Spring 2019

數位控制系統 Digital Control Systems

DCS-13 z Transform

Feng-Li Lian NTU-EE Feb19 – Jun19

The z-Transform

- Continuous-time systems: ⇒ Laplace transform
- Discrete-time systems: ⇒ z transform
- z transform maps a semi-infinite time sequence into a function of a complex variable
- Range of z-transform and operator calculus
 - operator calculus: $\Rightarrow \{f(k): k = \cdots, -1, 0, 1, \cdots\}$
 - z transform: $\Rightarrow \{f(k): k = 0, 1, 2, \dots\}$
 - ⇒ also take the initial values into consideration

- Definition: z-transform
- Consider the discrete-time signal

$$\{f(k): k = 0, 1, 2, \cdots\}$$

• The z transform of f(k) is defined as:

$$\mathcal{Z}{f(k)} = F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$$

where z is a complex variable.

The inverse z-transform is given by

$$f(k) = \frac{1}{2\pi i} \oint F(z) z^{k-1} dz$$

where the contour of integration encloses the singularities of F(z).

The z-Transform: Example

Feng-Li Lian © 2019 DCS13-zT-4

Example: Transform of a ramp

$$\mathcal{Z}\{f(k)\} = F(z)$$

Consider a ramp signal:

$$=\sum_{k=0}^{\infty}f(k)z^{-k}$$

$$y(k) = kh$$
 for $k > 0$

$$\Rightarrow Y(z) = y(0)z^{0} + y(1)z^{-1} + y(2)z^{-2} + \cdots$$

$$= 0 + hz^{-1} + 2hz^{-2} + \cdots$$

$$= h(z^{-1} + 2z^{-2} + \cdots)$$

$$= \frac{hz}{(z-1)^{2}}$$

Sec. 2.7 The z-Transform

59

Table 2.3 Some time functions and corresponding Laplace and z-transforms. Warning: Use the table only as prescribed!

f	Lf	z_f
$\delta(k)$ (pulse)	_	1
$1 k \geq 0 \text{ (step)}$	$\frac{1}{s}$	$\frac{z}{z-1}$
kh	$rac{1}{s^2}$	$\frac{hz}{(z-1)^2}$
$rac{1}{2}(kh)^2$	$\frac{1}{s^3}$	$\frac{h^2z(z+1)}{2(z-1)^3}$
$e^{-kh/T}$	$\frac{T}{1+sT}$	$\frac{z}{z - e^{-h/T}}$
$1-e^{-kh/T}$	$\frac{1}{s(1+sT)}$	$\frac{z(1-e^{-h/T})}{(z-1)(z-e^{-h/T})}$
$\sin \omega k h$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega h}{z^2-2z\cos\omega h+1}$

Astrom & Wittenmark 1997

The z-Transform: Properties

Feng-Li Lian © 2019 DCS13-zT-6

1. Definition:

$$F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$$

2. Inversion:

$$f(k) = \frac{1}{2\pi i} \oint F(z) z^{k-1} dz$$

3. Linearity:

$$\mathcal{Z}\{af + bg\} = \mathcal{Z}af + \mathcal{Z}bg$$

4. Time shift:

$$\mathcal{Z}\{q^{-n}f\}=z^{-n}F$$

$$\mathcal{Z}\{q^nf\}=z^n(F-F_1)$$
 where $F_1(z)=\sum_{j=0}^{n-1}f(j)z^{-j}$

5 Initial-value theorem:

$$f(0) = \lim_{z \to \infty} F(z)$$

6 Final-value theorem:

If $(1-z^{-1})F(z)$ does not have any poles on or outside the unit circle:

$$\lim_{k \to \infty} f(k) = \lim_{z \to 1} (1 - z^{-1}) F(z)$$

7 Convolution:

$$\mathcal{Z}\{f*g\} = (\mathcal{Z}f)(\mathcal{Z}g)$$

$$f * g = \sum_{n=0}^{k} f(n)g(k-n)$$

The z-Transform: From State Space to Pulse Transfer Function

The z-Transform: From State Space to Pulse Transfer Function DCS13-zT-8

$$y(k) + a_1 y(k-1) + \dots + a_n y(k-n)$$

= $b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$

• Take z-transform of both sides:

