

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
19 September 2002 (19.09.2002)

PCT

(10) International Publication Number  
**WO 02/072519 A2**

(51) International Patent Classification<sup>7</sup>: C07C 45/46,  
5/27, 2/26, B01J 31/02

Jillian, Margaret [GB/GB]; 6 Ascot Crescent, Lisburn,  
Co Antrim BT28 3DA (GB).

(21) International Application Number: PCT/GB02/00988

(74) Agents: RITTER, Stephen, David et al.; Mathys &  
Squire, 100 Gray's Inn Road, London WC1X 8AL (GB).

(22) International Filing Date: 12 March 2002 (12.03.2002)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,  
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,  
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,  
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,  
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,  
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,  
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,  
VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
0106001.1 12 March 2001 (12.03.2001) GB  
0106000.3 12 March 2001 (12.03.2001) GB

(84) Designated States (*regional*): ARIPO patent (GH, GM,  
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),  
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),  
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,  
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent  
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,  
NE, SN, TD, TG).

(71) Applicant (*for all designated States except US*): THE  
QUEEN'S UNIVERSITY OF BELFAST [GB/GB];  
University Road, Belfast BT7 1NN (GB).

Published:

— without international search report and to be republished  
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.



**WO 02/072519 A2**

(54) Title: PROCESS CATALYSED BY BIS-TRIFLIMIDE COMPOUNDS

(57) Abstract: A process for carrying out a chemical reaction which is catalysed by one or more metal or hydrogen fluoroalkyl-sulfonylated compound which process comprises carrying out said reaction in the presence of an ionic liquid or in solvent-free conditions.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11

12 **PROCESS CATALYSED BY BIS-TRIFLIMIDE COMPOUNDS**

13

14 The present invention relates to a process for  
15 carrying out a chemical reaction which is catalysed  
16 by bis-triflimide and related bis-trifilimide  
17 compounds. More specifically, the present invention  
18 relates a process for carrying out such chemical  
19 reactions in the presence of an ionic liquid or in  
20 solvent-free conditions.

21

22 The catalysis of chemical reactions is of major  
23 importance in chemistry. The salts of certain  
24 metals are known to act as Lewis acids (electron  
25 pair acceptors), which interact with the reactants  
26 (and products) of a reaction, producing a reaction  
27 rate enhancement and/or selectivity enhancement.  
28 Also salts of metals which can exist in variable  
29 oxidation states (such as transition metals) are  
30 known to catalyse chemical reactions such as

1 Friedel-Crafts, oxidation, reduction, Diels-Alder,  
2 isomerisation, coupling, addition and elimination  
3 reactions. The Friedel-Crafts reaction is often  
4 used to functionalise aromatic rings. The reaction  
5 involves the interaction of an acylating or  
6 alkylating agent such as benzoyl chloride or benzyl  
7 chloride with an aromatic compound such as benzene  
8 to give the products, in this case, benzophenone and  
9 diphenylmethane. The reaction requires a Lewis acid  
10 catalyst such as aluminium(III) chloride. The  
11 reaction suffers from a major disadvantage in that,  
12 particularly with acylation reactions, at least one  
13 molar equivalent of Lewis acid catalyst is needed.  
14 The work-up of these reactions results in the  
15 destruction of the catalyst and can produce  
16 considerable amounts of acidic aqueous waste. There  
17 is a need for an improved catalyst system which  
18 requires less catalyst, produces less waste and  
19 allows for the catalyst to be reused and recycled.

20

21 Metal bis-triflimides are known as catalysts for  
22 some reactions. Examples include polymerisation of  
23 styrene with titanium (or zirconium) bis-triflimides  
24 in the solvent toluene. Magnesium bis-triflimide  
25 has been used for the reaction of silyl-enol ethers  
26 or silyl-ketene acetals with allylic or benzylic  
27 acetates in the solvent dichloromethane. Scandium  
28 bis-triflimide has been used as a catalyst for the  
29 formation of acetals and ketals from carbonyl  
30 compounds (or enol ethers) in the solvent

1 dichloromethane. Aluminium, ytterbium and titanium  
2 bis-triflimides have been used in the reaction of  
3 acetic anhydride with anisole or diphenyl ether to  
4 give acetyl anisole or 4-phenoxyacetophenone  
5 respectively. These reactions are carried out in  
6 the dangerous and explosive solvent, nitromethane.  
7 Such a procedure is of very limited benefit as  
8 aromatics less reactive than anisole would require  
9 elevated reaction temperatures and can only be  
10 carried out on a small scale due to the inherent  
11 explosion risk. There is therefore a need for a  
12 reaction system that does not require the use of  
13 explosive solvents such as nitromethane or toxic  
14 solvents such as toluene or dichloromethane.

15

16 The present invention solves the problems of the  
17 prior art by providing a process for carrying out a  
18 chemical reaction which is catalysed by one or more  
19 metal or hydrogen fluoralkylsulfonated compound  
20 which process comprises carrying out said reaction  
21 in the presence of an ionic liquid or in solvent-  
22 free conditions.

23

24 Suitably the chemical reaction is an aromatic  
25 electrophilic substitution reaction such as the  
26 reaction of an aromatic compound and an alkylating,  
27 acylating or sulfonating agent to give an  
28 arylalkane, aryl ketone or sulfone. The reaction  
29 may be a Friedel-Crafts acylation, Friedel-Crafts  
30 alkylation or a sulfonylation. The reaction may be

1 the reaction of acid halides, anhydrides or  
 2 carboxylic acids with aromatic compounds to give an  
 3 aryl ketone. The reaction can be a reaction of  
 4 sulfonyl halides, sulfonic anhydrides or sulfonic  
 5 acids with aromatic compounds to give a sulfone.  
 6 The reaction may be a reaction of alkenes with  
 7 aromatic compounds to give aryl alkanes. The  
 8 reaction may also be a bis-triflimide compound  
 9 catalysed or promoted isomerisation, polymerisation  
 10 or rearrangement of chemical compounds or molecules.  
 11 The reaction may be a rearrangement of esters of  
 12 phenols to acyl phenols (Fries rearrangement). The  
 13 reaction may be a dimerisation (or oligomerisation  
 14 or polymerisation) of alkenes to give dimerised  
 15 alkenes (or oligomerised or polymerised alkenes).  
 16 The reaction can be the migration or isomerisation  
 17 of carbon-carbon double bonds in unsaturated  
 18 compounds. The reaction can be an hydration,  
 19 nitration, carbon-carbon bond forming reaction,  
 20 halogenation, oxidation or reduction reaction. A  
 21 general reaction scheme for the reactions catalysed  
 22 using metal bis-triflimides is shown below:  
 23



24  
 25

26

1 where Ar = aromatic group, R = alkyl, acyl,  
2 alkylsulfonyl, arylsulfonyl. X = Cl, OH, Br, I, F,  
3 OR, SH, NR<sub>2</sub>, OSO<sub>2</sub>R, O<sub>2</sub>CR or other leaving group.

4

5 By metal or hydrogen fluoroalkylsulfonylated  
6 compound is meant a compound derived from a metal or  
7 hydrogen cation and [N(SO<sub>2</sub>C<sub>x</sub>F<sub>(2x+1)</sub>)<sub>2</sub>]<sup>-</sup> anion. For  
8 example, the catalyst can be any compound containing  
9 a metal and a fluorinated-alkylsulfonylated anion  
10 (preferably a fluorinated-alkylsulfonylamine anion).

11 The one or more metal or hydrogen  
12 fluoroalkylsulfonylated compound is preferably a  
13 metal or hydrogen bistriflimide. By bis-triflimide  
14 compound is meant any compound which comprises the  
15 ion [N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>]<sup>-</sup>. This ion is commonly known by the  
16 following names: triflimide,  
17 bis(trifluoromethanesulfonyl)amide, bis-  
18 trifluoromethanesulfonimide,  
19 bis(trifluoromethanesulfonyl)imide,  
20 trifluoromethanesulfonimide. In this document, the  
21 term bis-triflimide will be used as the name for the  
22 [N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>]<sup>-</sup> ion. Also, the abbreviation [NTf<sub>2</sub>] is  
23 sometimes used to represent the [N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>]<sup>-</sup> ion.  
24 Preferably the bis-triflimide compound is a metal  
25 bis-triflimide catalyst or hydrogen bis-triflimide  
26 HN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>. The formula of the hydrogen and metal  
27 bistriflimide catalyst is

28



30

1 where M is a hydrogen or a metal;  
2 L is a negative or neutral ligand;  
3 n is 2,3,4,5,6,7 or 8 ;  
4 x is greater than or equal to 1  
5 y is 0,1,2,3,4,5,6,7or 8; and  
6 z is 0, 1,2,3 or 4.

7

8 M may represent more than one type of metal ion. M  
9 is preferably a metal selected from the metals in  
10 groups 1 to 16 of the periodic table and the  
11 lanthanides and the actinides. By group 8 is meant  
12 the group containing Fe, Ru, Os, Hs, by group 9 is  
13 meant the group containing Co, Rh, Ir, Mt, etc. L  
14 may be selected from oxos (such as  $\text{VO}^{2+}$ ), phosphines  
15 (such as triphenylphosphine), water, halides or  
16 ketones. The ligand may originate from a solvent,  
17 reagent or by-product in the reaction mixture for  
18 making the catalyst or the reaction mixture in which  
19 the catalyst is used.

