第一章

第二节

极限存在准则及两个重要极限

一、函数极限与数列极限的关系及夹逼准则

二、两个重要极限

一、函数极限与数列极限的关系及夹逼准则

1. 函数极限与数列极限的关系

定理1.

$$\lim_{\substack{x \to x_0 \\ x \to \infty}} f(x) = A \Longrightarrow \forall \{x_n\} \colon x_n \neq x_0, f(x_n) \in \mathbb{Z},$$

$$x_n \to \infty \quad x_n \to x_0 \quad (n \to \infty), \in \mathbb{Z}, \quad x_n \to \infty$$

$$x_n \to \infty \quad x_n \to \infty$$

为确定起见,仅讨论 $x \rightarrow x_0$ 的情形.

定理1.
$$\lim_{x \to x_0} f(x) = A \longrightarrow \forall \{x_n\} : x_n \neq x_0, f(x_n)$$

有定义,且 $x_n \to x_0 (n \to \infty)$,有 $\lim_{n \to \infty} f(x_n) = A$.

证: "二" 设 $\lim_{x \to x_0} f(x) = A$,即 $\forall e > 0$,当

 $0 < |x - x_0| < \delta$ 时, 有 |f(x) - A| < e.

 $\forall \{x_n\}: x_n \neq x_0, f(x_n)$ 有定义,且 $x_n \rightarrow x_0 (n \rightarrow \infty),$

对上述 d, $\exists N$, $\exists n > N$ 时, 有 $0 < |x_n - x_0| < \delta$,

|于是当n > N时 $|f(x_n) - A| < e$.

故

$$\lim_{n\to\infty} f(x_n) = A$$

"⇐」"可用反证法证明.(略)

定理1.
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = A \Longrightarrow \forall \{x_n\} : x_n \neq x_0, f(x_n)$$
 有定义
$$\mathbb{E}[x_n \to x_0](n \to \infty), \text{ figure } f(x_n) = A.$$
 $(x_n \to \infty)$

说明: 此定理常用于判断函数极限不存在.

- 法1 找一个数列 $\{x_n\}$: $x_n \neq x_0$, 且 $x_n \to x_0$ $(n \to \infty)$, 使 $\lim_{n \to \infty} f(x_n)$ 不存在.
- 法2 找两个趋于 x_0 的不同数列 $\{x_n\}$ 及 $\{x_n\}$, 使 $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(x_n')$

例1. 证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

证: 取两个趋于 0 的数列

$$x_n = \frac{1}{2n\pi} \not \mathbb{Z} \quad x'_n = \frac{1}{2n\pi + \frac{\pi}{2}} \quad (n = 1, 2, \mathbf{L})$$

有
$$\lim_{n\to\infty} \sin\frac{1}{x_n} = \lim_{n\to\infty} \sin 2n\pi = 0$$

$$\lim_{n\to\infty} \sin\frac{1}{x'_n} = \lim_{n\to\infty} \sin(2n\pi + \frac{\pi}{2}) = 1$$

由定理 1 知 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

1. 夹逼准则(准则1) (P46)

(1)
$$y_n \le x_n \le z_n \quad (n = 1, 2, \mathbf{L})$$

(2) $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = a$

$$\lim_{n \to \infty} x_n = a$$

证: 由条件(2),
$$\forall e > 0, \exists N_1, N_2,$$
 当 $n > N_1$ 时, $|y_n - a| < \varepsilon$ 当 $n > N_2$ 时, $|z_n - a| < \varepsilon$

令
$$N = \max\{N_1, N_2\}$$
, 则当 $n > N$ 时, 有
$$a - \varepsilon < y_n < a + \varepsilon, \quad a - \varepsilon < z_n < a + \varepsilon,$$

由条件(1)
$$a-e < y_n \le x_n \le z_n < a+e$$

即
$$|x_n-a|< e$$
,故 $\lim_{n\to\infty}x_n=a$.

