

Lecture 07: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Prof. Markus K. Brunnermeier

Overview

- 1. Simple CAPM with quadratic utility functions (derived from state-price beta model)
- 2. Mean-variance preferences
 - Portfolio Theory
 - CAPM (intuition)
- 3. CAPM
 - Projections
 - Pricing Kernel and Expectation Kernel

Recall State-price Beta model

Recall:

$$E[R^h] - R^f = \beta^h E[R^* - R^f]$$
 where $\beta^h := Cov[R^*, R^h] / Var[R^*]$

very general – but what is R* in reality?

Simple CAPM with Quadratic Expected Utility

- 1. All agents are identical
 - Expected utility $U(x_0, x_1) = \sum_s \pi_s u(x_0, x_s) \Rightarrow m = \partial_1 u / E[\partial_0 u]$
 - Quadratic $u(x_0, x_1) = v_0(x_0) (x_1 \alpha)^2$ $\Rightarrow \partial_1 u = [-2(x_{1,1} - \alpha), ..., -2(x_{S,1} - \alpha)]$
 - $E[R^h] R^f = -Cov[m,R^h] / E[m]$ = $-R^f Cov[\partial_1 u, R^h] / E[\partial_0 u]$ = $-R^f Cov[-2(x_1 - \alpha), R^h] / E[\partial_0 u]$ = $R^f 2Cov[x_1,R^h] / E[\partial_0 u]$
 - Also holds for market portfolio
 - $E[R^m] R^f = R^f 2Cov[x_1,R^m]/E[\partial_0 u]$

$$\Rightarrow \frac{E[R^h] - R^f}{E[R^m] - R^f} = \frac{Cov[x_1, R^h]}{Cov[x_1, R^m]}$$

Simple CAPM with Quadratic Expected Utility

$$\frac{E[R^h] - R^f}{E[R^m] - R^f} = \frac{Cov[x_1, R^h]}{Cov[x_1, R^m]}$$

2. Homogenous agents + Exchange economy

 \Rightarrow x₁ = agg. endowment and is perfectly correlated with R^m

$$\frac{E[R^h] - R^f}{E[R^m] - R^f} = \frac{Cov[R^m, R^h]}{Var[R^m]}$$
since $\beta^h = \frac{Cov[R^h, R^m]}{Var[R^m]}$

 $E[R^h]=R^f+\beta^h \{E[R^m]-R^f\}$ Market Security Line

N.B.: $R^*=R^f(a+b_1R^M)/(a+b_1R^f)$ in this case (where $b_1<0$)! Mean-Variance Analysis and CAPM

Overview

- 1. Simple CAPM with quadratic utility functions (derived from state-price beta model)
- 2. Mean-variance analysis
 - Portfolio Theory(Portfolio frontier, efficient frontier, ...)
 - CAPM (Intuition)
- 3. CAPM
 - Projections
 - Pricing Kernel and Expectation Kernel

Definition: Mean-Variance Dominance & Efficient Frontier

- Asset (portfolio) A mean-variance dominates asset (portfolio) B if $\mu_A \geq \mu_B$ and $\sigma_A < \sigma_B$ or if $\mu_A > \mu_B$ while $\sigma_A \leq \sigma_B$.
- Efficient frontier: loci of all non-dominated portfolios in the mean-standard deviation space. By definition, no ("rational") mean-variance investor would choose to hold a portfolio not located on the efficient frontier.

Expected Portfolio Returns & Variance

• Expected returns (linear)

$$\mu_p := E[r_p] = w_j \mu_j$$
, where each $w_j = \frac{h^j}{\sum_j h^j}$

Variance

$$\begin{split} \sigma_p^2 := Var[r_p] &= w'Vw = (w_1\,w_2) \left(\begin{array}{ccc} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{array} \right) \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) \\ &= \left(w_1\sigma_1^2 + w_2\sigma_{21} & w_1\sigma_{12} + w_2\sigma_2^2 \right) \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) \\ &= w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + 2w_1w_2\sigma_{12} \geq 0 \\ &= since \ \sigma_{12} \leq -\sigma_1\sigma_2. \quad \text{recall that correlation} \\ &= coefficient \in [\text{-}1,1] \end{split}$$

Illustration of 2 Asset Case

- For certain weights: w_1 and $(1-w_1)$ $\mu_p = w_1 E[r_1] + (1-w_1) E[r_2]$ $\sigma^2_p = w_1^2 \sigma_1^2 + (1-w_1)^2 \sigma_2^2 + 2 w_1 (1-w_1) \sigma_1 \sigma_2 \rho_{1,2}$ (Specify σ^2_p and one gets weights and μ_p 's)
- Special cases $[w_1 \text{ to obtain certain } \sigma_R]$

$$- \rho_{1,2} = 1 \implies w_1 = (+/-\sigma_p - \sigma_2) / (\sigma_1 - \sigma_2)$$

$$-\rho_{1,2} = -1 \implies w_1 = (+/-\sigma_p + \sigma_2) / (\sigma_1 + \sigma_2)$$

