

UNIVERSIDADE FEDERAL DE SÃO CARLOS

TRABALHO DE CONCLUSÃO DE CURSO ENGENHARIA ELÉTRICA

IMPLEMENTAÇÃO E AVALIAÇÃO DE REDES NEURAIS COMPACTAS PARA DETECÇÃO DE CATARATA COM DADOS LIMITADOS

Aluno: Felipe Estrada Nunes da Silva

Orientador: Celso Aparecido de França

São Carlos, 28 de Fevereiro de 2025

INTRODUÇÃO

CONTEXTUALIZAÇÃO

Definição da Catarata:

- Opacificação do cristalino, reduzindo a passagem de luz;
- Principal causa de cegueira reversível no mundo;
- Associada ao envelhecimento, diabetes e fatores genéticos;

Impacto da Catarata:

- Redução significativa na qualidade de vida;
- Dificuldade para ler, dirigir e realizar atividades diárias;
- Cirurgia é a única solução definitiva, mas diagnóstico precoce pode retardar sua progressão;

INTRODUÇÃO

JUSTIFICATIVA DO TRABALHO

- Métodos tradicionais de diagnóstico dependem de exames oftalmológicos presenciais;
- Demanda por soluções automatizadas para detecção precoce;
- Inteligência Artificial pode acelerar diagnósticos e reduzir custos médicos;

INTRODUÇÃO

OBJETIVO

- Implementar e avaliar diferentes redes neurais compactas para detecção de catarata;
- Trabalhar com bases de dados limitadas para simular cenários clínicos reais;
- Foco em situações com baixa capacidade de processamento;
- Comparar arquiteturas e desempenhos de CNN, Vision Transformers e modelos híbridos;

INTELIGÊNCIA ARTIFICIAL

Machine Learning (ML)

 Ramo da inteligência artificial que permite que algoritmos aprendam padrões a partir de dados, sem a necessidade de programação explícita.

Deep Learning (DL)

 Subcampo do Machine Learning baseado em redes neurais profundas. Essas redes possuem múltiplas camadas que aprendem representações complexas dos dados.

Redes Neurais Convolucionais (CNNs)

- Foco em dados bidimensionais;
- Excelentes para análise de imagens;
- Extraem características como bordas, texturas e padrões visuais;
- Utilizadas amplamente na área médica para segmentação e diagnóstico;

REDES NEURAIS CONVOLUCIONAIS (CNN)

Camada de Convolução

- Matrizes numéricas conhecidas como filtros, ou Kernels;
- Soma do produto dos elementos do filtro com a entrada;
- Características dependentes do tipo do filtro;
- Aplicação função de ativação, ReLU por exemplo;

Camada de Subamostragem (Pooling)

- Reduzir dimensão de dados;
- Diversos tipos de pooling (max, average);

Camada Totalmente Conectada

- Ultima camada;
- Etapa de conexão entre neurônios e classificação

EFFICIENTNET

Rede Neural Convolucional

Introdução de aumento de parâmetros proporcionalmente

- Profundidade (nº de camadas);
- Largura (nº canais);
- Resolução;

Mobile Inverted Bottleneck (MBConv)

- Expande canais antes da convolução depthwise;
- Reduz custo computacional e melhora desempenho em redes neurais móveis;

Squeeze-and-Excitation

Recalibração de ajustes dos pesos de diferentes canais;

RESNET

Rede Neural Convolucional

Introdução de conexões residuais

Soma da entrada a saída das camadas de convolução;

Blocos ResNet

- Convolução;
- Normalização;
- ReLU;
- ResNet50: 3 convoluções por bloco;
- ResNet18: 2 convoluções por bloco;
- ResNet8: 1 convoluções por bloco;

TRANSFORMER

- Criada para tarefas de processamento de linguagem natural (NLP);
- Introduziu o mecanismo de atenção e atenção própria;
- Eficiência em tarefas de processamento sequencial;
- Capacidade de paralelização;

Camada de Embedding

Vetorização da entrada;

Camada Posicional

Inserção de valor posicional ao vetor;

Mecanismo de Atenção (Self-Attention)

- Calculo da relevância de entre partes da entrada;
- Utiliza projeções lineares Q (consulta), K (chaves) e V (valores);
- Calculo via multiplicação com pesos aprendíveis;
- Produto escalar entre Q e *K* determina similaridade entre elementos;

TRANSFORMER

Atenção Multicabeça

Múltiplos mecanismos de atenção;

Feedforward

Camadas totalmente conectadas que armazenam conhecimento;

Normalização de Camada

Normalização da saída para redução de instabilidade;

Camada de Saída

Integração de informações processadas para tarefa final;

VISION TRANSFORMER (VIT)

Arquitetura Transformer

- Processamento de imagens em batches menores;
- Utilizado com frequência em grandes bases de dados;

Segue mesmas camadas do Transformer, com exceção:

- Patch Embedding
 Vetorização da entrada em tokens;
 Batches com tamanhos fixos;
- Token de Classe
 Agrega informações dos outros tokens;

METODOLOGIA

Dados utilizados

- Dataset especializado em detecção de doenças oculares;
- Categorias: Normal, catarata, glaucoma, doenças de retina;
- Binária: Normal e catarata;
- Multiclasses: 4 classes;

