Exercises for Linear Statistical Models

1. Suppose we have data x_1, \ldots, x_n and y_i, \ldots, y_n , which we model as

$$Y_i = b_0 + b_1 x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

- (a) Write down the formula for the sum of squares criterion.
- (b) Take the partial derivatives of the sum of squares criterion to derive the normal equations.
- (c) Solve the normal equations to show that the least squares estimates are

$$\widehat{b}_1 = \frac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{b}_0 = \overline{y} - \widehat{b}_1 \overline{x}$$

- 2. In terms of the estimates \hat{b}_0 and \hat{b}_1 , write down the formulas for the fitted values, the residuals, and $\hat{\sigma}^2$ (the variance estimate).
- 3. Explain the difference between an estimate and an estimator.
- 4. Write down how you would explain all of the assumptions of the simple linear model for y_1, \ldots, y_n given x_1, \ldots, x_n to your grandmother (who was a chemical engineer).
- 5. Suppose we have data x_1, \ldots, x_n and y_1, \ldots, y_n . The quantity sxy is given to the left of the equals sign and is always equal to **exactly one** of the three expressions to the right of the equals sign. Circle the correct expression and show why sxy is equal to it.

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} (x_i - \overline{x})y_i \qquad \sum_{i=1}^{n} (x_i - \overline{x})\overline{y} \qquad \sum_{i=1}^{n} \overline{x}(y_i - x_i)$$

- 6. Derive a formula for $Cov(\widehat{B}_0, \widehat{B}_1)$
- 7. Use the formulas for the variances and covariances of \widehat{B}_0 and \widehat{B}_1 to derive a simplified expression for the prediction variance $\operatorname{Var}(\widehat{B}_0 + \widehat{B}_1 x_i)$.
- 8. Suppose we have data x_1, \ldots, x_n and y_1, \ldots, y_n . Which of the following equations qualify as statistical models for y_1, \ldots, y_n ?

$$Y_{i} = b_{0} + b_{1}x_{i} + \varepsilon_{i}, \quad \varepsilon_{i} \stackrel{ind}{\sim} N(0, \sigma^{2})$$

$$Y_{i} = b_{0} + b_{1}x_{i}$$

$$Y_{i} = e^{\cos(x_{i}) + \varepsilon_{i}}, \quad \varepsilon_{i} \stackrel{ind}{\sim} N(0, \sigma^{2})$$

$$0 \leq Y_{i} \leq 10$$

9. Under the simple linear model, there is a formula for the least squares estimators of the regression coefficients. Which property of the estimators allows us to conclude that the estimators are normally distributed?

1

- 10. Select all that are correct: A confidence interval for the slope b_1 . . .
 - (a) contains the slope values that we rejected using a hypothesis test
 - (b) contains the slope values that we failed to reject using a hypothesis test
 - (c) is a set of plausible values of the slope given the data
 - (d) has endpoints that are random variables
- 11. Name two desirable properties of estimators, and explain why they are desirable.
- 12. Let

$$Y = Xb + \varepsilon, \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2 I)$$

where Y is $n \times 1$ and X is $n \times p + 1$.

What are the dimensions of \boldsymbol{b} and $\boldsymbol{\varepsilon}$?

What is the expectation of Y?

What is the expectation of $X^T Y$?

What is the expectation of $\hat{\boldsymbol{B}} = (X^T X)^{-1} X^T \boldsymbol{Y}$?

What is the covariance matrix for ε ?

What is the covariance matrix for \hat{B} ?

13. Recall the simple linear model

$$Y_i = b_0 + b_1 x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2).$$

Write down the design matrix X.

Calculate the entries of X^TX

Calculate the entries of $(X^TX)^{-1}$

Calculate $X^T y$.

Show that $\hat{\boldsymbol{b}} = (X^T X)^{-1} X^T \boldsymbol{y}$ produces the same least squares estimates that we originally derived. You'll have to use the formula for the inverse of a 2 × 2 matrix.

14. The residual sum of squares criterion for the multiple linear model is

$$rss(\mathbf{b}^*) = \sum_{i=1}^{n} (y_i - \sum_{i=0}^{p} b_j^* x_{ij})^2$$

Derive the kth normal equation by differentiating the residual sum of squares.

15. Show that the set of p+1 normal equations can be written as $X^T \boldsymbol{y} = X^T X \hat{\boldsymbol{b}}$

16. Let

$$X = \begin{bmatrix} \boldsymbol{x}_0 & \cdots & \boldsymbol{x}_p \end{bmatrix}$$

And suppose for this problem that $\mathbf{x}_0, \dots, \mathbf{x}_p$ are orthonormal, which means that $\mathbf{x}_j^T \mathbf{x}_k = 0$ if $j \neq k$ and 1 if j = k.

Show that the least squares estimates of \boldsymbol{b} are $\hat{b}_j = \boldsymbol{x}_j^T \boldsymbol{y}$.

