

# ArcSoft ArcFace SDK

开发说明文档

# 目录

| 目表 | 表   |       |                       | 2  |  |  |  |
|----|-----|-------|-----------------------|----|--|--|--|
| 1. | 简介  | ۲     |                       | 4  |  |  |  |
|    | 1.1 | 4     |                       |    |  |  |  |
|    | 1.2 | 环境要求  |                       |    |  |  |  |
|    |     | 1.2.1 | 系统要求                  | 4  |  |  |  |
|    |     | 1.2.2 | 开发环境                  | 4  |  |  |  |
|    |     | 1.2.3 | 支持的颜色空间格式             | 4  |  |  |  |
|    | 1.3 | 产品    | 功能简介                  | 4  |  |  |  |
|    |     | 1.3.1 | 人脸检测                  | 4  |  |  |  |
|    |     | 1.3.2 | 人脸跟踪                  | 5  |  |  |  |
|    |     | 1.3.3 | 人脸属性检测                | 5  |  |  |  |
|    |     | 1.3.4 | 人脸三维角度检测              | 5  |  |  |  |
|    |     | 1.3.5 | 人脸比对                  |    |  |  |  |
|    |     | 1.3.6 | 活体检测                  | 5  |  |  |  |
|    | 1.4 | SDK 3 | 授权说明                  | 6  |  |  |  |
| 2. | 接入  | 指南    |                       | 6  |  |  |  |
|    | 2.1 | 引擎    | 获取                    | 6  |  |  |  |
|    |     | 2.1.1 | 注册为开发者                | 6  |  |  |  |
|    |     | 2.1.2 | SDK 下载                | 6  |  |  |  |
|    |     | 2.1.3 | SDK 包结构               | 7  |  |  |  |
|    |     | 2.1.4 | 工程配置                  | 7  |  |  |  |
|    |     | 2.1.5 | 调用流程                  | 9  |  |  |  |
|    |     | 2.1.6 | 阈值推荐                  | 10 |  |  |  |
|    | 2.2 | 数据    | 结构                    | 10 |  |  |  |
|    |     | 2.2.1 | ASF_VERSION           | 10 |  |  |  |
|    |     | 2.2.2 | ASF SingleFaceInfo    | 10 |  |  |  |
|    |     | 2.2.3 | ASF MultiFaceInfo     | 11 |  |  |  |
|    |     | 2.2.4 | ASF FaceFeature       | 11 |  |  |  |
|    |     | 2.2.5 | ASF AgeInfo           | 11 |  |  |  |
|    |     | 2.2.6 | ASF GenderInfo        | 11 |  |  |  |
|    |     | 2.2.7 | ASF_Face3DAngle       | 12 |  |  |  |
|    |     | 2.2.8 | ASF LivenessInfo      | 12 |  |  |  |
|    | 2.3 | 枚举    |                       | 12 |  |  |  |
|    |     | 2.3.1 | 检测方向的优先级              | 12 |  |  |  |
|    |     | 2.3.2 | 检测到的人脸角度(按逆时针方向)      | 13 |  |  |  |
| 3. | 接口  |       |                       |    |  |  |  |
|    | 3.1 | 13    |                       |    |  |  |  |
|    |     | 3.1.1 | ASFActivation         | 13 |  |  |  |
|    |     | 3.1.2 | ASFInitEngine         | 14 |  |  |  |
|    |     | 3.1.3 | ASFDetectFaces        |    |  |  |  |
|    |     | 3.1.4 | ASFFaceFeatureExtract | 15 |  |  |  |

|     | 3.1.5            | ASFFaceFeatureCompare                                                                    | 16                                                                                                                                                                                                                                                                                                                             |  |
|-----|------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | 3.1.6            | ASFProcess                                                                               | 16                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.1.7            | ASFGetAge                                                                                | 17                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.1.8            | ASFGetGender                                                                             | 17                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.1.9            | ASFGetFace3DAngle                                                                        | 18                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.1.10           | ASFGetLivenessScore                                                                      | 18                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.1.11           | ASFGetVersion                                                                            | 18                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.1.12           | ASFUninitEngine                                                                          | 19                                                                                                                                                                                                                                                                                                                             |  |
| 3.2 | 错误码              | 3概览                                                                                      | 19                                                                                                                                                                                                                                                                                                                             |  |
| 3.3 | 示例件              | <b>:</b> 码                                                                               | 22                                                                                                                                                                                                                                                                                                                             |  |
| 常见  | L问题              |                                                                                          | 26                                                                                                                                                                                                                                                                                                                             |  |
| 4.1 | FAQ              |                                                                                          | 26                                                                                                                                                                                                                                                                                                                             |  |
| 4.2 | 其他帮              | 『助                                                                                       | 28                                                                                                                                                                                                                                                                                                                             |  |
|     | 3.3<br>常见<br>4.1 | 3.1.6<br>3.1.7<br>3.1.8<br>3.1.9<br>3.1.10<br>3.1.11<br>3.1.12<br>3.2 错误码<br>3.3 示例代常见问题 | 3.1.6       ASFProcess         3.1.7       ASFGetAge         3.1.8       ASFGetGender         3.1.9       ASFGetFace3DAngle         3.1.10       ASFGetLivenessScore         3.1.11       ASFGetVersion         3.1.12       ASFUninitEngine         3.2       错误码概览         3.3       示例代码         常见问题         4.1       FAQ |  |

