Multimedia Computing

Introduction

What is multimedia?

- The term multimedia can be explained in quite different, or even opposing, viewpoints.
 - A PC vendor: a PC that has sound capability, a DVD-ROM drive, and perhaps micro-processors that understand additional multimedia instructions.
 - A consumer entertainment vendor: interactive cable TV with hundreds of digital channels available, or a cable TV-like service delivered over a high-speed Internet connection.
 - A Computer Science student: applications that use multiple modalities, including text, images, graphics, animation, video, sound, and interactivity.

Example: Architecture of a Multimedia PC

Multimedia & Computer Science

- Data Compression/Communication
- Computer Vision
- Human Computer Interaction
- Computer Graphics
- Visualization
- Graph Theory
- Networking
- Database Systems

Components of Multimedia

- Multimedia involves multiple modalities of text, audio, images, drawings, animation, and video.
- Examples:
 - Video teleconferencing
 - Distributed lectures for higher education
 - Tele-medicine
 - Image/video retrieval
 - "Augmented" reality: placing real-appearing computer graphics and video objects into scenes
 - Building searchable features into new video, and enabling very high- to very low-bit-rate use of scalable multimedia products
 - Using voice-recognition to build an interactive environment
 -

Multimedia Research Topics and Projects

- To the computer science researcher, multimedia consists of a wide variety of topics:
 - Multimedia processing and coding: multimedia content analysis, content-based multimedia retrieval, multimedia security, audio/image/video processing, compression, etc.
 - Multimedia system support and networking: network protocols, Internet, operating systems, servers and clients, quality of service (QoS), and databases.
 - Multimedia tools, end-systems and applications: hypermedia systems, user interfaces, authoring systems.
 - Multi-modal interaction and integration: "ubiquity" -web-everywhere devices, multimedia education including Computer Supported Collaborative Learning, and design and applications of virtual environments.

Current Multimedia Projects: examples

- Camera-based object tracking: tracking of the control objects provides user control of the process.
- 3D motion capture: used for multiple-actor capture so that multiple real actors in a virtual studio can be used to automatically produce realistic animated models with natural movement.
- Multiple views: allowing photo-realistic (videoquality) synthesis of virtual actors from several cameras or from a single camera under differing lighting.

Current Multimedia Projects: examples

- Specific multimedia applications: aimed at handicapped persons with low vision capability and the elderly -- a rich field of endeavor.
- Electronic Housecall system: an initiative for providing interactive health monitoring services to patients in their homes.
- Augmented Interaction applications: used to develop interfaces between real and virtual humans for tasks such as augmented storytelling.

Multimedia and Hypermedia

- History of Multimedia:
 - 1. Newspaper: perhaps the first mass communication medium, uses text, graphics, and images.
 - 2. Motion pictures: conceived of in 1830's in order to observe motion too rapid for perception by the human eye.
 - 3. Wireless radio transmission: Guglielmo Marconi, at Pontecchio, Italy, in 1895.
 - 4. Television: the new medium for the 20th century, established video as a commonly available medium and has since changed the world of mass communications.

Multimedia and Hypermedia

- History of Multimedia:
 - 5. The connection between computers and ideas about multimedia covers what is actually only a short period:
 - 1945 -- Vannevar Bush wrote a landmark article describing what amounts to a hypermedia system called Memex.
 - 1960 -- Ted Nelson coined the term hypertext.
 - (Please refer to the textbook for details.)
 - 1991 -- MPEG-1 was approved as an international standard for digital video -- led to the newer standards, MPEG-2, MPEG-4, and further MPEGs in the 1990s.
 - **.....**
 - 2000 -- WWW size was estimated at over 1 billion pages.
 - **2012 -- ?<!*&>?<@*&#@*^@%#**

Hypermedia and Multimedia

A hypertext system: meant to be read nonlinearly, by following links that point to other parts of the document, or to other

documents.

