Análisis de Sistemas LTI

♦ Análisis

Distinción y separación de las partes de un todo hasta llegar a conocer sus principios o elementos.

Análisis de Sistemas LTI

■ Motivación

- Existen gran variedad de técnicas matemáticas para el análisis de sistemas LTI.
- Muchos sistemas prácticos son LTI o pueden aproximarse a sistemas LTI.

■ Técnicas

- Básicamente existen dos métodos
 - Convolución
 - Ecuaciones en diferencias
 - Método directo
 - Método indirecto

■ Principio

Cualquier señal discreta x(n) de excitación de un sistema puede descomponerse como una suma ponderada de impulsos unitarios desplazados $\delta(n-k)$.

Se tiene:

$$x(n) \delta(n-k) = x(k) \delta(n-k)$$

■ Por lo tanto:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

- **Ejemplo 1:** Descomponer en suma ponderada de impulsos las señales:
 - $x_1(n) = \{ \underline{4} \ 3.5 \ 2.1 8.6 \}$
 - $x_2(n) = \{7.4 \ 3.9 \ \underline{1.5} \ 2.5 \ 4.1 \ -3.1\}$
- **■** Solución
 - $x_1(n) = 4 \delta(n) + 3.5 \delta(n-1) + 2.1 \delta(n-2) 8.6 \delta(n-3)$
 - $x_2(n) = 7.4 \, \delta(n+2) + 3.9 \, \delta(n+1) + 1.5 \, \delta(n) + 2.5 \, \delta(n-1) + 4.1 \, \delta(n-2) 3.1 \, \delta(n-3)$

Ejemplo 2: Descomponer en una suma ponderada de impulsos la señal

$$x(n) = (-1)^n = \{..., -1, 1, -1, 1, -1, 1, -1, ...\}$$

■ Solución

$$x(n) = \sum_{k=-\infty}^{\infty} (-1)^k \delta(n-k)$$

Definición

■ La respuesta x(n) de un sistema **lineal** T[] a una entrada x(n)

$$T[x(n)] y(n) = T[x(n)]$$

es igual a la suma ponderada de la respuestas a cada uno de los impulsos que constituye la entrada x(n):

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

$$T[x(n)]$$

■ Definición ...

■ Es decir,

$$y(n) = T[x(n)]$$

$$y(n) = T\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right]$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) T[\delta(n-k)]$$

■ Definiendo $h(n,k) = T[\delta(n-k)]$, se obtiene:

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

■ Definición ...

■ La ecuación

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

- Constituye la respuesta de un sistema lineal h(n,k) a cualquier entrada x(n).
- Dépende de x(n) y de las respuestas del sistema h(n,k) a los impulsos unitarios $\delta(n-k)$.
- Se aplica a cualquier **sistema lineal** en reposo (variante o invariante en el tiempo)

■ Definición ...

■ Para sistemas invariantes con el tiempo, la ecuación

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n,k)$$

se reescribe como,

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

Que define la operación de convolución.

- Observación.
 - Los sistemas LTI en reposo quedan totalmente caracterizados por su respuesta al impulso unitario, h(n).

Definición de Convolución

Obtiene la respuesta y(n) de un sistema LTI como función de la señal de entrada x(n) y de la respuesta impulsional h(n).

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$

- La convolución involucra cuatro operaciones sobre las señales:
 - Reflexión , Desplazamiento , Multiplicación , Suma

Análisis de Convolución

PSO Percepción y Sistemas Inteligentes

■ Definición de Convolución ...

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PSI Percepción y Sistemas Inteligentes

Ejemplo 1. Obtener por convolución la respuesta del sistema

$$h(n) = \left\{1 \ \underline{2} \ 1 \ -1\right\}$$

cuando la entrada es:

$$x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$$

- Solución
 - Usando la definición $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$
 - Y considerando que:

Long
$$[y(n)] = long [x(n)] + long [h(n)] - 1$$

 $n_{inicio}[y(n)] = n_{inicio}[x(n)] + n_{inicio}[h(n)]$
 $n_{final}[y(n)] = n_{final}[x(n)] + n_{final}[h(n)]$

PSI Percepción y Sistemas Inteligentes

■ Solución ...

- $n_{inicio} = n_{inicio}[x(n)] + n_{inicio}[h(n)] = 0 + (-1) = -1$
- $n_{final} = n_{final}[x(n)] + n_{final}[h(n)] = 3 + 2 = 5$
- Con $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$ $h(n) = \{\underline{1} \ \underline{2} \ 1 \ -1\}$
- Para n = -1
 - $y(-1) = \sum_{k=0}^{3} x(k)h(-1-k)$
 - y(-1) = x(0)h(-1-0) + x(1)h(-1-1) + x(2)h(-1-2) + x(3)h(-1-3)
 - y(-1) = x(0)h(-1) + x(1)h(-2) + x(2)h(-3) + x(3)h(-4)
 - y(-1) = 1x1 + 2x0 + 3x0 + 1x0 = 1

PEII Percepción y Sistemas Inteligentes

■ Solución ...

