A FEASIBILITY CONJECTURE RELATED TO THE HIRSCH CONJECTURE

Richard Wollmer

,	-7-25		
COPY	L OF		me
HARD CO	Υ	\$.2.	00
MICROFIC	HE	\$.0.	50
		3	30-10

OPERATIONS RESEARCH CENTER

A FEASIBILITY CONJECTURE RELATED TO THE HIRSCH CONJECTURE

by

Richard Wollmer
Operations Research Center
University of California, Berkeley

23 October 1964

ORC 64-28 (RB)

This research has been partially supported by the Office of Naval Research under Contract Nonr-222(83) and the National Science Foundation under Contract GP-2633 with the University of California. Reproduction in whole or in part is permitted for any purpose of the United States Government.

A FEASIBILITY CONJECTURE RELATED TO THE HIRSCH CONJECTURE

I. Introduction

A very important unsolved problem in linear programming today is the validity or nonvalidity of the conjecture which follows:

Hirsch Conjecture: Let X and Y be feasible bases to the linear programming problem

(1)
$$Y \ge 0, X \ge 0$$
$$IY + BX = b$$

and let m be the rank of this system. Then the conjecture is that there exists a sequence of m feasible pivot operations that transforms system (1) into

(2)
$$Y \ge 0, X \ge 0$$
 $B^{-1}Y + IX = B^{-1}b$

That is to say a sequence such that each of the m - 1 intermediate bases is feasible. In order to attack this problem, consider the following possibility.

Suppose there exists a pair of variables x_j , $y_{k(j)}$ such that if x_j is introduced into the basis in (1), $y_{k(j)}$ drops out and, in addition, every feasible solution must contain at least one of these variables at a non-zero value. It follows that if x_j is introduced into the basis, dropping $y_{k(j)}$, then introducing any further sequence of variables not involving $y_{k(j)}$ into the basis cannot drop x_j . This essentially reduces the problem of finding m feasible pivots

to one of finding m - 1 feasible pivots. The same result follows if there is a pair $x_{\ell(j)}$, y_j in (2) with these properties, since any sequence of feasible pivots going from (2) to (1) is the reverse of a sequence of feasible pivots going from (1) to (2).

A conjecture proposed by G. B. Dantzig, which (as we have just noted) would, if true, imply the Hirsch conjecture states that there always exists such a pair, provided that the basis for X is non-degenerate. This latter conjecture is actually false in general as will be shown by a counter example. Except for this example, all others (and there were many) selected at random satisfied the conjecture. It is felt that this and other results summarized herein might lend insight to the problem.

II. The Dantzig Conjecture

Each component for the initial basic solution involving X is taken to be unity and also each component of Y in the terminal basic solution. This can always be done with no loss of generality by a change of units providing these basic solutions are (as assumed) nondegenerate. A mathematical statement of this conjecture follows.

Dantzig Conjecture: Let $\overline{B} = [b_{ij}]$ be a nonsingular square matrix whose rows sum to unity, and such that each column that has a positive element has a unique maximal element. Consider the program

$$Y \ge 0 , X \ge 0$$

$$IY + \overline{B}X = \overline{b}$$

where \bar{b} is a column vector whose components are all equal to 1. Let $[b_{i,j}^{-1}] = \bar{B}^{-1}$. For all columns of \bar{B} and \bar{B}^{-1} that contain a strictly

positive element define

$$b_{k(j)j} = \max_{i} b_{ij}$$
$$b_{\ell(j)j}^{-1} = \max_{i} b_{ij}^{-1}$$

Then there exists a pair of variables x_j , $y_{k(j)}$ or $x_{\ell(j)}$, y_j such that the program obtained from (1) by deleting this pair and their corresponding columns is infeasible. Equivalently each feasible set of basic variables must contain at least one of this pair.

The reason for examining only these columns that have a positive element is that the only variables corresponding to these columns can be introduced into the basis at a finite value.

