Math 110 HW13

Neo Lee

12/02/2023

Problem 1.

Let T be a self-adjoint operator on a finite-dimensional inner product space (real or complex) such that $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ are the only eigenvalues of T. Prove that p(T) = 0 where $p(\lambda) := (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$. Give a counterexample to this statement for an operator which is not self-adjoint.

Proof. Since T is self-adjoint, hence normal, by either the Real or Complex spectral theorem, V has an orthonormal basis consisting of eigenvectors of T, denote them as $e_1, \ldots, f_1, \ldots, g_1, \ldots$, where e, f, g are the eigenvectors corresponding to $\lambda_1, \lambda_2, \lambda_3$ respectively. Then, for any $v \in V$, we can write v as a linear combination of these eigenvectors, i.e.

$$v = \sum_{i=1}^{n} \alpha_i e_i + \sum_{i=1}^{n} \beta_i f_i + \sum_{i=1}^{n} \gamma_i g_i.$$

We use the property that polynomials applied on operators are commutative under composition, then,

$$p(T)v = (T - \lambda_{1}I)(T - \lambda_{2}I)(T - \lambda_{3}I) \left(\sum_{i=1}^{n} \alpha_{i}e_{i} + \sum_{i=1}^{n} \beta_{i}f_{i} + \sum_{i=1}^{n} \gamma_{i}g_{i}\right)$$

$$= (T - \lambda_{1}I)(T - \lambda_{2}I)(T - \lambda_{3}I) \left(\sum_{i=1}^{n} \alpha_{i}e_{i}\right)$$

$$+ (T - \lambda_{1}I)(T - \lambda_{2}I)(T - \lambda_{3}I) \left(\sum_{i=1}^{n} \beta_{i}f_{i}\right)$$

$$+ (T - \lambda_{1}I)(T - \lambda_{2}I)(T - \lambda_{3}I) \left(\sum_{i=1}^{n} \gamma_{i}g_{i}\right)$$

$$= (T - \lambda_{2}I)(T - \lambda_{3}I)(T - \lambda_{1}) \left(\sum_{i=1}^{n} \alpha_{i}e_{i}\right)$$

$$+ (T - \lambda_{1}I)(T - \lambda_{3}I)(T - \lambda_{2}I) \left(\sum_{i=1}^{n} \beta_{i}f_{i}\right)$$

$$+ (T - \lambda_{1}I)(T - \lambda_{2}I)(T - \lambda_{3}I) \left(\sum_{i=1}^{n} \gamma_{i}g_{i}\right)$$

$$= 0,$$

because $e \in \text{null}(T - \lambda_1 I)$, $f \in \text{null}(T - \lambda_2 I)$, $g \in \text{null}(T - \lambda_3 I)$. Therefore, p(T)v = 0 for all $v \in V$, i.e. p(T) = 0.

Counterexample: Let $V = \mathbb{R}^4$ and T be an operator with the action

$$T(e_1) = e_1, \quad T(e_2) = 2e_2, \quad T(e_3) = 3e_3, \quad T(e_4) = e_1 + e_4.$$

Clearly this is not self-adjoint as can be seen from the matrix form that it does not equal its conjugate transpose. Also, the eigenvalues are 1, 2, 3 as can be seen from the matrix form as an upper triangular matrix with 1, 2, 3 as diagonal entries.

Now, we apply p(T) on e_4 ,

$$p(T)e_4 = (T - I)(T - 2I)(T - 3I)e_4$$

$$= (T - I)(T - 2I)(e_1 + e_4 - 3e_4)$$

$$= (T - I)(T - 2I)(e_1 - 2e_4)$$

$$= (T - I)[(e_1 - 2(e_1 + e_4)) - 2(e_1 - 2e_4)]$$

$$= (T - I)(-3e_1 + 2e_4)$$

$$= 2e_1 \neq 0.$$

Problem 2.

Let $T \in \mathcal{L}(V)$. Show that

$$\langle v, u \rangle_T := \langle Tv, u \rangle$$

is an inner product on V if and only if T is positive (per our definition of positivity).

