Jannik Wiessler Matlab Grundkurs

Übungsblatt 03

Diese Übungsaufgaben sind zum Einen dafür gedacht, den eigenen, aktuellen Matlab-Kenntnisstand zu überprüfen. Zum Anderen, sollen ausgewählte Operationen zur Lösung der Aufgaben selbstständig recherchiert und angewendet werden.

Theorie: Numerisches Differenzieren

Die numerische Approximation der Ableitung einer Funktion $f : \mathbb{R} \to \mathbb{R}$ an der Stelle x_0 geht auf die Definition des Differenzenquotienten zurück:

$$\left. \frac{df(x)}{dx} \right|_{x_0} := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{1}$$

Der Grenzübergang von Sekanten- zu Tangentensteigung $h \to 0$ kann aufgrund des damit einhergehenden Exponentenüberlaufs der Gleitkommaarithmetik* (auch: overfolw) im IEEE-754-Format[†] numerisch nicht durchgeführt werden. Deshalb wird die Ableitung der Funktion f im Punkt x_0 über eine Sekantensteigung nach Gleichung 2 mit einem endlichen Wert für h approximiert.

$$D^{+}f(x_{0}) \approx \frac{f(x_{0}+h) - f(x_{0})}{h}$$

$$(2)$$

$$D^{-}f(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$$
(3)

Für h > 0 (h < 0) ergibt sich die Vorwärts- (Rückwärts-) Differenzenformel. Es lässt sich zeigen, dass lineare Polynome mit Gleichung 2 bzw. 3 exakt differenziert werden [3]. Mit Hilfe der Taylor-Entwicklung ergibt sich für den Diskretisierungsfehler ein proportionales Verhalten zur verwendeten Schrittweite h [1].

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\zeta)$$
(4)

Wie in Abbildung 1 illustriert, wird die Genauigkeit der Sekanten-Approximation für ein festes h direkt durch die etwaige nicht-Linearität der Funktion determiniert. Durch Bilden des arithmetischen Mittels von $D^-f(x)$ und $D^+f(x)$ ergibt sich die Zentraldifferenz.

^{*}Der Leser entnehme eine Einführung in die Gleitkommadarstellung aus [2].

[†]IEEE-754 wurde 1985 erstmalig als technischer Standard für binäre Gleitkommazahlen vom Institute of Electrical and Electronics Engineers (IEEE) festgelegt.

Abbildung 1: Links: Visualisierung des Grenzübergangs $h \to 0$, rechts: Exemplarische Darstellung der Zentraldifferenz.

$$Df(x) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$
 (5)

Augenscheinlich werden mit Gleichung 5 Polynome bis zum Grad zwei exakt differenziert [3]. Der Diskretisierungsfehler skaliert quadratisch mit h [1].

$$f'(x) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{6}f'''(\zeta)$$
(6)

Dem Diskretisierungsfehler, welcher für $h \to 0$ minimiert wird, wirken aufgrund von Rundungsfehlern Auslöschungseffekte, welche für $h \to 0$ maximal werden, entgegen. Für eine mit Rundungsfehlern ϵ behaftete Funktionsauswertung $\tilde{f}(x)$ gilt $|\tilde{f}(x) - f(x)| \le \epsilon$. Dabei ergeben sich folgende Abschätzungen für das Verhalten der Rundungsfehler für Vorwärtsdifferenzen:

$$\delta = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$\tilde{\delta} = \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0)}{h}$$

$$|\delta - \tilde{\delta}| = \frac{1}{h} \left[\left(f(x_0 + h) - \tilde{f}(x + h) \right) - \left(f(x_0) - \tilde{f}(x_0) \right) \right] \le \frac{2}{h} \epsilon$$
(7)

Abbildung 2: Visualisierung von Diskretisierungs-, Rundungs- und Gesamtfehler für Vorwärtsdifferenzen (links) und Zentraldifferenzen (rechts).

und für Zentraldifferenzen:

$$\Delta = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

$$\tilde{\Delta} = \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}$$

$$|\Delta - \tilde{\Delta}| = \frac{1}{2h} \left[\left(f(x_0 + h) - \tilde{f}(x_0 + h) \right) - \left(f(x_0 - h) - \tilde{f}(x_0 - h) \right) \right]$$

$$\leq \frac{1}{h} \epsilon$$
(8)

Damit ergibt sich für Vorwärtsdifferenzen ein Gesamtfehler nach Gleichung 9a mit einem Minimum nach Gleichung 9b.

