

Winning Space Race with Data Science

<Renaldo Arapi> <24/12/2024>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive summary

This project analyzed SpaceX launch data, employing data wrangling, exploratory data analysis (EDA), and predictive modeling. Key findings include [mention 1 key finding, e.g., trends in launch sites or mission outcomes]. An interactive dashboard and a predictive model for launch success were developed, demonstrating the power of data visualization and machine learning. The analysis provides valuable insights into SpaceX's launch history and potential future trajectories.

Introduction

In this lab, we will perform some Exploratory Data Analysis (EDA) to find some patterns in the data and determine what would be the label for training supervised model.

Methodology

Executive Summary

- Data collection methodology:
 - Space X API request
- Perform data wrangling
 - Convert in Training Labels 1 = success and 0 = fail
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data Collection

```
Now let's start requesting rocket launch data from SpaceX API with the following URL:
       spacex_url="https://api.spacexdata.com/v4/launches/past"
[6]
                                                                                                                                                         Python
       response = requests.get(spacex_url)
                                                                                                                                                         Python
[7]
   Check the content of the response
       print(response.content)
[8]
    b'[{"fairings":{"reused":false,"recovery_attempt":false,"recovered":false,"ships":[]},"links":{"patch":{"small":"https://images2.imgbox.com/94/f2/NN6Ph
   You should see the response contains massive information about SpaceX launches. Next, let's try to discover some more relevant information for this project.
```

Data Collection – SpaceX API

 https://github.com/Orey97/J upyter-notebookassignment/blob/main/Spac e%20X%20data%20risolt.ipy nb

```
spacex url=https://api.spacexdata.com/v4/launc
response = requests.get(spacex_url)
print(response.content)
```

Data Collection - Scraping

```
data = response.json()
       data = pd.json_normalize(data)
[12]
   Using the dataframe data print the first 5 rows
                                                                    + Code
                                                                             + Markdown
       # Get the head of the dataframe
       print(data.head())
[13]
           static fire date utc static fire date unix
                                                                 net window \
                                                          tbd
       2006-03-17T00:00:00.000Z
                                          1.142554e+09 False
                                                              False
                                                                         0.0
                                                   NaN False False
                           None
                                                                         0.0
    2
                                                        False False
                                                                         0.0
                           None
                                                        False
                                                              False
       2008-09-20T00:00:00.000Z
                                          1.221869e+09
                                                                         0.0
                                                   NaN False False
    4
                           None
                                                                         0.0
                         rocket success \
       5e9d0d95eda69955f709d1eb
                                   False
       5e9d0d95eda69955f709d1eb
                                   False
       5e9d0d95eda69955f709d1eb
                                   False
       5e9d0d95eda69955f709d1eb
                                    True
    4 5e9d0d95eda69955f709d1eb
                                    True
```

Data Wrangling

- Data Extraction: Utilized the requests library in Python to fetch data from the SpaceX API.
- Data Transformation: Employed pandas to clean and transform the data, including handling missing values, converting data types, and creating new features.
- Data Validation: Implemented checks to ensure data integrity and consistency using Python's built-in functions and libraries.

EDA with Data Visualization

- Data Exploration: Used pandas for data exploration, including summary statistics, data visualization (histograms, box plots) with matplotlib and seaborn libraries. Interactive
- Visualization: Leveraged Plotly libraries to create interactive visualizations (e.g., scatter plots with hover tooltips, interactive maps with Folium) for deeper data exploration and insights.
- Methodology Documentation: Documented the EDA process using Python comments within the code and created a separate document outlining the methodology and rationale for each step.

EDA with SQL

- Data Retrieval: Utilized SQL queries to extract specific subsets of data from the database, including aggregations, joins, and subqueries.
- Data Analysis: Analyzed the SQL query results to identify trends, patterns, and anomalies in the data.
- Data Visualization (Optional): Integrated SQL query results with visualization libraries (e.g., matplotlib, Plotly) to create dynamic and interactive visualizations based on the SQL outputs.

Build an Interactive Map with Folium

- Map Creation: Used Folium to create an interactive map, visualizing launch locations on a geographical map.
- Map Customization: Added markers, pop-ups, and other interactive features (e.g., tooltips, zoom controls) to enhance the user experience and provide additional information.
- Data Integration: Integrated the SpaceX launch data with the Folium map, visualizing launch locations and potentially overlaying other relevant geographical information.

