中国海洋大学全日制本科课程期末考试试卷

<u>2012</u>年_秋_季学期 考试科目:<u>高等数学II-1</u> 学院<u>数学科学学院</u>

考试说明:本课程为闭卷考试,共2_页,总计100分.

题号	_	=	=	四	五	六	七	八	总分
得分									

一、填空题(共6题,每题3分,共18分)

1. 己知
$$f'(1) = 1$$
,则 $\lim_{x \to 0} \frac{\ln(1+x)}{f(1+x) - f(1-2x)} = \underline{\hspace{1cm}}$

2. 己知
$$y = f(x)$$
满足 $f(0) = 2$ $f'(0) = 2$,则 $\frac{d^2x}{dy^2}\Big|_{y=f(0)} =$ ______.

3. 己知
$$f(x)$$
 连续, $F(x) = \int_{0}^{x} (x-t)f(t)dt$,则 $F''(x) =$ _______.

- 4. 过原点及点(6,-3,2)且与平面4x-y+2z=8垂直的平面方程为 ______.
- 5. 若方程 $x^3 3x + k = 0$ 在 (-1,1) 内只有一个实根,则 k 的取值范围为
- 6. 不定积分 $\int \frac{dx}{x^2 + 2x + 3} = \underline{\qquad}$

二、选择题(共4题,每题3分,共12分)

- 1. 已知 f(x) 在 x = 0 的某邻域内有定义, F(x) = |x| f(x) ,则 F(x) 在 x = 0 处可导的 充要条件是 f(x) 在 x = 0 处 ().
- (A) 连续 (B) 可导 (C) 可导且 f'(0) = 0 (D) $\lim_{x \to 0} f(x) = 0$
- 2. 己知 f(x) 在 x=0的某邻域内有定义,满足 $|f(x)| \le x^2$,则 f(x) 在 x=0处().

3. 若 $\sqrt{1-x^2}$ 是 xf(x)的一个原函数,则 $\int_{1}^{1} \frac{1}{f(x)} dx = ($).

(A) -1 (B) $\frac{\pi}{4}$ (C) $-\frac{\pi}{4}$ (D) 1

4. 已知 f(x) 在区间 I 上存在原函数 F(x) ,则 f(x) + F(x) 在 I 上必(

- (A) 可导 (B) 不可导 (C) 存在原函数 (D) 不一定存在原函数

三、计算题(共 6 题, 每题 9 分, 共 54 分)

1. 求函数 $f(x) = \int_{a}^{1} |x^2 - t^2| dt$ 在 $(0, +\infty)$ 上的极值.

- 4. 求曲线 $y = (x-5)x^{\frac{2}{3}}$ 的拐点.

5.
$$\exists \exists \lim_{x \to 0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}, \quad \exists \lim_{x \to 0}^{+\infty} \frac{e^{-x} - e^{-\sqrt{x}}}{\sqrt{x}} dx$$
.

6. 从原点向曲线 $y = 1 - \ln x$ 作切线,求由切线、曲线及 x 轴所围成的图形的面积.

四、证明题(共 2 题, 每题 8 分, 共 16 分)

- 证明: 当x > 0时, $e^x 1 > (1 + x) \ln(1 + x)$.
- 已知 f(0) = 0, f'(0) = 2, 证明 $\lim_{x \to 0} \left[\frac{\ln(1+x)}{x} \right]^{\frac{1}{f(x)}} = e^{-\frac{1}{4}}$. 2.