Patient Survival Prediction

Capstone Final Report

Mentored by Animesh Tiwari

Group 1
Aakriti Gulati
Ciana S Raj
Md Sharib Zeya
Misha Rajagobi
Sheetal Yadav

Problem Statement

The aim is to build a model that helps to predict whether the patient will survive based on their physiology factors that is collected at the time of patient's admission. By building the model, it is to help healthcare providers prioritize their patients as well as improve survival outcomes since population is increasing at a faster rate along with increase in comorbidities. The source of the dataset used to help build the model is from Kaggle. The dataset contains 91713 records and 186 attributes.

About the Dataset

The dataset has 186 attributes which is split up into 9 categories. From these attributes, we are considering hospital_death as our target variable. There are 170 float, 8 int, and 8 object data types.

- Identifier
- Demographic
- APACHE covariate
- APACHE comorbidity
- APACHE grouping
- APACHE prediction
- Labs
- Labs blood gas
- Vitals

Attributes

Identifier

The attributes under the identifier category are to uniquely identify the records.

Variable Name	Data Type	Description
encounter_id	integer	Unique identifier associated with a patient unit stay
hospital_id	integer	Unique identifier associated with a hospital
patient id	integer	Unique identifier associated with a patient
icu_id	integer	A unique identifier for the unit to which the patient was admitted

Demographic

The demographic attributes tell us the details of patient, as well as information about which unit the patient is being admitted to and whether it was a scheduled surgery.

Variable Name	Data Type	Description
hospital_death	binary	Whether the patient died during this hospitalization
age	numeric	The age of the patient on unit admission
bmi	string	The body mass index of the person on unit admission
elective_surgery	binary	Whether the patient was admitted to the hospital for an elective surgical operation
ethnicity	string	The common national or cultural tradition which the person belongs to
gender	string	The genotypical sex of the patient
height	numeric	The height of the person on unit admission
hospital_admit_sou rce	string	The location of the patient prior to being admitted to the hospital
icu_admit_source	string	The location of the patient prior to being admitted to the unit
icu_admit_type	string	The type of unit admission for the patient
icu_stay_type	string	
icu_type	string	A classification which indicates the type of care the unit is capable of providing
pre_icu_los_days	numeric	The length of stay of the patient between hospital admission and unit admission
readmission_status	binary	Whether the current unit stay is the second (or greater) stay at an ICU within the same hospitalization
weight	numeric	The weight (body mass) of the person on unit admission

APACHE covariate

The following attributes contains readings that were taken at the time of admission. It contains the diagnosis as well.

West-ble Ness	D-4- T	Description
Variable Name	Data Type	Description
		The albumin concentration measured during the first 24 hours which
albumin_apache	numeric	results in the highest APACHE III score

apache_2_diagnosi		
s	string	The APACHE II diagnosis for the ICU admission
apache_3j_diagnosi	sumg	The APACHE III-J sub-diagnosis code which best describes the
s	string	reason for the ICU admission
apache_post_operat	String	The APACHE operative status; 1 for post-operative, 0 for non-
ive	binary	operative
140	omar y	Whether the patient had acute renal failure during the first 24 hours of
		their unit stay, defined as a 24 hour urine output <410ml, creatinine
arf_apache	binary	>=133 micromol/L and no chronic dialysis
ari_apaciic	omar y	The bilirubin concentration measured during the first 24 hours which
bilirubin_apache	numeric	results in the highest APACHE III score
omruom_apache	numeric	The blood urea nitrogen concentration measured during the first 24
bun_apache	numeric	hours which results in the highest APACHE III score
buii_apaciie	numeric	The creatinine concentration measured during the first 24 hours which
arantinina anacha	numeric	results in the highest APACHE III score
creatinine_apache	numenc	The fraction of inspired oxygen from the arterial blood gas taken
		during the first 24 hours of unit admission which produces the highest
fio2_apache	numeric	APACHE III score for oxygenation
1102_apacite	numenc	
		The eye opening component of the Glasgow Coma Scale measured
and arran amanha	intogon	during the first 24 hours which results in the highest APACHE III
gcs_eyes_apache	integer	The motor component of the Classow Come Scale massured during
	:	The motor component of the Glasgow Coma Scale measured during
gcs_motor_apache	integer	the first 24 hours which results in the highest APACHE III score
	1	Whether the Glasgow Coma Scale was unable to be assessed due to
gcs_unable_apache	binary	patient sedation
1 1 1	. ,	The verbal component of the Glasgow Coma Scale measured during
gcs_verbal_apache	integer	the first 24 hours which results in the highest APACHE III score
-1		The glucose concentration measured during the first 24 hours which
glucose_apache	numeric	results in the highest APACHE III score
1		The heart rate measured during the first 24 hours which results in the
heart_rate_apache	numeric	highest APACHE III score
1		The hematocrit measured during the first 24 hours which results in the
hematocrit_apache	numeric	highest APACHE III score
1 . 1	1.	Whether the patient was intubated at the time of the highest scoring
intubated_apache	binary	arterial blood gas used in the oxygenation score
1		The mean arterial pressure measured during the first 24 hours which
map_apache	numeric	results in the highest APACHE III score
		The partial pressure of carbon dioxide from the arterial blood gas
2 1		taken during the first 24 hours of unit admission which produces the
paco2_apache	numeric	highest APACHE III score for oxygenation
mana2 for m1		The partial pressure of carbon dioxide from the arterial blood gas
paco2_for_ph_apac		taken during the first 24 hours of unit admission which produces the
he	numeric	highest APACHE III score for acid-base disturbance
		The partial pressure of oxygen from the arterial blood gas taken during
man 2 amarka		the first 24 hours of unit admission which produces the highest
pao2_apache	numeric	APACHE III score for oxygenation The rII from the enterial blood gos taken during the first 24 hours of
		The pH from the arterial blood gas taken during the first 24 hours of
nh anacha	numaria	unit admission which produces the highest APACHE III score for
ph_apache	numeric	acid-base disturbance
magnusta consilia		The respiratory rate measured during the first 24 hours which results in
resprate_apache	numeric	the highest APACHE III score The addium concentration recovered during the first 24 hours which
andium analis		The sodium concentration measured during the first 24 hours which
sodium_apache	numeric	results in the highest APACHE III score

		The temperature measured during the first 24 hours which results in
temp_apache	numeric	the highest APACHE III score
urineoutput_apache	numeric	The total urine output for the first 24 hours
		Whether the patient was invasively ventilated at the time of the highest
		scoring arterial blood gas using the oxygenation scoring algorithm,
		including any mode of positive pressure ventilation delivered through
ventilated_apache	binary	a circuit attached to an endo-tracheal tube or tracheostomy
		The white blood cell count measured during the first 24 hours which
wbc_apache	numeric	results in the highest APACHE III score

APACHE Comorbidity

The comorbidities attributes contains indication of whether the patient has previously or additionally diagnosed with the following diseases.

