

Chapitre 1 : Séries numériques

Introduction et motivations du chapitre

Les séries numériques ont permis, particulièrement à la fin du 17ème siècle et au 18ème siècle, d'obtenir des identités remarquables faisant intervenir les plus célèbres constantes mathématiques :

- $-\sum_{n=0}^{+\infty}\frac{(-1)^n}{2n+1}=\frac{\pi}{4} \ obtenue \ par \ Leibniz \ et \ Gregory \ vers \ la \ fin \ du \ 17\`eme \ si\`ecle.$
- $-\sum_{n=0}^{+\infty} \frac{1}{n!} = e \text{ obtenue par L\'eonard Euler en 1731.}$
- $-\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \text{ obtenue par L\'eonard Euler en 1735...}$
- ... bien d'autres encore que nous allons découvrir dans ce chapitre.

Plan du chapitre

1	Suites numériques	1
	1.A Suite convergente, divergente	1
	1.B Théorèmes de comparaison pour les suites réelles	1
	1.C Relations de comparaison	3
	1.D Suites classiques	4
	1.D.1 Suite arithmétique de raison $r \in \mathbb{C}$	4
	1.D.2 Suite géométrique de raison $q \in \mathbb{C}$	5
	1.D.3 Suite arithmético-géométrique	5
	1.D.4 Suite récurrente linéaire d'ordre 2	5
2	Séries numériques : généralités et premiers exemples	6
	2.A Définitions et première propriétés	6
	2.B Etude directe	6
3	Séries à termes réels positifs	8
	3.A Comparaison : relation d'ordre et séries à termes positifs	8
	3.B Séries à termes positifs et équivalents	8
	3.C Règle de d'Alembert	10
	3.D Comparaison séries-intégrales	11
4	Convergence absolue et semi-convergence des séries complexes	14
•	4.A Définition	15
	4.B Théorèmes de comparaison	16
	4.C Séries alternées	17
	4.D Produit de Cauchy	18
	T	

1 - Suites numériques

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Selon le contexte, |a| désigne la valeur absolue de $a \in \mathbb{R}$ ou le module de $a \in \mathbb{C}$.

1.A - Suite convergente, divergente

Définition 1: suite réelle ou complexe convergente

On dit que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{K}$ si :

$$\forall \varepsilon > 0, \exists N_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant N_0 \Longrightarrow |u_n - \ell| \leqslant \varepsilon).$$

Si $\mathbb{K} = \mathbb{R}$, on dit que $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$ si :

$$\forall A > 0, \exists N_0 \in \mathbb{N}, (\forall n \geqslant N_0 \Longrightarrow u_N \geqslant A).$$

On adapte facilement cette définition pour définir la divergence vers $-\infty$.

On peut noter que $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ si et seulement si $(-u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$.

Exercice 2: convergence/divergence avec ces définitions

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=\frac{n+1}{n^2+2}$ converge vers 0.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=\frac{n^2-\sin(n)}{n-2\sqrt{n}+1}$ diverge vers $+\infty$.

Proposition 3: unicité de la limite d'une suite convergente, limite des sous-suites

- Si $(u_n)_{n\in\mathbb{N}}$ converge alors sa limite est unique.
- Si $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R} \cup \{+\infty, -\infty\}$ alors ses sous-suites $(u_{\varphi(n)})_{n \in \mathbb{N}}$ ont la même limite.

Le résultat sur les sous-suites permet de montrer qu'une suite n'admet pas de limite :

- $((-1)^n)_{n\in\mathbb{N}}$ n'a pas de limite.
 - Les sous-suites des termes d'indice pair et impair ont pour limites $1 \neq -1$.
- $(\sin(n\frac{\pi}{2}))_{n\in\mathbb{N}}$ n'a pas de limite.
 - Les sous-suites $(\sin(2p\frac{\pi}{2}))_{p\in\mathbb{N}}$ et $(\sin((2p+1)\frac{\pi}{2})_{p\in\mathbb{N}}$ n'ont pas le même comportement si $p\to +\infty$.

Proposition 4

Une suite convergente est bornée : il existe $M \in \mathbb{R}_+$ tel que $\forall n \in \mathbb{N}, |u_n| \leq M$.

La réciproque est fausse (voir les exemples traités via les sous-suites).

1.B - Théorèmes de comparaison pour les suites réelles

L'ensemble des nombres complexes ne possède pas de relation d'ordre ≤.

Les notions de monotonie, et celles qui en découlent, n'ont pas de sens dans ce cadre.

Dans ce paragraphe, les suites considérées sont réelles.

Théorème 5: Théorème des gendarmes

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ trois suites réelles telles qu'il existe un rang $N_0\in\mathbb{N}$ vérifiant :

$$\forall n \in \mathbb{N}, (n \geqslant N_0 \Longrightarrow u_n \leqslant v_n \leqslant w_n).$$

- Si $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers une même limite $\ell\in\mathbb{R}$ alors $(v_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- Si $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ alors $(v_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.
- Si $(w_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ alors $(v_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$.

Exercice 6

Montrer que la suite de terme général $\sum_{k=1}^{n} \frac{1}{\sqrt{n^2+k}}$ converge et donner sa limite.

Théorème 7: Théorème de la limite monotone

Toute suite $(u_n)_{n\in\mathbb{N}}$ réelle croissante possède une limite dans $\mathbb{R}\cup\{+\infty\}$.

— Si $(u_n)_{n\in\mathbb{N}}$ est majorée par un réel M alors $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ et :

$$\forall n \in \mathbb{N}, v_0 \leqslant v_n \leqslant \ell \leqslant M.$$

— Si $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée alors $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Il existe bien sûr des résultats analogues dans le cas de suites décroissantes.

Remarques

La limite d'une suite croissante majorée $(u_n)_{n\in\mathbb{N}}$ est la borne sup de l'ensemble $\{u_n:n\in\mathbb{N}\}\subset\mathbb{R}$.

Exercice 8

En raisonnant par l'absurde et en appliquant le théorème de la limite monotone, montrer que la suite de terme général $S_n = \sum_{k=1}^n \frac{1}{k}$ diverge vers $+\infty$.