$$\underbrace{[z^n + a_1 z^{n-1} + \dots + a_n]}_{A(z)} Y(z) = \underbrace{[b_0 z^n b_1 z^{n-1} + b_2 z^{n-2} + \dots + b_n]}_{B(z)} U(z)$$

$$\Rightarrow \frac{B(z)}{A(z)}$$
 is the pulse transfer function: $u \to y$

• The corresponding state-space form:

$$x(k+1) = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_n \\ 1 & 0 & \cdots & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$
$$y(k) = [b_1 \ b_2 \ \cdots \ b_n] x(k)$$

The z-Transform: From State Space to Pulse Transfer Function Costs 77.0

- Theorem 2.5:
- The pulse response g(k) and The pulse response g(k) and the pulse-transfer function G(z) $U = \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(N-1) \end{bmatrix} Y = \begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(N-1) \end{bmatrix}$ that is, $\mathcal{Z}{g(k)} = G(z)$

$$U = \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(N-1) \end{bmatrix} Y = \begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(N-1) \end{bmatrix}$$

• The Pulse Response for the D.T. system:

$$g(k) = \begin{cases} 0 & k < 0 \\ \mathbf{D} & k = 0 \\ \mathbf{CF}^{k-1}\mathbf{H} & k \ge 1 \end{cases}$$

Pulse Transfer Function

$$G(z) = C(zI - F)^{-1}H + D$$

The z-Transform: Computation of G(z) from G(s)

- Method 1:
 - Make state-space realization
 - Calculate F and H
 - Find G(z)

$$\begin{cases} x(k+1) = \mathbf{F}x(k) + \mathbf{H}u(k) \\ y(k) = \mathbf{C}x(k) + \mathbf{D}u(k) \end{cases}$$

$$\Rightarrow$$
 $G(z) = C(zI - F)^{-1}H + D$

• Method 2:

- Step response of G(s)
- z-transform of $\frac{G(s)}{s}$
- Divide by the z-transform of step function

$$\Rightarrow Y(s) = \frac{G(s)}{s}$$

$$\Rightarrow \hat{Y}(z) = \mathcal{Z}\{\mathcal{L}^{-1}Y(s)\}$$

$$\Rightarrow G(z) = (1 - z^{-1})\hat{Y}(z)$$

The z-Transform: Computation of H(z) from G(s)

Feng-Li Lian © 2019 DCS13-zT-12

Method 2:

$$\Rightarrow G(z) = \frac{z-1}{z} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{e^{sh}}{z - e^{sh}} \frac{G(s)}{s} ds$$

- ullet If G(s) goes to zero at least as fast as $|s|^{-1}$ for large s
- ullet and G(s) has distinct poles, none are at the origin

$$\Rightarrow G(z) = \sum_{s=s_i} \frac{1}{z - e^{sh}} \operatorname{Res} \left\{ \frac{e^{sh} - 1}{s} \right\} G(s)$$

where s_i are the poles of G(s) and Res denotes the residue.

- Example:
 - Consider the difference equation:

$$y[k+1] + ay[k] = u[k+1] + au[k]$$

By using z-transform, Its pulse-transfer function:

$$G(z) = \frac{z+a}{z+a}$$
 = 1 $\Rightarrow y[k] = u[k]$

But, the solution of the difference equation is:

$$y[k] = (-a)^k y[0] + u[k], k \ge 1$$

That is, by using the shift-operator calculus:

$$(q+a)y[k] = (q+a)u[k]$$

The z-Transform: Modified z-Transform

Feng-Li Lian © 2019 DCS13-zT-14

- Use modified z-transform to study the intersampling behavor
- Defintion: The Modified z-Transform

$$\tilde{F}(z, m) = \sum_{k=0}^{\infty} z^{-k} f(kh - h + mh)$$

$$0 \le m \le 1$$

• The inverse transform:

$$f(kh - h + \mathbf{m}h) = \frac{1}{2\pi i} \int_{\Gamma} \tilde{F}(z, \mathbf{m}) z^{n-1} dz$$

where the contour Γ encloses the singularities of integrand.

