Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Original) A compound of formula I:

$$R^{1}$$
 R^{5} R^{6} R^{7} R^{c} R^{d} R^{d} R^{a} R^{b} R^{a} R^{b}

or a pharmaceutically acceptable derivative thereof, wherein:

Y is N or $C(R^4)$;

 R^1 is H, alkyl, $-N(R)_2$, $-(CH_2)_{1-6}N(R^\circ)_2$, $-(CH_2)_{1-6}OR^\circ$, -NRC(O)R, $-C(O)N(R)_2$, -CN, $-NRSO_2R$, -COOR, -OR, -SR, -C(O)R, halo, -OC(O)R, -NRC(O)OR, $-OC(O)N(R)_2$, -NRC(O)NR, -NRC(S)NR, $-NRSO_2NR$, $-C(O)NRN(R)_2$, heteroaryl, or heterocyclyl;

each R^2 , R^3 and R^4 is independently H, alkyl, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;

each R⁵ and R⁶ is independently H, alkyl, or fluoroalkyl;

R⁷ is H, alkyl, fluoroalkyl, aralkyl, carbocyclylalkyl, heterocyclyl, carbocyclyl, heterocyclylalkyl, aryl, heteroaryl, heteroaralkyl, -C(O)R, -(CH₂)₁₋₆OR, -(CH₂)₁₋₆N(R)₂, -C(O)CH₂C(O)R, -NRC(O)R, -N(R)₂, -C(O)N(R)₂, or -C(H)(OR)R;

 R^8 is H, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, heteroaryl, heterocyclyl, -CO₂R, or -CON(R)₂;

 R^9 is $-OR^{10}$ or $-NR^{11}R^{12}$;

 R^{10} is R° , -C(O)R, $-C(O)N(R)_2$, -C(O)OR, $-(CH_2)_{1-6}$ --C(O)R, $-PO_3M_x$, -P(O)(alkyl)OM', $-(PO_3)_2M_y$, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl, or a tumor-targeting moiety;

x is 1 or 2;

```
Application No.: Not yet assigned
Amdt. dated September 22, 2006
Preliminary Amendment
          y is 1, 2 or 3;
          each M is independently H, Li, Na, K, Mg, Ca, Mn, Co, Ni, Zn, or alkyl;
          M' is H, Li, Na, K, or alkyl;
          R<sup>11</sup> is H or alkyl;
          R^{12} is H, alkyl, -C(O)R, -C(O)N(R)_2, -C(O)OR, -SO_2R, -SO_2N(R)_2, carbocyclyl, aryl,
heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl or a tumor
targeting moiety;
          each R<sup>a</sup> and R<sup>b</sup> is independently H, OR<sup>o</sup>, alkyl, or fluoroalkyl;
          each R<sup>c</sup> and R<sup>d</sup> is independently H, alkyl, or fluoroalkyl;
          n is 0-4:
          X is a monovalent or divalent anion, or a counterion to the thiazolium nitrogen located
anywhere in the molecule;
          R° is H or alkyl; and
          R is R°, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl,
heterocyclylalkyl, or heteroaralkyl;
          provided that the following compounds are excluded:
                     Y is C(R^4);
                     R<sup>5</sup>, R<sup>6</sup>, R<sup>a</sup>, R<sup>b</sup>, R<sup>c</sup> and R<sup>d</sup> are H;
                     R<sup>8</sup> is methyl;
                     R^9 is -OR^{10}, and R^{10} is H, -PO_3M_x, -(PO_3)_2M_y or -P(O)(alkyl)OM';
                     X is Cl or Br;
                     i) R<sup>1</sup> is H, R<sup>2</sup> is methyl, R<sup>3</sup> is -OH, R<sup>4</sup> is methyl, -CH<sub>2</sub>OH or
-CH<sub>2</sub>NH<sub>2</sub>, and R<sup>7</sup> is H;
                     ii) R<sup>1</sup> is -NH<sub>2</sub>, -NHMe or -N(Me)<sub>2</sub>, R<sup>2</sup> is methyl, R<sup>3</sup> is H, R<sup>4</sup> is H or -CH<sub>3</sub>, and R<sup>7</sup> is
H;
                     iii) R<sup>1</sup> is -NH<sub>2</sub> or OH, R<sup>2</sup> is methyl, R<sup>3</sup> is H, R<sup>4</sup> is H, and R<sup>7</sup> is H;
                     iv) R<sup>1</sup> and R<sup>3</sup> are H, R<sup>2</sup> is methyl, R<sup>4</sup> is -NH<sub>2</sub>, and R<sup>7</sup> is H;
```

v) R¹ is -NH₂, R² is methyl, R³ and R⁴ are H, and R⁷ is H,

-CH(OH)CO₂H or -C(OH)(Me)CO₂H;

> vi) R¹, R³, R⁴ and R⁷ are H and R² is methyl; and vii) R¹ is H, R² is -NH₂, R³ is -OH, R₄ is -CH₂CH₂NH₂, and R⁷ is H.

