Numerics Methods and Useful Facts

Tyler Chen

Contents

1	Calculus	Calculus 4																
		d Jacobian																4
		f Matrix Ved	tor Fo	rms .													•	4
		insions																4
	1.3.1 Con	nputing Expa	ansions	in M	lather	matio	:a .						•	•	•	•	•	4
2	Pasic Linear Al	gebra																6
		Vector Norn	ns															6
	2.2 Similar Mat	rices																6
	2.2.1 Diag	gonalizable																6
3	B Projectors	Projectors												7				
Ĭ	3.1 Orthogonal	Projectors																7
4	Rayleigh Quotion	ents																8
5	Classification o	f Matrices																9
•		ngular																9
																		9
	,																	9
		etric																9
																		10
	5.6 Positive def	inite																10
	5.7 ???													 •				10
6	Matrix Decomp	Matrix Decompositions 11																
	6.1 SVD																	11
	6.1.1 Red	uced SVD																11
	` '																	11
		ial Pivoting																11
		lesky																11
																		12
	•																	12
		nal																12 12
7																		12
′			-															12
		imination .																12
	7.3 SVD																	12
8	Iterative Metho	ods for Line	ear Sys	stems	S													12
	8.1 Simple Itera		_															12

	8.2	Power Iteration										
	0.2	8.2.1 Simultaneous Power Iteration (QR)										
	8.3 8.4	Conjugate Gradient 1 GMRES 1										
	8.5	Other methods										
	0.5	other methods	_									
9	Solv	Solving Least Squares 12										
	9.1	Derivations of Normal Equations	3									
	9.2	Solving Least Squares Numerically	3									
10	Bou	ndary Value Problems 14	4									
	10.1	Laplacian	4									
11	Inte	grators and IVPs 19	5									
	11.1	Runge-Kutta Methods	5									
	11.2	LMMs	5									
	11.3	Stability	5									
		Zero Stable										
	11.5	Region of Absolute Stability	5									
12	PDE	1:	5									
	12.1	Method of Lines	5									
		12.1.1 Von Neumann Analysis	5									

1 Calculus

1.1 Gradient and Jacobian

For $f: \mathbb{R}^n \to \mathbb{R}$ we define the gradient as,

$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right]$$

For $f: \mathbb{R}^n \to \mathbb{R}^m$ we define the Jacobian as,

$$J_f = \begin{bmatrix} \nabla f_1 \\ \nabla f_2 \\ \vdots \\ \nabla f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Note that the best linear approximation to f at x_0 is given by,

$$f(x_0) + J_f x$$

1.2 Gradients of Matrix Vector Forms

This can be useful for minimizing/maximizing expressions involving matrix vector quantities.

$$\nabla b^T A x = A^T b$$
$$\nabla x^T A x = (A + A^T) x$$

1.3 Taylor Expansions

$$f(t+k,x+h) = f + kf_t + hf_x + \frac{k^2}{2}f_{tt} + khf_{tx} + \frac{h^2}{2}f_{xx} + \mathcal{O}(k^2 + h^2)$$

1.3.1 Computing Expansions in Mathematica

Compute Taylor expansion of f(t + k, x + h) to d-th order.

Normal[Series[f[t + z k, x + z h],
$$\{z,0,d\}$$
]] /. $\{z->1\}$

This can be written into a function like,

$$F[n_{,j}] := Normal[Series[f[t + z n k, x + z j h], {z,0,d}]] /. {z->1}$$

Then F[n,j] computes the Taylor expansion of f(t+nk,x+jh) about (t,x). This is useful for compute local truncation errors. For instance, to compute the LTE of a second order centered difference approximation $f'(x) \approx (f(t+k,x) - f(t-k,x))/2k$ we set d=3 and use,

```
FullSimplify[(F[1, 0] - F[-1, 0])/(2 k)]
```

This gives that the difference methods is like $f_t(t, x) + \mathcal{O}(k^2)$.

2 Basic Linear Algebra

2.1 Matrix and Vector Norms

The general definition of a matrix norm is,

$$||A|| = \sup_{u \neq 0} \frac{||Au||}{||u||} = \sup_{||u||=1} ||Au||$$

Equivalent definition:

$$||A|| = \sup_{u,v \neq 0} \frac{\langle Au, v \rangle}{||u|| \, ||v||} = \sup_{||u|| = ||v|| = 1} \langle Au, v \rangle$$

If A is self Hermitian, *Note:* double check this

$$||A|| = \sup_{u \neq 0} \frac{\langle Au, u \rangle}{||u||^2} = \sup_{||u||=1} \langle Au, u \rangle$$

2.2 Similar Matrices

Definition: Two matrices A and B are similar if $A = XBX^{-1}$ for some X. Why it is useful: The eigenvalues of similar matrices are the same.

2.2.1 Diagonalizable

Definition: A matrix A is diagonalizable if it is similar to a diagonal matrix

3 Projectors

Definition: A matrix P is a projector if $P^2 = P$

Why it is useful: The eigenvalues of a diagonal matrix are the diagonal entries

3.1 Orthogonal Projectors

4 Rayleigh Quotients

Note: Anne seems to like these

Approximates eigenvalues

Can write every value in range of eigenvalues as rayleigh quotient for real symmetric matrices.