III. Using the Conjecture to Prove the Hirsch Conjecture

Throughout this section when a problem is stated in the form

$$IY + \overline{B}X = \overline{b}$$

it will be understood that $\overline{B} = [b_{ij}]$ is a nonsingular square matrix such that the sum of its columns is \overline{b} , a column vector whose elements are all 0 or 1. $I^{(m)}$, $\overline{B}^{(m)} = [b_{ij}^{(m)}]$, $\overline{b}^{(m)}$ are matrices containing m rows and having the same meaning as I, \overline{B} , and \overline{b} . Also b_{ij}^{-1} , k(j), l(j) have the same meanings as in the statement of the conjecture.

In addition the problems:

$$(4) X \ge 0$$

$$A_1 X = b$$

and

(5)
$$\overline{X} \geq 0$$

$$A_2 \overline{X} = b$$

are equivalent if $A_2 = A_1D$ where D is a diagonal matrix whose diagonal elements are all strictly positive. This happens if and only if the jth column of A_2 is a positive multiple of the jth column of A_1 for all j. It should be noted that if \overline{X} solves (5) then X = DX solves (4) and therefore the set of feasible bases is identical for both problems. It follows that if the Hirsch Conjecture holds for a particular problem it holds for any problem equivalent to it in the above sense.

Lemma 1: If X and Y are feasible bases to the problem:

$$Y \ge 0$$
, $X \ge 0$
 $IY + BX = b$

and Y is nondegenerate then there is an equivalent problem of the form:

$$\overline{Y} \ge 0$$
, $\overline{X} \ge 0$
 $I\overline{Y} + BX = \overline{b}$ $\overline{b} = (1, 1, ..., 1)$

<u>Proof</u>: Let Y = b, X = 0 and Y = 0, X = d be the basic solutions corresponding to the bases X and Y respectively. Multiplying the j^{th} column of B by d_j and the j^{th} column of I by b_j if $b_j \neq 0$ yields an equivalent problem which has the corresponding basic solutions Y = b', X = 0 and Y = 0, X = d' where all components of b' are one or zero and all components of d' are one. Multiply the j^{th} row by $1/b_j \neq 0$ yields the desired form.

COROLLARY 2: If in lemma 1, all components of b are strictly

positive, then all elements of b are equal to 1.

<u>Proof</u>: Since all components of b are positive, it follows that the equivalent problem obtained in lemma 1 has basic solution X = 0, Y = b' where all components of b' are one. From this it follows that all components of \overline{b} are one.

Lemma 3: Suppose in the problem of rank m:

(6)
$$Y^{(m)} \ge 0, X^{(m)} \ge 0$$

$$I^{(m)}Y^{(m)} + \overline{B}^{(m)}X^{(m)} = \overline{b}^{(m)}$$

the Dantzig conjecture holds and let all components of $\overline{b}^{(m)}$ be 1, k(j) be unique for all $b_{k(j)j} > 0$, and $\ell(j)$ unique for all $b_{\ell(j)j}^{-1} > 0$. Then the number of feasible pivot operations required to go from the canonical form with respect to $Y^{(m)}$ to that of $X^{(m)}$ is at most one more than the number required to go from the canonical form with respect to $Y^{(m-1)}$ to that of $X^{(m-1)}$ in a problem of rank m-1 of the form:

(7)
$$Y^{(m-1)} \ge 0, X^{(m-1)} \ge 0$$

$$I^{(m-1)}Y^{(m-1)} + \overline{B}^{(m-1)}X^{(m-1)} = \overline{b}^{(m-1)}$$

<u>Proof</u>: Suppose there is a pair x_j , $y_{k(j)}$ such that $b_{k(j)j} > 0$ and such that any feasible basis might contain at least one of these as a basic variable. Introduce x_j into the basis, dropping $y_{k(j)}$, and let row i be the row in which the coefficient of x_j is 1 in the resulting canonical form. It follows that the introduction of any sequence of variables, which does not include $y_{k(j)}$, into successive feasible bases cannot drop x_j from any of the bases. Deleting row