- 2. (Original) The compound of 1, wherein R^{10} is -C(O)R, $-C(O)N(R)_2$, -C(O)OR, $-(CH_2)_{1-6}$ --C(O)R, alkyl, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, or a tumor-targeting moiety; and R^{12} is -C(O)R, $-C(O)N(R)_2$, -C(O)OR, $-SO_2R$, $-SO_2N(R)_2$, carbocyclyl, aryl, heterocyclyl, heteroaryl, carbocyclylalkyl, aralkyl, heterocyclylalkyl, heteroaralkyl or a tumor-targeting moiety.
- 3. (Original) The compound of 1, wherein R^{10} or R^{12} is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}-R$, an antibody, or

$$\frac{d}{2}$$
, wherein R^{13} is H, alkyl, or aryl.

4. (Canceled)

- 5. (Currently amended) The compound of [[4]] 1, wherein:
- i) R^1 is $-(CH_2)_{1-6}N(R^\circ)_2$, $-(CH_2)_{1-6}OR^\circ$, -NRC(O)R, $-C(O)N(R)_2$, -CN, $-N(R)SO_2R$, -COOR, -SR, -C(O)R, halo, -OC(O)R, -NRC(O)OR, $-OC(O)N(R)_2$, -N(R)C(O)N(R), -NRC(S)NR, $-NRSO_2NR$, $-C(O)NRN(R)_2$, heteroaryl, or heterocyclyl;
- ii) R^2 is H, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;
- iii) R^3 is alkyl, fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -SR, -N(R)₂, -(CH₂)₁₋₆OR°, -(CH₂)₁₋₆N(R°)₂, or halo;
- iv) R^4 is fluoroalkyl, -C(O)R, -COOR, -C(O)N(R)₂, -CN, -NRC(O)R, -OR, -SR, -(CH₂)₁₋₆N(R°)₂, or halo;
 - v) R^{10} is H, -PO₃M_x, -(PO₃)₂M_y or -P(O)(alkyl)OM'; or R^{12} is H or C_{1-6} alkyl; and

- vi) n is 1.
 - 6. (Canceled)
 - 7. (Currently amended) The compound of [[6]] 1, wherein:
- i) R^1 is H, $-N(R)_2$, alkyl, $-NR^{\circ}C(O)NR$, $-NR^{\circ}C(O)OR$, $-C(O)N(R)_2$, $-(CH_2)_{1-6}N(R^{\circ})_2$, $-NR^{\circ}C(O)R$, -CN, -COOR, -OR, -SR, or halo;
 - ii) R^2 is H, alkyl, fluoroalkyl, $-OR^\circ$, $-N(R^\circ)_2$, or halo;
- iii) R^3 and R^4 are independently H, alkyl, -OR, -N(R)₂, -(CH₂)₁₋₆OR°, or -(CH₂)₁. $_6N(R^\circ)_2$;
- iv) R^7 is H, alkyl, fluoroalkyl, $-(CH_2)_{1-6}OR$, $-(CH_2)_{1-6}N(R)_2$, $-NR^{\circ}C(O)R$, -C(O)R, -C(H)(OR)R, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl;
- v) R^{10} is H, alkyl, -C(O)R, $-PO_3M_x$, -P(O)(alkyl)OM', $-(PO_3)_2M_y$, $-C(O)N(R)_2$, -C(O)OR, or a tumor-targeting moiety; or R^{12} is H, alkyl, -C(O)R, $-C(O)N(R)_2$, -C(O)OR, $-SO_2R$, 5-membered heterocyclyl, 5-membered heteroaralkyl, or a tumor-targeting moiety; and
 - vi) n is 1.
- 8. (Currently amended) The compound of [[6 or]] 7, wherein R is R°, carbocyclyl, aryl, heteroaryl, heterocyclyl, aralkyl, keterocyclylalkyl or heteroaralkyl.
- 9. (Original) The compound of 8, wherein R° is H or C_{1-6} alkyl optionally substituted with halo, hydroxy or amino.
- 10. (Currently amended) The compound of [[6 or]] 7, wherein R^{10} or R^{12} is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}-R$, an antibody, or

d
$$R^{13}$$
 , wherein R^{13} is H, alkyl, or aryl.

