Lecture 27: Physicsinformed deep neural networks

Professor Ilias Bilionis

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm $\rho(x) = \frac{T(x)}{2}$

$$\rho(x) = \frac{\pi(x)}{2}$$

- Initialize:
- For $n=1,2,\ldots$
 - Generate candidate sample: $\chi' \sim q(\chi') \chi_{n-1}$)
 - Calculate the acceptance ratio:

ce ratio:

$$a(x', x_{n-1}) = \max \{1, \frac{T(x')}{T(x_{n-1})}, \frac{q(x_{n-1}(x'))}{q(x' \mid x_{n-1})} \}$$

- Accept/Reject:

 - Generate u ~ U([0,1])
 If u < a , accept : xn ~ x'
 If u > a , reject : xn ~ xn

The Metropolis-Hastings algorithm is not one algorithm...

- For every choice of proposal, a different algorithm.
- Metropolis Adjusted Langevin Dynamics
- Hamiltonian Monte Carlo
- Riemannian Manifold Hamiltonian Monte Carlo
- ...
- Meta-algorithms: <u>No-U-Turn sampler</u> (NUTS)

Building proposals from the gradient of the target density

