

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

Internet và giao thức

Internet and Protocols

Kiến trúc ngang hàng peer-to-peer (P2P)

- Máy chủ không cần hoạt động liên tục.
- Các hệ thống đầu cuối tùy ý kết nối trực tiếp.
- Các thiết bị ngang hàng không kết nối liên tục và thay đổi địa chỉ IP.
- Có khả năng cho mạng qui mô lớn nhưng khó quản lý.

Nội dung

- Phân bố tệp.
- Tìm kiếm thông tin.
- Thoại Internet sử dụng P2P.

Phân bố tệp: kiến trúc clien-server và P2P

Vấn đề: Mất bao nhiều thời gian để phân bố tệp từ một máy chủ đến N thiết bị?

u_s: băng thông máy chủ tải lên

 u_i : băng thông thiết bị i tải lên

d_i: băng thông thiếtbị i tải xuống

Thời gian phân bố tệp của kiến trúc client-server

- Thời gian máy chủ lần lượt gửi N bản sao: NF/u_s
- Thời gian máy khách i cần để tải xuống: F/d_i

Tăng tuyến tính với N (N lớn)

Thời gian phân bố tệp của kiến trúc P2P

- Thời gian máy chủ phải gửi 1 bản sao: F/u_s
- Thời gian máy khách i cần để tải xuống: F/d_i
- Tổng cộng phải tải lên NF bits. Tốc độ tải lên cao nhất có thể: $u_s + \Sigma u_i$

$$d_{P2P} = \max \{ F/u_s, F/\min(d_i), NF/(u_s + \Sigma u_i) \}$$

Ví dụ so sánh kiến trúc client-server và P2P

Tốc độ tải lên máy khách = u, F/u = 1h, $u_s = 10u$, $d_{min} \ge u_s$

Phân bố tệp: BitTorrent

<u>Bộ theo dối (tracker):</u>

Theo dõi các thiết bị ngang hàng tham gia torrent

torrent: nhóm các thiết bị ngang hàng trao đổi khúc dữ liệu tệp

BitTorrent (1)

- Tệp được chia thành các khúc (chunk) 256KB
- Thiết bị gia nhập torrent:
 - Không có khúc dữ liệu, nhưng sẽ thu thập chúng theo thời gian
 - Đăng ký với bộ theo dõi để lấy danh sách các thiết bị ngang hàng, kết nối với tập nhỏ các thiết bị (hàng xóm/ lân cận)
- Trong khi tải xuống, thiết bị ngang hàng tải lên các khúc dữ liệu cho thiết bị ngang hàng khác.
- Các thiết bị ngang hàng có thể vào và rời bỏ torrent
- Một khi đã có toàn bộ tệp, thiết bị ngang hàng có thể rời bỏ hoặc ở lại.

BitTorrent (2)

<u>Lấy khúc dữ liệu</u>

- Tại bất cứ thời điểm nào, các thiết bị ngang hàng có tập nhỏ khác nhau các khúc dữ liệu của tệp
- Định kì theo thời gian, thiết bị ngang hàng hỏi hàng xóm của nó về danh sách khúc dữ liệu mà chúng có.
- Thiết bị ngang hàng gửi yêu cầu về các khúc dữ liệu mà nó chưa có
 - Hiểm nhất đầu tiên (rarest first).

Gửi khúc dữ liệu: ăn miếng trả miếng

- ☐ Thiết bị ngang hàng gửi khúc dữ liệu cho 4 hàng xóm hiện đang gửi dữ liệu cho nó tại tốc độ lớn nhất
 - Cứ 10s lại đo và đánh giá lại 4 thiết bị đứng đầu này (mở).
- Mỗi 30s: lựa chọn ngẫu nhiên một thiết bị ngang hàng khác, bắt đầu gửi khúc dữ liệu
 - Thiết bị ngang hàng mới này có thể gia nhập nhóm 4 thiết bị đứng đầu
 - Mở tối ưu

BitTorrent (3)

- (1) A mở tối ưu cho B.
- (2) A trở thành một trong 4 nhà cung cấp hàng đầu của B. B đáp lại.
- (3) B trở thành một trong 4 nhà cung cấp hàng đầu của A.