- Con $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$ $h(n) = \{\underline{1} \ \underline{2} \ 1 \ -1\}$
- \blacksquare Para n=0
 - $y(0) = \sum_{k=0}^{3} x(k)h(0-k)$
 - y(0) = x(0)h(0-0) + x(1)h(0-1) + x(2)h(0-2) + x(3)h(0-3)
 - y(0) = x(0)h(0) + x(1)h(-1) + x(2)h(-2) + x(3)h(-3)
 - $y(0) = 1x^2 + 2x^1 + 3x^0 + 1x^0 = 4$

■ Para n=1

- $y(1) = \sum_{k=0}^{3} x(k)h(1-k)$
- y(1) = x(0)h(1-0) + x(1)h(1-1) + x(2)h(1-2) + x(3)h(1-3)
- y(1) = x(0)h(1) + x(1)h(0) + x(2)h(-1) + x(3)h(-2)
- y(1) = 1x1 + 2x2 + 3x1 + 1x0 = 8

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Percepción y Sistemas Inteligentes

■ Solución ...

- Con $x(n) = \{\underline{1} \ 2 \ 3 \ 1\}$ $h(n) = \{\underline{1} \ \underline{2} \ 1 \ -1\}$
- \blacksquare Para n=2
 - $y(2) = \sum_{k=0}^{3} x(k)h(2-k)$
 - y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) + x(3)h(-1)
 - y(2) = 1x(-1) + 2x1 + 3x2 + 1x1 = 8
- Para n = 3 $y(3) = \sum_{k=0}^{3} x(k)h(3-k) = 3$
- Para n = 4 $y(4) = \sum_{k=0}^{3} x(k)h(4-k) = -2$
- Para n = 5 $y(5) = \sum_{k=0}^{3} x(k)h(5-k) = -1$
- **Luego:** $y(n) = \{1 \ \underline{4} \ 8 \ 8 \ 3 \ -2 \ -1\}$

■ Ejemplo 2.

- Vídeo Convolution
 - https://www.youtube.com/watch?v=n59p3KNLYUQ

■ **Ejemplo 3:** Determine la respuesta del sistema LTI mediante el método tabular

Respuesta impulsional: $h(n) = \{1, 2, 1, -1\}$

Señal de entrada : $x(n) = \langle 1, 2, 3, 1 \rangle$

Parcepción y Sistemas Inteligentes

Solución: Por convolución
$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

n:	-1	0	1	2	3	4	5
x(n):		1	2	3	1		
h(n):	1	2	1	-1			
	1*1=1	1*2=2	1*3=3	1*1=1			
		2 *1=2	2 * 2 = 4	2*3=6	2*1=2		
			1*1=1	1*2=2	1*3=3	1*1=1	
				(-1)*1=-1	(-1)*2=- 2	(-1)*3=- 3	(-1)*1=- 1
y(n):	1	4	8	8	3	-2	-1

Método Tabular

$$y(n) = \{1 \ \underline{4} \ 8 \ 8 \ 3 \ -2 \ -1\}$$

■ Solución:

Long
$$[y(n)] = long [x(n)] + long [h(n)] - 1 = 4 + 4 - 1 = 7$$

 $n_{inicio}[y(n)] = n_{inicio}[x(n)] + n_{inicio}[h(n)] = 0 + (-1) = -1$
 $n_{final}[y(n)] = n_{final}[x(n)] + n_{final}[h(n)] = 3 + 2 = 5$

$$y(n) = \{1 \ \underline{4} \ 8 \ 8 \ 3 \ -2 \ -1\}$$

$$x(n) = \left\{ 1, 2, 3, 1 \right\}$$

Ejemplo 3: Obtener por convolución la salida del sistema h(n) = u(n-1) cuando la entrada es $x(n) = (1/3)^{-n} u(-n-1)$.

■ Solución:

- Aplicando la definición $y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$
- Se tiene:

$$y(n) = \sum_{k=-\infty}^{\infty} (1/3)^{-k} u(-k-1)u(n-k-1)$$

■ Descomponiendo en dos partes la sumatoria, se llega a:

$$y(n) = \sum_{k=0}^{\infty} x(k)h(n-k) + \sum_{k=-\infty}^{-1} x(k)h(n-k)$$

■ Solución...

Descomponiendo en dos partes la sumatoria, se llega a:

$$y(n) = y(n)_{k \ge 0} + y(n)_{k < 0}$$

■ Analizando la sumatoria para $k \ge 0$

$$y(n)_{k\geq 0} = \sum_{k=0}^{\infty} (1/3)^{-k} u(-k-1) u(n-k-1)$$

■ Se observa que siempre u(-k-1) = 0, por lo tanto:

$$y(n)_{k\geq 0}=0$$

■ Solución...

■ Analizando la sumatoria para k < 0

$$y(n)_{k<0} = \sum_{k=-\infty}^{-1} (1/3)^{-k} u(-k-1) u(n-k-1)$$

■ Se observa que siempre u(-k-1) = 1, por lo tanto:

$$y(n)_{k<0} = \sum_{k=-\infty}^{-1} (1/3)^{-k} \ u(n-k-1)$$

■ Haciendo k = -k, la expresión se reescribe como,

$$y(n)_{k<0} = \sum_{k=1}^{\infty} (1/3)^k \ u(n+k-1)$$

■ Solución...