# 1.简介

# 1.1 产品概述

ArcFace 离线 SDK,包含人脸检测、性别检测、年龄检测、人脸识别、活体等能力,初次使用时需联网激活,激活后即可本地无网络环境下工作,可根据业务需求结合人脸识别等 SDK 灵活的进行应用层开发。

# 1.2 环境要求

## 1.2.1 系统要求

Win7 及以上

# 1.2.2 开发环境

VS2013 及以上

# 1.2.3 支持的颜色空间格式

支持图像的颜色空间格式: NV21,NV12, BGR24,I420,YUYV

| 常量名           | 常量值  | 常量说明                                                     |
|---------------|------|----------------------------------------------------------|
| CP_PAF_NV21   | 2050 | 8-bit Y 通道, 8-bit 2x2 采样 V 与 U 分量交织通道                    |
| ASVL_PAF_NV12 | 2049 | 8-bit Y 通道, 8-bit 2x2 采样 U 与 V 分量交织通道                    |
| CP_PAF_BGR24  | 513  | RGB 分量交织,按 B, G, R, B 字节序排布                              |
| ASVL_PAF_I420 | 1537 | 8-bit Y 通道, 8-bit 2x2 采样 U 通道, 8-bit 2x2 采<br>样 V 通道     |
| ASVL_PAF_YUYV | 1289 | YUV 分量交织, V 与 U 分量 2x1 采样,按 Y0, U0, Y1,         V0 字节序排布 |

# 1.3 产品功能简介

# 1.3.1 人脸检测

对传入图像数据进行人脸检测,返回人脸位置信息和人脸在图像中的朝向信息,可用于

后续的人脸分析、人脸比对操作,支持图像模式和视频流模式。

支持单人脸、多人脸检测,最多支持检测人脸数为50。

### 1.3.2 人脸跟踪

捕捉视频流中的人脸信息,并对人脸进行跟踪。

## 1.3.3 人脸属性检测

对检测到的人脸进行属性分析,支持性别、年龄的属性分析,支持图像模式和视频流模式。

# 1.3.4 人脸三维角度检测

检测输入图像数据指定区域人脸的三维角度信息,包含人脸三个空间角度:俯仰角 (pitch), 横滚角 (roll), 偏航角 (yaw),支持图像模式和视频流模式。



# 1.3.5 人脸比对

将两个人脸进行比对,来判断是否为同一个人,返回比对相似度值。

# 1.3.6 活体检测

离线活体检测,基于 RGB 单目摄像头实现静默式识别。针对视频流/图片,通过采集人像的破绽来判断目标对象是否为活体,可有效防止照片、屏幕二次翻拍等作弊攻击。

# 1.4 SDK 授权说明

SDK 授权按设备进行授权,每台硬件设备需要一个独立的授权,此授权的校验是基于设备的唯一标识,被授权的设备,初次授权时需要联网进行授权,授权成功后可以离线运行SDK。

激活一台设备后,遇以下情况,设备授权不变,但需要重新联网激活:

- 删除基于 SDK 开发的应用或删除应用数据
- 重新安装系统
- 激活一台设备后,硬件信息发生变更

# 2.接入指南

# 2.1 引擎获取

# 2.1.1 注册为开发者

访问ArcSoft AI开放平台门户: https://ai.arcsoft.com.cn,注册开发者账号并登录。

# 2.1.2 SDK 下载

创建对应的应用,并选择需要下载的 SDK、对应平台以及版本,确认后即可下载 SDK 和查看激活码。



可在查看激活码链接中获取 APPID、SDKKey,点击下载 SDK 下载 SDK 包。



点击【下载 SDK】即可下载 SDK 开发包;

点击【查看激活码】即可查看所需要 APPID、SDKKEY:

### 2.1.3 SDK 包结构



#### 2.1.4 工程配置

#### 方法 1: VS 中添加 Lib 库及头文件(外部依赖项)的步骤:

- 1、添加工程的头文件目录:
  - a) 右键单击工程名,选择属性---配置属性---c/c++---常规---附加包含目录
  - b) 添加头文件存放目录路径



2、添加文件引用的 lib 静态库路径:

- a) 右键单击工程名,选择属性---配置属性---链接器---常规---附加库目录
- b) 添加 lib 文件存放目录
- 3、添加工程引用的 lib 库:
  - a) 右键单击工程名,选择属性---配置属性---链接器---输入---附加依赖项
  - b) 添加依赖的 lib 库名称



- 4、添加工程引用的 dll 动态库:
  - a) 把引用的 dll 放到工程的可执行文件所在的目录下(例如: debug、relese 或工程目录下)。

#### 方法 2: 相对路径的设置

在 VS 的工程中常常要设置头文件的包含路径和库目录,如果使用绝对路径,其他人拷贝你的工程到其他机器上就可能无法运行,原因是在建工程时可能把工程放在了 E:盘,但是拷贝后的工程路径和拷贝前的工程路径不一致,会导致找不到头文件问题。因此,建议配置包含路径和库目录时使用相对路径。

这里的相对路径就是相当于工程文件(XXXX.vcproj)为起点计算出的能找到包含所需 头文件(也就是找包含所需头文件的 include 目录)的路径。

例如你的工程文件(Count. vcproj)所在目录路径为:

E:\projects\Count\Count\Count.vcproj

该工程需要包含一个图片参数,该图片所在路径如下:

E:\projects\Count\pic\pic01.jpg

这里程序中的相对路径设置如下:

..\pic\pic02.jpg

程序代码中的参数路径设置时要用双斜线:

例如:

#include "..\TestLib\\lib.h"

#pragma comment(lib, "...\\debug\\TestLib.lib");

