L1Workshop1

Ye

6/28/2017

Linear regression with number of independent predictors from 2 to 500.

```
Y_{i,j} = \beta_0 + \beta_1 X_{i,1} + ... + \beta_j X_{i,j} + \epsilon_i; i = 1, ..., 500; j = 2, ..., 500.
\text{set.seed}(8394756)
\text{Epsilon} = \text{rnorm}(500, 0, 1)
X = \text{rnorm}(500*500, 0, 2)
\dim(X) = c(500, 500)
\text{colnames}(X) = \text{pasteO}("X", 1:500)
\text{slopesSet} = \text{runif}(500, 1, 3)
Y = \text{sapply}(2:500, \text{function}(z) \ 1 + X[, 1:z] \ \%*\% \text{slopesSet}[1:z] + \text{Epsilon})
```

Analysis of accuracy of inference as a function of number of the predictors

```
completeModelDataFrame = data.frame(Y=Y[,490], X[, 1:491])
m2 = lm(Y[,1] \sim X[,1:2])
m490 = lm(Y~., data=completeModelDataFrame)
summary(m2)
##
## Call:
## lm(formula = Y[, 1] ~ X[, 1:2])
##
## Residuals:
                 1Q Median
       Min
                                   3Q
## -2.70335 -0.62160 0.04297 0.63964 2.76616
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.00267
                        0.04444
                                   22.56 <2e-16 ***
## X[, 1:2]X1 2.68339
                          0.02117 126.75
                                            <2e-16 ***
## X[, 1:2]X2 2.29734
                          0.02321 98.97
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9935 on 497 degrees of freedom
## Multiple R-squared: 0.9812, Adjusted R-squared: 0.9811
## F-statistic: 1.294e+04 on 2 and 497 DF, p-value: < 2.2e-16
plot(coefficients(summary(m490))[-1,4],
    main="Coefficients' P-Values for 490 Predictors",
    xlab="Coefficient",
    ylab="P-Value")
```

Coefficients' P-Values for 490 Predictors

summaries show pretty strong significance of all predictors. #Check 95% confidence intervals for the first predictor $X_{i,1}$ estimated for both models.

Both

```
confint(m2)[2,]
## 2.5 % 97.5 %
## 2.641792 2.724980
confint(m490)[2,]
## 2.5 % 97.5 %
## 1.927847 3.004426
```

Explain?

Coefficients of determination (R^2) and adjusted $R^2 = 1 - \frac{SSE/(n-k)}{SST/n-1}$

Improvement of Fit with Number of Predictors

Improvement of Fit with Number of Predictors

#

Plot the confidence interval of $X_{i,1}$ for all nested models

Confidence Intervals for Beta_1

Conclusions: 1. As number of predictors grows the quality of fit expressed as R^2 or adjusted R^2 continuously improves. 2. But inference for a fixed predictor becomes less and less accurate, which is shown by the widening confidence interval. 3. This means that if there is, for example, one significant predictor $X_{i,1}$, by increasing the total number of predictors (even though they all or many of them may be significant) we can damage accuracy of estimation of the slope for $X_{i,1}$. 4. This example shows one problem that DM has to face, which is not emphasized in traditional courses on statistical analysis where only low numbers of predictors are considered.

Selecting predictors for regression (drop1() or step())

```
m10<-lm(Y~.,data=data.frame(Y=Y[,9],X[,1:10]))
(drop1.m10<-drop1(m10))
## Single term deletions
##
## Model:
  Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10
##
          Df Sum of Sq
                            RSS
                                     AIC
##
## <none>
                          485.5
                                    7.30
## X1
                15571.2 16056.7 1754.64
           1
## X2
           1
                 9532.1 10017.6 1518.75
```

```
2484.5 2970.1 910.87
## X3
           1
## X4
                6990.5 7476.0 1372.43
           1
## X5
                8850.5 9336.0 1483.51
## X6
                2005.7 2491.3 822.97
           1
## X7
           1
                5787.9 6273.4 1284.73
## X8
           1
               10603.3 11088.8 1569.54
## X9
           1
                1898.7 2384.3 801.02
               15388.7 15874.2 1748.92
## X10
           1
bestToDrop<-drop1.m10[which.min(drop1.m10$AIC),]
(step.m10<-step(m10,direction="both"))</pre>
## Start: AIC=7.3
## Y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10
##
##
                           RSS
                                   AIC
          Df Sum of Sq
## <none>
                         485.5
                                  7.30
## - X9
           1
                1898.7
                        2384.3 801.02
## - X6
                2005.7
                        2491.3 822.97
           1
## - X3
           1
                2484.5 2970.1 910.87
## - X7
                5787.9 6273.4 1284.73
           1
## - X4
                6990.5 7476.0 1372.43
           1
## - X5
           1
                8850.5 9336.0 1483.51
## - X2
           1
               9532.1 10017.6 1518.75
## - X8
               10603.3 11088.8 1569.54
           1
               15388.7 15874.2 1748.92
## - X10
           1
## - X1
               15571.2 16056.7 1754.64
##
## Call:
## lm(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 +
##
       X10, data = data.frame(Y = Y[, 9], X[, 1:10]))
##
## Coefficients:
## (Intercept)
                         X1
                                      X2
                                                    ХЗ
                                                                 Х4
                                                              1.859
##
         1.001
                      2.685
                                    2.296
                                                 1.089
##
            Х5
                         Х6
                                      X7
                                                    Х8
                                                                 Х9
##
         2.074
                      1.031
                                    1.656
                                                 2.389
                                                              1.004
##
           X10
##
         2.831
```