PPOL 628: Text as Data — Computational Linguistics for Social Scientists

Class 4: Parts of Speech and Phrases

Today

Lecture: key points from readings

Reading discussion

Theory assignment questions

• Lab: partsofspeech.R

Website: github.com/matthewjdenny/PPOL_628_Text_As_Data

Parts of Speech

- Grammatical Categories for words $\leftarrow \rightarrow$ parts of speech.
- Nouns: typically refer to people, animals, concepts and things.
 - Cat, dog, watermelon, car, boat, chair, Matt, Susan, space, time.
- Verbs: typically express the action in a sentence.
 - Run, throw, treat, show, write, walk, climb
- Adjectives: Describe the properties of nouns:
 - Fast, green, interesting, small, hard, frequent
- "Substitution test" determine which words belong in the same class.

Coarse tag	PTB tags	Examples
N: Nouns	NN: Common nouns (singular)	paragraph, adoption, member, extension, exploration
	NNS: Common nouns (plural)	barriers, additions, objects, policies, negotiations
	NNP: Proper nouns (singular)	Advanced, Assessment, Notice, Contents, Injury
	NNPS: Proper nouns (plural)	AUTHORIZATIONS, Limitations, Indians, Presidents
	FW: Foreign words	novo, parte, pima, de, tempore, officio, pro, bona
	CD: Numbers	48, 632, 1834, 2009, 1129, 1302, 381, 586, 810
A: Adjectives	JJ: Adjectives and ordinals	renewable, following, other, scientific, subsequent, last
	JJR: Adjectives (comparative)	younger, higher, Higher, More, less, smaller, earlier
	JJS: Adjectives (superlative)	latest, highest, greatest, Best, least, largest
	VBG: Gerunds, present participles	setting, resulting, being, working, operating, beginning
	RB: Adverbs	respectively, generally, forth, previously, so, no, fully
D : Determiners	DT	this, either, any (Most common: the, a, this)
P : Prepositions	IN: Most prepositions	Most common words: of, in, for, by, under, as, with
	TO: The word "to"	to, To, TO
V: Verbs	VB: Verbs (base form)	itemize, supply, TERMINATE, guarantee, concentrate
	VBD: Past tense	overestimated, trained, expired, GENERATED, switched
	VBN: Past participle	eliminated, intercepted, owed, advertised, Incorporated
	VBP: Present tense (non-3rd sing)	mitigate, nullify, Benefit, insert, fulfill, produce, seize
	VBZ: Present tense (3rd sing)	distributes, announces, directs, respects, upholds, uses
M: Verb Modifiers	RB: Adverbs (base form)	extremely, hard, rapidly, after, now
	RBR: Comparative adverbs	better, faster, slower, easier, shorter
	RBS: Superlative adverbs	best, worst, fastest, slowest, easiest
	RP: Particle adverbs	about, off, on, up
	MD: Modal auxiliary verbs	can, should, might, musn't
C: Coord. Conj.	CC: Coordinating conjunctions	and, or, but

Part of Speech Tagging

- Process of assigning a part of speech (POS) "tag" to each word in a document.
- Canonical training set of POS tags (in English) is the Penn Treebank (1999) which is maintained by the Linguistic Data Consortium:
 - https://catalog.ldc.upenn.edu/LDC99T42
- In practice, this means employing either hand coding, a heuristic approach, a maximum likelihood model, a neural net, or some combination to assign POS tags to terms.
- Quality of POS taggers is dependent on training data
 - Challenges in other languages, Twitter, etc.

Part of Speech Tagging

Should a Federal agency seek to restrict photography of its installations or personnel, it shall obtain a court order that outlines the national security or other reasons for the restriction.

POS Tags

Should/M a/D Federal/N agency/N seek/V to/T restrict/V photography/N of/P its/PR installations/N or/C personnel/N, it/PR shall/M obtain/V a/D court/N order/N that/d outlines/V the/D national/A security/N or/C other/A reasons/N for/P the/D restriction/N.

Tag Definitions

A = adjective, N = noun, V = verb, M = modal, D = determiner, C = conjunction, PR = pronoun, T = to

Part of Speech Tagging

Peen Treebank (45-tag corpus)

Unambiguous (1 tag)	38,857	(81%)
Ambiguous (2-7 tags)	8,844	(19%)
Details: 2 tags	6,731	
3 tags	1,621	
4 tags	357	
5 tags	90	
6 tags	32	
7 tags	6	(well, set, round, open, fit, down)
8 tags	4	('s, half, back, a)
9 tags	3	(that, more, in)

A simple approach which assigns only the most common tag to each word performs with 90% accuracy!

Syntax → Phrases

- **Syntax** is the study of the regularities and constraints of word order and phrase structure.
- Phrases are syntactically coherent groupings of words.

