# Synthesis and crystal structure of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> phosphate

#### Mohamed Chakir and Abdelaziz El Jazouli

Laboratoire de Chimie des Matériaux Solides, Université Hassan II, Faculté des Sciences Ben M'Sik, Casablanca, Morocco

#### Jean-Pierre Chaminade

Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, 87, Av. Dr. Schweitzer, 33608 Pessac,

(Received 23 November 2005; accepted 23 February 2006)

A new Nasicon phosphates series  $[Na_{3+x}Cr_{2-x}Co_x(PO_4)_3(0 \le x \le 1)]$  was synthesized by a coprecipitation method and structurally characterized by powder X-ray diffraction. The selected compound Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (x=0.5) crystallizes in the R $\overline{3}$ c space group with the following hexagonal unit-cell dimensions:  $a_h$ =8.7285(3) Å,  $c_h$ =21.580(2) Å, V=1423.8(1) Å<sup>3</sup>, and Z=6. This three-dimensional framework is built of PO<sub>4</sub> tetrahedra and Cr/CoO<sub>6</sub> octahedra sharing corners. Na atoms occupy totally M(1) sites and partially M(2) sites. © 2006 International Centre for Diffraction Data. [DOI: 10.1154/1.2190689]

Key words: Nasicon, crystal structure, powder diffraction, X-ray diffraction

#### I. INTRODUCTION

Nasicon-type materials have been extensively studied after the discovery of sodium superionic conductors of  $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$  phosphates (Goodenough *et al.*, 1976). These materials were known to show relatively high chemical stability and have been proposed for use in various fields of solid state chemistry: solid electrolytes, electrode materials, low thermal expansion ceramics, etc. The threedimensional (3D) framework of Nasicon family materials [with general formula  $M_nAB(PO_4)_3$ ] permit a large number of substitutions at M, A, and P sites giving rise to a range of composition (Alamo, 1993). The structure of these materials consists of a 3D network built up of PO<sub>4</sub> tetrahedra sharing corners with  $A(B)O_6$  octahedra. In this skeleton, there are two sites, usually labeled M(1) and M(2). The M(1) site is an antiprism formed by the triangular faces of two  $A(B)O_6$  octahedra along c axis of the hexagonal cell. Thus, the network of the  $M_nAB(PO_4)_3$  can be considered as made up of infinite ribbons of composition  $[O_3A(B)O_3M(1)O_3A(B)O_3O_3A(B)O_3M(1)O_3A(B)O_3]_{\infty}$ connected by PO<sub>4</sub> tetrahedra. The M(2) sites are located between these ribbons in large cavities with an eight-fold coordination. The M(1) and M(2) sites may be completely empty (Leclaire et al., 1989), partially occupied (Chakir et al., 2003; Krimi et al., 2000), or full (Boilot et al., 1983; Salmon et al., 1979).

The previous study shows the existence of  $Na_{3+r}Cr_{2-r}Mg_r(PO_4)_3$  (Delmas *et al.*, 1986) Na<sub>4</sub>CrNi(PO<sub>4</sub>)<sub>3</sub> (Manoun et al., 2004) materials which belong to the Nasicon family. To our knowledge, the compositions  $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$   $(0 \le x \le 1)$  have not been reported. Their synthesis and X-ray diffraction (XRD) analysis are described here. Crystal structure of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (x=0.5) phosphate is also reported.

#### II. EXPERIMENTAL

210

 $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$   $(0 \le x \le 1)$  compounds were prepared from Na<sub>2</sub>CO<sub>3</sub> dissolved in diluted nitric acid solution (I) and aqueous solutions of  $Cr(NO_3)_3$ . 9  $H_2O$  (II), Co(NO<sub>3</sub>)<sub>3</sub>. 6 H<sub>2</sub>O (III), and (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> (IV). After the addition of (IV) in a (I+II+III) mixture at room temperature and slow evaporation at about 60 °C, the resulting powder was heated progressively, with intermitting regrinding, at different temperatures (200-800 °C) in air.

