Limits at Infinity; Horizontal Asymptotes

Let's begin by investigating the behavior of the function f defined by

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

as x becomes large. The table at the left gives values of this function correct to six decimal places, and the graph of f has been drawn by a computer in Figure 1.

X	f(x)
0	-1
±1	0
±2	0.600000
±3	0.800000
±4	0.882353
±5	0.923077
±10	0.980198
±50	0.999200
±100	0.999800
±1000	0.999998

$$\lim_{x \to \infty} \frac{x^2 - 1}{x^2 + 1} = 1$$

$$\lim_{x \to \infty} f(x) = L$$

FIGURE 3 Examples illustrating $\lim_{x \to -\infty} f(x) = L$

3 Definition The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L$$

$$\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2} \qquad \lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$$

FIGURE 5

$$\lim_{x \to \infty} f(x) = 4 \quad \text{and} \quad \lim_{x \to -\infty} f(x) = 2$$

EXAMPLE 2 Find
$$\lim_{x\to\infty} \frac{1}{x}$$
 and $\lim_{x\to-\infty} \frac{1}{x}$.

SOLUTION Observe that when x is large, 1/x is small. For instance,

$$\frac{1}{100} = 0.01$$
 $\frac{1}{10,000} = 0.0001$ $\frac{1}{1,000,000} = 0.000001$

In fact, by taking x large enough, we can make 1/x as close to 0 as we please. Therefore, according to Definition 1, we have

$$\lim_{x\to\infty}\frac{1}{x}=0$$

Similar reasoning shows that when x is large negative, 1/x is small negative, so we also have

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

FIGURE 6

$$\lim_{x \to \infty} \frac{1}{x} = 0, \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

V EXAMPLE3 Evaluate

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{\frac{3x^2 - x - 2}{5x^2 + 4x + 1}}{\frac{5x^2 + 4x + 1}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} \left(3 - \frac{1}{x} - \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(5 + \frac{4}{x} + \frac{1}{x^2}\right)}$$
(by Limit Law 5)
$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 0}$$
(by 7 and Theorem 5)
$$= \frac{3}{5}$$

FIGURE 7

$$y = \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

SOLUTION Dividing both numerator and denominator by *x* and using the properties of limits, we have

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} \qquad \text{(since } \sqrt{x^2} - x \text{ for } x > 0\text{)}$$

$$= \frac{\lim_{x \to \infty} \sqrt{2 + \frac{1}{x^2}}}{\lim_{x \to \infty} \left(3 - \frac{5}{x}\right)} = \frac{\sqrt{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^2}}}{\lim_{x \to \infty} 3 - 5 \lim_{x \to \infty} \frac{1}{x}} = \frac{\sqrt{2 + 0}}{3 - 5 \cdot 0} = \frac{\sqrt{2}}{3}$$

Therefore the line $y = \sqrt{2}/3$ is a horizontal asymptote of the graph of f.

In computing the limit as $x \to -\infty$, we must remember that for x < 0, we have $\sqrt{x^2} = |x| = -x$. So when we divide the numerator by x, for x < 0 we get

$$\frac{1}{x}\sqrt{2x^2+1} = -\frac{1}{\sqrt{x^2}}\sqrt{2x^2+1} = -\sqrt{2+\frac{1}{x^2}}$$

Therefore

$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} = \lim_{x \to -\infty} \frac{-\sqrt{2 + \frac{1}{x^2}}}{3 - \frac{5}{x}} = \frac{-\sqrt{2 + \lim_{x \to -\infty} \frac{1}{x^2}}}{3 - 5\lim_{x \to -\infty} \frac{1}{x}} = -\frac{\sqrt{2}}{3}$$

FIGURE 8

$$y = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

EXAMPLE 5 Compute $\lim_{x \to \infty} (\sqrt{x^2 + 1} - x)$.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

Notice that the denominator of this last expression $(\sqrt{x^2 + 1} + x)$ becomes large as $x \to \infty$ (it's bigger than x). So

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0$$

EXAMPLE 6 Evaluate $\lim_{x \to 2^+} \arctan\left(\frac{1}{x-2}\right)$.

SOLUTION If we let t = 1/(x-2), we know that $t \to \infty$ as $x \to 2^+$. Therefore, by the second equation in $\boxed{4}$, we have

$$\lim_{x \to 2^+} \arctan\left(\frac{1}{x-2}\right) = \lim_{t \to \infty} \arctan t = \frac{\pi}{2}$$

6

$$\lim_{x\to -\infty}e^x=0$$

Notice that the values of e^x approach 0 very rapidly.

X	e^x
0	1.00000
-1	0.36788
-2	0.13534
-3	0.04979
-5	0.00674
-8	0.00034
-10	0.00005

EXAMPLE7 Evaluate $\lim_{x\to 0^-} e^{1/x}$.

SOLUTION If we let t = 1/x, we know that $t \to -\infty$ as $x \to 0^-$. Therefore, by $\boxed{6}$,

$$\lim_{x\to 0^-}e^{1/x}=\lim_{t\to -\infty}e^t=0$$

(See Exercise 75.)

EXAMPLE 8 Evaluate lim sin x.

SOLUTION As x increases, the values of $\sin x$ oscillate between 1 and -1 infinitely often and so they don't approach any definite number. Thus $\lim_{x\to\infty} \sin x$ does not exist.