- 1) Construa os gráficos das seguintes funções reais:
 - a) f(x) = |x 1|
 - **b)** f(x) = |2 3x|
 - c) $f(x) = |x^2 3x + 2|$
 - **d)** f(x) = |2x 1| 2
 - **e)** f(x) = |x| x
 - f) $f(x) = |x^2 2x| + x + 2$
 - g) f(x) = |2x 2| + |x + 3|
 - **h)** $f(x) = |x^2 4| |x 2|$
 - i) f(x) = ||x| 2|
 - **j)** f(x) = ||2x + 3| 2|
 - **k)** $f(x) = |x^2 4|x| + 3|$
- 2) Resolva as seguintes equações:
 - a) |3x 1| = 2
 - **b)** |3x+2| = |x-1|
 - c) $|x^2 + x 5| = |4x 1|$
 - **d)** |x-2| = 2x+1
 - e) $|x^2| + |x| 6 = 0$
 - f) |x+1|-|x|=2x+1
- 3) Resolva, em \mathcal{R} , as inequações:
 - a) |2x-3| < 1
 - **b)** $1 < |x 1| \le 3$
 - c) $|x^2 5x| \ge 6$
 - **d)** |3x-4|+2x+1<0
 - e) $|x-2| |x+3| > x^2 4x + 3$
- 4) Esboce o gráfico das funções:
 - a) $f(x) = \frac{1}{|x+2|}$
 - **b)** $f(x) = \frac{1}{4x x^2 4}$
- 5) Sejam as funções reais definidas por $f(x) = x^2 4x + 1$ e $g(x) = x^2 1$. Obtenha as leis que definem $f \circ g$ e $g \circ f$.

- 6) Sejam as funções $f(x) = x^2 + 2x + 3$ e $g(x) = x^2 + ax + b$. Mostre que, se $f \circ g = g \circ f$, então f=g .
- 7) Sejam $f(x) = \sqrt{x-1}$ e $g(x) = 2x^2 5x + 3$. Determine os domínios das funções $f \circ g$ e $g \circ f$.
- 8) Dadas f(x)=3 e $g(x)=x^2$, determine f(g(x)) e g(f(x)).
- 9) Se $f(x) = \frac{1}{1-x}$, determine $(f \circ [f \circ f])(x)$.
- 10) Sejam as funções reais f(x) = 2x + 7 e $(f \circ g)(x) = x^2 2x + 3$. Determine a lei da função g.
- 11) Classifique as seguintes funções em: injetora, sobrejetora, bijetora, não é sobrejetora nem injetora.
 - a) $f: \mathcal{R} \to \mathcal{R}$ tal que f(x)=2x+1
 - **b)** $g: \mathcal{R} \to \mathcal{R}_+$ tal que $g(x) = 1 x^2$
 - c) $h: \mathcal{R} \to \mathcal{R}_+$ tal que h(x) = |x-1|
 - d) $m: \mathcal{N} \to \mathcal{N}$ tal que m(x)=3x+2
 - e) $n: \mathbb{R}^* \to \mathbb{R}^*$ tal que n(x)=1/x
 - f) $p: \mathcal{R} \to \mathcal{R}$ tal que $p(x) = x^3$
 - g) $q: \mathcal{R} \to \mathcal{R}$ tal que q(x) = |x|(x-1)
- 12) A função $f:A\to B$ é dada por $f(x)=\sqrt{1-x^2}$.
 - a) Determine o domínio de f, isto é, $A = \{x \in \mathcal{R}talqueexistef(x)\}.$
 - b) Determine a imagem de f, isto é, B=f(A).
 - c) A função f é injetora? Por quê?
 - d) Esboce o gráfico da função f.
- 13) Nas funções bijetoras abaixo, de \mathcal{R} em \mathcal{R} , obtenha a lei de correspondência que define a função inversa.
 - a) $g(x) = \frac{x+1}{x-4}$
 - **b)** $h(x) = x^3 + 2$
 - **c)** $p(x) = (x-1)^3 + 2$
- 14) Considere a função $f: [\pi/2, 3\pi/2] \to [-1, 1]$ tal que $f(x) = 2 2x/\pi$. Esboce o gráfico correspondente e decida quais das afirmações abaixo são verdadeiras e quais são falsas.
 - a) f é crescente.
 - **b)** f é sobrejetora.
 - c) f possui inversa e $f^{-1}(0) = \pi$
 - d) f possui inversa e $f^{-1}(0) = 2$
 - e) f não possui inversa.

