东南大学考试卷(A卷)

课程名称 工科数学分析 (上)期中 考试学期 <u>11-12-2</u> 得分 _ 适用专业 选学工科数分的各类专业 考试形式 闭卷 考试时间长度

题号	_	=	Ξ	四	五	六
得分						
评阅人						

- 、 填空题(本题共8小题,每小题4分,共32分)
- 1. 设当 $x \to 0$ 时, $\sin(2x) 2\sin x$ 与 x^n 是同阶无穷小,则 n =;
- 类间断点;

3.

设
$$f(x) = \begin{cases} ae^x, & x < 0 \\ b + \ln(1+x), & x \ge 0 \end{cases}$$
,若 $f(x)$ 在 $x = 0$ 处可导,则常数 $a =$ _____,

常数 $b = ___;$

- 4. 设函数 f 满足 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2\sin x} = -1$,则 f'(1) =_______

- 7. 设 $y = f(\ln x)e^{f(x)}, (x > 0)$,其中 f 可微,则微分 dy =_____
- 8. 极限 $\lim_{x\to 0} (1-5\tan^2 x)^{\frac{1}{\sin^2 x}} =$ ______
- 二、 计算下列各题(本题共5小题,每小题8分,满分40分)
- 1. 求极限 $\lim_{n\to\infty} \sqrt{n}(\sqrt[n]{n}-1)$.

2. 求极限
$$\lim_{x\to 0} \frac{\ln(1+x) + \ln(1-x)}{1 - \cos x + \sin^2 x}$$
.

4. 设 y = y(x) 是由方程 $2^x - \csc y + y^3 = 0$ 所确定的隐函数,求 $\frac{dy}{dx}$.

5.

设
$$\begin{cases} x = t - \ln(1 + t^2) \\ y = \arctan t \end{cases}, \ddot{x} \frac{\mathrm{d}y}{\mathrm{d}x} \not \gtrsim \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}|_{t=-1}.$$

三、 (本题满分7分) 用 $\varepsilon - \delta$ 定义证明 $\lim_{x \to 1} \frac{2x-1}{3x+2} = \frac{1}{5}$.

四、(本题满分7分) 设 $x_1 = \frac{1}{2}$, $x_{n+1} = \frac{1+x_n^2}{2}$, $(n=1,2,\cdots)$,利用单调有界收敛准则证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n\to\infty} x_n$.

五、 (本题满分7分) 试证: 当 $x \ge 0$ 时, $\ln(1+x) \le \frac{x}{\sqrt{1+x}}$.

六、(本题满分7分) 设函数 f 在区间 $[a, +\infty)$ 上满足Lipschitz条件,即存在 L>0 ,使得对 $\forall x,y\in [a, +\infty)$,恒有 $|f(x)-f(y)|\leq L|x-y|$,其中 a>0 ,证明: $\frac{f(x)}{x}$ 在 $[a, +\infty)$ 上一致连续.