Capítulo 1

Ecuaciones de Hamilton

Se pasa de las variables (q, \dot{q}) hacia el par (q, p) con

$$p = \frac{\partial \mathcal{L}}{\partial \dot{q}}$$

Se parte del

$$H(q_i,p_i,t) = \sum_{i}^{3N-k} p_i \dot{q}_i - \mathcal{L}(q_i,\dot{q}_i,t)$$

y consideramos el diferencial

$$\begin{split} dH &= \sum_{i} p_{i} d\dot{q}_{i} + \dot{q}_{i} dp_{i} - \frac{\partial \mathcal{L}}{\partial q_{i}} dq_{i} - \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d\dot{q}_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \\ dH &= \sum_{i} \dot{q}_{i} dp_{i} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \\ dH &= \sum_{i} \dot{q}_{i} dp_{i} - \dot{p}_{i} dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt \end{split}$$

se deducen entonces,

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \qquad \frac{\partial H}{\partial q_i} = -\dot{p}_i \qquad \frac{\partial H}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$$

que son las ecuaciones de Hamilton. Donde (p,q) son 2N grados de libertad del sistema llamados las variables canónicas. Si $V \neq V(\dot{q})$ y los vínculos no dependen del tiempo entonces $T=T_2$ (la energía cinética es cuadrática en las velocidades) y H=E.

1.1 Transformación canónica del hamiltoniano

Es una transformación que verifica

$$H \longrightarrow K$$