Poles and zeros

$$Y(z) = \underbrace{\begin{bmatrix} \mathbf{C}(z\mathbf{I} - \mathbf{F})^{-1}\mathbf{H} + \mathbf{D} \end{bmatrix}}_{G(z)} U(z)$$

- Poles:
- The points $p \in C$ where $G(p) = \infty$ are the poles of G(z)
- They are eigenvalues of F and determine stability
- Zeros:
- The points $p \in C$ where G(p) = 0 are the zeros of G(z)

Poles and Zeros

- Interpretation of poles and zeros
 - Poles:
 - A pole z = a is associated with the time function $z(k) = a^k$
 - A pole z = a is an eigenvalue of \mathbf{F}
 - Zeros:
 - A zero z = b implies that the transmission of $u(k) = b^k$ is blocked by the system
 - A zero is related to how inputs and outputs are coupled to the states

- Poles determine stability
 - All poles of $G(z) = C(zI F)^{-1}H + D$ are eigenvalues of F
 - The matrix F can always be written as:

$$\mathbf{F} = U \begin{bmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} U^{-1} \qquad \mathbf{F}^k = U \begin{bmatrix} \lambda_1^k & & * \\ & \ddots & \\ 0 & & \lambda_n^k \end{bmatrix} U^{-1}$$

- ullet The diagonal elements λ_k are the $\operatorname{eig}(\mathbf{F})$
- ullet \mathbf{F}^k decays exponentially iff $|\lambda_k| < 1, \ orall k$

Poles and Zeros

Feng-Li Lian © 2019 DCS13-zT-18

- Zeros: blocking of signals
 - ullet Assume that $G(z)=rac{B(z)}{A(z)}$ and $G(z)^{-1}$ has pole at $z=b,\ b<1$

ullet The pulse response of $G(z)^{-1}$ decays as b^k

• $u(k) = b^k$ to $G(z) \Rightarrow$ zero output

- Non-minimum phase
 - Unstable zeros are sometimes called non-minimum phase zeros
 - Because:

$$\frac{s-3}{(s+1)(s+2)}$$
 and $\frac{s+3}{(s+1)(s+2)}$

have Bode diagrams with equal amplitude:

$$|iw - 3| = \sqrt{w^2 + 3^3} = |iw + 3|$$

- But the first has more phase lag
- This is similar to a time delay and make control harder

Poles and Zeros

- Non-minimum phase zeros make control harder
 - ullet To get a pulse as output, one should use an input which is the impulse response of G^{-1}
 - If there are non-minimum phase zeros,
 the input needs to grow exponentially
 - For a stable system with one unstable zero, the step response will initially have different sign than the stationary value.
 - ⇒ This make control harder

- ullet Mapping between $s\ \&\ z$
 - Because $\mathbf{F} = \exp(\mathbf{A}h)$

$$\Rightarrow \lambda_i(\mathbf{F}) = e^{\lambda_i(\mathbf{A})h}$$

$$\Rightarrow z = e^{sh}$$

Poles and Zeros

Feng-Li Lian © 2019 DCS13-zT-22

• Alias Problem

$$z = e^{sh}$$

 \Rightarrow Several points in the s-plane map into the same point in the z-plane

 \Rightarrow The map is not bijective

• Sampling of a second-order system

$$\frac{{w_0}^2}{s^2 + 2\zeta w_0 s + {w_0}^2}$$

• Poles of the D.T. system:

$$z^2 + a_1 z + a_2 = 0$$

where

$$a_1 = -2e^{-\zeta w_0 h} \cos\left(\sqrt{1-\zeta^2} w_0 h\right)$$

$$a_2 = e^{-2\zeta w_0 h}$$

Poles and Zeros

Feng-Li Lian © 2019 DCS13-zT-24

$$z^2 + a_1 z + a_2 = 0$$

• Sampling of a second-order system $a_1 = -2e^{-\zeta w_0 h} \cos\left(\sqrt{1-\zeta^2}w_0 h\right)$ $a_2 = e^{-2\zeta w_0 h}$

