ECON 6351 Economic Forecasting Lecture Nonstationary Time Series

Nonstationary Time Series

a lot of time series in economics and finance are not weakly stationary and instead

- show linear or exponential trend
- show stochastic trend grow or fall over time or meander without a constant long-run mean
- show increasing variance over time

examples

- ▶ GDP, consumption, investment, exports, imports, . . .
- industrial production, retail sales, . . .
- interest rates, foreign exchange rates, stock market indices, prices of commodities,...
- unemployment rate, labor force participation rate, . . .
- ▶ loans, federal debt, ...

Nonstationary Time Series

A very slowly decaying ACF suggests nonstationarity and presence of deterministic or stochastic trend in the time series, e.g. for $y_t = y_{t-1} + \varepsilon_t$

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```


Transformations

Detrending - regressing y_t on intercept and time trend - this is proper treatment if $\{y_t\}$ is trend stationary

Differencing - proper treatment if $\{y_t\}$ is difference stationary

Log transformation and differencing - proper treatment if $\{y_t\}$ grows exponentially and shows increasing variability over time

Trend-Stationary Time Series

ightharpoonup consider times series $\{y_t\}$ that follows

$$y_t = \alpha + \mu t + \varepsilon_t$$

where ε_t is a weakly stationary time series

- $\blacktriangleright E(y_t) = \alpha + \mu t \text{ and } var(y_t) = var(\varepsilon_t) = const.$
- ▶ since $E(y_t) \neq const.$ time series $\{y_t\}$ is not weakly stationary
- $lackbox{}{}$ $\{y_t\}$ can however be made stationary by removing time trend using a regression of y_t on constant and time
- $ightharpoonup \{y_t\}$ is **trend stationary** time series

Difference-Stationary Time Series

Random Walk

• suppose ε_t is white noise, consider a version of AR(1) model with $\phi_0=0$ and $\phi_1=1$

$$y_t = y_{t-1} + \varepsilon_t$$

or, by repeated substitution

$$y_t = \alpha + \sum_{j=1}^t \varepsilon_j$$

where $\alpha = y_0$

- $E(y_t) = \alpha$ and $var(y_t) = var(\sum_{j=1}^t \varepsilon_j) = t\sigma_{\varepsilon}^2$
- ▶ since $var(y_t) \neq const.$ time series $\{y_t\}$ is not weakly stationary
- $lackbox{}{}$ $\{y_t\}$ can not be made difference stationary by removing time trend using a regression of y_t on constant and time
- $lackbox{}{}$ $\{y_t\}$ can however be made stationary by differencing
- $ightharpoonup \{y_t\}$ is **difference stationary** time series

five simulations of trend stationary time series vs random walk

Difference-Stationary Time Series

Random Walk with Drift

lacktriangle suppose $arepsilon_t$ is white noise, consider a version of AR(1) model with $\phi_1=1$

$$y_t = \mu + y_{t-1} + \varepsilon_t$$

and by repeated substitution

$$y_t = \alpha + \mu t + \sum_{j=1}^t \varepsilon_j$$

where $\alpha = y_0$

- $\blacktriangleright E(y_t) = \alpha + \mu t \text{ and } var(y_t) = var(\sum_{j=1}^t \varepsilon_j) = t\sigma_{\varepsilon}^2$
- ▶ $E(y_t) \neq const.$ and $var(y_t) \neq const.$ so $\{y_t\}$ is not weakly stationary
- $lackbox{}{}$ $\{y_t\}$ can not be made difference stationary by removing time trend using a regression of y_t on constant and time
- $lackbox{}{}$ $\{y_t\}$ can however be made stationary by differencing
- $ightharpoonup \{y_t\}$ is difference stationary time series

It is important to be able to distinguish between the two cases:

- with trend stationary series shocks have transitory effects
- with difference stationary series shocks have permanent effects

In addition, as we will see later additional issues arise with difference stationary series in the context of multivariate time series analysis

U.S. GDP and the effect of 2008-2009 recession permanent effect or structural break?

