Topology

Robin Adams

May 4, 2022

1 Order Theory

Definition 1 (Convex). Let X be a linearly ordered set and $Y \subseteq X$. Then Y is *convex* if and only if, for all $a, b \in Y$ and $c \in X$, if a < c < b then $c \in Y$.

2 Topological Spaces

Definition 2 (Topology). A topology on a set X is a set $T \subseteq PX$ such that:

- $X \in \mathcal{T}$.
- For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$.
- For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$.

We call the elements of X points and the elements of \mathcal{T} open sets.

Definition 3 (Topological Space). A topological space X consists of a set X and a topology on X.

Definition 4 (Discrete Space). For any set X, the *discrete* topology on X is $\mathcal{P}X$.

Definition 5 (Indiscrete Space). For any set X, the *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Definition 6 (Finite Complement Topology). For any set X, the *finite complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is finite}\} \cup \{\emptyset\}$.

Definition 7 (Countable Complement Topology). For any set X, the *countable complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is countable}\} \cup \{\emptyset\}$.

Definition 8 (Finer, Coarser). Suppose that \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supseteq \mathcal{T}$, we say that \mathcal{T}' is *finer* than \mathcal{T} ; if \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is *strictly* finer than \mathcal{T} . We also say that \mathcal{T} is *coarser* than \mathcal{T}' , or *strictly* coarser, in these two respective situations. We say \mathcal{T} is *comparable* with \mathcal{T}' if either $\mathcal{T}' \supseteq \mathcal{T}$ or $\mathcal{T} \supseteq \mathcal{T}'$.

Lemma 9. Let X be a topological space and $U \subseteq X$. Then U is open if and only if, for all $x \in U$, there exists an open set V such that $x \in V \subseteq U$.

```
Proof:  \begin{array}{l} \text{Proof:} \\ \langle 1 \rangle 1. \ \Rightarrow \\ \text{Proof:} \ \text{Take} \ V = U \\ \langle 1 \rangle 2. \ \Leftarrow \\ \text{Proof:} \ \text{We have} \ U = \bigcup \{V \in \mathcal{P}X \mid V \subseteq U\}. \\ \square \end{array}
```

Lemma 10. Let X be a set and \mathcal{T} a nonempty set of topologies on X. Then $\bigcap \mathcal{T}$ is a topology on X, and is the finest topology that is coarser than every member of \mathcal{T} .

```
Proof:
```

```
\langle 1 \rangle 1. \ X \in \bigcap \mathcal{T}
```

PROOF: Since X is in every member of \mathcal{T} .

 $\langle 1 \rangle 2$. $\bigcap \mathcal{T}$ is closed under union.

- $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \bigcap \mathcal{T}$
- $\langle 2 \rangle 2$. For all $T \in \mathcal{T}$ we have $\mathcal{U} \subseteq T$
- $\langle 2 \rangle 3$. For all $T \in \mathcal{T}$ we have $\bigcup \mathcal{U} \in T$
- $\langle 2 \rangle 4. \bigcup \mathcal{U} \in \bigcap \mathcal{T}$
- $\langle 1 \rangle 3$. $\bigcap \mathcal{T}$ is closed under binary intersection.
 - $\langle 2 \rangle 1$. Let: $U, V \in \bigcap \mathcal{T}$
 - $\langle 2 \rangle 2$. For all $T \in \mathcal{T}$ we have $U, V \in T$
 - $\langle 2 \rangle 3$. For all $T \in \mathcal{T}$ we have $U \cap V \in T$
 - $\langle 2 \rangle 4. \ U \cap V \in \bigcap \mathcal{T}$

Lemma 11. Let X be a set and \mathcal{T} a set of topologies on X. Then there exists a unique coarsest topology that is finer than every member of \mathcal{T} .

```
PROOF: The required topology is given by \bigcap \{T \in \mathcal{PP}X \mid T \text{ is a topology on } X \text{ that is finer than every member of } \mathcal{T}\} \text{ ,} The set is nonempty since it contains the discrete topology. \square
```

3 Basis for a Topology

Definition 12 (Basis). If X is a set, a *basis* for a topology on X is a set $\mathcal{B} \subseteq \mathcal{P}X$ called *basis elements* such that

- 1. For all $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$.
- 2. For all $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology generated by \mathcal{B} to be $\mathcal{T} = \{U \in \mathcal{P}X \mid \forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U\}.$

We prove this is a topology.

```
Proof:
\langle 1 \rangle 1. \ X \in \mathcal{T}
    PROOF: For all x \in X there exists B \in \mathcal{B} such that x \in B \subseteq X by condition
\langle 1 \rangle 2. For all \mathcal{U} \subseteq \mathcal{T} we have \bigcup \mathcal{U} \in \mathcal{T}
     \langle 2 \rangle 1. Let: \mathcal{U} \subseteq \mathcal{T}
     \langle 2 \rangle 2. Let: x \in \bigcup \mathcal{U}
    \langle 2 \rangle 3. Pick U \in \mathcal{U} such that x \in U
    \langle 2 \rangle 4. Pick B \in \mathcal{B} such that x \in B \subseteq U
        PROOF: Since U \in \mathcal{T} by \langle 2 \rangle 1 and \langle 2 \rangle 3.
    \langle 2 \rangle 5. \ x \in B \subseteq \bigcup \mathcal{U}
\langle 1 \rangle 3. For all U, V \in \mathcal{T} we have U \cap V \in \mathcal{T}
     \langle 2 \rangle 1. Let: U, V \in \mathcal{T}
     \langle 2 \rangle 2. Let: x \in U \cap V
    \langle 2 \rangle 3. PICK B_1 \in \mathcal{B} such that x \in B_1 \subseteq U
    \langle 2 \rangle 4. Pick B_2 \in \mathcal{B} such that x \in B_2 \subseteq V
    \langle 2 \rangle5. Pick B_3 \in \mathcal{B} such that x \in B_3 \subseteq B_1 \cap B_2
        Proof: By condition 2.
    \langle 2 \rangle 6. \ x \in B_3 \subseteq U \cap V
Lemma 13. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T}
```

is the set of all unions of subsets of \mathcal{B} .

```
Proof:
```

```
\langle 1 \rangle 1. For all U \in \mathcal{T}, there exists \mathcal{A} \subseteq \mathcal{B} such that U = \bigcup \mathcal{A}
     \langle 2 \rangle 1. Let: U \in \mathcal{T}
     \langle 2 \rangle 2. Let: \mathcal{A} = \{ B \in \mathcal{B} \mid B \subseteq U \}
    \langle 2 \rangle 3. \ U \subseteq \bigcup \mathcal{A}
         \langle 3 \rangle 1. Let: x \in U
         \langle 3 \rangle 2. Pick B \in \mathcal{B} such that x \in B \subseteq U
              PROOF: Since \mathcal{B} is a basis for \mathcal{T}.
          \langle 3 \rangle 3. \ x \in B \in \mathcal{A}
    \langle 2 \rangle 4. \bigcup \mathcal{A} \subseteq U
         PROOF: From the definition of \mathcal{A} (\langle 2 \rangle 2).
\langle 1 \rangle 2. For all \mathcal{A} \subseteq \mathcal{B} we have \bigcup \mathcal{A} \in \mathcal{T}
     \langle 2 \rangle 1. \ \mathcal{B} \subseteq \mathcal{T}
         PROOF: If B \in \mathcal{B} and x \in B, then there exists B' \in \mathcal{B} such that x \in B' \subseteq B,
         namely B' = B.
    \langle 2 \rangle 2. Q.E.D.
         Proof: Since \mathcal{T} is closed under union.
```

Corollary 13.1. Let X be a set. Let $\mathcal B$ be a basis for a topology $\mathcal T$ on X. Then \mathcal{T} is the coarsest topology that includes \mathcal{B} .

