

CLAIMS

1 1. A method of reducing distortion in a dynamically delayed digital sample stream of an
2 imaging system, such method comprising the steps of:

3 delta-sigma modulating an input analog signal of the imaging system at a frequency
4 above the Nyquist frequency of the input analog signal to generate a digital sample stream; and
5 changing a length of the sample stream while maintaining synchronism between a delta-
6 sigma modulator and a demodulator of the system, *thereby reducing intermodulation*
corruption

1 2. The method as in claim 1 wherein the step of delta-sigma modulating an input analog
2 signal further comprises adjusting a feedback magnitude within the modulator.

1 3. The method as in claim 2 wherein the step of changing the length of the sample stream
2 further comprises deleting a sample of the sample stream.

1 4. The method as in claim 3 wherein the step of adjusting the feedback magnitude further
2 comprises providing a null feedback for the deleted sample.

1 5. The method as in claim 2 wherein the step of changing the length of the sample stream
2 further comprises inserting another sample into the sample stream.

1 6. The method as in claim 5 wherein the step of inserting another sample into the sample
2 stream further comprises repeating a sample of the sample stream.

1 7. The method as in claim 6 wherein the step of adjusting the feedback magnitude further
2 comprises providing a feedback multiplier of two for the repeated sample.

1 8. The method as in claim 1 wherein the step of changing the length of the sample stream
2 further comprises inserting another sample into the sample stream.

1 9. The method as in claim 8 wherein the step of inserting another sample into the sample
2 stream further comprises adjusting a digital level of the delayed samples.

1 10. The method as in claim 9 wherein the step of adjusting the digital level of the delayed
2 samples further comprises dividing an original sample in half to produce a pair of divided
3 samples and substituting the pair of divided samples for the original sample.

1 11. The method as in claim 9 wherein the step of adjusting the digital level of the delayed
2 samples further comprises inserting a null sample into the sample stream, where a null sample
3 has a magnitude half way between a high and low level of the digital sample stream level.

1 12. Apparatus for reducing distortion in a dynamically delayed digital sample stream of an
2 imaging system, such apparatus comprising:

3 means for delta-sigma modulating an input analog signal of the imaging system at a
4 frequency above the Nyquist frequency of the input analog signal to generate the digital sample
5 stream; and

6 means for changing a length of the sample stream while maintaining synchronism
7 between the means for delta-sigma modulating and a demodulator of the system.

1 13. The apparatus as in claim 12 wherein the means for delta-sigma modulating the sample
2 stream further comprises means for adjusting a feedback magnitude.

1 14. The apparatus as in claim 13 wherein the means for changing the length of the sample
2 stream further comprises means for deleting a sample of the sample stream

1 15. The apparatus as in claim 14 wherein the means for adjusting the feedback magnitude
2 further comprises means for applying a feedback magnitude half-way between a high and low
3 level for the deleted sample.

1 16. The apparatus as in claim 13 wherein the means for adjusting the length of the sample
2 stream further comprises means for inserting another sample into the sample stream.

1 17. The apparatus as in claim 16 wherein the means for inserting another sample into the
2 sample stream further comprises means for repeating a sample of the sample stream.

1 18. The apparatus as in claim 17 wherein the means for adjusting the feedback magnitude
2 further comprises means for doubling a feedback magnitude for the repeated sample.

1 19. The apparatus as in claim 12 wherein the means for changing the length of the sample
2 stream further comprises inserting another sample into the sample stream.

1 20. The apparatus as in claim 19 wherein the means for inserting another sample into the
2 sample stream further comprises adjusting a digital level of the delayed samples.

1 21. The apparatus as in claim 20 wherein the means for adjusting the digital level of the
2 delayed samples further comprises dividing an original sample in half to produce a pair of
3 divided samples and substituting the pair of divided samples for the original sample

1 22. The apparatus as in claim 20 wherein the means for adjusting the digital level of the
2 delayed samples further comprises inserting a null sample into the sample stream, where a null
3 sample has a magnitude half way between a high and low level of the digital sample stream.

1 23. Apparatus for reducing distortion in a dynamically delayed digital sample stream of an
2 imaging system, such apparatus comprising:

3 a delta-sigma modulator which modulates an input analog signal of the imaging system at
4 a frequency above the Nyquist frequency of the input analog signal to generate the digital sample
5 stream; and

6 a sample stream controller which changes a length of the sample stream to delay a portion
7 of the sample stream while maintaining synchronism between the means for delta-sigma
8 modulating and a demodulator of the system.

