Лабораторная работа №5

по курсу «Высокоуровневое программирование» (1 семестр) «Обработка структур и файлов последовательного доступа»

Оглавление

Основные теоретические сведения	2
Структуры в С++	2
Файлы последовательного доступа	4
Задания	7
Вариант 1	7
Вариант 2	8
Вариант 3	9
Вариант 4	10
Вариант 5	11
Вариант 6	12
Вариант 7	13
Вариант 8	14
Вариант 9	16
Вариант 10	17
Вариант 11	18
Вариант 12	19
Вариант 13	20
Вариант 14	21
Вариант 15	22
Вариант 16	23
Вариант 17	24
Вариант 18	25
Вариант 19	26
Вариант 20	28
Контрольные вопросы	29
Список литературы	29

Цель: приобретение практических навыков процедурного программирования средствами языка C++.

Задачи:

- 1. Изучить тип данных структура.
- 2. Познакомиться с операциями, предназначенными для работы со структурами.
- 3. Познакомиться с организацией файлов последовательного доступа.
- 4. Научиться создавать объекты файловых потоков для связи с текстовым файлом на внешнем носителе.
- 5. Изучить основные программные средства для последовательной обработки файлов указанного типа.
- 6. Научиться создавать пользовательское меню для демонстрации заданий лабораторной работы.

Содержание отчета:

- 1. Титульный лист.
- 2. Цель, задачи работы.
- 3. Формулировка общего задания лабораторной работы.
- 4. Блок-схемы созданных подпрограмм.
- 5. Блок-схема основной программы.
 - ОБРАТИТЕ ВНИМАНИЕ: для лабораторной работы создаётся один проект, в основной программе реализуется пользовательское меню с применением созданных пользовательских подпрограмм.
- 6. Листинги пользовательских функций и основной программы.
- 7. Результаты работы: меню, каждого подпункта отдельно.
- 8. Выводы по работе в целом.

В начало

Основные теоретические сведения

Структуры в С++

Структура позволяет объединить в одном объекте совокупность значений, которые могут иметь различные типы. В С++ существует следующий набор операций над структурами как единым целым: передача функции в качестве аргумента, возврат в качестве значения функции, получение адреса. Можно присваивать одну структуру другой, если они имеют одинаковый тип.

Объявление структуры задает имя структурного типа и/или последовательность объявлений переменных, называемых элементами структуры. Эти элементы могут иметь различные типы.

```
struct [<тег>] {<список объявлений элементов>};
```

Тег предназначен для различения нескольких структур, объявленных в одной программе.

Список объявлений элементов представляет собой последовательность из одного или более объявлений переменных. Каждая переменная, объявленная в этом списке, называется элементом структуры. Особенность синтаксиса объявлений элементов структуры состоит в том, что они не могут содержать спецификаций класса памяти и

инициализаторов. Элементы структуры могут иметь базовый тип, либо быть массивом, указателем, объединением или структурой.

```
struct
{
   char str[50];
   int a, b;  // Объявляем структуру, не задавая тег
} s;  // и сразу же объявляем переменную

struct S
{
   char str[50];
   int a, b;
};  // Объявляем структуру с тегом S

struct S s;  // Объявляем переменную
```

Элемент структуры не может быть структурой того же типа, в которой он содержится. Однако он может быть указателем на тип структуры, в которую он входит. Размер указателя стандартный, поэтому компилятор знает, сколько памяти потребуется под указатель. Для работы с указателем надо знать размер типа, на который он указывает, но к моменту работы с указателем структура будет полностью объявлена, и, следовательно, размер её будет известен.

Идентификаторы элементов структуры должны различаться между собой. Идентификаторы элементов разных структур могут совпадать.

Для инициализации структуры, как и других составных типов, надо записать список инициализаторов через запятую в фигурных скобках.

```
struct S s = {"Str", 0, 1}; // Используем тег S, объявленный в предыдущем примере
```

Выбор элемента структуры осуществляется с помощью одной из следующих конструкций:

```
<переменная> . <идентификатор элемента структуры>
<указатель> -> <идентификатор элемента структуры>
```

Выражение выбора элемента позволяет получить доступ к элементу структуры. Выражение имеет значение и тип выбранного элемента.

```
struct S s, *p = &s; // Объявляем переменную s и указатель p, в который заносим адрес переменной s s.a = 10; p->b=20;
```

Две структуры являются разными типами, даже если их объявления полностью совпадают.

Файлы последовательного доступа

Для работы с файлами необходимо подключить заголовочный файл <fstream>. В <fstream> определены несколько классов и подключены заголовочные файлы <ifstream> — файловый ввод и <ofstream> — файловый вывод.

