Unified Modeling Language Interaction Diagram

Sandro Morasca

Università degli Studi dell'Insubria

Dipartimento di Scienze Teoriche e Applicate

Via Ottorino Rossi 9 – Padiglione Rossi

21100 Varese, Italy

sandro.morasca@uninsubria.it

Interaction diagram

UML – Interaction Diagram

IntroduzioneSequenceCommunication

- Descrivono il comportamento dinamico di un gruppo di oggetti che "interagiscono" per risolvere un problema
- Tipicamente rappresentano il comportamento di uno specifico use case o scenario
 - in termini di specifiche entità (oggetti) e messaggi scambiati (metodi)
- UML propone due diversi tipi di interaction diagram
 - sequence diagram
 - communication diagram

UML – Interaction Diagram

IntroduzioneSequenceCommunication

mario: Persona

nome = "Mario" cognome = "Rossi" dataNascita = "31/2/1971" luogoNascita = Italia mario:Persona

: Persona

mario

Sequence diagram

Introduzione
> Sequence
Communication

- Evidenziano la sequenza temporale delle azioni
 - oggetti partecipanti
 - sequenze (temporali) di messaggi scambiati
- Non si vedono le associazioni tra oggetti
- Usabili in due forme diverse
 - la forma generica: tutte le sequenze (esecuzioni) possibili
 - la forma d'istanza: una sequenza particolare (consistente con quella generica)

Sequence diagram

Introduzione
> Sequence
Communication

- In ascissa sono disposti vari oggetti (istanze specifiche)
- L'ordinata rappresenta il tempo
 - in genere la scala non importa
 - interessa solo la sequenza cioè il rapporto di precedenza tra eventi, non la loro distanza
 - ma per sistemi real-time si può usare
- Se necessario gli assi orizzontale e verticale possono essere scambiati

Notazione

UML – Interaction Diagram

Notazione

UML – Interaction Diagram

Introduzione

> Sequence
Communication

Esempio (informale)

UML – Interaction Diagram

Introduzione

Sequence
Communication

UML – Interaction Diagram

Introduzione

> Sequence
Communication

UML – Interaction Diagram

UML – Interaction Diagram

Introduzione

SequenceCommunication

Esempio: Terapia intensiva

Introduzione

> Sequence
Communication

- The physician powers up the ECG machine.
- The physician sets up for four waveforms at 25 mm/sec sweep speed.
- The physician sets the bradycardia alarm at 40 bpm and the tachycardia alarm at 110 bpm.
- The patient undergoes an asystole event.
- The system detects the asystole and raises the alarm.
- The physician provides therapy to correct the problem (external to the system boundary).
- The system detects the restarted heart rate to be 45 bpm and lowers the alarm.

...

Esempio: Terapia intensiva

UML – Interaction Diagram

Stereotipi di oggetti

Introduzione
> Sequence
Communication

- Possono essere indicati come oggetti anche
 - istanze di attori, quando il sequence diagram è posseduto da uno use case
 - altri elementi dai robustness diagrams

Analisi di robustezza

UML – Interaction Diagram

Introduzione
➤ Sequence
Communication

- Tre tipi di oggetti
- Sostanzialmente il pattern
 - Model, View, Control
- Regole di comunicazione ben precise
 - Ogni tipo di oggetto può "parlare" solo con i suoi vicini nella gerarchia
 - actor
 - interface object
 - control object
 - entity object

UML – Interaction Diagram

Messaggi

UML – Interaction Diagram

Introduzione Sequence Communication

- Possono essere
 - completi (di risposta)
 - lost or found
 - sincroni o asincroni
 - call o signal

messaggio sincrono

messaggio asincrono <

completo e sincrono sd Messages Source : Target return:= message(parameter) asihcrono message(parameter) message(return) asincrono (di risposta)

Auto-messaggi

Introduzione
> Sequence
Communication

Possono essere mandati da un oggetto a se stesso

Introduzione
➤ Sequence
Communication

Lost

- non arrivano al destinatario stabilito, oppure
- non se ne conosce il destinatario

Found

- arrivano da un mittente sconosciuto, oppure
- arrivano da un mittente non indicato nel diagramma

Inizio e fine di lifeline

Introduzione
➤ Sequence
Communication

- Gli oggetti possono essere
 - creati
 - distrutti

Inizio e fine di lifeline

UML – Interaction Diagram

Introduzione

SequenceCommunication

Semantica di un Combined Fragment

UML – Interaction Diagram

Introduzione

> Sequence
Communication

alt

- una scelta di comportamento: al più una delle opzioni sarà scelta, tra quelle con guardia verificata
- se nessuna opzione ha una guardia vera, nessuna opzione viene eseguita
- opt
 - come alt con una sola opzione (o con due opzioni, di cui una vuota)

Frammenti e composizione

UML – Interaction Diagram

Introduzione
> Sequence
Communication

Semantica di un Combined Fragment

UML – Interaction Diagram

Introduzione

> Sequence
Communication

loop

- l'operando viene ripetuto tante volte quanto indicato dalla guardia
- la guardia può riportare un numero minimo e massimo di iterazioni e una condizione booleana
- le iterazioni sono in numero compreso tra il minimo e il massimo; oltre il minimo si itera fintanto che la guardia è vera
- par
 - composizione parallela tra i comportamenti degli operandi

UML – Interaction Diagram

Introduzione

SequenceCommunication

UML – Interaction Diagram

Introduzione

> Sequence
Communication

Esempio: biblioteca

UML – Interaction Diagram

Introduzione
> Sequence
Communication

Temporizzazione

Introduzione
➤ Sequence
Communication

Si indica tramite vincoli

Esempio con annotazioni temporali

UML – Interaction Diagram

Introduzione

> Sequence
Communication

Esempio: specifica di vincoli temporali

Progettazione del Software

UML – Interaction Diagram

Communication diagram (già Collaboration diagram)

Introduzione
Sequence
Communication

- Simili ai diagrammi di sequenza, ma
 - evidenziano le interazioni tra le parti
 - maggior attenzione allo scambio messaggi
 - adatti per
 - concorrenza e thread
 - invocazioni innestate
 - interazioni "sofisticate"
- Il tempo non è associato ad una dimensione precisa
 - le sequenze si scoprono usando la numerazione
 - sequenze alternative possono essere modellate sullo stesso diagramma

Introduzione Sequence

> Communication

UML – Interaction Diagram

Introduzione Sequence

> Communication

UML – Interaction Diagram

Introduzione Sequence

> Communication

Esempio di interazione

UML – Interaction Diagram

oggetto

Esempio con numerazione "decimale"

Progettazione del Software

UML – Interaction Diagram

Introduzione
Sequence
Communication

 Questo tipo di numerazione indica chiaramente quale operazione chiama quale altra

Sequence e collaboration diagram: confronto

UML – Interaction Diagram

Introduzione
Sequence
Communication

- I Sequence Diagram
 - mettono più enfasi sulla sequenza temporale delle operazioni
 - indicano esplicitamente la vita degli oggetti
- I collaboration diagram
 - indicano la connessione tra oggetti
 - NB: non proprio statica: ad es. tra Stock e ReorderItem la relazione si crea perché Stock crea una nuova istanza di ReorderItem

Esercizio

Introduzione Sequence ➤ Communication Si definisca un semplice communication diagram per modellare l'acquisto di un biglietto per assistere ad una proiezione in cinema multisala.

- Definizione delle funzionalità principali
 - use case diagram
- Uso di scenari per andare in profondità
 - interaction diagram
- Definizione manuale o assistita da strumenti

CLASSI