• Transformation of zeros

- $\frac{d}{1} \frac{Z_d}{1} \frac{d}{1} \frac{d}{1} = \#(p) \#(z)$
- 2 z + 1
- $3 z^2 + 4z + 1$
- 4 $z^3 + 11z^2 + 11z + 1$
- 5 $z^4 + 26z^3 + 66z^2 + 26z + 1$
- More difficult than poles
- In general,

more sampled zeros than continuous zeros

- ullet For short sampling periods $z_ipprox e^{s_ih}$
- For large s then $G(s) \approx e^{-d}$ where $d = \deg A(s)$ $\deg B(s)$
- ullet The r=d-1 zeros introduced by the sampling go to the zeros of the polynomials z_d

Poles and Zeros

Feng-Li Lian © 2019 DCS13-zT-26

- Example:
 - Consider the CT transfer function:

$$\frac{2}{(s+1)(s+2)}$$

$$H(q) = \frac{b_1 q^{n-1} + b_2 q^{n-2} + \dots + b_n}{q^n + a_1 q^{n-1} + \dots + a_n}$$

$$b_1 = \frac{b(1 - e^{-ah}) - a(1 - e^{-bh})}{b - a}$$

$$ab$$

$$(s+a)(s+b)$$

$$a \neq b$$

$$b_2 = \frac{a(1 - e^{-bh})e^{-ah} - b(1 - e^{-ah})e^{-bh}}{b - a}$$

$$a_1 = -(e^{-ah} + e^{-bh})$$

$$a_2 = e^{-(a+b)h}$$

• The zero of the pulse-transfer function:

$$z = \frac{(1 - e^{-2h})e^{-h} - 2(1 - e^{-h})e^{-2h}}{2(1 - e^{-h}) - (1 - e^{-2h})}$$

When h is small:

$$z \approx -1 + 3h$$

When h approaches 0:

$$z o -1$$

When h increases:

$$z \rightarrow 0$$

Laplace transform:

$$\mathcal{L}\left\{f(t)\right\} = F(s) \stackrel{\triangle}{=} \int_0^\infty f(t) e^{-st} dt$$

$$\mathcal{L}\left\{\dot{f}(t)\right\} = s F(s)$$

z-Transform:

$$\mathcal{Z}\left\{f[k]\right\} = F(z) \stackrel{\triangle}{=} \sum_{k=0}^{\infty} f[k] z^{-k}$$

$$\mathcal{Z}\left\{f[k-1]\right\} = z^{-1} F(z)$$

Franklin et al. 2002

In Summary

Feng-Li Lian © 2019 DCS13-zT-28

Analysis of discrete systems by the z-transform:

$$y[k] + a_1 y[k-1] + a_2 y[k-2]$$

$$= b_0 u[k] + b_1 u[k-1] + b_2 u[k-2]$$

$$\Rightarrow Y(z) + a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z)$$

$$= b_0 U(z) + b_1 z^{-1} U(z) + b_2 z^{-2} U(z)$$

$$\Rightarrow \frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2}$$

Franklin et al. 2002

- The z-transform inversion:
 - Long division

$$\frac{Y(z)}{U(z)} = \frac{1}{1 - a z^{-1}}$$

• For a unit pulse input: u[0] = 1, & $u[k] = 0, k \neq 0$

$$\Rightarrow U(z) = 1$$

$$\Rightarrow Y(z) = \frac{1}{1 - az^{-1}}$$

$$= 1 + az^{-1} + a^{2}z^{-2} + a^{3}z^{-3} + \cdots$$

$$= y[0] + y[1]z^{-1} + y[2]z^{-2} + y[3]z^{-3} + \cdots$$

In Summary

Feng-Li Lian © 2019 DCS13-zT-30

Franklin et al. 2002

- The z-transform inversion:
 - The z-transform table

Signal	Transform	ROC
1. δ[n]	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	z > lpha
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
0. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
1. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
$2. \left[r^n \sin \omega_0 n \right] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r

