代数幾何

Fefr

目次

1 代数多様体

1.1 代数的集合

代数幾何学は代数方程式で定められる図形の幾何学である. 一番素朴な形では, 体 k の元を係数とする連立方程式

$$f_{\alpha}(x_1, x_2, \dots, x_n) = 0 \quad \alpha = 1, 2, \dots, l$$
 (1.1)

の解全体を幾何学的に考察することに他ならない.

しばらく、体kを代数的閉体と仮定して話を進める. 体kの元のn個の組 (a_1, a_2, \dots, a_n) の全体を k^n と記し、体k上のn次元**アフィン空間** (affine space) と呼ぶ、 k^n は体k上のn次元ベクトル空間の構造を持つ.

さて, 連立方程式 (1.1) の体 k での解の全体を $V(f_1, f_2, \cdots, f_l)$ としるし, 連立方程式 (1.1) が 定める代数的集合 (algebraic set) またはアフィン代数的集合 (affine algebraic set) と呼ぶ, すなわち

$$V(f_1, f_2, \dots, f_l) = \{(a_1, a_2, \dots, a_n) \in k^n \mid f_\alpha(a_1, a_2, \dots, a_n) = 0, \ \alpha = 1, 2, \dots, l\}$$

一方, f_1, f_2, \dots, f_l より生成されるn変数多項式環 $k[x_1, x_2, \dots, x_n]$ のイデアル (f_1, f_2, \dots, f_l) の任意の元 $f(x_1, x_2, \dots, x_n)$ に対して, $(a_1, a_2, \dots, a_n) \in V(f_1, f_2, \dots, f_l)$ であれば,

$$f(a_1, a_2, \cdots, a_n) = 0$$

が成り立つ.

多項式環 $k[x_1, x_2, \cdots, x_n]$ のイデアル I に対して

$$V(I) = \{(a_1, a_2, \cdots, a_n) \in k^n \mid \forall f \in I : f(a_1, a_2, \cdots, a_n) = 0\}$$

と定義し,V(I) をイデアルI が定める代数的集合またはアフィン代数的集合という. すると, 次の補題が成り立つ.

補題 1.1

 $I=(f_1,f_2,\cdots,f_l)$ のとき

$$V(I) = V(f_1, f_2, \cdots, f_l)$$

証明

 $V(f_1, f_2, \dots, f_l) \subset V(I)$ は上で示した. 逆に $(a_1, a_2, \dots, a_n) \in V(I)$ であれば, $f_{\alpha} \in I(\alpha = 1, 2, \dots, l)$ より

$$f_{\alpha}(a_1, a_2, \cdots, a_n) = 0$$

が成り立ち, $V(I) \subset V(f_1, f_2, \cdots, f_l)$ がわかる.

よって、今後は連立方程式 (1.1) の代わりにイデアル I から定まる代数的集合 V(I) を考えることにする.

ところで、零イデアル(0)に対して $V((0))=k^n$ であるので k^n もアフィン代数的集合と考えることができる。そこで、以下体k上のn次元アフィン空間を \mathbb{A}^n_k と記すことにする。また、体kが文脈的に明らかであれば \mathbb{A}^n と記すことが多い。

さて、このようにイデアルが定めるアフィン代数的集合を考えても、実際は連立方程式を考えることと本質的に同じであることは、Hilbert **の基底定理** (Hilbert's basis theorem) が保証する.

定理 1.2(Hilbert の基底定理)

多項式環 $k[x_1,x_2,\cdots,x_n]$ のイデアルは有限生成である. すなわち, イデアルIは

$$I = (f_1, f_2, \cdots, f_n)$$

と表すことができる.

命題 1.3

体 k 上の多項式環 $k[x_1,x_2,\cdots,x_n]$ のイデアル $I,J,I_\lambda(\lambda\in\Lambda)$ (Λ は無限集合でもよい) に関して以下が成り立つ.

- (1) $V(I) \cup V(J) = V(I \cap J)$
- (2) $\bigcap_{\lambda \in \Lambda} V(I_{\lambda}) = V(\sum_{\lambda \in \Lambda} I_{\lambda})$
- (3) $\sqrt{I} \subset \sqrt{J}$ ならば $V(I) \supset V(J)$

証明(1)

 $(1)I \subset J$ であれば $V(I) \supset V(J)$ であることに注意すると,

$$V(I \cap J) \supset V(I), \quad V(I \cap J) \supset V(J)$$

がわかる.したがって,

$$V(I) \cup V(J) \subset V(I \cap J)$$

が成り立つ. 逆に $(a_1,a_2,\cdots,a_n)\in V(I\cap J)$ を考える. もし $(a_1,a_2,\cdots,a_n)\notin V(I)$ であれば,

$$f(a_1, a_2, \cdots, a_n) \neq 0$$

を満たす $f\in I$ がある. このとき, 任意の元 $g(x_1,x_2,\cdots,x_n)\in J$ に対して $h=fg\in I\cap J$ であるので,

$$h(a_1, a_2, \dots, a_n) = f(a_1, a_2, \dots, a_n)g(a_1, a_2, \dots, a_n) = 0$$

であり,

$$g(a_1, a_2, \cdots, a_n) = 0$$

が成り立つ. よって $(a_1, a_2, \dots, a_n) \in V(J)$ である. したがって

$$V(I \cap J) \subset V(I) \cup V(J)$$

が成り立ち(1)がわかる.