Proof. (\Longrightarrow) Assume $\langle v, u \rangle_T$ is an inner product on V. Then,

$$\langle Tv, v \rangle = \langle v, v \rangle_T \ge 0.$$

Also,

$$\begin{split} \langle v, Tu \rangle &= \overline{\langle Tu, v \rangle} \\ &= \overline{\langle u, v \rangle_T} \\ &= \langle v, u \rangle_T \\ &= \langle Tv, u \rangle \\ &= \langle v, T^*u \rangle. \end{split}$$

Hence, by the uniqueness of Riesz representation theorem, $T = T^*$, i.e. T is self-adjoint. Therefore, T is positive.

 (\Leftarrow) Assume T is positive.

Positivity: For any $v \in V$,

$$\langle v, v \rangle_T = \langle Tv, v \rangle \ge 0.$$

Definiteness:

$$\langle v, v \rangle_T = 0 \iff \langle Tv, v \rangle = 0.$$

Per our definition of strict positivity, $\langle Tv, v \rangle > 0$ for all $v \neq 0 \in V$. Hence,

$$\langle Tv, v \rangle = 0 \iff v = 0.$$

Additivity on the first slot: For any $u, v, w \in V$,

$$\langle u+v,w\rangle_T=\langle T(u+v),w\rangle=\langle Tu+Tv,w\rangle=\langle Tu,w\rangle+\langle Tv,w\rangle=\langle u,w\rangle_T+\langle v,w\rangle_T.$$

Homogeneity on the first slot: For any $u, v \in V$ and $\alpha \in \mathbb{F}$,

$$\langle \alpha u, v \rangle_T = \langle T(\alpha u), v \rangle = \langle \alpha T u, v \rangle = \alpha \langle T u, v \rangle = \alpha \langle u, v \rangle_T.$$

Conjugate symmetry: For any $u, v \in V$,

$$\langle u, v \rangle_T = \langle Tv, u \rangle = \overline{\langle u, Tv \rangle} = \overline{\langle Tu, v \rangle} = \overline{\langle u, v \rangle_T}.$$

Problem 3.

Show that the operator $T=-D^2$ is nonnegative on the space $V:=\mathrm{span}\,(1,\cos x,\sin x)$ over \mathbb{R} , with the inner product

$$\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x)dx.$$

Find

- (a) its square root operator \sqrt{T} ;
- (b) an example of a self-adjoint operator $R \neq \sqrt{T}$ such that $R^2 = T$;
- (c) an example of a non-self-adjoint operator S such that $S^*S = T$.

Proof. Let $f = a + b \cos x + c \sin x$. Then,

$$T(f) = -D^{2}(a + b\cos x + c\sin x) = -D^{2}(a) - D^{2}(b\cos x) - D^{2}(c\sin x) = b\cos x + c\sin x,$$

and

$$\begin{split} \langle Tf, f \rangle &= \langle b \cos x + c \sin x, a + b \cos x + c \sin x \rangle \\ &= \int_{-\pi}^{\pi} (b \cos x + c \sin x) (a + b \cos x + c \sin x) dx \\ &= \int_{-\pi}^{\pi} b^2 \cos^2 x + \int_{-\pi}^{\pi} c^2 \sin^2 x dx \qquad (everything \ else \ are \ orthogonal) \\ &= b^2 \pi + c^2 \pi \geq 0. \end{split}$$

(a) $T(1) = 0, T(\cos x) = \cos x, T(\sin x) = \sin x$. Hence, T has eigenvalues 0, 1, 1 with corresponding eigenvectors $1, \cos x, \sin x$ respectively. Then, by the spectral theorem, T has orthonormal eigenbasis $\{\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}\}$. \sqrt{T} is uniquely determined by its action on the eigenbasis by scaling with the square root of the corresponding eigenvalues, i.e.

$$\sqrt{T}\left(\frac{1}{\sqrt{2\pi}}\right) = 0, \quad \sqrt{T}\left(\frac{\cos x}{\sqrt{\pi}}\right) = \frac{\cos x}{\sqrt{\pi}}, \quad \sqrt{T}\left(\frac{\sin x}{\sqrt{\pi}}\right) = \frac{\sin x}{\sqrt{\pi}}.$$

We can see that $\sqrt{T} = T$.

