Redes de Computadores

Aula 3

Meios Físicos

Prof. Windson Viana

Capítulo 1: Introdução

Objetivos do capítulo:

mostrar a "atmosfera" e a terminologia mais detalhes mais adiante no curso método:

usar Internet como exemplo

Visão geral:

o que é a Internet?

o que é um protocolo?

borda da rede, hospedeiros, rede de acesso, meio físico

núcleo da rede: pacote/comutação de circuitos, estrutura da Internet

desempenho: perda, atraso, vazão

segurança

camadas de protocolo, modelos de serviço

história

Capítulo 1: Roteiro

- 1.1 O que é a Internet?
- 1.2 Borda da rede sistemas finais, redes de acesso, enlaces
- 1.3 Núcleo da rede comutação de circuitos, comutação de pacotes, estrutura da rede
- 1.4 Atraso, perda e vazão nas redes comutadas por pacotes
- 1.5 Camadas de protocolo, modelos de serviço
- 1.6 Redes sob ataque: segurança
- 1.7 História

Meios Físicos

O <u>bit</u>, ao viajar da origem ao destino, passa por uma série de pares <u>transmissor-receptor</u>, que o recebem por meio de ondas eletromagnéticas ou pulsos ópticos que se propagam por um <u>meio físico</u>

Ex: par de fios de cobre trançado, cabo coaxial, cabo de fibra ótica multimodo, espectro de rádio terrestre e espectro de rádio por satélite

Os meios físicos se enquadram em duas categorias:

Meios guiados

Meios não guiados

Meios Físicos

Meios guiados

Ondas são dirigidas ao longo de um meio sólido

Cabo de fibra ótica, um par de fios de cobre trançado ou um cabo coaxial

Meios não guiados

Ondas se propagam na atmosfera e no espaço

LAN sem fio ou de um canal digital de satélite

Bit:

Propaga entre pares de transmissor/receptor

Enlace físico:

O que fica entre transmissor e receptor

Meio guiado:

Sinais se propagam em meio sólido

Ex: cobre, fibra, coaxial

Meio não guiado:

Sinais se propagam livremente

Ex: rádio

Rádio

Sinal transportado no espectro eletromagnético

Nenhum "fio" físico

Bidirecional

Efeitos no ambiente de propagação:

Reflexão

Obstrução por objetos

Interferência

Radio link types:

Micro-ondas terrestre

Ex: até canais de 45 Mbps

LAN

Ex: Wifi

11 Mbps, 54 Mbps, ~600 Mbps

Área ampla (p. e., celular)

Celular 3G, 4G, 5G

Satélite

Canal de Kbps a 45Mbps (ou múltiplos canais menores)

Atraso fim a fim de 270 msec

Geoestacionário versus baixa altitude

Bandas C, Ku, Ka

Par Trançado

Pares de fios de cobre isolados

Categoria 3 a 7

Variação das velocidades e mecanismo para evitar ou dirimir efeitos de ruídos eletromagnéticos

CATEGORIA 5: É a mais utilizada, pois possui com qualquer placa de rede. A categoria reconhecida pela TIA atualmente é a CAT5e, que pode ser usado para frequências até 125 MHz.

CATEGORIA 6: Trabalha com a frequência de 250 MHz, mas seu alcance é de apenas 55 metros (a CAT6a permite até 100m). Suportam frequências de até 500 MHz e com maior poder de reduzir interferências e perda de sinal.

CATEGORIA 7: Ainda está em desenvolvimento, visto que está sendo criada para permitir a criação de redes de 100Gbps em cabos de 15m usando fio de cobre.

Acesso à Internet por Ethernet

Normalmente usado em empresas, universidade etc.

Ethernet a 10 Mbs, 100 Mbps, 1 Gbps, 10 Gbps

Hoje: sistemas finais normalmente se conectam ao comutador Ethernet

Cabo Coaxial

Cabo coaxial:

Dois condutores de cobre concêntricos Bidirecional

Banda base:

Único canal no cabo Ethernet legado

Banda larga:

Múltiplos canais no cabo HFC

Fibra Ótica

Fibra de vidro conduzindo pulsos de luz Cada pulso um bit

Operação em alta velocidade

Transmissão em alta velocidade ponto a ponto Ex:10-100 Gps

Baixa taxa de erro

Repetidores bastante espaçados Imune a ruído eletromagnético

Vídeo: Fiber optic cables: How they work

http://www.youtube.com/watch?v=0MwMkBET_5I

Como os países se conectam?

