Бакалавриат АУ 2016-2017 Группа 201/2

Двойные интегралы 7 сентября 2016

1) Вычислить двойной интеграл $I = \iint\limits_X f(x,y) \, dx \, dy$, если: A) $f(x,y) = (1+x+y)^{-2}$,

A)
$$f(x,y) = (1+x+y)^{-2}$$
,

X — треугольник, ограниченный прямыми x = 2y, y = 2x, x + y = 6;

- Б) $f(x,y) = y^2$, множество X ограничено линиями $x = y^2$, y = x 2;
- B) f(x,y) = x, $X = \{(x,y) : 2rx \le x^2 + y^2 \le R^2\}$, 0 < 2r < R;
- Γ) $f(x,y) = x \sin(y) + y \sin(x), X = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right];$

Замечание: Эту задачу можно было сформулировать и так:

найти массу плоского тела X с плотностью f(x,y). А как найти центр масс?

2) Переменить порядок интегрирования:

A)
$$\int_{0}^{\pi} dx \int_{0}^{2\sin(x)} f(x,y) dy$$
; B) $\int_{1}^{3} dy \int_{0}^{\log_{3}(y)} f(x,y) dx + \int_{3}^{4} dy \int_{0}^{4-y} f(x,y) dx$.

Перемена порядка в повторном интеграле иногда существенно упрощает его вычисле-3) ние...

A)
$$\int_{0}^{1} \int_{y}^{1} e^{x^{2}} dx dy$$
; B) $\int_{-1}^{1} \int_{\sqrt[3]{|x|}}^{1} (1 - y^{2})^{\alpha} dy dx$, $\alpha > 0$.

- И снова задание 1:
 - f(x,y) = y, X ограничено аркой циклоиды $x = a(t \sin(t))$, $y = a(1 \cos(t))$, $t \in [0,2\pi]$,
 - f(x,y) = (x-y), X ограничено осями координат и дугой астроиды $x = a\cos^3(t),$ $y = a \sin^3(t), \ 0 \le t \le \pi/2.$

Кратные интегралы 7 сентября 2016

- 1) Вычислить тройной интеграл $I = \iiint f(x,y,z) \, dx \, dy \, dz$, если:
 - A) $f(x,y,z) = (x+y+z)^{-3}$, а X M множество, ограниченное плоскостями 4x + 3z = 12, 4x + z = 4, 4y + 3z = 12, 4y + z = 4, z = 0.
 - Б) $f(x,y,z) = xy^2z^3$, а X множество, ограниченное z = xy, y = x, x = 1, z = 0.
- Записать интеграл $\iiint f$ в виде повторного в указанном порядке:
- 3) Найти объем V n-мерного симплекса, то есть $\{(x_1,\ldots,x_n): 0 \le x_1 \le \cdots \le x_n \le 1\}$. 4) Найти объем V_n n-мерного шара, то есть $\{(x_1,\ldots,x_n): x_1^2+\cdots+x_n^2 \le R^2\}$.

Замена переменных 14 сентября 2016

1) Вычислить площадь фигуры, ограниченной кривой:

A)
$$(x^2 + y^2)^2 = 2a^2(x^2 - y^2);$$
 B) $\left(\frac{x}{a} + \frac{y}{b}\right)^3 = \frac{xy}{c^2}, \quad x, y \geqslant 0.$

2) Найдите объем тела, ограниченного:

A) плоскостями: $a_1x + b_1y + c_1z = \pm h_1$, $a_2x + b_2y + c_2z = \pm h_2$, $a_3x + b_3y + c_3z = \pm h_3$, где

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0.$$

B)
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2};$$

B)
$$\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{z}{c}\right)^{\frac{2}{3}} = 1.$$

3) С помощью замены

$$(x,y) \mapsto \left(\frac{x+y}{2}, \frac{y-x}{2}\right)$$

вычислите интеграл

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dx dy$$

и покажите, что $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Приложение кратных интегралов к механике 21 сентября 2016

- 1) Дано тело $G = \{x^2 + y^2 \leqslant z \leqslant h\}$ с плотностью $\rho = \rho_0 z^2$. Найдите:
 - А) координаты его центра масс;
 - Б) момент инерции относительно оси OZ;
 - В) момент инерции относительно оси ОУ;
 - Γ) тензор инерции относительно прямой, проходящей через точки (0,0,0) и (a,b,c).

