

CS283: Robotics Spring 2025: SLAM I

Sören Schwertfeger / 师泽仁

ShanghaiTech University

# ICP

### ICP: Iterative Closest Points Algorithm

- Align two partiallyoverlapping point sets (2D or 3D)
- Given initial guess for relative transform
- Warning: Using 3D ICP for 2D data may mirror the data (e.g. 180 degree roll)!
  - Use 2D ICP!



ROS: Point Cloud Library (PCL)

### Horn's method

- Input
  - Two point sets: X and Y
- Output
  - Rotation matrix R
  - Translation vector t
  - Fitting error

Material by Toru Tamaki, Miho Abe, Bisser Raytchev, Kazufumi Kaneda



### Horn's method: correspondence is known.







### Horn's method: correspondence is known.







Compute 1<sup>st</sup> Eigenvector q: quaternion q Convert q to R  $t = \overline{x} - R\overline{y}$ 

# Aligning 3D Data

- How to find correspondences: User input? Feature detection?
   Signatures?
- Alternative: assume closest points correspond



# Aligning 3D Data

Converges if starting position "close enough"



# ICP: correspondence is unknown.



### ICP: correspondence is unknown.



## ICP: correspondence is unknown.



### The Algorithm



### The Algorithm

```
function ICP(Scene, Model)
begin
E` ← + ∞:
(Rot, Trans) ← In Initialize-Alignment(Scene, Model);
repeat
      E ← E`:
      Aligned-Scene ← Apply-Alignment(Scene,Rot,Trans);
      Pairs ← Return-Closest-Pairs(Aligned-Scene, Model);
      (Rot, Trans, E`) ← Update-Alignment(Scene, Model, Pairs, Rot, Trans);
Until |E'- E| < Threshold
return (Rot, Trans);
end
```

### Convergence Theorem

 The ICP algorithm always converges monotonically to a local minimum with respect to the MSE distance objective function.

# Time analysis

Each iteration includes 3 main steps

A. Finding the closest points:

O(N<sub>M</sub>) per each point

 $O(N_M*N_S)$  total.

- B. Calculating the alignment: O(N<sub>S</sub>)
- C. Updating the scene:  $O(N_S)$

# Optimizing the Algorithm

The best match/nearest neighbor problem:

Given **N** records each described by **K** real values (attributes), and a dissimilarity measure **D**, find the **m** records closest to a query record.

### Optimizing the Algorithm

K-D Tree :

Construction time: O(kn log n)

Space: O(n)

Region Query :  $O(n^{1-1/k}+k)$ 

### Time analysis

Each iteration includes 3 main steps

A. Finding the closest points:

O(N<sub>M</sub>) per each point

 $O(N_M log N_S)$  total.

- B. Calculating the alignment: O(N<sub>S</sub>)
- C. Updating the scene:  $O(N_S)$

Further optimization: Approximate k-d tree search

### **ICP Variants**

- Variants on the following stages of ICP have been proposed:
  - 1. Selecting sample points (from one or both point clouds)
  - 2. Matching to points to a plane or mesh
  - 3. Weighting the correspondences
  - 4. Rejecting certain (outlier) point pairs
  - 5. Assigning an error metric to the current transform
  - 6. Minimizing the error metric w.r.t. transformation
  - Can analyze various aspects of performance:
    - Speed
    - Stability
    - Tolerance to noise and/or outliers
    - Maximum initial misalignment

- Corresponding points with point to point distance higher than a given threshold.
- Rejection of worst n% pairs based on some metric.
- Pairs containing points on end vertices.
- Rejection of pairs whose point to point distance is higher than n\*σ.
- Rejection of pairs that are not consistent with their neighboring pairs [Dorai 98]:

$$(p_1,q_1)$$
,  $(p_2,q_2)$  are inconsistent iff 
$$|Dist(p_1,p_2)-Dist(q_1,q_2)| > threshold$$

#### Distance thresholding



#### Points on end vertices



#### **Inconsistent Pairs**



### **BLAM: ICP in action**





# DEFINITION OF SLAM

### What is SLAM?

- Localization: inferring location given a map
- Mapping: inferring a map given locations
- SLAM: learning a map and locating the robot simultaneously
- SLAM has long been regarded as a chicken-and-egg problem:
  - a map is needed for localization and
  - a pose estimate is needed for mapping



Material derived from Wolfram Burgard:

### **SLAM Applications**

- At home: vacuum cleaner, lawn mower
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization

•





# Why is SLAM a Hard Problem?

- Robot path and map are both unknown
- Errors in map and pose estimates correlated



### Why is SLAM a Hard Problem?

- The mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)



### Overview of SLAM Methods

- Camera
  - Feature-Based Methods
    - MonoSLAM
    - PTAM
    - ORB-SLAM
  - Direct Methods
    - DTAM
    - LSD-SLAM
    - DSO
  - Semi-Direct Methods
    - SVO
  - Others
    - PoseNet
    - CNN-SLAM
    - ...