Hypermedia and Multimedia

- Hypermedia: not constrained to be text-based, can include other media, e.g. graphics, images, and especially the continuous media -- sound and video.
 - The World Wide Web (WWW) -- the best example of a hypermedia application.
- Multimedia means that computer information can be represented through audio, graphics, images, video, and animation in addition to traditional media.

Hypermedia and Multimedia

- Examples of typical present multimedia applications:
 - Digital video editing and production systems.
 - Electronic newspapers/magazines.
 - World Wide Web.
 - On-line reference works: e.g. encyclopaedias, games, etc.
 - Home shopping.
 - Interactive TV.
 - Multimedia courseware.
 - Video conferencing.
 - Video-on-demand.
 - Interactive movies.

Overview of Multimedia Software Tools

- The categories of software tools briefly examined here are:
 - Music Sequencing and Notation (e.g. Pro Audio, Macromedia Soundedit)
 - 2. Digital Audio (e.g. Cool Edit, Sound Forge)
 - Graphics and Image Editing (e.g. Adobe Photoshop, Macromedia Freehand)
 - 4. Video Editing (e.g. Adobe Premiere, Final Cut Pro)
 - 5. Animation (e.g. Java3D, DirectX, OpenGL)
 - 6. Multimedia Authoring (Macromedia Flash, Authorware)

Text and Static Data

- Source: keyboard, speech input, optical character recognition, data stored on disk.
- Stored and input character by character.
- Format: Raw text or formatted text, e.g. HTML, Rich Text Format (RTF), or a program language source (C, Pascal, etc.).
- Not temporal. BUT may have natural implied sequence.
 E.g. HTML format sequence, Sequence of C program statements.
- Size is not significant compared with other multimedia data.

Graphics

- Format: constructed by the composition of primitive objects such as lines, polygons, circles, curves and arcs.
- Input: usually generated by a graphics editor program or automatically by a program (e.g. Postscript).
- Usually editable or revisable (unlike Images).
- Graphics input devices: keyboard, mouse, trackball or graphics tablet.
- Graphics standards : OpenGL, PHIGS, GKS
- Graphics files usually store the primitive assembly.
- Do not take up a very high storage overhead.

Audio

- Audio signals are continuous analog signals.
- Input: microphones and then digitised and stored.
- CD Quality Audio requires 16-bit sampling at 44.1
 KHz, even higher rates (e.g. 24-bit, 96 KHz).
- 1 Minute of Mono CD quality (uncompressed) audio requires 5 Mb.
- 1 Minute of Stereo CD quality (uncompressed) audio requires 10 Mb.
- Usually compressed (E.g. MP3, AAC).

Images

 Still pictures which (uncompressed) are represented as a bitmap (a grid of pixels).

- Input: digitally scanned photographs/pictures or direct from a digital camera. May also be generated by programs "similar" to graphics or animation programs.
- Stored at 1 bit per pixel (Black and White), 8 bits per pixel (Grey Scale, Colour Map) or 24 bits per pixel (True Colour)
- Size: a 512x512 Grey scale image takes up 1/4 Mb, a 512x512 24 bit image takes 3/4 Mb without compression.
- This overhead increases rapidly with image size.
- Compression is commonly applied.

Video

- Input: Digital video camera. Analog video is usually captured by a film based video camera and then digitised.
- There are a variety of video (analog and digital) formats.
- Raw video can be regarded as being a series of single images.
 There are typically 25, 30 or 50 frames per second.
- E.g. A 512 x 512 size monochrome video takes 25x0.25 =
 6.25Mb for a minute to store uncompressed.
- □ Typical PAL digital video (720 x 576 pixels per colour frame) ≈
 1.2 x 25 = 30Mb for a minute to store uncompressed.
- □ High Definition DVD (1440×1080 = 1.5 Megapixels per frame) ≈ 4.5 x 25 = 112.5Mb for a minute to store uncompressed.
- Digital video clearly needs to be compressed.

