গ্যাসের আচরণ

📗 মুখ্য ধারণা গ্যাসের চাপ ও আয়তন

মান: ১ বা ২

- 1. গ্যাসের চাপ কাকে বলে ? গাণিতিক প্রতিরূপ দাও।
- জ্জুর নির্দিষ্ট উষ্ণতায় কোনো আবদ্ধ পাত্রে অবস্থিত গ্যাস ঐ পাত্রের ভিতরের দেওয়ালের একক ক্ষেত্রফলযুক্ত তলের উপর লম্বভাবে যে বল প্রয়োগ করে, তাকে ঐ গ্যাসের চাপ বলে। কোনো আবদ্ধ পাত্রের ভিতরের দেওয়ালের ক্ষেত্রফল = A এবং প্রযুক্ত বল = F হলে,
 - ∴ A ক্ষেত্রফলে প্রযুক্ত বল F

$$1$$
 বা, একক " " $\frac{F}{A}$

∴ চাপের সংজ্ঞানুযায়ী, চাপ (P) = প্রযুক্তবল (F) ক্ষেত্রফল (A)

2. চাপের C.G.S ও S.I এককণ্ডলি লেখ। ইহাদের মধ্যে সম্পর্কণ্ডলি কী ?

সম্পর্ক :
$$1$$
 নিউটন মিটার $^2=rac{1}{1}$ মিটার $^2=rac{10^5}{(100)^2}$ সেমি $^2=10$ ডাইন সেমি 2 ।

$$\therefore$$
 $1 \text{Nm}^{-2} = 10 \text{ dyn cm}^{-2}$ $\exists t$, $1 \text{ dyn cm}^{-2} = 10^{-1} \exists t$, 0.1 Nm^{-2}

- 3. প্রমাণ বায়ুমন্ডলীয় চাপ বলতে কী বোঝ ? ইহার মান নির্ণয় কর।
- ভব্তর 0°C উষ্ণতায় গড় সমুদ্রপৃষ্ঠে 45° অক্ষাংশে সঠিক 76 cm (বা, 760 mm) দীর্ঘ পারদস্তম্ভ যে চাপ প্রয়োগ করে তাকে প্রমাণ বা স্বাভাবিক বায়ুমন্ডলীয় চাপ বলা হয়।

প্রমাণ চাপ বা 1 atm : = 0°C এ 45° অক্ষাংশে 76 cm পারদস্তন্তের চাপ

= 76 cm 13.5951 gm
$$\cdot$$
 cm⁻³ × 980.665 cm s⁻²

$$= 1.013 \times 10^6 \,\mathrm{dyn} \;\mathrm{cm}^{-2}$$

$$= 1.013 \times 10^5 \,\mathrm{Nm}^{-2}$$

$$[: 1 \text{ Nm}^{-2} = 10 \text{ dyn cm}^{-2}]$$

- 4. চাপের অন্যান্য এককণ্ডলি লেখ এবং উহাদের মধ্যে পারস্পরিক সম্পর্কগুলি উল্লেখ কর।
- ভিত্তর চাপের অন্যান্য এককগুলি হল পাস্কাল (Pa) atm, টর (torr), বার (bar), পাউন্ড প্রতি বর্গ ইঞ্চি (PSi)।

$$\therefore \quad \boxed{1 \, Pa = 1 Nm^{-2}} \; ; \quad \boxed{1 \, bar = 10^5 \, Pa = 0.9869 \; atm = 750.062 \; torr} \; \; ;$$

- 5. আবদ্ধ স্থানে গ্যাসের চাপ মাপার যন্ত্রের নাম লেখ?
- উত্তর ম্যানোমিটার।
 - 6. বায়ুমন্ডলীয় চাপ মাপার যন্ত্রের নাম লেখ?
- উত্তর ব্যারোমিটার।
 - 7. গ্যাসের আয়তন কাকে বলে ?
- ভত্তর নির্দিষ্ট চাপ ও উষ্ণতায় নির্দিষ্ট পরিমান কোনো গ্যাসের আয়তন, গ্যাসটিকে যে পাত্রে রাখা হয় তার আয়তনের সমান।
 - 8. আয়তনের C.G.S ও S.I এককণ্ডলি কী। ইহাদের মধ্যে সম্পর্কটি লেখ।

সম্পর্ক :
$$1 \text{m}^3 = (100 \text{cm})^3 = 10^6 \text{cm}^3$$

- 9. আয়তনের অন্যান্য এককণ্ডলি লেখ। এবং ইহাদের মধ্যে সম্পর্কণ্ডলি কী?
- জ্জুর আয়তনের অন্যান্য এককগুলি হল—লিটার (L), মিলিলিটার (mL), ঘনডেসিমি।

$$\boxed{1L = 1 dm^3 = 10^3 \, mL = 10^3 \, cm^3} \; ; \; \boxed{1 \, m^3 = 10^6 \, cm^3 = 10^3 dm^3 = 10^3 \, L}$$

বহুবিকল্পভিত্তিক প্রশ্ন [MCQ]

প্রশ্নের মান : ১

10. চাপের SI একক-

@ Pa

⑤ Nm⁻¹

© torr

d bar

উ. @

- 11. পাস্কাল = <u></u> ? ____।
 - ① 1 dyn/cm⁻²
- **(b)** 1 dyn/cm³
- © 1 N/m²
- 1 N/m³
- উ. ©

- 12. 1 Pa = কত dyn/cm²।
 - @1

- (b) 10
- © 1000
- (d) 100
- উ. (b)

- 13. প্রমান চাপের মান-
 - @ 1013 × 106 ডাইন/সেমি²
 - © 10.13 × 10⁶ ডাইন/সেমি²

- (b) 1.013 × 10⁶ ডাইন/সেমি²
- @ 1.013 × 10⁵ ডাইন/সেমি²

উ. (b)

- 14. প্রমান চাপ মাপা হয়—
 - 45°C উফ্যতায় 0° অক্ষাংশে
 - © 0°C উষ্ণতায় 45° অক্ষাংশে

- (b) OK উঞ্চতায় 45° অক্ষাংশে
- d 0°C উষ্ণতায় 54° অক্ষাংশে

উ. ©

- 15. 76 cm পারদস্তন্তের চাপ সমান—
 - (a) 1 atm
- (b) 1 Pa
- © 1 torr
- d 1 bar
- উ. @

- 16. গ্যাসের চাপ মাপা হয় যে যন্ত্রের সাহায্যে, তা হল—
 - ম্যানোমিটার
- (b) ভোল্টামিটার
- © ব্যারোমিটার
- (d) অ্যামমিটার
- উ. @

- 17. বায়ুমভলীয় চাপ মাপা হয় যে যন্ত্ৰের সাহায্যে—
 - অ্যানোমিটার
- (b) অ্যামমিটার
- (c) ভোল্টামিটার
- ব্যারোমিটার
- উ. 🛈

মুখ্য ধারনা (গ্যাসের চাপের পরিমাপ)

মান: ১ বা ২

P_G = গ্যাসের চাপ Pa = বায়ুমন্ডলীয় চাপ h = দুই বাহুতে

পারদস্তন্তের উচ্চতা

আগেই জেনেছি আবদ্ধস্থানে বায়ু বা গ্যাসের চাপ পরিমাপের যন্ত্রের নাম হল—ম্যানোমিটার বা, চাপ-গেজ এবং বায়ুমন্ডলীয় চাপ মাপার যন্ত্রের নাম হল ব্যারোমিটার।

- 18. ম্যানোমিটারকে চাপ-গেজ বলে কেন? ইহার প্রকারভেদ লেখ।
- জ্বর ম্যানোমিটার যন্ত্রের সাহায্যে কোনো পাত্রে আবদ্ধস্থানে রক্ষিত বায়ু বা, গ্যাসের চাপ নির্ণয় করা যায় তাই ম্যানোমিটারকে চাপ-গেজ বলে। ম্যানোমিটার দুই প্রকার— খোলামুখ ম্যানোমিটার, বদ্ধমুখ ম্যানোমিটার।
- 19. মুক্তপ্রান্ত ম্যানোমিটারের সাহায্যে কীভাবে আবদ্ধ স্থানে থাকা গ্যাস বা বায়ুর চাপ পরিমাপ করা যায় ?

উত্তর

যখন গ্যাসের চাপ, বায়ুমন্ডলীয় চাপের সমান।[চিত্র (a)]

যখন গ্যাসের চাপ, বায়ুমন্ডলীয় চাপের চেয়ে বেশী। [চিত্র (b)]

যখন গ্যাসের চাপ, বায়ুমন্ডলীয় চাপের চেয়ে কম। [চিত্র (c)]

রাসায়নিক বিক্রিয়ায় ব্যবহাত বা উৎপন্ন গ্যাস বা পরীক্ষণীয় বায়ু একটি বন্ধ পাত্রের মধ্যে রেখে তার সঙ্গে দুই মুখ খোলা আংশিক পারদপূর্ণ ম্যানোমিটারের ছোট বাহুটিকে যুক্ত করে অপর বাহুটির মুখ বায়ুতে খোলা রাখা হয়। **নীতি:** ম্যানোমিটারের দুই বাহুর পারদস্তন্তের উচ্চতার পার্থক্য থেকে গ্যাসের চাপ নির্ণয় করা হয়।

এক্ষেত্রে তিনটি অবস্থার সৃষ্টি হতে পারে—

- [a] 'U' আকৃতির কাচনলের উভয় বাছর পারদস্তন্তের উচ্চতা সমান হলে আবদ্ধ পাত্রে রাখা গ্যাসের চাপ (P_G) বায়ুমন্ডলীয় চাপের সমান হবে। অর্থাৎ $P_G = Pa\ [\overline{ba}\ (a)]$
- [b] 'U' নলের বড় বাছতে পারদস্তত্তের উচ্চতা বেশী হলে আবদ্ধ পাত্রে রাখা গ্যাসের চাপ (P_G) বায়ুমন্ডলীয় চাপের চেয়ে বেশী হয়। অর্থাৎ P_G > Pa [চিত্র (b)]। (যেখানে গ্যাসের চাপ cm বা mm এককে পারদস্তম্ভ চাপে নির্নীত।)
- [c] 'U' নলের ছোট বাহুতে পারদস্তত্তের উচ্চতা বেশী হলে আবদ্ধ পাত্রে রাখা গ্যাসের চাপ (P_G) বায়ুমন্ডলীয় চাপের থেকে কম হবে। অর্থাৎ P_G < Pa

[চিত্র (c)]। এক্ষেত্রে গ্যাসের চাপ (P_G) = Pa – h'। (যেখানে গ্যাসের চাপ cm বা mm এককে পারদস্তম্ভ চাপে নির্নীত।) [* h = দুই বাহুতে পারদস্তম্ভের উচ্চতার পার্থক্য।]

20. বদ্ধমুখ ম্যানোমিটারের সাহায্যে কীভাবে আবদ্ধ স্থানে থাকা গ্যাস বা, বায়ুর চাপ পরিমাপ করা যায়?

জ্জ্জা এটি হল একটি U-আকৃতির দুই অসমান বাহুবিশিষ্ট কাচনল। এক্ষেত্রেও ছোট বাহুর খোলামুখটি গ্যাসপাত্রের সঙ্গে যুক্ত রেখে অন্য বাহুতে পারদের উপরের অংশ বদ্ধ রেখে বায়ুশূন্য করে দেওয়া হয় (টরিসেলীর শূন্যস্থান)।

নীতি: আবদ্ধ বায়ু বা গ্যাসের চাপ বায়ুমন্ডলীয় চাপ অপেক্ষা অনেক কম হলে বদ্ধমুখ ম্যানোমিটার ব্যবহার করা হয়। বায়ুমন্ডলীয় চাপের ক্রিয়া থাকে না বলে গ্যাসের চাপের প্রভাবে ছোট বাহুর পারদতল নেমে যায় এবং বাহুর পারদতল উপরে উঠে যায়।

এই দুইবাহুর পারদস্তন্তের উচ্চতার পার্থক্য থেকে সরাসরি আবদ্ধ গ্যাসের চাপ নির্ণয় করা যায়। অর্থাৎ $P_G=h\ cm$ বা mm পারদস্তন্তের চাপ।

। বহুবিকল্পভিত্তিক প্রশ্ন [MCQ]

প্রশ্নের মান : ১

- 21. কোন্ যন্ত্রটি চাপ-গেজ নামেও পরিচিত—
 - (a) স্ফিগমোম্যানোমিটার
- (b) ব্যারোমিটার
- © ম্যানোমিটার
- (d) অ্যামমিটার

উ. ©

- 22. আবদ্ধ গ্যাসের চাপ, বায়ুমন্ডলীয় গ্যাসের চাপের চেয়ে কম হলে কোন যন্ত্র ঐ চাপ নির্ণয়ে ব্যবহৃত হয়—
 - @ বদ্ধমুখ ম্যানোমিটার
- ভি খোলামুখ ম্যানোমিটার
- © কোনটিই নয়
- ব্যারোমিটার