Unit-root Time Series

Autoregressive Integrated Moving-Average (ARIMA) Models

- ightharpoonup non-stationary time series is said to contain a **unit root** or to be **integrated of order one**, I(1), if it can be made stationary by applying first differences
- ▶ time series $\{y_t\}$ follows an ARIMA(p,1,q) process if $\Delta y_t = (1-L)y_t$ follows a stationary and invertible ARMA(p,q) process, so that

$$\phi(L)(1-L)y_t = \mu + \theta(L)\varepsilon_t$$

Unit-root Time Series

Autoregressive Integrated Moving-Average (ARIMA) Models

- ▶ non-stationary time series is said to be **integrated of order** d, I(d), if it can be made stationary by differencing d times
- ▶ time series $\{y_t\}$ follows an ARIMA(p,d,q) process if $\Delta^d y_t = (1-L)^d y_t$ follows a stationary and invertible ARMA(p,q) process, thus

$$\phi(L)(1-L)^d y_t = \mu + \theta(L)\varepsilon_t$$

note that pure random walk and random walk with drift are special cases, an ARIMA(0, 1, 0)

$$(1-L)y_t = \mu + \varepsilon_t$$

with $\mu=0$ in case of pure random walk and $\mu\neq 0$ in case of random walk with drift

it is often very hard to distinguish random walk and trend stationary model: 150 vs 5000 observations of

random walk vs. trend stationary AR(1) with $\mu =$ 0.15, $\phi_1 =$ 0.95

ACF and PACF for 150 observations of y_t under random walk vs. trend stationary AR(1) with $\mu=$ 0.15, $\phi_1=$ 0.95

ACF and PACF for 150 observations of first difference Δy_t under random walk vs. trend stationary AR(1) with $\mu=0.15,~\phi_1=0.95$

random walk vs. trend stationary AR(1) with $\mu=$ 0.15, $\phi_1=$ 0.95

```
## Series: vDS[1:T]
## ARIMA(1.0.0) with non-zero mean
##
## Coefficients:
##
           ar1
                  mean
## 0.9971 16.279
## s.e. 0.0038 12.711
##
## sigma^2 = 1.138: log likelihood = -224.1
## ATC=454.19 ATCc=454.36 BTC=463.22
## Series: vTS[1:T]
## ARIMA(1.0.0) with non-zero mean
##
## Coefficients:
##
           ar1
                  mean
   0.9878 13.7733
##
## s.e. 0.0123 4.7683
##
## sigma^2 = 1.065: log likelihood = -218.44
## ATC=442.87 ATCc=443.04 BTC=451.91
```

random walk vs. trend stationary AR(1) with $\mu =$ 0.15, $\phi_1 =$ 0.95

also very hard to distinguish random walk model and highly persistent AR(1): random walk I(1) vs. AR(1) with $\phi_1=0.98$

ACF and PACF for y_t under random walk vs. trend stationary AR(1) with $\phi_1=$ 0.98

ACF and PACF for first difference Δy_t under random walk vs. trend stationary AR(1) with $\phi_1=$ 0.98

random walk vs. trend stationary AR(1) with $\phi_1=0.98$

```
## Series: vI1
## ARIMA(1.0.0) with non-zero mean
##
## Coefficients:
##
           ar1
                  mean
##
        0.9885 0.4748
## s.e. 0.0060 3.2424
##
## sigma^2 = 1.034: log likelihood = -863.67
## ATC=1733.33 ATCc=1733.37 BTC=1746.53
## Series: vAR1
## ARIMA(1.0.0) with non-zero mean
##
## Coefficients:
##
           ar1
                   mean
        0.9760 -0.2034
##
## s.e. 0.0087 1.6538
##
## sigma^2 = 1.054: log likelihood = -867.77
## ATC=1741.55 ATCc=1741.59 BTC=1754.74
```

