Лекция 29 от 27.04.2016

Пусть \mathbb{E} — векторное пространство.

Определение. Векторы x,y называются ортогональными, если (x,y) = 0. Обозначение $x \perp y$.

Определение.

Пусть $S \subset \mathbb{E}$ — произвольное подпространство. Множество $S^{\perp} = \{x \in \mathbb{E} \mid (x,y) = 0 \ \forall y \in S\}$ называется ортогональным дополнением κ S

Замечание.

- 1. S^{\perp} подпространство
- 2. $S^{\perp} = \langle S \rangle^{\perp}$

Предложение.

- 1. $\dim S^{\perp} = n \dim S$
- 2. $\mathbb{E} = S \oplus S^{\perp}$
- 3. $(S^{\perp})^{\perp}$

Доказательство. 1. Выделим в S базис (e_1, \ldots, e_k) и дополним его векторами (e_{k+1}, \ldots, e_n) до базиса \mathbb{E} .

$$x = x_1 e_1 + \ldots + x_n e_n \in \mathbb{E}$$
$$x \in S^{\perp} \Leftrightarrow (x, e_i) = 0 \ \forall i = 1, \ldots, k$$
$$(x, e_i) = (e_1, e_i) x_1 + (e_2, e_i) x_2 + \ldots, (e_n, e_i) x_n = 0$$

Получим однорудную СЛУ $G\begin{pmatrix} x_1\\x_2\\ \vdots\\x_n \end{pmatrix}=0$, причём $G\in Mat_{k\times n}(\mathbb{R})$. rk G=k, посколь-

ку левый верхний минор (совпадает с таковым в матрице Грама) $k \times k$ больше нуля. Размерность пространства решений $\dim S^{\perp} = n - \operatorname{rk} G = n - \dim S$.

- 2. Поскольку $(x,x)=0 \Leftrightarrow x=0,$ то $S\cap S^\perp=\{0\},$ а значит $\mathbb{E}=S\oplus S^\perp$
- 3. $S \subset (S^{\perp})^{\perp}$ всегда.

$$\dim(S^{\perp})^{\perp} = n - \dim S^{\perp} = k \Rightarrow S = (S^{\perp})^{\perp}$$

Пусть $x \in \mathbb{E}$. Значит существует единственное представление его в виде x=y+z, где $y \in S, z \in S^{\perp}$.

Определение. у называется ортогональной проекцией вектора x на подпространство S, обозначается $y = \Pr_S x$. z называется ортогональной составляющей вектора x вдоль S, обозначается $\operatorname{ort}_S x$

Определение. Базис (e_1, \ldots, e_n) в \mathbb{E} называется ортогональным, если $(e_i, e_j) = 0 \ \forall i \neq j$. (Что то же самое, $G(e_1, \ldots, e_n)$ диагональна). Базис называется ортонормированным, если дополнительно $(e_i, e_i) = 1 \ \forall i$. (Что то же самое, $G(e_1, \ldots, e_n) = E$).

Замечание. Если (e_1,\ldots,e_n) ортогональный базис, то $\left(\frac{e_1}{|e_1|},\ldots,\frac{e_n}{|e_n|}\right)$ ортонормированный.

Теорема. B любом конечномерном евклидовом пространстве существует ортонормированный базис.

Доказательство. Следует из того, что всякую квадратичную форму можно привести к нормальному виду. □

Пусть (e_1,\ldots,e_n) — ортонормированный базис. Пусть также есть ещё один базис (e'_1,\ldots,e'_n) , причём $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$.

Предложение. (e'_1,\dots,e'_n) — ортонормированный тогда и только тогда, когда $C^{-1}=C^T$

Доказательство. (e'_1, \dots, e'_n) ортонормированный, следовательно, $G(e'_1, \dots, e'_n) = E$.

$$G(e'_1, \dots, e'_n) = C^T G(e_1, \dots, e_n) C = C^T C = E$$

Отсюда и получаем требуемое.

Определение. Матрица С в таком случае называется ортогональной.

Свойства.

$$\sum_{k=1}^{n} c_{ki} c_{kj} = \delta_{ij}$$

$$\updownarrow$$

$$C^{T}C = E \Leftrightarrow C^{T} = C^{-1} \Leftrightarrow CC^{T} = E$$

$$\updownarrow$$

$$\sum_{k=1}^{n} c_{ik} c_{jk} = \delta_{ij}$$

Пример. $C = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ — матрица поворота на угол φ в \mathbb{R}^2 .