উ. @

- 23. মুক্তপ্রান্ত ম্যানোমিটারে বড় বাহুতে পারদস্তন্তের উচ্চতা বেশী হলে, নীচের কোনটি সঠিক—
 - @ বায়ুমন্ডলীয় চাপ, আবদ্ধ গ্যাসের চাপের চেয়ে বেশী
- আবদ্ধ গ্যাসের চাপ, বায়ুমভলীয় চাপের চেয়ে বেশী

(c) কোনটিই নয়

বায়ৢয়ভলীয় চাপ ও আবদ্ধ গ্যাসের চাপ সমান

উ. 📵

📗 মুখ্য ধারনা (বয়েলের সূত্র)

মান: ১ বা ২

- 24. বয়েলের সূত্রটি লেখ। ইহার গাণিতিক রূপ প্রতিপাদন কর।
- ভক্তর বয়েলের সূত্র (1662) : স্থির উষ্ণতায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন গ্যাসটির চাপের সঙ্গে ব্যস্তানুপাতে পরিবর্তিত হয়। গাণিতিক রূপ : স্থির উষ্ণতায়, কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন V এবং চাপ P হলে, বয়েলের সূত্রানুযায়ী, $V \propto \frac{1}{P}$ (যখন গ্যাসের ভর ও উষ্ণতা স্থির থাকে)
 - বা, $V=k\cdot \frac{1}{P}$ (যেখানে k হল একটি সমানুপাতিক ধ্রুবক)
 - বা, [PV=k] এখন, স্থির উষ্ণতায় নির্দিষ্ট ভরের কোনো গ্যাসের P_1 চাপে আয়তন V_1 এবং P_2 চাপে আয়তন V_1 হলে, বয়েলের সূত্রানুযায়ী,
 - বা, $P_1V_1 = P_2V_2 = k$ (ধ্রুবক)

25. বয়েলের সূত্রের ব্যাখ্যা দাও।

জ্বর ব্যাখ্যা: বয়েলের সূত্রানুযায়ী, নির্দিষ্ট ভরের গ্যাসের উষ্ণতা স্থির রেখে আয়তন বাড়ালে বা কমালে চাপ ব্যস্তানুপাতে পরিবর্তিত হয়।

যেমন— একটি পিস্টন লাগানো ধাতব পাত্রে নির্দিষ্ট ভরের কোনো গ্যাস নিয়ে পিস্টনটির উপর P চাপ প্রয়োগ করা হলে যিদ গ্যাসটির আয়তন V হয়, তবে উষ্ণতা স্থির রেখে ঐ গ্যাসের চাপ দ্বিগুণ করা হলে (2P) দেখা যাবে গ্যাসের আয়তন V থেকে কমে V/2 হল। অন্যুদিকে, স্থির উষ্ণতায় যদি ওই সমভরের গ্যাসের চাপ P থেকে কমিয়ে P/2 করা হয়, তাহলে গ্যাসের 2V আয়তন হবে। V, থেকে বেডে দ্বিগুণ অর্থাৎ 2V হবে।

- 26. বয়েলের সূত্রে ধ্রুবক দুটি কী কী?
- উত্তর [i] গ্যামের উঞ্চতা, [ii] গ্যামের ভর।
- 27. যে যন্ত্রের সাহায্যে রবার্ট বয়েল, বয়েল সূত্রের বিভিন্ন পরীক্ষাগুলি করেন সেটির কাজ কী?
- ভিত্তর ববার্ট বয়েলের সহকারী রবার্ট হুক বায়ুনিরূদ্ধ একটি পাম্প তৈরী করেন। এই পাম্পের সাহায্যে বায়ুর চাপের পরিবর্তনে আয়তনের কীরূপপরিবর্তন হয় তা নিয়ে পরীক্ষা করা হয়।

- 28. রবার্ট বয়েলের সূত্র লেখ। অথবা, স্থির উষ্ণতায় (i) P vs V এবং (ii) PV vs P (iii) PV vs V লেখচিত্র অঙ্কন কর। এই লেখচিত্রগুলির উপর তাপমাত্রার বৃদ্ধির প্রভাব কী?
- ভিত্তর [i] স্থির উষ্ণতায় P vs V লেখচিত্র: স্থির উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের আয়তনকে (V) বিভিন্ন চাপে (P) নির্ণয় করে P কে কোচি (Y-axis) ও V-কে ভুজ (X-axis) হিসাবে ধরলে PV = K সূত্রানুযায়ী, সম পরাবৃত্তাকার (Rectangular hyperbola) লেখচিত্র পাওয়া যায়। এখন, K = 12 হলে PV = 12, অতএব, যখন P = 1; V = 12; P = 2, V = 6; P = 3, P = 4; V = 3; P = 6; V = 2; P = 12; V = 1 হবে।]

তবে, উষ্ণতা বৃদ্ধির সঙ্গে উচ্চ উষ্ণতার লেখাগুলি নিম্ন উষ্ণতার লেখগুলি অপেক্ষা উপরের দিকে অবস্থান করে।

কারণ: উষ্ণতা বৃদ্ধিতে গ্যাসের চাপ ও আয়তন উভয়ই বৃদ্ধি পায় তাই P ও V-এর গুণফল অর্থাৎ -এর মানভ বৃদ্ধি পাবে।

সমোফলেখ বা Isotherm : স্থির উফতায় প্রাপ্ত গ্যাসের চাপ (P) বনাম গ্যাসের আয়তন (V)-এর লেখচিত্রকে সমোফ্ষ লেখ বা Isotherm বলে। *এই প্রসঙ্গে উল্লেখ্য V বনাম P লেখচিত্র (স্থির উফতায়), P বনাম V লেখচিত্রের অনুরূপ।

- [ii] স্থির উষ্ণতায় PV বনাম P লেখচিত্র: স্থির উষ্ণতায় বয়েলের সূত্রানুযায়ী PV = K = গ্রুবক।
- অর্থাৎ P-এর মান যাই হোক না কেন, PV-এর মান অপরিবর্তনশীল। অর্থাৎ PV k ধরলে P হলে PV = 12, P = 5 হলে, P = 2 হলে PV = 12 হলেও P=12 হবে। অর্থাৎ—PV কে কোটি (y-axis) ও কে ভুজ ধরে লেখচিত্র অঙ্কন করলে P অক্ষের (ভুজের) সমান্তরাল সরলরেখা পাওয়া যাবে। তবে উষ্ণতা বৃদ্ধির সঙ্গে উচ্চ উষ্ণতার লেখগুলি, নিম্ন উষ্ণতার লেখগুলি অপেক্ষা উপরের দিকে অবস্থান করবে।

লেখচিত্র থেকে দেখানো যায় যে, P এর যেকোনো মানে, PV = ধ্রুবক হবে। (এক্লেত্রে 12)

কারণ—উষ্ণতা আয়তন উভয়ই বৃদ্ধি পায় তাই উহাদের গুণফল PV তথা-এর মান ও বৃদ্ধি পায়।

- [iii] PV vs V-এর লেখচিত্র, PV বনাম P বনাম P-এর সমতুল্য। কোনো পরিবর্তন PV-এর মানে পরিলক্ষিত হয় না ভিন্ন ভিন্ন ভিন্ন । ভিন্ন ভিন্নতা।
- 29. বয়েলের সূত্রের সীমাবদ্ধতাগুলি উল্লেখ কর।
- ভক্তা [i] সাধারণ অবস্থায় N₂, H₂ এবং হালকা নিষ্ক্রিয় গ্যাসগুলি (He) বয়েলের সূত্র মোটের উপর মেনে চললেও CO₂, NH₃ প্রভৃতি গ্যাস এই সূত্র মেনে মানে না।
 - [ii] উচ্চ উষ্ণতা ও খুব নিম্নচাপে প্রায় প্রকৃত সব গ্যাসই মোটামুটি ভাবে বয়েলের সূত্র মেনে চলে।
- 30. বেলুনে ফুঁদিলে বেলুনের চাপ ও আয়তন উভয়ই বেড়ে যায়। এক্ষেত্রে কি বয়েলের সূত্র লঞ্চিত হচ্ছে। ব্যাখ্যা কর।
- ভিত্র নির্দিষ্টি উঞ্চতায় বেলুনে ফুঁদিলে বেলুনটির আয়তন বাড়ে এবং ফুঁ দেওয়ার সময় মুখের ভিতর থেকে যে বাড়তি বাতাস বেলুনে প্রবেশ করে সেই বাতাসের অনুগুলির জন্য বেলুনের পর্দার সঙ্গে বেলুনে আবদ্ধ গ্যাস বা বায়ুর অনুর সংঘর্ষের হার বেড়ে যায়। ফলে বেলুনের দেওয়ালে প্রযুক্ত চাপ ও বেড়ে যায়। এর ফলে বেলুনের মধ্যেকার বায়ুর ভরও স্থির না থেকে বৃদ্ধি পায়। তাই আয়তনের সঙ্গে সঙ্গে চাপ বৃদ্ধি পাওয়ার ঘটনা আপাতভাবে বয়েলের সূত্রের অমান্য হওয়ার দৃষ্টান্ত বলে মনে হলেও আসলে এক্ষেত্রে বয়েলের সূত্র। প্রযোজ্যই নয়। কারণ— স্থির উঞ্চতায় নির্দিষ্ট ভরের গ্যাসের ক্ষেত্রেই কেবলমাত্র সূত্রটি প্রযোজ্য। তাই ঘটনাটিতে বয়েলের সূত্র লঙ্গিত হওয়ার প্রশ্বাই ওঠেনা।
- 31. একটি ফুটবলকে পাষ্প করার সময় তার ভিতরের আয়তন ও চাপ দুই-ই বেড়ে যায়। এই ঘটনা কি বয়েলের সূত্রের বিরোধী—ব্যাখ্যা কর।
- ভব্র 30-এর প্রশ্নের উত্তরের অনুরূপ। নিজে লেখার চেষ্টা কর।
- 32. গভীর জলের তলদেশ থেকে বায়ুর বুদবুদ যখন উপরের দিকে ওঠে তখন তার আয়তন বেড়ে যায় না কমে যায় ?—ব্যাখ্যা কর।
- জ্জ্বে গভীর জলের তলদেশে বায়ুর বুদবুদের আয়তনের পরিবর্তন পারিপার্শ্বিক চাপ ও উষ্ণতা এই দুই রাশির মানের পরিবর্তনের ওপর নির্ভলশীল হয়। গভীর জলের তলদেশের বায়ুর বা গ্যাসের বুদবুদের উপর জলস্তম্ভ ও বায়ুস্তস্তের চাপ মিলিতভাবে ক্রিয়া করে। আবার জলের উপরিতল ও তলদেশের উষ্ণতা প্রায় সমান বলে ধরে নিলে বয়েলের সূত্রানুসায়ী চাপ আয়তনের সঙ্গে ব্যাস্তানুপাতিক। অর্থাৎ বায়ু বা গ্যাসের বুদবুদের উপর চাপ কমলে আয়তন বেড়ে

যায় ও চাপ বাড়লে আয়তন কমে যায়। এই কারণে গভীর জলের তলদেশ থেকে বায়ু বা গ্যাসের বুদবুদ উপরের দিকে উঠলে চাপ হ্রাসের জন্য বুদবুদের আয়তন বৃদ্ধি পায়।

33. একটি H_2 গ্যাসপূর্ণ বেলুনের আকার, উচ্চতা বৃদ্ধির সঙ্গে সঙ্গে বৃদ্ধিপ্রাপ্ত হয় কেন?