Замечание: на самом деле, пункт Γ это, скорее алгебра, нежели анализ...

- 2) Тор (он же бублик), см. картинку. Найдите:
 - А) объем тора;
 - Б) момент инерции относительно оси OZ;
 - В) момент инерции относительно оси ОХ.

3) **Теорема Паппа-Гульдина:** Объём тела, образованного вращением плоской фигуры вокруг оси, расположенной в той же плоскости и не пересекающей фигуру, равен площади фигуры, умноженной на длину окружности, радиусом которой служит расстояние от оси вращения до барицентра фигуры.

Криволинейные интегралы I рода 28 сентября 2016

- 1) Вычислите $\int_{\Im} f(x,y,z) \, ds$, где:
 - А) f(x,y,z) = xy, ∂ четыре стороны квадрата ABCD, A(1,1), C(-1,-1).
 - Б) f(x,y,z) = xy, \Im четверть эллипса $(x/a)^2 + (y/b)^2 = 1$, $x \geqslant 0$, $y \geqslant 0$.
 - B) $f(x,y,z) = \sqrt{2y^2 + z^2}$, ∂ окружность $x^2 + y^2 + z^2 = a^2$, x = y.
 - Γ) $f(x,y,z) = x^2$, ∂ окружность $x^2 + y^2 + z^2 = a^2$, x + y + z = 0.

Замечание: Эту задачу можно было сформулировать и так:

найдите массу проволоки \ni с плотностью f(x,y,z). А как найти центр масс?

- 2) А) Пусть \ni гладкая кривая, заданная в полярных координатах (r,φ) уравнением $r = \rho(\varphi), \, \varphi_1 \leqslant \varphi \leqslant \varphi_2$. Как вычислить интеграл: $\int_{\ni} F(x,y) \, ds$? Здесь F(x,y) непрерывная функция на \ni .
 - Б) Вычислите: $\int_{\mathbb{D}} |y| \, ds$, где ∂ лемниската Бернулли $r^2 = a^2 \cos(2\varphi)$.

Криволинейные интегралы II рода 28 сентября 2016

- 1) Вычислите криволинейный интеграл II рода:
 - A) $\int_{\mathbb{R}^2} \frac{y}{x} dx + dy$, ∂ кривая $y = \ln(x)$, $1 \leqslant x \leqslant e$, пробегаемая от x = 1 до x = e.
 - Б) $\int_{\mathbb{D}} 2(x^2+y^2) dx + (x+y)^2 dy$, \mathbb{D} три отрезка треугольника ABC, A(1,1), B(1,3), C(2,2), пробегаемые так, что треугольник остается слева.
 - В) $\int_{\mathbb{D}} (x^2-2yz) \, dx + (y^2-2xz) \, dy + (z^2-2xy) \, dz$, \mathbb{D} "поднимающаяся" логарифмическая спираль, заданная в цилиндрических координатах: $r=ae^{b\varphi}, \ z=r$, идущая от точки (0,a,a) до $(0,ae^{2\pi b},ae^{2\pi b}), \ a>0$.
 - Г) $\int_{\mathbb{D}} y^2 \, dx + z^2 \, dy + x^2 \, dz$, \mathbb{D} часть кривой Вивиани при $z \geqslant 0$, т.е. пересечение сферы $x^2 + y^2 + z^2 = R^2$ и цилиндра $x^2 + y^2 = Rx$, пробегаемая против хода часовой стрелки, если смотреть с положительной стороны оси ОХ.

2) Посчитайте интеграл

$$I = \oint_{\Omega} \frac{y \, dx - x \, dy}{x^2 + y^2}$$

вдоль окружностей, обходя их против часовой стрелки:

A)
$$x^2 + y^2 = R^2$$
;

$$(x - 2R)^2 + y^2 = R^2.$$

3) А) Докажите, что для криволинейного интеграла справедлива оценка:

$$\left| \int_{\mathbb{D}} P(x,y) \, dx + Q(x,y) \, dy \right| \leqslant L(\mathbb{D}) \cdot \max_{(x,y) \in \mathbb{D}} \sqrt{P^2(x,y) + Q^2(x,y)},$$

где $L(\mathfrak{d})$ — длина кривой \mathfrak{d} .

