1 Chapter 2

$2 \quad 2.2$

Given an exact sequence of vector bundles,

$$0 \longrightarrow L \longrightarrow E \longrightarrow F \longrightarrow 0$$

consider the exact sequence,

3 2.5

Let L, L^* be holomorphic line bundles on a compact complex manifold X. Suppose that L and L^* admit nonzero global holomorphic sections s, s'. Then consider $s \otimes s'$ a global section of $L \otimes L^* \cong \mathcal{O}_X$. However, all nonzero sections of \mathcal{O}_X are nonvanishing because X is compact and thus $H^0(X, \mathcal{O}_X) = \mathbb{C}$. Therefore, s and s' are nonvanishing meaning that $L \cong L^* \cong \mathcal{O}_X$.

4 2.6

4.0.1 1

I think f is holomorphic iff df(Iv) = idf(v)

4.0.2 2

4.0.3

4.0.4 4

Let $f: X \to Y$ be a surjective holomorphic map between connected xomplex manifolds. We want to look at the smooth locus of f.

I claim the following is true: for a morphism of vector budles (not necessarily constant rank) $\phi: \mathcal{E}_1 \to \mathcal{E}_2$ then ϕ has full rank $k = \min\{m, n\}$ iff the morphism $\phi': \bigwedge^k \mathcal{E}_1 \to \bigwedge^k \mathcal{E}_2$ is nonzero (is this true).

Therefore, the locus where ϕ is not full rank is the vanishing the section

$$\phi' \in \mathcal{HOM}_{\mathcal{O}_X} \left(\bigwedge^k \mathcal{E}, \bigwedge^k \mathcal{E}_2 \right)$$

Now apply this to the map $f^*\Omega_Y \to \Omega_X$ to get the nonsmooth locus.

4.0.5 6

The cousins' problem has a solution because $H^1(X, \mathcal{O}_X) = 0$. Question: why is every hypersurface defined by a $H^0(K^{\times}/\mathcal{O}_X^{\times})$. Question: how are we supposed to use the poincare lemma.

4.0.6 7

We define,

$$H_{\mathrm{BC}}^{p,q}(X) = \frac{\{\alpha \in \mathcal{A}^{p,q}(X) \mid d\alpha = 0\}}{\partial \bar{\partial} \mathcal{A}^{p-1,q-1}(X)}$$

This makes sense because if $\alpha = \partial \bar{\partial} \gamma$ then

$$d\alpha = \partial^2 \bar{\partial} \gamma - \bar{\partial}^2 \partial \gamma = 0$$

Now, the inclusion of d-closed forms into $\bar{\partial}$ -closed forms induces a map,

$$H^{p,q}_{\mathrm{BC}}(X) \to H^{p,q}(X)$$

which is well-defined because if $\alpha = \partial \bar{\partial} \gamma$ then $\alpha = -\bar{\partial} \partial \gamma$ and is thus $\bar{\partial}$ -exact. If X is furthermore compact Kahler then by the $\partial \bar{\partial}$ -lemma we see if α maps to zero i.e. $\alpha = \partial \bar{\partial} \beta$ and $d\alpha = 0$ then $\alpha = d\gamma$ so the map is injective. Furthermore, by the Hodge decomposition, $H^{p,q}(X)$ can be represented by Harmonic forms which are d-closed and thus this map is surjective as well.

4.0.7 8

Is this just because we can take $M \to M$ via complex conjugation.

4.1 3.2

$4.1.1 \quad 3.2.4$

What does this really mean?? Ask Ron.

4.1.2 3.2.6

Let X be a compact Kähler manifold. Then,

$$H^n(X,\mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}(X)$$

Furthermore, $H^{q,p} = \overline{H^{p,q}}$. Therefore,

$$b_{2k+1} = \sum_{p+q=2k+1} h^{p,q} = \sum_{i=0}^{k} (h^{2k+1-i,i} + h^{i,2k+1-i}) = 2\sum_{i=0}^{k} h^{2k+1-i,i}$$

is even.