$$F_{\text{Vor}}(h) \leq \frac{2}{h}\epsilon + c_1 \cdot h$$
 (9a)

$$h_{\text{opt,Vor}} = \sqrt{\frac{2\epsilon}{c_1}}$$
 (9b)

Für Zentraldifferenzen ergibt sich ein Gesamtfehler nach Gleichung 10a mit dem Minimum nach Gleichung 10b.

$$F_{\mathrm{Zen}}(h) \leq \frac{1}{h}\epsilon + c_2 \cdot h^2$$
 (10a)

$$h_{\text{opt,Zen}} = \sqrt[3]{\frac{\epsilon}{2c_2}}$$
 (10b)

Dabei sind c_1, c_2 in der Praxis nicht ohne Weiteres bestimmbar und skalieren bei Vorwärtsdifferenzen mit der zweiten Ableitung (bei Zentraldifferenzen mit der dritten Ableitung) an der Stelle x_0 . Der Einfluss der Konstanten auf h_{opt} wird jeweils mit der zweiten

und dritten Wurzel abgeschwächt. Für eine erste Abschätzung der optimalen Schrittweite sei $c_1 \approx c_2 \approx 10^0$ gewählt. Bei einer vorliegenden Maschinengenauigkeit von $\epsilon \approx 10^{-16}$ ergeben sich dann für die optimalen Schrittweiten $h_{\rm opt,Vor} \approx 10^{-8}$ und $h_{\rm opt,Zen} \approx 10^{-6}$.

Aufgabe 1: Vorwärtsdifferenzen

Ziel ist es den Newton-Aufruf mit lediglich dem Übergabeparameter 'Function' zu ermöglichen. Gehen Sie dabei wie folgt vor:

- Schreiben Sie eine Funktion numDiff(func,x), welche von einer übergebenen Funktion func die numerische Ableitung an einer Stelle x mittels Vorwärtsdifferenzen approximiert.
- Implementieren Sie in Ihrer Newton-Funktion eine Routine, welche erkennt, wenn beim Aufruf **keine** Funktion 'Derivative' als analytische Ableitung der zu untersuchenden Funktion 'Function' übergeben wurde.
- Verwenden Sie dann die geschriebene Funktion numDiff(func,x) zur Berechnung der Ableitung in Ihrem Newton-Algorithmus.

Aufgabe 2: Weitere Differenzierungsverfahren & User Input

Ziel ist es dem user eine Auswahl von verschiedenen numerischen Verfahren für die Approximation der Ableitung zur Verfügung zu stellen. Gehen Sie dabei wie folgt vor:

- Erweitern Sie Ihre numDiff(func, x, Method)-Funktion um einen zusätzlichen Parameter Method. In Abhängigkeit dieses Parameters soll intern die Berechnung der Ableitung mittels:
 - 1. Vorwärtsdifferenzen (h = 10^{-8})
 - 2. Rückwärtsdifferenzen (h = 10^{-8})
 - 3. Zentraldifferenzen (h = 10^{-6})

erfolgen.

• Implementieren Sie in der Newton-Funktion eine user Abfrage, welche das zu verwendende Differenzierungsverfahren determiniert, um die Ableitung zu approximieren, wenn die Newton-Funktion ohne Parameter 'Derivative' aufgerufen wird. Schlagen Sie dazu den Befehl questdlg nach und verwenden Sie diesen.

Literatur

- [1] W. Dahmen und A. Reusken. Numerik für Ingenieure und Naturwissenschaftler. Springer-Lehrbuch. Springer Berlin Heidelberg, 2008. ISBN: 9783540764939. URL: https://books.google.de/books?id=d8MfBAAAQBAJ.
- [2] Thomas Richter und Thomas Wick. "Einleitung". In: Einführung in die Numerische Mathematik: Begriffe, Konzepte und zahlreiche Anwendungsbeispiele. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, S. 1–32. ISBN: 978-3-662-54178-4. DOI: 10.1007/978-3-662-54178-4_1. URL: https://doi.org/10.1007/978-3-662-54178-4_1.
- [3] T. Westermann. Mathematik für Ingenieure: Ein anwendungsorientiertes Lehrbuch. Springer-Lehrbuch. Springer Berlin Heidelberg, 2011. ISBN: 9783642127601. URL: https://books.google.de/books?id=3bYoBAAAQBAJ.