UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION

APRIL 2000 EXAM TYPE: A First Year Programs: 01, 02, 03, 04, 06, 08

Q1	/25
Q2	/25
Q3	/25
Q4	/25
Total	/100

ECE 110S: ELECTRICAL FUNDAMENTALS

EXAMINERS: N.P. Kherani, L. de Windt, B. Wang, S. Zukotynski (Co-ordinator)

NAME:			
	Last	First	
STUDENT NO	O.:		

INSTRUCTIONS:

- This is a Type A examination; no aids are allowed.
- Only non-programmable calculators are allowed (the allowed models are specified in the Faculty Calendar).
- Answer all parts of all four questions.
- All four questions are of equal weight.
- The weight of each of the individual parts of each question is stated in the margins.
- All work is to be done on these pages.
- Place your final answers in the provided boxes unless instructed otherwise.
- When answering the questions include all the steps of your work on these pages. For additional space, you may use the back of the preceding page.
- Do not unstaple this exam.

CONSTANTS:

$$e = 1.6 \times 10^{-19} \text{C}$$
 $_{o} = 8.85 \times 10^{-12} \text{F/m}$ $\mu_{o} = 4 \times 10^{-7} \text{H/m}$

PART A: General

[1]

Complete the following sentences: (i) Electrostatics is a study of ______. [1] [1] (ii) Electrical and Magnetic phenomena stem from a property of matter known as [1] (iii) Materials in which charges cannot move are known as _____ or [1] (iv) The work W done by a charge Q as it (the charge) lowers its potential by V is mathematically expressed as ______. (v) A solenoid in its simplest form is _____

PART B: Electric Field and Electric Potential

Consider the electric dipole shown in the figure below.

[4] (i) Determine the electric field, including its direction, at x = d, where d > a, due to the given electric dipole.

 $\mathbf{E} =$

[2] (ii) A positive point charge q is placed at x = d. Determine the electric force, including its direction, experienced by the test charge due to the given dipole.

 $\mathbf{F} =$

- [1] (iii) Draw several electric field lines for the given dipole on the above figure.
- [2] (iv) If the electric potential at the origin is 0, determine the electric potential at y = h. Explain your result.

V(x=0, y=h) =

PART C: Capacitors

A 12 V battery is connected to the parallel plates as shown in the figure below.

[2] (i) If the positively charged parallel plate has an electrical charge of 12 nC and the negatively charged plate -12 nC, compute the capacitance C for the given parallel plate capacitor.

C =			

[2] (ii) If the spacing between the parallel plates is l = 0.001 m, compute the area A of the parallel plates.

[1] (iii) Potential difference is generally expressed as $V_f - V_i = -\frac{f}{i} \mathbf{E} d\mathbf{r}$.

Using this expression, compute the strength of the electric field between the charged parallel plates.

PART D: Magnetic Field and Magnetic Force

Two long, parallel conductors separated by a distance of 0.10 m carry currents in the same direction. The first conductor carries a current $I_1=10A$ and the second conductor carries current $I_2=8A$.

[3] (i) Calculate the magnetic field at conductor 2 due to the current I_1 in conductor 1.

| **B** | =

Direction:

[3] (ii) Calculate the magnetic force per unit length exerted on I_2 by I_1 .

| **F** | =

Direction:

Question 2: DC Circuits

Consider the circuit shown below.

 $[4] \qquad \hbox{(i)} \quad \text{Use Nodal Analysis to find the voltage V_b}\,.$

$$V_b =$$

 $[2] \qquad \text{(ii)} \quad \text{Determine the voltage V_{cd}} \, .$

$$V_{cd} =$$

[4] (iii) Find the total power supplied by the sources.

$$P_s =$$

Question 2: DC Circuits

		Q	
[7]	(iv)	Use the Principle of Superposition to determine the	voltage V _{cd} .
		V′co	d (due to 12 V) =
		V″	$_{cd}$ (due to $5A$) =
		$ m V_{cd}$	=
[3]	(v)	Determine the equivalent resistance seen between to	erminals c and d.
			$R_{eq} =$
[5]	(vi)	Determine the Norton equivalent circuit with respec	ct to terminals c and d.
			$I_N =$
			$R_N =$

Question 3: Transient Analysis

For the circuit shown below, assume that the switch stayed at position 1 for a long time and that it changed from position 1 to position 2 at time t=0.

[4] (i) Find $v_c(t)$ for $t = 0^-$ and $t = 0^+$.

$$v_c(0) =$$

$$v_c(0^+) =$$

[10] (ii) <u>Derive</u> the differential equation in $v_c(t)$ for t > 0.

Differential equation $v_c(t)$ for t>0:

Question 3: Transient Analysis

[6] (iii) Find $v_c(t)$ and i(t) as functions of time for t > 0.

i(t) for t>0:

[5] (iv) Sketch $v_c(t)$ for all time; clearly label the axes.

Question 4: AC Circuits

A 10 MHz sinusoidal wave generator has an open circuit voltage of 0.5 V (peak voltage) in magnitude. The output (Thévenin) impedance of the generator consists of a 50 resistor connected in parallel to a 100 pF capacitor.

A load, which is attached to the output terminals of the generator, consists of a 100 resistor connected in parallel to a 50 pF capacitor.

			•		
[5]	(i)	Draw a schematic diagram components.	v a schematic diagram of the circuit in the time domain; include the value of all the conents.		
			Time domain		
[5]	(ii)	Draw a schematic diagram	of the circuit in the frequency domain; include the value of all the		
[3]	(11)	components.	of the effection in the frequency domain, include the value of an the		
		components.			
			Frequency domain		

Question 4: AC Circuits

[4]	(iii)	Determine the current in the load. State the	value of the current in the frequency domain.
			Frequency domain
[4]	(iv)	Give the value of the current in the load in the	he time domain
[+]	(11)	_	Time domain
		L	
[3]	(v)	Give the value of the voltage across the load	in the frequency domain.
[-]	(.,	_	Frequency domain
		L	
[4]	(vi)	Determine the power delivered to the load.	
		power, Reactive power and the Power Factor	r (PF).
		Γ	Apparent power
		L	
		Γ	Real power
			Reactive power
		-	
			Power Factor (PF)