

General Description

The MAX4737/MAX4738/MAX4739 low-voltage, low onresistance (RON), quad single-pole/single throw (SPST) analog switches operate from a single +1.8V to +5.5V supply. These devices are designed for USB 1.1 and audio switching applications.

The MAX4737/MAX4738/MAX4739 feature 4.5Ω Ron (max) with 1.2Ω flatness and 0.4Ω matching between channels. These new switches feature guaranteed operation from +1.8V to +5.5V and are fully specified at 3V and 5V. These switches offer break-before-make switching (1ns) with ton <80ns and toff <40ns at +2.7V. The digital logic inputs are +1.8V logic compatible with a +2.7V to +3.6V supply.

These switches are packaged in a chip-scale package (UCSP™), significantly reducing the required PC board area. The chip occupies only a 2mm x 2mm area and has a 4×4 bump array with a bump pitch of 0.5mm. These switches are also available in a 14-pin TSSOP and a 16-pin thin QFN (4mm x 4mm) package.

Applications

Battery-Operated Equipment Audio/Video-Signal Routing Low-Voltage Data-Acquisition Systems Sample-and-Hold Circuits **Data-Acquisition Systems** Communications Circuits

UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- ♦ USB 1.1 Signal Switching
- ♦ 2ns (max) Differential Skew
- ♦ -3dB Bandwidth: >300MHz
- ♦ Low 20pF On-Channel Capacitance
- **♦ Low Ron** 4.5 Ω (max) (+3V Supply) 3Ω (max) (+5V Supply)
- ♦ 0.4Ω (max) R_{ON} Match (+3V Supply)
- ♦ 1.2Ω (max) Ron Flatness (+3V Supply)
- ♦ <0.5nA Leakage Current at +25°C
 </p>
- ♦ High Off-Isolation: -55dB (10MHz)
- ♦ Low Crosstalk: -80dB (10MHz)
- ♦ Low Distortion: 0.03%
- ♦ +1.8V CMOS-Logic Compatible
- ♦ Single-Supply Operation from +1.8V to +5.5V
- ♦ Rail-to-Rail Signal Handling

Ordering Information

PART	TEMP RANGE	PIN/BUMP- PACKAGE	TOP MARK
MAX4737EUD	-40°C to +85°C	14 TSSOP	_
MAX4737ETE	-40°C to +85°C	16 Thin QFN	_
MAX4737EBE-T	-40°C to +85°C	16 UCSP-16	4737
MAX4738EUD	-40°C to +85°C	14 TSSOP	_
MAX4738ETE	-40°C to +85°C	16 Thin QFN	_
MAX4738EBE-T	-40°C to +85°C	16 UCSP-16	4738
MAX4739EUD	-40°C to +85°C	14 TSSOP	_
MAX4739ETE	-40°C to +85°C	16 Thin QFN	_
MAX4739EBE-T	-40°C to +85°C	16 UCSP-16	4739

Pin Configurations/Functional Diagrams/Truth Tables

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(All Voltages Referenced to GND)	
V+, IN	0.3V to +6.0V
COM_, NO_, NC_ (Note 1)	0.3V to $(V++0.3V)$
Continuous Current COM_, NO_, NC	±100mA
Peak Current COM_, NO_, NC_	
(pulsed at 1ms, 10% duty cycle)	±200mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$	3)
14-Pin TSSOP (derate 6.3mW/°C above	+70°C)500mW
16-Bump UCSP (derate 8.3mW/°C above	e +70°C)659mW
16-Pin Thin QFN (derate 25mW/°C above	e +70°C)2000mW

ESD Method 3015.7	>2kV
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C
Bump Temperature (soldering)	
Infrared (15s)	+220°C
Vapor Phase (60s)	+215°C

