Week 7: Model Training and Evaluation

Ekarat Rattagan

September 12, 2025

Which model is the best choice?

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2$$

...

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \dots + \theta_9 x_9^9$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2 + \dots + \theta_9 x_9^9 + \theta_{10} x_{10}^{10}$$

Two Methods in Training process (1/2)

- Hold-out Method
 - 80% Train set
 - 20% Test set

- Pros:
 - Simple
 - Fast

- Cons:
 - Overfitting

Two Methods in Training process (2/2)

Cross validation Method

• Training set: 60%

Validation set: 20%

• Test set: 20%

- Pros:
 - Variance (Overfitting) is reduced

- Cons:
 - Slow

Which one reduces the error caused by overfit or underfit?

- Get more training data
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features
- Try decreasing λ (Ridge penalty)
- Try increasing λ (Ridge penalty)

Bias vs Variance

- **Underfit:** High Bias (Linear Model: $\theta_0 + \theta_1 x$)
- **Good Fit:** Proper Balance (Quadratic Model: $\theta_0 + \theta_1 x + \theta_2 x^2$)
- Overfit: High Variance (Higher-order Polynomial Model:

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4)$$

Diagnosis: Bias vs Variance (Polynomial Degree)

- Low-degree polynomial: Underfitting
- Moderate-degree polynomial: Good Fit
- High-degree polynomial: Overfitting

Diagnosis: Bias vs Variance (Regularization Parameter)

• Ridge function:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} \theta_j^2$$
 (1)

- ullet Increasing λ reduces variance but increases bias
- ullet Decreasing λ reduces bias but increases variance

Effect of Training Data Size

Increasing training data reduces variance but not bias

Error Metrics

- Confusion Matrix
- Precision, Recall, Accuracy
- F1-Score
- ROC, AUC

Confusion Matrix

	Actual Positive	Actual Negative		
Predicted Positive	d Positive TP (True Positive) FP (
Predicted Negative	FN (False Negative)	TN (True Negative)		

Key Metrics:

• Accuracy:
$$\frac{TP+TN}{TP+FP+TN+FN}$$

- Recall: $\frac{TP}{TP+FN}$
- Precision: $\frac{TP}{TP+FP}$
- Sensitivity (TPR): $\frac{TP}{TP+FN}$
- Specificity (TNR): $\frac{TN}{TN+FP}$
- False Positive Rate (FPR): $\frac{FP}{FP+TN}$
- Matthews Correlation Coefficient (MCC):

$$\frac{\mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN}}{\sqrt{(\mathit{TP} + \mathit{FP})(\mathit{TP} + \mathit{FN})(\mathit{TN} + \mathit{FP})(\mathit{TN} + \mathit{FN})}}$$

Accuracy, Recall, Precision

id	у	\hat{y}_{prob}	$\hat{\mathcal{Y}}_{threshold}{\geq}0.5$	Accuracy	Recall	Precision
1	0	0.5	1			
2	1	0.9	1			
3	0	0.7	1			
4	1	0.7	1			
5	1	0.3	0			
6	0	0.4	0			
7	1	0.5	1			

Accuracy, Recall, Precision

id	у	\hat{y}_1	\hat{y}_2	ŷ ₃	Accuracy	Recall	Precision
1	0	0	0	1			
2	0	0	0	1			
3	0	0	0	1			
4	0	0	0	1			
5	0	0	0	1			
6	0	0	0	1			
7	0	0	0	1			
8	0	0	0	1			
9	1	0	1	1			
10	1	0	0	1			

Tumor detection (Accuracy, Recall, Precision)

- Tumor area (Positive)
- Predicted area (Negative)

F1 Score

How to average precision and recall value?

Average (Arithmetic Mean) =
$$\frac{P+R}{2}$$

 F_1 score (Harmonic Mean) = $\frac{2 \times P \times R}{P+R}$

Model	Precision (P)	Recall (R)	Avg $\frac{P+R}{2}$	F_1
1	0.5	0.4		
2	0.7	0.1		
3	0.02	1.0		

Receiver operating characteristic (ROC)

Figure: Receiver operating characteristic (ROC)

Ref: https://machinelearningmastery.com

Precision-Recall Curve

Figure: Precision-Recall Curve (PR-curve)

Ref: https://machinelearningmastery.com

Reference

 Raschka, S. (2018). Modelevaluation, models election, and algorithms election in machine learning. arXiv preprint arXiv:1811.12808.