Numerical Algorithms for HPC

Discretised Partial Differential Equations

1

Overview of Lecture

- Pollution problem as a Partial Differential Equation (PDE)
 - equations in one and two dimensions
 - boundary conditions
- Discretised equations
 - putting problem onto a lattice
 - PDE as a matrix problem
 - the five-point stencil
 - mapping between the 2D continuous and discrete problems
 - introducing a wind into pollution problem
- Notes
- Summary

ว

1D Diffusion Equation

- Imagine one-dimensional problem with no wind
 - e.g. pollution in a valley
- Call the density of pollution u
 - distance along the valley is x which is in the range [0.0, 1.0]
 - in general the domain size is L, but for simplicity we take L=1.0

- Differential equation is: $-\frac{d^2}{dx^2}u(x) = 0$
 - initial minus sign is a useful convention (see later)
 - equation is for steady state solution that does not vary in time

3

3

Analytic Solution

- In one dimension, solution is a straight line
 - equation is: u(x) = m x + c
 - but what are the values of gradient m and intercept c?
- Actual solution depends on boundary conditions
 - differential equation gives the behaviour in the interior (0.0,1.0)
 - must also specify the behaviour at boundaries x = 0.0 and x = 1.0
 - for example, u(0.0) = 1.0 and u(1.0) = 5.0

Boundary Conditions

- We solved the equation: $-\frac{d^2}{dx^2}u(x)=0$
 - with u(0.0) = 1.0 and u(1.0) = 5.0, the answer is u(x) = 4.0 x + 1.0
- In general
 - "What is the pollution in a valley?" is a meaningless question
 - must ask: "What is the pollution in a valley when the pollution levels are one at the western end and five at the eastern end?"
- Same applies in the 2D problem
 - equations will determine solution u(x, y) in the **interior** region
 - we must independently specify behaviour on all the boundaries
- For this reason, steady state problems like this are called Boundary Value Problems (BVPs)

5

5

The Problem we want to solve Output Output

7

Mathematical Problem in 2D

- PDE with no wind is $-\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x,y) = 0$
 - all solutions obey this Partial Differential Equation (PDE) in interior region
- Must also specify Boundary Conditions (BCs)
 - BCs must be appropriate to our specific problem
- In this case, a simple choice is:
 - set pollution on boundary to zero **everywhere** except at chimney
 - $\,{}^{_{\bullet}}$ assume domain is large enough that no pollution gets to the edges
 - specify u(1.0, y) as a hump concentrated around (1.0, 0.5)
 - · this is a guess at the way pollution is emitted by the chimney
 - a single sharp peak at (1.0,0.5) causes technical problems later!
- Solve the equations somehow ...
 - and the pollution level at the house is the value of u(0.20,0.33)

Discretising the 1D Problem

- Replace continuous real x by discrete integer i
 - divide domain into a lattice containing M+1 sections each of width h
 - e.g. in above diagram, M=8 and h=1.0/(M+1)=0.11
- Solve for *N* different variables u_i , i = 1, 2, ..., N
 - in one dimension, N = M but not true in general (in 2D problem $N = M^2$)
 - boundary values are u_0 and u_{N+1} (above, u_0 and u_9)
- But what equations do the u_i variables satisfy?
 - and how do we decide on the boundary values?

9

۵

Discretising the 1D Equations

- We approximate gradients with lines
 - e.g. a forward difference: $\frac{d}{dx}u(x) \approx \frac{u_{i+1}-u_i}{h}$
 - or a central difference: $\frac{d}{dx}u(x) \approx \frac{u_{i+1}-u_{i-1}}{2h}$
- All become more accurate as we reduce h
 - but for a given value of h, some will be more accurate than others
 - e.g. forward difference has errors proportional to \boldsymbol{h}
 - central has errors proportional to h^2 and is therefore more accurate
 - can estimate errors by doing a Taylor expansion about u(x) ...

- Discretised 1D Equations
 Write second derivative as: $\frac{d^2}{dx^2}u(x) = \frac{d}{dx}\left(\frac{d}{dx}u(x)\right)$
 - use forward difference for first derivative, then a backward for second

$$\frac{d^2}{dx^2}u(x) \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}$$

Boundary conditions are straightforward

$$u(0.0) = 1.0$$
: $u_0 = 1.0$

u(1.0) = 5.0: $u_{M+1} = 5.0$

This gives us N equations in N unknowns

$$-u_{i-1} + 2u_i - u_{i+1} = 0, \quad i = 1, 2, ..., N$$

- Converted differential equations into difference equations
 - larger M means a smaller h and more accurate equations
 - but also a larger N and much more work, especially in 2D or 3D problems!

11

Difference Equations for N = 8

• Writing the eight equations $-u_{i-1} + 2u_i - u_{i+1} = 0$ out in full

$$2u_1 - u_2 = 1$$

$$-u_1 + 2u_2 - u_3 = 0$$

$$-u_2 + 2u_3 - u_4 = 0$$

$$-u_3 + 2u_4 - u_5 = 0$$

$$-u_4 + 2u_5 - u_6 = 0$$

$$-u_5 + 2u_6 - u_7 = 0$$

$$-u_6 + 2u_7 - u_8 = 0$$

$$-u_7 + 2u_8 = 5$$

- - have multiplied all the equations by h² for simplicity
 - first and last equations are different as we know u_0 and u_9
 - · we write the known values on the right-hand-side for convenience

Interpreting Difference Equations

- Simple interpretation
 - Rearranging gives $u_i = (u_{i+1} + u_{i-1})/2$
 - i.e. every point equals the average of its nearest neighbours
 - what has this got to do with diffusion?
- Imagine pollution particles do "a random walk"
 - each step, particles at every lattice point move randomly left or right
 - let u_i be the number of particles at lattice point i

13

Steady State Random Walk

- At each step
 - population u_i is replaced by $u_{i-1}/2$ (from left) and $u_{i+1}/2$ (right)
 - for a steady state, $u_i = (u_{i-1} + u_{i+1})/2$
 - same equations as before: $-u_{i-1} + 2u_i u_{i+1} = 0$, i = 1, 2, ..., N
- Perhaps easier to understand than: $-\frac{d^2}{dx^2}u(x)=0$
- Note that this is a dynamic equilibrium
 - just because pollution level u(x) is constant doesn't mean that the pollution particles are static
 - e.g. density of air is constant even though molecules are moving!