PROOF: Since every topology that includes $\mathcal B$ includes all unions of subsets of $\mathcal B$. \square

Lemma 14. Let X be a topological space. Suppose that C is a set of open sets such that, for every open set U and every point $x \in U$, there exists $C \in C$ such that $x \in C \subseteq U$. Then C is a basis for the topology on X.

Proof:

 $\langle 1 \rangle 1$. For all $x \in X$, there exists $C \in \mathcal{C}$ such that $x \in C$

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 2$. For all $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$, there exists $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$

PROOF: Since $C_1 \cap C_2$ is open.

 $\langle 1 \rangle 3$. Every open set is open in the topology generated by C

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 4$. Every union of a subset of C is open.

PROOF: Since every member of \mathcal{C} is open.

Lemma 15. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' respectively on the set X. Then the following are equivalent.

- 1. $\mathcal{T} \subset \mathcal{T}'$
- 2. For all $B \in \mathcal{B}$ and $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle 2$. Let: $B \in \mathcal{B}$ and $x \in B$
 - $\langle 2 \rangle 3. \ B \in \mathcal{T}$

PROOF: Corollary 13.1.

 $\langle 2 \rangle 4. \ B \in \mathcal{T}'$

Proof: By $\langle 2 \rangle 1$

 $\langle 2 \rangle$ 5. There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$ PROOF: Since \mathcal{B}' is a basis for \mathcal{T}' .

- $\langle 1 \rangle 2. \ 2 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$

Prove: $U \in \mathcal{T}'$

 $\langle 2 \rangle 3$. Let: $x \in U$

PROVE: There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq U$

 $\langle 2 \rangle 4$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since \mathcal{B} is a basis for \mathcal{T} .

 $\langle 2 \rangle$ 5. Pick $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$

Proof: By $\langle 2 \rangle 1$.

 $\langle 2 \rangle 6. \ x \in B' \subseteq U$

Definition 16 (Lower Limit Topology on the Real Line). The *lower limit topology on the real line* is the topology on \mathbb{R} generated by the basis consisting of all half-open intervals of the form [a, b).

We write \mathbb{R}_l for the topological space \mathbb{R} under the lower limit topology.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an interval [a,b) such that $x \in [a,b)$. PROOF: Take [a,b) = [x,x+1).
- $\langle 1 \rangle 2$. For any open intervals [a,b), [c,d) if $x \in [a,b) \cap [c,d)$, then there exists an interval [e,f) such that $x \in [e,f) \subseteq [a,b) \cap [c,d)$

PROOF: Take $[e, f) = [\max(a, c), \min(b, d))$.

Definition 17 (*K*-topology on the Real Line). Let $K = \{1/n \mid n \in \mathbb{Z}^+\}$.

The K-topology on the real line is the topology on \mathbb{R} generated by the basis consisting of all open intervals (a,b) and all sets of the form $(a,b) \setminus K$.

We write \mathbb{R}_K for the topological space \mathbb{R} under the K-topology.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an open interval (a,b) such that $x \in (a,b)$. PROOF: Take (a,b) = (x-1,x+1).
- $\langle 1 \rangle 2$. For any basic open sets B_1 , B_2 if $x \in B_1 \cap B_2$, then there exists a basic open set B_3 such that $x \in B_3 \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 1$. Case: $B_1 = (a, b), B_2 = (c, d)$

PROOF: Take $B_3 = (\max(a, c), \min(b, d))$.

 $\langle 2 \rangle 2$. CASE: $B_1 = (a, b)$ or $(a, b) \setminus K$, $B_2 = (c, d)$ or $(c, d) \setminus K$, and they are not both open intervals.

PROOF: Take $B_3 = (\max(a, c), \min(b, d)) \setminus K$.

Lemma 18. The lower limit topology and the K-topology are incomparable.

Proof:

 $\langle 1 \rangle 1$. The interval [10, 11) is not open in the K-topology.

PROOF: There is no open interval (a,b) such that $10 \in (a,b) \subseteq [10,11)$ or $10 \in (a,b) \setminus K \subseteq [10,11)$.

 $\langle 1 \rangle 2$. The set $(-1,1) \setminus K$ is not open in the lower limit topology.

PROOF: There is no half-open interval [a,b) such that $0 \in [a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in [a,b)$.

Definition 19 (Subbasis). A *subbasis* \mathcal{S} for a topology on X is a set $\mathcal{S} \subseteq \mathcal{P}X$ such that $\bigcup \mathcal{S} = X$.

The topology generated by the subbasis S is the set of all unions of finite intersections of elements of S.

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1$. The set \mathcal{B} of all finite intersections of elements of \mathcal{S} forms a basis for a topology on X.

```
\langle 2 \rangle 1. \bigcup \mathcal{B} = X
```

PROOF: Since $S \subseteq \mathcal{B}$.

 $\langle 2 \rangle 2$. \mathcal{B} is closed under binary intersection.

PROOF: By definition.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: By Lemma 13.

We have simultaneously proved:

Proposition 20. Let S be a subbasis for the topology on X. Then the set of all finite intersections of elements of S is a basis for the topology on X.

Proposition 21. Let X be a set. Let S be a subbasis for a topology T on X. Then T is the coarsest topology that includes S.

PROOF: Since every topology that includes \mathcal{S} includes every union of finite intersections of elements of \mathcal{S} . \square

4 Open Maps

Definition 22 (Open Map). Let X and Y be topological spaces and $f: X \to Y$. Then f is an *open map* if and only if, for every open set U in X, the set f(U) is open in Y.

5 The Order Topology

Definition 23 (Order Topology). Let X be a linearly ordered set with at least two points. The *order topology* on X is the topology generated by the basis \mathcal{B} consisting of:

- all open intervals (a, b);
- all intervals of the form $[\bot, b)$ where \bot is least in X;
- all intervals of the form $(a, \top]$ where \top is greatest in X.

We prove this is a basis for a topology.

- $\langle 1 \rangle 1$. For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B$.
 - $\langle 2 \rangle 1$. Let: $x \in X$
 - $\langle 2 \rangle 2$. Case: x is greatest in X.
 - $\langle 3 \rangle 1$. PICK $y \in X$ with $y \neq x$

```
\langle 3 \rangle 2. \ x \in (y, x] \in \mathcal{B}
   \langle 2 \rangle 3. Case: x is least in X.
      \langle 3 \rangle 1. PICK y \in X with y \neq x
      \langle 3 \rangle 2. \ x \in [x,y) \in \mathcal{B}
   \langle 2 \rangle 4. Case: x is neither greatest nor least in X.
      \langle 3 \rangle 1. Pick a, b \in X with a < x and x < b
       \langle 3 \rangle 2. \ x \in (a,b) \in \mathcal{B}
\langle 1 \rangle 2. For all B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2, there exists B_3 \in \mathcal{B} such that
        x \in B_3 \subseteq B_1 \cap B_2
   \langle 2 \rangle 1. Let: B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2
   \langle 2 \rangle 2. Case: B_1 = (a, b), B_2 = (c, d)
      PROOF: Take B_3 = (\max(a, c), \min(b, d)).
   \langle 2 \rangle 3. Case: B_1 = (a, b), B_2 = [\bot, d)
      PROOF: Take B_3 = (a, \min(b, d)).
   \langle 2 \rangle 4. Case: B_1 = (a, b), B_2 = (c, \top]
      PROOF: Take B_3 = (\max(a, c), b).
   \langle 2 \rangle 5. Case: B_1 = [\bot, b), B_2 = [\bot, d)
      PROOF: Take B_3 = [\bot, \min(b, d)).
   \langle 2 \rangle 6. Case: B_1 = [\bot, b), B_2 = (c, \top]
      PROOF: Take B_3 = (c, b).
```

Lemma 24. Let X be a linearly ordered set. Then the open rays form a subbasis for the order topology on X.

```
PROOF.
```

```
\begin{array}{l} \langle 1 \rangle 1. \text{ Every open ray is open.} \\ \langle 2 \rangle 1. \text{ For all } a \in X, \text{ the ray } (-\infty, a) \text{ is open.} \\ \langle 3 \rangle 1. \text{ Let: } x \in (-\infty, a) \\ \langle 3 \rangle 2. \text{ Case: } x \text{ is least in } X \\ \text{Proof: } xin[x,a) = (-\infty,a). \\ \langle 3 \rangle 3. \text{ Case: } x \text{ is not least in } X \\ \langle 4 \rangle 1. \text{ Pick } y < x \\ \langle 4 \rangle 2. \ x \in (y,a) \subseteq (-\infty,a) \\ \langle 2 \rangle 2. \text{ For all } a \in X, \text{ the ray } (a,+\infty) \text{ is open.} \\ \text{Proof: Similar.} \\ \langle 1 \rangle 2. \text{ Every basic open set is a finite intersection of open rays.} \\ \text{Proof: We have } (a,b) = (a,+\infty) \cap (-\infty,b), \ [\bot,b) = (-\infty,b) \text{ and } (a,\top] = (a,+\infty). \\ \Box \end{array}
```

Definition 25 (Standard Topology on the Real Line). The *standard topology* on the real line is the order topology on \mathbb{R} generated by the standard order.

