CSCI B609: "Foundations of Data Science"

Lecture 6/7: Best-Fit Subspaces and Singular Value Decomposition

Slides at http://grigory.us/data-science-class.html

Grigory Yaroslavtsev

http://grigory.us

Singular Value Decomposition: Intro

- $n \times d$ data matrix A (n rows and d columns)
- Each row is a d-dimensional vector
- Find best-fit k-dim. subspace S_k for rows of A?
- Minimize sum of squared distances from A_i to S_k

SVD: Greedy Strategy

- Find best fit 1-dimensional line
- Repeat k times
- When k = r = rank(A) we get the SVD: $A = UDV^T$

$A = UDV^T$: Basic Properties

- D = Diagonal matrix (positive real entries d_{ii})
- *U*, *V*: orthonormal columns:
 - $-v_1,...,v_r \in \mathbb{R}^d$ (best fitting lines)
 - $-u_1$, ..., $u_r \in \mathbb{R}^n$ (~projections of rows of A on $v_i's$)
 - $-\langle \boldsymbol{u}_i, \boldsymbol{u}_j \rangle = \delta_{ij}, \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle = \delta_{ij}$
- $A = \sum_i d_{ii} \boldsymbol{u}_i \boldsymbol{v}_i^T$

Singular Values vs. Eigenvalues

- If A is a square matrix:
 - Vector \boldsymbol{v} such that $A\boldsymbol{v} = \lambda \boldsymbol{v}$ is an eigenvector
 - $-\lambda$ = eigenvalue
 - For symmetric real matrices v's are orthonormal $A = VDV^T$
 - -V's columns are eigenvectors of A
 - Diagonal entries of D are eigenvalues $\lambda_1, \dots, \lambda_n$
- SVD is defined for all matrices (not just square)
 - Orthogonality of singular vectors is automatic $A \boldsymbol{v}_i = d_{ii} \boldsymbol{u}_i \text{ and } A^T \boldsymbol{u}_i = d_{ii} \boldsymbol{v}_i \text{ (will show)}$ $A^T A \boldsymbol{v}_i = d_{ii}^2 \boldsymbol{v}_i \Rightarrow \boldsymbol{v}_i' s \text{ are eigenvectors of } A^T A$

Projections and Distances

• Minimizing distance = maximizing projection $||x||_2^2 = (projection)^2 + (distance\ to\ line)^2$

SVD: First Singular Vector

- Find best fit 1-dimensional line
- v = v = unit vector along the best fit line
- a_i = i-th row of A, length of its projection: $|\langle a_i, v \rangle|$
- Sum of squared projection lengths: $||Av||_2^2$
- First singular vector:

$$\boldsymbol{v}_1 = \arg\max_{||\boldsymbol{v}||_2=1} ||A\boldsymbol{v}||_2$$

- If there are ties, break arbitrarily
- $\sigma_1(A) = ||Av_1||_2$ is the first singular value

SVD: Greedy Construction

- Find best fit 1-dimensional line, repeat r times (until projection is 0)
- Second singular vector and value:

$$\mathbf{v}_2 = \arg \max_{\mathbf{v} \perp \mathbf{v}_1, ||\mathbf{v}||_2 = 1} ||A\mathbf{v}||_2$$

 $\sigma_2(A) = ||A\mathbf{v}_2||_2$

k-th singular vector and value:

$$\boldsymbol{v}_{k} = \arg \max_{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \dots \boldsymbol{v}_{k-1}, ||\boldsymbol{v}||_{2}=1} ||\boldsymbol{A}\boldsymbol{v}||_{2}$$
$$\sigma_{k}(\boldsymbol{A}) = ||\boldsymbol{A}\boldsymbol{v}_{k}||_{2}$$