X-ray powder diffraction spectra were recorded at room temperature on a Siemens D 5000 diffractometer (Cu  $K_{\alpha}$  radiation  $\lambda = 1.5406 \text{ Å}$ ). The data were collected in the 10- $100^{\circ} 2\theta$  range by steps of  $0.02^{\circ} (2\theta)$ , with a constant counting time of 20 s per step.

#### III. RESULTS AND DISCUSSION

## A. Crystal structure of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>

The structure of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> phosphate was refined with the Rietveld method using the FULLPROF program (Rodríguez-Carvajal, 2001). The atomic coordinates of Na<sub>4.5</sub>Yb<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (Salmon et al., 1979) were used as the starting structural parameters for Rietveld refinement. The experimental conditions and the results of the refinements, as well as different structural parameters, are given in Table I and II. Figure 1 shows good agreement between experimental and calculated X-ray spectra.

The structure of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> is based on a 3D

TABLE I. Results of the Rietveld refinement of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>.

```
Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>
       = [\Box_{0.5} Na_{2.5}]_{M2} [Na]_{M1} [Cr_{1.5} Co_{0.5}]_{A} (PO_4)_3
Space group, R_{\bar{3}}c; Z=6, a_{\text{hex}}=8.7285(3) (Å);
       c_{\text{hex}} = 21.508(2) \text{ (Å)}; V_{\text{hex}} = 1423.8(1) \text{ (Å}^3)
Pseudo-Voiget function, PV = \eta L + (1 - \eta)G; \eta = 0.596(3)
Number of reflections; 339
Half-width parameters, U=0.037(1); V=0.023(1);
      and W = 0.012(2)
Conventional Rietveld R-factors, R_F=5.2%; R_B=7.0%;
      R_n = 9.3\%; Rwp = 13.6\%
```

0885-7156/2006/21(3)/210/4/\$23.00

210

TABLE II. Atomic coordinates and isotropic displacement parameters of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>.

| Atom  | Site | x        | у         | z        | $B_{\rm iso}~({\rm \AA}^2)$ | Occ. | Valence<br>sum (Exp.) | Valence<br>sum (Th.) |
|-------|------|----------|-----------|----------|-----------------------------|------|-----------------------|----------------------|
| Cr/Co | 12c  | 0        | 0         | 0.147(1) | 0.3(2)                      | 1    | 2.77                  | 2.75                 |
| Na(1) | 6b   | 0        | 0         | 0        | 6.3(5)                      | 1    | 0.90                  | 1                    |
| Na(2) | 18e  | 0.635(6) | 0         | 0.250    | 2.4(1)                      | 0.83 | 1.10                  | 1                    |
| P     | 18e  | 0.291(1) | 0         | 0.250    | 0.6(1)                      | 1    | 514                   | 5                    |
| O(1)  | 36f  | 0.181(1) | -0.032(1) | 0.192(2) | 1.1(1)                      | 1    | 1.96                  | 2                    |
| O(2)  | 36f  | 0.192(3) | 0.167(8)  | 0.089(4) | 1.9(1)                      | 1    | 2.09                  | 2                    |



Figure 1. Experimental  $(\cdots)$ , calculated (-), and difference profile of the XRD pattern of  $Na_{3.5}Cr_{1.5}Co_{0.5}(PO_4)_3$ .



Figure 3. Projection of the *ab* plane of the Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> structure.



Figure 2. View of the  $Na_{3.5}Cr_{1.5}Co_{0.5}(PO_4)_3$  framework along c axis.

framework of PO<sub>4</sub> tetrahedra and (Cr/Co)O<sub>6</sub> octahedra sharing corners (Figures 2 and 3). Cr3+ and Co2+ ions occupy statistically the 12c sites. Na+ cations occupy totally the M(1) sites and partially the M(2) cavities with a statistical distribution. The cationic distribution is  $[\Box_{0.5}Na_{2.5}]_{M2}[Na]_{M1}[Cr_{1.5}Co_{0.5}]_{A}(PO_4)_3$  $(\square:$ sites). (Cr/Co) atoms are slightly displaced from the center of the (Cr/Co)O<sub>6</sub> octahedron because of the smaller Na<sup>+</sup>-Cr<sup>3+</sup>/Co<sup>2+</sup> repulsions. The average (Cr/Co)-O distance (2.001 Å) is slightly smaller than the value calculated from the ionic radii (2.050 Å) (Shannon et al., 1976). The O-(Cr/Co)-O angles vary between 85.9° and 171.1°. The (Cr/Co)-(Cr/Co) distance along c axis (4.446 Å) is inferior to the Cr-Cr distance in Na<sub>3</sub>Cr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (4.475 Å) because of the cationic repulsions between ions in 12c sites. These repulsions are stronger in  $Na_3Cr_2(PO_4)_3$  (charge of  $Cr^{3+}=3$ )