20

21 The metal or metals may possess one or more neutral  
22 or negative ligands (such as triphenylphosphine or  
23 oxo (such as in  $\text{VO}_2^+$ )) or any other ligand such as as  
24 oxo, phosphines, water, halide or ketones.  
25 Preferably the metal or metals are preferably, but  
26 not exclusively, a transition metal, lanthanide or  
27 actinide, group 2 (Be, Mg, Ca, Sr, Ba), Group 11  
28 (Cu, Ag, Au), Group 12 (Zn, Cd, Hg) Group 13 (B, Al,  
29 Ga, In, Tl), Group 14 (Si, Ge, Sn, Pb), Group 15 (P,  
30 As, Sb, Bi), Group 16 (S, Se, Te, Po). Preferably

1 the metal or metals are preferably, but not  
2 exclusively in the +2 oxidation state (eg  $\text{Co}^{2+}$ ), in  
3 the +3 oxidation state (eg  $\text{Al}^{3+}$ ) or in the +4  
4 oxidation state (eg  $\text{Ce}^{4+}$ ). Cationic species  
5 containing charged ligands could also be used (eg  
6  $\text{UO}_2^{2+}$ ,  $\text{VO}^{2+}$ ). Monovalent, pentavalent, heptavalent and  
7 hexavalent cationic species may also be used.  
8 Particularly preferred metal bis-triflimide compounds  
9 which have been prepared and isolated for use in the  
10 catalytic reactions of the present invention include  
11 magnesium bis-triflimide, calcium bis-triflimide,  
12 strontium bis-triflimide, barium bis-triflimide,  
13 aluminium bis-triflimide, gallium bis-triflimide,  
14 indium bis-triflimide, scandium bis-triflimide,  
15 yttrium bis-triflimide, lanthanum bis-triflimide,  
16 cerium bis-triflimide, ytterbium bis-triflimide,  
17 chromium bis-triflimide, manganese bis-triflimide,  
18 iron bis-triflimide, cobalt bis-triflimide, nickel  
19 bis-triflimide, copper bis-triflimide, zinc bis-  
20 triflimide, silver bis-triflimide, cadmium bis-  
21 triflimide, tin bis-triflimide, lead bis-triflimide,  
22 and bismuth bis-triflimide.

23

24 Typically, the reactions of the present invention  
25 require an amount of bis-triflimide compound is  
26 between 0.000001 and 1000 mol %, typically this is  
27 between 0.1 and 10 mol %, preferably it is between  
28 0.5 and 5 mol % and more preferably this is between  
29 between 0.5 and 2 mol %.

30

1 The process may involve the addition of the bis-  
2 triflimide catalyst to the reactants, e.g. the  
3 addition of 1 mol % of Zn(NTf<sub>2</sub>)<sub>2</sub> to a mixture of an  
4 alkylating agent or acylating agent or sulfonylating  
5 agent and aromatic compound. This can be carried  
6 out either in the presence of an ionic liquid or in  
7 solvent-free conditions. When carried out in the  
8 presence of an ionic liquid, the catalyst may be  
9 dissolved or suspended in an ionic liquid. An ionic  
10 liquid is a molten salt that is in a liquid state at  
11 the reaction temperature and usually (but not  
12 essentially) molten at or near room temperature,  
13 i.e., 20 °C. When carried out in solvent-free  
14 conditions, the catalyst may be soluble, or  
15 partially soluble, in the reactants or products  
16 (these can act as both solvent and reagent). The  
17 products can be separated from the catalyst at the  
18 end of the reaction by distillation or solvent  
19 extraction with a solvent that the catalyst is  
20 insoluble in (for example cyclohexane).

21

22 An ionic liquid is a molten salt or mixture of salts  
23 that is in the liquid state at the temperature of  
24 the reaction. The ionic liquids (if used) are  
25 preferably molten salts that are in the liquid state  
26 at ambient temperatures, and preferentially dissolve  
27 the catalyst when contacted with the reagents.  
28 Preferably the catalyst is soluble in the ionic  
29 liquid to a much greater extent than the products  
30 and/or reactants during the separation of the

1 catalyst from the products/reactants. The ionic  
2 liquid consists of two components, which are a  
3 positively charged cation and a negatively charged  
4 anion. Preferably the cation is an organic cation  
5 and the anion is an organic or inorganic anion.  
6 That cation for the process is preferably a 1-  
7 alkylpyridinium (such as 1-hexylpyridinium) or 1,3-  
8 dialkylimidazolium cation such as 1-butyl-3-  
9 methylimidazolium [bmim] or 1-ethyl-3-  
10 methylimidazolium [emim]. Other cations for this  
11 process are other alkyl- or poly-alkylpyridinium,  
12 alkyl or poly-alkylimidazolium, alkyl or poly-  
13 alkylpyrazolium, alkyl or poly-alkyl ammonium, alkyl  
14 or poly-alkyl phosphonium, other ammonium,  
15 phosphonium cations, alkylated diazabicyclo-[5,4,0]-  
16 undec-7-ene and related cations, or any other cation  
17 that gives rise to compounds termed ionic liquids.  
18 The anion for the process is preferably one that is  
19 stable to chemical alteration during the reaction  
20 and imparts desirable physical characteristics to  
21 the ionic liquid. Some suitable anions for the  
22 ionic liquid are bis-trifluoromethanesulfonimide,  
23 bis-pentafluoroethanesulfonimide,  
24 hexafluorophosphate(V), tetrafluoroborate(III),  
25 trifluoromethanesulfonate, cyanamide, fluoro or  
26 perfluoroalkylsulfonate, halide, sulfate,  
27 hydrogensulfate, alkylsulfate, alkylsulfonate,  
28 arylsulfate, arylsulfonate, nitrate, carboxylate,  
29 phosphate, hydrogenphosphate, dihydrogenphosphate,  
30 alkylphosphate, alkylphosphonate, phosphonate,

1 nitrite, arsenate, antimonate, haloaluminate,  
 2 aluminate, borate, silcate, haloindate(III),  
 3 gallate, alkylborate, halogallate or any other anion  
 4 that gives rise to an ionic liquid.  
 5 Examples of ionic liquids are given below:  
 6



7  
8

9 Preferably the ionic liquid or the catalyst or the  
 10 ionic liquid and catalyst combination is insoluble  
 11 in low- or non-polar organic solvents such as  
 12 diethyl ether or hexane.

13

14 In addition to ionic liquids being excellent media  
 15 for the execution of the Friedel-Crafts and other  
 16 reactions, a second major benefit of this invention  
 17 is that the catalyst and ionic liquid can be  
 18 recycled and reused in many reactions. This means  
 19 that catalysts are not lost. This is an improvement  
 20 over reactions performed in nitromethane, which is  
 21 an explosive solvent and is hard to recycle.

22

1 The chemical reactions of the present invention may  
2 be carried out at temperatures between temperatures  
3 of from -100 °C to 450 °C. Preferably the reaction  
4 is performed at a temperature between 20 °C and the  
5 boiling point of the reactants.

6

7 The present invention further provides a process  
8 whereby the bis-triflimide catalyst or related  
9 fluoroalkylsulfonated compound may be generated *in*  
10 *situ* by the addition of a metal or a metal compound  
11 (for example, a metal halide) to a bis-triflimide  
12 salt (or other bis-triflimide compound) or related  
13 fluoroalkylsulfonated compound. This process can  
14 be carried out in the absence of a solvent or in an  
15 ionic liquid. An example of this would be the  
16 addition of a metal salt to a bis-triflimide ionic  
17 liquid (or hydrogen bis-triflimide to an ionic  
18 liquid) to generate a catalyst that is capable of  
19 catalysing the desired chemical reaction. This can  
20 be achieved by taking a metal or metal compound, not  
21 necessarily a bis-triflimide salt (for example a  
22 metal halide such as, ZnCl<sub>2</sub> or SnCl<sub>4</sub>), and dissolving  
23 (reacting) it in a bis-triflimide ionic liquid or  
24 other source of bis-triflimide (for example,  
25 HN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>). A suitable source of bis-triflimide  
26 ions is [emim][NTf<sub>2</sub>]. To this combination, the  
27 reactants, e.g. alkylating, acylating or sulfonating  
28 agent and aromatic compound can be added, with  
29 heating if necessary. The products can be separated  
30 from the catalyst at the end of the reaction by

1 distillation or solvent extraction with a solvent in  
2 which, for example, the catalyst and ionic liquid  
3 combination are insoluble (for example,  
4 cyclohexane).

