

## NONSMOOTH OPTIMIZATION

IN 30 MINUTES

FEBRUARY 15, 2013

Napsu Karmitsa

Department of Mathematics and Statistics University of Turku, Finland

email: napsu@karmitsa.fi



## **CONTENTS**

- Introduction & Motivation
- Nonsmooth Analysis:
  - Convex analysis
  - Nonconvex analysis
  - Results and remarks
- Nonsmooth Optimization



## **PRELIMINARIES**

• Nonlinear Programming.

## THE GOAL

• Attendees should know the basic concepts of nonsmooth analysis and optimization. That is, *subdifferential*, *subgradient* and *optimality conditions*.

## Introduction to Nonsmooth Optimization

- Nonsmooth optimization (NSO) refers to the general problem of minimizing (or maximizing) functions that are typically not differentiable at their minimizers (or maximizers).
- Let us consider the NSO problem of the form

$$\begin{cases} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in G, \end{cases}$$

where the objective function  $f: G \to \mathbb{R}$  is supposed to be locally Lipschitz continuous on the feasible set  $G \subseteq \mathbb{R}^n$ .

• Note that no differentiability or convexity assumptions are made.



# Introduction to Nonsmooth Optimization (Cont.)

NSO problems arise in many fields of applications, for example in

- image denoising,
- optimal control,
- neural network training,
- data mining,
- economics, and
- computational chemistry and physics.

Moreover, using certain important methodologies for *solving difficult smooth problems* leads directly to the need to solve nonsmooth problems. This is the case, for instance in

- decompositions,
- dual formulations, and
- exact penalty functions.

Finally, there exist so called *stiff problems* that are analytically smooth but numerically nonsmooth.

# Introduction to Nonsmooth Optimization (Cont.)

## EXAMPLE — IMAGE DENOISING



Figure 1: True and noisy images and result of NSO solver LMBM for formulation with  $L^1$  fitting and smooth regularization ( $n = 63 \times 63$ ).

## DIFFICULTIES CAUSED BY NONSMOOTHNESS

#### **SMOOTH PROBLEM:**

- Descent direction is obtained at the opposite direction of the gradient  $\nabla f(x)$ .
- The necessary optimality condition  $\nabla f(\mathbf{x}) = 0$ .
- Difference approximation can be used to approximate the gradient.

#### NONSMOOTH PROBLEM:

- The gradient does not exist at every point, leading to difficulties in defining the descent direction.
- Gradient usually does not exist at the optimal point.
- Difference approximation is not useful and may lead to serious failures.
- The (smooth) algorithm does not converge or it converges to a non-optimal point.

## Nonsmooth Analysis: Convex Analysis

DEFINITION. The subdifferential of a convex function  $f : \mathbb{R}^n \to \mathbb{R}$  at  $x \in \mathbb{R}^n$  is the set  $\partial_c f(x)$  of vectors  $\xi \in \mathbb{R}^n$  such that

$$\partial_c f(\boldsymbol{x}) = \left\{ \boldsymbol{\xi} \in \mathbb{R}^n \mid f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \boldsymbol{\xi}^T(\boldsymbol{y} - \boldsymbol{x}) \text{ for all } \boldsymbol{y} \in \mathbb{R}^n \right\}.$$

Each vector  $\boldsymbol{\xi} \in \partial_c f(\boldsymbol{x})$  is called a *subgradient* of f at  $\boldsymbol{x}$ .

THEOREM. Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function. Then the classical directional derivative  $f'(\boldsymbol{x}; \boldsymbol{d})$  exists in every direction  $\boldsymbol{d} \in \mathbb{R}^n$  and for all  $\boldsymbol{x} \in \mathbb{R}^n$ 

(i) 
$$f'(\boldsymbol{x}; \boldsymbol{d}) = \max \{ \boldsymbol{\xi}^T \boldsymbol{d} \mid \boldsymbol{\xi} \in \partial_c f(\boldsymbol{x}) \}$$
 for all  $\boldsymbol{d} \in \mathbb{R}^n$ , and

(ii) 
$$\partial_c f(\boldsymbol{x}) = \{ \boldsymbol{\xi} \in \mathbb{R}^n \mid f'(\boldsymbol{x}, \boldsymbol{d}) \geq \boldsymbol{\xi}^T \boldsymbol{d} \text{ for all } \boldsymbol{d} \in \mathbb{R}^n \}.$$

THEOREM. If  $f: \mathbb{R}^n \to \mathbb{R}$  is a convex function, then for all  $\mathbf{y} \in \mathbb{R}^n$ 

$$f(\boldsymbol{y}) = \max \{ f(\boldsymbol{x}) + \boldsymbol{\xi}^T(\boldsymbol{y} - \boldsymbol{x}) \mid \boldsymbol{x} \in \mathbb{R}^n, \ \boldsymbol{\xi} \in \partial_c f(\boldsymbol{x}) \}.$$

## Nonsmooth Analysis: Nonconvex Analysis

DEFINITION (Clarke). Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a locally Lipschitz continuous function at  $x \in \mathbb{R}^n$ . The *generalized directional derivative* of f at x in the direction  $d \in \mathbb{R}^n$  is defined by

$$f^{\circ}(\boldsymbol{x}; \boldsymbol{d}) = \limsup_{\substack{\boldsymbol{y} \to \boldsymbol{x} \\ t \downarrow 0}} \frac{f(\boldsymbol{y} + t\boldsymbol{d}) - f(\boldsymbol{y})}{t}.$$

DEFINITION (Clarke). Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a locally Lipschitz continuous function at a point  $\boldsymbol{x} \in \mathbb{R}^n$ . Then the *subdifferential* of f at  $\boldsymbol{x}$  is the set  $\partial f(\boldsymbol{x})$  of vectors  $\boldsymbol{\xi} \in \mathbb{R}^n$  such that

$$\partial f(\boldsymbol{x}) = \{ \boldsymbol{\xi} \in \mathbb{R}^n \mid f^{\circ}(\boldsymbol{x}; \boldsymbol{d}) \geq \boldsymbol{\xi}^T \boldsymbol{d} \text{ for all } \boldsymbol{d} \in \mathbb{R}^n \}.$$

Each vector  $\boldsymbol{\xi} \in \partial f(\boldsymbol{x})$  is called a *subgradient* of f at  $\boldsymbol{x}$ .