Phrases

- **Noun phrases.** A noun is usually embedded in a phrase a syntactic unit of the sentence in which information about the noun is gathered. The noun is the head of the noun phrase, the central constituent that determines the syntactic character of the phrase. Noun phrases are usually the arguments of verbs, the participants in the action, activity or state described by the verb.
- Verb phrases. Analogous to the way nouns head noun phrases, the verb is the head of the verb phrase (VP). In general, the verb phrase organizes all elements of the sentence that depend syntactically on the verb

Tree Structure of Sentences

Tree Structure of Sentences

the cake

Justeson and Katz (1995) — TERMS

- Technical terminology (the kind of stuff you would put in an index) tends to consist of noun phrases).
- Simple heuristic algorithm to find these noun phrases efficiently in a document.

AN: linear function; lexical ambiguity; mobile phase

NN: regression coefficients; word sense; surface area

AAN: Gaussian random variable; lexical conceptual paradigm; aqueous mobile

phase

ANN: cumulative distribution function; lexical ambiguity resolution; accessible surface area

NAN: mean squared error; domain independent set; silica based packing

NNN: class probability function; text analysis system; gradient elution chromatog-

raphy

NPN: degrees of freedom; [no example]; energy of adsorption

POS Tag Patterns → Noun Phrases

Tag Pattern	Example
AN	$equal\ employment$
NN	research project
AAN	local educational agency
ANN	recreational land resource
NAN	health related service
NNN	health care provider
NPN	election by majority

(Justeson and Katz, 1995)

POS Tag Patterns → Verb Phrases

Tag Pattern	Example
VN	reduce funding
VAN	encourage dissenting members
VNN	restrict government agencies
VPN	prescribe in paragraph
ANV	eligible employee means
VDN	establish a commission

Regular Expressions over POS Tags

- Noun Phrases: (A | N)*N(PD*(A | N)*N)*
 - Zero or more adjectives or nouns, followed by a noun, followed (optionally) by zero or more groups of terms containing a preposition and zero or more determiners, then zero or more adjectives or nouns, and ending in a noun.
- Verb Groups: (M(CM)*|V)*V(M(CM)*|V)*
 - Modifier followed by zero or more coordinating conjunction-modifier pairs, or a verb, all repeated zero or more times, then a verb, then a modifier followed by zero or more coordinating conjunction-modifier pairs, or a verb, all repeated zero or more times.

Full Generalization

```
NP \ w \ Coord = NP (C \ Det^* \ NP)^*
               = (A(CA)*|N)*N((P(CP)*)+(D(CD)*)*(A(CA)*|N)*N)*(C(D(CD)*)*
               (A(CA)*|N)*N((P(CP)*)+(D(CD)*)*(A(CA)*|N)*N)*)*
Verb_Argument = (Subject_Verb | Verb_Object | Verb_Prep_Phrase | NP_Verb_Phrase)
               = ((A(CA)*|N)*N((P(CP)*)+(D(CD)*)*(A(CA)*|N)*N)*(C(D(CD)*)*(A(CA)*|N)*N)
               ((P(CP)^*)+(D(CD)^*)^*(A(CA)^*|N)^*N)^*)^*(P(CP)^*)^*(M(CM)^*|V)^*V(M(CM)^*|V)^*
               (C(M(CM)*|V)*V(M(CM)*|V)*)*|(M(CM)*|V)*V(M(CM)*|V)*(C(M(CM)*|V)*)
               V(M(CM)*|V)*)*(D(CD)*)*(A(CA)*|N)*N((P(CP)*)+(D(CD)*)*(A(CA)*|N)*N)*
               (C(D(CD)^*)^*(A(CA)^*|N)^*N((P(CP)^*)+(D(CD)^*)^*(A(CA)^*|N)^*N)^*)^*|(M(CM)^*|V)^*
               V(M(CM)^*|V)^*(C(M(CM)^*|V)^*V(M(CM)^*|V)^*)^*((P(CP)^*)+(D(CD)^*)^*(A(CA)^*|N)^*N)+
               |(A(CA)*|N)*N((P(CP)*)+(D(CD)*)*(A(CA)*|N)*N)*(C(D(CD)*)*(A(CA)*|N)*N|
               ((P(CP)^*)+(D(CD)^*)^*(A(CA)^*|N)^*)^*(P(CP)^*)^*((M(CM)^*|V)^*V(M(CM)^*|V)^*)^*
               (C(M(CM)*|V)*V(M(CM)*|V)*)*(D(CD)*)*(A(CA)*|N)*N((P(CP)*)+(D(CD)*)*)
               (A(CA)*|N)*N)*(C(D(CD)*)*(A(CA)*|N)*N((P(CP)*)+(D(CD)*)*(A(CA)*|N)*N)*)*
               |(M(CM)^*|V)^*V(M(CM)^*|V)^*(C(M(CM)^*|V)^*V(M(CM)^*|V)^*)^*((P(CP)^*)+(D(CD)^*)^*)^*
               (A(CA)*|N)*N)+))
                                                                                        (14)
```

Phrases = (NP w Coord | Verb Argument)

The Readings This Week

• Manning & Schtze, H. (1999). Foundations of Statistical Natural Language Processing. Chapter 3.

• Justeson, J. S., & Katz, S. M. (1995). Technical terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering, 1(01).

• Handler, A., Denny, M. J., Wallach, H., & OConnor, B. (2016). Bag of What? Simple Noun Phrase Extraction for Text Analysis. EMNLP + CSS