1 24. The apparatus as in claim 23 wherein the delta-sigma modulator which modulates the
2 input analog signal further comprises a feedback controller.

1 25. The apparatus as in claim 24 wherein the sample stream controller which changes the
2 length of the sample stream further comprises a first programmable shift register which deletes a
3 sample of the sample stream

1 26. The apparatus as in claim 25 wherein the feedback controller further comprises an
2 arithmetic unit which applies a feedback magnitude half way between a normal high and low
3 level for the deleted sample.

1 27. The apparatus as in claim 24 wherein the sample stream controller which adjusts the
2 length of the sample stream further comprises a second programmable shift register which inserts
3 another sample into the sample stream.

1 28. The apparatus as in claim 27 wherein the sample stream controller which inserts another
2 sample into the sample stream further comprises a memory which together with the second
3 programmable shift register repeats a sample of the sample stream.

1 29. The apparatus as in claim 28 wherein the feedback controller which adjusts the feedback
2 magnitude further comprises a feedback doubler which provides a feedback magnitude of two for
3 the repeated sample.

1 30. The apparatus as in claim 23 wherein the sample stream controller which adjusts the
2 length of the signal stream further comprises a second programmable shift register which inserts
3 another sample to the sample stream further and a divider which divides an original sample in

4 half to produce a pair of divided samples and substitutes the divided samples for the original
5 sample and the inserted sample.

1 31. The apparatus as in claim 27 wherein the means for inserting another sample to the
2 sample stream further comprises means for inserting a null sample into the sample stream.

1 32. A method of creating an ultrasonic image in an ultrasonic imaging system, such method
2 comprising the steps of:

3 retrieving a delta-sigma modulated transmit signal stream;
4 delaying at least some samples of the transmit signal stream to form a steered beam;
5 converting the at least some samples into an analog sample stream;
6 buffering the analog sample stream and driving a plurality of transducer elements with the
7 buffered analog signal stream;
8 detecting an end of the transmit signal stream;
9 switching a plurality of multiplexers to receive a plurality of return analog signal streams
10 from the transducer elements;
11 delta-sigma modulating the return analog signal streams to form a plurality of digital
12 signal streams;
13 dynamically delaying the digital signal streams;
14 summing the delayed digital signal streams;
15 basebanding and filtering the dynamically delayed digital signal stream.

1 33. The method as in claim 32 wherein the step of delta-sigma modulating an input analog
2 signal further comprises adjusting a feedback magnitude within the modulator.

1 34. The method as in claim 33 wherein the step of changing the length of the sample stream
2 further comprises deleting a sample of the sample stream.

1 35. The method as in claim 34 wherein the step of adjusting the feedback magnitude further
2 comprises providing a null feedback for the deleted sample.

1 36. The method as in claim 33 wherein the step of changing the length of the sample stream
2 further comprises inserting another sample into the sample stream.

1 37. The method as in claim 36 wherein the step of inserting another sample into the sample
2 stream further comprises repeating a sample of the sample stream.

1 38. The method as in claim 37 wherein the step of adjusting the feedback magnitude further
2 comprises providing a feedback multiplier of two for the repeated sample.

1 39. The method as in claim 32 wherein the step of dynamically delaying the sample stream
2 further comprises inserting another sample into the sample stream.

1 40. The method as in claim 39 wherein the step of inserting another sample into the sample
2 stream further comprises adjusting a digital level of the delayed samples.

1 41. The method as in claim 40 wherein the step of adjusting the digital level of the delayed
2 samples further comprises dividing an original sample in half to produce a pair of divided
3 samples and substituting the pair of divided samples for the original sample.

1 42. The method as in claim 40 wherein the step of inserting another sample of the sample
2 stream further comprises inserting a null sample into the sample stream.

1 43. The method as in claim 32 further comprising low-pass filtering the transmitted sample
2 streams.

1 44. The method as in claim 32 further comprising time gain compensating the return analog
2 signal for attenuation as a function of distance.

1 45. Apparatus for creating an ultrasonic image in an ultrasonic imaging system, such
2 apparatus comprising:

3 means for storing and retrieving a delta-sigma modulated transmit signal stream;
4 means for delaying at least some samples of the transmit signal stream to form a statically
5 focused and steered transmit beam and for delaying at least some samples of a plurality of digital
6 signal streams from a delta-sigma modulator to form a dynamically focused and steered receive
7 beam;
8 means for detecting an end of the transmit signal stream;
9 means for switching a transducer for receiving a plurality of analog signal streams
10 returned from the transducer;
11 means for delta-sigma modulating the analog signal streams to form the digital signal
12 streams which are dynamically delayed in the means for delaying;
13 means for maintaining synchronism between the delta-sigma modulator and a delta-sigma
14 demodulator in response to each change in the dynamic delay of the digital signal streams;
15 means for summing a corresponding set of samples of the modulated and delayed digital
16 signal streams;
17 means for basebanding and filtering the summed digital signal streams.

