Mathematics/Statistics Bootcamp Part III: Distributions

Steven Winter Christine Shen

Department of Statistical Science Duke University

MSS Orientation, August 2022

Outline

Random Variables

Univariate Distributions

Multivariate Distributions

Building New Variables

Random Variables

Random Variables

A **random variable** is a (measurable) function from a sample space to an outcome space (\mathbb{R} , \mathbb{Z} , sentences, brain scans, etc).

Common notation:

- $ightharpoonup \Omega$ is the set of all possible outcomes of an experiment.
- ω ∈ Ω is a particular outcome.
- $Y = Y(\omega)$ is a function of ω (the random variable).

Imagine our experiment is rolling two dice. What is $\Omega?$ Give an example of ω and a few random variables.

Cumulative Distribution Functions

The **cumulative distribution function** (CDF) is

$$F_X(x) = P_X(X \le x) \quad \forall x \in \mathbb{R}$$

A function $F: \mathbb{R} \to [0,1]$ is a CDF if and only if the following are true:

- $| \lim_{x \to -\infty} F(x) = 0 \text{ and } \lim_{x \to \infty} F(x) = 1.$
- ightharpoonup F(x) is non-decreasing.
- \triangleright F(x) is right continuous.

A random variable is **continuous** if $F_X(x)$ is continuous. A random variable is **discrete** if $F_X(x)$ is a step function.

Example

Consider flipping a biased coin. Let p denote the probability of getting a head. If we define

X = number of tosses until a head,

then for $x \in \mathbb{N}$,

$$P(X \le x) = p + (1 - p)p + (1 - p)^{2}p + \dots + \dots + (1 - p)^{x - 1}p$$

$$= \sum_{i=1}^{x} (1 - p)^{i-1}p$$

$$= 1 - (1 - p)^{x}.$$

Probability Density/Mass Functions

The **probability mass function** (PMF) for a discrete random variable is

$$f_X(x) = P(X = x); \quad \forall x \in \Omega.$$

The **probability density function** (pdf) for an (absolutely) continuous random variable is a function f_X such that

$$F_X(x) = \int_{-\infty}^x f_X(t) dt; \quad \forall x \in \Omega.$$

Recall PMFs/PDFs sum/integrate to 1. Can help you avoid calculus.

Univariate Distributions

Bernoulli Distribution

Represents a single coin flip with success (X = 1) probability p.

$$X \sim \operatorname{Bernoulli}(p)$$
 $P(X = x) = p^{x}(1-p)^{1-x}, \quad x \in \{0, 1\}$ $\mathbb{E}[X] = p$ $\mathbb{V}[X] = p(1-p)$

Binomial Distribution

Counts the number of successes in n independent trials all with the same success probability p.

$$X \sim \text{Binomial}(n, p)$$

$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}, \quad x \in \{0, 1, \dots, n\}$$

$$\mathbb{E}[X] = np$$

$$\mathbb{V}[X] = np(1-p)$$

Can decompose $X = \sum_{i=1}^{n} Y_i$ where the Y_i are iid Bernoulli(p).

Poisson Distribution

Counts events occurring with rate λ :

$$X \sim \operatorname{Poisson}(\lambda)$$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x \in \{0, 1, 2, \ldots\}$$

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

Not always a great fit: real data are often zero-inflated and over-dispersed.

If
$$X \sim Po(\lambda)$$
 and $Y \sim Po(\eta)$ are independent, then $X + Y \sim Po(\lambda + \eta)$.

Geometric Distribution

Counts the number of failures until the first success in sequential independent Bernoulli trials with success probability p.

$$X \sim \mathsf{Geom}(p)$$
 $P(X = k) = (1 - p)^k p, \quad k \in \{0, 1, 2, \ldots\}$
 $\mathbb{E}[X] = \frac{1 - p}{p}$
 $\mathbb{V}[X] = \frac{1 - p}{p^2}$

Caution: some parameterizations start at 1.

