FIZZ: Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document

Joonho Yang¹

Seunghyun Yoon²

Byeongjeong Kim¹

*Hwanhee Lee¹

Department of Artificial Intelligence, Chung-Ang University¹
Adobe Research, USA²

Factual Inconsistency Detection

Factual Consistency: whether the <u>generated text</u> is <u>factually consistent</u> with the source (ex. news article, book, paper)

Task: Catching a minor factual error (wrong entity or relation, coreference error, out of article, grammatical, etc.) of the summary

Motivation

Sentence-level Evaluation vs. Atomic Fact-level Evaluation

Atomic Fact: A more fine-grained information unit than a sentence

By employing atomic facts, FIZZ demonstrates high accuracy and strong interpretability.

Atomic Facts

Examining the Consensus between Human Summaries: Initial Experiments with Factoid Analysis

van Halteren & Teufel, NAACL 2003

It can be impossible to provide a practical definition of atomic facts.

Our definition of an atomic fact: short and concise, containing no more than two or three entities, with person entities specifically resolved any of coreferences

Overall Pipeline

Atomic Facts Decomposition: Zoom-in Summary

Document D, Summary S

Coreference Resolution

$$D' = f_{coref}(D), \qquad S' = f_{coref}(S)$$

Atomic Facts Generation

$$S' = \{s'_j\}_{j=1}^N$$
 $A' = \{a'_k\}_{k=1}^L$

Probability distribution of NLI model

Entailment (E), Contradiction (C), Neutral (N)

Atomic Facts Filtering

S' as the <u>premise</u>, A' as the <u>hypothesis</u>

We filtered out the *atomic facts* that did not meet the following condition:

$$\max(E, C, N) = E$$

Summary sentence:

"Chris Gunter says ... on Euro 2016."

Filtered out atomic facts:

"Chris Gunter is a soccer player."

"Euro 2016 is a soccer tournament."

Atomic Facts Filtering

Atomic Facts

- 1. Wales defender Chris Gunter is a soccer player.
- 2. Chris Gunter plays as a defender.
- 3. Chris Gunter is from Wales.
- 4. Chris Gunter says it would be a "massive mistake" to get complacent.
- 5. Chris Gunter says this as they close in on Euro 2016.
- 6. Euro 2016 is a soccer tournament.

Filtered Atomic Facts

- 1. Wales defender Chris Cunter is a seccer player.
- 2. Chris Gunter plays as a defender.
- 3. Chris Gunter is from Wales.
- 4. Chris Gunter says it would be a "massive mistake" to get complacent.
- 5. Chris Gunter says this as they close in on Euro 2016.
- 6. Euro 2016 is a soccer tournament.

Atomic Facts Scoring: Zoom-out Document

Atomic Facts Pair-Wise Scoring

$$D' = \{d'_i\}_{i=1}^M, \qquad A_{filtered} = \{a_k\}_{k=1}^L$$

D' as the <u>premise</u>, $A_{filtered}$ as the <u>hypothesis</u>

We assign scores to each *atomic fact* based on the **maximum** *entailment* score

$$E = \{e_{i,k}\}, 1 \le i \le M, 1 \le k \le L$$

$$\mathbf{t}_k = \max_{1 \le i \le M} e_{i,k}$$

$$\mathbf{T} = \{\mathbf{t}_1, \dots, \mathbf{t}_L\}$$

Adaptive Granularity Expansion

It is necessary to examine multiple sentences across the document because of *abstractiveness*

Granularity Expansion

Atomic Facts

0.02

0.03

0.83

Chris Gunter says it would be a "massive mistake" to get complacent.

Document

The near misses are there as a reminder that in football even the most unlikely thing can happen until the job is don," **Gunter added.**

"We've worked so hard for so long, **it'd be a massive mistake to get complacent** and think the job is done."

Atomic Facts

Chris Gunter says it would be a "massive mistake" to get complacent.

Document

The near misses are there as a reminder that in football even the most unlikely thing can happen until the job is don," **Gunter added.**

"We've worked so hard for so long, **it'd be a massive mistake to get complacent** and think the job is done."