P2P: Tìm kiếm thông tin

- Chỉ số (cơ sở dữ liệu đơn giản) hỗ trợ tìm kiếm trong hệ thống phân tán
- Chỉ số: (khóa-key, giá trị-value)
 (123-456-789, Nguyen)
 (God Father, 203.17.123.38)

P2P: Tìm kiếm thông tin - Ứng dụng

Chia sẻ tệp (ví dụ, e-mule)

- Chỉ số theo dối động vị trí của các tệp mà các thiết bị ngang hàng chia sẻ.
- Thiết bị ngang hàng cần thông báo chỉ số về những gì nó lưu trữ.
- Thiết bị ngang hàng tìm kiếm chỉ số để xác định các tệp nó cần có thể tìm ở đâu.

Nhắn tin tức thời IM (Instant messaging)

- Chỉ số ánh xạ tên người sử dụng với vị trí
- Khi người sử dụng bắt đầu ứng dụng IM, nó cần thông báo chỉ số của vị trí của nó.
- Các thiết bị ngang hàng tìm chỉ số để xác định địa chỉ IP của người sử dụng.

P2P: Chỉ số tập trung

Thiết kế tập trung "Napster"

- 1) Khi thiết bị ngang hnagf kết nối, nó thông báo cho máy chủ trung tâm:
 - Địa chỉ IP
 - Nội dung
- 2) A truy vấn "God father"
- 3) A yêu cầu tệp từ B

P2P: Phân tán chỉ số

- Lỗi tại điểm tập trung gây ảnh hưởng toàn hệ thống
- Hiệu năng cao (tải cao) tại một điểm.

Truyền tệp phân tán, nhưng nội dung lại tập trung

Phân tán chỉ số

- Trong hệ thống P2P: ánh xạ thông tin vào vị trí của thiết bị ngang hàng.
 - (vị trí = địa chỉ IP & số của cổng)
- Kỹ thuật đánh chỉ số và tìm kiếm: Bảng băm phân tán DHT định danh cho thiết bị ngang hàng [0,2ⁿ 1]
 ánh xạ khóa -> số nguyên (băm của khóa) trong dải trên.
 lưu trữ (khóa-băm, giá trị) vào các thiết bị ngang hàng.

Lưu trữ (khóa, giá trị) trong DHT

Quy tắc gán khóa vào thiết bị ngang hàng:

- Gán mỗi cặp (khóa, giá trị) tới thiết bị ngang hàng có định danh gần khóa nhất (ngay sau khóa).
- Nếu khóa lớn hơn tất cả định danh thì sử dụng modul 2ⁿ
 lưu trữ (khóa, giá trị) vào thiết bị ngang hàng có định danh nhỏ nhất.

Vấn đề: Làm thế nào để xác định thiết bị ngang hàng gần khóa nhất?

Duy trì theo dõi tất cả thiết bị ngang hàng (peer ID và địa chỉ IP): không thực tế.

DHT vòng (1)

Mang che phủ: biểu đồ

- Cạnh giữa thiết bị ngang hàng X và Y là kết nối TCP
- Tất cả các thiết bị ngang hàng đang hoạt động và các cạnh tạo thành mạng che phủ
- Cạnh: liên kết ảo (không phải kết nối vật lý thực tế)

DHT vòng (2)

- Mỗi peer chỉ biết thiết bị ngay sau nó.
- Peer 3 muốn biết peer nào chịu trách nhiệm khóa 11: Peer 3 gửi bản tin đến peer 4; peer 4 gửi bản tin đến peer 5; ... cho đến peer 12 chịu trách nhiệm khóa 11. Peer 12 gửi bản tin trả lời đến peer 3.
- Giảm số thông tin mỗi peer phải quản lý.
- Số lượng bản tin gửi đi lớn (N/2).