Normal Distributions

A random variable $X \sim N(\mu, \sigma^2)$ has PDF:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Sometimes write in terms of **precision** (inverse variance): $X \sim N(\mu, \phi^{-1})$.

If $Z \sim N(0,1)$ then the distribution of Z is **standard normal.**

Normal Distributions Properties

Transformations: If $X \sim N(\mu, \sigma^2)$, then

$$a + bX \sim N(a + b\mu, b^2\sigma^2).$$

Decompositions: Can always decompose $X \sim N(\mu, \sigma^2)$ as $X = \mu + \sigma Z$ with $Z \sim N(0, 1)$.

Sums: If $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\eta, \tau^2)$ are jointly normal, then $X + Y \sim N(\mu + \eta, \sigma^2 + \tau^2 + 2\text{Cov}[X, Y]).$

Independence: *Jointly* normal random variables are independent if and only if they are uncorrelated.

Chi-Squared Distribution

If Z_1, Z_2, \dots, Z_k are independent, standard normal random variables, then

$$\sum_{j=1}^k Z_j^2 \sim \chi_k^2$$

follows a Chi-Squared distribution with k degrees of freedom. Special case of the Gamma distribution.

You will see statements like $X\sim c\chi_k^2$ in linear models. This means $X/c\sim\chi_k^2$.

Gamma Distribution

A random variable $X \sim \text{Gamma}(\alpha, \beta)$ has PDF:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp\{-x\beta\}$$

$$\mathbb{E}[X] = \frac{\alpha}{\beta}$$

$$\mathbb{V}[X] = \frac{\alpha}{\beta^2}$$

$$\alpha, \beta > 0$$

$$x \in (0, \infty)$$

This is the rate parameterization. You will also see the scale parameterization with $\theta=1/\beta$.

If $X \sim \text{Gamma}(1, \beta)$, then $X \sim \text{Exponential}(\lambda = \beta)$.

Gamma Distribution Properties (Optional)

Useful facts:

- ▶ If $X \sim \operatorname{Gamma}(\alpha_1, \beta)$ and $Y \sim \operatorname{Gamma}(\alpha_2, \beta)$ are independent, then $X + Y \sim \operatorname{Gamma}(\alpha_1 + \alpha_2, \beta)$. Consequence: sum of independent exponentials is Gamma.
- ▶ If $\alpha = \frac{\nu}{2}$ and $\beta = \frac{1}{2}$ then $X \sim \chi^2_{\nu}$.
- ▶ If $X \sim \operatorname{Gamma}(\alpha_1, \beta)$ and $Y \sim \operatorname{Gamma}(\alpha_2, \beta)$ are independent, then $X/(X + Y) \sim \operatorname{Beta}(\alpha_1, \alpha_2)$.
- ▶ Let $X_i \sim \operatorname{Gamma}(\alpha_i, \beta)$, i = 1, ..., n be independent. Set $T = \sum_i X_i$. Then $(X_1/T, ..., X_n/T) \sim \operatorname{Dirichlet}(\alpha_1, ...\alpha_n)$.
- ▶ If $X \sim \text{Gamma}(\alpha, \beta)$, then $\frac{1}{X} \sim \text{Inverse} \text{Gamma}(\alpha, \beta)$.

Student's-t Distribution

A random variable T follows a Student's-t distribution with ν degrees of freedom if

$$T = rac{Z}{\sqrt{V/
u}}, \ Z \sim N(0,1), \ V \sim \chi^2_
u$$

and Z and V are independent.

Like a normal, but with heavier tails. The $\nu=1$ case is a Cauchy distribution with undefined mean and variance.

As
$$\nu \to \infty$$
, $T \to N(0,1)$.

Useful for confidence intervals with unknown variance.

F Distribution

A random variable X follows a F-distribution with numerator degrees of freedom ν_1 and denominator degrees of freedom ν_2 if

$$X = \frac{V_1/\nu_1}{V_2/\nu_2}$$

where V_1 and V_2 are independent χ^2 random variables with degrees of freedom equal to ν_1 and ν_2 respectively.

