=1$, return $\mathsf{D}_{sk_0}(c_0)$. Otherwise, return \bot

- We assume for simplicity that the encryption key output by $G(1^n)$ is of length at least n.
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

- We assume for simplicity that the encryption key output by $G(1^n)$ is of length at least n.
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure?

- We assume for simplicity that the encryption key output by $G(1^n)$ is of length at least n.
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure? We need the \mathcal{NIZK} to be "adaptive secure".

Theorem 29

Assuming that (P, V) is adaptive secure, then Construction 28 is a public-key CCA1 secure encryption scheme.

- We assume for simplicity that the encryption key output by $G(1^n)$ is of length at least n.
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure? We need the \mathcal{NIZK} to be "adaptive secure".

Theorem 29

Assuming that (P, V) is adaptive secure, then Construction 28 is a public-key CCA1 secure encryption scheme.

Proof: Given an attacker A' for the CCA1 security of (G', E', D'), we use it to construct an attacker A on the CPA security of (G, E, D).

Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, \mathcal{L})

Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, \mathcal{L})

Algorithm 30 (A)

Input: $(1^n, pk)$

- **1** let $j \leftarrow \{0,1\}$, $pk_{1-j} = pk$, $(pk_j, sk_j) \leftarrow G(1^n)$ and $(r,s) \leftarrow S_1(1^n)$
- 2 Emulate A' $(1^n, pk' = (pk_0, pk_1, r))$ as follows:
- ③ On query (c_0, c_1, π) of A' to D': If $V((c_0, c_1, pk_0, pk_1), \pi, r) = 1$, answer $D_{sk_j}(c_j)$. Otherwise, answer \bot .
- Output the same pair (m_0, m_1) as A' does
- **5** On challenge $c = \mathsf{E}_{pk}(m_b)$:
 - ► Set $c_{1-j} = c$, $a \leftarrow \{0, 1\}$, $c_j = \mathsf{E}_{pk_j}(m_a)$, and $\pi \leftarrow \mathsf{S}_2((c_0, c_1, pk_0, pk_1), r, s)$
 - ightharpoonup Send $c' = (c_0, c_1, \pi)$ to A'
- Output the same value that A' does

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (5)

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (5)

In the following we assume for simplicity that the above prob is 0.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \log(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (5)

In the following we assume for simplicity that the above prob is 0. Hence, no information about j has leaked to A through the first stage.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \log(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (5)

In the following we assume for simplicity that the above prob is 0. Hence, no information about j has leaked to A through the first stage.

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \log(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (5)

In the following we assume for simplicity that the above prob is 0. Hence, no information about j has leaked to A through the first stage.

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

$$A'(1^n, 0, 1) \equiv A'(1^n, 1, 0)$$

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (5)

In the following we assume for simplicity that the above prob is 0. Hence, no information about j has leaked to A through the first stage.

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

- $A'(1^n, 0, 1) \equiv A'(1^n, 1, 0)$
- The adaptive zero-knowledge of (P, V) yields that $|\Pr[A'(1^n, 1, 1) = 1] \Pr[A'(1^n, 0, 0) = 1]| \ge \delta(n) \text{neg}(n)$

$$\begin{split} |\text{Pr}[A(1) = 1] - \text{Pr}[A(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1]) \big| \end{split}$$

$$\begin{split} |\text{Pr}[A(1) = 1] - &\text{Pr}[A(0) = 1]| \\ &= \left| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \right. \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1])| \\ &\geq \frac{1}{2} \left| \text{Pr}[A'(1, 1) = 1] - \text{Pr}[A'(0, 0) = 1]| \right. \\ &- \frac{1}{2} \left| \text{Pr}[A'(1, 0) = 1] - \text{Pr}[A'(0, 1) = 1] \right| \end{split}$$

$$\begin{split} |\text{Pr}[\text{A}(1) = 1] - \text{Pr}[\text{A}(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[\text{A}'(0,1) = 1] + \text{Pr}[\text{A}'(1,1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[\text{A}'(0,0) = 1] + \text{Pr}[\text{A}'(1,0) = 1]) \big| \\ &\geq \frac{1}{2} \big| \text{Pr}[\text{A}'(1,1) = 1] - \text{Pr}[\text{A}'(0,0) = 1] \big| \\ &- \frac{1}{2} \big| \text{Pr}[\text{A}'(1,0) = 1] - \text{Pr}[\text{A}'(0,1) = 1] \big| \\ &\geq (\delta(n) - \text{neg}(n))/2 \end{split}$$

Public-key CCA2

Is Construction 28 CCA2 secure?

Public-key CCA2

- Is Construction 28 CCA2 secure?
- Problem: Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement

Public-key CCA2

- Is Construction 28 CCA2 secure?
- Problem: Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement
- Solution: use simulation sound NIZK