Технически университет - София Факултет по приложна математика и информатика

Курсова работа

Математическа Екология

Студент: Кристиян Кръчмаров Преподавател: проф. дмн. Людмил Каранджулов

Съдържание

1	Зад	ание		2						
2	Реп	цение		3						
	2.1	Особе	енни точки	. 3						
		2.1.1	Първи случай	. 3						
		2.1.2	Втори случай							
		2.1.3	Трети случай	. 3						
		2.1.4	Четвърти случай							
	2.2	Линеа	аризация							
		2.2.1	- Първи случай	. 4						
		2.2.2	Втори случай							
		2.2.3	Трети случай	. 4						
		2.2.4	Четвърти случай							
	2.3									
		2.3.1	Първи случай	. 5						
		2.3.2	Втори случай	. 6						
		2.3.3	Трети случай	. 6						
		2.3.4	Четвърти случай							
	2.4	Фазов	ва картина	. 7						
	2.5		:ютърна реализация							
	2.6		ери							

1 Задание

За математическия модел на съжителство на две популации

$$\begin{vmatrix} \dot{N}_1 = (a - bN_1 - \sigma N_2) N_1 & a, b, \sigma > 0 \\ \dot{N}_2 = (c - \nu N_1 - dN_2) N_2 & c, d, \nu > 0 \end{vmatrix}$$
 (*)

са въведени следните означения

$$\Delta = \begin{vmatrix} b & \sigma \\ \nu & d \end{vmatrix} \qquad \Delta_1 = \begin{vmatrix} a & \sigma \\ c & d \end{vmatrix} \qquad \Delta_2 = \begin{vmatrix} b & a \\ \nu & c \end{vmatrix}$$

Изследвайте вида на особенните точки, фазова картина, компютърна реализация, съответни чертежи и биологични изводи, ако е изпълнено

$$\Delta > 0$$
 $\Delta_1 > 0$ $\Delta_2 > 0$

2 Решение

2.1 Особенни точки

Особенните точки се получават като решение на системата

$$\begin{vmatrix} (a - bN_1 - \sigma N_2) N_1 = 0 \\ (c - \nu N_1 - dN_2) N_2 = 0 \end{vmatrix}$$

2.1.1 Първи случай

$$\begin{vmatrix}
N_1 = 0 \\
N_2 = 0
\end{vmatrix}$$
(I)

2.1.2 Втори случай

$$\begin{vmatrix} N_1 = 0 \\ N_2 \neq 0 \implies c - dN_2 = 0 \implies \begin{vmatrix} N_1 = 0 \\ N_2 = \frac{c}{d} \end{vmatrix}$$
 (II)

2.1.3 Трети случай

$$\begin{vmatrix} N_1 \neq 0 \\ N_2 = 0 \implies a - bN_1 = 0 \implies \begin{vmatrix} N_1 = \frac{a}{b} \\ N_2 = 0 \end{vmatrix}$$
 (III)

2.1.4 Четвърти случай

$$\begin{vmatrix} N_1 \neq 0 \\ N_2 \neq 0 \end{vmatrix} \Longrightarrow \begin{vmatrix} a - bN_1 - \sigma N_2 = 0 \\ c - \nu N_1 - dN_2 = 0 \end{vmatrix} \Longleftrightarrow \begin{vmatrix} bN_1 + \sigma N_2 = a \\ \nu N_1 + dN_2 = c \end{vmatrix} \Longrightarrow$$

$$\begin{vmatrix} N_1 = \frac{\Delta_1}{\Delta} \\ N_2 = \frac{\Delta_2}{\Delta} \end{vmatrix}$$
 (Kpamep) (IV)

2.2 Линеаризация

Линеаризацията се получава като се замести в (*)

$$\begin{vmatrix} N_1 - \alpha = y_1 \\ N_2 - \beta = y_2 \end{vmatrix} \iff \begin{vmatrix} N_1 = y_1 + \alpha \\ N_2 = y_2 + \beta \end{vmatrix}$$

където (α, β) е особенна точка и се вземе линейната част за всяка една променлива y_1, y_2

