Semantic Theory week 10 – Presuppositions in DRT

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Summary: Presuppositions (Recap)

- Presuppositions are triggered by a number of different words and linguistic constructions, including definite noun phrases.
- Presuppositions behave differently than assertions in semantics construction: They are typically projected unchanged, rather than used in functional application.
- Projected presuppositions can be filtered in the semantic composition process, and can be cancelled by contextual knowledge.

Presuppositions in DRT

Presupposition Projection as Anaphora Resolution Rob van der Sandt (1992)

- · Presuppositions are anaphora with semantic content.
- Presupposition filtering is modelled as anaphora binding within a local context (sub-DRS).
- If a presupposition is not bound, it is accommodated (usually in the top-level DRS).

Presupposition as Anaphora

- (1) If a farmer owns a donkey, he feeds it.
- (2) If France has a king, the king of France is bald.
- (3) # If a farmer doesn't own a donkey, he feeds it.
- (4) # If France doesn't have a king, the king of France is bald.
- (5) # The farmer feeds it.
- (6) The king of France is bald.

Van der Sandt – Basic Principles

Introduce "a-DRSs" as a new type of complex condition

DRS construction proceeds in two steps:

- I. The construction rules for definite noun phrases introduce α-DRSs. This yields a "proto-DRS."
- II. In a second step, the α-DRSs are resolved (translation of a proto-DRS into a standard DRS)

Resolution: presuppositions can be either bound or accommodated

· A student works.

X	
student(x) works(x)	

· A student works. The student is successful.

X
student(x) works(x)
ay y student(y)
successful(y)

· A student works. The student is successful.

· A student works. The student is successful.

```
ху
student(x)
works(x)
student(y)
x = y
successful(y)
```

Expressions that trigger presuppositions can often be used even if the context does not satisfy the presupposition:

- (1) The king of Buganda is 43
- (2) The movie I saw yesterday was really interesting
- (3) We regret that we have no free rooms available

The missing information is silently added to the context as we interpret the sentence: it is accommodated

The King of Buganda is visiting.

The King of Buganda is visiting.

The King of Buganda is visiting.

X
King-of-Buganda(x)
visit(x)

DRS-Construction

A proto-DRS is a triple (UK, CK, AK) such that

- U_K is a set of discourse referents
- C_K is a set of (atomic or complex) conditions
- A_K is a set of "anaphoric" (α -) DRSs of the form $\alpha z K$ ', where z is a discourse referent and K' is a proto-DRS.

A DRS is a proto-DRS $\langle U_K, C_K, A_K \rangle$ such that $A_K = \emptyset$

Definite Noun Phrases in DRT

The DRS construction rules for all definite noun phrases introduce α -DRSs:

Definite descriptions ("the woman")

Pronouns ("he")

Definite Noun Phrases in DRT (cont.)

The DRS construction rules for all definite noun phrases introduce α -DRSs:

Proper names ("Maria")

Possessives ("his book")

Back to: DRS Subordination

 K_1 is an immediate sub-DRS of a DRS $K=\langle U_K, C_K, A_K \rangle$ iff

- C_K contains a condition of the form ¬K₁, K₁ ⇒ K₂, K₂ ⇒ K₁, K₁ ∨ K₂, K₂ ∨ K₁
- or $axK_1 \in A_K$

 K_1 is a sub-DRS of K (notation: $K_1 \le K$) iff

- $K_1 = K \text{ or }$
- K₁ is an immediate sub-DRS of K or
- there is a DRS K_2 such that $K_1 \leq K_2$ and K_2 is an immediate sub-DRS of K.

 K_1 is a proper sub-DRS of K iff $K_1 \le K$ and $K_1 \ne K$.

Resolution by binding

Let K, K', K_t be some DRSs such that $K' \le K$, $K_t \le K$ and

- $\gamma = \alpha x K_s \in K'$, K_s is a-free
- \cdot y \in U_{Kt} is a DR that is accessible and suitable for γ

Binding: Remove γ from K' and extend K_t with U_{Ks}, C_{Ks}, and the condition x = y.

Note: Because K_s must be α -free, complex Alpha-DRSs are always resolved from the inside out.

If Pedro owns a donkey, he beats his donkey. NB: we here use the standard DRS treatment for names X x = Pedrodonkey(y) au u az i z owns(x, y)donkey(u) of(u,w) beats(z, u) aw:w

· If Pedro owns a donkey, he beats his donkey.