47. পুকুরের তলদেশ থেকে উৎপন্ন বুদবুদ জলের উপরিতলে আসলে সেটির—

© কোনো ক্ষেত্রে আয়তন বাড়ে আবার কমে

আয়তন কমে

ভক্তর ভূ-পৃষ্ঠের থেকে যত উপরে ওঠা যায়, তত বায়ুচাপ কমতে থাকে। একটি বেলুন যত উঁচুতে উঠতে থাকে, উচ্চতা বৃদ্ধি পাওয়ার সঙ্গে সংগ্ল বেলুনের উপর বায়ু দ্বারা প্রযুক্ত চাপ ক্রমশ কমতে থাকবে। বয়েলের সূত্রানুযায়ী, স্থির উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের ওপর প্রযুক্ত চাপ কমলে আয়তন বেড়ে যায়। ফলে বেলুনের আয়তন উচ্চতা বৃদ্ধির সঙ্গে সঙ্গে বৃদ্ধি পায়।

34. গ্যাসের চাপের সঙ্গে ঘনত্বের সম্পর্ক উল্লেখ কর।

জ্জুরা ধরা যাক, স্থির উষ্ণতায় m ভরবিশিষ্ট একটি গ্যাসের চাপ, আয়তন ও ঘনত্ব যথাক্রমে $p, \, v$ ও d। বয়েলের সূত্রানুসারে, PV = k (ধ্রুবক); যখন গ্যাসের ভর ও উষ্ণতা স্থির।

এখন, ঘনত্ব
$$(d)=rac{\overline{\mathbf{v}}\overline{\mathbf{a}}}{\overline{\mathbf{w}}$$
ায়তন $=rac{m}{V}$ বা, $V=rac{m}{d}$ ।

 $\because PV = k$ বা, $P imes rac{m}{d} = k$ বা, $\left[rac{P}{d} = rac{K}{m}
ight]$, যেহেতু গ্যাসের ভর নির্দিষ্ট বয়েল সূত্রে তাই ধ্রুবক।

বয়েল সূত্রে তাই $\frac{P}{d} =$ ধ্রুবক। \therefore $\boxed{P \propto d}$ * সূতরাং স্থির উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের ঘনত্ব গ্যাসটির চাপের সঙ্গে সমানুপাতিক, অর্থাৎ স্থির উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের চাপ বাড়লে গ্যাসের ঘনত্ব বৃদ্ধি পাবে, চাপ কমলে ঘনত্ব হ্রাস পাবে। 📘 বহুবিকল্পভিত্তিক প্রশ্ন [MCQ] প্রশ্নের মান : ১ 35. বয়েলের সূত্রের পরীক্ষার জন্য প্রয়োজনীয় ভ্যাকুলার পাস্প নির্মাণ করেন— (b) রবার্ট বয়েল © রবার্ট স্পেনসার বি রবার্ট হুক উ. 🛈 36. অপরিবর্তিত উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের চাপ ও আয়তনের মধ্যে সম্পর্ক নির্ণয় করেন— (a) চার্লস ত্র্যাভোগ্রাড্রো © রবার্ট বয়েল (d) রবার্ট হুক উ. (C) 37. স্থির উঞ্চতায় গ্যাসের চাপের সঙ্গে গ্যাসের আয়তনের সম্পর্কযুক্ত সূত্রটি হল— (b) নিউটনের সূত্র কার্লসের সূত্র © আভোগাড়ো সূত্র ব্রোলের সূত্র উ. 🛈 স্থির উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের চাপ ও আয়তনের গুণফল ধ্রুবক। এটি হল— @ চাপের সূত্র চ গেলুসাকের সূত্র © বয়েলের সূত্র d) চার্লসের সূত্র উ. © 39. উষ্ণতা স্থির রেখে কোনো নির্দিষ্ট ভরের গ্যাসের চাপ বৃদ্ধি করলে ওর আয়তন— (b) বৃদ্ধি পায় @ হ্রাস পায় ত কখনও বৃদ্ধি পায় কখনও হ্রাস পায় (d) একই থাকে উ. @ 40. Tস্থির থাকলে $V \propto \frac{1}{p}$, এটি হল— তালাসের সূত্র (b) বয়েলের সূত্র © কখনও বৃদ্ধি পায় কখনও হ্রাস পায় বি অ্যাভোগাড্রো সূত্র উ. **ⓑ** 41. বয়েলের সূত্রের গাণিতিক রূপটি হল— (b) PT = ধ্রুবক উ. @ 42. বয়েলের সূত্রের গাণিতিক রূপ— © $P_1P_2 = V_1V_2$ উ. (b) 43. বয়েলের সূত্র ধ্রুবক হল গ্যাসের— শুধুমাত্র তাপমাত্রা ভিধুমাত্র ভর © ভর ও চাপ d) ভর ও উষ্ণতা উ. 🛈 44. বয়েলের সূত্র পরিবর্তনশীল রাশিগুলি হল— গ্যাসের উষ্ণতা ও আয়তন গ্যাসের ভর ও চাপ © গ্যাসের ভর ও আয়তন (d) গ্যাসের চাপ ও উ. (d) 45. স্থির উষ্ণতায় বয়েলের সূত্রকে PV = K(ঞ্চবক) আকারে লেখা হয়। এই সমীকরণে K নির্ভর করে– আবদ্ধ গ্যাসের পরিমান (b) বায়ৢয়ড়লৗয় চাপ © গ্যাসটির প্রকৃতির উত্তর (d) g-এর মান উ. @ 46. স্থির উঞ্চতায় গ্যাসের চাপের সঙ্গে ঘনত্বের সম্পর্ক– (d) দ্বিগুণ অ সমানুপাতিক (b) ব্যস্তানুপাতিক (c) সমান উ. @

(b) আয়তন বাড়ে

(d) আয়তন একই থাকে।

উ. (b)

(8)	রর গ্যাসের আয়তন দ্বিগুণ করলে						
@ দ্বিগুণ	অর্ধেক	© একই থাকবে	📵 চারগুণ।				
49. স্থির উষ্ণতায় নির্দিষ্ট ভরের গ্যাসের চাপ অর্ধেক করলে আয়তন হবে পূর্বের—							
@ এক-তৃতীয়াংশ	(b) অর্ধেক	© দ্বিগুণ	(d) তিনগুণ				
50. বয়েলের সূত্রে P বনাম	V-এর লেখচিত্রের প্রকৃতি হল—						
@ বৃত্ত	১ সরলরেখা	© অধিবৃত্ত	কমপরাবৃত্ত				
51. বয়েলের সূত্রে PV বনাম P-এর লেখচিত্র অঙ্কন করা হলে লেখচিত্রের প্রকৃতি—							
 (a) P অক্ষের সমান্তরাল সরলরেখা (b) সমপরাবৃত্তাকার বক্ররেখা 		মূলবিন্দুগামী সরলরেখা					
		 উপবৃত্তাকার বক্ররেখ 	П				
52. নির্দিষ্ট উষ্ণতায় কোনো	গ্যাসের আয়তন ও চাপের সম্পর্ক	কে যে লেখচিত্রের মাধ্যমে প্রকাশ	করা হয় তা হল—				
⊚ V P	\mathbb{B}^{V}	© V	®				

উ. **ⓑ**

উ. ©

উ. 🛈

উ. @

উ. ©

মান: ১ বা ২

- 53. চার্লসের সূত্রটি বিবৃত করে ব্যাখ্যা কর।
- ্ডিজ্র চার্লসের সূত্র (1787 খ্রি:) : স্থির চাপে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তনপ্রতি ডিগ্রি সেলসিয়াস উষ্ণতা বৃদ্ধি বা হ্রাসের জন্য 0°C উষ্ণতায় ওই গ্যাসের আয়তনের $\frac{1}{273}$ অংশ বৃদ্ধিপায় বা হ্রাস পায়।

ব্যাখ্যা:ধরাযাক,নির্দিষ্টভরেরকোনোগ্যাসের০°Cউষ্ণতায়আয়তনহল V_\circ । চাপস্থিররেখেগ্যাসেরউষ্ণতা 1°Cবৃদ্ধিকরাহলে আয়তনবৃদ্ধিহরে, $\frac{V_\circ}{273}$ ।সূতরাং 1°C উষ্ণতায় গ্যাসের আয়তন $V_1=V_0+\frac{V_0}{273}=V_0\bigg(1+\frac{1}{273}\bigg)$ আবার চাপ স্থির রেখে গ্যাসের উষ্ণতা 2°C বৃদ্ধি করা হলে গ্যাসের আয়তন হবে, $V_2=V_0\bigg(1+\frac{2}{273}\bigg)$ ।

অর্থাৎ, চাপ স্থির রেখে গ্যাসের উষ্ণতা t°C বৃদ্ধি বা হ্রাস করা হলে গ্যাসের আয়তন হবে

📗 মুখ্য ধারনা (চার্লসের সূত্র, উষ্ণতার পরম স্কেল, পরম উষ্ণতার সাহায্যে চার্লসের সূত্রের প্রকাশ)

$$V_{\pm t^{o}c}=V_{0}igg(1\pmrac{t}{273}igg)$$
 ['+' o t^{o} C উষ্ণতা বৃদ্ধির জন্য, '—' o t^{o} C উষ্ণতা হ্রাসের জন্য]

- 54. চার্লসের সূত্রটিতে স্থির ও পরিবর্তনশীল রাশিগুলির নাম উল্লেখ কর।
- ভক্তর চার্লসের সূত্রে স্থির রাশি হল— গ্যাসের চাপ ও গ্যাসের ভর। চার্লসের সূত্রে পরিবর্তনশীল রাশি হল = গ্যাসের আয়তন ও গ্যাসের উষ্ণতা।
- 55. বয়েল ও চার্লসের সূত্রে বিবৃত করার সময় নির্দিষ্ট ভরের গ্যাসের কথা উল্লেখ কেন করা হয়?
- জ্জ্বে গ্যাসের আয়তন ও চাপ গ্যাসের ভরের ওপর নির্ভর করে। গ্যাসের ভরের পরিবর্তন ঘটালে গ্যাসের আয়তন ও চাপের পরিবর্তন হয়। এজন্য বয়েল ও চার্লসের সূত্র বিবৃত করার সময় নির্দিষ্ট ভরের গ্যাসের কথা উল্লেখ করার প্রয়োজন হয়।
- 56. কোনো গ্যাসের আয়তন উল্লেখ করার সময় গ্যাসের চাপ ও উষ্ণতা উল্লেখ করার কারণ কী?
- জ্জিত্র নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন তার উপর প্রযুক্ত চাপ ও তার উষ্ণতার ওপর নির্ভর করে। উষ্ণতা স্থির রেখে নির্দিষ্ট ভরের গ্যাসের চাপ বৃদ্ধি করলে বা হ্রাস করলে তার আয়তন হ্রাস বা বৃদ্ধি বা পায়। আবার চাপ স্থির রেখে নির্দিষ্ট ভরের গ্যাসের উষ্ণতা বৃদ্ধি বা হ্রাস করলে তার আয়তন বৃদ্ধি বা হ্রাস পায়। তাই কোনো গ্যাসের আয়তন উল্লেখ করার সময় ওই গ্যাসের চাপ ও উষ্ণতা উল্লেখ করা দরকার।
- 57. চার্লসের সূত্র থেকে পরমশূন্য উষ্ণতার ধারনা কীভাবে পাওয়া যায়?
- জ্বির চাপে O° C উষ্ণতায় নির্দিষ্ঠ ভরের কোনো গ্যাসের আয়তন V_{\circ} cm 3 এবং t° C উষ্ণতায় গ্যাসের আয়তন V_{t} cm 3 হলে চার্লসের সূত্রানুযায়ী, $V_{t}=V_{\circ}\bigg(1+rac{t}{273}\bigg)$ ।

এখন, চাপ স্থির রেখে উষ্ণতা কমিয়ে -273° C এ আনলে চার্লসের সূত্রানুযায়ী, -273° C উষ্ণতায় ঐ গ্যাসের আয়তন হবে, $V_{-273} = V_\circ \left(1 + \frac{-273}{273}\right) = 0$ । অর্থাৎ -273° C উষ্ণতায় যে কোনো গ্যাসের আয়তন শূন্য হয়ে যায়। এই উষ্ণতার চেয়ে কম উষ্ণতায় গ্যাসের আয়তন ঋণাত্মক হয়, যা বাস্তবে অসম্ভব। তাই -273° C কে পরমশূন্য উষ্ণতা ধরে নেওয়া হয়।

58. পরমশূন্য উষ্ণতা বলতে কী বোঝ?

ভত্তর কোনো গ্যাসকে − 273° C উষ্ণতায় শীতল করা সম্ভব হলে গ্যাসটির আয়তন ও চাপের মান তাত্ত্বিকভাবে শূন্য হয়ে যায় এবং গ্যাসের অণুগুলির গতিশক্তির মানও শূন্য হয়ে যায়। এই বিশেষ উষ্ণতাটিকে প্রমশূন্য উষ্ণতা বলা হয়। এর মান হল – 273°C বা OK (শূন্য কেলভিন)।

59. পরমশূন্য উফতাকে পরম বলে কেন?

ভব্তর — 273° C অপেক্ষা কম উষ্ণতায় গ্যাসের আয়তন, চাপ ও গতিশক্তির মান ঋণাত্মক হয়ে যায় যা বাস্তবে সম্ভব নয়। আবার, গ্যাসের প্রকৃতি, পরিমান, প্রাথমিক চাপ বা কোনো বিশেষ ধর্মের উপর এই – 273° C উষ্ণতা নির্ভর করেনা। – 273° C উষ্ণতাই হল মহাবিশ্বে উষ্ণতার নিন্নতমসীমা। এর থেকে কম উষ্ণতার অস্তিত্ব থাকা অসম্ভব। তাই পরমশূন্য উষ্ণতা – 273°C কে পরম বলা হয়।

60. উষ্ণতার পরম ক্ষেল বলতে কী বোঝ?

ভক্তর − 273° C উষ্ণতাকে নিম্ন স্থিরাঙ্ক ধরে এবং উষ্ণতার প্রতি ডিগ্রী ব্যবধানকে এক ডিগ্রী সেলসিয়াসের সমান করে মাপলে উষ্ণতার যে স্কেল পাওয়া যায় তাকে উষ্ণতার পরম স্কেল বলা হয়।

61. উষ্ণতার পরম স্কেলকে কেলভিন স্কেল বলা হয় কেন?