On pourra étudier $S_{2n} - S_n$.

Théorème 9: Suites adjacentes

Deux suites réelles $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont dites adjacentes si :

- $(a_n)_{n\in\mathbb{N}}$ est croissante et $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- $-a_n-b_n \xrightarrow[n\to+\infty]{} 0.$

Dans ce cas, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent vers une limite commune.

Exercice 10

Montrer que les suites de terme général $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$ et $v_n = u_n - \frac{1}{n}$ convergent vers une même limite $\gamma > 0$.

Solution.

• Une rapide étude de fonction donne : $\forall x > -1$, $\ln(1+x) \leq x$.

- $(v_n)_{n\in\mathbb{N}^*}$ est croissante. Soit $n\in\mathbb{N}^*$: $\begin{aligned} v_{n+1} - v_n &= \left(u_{n+1} - \frac{1}{n+1}\right) - \left(u_n - \frac{1}{n}\right) = -\ln(n+1) + \ln(n) + \frac{1}{n} = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \geqslant 0. \\ \bullet \text{ On démontre de même que } u_{n+1} - u_n \leqslant 0 : (u_n)_{n \in \mathbb{N}^*} \text{ est décroissante.} \\ \bullet \text{ Par ailleurs } u_n - v_n &= \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0. \end{aligned}$

- Les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes donc convergent vers un limite commune γ .

De plus, $(v_n)_{n\in\mathbb{N}^*}$ étant croissante : $v_1 \leqslant v_2 \leqslant \gamma$.

Or
$$v_1 = u_1 - 1 = 0$$
 et $v_2 = u_2 - \frac{1}{2} = 1 + \frac{1}{2} - \ln(2) - \frac{1}{2} = 1 - \ln(2) > 0$.

1.C -Relations de comparaison

On revient au cas général : les suites considérées sont complexes.

Définition 11: Suites équivalentes, négligeabilité, domination

- Soient $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}$ deux suites telles que $v_n \neq 0$ à partir d'un certain rang. On dit que : $(u_n)_{n\in\mathbb{N}} \text{ et } (v_n)_{n\in\mathbb{N}} \text{ sont } \text{\'equivalentes } \text{si } \frac{u_n}{v_n} \underset{n \to +\infty}{\longrightarrow} 1. \text{ On note } u_n \underset{n \to +\infty}{\sim} v_n.$ $(u_n)_{n\in\mathbb{N}} \text{ est } \text{n\'egligeable devant } (v_n)_{n\in\mathbb{N}} \text{ si } \frac{u_n}{v_n} \underset{n \to +\infty}{\longrightarrow} 0. \text{ On note } u_n \underset{n \to +\infty}{=} o(v_n).$
 - $(u_n)_{n\in\mathbb{N}}$ est **dominée** par $(v_n)_{n\in\mathbb{N}}$ si $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ est bornée. On note $u_n = O(v_n)$.

Proposition 12

— Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et si $v_n \underset{n \to +\infty}{\longrightarrow} \ell$ alors $u_n \underset{n \to +\infty}{\longrightarrow} \ell$.

$$-u_n \underset{n \to +\infty}{\sim} v_n \iff u_n \underset{n \to +\infty}{=} v_n + o(v_n)$$

— Si
$$u_n \sim v_n$$
 alors u_n et v_n sont de même signe à partir d'un certain rang.

Développements limités usuels en 0, fournissant des équivalents en substituant à $x:u_n \underset{n \to +\infty}{\longrightarrow} 0$:

•
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) = 1 + x + \frac{x}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n).$$

•
$$\cos(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$$

•
$$\sin(x) = \sum_{k=0}^{n-1} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}).$$

•
$$\operatorname{ch}(x) = \sum_{k=0}^{n-1} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1}).$$

•
$$\operatorname{sh}(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}).$$

•
$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o(x^n) = 1 + x + x^2 + \dots + x^n + o(x^n).$$

•
$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n) = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n).$$

•
$$\ln(1+x) = \sum_{x\to 0}^{n} (-1)^{k+1} \frac{x^k}{k} + o(x^n) = x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n).$$

•
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} x^k + o(x^n)$$

$$= 1 + \alpha x + \alpha(\alpha-1) \frac{x^2}{2!} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n + o(x^n)$$

- $\arctan(x) = x \frac{x^3}{3} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}).$
- $\tan(x) = x + \frac{x^3}{3} + o(x^4)$.

Exercice 13

Montrer que $\left(1+\frac{1}{n}\right)^n \xrightarrow[n \to +\infty]{} e$ puis donner un équivalent de $\left(1+\frac{1}{n}\right)^n - e$ lorsque $n \to +\infty$.

Solution.

• Pour tout $n \ge 1$, $\left(1 + \frac{1}{n}\right)^n = \exp(n\ln(1 + \frac{1}{n}))$.

Par produit d'équivalents : $n \ln(1 + \frac{1}{n}) \sim n \times \frac{1}{n} = 1$.

Ainsi, $n \ln(1 + \frac{1}{n}) \underset{n \to +\infty}{\longrightarrow} 1$ et par composition des limites $\left(1 + \frac{1}{n}\right)^n \underset{n \to +\infty}{\longrightarrow} e^1 = e$.

$$\bullet \left(1 + \frac{1}{n}\right)^n - e = e\left(e^{n\ln(1 + \frac{1}{n}) - 1} - 1\right) \text{ avec } n\ln(1 + \frac{1}{n}) - 1 \underset{n \to +\infty}{\longrightarrow} 0. \text{ Or } e^x - 1 \underset{x \to 0}{=} x + o(x) \underset{x \to 0}{\sim} x.$$

Ainsi,
$$e\left(e^{n\ln(1+\frac{1}{n})-1}-1\right) \underset{n\to+\infty}{\sim} e\left(n\ln\left(1+\frac{1}{n}\right)-1\right)$$
. Or $\ln(1+x) \underset{x\to 0}{=} x-\frac{x^2}{2}+o(x^2)$.

Ainsi,
$$n \ln(1 + \frac{1}{n}) - 1 = n \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - 1 = 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right) - 1 \approx -\frac{1}{2n}$$

D'où
$$\left(1+\frac{1}{n}\right)^n - e \underset{n \to +\infty}{\sim} -\frac{e}{2n}$$
.