例2. 证明
$$\lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi} \right) = 1$$

证: 利用夹逼准则.由

$$\frac{n^2}{n^2 + n\pi} < n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + L + \frac{1}{n^2 + n\pi} \right) < \frac{n^2}{n^2 + \pi}$$

$$\lim_{n\to\infty} \frac{n^2}{n^2 + n\pi} = \lim_{n\to\infty} \frac{1}{1 + \frac{\pi}{n}} = 1$$

$$\lim_{n \to \infty} \frac{n^2}{n^2 + \pi} = \lim_{n \to \infty} \frac{1}{1 + \frac{\pi}{n^2}} = 1$$

$$\therefore \lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \mathbf{L} + \frac{1}{n^2 + n\pi} \right) = 1$$

2. 单调有界数列必有极限(准则2) (P48)

例3 证明数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}}$, L 的极限存在,并求极限。

解 记
$$x_1 = \sqrt{2}, x_2 = \sqrt{2 + \sqrt{2}}, L, 则有x_n = \sqrt{2 + x_{n-1}},$$

显然 $x_n > 0$, n = 1, 2, L 且 $x_1 = \sqrt{2} < 2$,

假设 $x_{n-1} < 2$, 考虑 $x_n = \sqrt{2 + x_{n-1}} < \sqrt{2 + 2} = 2$,

由数学归纳法, $x_n < 2$, n = 1, 2, L

从而,数列 $\{x_n\}$ 有界。

$$x_{n} - x_{n-1} = \sqrt{2 + x_{n-1}} - x_{n-1} = \frac{(\sqrt{2 + x_{n-1}} + x_{n-1})(\sqrt{2 + x_{n-1}} - x_{n-1})}{\sqrt{2 + x_{n-1}} + x_{n-1}}$$

$$= \frac{2 + x_{n-1} - x_{n-1}^2}{\sqrt{2 + x_{n-1}} + x_{n-1}} = \frac{(2 - x_{n-1})(1 + x_{n-1})}{\sqrt{2 + x_{n-1}} + x_{n-1}} > 0$$

数列 {x_n} 单调有界,由单调有界数列必有极限,知

数列
$$\{x_n\}$$
 收敛,记 $\lim_{n\to\infty} x_n = a$,在 $x_n = \sqrt{2+x_{n-1}}$ 两边

取极限,
$$\lim x_n = \lim \sqrt{2 + x_{n-1}}$$
 得 $a = \sqrt{2 + a}$

例4. 设 $x_n = (1+\frac{1}{n})^n (n=1,2,\cdots)$, 证明数列 $\{x_n\}$ 极限存在. (P48~P51)

证: 利用二项式公式,有

$$x_{n} = (1 + \frac{1}{n})^{n}$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \mathbf{L}$$

$$+ \frac{n(n-1)\mathbf{L}(n-n+1)}{n!} \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \mathbf{L}$$

$$+ \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \mathbf{L} (1 - \frac{n-1}{n})$$

$$X_{n} = (1 + \frac{1}{n})^{n} < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}}$$

$$= 1 + \frac{1 - \frac{1}{2^{n}}}{1 - \frac{1}{2}} = 3 - \frac{1}{2^{n-1}} < 3$$

根据准则 2 可知数列 $\{x_n\}$ 有极限.

记此极限为e,即

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

e 为无理数,其值为

e = 2.718281828459045**L**

*3. 柯西极限存在准则(柯西审敛原理) (P51)

数列 $\{x_n\}$ 极限存在的充要条件是:

 $\forall e > 0$, 存在正整数 N, 使当 m > N, n > N 时,

$$|x_n - x_m| < e$$

证: "必要性".设 $\lim_{n\to\infty} x_n = a$,则 $\forall \varepsilon > 0$, $\exists N$, 使当

m > N, n > N时,有

$$|x_n-a| < \frac{e}{2}, |x_m-a| < \frac{e}{2}$$

因此

$$\begin{aligned} |x_n - x_m| &= |(x_n - a) - (x_m - a)| \\ &\leq |x_n - a| + |x_m - a| < e \end{aligned}$$

"充分性"证明从略.

2. 函数极限存在的夹逼准则

定理2. 当
$$x \in U(x_0, d)$$
时, $g(x) \le f(x) \le h(x)$,且
$$(|x| > X > 0)$$

$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} g(x) = \lim_{\substack{x \to x_0 \\ (x \to \infty)}} h(x) = A$$

$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = A$$

(利用定理1及数列的夹逼准则可证)

二、两个重要极限

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $\triangle AOB$ 的面积 < 圆扇形AOB的面积 < $\triangle AOD$ 的面积

即

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$$

故有

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \qquad (0 < x < \frac{\pi}{2})$$

显然有

$$\cos x < \frac{\sin x}{x} < 1 \quad (0 < |x| < \frac{\pi}{2})$$

$$\lim_{x \to \infty} \cos x = 1, \qquad \lim_{x \to \infty} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

注

当
$$0 < |x| < \frac{\pi}{2}$$
 时
$$0 < |1 - \cos x| = 1 - \cos x$$

$$= 2\sin^2 \frac{x}{2} < 2(\frac{x}{2})^2 = \frac{x^2}{2}$$

$$\lim_{x\to 0} (1-\cos x) = 0$$

例5. 求
$$\lim_{x\to 0} \frac{\tan x}{x}$$
.

