Digital Logic Families

- ICs are also classified based on their specific circuit technology, known as *digital logic family*.
- Each family has its own basic electronic components (NAND, NOR, and NOT gates), used to build complex digital circuits.
- Various digital logic families have been introduced and used over the years.

Digital Logic Families (in chronological order) (istor-Transistor Logic earliest,

now obsolete

- RTL: Resistor-Transistor Logic
- DTL: Diode-Transistor Logic
- I²L: Integrated-Injection Logic
- TTL: Transistor-Transistor Logic
 widely used
- ECL: Emitter-coupled Logic
 — high-speed operation
- MOS: Metal-Oxide Semiconductor → compact
- CMOS: Complementary MOS
 - Low power dissipation, currently the MOST DOMINANT
- BiCMOS: Bipolar CMOS
 - CMOS and TTL for additional current/speed
- GaAs: Gallium-Arsenide very high-speed operation

Defining Characteristics of Digital Logic Families

- Fan-in: # of gate inputs.
- *Fan-out:* # of standard loads a gate's output can drive.
- Noise margin: max external noise tolerated.
- *Power dissipation:* power consumed by the gate (dissipated as heat).
- *Propagation delay:* time required for an input signal change to be observed at an output line.

Fig. 10-3 Fan-Out Computation

Fig. 10-4 Measurement of Propagation Delay

Fig. 10-5 Signals for Evaluating Noise Margin

TTL LOGIC FAMILY

BJT

Characteristics

Base-Emitter voltage less than $0.6V \Rightarrow I_B = 0$

Cut-Off region

Base-Emitter voltage more than 0.6V, transistor starts Conducting -

active region $I_C = \beta I_B$

Maximum collector current $I_C = V_{CC}/R_C$

BJT operation analysis

(a) Inverter circuit

$$R_C = 1k\Omega$$
, $R_B = 22k\Omega$, $\beta = 50$

$$V_{CC} = 5V$$
, find V_O for

$$Vi = 0.2V$$
 and $Vi = 5V$

(a) Inverter circuit

Fig. 10-6 Silicon *npn* Transistor Characteristics

In the cut-off region $V_{BE} < 0.6V$, V_{CE} – open circuit, I_{C} , I_{B} negligible

In the active region V_{BE} about 0.7 V_{CE} wide range and $I_{C} = \beta I_{B}$

In the saturation region V_{BE} hardly changes, V_{CE} = 0.2V

TTL Series name	Prefix
Standard	74
Low-power	74 L
High-speed	74H
Schottky	74S
Low-power Schottky	74LS
Advanced Schottky	74AS
Advanced Low power- Schottky	74ALS
Fast	74F

Three Types of TTL gates

- Open - collector output

- Totem- pole output

- Three- state output

Fig. 10-11 Open-Collector TTL Gate

Open Collector gates are used

-Driving relays and lamps

-Wire ANDing

-Construction of common bus system

Fig. 10-12 Wired-AND of two Open-Collector (oc) Gates, Y = (AB + CD)'

Fig. 10-13 Open-Collector Gates Forming a Common Bus Line

Output impedance of a gate is resistive plus Capacitive load

For output low to high transition C charges Exponentially through RC

R is R_L (external) in open collector

With active pull-up delay can be reduced

Totem Pole

Fig. 10-14 TTL Gate with Totem-Pole Output

Wired Logic not allowed in Totem pole gates

-excessive current drawn by one gate can damage it

- Reduction in storage time —reduction in Propagation delay
- Schottky diode- metal semiconductor junction
- Schottky transistor- Schottky diode between base and collector
- Schottky TTL

Fig. 10-15 Schottky TTL Gate

$$A \longrightarrow Y = A \text{ if } C = \text{high}$$
 $Y = A \text{ if } C = \text{high}$
 $Y = A \text{ if } C = \text{high}$
 $Y = A \text{ if } C = \text{high}$
 $Y = A \text{ if } C = \text{high}$

(a) Three-state buffer gate

$$A \longrightarrow Y = A' \text{ if } C = \text{low}$$
 $Y = A' \text{ if } C = \text{low}$
 $Y = A' \text{ if } C = \text{low}$
 $Y = A' \text{ if } C = \text{low}$
 $Y = A' \text{ if } C = \text{low}$

(b) Three-state inverter gate

(c) Circuit diagram for the three-state inverter of (b)

Fig. 10-16 Three-State TTL Gate

Fig. 10-19 Basic Structure of MOS Transistor

Fig. 10-20 Symbols for MOS Transistors

Fig. 10-21 *n*-channel MOS Logic Circuits

Fig. 10-22 CMOS Logic Circuits

Fig. 10-23 CMOS inverter

Fig. 10-24 Transmission Gate (TG)

Fig. 10-25 Bilateral Switch

Fig. 10-26 Exclusive-OR Constructed with Transmission Gates

Fig. 10-28 Gated D Latch with Transmission Gates

Fig. 10-27 Multiplexer with Transmission Gates