(b) Define R with the action on the eigenbasis as

$$R\left(\frac{1}{\sqrt{2\pi}}\right) = 0, \quad R\left(\frac{\cos x}{\sqrt{\pi}}\right) = \frac{\cos x}{\sqrt{\pi}}, \quad R\left(\frac{\sin x}{\sqrt{\pi}}\right) = -\frac{\sin x}{\sqrt{\pi}}.$$

(c) Define S with the action on the eigenbasis as

$$S\left(\frac{1}{\sqrt{2\pi}}\right) = 0, \quad S\left(\frac{\cos x}{\sqrt{\pi}}\right) = \frac{1}{\sqrt{2\pi}}, \quad S\left(\frac{\sin x}{\sqrt{\pi}}\right) = \frac{\cos x}{\sqrt{\pi}}.$$

The adjoint of S is

$$S^*\left(\frac{1}{\sqrt{2\pi}}\right) = \frac{\cos x}{\sqrt{\pi}}, \quad S^*\left(\frac{\cos x}{\sqrt{\pi}}\right) = \frac{\sin x}{\sqrt{\pi}}, \quad S^*\left(\frac{\sin x}{\sqrt{\pi}}\right) = 0.$$

Problem 4.

Let T_1 and T_2 be normal operators on an n-dimensional inner product space V. Suppose both have n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that there is an isometry $S \in \mathcal{L}(V)$ such that $T_1 = S^*T_2S$.

Proof. Since both operators have n distinct eigenvalues, their eigenvectors are linearly independent and span the whole space. Besides, by *Theorem 7.22*, the eigenvectors are orthogonal since T_1 and T_2 are normal. We normalize the eigenvectors and denote them as e_1, \ldots, e_n and f_1, \ldots, f_n for T_1 and T_2 respectively.

Then, we can construct an isometry S that maps from the eigen-basis of T_1 to the eigen-basis of T_2 by

$$S: e_i \mapsto f_i$$
.

In fact, this isometry is invertible and hence a unitary operator. Then, for any $v \in V$, we can write v as a linear combination of these eigenvectors, i.e.

$$v = \sum_{i=1}^{n} \alpha_i e_i.$$

Then,

$$T_1(v) = \sum_{i=1}^n \alpha_i \lambda_i e_i.$$

On the other hand,

$$S^*T_2S(v) = S^*T_2S\left(\sum_{i=1}^n \alpha_i e_i\right)$$

$$= S^*T_2\left(\sum_{i=1}^n \alpha_i f_i\right)$$

$$= S^*\left(\sum_{i=1}^n \alpha_i \lambda_i f_i\right)$$

$$= S^{-1}\left(\sum_{i=1}^n \alpha_i \lambda_i f_i\right) \qquad (S^* = S^{-1} : S \text{ is unitary})$$

$$= \sum_{i=1}^n \alpha_i \lambda_i e_i = T_1(v).$$

Problem 5.

Find the singular values of the operator $T \in \mathcal{P}_3(\mathbb{C}) : p(x) \mapsto 2xp'(x) - x^2p''(x)$ if the inner product on $\mathcal{P}_3(\mathbb{C})$ is defined as

$$\langle p, q \rangle := \int_{-1}^{1} p(x) \, \overline{q(x)} \, dx.$$

Solution. We first orthonormalize the basis $\{1, x, x^2, x^3\}$.

