Lecture 15 – MOSFET 场效应晶体管-part2

Chapter 5 from Microelectronic Circuits Text by Sedra and Smith Oxford Publishing

不同的工作区域

<mark>沟道存在</mark>

沟道减小,漏 极沟道夹断

非饱和区

饱和区

抛物线可以不记牢,但这个一定

$$\frac{1}{2}\,\mu_{\rm n}\,C_{\rm ox}\frac{W}{L}\left(V_{\rm GS}-V_{\rm TH}\right)^2$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

Triode Saturation Region Region

不考虑沟道调制效应

(eq5.7)
$$i_D = \left[\left(\mu_n C_{ox} \right) \frac{W}{L} v_{OV} \right] v_{DS} \text{ in } A$$

(eq5.8a)
$$r_{DS} = \frac{v_{DS}}{i_D} = \frac{1}{\left(\mu_n C_{ox}\right) \left(\frac{W}{L}\right) v_{OV}}$$
 in Ω

process transconductance aspect parameter ratio

如何判断工作区域(很重要!)

- 方法二,从符号上理解(电路分析中最有效),要使MOSFET工作在 饱和区,V_D的下限为V_G-V_{TH}(参考电路图);
- 方法三,记住这张图的横坐标,当V_{DS} > V_{OV}时,进入饱和区;

饱和区还是非饱和区?

■ 当工作区域不确定时,我们采用本课程通用的方法: "先假设,再验证"! Calculate the bias current of M_1 in Fig. 6.23. Assume $\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$ and $V_{TH} = 0.4 \,\text{V}$. If the gate voltage increases by 10 mV, what is the change in the drain voltage?

注意,题目中若没有明确说明V_A或A<mark>,</mark> 则不用考虑沟道调制效应

$$V_{DD} = 1.8 \text{ V}$$

$$R_{D} \leq 5 \text{ k}\Omega$$

$$I_{D} \qquad X$$

$$X \qquad L = \frac{2}{0.18}$$

Solution It is unclear a priori in which region M_1 operates. Let us assume M_1 is saturated and proceed. Since $V_{GS} = 1 \text{ V}$,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$
 (6.18)

$$=200 \,\mu\text{A}.$$
 (6.19)

We must check our assumption by calculating the drain potential:

$$V_X =$$

$$V_X = V_{DD} - R_D I_D \tag{6.20}$$

$$= 0.8 \text{ V}.$$
 (6.21)

The drain voltage is lower than the gate voltage, but by less than V_{TH} . The illustration in Fig. 6.22 therefore indicates that M_1 indeed operates in saturation.

If the gate voltage increases to 1.01 V, then

$$I_D = 206.7 \,\mu\text{A},\tag{6.22}$$

lowering V_X to

$$V_X = 0.766 \,\mathrm{V}.$$
 (6.23)

Fortunately, M_1 is still saturated. The 34-mV change in V_X reveals that the circuit can amplify the input.

Consider a process technology for which $L_{\min} = 0.18 \,\mu\text{m}$, $t_{ox} = 4 \,\text{nm}$, $\mu_n = 450 \,\text{cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.5 \,\text{V}$.

- (a) Find C_{ox} and k'_{n} .
- (b) For a MOSFET with $W/L = 1.8 \,\mu$ m/0.18 μ m, calculate the values of v_{ov} , v_{GS} , and v_{DSmin} needed to operate the transistor in the saturation region with a current $i_D = 100 \,\mu$ A. 饱和区Vds=Vov
- (c) For the device in (b), find the values of v_{OV} and v_{GS} required to cause the device to operate as a 1000- Ω resistor for very small v_{DS} .

SEDRA/SMITH

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{3.45 \times 10^{-11}}{4 \times 10^{-9}} = 8.63 \times 10^{-3} \text{ F/m}^2$$

$$= 8.63 \text{ fF/}\mu\text{m}^2$$

$$k'_n = \mu_n C_{ox} = 450 \text{ (cm}^2/\text{V} \cdot \text{s)} \times 8.63 \text{ (fF/}\mu\text{m}^2\text{)}$$

$$= 450 \times 10^8 \text{ (}\mu\text{m}^2/\text{V} \cdot \text{s)} \times 8.63 \times 10^{-15} \text{ (F/}\mu\text{m}^2\text{)}$$

$$= 388 \times 10^{-6} \text{ (F/}\text{V} \cdot \text{s)}$$

$$= 388 \mu \text{A/}\text{V}^2$$

Consider a process technology for which $L_{\min} = 0.18 \,\mu\text{m}$, $t_{ox} = 4 \,\text{nm}$, $\mu_n = 450 \,\text{cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.5 \,\text{V}$.

