Eine Woche, ein Beispiel 7.9. Steenrod algebra

The Steenrod algebra has been studied for decades. As usual, I make no claim to originality.

For calculating the Steenrod algebra in compute, you can get it from this link: https://math.berkeley.edu/~kruckman/adem/

The original article by José Adem: The Iteration of the Steenrod Squares in Algebraic Topology https://www.pnas.org/doi/10.1073/pnas.38.8.720

The survey talk(recommend):

 $http://www.math.uni-bonn.de/people/daniel/2022/algtop/Steenrod_Squares.pdf$

A combinatorial method for computing Steenrod squares: https://www.sciencedirect.com/science/article/pii/S0022404999000067

Chinese collections on Steenrod algebra: https://www.zhihu.com/question/265308226

Problems in the Steenrod Algebra:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3bao259a7d1afc849fb1796d5oo2bc9c7eab1b5a

1. binomial coefficient mod p 2. Adem relations

https://en.wikipedia.org/wiki/Adams_operation

3. Steenrod algebra

1. binomial coefficient mod p

(m+h) N	0	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	ଧ	22	23	24	25	26	27	28	29	30	31	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
'	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	l
2	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	l
3	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	O	1	0	0	0	1	0	0	O	
4	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	
5	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	l
1 "	1	1	0	0	0		0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0		
1 ' 1	1	0		0	0	0	0	0	1		0		0				1		0	0	0	0	0	0	1	0	0	0	0	0	0		
8	1	1	1	1	1	1	1	1	0		0				0		1	1	1	1	1	1	1	1	0	0	0	0	0	0	•	0	l
9	1	0	1	0	1	0	1	0	0	0	0	0	0	0			1	0	1	0	1	0	1	0	0	0	0	0	0	0		0	l
10	1	1	0	0	1	1	0	0	0	0	0	0	-		0		1	1	0	0	1	1	0	0	0	0	0	0	0	0	•	0	l
11	1	0	0	0	1	0	0	0	0	0	0	0			0		1	0	0	0	1	0	0	0	0	0	0	0	0	0	0		l
12	1	1	1	1	0	0	0	0	0		0		•		0		1	1	1	1	0	0	0	0	0	0	0	0	0		0		
13	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	-	0	
''	1	1	0	0	0	0	0	0	0	0	0	0	0		0		1	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
15	7	0	_	0	0	0	0	0	0	0	0	0	0			0					0	0	0	0	0	0	0	0	0	0	0	0	l
16	1	0	1	0	1	0	1	0	1	0	1	1	1 1	0	1	1 0	0	0	0	0	0	0	0	٥	0	٥	0	0	0	0	0	0	P
17	1	1	0	0	1	1	τ	0	1	1	Ţ	0	1	1	0	0	0	0	0	0	0	0	٥	0	^	0	٥	0	0	0	-	0	
(8)	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0		ı
19	1	1	1	1	0	0	0	0	1	1	1	1	0	0		0		0		0	0	0	0	0	0	0	0	0	0	0		0	
20	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	•	0	
2	1	1	0	0	٥	0	0	0	1	1	0	0	0	0	0		0	0	0	0	0	0	٥	0	0	0	0	0	٥	0	-	0	
12	ī	_	0		0	-	0	_	1	ō	•		_		0		•	0	-		0	0	•	-	0	0	0	0	0	0	•	0	

peviod

 $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$

We conclude from table (or Chu-Vandermonde identity) the following practical formula:

Prop. Let
$$a = \sum_{n \geq 0} a_n z^n$$
, $b = \sum_{n \geq 0} b_n z^n$, $a_n, b_n \in \{0,1\}$. We get
$$\binom{a+b}{a} \equiv 0 \mod 2 \iff \exists n \in \mathbb{N}_{\geq 0} \text{ s.t. } a_n = b_n = 1$$

Rnk. Similarly, one can show:
for
$$a = \sum_{n \geq 0} a_n p^n$$
, $b = \sum_{n \geq 0} b_n p^n$, $a_n, b_n \in \{0, 1, ..., p-1\}$,
 $\binom{a+b}{a} \equiv \prod_{n \geq 0} \binom{a_n+b_n}{a_n} \mod p$

Rmk. It is possible to define $\binom{a+b}{a} \in \mathbb{F}_p$ for $a,b \in \mathbb{Z}[\frac{1}{p}]$. One may want to:

O Verify if the usual formulas in
https://en.wikipedia.org/wiki/Binomial_coefficient work;

@ Find a combinatorical explanation of it.

https://en.wikipedia.org/wiki/%CE%9B-ring

 $\lambda^n: \mathbb{Z} \longrightarrow \mathbb{Z} \qquad \times \mapsto {x \mapsto (x \land n)}$ is the unique 1-ring on Z.

