Sitzung 12

Bildmodelle und Zufallsvariablen (2)

Sitzung Mathematik für Ingenieure C4: INF vom 5. Juni 2020

Wigand Rathmann

Lehrstuhl für Angewandte Analysis Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Fragen

Bildmodelle und Zufallsvariablen

Ziel dieses Themas

- 1. Sie erkennen den Nutzen des Begriffs Zufallsvariable.
- Sie lernen verschiedenen Verteilungen kennen und wissen, welche Situationen diese Verteilungen angewendet werden können.
- 3. Sie können erklären, wie die Verteilungen in den Bildmodellen entstehen.
- Sie kennen die Möglichkeiten, die Binomialverteilung zu approximieren.
 Sie können mit den Begriffen gemeinsame Verteilung und
- Randverteilung arbeiten und den Zusammenhang zur stochastischen Unabhängigkeit herstellen.
- Sie wissen, wie Summen von Zufallsvariablen gebildet werden und können die entstehenden Verteilungen mit Hilfe der Faltung berechnen.

Weiterführende Fragen

1. Wie wird ein Bildmodell unter einer Zufallsvariablen *X* definiert bzw. konstruiert?

Definition 6.5

Ist (Ω, \mathcal{A}, P) ein W-Raum, Ω' eine (nicht leere) Menge, \mathcal{A}' ein Ereignissystem über Ω' und $X:\Omega\to\Omega'$ eine Zufallsvariable, dann ist die Zuordnung

$$A' \mapsto P^X(A') := P(X^{-1}(A')) = P(X \in A')$$
 (1)

mit $A' \in A'$ ein W-Maß über (Ω', A') . P^X heißt **Bildmaß von** P unter **X** oder **Verteilung von)**

 P^X heißt **Bildmaß von** P **unter X** oder **Verteilung von X** (bzgl. P). $(\Omega', \mathcal{A}', P^X)$ ist das **Bildmodell** von (Ω, \mathcal{A}, P) unter X.

Weiterführende Fragen

2. Unter Welchen Voraussetzungen ist eine Approximation der Binomialverteilung durch die Poisson-Verteilung nur sinnvoll?

https://www.studon.fau.de/pg730792_2897784.html

Poisson-Approximation der Binomial-Verteilung

Die Binomial-Verteilung kann durch die Poission-Verteilung approximiert werden kann. Es gilt aber nur für $n \to \infty$ und p sehr klein. Dabei wird dann $\lambda = np$ gesetzt.

Bemerkung

Die Verteilungsfunktionen lauten:

$$b(n, p_n; k) = \frac{(n)_k}{k!} p_n^k (1 - p_n)^{n-k}$$

und

$$\pi(\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Weiterführende Fragen

1. Was ist die Aussage vom Zentralen Grenzwertsatz?

Die Normal-Approximation der Binomial-Verteilung

Satz 6.9 (Zentraler Grenzwertsatz)

Die Summe vieler kleiner und voneinander unabhängiger zufälliger Ereignisse verhält sich näherungsweise – und für wachsende Anzahl der Summanden mit zunehmender Genauigkeit – wie eine Normalverteilung.

Satz 6.10

Ist F^{S_n} die Verteilungsfunktion der Binomial(n, p)-Verteilung, und Φ die Verteilungsfunktion der Standard-Normalverteilung, dann gilt

$$F^{S_n}(x) \approx \Phi\left(\frac{x-a}{\sigma}\right), \quad x \in \mathbb{R},$$
 (2)

wobei a = np und $\sigma = \sqrt{np(1-p)}$ der approximierenden Normalverteilung ist.

Visualisierung

https://www.studon.fau.de/pg636995_2897784.html

Weiterführende Fragen

1. Wie kann der Name "Negative Binomialverteilung" begründet werden?

Definition 6.13 (Negative Binomialverteilung)

Die **negative Binomialverteilung** $Nb^+(r,p)$ die die Anzahl W_r der Versuche bis zum r-ten Erfolg beschreibt, besitzt die Z-Dichte

$$f^{W_r}(k) = \mathsf{nb}^+(r, p; k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, k = r, r+1, \dots$$
 (3)

Werden nur die Misserfolge gezählt, dann ergibt sich $\mathrm{Nb}^0(r,p)$ mit der Z-Dichte

$$f^{W_r-t}(k) = \mathsf{nb}^0(r, p; k) = \binom{k+r-1}{r-1} p^r (1-p)^k, k = 0, 1, 2, \dots$$
 (4)

Satz 6.14

Es sei P^X eine Verteilung über (\mathbb{R}, \mathbb{B}) und die Zufallsvariable Y = a + bX eine lineare Funktion von X mit $a, b \in \mathbb{R}$, $b \neq 0$, hier b > 0.