5

6 After the reaction of the present invention, the  
7 catalyst may be separated from the  
8 products/remaining reactants. Preferably the  
9 separation process does not destroy the catalyst.  
10 When the products of the reactions are aryl ketones,  
11 alkyl-aromatic compound, or sulfones, these are  
12 usually readily separated from the catalyst or ionic  
13 liquid/catalyst mixture by several different means  
14 as these are generally neutral covalent molecules.  
15 These are usually (but not necessarily) neutral  
16 covalent molecules, which are. The simplest and  
17 preferred means is vacuum distillation (typically at  
18 1 mm Hg) of the product and by-product directly from  
19 the reaction vessel (Kugelrohr distillation is  
20 preferred but not essential). The catalyst and ionic  
21 liquid, having no measurable vapour pressure, remain  
22 in the reaction vessel. The catalyst and/or ionic  
23 liquid can be immediately reused upon cooling. A  
24 second valuable method for the separation of the  
25 ionic liquid/catalyst from the products is solvent  
26 extraction. The ionic liquid and catalyst are  
27 insoluble in low or non-polar organic solvents or  
28 supercritical fluids. The reaction vessel can be  
29 washed with a solvent or mixture of solvents such  
30 that the product and by-product dissolve in the

1 solvent, whereas the ionic liquid and catalyst  
2 remain in a separate solution. The separation can  
3 be effected by decantation or other means. Suitable  
4 solvents for this separation are alkanes  
5 (cyclohexane, hexane, petroleum ether or other  
6 alkanes or alkane-like compounds), aromatics  
7 (toluene, benzene, xylene or other compounds  
8 containing an aromatic group), ethers (such as  
9 diethyl ether, dibutyl ether) or esters (such as  
10 ethyl acetate, amyl acetate), supercritical  
11 solvents, or any other material capable of allowing  
12 for the separation of the catalyst (and ionic liquid  
13 if present) from the products or reagents. Another  
14 method involved azeotropic separation with compounds  
15 such as steam (for example steam distillation).  
16 Some halogenated solvents such as dichloromethane or  
17 chloroform partially dissolve the ionic liquid and  
18 catalyst and are therefore of lesser use in this  
19 process. Thus the present invention provides a  
20 process where the product is easily separated from  
21 the catalyst or catalyst/ionic liquid combination or  
22 solvent containing combination by solvent  
23 extraction, distillation, vacuum distillation, steam  
24 distillation, pervaporation, azeotropic  
25 distillation, precipitation, crystallisation, phase  
26 separation, supercritical fluid extraction or any  
27 other non-destructive physical process. The present  
28 invention further provides a process where the  
29 product is easily separated from the catalyst or  
30 catalyst / ionic liquid combination or solvent

1 containing combination by solvent extraction using  
2 one or more of the following methods: (a) with  
3 alkanes or boiling alkanes (eg. cyclohexane at 80  
4 °C), (b) vacuum distillation at pressures preferably  
5 between 0.01 mmHg and 10 mmHg, (c) steam  
6 distillation or with the use of superheated steam at  
7 temperatures up to 500 °C, (d) phase separation, (e)  
8 supercritical fluid extraction preferably with  
9 carbon dioxide.

10

11 The present invention relates to the use of metal  
12 bis-triflimides in solvent-free conditions or in  
13 ionic liquids. The reactions of aromatics both more  
14 and less reactive than anisole can be achieved in  
15 this invention, as well as the reaction of anisole  
16 itself. The present invention also provides a  
17 method of generating the catalyst *in situ* thus  
18 obviating the need to isolate the metal bis-  
19 triflimide catalyst and simplifying the experimental  
20 procedure. One of the principal benefits of this  
21 invention is that the product(s) of the reaction can  
22 be easily separated from the catalyst and/or ionic  
23 liquid - catalyst combination by a physical process  
24 such as distillation, steam stripping or by solvent  
25 extraction with an inert solvent (including  
26 supercritical fluids) or molecular solvents. The  
27 ionic liquid and/or the catalyst (which usually  
28 remains in the ionic liquid during the separation  
29 process) can be reused for further reactions.  
30 Further reactants can simply be added to the ionic

1 liquid and/or the catalyst once the previous  
2 products/reactants have been removed.

3

4 The present invention is illustrated by the  
5 following figures and examples.

6

7 Figure 1 shows the variation of yield with time in  
8 the metal bis-triflimide catalysed reaction of  
9 benzoyl chloride with toluene.

10

11 Figure 2 shows the variation of yield with time in  
12 the 1% FeCl<sub>3</sub> and 1% Fe bis-triflimide catalysed  
13 reaction of benzoyl chloride with toluene in  
14 [bmim] [NTf<sub>2</sub>].

15

16 Figure 3 shows the variation of yield with time in  
17 the synthesis of phenyl-4-chlorophenyl sulfone.

18

19 Figure 4 shows the variation of yield with time for  
20 five reaction catalysed by 1 mol% metal chlorides  
21 dissolved in [bmim] [NTf<sub>2</sub>] for the reaction of  
22 toluene with benzoyl chloride to give methyl  
23 benzophenone at 110°C.

24

25 **Example 1:** The reaction of toluene with benzoyl  
26 chloride with cobalt(II) bis-triflimide catalyst.

27

28 Cobalt(II) bis-triflimide (0.13 g, 0.21 mmol) was  
29 added to toluene (3.0g, 32.5 mmol) and benzoyl  
30 chloride ( 3.0 g, 21.3 mmol) in a 25 cm<sup>3</sup> round

1 bottomed flask equipped with a magnetic stirrer and  
2 reflux condenser. The mixture was heated under  
3 reflux for 3 hours (judged to be at least 99 %  
4 complete by gas chromatographic analysis), and  
5 cooled to room temperature. Petroleum ether (15  
6 cm<sup>3</sup>, bp = 40-60 °C) was added and the catalyst  
7 precipitated out of solution. The solution of the  
8 product was decanted and the flask washed with a  
9 further 15 cm<sup>3</sup> of petroleum ether. The solvent was  
10 evaporated from the combined petroleum ether  
11 extracts and the product purified by vacuum  
12 distillation (bp = 160-170 °C @ 1 mmHg) in a  
13 Kugelrohr apparatus.. This gave methylbenzophenone  
14 (4.05 g, 97 % isolated yield). The catalyst can be  
15 reused immediately by adding toluene and benzoyl  
16 chloride to the flask (containing the precipitate)  
17 and repeating the reaction.

18

19 **Example 2:** The reaction of toluene with benzoyl  
20 chloride with cobalt(II) bis-triflimide catalyst in  
21 [emim][NTf<sub>2</sub>].

22

23 Cobalt(II) bis-triflimide (0.13 g, 0.21 mmol) was  
24 added to 1-ethyl-3-methylimidazolium bis-  
25 trifluoromethanesulfonimide ([emim][NTf<sub>2</sub>]) (2.0 g)  
26 in a 25 cm<sup>3</sup> round-bottomed flask equipped with a  
27 magnetic stirrer and reflux condenser, and the  
28 mixture stirred until the catalyst dissolved.  
29 Toluene (3.0g, 32.5 mmol) and benzoyl chloride ( 3.0  
30 g, 21.3 mmol) were added. The mixture was heated

1 under reflux for 0.5 hours (judged to be at least 99  
2 % complete by gas chromatographic analysis), and  
3 cooled to room temperature. Petroleum ether (15  
4 cm<sup>3</sup>, bp = 40-60°C) was added and the catalyst and  
5 ionic liquid formed a separate phase. The solution  
6 of the product was decanted and the flask  
7 (containing the ionic liquid and catalyst) washed  
8 three times with 15 cm<sup>3</sup> of petroleum ether. The  
9 solvent was evaporated from the combined petroleum  
10 ether extracts and the product purified by vacuum  
11 distillation (bp = 160-170 °C @ 1 mmHg) in a  
12 Kugelrohr apparatus. This gave methylbenzophenone  
13 (4.02 g, 96 %). The catalyst and ionic liquid  
14 combination can be reused immediately by adding  
15 toluene and benzoyl chloride to the flask and  
16 repeating the reaction, without loss of activity.

17  
18 Examples 1 and 2 show that the acylation of toluene  
19 with benzoyl chloride can be carried out with a  
20 cobalt(II) bis-triflimide catalyst and that this can  
21 be performed with or without an ionic liquid  
22 present. However, with the ionic liquid, faster  
23 reaction rates are obtained and the catalyst can be  
24 recycled more easily. Without the ionic liquid, the  
25 products of this reaction are obtained in  
26 quantitative yield using 1 mol % catalyst after 3  
27 hours heating under reflux (example 1). The  
28 reaction time is reduced to 30 minutes when the  
29 reaction is carried out in the ionic liquid

1 [emim] [NTf<sub>2</sub>] ([emim] = 1-ethyl-3-methylimidazolium)  
2 (example 2).

3

4 Example 3: The reaction of toluene with benzoyl  
5 chloride with nickel(II) bis-triflimide catalyst in  
6 [emim] [NTf<sub>2</sub>].