TABLE III. Bond distances and angles for Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>.

| Bond distance            | s (Å)    | Angles (Å)        |                                |  |
|--------------------------|----------|-------------------|--------------------------------|--|
| $(Cr/Co)-O(1)\times 3$   | 1.991(3) | O(1)-(Cr/Co)-O(1) | 98.1(1)                        |  |
| $(Cr/Co)-O(2)\times 3$   | 2.011(1) | O(1)-(Cr/Co)-O(2) | 86.9(1); 88.4(4); 17.1(1)      |  |
| $P \times O(1) \times 2$ | 1.513(2) | O(2)-(Cr/Co)-O(2) | 85.9(3)                        |  |
| $P-O(2)\times 2$         | 1.534(1) | O(1)-P-O(1)       | 114.3(3)                       |  |
| $Na(1)-O(2)\times 6$     | 2.497(3) | O(1)-P-O(2)       | 104.6(3); 11.7(3)              |  |
| $Na(2)-O(1)\times 2$     | 2.575(4) | O(2)-P-O(2)       | 110.2(3)                       |  |
| $Na(2)-O(1)\times 2$     | 2.808(5) | O(2)-Na(1)-O(2)   | 66.6(2); 113.4(2); 180         |  |
| $Na(2)-O(2)\times 2$     | 2.473(2) | O(1)-Na(2)-O(1)   | 82.5(4); 85.6(4) (1); 156.1(3) |  |
| $Na(2)-O(2)\times 2$     | 2.371(4) | O(1)-Na(2)-O(2)   | 54.7(2); 92.8(1); 150.4(3)     |  |
|                          |          | O(2)-Na(2)-O(2)   | 61.2(2); 129.9(4); 160.3(1)    |  |



Figure 4. Illustration of  $Na(2)O_8$  polyhedron in  $Na_{3.5}Cr_{1.5}Co_{0.5}(PO_4)_3$  phosphate.

than in Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>. Therefore, we can explain why the  $c_h$  parameter of Na<sub>3+x</sub>Cr<sub>2-x</sub>(PO<sub>4</sub>)<sub>3</sub> (0 < x) are inferior to that of Na<sub>3</sub>Cr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>.

The P–O distances values (1.513 Å;1.534 Å) are close to those typically found in Nasicon-type phosphates. O–P–O angles vary from 104.6° and 111.7°. The Na(1) atoms occupy the center of the M(1) site. Na(1)–O distance (Table III) (2.497 Å) is larger than that obtained from the ionic radii sum of Na<sup>+</sup> and O<sup>2–</sup> (2.42 Å) reflecting a higher degree of iconicity (B<sub>iso</sub>  $\approx$  6.3 Å<sup>2</sup>). The Na(2) atoms, located in the M(2) site, are surrounded by eight oxygens (Figure 4), and the Na(2)–O distances [2.371 Å,2.473 Å,2.808 Å,2.575 Å] are comparable to those generally found in Nasicon-type phosphates (Aatiq, 2004). Calculated valences (S<sub>i</sub> =  $\Sigma$  exp[( $R_{ij}$ - $d_{ij}$ )/b] with b=0.37 Å) based on bond strength analysis (Brese and O'Keeffe, 1991) are in good agreement with the expected formal oxidation states of P<sup>5+</sup>, Cr<sup>3+</sup>, Co<sup>2+</sup>, Na<sup>+</sup>, and O<sup>2–</sup> (Table II).



Figure 5. X-ray powder pattern of  $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$  ( $0 \le x \le 0.6$ ).