解:
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \frac{1}{\cos x} \right)$$
$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1$$

例6. 求
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
.

解: 令
$$t = \arcsin x$$
,则 $x = \sin t$,因此

原式 =
$$\lim_{t \to 0} \frac{t}{\sin t} = \lim_{t \to 0} \frac{1}{\frac{\sin t}{t}} = 1$$

例7. 求
$$\lim_{x\to 0}\frac{1-\cos x}{x^2}.$$

解: 原式 =
$$\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2} \lim_{x \to 0} \left[\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right]^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}$$

例8. 已知圆内接正 n 边形面积为

$$A_n = nR^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}$$

证明: $\lim_{n\to\infty} A_n = \pi R^2$.

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \pi R^2 \frac{\sin \frac{\pi}{n}}{\frac{\pi}{n}} \cos \frac{\pi}{n} = \pi R^2$$

说明: 计算中注意利用

$$\lim_{\varphi(x)\to 0} \frac{\sin \varphi(x)}{\varphi(x)} = 1$$

$$2. \lim_{x\to\infty} (1+\frac{1}{x})^x = e$$

证: 当x > 0时,设 $n \le x < n+1$,则

$$(1 + \frac{1}{n+1})^n < (1 + \frac{1}{x})^x < (1 + \frac{1}{n})^{n+1}$$

$$\lim_{n \to \infty} (1 + \frac{1}{n+1})^n = \lim_{n \to \infty} \frac{(1 + \frac{1}{n+1})^{n+1}}{1 + \frac{1}{n+1}} = e \quad (P53 \sim 54)$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} [(1 + \frac{1}{n})^n (1 + \frac{1}{n})] = e$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} [(1 + \frac{1}{n})^n (1 + \frac{1}{n})] = e$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} \left[(1 + \frac{1}{n})^n (1 + \frac{1}{n}) \right] = \epsilon$$

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$$

当 $x \to -\infty$ 时, 令 x = -(t+1), 则 $t \to +\infty$, 从而有

$$\lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t+1})^{-(t+1)}$$

$$= \lim_{t \to +\infty} (\frac{t}{t+1})^{-(t+1)} = \lim_{t \to +\infty} (1 + \frac{1}{t})^{t+1}$$

$$= \lim_{t \to +\infty} [(1 + \frac{1}{t})^t (1 + \frac{1}{t})] = e$$

故
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

说明: 此极限也可写为 $\lim_{z\to 0} (1+z)^{\frac{1}{z}} = e^{-\frac{1}{z}}$

例9. 求
$$\lim_{x\to\infty} (1-\frac{1}{x})^x$$
.

$$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \lim_{t \to \infty} (1 + \frac{1}{t})^{-t}$$
$$= \lim_{t \to \infty} \frac{1}{(1 + \frac{1}{t})^t} = \frac{1}{e}$$

说明: 若利用
$$\lim_{j(x)\to\infty} (1+\frac{1}{j(x)})^{j(x)} = e$$
, 则

原式 =
$$\lim_{-x \to \infty} \left[(1 + \frac{1}{-x})^{-x} \right]^{-1} = e^{-1}$$

例10. 求
$$\lim_{x\to\infty} (\sin\frac{1}{x} + \cos\frac{1}{x})^x$$
.

解: 原式 =
$$\lim_{x \to \infty} [(\sin \frac{1}{x} + \cos \frac{1}{x})^2]^{\frac{x}{2}}$$

= $\lim_{x \to \infty} (1 + \sin \frac{2}{x})^{\frac{x}{2}}$
= $\lim_{x \to \infty} [(1 + \sin \frac{2}{x})^{\frac{\sin \frac{2}{x}}{2}}]^{\frac{\sin \frac{2}{x}}{2}}$
= e