証明(2)

 $I_{\mu} \subset \sum_{\lambda \in \Lambda} I_{\lambda}(\mu \in \Lambda)$ であるので

$$V(I_{\mu}) \supset V(\sum_{\lambda \in \Lambda} I_{\lambda})$$

が成り立ち,したがって

$$\bigcap_{\lambda \in \Lambda} V(\lambda) \supset V(\sum_{\lambda \in \Lambda} I_{\lambda})$$

が成り立つことがわかる. 各λに対して

$$I_{\lambda} = (h_{\lambda 1}, h_{\lambda 2}, \cdots, h_{\lambda m_{\lambda}})$$

とすると, $(a_1, a_2, \cdots, a_n) \in \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$ であれば

$$h_{\lambda j}(a_1, a_2, \cdots, a_n) = 0, \quad j = 1, 2, \cdots, m_{\lambda}$$

が成り立つ.

一方 $\{h_{\lambda j}\}_{\lambda \in \Lambda, \ 1 \leq j \leq m_{\lambda}}$ はイデアル $\sum_{\lambda \in \Lambda} I_{\lambda}$ を生成するので、 $(a_{1}, a_{2}, \cdots, a_{n}) \in V(\sum_{\lambda \in \Lambda} I_{\lambda})$ が成り立つ.

証明(3)

 $V(\sqrt{I}) = V(I)$ を示せば十分である. $\sqrt{I} \supset I$ であるので

$$V(\sqrt{I}) \subset V(I)$$

が成り立つ. 一方 $f \in \sqrt{I}$ であれば $f^m \in I$ となる正整数 m が存在する. $(a_1,a_2,\cdots,a_n) \in V(I)$ であれば

$$(f(a_1, a_2, \cdots, a_n))^m = 0$$

となり,したがって

$$f(a_1, a_2, \cdots, a_n) = 0$$

が成り立つ. これは $(a_1, a_2, \cdots, a_n) \in V(\sqrt{I})$ を意味する. よって

$$V(\sqrt{I}) \supset V(I)$$

系 1.4

 $k[x_1, x_2, \cdots, x_n]$ の有限個のイデアル I_1, I_2, \cdots, I_s に関して

$$\bigcup_{j=1}^s V(I_j) = V(\bigcap_{j=1}^s I_j)$$

1.2 Hilbert の零点定理

n 次元アフィン空間 \mathbb{A}^n_k 内の代数的集合が幾何的な意味を持つには $V(I) \neq \emptyset$ である必要がある. 次の**弱い形の** Hilbert **の零点定理** (week Hilbert's Nullstellensatz) と呼ばれる定理はこれを保証する.

定理 1.5

代数的閉体 k 上の多項式環 $k[x_1,x_2,\cdots,x_n]$ のイデアルI が単位元を含まない、すなわち $I\neq k[x_1,x_2,\cdots,x_n]$ であれば

$$V(I) \neq \emptyset$$

証明

 $I \neq k[x_1,x_2,\cdots,x_n]$ であればイデアルI は必ずある極大イデアル $\mathfrak m$ に含まれる. $I \subset \mathfrak m$ より $V(I) \supset V(\mathfrak m)$ である. したがって $V(\mathfrak m)$ が空でなければ十分である. ゆえに $I = \mathfrak m$ の時を考える. 極大イデアル $\mathfrak m$ に対して剰余環 $k[x_1,x_2,\cdots,x_n]/\mathfrak m$ は k を含む体である. k は代数的閉体であるので,下の補題 1.7 より $k[x_1,x_2,\cdots,x_n]/\mathfrak m=k$ でなければならない. よって x_j の $\mathfrak m$ に関する剰余類 $\overline{x_j}$ は k の元 a_j を定める. すなわち $x_j-a_j\equiv 0 \pmod{\mathfrak m}$ であるので, $x_j-a_j\in \mathfrak m$ である. これは $(x_1-a_1,x_2-a_2,\cdots,x_n-a_n)$ に $\mathfrak m$ を意味するが $(x_1-a_1,x_2-a_2,\cdots,x_n-a_n)$ は極大イデアルなので

$$(x_1 - a_1, x_2 - a_2, \cdots, x_n - a_n) = \mathfrak{m}$$

となり,

$$V(\mathfrak{m}) = \{(a_1, a_2, \cdots, a_n)\}\$$

がわかる.

系 1.6

代数的閉体k上の多項式環 $k[x_1,x_2,\cdots,x_n]$ の極大イデアルは

$$(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n), \quad a_j \in k, \quad j = 1, 2, \dots, n$$

の形をしている.

定理 1.5, 系 1.6 どちらも体 k が代数的閉体であることが本質的である. $\mathbf R$ 上では成り立たない.

補題 1.7

体k上有限生成の整域Rが体であれば,Rの各元はk上代数的である.

証明

仮定より

$$R = k[z_1, z_2, \cdots, z_m] \tag{1.2}$$

となる $z_1, z_2, \cdots, z_m \in R$ が存在する $.z_1, z_2, \cdots, z_m$ が k 上代数的であることを示せばよい.このことを生成元の個数 m に関する帰納法で示す .m=1 のときは,もし z_1 が k 上代数的でなければ k 上超越的であり, $k[z_1]$ は k 上の多項式環と同型であり体ではない.これは $R=k[z_1]$ が体であるという仮定に反する.よって z_1 は k 上代数的である.次に $m\geq 2$ と仮定する $.z_1\in R$ に対して k の拡大体 $k(z_1)$ は R の部分体である.よって

$$R = k(z_1)[z_2, z_3, \cdots, z_m]$$