CS 3313 Foundations of Computing:

Math Review: Countable & Uncountable Sets Diagonalization

http://gw-cs3313-2021.github.io

- © Narahari, 2021
- © Hopcroft & Ullman

(Discete) Math Review

- Encoding integers...and enumeration (ordering)
- Cardinality of sets
 - Countable and Uncountable Sets
- Diagonalization technique (proof of contradiction)

Integers, Strings, and Other data

- Data types are important as a programming tool.
 - Program manipulates a data type...operations are defined on data types
- But at another level, there is only one type, which you may think of as integers or strings.
 - A string of 0' and 1's!
- Key point: Strings that are programs are just another way to think about the same one data type.
- Recall data types and encodings from Architecture course.....

Example: Text

- Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.
- Binary strings can be thought of as integers.

Enumeration..i.e., ordering of strings

- Enumeration/ordering: It makes sense to talk about "the i-th binary string."
 - Goal: to list all binary strings in some order
 - So we have the first string, second string, ... n-th string, etc...
- Consider set of all strings over {0,1}
 - $\{\lambda, 0, 1, 00, 10, 000, \dots \}$
- Is the ordering just the decimal equivalent
 - Using the weighted positional binary representation of a decimal number?
 - 101 is the number 5, etc.

Enumeration: Binary Strings to Integers

- There's a small glitch:
 - If you think simply of binary integers, then strings like 101, 0101, 00101,... all appear to be "the fifth string" since their decimal equivalent is the integer 5
- Fix by prepending a "1" to the string before converting to an integer (decimal equivalent).
 - Thus, $101 \rightarrow 1101$, $0101 \rightarrow 10101$, and $00101 \rightarrow 100101$
 - And therefore 101, 0101, and 00101 are the 13th, 21st, and 37th strings, respectively.
- $\{\lambda, 0, 1, 00, 01, ...\}$ become $\{1, 10, 11, 100, ...\}$
 - λ is first string, 0 is second string, 1 is third string,....

Example: Images

- Represent an image in (say) GIF.
- The GIF file is an ASCII string.
- Convert string to binary.
- Convert binary string to integer.
- Now we have a notion of "the i-th image."

Example: Enumerations of Proofs

- A formal proof is a sequence of logical expressions, each of which follows from the ones before it....therefore:
- 1. Encode mathematical expressions of any kind in Unicode.
- 2. Convert expression to a binary string and then an integer.

Proofs – **(2)**

- But a proof is a sequence of expressions, so we need a way to separate them.
- Also, we need to indicate which expressions are given and which follow from previous expressions.
- Quick-and-dirty way to introduce new symbols into binary strings:
 - 1. Given a binary string, precede each bit by 0.
 - ◆ Example: 101 becomes 010001.
 - 2. Use strings of two or more 1's as the special symbols.
 - ◆ Example: 111 = "the following expression is given";
 - ◆ Example: 11 = "end of expression."

Key takeaway: remember this concept of using a specific pattern/string as a separator between fields

Example: Encoding Proofs

Example: Programs

- Programs are just another kind of data.
- Represent a program in ASCII.
- Convert to a binary string, then to an integer.
- Thus, it makes sense to talk about "the i-th program."
- Hmm...There aren't all that many programs.

What's our takeaway?

- Languages, datatypes, programs, proofs can be encoded (as 0's and 1's) and enumerated
 - We can talk of the *i-th* program or the *i-th* proof etc.
- Next we formalize the notion of counting/enumeration....and the size of sets

Next....concept of Countable and diagonalization

- Arguments about the size of a set
- Diagonalization technique to prove (by contradiction)

- Why review this.....
- When we get to discussing properties of computability specifically, undecidability (unsolvable problems), we need diagonalization technique to prove a problem is undecidable

Set Cardinality

- Cardinality of a set is the number of elements in the set
- Set can be finite or infinite
- Two sets A,B have the same cardinality if there is a one-to-one correspondence (mapping) from A to B
- $A = \{0,1,2,3,4,5\}$ and $B = \{a,b,c,d,e,f\}$
 - f(0)=a, f(1)=b, f(2)=c, f(3)=d, f(4)=e, f(5)=f

Countable and Uncountable Sets

 Intuition: if we can arrange the elements of set in a manner where we can speak of "first element", "second element", etc.

- An infinite set A is countably infinite if and only if it has the same cardinality as the set of Natural numbers (positive integers)
 - There is a one to one correspondence (one to one and onto) from A to N.
- A set is countable iff it is finite or is countably infinite
- A set that is not countable is said to be uncountable
- Useful Theorems:
 - 1. If $A \subseteq B$ and B is countable then A is countable
 - 2. If $A \subseteq B$ and A is uncountable then B is uncountable

Enumerations

- An enumeration of a set is a 1-1 correspondence between the set and the positive integers.
- Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