TABLE IV. Powder diffraction data of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub>.

| 0 2 4 28.80 3.097<br>2 1 1 31.54 2.834                                                                                                                                                            | 1.191<br>4.391<br>4.364<br>3.731<br>3.597<br>3.096<br>2.832<br>2.776 | 16<br>51<br>19<br>57<br>14<br>36 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|
| 1     1     0     20.32     4.366       1     1     3     23.82     3.733       0     0     6     24.72     3.598       0     2     4     28.80     3.097       2     1     1     31.54     2.834 | 4.364<br>3.731<br>3.597<br>3.096<br>2.832<br>2.776                   | 19<br>57<br>14<br>36             |
| 1     1     3     23.82     3.733       0     0     6     24.72     3.598       0     2     4     28.80     3.097       2     1     1     31.54     2.834                                         | 3.731<br>3.597<br>3.096<br>2.832<br>2.776                            | 57<br>14<br>36                   |
| 0 0 6 24.72 3.598<br>0 2 4 28.80 3.097<br>2 1 1 31.54 2.834                                                                                                                                       | 3.597<br>3.096<br>2.832<br>2.776                                     | 14<br>36                         |
| 0 2 4 28.80 3.097<br>2 1 1 31.54 2.834                                                                                                                                                            | 3.096<br>2.832<br>2.776                                              | 36                               |
| 2 1 1 31.54 2.834                                                                                                                                                                                 | 2.832<br>2.776                                                       |                                  |
|                                                                                                                                                                                                   | 2.776                                                                |                                  |
|                                                                                                                                                                                                   |                                                                      | 32                               |
| 1 1 6 32.21 2.777                                                                                                                                                                                 |                                                                      | 100                              |
| 2 1 4 35.51 2.526<br>3 0 0 35.58 2.521                                                                                                                                                            | 2.525                                                                | 4<br>27                          |
| 3 0 0 35.58 2.521<br>2 0 8 41.05 2.197                                                                                                                                                            | 2.520<br>2.196                                                       | 4                                |
| 1 1 9 42.97 2.103                                                                                                                                                                                 | 2.190                                                                | 2                                |
| 2 1 7 43.10 2.097                                                                                                                                                                                 | 2.096                                                                | 3                                |
| 2 2 3 43.28 2.089                                                                                                                                                                                 | 2.088                                                                | 15                               |
| 1 3 1 43.30 2.088                                                                                                                                                                                 | 2.087                                                                | 4                                |
| 1 2 8 46.23 1.962                                                                                                                                                                                 | 1.961                                                                | 15                               |
| 1 3 4 46.41 1.955                                                                                                                                                                                 | 1.954                                                                | 8                                |
| 3 1 5 48.19 1.887                                                                                                                                                                                 | 1.886                                                                | 4                                |
| 0 2 10 48.51 1.875                                                                                                                                                                                | 1.874                                                                | 6                                |
| 2 2 6 48.73 1.867                                                                                                                                                                                 | 1.866                                                                | 34                               |
| 0 4 2 48.87 1.862                                                                                                                                                                                 | 1.861                                                                | 4                                |
| 0 0 12 50.70 1.799                                                                                                                                                                                | 1.798                                                                | 6                                |
| 1 3 7 52.75 1.734                                                                                                                                                                                 | 1.734                                                                | 11                               |
| 3 2 1 52.91 1.729                                                                                                                                                                                 | 1.729                                                                | 2                                |
| 2 1 10 53.11 1.723                                                                                                                                                                                | 1.722                                                                | 15                               |
| 3 1 8 55.44 1.656<br>3 2 4 55.59 1.652                                                                                                                                                            | 1.655<br>1.651                                                       | 5<br>5                           |
| 4 1 0 55.56 1.650                                                                                                                                                                                 | 1.650                                                                | 7                                |
| 2 3 5 57.17 1.610                                                                                                                                                                                 | 1.609                                                                | 3                                |