Oppenheim et al. 1997

In Summ	Laplace Transforms and z-Transforms of Simple Discrete Time Functions

Li Lian © 2019 — DCS13-zT-31

F(s) is the Laplace transform of f(t), and F(z) is the z-transform of f(kT). Note: f(t) = 0 for t = 0.

for a	t = 0.		
No.	F(s)	f(kT)	F(z)
1		$1, k = 0; 0, k \neq 0$	1
2		$1, k = k_o; 0, k \neq k_o$	z^{-k_o}
3	$\frac{1}{s}$	1(kT)	$\frac{z}{z-1}$
4	$\frac{1}{s^2}$	kT	$\frac{Tz}{(z-1)^2}$
5	$\frac{1}{s^3}$	$\frac{1}{2!}(kT)^2$	$\frac{T^2}{2} \left[\frac{z(z+1)}{(z-1)^3} \right]$
6	$\frac{1}{s^4}$	$\frac{1}{3!}(kT)^3$	$\frac{T^3}{6} \left[\frac{z(z^2 + 4z + 1)}{(z - 1)^4} \right]$
7	$\frac{1}{s^m}$	$\lim_{a\to 0} \frac{(-1)^{m-1}}{(m-1)!}$ $\left(\frac{\partial^{m-1}}{\partial a^{m-1}} e^{-akT}\right)$	$\lim_{a\to 0} \frac{(-1)^{m-1}}{(m-1)!}$ $\left(\frac{\partial^{m-1}}{\partial a^{m-1}} \frac{z}{z-e^{-aT}}\right)$
8	$\frac{1}{s+a}$	e^{-akT}	$\frac{z}{z - e^{-aT}}$
9	$\frac{1}{(s+a)^2}$	kTe^{-akT}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
10	$\frac{1}{(s+a)^3}$	$\frac{1}{2}(kT)^2e^{-\alpha kT}$	$\frac{T^2}{2}e^{-aT}z\frac{(z+e^{-aT})}{(z-e^{-aT})^3}$
11	$\frac{1}{(s+a)^m}$	$\frac{(-1)^{m-1}}{(m-1)!} \left(\frac{\partial^{m-1}}{\partial a^{m-1}} e^{-akT} \right)$	$\frac{(-1)^{m-1}}{(m-1)!} \left(\frac{\partial^{m-1}}{\partial a^{m-1}} \frac{z}{z - e^{-aT}} \right)$

T: sampling period

Franklin et al. 2002

Feng-Li Lian © 2019

DCS13-zT-32

In Summary

$$2 \frac{a}{s(s+a)} 1 - e^{-akT} \frac{z(1 - e^{-aT})}{(z-1)(z - e^{-aT})}$$

$$\frac{(z-1)(z-e^{-aT})}{(z-1)(z-e^{-aT})z + (1-e^{-aT}-aT)c}$$

13
$$\frac{a}{s^2(s+a)}$$
 $\frac{1}{a}(akT - 1 + e^{-akT})$ $\frac{z[(aT - 1 + e^{-aT})z + (1 - e^{-aT} - aTe^{-aT})]}{a(z-1)^2(z - e^{-aT})}$

$$14 \quad \frac{b-a}{(s+a)(s+b)} \ e^{-akT} - e^{-bkT} \qquad \qquad \frac{(e^{-aT} - e^{-bT})z}{(z-e^{-aT})(z-e^{-bT})}$$

