SUBJECT NAME : Resource Management Techniques

SUBJECT CODE : CS 6704

MATERIAL NAME : Part – A questions

REGULATION : R2013

UPDATED ON : November 2017 (Upto N/D 2017 Q.P)

(Scan the above Q.R code for the direct download of this material)

## **Unit** – I (Linear Programming)

- 1. Define feasible solution and optimal solution to the linear programming problem.
- 2. What is feasible region in a LPP?
- 3. Explain slack variables of LP problem.
- 4. Explain surplus variables of LP problem.
- 5. How do you conclude problem is infeasible while solving a linear programming problem and in graphical method?
- 6. What is sensitivity analysis?
- 7. What do you mean by shadow pricing?

## Unit – II (Duality and Networks)

- 1. Define primal and dual problem in LPP.
- 2. What is dual simplex method?
- 3. What do you mean by transportation problem?
- 4. What do you understand by assignment problem?
- 5. Write the difference between the transportation problem and the assignment problem.
- 6. State the necessary and sufficient condition for a transportation problem to have a solution.



## **Unit – III (Integer Programming)**

- 1. List different types of integer programming problems.
- 2. Mention some important applications of integer programming problem.
- $3. \quad \text{Write down the methods for solving integer linear programming problems}.$
- 4. What do you understand by cutting plane algorithm?
- 5. Write the Gomory's constraint for the all integer programming problem whose simplex table (with non integer solution) given below.

|                |           | Cj             | 2                     | 20             | -10            | U              |  |  |  |
|----------------|-----------|----------------|-----------------------|----------------|----------------|----------------|--|--|--|
| Basic Variable | Св        | X <sub>B</sub> | <b>X</b> <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | S <sub>1</sub> |  |  |  |
| X <sub>2</sub> | 20        | 5/8            | 0                     | 1              | 1/5            | 3/40           |  |  |  |
| X <sub>1</sub> | 2         | 5/4            | 1                     | 0              | 0              | 1/4            |  |  |  |
|                | $z = C_B$ | 0              | 0                     | -14            | -1             |                |  |  |  |
|                |           |                |                       |                |                |                |  |  |  |

6. What is dynamic programming?

## **Unit – IV (Classical Optimisation Theory)**

- 1. Define the general quadratic programming problem.
- 2. Write down the necessary condition for general non linear programming problem by Lagrange's multiplier method for equal constraints.
- 3. For what type of nonlinear programming problem, Lagrangean method is used? Write the Lagrangean function.
- 4. Define the Jacobian matrix J and the control matrix C.
- 5. Write down the Lagrangian function for Khun-Tucker method for following non linear programming with inequality constraints.
- 6. State sufficient condtions of Kuhn-Tucker condtions.
- 7. What are the Kuhn-Tucker conditions to solve:

Maximize 
$$z = f(x)$$

Subject to 
$$g(x) \le b$$

$$x \ge 0$$
,

$$x = (x_1, x_2, ..., x_n)$$

8. Write the Khun-Tucker conditions for the NLP problem.

$$\text{Max } Z = 3x_1^2 + 14x_1x_2 - 8x_2^2$$

Subject to 
$$3x_1 + 6x_2 \le 72$$

$$x_1, x_2 \ge 0$$

9. Examine  $f(x) = 6x^5 - 4x^3 + 10$  for extreme points.



- 1. State the rules for network construction.
- 2. Define critical path method (CPM).
- 3. Write about PERT.
- 4. Draw the network for the project whose activities and their precedence relationship are as given below:

| Activities: | ۸        | B  | 7 | D | E | F       | C | Н            | T     |  |  |
|-------------|----------|----|---|---|---|---------|---|--------------|-------|--|--|
| Activities. | $\Delta$ | D  | Ç | ע | Ľ | 1.      | U | 11           | 1     |  |  |
|             |          | ,  |   |   |   |         |   |              |       |  |  |
|             |          |    |   |   |   |         |   |              |       |  |  |
| D 1         | /        |    | _ |   | _ | ваг     | Г | Г            | Q 11  |  |  |
| Precedence: |          | _A | Α |   | D | B, C, E | H | $\mathbf{E}$ | (i, H |  |  |
| 110000      |          |    |   |   | _ | 2, 0, 2 | _ | _            | ٠, 11 |  |  |
|             |          |    |   |   |   |         |   |              |       |  |  |
|             |          |    |   |   |   |         |   |              |       |  |  |

5. If there are five activities P, Q, R, S and T such that P, Q, R have no immediate predecessors but S and T have immediate predecessors P, Q and Q, R respectively. Represent this situation by a network.

