Работа 1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Константин Ерёмин Б03-204

Октябрь 2022

1 Введение

Цель: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряжённых состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используются: в первой части — прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка; во второй части — стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Предварительное описание работы

В первой части производится одноосное растяжение проволоки, описываемое законом Гука. Во второй части — изгиб балки (брусокстержень). По приложенным силам и прогибам балки можно вычислить модуль Юнга её материала.

I Определение модуля Юнга по измерениям растяжения проволоки

Для определения модуля Юнга используется прибор Лермантова (рис. 1). Проволока П с одного конца прикреплена к консоли К, с другой — к цилиндру шарнирного механизма Ш. На цилиндр опирается рычаг Г, связанный с зеркальцем З, с помощью которого можно измерить удлинение проволоки по шкале. Следует иметь в виду: проволока при отсутствии нагрузки несколько изогнута, что сказывается на результатах при использовании небольших грузов. Модуль Юнга может быть получен из формулы $\sigma = E\varepsilon$, где $\sigma = \frac{F}{S}$ — напряжение, E — модуль Юнга, $\varepsilon = \frac{ds}{dx}$ — деформация.

II Определение модуля Юнга по измерениям изгиба балки

Установка (рис. 2) состоит из стойки с опорными призмами А и Б, на которые опирается балка. В середине стержня подвешена на призме Д площадка П с грузами. Измерять стрелу прогиба можно с помощью индикатора И. Оборот большой стрелки соответствует 1 мм. Модуль Юнга материала связан со стрелой прогиба y_{max} соотношением $E = \frac{Pl^3}{4ab^3y_{max}}$, где P— нагрузка, l— расстояние между призмами, a и b— ширина и высота сечения стержня.

Рис. 1: Прибор Лермантова

Рис. 3: К нахождению Δl по n

3 Ход работы

I часть

Получим формулу, связывающую удлинение проволоки Δl с показаниями шкалы n. Из рисунка 3:

$$\operatorname{tg} \alpha = \frac{\Delta l}{r} \approx \alpha, \operatorname{tg} 2\alpha = \frac{n - n_1}{h} \approx 2\alpha \Rightarrow \Delta l = \frac{r}{2h} (n - n_1)$$

Параметры установки

d = 0.46 mm $l_0 = 176.8 \text{ cm}$ r = 15 mm h = 133.4 cm

Оценим максимально допустимую нагрузку: при разрушающем напряжении $\sigma_{max}=90\frac{\text{кг}}{\text{мм}^2}$ максимальная нагрузка составляет $0.3\sigma_{max}\pi\frac{d^2}{4}\approx45~\text{H}.$

Снимем зависимость удлинения проволоки от массы грузов, трижды увеличивая и уменьшая нагрузку на проволоку, и занесём результат в таблицу 1.

Таблица 1: Зависимость показаний n шкалы от нагрузки m.

m, г	455.3	700.1	946.2	1191.9	1437.5	1928.4	1682.8	1437.5	1191.9	946.2	700.1
n, cm	12.2	14.9	17.7	20.3	22.8	27.6	25.2	22.7	20.1	17.6	14.8
m, г	946.2	1437.5	1928.4	2173.9	2419.1	2664.7	2419.1	2173.9	1682.8	1191.9	946.2
n, cm	17.8	22.7	27.6	29.9	31.8	34.5	32.2	29.9	25.2	20.4	17.8
m, Γ	1191.9	1682.8	2173.9	2419.1	2664.7	3154.6	2909.1	2419.1	2173.9	1682.8	1191.9
n, cm	20.3	25.2	29.9	32.2	34.6	39.2	37.0	32.4	30.0	25.2	20.3

Отметим, что начальное показание шкалы $n_0 \neq 0$, так что в данном случае закон Гука принимает следующий вид:

$$P^* = (m + m_0)g = k(l - l_0) = k(l - l_1 - (l_0 - l_1)) = k(\Delta l - \Delta l_1) \Rightarrow mg = k\frac{r}{2h}(n - n_1) + const$$

В итоге получаем зависимость n(m):

$$n=rac{1}{k^*}m+const,$$
 где $rac{1}{k^*}=rac{1}{k}rac{2hg}{r}$

Построим график этой зависимости (рис. 4) и по методу наименьших квадратов оценим параметр k. Будем принимать во внимание тот факт, что при малых нагрузках проволока только распрямляется и линейный закон Гука не выполняется — учитывать в расчётах измерения с массами меньше 900 грамм не будем.