- (a) Find C_{ox} and k'_{n} .
- (b) For a MOSFET with $W/L = 1.8 \,\mu$ m/0.18 μ m, calculate the values of v_{OV} , v_{GS} , and v_{DSmin} needed to operate the transistor in the saturation region with a current $i_D = 100 \,\mu$ A.
- (c) For the device in (b), find the values of v_{OV} and v_{GS} required to cause the device to operate as a 1000- Ω resistor for very small v_{DS} .

(b) For operation in the saturation region,

Microele

$$i_D = \frac{1}{2} k_n' \frac{W}{L} v_{OV}^2$$

Thus,

$$100 = \frac{1}{2} \times 388 \times \frac{1.8}{0.18} v_{ov}^2$$

which gives

$$v_{ov} = 0.23 \text{ V}$$

Thus,

$$v_{GS} = V_t + v_{OV} = 0.73 \text{ V}$$

and

$$v_{DSmin} = v_{OV} = 0.23 \text{ V}$$

Consider a process technology for which $L_{\min} = 0.18 \,\mu\text{m}$, $t_{ox} = 4 \,\text{nm}$, $\mu_n = 450 \,\text{cm}^2/\text{V} \cdot \text{s}$, and $V_t = 0.5 \,\text{V}$.

- (a) Find C_{ox} and k'_n .
- (b) For a MOSFET with $W/L = 1.8 \,\mu$ m/0.18 μ m, calculate the values of v_{OV} , v_{GS} , and v_{DSmin} needed to operate the transistor in the saturation region with a current $i_D = 100 \,\mu$ A.
- (c) For the device in (b), find the values of v_{OV} and v_{GS} required to cause the device to operate as a 1000- Ω resistor for very small v_{DS} .

(c) For the MOSFET in the triode region with v_{DS} very small,

$$r_{DS} = \frac{1}{k_n' \frac{W}{L} v_{OV}}$$

Thus

$$1000 = \frac{1}{388 \times 10^{-6} \times 10 \times v_{ov}}$$

which gives

$$v_{ov} = 0.26 \text{ V}$$

Thus,

$$v_{GS} = 0.76 \text{ V}$$

PMOS 晶体管

(b)

如何判断工作区:

从符号上理解(电路分析中最有效),要使PMOS工作在饱和区, V_D 的上限为 V_G + $|V_{TH}|$

- MOSFET 器件也可以制造在n衬底上,以空穴作载流子, 这类MOSFET被称为 PMOS 晶体管,相应的,之前我们 讨论的制造在p衬底上,以电子作为载流子的MOSFET 被称为NMOS.
- PMOS的特性与NMOS类似,只是极性相反。S电势最高

Figure 5.9 (a) Physical structure of the PMOS transistor. Note that it is similar to the NMOS transistor shown in Fig. 5.1(b) except that all semiconductor regions are reversed in polarity. (b) A negative voltage v_{GS} of magnitude greater than $|V_{tp}|$ induces a p channel, and a negative v_{DS} causes a current i_D to flow from source to drain.

PMOS 方程

$$I_{D,sat} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 - \lambda V_{DS})$$

$$I_{D,tri} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^2 \right]$$

$$I_{D,sat} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (|V_{GS}| - |V_{TH}|)^2 (1 + \lambda |V_{DS}|)$$

$$I_{D,tri} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \left[2 \left(|V_{GS}| - |V_{TH}| \right) |V_{DS}| - V_{DS}^2 \right]$$

用绝对值表示,公式与NMOS可以统一

5.1.7. The *p*-Channel MOSFET

- PMOS technology originally dominated the MOS field (over NMOS). However, as manufacturing difficulties associated with NMOS were solved, "they" took over
- Q: Why is NMOS advantageous over PMOS?
 - A: Because electron mobility μ_n is 2 4 times greater than hole mobility μ_p .
- complementary MOS (CMOS) technology is technology which allows fabrication of both N and PMOS transistors on a single chip.