Б) Докажите, что $\lim_{R\to\infty}I_R=0$, где

$$I_R = \oint_{x^2+y^2=R^2} \frac{y \, dx - x \, dy}{(x^2 + xy + y^2)^2}.$$

Формула Грина. Полные дифференциалы 5 октября 2016

1) Посчитайте интегралы:

A)

$$\int_{\Omega} (\cos y + y \sin x + y^2) dx - (\cos x + x \sin y + x^2) dy,$$

где \Im — часть кардиоиды $r=a(1+\cos(\varphi)), \ a>0, y>0,$ пробегаемой от точки A(2a,0) до точки O(0,0).

Б)

$$\int_{\bigcirc} dz \sqrt{x^2 + y^2} - \frac{xz \, dx + zy \, dy}{\sqrt{x^2 + y^2}},$$

где $\Im=\{(x,y,z): x^2+y^2+z^2=1, x+y+z=1/2\}$, пробегаемая так, что ограничиваемый ею круг остается слева.

2) Найдите первообразную формы df:

A)
$$df = -\frac{x}{y^2} dx + \left(\frac{x^2}{y^3} + \frac{y}{z^2}\right) dy - \frac{y^2}{z^3} dz;$$
 B) $df = \frac{8x^3 + 4xy^2 + 4xy}{(2x^2 + y^2)^2} dx + \frac{4x^2y + 2y^3 - 2x^2 + y^2}{(2x^2 + y^2)^2} dy.$

Формула Грина 12 октября 2016

1) Применяя формулу Грина, преобразуйте в двойной интеграл:

$$\int_{\partial \mathbb{D}} \frac{\partial f}{\partial \vec{n}} \ ds,$$

где $\partial \partial$ — гладкая граница односвязной области $\partial \subset \mathbb{R}^2$,

 \vec{n} — вектор внешней нормали к кривой $\partial \mathfrak{D}$,

 $\frac{\partial f}{\partial \vec{n}} = \nabla f \cdot \vec{n}$ — производная по внешней нормали (или просто проекция ∇f на нормаль \vec{n}). Функция $u(x,y) \in C^2(\partial)$ называется гармонической в области ∂ , если в любой точке ∂

$$\Delta u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Доказать, что $u(x,y) \in C^2(\mathcal{D})$ есть гармоническая функция в односвязной области \mathcal{D} тогда и только тогда, если

$$\int_{L} \frac{\partial u}{\partial \vec{n}} \, ds = 0,$$

где L — произвольный замкнутый контур внутри \ni и $\frac{\partial u}{\partial \vec{n}}$ — производная по внешней нормали к этому контуру.

3) Посчитайте интеграл Гаусса:

$$u(x_0, y_0) = \int_L \frac{\cos(\vec{r}, \vec{n})}{|\vec{r}|} ds,$$

где \vec{r} — вектор, соединяющий данную точку $A(x_0,y_0)$ с переменной точкой B(x,y) простого замкнутого гладкого контура $L; \vec{n}$ — внешняя нормаль к кривой L в точке M.

Вычислить криволинейный интеграл $\int_{OA} (e^{x^4} - 2y) \, dx - (x + e^y) \, dy$, где OA — дуга параболы, проходимая от точки O(0;0) до A(1;1).

Поверхностные интегралы 1-го рода

- Найти массу поверхности сферы, если ее поверхностная плотность в каждой точке равна расстоянию от этой точки до вертикального диаметра.
- 6) Для этой же сферы найти центр тяжести верхней полусферы.
- Для однородной конической поверхности $z=\frac{h}{R}\sqrt{x^2+y^2}$ $(x^2+y^2\leqslant R^2)$ вычислить момент инерции относительно координатной плоскости XY.

