Logika dla informatyków

Egzamin poprawkowy (pierwsza część)

20 lutego 2015

Zadanie 1 (2 punkty). Jeśli formuły $(p \Rightarrow q) \Rightarrow r$ i $p \Rightarrow (q \Rightarrow r)$ są równoważne to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz wartościowanie, w którym te formuły mają różne wartości.

$$\sigma(p) = \mathsf{F},\, \sigma(q) = \mathsf{T},\, \sigma(r) = \mathsf{F}$$

Zadanie 2 (2 punkty). W prostokąty poniżej wpisz dwie formuły równoważne formule $(p \Rightarrow q) \Rightarrow r$, odpowiednio w koniunkcyjnej oraz dysjunkcyjnej postaci normalnej.

CNF $(p \lor r) \land (\neg q \lor r)$ DNF $(p \land \neg q) \lor r$

Zadanie 3 (2 punkty). Jeśli formuła $((p\Rightarrow q)\lor (p\Rightarrow r))\Rightarrow (p\Rightarrow (q\lor r))$ jest tautologią rachunku zdań to w prostokąt poniżej wpisz dowód tej tautologii w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz wartościowanie, dla którego ta formuła jest fałszywa.

Zadanie 4 (2 punkty). Mówimy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $Q_1x_1\dots Q_nx_n\psi$, gdzie x_i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i\in\{\forall,\exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\forall n \left((\exists d \ nd = x \land \exists d \ nd = y) \Rightarrow n \leq z \right)$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

 $\forall n \forall k_1 \forall k_2 \ (k_1 n = x) \ \land \ (k_2 n = y) \Rightarrow n \le z$

Wskazówka: ta formuła interpretowana w zbiorze liczb naturalnych mówi, że liczba z jest nie nie mniejsza od największego wspólnego dzielnika liczb x i y.

Zadanie 5 (2 punkty). Różnicę symetryczną $\dot{}$ zbiorów A i B definiujemy następująco: $A \dot{} B = (A \backslash B) \cup (B \backslash A)$. Jeśli dla wszystkich zbiorów A, B, C zachodzi równość $A \dot{} (B \cap C) = (A \dot{} B) \cap (A \dot{} C)$ to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$A=B=\{1\},\ C=\emptyset$$

Zadanie 6 (2 punkty). Jeśli inkluzja $\bigcup_{t \in T} (A_t \cap B_t) \supseteq \bigcup_{t \in T} A_t \cap \bigcup_{t \in T} B_t$ zachodzi dla wszystkich zbiorów indeksów T oraz wszystkich indeksowanych rodzin zbiorów $\{A_t\}_{t \in T}$ oraz $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$T = \{1, 2\}, A_1 = \{1\}, A_2 = \{2\}, B_1 = \{2\}, B_2 = \{1\}$$

Zadanie 7 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q \lor \neg r, \ p \lor \neg r, \ q \lor r, \ \neg q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

Zadanie 8 (2 punkty). Rozważmy zbiory osób O, kin K i filmów F oraz relacje $Bywa\subseteq O\times K$, $Obejrzal\subseteq O\times F$ i $Wyświetla\subseteq K\times F$ informujące odpowiednio o tym jakie osoby bywają w jakich kinach, jakie osoby obejrzały jakie filmy oraz jakie kina wyświetlają jakie filmy. W prostokąt poniżej wpisz taką formulę φ , że $\{x\in O\mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób, które bywają tylko w kinach wyświetlających (niekoniecznie wszystkie) filmy, które te osoby już obejrzały.

$$\forall k \; Bywa(x,k) \Rightarrow \Big(\exists f \; \; Wy\'swietla(k,f) \land Obejrzal(x,f)\Big)$$

Zadanie 9 (2 punkty). Jeśli istnieje najmniejsza (ze względu na inkluzję \subseteq) relacja równoważności na zbiorze $\{0,1,2\}$, która zawiera parę $\langle 1,2\rangle$, to w prostokąt poniżej wpisz tę relację. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

$$\{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$$

Numer indeksu:

WZORCOWY

Zadanie 10 (2 punkty). Rozważmy funkcje $f:A\to B$ oraz $g:B\to C$. W prostokąt poniżej wpisz formułę mówiącą, że złożenie funkcji f i g nie jest funkcją "na".

$$\exists c \in C \ \forall a \in A \ g(f(a)) \neq c$$

Zadanie 11 (2 punkty). Nie używając słów języka naturalnego (czyli używając jedynie formuł) uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód następującego twierdzenia: Dla dowolnych zbiorów A i B, jeśli $B \subseteq A$ to $(A \setminus B) \cup B \subseteq A$.

 $Dow \acute{o}d.$ Dow
ód przeprowadzimy wprost.Rozważmy dowolne zbiory
 Ai Bi załóżmy, że

 $B \subseteq A$

Weźmy dowolny element x ze zbioru

 $(A \setminus B) \cup B$

. Wtedy

 $x \in A \setminus B$

3 lub

 $x \in B$. Rozpatrzmy teraz dwa przypadki.