Useful for model selection, e.g. comparing variances in ANOVA.

Beta Distribution

A random variable $X \sim \text{Beta}(\alpha, \beta)$ has PDF:

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad x \in (0, 1), \quad \alpha, \beta > 0$$

$$\mathbb{E}[X] = \frac{\alpha}{\alpha + \beta}$$

$$\mathbb{V}[X] = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$

Useful for eliciting probability distributions for proportions.

Exercises

- 1. Give an example of a random variable which is not discrete or continuous.
- 2. Let $X_1, ..., X_n$ be iid $N(\mu, \sigma^2)$. Find the distributions of
 - a) $\bar{X} = \sum_{i=1}^{n} X_i / n$.
 - b) $(X_i \overline{X})^2$. Recall $Cov[\cdot, \cdot]$ is linear in both components.
 - c) $(X_i \mu)/(X_j \mu)$
- 3. A Weibull(α, β) distribution has density

$$f(x) = \alpha \beta (\beta x)^{\alpha - 1} \exp(-(\beta x)^{\alpha}).$$

where $\alpha, \beta, x > 0$. Find the CDF.

- 1. Many answers e.g., let $X \sim Po(\lambda)$ and $Y \sim N(\mu, \sigma^2)$ be independent, then set Z = X + Y.
- 2. a) Since the X_i are independent, $\bar{X} \sim N(\mu, \sigma^2/n)$.
 - b) First calculate $Cov[X_i, \bar{X}] = \sigma^2/n$. Then

$$X_i - \bar{X} \sim N\left(0, \sigma^2 + \frac{\sigma^2}{n} - \frac{2\sigma^2}{n}\right) = N\left(0, \frac{n-1}{n}\sigma^2\right)$$

Therefore $(X_i - \bar{X})^2 \sim ((n-1)\sigma^2/n)\chi_1^2$.

c) If i = j then this is a constant variable equal to 1. If $i \neq j$,

$$\frac{X_i - \mu}{X_j - \mu} = \frac{(X_i - \mu)/\sigma}{(X_j - \mu)/\sigma}$$

is a ratio of two independent standard normals, Z_1 and Z_2 . In distribution, we have

$$rac{Z_1}{Z_2} = rac{Z_1}{\sqrt{Z_2^2/1}} = rac{N(0,1)}{\sqrt{\chi_1^2/1}} \sim t_1.$$

Solutions (Optional)

2. c) Problem: $Z_1/\sqrt{Z_2^2}=Z_1/|Z_2|$, **not** $Z_1/Z_2!$ Need to check equality in distribution, i.e. $P[Z_1/Z_2 \le x]=P[Z_1/|Z_2| \le x]$.

Calculate

$$P[Z_1/Z_2 \le x] = P[Z_1/Z_2 \le x, Z_2 > 0] + P[Z_1/Z_2 \le x, Z_2 < 0]$$

= $P[Z_1/|Z_2| \le x, Z_2 > 0] + P[-Z_1/|Z_2| \le x, Z_2 < 0]$

Note $-Z_1 \sim N(0,1)$ is still independent of Z_2 , so $-Z_1/|Z_2|$ has the same distribution as Z_1/Z_2 . Thus

$$P[Z_1/Z_2 \le x] = P[Z_1/|Z_2| \le x, Z_2 > 0] + P[Z_1/|Z_2| \le x, Z_2 < 0]$$

= $P[Z_1/|Z_2| \le x]$

3. Note

$$\frac{d}{dx} \exp(-(\beta x)^{\alpha}) = \exp(-(\beta x)^{\alpha}) \frac{d}{dx} \left(-(\beta x)^{\alpha} \right)$$

$$= \exp(-(\beta x)^{\alpha}) (-\alpha (\beta x)^{\alpha - 1}) \frac{d}{dx} \left(\beta x \right)$$

$$= -\alpha \beta (\beta x)^{\alpha - 1} \exp(-(\beta x)^{\alpha})$$

Therefore the CDF is

$$F(x) = \int_{-\infty}^{x} f(t)dt = 1 - \exp(-(\beta x)^{\alpha})$$

for x > 0 and zero otherwise.

