- Montagem da Bateria Eletrônica com Arduino Mega

 - Materiais necessários
 - \triangle Por que usar resistor de 1 MΩ?
 - 🕴 Ligação padrão de cada piezo
 - Passo a passo da montagem
 - 1. Prepare a protoboard
 - 2. Instale os resistores
 - 3. (Opcional) Capacitor
 - 4. Ligue ao Arduino Mega
 - 5. Conecte ao computador via USB
 - F Esquema de ligação de um piezo
 - Visão geral
 - Resumo final

Montagem da Bateria Eletrônica com Arduino Mega

6 Objetivo

Montar um circuito com 5 piezos conectados ao Arduino Mega com WiFi, enviando os dados via USB ao computador, sem necessidade de fonte externa.

Materiais necessários

Componente	Quantidade
Arduino Mega 2560 (WiFi)	1
Piezos (sensores de toque)	5
Resistores de 1 MΩ (pull-down)	5
Protoboard	1
Jumpers (fios macho-macho)	~20

Componente	Quantidade
Cabo USB para Arduino	1
(Opcional) Capacitores de 0.1 μF	5

\triangle Por que usar resistor de 1 M Ω ?

- O piezo funciona como um gerador de sinal analógico momentâneo.
- Quando ele está parado, sua saída fica flutuando, o que pode causar leituras falsas.
- O resistor de 1 M Ω serve como **pull-down**, garantindo que o sinal vá a 0 quando o piezo não estiver sendo pressionado.

Ligação padrão de cada piezo

Piezo	Pino Analógico
Prato	A0
Chimbal	A1
Bumbo	A2
Caixa	A3
Tom	A4

Passo a passo da montagem

1. Prepare a protoboard

- Coloque os 5 piezos em uma linha da protoboard.
- Para cada piezo, conecte:
 - Um fio ao GND (linha azul da protoboard).
 - Um fio ao sinal analógico (A0 a A4).

2. Instale os resistores

• Conecte um resistor de 1 $M\Omega$ entre o fio de sinal do piezo e o GND (na protoboard).

3. (Opcional) Capacitor

Conecte um capacitor de 0.1 μF entre o sinal e o GND, para filtrar ruídos.

4. Ligue ao Arduino Mega

- Use jumpers para conectar cada sinal de piezo às portas A0–A4 do Arduino.
- Conecte o GND da protoboard ao GND do Arduino.

5. Conecte ao computador via USB

- O cabo USB fornece energia suficiente para o projeto.
- Não é necessário usar fonte externa.

Esquema de ligação de um piezo

```
|----> Sinal ----> A0 (Arduino)
  +----> GND -----> GND (Arduino)
Entre Sinal e GND:

    resistor 1 MΩ (pull-down)

  - (opcional) capacitor de 0.1 μF
```


Visão geral

```
Arduino Mega
A0 <---- Piezo Prato (via R 1MΩ) |
A1 <---- Piezo Chimbal
A2 <---- Piezo Bumbo
A3 <----- Piezo Caixa
A4 <---- Piezo Tom
        | GND -----> protoboard GND (linha azul)
```

Resumo final

Item	Detalhe
Alimentação da placa	Via USB – suficiente
Resistores	1 M Ω , pull-down, um por piezo
Pinos analógicos usados	A0 a A4
GND	Compartilhado entre todos os piezos
Extras opcionais	Capacitores de 0.1 µF entre sinal e GND