2.2.1 Първи случай

$$\begin{vmatrix} N_1 - 0 = y_1 \\ N_2 - 0 = y_2 \end{vmatrix} \iff \begin{vmatrix} N_1 = y_1 \\ N_2 = y_2 \end{vmatrix} \implies \begin{vmatrix} \dot{y}_1 = (a - by_1 - \sigma y_2) y_1 \\ \dot{y}_2 = (c - \nu y_1 - dy_2) y_2 \end{vmatrix} \iff \begin{vmatrix} \dot{y}_1 = ay_1 - by_1^2 - \sigma y_1 y_2 \\ \dot{y}_2 = cy_2 - \nu y_1 y_2 - dy_2^2 \implies W = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$$

$$(I)$$

2.2.2 Втори случай

$$\begin{vmatrix} N_1 - 0 = y_1 \\ N_2 - \frac{c}{d} = y_2 \end{vmatrix} \iff \begin{vmatrix} N_1 = y_1 \\ N_2 = y_2 + \frac{c}{d} \end{vmatrix} \implies \begin{vmatrix} \dot{y_1} = \begin{bmatrix} a - by_1 - \sigma \left(y_2 + \frac{c}{d}\right) \\ \dot{y_2} = \begin{bmatrix} c - vy_1 - d \left(y_2 + \frac{c}{d}\right) \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 + \frac{c}{d} \end{pmatrix} \end{vmatrix} \iff \begin{vmatrix} \dot{y_1} = ay_1 - by_1^2 - \sigma y_1 y_2 - \frac{\sigma c}{d} y_1 \\ \dot{y_2} = \begin{bmatrix} c - vy_1 - dy_2 - c \end{bmatrix} \begin{pmatrix} y_2 + \frac{c}{d} \end{pmatrix} \iff \begin{vmatrix} \dot{y_1} = ay_1 - by_1^2 - \sigma y_1 y_2 - \frac{\sigma c}{d} y_1 \\ \dot{y_2} = vy_1 y_2 - \frac{vc}{d} y_1 - dy_2^2 - cy_2 \end{vmatrix} \implies W = \begin{pmatrix} a - \frac{\sigma c}{d} & 0 \\ -\frac{vc}{d} & -c \end{pmatrix}$$

$$(II)$$

2.2.3 Трети случай

$$\begin{vmatrix} N_1 - \frac{a}{b} = y_1 \\ N_2 - 0 = y_2 \end{vmatrix} \iff \begin{vmatrix} N_1 = y_1 + \frac{a}{b} \\ N_2 = y_2 \end{vmatrix} \implies \begin{vmatrix} \dot{y_1} = \begin{bmatrix} a - b \left(y_1 + \frac{a}{b} \right) - \sigma y_2 \end{bmatrix} \left(y_1 + \frac{a}{b} \right) \\ \dot{y_2} = \begin{bmatrix} c - \nu \left(y_1 + \frac{a}{b} \right) - dy_2 \end{bmatrix} y_2 \end{vmatrix} \iff \begin{vmatrix} \dot{y_1} = \begin{bmatrix} a - by_1 - a - \sigma y_2 \end{bmatrix} \left(y_1 + \frac{a}{b} \right) \\ \dot{y_2} = cy_2 - \nu y_1 y_2 - \frac{\nu a}{b} - dy_2^2 \end{vmatrix} \iff \begin{vmatrix} \dot{y_1} = -by_1^2 - ay_1 - \sigma y_1 y_2 - \frac{\sigma a}{b} \\ \dot{y_2} = cy_2 - \nu y_1 y_2 - \frac{\nu a}{b} - dy_2^2 \end{Bmatrix} \implies W = \begin{pmatrix} -a & -\frac{\sigma a}{b} \\ 0 & c - \frac{\nu a}{b} \end{pmatrix}$$

