

Professora Inês Dutra

Tópicos Avançados em Inteligência Artificial

Segundo Relatório: Codificar o Planeamento Clássico *Lifted* na Lógica Proposicional

Outubro de 2022

Trabalho realizado por:

Pedro Leite - 201906697

1. Questões Gerais

1.1. Qual é o tema do projeto?

Este projeto, desenvolvido por Daniel Holder e Gregor Behnke, tem como objetivo reduzir o custo do grounding em modelos de planeamento, através do planeamento baseado em representações lifted. A avaliação demostra que este método pode competir com algoritmos heurtic searh-based.

1.2. Como é que funciona diferente dos outros mencionados?

A codificação tem muito em comum com planeamento *plane-space*, onde os sistemas mantêm uma ordem parcial do conjunto de ações, o *partial plan*, durante a pesquisa. Mas as técnicas que resolvem são completamente diferentes. É utilizada a tradução em vez de pesquisa, não há ligações casuais e compromete-se com um plano totalmente ordenado.

1.3. Os autores apresentam experiências?

O algoritmo foi integrado na *search-based powerlifted system*, vai-se chamar *LiSAT*. Também foi criado e avaliado uma versão utilizando solução incremental. Experiências:

	Lifted Systems						
	LiSAT (time slices)			Powerlifted		Unary Relaxation	
	Kissat (n.i.)	CMS (i.)	CMS (n.i.)	Add+po	GC	GC, ur-d	GC, ur
Blocksworld 40	100.0 (40)	100.0 (40)	100.0 (40)	10.0 (4)	2.5 (1)	15.0 (6)	15.0 (6)
Childsnack 144	100.0 (144)	100.0 (144)	100.0 (144)	45.8 (66)	16.0 (23)	60.4 (87)	41.7 (60)
GED 312	36.5 (114)	24.4 (76)	33.7 (105)	79.8 (249)	100.0 (312)	100.0 (312)	100.0 (312)
Logistics 40	100.0 (40)	97.5 (39)	100.0 (40)	100.0 (40)	47.5 (19)	0.0 (0)	0.0 (0)
Organic synt. 56	92.9 (52)	92.9 (52)	92.9 (52)	83.9 (47)	82.1 (46)	80.4 (45)	80.4 (45)
Pipesworld 50	42.0 (21)	38.0 (19)	40.0 (20)	50.0 (25)	44.0 (22)	22.0 (11)	24.0 (12)
Rovers 40	10.0 (4)	7.5 (3)	10.0 (3)	77.5 (31)	2.5 (1)	37.5 (15)	32.5 (13)
Visitall MD 180	98.3 (177)	92.8 (167)	94.4 (170)	78.9 (142)	35.6 (64)	81.7 (147)	55.6 (100)
862	579.7 (592)	553.0 (540)	568.5 (574)	526.0 (604)	330.2 (488)	396.9 (623)	349.1 (548)

	Grounded Systems				
	Fast Do	wnward	MpC		
	Add	FF	inv.	no inv.	
Blocksworld 40	20.0 (8)	20.0 (8)	10.0 (4)	0.0 (0)	
Childsnack 144	41.0 (59)	72.2 (104)	45.8 (66)	45.8 (66)	
GED 312	82.4 (257)	100.0 (312)	37.2 (116)	16.7 (52)	
Logistics 40	10.0 (4)	10.0 (4)	0.0 (0)	0.0 (0)	
Organic synt. 56	32.1 (18)	32.1 (18)	0.0 (0)	0.0 (0)	
Pipesworld 50	28.0 (14)	28.0 (14)	20.0 (10)	18.0 (9)	
Rovers 40	10.0 (4)	10.0 (4)	0.0 (0)	0.0 (0)	
Visitall MD 180	40.0 (72)	40.0 (72)	6.7 (12)	25.6 (46)	
862	263.5 (436)	312.4 (536)	119.7 (208)	106.1 (173)	

Table 1: Coverage results for satisficing planning. LiSAT configurations marked "n.i." use non-incremental SAT solving, those marked "i." use incremental solving. MpC configurations marked "no inv." do not use MpC's invariant analysis in preprocessing.

	Lifted Systems					
	LiSAT (optimal)			Powerlifted		
	Kissat (n.i.)	CMS (i.)	CMS (n.i.)	BFS	A* Max	
Blocksworld 40	100.0 (40)	100.0 (40)	100.0 (40)	0.0(0)	0.0 (0)	
Childsnack 144	51.4 (74)	33.3 (48)	33.3 (48)	2.1 (3)	0.7(1)	
GED 312	21.8 (68)	17.3 (54)	19.2 (60)	13.1 (41)	13.8 (43)	
Logistics 40	75.0 (30)	75.0 (30)	67.5 (27)	12.5 (5)	5.0 (2)	
Organic synt. 56	100.0 (56)	98.2 (55)	98.2 (55)	76.8 (43)	76.8 (43)	
Pipesworld 50	40.0 (20)	34.0 (17)	40.0 (20)	22.0 (11)	14.0 (7)	
Rovers 40	10.0 (4)	10.0 (4)	7.5 (3)	0.0(0)	2.5 (1)	
Visitall MD 180	57.2 (103)	56.1 (101)	55.6 (100)	18.3 (33)	37.2 (67)	
862	455.4 (395)	424.0 (349)	421.3 (353)	144.8 (136)	150.0 (164)	