Поверхностные интегралы 2-го рода

Вычислить интегралы:

8) S — внутренняя сторона полусферы $x^2 + y^2 + z^2 = R^2$, $z \le 0$ и

$$\iint\limits_{S} (x^5 + z) \, dz \, dz.$$

9) S — внутренняя сторона части цилиндрической поверхности $x^2+y^2=r^2$ и $y\leqslant 0,\, 0\leqslant z\leqslant r$

$$\iint\limits_{S} yz^2 \, dx \, dz.$$

10) S — верхняя сторона части гиперболического параболоида $z=x^2-y^2,\,|y|\leqslant x\leqslant a$ и

$$\iint\limits_{S} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy.$$

Еще раз о гармонических функциях 9 ноября 2016

0) Упражнение: Докажите, что функция

$$u(x,y,z) = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

является гармонической в любой точке \mathbb{R}^3 , кроме O(0,0,0).

1) А) Докажите первую формулу Грина:

$$\iiint\limits_{\partial D} u \Delta v \, dV = \iint\limits_{\partial D} u \frac{\partial v}{\partial n} \, dS - \iiint\limits_{\partial D} \nabla u \cdot \nabla v \, dV.$$

Б) Докажите вторую формулу Грина:

$$\iiint\limits_{\partial} \begin{vmatrix} \Delta u & \Delta v \\ u & v \end{vmatrix} dV = \iint\limits_{\partial\partial} \begin{vmatrix} \frac{\partial u}{\partial n} & \frac{\partial v}{\partial n} \\ u & v \end{vmatrix} dS,$$

где $u,v \in C^2(\mathfrak{D}), \mathfrak{D} \subset \mathbb{R}^3$ — ограниченная область с гладкой границей $\partial \mathfrak{D}$.

2) Пользуясь 1Б) докажите теорему о среднем для гармонической функции u(x,y,z):

А) для любой сферы $S_A(R)$ с центром в точке $A(x_0,y_0,z_0)$ и радиусом R верно:

$$u(x_0, y_0, z_0) = \frac{1}{|S_A(R)|} \iint_{S_A(R)} u(x, y, z) \, dS, \tag{1}$$

где $|S_A(R)|$ — площадь сферы $S_A(R)$.

(среднее значение на сфере гармонической функции равно значению в центре сферы)

Б) для любого шара $B_A(R)$ с центром в точке $A(x_0,y_0,z_0)$ и радиусом R верно:

$$u(x_0, y_0, z_0) = \frac{1}{|B_A(R)|} \iiint_{B_A(R)} u(x, y, z) \, dV, \tag{2}$$

где $|B_A(R)|$ — объем шара $B_A(R)$.

(среднее значение на шаре гармонической функции равно значению в центре шара)

3) (без доказательства) Верна и *обратная теорема о среднем* для гармонической функции: если для функции $u \in C(\mathfrak{d})$ для любой сферы в \mathfrak{d} выполнено свойство (1) (или для любого шара в \mathfrak{d} выполнено свойство (2)), то функция u — гармоническая.

Интегралы по сфере 9 ноября 2016

1) Толщина арбузной корки равна 1/20 радиуса арбуза (считаемого шаром). Какой процент от объема арбуза составляет корка:

А) в трехмерном пространстве;

- Б) в 100-мерном пространстве?
- 2) Попавшую в 1000-мерное пространство Алису спросили, как делать тонкие стеклянные обручи (сферические пояса), чтобы их ширина равнялась 1/10 диаметра. "Нет ничего проще, ответила Алиса,— нужно выдувать сферы, а потом отрезать лишнее". Каков будет процент отходов при этой технологии?

- 3) Найдите в любой точке пространства потенциал равномерно заряженной сферы (нужно честно взять интеграл!)
- 4) Вычислите интеграл по единичной сфере с центром в точке (0,0,0):

$$\int \frac{dS}{\sqrt{2-x-y-z}}$$

- 5) Вычислите интеграл $\iint e^x \cos(y) dS$ по сфере радиуса 10 с центром в начале координат.
- Вычислить интеграл

$$\int (x^4 - 12xyz^2) \, dy \wedge dz + (y^4 - 12yzx^2) \, dz \wedge dx + (z^4 - 12zxy^2) \, dx \wedge dy$$

по единичной сфере с центром в точке (1,1,1). Нормаль внешняя.