Build a Dashboard with Plotly Dash

- Dashboard Creation: Developed an interactive dashboard using the Plotly Dash framework, incorporating various visualizations (e.g., bar charts, scatter plots, line graphs) and interactive components (e.g., dropdowns, sliders).
- Data Integration: Integrated the SpaceX data into the Dash dashboard, allowing for dynamic exploration and filtering of the data.
- User Interface Design: Designed a user-friendly and visually appealing dashboard with clear and concise labels, intuitive navigation, and a focus on user experience.

Predictive Analysis (Classification)

- Model Training and Evaluation: Trained and evaluated various classification models (e.g., Logistic Regression, Support Vector Machines, Random Forest) using scikit-learn.
- Model Selection and Tuning: Selected the best-performing model based on evaluation metrics and fine-tuned its hyperparameters using techniques like grid search or crossvalidation.
- Model Interpretation: Analyzed the trained model to understand feature importance and gain insights into the factors influencing launch success.

Results

- Summary of Findings: Summarized the key findings and insights from the analysis, highlighting the most important observations and their implications.
- Limitations and Future Work: Acknowledged the limitations of the analysis and discussed potential areas for future improvement, such as incorporating additional data sources or exploring more advanced machine learning techniques.
- Overall Conclusions: Provided a concise and impactful summary of the project's outcomes and their potential value.

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

• Show the screenshot of the scatter plot with explanations

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

• Show the screenshot of the scatter plot with explanations

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

• Show the screenshot of the scatter plot with explanations

Launch Success Yearly Trend

All Launch Site Names

- CCAFS SLC 40, KSC LC 39, VAFB SLC 4°
- We can see unique Lunch Sites and the total lunches for each Site

```
# Apply value_counts() on column LaunchSite
launch_counts_df = df['LaunchSite'].value_counts().reset_index()
launch_counts_df.columns = ['LaunchSite', 'Total Launches']
print(launch_counts_df)

LaunchSite Total Launches

CCAFS SLC 40 55
KSC LC 39A 22
VAFB SLC 4E 13
```

Launch Site Names Begin with 'CCA'

```
filtered data = df[df['LaunchSite'].str.startswith('CCA', na=False)]
   # Mostra i primi 5 record
   print("I primi 5 record con siti di lancio che iniziano con 'CCA':")
   print(filtered data.head(5))

√ 0.1s

I primi 5 record con siti di lancio che iniziano con 'CCA':
  FlightNumber
                     Date BoosterVersion PayloadMass Orbit
                                                            LaunchSite \
                               Falcon 9 6104.959412
                                                     LEO CCAFS SLC 40
             1 2010-06-04
                                                     LEO CCAFS SLC 40
             2 2012-05-22
                               Falcon 9 525.000000
             3 2013-03-01 Falcon 9 677.000000
                                                     ISS CCAFS SLC 40
            5 2013-12-03 Falcon 9 3170.000000
                                                      GTO CCAFS SLC 40
            6 2014-01-06 Falcon 9 3325.000000
                                                     GTO CCAFS SLC 40
    Outcome Flights GridFins Reused Legs LandingPad Block ReusedCount \
                        False False False
0 None None
                                                        1.0
                                                                      0
                       False False False
1 None None
                                                  NaN
                                                        1.0
                                                                      0
                  1 False False False
2 None None
                                                        1.0
                                                                      0
                       False
                              False False
4 None None
                                                        1.0
                                                                      0
                        False False False
5 None None
                                                  NaN
                                                        1.0
                                                                      0
  Serial Longitude
                   Latitude Year
  B0003 -80.577366 28.561857 2010
  B0005 -80.577366 28.561857 2012
  B0007 -80.577366 28.561857 2013
  B1004 -80.577366 28.561857 2013
  B1005 -80.577366 28.561857 2014
```

Total Payload Mass

```
Mass = df['PayloadMass'].sum()
print('Total payload is :', Mass)

✓ 0.0s

Total payload is : 549446.3470588236
```

Average Payload Mass by F9 v1.1

```
if "BoosterVersion" in df.columns and "PayloadMass" in df.columns:

f9_v1_1_data = df[df["BoosterVersion"] == "Falcon 9"]

average_payload_mass = f9_v1_1_data["PayloadMass"].mean()

print(f"La massa media del payload trasportata da Falcon 9 è: {average_payload_mass:.2f} kg")

La massa media del payload trasportata da Falcon 9 è: 6104.96 kg
```

First Successful Ground Landing Date

• 2010-06-04