Princeton University

Fin 501: Asset Pricing

For
$$\rho_{1,2}=1$$
: $\sigma_p=|w_1\sigma_1+(1-w_1)\sigma_2|$ Hence, $w_1=\frac{\pm\sigma_p-\sigma_2}{\sigma_1-\sigma_2}$ $\mu_p=w_1\mu_1+(1-w_1)\mu_2$

Hence,
$$w_1=rac{\pm\sigma_p-\sigma_2}{\sigma_1-\sigma_2}$$

$$\mu_p = \mu_1 + \frac{\mu_2 - \mu_1}{\sigma_2 - \sigma_1} (\pm \sigma_p - \sigma_1)$$

The Efficient Frontier: Two Perfectly Correlated Risky Assets

Princeton University

Fin 501: Asset Pricing

For
$$\rho_{1,2}$$
 = -1: $\sigma_p = |w_1\sigma_1 - (1-w_1)\sigma_2|$ Hence, $w_1 = \frac{\pm \sigma_p + \sigma_2}{\sigma_1 + \sigma_2}$ $\mu_p = w_1\mu_1 + (1-w_1)\mu_2$

$$\mu_p = \frac{\sigma_2}{\sigma_1 + \sigma_2} \mu_1 + \frac{\sigma_1}{\sigma_1 + \sigma_2} \pm \frac{\mu_2 - \mu_1}{\sigma_1 + \sigma_2} \sigma_p$$

Efficient Frontier: Two Perfectly Negative Correlated Risky Assets

For $-1 < \rho_{1,2} < 1$:

Efficient Frontier: Two Imperfectly Correlated Risky Assets

For
$$\sigma_1 = 0$$

The Efficient Frontier: One Risky and One Risk Free Asset

Efficient frontier with n risky assets

• A frontier portfolio is one which displays minimum variance among all feasible portfolios with the same expected portfolio return.

$$\min_{w} \frac{1}{2} w^{T} V w$$

$$(\lambda)$$
 s.t. $w^T e = E$

$$(\gamma) \qquad \mathbf{w}^{\mathrm{T}} \mathbf{1} = 1$$

$$\left(\sum_{i=1}^{N} w_i E(\widetilde{r}_i) = E\right)$$

$$\left(\sum_{i=1}^{N} \mathbf{w}_{i} = 1\right)$$

$$\frac{\partial \mathcal{L}}{\partial w} = Vw - \lambda e - \gamma \mathbf{1} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = E - w^T e = 0$$

$$\frac{\partial \mathcal{L}}{\partial \gamma} = \mathbf{1} - w^T \mathbf{1} = 0$$

The first FOC can be written as:

$$Vw_p = \lambda e + \gamma 1$$
 or $w_p = \lambda V^{-1}e + \gamma V^{-1}1$ $e^Tw_p = \lambda (e^TV^{-1}e) + \gamma (e^TV^{-1}1)$

Noting that $e^T w_p = w^T_p e$, using the first foc, the second foc can be written as

$$E[\tilde{r}_p] = e^T w_p = \lambda \underbrace{(e^T V^{-1} e)}_{:=B} + \gamma \underbrace{(e^T V^{-1} 1)}_{=:A}$$

pre-multiplying first foc with 1 (instead of e^T) yields

$$1^{T}w_{p} = w_{p}^{T}1 = \lambda(1^{T}V^{-1}e) + \gamma(1^{T}V^{-1}1) = 1$$

$$1 = \lambda\underbrace{(1^{T}V^{-1}e)}_{=:A} + \gamma\underbrace{(1^{T}V^{-1}1)}_{=:C}$$

Solving both equations for λ and γ

$$\lambda = \frac{CE - A}{D}$$
 and $\gamma = \frac{B - AE}{D}$ where $D = BC - A^2$.

Hence, $w_p = \lambda V^{-1}e + \gamma V^{-1}1$ becomes

$$w_{p} = \frac{CE - A}{D} V^{-1}e + \frac{B - AE}{D} V^{-1}\mathbf{1}$$

$$\lambda \text{ (scalar)} \qquad \gamma \text{ (scalar)}$$

$$= \frac{1}{D} \Big[B \Big(V^{-1} 1 \Big) - A \Big(V^{-1} e \Big) \Big] + \frac{1}{D} \Big[C \Big(V^{-1} e \Big) - A \Big(V^{-1} 1 \Big) \Big] E$$

• Result: Portfolio weights are linear in expected portfolio return $w_p = g + h E$

$$\begin{aligned} &\text{If } E=0, & & & & & \\ &\text{If } E=1, & & & & \\ & & & & \\ &\text{w}_p=g+h \end{aligned}$$

Hence, g and g+h are portfolios on the frontier.

Characterization of Frontier Portfolios

- <u>Proposition 6.1</u>: The entire set of frontier portfolios can be generated by ("are convex combinations" of) g and g+h.
- <u>Proposition 6.2</u>. The portfolio frontier can be described as convex combinations of <u>any two</u> frontier portfolios, not just the frontier portfolios g and g+h.
- <u>Proposition 6.3</u>: Any convex combination of frontier portfolios is also a frontier portfolio.

... Characterization of Frontier Portfolios...

• For any portfolio on the frontier, $\sigma^2(E[\widetilde{r}_p]) = [g + hE(\widetilde{r}_p)]^T V[g + hE(\widetilde{r}_p)]$ with g and h as defined earlier.

