Lógica Computacional y Demostración Automática

Carlos Areces

areces@loria.fr http://www.loria.fr/~areces

INRIA Nancy Grand Est, France

Diciembre 2008

Lógicas para la Descripción

- Las lógicas para la descripción (description logics, DL) son lenguajes formales especialmente diseñados para la representación del conocimiento.
- ▶ Descienden originalmente del trabajo en redes semánticas (semantic networks) de Quillian y el paradigma de Frames
- Las principales características de estos lenguajes son:
 - Un lenguaje simple de usar (una extensión del lenguaje proposicional, sin variables de estado); Que incluye una noción restringida de cuantificación;

 - Con operadores especialmente elegidos para facilitar la creación de definiciones,
 - Con un buen balance entre expresividad y tratabilidad;
 - Que cuenta con sistemas de inferencia altamente optimizados.

INRIA Nancy Grand Est

Lógicas para la Descripción

En una DL tenemos operadores para construir definiciones usando conceptos y roles:

- ► Los conceptos corresponden a "Clases de Elementos" y seran interpretados como subconjuntos del universo.
- ▶ Los roles corresponden a "Vinculos entre Elementos" y seran interpretados como relaciones binarias en el

Ejemplo: El "Padre Contento"

Conceptos = { Hombre, Mujer, Contento, Rico } $Roles = \{ \ \, \text{tiene-hijo} \ \, \}$

 $\begin{array}{l} {\sf PadreContento} \equiv {\sf Hombre} \; \sqcap \\ \qquad \exists \; {\sf tiene-hijo.Hombre} \; \sqcap \\ \qquad \exists \; {\sf tiene-hijo.Mujer} \; \sqcap \\ \qquad \forall \; {\sf tiene-hijo.(Contento} \; \sqcup \; {\sf Rico}) \end{array}$

INRIA Nancy Grand Est

Areas de Aplicación

- Bases de conocimiento terminológicas y ontologías
 - DLs fueron desarrolladas para esta tarea
 - Especialmente útiles como lenguaje de definición y mantenimiento de ontologías
- ► Applicaciones en Bases de Datos
 - DLs pueden capturar la semantica de varias metodologías de modelado en BD e.g., diagramas de ER, UML, etc
 - los motores de inferencia DL pueden usarse para proveer soporte durante el diseño de diagramas, mantenimiento y consulta

: Lógica Computacional y Demostración Aut

INRIA Nancy Grand Est

Areas de Aplicación

- ▶ Web Semántica
 - Agregar 'markup semántico' a la información en la web
 - Este markup usaría repositorios de ontologías como repositorío común de definiciones con una semántica clara
 - los motores de inferencia DL se usarían para el desarrollo, mantenimiento y fusión de estas ontologías y para la evalucion dynámica de recursos (e.g., búsqueda).
- ► Linguística Computacional
 - Muchas tareas en linguística computacional requieren inferencia y 'background knowledge': desde tareas puntuales como resolución de referencias a problemas generales como question-answering.
 - En ciertos casos, el poder expresivo ofrecido por DLs es suficiene y no necesitamos recurrir a LPO.

: Lógica Computacional y Demostración Automática

Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Lógicas para la Descripción

- ► El lenguaje se define en tres niveles.
 - Conceptos: Por un lado construimos conceptos complejos usando conceptos (atómicos o creados via definición) y roles: E.g., ∃tiene-hijo.Hombre
 - Definiciones: Usamos conceptos para armar definiciones (o relaciones entre definiciones): E.g., PadreContento ≡ Aserciones: Podemos asignar conceptos o roles a
 - elementos particulares de nuestro modelo: E.g.,
- ▶ Una base de conocimiento es un par $\langle D, A \rangle$ con D un conjunto de definiciones (la "T-Box") y A un conjunto de aserciones (la "A-Box").