ДЗ №1: Кратные интегралы, замена переменной К 21 сентября 2016

- Вычислите двойной интеграл $I = \iint f(x,y) \, dx \, dy$, если:

 - A) (1) $f(x,y) = x^2y^2$, $X = \{(x,y): y > 0, xy < 1, x^2 3xy + 2y^2 < 0\}$; B) (1) $f(x,y) = \sqrt{x^2 + y^2}$, $X = \{(x,y): ax \le x^2 + y^2 \le a(x + \sqrt{x^2 + y^2})\}$; B) (1) $f(x,y) = y^2$, $X = \{(x,y): 1 \le xy \le 3, 0 < x \le y \le 2x\}$.
- (1) Найдите площадь сечения поверхности

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$

плоскостью z = 1 - 2(x + y).

(1) Докажите, что для непрерывной функции f(x) справедливо равенство 3)

$$\int_{0}^{x} dx_{1} \int_{0}^{x_{1}} dx_{2} \dots \int_{0}^{x_{m-1}} f(x_{m}) dx_{m} = \int_{0}^{x} f(u) \frac{(x-u)^{m-1}}{(m-1)!} du.$$

(1) Переходя к полярным координатам, вычислите площадь, ограниченную кривой

$$(x^3 + y^3)^2 = x^2 + y^2, x \ge 0, y \ge 0.$$

Найдите объем тела, ограниченного поверхностями:

A) (1)
$$x^2 + y^2 + z^2 = 2az, x^2 + y^2 = z^2;$$
 B) (1) $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{x}{h}.$

(1) Найдите объем n-мерного конуса, ограниченного поверхностями:

$$\frac{x_1^2}{a_1^2} + \ldots + \frac{x_{n-1}^2}{a_{n-1}^2} = \frac{x_n^2}{a_n^2}, \quad x_n = a_n.$$

(2) Пусть p > -1. Вычислите интеграл

$$\int_{(0,1)^n} \left(\frac{\min(x_1, \dots, x_n)}{\max(x_1, \dots, x_n)} \right)^p dx_1 \dots dx_n$$

А) (1) Проверьте, что отображение

$$(u,v) \mapsto \left(\frac{\sin(u)}{\cos(v)}, \frac{\sin(v)}{\cos(u)}\right)$$

является биекцией множества $\{(u,v)\in\mathbb{R}^2\colon u>0, v>0, u+v<\pi/2\}$ на $(0,1)^2.$

Б) (1) С помощью отображения из пункта А) вычислите интеграл

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - x^{2}y^{2}} dx dy.$$

В) (1) Выведите из пункта Б), что $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.

ДЗ №2: Криволинейные интегралы I и II рода. Приложение их к механике К 12 октября 2016

- 1) (1) Найдите координаты центра тяжести однородной плоской области S, ограниченной одной аркой циклоиды $L = \{(x,y) : x = a(t-\sin t), \ y = a(1-\cos t), \ t \in [0,2\pi]\}$ и осью OX.
- 2) А) (1) С помощью ММИ докажите равенство:

$$\int \cdots \int_{\substack{x_1,\dots,x_n \geqslant 0 \\ x_1+\dots+x_n \le 1}} x_1^{p_1-1} \cdot \dots \cdot x_n^{p_n-1} dx_1 \dots dx_n = \frac{\Gamma(p_1) \dots \Gamma(p_n)}{\Gamma(p_1+\dots+p_n+1)}$$

Б) (1) Используя результат пункта А) вычислите:

$$\iint\limits_{\substack{x,y,z\geqslant 0\\ (x/a)^{\alpha}+(y/b)^{\beta}+(z/c)^{\gamma}\leqslant 1}} x^{p-1}y^{q-1}z^{r-1}\,dx\,dy\,dz.$$

Замечание: эта формула полезна:) например, для определения объемов, статистических моментов, моментов инерции и центробежных моментов однородных тел указанной формы.

3) 9numpoxouda — плоская кривая, образуемая точкой, жёстко связанной с окружностью (радиуса r) и находящейся на расстоянии h от центра этой окружности, катящейся по внешней стороне другой окружности (радиуса R). В частности, если h=r, то кривая называется $9nuuu\kappa noudoù$. Будем считать, что $m=r/R \in \mathbb{Q}$. Известным примером служит кардиоида (m=1,h=r).

