Behavioural Finance

Wang Wei Mun

Lee Kong Chian School of Business Singapore Management University

October 16, 2023

Prospect Theory

- In 1979, Kahneman and Tversky developed prospect theory to provide realistic model of investor behaviour:
 - Gain or loss is measured relative to reference level
 - Loss aversion: investor is more sensitive to loss vs gain (of same magnitude) ⇒ more sensitive to downside risk
- Motivated by results of controlled experiments in gambling that didn't match predictions of expected utility theory
- In 2001, Barberis, Huang, and Santos developed asset-pricing model that combines power utility of consumption with prospect theory applied to gain or loss from recent investments
- "Quasi-behavioral" model where rational investors aim to maximise expected utility from non-standard preferences

Economic Environment

- ullet Riskless bond provides (constant) risk-free rate of R_f
- Risky stock represents equity claim on perishable output, and provides (random) return of R_{t+1} over next time period
- In equilibrium, aggregate consumption and dividend growth both evolve as i.i.d. random walk with drift:

$$\ln\!\left(\frac{D_{t+1}}{D_t}\right) = \ln\!\left(\frac{\overline{C}_{t+1}}{\overline{C}_t}\right) = \mu + \sigma\epsilon_{t+1}$$

- Here $\epsilon_t \sim N(0,1)$ represents effect of normal economic fluctuations on dividend and consumption growth
- Interpret investment in stock as investment in market portfolio

Wang Wei Mun

Investor Preferences

 Infinitely-lived investor receives time-separable utility from individual consumption as well as recent financial gain or loss:

$$E\left[\sum_{t=0}^{\infty} \left(\delta^{t} \frac{C_{t}^{1-\gamma}}{1-\gamma} + \delta^{t+1} b_{t} V(X_{t+1})\right)\right]$$

- Here $\delta=e^{-\rho}\in(0,1)$ is subjective discount factor and $\gamma>0$ is coefficient of relative risk aversion for consumption shocks
- Also X_t represents recent financial gain or loss, and $V(X_t)$ represents utility from recent financial gain or loss
- Then b_t is (time-varying) scale factor to ensure that amount of utility from consumption remains similar to amount of utility from recent gain or loss, over different time intervals

Prospect Theory – Part 1

- Let w_t be (dollar) value of investment in stock at time t, and assume that investor keeps track of year-to-year fluctuations
- Recent financial gain or loss is measured relative to reference level based on risk-free rate:

$$X_{t+1} = w_t \left(R_{t+1} - R_f \right)$$

• Loss aversion makes investor more sensitive to shortfall in financial gain (or outright financial loss), so $\lambda>1$:

$$V(X_{t+1}) = \left\{ egin{array}{ll} X_{t+1}, & X_{t+1} \geq 0 \\ \lambda X_{t+1}, & X_{t+1} < 0 \end{array}
ight.$$

Prospect Theory – Part 2

 Utility from recent financial gain or loss is piecewise-linear, so define scale-invariant utility function for financial gain or loss:

$$V(X_{t+1}) = V(w_t (R_{t+1} - R_f)) = w_t v(R_{t+1}),$$

$$v(R_{t+1}) = \begin{cases} R_{t+1} - R_f, & R_{t+1} \ge R_f \\ \lambda (R_{t+1} - R_f), & R_{t+1} < R_f \end{cases}$$

Use marginal utility of aggregate consumption as scale factor:

$$b_t = b_0 \overline{C}_t^{-\gamma}$$

• Here $b_0 \ge 0$ determines extent to which utility from recent financial gain or loss contributes to investor's lifetime utility

Optimisation Problem

• Investor's consumption and asset allocation problem:

$$\max_{\{C_t, w_t\}} E\left[\sum_{t=0}^{\infty} \left(\delta^t \frac{C_t^{1-\gamma}}{1-\gamma} + \delta^{t+1} b_0 \overline{C}_t^{-\gamma} w_t v(R_{t+1})\right)\right]$$

Subject to investor's intertemporal budget constraint:

$$W_{t+1} = (W_t - C_t) R_f + w_t (R_{t+1} - R_f)$$

- Assume complete market, so there exists representative investor who optimally consumes (per capita) aggregate consumption and invests all wealth in market portfolio
- Solve for optimal choices using dynamic programming

Optimal Consumption

First-order condition for optimal individual consumption:

$$\delta R_f E_t \left[\left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\gamma} \right] = 1$$