Variable Name	Data Type	Description
		Whether the patient has a definitive diagnosis of acquired immune
aids	binary	deficiency syndrome (AIDS) (not HIV positive alone)
		Whether the patient has a history of heavy alcohol use with portal
		hypertension and varices, other causes of cirrhosis with evidence of
		portal hypertension and varices, or biopsy proven cirrhosis. This
		comorbidity does not apply to patients with a functioning liver
cirrhosis	binary	transplant.
		Whether the patient has been diagnosed with diabetes, either juvenile
diabetes_mellitus	binary	or adult onset, which requires medication.
		Whether the patient has cirrhosis and additional complications
		including jaundice and ascites, upper GI bleeding, hepatic
hepatic_failure	binary	encephalopathy, or coma.
		Whether the patient has their immune system suppressed within six
		months prior to ICU admission for any of the following reasons;
		radiation therapy, chemotherapy, use of non-cytotoxic
immunosuppressio		immunosuppressive drugs, high dose steroids (at least 0.3 mg/kg/day
n	binary	of methylprednisolone or equivalent for at least 6 months).
		Whether the patient has been diagnosed with acute or chronic
		myelogenous leukemia, acute or chronic lymphocytic leukemia, or
leukemia	binary	multiple myeloma.
lymphoma	binary	Whether the patient has been diagnosed with non-Hodgkin lymphoma.
		Whether the patient has been diagnosed with any solid tumor
solid_tumor_with_		carcinoma (including malignant melanoma) which has evidence of
metastasis	binary	metastasis.

APACHE grouping

The variables in APACHE grouping are all categorical variables. They describe the diagnosis for the patient.

Variable Name	Data Type	Description
apache_3j_bodysys		
tem	string	Admission diagnosis group for APACHE III
apache_2_bodysyst		
em	string	Admission diagnosis group for APACHE II

APACHE prediction

The death probability is calculated on the basis of the APACHE covariates.

Variable Name	Data Type	Description
		The APACHE IVa probabilistic prediction of in-hospital mortality for
apache_4a_hospita		the patient which utilizes the APACHE III score and other covariates,
I_death_prob	numeric	including diagnosis.
		The APACHE IVa probabilistic prediction of in ICU mortality for the
apache_4a_icu_de		patient which utilizes the APACHE III score and other covariates,
ath_prob	numeric	including diagnosis

Labs

The variables containing information on highest and lowest concentration of certain tests at the first hour(h1) and first 24 hours(d1).

Mandalla Mana	D-4- T	Description.
Variable Name	Data Type	Description
		The lowest albumin concentration of the patient in their serum during
d1_albumin_max	numeric	the first 24 hours of their unit stay
		The lowest albumin concentration of the patient in their serum during
d1_albumin_min	numeric	the first 24 hours of their unit stay
		The highest bilirubin concentration of the patient in their serum or
d1_bilirubin_max	numeric	plasma during the first 24 hours of their unit stay
		The lowest bilirubin concentration of the patient in their serum or
d1_bilirubin_min	numeric	plasma during the first 24 hours of their unit stay
		The highest blood urea nitrogen concentration of the patient in their
d1_bun_max	numeric	serum or plasma during the first 24 hours of their unit stay
		The lowest blood urea nitrogen concentration of the patient in their
d1_bun_min	numeric	serum or plasma during the first 24 hours of their unit stay
		The highest calcium concentration of the patient in their serum during
d1_calcium_max	numeric	the first 24 hours of their unit stay
		The lowest calcium concentration of the patient in their serum during
d1_calcium_min	numeric	the first 24 hours of their unit stay
		The highest creatinine concentration of the patient in their serum or
d1_creatinine_max	numeric	plasma during the first 24 hours of their unit stay
		The lowest creatinine concentration of the patient in their serum or
d1_creatinine_min	numeric	plasma during the first 24 hours of their unit stay

1	The highest alvesse concentration of the nation in their server or
di aluanca may humoric	The highest glucose concentration of the patient in their serum or
d1_glucose_max numeric	plasma during the first 24 hours of their unit stay The lowest glucose concentration of the patient in their serum or
d1 glucosa min numeris	
d1_glucose_min numeric	
d1 has 2 man	The highest bicarbonate concentration for the patient in their serum or
d1_hco3_max numeric	
11 1 2	The lowest bicarbonate concentration for the patient in their serum or
d1_hco3_min numeric	
d1_hemaglobin_ma	The highest hemoglobin concentration for the patient during the first
x numeric	·
d1_hemaglobin_mi	The lowest hemoglobin concentration for the patient during the first 24
n numeric	· · · · · · · · · · · · · · · · · · ·
d1_hematocrit_ma	The highest volume proportion of red blood cells in a patient's blood
x numeric	<i>V</i> 1
	The lowest volume proportion of red blood cells in a patient's blood
d1_hematocrit_min numeric	
	The highest international normalized ratio for the patient during the
d1_inr_max numeric	J .
	The lowest international normalized ratio for the patient during the
d1_inr_min numeric	first 24 hours of their unit stay
	The highest lactate concentration for the patient in their serum or
d1_lactate_max numeric	plasma during the first 24 hours of their unit stay
	The lowest lactate concentration for the patient in their serum or
d1_lactate_min numeric	plasma during the first 24 hours of their unit stay
	The highest platelet count for the patient during the first 24 hours of
d1_platelets_max	
	The lowest platelet count for the patient during the first 24 hours of
d1_platelets_min numeric	
	The highest potassium concentration for the patient in their serum or
d1_potassium_max numeric	
	The lowest potassium concentration for the patient in their serum or
d1_potassium_min numeric	
	The highest sodium concentration for the patient in their serum or
d1_sodium_max numeric	
	The lowest sodium concentration for the patient in their serum or
d1_sodium_min numeric	•
	The highest white blood cell count for the patient during the first 24
d1_wbc_max numeric	
di_wee_max nameric	The lowest white blood cell count for the patient during the first 24
d1_wbc_min numeric	
d1_wbc_mm mamerie	The lowest albumin concentration of the patient in their serum during
h1_albumin_max numeric	
m1_aroumn_max numeric	The lowest albumin concentration of the patient in their serum during
h1_albumin_min numeric	•
h1_albumin_min numeric	
h1 bilimbin may	The highest bilirubin concentration of the patient in their serum or
h1_bilirubin_max numeric	
L1 bilimakin min	The lowest bilirubin concentration of the patient in their serum or
h1_bilirubin_min numeric	T U
	The highest blood urea nitrogen concentration of the patient in their
h1_bun_max numeric	,
	The lowest blood urea nitrogen concentration of the patient in their
h1_bun_min numeric	
	The highest calcium concentration of the patient in their serum during
h1_calcium_max numeric	the first hour of their unit stay

