Introduction to Machine Learning K-Means, K-Meoids, K-Centers and Variations

Andres Mendez-Vazquez

September 8, 2025

Outline

- $lue{1}$ K-Means Clustering
 - The NP-Hard Problem
 - K-Means Clustering HeuristicConvergence Criterion
 - The Distance Function
 - I he Distance Function
 - Example
 - Properties of K-Means

- 2 K-Meoids
 - Introduction
 - The Algorithm
 - Complexity

Outline

- $lue{1}$ K-Means Clustering
 - The NP-Hard Problem
 - K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- K-Meoids
- Introduction
 - The Algorithm
 - Complexity

The Hardness of K-means clustering

Definition

• Given a multiset $S\subseteq\mathbb{R}^d$, an integer k and $L\in\mathbb{R}$, is there a subset $T\subset\mathbb{R}^d$ with |T|=k such that

$$\sum_{\boldsymbol{x} \in S} \min_{\boldsymbol{t} \in T} \|\boldsymbol{x} - \boldsymbol{t}\|^2 \le L?$$

The Hardness of K-means clustering

Definition

• Given a multiset $S\subseteq\mathbb{R}^d$, an integer k and $L\in\mathbb{R}$, is there a subset $T\subset\mathbb{R}^d$ with |T|=k such that

$$\sum_{\boldsymbol{x} \in S} \min_{\boldsymbol{t} \in T} \|\boldsymbol{x} - \boldsymbol{t}\|^2 \le L?$$

Theorem

• The k-means clustering problem is NP-complete even for d=2.

Reduction

The reduction to an NP-Complete problem

• Exact Cover by 3-Sets problem

Reduction

The reduction to an NP-Complete problem

Exact Cover by 3-Sets problem

Definition

• Given a finite set U containing exactly 3n elements and a collection $\mathcal{C} = \{S_1, S_2, ..., S_l\}$ of subsets of U each of which contains exactly 3 elements. Are there n sets in \mathcal{C} such that their union is U?

However

There are efficient heuristic and approximation algorithms

• Which can solve this problem

Outline

- $lue{1}$ K-Means Clustering
 - The NP-Hard Problem
 - K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- K-Meoids
- Introduction
 - The Algorithm
 - Complexity

K-Means - Stuart Lloyd(Circa 1957)

History

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a signal data set.

K-Means - Stuart Lloyd(Circa 1957)

History

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a signal data set.

Something Notable

The paper was published until 1982

K-Means - Stuart Lloyd(Circa 1957)

History

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a signal data set.

Something Notable

The paper was published until 1982

Basically given N vectors $oldsymbol{x}_1,...,oldsymbol{x}_N\in\mathbb{R}^d$

It tries to find k points $\mu_1,...,\mu_k\in\mathbb{R}^d$ that minimize the expression (i.e. a partition S of the vector points):

$$\sum_{k=1}^{N} \sum_{i: x_i \in C_k} \|x_i - \mu_k\|^2 = \sum_{k=1}^{N} \sum_{i: x_i \in C_k} (x_i - \mu_k)^T (x_i - \mu_k)$$

K-means

It is a partitional clustering algorithm.

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \dots, x_{ir})^T$:

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \dots, x_{ir})^T$:

ullet The K-means algorithm partitions the given data into K clusters.

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \dots, x_{ir})^T$:

- ullet The K-means algorithm partitions the given data into K clusters.
- Each cluster has a cluster center, called centroid.

K-means

It is a partitional clustering algorithm.

Definition

Let the set of data points (or instances) D be $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ where $\mathbf{x}_i = (x_{i1}, \dots, x_{ir})^T$:

- ullet The K-means algorithm partitions the given data into K clusters.
- Each cluster has a cluster center, called centroid.
- *K* is specified by the user.

The K-means algorithm works as follows

Given \boldsymbol{k} as the possible number of cluster:

The K-means algorithm works as follows

Given k as the possible number of cluster:

- ullet Randomly choose K data points (seeds) to be the initial centroids, cluster centers,

The K-means algorithm works as follows

Given k as the possible number of cluster:

- lacktriangle Randomly choose K data points (seeds) to be the initial centroids, cluster centers,
 - $ightharpoonup \{\mathbf{v}_1,\cdots,\mathbf{v}_k\}$
- Assign each data point to the closest centroid
 - $c_i = \arg\min_{j} \{ dist(\mathbf{x}_i \mathbf{v}_j) \}$

The K-means algorithm works as follows

Given k as the possible number of cluster:

- lacktriangle Randomly choose K data points (seeds) to be the initial centroids, cluster centers,
 - $ightharpoonup \{\mathbf{v}_1,\cdots,\mathbf{v}_k\}$
- Assign each data point to the closest centroid
 - $c_i = \arg\min_{j} \{ dist(\mathbf{x}_i \mathbf{v}_j) \}$
- Re-compute the centroids using the current cluster memberships.

$$\mathbf{v}_{j} = \frac{\sum_{i=1}^{n} I(c_{i} = j)\mathbf{x}_{i}}{\sum_{i=1}^{n} I(c_{i} = j)}$$

The K-means algorithm works as follows

Given k as the possible number of cluster:

- ullet Randomly choose K data points (seeds) to be the initial centroids, cluster centers,
 - $ightharpoonup \{\mathbf{v}_1,\cdots,\mathbf{v}_k\}$
- Assign each data point to the closest centroid
 - $c_i = \arg\min_{j} \{ dist(\mathbf{x}_i \mathbf{v}_j) \}$
- Re-compute the centroids using the current cluster memberships.

$$\mathbf{v}_{j} = \frac{\sum_{i=1}^{n} I(c_{i} = j) \mathbf{x}_{i}}{\sum_{i=1}^{n} I(c_{i} = j)}$$

• If a convergence criterion is not met, go to 2.

What is the code trying to do?

It is trying to find a partition S

 $K{\operatorname{\mathsf{-means}}}$ tries to find a partition S such that it minimizes the cost function:

$$\min_{S} \sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_{i} \in C_{k}} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})$$

$$(1)$$

What is the code trying to do?

It is trying to find a partition S

 $K{\operatorname{\mathsf{-means}}}$ tries to find a partition S such that it minimizes the cost function:

$$\min_{S} \sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_{i} \in C_{k}} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})^{T} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{k})$$

$$(1)$$

What is the code trying to do?

It is trying to find a partition S

K-means tries to find a partition S such that it minimizes the cost function:

$$\min_{S} \sum_{k=1}^{N} \sum_{i: \boldsymbol{x}_i \in C_k} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^T (\boldsymbol{x}_i - \boldsymbol{\mu}_k)$$
 (1)

Where μ_k is the centroid for cluster C_k

$$\mu_k = \frac{1}{N_k} \sum_{i: x_i \in C_k} x_i \tag{2}$$

Where N_k is the number of samples in the cluster C_k .

Outline

- K-Means Clustering
 The NP-Hard Problem

 - lacktriangledown K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- Introduction
- The Algorithm
- Complexity

First

No (or minimum) re-assignments of data points to different clusters.

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

Third

Minimum decrease in the sum of squared error (SSE),

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

Third

Minimum decrease in the sum of squared error (SSE),

• C_k is cluster k.

First

No (or minimum) re-assignments of data points to different clusters.

Second

No (or minimum) change of centroids.

Third

Minimum decrease in the sum of squared error (SSE),

- C_k is cluster k.
- \mathbf{v}_k is the centroid of cluster C_k .

$$SSE = \sum_{k=1}^{K} \sum_{\mathbf{x} \in c_k} dist(\mathbf{x}, \mathbf{v}_k)^2$$

Outline

- K-Means Clustering
 The NP-Hard Problem

 - K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- Introduction
- The Algorithm
- Complexity

The distance function

Actually, we have the following distance functions:

Euclidean

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

The distance function

Actually, we have the following distance functions:

Euclidean

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

Manhattan

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_1 = \sum_{i=1}^{n} |x_i - y_i|$$

The distance function

Actually, we have the following distance functions:

Euclidean

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

Manhattan

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_1 = \sum_{i=1}^{n} |x_i - y_i|$$

Mahalanobis

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_A = \sqrt{(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})}$$

Outline

- K-Means Clustering
 The NP-Hard Problem

 - K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- Introduction
- The Algorithm
- Complexity

Outline

- K-Means Clustering
 The NP-Hard Problem

 - K-Means Clustering Heuristic
 - Convergence Criterion
 - Example
 - Properties of K-Means

- Introduction
 - The Algorithm
 - Complexity

Strengths

• Simple: easy to understand and to implement

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
- ullet Since both K and t are small. K-means is considered a linear algorithm.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
- ullet Since both K and t are small. K-means is considered a linear algorithm.

Popularity

K-means is the most popular clustering algorithm.

Strengths

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tKN), where N is the number of data points, K is the number of clusters, and t is the number of iterations.
- ullet Since both K and t are small. K-means is considered a linear algorithm.