### 2.1.5 调用流程



Step 1: 激活,调用 ASFActivation

接口所需 AppId、SDKKey 在申请 SDK 时获取,只需在第一次使用时调用激活成功即可; Step 2: 初始化,调用 ASFInitEngine 初始化引擎

- VIDEO 模式:处理连续帧的图像数据,并返回检测结果,需要将所有图像帧的数据 都传入接口进行处理;
- IMAGE 模式:处理单帧的图像数据,并返回检测结果;

Step 3: 调用 ASFDetectFaces 进行人脸检测

接口所需的图像信息,format 参数支持 NV21/NV12/YUYV/BGR24/I420 五种颜色空间格

式,图像处理结果可从detectedFaces参数中获取;

Step 4:调用 ASFFaceFeatureExtract 接口进行人脸特征提取

接口只支持单人脸特征提取,处理结果可从 feature 参数中获取;

Step 5: 调用 ASFFaceFeatureCompare 接口进行人脸比对

接口只支持单人脸比对,处理结果可从 confidenceLevel 参数中获取;

Step 6: 调用 ASFProcess 接口进行人脸信息检测

接口中 combinedMask 参数传入只能是初始化中参数 combinedMask 与 ASF\_AGE | ASF\_GENDER | ASF\_FACE3DANGLE | ASF\_LIVENESS 的交集的子集;

Step 7: 调用 ASFGetAge、ASFGetGender、ASFGetFace3Dangle、ASFGetLivenessScore 接口,

年龄、性别、人脸角度、活体信息;

Step 8: 调用 ASFUninitEngine 销毁引擎

### 2.1.6 阈值推荐

阈值区间为 $[0^{\sim}1]$ ,建议阈值设置为0.8,可根据实际场景需求进行调整。

# 2.2 数据结构

### 2.2.1 ASF\_VERSION

#### 功能描述:

版本信息:

#### 定义:

## 2.2.2 ASF\_SingleFaceInfo

#### 类描述:

单人脸信息:

#### 定义:

```
typedef struct {
```

```
MRECT faceRect; // 人脸框
MInt32 faceOrient; //人脸角度
} ASF_SingleFaceInfo, *LPASF_SingleFaceInfo;
```

### 2.2.3 ASF\_MultiFaceInfo

```
类描述:
```

多人脸信息;

#### 定义:

```
typedef struct {
    MRECT* faceRect; // 人脸框数组
    MInt32* faceOrient; // 人脸角度数组
    MInt32 faceNum; // 检测到的人脸个数
} ASF_MultiFaceInfo, *LPASF_MultiFaceInfo;
```

## 2.2.4 ASF\_FaceFeature

#### 功能描述:

人脸特征;

#### 定义:

```
typedef struct {
    MByte* feature; // 人脸特征
    MInt32 featureSize; // 人脸特征长度
}ASF FaceFeature, *LPASF FaceFeature;
```

### 2.2.5 ASF\_AgeInfo

#### 功能描述:

年龄信息;

#### 定义:

```
typedef struct {
    MInt32* ageArray; // 0 代表未知,大于 0 的数值即检测的年龄结果
    MInt32 num; // 检测的人脸个数
}ASF_AgeInfo, *LPASF_AgeInfo;
```

# 2.2.6 ASF GenderInfo

#### 功能描述:

性别信息;

#### 定义:

```
typedef struct{
    MInt32* genderArray; // 0表示男性,1表示女性,-1表示未知
```

```
MInt32 num; // 检测的人脸个数
}ASF_GenderInfo, *LPASF_GenderInfo;
```

### 2.2.7 ASF\_Face3DAngle

### 2.2.8 ASF LivenessInfo

#### 功能描述:

活体信息;

#### 定义:

# 2.3 枚举

# 2.3.1 检测方向的优先级

# 2.3.2 检测到的人脸角度(按逆时针方向)

```
enum ArcSoftFace_OrientCode {
    ASF OC 0 = 0x1, // 0 degree
    ASF\_OC\_90 = 0x2,
                          // 90 degree
    ASF OC 270 = 0x3,
                          // 270 degree
    ASF_{0C_{180}} = 0x4,
                          // 180 degree
    ASF\_OC\_30 = 0x5,
                          // 30 degree
    ASF OC 60 = 0x6,
                          // 60 degree
    ASF_0C_120 = 0x7,
                          // 120 degree
    ASF OC 150 = 0x8,
                          // 150 degree
    ASF_{00}_{210} = 0x9,
                          // 210 degree
    ASF 0C 240 = 0xa,
                          // 240 degree
                          // 300 degree
    ASF 0C \ 300 = 0xb,
                          // 330 degree
    ASF\_OC\_330 = 0xc
};
```

# 3.接口

# 3.1 接口说明

#### 3.1.1 ASFActivation

#### 原型

```
MRESULT ASFActivation(
          MPChar AppId,
          MPChar SDKKey
);
```

#### 功能描述

激活 SDK。

#### 参数

AppId[in]官网获取的 APPIDSDKKey[in]官网获取的 SDKKEY

#### 返回值

成功返回 MOK 或 MERR\_ASF\_ALREADY\_ACTIVATED, 否则返回失败 codes。

### 3.1.2 ASFInitEngine

#### 原型

MRESULT ASFInitEngine(

MLong detectMode,

ASF\_OrientPriority detectFaceOrientPriority,

MInt32 detectFaceScaleVal,

MInt32 detectFaceMaxNum,

combinedMask,

MHandle\* hEngine

);

