Advanced topics in bird-related security

Secure Systems Engineering Spring 2024

April 9, 2024 Tushar Jois

Recap

- Onion routing in Tor builds circuits to provide censorship resistance
- The Signal protocol provides forward secrecy through its primitives
- To use privacy technology in practice is to navigate political questions

Lesson objectives

- Understand the problems of outsourcing scientific computation securely
- Apply data-oblivious computation to address microarchitectural side-channel attacks
- Be prepared for the second midterm exam in the course

User/file isolation

Kernel isolation

Trusted execution environment

- A separate "part" of the processor
 - Untrusted applications run normally
 - Trusted applications run in an *enclave*
- When a processor computes on an enclave, it encrypts its memory
 - The operating system can't access the memory/data unless it has the processor's key
- Enclaves can use remote attestation
 - The processor signs what it's executing
 - You can be sure nothing has changed
- Feature requires hardware support
 - Combines cryptography and systems security together


```
# Side-channel Vulnerable
# Assume x1, x2 are private

if x1 and x2:
   print(1)
else:
```

Execution Trace

print(0)


```
# Side-channel Vulnerable
# Assume x1, x2 are private

if x1 and x2:
   print(1)
else:
   print(0)
```

Execution Trace

microarchitectural side-channel

An attacker can infer the inputs of an operation by looking at the state of the processor during its execution.

```
# Side-channel Vulnerable
# Assume x1, x2 are private

if x1 and x2:
    print(1)
else:
    print(0)
# Fixing the vulnerability

print(x1 & x2)
```


da·ta-o·bliv·i·ous com·pu·ta·tion (n.)

a program execution with the same observable characteristics regardless of the inputs provided see also constant-time programming antonym data-dependent computation

```
# Side-channel Vulnerable
                                      # Fixed (under assumptions)
# Assume x1, x2 are private
if x1 and x2:
                                      print(x1 & x2)
  print(1)
else:
  print(0)
                             Let's try it!
Execution Trace
          x1 ?= 1
                                                  x1 & x2
   Ν
                x2 ?= 1
print(0)
                      print(1)
                                              print(x1 & x2)
```

```
# Side-channel Vulnerable
# Assume x1, x2 are private

if x1 and x2:
   print(1)
else:
   print(0)
```

Execution Trace

For each function on the right:

- Draw the execution trace
- Determine if the function is data-oblivious with respect to x using the execution trace

```
def func1(x):
    y = 4
    if x == 6:
        y = 6
    return y
```

```
def func2(x):
    y = 0
    if x == 6:
        y = 6
    else:
        y = 4
    return y
```

```
def func3(x):
    y = 1
    if y == 4:
        y = 7
    return y
```

Key insight:

data-oblivious -> data-unnecessary

Assuming a data-oblivious function

Assuming a data-oblivious function

Assuming a data-oblivious function

Exam 2

Desirable properties of voting systems

Voter feels that:

- Vote was counted
- Vote was private
- Nobody else can vote more than once
- Nobody can alter others' votes

People believe that the machine works correctly and that its behavior cannot be modified

These have to do with perception.

It is also important that these perceptions are true.

"The purpose of an election is to convince the supporters of the losing candidate that they lost"

J. Alex Halderman, University of Michigan

```
// LCG - Linear Conguential Generator
// used to generate ballot serial numbers
// A psuedo-random-sequence generator
// (per Applied Cryptography,
// by Bruce Schneier, Wiley, 1996)
```

BallotResults.cpp
Diebold Election
Systems

"Unfortunately, linear congruential generators cannot be used for cryptography"

Bruce Scheiner Applied Cryptography (Wiley, 1996) Page 369

A backdoored PRNG

s_k — Internal PRNG states

 r_k — Outputs

f(•) — State update function

 $g(\bullet)$ — Output function

h(•) — Backdoor function

Attacker computation

ScreenOS 6.2 PRNG

index set to 0

```
char output[32]; // PRNG output buffer
    index;
                // Index into output
int
char seed[8];
                   // X9.31 seed
char key[24];
                   // X9.31 key
char block[8];
               // X9.31 output block
int reseed counter;
                       32 bytes from Dual EC
                          stored in output
void x9 31 reseed(void)
  reseed counter = 0;
  if (dualec generate(output, 32) != 32)
   error("[...]PRNG failure[...]", 11);
 memcpy(seed, output, 8);
  index = 8;
 memcpy(key, &output[index], 24);
 index = 32; index set to 32
```

```
void prnglgenerate(void)
  int time[2] = { 0, a Always returns false*;
  index = 0:
                        reseed on every call
  ++reseed counter;
  if (!one_stage_rng
                      Loop never executes!
    x9 31 reseed();
  for (; index < 32; index += 8) {
    // FIPS checks removed for clarity
    x9_31_gen(time, seed, key, block);
    // FIPS checks removed for clarity
    memcpy(&output[index], block, 8);
     output still contains
    32 bytes from Dual EC
Can be disabled
```

