Mathe II - Formelsammlung

Sallar Ahmadi-Pour

$WiSe\ 2013/14$

Inhaltsverzeichnis

1	Mengenlehre			
	1.1	Allgemeines	2	
	1.2	Teilmenge	2	
	1.3	Nullmenge	2	
	1.4	Potenzmenge	2	
	1.5	Anzahl der Elemente einer Menge	2	
	1.6	Komplementärmenge	2	
	1.7	Vereinugungsmenge	2	
	1.8	Paarmenge / Produktmenge	3	
	1.9	Rechenregeln	3	
	1.10	Abbildungen	3	
	1.11		3	
2	Voll	ständige Induktion	5	
	2.1	9	5	
	2.2	9	5	
3	Gruppen, Ringe und Körper 7			
U	3.1	rr,o r	7	
	3.2	11	7	
	3.3	0	8	
1	Von	$\mathbf{z}_{\mathbf{z}}$	9	
4	4.1		9	
			9 9	
	4.2			
	4.0		9	
	4.3		9	
	4.4	Formeln und Sätze für komplexe Zahlen		
	4.5	Polarebenen Darstellung / Trigonometrische Darstellung		
		4.5.1 Satz von Moivre	1	

1 Mengenlehre

1.1 Allgemeines

$$\begin{aligned} M_E &= \{a \mid a \text{ mit Eigenschaft } E\} \\ M_A &= \{a_1, a_2, a_3, \dots, a_n\} \\ M &= \{a_1, a_2, a_3, \dots\} \end{aligned} & \text{Aufzählend, abzählbar Endlich} \\ M &= \{a_1, a_2, a_3, \dots\} \\ M_AE &= \{1, 2, 3, \dots\} = \{n \mid n \in \mathbb{N}\} \end{aligned} & \text{abzählbar Unendlich} \\ a &\in M \\ a \notin M \end{aligned} & \text{a Elemnt aus der Menge M} \\ a &= \underbrace{\text{nicht Element aus M}} \end{aligned}$$

1.2 Teilmenge

 $A \subset B \to A$ Teilmenge von B oder $B \supset A$. A = B wenn $A \subset B$ und $B \subset A$.

$$x \in A \Leftrightarrow x \in B$$

1.3 Nullmenge

$$M = \{\} = \emptyset$$

1.4 Potenzmenge

Menge aller Teilmengen. $A = \{1, 2\}$; $P(A) = \{\{1\}, \{2\}, \{1, 2\}, \emptyset\}$

1.5 Anzahl der Elemente einer Menge

$$\#A = |A| = 2 \text{ und } |P(A)| = 4.$$

$$|P(M)| = 2^{|M|}$$

1.6 Komplementärmenge

Sei $A\subset M$, dann ist \bar{A} die Komplementärmenge. $\bar{A}=\{x\mid x\in M\land x\notin A\}$ $\bar{M}=\emptyset$ und $\bar{\emptyset}=M$ $A\backslash M=\bar{A}$

1.7 Vereinugungsmenge

 $A \cup B := \{x \mid x \in A \lor x \in B\}$ Man sagt auch: A vereinigt B.

1.8 Paarmenge / Produktmenge

$$A \times B := \{(a,b) \mid a \in A, b \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Man sagt auch A und B.

Ist $B \subset A$ so heißt $A \setminus B$ Komplement \bar{B} oder B^c .

1.9 Rechenregeln

Seien A, B, C Mengen und M das Einselement:

- a) $A \cup B = B \cup A$ Kommutativ
- b) $A \cap B = B \cap A$ Kommutativ
- c) $(A \cup B) \cup C = A \cup (B \cup C)$ Assoziativ
- d) $(A \cap B) \cap C = A \cap (B \cap C)$ Assoziativ
- e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributiv
- f) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributiv
- g) $A \cap (A \cup C) = A$ Verschmelzung
- h) $B \cup (B \cap C) = B$ Verschmelzung
- i) $A \cup \emptyset = A$ aber $A \cap \emptyset = \emptyset$
- j) $A \cap M = A$ aber $A \cup M = M$
- k) $A \cup \bar{A}$ und $A \cap \bar{A} = \emptyset$ Komplement-Eigenschaft
- 1) $\bar{A} = A$
- m) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ DeMorgansche Regel
- n) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ DeMorgansche Regel

1.10 Abbildungen

Eine Abbildung ist SURJEKTIV: $\forall b \in B \exists a \in A, f(a) = b$.

Eine Abbildung ist injektiv: $\forall a, a' \in Aa \neq a' \Rightarrow f(a) \neq f(a')$.

Eine Abbildung ist BIJEKTIV wenn sie surjektiv und injektiv ist.

1.11 Anzahl der Elemente einer unendlichen Menge

abzählbare Unendlichkeit Sei M eine Menge. M heißt unendlich, falls es eine echte Teilmenge $N \subset M$ gibt, die sich bijektiv auf M abbilden lässt. Eine Menge heißt endlich, wenn sie nicht unendlich ist.