#### 功能描述

初始化引擎。

#### 参数

detectMode [in] VIDEO 模式/IMAGE 模式

VIDEO 模式:处理连续帧的图像数据,并返回检测结果,需要将所有图

像帧的数据都传入接口进行处理;

IMAGE 模式:处理单帧的图像数据,并返回检测结果

detectFaceOrientPriority [in] 检测脸部的角度优先值,推荐仅检测单一角度,效果更优

detectFaceScaleVal [in] 用于数值化表示的最小人脸尺寸,该尺寸代表人脸尺寸相对于图片长

边的占比。

video 模式有效值范围[2,16], Image 模式有效值范围[2,32]

推荐值为 16

detectFaceMaxNum [in] 最大需要检测的人脸个数[1-50]

combinedMask [in] 用户选择需要检测的功能组合,可单个或多个

hEngine [out] 初始化返回的引擎 handle

#### 返回值

成功返回 MOK, 否则返回失败 codes。

#### 3.1.3 ASFDetectFaces

#### 原型

MRESULT ASFDetectFaces(

MHandle hEngine,
MInt32 width,
MInt32 height,
MInt32 format,
MUInt8\* imgData,

LPASF MultiFaceInfo detectedFaces

);

#### 功能描述

人脸检测。

#### 参数

hEngine [in] 引擎 handle

width [in] 图片宽度为 4 的倍数且大于 0

height [in] YUYV/I420/NV21/NV12 格式的图片高度为 2 的倍数, BGR24 格式

的图片高度不限制

format [in] 颜色空间格式 imgData [in] 图片数据

detectedFaces [out] 检测到的人脸信息

#### 返回值

成功返回 MOK, 否则返回失败 codes。

### 3.1.4 ASFFaceFeatureExtract

#### 原型

MRESULT ASFFaceFeatureExtract(

MHandle hEngine,
MInt32 width,
MInt32 height,
MInt32 format,
MUInt8\* imgData,
LPASF\_SingleFaceInfo faceInfo,
LPASF\_FaceFeature feature

);

#### 功能描述

单人脸特征提取。

#### 参数

hEngine [in] 引擎 handle

width [in] 图片宽度为 4 的倍数且大于 0

height [in] YUYV/I420/NV21/NV12格式的图片高度为 2的倍数,BGR24格式

的图片高度不限制

format [in] 颜色空间格式 imgData [in] 图片数据

faceInfo [in] 单张人脸位置和角度信息

feature [out] 人脸特征

#### 返回值

成功返回 MOK, 否则返回失败 codes。

### 3.1.5 ASFFaceFeatureCompare

#### 原型

MRESULT ASFFaceFeatureCompare(

MHandle hEngine,

LPASF\_FaceFeature feature1,

LPASF FaceFeature feature2,

MFloat\* confidenceLevel

);

#### 功能描述

人脸特征比对。

#### 参数

hEngine [in] 引擎 handle feature1 [in] 特比对的人脸特征 feature2 [in] 特比对的人脸特征 confidenceLevel [out] 比对结果,置信度数值

#### 返回值

成功返回 MOK, 否则返回失败 codes。

#### 3.1.6 ASFProcess

#### 原型

MRESULT ASFProcess(

MHandle hEngine,
MInt32 width,
MInt32 height,
MInt32 format,
MUInt8\* imgData,

LPASF\_MultiFaceInfo detectedFaces,
MInt32 combinedMask

);

#### 功能描述

人脸信息检测(年龄/性别/人脸 3D 角度/活体),最多支持 4 张人脸信息检测,超过部分返回未知(活体仅支持单张人脸检测,超出返回未知)。

#### 参数

hEngine [in] 引擎 handle

width [in] 图片宽度为 4 的倍数且大于 0

height [in] YUYV/I420/NV21/NV12 格式的图片高度为 2 的倍数, BGR24 格式

的图片高度不限制

format [in] 颜色空间格式

imgData [in] 图片数据

detectedFaces [in] 检测到的人脸信息

combinedMask 与 ASF\_AGE | ASF\_GENDER |

ASF\_FACE3DANGLE | ASF\_LIVENESS 的交集的子集

#### 返回值

成功返回 MOK, 否则返回失败 codes。

## 3.1.7 ASFGetAge

### 原型

MRESULT ASFGetAge(

MHandle hEngine,
LPASF\_AgeInfo ageInfo

);

#### 功能描述

获取年龄信息。

#### 参数

hEngine [in] 引擎 handle ageInfo [out] 检测到的年龄信息

#### 返回值

成功返回 MOK, 否则返回失败 codes。

#### 3.1.8 ASFGetGender

#### 原型

MRESULT ASFGetGender(

MHandle hEngine,
LPASF\_GenderInfo genderInfo

);

#### 功能描述

获取性别信息。

#### 参数

hEngine [in] 引擎 handle genderInfo [out] 检测到的性别信息

#### 返回值

成功返回 MOK, 否则返回失败 codes。

## 3.1.9 ASFGetFace3DAngle

#### 原型

MRESULT ASFGetFace3DAngle(

MHandle hEngine,
LPASF\_Face3DAngle p3DAngleInfo

);

