ţ	Density Matrix Renormalization Group Revisited (Central Theorem - Optimal Low-Rank Density Ma	
		6/16/03
_	Definitions	
	Superblock (8) = a coupled block (B) + environment (E):
	S=BUE	(1)
	$B = Span\{ i\rangle i=1,,N\}$	(2)
	$\mathcal{E} = \operatorname{Span}\{ j\rangle j=1,,M\}$	(3)
	where { 1i>} and { 1j>} are orthonormal bases,	
	(<111) = Sic	(4.)
	$\langle \dot{\partial} \dot{\partial}' \rangle = \delta_{\dot{1}\dot{1}'}$	(5)
	block, B - environment, E	
	Superblock, S	
4.20	(Ground State)	
	14>= 芝生 4; 11>1)>	(6)
	(Reduced density matrix)	
	Consider an arbitrary operator A that operates only in	r B. Its
	expectation value is obtained as	
	(A(B)) = EE (jr(ir)) A(B) EE Hij/li>)	
	= \(\Sigma \Sigma \frac{1}{2}	
	Sjj'	
	$= \sum_{i} \sum_{j} \left(\sum_{i} \psi_{ij} \psi_{ij}^* \right) \left(i A(B) i \right)$	
	Più Aii	
	Til Att	

where

 $\rho_{ii'} = \sum_{j=1}^{M} \psi_{ij} \psi_{i'j}^{*} \tag{8}$

 $Aii = \langle i' | A(B) | i \rangle \tag{9}$

The reduced matrix Pii, which operates for a block in environment is the central vehicle of DMRG.

- Problem

Optimal Pii of rank-m («N)?

Solution

Singular value decomposition (SVD) of vij

0 –	Singular value decomposition	
	Let assume N > M. Otherwise, we can simply switch the	role
	of N and M.	
	(Theorem) An N×M matrix 4 (N2M) can be decompos	sed as
	M M	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(10)
	or NM NM MM THE UDVT	
		(11)
	where	(1-)
	$D = \operatorname{diag}(d_1, \dots, d_M)$	(12)
0	$U = [U_i]$ is an N×M column orthogonal matrix	
	$\sum_{i=1}^{N} \mathcal{U}_{i}^{(\nu)} \mathcal{U}_{i}^{(\nu')} = \sum_{i=1}^{N} U_{\nu i}^{T} U_{i\nu'} = S_{\nu \nu'}$	(13)
	σ $U^{T}U = I_{M}$	(14)
	and $V = [V_j^{(v)}]$ is an M×M column orthogonal matrix	
	$\sum_{j=1}^{M} \mathcal{O}_{j}^{(\nu)} \mathcal{O}_{j}^{(\nu)} = \sum_{j=1}^{M} \sqrt{\mathcal{V}_{j}} \mathcal{V}_{j\nu'} = \mathcal{S}_{\nu\nu'}$	(45)
	$V^{T}V = I_{M}$ (orthonormality)	(16)
	Since V is square, it is also row-orthogonal,	
	$VV^{T} = I_{M}$ (completeness)	(17)
	$\sum_{\nu=1}^{M} V^{(\nu)} V^{(\nu)} = \delta_{ii}'$	(18)
0	ν=1 J J²	, , ,

(completeness)

Any vector $a \in \mathbb{R}^M$ can be expressed as a linear combination of M linearly-independent vectors,

$$a_i = \sum_{v=1}^{M} c_v v_i^{(v)}$$

E Vi x (above)

$$\sum_{i=1}^{M} \mathcal{V}_{i}^{(\mu)} \mathcal{Q}_{i} = \sum_{\nu=1}^{M} C_{\nu} \sum_{i=1}^{M} \mathcal{V}_{i}^{(\nu)} \mathcal{V}_{i}^{(\nu)} = C_{\mu}$$

$$(\nabla^{T} V)_{\mu\nu} = S_{\mu\nu}$$

$$= \sum_{i=1}^{M} \left(\sum_{\nu=1}^{M} v_{i}^{(\nu)} v_{i}^{(\nu)} \right) a_{i}'$$

$$\delta_{ii'}$$

$$\therefore (VV^{\mathsf{T}})_{ii'} = \sum_{\nu=1}^{\mathsf{M}} \mathcal{V}_{i}^{(\nu)} \mathcal{V}_{i'}^{(\nu)} = \delta_{ii'} //$$

(Interpretation of SVD)

In SVD, $\psi \in \mathbb{R}^{N \times M}$ maps an orthonormal basis $\{\mathcal{V}^{(\omega)} \in \mathbb{R}^{M}\}$ onto another orthonormal basis $\{\mathcal{U}^{(\omega)} \in \mathbb{R}^{N}\}$:

$$\psi v^{(\nu)} = u^{(\nu)} d_{\nu}$$
 (eigen-like relation) (19)

where

$$\begin{cases}
\mathcal{U}^{(\mu)T}\mathcal{V}^{(\nu)} = \delta_{\mu\nu} \\
\mathcal{U}^{(\mu)T}\mathcal{U}^{(\nu)} = \delta_{\mu\nu}
\end{cases} (orthonormality) \tag{20}$$

There can be at maximum M such relations, since there are only M linearly-independent vectors in RM.