		The lowest colour concentration of the nations in their comme during
h1 coloium min	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The lowest calcium concentration of the patient in their serum during
h1_calcium_min	numeric	the first hour of their unit stay
h1 amostinina may	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The highest creatinine concentration of the patient in their serum or
h1_creatinine_max	numeric	plasma during the first hour of their unit stay
1.1		The lowest creatinine concentration of the patient in their serum or
h1_creatinine_min	numeric	plasma during the first hour of their unit stay
1 1 1		The highest glucose concentration of the patient in their serum or
h1_glucose_max	numeric	plasma during the first hour of their unit stay
		The lowest glucose concentration of the patient in their serum or
h1_glucose_min	numeric	plasma during the first hour of their unit stay
		The highest bicarbonate concentration for the patient in their serum or
h1_hco3_max	numeric	plasma during the first hour of their unit stay
	_	The lowest bicarbonate concentration for the patient in their serum or
h1_hco3_min	numeric	plasma during the first hour of their unit stay
h1_hemaglobin_ma		The highest hemoglobin concentration for the patient during the first
X	numeric	hour of their unit stay
h1_hemaglobin_mi		The lowest hemoglobin concentration for the patient during the first
n	numeric	hour of their unit stay
h1_hematocrit_ma		The highest volume proportion of red blood cells in a patient's blood
X	numeric	during the first hour of their unit stay, expressed as a fraction
		The lowest volume proportion of red blood cells in a patient's blood
h1_hematocrit_min	numeric	during the first hour of their unit stay, expressed as a fraction
		The highest international normalized ratio for the patient during the
h1_inr_max	numeric	first hour of their unit stay
		The lowest international normalized ratio for the patient during the
h1_inr_min	numeric	first hour of their unit stay
		The highest lactate concentration for the patient in their serum or
h1_lactate_max	numeric	plasma during the first hour of their unit stay
		The lowest lactate concentration for the patient in their serum or
h1_lactate_min	numeric	plasma during the first hour of their unit stay
		The highest platelet count for the patient during the first hour of their
h1_platelets_max	numeric	unit stay
		The lowest platelet count for the patient during the first hour of their
h1_platelets_min	numeric	unit stay
pracereus_mm	11dillerie	The highest potassium concentration for the patient in their serum or
h1_potassium_max	numeric	plasma during the first hour of their unit stay
iii_potassiaiii_iiiax	nameric	The lowest potassium concentration for the patient in their serum or
h1_potassium_min	numeric	plasma during the first hour of their unit stay
III_potassiuiii_iiiiii	Humeric	The highest sodium concentration for the patient in their serum or
h1 codium mov	numorio	plasma during the first hour of their unit stay
h1_sodium_max	numeric	The lowest sodium concentration for the patient in their serum or
h1 codium min	numaria	
h1_sodium_min	numeric	plasma during the first hour of their unit stay
1.1		The highest white blood cell count for the patient during the first hour
h1_wbc_max	numeric	of their unit stay
11 1 '		The lowest white blood cell count for the patient during the first hour
h1_wbc_min	numeric	of their unit stay

Labs Blood Gas

Variable Name	Data Type	Description
d1_arterial_pco2_		The highest arterial partial pressure of carbon dioxide for the patient
max	numeric	during the first 24 hours of their unit stay
d1_arterial_pco2_		The lowest arterial partial pressure of carbon dioxide for the patient
min	numeric	during the first 24 hours of their unit stay
d1_arterial_ph_ma		The highest arterial pH for the patient during the first 24 hours of their
X	numeric	unit stay
		The lowest arterial pH for the patient during the first 24 hours of their
d1_arterial_ph_min	numeric	unit stay
d1_arterial_po2_m		The highest arterial partial pressure of oxygen for the patient during
ax	numeric	the first 24 hours of their unit stay
d1_arterial_po2_mi		The lowest arterial partial pressure of oxygen for the patient during the
n	numeric	first 24 hours of their unit stay
d1_pao2fio2ratio_		The highest fraction of inspired oxygen for the patient during the first
max	numeric	24 hours of their unit stay
d1_pao2fio2ratio_		The lowest fraction of inspired oxygen for the patient during the first
min	numeric	24 hours of their unit stay
h1_arterial_pco2_		The highest arterial partial pressure of carbon dioxide for the patient
max	numeric	during the first hour of their unit stay
h1_arterial_pco2_		The lowest arterial partial pressure of carbon dioxide for the patient
min	numeric	during the first hour of their unit stay
h1_arterial_ph_ma		The highest arterial pH for the patient during the first hour of their unit
X	numeric	stay
		The lowest arterial pH for the patient during the first hour of their unit
h1_arterial_ph_min	numeric	stay
h1_arterial_po2_m		The highest arterial partial pressure of oxygen for the patient during
ax	numeric	the first hour of their unit stay
h1_arterial_po2_mi		The lowest arterial partial pressure of oxygen for the patient during the
n	numeric	first hour of their unit stay
h1_pao2fio2ratio_		The highest fraction of inspired oxygen for the patient during the first
max	numeric	hour of their unit stay
h1_pao2fio2ratio_		The lowest fraction of inspired oxygen for the patient during the first
min	numeric	hour of their unit stay

Vitals

Variable Name	Data Type	Description
d1_diasbp_invasive		The patient's highest diastolic blood pressure during the first 24 hours
_max	numeric	of their unit stay, invasively measured
d1_diasbp_invasive		The patient's lowest diastolic blood pressure during the first 24 hours
_min	numeric	of their unit stay, invasively measured
		The patient's highest diastolic blood pressure during the first 24 hours
d1_diasbp_max	numeric	of their unit stay, either non-invasively or invasively measured
		The patient's lowest diastolic blood pressure during the first 24 hours
d1_diasbp_min	numeric	of their unit stay, either non-invasively or invasively measured
d1_diasbp_noninva		The patient's highest diastolic blood pressure during the first 24 hours
sive_max	numeric	of their unit stay, non-invasively measured
d1_diasbp_noninva		The patient's lowest diastolic blood pressure during the first 24 hours
sive_min	numeric	of their unit stay, non-invasively measured

