TD n°12 Transport de charges

ENCPB - Pierre-Gilles de Gennes

Résumé

- * Exercice niveau CCP
- Exercice niveau Centrale/Mines-Ponts.
- Exercice nécessitant un sens physique particulier.

1. Conduction électrolytique*

La mobilité μ d'un porteur de charge est définie par la relation $\vec{v} = \mu \vec{E}$ où \vec{v} est la vitesse moyenne du porteur et \vec{E} est le champ électrique dans le matériau. Soit m la masse et q la charge des porteurs, n^* leur densité volumique (nombre de porteurs par m⁻³).

- 1. Établir la relation liant la conductivité σ à la mobilité et faisant intervenir les autres grandeurs définies plus haut.
- 2. De quel signe est la mobilité μ en fonction de la charge du porteur de charge ? En déduire que la conductivité est toujours positive.
- 3. Généraliser cette relation au cas de plusieurs types de porteurs caractérisés par (q_i, n_i^*, μ_i) .
- 4. Exprimer cette relation en fonction des concentrations molaires c_i des différents porteurs de charge.
- 5. Application à l'eau pure : quels sont ses porteurs ? Quelles sont leurs concentrations molaires ? Leurs densités volumiques ? Calculer la conductivité de l'eau pure.
- 6. Application à une solution d'acide chlorhydrique de concentration 0,1 mol.L⁻¹. Calculer la concentration de tous les ions puis la conductivité de la solution. Y a-t-il un ion qui joue un rôle prépondérant?

Données : Mobilités en $\Omega^{-1}.m^2.C^{-1}: H_3O^+: 3,75.10^{-7}, HO^-: -2,12.10^{-7}, C1^-: -0,82.10^{-7}, Na^+: 0,54.10^{-7}.$ $\mathcal{N}_A=6,02.10^{23}\ mol^{-1},$ $e=1,60.10^{-19}\ C.$

2. Distribution volumique, distribution linéique*

On considère le parallélépipède chargé ci-contre, de côtés a,b et c et de densité volumique de charge :

$$\rho(x, y, z) = \rho_0 \left(1 - \frac{x}{a} \right) \sin \frac{\pi y}{b} \sin \frac{\pi z}{c}$$

- 1. Déterminer la charge totale Q du parallélépipède.
- 2. Exprimer la charge contenue dans une tranche dx de conducteur en fonction de ρ_0 , b et c. En déduire la densité linéique de charge $\lambda(x)$ (quantité de charges par unité de longueur à l'abscisse x).

3. Décharge d'une barre•

Une barre conductrice mince et cylindrique OA de rayon R, longueur a, masse m possède une charge initiale Q_0 uniformément répartie en volume.

À t = 0, on relie le point O de la barre à la terre, la barre se décharge. On suppose qu'à tout instant, la charge Q(t) de la barre reste uniformément répartie.

- 1. Soit un point M sur la barre repérée par la distance x = OM. Déterminer la charge q(t) que possède la partie MA de la barre à chaque instant t en fonction de la charge totale Q(t).
- 2. En déduire l'intensité i(x,t) puis la densité de courant $\vec{j}(x,t)$ au point M, en la supposant uniforme sur une section de la barre.

4. Axones*

Les axones sont des fibres nerveuses transportant l'information sous forme de stimuli électriques. Un axone est formé d'une membrane cylindrique constituée d'une double couche lipidique de résistivité électrique $\rho_m = 7.10^6~\Omega$.m et d'un liquide, appelé *axoplasme*, de résistivité électrique $\rho_a = 2~\Omega$.m.

La longueur ℓ d'un axone peut varier entre 1 mm et 1 m. On note e=10 nm l'épaisseur de la membrane et $r_1=5\mu$ m le rayon interne de l'axone.

A travers l'axone, on peut considérer deux types de courant électrique :

- un courant électrique longitudinal, à travers l'exoplasme. Un axone s'oppose au passage de ce courant, il possède alors une résistance notée R_a .
- un courant électrique, dit de fuite, à travers la membrane. L'axone est ainsi caractérisé par une résistance de fuite latérale, notée R_f .