Balanceamento e Aumento de Dados

Data augmentation;

Pré-processamento de Imagens

- Redimensionamento de imagens;
- Normalização;

Particionamento do Dataset

- Treinamento (80%);
- Validação (12%);
- Teste (8%);

MODELAGEM

Adaptação de ultimas camadas para quantidade de classes

EfficientNet-B0

Versão compacta da EfficientNet;

ResNet

- ResNet6 e ResNet8: Uma camada convolucional por bloco;
- ResNet10, e ResNet18: Duas camadas convolucionais por bloco;

Vision Transformer Lite (ViT-Lite)

- Redução de camadas no encoder (12 para 4);
- Redução de cabeças de atenção (12 para 2);
- Implementação do pooling sequencial;

Metodologia

MODELAGEM

Compact Convolutional Transformer (CCT)

ViT-Lite com convolução na entrada (Patch Embedding);

ResNet + ViT

- ResNet como tokenizador no lugar do Patch Embedding;
- ResNet para extração de características;
- Encoder ViT
- Desativação aleatória de neurônios durante o treinamento (DropOut) mais robusto (30%)
- Pruning para reduzir dimensionalidade;

Metodologia

TREINAMENTO

Python + Pytorch

Hiper parâmetros

- AdamW;
- taxa de aprendizado inicial 4· e-6;
- Redução de taxa de aprendizado (ReduceLROnPlateau);
- Backpropagation;
- Early Stopping;

Metricas

- Acurácia;
- Perda CrossEntropyLoss;
- Sensibilidade;

$$Acurácia = \frac{N_{Previsões Corretas}}{Total de amostras} \cdot 100 \%$$

$$L = \frac{-1}{N} \cdot \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log p_{i,c}$$

Sensibilidade =
$$\frac{VP}{VP + FN} \cdot 100 \%$$

DESEMPENHO DOS MODELOS

	Numero Parâmetros	Total Modelo (MB)	Precisão (%)		Perda		Sensibilidade		Tempo de Inferência (ms)	
			Binário	Multiclasse	Binário	Multiclasse	Binário	Multiclasse	Binário	Multiclasse
EfficientNet-B0	4,013 M	47,49	95,31	59,38	0,2641	0,9888	95,45%	86,27%	610,783	347,99
ResNet-18	11,178 M	54,28	100	97,66	0,0308	0,1408	100,00%	98,28%	226,64	341,096
ResNet-10	4,908 M	27,77	100	93,75	0,0308	0,225	100,00%	98,00%	163,379	406,335
ResNet-8	4,734 M	26,04	100	96,09	0,0084	0,1033	100,00%	98,73%	144,344	102,381
ResNet 6	1,599 M	11,97	100	89,84	0,0583	0,3989	100,00%	96,73%	97,589	179,487
CVT	0,396 M	3912,58	96,88	66,41	0,1037	0,7928	98,08%	88,85%	4028,623	2047,364
ССТ	0,631 M	30,76	98,44	64,84	0,1046	0,7968	98,08%	88,26%	3401,841	2053,903
ResNet18-ViT	12,036 M	56,69	100	98,44	0,0308	0,0686	100,00%	99,49%	166,331	384,676
ResNet10-ViT	5,765 M	29,05	100	95,31	0,0308	0,1513	100,00%	98,51%	180,752	321,327
ResNet8-ViT	5,117 M	27,15	100	97,66	0,0018	0,0938	100,00%	99,21%	146,805	212,937
ResNet06-ViT	1,981 M	13,08	100	95,31	0,0015	0,3407	100,00%	98,45%	133,271	63,442

CLASSIFICAÇÃO BINÁRIA

ResNet e ResNet-ViT

- 100% de precisão no teste;
- Precisão acima de 95% em validação;
- Rápida conversão no treinamento (10 épocas);

CCT

- 98,44% de precisão no teste;
- Precisão acima de 90% em validação;
- Rápida conversão no treinamento (20 épocas);

CVT

- 96,88% de precisão no teste;
- Precisão baixa (78%) em validação;

EfficientNet

- 95,31% de precisão no teste;
- Precisão acima de 95% em validação;
- Conversão lenta no treinamento (100 épocas);

CLASSIFICAÇÃO MULTICLASSES

ResNetViT

- Acima de 95,31% de precisão no teste;
- Precisão acima de 90% em validação;
- Rápida conversão no treinamento (20~60 épocas);

ResNet

- Acima de 89,84% de precisão no teste;
- Precisão acima de 90% em validação;
- Rápida conversão no treinamento (40~80 épocas);

CVT e CCT

- 64,84% e 66,41% de precisão no teste;
- Precisão abaixo de de 70% em validação;

Efficient

- 59,38% de precisão no teste;
- Precisão baixa (~60%) em validação;
- Conversão de aprendizado lenta;

CLASSIFICAÇÃO MULTICLASSES

Análise de Resultados

Baixo impacto dos ViT em modelos híbridos;

CONCLUSÕES

- Redes neurais compactas são viáveis e eficazes;
- Como esperado, baixo impacto dos Transformers em modelos híbridos;
- Necessário avaliação de aplicação para justificar utilização de modelos híbridos;
- Modelos baseados apenas em Transformers tiveram desempenho bem abaixo, por conta da limitação do tamanho do banco de dados;