

(43) International Publication Date 18 November 2004 (18.11.2004) PCT (10) International Publication Number WO 2004/100553 A1

(51) International Patent Classification7: H04N 7/26 MG, MK, MN, MW,

(21) International Application Number:

PCT/IB2004/001373

(22) International Filing Date: 28 April 2004 (28.04.2004)

(25) Filling Language: English

(26) Publication Language: English

(30) Priority Data: 03300011.8

6 May 2003 (06.05.2003) I

(71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NIJNL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DUFOUR, Céclle [FE/FR]: of Société Civile SPID, 156, Boulevard Haussmann, F-75008 PARIS (FR). MARQUANT, Gwenaëlle [FE/FR]: of Société Civile SPID, 156, Boulevard Haussmann, F-75008 PARIS (FR). VALE-NTE, Stéphane [FE/FR]: of Société Civile SPID, 156, Boulevard Haussmann, F-75008 PARIS (FR).

(74) Agent: LANDOUSY, Christian; Société Civile SPID, 156, Boulevard Haussmann, F-75008 PARIS (FR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, D, TL, IN, IS, P, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD. MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARPIO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurosian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European GT, BE, BG, CH, CY, CZ, DE, DE, EE, ES, FI, FR, GB, GR, HU, E, TT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM. DZ. EC. EE. EG. ES. Fl. GB. GD. GE. GH. GM. HR. HU. ID. IL. IN. IS. JP. KE. KG. KP. KR. KZ. LC. LK. LR. LS. LT. LU. LV. MA. MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VIDEO ENCODING AND DECODING METHODS AND CORRESPONDING ENCODING AND DECODING DEVICES

(57) Abstract: The invention relates to an encoding method applied to an input video sequence corresponding to successive seenes southwided into successive video object planes (VOPs) and generating, for coding all the video objects of a said scenes, a coded bitstream to content of which is described in terms of separate channels and constituted of encoded video data in the each data item of steerable by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said syntax comprising an additional syntactic information provided for describing independently the type of temporal prediction of the various channels. According to the invention, said additional information is a syntactic element placed at the sitce level or the macroblock level in the coded bitstream, and its meaning is either specific for each present channel or shared by all existing channels.

WO 2004/100553 PCT/IB2004/001373

"VIDEO ENCODING AND DECODING METHODS AND CORRESPONDING ENCODING AND DECODING DEVICES"

FIELD OF THE INVENTION

5

10

15

20

2.5

30

The present invention generally relates to the field of video compression and, for instance, to the video coding standards of the MPEG family (MPEG-1, MPEG-2, MPEG-4) and to the video recommendations of the TTU-H.26X family (H.261, H.263 and extensions, H.264). More specifically, this invention relates to an encoding method applied to an input video sequence corresponding to successive scenes subdivided into successive video object planes (VOPs) and generating, for coding all the video objects of said scenes, a coded bitstream the content of which is described in terms of separate channels and constituted of encoded video data in which each data item is described by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said syntax comprising an additional syntactic information provided for describing independently the type of temporal prediction of the various channels, said predictions being chosen within a list comprising the following situations:

- the temporal prediction is formed by directly applying the motion field sent by the encoder on one or more reference pictures;
 - the temporal prediction is a copy of a reference image;
- the temporal prediction is formed by the temporal interpolation of the motion field:
- the temporal prediction is formed by the temporal interpolation of the current motion field and further refined by the motion field sent by the encoder.

The invention also relates to a corresponding encoding device, to a transmittable video signal consisting of a coded bitstream generated by such an encoding device, and to a method and a device for decoding a video signal consisting of such a coded bitstream.

BACKGROUND OF THE INVENTION

In the first video coding standards and recommendations (up to MPEG-4 and H.264), the video was assumed to be rectangular and to be described in terms of a luminance channel and two chrominance channels. With MPEG-4, an additional channel carrying shape information has been introduced. Two modes are available to

compress those channels: the INTRA mode, according to which each channel is encoded by exploiting the spatial redundancy of the pixels in a given channel of a single image, and the INTER mode, that exploits the temporal redundancy between separate images. The INTER mode relies on a motion-compensation technique, which describes an image from one or several image(s) previously decoded by encoding the motion of pixels from one image to the other. Usually, the image to be encoded is partitioned into independent blocks or macroblocks, each of them being assigned a motion vector. A prediction of the image is then constructed by displacing pixel blocks from the reference image(s) according to the set of motion vectors (luminance and chrominance channels share the same motion description). Finally, the difference (called the residual signal) between the image to be encoded and its motion-compensated prediction is encoded in the INTER mode to further refine the decoded image. However, the fact that all pixel channels are described by the same motion information is a limitation damaging the compression efficiency of the video coding system.