Por lo tanto la respuesta total

$$y(n) = y(n)_{k \ge 0} + y(n)_{k < 0}$$

se reduce a:

$$y(n) = \sum_{k=1}^{\infty} (1/3)^k \ u(n+k-1)$$

- Aplicando el cambio de variables m = n + k 1 se tiene:
 - k = m + 1 n
 - $k = 1 \rightarrow m = n$
- De donde,

$$y(n) = \sum_{m=n}^{\infty} (1/3)^{m+1-n} \ u(m)$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- Solución...
 - se reduce a:

$$y(n) = (1/3)^{-n+1} \sum_{m=n}^{\infty} (1/3)^m \ u(m)$$

■ La sumatoria se resuelve en dos partes: para $n \ge 0$ y n < 0.

$$y(n) = y(n)_{n \ge 0} + y(n)_{n < 0}$$

■ Solución...

- Análisis para $n \ge 0$
 - Recordando que $\sum_{n=k}^{\infty} r^n = \frac{r^k}{1-r}$: |r| < 1
 - Se llega a:

$$y(n)_{n\geq 0} = (1/3)^{-n+1} \sum_{m=n}^{\infty} (1/3)^m \ u(m) = \frac{1/3}{1-1/3}$$

$$y(n)_{n\geq 0} = \frac{1}{2}$$

■ Solución...

- Análisis para n < 0
 - Como *n* es negativo, el índice *m* de la sumatoria empieza con un valor negativo, pasa por cero y continua con valores positivos hasta infinito. Es decir,

$$y(n)_{n<0} = (1/3)^{-n+1} \left[\sum_{m=-|n|}^{-1} (1/3)^m \ u(m) + \sum_{m=0}^{\infty} (1/3)^m \ u(m) \right]$$

Luego,

$$y(n)_{n<0} = (1/3)^{-n+1} \sum_{m=0}^{\infty} (1/3)^m \ u(m)$$

■ Solución...

- Análisis para n < 0 ...
 - Luego,

$$y(n)_{n<0} = (1/3)^{-n+1} \sum_{m=0}^{\infty} (1/3)^m \ u(m)$$

- Recordando que $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} : |r| < 1$
- Se llega a:

$$y(n)_{n<0} = (1/3)^{-n+1} \left[\frac{1}{1-1/3} \right] = \frac{3^n}{2}$$

- Solución...
 - **■** Finalmente,

$$y(n) = y(n)_{n \ge 0} + y(n)_{n < 0}$$

$$y(n) = \begin{cases} \frac{1}{2} & n \ge 0\\ \frac{3^n}{2} & n < 0 \end{cases}$$

■ Ejercicio

- Realizar una programa para calcular la convolución
- Utilizar la definición $y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$
- Los datos deben introducirse por ventanas de diálogo: inputdlg()
- Visualizar en una misma gráfica
 - $\mathbf{x}(n), h(n), y(n)$
 - Error entre la salida obtenida y la generada por la función conv()

■ Solución (Convolucion.m)

```
clc; clearvars; close all;
% Entrada h(n) y x(n)
dlg title = 'Convolución';
prompt = { 'Entre h(n):', 'Entre n inicial:', 'Entre x(n):', 'Entre n inicial:'};
num lines = 1;
defaultans = \{'1/5 \ 1/5 \ 1/5 \ 1/5 \ 1/5 \ ', '0', \dots
 '0.82 1 0.8 1.1 0.9 1.2 0.9 0.8 1.15 0.95 1.13 0.9 1.2 0.88 1.1', '-1'};
answer = inputdlg(prompt,dlg title,num lines,defaultans);
% Obtención de h(n)
h=str2num(answer{1});
nhi=str2num(answer{2}); %instante inicio
lh=length(h); %longitud vector h
nhf=lh+nhi-1; %instante final
% Obtención de x(n)
x=str2num(answer{3});
nxi=str2num(answer{4});
lx=length(x);
nxf=lx+nxi-1;
```


■ Solución (Convolucion.m) ...

```
% Datos de salida y(n)
nyi=nhi+nxi; % Instante inicio
nyf=nhf+nxf; % Instante final
% Calculo de la convolución : y(n) = suma k [x(k) h(n-k)]
y=zeros(1,lh+lx-1);
i=0:
for n=nyi:nyf
   i=i+1;
   temp=0;
   for k= nxi: nxf
       kx=k-nxi+1; %ajuste del indice de x(n) para evitar salir rango de Matlab
       ind= n-k;
       if ind >= nhi && ind <= nhf
         n k= ind-nhi+1; %ajuste del indice de h(n-k) para evitar salir rango de Matlab
         temp=temp+x(kx)*h(n k);
       end
   end
   y(i) = temp;
end
```


■ Solución (Convolucion.m) ...

```
% Error respecto a la función Matlab
ErrorConv=y-conv(x,h);

%Graficación
subplot(2,2,1); stem(nxi:nxf,x, 'b');title('Input
Signal');xlabel('n');ylabel('x(n)');grid on
subplot(2,2,2); stem(nhi:nhf,h,'b');title('Discrete
System');xlabel('n');ylabel('h(n)');grid on
subplot(2,2,3); stem(nyi:nyf,y, 'r');title('Output
Signal');xlabel('n');ylabel('y(n)');grid on
subplot(2,2,4); stem(nyi:nyf,ErrorConv, 'm'); title('ErrorConv');xlabel('n');ylabel('Error');grid on
```


■ Solución (Convolucion.m) ...

