

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE É	CRITE
Mathématiques 1	_	Durée de l'épreuve :	2h05
Wathernatiques 1	C	Date de l'épreuve :	09 juin 2020

Numéro	d'ordre	du candidat	:

Instructions:

- L'élève répond à toutes les questions de la partie 1
- L'élève répond à exactement 2 questions de la partie 2. Il indique ses choix en cochant les cases appropriées ci-dessous

Seules les réponses correspondant aux questions choisies par l'élève seront évaluées. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix clairement renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie 1 (obligatoire)

Exercice I: Nombres complexes 30 points

Partie 2 (exactement 2 exercices au choix)

Exercice II : Nombres complexes	15 points
Exercice III : Géométrie analytique dans l'espace	15 points
Exercice IV : Systèmes linéaires	15 points
Exercice V : Calculs de probabilités	15 points
Exercice VI: Combinatoire	15 points

Partie 1 (obligatoire)

I. Nombres complexes.

1) Soit le polynôme

$$P(z) = i \cdot z^3 - (3+i) \cdot z^2 - (5-2i) \cdot z - 8 - 14i \quad \forall z \in \mathbb{C}$$

Résoudre P(z) = 0 sachant que P admet une racine imaginaire pure.

2) Soit le nombre complexe

$$Z = \frac{10\sqrt{3} + 6i}{\sqrt{3} + 2i} - \frac{14 + 14\sqrt{3}i}{2 - \sqrt{3}i}$$

- a) Écrire Z sous forme algébrique et sous forme trigonométrique.
- b) Déterminer les racines quatrièmes complexes de Z sous forme trigonométrique.
- 3) Calculer et donner le résultat sous forme algébrique et sous forme trigonométrique:

$$Z = \frac{\left(1+i\right)^{2020}}{1+i^{2020}}$$

4) Calculer et donner le résultat sous forme trigonométrique et sous forme algébrique:

$$Z = \frac{\left(2 \cdot cis\left(\frac{\pi}{3}\right)\right)^4 \cdot \left(\sqrt{2} \cdot cis\left(\frac{\pi}{4}\right)\right)^5}{\left(2 \cdot cis\left(\frac{\pi}{6}\right)\right)^5}$$

12+(6+4)+4+4=30 points

Partie 2 (exactement 2 exercices au choix)

II. Nombres complexes.

1) Résoudre dans C l'équation suivante et écrire l'ensemble des solutions:

$$(1-i)\cdot \overline{z} = (2+i)\cdot z + 3$$

- 2) Soit les nombres complexes $z_1 = \frac{\left(1 + \sqrt{3}i\right)^2}{\sqrt{3} i}$ et $z_2 = \sqrt{2} \cdot cis\left(-\frac{\pi}{4}\right)$.
 - a) Écrire z_1 sous forme trigonométrique.
 - b) Soit $Z = \frac{z_1}{z_2}$. Écrire Z sous forme trigonométrique et sous forme algébrique.
 - c) En déduire la valeur exacte de $\cos \frac{\pi}{12}$.

5+10=15 points

III. Géométrie analytique de l'espace.

Dans un repère orthonormé de l'espace on donne les points A(2;-1;0); B(1;0;-2); C(0;2;1); D(-3;-2;2) et le plan $\alpha \equiv 4x+3y+z=3$.

- 1) Vérifier que les points A; B et C ne sont pas alignés.
- 2) Déterminer une équation cartésienne du plan Π passant par A; B et C.
- 3) Est-ce que $D \in \Pi$?
- 4) Déterminer un système d'équations paramétriques de la droite d passant par D et qui est orthogonale au plan α .
- 5) Déterminer les coordonnées du point d'intersection de la droite d et du plan Π .
- 6) Soit les plans $\pi_1 \equiv 3x + 2y + z = 4$ et $\pi_2 \equiv x + 2y z = 0$. Déterminer $\pi_1 \cap \pi_2$. Donner les éléments caractéristiques de cette intersection.

(1+2+1+2+4+5)=15 points

IV. Systèmes linéaires.

Soit le système paramétré suivant:

$$\begin{cases} x+y+a\cdot z &= 0\\ x+a\cdot y+z &= 2\cdot a\\ (a+1)\cdot x+a\cdot y+z &= a \end{cases} \text{ avec } a\in\mathbb{R}$$

- 1) Déterminer a pour que le système admette une solution unique.
- 2) Résoudre et interpréter géométriquement le système pour a=0 et a=1.
- 3) Résoudre et interpréter géométriquement le système pour $a \in \mathbb{R}^* \setminus \{-1; 1\}$ 15 points

V. Probabilités.

Une urne contient 4 boules rouges, 6 boules noires et 2 boules blanches indiscernables au toucher.

- 1) On tire 3 boules successivement sans remise de l'urne. Calculer la probabilité d'obtenir:
 - a) Aucune boule noire.
 - b) Une boule de chaque couleur.
 - c) 3 boules de même couleur.
 - d) Exactement 2 boules rouges.
- On tire 3 boules successivement avec remise de l'urne.
 Calculer la probabilité d'obtenir 3 boules de même couleur.

(3+3+3+3)+3=15 points

VI. Combinatoire.

Un entraîneur d'une équipe de handball a 16 joueurs à sa disposition dont 3 gardiens de but et 13 joueurs de champ (Feldspieler). Parmi les gardiens il y a un étranger et parmi les joueurs de champ il y a 4 étrangers, les autres joueurs sont des luxembourgeois. Pour former une équipe il faut choisir un gardien et 6 joueurs de champ.

- 1) Combien d'équipes peut-on former?
- 2) Combien d'équipes peut-on former contenant uniquement des luxembourgeois?
- 3) Combien d'équipes peut-on former contenant exactement 3 étrangers?
- 4) Combien d'équipes peut-on former si le gardien Misch ne veut jouer ni avec le joueur de champ Jang, ni avec le joueur de champ Pit?
- 5) De combien de manières peut-on distribuer des tricots numérotés de 1 à 16 aux 16 joueurs sachant que les trois premiers tricots sont réservés pour les gardiens?

(2+2+4+4+3)=15 points