Théorème 14: croissances comparées

Pour tout $\alpha, \beta > 0$ et a > 1:

$$\ln^{\alpha}(n) \underset{n \to +\infty}{=} o(n^{\beta}); \quad n^{\alpha} \underset{n \to +\infty}{=} o(a^{n}). \quad \text{En particulier}, n^{\alpha} \underset{n \to +\infty}{=} o(e^{n})$$

1.D - Suites classiques

${f 1.D.1}$) Suite arithmétique de raison $r\in \mathbb{C}$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite **arithmétique** de raison $r\in\mathbb{C}$ si $\begin{cases} u_0\in\mathbb{C} \\ \forall n\in\mathbb{N}, u_{n+1}=u_n+r. \end{cases}$

Alors pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$ et $u_n = u_p + (n-p)r$ si $p \leqslant n$. Sommes des termes :

$$\sum_{k=0}^{n} u_k = (n-p+1) \frac{u_p + u_n}{2}.$$
 En particulier
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

1.D.2) Suite géométrique de raison $q \in \mathbb{C}$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite **géométrique** de raison $q\in\mathbb{C}$ si $\begin{cases} u_0\in\mathbb{C} \\ \forall n\in\mathbb{N}, u_{n+1}=qu_n. \end{cases}$

Alors pour tout $n \in \mathbb{N}$, $u_n = q^n u_0$ et $u_n = q^{n-p} u_p$ si $p \leqslant n$.

Sommes des termes :

$$\sum_{k=p}^{n} q^k = \begin{cases} q^p \frac{1 - q^{n-p+1}}{1 - q} & \text{si } q \neq 1 \\ n - p + 1 & \text{si } q = 1. \end{cases}$$
 En particulier
$$\sum_{k=0}^{n} q^k = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1 \\ n + 1 & \text{si } q = 1. \end{cases}$$

1.D.3) Suite arithmético-géométrique

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique s'il existe $(a,b)\in\mathbb{C}^2$ tel que

$$\begin{cases} u_0 \in \mathbb{C} \\ \forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b, \quad a \neq 1 \end{cases}$$

Plan d'étude :

- On détermine le point fixe : $c = ac + b \iff c = \frac{b}{1-a}$.
- La suite de terme général u_n-c est géométrique de raison a :

$$\forall n \in \mathbb{N}, u_{n+1} - c = au_n + b - (ac + b) = a(u_n - c).$$

— Ainsi, $\forall n \in \mathbb{N}, u_n - c = a^n(u_0 - c)$ et par suite : $u_n = a^n(u_0 - c) + c$.

Exercice 15

Déterminer le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=-u_n+2$.

1.D.4) Suite récurrente linéaire d'ordre 2

Il s'agit d'une suite **réelle** $(u_n)_{n\in\mathbb{N}}$ telle qu'il existe $(a,b)\in\mathbb{R}^2$ vérifiant :

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n.$$

On résout l'équation caractéristique : $r^2 - ar - b = 0$. On note Δ le discriminant du trinôme associé.

- 1. Si $\Delta > 0$, on note r_1, r_2 les deux racines réelles distinctes du trinôme. Il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{N}, u_n = Ar_1^n + Br_2^n$.
- 2. Si $\Delta = 0$, note note r la racine double du trinôme. Il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{N}u_n = (A + Bn)r^n$.
- 3. Si $\Delta < 0$ on note $\rho e^{\pm i\theta}$ les deux racines complexes conjuguées du trinôme. Il existe $(A,B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{N}, u_n = \rho^n (A\cos(n\theta) + B\sin(n\theta))$.

L'ensemble $E_{a,b} = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$ est un SEV de $\mathbb{R}^{\mathbb{N}}$ de dimension 2. Il existe une unique suite $(u_n)_{n \in \mathbb{N}} \in E_{a,b}$ vérifiant les conditions initiales $(u_0, u_1) \in \mathbb{R}^2$.

Exercice 16

Déterminer le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant $u_0=1,u_1=2$ et

$$\forall n \in \mathbb{N}, u_{n+2} + u_{n+1} + u_n = 0.$$

Séries numériques : généralités et premiers exemples

2.A -Définitions et première propriétés

Définition 17

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{K} .

- On appelle somme partielle au rang n, la somme finie $S_n = \sum u_k$.
- On appelle série de terme général u_n la suite $(S_n)_{n\in\mathbb{N}}$, notée $\sum u_n$.
- On dit que la série $\sum u_n$ converge si la suite $(S_n)_{n\in\mathbb{N}}$ est convergente. Dans ce cas, on appelle **somme** de la série $\sum u_n$ la limite de la suite $(S_n)_{n\in\mathbb{N}}$.

On note
$$S = \lim_{n \to +\infty} S_n = \sum_{n=0}^{+\infty} u_n$$
.

– Si la série $\sum u_n$ est convergente, on appelle reste au rang n :

$$R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k.$$

Une série qui ne converge pas est dite divergente.

Proposition 18: linéarité et limite du reste

- Si $\sum u_n$ et $\sum v_n$ convergent vers S et S' alors $\sum (u_n + v_n)$ converge vers S + S'.

 Si $\sum u_n$ converge alors $\sum \lambda u_n$ converge vers λS pour tout $\lambda \in \mathbb{C}$.
- Si $\sum u_n$ converge alors la suite des restes $R_n = \sum_{k=n+1}^{+\infty} u_k$ converge vers 0.

Si $\sum u_n$ CV et $\sum v_n$ DV alors $\sum (u_n + v_n)$ DV : on démontre ce résultat sur chaque exemple.

2.B -Etude directe

Théorème 19: condition nécessaire de convergence

Si $\sum u_n$ converge alors nécessairement $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

 $D\acute{e}monstration$. On suppose que $\sum u_n$ converge : on note S sa somme, c'est-à-dire la limite de ses

sommes partielles
$$S_n = \sum_{k=0}^n u_k$$
.
Alors $u_n = S_n - S_{n-1} \underset{n \to +\infty}{\longrightarrow} S - S = 0$.

