02-04 Règles d'association

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE
ET SERVICES AUX ENTREPRISES

420-A58-SF — Algorithmes d'apprentissage non supervisé — Hiver 2023 Spécialisation technique en intelligence artificielle — M. Swawola, M.Sc.

Sommaire

- 1. Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- 6. Lectures et références

Sommaire

- 1. Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- Lectures et références

Tout commence dans la grande distribution ...

Modèle "Market-basket"

Problématique: comment identifier les articles (ou items en anglais) achetés ensemble par un nombre suffisamment grand de clients ?

Modèle "Market-basket"

- Tous les paniers d'épiceries sont enregistrés aux caisses (lecture des codes à barre)
- Pour une entreprise de grande distribution, traitement sur une grande échelle des données des différents points de ventes
- Comment apprendre les associations les plus courantes ?

Exemple d'une règle d'association

Ainsi, il est possible de découvrir des associations surprenantes!

La preuve au IGA du coin ...

Bières!

En provenance du lait ...

Modèle "Market-basket"

- Un vaste ensemble d'articles (ou items)
 Exemple: articles vendus dans une grande surface
- Un vaste ensemble de paniers (baskets)
 Exemple: tous les articles achetés par un même client le même jour
- Nous voulons découvrir les règles d'association (association rules)
 Exemple: les clients achetant { x, y, z } ont tendance à acheter { v, w }

Modèle "Market-basket"

Transactions

TID	Paniers (liste d'articles)	
1	Pain, Coca-Cola, Lait	
2	Bières, Pain	
3	Bière, Coca-Cola, Couches, Lait	
4	Bière, Pain, Couches, Lait	
5	Coca-Cola, Couches, Lait	

Règles d'association

```
{ Lait } → { Coca-Cola }
{ Couches, Lait } → { Bière }
```

Sommaire

- Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- 6. Lectures et références

Application: grande distribution

- Articles / Items = produits ou articles en vente
- Paniers / Baskets = ensemble des produits achetés par un client (panier d'épicerie)
- Les commerces conservent les données (articles achetés ensembles) liées aux transactions
 - Aide à comprendre le déplacement des clients au sein du magasin. Positionnement des rayons et des articles
 - Permet de découvrir les tie-in "tricks", par exemple: promotion sur les couches, mais augmentation du prix des bières
 - Publicité sur les commerces en ligne
- Exemple d'Amazon: les clients ayant acheté X ont aussi acheté Y

Application: détection de plagiat

- **Items** = documents
- Baskets = phrases
- Les items (documents) apparaissant ensemble trop souvent peuvent indiquer du plagiat
- Les items n'ont pas à être "inclus" (dans le sens des ensembles) dans les baskets

Application: pharmacologie

- **Items** = médicaments et effets secondaires
- Baskets = patients ayant reçu un ou plusieurs médicaments
- Permet la détection d'effets secondaires induits par la combinaison de plusieurs médicaments
- Dans ce cas, il est également important de noter l'absence, comme la présence d'un item

Application: trading algorithmique

- **Items** = valeur des actions
- Baskets = une période donnée
- Association de différents signaux à une tendance (bull/bear)
- Dans ce cas plus complexe, il faut tenir compte aussi de la chronologie (Temporal Association Rule Mining)

Application: analyse de réseaux sociaux

- **Items** = voisins
- Baskets = noeuds
- Recherche de sous-graphes bipartites $K_{s,t}$ d'un graphe

Application: analyse de réseaux sociaux

- Items = voisins
- Baskets = noeuds
- D'une manière générale, on cherche à **apprendre** une relation **plusieurs-à-plusieurs** entre deux sortes de choses

Les associations sont recherchées entre items, et non entre baskets

Sommaire

- Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- 6. Lectures et références

Itemsets fréquents

- Les itemsets fréquents (frequent itemsets) sont les items apparaissant "fréquemment" ensemble dans les baskets
- Le **support** d'un itemset *I* est le nombre de baskets contenant tous les items de *I*
- Le support peut aussi être exprimé en pourcentage:
 - Rapport entre le nombre de baskets contenant tous les items de *I* et le nombre total de baskets

TID	Baskets (liste d'items)
1	Pain, Coca-Cola, Lait
2	Bières, Pain
3	Bière, Coca-Cola, Couches, Lait
4	Bière, Pain, Couches, Lait
5	Coca-Cola, Couches, Lait

Quel est le **support** de l'itemset {Bière, Pain}?

Itemsets fréquents

 Les itemsets fréquents (frequent itemsets) sont les items apparaissant "fréquemment" ensemble dans les baskets

TID	Baskets (liste d'items)
1	Pain, Coca-Cola, Lait

Un itemset est fréquent si l'ensemble de ses items apparaît

dans au moins s baskets

Le support peut aussi être exprimé en pourcentage: S biere, coca-cora, couches, Lait

Bière, Pain, Couches, Lait

o Rapport entre le sappelé seuil de support ca-Cola, Couches, Lait contenant tous les items de I et le nombre total de baskets

Quel est le support de l'itemset {Bière, Pain}?

