1–6 Use an appropriate form of the chain rule to find dz/dt.

1. $z = 3x^2y^3$; $x = t^4$, $y = t^2$

2. $z = \ln(2x^2 + y)$; $x = \sqrt{t}$, $y = t^{2/3}$

3. $z = 3\cos x - \sin xy$; x = 1/t, y = 3t

4. $z = \sqrt{1 + x - 2xy^4}$; $x = \ln t$, y = t

5. $z = e^{1-xy}$: $x = t^{1/3}$, $y = t^3$

6. $z = \cosh^2 xy$; x = t/2, $y = e^t$

7–10 Use an appropriate form of the chain rule to find dw/dt.

7. $w = 5x^2y^3z^4$; $x = t^2$, $y = t^3$, $z = t^5$

8. $w = \ln(3x^2 - 2y + 4z^3)$; $x = t^{1/2}$, $y = t^{2/3}$, $z = t^{-2}$

9. $w = 5\cos xy - \sin xz$; x = 1/t, y = t, $z = t^3$

10. $w = \sqrt{1 + x - 2yz^4x}$; $x = \ln t$, y = t, z = 4t

17–22 Use appropriate forms of the chain rule to find $\partial z/\partial u$ and $\partial z/\partial v$.

17. $z = 8x^2y - 2x + 3y$; x = uv, y = u - v

18. $z = x^2 - y \tan x$; x = u/v, $y = u^2 v^2$

19. z = x/y; $x = 2\cos u$, $y = 3\sin v$

20. z = 3x - 2y; $x = u + v \ln u$, $y = u^2 - v \ln v$

21. $z = e^{x^2 y}$; $x = \sqrt{uv}$, y = 1/v

22. $z = \cos x \sin y$; x = u - v, $y = u^2 + v^2$

23–30 Use appropriate forms of the chain rule to find the derivatives.

23. Let $T = x^2y - xy^3 + 2$; $x = r\cos\theta$, $y = r\sin\theta$. Find $\partial T/\partial r$ and $\partial T/\partial \theta$.

24. Let $R = e^{2s-t^2}$; $s = 3\phi$, $t = \phi^{1/2}$. Find $dR/d\phi$.

25. Let t = u/v; $u = x^2 - y^2$, $v = 4xy^3$. Find $\partial t/\partial x$ and

26. Let $w = rs/(r^2 + s^2)$; r = uv, s = u - 2v. Find $\partial w/\partial u$ and $\partial w/\partial v$.

27. Let $z = \ln(x^2 + 1)$, where $x = r \cos \theta$. Find $\partial z/\partial r$ and

28. Let $u = rs^2 \ln t$, $r = x^2$, s = 4y + 1, $t = xy^3$. Find $\partial u / \partial x$ and $\partial u/\partial y$.

29. Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find $\partial w / \partial \rho$, $\partial w / \partial \phi$, and $\partial w/\partial \theta$.

30. Let $w = 3xy^2z^3$, $y = 3x^2 + 2$, $z = \sqrt{x-1}$. Find dw/dx.

31. Use a chain rule to find the value of $\left. \frac{dw}{ds} \right|_{s=1/4}$ if $w = r^2 - r \tan \theta$; $r = \sqrt{s}$, $\theta = \pi s$.

32. Use a chain rule to find the values of

$$\frac{\partial f}{\partial u}\Big|_{u=1,v=-2} \quad \text{and} \quad \frac{\partial f}{\partial v}\Big|_{u=1,v=-2}$$
if $f(x, y) = x^2y^2 - x + 2y$; $x = \sqrt{u}$, $y = uv^3$.

33. Use a chain rule to find the values of

$$\frac{\partial z}{\partial r}\Big|_{r=2,\theta=\pi/6}$$
 and $\frac{\partial z}{\partial \theta}\Big|_{r=2,\theta=\pi/6}$
if $z = xye^{x/y}$; $x = r\cos\theta$, $y = r\sin\theta$.

34. Use a chain rule to find $\frac{dz}{dt}\Big|_{t=2}$ if $z=x^2y$; $x=t^2$, y=t+7.

41–44 Use Theorem 13.5.3 to find dy/dx and check your result using implicit differentiation.

41. $x^2y^3 + \cos y = 0$

42.
$$x^3 - 3xy^2 + y^3 = 5$$

43. $e^{xy} + ye^y = 1$

44.
$$x - \sqrt{xy} + 3y = 4$$

50. (a) Let $z = f(x^2 - y^2)$. Use the result in Exercise 49(a) to $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = 0$

(b) Let z = f(xy). Use the result in Exercise 49(a) to show $x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0$

(c) Confirm the result in part (a) in the case where $z = \sin(x^2 - y^2).$

(d) Confirm the result in part (b) in the case where $z = e^{xy}$.

51. Let f be a differentiable function of one variable, and let z = f(x + 2y). Show that

$$2\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0$$
while function of

52. Let f be a differentiable function of one variable, and let $z = f(x^2 + y^2)$. Show that

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0$$

53. Let f be a differentiable function of one variable, and let

$$w = f(u)$$
, where $u = x + 2y + 3z$. Show that $\frac{\partial w}{\partial u} = \frac{\partial w}{\partial w} = \frac{\partial w}{\partial w} = \frac{\partial w}{\partial w} = \frac{\partial w}{\partial w}$

 $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 6\frac{dw}{du}$ **54.** Let f be a differentiable function of one variable, and let

$$w = f(\rho)$$
, where $\rho = (x^2 + y^2 + z^2)^{1/2}$. Show that
$$\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2 = \left(\frac{dw}{d\rho}\right)^2$$

Chain Rule

13.5: Theorem-13.5.1, Theorem-13.5.2, Theorem-13.5.3, Related rates problems, Theorem-13.5.4,

Theorem-13.5.5, Other versions of chain rule. Examples: 1-8 Exercise Set 13.5: 1-10, 17-34, 41-44, 50-54