Control Unit

1

Control Unit

- Processor must have some means of generating the control signals needed in the proper sequence
- Two categories of approaches used to generate the control signals in proper sequence:
 - Hardwired control
 - Microprogrammed control

2

Hardwired Control

Control sequence for execution of ADD R1, [R2]:

```
T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
T2 Z_{out}, PC_{in}, Y_{in}, MDR_{inE}, WMFC
T3 MDR_{out}, IR_{in}
```

```
T4 R2_{out}, MAR_{in}, Read
T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
T6 MDR_{out}, Select Y, Add, Z_{in}
T7 Z_{out}, R1_{in}, End
```

- Counter can be used to keep track of the control steps
- Each state or count, of this counter corresponds to one control step

3

3

Hardwired Control Unit Organization

- Control signals are obtained using:
 - Contents of control step counter
 - Contents of the instruction register
 - Contents of condition flags
 - External input signals like MFC and interrupt requests
- The decoder/encoder block is a combinational circuit that generates the required control outputs, depending on the state of all its inputs

4

Hardwired Control Unit Organization

- · Step decoder:
 - Provides a separate signal line for each step or time slot in the control sequence
- Instruction decoder:
 - Its output consists of separate lines for each machine instruction
- For any instruction in IR, one of the output lines INS1 to INSm is selected (i.e. set to 1) and all other lines are set to 0

5

5

Hardwired Control Unit Organization

- Encoder:
 - Input signals to encoder block are combined to generate individual control signals Y_{in}, Z_{in}, PC_{out}, Add, End and so on

6

Design of Encoder

- Control sequence for ADD R1, [R2] Control sequence for JMP next
- T1 PC_{out} , MAR_{in} , Read, Select 4, Add, Z_{in}
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 R2_{out} , MAR_{in} , Read
- T5 R1_{out} , Y_{in} , MDR_{inE} , WMFC
- T6 MDR_{out}, Select Y, Add, Z_{in}
- T7 Z_{out} , $R1_{in}$, End

Example: Logic for Generating control signal, Z_{in}

 $Z_{in} = T1 + T6 . ADD + T4.JMP + ...$

- T1 PCout, MARin, Read, Select 4, Add, Zin
- T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC
- T3 MDR_{out} , IR_{in}
- T4 Offset_filed_of_IR_{out} , Add, Select Y, Z_{in}
- T5 Z_{out} , PC_{in} , End

7

Design of Encoder

- Example: Generating control signal, End
- Control sequence for JN next
- T1 PC_{out} , MAR_{in} , Read, Select 4, Add, Z_{in}
 - T2 Zout , PCin , Yin , MDRinE , WMFC
 - T3 MDR_{out} , IR_{in}
- End = T7.ADD + T5.JMP + $(T5.N + T4.\overline{N}).JN + ...$
- T4 Offset_filed_of_IR_{out} , Add, Select Y, Z_{in} , If N=0 then End
- T5 Z_{out} , PC_{in} , End

Generation of Control Signals

• Example: T1 PC_{out} , MAR_{in} , Read, Select 4, Add, Z_{in}

```
PC_{out} = T1 + ...
MAR_{in} = T1 + T4.ADD + ...
Select 4 = T1 + ...
Add = T1 + T6.ADD + T4.(JMP + JN + ...) + ...
Z_{in} = T1 + T6.ADD + T4.JMP + ...
```


9

Generation of Control Signals

• Example: ADD R1, [R2]

T6 MDR_{out}, Select Y, Add, Z_{in}

 $\begin{aligned} & \text{MDR}_{out} = \text{T3} + \text{T6.ADD} + ... \\ & \text{Select Y} = \text{T6.ADD} + \text{T4.} \left(\text{JMP} + \text{JN} + ... \right) + ... \\ & \text{Add} = \text{T1} + \text{T6.ADD} + \text{T4.} \left(\text{JMP} + \text{JN} + ... \right) + ... \\ & \textbf{Z}_{in} = \text{T1} + \text{T6.ADD} + \text{T4.JMP} + ... \end{aligned}$

Advantages and Disadvantages

- The hardwired control unit operate in high speed
- Useful when the instructions in the set are limited and simple
- · It has less flexibility
- It is used in RISC processors