15
$$\frac{s}{(s+a)^2}$$
 $(1-akT)e^{-akT}$ $\frac{z[z-e^{-aT}(1+aT)]}{(z-e^{-aT})^2}$

$$16 \quad \frac{a^2}{s(s+a)^2} \qquad 1 - e^{-akT} (1 + akT) \qquad \frac{z[z(1 - e^{-aT} - aTe^{-aT}) + e^{-2aT} - e^{-aT} + aTe^{-aT}]}{(z-1)(z-e^{-aT})^2}$$

17
$$\frac{(b-a)s}{(s+a)(s+b)}$$
 $be^{-bkT} - ae^{-akT}$ $\frac{z[z(b-a) - (be^{-aT} - ae^{-bT})]}{(z-e^{-aT})(z-e^{-bT})}$

$$\frac{a}{s^2 + a^2} \qquad \sin akT \qquad \frac{z \sin aT}{z^2 - (2\cos aT)z + 1}$$

$$\frac{s}{s^2 + a^2} \qquad \cos akT \qquad \frac{z(z - \cos aT)}{z^2 - (2\cos aT)z + 1}$$

20
$$\frac{s+a}{(s+a)^2+b^2}$$
 $e^{-akT}\cos bkT$ $\frac{z(z-e^{-aT}\cos bT)}{z^2-2e^{-aT}(\cos bT)z+e^{-2aT}}$

21
$$\frac{b}{(s+a)^2 + b^2}$$
 $e^{-akT} \sin bkT$ $\frac{ze^{-aT} \sin bT}{z^2 - 2e^{-aT} (\cos bT)z + e^{-2aT}}$

$$\frac{a^2 + b^2}{s[(s+a)^2 + b^2]} \quad 1 - e^{-akT} \left(\cos bkT + \frac{a}{b} \sin bkT \right) \quad \frac{z(Az+B)}{(z-1)[z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}]}$$

$$A = 1 - e^{-aT}\cos bT - \frac{a}{b}e^{-aT}\sin bT$$

$$B = e^{-2aT} + \frac{a}{b}e^{-aT}\sin bT - e^{-aT}\cos bT$$

Properties of the z-transform:

1. Definition:

$$F(z) = \sum_{k=0}^{\infty} f[k]z^{-k}$$

2. Inversion:

$$f[k] = \frac{1}{2\pi i} \oint F(z) z^{k-1} dz$$

3. Linearity:

$$\mathcal{Z}\{af + bg\} = a\mathcal{Z}\{f\} + b\mathcal{Z}\{g\}$$

4. Time shift:

$$\mathcal{Z}\{q^{-n}f\} = z^{-n}F$$

$$\mathcal{Z}\{q^n f\} = z^n (F - F_1)$$

where
$$F_1(z) = \sum_{j=0}^{n-1} f[j]z^{-j}$$

5 Initial-value theorem:

$$f[0] = \lim_{z \to \infty} F(z)$$

6 Final-value theorem:

If $(1-z^{-1})F(z)$ does not have any poles on or outside the unit circle:

$$\lim_{k \to \infty} f[k] = \lim_{z \to 1} (1 - z^{-1}) F(z)$$

7 Convolution:

$$\mathcal{Z}\{f*g\} = (\mathcal{Z}f)(\mathcal{Z}g)$$

$$f * g = \sum_{n=0}^{k} f[n]g[k-n]$$

Astrom & Wittenmark 1997

In Summary

Feng-Li Lian © 2019 DCS13-zT-34

Properties of the z-transform:

