Switzerland's Tweets sentiment analysis

C. Han & D. Rodrigues ADA - CS401

Goals

- Analyze the sentiments expressed by each tweet
- Visualize its relation with respect to time and locations

Challenges

- Multiple languages
- Twitter specific vocabulary
- Assign a location to each tweet

Sentiment Analysis Difficulties

- Tweets contain unusual Unicode/ASCii characters
- Tweets contain Emojis and Emoticons
- Tweets contain Urls/hashtags and @user mentions
- Tweets are written in multiple languages.
- One tweet can be written multiple languages.

Sentiment Analysis Process

- Clean each Tweet, remove Url/hashtags and @username mentions
- Predefine Sad and Happy set of Emoji/Emoticons
- Classify Tweets based on Happy and Sad Emoji and Emoticon usage
- Tokenize the extracted tweets and remove and strip French/English and German stopwords and punctuation and single character words.
- Frequency analysis on two sets of data and subtract the frequency of the most popular words to remove conflicts.
- Build Liu_Hu lexicon with appropriate size.
- Count the words with sentiment score in the tweets in big dataset.
- Produce a total sentiment score of each tweet.

Visualization

- Each tweets has a pair of longitude/latitude
- Compute the closest district capital
- Faster than library, e.g geopy.

This method is not perfect: capitals are not in the middle of districts and districts aren't perfect cycles.

Tweets from other countries are removed based on the distance between a tweet location and its nearest district.

Results by Canton

AG	0.298975
AI	0.256981
AR	0.253940
BE	0.159766
BL	0.221359
BS	-0.187450
FR	-0.194465
GE	-0.307193
GL	0.519873
GR	0.173852
111	-0.421691
LU	0.226045
NE	-0.365336
NW	0.194256
OW	0.132569
SG	0.251599
SH	0.210873
50	0.233187
SZ	0.247291
TG	0.266980
TI	0.112561
UR	0.286329
VD	-0.191653
VS	-0.129994
ZG	0.261919
ZH	0.240778
ZII	0.240770

Röstigraben

- As we can see, it appears that the *French* part of Switzerland has more negative feelings that the *German* part.
- The *Italian* part is kind of in-between
- No canton express extreme feelings

Districts

Valais - Wallis

- Almost all district follow the same score as their cantons
- Valais is a bilingual canton, and we can see that the French-German canton have the same score difference as for the entire country.

Fribourg, another bilingual canton, also has this separation

Analysis

• Do we score *french* tweets more negatively than *german* ones?

 A more proper cleaning of the data would have been useful. Remove robot accounts for example.

No differences between urban and rural areas.