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

ALC: Construcción de Conceptos

- ▶ Un concepto puede ser
 - T, el concepto trivial, del que todo elemento es miembro.
 - Un concepto atómico: Hombre, Mujer
 - Operadores booleanos: Si C y D son conceptos entonces los siguientes son conceptos

 $C \sqcap D$ la conjunción de C y D Rico \sqcap Apuesto $C \sqcup D$ la disjunción de C y D Rico \sqcup Apuesto ¬C la negación de C ¬Politico

► Operadores relacionales: Si C es un concepto y R es un role, los siguientes son conceptos

 $\exists R.C$ un elem. acc. via R está en C∃hiio-de.Muier

 $\forall R.C$ todo elem. acc. via R está en C \forall hijo-de.Mujer

INRIA Nancy Grand Est

Construcción de Definiciones

La T-Box es una lista de definiciones.

Dados dos conceptos C y D, hay dos tipos de definiciones:

▶ Definiciones Parciales: $C \sqsubseteq D$. Las condiciones indicadas en C son suficientes para calificar a los elementos de C como miembros de D, pero no son condiciones necesarias; o vice-versa.

 \exists hijo-de.Hombre \sqcap \exists hijo-de.Mujer \sqsubseteq PadreOcupado (condición suficiente) PadreOcupado ⊑ ∃hijo-de.⊤ (condición necesaria)

Definiciones Totales: $C \equiv D$. Las condiciones indicadas en D son necesarias y suficientes para calificar a los elementos de D como miembros de C. Los conceptos C y D son equivalentes.

Abuela ≡ Mujer □ ∃hijo-de.∃hijo-de.⊤

: Lógica Computacional y Demostración Automática

Construcción de Aserciones

Podemos "asignar propiedades" a elementos particulares de la situación que estamos describiendo en la A-Box. Dados elementos a y b, un concepto C y una relacion R

▶ Asignación de Elementos a Conceptos: a:C. Indica que el concepto C es applicable al elemento a. Es decir, todas las condiciones indicadas por C se aplican a a.

> carlos:Argentino carlos:(Argentino □ ∃vive-en.Europa)

▶ Asignación de Relaciones entre Elementos: (a, b):R. Indica que los elementos a y b estan relacionados via el rol R.

(carlos,nancy):vive-en

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Semántica: Modelos

Sea CON un conjunto de conceptos atómicos, ROL un conjunto de roles y IND un conjunto de individuos. Una interpretación o un modelo para \mathcal{ALC} es un par

 $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \mathcal{I} \rangle$ tal que

- $\Delta^{\mathcal{I}}$ es un conjunto no vacío arbitrario
- ► .^I es una función de interpretación de conceptos atómicos, roles e individuos tal que

$$\begin{split} \mathcal{C}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \text{ para } \mathcal{C} \in \text{CON} \\ \mathcal{R}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \text{ para } \mathcal{R} \in \text{ROL} \\ \mathcal{a}^{\mathcal{I}} \in \Delta^{\mathcal{I}} \text{ para } \mathcal{a} \in \text{IND} \end{split}$$

(i.e., un modelo de DL no es otra cosa que un modelo de LPO para la signatura ⟨CON ∪ ROL, {}, IND⟩)

INRIA Nancy Grand Est

Semántica: Conceptos

Dado una interpretación ${\mathcal I}$ podemos definir la interpretación de un concepto arbitrario de \mathcal{ALC} recursivamente como

$$\begin{array}{ccc} (\neg C)^{\mathcal{I}} &:= & \Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &:= & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (\exists R.C)^{\mathcal{I}} &:= & \{i \mid \exists j.(i,j) \in R^{\mathcal{I}} \ y \ j \in C^{\mathcal{I}} \} \end{array}$$

 $C \sqcup D$ es equivalente a $\neg(\neg C \sqcap \neg D)$ y $(\forall R.C)$ es equivalente a $\neg(\exists R.\neg C)$.

