Методы вычислений Отчет по лабораторной работе №3 Уравнение Пуассона

Кузьмин А. Студент группы ИУ7-29 Вариант 19

1. Постановка задачи

1.1. Формулировка задачи

Найти решение краевой задачи для уравнения Пуассона в прямоугольнике $0 \le x \le a,$ $0 \le y \le b$ в следующей формулировке:

$$\triangle u + f = 0,$$

 $u \mid_{x=0} = \varphi_0(y), \quad u \mid_{y=0} = \psi_0(x),$
 $u \mid_{x=a} = \varphi_a(y), \quad u \mid_{y=b} = \psi_b(x),$

Решение разностной задачи провести итерационным методом (верхней релаксации). Провести анализ указанной разностной схемы на устойчивость и сходимость. Оценить точность полученного решения. Для этого повторить вычисления, уменьшив вдвое шаг по каждой оси и сравнив результаты двух расчетов по совпадающим узлам.

Решение предоставить в табличном виде и графически.

1.2. Исходные данные

a	1
b	1
$\varphi_0(y)$	$2y^2$
$\varphi_a(y)$	$2sin(\pi y)$
$\psi_0(x)$	$x-x^2$
$\psi_b(x)$	2-2x
f(x,y)	5+x+y

2. Теоретические сведения

Выбирается сетка с узлами $(x_i, t_j), i, j = \overline{0, N}, x_i = ih_x, t_j = jh_y$. Разностная схема строится, аппроксимируя частные производные 2-го порядка вторыми разностями. Пусть $u_{ij} = u(x_i, y_j), f_{ij} = f(x_i, y_j)$. Тогда

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h_x^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{h_y^2} + f_{ij} = 0$$
 (1)

$$u_{0j} = \varphi_0(y_j), u_{Nj} = \varphi_a(y_j), u_{i0} = \psi_0(x_i), u_{iN} = \psi_b(x_i)$$
(2)

2.1. Метод верхней релаксации

Решение задачи проводится методом верхней релаксации. Координатная форма метода имеет вид:

$$u_{ij}^{k+1/2} = \frac{h_y^2}{2(h_x^2 + h_y^2)} (u_{i-1,j}^{k+1} + u_{i+1,j}^k) + \frac{h_x^2}{2(h_x^2 + h_y^2)} (u_{i,j-1}^{k+1} + u_{i,j+1}^k) + \frac{h_x^2 h_y^2}{2(h_x^2 + h_y^2)} f_{ij},$$

$$u_{ij}^{k+1} = \omega u_{ij}^{k+1/2} + (1 - \omega) u_{ij}^k$$

Значение параметра для метода верхней релаксации:

$$\omega = \frac{2}{1 + \sin\frac{\pi}{N}}$$

2.2. Условие останова

Оценивать близость очередного приближения к точному решению проще оценивать по результатам последних двух итераций. В качестве условия останова используется неравенство:

$$||u^{k+1} - u^k|| < (2 - \omega)\epsilon$$

3. Устойчивость

Данная разностная схема "крест"является устойчивой.

4. Порядок аппроксимации

В данном случае порядок аппроксимации равен $O(h_x^2 + h_y^2)$.

5. Результаты

Рис. 1. Решение краевой задачи для уравнения Пуассона