♦ Introducción:

Desde un punto de vista físico las **propiedades** pueden interpretarse como diferentes formas de **interconectar un sistema** para obtener el mismo resultado.

▶ Notación:

$$y(n) = x(n) * h(n) \equiv \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

$$y(n) = x(n) * h(n)$$

$$h(n)$$

>> Propiedad Conmutativa:

$$x(n)*h(n) = h(n)*x(n)$$

$$y(n) = h(n) * x(n) \equiv \sum_{k=-\infty}^{\infty} h(k) x(n-k)$$

Percepción y Sistemas Inteligentes

▶ Propiedad Asociativa: $[x(n)*h_1(n)]*h_2(n)=x(n)*[h_1(n)*h_2(n)]$

$$x(n)$$
 $y(n)=x(n)*[h_1(n)*h_2(n)]$ $[h_1(n)*h_2(n)]$

Propiedades de la Convolución...

▶ Propiedad Distributiva: $x(n)*[h_1(n)+h_2(n)]=x(n)*h_1(n)+x(n)*h_2(n)$

Propiedades de la Convolución

■ Sistemas $\delta(n)$ y $\delta(n-k)$

$$x(n) * \delta(n) = x(n)$$

$$x(n)$$
 $h(n) = \delta(n)$
 $y(n) = x(n) * \delta(n) = x(n)$

$$x(n) * \delta(n - k) = x(n - k)$$

$$x(n) \qquad y(n) = x(n) * \delta(n-k)$$

$$\Rightarrow x(n-k)$$

Causalidad en sistemas LTI

■ Introducción

■ Para sistemas LTI la causalidad se traduce en una determinada condición que ha de cumplir h(n).

Causalidad en sistemas LTI

■ Introducción ..

La convolución para un instante n_0 está dada por:

$$y(n_0) = \sum_{k=-\infty}^{\infty} h(k)x(n_0 - k)$$

ó,

$$y(n_0) = \sum_{k=0}^{\infty} h(k)x(n_0 - k) + \sum_{k=-\infty}^{-1} h(k)x(n_0 - k)$$

■ De donde,

$$y(n_0)$$
= $[h(0)x(n_0) + h(1)x(n_0 - 1) + h(2)x(n_0 - 2) + \cdots]$
+ $[h(-1)x(n_0 + 1) + h(-2)x(n_0 + 2) + h(-3)x(n_0 + 3) + \cdots]$

Causalidad en sistemas LTI...

■ Para que y(n) dependa sólo de las muestras pasadas y presentes de la entrada, la respuesta impulsional debe satisfacer la condición:

$$h(n) = 0$$
 para $n < 0$

• Un sistema LTI es causal si y sólo si su respuesta impulsional es cero para valores negativos de n.

Causalidad en Sistemas LTI

Page Percepción y Sistemas Inteligentes

- **Ejemplo**. Determinar si los siguientes sistemas representados por su respuesta impulsional son causales.

 - $h_3(n) = \{ 3.2 \quad 4.4 \quad -5.5 \quad 7.1 \quad 8.4 \quad \dots \}$
 - $\bullet h_4(n) = \begin{cases} 2, & n \ par \\ -2, & n \ impar \end{cases}$
 - $h_5(n) = u(n)$
 - $h_6(n) = 0.5^n u(n)$
 - $h_7(n) = u(n+2) u(n-2)$
 - $h_8(n) = \delta(n)$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Introducción

Un sistema en reposo es estable (BIBO) si y sólo si su secuencia de salida y(n) está acotada para cualquier entrada acotada x(n).

- Si x(n) está acotada, existe una constante M_x tal que: $|x(n)| \le M_x < \infty$
- Si y(n) está acotada, existe una constante M_v tal que: $|y(n)| \le M_v < \infty$

■ Introducción ...

■ Tomando el **valor absoluto** en ambos lados de la fórmula de convolución, se obtiene,

$$|y(n)| = \left| \sum_{k=-\infty}^{\infty} h(k) x(n-k) \right|$$

■ Puesto que el **valor absoluto** de una suma es **siempre menor o igual** que la suma de los valores absolutos de sus términos:

$$|y(n)| \le \sum_{k=-\infty}^{\infty} |h(k)| |x(n-k)|$$

■ Introducción ...

Como la entrada es acotada $|x(n)| = M_x$, puede sustituirse el límite superior para x(n) en la expresión anterior y obtener:

$$|y(n)| \le M_x \sum_{k=-\infty}^{\infty} |h(k)|$$

■ Se puede concluir que la salida está acotada si la respuesta impulsional del sistema satisface la condición:

$$S_h \equiv \sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

■ Introducción ...

