Package 'hurdlr'

December 22, 2016

Version 0.1

Title Zero-Inflated and Hurdle Modelling Using Bayesian Inference

Description When considering count data, it is of-

ten the case that many more zero counts than would be expected of some given distribution are observed. It is well-established that data such as this can be reliably modelled using zero-inflated or hurdle distributions, both of which may be applied using hurdlr functions. Bayesian analysis methods are used to best model problematic count data that cannot be fit to any typical distribution. The hurdlr package functions are flexible and versatile, and can be applied to varying count distributions, parameter estimation with or without covariate information, and are able to allow for multiple hurdles as it is also not uncommon that count data have an abundance of large-number observations which would be considered outliers of the typical distribution. In lieu of throwing out data or mis-specifying the typical distribution, these extreme observations can be applied to a second, extreme distribution. With the given functions of the hurdlr package, such a two-hurdle model may be easily specified in order to best manage data that is both zero-inflated and over-dispersed.

Date 2015-11-16

Depends R (>= 3.3.0)

License GPL (>=2)

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

Author Taylor Trippe [aut, cre],
Earvin Balderama [aut]

Maintainer Taylor Trippe <ttrippe@luc.edu>

R topics documented:

st_ll	
enPareto	3
ırdle	4
rdle_control	6
glik_zinb	
glik_zip	7
Inorm	8
B	9
[9

2 dist_ll

PZ update_beta .																	
update_pars .																	
update_probs							 										
zero_nb																	
zero_poisson							 										

dist_ll

Index

Distributional Likelihood for Hurdle Model Count Data Regression

17

Description

dist_11 is the data likelihood fuction for hurdle model regression using hurdle.

Usage

```
dist_ll(y, hurd = Inf, lam = NULL, size = 1, mu = NULL, xi = NULL,
    sigma = NULL, dist = c("poisson", "nb", "lognormal", "gpd"), g.x = F,
    log = T)
```

Arguments

У	numeric response vector.
hurd	numeric threshold for 'extreme' observations of two-hurdle models. Inf for one-hurdle models.
lam	current value for the poisson likelihood lambda parameter.
size	size parameter for negative binomial likelihood distributions.
mu	current value for the negative binomial or log normal likelihood mu parameter.
xi	current value for the generalized pareto likelihood xi parameter.
sigma	current value for the generalized pareto likelihood sigma parameter.
dist	character specification of response distribution.
g.x	logical operator. TRUE if operating within the third component of the likelihood function (the likelihood of 'extreme' observations).
log	logical operator. if TRUE, probabilities p are given as log(p).

Details

Currently, Poisson, Negative Binomial, log-Normal, and Generalized Pareto distributions are available.

Value

The log-likelihood of the zero-inflated Poisson fit for the current iteration of the MCMC algorithm.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

GenPareto 3

See Also

hurdle

GenPareto

The Generalized Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the Generalized Pareto distribution with parameters mu, sigma, and xi.

Usage

```
dgpd(x, mu = 0, sigma = 1, xi = 1, log = F)
mgpd(x, mu = 0, sigma = 1, xi = 1, log = F)
pgpd(q, mu = 0, sigma = 1, xi = 1, lower.tail = T)
qgpd(p, mu = 0, sigma = 1, xi = 1, lower.tail = T)
rgpd(n, mu = 0, sigma = 1, xi = 1)
```

Arguments

x, q	vector of quantiles.
mu	location parameter.
sigma	(non-negative) scale parameter.
xi	shape parameter.
log	logical; if TRUE, probabilities p are given as log(p).
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$, otherwise, $P[X > x]$.
p	numeric predictor matrix.
n	number of random values to return.

Details

The generalized pareto distribution has density

$$f(x) = \frac{\sigma^{\frac{1}{\xi}}}{(\sigma + \xi(x - \mu))^{\frac{1}{\xi} + 1}}$$

Value

dgpd gives the continuous density, pgpd gives the distribution function, qgpd gives the quantile function, and rgpd generates random deviates.

mgpd gives a probability mass function for a discretized version of GPD.