ভক্তা বিজ্ঞানী লর্ড কেলভিন উষ্ণতার পরম স্কেলের ধারনা প্রবর্তন করে। তাই তাঁর নামানুসারে, এই স্কেলকে কেলভিন স্কেলও বলা হয়।

62. পরম উষ্ণতা বা কেলভিন উষ্ণতার সঙ্গে ডিগ্রী সেলসিয়াস উষ্ণতার মধ্যে সম্পর্কটি কী?

উত্তর কোনো বস্তুর উষ্ণতা ডিগ্রী সেলসিয়াস স্কেলে $t^{
m c}$ C ও পরম উষ্ণতার স্কেলে TK হলে উহাদের মধ্যে সম্পর্কটি হল $-\left[\left(t^{
m c}{
m C}+273\right)\!k\!=\!TK\right]^{-1}$

63. 30° C ও 300 K উষ্ণতার মধ্যে কোনটি?

উত্তর 30° C = 273 + 30 = 303 K। অর্থাৎ 303 K ও 30° C-এর মধ্যে 30° C বড়।

64. উষ্ণতার পরম স্কেল অনুযায়ী চার্লসের সূত্রের বিকল্প রূপটি লেখ।

অথবা, দেখাও যে স্থির চাপে কোনো গ্যাসের আয়তন তার পরম উষ্ণতার সঙ্গে সমানুপাতিক হয়।

্রুব্র স্থির চাপে 0° C উষ্ণতায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন V₂ cm³ এবং t° C উষ্ণতায় ঐ গ্যাসের আয়তন V₂ cm³ হলে চার্লসের সূত্রানুযায়ী, $V_t = V_o \left(1 + \frac{t}{273} \right) \mid$

$$\text{ Atim}, \ V_t = V_\circ \bigg(1 + \frac{t}{273}\bigg) = V_\circ \bigg(\frac{273 + t}{273}\bigg) = V_\circ \times \frac{TK}{273} \ \Big[\because t^\circ c + 273 = TK \ \Big]$$

$$\therefore V_{TK} = V_o \times \frac{TK}{273}$$

যেহেতু 0° C উষ্ণতায় কোনো গ্যাসের আয়তন V.এবং 273 উভয়ই ধ্রুবক।

বা,
$$\boxed{\frac{V}{T} = K}$$
, যদি T_1 K উষণতায় গ্যাসের আয়তন V_1 cm 3 এবং T_2 K উষণতায় গ্যাসের আয়তন V_2 cm 3 হয় তবে, $\boxed{\frac{V_1}{T_1} = \frac{V_2}{T_2} = K\left($ ধ্রুবক $\right)}$

65. গ্যাসের উষ্ণতার সঙ্গে ঘনত্বের সম্পর্কটি উল্লেখ কর।

ভত্তর। ধরা যাক, একটি নির্দিষ্ট চাপে m ভরের কোনো গ্যাসের T পরম উষ্ণতায় আয়তন ও ঘনত্ব 'V' ও 'd'। চার্লসের সূত্রানুসারে V=KT; যখন গ্যাসের চাপ ও ভর স্থির। আবার গ্যাসের ঘনত্ব, $d=\frac{m}{V}$ বা, $V=\frac{m}{d}$ । সূতরাং; $KT=\frac{m}{d}$ বা, $T=\frac{m}{K}\cdot\frac{1}{d}$ ।

সুতরাং;
$$KT = \frac{m}{d}$$
 বা, $T = \frac{m}{K} \cdot \frac{1}{d}$

যেহেতু m নির্দিষ্ট এবং K-এর মান স্থির চাপে নির্দিষ্ট ভরের গ্যাসের ক্ষেত্রে ধ্রুবক, তাই $\frac{m}{K}$ রাশিটিও ধ্রুবক। অর্থাৎ $T \propto \frac{1}{d}$ বা, $d \propto \frac{1}{I}$, যখন গ্যাসের চাপ ও ভর স্থির। অতএব, স্থির চাপে নির্দিষ্ট ভরের গ্যাসের ঘনত্ব গ্যাসটির পরম উফতার সঙ্গে ব্যস্তানুপাতে

66. স্থির চাপে নির্দিস্ত ভরের গ্যাসের আয়তন (V) বনাম সেলসিয়াস উষ্ণতার (t°C)-এর লেখচিত্র অঙ্কন কর।

্উত্তর এপ্রসঙ্গে বলে রাখা ভাল, y=mx+c হল সরলরেখার আদর্শ সমীকরণ, যেখানে m= নতি ও c=ধ্রুবক পদ। m ও c-এর মানের উপর সরলরেখার প্রকৃতি

(a) m= ধনাত্মক (+ ve) মান হলে, x অক্ষের সাপেকে উর্ধ্বর্গামী সরলরেখাকে নির্দেশ করে। 🕈

- (d) c= ধনাত্মক (+ ve) মান হলে, ধনাত্মক y অক্ষকে ঐমানে ছেদ করে।
- (e) c= ঋণাত্মক (- ve) মান হলে, ঋণাত্মক y অক্ষকে ঐমানে ছেদ করে।
- (f) c=0 (শূন্য) মান হলে, মূলবিন্দুগামী সরলরেখাকে নির্দেশ করে।

যখন, m = + v

উত্তর চার্লসের সূত্রানুযায়ী, $V_t = V_0 \bigg(1 + \frac{t}{273} \bigg)$

বা,
$$V_t = V_0 + \frac{V_0}{273}$$

(i)নং সমীকরণকে সরলরেখার আদর্শ সমীকরণ (y=mx+c)-এর সাথে তুলনা করে পাই,

 $m=rac{V_0}{273}$ (+ ve মান), অর্থাৎ x অক্লের সাপেক্ষে উর্ধ্বগামী সরলরেখাকে নির্দেশ করে।

 $C = V_0$ (+ve মান), অর্থাৎ ধনাত্মক y অক্ষকে V_0 মানে ছেদ করবে।

67. চাপ স্থির রেখে V বনাম T (পরম উষ্ণতা) লেখচিত্রটি অঙ্কন কর।

উত্তর চার্লসের সূত্রানুযায়ী, V ∞ T (যখন চাপ ও গ্যাসের ভর স্থির)

বা,
$$V = KT$$

...(ii)

(ii)নং সমীকরণকে y = mx + c সমীকরণের সঙ্গে তুলনা করে পাই,

m = k (+ve মান), অর্থাৎ x অক্ষের সাপেক্ষে উর্ধ্বর্গামী সরলরেখাকে নির্দেশ করবে।

c = 0 (শূন্য মান), অর্থাৎ মূল বিন্দুগামী সরলরেখাকে নির্দেশ করবে

 $\therefore P \propto T$ এবং $P \propto \frac{1}{V}$

তাই চাপ বৃদ্ধিতে উষ্ণতা বৃদ্ধি পেয়েছে এবং আয়তন হ্রাস পেয়েছে। ফলে সরলরেখার প্রকৃতি একই থাকলেও নতি (m) হ্রাস পেয়েছে।

 $P_3 > P_2 > P_1$

- 68. চার্লসের সূত্রে সীমাবদ্ধতাগুলি উল্লেখ কর।
- ভত্তর বাস্তব গ্যাসগুলি খুব নিম্নচাপে ও উচ্চ উষ্ণতায় এই সূত্র মেনে চলে।
- 69. গে-লুসাকের চাপের সূত্রটি বিবৃত কর ও ব্যাখ্যা দাও।
- উত্তর স্থির আয়তনের কোনো নির্দিষ্ট ভরের গ্যাসের চাপ তার পরম উঞ্চতার সঙ্গে সমানুপাতিক।

ব্যাখ্যা: স্থির আয়তনে নির্দিষ্ট ভরের গ্যাসের চাপ P হলে এবং পরম উষ্ণতা T হলে সূত্রানুযায়ী,

বা, $P \propto T$ (যখন গ্যাসের আয়তন ও ভর স্থির)

বা, P = KT(K =ঞ্জবক)

বা, $\boxed{\frac{P}{T}\!=\!K}$, এখন স্থির আয়তনে নির্দিষ্ট ভরের গ্যাসের চাপ যদি পরিবর্তিত হয়ে যথাক্রমে P_1,P_2 ও P_3 হয় এবং পরম উষ্ণতা যথাক্রমে T_1,T_2 ও T_3 হয় তবে,

সূত্রানুযায়ী, $\frac{P_1}{T_1} = \frac{P_2}{T_2} = \frac{P_3}{T_3} = k \left($ প্রবক $\right)$

70. নির্দিস্ট ভরের কোনো গ্যাসের স্থির আয়তনে P বনাম T (পরম উঞ্চতা) লেখচিত্র অঙ্কন কর।

উত্তর গে-লুসাকের চাপ সূত্রানুযায়ী, P=KT

(iii)

(iii) সমীকরণকে y = mx + c সমীকরণের সঙ্গে তুলনা করে পাই,

m = K (+ve মান), অর্থাৎ, x অক্ষের সাপেক্ষে উর্ধ্বগামী সরলরেখাকে নির্দেশ করবে।

c=0 (শূন্য মান), অর্থাৎ x মূলবিন্দুগামী সরলরেখাকে নির্দেশ করবে।

 $:: V \propto T$ এবং $V \propto \frac{1}{P}$ তাই, আয়তন বৃদ্ধিতে উষ্ণতা বৃদ্ধি পেয়েছে এবং চাপ হ্রাস পেয়েছে। ফলে সরলরেখার প্রকৃতি একই থাকলেও নতি হ্রাস পেয়েছে।

71. চলস্ত মোটর গাড়ির টায়ারে বায়ুচাপ বৃদ্ধি পায় কেন?

জ্জ্বা মোটর গাড়ি গতিশীল অবস্থায় থাকলে রাস্তার সঙ্গে চাকার টায়ারের ঘর্যনে তাপ উৎপন্ন হবে। এই তাপে আবদ্ধ গ্যাসের উষ্ণতা বৃদ্ধি পায়। যেহেতু টায়ারের আয়তন অর্থাৎ গ্যাসের আয়তন গ্রন্থক। তাই গেলুসাকের চাপ সূত্রানুযায়ী, $P \propto T$ (যখন গ্যাসের আয়তন ও ভর স্থির) অর্থাৎ উষ্ণতা বৃদ্ধি পেলে আবদ্ধ গ্যাসের চাপও বৃদ্ধি পাবে। একারণে চলস্ত মোটরগাড়ির টায়ারে বায়ুচাপ বৃদ্ধি পায়।

72. উষ্ণতার কেলভিন স্কেল ও সেলসিয়াস স্কেলের মধ্যে কোনটি বেশী মৌলিক এবং কেন?

জ্জ্র (i) পরমশূন্য উষ্ণতা গ্যাসের প্রকৃতি, পরিমান, প্রাথমিক চাপ ও আয়তনের ওপর নির্ভরশীল না। কেলভিন বা পরম স্কেলে –273°C কে নিম্ন স্থিরাঙ্ক হিসাবে ধরা হয়েছে, কিন্তু সেলসিয়াস স্কেলের নিম্ন স্থিরাঙ্ক (0°C) প্রমান বায়ুমন্ডলীয় চাপে একটি বিশেষ পদার্থ ডালের হিমাঙ্কের উপর নির্ভরশীল।

(ii) 0°C-এর চেয়ে কম উষ্ণতা পাওয়া সম্ভব। অন্যদিকে –273°C উষ্ণতায় যেকোনো গ্যাসেরই চাপ ও আয়তন শূন্য হয়ে যায়, মহাবিশ্বে এর চেয়ে কম উষ্ণতা অসম্ভব।

এই কারণে উষ্ণতার সেলসিয়াস স্কেল অপেক্ষা কেলভিন স্কেল বেশী মৌলিক।

73. কেলভিন স্কেলে উষ্ণতার পাঠ ঋণাত্মক হওয়া কি সম্ভব ? —ব্যাখ্যা দাও।

ভিত্তর কেলভিন স্কেলে উষ্ণতার পাঠ ঋণাত্মক হওয়া কী অসম্ভব। কারণ—গ্যাসের আয়তন তার পরম উষ্ণতার (যা কেলভিন স্কেলে পরিমাপযোগ্য) সঙ্গে সমানুপাতিক হয়। অর্থাৎ –20°C কোনো গ্যাসের আয়তন ঋনাত্মক হবে না। এই সব অসংগতি দূর করার জন্য উষ্ণতার কেলভিন স্কেল ব্যবহার করা হয়, সেখানে উষ্ণতার পাঠ সর্বদা ধনাত্মক হয়।

74. আয়তন প্রসারন গুনাঙ্ক কাকে বলে?

