Tack 5: Show that the set of integers, Z2 using modular arithmetic, is not a field.

For modular arithmetic there has to be a finite number of items in the set.

In this race; Z - set of integers.

In this race; Z - set of integers.

Onnot result to finite modular arithmetic and hence Z2 is not a field.

Took 6: Parform pagnonial arithmetic in GF (28) mass

Tack 6: Parform polynomial arithmetic in GF (23) modulo
(23+23+1)
Toking d as a Dismitrip Planent

Taking d as a Primitrue element $d^3 + \alpha^2 + 1 = 0 \rightarrow (-1) - - - - (\alpha)$ $A^3 = -(\alpha^2 + 1) - - - - - - (b)$ $a^4 = a^3 \cdot a = -(\alpha^2 + 1) \cdot a = \alpha^3 + a = \alpha^2 + \alpha + 1$ $a^5 = a^4 \cdot a = -(\alpha^2 + \alpha + 1) \cdot a = \alpha^3 + \alpha^2 + \alpha$

 $= d^2 + 1 + d^2 + \alpha$

= x+1

Power representation	Polynomial Represendation	3-tuple representation
0	0	000
	1	100
d	d .	010
≪ ²	od 2	001
od 3	q^2+1	101
X F	d2+a+1	
d _e	X+1	110
αc	$x^2 + x$	011
Q ⁷	1	100

T.