[Fecha]

MOAD

Practical work

Irene Ruiz [NOMBRE DE LA EMPRESA]

Index

Main program	2
Example 1	2
Entering the data	3
Optimal solution	3
PILP solution	
Example 2	6
Entering the data	
Optimal solution	8
PILP solution	<u>C</u>
Example 3	<u>C</u>
Entering the data	10
Optimal solution	11
PILP solution	12
Example 4	14
Entering the data	15
Optimal solution	16
PILP solution	15

Main program

The main program is called Main_PO.m.

When executing we can see the menu popping:

All the example files are saved in the folder.

Example 1

Exercise 1 from the practical sheet 2

Maximize
$$z = 3x1 + 4x2$$

subject to
 $2x1 + 3x2 \le 6$
 $4x1 + 5x2 \le 8$
 $x1 \ge 0, x2 \ge 0$
 $x1, x2$ integers

Entering the data

Optimal solution

Iteration #0:

	3.0 xl	4.0 x2	0.0 x 3	0.0 x4	b	
x3 0.0 x4 0.0	2.0 4.0	3.0 5.0	1.0	0.0	6.0 8.0	
zj-cj	-3.0	-4.0	0.0	0.0	0.0	

Variable that will enter the basis -> x2 Variable that will leave the basis -> x4

Iteration #1:

	3.0 x1	4.0 x2	0.0 x3	0.0 x4	b
					1.2
zj-cj	0.2	0.0	0.0	0.8	6.4

^{=&}gt; Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 0.00

x2* = 1.60

x3* = 1.20

x4* = 0.00

Optimal value of z:

z*=6.40

PILP solution

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

5

Iteration #1:

		3.0 x1	4.0 x2	0.0 x 3	0.0 x 4	0.0 x 5	b
x 3	0.0	-0.4	0.0	1.0	-0.6	0.0	1.2
x2	4.0	0.8	1.0	0.0	0.2	0.0	1.6
x 5	0.0	-0.8	-0.0	-0.0	-0.2	1.0	-0.6
zj-	 cj	0.2	0.0	0.0	0.8	0.0	6.4

Variable that will enter the basis -> x1 Variable that will leave the basis -> x5 $\,$

Iteration #2:

		3.0 x1	4.0 x2	0.0 x3	0.0 x4	0.0 x 5	b
x 3	0.0	0.0	0.0	1.0	-0.5	-0.5	1.5
x2	4.0	0.0	1.0	0.0	0.0	1.0	1.0
x1	3.0	1.0	0.0	0.0	0.3	-1.3	0.8
zj-	cj	0.0	0.0	0.0	0.8	0.3	6.3

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 0.75

x2* = 1.00

x3* = 1.50

x4* = 0.00

x5* = 0.00

Optimal value of z:

z*=6.25

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

6

Iteration #1:

	3.0 xl	4.0 x2	0.0 x3	0.0 x4	0.0 x 5	0.0 x6	b	
x3 0.0	0.0	0.0	1.0	-0.5	-0.5	0.0	1.5	
x2 4.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	
x1 3.0	1.0	0.0	0.0	0.3	-1.3	0.0	0.8	
x 6 0.0	-0.0	-0.0	-0.0	-0.3	-0.8	1.0	-0.8	
zj-cj	0.0	0.0	0.0	0.8	0.3	0.0	6.3	

Variable that will enter the basis $->\,x5$ Variable that will leave the basis $->\,x6$

Iteration #2:

		3.0 xl	4.0 x2	0.0 x 3	0.0 x4	0.0 x 5	0.0 x 6	b	
x3	0.0	0.0	0.0	1.0	-0.3	0.0	-0.7	2.0	
x2	4.0	0.0	1.0	0.0	-0.3	0.0	1.3	0.0	
x1	3.0	1.0	0.0	0.0	0.7	0.0	-1.7	2.0	
x 5	0.0	0.0	0.0	0.0	0.3	1.0	-1.3	1.0	
zj-	 ·cj	0.0	0.0	0.0	0.7	0.0	0.3	6.0	

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 2.00

x2* = 0.00

x3* = 2.00

x4* = 0.00

x5* = 1.00

x6* = 0.00

Optimal value of z:

z*=6.00

Example 2

Exercise 2 from the practical sheet 2

Maximize
$$z = 6x1 + 5x2$$

subject to
 $x1 + 2x2 \le 10$
 $3x1 + x2 \le 12$
 $x1 \ge 0, x2 \ge 0$
 $x1, x2$ integers

Entering the data

Optimal solution

Iteration #0:

	6.0 x1	5.0 x 2	0.0 x 3	0.0 x 4	b
		2.0			10.0
x4 0.0	3.0	1.0	0.0	1.0	12.0
zj-cj	-6.0	-5.0	0.0	0.0	0.0

Variable that will enter the basis -> x1 Variable that will leave the basis -> x4

Iteration #1:

	6.0 x l	5.0 x 2	0.0 x 3	0.0 x 4	b	
x 3 0.0	0.0	1.7	1.0	-0.3	6.0	
x1 6.0	1.0	0.3	0.0	0.3	4.0	
zj-cj	0.0	-3.0	0.0	2.0	24.0	