7

8 Nickel(II) bis-triflimide (0.13 g, 0.21 mmol) was  
9 added to 1-ethyl-3-methylimidazolium bis-  
10 trifluoromethanesulfonimide ([emim] [NTf<sub>2</sub>]) (2.0 g)  
11 25 cm<sup>3</sup> in a round-bottomed flask equipped with a  
12 magnetic stirrer and reflux condenser, and the  
13 mixture stirred until the catalyst dissolved.  
14 Toluene (3.0g, 32.5 mmol) and benzoyl chloride (3.0  
15 g, 21.3 mmol) were added. The mixture was heated  
16 under reflux for 1 hour (judged to be at least 99 %  
17 complete by gas chromatographic analysis), and  
18 cooled to room temperature. Petroleum ether (15  
19 cm<sup>3</sup>, bp = 40-60°C) was added and the catalyst and  
20 ionic liquid formed a separate phase. The solution  
21 of the product was decanted and the flask  
22 (containing the ionic liquid and catalyst) washed  
23 three times with 15 cm<sup>3</sup> of petroleum ether. The  
24 solvent was evaporated from the combined petroleum  
25 ether extracts and the product purified by vacuum  
26 distillation (bp = 160-170 °C @ 1 mmHg) in a  
27 Kugelrohr apparatus. This gave methylbenzophenone  
28 (4.04 g, 97 % isolated yield). The catalyst and  
29 ionic liquid combination can be reused immediately  
30 by adding toluene and benzoyl chloride to the flask

1 and repeating the reaction, without loss of  
2 activity.

3

4 The results from Examples 2 and 3 are shown in  
5 Table.

6

7 **Table 1,** The gas chromatographic (GC) yields of  
8 benzophenones derived from the reaction of benzoyl  
9 chloride with toluene with 1% metal bis-triflimide  
10 catalyst in [emim] [NTf<sub>2</sub>].

| Compound                           | Yield | Time / h |
|------------------------------------|-------|----------|
| Co(NTf <sub>2</sub> ) <sub>2</sub> | 99    | 0.5      |
| Ni(NTf <sub>2</sub> ) <sub>2</sub> | 99    | 1        |

11

12 **Example 4**

13 Anisole (0.30 cm<sup>3</sup>, 2.8 mmol), acetic anhydride (0.50  
14 cm<sup>3</sup>, 5.0 mmol), M(NTf<sub>2</sub>)<sub>n</sub> catalyst (0.1375 mmol (M =  
15 Al, n=3; M = Zn, n = 2; M = Yb, n = 3; M = Y, n =  
16 3)) were dissolved in the ionic liquid [bmim][PF<sub>6</sub>].  
17 These four reactions were heated at 30 °C for 24  
18 hours. The course of the reaction was determined by  
19 HPLC analysis of the reaction mixture and the yields  
20 are shown in Table 2.

21

22 **Table 2,** The variation of GC yield with time for  
23 the acetylation of anisole with acetic anhydride  
24 with metal bis-triflimide catalysts in [bmim][PF<sub>6</sub>].

25

26

27

| Catalyst                           | % Yield<br>(35 min) | % Yield<br>(115 min) | % Yield<br>(245 min) | % Yield<br>(1375 min) |
|------------------------------------|---------------------|----------------------|----------------------|-----------------------|
| Al(NTf <sub>2</sub> ) <sub>3</sub> | 45                  | 55                   | 61                   | 63                    |
| Zn(NTf <sub>2</sub> ) <sub>3</sub> | 23                  | 36                   | 44                   | 61                    |
| Yb(NTf <sub>2</sub> ) <sub>3</sub> | 49                  | 61                   | 64                   | 69                    |
| Y(NTf <sub>2</sub> ) <sub>3</sub>  | 55                  | 62                   |                      | 71                    |

1

2   **Example 5**

3   Anisole (0.50 cm<sup>3</sup>, 4.6 mmol), benzoic anhydride  
 4   (1.15 g, 5.06 mmol), M(NTf<sub>2</sub>)<sub>n</sub> catalyst (0.23 mmol (M  
 5   = Al, n=3, 0.20 g; M = Ce, n = 4, 0.29 g)) were  
 6   dissolved in the ionic liquid [bmim][NTf<sub>2</sub>] (2.0 g).  
 7   These two reactions were heated at 60 °C for 24  
 8   hours. The course of the reaction was determined by  
 9   gas chromatographic analysis of the reaction mixture  
 10   and the yields are shown in Table 3.

11

12   **Table 3,** The variation of GC yield with time for  
 13   the benzoylation of anisole with benzoic anhydride  
 14   with metal bis-triflimide catalysts in [bmim][PF<sub>6</sub>].

15

| Catalyst                           | % Yield<br>(60 min) | % Yield<br>(120 min) | % Yield<br>(180 min) | % Yield<br>(1350 min) |
|------------------------------------|---------------------|----------------------|----------------------|-----------------------|
| Al(NTf <sub>2</sub> ) <sub>3</sub> | 44                  | 62                   | 67                   | 68                    |
| Ce(NTf <sub>2</sub> ) <sub>4</sub> | 32                  | 49                   | 56                   | 84                    |

16

17   **Example 6**

18   Fluorobenzene (5.77 g, 60 mmol), 4-fluorobenzoyl  
 19   chloride (4.75 g, 30 mmol), ZnCl<sub>2</sub> (1.36 g, 10 mmol)  
 20   and [emim][NTf<sub>2</sub>] were placed in an autoclave and  
 21   heated with stirring for 48 hours at 160 °C. The

1 reactor was cooled and the pressure (HCl gas)  
2 released. Gas chromatographic analysis showed that  
3 a 99 % conversion to a mixture of 2,4'-  
4 difluorobenzophenone, 3,4'-difluorobenzophenone,  
5 4,4'-difluorobenzophenone in 17 : 8 : 75 ratio  
6 respectively. The difluorobenzophenones were  
7 isolated by solvent extraction with petroleum ether  
8 (bp = 40 - 60 °C), followed by evaporation of the  
9 solvent. The ionic liquid / zinc chloride catalyst  
10 system could be used in further reactions, with  
11 similar activity. This result shows that the  
12 classically unreactive aromatic compound  
13 fluorobenzene can be acylated with 4-fluorobenzoyl  
14 chloride to give isomers of 2-, 3-, or 4-4'-  
15 difluorobenzophenone in [emim][NTf<sub>2</sub>] using an *in*  
16 *situ* zinc catalyst. This catalyst was generated by  
17 dissolving zinc(II) chloride in the [emim][NTf<sub>2</sub>]  
18 ionic liquid. The reaction gave a 95 % yield (17 :  
19 8 : 75 *o*-, *m*-, *p*- isomer ratio).

20

21 **Example 7**

22 Benzoic acid (0.31 g, 2.5 mmol), *m*-xylene (0.53 g,  
23 5.0 mmol), [bmim][NTf<sub>2</sub>] (0.50 g) and M(NTf<sub>2</sub>)<sub>2</sub> (M = Co  
24 (0.14 g, 0.25 mmol), or Zn (0.15 g, 0.25 mmol) were  
25 placed in flasks equipped with stirrers and  
26 condensers. The contents of the flask were heated  
27 under reflux (ca 140 - 150 °C) for 2 days, then  
28 cooled to room temperature. The products were  
29 analysed by gas chromatographic analysis and found  
30 to give 93 and 87 % conversions (for Co and Zn bis-

1 triflimide reactions respectively) to 2,4-  
2 dimethylbenzophenone and, it is believed to be, 2,6-  
3 dimethylbenzophenone (11 : 1 isomer ratio in both  
4 cases). The results show that Zinc and cobalt bis-  
5 triflimide have been found to catalyse the  
6 benzylation of *m*-xylene with benzoic acid. The  
7 reaction is slower than the corresponding reaction  
8 with benzoyl chloride. The catalyst was recycled and  
9 the reaction was repeated. The results of the  
10 repeat experiment are shown in Table 4.

11

12 **Table 4**, The yields of benzophenones derived from the  
13 reaction of benzoic acid with *m*-xylene with 10%  
14 recycled metal bis-triflimide catalyst in  
15 [bmim] [NTf<sub>2</sub>] at 140 °C for 48 hours.

| Compound                           | % Yield | 2,4- to 2,6- ratio |
|------------------------------------|---------|--------------------|
| Zn(NTf <sub>2</sub> ) <sub>2</sub> | 40      | 11 : 1             |
| Co(NTf <sub>2</sub> ) <sub>2</sub> | 82      | 11 : 1             |

16

17 These are remarkable results given the low  
18 reactivity of benzoic acid. It is to be noted that  
19 this reaction produces water as a byproduct and as  
20 such it is a very environmentally friendly reaction.  
21 Furthermore, it utilises a non corrosive starting  
22 material (benzoic acid) and therefore is a safer  
23 reaction to perform than the corresponding reaction  
24 with benzoyl chloride. It can be concluded that  
25 this is a superior way to produce  
26 dimethylbenzophenone.

27

1   **Example 8:** The reaction of toluene with benzoyl  
2   chloride with zinc(II) or copper(II) bis-triflimide  
3   catalyst in [emim] [NTf<sub>2</sub>].

