Ackermann function is not primitive recursive*

†

2013-03-11 18:08:37

In this entry, we show that the Ackermann function A(x, y), given by

$$A(0,y) = y+1,$$
 $A(x+1,0) = A(x,1),$ $A(x+1,y+1) = A(x,A(x+1,y))$

is not primitive recursive. We will utilize the properties of A listed in this entry.

The key to showing that A is not primitive recursive, is to find a properties shared by all primitive recursive functions, but not by A. One such property is in showing that A in some way "grows" faster than any primitive recursive function. This is formalized by the notion of "majorization", which is explained here.

Proposition 1. Let A be the set of all functions majorized by A. Then $PR \subseteq A$.

Proof. We break this up into three parts: show all initial functions are in \mathcal{A} , show \mathcal{A} is closed under functional composition, and show \mathcal{A} is closed under primitive recursion. The proof is completed by realizing that \mathcal{PR} is the smallest set satisfying the three conditions.

In the proofs below, \boldsymbol{x} denotes some tuple of non-negative integers (x_1, \ldots, x_n) for some n, and $x = \max\{x_1, \ldots, x_n\}$. Likewise for \boldsymbol{y} and \boldsymbol{y} .

- 1. We show that the zero function, the successor function, and the projection functions are in A.
 - z(n) = 0 < n + 1 = A(0, n), so $z \in A$.
 - s(n) = n + 1 < n + 2 = A(1, n), so $s \in A$.
 - $p_m^k(x_1, ..., x_k) = x_m \le x < x + 1 = A(0, x)$, so $p_m^k \in \mathcal{A}$.

^{*} $\langle AckermannFunctionIsNotPrimitiveRecursive \rangle$ created: $\langle 2013-03-11 \rangle$ by: $\langle CWoo \rangle$ version: $\langle 42019 \rangle$ Privacy setting: $\langle 1 \rangle$ $\langle Theorem \rangle$ $\langle 03D75 \rangle$

 $^{^{\}dagger}$ This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.

2. Next, suppose g_1, \ldots, g_m are k-ary, and h is m-ary, and that each g_i , and h are in \mathcal{A} . This means that $g_i(\mathbf{x}) < A(r_i, x)$, and $h(\mathbf{y}) < A(s, y)$. Let

$$f = h(g_1, \dots, g_m), \text{ and } g_i(x) = \max\{g_i(x) \mid i = 1, \dots, m\}.$$

Then $f(\mathbf{x}) < A(s, g_j(\mathbf{x})) < A(s, A(r_j, x)) < A(s + r_j + 2, x)$, showing that $f \in \mathcal{A}$.

3. Finally, suppose g is k-ary and h is (k+2)-ary, and that $g,h \in \mathcal{A}$. This means that $g(\boldsymbol{x}) < A(r,x)$ and $h(\boldsymbol{y}) < A(s,y)$. We want to show that f, defined by primitive recursion via functions g and h, is in \mathcal{A} .

We first prove the following claim:

$$f(x,n) < A(q,n+x)$$
, for some q not depending on x and n.

Pick $q=1+\max\{r,s\}$, and induct on n. First, $f(\boldsymbol{x},0)=g(\boldsymbol{x})< A(r,x)< A(q,x)$. Next, suppose $f(\boldsymbol{x},n)< A(q,n+x)$. Then $f(\boldsymbol{x},n+1)=h(\boldsymbol{x},n,f(\boldsymbol{x},n))< A(s,z)$, where $z=\max\{x,n,f(\boldsymbol{x},n)\}$. By the induction hypothesis, together with the fact that $\max\{x,n\}\leq n+x< A(q,n+x)$, we see that z< A(q,n+x). Thus, $f(\boldsymbol{x},n+1)< A(s,z)< A(s,A(q,n+x))\leq A(q-1,A(q,n+x))=A(q,n+1+x)$, proving the claim.

To finish the proof, let $z = \max\{x,y\}$. Then, by the claim, $f(\boldsymbol{x},y) < A(q,x+y) \le A(q,2z) < A(q,2z+3) = A(q,A(2,z)) = A(q+4,z)$, showing that $f \in \mathcal{A}$.

Since \mathcal{PR} is by definition the smallest set containing the initial functions, and closed under composition and primitive recursion, $\mathcal{PR} \subseteq \mathcal{A}$.

As a corollary, we have

Corollary 1. The Ackermann function A is not primitive recursive.

Proof. Otherwise, $A \in \mathcal{A}$, which is impossible.