

Universidade de Santa Catarina 34° Seminário de Iniciação Científica Centro e Ciências Tecnológicas – CCT Departamento de Ciência da Computação

SELEÇÃO, PONTUAÇÃO E RAQUEAMENTO DE PROVEDORES SERVERLESS UTILIZANDO MÉTODOS DE DECISÃO MULTICRITÉRIO

Palavras-chave: Serverless; Multi-criteria decision analysis; AHP.

Bolsista: Leandro Ribeiro Rittes – PROBIC

Orientador: Adriano Fiorese

Sumário

- Introdução
- Metodologia Proposta
- Análise de resultados
- Considerações Finais

• Desafios no desenvolvimento de software

- Desafios no desenvolvimento de software
 - Qual o problema esse software resolve

- Desafios no desenvolvimento de software
 - Qual o problema esse software resolve
 - Quais os softwares similares que resolvem totalmente ou parcialmente esse problema

- Desafios no desenvolvimento de software
 - Qual o problema esse software resolve
 - Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
 - Quais tecnologias usar em cada área do software

- Desafios no desenvolvimento de software
 - Qual o problema esse software resolve
 - Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
 - Quais tecnologias usar em cada área do software
 - Contratação de mão de obra qualificada

- Desafios no desenvolvimento de software
 - Qual o problema esse software resolve
 - Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
 - Quais tecnologias usar em cada área do software
 - Contratação de mão de obra qualificada
 - Qual o orçamento de toda essa operação

- Desafios no desenvolvimento de software
 - Qual o problema esse software resolve
 - Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
 - Quais tecnologias usar em cada área do software
 - Contratação de mão de obra qualificada
 - Qual o orçamento de toda essa operação
- Infraestrutura

Desafios no desenvolvimento de software

- Qual o problema esse software resolve
- Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
- Quais tecnologias usar em cada área do software
- Contratação de mão de obra qualificada
- Qual o orçamento de toda essa operação

Infraestrutura

 Qual a quantidade de servidores são necessários para o funcionamento da operação

Desafios no desenvolvimento de software

- Qual o problema esse software resolve
- Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
- Quais tecnologias usar em cada área do software
- Contratação de mão de obra qualificada
- Qual o orçamento de toda essa operação

Infraestrutura

- Qual a quantidade de servidores são necessários para o funcionamento da operação
- Quais as tecnologias empregadas nesses servidores

Desafios no desenvolvimento de software

- Qual o problema esse software resolve
- Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
- Quais tecnologias usar em cada área do software
- Contratação de mão de obra qualificada
- Qual o orçamento de toda essa operação

Infraestrutura

- Qual a quantidade de servidores são necessários para o funcionamento da operação
- Quais as tecnologias empregadas nesses servidores
- Quantidade de m\u00e3o de obra qualificada para manusear esses servidores

Desafios no desenvolvimento de software

- Qual o problema esse software resolve
- Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
- Quais tecnologias usar em cada área do software
- Contratação de mão de obra qualificada
- Qual o orçamento de toda essa operação

Infraestrutura

- Qual a quantidade de servidores são necessários para o funcionamento da operação
- Quais as tecnologias empregadas nesses servidores
- Quantidade de mão de obra qualificada para manusear esses servidores
- Custo de toda essa operação

Desafios no desenvolvimento de software

- Qual o problema esse software resolve
- Quais os softwares similares que resolvem totalmente ou parcialmente esse problema
- Quais tecnologias usar em cada área do software
- Contratação de mão de obra qualificada
- Qual o orçamento de toda essa operação

Infraestrutura

- Qual a quantidade de servidores são necessários para o funcionamento da operação
- Quais as tecnologias empregadas nesses servidores
- Quantidade de mão de obra qualificada para manusear esses servidores
- Custo de toda essa operação

Serverless

■ Problema a ser resolvido

- Coleta de Dados
- Escolha do método
- Implementação do método e biblioteca
- Testes dos códigos

- Coleta de Dados
- Escolha do método
- Implementação do método e biblioteca
- Testes dos códigos

Coleta de Dados

- Site oficial (amazon, google, microsoft)
- Relatório de benchmark

Dados armazenados

PI	Tipo	Valores
Tempo de computação	НВ	200.000, 300.000, 400.000
Memória	NB	128, 512, 1024
Cold start	LB	1, 2, 5
Tempo de execução	НВ	1, 5, 15, 30

1GB/segundo +, Arredonda mento da duracao, Requisicao de graça/mes, 1M+ requisicao, Scalability, Concurrency, funcoes max

Requisição

PI	Valor	Peso
Tempo de computação	400.000 GB/s	3
Memória	512 MB	1
Cold start	1 ms	5
Tempo de execução	30 min	8