Multivariate Distributions

Random Vectors

A *d*-dimensional **random vector** is a collection of *d* random variables:

$$\mathbf{X} = (X_1, \cdots, X_d)^T$$

The joint distribution function of the random vector \mathbf{X} is

$$F_X(\mathbf{x}) = F_X(x_1, \dots, x_d)$$

$$= P(X_1 \le x_1, \dots, X_d \le x_d)$$

$$= P(\mathbf{X} \le \mathbf{x})$$

If F_X is absolutely continuous, then the joint density function f_X of **X** is

$$f_X(\mathbf{x}) = f_X(x_1, \dots, x_d) = \frac{\partial^d F_X(x_1, \dots, x_d)}{\partial x_1 \cdots \partial x_d}$$

Independence

We can find the **marginal density** of a random variable by integrating/summing out the others. For example, if we have a joint bivariate density $f_{X,Y}(x,y)$, then

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$

The components of a random vector **X** are **independent** if the joint CDF (equivalently PDF) factors as a product of marginals:

$$F_X(\mathbf{x}) = \prod_{i=1}^d F_i(x_i), \quad f_X(\mathbf{x}) = \prod_{i=1}^d f_i(x_i)$$

Multivariate Moments

The expected value of a random vector \mathbf{X} is

$$\mu_X = E(\mathbf{X}) = (E(X_1), \dots, E(X_d)) = (\mu_1, \dots, \mu_d)^T$$

and the $d \times d$ covariance matrix is

$$\mathbf{\Sigma}_X = \mathsf{Cov}(\mathbf{X}, \mathbf{X}) = E[(\mathbf{X} - \mu_X)(\mathbf{X} - \mu_X)^T]$$

If $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, then

$$\mu_Y = \mathbf{A}\mu_{\mathsf{X}} + \mathbf{b},$$

$$\mathbf{\Sigma}_{Y} = \mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}\mathbf{A}^{T}.$$

Multivariate Normal Distribution

Let **Z** be a standard normal vector - i.e., $\mathbf{Z} = (Z_1, ..., Z_n)$ where the Z_i are iid standard normal.

A random vector ${\bf X}$ has a multivariate normal distribution with mean vector μ and positive definite symmetric covariance matrix ${\bf \Sigma}$ if and only if

$$\mathbf{X} = \mu + L\mathbf{Z}$$

where $\mathbf{L}\mathbf{L}^T = \mathbf{\Sigma}$.

We write $\mathbf{X} \sim N_n(\mu, \mathbf{\Sigma})$. The density is

$$f(\mathbf{x}) = (2\pi)^{-n/2} |\mathbf{\Sigma}|^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)}.$$

Multivariate Normal Properties

If $\mathbf{X} \sim \mathcal{N}(\mu_{\mathbf{X}}, \mathbf{\Sigma}_{\mathbf{X}})$, then

$$\mathbf{AX} + \mathbf{b} \sim N(\mathbf{A}\mu_{\mathbf{X}} + \mathbf{b}, \mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}\mathbf{A}^T)$$

Note: can always rotate X to make coordinates independent.

If $\mathbf{Y} \sim \mathcal{N}(\mu_{\mathbf{Y}}, \mathbf{\Sigma}_{\mathbf{Y}})$ is independent of \mathbf{X} , then

$$\mathbf{X} + \mathbf{Y} \sim \mathcal{N}(\mu_{\mathbf{X}} + \mu_{\mathbf{Y}}, \mathbf{\Sigma}_{\mathbf{X}} + \mathbf{\Sigma}_{\mathbf{Y}})$$

Sum of correlated MVN is still MVN, provided \boldsymbol{X} and \boldsymbol{Y} are jointly normal.

