ABSTRACT OF THE DISCLOSURE

Semiconductor devices comprising interconnect with improved adhesion of barrier layers to dielectric layers are formed by laser thermal annealing exposed surfaces of a dielectric layer in an atmosphere of NH₃ and N₂, and subsequently depositing Ta to form a composite barrier layer. Embodiments include forming a dual damascene opening in an interlayer dielectric comprising F-containing silicon oxide, such as F-containing silicon oxide derived from F-TEOS, laser thermal annealing the exposed silicon oxide surface in NH₃ and N₂, depositing Ta and then filling the opening with Cu. Laser thermal annealing in NH₃ and N₂ depletes the exposed silicon oxide surface of F while forming an N₂-rich surface region. Deposited Ta reacts with the N₂ in the N₂-rich surface region to form a composite barrier layer comprising a graded layer of tantalum nitride and a layer of α-Ta thereon.

5

10