জ্জ্ব চার্লসের সূত্রে $\frac{1}{273}$ ভগ্নাংশটিকে আয়তন প্রসারন গুনাঙ্ক বলা হয়।

© -40° C

d −40 K

উ. @

প্রশ্নের মান : ১

76. বয়েল ও চার্লসের সূত্রের সাধারণ ধ্রুবকটি হল—

@ গ্যাসের আয়তন

(b) ভর

ত উষ্ণতা

(d) চাপ

উ. (b)

77. গ্যাসের ক্ষেত্রে আয়তন-উষ্ণতা সম্পর্কিত সূত্রটি হল—

বয়েল সূত্র

(b) চার্লসের সূত্র

© গেলুসাক সূত্র

🛈 ডালটনের সূত্র

উ. (b)

78. মহাবিশ্বে সবচেয়ে কম উঞ্চতা—

@ 0° F

(b) 0° C

© 0 K

d -273 K

উ, ©

_	$79.P$ চাপে এবং $0^{\circ}\mathrm{C}$ উষ্ণতায় কোনো গ্যাসের আয়তন V_0 । চাপ স্থির রেখে উষ্ণতা $1^{\circ}\mathrm{C}$ বাড়ালে সেটির আয়তন হবে $-$						
79.	/			7.7	21 XX		
	(a) $V_0 \left(1 - \frac{1}{273} \right)$	ⓑ V ₀	© $V_0 \left(1 + \frac{1}{273}\right)$	(d) $\frac{V_0}{273}$	উ. ©		
80.	সকল আদর্শ গ্যাসের আয়তন শৃ	ন্য হয় যখন সেটির উফতা হয়—			4		
	ⓐ 0° C	ⓑ −273° C	© 10°C	@ 273°C	উ. ⓑ		
81.	চার্লসের সূত্রের গাণিতিক রূপটি	হল—					
		ⓑ $V \propto \frac{1}{P}$	© $V \propto \frac{1}{T}$	$\textcircled{d} \ V \propto T$	উ. 🛈		
82.	পরম স্কেলে বিশুদ্ধ জলের হিমা						
	@ 0 K	(b) 273 K	© 100 K	(d) 373 K	উ. @		
83.	সেলসিয়াস স্কেলে পরম শূন্য উ	No	Date Statistical				
	@ 32° C	(p) 0° C	© –273° C	@ 273° C	উ. ©		
84.	চাপের সূত্রের গাণিতিক রূপটি ব			1			
		(b) P ∝ V	$\bigcirc P \propto T$	(d) $P \propto \frac{1}{T}$	উ. ©		
85.	উফতার পরম স্কেল আবিষ্কার ব			2			
	@ বয়েল	(b) কেলভিন	© গে-লুসাক	(d) চার্লস	উ. (চ)		
86.	চার্লসের সূত্রে গাণিতিক রূপ—		×				
		(b) $V_t = K \text{ Vot}$		(d) $V_t \left(1 + \frac{t}{273}\right) V_0$	উ. 🔞		
87.	নীচের কোন্ সম্পর্কটি সঠিক—			213)			
	a 303 K = 27° C	(b) 303 K > 27° C	© 303 K < 27° C	উপরের কোনটিই নয়	উ. 📵		
88.	একই উষ্ণতার মান সেলসিয়াস।	স্কেলে t° C এবং কেলভিন স্কেলে	TK হলে—		211-		
	(a) $T = 273 - t$	(b) $T = 273 + t$	© $T = t - 273$	উপরের কোনটিই নয়	উ. 📵		
89,	স্থির চাপে নির্দিষ্ট ভরের গ্যাসের	। আয়তন ও কেলভিন উষ্ণতার সম্	পর্ক—				
	① $V_1T_1 = V_2T_2$	(b) $\frac{T_1}{V_1} = \frac{V_2}{T_2}$		কানটিই নয়	উ. (b)		
90.	পরম স্কেলে জলের স্ফুটনাঙ্ক—	11 - 12	1 12				
	@ 273 K	ⓑ 373 K	© 473 K	173 K	উ. (b)		
91.	পরম শূন্য উষ্ণতায় কোনো আদ	র্শ গ্যাসের আয়তন—			2		
	@ একই থাকে	কমে যায়	© বেড়ে যায়	अभ्ना रয়	উ. 🔞		
92.	$rac{1}{273}$ ভগ্নাংশটিকে বলা হয় $-$						
	আয়তন গুনাল্ক	(b) চাপ গুনাঙ্ক	ত উষ্ণতা গুনান্ধ	কানটি নয়	উ. @		
93.	ফারেটহাইট স্কেলে পরম শূন্য উ	ফ্রতার মান হল—					
	◎ −273° C	(b) 273° F	© -459.4° F	@ 0° F	উ. ©		
94.	$oxed{4.}\;\;0^\circ\mathrm{C}$ উষ্ণতায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন V_0 হলে স্থির চাপে তাপমাত্রা বাড়িয়ে $90^\circ\mathrm{C}$ করলে আয়তন হবে $-$						
	\bigcirc $\frac{373}{273}V_0$	(b) $\frac{293}{273}V_0$	© $\frac{273}{363}V_0$	$\textcircled{d} \frac{363}{273}V_0$	উ. 🔞		
95.	2/3 - 2/3 -						
	 		মূলবিন্দুগামী সরলরেখা				
	© সরলরেখা, মূলবিন্দুগামী নয়		কমাপরাবৃত্ত		উ. ©		
96.	6. স্থির চাপে নির্দিষ্ট ভরের <i>V</i> বনাম <i>T লে</i> খচিত্রটি হল—						
 মূলবিন্দুগামী সরলরেখা মূলবিন্দুগামী সরলরেখা 							
	© সমপরাবৃত্ত		 করলরেখা, মূলবিন্দুগামী নয় 		উ. @		
97.			তাপমাত্রা অক্ষকে কোন তাপমাত্রা		<u> </u>		
	◎ − 136.5° C	(b) 0° C	© – 273° C	@ 273° C	উ. ©		
98.		স্থির চাপে 0° C থেকে 273° C ই	উষ্ণতায় উত্তপ্ত করা হল। গ্যাসটির	অন্তিম আয়তনের (V_2) সঙ্গে প্রাথমিক	<u>আয়তনের</u>		
	$\left(V_{1} ight)$ সম্পর্ক হল $-$						
	(a) $V_2 = 2V_1$	(b) $V_2 = V_1$	© $2V_2 = \frac{V_1}{2}$	(d) $V_2 = \frac{1}{2} V_1$	উ. @		

📗 মুখ্য ধারনা (বয়েল ও চার্লসের সূত্রের সমন্বিত রূপ, আদর্শ গ্যাস, অ্যাভোগাড্রো প্রকল্প)

99. বয়েলের ও চার্লসের সমন্বয় সূত্রটি উল্লেখ কর।

ভব্তর নির্দিষ্ট ভরের গ্যাসের চাপ ও আয়তনের গুনফল পরম স্কেলে গ্যাসটির উষ্ণতার সমানুপাতিক। অর্থাৎ, কোনো নির্দিষ্ট ভরের গ্যাসের ক্ষেত্রে T পরম তাপমাত্রায় গ্যাসের আয়তন 'V' হলে ও চাপ 'P' হলে, সূত্রানুযায়ী, PV ∞ T, বা, PV = KT (K =এন্বক)

100. বয়েলের ও চার্লসের সূত্রের সমন্বয়ে গঠিত সমীকরণটি উল্লেখ কর।

অথবা, একটি আদর্শ গ্যাসের ক্ষেত্রে PV = KT সমীকরণটি প্রতিষ্ঠা কর। সমীকরণে ব্যবহাত চিহ্নগুলি কী কী নির্দেশ করবে ?

ভিত্তর নির্দিষ্ট ভরের কোনো গ্যাসের পরম স্কেলে উষ্ণতা T এবং ঐ উষ্ণতায় চাপ ও আয়তন যথাক্রমে P ও V হলে বয়েলের সূত্রানুসারে, $V \propto \frac{1}{P}$ (যখন T ধ্রুবক) এবং চার্লসের সূত্রানুযায়ী, $V \propto T$ (যখন P ধ্রুবক)।

যৌগিক ভেদের সূত্রের সাহায্যে দুটি ভেদ সম্পর্ককে সমশ্বিত করে পাওয়া যায়—

$$V \propto rac{T}{P} \left($$
যখন T ও P উভয়ই পরিবর্তনশীল $)$

বা,
$$V=\frac{KT}{P}$$
বা, $PV=KT$ বা, $PV=KT$ বা, $PV=K$ [ধ্রুবক যা K গ্যাসের ভর বা মোল সংখ্যার উপর নির্ভর করে।]

এখন, নির্দিষ্ট ভরের কোনো গ্যাসের $\overline{T_1}$ তাপমাত্রায় চাপ P_1 ও আয়তন V_1 থেকে পরিবর্তিত হয়ে গ্যাসের তাপমাত্রা T_2 হলে চাপ যদি P_2 ও আয়তন V_2 হলে, $\boxed{\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = K}$ (ধ্রুবক)

101. আদর্শ গ্যাস ও বাস্তব গ্যাস কাকে বলে ? উদাহরণ দাও।

ভব্তর আদর্শ গ্যাস : যেসব গ্যাস যে কোনো চাপ ও উষ্ণতায় বয়েল ও চার্লস উভয় সূত্র মেনে চলে, তাদের আদর্শ গ্যাস বলা হয়। বাস্তবে আদর্শ গ্যাসের কোনো অস্তিত্ব নেই।

বাস্তব গ্যাস : যেসব গ্যাস বয়েল ও চার্লসের সূত্র মেনে চলে না, তাদের বাস্তব গ্যাস বলা হয়। উদাহরণ— O_2 , N_2 , H_2 , CO_2 , He ইত্যাদি।

102. কোন্ শর্তে আদর্শ গ্যাস বাস্তব গ্যাসের ন্যায় আচরণ করবে?

উত্তর খুব নিম্নচাপে ও উচ্চ উষ্ণতায় বাস্তব গ্যাসগুলি আদর্শ গ্যাসের মতো আচরণ করবে।

103. আদর্শ গ্যাস ও বাস্তব গ্যাসের মধ্যে পার্থক্যগুলি উল্লেখ কর।

উত্তর

আদর্শ গ্যাস		বাস্তব গ্যাস		
[i]	সব উষ্ণতা ও চাপে গ্যাস সূত্রগুলি মেনে চলে।	[i]	শুধু নিম্নচাপ এবং উচ্চ উষ্ণতায় গ্যাস সূত্রগুলি আংশিকভাবে মেনে চলে	
[ii]	এরূপ গ্যাসের অণুগুলির মধ্যে কোনো আকর্ষন বল নেই, তাই এদের তরলীকরন করা অসম্ভব।	[ii]	বাস্তব গ্যাসে অণুগুলির মধ্যে আকর্ষণ বল থাকায় এদের তরলীকরণ করা সম্ভব।	
[iii]	এরূপ গ্যাস অণুগুলির আকার গ্যাস পাত্রের তুলনায় নগন্য।	[iii]	এরূপ গ্যাসের অনুগুলির আয়তন নগন্য ধরা যায় না।	
[iv]	শূণ্য চাপের বিরূদ্ধে প্রসারিত করা হলে এর উষ্ণতা অপরিবর্তিত থাকে।	[iv]	শৃণ্য চাপের বিরূদ্ধে প্রসারিত করা হলে এর উষ্ণতা হ্রাস ঘটে।	

104. গ্যাসের মোলার আয়তন কাকে বলে? প্রমাণ চাপ ও উফতায় এর মান কত?