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Semántica: Definiciones y Aserciones

Dada una interpretación \mathcal{I} decimos que

 $ightharpoonup \mathcal{I}$ satisface una definición parcial $C \sqsubseteq D$ (definición total $C \equiv D$) sii

$$C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \quad (C^{\mathcal{I}} = D^{\mathcal{I}})$$

- $ightharpoonup \mathcal{I}$ satisface una T-Box \mathcal{T} sii satisface todas las definiciones (parciales o totales) en T
- ▶ I satisface una assercion a:C ((a, b):R) sii $\textbf{\textit{a}}^{\mathcal{I}} \in \textbf{\textit{C}}^{\mathcal{I}} \hspace{0.5cm} ((\textbf{\textit{a}}^{\mathcal{I}},\textbf{\textit{b}}^{\mathcal{I}}) \in \textbf{\textit{R}}^{\mathcal{I}})$
- ▶ I satisface una A-Box A sii satisface todas las aserciones en A
- ▶ \mathcal{I} satisface una KB $K = \langle T, A \rangle$ sii \mathcal{I} satisface T y A.

Una KB K es consistente (o satisfacible) sii existe una interpretación \mathcal{I} que la satisface.

INRIA Nancy Grand Est

Un Ejemplo Completo

Persona □ ∃sexo.Femenino Muier Hombre Persona

∃sexo.Masculino La T-Box: PadreOMadre Persona □ ∃hijo-de.Persona = Mujer ☐ PadreOMadre Madre Padre ≡ Hombre □ PadreOMadre alicia:Madre

La A-Box: (alicia,betty):hijo-de (alicia,carlos):hijo-de

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Sintaxis y Semántica de ALC

Constructor	Sintaxis	Semántica
concepto atómico	С	$C^{\mathcal{I}}$
top	T	$\Delta^{\mathcal{I}}$
negación (C)	$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$
conjunción	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$
disyunción	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$
quant. universal (\mathcal{U})	∀R.C	$\mid \{\dot{d}_1 \mid orall \dot{d}_2 \in \Delta^{\mathcal{I}}. (R^{\mathcal{I}}(d_1, d_2) ightarrow d_2 \in C^{\mathcal{I}})\} \mid$
quant. existencial (\mathcal{E})	∃R.C	$\{d_1 \mid \exists d_2 \in \Delta^{\mathcal{I}}. (R^{\mathcal{I}}(d_1, d_2) \land d_2 \in C^{\mathcal{I}})\}$

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Bases de Conocimiento

Una base de conocimientos K es un par $K = \langle T, A \rangle$ tal que

- ▶ T es la T(erminological)-Box, un conjunto finito de expresiones de la forma $C \sqsubseteq D$. Las fórmulas en T se llaman terminological
- A es la A(ssertional)-Box, un conjunto finito de expresiones de la forma a: C o (a, b): R. Las fórmulas en A se llaman assertions.

Sea ${\mathcal I}$ una interpretación y φ un axioma terminológico o una asercion. Decimos que $\mathcal{I} \models \varphi$ si

- $\blacktriangleright \ \varphi = \textit{\textbf{C}} \sqsubseteq \textit{\textbf{D}} \ \textit{\textbf{y}} \ \textit{\textbf{C}}^{\mathcal{I}} \subseteq \textit{\textbf{D}}^{\mathcal{I}}, \ \textit{\textbf{o}}$
- $\blacktriangleright \ \varphi = \textit{a} : \textit{C} \ \mathsf{y} \ \textit{a}^{\mathcal{I}} \in \textit{C}^{\mathcal{I}}, \, \mathsf{o}$
- $\qquad \qquad \varphi = (\mathbf{a}, \mathbf{b}) : \mathbf{R} \ \mathbf{y} \ (\mathbf{a}^{\mathcal{I}}, \mathbf{b}^{\mathcal{I}}) \in \mathbf{R}^{\mathcal{I}}.$

Decimos que $\langle T, A \rangle$ es satisfacible si existe una interpretación \mathcal{I} que satisface T y A.

Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Tareas de Inferencia

La tarea básica de inferencia es satisfiabilidad de conceptos:

Un concepto C INPUT:

Si, si existe una interpretación \mathcal{I} tal que $C^{\mathcal{I}} \neq \{\}$ OUTPUT:

No, en otro caso.

Equivalentemente, subsumpción de conceptos: un par de conceptos (C, D) INPUT:

OUTPUT:

Si, si para toda interpretación \mathcal{I} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

No, en otro caso.