If X and Y are jointly normal, then X|Y and Y|X are also normal.¹

High Dimensional Vectors (Optional)

Let $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$ by an *n*-dimensional normal vector. Samples of each component are clustered around $\mathbf{0}$.

Intuitively, we expect samples of **Z** to be clustered around $\mathbf{0}_n$. This is wrong!

In high dimensions, **Z** concentrates around an n-1 dimensional sphere of radius \sqrt{n} :

$$N(\mathbf{0},\mathbf{I}_n) \approx Unif(\sqrt{n}\mathbb{S}^{n-1})$$

Figure from "High-Dimensional Probability" by Roman Vershynin.

Exercises

Consider the linear model $\mathbf{Y} \sim N(\mathbf{X}\beta, \sigma^2\mathbf{I})$ where σ^2 is known, $\mathbf{Y} \in \mathbb{R}^n$ and $\mathbf{X} \in \mathbb{R}^{n \times p}$ (rank $p \leq n$). We found

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

minimized $||\mathbf{Y} - \mathbf{X}\beta||^2$, giving fitted values

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{PY}.$$

Find distributions for the following:

- 1. $\hat{\beta}$, $\hat{\beta}_1$, and $(\hat{\beta}_1, \hat{\beta}_7)^T$ (if $p \geq 7$).
- 2. $\hat{\mathbf{Y}}$ and $\mathbf{Y} \hat{\mathbf{Y}} = (\mathbf{I} \mathbf{P})\mathbf{Y}$. Guess the distribution of $\mathbf{Y}^T(\mathbf{I} \mathbf{P})\mathbf{Y}$.
- 3. $(\mathbf{X}^T \mathbf{X})^{1/2} (\hat{\beta} \beta)$ and $||\mathbf{X} (\hat{\beta} \beta)||^2$.

What do these quantities mean?

1. These are the estimated coefficients - i.e., our best guess at the slope β after seeing the data.

By linearity,

$$\begin{split} \hat{\beta} &\sim \textit{N}((\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}\beta, (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\sigma^{2}\mathbf{I}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}) \\ &\sim \textit{N}(\beta, \sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1}). \end{split}$$

Consequently,

$$\begin{split} \hat{\beta}_1 &\sim \textit{N}(\beta_1, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{1,1}) \\ \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_7 \end{pmatrix} &\sim \textit{N}\left(\begin{pmatrix} \beta_1 \\ \beta_7 \end{pmatrix}, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{(1,7),(1,7)}\right) \end{split}$$

2. By linearity,

$$\hat{\mathbf{Y}} \sim \textit{N}(\mathbf{X}\beta, \sigma^2\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T) \sim \textit{N}(\mathbf{X}\beta, \sigma^2\mathbf{P})$$

These our predicted values along the line $\mathbf{Y} = \mathbf{X}\beta$.

Can compute $\mathbf{Y} - \hat{\mathbf{Y}}$ by finding the covariance or by linearity:

$$(I - P)Y \sim N((I - P)X\beta, \sigma^2(I - P)(I - P)^T)$$

 $\sim N(\mathbf{0}, \sigma^2(I - P))$

These are the residuals/errors of our predictions.

One can show the sum of squared residuals, $\mathbf{Y}^T(\mathbf{I} - \mathbf{P})\mathbf{Y}$, is proportional to a χ^2_{n-p} . Proof: apply spectral theorem or compact SVD to $\mathbf{I} - \mathbf{P}$.

3. From part 1),

$$(\mathbf{X}^T\mathbf{X})^{1/2}(\hat{\beta}-\beta) \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$

Therefore $||X(\hat{\beta} - \beta)||^2 \sim \sigma^2 \chi_p^2$. This is the distance our predictions are away from the true mean of the line.

