Sang Yup Lee

차원 축소

- 차원의 저주 (curse of dimensionality)
 - High dimensions => Large number of features (or IVs)
 - Possible problems
 - 과적합
 - 군집화 결과가 좋지 않다. <= 데이터포인트들 간의 거리가 유사하게 되는 문제
- 차원 축소의 방법
 - Feature selection
 - 원래의 features 들 중에서 일부만 선택
 - Feature extraction
 - 원래 feature들을 그대로 사용하는 것이 아니라, 원래 feature들이 가지고 있는 정보를 사용하여 새로운 feature들을 추출
 - 이렇게 새롭게 추출되는 feature들의 수는 원래 feature들의 수보다 작다.

Feature selection

 데이터셋에 존재하는 원래의 feature 들 중에서 문제를 푸는데 있어 중요한 역할을 하는 몇 개의 feature를 선택하여 최종 분석에서 사용

Example

- 전체 features: age, experience, gender, height, weight → 이중에서 age, experience, gender를 선택하여 최종 분석에서 사용
- 단점: 선택되지 않은 features (예, height, weight 등)가 갖고 있는 정보를 최종 분석에서 사용하지 못한다.

Feature extraction

- 데이터셋에 존재하는 원래의 feature들의 정보를 사용하지만, 원래 feature들 그대로를 최종분석에서 사용하지는 않는다.
- 원 feature들이 가지고 있는 정보 (분산 정보)를 활용해서 새로운 종류의 feature 를 생성해서 (이를 extraction이라고 함) 최종 분석에서 사용한다.
- 장점: 데이터셋에 존재하는 feature들의 정보를 되도록 버리지 않고, feature들이 가지고 있는 많은 정보 사용 가능

Example

- 전체 features: age, experience, gender, height, weight
- 각 feature들이 가지고 있는 정보를 사용해서 feature 들의 정보를 담고 있는 새로운 feature 2개를 사용
- 이렇게 새롭게 생성된 feature들은 실제로 존재하는 어떠한 변수가 아님

- Principal Component Analysis (주성분분석)
 - Feature extraction 방법
 - Principal component
 - 원 데이터가 가지고 있는 정보, 즉, 원 독립변수들이 가지고 있는 정보 (분산으로 표현)를 설명하는 축들
 - 전체 PC의 수 = 전체 독립변수의 수
 - 각 PC에 의해서 설명되는 분산의 크기 (즉, 정보의 양)이 다르다.
 - 설명하는 분산의 크기에 따라 정렬 가능
 - 첫번째 PC = 분산을 가장 많이 설명하는 축
 - 두번째 PC = 분산을 두번째로 많이 설명하는 축
 - · ...
 - 이 중 분산을 많이 설명하는 상위 k개의 PC 선택
 - 각 PC는 서로 수직

PCA

6

- 고유값과 고유벡터 (eigenvalues, eigenvectors)
- 정의
 - $Av = \lambda v$
 - A는 <u>nxn 행렬</u>, ν는 nx1 벡터 (≠영벡터), λ는 스칼라값
 - 위의 식을 만족하는v를 A의 고유벡터 $(v \neq 0)$, λ 를 A의 고유값
- 기하학적 의미
 - 고유벡터는 행렬 A에 의해 선형변환되는 경우 방향은 바뀌지 않고, 길이만 달라지는 벡터
 - $Av = \lambda v$ 는 고유벡터에 대한 A의 사상은 고유벡터를 스칼라배한 것과 같다
 - 즉, Av는v 벡터의 방향은 바꾸지 않고, 크기만 변경시킨다는 것
 - 고유벡터는 A 행렬의 고유한 특성을 나타내는 벡터

- 고유값과 고유벡터 (손으로) 구하기
 - $Av = \lambda v$ 은 아래와 같이 변형
 - $(A-\lambda I)v=0$
 - 여기서 I는 nxn 단위행렬
 - 이식이 0이 아닌 v에 대해서 만족하기 위해서는 (A-λI)의 역행렬이 존재하지 않아야 함
 - $(A \lambda I)$ 의 역행렬이 존재하는 경우에는 위의 식을 만족하는 v는 0벡터 밖에 없음
 - $\det(\mathbf{A} \lambda I) = 0$