4 hurdle

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

Examples

```
dexp(1,rate=.5) #Exp(rate) equivalent to gpd with mu=0 AND xi=0, and sigma=1/rate. dgpd(1,mu=0,sigma=2,xi=0) #cannot take xi=0. dgpd(1,mu=0,sigma=2,xi=0.0000001) #but can get close. ##"mass" function of GPD mgpd(8) = pgpd(8.5) - pgpd(7.5)
```

hurdle

Hurdle Model Count Data Regression

Description

hurdle is used to fit single or double-hurdle regression models to count data via Bayesian inference.

Usage

```
hurdle(y, x = NULL, hurd = Inf, dist = c("poisson", "nb", "lognormal"),
  dist.2 = c("gpd", "poisson", "lognormal", "nb"),
  control = hurdle_control(), iters = 1000, burn = 500, nthin = 1,
  plots = FALSE, progress.bar = TRUE)
```

Arguments

У	numeric response vector.
x	numeric predictor matrix.
hurd	numeric threshold for 'extreme' observations of two-hurdle models. Inf for one-hurdle models.
dist	character specification of response distribution.
dist.2	character specification of response distribution for 'extreme' observations of two-hurdle models.
control	list of parameters for controlling the fitting process, specified by ${\sf hurdle_control}$.
iters	number of iterations for the Markov chain to run.
burn	numeric burn-in length.
nthin	numeric thinning rate.
plots	logical operator. TRUE to output plots.
progress.bar	logical operator. TRUE to print progress bar.

Details

Setting dist and dist.2 to be the same distribution creates a single dist-hurdle model, not a double-hurdle model. However, this is being considered in future package updates.

hurdle 5

Value

hurdle returns a list which includes the items

pD measure of model dimensionality p_D where $p_D = \bar{D} - D(\bar{\theta})$ is the "meanposterior deviance—deviance of posterior means"

DIC Deviance Information Criterion where $DIC = \bar{D} - p_D$

PPO Posterior Predictive Ordinate (PPO) measure of fit

CPO Conditional Predictive Ordinate (CPO) measure of fit

pars.means posterior mean(s) of third-component parameter(s) if hurd != Inf

ll.means posterior means of the log-likelihood distributions of all model components

beta.means posterior means regression coefficients

dev posterior deviation where D = -2LogL

beta posterior distributions of regression coefficients

pars posterior distribution(s) of third-component parameter(s) if hurd != Inf

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

Examples

```
#Generate some data:
p=0.5; q=0.25; lam=3;
mu=10; sigma=7; xi=0.75;
n=200

set.seed(2016)
y <- rbinom(n,1,p)
nz <- sum(1-y)
extremes <- rbinom(sum(y),1,q)
ne <- sum(extremes)
nt <- n-nz-ne
yt <- sample(mu-1,nt,replace=TRUE,prob=dpois(1:(mu-1),3)/(ppois(mu-1,lam)-ppois(0,lam)))
yz <- round(rgpd(nz,mu,sigma,xi))
y[y==1] <- c(yt,yz)</pre>
```

hurdle_control

				-
hurd]	Δ	CON	t r	וחי
Hul u	LC	COLL	u	$O_{\mathbf{T}}$

Control Parameters for Hurdle Model Count Data Regression

Description

Various parameters for fitting control of hurdle model regression using hurdle.

Usage

```
hurdle_control(a = 1, b = 1, size = 1, beta.prior.mean = 0,
beta.prior.sd = 1000, beta.tune = 1, pars.tune = 0.2, lam.start = 1,
mu.start = 1, sigma.start = 1, xi.start = 1)
```

Arguments

а	shape parameter for gamma prior distributions.
b	rate parameter for gamma prior distributions.
size	size parameter for negative binomial likelihood distributions.
beta.prior.mear	ı
	mu parameter for normal prior distributions.
beta.prior.sd	standard deviation for normal prior distributions.
beta.tune	Markov-chain tuning for regression coefficient estimation.
pars.tune	Markov chain tuning for parameter estimation of 'extreme' observations distribution.
lam.start	initial value for the poisson likelihood lambda parameter.
mu.start	initial value for the negative binomial or log normal likelihood mu parameter.
sigma.start	initial value for the generalized pareto likelihood sigma parameter.
xi.start	initial value for the generalized pareto likelihood xi parameter.