Une condition suffisante de divergence, s'obtient par contraposition :

si $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0 alors $\sum u_n$ est divergente.

Exemple

Les séries $\sum 1$, $\sum n$, $\sum 2^n$, $\sum (-1)^n$, $\sum \cos(n)$ sont divergentes. **Attention**:

La condition $u_n \underset{n \to +\infty}{\longrightarrow} 0$ n'est pas suffisante pour assurer la convergence de $\sum u_n : \sum \frac{1}{n}$ diverge.

Théorème 20: Séries télescopiques

La suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série $\sum (u_{n+1}-u_n)$ converge.

Démonstration. Pour $n \ge 1$, $S_{n-1} = \sum_{k=0}^{n-1} (u_{k+1} - u_k) = u_n - u_0$. D'où l'équivalence.

Exercice 21

Montrer que la série $\sum \frac{1}{n(n+1)}$ converge et déterminer sa somme.

Solution.

Pour tout
$$n \ge 1$$
, $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$.

Le résultat précédent montre que la série $\sum \frac{1}{n(n+1)}$ converge car la suite $\left(\frac{1}{n}\right)_{n\geq 1}$ Le calcul précédent donne la somme de cette série convergente :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1.$$

Théorème 22: série géométrique de raison $x \in \mathbb{C}$

La série $\sum x^n$ converge si et seulement si |x| < 1. Dans ce cas $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.

Démonstration. Pour tout $N \in \mathbb{N}$, $\sum_{n=0}^{N} x^n = \frac{1-x^{N+1}}{1-x}$. Cette quantité admet une limite, finie, si et seulement |x| < 1.

Théorème 23: série exponentielle

La série $\sum \frac{x^n}{n!}$ converge pour tout $x \in \mathbb{R}$ et on a :

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x.$$

3 - Séries à termes réels positifs

Théorème 24

Soit $\sum u_n$ une série à termes positifs i.e. $u_n \geqslant 0$ pour tout $n \in \mathbb{N}$.

Si $(S_n)_{n\in\mathbb{N}}$ est majorée alors la série $\sum u_n$ converge. Sinon elle diverge vers $+\infty$.

Exemple

On a montré que la série $\sum \frac{1}{n}$ diverge : la suite des sommes partielles est croissante et non majorée.

3.A - Comparaison : relation d'ordre et séries à termes positifs

Théorème 25

On suppose que $0 \le u_n \le v_n$ à partir d'un certain rang.

- Si $\sum v_n$ converge alors $\sum u_n$ converge également. Dans ce cas $\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n$.
- Si $\sum u_n$ diverge alors $\sum v_n$ diverge également.

Démonstration. Les suites des sommes partielles S_n, T_n associées aux séries à termes positifs $\sum u_n, \sum v_n$ sont croissantes.

- Si $\sum v_n$ converge, la suite $(T_n)_{n\in\mathbb{N}}$ est majorée par sa limite T. La suite croissante $(S_n)_{n\in\mathbb{N}}$ est également majorée par T donc converge vers un réel $S \leq T$.
- Si $\sum u_n$ diverge alors la suite $(S_n)_{n\in\mathbb{N}}$ n'est pas majorée : la suite $(T_n)_{n\in\mathbb{N}}$ n'est pas majorée non plus. La série $\sum v_n$ est donc divergente.

Exemple

La série à termes positifs $\sum \frac{1}{\ln(n)2^n}$ $(n \ge 2)$ converge par comparaison à la série géométrique de raison $1/2 \in]-1;1[$ convergente :

$$\forall n \geqslant 3, \quad 0 \leqslant \frac{1}{\ln(n)2^n} \leqslant \frac{1}{2^n} = \left(\frac{1}{2}\right)^n.$$

Exercice 26

Déterminer la nature de la série $\sum \frac{\ln(n)}{ne^n}$.

Solution. Pour tout $n \ge 1$, $0 \le \frac{\ln(n)}{ne^n} \le \frac{1}{e^n} = \left(\frac{1}{e}\right)^n$.

3.B - Séries à termes positifs et équivalents

Théorème 27

Soient $\sum u_n$ et $\sum v_n$ deux séries à **termes positifs**.

Si $u_n \underset{n \to +\infty}{\sim} v_n$ alors les séries $\sum u_n$ et $\sum v_n$ ont la même nature.

Preuve. A partir d'un certain rang $\frac{1}{2} \leqslant \frac{u_n}{v_n} \leqslant \frac{3}{2}$.

Exercice 28

- 1. Déterminer la nature de la série $\sum \frac{1}{\ln(n) + e^n}$.
- 2. (a) Déterminer la nature de la série $\sum \ln \left(1 + \frac{1}{n}\right)$ et en déduire la nature de la série $\sum \frac{1}{n}$.
 - (b) Déterminer la nature de la série $\sum \frac{1}{n(n+1)}$ et en déduire la nature de la série $\sum \frac{1}{n^2}$.
 - (c) On pose $u_n = \sum_{k=1}^{n} \frac{1}{k} \ln(n)$.

En déterminant la nature de la série $\sum (u_n - u_{n-1})$ montrer qu'il existe $\gamma \in \mathbb{R}$ tel que $\ln(n) \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1)$.

Démonstration. 1. Pour tout $n \ge 1$, $0 \le \frac{1}{\ln(n) + e^n} \underset{n \to +\infty}{\sim} \frac{1}{e^n} \operatorname{car} \ln(n) \underset{n \to +\infty}{=} o(e^n)$.

D'où la convergence de la série $\sum \frac{1}{\ln(n) + e^n}$.

2. (a) On note $S_n = \sum_{k=1}^n \ln \left(1 + \frac{1}{k} \right)$.

On reconnaît la somme partielle d'une série télescopique :

$$S_n = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right) = \sum_{k=1}^n [\ln(k+1) - \ln(k)] = \ln(n+1) \xrightarrow[n \to +\infty]{} +\infty.$$

La série à termes positifs $\sum \ln \left(1 + \frac{1}{n}\right)$ est donc divergente.

Par équivalent, $\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{\sim} \frac{1}{n}$, la série $\sum \frac{1}{n}$ est donc divergente.

(b) On note $S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$.