Threat Model

- Patient harm and non-harm risks
 - Pump delivers too much, not enough insulin
 - Pump leaks logs to unauthorized users
- Microsoft STRIDE
 - Spoofing: Impersonate system
 - Attacker masquerades as smartphone
 - Tampering: Modify data or code
 - Attacker MITMs pump-to-smartphone communication
 - Repudiation: Claiming to not have performed an action
 - Pump audit log cannot distinguish unauthorized commands

Remediation, Temporary Measures & Disclosure

- Remediations are Complex:
 - Most vulnerabilities are design defects
 - The manufacturer prepared and rolled out a firmware update for the insulin pump in 04/2020.
- Operations is key:
 - Disable the insulin pump's BLE functionality
 → airplane mode→ Preserve the pump's therapeutic purpose
 - The device implements safety features
- Disclosure managed by the ManiMed project team
 - A publication of the vulnerabilities does not pose serious risks or harm to patients as short-term measures or workarounds exist that preserve the pump's therapeutic purpose

Urgent Field Safety Notice Enhanced cyber security for DANA RS insulin pumps

Dear User of DANA Diabecare RS Insulin Pump

We, SOOIL has been guided by the German Intelligence Agency (BSI BUND DE) to a possible vulnerability in cybersecurity to the DANA RS system.

This risk is from testing in an isolate environment of professional institutions and has not been reported in realworld usage.

To mitigate this risk, observe the following:

 SOOIL recommends if you are worried or concerned of unintended access to your pump, enable "Flight mode" within pump menu.

Updates to security patched firmware eliminate any such risk. We will notify you when the firmware is ready.

DIY Diabetics Community

- Julian, Dina's disclosure stirred up mixed feelings from the community
 - DANA RS remediations broke AndroidAPS compatibility
- Public service announcement:
 - We support the DIY Diabetics community, their hard work, and dedication
 - 11,896+ people using DIY Closed-loop systems as of May 11th, 2020¹
 - 24,000,000+ loop hours¹

. https://openaps.org/outcomes/

The importance of secure messaging

- Facebook Messenger, Instagram are not "end-to-end"
 - Facebook reads the messages, delivers ads about them
 - Governments can subpoena Facebook for your messages, reconstruct your digital life
- "Surveillance capitalism"
 - The person is the product
 - "Free" services provided by Big Tech powered by the selling of your data
- Data sharing agreements
 - Seen ads for things you've talked about on Amazon?

"But I have nothing to hide!"

- Solidarity with those who do
 - Snowden/whistleblowers, but also "The Feeling of Being Watched" subjects
- You might not realize how much data is out there
 - "We kill people based on metadata"
- Data lasts forever, and you might have to someday
 - Data lasts forever -- and companies/banks/governments are looking

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_{2}$

Alice

. . .

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_2$

• •

Bob

The loss of one key doesn't leak previous ones → forward secrecy

 $preB_1 \rightarrow Diffie-Hellman \rightarrow sk_1$

 $Encrypt(m_1, sk_1) \rightarrow c_1$

Ratchet forward $sk_1 \rightarrow sk_2$

 \boldsymbol{c}_2

Ratchet forward $sk_2 \rightarrow sk_3$

 \boldsymbol{c}_1

Rest of Diffie-Hellman $\rightarrow sk_1$

Ratchet forward $sk_1 \rightarrow sk_2$

 $Encrypt(m_2, sk_2) \rightarrow c_2$

Ratchet forward $sk_2 \rightarrow sk_3$

da·ta-o·bliv·i·ous com·pu·ta·tion (n.)

a program execution with the same observable characteristics regardless of the inputs provided see also constant-time programming antonym data-dependent computation

Looking ahead

- Key dates for the remainder of the semester
 - Apr 15: Project code due
 - Apr 16: Exam 2
 - May 7: Project demo day
 - May 14: Project presentations
- Do you want your Exam 1 back?
 - Send me an email with subject "EE G7701 Exam 1 [LastName]" from your CCNY address
- Today's activity: Project Check-In 3

Lesson objectives

- Understand the problems of outsourcing scientific computation securely
- Apply data-oblivious computation to address microarchitectural side-channel attacks
- Be prepared for the second midterm exam in the course