Popularity

K-means is the most popular clustering algorithm.

Note that

It terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Important

The algorithm is only applicable if the mean is defined.

Important

The algorithm is only applicable if the mean is defined.

ullet For categorical data, K-mode - the centroid is represented by most frequent values.

Important

The algorithm is only applicable if the mean is defined.

ullet For categorical data, K-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Important

The algorithm is only applicable if the mean is defined.

 For categorical data, K-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Outliers

The algorithm is sensitive to outliers.

Important

The algorithm is only applicable if the mean is defined.

ullet For categorical data, K-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Outliers

The algorithm is sensitive to outliers.

• Outliers are data points that are very far away from other data points.

Important

The algorithm is only applicable if the mean is defined.

 For categorical data, K-mode - the centroid is represented by most frequent values.

In addition

The user needs to specify K.

Outliers

The algorithm is sensitive to outliers.

- Outliers are data points that are very far away from other data points.
- Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of K-means: Problems with outliers

Weaknesses of K-means: Problems with outliers

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

 To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Another method

To perform random sampling.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Another method

To perform random sampling.

 Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.

One method

To remove some data points in the clustering process that are much further away from the centroids than other data points.

• To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.

Another method

To perform random sampling.

- Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
- Assign the rest of the data points to the clusters by distance or similarity comparison, or classification.

Weaknesses of K-means (cont...)

Weaknesses of K-means : Different Densities

Weaknesses of K-means: Non-globular Shapes

Weaknesses of K-means: Non-globular Shapes

Outline

- K-Means Clustering
 - The NP-Hard Problem
 - K-Means Clustering Heuristic
 - Convergence Criterion The Distance Function

 - Example
 - lacksquare Properties of K-Means

- K-Meoids
 - Introduction
 - The Algorithm
 - Complexity

Until now, we have assumed a Euclidean metric space

Important step

• The cluster representatives $m_1,...,m_k$ in are taken to be the means of the currently assigned clusters.

Until now, we have assumed a Euclidean metric space

Important step

ullet The cluster representatives $m_1,...,m_k$ in are taken to be the means of the currently assigned clusters.

We can generalize this by using a dissimilarity $D\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i'}\right)$

ullet By using an explicit optimization with respect to $m_1,...,m_k$

Outline

- floor K-Means Clustering
 - The NP-Hard Problem
 - lacksquare K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- 2 K-Meoids
 - Introduction
 - The Algorithm
 - Complexity

Algorithm K-meoids

Step 1

ullet For a given cluster assignment C find the observation in the cluster minimizing total distance to other points in that cluster:

$$i_k^* = \arg\min_{\left\{i \mid C(i)=k\right\}} \sum_{C(i')=k} D\left(\boldsymbol{x}_i, \boldsymbol{x}_{i'}\right)$$

▶ Then $m_k = \boldsymbol{x}_{i_k^*}$ k = 1, ..., K are the current estimates of the cluster centers.

Now

Step 2

• Given a current set of cluster centers $m_1,...,m_k$, minimize the total error by assigning each observation to the closest (current) cluster center:

$$C\left(i\right) = \arg\min_{1 \le k \le K} D\left(\boldsymbol{x}_{i}, m_{k}\right)$$

Now

Step 2

• Given a current set of cluster centers $m_1,...,m_k$, minimize the total error by assigning each observation to the closest (current) cluster center:

$$C\left(i\right) = \arg\min_{1 \le k \le K} D\left(\boldsymbol{x}_{i}, m_{k}\right)$$

Iterate over steps 1 and 2

• Until the assignments do not change.

Outline

- f 1 K-Means Clustering
 - The NP-Hard Problem
 - lacksquare K-Means Clustering Heuristic
 - Convergence Criterion
 - The Distance Function
 - Example
 - lacksquare Properties of K-Means

- 2 K-Meoids
 - Introduction
 - The Algorithm
 - Complexity

Complexity

Problem, solving the first step has a complexity for k=1,...,K

 $O\left(N_k^2\right)$

Complexity

Problem, solving the first step has a complexity for k = 1, ..., K

$$O\left(N_k^2\right)$$

Given a set of cluster "centers," $\{i_1, i_2, ..., i_K\}$

Given the new assignments

$$C(i) = \arg\min_{1 \le k \le K} D(\boldsymbol{x}_i, m_k)$$

▶ It requires a complexity of O(KN) as before.

Therefore

We have that

ullet K-medoids is more computationally intensive than K-means.