On reconnaît la somme partielle d'une série télescopique :

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 1.$$

D'où la convergence de la série $\sum \frac{1}{n(n+1)}$ et par équivalent, $\frac{1}{n(n+1)} \sim \frac{1}{n \to +\infty} \frac{1}{n^2}$, on obtient la convergence de la série $\sum \frac{1}{n^2}$.

(c) Pour $n \ge 2$, $u_n - u_{n-1} = \frac{1}{n} + \ln\left(\frac{n-1}{n}\right) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{n} - \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} -\frac{1}{2n^2}$ car $\ln(1-x) \underset{x\to 0}{=} -x - \frac{x^2}{2} + o(x^2)$.

Ainsi, la série de terme général $0 \leqslant u_{n-1} - u_n \sim \frac{1}{2n^2}$ est convergente donc la série télescopique $\sum (u_n - u_{n-1})$ converge également.

La suite $(u_n)_{n\in\mathbb{N}^*}$ est donc également convergente, on note γ sa limite :

$$\sum_{k=1}^{n} \frac{1}{k} - \ln(n) - \gamma \underset{n \to +\infty}{\longrightarrow} 0 \Longleftrightarrow \sum_{k=1}^{n} \frac{1}{k} - \ln(n) - \gamma \underset{n \to +\infty}{=} o(1).$$

3.C -Règle de d'Alembert

Théorème 29: Règle de d'Alembert

Soit $\sum u_n$ une série à **termes positifs** à partir d'un certain rang telle que :

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \ell \in [0; +\infty[\cup \{+\infty\}.$$

- Si $\ell < 1$, alors $\sum u_n$ converge. Si $\ell > 1$, alors la série $\sum u_n$ diverge.
- $\ell = 1$, on ne peut pas conclure.

Démonstration. — On note $v_n = \frac{u_{n+1}}{u_n}$. On suppose que $v_n \xrightarrow[n \to +\infty]{} \ell < 1$.

On applique la définition de convergence avec $\varepsilon = \frac{1-\ell}{2} > 0$, il existe $N_0 \in \mathbb{N}$ tel que :

$$\forall n \in \mathbb{N}, \left(n \geqslant N_0 \Longrightarrow |v_n - \ell| \leqslant \frac{1 - \ell}{2} \right)$$
$$\left(n \geqslant N_0 \Longrightarrow \frac{u_{n+1}}{u_n} = v_n \leqslant \frac{1 - \ell}{2} + \ell = \frac{1 + \ell}{2} \right).$$

Or $0 < \frac{1+\ell}{2} < 1$. On obtient pour tout $n \ge N_0$:

$$0 \leqslant \frac{u_n}{u_{N_0}} = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{N_0+1}}{u_{N_0}} = \prod_{k=N_0}^{n-1} \frac{u_{k+1}}{u_k} \leqslant \left(\frac{1+\ell}{2}\right)^{n-N_0}.$$

Ainsi, $\forall n \geqslant N_0$, $0 \leqslant u_n \leqslant K\left(\frac{1+\ell}{2}\right)^n$, avec $K = u_{N_0}\left(\frac{1+\ell}{2}\right)^{-N_0} \in \mathbb{R}$, une constante.

Par comparaison avec la série géométrique de raison $x = \frac{1+\ell}{2} \in]-1;1[$ on déduit la convergence

de la série $\sum u_n$. – Si $\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} \ell > 1$ (éventuellement $+\infty$), il existe un rang $N_0 \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \left(n \geqslant N_0 \Longrightarrow \frac{u_{n+1}}{u_n} > 1\right).$$

La suite $(u_n)_{n\geq N_0}$ est donc strictement croissante et positive donc ne converge pas vers 0: la série $\sum u_n$ est donc divergente.

Si $\ell=1$, on ne peut pas conclure : cas indécidables. En effet, avec $u_n=\frac{1}{n}$ et $v_n=\frac{1}{n^2}$, on a

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} 1$$
 et $\frac{v_{n+1}}{v_n} \xrightarrow[n \to +\infty]{} 1$

mais $\sum \frac{1}{n}$ diverge tandis que $\sum \frac{1}{n^2}$ converge.

Exercice 30: Applications

- 1. Montrer que la série $\sum \frac{1}{n!}$ converge.
- 2. Soit a > 0. On pose $u_n = \frac{a^n}{n!}$. Montrer que la série $\sum u_n$ converge. En déduire que $a^n = o(n!)$.
- 3. Montrer que $n! = o(n^n)$.

3.D - Comparaison séries-intégrales

On commence par présenter une notion que l'on étudiera en profondeur dans le chapitre suivant :

Définition 31

Soit f une fonction continue sur un intervalle $[a; +\infty[$. On note F une primitive de f sur $[a; +\infty[$. Si la primitive F admet une limite finie en $+\infty$ alors on note :

$$\int_{a}^{+\infty} f(t)dt = \lim_{X \to +\infty} \int_{a}^{X} f(t)dt = \lim_{X \to +\infty} F(X) - F(a).$$

L'intégrale $\int_a^{+\infty} f(t)dt$ est alors dite **convergente**. Sinon, on dit qu'elle est **divergente**. On appelle **nature** le caractère convergent ou divergent de l'intégrale.

Exemple

- 1. L'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente.
- 2. L'intégrale $\int_{1}^{+\infty} \frac{1}{t} dt$ est divergente.

Théorème 32

Si f est une fonction définie sur $[N_0, +\infty[$, **continue**, **positive et décroissante**, alors la série $\sum_{n \ge N_0} f(n)$ et $\int_{N_0}^{+\infty} f(t)dt$ sont de **même nature**.