内容小结

- 1. 函数极限与数列极限关系的应用
- (1) 利用数列极限判别函数极限不存在
 - 法1 找一个数列 $\{x_n\}: x_n \neq x_0$,且 $x_n \to x_0$ $(n \to \infty)$ 使 $\lim_{n \to \infty} f(x_n)$ 不存在.
 - 法2 找两个趋于 x_0 的不同数列 $\{x_n\}$ 及 $\{x'_n\}$,使 $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(x'_n)$
 - (2) 数列极限存在的夹逼准则

──> 函数极限存在的夹逼准则

2. 两个重要极限

$$\lim_{n \to 0} \frac{\sin \frac{n}{n}}{n} = 1$$

(2)
$$\lim_{n \to \infty} (1 + \frac{1}{n}) = e$$

或
$$\lim_{n \to \infty} (1 + \frac{1}{n}) = e$$

注: □代表相同的表达式

$$\lim_{x\to 0} \frac{\sin x}{x} = 1, \qquad \lim_{x\to \infty} \frac{\sin x}{x} = 0,$$

$$\lim_{x\to\infty} x \sin\frac{1}{x} = 1, \quad \lim_{x\to 0} x \sin\frac{1}{x} = 0.$$

$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{t \to 0} \frac{\sin t}{t} = 0.$$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e, \quad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e,$$

$$\lim_{x\to\infty} (1-\frac{1}{x})^x = e^{-1}, \quad \lim_{x\to0} (1-x)^{\frac{1}{x}} = e^{-1},$$

$$\lim_{x \to \infty} (x - \frac{1}{x})^x = \lim_{x \to \infty} [(x - \frac{1}{x})^{-x}]^{-1} = \frac{1}{\lim_{x \to \infty} (x - \frac{1}{x})^{-x}} = \frac{1}{e}$$

思考与练习

填空题 (1~4)

$$1. \quad \lim_{x \to \infty} \frac{\sin x}{x} = \underline{0};$$

3.
$$\lim_{x\to 0} x \sin \frac{1}{x} = \underline{0}$$
;

$$2. \quad \lim_{x \to \infty} x \sin \frac{1}{x} = \underline{1};$$

4.
$$\lim_{n \to \infty} (1 - \frac{1}{n})^n = \frac{e^{-1}}{n}$$
;

作业

第一章

第二节

极限存在准则及两个重要极限

一、函数极限与数列极限的关系及夹逼准则

二、两个重要极限

一、函数极限与数列极限的关系及夹逼准则

1. 函数极限与数列极限的关系

定理1.

$$\lim_{\substack{x \to x_0 \\ x \to \infty}} f(x) = A \Longrightarrow \forall \{x_n\} \colon x_n \neq x_0, f(x_n) \in \mathbb{Z},$$

$$x_n \to \infty \quad x_n \to x_0 \quad (n \to \infty), \in \mathbb{Z}, \quad x_n \to \infty$$

$$x_n \to \infty \quad x_n \to \infty$$

为确定起见,仅讨论 $x \rightarrow x_0$ 的情形.

定理1.
$$\lim_{x \to x_0} f(x) = A \longrightarrow \forall \{x_n\} : x_n \neq x_0, f(x_n)$$

有定义,且
$$x_n \to x_0 (n \to \infty)$$
,有 $\lim_{n \to \infty} f(x_n) = A$.

证: "一" 设 $\lim_{x \to x_0} f(x) = A$,即 $\forall e > 0$,当

$$0 < |x - x_0| < \delta$$
 时, 有 $|f(x) - A| < e$.

$$\forall \{x_n\}: x_n \neq x_0, f(x_n)$$
有定义,且 $x_n \rightarrow x_0 (n \rightarrow \infty),$

对上述 d, $\exists N$, $\exists n > N$ 时, 有 $0 < |x_n - x_0| < \delta$,

|于是当n > N时 $|f(x_n) - A| < e$.

故 $\lim f(x_n) = A$

定理1.
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = A \Longrightarrow \forall \{x_n\} : x_n \neq x_0, f(x_n)$$
 有定义
$$\mathbb{E}[x_n \to x_0](n \to \infty), \text{ figure } f(x_n) = A.$$
 $(x_n \to \infty)$

说明: 此定理常用于判断函数极限不存在.