5 Classification of Matrices

Matrices are assumed to be complex and unless specified otherwise.

5.1 Upper Triangular

Definition: A matrix R is upper triangular if $r_{ij} = 0$ for i > j. If $r_{ii} = 0$ the matrix is called strictly upper triangular.

Properties:

- \Rightarrow Eigenvalues are diagonal entries
- \Rightarrow Inverse, product, and sum of upper triangular matrices are upper triangular
- \Rightarrow Can solve triangular linear systems in $\mathcal{O}(m^2)$ time with back substitution

5.2 Unitary

Definition: A matrix U is unitary if $U^*U = UU^* = I$.

Properties:

- \Leftrightarrow Columns are orthonormal and form a basis for \mathbb{C}^n
- $\Rightarrow \|AU\|_2 = \|UA\|_2 = \|A\|_2$

5.3 Hermitian

Definition: A matrix A is Hermitian if $A^* = A$

Properties:

- \Rightarrow Real eigenvalues
- \Rightarrow Normal
- ⇒ Unitarily diagonalizable
- $\Rightarrow \|A\|_2 = \rho(A)$

5.4 Skew symmetric

Definition: A real matrix A is skew symmetric if $A^T = -A$

Properties:

- ⇒ pure imaginary eigenvalues
- $\Rightarrow I + A$ is invertible

5.5 Normal

Definition: A matrix A is normal if $A^*A = AA^*$

Properties:

- ⇔ Unitarily diagonalizable (means eigenvectors are orthogonal)
- \Rightarrow Hermitian if all eigenvalues are real

5.6 Positive definite

Definition: A matrix A is positive definite if all eigenvalues are positive.

Properties:

- $\Leftrightarrow v^*Av > 0$ for all v
- \Leftrightarrow Has Cholesky factorization

5.7 ???

Where should I put things like similarity transform, unitarily diagonalizable, etc.

Also things like

6 Matrix Decompositions

6.1 SVD

$$A = U\Sigma V^*$$

 \bullet U unitary

 \bullet Σ diagonal, with real positive entries in non-increasing order

 \bullet V unitary

Existence: Always

Uniqueness: Note: double check Unique up to complex sign of columns of U and V

Computing:

Why it is useful:

• Gives geometric interpretation for linear transforms on \mathbb{C}^n

• Rank revealing

• Numerical stability of algorithms using SVD

6.1.1 Reduced SVD

If A is rank deficient some singular values will be zero. We can drop these singular values and the corresponding singular vectors.

6.2 (P)LU

Existence:

Uniqueness:

Computing: Gaussian Elimination

6.2.1 Partial Pivoting

When is pivoting needed?

6.2.2 Cholesky

Existence: If A is Hermitian positive definite

Uniqueness: Unique up to sign

Why it is useful:

• Save storage space

- 6.3 QR
- 6.4 Eigen
- 6.5 Shur
- 6.6 Jordan Normal
- 7 Direct Methods for Linear Systems
- 7.1 QR
- 7.2 Gaussian Elimination
- 7.3 **SVD**
- 8 Iterative Methods for Linear Systems
- 8.1 Simple Iteration
- 8.2 Power Iteration
- 8.2.1 Simultaneous Power Iteration (QR)
- 8.3 Conjugate Gradient
- 8.4 GMRES
- 8.5 Other methods
- 9 Solving Least Squares

The linear least squares problem is,

$$\min_{x} \|b - Ax\|_2$$

This is solved when x solve the linear system (called the normal equations),

$$A^T A x = A^T b$$

9.1 Derivations of Normal Equations

Using Projectors:

Using Calculus:

Note that

$$||b - Ax|| = (b - Ax)^T (b - Ax) = b^T b + -2b^T Ax + x^T (A^T A)x$$

Therefore, taking the gradient of ||b - Ax||, we know it is minimized when $2A^TAx - 2A^Tb = 0$. Note: How do we do derivative of things like x^*Ax

9.2 Solving Least Squares Numerically

10 Boundary Value Problems

10.1 Laplacian

11 Integrators and IVPs

11.1 Runge-Kutta Methods

11.2 LMMs

11.3 Stability

A method is stable, if when applied to the test equation with $\lambda < 0$, the solution doesn't blow up. That is, $\{U^n\}_{n=0}^{\infty}$ is bounded. *Note:* double check this

11.4 Zero Stable

11.5 Region of Absolute Stability

A stable L stable etc

12 PDEs

12.1 Method of Lines

12.1.1 Von Neumann Analysis

- 1. Replace U_j^n with $g(\xi)^n e^{i\xi j\Delta x}$
- 2. Solve for $g(\xi)$ and compute $|g(\xi)|$
- 3. Method is stable if and only if for all ξ , $|g(\xi)| \leq 1 + \mathcal{O}(\Delta x)$