5.1.8. Complementary MOS or CMOS

CMOS employs MOS transistors of both polarities.

- 在p衬底上先制备一个n阱(n-well),然后在n阱里制备PMOS,在p衬底上制备NMOS,该技术称之为CMOS(Complementary MOS).
- Intel第一代CPU,4004,是使用纯NMOS技术,之后都采用了CMOS技术

OXFORD INIVERSITY PRESS

衬底效应

了解就可以

用修正后的Vth表征,不用管

$$V_{TH} = V_{TH0} + \rho \left(\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right)$$

■ NMOS, 当源极电压大于零时, 因衬底始终接地, V_{SB} 会对MOSFET的阈值电压产生影响, 称之为衬底效应 (Body Effect)

MOSFET的种类

重点理解

耗尽型: V_{cs}=0 时已具有沟道

Figure 5.27 The circuit symbol (a) and the $i_D^{-v}_{GS}$ characteristic in saturation (b) for an *n*-channel depletion-type MOSFET.

Quick Recap!

- The equation used to define i_D depends on relationship btw v_{DS} and v_{OV} .
 - $\blacksquare V_{DS} << V_{OV}$
 - $\mathbf{v}_{DS} < \mathbf{v}_{OV}$
 - $v_{DS} >= v_{OV}$
 - $\mathbf{v}_{DS} >> \mathbf{v}_{OV}$

 μ_n represents mobility of electrons at surface of the n-channel in m^2/Vs

(eq5.7)
$$i_D = \underbrace{(C_{ox}WV_{OV})}_{\text{charge per unit length of n-channel in }C/m} \underbrace{\frac{\mu_n V_{DS}}{L}}_{\text{electron drift velocity in }m^2/Vs}$$
 in A

(eq5.14)
$$i_D = (\mu_n C_{ox}) \frac{W}{L} (v_{OV} - \frac{1}{2} v_{DS}) v_{DS}$$
 in A

(eq5.17)
$$i_D = \frac{1}{2} (\mu_n C_{ox}) \frac{W}{L} v_{ov}^2$$
 in A 最重要!

(eq5.23)
$$i_D = \frac{1}{2} (\mu_n C_{ox}) \frac{W}{L} v_{OV}^2 (1 + \lambda v_{DS}) \text{ in } A$$

考虑效应

5.2. Current-Voltage Characteristics

伏安特性,电流电压约束关系

- Figure 5.11. shows an *n*-channel enhancement MOSFET. N沟道增强型MOSFET的电路符号
- There are four terminals:
 - drain (D), gate (G), body (B), and source (S).
- Although, it is assumed that body and source are connected.

Figure 5.11 (a): Circuit symbol for the *n*-channel enhancement-type MOSFET. **(b)** Modified circuit symbol with an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., *n* channel). **(c)** Simplified circuit symbol to be used when the source is connected to the body or when the effect of the body on device operation is unimportant.

5.2. Current-Voltage Characteristics

- Although MOSFET is symmetrical device, one often designates terminals as source and drain.
- Q: How does one make this designation?
 - A: By polarity of voltage applied.
- Arrowheads designate "normal" direction of current flow
 - Note that, in part (b), we designate current as D→S.
 - No need to place arrow with B.

Figure 5.11 (a): Circuit symbol for the *n*-channel enhancement-type MOSFET. **(b)** Modified circuit symbol with an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., *n* channel). **(c)** Simplified circuit symbol to be used when the source is connected to the body or when the effect of the body on device operation is unimportant.

$v_{GS} < V_{tn}$: no channel; transistor in cutoff; $i_D = 0$

三个不同的工作区域

 $v_{GS} = V_{tn} + v_{OV}$: a channel is induced; transistor operates in the triode region or the saturation region depending on whether the channel is continuous or pinched off at the drain end;

Continuous channel, obtained by:

$$v_{GD} > V_m$$

or equivalently:

$$v_{DS} < v_{OV}$$

Then,

$$i_D = k'_n \left(\frac{W}{L}\right) \left[\left(v_{GS} - V_{tn}\right) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

or equivalently,

$$i_D = k'_n \left(\frac{W}{I}\right) \left(v_{OV} - \frac{1}{2}v_{DS}\right) v_{DS}$$