Multiplying all this out yields:

$$\sigma^2(E[\tilde{r}_p]) = \frac{C}{D}[E[\tilde{r}_p] - \frac{A}{C}]^2 + \frac{1}{C}$$

... Characterization of Frontier Portfolios...

- (i) the expected return of the minimum variance portfolio is A/C;
- (ii) the variance of the minimum variance portfolio is given by 1/C;
- (iii) equation (6.17) is the equation of a parabola with vertex (1/C, A/C) in the expected return/variance space and of a hyperbola in the expected return/standard deviation space. See Figures 6.3 and 6.4.

Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space

Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space

Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed

Efficient Frontier with risk-free asset

The Efficient Frontier: One Risk Free and n Risky Assets

Efficient Frontier with risk-free asset

$$\min_{w} \frac{1}{2} w^T V w$$
 s.t. $w^T e + (1 - w^T 1) r_f = E[r_p]$

FOC:
$$w_p = \lambda V^{-1} (e - r_f 1)$$

Multiplying by $(e-r_f 1)^T$ and solving for λ yields $\lambda = \frac{E[r_p]-r_f}{(e-r_f 1)^T V^{-1}(e-r_f 1)}$

$$w_p = \underbrace{V^{-1}(e - r_f \mathbf{1})}_{n \times 1} \underbrace{\frac{E[r_p] - r_f}{H^2}}$$

where
$$H = \sqrt{B - 2Ar_f + Cr_f^2}$$

Efficient frontier with risk-free asset

• Result 1: Excess return in frontier excess return

$$egin{array}{lll} Cov[r_q,r_p] &=& w_q^T V w_p \ &=& \underbrace{w_q^T (e-r_f \mathbf{1})}_{E[r_q]-r_f} rac{E[r_p]-r_f}{H^2} \ &=& rac{(E[r_q]-r_f)([E[r_p]-r_f)}{H^2} \ Var[r_p,r_p] &=& rac{(E[r_p]-r_f)^2}{H^2} \ E[r_q]-r_f &=& rac{Cov[r_q,r_p]}{Var[r_p]} (E[r_p]-r_f) \ rac{=& \mathcal{E}[r_q]-r_f}{Var[r_p]} \end{array}$$

Holds for any frontier portfolio p, in particular the market portfol

Efficient Frontier with risk-free asset

• Result 2: Frontier is linear in (E[r], σ)-space

$$Var[r_p, r_p] = \frac{(E[r_p] - r_f)^2}{H^2}$$

$$E[r_p] = r_f + H\sigma_p$$

$$H = \frac{E[r_p] - r_f}{\sigma_p}$$

where H is the Sharpe ratio

Two Fund Separation

- Doing it in two steps:
 - First solve frontier for *n* risky asset
 - Then solve tangency point
- Advantage:
 - Same portfolio of n risky asset for different agents with different risk aversion
 - Useful for applying equilibrium argument (later)

Two Fund Separation

Price of Risk = = highest Sharpe ratio

Optimal Portfolios of Two Investors with Different Risk Aversion

Mean-Variance Preferences

$$\frac{\partial U}{\partial \mu_p} > 0, \, \frac{\partial U}{\partial \sigma_p^2} < 0$$

• $U(\mu_p, \sigma_p)$ with

$$E[W] - \frac{\gamma}{2} Var[W]$$

- Example:
- Also in expected utility framework
 - quadratic utility function (with portfolio return R)

$$U(R) = a + b R + c R^{2}$$
vNM: E[U(R)] = a + b E[R] + c E[R^{2}]
$$= a + b \mu_{p} + c \mu_{p}^{2} + c \sigma_{p}^{2}$$

$$= g(\mu_{p}, \sigma_{p})$$

- asset returns normally distributed $\Rightarrow R = \sum_{i} w^{j} r^{j}$ normal
 - if U(.) is CARA \Rightarrow certainty equivalent = μ_p $\rho_A/2\sigma_p^2$ (Use moment generating function)

Equilibrium leads to CAPM

- Portfolio theory: only analysis of demand
 - price/returns are taken as given
 - composition of risky portfolio is same for all investors
- Equilibrium Demand = Supply (market portfolio)
- CAPM allows to derive
 - equilibrium prices/ returns.
 - risk-premium

The CAPM with a risk-free bond

- The market portfolio is efficient since it is on the efficient frontier.
- All individual optimal portfolios are located on the half-line originating at point $(0,r_f)$.
- The slope of Capital Market Line (CML): $\frac{E[R_M] R_f}{\sigma_M}$.

$$E[R_p] = R_f + \frac{E[R_M] - R_f}{\sigma_M} \sigma_p$$

The Security Market Line

Overview

- 1. Simple CAPM with quadratic utility functions (derived from state-price beta model)
- 2. Mean-variance preferences
 - Portfolio Theory
 - CAPM (Intuition)
- 3. CAPM (modern derivation)
 - Projections
 - Pricing Kernel and Expectation Kernel

Projections

- States s=1,...,S with $\pi_s > 0$
- Probability inner product

$$[x, y]_{\pi} = (xy)_{\pi} = \sum_{s} \pi_{s} x_{s} y_{s} = \sum_{s} (\sqrt{\pi_{s}} x_{s} \sqrt{\pi_{s}} y_{s})$$

- π -norm $||x|| = \sqrt{[x, x]_{\pi}}$ (measure of length)
 - (i) $||x|| > 0 \ \forall x \neq 0 \ \text{and} \ ||x|| = 0 \ \text{if} \ x = 0$
 - (ii) $||\lambda x|| = |\lambda|||x||$
 - (iii) $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}^S$

x and y are π -orthogonal iff $[x,y]_{\pi} = 0$, I.e. E[xy]=0

...Projections...