- Items = {lait, coca-cola, pepsi, bière, jus}
- Seuil de support = 3 (baskets)

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{coca-cola, jus\}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

Quels sont les itemsets fréquents?

- Items = {lait, coca-cola, pepsi, bière, jus}
- Seuil de support = 3 (baskets)

B ₁ = { lait , coca-cola, bière}	B ₂ = { lait , pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{coca-cola, jus\}$
B ₅ = { lait , pepsi, bière}	B ₆ = { lait , coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

- Itemsets fréquents:
 - (lait)

- Items = {lait, coca-cola, pepsi, bière, jus}
- Seuil de support = 3 (baskets)

B ₁ = { lait , coca-cola , bière}	B ₂ = { lait , pepsi, jus}
B ₃ = {lait, bière}	B ₄ = {coca-cola, jus}
B ₅ = { lait , pepsi, bière}	B ₆ = { lait, coca-cola , bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola }

- Itemsets fréquents:
 - o {lait}, {coca-cola}

- Items = {lait, coca-cola, pepsi, bière, jus}
- Seuil de support = 3 (baskets)

B ₁ = {lait, coca-cola, bière}	B ₂ = { lait , pepsi, jus}
B ₃ = {lait, bière}	B ₄ = {coca-cola, jus}
B ₅ = { lait , pepsi, bière }	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

- Itemsets fréquents:
 - o {lait}, {coca-cola}, {bière}

- Items = {lait, coca-cola, pepsi, bière, jus}
- Seuil de support = 3 (baskets)

B ₁ = {lait, coca-cola, bière}	B ₂ = { lait , pepsi, jus }
B ₃ = {lait, bière}	B ₄ = {coca-cola, jus}
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

- Itemsets fréquents:
 - {lait}, {coca-cola}, {bière}, {jus}

D'autres possibilités?

- Items = {lait, coca-cola, pepsi, bière, jus}
- Seuil de support = 3 (baskets)

B ₁ = {lait, coca-cola, bière}	B ₂ = { lait , pepsi, jus }
B ₃ = {lait, bière}	B ₄ = {coca-cola, jus}
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

- Itemsets fréquents:
 - {lait}, {coca-cola}, {bière}, {jus}
 - {lait, bière}, {bière, coca-cola}, {coca-cola, jus}

Sommaire

- Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- Lectures et références

Règles d'association

- Les règles d'association sont des règles de type if-else
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ signifie que <u>si</u> un basket contient tous les items $i_1, i_2, ..., i_k$ <u>alors</u> il est probable qu'il contienne aussi l'item j
- Il existe en pratique un nombre considérable de règles. L'objectif est de découvrir les plus significatives!
- L'indice de confiance (confidence) de la règle d'association $\{i_1, i_2, ..., i_k\} \rightarrow j$ est la probabilité de j sachant $I = \{i_1, i_2, ..., i_k\}$

$$\operatorname{conf}\left(I o j
ight)=rac{\operatorname{support}\left(I\cup j
ight)}{\operatorname{support}\left(I
ight)}$$

Règles d'association significatives

- Toutes les règles d'association ayant un indice de confiance élevé ne sont pas significatives ...
- La règle $X \rightarrow$ lait peut avoir un indice élevé pour beaucoup d'itemsets X, car le lait est une denrée souvent achetée indépendamment de X
- L'intérêt d'une règle d'association $I \to j$ est la différence entre son indice de confiance et la proportion de baskets contenant j

Interest
$$(I o j) = \operatorname{conf}(I o j) - P(j)$$

Les règles d'association intéressantes ont un intérêt élevé (généralement au dessus de 0.5)

Exemple: indice de confiance et intérêt

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{coca-cola, jus\}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

Considérons la règle d'association {lait, bière} → {coca-cola} correspondant aux données ci-dessus.

- Quel est son indice de confiance ?
- Quel est son intérêt ?
- Cette règle est-elle intéressante ?

Exemple: indice de confiance et intérêt

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{coca-cola, jus\}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

Considérons la règle d'association {lait, bière} → {coca-cola} correspondant aux données ci-dessus.

- Quel est son indice de confiance ? 2/4 = 0.5
- Quel est son intérêt ? **0.5** 5/8 = 1/8
- Cette règle est-elle intéressante ? Non, pas tellement ...

Comment trouver les règles d'association?