জ্জ্বি নির্দিষ্ট চাপ ও উষ্ণতায় এক গ্রাম অণু পরিমান যে কোনো গ্যাস যে পরিমান আয়তন অধিকার করে, তাকে ঐ গ্যাসের মোলার আয়তন বা গ্রাম আনবিক আয়তন বলা হয়।

প্রমান উষ্ণতা ও চাপে ইহার মান 22.4 লিটার/মোল।

105. গোলুসাকের গ্যাস আয়তন সূত্রটি বিবৃত করে ব্যাখ্যা দাও।

জ্জুরা রাসায়নিক বিক্রিয়া অংশগ্রহণকারী বিক্রিয়ক গ্যাসগুলি সমচাপ ও উষ্ণতায় তাদের আয়তনের সরল অনুপাতে বিক্রিয়া করে এবং বিক্রিয়াজাত পদার্থ যদি গ্যাসীয় হয়, তাহলে সমচাপ ও উষ্ণতায় বিক্রিয়াজাত পদার্থের আয়তন বিক্রিয়াগুলির আয়তনের সঙ্গে সরল অনুপাতে থাকে।

পরীক্ষায় দেখা যায়, সমচাপ ও উষ্ণতায় 2 আয়তন ${
m H_2}$ ও 1আয়তন ${
m O_2}$ গ্যাসের পারস্পরিক বিক্রিয়ায়া সর্বদা 2 আয়তন স্টিম উৎপন্ন হয়।

$$2{
m H}_2$$
 + ${
m O}_2$ \longrightarrow $2{
m H}_2{
m O}($ স্টীম $)$ 2 আয়তন 1 আয়তন 2 আয়তন

সুতরাং এই বিক্রিয়ায় সমচাপ ও উষ্ণতায় বিক্রিয়ক গ্যাসগুলি (H_2 ও O_2) ও বিক্রিয়াজাত স্টিমের (H_2O) আয়তনের অনুপাত 2:1:2। এটি একটি সরল অনুপাত।

106. অ্যাভোগাড্রো প্রকল্পটি উল্লেখ কর ও ব্যাখ্যা কর।

উত্তর **অ্যাভোগাড্রো প্রকল্প :** একই চাপ ও উষ্ণতায় সমআয়তন সব গ্যাসে সমানসংখ্যক অনু বর্তমান।

ব্যাখ্যা : P চাপ ও T উষ্ণতায় VL হাইড্রোজেন গ্যাসে n সংখ্যক অনু থাকলে ওই একই চাপ ও উষ্ণতায় VL অক্সিজেন, কার্বনডাই অক্সাইড বা অন্য কোনো গ্যাসেও n সংখ্যক অণু থাকবে।

107. অ্যাভোগাড্রো সূত্রটি লিখে ও ব্যাখ্যা কর।

্রভব্তর **অ্যাভোগাড্রো সূত্র :** স্থির চাপ ও উষ্ণতায় কোনো গ্যাসের আয়তন গ্যাসটির মোলসংখ্যার সঙ্গে সমানুপাতিক।

ব্যাখ্যা : স্থির চাপ ও উঞ্চতায় n মোল কোনো গ্যাসের আয়তন V হলে অ্যাভোগাড়ো সূত্রানুসারে, $V \propto n$ বা, |V=kn| , যেখানে k= ধ্রুবক। k-এর মান গ্যাসের চাপ ও উষ্ণতার উপর নির্ভর করে।

যদি স্থির চাপ ও উষ্ণতায় n_1 ও n_2 মোল পরিমান কোনো গ্যাসের আয়তন যথাক্রমে V_1 ও V_2 হয়, তবে অ্যাভোগাড্রো সূত্রানুসারে, $V_1 \propto n_1$ এবং $V_2 \propto n_1$

108. অ্যাভোগাড্রো সংখ্যার মান কত?

উত্তর 6.022 × 10²³ |

109. অ্যাভোগাড়ো প্রকল্পের অনুসিদ্ধান্তগুলি উল্লেখ কর।

্রত্তর [i] নিষ্ক্রিয় গ্যাস ছাড়া সব মৌলিক গ্যাসের (হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন প্রভৃতি) অণু দ্বিপরমানুক।

[ii] গ্যাসীয় পদার্থের (মৌলিক বা যৌগিক) আনবিক ভর (M) গ্যাসটির বাষ্পঘনত্বের (D) দ্বিগুণ হয়। [M = 2D]

[iii] 1 মোল যে কোনো গ্যাসীয় অণুর (মৌলিক বা যৌগিক) S.T.P তে আয়তন হল 22.4 L।

110. অ্যাভোগাড্রো সূত্রের সাহায্যে গে-লুসাকের গ্যাস আয়তনিক সূত্রটি ব্যাখ্যা কর।

😼রে ধরি, একটি নির্দিষ্ট চাপ ও উষ্ণতায় A গ্যাসের a সংখ্যক অণু + B গ্যাসের b সংখ্যক অণু = c গ্যাসের c সংখ্যক অণু । (যেখানে a, b, c হল ছোট পূর্ণসংখ্যা) ধরি, পরীক্ষাকালীন চাপ ও উষ্ণতায় A গ্যাসের V আয়তনে 'n' সংখ্যক অণু অবস্থিত। সূতরাং অ্যাভোগাড্রো সূত্রানুযায়ী ওই একই চাপ ও উষ্ণতায় B ও C গ্যাসের প্রত্যেকটির V আয়তনে n সংখ্যক অণু থাকে। এখন, A গ্যাসের n সংখ্যক অণুর আয়তন = V।

$$\therefore$$
 A " a " " $=\frac{V_a}{n}$

 $\cdot\cdot\cdot$ A " a " " $=\frac{V_a}{n}$ । অনুরূপে B গ্যাসের b সংখ্যক অণুর আয়তন হল $\frac{V_b}{n}$ এবং C গ্যাসের C সংখ্যক অণুর আয়তন হল $\frac{V_c}{n}$ ।

সূতরাং একই চাপ ও উষ্ণতায় A, B ও C গ্যাসগুলির আয়তনের অনুপাত $\frac{V_c}{n}: \frac{V_b}{n}: \frac{V_c}{n} = a:b:c$ । যেহেতু ক্ষুদ্র পূর্ণসংখ্যা তাই হল সরল অনুপাত। যা, গেলুসাকের গ্যাস আয়তন সূত্রকে সমর্থন করে।

111. শুষ্ক ও আর্দ্রবায়ুর মধ্যে লঘু বা হালকা? কোনটি এবং কেন? —ব্যাখ্যা কর।

উত্তর শুষ্ক বায়ুর মূল উপাদানগুলি— ${
m O}_2(20.94\%),\,{
m N}_2(78.01\%),\,{
m CO}_2(0.03\%)$ ।

অতএব, শুষ্ক বায়ুর গড় আণবিক ভর =
$$\frac{\left(20.94 \times 32\right) + \left(78.01 \times 28\right) + \left(0.03 \times 44\right)}{100} = 28.93$$

আবার, জলের মোলার ভর হল = $18\,\mathrm{gmol}^{-1}$ । সুতরাং জলীয় বাষ্প্র, শুষ্ক বায়ু অপেক্ষা হালকা হয়। তাই বাতাসে জলীয় বাষ্প্র থাকলে অর্থাৎ বায়ু আর্দ্র হলে তার গড় আণবিক ভর, শুষ্ক বায়ুর গড় আণবিক ভরের চেয়ে কম হয়। তাই শুষ্ক বায়ু অপেক্ষা আর্দ্র বায়ু লঘু বা হালকা।

112. একই চাপ ও উষ্ণতায় সম আয়তন সব গ্যাসে সমসংখ্যক অণু বর্তমান। —বক্তব্যটি থেকে কি আমরা বলতে পারি প্রত্যেক অণুর আয়তন সমান হয়।

্ডব্র একই চাপ ও উষ্ণতায় 1 আয়তন N, ও 3 আয়তন H_2 -এর বিক্রিয়ায় 2 আয়তন NH $_3$ বিক্রিয়াজাত পদার্থ হিসেবে হয়। ($N_2+3H_2
ightarrow 2NH_3$)। এখানে N_2 , H_2 ও NH_3 -এর আয়তনের অনুপাত হল 1:3:2। যা সরল অনুপাতে আছে। এখন, N_2 -এর আয়তন V ও তাতে অণুরসংখ্যা x হলে, H_2 গ্যাসের আয়তন হবে 3V এবং তাতে অণু থাকরে 3xিট, এবং উৎপন্ন NH₃-এর আয়তন হবে 2V ও তাতে অণু থাকরে 2xিট।

যদি xটি N_2 অণুর আয়তন V এবং 3xটি H_2 অণুর আয়তন 3V হত তাহলে উপন্ন NH_3 -এর 2xটি অণুর আয়তন হত =(V+3V)=4V, কিন্তু অ্যাভোগাড্রো প্রকল্প অনুযায়ী ইহা 2V হওয়া উচিৎ অর্থাৎ ইহা অ্যাভোগাড্রো প্রকল্পের পরিপন্থী নয়। অর্থাৎ অ্যাভোগাড্রো প্রকল্প উল্লিখিত আয়তন হল গ্যাস দ্বারা অধিকৃত অঞ্চলের আয়তন যার সঙ্গে অণুগুলির আয়তনের কোনো সম্পর্ক থাকে না।

113. STP ও NTP বলতে কী বোঝায়?

📴র বিভিন্ন গ্যাসের ধর্মাবলী তুলনা করা হলে গ্যাসগুলিকে নির্দিষ্ট চাপ ও উষ্ণতায় রেখে তুলনা করাই শ্রেয়। এজন্য বিজ্ঞানীরা চাপ ও উষ্ণতার একটি প্রমাণ অবস্থা স্থির করে দিয়েছেন। প্রমাণ চাপ হল 76 cm (বা 760 mm) পারদস্তন্তের চাপ, অর্থাৎ 1 বায়ুমন্ডলীয় চাপ (1 atm) এবং প্রমান উষ্ণতা হল 0° C। প্রমান উষ্ণতা ও চাপকে সাধারণত STP (Standard Temperature and Pressure) বা, NTP (Normal Temperature and Pressure) বলে।

STP তে n সংখ্যৰ	${ m TP}$ তে n সংখ্যক ${ m N}_2$ অণু ${ m V}$ লিটার আয়তন অধিকার করলে $rac{n}{2}$ সংখ্যক ${ m N}_2$ অণু $rac{V}{2}$ লিটার আয়তন দখল করবে।					
অতএব $rac{n}{2}$ সংখ্যক CO_2 অণুও $rac{V}{2}$ লিটার আয়তন অধিকার করবে।						
বহুবিকল্পভিত্তিক	প্রশ্ন [MCQ]			প্রশ্নের মান : ১		
I.S. পদার্থের মোলার ^স	আয়তনে অণুর সংখ্যা—					
@ 3.0115 × 10	(a) (b) 6.022×10^{20}	© 6.022×10^{23}	(d) 3.0115×10^{23}	উ. ©		
16. 2 মোল N ₂ গ্যাসে	র ভর—					
@ 28 g	(b) 56 g	© 128 g	(d) 72 g	উ. (b)		
7. অ্যাভোগাড্রো সূত্রে	্ব থেকে প্রমান করা যায়—			ÿ 		
@ মৌলিক গ্যাসে	ার অণু দ্বিপরমানুক	⑤ STP তে গ্যাসের আনব আর	াতন 22.4 লিটার			
আনবিক ওজন	ī = 2 × বাষ্পাঘনত্ব	@ সবগুলি		উ. @		
18. NTP @ 22.4 L	আয়তন অম্পন্ন ব্যাসটি হল—					
@ 1 গ্রাম-প্রমাণ	O (b) 1/2 গ্রাম-প্রমাণু C	O ₂ © 16 গ্রাম O ₂	① 1 মোল O ₂	উ. 🛈		
 একটি গ্যাসীয় পদ 	র্থের আণবিক গুরুত্ব 64 হলে ওর বাদ্ব	ঘনত্ব হবে—				
	(b) 64	© 32	(d) 16	উ. ©		
20. একটি আদর্শ গ্যাত	সর উদাহরণ হল—					
(a) হিলিয়াম	(b) নাইট্রোজেন	© অক্সিজেন	(d) কোনটিই নয়	উ. 🔞		
21. Pচাপ ও Tতাপম	াত্রায় <i>V</i> আয়তন He গ্যাসে অণুর সংখ্য	া <i>x</i> টি হলে একই চাপ ও তাপমাত্রায় 3 <i>V</i> আ	্ য়তন O, গ্যাসে অণুর সংখ্যা হনে			
a x ि	(b) 3 <i>x</i> ਿ ੈ	© 9x 🕏		উ. (b)		
	প্রঘনত্ব 11.2। NTP তে ঐ গ্যাসের 1		3			
@ 2.24 L	(b) 1 L	© 11.2 L	(d) 22.4 L	উ. ©		
	খ্যক CO অনুর ভর—		0			
@ 28 g	ⓑ 14 g	© 56 g	d 7 g	উ. @		
	্রহাইড্রোজেনে মোল-অণুর সংখ্যা—	0 20 8	9 7 8	0.0		
@ 0.1	(b) 1	© 0.01	(d) 0.001	উ. ©		
- FE	্ত্র েকোন শর্তে প্রায় আদর্শ গ্যাসের মতো		9 0.001	0.0		
এ উচ্চচাপ ও উ		(b) উচ্চচাপ ও নিম্ন উচ্চতায়				
© নিম্নচাপ ও উ		(d) নিম্নচাপ ও নিম্ন উষ্ণতায়				
তে নিম্নচাৰ ওচ্চ ওক্ষতায় তিন্দ্ৰ স্থান কৰিব ক্ষতায় বিদ্যালয় ওচ্চ ক্ষতায় বিদ্যালয় ওচ্চ ক্ষতায় বিদ্যালয় বিদ্য			rt	উ. ©		
			n.	15.0		
$\odot \frac{P}{5}$	$\bigcirc \frac{P}{3}$	$\odot \frac{P}{4}$	$\bigcirc \frac{P}{2}$	উ. 🔞		
	ল যার অণু ও পরমাণু সমার্থক, সেটি হব	7 —	-33			
হাইড্রোজেন	(b) হিলিয়াম	© ওজোন	ক্রারিন	উ. ⓑ		
8. শুদ্ধ বাতাসের চো	য়ে আর্দ্র বায়ু—					
@ ভারী	(b) হালকা	© ভারী নয় আবার হালকাও নয়	 কখনও ভারী কখনও হালব 	কা উ. b		
29. নীচের কোনটি মে	ালার আয়তনকে সৃচিত করে—					
$\bigcirc \frac{V}{n}$	(b) nRT	© $\frac{n}{V}$	$\textcircled{d} \frac{W}{M}$	উ. 🗿		
ু মুখ্য ধারনা (ব	য়ল ও চার্লস ও অ্যাভোগাডো সূত্রে	র সমন্বয়ে আদর্শ গ্যাসের সমীকরণ)				

সুতরাং, বয়েল সূত্রানুযায়ী, $V \propto \frac{1}{p}$ [যখন T ও n স্থির]

চার্লসের ",
$$V \propto T$$
 [যখন $P \in n$ স্থির]

অ্যাভোগাড়ো " ,
$$V \propto n$$
 [যখন P ও T স্থির]

যৌগিক ভেদের উপপাদ্য অনুযায়ী, তিনটি সূত্রকে সমন্বয় করে আমরা পাই,

$$V \propto \frac{nT}{P}$$
 (যখন P, T ও n পরিবর্তনশীল)

বা,
$$V = \frac{nRT}{P}$$

[R = ভেদধ্রুবক, ইহার মান গ্যাসের রাসায়নিক প্রকৃতির উপর নির্ভরশীল না,

বা,
$$PV = nRT$$

এটির মান 1 মোল অণু পরিমান সকল গ্যাসের ক্ষেত্রে সমান।]

131. মোলার গ্যাস ধ্রুবক বা সর্বজনীন গ্যাস ধ্রুবক বলতে কী বোঝ?