- \mathcal{Z} space of all linear combinations of vectors $z_1, ..., z_n$
- Given a vector $y \in R^S$ solve

$$min_{\alpha \in \mathbb{R}^n} E[y - \sum_{j=1,...,n} \alpha^j z^j]^2$$
FOC: (for each $j = 1,...,n$)
$$\sum_s \pi_s(y_s - \sum_j \alpha^j z_s^j) z^j = 0$$
 $\Rightarrow \hat{\alpha}$ the solution

$$y^{\mathcal{Z}} = \sum_{j} \hat{\alpha^{j}} z^{j}$$
, $\epsilon := y - y^{\mathcal{Z}}$

• [smallest distance between vector y and \mathcal{Z} space]

...Projections

 $E[\epsilon z^{j}]=0$ for each j=1,...,n (from FOC) $\epsilon \perp z$ y^{Z} is the (orthogonal) projection on \mathcal{Z} $y = y^{Z} + \epsilon'$, $y^{Z} \in \mathcal{Z}$, $\epsilon \perp z$ Mean-Variance Analysis and CAPM

Expected Value and Co-Variance...

squeeze axis by $\sqrt{\pi_S}$ [x,y]=E[xy]=Cov[x,y]+E[x]E[y]X $[x,x]=E[x^2]=Var[x]+E[x]^2$ $||\mathbf{x}|| = E[\mathbf{x}^2]^{\frac{1}{2}}$ $x = \hat{x} + \tilde{x}$

...Expected Value and Co-Variance

```
x = \hat{x} + \tilde{x}, where
```

$$\hat{x}$$
 is projection of x onto $<1>$

$$\tilde{x}$$
 is projection of x onto $<1>^{\perp}$

$$E[x] = [x, 1]_{\pi} = [\hat{x}, 1]_{\pi} = \hat{x}[1, 1]_{\pi} = ||\hat{x}||$$

$$Var[x] = [\tilde{x}, \tilde{x}]_{\pi} = E[\tilde{x}^2] = Var[\tilde{x}]$$

$$\sigma_x = ||\tilde{x}||_{\pi} = \text{standard deviation of } x$$

$$Cov[x, y] = Cov[\tilde{x}, \tilde{y}] = [\tilde{y}, \tilde{x}]$$

Proof:
$$[x,y]_{\pi} = [\hat{x},\hat{y}]_{\pi} + [\tilde{x},\tilde{y}]_{\pi}$$
, since

$$[\hat{y}, \tilde{x}]_{\pi} = [\tilde{y}, \hat{x}]_{\pi} = 0, [x, y]_{\pi} = E[\hat{y}]E[\hat{x}] + Cov[\tilde{x}, \tilde{y}]$$

Overview

- 1. Simple CAPM with quadratic utility functions (derived from state-price beta model)
- 2. Mean-variance preferences
 - Portfolio Theory
 - CAPM (Intuition)
- 3. CAPM (modern derivation)
 - Projections
 - Pricing Kernel and Expectation Kernel

New (LeRoy & Werner) Notation

Main changes (new versus old)

- gross return:
$$r = R$$

- SDF:
$$\mu = m$$

- pricing kernel:
$$k_q = m^*$$

- Asset span:
$$\mathcal{M} = \langle X \rangle$$

- income/endowment:
$$w_t = e_t$$

Pricing Kernel k_q...

- M space of feasible payoffs.
- If no arbitrage and $\pi >>0$ there exists SDF $\mu \in R^S$, $\mu >>0$, such that $q(z)=E(\mu z)$.
- $\mu \in \mathcal{M}$ SDF need not be in asset span.
- A pricing kernel is a $k_q \in \mathcal{M}$ such that for each $z \in \mathcal{M}$, $q(z)=E(k_q z)$.
- $(k_q = m^* \text{ in our old notation.})$

...Pricing Kernel - Examples...

• Example 1:

- $-S=3,\pi^{s}=1/3$ for s=1,2,3,
- $-x_1=(1,0,0), x_2=(0,1,1), p=(1/3,2/3).$
- Then k=(1,1,1) is the unique pricing kernel.

• Example 2:

- $-S=3,\pi^{s}=1/3$ for s=1,2,3,
- $x_1 = (1,0,0), x_2 = (0,1,0), p = (1/3,2/3).$
- Then k=(1,2,0) is the unique pricing kernel.