$4.1.3 \quad 3.2.7$

No! (PROVE IT)

4.1.4 3.2.8

Let X be a compact Kähler manifold. Let $\omega \in H^0(X, \Omega_X^p)$. Clearly, $\bar{\partial}\omega = 0$ since ω is a holomorphic (p, 0)-form. Furthermore,

$$\bar{\partial}^*\omega = -(\bar{\star} \circ \bar{\partial} \circ \bar{\star})\,\omega$$

but $\bar{\star}\omega$ is a (n-p,n)-form and thus $\bar{\partial}\bar{\star}\omega=0$. Therefore, $\bar{\partial}\omega=0$ and $\bar{\partial}^*\omega=0$ and thus $\Delta_{\bar{\partial}}\omega=0$.

$4.1.5 \quad 3.2.13$

Let X be a complex Kähler manifold and $\alpha \in \mathcal{A}^k(X)$ which is d-closed and d^c-exact where d^c = $i(\bar{\partial} - \partial)$. Notice that $\mathrm{dd}^c = 2i\partial\bar{\partial}$. Write $\alpha = \alpha^{k,0} + \cdots + \alpha^{0,k}$. (FINISH!!)

4.1.6 3.2.14

DO!

$4.1.7 \quad 3.2.15$

DO!

4.1.8 3.2.16

Let X be a compact Kähler manifold. Let ω and ω' be Kähler forms such that $[\omega] = [\omega'] \in H^2(X, \mathbb{R})$. Then $\eta = \omega - \omega' = d\alpha$ for some real 1-form α . Thus η is a closed real (1,1)-form which is d-exact and thus by the $\partial \bar{\partial}$ -lemma $\eta = i\partial \bar{\partial} f$ for some $f \in \mathcal{A}^{0,0}$. Notice,

$$\bar{\eta} = -i\bar{\partial}\partial\bar{f} = i\partial\bar{\partial}\bar{f}$$

however η is real so $\bar{\eta} = \eta$ and thus $\bar{f} = f$ so $f \in \mathcal{A}^0_{\mathbb{R}}$ is a real function and,

$$\omega = \omega' + i\partial\bar{\partial}f$$

5 Extra Questions for Ron

5.0.1 1

Kodaira embedding says that every positive line bundle is ample in the sense of having some power very ample. Does the algebraic geometry definition work here? I.e. L is ample iff for each bundle Q we have $Q \otimes L^n$ generated by global sections for $n \gg 0$. Do we need Q to be arbitrary coherent sheaf

Yes, in fact we only need this for vector bundles because it then follows by resolution for all coherent sheaves.

5.0.2 2

If we have a big line bundle $H^0(X, L^{\otimes m}) \sim m^n$ then does it follow there is an ample line bundle i.e. X is projective. I am guessing not. This is similar to asking if there are non algebraic examples of compact Moishezon manifolds $a(X) = \dim X$.

- 5.0.3 3.3.1
- 5.0.4 3.3.2
- 5.0.5 3.3.3

6 Chapter 4

- 6.1 Section 4.3
- 6.1.1 4.3.1
- $6.1.2 \quad 4.3.2$
- $6.1.3 \quad 4.3.3$
- 6.1.4 4.3.4
- $6.1.5 \quad 4.3.5$

Let X be complex manifold. Let L be a holomorphic line bundle with a hermitian structure h whose Chern connection has positive curvature. Then $F_{\nabla} \in \mathcal{A}^{1,1}(X)$ is an imaginary (1,1)-form. Furthermore, note that $F_{\nabla} = \bar{\partial} \partial \log h$ and thus,

$$dF_{\nabla} = (\partial + \bar{\partial})\bar{\partial}\partial \log h = 0$$

because $\bar{\partial}^2 = 0$ and $\partial\bar{\partial}\partial = -\partial^2\bar{\partial} = 0$. Since $\omega = iF_{\nabla}$ is positive, it is a Kähler form. Furthermore if X is compact then,

$$\int_X A(L)^n = \int_X F_{\nabla}^n = \int_X \omega^n = n! \int_X \operatorname{vol}_{\omega} > 0$$

(CHECK THIS! FACTORS OF I)

