

Monitore Displays

Entwicklung und Aufbau

Dr. Reiner Kupferschmidt

Gliederung

- Entwicklungsgeschichte
- Arten von Displays
- Sehen und Farben
- Auflösung

Historisches

- Erste Anzeigen
- Drucker
- CRT
- LCD

•

Die Evolution vom Blinklicht zum Hightecmonitor

https://www.computerwoche.de/g/die-geschichte-der-monitore,40928,2

Drucker, Lochkarten, Lochstreifen?

Beginn der CRT-Technik

Arten von Displays

- CRT Monitor
 - RGB
 - TCO 99/Strahlung
- TFT Monitor
 - LCD Panel
 - TN
 - MVA/PVA
 - IPS
 - Backlight
 - ELF
 - CCRL
 - LED
 - QLED
- Plasma Panel
- OLED –Panel
- Touchscreen
 - Resistiv
 - Kapazitiv
 - Induktiv
 - Infarot

Sehen und Farben

CRT Cathode Ray Tube -Kathodenstrahlröhrenbildschirm

- Basiert auf Braunscher Röhre (Ferdinand Braun)
- Einsatz:
 - Fernseher
 - Monitor
 - Oszilloskop
- Merkmale
 - Analoge Azeige
 - Gute Skalierbarkeit
 - Maß: Diagonale in cm oder Zoll/Inch (ca. 2,54 cm)
 - Größerer Bildschirm = mehr Bildpunkte, "Pixel"
 - Umwandlung der digitalen Signale in analoge über RAMDAC notwendig
 - Monitor Darstellung in Rastergrafik (Übertragung pro Bildpunkt)

CRT Cathode Ray Tube - Aufbau

- Geheizten Glühkathoden erzeugt drei Elektronenstrahlen
- Anschließend werden diese mit elektrostatischer Fokussierung im Vakuum in Richtung Schirm geschossen
- Eine Loch- oder Schlitzmaske sorgt für eine scharfe Abbildung
- Auf der Leuchtschicht wird durch Fluoreszenz ein mehr oder minder heller Leuchtfleck erzeugt
- Die Bildwiederholraten werden in Herz angegeben
- (TV 50Hz, PC 80Hz)
- Nachleuchtdauer beeinflusst Flimmer-Freiheit und die Bildwiederholrate

BERUFSFÖRDERUNGSWERK Berlin Brandenburg e. V.

CRT Cathode Ray Tube – Interlace / Progressive Scan

Interleaced Scan

- Erster horizontalen Durchlauf baut nur jede zweite ungerade Zeile auf
- Zweiter vertikaler Durchlauf baut die übrigen geraden Zeilen auf

Progressive Scan

- Das Bild wird in voller Auflösung zeilenweise erzeugt
- Doppelte Zeilenzahl bessere Bilder
- Teurere Technik, die Horizontalablenkeinheit muss die doppelte Frequenz liefern

CRT Cathode Ray Tube – Interlace – Progressive Scan

Bildaufbau - Interlace

Interlace vs. Progressive Scan

CRT Cathode Ray Tube – Vor- und Nachteile

Vorteile

- Guter Schwarzwert
- Vom Betrachtungswinkel fast vollständig unabhängige Farbdarstellung, auch bei dunklen Bildpartien
- Keine vorgegebene Idealauflösung
- Echte Skalierung
- Schnelle Reaktionszeit
- Lange Haltbarkeit

Nachteile

- Groß und schwer
- benötigt viel Abstellfläche
- Mögliche Beeinflussung durch externe Magnetfelder
- Nachleuchten des Leuchtschirms

CRT Cathode Ray Tube – Strahlung

- Ältere Braunsche Röhren setzen durch Bündelung und Abbremsen des Elektronenstrahls Strahlung frei
- Bei über 20.000 Volt entsteht elektromagnetische und Röntgen (Brems-)Strahlung
- 1987 wurde in der Röntgenverordnung ein max. Wert für die Röhren festgelegt
- Das dicke Glas wird als Schirmung genutzt
- Zusätzlich mischen Hersteller dem Glas Blei und andere Metalle bei
- TCO 99 praktisch vollständig gegen Strahlungsaustritt abgeschirmt