Файловый ввод/вывод аналогичен стандартному вводу/выводу, единственное отличие — это то, что ввод/вывод выполнятся не на экран, а в файл. Если ввод/вывод на стандартные устройства выполняется с помощью объектов *cin* и *cout*, то для организации файлового ввода/вывода достаточно создать собственные объекты, которые можно использовать аналогично операторам *cin* и *cout*.

Например, необходимо создать текстовый файл и записать в него строку Работа с файлами в С++. Для этого необходимо проделать следующие шаги:

- 1. создать объект класса ofstream;
- 2. связать объект класса с файлом, в который будет производиться запись;
- 3. записать строку в файл;
- 4. закрыть файл.

Почему необходимо создавать объект класса ofstream, а не класса ifstream? Потому, что нужно сделать запись в файл, а если бы нужно было считать данные из файла, то создавался бы объект класса ifstream.

```
// создаём объект для записи в файл ofstream fout;
```

Объект необходим, чтобы можно было выполнять запись в файл. Объект создан, но не связан с файлом, в который нужно записать строку.

```
// связываем объект с файлом fout.open("cppstudio.txt");
```

Через операцию точка получаем доступ к методу класса open(), в круглых скобочках которого указываем имя файла. Указанный файл будет создан в текущей директории с программой. Если файл с таким именем существует, то существующий файл будет заменен новым. Итак, файл открыт, осталось записать в него нужную строку.

```
// запись строки в файл fout << "Работа с файлами в C++";
```

Используя операцию передачи в поток совместно с объектом fout строка Работа с файлами в С++ записывается в файл. Так как больше нет необходимости изменять содержимое файла, его нужно закрыть, то есть отделить объект от файла.

```
// закрываем файл fout.close();
```

Итог-создан файл со строкой Работа с файлами в C++.

Шаги 1 и 2 можно объединить, то есть в одной строке создать объект и связать его с файлом.

```
// создаём объект класса ofstream и связываем его с файлом cppstudio.txt ofstream fout("cppstudio.txt");
```

Для того чтобы прочитать файл понадобится выполнить те же шаги, что и при записи в файл с небольшими изменениями:

- 1. создать объект класса ifstream и связать его с файлом, из которого будет производиться считывание;
- 2. прочитать файл;
- 3. закрыть файл.

Задания

Вариант 1 Часть 1

Задача 1

Ввести перечислимые типы масть, достоинство. С их помощью описать как структуру переменную карта. Составить и протестировать функцию:

БЬЕТ (К1, К2, КМ),

которая проверяет, бьет ли карта К1 карту К2, с учетом того, что масть КМ является козырной.

Задача 2

Массив структур содержит информацию о студентах группы: в первом поле стоит фамилия, во втором – возраст, в третьем – рост, в четвертом – средний бал в сессию и т.д. (і-й элемент массива описывает і-го студента).

Студент называется среднестатистическим по к-му параметру, если на нем достигается минимум модуля разности среднего арифметического чисел к-го столбца и значения к-го параметра этого студента. Аналогично определяется уникальный по к-му параметру студент (на нем достигается максимум).

Студент называется самым средним, если он является среднестатистическим по самому большому количеству параметров. Аналогично определяется самый уникальный студент.

Выяснить, кто в группе является:

- а) самым средним,
- б) самым уникальным,
- в) самым средним среди самых уникальных,
- г) самым уникальным среди самых средних.

Задача 3

Определить структуры, описывающие шар и точку в трехмерном пространстве. Составить и протестировать функцию, которая проверяет, находится ли точка внутри заданного шара.

Задача 1

Экспертами компании по перевозкам грузов на верблюдах установлено, что верблюд безопасно для жизни может перевести 7640 прутьев. Данные о каждом караване верблюдов находятся в файле. Для каждого каравана набор данных представляет собой группу строк: имя погонщика, число верблюдов, число корзин, перевозимых каждым верблюдом, и число прутьев в каждой корзине. Распечатать состояние верблюдов.

Например,

ТОМ ДЖОНС

верблюды в порядке

БОБ УЭЙТ

недопустимые грузы:

верблюд 3 перевозит 7645 прутьев верблюд 8 перевозит 8006 прутьев.

Задача 2

Найти максимальную длину строки в текстовом файле и распечатать все строки файла, имеющие такую длину.

В начало

Вариант 2 Часть 1

Задача 1

Описать как структуру переменную **время** (с полями часы, минуты, секунды). Составить и протестировать функцию:

СЛЕД_СЕК (t, t1, d),

которая присваивает параметру t1 время на d секунд большее, чем время t (может происходить смена суток).