random walk vs. trend stationary AR(1) with $\mu =$ 0.15, $\phi_1 =$ 0.98

- two types of tests for nonstationarity
 - lacktriangle unit root tests: H_0 is difference stationarity, H_A is trend stationarity
 - ightharpoonup stationarity tests: H_0 is trend stationary, H_A is difference stationarity
- \blacktriangleright in general, the approach of these tests is to consider $\{y_t\}$ as a sum

$$y_t = d_t + z_t + \varepsilon_t$$

where d_t is a deterministic component (time trend, seasonal component, etc.), z_t is a stochastic trend component and ε_t is a stationary process

ightharpoonup tests then investigate whether z_t is present

Augmented Dickey-Fuller (ADF) test

ightharpoonup main idea: suppose $\{y_t\}$ follows AR(1)

$$y_t = \phi_1 y_{t-1} + \varepsilon_t$$

then

$$\Delta y_t = \gamma y_{t-1} + \varepsilon_t$$

where $\gamma = \phi_1 - 1$

• if $\{y_t\}$ is I(1) then $\gamma = 0$, otherwise $\gamma < 0$

Augmented Dickey-Fuller (ADF) test

• unit root test H_0 : time series $\{y_t\}$ has a unit root H_A : time series $\{y_t\}$ is stationary (with zero mean - model A), level stationary (with non-zero mean - model B) or trend stationary (stationary around a deterministic trend - model C)

model A (Unit root):
$$\Delta y_t = \gamma y_{t-1} + \sum_{i=1}^{p-1} \rho_i \Delta y_{t-i} + e_t$$
 model B (with drift):
$$\Delta y_t = \gamma y_{t-1} + \mu + \sum_{i=1}^{p-1} \rho_i \Delta y_{t-i} + e_t$$
 model C (with trend):
$$\Delta y_t = \gamma y_{t-1} + \mu + \beta t + \sum_{i=1}^{p-1} \rho_i \Delta y_{t-i} + e_t$$

- if $\{y_t\}$ contains a unit root/is difference stationary, $\hat{\gamma}$ will be insignificant
- test $H_0: \gamma = 0$ against $H_A: \gamma < 0$; if t-statistics for γ is lower than critical values we reject the null hypothesis of a unit root (one-sided left-tailed test)

Augmented Dickey-Fuller (ADF) test

If $\gamma < 0$ then

- ightharpoonup under model A y_t fluctuates around zero
- under model B if $\mu \neq 0$ then y_t fluctuates around a non-zero mean
- under model C if $\mu \neq 0$, $\beta \neq 0$ then y_t fluctuates around linear deterministic trend βt

If $\gamma = 0$ then

- lacktriangle under model A y_t contains stochastic trend only
- under model B if $\mu \neq 0$ then y_t contains both a linear deterministic trend μt and a stochastic trend
- under model C if $\mu \neq 0$, $\beta \neq 0$ then y_t contains a quadratic deterministic trend βt^2 and a stochastic trend

Augmented Dickey-Fuller (ADF) test

- including constant and trend in the regression also weakens the test (model C is thus the weakest on, model A the strongest one)
- ▶ if possible, we want to exclude the constant and/or the trend, but if they are incorrectly excluded, the test will be biased
- in addition to providing critical values to testing whether $\gamma=0$, Dickey and Fuller also provide critical values for the following three F tests:
 - $ightharpoonup \phi_1$ statistic for model B to test $H_0: \gamma = \mu = 0$
 - ϕ_2 statistic for model C to test $H_0: \gamma = \mu = \beta = 0$
 - ϕ_3 statistic for model C to test $H_0: \gamma = \beta = 0$
- these allow us to test whether we can restrict the test

Proposed Full Procedure for ADF test

quadratic trend

and

Step 1. estimate model C and use τ_3 statistic to test H_0 : $\gamma = 0$

ightharpoonup if H_0 can not be rejected continue to Step 2

ightharpoonup if H_0 is rejected conclude that y_t is trend stationary **Step 2.** use ϕ_3 statistic to test H_0 : $\gamma = \beta = 0$

