

## PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Campus Lourdes — Inst. de Ciências Exatas e Informática — Ciência da Computação

## Fundamentos Téoricos da Computação

Lista de Exercícios N.03 (Valor: 02 pontos) Entrega: Quarta-feira, 04 de dezembro de 2024 às 23:59

- 1. Construa uma GI e um diagrama de estados de uma MT padrão para cada uma das seguintes linguagens:
  - (a)  $\{a^m b^n \mid m \neq n\};$
  - (b)  $\{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$ , em que  $n_s(w)$  representa o número de símbolos s na sentença w;
  - (c)  $\{a^m b^n c^m d^n \mid m, n \ge 0\};$
  - (d)  $\{ww \mid w \in \{a, b\}^*\}$ .
- 2. Mostre como construir uma MT padrão para uma linguagem da forma  $\{a^{in+j} \mid n \geq 0\}$  sendo i e j duas constantes quaisquer maiores ou iguais a zero.
- 3. Considere a seguinte MT  $M = (\{1, 2, 3, 4\}, \{a, b\}, \{a, b, \langle, \sqcup\}, \langle, \sqcup, \delta, 1, \{3, 4\})$  em que  $\delta$  contém apenas as transições que estão representadas no diagrama a seguir:



(a) Para quais palavras essa MT entra em loop?

L(H) = aa\*

- (b) Descreva a linguagem que ela reconhece por meio de uma expressão regular.
- (c) Forneça o diagrama de estados de uma MT equivalente que nunca entre em loop.

 $1.\ Construa uma GI$ e um diagrama de estados de uma MT padrão para cada uma das seguintes linguagens:



(b)  $\{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$ , em que  $n_s(w)$  representa o número de símbolos s na sentença w;



(c)  $\{a^m b^n c^m d^n \mid m, n \ge 0\};$ 



## (d) $\{ww \mid w \in \{a, b\}^*\}.$



2. Mostre como construir uma MT padrão para uma linguagem da forma  $\{a^{in+j}\mid n\geq 0\}$  sendo i e j duas constantes quaisquer maiores ou iguais a zero.



- 4. Mostre que as seguintes linguagens são decidíveis:
  - (a) INFINITA<sub>AFD</sub> =  $\{\langle A \rangle \mid A \text{ \'e AFD e } L(A) \text{ \'e uma linguagem infinita}\};$
  - (b)  $\mathtt{TODAS}_{\mathtt{AFD}} = \{ \langle A \rangle \mid A \text{ \'e AFD e } L(A) = \Sigma^*, \mathrm{em \ que \ } \Sigma \text{ representa o alfabeto de } A \};$
  - (c)  $BAL_{AFD} = \{\langle A \rangle \mid A \text{ \'e AFD que aceita alguma sentença no alfabeto } \{0,1\}$  contendo igual número de 0s e 1s $\}$ .
- 5. Mostre que as seguintes linguagens são indecidíveis (sem utilizar o Teorema de Rice):
  - (a) INFINITA<sub>MT</sub> =  $\{\langle M \rangle \mid M \text{ \'e MT e } L(M) \text{ \'e uma linguagem infinita}\};$
  - (b)  $TODAS_{MT} = \{ \langle M \rangle \mid M \text{ \'e MT e } L(M) = \Sigma^*, \text{ em que } \Sigma \text{ representa o alfabeto de } M \};$
  - (c) CONTEM-1001<sub>MT</sub> =  $\{\langle M \rangle \mid M \text{ \'e MT e } 1001 \in L(M)\};$
  - (d)  $\mathsf{EQ}_{\mathsf{GLC}} = \{ \langle G, H \rangle \mid G \in H \text{ são GLCs e } L(G) = L(H) \}$  (na sua prova você poderá usar o fato de que  $\mathsf{TODAS}_{\mathsf{GLC}} = \{ \langle G \rangle \mid G \in \mathsf{GLC} \in L(G) = \Sigma^*, \text{ em que } \Sigma \text{ representa o alfabeto de } G \}$  é indecidível).