- А) (1) Выведите параметрическое задание эпитрохоиды.
- Б) (1) Найдите площадь, ограниченную эпитрохоидой.

- A) (1) момент инерции относительно оси OZ;
- Б) (1) момент инерции относительно оси ОХ.

5) Найдите первообразную u, если:

A) (1)
$$du = \frac{(x^2 + 2xy + 5y^2)dx + (x^2 - 2xy + y^2)dy}{(x+y)^3}$$
; B) (1) $du = \frac{(x+y-z)dx + (x+y-z)dy + (x+y+z)dz}{x^2 + y^2 + z^2 + 2xy}$.

- 6) Найдите координаты центра масс:
 - А) (1) кривой Вивиани $L=\{(x,y,z): x^2+y^2=ax, x^2+y^2+z^2=a^2, z\geqslant 0\}$ с плотностью $\rho(x,y,z)=z;$
 - Б) (1) однородного края поверхности $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}$.
- 7) (1) Найдите работу поля $\vec{F}(x,y)=(x,y)$ вдоль кривой $y=x^2+|x^2-x|$ при перемещении от точки A(-1,3) до точки B(2,6).
- 8) (1) С помощью формулы Грина вычислите криволинейный интеграл II рода:

$$\int_{\partial} \sqrt{x^2 + y^2} \, dx + y(xy + \ln(x + \sqrt{x^2 + y^2})) \, dy,$$

где \Im — окружность $x^2+y^2=R^2$, пробегаемая против часовой стрелки.

9) Найдите «объем» тел, заданных в \mathbb{R}^{17} неравенствами $(x_i \geqslant 0, i = 1, \dots, 17)$:

A) (2)
$$\sum_{i=1}^{17} \sqrt{\frac{x_i}{a_i}} \le 1;$$
 B) (2) $\left(\sum_{i=1}^{10} \frac{x_i}{a_i}\right)^2 + \left(\sum_{i=11}^{17} \frac{x_i}{a_i}\right)^2 \le 1.$

ДЗ № 3: Поверхностные интегралы I и II рода Теорема Стокса, теорема Гаусса-Остроградского. Гармонические функции К 16 ноября 2016

1) Применяя формулу Стокса, вычислить интегралы

A)

$$\oint_C (y^2 - z^2) \, dx + (z^2 - x^2) \, dy + (x^2 - y^2) \, dz,$$

где C — сечение поверхности куба $0\leqslant x\leqslant a, 0\leqslant y\leqslant a, 0\leqslant z\leqslant a$ плоскостью $x+y+z=\frac{3}{2}a$, пробегаемое против хода часовой стрелки, если смотреть с положительной стороны оси Ox.

Б)

$$\oint_C y^2 z^2 \, dx + z^2 x^2 \, dy + x^2 y^2 \, dz,$$

где C — замкнутая кривая $x = a \cos t$, $y = a \cos 2t$, $z = a \cos 3t$, пробегаемая в направлении возрастания параметра t.

- 2) Найти поток вектора $\vec{A} = x^3 \vec{i} + y^3 \vec{j} + z^3 \vec{k}$ через
 - А) боковую поверхность конуса $D = \{(x,y,z) : H^2(x^2 + y^2) \le z^2 R^2, 0 \le z \le H\}$ (R > 0);
 - Б) через полную поверхность этого конуса.
- 3) Тело T целиком погружено в жидкость. Исходя из закона Паскаля, доказать, что выталкивающая сила жидкости равна весу жидкости в объеме тела и направлена вертикально вверх.
- 4) Доказать, что если u функция, гармоническая внутри сферы S радиуса R с центром в точке (x_0,y_0,z_0) , то

$$u(x_0, y_0, z_0) = \frac{1}{2\pi R^2} \iint_S u(x, y, z) \, dS$$

(теорема о среднем).

5) Доказать, что функция u = u(x,y,z), непрерывная в ограниченной замкнутой области V и гармоническая внутри нее, не может достигать своих наибольшего и наименьшего значений во внутренней точке области, если эта функция не является тождественно постоянной (принцип максимума).