$$\begin{aligned} v_1 &= 1 \\ \|v_1\| &= \sqrt{\langle v_1, v_1 \rangle} = \sqrt{\int_{-1}^1 1 \cdot 1 dx} = \sqrt{2} \\ e_1 &= \frac{1}{\sqrt{2}} \\ v_2 &= x - \langle x, e_1 \rangle e_1 = x \\ &= x - \frac{1}{2} \int_{-1}^1 x dx \\ &= x \\ \|v_2\| &= \sqrt{\langle v_2, v_2 \rangle} = \sqrt{\int_{-1}^1 x^2 dx} = \sqrt{\frac{2}{3}} \\ e_2 &= \sqrt{\frac{3}{2}} x \\ v_3 &= x^2 - \langle x^2, e_1 \rangle e_1 - \langle x^2, e_2 \rangle e_2 \\ &= x^2 - \frac{1}{2} \int_{-1}^1 x^2 dx - \frac{3}{2} x \int_{-1}^1 x^3 dx \\ &= x^2 - \frac{1}{3} \\ \|v_3\| &= \sqrt{\langle v_3, v_3 \rangle} = \sqrt{\int_{-1}^1 (x^2 - \frac{1}{3})^2 dx} = \sqrt{\frac{8}{45}} \\ e_3 &= \sqrt{\frac{45}{8}} (x^2 - \frac{1}{3}) \\ v_4 &= x^3 - \langle x^3, e_1 \rangle e_1 - \langle x^3, e_2 \rangle e_2 - \langle x^3, e_3 \rangle e_3 \\ &= x^3 - \frac{1}{2} \int_{-1}^1 x^3 dx - \frac{3}{2} x \int_{-1}^1 x^4 dx - \frac{45}{8} (x^2 - \frac{1}{3}) \int_{-1}^1 x^5 dx \\ &= x^3 - \frac{3}{5} x \\ \|v_4\| &= \sqrt{\langle v_4, v_4 \rangle} = \sqrt{\int_{-1}^1 (x^3 - \frac{3}{5} x)^2 dx} = \sqrt{\frac{8}{175}} \\ e_4 &= \sqrt{\frac{175}{8}} (x^3 - \frac{3}{5} x). \end{aligned}$$

Now we construct $\mathcal{M}(T, (e_1, e_2, e_3, e_4))$ by inspecting T's action on the orthonormal basis.

$$T(e_1) = 0$$

$$T(e_2) = 2x \cdot \sqrt{\frac{3}{2}} = 2e_2$$

$$T(e_3) = 2x \left(2 \cdot \sqrt{\frac{45}{8}}x\right) - x^2 \left(2 \cdot \sqrt{\frac{45}{8}}\right)$$

$$= 4\sqrt{\frac{45}{8}}x^2 - 2\sqrt{\frac{45}{8}}x^2$$

$$= 2e_3 + \sqrt{5}e_1$$

$$T(e_4) = 2x \left(3\sqrt{\frac{175}{8}}x^2 - \frac{3\sqrt{7}}{8}\right) - x^2 \left(6\sqrt{\frac{175}{8}}x\right)$$

$$= 6\sqrt{\frac{175}{8}}x^3 - 2\frac{3\sqrt{7}}{\sqrt{8}}x - 6\sqrt{\frac{175}{8}}x^3$$

$$= -\sqrt{21}e_2.$$

Hence, the matrix representation of T with respect to the orthonormal basis is

$$\mathcal{M}(T, (e_1, e_2, e_3, e_4)) = \begin{bmatrix} 0 & 0 & \sqrt{5} & 0 \\ 0 & 2 & 0 & -\sqrt{21} \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then the matrix representation of T^* is the conjugate transpose, which is

$$\mathcal{M}(T^*, (e_1, e_2, e_3, e_4)) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ \sqrt{5} & 0 & 2 & 0 \\ 0 & -\sqrt{21} & 0 & 0 \end{bmatrix}.$$

Then,

$$\mathcal{M}(T^*)\mathcal{M}(T) = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 4 & 0 & -2\sqrt{21}\\ 0 & 0 & 9 & 0\\ 0 & -2\sqrt{21} & 0 & 21 \end{bmatrix}.$$

By solving the characteristic equation

$$-\lambda(9-\lambda)[(4-\lambda)(21-\lambda)-84] = 0,$$

we get $\lambda = 0$ with multiplicity 2, $\lambda = 9$ with multiplicity 1, and $\lambda = 25$ with multiplicity 1. Hence, the singular values of T are $\sqrt{25} = 5, \sqrt{9} = 3, 0$.