Pinched-off channel, obtained by:

$$v_{GD} \leq V_{m}$$

or equivalently:

$$v_{DS} \ge v_{OV}$$

Then

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) (v_{GS} - V_{tn})^2$$

or equivalently,

$$i_D = \frac{1}{2} k'_n \left(\frac{W}{I} \right) v_{OV}^2$$

5.2.2. The i_D - v_{DS} Characteristics

- At top of table, it shows circuit consisting of NMOS transistor and two dc supplies (v_{DS}, v_{GS})
- This circuit is used to demonstrate
 i_D-v_{DS} characteristic
 - 1^{st} set v_{GS} to desired constant
 - 2^{nd} vary v_{DS}
- Two curves are shown,
 - $\mathbf{v}_{GS} < V_{tn}$

- 1. 首先根据 V_{GS} 判断器件是否 turn on
- 2. 其次,再根据 V。与 V。的关 系, 判断器件 是否在饱和区
- 若作为放大器 使用,一般都 需要工作在饱 和区,可以先 假设,再验证

 $v_{GS} < V_{in}$: no channel; transistor in cutoff; $i_D = 0$

 $v_{DS} < v_{OV}$

 $v_{GS} = V_{tn} + v_{OV}$: a channel is induced; transistor operates in the triode region or the saturation region depending on whether the channel is continuous or pinched off at the drain end;

Then

Continuous channel, obtained by:

$$v_{GD} > V_{tn}$$

or equivalently:

Then,
$$i_D = k'_n \left(\frac{W}{L}\right) \left[(v_{GS} - V_{tn}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

or equivalently,

$$i_D = k'_n \left(\frac{W}{L}\right) \left(v_{OV} - \frac{1}{2}v_{DS}\right) v_{DS}$$

Pinched-off channel, obtained by:

$$v_{GD} \le V_{m}$$

or equivalently:

$$v_{DS} \geq v_{OV}$$

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2$$

or equivalently,

$$i_D = k'_n \left(\frac{W}{L}\right) \left(v_{OV} - \frac{1}{2}v_{DS}\right) v_{DS} \qquad \qquad i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) v_{OV}^2$$

- $v_{SG} < |V_{tp}|$: no channel; transistor in cutoff; $i_D = 0$
- $v_{SG} = |V_{tp}| + |v_{OV}|$: a channel is induced; transistor operates in the triode region or in the saturation region depending on whether the channel is continuous or pinched off at the drain end;

Continuous channel, obtained by:

$$v_{DG} > |V_{tp}|$$

or equivalently

$$v_{SD} < |v_{OV}|$$

Then

$$i_D = k_p' \left(\frac{W}{L}\right) \left[(v_{SG} - |V_{tp}|) v_{SD} - \frac{1}{2} v_{SD}^2 \right]$$

or equivalently

$$i_D = k_p' \left(\frac{W}{L}\right) \left(\left|v_{OV}\right| - \frac{1}{2}v_{SD}\right) v_{SD}$$

Pinched-off channel, obtained by:

$$v_{DG} \le |V_{tp}|$$

or equivalently

$$v_{SD} \ge |v_{OV}|$$

Then

$$i_D = \frac{1}{2} k_p' \left(\frac{W}{L} \right) \left(v_{SG} - |V_{tp}| \right)^2$$

or equivalently

$$i_D = \frac{1}{2} k_p' \left(\frac{W}{L} \right) v_{OV}^2$$

NMOS: VD最低不得低于VG-VTH

Figure 5.12 The relative levels of the terminal voltages of the enhancement NMOS transistor for operation in the triode region and in the saturation region.

Microelectronic Circuits

PMOS: V_D最高不得高于V_G+|V_{TH}|

Figure 5.20 The relative levels of the terminal voltages of the enhancement-type PMOS transistor for operation in the triode region and in the saturation region.

Figure 5.13: The $i_D - v_{DS}$ characteristics for an enhancement-type NMOS transistor

5.2.2. The i_D - v_{DS} Characteristic 输出特性

放大是使用Qpoint点或者下图

- Q: When MOSFET's are employed to design amplifier, in what range will they be operated?
 - A: saturation
- In saturation, the drain current (i_D) is...
 - dependent on v_{GS}
 - independent of v_{DS}
 - 理想的压控电流源!
- In effect, it becomes a voltagecontrolled current source.
 - This is key for amplification.