Задача 2

Ввести структуру для регистрации автомашин. Она должна иметь следующие поля:

- дату регистрации (структура с полями день, месяц, год);
- марку машины;
- год выпуска;
- цвет;
- номер.

Написать и протестировать функции:

- регистрация новой машины;

- удаление машины из регистрационного списка;
- поиск машины по любой из комбинаций признаков.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

Преобразования комплексного числа из алгебраической формы в показательную.

Часть 2

Задача 1

Создать файл, содержащий сведения о книгах в библиотеке. Структура записи: шифр книги, автор, названия, год издания, местоположения (номер стеллажа, полка).

Предусмотреть возможность корректировки файла по вводимому коду корректировки, например:

- 1 удалить запись (по шифру ХХХ);
- 2 добавить новую запись;
- 3 изменить запись (по введенной фамилии автора и названию книги);
- 4 получить информацию о книге с шифром XXX.

Задача 2

В файле находятся только целые числа. Определить, имеет ли последовательность чисел, находящихся в файле, нечетную длину, и если да то переменной middle присвоить значение среднего элемента файла. В противном случае присвоить этой переменной значение первого числа файла.

В начало

Вариант 3 Часть 1

Задача 1

Описать как структуру переменную **время** (с полями часы, минуты, секунды). Составить и протестировать функцию:

ИНТЕРВАЛ (t1, t2, d),

которая вычисляет время d, прошедшее от времени t1 до времени t2.

Задача 2

В доме N этажей и три лифта. Каждый лифт может быть свободным или занятым. Человек стоит на одном из этажей и собирается вызвать либо ближайший свободный лифт, либо ближайший занятый, направляющийся в сторону этажа, где находится человек.

Распечатать начальную конфигурацию (расстановку, занятость и направление движения лифтов, местоположение человека), а также номер лифта, который будет вызван.

Использовать функции ВВОД, ВЫВОД, ВЫБОР ЛИФТА.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

преобразования комплексного числа из показательной формы в алгебраическую.

Часть 2

Задача 1

Используя структуру для определения понятия **студент** (состоящую из полей ФИО, курс, группа, оценки в сессию) распечатать фамилии и имена отличников первого курса и долю их от общего числа отличников. (Данные находятся в файле.)

Задача 2

В текстовый файл вставить пробелы таким образом, чтобы каждая строка имела длину 80 символов (пробелы в строке должны быть вставлены равномерно).

В начало

Вариант 4 Часть 1

Задача 1

Ввести перечислимые типы вертикаль, горизонталь для обозначения клеток шахматной доски. Составить и протестировать функцию:

ХОД ФЕРЗЯ (К1, К2),

которая проверяет, может ли ферзь за один ход перейти с поля К1 на поле К2.

Задача 2

Пусть ЭВМ не умеет работать с вещественными числами, а имеет только операции и функции для работы с символами, строками и целыми числами.

Реализовать функции для:

- а) ввода;
- б) вывода;
- в) сложения;
- г) вычитания;
- д) умножения

вещественных чисел. (Числа вводятся как строки, разделяются на целую и дробную части, и над ними, как над целыми числами, с учетом межразрядных переносов, выполняются операции.)

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

получение сопряженного комплексного числа;

Часть 2

Задача 1

Дан произвольный текст объемом не менее 1000 символов. Отредактировать его таким образом, чтобы все строки, кроме последней, имели фиксированную длину n.

Правила редактирования:

- слова не переносятся;
- знак препинания не отделяется от слова, за которым он стоит;
- строки выравниваются за счет равномерно вставляемых пробелов.

Задача 2

Каждая строка файла содержит название горной вершины и ее высоту. Используя структуру для описания понятия **вершина**, получить названия самой высокой вершины по данным файла.

В начало

Вариант **5** Часть **1**

Задача 1

Ввести перечислимые типы вертикаль, горизонталь для обозначения клеток шахматной доски. Составить и протестировать функцию:

ХОД КОНЯ (К1, К2),

которая вычисляет, за сколько ходов конь может перейти с поля К1 на поле К2.

Задача 2

Определить структуру – важнейшие исторические даты. Ее поля – год, событие.

Написать и протестировать функции:

- сортирующие структуры по любому из полей;
- подсчитывающую средний интервал между датами;
- определяющую наиболее часто встречающуюся первую букву в названии события.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

возведение комплексного числа в целую положительную степень.