T: Satisfiabilidad y subsumpción son interdefinibles (en un lenguaje con conjunción y negación).

 $[\Rightarrow]$ C no es satisfacible sii $C \sqsubseteq \neg \top$ $C \sqsubseteq D$ sii $C \sqcap \neg D$ no es satisfacible

: Lógica Computacional y Demostración Automática

Tareas de Inferencia Respecto de una Base de Conocimiento

Sea T una base de conocimientos, $C_1, C_2 \in \text{CON}, R \in \text{ROL}$ y $a,b \in IND$, podemos definir las siguientes tareas de inferencia

- Subsumption, T |= C₁ ⊆ C₂. Chequear si para toda interpretación I tal que I |= T tenemos que C₁^T ⊆ C₂^T.
- Instance Checking, $T \models a:C$. Chequear si para toda interpretación \mathcal{I} tal que $\mathcal{I} \models T$ tenemos que $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
- Concept Consistency ($T \not\models C \doteq \bot$). Chequear si para alguna interpretación $\mathcal I$ tal que $\mathcal I \models \mathcal T$ tenemos qeu $C^{\mathcal I} \neq \{\}$.

Otras: Relation Checking ($T \models (a, b):R$), Knowledge Base Consistency ($T \not\models \bot$), etc.

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Tareas de Inferencia Complejas

Otras tareas de inferencia mas complejas, pueden definirse a partir de las anteriores, por ejemplo:

- ▶ Retrieval: dado un concepto C, retornar todos los individuos mencionados en la base de datos que son instancia de C. $\{a \in \mathsf{IND}(T) \mid T \models a:C\}$
- ► Conceptos mas específicos: dado un indivíduo a, retornar los conceptos más específicos en la ontología de los cuales a es un
- Conceptos parientes (descendientes) inmediatos: dado un concepto C, retornar los conceptos inmediatamente sobre (bajo)

INRIA Nancy Grand Est

Relación con LPO

La mayoría de los DLs son fragmentos decidibles de LPO.

Tomar un lenguaje de PO que tenga

un predicado unario C por cada concepto atómico C un predicado binario R por cada rol R

una constante a por cada indivíduo a.

Definimos las siguientes traducciones $t_x: \mathcal{ALC} \rightarrow \mathit{LPO}$ y

 $t_y: \mathcal{ALC} \rightarrow \mathit{LPO}$ por recursión mutua

 $t_x(C) = C(x)$ $t_y(C) = C(y)$

 $t_y(\neg C) = \neg t_y(C)$ $t_X(\neg C) = \neg t_X(C)$ $t_{x}(\neg C) = \neg t_{x}(C) \qquad t_{y}(\neg C) = \neg t_{y}(C)$ $t_{x}(C \sqcap D) = t_{x}(C) \land t_{x}(D) \qquad t_{y}(C \sqcap D) = t_{y}(C) \land t_{y}(D)$

 $t_x(\exists R.C) = \exists y.(R(x,y) \land t_y(C)) \quad t_y(\exists R.C) = \exists x.(R(y,x) \land t_x(C))$

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Traduciendo Bases de Conocimiento

Una T-Box $T = \{C_i \sqsubseteq D_i \mid i \le n\}$ se traduce como

$$t(T) = \forall x. (\bigwedge_{1 \leq i \leq n} t_x(C_i) \to t_x(D_i))$$

Una A-Box $A = \{a: C_i \mid i \leq n\} \cup \{(a, b): R_i \mid i \leq m\}$ se traduce

$$t(A) = \bigwedge_{1 \leq i \leq n} t_x(C_i)[x/a] \wedge \bigwedge_{1 \leq i \leq m} R_i(a,b)$$

T: C es satisfacible sii $t_x(C)$ es satisfacible.

T: C es satisfacible respecto de $\langle T, A \rangle$ sii $t_x(C) \wedge t(T) \wedge t(A)$ es satisfacible.

T: C es subsumido por D sii $\forall x.(t_x(C) \rightarrow t_x(D))$ es válido.