- Coleta de Dados
- Escolha do método
- Implementação do método e biblioteca
- Testes dos códigos

Métodos de Decisão Multicritério

Motivo

Métodos de Decisão Multicritério

- Motivo
- Métodos

Métodos de Decisão Multicritério

- Motivo
- Métodos
 - AHP

Métodos de Decisão Multicritério

- Motivo
- Métodos
 - AHP
- Motivo da escolha

Métodos de Decisão Multicritério

AHP:

- Estruturação Hierárquica
- Flexibilidade
- Análise de Sensibilidade
- Entendimento do pesquisador

Fonte: Facebook (2022)

• Implementação do método e biblioteca

• Implementação do método e biblioteca

Biblioteca escolhida: PyDecision

Robusta

• Implementação do método e biblioteca

Biblioteca escolhida: PyDecision

- Robusta
- Grande variedade de métodos AHP, AHP Fuzzy, PROMETHEE, TOPSIS, etc

• Implementação do método e biblioteca

- Coleta de Dados
- Escolha do método
- Implementação do método e biblioteca
- Testes dos códigos

- Testes dos códigos
 - Teste de confiabilidade
 - Teste geral

• Teste de confiabilidade

Requisição

PI	Valor	Peso
Tempo de computação	400.000 GB/s	9
Memória	512 MB	9
Cold start	1 ms	9
Tempo de execução	30 min	9
Requisição adicional	200.000	1

• Teste de confiabilidade - Criação dos cenários de testes reais

Peso

Requisição 1

Pl Valor

Tempo de 400.000 GB/s

Tempo de 9 computação Memória 9 512 MB Cold start 1 ms 9 Tempo de 30 min 9 execução Requisição 200.000 adicional

Prov 1 4 Pl's

Pl's

Prov 2 3 Pl's

Prov 3 2 Pl's

Prov 4 1 Pl's

Prov 5 0 Pl's

• Teste de confiabilidade

Teste geral

Requisição

PI	Valor	Peso
Tempo de computação	400.000 GB/s	9
Memória	512 MB	7
Cold start	1 ms	5
Tempo de execução	30 min	3
Requisição adicional	200.000	1

• Teste geral - Criação dos cenários de testes

Requisição 1

PI	Valor	Peso
Tempo de computação	400.000 GB/s	9
Memória	512 MB	9
Cold start	1 ms	9
Tempo de execução	30 min	9
Requisição adicional	200.000	1

Execução dos testes

■ Metodologia

• Execução dos testes

Rank PyDecision

Provedor	Pontos
Provedor x1	p1
Provedor x2	p2
Provedor x3	р3
Provedor x4	p4
Provedor x5	р5

Metodologia

• Execução dos testes

■ Metodologia

Execução dos testes

Rank Implementado

Provedor	Pontos
Provedor y1	p1
Provedor y2	p2
Provedor y3	р3
Provedor y4	p4
Provedor y5	p5

■ Metodologia

Execução dos testes

Rank PyDecision

Provedor	Pontos
Provedor x1	p1
Provedor x2	p2
Provedor x3	р3
Provedor x4	p4
Provedor x5	р5

Rank Implementado

Provedor	Pontos
Provedor y1	p1
Provedor y2	p2
Provedor y3	р3
Provedor y4	р4
Provedor y5	р5

• Teste de confiabilidade - Precisão do ranqueamento de todos provedores

• Teste geral - Precisão do ranqueamento de todos provedores

• Teste geral - Precisão dos 3 primeiros provedores

• Teste geral - Tempo de execução

Considerações Finais

- Em cenário com 500 provedores o algoritmo implementado obteve um desempenho superior em termos de tempo de execução sobre o algoritmo da biblioteca PyDecision
- Ambos os algoritmos alcançaram 100% de acurácia para os testes de confiabilidade
- O algoritmo implementado obteve 100% de acurácia em ranquear os 3 melhores provedores em 99 de 100 testes

Referências

https://pubs.sciepub.com/ajis/1/1/5/ Acessado em 2024

https://aws.amazon.com/pt/ Acessado em 2024

https://azure.microsoft.com/pt-br/ Acessado em 2024

https://cloud.google.com/ Acessado em 2024

https://www.facebook.com/AHPforDecisionMaking/about Acessado em 2024

Agradecimentos

SELEÇÃO, PONTUAÇÃO E RAQUEAMENTO DE PROVEDORES SERVERLESS UTILIZANDO MÉTODOS DE DECISÃO MULTICRITÉRIO

Contatos: leandro.rittes1990@edu.udesc.br adriano.fiorese@udesc.br