· If Pedro owns a donkey, he beats his donkey.

· If Pedro owns a donkey, he beats his donkey.

Resolution by accommodation

Let K, K' be DRSs such that $K' \leq K$, $K_t \leq K$ and

- $\gamma = \alpha x K_s \in K'$, K_s is a-free
- K_t a DRS that is accessible for γ .

Accommodation: Remove γ from K' and extend K_t with U_{Ks} and C_{Ks}.

Resolution by accommodation: example

If Pedro works, he beats his donkey.

Resolution by accommodation: example

If Pedro works, he beats his donkey.

Resolution by accommodation: example

· If Pedro works, he beats his donkey.

Preference principles for presupposition resolution

- Binding is preferred over accommodation.
- Binding works "upwards" along the accessibility relation: The "closest" possible antecedent is preferred.
- Accommodation works "downwards" along the accessibility relation. It is preferred to accommodate into the highest possible DRS.

Constraints on projection

Free variable constraint:

The resolved DRS may not contain any free discourse referents.

Consistency and informativity constraints:

The resolved DRS must be consistent and informative

Every man loves his wife.

Every man loves his wife.

Every man loves his wife.

Further constraints on projection

The resolved DRS must be consistent and informative.

- Consistency: The resolved DRS must be satisfiable (taking background knowledge into account).
- Informativity: The resolved DRS may not be entailed by our background knowledge.
- Local consistency: No sub-DRS must be inconsistent with any superordinate DRS.
- Local informativity: No sub-DRS must be entailed by any superordinate DRS.

If John is out of town, his wife is unhappy. » John is married

If John is out of town, his wife is unhappy. » John is married

If John is married, his wife is unhappy.

John is married

If John is married, his wife is unhappy.

John is married

Evaluation of the DRT analysis of presuppositions

Pros:

- Empirically sound representations
- Unified treatment of presuppositions and anaphora
- Structural explanation of filtering/cancellation principles

Cons:

- Two-stage resolution procedure for presuppositions not compositional
- Once resolved, presuppositions loose their 'presuppositionhood'
- Does not explain projection behaviour of other phenomena: for instance, conventional implicatures

Conventional Implicatures

Noam Chomsky, a famous linguist, attended the conference.

Assertion: Noam Chomsky attended the conference

Conventional implicature: Noam Chomsky is a famous linguist

part of the conventional meaning of words/constructions (as opposed to usage)

not part of the truthconditions of the sentence as a whole

Grice 1975; Potts 2003, 2005

Examples of conventional implicatures

(1) Ames, the former spy, is now behind bars. appositive

(2) Ames, who stole from the FBI, is now behind bars. non-restrictive relative clause

(3) Ames was, as the press reported, a successful spy. as-clause

(4) Fortunately, Beck survived the descent. parenthetical

(5) Frankly (speaking), Ed fled. utterance modifier

(6) I hate your <u>damn</u> dog! expressive adverb

(7) That bastard Conner got promoted. epithet

(8) Yamadasensei -ga <u>o</u> -warai-ni nat-ta. honorific Yamada teacher - nom <u>hon</u> - laugh - dat be - perf

'Professor Yamada laughed.' honorific

Potts 2003, 2005

Properties of conventional implicatures

Conventional implicatures are...

- non-cancellable: they cannot be directly denied
- not at-issue: Cls are not part of the regular asserted content
- scopeless: Cls project, and are not sensitive to 'presupposition plugs' (such as propositional attitude verbs)
- speaker-oriented: the speaker of a sentence containing a CItrigger is committed to the CI content

Conventional implicatures versus presuppositions

- Karttunen & Peters (1979): presuppositions are a special case of conventional implicatures, namely, those which, for pragmatic reasons, are presumed to true already.
- Potts (2005): conventional implicatures are distinguished from presuppositions in that they introduce new information, motivating a *multi-dimensional* approach to meaning
- Simons et al. (2010): Presuppositions and conventional implicatures belong to the larger class of not at-issue content.

Q: How to provide a unified formal treatment of projection?

Literature

- Rob van der Sandt (1992). Presupposition Projection as Anaphora Resolution, Journal of Semantics 9: 333–377
- Christopher Potts (2005). *The logic of conventional implicatures* Oxford Studies in Theoretical Linguistics. Oxford: Oxford University Press.