Vídeo: A internet é física, por mais que achemos que não!

http://www.youtube.com/watch?v=XE_FPEFpHt4

Resenha do Vídeo

- 1- O que aconteceu com a conexão da Internet do jornalista?
- 2- Que evidências ele aponta para mostrar que a Internet é menos dados na nuvem imaginário e mais elementos físicos reais?
- 3- Qual é o papel das empresas britânicas nas comunicações intercontinentais?
- 4- Como ocorre o processo de ligação dos cabos submarinos entre continentes?

Cabos Submarinos

Fonte: Teleco – A História dos cabos submarinos http://www.teleco.com.br/tutoriais/tutorialcsub/pagina_ 1.asp

Cabos Submarinos

Cabos Submarinos

Fortaleza

Em instalação

1. South Atlantic Cable System (Sacs)

Previsão: iulho de 2018

6,1 mil km de comprimento Proprietário:

Angola Cables

Pontos de desembarque: Brasil (Fortaleza) e Angola (Luanda).

FONTE: Mapa interativo da TeleGeography

2. Brusa

Previsão:

segundo quadrimestre de 2018

11 mil km de comprimento

Proprietária: TelxiusT

EUA (Virgínia).

Pontos de desembarque: Brasil (Fortaleza e Rio de Janeiro); Porto Rico (San Juan);

3. EllaLink

Previsão:

quarto quadrimestre de 2019

10.1 mil km de comprimento.

Proprietários: Telebras, IslaLink

Pontos de Desembarque: Brasil (Fortaleza e Santos);

Portugal (Funchal e Sines); Cabo Verde (Praia); Ilhas Canárias (Tenerife).

4. South Atlantic Inter Link (Sail)

Previsão: 2018

5,9 mil km de comprimento Proprietários:

Camtel e China Unicom

Pontos de Desembarque:

Brasil (Fortaleza) e Camarões (Kribi)

South Atlantic Cable System (Sacs)

Liga Fortaleza a Luanda e Angola na África

Conexão também para Noronha

Dois anos para a construção (2016-2018)

6,165 km

4 partes de fibra ótica

Velocidade de 40 Terabytes/s

South Atlantic Cable System (Sacs)

Início das obras: https://www.youtube.com/watch?v=xJMUROd_quE

Chegada: https://www.youtube.com/watch?v=PYPVIz1RnGw

Angola Cables

Empresa Angola de Telecomunicações ligada à instalação e operação de cabos submarinos

Sede em Luanda

Escritório em Fortaleza na Praia do Futuro (2017)

Cabos Monet e SACS

Instalação de Data Centers e Desenvolvimento da Área de TI do estado do Ceará

Até 800 empregos indiretos

https://www.angolacables.co.ao/

Pergunta Inquietante

Se você quisesse que a América do Sul ficasse sem comunicação telefônica e Internet que cidade você bombardearia?

Rezemos para a paz mundial então!

Leitura complementar:

https://www.opovo.com.br/jornal/economia/2018/07/angola-cables-no-pecem-ainda-neste-ano.html

http://ivonisio.blogspot.com.br/2011/06/fortaleza-cabos-submarinos-e-ogivas.html

Aula Invertida

IEEE 802.11

Dúvidas

Referências Bibliográficas

Redes de Computadores e A Internet - Uma Abordagem Top-Down - 6^a Ed. 2013 - Ross, Keith W., Kurose, Jim – Pearson

Supplements: Powerpoint Slides Computer Networking: A Top-Down Approach 6th ed. - J.F. Kurose and K.W. Ross - http://www-net.cs.umass.edu/kurose-ross-ppt-6e/

Submarine Cable Map - https://www.submarinecablemap.com/