- 法1 找一个数列 $\{x_n\}$: $x_n \neq x_0$, 且 $x_n \to x_0$ $(n \to \infty)$, 使 $\lim_{n \to \infty} f(x_n)$ 不存在.
- 法2 找两个趋于 x_0 的不同数列 $\{x_n\}$ 及 $\{x_n\}$, 使 $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(x_n')$

例1. 证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

证: 取两个趋于 0 的数列

$$x_n = \frac{1}{2n\pi} \not \mathbb{Z} \quad x'_n = \frac{1}{2n\pi + \frac{\pi}{2}} \quad (n = 1, 2, \mathbf{L})$$

有
$$\lim_{n\to\infty} \sin\frac{1}{x_n} = \lim_{n\to\infty} \sin 2n\pi = 0$$

$$\lim_{n\to\infty} \sin\frac{1}{x'_n} = \lim_{n\to\infty} \sin(2n\pi + \frac{\pi}{2}) = 1$$

由定理 1 知 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

1. 夹逼准则(准则1) (P46)

(1)
$$y_n \le x_n \le z_n \quad (n = 1, 2, \mathbf{L})$$

(2) $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = a$

$$\lim_{n \to \infty} x_n = a$$

证: 由条件(2),
$$\forall e > 0, \exists N_1, N_2,$$
 当 $n > N_1$ 时, $|y_n - a| < \varepsilon$ 当 $n > N_2$ 时, $|z_n - a| < \varepsilon$

令
$$N = \max\{N_1, N_2\}$$
, 则当 $n > N$ 时, 有
$$a - \varepsilon < y_n < a + \varepsilon, \quad a - \varepsilon < z_n < a + \varepsilon,$$

由条件(1)
$$a-e < y_n \le x_n \le z_n < a+e$$

即
$$|x_n-a|< e$$
,故 $\lim_{n\to\infty}x_n=a$.

例2. 证明
$$\lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi} \right) = 1$$

证: 利用夹逼准则.由

$$\frac{n^2}{n^2 + n\pi} < n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + L + \frac{1}{n^2 + n\pi} \right) < \frac{n^2}{n^2 + \pi}$$

$$\lim_{n\to\infty} \frac{n^2}{n^2 + n\pi} = \lim_{n\to\infty} \frac{1}{1 + \frac{\pi}{n}} = 1$$

$$\lim_{n \to \infty} \frac{n^2}{n^2 + \pi} = \lim_{n \to \infty} \frac{1}{1 + \frac{\pi}{n^2}} = 1$$

$$\therefore \lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \mathbf{L} + \frac{1}{n^2 + n\pi} \right) = 1$$

2. 单调有界数列必有极限(准则2) (P48)

例3 证明数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}}$, L 的极限存在,并求极限。

解 记
$$x_1 = \sqrt{2}, x_2 = \sqrt{2 + \sqrt{2}}, L, 则有x_n = \sqrt{2 + x_{n-1}},$$

显然 $x_n > 0$, n = 1, 2, L 且 $x_1 = \sqrt{2} < 2$,

假设 $x_{n-1} < 2$, 考虑 $x_n = \sqrt{2 + x_{n-1}} < \sqrt{2 + 2} = 2$,

由数学归纳法, $x_n < 2$, n = 1, 2, L

从而,数列 $\{x_n\}$ 有界。

$$x_{n} - x_{n-1} = \sqrt{2 + x_{n-1}} - x_{n-1} = \frac{(\sqrt{2 + x_{n-1}} + x_{n-1})(\sqrt{2 + x_{n-1}} - x_{n-1})}{\sqrt{2 + x_{n-1}} + x_{n-1}}$$

$$= \frac{2 + x_{n-1} - x_{n-1}^2}{\sqrt{2 + x_{n-1}} + x_{n-1}} = \frac{(2 - x_{n-1})(1 + x_{n-1})}{\sqrt{2 + x_{n-1}} + x_{n-1}} > 0$$

数列 {x_n} 单调有界,由单调有界数列必有极限,知

数列
$$\{x_n\}$$
 收敛,记 $\lim_{n\to\infty} x_n = a$,在 $x_n = \sqrt{2+x_{n-1}}$ 两边

取极限,
$$\lim x_n = \lim \sqrt{2 + x_{n-1}}$$
 得 $a = \sqrt{2 + a}$

例4. 设 $x_n = (1+\frac{1}{n})^n (n=1,2,\cdots)$, 证明数列 $\{x_n\}$ 极限存在. (P48~P51)

证: 利用二项式公式,有

$$x_{n} = (1 + \frac{1}{n})^{n}$$

$$= 1 + \frac{n}{1!} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} + \mathbf{L}$$

$$+ \frac{n(n-1)\mathbf{L}(n-n+1)}{n!} \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \mathbf{L}$$

$$+ \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \mathbf{L} (1 - \frac{n-1}{n})$$

$$X_{n} = (1 + \frac{1}{n})^{n} < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}}$$

$$= 1 + \frac{1 - \frac{1}{2^{n}}}{1 - \frac{1}{2}} = 3 - \frac{1}{2^{n-1}} < 3$$

根据准则 2 可知数列 $\{x_n\}$ 有极限.

