COVID-19 SYMPTOM IDENTIFICATION

A Supervised Learning approach

Δ

IART - MIEIC@FEUP 2021/2022

Group 25 Ana Teresa Cruz - up201806460@up.pt André Nascimento - up201806461@up.pt António Bezerra - up201806854@up.pt

Specification

In this project, we will analyse a dataset containing information about patient's symptoms and classify them as **COVID-19**, **flu**, **cold** and **allergy** cases.

The dataset is available at:

Δ

https://www.kaggle.com/walterconway/covid-flu-cold-symptoms

# COUGH =	# MUSCLE =	# TIREDNESS =	# SORE_THR =	# RUNNY_N =	# STUFFY_N =	# FEVER =	# NAUSEA 🖃	# VOMITING =	# DIARRHEA =	▲ TYPE =
0	0	1	0	1	0	0	0	0	0	ALLERGY
θ	0	1	0	0	0	0	0	0	0	ALLERGY
0	1	1	1	0	0	0	0	0	0	ALLERGY
0	0	0	1	1	0	0	0	0	0	ALLERGY
0	0	1	0	1	0	0	0	0	0	ALLERGY
0	0	0	0	0	0	0	0	0	0	ALLERGY
1	0	0	0	1	1	0	0	0	0	ALLERGY
0	1	1	1	0	0	0	0	0	0	ALLERGY
1	1	0	0	1	0	0	0	0	0	ALLERGY
1	0	1	1	1	0	0	0	0	0	ALLERGY

किर्मुका किर्मुकाकोको मुक्तकामान किर्मुक किर्मुकाकोको

Related Work

The dataset in analysis was based on medical data provided by the Mayo Clinic: https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/covid-19-cold-flu-and-allergies-differences/art-20503981

The dataset was automatically generated using this algorithm: https://github.com/WalterConway/SymptomGenerator

We used resampling techniques found in this guide: https://beckernick.github.io/oversampling-modeling/

To learn more about the algorithm's implementation we consulted SciKit Learn's documentation: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier. https://scikit-learn.tree.DecisionTreeClassifier. <a href="https://scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Approach

Our approach was essentially comprised by three steps:

Δ

Δ

- 1. **Data analysis:** we explored the raw dataset to identify missing or wrong information and also to decide how to better use it and what problems it might have.
- 2. **Algorithm implementation:** we used SciKit Learn's algorithm implementations to obtain experimental results of the classification.
- 3. **Evaluation and refinement:** after initial results are obtained, we combined that information with our knowledge of the dataset to both tune the algorithms and devise new strategies for the classification, such as using resampling.

Tools and Algorithms

Tools

Δ

- Python 3.8
- Jupyter Notebook
- Pandas
- Numpy
- MatPlotLib
- Seaborn
- SciKit Learn
- Imbalanced Learn

Algorithms implemented

- Decision Tree
- Nearest neighbor
- Support Vector Machines
- Neural Networks

All of these tools are installed with Anaconda, with the exception of the Imbalanced Learn library. This should be installed with:

conda install -c conda-forge imbalanced-learn or pip install -U imbalanced-learn

Implementation

Data processing

 \triangle

- Data analysis using visualization
- Algorithm implementation
- Parameter tuning
- Result analysis

Data preprocessing

cough - 1.00 MUSCLE ACHES -- 0.01 1.00 TIREDNESS -- 0.01 -0.01 1.00 COUGH MUSCLE ACHES TIREDNESS SORE THROAT SORE_THROAT -- 0.01 -0.01 -0.01 1.00 20000 RUNNY_NOSE -- 0.00 -0.00 -0.00 -0.00 1.00 STUFFY NOSE -- 0.01 -0.00 -0.00 -0.00 0.04 1.00 0.2 0.4 0.6 0.8 1.0 RUNNY NOSE STUFFY NOSE FEVER - 0.01 0.01 0.01 0.01 -0.01 -0.01 1.00 NAUSEA - 0.01 0.01 0.01 0.01 -0.01 -0.01 0.28 1.00 20000 VOMITING - 0.01 0.01 0.01 0.01 -0.01 -0.01 0.28 0.30 1.00 DIARRHEA - 0.01 0.01 0.01 0.01 -0.00 -0.01 0.28 0.30 0.30 1.00 0.2 0.4 0.6 0.8 VOMITING DIARRHEA SHORTNESS OF BREATH DIFFICULTY BREATHING SHORTNESS OF BREATH - 0.01 0.01 0.01 0.01 -0.01 -0.01 0.28 0.30 0.30 0.30 1.00 30000 DIFFICULTY BREATHING - 0.01 0.01 0.01 0.01 -0.01 -0.01 0.28 0.30 0.30 0.30 0.30 1.00 20000 10000 -LOSS OF TASTE - 0.02 0.02 0.02 0.02 0.06 0.06 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 1.00 0.2 0.4 0.6 0.8 1.0 LOSS OF SMELL - 0.02 0.02 0.02 0.02 0.06 0.06 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 1.00 LOSS OF TASTE LOSS OF SMELL ITCHY NOSE 20000 10000 тсну моитн -0.02 -0.02 -0.02 -0.02 0.00 0.00 -0.33 -0.33 -0.33 -0.33 -0.33 0.07 0.07 0.07 0.39 0.39 1.00 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 ITCHY INNER EAR SNEEZING 20000 PINK_EYE - 0.02 -0.02 -0.02 -0.02 0.00 0.00 -0.33 -0.33 -0.33 -0.33 -<u>0.33 -0.33 0.07 0.07</u>

Resampling

What we quickly observed was that the class distribution was extremely unbalanced. Over half of the cases were Flue cases, and only 2.3% were Cold cases.

Δ

```
from imblearn.under_sampling import RandomUnderSampler

rus = RandomUnderSampler()

us_inputs, us_labels = rus.fit_resample(train_in, train_classes)

print(Counter(us_labels))

Counter({'ALLERGY': 768, 'COLD': 768, 'COVID': 768, 'FLU': 768})

from imblearn.over_sampling import SMOTE

ros = SMOTE()

os_inputs, os_labels = ros.fit_resample(train_in, train_classes)

print(Counter(os_labels))

Counter({'ALLERGY': 18750, 'FLU': 18750, 'COLD': 18750, 'COVID': 18750})
```

փոկվա անվինանին արկան։ Վարտակին արկանը Արկանակի

Result Comparison

Conclusions

majijanajiji mijijana Alfanajijana mijijanajiji Majiji mijijanajiji

+90% accuracy

Good overall accuracy without much tuning.

Unbalanced data

The class distribution affected the result quality, attenuated by resampling

SVC with Undersampling

Best algorithm and training set, 93% accuracy and best F1-score

Overall...

We are happy with the results and were able to explore various concepts in Al.