i and the columns corresponding to x_j and $y_{k(j)}$ yields a problem which is equivalent to one of the form (7). It follows that x_j and any sequence of feasible pivot operations on the above problem is a sequence of feasible pivots to the original problem and the theorem holds. If there is no pair x_j , $y_{k(j)}$ with the above mentioned properties, then since we assumed the Dantzig conjecture to hold in this case there exists a pair $x_{\ell(j)}$, y_j such that $b_{\ell(j)j}^{-1} > 0$ and any feasible basis includes at least one of these as a basic variable. In this case it follows that the number of feasible pivots required to go from the canonical form with respect to $x^{(m)}$ to that of $y^{(m)}$ is at most one more than that required to go from $x^{(m-1)}$ to $y^{(m-1)}$ in a problem of the form,

$$Y \ge 0$$
, $X \ge 0$
 $\overline{B}^{(m-1)}Y^{(m-1)} + I^{(m-1)}X^{(m-1)} = \overline{b}^{(m-1)}$

which establishes lemma 3.

COROLLARY 4: Suppose in a problem of the form (6) all conditions of lemme 3 except the uniqueness property of k(j) are met. Then the number of feasible pivot operations required to go from the canonical form with respect to $Y^{(m)}$ to that of $X^{(m)}$ is at most one more than that required to go from the canonical form with respect to $Y^{(m-1)}$ to that of $X^{(m-1)}$ in a problem of the form (7).

Proof: Replace
$$\overline{B}^{(m)}$$
 by $\overline{B}^{(m)}$ where $\overline{b}_{ij}(\varepsilon) = \overline{b}_{ij} + j\varepsilon^{i}$ for $j \neq m$

$$= \overline{b}_{ij} - \sum_{k=1}^{m-1} k\varepsilon^{i}$$
 for $j = m$

For $\epsilon > 0$ sufficiently small,

(8)
$$Y^{(m)} \ge 0, X^{(m)} \ge 0$$

 $Y^{(m)} + \overline{B}^{(m)} (\epsilon) X^{(m)} = \overline{b}^{(m)}$

satisfies all the conditions of lemma 3 and any feasible basis to (8) is a feasible basis to the original problem.

COROLLARY 5: Suppose in a problem of the form (6) all components of $\overline{b}^{(m)}$ are 1. Then the number of feasible pivot operations required to go from the canonical form with respect to $Y^{(m)}$ to that of $X^{(m)}$ is at most one more than the number required to go from the canonical form with respect to $Y^{(m-1)}$ to that of $X^{(m-1)}$ in a problem of the form (7).

<u>Proof</u>: Replace $[\overline{B}^{(m)}]^{-1}$ by $[\overline{D}^{(m)}]^{-1}(\epsilon)$ where $[\overline{B}^{(m)}]^{-1}(\epsilon)$ has the same meaning as $\overline{B}^{(m)}(\epsilon)$ in the proof of corollary 4. For $\epsilon > 0$ sufficiently small,

(9)
$$Y^{(m)} \ge 0, X^{(m)} \ge 0$$
 $[\overline{B}^{(m)}]^{-1}(\epsilon)Y^{(m)} + I^{(m)}X^{(m)} = \overline{b}$

satisfies all the conditions of corollary 4 and any feasible basis to 9 is a feasible basis to the original problem.

COROLLARY 6: The number of feasible pivot operations required to go from the canonical form with respect to the basis $Y^{(m)}$ to that of $X^{(m)}$ in any problem of the form (6) is at most one more than the number required to go from the canonical form with respect to $Y^{(m-1)}$ to that of $X^{(m-1)}$ in a problem of the form (7).