M. . 08

Equations in Matrix Form

• These can be written in standard form Au = b

- in this case, A is sparse and symmetric

15

15

Two Dimensional Problem

- Simple extension to two dimensions
 - impose a square lattice of size M + 1 by M + 1, spacing h
 - replace real continuous coordinates (x, y) by integers i, j
 - solution is now $u_{i,j}$ with i = 1, 2, ..., M and j = 1, 2, ..., M
 - the number of unknowns N is now M^2

- in 1D:
$$\frac{d^2}{dx^2}u(x) \approx \frac{u_{i-1}-2u_i+u_{i+1}}{h^2}$$

$$- \text{ in 2D:} \quad \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x,y) \approx \frac{u_{i,j-1} + u_{i-1,j} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}}{h^2}$$

- every point is averaged with its four nearest neighbours

Five Point Stencil

- The equation can be represented graphically
 - (remember the initial minus sign!)
 - again, can easily be interpreted as a random walk

17

More Accurate Stencils

- More accuracy means more complicated shape
 - e.g. a nine-point stencil for the same equation includes $u_{i+1,j+1}$, ...
 - can be understood as a random walk, now also including diagonals

Notation

- The vector b is often called the source
 - remember that it contains all the fixed boundary values of u
 - for 2D problem, corresponds to hump function around chimney
 - the hump is clearly the source of the pollution
- The 2D diffusion operator is very common
 - has a special name, "Grad Squared", and symbol: ∇^2
- Can write the 2D equations as: $-\nabla^2 u(x,y) = 0$
 - the five-point stencil is a standard discretisation of ∇^2
 - different discretisations (or different equations) will lead to a different form for the matrix A
- Another notation indicates derivatives by a dash: u'

$$\frac{d}{dx}u(x) \to u'(x),$$

$$\frac{d}{dx}u(x) \to u'(x), \qquad \frac{d^2}{dx^2}u(x) \to u''(x)$$

19

Grid Coordinates vs Real Space

- · We store values on a discrete grid
 - $-u_0, u_1, u_2, \dots, u_{N-1}, u_N, u_{N+1}$
- What points do these represent in real space?

- in 1D:
$$x = ih$$

$$u_i \rightarrow u(ih)$$

- in 2D: x = ih, y = jh $u_{i,j} \rightarrow u(ih, jh)$
- Converting from real space to grid points?
 - much harder as coordinate x will not sit exactly on the grid
 - to get the value of u(x) from the grid, must do some sort of interpolation of u_i from the nearby grid points
 - simplest solution is a weighted average see exercise notes

Introducing a Wind

- · More pollution moves in same direction as wind
 - in 1D, the equations for a wind of strength a (from the right) are

$$-\frac{d^2}{dx^2}u(x) - a\frac{d}{dx}u(x) = 0$$

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} - a\left(\frac{u_{i+1} - u_i}{h}\right) = 0$$

$$-\left(\frac{1}{h^2}\right)u_{i-1} + \left(\frac{2}{h^2} - \frac{a}{h}\right)u_i - \left(\frac{1}{h^2} + \frac{a}{h}\right)u_{i+1} = 0$$

- more particles move left (from u_{i+1} to u_i) than right
 - makes the associated matrix A non-symmetric
 - straightforward to extend to two dimensions

21

21

In Two Dimensions

• 2D equations for a NE wind of strength (a_x, a_y)

$$-\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u(x,y) - a_x \frac{\partial}{\partial x}u(x,y) - a_y \frac{\partial}{\partial y}u(x,y) = 0$$

· Use forward differences for first derivatives, e.g.:

$$\frac{\partial}{\partial x}u(x,y) \approx \frac{u_{i+1,j} - u_{i,j}}{h}$$

- now straightforward to write out difference equations in full
- on the computer we deal with the values $a_x h$ and $a_y h$

Notes

- What about different boundary conditions?
 - fixed boundary conditions are called Dirichlet conditions
 - might want to specify the gradient at a boundary
 - e.g. "the slope of the pollution curve should be zero at the edges"
 - these are called Neumann boundary conditions
- Dirichlet conditions affect the right-hand-side b
 - Neumann conditions alter the matrix A near domain boundaries
- Non-Linear Equations
 - can easily be discretised using standard recipes
 - this will lead to equations like: $u_1^2 + 2u_2 + u_3 = 0$
 - this CANNOT be expressed as a matrix equation with constant A
 - i.e. not possible to solve using methods like Gaussian Elimination

23

23

Summary

- Many physical problems are expressed as PDEs
 - impose a regular lattice on the problem
 - discretise the differential equations using standard techniques
- This leads to set of N difference equations
 - converts PDE to a set of linear equations Au = b which we can solve
 - A depends on the PDE, b on boundary conditions, solution is u
 - -N may be very large indeed for 2D or 3D problems!
- We are solving an approximation to the PDE
 - even if we solve linear equations accurately, there is still an error
 - can reduce this error using a more accurate discretisation of PDE
 - or a larger M (i.e. smaller value of h) with the same discretisation
 - both these approaches require additional work

24

2/