		The patient's highest heart rate during the first 24 hours of their unit
d1 haartrata may	numaria	
d1_heartrate_max	numeric	The patient's lowest heart rate during the first 24 hours of their unit
d1 haartrata min	numaria	
d1_heartrate_min d1_mbp_invasive_	numeric	Stay The notionals highest mean blood processes during the first 24 hours of
		The patient's highest mean blood pressure during the first 24 hours of
max	numeric	their unit stay, invasively measured
d1_mbp_invasive_		The patient's lowest mean blood pressure during the first 24 hours of
min	numeric	their unit stay, invasively measured
11 1		The patient's highest mean blood pressure during the first 24 hours of
d1_mbp_max	numeric	their unit stay, either non-invasively or invasively measured
11 1 '		The patient's lowest mean blood pressure during the first 24 hours of
d1_mbp_min	numeric	their unit stay, either non-invasively or invasively measured
d1_mbp_noninvasi		The patient's highest mean blood pressure during the first 24 hours of
ve_max	numeric	their unit stay, non-invasively measured
d1_mbp_noninvasi		The patient's lowest mean blood pressure during the first 24 hours of
ve_min	numeric	their unit stay, non-invasively measured
		The patient's highest respiratory rate during the first 24 hours of their
d1_resprate_max	numeric	unit stay
		The patient's lowest respiratory rate during the first 24 hours of their
d1_resprate_min	numeric	unit stay
		The patient's highest peripheral oxygen saturation during the first 24
d1_spo2_max	numeric	hours of their unit stay
		The patient's lowest peripheral oxygen saturation during the first 24
d1_spo2_min	numeric	hours of their unit stay
d1_sysbp_invasive		The patient's highest systolic blood pressure during the first 24 hours
_max	numeric	of their unit stay, invasively measured
d1_sysbp_invasive		The patient's lowest systolic blood pressure during the first 24 hours of
_min	numeric	their unit stay, invasively measured
		The patient's highest systolic blood pressure during the first 24 hours
d1_sysbp_max	numeric	of their unit stay, either non-invasively or invasively measured
		The patient's lowest systolic blood pressure during the first 24 hours of
d1_sysbp_min	numeric	their unit stay, either non-invasively or invasively measured
d1_sysbp_noninvas		The patient's highest systolic blood pressure during the first 24 hours
ive_max	numeric	of their unit stay, non-invasively measured
d1_sysbp_noninvas		The patient's lowest systolic blood pressure during the first 24 hours of
ive_min	numeric	their unit stay, non-invasively measured
		The patient's highest core temperature during the first 24 hours of their
d1_temp_max	numeric	unit stay, invasively measured
		The patient's lowest core temperature during the first 24 hours of their
d1_temp_min	numeric	unit stay
h1_diasbp_invasive		The patient's highest diastolic blood pressure during the first hour of
_max	numeric	their unit stay, invasively measured
h1_diasbp_invasive		The patient's lowest diastolic blood pressure during the first hour of
_min	numeric	their unit stay, invasively measured
_		The patient's highest diastolic blood pressure during the first hour of
h1_diasbp_max	numeric	their unit stay, either non-invasively or invasively measured
		The patient's lowest diastolic blood pressure during the first hour of
h1_diasbp_min	numeric	their unit stay, either non-invasively or invasively measured
h1_diasbp_noninva		The patient's highest diastolic blood pressure during the first hour of
sive_max	numeric	their unit stay, non-invasively measured
h1_diasbp_noninva		The patient's lowest diastolic blood pressure during the first hour of
sive_min	numeric	their unit stay, non-invasively measured
h1_heartrate_max	numeric	The patient's highest heart rate during the first hour of their unit stay
	HUHICHIC	The patient's ingliest heart fate during the first flour of their unit stay

h1_heartrate_min	numeric	The patient's lowest heart rate during the first hour of their unit stay
h1_mbp_invasive_		The patient's highest mean blood pressure during the first hour of their
max	numeric	unit stay, invasively measured
h1_mbp_invasive_		The patient's lowest mean blood pressure during the first hour of their
min	numeric	unit stay, invasively measured
		The patient's highest mean blood pressure during the first hour of their
h1_mbp_max	numeric	unit stay, either non-invasively or invasively measured
-		The patient's lowest mean blood pressure during the first hour of their
h1_mbp_min	numeric	unit stay, either non-invasively or invasively measured
h1_mbp_noninvasi		The patient's highest mean blood pressure during the first hour of their
ve_max	numeric	unit stay, non-invasively measured
h1_mbp_noninvasi		The patient's lowest mean blood pressure during the first hour of their
ve_min	numeric	unit stay, non-invasively measured
		The patient's highest respiratory rate during the first hour of their unit
h1_resprate_max	numeric	stay
		The patient's lowest respiratory rate during the first hour of their unit
h1_resprate_min	numeric	stay
		The patient's highest peripheral oxygen saturation during the first hour
h1_spo2_max	numeric	of their unit stay
		The patient's lowest peripheral oxygen saturation during the first hour
h1_spo2_min	numeric	of their unit stay
h1_sysbp_invasive		The patient's highest systolic blood pressure during the first hour of
_max	numeric	their unit stay, invasively measured
h1_sysbp_invasive		The patient's lowest systolic blood pressure during the first hour of
_min	numeric	their unit stay, invasively measured
		The patient's highest systolic blood pressure during the first hour of
h1_sysbp_max	numeric	their unit stay, either non-invasively or invasively measured
		The patient's lowest systolic blood pressure during the first hour of
h1_sysbp_min	numeric	their unit stay, either non-invasively or invasively measured
h1_sysbp_noninvas		The patient's highest systolic blood pressure during the first hour of
ive_max	numeric	their unit stay, non-invasively measured
h1_sysbp_noninvas		The patient's lowest systolic blood pressure during the first hour of
ive_min	numeric	their unit stay, non-invasively measured
		The patient's highest core temperature during the first hour of their
h1_temp_max	numeric	unit stay, invasively measured
		The patient's lowest core temperature during the first hour of their unit
h1_temp_min	numeric	stay
3.61 1 37.1		

Missing Values

The first step after checking out the dataset, is to find the missing values. In this step, we check if there any attributes that can be dropped if it contains more than 70-80% missing data.