Proof: Replace all zero components of $\overline{b}^{(m)}$ by ϵ to obtain:

(10)
$$Y^{(m)} \ge 0, X^{(m)} \ge 0$$

 $I^{(m)}Y^{(m)} + \overline{B}^{(m)}X^{(m)} = \overline{b}^{(m)}(\epsilon)$

For $\epsilon > 0$ sufficiently small $Y^{(m)}$ and $X^{(m)}$ are both feasible, nondegenerate basis to (10) and any feasible basis to (10) is a feasible basis to the original problem. By lemma 1 and corollary 2, there exists a program equivalent to (10) of the form (6) such that all components of $\overline{b}^{(m)}$ are 1 and the conditions of corollary 5 are satisfied.

THEOREM 7: Let X and Y be feasible bases to a linear programming problem of the form (1) of rank m^* and suppose the Dantzig conjecture holds for all $m \le m^*$. If the basis X is nondegenerate then the program may be put into the form (2) by a sequence of m or less feasible pivot operations.

<u>Proof</u>: The theorem is trivially true for m = 1. For m > 1 the theorem follows from corollary 6 and induction.

IV. A Counter-Example

As was mentioned earlier, the Dantzig Conjecture is actually false in general. The following tables show a counter-example, which incidentally is not a counter-example to the Hirsch Conjecture, demonstrating that the two are not equivalent. The pairs $(x_j, y_k(j))$ are (x_1, y_k) , (x_2, y_6) , (x_3, y_2) , (x_k, y_2) , (x_5, y_6) , (x_6, y_k) and the pairs $(x_k(j), y_j)$ are (x_3, y_1) , (x_k, y_2) , (x_k, y_3) , (x_3, y_k) , (x_k, y_5) , (x_k, y_6) . The sequence of six successive feasible pivots required to go from the basis Y to the basis X is $x_1, x_2, x_k, x_5, x_6, x_5$.

						
		H	e4	e-1		7
	r.	i N	•		r	Ħ
x ₆	720720.	.130435	.269231	.285714	.068966	606060
×	.333333	0	.269231	.035714	.275862	.353636
×	.253260	347826	192308	.071429	137931	606060*
×	.185185	6990€.	.153846	.107143	137931	.045455
×S	111111	£16821.	.076923	.214285	84450T.	.227273
×	.037037	.036957	.038461	.285714	.275862	318131.
y6						-1
35					, 1	
× 7				r-4		
y3			•			
y ₂		<u></u>				
× ¹						
			0			

Table 1: The courter example with Y as the basis.

1						
	т —	н		ન 	r 1	-
	1				1	•
x 9						т
×	,		^		н	
×				н		
×			٦			
×		н				
×	τ					
x 6	3.768372	773935	-24.169922	16.944042	284031	1.675286
45	7.053425	-7.514573	-11.9 6 4016 -24.169922	10.824468	135657	.379855
γ	-6.050762	8.277069	29.756046	-24.255224	.654862	-1.833603
*	727502.1	-8.464 0 69	-24.833330	19.372819	340534	. 6.153491
%	4.623872	-3.537300	-20.926830	18.605042	-2.521647	1.540599
λ_1	-13.101331	13.012808	53.138052	-40.491148	3.627007	-6.915629
			-	10 -		

Table 2: The counter-example with X as the basis

	068445.	.661 -75	66659•°	055565.	.69317.	.5.7.470
·	li	11	l)	li	ti	11
×						
×	r -1					
×	.5:0:10	.05375	.13.76	118704	021112	. 123868
×		/> /::80°	:	0.77	J20500.	.215616
×	5:0014	.22751.	.g .To.	\$10) m/c.	.19.525	.0674 -5
×1	(479593)	.25035.	1.1224.8	٠ بوو۶٠٠،	1535	C -1,050
. y.	-			-1		
**					-	
s.i		1.070		1.0%	ý ř	0.712.0
8	05.2.32.		.0°C · (*-	1.45.58	-1.194.10	.069210
32						Н
1.5		ed				
<u> </u>						