- En consecuencia, un sistema LTI es estable si su respuesta impulsional es *absolutamente sumable*.
 - Condición necesaria y suficiente para garantizar la estabilidad del sistema.
 - Para sistemas causales, el **límite inferior** en la sumatoria de la condición de estabilidad es cero (k = 0).

Ejemplo 1. Determinar si los siguientes sistemas representados por su respuesta impulsional son estables.

$$h_3(n) = \{ 3.2 \quad 4.4 \quad -5.5 \quad 7.1 \quad 8.4 \quad \dots \}$$

$$h_5(n) = u(n)$$

$$h_6(n) = 0.5^n u(n)$$

$$h_7(n) = u(n+2) - u(n-2)$$

$$h_8(n) = \delta(n)$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Ejemplo 2: Determinar el rango de valores del parámetro a para el cual el sistema LTI de respuesta $h(n) = a^n u(n)$ es estable.

Solución

► De la definición:

$$S_h \equiv \sum_{k=0}^{\infty} |h(k)| < \infty$$

$$\sum_{k=0}^{\infty} |a^{k}| = \sum_{k=0}^{\infty} |a|^{k} = 1 + |a| + |a|^{2} + \dots$$

► Claramente, esta serie geométrica converge a:

$$\sum_{k=0}^{\infty} \left| a \right|^k = \frac{1}{1 - \left| a \right|}$$

siempre que |a| < 1.

Por lo tanto, el sistema es estable si |a| < 1.

Ejemplo 3: Determinar el rango de valores de los parámetros a y b para el cual el sistema LTI de respuesta impulsional h(n) es estable.

$$h(n) = \begin{cases} a^n, & n \ge 0 \\ b^n, & n < 0 \end{cases}$$

Solución

El sistema no es causal. Por lo tanto, de la condición de estabilidad se tiene:

$$\sum_{k=-\infty}^{\infty} |h(k)| = \sum_{k=0}^{\infty} |a|^{k} + \sum_{k=-\infty}^{-1} |b|^{k}$$

 \blacktriangleright Del ejemplo anterior, la primera suma converge si |a| < 1.

Ejemplo 2: ...

▶ La segunda suma puede escribirse como,

$$\sum_{k=-\infty}^{-1} |b|^k = \sum_{k=1}^{\infty} \frac{1}{|b|^k} = \frac{1}{|b|} \left(1 + \frac{1}{|b|} + \frac{1}{|b|^2} + \dots \right) = \frac{1/|b|}{1 - 1/|b|}$$

donde 1/|b| < 1 para que la serie converja.

 \blacktriangleright En consecuencia, el sistema es estable si |a| < 1 y |b| > 1.

Sistemas LTI FIR e IIR

■ Introducción

- Los sistemas LTI quedan caracterizados completamente por su respuesta impulsional h(n).
- Según la duración de h(n) se clasifican en FIR e IIR.
 - FIR: Finite-duration Impulse Reponse
 - IIR: Infinite-duration Impulse Reponse
- La duración de h(n) suministra información sobre las características del sistema.

Sistemas LTI FIR e IIR

■ Sistema FIR

- \blacksquare h(n) está definida en un intervalo finito de tiempo.
- Presenta una memoria finita, de longitud igual al intervalo de definición.

Sistemas LTI FIR e IIR

■ Sistema IIR

- h(n) considera la muestra presente y las pasadas de la señal de entrada para calcular la salida por *convolución*.
- Presenta memoria infinita.

Sistemas Recursivos y No Recursivos

■ Sistemas Recursivos

■ Sistema cuya salida y(n) depende de los valores anteriores de la misma salida, y(n-1), y(n-2),

$$y(n) = F[y(n), y(n-1), ... y(n-N), x(n), x(n-1), ... x(n-M)]$$

Ejemplos:

- y(n) = 1.1y(n-1) 2.3y(n-2) + x(n) 1.5x(n-1)
- y(n) = y(n-2) 1.3 y(n-4) + x(n)

Sistemas Recursivos y No Recursivos

■ Sistemas NO-Recursivos

■ Sistemas cuya salida y(n) depende sólo de los valores presentes y/o pasados de la señal de entrada x(n).

$$y(n) = F[x(n), x(n-1), ... x(n-M)]$$

Ejemplos:

- y(n) = x(n) 1.5 x(n-1) 2.3 x(n-2)
- y(n) = 0.33x(n+1) + 0.33x(n) + 0.33x(n-1)

Sistemas Recursivos y No Recursivos

■ Observaciones:

- ► La implementación de muchos sistemas discretos prácticos requiere de la recursividad.
- Los sistemas recursivos se diferencian de los no recursivos por la presencia de lazos de realimentación y/o atrasos entre la entrada y la salida.

La salida de un sistema **recursivo** debe calcularse **consecutivamente** mientras que la salida de un sistema **no recursivo** se puede calcular en **cualquier orden**.