Building New Variables

Univariate Change of Variables

If Y = g(X) for some monotone g, then

$$F_Y(y) = P_Y[Y \le y] = P_X[g(X) \le y] = P_X[X \le g^{-1}(y)]$$

= $F_X(g^{-1}(y))$.

Taking derivatives,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} (g^{-1}(y)) \right|.$$

E.g. if
$$Y = g(X) = 2X$$
 then $f_Y(y) = f_X(y/2)/2$.

If g is not monotone, then

$$f_Y(y) = \sum_{k=1}^{n(y)} f_X(g_k^{-1}(y)) \left| \frac{d}{dy} (g_k^{-1}(y)) \right|.$$

where $g_1^{-1}(y),...,g_{n(y)}^{-1}(y)$ are the n(y) solutions to g(x)=y.

Example

Let $X \sim \text{Normal}(0,1)$ and $Y = g(X) = X^2$.

If y = g(x), then $x = g^{-1}(y) = \pm \sqrt{y}$. Let $g_1^{-1}(y) = -\sqrt{y}$ and $g_2^{-1}(y) = \sqrt{y}$. Almost always n(y) = 2. Therefore

$$f_{Y}(y) = f_{X}(g_{1}^{-1}(y)) \left| \frac{d}{dx}(g_{1}^{-1}(y)) \right| + f_{X}(g_{2}^{-1}(y)) \left| \frac{d}{dx}(g_{2}^{-1}(y)) \right|$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-(-\sqrt{y})^{2}}{2}\right) \left| -\frac{1}{2\sqrt{y}} \right| + \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-(\sqrt{y})^{2}}{2}\right) \left| \frac{1}{2\sqrt{y}} \right|$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} \exp\left(\frac{-y}{2}\right)$$

This is a Gamma(1/2, 1/2) (equivalently χ_1^2) density.

Multivariate Change of Variables

If $\mathbf{Y} = g(\mathbf{X})$ with differentiable inverse. Then

$$f_Y(\mathbf{y}) = f_X(g^{-1}(\mathbf{y})) |J_{g^{-1}}(\mathbf{y})|$$

where $J_{g^{-1}}$ is the Jacobian of g^{-1} .

E.g. let X be Y independent and set (U, V) = (2X, 2X + Y). Then $g^{-1}(u, v) = (u/2, v - u)$, so

$$|\mathbf{J}_{g^{-1}}| = \begin{vmatrix} 1/2 & 0 \\ -1 & 1 \end{vmatrix} = \frac{1}{2}$$

and $f_{U,V}(u,v) = f_X(u/2)f_V(v-u)/2$.

Finite Mixtures (Optional)

Let $(F_1, ..., F_n)$ be a collection of CDFs with PDFs $(f_1, ..., f_n)$. Let $\mathbf{w} = (w_1, ..., w_n)$ a weight vector summing to 1.

A finite mixture is a random variable with CDF/PMF given by

$$F(x) = \sum_{i=1}^{n} w_i F_i(x), \quad f(x) = \sum_{i=1}^{n} w_i f_i(x).$$

Implementation: sample an index $i \in \{1, ..., n\}$ with probability w_i , then sample from f_i .

Extremely important: clustering, density estimation, image segmentation, zero inflated Poisson, etc.

Example (Optional)

Key example is a location-scale mixture of univariate normals:

$$f(x) = \sum_{i=1}^{n} w_i N(x; \mu_i, \sigma_i^2).$$

Note we could relabel the groups (not identifiable).

Other Techniques (Optional)

May need a more flexible distribution. Leads to **infinite mixture** models:

$$f(x) = \sum_{i=1}^{\infty} w_i f_i(x)$$
 or even $f(x) = \int f(x|w) p(w) dw$.