T: C es subsumido por D respecto de $\langle T, A \rangle$ sii ...

 $(t(T) \land t(A)) \rightarrow \forall x.(t_x(C) \rightarrow t_x(D))$ es válido.

INRIA Nancy Grand Est

Otros Operadores / Constraints

Number restriction (\mathcal{N})

 $(\leq nR)$

 $\{d_1 \mid ||\{d_2 \mid R^{\mathcal{I}}(d_1, d_2)\}|| \leq n\}$ $\{d_1 \mid ||\{d_2 \mid R^{\mathcal{I}}(d_1, d_2)\}|| \geq n\}$ $(\geq nR)$

Qualified number restrictions (\mathcal{Q}) $\{d_1 \mid ||\{d_2 \mid \mathcal{R}^{\mathcal{I}}(d_1, d_2) \wedge d_2 \in \mathcal{C}^{\mathcal{I}}\}|| \leq n\}$ $\{d_1 \mid ||\{d_2 \mid \mathcal{R}^{\mathcal{I}}(d_1, d_2) \wedge \mathcal{C}^{\mathcal{I}}\}|| \geq n\}$ $(\leq n R C)$

 $(\geq n R C)$

One-Of (\mathcal{O})

 $\{a_1,\ldots a_n\}$ $\{a_1^{\mathcal{I}},\ldots,a_n^{\mathcal{I}}\}$

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Otros Operadores / Constraints

Inverse roles (\mathcal{I})

R- $\{(i,j)\mid (j,i)\in R^{\mathcal{I}}\}$

Role Intersection (R)

 $\{(i,j)\mid (i,j)\in R^{\mathcal{I}}\wedge (i,j)\in \mathcal{S}^{\mathcal{I}}\}$ $B \sqcap S$

Roles transitivos (\mathcal{R}^+)

 $R = R^+$ $R^{\mathcal{I}}$ es una relación transitiva

Roles funcionales (\mathcal{F})

R feature $R^{\mathcal{I}}$ es una función (función parcial)

Jerarquía de Roles (H)

 $R \sqsubseteq S$ $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

DLs y Lógicas Modales

- ▶ DLs y las lógicas modales (ML) son formalismos muy próximos.
- Podríamos decir que DLs son 'el lado computacional de ML' y que ML son 'el lado teórico' de DLs.

ALC \mathbf{K}_m (\mathbf{K} multimodal) \Leftrightarrow

 $\neg C$ $\neg C$ $C \sqcap D$ $C \wedge D$

∃R.C $\langle R \rangle C$

frame transitivos (K4) roles transitivos \iff expr. regulares sobre roles \iff propositional dynamic logic (PDL)

lógicas temporales (\mathbf{K}_t) roles inversos \iff number restrictions graded modalities $(\diamondsuit_n \varphi)$

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Complejidad Vía Traducción

Sabiendo que muchas DLs son fragmentos de LPO (vía la traducción t), podemos transferir resultados conocidos sobre complejidad de estos fragmentos a ciertos lenguajes de descripción.

- ▶ ALC es un fragmento de LPO con sólo dos variables (LPO²) que se sabe decidible.
- \blacktriangleright Más aun, \mathcal{ALC} con roles inversos y operadores Booleanos sobre roles está todavía en LPO2!
- ► Que pasa si agregamos Q? Aunque nos salimos de LPO², caemos en C2: LPO2 extendida con 'counting quantifiers' $(\exists^n x. \varphi(x)$ es 'existen *n* indivíduos diferentes en el dominio que satisfacen φ '), también decidible

: Lógica Computacional y Demostración Automática

Lower Bounds vs. Upper Bounds

- Usamos la traducción t para obtener Upper Bounds (i.e., el problema P no es más complejo que el problema Q.)
- Pero no sirve para obtener Lower Bounds (i.e., el problema P es al menos tan complejo como el problema Q.). Para esto necesitaríamos traduccións 'para el otro lado'.
- Y en realidad, muchas veces las DLs tienen mejor comportamiento computacional que los fragmentos de LPO clásicos en los que pueden traducirse naturalmente.E.g.,
 - Contrastando con muchas DLs, agregar 'roles transitivos' (requerir que ciertas relaciones binarias sean interpretadas como relaciones transitivas) a LPO² vuelve el fragmento indecidible
 - ► LPO² es NExpTime-complete, mientras que la muchas DLs estan en ExpTime (o aún por debajo).