- 17. What are the two defining properties of projection matrices?
- 18. Show that $X(X^TX)^{-1}X^T$ is a projection matrix.
- 19. Suppose that

$$U = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 0 \end{bmatrix} \text{ and } M = UU^T$$

Calculate the entries of M and show that M is a projection matrix.

20. Consider

$$P = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Show that P is a projection matrix.

Describe the space that P projects onto.

- 21. Show that the fitted values are in the column space of X. In other words, show that the fitted values can be written as a linear combination of the columns of X.
- 22. Let $\mathbf{b} = (b_0, b_1, b_2)$ and $\widehat{\mathbf{B}}$ be the least squares estimator for \mathbf{b} . Further, let $M = \sigma^2(X^TX)^{-1}$, and M_{ij} be the (i, j) entry of M.

What is the expected value of $\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \hat{\boldsymbol{B}}$?

What is the variance of $\begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \hat{\mathbf{B}}$?

23. Let

$$Y = Xb + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I)$$

3

Recall that if $\boldsymbol{Z} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\boldsymbol{a} + M\boldsymbol{Z} \sim N(\boldsymbol{a} + M\boldsymbol{\mu}, M\boldsymbol{\Sigma}M^T)$.

What is the distribution of Y?

What is the distribution of $X^T Y$?

What is the distribution of $\hat{\boldsymbol{B}} = (X^T X)^{-1} X^T \boldsymbol{Y}$?

Does $\mathbf{Y}^T\mathbf{Y}$ follow a normal distribution? Why or why not?

24. The following is from a longitudinal study measuring heights, weights, etc. of a group of girls. Height2 = height at age 2, Height9 = height at age 9, Height18 = height at age 18, and LegCirc9 = leg circumference at age 9.

Below is output from a regression of Height18 on Height2, Height9, and LegCirc9

Call: lm(formula = Height18 ~ Height2 + Height9 + LegCirc9)

	Estimate	Std. Error t	value	Pr(> t)
(Intercept)	35.6880	11.2669	3.167	0.00233
Height2	0.2945	0.1827	1.612	0.11163
Height9	0.9016	0.1195	7.547	1.71e-10
LegCirc9	-0.5986	0.2089	-2.865	0.00559

Residual standard error: 3.404 on 66 degrees of freedom Multiple R-squared: 0.6997, Adjusted R-squared: 0.6861 F-statistic: 51.27 on 3 and 66 DF, p-value: < 2.2e-16

- (a) How many individual girls were in this dataset?
- (b) The model fit to the height data was

$$Y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3} + \varepsilon_i, \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2),$$

where the covariates are listed in the same order as in the output above. What is the estimate of σ ?

- (c) Given an interpretation for the result of the t-test for the Height2 regression coefficient. Why does this make sense for height data?
- (d) Can we conclude that height at age 2 is not important for predicting height at age 18?
- (e) What is the residual sum of squares for this model?
- (f) What is syy for this dataset, and what is the standard deviation of the response?
- 25. Show that $X^T \hat{e} = 0$, that is, the observed residual vector is orthogonal to every column of the design matrix.
- 26. Let $T = Z/\sqrt{W/m}$. T has a t distribution with m degrees of freedom if what 3 things are true?
- 27. Suppose we have a hypothesis for the multiple linear model that can be written as

$$H_0: \boldsymbol{c}^T \boldsymbol{b} = a$$

where c is a p+1 by 1 vector, a is a known (hypothesized) scalar, and, as usual, b is the vector of regression coefficients. For example, the hypothesis $H_0: b_2 - b_1 = 0$ can be written in this form.

(a) Write down the t statistic for this test in terms of $\hat{\boldsymbol{b}}$, X, and $\hat{\sigma}^2$.

- (b) Show that the random version of the t statistic has a T distribution.
- 28. Here is a dataset with results from the pinewood derby:

i	racer	lane	heat	$_{ m time}$
1	Mary	1	1	3.123
2	Suzy	2	1	3.147
3	June	3	1	3.201
4	Mary	3	2	3.133
5	Suzy	1	2	3.168
6	June	2	2	3.192
7	Mary	2	3	3.118
8	Suzy	3	3	3.146
9	June	1	3	3.225

- (a) Write down the design matrix for the one-factor model with **racer** as the factor.
- (b) Write down the design matrix for the one-factor model with lane as the factor.
- (c) Write down the design matrix for the one-factor model with **heat** as the factor.
- 29. Suppose we have the factor model:

$$Y_i = b_0 + b_{j(i)} + \varepsilon_i \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2)$$

where j(i) is the factor level of the *i*th observation. Our dataset has the following design matrix:

$$X = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

- (a) How many levels of the factor are in our dataset?
- (b) What is the rank of the design matrix?
- (c) Compute X^TX .
- (d) State which of the following are estimable functions. For those that are, give a linear combination of observations whose expected value is the estimable function. $b_0 + b_1$, $b_1 + b_2$, $b_2 b_3$, $b_1 0.5(b_2 + b_3)$, $2b_3 b_1 b_2$
- (e) Suppose we pick a solution to the normal equations for which $\hat{b}_0 = 0$. Then how do we interpret \hat{b}_2 ?
- (f) Suppose we pick a solution to the normal equations for which $\hat{b}_1 = 0$. Then how do we interpret \hat{b}_2 ?