 $\mathbf{va}_{1} \in \mathbb{N}$ variables $(\mathbf{x}_{1} \in \mathbb{N}_{+})$ in the basis. Table a: V basi: solution w' neither of

	2.631582	.473682	.200404	.872181	.208711	.835241
	n ·	i g	H		ı	n
*	.263158	052631	.208502	.280075	.003530	.148742
×	п					
×	*	rH				
×	46870	.815782	.018219	.051692	.047187	022881
x 2	.753159	552631	022268	.226504	030854	.3:6132
×	694209	736838	004050	.313910	.188747	. 343,548
3,6	4.052628	-5.210502	-,089072	51,4/22.	-• 39927	ી.81234ે
35				-	н	
Y				٦		
y 3			Н			
y 2						Н
y_1	-1.421046	5.634184	710524	3552°4	392013	-1.977107

Table 3b: A basic solution with neither of the peir of variables $(x_2$, $y_6)$ in the basis.

					_	
	. 329861	751£ 78°	.525240	.91930.		464590*4
		n	11	11	Ħ	11
×°	017362	.218751	.203125	.203125	.0054665	. 312499
×	17:07:	1.66666	.307593	21428	.20.897	1.999994
×		H				
×	01157 ⁴	.812497	.007211	.075892	£64840°	12499
×					-	rd .
×	011574	187497	.007211	.111607	.211207	374997
36	.10185.	-2.749995	.105770	982141	-13933	0.066.04.5
35		<u> </u>	-		н	
¹ γ	<u> </u>			4	-	
ر کے			н			
y2	771954	3.593749	5805.40	Lit150*	- 36. 45.	-1.437496
×1	٦					-
				13 -		

Table 3c: A basic rolution with neither of the pair of Lariables $(x_3$, $y_2)$ in the basis.

x x x x x x
*, *, *, *, *, *, *, *, *, *, *, *, *, *
x, x, x, x, .00.173 .336419 .126767 .314394 .1666701666660402.0 .272989500000 .249998
x, x,00 173 .126767 .1265700256.1 1.66670500000
×

× ×
*10030371730°03333308333330
X
>,''
24, .036.21 -1.378787 -179485 -4.36667. -080457
>,°
, r

Table 3d: A basic solution with neither of the pair of variables $(\mathbf{x}_{l_1}$, $\mathbf{y}_2)$ in the basis.

	.537038	.260870	7.507	000000	4.8275	3.99999
	5	2.	•	•	≒	8.6
	ţI	11	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ņ	3	11
×	.120370	.15217	.273:0:7	1.750000	103.5	:66666
x 5	.016204	413476	7: T7 O.	-6.687503	£1.66.	7+9994
×	η ⁶ 8902*	071175.	.15.54	16:39	.10011.	36666
×	.192129	. 2554.	.151.4	6.3	.00% 21	24999
x 2		-	****			rd
x_1				H		
$^{y_{6}}$	916664	-1,1956.5	-,52984-	-8.230011	1.1 [10.77
y					r=1	•
$\mathbf{y}_{l_{\mathbf{k}}}$	453702	.456515	.201926	8.750010	-1.589-60	-ċ-99999)
٧,		· · · · · · · · · · · · · · · · · · ·	Н			
y ₂		rt				-
Y ₁	٦		-			
•						

Table we have solution with neith r of variables $(\mathbf{x}_{5}$, $\mathbf{y}_{6}^{\prime})$ in the basis.

li						
	.670370	059569.	.865 386	3.500004	.034482	£&&.
	11	И	1111	11	11	ıı
ײ	750750.	017570.	.230770	1.000000	200096	בנצנתה
, ,	. 32c (US	0/3010	.264.83	66(721)	61:172.	45.
×	.250001	Sow?	.102033	.250002	. ენ <u>ბ</u> ჭიჯ	757570.
×	.171236	.22026J	.139423	.375001	. ०३४५०३	02272.
×°	.003533	.108695	LLOPHO.	200057.	103449	606060
×				7		
20						н
× 5					7	
34	12%5L	554550	134014	3.500004	کاردزیل	036304
2,	· · · · · · · · · · · · · · · · · · ·	 	٦			
x 2		ч				-
χ ₁	н					
•						•

Table 3f: A casic solution with neither of the pair of variables (x_0^-, y_0^-) in the basis.