• 참고:
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

PCA

9

- 고유값과 고유벡터 (손으로) 구하기 (cont'd)
 - $\mathfrak{A} = \begin{bmatrix} 5 & 1 \\ 3 & 3 \end{bmatrix}$, $(A \lambda \mathbf{1}) = \begin{bmatrix} 5 \lambda & 1 \\ 3 & 3 \lambda \end{bmatrix}$, $det(A \lambda \mathbf{1}) = (5 \lambda)(3 \lambda) 3 = 0$
 - $\lambda = 2, 6$
 - 고유벡터: $(A \lambda \mathbf{1})v = \begin{bmatrix} 5 \lambda & 1 \\ 3 & 3 \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$
 - $\lambda = 2$ 의 경우: $\begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$, 3x + y = 0을 만족하는 모든 x, y가 $\lambda = 2$ 에 대한 고유벡터가 됨
 - 즉, 고유벡터는 여러개 나올 수 있음. 왜냐하면 고유벡터는 방향성만이 중요하기 때문. 보통은 여러개의 고유벡터들 중에서 그 길이가 1인 고유벡터를 선택.
 - λ = 6 의 경우, x = y

- Numpy를 이용해서 고유값과 고유벡터 구하기
 - See "eigen_examples.ipynb"

```
A = np.array([[5, 1],
[3, 3]])
eigVals, eigVecs = np.linalg.eig(A)
```

- eigVecs
 - Unit vectors
 - 방향이 중요하기 때문에
 - v1 = eigVecs[:, 0]
 - v2 = eigVecs[:, 1]
 - Check out if v1 satisfies x = y and v2 satisfies y = -3x

PCA

11

- 고유값의 특성
 - 행렬식 (determinant) = 고유값들의 곱

• 예)
$$A = \begin{bmatrix} 5 & 1 \\ 3 & 3 \end{bmatrix}$$

- 고유값 = 6, 2
- 행렬식 = 12 = 5*3 3*1
- tr(A) = 고유값들의 합
 - tr(A) = 대각 성분의 합
 - 5+3=6+2

■ 고유값의 특성

$$\bullet A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- $Av = \lambda v$
- How to find eigenvalues?

•
$$det(A - \lambda \mathbf{1}) = (a - \lambda)(d - \lambda) - bc = 0$$

$$\lambda^2 - \lambda(a+d) + ad - bc = 0$$

- 두 근의 합과 곱은?
- 위의 식을 만족하는 고유값: λ₁, λ₂

• Then,
$$(\lambda - \lambda_1)(\lambda - \lambda_2) = 0$$

- 행렬식과의 관계
 - 행렬식 (determinant) = 고유값들의 곱
 - What if a matrix is not full rank

• 예)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

- 고유값 = 0, 5
- 행렬식 = 0 = 5*0
- => 역행렬이 존재하지 않는다!

4

고유값과 고유벡터

- 대칭행렬의 고유벡터
 - 서로 수직이다.
 - 즉, 사이각 = 90도
 - $\cos \theta = 0$
 - 예)

$$\bullet A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

고유분해 (Eigendecomposition)

- Eigendecomposition (고유 분해)
 - $A = V\Lambda V^{-1}$
 - A: nxn 정사각행렬
 - V: A의 고유벡터들을 열로 갖는 행렬
 - A: 고유값들을 대각성분으로 갖는 대각행렬
 - \mathfrak{L} , $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$
 - Example)
 - A: 2x2 행렬, then $\Lambda = diag(\lambda_1, \lambda_2)$,
 - $v1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $v2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, then $V = V = \begin{bmatrix} 1 & 1 \\ 2 & -3 \end{bmatrix}$

How to derive?