Figure 5.13: The $i_D - v_{DS}$ characteristics for an enhancement-type NMOS transistor

5.2.2. The i_D - v_{GS} Characteristic 转移特性

- Q: What is one problem with (5.21)?
 - A: It is nonlinear w/ respect to v_{OV} ... however, this is not of concern now.

- In effect, it becomes a voltagecontrolled current source.
 - This is key for amplification.
 - Refer to (5.21).

(eq5.21)
$$i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) \left(v_{GS} - V_{tn}\right)^2$$
 this relationship provides basis for application of MOSFET as amplifier

Figure 5.14: The i_D - v_{GS} characteristic of an NMOS transistor operating in the saturation region. The i_D - v_{OV} characteristic can be obtained by simply re-labeling the horizontal axis, that is, shifting the origin to the point $v_{GS} = V_{to}$.

- 基于V_{DS}的不同 MOSFET 有不同的大信号模型.
- 大信号模型~器件大范围的电压电流约束关系,往往是非线性的,小信号模型~叠加于大信号模型某一直流工作点之上的微小变化信号的模型,将非线性曲线在微小范围内线性化

 $k_n = k_n' \left(\frac{W}{L} \right)$

Consider an NMOS transistor fabricated in a 0.18- μ m process with $L = 0.18 \,\mu$ m and $W = 2 \,\mu$ m. The process technology is specified to have $C_{ox} = 8.6 \text{ fF/}\mu\text{m}^2$, $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$, and $V_m = 0.5 \text{ V}$.

- (a) Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of saturation with $I_D = 100 \,\mu\text{A}$.
- (b) If V_{GS} is kept constant, find V_{DS} that results in $I_D = 50 \,\mu\text{A}$.
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with $V_{DS} = 0.3 \text{ V}$. Find the change in i_D resulting from v_{GS} changing from 0.7 V by +0.01 V and by -0.01 V.

(a) With the transistor operating in saturation,

$$k'_n = \mu_n C_{ox}$$

= $450 \times 10^{-4} \times 8.6 \times 10^{-15} \times 10^{12} \text{ A/V}^2$
= $387 \,\mu\text{A/V}^2$

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

 $100 = \frac{1}{2} \times 4.3 \times 10^3 \times V_{ov}^2$

 $V_{ov} = 0.22 \text{ V}$

Thus,

which results in

$$V_{GS} = V_{rr} + V_{OV} = 0.5 + 0.22 = 0.72 \text{ V}$$

$$=387\left(\frac{2}{0.18}\right) = 4.3 \text{ mA/V}^2$$

and since operation is at the edge of saturation,

 $V_{ps} = V_{qy} = 0.22 \text{ V}$

Consider an NMOS transistor fabricated in a 0.18- μ m process with $L = 0.18 \,\mu$ m and $W = 2 \,\mu$ m. The process technology is specified to have $C_{ox} = 8.6 \,\text{fF}/\mu\text{m}^2$, $\mu_n = 450 \,\text{cm}^2/\text{V} \cdot \text{s}$, and $V_m = 0.5 \,\text{V}$.

- (a) Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of saturation with $I_D = 100 \,\mu\text{A}$.
- (b) If V_{GS} is kept constant, find V_{DS} that results in $I_D = 50 \,\mu\text{A}$.
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with $V_{DS} = 0.3 \text{ V}$. Find the change in i_D resulting from v_{GS} changing from 0.7 V by +0.01 V and by -0.01 V.
 - (b) With V_{GS} kept constant at $0.72~{\rm V}$ and I_{D} reduced from the value obtained at the edge of saturation, the MOSFET will now be operating in the triode region, thus $50/{\rm N} = 100~{\rm if} \ {\rm i$

$$I_D = k_n \left[V_{OV} V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$50 = 4.3 \times 10^3 \left[0.22 V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

which can be rearranged to the form

$$V_{DS}^2 - 0.44V_{DS} + 0.023 = 0$$

This quadratic equation has two solutions

$$V_{ps} = 0.06 \text{ V}$$
 and $V_{ps} = 0.39 \text{ V}$

The second answer is greater than V_{ov} and thus is physically meaningless, since we know that the transistor is operating in the triode region. Thus we have

$$V_{DS} = 0.06 \text{ V}$$

Consider an NMOS transistor fabricated in a 0.18- μ m process with $L = 0.18 \,\mu$ m and $W = 2 \,\mu$ m. The process technology is specified to have $C_{ox} = 8.6 \,\text{fF}/\mu\text{m}^2$, $\mu_n = 450 \,\text{cm}^2/\text{V} \cdot \text{s}$, and $V_m = 0.5 \,\text{V}$.