	.602964	602785.	.205222	.692277	2.378646	.961159
	11	II	II		11	11
×°						٦
×					п	
×						
×	612720.	. 020301	078040.	035878	101939	61.5750.
x2	.256416	550252	030‱6	. 382JI	40216L	136796
׬	645615.	757000	.100010	.340137	0 %699.	015-22
x °	.347093	-5.232306	397720	1.675890	4.165049	12 n
35			٦			
Y T	-					
33	-1.34271	.252425	017411	13517	-1.262134	4.79.13
22				٦		
y ₁	599162	5.504629	37.5.12	-1.470232	52469	-3.407.56
				17 -		

Table 4a: A basic solution with neither of the pair of variables (x3, y1) in the basis.

	1.161279	.093071	2.859285	. 282862	.740598	1.173915
	H .	111	110	1.101		
x 2 x						ત
×					٦	
×	205642	≈ 0400.	1.445352	.068795	00.7400	v86956
× 2			н			
×°	. 306921	.089579	413924	.214067	204102	.260872
×,	7					
x° م				٦		
35	2.070212	620358	.570798	803945	1.699828	-2.521739
$\lambda_{\mathbf{h}}$	1.974148	.642204	-1.875454	.103195	-1.645123	2.434792
y ₃	-2.383074	9£6619:-	4709€€	SL1674	1.985890	2.260868
x 2	50000	240743	4.500016	.522725	-1.499999	-1.00000
y 1		rl				

Table 4b: A basic solution with neither of the pair of variables $(x_{\mu}$, $y_2)$ in the basis.

	1.305964	.278330	. 052969	.628676	1.582979	1.936169
	11	11	II	II	11	11
×°						7
×					_ _	
×	272339	.145155	.100529	. 307078	.263029	50£60H.
×	155 31c	115031.	.124071	. 200 3c2	.072341	475153.
×°	61367.	4.6400.	175431	.114615	.246d09	. o74466
×T	τ					
y	2.293017	401540	-1.074951	.1₹√£1.	2.240011	-2.5/440
35						
۲. با	2.502125	.335 322	345121	3/29xv	-1.5kのk?.1-	2.191495
3,3	-3.429777	41367	1/26/4.	134009	401500.	3.319140
32	· ************************************			н	**************************************	
χ ₁	-	rł				
•						

Table 4c: A basic solution with neither of the pair of variables $(z_{\mu}$, ${\bf y}_{3})$ in the basis.

	.—					
	1.305964	.278330	696350.	.628676	1.582979	1.936169
	11	11	11	11	11	li .
×°						н
×					٦	
×	272339	.145155	.100529	. 307678	.263029	29£60m.
× 5	15851	.126211	170451.	.206302	.072341	.521274
×	.793019	406400.	178431	.114615	£16009	-, U744œ
×	ત					
> 0	2.293617	643144	-1.074901	.130354	2.246011	-2.57/ l/lo 6
x 5			Н			
y L	2.502125	. 335 302	345121	572930	-1.54d9 <i>5</i> v	1.191495
y 3	-3.129777	413007	175071	13₩69	.885104	3.319140
٧,				~		
۲ ₁		н			. ,	
'				-		'

Table 4d: A basic solution with meither of the pair of variables $(x_3$, y_4) in the basis.