4

5   Copper or zinc (II) bis-triflimide (0.13 g, 0.21  
6   mmol) was added to a mixture of toluene (3.0g, 32.5  
7   mmol) and benzoyl chloride (3.0 g, 21.3 mmol). The  
8   mixture was heated under reflux for 72 hours (the  
9   reaction was monitored by gas chromatographic  
10   analysis, by taking a drop of the reaction mixture  
11   and suspending it in petroleum ether (b.p. = 40-  
12   60°C) and filtering off the catalyst. The starting  
13   materials and products, which are soluble in the  
14   petroleum ether extract, were cooled to room  
15   temperature. Petroleum ether (15 cm<sup>3</sup>, bp = 40-60°C)  
16   was added and the catalyst and formed a separate  
17   phase. The solution of the product was decanted and  
18   the flask (containing the catalyst) washed three  
19   times with 15 cm<sup>3</sup> of petroleum ether. The solvent  
20   was evaporated from the combined petroleum ether  
21   extracts and the product purified by vacuum  
22   distillation (bp = 160-170 °C @ 1 mmHg) in a  
23   Kugelrohr apparatus. This gave methylbenzophenone  
24   (4.0 g, 95 %). The catalyst can be reused  
25   immediately by adding toluene and benzoyl chloride  
26   to the flask and repeating the reaction, without  
27   loss of activity. The yields as determined by gas  
28   chromatographic analysis are shown in Table 5.

29

1   **Table 5**, the yields of benzophenones derived from the  
 2   reaction of benzoyl chloride with toluene with 1 %  
 3   copper(II) or 1 % zinc(II) bis-triflimide catalysts.  
 4   The figure in brackets refers to the *o*-, *m*- and *p*-  
 5   isomer ratios.

| Time / h | Yield with<br>Zn(NTf <sub>2</sub> ) <sub>2</sub> | Yield with<br>Cu(NTf <sub>2</sub> ) <sub>2</sub> |
|----------|--------------------------------------------------|--------------------------------------------------|
| 24       | 83                                               | 52                                               |
| 48       | 99 (22 : 1 : 77)                                 |                                                  |
| 72       |                                                  | 99 (20 : 2 : 78)                                 |

6.  
 7   Zinc(II) and copper(II) bis-triflimide compounds were  
 8   found to be effective acylation catalysts for the  
 9   benzoylation of toluene.

10  
 11   **Example 9:** The reaction of *o*-xylene with benzoyl  
 12   chloride with an aluminium(III) bis-triflimide  
 13   catalyst.

14  
 15   Aluminium (III) bis-triflimide (0.10 g) was added to  
 16   a mixture of *o*-xylene (3.0g, 28.2 mmol) and benzoyl  
 17   chloride (3.0 g, 21.3 mmol). The mixture was heated  
 18   at 120 °C for 18 hours (the reaction was monitored  
 19   by gas chromatographic analysis, by taking a drop of  
 20   the reaction mixture and suspending it in petroleum  
 21   ether (b.p. = 40-60°C) and filtering off the  
 22   catalyst. The starting materials and product are  
 23   soluble in the petroleum ether extract), and cooled  
 24   to room temperature. Petroleum ether (15 cm<sup>3</sup>) was  
 25   added and the catalyst and formed a separate phase.

1 The yields as determined by gas chromatographic  
2 analysis was 99% with a 6.0 : 1 3,4- to 2,3-  
3 dimethylbenzophenone isomer ratio. Aluminium(III)  
4 bis-triflimide was found to be an effective catalyst  
5 for the benzoylation of o-xylene. The reaction gave  
6 a quantitative yield of two isomers of the  
7 corresponding benzophenone (6 : 1 3,4- to 2,3-  
8 isomer ratio) after 18 h at 120 °C, using 1 mol % of  
9 catalyst.

10

11 **Example 10:** The reaction of toluene with benzoyl  
12 chloride with metal bis-triflimide catalyst.

13

14 Various metal (1-ethyl-3-methylimidazolium, Li, Mg,  
15 Ca, Mn, Co, Ni, Cu, Zn, Sn, Pb, Al) bis-triflimide  
16 salts (1 mol %) was added to a mixture of toluene  
17 (3.0g, 32.6 mmol) and benzoyl chloride (3.0 g, 21.3  
18 mmol). The mixture was heated at 110 °C for up to  
19 120 hours. The reaction was monitored at regular  
20 intervals by gas chromatographic analysis and the  
21 reaction stopped when the reaction was judged to be  
22 99 % complete by cooling to room temperature.  
23 Petroleum ether (15 cm<sup>3</sup>) was added and the catalyst  
24 and formed a separate phase. The product was  
25 isolated be decanting the petroleum ether extract,  
26 followed by Kugenrohr distillation at 1 mm Hg. The  
27 yields after various time intervals are given in  
28 Table 6. The product formed is methylbenzophenone.  
29 In all these reactions, the isomer ratio was found to  
30 be approximately 76 % para and 24 % ortho. This

1 results are shown in Table 6. Table 1 lists the  
 2 times required for Co and Ni bis-triflimide in  
 3 [emim] [NTf<sub>2</sub>].

4

5 **Table 6,** The yields of benzophenones derived from the  
 6 reaction of benzoyl chloride with toluene with 1%  
 7 metal bis-triflimide catalyst.

| Compound                            | Yield / % | Time / h |
|-------------------------------------|-----------|----------|
| [emim] [NTf <sub>2</sub> ]          | < 1       | 48       |
| Li NTf <sub>2</sub>                 | < 5       | 120      |
| Mg (NTf <sub>2</sub> ) <sub>2</sub> | 99        | 48       |
| Ca (NTf <sub>2</sub> ) <sub>2</sub> | < 5       | 120      |
| Mn (NTf <sub>2</sub> ) <sub>2</sub> | 99        | 5        |
| Co (NTf <sub>2</sub> ) <sub>2</sub> | 99        | 3        |
| Ni (NTf <sub>2</sub> ) <sub>2</sub> | 99        | 4        |
| Cu (NTf <sub>2</sub> ) <sub>2</sub> | 99        | 72       |
| Zn (NTf <sub>2</sub> ) <sub>2</sub> | 99        | 48       |
| Sn (NTf <sub>2</sub> ) <sub>2</sub> | 55        | 48       |
| Pb (NTf <sub>2</sub> ) <sub>2</sub> | 95        | 6        |
| Al (NTf <sub>2</sub> ) <sub>3</sub> | 99        | 24       |

8

9 From Table 6, a remarkable difference in reactivity  
 10 between the compounds chosen is observed. Of these,  
 11 four compounds appear to have unexpectedly high  
 12 reactivity, namely those of manganese, cobalt,  
 13 nickel and lead, whereas compounds such as zinc bis-  
 14 triflimide and aluminium bis-triflimide have  
 15 relatively modest activity. This is completely  
 16 different to "conventional Friedel-Crafts chemistry"  
 17 which would suggest that the Al bistriflimide should

1 be the best catalyst. Of particular remark is the  
2 catalytic reactivity of Co and Pb. Lithium and  
3 calcium bis-triflimide in contrast show very poor  
4 activity and with [emim] [bis-triflimide], little or  
5 no reaction was observed.

6

7 **Example 11:** The reaction of chlorobenzene with  
8 benzoyl chloride with nickel(II) bis-triflimide  
9 catalyst in [bmim][NTf<sub>2</sub>].

10

11 Nickel(II) bis-triflimide (0.062 g, 0.1 mmol) was  
12 added to 1-butyl-3-methylimidazolium bis-  
13 trifluoromethanesulfonimide ([bmim][NTf<sub>2</sub>]) (1.0 g)  
14 in a 25 cm<sup>3</sup> round-bottomed flask equipped with a  
15 magnetic stirrer and reflux condenser, and the  
16 mixture stirred until the catalyst dissolved.  
17 Chlorobenzene (1.68 g, 15 mmol) and benzoyl chloride  
18 (1.41 g, 10 mmol) were added. The mixture was  
19 heated under reflux for 72 hours and was analysed by  
20 gas chromatographic analysis as in previous  
21 examples. The reaction was cooled to room  
22 temperature. Petroleum ether (15 cm<sup>3</sup>, bp = 40-60 °C)  
23 was added and the catalyst and ionic liquid formed a  
24 separate phase from the petroleum ether layer. The  
25 solution of the product (in petroleum ether) was  
26 decanted and the flask (containing the ionic liquid  
27 and catalyst) washed three times with 15 cm<sup>3</sup> of  
28 petroleum ether. Concentration of the organic  
29 extract, followed by Kugelrohr distillation at 1 mm  
30 Hg (bp = 170-190 °C), gave chlorobenzophenone (1.65

1 g, 74 %). GC analysis showed 78 % yield after 72 hours, with a 70 : 8 4- to 2- isomer ratio. This is a remarkable result, as chlorobenzene is known to be classically unreactive in acylation reactions. It has not previously been possible to isolate significant quantities of the products of the acylation of chlorobenzene.

8  
9 **Example 12:** The reaction of chlorobenzene with  
10 benzoyl chloride with cobalt(II) bis-triflimide or  
11 zinc(II) bis-triflimide catalyst in [bmim][NTf<sub>2</sub>].