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Tableaux para ALC

- Miremos a los modelos de DL: Grafos etiquetados. Podemos pensar que un modelo de DL es
 - ▶ un conjunto de valuaciones proposicionales
 - más estructura relacional entre estas valuaciones
- Un tableau para DL entonces es
 - ▶ una colección de tableau proposicionales
 - ▶ con estructura adicional: la relacion de accesibilidad.
- Notar que esta es exactamente la información que hay en una ABox.
- Para determinar si un concepto C de ALC es consistente, escribir C en NNF ((¬∃R.C) → (∀R.¬C) y (¬∀R.C) → (∃R.¬C)).
- ▶ Aplicar las siguientes reglas a $A = \{a:NNF(C)\}.$

Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Reglas de Tableau para DLs

Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Terminación

Por que termina este algoritmo?

- ▶ Sea $\mathcal{L}(w) = \{C \mid w: C \in \mathcal{A}\}.$
- ▶ Las reglas \sqcup , \sqcap , \exists pueden ser aplicadas sólo una vez a una fórmula en $\mathcal{L}(w)$
- ▶ La regla \forall puede ser aplicada muchas veces a una formula en $\mathcal{L}(w)$ pero sólo una vez a cada eje (w, v).
- \blacktriangleright Aplicar una regla a una fórmula φ extiende el labeling con una fórmula que es siempre estrictamente más pequeña que φ .

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Correctitud y Completitud del Algoritmo

La correctitud y completitud del algoritmo se sigue de las siguientes propiedades:

- No puede haber una sequencia infinita de aplicaciones de reglas (terminación)
- 2. Sea \mathcal{A}' obtenido a partir de \mathcal{A} por la aplicación de alguna de las reglas. Entonces \mathcal{A}' es satisfacible sii \mathcal{A} es satisfacible.
- 3. Toda Abox ${\mathcal A}$ conteniendo un clash es insatisfacible.
- 4. Toda Abox $\mathcal A$ saturada (no nueva regla puede aplicarse a $\mathcal A$) y sin clash es satisfacible.

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Que Regla Aplicamos Primero?

- ▶ Importa que regla aplicamos primero para decidibilidad?
- Importa que regla aplicamos primero para tiempo de corrida?
- Algunas heurísticas para decidir que regla de expansión aplicar primero:
 - Usar non-branching rules (como

 -rule) antes que branching rules (como

 -rule)
 - usar reglas proposicionales (como ⊓-rule y ⊔-rule) antes que reglas modales (como ∃-rule y ∀-rule).

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Complejidad del Algoritmo

- ► El algoritmo que presentamos hasta el momento puede requerir espacio (y tiempo) exponencial!
- ► Consideremos el concepto definido recursivamente como

 $C_1 := \exists R.A \sqcap \exists R.B$ $C_{n+1} := \exists R.A \sqcap \exists R.B \sqcap \forall R.C_n$

▶ El tamaño de C_n es sólo lineal en n, pero el algoritmo de tableaux construiría, al ser corrido sobre $\mathcal{A} = \{a: C_n\}$ una ABox conteniendo $2^{n+1} - 1$ indivíduos.

Satisfacibilidad de \mathcal{ALC} esta en PSPACE

- Toda fórmula satisfacible φ puede ser satisfecha en la raíz de un árbol finito de profundidad a lo sumo deg(φ) + 1
- \blacktriangleright El tamaño total del modelo puede ser exponencial en $|\varphi|,$ pero
 - no es necesario mantener toda esta informacion en memoria.
 - en cada momento, sólo necesitamos mantener la información correspondiente a una rama del modelo.