1. Besitzt P^X die VF F^X, dann besitzt P^Y die Verteilungsfunktion

$$F^{Y}(y) = F^{X}\left(\frac{y-a}{b}\right), \ y \in \mathbb{R}.$$
 (5)

2. Besitzt P^X die R-Dichte f^X , dann besitzt P^Y die R-Dichte

$$f^{Y}(y) = \frac{1}{b}f^{X}\left(\frac{y-a}{b}\right), \ \ y \in \mathbb{R}.$$
 (6)

3. Ist P^X die Standardnormalverteilung $\mathcal{N}(0,1)$ mit $VF \oplus$ und R-Dichte ϕ , dann hat Y=a+bX die VF

$$F^{Y}(y) = \Phi\left(\frac{y-a}{b}\right)$$
 und die R-Dichte

$$f^{Y}(y) = \frac{1}{b}\phi\left(\frac{y-a}{b}\right).$$

Y entspricht der Normalverteilung $\mathcal{N}(a, b^2)$.

Visualisierung

https://www.studon.fau.de/pg730938 2897784.html

Folgerung 6.15

1. Ist X eine Zufallsvariable mit Werten in \mathbb{R} und der VF F^X , dann besitzt $Y = X^2$ die Verteilungsfunktion

$$F^{Y}(y) = F^{X^{2}}(y) = (F^{X}(\sqrt{y}) - F^{X}((-\sqrt{y}) -)) \mathbf{1}_{[0,\infty)}, \ y \in \mathbb{R},$$
 (7)

2. Besitzt X eine R-Dichte f^X , dann hat $Y = X^2$ die R-Dichte

$$f^{Y}(y) = \frac{1}{2\sqrt{y}} \left(f^{X} \left(-\sqrt{y} \right) + f^{X} (\sqrt{y}) \right) 1_{[0,\infty)}(y), \quad y \in \mathbb{R}.$$
 (8)

Satz 6.16

Ist P^X die Standard-Normalverteilung $\mathcal{N}(0,1)$, dann besitzt die Verteilung P^{X^2} die VF

$$F^{X^2}(y) = [2\Phi(\sqrt{y}) - 1] 1_{[0,\infty)}(y), \quad y \in \mathbb{R}.$$
 (9)

und die R-Dichte

$$f^{X^2}(y) = \frac{1}{\sqrt{y}}\phi(\sqrt{y})1_{[0,\infty)}(y) = \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{y}}e^{-\frac{y}{2}}1_{[0,\infty)}(y), \quad y \in \mathbb{R}.$$
 (10)

Die Verteilung P^{X^2} heißt **Chi(1)-Quadrat-Verteilung**, kurz χ_1^2 , und ist eine spezielle Gamma-Verteilung $\Gamma_{\frac{1}{2},\frac{1}{2}}$.

Transformationen von ZV (Y = g(X))

Besitzt die ZV X eine stetige Verteilung über \mathbb{R}^2 mit R-Dichte f^X und ist $g: \mathbb{R}^2 \to \mathbb{R}$ eine Abbildung. Dann gilt für die VF F^Y der ZV Y = g(X)

$$F^Y(y) = P(Y \leqslant y) = \int_{B_H} f^X(x_1, x_2) dx_1 dx_2, \ y \in \mathbb{R},$$

(11)

mit $B_y := \{(x_1, x_2) \in \mathbb{R}^2 : g(x_1, x_2) \leq y\}$.

Dies lässt sich auf mehr als zwei Dimensionen übertragen.

Ihre Fragen

... stellen, Fragen haben keine Pause.

- in den Online-Sitzungen (Vorlesungen, Übungen),
- per Mail an wigand.rathmann@fau.de oder marius.yamakou@fau.de,
- im Forum https://www.studon.fau.de/frm2897793.html,
 Die Fragen, die bis Donnerstag gestellt wurden, werden am Freitag in der Online-Runde diskutiert.
- per Telefon (zu den Sprechzeiten sind wir auch im Büro)

```
Wigand Rathmann 09131/85-67129 Mi 11-12 Uhr
Marius Yamakou 09131/85-67127 Di 14-15 Uhr
```

Sprechstunde zur Mathematik für Ingenieure

Wann: dienstags 09:00 - 16:30 Uhr und donnerstags 09:00-17:00 Uhr, Wo:

https://webconf.vc.dfn.de/ssim/ (Adobe Connect) und https://fau.zoom.us/j/91308761442 (Zoom)