LLMs Tokenizer 篇

Byte-Pair Encoding(BPE)篇

1 Byte-Pair Encoding(BPE) 如何构建词典?

- 1准备足够的训练语料;以及期望的词表大小;
- 2将单词拆分为字符粒度(字粒度),并在末尾添加后缀"",统计单词频率
- 3 合并方式:统计每一个连续/相邻字节对的出现频率,将最高频的连续字节对合并为新字词;
- 4 重复第 3 步,直到词表达到设定的词表大小;或下一个最高频字节对出现频率为 1。
- 注: GPT2、BART 和 LLaMA 就采用了 BPE。

WordPiece 篇

WordPiece 与 BPE 异同点是什么?

本质上还是 BPE 的思想。与 BPE 最大区别在于:如何选择两个子词进行合并 BPE 是选择频次最大的相邻子词合并;

WordPiece 算法选择能够提升语言模型概率最大的相邻子词进行合并,来加入词表;注: BERT 采用了 WordPiece。

SentencePiece 篇

简单介绍一下 SentencePiece 思路?

把空格也当作一种特殊字符来处理,再用 BPE 或者来构造词汇表。

注: ChatGLM、BLOOM、PaLM 采用了 SentencePiece。

对比篇

1 举例介绍一下不同大模型 LLMs 的分词方式?

模型	词表大小	分词结果			
LLaMA	32000	['男', '<0xE5>', '<0x84>', '<0xBF>', '何', '不', '<0xE5>', '<0xB8>' '<0xA6>', '<0xE5>', '<0x90>', '<0xB4>', '<0xE9>', '<0x92>', '<0xA9>', ', ', '收', '取', '关', '山', '五', '十', '州', '。']			
Chinese LLaMA	49953	['男', '儿', '何', '不', '带', '吴', '钩', ', ', '收取', '关', '山', '五十', '州', '。']			
ChatGLM-6B	130528	['男儿','何不','带','吴','钩',',','收取','关山','五十','州','。']	11		
ChatGLM2-6B	65024	['男', '儿', '何', '不', '带', '吴', '钩', ', ', '收取', '关', '山', '五十', '州', '。']	14		
Bloom	250880	['男','儿','何不','带','吴','钩',',',','收取','关','山','五十','州','。			
Falcon	65024	['男', '儿', '�', '�', '�', '不', '带', '吴', '�', '�', '�', '�', '�', 'ゆ', 'w', '\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'\'	22		

2 介绍一下不同大模型 LLMs 的分词方式的区别?

模型	词表大小	中文平均 token数	英文平均 token数	中文处理 时间(s)	英文处理 时间(s)
LLaMA	32000	1.45	0.25	12.6	19.4
Falcon	65024	1.18	0.235	21.395	24.73
Chinese LLaMA	49953	0.62	0.249	8.65	19.12
ChatGLM-6B	130528	0.55	0.19	15.91	20.84
ChatGLM2-6B	65024	0.58	0.23	8.899	18.63
Bloom	250880	0.53	0.22	9.87	15.6

- 1. LLaMA 的词表是最小的,LLaMA 在中英文上的平均 token 数都是最多的,这意味着 LLaMA 对中英文分词都会比较碎,比较细粒度。尤其在中文上平均 token 数高达 1.45,这意味着 LLaMA 大概率会将中文字符切分为 2 个以上的 token。
- 2. Chinese LLaMA 扩展词表后,中文平均 token 数显著降低,会将一个汉字或两个汉字切分为一个 token,提高了中文编码效率。
- 3. ChatGLM-6B 是平衡中英文分词效果最好的 tokenizer。由于词表比较大,中文处理时间也有增加
- 4. BLOOM 虽然是词表最大的,但由于是多语种的,在中英文上分词效率与 ChatGLM-6B 基本相当。