Note 1: Signals on COM_, NO_, or NC_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+=+3.0V, T_A=+25^{\circ}C, \text{ unless otherwise noted.})$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
Analog Signal Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V
ANALOG SWITCH							
		N 0 71/ 1 10 1	+25°C		3.0	4.5	Ω
On-Resistance (Note 5)	Ron	V+ = 2.7V, I _{COM} = 10mA; V _{NO} or V _{NC} = 1.5V	T _{MIN} to T _{MAX}			5	
0 B :		V 0.7V L 10. A	+25°C		0.1	0.4	
On-Resistance Match Between Channels (Notes 5, 6)	ΔR _{ON}	V+ = 2.7V, I _{COM} = 10mA; V _{NO} or V _{NC} = 1.5V	T _{MIN} to			0.5	Ω
			+25°C		0.6	1.2	
On-Resistance Flatness (Note 7)	R _{FL} AT(ON)	V+ = 2.7V, I _{COM} = 10mA; V _{NO} or V _{NC} = 1.0V, 1.5V, 2.0V	T _{MIN} to			1.5	Ω
			+25°C	-0.5	+0.01	+0.5	
NO_, NC_ Off-Leakage Current (Note 8)	INO_(OFF), INC_(OFF)	V+ = 3.6V, V _{COM} _ = 0.3V, 3.3V; V _{NO} _ or V _{NC} _ = 3.3V, 0.3V	T _{MIN} to	-1		+1	nA
		V 0.0V V 0.0V	+25°C	-0.5	+0.01	+0.5	
COM_ Off-Leakage Current (Note 8)	ICOM_(OFF)	V+ = 3.6V, V _{COM} _ = 0.3V, 3.3V; V _{NO} _ or V _{NC} _ = 3.3V, 0.3V	T _{MIN} to T _{MAX}	-1		+1	nA
0014 0 1 1 0 1		$V + = 3.6V, V_{COM} = 0.3V, 3.3V;$	+25°C	-1	+0.01	+1	
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	V_{NO} or V_{NC} = 0.3V, 3.3V, or floating	T _{MIN} to T _{MAX}	-2		+2	nA

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+=+3.0V, T_A=+25^{\circ}C, T_{MAX}$ unless otherwise noted.) (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS							
		V . V . 45V	+25°C		40	80	
Turn-On Time	ton	$V_{NO_}$, $V_{NC_}$ = 1.5V; R_L = 300 Ω , C_L = 35pF, Figure 1	T _{MIN} to			100	ns
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+25°C		20	40	
Turn-Off Time	tOFF	$V_{NO_}$, $V_{NC_}$ = 1.5V; R_L = 300 Ω , C_L = 35pF, Figure 1	T _{MIN} to T _{MAX}			50	ns
Durali Dafara Malia Tima Dalari		V . V . 45V	+25°C		8		
Break-Before-Make Time Delay (MAX4739 Only) (Note 8)	t _{BBM}	$V_{NO_}$, $V_{NC_}$ = 1.5V; R_L = 300 Ω , C_L = 35pF, Figure 2	T _{MIN} to	1			ns
Skew (Note 8)	tskew	$R_S = 39\Omega$, $C_L = 50pF$, Figure 3	T _{MIN} to T _{MAX}		0.15	2	ns
Charge Injection	Q	$V_{GEN} = 2V$, $R_{GEN} = 0\Omega$, $C_L = 1.0$ nF, Figure 4	+25°C		5		рС
Off leadation (Nata O)	\/	$f = 10MHz; V_{NO_}, V_{NC_} = 1V_{P-P}; R_L = 50\Omega, C_L = 5pF, Figure 5a$	0500		-55		-10
Off-Isolation (Note 9)	Viso	$f = 1MHz; V_{NO}, V_{NC} = 1V_{P-P};$ $R_L = 50\Omega, C_L = 5pF, Figure 5a$	+25°C		-80		dB
Crackelly (Nata 10)	\/	$f = 10MHz; V_{NO_}, V_{NC_} = 1V_{P-P};$ $R_L = 50\Omega, C_L = 5pF, Figure 5b$. 0500		-80		٩D
Crosstalk (Note 10)	VCT	$f = 1MHz; V_{NO}, V_{NC} = 1V_{P-P};$ $R_L = 50\Omega, C_L = 5pF, Figure 5b$	+25°C		-110		dB
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, C_L = 5pF, 50Ω in and out, Figure 5a	+25°C		300		MHz
Total Harmonic Distortion	THD	$R_L = 600\Omega$	+25°C		0.03		%
NO_, NC_ Off-Capacitance	C _{NO_(OFF)} , C _{NC_(OFF)}	f = 1MHz, Figure 6	+25°C		9		pF
Switch On-Capacitance	Con	f = 1MHz, Figure 6	+25°C		15		рF
DIGITAL I/O							
Input Logic High Voltage	V _{IH}		T _{MIN} to T _{MAX}	1.4			V
Input Logic Low Voltage	VIL		T _{MIN} to T _{MAX}			0.5	V
Input Leakage Current	I _{IN}	V+ = 3.6V, V _{IN} _ = 0 or 5.5V	T _{MIN} to T _{MAX}	-0.1		+0.1	μΑ