| 1 4 3 57.21 1.609                                                                                                                                                                                 | 1.608                                                                | 2                                |
| 0 4 8 59.68 1.548                                                                                                                                                                                 | 1.548                                                                | 3                                |
| 3 2 7 61.26 1.512                                                                                                                                                                                 | 1.511                                                                | 2                                |
| 0 1 14 61.30 1.511                                                                                                                                                                                | 1.510                                                                | 2                                |
| 1 3 10 61.62 1.504                                                                                                                                                                                | 1.504                                                                | 9                                |
| 4 1 6 61.80 1.500                                                                                                                                                                                 | 1.499                                                                | 9                                |
| 3 0 12 63.49 1.464                                                                                                                                                                                | 1.464                                                                | 5                                |
| 0 5 4 63.88 1.456                                                                                                                                                                                 | 1.456                                                                | 3                                |
| 3 3 0 63.93 1.455                                                                                                                                                                                 | 1.455                                                                | 6                                |
| 3 1 11 65.03 1.433<br>2 0 14 65.29 1.428                                                                                                                                                          | 1.432<br>1.427                                                       | 3<br>5                           |
| 4 0 10 65.60 1.422                                                                                                                                                                                | 1.427                                                                | 3                                |
| 2 4 4 67.75 1.382                                                                                                                                                                                 | 1.381                                                                | 2                                |
| 1 1 15 68.60 1.367                                                                                                                                                                                | 1.366                                                                | 4                                |
| 1 2 14 69.17 1.357                                                                                                                                                                                | 1.357                                                                | 5                                |
| 4 2 5 69.17 1.357                                                                                                                                                                                 | 1.356                                                                | 3                                |
| 5 1 1 69.23 1.356                                                                                                                                                                                 | 1.355                                                                | 5                                |
| 3 2 10 69.47 1.352                                                                                                                                                                                | 1.352                                                                | 3                                |
| 5 1 4 71.59 1.317                                                                                                                                                                                 | 1.317                                                                | 8                                |
| 1 5 5 72.94 1.296                                                                                                                                                                                 | 1.295                                                                | 3                                |
| 6 0 0 75.37 1.260                                                                                                                                                                                 | 1.260                                                                | 5                                |
| 5 1 7 76.59 1.243<br>3 1 14 76.66 1.242                                                                                                                                                           | 1.243<br>1.242                                                       | 4 3                              |
| 0 0 18 79.95 1.199                                                                                                                                                                                | 1.199                                                                | 3                                |
| 1 2 17 83.13 1.161                                                                                                                                                                                | 1.160                                                                | 2                                |
| 2 3 14 83.84 1.153                                                                                                                                                                                | 1.152                                                                | 4                                |
| 5 2 6 84.29 1.148                                                                                                                                                                                 | 1.147                                                                | 4                                |
| 3 4 8 86.04 1.129                                                                                                                                                                                 | 1.129                                                                | 3                                |
| 1 5 11 87.20 1.117                                                                                                                                                                                | 1.116                                                                | 3                                |
| 4 3 10 91.32 1.077                                                                                                                                                                                | 1.077                                                                | 6                                |
| 0 1 20 92.20 1.069                                                                                                                                                                                | 1.068                                                                | 2                                |