	.757000	1.430904	2.281004	610150.	1.017578	. 662 365
	ĮI	11	11	ll	H	
×°						н
×	_				٦	
×	०५६८५८-	706277.	1.201054	610150.	275710.	317.050
×			<u> </u>			
×°		 - -		The second control of		
×	7				-	
٧,	34000c	166030.0	-2.44935	. UM. 30	010%10	5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5
y ₅	4.423735	-2,705315	1.911406	(+) c(C.		
y.	150200	-2.30145	-1. Doub	-1,2023		1, , , ,
; n						
y ₂	105,72	4.571,224	#16.5%	:	-2.1 de e	ी-इ.स.
y,	-3.204430	6467 20-4-	:)	-£.04 IUI	2.91,255	٠٠. کلار ۱۰
'-				· common	-	

Table \mathbb{A}^{+} . A basic solution with relition if a chair of variables $(\mathbf{x}_{k}$, $\mathbf{y}_{j})$ in the basis.

3, x x x x x y y x x x y y y y y y y y y	3, x ₁ x ₂ x ₃ x ₃ 346000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y_{3} y_{4} y_{5} y_{5	$\frac{3}{2}$ $\frac{3}{4}$ $\frac{3}$
1 7	0.620991 1 -2.44995c 1	-2.55504 -2.105515 0.620991 1 -1.535004 1.911400 -2.449950 1	-2.5350ch 1.911400 -2.449950 1
o. 620991 1 -2. 449350	-	-8.550143 -2.105515 -1.535004 1.911400	-8.550143 -2.105515 -1.535004 1.911400
34600. 0. 620991		150200 4.423/35 -8.350143 -2.105315 -1.335004 1.911400	150200 4.423/35 -8.350143 -2.105315 -1.335004 1.911400
	2, 423735 4.423735 -2, 105315 1.911400	y ₂ y ₄ 1502000 -2.520143	3 3 44 150200 -2.520143
94 1502005 -2.390143 -1.335004		21 % u) u)	2.925

Thule 4f: A basic solution with ncither of the pair of variables $(\mathbf{x}_{\mu}$, $\mathbf{y}_{\mathrm{O}})$ in the basis.

:						
	.670370	050569.	. 265 380	3.500004	-034482	. 363636
	u 	HΕ	11	u	u _	11
×°	750750.	224240.	077055.	1.300000	200896	606060*-
× ₅	. 326703	010870	.264423	. 124999	618145.	6060ME.
×	.250001	. 326047	.132093	250005	396500.	454540.
× ₃	€2171.	.228200	139423	.375,001	. ०३५५७३	4.54540. 127.950
× ×	003333	.130095	770070.	50005/	105449	606060.
׬			· · · ·	-	·	
'n					The same and the s	4
*				160		
y,	129630	304350	154014	3.500004	٠١٤٢٥٠-	4050£0
y 5			н			
y2		٦ -				
× 1	Н					

Table ja: The basic sclution obtained after one pivot, x1.

	.537038	.260870	.673078	666661.	. 448278	3.9999%
	an'	111	11	11	111	11
*	०८६०टाः	.152173	.278847	1.750000	310345	846666
x ₅	.016234	o) 4814	46 1480.	-2.087533	.629313	3.7499.14
×	.208334	047175.	158054	966421	699021.	066664.
x ₃	621261.	.255433	ट्यमादाः	.562490	.300021	24993c
×						1
׬				7		
yo	91c6c4	-1.195045	520814	-8.250011	1.137938	10.999999
y ₅					-d	
$\mathbf{y}_{\mathbf{h}}$. 453702	. 45054.	.201926	8.750010	-1.663660	-0.99993
y ₃			٦			
y 2		٦				
y_1	н				· · · · · · · · · · · · · · · · · · ·	
						····

Table 5b: The basic solution obtained after two pivots, x_1 , x_2 .