• Will show: $(v_1, v_2, ..., v_k)$ is best-fit subspace

Best-Fit Subspace Proof: k = 2

- W = best-fit 2-dimensional subspace
- Orthonormal basis $(w_1, w_2) : ||Aw_1||_2^2 + ||Aw_2||_2^2$
- Key observation: choose $w_2 \perp v_1$
 - If $W \perp v_1$ then any vector in W works
 - Otherwise $oldsymbol{v}_1 = oldsymbol{v}_1^{||} + oldsymbol{v}_1^{\perp}$ for $oldsymbol{v}_1^{||} =$ projection on W
 - Choose $\boldsymbol{w}_2 \perp \boldsymbol{v}_1^{||}$:

$$\langle \boldsymbol{w}_2, \boldsymbol{v}_1 \rangle = \langle \boldsymbol{w}_2, \boldsymbol{v}_1^{||} + \boldsymbol{v}_1^{\perp} \rangle = \langle \boldsymbol{w}_2, \boldsymbol{v}_1^{||} \rangle + \langle \boldsymbol{w}_2, \boldsymbol{v}_1^{\perp} \rangle = 0$$

•
$$||Aw_1||_2^2 \le ||Av_1||_2^2$$
 and $||Aw_2||_2^2 \le ||Av_2||_2^2$
 $||Aw_1||_2^2 + ||Aw_2||_2^2 \le ||Av_1||_2^2 + ||Av_2||_2^2$

Best-Fit Subspace Proof: General k

- W = best-fit k -dimensional subspace
- $V_{k-1} = span(v_1, ..., v_{k-1})$ best fit (k-1)dimensional subspace
- Orthonormal basis $w_1, ..., w_k$, where $w_k \perp V_{k-1}$

$$\sum_{i=1}^{k-1} ||Aw_i||_2^2 \le \sum_{i=1}^{k-1} ||Av_i||_2^2$$

• $w_k \perp V_{k-1} \Rightarrow \text{by def. of } v_k \left| |Aw_k| \right|_2^2 \leq \left| |Av_k| \right|_2^2$

$$\sum_{i=1}^{k} ||Aw_i||_2^2 \le \sum_{i=1}^{k} ||Av_i||_2^2$$

Singular Values and Frobenius Norm

- $v_1, ..., v_r$ span the space of all rows of A
- $\langle \boldsymbol{a}_i, \boldsymbol{v} \rangle = 0$ for all $\boldsymbol{v} \perp \boldsymbol{v}_1, \dots, \boldsymbol{v}_r \Rightarrow$

$$\left|\left|a_{j}\right|\right|_{2}^{2}=\sum_{i=1}^{r}\langle a_{j}, v_{i}\rangle^{2}$$

$$\sum_{j=1}^{n} \sum_{k=1}^{d} a_{jk}^{2} = \sum_{j=1}^{n} \left| \left| \mathbf{a}_{j} \right| \right|_{2}^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} \langle \mathbf{a}_{j}, \mathbf{v}_{i} \rangle^{2} =$$

$$\sum_{i=1}^{r} \sum_{j=1}^{n} \langle a_j, v_i \rangle^2 = \sum_{i=1}^{r} ||Av_i||_2^2 = \sum_{i=1}^{r} \sigma_i^2(A)$$

•
$$\sqrt{\sum_{j=1}^{n} \sum_{k=1}^{d} a_{jk}^2} = ||\mathbf{A}||_{\mathbf{F}}$$
 (Frobenius norm) = $\sqrt{\sum_{i=1}^{r} \sigma_i^2(A)}$

Singular Value Decomposition

- $v_1, ..., v_r$ are right singular vectors
- $||Av_i||_2 = \sigma_i(A)$ are singular values
- u_1 , ..., u_r for $u_i = rac{A v_i}{\sigma_i(A)}$ are left singular vectors

$$\begin{bmatrix} A \\ n \times d \end{bmatrix} = \begin{bmatrix} U \\ n \times r \end{bmatrix} \begin{bmatrix} D \\ r \times r \end{bmatrix} \begin{bmatrix} V^T \\ r \times d \end{bmatrix}$$

Singular Value Decomposition

- Will prove that $A = \sum_{i=1}^{r} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$
- Lem. A = B iff $\forall v : Av = Bv$
- $\sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_j = A \boldsymbol{v}_j$
- v = linear combination of $v_j's$ + orthogonal
- Duplicate singular values ⇒ singular values are not unique, but always can choose orthogonal