Attributes	Total missing values	Percentage of missing values
h1_bilirubin_max	84619	92.27 %
h1_bilirubin_min	84619	92.27 %
h1_lactate_max	84369	91.99 %
h1_lactate_min	84369	91.99 %
h1_albumin_max	83824	91.4 %
h1_albumin_min	83824	91.4 %

5 87.44 % 6 87.44 % 4 83.33 % 4 82.97 % 4 82.97 % 9 82.82 % 9 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.51 % 3 82.51 % 3 82.51 % 3 82.51 %
4 83.33 % 4 82.97 % 4 82.97 % 9 82.82 % 9 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.51 % 3 82.51 %
4 83.33 % 4 82.97 % 4 82.97 % 9 82.82 % 9 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.72 % 3 82.51 % 3 82.51 %
4 82.97 % 4 82.97 % 9 82.82 % 3 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.51 % 3 82.51 %
4 82.97 % 9 82.82 % 9 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.72 % 3 82.51 % 3 82.51 %
9 82.82 % 9 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.51 % 3 82.51 %
9 82.82 % 3 82.82 % 5 82.81 % 5 82.81 % 3 82.72 % 3 82.72 % 3 82.51 % 3 82.51 %
82.82 % 83 82.82 % 85 82.81 % 83 82.72 % 83 82.72 % 83 82.51 % 84 82.51 %
82.82 % 82.81 % 82.81 % 82.81 % 82.81 % 82.72 % 82.72 % 82.72 % 82.51 % 82.51 %
5 82.81 % 5 82.81 % 3 82.72 % 3 82.72 % 3 82.51 % 3 82.51 %
5 82.81 % 3 82.72 % 3 82.72 % 3 82.51 % 3 82.51 %
3 82.72 % 3 82.72 % 3 82.51 % 3 82.51 %
82.72 % 82.51 % 82.51 %
82.51 % 82.51 %
82.51 %
1
1 81.88 %
7 81.73 %
7 81.73 %
8 81.7 %
8 81.7 %
5 81.68 %
5 81.68 %
81.61 %
81.61 %
0 80.05 %
0 80.05 %
79.73 %
79.73 %
7 79.18 %
7 79.18 %
78.62 %
78.62 %
8 77.27 %
8 77.27 %
8 77.27 %
8 77.27 %
8 77.27 %
6 74.58 %
6 74.58%
4 74.13 %
4 74.13 %
9 74.1 %
9 74.1%
74.1 /0

d1_mbp_invasive_min	67777	73.9 %
d1 pao2fio2ratio max	66008	71.97 %
d1_pao2fio2ratio_min	66008	71.97 %
d1 arterial ph max	60123	65.56 %
d1 arterial ph min	60123	65.56 %
d1 arterial pco2 max	59271	64.63 %
d1 arterial pco2 min	59271	64.63 %
d1 arterial po2 max	59262	64.62 %
d1_arterial_po2_min	59262	64.62 %
bilirubin_apache	58134	63.39 %
d1_inr_max	57941	63.18 %
d1_inr_min	57941	63.18 %
h1_inr_max	57941	63.18 %
h1 inr min	57941	63.18 %
albumin_apache	54379	59.29 %
d1_bilirubin_max	53673	58.52 %
d1 bilirubin min	53673	58.52 %
h1_glucose_max	52614	57.37 %
h1_glucose_min	52614	57.37 %
d1_albumin_max	49096	53.53 %
d1 albumin min	49096	53.53 %
urineoutput apache	48998	53.43 %
wbc_apache	22012	24 %
h1_temp_max	21732	23.7 %
h1 temp min	21732	23.7 %
hospital_admit_source	21409	23.34 %
hematocrit_apache	19878	21.67 %
bun apache	19262	21 %
creatinine_apache	18853	20.56 %
sodium_apache	18600	20.28 %
d1_hco3_max	15071	16.43 %
d1_hco3_min	15071	16.43 %
d1_platelets_max	13444	14.66 %
d1 platelets min	13444	14.66 %
d1 wbc max	13174	14.36 %
d1_wbc_min	13174	14.36 %
d1_calcium_max	13069	14.25 %
d1_calcium_min	13069	14.25 %
d1_hemaglobin_max	12147	13.24 %
d1_hemaglobin_min	12147	13.24 %
d1 hematocrit max	11654	12.71 %
d1 hematocrit min	11654	12.71 %
glucose_apache	11036	12.03 %
d1_bun_max	10514	11.46 %
d1_bun_min	10514	11.46 %
d1_sodium_max	10195	11.12 %

d1_sodium_min	10195	11.12 %
d1_creatinine_max	10169	11.09 %
d1_creatinine_min	10169	11.09 %
d1_potassium_max	9585	10.45 %
d1_potassium_min	9585	10.45 %
h1 mbp noninvasive max	9084	9.9 %
h1_mbp_noninvasive_min	9084	9.9 %
apache_4a_hospital_death_prob	7947	8.67 %
apache_4a_icu_death_prob	7947	8.67 %
h1_diasbp_noninvasive_max	7350	8.01 %
h1_diasbp_noninvasive_min	7350	8.01 %
h1_sysbp_noninvasive_max	7341	8 %
h1_sysbp_noninvasive_min	7341	8 %
d1_glucose_max	5807	6.33 %
d1_glucose_min	5807	6.33 %
h1_mbp_max	4639	5.06 %
h1_mbp_min	4639	5.06 %
h1_resprate_max	4357	4.75 %
h1_resprate_min	4357	4.75 %
age	4228	4.61 %
h1_spo2_max	4185	4.56 %
h1_spo2_min	4185	4.56 %
temp_apache	4108	4.48 %
h1_diasbp_max	3619	3.95 %
h1_diasbp_min	3619	3.95 %
h1_sysbp_max	3611	3.94 %
h1_sysbp_min	3611	3.94 %
bmi	3429	3.74 %
h1_heartrate_max	2790	3.04 %
h1_heartrate_min	2790	3.04 %
weight	2720	2.97 %
d1_temp_max	2324	2.53 %
d1_temp_min	2324	2.53 %
gcs_eyes_apache	1901	2.07 %
gcs_motor_apache	1901	2.07 %
gcs_verbal_apache	1901	2.07 %
apache_2_diagnosis	1662	1.81 %
apache_3j_bodysystem	1662	1.81 %
apache_2_bodysystem	1662	1.81 %
d1_mbp_noninvasive_max	1479	1.61 %
d1_mbp_noninvasive_min	1479	1.61 %
ethnicity	1395	1.52 %
height	1334	1.45 %
resprate_apache	1234	1.35 %
apache_3j_diagnosis	1101	1.2 %
d1_diasbp_noninvasive_max	1040	1.13 %

d1_diasbp_noninvasive_min	1040	1.13 %
gcs_unable_apache	1037	1.13 %
d1_sysbp_noninvasive_max	1027	1.12 %
d1_sysbp_noninvasive_min	1027	1.12 %
map_apache	994	1.08 %
heart_rate_apache	878	0.96 %
arf_apache	715	0.78 %
intubated_apache	715	0.78 %
ventilated_apache	715	0.78 %
aids	715	0.78 %
cirrhosis	715	0.78 %
diabetes_mellitus	715	0.78 %
hepatic_failure	715	0.78 %
immunosuppression	715	0.78 %
leukemia	715	0.78 %
lymphoma	715	0.78 %
solid_tumor_with_metastasis	715	0.78 %
d1_resprate_max	385	0.42 %
d1_resprate_min	385	0.42 %
d1_spo2_max	333	0.36 %
d1_spo2_min	333	0.36 %
d1_mbp_max	220	0.24 %
d1_mbp_min	220	0.24 %
d1_diasbp_max	165	0.18 %
d1_diasbp_min	165	0.18 %
d1_sysbp_max	159	0.17 %
d1_sysbp_min	159	0.17 %
d1_heartrate_max	145	0.16 %
d1_heartrate_min	145	0.16 %
icu_admit_source	112	0.12 %
gender	25	0.03 %

Inference

The labs and vitals attributes such as h1_bilirubin, h1_lactate, h1_albumin, h1_calcium, h1_creatine, h1_sodium, d1_lactate, d1_arterial, fio2, paco2 and few more contains more than 70% missing data. A few demographic and APACHE attributes contain missing values as well, but they are essential for model building and are in the range of 4.6-0.03% and 64-0.7% respectively. Hence, these attributes will be processed in the later stages.

