- 1 (). К серверу приходят одновременно n клиентов. Для клиента i известно время его обслуживания t_i . Время ожидания клиента определяется как сумма времени обслуживания всех предыдущих клиентов и времени обслуживания его самого. К примеру, если обслуживает клиентов в порядке номеров, то время ожидания клиента і будет равно $\sum_{j=1}^{i} t_j$. Постройте эффективный алгоритм, находящий последовательность обслуживания клиентов с минимальным суммарным временем ожидания клиентов, докажите его корректность и оцените асимптотику.
- \triangleright Заметим, что если у i-го подошедшего клиента время облуживания t_i , то суммарное вермя ожидания будет

$$T = \sum_{i=1}^{n} (n-i+1)t_i$$

Далее рассмотрим $t_i, t_j : i < j, t_i \ge t_j$. Если мы поменяем этих клинтов местами, T уменьшится на $(j-i)t_i$ и увеличится на $(j-i)t_j$, в результате T уменьшится на $(j-i)(t_i-t_j) \ge 0$, т. е. T не увеличится. Получаем, что расстановка с наименьшим суммарным временем ожидания — это расстановка при которой время ожидания каждого следующего клиента не убывает. Алгоритм тем самым должен просто отсортировать клиентов по убыванию времени ожидания. Для этого подойдет сортировка слиянием, работающая за $O(n \log n)$, что является наилучшим вариантом с точки зрения ассимптотики. \triangleleft

- **2** (). Найдите асимптотическую оценку функции T(n). Примените мастер-теорему в тех случаях, когда ее можно использовать.
 - 1. $T(n) = 25T(\frac{n}{5}) + n^2$
 - 2. $T(n) = 16T(\frac{n}{2}) + n^3$
 - 3. $T(n) = 9T(\frac{n}{3}) + n^3$
 - 4. T(n) = T(n-1) + 3n
 - 5. $T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n$
- $ightarrow \ {
 m E}$ сли $T(n)=aT(rac{n}{b})+O(n^c),$ то
 - $T(n) = \Theta(n^{\log_b a}), c < \log_b a$
 - $T(n) = \Theta(n^c \log n), c = \log_b a$
 - $T(n) = \Theta(n^c), c > \log_b a$
 - 1. $\log_b a = 2, c = 2 \Rightarrow T(n) = \Theta(n^2 \log n)$
 - 2. $\log_b a = 4, c = 3 \Rightarrow T(n) = \Theta(n^4)$
 - 3. $\log_b a = 2, c = 3 \Rightarrow T(n) = \Theta(n^3)$
 - 4. $T(0) = T_0, T(n) = T_0 + \sum_{i=1}^{n} 3i = T_0 + 3\frac{n(n+1)}{2} = \Theta(n^2)$

 \triangleleft

- **3** (). Оцените асимптотически, сколько раз будет напечатана строка "heh" при вызове функции f. **Ответ:** $\Theta(n^{\log_2 3})$.
- \triangleright За T(n) обозначим кол-во "heh" при вызове f(n). Тогда уз условия получаем:

$$T(n) = 3T(\frac{n}{2}) + \frac{n}{2}.$$

 $\log_b a = \log_2 3 > 1 = c$, откуда по мастер-теореме

$$T(n) = \Theta(n^{\log_2 3}).$$