 \triangleright if H_0 can not be rejected continue to step 3

If
$$H_0$$
 can not be rejected continue to step

if H₀ is rejected estimate restricted model $\Delta y_t = \mu + \beta t + \sum_{i=1}^{p-1} \rho_i \Delta y_{t-i} + e_t$

and use
$$t$$
 statistic to test $H_0: \beta = 0$

- if H_0 can not be rejected continue to Step 3

- if H_0 is rejected conclude that y_t is difference stationary with

Step 3. estimate model B and use τ_2 statistic to test H_0 : $\gamma = 0$

Step 4. use ϕ_1 statistic to test H_0 : $\gamma = \mu = 0$

▶ if
$$H_0$$
 can not be rejected continue to step 5

▶ if H_0 is rejected estimate restricted model $\Delta y_t = \mu + \sum_{i=1}^{p-1} \rho_i \Delta y_{t-i} + e_t$

use standard t statistic to test $H_0: \mu = 0$ - if H_0 can not be rejected continue to Step 5

- if H_0 is rejected conclude that y_t is random walk with drift

Step 5. estimate model A and use τ_1 statistic to test H_0 : $\gamma = 0$

```
library(urca)
ur.df(yTS, type = "trend", selectlags = "AIC") %>% summary()
```

```
## # Augmented Dickey-Fuller Test Unit Root Test #
##
## Test regression trend
##
## Call:
## lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)
## Residuals:
     Min
             10 Median
                            30
                                  Max
## -3.6246 -0.6734 -0.0073 0.6816 4.3585
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2156769 0.0294252 7.330 2.68e-13 ***
## z.lag.1 -0.0562692 0.0047070 -11.954 < 2e-16 ***
## 1.1.
            0.0084263 0.0007048 11.955 < 2e-16 ***
## z.diff.lag 0.0119032 0.0141433 0.842
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.018 on 4994 degrees of freedom
## Multiple R-squared: 0.02808, Adjusted R-squared: 0.02749
## F-statistic: 48.09 on 3 and 4994 DF, p-value: < 2.2e-16
##
##
## Value of test-statistic is: -11.9543 83.6306 71.4597
##
## Critical values for test statistics:
       1pct 5pct 10pct
## tau3 -3.96 -3.41 -3.12
## phi2 6.09 4.68 4.03
## phi3 8.27 6.25 5.34
```

```
ur.df(yTS[1:150], type = "trend", selectlags = "AIC") %>% summary()
```

```
## # Augmented Dickey-Fuller Test Unit Root Test #
## Test regression trend
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
## Residuals:
       Min
                1Q Median
                                        Max
## -2.70057 -0.67726 -0.06942 0.71670 2.36169
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.657770 0.284392
                                 2.313 0.0221 *
## z.lag.1
             -0.088331
                       0.035947 -2.457 0.0152 *
## 1.1.
             0.009033 0.004035
                                 2.239 0.0267 *
## z.diff.lag -0.039590 0.082503 -0.480 0.6320
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.003 on 144 degrees of freedom
## Multiple R-squared: 0.04721, Adjusted R-squared: 0.02736
## F-statistic: 2.378 on 3 and 144 DF, p-value: 0.0723
##
## Value of test-statistic is: -2.4573 2.6964 3.0334
## Critical values for test statistics:
        1pct 5pct 10pct
## tau3 -3.99 -3.43 -3.13
## phi2 6.22 4.75 4.07
## phi3 8.43 6.49 5.47
```

In the first set of result the absolute value of test statistics is not less than critical values (11.9543 > 3.96) for tau3. So we reject the null and conclude that the y_t is trend stationary.