...Pricing Kernel – Uniqueness

- If a state price density exists, there exists a *unique* pricing kernel.
 - If $dim(\mathcal{M}) = m$ (markets are complete), there are exactly m equations and m unknowns
 - If dim(\mathcal{M}) \leq m, (markets may be incomplete) For any state price density (=SDF) μ and any $z \in \mathcal{M}$ $\mathbf{E}[(\mu - \mathbf{k}_q)\mathbf{z}] = \mathbf{0}$

 $\mu=(\mu-k_q)+k_q \Rightarrow k_q$ is the "**projection**" of μ on \mathcal{M} .

• Complete markets \Rightarrow , $k_q = \mu$ (SDF=state price density)

Expectations Kernel k_e

- An expectations kernel is a vector $k_e \in \mathcal{M}$
 - Such that $E(z)=E(k_e z)$ for each $z \in \mathcal{M}$.
- Example
 - S=3, π s=1/3, for s=1,2,3, x_1 =(1,0,0), x_2 =(0,1,0).
 - Then the unique $k_e = (1,1,0)$.
- If $\pi >> 0$, there exists a unique expectations kernel.
- Let e=(1,...,1) then for any $z \in \mathcal{M}$
- $E[(e-k_e)z]=0$
- k_e is the "projection" of e on \mathcal{M}
- $k_e = e$ if bond can be replicated (e.g. if markets are complete)

Mean Variance Frontier

- Definition 1: $z \in \mathcal{M}$ is in the mean variance frontier if there exists no $z' \in \mathcal{M}$ such that E[z'] = E[z], q(z') = q(z) and var[z'] < var[z].
- Definition 2: Let \mathcal{E} the space generated by k_q and k_e .
- Decompose $z=z^{\mathcal{E}}+\varepsilon$, with $z^{\mathcal{E}}\in\mathcal{E}$ and $\varepsilon\perp\mathcal{E}$.
- Hence, $E[\varepsilon] = E[\varepsilon k_e] = 0$, $q(\varepsilon) = E[\varepsilon k_q] = 0$ $Cov[\varepsilon, z^{\varepsilon}] = E[\varepsilon z^{\varepsilon}] = 0$, since $\varepsilon \perp \varepsilon$.
- $var[z] = var[z^{\mathcal{E}}] + var[\varepsilon]$ (price of ε is zero, but positive variance)
- If z in mean variance frontier \Rightarrow z $\in \mathcal{E}$.
- Every $z \in \mathcal{E}$ is in mean variance frontier.

Frontier Returns...

• Frontier returns are the returns of frontier payoffs with non-zero prices.

$$r_e = \frac{k_e}{q(k_e)} = \frac{k_e}{E(k_q)}$$

$$r_q = \frac{k_q}{q(k_q)} = \frac{k_q}{E(k_q k_q)}$$

• If $z = \alpha k_q + \beta k_e$ then,

$$r_z = \underbrace{\frac{\alpha q(k_q)}{\alpha q(k_q) + \beta q(k_e)}}_{\lambda} r_q + \underbrace{\frac{\beta q(k_e)}{\alpha q(k_q) + \beta q(k_e)}}_{1-\lambda} r_e$$

• graphically: payoffs with price of p=1.

$$\mathcal{M} = \mathbb{R}^{\mathbb{S}} = \mathbb{R}^3$$

NB: graphical illustrated of expected returns and standard deviation changes if bond is not in payoff span.

...Frontier Returns

If $k_e = \alpha k_q$, frontier returns $\equiv r_e$. (if agent is risk-neutral) If $k_e \neq \alpha k_q$, frontier can be written as:

$$r_{\lambda} = r_e + \lambda (r_q - r_e)$$

Expectations and Variance are

$$E[r_{\lambda}] = E[r_e] + \lambda (E[r_q] - E[r_e])$$

$$var(r_{\lambda}) = var(r_e) + 2\lambda cov(r_e, r_q - r_e) + \lambda^2 var(r_q - r_e)$$
(1)

If risk-free asset exists, they simplify to:

$$\begin{split} E[r_{\lambda}] &= \bar{r} + \lambda (E[r_q] - \bar{r}). \\ \text{var}(r_{\lambda}) &= \lambda^2 \text{var}(r_q). \ \sigma(r_{\lambda}) = |\lambda| \sigma(r_q). \\ E(r_{\lambda}) &= \bar{r} \pm \sigma(r_{\lambda}) \frac{E(r_q) - \bar{r}}{\sigma(r_q)} \end{split}$$

Minimum Variance Portfolio

• Take FOC w.r.t. λ of

$$var(r_{\lambda}) = var(r_e) + 2\lambda cov(r_e, r_q - r_e) + \lambda^2 var(r_q - r_e)$$
(1)

• Hence, MVP has return of

$$r_e + \lambda_0 (r_q - r_e)$$
, with

$$\lambda_0 = -\frac{\operatorname{cov}(r_e, r_q - r_e)}{\operatorname{var}(r_q - r_e)}.$$

