Sprawozdanie

Bartosz Zasieczny

17 listopada 2013

Spis treści

1	Zad	anie	1					
2	Aparat matematyczny							
	2.1	Metoda Newtona	2					
		2.1.1 Uwagi	2					
	2.2	Metoda bisekcji	2					
	2.3	Regula falsi	3					
		2.3.1 Wzory	3					
	2.4	Metoda złotego podziału	4					
		2.4.1 Algorytm	4					
3	Badanie funkcji 4							
	3.1	Funkcja 0	4					
		3.1.1 Metoda złotego podziału	6					
		3.1.2 Użycie metody <i>złotego podziału</i> jako wstęp do metody						
		Newtona	7					
		3.1.3 Metoda bisekscji	7					
4	Kor	npilacja i obsługa programu	8					
	4.1	Wymagania	8					
	4.2	Kompilacja	8					
	4.3	Obsługa programu	8					
		8 . 8						

1 Zadanie

Korzystając z omówionych na wykładzie iteracyjnych metod aproksymacji pierwiasków, zaproponować sposób wyznaczania *ekstremum lokalnego* funkcji $f \in C^1[a,b]$. Wykonać eksperymenty m. in. dla:

0.
$$f(x) = \sin(2\pi x), x \in [0, 1];$$

1.
$$f(x) = e^{-x^2}, x \in [-1, 1];$$

- 2. $f(x) = \frac{x}{1+x^2}, x \in [0, 10];$
- 3. $f(x) = x^2 + x 1, x \in [-1, 2].$

2 Aparat matematyczny

W poszukiwaniu ekstremów funkcji będziemy używać poniższych metod. Niektóre z nich pozwalają na znalezienie ekstremum wprost, inne będą skupiać się na poszukiwaniu miejsca zerowego pierwszej pochodnej funkcji tam gdzie to możliwe.

2.1 Metoda Newtona

Metoda Newtona polega na iteracyjnym wyznaczaniu kolejnych przybliżeń pierwiastka f(x) poprzez:

- znalezienie stycznej do jej wykresu w punkcie x_i (zaczynając od punktu startowego x_0);
- biorąc wartosć dziedziny w punkcie przecięcia stycznej z osią X za i+1-sze przyblizenie pierwiastka (czyli x_{i+1}).

Kroki powtarzamy aż do otrzymania wymaganej precyzji. Kolejne przybliżenia x_{i+1} wyznaczamy za pomocą wzoru:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

2.1.1 Uwagi

- Charakterystyka tego zadania uniemożliwia użycie samej metody Newtona dla pewnych danych może ona wskazać przybliżenia pierwiastka f(x) spoza pożądanego przedziału. Problemem też jest dobór odpowiedniego punktu startowego dlatego w przypadku tego zadania należy stosować tę metodę tylko po wstępnym przybliżania pierwiastka funkcji przez inne metody iteracyjne.
- W przypadku tego zadania każda badana funkcja musi posiadać co najmniej dwie pochodne.

2.2 Metoda bisekcji

Dla funkcji f(x) ciągłej w przedziale [a,b] i przyjmującej na jego końcach wartości o różnych znakach (f(a)f(b) < 0) należy wykonać następujące kroki:

- 1. sprawdzić, czy srodek przedziału jest pierwiastkiem funkcji (sprawdzić czy f(x) dla wartości dziedziny $x_0 = \frac{a+b}{2}$ ma wartość $f(x_0) = 0$;
- 2. jeśli tak, to zakończyć algorytm i zwrócić x_0 ;
- 3. w p. p. sprawdzić który z przedziałów ($[a, x_0]$ czy $[x_0, b]$) spełnia własność f(a')f(b') < 0 i zastosować do niego pierwszy krok algorytmu.

2.3 Regula falsi

Metoda falszywej prostej wyznacza przyblizenia pierwiastka f(x) spełniającej następujące założenia w przedziale [a, b]:

- f(x) jest ciągła w przedziale [a, b];
- f(x) w przedziale [a, b] ma **dokładnie jeden** pierwiastek;
- f(x) na końcach przedziału [a,b] przyjmuje różne znaki wartości (f(a)f(b) < 0);
- $\forall_{x \in [a.b]} \exists_{f'(x)} \land \exists_{f''(x)};$
- $\forall_{x',x''\in[a,b]} \operatorname{sgn} f'(x') = \operatorname{sgn} f'(x'') \wedge \operatorname{sgn} f''(x') = \operatorname{sgn} f''(x'').$

Aby wyznaczyć przybliżenie pierwiastka nalezy wykonać nastepujące kroki:

- 1. przez punkty A = (a, f(a)) i B = (b, f(b)) przeprowadzana jest prosta;
- 2. punkt przecięcia x_i osi X jest przyblizeniem pierwiastka;
- 3. jeśli precyzja przybliżenia jest zadowalająca to kończymy algorytm;
- 4. w p. p. wybierany jeden z przedziałów ($[a, x_i]$ czy $[x_i, b]$) taki, który spełnia własnosć f(a')f(b') < 0 i stosujemy do niego pierwszy krok algorytmu.