What we will study in this course

- Programming Language Training: Matlab
- Basic Concepts of Color
 - A Case Study of Color Demosaicking of Digital Cameras
- Data Compression Techniques
 - Huffman Coding, Run-length Coding, Arithmetic Coding, Transform-based Coding, ...
- Audio
 - Audio Compression, Speech Signal Processing
- Image
 - Compression (e.g., JPEG, JPEG2000), Interpolation, Digital Inpainting, ...
- Video
 - Motion Estimation, Compression (e.g., MPEG2), Super-resolution, ...
- Object Tracking
- Image Quality Assessment

Color Transformation

ImageCompression

Original Size:

768x512x3=1,179,648 bytes

Size After Compression (JPEG):

32,708 bytes

Compression Ratio:

36.07

Image Interpolation and Single Frame Super-resolution

Image In-painting

Image Morphing: beauty and beast

 An ancient information hiding technique --(藏头诗)

一线情缘牵白头, 如果你我本有缘, 日日思念排忧愁, 隔山离水一线牵, 不要怪我痴情种, 三月桃花正旺盛, 见你常在梦境中。 秋后果实最香甜。

Image Stegnography

Insert information to the 7th bit-plane

Insert information to the Oth bit-plane

Face Verification (1:1 matching)

Face Identification (1:N matching)

Object Tracking

Video Super-resolution

• Low resolution images sent from Mars Pathfinder

• Super-resolution applied

Examples: Image Quality Assessment

MSE=0, MSSIM=1

MSE=142, MSSIM=0.662

MSE=144, MSSIM=0.913

MSE=144, MSSIM=0.694

MSE=144, MSSIM=0.988

MSE=144, MSSIM=0.840₃₁

Evaluation

- (Lab) Assignment: 1x8%
- Quizzes: 2x6%=12%
- Project: 35%
- Midterm Test: 45%×40%=18%
- Final Exam: 45%×60%=27%

Project

- Group project.
 - 5 people/group. Individual project is NOT acceptable.
 - I will randomly form the groups for you.
- I will give you some topics of the project.
- You are encouraged to propose your project topics!
- Matlab is the preferred programming language but you can use other languages.
- You are required to submit both the project report and all the codes.

Quiz and Midterm Test

- We will have two Quizzes.
 - Close-book and close-notes.
 - Format: multiple-choices and short-answers.
 - Date: Feb. 13 (week 6) and Mar. 26 (week 12).
- Midterm Test
 - Close-book and close-notes.
 - Format: true/false, multiple-choices, shortanswers, long-answers.
 - Date: Mar. 5 (week 9).

Reference books:

Z.-N. Li, M. S. Drew, *Fundamentals of Multimedia*, Prentice Hall Inc., 2004.

R. C. Gonzalez and R. E. Woods, *Digital Image Processing*, Prentice Hall Inc., 2008.

Y. Wang, J. Ostermann, Y.Q. Zhang, *Video Processing and Communication*, Prentice Hall Inc., 2002.

Office hour and TAs

- Office hour:
 - Mon, 4:30PM~5:30PM, PQ729
 - Email: <u>cslzhang@comp.polyu.edu.hk</u>
- **TA**:
 - Mr. Kaihua Zhang
 - Office: PQ719
 - Email: <u>cskhzhang@comp.polyu.edu.hk</u>

Lab (8:30PM~9:30PM, Monday)

- Lab
 - Week 3 ~ Week 13 (except for week 9);
 - Venue: PQ604a and PQ604b.
- Please contact the Tech Team if you don't have a Lab Account yet.
- Matlab with Image Processing Toolbox
 - MATLAB Tutorial: http://www.mathworks.com/products/matlab/matlab_tutorial.html
 - MATLAB documentation:
 http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml
- Just Google "Matlab tutorial" and you will find many materials

Course WebCT

http://webct2.polyu.edu.hk/webct/public/home.pl

Lecture notes, assignments and other related information will be put on this website.

Go Library!
Do Nore Lab!