Lemma 26. The lower limit topology is strictly finer than the standard topology on \mathbb{R} .

 $\langle 1 \rangle 1$. Every open interval is open in the lower limit topology.

PROOF: If $x \in (a, b)$ then $x \in [x, b) \subseteq (a, b)$.

 $\langle 1 \rangle 2$. The half-open interval [0,1) is not open in the standard topology.

PROOF: There is no open interval (a,b) such that $0 \in (a,b) \subseteq [0,1)$.

Lemma 27. The K-topology is strictly finer than the standard topology on \mathbb{R} .

PROOF:

 $\langle 1 \rangle 1$. Every open interval is open in the K-topology.

PROOF: Corollary 13.1.

 $\langle 1 \rangle 2$. The set $(-1,1) \setminus K$ is not open in the standard topology.

PROOF: There is no open interval (a,b) such that $0 \in (a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in (a,b)$.

Definition 28 (Ordered Square). The ordered square I_o^2 is the set $[0,1]^2$ under the order topology generated by the dictionary order.

6 The Product Topology

Definition 29 (Product Topology). Let X and Y be topological spaces. The product topology on $X \times Y$ is the topology generated by the basis \mathcal{B} consisting of all sets $U \times V$ such that U is open in X and V is open in Y.

We prove that this is a basis for a topology.

Proof:

 $\langle 1 \rangle 1$. For all $(x,y) \in X \times Y$ there exists $B \in \mathcal{B}$ such that $(x,y) \in B$ PROOF: Take $B = X \times Y$.

 $\langle 1 \rangle 2$. For all $B_1, B_2 \in \mathcal{B}$ and $(x, y) \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $(x, y) \in B_3 \subseteq B_1 \cap B_2$

PROOF: Take $B_3 = B_1 \cap B_2$.

Theorem 30. If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then

$$\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}\$$

is a basis for the product topology on $X \times Y$.

Proof:

 $\langle 1 \rangle 1$. Every member of \mathcal{D} is open in the product topology.

PROOF: By definitions.

- $\langle 1 \rangle 2$. For every open set U and point $(x,y) \in U$, there exists $D \in \mathcal{D}$ such that $(x,y) \in D \subseteq U$.
 - $\langle 2 \rangle 1$. Let: U be open and $(x,y) \in U$
 - $\langle 2 \rangle 2$. PICK W open in X and V open in Y with $(x,y) \in W \times V \subseteq U$

```
\langle 2 \rangle3. PICK B \in \mathcal{B} with x \in B \subseteq W
\langle 2 \rangle4. PICK C \in \mathcal{C} with y \in C \subseteq V
\langle 2 \rangle5. (x,y) \in B \times C \subseteq U
\langle 1 \rangle3. Q.E.D.
PROOF: By Lemma 14.
```

Definition 31 (Standard Topology on the Plane). The *standard topology* on \mathbb{R}^2 is the product topology of the standard topology on \mathbb{R} with itself.

Lemma 32. Let X and Y be topological spaces. The set

$$S = \{U \times Y \mid U \text{ open in } X\} \cup \{X \times V \mid V \text{ open in } Y\}$$

is a subbasis for the product topology on $X \times Y$.

Proof:

 $\langle 1 \rangle 1$. Every element of S is open.

PROOF: From defintions.

 $\langle 1 \rangle$ 2. Every basic open set is a finite intersection of members of \mathcal{S} . PROOF: Given U open in X and V open in Y, we have $U \times V = (U \times Y) \cap (X \times V)$.

Proposition 33. For any topological spaces X and Y, the projections $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.

Proof:

- $\langle 1 \rangle 1$. π_1 is an open map.
 - $\langle 2 \rangle 1$. Let: U be open in $X \times Y$.
 - $\langle 2 \rangle 2$. Let: $x \in \pi_1(U)$
 - $\langle 2 \rangle 3$. Pick $y \in Y$ such that $(x, y) \in U$.
 - $\langle 2 \rangle 4$. PICK V open in X and W open in Y such that $(x,y) \in V \times W \subseteq U$.
 - $\langle 2 \rangle 5. \ x \in V \subseteq \pi_1(U)$
 - $\langle 3 \rangle 1$. Let: $v \in V$
 - $\langle 3 \rangle 2. \ (v,y) \in V \times W$

PROOF: $y \in W$ from $\langle 2 \rangle 4$.

 $\langle 3 \rangle 3. \ (v,y) \in U$

PROOF: From $\langle 2 \rangle 4$.

- $\langle 3 \rangle 4. \ v \in \pi_1(U)$
- $\langle 2 \rangle 6$. Q.E.D.

Proof: Lemma 9.

 $\langle 1 \rangle 2$. π_2 is an open map.

PROOF: Similar.

Proposition 34. Let \mathcal{T} and \mathcal{T}' be topologies on a nonempty set X, and \mathcal{U} and \mathcal{U}' be topologies on a nonempty set Y. Then $\mathcal{T} \subseteq \mathcal{T}'$ and $\mathcal{U} \subseteq \mathcal{U}'$ if and only if the product topology generated by \mathcal{T} and \mathcal{U} is coarser than the product topology generated by \mathcal{T}' and \mathcal{U}' .

```
Proof:
```

```
\langle 1 \rangle 1. Let: \mathcal{P} be the topology generated by \mathcal{T} and \mathcal{U}, and \mathcal{P}' the product topol-
                           ogy generated by \mathcal{T}' and \mathcal{U}'
\langle 1 \rangle 2. If \mathcal{T} \subseteq \mathcal{T}' and \mathcal{U} \subseteq \mathcal{U}' then \mathcal{P} \subseteq \mathcal{P}'
     PROOF: By Corollary 13.1.
\langle 1 \rangle 3. If \mathcal{P} \subseteq \mathcal{P}' then \mathcal{T} \subseteq \mathcal{T}' and \mathcal{U} \subseteq \mathcal{U}'
     \langle 2 \rangle 1. Assume: \mathcal{P} \subseteq \mathcal{P}'
     \langle 2 \rangle 2. \mathcal{T} \subseteq \mathcal{T}'
           \langle 3 \rangle 1. Let: U \in \mathcal{T}
           \langle 3 \rangle 2. \ U \times Y \in \mathcal{P}
          \langle 3 \rangle 3. \ U \times Y \in \mathcal{P}'
               Proof: By \langle 2 \rangle 1
           \langle 3 \rangle 4. \ U \in \mathcal{T}'
               Proof: By Proposition 33.
     \langle 2 \rangle 3. \ \mathcal{U} \subseteq \mathcal{U}'
          PROOF: Similar.
```

7 The Subspace Topology

Definition 35 (Subspace Topology). Let X be a topological space and $Y \subseteq X$. The *subspace topology* on Y is $\mathcal{T} = \{U \cap Y \mid U \text{ is open in } X\}$.