- (a) Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of saturation with $I_D = 100 \,\mu\text{A}$.
- (b) If V_{GS} is kept constant, find V_{DS} that results in $I_D = 50 \,\mu\text{A}$.
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with $V_{DS} = 0.3 \text{ V}$. Find the change in i_D resulting from v_{GS} changing from 0.7 V by +0.01 V and by -0.01 V.
 - (c) For $v_{GS} = 0.7 \text{ V}$, $V_{OV} = 0.2 \text{ V}$, and since $V_{DS} = 0.3 \text{ V}$, the transistor is operating in saturation and

$$v_{OV} = v_{GS} - v_{tn}$$

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

$$= \frac{1}{2} \times 4300 \times 0.04$$

$$= 86 \text{ } \mu\text{A}$$

Now for $v_{GS} = 0.710 \text{ V}$, $v_{OV} = 0.21 \text{ V}$ and

$$i_D = \frac{1}{2} \times 4300 \times 0.21^2 = 94.8 \,\mu\text{A}$$

and for $v_{GS} = 0.690 \text{ V}$, $v_{OV} = 0.19 \text{ V}$, and

$$i_D = \frac{1}{2} \times 4300 \times 0.19^2 = 77.6 \,\mu\text{A}$$

Thus, with $\Delta v_{GS} = +0.01 \text{ V}$, $\Delta i_D = 8.8 \,\mu\text{A}$; and for $\Delta v_{GS} = -0.01 \,\text{V}$, $\Delta i_D = -8.4 \,\mu\text{A}$.

MOSFET 电路直流分析

选合理的Qpoint进行直流分析,可 以理解为就是求Id

- 基于 MOSFET 的"电流电压"约束关系
- 基于基本电路原理与分析方法
- 为简单起见,若无明确说明,一般我们不考虑沟道调制效应
- 根据有效电压Vov来分析电路,会比较方便

$$V_{OV} = V_{GS} - V_{tn}$$
 for NMOS and $|V_{OV}| = V_{SG} - |V_{tp}|$ for PMOS

Design the circuit of Fig. 5.21: that is, determine the values of R_D and R_S so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_t = 0.7$ V, $\mu_n C_{ox} = 100$ μ A/V², L = 1 μ m, and W = 32 μ m. Neglect the channel-length modulation effect (i.e., assume that $\lambda = 0$).

Figure 5.21 Circuit for Example 5.3.

$$R_D = \frac{V_{DD} - V_D}{I_D}$$

= $\frac{2.5 - 0.5}{0.4} = 5 \text{ k}\Omega$

Design the circuit of Fig. 5.21: that is, determine the values of R_D and R_S so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_t = 0.7$ V, $\mu_n C_{ox} = 100$ μ A/V², L = 1 μ m, and $W = 32 \,\mu\text{m}$. Neglect the channel-length modulation effect (i.e., assume that $\lambda = 0$).

Figure 5.21 Circuit for Example 5.3.

- ②求R_s,需要知道V_s,V_s可以根据V_{gs}得到,V_{gs}可以由V_{ov}+V_{TH}得到,V_{ov}由I_D决定。

③判断MOSFET的工作状态。
$$V_D > V_G \rightarrow$$
 饱和区
$$R_S = \frac{V_S - V_{SS}}{I_D}$$
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{ov}^2 \qquad \Longrightarrow \qquad V_{ov} = 0.5 \text{ V} \qquad \Longrightarrow \qquad V_{GS} = V_t + V_{ov} \qquad \Longrightarrow \qquad = \frac{-1.2 - (-2.5)}{0.4} = 3.25 \text{ k}\Omega$$

$$R_S = \frac{V_S - V_{SS}}{I_D}$$

= $\frac{-1.2 - (-2.5)}{0.4} = 3.25 \text{ k}\Omega$

Figure 5.22 shows an NMOS transistor with its drain and gate terminals connected together. Find the i-v relationship of the resulting two-terminal device in terms of the MOSFET parameters $k_n = k'_n(W/L)$ and V_m . Neglect channel-length modulation (i.e., $\lambda = 0$). Note that this two-terminal device is known as a **diode-connected transistor**.