12  
13 In two separate reactions, either zinc(II) bis-  
14 triflimide (0.16 g, 5 mol %) or cobalt(II) bis-  
15 triflimide (0.15 g, 5 mol %) was added to 1-butyl-3-  
16 methylimidazolium bis-trifluoromethanesulfonimide  
17 ([bmim][NTf<sub>2</sub>]) (1.0 g) 25 cm<sup>3</sup> in a round-bottomed  
18 flask equipped with a magnetic stirrer and reflux  
19 condenser, and the mixture was heated gently and  
20 stirred until the catalyst dissolved.  
21 Chlorobenzene (0.68 g, 6 mmol) and benzoyl chloride  
22 (0.72 g, 5 mmol) were added. The mixture was heated  
23 under reflux for 18 hours and was analysed by gas  
24 chromatographic analysis as in previous examples.  
25 The reaction was cooled to room temperature.  
26 Cyclohexane (15 cm<sup>3</sup>) was added and the catalyst and  
27 ionic liquid formed a separate phase. The solution  
28 of the product was decanted and the flask  
29 (containing the ionic liquid and catalyst) washed  
30 three times with 15 cm<sup>3</sup> cyclohexane followed by

1 Kugelrohr distillation at 1 mm Hg (bp = 180-200 °C).  
2 This gave a mixture of 2- and 4-chlorobenzophenone.  
3 GC yield = 97 % (6.8 : 1 *p*- to *o*- isomer ratio) for  
4 cobalt catalyst and 55 % GC yield (6.5 : 1 *p*- to *o*-  
5 isomer ratio) for the zinc catalyst.

6

7 The reaction of chlorobenzene with benzoyl chloride  
8 was investigated, as chlorobenzene is much more  
9 difficult to acylate. Although reasonable yields  
10 could be obtained with 1 mol % catalyst, it was  
11 found that 5-mol % catalyst gave more acceptable  
12 reaction rates. The reaction was found to be 95 %  
13 complete with cobalt bis-triflimide after 18 hours  
14 and 55 % complete with zinc bis-triflimide (Table  
15 7). The catalyst was found to be less active after  
16 extracting the product with boiling cyclohexane and  
17 recycling the ionic liquid / catalyst. The activity  
18 of the catalyst was restored by adding a trace of  
19 hydrogen bis-triflimide (0.1 mol %).

20

21 **Table 7**, The yields of benzophenones derived from the  
22 reaction of benzoyl chloride with chlorobenzene with  
23 5% metal bis-triflimide catalyst in [bmim] [NTf<sub>2</sub>].

| Compound                           | Yield | Time / h |
|------------------------------------|-------|----------|
| Co(NTf <sub>2</sub> ) <sub>2</sub> | 95    | 18       |
| Zn(NTf <sub>2</sub> ) <sub>2</sub> | 55    | 18       |

24

25 **Example 13:** The reaction of toluene with benzoyl  
26 chloride with hydrogen and metal bis-triflimide  
27 catalyst.

1  
2 Various metal bis-triflimide compounds: Sr(II),  
3 Ba(II), In(III), In(III) in [bmim][NTf<sub>2</sub>], Cr(III),  
4 Ce(IV), Yb(III), and hydrogen bis-triflimide  
5 {HN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>} (1 mol %) were added to a mixture of  
6 toluene (1.38 g, 15.0 mmol) and benzoyl chloride  
7 (1.41 g, 10.0 mmol). The mixture was heated at 110  
8 °C for up to 120 hours. The reaction was monitored  
9 at various intervals by gas chromatographic analysis  
10 and the reaction stopped after 5 days. The yields  
11 of methylbenzophenone with respect to time are shown  
12 in Figure 1. The reaction of benzoyl chloride and  
13 toluene gave 2- and 4-methylbenzophenone. All these  
14 compounds were found to be active Friedel-Crafts  
15 catalysts, but with considerably different  
16 activities. Of these, the activities of indium(III)  
17 and iron(III) (Example 14) are the most notable, as  
18 they are exceptionally good catalysts. The p- to o-  
19 selectivities were in the range 3.9 to 4.4 to 1,  
20 with the indium and iron catalysts giving 4.4 : 1  
21 selectivity.

22  
23 **Example 14:** The reaction of toluene with benzoyl  
24 chloride with iron(III) bis-triflimide or iron(III)  
25 chloride dissolved in [bmim][NTf<sub>2</sub>].

26  
27 In two separate reactions, either iron(III) bis-  
28 triflimide (1 mol %) or iron(III) chloride (1 mol %)  
29 was added to 1-butyl-3-methylimidazolium bis-  
30 trifluoromethanesulfonimide ([bmim][NTf<sub>2</sub>]) (1.0 g)

1 25 cm<sup>3</sup> in a round-bottomed flask equipped with a  
2 magnetic stirrer and reflux condenser, and the  
3 mixture was heated gently and stirred until the  
4 catalyst dissolved. Toluene (1.38 g, 15 mmol) and  
5 benzoyl chloride (1.41 g, 10 mmol) were added. The  
6 mixture was heated under reflux for 48 hours and was  
7 analysed by gas chromatographic analysis as in  
8 previous examples. The yield of methylbenzophenone  
9 with respect to time is shown in Figure 2. Here,  
10 the activity of the iron catalyst was tested in two  
11 separate ways: (a) with 1% FeO(NTf<sub>2</sub>) in [bmim][NTf<sub>2</sub>]  
12 and (b) 1% FeCl<sub>3</sub> in [bmim][NTf<sub>2</sub>]. In both cases, the  
13 activity and selectivity were similar, indicating  
14 that FeCl<sub>3</sub> and FeO(NTf<sub>2</sub>) are possibly precursors to  
15 catalyst, when dissolved in excess [bmim][NTf<sub>2</sub>].

16  
17 Example 15: The reaction of toluene with methane  
18 sulfonyl chloride with zinc(II) bis-triflimide.  
19

20 Zinc(II) bis-triflimide (0.13 g, 2.5 mol %) was  
21 added to a round-bottomed flask equipped with a  
22 magnetic stirrer and reflux condenser. Toluene  
23 (1.38 g, 15 mmol) and methane sulfonyl chloride  
24 (1.14 g, 10 mmol) were added. The mixture was  
25 heated under reflux for 24 hours and was analysed by  
26 gas chromatographic analysis as in previous  
27 examples. All the methane sulfonyl chloride had  
28 reacted and three isomers of (2-, 3- and 4-  
29 methylphenyl)methylsulfone had formed (yield = 99  
30 %), isomer ratio = 35 : 18 : 47 for the o-, m- and

1 *p*- isomers. The product was extracted from the  
2 catalyst by dissolving it in cyclohexane (20 cm<sup>3</sup>)  
3 followed by decantation of the cyclohexane extract.  
4 The catalyst was washed with cyclohexane (2 x 20  
5 cm<sup>3</sup>) and the combined cyclohexane extracts were  
6 concentrated on a rotary evaporator. The product  
7 was Kugelrohr distilled at 100-110°C to give 1.62 g  
8 of a colourless oil (96 % isolated yield).

9

10 **Example 16:** The reaction of benzene with benzene  
11 sulfonyl chloride with zinc(II) bis-triflimide.

12

13 Zinc(II) bis-triflimide (0.062 g, 1 mol %) was  
14 dissolved in [bmim][NTf<sub>2</sub>] (1.0 g) in a round-  
15 bottomed flask equipped with a magnetic stirrer and  
16 reflux condenser. Benzene (1.56 g, 20 mmol) and  
17 benzene sulfonyl chloride (1.76 g, 10 mmol) were  
18 added. The mixture was heated under reflux for 18  
19 hours and was analysed by gas chromatographic  
20 analysis as in previous examples. All the benzene  
21 sulfonyl chloride had reacted diphenyl sulfone had  
22 formed (yield = 99 %). The product was extracted  
23 from the catalyst and ionic liquid by dissolving it  
24 in boiling cyclohexane (5 x 30 cm<sup>3</sup>) followed by  
25 decantation of the cyclohexane extract. The  
26 diphenylsulfone crystallised on cooling and was  
27 collected by filtration (2.03 g, 93 % isolated  
28 yield). The reaction of benzene with benzene  
29 sulfonyl chloride gave the expected diphenyl sulfone  
30 in 99% yield with a Zn(NTf<sub>2</sub>)<sub>2</sub> catalyst (18 h at

1 reflux). The diphenyl sulfone was extracted with  
2 boiling cyclohexane and the ionic liquid and  
3 catalyst could be reused.

4

5 **Example 17:** The reaction of *m*-xylene with benzene  
6 sulfonyl chloride with zinc(II) bis-triflimide.