Value

A list of all input values.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

hurdle

loglik_zinb 7

loglik_zinb	Zero-inflated Negative Binomial Data Likelihood

Description

Data likelihood fuction for zero-inflated negative binomial model regression using zero_nb.

Usage

```
loglik_zinb(y, z, mu, size, p)
```

Arguments

У	numeric response vector.
Z	vector of binary operators. $z == 0$ for observations considered belinging to the negative binomial distribution, $z == 1$ for observations considered to be 'extra' zeros.
mu	current value for the negative binomial likelihood mu parameter.
size	size parameter for negative binomial distribution.
р	vector of 'extra' zero-count probabilities.

Value

The log-likelihood of the zero-inflated negative binomial fit for the current iteration of the MCMC algorithm.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

zero_nb

loglik_zip	Zero-inflated Poisson Data Likelihood	

Description

Data likelihood fuction for zero-inflated Poisson model regression using zero_poisson.

Usage

```
loglik_zip(y, z, lam, p)
```

8 mlnorm

Arguments

y numeric response vector.

z vector of binary operators. z == 0 for observations considered belinging to the

negative binomial distribution, z == 1 for observations considered to be 'extra'

zeros.

lam current value for the Poisson likelihood lambda parameter.

p vector of 'extra' zero-count probabilities.

Value

The log-likelihood of the zero-inflated Poisson fit for the current iteration of the MCMC algorithm.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

zero_poisson

mlnorm

Density Function for Discrete Log Normal Distribution

Description

Density function of the discrete log normal distribution whose logarithm has mean equal to meanlog and standard deviation equal to sdlog.

Usage

```
mlnorm(x, meanlog = 0, sdlog = 1, log = T)
```

Arguments

x vector of quantiles.

mean of the distribution on the log scale.

standard deviation of the distribution on the log scale.

log logical; if TRUE, probabilities p are given as log(p).

Value

Discrete log-normal distributional density.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

PE 9

PΕ

Extreme Count Probability Likelihood

Description

PE is used to calculate the likelihood of a user-defined 'extreme' value count observation in a double-hurdle regression model.

Usage

```
PE(p, q, log = T)
```

Arguments

p vector of zero-count probabilities.q vector of 'extreme' count probabilities.

logical operator. If TRUE, probabilities p and q are given as log(p), log(q).

Value

A vector of probabilities.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

hurdle

PΤ

Typical Count Probability Likelihood

Description

PT is used to calculate the likelihood of a user-defined 'typical' value count observation in a double-hurdle regression model.

Usage

```
PT(p, q, log = T)
```

Arguments

p vector of zero-count probabilities.q vector of 'typical' count probabilities.

logical operator. If TRUE, probabilities p and q are given as log(p), log(q).

10 PZ

Value

A vector of probabilities.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

hurdle

PΖ

Zero Count Probability Likelihood

Description

PZ is used to calculate the likelihood of a zero-value count observation in a single or double-hurdle regression model.

Usage

```
PZ(p, log = T)
```

Arguments

p vector of zero-count probabilities.

log logical operator. If TRUE, probabilities p and q are given as log(p), log(q).

Value

A vector of probabilities.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

hurdle

update_beta 11

update_beta	MCMC Second-Component Parameter Update Function for Hurdle Model Count Data Regression

Description

MCMC algorithm for updating the second-component likelihood parameters in hurdle model regression using hurdle.