Experimental Setups: Dataset

Dataset

AggreFact (Tang et al., ACL 2023)

Evaluation

document d, summary s, metric $f(d,s) \rightarrow y$ $y \in \mathbb{R}$

Threshold *t*

$$f(d,s) > t = 1, else 0$$
$$f'(d,s) \to \{0,1\}$$

Threshold-per-dataset

Single-threshold (FtSota split)

AggreFact-CNN

		Polytope	FactCC	SummEval	FRANK	Wang'20	CLIFF	Goyal'21	Total
OLD	val test	450 450	931 503	550 548	223 523	118 117	-	25 25	2297 2166
XFORMER	val test	150 150	-	50 50	75 175	-	-	-	275 375
SOTA	val test	34 34	-	200 200	75 175	-	150 150	-	459 559

AggreFact-XSum

		XsumFaith	Wang'20	CLIFF	Goyal'21	Cao'22	Total
OLD	val test	500 430	-	-	-	-	500 430
XFORMER	val test	500 423	-	-	-	-	500 423
SOTA	val test	-	120 119	150 150	50 50	457 239	777 558

Experimental Setups: Baselines

QA-based Methods

QuestEval (Scialom et al., EMNLP 2021); QAFactEval (Fabbri et al., NAACL 2022)

Parsing-based Methods

DAE (Goyal & Durret, NAACL 2021)

NLI-based Methods

SummaC (Laban et al., TACL 2022); AlignScore (Zha et al., ACL 2023)

LLM-based Methods

ChatGPT-ZS, ChatGPT-CoT (Luo et al., 2023); ChatGPT-DA, ChatGPT-Star (Wang et al., 2023)

LLM-based Atomic Facts Methods

FActScore (Min et al., EMNLP 2023); FacTool (Chern et al., 2023)

Experimental Settings

Coreference Resolution Model

Encoder-Decoder Model

MT5-11B (Bohnet et al., TACL 2023)

NLI Model

ALBERT-based Encoder-Decoder Model

Trained on SNLI (Bowman et al., EMNLP 2015),
MNLI (Williams et al., NAACL 2018), ANLI (Nie et al.,
ACL 2020), VitaminC (Schuster et al., NAACL 2021)

• Coreference Resolution Customization

Original	Text	The 27-year-old joined spurs from manchester city in 2011.			
	Coref Resolved Text	Emmanuel Adebayor joined spurs from manchester city in 2011.			
Others	Atomic Fact #1 Atomic Fact #2 Atomic Fact #3	Emmanuel Adebayor joined spurs. Emmanuel Adebayor joined spurs from manchester city. Emmanuel Adebayor joined spurs in 2011.			
	Coref Resolved Text	Emmanuel Adebayor, the 27-year-old joined spurs from manchester city in 2011.			
Ours	Atomic Fact #1 Atomic Fact #2 Atomic Fact #3 Atomic Fact #4	Emmanuel Adebayor is 27-year-old. Emmanuel Adebayor joined spurs. Emmanuel Adebayor joined spurs from manchester city. Emmanuel Adebayor joined spurs in 2011.			

Main Results

Balanced Accuracy Results on AggreFact & FtSota split

	AGGRE FTSOTA			AGGREF FTSOTA			Avg
Baseline	50.0	50.0	50.0	50.0	50.0	50.0	50.0
DAE*	59.4	67.9	69.7	73.1	-	-	67.5
QuestEval	63.7	64.3	65.2	61.6	60.1	59.7	62.4
SummaC-ZS	63.3	76.5	76.3	56.1	51.4	53.3	62.8
SummaC-Cv	70.3	69.8	78.9	67.0	64.6	67.5	69.7
QAFactEval	61.6	69.1	80.3	65.9	59.6	<u>60.5</u>	66.2
AlignScore	53.4	<u>73.1</u>	<u>80.2</u>	<u>70.2</u>	80.1	63.7	70.1
ChatGPT-ZS	66.2	64.5	74.3	62.6	69.2	60.1	66.2
ChatGPT-CoT	49.7	60.4	66.7	56.0	60.9	50.1	57.3
ChatGPT-DA	48.0	63.6	71.0	53.6	65.6	61.5	60.6
ChatGPT-Star	55.8	65.8	71.2	57.7	70.6	53.8	62.5
FactScore	69.9	71.6	73.9	68.0	63.5	66.8	69.0
FacTool	<u>72.7</u>	66.1	60.8	68.0	64.0	62.2	65.6
FIZZ (Ours)	73.2	67.3	76.0	69.7	<u>72.4</u>	68.5	71.2