 Optimality condition must also apply to representative investor (who consumes aggregate consumption), so use distribution of aggregate consumption growth to find risk-free rate:

$$\delta R_f E_t \left[\left(rac{\overline{C}_{t+1}}{\overline{C}_t}
ight)^{-\gamma}
ight] = 1 \quad \Longrightarrow \quad R_f = e^{
ho + \gamma \mu - rac{1}{2} \gamma^2 \sigma^2}$$

Optimal Asset Allocation

First-order condition for optimal asset allocation:

$$\delta b_0 \left(\frac{\overline{C}_t}{C_t^*} \right)^{-\gamma} E_t[v(R_{t+1})] + \delta E_t \left[\left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\gamma} R_{t+1} \right] = 1$$

 Also applies to representative investor, who consumes aggregate consumption and invests in market portfolio:

$$\delta b_0 E_t[v(R_{t+1})] + \delta E_t \left[\left(\frac{\overline{C}_{t+1}}{\overline{C}_t} \right)^{-\gamma} R_{t+1} \right] = 1$$

• In equilibrium, market return must satisfy optimality condition

Wang Wei Mun Behavio

Stock Return – Part 1

- Assume that market portfolio has constant price-dividend ratio: $P_t/D_t = k$ for all t = 1, 2, ..., and let $\kappa = (1 + k)/k$
- Then market return will have i.i.d. probability distribution:

$$R_{t+1} = \frac{P_{t+1} + D_{t+1}}{P_t} = \kappa \frac{D_{t+1}}{D_t} = \kappa \frac{\overline{C}_{t+1}}{\overline{C}_t}$$

Substitute into optimality condition for representative investor:

$$\delta b_0 E_t \left[v \left(\kappa \frac{\overline{C}_{t+1}}{\overline{C}_t} \right) \right] + \delta \kappa E_t \left[\left(\frac{\overline{C}_{t+1}}{\overline{C}_t} \right)^{1-\gamma} \right] = 1$$

Stock Return – Part 2

 Use distribution of consumption growth to get equilibrium condition for price-dividend ratio of market portfolio:

$$\delta b_0 E_t \left[v \left(\kappa e^{\mu + \sigma \epsilon_{t+1}} \right) \right] + \delta \kappa E_t \left[e^{(1-\gamma)(\mu + \sigma \epsilon_{t+1})} \right] = 1$$

$$\implies \delta b_0 E_t \left[v \left(\kappa e^{\mu + \sigma \epsilon_{t+1}} \right) \right] + \delta \kappa e^{(1-\gamma)\mu + \frac{1}{2}(1-\gamma)^2 \sigma^2} = 1$$

- No analytical solution, so use numerical approach to find equilibrium price-dividend ratio of market portfolio
- Use price-dividend ratio of market portfolio and distribution of aggregate consumption growth to find expected market return:

$$E_t[R_{t+1}] = \kappa E_t(e^{\mu + \sigma \epsilon_{t+1}}) = \kappa e^{\mu + \frac{1}{2}\sigma^2}$$

Empirical Results

- Set $\lambda=2.25$, based on results of controlled experiments by Kahneman and Tversky
- Set $\mu=1.84\%$ and $\sigma=3.79\%$, based on annual per capita aggregate consumption for U.S. economy from 1889 to 1995
- \bullet Set $\gamma=0.9$ and $\delta=0.98$ \Longrightarrow annual risk-free rate of 3.5%
- Annual equity premium of 0.06% for $b_0=0$, increasing to 0.91% for $b_0=2$, and converging to 1.2% as $b_0\to\infty$
- Equity premium increases as utility from recent financial gain or loss makes bigger contribution, but is still too small for reasonable level of risk aversion and loss aversion

House Money Effect

- House money effect: investor is more willing to gamble after prior gains, and less willing to gamble after prior losses => prior outcomes affect investor's degree of risk aversion
- Barberis, Huang, and Santos extended their model to allow investor to keep track of accumulated financial gain or loss over entire lifetime (relative to appropriate reference level)
- No loss aversion if investor has accumulated financial gain
- But investor becomes even more loss averse with accumulated financial loss: λ rises by one for every 2% shortfall in value of investment in stock (relative to appropriate reference level)
- Annual equity premium of 4.1% for $b_0 = 2$, after adding house money effect

