In [1]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: data = pd.read_csv("Downloads/Titanic-Dataset.csv")
 data

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	٤
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	٤
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	٤
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	С

891 rows × 12 columns

4

```
In [3]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                 Non-Null Count Dtyne
```

#	Column	Non-Null Cou	int Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
dtyp	dtypes: float64(2), int64(5), object(5)							

memory usage: 83.7+ KB

```
In [4]: data.shape
```

Out[4]: (891, 12)

In [5]: data.describe()

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]: data.isnull().sum()

Out[6]: PassengerId

0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 0 SibSp Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64


```
In [10]: sns.countplot(x = data['Survived'], hue = data['Pclass'])
```

Out[10]: <Axes: xlabel='Survived', ylabel='count'>


```
In [11]: import sklearn
    from sklearn.preprocessing import LabelEncoder
    df = LabelEncoder()
    data['Sex'] = df.fit_transform(data['Sex'])
```

In [12]: data.head()

Out[12]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
_	0 0	3	1	22.0	1	0	7.2500	S
	1 1	1	0	38.0	1	0	71.2833	С
	2 1	3	0	26.0	0	0	7.9250	S
	3 1	1	0	35.0	1	0	53.1000	S
	4 0	3	1	35.0	0	0	8.0500	S

```
In [13]: x = data[['Sex', 'Pclass']]
Y = data['Survived']
```

```
In [14]: from sklearn.model_selection import train_test_split
    x_train, x_test, Y_train, Y_test = train_test_split(x,Y, test_size = 0.2, random_state = 42
```

```
In [15]: from sklearn.linear model import LogisticRegression
         log = LogisticRegression(random_state=42)
         log.fit(x_train, Y_train)
Out[15]:
                  LogisticRegression
         LogisticRegression(random state=42)
In [16]: | pred = log.predict(x_test)
         pred
1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
               1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
               0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,
               1, 1, 1], dtype=int64)
In [17]: print(Y_test)
         709
               1
         439
               0
         840
               0
         720
               1
         39
               1
         433
               0
         773
               0
         25
               1
         84
               1
         10
         Name: Survived, Length: 179, dtype: int64
In [18]: from sklearn.metrics import accuracy score , precision score , recall score , f1 score
         accuracy = accuracy_score(Y_test, pred)
        print("Accuracy : ", accuracy)
         Accuracy: 0.7821229050279329
In [19]: | precision = precision_score(Y_test, pred, average = "micro")
         print("precision :" , precision)
         precision: 0.7821229050279329
In [20]: recall = recall score(Y test, pred, average = "micro")
         print("Recall : ", recall)
         Recall: 0.7821229050279329
In [21]: | fscore = f1_score(Y_test, pred, average = "micro")
         print("F1_Score " ,fscore)
         F1 Score 0.7821229050279329
```

```
In [22]: import warnings
         warnings.filterwarnings("ignore")
         res= log.predict([[0,0]])
         if(res==0):
             print("Not survived")
         else:
             print("survived")
         survived
In [23]: import warnings
         warnings.filterwarnings("ignore")
         res= log.predict([[2,1]])
         if(res==0):
             print("Not survived")
         else:
             print("survived")
         Not survived
 In [ ]:
```