Часть 2

Задача 1

Написать программу записи в файл и чтения из файла элементов массива структур для регистрации автомашин с полями:

- марка машины;
- год выпуска;
- цвет;
 - номер.

Задача 2

В текстовом файле, подсчитать количество строк, которые оканчиваются буквой 's'.

В начало

Вариант 6 Часть 1

Задача 1

Ввести структуру (с полями числитель и знаменатель) для описания понятия рациональное число. Составить и протестировать функцию:

PABHO (A, B),

которая проверяет, равны ли друг другу рациональные числа A, B;

Задача 2

Ввести структуру для регистрации автомашин. Она должна иметь следующие поля:

- дату регистрации (структура с полями день, месяц, год);
- марку машины;
- год выпуска;
- цвет;
- номер.

Написать и протестировать функции:

- регистрация новой машины;
- удаление машины из регистрационного списка;
- поиск машины по любой из комбинаций признаков.

Задача 3

Ввести структуру для описания комплексного числа. Составить и протестировать функцию для:

умножения комплексных чисел в алгебраической форме.

Часть 2

Задача 1

Создать 2 файла, содержащие сведения о игроках хоккейных команд "Динамо" и "Спартак". Структура записей файлов:

- фамилия, имя игрока;
- число заброшенных шайб;
- число сделанных голевых передач.

По данным, извлекаемым из этих файлов, создать новый файл, содержащий данные о шести самых результативных игроках обеих команд.

Задача 2

Из текстового файла выбросить все гласные. Новый файл не создавать.

В начало

Вариант 7 Часть 1

Задача 1

Ввести структуру (с полями числитель и знаменатель) для описания понятия рациональное число. Составить и протестировать функцию:

MAKC (X, N),

которая возвращает наибольшее из массива X[N] рациональных чисел.

Задача 2

Массив структур содержит информацию о студентах группы: в первом поле стоит фамилия, во втором – возраст, в третьем – рост, в четвертом – средний бал в сессию и т.д. (i-й элемент массива описывает i-го студента).

Студент называется среднестатистическим по к-му параметру, если на нем достигается минимум модуля разности среднего арифметического чисел к-го столбца и значения к-го параметра этого студента. Аналогично определяется уникальный по к-му параметру студент (на нем достигается максимум).

Студент называется самым средним, если он является среднестатистическим по самому большому количеству параметров. Аналогично определяется самый уникальный студент.

Выяснить, кто в группе является:

- а) самым средним,
- б) самым уникальным,
- в) самым средним среди самых уникальных,
- г) самым уникальным среди самых средних.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

умножения комплексных чисел в показательной форме.

Часть 2

Задача 1

Треугольник Паскаля — таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят 1, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа:

В строке с номером n + 1 выписаны коэффициенты разложения бинома $(a + b)^n$.

Написать программу, которая работает в одном из двух режимов. Если в текущем каталоге имеется файл "tr_pasc.txt", то распечатать его содержимое в виде, представленном на рисунке. В противном случае создать файл с таким именем и записать туда треугольник Паскаля n-го порядка. Параметр n (n < 12) задается в командной строке.

Задача 2

Каждая строка файла содержит следующие данные: пол, имя, рост. Распечатать средний женский рост и имя самого высокого мужчины по данным файла. Использовать структуру для описания понятия **человек**.

В начало

Вариант 8 Часть 1

Задача 1

Ввести структуру (с полями числитель и знаменатель) для описания понятия рациональное число. Составить и протестировать функцию:

СЛОЖ (А, В, С),

которая записывает в С результат сложения рациональных чисел А и В.

Задача 2

В доме N этажей и три лифта. Каждый лифт может быть свободным или занятым. Человек стоит на одном из этажей и собирается вызвать либо ближайший свободный лифт, либо ближайший занятый, направляющийся в сторону этажа, где находится человек.

Распечатать начальную конфигурацию (расстановку, занятость и направление движения лифтов, местоположение человека), а также номер лифта, который будет вызван.

Использовать функции ВВОД, ВЫВОД, ВЫБОР ЛИФТА.

Задача 3

Ввести структуру для описания комплексного числа. Составить и протестировать функцию для:

деления комплексных чисел в показательной форме.

Часть 2

Задача 1

Создать файл, содержащий сведения о том, какие из 5 предложенных дисциплин желает слушать студент.

Структура записи:

- фамилия студента;
- номер группы;
- средний балл;
- 5 дисциплин, где '*' показывает выбранную дисциплину.

Создать файл, содержащий данные о тех, кто желает прослушать дисциплину XX. Если желающих больше 10, то отобрать тех студентов, у которых более высокий средний балл.