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.6V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+=+3.0V, T_A=+25^{\circ}C, \text{ unless otherwise noted.})$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SUPPLY							
Supply Voltage Range	V+		T _{MIN} to	1.8		5.5	V
Positive Supply Current	l+	V+ = 5.5V, V _{IN} _ = 0V or V+	T _{MIN} to			1	μΑ

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+=+4.2V \text{ to } +5.5V, V_{IH}=+2.0V, V_{IL}=+0.8V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+=+5.0V, T_A=+25^{\circ}C, \text{ unless otherwise noted.)}$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS	
Analog Signal Range	V _{COM_} , V _{NO_} , V _{NC_}		T _{MIN} to	0		V+	V	
ANALOG SWITCH								
		V 4.0V 1 40mA	+25°C		1.7	3.0		
On-Resistance (Note 5)	R _{ON}	V+ = 4.2V; I _{COM} = 10mA; V _{NO} or V _{NC} = 3.5V	T _{MIN} to			3.5	Ω	
0.5		V 40V I 40 A	+25°C		0.1	0.3		
On-Resistance Match Between Channels (Notes 5, 6)	ΔR _{ON}	V+ = 4.2V; I _{COM} = 10mA; V _{NO} or V _{NC} = 3.5V	T _{MIN} to			0.4	Ω	
			+25°C		0.4	1.2		
On-Resistance Flatness (Note 7)	R _{FL} AT(ON)	V+ = 4.2V; I _{COM} = 10mA; V _{NO} or V _{NC} = 1.0V, 2.0V, 3.5V	T _{MIN} to			1.5	Ω	
			+25°C	-0.5	0.01	+0.5		
NO_, NC_ Off-Leakage Current (Note 8)	INO_(OFF), INC_(OFF)	V+ = 5.5V; V _{COM} _ = 1.0V, 4.5V; V _{NO} _ or V _{NC} _ = 4.5V, 1.0V	T _{MIN} to	-1		+1	nA	
			+25°C	-0.5	0.01	+0.5		
COM_ Off-Leakage Current (Note 8)	ICOM_ (OFF)	V+ = 5.5V; V _{COM} = 1V, 4.5V; V _{NO} or V _{NC} = 4.5V, 1V	T _{MIN} to	-1		+1	nA	
0014 0 1 1 0		$V + = 5.5V; V_{COM} = 1.0V, 4.5V;$	+25°C	-1	0.01	+1		
COM_ On-Leakage Current (Note 8)	ICOM_(ON)	V_{NO} or V_{NC} = 1.0V, 4.5V, or floating	T _{MIN} to	-2		+2	nA	
DYNAMIC CHARACTERISTICS								
			+25°C		30	80]	
Turn-On Time	ton	$V_{NO_}$, $V_{NC_}$ = 3.0V; R_L = 300 Ω , C_L = 35pF, Figure 1	T _{MIN} to			100	ns	
		V 201	+25°C		20	40		
Turn-Off Time	toff	$V_{NO_}$, $V_{NC_}$ = 3.0V; R_L = 300 Ω , C_L = 35pF, Figure 1	T _{MIN} to			50	ns	