- 6.1.6 4.3.6
- $6.1.7 \quad 4.3.7$
- $6.1.8 \quad 4.3.8$
- $6.1.9 \quad 4.3.9$

Let X be a compact Kähler manifold with $b_1(X) = 0$. Suppose that ∇ is a flat connection on \mathcal{O}_X with $\nabla^{0,1} = \bar{\partial}$. Then $\nabla = d + \omega$ where $\omega : \mathcal{A}^0(X) \to \mathcal{A}^1(X)$ is $\mathcal{A}^0(X)$ -linear and thus $\omega \in \mathcal{A}^1(X)$. Futhermore, $\nabla^{0,1} = \bar{\partial}$ so ω is a smooth (1,0)-form. Now consider the curvature,

$$F_{\nabla} = \nabla \circ \nabla(1) = \nabla(\omega \otimes 1) = d\omega \otimes 1 - \omega \wedge \nabla(1) = d\omega \otimes 1 - \omega \wedge \omega \otimes 1 = d\omega$$

Since ∇ is flat we must have $d\omega = 0$. Thus ω defines a de Rham cohomology class $[\omega] \in H^1(X, \mathbb{C})$ but $b_1(X) = 0$ so ω is exact. Take $\omega = \mathrm{d}f$ for some smooth function f. However, ω is a (1,0)-form so f is holomorphic. But X is compact so f is constant and thus $\omega = 0$ showing that $\nabla = \mathrm{d}$.

Now suppose that L is a line bundle on X with $c_1(L) = 0$. From the exponential sequence,

$$H^1(X, \mathcal{O}_X) \longrightarrow \operatorname{Pic}(X) \xrightarrow{c_1} H^2(X, \mathbb{Z})$$

and thus $\ker c_1 = \operatorname{Im}(H^1(X, \mathcal{O}_X) \to \operatorname{Pic}(X))$. However, $b_1(X) = 0$ so by the Kähler decomposition, $H^1(X, \mathcal{O}_X) = 0$. Therefore, $\ker c_1$ is trivial so $L = \mathcal{O}_X$.

$6.1.10 \quad 4.3.10$

Let ∇ be a connection on a complex vector bundle E. We want to show that E locally has parallel frames iff $F_{\nabla} = 0$.

Suppose that E has a local frame e_1, \ldots, e_n of parallel sections over U i.e. $\nabla e_i = 0$ and these are independent on each fiber. Since the curvature form $\omega_{\nabla}(s) = \nabla_1 \circ \nabla(s)$ is \mathcal{O}_X -linear, writing $s = f_i e_i$ we get,

$$\omega_{\nabla}(f_i e_i) = f_i \omega_{\nabla}(e_i) = f_i \nabla_1 \circ \nabla e_i = 0$$

Therefore, $\omega_{\nabla} = 0$ so ∇ must be flat.

Locally write $E|_U \cong \mathcal{O}_U^{\oplus n}$ write e_i for a local frame of $E|_U$. Now write $\nabla e_j = \omega_{ij} \otimes e_i$ thus we see,

$$\nabla (f_i e_i) = \mathrm{d} f_i \otimes e_i + \omega_{ii} f_i \otimes e_i = (\mathrm{d} f_i + \omega_{ij} f_j) \otimes e_i$$

Now, applying $\nabla_1: \Omega^1_X \otimes E \to \Omega^2_X \otimes E$ we get,

$$\nabla_{1} \circ \nabla(f_{j}e_{j}) = \nabla_{1}(\mathrm{d}f_{i} + \omega_{ij}f_{j}) \otimes e_{i} = \mathrm{d}\mathrm{d}f_{i} \otimes e_{i} + \mathrm{d}(\omega_{ij}f_{j}) \otimes e_{i} - (\mathrm{d}f_{i} + \omega_{ij}f_{j}) \wedge \nabla e_{i}$$

$$= (\mathrm{d}\omega_{ij}f_{j} - \omega_{ij} \wedge \mathrm{d}f_{j}) \otimes e_{i} - (\mathrm{d}f_{i} + \omega_{ij}f_{j}) \wedge \omega_{ki} \otimes e_{k}$$

$$= \mathrm{d}\omega_{ij}f_{j} \otimes e_{i} + \mathrm{d}f_{j} \wedge \omega_{ij} \otimes e_{i} - \mathrm{d}f_{i} \wedge \omega_{ki} \otimes e_{k} + \omega_{ki} \wedge \omega_{ij}f_{j} \otimes e_{k}$$

$$= (\mathrm{d}\omega_{ij} + \omega_{ik} \wedge \omega_{kj})f_{j} \otimes e_{i}$$