# Nonsmooth Analysis: Nonconvex Analysis (Cont.)

THEOREM. Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a locally Lipschitz continuous function at a point  $x \in \mathbb{R}^n$ . Then

$$f^{\circ}(\boldsymbol{x}; \boldsymbol{d}) = \max \{ \boldsymbol{\xi}^T \boldsymbol{d} \mid \boldsymbol{\xi} \in \partial f(\boldsymbol{x}) \} \text{ for all } \boldsymbol{d} \in \mathbb{R}^n.$$

THEOREM (Rademacher). Let  $S \subset \mathbb{R}^n$  be an open set. A function  $f: S \to \mathbb{R}$  that is locally Lipschitz continuous on S is differentiable almost everywhere on S.

THEOREM. Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a locally Lipschitz continuous function at a point  $x \in \mathbb{R}^n$ . Then

 $\partial f(\boldsymbol{x}) = \operatorname{conv} \{ \boldsymbol{\xi} \in \mathbb{R}^n \mid \nabla f(\boldsymbol{x}_i) \to \boldsymbol{\xi}, \ \boldsymbol{x}_i \to \boldsymbol{x} \text{ and } f \text{ is differentiable at } \boldsymbol{x}_i \},$  where  $\operatorname{conv} S$  denotes the convex hull of set S.

## Nonsmooth Analysis: Results and Remarks

- The subdifferential for locally Lipschitz continuous functions is a generalization of the subdifferential for convex functions: If  $f: \mathbb{R}^n \to \mathbb{R}$  is a convex function, then  $f'(\mathbf{x}; \mathbf{d}) = f^{\circ}(\mathbf{x}; \mathbf{d})$  for all  $\mathbf{d} \in \mathbb{R}^n$ , and  $\partial_c f(\mathbf{x}) = \partial f(\mathbf{x})$ .
- The subdifferential for locally Lipschitz continuous functions is a generalization of the classical derivative: If  $f: \mathbb{R}^n \to \mathbb{R}$  is both locally Lipschitz continuous and differentiable at  $\mathbf{x} \in \mathbb{R}^n$ , then  $\nabla f(\mathbf{x}) \in \partial f(\mathbf{x})$ . If, in addition,  $f: \mathbb{R}^n \to \mathbb{R}$  is continuously differentiable at  $\mathbf{x} \in \mathbb{R}^n$ , then  $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}$ .

## NONSMOOTH OPTIMIZATION

THEOREM. Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a locally Lipschitz continuous function at  $x \in \mathbb{R}^n$ . If f attains its *local minimal value* at x, then

- (i)  $\mathbf{0} \in \partial f(\boldsymbol{x})$  and
- (ii)  $f^{\circ}(\boldsymbol{x}; \boldsymbol{d}) \geq 0$  for all  $\boldsymbol{d} \in \mathbb{R}^n$ .

THEOREM. If  $f: \mathbb{R}^n \to \mathbb{R}$  is a convex function, then the following conditions are equivalent:

- (i) Function f attains its global minimal value at x,
- (ii)  $0 \in \partial_c f(\boldsymbol{x})$ , and
- (iii)  $f'(\boldsymbol{x}; \boldsymbol{d}) \ge 0$  for all  $\boldsymbol{d} \in \mathbb{R}^n$ .

DEFINITION. A point  $x \in \mathbb{R}^n$  satisfying  $0 \in \partial f(x)$  is called a *critical* or a stationary point for f.



# NONSMOOTH OPTIMIZATION: PRACTICAL POINT OF VIEW

Usually we do not know the whole subdifferential of the function but only **one arbitrary subgradient** at each point!

 $\Rightarrow$  We need special methods to solve nonsmooth optimization problems.

**Bundle Methods** 

Subgradient Methods

Derivative Free Methods

Gradient Sampling Methods

**Hybrid Methods** 

**Special Methods** 

## WHY TO USE NONSMOOTH FORMULATIONS FOR THE PROBLEMS?





Figure 2: The robust formulations for the optimization problem arising in MLP network training: difference of the output of the traditional non-robust (smooth) data fitting and the robust (nonsmooth) data fitting when reconstructing function  $f(x) = \sin(x)$ .



### REFERENCES

- Clarke F.H.: Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
- Kiwiel K.C.: Methods of Descent for Nondifferentiable Optimization, Springer-Verlag, Berlin, 1985.
- Mäkelä M.M. ja Neittaanmäki P.: *Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control*, World Scientific Publishing Co. Singapore, 1992.
- Rockafellar R.T.: Convex Analysis, Princeton University Press, Princeton New Jersey, 1970.
- Shor N.Z.: Minimization Methods for Non-Differentiable Functions, Springer-Verlag, Berlin, 1985.
- Some NSO software and NSO software links can be found at

http://napsu.karmitsa.fi/nsosoftware/