Ejemplo1: Obtener un sistema recursivo a partir del sistema de promedio acumulado de una señal x(n) en el intervalo 0≤ $k \le n$.

$$y(n) = \frac{1}{n+1} \sum_{k=0}^{n} x(k)$$
 $n = 0,1,....$

>> Solución: Modificando la expresión anterior es posible obtener un sistema recursivo que requiere mucho menos memoria.

$$(n+1)y(n) = \sum_{k=0}^{n-1} x(k) + x(n) = n \ y(n-1) + x(n)$$
$$y(n) = \frac{1}{n+1} \sum_{k=0}^{n} x(k) \qquad n = 0, 1, \dots.$$

■ Diagrama de Bloques

$$y(n) = \frac{n}{n+1}y(n-1) + \frac{1}{n+1}x(n)$$

■ Ejemplo 2:

■ Para el siguiente sistema recursivo

$$y(n) = \frac{1}{2} \left(y(n-1) + \frac{x(n)}{y(n-1)} \right)$$

- a) Especificar la operación que realiza
- b) Obtener el diagrama de bloques
- c) Realizar un programa

■ Solución a)

■ El sistema recursivo

$$y(n) = \frac{1}{2} \left(y(n-1) + \frac{x(n)}{y(n-1)} \right)$$

■ Calcula iterativamente la raíz cuadrada de un número positivo A.

$$\blacksquare x(n) = A u(n)$$

■ Debe entregarse una condición inicial

■
$$y(-1)$$
 estimación de \sqrt{A} .

■ Verificación para A = 2

$$x(n) = 2 u(n) y y(-1) = 1$$

■ Resultado: y(0) = 1.5, y(1) = 1.4166667, y(2) = 1.4142157

■ Solución b)

■ El diagrama de bloques del sistema recursivo

$$y(n) = \frac{1}{2} \left(y(n-1) + \frac{x(n)}{y(n-1)} \right)$$

■ Solución c)

■ Implementar en Matlab el sistema: $y(n) = \frac{1}{2} (y(n-1) + x(n)/y(n-1))$

```
clc; clear all; close all;%Raiz2 iterativo.m
a=100.0; L=10;
x=a*ones(1,L);
if a==0
   errordlq('Error: a debe SER MAYOR A CERO','Valor Error');
end
% Valor de y(0)
y(m) = a/2; % Se asume y(-1) = a/2;
n=0; m=n+1;
for n=1:L-1
   m=n+1:
   y(m) = 0.5*(y(m-1)+x(m)./y(m-1));
end
Err raiz=sqrt(a)-y; %Error en cada iteración;
subplot(2,2,1); stem([0:L-1],x); title('x(n)=a u(n) '); grid on;
subplot(2,2,2); stem([0:L-1],y); title('y(n) = sqrt(a)'); grid on;
subplot(2,2,3:4); stem([0:L-1], Err raiz); title('Error= x(n) - y(n)');
grid on;
```


- Solución c) ...
 - Operación $\sqrt{100}$, A > 1

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Ejemplo 3

Dado el sistema representado por el diagrama de bloques

■ a) Obtener la respuesta impulsional global h(n), en términos de $h_1(n)$, $h_2(n)$, $h_3(n)$ y $h_4(n)$

■ Ejercicio..

b) Obtener h(n) cuando

$$h_1(n) = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{2}\right\}$$

$$h_2(n) = h_3(n) = (n+1)u(n)$$

• c) Obtener la respuesta y(n) del sistema h(n) definido en el punto b) estando en reposo y con entrada:

•
$$x(n) = \delta(n+2) + 3\delta(n-1) - 4\delta(n-3)$$

■ Solución

a) Por álgebra de bloques :

$$h(n) = h_1(n) * h_2(n) - h_1(n) * h_3(n) * h_4(n)$$

$$h(n) = h_1(n) * [h_2(n) - h_3(n) * h_4(n)]$$

■ b) Reemplazando los valores de $h_3(n)$ y $h_4(n)$ se tiene:

•
$$h_A(n) = h_3(n) * h_4(n)$$

$$h_A(n) = [(n+1)u(n)] * \delta(n-2)$$

Por las propiedades:

$$x(n) * \delta(n) = x(n)$$
 y $x(n) * \delta(n-k) = x(n-k)$

Se llega a:

$$h_A(n) = (n-1)u(n-2)$$

- b) Reemplazando: $h(n) = h_1(n) * [h_2(n) h_A(n)]$
 - Calculando $h_B(n) = h_2(n) h_A(n)$ se tiene:

$$h_B(n) = (n+1)u(n) - (n-1)u(n-2)$$

$$h_B(n) = n u(n) + u(n) - n u(n-2) + u(n-2)$$

• Se tiene:
$$h_B(n) = n u(n) + u(n) - n u(n-2) + u(n-2)$$

Dado que:

$$n u(n) - n u(n-2) = \delta(n-1)$$

 $u(n) + u(n-2) = \delta(n) + \delta(n-1) + 2 u(n-2)$
Se obtiene:
 $h_B(n) = \delta(n) + 2u(n-1)$

• b) Finalmente: $h(n) = h_1(n) * h_B(n)$

$$h_1(n)$$
 $h_B(n)$

- Reescribiendo $h_1(n) = \frac{1}{2} \delta(n) + \frac{1}{4} \delta(n-1) + \frac{1}{2} \delta(n-2)$
- Luego,

$$h(n) = \left[\frac{1}{2} \delta(n) + \frac{1}{4} \delta(n-1) + \frac{1}{2} \delta(n-2)\right] * \left[\delta(n) + 2u(n-1)\right]$$