#### 功能描述

获取 3D 角度信息。

#### 参数

hEngine [in] 引擎 handle

p3DAngleInfo [out] 检测到脸部 3D 角度信息

#### 返回值

成功返回 MOK, 否则返回失败 codes。

#### 3.1.10ASFGetLivenessScore

#### 原型

```
MRESULT ASFGetLivenessScore(
          MHandle hEngine,
          LPASF_LivenessInfo livenessInfo
);
```

#### 功能描述

获取活体信息。

#### 参数

hEngine [in] 引擎 handle livenessInfo [out] 检测到的活体信息

#### 返回值

成功返回 MOK, 否则返回失败 codes。

#### 3.1.11ASFGetVersion

### 原型

#### 功能描述

获取版本信息。

### 参数

hEngine [in] 引擎 handle

#### 返回值

成功返回版本信息,否则返回 MNull。

# 3.1.12 ASFUninitEngine

#### 原型

#### 功能描述

销毁引擎。

#### 参数

hEngine [in] 引擎 handle

### 返回值

成功返回 MOK, 否则返回失败 codes。

# 3.2 错误码概览

| 错误码名                     | 十六进制 | 十进制 | 错误码说明    |
|--------------------------|------|-----|----------|
| MOK                      | 0    | 0   | 成功       |
| MERR_UNKNOWN             | 1    | 1   | 错误原因不明   |
| MERR_INVALID_PARAM       | 2    | 2   | 无效的参数    |
| MERR_UNSUPPORTED         | 3    | 3   | 引擎不支持    |
| MERR_NO_MEMORY           | 4    | 4   | 内存不足     |
| MERR_BAD_STATE           | 5    | 5   | 状态错误     |
| MERR_USER_CANCEL         | 6    | 6   | 用户取消相关操作 |
| MERR_EXPIRED             | 7    | 7   | 操作时间过期   |
| MERR_USER_PAUSE          | 8    | 8   | 用户暂停操作   |
| MERR_BUFFER_OVERFLOW     | 9    | 9   | 缓冲上溢     |
| MERR_BUFFER_UNDERFLOW    | A    | 10  | 缓冲下溢     |
| MERR_NO_DISKSPACE        | В    | 11  | 存贮空间不足   |
| MERR_COMPONENT_NOT_EXIST | С    | 12  | 组件不存在    |

| MERR_GLOBAL_DATA_NOT_EXIST                     | D     | 13    | 全局数据不存在                              |
|------------------------------------------------|-------|-------|--------------------------------------|
| MERR_FSDK_INVALID_APP_ID                       | 7001  | 28673 | 无效的 AppId                            |
| MERR_FSDK_INVALID_SDK_ID                       | 7002  | 28674 | 无效的 SDKkey                           |
| MERR_FSDK_INVALID_ID_PAIR                      | 7003  | 28675 | AppId和 SDKKey 不匹配                    |
| MERR_FSDK_MISMATCH_ID_AND_SD<br>K              | 7004  | 28676 | SDKKey 和使用的 SDK 不匹配                  |
| MERR_FSDK_SYSTEM_VERSION_UNS UPPORTED          | 7005  | 28677 | 系统版本不被当前 SDK 所支持                     |
| MERR_FSDK_LICENCE_EXPIRED                      | 7006  | 28678 | SDK 有效期过期,需要重新下载更新                   |
| MERR_FSDK_FR_INVALID_MEMORY_<br>INFO           | 12001 | 73729 | 无效的输入内存                              |
| MERR_FSDK_FR_INVALID_IMAGE_I<br>NFO            | 12002 | 73730 | 无效的输入图像参数                            |
| MERR_FSDK_FR_INVALID_FACE_IN<br>FO             | 12003 | 73731 | 无效的脸部信息                              |
| MERR_FSDK_FR_NO_GPU_AVAILABL<br>E              | 12004 | 73732 | 当前设备无 GPU 可用                         |
| MERR_FSDK_FR_MISMATCHED_FEAT URE_LEVEL         | 12005 | 73733 | 待比较的两个人脸特征的版本不<br>一致                 |
| MERR_FSDK_FACEFEATURE_UNKNOW N                 | 14001 | 81921 | 人脸特征检测错误未知                           |
| MERR_FSDK_FACEFEATURE_MEMORY                   | 14002 | 81922 | 人脸特征检测内存错误                           |
| MERR_FSDK_FACEFEATURE_INVALI D_FORMAT          | 14003 | 81923 | 人脸特征检测格式错误                           |
| MERR_FSDK_FACEFEATURE_INVALI D_PARAM           | 14004 | 81924 | 人脸特征检测参数错误                           |
| MERR_FSDK_FACEFEATURE_LOW_CO<br>NFIDENCE_LEVEL | 14005 | 81925 | 人脸特征检测结果置信度低                         |
| MERR_ASF_EX_FEATURE_UNSUPPOR TED_ON_INIT       | 15001 | 86017 | Engine 不支持的检测属性                      |
| MERR_ASF_EX_FEATURE_UNINITED                   | 15002 | 86018 | 需要检测是属性未初始化                          |
| MERR_ASF_EX_FEATURE_UNPROCES SED               | 15003 | 86019 | 待获取的属性未在 process 中处理过                |
| MERR_ASF_EX_FEATURE_UNSUPPOR TED_ON_PROCESS    | 15004 | 86020 | PROCESS 不支持的检测属性,例如<br>FR,有自己独立的处理函数 |
| MERR_ASF_EX_INVALID_IMAGE_IN FO                | 15005 | 86021 | 无效的输入图像                              |
| MERR_ASF_EX_INVALID_FACE_INF 0                 | 15006 | 86022 | 无效的脸部信息                              |
| MERR_ASF_ACTIVATION_FAIL                       | 16001 | 90113 | SDK 激活失败,请打开读写权限                     |