1 46 The apparatus as in claim 45 wherein the apparatus for creating an ultrasonic imager
2 further comprises a handheld probe.

1 47. The apparatus as in claim 45 wherein the means for delta-sigma modulating the input
2 analog signal streams further comprises adjusting a feedback magnitude within the modulator.

1 48. The apparatus as in claim 47 wherein the means for dynamically delaying the digital
2 signal streams further comprises means for repeating a sample of the digital sample stream.

1 49. The apparatus as in claim 48 wherein the means for varying a feedback level of the delta-
2 sigma modulator further comprises means for doubling a feedback level for the repeated bit.

1 50. The method as in claim 47 wherein the step of changing the length of the sample stream
2 further comprises deleting a sample of the sample streams.

1 51. The method as in claim 50 wherein the step of adjusting the feedback magnitude further
2 comprises providing a null feedback for the deleted sample.

1 52. The apparatus as in claim 45 wherein the means for dynamically delaying the digital
2 signal streams further comprises means for inserting a null sample into the digital sample
3 streams.

1 53. The apparatus as in claim 45 wherein the means for dynamically delaying the digital
2 signal stream further comprises means for dividing an original sample of the digital sample
3 stream in half and placing half of the sample in an original sample location and half in a newly
4 created location adjacent the original sample location.

1 54. The apparatus as in claim 45 further comprising means for low-pass filtering the
2 transmitted sample streams.

1 55. The apparatus as in claim 45 further comprising means for time gain compensating the
2 return analog signal streams for attenuation as a function of distance.

1 56. Apparatus for creating an ultrasonic image in an ultrasonic imaging system, such
2 apparatus comprising:
3 a memory which stores a delta-sigma transmit signal stream;
4 a programmable register which delays at least some samples of the transmit signal stream
5 to form a statically focused steered transmit beam and at least some samples of a return digital
6 signal stream to form a dynamically focused and steered receive beam;
7 a counter which detects an end of the transmit signal stream;
8 a digital to analog converter which converts the transmit signal stream to an analog signal
9 stream;
10 a switch which switches a transducer for receiving a return analog signal stream;
11 a delta-sigma modulator which delta-sigma modulates the return analog signal streams to
12 form the digital signal streams which is dynamically delayed in the means for delaying;

13 an adder network that sums the digital signal streams;
14 a mixer which demodulates the summed digital signal streams to baseband; and
15 a low-pass filter which low-pass filters the basebanded signal to remove delta-sigma
16 quantization noise.

1 57. The apparatus for creating an ultrasonic imager as in claim 56 further comprising a
2 handheld probe.

1 58. The apparatus as in claim 56 wherein the programmable register which dynamically
2 delays the digital signal streams further comprises a divider circuit which divides a digital value
3 of an original sample of the digital bit streams in half and places a first halved sample in an
4 original sample location and a second halved sample in a newly created sample location adjacent
5 the original sample location.

1 59. Apparatus as in claim 56 wherein the programmable register which delays at least some
2 samples further comprises a circuit that recodes digital values and inserts a null sample

1 60. The apparatus as in claim 56 further comprising a low pass filter which low pass filters
2 the transmitted sample streams.

1 61. The apparatus as in claim 56 further comprising a time gain compensator which time gain
2 compensates the return analog signal for attenuation as a function of distance.

1 62. Apparatus for creating an ultrasonic image in an ultrasonic imaging system, such
2 apparatus comprising:
3 a memory which stores a delta-sigma transmit signal stream;
4 a programmable register which delays at least some samples of the transmit signal stream
5 to form a statically focused steered transmit beam and at least some samples of a return digital
6 signal stream to form a dynamically focused and steered receive beam;
7 a counter which detects an end of the transmit signal stream;

8 a digital to analog converter which converts the delayed signal stream to an analog signal
9 stream;
10 a buffer which buffers the analog signal stream and which drives a portion of a transducer
11 array;
12 a switch which switches a transducer for receiving a return analog signal stream;
13 a delta-sigma modulator which delta-sigma modulates the return analog signal stream to
14 form the digital signal stream which is dynamically delayed in the programmable register;
15 a multiplexer which varies a feedback level of the delta-sigma modulator for each change
16 in the dynamic delay of the digital signal stream;
17 an adder network that sums the digital signal streams;
18 a mixer which demodulates the summed signal stream; and
19 a filter which low-pass filters the mixed signal stream.