We prove this is a topology.

```
PROOF:
```

```
\begin{array}{l} \langle 1 \rangle 1. \ Y \in \mathcal{T} \\ \text{Proof: Since } Y = X \cap Y \\ \langle 1 \rangle 2. \ \text{For all } \mathcal{U} \subseteq \mathcal{T}, \ \text{we have } \bigcup \mathcal{U} \in \mathcal{T} \\ \langle 2 \rangle 1. \ \text{Let: } \mathcal{U} \subseteq \mathcal{T} \\ \langle 2 \rangle 2. \ \text{Let: } \mathcal{V} = \{ V \ \text{open in } X \mid V \cap Y \in \mathcal{U} \} \\ \langle 2 \rangle 3. \ \bigcup \mathcal{U} = (\bigcup \mathcal{V}) \cap Y \\ \langle 1 \rangle 3. \ \text{For all } U, V \in \mathcal{T}, \ \text{we have } U \cap V \in \mathcal{T} \\ \langle 2 \rangle 1. \ \text{Let: } U, V \in \mathcal{T} \\ \langle 2 \rangle 2. \ \text{Pick } U', \ V' \ \text{open in } X \ \text{such that } U = U' \cap Y \ \text{and } V = V' \cap Y \\ \langle 2 \rangle 3. \ (U \cap V) = (U' \cap V') \cap Y \end{array}
```

Lemma 36. Let X be a topological space and $Y \subseteq X$. Let \mathcal{B} be a basis for the topology on X. Then $\mathcal{B}' = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.

- $\langle 1 \rangle 1$. Every element in \mathcal{B}' is open in Y
- $\langle 1 \rangle 2$. For every open set U in Y and point $y \in U$, there exists $B' \in \mathcal{B}'$ such that $y \in B' \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be open in Y and $y \in U$

```
\langle 2 \rangle 2. PICK V open in X such that U = V \cap Y
```

- $\langle 2 \rangle 3$. PICK $B \in \mathcal{B}$ such that $y \in B \subseteq V$
- $\langle 2 \rangle 4$. Let: $B' = B \cap Y$
- $\langle 2 \rangle 5. \ B' \in \mathcal{B}'$
- $\langle 2 \rangle 6. \ y \in B' \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

PROOF: By Lemma 14.

Lemma 37. Let X be a topological space and $Y \subseteq X$. Let S be a basis for the topology on X. Then $S' = \{S \cap Y \mid S \in S\}$ is a subbasis for the subspace topology on Y.

PROOF: The set $\{B \cap Y \mid B \text{ is a finite intersection of elements of } \mathcal{S}\}$ is a basis for the subspace topology by Lemma 36, and this is the set of all finite intersections of elements of \mathcal{S}' . \square

Lemma 38. Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

Proof:

- $\langle 1 \rangle 1$. PICK V open in X such that $U = V \cap Y$
- $\langle 1 \rangle 2$. U is open in X

PROOF: Since it is the intersection of two open sets V and Y.

П

Theorem 39. If A is a subspace of X and B is a subspace of Y then the product topology on $A \times B$ is the same as the topology it inherits as a subspace of $X \times Y$.

PROOF: The product topology is generated by

$$\begin{aligned} &\{U\times V\mid U \text{ open in }A,V \text{ open in }B\}\\ =&\{(U'\cap A)\times (V'\cap B)\mid U' \text{ open in }X,V' \text{ open in }Y\}\\ =&\{(U'\times V')\cap (A\times V)\mid U' \text{ open in }X,V' \text{ open in }Y\}\end{aligned}$$

and this is a basis for the subspace topology by Lemma 36. \square

Theorem 40. Let X be an ordered set in the order topology. Let $Y \subseteq X$ be convex. Then the order topology on Y is the same as the subspace topology on Y.

Proof:

- $\langle 1 \rangle 1$. The order topology is finer than the subspace topology.
 - $\langle 2 \rangle 1$. For every open ray R in X, the set $R \cap Y$ is open in the order topology.
 - $\langle 3 \rangle 1$. For all $a \in X$, we have $(-\infty, a) \cap Y$ is open in the order topology.
 - $\langle 4 \rangle 1$. Case: For all $y \in Y$ we have y < a

PROOF: In this case $(-\infty, a) \cap Y = Y$.

 $\langle 4 \rangle 2$. Case: For all $y \in Y$ we have a < y

PROOF: In this case $(-\infty, a) \cap Y = \emptyset$.

 $\langle 4 \rangle 3$. Case: There exists $y \in Y$ such that $y \leq a$ and $y \in Y$ such that $a \leq y$

 $\langle 5 \rangle 1. \ a \in Y$

PROOF: By convexity.

 $\langle 5 \rangle 2. \ (-\infty, a) \cap Y = \{ y \in Y \mid y < a \}$

 $\langle 3 \rangle 2$. For all $a \in X$, we have $(a, +\infty) \cap Y$ is open in the order topology. PROOF: Similar.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemmas 24 and 37 and Corollary ??.

- $\langle 1 \rangle 2$. The subspace topology is finer than the order topology.
 - $\langle 2 \rangle 1$. Every open ray in Y is open in the subspace topology.

PROOF: For any $a \in Y$ we have $(-\infty, a)_Y = (-\infty, a)_X \cap Y$ and $(a, +\infty)_Y = (a, +\infty)_X \cap Y$.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemma 24 and Corollary ??

П

Proposition 41. The order topology on I_o^2 is different from the subspace topology as a subspace of \mathbb{R}^2 under the dictionary order topology.

PROOF: The set $\{1/2\} \times (1/2,1)$ is open in the subspace topology but not in the order topology. \square

Proposition 42. Let X be a topological space, Y a subspace of X, and Z a subspace of Y. Then the subspace topology on Z inherited from X is the same as the subspace topology on Z inherited from Y.

PROOF: The subspace topology inherited from Y is

 $\{V \cap Z \mid V \text{ open in } Y\}$ $=\{U \cap Y \cap Z \mid U \text{ open in } X\}$ $=\{U \cap Z \mid U \text{ open in } X\}$

which is the subspace topology inherited from X. \square

Definition 43 (Unit Circle). The unit circle S^1 is $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

8 Closed Set

Definition 44 (Closed Set). Let X be a topological space and $A \subseteq X$. Then A is *closed* if and only if $X \setminus A$ is open.

Lemma 45. The empty set is closed.

PROOF: Since the whole space X is always open. \square

Lemma 46. The topological space X is closed.

Proof: Since \emptyset is open. \square

Lemma 47. The intersection of a nonempty set of closed sets is closed.

PROOF: Let \mathcal{C} be a nonempty set of closed sets. Then $X \setminus \bigcap \mathcal{C} = \bigcup \{X \setminus C \mid C \in \mathcal{C}\}$ is open. \square

Lemma 48. The union of two closed sets is closed.

PROOF: Let C and D be closed. Then $X\setminus (C\cup D)=(X\setminus C)\cap (X\setminus D)$ is open. \sqcap

Theorem 49. Let X be a topological space and Y a subspace of X. Let $A \subseteq Y$. Then A is closed in Y if and only if there exists a closed set C in X such that $A = C \cap Y$.

PROOF: We have

A is closed in Y

 $\Leftrightarrow Y \setminus A$ is open in Y

 $\Leftrightarrow \exists U \text{ open in } X.Y \setminus A = Y \cap U$

 $\Leftrightarrow \exists C \text{ closed in } X.Y \setminus A = Y \cap (X \setminus U)$

 $\Leftrightarrow \exists C \text{ closed in } X.A = Y \cap U$

Theorem 50. Let Y be a subspace of X and $A \subseteq Y$. If A is closed in Y and Y is closed in X then A is closed in X.

PROOF: Pick a closed set C in X such that $A = C \cap Y$ (Theorem 49). Then A is the intersection of two sets closed in X, hence A is closed in X (Lemma 47).

Proposition 51. Let X be a set and $C \subseteq PX$ a set such that:

- 1. $\emptyset \in \mathcal{C}$
- $2. X \in \mathcal{C}$
- 3. For all $A \subseteq C$ nonempty we have $\bigcap A \in C$
- 4. For all $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.