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
3 3 4 5 4 5 4 5 46		.337037	.960001	.520770	.619996	.332416	3.520000
χ χ		H					
x_3 x_4 x_5 x_6 x_1 x_2 x_5 x_4	×	407500.	.559995	100061.	1.019997	377930	-1.279993
x_{3} x_{4} x_{5} x_{6} x_{1} x_{2} x_{5} x_{5	׸	.33705.	-1.539900	. Xetwo	-2.579995	.015172	4.519961
x_3 x_4 x_5 x_6 x_1 x_2 x_4 x_5 x_6 x_1 x_2 x_5 x_6	׬		н	Mr. Completion			
x_3 x_4 x_5 x_0 x_1 1.05720 .000001 1.679975 -4.599367 1.059220 .0000000 1.059220 .0000000000000000000000000000000000	×	005704	586666	US 320	.679993	104226	7193xd
x_3 x_4 x_5 x_0 x_1 1.05720 .000001 1.679975 -4.399367 1.059225 .0000000 1.059221 .000000000000000000000000000000000000	×W					н	
3 3 4 2 5 1.679973 1.679973 1.679973 1.036414 1 -1.036414 1					н		
3 3 4 1.679373 1.679373 1.679373 1.6793773 1.6793773 -1.0357772	'n	100000	-4. 394967	.169225	J. 1997.2	1.0600.1	13.199352
×	2	-				7	
3.079995 3.079995 3.079995 503047 1 444135 444135	y,	105/20	1.679375	J. 35.50		-1.0 <i>98414</i>	-1.035712
3.079995 3.079995 3.079995 503947 444135 -1.039991	2			- 			
ST 11	y 2	706070	3.079995	503047	706657.	444135	-1.039981
	² 2	, 1					

Table 5c: The basic solutions obtained after three pivots, x1, x2, x4

ı,	.199598	1.587987	. 386828	1.794418	. 407786	1.676814
		11	II	11	11	"
×.6	.159961	153974	. 542282	477464	-,463620	.315560
x y x					н	
×		н				
x ₂	759630.	.741960	945440.	.309643	128594	1136746
x xs						٦
×Ч				н		
3,6	170069*-	-1.247030	50;256	-2.903550	2.047578	5.925044
x 5	415455	1,389156	0293	3.5.2930	1.22	-5.5.4010
جُ ج	7€19∞°	-1.895093	006).69°	2.2 :119	.2. 290	2.0.121
.·,`			ä			
2.	58 3040	2.310954	06 بى ي -	1,1691,1-	-, 51. w≥6	. 6. 2567
ร์	Н					

Talle 54: The Lasic solution obtained after four pivots, \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_4 , \mathbf{x}_5

	.018319	1.761999	1.130145	1.246555	447156.	.755113
	11	Ħ	II.	lt.	н	:#:
39			-			
9x - 5x + 7x					rl	
ź,		٦				
×	018819	.761999	.15014>	. 24655,	- , 063255	२५५४३७
x S						7
2 ^x ک ^x				÷i		
5.6	1504C4		-1. k/c230	-2.190755	1.365/13	5.144960
ن مر	2251.0	1. (0,399	1.27 2.5			
ير تر	. 559976	-1. 31144	2.05000	2.2056 2	-1.0 52.0	. 550206
			2.32			-22
3.	.:9765	2.() 32]	-1.3231	(5) (1)	-1.093253	1.587:00
<u>-</u> 1	н					

	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
l	11	11	n	u	H	!!
9 _x			7			
×						
х		-				
9x 5x 1x 2x 2x 1x	1					
*s						-1
۲Ļ				н		
36	-24.169922	16.944042	1,675236	3.768372	- 284031	ı ·
y ₅	-11.964016	10,824468	. 379855	7.053425	135657	-7.514575
7.7	29.756046	-24.255224	-1.833603	-6.050762	. 654662	5.277069
5.3	-24.435530	19. 572819	6.153491	7.06424	340534	-5. 1.64069
Š	-20,926330	15,605042	1.540599	4. 62 JUTE	-2.525-	-3.5.7300
; - 1	53,138052	641164.04-	-6.915629	-13, 101, 331	3. 6270C7	13.012863

Table 5f: The basic solution obtained after 6 pivots, x1, x2, x4, x5, x6, x3.