记此极限为e,即

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

e 为无理数,其值为

e = 2.718281828459045**L**

*3. 柯西极限存在准则(柯西审敛原理) (P51)

数列 $\{x_n\}$ 极限存在的充要条件是:

 $\forall e > 0$, 存在正整数 N, 使当 m > N, n > N 时,

$$|x_n - x_m| < e$$

证: "必要性".设 $\lim_{n\to\infty} x_n = a$,则 $\forall \varepsilon > 0$, $\exists N$, 使当

m > N, n > N时,有

$$|x_n-a| < \frac{e}{2}, |x_m-a| < \frac{e}{2}$$

因此

$$|x_n - x_m| = |(x_n - a) - (x_m - a)|$$

 $\leq |x_n - a| + |x_m - a| < e$

"充分性"证明从略.

2. 函数极限存在的夹逼准则

定理2. 当
$$x \in U(x_0, d)$$
时, $g(x) \le f(x) \le h(x)$,且
$$(|x| > X > 0)$$

$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} g(x) = \lim_{\substack{x \to x_0 \\ (x \to \infty)}} h(x) = A$$

$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = A$$

(利用定理1及数列的夹逼准则可证)

二、两个重要极限

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $\triangle AOB$ 的面积 < 圆扇形AOB的面积 < $\triangle AOD$ 的面积

即

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$$

故有

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \qquad (0 < x < \frac{\pi}{2})$$

显然有

$$\cos x < \frac{\sin x}{x} < 1 \quad (0 < |x| < \frac{\pi}{2})$$

$$\lim_{x \to \infty} \cos x = 1, \qquad \lim_{x \to \infty} \frac{\sin x}{x} = 1$$

$$\therefore \lim_{x \to 0} \frac{\sin x}{x} = 1$$

注

当
$$0 < |x| < \frac{\pi}{2}$$
 时
$$0 < |1 - \cos x| = 1 - \cos x$$

$$= 2\sin^2 \frac{x}{2} < 2(\frac{x}{2})^2 = \frac{x^2}{2}$$

$$\lim_{x\to 0} (1-\cos x) = 0$$

例5. 求
$$\lim_{x\to 0} \frac{\tan x}{x}$$
.

解:
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \frac{1}{\cos x} \right)$$
$$= \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1$$

例6. 求
$$\lim_{x\to 0} \frac{\arcsin x}{x}$$
.

解: 令
$$t = \arcsin x$$
,则 $x = \sin t$,因此

原式 =
$$\lim_{t \to 0} \frac{t}{\sin t} = \lim_{t \to 0} \frac{1}{\frac{\sin t}{t}} = 1$$

例7. 求
$$\lim_{x\to 0}\frac{1-\cos x}{x^2}.$$

解: 原式 =
$$\lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2} \lim_{x \to 0} \left[\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right]^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}$$

例8. 已知圆内接正 n 边形面积为

$$A_n = nR^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n}$$

证明: $\lim_{n\to\infty} A_n = \pi R^2$.

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \pi R^2 \frac{\sin \frac{\pi}{n}}{\frac{\pi}{n}} \cos \frac{\pi}{n} = \pi R^2$$

说明: 计算中注意利用

$$\lim_{\varphi(x)\to 0} \frac{\sin \varphi(x)}{\varphi(x)} = 1$$

$$2. \lim_{x\to\infty} (1+\frac{1}{x})^x = e$$

证: 当x > 0时,设 $n \le x < n+1$,则

$$(1 + \frac{1}{n+1})^n < (1 + \frac{1}{x})^x < (1 + \frac{1}{n})^{n+1}$$

$$\lim_{n \to \infty} (1 + \frac{1}{n+1})^n = \lim_{n \to \infty} \frac{(1 + \frac{1}{n+1})^{n+1}}{1 + \frac{1}{n+1}} = e \quad (P53 \sim 54)$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} [(1 + \frac{1}{n})^n (1 + \frac{1}{n})] = e$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} [(1 + \frac{1}{n})^n (1 + \frac{1}{n})] = e$$