Usage

```
update_beta(y, x, hurd, dist, like.part, beta.prior.mean, beta.prior.sd, beta,
   XB, beta.acc, beta.tune, g.x = F)
```

Arguments

У	numeric response vector of observations within the bounds of the second component of the likelihood function, $y[0 < y\&y < hurd]$
X	optional numeric predictor matrix for response observations within the bounds of the second component of the likelihood function, $y[0 < y \& y < hurd]$.
hurd	numeric threshold for 'extreme' observations of two-hurdle models.
dist	character specification of response distribution for the third component of the likelihood function.
like.part	numeric vector of the current third-component likelihood values.
beta.prior.mea	n
	mu parameter for normal prior distributions.
beta.prior.sd	standard deviation for normal prior distributions.
beta	numeric matrix of current regression coefficient parameter values.
ХВ	x*beta[,1] product matrix for response observations within the bounds of the second component of the likelihood function, $y[0 < y & y < hurd]$.
beta.acc	numeric matrix of current MCMC acceptance rates for regression coefficient parameters.
beta.tune	numeric matrix of current MCMC tuning values for regression coefficient estimation.
g.x	logical operator. TRUE if operating within the third component of the likelihood function (the likelihood of 'extreme' observations).

Value

A list of MCMC-updated regression coefficients for the estimation of the second-component likelihood parameter as well as each coefficient's MCMC acceptance ratio.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

12 update_pars

See Also

hurdle
dist_ll

Description

MCMC algorithm for updating the third-component likelihood parameters in hurdle model regression using hurdle.

Usage

```
update_pars(y, hurd, dist, like.part, a, b, size, lam, mu, xi, sigma, lam.acc,
  mu.acc, xi.acc, sigma.acc, lam.tune, mu.tune, xi.tune, sigma.tune, g.x = F)
```

Arguments

	У	numeric response vector of observations within the bounds of the third component of the likelihood function, $y[y \geq hurd]$.
	hurd	numeric threshold for 'extreme' observations of two-hurdle models.
	dist	character specification of response distribution for the third component of the likelihood function.
	like.part	numeric vector of the current third-component likelihood values.
	a	shape parameter for gamma prior distributions.
	b	rate parameter for gamma prior distributions.
	size	size parameter for negative binomial likelihood distributions.
	lam	current value for the poisson likelihood lambda parameter.
	mu	current value for the negative binomial or log normal likelihood mu parameter.
	xi	current value for the generalized pareto likelihood xi parameter.
	sigma	current value for the generalized pareto likelihood sigma parameter.
lam.acc, mu.acc, xi.acc, sigma.acc current MCMC values for third-component parameter acceptance rates.		
lam.tune, mu.tune, xi.tune, sigma.tune current MCMC tuning values for each third-component parameter.		
	g.x	logical operator. TRUE if operating within the third component of the likelihood function (the likelihood of 'extreme' observations).

Value

A list of MCMC-updated likelihood estimator(s) for the third-component parameter(s) and each parameter's MCMC acceptance ratio.

update_probs 13

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

hurdle
dist_ll

update_probs

MCMC Probability Update Function for Hurdle Model Count Data Regression

Description

MCMC algorithm for updating the likelihood probabilities in hurdle model regression using hurdle.

Usage

```
update_probs(y, x, hurd, p, q, beta.prior.mean, beta.prior.sd, pZ, pT, pE, beta,
  XB2, XB3, beta.acc, beta.tune)
```

Arguments

у	numeric response vector.	
х	optional numeric predictor matrix.	
hurd	numeric threshold for 'extreme' observations of two-hurdle models.	
p	numeric vector of current 'p' probability parameter values for zero-value observations.	
q	numeric vector of current 'q' probability parameter values for 'extreme' observations.	
beta.prior.mean		
	mu parameter for normal prior distributions.	

beta.prior.sd standard deviation for normal prior distributions.

pZ numeric vector of current 'zero probability' likelihood values.
pT numeric vector of current 'typical probability' likelihood values.
pE numeric vector of current 'extreme probability' likelihood values.
beta numeric matrix of current regression coefficient parameter values.

XB2 x*beta[,2] product matrix. XB3 x*beta[,3] product matrix.

beta.acc numeric matrix of current MCMC acceptance rates for regression coefficient

parameters.

beta.tune numeric matrix of current MCMC tuning values for regression coefficient esti-

mation.