| MERR_ASF_ALREADY_ACTIVATED                  | 16002 | 90114 | SDK 己激活                                         |
|---------------------------------------------|-------|-------|-------------------------------------------------|
| MERR ASF NOT ACTIVATED                      | 16003 | 90115 | SDK 七級石                                         |
| MERR ASF SCALE NOT SUPPORT                  | 16004 | 90116 | detectFaceScaleVal 不支持                          |
|                                             |       |       |                                                 |
| MERR_ASF_VERION_MISMATCH                    | 16005 | 90117 | SDK 版本不匹配                                       |
| MERR_ASF_DEVICE_MISMATCH                    | 16006 | 90118 | 设备不匹配                                           |
| MERR_ASF_UNIQUE_IDENTIFIER_M ISMATCH        | 16007 | 90119 | 唯一标识不匹配                                         |
| MERR_ASF_PARAM_NULL                         | 16008 | 90120 | 参数为空                                            |
| MERR_ASF_LIVENESS_EXPIRED                   | 16009 | 90121 | 活体检测功能已过期                                       |
| MERR_ASF_VERSION_NOT_SUPPORT                | 1600A | 90122 | 版本不支持                                           |
| MERR_ASF_SIGN_ERROR                         | 1600B | 90123 | 签名错误                                            |
| MERR_ASF_DATABASE_ERROR                     | 1600C | 90124 | 数据库插入错误                                         |
| MERR_ASF_UNIQUE_CHECKOUT_FAI L              | 1600D | 90125 | 唯一标识符校验失败                                       |
| MERR_ASF_COLOR_SPACE_NOT_SUP<br>PORT        | 1600E | 90126 | 颜色空间不支持                                         |
| MERR_ASF_IMAGE_WIDTH_HEIGHT_<br>NOT_SUPPORT | 1600F | 90127 | 图片宽度或高度不支持                                      |
| MERR_ASF_READ_PHONE_STATE_DE NIED           | 16010 | 90128 | android. permission. READ_PHONE<br>_STATE 权限被拒绝 |
| MERR_ASF_ACTIVATION_DATA_DES TROYED         | 16011 | 90129 | 激活数据被破坏,请删除激活文<br>件,重新进行激活                      |
| MERR_ASF_SERVER_UNKNOWN_ERRO R              | 16012 | 90130 | 服务端未知错误                                         |
| MERR_ASF_INTERNET_DENIED                    | 16013 | 90131 | INTERNET 权限被拒绝                                  |
| MERR_ASF_ACTIVEFILE_SDK_MISM<br>ATCH        | 16014 | 90132 | 激活文件与 SDK 版本不匹配, 请重<br>新激活                      |
| MERR_ASF_DEVICEINFO_LESS                    | 16015 | 90133 | 设备信息太少,不足以生成设备指 纹                               |
| MERR_ASF_REQUEST_TIMEOUT                    | 16016 | 90134 | 客户端时间与服务器时间(即北京<br>时间)前后相差在30分钟之内               |
| MERR_ASF_APPID_DATA_DECRYPT                 | 16017 | 90135 | 服务端解密失败                                         |
| MERR_ASF_APPID_APPKEY_SDK_MI<br>SMATCH      | 16018 | 90136 | 传入的 AppId 和 AppKey 与使用的SDK 版本不一致                |
| MERR_ASF_NO_REQUEST                         | 16019 | 90137 | 短时间大量请求会被禁止请求,30<br>分钟之后会解封                     |
| MERR_ASF_NETWORK_COULDNT_RES OLVE_HOST      | 17001 | 94209 | 无法解析主机地址                                        |
| MERR_ASF_NETWORK_COULDNT_CON NECT_SERVER    | 17002 | 94210 | 无法连接服务器                                         |

| MERR_ASF_NETWORK_CONNECT_TIM EOUT | 17003 | 94211 | 网络连接超时 |
|-----------------------------------|-------|-------|--------|
| MERR_ASF_NETWORK_UNKNOWN_ERR OR   | 17004 | 94212 | 网络未知错误 |