平方电阻可以在小范围内变成线性,芯片内部 都这样使用,否则布线代价太大

Figure 5.22

$$i_{D} = \frac{1}{2}k_{n}^{'} \left(\frac{W}{L}\right) \left(v_{GS} - V_{tn}\right)^{2}$$

$$i = i_D$$
 and $v = v_{GS}$

$$i = \frac{1}{2}k'_n\left(\frac{W}{L}\right)(v - V_{tn})^2 \qquad \Longrightarrow \qquad i = \frac{1}{2}k_n(v - V_{tn})^2$$

Design the circuit in Fig. 5.23 to establish a drain voltage of 0.1 V. What is the effective resistance between drain and source at this operating point? Let $V_m = 1$ V and $k'_n(W/L) = 1$ mA/V².

Figure 5.23 Circuit for Example 5.5.

①V_D低于V_G-V_{TH} → 工作于非饱和区

$$I_D = k'_n \frac{W}{L} \left[(V_{GS} - V_{tn}) V_{DS} - \frac{1}{2} V_{DS}^2 \right] = 0.395 \text{ mA}$$

②根据
$$V_D$$
求 R_D
$$R_D = \frac{V_{DD} - V_D}{I_D}$$
5-0.1

$$R_D = \frac{V_{DD} - V_D}{I_D}$$
$$= \frac{5 - 0.1}{0.395} = 12.4 \text{ k}\Omega$$

$$r_{DS} = \frac{V_{DS}}{I_D}$$

$$= \frac{0.1}{0.395} = 253 \ \Omega$$

Analyze the circuit shown in Fig. 5.24(a) to determine the voltages at all nodes and the currents through all branches. Let $V_m = 1 \text{ V}$ and $k'_n(W/L) = 1 \text{ mA/V}^2$. Neglect the channel-length modulation effect (i.e., assume $\lambda = 0$).

Figure 5.24 (a) Circuit for Example 5.6. (b) The circuit with some of the analysis details shown.

③
$$V_{GS} = 5 - 6I_D$$
 假设工作在饱和区 $I_D = \frac{1}{2}k'_n \frac{W}{L}(V_{GS} - V_m)^2$ \Longrightarrow $18I_D^2 - 25I_D + 8 = 0$

Analyze the circuit shown in Fig. 5.24(a) to determine the voltages at all nodes and the currents through all branches. Let $V_m = 1 \text{ V}$ and $k'_n(W/L) = 1 \text{ mA/V}^2$. Neglect the channel-length modulation effect (i.e., assume $\lambda = 0$).

Figure 5.24 (a) Circuit for Example 5.6. (b) The circuit with some of the analysis details shown.

③ $18I_D^2 - 25I_D + 8 = 0$ 两个解 I_D : 0.89 mA and 0.5 mA 6 × 0.89 = 5.34 V > 5 V

Analyze the circuit shown in Fig. 5.24(a) to determine the voltages at all nodes and the currents through all branches. Let $V_m = 1 \text{ V}$ and $k'_n(W/L) = 1 \text{ mA/V}^2$. Neglect the channel-length modulation effect (i.e., assume $\lambda = 0$).

Figure 5.24 (a) Circuit for Example 5.6. (b) The circuit with some of the analysis details shown.

(4)
$$I_D = 0.5 \text{ mA}$$
 $V_S = 0.5 \times 6 = +3 \text{ V}$ $V_D = 10 - 6 \times 0.5 = +7 \text{ V} > 5 \text{ V}$

Design the circuit of Fig. 5.25 so that the transistor operates in saturation with $I_D = 0.5$ mA and $V_D = +3$ V. Let the PMOS transistor have $V_{tp} = -1 \text{ V}$ and $k'_p(W/L) = 1 \text{ mA/V}^2$. Assume $\lambda = 0$. What is the largest value that R_D can have while maintaining saturation-region operation?