- **15)** Seja a função bijetora de \mathcal{R} em \mathcal{R} definida por $f(x) = x^2 1$ (se $x \ge 0$) ou f(x) = x 1 se x < 0. Determine f^{-1} .
- 16) Dadas as funções f
 e g abaixo, determine a função inversa de $g\circ f.$

$$f: \mathcal{R} \to \mathcal{R}$$
, sendo $f(x)=4x+1$ e $g: \mathcal{R} \to \mathcal{R}$, sendo $g(x)=3x-5$.

- 17) Construa num mesmo plano cartesiano os gráficos de f e f^{-1} :
 - a) $f: \mathcal{R} \to \mathcal{R}_+$ $f(x) = 2^x$
 - **b)** $f: A \to A = \{x \in \mathcal{R} | x \ge -1\}$ $f(x) = x^2 + 2x$
- 18) Construa os gráficos cartesianos das funções em \mathcal{R} , definidas por:
 - a) $f(x) = 2 3^x$
 - **b)** $f(s) = (1/3)^x$
- 19) Resolva as equações exponenciais:
 - a) $(\sqrt{3})^x = \sqrt[3]{81}$
 - **b)** $(1/125)^x = 25$
 - **c)** $2^{3x-1} = 32$
 - **d)** $100 \times 10^x = \sqrt[x]{1000^5}$
 - 3) $2^{3x+2} \div 8^{2x-7} = 4^{x-1}$
- 19) Resolva as seguintes inequações exponenciais:
 - a) $(1/3)^x > 1/81$
 - **b)** $7^{5x-6} < 1$
 - c) $25 < 125^{2x-1} < 125$
 - d) $2^{x-1} + 2^x + 2^{x+1} 2^{x+2} + 2^{x+3} > 240$
- 20) Calcule pela definição os seguintes logaritmos:
 - a) $\log_8 4$
 - **b**) $\log_{81} 3$
 - c) $\log_{0.25} 32$
 - **d**) $\log_{1/4} 32$
 - **e)** $\log_{0.01} 0,001$
- 21) Calcule o valor de
 - a) $S = \log_4(\log_3 9) + \log_2(\log_{81} 3) + \log_{0.8}(\log_{16} 32)$
 - **b)** $3^{2-\log_3 6}$

- c) $\log_{2\sqrt{3}} 144$
- **22)** Desenvolva, aplicando as propriedades dos logaritmos $(a, b \in c \text{ são positivos})$:

a)
$$\log_3\left(\frac{ab^3}{c\sqrt[3]{a^2}}\right)$$

b)
$$\log \sqrt[3]{\frac{a}{b^2\sqrt{c}}}$$

- 23) O pH de uma solução é definido $\text{como} pH = -\log_1 0[H^+]$, em que $[H^+]$ é a concentração de hidrogênio em íons-grama por litro de solução. Determine o pH de uma solução tal que $[H^+] = 10^{-8}$.
- **24)** Se $\log a + \log b = p$, calcule o valor de $\log 1/a + \log 1/b$.
- **25)** Sabendo que $\log_{20} 2 = a$ e $\log_{20} 3 = b$, calcule $\log_6 5$.
- **26)** Calcule o valor de $\log_3 5 \times \log_2 527$.
- 27) Se a e b são reais positivos, mostre que $a^{\log b} = b^{\log a}$.
- **28)** Simplifique $a^{\log_a b \times \log_b c \times \log_c a}$.