1 63. The apparatus for creating an ultrasonic image as in claim 62 further comprising a
2 handheld probe.

1 64. The apparatus as in claim 62 wherein the programmable register which dynamically
2 delays the digital signal stream further comprises a latch which increases a length of the signal
3 stream by repeating a sample of the digital sample stream.

1 65. The apparatus as in claim 64 wherein the multiplexer which varies a feedback level of the
2 delta-sigma modulator further comprises a multiplier which provides twice a normal feedback
3 level for the repeated sample.

1 66. The apparatus as in claim 62 wherein the programmable register which dynamically
2 delays the digital signal stream further comprises a shift controller which decreases a length of
3 the digital signal streams by deleting a sample of the digital sample stream when the delay must
4 change

1 67. The apparatus as in claim 66 wherein the multiplexer which varies a feedback level of the
2 delta-sigma modulator further comprises an analog voltage halfway between other valid feedback
3 levels for the deleted sample.

1 68. A method of improving system noise performance of a delta-sigma based dynamically
2 delayed beamformer receiving a plurality of analog signal streams from a plurality of transducers
3 of a transducer array and providing an amplitude modulated output signal corresponding to a
4 signal intensity as a function of range from the transducer array, such method comprising the
5 steps of:

6 downconverting the plurality of analog signal streams on a plurality of processing
7 channels by mixing each input signal stream of the plurality of analog input signal streams with a
8 periodic signal having a fundamental frequency greater than zero Hertz but less than twice a
9 carrier center frequency of the received analog signal streams;

10 digitizing each mixed signal stream within a delta-sigma modulator;

11 dynamically delaying a corresponding set of samples among the digitized signal streams
12 within independent delay lines to compensate each sample of the corresponding set of samples
13 for a sample source's geometric origin relative to a desired dynamic receive focus;

14 dynamically adjusting the phase of the periodic signal on each channel of the plurality of
15 processing channels based upon a total delay applied to the sample stream of that channel;

16 summing the corresponding set of delayed samples; and

17 basebanding and low pass filtering the stream of summed samples to provide an output
18 signal whose amplitude corresponds to the signal intensity of the formed beam as a function of
19 range.

1 69. The method as in claim 68 further comprising the step of time gain compensating each
2 analog signal of each analog signal stream of the plurality of analog signal streams based upon a
3 distance of the signal from the transducer.

1 70. The method as in claim 68 wherein the step of digitizing each mixed signal stream within
2 a delta-sigma modulator further comprising sampling the mixed signal stream above the Nyquist
3 frequency for the signal stream.

1 71. A programmable charge coupled device complementary delay device comprising:
2 a first delay stage having a first delay along a first path through the first delay stage and a
3 second delay along a second path through the delay stage;
4 a second delay stage having a third delay along a first path through the second delay stage
5 and the second delay along the second path through the second delay stage; and
6 a crossover device coupled between the first and second delay stages having a first and a
7 second position, the crossover device forming a first conductive path from the first path of the
8 first delay stage to the first path of the second delay stage and a second conductive path from the
9 second path of the first stage to the second path of the second stage when in the first position and
10 forming a first conductive path from the first path of the first delay stage to the second path of the
11 second delay stage and a second conductive path from the second path of the first stage to the
12 first path of the second stage when in the second position

1 72. The programmable charge coupled device complementary delay device as in claim 71
2 further comprising a common input to the first and second paths through the first delay stage.

1 73. The programmable charge coupled device complementary delay device as in claim 71
2 wherein the common input to the first and second paths through the first delay stage further
3 comprising a device input.

1 74 The programmable charge coupled device complementary delay device as in claim 71
2 wherein the first delay is substantially equal to twice the second delay.

1 75. The programmable charge coupled device complementary delay device as in claim 71
2 wherein the third delay is substantially equal to twice the first delay.

1 76. The programmable charge coupled device complementary delay device as in claim 71
2 further comprising a plurality of additional delay stages and crossover devices with a delay in the
3 first path substantially equal to twice a delay of the first path of a previous delay stage and a
4 delay in the second path substantially equal to the second delay.

1 77. The complementary delay device as in claim 71 where the charge coupled device is a
2 digital storage device.