2. Adem relations

Def (Steenrod squares) see [wiki: Steenrod algebra] for detail.

$$Sq^{k} \cdot H^{*}(-; \mathbb{Z}/_{2\mathcal{U}}) \longrightarrow H^{*+k}(-; \mathbb{Z}/_{2\mathcal{U}})$$

 $Sq^{*} = Sq^{*} + Sq^{*} + Sq^{*} + \cdots$
 $Sq^{*} = Id_{H^{*}(-; \mathbb{Z}/_{2\mathcal{U}})}$

 ∇

$$Sq^3 \neq Sq'Sq'Sq'$$
 $Sq \neq Sq'$

Prop (Adem relations)

For 0<a<2b, we have a formula

$$S_{q}^{a} S_{q}^{b} = \sum_{\substack{j=0 \ 19/2}}^{\lfloor 9/2 \rfloor} {b-j-1 \choose a-2j} S_{q}^{a+b-j} S_{q}^{j}$$

$$= \sum_{\substack{j=0 \ a-2j}}^{\lfloor 9/2 \rfloor} {(b-a+j-1)+(a-2j) \choose a-2j} S_{q}^{a+b-j} S_{q}^{j}$$

Here we list first several terms: $(b > \frac{a}{2})$

$$Sq^{1}Sq^{b} = {b-2+1 \choose 5} Sq^{b+1}$$

$$Sq^{2}Sq^{b} = {b-3+2 \choose 5} Sq^{b+2} + {b-2+0 \choose 5} Sq^{b+1}Sq^{b}$$

$$Sq^{3}Sq^{b} = {b-4+3 \choose 5} Sq^{b+3} + {b-3+1 \choose 5} Sq^{b+2}Sq^{b}$$

$$Sq^{4}Sq^{b} = {b-4+4 \choose 5} Sq^{b+4} + {b-4+2 \choose 5} Sq^{b+3}Sq^{b} + {b-3+0 \choose 5} Sq^{b+2}Sq^{2}$$

$$Sq^{5}Sq^{5} = {b-6+5 \choose 5} Sq^{b+5} + {b-5+3 \choose 5} Sq^{b+4}Sq^{c} + {b-4+1 \choose 5} Sq^{b+3}Sq^{2}$$

$$\vdots$$

and make a table for later usage:

59°59° 59°	Sq°	Sq	Sq²	Sq3	Sq ⁴	Sq.	596
Sg°	1	Sg	Sq2	Sg ³	Sq ⁴	S9	Sq6
Sg	Sq	0	Sq ³	0	Sqs	0	Sq ⁷
Sq²	Sq	1	Sq3Sq	2g+2g's	5g+5g5g	Sg Sg	Sq ⁷ Sq ¹
Sq ³	Sq ³	1	0	Sq Sq	Sq ⁷	Sq ⁷ Sq [']	0
Sq [#]	Sq	1	_	S ^z S ^z	Sq7Sq+Sq6Sq2	Sq +Sq Sq + Sq Sq	Sqº + Sqº Sq
Sqs	Sgr	_		0	Sq ⁷ Sq ²	59 59	Sq" + SqSq2
:	:		:	:	:		:

possibility of zeros

E.g. When a=3,

$$Sq^{3}Sq^{b} = (b-4+3)Sq^{b+3} + (b-3+1)Sq^{b+2}Sq^{1}$$

<u></u>	Compar	ison	Sa ³ Sa ^b
	11	01	39 39
2 = 4+(-2)	_	-	0 5
3 = 4 + (-1)	_	00	Sq ² Sq'
4 = 4+ 0	00	01	Sg periodic
5=4+1	0 +	10	Sq ⁷ Sq
6=4+2	+0	++	0 -
7 = 4 + 3	++	100	Sq ⁹ Sq [']
8 = 4 + 4	100	101	Sg"
:		•	, , , , , , , , , , , , , , , , , , ,
•	'	•	

E.g. When a = 4,

$$S_{q}^{4}S_{q}^{b} = {b-5+4 \choose 4} S_{q}^{b+4} + {b-4+2 \choose 2} S_{q}^{b+3}S_{q} + {b-3+0 \choose 6} S_{q}^{b+2}S_{q}^{2}$$

Ь		Comparison	1	C 4 C b
<i>D</i>	100	610	0 00	39 39
3=5+(-2)	_	_	000	Sq ² Sq ² ←
4=5+(-1)	_	000	001	$S_{q}^{2}S_{q}^{1} + S_{q}^{6}S_{q}^{5}$
5=5+0	000	001	010	$S_q^7 + S_q^8 S_q^4 + S_q^2 S_q^2$
6 = 5 + 1	001	010	011	Sign + Sign + Sign
7=5+2	010	-0-11-	100	S_q''' + $S_q^q S_q^{r'}$ Period
8=5+3	011	100	101	$S_{q}^{"}$ + $S_{q}^{q}S_{q}^{2}$ period
9=5+4	+0-0-	101	110	$(S_{q}^{1})^{2}S_{q}^{1} + S_{q}^{11}S_{q}^{2}$
10=5+5	+0+	110	111	59' 59'
11 = 5 + 6	110	 - - -	1000	S6336
12=5+7	+++	1000	1001	Sq Sq + Sq 4 Sq 2
:				': ' ' '
			•	·

