Assignment - 1

Aaditya Khedekar EE19BTECH11027

September 10, 2020

Problem Statement

Write, but do not solve, the equations of motion for the translational mechanical system shown in Figure.

(1.1)

Solution

The given system has three degree of freedoms, as all masses can be moved independently. We can form equation similar to electrical mesh equations. So, for M1:

$$\begin{pmatrix} Sum \text{ of applied forces at } x1 \end{pmatrix} = \begin{pmatrix} Sum \text{ of impedances connected to the motion at } x1 \end{pmatrix} X_1(s) - \begin{pmatrix} Sum \text{ of impedances between } x_1 \text{ and } x_2 \end{pmatrix} X_2(s) - \begin{pmatrix} Sum \text{ of impedances between } x_1 \text{ and } x_3 \end{pmatrix} X_3(s)$$

$$\implies 0 = [M_1 s^2 + f_{v_1} s + f_{v_2} s + K_2 + K_3] X_1(s) - [K_3] X_2(s) - [f_{v_1} s] X_3(s)$$

Substituting the values of variables in above equation from given figure:

$$0 = [4s^{2} + 2s + 2s + 4 + 4]X_{1}(s) - [4]X_{2}(s) - [2s]X_{3}(s)$$
$$0 = [4s^{2} + 4s + 8]X_{1}(s) - [4]X_{2}(s) - 2sX_{3}$$
(2.1)

Similarly for M2:

$$\begin{pmatrix}
Sum \text{ of applied forces at } x2
\end{pmatrix} = \begin{pmatrix}
Sum \text{ of impedances connected to the motion at } x2
\end{pmatrix} X_2(s) - \begin{pmatrix}
Sum \text{ of impedances between } x2 \text{ and } x1
\end{pmatrix} X_1(s) - \begin{pmatrix}
Sum \text{ of impedances between } x2 \text{ and } x3
\end{pmatrix} X_3(s)$$

$$\implies F(s) = [M_2 s^2 + f_{12} s + K_3] X_2(s) - [K_3] X_1(s) - [f_{12} s] X_3(s)$$

Substituting the values of variables in above equation from given figure:

$$F(s) = [5s^{2} + 3s + 4]X_{2}(s) - [4]X_{1}(s) - [3s]X_{3}(s)$$

$$F(s) = [5s^{2} + 3s + 4]X_{2}(s) - [4]X_{1}(s) - 3sX_{3}$$
(2.2)

Similarly for M3:

$$\begin{pmatrix}
Sum \text{ of } \\
applied \\
forces \\
at \times 3
\end{pmatrix} = \begin{pmatrix}
Sum \text{ of } \\
impedances \\
connected to \\
the motion \\
at \times 3
\end{pmatrix} \times_3(s) - \begin{pmatrix}
Sum \text{ of } \\
impedances \\
between \\
x3 \text{ and } x1
\end{pmatrix} \times_1(s) - \begin{pmatrix}
Sum \text{ of } \\
impedances \\
between \\
x3 \text{ and } x2
\end{pmatrix} \times_2(s)$$

$$\implies F(s) = [M_3 s^2 + f_{V_3} s + f_{V_1} s + K_1] X_3(s) - [f_{V_1} s] X_1(s) - [f_{V_2} s] X_2(s)$$

Substituting the values of variables in above equation from given figure:

$$F(s) = [5s^{2} + 2s + 3s + 4]X_{3}(s) - [2s]X_{1}(s) - [3s]X_{2}(s)$$

$$0 = [5s^{2} + 5s + 4]X_{3}(s) - [2s]X_{1}(s) - 3sX_{2}(s)$$
(2.3)

So, the equations of motion for translational system are:

$$0 = (4s^2 + 4s + 8)X_1(s) - 4X_2(s) - 2sX_3(s)$$

$$F(s) = (5s^2 + 3s + 4)X_2(s) - 4X_1(s) - 3sX_3(s)$$

$$0 = (5s^2 + 5s + 4)X_3(s) - 2sX_1(s) - 3sX_2(s)$$

here, F(s): Function of applied force on M2 in s-domain $X_1(s)$, $X_2(s)$ and $X_3(s)$ relates to motion of M1, M2 and M3 respectively.