

Master in **Computer Vision** Barcelona

Module 3: Machine learning for computer vision

Project: Bag of Visual Words Image Classification

Lecturer: Ramon Baldrich, ramon.baldrich@uab.cat

Credit to Marçal Rossinyol

Tasks to do

Improve the BoVW code with:

- Dense SIFT (with tiny steps and different scales!)
- L2-norm power norm
- **SVM** classifier
- Scalers (norms)
- Cross-validation
- Linear, RBF and histogram intersection kernels
- **Spatial Pyramids**
- Fisher Vectors (OPTIONAL)

Step size & scale

Small up to a certain limit

Parameter selection

pyramid_type

Spatial pyramid divisions with keypoints

SP => dense

Pca

Svm kernel & others

Classifier	Test Accuracy	Accuracy STD	Fit Time
SVM	0.738969	0.008270	16.453848
KNN	0.677299	0.012100	16.475282
Logistic	0.689527	0.021052	16.384468
Random Forest	0.717172	0.014285	16.590544
Naive Bayes	0.620415	0.027716	17.176783

Fisher vectors

On accuracy some hot 90ies but reported 83.5

Other issues

representation??

No way

Hard cases ...

mountain ClassAccuracy: 88.60 GT: mountain, Pred: Opencountry

tallbuilding

ClassAccuracy: 92.59

GT: tallbuilding,

GT: mountain, Pred: Opencountry

GT: street, Pred: inside_city

GT: tallbuilding, Pred: forest

But, not so hard ⊗

> Wrongly predicted as Opencountry

History (slice) not very informative

Slice Plot

No need to get all the performance in all cases ALWAYS

Distance metric	Base Accuracy	PCA Accuracy	LDA Accuracy	Computing time
Euclidean	78.69%	76.46%	84.01%	30.26s
Manhattan	80.05%	75.34%	84.01%	31.18s
Chebyshev	59.85%	73.73%	84.39%	31.32s
Minhowski	78.69%	78.07%	84.01%	31.51s
Hamming	37.30%	14.13%	14.13%	31.35s
Canberra	62.70%	75.84%	82.65%	32.19s
Braycurtis	80.05%	76.70%	84.51%	31.35s

Samples to create heat map

label

coast

forest

inside_city

tallbuilding

highway 0.951673

street 0.975217

Opencountry

ассигасу

0.912020 0.925651

0.966543

0.962825

0.944238

0.957869

OVERALL (0.796248 0.796536

f1_score

0.687225

0.767442

0.877828

0.715328

0.836957

0.792627

0.868421

0.844037

: in Computer Vision Barcelona

Group	grade
1	10
2	8
3	5
4	6
5	*
6	10
7	8
8	7
9	9
10	10

^{*} No figures shown