TD: Gestion de Partition

Olivier Raynaud

raynaud@isima.fr

Résumé

Exercice 1 (Optimisation d'implémentation).

Question 1. Donner la description formelle du TDA Gestion de partition et rappeler les complexités des opérations en admettant une implémentation correspondant à une forêt.

Question 2. Quelles améliorations pourrions-nous apporter pour restreindre la profondeur des arbres de la forêt?

Exercice 2 (Classes d'arborescences).

Union par hauteur. On note par C_1 la classe des arbres définie par induction :

- C_1 contient tous les arbres réduit à un sommet;
- Soient T_1 et T_2 deux arbres de C_1 , si $h(T_1) \geq h(T_2)$ alors l'arbre obtenu en affectant comme père de la racine de T_2 la racine de T_1 , appartient à C_1 . Si $h(T_1) < h(T_2)$ l'arbre obtenu en branchant la racine de T_1 comme fils de la racine de T_2 appartient à C_1 .
- Tout arbre résultant de l'application d'un nombre fini de la règle de production précédente appartient à C_1 .

Question 1. Proposer quelque arbres de C_1 .

Lemme 1. Soit T un arbre de C_1 et n son nombre de sommets alors hauteur $(T) \leq log_2$ n.

Question 2. Montrer le lemme 1

Union par taille. On note par C_2 la classe des arbres définie par induction :

- C_2 contient tous les arbres réduits à un sommet;
- Soient T_1 et T_2 deux arbres de C_1 , si $|T_1| \ge |T_2|$ alors l'arbre obtenu en affectant comme père de la racine de T_2 la racine de T_1 , appartient à C_2 . Si $|T_1| < |T_2|$ l'arbre obtenu en branchant la racine de T_1 comme fils de la racine de T_2 appartient à C_2 .
- Tout arbre résultant de l'application d'un nombre fini de la règle de production précédente appartient à C_2 .

Question 3. Proposer quelque arbres de C_2 .

Lemme 2. Soit T un arbre de C_2 et n son nombre de sommets alors hauteur $(T) \leq 1 + \log_2 n$.

Question 4. Montrer le lemme 2

Exercice 3 (Applications: Composantes connexes d'un graphe).

Problème 1 (Composantes connexes).

Entrée: un graphe G;

Sortie: une collection d'ensemble;

Relation: la collection correspond à une partition des sommets de G telle que deux sommets s_1 et s_2 appartiennent à la même partie si et seulement si il existe dans G un chemin de s_1 à s_2 .

Question 1. Proposer un algorithme (et une structure de données) qui résout le problème 1.

Exercice 4 (Applications : Arbre recouvrant de poids minimal).

Problème 2 (Arbre recouvrant de poid minimal).

Entrée: un graphe G = (X, E) connexe valué;

Sortie: un arbre A muni d'un poids p;

Relation : l'arbre A est un arbre recouvrant de G et p est égal à la somme des valuation de ses arêtes. Il n'existe pas d'arbre recouvrant de G dont le poids est inférieur à p.

Question 1. Proposer un algorithme (et une structure de données) qui résout le problème 2.