	AGGREFACT- CNN-FTSOTA	AGGREFACT- XSUM-FTSOTA	AVG
DAE	65.4±4.4	70.2 ±2.3	67.8
QuestEval	70.2 ± 3.2	59.5 ± 2.7	64.9
SummaC-ZS	64.0 ± 3.8	56.4 ± 1.2	60.2
SummaC-Conv	61.0 ± 3.9	65.0 ± 2.2	63.0
QAFactEval	67.8 ± 4.1	63.9 ± 2.4	65.9
AlignScore	62.5 ± 3.3	69.6 ± 1.7	66.1
ChatGPT-ZS	56.3±2.9	62.7±1.7	59.5
ChatGPT-COT	52.5 ± 3.3	55.9 ± 2.1	54.2
ChatGPT-DA	53.7 ± 3.5	54.9 ± 1.9	54.3
ChatGPT-Star	56.3 ± 3.1	57.8 ± 0.2	57.1
FactScore	60.8±3.2	68.0±2.0	64.4
FacTool	49.3 ± 3.5	59.0 ± 2.0	54.2
FIZZ (Ours)	72.6 ±3.0	69.3±1.9	71.0
w/o~GE	72.2 ± 2.8	66.3 ± 1.9	<u>69.3</u>
$w/o\ Filtering$	$\overline{64.7} \pm 3.3$	70.0 ± 1.8	67.4
w/o AF	63.6 ± 2.9	$\overline{65.8} \pm 2.0$	64.7

Analysis

LLMs used for atomic facts generation

Open-source LLMs

Zephyr-7B, Mistral-7B, Orca2-7B

Commerical LLMs

gpt-3.5-turbo, gpt-3.5-turbo-instruct

LLM	CNN	XSUM	AVG	AVG. TOKEN LENGTH
Zephyr	65.1±3.3	65.2±2.0	65.2	97.6
gpt-3.5-turbo	68.7 ± 3.4	68.7 ± 2.0	68.7	95.9
gpt-3.5-turbo-instruct	70.7 ± 3.1	67.0 ± 1.8	68.9	90.5
Mistral	70.5±3.5	68.7 ± 2.1	69.6	86.5
Orca-2	72.6 ±3.0	69.3 ±1.9	71.0	81.4

	ROUGE-1			AVG. NUMBER OF	AVG. TOKEN	
	P	R	F 1	ATOMIC FACTS	LENGTH	
Human	1.00	1.00	1.00	8.7	98.4	
Orca-2	0.70	0.69	0.68	8.7	96.3	
gpt-3.5-turbo	0.78	0.84	0.79	7.8	105.0	
<pre>gpt-3.5-turbo-instruct</pre>	0.73	0.72	0.70	13.0	149.6	
Mistral	0.63	0.62	0.61	9.6	104.1	
Zephyr	0.51	0.60	0.52	10.1	122.0	

Quality and completeness of atomic facts

Human correlation between model-generated *atomic* facts and human-written atomic facts in RoSE (<u>Liu et al., ACL 2023</u>) dataset

$$\frac{1}{N_{data}} \sum_{N_{data}} \frac{1}{N_c} \sum_{i=1}^{N_c} \max_{j=1}^{N_g} (\text{ROUGE}(c_i, g_j))$$

Analysis

• Size of granularity choice in **Granularity Expansion**

Doc. Max Granularity	AGGREFACT- CNN-FTSOTA	AGGREFACT- XSUM-FTSOTA	Avg	s/it
One Sent.	72.2±2.8	66.3 ± 1.9	69.25	2.49
Two Sent.	71.0 ± 3.2	69.3 ± 2.0	70.15	2.53
Three Sent.	72.6 ±3.0	69.3 ± 1.9	70.95	2.64
Four Sent.	72.1±3.1	70.0 \pm 1.8	71.05	2.80

• Effect of Coreference Resolution of documents and atomic facts

Atomic Facts	Doc	CNN	XSUM	AVG
Original	Original	63.2±2.3	66.4±1.8	64.8
	Coref Resolved	65.7±3.4	67.8 ±2.0	66.7(+ <i>1.95</i>)
Coref Resolved	Original	66.2±3.4	66.6±1.9	66.4
	Coref Resolved	72.2 ±2.7	66.3±1.9	69.2 (+2.85)

Closing Remarks

• We propose **highly effective** and **strongly interpretable** summarization **factual inconsistency detection system.**

• FIZZ achieves the highest performance on the AggreFact (<u>Tang et al., ACL 2023</u>) benchmark dataset by decomposing summaries into *atomic facts* and adaptively comparing them with multiple documents.

 Additionally, we analyzed the completeness and quality of atomic facts, demonstrating through human correlation that factors other than content similarity, which previous studies have emphasized, are equally important.

Contact: plm3332@cau.ac.kr

Code: https://github.com/plm3332/FIZZ