Contents

1 Introduction
2 Weak Formulation
3 Existence and Uniqueness of a Solution
1

1 Introduction

2 Weak Formulation

In order to apply some of the results from the lecture, we need to derive the weak formulation of the given problem

Find
$$u \in C^2(\Omega) : -\Delta u + u = \cos(\pi x)\cos(\pi y)$$
 in Ω (1)

$$\partial_n u = 0$$
 on $\partial \Omega$. (2)

Multiplying with an arbitary $v \in C^2(\Omega)$ and integrating over Ω gives us

$$-\int_{\Omega} \Delta u v \, d\boldsymbol{x} + \int_{\Omega} u v \, d\boldsymbol{x} = \int_{\Omega} f v \, d\boldsymbol{x}$$

where $f = \cos(\pi x)\cos(\pi y)$ and $\mathbf{x} = (x, y)$. Using Green's first formula and (2) we can obtain the weak formulation

$$\int_{\Omega} \nabla u \nabla v \, d\boldsymbol{x} + \int_{\Omega} u v \, d\boldsymbol{x} = \int_{\Omega} f v \, d\boldsymbol{x}$$

From now on, we will denote the left hand side of the equation by a(u, v), the right hand side by F(v). Thus, we obtain the weak formulation

Find
$$u \in H^1(\Omega)$$
: $a(u, v) = F(v) \quad \forall v \in H^1(\Omega)$ (3)

3 Existence and Uniqueness of a Solution