2.3.1 Wzory

$$x_0 = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

$$x_{i+1} = \begin{cases} \frac{x_i f(a) - af(x_i)}{f(a) - f(x_i)} & \text{gdy} \quad f(a)f(x_i) \le 0\\ \frac{x_i f(b) - bf(x_i)}{f(b) - f(x_i)} & \text{gdy} \quad f(b)f(x_i) < 0 \end{cases}$$

dla i = 1, 2, ...

2.4 Metoda złotego podziału

Ta metoda w odróżnieniu od poprzednich pozwala szukać lokalnego ektremum wprost, bez konieczności odwoływania się do pochodnych danej funkcji i poszukwiania ich zer. Żeby funkcja f(x) mogła zostać zbadana za pomocą tej metody, musi być ona w przedziale [a,b], w którym poszukujemy ekstremum, unimodalna – tzn. ciągła i posiadać w tym przedziale dokładnie jedno ekstremum.

2.4.1 Algorytm

Pierwszy krok algorytmu:

$$\begin{cases} x_L^{(0)} := b^{(0)} - (b^{(0)} - a^{(0)})k \\ x_R^{(0)} := a^{(0)} + (b^{(0)} - a^{(0)})k \end{cases}$$

Następnie iterujemy po przypadkach, aż do uzyskania zadowalającej precyzji:

$$\bullet \ f(x_L^{(i)}) > f(x_R^{(i)}) \Rightarrow \begin{cases} a^{(i+1)} \coloneqq x_L^{(i)} \\ b^{(i+1)} \coloneqq b^{(i)} \\ x_L^{(i+1)} \coloneqq x_R^{(i)} \\ x_R^{(i+1)} \coloneqq a^{(i)} + (b^{(i+1)} - a^{(i+1)})k \end{cases}$$

$$\bullet \ f(x_L^{(i)}) < f(x_R^{(i)}) \Rightarrow \begin{cases} a^{(i+1)} \coloneqq a^{(i)} \\ b^{(i+1)} \coloneqq x_R^{(i)} \\ x_L^{(i+1)} \coloneqq b^{(i+1)} - (b^{(i+1)} - a^{(i+1)})k \\ x_R^{(i+1)} \coloneqq x_L^{(i)} \end{cases}$$

Po zakończeniu iteracji, środek przedziału [a,b] jest brany jako przybliżenie lokalnego ekstremum funkcji.

3 Badanie funkcji

Do wykonywania obliczeń używana jest arytmetyka w standardzie IEEE 754 double.

3.1 Funkcja 0

Wzory i wykresy funkcji i pochodnych w podanym przedziale:

 $f(x) = \sin(2\pi x), x \in [0, 1]$

$$f^{(1)}(x) = 2\pi \cdot \cos(2\pi x)$$

$$f^{(2)}(x) = -4\pi^2 \cdot \sin(2\pi x)$$

Z wykresów można wywnioskować, że w tym przedziale funkcja $f \in C^3$. Na wykresie f można zauważyć, że w przedziale [0,1] ma ona 2 ekstrema – jedno minimum, jedno maksimum. Sugeruje to możliwość użycia metody złotego podziału. Niestety $f^{(2)}$ i $f^{(3)}$ nie mają takich samych znaków dla każdej wartości argumentu z zadanego przedziału – użycie metody regula falsi będzie zatem bardzo utrudnione, zatem ją pominiemy dla tej funkcji. Możemy natomiast użyć metody bisekcji, ew. łącząc ją z metodą Newtona (trzeba jednak uważać, gdyż na końcach przedziału $f^{(2)}(0) = 0$ i $f^{(2)}(1) = 0$ – nie mozemy użyć x = 0 i x = 1 jako punktów startowych tej metody).

3.1.1 Metoda złotego podziału

Polecenie: ./main -m golden_section -f 0 -s 0 1 -i 50 -error 10e-8

i	x_i	$f(x_i)$
0	0.690983006	-0.93203242381322759513
1	0.809016994	-0.93203242381322770616
2	0.736067977	-0.99617104086482766157
3	0.781152949	-0.98090406160281717884
4	0.753288904	-0.99978649070871195015
5	0.736067977	-0.99617104086482766157
31	0.750000032	-0.99999999999998012701
32	0.749999993	-0.99999999999888978
33	0.750000017	-0.99999999999444888

Metoda złotego podziału dla tej funkcji osiąga wymaganą precyzję (badany przedział jest mniejszy niż 10^{-8}) dopiero po 34 iteracjach. W ten sposób znaleźliśmy przyblizenie tylko lokalnego minimum funkcji f(x) = -1, x = 0.75 i błąd przyblizenia wynosi $|x_{33} - x| \approx 0.00000001674441429955$. Chcąc przybliżyć minimum nalezy wykonać to samo polecenie dodając paramatr -e max. Lokalne maksimum funkcji znajduje się w x = 0.25 i f(x) = 1

- aby otrzymać wynik o takiej samej precyzji należy wykonać dokładnie tyle samo iteracji i błąd przybliżenia jest bardzo zbliżony. Trzeba jednak pamiętać, że dokładność przyblizeń w przypadku tej funkcji zależy nie tylko od precyzji arytmetyki, ale również od dokładności reprezentacji piczby $\pi = 3.14159265358979323846$ (reprezentacja w cmath).