Then there exists a unique topology \mathcal{T} such that \mathcal{C} is the set of closed sets, namely

$$\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$$

Proof:

 $\langle 1 \rangle 1$. Let: $\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$

 $\langle 1 \rangle 2$. \mathcal{T} is a topology

 $\langle 2 \rangle 1. \ X \in \mathcal{T}$

Proof: Since $\emptyset \in \mathcal{C}$

 $\langle 2 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$

 $\langle 3 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$

 $\langle 3 \rangle 2$. Case: $\mathcal{U} = \emptyset$

PROOF: In this case $\bigcup \mathcal{U} = \emptyset \in \mathcal{T}$ since $X \in \mathcal{C}$

 $\langle 3 \rangle 3$. Case: $\mathcal{U} \neq \emptyset$

PROOF: In this case $X \setminus \bigcup \mathcal{U} = \bigcap \{X \setminus U \mid U \in \mathcal{U}\} \in \mathcal{C}$.

 $\langle 2 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$

PROOF: Since $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V) \in \mathcal{C}$.

 $\langle 1 \rangle 3$. C is the set of all closed sets in T

Proof:

$$C$$
 is closed in \mathcal{T}
 $\Leftrightarrow X \setminus C \in \mathcal{T}$
 $\Leftrightarrow C \in \mathcal{C}$

 $\langle 1 \rangle 4$. If \mathcal{T}' is a topology and \mathcal{C} is the set of closed sets in \mathcal{T}' then $\mathcal{T}' = \mathcal{T}$ PROOF: We have

$$U \in \mathcal{T}$$

$$\Leftrightarrow X \setminus U \in \mathcal{C}$$

$$\Leftrightarrow X \setminus U \text{ is closed in } \mathcal{T}'$$

$$\Leftrightarrow U \in \mathcal{T}'$$

Proposition 52. If A is closed in X and B is closed in Y then $A \times B$ is closed in $X \times Y$.

Proof:

$$(X \times Y) \setminus (A \times B) = ((X \setminus A) \times Y) \cup (X \times (Y \setminus B)) \square$$

Proposition 53. If U is open and A is closed then $U \setminus A$ is open.

PROOF: $U \setminus A = U \cap (X \setminus A)$ is the intersection of two open sets. \square

Proposition 54. If U is open and A is closed then $A \setminus U$ is closed.

PROOF: $A \setminus U = A \cap (X \setminus U)$ is the intersection of two closed sets. \square

9 Interior

Definition 55 (Interior). Let X be a topological space and $A \subseteq X$. The *interior* of A, Int A, is the union of all the open subsets of A.

Lemma 56. The interior of a set is open.

PROOF: It is a union of open sets.

Lemma 57.

$$\operatorname{Int} A \subseteq A$$

PROOF: Immediate from definition. \square

Lemma 58. A set A is open if and only if A = Int A.

PROOF: If A = Int A then A is open by Lemma 56. Conversely if A is open then $A \subseteq \text{Int } A$ by the definition of interior and so A = Int A.

10 Neighbourhood

Definition 59 (Neighbourhood). A *neighbourhood* of a point x is an open set that contains x.

11 Closure

Definition 60 (Closure). Let X be a topological space and $A \subseteq X$. The *closure* of A, \overline{A} , is the intersection of all the closed sets that include A.

This intersection exists since X is a closed set that includes A (Lemma 46).

Lemma 61. The closure of a set is closed.

PROOF: Dual to Lemma 56. \square

Lemma 62.

$$A \subseteq \overline{A}$$

PROOF: Immediate from definition.

Lemma 63. A set A is closed if and only if $A = \overline{A}$.

PROOF: Dual to Lemma 58. \square

Theorem 64. Let Y be a subspace of X. Let $A \subseteq Y$. Let \overline{A} be the closure of A in X. Then the closure of A in Y is $\overline{A} \cap Y$.

PROOF: The closure of A in Y is $\bigcap \{C \text{ closed in } Y \mid A \subseteq C\}$ $= \bigcap \{D \cap Y \mid D \text{ closed in } X, A \subseteq D \cap Y\}$ (Theorem 49) $= \bigcap \{D \mid D \text{ closed in } X, A \subseteq D\} \cap Y$ $= \overline{A} \cap Y$

Theorem 65. Let X be a topological space, $A \subseteq X$ and $x \in X$. Then $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.

PROOF: We have

$$\begin{split} x \in \overline{A} \\ \Leftrightarrow \forall C.C \text{ closed } \land A \subseteq C \Rightarrow x \in C \\ \Leftrightarrow \forall U.U \text{ open } \land A \cap U = \emptyset \Rightarrow x \notin U \\ \Leftrightarrow \forall U.U \text{ open } \land x \in U \Rightarrow U \text{ intersects } A \end{split}$$

Theorem 66. Let X be a topological space, $A \subseteq X$ and $x \in X$. Let \mathcal{B} be a basis for X. Then $x \in \overline{A}$ if and only if, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.

 $\langle 1 \rangle 1$. If $x \in \overline{A}$ then, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.

PROOF: This follows from Theorem 65 since every element of \mathcal{B} is open (Corollary 13.1).

- $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. Then $x \in \overline{A}$.
 - $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.
 - $\langle 2 \rangle$ 2. Let: *U* be an open set that contains *x* Prove: *U* intersects *A*.
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$.
 - $\langle 2 \rangle 4$. B intersects A.

PROOF: From $\langle 2 \rangle 1$.

- $\langle 2 \rangle$ 5. *U* intersects *A*.
- $\langle 2 \rangle$ 6. Q.E.D.

PROOF: By Theorem 65.

Proposition 67. If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.

PROOF: This holds because \overline{B} is a closed set that includes A. \square

Proposition 68.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proof:

 $\langle 1 \rangle 1. \ \overline{A} \subseteq \overline{A \cup B}$

Proof: By Proposition 67.

 $\langle 1 \rangle 2. \ \overline{B} \subseteq \overline{A \cup B}$

PROOF: By Proposition 67.

- $\langle 1 \rangle 3. \ \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$
 - $\langle 2 \rangle 1$. Let: $x \in \overline{A \cup B}$
 - $\langle 2 \rangle 2$. Assume: $x \notin \overline{A}$ PROVE: $x \in \overline{B}$
 - $\langle 2 \rangle 3$. PICK a neighbourhood U of x that does not intersect A
 - $\langle 2 \rangle 4$. Let: V be any neighbourhood of x
 - $\langle 2 \rangle 5$. $U \cap V$ is a neighbourhood of x
 - $\langle 2 \rangle 6$. $U \cap V$ intersects $A \cup B$

PROOF: From $\langle 2 \rangle 1$ and Theorem 65.

 $\langle 2 \rangle 7$. $U \cap V$ intersects B

PROOF: From $\langle 2 \rangle 3$

- $\langle 2 \rangle 8$. V intersects B
- $\langle 2 \rangle$ 9. Q.E.D.

PROOF: We have $x \in \overline{B}$ from Theorem 65.