SUMMARY OF THE INVENTION

5

10

15

20

2.5

30

It is therefore the object of the invention to propose a video encoding method in which said drawback is avoided by adapting the way the temporal prediction is formed.

To this end, the invention relates to a method such as defined in the introductory part of the description and which is moreover characterized in that said additional syntactic information is a syntactic element placed in said generated coded bitstream and its meaning is specific for each present channel, said element being placed at the slice level or at the macroblock level according to the proposed embodiment.

The invention also relates to a corresponding encoding device, to a transmittable video signal consisting of a coded bitstream generated by such an encoding device, and to a method and a device for decoding a video signal consisting of such a coded bitstream.

DETAILED DESCRIPTION OF THE INVENTION

According to the invention, it is proposed to introduce in the encoding syntax used by the video standards and recommendations an additional information consisting of a new syntactic element supporting their lack of flexibility and opening new possibilities to encode more efficiently and independently the temporal prediction of

10

15

20

25

30

various channels. This additional syntactic element, called for example "channel temporal prediction", takes the following symbolic values:

Motion compensation

Temporal copy

Temporal_interpolation

Motion_compensated_temporal_interpolation,

and the meaning of these values is:

- a) motion_compensation: the temporal prediction is formed by directly applying the motion field sent by the encoder on one or more reference pictures (this default mode is implicitly the INTER coding mode of most of the current coding systems);
 - b) temporal copy: the temporal prediction is a copy of a reference image;
- c) temporal_interpolation: the temporal prediction is formed by the temporal interpolation of the motion fields:
- d) motion_compensated_temporal_interpolation: the temporal prediction is formed by the temporal interpolation of the current motion field and further refined by the motion field sent by the encoder.

The words "temporal interpolation" must be understood in a broad sense, i.e. as meaning any operation of the type defined by an expression such as Vnew = a.V1 + b.V2 + K, where V1 and V2 designate previously decoded motion fields, a and b designate coefficients respectively assigned to said motion fields, K designates an offset and Vnew is the new motion field thus obtained. It can therefore be seen that, in fact, the particular case of the temporal copy is included in the more general case of the temporal interpolation, for b = 0 and K = 0 (or a = 0 and K = 0).

According to the invention, the additional syntactic element thus proposed has to be placed at the following levels in the coded bitstream that has to be stored (or to be transmitted to the decoding side):

- 1) either at the slice level;
- or at the macroblock level ;

this additional syntactic element being in each case either specific for each present channel or, possibly, shared by all the channels.

This invention may be used in some identified situations where the way of constructing the temporal prediction can be switched on a slice or macroblock basis, and also on a channel basis. A first example may be for instance a sequence with a shape channel: it is possible that the shape information does not change much, whereas the

luminance and chrominance channels carry varying information (it is for instance the case with a video depicting a rotating planet: the shape is always a disc, but the texture of it depends on the planet rotation). In this situation, the shape channel can be recovered by temporal copy, and the luminance and chrominance channels by motion compensated temporal interpolation. A second example may be the case of a change at the macroblock level. In a video sequence showing a seascape with the sky in the upper part of the picture, unlike the sea, the sky remains the same from one image to the other. Its macroblocks can therefore be encoded by temporal copy, whereas the macroblocks of the sea have to be encoded by temporal interpolation.

5

10

15

20

25

30

CLAIMS:

- 1. An encoding method applied to an input video sequence corresponding to successive scenes subdivided into successive video object planes (VOPs) and generating, for coding all the video objects of said scenes, a coded bitstream the content of which is described in terms of separate channels and constituted of encoded video data in which each data item is described by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said syntax comprising an additional syntactic information provided for describing independently the type of temporal prediction of the various channels, said predictions being chosen within a list comprising the following situations:
- the temporal prediction is formed by directly applying the motion field sent by the encoder on one or more reference pictures;
 - the temporal prediction is a copy of a reference image;
- the temporal prediction is formed by the temporal interpolation of the motion field;
- the temporal prediction is formed by the temporal interpolation of the current motion field and further refined by the motion field sent by the encoder; said method being further characterized in that said additional syntactic information is a syntactic element placed at the slice level in said generated coded bitstream and its meaning is specific for each present channel.
- 2. An encoding method applied to an input video sequence corresponding to successive scenes subdivided into successive video object planes (VOPs) and generating, for coding all the video objects of said scenes, a coded bitstream the content of which is described in terms of separate channels and constituted of encoded video data in which each data item is described by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said syntax comprising an additional syntactic information provided for describing independently the type of temporal prediction of the various channels, said predictions being chosen within a list comprising the following situations:
- the temporal prediction is formed by directly applying the motion field sent by the encoder on one or more reference pictures;
 - the temporal prediction is a copy of a reference image;
- the temporal prediction is formed by the temporal interpolation of the motion field ;