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+ = +4.2V \text{ to } +5.5V, V_{IH} = +2.0V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+ = +5.0V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Notes 3, 4)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
		V V 0.0V	+25°C		8		
Break-Before-Make Time Delay (MAX4739 Only) (Note 8)	t _{BBM}	$V_{NO_}$, $V_{NC_}$ = 3.0V; R_L = 300 Ω , C_L = 35pF, Figure 2	T _{MIN} to	1			ns
Skew (Note 8)	tskew	$R_S = 39\Omega$, $C_L = 50pF$, Figure 3	T _{MIN} to		0.15	2	ns
DIGITAL I/O							
Input Logic High Voltage	VIH		T _{MIN} to	2.0			V
Input Logic Low Voltage	VIL		T _{MIN} to			0.8	V
Input Leakage Current	I _{IN}	V+ = 5.5V, V _{IN} _ = 0V or V+	T _{MIN} to	-0.1		+0.1	μΑ
POWER SUPPLY							
Power-Supply Range	V+		T _{MIN} to	1.8		5.5	V
Positive Supply Current	l+	V+ = 5.5V, V _{IN} _ = 0V or V+	T _{MIN} to			1	μΑ

- **Note 3:** UCSP parts are 100% tested at +25°C only, and guaranteed by design over the specified temperature range. TSSOP and thin QFN parts are 100% tested at T_{MAX} and guaranteed by design over the specified temperature range.
- **Note 4:** The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value is a maximum.
- Note 5: Guaranteed by design for UCSP and thin QFN parts.
- **Note 6:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 7:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 8: Guaranteed by design.
- **Note 9:** Off-Isolation = $20log_{10}$ (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.
- Note 10: Between any two switches.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

				PIN						
	MAX4737	•	I	MAX4738	3	I	MAX4739)	NAME	FUNCTION
UCSP	TSSOP	THIN QFN	UCSP	TSSOP	THIN QFN	UCSP	TSSOP	THIN QFN	NAIVIL	rononon
D2	1	15	_	_	_	D2	1	15	NO1	Analog-Switch Normally Open Terminal
_	_	_	D2	1	15	_	_	_	NC1	Analog-Switch Normally Closed Terminal
D1	2	1	D1	2	1	D1	2	1	COM1	Analog-Switch Common Terminal
C1	3	2	_	_	_	_	_	_	NO2	Analog-Switch Normally Open Terminal
_	_	_	C1	3	2	C1	3	2	NC2	Analog-Switch Normally Closed Terminal
B1	4	3	B1	4	3	B1	4	3	COM2	Analog-Switch Common Terminal
A1	5	4	A1	5	4	A1	5	4	IN2	Logic-Control Digital Input
A2	6	5	A2	6	5	A2	6	5	IN3	Logic-Control Digital Input
В3	7	6	В3	7	6	В3	7	6	GND	Ground. Connect to digital ground.
АЗ	8	7	_	_	_	АЗ	8	7	NO3	Analog-Switch Normally Open Terminal
_	_	_	А3	8	7	_	_	_	NC3	Analog-Switch Normally Closed Terminal
A4	9	9	A4	9	9	A4	9	9	COM3	Analog-Switch Common Terminal
B4	10	10	B4	10	10	B4	10	10	COM4	Analog-Switch Common Terminal

NIXIN

Pin Description (continued)