Рис. 4: Зависимость показаний шкалы от массы грузов

Оценим систематическую ошибку измерения упругости проволоки:

$$\frac{{\Delta_k}^2}{k^2} = \frac{{\Delta_n}^2}{n^2} + \frac{{\Delta_h}^2}{h^2} = 0.01^2 + 0.004^2 \approx 0.01^2$$

Полная погрешность составляет:

$$\sigma_k = \sqrt{\Delta_k^2 + \sigma_k^{\text{CJIYH}^2}} = \sqrt{(17919 \cdot 0.01)^2 + 79.64^2} = 196.1 \text{ H} \cdot \text{M}^{-1}$$

Модуль Юнга и погрешность его измерения находим по формулам:

$$E = \frac{4kl_0}{\pi d^2} = 19.06 \times 10^{10} \text{ H} \cdot \text{m}^{-2}$$

$$\sigma_E = E\sqrt{\varepsilon_{l_0}^2 + \varepsilon_d^2 + \varepsilon_k^2} = E\sqrt{\left(\frac{0.05}{176.8}\right)^2 + \left(2 \cdot \frac{0.005}{0.46}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2} = 4.64 \times 10^9 \text{ H} \cdot \text{m}^{-2}$$

Полученное в ходе эксперимента значение $E = (19.06 \pm 0.46) \times 10^{10} \text{ Па}$ соответствует табличному значению модуля Юнга *экселеза*.

II часть

Измерим размеры каждой балки в десяти местах, данные отражены в таблице 2. Средние значения размеров балок и их погрешности представлены в той же таблице, при этом мы воспользовались следующими формулами:

Параметры установки
$$l = 503 \text{ мм} \quad m_0 = 54.5 \text{ г}$$

$$\langle d \rangle = \frac{\sum d_i}{N} \qquad \sigma_d = \sqrt{\frac{\sum \left(d_i - \langle d \rangle\right)^2}{N - 1}} \qquad \sigma_{\langle d \rangle} = \frac{\sigma_d}{\sqrt{N}} \qquad \sigma_{\text{полн}} = \sqrt{\sigma_{\langle d \rangle}^2 + \Delta_d^2}$$

Затем получим зависимость стрелы прогиба y_{max} от нагрузки $P=mg=(m_0+m_{\rm rpysa})g$, где m_0- масса подвеса. Каждую из балок будем прогибать с двух сторон, а первую металлическую — также и при смещённой на малую величину (1-2 мм) призме. Результаты приведены в таблицах 3, 4 и 5 для металлической, латунной и деревянной балки соответственно.

Таблица 2: Измерения размеров балок

металл	а, мм	21.5	21.3	21.0	20.9	21.2	21.4	21.2	21.0	21.3	21.2	$21.20 \pm 0.1 \; \text{mm}$
	b, мм	3.81	3.8	3.81	3.87	3.87	3.83	3.85	3.8	3.81	3.87	$3.83 \pm 0.01 \; \text{mm}$
7077777	а, мм	21.5	21.5	21.4	21.6	21.4	21.5	21.5	21.5	21.5	21.4	21.5 ± 0.1 мм
латунь	b, мм	3.92	3.92	3.93	3.93	3.92	3.92	3.93	3.91	3.93	3.92	$3.92 \pm 0.01 \; \mathrm{mm}$
дерево	а, мм	19.3	19.1	19.2	19.2	19.1	19.3	19.3	19.1	19.3	19.3	$19.2 \pm 0.1 \; \text{mm}$
	b, мм	10.31	10.19	10.22	10.31	10.23	10.17	10.2	10.16	10.31	10.18	$10.29 \pm 0.02 \; \mathrm{mm}$