LCD - Typen

LCD - TN Twisted Nematic – nematische Drehzelle

- Spannung nicht angelegt (Prinzip):
 - Polarisiertes Licht fällt in die TN-Zelle ein
 - Licht wird beim Durchlaufen des Flüssigkristalls um 90° gedreht
 - Der zweite um 90° gedrehter
 Polarisator kann passiert werden
 - Reflektiertes Licht und kann austreten
 - Anzeige erscheint weiß (Hintergrundbeleuchtung)
- Spannung angelegt
 - Licht wird nicht gedreht
 - Licht kann den Polarisator nicht passieren
 - Anzeige bleibt dunkel

LCD - TN Twisted Nematic – nematische Drehzelle

- Spannung nicht angelegt (Reflektives Display - TR):
 - Polarisiertes Licht fällt in die TN-Zelle ein
 - Licht wird beim Durchlaufen des Flüssigkristalls um 90° gedreht
 - Der zweite um 90° gedrehter Polarisator kann passiert werden
 - Spiegel reflektiert Licht und kann austreten
 - Anzeige erscheint silbrig-grau
- Spannung angelegt
 - Licht wird nicht gedreht
 - Licht kann den Polarisator nicht passieren
 - Anzeige bleibt dunkel

LCD - Farbdisplay

- Hinter jedem Pixel sind waagerechte stäbchenförmige Flüssigkristalle
- Jedes Pixel besteht aus mehreren Subpixeln(RGB)
- Je höher die Spannung ist, desto senkrechter stehen die Stäbchen
- Je senkrechter die Ausrichtung desto dunkel das Bild
- Um dem schlechten Blickwinkelstabilität zu kompensieren wird ein spezieller Verzögerungsfilm aufgebracht(TN+Film)
- Leuchtstoffröhre strahlte von außen hinter das Panel und wurde dort von einer Kombination milchiger und spiegelnder Folien nach vorn reflektiert (keine Gleichmäßige Verteilung)

TN - Übersicht

Bezeich.	Langform	Erläuterung
CCSTN	Color Coded Super Twisted Nematic	Farbdarstellung mit 45 Farben, erzeug durch Doppelbrechung
CSTN	Color Super Twisted Nematic	16-bit-Farbdarstellung mit hoher Helligkeit und gutem Kontrast
DSTN	Double Super Twisted Nematic	Monochromatische Darstellung mit höheren Kontrastwerten als TN u. STN
FSTN	Film Super Twisted Nematic	Reduzierung von störenden Farbeffekten durch aufgeklebten Film
STN	Super Twisted Nematic	Basistechnologie mit monochromatischer und eingeschränkter Farbdarstellung
TSTN	Triple Super Twisted Nematic	Kompensation von unerwünschten Farbeffekten durch mehrere Filme
TN	Twisted Nematic	Basistechnologie für LCD-Displays mit unterschiedlichen Polarisationsebenen

Panelarten - TN-Panel

- Twisted Nematic
- Jeder Pixelbesteht aus stäbchenförmigen Flüssigkristallen, die permanent mittels geeigneter Beleuchtung hintergrundbeleuchtet sind
- Je höher die anliegende Spannung ist, desto mehr verlagern sich die Stäbchen senkrecht zur Bildebene - gehen also in die Tiefe - und lassen dadurch das Licht immer weniger durchscheinen - dunkler Pixel, kein echtes Schwarz - weil immer etwas Licht durchscheint
- Einfache und kostengünstige Produktion -Monitore mit TN-Panel auch die günstigsten im Handel
- Großer Vorteil ist die relativ schnelle Reaktionszeit von bis zu einer Millisekunde für einen Wechsel von Grau zu Grau
- Nachteil ist die hohe Blickwinkelabhängigkeit und die unterdurchschnittliche Farb- und Kontrastdarstellung

- Vorteile:
 - günstig in der Anschaffung
 - schnelle Reaktionszeiten
- Nacheile
 - schlechterer Kontrast
 - schlechtere Farben
 - Blickwinkelabhängig
- Einsatz
- Schnelle Reaktionszeit macht TN-Panel sehr interessant für Spieler - Wiederholungsraten von 144 Hz oder gar 240 Hz
- Günstige Anschaffungspreis
- https://www.hardwareschotte.de/magazin/ips -oder-tn-panel-was-ist-besser-a42019