Démonstration. Soit $k \ge N_0$. Par décroissance de f sur $[N_0; +\infty[$, puis la relation de Chasles :

$$\forall t \in [k, k+1], f(k+1) \leqslant f(t) \leqslant f(k)$$

$$\Longrightarrow \int_{k}^{k+1} f(k+1) dt \leqslant \int_{k}^{k+1} f(t) dt \leqslant \int_{k}^{k+1} f(k) dt$$

$$\Longrightarrow f(k+1) \leqslant \int_{k}^{k+1} f(t) dt \leqslant f(k)$$

$$\Longrightarrow \sum_{n=N_0+1}^{n-1} f(k+1) \leqslant \sum_{k=N_0}^{n-1} \int_{k}^{k+1} f(t) dt \leqslant \sum_{k=N_0}^{n-1} f(k)$$

$$\Longrightarrow \sum_{k=N_0+1}^{n} f(k) \leqslant \int_{N_0}^{n} f(t) dt \leqslant \sum_{k=N_0}^{n-1} f(k).$$

— Si l'intégrale $\int_{N_0}^{+\infty} f(t)dt$ converge alors :

$$\sum_{n=N_0+1}^n f(k) \leqslant \int_{N_0}^n f(t)dt \leqslant \int_{N_0}^{+\infty} f(t)dt.$$

la suite des sommes partielles de la série $\sum f(n)$ est :

- *croissante car $f\geqslant 0$
- * majorée par la constante $\int_{N_0}^{+\infty} f(t)dt$

donc la suite des sommes partielles converge par le théorème de la limite monotone. La série $\sum f(n)$ est donc converge.

— Réciproquement, supposons la série $\sum f(n)$ convergente. On note $S = \sum_{n=N_0}^{+\infty} f(n)$.

Soit $x \ge N_0$ et n un entier tel que $n \ge x$. Par positivité de f:

$$\int_{N_0}^x f(t)dt \leqslant \int_{N_0}^n f(t)dt \leqslant \sum_{k=N_0}^{n-1} f(k) \leqslant \sum_{k=N_0}^{+\infty} = S.$$

La fonction $x \mapsto F(x) = \int_{N_0}^x f(t)dt$ est donc :

- * croissante car $f \ge 0$
- $\ast\,$ majorée par la constante S

Ainsi, F admet une limite lorsque $x \to +\infty$ par lé théorème de la limite monotone.

L'intégrale $\int_{N_0}^{+\infty} f(t)dt$ est convergente.

Théorème 33: convergence des intégrales et des séries de Riemann

Soit $\alpha \in \mathbb{R}$.

- 1. L'intégrale $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$.
- 2. La série $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

 $\begin{array}{ll} \textit{D\'{e}monstration.} & 1. \ \ -- \ \text{Si} \ \alpha = 1, \ \text{et} \ x > 1, \ \int_1^x \frac{1}{t} dt = \ln(x) \underset{x \to +\infty}{\longrightarrow} +\infty : \text{l'int\'{e}grale diverge si} \ \alpha = 1. \\ & -- \ \text{Si} \ \alpha \in \mathbb{R} \setminus \{1\}, \ \text{et} \ x > 1, \end{array}$

$$\int_{1}^{x} \frac{1}{t^{\alpha}} dt = \left[\frac{1}{-\alpha + 1} t^{-\alpha + 1} \right]_{1}^{x} = \frac{1}{1 - \alpha} \left(\frac{1}{x^{\alpha - 1}} - 1 \right) \underset{n \to +\infty}{\longrightarrow} \begin{cases} +\infty & \text{si } \alpha < 1 \\ \frac{1}{\alpha - 1} & \text{si } \alpha > 1 \end{cases}$$

Ainsi, l'intégrale de Riemann $\int_1^{\alpha} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$.

- 2. Si $\alpha < 0$, $\frac{1}{n^{\alpha}} \underset{n \to +\infty}{\longrightarrow} +\infty$. Dans ce cas la série $\sum \frac{1}{n^{\alpha}}$ diverge grossièrement.
 - Si $\alpha = 0$, la série $\sum_{i=0}^{n} 1$ diverge grossièrement également.
 - On suppose maintenant $\alpha > 0$.

Dans ce cas la fonction $t \mapsto \frac{1}{t^{\alpha}}$ est continue, positive, décroissante sur $[1; +\infty[$.

La série $\sum \frac{1}{n^{\alpha}}$ et l'intégrale $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt$ ont la même nature.

Elles sont convergentes si et seulement si $\alpha > 1$

Outre le résultat précédent fournissant une famille de séries de référence, la technique de comparaison séries-intégrales permet d'obtenir des encadrements :

- des sommes partielles des séries divergentes,
- des restes des séries convergentes.

Exemple

Déterminons un encadrement des sommes partielles de la série divergente $\sum \frac{1}{n}$. La fonction $t \mapsto \frac{1}{t}$ est continue, positive, décroissante sur $[1; +\infty[$. Soit $k \ge 2$. On obtient par décroissance de la fonction f sur $[1; +\infty[$:

$$\int_{k}^{k+1} \frac{1}{t} dt \leqslant \frac{1}{k} \leqslant \int_{k-1}^{k} \frac{1}{t} dt \Longrightarrow \int_{2}^{n+1} \frac{1}{t} dt \leqslant \sum_{k=2}^{n} \frac{1}{k} \leqslant \int_{1}^{n} \frac{1}{t} dt$$

$$\Longrightarrow 1 + \ln(n+1) - \ln(2) \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant 1 + \ln(n).$$

On en déduit un équivalent des sommes partielles $S_n \underset{n \to +\infty}{\sim} \ln(n)$.

Exercice 34

Montrer que pour tout $\alpha < 1$, $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \frac{n^{1-\alpha}}{1-\alpha}$.

Exemple

Encadrons les restes $R_n = \sum_{k=1}^{+\infty} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ de la série convergente $\sum \frac{1}{n^2}$.

Soit $k \ge 2$. La décroissance de la fonction $t \mapsto \frac{1}{t^2}$ sur $[1; +\infty[$ donne :

$$\int_{k}^{k+1} \frac{1}{t^{2}} dt \leqslant \frac{1}{k^{2}} \leqslant \int_{k-1}^{k} \frac{1}{t^{2}} dt \underset{(1 \leqslant n < N)}{\Longrightarrow} \sum_{k=n+1}^{N} \int_{k}^{k+1} \frac{1}{t^{2}} dt \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{2}} \leqslant \sum_{k=n+1}^{N} \int_{k-1}^{k} \frac{1}{t^{2}} dt$$

$$\Longrightarrow \int_{n+1}^{N+1} \frac{1}{t^{2}} dt \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{2}} \leqslant \int_{n}^{N+1} \frac{1}{t^{2}} dt$$

$$\Longrightarrow \left[-\frac{1}{t} \right]_{n+1}^{N+1} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{2}} \leqslant \left[-\frac{1}{t} \right]_{n}^{N}$$

$$\Longrightarrow \frac{1}{n+1} - \frac{1}{N+1} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{2}} \leqslant \frac{1}{n} - \frac{1}{N}$$

$$\Longrightarrow \frac{1}{n+1} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^{2}} \leqslant \frac{1}{n}$$

$$\Longrightarrow \frac{1}{n+1} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^{2}} \leqslant \frac{1}{n}$$

On en déduit que $R_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.

