SAN JOSÉ STATE UNIVERSITY

EE178 Spring 2017 Lecture Module 1

Eric Crabill

Goals

I am here because I enjoy sharing information on how to use Xilinx silicon, software, and solutions

You are here to earn elective credits, but more importantly, to gain marketable experience

Syllabus Review

- No paper handouts print your own
- Class format is lecture with practical exercises and project assignments
 - Substantial effort is required of you
 - There is no dedicated "lab" meeting

Academic Integrity

- All work is expected to be your own
 - It is okay to talk to each other and share ideas
 - It is not okay to cut and paste or share files
 - See policy on academic dishonesty
- If you are worried about "contamination" then ask an instructor for help

Required Equipment

- Immediately order and obtain a Digilent Basys3 board (Xilinx Artix 7 FPGA)
 - http://www.digilentinc.com
 - Request academic pricing
 - No "optional" items
- Labs may require access to additional equipment (monitor)

Required Equipment

- Provide your own development system
 - Laptop or desktop PC with a USB port
 - Windows 10 (64-bit) is the required O/S
- Immediately download and install Xilinx Vivado 2016.2 Webpack Edition
 - Described in first lab assignment
 - Pay attention to version / edition

Discussion Group

- Immediately go to the class website and follow the instructions to join the class discussion group
 - Class announcements, questions forum
 - Ensures "everyone is in the know"
- Email me directly with personal /confidential questions or assignment submissions

Prior Knowledge

- You should already be familiar with digital logic design from a class such as EE118
 - Electrical / Logical Basics
 - Combinational Logic
 - Sequential Logic
 - Verilog-HDL
- Let's quickly review what this means to me
 - This is not a crash course, it is a summary list
 - Items in gray are less important for this class

Electrical Basics

- Simple logic circuit implementation with transistors -- basic gates, etc...
- Transmission gates and three-state buffers
- Concepts of switching thresholds, noise margin, and electrical characteristics
- Digital abstraction of underlying analog circuits

Logical Basics

- Boolean algebra (all those rules...)
- Number systems and representation
 - Binary / Hexadecimal / Decimal
 - Conversions
 - Arithmetic

Combinational Logic

- Simple gates and their truth tables
- More complex functions and their truth tables
 - Multiplexers
 - Encoders, decoders
- Arithmetic circuits
 - Half Adder/Subtractors, Full Adder/Subtractors
 - Ripple Adders/Subtractors (n-bit)
 - Magnitude and Identity Comparators

Combinational Logic

- Combinational circuit analysis
- Random logic design
- SOP and POS canonical forms
- Use of KMAP to generate canonical forms
- Use of "Don't Cares" in logic design
- Static and dynamic hazards

Sequential Logic

- Analysis of feedback sequential circuits
- Design of feedback sequential circuits
- Use of feedback sequential circuits
 - Flip flops
 - Latches
- Analysis of synchronous sequential circuits
- Design of synchronous sequential circuits

Sequential Logic

- Application of common synchronous circuits
 - Registers (various types)
 - Counters
- Models of synchronous sequential circuits
 - Mealy
 - Moore
- Finite state machine design techniques
- State assignment / encoding options

Verilog-HDL

- Notion of a hardware description language
- Use of Verilog-HDL for describing digital circuits and simulating their behavior
- Different ways to describe digital circuits
 - Behavioral
 - Register Transfer Level
 - Primitive or Gate Level

Why Use FPGAs?

- You would use an FPGA if it is the best choice given some metric for optimal
 - Do we know what an FPGA is?

- What are viable alternatives?
 - Custom ASIC
 - Structured ASIC (Gate Array)
 - Microcontroller
 - Processor system
 - Application specific standard product
 - Random components (e.g. SSI, MSI)

Some Metrics for Optimal

- Size, weight, and power
- Total design cost
 - Direct component cost
 - Board complexity / cost
 - NRE and amortization
- Time to design
 - Observability, debug
 - Availability of IP
- Time to market
 - Component mfg. time
- Lifetime
 - Component availability

- Performance
 - Clock frequency
 - Throughput / parallelism
 - Latency
- Reliability
 - Hard failure rates
 - Soft failure rates
- Field upgradability
 - Product before specification
 - Extend product lifespan
 - Risk reduction

Commercial Applications of Programmable Logic

Wired Communications

- Wired infrastructure
- Data center, storage

Wireless infrastructure

Industrial, Scientific, Medical

- Ultrasound systems
- Motor controllers

Audio, Video, Broadcast

- 3D cameras
- Video transport

Automotive

- Infotainment
- Driver assistance

Consumer

- 3D television
- eReaders

Test & Measurement

- Communications instruments
- Semiconductor test equipment

Source: Xilinx, Inc.

SAN JOSÉ STATE UNIVERSITY