1 78. A method of gathering spatial information, such method comprising the steps of:
2 retrieving an oversampled delta-sigma modulated sequence for a selected set of channels of a
3 transducer array from a memory;
4 delaying the sequence of each channel of the selected set within a transmit/receive delay
5 register to steer a transmitted ultrasonic beam;
6 counting a number of samples of the delta-sigma modulated sequence to detect an end of
7 a transmit sequence;
8 detecting a reflected signal at the end of the transmit sequence on each channel of the
9 selected set of channels;
10 delta-sigma modulating the detected signal of each channel;
11 dynamically delaying a corresponding set of delta-sigma modulated samples from among
12 the channels of the modulated detected signals in the transmit/receive delay register;
13 summing a corresponding set of delta-sigma modulated values to provide an output signal
14 whose amplitude corresponds to a signal intensity of the formed beam as a function of range.

1 79. The method of gathering spatial information as in claim 78 wherein the step of
2 beamforming a received signal in the transmit/receive delay register further comprises using a
3 series of delay and addition stages in the transmit/receive delay register to partially beamform
4 elevational and azimuthal transducer array elements.

1 80. The method of gathering spatial information as in claim 78 further comprising
2 premodulating the detected reflected signal.

1 81. The method of gathering spatial information as in claim 78 further comprising the step of
2 time gain compensating the detected reflected signal.

1 82. The method of gathering spatial information as in claim 78 further comprising the step of
2 differentially driving a set of signal amplifiers of an ultrasonic transducer array with the
3 oversampled delta-sigma modulated sequence.

1 83. The method of gathering spatial information as in claim 78 further comprising alternating
2 a polarity of a set of transducer array elements to reduce common mode noise.

1 84. The method of gathering spatial information as in claim 78 further comprising
2 remodulating a summed output of the beamformer with a delta-sigma modulator.

1 85. The method of gathering spatial information as in claim 78 further comprising detecting a
2 reflected signal over a two-dimensional array.

1 86. The method of gathering spatial information as in claim 78 further comprising
2 dynamically delaying the delta-sigma modulated signal using a barrel shifter.

1 87. The method of gathering spatial information as in claim 78 further comprising adjusting a
2 delay period and repeating the steps of detecting, delta-sigma modulating, dynamically delaying
3 and summing.

1 88. Apparatus for gathering spatial information, such apparatus comprising:
2 means for retrieving an oversampled delta-sigma modulated sequence for a selected set of
3 channels of a transducer array from a memory;
4 means for delaying the sequence of each channel of the selected set within a
5 transmit/receive delay register to steer a transmitted ultrasonic beam;
6 means for counting a number of samples of the delta-sigma modulated sequence to detect
7 an end of a transmit sequence;

8 means for detecting a reflected signal at the end of the transmit sequence on each channel
9 of the selected set of channels;
10 means for delta-sigma modulating the detected signal of each channel;
11 means for dynamically delaying a corresponding set of delta-sigma modulated samples
12 from among the channels of the modulated detected signals in the transmit/receive delay register;
13 means for summing a corresponding set of delta-sigma modulated values to provide an
14 output signal whose amplitude corresponds to a signal intensity of the formed beam as a function
15 of range.

1 89. The apparatus for gathering spatial information as in claim 88 wherein the means for
2 beamforming a received signal in the transmit/receive delay register further comprises means for
3 using a series of delay and addition stages in the transmit/receive delay register to partially
4 beamform elevational and azimuthal transducer array elements.

1 90. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for premodulating the detected reflected signal.

1 91. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for time gain compensating the detected reflected signal.

1 92. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for differentially driving a set of signal amplifiers of an ultrasonic transducer array with the
3 oversampled delta-sigma modulated sequence.

1 93. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for alternating a polarity of a set of transducer array elements to reduce common mode noise.

1 94. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for remodulating a summed output of the beamformer with a delta-sigma modulator.

1 95. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for detecting a reflected signal over a two-dimensional array.

1 96. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for dynamically delaying the delta-sigma modulated signal using a barrel shifter.

1 97. The apparatus for gathering spatial information as in claim 88 further comprising means
2 for adjusting a delay period and for forming a beam in a different direction.

1 98. The apparatus for gathering spatial information as in claim 88 further comprising an
2 analog multiplexer which couples the detected reflected signal between the means for detecting
3 and the means for delta-sigma modulating.

1 99. The apparatus for gathering spatial information as in claim 88 further comprising a
2 plurality of premodulators coupling between the analog multiplexer and means for delta-sigma
3 modulating.

1 100. The apparatus for gathering spatial information as in claim 88 further comprising a shared
2 analog amplification circuit which buffers the plurality of premodulators.