4.2-3 hashing noter CLRS 11

- Ordbøger
- Hægtet hashing
- Hashfunktioner
- Lineær probering

Disse noter er stærkt inspireret af noter af Philip Bille og Inge Li Gørtz til kurset Algoritmer og Datastrukturer, på DTU, http://www2.compute.dtu.dk/courses/02105+02326/2015/#generelinfo

Hashing

- Ordbøger
- Hægtet hashing
- Hashfunktioner
- Lineær probering

- Ordbøger. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key fra et univers af nøgler U og satellitdata x.data.
- Ordbogsoperationer.
 - SEARCH(k): afgør om element med nøgle k findes i S, og returner elementet.
 - INSERT(x): tilføj x til S (vi antager x ikke findes i forvejen)
 - DELETE(x): fjern x fra S.

- Eksempel.
 - $U = \{0,...,99\}$
 - key(S) = {1, 13, 16, 41, 54, 66, 96}

- Anvendelser.
 - Grundlæggende datastruktur til at repræsentere en mængde.
 - Bruges i mange algoritmer og datastrukturer.

• Udfordring. Hvordan kan vi løse problemet med nuværende teknikker?

Løsning med hægtet liste. Gem S i hægtet liste.

- SEARCH(k): lineær søgning i listen efter nøgle k.
- INSERT(x): Indsæt x i start af liste.
- DELETE(x): fjern x fra liste.
- Tid.
 - SEARCH i O(n) tid.
 - INSERT og DELETE i O(1) tid.
- Plads.
 - O(n).

- Løsning med direkte addressering (direct addressing).
 - Gem S i tabel A af størrelse U.
 - Gem element x på position A[x.key]
- SEARCH(k): returner A[x.key].
- INSERT(x): Sæt A[x.key] = x.
- DELETE(x): Sæt A[x.key] = null.
- Tid.
- SEARCH, INSERT og DELETE i O(1) tid.
- Plads.
 - O(|U|)

Datastruktur	SEARCH	INSERT	DELETE	Plads
hægtet liste	O(n)	O(1)	O(1)	O(n)
direkte addressering	O(1)	O(1)	O(1)	O(U)

- Udfordring: Kan vi gøre det betydeligt bedre?
- Bemærk: U kan være meget større end S!

Hashing

- Ordbøger
- Hægtet hashing
- Hashfunktioner
- Lineær probering

Hægtet hashing

- Ide. Find en hashfunktion h : U → {0, ..., m-1}, hvor m = Θ(n). Hashfunktion skal fordele nøglerne fra S nogenlunde jævnt over {0, ..., m-1}.
- Hashing = forkludre, sprede, bikse.
- Hægtet hashing (chained hashing).
 - Vedligehold tabel A[0..m-1].
 - Element x gemt i hægtet liste på A[h(x.key)].
- Kollision.
 - x og y kolliderer hvis h(x.key) = h(y.key).
- SEARCH(k): lineær søgning i liste A[h(k)] efter nøgle k.
- INSERT(x): Indsæt x i start af liste A[h(x.key)].
- DELETE(x): fjern x fra liste A[h(x.key)].

Bemærk: Rækkefølgen i listerne afhænger af insert rækkefølge.

$$U = \{0,...,99\}$$

$$key(S) = \{1, 13, 16, 41, 54, 66, 96\}$$

$$m = 10$$

$$h(k) = k \mod 10$$

Hægtet hashing

- SEARCH(k): lineær søgning i liste A[h(k)] efter nøgle k.
- INSERT(x): Indsæt x i start af liste A[h(x.key)].
- DELETE(x): fjern x fra liste A[h(x.key)].
- Opgave. Indsæt følgende nøglesekvens K = 5, 28, 19, 15, 20, 33, 12, 17, 10 i en hashtabel af størrelse 9 vha. hægtet hashing med hashfunktionen h(k) = k mod 9.

Hægtet hashing

- SEARCH(k): lineær søgning i liste A[h(k)] efter nøgle k.
- INSERT(x): Indsæt x i start af liste A[h(x.key)].
- DELETE(x): fjern x fra liste A[h(x.key)].
- Tid.
- SEARCH i O(længde af liste) tid.
- INSERT og DELETE i O(1) tid.
- Længde af lister er afhængig af hashfunktion.
- Plads.
 - O(m + n) = O(n).

$$U = \{0,...,99\}$$

 $key(S) = \{1, 13, 16, 41, 54, 66, 96\}$
 $m = 10$
 $h(k) = k \mod 10$

Uniform hashing

- Def. Belastningsfaktor (load factor) $\alpha = n/m =$ gennemsnitlig længde af lister. $m = \Theta(n) \Rightarrow \alpha = O(1)$.
- Simpel uniform hashing. Antag at hvert element afbildes uniformt tilfældigt i A.
 - Forventet længde af liste = α .
 - ⇒ forventet tid for SEARCH er O(1)
- Tid.
- SEARCH i O(1) forventet tid.
- INSERT og DELETE i O(1) tid.

