CC1 - Lundi 5 octobre 2020 - Éléments de correction

Exercice 1. On considère 5 lancers successifs d'une pièce non biaisée.

- 1. Proposer un espace de probabilité pour modéliser cette expérience.
- 2. Écrire explicitement (en langage mathématique) la partie A de Ω correspondant à l'événement « il existe une séquence de au moins 3 Piles successifs parmi les 5 lancers ». Donner la liste des éléments de A puis calculer sa probabilité.
- 3. Pierre et Paul choisissent lequel des deux paye l'addition en jouant un Pile ou Face. Pierre propose de modifier la règle : Paul réalise 5 lancers et paye s'il y a au moins une séries de 3 piles ou 3 faces successifs. Sinon c'est Pierre qui paye. Paul doit-il accepter?

Correction

- 1. On peut considérer $\Omega = \{0,1\}^5$, $\mathcal{F} = \mathcal{P}(\Omega)$ et P la probabilité uniforme sur Ω . Comme $Card(\Omega) = 2^5 = 32$, on en déduit P(B) = Card(B)/32 pour toute partie $B \subset \Omega$.
- 2. L'événement correspondant est $A = \{(\omega_i)_{i=1,\dots,5} \in \Omega, \exists i \leq 3, \omega_i = \omega_{i+1} = \omega_{i+2} = 1\}$. Il faut calculer le cardinal de A. Une méthode consiste à compter les configurations de A dont la plus longue série de Pile est de longueur 5 (il n'y en a qu'une), 4 (il y en a 2) et 3 (il y en a 5). Finalement Card(A) = 8 et on en déduit P(A) = 1/4.
- 3. On introduit $B = \{(\omega_i)_{i=1,\dots,5} \in \Omega, \exists i \leq 3, \omega_i = \omega_{i+1} = \omega_{i+2} = 0\}$. Comme $A \cap B = \emptyset$ on obtient $P(A \cup B) = P(A) + P(B) = 1/2$. Les deux jeux sont donc équitables et donnent la même probabilité de gagner à Pierre et Paul.

Exercice 2. On considère un espace de probabilité (Ω, \mathcal{F}, P) et A une partie de Ω . On considère la fonction $X = 1_A$, fonction indicatrice de A, définie par $X(\omega) = 1$ si $\omega \in A$ et $X(\omega) = 0$ si $\omega \in A^c$.

- 1. Soit $B \in \mathcal{B}(\mathbb{R})$. Expliciter l'ensemble $\{X \in B\}$, c'est-à-dire écrire $\{X \in B\}$ à l'aide de parties de Ω en distinguant plusieurs cas.
- 2. En déduire que X est une variable aléatoire si et seulement si $A \in \mathcal{F}$.

On suppose jusqu'à la fin de l'exercice que $A \in \mathcal{F}$ et que P(A) = 1/2.

- 3. Donner la loi de X ainsi que sa fonction de répartition et la dessiner.
- 4. Montrer que Y = 1 X a même loi que X puis calculer P(X = Y).

Correction

1. On rappelle que $\{X \in B\} = X^{-1}(B)$. On a donc

$$\{X \in B\} = \begin{cases} A & \text{si } 1 \in B \text{ et } 0 \notin B \\ A^c & \text{si } 0 \in B \text{ et } 1 \notin B \\ \emptyset & \text{si } 0 \notin B \text{ et } 1 \notin B \\ \Omega & \text{si } 0 \in B \text{ et } 1 \in B. \end{cases}$$

- 2. Si X est une variable aléatoire alors $A = \{X = 1\} \in \mathcal{F}$. Réciproquement si $A \in \mathcal{F}$ alors $A^c \in \mathcal{F}$ par stabilité par passage au complémentaire. Comme de plus Ω et \emptyset sont dans toutes les tribus, la question précédente permet de conclure que X est une variable aléatoire.
- 3. La variable X est discrète et elle est donc caractérisée par son image et la donnée de P(X=x) pour tout $x \in Im(X)$. Ici $Im(X) = \{0,1\}$ et $P_X(1) = P(X=1) = P(A) = 1/2$ et $P_X(0) = P(X=0) = P(A^c) = 1/2$. On trouve donc que X suit une loi de Bernoulli de paramètre 1/2. La fonction de répartition est définie pour $t \in \mathbb{R}$ par $F_X(t) = P(X \le t)$ et on obtient donc

$$F(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1/2 & \text{si } 0 \le t < 1 \\ 1 & \text{si } t \ge 1. \end{cases}$$