Data Preprocessing

Missing Value Imputation

Attributes that contain more than 70% missing values

The number of attributes that had more than 70% of missing values is 55. As mentioned, the attributes belonged to the labs, vitals and apache covariate groups. Since a large amount of data is missing, the attributes are removed from the dataset.

Attributes that contain less than 70% missing values

The missing values are handled by imputing mean/mode depending on their types using sklearn SimpleImputer library.

For categorical attributes, the missing value was replaced with most frequently occurring value, whereas for numerical attributes, depending on the skewness of the attribute, mean or median was added.

Irrelevant attributes

By researching more into the attributes, we had decided to remove few attributes as they do not contribute to the survival rate of a patient. The attributes were mainly identifiers, apache covariate, labs and lab blood gas variables, such as albumin_apache, apache_post_operative, bilirubin_apache, encounter_id, fio2_apache, hospital_id, icu_id, paco2_apache, paco2_for_ph_apache, pao2_apache, patient_id, ph_apache, pre_icu_los_days, readmission_status and urineoutput_apache

Outlier Detection and Treatment

The outliers were detected using the IQR method and boxplots were used for visualization.

For the treatment, we had initially used IQR and Z scale methods were applied to treat the outliers depending on their skewness. On further research, we used PowerTransform to treat the outliers as it stabilizes the variance or in other words reduces the skewness. By doing so, it also does feature scaling of the data.

Analysis of Dataset

Univariate Analysis

Inferences

- The target variable hospital death has an imbalanced proportion as there are more survivals than deaths.
- From the ethnicity graph it is seen that patients that were admitted were Caucasians in majority. And the least admitted ones are native Americans.
- There isn't much of a difference between male and female patients.
- In hospital admit source, Emergency Room and Floor are maximum.
- Admission is the most popular one in ICU stay type.
- The unit that had a greater number of patients admitted is Med-Surg.
- Almost all of them have significant number of cases except for Gynecology and Hematology
- The range of age had been admitted ranges from 16 to 90. The age group that is highly likely to be admitted is in the range 50-85, in which the age 85 is the highest number of patients admitted.
- In terms of bmi, it ranges from 15-70. Patients with bmi in the range 20-35 are high in number, especially with bmi 30.
- For height, it ranges from 137 to 195, where the patients with height range 160-180 are higher in number in admissions.
- For weight, patients with weight in the range of 62-100 are more in number.

Bivariate Analysis

Numerical vs Categorical

Categorical vs Categorical

Numerical vs Numerical

Inferences

• There's no difference in the age groups for both male and female patients

- For patients with higher heart rate have a lower chance of survival
- It is seen Accident and Emergency cases have higher chances on both survival and death
- Cardiovascular bodysystem has the similar conclusion as above.
- As age increases, the apache death probability also increases.

Multivariate Analysis

Inferences

- The apache death probability is a bit higher for Female when it comes patients not surviving.
- The common age for both genders for possible death is the same.
- The death probability is higher in the case of Cardiovascular bodysystem.

Multicollinearity

Inferences

There are only a handful of variables that show some collinearity.

Hypothesis testing

Chi-Square Test

The chi-square test is used to check whether the variables are dependent on one another. The categorical variables are compared with the target variable, hospital death. From the table, we see that icu_admit_source and hospital_death are independent of one another, and hospital_death is dependent on the other variables.

Mann-Whitney U Test

The first step that was taken was to check if the data is normally distributes using the Shapiro Wilk test. From the test, we see that all the variables did not have a normal distribution, hence we used the Mann-Whitney test if there are differences between two independent outcomes, i.e. it checks whether the mean of a variables varies for different outcomes of hospital_death. From the results of the test, it is seen that all the variables had differences for different outcomes of hospital_death.

Feature Engineering

Feature Encoding

The function get_dummies from pandas is used to create indicator/dummy attributes except for the target variable hospital_death.

Feature Selection

The variation inflation factor method was used to determine the features involved in multicollinearity. These features were removed from the dataset.

Feature Scaling

In the outlier treatment, we used Power Transform to reduce the skewness by scaling the data.

Model Building

We first began trying variety of base models and comparing the results to help choose a model giving a good recall score. In the following models, we will see the confusion matrix, classification report and the ROC curve. The data has been split into train and test sets.

Logistic Regression

The model building first begins with logistic regression model. After generating the confusion matrix, we calculated the optimal threshold value using the Youden's Index. After getting the optimal threshold value of 0.51, we generated the following reports once more.

From the confusion matrix, it predicted that 17000 patients will survive, and 320 patients will not survive. However, it incorrectly predicted that 250 patients will not survive and 1200 will survive.

Logit model c	lassificatio	n report:			
	precision	recall	f1-score	support	
0	0.93	0.99	0.96	16796	
1	0.56	0.21	0.30	1547	
accuracy			0.92	18343	
macro avg	0.75	0.60	0.63	18343	
weighted avg	0.90	0.92	0.90	18343	

Inferences:

- Cross Entropy for the Logistic Regression Model is 2.77
- ROC AUC Score for the Logistic Regression Model is 79.55
- The Model Accuracy for the Logistic Regression Model is coming out to be around 92%.
- f1 weighted average for the Logistic Regression Model is around 90%.

• Specificity: 98%

• Sensitivity: 20.74%

K-Nearest Neighbor Classification Model

K-Nearest Nei	ghbors Model	classifi	cation repo	ort:
	precision	recall	f1-score	support
0	0.92 0.38	0.98 0.10	0.95 0.16	16796 1547
accuracy macro avg weighted avg	0.65 0.88	0.54 0.91	0.91 0.56 0.89	18343 18343 18343

Inferences:

- Cross Entropy for K-Nearest Neighbours Model is 3.10
- ROC AUC Score for the K-Nearest Neighbours Model is 66.84
- The Model Accuracy for the K-Nearest Neighbours Model is coming out to be around 91%.
- f1 weighted avergae for the K-Nearest Neighbours Model is around 89%.