Section	Property		Signal	z-Transform	ROC
		x[n]		X(z)	R
		$x_1[n]$		$X_1(z)$	R_1
		$x_2[n]$		$X_2(z)$	R_2
10.5.1	Linearity	$ax_1[n] + bx_2[n]$		$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
10.5.2	Time shifting	$x[n-n_0]$		$z^{-n_0}X(z)$	R, except for the possible addition of deletion of the origin
10.5.3	Scaling in the z-domain	$e^{j\omega_0 n}x[n]$		$X(e^{-j\omega_0}z)$	R
		$z_0^n x[n]$		$X\left(\frac{z}{z_0}\right)$	z_0R
		$a^n x[n]$		$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$ = the set of points $\{ a z\}$ for z in R)
10.5.4	Time reversal	x[-n]		$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R)
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], \\ 0, \end{cases}$	n = rk $n \neq rk$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, when z is in R)
10.5.6	Conjugation	$x^*[n]$		$X^*(z^*)$	R
10.5.7	Convolution	$x_1[n] * x_2[n]$		$X_1(z)X_2(z)$	At least the intersection of R_1 and R
10.5.7	First difference	x[n] - x[n-1]		$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
10.5.7	Accumulation	$\sum_{k=-\infty}^n x[k]$		$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
10.5.8	Differentiation in the z-domain	nx[n]		$-z\frac{dX(z)}{dz}$	R
10.5.9			Initial Value Theo If $x[n] = 0$ for $n < x[0] = \lim_{z \to \infty} X(z)$	0, then	

- Example Use z-Transform to find system response
 - Consider the difference equation:

$$y[k] - \frac{1}{2}y[k-1] = u[k] + \frac{1}{3}u[k-1]$$

$$\Rightarrow Y(z) - \frac{1}{2}z^{-1}Y(z) = U(z) + \frac{1}{3}z^{-1}U(z)$$

$$\Rightarrow G(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}}$$

$$= \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}}z^{-1}$$

$$= \frac{z + \frac{1}{3}}{z - \frac{1}{2}} = \frac{z}{z - \frac{1}{2}} + \frac{\frac{1}{3}z}{z - \frac{1}{2}}$$

$$= \frac{z}{z - \frac{1}{2}} + \frac{\frac{1}{3}z}{z - \frac{1}{2}}z^{-1}$$

In Summary

- Example Use z-Transform to find system response
 - If u[k] = unit impulse function:

$$\Rightarrow U(z) = 1$$

$$\Rightarrow Y(z) = G(z)U(z)$$

$$= \frac{z}{z - \frac{1}{2}} + \frac{\frac{1}{3}z}{z - \frac{1}{2}}z^{-1}$$
$$= \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{1}{3}}{1 - \frac{1}{2}z^{-1}}z^{-1}$$

1.
$$\delta[n]$$
 1 All z
2. $u[n]$ $\frac{1}{1-z^{-1}}$ $|z| > 1$
3. $-u[-n-1]$ $\frac{1}{1-z^{-1}}$ $|z| < 1$
4. $\delta[n-m]$ z^{-m} All z , except 0 (if $m > 0$) or ∞ (if $m < 0$)

5. $\alpha^n u[n]$ $\frac{1}{1-z^{-1}}$ $|z| > |\alpha|$

6.
$$-\alpha^{n}u[-n-1]$$
 $\frac{1}{1-\alpha z^{-1}}$ $|z| < |\alpha|$

$$f(kT)$$
 $F(z)$

$$1, k = 0; 0, k \neq 0$$
 1
$$1, k = k_{o}; 0, k \neq k_{o}$$
 $z^{-k_{o}}$

$$1(kT)$$
 $\frac{z}{z-1}$

$$e^{-akT}$$
 $\frac{z}{z-e^{-aT}}$

$$\Rightarrow y[k] = \left(\frac{1}{2}\right)^k s[k] + \frac{1}{3} \left(\frac{1}{2}\right)^{k-1} s[k-1]$$

Example – Use z-Transform to find system response

• If u[k] = unit step function:

$$\Rightarrow U(z) = \frac{z}{z-1}$$

$$\Rightarrow Y(z) = G(z)U(z)$$

$$= \frac{z + \frac{1}{3}}{z - \frac{1}{2}} \frac{z}{z - 1}$$

$$= \frac{-\frac{5}{3}z}{z-\frac{1}{2}} + \frac{\frac{8}{3}z}{z-1}$$

$$= \left(-\frac{5}{3}\right) \frac{z}{z-\frac{1}{2}} + \left(\frac{8}{3}\right) \frac{z}{z-1}$$

$$\Rightarrow y[k] = \left(-\frac{5}{3}\right) \left(\frac{1}{2}\right)^k s[k] + \left(\frac{8}{3}\right) s[k]$$

