Recitation 1

Gradients and Directional Derivatives

Brett Bernstein

CDS at NYU

January 25, 2017

1 / 8

Intro Question

Question

We are given the data set $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We want to fit a linear function to this data by performing empirical risk minimization. More precisely, we are using the hypothesis space $\mathcal{F} = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}$ and the loss function $\ell(a, y) = (a - y)^2$. Given an initial guess \tilde{w} for the empirical risk minimizing parameter vector, how could we improve our guess?

1D Linear Approximation By Derivative

Multiple Possible Directions for $f: \mathbb{R}^2 \to \mathbb{R}$

Directional Derivative as a Slope of a Slice

Tangent Plane for $f: \mathbb{R}^2 \to \mathbb{R}$

Critical Points of $f: \mathbb{R}^2 \to \mathbb{R}$

Computing Gradients

Question

For each of the following functions, compute the gradient.

 $f: \mathbb{R}^3 \to \mathbb{R}$ is given by

$$f(x_1, x_2, x_3) = \log(1 + e^{x_1 + 2x_2 + 3x_3}).$$

② $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$f(x) = ||Ax - y||_2^2 = (Ax - y)^T (Ax - y) = x^T A^T Ax - 2y^T Ax + y^T y,$$

for some $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$.

4□ > 4□ > 4 = > 4 = > = 90