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

: Lógica Computacional y Demostración Automática

El Algoritmo

```
ALC-SAT(C) := sat(x_0, {x_0:C})
 \begin{array}{l} \operatorname{sat}(x,\mathcal{A}): \\ 1. \text{ while } ( \leadsto_{\square} \ 0 \ \leadsto_{\square} \ \operatorname{pueden} \ \operatorname{aplicarse}) \ y \ (\mathcal{A} \ \operatorname{no} \ \operatorname{tiene} \ \operatorname{clash}) \ \operatorname{do} \\ 2. \quad \operatorname{aplicar} \ \leadsto_{\square} \ 0 \ \leadsto_{\square} \ a \ \mathcal{A} \\ 2. \quad \operatorname{aplicar} \ \leadsto_{\square} \ 0 \ \leadsto_{\square} \ a \ \mathcal{A} \\ 3. \quad \text{if } \mathcal{A} \ \operatorname{tiene} \ \operatorname{clash} \ \operatorname{then} \ \operatorname{return} \ \operatorname{UNSAT}. \\ 4. \quad E:=\{x:\exists R.D \mid x:\exists R.D \in \mathcal{A}\} \\ 5. \quad \text{while } E \neq \emptyset \ \operatorname{do} \\ 6. \quad \operatorname{elegir} \ x:\exists R.D \in E \ \operatorname{arbitrario} \\ 7. \quad A_{new} := \{(x,y):R,y:D\} \ \operatorname{dond} \ y \ \operatorname{es} \ \operatorname{un} \ \operatorname{nuevo} \ \operatorname{individuo}. \\ 8. \quad \text{while } (\longrightarrow_{\square} \ \operatorname{puede} \ \operatorname{aplicarse} \ a \ \mathcal{A} \cup \mathcal{A}_{new} \ \operatorname{do} \\ 9. \quad \operatorname{aplicar} \ \leadsto_{\square} \ a \ \mathcal{A} \cup \mathcal{A}_{new} \\ 10. \quad \text{if } A \cup \mathcal{A}_{new} \ \operatorname{tiene} \ \operatorname{clash} \ \operatorname{then} \ \operatorname{return} \ \operatorname{UNSAT}. \\ 11. \quad \operatorname{if} \ \operatorname{sat}(y, A \cup \mathcal{A}_{new}) = \ \operatorname{UNSAT} \ \operatorname{then} \ \operatorname{return} \ \operatorname{UNSAT}. \\ 12. \quad E:= E \setminus \{x:\exists R.D\} \\ 13. \quad \operatorname{eliminar} \ \mathcal{A}_{new} \ \operatorname{de} \ \operatorname{la} \ \operatorname{memoria}. \end{array}
```

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Falla de Terminación: Terminologías

- ▶ Como dijimos, el algoritmo básico de tableaux no termina para \mathcal{ALC} con T-boxes generales.
- ightharpoonup E.g., si Human $\sqsubseteq \exists$ has-mother.Human $\in \mathcal{T}$, entonces ¬Human ⊔ ∃has-mother.Human se agregaría a todo nodo del tableaux de w:Human.
- $(\mathbf{w}) \mathcal{L}(\mathbf{w}) = \{\mathsf{Human}, (\lnot\mathsf{Human} \sqcup \exists \mathsf{has}\text{-mother}.\mathsf{Human}), \exists \mathsf{has}\text{-mother}.\mathsf{Human}\}$ has-mother $\mathsf{x}\)\ \mathcal{L}(\mathsf{x}) = \{\mathsf{Human}, (\lnot\mathsf{Human} \sqcup \exists\mathsf{has\text{-}mother}.\mathsf{Human}), \exists\mathsf{has\text{-}mother}.\mathsf{Human}\}$ has-mother $\mathcal{L}(y) = \{ Human, (\neg Human \sqcup \exists has-mother.Human), \exists has-mother.Human \}$

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

Implementaciones Naive

Problemas típicos

- ► Problemas de Espacio
 - Espacio requerido para las estructuras de datos que prepresentan el tableaux.