# 3.3 示例代码

```
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include "arcsoft_face_sdk.h"
#include "amcomdef.h"
#include "asvloffscreen.h"
#include "merror.h"
#include <direct.h>
#include <iostream>
#include <stdarg.h>
#include <string>
#include <opencv2\opencv.hpp>
using namespace std;
#pragma comment(lib, "libarcsoft_face_engine.lib")
#define APPID "官网下载APPID"
#define SDKKey "官网下载ADKKey"
\#define SafeFree(p) { if ((p)) free(p); (p) = NULL; }
#define SafeArrayDelete(p) { if ((p)) delete [] (p); (p) = NULL; }
\#define SafeDelete(p) { if ((p)) delete (p); (p) = NULL; }
//裁剪图片
void CutIplImage(IplImage* src, IplImage* dst, int x, int y)
    CvSize size = cvSize(dst->width, dst->height);//区域大小
    cvSetImageROI(src, cvRect(x, y, size.width, size.height));//设置源图像ROI
    cvCopy(src, dst); //复制图像
    cvResetImageROI(src);//源图像用完后,清空ROI
}
int main()
    //激活接口
    MRESULT res = ASFActivation(APPID, SDKKey);
    if (MOK != res && MERR_ASF_ALREADY_ACTIVATED != res)
```

```
printf("ASFActivation fail: %d\n", res);
    else
        printf("ASFActivation sucess: %d\n", res);
    //初始化接口
    MHandle handle = NULL;
    MInt32 mask = ASF FACE DETECT | ASF FACERECOGNITION | ASF AGE | ASF GENDER |
ASF_FACE3DANGLE | ASF_LIVENESS;
    res = ASFInitEngine (ASF_DETECT_MODE_IMAGE, ASF_OP_O_ONLY, 16, 10, mask, &handle);
    if (res != MOK)
        printf("ASFInitEngine fail: %d\n", res);
    else
        printf("ASFInitEngine sucess: %d\n", res);
    // 人脸检测
    IpIImage* img0 = cvLoadImage("图片路径");
    Ip1Image* img1 = cvLoadImage("图片路径");
    if (img0 && img1)
        ASF MultiFaceInfo detectedFaces1 = { 0 };
        ASF SingleFaceInfo SingleDetectedFaces1 = { 0 };
        ASF FaceFeature feature1 = { 0 };
        ASF_FaceFeature copyfeature1 = { 0 };
         IpIImage* cutImg0 = cvCreateImage(cvSize(img0->width - img0->width % 4,
img0->height), IPL_DEPTH_8U, img0->nChannels);
        CutIplImage(img0, cutImg0, 0, 0);
        res = ASFDetectFaces(handle, cutImg0->width, cutImg0->height,
ASVL_PAF_RGB24_B8G8R8, (MUInt8*) cutImg0-> imageData, &detectedFaces1);
        if (MOK == res)
             SingleDetectedFaces1. faceRect. left = detectedFaces1. faceRect[0]. left;
             SingleDetectedFaces1.faceRect.top = detectedFaces1.faceRect[0].top;
             SingleDetectedFaces1. faceRect. right = detectedFaces1. faceRect[0]. right;
             SingleDetectedFaces1. faceRect. bottom = detectedFaces1. faceRect[0]. bottom;
             SingleDetectedFaces1.faceOrient = detectedFaces1.faceOrient[0];
             res = ASFFaceFeatureExtract(handle, cutImg0->width, cutImg0->height,
ASVL_PAF_RGB24_B8G8R8, (MUInt8*) cutImg0-> imageData, &SingleDetectedFaces1, &feature1);
             if (res == MOK)
             {
                 //拷贝feature
                 copyfeature1. featureSize = feature1. featureSize;
                 copyfeature1. feature = (MByte *) malloc(feature1. featureSize);
```

```
memset(copyfeature1.feature, 0, feature1.featureSize);
                 memcpy(copyfeature1. feature, feature1. feature1. feature1. feature2);
             }
             else
                 printf("ASFFaceFeatureExtract 1 fail: %d\n", res);
         else
             printf("ASFDetectFaces 1 fail: %d\n", res);
         //第二张人脸提取特征
         ASF_MultiFaceInfo detectedFaces2 = { 0 };
         ASF_SingleFaceInfo SingleDetectedFaces2 = { 0 };
         ASF_FaceFeature feature2 = { 0 };
         Ip1Image* cutImg1 = cvCreateImage(cvSize(img1->width - img1->width % 4,
img1-\rangle height), IPL\_DEPTH\_8U, img1-\rangle nChannels);
         CutIplImage(img1, cutImg1, 0, 0);
         res = ASFDetectFaces (handle, cutImg1->width, cutImg1->height,
ASVL_PAF_RGB24_B8G8R8, (MUInt8*) cutImg1-> imageData, &detectedFaces2);
         if (MOK == res)
             SingleDetectedFaces2. faceRect. left = detectedFaces2. faceRect[0]. left;
             SingleDetectedFaces2.faceRect.top = detectedFaces2.faceRect[0].top;
             SingleDetectedFaces2. faceRect. right = detectedFaces2. faceRect[0]. right;
             SingleDetectedFaces2.faceRect.bottom = detectedFaces2.faceRect[0].bottom;
             SingleDetectedFaces2. faceOrient = detectedFaces2. faceOrient[0];
             res = ASFFaceFeatureExtract (handle, cutImg1->width, cutImg1->height,
ASVL_PAF_RGB24_B8G8R8, (MUInt8*) cutImg1-> imageData, &SingleDetectedFaces2, &feature2);
             if (MOK != res)
                 printf("ASFFaceFeatureExtract 2 fail: %d\n", res);
         else
             printf("ASFDetectFaces 2 fail: %d\n", res);
         // 单人脸特征比对
         MFloat confidenceLevel;
         res = ASFFaceFeatureCompare(handle, &copyfeature1, &feature2, &confidenceLevel);
         if (res != MOK)
             printf("ASFFaceFeatureCompare fail: %d\n", res);
         else
             printf("ASFFaceFeatureCompare sucess: %lf\n", confidenceLevel);
```

```
// 人脸信息检测
        MInt32 processMask = ASF_AGE | ASF_GENDER | ASF_FACE3DANGLE | ASF_LIVENESS;
        res = ASFProcess (handle, cutImg1->width, cutImg1->height, ASVL_PAF_RGB24_B8G8R8,
(MUInt8*)cutImg1->imageData, &detectedFaces2, processMask);
        if (res != MOK)
            printf("ASFProcess fail: %d\n", res);
        else
            printf("ASFProcess sucess: %d\n", res);
        // 获取年龄
        ASF_AgeInfo ageInfo = { 0 };
        res = ASFGetAge(handle, &ageInfo);
        if (res != MOK)
            printf("ASFGetAge fail: %d\n", res);
        else
            printf("ASFGetAge sucess: %d\n", res);
        // 获取性别
        ASF_GenderInfo genderInfo = { 0 };
        res = ASFGetGender(handle, &genderInfo);
        if (res != MOK)
            printf("ASFGetGender fail: %d\n", res);
        else
            printf("ASFGetGender sucess: %d\n", res);
        // 获取3D角度
        ASF_Face3DAngle angleInfo = { 0 };
        res = ASFGetFace3DAngle(handle, &angleInfo);
        if (res != MOK)
            printf("ASFGetFace3DAngle fail: %d\n", res);
        else
            printf("ASFGetFace3DAngle sucess: %d\n", res);
        //获取活体信息
        ASF_LivenessInfo livenessInfo = { 0 };
        res = ASFGetLivenessScore(handle, &livenessInfo);
        if (res != MOK)
            printf("ASFGetLivenessScore fail: %d\n", res);
        else
            printf("ASFGetLivenessScore sucess: %d\n", livenessInfo.isLive[0]);
        SafeFree (copyfeature1. feature);
                                               //释放内存
        cvReleaseImage(&cutImg0);
```

```
cvReleaseImage(&cutImg1);
}
cvReleaseImage(&img0);
cvReleaseImage(&img1);
//获取版本信息
const ASF_VERSION* pVersionInfo = ASFGetVersion(handle);

//反初始化
res = ASFUninitEngine(handle);
if (res != MOK)
    printf("ALUninitEngine fail: %d\n", res);
else
    printf("ALUninitEngine sucess: %d\n", res);

getchar();
return 0;
}
```