				PIN						
	MAX4737	•		MAX4738	3	I	MAX4739)	NAME	FUNCTION
UCSP	TSSOP	THIN QFN	UCSP	TSSOP	THIN QFN	UCSP	TSSOP	THIN QFN	NAME	TOROTION
C4	11	11	_	_	_	_	_	_	NO4	Analog-Switch Normally Open Terminal
_	_	_	C4	11	11	C4	11	11	NC4	Analog-Switch Normally Closed Terminal
D4	12	12	D4	12	12	D4	12	12	IN4	Logic-Control Digital Input
D3	13	13	D3	13	13	D3	13	13	IN1	Logic-Control Digital Input
C2	14	14	C2	14	14	C2	14	14	V+	Positive Analog Supply
_	_	8, 16	_	_	8, 16	_		8, 16	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX4737/MAX4738/MAX4739 quad SPST analog switches operate from a single +1.8V to +5.5V supply. The MAX4737/MAX4738/MAX4739 offer excellent AC characteristics, <0.5nA leakage current, less than 1ns differential skew, and 15pF on-channel capacitance. All of these devices are CMOS-logic compatible with V+ to GND signal handling capability.

The MAX4737/MAX4738/MAX4739 are USB-complaint switches that provide 4.5 Ω (max) on-resistance and 15pF on-channel capacitance to maintain signal integrity. At 12Mbps (USB full-speed data rate specification), the MAX4737/MAX4738/MAX4739 introduce less than 2ns propagation delay between input and output signals and less than 0.5ns change in skew for the output signals (see Figure 4).

The MAX4737 has four normally open (NO) switches, the MAX4738 has four normally closed (NC) switches, and the MAX4739 has two NO switches and two NC switches.

Applications Information

Digital Control Inputs

The MAX4737/MAX4738/MAX4739 logic inputs accept up to +5.5V regardless of supply voltage. For example, with a +3.3V supply, IN_ can be driven low to GND and high to +5.5V allowing for mixing of logic levels in a system. Driving the control logic inputs rail-to-rail minimizes power consumption. For a +1.8V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 2.0V (high).

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) are passed with very little change in on-resistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs.

Power-Supply Bypassing

Power-supply bypassing improves noise margin and prevents switching noise from propagating from the V+ supply to other components. A 0.1µF capacitor connected from V+ to GND is adequate for most applications.

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note: UCSP—A Wafer-Level Chip-Scale Package on Maxim's web site at www.maxim-ic.com/ucsp.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

Figure 3. Input/Output Skew Timing Diagram

Test Circuits/Timing Diagrams (continued)

Figure 4. Charge Injection

Figure 5a. On-Loss and Off-Isolation

Figure 5b. Crosstalk Test Circuit

Figure 6. Channel Off-/On-Capacitance

_Chip Information

TRANSISTOR COUNT: 361

PROCESS: CMOS

Pin Configurations/Functional Diagrams/Truth Tables (continued)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				CDM	MDN	DIME	INSI	DNS						
PKG	12	L 4×	:4	16L 4×4			20	DL 4×	4	24L 4×4				
REF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN	NOM.	MAX.	MIN.	NOM.	MAX.		
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05		
A2	-	.20 RE	F	0	.20 RE	F	0	20 RE	F	0	20 RE	F		
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30		
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		
6		0.80 BS	C.	0	.65 38	c.	0.50 BSC.			0.50 BSC.				
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-		
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50		
N		12			16			20			24			
ND		3		4			5			6				
NE		3			4			5			6			
Jedec Var.		WGGB			WGGC		,	wGGD-	ı	WGGD-2				

E	EXPOSED PAD VARIATIONS											
PKG.		DS			E5							
CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	BONDS ALLOVED					
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25	NO.					
T1244-3	1.95	2.10	2,25	1.95	2.10	2,25	YES					
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	NO.					
T1644-2	1.95	2.10	2,25	1.95	2.10	2,25	NO					
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES					
T1644-4	1.95	2.10	2,25	1.95	2.10	2,25	NO					
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25	NO					
T2044-2	1.95	2.10	2.25	1.95	2.10	2,25	YES					
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	NO					
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63	NO					
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES					
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES					
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	NO.					

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- N IS THE TOTAL NUMBER OF TERMINALS.
- IN IS THE TOTAL NUMBER OF TERMINAL MUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012, DETALS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL. BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- ⚠ DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- NO AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.

 (A) COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-1, T2444-3 AND T2444-4.

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.