 Raramente un problema serio en la práctica
- Problemas de Tiempo
 - Necesitamos búsqueda dada la naturaleza no determinística del algoritmo de tableaux.
 - Un problema serio en la práctica
 - puede ser mitigado mediante
 - La elección cuidadosa del algoritmo
 - Una implementacion altamente optimizada

: Lógica Computacional y Demostración Automática

INRIA Nancy Grand Est

System Demo: RACER

- ► RACER (http://www.sts.tu-harburg.de/ r.f.moeller/racer/), desarrollado en la University of Hamburg por Haarslev y Möller en Common Lisp. Puede trabajar en $\mathcal{ALCFHIQ}(\mathcal{D}^-)_{\mathcal{R}^+}$.
- ▶ RACER es un razonador automático para DL con soporte para TBoxes, ABoxes y Concrete domains (e.g., (in)ecuaciones lineares sobre los reales)
- Es también una herramienta de inferencia para la web semántica que permite el desarrollo de ontologías, consultas de documentos RDF y ontologias RDFS/DAML que permite el registro permanente de queries con notificación automática de nuevos resultados
- Está implementado en Lisp y existen versiones para Linux, Macintosh y Windows

Terminologías

- ▶ El algoritmo que vimos hasta el momento sólo trata consistencia de conceptos
- Cómo agregamos ABoxes?
- Cómo agregamos TBoxes?
 - Consideremos una definición $C \sqsubseteq D$
 - Basta asegurarnos que cada nodo del tableaux contenga
 - Pero eso implica que el tamaño de los conceptos en un nodo (y en particuar la profundidad máxima de cuantificación) no disminuye.
 - El argumento anterior de terminación (y por lo tanto el de complejidad) se 'caen'.

INRIA Nancy Grand Est

Blocking

- ▶ Cuando un nuevo nodo es creado, chequear los ancestros por un etiqueta idéntica (o un superconjunto).
- ▶ Si un nodo de este tipo existe, entonces el nuevo nodo esta bloqueado y ninguna regla puede aplicarse a el

```
(w) \mathcal{L}(w) = \{\text{Human}, (\neg \text{Human} \sqcup \exists \text{has-mother.Human}), \exists \text{has-mother.Human}\}
    has-mother
\begin{pmatrix} x \end{pmatrix} \mathcal{L}(x) = \{\text{Human}\}
```

: Lógica Computacional y Demostración Auto

INRIA Nancy Grand Est

Tableaux para \mathcal{I} y \mathcal{N}

- ► Como modificamos el tableaux para ALC para que funcione también para \mathcal{I} ?
- lacktriangle Reglas de Tableaux para ${\mathcal N}$

```
Si 1. x:(\leq nR) \in \mathcal{A} y 2. no hay individuos z_1, \ldots, z_n tal que (x, z_i): R \in \mathcal{A} y z_i \neq z_j \in \mathcal{A} (1 \leq i < j \leq n) entonces \mathcal{A} \to \geq \mathcal{A} \cup \{(x, y_i): R \mid 1 \leq i \leq n\} \cup \{(x, y_i): R \mid 1 \leq i \leq n\} over (x, y_i): R \in \mathcal{A}
→<sub>≥</sub> Si
                                                                      \{y_i \neq y_j \mid 1 \leq i < j \leq n\} para y_i nuevos
                                                 1. x:(\leq nR) \in A y
 →<sub>≤</sub> Si
              2. \{(x,y_i): \hat{R} \mid 1 \leq n \leq n+1\} \subseteq \mathcal{A}
and y_i \neq y_j \notin \mathcal{A} para algun i,j 1 \leq i < j \leq n+1
entonces \mathcal{A} \to_{\leq} \mathcal{A}[y_i/y_j] para algun par y_i \neq y_j
```

Clash (para \mathcal{N}): \mathcal{A} tiene un clash también si $\{x: (\leq nR)\} \cup$ $\{(x, y_i) : R \mid 1 \le i \le n+1\} \cup \{y_i \neq y_j \mid 1 \le i < j \le n+1\} \subseteq A.$

: Lógica Computacional y Demostración Automática