Problemes Tema 5. MOSFET

1. A la regió tríode, per un V_{DS} petit podem aproximar el comportament del corrent de drenador del MOSFET per una recta. Segon els resultats experimentals obtinguts a la figura, trobar el valor de resistències segons V_{GS} .

- 2. Trobar el valor de la resistència equivalent R_{DS} per a un NMOS amb $K_n = \mu_n C_{ox} = 20$ $\mu A/V^2$, $V_T = 1V$ i $W/L = 100 \mu/10 \mu$ quan opera a $V_{GS} = 5V$.
- 3. Un transistor NMOS amb V_T =2V té la font connectada a terra i la porta a una font de corrent continu (cd) de 3V. En quina regió opera el dispositiu per a a) V_D =0.5V? b) V_D =1V? c) V_D =5V?
- 4. Si el dispositiu MOS de la figura té $\mu_n C_{ox}$ =20 $\mu A/V^2$, W =100 μ i L=10 μ trobar el valor de corrent de drenador que segons els apartats del problema 3. Menysprear la dependència de I_D amb V_{DS} en saturació.

6. Un MOSFET amb K_n (W/L)=0.2 mA/V², V_T =1.5V i λ =0.02 $V^{\text{-1}}$ treballa a V_{GS} =3.5V. Trobar el corrent de drenador a V_{DS} =2V i a V_{DS} =10V. Determinar R_o a aquest valor de V_{GS} .

- 7. Analitzar el circuit de la figura per a determinar tensió i corrent a totes les branques. $V_T=1V, K_n(W/L)=1 \text{ mA/V}^2 \text{ i } \lambda=0$
- 8. Dissenyar el circuit de la figura de manera que el PMOS operi en saturació amb I_D =0.5mA i V_D =3V. Considerar V_T =-1V, K_n (W/L)=1 mA/V² i modulació de canal nul·la. Quin és el valor màxim de R_D en saturació?

9. Pel circuit de la figura, trobar el valor màxim de R_D per tal de que el MOSFET romangui en saturació. Seguir les especificacions del MOSFET de l'exemple 1 de l'apartat 4.2.4 de teoria.

10. Considerar el circuit l'exemple l'apartat 4.2.3 de teoria. Sia el voltatge V_D el voltatge aplicat a la porta d'altre transistor, com es mostra a la figura. que tots Suposar MOSFETS són idèntics. Trobar el corrent drenador i tensió en el segon transistor.

- 11. Suposa un senyal de ràdio rebut des d'una antena on l'amplitud és aproximadament 10 mV. Sabent que el sistema d'audio del que disposem requereix una entrada mínima de 1V per a començar a sonar, dissenya el sistema d'amplificació bàsic. Quines problemàtiques exhibirà aquest disseny? Si la tensió DC que disposem és de 10V, tindrem distorsió no lineal?
- 12. Dissenya un flip-flop RS atenent a la implementació de portes NOR en lògica CMOS segons la construcció PUN-PDN. Redueix el circuit fins a obtenir un resultat similar al de teoria.

Solucions

- 1. $V_{GS}=V_T+1V$, $R=2K\Omega$; $V_{GS}=V_T+4V$, $R=0.5K\Omega$
- 2. $1.25 \text{ K}\Omega$
- 3. a) tríode, b) saturació, c) saturació
- 4. a) 75 μ A, b) 100 μ A, c) 100 μ A
- 5. 4 mA i 250 Ω
- 6. 0.416 mA, 0.480 mA, R_0 =120 K Ω
- 7. $V_G=5V$, $V_S=3V$, $V_D=7V$, $I_D=0.5$ mA.
- 8. $R_{G2}/(R_{G2}+R_{G1})=3/5, 8 K\Omega$
- 9. $17.5 \text{ K}\Omega$
- 10. 0.4 mA, 6V