- $AV = V\Lambda$
- Example

$$\bullet A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

•
$$v_1 = \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix}$$
, $v_2 = \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix}$, then $V = \begin{bmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{bmatrix}$

$$\bullet AV = [Av_1 \quad Av_2]$$

•
$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
, $V = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, where v_1 : λ_1 에 대한 eigenvector

•
$$v_1 = \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix}$$
, $v_2 = \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix}$, then $V\Lambda = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 \end{bmatrix}$

- How to derive? (cont'd)
 - $AV = V\Lambda$
 - V must be full rank, that is the eigenvectors must be linearly independent
 - Then, V⁻¹ 존재
 - $AVV^{-1} = V\Lambda V^{-1}$

4

Eigendecomposition

Example

• For
$$A = \begin{bmatrix} 5 & 1 \\ 3 & 3 \end{bmatrix}$$

•
$$V = \begin{bmatrix} 0.707106 & -0.31622 \\ 0.707106 & 0.94868 \end{bmatrix}, \Lambda = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$$

Python code: See "eigen_examples.ipynb"

- eigendecomposition
 - $A = V\Lambda V^{-1}$ 은 언제 사용할 수 있는가?
 - 1) A 변환이 여러번 수행되는 경우를 간단하게 계산 가능

•
$$A^2 = AA = V\Lambda V^{-1}V\Lambda V^{-1} = V\Lambda^2 V^{-1}$$
, $\Lambda^2 = \begin{bmatrix} \lambda_1^2 & 0 \\ 0 & \lambda_2^2 \end{bmatrix}$

- 2) PCA 차원축소
 - 정확하게는 eigendecomposition이 사용되기 보다는 eigenvalues와 eigenvectors가 사용됨

Review

- 고유값, 고유벡터
 - $Av = \lambda v$
 - A는 <u>nxn 행렬</u>, v는 nx1 벡터 (≠영벡터), λ는 스칼라값
 - 위의 식을 만족하는v를 A의 고유벡터 $(v \neq 0)$, λ 를 A의 고유값
- 고유분해
 - $A = V\Lambda V^{-1}$
 - A: nxn 정사각행렬
 - V: A의 고유벡터들을 열로 갖는 행렬
 - A: 고유값들을 대각성분으로 갖는 대각행렬
 - \mathfrak{F} , $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$

차원 축소

- 차원의 저주 (curse of dimensionality)
 - High dimensions => Large number of features (or IVs)
 - Possible problems
 - 과적합
 - 군집화 결과가 좋지 않다. <= 데이터포인트들 간의 거리가 유사하게 되는 문제
- 차원 축소의 방법
 - Feature selection
 - 원래의 features 들 중에서 일부만 선택
 - Feature extraction
 - 원래 feature들을 그대로 사용하는 것이 아니라, 원래 feature들이 가지고 있는 정보를 사용하여 새로운 feature들을 추출
 - 이렇게 새롭게 추출되는 feature들의 수는 원래 feature들의 수보다 작다.

- Principal Component Analysis (주성분분석)
 - Feature extraction 방법
 - Principal component
 - 원 데이터가 가지고 있는 정보, 즉, 원 독립변수들이 가지고 있는 정보 (분산으로 표현)를 설명하는 축
 - 전체 PC의 수 = 전체 독립변수의 수
 - PC가 새로운 feature가 됨
 - 각 PC에 의해서 설명되는 분산의 크기 (즉, 정보의 양)이 다르다.
 - 설명하는 분산의 크기에 따라 정렬 가능
 - 첫번째 PC = 분산을 가장 많이 설명하는 축
 - 두번째 PC = 분산을 두번째로 많이 설명하는 축
 - · ...
 - 이 중 분산을 많이 설명하는 일부의 PC 를 새로운 feature로 선택
 - 각 PC는 서로 수직

- Principal Component Analysis (cont'd)
 - 이러한 PC 들 중에서 분산을 많이 설명하는 상위 몇개의 PC만을 선택하여 사용
 - 효과: 원 데이터의 정보 (즉, 분산)은 별로 손실하지 않으면서 feature수를 줄이는 효과
 - 예: 원래 feature 의 수 = 5
 - 5개의 PC 존재, 각 PC가 설명하는 feature 들의 분산 크기 상이