Uformelt sagt:

- Uniformt tilfældigt betyder, at enhver x.key *hasher* til hver af den m værdier med samme sandsynlighed (1/m) uafhængigt af hvor andre nøgler er hashet.
- Forventet O(1) tid, betyder at hvis vi bruger datastrukturen mange gange vil det i gennemsnit tage O(1) at søge og indsætte.

$$U = \{0,...,99\}$$

 $key(S) = \{1, 13, 16, 41, 54, 66, 96\}$
 $m = 10$
 $h(k) = k \mod 10$

Datastruktur	SEARCH	INSERT	DELETE	Plads
hægtet liste	O(n)	O(1)	O(1)	O(n)
direkte addressering	O(1)	O(1)	O(1)	O(U)
hægtet hashing	O(1) [†]	O(1)	O(1)	O(n)

^{† =} forventet køretid med antagelse om simpel uniform hashing

• Udfordring. Hvad kan vi gøre uden at antage simpel uniform hashing? Findes der hashfunktioner der fordeler en mængde nøgler nogenlunde jævnt?

Hashing

- Ordbøger
- Hægtet hashing
- Hashfunktioner
- Lineær probering

Hashfunktioner

- Divisionsmetoden.
 - h(k) = k mod m, hvor m er et primtal.
 - Primtal m fordi fælles divisorer af nøgler og m kan reducere udnyttelse af tabel.
 - h(k) = ak mod m er lidt bedre. (Her er a et tilfældigt valgt tal, se CLRS for detaljer)
- Multiplikationsmetoden.
 - $h(k) = \lfloor m(kZ \lfloor kZ \rfloor) \rfloor$, hvor Z er en konstant 0 < Z < 1.

Hashfunktioner

- Hashfunktioner for andet end heltal. Alt er gemt som bits og kan derfor hashes.
- Flydende tal. Konverter til bitrepræsentation.
- Strenge. Bogstaver er heltal og så streng kan konverteres til sekvens af cifre. F.eks.
 "CLRS":
 - 256 forskellige ASCII-koder for bogstaver.
 - C = 67, L = 76, R = 82 og S = 83.
 - \Rightarrow "CLRS" = $67.256^3 + 76.256^2 + 82.256^1 + 83.256^0 = 1129075283$
- Andre objekter. Definer hashfunktion baseret på datafelter.

Hashing – ikke pensum

- Kan vi konstruere hashfunktioner med beviselige garantier uden antagelse om uniform hashing?
- Ide (universelle hashfunktioner). Vælg en tilfældig hashfunktion h uniformt tilfældigt fra en mængde H af funktioner der kan beskrives kompakt og beregnes hurtigt og tilfredsstiller
- Anvendelser. Kodning, kryptografi, similaritet, geometri, data streaming, ...

Hashing

- Ordbøger
- Hægtet hashing
- Hashfunktioner
- Lineær probering

Lineær probering

- Lineær probering (linear probing).
 - Gem S i tabel A af størrelse m.
 - Element x gemt i A[h(x.key)] eller i klynge (cluster) til højre for A[h(x.key)].
 - Klynge = fortløbende (cyklisk) sekvens af fyldte indgange.

Bemærk: Rækkefølgen af indsættelser betyder meget med denne metode!

- SEARCH(k): lineær søgning fra A[h(x.key)] i klynge til højre for A[h(x.key)]
- INSERT(x): indsæt x på A[h(x.key)]. Hvis optaget, indsæt på næste tomme indgang til højre for x.
- Delete(x): Søg efter h(x.key) ligesom i Search. Fjern x fra tabellen og markér dens indgang som "slettet".

Lineær probering

Eksempler på lineær probing:

Vi bruger hash funktionen $h(x) = x \mod 10$

- Indsæt følgende i rækkefølgen: 31, 11, 23, 66, 42, 99, 9
- Bemærk, at 42 kommer på plads 4 da både plads 2 og 3 er optaget (af hhv. 11 og 23)

- Hvis vi vil søge efter 11: Kigger på plads 1 og 2 (hvor 11 bliver fundet)
- Hvis vi vil søge efter 21: Kigger på plads 1, 2, 3, 4 og 5 (hvor tomt felt bliver fundet, så 21 er ikke blevet indsat)
- Hvis vi vil slette 11:

• Søgning efter 69: Kigger på plads 9, 0, 1, 2, 3, 4, 5 (som er tomt). Bemærk, at selvom plads 2 er tom kigger vi vedere, da den er markeret som slettet!

Lineær probering

- Caching. Lineær probering er meget cache-effektivt.
- Klumpning (clustering). Nøgler har en tendens at "klumpe" sammen.

• Theorem. Simpel uniform hashing \Rightarrow forventede antal proberinger = 1/(1 - α).

- Åben addressering (open addressing).
 - · Lineær probering.
 - Kvadratisk probering (ikke pensum).
 - Dobbelt hashing (ikke pensum).

Se CLRS for definitioner af disse!