Illustration of MVP

Mean-Variance Efficient Returns

- *Definition:* A return is **mean-variance efficient** if there is no other return with same variance but greater expectation.
- Mean variance efficient returns are frontier returns with $E[r_{\lambda}] \geq E[r_{\lambda 0}].$
- If risk-free asset can be replicated
 - Mean variance efficient returns correspond to $\lambda \leq 0$.
 - Pricing kernel (portfolio) is not mean-variance efficient, since

$$E[r_q]=rac{E[k_q]}{E[k_q^2]}<rac{1}{E[k_q]}=ar{r}.$$
 Hint: $E[k_q^2]>E[k_q]^2$ since $Var[k_q]>0$

Zero-Covariance Frontier Returns

- Take two frontier portfolios with returns $r_{\lambda} = r_e + \lambda(r_q r_e)$ and $r_{\mu} = r_e + \mu(r_q r_e)$
- $\operatorname{cov}(r_{\mu}, r_{\lambda}) = \operatorname{var}(r_e) + (\lambda + \mu)\operatorname{cov}(r_e, r_q r_e) + \lambda \mu \operatorname{var}(r_q r_e).$
- The portfolios have zero co-variance if $\mu = -\frac{\text{var}(r_e) + \lambda \text{cov}(r_e, r_q r_e)}{\text{cov}(r_e, r_q r_e) + \lambda \text{var}(r_q r_e)}$
- For all $\lambda \neq \lambda_0$ μ exists
- μ=0 if risk-free bond can be replicated

Illustration of ZC Portfolio...

...Illustration of ZC Portfolio

Beta Pricing...

- Frontier Returns (are on linear subspace). Hence $r_{\beta} = r_{\mu} + \beta(r_{\lambda} r_{\mu})$.
- Consider any asset with payoff x_i
 - It can be decomposed in $x_j = x_j^{\mathcal{E}} + \epsilon_j$
 - $-q(x_j)=q(x_j^{\mathcal{E}})$ and $E[x_j]=E[x_j^{\mathcal{E}}]$, since $\epsilon \perp \mathcal{E}$.
 - Let $r_i^{\mathcal{E}}$ be the return of $x_i^{\mathcal{E}}$
 - $-r_j = r_j^{\mathcal{E}} + \frac{\epsilon_j}{q(x_j)}.$
 - Using above and assuming $\lambda \neq \lambda_0$ and μ is ZC-portfolio of λ , $r_j = r_\mu + \beta_j (r_\lambda r_\mu) + \frac{\epsilon_j}{q(x_i)}$

Mean-Variance Analysis and CAPM

Slide 07-60

...Beta Pricing

- Taking expectations and deriving covariance
- $E[r_j] = E[r_\mu] + \beta_j (E[r_\lambda] E[r_\mu])$ since $r_\lambda \perp \frac{\epsilon_j}{q(x_j)}$ $\operatorname{cov}(r_\lambda, r_j) = \beta_j \operatorname{var}(r_\lambda) \Rightarrow \beta_j = \frac{\operatorname{COV}(r_\lambda, r_j)}{\operatorname{var}(r_\lambda)}.$
- If risk-free asset can be replicated, beta-pricing equation simplifies to

$$E[r_j] = \bar{r} + \beta_j (E[r_\lambda] - \bar{r})$$

• Problem: How to identify frontier returns

Capital Asset Pricing Model...

- CAPM = market return is frontier return
 - Derive conditions under which market return is frontier return
 - Two periods: 0,1.
 - Endowment: individual w_1^i at time 1, aggregate $\bar{w}_1 = \bar{w}_1^{\mathcal{M}} + \bar{w}_1^{\mathcal{N}}$, where $\bar{w}_1^{\mathcal{M}}$ the orthogonal projection of \bar{w}_1 on \mathcal{M} is.
 - The market payoff: $m \equiv \bar{w}_1^{\mathcal{M}}$
 - Assume $q(m) \neq 0$, let $r_m = m / q(m)$, and assume that r_m is not the minimum variance return.

... Capital Asset Pricing Model

- If r_{m0} is the frontier return that has zero covariance with r_{m} then, for every security j,
- $E[r_j]=E[r_{m0}] + \beta_j (E[r_m]-E[r_{m0}])$, with $\beta_j=cov[r_j,r_m] / var[r_m]$.
- If a risk free asset exists, equation becomes,
- $E[r_j] = r_f + \beta_j (E[r_m] r_f)$
- N.B. first equation always hold if there are only two assets.

Outdated material follows

- Traditional derivation of CAPM is less elegant
- Not relevant for exams

Characterization of Frontier Portfolios

- <u>Proposition 6.1</u>: The entire set of frontier portfolios can be generated by ("are convex combinations" of) g and g+h.
- <u>Proposition 6.2</u>. The portfolio frontier can be described as convex combinations of <u>any two</u> frontier portfolios, not just the frontier portfolios g and g+h.
- <u>Proposition 6.3</u>: Any convex combination of frontier portfolios is also a frontier portfolio.