PC	_설명하는 분산의 크기 (%)
1	80
2	15
	2.5
4	1.5
5	1

이중에서 PC1, 2 만을 선택하는 경우

- Feature 의 수는 2개로 줄이면서,
 - 원래 데이터가 갖고 있던 정보 (분산) 중 95% 를 사용

Example

- 독립변수의 수 = 2
- 따라서 PC의 수 = 2

두번째 PC 첫번째 PC가 설명하지 못하는 분산을 설명 첫번째 PC와 서로 수직

첫번째 PC 분산을 가장 많이 설명하는 축

PCA

27

PCA (cont'd)

• 예제 데이터 (# of features = 2, # data points = 10)

	X1	X2
0	2.5	2.4
1	0.5	0.7
2	2.2	2.9
3	1.9	2.2
4	3.1	3.0
5	2.3	2.7
6	2.0	1.6
7	1.0	1.1
8	1.5	1.6
9	1.1	0.9

Feature를 하나만 선택해서 사용하고자 하는 경우

- X1 또는 X2 중 하나만을 선택하게 되면 (feature selection), 선택되지 않은 변수의 정보를 모두 손실
- 이를 방지하기 위해 PCA 기반의 feature extraction 방법 사용
- 즉, 2개의 PC 중에서 원 데이터의 분산을 더 많이 설명하는 하나만 선택

- PCA (cont'd)
 - Mean centering
 - PCA는 원래의 값을 사용하지 않고, mean centering값을 사용
 - Mean centering value = 원값 평균

- PCA (cont'd)
 - 순서
 - 원데이터의 각 독립변수에 대해서 mean centering 한다 (즉, 원래 값에서 해당 변수의 평균을 뺀다).
 - 원데이터에 대한 공분산 행렬을 만든다.
 - 공분산 행렬에 대해서 고유값과 고유벡터를 찾는다.
 - 각 고유벡터가 우리가 찾고자 하는 PC가 된다.
 - 우리는 이중에서 설명력이 높은 PC만을 선택한다.
 - 몇개를 선택하는지는 사용자가 결정
 - 이렇게 선택된 PC가 우리가 최종적으로 사용하고자 하는 독립변수가 됨 (즉, feature 가 됨)
 - 새로 구한 PC에 대해 각 관측치의 새로운 값 구하기

PCA (cont'd)

	X1	X2
0	2.5	2.4
1	0.5	0.7
2	2.2	2.9
3	1.9	2.2
4	3.1	3.0
5	2.3	2.7
6	2.0	1.6
7	1.0	1.1
8	1.5	1.6
9	1.1	0.9

	PC1
0	?
1	?
1 2 3	?
3	?
4	?
5	?
6	?
4 5 6 7 8	?
8	?
9	?

PCA

- 원데이터를 이용해서 공분산 행렬 구하기
 - 공분산 행렬

$$\textbf{Cov}(X) = \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) & \dots & Cov(X_1, X_K) \\ Cov(X_2, X_1) & Var(X_2) & \dots & Cov(X_1, X_K) \\ \dots & \dots & \dots & \dots \\ Cov(X_K, X_1) & Cov(X_K, X_2) & \dots & Var(X_K) \end{bmatrix}$$

- $Var(X_1) = \frac{\sum_{i=1}^{n} (x_{1i} \bar{X}_1)^2}{n-1}$
- $\text{Cov}(X_1, X_2) = \frac{\sum_{i=1}^{n} (x_{1i} \bar{X}_1)(x_{2i} \bar{X}_2)}{n-1} /$
- 전체 분산 = $Var(X_1) + \cdots + Var(X_K)$
- Cov(X) is a symmetric matrix
 - 고유벡터는 서로 수직이다.
- Numpy나 pandas를 이용해서 쉽게 구할 수 있다.