14 zero_nb

Value

A list of MCMC-updated regression coefficients for the estimation of the parameters 'p' (the probability of a zero-value observation) and 'q' (the probability of an 'extreme' observation) as well as each coefficient's MCMC acceptance ratio.

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

See Also

```
hurdle
dist_ll
```

zero_nb

Zero-Inflated Negative Binomial Regression Model

Description

zero_nb is used to fit zero-inflated negative binomial regression models to count data via Bayesian inference.

Usage

```
zero_nb(y, x, size, a = 1, b = 1, mu.start = 1, beta.prior.mean = 0,
beta.prior.sd = 1, iters = 1000, burn = 500, nthin = 1, plots = T,
progress.bar = T)
```

Arguments

burn

у	numeric response vector.			
х	numeric predictor matrix.			
size	size parameter for negative binomial likelihood distributions.			
а	shape parameter for gamma prior distributions.			
b	rate parameter for gamma prior distributions.			
mu.start	initial value for mu parameter.			
beta.prior.mean				
	mu parameter for normal prior distributions.			
beta.prior.sd	standard deviation for normal prior distributions.			
iters	number of iterations for the Markov chain to run.			

nthin numeric thinning rate.

plots logical operator. TRUE to output plots.

progress.bar logical operator. TRUE to print progress bar.

numeric burn-in length.

zero_poisson 15

Details

Fits a zero-inflated negative binomial (ZINB) model.

Value

zero_nb returns a list which includes the items

mu numeric vector; posterior distribution of mu parameter

beta numeric matrix; posterior distributions of regression coefficients

p numeric vector; posterior distribution of parameter 'p', the probability of a given zero observation belonging to the model's zero component

Il numeric vector; posterior log-likelihood

Author(s)

```
Taylor Trippe <<ttrippe@luc.edu>>
Earvin Balderama <<ebalderama@luc.edu>>
```

zero_poisson

Zero-Inflated Poisson Regression Model

Description

zero_poisson is used to fit zero-inflated poisson regression models to count data via Bayesian inference.

Usage

```
zero_poisson(y, x, a = 1, b = 1, lam.start = 1, beta.prior.mean = 0,
beta.prior.sd = 1, iters = 1000, burn = 500, nthin = 1, plots = T,
progress.bar = T)
```

Arguments

У	numeric response vector.			
x	numeric predictor matrix.			
а	shape parameter for gamma prior distributions.			
b	rate parameter for gamma prior distributions.			
lam.start	initial value for lambda parameter.			
beta.prior.mean				
	mu parameter for normal prior distributions.			
beta.prior.sd	standard deviation for normal prior distributions.			
iters	number of iterations for the Markov chain to run.			
burn	numeric burn-in length.			
nthin	numeric thinning rate.			

plots logical operator. TRUE to output plots.

progress.bar logical operator. TRUE to print progress bar.

16 zero_poisson

Details

Fits a zero-inflated Poisson (ZIP) model.

Value

zero_poisson returns a list which includes the items

lam numeric vector; posterior distribution of lambda parameter

beta numeric matrix; posterior distributions of regression coefficients

p numeric vector; posterior distribution of parameter 'p', the probability of a given zero observation belonging to the model's zero component

Il numeric vector; posterior log-likelihood

Author(s)

Taylor Trippe <<ttrippe@luc.edu>> Earvin Balderama <<ebalderama@luc.edu>>

Index

```
dgpd (GenPareto), 3
dist_11, 2, 12-14
GenPareto, 3
hurdle, 2, 3, 4, 6, 9–14
hurdle_control, 4, 6
loglik_zinb, 7
loglik_zip, 7
mgpd (GenPareto), 3
mlnorm, 8
PE, 9
pgpd (GenPareto), 3
PT, 9
PZ, 10
qgpd (GenPareto), 3
rgpd (GenPareto), 3
update\_beta, \textcolor{red}{11}
update_pars, 12
update\_probs,\, 13
zero_nb, 7, 14
zero_poisson, 7, 8, 15
```