

Jeff Stapleton

VP Security Architect Wells Fargo X9F4 workgroup chair

Application Security

MATTERS #RSAC

- Solution: tokenization technology
 - Substitute sensitive data for benign data
- Control: benign data is safe
 - Data in storage
 - Data in transit
 - Data in process
- Application interoperability
 - Token aware
 - Token unaware

Token Problems

- Tokens data elements not well understood
 - X9 sensitive payment card data tokens <u>www.x9.org</u>
 - EMV payment tokens <u>www.emvco.com</u>
 - Apple Pay, Google pay, Samsung pay
 - PCI post-authorization tokens <u>www.pcisecuritystandards.org</u>
- Tokenization process not well understood
 - Tokenization versus detokenization
- Tokenization systems not well understood
 - Token vaults

WHAT IS TOKENIZATION?

Background Information

Tokenization Defined¹

¹ RSA 2017 Conference PDAC-R02 Cybersecurity vs. Tokenization

³ ISO 16609 Banking – Requirements for Message Authentication Using Symmetric Techniques

² X9.119 Protection of Sensitive Payment Card Data – Part 2: Post-Authorization Tokenization Systems

Detokenization: Encryption Method

Detokenization: MAC¹

¹ Detokenization versus Verification

² ISO 16609 Message Authentication Using Symmetric Techniques (includes MAC and HMAC)

Detokenization: Random

Detokenization: Table

RNG: Random Number Generator

PRNG: Pseudo RNG

Comparison of Methods

Encryption Method

- Vulnerable to key compromise
- Key management

MAC Method

- Vulnerable to key compromise
- Key management
- Vulnerable to vault attack

But what about **EMV Tokenization**?

Table Method

- Vulnerable to table compromise
- Table management

Random Method

- Vulnerable to RNG compromise
- Entropy management
- Vulnerable to vault attack

EMV Tokenization

action ...

PCI Tokenization

mella ...

Tokenization Issues

- Token replaces USV to protect it from disclosure or misuse
 - Static tokens have value so might be misused
 - Static tokens might be detokenized
- Token vaults are prime targets
 - Application access controls
 - Network segmentation controls
- Tokenization services
 - Who can get a token, who cannot
 - Who can detokenize, who cannot

So What if?

MATTERS #RSAC

- Each token is used only once
 - No static tokens
 - No detokenization
 - No token vault
- Capabilities
 - Unique token per transaction
 - No residual data
 - Ability to verify token
 - Cryptography based

DERIVED UNIQUE TOKEN PER TRANSACTION (DUTPT)

Background Information

DUTPT Parameters

- Two different one-way functions $F(x) \neq G(x)$
- Transaction (c = 1, 2, 3, ... max) counter
- Value (V) to be tokenized
- PKI with X.509 certificates
 - CMS-based digital signatures
 - CMS-based encrypted data
- Client has unique identifier (ID)
 - Uses value (V) once then destroys

Cryptographic Message Syntax¹ (CMS)

- Signed Data
 - Certificates, Signer Info
- Enveloped or Encrypted Data
 - Recipient Info, Encrypted Content Info
 - Encrypted Content Info
- SignCrypted Data
 - Certificates, Signcrypters

¹ X9.73 Cryptographic Message Syntax – ASN.1 and XML

DUTPT Process: x = 1

DUTPT Process: x = 2

action ...

DUTPT Process: x = 3

seella ...

DUTPT Benefits

- Unique token per transaction
 - Each token (Tc) used only once
 - Next token (Tc+1) not derivable from current token (Tc)
- Derived token using cryptographically sound functions
 - Hash (SHA2, SHA3), MAC or HMAC but $F(x) \neq G(x)$
- Client does not retain value (V) only next value (Vc)
 - Value (V) not recoverable from intermittent values (Vc)
- Suitable for mobile, IoT or other remote devices

Conclusions

- Derived Unique Token Per Transaction
 - Conceptual design schema
 - No standards or specification at this time
 - Thinking about application opportunities
 - No software implementations at this time
 - Solution looking for a problem
- Audience questions or comments?
 - Any thoughts, ideas, or interest?

Appendix: References

- International Standards Organization <u>www.iso.org</u>
- American National Standards Institute <u>www.ansi.org</u>
- Accredited Standards Committee X9 <u>www.x9.org</u>
- National Institute of Standards and Technology <u>www.nist.gov</u>
 - Cryptographic Algorithm Validation Program (CAVP)
 - Cryptographic Module Validation Program (CMVP)
- National Information Assurance Partnership <u>www.niap-ccevs.org</u>
 - Common Criteria Evaluation and Validation Scheme (CCEVS)

Appendix: Standards

- Accredited Standards Committee X9 www.x9.org
 - ANSI X9.73 Cryptographic Message Syntax (CMS) ASN.1 and XML
 - ANSI X9.82 Random Number Generation (RNG) multiple parts
 - ANSI X9.119 Requirements for Protection of Sensitive Payment Card Data Part 2: Post-Authorization Tokenization Systems
- International Standards Organization <u>www.iso.org</u>
 - ISO/IEC 7812 Identification cards -- Identification of issuers -- Part 1: Numbering system
 - ISO 16609 Message Authentication Using Symmetric Techniques
- Europay-MasterCard-Visa Company (EMVCo) <u>www.emvco.com</u>
 - EMVCo Payment Tokenisation Specification Technical Framework v1.0 March 2014

Appendix: Reading

- Code Breakers: Story of Secret Writing by David Kahn (1967)
- Code Book: Science of Secrecy by Simon Singh (2000)
- Handbook of Applied Cryptography (HAC) by Menezes, van Oorshot, and Vanstone (1997)
- Security without Obscurity by Jeff Stapleton
 - A Guide to Confidentiality, Authentication, and Integrity (2014)
 - A Guide to Public Key Infrastructure (PKI) Operation (2016)
 - A Guide to Cryptographic Architectures (June 2018)

How to apply this session

- One week
 - Determine if your organization uses, or plans to use, tokenization
- Three months
 - Determine your tokenization regime (e.g. EMV, PCI, X9, other)
 - Determine the tokenization method (Encryption, MAC, Random, or Table)
 - Determine if static tokens or dynamic tokens are useful
- Six months
 - Determine if derived unique token per transaction (DUTPT) makes sense

