AIMET

presenter: Jung Tae-young

tee.ty.jung@openedges.com

https://github.com/Tee0125

AIMET

Al Model Efficiency Toolkit developed by Qualcomm

AIMET

AI Model Efficiency Toolkit developed by Qualcomm

- Quantization
- Model Compression
- Visualization

- Quantization
 - Cross-Layer Equalization
 - Bias Correction
 - Adaptive Rounding
 - Quantization Simulation
 - Quantization-aware Training
- Model Compression
- Visualization

- Quantization
- Model Compression
 - Spatial SVD
 - Channel Pruning
 - Per-layer compresion-ratio selection
- Visualization

- Quantization
- Model Compression
- Visualization
 - Weight ranges
 - Per-layer compression sensitivity

AIMET :: Quantization Algorithms

- Cross-Layer Equalization
- Bias Correction
- AdaRounding

AIMET :: Cross-Layer Equaliazation

Motivation

the weight distributions differ so strongly between output channels that the same set of quantization parameters cannot be used to quantize the full weight tensor effectively.

AIMET :: Cross-Layer Equaliazation

Scaling Equivalence of Neural Network

Figure 5. Illustration of the rescaling for a single channel. If scaling factor s_i scales c_i in layer 1; we can instead factor it out and multiply d_i in layer 2.

$$\mathbf{h} = f(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$
 and $\mathbf{y} = f(\mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)})$

$$\mathbf{y} = f(\mathbf{W}^{(2)} f(\mathbf{W}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)})$$

$$= f(\mathbf{W}^{(2)} \mathbf{S} \hat{f}(\mathbf{S}^{-1} \mathbf{W}^{(1)} \mathbf{x} + \mathbf{S}^{-1} \mathbf{b}^{(1)}) + \mathbf{b}^{(2)})$$

$$= f(\widehat{\mathbf{W}}^{(2)} \hat{f}(\widehat{\mathbf{W}}^{(1)} \mathbf{x} + \widehat{\mathbf{b}}^{(1)}) + \mathbf{b}^{(2)})$$

AIMET :: Cross-Layer Equaliazation

After Equalization...

AIMET :: Bias Correction

Motivation

- A commom assumption is that quantization error is unbiased and thus cancels out in a layer's output
- However, the quantization error on the weight might introduce biased error on the corresponding outputs.

AIMET :: Bias Correction

Biased Quantization Error

$$\widetilde{\mathbf{y}} = \widetilde{\mathbf{W}} \mathbf{x}$$

$$\widetilde{\mathbf{y}} = \mathbf{y} + \epsilon \mathbf{x}$$
 where $\epsilon = \widetilde{\mathbf{W}} - \mathbf{W}$

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[\mathbf{y}] + \mathbb{E}[\boldsymbol{\epsilon}\mathbf{x}] - \mathbb{E}[\boldsymbol{\epsilon}\mathbf{x}]$$

$$= \mathbb{E}[\widetilde{\mathbf{y}}] - \mathbb{E}[\boldsymbol{\epsilon}\mathbf{x}].$$

$$\mathbb{E}[\boldsymbol{\epsilon}\mathbf{x}] = \boldsymbol{\epsilon}\mathbb{E}[\mathbf{x}]$$

AIMET :: Bias Correction

After Bias Correction ...

Figure 3. Per-channel biased output error introduced by weight quantization of the second depthwise-separable layer in MobileNetV2, before (blue) and after (orange) bias correction.

AIMET :: Quantization Algorithm

Experimental Results

Model	FP32	INT8
Original model DFQ (ours)	72.94 72.45	41.40 72.33
Per-channel quantization	72.94	71.44

Table 3. DeeplabV3+ (MobileNetV2 backend) on Pascal VOC segmentation challenge. Mean intersection over union (mIOU) evaluated at full precision and 8-bit integer quantized. Per-channel quantization is our own implementation of [16] applied post-training.

Model	FP32	INT8
Original model DFQ (ours)	68.47 68.56	
Per-channel quantization	68.47	67.52

Table 4. MobileNetV2 SSD-lite on Pascal VOC object detection challange. Mean average precision (mAP) evaluated at full precision and 8-bit integer quantized. Per-channel quantization is our own implementation of [16] applied post-training.

- Weight SVD
- Spatial SVD

- Background
 - Principle Component Analysis
 - Singular Vector Decomposition

Principle Component Analysis

Principle Component Analysis (Eigen Face)

From: https://docs.opencv.org/3.4/da/d60/tutorial-face-main.html

Singular Vector Decomposition

$$A = U \cdot S \cdot V^T$$

$$\begin{pmatrix}
x_{11} & x_{12} & x_{1n} \\
\vdots & \ddots & \vdots \\
x_{m1} & x_{mn}
\end{pmatrix} = \begin{pmatrix}
u_{11} & u_{m1} \\
\vdots & \ddots & \vdots \\
u_{1m} & u_{mm}
\end{pmatrix} \begin{pmatrix}
\sigma_{1} & & & & & & & & \\
\sigma_{1} & & & & & & & \\
\vdots & \ddots & & & & & \\
0 & & \sigma_{m} & \cdots & 0
\end{pmatrix} \begin{pmatrix}
v_{11} & v_{1n} \\
\vdots & \ddots & \vdots \\
v_{n1} & & v_{nn}
\end{pmatrix}$$

$$m \times m \qquad m \times n \qquad m \times n \qquad n \times n$$

$$\text{rotation} \qquad \text{stretch} \qquad \text{rotation}$$

 $\begin{pmatrix} & & & V \\ \begin{pmatrix} & & & \\ u_1 & \cdots & u_m \\ & & & \end{pmatrix} & \begin{pmatrix} & & & \\ v_1 & \cdots & v_n \\ & & & \end{pmatrix}$

eigenvectors for AA^T as u_i and A^TA as v_i

Weight SVD

$$\begin{pmatrix}
u_{11} & u_{m1} \\
& \ddots \\
u_{1m} & u_{mn}
\end{pmatrix}
\begin{pmatrix}
\sigma_{1} & 0 \\
& \sigma_{r} \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
v_{11} & v_{1n} \\
& \ddots \\
v_{n1} & v_{nn}
\end{pmatrix}$$

$$m \times m \qquad m \times n \qquad n \times n$$

Spatial SVD

Model Compression

AIMET can also significantly compress models. For popular models, such as Resnet-50 and Resnet-18, compression with spatial SVD plus channel pruning achieves 50% MAC (multiply-accumulate) reduction while retaining accuracy within approx. 1% of the original uncompressed model.

Models	Uncompressed model	50% Compressed model
ResNet18 (top1)	69.76%	68.56%
ResNet 50 (top1)	76.05%	75.75%

References

- Data-Free Quantization Through Weight Equalization and Bias Correction - https://arxiv.org/abs/1906.04721
- https://quic.github.io/aimetpages/releases/1.16.2/user guide/model compression.html
- https://jonathan-hui.medium.com/machine-learning-singular-value-decomposition-svd-principal-component-analysis-pca-1d45e885e491