- the temporal prediction is formed by the temporal interpolation of the current motion field and further refined by the motion field sent by the encoder; said method being further characterized in that said additional syntactic information is a syntactic element placed at macroblock level in said generated coded bitstream and its meaning is specific for each present channel.
- An encoding method according to anyone of claims 1 and 2, characterized in that said meaning is shared by all existing channels.
- 4. An encoding device processing an input video sequence that corresponds to successive scenes subdivided into successive video object planes (VOPs) and generating, for coding all the video objects of said scenes, a coded bitstream the content of which is described in terms of separate channels and constituted of encoded video data in which each data item is described by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said encoding device being provided for carrying out the encoding method according to anyone of claims 1 and 2.
- 5. A transmittable video signal consisting of a coded bitstream generated by an encoding device processing an input video sequence that corresponds to successive scenes subdivided into successive video object planes (VOPs) and generating, for coding all the video objects of said scenes, a coded bitstream the content of which is decribed in terms of separate channels and constituted of encoded video data in which each data item is described by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said transmittable video signal including an additional syntactic information provided for describing independently the type of temporal prediction of the various channels, said predictions being chosen within a list comprising the following situations:
- the temporal prediction is formed by directly applying the motion field sent by the encoder on one or more reference pictures;
 - the temporal prediction is a copy of a reference image;
- the temporal prediction is formed by the temporal interpolation of the motion field ;
- the temporal prediction is formed by the temporal interpolation of the current motion field and further refined by the motion field sent by the encoder; and said additional syntactic information being a syntactic element placed at the slice level or at the macroblock level in said generated coded bitstream and its meaning is specific for each present channel.

10

5

20

25

30

10

15

20

- 6. A method for decoding a transmittable video signal consisting of a coded bitstream generated by an encoding device processing an input video sequence that corresponds to successive scenes subdivided into successive video object planes (VOPs) and generating, for coding all the video objects of said scenes, a coded bitstream the content of which is described in terms of separate channels and constituted of encoded video data in which each data item is described by means of a bitstream syntax allowing to recognize and decode all the elements of said content, said transmittable video signal including an additional syntactic information provided for describing independently the type of temporal prediction of the various channels, said predictions being chosen within a list comprising the following situations:
- the temporal prediction is formed by directly applying the motion field sent by the encoder on one or more reference pictures;
 - the temporal prediction is a copy of a reference image;
- the temporal prediction is formed by the temporal interpolation of the motion field;
- the temporal prediction is formed by the temporal interpolation of the current motion field and further refined by the motion field sent by the encoder; and said additional syntactic information being a syntactic element placed at the slice level or at the macroblock level in said generated coded bitstream and its meaning is specific for each present channel.
- 7. A decoding device for carrying out a decoding method according to claim 6.

INTERNATIONAL SEARCH REPORT

Relevant to claim No.

A. CLASSIF	HO4N7/26	SJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO4N

Celegory * Citation of document, with Indication, where appropriate, of the relevant passages

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic delabase consulted during the infernational search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Υ .	"MUNICH MEETING OF MPEG-4 WORK REPORT ISO/IEC JTC1/SC29/MGII INTERNATIONAL ORGANIZATION FOR STANDARDIZATION - ORGANISATION INTERNATIONALE DE NORMALISATIO 1996, pages 3-49, XPOO2047798 page 5; figure 3.1.2 page 11, paragraph 3.3.2 - pag line	MPEG4/N1172" N, XX, XX,	1-7
1 '		-/	:
		<i>'</i>	
			•
	* - ·		
1			
	er documents are listed in the continuation of box C.	X Patent family members are listed i	n annex.
Special categories of clied documents: **O document designed that of the art which is not considered to be of pericular relevance **E earlier occument but published on or farthy in the restance of the considered to the or pericular relevance **E** earlier occument but published on or farthy in the restance of the considered to the or farthy in the restance of the considered to the or farthy in the restance of the considered to the or farthy in the restance of the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the considered to the order of the considered to the order of the order of the considered to the order of the order			
O document	or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or leans	"Y" document of particular retevance; the cleaned be considered to involve an involvement it is combined with one or moments, such combination being obvious.	rentive step when the
'P' document	nt published prior to the international filing date but an the priority date claimed	in line art. *8* document member of the same petent f	

02/08/2004

Schoeyer, M

Authorized officer

Date of mailing of the international search report

22 July 2004

Name and mailing eddress of the ISA

Date of the actual completion of the international search

ming eutoriess of nei ISA European Patent Cfflca, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016