MVA-Technik

- Multi-Domain-Vertical-Alignment-Technik - Mehrfach Zellen Vertikale Ausrichtung –Fujitsu
- Funktion
 - Spannung nicht angelegt
 - Kristalle ist fast vertikal ausgerichtet Spannung angelegt
 - Kristalle werden horizontal Ausgerichtet
 - Hintergrundlicht kann jetzt die Schicht durchdringen
- Eigenschaften
 - MVA höheren Kontrast (> 1000:1)
 - TN niedriger Kontrast (< 800:1)
 - Höherer Betrachtungswinkel
 - langsamer als TN-Bildschirme
 - Premium-MVA und Super-PVA <=
 5ms und höhere Farbtreue < S-IPS
 - Anwendungsbereich CAD/CAM, DTP und Medizintechnik

IPS-Technik

- In Plane Switching In Ebenen schaltend – Hitachi
- Funktion
 - Moleküle der
 Flüssigkristalle sind parallel
 bzw. horizontal zum
 Substrat ausgerichtet
 - Elektroden sind in Form eines Kammes nur auf der unteren Glasplatte angebracht
 - -Erfordert hohes Backlight
- hervorragende Blickwinkel
 - = CRT

IPS und S-IPS

- Pixel lassen sich genauer Schalten
- Kristalle bleiben immer waagerecht ausgerichtet
- Orientierung wird nur um 90 Grad geändert (Zeiger Uhr)
- Licht kann das Pixel nahezu ungehindert passieren
- Keine Farbveränderung bei Berührung
- Betrachter kann selbst geringe Farbdifferenzen auch bei benachbarten Pixeln ganz genau unterscheiden
- Bis zu 178 Grad Betrachtungswinkel
- Durchschnittlich 15% höherer Stromverbrauch als TN/VA

Flachbildschirm - Aufbau

- Licht der
 Hintergrundbeleuchtung
 hinterleuchtet das Pixel Panel
- Pixel des Panels passen ihre Transparenz an und regulieren so die Lichtmenge
- Entspricht Diaprojektor
- Einzelpixel entsprechen einer Signallampe

Hintergrundbeleuchtung

- ELF
- CCFL
- LED-Leisten
- LED-Matrix (statisch, dynamisch)
- Q-LED

ELF - Elektrolumineszenz Folie

- Elektrolumineszenz ist die Eigenschaft bei Anlegen eines elektrischen Feldes Licht zu emittieren
- Zwischen zwei leitenden Schichten liegt, elektrisch isoliert, das Elektrolumineszenze Material
- kam bis ca. 2008 vor allem bei Uhren zum Einsatz (blau oder blau-grün)
- Benötigt hohe Spannung (200 V) zur Ansteuerung
- Zu geringe Leichtdichte

CCFL - Cold Cathode Fluorescent Lamp

- Kaltkathodenröhren
- Mehrere Kaltlichtkathodenröhren sind parallel hinter dem Bildschirm angebracht
- Eine Streufolie verteilt das Licht der Röhren über die Bildfläche
- Gleichmäßige Lichtverteilung kann nur durch einen Mindestabstand zur Bildfläche erreicht werden
- LCD mit CCRT hat somit eine Mindesttiefe von 35 mm
- Benötigt verhältnismäßig hohe elektrische Spannungen und Leistungen

CCFL

- CCFL können immer nur als ganze in der Helligkeit gesteuert werden
- Um Mond und Lava hell erscheinen zu lassen müssen alle Röhren im entsprechenden Bereich aufgedreht werden
- Dadurch werden ungewollt auch eigentlich dunkle Bildinhalte aufgehellt
- Das Bild verliert an Farbe und Kontrast

LED – Light Emitting Diode (Edge)

- Light Emitting Diode lichtemittierende Diode (Edge LED)
- Die LEDs sitzen nur am Rand des Gerätes
- Über Prismen (Spiegel) wird das Licht dann auf eine lichtverteilende Kunststoffschicht geleitet
- Die Anordnung der LEDs am Rand variiert je nach Hersteller
- Flache Bauweise möglich
- Clouding es kommt auf der gesamten Bildfläche zu Lichthöfen
- Flashlights helle Lichtkegel in den Ecken
- Banding helle oder dunkle Streifen, meist beim schnellen Kameraschwenk

LED – Light Emitting Diode (Matrix)

- LEDs von hinten über die ganze Bildschirmfläche angeordnet
- Local Dimming / LED-Gruppen stärker oder schwächer
- Jede der LED's kann separat angesteuert werden
- Sehr hohes Kontrastverhältnis möglich
- Kein Clouding
- Verbesserte Kontrast- und Schwarzwerte
- Größere Bauweise (tiefer)

