# Deep Learning: Protein Structure

Experiment tracking Keras Neural Networks and Convolutional Neural Networks with mlflow for protein secondary structure classification.



### Proteins are physiological workhorses!









- 1. Catalysis biochemical reactions of metabolic pathways
- 2. Provide structure for cells / tissue
- 3. Responsible for transport
- 4. Liaisons for signaling and communication
- 5. Defense and Immunity
- 6. Cellular / organismal movement
- 7. Regulation of many processes (like gene expression or metabolism)
- 8. Storage and sensation
- 9. DNA Replication and Repair

### **CATH Database**



- The CATH database was created in the mid-1990s by Professor Christine Orengo and colleagues at University College London.
- It uses a combination of automatic methods and manual curation to classify protein domains from experimentally determined structures in the Protein Data Bank.
- The original goal of this classification was to help in identifying relationships between protein structures.
- In biology, it is known that structure informs function.
- Understanding structure can lead to the understanding of protein evolution and function!

### Predicting Protein Structure

### For this work, I am focusing on the `cath\_3class.npz` dataset

- This dataset focuses on the Class level of the CATH hierarchy.
- Class (C): Domains are categorized based on their secondary structure content. The main classes are:
  - Mainly Alpha (predominantly αhelices)
  - Mainly Beta (predominantly β-sheets)
  - Mixed Alpha-Beta (significant amount of both α-helices and β-sheets)
  - o Few Secondary Structures



### Deep Learning Approach

- Unlike classical machine learning problems that are based on making regressions or classifications on tabular data, the data used here is made up of 3D arrays of (x, y, z) coordinates.
- This is not easily solvable by classic ML methods line logistic regression, random forests, or even gradient boosted trees.
- Deep learning, and specifically, convolutional neural networks are a great application for this type of problem.



# GitHub Repo



### https://github.com/jairus-m/cathclassification-cnn

- Structured project
- Uses mlflow for experiment tracking
- Contains all the development
   EDA/training and production scripts
   to re-produce the experiments
- All dependencies in virtual environment is packaged up and can be ran in a Docker container

# Inputs + Pre-processing

- 100% Class balance
- General Raw Input
  - Single Numpy Ndarray of 3D atomic positions
  - Shape (16962, 1202, 3)
    - (# of proteins, max # of AAs, 3D coordinates)
- Neural Network Pre-processing
  - Flatten to a single array of shape (16962, 3606)
    - Where 3606 == 1202 x 3
- CNN Pre-processing
  - Add spatial/channel dimensions and convert to tensors to yield shape:
    - **(**16962*,* 1*,* 3*,* 1)

`protein\_data[0]` aka protein #1



### Model Architecture

### **Model Architectures**

- 1. One-Layer NN
  - 4 Neurons
- 2. <u>Two-Layer NN</u>
  - 64 Neurons
  - 64 Neurons
- 3. CNN
  - 2 3D Convolutional Layers
  - o <u>2 Pooling Layers</u>
  - o <u>2 Dense Layers</u>
- 4. Simplified CNN w/ Early Stopping
  - No Dense Layers

```
def cnn_4(X_train, X_val, X_test, y_train, y_val, y_test, signature):
   Experiment 4: Simplified CNN with Early Stopping
   with mlflow.start_run(run_name="Simplified CNN w/ Early Stopping"):
       model = keras.Sequential(
               layers.Conv3D(
                   32,
                   kernel_size=(3, 1, 3),
                   activation="relu",
                   padding="same",
                   input_shape=(1202, 1, 3, 1),
               layers.MaxPooling3D(pool_size=(2, 1, 1), padding="same"),
               layers.Conv3D(
                   64, kernel_size=(3, 1, 3), activation="relu", padding="same"
               layers.MaxPooling3D(pool_size=(2, 1, 1), padding="same"),
               layers.Flatten(),
               layers.Dense(3, activation="softmax"),
       model.compile(
           optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
       early_stopping = EarlyStopping(
            monitor="val_loss", patience=2, restore_best_weights=True
```

### Model Results - mlflow

#### Run details

| Run ID:     | 77eb0bf931d84c638825091555cc6991 | b8444e199a5a408ebdbeed48798dcb0f | 05d2f45ce16c475e93f9cfab6f813844 | b054d14d51b84041ac491d1adf22b883 |
|-------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Run Name:   | Simplified CNN w/ Early Stopping | CNN                              | Basic NN - Two Layers            | Basic NN - One Layer             |
| Start Time: | 2025-02-19 20:45:33              | 2025-02-19 20:24:02              | 2025-02-19 20:23:52              | 2025-02-19 20:23:46              |
| End Time:   | 2025-02-19 20:53:09              | 2025-02-19 20:45:33              | 2025-02-19 20:24:02              | 2025-02-19 20:23:52              |
| Duration:   | 7.6min                           | 21.5min                          | 10.1s                            | 6.0s                             |

#### > Parameters

Metrics

#### Show diff only

| test_accuracy | 0.856 | 0.852 | 0.615 | 0.37  |
|---------------|-------|-------|-------|-------|
| test_loss     | 0.386 | 0.832 | 1.679 | 1.185 |

### Final Results

- All experimental results
- Final model: Simplified CNN w/ Early Stopping
  - o **CNN Architecture**
- Training time: ~7 min
- **Accuracy:** ~86%



# Final Results – Output

Training set raw predictions / results:

### **Raw Predictions**

### Confusion Matrix/ Accuracy

```
Confusion Matrix:
[[555 0 15]
[ 4 480 80]
[ 44 79 440]]
```

```
54/54

Test accuracy: 0.8556

Test loss: 0.3735
```

### String Results

|          | y_true         | y_pred       | is_equal |
|----------|----------------|--------------|----------|
| 0        | Mainly Alpha   | Mainly Alpha | True     |
| 1        | Mainly Alpha   | Mainly Alpha | True     |
| 2        | Mainly Beta    | Alpha-Beta   | False    |
| 3        | Mainly Alpha   | Mainly Alpha | True     |
| 4        | Mainly Beta    | Mainly Beta  | True     |
|          |                |              |          |
| 1692     | Alpha-Beta     | Alpha-Beta   | True     |
| 1693     | Mainly Beta    | Mainly Beta  | True     |
| 1694     | Mainly Alpha   | Mainly Alpha | True     |
| 1695     | Mainly Alpha   | Mainly Alpha | True     |
| 1696     | Mainly Alpha   | Mainly Alpha | True     |
| 1697 rov | ws × 3 columns |              |          |

# Example Results

Predicted 3D Structure of Protein #877: 'Alpha-Beta' (True Class: 'Alpha-Beta)



# Example Results

Predicted 3D Structure of Protein #2: 'Alpha-Beta' (True Class: 'Mainly Beta)



### Conclusion

- Iterated and developed different NNs and CNNs to solve a complex problem
  - Improve performance from 37% > 86%
- Built a Python project that utilized mlflow to organize and track experiments
  - Modular, version controlled, reproducible, and self-contained (Dockerized)
- Successfully used 3D atomic spatial data to predict protein secondary structures with reasonable accuracy