- Laser
  - Pose Graph
    - Cartographer
    - Karto-SLAM
    - Hector-SLAM
    - BLAM
    - LIO
  - Particle Filter
    - FastSLAM
    - Gmapping
  - Extended Kalman Filter
    - EKF-SLAM
    - LINS
  - Others
    - LOAM
    - IMLS-SLAM
    - ..

### **SLAM Front-end & Back-end**

- Front-end
  - calculate relative poses between several frames/ to map
    - scan matching
    - image registration

- . . .

- estimate absolute poses
- construct the local map
- Back-end
  - optimize the absolute poses and mapping
  - only if a loop was closed



# FRONT END - LASER - ICP

# FRONT END - CAMERA

#### Methods

#### Feature-based Methods

- SIFT
- ORB (ORB-SLAM)
- BRISK
- AKAZE

#### Direct Methods

- Optical Flow
- Inverse Depth (LSD-SLAM)
- Fourier-Mellin Transform

#### Semi-Direct Methods

- SVO

more details in the next lectures





### Feature-based Methods

- Feature Extraction
  - Feature Detectors & Feature Descriptor; more in vision lectures
    - ORB, SIFT, AKAZE, BRISK, etc ...
- Feature Matching
  - BFM, KNN, etc ...
- Relative Pose Calculation
  - 5-pt, 7-pt, 8-pt, PnP, etc ...

#### Feature-based Method: ORB-SLAM

Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.



### Direct Method: LSD-SLAM

• Construct Photometric Error

- Construct Depth Error
- Minimize Objective Error Function

Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.

#### Direct Method: Fourier Mellin Transform

- Spectral based registration: detection of scaling, rotation and translation in 2 subsequent frames
- Processing spectrum magnitude decouples translation from affine transformations
  - Detection of signal shift between 2 signals by phase information
  - Resampling to polar coordinates → Rotation turns into signal shift!
  - Resampling the radial axis from linear to logarithmic presentation
     → Scaling turns into signal shift!
  - Calculate a Phase Only Match Filter (POMF) on the resampled magnitude spectra







### Pose Estimation for Omni-directional Cameras using Sinusoid Fitting



$$y = B + A \sin(\omega x + \phi)$$

$$\Delta v(u_p) = \lambda_p t_z + \gamma \left\| P_{xy}(R) \cdot \sin(\gamma u_p + \frac{P_{xy}(R)}{\|P_{xy}(R)\|}) \right\|$$

$$\Delta u(u_p) = \gamma P_z(R) + \lambda_p ||P_{xy}(t)|| \cdot \sin(\gamma u_p + \hat{t}_{xy})$$





# **BACK END**

#### Overview of Back-end

- Loop Detection
  - Find candidates of scan pairs/ scan with old map
  - E.g. based on global pose estimated (chain rule) OR image similarity (bag of words)
- Loop Closure
  - E.g. use scan matching to find the transform AND its uncertainty
- Optimization
  - Pose Graph optimization (e.g. minimize error of poses, based on uncertainty)
  - Bundle Adjustment
- Map Rendering
  - E.g. generate grid map based on optimized graph

Before loop closure



After loop closure



- Recognizing an already mapped area, typically after a long exploration path (the robot "closes a loop")
- Structurally identical to data association, but
  - high levels of ambiguity
  - possibly useless validation gates
  - environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

- By revisiting already mapped areas, uncertainties in robot and landmark estimates can be reduced
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Exploration: the problem of where to acquire new information

## Robust Loop Closing over Time for Pose Graph SLAM

Instituto de Investigación en Ingeniería de Aragón (I3A)

Yasir Latif: ylatif@unizar.es José Neira: jneira@unizar.es Volgenau School of Engineering George Mason University

César Cadena: ccadenal@gmu.edu

This work was supported by Spanish DPI2009-13710 and DPI2009-07130, by DGA-FSE (group T04), and by the US Army Research Office (W911NF-1110476)

# OVERVIEW: THREE SLAM PARADIGMS

### The Three SLAM Paradigms

- Most of the SLAM algorithms are based on the following three different approaches:
  - Extended Kalman Filter SLAM: (called EKF SLAM)
  - Particle Filter SLAM: (called FAST SLAM)
  - Graph-Based SLAM

#### **EKF SLAM:** overview

• Extended state vector  $y_t$ : robot pose  $x_t$  + position of all the features  $m_i$  in the map:

$$y_t = [x_t, m_0, \dots, m_{n-1}]^T$$

• Example: 2D line-landmarks, size of  $y_t = 3+2n$ : three variables to represent the robot pose + 2n variables for the n line-landmarks having vector components

$$(\alpha_i, r_i)$$

$$y_t = [x_t, y_t, \theta_t, \alpha_0, r_0, ..., \alpha_{n-1}, r_{n-1}]^T$$

- As the robot moves and takes measurements, the state vector and covariance matrix are updated using the standard equations of the extended Kalman filter
- Drawback: EKF SLAM is computationally very expensive.