5

30. Suppose that we have six dogs. Dogs 1 and 2 are greyhounds, dogs 3 and 4 are whippets, and dogs 5 and 6 are Italian greyhounds. We model their weights as:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \\ Y_6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(0, \sigma^2 I_6).$$

Dog 3 is a whippet that weights 26.0 pounds and is the cutest dog you'll ever meet.

(a) Write these quantities in terms of the notation above:

$$E(Y_1) =$$

$$E(Y_3) =$$

$$E(Y_5) =$$

(b) Give interpretations in words of the following quantities. If no interpretation exists, write "no interpretation". Hint: use your answers from the previous part.

$$b_0$$

$$b_0 + b_1$$

$$b_3 - b_2$$

(c) Using mathematical notation, write down the hypothesis that all three breeds of the dogs have the same expected weight.

Should we use a t test or an F test? Give the degrees of freedom for the test.

(d) Using mathematical notation, write down the hypothesis that we expect a whippet to weigh 15 pounds more than an Italian greyhound.

Should we use a t test or an F test? Give the degrees of freedom for the test.

31. The SAT data contains average SAT scores from each state. Each state was grouped into 1 of 9 regions: ENC, ESC, MA, MTN, NE, PAC, SA, WNC, WSC. Consider the following model for the average SAT math score from the *i*th state:

$$Y_i = b_0 + b_{i(i)} + \varepsilon_i, \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2),$$

where j(i) is the region number (1-9) of the *i*th state. Below is R output from fitting the model:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	551.000	8.093	68.088	< 2e-16	***
regionESC	1.750	12.139	0.144	0.886059	
regionMA	-52.333	13.215	-3.960	0.000284	***

```
-1.115 0.271285
regionMTN
             -11.500
                          10.316
regionNE
             -49.167
                                  -4.487 5.52e-05 ***
                          10.957
             -36.200
                                  -3.163 0.002899 **
regionPAC
                          11.445
regionSA
             -61.333
                          10.093
                                  -6.077 3.08e-07 ***
regionWNC
              29.857
                          10.596
                                    2.818 0.007339 **
             -11.750
regionWSC
                          12.139
                                  -0.968 0.338599
```

Residual standard error: 18.1 on 42 degrees of freedom Multiple R-squared: 0.7733, Adjusted R-squared: 0.7302 F-statistic: 17.91 on 8 and 42 DF, p-value: 2.832e-11

- (a) Which region's coefficient did R set to zero (the reference region)?
- (b) What is the estimated expected SAT score in the reference region?
- (c) What is the estimated expected SAT score in the NE region?
- (d) Which region has the highest estimated expected SAT score, and what is the estimate?
- (e) What is the t statistic for testing whether MA has the same expected SAT score as the reference region?
- (f) How many degrees of freedom in the t statistic from the previous part?
- (g) In terms of b_i 's, write down the hypothesis tested by the F test in the output.
- (h) In the F test, what is the rss for the full model?
- (i) What is the rss for the reduced model? You can use knowledge of the F statistic or the R^2 statistic to solve this. Try it both ways and make sure you get the same answer.
- (j) Think carefully: how many "states" are in this dataset?
- 32. Consider the following model for 3pm temperatures:

$$Y_i = b_0 + b_{j(i)} + c_1 x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{ind}{\sim} N(0, \sigma^2),$$

where j(i) is the month associated with the *i*th observation, and x_i is the 7am temp (atobstemp). Below is output from fitting the model to data from months 1 through 3.

		Estimate	Std. Error	t value	Pr(> t)
b0 -	(Intercept)	15.06816	1.62505	9.272	<2e-16
b2 -	mon02	2.90206	1.64191	1.767	0.0789
b3 -	mon03	3.36943	1.56601	2.152	0.0328
c1 -	atobstemp	1.00450	0.04983	14.471	<2e-16

Residual standard error: 8.704 on 173 degrees of freedom Multiple R-squared: 0.5712, Adjusted R-squared: 0.5639

F-statistic: 78.14 on 3 and 176 DF, p-value = 0.0459

- (a) Is this an additive model or an interaction model?
- (b) Give interpretations for all 4 regression coefficients.
- (c) Draw a plot by hand with the three fitted regression lines.
- (d) It goes without saying that the month 3 temperatures (March) are higher on average than the month 1 temperatures (January). This model says something slightly different. Explain what this model says and why it is also plausible.
- (e) I altered some numbers in the R output. See how many inconsistencies you can find, and explain why.
- (f) Write down the reduced model for the F-test that appears in the R output.
- 33. Below is an incomplete table of estimated expected values for a two factor additive model for levels j = 1, 2, 3 and k = 1, 2, 3. Complete the table with numbers and write out what estimates R would produce for b_0 , b_1 , b_2 , b_3 , c_1 , c_2 , and c_3 .

			k	
		1	2	3
	1		1	
j	2	0	7	8
	3		5	