$$(III)$$

2.2.4 Четвърти случай

$$\begin{vmatrix} N_1 - \frac{\Delta_1}{\hat{\Delta}_2} = y_1 \\ N_2 - \frac{\Delta_2}{\hat{\Delta}} = y_2 \end{vmatrix} \iff \begin{vmatrix} N_1 = y_1 + \frac{\Delta_1}{\hat{\Delta}_2} \\ N_2 = y_2 + \frac{\Delta_2}{\hat{\Delta}} \end{vmatrix} \implies \begin{vmatrix} \dot{y}_1 = \begin{bmatrix} a - b \left(y_1 + \frac{\Delta_1}{\hat{\Delta}_1}\right) - \sigma \left(y_2 + \frac{\Delta_2}{\hat{\Delta}_2}\right) \\ \dot{y}_2 = \begin{bmatrix} c - \nu \left(y_1 + \frac{\Delta_1}{\hat{\Delta}_1}\right) - d \left(y_2 + \frac{\Delta_2}{\hat{\Delta}_2}\right) \end{vmatrix} \left(y_2 + \frac{\Delta_1}{\hat{\Delta}_2}\right) \\ \begin{vmatrix} \dot{y}_1 = \begin{bmatrix} a - by_1 - \frac{b\Delta_1}{\hat{\Delta}_1} - \sigma y_2 - \frac{\sigma \Delta_2}{\hat{\Delta}_2} \\ c - \nu y_1 - \frac{\nu \Delta_1}{\hat{\Delta}_1} - dy_2 - \frac{d\Delta_2}{\hat{\Delta}_2} \end{bmatrix} \left(y_1 + \frac{\Delta_1}{\hat{\Delta}_2}\right) \iff \\ \begin{vmatrix} \dot{y}_1 = ay_1 + \frac{a\Delta_1}{\hat{\Delta}_1} - by_1^2 - \frac{b\Delta_1}{\hat{\Delta}_1} y_1 - \frac{b\Delta_1}{\hat{\Delta}_1} y_1 - b \left(\frac{\Delta_1}{\hat{\Delta}_1}\right)^2 - \sigma y_1 y_2 - \frac{\sigma \Delta_1}{\hat{\Delta}_1} y_1 - \frac{\sigma \Delta_2}{\hat{\Delta}_2} y_1 - \frac{\sigma \Delta_1 \Delta_2}{\hat{\Delta}_2} \\ \dot{y}_2 = cy_2 + \frac{c\Delta_2}{\hat{\Delta}_2} - \nu y_1 y_2 - \frac{\nu \Delta_2}{\hat{\Delta}_2} y_1 - \frac{\nu \Delta_1}{\hat{\Delta}_1} y_2 - \frac{\nu \Delta_1 \Delta_2}{\hat{\Delta}_2} - dy_2^2 - \frac{d\Delta_2}{\hat{\Delta}_2} y_2 - d \left(\frac{\Delta_2}{\hat{\Delta}_2}\right)^2 \implies \\ W = \begin{pmatrix} a - \frac{2b\Delta_1}{\hat{\Delta}_1} - \frac{\sigma \Delta_2}{\hat{\Delta}_2} & -\frac{\sigma \Delta_1}{\hat{\Delta}_1} \\ -\nu \Delta_2 & \Delta c - 2d\Delta_2 - \nu \Delta_1 \end{pmatrix} \\ \Delta a - 2b\Delta_1 - \sigma \Delta_2 & -\sigma \Delta_1 \\ -\nu \Delta_2 & \Delta c - 2d\Delta_2 - \nu \Delta_1 \end{pmatrix} \\ \Delta a - 2b\Delta_1 - \sigma \Delta_2 & (bd - \nu\sigma)a - 2b(ad - c\sigma) - \sigma(bc - a\nu) = \\ abd - a\nu\sigma - 2abd + 2bc\sigma - bc\sigma + a\nu\sigma = bc\sigma - abd = b(c\sigma - ad) = -b(ad - c\sigma) = -b\Delta_1 \\ \Delta c - 2d\Delta_2 - \nu \Delta_1 & (bd - \nu\sigma)c - 2d(bc - a\nu) - \nu(ad - c\sigma) = \\ bcd - c\nu\sigma - 2bcd + 2ad\nu - ad\nu + c\nu\sigma = ad\nu - bcd = d(a\nu - bc) = -d(bc - a\nu) = -d\Delta_2 \\ \implies W = -\frac{1}{\lambda} \begin{pmatrix} b\Delta_1 & \sigma\Delta_1 \\ \nu \Delta_2 & d\Delta_2 \end{pmatrix} & (IV) \end{cases}$$

2.3 Собствени стойностти

Собствените стойностти на матрицата W се получават от уравнението

$$\det(W - \lambda I) = 0$$

където I е единичната матрица

2.3.1 Първи случай

$$\det(W - \lambda I) = \begin{vmatrix} a - \lambda & 0 \\ 0 & c - \lambda \end{vmatrix} = (a - \lambda)(c - \lambda) = 0 \implies$$

$$\begin{vmatrix} \lambda_1 = a > 0 \\ \lambda_2 = c > 0 \end{vmatrix} \implies \text{ неустойчив възел}$$

$$(I)$$

2.3.2 Втори случай

$$\det(W - \lambda I) = \begin{vmatrix} a - \frac{\sigma c}{d} - \lambda & 0 \\ -\frac{\nu c}{d} & -c - \lambda \end{vmatrix} = \left(\frac{ad - \sigma c}{d} - \lambda\right)(-c - \lambda) = 0 \implies$$

$$\begin{vmatrix} \lambda_1 = \frac{ad - \sigma c}{d} = \frac{\Delta_1}{d} > 0 \\ \lambda_2 = -c < 0 \end{vmatrix} \implies \text{седло}$$
(II)

