Exploración de datos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Análisis exploratorio de datos (EDA)

Análisis del conjunto de datos para resumir sus principales características, mediante métodos estadísticos y visuales.

Objetivos:

- Descubrir la estructura subyacente de los datos
- Identificar variables relevantes
- Detectar valores atípicos y anomalías
- Validar supuestos
- Generar hipótesis a partir de los datos

Cuarteto de Anscombe

Propiedad	Valor
Media de cada una de las variables x	9.0
Varianza de cada una de las variables x	11.0
Media de cada una de las variables y	7.5
Varianza de cada una de las variables y	4.12
Correlación entre cada una de las variables x e y	0.816
Recta de regresión	y=3+0.5x

CRISP DM

Técnicas de EDA

- Estadística descriptiva: Métricas de tendencia central, dispersión y variabilidad.
- Test estadísticos: Permiten validar estadísticamente el comportamiento de las variables.
- Análisis multivariable: Permite identificar variables redundantes, observaciones similares y datos atípicos.
- Visualización: Uso de métodos gráficos para inspeccionar visualmente los datos.

Estadística descriptiva

Medidas de distribución

- Media
- Moda
- Mediana
- Cuantiles
- Varianza
- Desviación estándar

- Coeficiente de variación
- Rango
- Rango inter cuartil
- Sesgo
- Entropía

Test estadísticos

Se asumen conocidos para este curso

- Intervalos de confianza
- Test de hipótesis sobre la media y varianza
- Test de distribuciones (Kolmogorov-Smirnov)
- One-way ANOVA
- · Kruskal-Wallis.

Análisis multivariable

Correlación de Pearson

- Correlación de Pearson mide la relación lineal entre atributos
- CUIDADO: No es lo mismo que una regresión lineal

Data with different correlation values

Correlación

No todas las relaciones entre variables son lineales

Correlación de distancia

Correlación de distancia mide la relación no lineal (y lineal) entre atributos.

- Pearson's r = -0.05
- Distance Correlation = 0.157
- MIC = 0.097

- Pearson's r = +0.003
- Distance Correlation = 0.474
- MIC = 0.594

- Pearson's r =+0.95
- Distance Correlation = 0.95
- MIC = 0.89

- Pearson's r < 0.001
- Distance Correlation = 0.234
- MIC = 0.218

Otras correlaciones

- Maximal Information Coefficient "MIC"
- Correlación de Spearman
- Tau de Kendall

Similitud

Similitud

- Mide lo parecidos que son dos entidades.
- Es más alto cuando entidades son más parecidas.

Disimilitud

- Mide cuan diferentes son dos entidades
- Más bajo cuando los objetos son más parecidos

Tipo de Atributo	Disimilitud	Similitud
Nominal	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d=rac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Intervalo o Ratio	d = p-q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$

p y q son los valores de un atributo para dos entidades

Similitud de datos categóricos

- Sean p y q vectores m-dimensionales con solo atributos categóricos.
- Sea pk(x) la proporción de registros en la que el k-ésimo atributo adquiere el valor x en el conjunto de datos.
- Para calcular las similitudes entre estos dos vectores, sumamos la similitud S de cada atributo i

$$Sim(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{m} S(p_i, q_i)$$

La medida de **superposición** es S(pi,qi)=1 si pi = qi y 0 de otra manera.

La frecuencia de ocurrencia inversa pondera la similitud entre los atributos coincidentes.

$$S(\mathbf{p}_i, \mathbf{q}_i) = 1/p_k(\mathbf{p}_i)^2$$
 if $\mathbf{p}_i = \mathbf{q}_i$ sino $S(p_i, q_i) = \mathbf{0}$

La medida de Goodall da mayor peso a valores poco frecuentes.

$$S(\mathbf{p}_i, \mathbf{q}_i) = 1 - p_k(\mathbf{p}_i)^2$$
 if $\mathbf{p}_i = \mathbf{q}_i$ sino $S(p_i, q_i) = 0$

Similitud de vectores binarios

- Sean p y q vectores solo con atributos binarios (Word embedding)
- Para calcular las similitudes entre estos dos vectores, utilizamos las siguientes métricas:
 - M01 = el número de atributos donde p era 0 y q era 1
 - M10 = el número de atributos donde p era 1 y q era 0
 - M00 = el número de atributos donde p era 0 y q era 0
 - M11 = el número de atributos donde p era 1 y q era 1

Coeficiente simple de coincidencia (SMC):

número de coincidencias / número de atributos (M00 + M11) / (M00 + M01 + M10 + M111)

Coeficiente de Jaccard (J):

número de coincidencias 11 / número de atributos no 00 (M11) / (M01 + M10 + M11)

Similitud de vectores binarios: ejemplo

```
el
                                  cerro
                                  esta
                                           Dimensiones: 1 2 3 4 5 6 7 8 9 10 11 12 13
                                  muy
p = "El cerro esta muy nevado hoy"
                                                    p: 111111000000000
                               D5 nevado
q = "Me gustaría ir al cerro hoy"
                                  hoy
                                                  q: 010001111 1 0 0 0
w = "Al gato le gustaría comer"
                                  gustaría
                                                    w: 000000101111
                               D10
                                           Binarización
```

```
M01 = 4 (el número de atributos donde p era 0 y q era 1)
M10 = 4 (el número de atributos donde p era 1 y q era 0)
M00 = 3 (el número de atributos donde p era 0 y q era 0)
M11 = 2 (el número de atributos donde p era 1 y q era 1)
```

$$SMC(p,q) = (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00}) = (2+0) / (4+4+2+3) = 0.153$$

 $J(p,q) = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 2 / (4 + 4 + 2) = 0.2$