# 4.常见问题

# **4.1 FAQ**

#### Q: 初始化引擎时检测方向(detectFaceOrientPriority)应该怎么选择?

A: SDK 初始化引擎中可选择仅对 0 度、90 度、180 度、270 度单角度进行人脸检测,也可选择全角度进行检测;根据应用场景,推荐使用单角度进行人脸检测,因为选择全角度的情况下,算法中会对每个角度检测一遍,导致性能相对于单角度较慢。

#### Q: 初始化引擎时(detectFaceScaleVal)参数多大比较合适?

A: 用于数值化表示的最小人脸尺寸,该尺寸代表人脸尺寸相对于图片长边的占比。video模式有效值范围[2,16], Image模式有效值范围[2,32],多数情况下推荐值为 16,特殊情况下可根据具体场景下进行设置。

#### Q: 初始化引擎之后调用其他接口返回错误码 86018, 该怎么解决?

A: 86018 即需要检测的属性未初始化,需要查看调用接口的宏有没有在初始化引擎时在 combinedMask 参数中加入。

# Q: 进行人脸比对时一般会调用 ASFDetectFaces 和 ASFFaceFeatureExtract 两次,可能会导致比对的相似度一直为 1?

A: 初始化引擎之后会提前分配好需要使用的内存,所以第二次调用 ASFDetectFaces 和 ASFFaceFeatureExtract 接口输出的结果会覆盖第一次输出的结果,此时应用层定义的指针指向同一块内存,得到的数据是一样的,所以导致比对结果为 1。

方案一: ASFDetectFaces 和 ASFFaceFeatureExtract 接口可以在第一次调用时进行数据深拷贝。

方案二: ASFDetectFaces 调用之后进行特征提取(ASFFaceFeatureExtract),如果ASFDetectFaces 输出结果没用其他用途,则不需要进行深拷贝,但是ASFFaceFeatureExtract输出结果需要进行深拷贝用于比对。

# Q: 调用 ASFDetectFaces、ASFFaceFeatureExtract 和 ASFProcess 接口返回 90127 错误码,该怎么解决?

A: ArcSoft SDK对图像尺寸做了限制,宽高大于0,宽度为4的倍数,YUYV/I420/NV21/NV12格式的图片高度为2的倍数,BGR24格式的图片高度不限制;如果遇到90127请检查传入的图片尺寸是否符合要求,若不符合可对图片进行适当的裁剪。

#### Q: 人脸检测结果的人脸框 Rect 为何有时会溢出传入图像的边界?

A: Rect 溢出边界可能是人脸只有一部分在图像中,算法会对人脸的位置进行估计。

#### Q: 为何调用引擎有时会出现 crash?

A:若在引擎调用过程中进行销毁引擎则可能会导致 crash。在使用过程中应避免在销毁引擎时还在使用引擎,尤其是做特征提取或活体检测等耗时操作时销毁引擎,如加锁解决。

#### Q: 如何将人脸识别 1:1 进行开发改为 1:n?

A: 先将人脸特征数据用本地文件、数据库或者其他的方式存储下来,若检测出结果需要显示图像可以保存对应的图像。之后循环对特征值进行对比,相似度最高者若超过您设置的阈值则输出相关信息。

### Q: Android 人脸检测结果的人脸框绘制到 View 上为何位置不对?

A: 人脸检测结果的人脸框位置是基于输入图像的,例如在竖屏模式下,假设 View 的宽高是 1080x1920,相机是后置相机,并且预览数据宽高为 1920x1080,有一个被检测到的人脸位置是(left,top,right,bottom),那么需要绘制到 View 上的 Rect 就是(bottom,left,1080-top,right),相当于顺时针旋转 90 度,其他角度可用类似的方法计算。

Q: MERR\_FSDK\_FACEFEATURE\_LOW\_CONFIDENCE\_LEVEL,人脸检测结果置信度低是什么情况导致的?

A: 图片模糊或者传入的人脸框不正确。

Q: 哪些因素会影响人脸检测、人脸跟踪、人脸特征提取等 SDK 调用所用时间?

A: 硬件性能、图片质量等。

# 4.2 其他帮助

SDK 交流论坛: <a href="http://ai.arcsoft.com.cn/bbs/">http://ai.arcsoft.com.cn/bbs/</a>