7

8 Zinc(II) bis-triflimide (0.062 g, 1 mol %) was  
9 dissolved in [bmim][NTf<sub>2</sub>] (1.0 g) in a round-  
10 bottomed flask equipped with a magnetic stirrer and  
11 reflux condenser and *m*-xylene (2.12 g, 20 mmol) and  
12 benzene sulfonyl chloride (1.76 g, 10 mmol) were  
13 added. The mixture was heated under reflux for 18  
14 hours and was analysed by gas chromatographic  
15 analysis as in previous examples. All the benzene  
16 sulfonyl chloride had reacted and mostly 2,4-  
17 dimethyldiphenylsulfone had formed (yield = 99 %, 20  
18 : 1 isomer ratio {by NMR}). The major product is  
19 shown below, the structure of the minor isomer is  
20 not known but is believed to be the 2,6-dimethyl  
21 isomer.

22



The product was extracted from the catalyst and  
ionic liquid by dissolving it in boiling cyclohexane  
(5 x 30 cm<sup>3</sup>) followed by decantation of the

1 cyclohexane extract. The 2,4-  
2 dimethyldiphenylsulfone crystallised on cooling and  
3 was collected by filtration.

4

5 **Example 18:** The reaction of chlorobenzene with  
6 benzene sulfonyl chloride with metal bis-triflimide  
7 catalysts.

8

9 In three separate reactions, either magnesium(II)  
10 bis-triflimide (0.058 g, 0.1 mol), aluminium(III)  
11 bis-triflimide (0.87 g, 0.1 mmol) or cobalt(II) bis-  
12 triflimide (0.062 g, 0.1 mmol) was dissolved in  
13 [bmim][NTf<sub>2</sub>] (0.5 g) in a round-bottomed flask  
14 equipped with a magnetic stirrer and reflux  
15 condenser. Chlorobenzene (1.68 g, 15 mmol) and  
16 benzene sulfonyl chloride (1.76 g, 10 mmol) were  
17 added. The mixture was heated under reflux for 144  
18 hours and monitored by gas chromatographic analysis  
19 as in previous examples. The yields with respect to  
20 time are given in Figure 3. The product was  
21 extracted from the catalyst and ionic liquid by  
22 dissolving it in boiling cyclohexane (4 x 10 cm<sup>3</sup>)  
23 followed by decantation of the cyclohexane extract.  
24 The 2- and 4-chlorodiphenylsulfone (9:1 *p*- to *o*-  
25 isomer ratio) crystallised on cooling and was  
26 collected by filtration. The selectivity was 9:1 for  
27 the *p*- isomer and the *o*- isomer was the minor isomer  
28 in all cases. Coincidentally, the reaction of benzoyl  
29 chloride with chlorobenzene also gave the same  
30 selectivity and similar reaction rates. Phenyl-4-

1 chlorophenylsulfone is an insecticide. The reaction  
 2 was found to be slow using 1 mol % catalyst, but 5  
 3 mol % catalyst gave acceptable reaction rates. The  
 4 metal salts chosen were aluminium(III), cobalt(II)  
 5 and magnesium(II) bis-triflimide, in the ionic  
 6 liquid [bmim][NTf<sub>2</sub>]. All three catalysts were found  
 7 to be effective for this reaction. The reaction is  
 8 shown below.

9



1 liquid and catalyst were prepared for reuse by  
2 heating at 60 °C under vacuum for 1 hour. The ionic  
3 liquid and catalyst were used for further reactions  
4 of benzene with oct-1-ene without loss of activity.  
5 This is an alkylation of benzene with an alkene  
6 using a metal bis-triflimide catalyst. Benzene and  
7 oct-1-ene react in the presence of 1% nickel(II)  
8 bis-triflimide in [bmim][NTf<sub>2</sub>] to form three isomers  
9 of octyl benzene and a small amount of hexadecene  
10 (unknown isomeric distribution). This reaction  
11 shown below:

12



14 The alkylation of benzene with oct-1-ene.  
15 The reaction gave a 70 % yield (by GC) of three  
16 isomers of octylbenzene. The isomer ratio was  
17 determined to be 0.75 : 1.00 : 2.03, with the 4-  
18 phenyloctene as the major product and 2-phenyloctene  
19 as the minor product. During the course of the  
20 reaction, isomerisation of oct-1-ene to a number of  
21 isomers of octene was observed, and the rate of this  
22 isomerisation process was considerably faster than  
23 the alkylation reaction. It was found that the ionic  
24 liquid / catalyst combination remained active on a

1 second run. To confirm that the minor product of  
 2 the reaction was an octene dimer, the same reaction  
 3 was performed, but without any benzene present  
 4 (shown below).

5



6

7 The dimerisation of oct-1-ene.

8

9 The reaction proceeded initially with isomerisation  
 10 of octene to a mixture of 4 isomers of octene.  
 11 After 18 hours, the reaction was almost complete (>  
 12 95 % conversion). The products were a large number  
 13 of isomers of dimerised and trimerised octene. As  
 14 the reaction was left to run for 6 days, a  
 15 broadening of the cluster of GC peaked for the dimer  
 16 and trimer was observed, indicating that further  
 17 isomerisation was occurring.

18

19 Example 20: The dimerisation of oct-1-ene with  
 20 nickel(II) bis-triflimide.

1  
2 Nickel(II) bis-triflimide (0.062 g, 0.1 mmol) was  
3 dissolved in [bmim][NTf<sub>2</sub>] (0.5 g) in a round-  
4 bottomed flask equipped with a magnetic stirrer and  
5 reflux condenser. Oct-1-ene (1.12 g, 10 mmol) was  
6 added. The mixture was heated under reflux for 18  
7 hours and was analysed by gas chromatographic  
8 analysis as in previous examples. The oct-1-ene peak  
9 disappeared and three isomers of octene (oct-2-ene,  
10 oct-3-ene and oct-4-ene) were formed. Hydrogen bis-  
11 triflimide was added (0.0028 g, 0.1 mmol) and the  
12 mixture was heated for a further 18 hours. Gas  
13 chromatographic analysis showed that the reaction  
14 was almost complete (> 99%), and gave a mixture of  
15 isomers of hexadecene and tetracosene (trimer of  
16 octene). The less dense product phase was decanted  
17 from the ionic / catalyst phase and purified by  
18 Kugelrohr distillation at 1 mm Hg. The ionic liquid  
19 and catalyst were prepared for reuse by heating at  
20 60 °C under vacuum for 1 hour. The ionic liquid and  
21 catalyst were used for further dimerisation  
22 reactions of oct-1-ene without loss of activity.  
23  
24 **Example 21:** The Fries rearrangement of 4-  
25 methylphenoxybenzoate with hydrogen and metal bis-  
26 triflimide compounds.  
27  
28 Ytterbium(III) bis-triflimide (0.1 g) and hydrogen  
29 bis-triflimide (0.01 g) was dissolved in [n-H<sub>29</sub>C<sub>14</sub>(n-  
30 H<sub>13</sub>C<sub>6</sub>)<sub>3</sub>P][NTf<sub>2</sub>] (1.0 g) in a round-bottomed flask

1 equipped with a magnetic stirrer and reflux  
 2 condenser. 4-methylphenoxybenzoate (1.0 g) was  
 3 added. The mixture was heated under reflux for 24  
 4 hours at 60 °C and was analysed by gas  
 5 chromatographic analysis as in previous examples.  
 6 The product of the reaction was 2-hydroxy-5-  
 7 methylbenzophenone (90 % yield). The isomerisation  
 8 of 4-methylphenoxybenzoate to 2-hydroxy-5-  
 9 methylbenzophenone is shown below.

10



1 examples. The cyclohexene peak disappeared and  
2 peak(s) due to alkylation of the aromatic compound  
3 and peaks due to dimerisation reactions of  
4 cyclohexene were formed (see Example 26 for  
5 details). The ionic liquid and catalyst were  
6 prepared for reuse by heating at 60 °C under vacuum  
7 for 1 hour. The ionic liquid and catalyst were used  
8 for further reactions of benzene with cyclohexene  
9 without loss of activity.

10

11 **Example 23:** The reaction of benzene with dodec-1-ene  
12 with metal bis-triflimides, triflates and hydrogen  
13 bis-triflimide.

14

15 In ten separate reaction vessels (a multi-cell glass  
16 reactor with stirrers and condensers) metal  
17 triflimide or metal triflate compounds (see Table  
18 below) were added together with hydrogen bis-  
19 triflimide (0.01 g) to  $[n\text{-H}_{29}\text{C}_{14}(n\text{-H}_{13}\text{C}_6)_3\text{P}][\text{NTf}_2]$  (2.0  
20 g) and stirred until the metal compound had  
21 dissolved. Benzene (3.8 g, 50 mmol) and dodec-1-  
22 ene (0.84 g, 5.0 mmol) were added. The mixtures  
23 were heated at 80 °C for 24 hours. The excess  
24 benzene was distilled off. The mixture was analysed  
25 by NMR upon cooling to room temperature. The ionic  
26 liquid and catalyst were prepared for reuse by  
27 heating at 60 °C under vacuum for 1 hour. The ionic  
28 liquid and catalyst were used for further reactions  
29 of benzene with dodec-1-ene without loss of  
30 activity. The results are shown in Table 8 below.