4. Avec le même raisonnement on obtient que $Im(Y) = \{0,1\}$ et P(Y=0) = P(Y=1) = 1/2. Donc Y et X ont même loi. Enfin $P(X=Y) = P(\emptyset) = 0$. Les variables X et Y sont donc identiques en loi mais ne sont presque sûrement jamais égales.

Exercice 3. Soit (Ω, \mathcal{F}, P) un espace de probabilité et X une variable aléatoire réelle. Montrer que P(X = 0) = 1 si et seulement si P(|X| > 1/n) = 0 pour tout $n \ge 1$.

Correction On remarque que

$$\{X \neq 0\} = \bigcup_{n \geq 1} \uparrow \{|X| > 1/n\},$$

donc $P(X \neq 0) = \lim \uparrow P(|X| > 1/n)$. Si la suite $(P(|X| > 1/n))_{n \geq 1}$ est constante égale à 0, on obtient $P(X = 0) = 1 - P(X \neq 0) = 1$ (plus simplement sinon $P(X \neq 0) \leq \sum_{n \geq 1} P(|X| > 1/n) = 0$).

 Réciproquement si P(X=0)=1 alors pour tout $n\geq 1,$ $\{|X|>1/n\}\subset \{X\neq 0\}$ donc $P(|X|>1/n)\leq P(X\neq 0)=0.$

Exercice 4. Soit X une variable aléatoire admettant une densité f définie et continue sur \mathbb{R} et paire. On note F la fonction de répartition de X.

- 1. Montrer que pour tout réel x, F(x) + F(-x) = 1.
- 2. On suppose que la variable X^2 suit la loi exponentielle de paramètre 1. Donner la fonction de répartition de X^2 puis déterminer la fonction de répartition F de X et enfin de la densité f.

Correction

- 1. Pour tout réel x, $F(x)+F(-x)=\int_{-\infty}^x f(t)\ dt+\int_{-\infty}^{-x} f(t)\ dt$. Dans la seconde intégrale on fait le changement de variable u=-x et on utilise la parité de f pour obtenir $F(x)+F(-x)=\int_{-\infty}^x f(t)\ dt+\int_x^{+\infty} f(t)\ dt=\int_{\mathbb{R}} f(t)\ dt=1$.
- 2. On note G la fonction de répartition de l'exponentielle de paramètre 1. On a donc pour $u \in \mathbb{R}$, $G(x) = \int_{-\infty}^{x} e^{-t} 1_{[0,+\infty[(t)]} dt = (1-e^{-x}) 1_{[0,+\infty[(x)]} x)$. Pour $x \in \mathbb{R}$, on a donc $P(X^2 \le x) = (1-e^{-x}) 1_{[0,+\infty[(x)]} x)$. Or pour $x \ge 0$, comme F_X est continu (car X admet une densité) donc

$$P(X^2 \le x) = P(-\sqrt{x} \le X \le \sqrt{x}) = F(\sqrt{x}) - F(-\sqrt{x}).$$

En utilisant la question 1, on en déduit que

$$F(\sqrt{x}) = 1 - \frac{e^{-x}}{2}.$$

Ce qui est équivalent à dire que pour tout $x \ge 0$, $F(x) = 1 - e^{-x^2}/2$. Et, en utilisant la question 1, pour x < 0, on obtient $F(x) = e^{-x^2}/2$. Cette fonction s'écrit comme l'intégrale entre $-\infty$ et x de f définie par $f(x) = -xe^{-x^2}$ si $x \le 0$ et $f(x) = xe^{-x^2}$ si $x \ge 0$.

On a raisonné par conditions nécessaires. L'exercice ne le demande pas vraiment mais on peut faire la réciproque. Si on considère une variable de densité f, on peut vérifier aisément que f est paire et, en calculant la fonction de répartition, que X^2 suit une loi exponentielle.