Figure 6. X-ray powder pattern of Na<sub>4</sub>CrCo(PO<sub>4</sub>)<sub>3</sub> [ \*Cr<sub>2</sub>O<sub>3</sub>].

# B. X-ray characterization of $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$ (0 $\leq x \leq 1$ ) phosphates

Figure 5 shows XRD patterns of  $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$  ( $0 \le x \le 0.6$ ). The samples with  $0 < x \le 0.6$  compositions crystallize in rhombohedral structure ( $R\overline{3}c$  space group), while the  $Na_3Cr_2(PO_4)_3$  (x=0) compound crystallizes in monoclinic structure (Delmas *et al.*, 1986). X-ray powder diffraction data of  $Na_{3.5}Cr_{1.5}Co_{0.5}(PO_4)_3$  (x=0.5) are given in Table IV. XRD patterns obtained for  $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$  ( $0.6 < x \le 1$ ) indicate essentially the presence of  $Na_4CrCo(PO_4)_3$  and  $Cr_2O_3$  (Figure 6).

The hexagonal cell parameters variations of  $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$  ( $0 \le x \le 0.6$ ) as a function of x are given in Figure 7. The progressive substitution of chromium atoms by sodium and cobalt provokes an increase of the  $a_h$  parameter and a decrease of the  $c_h$  parameter. This decrease can be explained by the electrostatic repulsions between  $[Cr/Co]^{n+}$  (n=3-x/2) cations, smaller than the Cr–Cr one (n=3). The  $a_h$ -parameter increase is related to the occupation of M(2) sites by Na atoms.

### **IV. CONCLUSION**

Polycrystalline sample of Na<sub>3.5</sub>Cr<sub>1.5</sub>Co<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> phosphate has been prepared and characterized by XRD analysis. Its structure (Nasicon type) has been refined in R $\overline{3}$ c space group. X-ray powder diffraction study shows the existence of Na<sub>3+x</sub>Cr<sub>2-x</sub>Co<sub>x</sub>(PO<sub>4</sub>)<sub>3</sub> solid solution in the  $0 \le x \le 0.6$  range. The  $c_h$ -parameter variations results mainly from the electrostatic repulsions between ions occupy the A site. The  $a_h$ -parameter evolution is a result of the Na<sup>+</sup> amount present in the M(2) sites.



Figure 7. Cell parameters evolution versus composition of  $Na_{3+x}Cr_{2-x}Co_x(PO_4)_3$  ( $0 \le x \le 0.6$ ).

Aatiq, A. (2004). "Synthesis and structural characterization of  $ASnFe(PO_4)_3$  ( $A=Na_2,Ca,Cd$ ) phosphates with the Nasicon type structure," Powder Diffr. 19, 272–279.

Alamo, J. (1993). "Chemistry and properties of solids with the [NZP] skeleton," Solid State Ionics 63–65, 547–561.

Boilot, J. P., Collin, G., and Comes, R. (1983). "Zirconium deficiency in Nasicon-type compounds: crystal structure of Na<sub>5</sub>Zr(PO<sub>4</sub>)<sub>3</sub>," J. Solid State Chem. 50, 91–99.

Brese, N. E. and O'Keeffe, M. (1991). "Bond-valence Parameters for solids," Acta Crystallogr. Sect. B: Struct. Sci. 47, 192–197.

Chakir, M., El Jazouli, A., and De Waal, D. (2003). "Synthesis, structure and vibrational studies of NaZr<sub>2</sub>(AsO<sub>4</sub>)<sub>3</sub>," Mater. Res. Bull. 38, 1773– 1779.

Delmas, C., Cherkaoui, F., and Hagenmuller, P. (1986). "Ionic conductivity in a new NASICON related solid solution: Na<sub>3+y</sub>Cr<sub>2-y</sub>Mg<sub>y</sub>(PO<sub>4</sub>)<sub>3</sub>. An optical characterization of the skeleton covalency," Mater. Res. Bull. 21, 469–477.

Goodenough, J. B., Hong, H. Y-P., and Kafalas, J. A. (1976). "Fast Na<sup>+</sup>-ion transport in skeleton structures," Mater. Res. Bull. 11, 203–220.

Krimi, S., El Jazouli, A., Lachgar, A., Rabardel, L., de Waal, D., and Ramos-Barrado, J. R. (2000). "Glass-crystal transformation of Na<sub>5-2</sub>, Ca, Ti(PO<sub>4</sub>)<sub>3</sub> phosphates," Ann. Chim.-Sci. Mat. 25, 75–78.

Leclaire, A., Borel, M.-M., Grandin, A., and Raveau, B. (1989). "A mixed-valence niobium phosphate with an empty nasicon structure: Nb<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>," Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45, 699–701.

Manoun, B., El Jazouli, A., Krimi, S., and Lachgar, A. (2004). "Synthesis and crystallochemistry of Na<sub>4</sub>CrNi(PO<sub>4</sub>)<sub>3</sub>," Powder Diffr. 19, 162–164.
 Rodríguez-Carvajal, J. (2001). "Recent developments of the program FULL-PROF," Commission Powder Diffraction, Newsletter 26, 12–19.

Salmon, R., Parent, C., Vlasse, M., and Le Flem, G. (1979). "The sodium ytterbium orthophosphate  $Na_{3+x}Yb_{2-x}(PO_4)_3$ ," Mater. Res. Bull. 14, 85–89.

Shannon, R. D. (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751–767.