May need complicated multivariate distributions (e.g., correlated Poissons) with asymmetric correlation structures (e.g., stock crashes). Leads to **copulas.**

Exercises

- 1. Let $X_1, ..., X_n$ be iid with CDF F and PDF f. Order the variables $X_{(1)} \le \cdots \le X_{(n)}$.
 - a) Find the CDF and PDF for $X_{(1)}$.
 - b) Find the CDF and PDF for $X_{(n)}$.
 - c) Evaluate these quantities when $X_i \sim Exp(\lambda)$.
- 2. Let $X \sim Gamma(\alpha, 1)$ and $Y \sim Gamma(\beta, 1)$ be independent.
 - a) Write down the joint density, $f_{X,Y}(x,y)$.
 - b) Find the joint density of (U, V) = (X/(X + Y), X + Y).
 - c) Identify the marginal distributions of U and V.

1. a) For the min, work with the survival function:

$$P[X_{(1)} > x] = P[X_1 > x, ..., X_n > x] = \prod_{i=1}^{n} (1 - F(x))$$
$$= (1 - F(x))^n.$$

Thus
$$F_{X_{(1)}}(x) = 1 - (1 - F(x))^n$$
 and $f_{X_{(1)}} = n(1 - F(x))^{n-1} f(x)$.

1. b) For the max, work with the cdf:

$$P[X_{(n)} \le x] = P[X_1 \le x, ..., X_n \le x] = \prod_{i=1}^n F(x)$$

= $F(x)^n$.

Thus
$$F_{X_{(n)}}(x) = F(x)^n$$
 and $f_{X_{(n)}} = nF(x)^{n-1}f(x)$.

- 1. c) Skipped plug in $F_X(x) = 1 \exp(-\lambda x)$ and simplify.
- 2. a) By independence, the joint density is the product:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

$$= \frac{1}{\Gamma(\alpha)}x^{\alpha-1}\exp\{-x\}\frac{1}{\Gamma(\beta)}y^{\beta-1}\exp\{-y\}$$

for x, y > 0.

2. b) We need the inverse map to apply change of variables. Note

$$VU = (X + Y) \left(\frac{X}{X + Y}\right) = X.$$

This lets us solve for Y:

$$V - VU = (X + Y) - X = Y.$$

The inverse map is $(X, Y) = g^{-1}(U, V) = (VU, V(1 - U))$ with Jacobian

$$J_{g^{-1}}(u,v) = \begin{pmatrix} \partial_u(g^{-1})_1 & \partial_v(g^{-1})_1 \\ \partial_u(g^{-1})_2 & \partial_v(g^{-1})_2 \end{pmatrix} = \begin{pmatrix} v & u \\ -v & 1-u \end{pmatrix}$$

The determinant is $|J_{g^{-1}}(u,v)| = v(1-u) + uv = v$. Note this is non-negative.

2. b) By the change of variables formula,

$$\begin{split} f_{U,V}(u,v) &= \frac{1}{\Gamma(\alpha)} (vu)^{\alpha-1} \exp\{-vu\} \\ &\quad \times \frac{1}{\Gamma(\beta)} (v(1-u))^{\beta-1} \exp\{-v(1-u)\} v \\ &= \frac{1}{\Gamma(\alpha)\Gamma(\beta)} u^{\alpha-1} (1-u)^{\beta-1} v^{\alpha-1+\beta-1+1} \\ &\quad \times \exp(-v+uv-uv) \\ &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} u^{\alpha-1} (1-u)^{\beta-1} \frac{1}{\Gamma(\alpha+\beta)} v^{\alpha+\beta-1} \exp(-v). \end{split}$$

Here the supports are $u = x/(x+y) \in (0,1)$ and $v = x+y \in (0,\infty)$.

2. c) The PDF factors, hence U, V are independent. We read off $U \sim Beta(\alpha, \beta)$ and $V \sim Gamma(\alpha + \beta, 1)$.

Acknowledgements

Past contributors:

- Jordan Bryan, PhD student
- Brian Cozzi, MSS alumni
- Michael Valancius, MSS alumni
- Graham Tierney, PhD student
- Becky Tang, PhD student