Figure 5.25 Circuit for Example 5.7.

(1)工作于饱和区

$$I_D = \frac{1}{2}k_p'\frac{W}{L}|V_{OV}|^2 \qquad \Longrightarrow \qquad |V_{OV}| = 1 \text{ V} \qquad \Longrightarrow \qquad |V_{SG}| = |V_{tp}| + |V_{OV}| = 1 + 1 = 2 \text{ V}$$

A possible selection is $R_{G1} = 2 \text{ M}\Omega$ and $R_{G2} = 3 \text{ M}\Omega$. $\iff V_G = 3 \text{ V}$

Design the circuit of Fig. 5.25 so that the transistor operates in saturation with $I_D = 0.5$ mA and $V_D = +3$ V. Let the PMOS transistor have $V_{vp} = -1$ V and $k_p'(W/L) = 1$ mA/V². Assume $\lambda = 0$. What is the largest value that R_D can have while maintaining saturation-region operation?

②确保VD的上限不超过 VG+ |VH|

$$V_{D_{\text{max}}} = 3 + 1 = 4 \text{ V} \qquad \Longrightarrow \qquad R_{A}$$

$$R_D = \frac{4}{0.5} = 8 \,\mathrm{k}\Omega$$

The NMOS and PMOS transistors in the circuit of Fig. 5.26(a) are matched, with $k'_n(W_n/L_n) = k'_p(W_p/L_p) = 1 \text{ mA/V}^2$ and $V_m = -V_{tp} = 1 \text{ V}$. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} , as well as the voltage v_O , for $v_I = 0 \text{ V}$, +2.5 V, and -2.5 V.

Figure 5.26 Circuits for Example 5.8.

The NMOS and PMOS transistors in the circuit of Fig. 5.26(a) are matched, with $k'_n(W_n/L_n) = k'_p(W_p/L_p) = 1 \text{ mA/V}^2$ and $V_m = -V_{tp} = 1 \text{ V}$. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} , as well as the voltage v_O , for $v_I = 0 \text{ V}$, +2.5 V, and -2.5 V.

Figure 5.26 Circuits for Example 5.8.

The NMOS and PMOS transistors in the circuit of Fig. 5.26(a) are matched, with $k'_n(W_n/L_n) = k'_p(W_p/L_p) = 1 \text{ mA/V}^2$ and $V_m = -V_{tp} = 1 \text{ V}$. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} , as well as the voltage v_O , for $v_I = 0 \text{ V}$, +2.5 V, and -2.5 V.

Figure 5.26 Circuits for Example 5.8.

作业

D5.8 Redesign the circuit of Fig. 5.21 for the following case: $V_{DD} = -V_{SS} = 1 \text{ V}$, $V_t = 0.4 \text{ V}$, $\mu_n C_{ox} = 400 \text{ μA/V}^2$, W/L = 5 μm/0.4 μm, $I_D = 100 \text{ μA}$, and $V_D = +0.2 \text{ V}$.

Ans. $R_D = 8 \text{ k}\Omega$; $R_S = 4 \text{ k}\Omega$

D5.9 For the circuit in Fig. E5.9, find the value of R that results in $V_D = 0.7$ V. The MOSFET has $V_m = 0.5$ V, $\mu_n C_{ox} = 0.4$ mA/V², $W/L = \frac{0.72 \,\mu\text{m}}{0.18 \,\mu\text{m}}$, and $\lambda = 0$.

Ans. 34.4 kΩ

Figure E5.9

5.12 For the circuit of Fig. 5.24, what is the largest value that R_D can have while the transistor remains in the saturation mode? Let $V_{in} = 1 \text{ V}$ and $k'_{in}(W/L) = 1 \text{ mA/V}^2$

For the circuit in Fig. E5.14, find the value of R that casues the PMOS transistor to operate with an overdrive voltage $|V_{ov}| = 0.6 \,\mathrm{V}$. The threshold voltage is $V_{ip} = -0.4 \,\mathrm{V}$, the process transconductance parameter $k_p' = 0.1 \text{ mA/V}^2$, and $W/L = 10 \,\mu\text{m}/0.18 \,\mu\text{m}$.

Ans. 800Ω

Figure E5.14