Таблица 3: Измерения стрелы прогиба металлической балки

непер.	m , Γ	559.0	1056.2	1564.9	2066.9	2566.9	3069.9	2566.9	2066.9	1564.9	1056.2	559.0
	y_{max} , MM	0.68	1.36	2.06	2.75	3.44	4.14	3.45	2.77	2.07	1.38	0.7
пер.	m , Γ	559.0	1067.7	1570.7	2066.9	2570.4	2067.6	2574.4	2066.9	1570.7	1067.7	559.0
	y_{max} , MM	0.68	1.38	2.09	2.78	3.48	4.18	3.52	2.82	2.15	1.47	0.76
смещ.	m , Γ	551.7	1056.2	1559.2	2061.2	2557.4	3060.9	2557.4	2061.2	1559.2	1056.2	551.7
непер.	y_{max} , MM	0.66	1.4	2.08	2.79	3.47	4.19	3.51	2.83	2.14	1.45	0.74
смещ.	m , Γ	551.7	1056.2	1559.2	2061.2	2557.4	3060.9	2557.4	2061.2	1559.2	1056.2	551.7
пер.	y_{max} , MM	0.7	1.41	2.11	2.83	3.5	4.24	3.56	2.89	2.18	1.5	0.81

Таблица 4: Измерения стрелы прогиба латунной балки

непер.	m , Γ	551.7	1056.2	1559.2	2055.4	2557.4	2055.4	1559.2	1056.2	551.7
	y_{max} , MM	1.2	2.45	3.71	4.91	6.15	4.95	3.72	2.47	1.23
пер.	m , Γ	551.7	1056.2	1559.2	2055.4	2557.4	2055.4	1559.2	1056.2	551.7
	y_{max} , MM	1.14	2.42	3.64	4.84	6.06	4.86	3.67	2.49	1.25

Таблица 5: Измерения стрелы прогиба деревянной балки

непер.	т, г	551.7	1056.2	1559.2	2055.4	2557.4	3060.9	2557.4	2055.4	1559.2	1056.2	551.7
	y_{max} , MM	0.57	1.18	1.78	2.37	2.97	3.55	3.0	2.42	1.84	1.26	0.67
пер.	т, г	551.7	1056.2	1559.2	2055.4	2557.4	3060.9	2557.4	2055.4	1559.2	1056.2	551.7
	y_{max} , MM	0.61	1.24	1.85	2.43	3.06	3.65	3.1	2.5	1.91	1.3	0.69

Построим графики $y_{max}(m)$ (рисунок 4). Зависимость будет иметь следующий вид:

$$y_{max}\left(m\right) = \frac{gl^3}{4ab^3E}m = k_P m$$

Коэффициент k_P оценим по методу наименьших квадратов, его значение показано на графике. Модуль Юнга E и его погрешность находим по формулам:

$$E = \frac{gl^3}{4ab^3k_P} \qquad \sigma_E = E\sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + \left(3 \cdot \frac{\sigma_b}{b}\right)^2 + \left(3 \cdot \frac{\sigma_l}{l}\right)^2}$$

Результаты измерений представлены в таблице 6. Полученные значения соответствуют табличным значениям железа, латуни и dyby в пределах погрешности, причём при изменении положения призмы на 1-2 миллиметра (использовалась железная балка) получаемое значение модуля Юнга изменяется всего на 2%.

Таблица 6: Полученные модули Юнга балок

материал балки	$E, 10^{10} \text{ H} \cdot \text{m}^{-2}$	$\sigma_E, 10^{10} \text{ H} \cdot \text{m}^{-2}$	$\varepsilon,\%$	табличные значения материал $\mid E, 10^{10} \; \mathrm{H \cdot m^{-2}}$		
металл	19.45	0.33	1.7	железо	19-20	
металл (со смещением)	19.07	0.33	1.7	железо	19-20	
латунь	10.16	0.16	1.5	латунь	9.7-10.2	
дерево	1.28	0.02	1.5	дуб	1.3	

Рис. 5: Зависимость стрелы прогиба от массы грузов для всех балок

4 Вывод

B ходе первой части работы с помощью прибора Лермантова был измерен модуль Юнга железной проволоки:

 $E = (19.06 \pm 0.46) \times 10^{10} \text{ }\Pi\text{a}$

Во второй части была проанализирована зависимость стрелы прогиба балок от прилагаемых к ним нагрузкам и были получены модули Юнга трёх балок:

• железной: $E = (19.45 \pm 0.33) \times 10^{10} \; \Pi a$

• латунной: $E = (10.16 \pm 0.16) \times 10^{10}~\mathrm{\Pi a}$

ullet деревянной: $E = (1.28 \pm 0.02) \times 10^{10}~\Pi \mathrm{a}$