- b) Utilizando: $x(n) * \delta(n) = x(n)$ y $x(n) * \delta(n-k) = x(n-k)$
 - Se llega a:

$$h(n) = \frac{1}{2} \delta(n) + \frac{1}{4} \delta(n-1) + \frac{1}{2} \delta(n-2) + u(n-1) + \frac{1}{2} u(n-2) + u(n-3)$$

Puesto que:

$$\frac{1}{4}\delta(n-1) + u(n-1) = \frac{5}{4}\delta(n-1) + u(n-2)$$

Luego

$$h(n) = \frac{1}{2} \delta(n) + \frac{5}{4} \delta(n-1) + u(n-2) + \frac{1}{2} \delta(n-2) + \frac{1}{2} u(n-2) + u(n-3)$$

b) Agrupando términos

$$h(n) = \frac{1}{2} \delta(n) + \frac{5}{4} \delta(n-1) + \frac{1}{2} \delta(n-2) + \frac{3}{2} u(n-2) + u(n-3)$$

■ Y repitiendo el proceso, se llega a:

$$h(n) = \frac{1}{2} \delta(n) + \frac{5}{4} \delta(n-1) + 2\delta(n-2) + \frac{5}{2}u(n-3)$$

■ Solución ...

• c) La respuesta y(n) del sistema definido en el punto b) estando en reposo y con entrada:

$$x(n) = \delta(n+2) + 3\delta(n-1) - 4\delta(n-3)$$

Se obtiene como y(n) = h(n) * x(n)y(n) $= \left[\frac{1}{2}\delta(n) + \frac{5}{4}\delta(n-1) + 2\delta(n-2) + \frac{5}{2}u(n-3)\right]$

*
$$[\delta(n+2) + 3\delta(n-1) - 4\delta(n-3)]$$

■ Solución ...

• c) Utilizando las propiedades:

$$x(n) * \delta(n) = x(n)$$
 y $x(n) * \delta(n-k) = x(n-k)$

en la expresión

$$y(n) = \left[\frac{1}{2} \delta(n) + \frac{5}{4} \delta(n-1) + 2\delta(n-2) + \frac{5}{2} u(n-3) \right]$$
* $\left[\delta(n+2) + 3\delta(n-1) - 4\delta(n-3) \right]$

■ Solución ...

c) se llega a:

$$y(n) = \frac{1}{2}\delta(n+2) + \frac{5}{4}\delta(n+1) + 2\delta(n) + 4\delta(n-1) + \frac{25}{4}\delta(n-2) + \frac{13}{2}\delta(n-3) + 5\delta(n-4) + 2\delta(n-5)$$

De donde:

$$y(n) = \left\{ \frac{1}{2}, \frac{5}{4}, \underline{2}, 4, \frac{25}{4}, \frac{13}{2}, 5, 2 \right\}$$

Deconvolución

■ Introducción

Si se conocen la respuesta impulsional h(n) y la respuesta y(n) para $n \ge 0$ de un sistema causal, es posible recuperar recursivamente x(n) sin determinar el sistema inverso.

$$\begin{array}{c|c}
x(n) \\
\hline
h_{dir}(n)
\end{array}
\xrightarrow{y(n)} h_{inv}(n)$$

El proceso para obtener x(n) a partir de la convolución se denomina **deconvolución**.

$$x(n) = ?$$

$$h(n) = ok$$

$$y(n) = ok$$

Procedimiento

■ La salida está dada por

$$y(n) = \sum_{k=0}^{n} x(k)h(n-k) , \qquad n \ge 0$$

- Para n = 0 \rightarrow $y(0) = x(0)h(0) \Rightarrow x(0) = y(0)/h(0)$
- Para $n \ge 1$
 - Se reescribe la convolución

$$y(n) = \sum_{k=0}^{n-1} x(k)h(n-k) + x(n)h(n-n)$$

• Y despeja x(n):

$$x(n) = \frac{y(n) - \sum_{k=0}^{n-1} x(k)h(n-k)}{h(0)}, \quad n \ge 1, \quad h(0) \ne 0$$

■ Ejemplo 1

■ Encontrar x(n) para el sistema causal con $h(n) = \{\underline{1} \ 2 \ 0 \ -1\}$ y salida $y(n) = \{\underline{-2} \ -4 \ 1 \ 3 \ 1 \ 5 \ 1 \ -3\}$.