Ш

Proposition 69. Let X and Y be topological spaces. Let $A \subseteq X$ and $B \subseteq Y$. Then

$$\overline{A\times B}=\overline{A}\times \overline{B}$$

```
\langle 1 \rangle 1. \ \overline{A \times B} \subseteq \overline{A} \times \overline{B}
     \langle 2 \rangle 1. \ A \subseteq \overline{A}
         Proof: Lemma 62.
     \langle 2 \rangle 2. B \subseteq \overline{B}
         Proof: Lemma 62.
     \langle 2 \rangle 3. \ A \times B \subseteq \overline{A} \times \overline{B}
    \langle 2 \rangle 4. \ \overline{A \times B} \subseteq \overline{A} \times \overline{B}
         PROOF: Since \overline{A} \times \overline{B} is closed by Proposition 52.
\langle 1 \rangle 2. \ \overline{A} \times \overline{B} \subseteq \overline{A \times B}
     \langle 2 \rangle 1. Let: x \in \overline{A} and y \in \overline{B}
     \langle 2 \rangle 2. Let: U be a neighbourhood of (x, y)
     \langle 2 \rangle 3. PICK V open in X and W open in Y such that (x,y) \in V \times W \subseteq U
     \langle 2 \rangle 4. V intersects A
         PROOF: By Theorem 65 and \langle 2 \rangle 1.
     \langle 2 \rangle 5. W intersects B
         PROOF: By Theorem 65 and \langle 2 \rangle 1.
     \langle 2 \rangle 6. U intersects A \times B
    \langle 2 \rangle 7. Q.E.D.
         PROOF: By Theorem 65.
```

12 Limit Points

Definition 70 (Limit Point). Let X be a topological space, $a \in X$ and $A \subseteq X$. Then a is a *limit point*, cluster point or point of accumulation for A if and only if every neighbourhood of a intersects A at a point other than a.

<u>Lemma</u> 71. The point a is an accumulation point for A if and only if $a \in \overline{A \setminus \{a\}}$.

PROOF: From Theorem 65. \square

Theorem 72. Let X be a topological space and $A \subseteq X$. Let A' be the set of all limit points of A. Then $\overline{A} = A \cup A'$.

Proof:

```
A theorem 1. (1) A then x \in \overline{A}, if x \notin A then x \in A' PROOF: From Theorem 65. (1) A \subseteq \overline{A} PROOF: Lemma 62. (1) A \subseteq \overline{A} PROOF: From Theorem 65.
```

Corollary 72.1. A set is closed if and only if it contains all its limit points.

Proposition 73. In an indiscrete topology, every point is a limit point of any set that has more than one point.

PROOF: Let X be an indiscrete space. Let A be a set with more than one point and x be a point. The only neighbourhood of x is X, which must intersect A at a point other than x. \square

13 T_1 Spaces

Definition 74 $(T_1 \text{ Space})$. A topological space is T_1 if and only if every singleton is closed.

Lemma 75. A space is T_1 if and only if every finite set is closed.

Proof: From Lemma 48. \square

Theorem 76. In a T_1 space, a point a is a limit point of a set A if and only if every neighbourhood of a contains infinitely many points of A.

PROOF

- $\langle 1 \rangle 1$. If a is a limit point of A then every neighbourhood of a contains infinitely many points of A.
 - $\langle 2 \rangle 1$. Assume: a is a limit point of A.
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of a.
 - $\langle 2 \rangle 3$. Assume: for a contradiction U contains only finitely many points of A.
 - $\langle 2 \rangle 4$. $(U \cap A) \setminus \{a\}$ is closed.

PROOF: By the T_1 axiom.

 $\langle 2 \rangle 5$. $(U \setminus A) \cup \{a\}$ is open.

PROOF: It is $U \setminus ((U \cap A) \setminus \{a\})$.

 $\langle 2 \rangle 6$. $(U \setminus A) \cup \{a\}$ intersects A in a point other than a.

PROOF: From $\langle 2 \rangle 1$.

 $\langle 2 \rangle$ 7. Q.E.D.

 $\langle 1 \rangle 2$. If every neighbourhood of a contains infinitely many points of A then a is a limit point of A.

PROOF: Immediate from definitions.

(To see this does not hold in every space, see Proposition 73.)

Proposition 77. A space is T_1 if and only if, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.

Proof:

П

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. If X is T_1 then, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.

PROOF: This holds because $\{x\}$ and $\{y\}$ are closed.

 $\langle 1 \rangle 3$. Suppose, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$. Then X is T_1 .

- $\langle 2 \rangle 1$. Assume: For any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.
- $\langle 2 \rangle 2$. Let: $a \in X$
- $\langle 2 \rangle 3$. $\{a\}$ is closed.

PROOF: For all $b \neq a$ there exists a neighbourhood U of b such that $U \subseteq X \setminus \{a\}$.

14 Hausdorff Spaces

Definition 78 (Hausdorff Space). A topological space is *Hausdorff* if and only if, for any points x, y with $x \neq y$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$.

Theorem 79. Every Hausdorff space is T_1 .

```
Proof:
```

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Let: $b \in X$

PROVE: $\overline{\{b\}} = \{b\}$

- $\langle 1 \rangle 3$. Assume: $a \in \overline{\{b\}}$ and $a \neq b$
- $\langle 1 \rangle 4$. PICK disjoint neighbourhoods U of a and V of b.
- $\langle 1 \rangle 5$. *U* intersects $\{b\}$

PROOF: Theorem 65.

- $\langle 1 \rangle 6. \ b \in U$
- $\langle 1 \rangle 7$. Q.E.D.

PROOF: This contradicts the fact that U and V are disjoint ($\langle 1 \rangle 4$).

Proposition 80. An infinite set under the finite complement topology is T_1 but not Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: X be an infinite set under the finite complement topology.
- $\langle 1 \rangle 2$. Every singleton is closed.

PROOF: By definition.

- $\langle 1 \rangle 3$. PICK $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 4$. There are no disjoint neighbourhoods U of a and V of b.
 - $\langle 2 \rangle 1$. Let: U be a neighbourhood of a and V a neighbourhood of b.
 - $\langle 2 \rangle 2$. $X \setminus U$ and $X \setminus V$ are finite.
 - $\langle 2 \rangle 3$. Pick $c \in X$ that is not in $X \setminus U$ or $X \setminus V$.
- $\langle 2 \rangle 4. \ c \in U \cap V$

15 Convergence

Definition 81 (Convergence). Let X be a topological space. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X and $l\in X$. Then the sequence $(a_n)_{n\in\mathbb{N}}$ converges to the limit l, $a_n\to l$ as $n\to\infty$, if and only if, for every neighbourhood U of l, there exists N such that, for all $n\geq N$, we have $a_n\in U$.

Theorem 82. In a Hausdorff space, a sequence has at most one limit.

Proof:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Assume: for a contradiction $a_n \to l$ as $n \to \infty$, $a_n \to m$ as $n \to \infty$, and $l \neq m$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of l and V of m

PROOF: By the Hausdorff axiom.

- $\langle 1 \rangle 4$. PICK M and N such that $a_n \in U$ for $n \geq M$ and $a_n \in V$ for $n \geq N$
- $\langle 1 \rangle 5. \ a_{\max(M,N)} \in U \cap V$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that U and V are disjoint $(\langle 1 \rangle 3)$.

To see this is not always true in spaces that are T_1 but not Hausdorff:

Proposition 83. Let X be an infinite set under the finite complement topology. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence with all points distinct. Then for every $l\in X$ we have $a_n\to l$ as $n\to\infty$.

PROOF: Let U be any neighbourhood of l. Since $X \setminus U$ is finite, there must exist N such that, for all $n \geq N$, we have $a_n \in U$. \square

Theorem 84. Every linearly ordered set under the order topology is Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: X be a linearly ordered set under the order topology.
- $\langle 1 \rangle 2$. Let: $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 3$. Assume: w.l.o.g. a < b
- $\langle 1 \rangle 4$. CASE: There exists c such that a < c < bPROOF: The sets $(-\infty, c)$ and $(c, +\infty)$ are disjoint neighbourhoods of a and b respectively.
- $\langle 1 \rangle$ 5. Case: There is no c such that a < c < b Proof: The sets $(-\infty,b)$ and $(a,+\infty)$ are disjoint neighbourhoods of a and b respectively.

Theorem 85. The product of two Hausdorff spaces is Hausdorff.

- $\langle 1 \rangle 1$. Let: X and Y be Hausdorff spaces.
- $\langle 1 \rangle 2$. Let: (x_1, y_1) and (x_2, y_2) be distinct points in $X \times Y$

- $\langle 1 \rangle 3$. Assume: w.l.o.g. $x_1 \neq x_2$
- $\langle 1 \rangle 4$. PICK disjoint neighbourhoods U of x_1 and V of x_2 .
- $\langle 1 \rangle$ 5. $U \times Y$ and $V \times Y$ are disjoint neighbourhoods of (x_1, y_1) and (x_2, y_2) .

