

SITUATION

Trois points A, B et C définissent un plan si et seulement s'ils ne sont pas alignés.

ÉNONCÉ

Soient les points $A\left(1;-2;0\right)$, $B\left(3;4;0\right)$ et $C\left(3;1;5\right)$.

Déterminer si les points A, B et C définissent un plan.

Etape 1

Rappeler le cours

On rappelle que trois points A, B et C définissent un plan si et seulement s'ils ne sont pas alignés.

APPLICATION

Les trois points A, B et C définissent un plan si et seulement s'ils ne sont pas alignés.

Etape 2

En déduire une condition sur la colinéarité

On en déduit que les points A, B et C définissent un plan si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires.

APPLICATION

Ainsi, les points A, B et C définissent un plan si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires.

Etape 3

Donner les coordonnées des vecteurs

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

APPLICATION

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} :

$$egin{aligned} ullet \overrightarrow{AB} egin{pmatrix} x_B - x_A \ y_B - y_A \ z_B - z_A \end{pmatrix} ext{ soit } \overrightarrow{AB} egin{pmatrix} 3 - 1 \ 4 - (-2) \ 0 - 0 \end{pmatrix} ext{ donc } \overrightarrow{AB} egin{pmatrix} 2 \ 6 \ 0 \end{pmatrix} \ egin{pmatrix} x_C - x_A \end{pmatrix} & egin{pmatrix} 3 - 1 \ 0 - 0 \end{pmatrix} & egin{pmatrix} 2 \ 3 - 1 \ 0 \end{pmatrix} \end{pmatrix}$$

$$ullet AC egin{pmatrix} x_C - x_A \ y_C - y_A \ z_C - z_A \end{pmatrix} ext{ soit } \overline{AC} egin{pmatrix} 3 - 1 \ 1 - (-2) \ 5 - 0 \end{pmatrix} ext{ donc } \overline{AC} egin{pmatrix} 2 \ 3 \ 5 \end{pmatrix}$$

Conclure

Si les coordonnées de \overrightarrow{AB} et \overrightarrow{AC} ne sont pas proportionnelles, les points A, B et C définissent un plan.

APPLICATION

Les coordonnées de \overrightarrow{AB} et \overrightarrow{AC} ne sont pas proportionnelles, donc les vecteurs ne sont pas colinéaires.

On conclut que les points A, B et C définissent un plan.