2.3.3 Трети случай

$$\det(W - \lambda I) = \begin{vmatrix} -a - \lambda & -\frac{\sigma a}{b} \\ 0 & c - \frac{\nu a}{b} - \lambda \end{vmatrix} = (-a - \lambda) \left(\frac{bc - \nu a}{b} - \lambda \right) = 0 \implies$$

$$\begin{vmatrix} \lambda_1 = \frac{bc - \nu a}{b} = \frac{\Delta_2}{d} > 0 \\ \lambda_2 = -a < 0 \end{vmatrix} \implies \text{ седло}$$
(III)

2.3.4 Четвърти случай

$$\det(W - \lambda I) = \begin{vmatrix} b\Delta_1 - \lambda & \sigma\Delta_1 \\ \nu\Delta_2 & d\Delta_2 - \lambda \end{vmatrix} = (b\Delta_1 - \lambda)(d\Delta_2 - \lambda) - \nu\sigma\Delta_1\Delta_2 = 0 \iff$$

$$bd\Delta_1\Delta_2 - b\Delta_1\lambda - d\Delta_2\lambda + \lambda^2 - \nu\sigma\Delta_1\Delta_2 = 0 \iff$$

$$\lambda^2 - \lambda(b\Delta_1 + d\Delta_2) + \Delta_1\Delta_2(bd - \nu\sigma) = 0 \iff \lambda^2 - \lambda(b\Delta_1 + d\Delta_2) + \Delta\Delta_1\Delta_2 = 0$$
Формули на Виет : $p\lambda^2 + q\lambda + r$

$$\begin{vmatrix} \lambda_1 + \lambda_2 = -\frac{q}{p} = -(b\Delta_1 + d\Delta_2) < 0 \\ \lambda_1 \cdot \lambda_2 = \frac{r}{p} = \Delta\Delta_1\Delta_2 > 0 \implies \lambda_{1,2} = \alpha \pm \beta i \in \mathbb{C}, \alpha < 0 \implies \phi$$

$$\text{окус} \qquad (IV)$$

2.4 Фазова картина

2.5 Компютърна реализация

Следния код реализира модела на съжителство в Matlab

Този код представлява функция, която генерира графика на две популационни групи в зависимост от времето. Функцията има следните параметри:

- a, b, σ, c, ν, d коефициенти определящи растежа на популацията.
- N_0 началните стойности на популациите във формата $[N_1(0), N_2(0)]$
- *i* номер на графиката, която ще бъде създадена

Функцията използва система от диференциални уравнения, описваща динамиката на популационните групи. Тези уравнения се задават в функцията ode, която приема два аргумента: време t и вектор N, който съдържа стойностите на популациите на двата вида.

След това се използва вградената МАТLAB функция ode45, която решава системата от диференциални уравнения, зададени в ode, в интервала на времето tspan, като използва началните стойности N_0 .

След като решението на системата от диференциални уравнения е генерирано, функцията визуализира резултатите чрез графика на две криви, които показват стойностите на популациите на двата вида във времето.

2.6 Примери

Пример 1

$$\begin{vmatrix} \dot{N}_1 = (5 - 2N_1 - 2N_2) N_1 & N_1(0) = 1 \\ \dot{N}_2 = (3 - 1N_1 - 6N_2) N_2 & N_2(0) = 1 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 2 & 2 \\ 1 & 6 \end{vmatrix} = 12 - 2 = 10 > 0$$

$$\Delta_1 = \begin{vmatrix} 5 & 2 \\ 3 & 6 \end{vmatrix} = 30 - 6 = 24 > 0$$

$$\Delta_2 = \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix} = 6 - 5 = 1 > 0$$

Кодът от предходната част генерира следната графика:

Както се вижда от графиката и двете популации запазват своя брой константен във времето.

Пример 2

$$\begin{vmatrix} \dot{N}_1 = (1 - 2N_1 - 1N_2) N_1 & N_1(0) = 1 \\ \dot{N}_2 = (2 - 1N_1 - 3N_2) N_2 & N_2(0) = 1 \end{vmatrix}$$

$$\Delta = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 6 - 1 = 5 > 0$$

$$\Delta_1 = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 3 - 2 = 1 > 0$$

$$\Delta_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 4 - 1 = 3 > 0$$

Кодът от предходната част генерира следната графика:

И тук двете популации запазват константен растеж във времето.

	4	ţ	ţ	Į	Į	l	l	4	1	/
	٠	4	4	į	4		4	¥	✓	/
0.75				,	1	,			V	/
					,	,		-	~	~
0.5							•	-	-	~
	,							-	←	←
	,	,	,		•		٠	-	←	←
	,	,	,		•		•		*-	←
	,	,	•			,	•		*	←
	•		•		,	.5		0.75	+	←