Valeur approchée de $S = \sum_{n=1}^{+\infty} \frac{1}{n^2}$

La somme partielle S_n fournit une approximation de la somme S de la série.

Le reste $0 < R_n = S - S_n$ contrôle l'erreur : si l'on souhaite une approximation à 10^{-4} , il faut et il suffit que $0 < R_n = S - S_n \le 10^{-4}$.

Puisque $S - S_n \leqslant \frac{1}{n}$, il suffit que $\frac{1}{n} \leqslant 10^{-4}$ c'est-à-dire $n \geqslant 10^4$.

Ainsi, $S_{10^4} \approx 1,6448$ fournit une approximation à 10^{-4} près de $S = \frac{\pi^2}{6} \approx 1,64493...$ (admis ici).

Deux algorithmes itératifs : une boucle for et une boucle while.

Algorithmes de même complexité exponentielle $O(10^n) = O(e^{\alpha n})$ avec $\alpha = \ln 10$.

Exercice 35

 $\text{Montrer que pour tout } \alpha > 1, \, \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{(\alpha-1)n^{\alpha-1}}$

4 - Convergence absolue et semi-convergence des séries complexes

4.A - Définition

Définition 36: convergence absolue

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. On dit que $\sum u_n$ converge absolument si $\sum |u_n|$ converge.

Exemple

- 1. La série $\sum \frac{(-1)^n}{n^2}$ est absolument convergente.
- 2. Soit $z \in \mathbb{C}$. La série $\sum \frac{z^n}{n^2}$ converge absolument si et seulement si $|z| \leqslant 1$.

Théorème 37: $CVA \Longrightarrow CV$ et inégalité trianguliare

- Si $\sum u_n$ est absolument convergente alors $\sum u_n$ est convergente. Dans ce cas, **l'inégalité triangulaire** est vérifiée :

$$\left| \sum_{n=0}^{+\infty} u_n \right| \leqslant \sum_{n=0}^{+\infty} |u_n|.$$

Démonstration. — 1^{er} cas : $(u_n)_{n\in\mathbb{N}}$ est une suite réelle. On a $u_n=u_n^+-u_n^-$ où

$$u_n^+ = \frac{u_n + |u_n|}{2} = \begin{cases} u_n & \text{si } u_n \geqslant 0 \\ 0 & \text{si } u_n \leqslant 0 \end{cases} \quad \text{et} \quad u_n^- = \frac{|u_n| - u_n}{2} = \begin{cases} 0 & \text{si } u_n \geqslant 0 \\ -u_n & \text{si } u_n \leqslant 0 \end{cases}.$$

Les suites $(u_n^+)_{n\in\mathbb{N}}$ et $(u_n^-)_{n\in\mathbb{N}}$ sont positives et pour tout $n\in\mathbb{N}, 0\leqslant u_n^+\leqslant |u_n|$ et $0\leqslant u_n^-\leqslant |u_n|$. Par comparaison des séries à termes positifs, on en déduit que u_n^+ et u_n^- sont convergentes, donc par différence la série $\sum u_n$ de terme général $u_n=u_n^+-u_n^-$ est convergente.

 2^e cas: $(u_n)_{n\in\mathbb{N}}$ est une suite complexe. : Dans ce cas, on utilise les majorations classiques des parties réelles et imaginaires d'un nombre complexe par son module, plus précisemment :

$$\forall z \in \mathbb{C}, |\operatorname{Re}(z)| \leq |z| \text{ et } |\operatorname{Im}(z)| \leq |z|.$$

Ces majorations et la convergence de $\sum |u_n|$ donnent par comparaison :

$$0 \leqslant |\operatorname{Re}(u_n)| \leqslant |u_n| \text{ et } 0 \leqslant |\operatorname{Im}(u_n)| \leqslant |u_n| \Longrightarrow \sum |\operatorname{Re}(u_n)| \text{ et } \sum |\operatorname{Im}(u_n)| \text{ convergent}$$

$$\Longrightarrow \sum \operatorname{Re}(u_n) \text{ et } \sum \operatorname{Im}(u_n) \text{ convergent}$$

$$\Longrightarrow \sum (\operatorname{Re}(u_n) + i\operatorname{Im}(u_n)) \text{ converge}$$

$$\Longrightarrow \sum u_n \text{ converge.}$$

En cas de convergence absolue, on obtient pour tout $N \in \mathbb{N}$, par inégalité triangulaire sur les sommes finies:

$$\left|\sum_{k=0}^N u_k\right| \leqslant \sum_{k=0}^N |u_k| \underset{(\mathbf{N} \to +\infty)}{\Longrightarrow} \left|\sum_{k=0}^{+\infty} u_k\right| \leqslant \sum_{k=0}^{+\infty} |u_k|.$$

4.B - Théorèmes de comparaison

Théorème 38

Soient $\sum u_n$ une série complexe et $\sum v_n$ une série **réelle à termes positifs et convergente**.

- Si $u_n = O(v_n)$ alors $\sum u_n$ est absolument convergente.
- Si $u_n = \int_{n \to +\infty}^{\infty} o(v_n)$ alors $\sum u_n$ est absolument convergente.

En particulier si $u_n = o\left(\frac{1}{n^{\alpha}}\right)$ avec $\alpha > 1$ alors $\sum u_n$ est absolument convergente.

Remarques

Dans le théorème précédente, on peut remplacer la série réelle à termes positifs $\sum v_n$ par une série complexe absolument convergente.

