Incorporating constraints with constraint forces

Model as unconstrained system with additional forces (λ) that enforce constraints

ullet Q that generate constraint forces (λ) can be found by work balance

 $Q^T \dot{q} = \lambda^T \left(A(q) \dot{q} \right)$

Thus the constrained dynamics are given by

 $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = A(q)^T \lambda + F_{\text{non-conservative}}$

Constrains on accelerations are additionally imposed

 $\frac{dA(q)}{dq}\dot{q} + A(q)\ddot{q} = 0$

dt

Incorporating constraints with constraint forces

- Model as unconstrained system with additional forces (λ) that enforce constraints
- Q that generate constraint forces (λ) can be found by work balance

$$Q^T \dot{q} = \lambda^T \left(A(q) \dot{q} \right)$$

Thus the constrained dynamics are given by

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = A(q)^T \lambda + F_{\text{non-conservative}}$$

Constrains on accelerations are additionally imposed

$$\frac{dA(q)}{dt}\dot{q} + A(q)\ddot{q} = 0$$

The rolling disk example