Ещё свойство: $\det C = \pm 1$.

Пусть $S \subset \mathbb{E}$ — подпространство. (e_1, \ldots, e_k) его ортогональный базис. $x \in \mathbb{E}$.

Предложение. $\Pr_{SX} = \sum_{i=1}^{k} \frac{(x,e_i)}{(e_i,e_i)} e_i$. В частности, если базис ортонормированный, $\Pr_{SX} = \sum_{i=1}^{k} (x,e_i) e_i$

Доказательство.

$$\Pr_{S} x = \sum_{i=1}^{k} \lambda_{i} e_{i}$$

$$x = \Pr_{S} x + \operatorname{ort}_{S} x \Leftrightarrow (x, e_{i}) = (\Pr_{S} x, e_{i}) + \underbrace{(\operatorname{ort}_{S} x, e_{i})}_{=0}$$

$$\Rightarrow (x, e_{i}) = \lambda(e_{i}, e_{i})$$

$$\lambda_{i} = \frac{(x_{1}, e_{i})}{(e_{i}, e_{i})}$$

Пусть есть базис (e_1,\ldots,e_n) в $\mathbb E$. Процесс ортогонализации даёт ортогональный базис (f_1,\ldots,f_n)

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$\dots$$

$$f_n \in e_n + \langle e_1, \dots, e_{n-1} \rangle$$

$$\langle f_1, \dots, f_i \rangle = \langle e_1, \dots, e_i \rangle \ \forall i = 2, \dots, n$$

Предложение. $f_i = \operatorname{ort}_{\langle e_1, \dots, e_{i-1} \rangle} e_i \ \forall i = 1, \dots, n$

Доказательство.

$$e_i = f_i + \lambda_1 f_1 + \ldots + \lambda_{i-1} f_{i-1}$$

$$f_i \perp \langle e_1, \ldots, e_{i-1} \rangle = \langle f_1, \ldots, f_{i-1} = f_i = \operatorname{ort}_{\langle e_1, \ldots, e_{i-1} \rangle} e_i$$

Теорема (Пифагор). $|x+y|=|x|^2+|y|^2$, если $x\perp y$

Доказательство.
$$|x+y|^2 = (x+y,x+y) = (x,x) + (y,y) + (x,y) + (y,x) = (x,x) + (y,y) = |x|^2 + |y|^2$$

Определение. Расстоянием между x,y называется число $\rho(x,y) = |x-y|$

Предложение (Неравенство треугольника). $\rho(a,b) + \rho(b,c) \geqslant \rho(a,c)$.

Доказательство. Пусть $x=a-b,\,y=b-c.$ Тогда a-c=x-y. Достаточно доказать, что $|x|+|y|\geqslant |x+y|$

$$|x+y|^2 = |x| + |y| \geqslant |x+y|$$

Пусть P и Q — два произвольных подмножества $\mathbb E.$

Определение. Расстояние между P и Q определяется как $\rho(P,Q) = \inf\{\rho(x,y) \mid x \in P, y \in Q\}.$

Пусть $x \in \mathbb{E}$, а $U \subset \mathbb{E}$ — подпространство.

Теорема. $\rho(x,U) = |\operatorname{ort}_{U}x|$, причём $\operatorname{Pr}_{U}x - e \partial u$ нственный ближайший к x вектор из U.

 \mathcal{A} оказательство. Пусть $y=\Pr_U x,\, z=\operatorname{ort}_U x.$ Тогда, если $y'\in U\backslash\{0\}$, то

$$\rho(x+y,y') = |x+y-y'| = |z-y'| = \sqrt{|z|^2 + |y'|^2} > |z| = \rho(x,y)$$

Пусть $U' \subset \mathbb{E}$ — подпространство. $x \in \mathbb{E}, \ (e_1, \dots, e_k)$ — базис U.

Теорема.
$$(\rho(x,U))^2 = \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)}$$

Доказательство. Если $x \in U$, то $\rho(x,U) = 0$, но с другой стороны, $\det G(e_1,\dots,e_k,x) = 0$, поскольку эти векторы линейно зависимы. Если же $x \notin U$, то $\rho(x,U) = |\mathrm{ort}_U x|$. Ортогонализация даёт нам (f_1,\dots,f_k,z) , причём $|z|^2 = (z,z) = \frac{\delta_{k+1}}{\delta_k}$