Theorem 86. A subspace of a Hausdorff space is Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space and Y a subspace of X.
- $\langle 1 \rangle 2$. Let: $x, y \in Y$ with $x \neq y$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of x and V of y in X.
- $\langle 1 \rangle 4.$ $U \cap Y$ and $V \cap Y$ are disjoint neighbourhoods of x and y respectively in Y.

Proposition 87. A space X is Hausdorff if and only if the diagonal $\Delta = \{(x,x) \mid x \in X\}$ is closed in X^2 .

Proof:

$$X \text{ is Hausdorff} \\ \Leftrightarrow \forall x,y \in X. x \neq y \Rightarrow \exists V, W \text{ open.} x \in V \land y \in W \land V \cap W = \emptyset \\ \Leftrightarrow \forall (x,y) \in X^2 \setminus \Delta. \exists V, W \text{ open.} (x,y) \subseteq V \times W \subseteq X^2 \setminus \Delta \\ \Leftrightarrow \Delta \text{ is closed}$$

16 Boundary

Definition 88 (Boundary). The *boundary* of a set A is the set $\partial A = \overline{A} \cap \overline{X \setminus A}$.

Proposition 89.

$$\operatorname{Int} A \cap \partial A = \emptyset$$

PROOF: Since $\overline{X \setminus A} = X \setminus \text{Int } A$. \square

Proposition 90.

$$\overline{A}=\operatorname{Int} A\cup\partial A$$

Proof:

$$\begin{split} \operatorname{Int} A \cup \partial A &= \operatorname{Int} A \cup (\overline{A} \cap \overline{X \setminus A}) \\ &= (\operatorname{Int} A \cup \overline{A}) \cap (\operatorname{Int} A \cup \overline{X \setminus A}) \\ &= \overline{A} \cap X \\ &= \overline{A} \end{split}$$

Proposition 91. $\partial A = \emptyset$ if and only if A is open and closed.

PROOF: If $\partial A = \emptyset$ then $\overline{A} = \text{Int } A$ by Proposition 90.

Proposition 92. A set U is open if and only if $\partial U = \overline{U} \setminus U$.

Proof:

$$\begin{array}{l} \partial U = \overline{U} \setminus U \\ \Leftrightarrow \overline{U} \setminus \operatorname{Int} U = \overline{U} \setminus U \\ \Leftrightarrow \operatorname{Int} U = U \end{array} \qquad \text{(Propositions 89, 90)}$$

17 **Continuous Functions**

Definition 93 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if and only if, for every open set V in Y, the set $f^{-1}(V)$ is open in X.

Proposition 94. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for Y. Then f is continuous if and only if, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.

Proof:

- $\langle 1 \rangle 1$. If f is continuous then, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. PROOF: Since every element of B is open (Lemma 13).
- $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.
 - $\langle 2 \rangle 2$. Let: V be open in Y.
 - $\langle 2 \rangle 3$. Pick $\mathcal{A} \subseteq \mathcal{B}$ such that $V = \bigcup \mathcal{A}$ PROOF: By Lemma 13.
 - $\langle 2 \rangle 4$. $f^{-1}(V)$ is open in X.

Proof:

$$f^{-1}(V) = f^{-1}\left(\bigcup A\right)$$
$$= \bigcup_{B \in A} f^{-1}(B)$$

Proposition 95. Let X and Y be topological spaces and $f: X \to Y$. Let S be a basis for Y. Then f is continuous if and only if, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X.

- $\langle 1 \rangle 1$. If f is continuous then, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. PROOF: Since every element of S is open.
- (1)2. Suppose that, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X.
 - $\langle 2 \rangle 2$. For every set B that is the finite intersection of elemets of S, we have $f^{-1}(B)$ is open in X.

PROOF: Because $f^{-1}(V_1 \cap \cdots \cap V_n) = f^{-1}(V_1) \cap \cdots \cap f^{-1}(V_n)$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: From Propositions 20 and 94.

Definition 96 (Continuous at a Point). Let X and Y be topological spaces. Let $f: X \to Y$ and $x \in X$. Then f is *continuous at* x if and only if, for every neighbourhood V of f(x), there exists a neighbourhood U of x such that $f(U) \subseteq V$.

Theorem 97. Let X and Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. For all $A \subseteq X$, we have $f(\overline{A}) \subseteq \overline{f(A)}$
- 3. For all $B \subseteq Y$ closed, we have $f^{-1}(B)$ is closed in X.
- 4. f is continuous at every point of X.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $A \subseteq X$
 - $\langle 2 \rangle 3$. Let: $x \in \overline{A}$

PROVE: $f(x) \in \overline{f(A)}$

- $\langle 2 \rangle 4$. Let: V be a neighbourhood of f(x)
- $\langle 2 \rangle 5$. $f^{-1}(V)$ is a neighbourhood of x
- $\langle 2 \rangle 6$. Pick $y \in A \cap f^{-1}(V)$

PROOF: By Theorem 65.

- $\langle 2 \rangle 7. \ f(y) \in V \cap f(A)$
- $\langle 2 \rangle 8$. Q.E.D.

PROOF: By Theorem 65.

- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: B be closed in Y
 - $\langle 2 \rangle 3$. Let: $x \in \overline{f^{-1}(B)}$

PROVE:
$$x \in f^{-1}(B)$$

 $\langle 2 \rangle 4. \ f(x) \in B$

$$f(x) \in f(\overline{f^{-1}(B)})$$

$$\subseteq \overline{f(f^{-1}(B))} \qquad (\langle 2 \rangle 1)$$

$$\subseteq \overline{B} \qquad (Proposition 67)$$

$$= B$$

- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 3
 - $\langle 2 \rangle 2$. Let: V be open in Y
 - $\langle 2 \rangle 3$. $Y \setminus V$ is closed in Y

```
\langle 2 \rangle 4. f^{-1}(Y \setminus V) is closed in X
\langle 2 \rangle 5. X \setminus f^{-1}(V) is closed in X
```

 $\langle 2 \rangle 6.$ $f^{-1}(V)$ is open in X

 $\langle 1 \rangle 4. \ 1 \Rightarrow 4$

PROOF: For any neighbourhood V of f(x), the set $U = f^{-1}(V)$ is a neighbourhood of x such that $f(U) \subseteq V$.

 $\langle 1 \rangle 5. \ 4 \Rightarrow 1$

 $\langle 2 \rangle 1$. Assume: 4

 $\langle 2 \rangle 2$. Let: V be open in Y

 $\langle 2 \rangle 3$. Let: $x \in f^{-1}(V)$

 $\langle 2 \rangle 4$. V is a neighbourhood of f(x)

 $\langle 2 \rangle$ 5. Pick a neighbourhood U of x such that $f(U) \subseteq V$

 $\langle 2 \rangle 6. \ x \in U \subseteq f^{-1}(V)$

 $\langle 2 \rangle$ 7. Q.E.D.

PROOF: By Lemma 9.

Theorem 98. A constant function is continuous.

PROOF: Let X and Y be topological spaces. Let $b \in Y$, and let $f: X \to Y$ be the constant function with value b. For any open $V \subseteq Y$, the set $f^{-1}(V)$ is either X (if $b \in V$) or \emptyset (if $b \notin V$). \square

Theorem 99. If A is a subspace of X then the inclusion $j: A \to X$ is continuous.

PROOF: For any V open in X, we have $j^{-1}(V) = V \cap A$ is open in A. \square

Theorem 100. The composite of two continuous functions is continuous.

PROOF: Let $f: X \to Y$ and $g: Y \to Z$ be continuous. For any V open in Z, we have $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open in X. \Box

Theorem 101. Let $f: X \to Y$ be a continuous function and A be a subspace of X. Then the restriction $f \upharpoonright A : A \to Y$ is continuous.

