Last time: Suspension flow, or flow under a function.

X-a compact metric space, $f: X \to X$ a homeomorphism $r: X \to (0, \infty)$ a continuous function, called the roof (or ceiling) function. Note: r is bounded away from O. We consider the quotient space

 $\tilde{X} = X_{r,f} = \frac{1}{2} (x,s)$: $x \in X$, $0 \le s \le r(x) \frac{1}{2} / (x,r(x)) \sim (f(x),0)$. Under the suspension flow $\tilde{P} = \frac{1}{2} \psi + \frac{1}{2}$ on \tilde{X} , points move along vertical segments with unit speed until they reach the "roof".

Some properties of Q=29ty.

- \mathbb{P} has no fixed points. If $x \in X$ is a fixed point for \mathbb{F} , then (x,0) is a periodic point for \mathbb{P} with minimal period r(x).
- $x \in X$ is periodic for $f \iff (x,0) \in X$ is periodic for $P \iff$ f or any $s \in [0,r(x))$, (x,s) is periodic for PIf n is the min. period of x, then the min. period of (x,0) is $\underset{i=0}{\overset{n-1}{\geq}} r(f^{i}(x))$.
- The orbit of x∈ X under f is dense in X ∈ > the orbit of (x,0)∈ X under Q is dense in X. So Q is top, transitive ←> f is top, transitive.
- Top. mixing

 If r=1 (or is a constant function), then P is not top. mixing, even if f is top. mixing. Indeed, let $U=V=X\times(0,\frac{1}{4})\subset X$.

 Then there is no T s.t. $P^{+}(U)\cap V\neq \emptyset$ for all $t\geqslant T$.

 In general, top. mixing for P depends on $f:X\rightarrow X$ and on r.

Equivalence for flows.

Def Two flows 24ty on M and 24ty on N are are top, conjugate, or C° flow equivalent if there exists a homeomorphism $h: M \to V$ such that $\psi t = h^{-1} \circ \psi t \circ h$ for all $t \in \mathbb{R}$.

Note Two Cⁿ flows { 9t} and { 4t} are C^m, m≤n, flow equivalent if there exists a C^m diffeomorphism h: M → N s.t. 4t=h'o 4to h for all t.

Ex The suspension flow $\{4^t\}$ over $R_{\star}: S^1 \to S^1$ with r=1 and the linear flow $\{T_{(a,1)}\}$ on T^2 are top. conjugate. In fact, they are C^{∞} flow equivalent

Time change.

- Def. Let 24th and 24th be two flows on M. We say that $\{ \forall t \}$ is a time change of $\{ \forall t \}$ if for each $x \in M$ the orbits $O^{\varphi}(x) = \{ \Psi^{t}(x) \}_{t \in \mathbb{R}}$ and $O^{\varphi}(x) = \{ \Psi^{t}(x) \}_{t \in \mathbb{R}}$ coincide and are traced in the same direction as t increases.
- Note let 29ty be a flow on M, and let x ∈ M. Then there are only 3 possibilities: ① x is fixed by 24ty, (2) 4t(x) ≠ x for all tell, (3) x is periodic with a min. period T>0.
 - If {Y+} is a time change of { 4+4, then their fixed points are the same, and their non-fixed periodic pts are the same, but periods may be different.

Orbit equivalence.

- Det two flows 24ty on M and 24ty on N are <u>Corbit equivalent</u>
 if there exists a homeomorphism h: M > N s.t. the flow 24ty on M
 given by 4t = hout of is a time change of 24ty.
- Note of maps the orbits of {9t] to the orbits of {4t}, preserving the direction.

 Co flow equivalence (top. conjugacy) , co orbit equivalence.
- Ex Two suspension flows over $f: X \rightarrow X$ $\{\psi t\}$ with roof function r(x), and $\{\psi t\}$ with roof function 1. The map $h(x,s) = (x, \frac{s}{r(x)})$

from M to N gives C'orbit equivalence, but not top conjugacy.

Note: {4t} and {4t} may or may not be top, conjugate.

a certain relation between r(x) and 1 ensures top, conjugacy.