Characterization of Frontier Portfolios

- <u>Proposition 6.1</u>: The entire set of frontier portfolios can be generated by ("are convex combinations" of) g and g+h.
 - <u>Proof</u>: To see this let q be an arbitrary frontier portfolio with as its expected return. $E(\widetilde{r}_q)$

Consider portfolio weights (proportions)

$$\pi_{g} = 1 - E(\widetilde{r}_{q}) \text{ and } \pi_{g+h} = E(\widetilde{r}_{q}) \text{ then, as asserted,}$$

$$[1 - E(\widetilde{r}_{q})]g + E(\widetilde{r}_{q})(g+h) = g + hE(\widetilde{r}_{q}) = w_{q}.$$

- <u>Proposition 6.2</u>. The portfolio frontier can be described as convex combinations of <u>any two</u> frontier portfolios, not just the frontier portfolios g and g+h.
- <u>Proof:</u> To see this, let p_1 and p_2 be any two distinct frontier portfolios; since the frontier portfolios are $E[r_{p1}] \neq E[r_{p2}]$ different. Let q be an arbitrary frontier portfolio, with expected return equal to $E[r_q]$. Since $E[r_{p1}] \neq E[r_{p2}]$, there must exist a unique number such that

$$E[r_q] = \alpha E[r_{p1}] + (1 - \alpha) E[r_{p2}]$$
 (6.16)

Now consider a portfolio of p_1 and p_2 with weights α , 1- α , respectively, as determined by (6.16). We must show that

$$w_q = \alpha w_{p1} + (1 - \alpha) w_{p2}$$
.

Proof of Proposition 6.2 (continued)

$$\alpha w_{p_1} + (1 - \alpha) w_{p_2} = \alpha [g + hE(\widetilde{r}_{p_1})] + (1 - \alpha) [g + hE(\widetilde{r}_{p_2})]$$

$$= g + h[\alpha E(\widetilde{r}_{p_1}) + (1 - \alpha)E(\widetilde{r}_{p_2})]$$

$$= g + hE(\widetilde{r}_{q}), \text{ by construction}$$

$$= w_{q}, \text{ since q is a frontier portfolio.}$$

Princeton University

Fin 501: Asset Pricing

- <u>Proposition 6.3</u>: Any convex combination of frontier portfolios is also a frontier portfolio.
- <u>Proof</u>: Let $(\overline{w}_1 \quad ... \quad \overline{w}_N)$, define N frontier portfolios $(\overline{w}_i \text{ represents the vector defining the composition of the } i^{th} \text{ portfolios})$ and let $\alpha_i = 1, ..., N$ be real numbers such that $\sum_{i=1}^N \alpha_i = 1$. Lastly, let $E(\overline{r}_i)$ denote the expected return of portfolio with weights \overline{w}_i .

The weights corresponding to a linear combination of the above N portfolios are :

$$\begin{split} \sum_{i=1}^{N} \alpha_{i} \overline{w}_{i} &= \sum_{i=1}^{N} \alpha_{i} (g + hE(\widetilde{r}_{i})) \\ &= \sum_{i=1}^{N} \alpha_{i} g + h \sum_{i=1}^{N} \alpha_{i} E(\widetilde{r}_{i}) \\ &= g + h \left[\sum_{i=1}^{N} \alpha_{i} E(\widetilde{r}_{i}) \right] \end{split}$$

Thus $\sum_{i=1}^{N} \alpha_i \overline{w}_i$ is a frontier portfolio with $E(\overline{r}) = \sum_{i=1}^{N} \alpha_i E(\widetilde{r}_i)$.

... Characterization of Frontier Portfolios...

• For any portfolio on the frontier, $\sigma^2(E[\widetilde{r}_p]) = [g + hE(\widetilde{r}_p)]^T V[g + hE(\widetilde{r}_p)]$ with g and h as defined earlier.

Multiplying all this out yields:

$$\sigma^2(E[\tilde{r}_p]) = \frac{C}{D}[E[\tilde{r}_p] - \frac{A}{C}]^2 + \frac{1}{C}$$

... Characterization of Frontier Portfolios...

- (i) the expected return of the minimum variance portfolio is A/C;
- (ii) the variance of the minimum variance portfolio is given by 1/C;
- (iii) equation (6.17) is the equation of a parabola with vertex (1/C, A/C) in the expected return/variance space and of a hyperbola in the expected return/standard deviation space. See Figures 6.3 and 6.4.

Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space

Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space

Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed

Characterization of Efficient Portfolios (No Risk-Free Assets)

- <u>Definition 6.2</u>: *Efficient portfolios are those frontier portfolios which are not mean-variance dominated.*
- <u>Lemma:</u> Efficient portfolios are those frontier portfolios for which the expected return exceeds A/C, the expected return of the minimum variance portfolio.

- Proposition 6.4: The set of efficient portfolios is a convex set.
 - This does not mean, however, that the frontier of this set is convex-shaped in the risk-return space.
- <u>Proof</u>: Suppose each of the N portfolios considered above was efficient; then $E(\tilde{r}_i) \ge A/C$, for every portfolio i.

However $\sum_{i=1}^{N} \alpha_i E(\widetilde{r_i}) \ge \sum_{i=1}^{N} \alpha_i \frac{A}{C} = \frac{A}{C}$; thus, the convex combination is efficient as well. So the set of efficient portfolios, as characterized by their portfolio weights, is a convex set.

Zero Covariance Portfolio

- Zero-Cov Portfolio is useful for Zero-Beta CAPM
- <u>Proposition 6.5</u>: For any frontier portfolio p, except the minimum variance portfolio, there exists a unique <u>frontier</u> portfolio with which p has zero covariance.
 - We will call this portfolio the "zero covariance portfolio relative to p", and denote its vector of portfolio weights by ZC(p).
- Proof: by construction.

