서울시민을 위한 클린로드 우선 설치 지역 선정

클린로드 우선 설치 지역 선정 01) 분석 개요

02 분석 과정

03) 결론

94 활용 및 기대효과

원석개요

1. 분석 배경

폭염, '자연재난'으로 지정

2018년 9월 「재난 및 안전관리 기본법」에 폭염을 자연재난으로 지정

2018년 온열질환자 수는 2016년 대비전국적으로 2.1배, 서울은 3.7배 증가

1. 분석 배경

기후변화

1908~1917년 여름철 평균기온은 23.2℃, 2008~2017년에는 25℃로 약 1.8℃ 상승

열섬현상

인구밀도와 도시화로 인한 태양열 저장량, 인공열 배출↑ 열흡수원, 공기흐름↓

2. 클린로드

클린로드란?

도로 중앙선에 설치되는 작은 시설물로, 지하철에서 유출되어 버려지는 지하수를 활용해

도로면에 물을 분사하는 시스템

- ▶ 온도 감소 (44℃→35℃)
- ▶ 미세먼지 저감 (55µg/㎡→43µg/㎡)
- ▶ 유출지하수 활용 (34t/km)

2. 클린로드

발산역(280m) 시청역(340m)

장한평역(150m) 종로3가역(168m)

종묘앞(385m) 중화역(300m)

증미역(156m) 효창공원앞역(255m)

→ 2021년 현재 8개소 설치 **→** 2025년까지 47곳에 추가 설치 계획

3. 고려사항

3. 고려사항

화경 요인만 고려하기에는 무리가 있다고 판단 효율성, 형평성 요인을 모두 고려

3. 고려사항

효율성

유동인구가 많은 서울은 인구밀도와 도시화로 인해 열섬현상 심화 형평성

<mark>아동</mark>은 노면의 열기에 더욱 취약 노인은 온열질환 사망자의 절반 이상을 차지 효율성

형평성

(선생 보석 과정

분석 프로세스

데이터 수집

도로, 유출지하수 환경·효율성·형평성 요인

02

데이터 정제

설치 기준에 따른 지하철역 1차 선정

0€

데이터 분석

환경 가중치 설정 케이스별 점수 산정

04

우선설치지역 선정

1. 데이터 수집

현황

활용 데이터	데이터 형식
도로노선 정보	CSV
도로 정보	SHP
자치구 정보	SHP
행정동 정보	SHP
지하철 유출지하수 현황 정보	CSV

효율성

활용 데이터	데이터 형식
지하철 승하차 정보	CSV
버스 승하차 정보	CSV
생활인구 정보	CSV
신호등 정보	CSV
용도별 건물 정보	SHP

환경

활용 데이터	데이터 형식
방재기상관측 정보	CSV
미세먼지 정보	CSV

형평성

활용 데이터	데이터 형식
용도별 건물 정보	SHP
연령별 인구 정보	CSV
어린이보호구역 정보	HWP
노인/장애인보호구역 정보	HWP

2. 데이터 정제 - 1차선정

환경부 '유출지하수 활용 방안' 기준 일 300톤 이상 유출 시 활용 가능

일발생량 300톤 이상 지하철역만 추출

6차선 이상 도로에 설치 가능

지하철역 기준 300m 버퍼 안에 6차선 이상 도로가 있는 경우만 추출

환경부 및 클린로드 담당자 문의 → 지하철역 1차 선정

2. 데이터 정제 - 1차선정

step1. 유출지하수 일 300톤 이상 지하철역 추출 결과 총 96개

step2. 6차선 이상 도로 지하철역 추출 결과 총 92개

환경적 요인을 고려하기 위해 환경 가중치 설정

관측소에서 측정한 결과를 토대로 <mark>역거리 가중(IDW) 보간법</mark> 적용

폭염일수

일 최고기온이 33℃ 이상인 날짜 수

폭염일수가 많은 지역이 클린로드 설치가 시급하므로 폭염일수를 변수로 사용

역사명	평균기온	폭염일수	미세먼지농도	환경가중치
가락시장	25.76	66	27.51	1.6873
가산디지털단지	25.57	56	28.45	1.4074
개포동	25.81	76	27.56	1.9930
거여	25.63	66	27.59	1.6858
경복궁	24.88	60	26.48	1.4479
경찰병원	25.74	66	27.52	1.6870
고덕	25.44	62	28.28	1.5799
고려대	25.3	47	26.77	1.0760
고속터미널	25.52	76	27.67	1.9876
공덕	25.44	65	27.4	1.6441