• Specificity: 98.44%

• Sensitivity: 10%

Decision Tree Classification Model

Decision Tree	Model class	ification	report:	
	precision	recall	f1-score	support
0	0.94	0.93	0.93	16796
1	0.30	0.34	0.32	1547
accuracy			0.88	18343
macro avg	0.62	0.63	0.63	18343
weighted avg	0.88	0.88	0.88	18343

Inferences

- The Cross entropy for the Decision Tree model is 4.19
- ROC AUC Score for the Decision Tree Model is 63.89
- The Model Accuracy for the Decision Tree Model is coming out to be around 88%.
- f1 weighted avg for the Decision Tree Model is around 88%.
- Specificity: 92%
- Sensitivity: 34%

Naïve Byes Classification Model

Naive Bayes Model classification report for test data:				
	precision	recall	f1-score	support
0	0.95	0.87	0.90	16796
1	0.24	0.47	0.32	1547
accuracy			0.83	18343
macro avg	0.59	0.67	0.61	18343
weighted avg	0.89	0.83	0.86	18343

Base Model Comparison

	Overall Accuracy Score	Accuracy for train data	Accuracy for test data	Specificity	Sensitivity	f1 score weighted avg	ROC AUC Score	Cross Entropy	Bias Error	Variance Error
Logistic Regresion Model	92%	91.66%	91.96%	98.52%	20.74%	90%	79.55	2.77	8.37	42.05
K-Nearest Neighbors Model	91%	93.01%	90.28%	98.44%	10.34%	91%	66.86	3.10	9.12	31.38
Descision Tree Model	88%	99.90%	87.86%	88%	34.19%	88%	63.89	4.19	12.35	42.54
Naive Bayes Model	83%	83.47%	83.24%	92.80%	34%	86%	77.95	5.70	16.51	66.10

Inferences

Overall Accuracy Score:

- 1. Logistic Regression Model has the highest overall accuracy of about 92%.
- 2. Decision Tree Model yields the lowest overall model accuracy of about 88%.

Overfitting/Underfitting:

- 1. All the classification models exhibit overfitting of the trained data with respect to the test data.
- 2. The model accuracy for train data and test data for both Logistic Regression Model and K-Nearest Neighbors Model has very less overfitting.
- 3. As observed, the model accuracy for train data and test data for the Decision Tree Model has a considerably high difference in accuracies which can be considered a high overfitting condition in comparison to other models.

Model Optimization

Random Forest

Random Forest Model classification report for train data:

	precision	recall	f1-score	support
0 1	1.00 1.00	1.00 0.99	1.00 0.99	67002 6368
accuracy macro avg weighted avg	1.00 1.00	0.99 1.00	1.00 1.00 1.00	73370 73370 73370

Random Forest Model classification report for test data:

	precision	recall	f1-score	support
0	0.93	0.99	0.96	16796
1	0.64	0.24	0.35	1547
accuracy			0.92	18343
macro avg	0.79	0.62	0.66	18343
weighted avg	0.91	0.92	0.91	18343

Hyperparameter tunning

A good choice of hyperparameters can really make a model succeed in meeting desired metric value or on the contrary it can lead to a unending cycle of continuous training and optimization. Hence, we have used Grid Search Cross Validation technique for Hyperparameter tunning the models where the Cross Validation method considered is 10-Fold Cross Validation.

Logistic Regression

Sensitivity : Specificity :								
Classificatio	•			•	n='entropy', ma train data :	x_depth=10,	min_samples_s	split=8,
	precision	recall	f1-score	support				
0	0.94	0.98	0.96	67002				
1	0.63	0.31	0.42	6368				
accuracy			0.92	73370				
macro avg	0.78	0.65	0.69	73370				
weighted avg	0.91	0.92	0.91	73370				

```
Classification report of DecisionTreeClassifier(criterion='entropy', max_depth=10, min_samples_split=8, splitter='random') for resampled test data:

precision recall f1-score support

0 0.94 0.98 0.96 16796
1 0.56 0.27 0.36 1547

accuracy 0.92 18343
macro avg 0.75 0.62 0.66 18343
weighted avg 0.90 0.92 0.91 18343
```

Random Forest Model

```
Sensitivity: 24.76
Specificity: 98.82

Classification report of RandomForestClassifier() for resampled train data:

precision recall f1-score support

0 1.00 1.00 1.00 67002
1 1.00 0.99 0.99 6368

accuracy 1.00 73370
macro avg 1.00 0.99 1.00 73370
weighted avg 1.00 1.00 1.00 73370
```

	precision	recall	f1-score	support	
0	0.93	0.99	0.96	16796	
1	0.66	0.25	0.36	1547	
accuracy			0.93	18343	
macro avg	0.80	0.62	0.66	18343	
weighted avg	0.91	0.93	0.91	18343	

Imbalanced Target

As seen in univariate analysis, our target variable is imbalanced. Even though it makes sense that there are high survivals than deaths, to improve our model, we use SMOTE analysis it correct the imbalanced data.

SMOTE Analysis

The minority class, i.e., the patients that have not survived, gets oversampled. After doing so, the ratio between survival and death became 51:48.

We performed the same steps of model building, and compared the scores once again.

Logistic Regression

 $Logistic Regression (\verb|max_iter=200|) \ \ Model \ classification \ report \ after \ resampling \ for \ train \ data:$

	precision	recall	f1-score	support
0 1	0.77 0.79	0.81 0.75	0.79 0.77	66957 63767
accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78 0.78	130724 130724 130724

LogisticRegression(max_iter=200) Model classification report after resampling for test data:

	precision	recall	f1-score	support
0 1	0.77 0.79	0.81 0.75	0.79 0.77	16841 15841
accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78 0.78	32682 32682 32682

Sensitivity : 0.7452181049176189 Specificity : 0.8115907606436672

AUC score of the LogisticRegression(max_iter=200) Model for resampled test data : 0.8524666031564991

The Cross Entropy score of LogisticRegression(max iter=200) Model: 7.618645620021943

Decision Tree

DecisionTreeClassifier(criterion='entropy', max_depth=10, min_samples_split=8, splitter='random') Model classification report after resampling for train data:

	precision	recall	f1-score	support
0	0.83	0.83	0.83	66957
1	0.82	0.82	0.82	63767
accuracy			0.83	130724
macro avg	0.83	0.83	0.83	130724
	0.83	0.83	0.83	130724

DecisionTreeClassifier(criterion='entropy', max_depth=10, min_samples_split=8, splitter='random') Model classification report after resampling for test data:

	precision	recall	f1-score	support
0	0.82	0.82	0.82	16841
1	0.81	0.81	0.81	15841
accuracy			0.82	32682
macro avg	0.82	0.82	0.82	32682
weighted avg	0.82	0.82	0.82	32682