ভব্র 1 গ্রাম অণুপরিমান গ্যাসের ক্ষেত্রে গ্যাসটির চাপ ও আয়তনের গুণফলের সঙ্গে কেলভিন স্কেলে উষ্ণতার অনুপাত সর্বদাই ধ্রুবক থাকে। ইহাকে মোলার গ্যাসধ্রুবক বা সর্বজনীন গ্যাস ধ্রুবক বলা হয়। PV = nRT সমীকরণে R হল সর্বজনীন গ্যাসধ্রুবক।

132. 'R'-কে সর্বজনীন গ্যাস ধ্রুবক বলে কেন?

জ্বর 'R'-এর মান গ্যাসের প্রকৃতি, ভর এবং অবস্থা নির্ণয়কারী শর্তের (চাপ, উষ্ণতা ও আয়তন) উপর নির্ভরশীল না। R-এর মান সব গ্যাসের ক্ষেত্রে অভিন্ন হয়ে থাকে। সেজন্য মোলার গ্যাসঞ্জবক R কে সর্বজনীন গ্যাসঞ্জবক বলা হয়।

133. সর্বজনীন গ্যাস 'R'-এর মাত্রা নির্ণয় কর। C.G.S ও S.I পদ্ধতিতে ইহার একক কী?

ভত্তর n মোল আদর্শ গ্যাসের ক্ষেত্রে অবস্থার সমীকরণ, PV=nRT বা, $R=rac{PV}{nT}$ ।

$$\therefore$$
 R -এর মাত্রা $=$ $\frac{\text{birds nion} \times \text{subsolan nion}}{\text{মোল $\times}$ উষ্ণতার মাত্রা $}$ $=$ $\frac{\frac{1}{\text{cmax man}} \times \text{subsolan nion}}{\text{মোল $\times}$ উষ্ণতার মাত্রা $}$ $=$ $\frac{\text{area nion} \times \text{christs nion}}{\text{মোল $\times}$ \times $}$ $=$ $\frac{\text{mLT}^{-2} \times L}{\text{mol} \times \theta}$ $=$ $\frac{\frac{MLT^{-2}}{L^2} \times L^3}{\text{mol} + K}$ $=$ $\frac{\text{mios nion}}{\text{mol} \times \theta}$ $=$ $\frac{\text{mios nion}}{\text{mol} \times \theta}$ $=$ $\frac{MLT^{-2} \times L}{\text{mol} \times \theta}$ $=$ $\frac$$$$

R-এর C.G.S একক হল → আর্গ মোল k^{-1} ।

R-এর S.I একক হল ightarrow জুল মোল $^{-1}k^{-1}$ ।

134. সর্বজনীন গ্যাস ধ্রুবক (R)-এর ভৌত তাৎপর্য উল্লেখ কর।

ভবর 1 K উষ্ণতা বৃদ্ধিতে 1, মোল অণু আদর্শ গ্যাস স্থির চাপের বিরূদ্ধে প্রসারিত হলে যে পরিমাণ কার্য সম্পাদিত হয়, তার মান 'R' এর সমান।

135. 'R'-এর মান নির্ণয় কর।

তৈরে
$$R = \frac{PV}{nT} = \frac{1.013 \times 10^6 \text{ dyncm}^{-2} \times 22400 \text{ cm}^3}{1 \text{ mol} \times 273.15}$$
 (C.G.S এককে)
= $8.314 \times 10^7 \text{ erg mol}^{-1} \text{ K}^{-1}$

S.I এককে, 8.314 Joule mol⁻¹ K⁻¹

Cal এককে,
$$\frac{8.314}{4.184}$$
 cal mol^{-1} K^{-1} = 1.987 cal mol^{-1} K^{-1} (:: 1 cal = 4.184 J)

136. PV = nRT সমীকরণ থেকো কোনো গ্যাসের আনবিক ভর কীভাবে নির্ণয় করবে?

জ্জুর আমরা জানি, n মোল আদর্শ গ্যাসের অবস্থার সমীকরণ, PV = nRT। যেখানে, V = গ্যাসের আয়তন, P = চাপ, T = গ্যাসের উষ্ণতা, n = আদর্শ গ্যাসেরমোল সংখ্যা।

যদি গ্যাসটির ভর = mg এবং আনবিক ভর = $M\,\mathrm{g}\;\mathrm{mol}^{-1}$ হয়, তবে গ্যাসের মোল-সংখ্যা $(n)=rac{m}{M}$ ।

$$\therefore PV = nRT$$
 বা, $PV = \frac{m}{M}RT$ বা, $PM = \frac{m}{V}RT$ বা, $PM = dRT$ $\left(\because \operatorname{ঘনত}\left(d\right) = \frac{m}{V}\right)$

বা,
$$M = \frac{dRT}{P}$$

	বহুবিকল্পভিত্তিক প্রশ্ন [MCC	2]			প্রশ্নের মান : ১				
137.	37.PV=nRTসমীকরণে কোন্ রাশিটি স্থির ?								
	@ P	(b) T	© V	(1) R	উ. 🔞				
138.	মোলার গ্যাস ধ্রুবকের একক	হল—							
	② আর্গ K ⁻¹ মোল	ⓑ cal K ⁻¹ mol ⁻¹	© জুল K ⁻¹ মোল	প্রত্যেকটি	উ. 🛈				
139.	সর্বজনীন গ্যাস ধ্রুবকের মাত্রা	হল—			\$3				
	\bigcirc ML ² T ⁻² N ⁻¹ θ ⁻¹	$ \textcircled{b} \ ML^2 T^{-2} N^{-2} \theta^{-1} $	\bigcirc ML ² T ⁻² N ⁻¹ θ	(d) $MLT^2N^{-1}\theta^{-1}$	উ. @				
140.	আদর্শ গ্যাস সমীকরণ থেকে গ	গ্যাসের আনবিক গুরুত্ব নির্ণয় সংক্র	ান্ত সমীকরণটি হল—		d= ~.co				
		(b) $PV = MRT$	$\bigcirc M = \frac{PRT}{d}$		উ. 🔞				
141.	1. প্রতি ডিগ্রী প্রতি মোল এককে R-এর মান প্রায়—								
	@ 2 cal	(b) 1 cal	© 3 cal	(d) 4 cal	উ. 💿				
142.	2. সর্বজনীন গ্যাস ধ্রুবক <i>R-</i> এর মান নির্ভর করে—								
	গ্যাসের উষ্ণতার ওপর	ি মোল অনুসংখ্যার ওপর	© গ্যাসের প্রকৃতির ওপর	কানটিই নয়	উ. 🔞				
143.	$oxed{13.}$ সাধারণ গ্যাস সমীকরণ $PV=nRT$ -এ V হল $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$								
	 n মোল অণু গ্যাসের আয়য় 	ত ৰ	ি যে কোনো পরিমান গ্যাসে						
	© 1 গ্রাম পরিমান গ্যামের আয়তন		 1 মোল অণু গ্যাসের আয়তন 		উ. 💿				
144.	বেলুন ফোলানের সময় নীচের	র যে সম্পর্কটি প্রযোজ্য হয় সেটি হ	্ল—						
	\bigcirc $\frac{V}{T}$ = ধ্রুবক (যখন P স্থির)		(b) $PV = nRT$						
	\bigcirc $\frac{PV}{T}=$ শ্রুবক		d $PV =$ ধ্রুবক (যখন T স্থির)		উ. (b)				
	মুখ্য ধারনা (আনবিক স্তব্	র একটি আদর্শ গ্যাসের আচরণ	া, আদর্শ আচরণ থেকে বাস্তব গ	গ্যাসগুলির বিচ্যুতি)					

145. গ্যাসের গতীয় তত্ত্বের স্বীকার্যগুলি উল্লেখ কর।

ভব্তর [i] প্রত্যেকটি গ্যাস অসংখ্য অতি ক্ষুদ্র কণার সমন্বয়ে গঠিত। এই অতিক্ষুদ্র কণাগুলিকেঐ গ্যাসের অণু বলে।

- [ii] গ্যাসের অণুগুলি কঠিন, গোলকাকার ও পূর্ণ স্থিতিস্থাপক হয়।
- [iii] একই গ্যাসের অণুগুলি সমস্ত দিক দিকেই সদৃশ হয়।
- [iv] কোনো গ্যাসের অণুগুলির মোট আয়তন উক্ত গ্যাসের আধারের আয়তনের তুলনায় নগন্য হয়।
- [v] গ্যাসের অণুগুলি সরলরৈথিক পথে ইতস্ততভাবে সদা সঞ্চরণশীল। অণুগুলি পরস্পরের সঙ্গে এবং পাত্রের দেওয়ালের সঙ্গে অবিরত ধাক্কা খায়। গ্যাস অণুগুলি কর্তৃক পাত্রের দেওয়ালে অবিরত ধাক্কায় ফলে গ্যাসের চাপ সৃষ্টি হয়।
- [vi] পরপর দুটি সংঘর্যের মাঝের পথ একটি অণু সমবেগে চলে। পরপর দুটি সংঘর্যের মাঝের এই পথকে মুক্তপথ বলে। মুক্তপথ অতিক্রম করতে একটি অণুর যে সময় লাগে তার তুলনায় সংঘর্যের সময়কাল নগন্য হয়।
- [vii] গ্যাস অণুগুলির পারস্পরিক সংঘর্ষ বা পাত্রের দেওয়ালে সংঘর্ষ পূর্ণ স্থিতিস্থাপক হয়। ফলে সংঘর্ষের সময় অণুগুলির নিট গতিশক্তির কোনো পরিবর্তন হয় না।
- [viii] গ্যাস অণুগুলির মধ্যে কোনো আকর্ষণ বা বিকর্ষণ বল নেই। অর্থাৎ গ্যাস আধারে অণুগুলি স্বাধীনভাবে বিচরণ করতে পারে।
- [ix] গ্যাস অণুগুলির গড় গতিশক্তি গ্যাসের পরম উষ্ণতার সঙ্গে সমানুপাতিক হয়।

146. গ্যাসের ব্যাপন বলতে কাকে বলে? ইহার তাৎপর্য ব্যাখ্যা কর।

জ্জ্জা যে ধর্মের জন্য দুই বা ততোধিক গ্যাস তাদের ঘনত্ব বা আনবিক ভর নির্বিশেষে বাহ্যিক কোনো সাহায্য ছাড়াই স্বতঃস্ফূর্তভাবে মিশ্রিত হয়, তাকে গ্যাসের ব্যাপন বলা হয়।

গ্যাসীয় পদার্থের ক্ষেত্রে অণুর অস্তিত্ব ও তাদের স্বভাবগত বিশৃঙ্খল আনবিক গতির স্বপক্ষে অন্যতম জোরালো প্রমান হল ব্যাপন।