PCA

- Cov(X)의 고유값과 고유벡터 구하기
 - 전체 분산 = $Var(X_1) + \cdots + Var(X_K) =$ 고유값의 합
 - 고유값: 전체 분산을 설명하는 정도
 - 고유벡터
 - Principal component를 의미
 - 각 고유벡터의 방향 (분산의 방향)

Recap

순서

- 원데이터의 각 독립변수에 대해서 mean centering 한다 (즉, 원래 값에서 해당 변수의 평균을 뺀다).
- 원데이터에 대한 공분산 행렬을 만든다.
- 공분산 행렬에 대해서 고유분해를 수행한다 (즉, 고유값과 고유벡터를 찾는다).
- 각 고유벡터가 우리가 찾고자 하는 PC가 된다.
- 우리는 이중에서 설명력이 높은 PC만을 선택한다.
 - 몇개를 선택하는지는 사용자가 결정
 - 이렇게 선택된 PC가 우리가 최종적으로 사용하고자 하는 독립변수가 됨 (즉, feature 가 됨)
- 새로 구한 PC에 대해 각 관측치의 새로운 값 구하기

PCA

- 우리가 사용하고 싶은 component (eigenvector)만을 고른다.
 - 선택 방법
 - Scree plot
 - Eigenvalues를 사용
- PC를 이용한 데이터 표현
 - 기저의 이동 (change of basis)
 - 축의 이동

Scree plot

PC를 이용한 데이터 표현

- PC를 이용한 데이터 표현
 - 각 관측치가 각 PC에 대해서 갖는 값을 계산
 - PC로 나타내어지는 새로운 IV에 대한 값 계산으로 간주
 - 이는 원래의 관측치가 갖는 해당 PC로 나타내어지는 축에 대한 좌표 (즉, 길이)

■ 이를 위해 projection vector에 대해서 먼저 알아야 한다.

$$\vec{x}_1 = |\vec{x}_1| \frac{\vec{v}}{|\vec{v}|}$$
 즉, 길이가 $|\vec{x}_1|$ 면서 방향은 \vec{v} 의 단위벡터와 동일한 벡터

$$cos\theta = \frac{|\vec{x}_1|}{|\vec{x}|}$$
$$|\vec{x}_1| = |\vec{x}|cos\theta = |\vec{x}| \frac{\vec{x} \cdot \vec{v}}{|\vec{x}||\vec{v}|} = \frac{\vec{x} \cdot \vec{v}}{|\vec{v}|}$$
$$\because \vec{x} \cdot \vec{v} = |\vec{x}||\vec{v}|cos\theta$$

PC를 이용한 데이터 표현

■ PC를 이용한 데이터 표현

$$|\vec{x}_1| = |\vec{x}| cos\theta = |\vec{x}| \frac{\vec{x} \cdot \vec{v}}{|\vec{x}||\vec{v}|} = \frac{\vec{x} \cdot \vec{v}}{|\vec{v}|}$$

 \vec{v} 가 고유벡터인 경우, $|\vec{v}| = 1$
따라서, $|\vec{x}_1| = \vec{x} \cdot \vec{v}$

PCA

sklearn을 이용하는 경우

```
from sklearn.decomposition import PCA
pca = PCA(n_components=1)
pca.fit_transform(d_np)
```


특이값분해 (Singular values decomposition)

Singular values decomposition

- 다른 종류의 decomposition
 - SVD (Singular values decomposition)
 - eigendecomposition과 비슷, but
 - eigendecomposition 는 square matrix에 대해서만 가능,
 다른 형태의 matrix에 대해서는 SVD 사용
 - 다음과 같이 정의
 - $X = UDV^T$
 - X는 정사각행렬이 아닌 사각행렬로 mxn 행렬라고 표현
 - U는 XX^T 행렬의 고유벡터를 열로 갖는 행렬
 - V는 X^TX의 고유벡터를 열로 갖는 행렬
 - D은 대각행렬인데, 대각원소는 X^TX 혹은 XX^T의 eigenvalues (λ_i) 에 루트를 씌운 값 $(\sqrt{\lambda_i})$, 이를 X의 singular values라고 함

PCA

43

Singular values decomposition

- SVD (cont'd)
 - 파이썬 코드
 - "SVD_example.ipynb" 참고
 - U, D, V^T = np.linalg.svd(A)

Q & A