환경 가중치

평균기온 + 미세먼지농도 + 폭염일수 → Min-max 스케일링

가중치의 편차를 최소화하기 위해 Min-max 스케일링을 통해 범위를 축소함

3. 데이터 분석

306485801.2

367295557.6

278599055.4

구로2동

구로3동

구로5동

17107782

62769230

21306646

11530530

11530540

11530560

행정동코드	생활인구합	행정동명	대중교통 승하차합	버스정류장 개수	사무실수	식당수	상점수	신호등수
11710632	262422199.9	가락2동	7611343	20	2	26	39	106
11710620	313453108.8	가락본동	10062968	20	9	46	52	113
11545510	507246127	가산동	54696005	96	3	29	33	422
11530740	243580274.7	개봉1동	25620161	45	3	25	53	121
11350600	380132946.7	공릉2동	13205437	58	1	16	18	264
11215810	346448893.5	광장동	9870058	30	4	24	26	157
11140590	190737861.4	광희동	25724909	14	14	60	278	128

34

38

32

종속변수: 서울시 생활인구 합

설명변수: 행정동별 대중교통 승하차 합, 버스정류장 수,

사무실 수, 식당 수, 상점 수, 신호등 수

Variables	Estimate	Std.Error	t-value	P-value
(Intercept)	5.997e-02	7.504e-03	7.992	1.39e-14
대중교통승하차합	1.936e-09	3.180e-10	6.087	2.67e-09
버스정류장개수	1.209e-03	3.155e-04	3.832	0.000148
사무실수	4.306e-03	5.244e-04	8.211	2.96e-15
식당수	1.378e-04	1.112e-04	1.239	0.215926
상점수	-6.176e-05	8.870e-05	-0.696	0.486647
신호등수	5.937e-04	5.947e-05	9.984	< 2e-16

Residual standard error: 0.06729 on 406 degrees of freedom

Multiple R-squared: 0.6829, Adjusted R-squared: 0.6783

F-statistic: 145.8 on 6 and 406 DF, p-value: <2.2e-16

영향요인 파악

, 생활인구를 지표로 활용하여 회귀분석 실시

식당, 상점 수가 p-value 0.05 이상으로 유의하지 않아 제거가 필요함

1차 회귀분석 결과

stepwise 변수 선택법에 의해	
대중교통 승하차 합, 버스정류장 수,	도출된 회귀계수를
사무실 수, 신호등 수 <mark>총 4가지 요인 선택</mark>	<mark>각 지역의 가중치로 활용</mark> 하여 점수화 진행

	Variables	Estimate	Std.Error	t-value	P-value	
_	(Intercept)	5.865e-02	6.925e-03	8.469	4.52e-16	$Y = 0.05865 + 2.006e \cdot 09 * x_1 + 1.258e \cdot 03 * x_2$
-	대중교통승하차합	2.006e-09	3.055e- 1 0	6.565	1.59e-10	$+4.475e-03*x_3+5.850e-03*x_4$
-	버스정류장개수	1.285e-03	3.095e-04	4.153	4.00e-05 —	· · · · · · · · · · · · · · · · · · ·
_	사무실수	4.475e-03	5.028e-04	8.900	< 2e-16 _	- Y:유동인구 수 - 데즈그트 스킨티 하
_	신호등수	5.850e-04	5.902e-05	9.912	< 2e-16	- x_1 : 대중교통 승하차 합
	Residual standa	rd error : 0.00	6726 on 408	degrees of fr	reedom	$\overline{}$ - x_2 : 버스 정류장 개수
-	Multiple R-squ	uared : 0.6817	7, Adjusted F	R-squared : 0	.6786	x ₃ :사무실 수 -
-	F-statistic : 218.5 on 4 and 408 DF, p-value : <2.2e-16				-16 -	- x ₄ :신호등 수

