BTS Aéro - Intégration par parties

1 Intégration par parties

Soit u et v deux fonctions dérivables sur un intervalle I. La dérivée du produit uv est

$$(uv)' = u'v + uv'$$
 donc $u'v = (uv)' - uv'$.

Les fonctions u et v sont dérivables, donc continues; si de plus u' et v' sont continues, alors les fonctions u'v, uv' et (uv)' sont continues, donc intégrables.

Si a et b sont deux éléments de I, on a alors

$$\int_{a}^{b} u'(t)v(t) dt = \int_{a}^{b} (uv)'(t) dt - \int_{a}^{b} u(t)v'(t) dt,$$

soit encore, si on choisit uv comme primitive de (uv)',

$$\int_{a}^{b} u'(t)v(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t) dt,$$

Formule à apprendre :

$$\int_{a}^{b} u'vdt = [uv]_{a}^{b} - \int_{a}^{b} uv'dt$$

exemple

On désire calculer l'intégrale $I=\int_0^1 te^t\,dt$. On pose $u'(t)=e^t, v(t)=t$ donc $u(t)=e^t, v'(t)=t$ et il vient

$$\int_0^1 te^t dt = \left[te^t \right]_0^1 - \int_0^1 e^t dt = e - \left[te^t \right]_0^1 = 1.$$

conseil pratique : choisir u' et v

- $\exp \times P$, où P est un polynôme : intégrer l'exponentielle, dériver le polynôme : $u' = \exp, v = P$. De même pour $\cos \times P, \sin \times P$
- $\ln \times P$, où P est un polynôme. C'est le contraire. intégrer le polynôme, dériver le logarithme : $u' = P, v = \ln n$.