11

11

Microprogrammed Control Unit

Microprogrammed Control Unit

- · Control signals are generated by a program
- The control signals are stored as control word (CW) in a control memory (control store)
- Control sequence for execution of ADD R1, [R2]:

```
T1 PC_{out}, MAR_{in}, Read, Select 4, Add, Z_{in}
T2 Z_{out}, PC_{in}, Y_{in}, MDR_{inE}, WMFC
T3 MDR_{out}, IR_{in}

T4 R2_{out}, MAR_{in}, Read
T5 R1_{out}, Y_{in}, MDR_{inE}, WMFC
T6 MDR_{out}, Select Y, Add, Z_{in}
T7 Z_{out}, R1_{in}, End
```

13

13

Control Word and Control Memory

• Control word is a word whose individual bits represents the various control signals

```
T2 Z<sub>out</sub>, PC<sub>in</sub>, Y<sub>in</sub>, MDR<sub>inE</sub>, WMFC
T3 MDR<sub>out</sub>, IR<sub>in</sub>

C<sub>in</sub> PC<sub>out</sub> MAR<sub>in</sub> Read MDR<sub>out</sub> IR<sub>in</sub> Y<sub>in</sub> Select 4 Select Y Add Z<sub>in</sub> Z<sub>out</sub> R1<sub>in</sub> R1<sub>out</sub> R2
```

T1 PCout, MARin, Read, Select 4, Add, Zin

PC	PCout	MAR _{in}	Read	MDR _{out}	IR_{ii}	, Y _{in}	Select 4	Select Y	Add	Zin	\mathbf{Z}_{out}	R1	, K1 _o	ut R2 _{out}	WMFC	End	•••
0	1	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	•••
1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	•••
0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	•••

- Each control word is called as microinstruction
- All the sequence of control words corresponding to a machine instruction is called microroutine
- All the microinstructions are stored in control memory in a specific location

Generation of Control Signals for ADD R1, [R2] T1 PC_{out} , MAR_{in} , Read, Select 4, Add, Z_{in} T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC T3 MDR_{out} , IR_{in} T4 R2_{out} , MAR_{in} , Read T5 $R1_{out}$, Y_{in} , MDR_{inE} , WMFCT6 MDR_{out} , Select Y, Add, Z_{in} T7 Z_{out} , $R1_{in}$, EndControl Memory Select Select

Y Add Z_{in} Z_{out} R1_{in} R1_{out} R2_{out} WMFC End Branch 0000 1 0 0001 1 1 0002 0 0 1 0 0 0 0 0 0 0 L1 1 0 0 0 ••• L1+1 1 0 0 0 0 0 0 0 0 0 0 1 L1+1 1 0 0 0 1 0 0 0 0 1 0 ••• L1+2 0 ••• L1+3 1 ••• 0000 0 0 0 0 0 0 0 1 1 0

Generation of Control Signals for ADD R1, [R2] T1 PC_{out} , MAR_{in} , Read, Select 4, Add, Z_{in} T2 Z_{out} , PC_{in} , Y_{in} , MDR_{inE} , WMFC T3 MDR_{out} , IR_{in} T4 R2_{out} , MAR_{in} , Read T5 $R1_{out}$, Y_{in} , MDR_{inE} , WMFCT6 MDR_{out} , Select Y, Add, Z_{in} T7 Z_{out} , $R1_{in}$, EndControl Memory Select Select

y Add Z_{in} Z_{out} R1_{in} R1_{out} R2_{out} WMFC End Branch 0000 1 0 0001 1 1 0002 0 0 1 0 0 0 0 0 0 0 L1 1 0 0 0 ••• L1+1 1 0 0 0 0 0 0 0 0 0 0 1 L1+1 1 0 0 0 1 0 0 0 0 1 0 ••• L1+2 0 ••• L1+3 1 ••• 0000 0 0 0 0 0 0 0 1 1 0

23

Advantages and Disadvantages

- The Microprogrammed control unit is more compact and flexible
- Useful when the instructions in the set are complex and varying in length
- · It is slow
- · It is used in CISC processors