Random Forest

RandomForestClassifier() Model classification report after resampling for train data:

	precision	recall	f1-score	support
0 1	1.00 0.99	0.99 1.00	1.00 1.00	66957 63767
accuracy macro avg weighted avg	1.00	1.00 1.00	1.00 1.00 1.00	130724 130724 130724

RandomForestClassifier() Model classification report after resampling for test data:

	precision	recall	f1-score	support
0 1	0.95 0.92	0.92 0.95	0.94 0.93	16841 15841
accuracy macro avg	0.93	0.93	0.93 0.93	32682 32682
weighted avg	0.93	0.93	0.93	32682

Inference

From the comparisons above, it is seen that precision and recall has improved for Random Forest compared to the one built with the original data,

Feature Extraction

The important features were determine with the help of Recursive Feature Elimination using the Random forest model. The following features were selected

- map_apache
- apache_4a_icu_death_prob
- apache_2_diagnosis
- apache_3j_diagnosis
- apache_4a_hospital_death_prob
- bun_apache
- creatinine_apache
- wbc_apache
- gcs_verbal_apache
- glucose_apache
- diabetes_mellitus
- resprate_apache

Inference

- The Sensitivity and Specificity of both Logistic Regression model and Decision Tree model
 has increased significantly from the base models resulting in an improved weighted-avgerage
 of Precision and Recall rates.
- The Decision Tree Model has a better overall performance than the Logistic Model for the new dataset obtained after recursive feature elimination and resampling the data.
- The Random Forest Model has not shown any major improvement from the previous model but has the best overall performance as compared to the Logistic Regression and Decision Tree model.
- Random forest has been considered.

Bagging and Boosting Algorithms

AdaBoost Model

Classification report of AdaBoostClassifier() for resampled train data :

	precision	recall	f1-score	support
0 1	0.87 0.84	0.84 0.87	0.86 0.85	66957 63767
accuracy macro avg weighted avg	0.85 0.86	0.86 0.85	0.85 0.85 0.85	130724 130724 130724

Classification report of AdaBoostClassifier() for resampled test data:

	precision	recall	f1-score	support
0	0.87	0.84	0.85	16841
1	0.84	0.86	0.85	15841
accuracy			0.85	32682
macro avg	0.85	0.85	0.85	32682
weighted avg	0.85	0.85	0.85	32682

AUC Score for AdaBoostClassifier() for resampled test data: 0.9277744034192948

The Cross Entropy score of AdaBoostClassifier() Model: 5.093906234177455

Mean Score : 0.8552140562069261 Bias error : 14.478594379307385 Variance error : 0.27860125804568026

GradientBoost Model

 ${\tt Classification\ report\ of\ Gradient Boosting Classifier()\ for\ resampled\ train\ data:}$

	precision	recall	f1-score	support
0	0.90	0.87	0.88	66957
1	0.87	0.90	0.88	63767
accuracy			0.88	130724
macro avg	0.88	0.88	0.88	130724
weighted avg	0.88	0.88	0.88	130724

 ${\tt Classification\ report\ of\ Gradient Boosting Classifier()\ for\ resumpled\ test\ data:}$

	precision	recall	f1-score	support
0	0.90	0.87	0.89	16841
1	0.87	0.90	0.88	15841
accuracy			0.88	32682
macro avg	0.88	0.88	0.88	32682
weighted avg	0.88	0.88	0.88	32682

AUC Score for GradientBoostingClassifier() for resampled test data: 0.9510644196706552

The Cross Entropy score of GradientBoostingClassifier() Model: 4.000092741186987

Mean Score: 0.8840075112298973 Bias error: 11.599248877010272 Variance error: 0.3036704502786237

XGBoost Model

Classification report of XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, eval_metric='logloss', gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.300000012, max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None) for resampled train data:

	precision	recall	f1-score	support
0	0.95	0.97	0.96	66957
1	0.97	0.94	0.96	63767
accuracy			0.96	130724
macro avg	0.96	0.96	0.96	130724
weighted avg	0.96	0.96	0.96	130724

```
Classification report of XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, eval_metric='logloss', gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.300000012, max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0, num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None) for resampled test data:
```

	precision	recall	f1-score	support
0	0.94	0.96	0.95	16841
1	0.96	0.93	0.95	15841
accuracy			0.95	32682
macro avg	0.95	0.95	0.95	32682
weighted avg	0.95	0.95	0.95	32682

Model Comparison

	Overall Accuracy	Accuracy for train data	Accuracy for test data	Specificity	Sensitivity	f1 score weighted avg	ROC AUC Score	Bias Error	Variance Error	Cross Entropy
Random Forest Model	95%	99.60%	93.41%	92.08%	94.82%	93%	0.98	6.76	0.27	2.27
AdaBoost Model	86%	86%	86%	84.82%	86.29%	86%	0.93	14.15	0.24	4.99
GradientBoost Model	89%	89%	88%	87.06%	89.65%	89%	0.95	11.46	0.30	4.03
XGBoost Model	96%	95%	95%	96.24%	93.31%	96%	0.98	5.17	0.22	1.78

Based on the comparison we can conclude that:

- XGBoost Model and Random Forest Model have the approximately overall accuracy of 95% on test data.
- XGBoost has less overfitting of train data as compared to Random Forest Model.
- XGBoost has a slightly lesser Bias error and variance error than Random Forest Model.
- f1-score weighted for XGBoost Model: 96%
- AUC score for XGBoost Model: 0.98

Final Model

From the comparisons, we have decided to use XGBoost Model. The following are it evaluation metrics

Sensitivity: 93.3 Specificity: 96.16

Classification report of XGBoost Model for resampled train data :

support	f1-score	recall	precision	
66957	0.96	0.97	0.95	0
63767	0.96	0.94	0.97	1
130724	0.96			accuracy
130724	0.96	0.96	0.96	macro avg
130724	0.96	0.96	0.96	weighted avg

Classification report of XGBoost Model for resampled test data :

	precision	recall	f1-score	support
0	0.94	0.96	0.95	16841
1	0.96	0.93	0.95	15841
accuracy			0.95	32682
macro avg	0.95	0.95	0.95	32682
weighted avg	0.95	0.95	0.95	32682

AUC Score for XGBoost Model for resampled test data : 0.9861564517690254

The Cross Entropy score of XGBoost Model : 1.8050531614357996

Mean Score : 0.9481044004053688 Bias error : 5.18955995946312 Variance error : 0.1870198716707829

Conclusion

We have decided on XGBoost Model as our final model. The important features gives some idea on what factors to look at more closely when determining the survival rate of the patient. Some of the features are diabetes, respirate, glucose, Apache diagnosis. The limitation is that there it is still not very precision in determining the survival rate but out of all the models, XGBoost showed the best result.