Introduction to Colour Codes

Ben Criger 1 2

¹JARA IQI, RWTH Aachen

²Qutech, TU Delft

September 12, 2016

Construction

Logical Gates

Pros & Cons

Decoding

Summary

- Color codes are stabiliser codes
- qubits are placed on vertices of a tiling (construction coming up)

- Color codes are stabiliser codes
- qubits are placed on vertices of a tiling (construction coming up)
- stabilisers are constant-weight, transversal X and Z on every face

- Color codes are stabiliser codes
- qubits are placed on vertices of a tiling (construction coming up)
- lacktriangleright stabilisers are constant-weight, transversal X and Z on every face
- One logical qubit encoded in $\mathcal{O}(d^2)$ physical qubits

Commuting Stabilisers on Faces

In order for X and Z stabilisers on the same face to commute, the face has to be even-weight:

Commuting Stabilisers on Faces

In order for X and Z stabilisers on different faces to commute, the tiling has to have degree three (it must be trivalent):

Commuting Stabilisers on Faces

Face-3-colorable tilings satisfy this requirement:

Figure: Three admissible tilings, with $n=\frac{1}{2}d^2+d-\frac{1}{2}$, $n=\frac{3}{4}d^2+\frac{1}{4}$, and $n=\frac{3}{2}d^2-3d+\frac{5}{2}$ respectively.

Minimum-weight logicals are supported on sides of the triangle.

Single-Qubit Gates

Color codes admit a transversal Hadamard and phase gate:

Multi-Qubit Gates

CNOT gates (and other multi-qubit Cliffords) can be accomplished by lattice surgery:

Pros & Cons

Fewer physical qubits per logical qubit at the same distance, but higher stabiliser weight, and you risk non-planarity:

Syndromes can appear in triples, making 'matching' an NP-complete problem:

Syndromes can appear in triples, making 'matching' an NP-complete problem:

 statistical physics simulations show that thresholds at or above the surface code's can be obtained

Syndromes can appear in triples, making 'matching' an NP-complete problem:

- statistical physics simulations show that thresholds at or above the surface code's can be obtained
- efficient decoders can also be produced using RG, or a reduction to multiple matching problems.

Syndromes can appear in triples, making 'matching' an NP-complete problem:

- statistical physics simulations show that thresholds at or above the surface code's can be obtained
- efficient decoders can also be produced using RG, or a reduction to multiple matching problems.
- no efficient decoder has obtained the optimal threshold.

Color codes are similar to surface codes.

- Color codes are similar to surface codes.
- They use fewer data qubits, and permit easier logical gates, at the cost of higher stabiliser weight.

- Color codes are similar to surface codes.
- They use fewer data qubits, and permit easier logical gates, at the cost of higher stabiliser weight.
- Efficient decoders do not yet hit the optimal threshold.