Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Prima prova di accertamento - 31/08/2023 - Canale 1 - Prof. Meneghesso

COGNOME: NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Bisogna consegnare il testo del compito anche in caso di ritiro
- 2) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 3) Nei conti e nei risultati, i valori numerici **<u>DEVONO</u>** essere accompagnati dalla <u>**relativa unità di misura**</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 4) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 5) Il tempo a disposizione è di 2 ore

Problema 1

DATI: $R_1 = R_2 = 10k\Omega$, $R_3 = 5k\Omega$, $R_L = 20k\Omega$, $V_{DD} = 5V$, $V_{SS} = -5V$

Parametrati dei MOS: M_1 e M_2 : $k_{n1} = k_{n2} = 2mA/V^2$, $V_{TN1} = V_{TN2} = 0.5V$, $\lambda_{n1} = \lambda_{n2} = 0$

M₃: $k_{p3} = 0.5 \text{mA/V}^2$, $V_{TP3} = -0.5 \text{V}$, $\lambda_{p3} = 0$ M₄: $k_{n4} = 4 \text{mA/V}^2$, $V_{TN4} = 0.5 \text{V}$, $\lambda_{n4} = 0.02 \text{ V}^{-1}$

Dato il circuito in figura, calcolare:

- 1. Il valore della tensione V_{REF} sapendo che M₄ lavora in saturazione con I_{SS} = 0.5 mA
- 2. La polarizzazione di tutti i transistor identificando la regione di funzionamento e i valori delle tensioni V_{GS} e V_{DS} e della corrente I_{DS} .
- 3. Disegnare il modello ai piccoli segnali e calcolare le transconduttanze g_{m1} , g_{m2} e g_{m3} di M_1 , M_2 e M_3 . Dal modello ai piccoli segnali calcolare:
- 4. La resistenza di uscita R_{OUT}
- 5. Il guadagno di modo differenziale dell'intero amplificatore $A_d = v_0/(v_1 v_2)$
- 6. Il guadagno di modo comune dell'intero amplificatore e il CMRR

Problema 2

DATI: $R_1 = 5k\Omega$, $R_2 = 0.5 k\Omega$, $R_3 = 4.5 k\Omega$, $R_4 = 1 k\Omega$, $R_5 = 100 k\Omega$, $C_1 = 20\mu F$, $C_3 = 222$,2nF, $C_5 = 10pF$, Dato il filtro in figura realizzato con un amplificatore operazionale ideale:

- 1. Trovare la funzione di trasferimento del filtro $W(\omega) = v_0 / v_s$.
- 2. Tracciare il diagramma asintotico di Bode del modulo e della fase
- 3. Dato il segnale di ingresso $v_S = V_{S1} \sin(\omega_S t)$ con $V_{S1} = 0.1V$, trovare il segnale di uscita v_0 usando i diagrammi asintotici di bode alle due pulsazioni:
 - a. $\omega_{S1} = 10^2 \text{rad/s}$,
 - b. $\omega_{S2} = 10^5 \text{rad/s}$

Problema 3

DATI: $R_1 = 5k\Omega$, $R_2 = 10k\Omega$, $R_3 = 100k\Omega$

Sia dato il circuito in figura realizzato con tre amplificatori operazionali.

Supponendo che tutti gli amplificatori operazionali siano ideali, calcolare:

- 1. Il valore di v_1 , v_2 e v_0 con i_s = 0.1mA.
- 2. Il guadagno di transresistenza $R_m = v_0/i_S$
- 3. Supponiamo ora che tutti gli amplificatori operazionali abbiano la stessa tensione di offset $V_{OS} = 0.1V$, calcolare il valore delle tensioni v_1 , v_2 e v_0 con $i_S = 0.1mA$.