Countably Infinite Sets...Example

- Two sets have the same cardinality if there is a one to one correspondence between them
- Set of all integers Z is a countably infinite set: $f: Z \rightarrow N$
 - f(0) = 1 f(-i) = 2i f(+i) = 2i+1
 - 0 -> 1, -1 -> 2, 1 -> 3, -2 -> 4,...
 - "ordering" 0, -1, 1, -2, 2, -3, 3,
- Set of even integers Z_2 is countably infinite f_2 : $N \rightarrow Z_2$
 - $f_2(n) = 2n$
- Set of primes P is countably infinite $-f_3$
 - f_3 : (p): p is the i-th prime.
 - Recall: we proved earlier that set of primes is infinite

Rational Numbers Q

- Rational number p/q p,q are integers
- Theorem: Set of positive rational numbers Q is countable
- Intuition: list the rational numbers "in order"
 - Find a way to "label" the rational numbers to get the first rational number, the second rational number, etc.
 - For simplicity, let's work with p,q positive
 - Observe: We can view the number p/q as a pair of integers [p,q] and then order them first by sum and then by first component
 - **-** [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],..[1,4],[5,1]...

Ordering of (positive) Rational Numbers Q

- Make an infinite matrix containing all positive rationals.
 - The *i-th* row has all rational numbers with *i* in the numerator
 - The *j-th* column has all rational numbers with *j* in the denominator
 - Next turn this matrix into a list (ordered list)
- A bad way to do this would be to begin the list with all elements in the first row
 - Is not a good approach because first row is infinite and the list would never get to the second row!
- Instead, we list the elements on the diagonals
 - First element contain 1/1, i.e., p/q where p+q=2
 - Second diagonal contains numbers p/q where p+q=3
 - Third diagonal contains numbers p/q where p+q=4
 - •

Ordering of (positive) Rational Numbers Q

			>	> /	X			
	1/1	1/2	1/3	1/4	1/5	• • •	• • •	••
	2/1	2/2	2/3	2/4	2/5	• • •	• • •	• • •
	3/1	3/2	3/3	3/4	3/5	• • •	• • •	•••
	4/1	4/2	4/3	4/4	4/5	• • •	• • •	• • •
•	5/1	5/2	5/3	5/4	5/5	• • •	• • •	• • •
	• • • •	• • •	• • •				• • •	• • •
	•••	• • •	• • •				• • •	• • •
	• • •	• • •						

Rational Numbers Q

- Deciphering the ordering...
- Observe: We can view the number p/q as a pair of integers [p,q] and then order them first by sum and then by first component
 - **-** [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],..[1,4],[5,1]...
 - Known as filing order for a 2-tuple

Set of Real Numbers R: An countable set

- A real number has a decimal representation
 - $\pi = 3.1415926...$
 - $\sqrt{2} = 1.4142135...$
- A trick similar to rationals does not work here....but will use it to proof by contradiction
- Theorem: Set of real number *R* is uncountable
- Proof by contradiction....
 - The technique, developed by Cantor, is known as diagonalization
- We will prove that the set of reals between 0 and 1 (0,1) is uncountable
 - This is a subset of R, therefore R is uncountable

Uncountable Set.....concept of Diagonalization

- Proof by contradiction: Assume the set (0,1) is countable.
- Any number in this set can be represented as $0.d_1d_2d_3...$
- Suppose the set of countable, then we can write a list of real numbers and count them from 1 to $n: x_1, x_2, ...x_n$..
 - $Each x_i = 0.d_1d_2....$ Where d_i is a digit
- Notation: for each number x_i in the list (this appears in the *i-th* position) we can list the values of the digits a_{ij} in each position j after the decimal

$$x_1 = 0$$
. $a_{11} a_{12} a_{13} a_{14}$... Ex: $x_1 = 0.1342$.. then $a_{11} = 1$, $a_{12} = 3$, $a_{13} = 4$.. $x_2 = 0$. $a_{21} a_{22} a_{23} a_{24}$... $x_i = 0.a_{i1} a_{i2} a_{i3}$ a_{ii}

Uncountable set: (0,1) of reals

- Now view this concept as a matrix
 - Infinite number of columns and rows
 - i-th row is real number x_i
 - *j-th* column is value of a_{ij} the value in *j-th* decimal position of x_i

a_{11}	a_{12}	<i>a</i> ₁₃	<i>a</i> ₁₄	a ₁₄	•••	•••	••
a_{21}	a_{22}	<i>a</i> 23	a ₂₄	a ₂₅	•••	•••	•••
<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> 35	•••	•••	•••
<i>a</i> 41	<i>a</i> ₄₂	<i>a</i> 43	<i>a</i> 44	a45	•••	•••	•••
	•••	•••	•••	•••	•••	•••	•••
a_{il}	a_{i2}	a_{i3}				a_{ij}	•••
•••	•••	•••				•••	•••
•••	• • •						

Example

• Illustrate construction (of matrix) with an example...

$$x_1 = 0.23117...$$
 $x_2 = 0.11654...$ $x_3 = 0.14142..$ $x_4 = 0.40375...$

						$\frac{\dot{J}}{}$	•		
		2	3	1	1	7	•••	•••	
		1	1	6	5	4	•••	•••	
i		1	4	1	4	2	•••	•••	•••
		4	0	3	7	5	•••	•••	•••
	,	•••	•••	•••	•••	•••	•••	•••	•••
		a_{i1}	a_{i2}	a_{i3}				a_{ij}	•••
		•••	•••	•••				•••	•••
		•••	•••						