DHT vòng với các đường tắt

- Tìm điểm cân bằng giữa số lượng thông tin mỗi peer phải theo dõi và số lượng bản tin truyền trên mạng: bổ sung các đường kết nối tắt.
- Peer 3 peer 4 peer 10 peer 12.
- Có thể thiết kế để số lượng hàng xóm và bản tin gửi đi O(log N);

Peer churn

- Mỗi peer theo dõi (biết địa chỉ IP) 2 peer đứng ngay sau.
- Đinh kì kiểm tra (ping)

Peer rời bỏ (peer 5):

- Peer 5 thay thể thiết bi ngang hàng ngay sau thứ nhất và ngay sau thứ hai (peer 4 và 8).
- •Thiết bị ngang hàng 4 sau đó yêu cầu định danh và địa chỉ IP của thiết bị ngay sau thứ hai của nó (thiết bi ngang hàng 10).

Peer gia nhập (peer 13):

- •Chỉ biết peer 1.
- Peer 1 gửi bản tin đến peer 13 qua các peer "Thiết bi ngay trước và sau của peer 13 là ai?";
- Peer 12 nhận được bản tin và biết được nó là peer ngay trước của peer 13 và peer 15 là peer ngay sau của nó.

Úng dụng DHT vào BitTorrent

- Thiết lập bộ theo dõi phân tán.
- Khóa-key: định danh của torrent;
- Giá trị-value: địa chỉ IP của tất cả các peer đang tham gia trong torrent.
- Peer mới gia nhập: truy vấn định danh torrent,
 xác định peer chịu trách nhiệm theo dõi.

Che phủ phân cấp

- Phương án giữa chỉ số tập trung và phân tán hoàn toàn (query flooding)
- Mỗi peer hoặc là siêu nút (super node) hoặc được gắn đến siêu nút
 - Kết nối TCP giữa peer và siêu nút.
 - Kết nối TCP giữa một số cặp siêu nút.
- Siêu nút theo dõi nội dung của các peer con.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

Thoại Internet P2P Skype

- Bản chất P2P: các cặp người sử dụng kết nối với nhau.
- Giao thức lớp ứng dụng độc quyền
- Mạng che phủ phân cấp với các siêu nút SN
- Chỉ số ánh xạ tên người sử dụng với địa chỉ IP; được phân tán trên các SN.

Sử dụng peer như trạm chuyển tiếp

- Khi A và B đều ở đằng sau "NATs".
 - NAT ngăn chặn peer bên ngoài khởi tạo cuộc gọi vào peer bên trong
- Giải pháp:
 - Sử dụng các siêu nút SN của A và B để chuyển tiếp
 - Từng peer khởi tạo phiên với trạm chuyển tiếp.
 - Các Peers có thể truyền thông qua NAT sử dụng chuyển

Phân bố tệp P2P:

Kiến trúc P2P vs Clientserver

Hoạt động của BitTorrent

Tìm kiếm thông tin:

Chỉ số Khái niệm và hoạt động của DHT

Úng dung: Thoai Internet P2P

Nội dung chuẩn bị

- Nội dung về nhà và học buổi tới:
 - Chương 6: Kết nối mạng đa phương tiện

Tham khảo

- Slide <u>Internet và các giao thức</u> (2013), Bộ môn Mạng viễn thông, Khoa Viễn thông 1, PTIT.
- 2. Bài giảng và slide môn học Cơ sở kỹ thuật mạng truyền thông, Bộ môn Mạng viễn thông 2013, Khoa Viễn thông 1, PTIT.
- Bài giảng và slide môn học Mạng viễn thông 2010, Bộ môn Mạng viễn thông, Khoa Viễn thông 1, PTIT.
- 4. <u>Computer Networking: A Top Down Approach</u>, 5th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2009.
- Tài liệu tham khảo TCP/IP căn bản, Nguyễn Xuân Khánh, Trung tâm đào tạo bưu chính viễn thông 2, PTIT.