Задача 2

В файле находится текст программы на языке C++. Создать выходной файл, в который переписать содержимое исходного файла, убрав комментарии из текста программы.

Вариант 9 Часть 1

Задача 1

Ввести структуру (с полями числитель и знаменатель) для описания понятия рациональное число. Составить и протестировать функцию:

МИН (А, В),

которая возвращает наименьшее из двух рациональных чисел А и В.

Задача 2

Пусть ЭВМ не умеет работать с вещественными числами, а имеет только операции и функции для работы с символами, строками и целыми числам.

Реализовать функции для:

- а) ввода;
- б) вывода;
- в) сложения;
- г) вычитания;
- д) умножения

вещественных чисел. (Числа вводятся как строки, разделяются на целую и дробную части, и над ними, как над целыми числами, с учетом межразрядных переносов, выполняются операции.)

Задача 3

Ввести структуру для описания комплексного числа. Составить и протестировать функцию для:

деления комплексных чисел в алгебраической форме.

Часть 2

Задача 1

Дан текст, в котором начало каждого абзаца отмечено символом '@'. Отредактировать этот текст по следующим правилам:

- а) первая строка имеет отступ к позиций;
- б) все строки текста, кроме последних строк абзацев, должны иметь фиксированную длину n;
- в) при редактировании слова не переносятся. Знак препинания не отделяется от слова, за которым от стоит. Строки выравниваются за счет дополнительно вносимых пробелов.

Задача 2

Написать программу, которая работает в одном из двух режимов. Если в текущем каталоге имеется файл "tabl_umn.txt", то распечатать построчно его содержимое. В противном случае создать файл с таким именем и записать туда таблицу умножения для чисел от 2 до 9.

В начало

Вариант 10 Часть 1

Задача 1

Ввести структуру (с полями числитель и знаменатель) для описания понятия рациональное число. Составить и протестировать функцию:

УМН (A, B, C),

которая записывает в С результат перемножения рациональных чисел А и В.

Задача 2

Определить структуру – важнейшие исторические даты. Ее поля – год, событие.

Написать и протестировать функции:

- сортирующие структуры по любому из полей;
- подсчитывающую средний интервал между датами;
- определяющую наиболее часто встречающуюся первую букву в названии события. Задача 3

Определить структуру, описывающую равнобедренный прямоугольный треугольник с катетами, параллельными осям координат, и нижним левым прямым углом.

Написать и протестировать функцию, возвращающую указатель на новый треугольник - область пересечения двух заданных. Если пересечений нет - возвращается NULL.

Часть 2

Задача 1

Создать файл, в который записать результаты соревнований по 6 видам спорта летней Олимпиады.

Написать программу, выполняющую следующие функции:

- выдать список призеров страны NNN;
- выдать таблицу призеров (золото, серебро, бронза) по запрашиваемому виду спорта.

Задача 2

Вариант 11

Задача 1

Ввести структуру (с полями **число**, **месяц**, **го**д) для описания понятия **дата**. Составить и протестировать функцию, которая:

вычисляет интервал (в днях), прошедший между двумя датами.

Задача 2

Ввести структуру для регистрации автомашин. Она должна иметь следующие поля:

- дату регистрации (структура с полями день, месяц, год);
- марку машины;
- год выпуска;
- цвет;
- номер.

Написать и протестировать функции:

- регистрация новой машины;
- удаление машины из регистрационного списка;
- поиск машины по любой из комбинаций признаков.

Задача 3

Определить структуры, описывающие **точку** в полярной и декартовой системах координат. Составить и протестировать функцию для:

получения декартовых координат точки, если заданы ее полярные координаты.

Часть 2

Задача 1

Создать файл, содержащий сведения о товарах, хранящихся на складе: шифр, наименования товара, количество единиц, стоимость единицы. Все записи должны быть отсортированы в порядке возрастания шифра товара.

Иметь возможность по введенному коду корректировки:

- а) изменить / добавить запись о товаре с шифром XXX;
- б) удалить запись о товаре с шифром XXX;
- в) получить информацию о всех товарах, в наименовании которых содержится заданный ключ.

Задача 2

Используя структуру с полями пол, ФИО, возраст распечатать количество девушек по имени "Елена" и имена тех, кому 19 лет. (Данные находятся в файле.)

В начало

Вариант 12 Часть 1

Задача 1

Ввести структуру (с полями **число, месяц, го**д) для описания понятия дата. Составить и протестировать функцию, которая:

по порядковому номеру дня в году определяет число и месяц года, соответствующие этому дню.