- 1. Rappeler la loi d'Ohm locale en précisant la signification physique et l'unité de chaque terme.
- 2. On suppose que le vecteur densité de courant électrique longitudinal ne dépend que de $x: \vec{j}_{e,long} = j_{e,long}(x)\vec{u}_x$. Exprimer la résistance R_a de l'axone.
- 3. On suppose que le vecteur de densité de courant électrique radial ne dépend que de $r: \vec{j}_{e,rad} = j_{e,rad}(r)\vec{u}_r$. Exprimer la résistance de fuite R_f de l'axone.
- 4. On appelle "constante de longueur" la distance λ pour laquelle la résistance R_a de l'axoplasme et la résistance de fuite R_f sont égales. Quel type de conduction électrique se fera préférentiellement au niveau de l'axone lorsque $\ell < \lambda$ puis lorsque $\ell > \lambda$? Exprimer λ et faire l'application numérique.

5. L'électrocution par le sol*

Un terrible drame, parmi de nombreux autres du même type chaque année, s'est produit en avril 2014 à Rio Bueno au Chili : 66 vaches d'un éleveur sont mortes suite à la foudre. On cherche dans ce problème à estimer la distance minimale à laquelle les vaches auraient dû se trouver du point d'impact pour éviter un tel carnage.

FIGURE 1. *De braves vaches victimes de la fureur des éléments.*

On modélise l'éclair par un fil rectiligne vertical semi-infini, parcouru par un courant électrique descendant d'intensité I=15 kA. Au niveau du sol, le courant se répartit de manière isotrope dans toutes les directions. On suppose que le vecteur densité de courant électrique dans le sol est de la forme : $\vec{j}=j(r)\vec{u}_r$ où r est la distance au point d'impact de l'éclair et \vec{u}_r est le vecteur unitaire radial des coordonnées sphériques.

Pour simplifier le problème, on se place en régime permanent et l'on note $\gamma = 1,0$ S.m⁻¹ la conductivité électrique du sol.

- 1. Montrer que $j(r) = \frac{I}{2\pi r^2}$.
- 2. Rappeler l'expression de la loi d'Ohm locale. Exprimer le champs électrique $\vec{E}(r)$ dans le sol. Rappeler la relation entre champ électrique et potentiel. En déduire l'expression du potentiel électrique V(r) à la distance r en le supposant nul à l'infini.
- 3. Une vache se trouve à une distance moyenne d de l'arbre et la distance entre ses pattes avant et arrières est p. Exprimer, en fonction de p et de d, les potentiels au niveau des pattes avant et arrière de la vache. En supposant que d >> (p/2), montrer que la tension entre les pattes vaut :

$$U \approx \frac{Ip}{2\pi\gamma d^2}$$

On rappelle le développement limité : $(1+x)^{\alpha} \approx 1 + \alpha x + o(x)$

- 4. La résistance entre les pattes avant et arrière de la vache vaut $R \approx 2.5 k\Omega$. Sachant qu'un courant électrique d'amplitude supérieure à $I_m = 25$ mA est suffisant pour tuer une vache, à quelle distance minimale d_m du point d'impact doit se situer la vache pour qu'elle survive à la foudre? On donnera l'expression de d_m en fonction de I_m , I, p, d, R et γ . Faire l'application numérique (p = 1.5m).
- 5. Pourquoi cette tension de pas est-elle plus dangereuse pour une vache que pour un être humain?

6. Protection électrique*

Afin de protéger une installation électrique, on ajoute un fil de terre relié à une tige trs conductrice de forme cylindrique plantée sur une longueur L dans le sol, de rayon r_T et terminée par une extrémité hémisphérique. Le dispositif de la tige dans la terre est représentée ci-dessous :

- 1. Rappeler l'expression de la résistance R_b d'un barreau de section S, de longueur ℓ et de résistivité ρ .
- 2. Justifier que la résistance du sol peut s'exprimer par la relation :

$$R_s = \int_{r_T}^{\infty} \frac{\rho \, \mathrm{d}r}{2\pi r L + 2\pi r^2}$$

où ρ est la résistivité du sol.

3. Effectuer l'application numérique.

Donnée:
$$\int \frac{\mathrm{d}r}{rL+r^2} = -\frac{1}{L} \ln \left(\frac{L+r}{r} \right)$$