Example

Consider the entries on the diagonal a_{ii} and construct y such that y is not in this (infinite) matrix – **contradiction** since we said every real number in (0,1) can be listed in this manner.

						j	•		
	(2	3	1	1	7	•••	•••	
		1		6	5	4	•••	•••	
i		1	4		4	2	•••	•••	•••
		4	0	3		5	•••	•••	•••
ļ		•••	• • •	•••			•••	•••	•••
		a_{il}	a_{i2}	a_{i3}				a_{ij}	•••
		•••	•••	•••				;/	•••
		•••	•••						

 $x_1 = 0.23117...$ $x_2 = 0.11654...$ $x_3 = 0.14142..$ $x_4 = 0.40375...$

Example-Contradiction

If y is listed in this matrix then $y = x_k$, for some k, and $x_k = 0.a_{k1} a_{k2} a_{k3}... a_{kj}...$

Pick y such that $a_{kj} \neq a_{ji}$ for all j

How? Ex: define $a_{kj} = 2$ if $a_{jj} = 1$ else $a_{kj} = 1$

ex: y=0.1221...

				J	>		
21	3	1	1	7		•••	
1	1 2	6	5	4	•••	•••	•••
1	4	12	4	2	•••	•••	•••
4	0	3	7	5	•••	•••	•••
•••	•••	•••			•••	•••	•••
a_{il}	a_{i2}	a_{i3}				a_{ij}	•••
•••	•••	•••				· ·	•••
•••	•••						

 $x_1 = 0.23117...$ $x_2 = 0.11654...$ $x_3 = 0.14142..$ $x_4 = 0.40375...$

Example-Contradiction

If y is listed in this matrix then $y = x_k$, for some k, and $x_k = 0.a_{k1} a_{k2} a_{k3}... a_{kj}...$

Pick y such that $a_{kj} \neq a_{ji}$ for all j

How? Ex: define $a_{kj} = 2$ if $a_{jj} = 1$ else $a_{kj} = 1$

ex: y = 0.1221...

\wedge				J	→		
21	3	1	1	7	•••	•••	•
1	12	6	5	4	•••	•••	•
1	4	12	4	2			٠
4	0	3	X 1	5	•••		•
•••	•••	•••		×	•••	•••	•
a_{il}	a_{i2}	a_{i3}			×	a_{ij}	•
•••	•••	• • •				×.	•
•••	•••						

0.1221... cannot be in the matrix: cannot be in row 1 cannot be in row 2 cannot be in row 3 etc....

 $x_1 = 0.23117...$ $x_2 = 0.11654...$ $x_3 = 0.14142..$ $x_4 = 0.40375...$

Proof - contradiction

- Consider the number y, where $y = 0.a_{k1} a_{k2} a_{k3}... a_{kj}... where <math>a_{kj} \neq a_{jj}$ for all j
- As one instance: pick $a_{kj} = 2$ if $a_{jj} = 1$ else $a_{kj} = 1$
- Claim: this number y cannot appear in the matrix as any x_k
- Proof: if $y = x_k$ for some k, then we have at least one decimal position j where a_{kj} is not equal to value in row k, column j in the matrix. Contradiction
 - Example: y = 0.1221...
 - Cannot be in the matrix...cannot be in any row because at least one column j (the diagonal entry) the value is not the same as value in the complete matrix.

This type of proof construction – diagonalization is due to Cantor

Another example of an uncountable set: How Many Languages?

- Are the languages over $\{0,1\}$ countable?
 - Recall: A language over $\{0,1\}$ is a subset of $\{0,1\}$ *
 - Set of strings over $\{0,1\}$
- No here's a proof.
- Suppose we could enumerate all languages over $\{0,1\}$ and talk about "the *i-th* language."
- Consider the language $L = \{ w \mid w \text{ is the } i\text{-th binary string and } w \text{ is not in the } i\text{-th language} \}.$
 - We discussed at the start of the lab, one way to enumerate binary strings
 - So we can talk about the *i-th* binary string

Proof – Continued

- Clearly, L is a language over $\{0,1\}$.
- Thus, it is the *j-th* language for some particular/
- Let x be the j-th string.
- Is x in L?
 - If so, x is not in L by definition of L.
 - If not, then x is in L by definition of L.

Diagonalization Picture

Imagine an in finite matrix:

rows correspond to languages and columns to strings a 1 in the entry for row i, column j means j-th string is in the i-th language If we could enumerate languages, we could create such a table

		Strings								
		1	2		4	5	•			
	1	1	0	1	1	0				
	2		1							
Languages	3			0						
	4				0					
	5					1				

Diagonalization Picture

Proof – Concluded

- We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
- Comment: This is really bad; there are more languages than programs.
- E.g., there are languages with no membership algorithm.

Why is this proof important: this proof is used to provide a proof of a problem that cannot be solved by a turing machine!!