Similitud coseno

- Calcula el ángulo entre los dos documentos, lo que es insensible a la longitud del documento.
- Si a y b son dos vectores de documento se calcula como:

Distancia

- Una métrica que mide la distancia entre un par de entidades
- Dados los dos puntos x e y, una función métrica o de distancia debe cumplir las siguientes condiciones
 - no negatividad => d(x, y) > 0
 - identidad => d(x, y) = 0 <=> x=y
 - simetría => d(x, y) = d(y, x)
 - designaldad triangular => $d(x, z) \le d(x, y) + d(y, z)$

Distancia de Minkowski

- Generalización de la distancia euclidiana.
- Sean que p y q vectores m-dimensionales

$$d(p,q) = \left(\sum_{k=1}^{m} |p_k - q_k|^r\right)^{1/r}$$

Para r = 1 : Distancia Manhattan: $d_1(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_{i=1}^n |p_i - q_i|,$

Para r = 2 : Distancia euclidiana: $d(p,q) = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$

Para r = ∞ : Distancia Chebyshev $\lim_{k\to\infty} \left(\sum_{i=1}^n |p_{i}|^k\right)^{1/k} \qquad D_{\text{Chebyshov}}(p,q) := \max_i (|p_i-q_i|).$ (distancia suprema)

Blue: Eclidean Red: Manhattan Orange: Chebyshev

Distancia de Mahalanobis

 Considera la varianza de los datos para calcular la distancia.

$$d(p,q) = \sqrt{(p-q)^T \Sigma^{-1} (p-q)}$$

donde ∑ es la matriz de covarianza de los datos de entrada.

Usada para calcular distancias cuando hay atributos correlacionados.

Distancia del coseno

- La distancia del coseno es el espacio de complemento positivo de similitud coseno.
- La similitud coseno es una medida de similitud entre dos vectores no nulos de un espacio interior del producto.
- Cuando los elementos vectoriales pueden ser positivos o negativos:

$$angular distance = \frac{\cos^{-1}(cosine similarity)}{\pi}$$

Cuando los elementos vectoriales siempre son positivos:

$$\text{angular distance} = \frac{2 \cdot \cos^{-1}(\text{cosine similarity})}{\pi}$$

Distancia suave del coseno

- Distancia suave del coseno considera la similaridad de los atributos
- Comúnmente usado en procesamiento de lenguaje natural (NLP) para representar que conceptos cercanos (como "manteca" y "mantequilla")

$$ext{soft_cosine}_1(a,b) = rac{\sum_{i,j}^N s_{ij} a_i b_j}{\sqrt{\sum_{i,j}^N s_{ij} a_i a_j} \sqrt{\sum_{i,j}^N s_{ij} b_i b_j}},$$

where $s_{ii} = \text{similarity}(\text{feature}_i, \text{feature}_i)$.

Source: https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/soft_cosine_tutorial.ipynl

Matriz de Distancias

(Euclidean, Manhattan, Chebyshev, Mahalanobis, Cosine, Haversine, etc.)

Data Viz

Visualización de datos

- La visualización de datos es la presentación de datos en formato pictórico o gráfico
- Permite inspeccionar visualmente los datos para apoyar la comprensión de datos complejos
- Visualización debe ser auto explicativa
- Puede ser difícil de aplicar si el tamaño de los datos es grande o el numero de dimensiones es muy alto.

Chart Suggestions—A Thought-Starter

Gráfico de Barras / Puntos de Cleveland

- Cada punto de datos se traza con una altura igual a su valor.
- El valor cero debe estar presente, de lo contrario la escala puede verse afectada.
- Ordene siempre los valores de menor a más alto o viceversa.

Histogramas

- Gráfico más común para datos univariados.
- Divide el rango de datos en contenedores y mide la frecuencia en cada rango.
- Muestra gráficamente el centro, moda, rango, sesgo y datos atípicos de una distribución.
- El número de contenedores cambia la percepción de la distribución.
- Número de contendores se define heurísticamente.

Gráficos de densidad de núcleo

- Método del núcleo utiliza una función no negativa que se integra a uno y tiene media cero para aproximar la distribución.
- Estima parámetros de densidad en base a un ancho de banda determinado.

La densidad estimada es:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K\left(\frac{x - x(i)}{h}\right)$$

Donde

- K : Función de núcleo o Kernel (uniforme, triangular, Epanechnikov, Gaussiana, etc.)
- h : Ancho de banda (análogo a tamaño de contenedor)

Diagrama de caja (y bigote)

- Muestra la relación entre variables discretas y continuas
- Calcula los cuartiles y rango de valores una variable
- Los bigotes máximos y mínimos se extienden a los puntos de datos más extremos que el algoritmo considera que no son valores atípicos

Diagrama de dispersión

- Diagrama más común para datos bivariados
- Muestra gráficamente:
 - Dependencia entre X e Y
 - Relación lineal o no lineal
 - Si la variación en Y depende de X
 - Datos atípicos

Matriz de dispersión

Visualiza todas
las combinaciones
posibles de
variables

Gráficos de densidad bidimensional

- Utiliza un núcleo bivariado para estimar la densidad bidimensional
- Permite resolver dos limitaciones de los diagramas de dispersión:
 - Visualización de los mismos puntos varias veces
 - Demasiados puntos para discernir la relación.

Matriz de distancias

Muestra gráficamente la distancia entre todos los puntos del conjunto de datos

Evitar errores comunes

- Demasiados colores (o colores para daltónicos)
- Demasiada data
- Escalas truncadas
- Textos inadecuados
- Diagramas inadecuados
- Seleccionar solo data favorable (Cherry picking)

Exploración de datos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2