	Grounded Systems				
	Fast Do	wnward	MpC		
	A* Max	A* LM-Cut	opt, (inv.)	opt, (no inv.)	
Blocksworld 40	2.5 (1)	20.0 (8)	10.0 (4)	12.5 (5)	
Childsnack 144	3.5 (5)	5.6 (8)	0.7(1)	0.0(0)	
GED 312	15.4 (48)	16.0 (50)	14.1 (44)	12.8 (40)	
Logistics 40	2.5 (1)	10.0 (4)	0.0(0)	0.0(0)	
Organic synt. 56	30.4 (17)	30.4 (17)	0.0(0)	0.0(0)	
Pipesworld 50	16.0 (8)	16.0 (8)	14.0 (7)	12.0 (6)	
Rovers 40	2.5 (1)	5.0 (2)	0.0(0)	0.0 (0)	
Visitall MD 180	38.9 (70)	33.3 (60)	5.0 (9)	14.4 (26)	
862	111.6 (151)	136.3 (157)	43.8 (65)	51.8 (77)	

Table 2: Coverage results for length-optimal planning. The abbreviations have the same meaning as in Table 1.

Figure 6: Comparison of formula sizes. Each dot represen the number of clauses generated by MpC (x axis) and LiSA (y axis) for a certain instance and plan length bound.

Figure 5: Ablation study on the runtime of CMS (be aware the log scale) for the satisficing (left) and the optimal setting (right).

Qual é a metodologia utilizada?

O projeto apresenta um esquema de codificação lifted classical planning num plano sem estado, inspirado por abordagens de plan space planning. A tradução para lógica proposicional, para explorar a performance dos solucionadores modernos do SAT.

Parece correto?

Enquanto a codificação é quadrática em comprimento de plano no pior caso, a estratégia apresenta diminui o tamanho no planeamento de satisfações, que demonstra ser muito efetivo em prática.

1.6. Quais são os principais resultados/conclusões? São úteis/importantes?

A codificação é quadrática em comprimento de plano. Foi apresentada uma estratégia para reduzir o tamanho, ao limitar a distância do consumidor, o que demostra ser muito efetivo na prática. Numa questão de conjuntos de *benchmark* dedicado a avaliar sistemas de planeamento lifted, as técnicas utilizadas alcançam cobertura normalizada mais alta do que os sistemas predominantes baseados em *heuristic search based systems*. Numa configuração de comprimento ideal, alcançamos três vezes a cobertura normalizada desses sistemas, incluindo, por exemplo, uma cobertura de 100% no domínio de síntese orgânica.

2. Questões Técnicas

2.1. Qual é a diferença entre as representações lifted e ground?

Modelos de planeamento são usualmente definidos de uma maneira *lifted*, numa linguagem de primeira ordem. O modelo *lifted* é então transformado por um processo chamado *grounding*, o que sistematicamente substitui variáveis por todas constantes. Para fazer com que isto seja possível, modelos usualmente incorporam sistemas de escrita e de *grounding* para aplicar técnicas para excluir parte de modelos para os quais eles podem mostrar que não podem estar contidos tem nenhuma solução.

2.2. O que é um solucionador SAT?

Um solucionador SAT tem como objetivo resolver o problema de satisfabilidade booleana. Ao inserir uma fórmula, o solucionador SAT mostra se a fórmula é satisfazível, o que significa que existem valores possíveis para as variáveis que tornam a formula verdadeira, ou não.

2.3. Qual é o papel da função ρ?

A função ρ , mapea a ação *ground* $A(o1,...,on) \in A$ e um conjunto $P' = \{P(i1,...,im) \mid P \in P, ij \in \{1,...,n\}\}$ ao conjunto $\{P(oi1,...,oim) \mid P(i1,...,im) \in P'\}$.

2.4. Qual é o significado da definição 4?

A definição 4, define o conceito de *achiever*, um *achiever* para um átomo P(o0,01,...,om) é um plano $\pi=(a1,...,aL)$ é: I se e apenas se detém $P(o0,o1,...,om) \in I$ ou uma ação $a \in \pi$ com $P(o0,01,...,om) \in \rho(a,add(a))$. Defini-mos o termo *postition* do *achiever*, a sequência de ações como 0, ou a posição da ação numa sequência. Nós sabemos o efeito que detém depois de executar o *achiever*. Mas pode ser apagado por outra ação, essa ação chama-se *destroyer*.

3. Outras Questões

3.1. Qual é a vantagem de planeamento na Inteligência Artificial?

O planeamento na Inteligência Artificial, é importante para a automação, já que requer planeamento automatizado eficiente.