(i) $x \in A \setminus B$

. Wtedy

 $x \in A$

oraz $x \notin B$

, zatem w szczególności

 $x \in A$

(ii) $x \in B$

. Wtedy z założenia

 $B \subseteq A$

dostajemy, że

 $x \in A$

 ${\bf W}$ obu przypadkach otrzymaliśmy, że xnależy do zbioru

A

co kończy dowód inkluzji

$$(A \setminus B) \cup B \subseteq A$$

Zadanie 12 (2 punkty). Rozważmy funkcję $f: \mathcal{P}(\mathbb{Q} \cap [0,2]) \times \mathbb{N} \to \mathbb{N} \times \mathcal{P}(\mathbb{Q} \cap [0,1])$ daną wzorem $f(X,n) = \langle n, \{\frac{x}{2} \mid x \in X\} \rangle$. Jeśli istnieje funkcja odwrotna do f to w prostokąt poniżej wpisz tę funkcję. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$f: \mathbb{N} \times \mathcal{P}(\mathbb{Q} \cap [0,1]) \to \mathcal{P}(\mathbb{Q} \cap [0,2]) \times \mathbb{N}, \qquad \qquad f(n,X) = \langle \{2x \mid x \in X\}, n \rangle$$

Zadanie 13 (2 punkty). Niech \mathcal{F} oznacza zbiór wszystkich funkcji z \mathbb{N} w \mathbb{N} , które *nie są* "na". Jeśli zbiór \mathcal{F} ma moc nie większą niż \aleph_0 to w prostokąt poniżej wpisz dowolną funkcję różnowartościową $F: \mathcal{F} \to \mathbb{N}$. Jeśli zbiór \mathcal{F} ma moc co najmniej continuum, to w prostokąt poniżej wpisz dowolną funkcję różnowartościową $G: \mathcal{P}(\mathbb{N}) \to \mathcal{F}$. A jeśli żaden z tych przypadków nie zachodzi, wpisz słowo "NIE".

$$(G(X))(n) = \begin{cases} 1 & \text{jeśli } n \in X \\ 0 & \text{wpp.} \end{cases}$$

Zadanie 14 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\mathbb{R}^{\mathbb{Q}\setminus\mathbb{N}}$	$\{1,2,3\}\times\mathbb{Q}$	$\bigcup_{n=1}^{\infty} \mathbb{Q}^n$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\{1,2,3\})$	$(\{1,2,3\}\times\{1,2\})^{\{1,2\}}$	$\mathbb{Q}\setminus\mathbb{Z}$	$\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\mathbb{R})$
c	\aleph_0	ℵ ₀	c	8	36	\aleph_0	8

Zadanie 15 (2 punkty). W zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} definiujemy porządek \preceq wzorem $f \preceq g \iff f = g \vee \exists n \ (f(n) < g(n) \wedge \forall i < n \ f(i) = g(i)).$

Niech $f_i(n) = \begin{cases} n & \text{dla } n = i \\ 0 & \text{dla } n \neq i \end{cases}$ i niech $X = \{f_i \mid i \in \mathbb{N}\}$. Wpisz w prostokąty poniżej funkcje będące odpowiednio najmniejszym i największym elementem zbioru X w tym porządku lub słowo "NIE", jeśli odpowiedni element nie istnieje.

 $\min X$ f_0 $\max X$ f_1

Zadanie 16 (2 punkty). Rozważmy funkcję $f: \mathbb{R} \to \mathbb{R}$ zdefiniowaną wzorem $f(x) = x^2$. W prostokąty poniżej wpisz odpowiednio obrazy i przeciwobrazy podanych zbiorów w odwzorowaniu f.

f[[1,2]] = [1,4] f[[-5,4]] = [0,25] $f^{-1}[[1,2]] = [-\sqrt{2},-1] \cup [1,\sqrt{2}]$ $f^{-1}[[-5,4]] = [-2,2]$

Zadanie 17 (2 punkty). W prostokącie poniżej narysuj diagram Hassego dla porządku $\langle \{0,1\} \times \{2,3\}, \leq_{lex} \rangle$.

Zadanie 18 (2 punkty). W prostokąt poniżej wpisz przykład trzech parami nieizomorficznych porządków.

 $\langle \mathbb{N}, \leq
angle, \qquad \langle \mathbb{N}^*, \leq_{lex}
angle, \qquad \langle \mathcal{P}(\mathbb{R}), \subseteq
angle$

Zadanie 19 (2 punkty). Jeśli porządek leksykograficzny na skończonych ciągach zero-jedynkowych $\langle \{0,1\}^*, \leq_{lex} \rangle$ jest regularny, to w prostokąt poniżej wpisz słowo "REGULARNY". W przeciwnym przypadku wpisz uzasadnienie, dlaczego ten porządek nie jest regularny.

Zbiór $\{0^n1\mid n\in\mathbb{N}\}$ nie ma elementu minimalnego

Zadanie 20 (2 punkty). W tym zadaniu f i g są symbolami funkcyjnymi, a jest symbolem stałej, natomiast x, y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

 $f(g(y),a) \stackrel{?}{=} f(z,z)$ NIE $f(g(y),g(x)) \stackrel{?}{=} f(z,z)$ [x/y,z/g(y)] $f(x,g(y)) \stackrel{?}{=} f(z,z)$ NIE