Aktive LED-"White" Hintergrundbeleuchtung

- Die Aktive LED-"White" wird dem Bildinhalt angepasst
- Überaus "schwierige"
 Bildinhalte werden
 optimal wiedergegeben
- Nur helle Cluster "hinter" dem Mond und der Lava
- Sehr hohe Kontraste
- Weniger Farben als die "RGB"- Variante

Aktive LED-RGB (Matrix)

- LED's sind
 abwechselnd in den
 Farben RGB (Rot,
 Grün, Blau) angeordnet
- Zusätzlich in kleine Bereiche (sogenannte Cluster) unterteilt
- Cluster können unabhängig voneinander gesteuert werden

Aktive LED-RGB (Matrix)

- Grelle Farben, direkt angrenzend an tiefes Schwarz und Helligkeitsverläufe
- Vereinfacht dargestellt leuchtet die aktive LED-RGB Hintergrundbeleuchtung nur in besonders hellen Bereichen des Bildes
- In dunklen Bereichen wird sie herunter gedimmt
- In schwarzen Bereichen ist sie komplett aus

QLED - Quantum Dots

- Folie mit winzigen Nano-Partikeln, die selbst Licht abgeben
- Quantum Dots absorbieren die Licht-Energie und geraten selbst in Schwingungen
- Schwingen nur in etwas geringerer Frequenz als das eintreffende Licht
- Je nach Größe geben sie Schwingungen in blauer, grüner, gelber oder roter Farbe ab
- Dots werden in präzise ausgesuchten Größen mit hochreinem blauem LED-Licht angeleuchtet
- Weniger ungewünschte Mischfarben müssen weggefiltert werden
- Es entsteht ein reineres Rot, satteres Grün, klareres Blau und ein helles und viel reineres weißes Licht
- Die Maximalhelligkeit steigt/große Farbpalette = HDR
- Größere Dots schwingen etwas langsamer als kleine
- Entwickelt von Nanosys und QD Vision

PDP - Plasma Display Panel

- PDP Plasma Display Panel Ionisiertes Gas – Bildschirm
- Zwischen zwei Glasplatten befinden sich mehrere Beinahe-Vakuumkammern
- Gefüllt mit einem Edelgasgemisch aus Neon und Xenon
- Kammer wird mittels Transistor gezündet (Ionisiertes Gas)
- Grundfarben in den Kammern werden durch verschiedene Leuchtstoffe (Phosphore) erzeugt
- Helligkeit würd über verschiedene Intervalle der Zündungen geregelt
 - (Längere Zündung = helleres Bild)
- Dünnes Gas = niedrige Temperaturen
- Zur Zündung sind Spannungen von einigen hundert Volt erforderlich
- Die Funktionsweise ähnelt der einer Leuchtstofflampe

OLED - Organic Light Emitting Diode

- OLED Organic Light Emitting Diode - organische Leuchtdiode
- Absolut selbstleuchtend
- LED die durch eine Elektrolumineszenz-Schicht funktioniert und aus Verbundfolie besteht
- Diese agiert wie ein Halbleiter
- Der Film ist in zwei verschiedenen Elektroden eingesetzt
- Strom- und Leuchtdichte sind geringer als bei LCD
- Keine einkristallinen Materialien zur Bildwiedergabe erforderlich
- Aufbau aus rot, grün, blau und weißen LED's

OLED - Organic Light Emitting Diode

Vorteile:

- OLEDs können auf fast jedes Material "gedruckt" werden
- Benötigt keine Hintergrundbeleuchtung
- Sehr hoher Kontrast, da keine Restliche das Bild beeinflusst
- Extrem flache Bauweise möglich
- Noch bedingt Biegsam

Nachteile:

- Vergleichsweise geringe Lebensdauer
- 2013 ca. 36000 Stunden
- 2016 ca. 100.000 Stunden (ca. 30 Jahre bei 10 St. Nutzung Täglich)

Touchscreen

- Single/Multitouch
- Optische Systeme, Optische Systeme (in der Regel Infrarotlicht-Gitter vor dem Monitor)
- Resistive Systeme
- Oberflächen-kapazitive Systeme
- Projiziert-kapazitive Systeme
- Induktive Systeme
- SAW (Surface Acoustic Wave) "(schall)wellen-gesteuerte Systeme"
- Dispersive-Signal-Technology-Systeme