$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} = \lim_{n \to \infty} \left[(1 + \frac{1}{n})^n (1 + \frac{1}{n}) \right] = \epsilon$$

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$$

当 $x \to -\infty$ 时, 令 x = -(t+1), 则 $t \to +\infty$, 从而有

$$\lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{t \to +\infty} (1 - \frac{1}{t+1})^{-(t+1)}$$

$$= \lim_{t \to +\infty} (\frac{t}{t+1})^{-(t+1)} = \lim_{t \to +\infty} (1 + \frac{1}{t})^{t+1}$$

$$= \lim_{t \to +\infty} [(1 + \frac{1}{t})^t (1 + \frac{1}{t})] = e$$

故
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

说明: 此极限也可写为 $\lim_{z\to 0} (1+z)^{\frac{1}{z}} = e^{-\frac{1}{z}}$

例9. 求
$$\lim_{x\to\infty} (1-\frac{1}{x})^x$$
.

$$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \lim_{t \to \infty} (1 + \frac{1}{t})^{-t}$$
$$= \lim_{t \to \infty} \frac{1}{(1 + \frac{1}{t})^t} = \frac{1}{e}$$

说明: 若利用
$$\lim_{j(x)\to\infty} (1+\frac{1}{j(x)})^{j(x)} = e$$
, 则

原式=
$$\lim_{-x\to\infty} \left[(1+\frac{1}{-x})^{-x} \right]^{-1} = e^{-1}$$

例10. 求
$$\lim_{x\to\infty} (\sin\frac{1}{x} + \cos\frac{1}{x})^x$$
.

解: 原式 =
$$\lim_{x \to \infty} [(\sin \frac{1}{x} + \cos \frac{1}{x})^2]^{\frac{x}{2}}$$

= $\lim_{x \to \infty} (1 + \sin \frac{2}{x})^{\frac{x}{2}}$
= $\lim_{x \to \infty} [(1 + \sin \frac{2}{x})^{\frac{\sin \frac{2}{x}}{2}}]^{\frac{\sin \frac{2}{x}}{2}}$
= e

内容小结

- 1. 函数极限与数列极限关系的应用
- (1) 利用数列极限判别函数极限不存在
 - 法1 找一个数列 $\{x_n\}: x_n \neq x_0$,且 $x_n \to x_0$ $(n \to \infty)$ 使 $\lim_{n \to \infty} f(x_n)$ 不存在.
 - 法2 找两个趋于 x_0 的不同数列 $\{x_n\}$ 及 $\{x'_n\}$,使 $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(x'_n)$
 - (2) 数列极限存在的夹逼准则

──> 函数极限存在的夹逼准则

2. 两个重要极限

$$\lim_{n \to 0} \frac{\sin \frac{n}{n}}{n} = 1$$

(2)
$$\lim_{n \to \infty} (1 + \frac{1}{n}) = e$$

或
$$\lim_{n \to \infty} (1 + \frac{1}{n}) = e$$

注: □代表相同的表达式

$$\lim_{x\to 0} \frac{\sin x}{x} = 1, \qquad \lim_{x\to \infty} \frac{\sin x}{x} = 0,$$

$$\lim_{x\to\infty} x \sin\frac{1}{x} = 1, \quad \lim_{x\to 0} x \sin\frac{1}{x} = 0.$$

$$\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{x \to \infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{t \to 0} \frac{\sin t}{t} = 0.$$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e, \quad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e,$$

$$\lim_{x\to\infty} (1-\frac{1}{x})^x = e^{-1}, \quad \lim_{x\to 0} (1-x)^{\frac{1}{x}} = e^{-1},$$

$$\lim_{x \to \infty} (x - \frac{1}{x})^x = \lim_{x \to \infty} [(x - \frac{1}{x})^{-x}]^{-1} = \frac{1}{\lim_{x \to \infty} (x - \frac{1}{x})^{-x}} = \frac{1}{e}$$

思考与练习

填空题 (1~4)

$$1. \quad \lim_{x \to \infty} \frac{\sin x}{x} = \underline{0};$$

3.
$$\lim_{x\to 0} x \sin \frac{1}{x} = \underline{0}$$
;

$$2. \quad \lim_{x \to \infty} x \sin \frac{1}{x} = \underline{1};$$

4.
$$\lim_{n \to \infty} (1 - \frac{1}{n})^n = \frac{e^{-1}}{n}$$
;

作业