For the second set of results, since test statistics is not less than the critical value (2.43 < 3.43) of tau3 we are unable to reject the null of a unit root. So, we look for Phi3, since test statistics is less than critical value (3.03 < 6.49), we reject the null for unit root and conclude that the time series is difference stationary with quadratic trend.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

- ▶ stationarity test H_0 : $\{y_t\}$ is stationary (either mean stationary or trend stationary) H_A : $\{y_t\}$ is difference stationary (has a unit root)
- ightharpoonup main idea: decompose time series $\{y_t\}$ as

$$y_t = d_t + z_t + \varepsilon_t$$

where d_t is the deterministic trend, z_t is random walk $z_t=z_{t-1}+\nu_t$, ν_t is white noise (iid $E(\nu_t)=0$, $var(\nu_t)=\sigma_{\nu}^2$), and ε_t stationary error (i.e. I(0) but not necessarily white noise)

• stationarity of $\{y_t\}$ depends on σ_{ν}^2 , we can run a test

$$H_0: \sigma_{\nu}^2 = 0$$

against

$$H_A: \sigma_{\nu}^2 > 0$$

using Lagrange multiplier (LM) statistic

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

▶ to perform KPSS test we estimate

model A
$$y_t = \mu + e_t$$

model B $y_t = \mu + \beta t + e_t$

model A is used if H_0 is mean stationarity, model B is used if H_0 is trend stationarity

lacktriangle using residuals e_t we construct LM statistics η

$$\eta = \frac{1}{T^2} \frac{1}{s^2} \sum_{t=1}^{T} S_t^2$$

where $S_t = \sum_{i=1}^t e_i$ is the partial sum process of the residuals e_t and s^2 is an estimator of the long-run variance of the residuals e_t .

▶ KPSS test is a one-sided right-tailed test: we reject H_0 at $\alpha\%$ level if η is greater than $100(1-\alpha)\%$ percentile from the appropriate asymptotic distribution

```
ur.kpss(yTS, type = "tau", lags = "long") %>% summary()
##
## # KPSS Unit Root Test #
## Test is of type: tau with 31 lags.
##
## Value of test-statistic is: 0.1483
##
## Critical value for a significance level of:
##
                 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
ur.kpss(yTS[1:150], type = "tau", lags = "long") %>% summary()
##
## # KPSS Unit Boot Test #
##
## Test is of type: tau with 13 lags.
##
## Value of test-statistic is: 0.1809
##
## Critical value for a significance level of:
                 10pct 5pct 2.5pct 1pct
##
## critical values 0.119 0.146 0.176 0.216
```

```
ur.kpss(yDS, type = "tau", lags = "long") %>% summary()
##
## # KPSS Unit Root Test #
## Test is of type: tau with 31 lags.
##
## Value of test-statistic is: 1.9601
##
## Critical value for a significance level of:
##
                 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
ur.kpss(yDS[1:150], type = "tau", lags = "long") %>% summary()
##
## # KPSS Unit Boot Test #
##
## Test is of type: tau with 13 lags.
##
## Value of test-statistic is: 0.1412
##
## Critical value for a significance level of:
                 10pct 5pct 2.5pct 1pct
##
## critical values 0.119 0.146 0.176 0.216
```

Phillips-Perron (PP) test

an alternative to ADF test, estimates one of the models

$$\begin{array}{ll} \operatorname{model} \mathsf{A} & \Delta y_t = \gamma y_{t-1} + e_t \\ \\ \operatorname{model} \mathsf{B} & \Delta y_t = \gamma y_{t-1} + \mu + e_t \\ \\ \operatorname{model} \mathsf{C} & \Delta y_t = \gamma y_{t-1} + \mu + \beta t + e_t \end{array}$$

and tests $H_0: \gamma = 0$ against $H_A: \gamma < 0$

- \blacktriangleright unlike ADF uses non-parametric correction based on Newey-West heteroskedasticity and autocorrelation consistent (HAC) estimators to account for possible autocorrelation in e_t
- advantage over the ADF: PP tests are robust to general forms of heteroskedasticity and do not require to choose number of lags in the test regression
- asymptotically identical to ADF test, but likely inferior in small samples
- like ADF also not very powerful at distinguishing stationary near unit root series for unit root series