Logic control of electro-pneumatic systems

Kjartan Halvorsen

October 20, 2020

Cheese pressing example, sequence A+A-

From FESTO Didactic

They Relay

Other key components

Sources: FESTO didactic, electroschematics.com, automation-insights.blog

Proximity sensor Limit switch Solenoid valve

A logic control loop

Cheese pressing example - Variables

Activating solenoid UA+ extends the cylinder, activating UA- retracts the cylinder.

State variable

$$x = \begin{cases} 0 & \text{Cylinder retracted} \\ 1 & \text{Cylinder extended} \end{cases}$$

Control signal

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
,

with

$$u_1 = egin{cases} 0 & ext{Don't activate UA+} \ 1 & ext{Activate UA+} \ u_2 = egin{cases} 0 & ext{Don't activate UA-} \ 1 & ext{Activate UA-} \end{cases}$$

Command signal

$$u_{c} = \begin{cases} 0 & \text{Button unpushed} \\ 1 & \text{Button pushed} \end{cases}.$$

Cheese pressing example - Plant dynamics and control law

Activating solenoid UA+ extends the cylinder, activating UA- retracts the cylinder.

Plant dynamics $x_{k+1} = g(x_k, u_k)$

		state		
$u_{1,k}$	$u_{2,k}$	Xk	x_{k+1}	
0	0	0	0	
0	1	0	0	
1	0	0	1	
(1)	(1)	(0)	(0)	
0	0	1	1	
0	1	1	0	
1	0	1	1	
(1)	(1)	(1)	(1)	

Control law $u_k = f(x, u_c)$

Χ	Иc	u_1	<i>u</i> ₂
0	0	0	1
1	0	0	1
0	1	1	0
1	1	0	1

$$u_1 = u_2 = u_2 = u_3 = u_3$$

Cheese pressing example - implementing the control law

Intermezzo - An electrical circuit with memory

Intermezzo - An electrical circuit with memory

R

Truth table

Labi	_		
X	Y	R_k	R_{k+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

The lab assignment

Implementing the sequence A+B+B-A-

Implementing the sequence A+B+B-A-, control signal

Control signal

$$u = \begin{bmatrix} u_A + & u_A - & u_B + & u_B - \end{bmatrix}^T,$$

with

$$u_A + = \begin{cases} 0 & \text{Solenoid extending A is not activated} \\ 1 & \text{Solenoid extending A is activated} \end{cases}$$

and similar for B

Implementing the sequence A+B+B-A-, the problem

 $u_{c,k}$

The correct control signal (action) is not uniquely defined by the position of the cylinders

Implementing the sequence A+B+|B-A-

Dividing the sequence into groups (a.k.a. cascade method) Each group contains as many steps as possible without repeating a letter.

$$A+B+$$
 | $B-A-$ Group 2

The cascade method applied to A+A-

The cascade method applied to A+A-

Divide the sequence is to groups, where each group is as long as possible without repeating the same letter.

The cascade method applied to A+A- with delays

Let's add some delays. The process is cyclic and automatic. It takes 4 seconds to replace the mold under the press. The cheese needs to be pressed during 2 seconds before the cylinder retracts.

$$T_{4s}$$
 A+ T_{2s} A-Group 1 Group 2

State variables

State variables

$$x = \begin{bmatrix} x_A & x_{G1} & x_{G2} & x_{T4} & x_{T2} \end{bmatrix}^T,$$

where

$$x_A = \begin{cases} 0 & \text{Cylinder A retracted} \\ 1 & \text{Cylinder A extended} \end{cases}$$

$$x_{Gi} = \begin{cases} 0 & \text{Group } i \text{ not active} \\ 1 & \text{Group } i \text{ active} \end{cases}$$

$$x_{Ti} = \begin{cases} 0 & \text{Timer of } i \text{ s not completed} \\ 1 & \text{Timer of } i \text{ s completed} \end{cases}$$

State transitions

Group transitions

The timers

The control law

Implementing the sequence A+B+|B-A-, state variables

State variables

$$x = \begin{bmatrix} x_A & x_B & x_{G1} & x_{G2} \end{bmatrix}^T$$

with

$$x_{\{A,B\}} = egin{cases} 0 & \text{Cylinder } \{A,B\} \text{ retracted} \\ 1 & \text{Cylinder } \{A,B\} \text{ extended} \end{cases}$$
 $x_{Gi} = egin{cases} 0 & \text{Group } i \text{ not active} \\ 1 & \text{Group } i \text{ active} \end{cases}$

State transitions

Implementing the sequence A+B+|B-A-, control law

State transitions

Control law

x_A	x_B	x_{G1}	x_{G2}	u_A+	u_A-	$u_B +$	u_B-
0	0	1	0				
1	0	1	0				
1	1	0	1				
1	0	0	1				

Implementing the control law

Implementing the group transitions

Implementing the proximity sensor circuit