E.g. When a=5,

$$Sq^{5}S_{q}^{b} = {b-6+5 \choose 5}S_{q}^{b+5} + {b-5+3 \choose 5}S_{q}^{b+4}S_{q}^{c} + {b-4+1 \choose 5}S_{q}^{b+3}S_{q}^{2}$$

L		Comparison	1	05 Cp
Ь	101	011	001	39 39
3 = 6 + (-3)	_		_	0 ←
4= 6+(-2)	_	_	000	Sq ⁷ Sq ²
5=6+(-1)	_	000	001	29 29
6 = 6 + 0	000	001	010	Sg" + Sq Sg' periodic
;			:	
•	,			·
11 = 6 + 5	101	+1-0	+++	0 ←
12 = 6 + 6	++-0	1-1-	1000	$S_{q}^{'9}$ $S_{q}^{'7}S_{q}^{'}$ $+ S_{q}^{'7}S_{q}^{2}$
13 = 6 + 7	+++	1000	1001	Sq' Sq'
14 = 6 + 8	1000		1010	$S_q^{19} + S_q^{17} S_q^2$
:				
•				,

a	period begins with	period of Sass
3	2,6,	' 4' '
4	3,11,	8
5	3, 11,	8
6	4,12,	8
7	4,12,	8
8	۲,21,	16
:	· ·	;
•		·

3.Steenrod algebra Thm. For the Steenrod algebra

$$A := \begin{cases} 2: H^*(-; \mathbb{Z}/_{2}) \longrightarrow H^{*+12}(-; \mathbb{Z}/_{2}) \end{cases}$$
 as a stable cohomology operation $\int_{-\infty}^{\infty} C_{\text{commutes with suspension } \Sigma$

we have generators and relations.

@ A has a Serre-Cartan basis (as 2/21-basis)

Ex. Using depth-first search (DFS) or breath-first search (BFS), compute $A(1):=\langle Sq',Sq^2\rangle_{z/_{12}}$ -alg

It reminds me about the Hasse diagram of the Weyl group. Rmk. In https://math.mit.edu/research/highschool/rsi/documents/2012Shih.pdf, Maurice Shih Showed that $A(z) := \langle Sq^2, Sq^2, Sq^4 \rangle_{\mathbb{Z}_{12}^d-alg} \cong (\mathbb{Z}_{22}^d)^{\oplus 64}$ There is even a schematic for A(z) in page 17. E.g. Here we compute $(S_q^4)^k$ for $k \in \mathbb{N}_{>0}$ For simplicity, denote temporately $[i_1, ..., i_k] = S_q^{i_1} ... S_q^{i_k}$ $e.g. [4, 5, 7] = S_q^4 S_q^5 S_q^7$

$$S_{q}^{4} = [4]$$

$$(S_{q}^{4})^{2} = [4,4]$$

$$= [7,1] + [6,2]$$

$$= [4,7,1] + [4,6,2]$$

$$= [9,2,1] + [11,1] + [8,3,1] + [10,2]$$

$$= [11,1] + [10,2] + [9,2,1] + [8,3,1]$$

$$(S_{q}^{4})^{2} = [4,4,4]$$

$$= [4,1,1] + [4,10,2] + [4,9,2,1] + [4,8,3,1]$$

$$= [13,2,1] + [12,2,2] + [11,2,2,1] + [12,1,2,1]$$

$$+ [10,2,3,1] + [12,2,2] + [11,2,2,1] + [12,3,1]$$

$$= [13,2,1] + [12,3,1] + [12,3,1]$$

$$= [13,2,1] + [12,3,1] + [12,3,1]$$

$$= [13,2,1] + [12,3,1] + [12,3,1]$$

$$= [13,2,1] + [12,3,1] + [12,3,1]$$

$$= [13,2,1] + [12,3,1] + [12,3,1]$$

$$= [13,2,1] + [12,3,1] + [12,3,1]$$

$$= [13,2,1] + [14,12,3,1] + [14,12,3,1]$$

$$= [14,4,4,4,4]$$

$$= [4,4,4,4,4,4]$$

$$= [4,4,4,4,4,4]$$

$$= [4,17,2,1] + [4,6,3,1] + [4,4,5,1]$$

$$= [17,2,1] + [16,3,1] + [14,5,1] + 0 + [14,5,1] + 0$$

$$= [17,2,1] + [16,3,1] + [14,13,1] + [20,3,1] + [14,13,1] + [20,3,1] + [14,13,1] + [20,3,1] + [14,13,1] + [20,3,1] + [14,13,1] + [20,3,1] + [20$$

a	ı	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	ય	22
order of Sp	2	4	3	6	3	4	4	8	3	7	4	7	4	5	ځ	10	3	7	5	10	4	8
max degree	_	6	6	20	10	18	21	56	18	40	33	72	39	56	60	144	34	108	76	180	63	154
a	23	24	ಚ	26	27	28	29	30														
order of Sp	5	8	4	7	5	8	5	6														
max degree	92	168	75	156	108	196	116	150														

Yet not shown in OEIS.