Variable that will enter the basis -> x2 Variable that will leave the basis -> x3

Iteration #2:

	6.0 xl	5.0 x 2	0.0 x 3	0.0 x 4	b	
x2 5.0		1.0	0.6		3.6	
x1 6.0	1.0	0.0	-0.2 	0.4	2.8	
zj-cj	0.0	0.0	1.8	1.4	34.8	

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 2.80

x2* = 3.60

x3* = 0.00

x4* = 0.00

Optimal value of z:

z*=34.80

8

PILP solution

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

5

Iteration #1:

		6.0 x1	5.0 x2	0.0 x 3	0.0 x 4	0.0 x 5	b
x2	5.0	0.0	1.0	0.6	-0.2	0.0	3.6
x1	6.0	1.0	0.0	-0.2	0.4	0.0	2.8
x 5	0.0	-0.0	-0.0	-0.8	-0.4	1.0	-0.8
zj-	 cj	0.0	0.0	1.8	1.4	0.0	34.8

Variable that will enter the basis -> x3 Variable that will leave the basis -> x5

Iteration #2:

	6.0 x1	5.0 x2	0.0 x 3	0.0 x 4	0.0 x 5	b	
x2 5.0	0.0	1.0	0.0	-0.5	0.8	3.0	
x1 6.0	1.0	0.0	0.0	0.5	-0.2	3.0	
x 3 0.0	0.0	0.0	1.0	0.5	-1.3	1.0	
zj-cj	0.0	0.0	0.0	0.5	2.3	33.0	

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 3.00

x2* = 3.00

x3* = 1.00

x4* = 0.00

x5* = 0.00

Optimal value of z:

z*=33.00

Example 3

Exercise 3 from the practical sheet 2

```
Maximize z = 2x1 + x2

subject to

2x1 + 5x2 \le 17

3x1 + 2x2 \le 10

x1 \ge 0, x2 \ge 0

x1, x2 integers
```

Entering the data

Optimal solution

Iteration #0:

	2.0	1.0	0.0	0.0		
	хl	x 2	x 3	x4	b	
x3 0.0) 2.0	5.0	1.0	0.0	17.0	
x4 0.0	3.0	2.0	0.0	1.0	10.0	
zj-cj	-2.0	-1.0	0.0	0.0	0.0	

Variable that will enter the basis -> x1 Variable that will leave the basis -> x4

Iteration #1:

	2.0	1.0	0.0	0.0		
	x1	x2	x 3	x4	b	
x3 0.0	0.0	3.7	1.0	-0.7	10.3	
x1 2.0	1.0	0.7	0.0	0.3	3.3	
zj-cj	0.0	0.3	0.0	0.7	6.7	

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 3.33

x2* = 0.00

x3* = 10.33

x4* = 0.00

Optimal value of z:

z*=6.67

PILP solution

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

5

Iteration #1:

		2.0 x1	1.0 x2	0.0 x 3	0.0 x4	0.0 x 5	b
ж3	0.0	0.0	3.7	1.0	-0.7	0.0	10.3
x1	2.0	1.0	0.7	0.0	0.3	0.0	3.3
x 5	0.0	-0.0	-0.7	-0.0	-0.3	1.0	-0.3
zj-	 .cj	0.0	0.3	0.0	0.7	0.0	6.7

Variable that will enter the basis -> x2 Variable that will leave the basis -> x5

Iteration #2:

		2.0 x1	1.0 x2	0.0 x 3	0.0 x4	0.0 x 5	b
x 3	0.0	0.0	0.0	1.0	-2.5	5.5	8.5
x1	2.0	1.0	0.0	0.0	0.0	1.0	3.0
x2	1.0	0.0	1.0	0.0	0.5	-1.5	0.5
zj-	 cj	0.0	0.0	0.0	0.5	0.5	6.5

^{=&}gt; Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 3.00

x2* = 0.50

x3* = 8.50

x4* = 0.00x5* = 0.00

Optimal value of z:

z*=6.50

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

Iteration #1:

		2.0 xl	1.0 x2	0.0 x 3	0.0 x 4	0.0 x 5	0.0 x6	b	
x 3	0.0	0.0	0.0	1.0	-2.5	5.5	0.0	8.5	
x1	2.0	1.0	0.0	0.0	0.0	1.0	0.0	3.0	
x2	1.0	0.0	1.0	0.0	0.5	-1.5	0.0	0.5	
хб	0.0	-0.0	-0.0	-0.0	-0.0	-1.0	1.0	-1.0	
zj-	 ·cj	0.0	0.0	0.0	0.5	0.5	0.0	6.5	

Variable that will enter the basis -> x5Variable that will leave the basis -> x6

Iteration #2:

	2.0 x1	1.0 x2	0.0 x 3	0.0 x4	0.0 x 5	0.0 x 6	b	
x3 0.0	0.0	0.0	1.0	-2.5	0.0	5.5	3.0	
x1 2.0	1.0	0.0	0.0	0.0	0.0	1.0	2.0	
x2 1.0	0.0	1.0	0.0	0.5	0.0	-1.5	2.0	
x 5 0.0	0.0	0.0	0.0	0.0	1.0	-1.0	1.0	
zj-cj	0.0	0.0	0.0	0.5	0.0	0.5	6.0	

