Homework 2

Problem 1. Draw the Hasse diagram of the set of all subsets of 1, 2, 3 ordered by inclusion.

Problem 2. Let (X, \leq_1) , (Y, \leq_2) be (partially) ordered sets. We say that they are isomorphic if there exists a bijection $f: X \to Y$ such that for every $x, y \in X$, we have $x \leq_1 y$ if and only if $f(x) \leq_2 f(y)$.

- 1. Draw Hasse diagrams for all nonisomorphic 3-element posets.
- 2. Prove that any two n-element linearly ordered sets are isomorphic.
- 3. Prove that (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) are not isomorphic. (where \mathbb{N} is the set of natural numbers, \mathbb{Q} is the set of rational numbers, \leq is the usual 'less or equal to' between numbers).

Solution.

1.

- 2. Let X, Y be two linearly ordered sets each with n elements. Since X is a linearly ordered set, every pair of elements in X are comparable, so dose Y. For the sake of convenience, we assume that $x_1 \le x_2 \le \cdots \le x_n$ and $y_1 \le y_2 \le \cdots \le y_n$. (x_i, y_i) is the ith element in X and Y.) Now we can construct the bijection function f, which creats a one-to-one correspondence with x_i and y_i , that is, $f(x_i) = y_i$ and $f^{-1}(y_i) = x_i$. It is easy to see that for every $x_i, x_j \in X$, we have $x_i \le 1$ x_j if and only if $f(x_i) \le 2$ $f(x_j)$. Thus, any two n-element linearly ordered sets are isomorphic.
- 3. If (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) are isomorphic, then there exists a bijection f and for every $x, y \in X$, we have $x \leq_1 y$ if and only if $f(x) \leq_2 f(y)$. Suppose that f(0) = p, f(1) = q (p, q) are rational numbers), since 0 < 1, we have p < q, further more $p < \frac{p+q}{2}$ and $\frac{p+q}{2} < q$. Since f is a bijection, there must be a natural number, say i, that has a one-to-one correspondence with $\frac{p+q}{2}$, but since $p < \frac{p+q}{2}$ and $\frac{p+q}{2} < q$, we have $f^{-1}(p) < f^{-1}(\frac{p+q}{2})$ and $f^{-1}(\frac{p+q}{2}) < f^{-1}(q)$, so 0 < i and i < 1, there is no such a natural number satisfying this. Thus we can conclude that (\mathbb{N}, \leq) and (\mathbb{Q}, \leq) are not isomorphic.

Problem 3. Prove or disprove: If a partially ordered set (X, \leq) has a single minimal element, then it is a smallest element as well.

Solution. This statement is wrong. Consider the set $\{a\} \cup \mathbb{Q}$ (a is just the character 'a' in the alphabet) and the partial ordering \leq on this set. (\leq is the usual 'less or equal to' between numbers.) Since the element a in this set is incomparable to any other element, thus a is a minimal element. It is easy to see that a is the only minimal element, but a is not a smallest element. Thus the statement is wrong. \Box

Problem 4. Let (X, \leq) and (X', \leq') be partially ordered sets. A mapping $f: X \to X'$ is called an embedding of (X, \leq) into (X', \leq') if the following conditions hold:

- f is an injective mapping;
- $f(x) \leq' f(y)$ if and only if $x \leq y$.

Now consider the following problem

a) Describe an embedding of the set $\{1,2\} \times \mathbb{N}$ with the lexicographic ordering into the ordered set (\mathbb{Q}, \leq) .

b) Solve the analog of a) with the set $\mathbb{N} \times \mathbb{N}$ (ordered lexicographically) instead of $\{1, 2\} \times \mathbb{N}$.

Solution.

- a) We can find a function that $f(\langle i, n \rangle) = i \frac{1}{2^n}$ where $i \in \{1, 2\}$ and $n \in \mathbb{N}$, this function maps any element in the set $\{1, 2\} \times \mathbb{N}$ with a rational number in \mathbb{Q} . For any $\langle i_1, n_1 \rangle$, $\langle i_2, n_2 \rangle$ in the set $\{1, 2\} \times \mathbb{N}$, if $\langle i_1, n_1 \rangle \neq \langle i_2, n_2 \rangle$, we have $f(\langle i_1, n_1 \rangle) \neq f(\langle i_2, n_2 \rangle)$, thus f is an injective mapping. We also have $f(\langle i_1, n_1 \rangle) \leq f(\langle i_2, n_2 \rangle)$ if and only if $\langle i_1, n_1 \rangle \leq \langle i_2, n_2 \rangle$ (in the lexicographic order). Thus, we can say f is an embedding of the set $\{1, 2\} \times \mathbb{N}$ with the lexicographic ordering into the ordered set (\mathbb{Q}, \leq) .
- b) We can use the same injective function f as in (a).

Problem 5. Prove the following strengthening of the **Erdös-Szekeres Lemma**: Let κ , ℓ be natural numbers. Then every sequence of real numbers of length $\kappa\ell+1$ contains an nondecreasing subsequence of length $\kappa+1$ or a decreasing subsequence of length $\ell+1$.

Solution. Proof by contradiction. Let the $\kappa\ell+1$ elements in the sequence be denoted as $a_1, a_2, \ldots, a_{\kappa\ell+1}$. Suppose the argument is wrong, then the length of every nondecreasing subsequence is less than or equal to κ , and the length of every decreasing subsequence is less than or equal to ℓ .

We denote the length of the longest nondecreasing subsequence starts with a_i as x_i and the length of the longest decreasing subsequence starts with a_i as y_i . For each element in the sequence, we have a ordered pair $\langle x_i, y_i \rangle$. Since there are $\kappa \ell + 1$ elements, we have $\kappa \ell + 1$ ordered pairs, we also have $1 \le x_i \le \kappa$ and $1 \le y_i \le \ell$. Thus there must be two ordered pairs, say $\langle x_i, y_i \rangle$, $\langle x_j, y_j \rangle$, which are exactly the same.

We say this should not happen, if a_j is after a_i in the sequence, and if $a_i \le a_j$, then we should have $x_i > x_j$, if $a_i \ge a_j$, then we should have $y_i > y_j$. If a_j is before a_i in the sequence, and if $a_i \le a_j$, then we should have $y_j > y_i$, if $a_i \ge a_j$, then we should have $x_j > x_i$. Thus $\langle x_i, y_i \rangle$ can not be the same as $\langle x_j, y_j \rangle$.