Therefore,

$$\omega_{\nabla}(f_j e_j) = (\mathrm{d}\omega_{ij} + \omega_{ik} \wedge \omega_{kj}) f_j \otimes e_i$$

is linear as it should be. Now assume ∇ is flat i.e. $\omega_{\nabla} = 0$. Thus,

$$d\omega_{ij} + \omega_{ik} \wedge \omega_{kj} = 0$$

First, in the case n=1 the connection is given by a 1-form ω . Then $\omega_{\nabla}=0 \iff d\omega=0$ in which case locally $\omega=-\mathrm{d}f$ and thus $\nabla(fe)=\mathrm{d}f\otimes e+\omega\otimes e=0$ so we get a frame of parallel sections.

Now we proceed by induction for the general case. First, using a $GL_{(n)}, \mathbb{C}$ transformation we can Assume we can find a frame e_1, \ldots, e_{n-1}, s such that $\nabla e_i = 0$.

6.2 Section 4.4

$6.2.1 \quad 4.4.2$

Let X be a compact complex manifold and L a basepoint-free line bundle. Then L defines a map $f: X \to \mathbb{P}^N$ such that $f^*\mathcal{O}_{\mathbb{P}^N}(1) = L$. Let h be the standard hermitian structure on $\mathcal{O}_{\mathbb{P}^N}(1)$ so f^*h gives a hermitian structure on L. Taking the Chern connections $\nabla_{f^*h} = f^*\nabla_h$ and thus,

$$F(L, f^*h) = F(f^*\mathcal{O}_{\mathbb{P}^N}(1), f^*h) = f^*F(\mathcal{O}_{\mathbb{P}^N}(1), h) = f^*\omega_{FS}$$

which is a positive form. Therefore,

$$c_1(L) = f^*[\omega_{\rm FS}]$$

so we see that,

$$\int_X c_1(L)^n = \int_X (f^*\omega_{\mathrm{FS}})^n = \int_X f^*\omega_{\mathrm{FS}}^n \ge 0$$

$6.2.2 \quad 4.4.4$

Ask Ron about interpretation!!

$6.2.3 \quad 4.4.9$

Note that End $(E) \cong E^* \otimes E$ then,

$$c_k(\text{End}(E)) = \sum_{i+j=k} c_i(E^*) \cdot c_j(E) = \sum_{i+j} (-1)^i c_i(E) \cdot c_j(E)$$

In particular,

$$c_1(\text{End}(E)) = c_0(E) \cdot c_1(E) - c_1(E) \cdot c_0(E) = 0$$

and likewise,

$$c_2(\operatorname{End}(E)) = c_0(E) \cdot c_2(E) - c_1(E) \cdot c_1(E) + c_2(E) \cdot c_0(E) = 2c_2(E) - c_1(E)^2$$

Then if $E = L \oplus L$ where L is a line bundle we have,

$$c(L) = 1 + c_1(L)$$

and thus,

$$c_1(E) = 2c_1(L)$$
 and $c_2(E) = c_1(L)^2$

Therefore, we see that,

$$(4c_2 - c_1^2)(E) = 4c_1(E)^2 - (4c_1(E))^2 = 0$$

Furthermore, if $E \cong E^*$ then $c_{2k+1}(E) = c_{2k+1}(E^*) = (-1)^{2k+1}c_{2k+1}(E) = -c_{2k+1}(E)$ and thus $c_{2k+1}(E) = 0$.

$6.2.4 \quad 4.4.10$

Let L be a holomorphic line bundle on X a compact Kähler manifold. Suppose that $c_1(L) = [\alpha]$ where α is closed a real (1,1)-form. Let h_0 be a Hermitian structure on L then,

$$c_1(L, h_0) = \frac{i}{2\pi} \bar{\partial} \partial \log h_0$$

Now consider,

$$\eta = \alpha - c_1(L, h_0)$$

is a real (1,1)-form and since $[\alpha] = [c_1(L,h_0)]$ also η is d-exact. Thus, by the $\partial\bar{\partial}$ -lemma, we know,

$$\eta = -\frac{i}{2\pi} \partial \bar{\partial} f$$

for $f \in \mathcal{A}^{0,0}_{\mathbb{R}}(X)$ i.e. f is a real smooth function. Therefore,

$$\alpha = \frac{i}{2\pi} \bar{\partial} \partial \left[f + \log h_0 \right] = \frac{i}{2\pi} \bar{\partial} \partial \log e^f h_0$$

Therefore, let $h = e^f h_0$ be annother Hermitian structure (since f is real) then we see $c_1(L, h) = \alpha$.