최종 회귀분석 결과

효율성 케이스 점수 산정식

최종 선정된 효율성 케이스의 상위 20개 지하철역

구산동

11112057

행정동	행정코드	어린이보호구역수	노인보호구역수	누 노유자시설수	취약인구=
광희동	1102059	1	1 1		1330
월계2동	1111052	9	1	4	7452
공릉2동	1111056	11	1	7	8110
하계1동	1111058	8	1	5	5528
하계2동	1111059	3	1	3	4626
중계2/3동	1111078	5	1	9	9311
상계1동	1111065	9	1	13	9184
불광1동	11112052	4	1	종속변수 : 서울시 [:]	취약이구 한
갈현1동	11112055	4		설명변수 : 행정동팀	별 노유자시설
				어리이	ㅂㅎ그여 스

가시설 수,

어린이 보호구역 수, 노인 보호구역 수

Variables	Estimate	Std. Error	t value	P-value
(Intercept)	0.177243	0.051459	3.444	0.000824
어린이 보호구역 수	0.031126	0.005769	5.395	4.26E-07
노인 보호구역 수	-0.005022	0.033945	-0.148	0.882674
노유자 시설 수	0.00993	0.003058	3.265	0.001477

Residual standard error: 0.1567 on 105 degrees of freedom

Multiple R-squared: 0.6245, Adjusted R-squared: 0.6052

F-statistic: 16.81 on 3 and 105 DF, p-value: 5.447e-09

영향요인 파악

, 취약인구를 지표로 활용하여 회귀분석 실시

노인보호구역이 p-value 0.05 이상으로 유의하지 않아 제거가 필요함

1차 회귀분석 결과

stepwise 변수 선택법에 의해	
어린이 보호구역 수, 노유자 시설 수	도출된 회귀계수를
총 2가지 요인 선택	<mark>각 지역의 가중치로 활용</mark> 하여 점수화 진행

Variables	Estimate	Std.Error	t-value	P-value -		
(Intercept)	0.172	0.0371	4.627	1.05E-05	V = 0.17201 + 0.02112 + m + 0.00002 + m =	
어린이 보호구역 수	0.03112	0.00574	5.419	1.05E-05	$Y = 0.17201 + 0.03112 * x_1 + 0.00993 * x_2$	
노유자 시설 수	0.00993	0.003	3.286	0.00138	- Y:취약계층 인구수	
Residual standard error: 0.156 on 106 degrees of freedom					x ₁ : 어린이보호구역 수	
Multiple R-squared: 0.6243, Adjusted R-squared: 0.6116					$\frac{x_1}{x_2}$ - $\frac{x_2}{x_2}$ 노유자시설 개수	
F-statistic: 25.44 on 2 and 106 DF, p-value: 9.471e-10						

최종 회귀분석 결과

효율성 케이스 점수 산정식

최종 선정된 형평성 케이스의 상위 20개 지하철역

1. 케이스별 순위

효율성	성 측면	형평성 측면						
여의도	고속터미널	언주	면목					
언주	서울	압구정로데오	신대방사거리					
여의나루	복정	온수	영등포시장					
영등포시장	오금	대림	오금					
삼각지	도림천	길동	삼성중앙					
가산디지털단지	사당	대청	삼각지					
압구정로데오	남태령	양평	여의도					
남구로	대림	상도	수서					
마곡	마곡 도곡		여의나루					
삼성중앙	삼성중앙 한티		사당					

각 케이스별 상위 20개 지하철역 중 공통되는 지하철역 추출

사당역 압구정로데오역 여의도역 삼각지역 언주역 영등포시장역 삼성중앙역 여의나루역 오금역

최종 9개 역 선정

04 望용및기대효과

1. 활용방안

정책 활용

서울시에서 추진 중인 클린로드 사업에 활용하여 47개소 추가 설치 시 타당성 및 효과 제고

시스템 도입

클린로드 설치 시 IoT 기반 감지센서를 연계하여 실시간 도로환경에 따라 자동으로 물을 분사해주는 시스템 구축 가능

활용 분야 확대

선정된 구간 내 상습 결빙 구역에 대한 추가적인 분석을 통하여 겨울철 도로 결빙을 예방하는 염수 분사 장치로도 활용 가능

2. 기대효과

삶의 질 향상

효율성 측면과 형평성 측면을 모두 고려하여 서울 시민 삶의 질 향상 기대

수자원 활용

하수도로 방류되는 유출지하수 활용을 통한 수자원 낭비 방지

효율성 증진

살수차량에 비해 인력 및 비용 감소, 기상상황과 대기질에 따른 유연하고 신속한 대처 가능

서울시민을 위한 클린로드 우선 설치 지역 선정