11. (Currently amended) The compound of [[6 or]] 7, wherein said compound has one or more of the features selected from the group consisting of:

- i) R^1 is H, amino, $-CH_2NH_2$, -NHC(O)NHEt, -NHC(O)OEt, $-NHCH_2OH$, $-NHCH_2OH$, $-NH-CH_2CH_2OH$, $-N(CH_2OH)_2$, $-N(CH_2OH)_2$, $-N(CH_2OH)_2$, $-N(CO)NH_2$,
 - ii) R² is H, methyl, ethyl, amino, CF₃, Cl, or Br;
 - iii) R³ is H, methyl, ethyl, amino, or hydroxy;
 - iv) R⁴ is H, methyl, ethyl, -CH₂OH, or -CH₂NH₂;
 - v) each R⁵, R⁶ and R⁸ is independently H, methyl, ethyl, -CH₂F, -CHF₂, or -CF₃;
 - vi) R⁷ is H, methyl, ethyl, CF₃, -CH(OH)CH₃, -CH₂OH, or

-CH₂CH₂OH; and

vii) R^{10} is H, methyl, ethyl, -C(O)Me, -C(O)Et, -C(O)NMe₂, -C(O)-p-OMe-phenyl, -C(O)O-phenyl, -PO₃H₂, -P(O)(OMe)₂, -P(O)(OMe)OH, -P(O)(Me)OH, -P(O)(OH)OP(O)(OH)(OH), or R^{14} ; and R^{14} is selected from the group consisting of:

H, methyl, ethyl, R¹⁴,

Page 8 of 13

- 12. (Currently amended) The compound of [[6 or]] 7, wherein said compound has one or more of the features selected from the group consisting of:
 - i) R^1 is H, $-N(R^{\circ})_2$, $-SR^{\circ}$, or halo;
 - ii) R² is H, alkyl, fluoroalkyl, -N(R°)₂, or halo;
 - iii) R³ and R⁴ are independently H or alkyl;
 - iv) R^7 is H or alkyl;
 - v) R⁸ is H or C₁₋₆ unsubstituted alkyl; and
- vi) R^9 is $-OR^{10}$ and R^{10} is H, C_{1-6} unsubstituted alkyl, -C(O)R, $-PO_3M_x$, -P(O)(alkyl)OM', $-(PO_3)_2M_y$, -C(O)OR, or a tumor-targeting moiety.
- 13. (Original) The compound of 12, wherein R^{10} is a polysaccharide, $-[C(O)CH(R)N(R)]_{2-3}-R$, an antibody, or

, wherein R¹³ is H, alkyl, or aryl.

- 14. (Currently amended) The compound of 12, wherein said compound has one or more of the features selected from the group consisting of:
 - i) R^1 is H, -NH₂, -SCH₃, or Cl;
 - ii) R² is H, methyl, -CF₃, -NH₂, or Cl;
 - iii) R³, R⁴, R⁷ and R⁸ are independently H or methyl; and
- iv) R^9 is $-OR^{10}$ and R^{10} is H, H, $-PO_3H_2$, $-P(O)(OMe)_2$, -P(O)(OMe)OH, -P(O)(Me)OH, -P(O)(OH)OP(O)(OH)(OH), or R^{14} ; and R^{14} is as defined in 11.
- 15. (Original) The compound of 1, wherein said compound is IIa-1, IIa-2, IIa-3, IIa-4, IIa-5, IIa-6, IIa-7, IIa-8, IIa-9, IIa-10, IIa-11, or IIc-1.

- 16. (Currently amended) A pharmaceutical composition comprising a compound of [[1-15]] 1 and a pharmaceutically acceptable carrier.
- 17. (Original) The composition of 16, further comprising at least one chemotherapeutic agent, antiangiogenic agent or agent which modulates signaling associated with hypoxic conditions in a cell.
- 18. (Currently amended) A method for inhibiting transketolase activity in a biological sample or a patient in need thereof comprising contacting said biological sample with or administering to said patient an effective amount of a compound of [[1-15]] <u>1</u>.
- 19. (Currently amended) A method for reducing levels of ribulose/ribose-5-phosphate in a cell comprising administering to the cell an effective amount of a compound of [[1-15]] 1.
- 20. (Currently amended) A method for inhibiting nucleic acid synthesis in a cell comprising administering to the cell an effective amount of a compound of [[1-15]] 1.
- 21. (Currently amended) A method for inhibiting cell proliferation comprising administering to the cell an effective amount of a compound of [[1-15]] 1.
- 22. (Currently amended) A method for increasing apoptosis in a tumor cell comprising administering to the cell an effective amount of a compound of [[1-15]] 1.
- 23. (Currently amended) A method for reducing tumor growth in a patient comprising administering an effective amount of a compound of [[1-15]] 1 or a composition of to the patient in need thereof.

- 24. (Original) The method of 23, further comprising administering at least one chemotherapeutic agent, antiangiogenic agent or agent which modulates signaling associated with hypoxic conditions in a cell.
- 25. (Currently amended) The method of 23 [[or 24]], further comprising limiting thiamine concentrations in the patient during the administration step.
- 26. (Original) The method of 25, wherein the patient is on a reduced thiamine diet during the administration step.
- 27. (Original) The method of 26, wherein cellular thiamine concentrations are maintained at a level sufficient to avoid toxicity associated with thiamine deficiency.