1 **Table 8**

| Compound                           | Mass / g | Unreacted dodecene | Isomerised dodecene | Dodecyl benzene |
|------------------------------------|----------|--------------------|---------------------|-----------------|
| Yb(NTf <sub>2</sub> ) <sub>3</sub> | 1.02     | 0                  | 0                   | 100             |
| Co(NTf <sub>2</sub> ) <sub>2</sub> | 0.62     | 0                  | 99                  | 1               |
| Cu(NTf <sub>2</sub> ) <sub>2</sub> | 0.62     | 0                  | 1                   | 99              |
| Pb(NTf <sub>2</sub> ) <sub>2</sub> | 0.76     | 0                  | 100                 | 0               |
| In(NTf <sub>2</sub> ) <sub>3</sub> | 0.95     | 0                  | 0                   | 100             |
| Ga(NTf <sub>2</sub> ) <sub>3</sub> | 0.63     | 0                  | 61                  | 39              |
| Zn(OTf <sub>2</sub> ) <sub>2</sub> | 0.36     | 67                 | 33                  | 0               |
| Cu(OTf <sub>2</sub> ) <sub>2</sub> | 0.36     | 1                  | 96                  | 3               |
| Yb(OTf <sub>2</sub> ) <sub>3</sub> | 0.53     | 0                  | 91                  | 9               |
| La(OTf <sub>2</sub> ) <sub>3</sub> | 0.59     | 0                  | 60                  | 40              |

2

3 **Example 24:** The reaction of toluene with benzoyl  
 4 chloride with metal compounds dissolved in  
 5 [bmim][NTf<sub>2</sub>].

6

7 In five separate reactions, either titanium(IV)  
 8 chloride (1 mol %) or tin(IV) chloride (1 mol %), or  
 9 tungsten(VI) chloride, or hafnium(IV) chloride or  
 10 palladium(II) chloride was added to 1-butyl-3-  
 11 methylimidazolium bis-trifluoromethanesulfonimide  
 12 ([bmim][NTf<sub>2</sub>]) (2.0 g) 25 cm<sup>3</sup> in a round-bottomed  
 13 flask equipped with a magnetic stirrer and reflux  
 14 condenser, and the toluene (2.81 g, 30 mmol) and  
 15 benzoyl chloride (2.84 g, 20 mmol) were added. The  
 16 mixtures was heated under reflux for 24 hours and  
 17 was analysed by gas chromatographic analysis as in  
 18 previous examples. The conversion of starting

1 materials to methylbenzophenone was quantitative  
2 except for the palladium(II) catalysed reaction (75  
3 % yield). The variation of yield with time in the  
4 reaction of several new metal bis-triflimide salts  
5 in the reaction of benzoyl chloride with toluene is  
6 given in Figure 4. These reactions were performed  
7 in parallel, and the yields were determined by GC  
8 analysis.

9  
10 In this invention, the use of a metal halide  
11 dissolved in a bis-triflimide ionic liquid can be  
12 used for reactions such as the Friedel-Crafts  
13 reactions. This is useful where a particular metal  
14 bis-triflimide salt is difficult to prepare or  
15 isolate. In this invention, five metal halides  
16 (chlorides) (1 mol % with respect to the reactants)  
17 were dissolved in [bmim][NTf<sub>2</sub>]. This combination  
18 was used to catalyse the reaction of toluene with  
19 benzoyl chloride to give methylbenzophenone. The  
20 yield with respect to time is given in Figure 4.  
21 All of the metals chosen gave the expected products  
22 in good yield, but the combination of 1% mol tin(IV)  
23 chloride in [bmim][NTf<sub>2</sub>] was a particularly  
24 effective catalyst. This process of using metal  
25 compounds dissolved in an ionic liquid (usually bis-  
26 triflimide) can also be used with compounds of other  
27 metals (particularly transition metals (d-block) or  
28 f-block metals)) not listed in Figures 3 or 4.

29

30 **Example 25**

1 A number of aromatic sulfonylation reactions were  
 2 performed. These reactions are very similar to  
 3 Friedel-Crafts acylation reactions and are performed  
 4 under similar conditions. The key difference is  
 5 that a  $-SO_2-X$  group replaces a  $-CO-X$  ( $X$  = leaving  
 6 group). In most cases, the selectivities,  
 7 reactivities and yields were found similar to the  
 8 corresponding acylation reaction. The reaction of  
 9 sulfonyl chloride with benzene resulted in the  
 10 formation of chlorobenzene (quantitatively) and  $SO_2$ .  
 11 This is as is found in many other reactions of  $SO_2Cl_2$   
 12 with aromatic compounds performed in molecular  
 13 solvents.

14



15

16

17 **Example 26**

18 The alkylation of various aromatic compounds with  
 19 cyclohexene in a phosphonium ionic liquid with 10 %  
 20 ytterbium(III) bis-triflimide with a trace of

hydrogen bis-triflimide were carried out. A side reaction also takes place that results in the formation of a dimer of cyclohexene (see below) and this results in a slight reduction in the yield of the Friedel-Crafts reaction. However, it should be noted that this demonstrates that metal triflimide compounds can be used for dimerisation and oligomerisation reactions.

9

10  
11

The reaction of aromatics with cyclohexene in a phosphonium ionic liquid for 12 hours at 80 °C is shown above. Below is shown the dimerisation of cyclohexene.



1   **CLAIMS**

2

3   1. A process for carrying out a chemical reaction  
4   which is catalysed by one or more metal or hydrogen  
5   fluoroalkylsulfonylated compound which process  
6   comprises carrying out said reaction in the presence of  
7   an ionic liquid or in solvent-free conditions.

8

9   2. A process as claimed in claim 1 wherein the one or  
10   more metal or hydrogen fluoroalkylsulfonylated compound  
11   is a metal or hydrogen bistriflimide compound.

12

13   3. A process according to claim 2 wherein the  
14   bistriflimide compound has the following formula:

15



17

18       where M is hydrogen or a metal;  
19       L is a negative or neutral ligand;  
20       n is 2,3,4,5,6,7 or 8;  
21       x is greater than or equal to 1;  
22       y is 0,1,2,3,4,5,6,7 or 8; and  
23       z is 0, 1,2,3 or 4.

24

25   4. A process according to any one of the preceding  
26   claims wherein M is a metal selected from the metals in  
27   groups 1 to 16 and the lanthanides and the actinides.

28

29   5. A process according to any one of the preceding  
30   claims wherein the chemical reaction is one of :  
31       (a) an electrophilic substitution reaction, or

1           (b)   an   isomerisation,   polymerisation   or  
2           rearrangement   of   a   chemical   compound   or  
3           molecule.

4     6.   A process according to claim 5 wherein the  
5       chemical reaction is a reaction between an aromatic  
6       compound and an alkylating, acylating or sulfonating  
7       agent.

8

9     7.   A process according to claim 5 wherein the  
10      chemical reaction is a rearrangement of esters of  
11      phenols to acyl phenols.

12

13    8.   A process according to any one of the preceding  
14      claims which comprises carrying out said reaction in  
15      solvent free conditions wherein the one or more metal  
16      or hydrogen fluoroalkylsulfonylated compound is added  
17      directly to the reactants.

18

19    9.   A process according to any one of the preceding  
20      claims which comprises carrying out the reaction in the  
21      presence of an ionic liquid which comprises dissolving  
22      or suspending the one or more metal or hydrogen  
23      fluoroalkylsulfonylated compound in an ionic liquid.

24

25    10.   A process according to claim 9 wherein the ionic  
26      liquid comprises a cation chosen from 1-alkylpyridinium  
27      or 1,3-dialkylimidazolium cation, alkyl- or poly-  
28      alkylpyridinium, alkyl or poly-alkylimidazolium, alkyl  
29      or poly-alkylpyrazolium, alkyl or poly-alkyl ammonium,  
30      alkyl or poly-alkyl phosphonium and alkylated

1 diazabicyclo-[5,4,0]-undec-7-ene; and an anion chosen  
2 from bis-trifluoromethanesulfonimide,  
3 bis-pentafluoroethanesulfonimide,  
4 hexafluorophosphate(V), tetrafluoroborate(III),  
5 trifluoromethanesulfonate, cyanamide, fluoro or  
6 perfluoroalkylsulfonate, halide, sulfate,  
7 hydrogensulfate, alkylsulfate, alkylsulfonate,  
8 arylsulfate, arylsulfonate, nitrate, carboxylate,  
9 phosphate, hydrogenphosphate, dihydrogenphosphate,  
10 alkylphosphate, alkylphosphonate, phosphonate, nitrite,  
11 arsenate, antimonate, haloaluminate, aluminate, borate,  
12 silicate, haloindate(III), gallate, alkylborate and  
13 halogallate.

14

15 11. A process according to any one of the preceding  
16 claims wherein the catalyst or the catalyst and ionic  
17 liquid combination are subsequently separated from the  
18 reaction mixture.

19

20 12. A process according to claim 11 wherein the  
21 catalyst or the catalyst and ionic liquid combination  
22 are subsequently recycled.

23

1    **Figure 1**

2

3  
4

5

6

7

8

9

10

11

1    **Figure 2**

2



3

4

1 Figure 3



2  
3  
4  
5

1 Figure 4



2

3

4

5

6