1. $\delta[n]$	1	Allz
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z ^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
6. $-\alpha^n u[-n-1]$	1	$ z \leq \alpha $

f(kT)	F(z)
$1, k = 0; 0, k \neq 0$	1
$1, k = k_o; 0, k \neq k_o$	z^{-k_o}
1(kT)	$\frac{z}{z-1}$
e^{-akT}	$\frac{z}{z - e^{-aT}}$

In Summary

Feng-Li Lian © 2019 DCS13-zT-38

- Example Use z-Transform to find system response
 - Step Response:

$$\Rightarrow y_s[k] = \left(-\frac{5}{3}\right) \left(\frac{1}{2}\right)^k s[k] + \left(\frac{8}{3}\right) s[k]$$

Impulse Response:

$$\Rightarrow y_i[k] = \left(\frac{1}{2}\right)^k s[k] + \frac{1}{3} \left(\frac{1}{2}\right)^{k-1} s[k-1]$$

k	ys	yi
0	1	1
1	11/6	5/6
2	27/12	5/12

Relationship between s and z:

$$f(t) = e^{-at}, \quad t > 0$$
 $\Rightarrow F(s) = \frac{1}{s+a}$ $\Rightarrow \text{Pole: } s = -a$

$$f[kT] = e^{-akT}, \quad k \in N \qquad \Rightarrow F(z) = \mathcal{Z}\left\{e^{-akT}\right\}$$

$$= \frac{z}{z - e^{-aT}}$$

$$\Rightarrow$$
 Pole: $z = e^{-aT}$

$$\Rightarrow z = e^{sT}$$

T: sampling period

Franklin et al. 2002

In Summary

Feng-Li Lian © 2019 DCS13-zT-40

Pole location and response between s and z:

s plane

z plane

Figure 8.4 Natural frequency (solid color) and damping loci (light color) in the z-plane; the portion below the Re(z)-axis (not shown) is the mirror image of the upper half shown.

In Summary

Feng-Li Lian © 2019 DCS13-zT-42

Franklin et al. 2002

Description of corresponding lines in s-plane and z-plane

s-plane	Symbol	z-plane
$\begin{cases} s = j\omega \\ \text{Real frequency axis} \\ s = \sigma \ge 0 \end{cases}$	× × ×	$\begin{cases} z = 1 \\ \text{Unit circle} \\ z = r \ge 1 \end{cases}$
$s = \sigma \le 0$	000	$z = r$, $0 \le r \le 1$
$\begin{cases} s = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2} \\ = -a + jb \\ \text{Constant damping ratio} \end{cases}$		$ \begin{cases} z = re^{j\theta} \text{ where } r &= \exp(-\zeta \omega_n T) \\ &= e^{-aT}, \\ \theta = \omega_n T \sqrt{1 - \zeta^2} &= bT \\ \text{Logarithmic spiral} \end{cases} $
Constant damping ratio if ζ is fixed and ω_n varies		$\theta = \omega_n T \sqrt{1 - \zeta^2} = bT$ Logarithmic spiral
$s=\pm j(\pi/T)+\sigma,$	$\sigma \leq 0$	z = -r

Franklin et al. 2002

Relationship between s and z:

Ogata 1995

In Summary

Feng-Li Lian © 2019 DCS13-zT-44

Final Value Theorem:

$$\lim_{t\to\infty} x(t) = x_{ss} = \lim_{s\to 0} s X(s)$$

If all the poles of s X(s) are in LHP

$$\lim_{k \to \infty} x[k] = x_{ss} = \lim_{z \to 1} (1 - z^{-1}) X(z)$$

If all the poles of $(1-z^{-1}) X(z)$ are inside the unit circle