Best rank-k Approximation

- $A_{\mathbf{k}} = \sum_{i=1}^{\mathbf{k}} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$
- A_k = best rank-k approx. in Frobenius norm
- Lem: rows of A_k = projections on span($v_1, ..., v_k$)
 - Projection of $a_i = \sum_{i=1}^k \langle a_i, v_i \rangle v_i^T$
 - Projections of $A: \sum_{i=1}^k A v_i v_i^T = \sum_{i=1}^k \sigma_i u_i v_i^T = A_k$
- For any matrix B of rank $\leq k$ (convergence of greedy) $||A A_k||_F \leq ||A B||_F$
- Recall: if v_i are orthonormal basis for column space:

$$||\mathbf{A}||_F^2 = \sum_{j=1}^n \sum_{i=1}^k \langle \boldsymbol{a}_j, \boldsymbol{v}_i \rangle^2 \Rightarrow \text{maximum for projections}$$

Rank-k Approximation and Similarity

- Database $A: n \times d$ matrix (document \times term)
- Preprocess to answer similarity queries:
 - Query $x \in \mathbb{R}^d$ = new document
 - Output: $Ax \in \mathbb{R}^n$ = vector of similarities
 - Naïve approach takes O(nd) time
- If we construct $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ first
 - $-A_k x = \sum_{i=1}^k \sigma_i u_i(v_i^T x) \Rightarrow O(kd + nk)$ time
 - Error: $\max_{|x|_{2} \le 1} ||(A A_{k})x|| \equiv ||(A A_{k})||_{2}$
 - $-||(A A_{k})||_{2} = \sigma_{1}(A A_{k}) = \sigma_{k+1}(A)$

Left Singular Values and Spectral Norm

See Section 3.6 for proofs

- Left singular vectors $oldsymbol{u}_1$, ..., $oldsymbol{u}_k$ or orthogonal
- $\bullet \left| \left| (A A_{\mathbf{k}}) \right| \right|_2 = \sigma_{\mathbf{k}+1}$
- For any rank $\leq k$ matrix B $||A A_{k}||_{2} \leq ||A B||_{2}$
- $A \boldsymbol{v}_i = d_{ii} \boldsymbol{u}_i$ and $A^T \boldsymbol{u}_i = d_{ii} \boldsymbol{v}_i$

Power Method

- $B = A^T A$ is a $\mathbf{d} \times \mathbf{d}$ matrix
- $B = \left(\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}\right)^{T} \left(\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}\right) =$ $= \left(\sum_{i=1}^{r} \sigma_{i} \boldsymbol{v}_{i} \boldsymbol{u}_{i}^{T}\right) \left(\sum_{j=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}\right) =$ $\sum_{i=1}^{r} \sigma_{i} \sigma_{j} \boldsymbol{v}_{i} (\boldsymbol{u}_{i}^{T} \boldsymbol{u}_{j}) \boldsymbol{v}_{j}^{T} = \sum_{i=1}^{r} \sigma_{i}^{2} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}$
- $B^2 = \left(\sum_{i=1}^r \sigma_i^2 \boldsymbol{v}_i \boldsymbol{v}_i^T\right)^T \left(\sum_{j=1}^r \sigma_j^2 \boldsymbol{v}_j \boldsymbol{v}_j^T\right) = \sum_{i=1}^r \sigma_i^4 \boldsymbol{v}_i \boldsymbol{v}_i^T$
- $B^k = \sum_{i=1}^r \sigma_i^{2k} \, \boldsymbol{v}_i \boldsymbol{v}_i^T \Rightarrow \text{ if } \sigma_1 > \sigma_2 \text{ take scaled 1st row}$