Задача 2

Массив структур содержит информацию о студентах группы: в первом поле стоит фамилия, во втором – возраст, в третьем – рост, в четвертом – средний бал в сессию и т.д. (i-й элемент массива описывает i-го студента).

Студент называется среднестатистическим по к-му параметру, если на нем достигается минимум модуля разности среднего арифметического чисел к-го столбца и значения к-го параметра этого студента. Аналогично определяется уникальный по к-му параметру студент (на нем достигается максимум).

Студент называется самым средним, если он является среднестатистическим по самому большому количеству параметров. Аналогично определяется самый уникальный студент.

Выяснить, кто в группе является:

- а) самым средним,
- б) самым уникальным,
- в) самым средним среди самых уникальных,
- г) самым уникальным среди самых средних.

Задача 3

Определить структуры, описывающие **точку** в полярной и декартовой системах координат. Составить и протестировать функцию для:

вычисления расстояния между двумя точками, заданными в декартовой системе координат.

Задача 1

Создать файл, содержащий сведения об ассортименте обуви в магазине. Структура записи: артикул, наименование, размер, количество пар, стоимость одной пары. Артикул начинается с буквы D для дамской, с M – для мужской, с С – для детской обуви.

Написать программу, выдающую следующую информацию:

- наличие и стоимость обуви артикула XX;
- список дамской обуви заданного размера с указанием наименования и имеющегося в наличии числа пар каждой модели.

Задача 2

В текстовом файле подсчитать количество строк, которые начинаются с буквы 'f'.

В начало

Вариант 13 Часть 1

Задача 1

Ввести структуру (с полями **число, месяц, год**) для описания понятия **дата**. Составить и протестировать функцию, которая:

по введенной дате распечатывает дату на N дней вперед.

Задача 2

В доме N этажей и три лифта. Каждый лифт может быть свободным или занятым. Человек стоит на одном из этажей и собирается вызвать либо ближайший свободный лифт, либо ближайший занятый, направляющийся в сторону этажа, где находится человек.

Распечатать начальную конфигурацию (расстановку, занятость и направление движения лифтов, местоположение человека), а также номер лифта, который будет вызван.

Использовать функции ВВОД, ВЫВОД, ВЫБОР ЛИФТА.

Задача 3

Определить структуры, описывающие **точку** в полярной и декартовой системах координат. Составить и протестировать функцию для:

получения полярных координат точки, если заданы ее декартовы координаты.

Задача 1

Используя структуру для определения понятия **студент** (состоящую из полей ФИО, курс, группа, оценки в сессию) распечатать фамилии и имена отличников первого курса и долю их от общего числа отличников. (Данные находятся в файле.)

Задача 2

Из текстового файла выбросить все пробельные символы. Новый файл не создавать.

В начало

Вариант 14 Часть 1

Задача 1

Ввести перечислимые типы масть, достоинство. С их помощью описать как структуру переменную карта. Составить и протестировать функцию:

БЬЕТ (К1, К2, КМ),

которая проверяет, бьет ли карта К1 карту К2, с учетом того, что масть КМ является козырной.

Задача 2

Пусть ЭВМ не умеет работать с вещественными числами, а имеет только операции и функции для работы с символами, строками и целыми числами.

Реализовать функции для:

- а) ввода;
- б) вывода;
- в) сложения;
- г) вычитания;
- д) умножения

вещественных чисел. (Числа вводятся как строки, разделяются на целую и дробную части, и над ними, как над целыми числами, с учетом межразрядных переносов, выполняются операции.)

Задача 3

Определить структуры, описывающие **точку** в полярной и декартовой системах координат. Составить и протестировать функцию для:

вычисления расстояния между двумя точками, заданными в полярной системе координат.

Задача 1

Дан произвольный текст объемом не менее 1000 символов. Отредактировать его таким образом, чтобы все строки, кроме последней, имели фиксированную длину n.

Правила редактирования:

- слова не переносятся;
- знак препинания не отделяется от слова, за которым он стоит;
- строки выравниваются за счет равномерно вставляемых пробелов.

Задача 2

В файле находятся вещественные числа. Определить количество чисел в наиболее длинной возрастающей последовательности элементов файла.

В начало

Вариант 15 Часть 1

Задача 1

Описать как структуру переменную **время** (с полями часы, минуты, секунды). Составить и протестировать функцию:

СЛЕД СЕК (t, t1, d),

которая присваивает параметру t1 время на d секунд большее, чем время t (может происходить смена суток).

Задача 2

Определить структуру – важнейшие исторические даты. Ее поля – год, событие.

