Dependencias Multivaluadas y de Join Base de Datos

Mónica Caniupán mcaniupan@ubiobio.cl

Universidad del Bío-Bío

2020

Dependencias Multivaluadas: Introducción

- Algunos problemas de redundancia de datos no son resueltos con las FNs vistas hasta ahora y que se basan en DFs
- Supongamos la relación Cursos (Curso, Profesor, Texto) con clave CPL:

Cursos		
Curso	Curso Profesor Texto	
BD	Pedro	Fund. BDs
BD	Pedro	DBMS
BD	Maria	Fund. BDs
BD	Maria	DBMS
Ing. Sw.	Luis	SWI
Ing. Sw.	Luis	Sistemas
Ing. Sw.	Luis	Metod. SW

- Un curso puede ser enseñado por cualquiera de los profesores especificados
- Cada curso usa los textos especificados
- Para un curso dado pueden existir varios profesores y textos
- Profesores y textos son independientes el uno del otro
- Un profesor o texto dado puede estar asociado a uno o más cursos

Dependencias Multivaluadas: Introducción

Cursos		
Curso Profesor Texto		Texto
BD	Pedro	Fund. BDs
BD	Pedro	DBMS
BD	Maria	Fund. BDs
BD	Maria	DBMS
Ing. Sw.	Luis	SWI
Ing. Sw.	Luis	Sistemas
Ing. Sw.	Luis	Metod. SW

- Cursos(Curso, Profesor, Texto) se encuentra en FNBC (ya que todos los atributos forman la clave)
- Sin embargo, hay redundancia en los datos, el hecho de que Pedro enseñe BD se registra por cada texto recomendado
- También hay problemas de inserción, ¿qué pasa si queremos agregar otro profesor para el curso BD?

Dependencias Multivaluadas: Introducción

Cursos		
Curso Profesor Texto		Texto
BD	Pedro	Fund. BDs
BD	Pedro	DBMS
BD	Maria	Fund. BDs
BD	Maria	DBMS
Ing. Sw.	Luis	SWI
Ing. Sw.	Luis	Sistemas
Ing. Sw.	Luis	Metod. SW

 Para cada curso todas las combinaciones de profesores y textos deben existir:

■ La redundancia en este ejemplo se debe a que profesores y textos son independientes entre sí, pero están en una única tabla

Dependencias Multivaluadas

- Las Dependencias Multivaluadas son una generalización de las DFs y nos ayudan a arreglar el problema anterior
- Sea *R* el esquema de una relación y sean *X* e *Y* conjuntos de los atributos de *R*, *X* multi-determina *Y*,

$$X \rightarrow \rightarrow Y$$

- En todas las instancias legales de R, cada valor de X está asociado con un conjunto de valores Y
- La relación entre X e Y es independiente de la relación entre X y R − Y (el resto de los atributos de R)

Dependencias Multivaluadas

- En nuestro ejemplo, existe una relación entre curso y profesor la que es totalmente independiente de la relación que existe entre curso y texto
- Para un curso c y un texto t el conjunto de profesores que corresponden al par (c,t) solo depende de c, entonces tenemos:

Curso
$$\rightarrow \rightarrow$$
 Texto

$$\textit{Curso} \rightarrow \rightarrow \textit{Profesor}$$

Dependencias Multivaluadas

- Las dependencias funcionales nos exigen unicidad de tuplas:
 - Si tenemos $A \rightarrow B$, entonces no pueden existir dos tuplas que concuerden en el valor de A pero difieran en el valor de B
- Las dependencias multivaloradas nos exigen la existencia de nuevas tuplas
 - Si tenemos A →→ B y tenemos dos tuplas que concuerdan en el valor de A pero no en el valor de B entonces también debemos tener tuplas que concuerden en A y con las combinaciones de los valores de B y R − B
 - Por ejemplo, si nos dan la siguiente relación y la DM $X \rightarrow \rightarrow Y$:

Χ	Υ	Z
а	<i>b</i> ₁	C ₁
а	b_2	C ₂

■ Entonces, las siguientes tuplas deben aparecer en la relación (a, b_1, c_2) y (a, b_2, c_1)

4FN

- Una relación R está en 4FN si para toda DM $X \rightarrow \rightarrow Y$ que se cumple en R, alguna de las siguientes afirmaciones es cierta:
 - $Y \subseteq X$ o XY = R (DM trivial), o
 - X es una super-clave

Ejemplo: 4FN

- La relación *Cursos*(*Curso*, *Profesor*, *Texto*) no está en 4FN:
- Tenemos las DMs:
 - Curso →→ Profesor
 - \blacksquare Curso $\rightarrow \rightarrow$ Texto
- Curso no es super-clave
- La relación debe ser descompuesta en dos relaciones con esquemas Cursos₁(Curso, Profesor) y Cursos₂(Curso, Texto)
 - La clave primaria de Cursos₁ es el conjunto Curso, Profesor
 - La clave primaria de *Cursos*₂ es el conjunto **Curso**,**Texto**

Ejemplo: 4FN

■ Las nuevas relaciones son:

Cursos ₁	
Curso	Profesor
BD	Pedro
BD	Maria
Ing. Sw.	Luis

Cursos ₂	
Curso	Texto
BD	Fund. BDs
BD	DBMS
Ing. Sw.	SWI
Ing. Sw.	Sistemas
Ing. Sw.	Metod. SW

Dependencias de Join

- Una Dependencia de Join (DJ) es una generalización de una DM
- Una DJ, denotada por $\bowtie \{R_1, ..., R_n\}$ sobre una instancia de relación R se satisface si $R_1, ..., R_n$ es una descomposición sin pérdida de R
- La DM $X \rightarrow \rightarrow Y$ puede ser expresada con la DJ: $\bowtie \{XY, X(R-Y)\}$
 - La DM *Curso* →→ *Profesor* de la relación *Cursos*(*Curso*, *Profesor*, *Texto*) puede expresarse con la DJ: ⋈ { *Curso*, *Profesor*; *Curso*, *Texto*}
 - La DM Curso → Texto de la relación Cursos (Curso, Profesor, Texto) puede expresarse con la DJ: ⋈ {Curso, Texto; Curso, Profesor}

5FN

- Una relación R está en 5FN si para todas las DJ \bowtie $\{R_1, \ldots, R_n\}$ que se cumplen en R, alguna de las siguientes afirmaciones es cierta:
 - \blacksquare $R_i = R$ para algún i, o
 - La descomposición de R es sin pérdida cuando las llaves primarias de R se satisfacen

Ejemplo: 5 FN

- Supongamos la relación Cursos (Curso, Profesor, Texto) con clave primaria Curso, Profesor, Texto, y las DMs:
 - \blacksquare Cursos $\rightarrow \rightarrow$ Profesor
 - Cursos →→ Texto

Cursos ₁	
Curso	Profesor
BD	Pedro
BD	Maria
Ing. Sw.	Luis

Cursos ₂	
Curso	Texto
BD	Fund. BDs
BD	DBMS
Ing. Sw.	SWI
Ing. Sw.	Sistemas
Ing. Sw.	Metod. SW

■ La separación de *Cursos* en *Cursos*₁ y *Cursos*₂ es por join sin pérdida, por lo tanto, las relaciones están en 5 FN