Faster Power Method

- PM drawback: A^TA is dense even for sparse A
- Pick random Gaussian x and compute $B^k x$
- $x = \sum_{i=1}^{d} c_i v_i$ (augment v_i 's to o.n.b. if r < d)
- $B^{\mathbf{k}} \mathbf{x} \approx (\sigma_1^{2\mathbf{k}} \mathbf{v}_1 \mathbf{v}_1^T) (\sum_{i=1}^d c_i \mathbf{v}_i) = \sigma_1^{2\mathbf{k}} c_1 \mathbf{v}_1$ $B^{\mathbf{k}} \mathbf{x} = (A^T A) (A^T A) \dots (A^T A) \mathbf{x}$
- Theorem: If x is unit \mathbb{R}^d -vector, $|x^Tv_1| \geq \delta$:
 - -V = subspace spanned by $\boldsymbol{v}_i's$ for $\sigma_i \geq (1-\epsilon)\sigma_1$
 - $-w = \text{unit vector after } k = \frac{1}{2\epsilon} \ln \left(\frac{1}{\epsilon \delta} \right) \text{ iterations of PM}$
 - \Rightarrow w has a component at most ϵ orthogonal to V

Faster Power Method: Analysis

- $A = \sum_{i=1}^{r} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$ and $\boldsymbol{x} = \sum_{i=1}^{d} c_i \boldsymbol{v}_i$
- $B^{\mathbf{k}} \mathbf{x} = \sum_{i=1}^{\mathbf{d}} \sigma_i^{2\mathbf{k}} \mathbf{v}_i \mathbf{v}_i^T \sum_{j=1}^{\mathbf{d}} c_j \mathbf{v}_j = \sum_{i=1}^{\mathbf{d}} \sigma_i^{2\mathbf{k}} c_i \mathbf{v}_i$

$$\left| \left| B^{k} x \right| \right|_{2}^{2} = \left| \left| \sum_{i=1}^{d} \sigma_{i}^{2k} c_{i} v_{i} \right| \right|_{2}^{2} = \sum_{i=1}^{d} \sigma_{i}^{4k} c_{i}^{2} \ge \sigma_{1}^{4k} c_{1}^{2} \ge \sigma_{i}^{4k} \delta^{2}$$

• (Squared) component orthogonal to V is

$$\sum_{i=m+1}^{d} \sigma_i^{4k} c_i^2 \le (1 - \epsilon)^{4k} \sigma_1^{4k} \sum_{i=m+1}^{d} c_i^2 \le (1 - \epsilon)^{4k} \sigma_1^{4k}$$

• Component of $w \perp V \leq (1 - \epsilon)^{2k} / \delta \leq \epsilon$

Choice of *x*

- y random spherical Gaussian with unit variance
- $x = \frac{y}{||y||_2}$:

$$Pr\left[\left|\mathbf{x}^{T}\mathbf{v}\right| \le \frac{1}{20\sqrt{d}}\right] \le \frac{1}{10} + 3e^{-d/64}$$

- $Pr\left[\left||\mathbf{y}|\right|_2 \ge 2\sqrt{\mathbf{d}}\right] \le 3e^{-\mathbf{d}/64}$ (Gaussian Annulus)
- $\mathbf{y}^T \mathbf{v} \sim N(0,1) \Rightarrow \Pr\left[\left|\left|\mathbf{y}^T \mathbf{v}\right|\right|_2 \le \frac{1}{10}\right] \le \frac{1}{10}$
- Can set $\delta = \frac{1}{20\sqrt{d}}$ in the "faster power method"

Singular Vectors and Eigenvectors

- Right singular vectors are eigenvectors of A^TA
- σ_i^2 are eigenvalues of A^TA
- Left singular vectors are eigenvectors of AA^T
- $A^T A$ satisfies $\forall x: x^T B x \geq 0$
 - $-B = \sum_{i} \sigma_{i}^{2} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}$
 - $\forall \mathbf{x} : \mathbf{x}^T \mathbf{v}_i \mathbf{v}_i^T \mathbf{x} = (\mathbf{x}^T \mathbf{v}_i)^2 \ge 0$
 - Such matrices are called positive semi-definite
- Any p.s.d matrix can be decomposed as A^TA