COMBINATORIAL OPTIMIZATION PROBLEMS

WHAT IS A COMBINATORIAL PROBLEM?

WE FOCUS ON SINGLE-OBJECTIVE COMBINATORIAL PROBLEMS

WE FOCUS ON SINGLE-OBJECTIVE COMBINATORIAL PROBLEMS

The type of inputs and the way we handle them make a problem combinatorial and different from other problems.

INPUTS (PARAMETERS) OF COMBINATORIAL PROBLEMS

The inputs are chosen from:

A FINITE SET OF OBJECTS

So this **IS NOT** a combinatorial problem because:

- No discreet values
- No finite set

SEARCH SPACE OF COMBINATORIAL PROBLEMS

CARD GAME EXAMPLE

Size of search space = 6

DRONE NAVIGATION EXAMPLE

 x_1 x_2 DRONE

NAVIGATION

PROBLEM x_4

Size of search space = 24

SO, WHAT IS THE SEARCH SPACE OF A COMBINATORIAL PROBLEM?

Search space of a combinatorial problem

All the combinations of the "objects"

SO, HOW TO CALCULATE THE SIZE OF SEARCH SPACE WHEN THE NUMBER OF OBJECTS IS EQUAL TO THE NUMBER OF VARIABLES?

$$n! = \prod_{i=n}^{1} i = n(n-1)(n-2) \dots 3 \times 2 \times 1$$

Where n is the number of objects (variables)