$$x(0) = y(0)/h(0) = -2/1 = -2$$

$$x(n) = \frac{y(n) - \sum_{k=0}^{n-1} x(k)h(n-k)}{h(0)}, \quad n \ge 1$$

$$x(1) = \frac{y(1) - \sum_{k=0}^{0} x(k)h(1-k)}{h(0)} = \frac{y(1) - x(0)h(1)}{h(0)} = \frac{-4 - (-2)(2)}{1} = 0$$

$$x(2) = \frac{y(2) - \sum_{k=0}^{1} x(k)h(2-k)}{h(0)} = \frac{y(2) - [x(0)h(2) + x(1)h(1)]}{h(0)} = 1$$

$$x(3) = \frac{y(3) - \sum_{k=0}^{2} x(k)h(3-k)}{h(0)} = -1$$

$$x(4) = 3$$

■ Ejemplo 2

- Realizar un programa en Matlab para realizar la deconvolución.
- Encontrar x(n) para el sistema causal con $h(n) = \{\underline{1} \ 2 \ 3 \ -2 \ -1\}$ y salida

$$y(n) = \{ -3 -8 -14 -2 5 8 11 10 4 -8 -3 \}.$$

$$h=[1 \ 2 \ 3 \ -2 \ -1 \];$$
 $y=[-3 \ -8 \ -14 \ -2 \ 5 \ 8 \ 11 \ 10 \ 4 \ -8 \ -3 \];$
 $x=Deconvolucion(h,y)$
 $x= \ -3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3$


```
function [ x ] = Deconvolucion( h,y)
 if h(1) \sim = 0.0
  x(1) = y(1) / h(1);
  ly=length(y); lh=length(h);
  lx=ly-lh+1;
  for n=1:1x-1
    temp=0;
    for k=0: n-1
      m=n-k+1; %verificar tamaño de h
      if m<=lh</pre>
        temp=temp+ x(k+1)*h(m);
      end
    end
    x(n+1) = (y(n+1) - temp) / h(1);
  end
 else
 msqbox('división por cero: h(0)=0','Deconvolucion','warn')
end
end
```


■ Introducción

■ Si se conocen la entrada causal x(n) y la respuesta y(n) para $n \ge 0$ de un sistema causal LTI, es posible recuperar recursivamente h(n)

$$x(n) = ok$$
 $h(n) =?$
 $y(n)=ok$

■ El proceso para obtener h(n) a partir de la convolución se denomina **identificación** del sistema.

PSI Percepción y Sistemas Inteligentes

Procedimiento

■ La salida está dada por

$$y(n) = \sum_{k=0}^{n} x(k)h(n-k) , \qquad n \ge 0$$

- Para $n = 0 \rightarrow y(0) = x(0)h(0) \Rightarrow h(0) = y(0)/x(0)$
- Para $n \ge 1$
 - Se reescribe la convolución

$$y(n) = x(0)h(n-0) + \sum_{k=1}^{n} x(k)h(n-k)$$

• Y despeja h(n):

$$h(n) = \frac{y(n) - \sum_{k=1}^{n} x(k)h(n-k)}{x(0)}, \quad n \ge 1, \quad x(0) \ne 0$$

PEO Percepción y Sistemas Inteligentes

■ Ejemplo

■ Encontrar h(n) para el sistema LTI causal con

$$y(n) = \{ \underline{-2} - 4 \ 1 \ 3 \ 1 \ 5 \ 1 \ -3 \}$$
 $y \ x(n) = \{ \underline{-2} \ 0 \ 1 \ -1 \ 3 \}$

$$h(0) = y(0)/x(0) = -2/-2 = 1$$

$$h(n) = \frac{y(n) - \sum_{k=1}^{n} x(k)h(n-k)}{x(0)}, \quad n \ge 1$$

$$h(1) = \frac{y(1) - \sum_{k=1}^{1} x(k)h(1-k)}{x(0)} = \frac{y(1) - x(1)h(0)}{x(0)} = \frac{-4 - (0)(1)}{-2} = 2$$

$$h(2) = \frac{y(2) - \sum_{k=1}^{2} x(k)h(2-k)}{x(0)} = \frac{y(2) - [x(1)h(1) + x(2)h(0)]}{h(0)} = 0$$

$$h(3) = \frac{y(3) - \sum_{k=1}^{3} x(k)h(3-k)}{x(0)} = -1$$

■ Ejemplo 2

- Realizar un programa en Matlab para realizar la identificación.
- Encontrar h(n) para el sistema LTI causal con

$$x(n) = \{3 -4 \ 4 -3 \ 5 -2 \}$$

 $y(n) = \{-3 \ 7 \ 7 \ -10 \ 5 \ 0 \ 16 \ -2 \ -7 \ 2\}.$

$$x=[3 -4 4 -3 5 -2];$$

 $y=[-3 7 7 -10 5 0 16 -2 -7 2];$
 $h=IdentificacionSist(x,y)$

$$h = -1 \quad 1 \quad 5 \quad 1 \quad -1$$


```
function [ h ] = IdentificacionSist( x, y )
 if \times (1) \sim = 0.0
   h(1) = y(1) / x(1);
   lx=length(x); %longitud de y(n)
   ly=length(y); %longitud de x(n)
   lh=ly-lx+1; %longitud de la señal h(n)
   for n=1:1h-1
      temp=0;
      for k=1:n
        m=n-k+1; %verificar tamaño de h
        if k<lx
           temp=temp+ x(k+1) *h(m);
        end
      end
      h(n+1) = (y(n+1) - temp) / x(1);
   end
 else
   msqbox('división por cero: x(0)=0', 'Identificacion', 'warn')
end
end
```

