

Universidade Estadual de Feira de Santana PGCC – Programa de Pós-Graduação em Ciência da Computação PGCC015 Inteligência Computacional

Prof. Matheus Giovanni Pires Aluno: Luciano Alves Machado Júnior

EPC 1

Data de Entrega: 23/03/2021.

A partir da análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza {C1 e C2} a partir da medição de três grandezas {x1, x2 e x3} que representam algumas das propriedades físico-químicas do óleo. A equipe de engenheiros e cientistas pretende utilizar um Perceptron para executar a classificação automática destas duas classes.

Assim, baseado nas informações coletadas do processo formou-se o conjunto de treinamento tomando por convenção o valor -1 para óleo pertencente à classe C1 e o valor +1 para óleo pertencente à classe C2.

Portanto, o neurônio constituinte do Perceptron terá três entradas e uma saída conforme ilustrado na figura abaixo:

Utilizando o algoritmo supervisionado de Hebb (regra de Hebb) para classificação de padrões e assumindo a taxa de aprendizagem igual a 0,01, faça as seguintes atividades:

- 1. Execute 5 treinamentos para a rede Perceptron inicializando o vetor de pesos em cada treinamento com valores aleatórios entre zero e um. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos.
- 2. Registre os resultados dos 5 treinamentos na tabela abaixo:

Treinamento	Vetor de Pesos Inicial				Vetor de Pesos Final				Número
	\mathbf{w}_0	\mathbf{w}_1	W 2	W 3	\mathbf{w}_0	\mathbf{W}_1	W2	W 3	de Épocas
1° (T1)	0,99	0,4	0,34	0,33	-3,05	1,56291	2,44629	-0,72735	408
2° (T2)	0,94	0,81	0,82	0,04	-3,04	1,56232	2,48199	-0,72886	411
3° (T3)	0,73	0,38	0,66	0,02	-3,09	1,56682	2,49490	-0,73654	426
4º (T4)	0,36	0,62	0,54	0,3	-3,12	1,61841	2,52248	-0,74571	433
5° (T5)	0,35	0,68	0,45	0,56	-2,93	1,40937	2,43022	-0,70140	344

Obs: o w_0 só está escrito com 2 casas decimais e não com 5 porque da 3^a até a 5^a casa são apenas zeros para todos os valores de w_0

3. Após o treinamento do Perceptron aplique o mesmo na classificação automática das seguintes amostras de óleo, indicando na tabela abaixo os resultados das saídas (Classes) referentes aos cinco processos de treinamento realizados no item 1.

Amostra	X ₁	X ₂	X 3	y (T1)	y (T2)	y (T3)	y (T4)	y (T5)
1	-0.3565	0.0620	5.9891	-1.0	-1.0	-1.0	-1.0	-1.0
2	-0.7842	1.1267	5.5912	1.0	1.0	1.0	1.0	1.0
3	0.3012	0.5611	5.8234	1.0	1.0	1.0	1.0	1.0
4	0.7757	1.0648	8.0677	1.0	1.0	1.0	1.0	1.0
5	0.1570	0.8028	6.3040	1.0	1.0	1.0	1.0	1.0
6	-0.7014	1.0316	3.6005	1.0	1.0	1.0	1.0	1.0
7	0.3748	0.1536	6.1537	-1.0	-1.0	-1.0	-1.0	-1.0
8	-0.6920	0.9404	4.4058	1.0	1.0	1.0	1.0	1.0
9	-1.3970	0.7141	4.9263	-1.0	-1.0	-1.0	-1.0	-1.0
10	-1.8842	-0.2805	1.2548	-1.0	-1.0	-1.0	-1.0	-1.0

4. Explique por que o número de épocas de treinamento varia a cada vez que executamos o treinamento do Perceptron.

Ao executar o treinamento, o algoritmo calcula se há uma necessidade da execução do loop de treinamento várias vezes utilizando as fórmulas de cálculo de erro e de ajuste de pesos. Cada volta no loop equivale a uma época. Com isso, os valores dos pesos iniciais e a taxa de aprendizagem interferem diretamente na quantidade de épocas e de ajustes de erros que devem ser feitos para o treinamento dar certo no final. Quanto mais distantes os pesos estiverem de estarem corretos mais cálculos terão de ser feitos e consequentemente mais épocas. Assim, já que os pesos iniciais são aleatórios não há uma distância definitiva entre o peso inicial e o peso final, por isso existe uma variação entre as execuções.

5. Qual a principal limitação do Perceptron quando aplicado em problemas de classificação de padrões.

A principal limitação do Perceptron quando aplicado a problemas de classificação padrões é que o Perceptron só pode classificar padrões que podem ser divididos linearmente.

OBSERVAÇÕES:

- 1. O EPC deve ser realizado individualmente.
- 2. Os resultados devem ser entregues em sequência, ou seja, de acordo com a numeração do EPC.