Trouver les règles d'association (1/2)

- **Problématique**: trouver toutes les règles d'association ayant un support s et un indice de confiance c
 - Remarque: le support d'une règle d'association est le support de l'itemset de la partie gauche
 - Supp $(\{i_1, i_2, ..., i_k\} \rightarrow j) = \text{Supp}(\{i_1, i_2, ..., i_k\})$
- D'abord, il faut trouver les itemsets fréquents!
 - Si $\{i_1, i_2, ..., i_k\} \rightarrow j$ possède un support et un indice de confiance élevé, alors les itemsets $\{i_1, i_2, ..., i_k\}$ et $\{i_1, i_2, ..., i_k, j\}$ sont fréquents

Trouver les règles d'association (2/2)

- Étape 1: apprendre tous les itemsets fréquents I (algorithme Apriori)
- Étape 2: générer les règles
 - \circ Pour chaque sous ensemble A de I, générer la règle $A \to I \setminus A$
 - \circ Puisque I est fréquent, A est également fréquent
 - Variante 1: Calcul de la confiance de la règle en une passe $conf(A,B \rightarrow C,D)$ = support(A,B,C,D) / support(A,B)
 - Variante 2: Si $A,B,C \to D$ est en dessous d'une certaine confiance, alors $A,B \to C,D$ aussi. Génération de règles plus "grandes"
 - Ne garder que les règles au dessus d'un certain seuil de confiance

Exercice: trouver les règles d'association

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{ coca-cola, jus \}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

$$s = 3$$

 $c = 0.75$

Exercice: trouver les règles d'association

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{ coca-cola, jus \}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

$$s = 3$$

 $c = 0.75$

1. Itemsets fréquents

{I}, {c}, {b}, {j}, {b,I} {b,c} {c,j}

Exercice: trouver les règles d'association

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{ coca-cola, jus \}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

$$s = 3$$
 $conf = 0.75$

1. Itemsets fréquents

{I}, {c}, {b}, {j}, {b,I} {b,c} {c,j}

2. Génération des règles

b→**l**: conf=5/6;

l→**b**: conf=4/5;

b→c: conf=4/6;

b,c→l: conf=2/4;

b,l→c: conf=2/4;

 $b \rightarrow c,l$: conf = 2/6

Exercice: trouver les règles d'association

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	$B_4 = \{ coca-cola, jus \}$
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

$$s = 3$$
 $conf = 0.75$

1. Itemsets fréquents

{I}, {c}, {b}, {j}, {b,I} {b,c} {c,j}

2. Génération des règles

b→**l**: conf=5/6;

l→**b**: conf=4/5;

b→c: conf=4/6;

b,c→l: conf=2/4;

b,l →c: conf=2/4;

 $b \rightarrow c,l$: conf = 2/6

Maximal frequent itemsets

Si aucun superset immédiat n'est fréquent

Itemsets fermés

Si aucun superset immédiat n'a le même support

	Support	Maximal (s=3)	Fermé
A	4	Non	Non
В	5	Non	Oui
С	3	Non	Non
AB	4	Oui	Oui
AC	2	Non	Non
ВС	3	Oui	Oui
ABC	2	Non	Oui

Maximal frequent itemsets

Si aucun superset immédiat n'est fréquent

Itemsets fermés

Si aucun superset immédiat n'a le même support

Fréquent, mais superset BC aussi fréquent

	Support	Maximal (s=3)	Fermé
A	4	Non	Non
В	5	Non	Oui
С	3	Non	Non
AB	4	Oui	Oui
AC	2	Non	Non
ВС	3	Oui	Oui
ABC	2	Non	Oui

Maximal frequent itemsets

Si aucun superset immédiat n'est fréquent

Itemsets fermés

Si aucun superset immédiat n'a le même support

Fréquent, mais le seul superset ABC n'est pas fréquent

	Support	Maximal (s=3)	Fermé
A	4	Non	Non
В	5	Non	Oui
С	3	Non	Non
AB	4	Oui	Oui
AC.	2	Non	Non
ВС	3	Oui	Oui
ABC	2	Non	Oui

Maximal frequent itemsets

Si aucun superset immédiat n'est fréquent

Itemsets fermés

Si aucun superset immédiat n'a le même support

Le superset BC possède le même support

		Support	Maximal (s=3)	Fermé
me	A	4	Non	Non
	В	5	Non	Oui
	С	3	Non	Non
	AB	4	Oui	Oui
e	AC	, 🐞 - 💆	Non	Non
	ВС	3	Oui	Oui
	ABC	2	Non	Oui

Maximal frequent itemsets

Si aucun superset immédiat n'est fréquent

Itemsets fermés

Si aucun superset immédiat n'a le même support

Le seul superset ABC possède un support inférieur

	Support	Maximal (s=3)	Fermé
A	4	Non	Non
В	5	Non	Oui
С	3	Non	Non
AB	4	Oui	Oui
AC	2	Non	Non
ВС	3	Qui	Oui
ABC	2	Non	Oui

Sommaire

- 1. Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- Lectures et références

Pull de https://github.com/mswawola-cegep/420-a58-sf-gr-12060.git
02-04

Sommaire

- Introduction au modèle "Market-basket"
- 2. Applications
- 3. Itemsets fréquents
- 4. Règles d'association
- 5. Ateliers
- 6. Lectures et références

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, Mining of Massive Datasets, 3rd edition

Références

- [1] Mining of Massive Datasets, 3rd edition
- [2] Association Rule Mining via Apriori Algorithm in Python