Написать и протестировать функции:

- сортирующие структуры по любому из полей;
- подсчитывающую средний интервал между датами;
- определяющую наиболее часто встречающуюся первую букву в названии события.

Задача 3

Определить структуру, описывающую прямоугольник со сторонами, параллельными осям координат (прямоугольник задается двумя точками – левой нижней и правой верхней).

Написать и протестировать функцию, возвращающую указатель на новый прямоугольник – область пересечения двух прямоугольников. Если пересечения нет – возвращается NULL.

Задача 1

Написать программу записи в файл и чтения из файла элементов массива структур для регистрации автомашин с полями:

- марка машины;
- год выпуска;
- цвет;
- номер.

Задача 2

В текстовом файле подсчитать количество строк, которые начинаются и оканчиваются одной и той же буквой.

В начало

Вариант 16 Часть 1

Задача 1

Описать как структуру переменную **время** (с полями часы, минуты, секунды). Составить и протестировать функцию:

ИНТЕРВАЛ (t1, t2, d),

которая вычисляет время d, прошедшее от времени t1 до времени t2.

Задача 2

Ввести структуру для регистрации автомашин. Она должна иметь следующие поля:

- дату регистрации (структура с полями день, месяц, год);
- марку машины;
- год выпуска;
- цвет;
- номер.

Написать и протестировать функции:

- регистрация новой машины;
- удаление машины из регистрационного списка;
- поиск машины по любой из комбинаций признаков.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

преобразования комплексного числа из алгебраической формы в показательную.

Задача 1

Создать файл, содержащий сведения о книгах в библиотеке. Структура записи: шифр книги, автор, названия, год издания, местоположения (номер стеллажа, полка).

Предусмотреть возможность корректировки файла по вводимому коду корректировки, например:

- 1 удалить запись (по шифру ХХХ);
- 2 добавить новую запись;
- 3 изменить запись (по введенной фамилии автора и названию книги);
- 4 получить информацию о книге с шифром XXX.

Задача 2

В текстовом файле заменить все последовательности идущих подряд пробелов одним пробелом, т.е. "сжать" файл. Новый файл не создавать.

В начало

Вариант 17 Часть 1

Задача 1

Ввести перечислимые типы вертикаль, горизонталь для обозначения клеток шахматной доски. Составить и протестировать функцию:

ХОД ФЕРЗЯ (К1, К2),

которая проверяет, может ли ферзь за один ход перейти с поля К1 на поле К2;

Задача 2

Массив структур содержит информацию о студентах группы: в первом поле стоит фамилия, во втором — возраст, в третьем — рост, в четвертом — средний бал в сессию и т.д. (і-й элемент массива описывает і-го студента).

Студент называется среднестатистическим по к-му параметру, если на нем достигается минимум модуля разности среднего арифметического чисел к-го столбца и значения к-го параметра этого студента. Аналогично определяется уникальный по к-му параметру студент (на нем достигается максимум).

Студент называется самым средним, если он является среднестатистическим по самому большому количеству параметров. Аналогично определяется самый уникальный студент.

Выяснить, кто в группе является:

- а) самым средним,
- б) самым уникальным,

- в) самым средним среди самых уникальных,
- г) самым уникальным среди самых средних.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

преобразования комплексного числа из показательной формы в алгебраическую.

Часть 2

Задача 1

Создать 2 файла, содержащие сведения о игроках хоккейных команд "Динамо" и "Спартак". Структура записей файлов:

- фамилия, имя игрока;
- число заброшенных шайб;
- число сделанных голевых передач.

По данным, извлекаемым из этих файлов, создать новый файл, содержащий данные о шести самых результативных игроках обеих команд.

Задача 2

Проверить наличие баланса всех видов скобок в текстовом файле.

В начало

Вариант 18 Часть 1

Задача 1

Ввести перечислимые типы вертикаль, горизонталь для обозначения клеток шахматной доски. Составить и протестировать функцию:

ХОД КОНЯ (К1, К2),

которая вычисляет, за сколько ходов конь может перейти с поля К1 на поле К2.

Задача 2

В доме N этажей и три лифта. Каждый лифт может быть свободным или занятым. Человек стоит на одном из этажей и собирается вызвать либо ближайший свободный лифт, либо ближайший занятый, направляющийся в сторону этажа, где находится человек.

Распечатать начальную конфигурацию (расстановку, занятость и направление движения лифтов, местоположение человека), а также номер лифта, который будет вызван.

Использовать функции ВВОД, ВЫВОД, ВЫБОР ЛИФТА.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

получения сопряженного комплексного числа.