0 -	Low-rank approximation to Pii	
	(Theorem) Let 4 = UDV be the SVD of 4 with the diagon	al
	elements in descending order $d_1 \ge d_2 \ge \cdots \ge d_M$. Let	
	· · · · · · · · · · · · · · · · · · ·	21)
	$ \psi^{(m)} = \sum_{\nu=1}^{m} \mathcal{U}^{(\nu)} d_{\nu} \mathcal{T}^{(\nu)T} $ $ \downarrow^{N\times M} \qquad \qquad \downarrow^{N\times 1} \qquad \downarrow^{N\times M} \qquad $	
	be the rank-m truncation of the SVD. Then,	
		22,
	where the matrix 2-norm $ A _2 = max Ax $ is defined in terms of vector 2-norms. $ A _2 = 1 m$ $ X _$	
	(White used the Frobenius norm, All = /5 aij ?)	-
	Therefore, 4(m) is the optimal rank-m approximation to 4.	
	(Reduced density matrix)	
	Substituting the rank-m approximation Eq. (21) in Eq. (8),	
	NM MM	
	$\rho = 2 + 2 + T$	
	A E U(V) d, V(V)T E V(V) d, U(V)T	
	$=\sum_{\nu}\sum_{\nu}\mathcal{H}^{(\nu)}d_{\nu}\left(\mathcal{T}^{(\nu)T}\mathcal{T}^{(\nu)}\right)d_{\nu}\mathcal{T}^{(\nu)T}$	
	δνν (© orthogonality)	
	$= \sum_{\nu=1}^{m} \mathcal{U}^{(\nu)} d_{\nu}^{2} \mathcal{U}^{(\nu)T}$	
	$\therefore \rho \simeq \overset{\mathcal{T}}{\succeq} \mathcal{U}^{(\nu)} \mathcal{W}_{\nu} \mathcal{U}^{(\nu)T} $	23)
	or	<i>J</i>
0	(y)	24)
	where	
	$w_{\nu} = d_{\nu}^{2} \tag{2}$	25)

(Sum rule)

$$T_{\mathcal{R}} P = T_{\mathcal{R}} \mathcal{A} \mathcal{A}^{\mathsf{T}} = T_{\mathcal{R}} \mathcal{A}^{\mathsf{T}} \mathcal{A} \tag{26}$$

Note that

$$= \sum_{ij} \sum_{ij'} \sum_{$$

Therefore,

$$T_{RP} = T_{R} \psi \psi^{T} = 1$$

(28)

(27

Note that

(29)

Comparing Eqs. (28) and (29),

$$T_{\Gamma} \rho = \sum_{\nu=1}^{M} d_{\nu}^{2} = \sum_{\nu=1}^{M} w_{\nu} = 1$$

(30)

(Summary)

The rank-m truncation of the SVD of the ground-state wavefunction,

$$\psi^{(m)} = \sum_{\nu=1}^{m} \mathcal{U}^{(\nu)} d_{\nu} \mathcal{T}^{(\nu)T}$$
(31)

$$\mathcal{Y}_{(m)}^{(m)} = \sum_{m}^{N-1} \mathcal{U}_{(n)}^{(n)} q^{N} \mathcal{L}_{(n)}^{(n)}$$

$$\tag{35}$$

produces the rank-m approximation to the reduced density matrix,

$$\rho^{(m)} = \sum_{\nu=1}^{m} \mathcal{U}^{(\nu)} \mathcal{W}_{\nu} \mathcal{U}^{(\nu)T}$$
(33)

$$P_{ii'}^{(m)} = \sum_{\nu=1}^{m} \mathcal{U}_{i}^{(\nu)} \mathcal{W}_{\nu} \mathcal{U}_{i}^{(\nu)}$$
(34)

where
$$w_{\nu} = d_{\nu}$$
 (35)

The rank-m approximation P(m) is optimal in the least square sense with the error estimate,

$$T_{\mathcal{L}}(P-P^{(m)}) = 1 - \sum_{\nu=1}^{m} W_{\nu}$$
(36)

Density Matrix Renormalization Group Revisited (2) Greedy/Growth Algorithm 6/17/03 [S.R. White, Phys. Rev. B 48, 10345 (193); S. Daul, I. Ciofini, C. Daul, S.R. White, Intl J. Quantum Chem. 79, 331 ('00)] Objective Obtain the ground state without diagonalizing a large matrix. - Approach: Greedy/growth algorithm Grow an incrementally larger block (cf. Dijkstras shortest-path algorithm), for which the optimal constant low-rank (rank-m) approximation is known (greedy). By successively increasing the block size, while keeping the constant (m) rank for its density matrix: i) Throw out higher excited states, which do not after the ground state; ii) Add low-energy perturbation to refine the constant (rank-m) Size renormalized basis. (dressed)

1. Make four initial blocks, each consisting of a single site. Set up the block Hamiltonian.

>2. Form the superblock Hamiltonian by adding cross terms.

3. Obtain the superblock ground state by the Davidson method, $\Psi(i_1, i_2, i_3, i_4)$

(Compute physical expectation values here.)

4. Form the reduced density For the 1-2 block by integrating out the environment variables (3-4),

 $P(i_1, i_2; i_1, i_2') = \sum_{i_3, i_4} \Psi(i_1, i_2, i_3, i_4) \Psi^*(i_1, i_2, i_3, i_4)$

- 5. Diagonalize P to find eigenvalues W_{ν} ($w_1 \ge w_2 \ge \cdots$) and eigenvalues V_{ν} vectors $U_{i,i,2}^{(\nu)}$; discard all but m largest eigenvalues.
- 6. Form matrix representation of operators for the two-block (1-2) system, and form a new block 1 by changing basis to $\mathcal{U}^{(\nu)}$: $H_1' = 0 \, H_{12} \, 0^{\text{T}}$, where $O(\nu; i_1, i_2) = \mathcal{U}^{(\nu)}_{i_1 i_2}$ (e.g. 1 site can add $m_1 m_2$ {10>, 11>, 14>, 14>} degrees of freedom, and $m_1 m_2 = 4m$; $16m \rightarrow m^2$ reduction).
- 7. Replace old block 1 with new block 1; replace old block 4 with the reflection of new block 1.
- 8. Go to step 2