147. গ্যাসের অণুর গতিশীলতার স্বপক্ষে দুটি যুক্তি দিয়ে বোঝাও।

- জ্বিত্র [i] গ্যাসের চাপ: গ্যাসের অণুগুলি নিরস্তর বিশৃঙ্খল অবস্থায় থাকে। কোনো আবদ্ধ পাত্রে রাখলে গ্যাসের অণুগুলি পাত্রের দেওয়ালে অনবরত ধাক্ষা দেয়। ধাক্কাণ্ডলি স্থিতিস্থাপক হওয়ায় গ্যাসের অণুগুলির গতিশক্তি অপরিবর্তিত থাকে। এভাবে অণুগুলির অবিরাম ধাক্কার ফলে পাত্রের ভিতরের দেওয়ালের প্রতি একক ক্ষেত্রফলের ওপর লম্বভাবে যে বলক্রিয়া করে, তাই হল গ্যাসের চাপ। সূতরাং গ্যাসের অণুগুলির গতিশীল অবস্থায় থাকার জন্যই গ্যাসের চাপ সৃষ্টি হয়।
 - [ii] গ্যাসের ব্যাপন : ঘরের মধ্যে কোনো গন্ধযুক্ত গ্যাস রাখলে গ্যাসের অণগুলি ব্যাপন প্রক্রিয়ায় সর্বত্র ছড়িয়ে পড়ে। ফলে কিছুক্ষণের মধ্যেই ঘরের

মধ্যে যেকোনো অবস্থান থেকেই গ্যাসটির অবস্থান পাওয়া যায়। গ্যাস অণুগুলি গতিশীল না হলে এই ঘটনা কখনই ঘটা সম্ভব হত না। অর্থাৎ গ্যাসের চাপ ও গ্যাসের ব্যাপন, গ্যাস অণুগুলির গতিশীলতার স্বপক্ষে প্রকৃষ্ট প্রমান।

148. স্থির উষ্ণতায় রেখে গ্যাসের আয়তনের উপর চাপের প্রভাব গ্যাসের গতীয় তত্ত্বের সাহায্যে ব্যাখ্যা কর।

উত্তর উষ্ণতা স্থির রেখে নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন কমালে একই সংখ্যক অণু আগের চেয়ে কম জায়গায় থাকে এবং অণুগুলি দ্বারা অতিক্রান্ত পথের দৈর্ঘ্য কমে যায়। ফলে, পাত্রের দেওয়ালের একক ক্ষেত্রফলের সঙ্গে অণুগুলির সংঘাত সংখ্যা বৃদ্ধি পায়। অর্থাৎ আয়তন কমলে চাপ বেড়ে যায়। অন্যদিকে আয়তন বাড়ালে পাত্রের দেওয়ালের সঙ্গে গ্যাসের অণুগুলির সংঘাত সংখ্যা কমে যায়, ফলে চাপ হ্রাস পায়।

149. গ্যাসের চাপের উপর উষ্ণতা বৃদ্ধির প্রভাব গ্যাসের গতীয় তত্ত্বের সাহায্যে ব্যাখ্যা দাও।

জ্জ্ব্ব আবদ্ধ পাত্রে রাখা কোনো গ্যাসের তাপমাত্রা বৃদ্ধি করলে গ্যাসের অণুগুলির গতিশক্তি তথা গতিবেগ বৃদ্ধি পায়। ফলে পাত্রের দেওয়ালের সঙ্গে অণুগুলির ধাকা খাওয়ার হার বৃদ্ধি পায়। এজন্য পাত্রের ভিতরের দেওয়ালের প্রতি একক ক্ষেত্রফলের ওপর লম্বভাবে ক্রিয়াশীল বল তথা গ্যাসের চাপ বৃদ্ধি পায়।

150. গ্যাসের অণুর গতির উপর গ্যাসের উষ্ণতা হ্রাস-বৃদ্ধির প্রভাব ব্যাখ্যা কর।

জ্জুর আবদ্ধ পাত্রে রাখা কোনো গ্যাসের তাপমাত্রা বৃদ্ধিতে গ্যাস অণুগুলির গতিশক্তি বা গতিবেগ বৃদ্ধি পাবে। আবার গ্যাসের তাপমাত্রা হ্রাসে গতিবেগ তথা গতিশক্তি হ্রাস পাবে।

151. বাস্তব গ্যাসের আদর্শ আচরণ থেকে বিচ্যুতির কারণগুলি কী কী।

- ভব্র [i] গ্যাসের গতীয় তত্ত্বে গ্যাসের অণুগুলিকে বিন্দুভরবিশিষ্ট কনারূপে কল্পনা করা হয় এবং গ্যাস অণুগুলির মোট আয়তন গ্যাস যে পাত্রে রাখা হয় তার আয়তনের তুলনায় নগন্য ধরে নেওয়া হয়। কিন্তু বাস্তব গ্যাসের অণুগুলি খুব ছোট হলেও তাদের নির্দিষ্ট আয়তন আছে। কাজেই উপরিউক্ত কল্পনা খুব উচ্চ উষ্ণতায় এবং খুব নিম্নরূপে সঠিক হলেও সবসময় নির্ভূল নয়। বাস্তব গ্যাসের অণুগুলির অবাধ বিচরণের জন্য তাদের কার্যকরী আয়তন পাত্রের আয়তনের তুলনায় সামান্য কম হয়।
 - [ii] গ্যাসের গতীয় তত্ত্বানুসারে গ্যাসের অণুগুলির মধ্যে কোনো আকর্ষণ বল কাজ করেনা। কিন্তু চাপ বেশী হলে গ্যাসের আয়তন হ্রাস পায় এবং গ্যাসীয় অণুগুলি পরস্পরের খুব কাছাকাছি চলে আসে এর ফলে অণুগুলির মধ্যে আকর্ষণ বল ক্রিয়া করে। আকর্ষণ বল না থাকলে গ্যাসকে চাপ প্রয়োগে ঠান্ডা করে তরলে বা কঠিনে পরিণত করা সম্ভব হত না। সূতরাং কল্পিত আদর্শ গ্যাসের অণুগুলি আকর্ষণবল যুক্ত অবস্থায় পাত্রের ভিতরের দেওয়ালে যে পরিমান ধাক্কা দেওয়ার কথা, বাস্তব গ্যাসের অণুগুলি তা দিতে পারে না।

152. কোন শর্তে বাস্তব গ্যাসগুলি আদর্শ গ্যাসের মতো ও আদর্শ গ্যাসগুলি বাস্তব গ্যাসের মতো আচরণ করবে ?

জ্জ্বা নিম্নচাপ ও উচ্চ উষ্ণতায় বাস্তবগ্যাসগুলি আদর্শ গ্যাসের মতো আচরণ করবে। অন্যদিকে, উচ্চচাপ ও নিম্ন উষ্ণতায় আদর্শ গ্যাসগুলি বাস্তব গ্যাসের ন্যায় আচরণ করবে।

153. গ্যাসের গতীয় তত্ত্ব কঠিন বা তরলের ক্ষেত্রে প্রযোজ্য হয় না কেন?

জ্বিত্র কঠিন বা তরল অবস্থায় পদার্থের অণুগুলির মধ্যে তীব্র আকর্ষণ বলের অস্তিত্ব এবং পদার্থের মোট আয়তনের তুলনায় অণুগুলির আয়তন উপেক্ষীয় নয়। এই দুই কারণে গ্যাসের গতীয় তত্ত্ব কঠিন বা তরলের ক্ষেত্রে প্রযোজ্য হয় না।

154. গ্যাসের অণুগুলির প্রতিনিয়ত সংঘর্ষে লিপ্ত হলেও তাদের গড় গতিশক্তি স্থির থাকার কারণ কী?

জ্জা গ্যাসের গতীয় তত্ত্বানুসারে, গ্যাস অণুগুলির নিজেদের মধ্যে বা পাত্রের দেওয়ালের সঙ্গে সংঘর্ষ পূর্ণ স্থিতিস্থাপক হয়। তাই অনবরত সংঘর্ষ সত্ত্বেও অণুগুলির গড় গতিশক্তি স্থির থাকে।

155. হাইড্রোজেন গ্যাসপূর্ণ বেলুন কিছু সময় পরে চুপসে যাওয়ার কারণ কী?

জ্জ্জ্জ রবারের তৈরী বেলুনের গায়ে অসংখ্য সৃক্ষ্ণ ছিদ্র থাকে, এই ছিদ্রগুলির আকার H_2 অণুর আকারের প্রায় সমান হয়। বেলুনে উচ্চচাপে H_2 গ্যাস ভরা হয়। এই অবস্থায় বেলুনের বায়ুর চাপ কম হওয়ায় বেলুন মধ্যস্থ H_2 গ্যাস ব্যাপন প্রক্রিয়ায় বেলুনের গায়ের সৃক্ষ্ণ ছিদ্র ভেদ করে বাইরে বেরিয়ে আসে। ফলে, বেলুন মধ্যস্থ বায়ুর চাপ ক্রমশ কমতে থাকে এবং বেলুনটি চুপসে যায়।

156. আদর্শ গ্যাসের ওপর চাপ প্রয়োগে সেটিকে কেন তরলে পরিণত করা যায় না?

উত্তর আদর্শ গ্যাসের অণুগুলির আন্তরানবিক আকর্ষণ বল নেই। এই কারণে চাপ প্রয়োগে এটিকে তরলে পরিণত করা সম্ভব হয় না।

157. গ্যাস ও বাষ্পের মধ্যে পার্থক্য উল্লেখ কর।

উত্তর

গ্যাস		ৰাষ্প		
[i]	গ্যাসীয় পদার্থের উষ্ণতা সংকট উষ্ণতা অপেক্ষা বেশী হলে তাকে গ্যাস বলা হয়।	[i]	গ্যাসীয় পদার্থের উষ্ণতা সংকট উষ্ণতা অপেক্ষা কম হলে তাকে বাষ্প বলা হয়।	
[ii]	সংকট উষ্ণতার থেকে কম উষ্ণতায় চাপ প্রয়োগ করলে গ্যাস তরলে পরিণত হয়।	[ii]	সাধারণ উষ্ণতায় চাপ প্রয়োগ করলে বাষ্প সহজেই তরলে পরিণত হয়।	

স্থিতিস্থাপকতা

@ তরঙ্গায়িত

(b) মুক্তপথ

(b) বৃত্তাকার

165. গ্যাসের গতীয় তত্ত্ব অনুযায়ী, একটি আদর্শ গ্যাসে পরপর দুটি সংঘর্ষের মাঝে গ্যাস অণুগুলির গতির প্রকৃতি—

158.	$oldsymbol{8}$. একটি গ্যাস প্রসারিত হওয়ার $PV^2=$ সময় ধ্রুবক সূত্র মেনে চলে। দেখাও যে, প্রসারনের ফলে গ্যাসটি শীতল হয়।							
উত্তর	র প্রশ্নানুসারে, প্রসারণের সময় গ্যাসটি $PV^2=k$ (ধ্রুবক) সম্পর্ক মান্য করে।							
	$\therefore PV \cdot V = k$ বা, $nRT \cdot V = k$ [$\because PV = nRT$ আদর্শ গ্যামের অবস্থার সমীকরণ]							
	বা, $TV = \frac{K}{nR} =$ ধ্রুবক $[\because$ মোলসংখ্যা $n \in R$ ধ্রুবক $]$							
	বা, $TV = $ ধ্রুবক							
	বা, $T \propto \frac{1}{V}$	প্রসারণের সময় গ্যাসের আয়তন বৃদ্ধি	পায়, ফলে এর উষ্ণতা হ্রাস পায়।	সূতরাং প্রসারণে গ্যাসটি শীতল হয়।				
159.	গ্যাসের উষ্ণতা গ্যাসীয়	য় অণগুলির গড় গতি শক্তির—						
	@ সমানুপাতিক	(b) ব্যস্তানুপাতিক	© বর্গের ব্যস্তানুপাতিক	 বর্গের সমানুপাতিক 	উ. @			
160.	60. নিম্নলিখিত রাশিগুলির মধ্যে কোন্টি নির্দিষ্ট তাপমাত্রায় সকল প্রকার গ্যাস অণুর ক্লেত্রে সমান—							
	@ ভর	(b) ভরবেগ	© বেগ	া গতিশক্তি	উ. 🛈			
161.	61. গ্যাসের উষ্ণতা বাড়ালে অণুগুলির গতিবেগ—							
	@ বাড়বে	(b) অপরিবর্তিত থাকবে	© কমবে	প্রথমে বাড়ে, পরে কমবে	উ. @			
162.	62. গ্যাসের অণুগুলির পারস্পরিক সংঘর্ষ সত্ত্বেও অণুগুলির—							
	@ মোট ভরবেগ ও গ	াতিশক্তি অপরিবর্তিত থাকে	ভরবেগ বৃদ্ধি পায়					
	© ভরবেগ ও গতিশক্তি উভয়ই বৃদ্ধি পায়		 ত্রপাতিশক্তি প্রথমে বাড়ে প 	উ. @				
163.	53. গ্যাসের অণুগুলির গতিশীলতা প্রমাণ করে—							
	@ গ্যাসের চাপ	তি ব্যাপন ধর্ম	© গ্যাসের গতিশক্তি	ক্রি সবকটি	উ. 🔞			
164.	64. গ্যাসের অণুগুলির পরপর দুটি ধাক্কার মাঝের দূরত্বকে বলে—							

© কোনটিই নয়

© সরলরৈখিক

🛈 ব্যাপন ক্রিয়া

(d) পরাবৃত্তাকার

উ. **ⓑ**

উ. ©