PROOF: Let V be open in Y. Then $(f \upharpoonright A)^{-1}(V) = f^{-1}(V) \cap A$ is open in A. \square

Theorem 102. Let $f: X \to Y$ be continuous. Let Z be a subspace of Y such that $f(X) \subseteq Z$. Then the corestriction $f: X \to Z$ is continuous.

Proof:

 $\langle 1 \rangle 1$. Let: V be open in Z.

 $\langle 1 \rangle 2$. PICK U open in Y such that $V = U \cap Z$.

 $\langle 1 \rangle 3. \ f^{-1}(V) = f^{-1}(U)$

 $\langle 1 \rangle 4$. $f^{-1}(V)$ is open in X.

Theorem 103. Let $f: X \to Y$ be continuous. Let Z be a space such that Y is a subspace of Z. Then the expansion $f: X \to Z$ is continuous.

PROOF: Let V be open in Z. Then $f^{-1}(V) = f^{-1}(V \cap Y)$ is open in X. \square

Theorem 104. Let X and Y be topological spaces. Let $f: X \to Y$. Suppose \mathcal{U} is a set of open sets in X such that $X = \bigcup \mathcal{U}$ and, for all $U \in \mathcal{U}$, we have $f \upharpoonright U: U \to Y$ is continuous. Then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: V be open in Y
- $\langle 1 \rangle 2.$ $f^{-1}(V) = \bigcup_{U \in \mathcal{U}} (f \upharpoonright U)^{-1}(V)$
- $\langle 1 \rangle 3$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in U.
- $\langle 1 \rangle$ 4. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in X.

Proof: Lemma 38.

Theorem 105 (Pasting Lemma). Let X and Y be topological spaces. Let A and B be closed subspaces of X such that $X = A \cup B$. Let $f : A \to Y$ and $g : B \to Y$ be continuous. Suppose f and g agree on $A \cap B$. Define $h : X \to Y$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$$

Then h is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $C \subseteq Y$ be closed.
- $\langle 1 \rangle 2. \ h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$
- $\langle 1 \rangle 3$. $f^{-1}(C)$ and $g^{-1}(C)$ are closed in X.

PROOF: Theorems 97 and 50.

 $\langle 1 \rangle 4$. $h^{-1}(C)$ is closed in X.

Proof: Lemma 48.

 $\langle 1 \rangle 5$. Q.E.D.

PROOF: Theorem 97.

Theorem 106. Let $f: X \to Y \times Z$. If $\pi_1 \circ f$ and $\pi_2 \circ f$ are continuous then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: U be open in Y and V open in Z
- $\langle 1 \rangle 2. \ f^{-1}(U \times V) = (\pi_1 \circ f)^{-1}(U) \cap (\pi_2 \circ f)^{-1}(V)$
- $\langle 1 \rangle 3. \ f^{-1}(U \times V)$ is open in X.
- $\langle 1 \rangle 4$. Q.E.D.

Proof: Proposition 94.

П

Proposition 107. Let $f: \mathbb{R} \to \mathbb{R}$ and $x \in \mathbb{R}$. Then f is continuous at x if and only if, for all $\epsilon > 0$, there exists $\delta > 0$ such that. for all $y \in \mathbb{R}$, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

Proof:

```
\langle 1 \rangle 1. If f is continuous at x then, for all \epsilon > 0, there exists \delta > 0 such that. for all y \in \mathbb{R}, if |x - y| < \delta then |f(x) - f(y)| < \epsilon
```

- $\langle 2 \rangle 1$. Assume: f is continuous.
- $\langle 2 \rangle 2$. Let: $\epsilon > 0$
- $\langle 2 \rangle 3.$ $f^{-1}((f(x) \epsilon, f(x) + \epsilon))$ is open.
- $\langle 2 \rangle 4$. PICK a, b such that $x \in (a, b) \subseteq f^{-1}((f(x) \epsilon, f(x) + \epsilon))$
- $\langle 2 \rangle 5$. Let: $\delta = \min(x a, b x)$
- $\langle 2 \rangle 6$. Let: $y \in \mathbb{R}$ with $|x y| < \delta$
- $\langle 2 \rangle 7. \ y \in (a,b)$
- $\langle 2 \rangle 8. \ f(y) \in (f(x) \epsilon, f(x) + \epsilon)$
- $\langle 2 \rangle 9. |f(x) f(y)| < \epsilon$
- $\langle 1 \rangle 2$. Suppose, for all $\epsilon > 0$, there exists $\delta > 0$ such that. for all $y \in \mathbb{R}$, if $|x-y| < \delta$ then $|f(x)-f(y)| < \epsilon$. Then f is continuous at x.
 - $\langle 2 \rangle 1$. Assume: For all $\epsilon > 0$, there exists $\delta > 0$ such that. for all $y \in \mathbb{R}$, if $|x-y| < \delta$ then $|f(x)-f(y)| < \epsilon$
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of f(x)
 - $\langle 2 \rangle 3$. PICK a, b such that $f(x) \in (a, b) \subseteq V$
 - $\langle 2 \rangle 4$. Let: $\epsilon = \min(f(x) a, b f(x))$
 - $\langle 2 \rangle$ 5. Pick $\delta > 0$ such that, for all $y \in \mathbb{R}$, if $|x y| < \delta$ then $|f(x) f(y)| < \epsilon$
 - $\langle 2 \rangle 6$. Let: $U = (x \delta, x + \delta)$
- $(2)7. \ x \in U \subseteq f^{-1}(V)$

Proposition 108. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is continuous if and only if $\mathcal{T}' \subseteq \mathcal{T}$.

PROOF: Immediate from definitions.

Proposition 109. Let $f : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Then f is continuous on the right at a if and only if f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.

- $\langle 1 \rangle 1$. If f is continuous on the right at a then f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.
 - $\langle 2 \rangle 1$. Assume: f is continuous on the right at a.
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of f(a)
 - $\langle 2 \rangle 3$. Pick b, c such that $f(a) \in (b,c) \subseteq V$.
 - $\langle 2 \rangle 4$. Let: $\epsilon = \min(c f(a), f(a) b)$
 - $\langle 2 \rangle$ 5. PICK $\delta > 0$ such that, for all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$
 - $\langle 2 \rangle 6$. Let: $U = [a, a + \delta)$
 - $\langle 2 \rangle 7. \ f(U) \subseteq V$
- $\langle 1 \rangle 2$. If f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$ then f is continuous on the right at a.
 - $\langle 2 \rangle 1$. Assume: f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$

- $\langle 2 \rangle 3$. PICK a neighbourhood U of a such that $f(U) \subseteq (f(a) \epsilon, f(a) + \epsilon)$
- $\langle 2 \rangle 4$. PICK b, c such that $a \in [b, c) \subset U$
- $\langle 2 \rangle$ 5. Let: $\delta = c a$
- $\langle 2 \rangle 6$. For all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$

18 Homeomorphisms

Definition 110 (Homeomorphism). Let X and Y be topological spaces. A Homeomorphism f between X and Y, $f: X \cong Y$, is a bijection $f: X \to Y$ such that both f and f^{-1} are continuous.

Lemma 111. Let X and Y be topological spaces and $f: X \to Y$ a bijection. Then the following are equivalent:

- 1. f is a homeomorphism.
- 2. f is continuous and an open map.
- 3. For any $U \subseteq X$, we have U is open if and only if f(U) is open.

PROOF: Immediate from definitions. \square

Proposition 112. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is a homeomorphism if and only if $\mathcal{T} = \mathcal{T}'$.

PROOF: Immediate from definitions. \square

Definition 113 (Topological Property). Let P be a property of topological spaces. Then P is a *topological* property if and only if, for any spaces X and Y, if P holds of X and $X \cong Y$ then P holds of Y.

Definition 114 (Topological Imbedding). Let X and Y be topological spaces and $f: X \to Y$. Then f is a topological imbedding if and only if the corestriction $f: X \to f(X)$ is a homeomorphism.