 \Rightarrow Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 2.00

x2* = 2.00

x3* = 3.00

x4* = 0.00

x5* = 1.00

x6* = 0.00

Optimal value of z:

z*=6.00

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

7

Iteration #1:

	2.0 xl	1.0 x2	0.0 x 3	0.0 x4	0.0 x5	0.0 x6	0.0 x 7	b
x3 0.0	0.0	0.0	1.0	-2.5	0.0	5.5	0.0	3.0
x1 2.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	2.0
x2 1.0	0.0	1.0	0.0	0.5	0.0	-1.5	0.0	2.0
x5 0.0	0.0	0.0	0.0	0.0	1.0	-1.0	0.0	1.0
x7 0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-1.0	1.0	-1.0
zj-cj	0.0	0.0	0.0	0.5	0.0	0.5	0.0	6.0

Variable that will enter the basis -> x6 Variable that will leave the basis -> x7

Example 4

Exercise 5 from the practical sheet 2

```
Maximize z = x1 + 3x2

subject to

-x1 + 2x2 \le 2

5x1 + 2x2 \le 10

x1 \le 1

x1 \ge 0, x2 \ge 0

x1, x2 integers
```

Entering the data

```
Solving a problem by the Simplex method
_____
It is assumed that:
-> Objective function is in the maximization form
-> All constraints are of type ">="
-> All variables are >=0
_____
----- Data of the problem -----
Number of variables: 2
Number of constraints: 3
Coefficients of the variables in the objective function
Insert vector c[]:[1 3]
Coefficients of the variables in the constraints
Insert matrix A[;]:[-1 2;5 2;1 0]
Independent terms of the constraints
Insert vector b[]:[2 10 1]
```

Optimal solution

Iteration #0:

		1.0 x1	3.0 x2	0.0 x3	0.0 x4	0.0 x5	b
x 3	0.0	-1.0	2.0	1.0	0.0	0.0	2.0
x4	0.0	5.0	2.0	0.0	1.0	0.0	10.0
x 5	0.0	1.0	0.0	0.0	0.0	1.0	1.0
 zj-	 cj	-1.0	-3.0	0.0	0.0	0.0	0.0

Variable that will enter the basis -> x2 Variable that will leave the basis -> x3

Iteration #1:

		1.0 x1	3.0 x2	0.0 x 3	0.0 x4	0.0 x 5	b	
x 2	3.0	-0.5	1.0	0.5	0.0	0.0	1.0	
x4	0.0	6.0	0.0	-1.0	1.0	0.0	8.0	
x 5	0.0	1.0	0.0	0.0	0.0	1.0	1.0	
zj-	 ·cj	-2.5	0.0	1.5	0.0	0.0	3.0	

Variable that will enter the basis -> x1 Variable that will leave the basis -> x5

Iteration #2:

		1.0 x1	3.0 x2	0.0 x 3	0.0 x4	0.0 x 5	b	
x2	3.0	0.0	1.0	0.5	0.0	0.5	1.5	
x4	0.0	0.0	0.0	-1.0	1.0	-6.0	2.0	
хl	1.0	1.0	0.0	0.0	0.0	1.0	1.0	
 zj-	 .cj	0.0	0.0	1.5	0.0	2.5	5.5	

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 1.00

x2* = 1.50

x3* = 0.00

x4* = 2.00

x5* = 0.00

Optimal value of z:

z*=5.50

PILP solution

There are original variables with a fractional value ---> A cutting constraint must be introduced and the new problem solved by the dual Simplex method

xnew =

6

Iteration #1:

		1.0 x1	3.0 x2	0.0 x 3	0.0 x4	0.0 x 5	0.0 x6	b	
x2	3.0	0.0	1.0	0.5	0.0	0.5	0.0	1.5	
x4	0.0	0.0	0.0	-1.0	1.0	-6.0	0.0	2.0	
x1	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	
x 6	0.0	-0.0	-0.0	-0.5	-0.0	-0.5	1.0	-0.5	
zj-	 ·cj	0.0	0.0	1.5	0.0	2.5	0.0	5.5	

Variable that will enter the basis $->\,x3$ Variable that will leave the basis $->\,x6$

Iteration #2:

	1.0 x1	3.0 x2	0.0 x 3	0.0 x4	0.0 x 5	0.0 x6	b	
x2 3.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	
x4 0.0	0.0	0.0	0.0	1.0	-5.0	-2.0	3.0	
x1 1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	
x 3 0.0	0.0	0.0	1.0	0.0	1.0	-2.0	1.0	
zj-cj	0.0	0.0	0.0	0.0	1.0	3.0	4.0	

=> Optimal tableau because there are no negative values in column b

Optimal solution:

x1* = 1.00

x2* = 1.00

x3* = 1.00

x4* = 3.00

x5* = 0.00

x6* = 0.00

Optimal value of z:

z*=4.00