Sample Midterm Exam. COMP 337

1. Suppose that there are a total of 80 data mining related documents in a library of 1000 documents. Suppose that a search engine retrieves 10 documents after a user enters 'data mining' as a query, of which 8 are data mining related documents. What are the precision and recall?

A.precision = 80% and recall = 1%

B. precision = 10% and recall = 8%

C. precision = 8% and recall = 10%

D.precision = 80% and recall = 10%

E. precision = 10% and recall = 1%

2. Let N be the number of number of test data and e be the average error rate. Which of the following statements is correct?

The confidence interval of the true error rate is

A. proportional to e

B. inversely proportional to e

C. proportional to N

D. inversely proportional to N

E. none of the above

3. What is the size of the margin for a support vector machine classifier trained on the dataset $\{<(-1, -1), F>, <(-1, 1), F>, <(1, -1), T>, <(1, 1), T>\}$? (In the dataset, <(x1,x2), class> is a data instance with attributes (x1,x2) and class label "class").

A. 1

B. 2

C. 4

D. 10

E. inifinite

F. 0

4. Consider transforming the following continuous data to a binary-valued attribute using entropy. What is the temperature point with the largest reduction of entropy value?

a) 15.5

b) 16.5

c) 17

d) 19

e) 24

f) 29

Temperature	Class
15	F
16	F
18	T
20	F
22	F
25	T
28	T
30	F
31	T

- 0

5. Consider the logical OR learning problem in the table. Fill out the following table according to the Perceptron learning rule, assuming the threshold θ is represented as a input X0=-1 with a weight of w0, and a learning rate of 0.1.

x 1	х2	t	w0	w1	w2	a=sum(wi*Xi)	output v	error=(t-v)	α=0.1
0	0	0	1		1	,	, ,	(),	
0	1	1							
1	0	1							
1	1	1							
0	0	0							
0	1	1							
1	0	1							
1	1	1							

6. Consider the training data in the following table where *Play* is a class attribute. In the table, the *Humidity* attribute has values "L" (for low) or "H" (for high), *Sunny* has values "Y" (for yes) or "N" (for no), *Wind* has values "S" (for strong) or "W" (for weak), and *Play* has values "Yes" or "No".

Humidity	Sunny	Wind	Play
L	N	S	No
Н	N	W	Yes
Н	Y	S	Yes
Н	N	W	Yes
L	Y	S	No

- a) (10 marks) Build a conditional probability table for this training data.
- b) (5 marks) Is there a zero-frequency problem? Suggest a way to solve it.
- c) (10 marks) What is the probability of Play=yes in the following day (Humidity=L, Sunny=N, Wind=W), according to naïve Bayesian rule?

1