Princeton University

Fin 501: Asset Pricing

$$Cov[r_p, r_q] := w_p^T V w_q$$

$$Cov[r_p, r_q] = [\lambda V^{-1}e + \gamma V^{-1}1]^T V w_q$$

$$Cov[r_p, r_q] = \lambda e^T V^{-1} V w_q + \gamma 1^T V^{-1} V w_q$$

$$Cov[r_p, r_q] = \lambda e^T w_q + \gamma$$

$$Cov[r_p, r_q] = \lambda E[r_q] + \gamma$$

$$where \lambda = (CE[r_p] - A)/D \text{ and } \gamma = (B - AE[r_p])/D$$

$$Hence,$$

$$Cov[r_p, r_q] = \frac{CE[r_p] - A}{D} E[r_q] + \frac{B - AE[r_p]}{D}$$

collect all expected returns terms, add and subtract A²C/DC² and note that the remaining term (1/C)[(BC/D)-(A²/D)]=1/C, since D=BC-A²

$$Cov[r_p, r_q] = \frac{C}{D} [E[r_p] - \frac{A}{C}] [E[r_q] - \frac{A}{C}] + \frac{1}{C}$$

Mean-Variance Analysis and CAPM

Slide 07-78

$$Cov[r_p, r_q] = \frac{C}{D} \left[E[r_p] - \frac{A}{C} \right] \left[E[r_q] - \frac{A}{C} \right] + \frac{1}{C}$$

For zero co-variance portfolio ZC(p)

$$Cov[r_p, r_{ZC(p)}] = 0$$

$$0 = \frac{C}{D} [E[r_p] - \frac{A}{C}] [E[r_{ZC(p)}] - \frac{A}{C}] + \frac{1}{C}$$

$$E[r_{ZC(p)}] = \frac{A}{C} - \frac{D/C^2}{E[r_p] - A/C}$$

For graphical illustration, let's draw this line:

$$E[r] = \frac{A}{C} - \frac{D/C^2}{E[r_p] - A/C} + \frac{E[r_p] - A/C}{\sigma^2[r_p] - 1/C} \sigma^2[r]$$

Graphical Representation:

$$E[r] = \frac{A}{C} - \frac{D/C^2}{E[r_p] - A/C} + \frac{E[r_p] - A/C}{\sigma^2[r_p] - 1/C} \sigma^2[r]$$

line through

$$\begin{array}{lll} p & (Var[r_p], E[r_p]) & AND \\ MVP & (1/C, A/C) & (use & \sigma^2(\widetilde{r}_p) = \frac{C}{D} \left(E(\widetilde{r}_p) - \frac{A}{C} \right)^2 + \frac{1}{C} \end{array})$$

for
$$\sigma^2(\mathbf{r}) = 0$$
 you get $E[\mathbf{r}_{ZC(p)}]$

Figure 6-6 The Set of Frontier Portfolios: Location of the Zero-Covariance Portfolio

Mean-Variance Analysis and CAPM Slide 07-81

Zero-Beta CAPM

(no risk-free asset)

- (i) agents maximize expected utility with increasing and strictly concave utility of money functions and asset returns are multivariate normally distributed, or
- (ii) each agent chooses a portfolio with the objective of maximizing a derived utility function of the form $U(e, \sigma^2)$, $U_1 > 0$, $U_2 < 0$, U concave.
- (iii) common time horizon,
- (iv) homogeneous beliefs about e and σ^2

- All investors hold mean-variance efficient portfolios
- the market portfolio is convex combination of efficient portfolios
 ⇒ is efficient.
- $Cov[r_p, r_q] = \lambda E[r_q] + \gamma$ (q need not be on the frontier) (6.22)
- $Cov[r_p, r_{ZC(p)}] = \lambda E[r_{ZC(p)}] + \gamma = 0$

-
$$Cov[r_p, r_q] = \lambda \{E[r_q] - E[r_{ZC(p)}]\}$$

-
$$Var[r_p] = \lambda \{E[r_p]-E[r_{ZC(p)}]\}$$

Divide third by fourth equation:

$$E(\widetilde{r}_{q}) = E(\widetilde{r}_{ZC(M)}) + \beta_{Mq} \left[E(\widetilde{r}_{M}) - E(\widetilde{r}_{ZC(M)}) \right]$$
(6.28)

$$E(\widetilde{r}_{i}) = E(\widetilde{r}_{ZC(M)}) + \beta_{Mi} |E(\widetilde{r}_{M}) - E(\widetilde{r}_{ZC(M)})|$$
(6.29)

Zero-Beta CAPM

- mean variance framework (quadratic utility or normal returns)
- In equilibrium, market portfolio, which is a convex combination of individual portfolios

$$E[r_q] = E[r_{ZC(M)}] + \beta_{Mq}[E[r_M] - E[r_{ZC(M)}]]$$

$$E[r_j] = E[r_{ZC(M)}] + \beta_{Mj}[E[r_M] - E[r_{ZC(M)}]]$$