Predictive Analysis for Campus Safety: Modeling Burglary Risk at Atlanta's Major Universities: Checkpoint 1

Alphabetically: Gunn Madan, Harini Mohan, Joshua Piña, Yuntian Wu

What are we trying to solve? - Part 1 Project

Introduction/Scoping

- Burglary related crimes frequently occur near college campuses, posing safety risks to students.
- However, universities currently lack predictive tools to anticipate high-risk periods and emerging crime hotspots.
- This project addresses that gap by building a data driven solution focused on Atlanta's major campuses.

What exactly is our goal? - Part 1 Project

To design and implement a predictive modeling and visualization system that:

- Forecasts weekly burglary risk around major Atlanta campuses.
- Identifies **spatial crime hotspots** within a one-mile radius of each campus.
- Delivers actionable insights through an interactive dashboard to support proactive safety strategies.

How will we know we have reached our goal?- Part 1

- Toject introduction/ Scoping
- Capture ≥70% of actual incidents within predicted hotspot zones.
- Achieve ≥70% accuracy in predicting high-risk weeks.
- Keep MAPE (Mean absolute percentage errors) below 15% for weekly burglary forecasts.

Tools? - Part 2 Infrastructure & Tool Setup

Component	Tool	Why?
Communication	Slack	Slack allows for easy integration of external apps.
Project Management	Notion/GitHub Projects	Notion - overall organization, GHP - to quickly raise issues
Version Control	Git/ <u>GitHub</u>	Repository hosted on GitHub
Documentation	Google Drive	Easy to utilize online
Experiment Tracking	W&B	Professor Rec.
Database	PostGreSQL w/ PostGIS	Best dbms for our data and GIS
Frontend	Streamlit	Easy application setup
Backend	FastAPI w/Pydantic	Postgres & Streamlit integration

Tools? - Part 2 Infrastructure & Tool Setup

Additionally,

- Architecture:
 - LAMBDA: Batching for training with a streaming layer to maintain an evergreen state.
- Deployment:
 - Render to host the application; Render Cron + Prefect for scheduling
 - GitHub Pages serving as a static site
- Python Libraries Utilized:
 - [Std] Pandas, Numpy, MatPlotLib, Seaborn
 - [ML] Scikit-Learn, Pytorch, XGBoost, StatsModels, Imblearn
 - [Spec] GeoPandas, Pandera, SQLAlchemy, GeoAlchemy2

Business Understanding - Part 3 Business & Data

Understanding

Objective: Predict Burglary related crime risk around Atlanta's major college campuses (Georgia State, Georgia Tech, Spelman, and Clark Atlanta) by forecasting weekly incident counts and identifying spatial hotspots.

DS Goals

- Ingest, clean, and transform APD crime data.
- Forecast weekly burglary counts per campus using ML models
- Detect and visualize hotspot areas using spatial clustering
- Classify "high-risk" weeks based on incident history.

Business Understanding - Part 3 Business & Data

Understanding

Sprint 1: Business Understanding & EDA

- Define objectives and success criteria.
- Collect APD crime data and perform exploratory analysis time period.
- Compare DOE data
- Deliverables: EDA report + modeling plan.
- Business & Data Understanding

Sprint 3: Modeling & Evaluation

- Forecast weekly crime counts near each campus using past data and trends.
- Classify "high-risk weeks" by predicting whether burglary levels will exceed a set threshold.
- Identify hotspot areas on a map using clustering and heatmaps.
- Deliverable: Predictive models, hotspot maps, and evaluation results.
- Modeling & Evaluation

Sprint 2: Data Prep & Feature Engineering

- Clean and preprocess data (offense categories, dates, missing values).
- Filter to 1-mile campus zones and engineer temporal/spatial features.
- Deliverable: Final dataset and feature set for modeling.
- Data Prep

Sprint 4 : Deployment & Dashboards

- Develop dashboard with forecasts, hotspots, and risk probabilities.
- Document workflow and prepare final presentation.
- Deliverable: Dashboard, GitHub repo, final report.
- Deployment

Data Acquisition - Part 3 Business & Data Understanding

Our Primary Data Sources

- Atlanta Police Department
- US Department of Education
- University Annual Reports

Data Links

- Atlanta Police Department (APD) Crime Maps
- Atlanta Police Department Open Data Portal (APD-ODP)
- GT Police Department Crime Logs
- <u>US Department of Education Campus Safety & Security (CSS)</u>
- <u>US Department of Education CSS (Comparison Tool)</u>

One-Mile Radius of Each Campuses. - Part 3 Business &

Data Understanding

Exploratory Data Analysis - Part 3 Business & Data

Understanding

Based on APD data

Exploratory Data Analysis - Part 3 Business & Data

Understanding

Based on APD data

Exploratory Data Analysis - Part 3 Business & Data

Understanding

Data Quality Report

DOE data differs from APD data, further emphasizing the need for the distinction between the two.

Check	Issue Found	Action Taken
Missing value	Some rows missing coordinates, dates, or campus fields	Dropped incomplete rows; verified remaining entries align with APD and DOE records
Irrelevant Fields	DOE dataset contained non-crime categories (disciplinary, hate, fire, VAWA)	Removed all unrelated fields and kept only Criminal Offenses and Arrests
Duplicates	Repeated APD incidents with same ID and timestamp	Deduplicated based on report_number, offense_date, and location.
Formatting Differences	Columns, date formats, and field names inconsistent between APD and DOE	Renamed columns and standardized date format
Out-of-Bounds Data	Some APD coordinates outside Atlanta or invalid (0,0)	Filtered to points within Atlanta city boundary
Temporal Range	DOE data annual; APD data daily	Aggregated APD to yearly totals for alignment

Initial Findings - Part 3 Business & Data Understanding

- Crime Concentration- Georgia State University and Georgia Tech show the highest volume of burglary and arrest incidents within a 1-mile radius, while Spelman and Clark Atlanta remain consistently lower.
- **Temporal Trend** Burglary incidents dipped in 2022 but rose again in 2023, aligning with DOE's annual reports- likely linked to post-COVID campus repopulation.
- **Time + Day Patterns** Most incidents occur (Tue-Thu) and between 10 AM- 4 PM, suggesting daytime, opportunity-based offenses near student housing and campus centers.
- **Spatial Hotspots** APD data clusters heavily in downtown Atlanta, overlapping the GSU and Georgia Tech zones, validating the need for localized predictive modeling.