Dla tej funkcji metoda *złotego podziału* daje wyniki o rządanej precyzji po dość dużej liczbie iteracji. Aby otrzymać precyzję rzędu 10^{-16} program musi wykonać 72 iteracje.

3.1.2 Użycie metody *złotego podziału* jako wstęp do metody Newtona

Warto tej metody użyć jako wstęp do metody Newtona. Weźmy 6-tą iterację z powyższej tabeli (i=5) i użyjmy jej jako punkt startowy do metody Newtona (polecenie: ./main -m newton -f 1 -d 2 -x 0.75328890437410611636 -error 10e-8). Otrzymujemy następujące dane:

i	x_i	$f(x_i)$	_
0	0.753288904	0.129 831 499 475 402	$\frac{1}{37323}$
1	0.749999532	-0.0000184852848758	83362
2	0.750000000	0.0000000000000044	42639

Otrzymujemy w tym wypadku dość szybko (tylko 3 iteracje!) dane bardzo dokładne (błąd: $|x_2-x|\approx 0.00000000000011102$) przybliżenie, które jest znacznie lepsze od uzyskanego na drodze zasosowania samej metody złotego podziału.

3.1.3 Metoda bisekscji

Uzywając tej metody musimy podzielić przedział na dwa: [0,0.5] i [0.5,1]. Łatwo zauważyć, że metoda bisekcji zakończy się wtedy już po pierwszej iteracji, gdyż już wtedy dokładnie w połówach przedziałów będziemy mieć zera $f^{(1)}$. Aby się o tym przekonać wystarczy wykonać następujące polecenia:

- \bullet ./main -m bisection -f 1 -s 0 0.5 dla przedziału [0,0.5],
- ./main -m bisection -f 1 -s 0.5 1 dla przedziału [0.5, 1]

Jak widać nie ma sensu łączenie tej metody z metodą Newtona, gdyż daje ona bardzo dokładne wyniki w czasie rpaktycznie stałym dla tej funkcji i tych dnaych wejściowych.

4 Kompilacja i obsługa programu

4.1 Wymagania

Aby skompilować program należy spełnić następujące wymagania dotyczące oprogramowania:

- kompilator G++ w wersji 4.7 lub późniejszej kompilator musi obsługiwać standard $C^{++}11$,
- obecność narzędzia GNU Make

Powyższe wymagania powinny być automatycznie spełnione w każdej aktualnej dystrybucji GNU/Linux.

4.2 Kompilacja

Należy przejść do katalogu **prog** i wykonać polecenie **make** - kompilacja wykona się automatycznie. W pliku **Makefile** podane są polecenia, które należy wykonać aby skompilować program ręcznie.

4.3 Obsługa programu

Program uruchamiamy za pomoca pliku main, po jego nazwie podając ciąg bedący kombinacją ponizszych parametrów:

- -f <nr_funkcji> za pomocą tego argumentu wybieramy jedną z dostępnych funkcji liczba przyporzadkowana funkcji to jej liczba porządkowa z treści zadania ·3, dodanie 1 to pierwsza pochodna, dodanie 2 to druga pochodna,
- -d <nr_funkcji> podobnie jak powyżej, tyle, że podajemy liczbę pochodnej,
- -m <metoda> wybór jednej z metod:
 - newton metoda newtona (obowiązkowe parametry wywołania to -f -d -x)
 - regula_falsi regula falsi (obowiązkowe parametry to -f -s)
 - bisection bisekcja (obowiązkowe parametry to -f -s)
 - golden_section metoda złotego podziału (obowiązkowe parametry to -f -s)
 - plot "wykres" funkcji (punkty) (obowiązkowe parametry to -f–s –step)
- -p <n> wypisz wyniki z precyzją n cyfr po przecinku (domyślnie 20),

- -s $\langle a \rangle$ określ badany przedział od a do b,
- -x <y> y jako punkt startowy,
- -e (min|max) określ czy szukać lokalnego mininum czy maximum w przedziale (działa tylko z -m golden_section, domyślnie min),
- -error <e> określ tolerancję błędu (domyślnie 10^{-10}),
- -step <s> wielkość kroku przy obliczaniu punktów wykresu (działa tylko z -m plot, domyślnie 0.1),
- -i <i>- ilość iteracji (domyślnie 20),

Przykład: szukamy lokalnego minimum dla pierwszej funkcji z zadania, w podanym przedziale, za pomocą metody *złotego podziału*, z tolerancją błędu na poziomie 10^{-12} , maksymalnie 30 iteracjami i precyzją 25 liczb po przecinku.

./main -f 0 -s 0 1 -m golden_section -e 10e-12 -i 30 -p 25