Часть 2

Задача 1

Экспертами компании по перевозкам грузов на верблюдах установлено, что верблюд безопасно для жизни может перевести 7640 прутьев. Данные о каждом караване верблюдов находятся в файле. Для каждого каравана набор данных представляет собой группу строк: имя погонщика, число верблюдов, число корзин, перевозимых каждым верблюдом, и число прутьев в каждой корзине. Распечатать состояние верблюдов.

Например,

ТОМ ДЖОНС

верблюды в порядке

БОБ УЭЙТ

недопустимые грузы:

верблюд 3 перевозит 7645 прутьев верблюд 8 перевозит 8006 прутьев.

Задача 2

Дан текстовый файл F1. Переписать его содержимое в файл F2, разбив на строки таким образом, чтобы каждая строка либо оканчивалась точкой, либо содержала 40 литер, если среди них нет точек.

В начало

Вариант 19 Часть 1

Задача 1

Ввести структуру (с полями **числитель** и **знаменатель**) для описания понятия **рациональное число**. Составить и протестировать функцию:

PABHO (A, B),

которая проверяет, равны ли друг другу рациональные числа А, В.

Задача 2

Пусть ЭВМ не умеет работать с вещественными числами, а имеет только операции и функции для работы с символами, строками и целыми числами.

Реализовать функции для:

- а) ввода;
- б) вывода;

- в) сложения;
- г) вычитания;
- д) умножения

вещественных чисел. (Числа вводятся как строки, разделяются на целую и дробную части, и над ними, как над целыми числами, с учетом межразрядных переносов, выполняются операции.)

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

возведения комплексного числа в целую положительную степень.

Часть 2

Задача 1

Треугольник Паскаля — таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят 1, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа:

В строке с номером n + 1 выписаны коэффициенты разложения бинома $(a + b)^n$.

Написать программу, которая работает в одном из двух режимов. Если в текущем каталоге имеется файл "tr_pasc.txt", то распечатать его содержимое в виде, представленном на рисунке. В противном случае создать файл с таким именем и записать туда треугольник Паскаля n-го порядка. Параметр n (n<12) задается в командной строке.

Задача 2

В командной строке задается имя входного файла и целое число N. Распечатать последние N строк указанного файла.

Вариант 20 Часть 1

Задача 1

Ввести структуру (с полями числитель и знаменатель) для описания понятия рациональное число. Составить и протестировать функцию:

MAKC (X, N),

которая возвращает наибольшее из массива X[N] рациональных чисел.

Задача 2

Определить структуру – важнейшие исторические даты. Ее поля – год, событие.

Написать и протестировать функции:

- сортирующие структуры по любому из полей;
- подсчитывающую средний интервал между датами;
- определяющую наиболее часто встречающуюся первую букву в названии события.

Задача 3

Ввести структуру для описания **комплексного числа**. Составить и протестировать функцию для:

умножения комплексных чисел в алгебраической форме.

Часть 2

Задача 1

Создать файл, содержащий сведения о том, какие из 5 предложенных дисциплин желает слушать студент.

Структура записи:

- фамилия студента;
- номер группы;
- средний балл;
- 5 дисциплин, где '*' показывает выбранную дисциплину.

Создать файл, содержащий данные о тех, кто желает прослушать дисциплину XX. Если желающих больше 10, то отобрать тех студентов, у которых более высокий средний балл

Задача 2

Написать программу сравнения двух файлов: должна печататься первая строка, в которой они различаются. Если файлы идентичны, то выдать сообщение.

Контрольные вопросы

- 1. Что представляет собой тип данных структура?
- 2. Как описываются данные типа структуры?
- 3. Как описывают массивы структур? С какой целью их используют?
- 4. Как осуществляется доступ к элементам структурного массива?
- 5. Что представляет собой файл данных? Дайте определение.
- 6. Приведите пример стандартного потока ввода-вывода.
- 7. Что такое режим доступа?
- 8. Перечислите возможные режимы доступа при работе с текстовыми файлами.
- 9. Как организуется чтение файла?
- 10. Как организовать построчное считывание данных из файла? Приведите пример.
- 11. Как организуется вывод данных в файл?
- 12. Как организовать добавление данных в существующий файл?
- 13. Каков механизм действий, связанных с закрытием файла?

Список литературы

- 1. Курс лекций доцента кафедры ФН1-КФ Пчелинцевой Н.И.
- 2. Программирование на языке высокого уровня C/C++ [Электронный ресурс]: конспект лекций / Электрон. текстовые данные. М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2016. 140 с. Режим доступа: http://www.iprbookshop.ru/48037.