Touchscreen – Single/Multitouch

- Berührungssensitive Bildschirmoberfläche, die beim Berühren Aktionen auslöst
 - Single-Touchscreen
 - Dual-Touchscreen
 - Multi- Touchscreen
- Anwendung
 - Präsentationsterminals
 - Fahrzeugdiagnose
 - Industrie- und Anlagensteuerung
 - Industrie-PCs, der Medizintechnik, in Kassen- u.
 Bankautomaten
 - Smartphones, Tablets, PDA, Handhelds

Optische Systeme

- erste Touchscreens waren noch gewölbte Röhrenbildschirme mit plane Fläche eines Lichtschrankengitters
- Paar aus LED und Sensor liefen zeilenund spaltenweise zwischen Spalten oder Lochreihen in der Brüstung des Bildschirm-Gehäuserahmens und wurden durch eine Fingerspitze optisch unterbrochen
- Auflösung in der Größenordnung von 5 mm
- Kann ohne Probleme durch eine Schutzscheibe gesichert werden (Panzerglas)
- Kann unbeabsichtigt ausgelöst werden (Schnee u. Insekten)
- Sehr Robust
- Temperatur unabhängig
- Stoß und vibrationsfest
- Geldausgabe- oder Fahrscheinautomaten

Resistiv

- Druckempfindlich
- Kann mit Finger, Fingernagel, Stift, Handschuh usw. bedient werden
- Besteht aus zwei Schichten
- Obere Schicht aus Polyester und die darunter liegende meist aus Glas
- Eine Schichten wird unter Gleichspannung gesetzt (Glas)
- Durch das zusammen drücken der Schichten kann man die Spannung an der oberen Polyesterfolie an den Rändern messen und erhält so die Position der Druckstelle
- Four-, Five-, Six-, Seven-, Eight-Wire
- Vorteile
 - Bedienung mit jedem Eingabestift möglich
 - Mit Handschuhen und Prothesen bedienbar
 - Genauer als kapazitive Touchscreens
 - Geringe Fertigungskosten

Nachteile

- Nur eingeschränktes Multitouch (Two-touch)
- Schlechte Lesbarkeit bei Sonneneinstrahlung durch Zusatzschicht
- Gestenbedienung aufgrund des notwendigen Drucks erschwert
- Verschleiß durch die mechanische Belastung beim Betätigen
- Unerwünschtes Auslösen beim Transport durch Kontakt mit anderen Gegenständen möglich

Oberflächen-kapazitive Systeme

- Funktionieren auch ohne Druck
- Auf eine Glasplatte wird eine durchsichtige leitfähige Folie aufgebracht
- Über Wechselstrom entsteht ein elektrisches Feld, das auf Berührung reagiert
- Der entsendete Stromfluss wird an den Ecken gemessen, um die Position Ihres Fingers zu ermitteln
- Widerstandsfähiger gegenüber Kratzern und Verschleiß

Projiziert-kapazitive Systeme

- nutzt zwei Ebenen mit einem leitfähigen Muster
- Ebenen sind voneinander isoliert angebracht
- Eine Ebene dient als Sensor, die andere übernimmt die Aufgabe des Treibers
- Befindet sich ein Finger am Kreuzungspunkt zweier Streifen, so ändert sich die Kapazität des Kondensators – Signal am Empfängerstreifen
- Sensor auf der Rückseite des Deckglases angebracht
- Erkennung wird "hindurchprojiziert"
- Vorteile
 - Leitfähige Eingabestifte
- Nachteile
 - Nur mit bloßem Finger bedienbar
 - Nicht mit Handschuhen
 - Nicht Barrierefrei

Induktive Systeme

- Nachteil:
 - Nur spezielle Eingabestifte
- Handballen rufen keine Reaktion hervor
- Die Bildschirmoberfläche kann wie auch bei den projiziert-kapazitiven Touchscreens – aus Glas oder einem ähnlich robusten Material angefertigt werden, da keine mechanische Einwirkung wie bei den resistiven Modellen notwendig ist.
- Die Stiftposition kann auch ermittelt werden, wenn der Stift die Oberfläche nicht berührt, sondern sich in einem (geringen) Abstand über ihr befindet.
- Der Induktionsstrom kann verwendet werden, um zusätzliche Elemente des Stiftes zu betreiben, zum Beispiel Knöpfe oder Druckmesser, um zu ermitteln, wie fest der Stift auf die Oberfläche gedrückt wird.
- Einige Modelle können überdies auch den Neigungswinkel des Stiftes ermitteln.

Abschluss

Vielen Dank für Ihre Aufmerksamkeit!

Für weitere Fragen stehe ich Ihnen gerne zur Verfügung.