Feedback — VII. Regularization

Help

You submitted this quiz on **Sat 12 Jul 2014 3:21 AM PDT**. You got a score of **5.00** out of **5.00**.

Question 1

In which one of the following figures do you think the hypothesis has overfit the training set?

Total 1.00 /

1.00

Question 2

Your Answer

In which one of the following figures do you think the hypothesis has underfit the training set?

Score

Explanation

××××

✓ 1.00

The hypothesis does not predict many data points well, and is thus underfitting the training set.

Total 1.00 / 1.00

Question 3

You are training a classification model with logistic regression. Which of the following statements are true? Check all that apply.

Your Answer	Score	Explanation
Adding a new feature to the model always results in equal or better performance on the training set.	✔ 0.25	By adding a new feature, our model must be more (or just as) expressive, thus allowing it learn more complex hypotheses to fit the training set.
Introducing regularization to the model always results in equal or better performance on the training set.	✔ 0.25	If we introduce too much regularization, we can underfit the training set and have worse performance on the training set.
Introducing regularization to the model always results in equal or better performance on examples not in the training set.	✔ 0.25	If we introduce too much regularization, we can underfit the training set and this can lead to worse performance even for examples not in the training set.
Adding a new feature to the model always results in equal or better performance on examples not in the training set.	✔ 0.25	Adding more features might result in a model that overfits the training set, and thus can lead to worse performs for examples which are not in the training set.
Total	1.00 / 1.00	

Question 4

Suppose you ran logistic regression twice, once with $\lambda=0$, and once with $\lambda=1$. One of the

times, you got parameters $heta=\begin{bmatrix}74.81\\45.05\end{bmatrix}$, and the other time you got $heta=\begin{bmatrix}1.37\\0.51\end{bmatrix}$. However,

you forgot which value of λ corresponds to which value of θ . Which one do you think corresponds to $\lambda=1$?

Your Answer	Score	Explanation
$ heta = egin{bmatrix} 1.37 \ 0.51 \end{bmatrix}$	1 .00	When λ is set to 1, we use regularization to penalize large values of θ . Thus, the parameters, θ , obtained will in general have smaller values.
$ heta=egin{bmatrix} 74.81\ 45.05 \end{bmatrix}$		
Total	1.00 / 1.00	

Question 5

Which of the following statements about regularization are true? Check all that apply.

Your Answer		Score	Explanation
Using a very large value of λ cannot hurt the performance of your hypothesis; the only reason we do not set λ to be too large is to avoid numerical problems.	*	0.25	Using a very large value of λ can lead to underfitting of the training set.
Because logistic regression outputs values $0 \le h_{\theta}(x) \le 1$, it's range of output values can only be "shrunk" slightly by regularization anyway, so regularization is generally not helpful for it.	~	0.25	Regularization affects the parameters $\boldsymbol{\theta}$ and is also helpful for logistic regression.

Consider a classification
problem. Adding
regularization may cause
your classifier to incorrectly
classify some training
examples (which it had
correctly classified when not
using regularization, i.e.
when $\lambda=0$).

Regularization penalizes complex models (with large values of θ). They can lead to a simpler models, which misclassifies more training examples.

Because regularization causes $J(\theta)$ to no longer be convex, gradient descent may not always converge to the global minimum (when $\lambda>0$, and when using an appropriate learning rate α).

0.25 Regularized logistic regression and regularized linear regression are both convex, and thus gradient descent will still converge to the global minimum.

Total

1.00 / 1.00

0.25