Abzählbarkeit Eine Menge heißt abzählbar unendlich, wenn eine Bijektion zwischen M und N existiert. $|\mathbb{N}|=\infty$

2 Vollständige Induktion

2.1 Allgemeines

Ein Beweis mit vollständiger Induktion (z.B. einer Summenformel bzw. deren nicht iterativer Formel) besteht immer aus:

- <u>Induktionsbehauptung</u>: hier wird die zu beweisende Gleichung niedergeschrieben. Dies ist unsere Induktionsannahme.
- Dann folgt der Induktionsanfang, hier wird ein (möglichst einfacher) Fall für z.B. n=1 durchgerechnet.
- Sollte der Induktionsanfang korrekt sein, kann man nun den <u>Induktionsschritt</u> vollziehen. Hierbei muss die Induktionsbehauptung verwendet werden. Durch geschicktes Umformen gelangt man nun zu einer aussage, welcher für n+1 gilt. Somit sei eine Behauptung mit vollständiger Induktion bewiesen.
- Als letztes kommt der <u>Induktionsschluss</u>. Hier wird die Formel erneut niedergeschrieben, jedoch mit zugehörigem Definitionsbereich (z.B. für alle $n \ge 1$).

2.2 Beispiele

Sei $\sum_{k=1}^n \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$ unsere Induktionsbehauptung welche zu beweisen gilt, so folgt daraus:

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \tag{1}$$

$$\sum_{k=1}^{1} \frac{k}{2^k} = 2 - \frac{1+2}{2^1} \tag{2}$$

für alle $n \geq 1$ sei die Behauptung richtig

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = \sum_{k=1}^{1} \frac{k}{2^k} + \frac{n+1}{2^{n+1}}$$

$$= 2 - \frac{n+2}{2^n} + \frac{n+1}{2^n}$$

$$= 2 + \frac{-n-2}{2^n} + \frac{n+1}{2^{n+1}}$$

$$= 2 + \frac{-2n-4+n+1}{2^{n+1}}$$

$$= 2 + \frac{-n-3}{2^{n+1}}$$

$$= 2 - \frac{n+3}{2^{n+1}}$$

$$= 2 - \frac{(n+1)+2}{2^{n+1}}$$

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \quad \text{gilt für alle } n \ge 1.$$

$$(4)$$

Bei diesem Beispiel ist Gleichung (1) die Induktionsbehauptung bzw. -annahme, (2) der Induktionsanfang, (3) der Induktionsschritt mit Umformung und (4) der Induktionsschluss. Sei $2^n < n!$ unsere Induktionsbehauptung welche zu beweisen gilt, so folgt daraus:

$$2^{n_0} < n_0!$$
$$2^4 = 16 < 4! = 24$$

für $n \ge 4$ sei $2^n < n!$

$$n \to n+1$$
$$2^n < n! \quad \text{gilt } \forall n \ge 4$$

3 Gruppen, Ringe und Körper

3.1 Gruppe

Ein Paar (M, \circ) (M ist eine Menge und \circ eine zweistellige Verknüpfung), das folgende Eigenschaften besitzt:

- Abgeschlossenheit bzgl. Verknüpfung o (die Anwendung der Verknüpfung hat ein Ergebnis aus der selben Menge)
- Assoziativgesetz: $a \circ (b \circ c) = (a \circ b) \circ c$
- Neutrales Element e: Es gibt ein Element e, genannt neutrales Element, sodass $e \circ a = a \circ e = a$ für alle a.
- inverses Element: Zu jedem a gibt es ein b mit $a \circ b = b \circ a = e$, b heißt das zu a inverse Element.

Beispiele: $(\mathbb{Q},+), (\mathbb{R},+), (\mathbb{Q} \setminus \{0\},\cdot), (\mathbb{R} \setminus \{0\},\cdot)$

Eine Gruppe (G, \circ) heißt abelsch oder kommutativ, wenn $\forall a, b \in G$ die Kommutativität gilt, ansonsten gilt sie als nicht-abelsch bzw. nicht-kommutativ.

• $a \circ b = b \circ a$

Beispiele: $(\mathbb{Z}, +)$

Eine Gruppe heißt Halbgruppe, wenn nur die Abgeschlossenheit und die Assoziativität erfüllt sein müssen.

Beispiele: $(\mathbb{N}_0, +), (\mathbb{N}, +), (\mathbb{N}_0, \cdot), (\mathbb{N}, \cdot)$

3.2 Ring

Ein Ring ist eine Menge M von Elementen zusammen mit zwei Verknüpfungen \circ und \square , für die gelten:

- (M, \circ) ist eine kommutative Guppe
- (M, \square) ist abgeschlossen und assoziativ (Halbgruppe)
- Distributivgesetze:

$$a \circ (b \square c) = (a \circ b) \square (a \circ c)$$
$$(a \circ b) \square c) = (a \square c) \circ (b \circ c)$$

In einem kommutativen Ring gilt außerdem das Kommutativgesetz: $a \circ b = b \circ a$

Beispiele: $(\mathbb{Z},+,\cdot),\,(\mathbb{Q},+,\circ)$

3.3 Körper

Ein Körper ist eine Menge M von Elementen zusammen mit zwei Verknüpfungen circ und \square , für die gelten:

- (M, \circ) ist eine kommutative Gruppe
- $(M \setminus e_0, \square)$ ist eine Gruppe $(e_0$ ist das neutrale Element bzgl. \circ).
- Distributivgesetze:

$$a \circ (b \square c) = (a \circ b) \square (a \circ c)$$

 $(a \circ b) \square c) = (a \square c) \circ (b \circ c)$

In einem kommutativen Körper gilt außerdem das Kommutativgesetz: $a \circ b = b \circ a$

Beispiele: $(\mathbb{Q}, +, \circ), (\mathbb{R}, +, \circ), (\mathbb{C}, +, \circ)$

4 Komplexe Zahlen – $\mathbb C$

Im folgenden werden beide Konventionen i und j für die imaginäre Einheit $\sqrt{-1}$ genutzt. Des weiteren werden hier nicht alle Operationen auf und mit komplexen Zahlen beschrieben.

4.1 Potenzen von z

Jede Potenz von einer komplexen Zahl z (z.B. j^{99}) lässt sich runter brechen auf eine Potenz zwischen 1 und 4.

$$j^{4n+1}=j \quad j^{4n+2}=-1 \quad j^{4n+3}=-j \quad j^{4n}=1 \qquad \forall n \in \mathbb{N}$$

$$j=-\frac{1}{k} \qquad j=\sqrt{-1}$$

4.2 Arithmetische Form

$$x, y \in \mathbb{R}, z = x + jy$$

In \mathbb{C} wird nach Betrag der Zahl sortiert, nicht wie in \mathbb{R} (links ist die Zahl kleiner als Rechts).

4.2.1 Gleichheit über Komponenten

$$Re(z) = \frac{1}{2}(z + z^*)$$

 $Im(z) = \frac{1}{2j}(z - z^*)$

4.3 Multiplikation und Division

Bei der Multiplikation von \mathbb{C} -Zahlen addieren sich die Winkel und multiplizieren sich die Radien. Bei der Division von \mathbb{C} -Zahlen subtrahieren sich die Winkel und dividieren sich die Radien.

4.4 Formeln und Sätze für komplexe Zahlen

Für alle $z, z_1, z_2 \in \mathbb{C}$ gilt:

$$(z_{1} + z_{2})^{*} = z_{1}^{*} + z_{2}^{*}$$

$$(z_{1} \cdot z_{2})^{*} = z_{1}^{*} \cdot z_{2}^{*}$$

$$(\frac{z_{1}}{z_{2}})^{*} = \frac{z_{1}^{*}}{z_{2}^{*}} \quad \text{mit } z_{2} \neq 0$$

$$(z^{*})^{*} = z$$

$$z \cdot z = |z|^{2}$$

$$\frac{1}{z} = \frac{z^{*}}{(z \cdot z^{*})} = \frac{z^{*}}{|z|^{2}}$$

$$|z^{*}| = |z|$$

$$|z| \geq 0$$

$$|z| = 0 \Leftrightarrow z = 0$$

$$|z_{1} \cdot z_{2}| = |z_{1}| \cdot |z_{2}|$$

$$\left|\frac{z_{1}}{z_{2}}\right| = \frac{|z_{1}|}{|z_{2}|} \quad \text{mit } z_{2} \neq 0$$

$$|z_{1} + z_{2}| \leq |z_{1}| + |z_{2}| \quad \text{Dreiecksungleichung}$$

4.5 Polarebenen Darstellung / Trigonometrische Darstellung

Zur Darstellung einer komplexen Zahl über eine polarebenen Darstellung (man spricht auch von der trigonometrischen Darstellung) benötigen wir von unserer komplexen Zahl z einen Radius und einen Winkel.

$$r = |z| = \sqrt{x^2 + y^2}$$

sei der Radius. Die Komplexe Zahl lässt sich dann mittels Sinus und Kosinus ausdrücken:

$$z = r\cos\varphi + ir\sin\varphi$$
$$z = r(\cos\varphi + i\sin\varphi)$$

Mit der eulerschen Identität $e^{i\phi} = \cos \varphi + i \sin \varphi$ folgt:

$$z = re^{i\varphi}$$

Mit dieser Darstellung lassen sich Multiplikationen wesentlich einfacher vollziehen:

$$r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = r_1 \cdot r_2 e^{i\varphi_1 + \varphi_2}$$

Wenn man komplexe Zahlen potenziert, potenzieren sich die Beträge (der Radius r) und multiplizieren sich die Winkel jeweils mit n.

$$z^n = (re^{i\varphi})^n = r^n e^{i\varphi n}$$

4.5.1 Satz von Moivre

Der Satz von Moivre besagt, dass $(\cos x + i \sin x)^n = \cos(n x) + i \sin(n x)$ gilt. Dies folgt aus $e^{i x} = \cos x + i \sin x$ und $(e^{i x})^n = e^{i n x}$. Dieser kann über die Additionstheoreme über die vollständige Induktion gezeigt werden.