$6.2.5 \quad 4.4.11$

Let X be compact Kähler and E a vector bundle with a Chern connection ∇ . If we let,

$$\sum_{i=0}^{r} \tilde{P}_i(B) = \operatorname{tr}\left(e^B\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{tr}\left(B^n\right)$$

so,

$$\tilde{P}_k(B_1,\ldots,B_k) = \frac{1}{k!} \operatorname{tr} (B_1 \cdots B_k)$$

and then define,

$$\operatorname{ch}_k(E, \nabla) := \tilde{P}_k\left(\frac{i}{2\pi}F_{\nabla}\right) \in \mathcal{A}^{2k}_{\mathbb{C}}(M)$$

where \tilde{P}_k acts on End (E)-valued 2-forms via

$$\tilde{P}_k(\alpha_1 \otimes \varphi_1, \dots, \alpha_k \otimes \varphi_k) = (\alpha_1 \wedge \dots \wedge \alpha_k) \, \tilde{P}_k(\varphi_1, \dots, \varphi_k) = (\alpha_1 \wedge \dots \wedge \alpha_k) \, \frac{1}{k!} \operatorname{tr} \left(\varphi_1 \dots \varphi_k \right)$$

This is the composition of $(\Omega_X^2)^{\otimes k} \to \Omega_X^{2k}$ via exterior product and $\operatorname{End}(E)^{\otimes k} \to \operatorname{End}(E)$ via composition and finally taking trace. We see that,

$$\operatorname{ch}_k(E, \nabla) = \frac{1}{k!} \left(\frac{i}{2\pi} \right)^k \operatorname{tr} \left(F_{\nabla}^{\otimes k} \right)$$

where $F^{\otimes k}_{\nabla}$ is the image under $(\Omega^2_X \otimes \operatorname{End}(E))^{\otimes k} \to \Omega^{2k}_X \otimes \operatorname{End}(E)$. Now taking Dolbeault cohomology classes via $\mathcal{A}^{k,k}_{\mathbb{C}}(\operatorname{End}(E)) \to H^k(X,\Omega^k \otimes \operatorname{End}(E))$,

$$\operatorname{ch}_k(E) = \frac{1}{k!} \left(\frac{i}{2\pi} \right)^k \operatorname{tr} \left([F_{\nabla}]^{\otimes k} \right)$$

where $[F_{\nabla}]^{\otimes k}$ is the image under the map,

$$H^1(X, \Omega^1_X \otimes \operatorname{End}(E)) \times \cdots \times H^1(X, \Omega^1_X \otimes \operatorname{End}(E)) \to H^k(X, \Omega^k \otimes \operatorname{End}(E))$$

Furthermore $[F_{\nabla}] = A(E)$ so we get,

$$\operatorname{ch}_k(E) = \frac{1}{k!} \left(\frac{i}{2\pi} \right)^k \operatorname{tr} \left(A(E)^{\otimes k} \right)$$

as a class under the map $H^k(X, \Omega^k \otimes \operatorname{End}(E)) \xrightarrow{\operatorname{tr}} H^k(X, \Omega_X^k) \subset H^{2k}(X, \mathbb{C})$.

$6.2.6 \quad 4.4.12$

Let X be compact Kähler and E a holomorphic vector bundle admitting a holomorphic connection. Then A(E) = 0 and therefore $c_k(E) = 0$.

7 Chapter 5

- 7.1 Section 5.1
- 7.1.1 5.1.1
- 7.2 Section 5.2
- 7.2.1 5.2.1
- 7.3 Section 5.3
- 7.3.1 5.3.1
- 8 Chapter 6
- 8.1 Section 6.1
- 8.2 6.1.1
- 8.3 6.1.2
- 8.4 6.1.3