Exemple

- La série $\sum e^{-n}$ est absolument convergente car $e^{-n} = o\left(\frac{1}{n^2}\right)$ et $\sum \frac{1}{n^2}$ converge. Dans ce cas, la convergence absolue est équivalente à la convergence car la série est à termes positifs.
- La série $\sum \frac{1}{\sqrt{n} \ln(n)}$ est divergente car $\frac{1}{n^{0.75}} = o\left(\frac{1}{\sqrt{n} \ln(n)}\right)$ et $\sum \frac{1}{n^{0.75}}$ diverge.

Exercice 39

Étudier la convergence absolue des parties réelles et imaginaires de la série complexe de terme général $u_n = \left(\cos\frac{1}{n}\right)^{n^3} + i\sin\frac{1}{n^2}$.

En déduire la convergence absolue de la série $\sum u_n$ en justifiant que $|u_n| \leq |\operatorname{Re}(u_n)| + |\operatorname{Im}(u_n)|$.

Solution. —
$$\left(\cos\frac{1}{n}\right)^{n^3} = \exp(n^3 \ln\cos\frac{1}{n})$$

$$\operatorname{Or}: \ln(\cos\frac{1}{n}) \underset{n \to +\infty}{=} \ln\left(1 - \frac{1}{2n^2} + o\left(\frac{1}{n^3}\right)\right) \underset{n \to +\infty}{=} -\left(\frac{1}{2n^2} + o\left(\frac{1}{n^3}\right)\right) + \underbrace{\left(-\frac{1}{2n^2} + o\left(\frac{1}{n^3}\right)\right)^2 + o\left(\frac{1}{4n^4}\right)}_{= n \to +\infty} \cdot O\left(\frac{1}{n^3}\right) = O\left(\frac{1}{n^4}\right) \underset{n \to +\infty}{=} O\left(\frac{1}{n^3}\right)$$

On en déduit que $\ln\left(\cos\frac{1}{n}\right) \underset{n\to+\infty}{=} -\frac{1}{2n^2} + o\left(\frac{1}{n^3}\right)$ puis $n^3 \ln\cos\left(\frac{1}{n}\right) \underset{n\to+\infty}{=} -\frac{n}{2} + o(1)$. On obtient alors

$$\exp\left(n^3\ln\left(\cos\frac{1}{n}\right)\right) \underset{n\to+\infty}{=} \exp\left(-\frac{n}{2}+o(1)\right) \underset{n\to+\infty}{=} \exp\left(-\frac{n}{2}\right)\exp(o(1)) \underset{n\to+\infty}{\sim} \exp(-\frac{n}{2}).$$

Par équivalence, on en déduit que la série à termes positifs $\sum \left(\cos \frac{1}{n}\right)^{n^3}$ a la même nature que la série $\sum e^{-\frac{n}{2}}$ convergente car $\exp(-\frac{n}{2}) = o(\frac{1}{n^2})$.

La série $\sum \operatorname{Re}(u_n)$ est donc absolument convergente.

— La série $\sum \operatorname{Im}(u_n)$ est absolument convergente car $|\operatorname{Im}(u_n)| = \left|\sin\frac{1}{n^2}\right| \underset{n \to +\infty}{\sim} \frac{1}{n^2}$ et $\sum \frac{1}{n^2}$

— On en déduit que la série $\sum |u_n|$ converge par comparaison car

$$0 \le |u_n| = \sqrt{\operatorname{Re}(u_n)^2 + \operatorname{Im}(u_n)^2} \le |\operatorname{Re}(u_n)| + |\operatorname{Im}(u_n)|.$$

- $(*): \forall (a,b) \in \mathbb{R}^2, \sqrt{a^2 + b^2} \leq |a| + |b| \iff a^2 + b^2 \leq |a|^2 + |b^2| + 2|ab|.$
- On en conclut que la série $\sum \left(\left(\cos \frac{1}{n} \right)^{n^3} + i \sin \frac{1}{n^2} \right)$ est absolument convergente.

4.C - Séries alternées

Dans la partie précédente, nous avons démontré qu'une série absolument convergente est nécessairement convergente. La réciproque est fausse : il existe des séries convergentes qui ne convergent pas absolument. On dit qu'elles sont semi-convergentes. On obtient facilement des de telles séries à l'aide des séries alternées.

Théorème 40: Convergences des séries alternées

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels décroissante et de limite nulle. Alors la série $\sum (-1)^n u_n$ est convergente.

Remarques

Une telle série est dite alternée.

Démonstration. On considère la suite des sommes partielles $S_n = \sum_{k=0}^n (-1)^k u_k$ et les deux suites

extraites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$. On montre que ces deux sous-suites sont adjacentes :

— $(S_{2n})_{n\in\mathbb{N}}$ est décroissante car

$$\forall n \in \mathbb{N}, S_{2n+2} - S_{2n} = (-1)^{2n+2} u_{2n+2} + (-1)^{2n+1} u_{2n+1} = u_{2n+2} - u_{2n+1} \leqslant 0 \text{ car } (u_n)_{n \in \mathbb{N}} \text{ décroit.}$$

— $(S_{2n})_{n\in\mathbb{N}}$ est croissante car

$$\forall n \in \mathbb{N}, S_{2n+1} - S_{2n-1} = (-1)^{2n+1} u_{2n+1} + (-1)^{2n} u_{2n} = u_{2n} - u_{2n+1} \geqslant 0 \text{ car } (u_n)_{n \in \mathbb{N}} \text{ décroit.}$$

— Enfin $\lim_{n \to +\infty} S_{2n+1} - S_{2n} = \lim_{n \to +\infty} (-1)^{2n+1} u_{2n+1} = -\lim_{n \to +\infty} u_{2n+1} = 0$ comme limite d'une sous-suite de $(u_n)_{n \in \mathbb{N}}$ de limite nulle par hypothèse.

Par conséquent, les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes donc convergent vers une limite commune $S\in\mathbb{R}$. On en déduit que la suite $(S_n)_{n\in\mathbb{N}}$ est elle-même convergente de limite S. Autrement dit, la série $\sum (-1)^n u_n$ converge et :

$$S = \sum_{n=0}^{+\infty} (-1)^n u_n.$$

Remarques

Les suites adjacentes $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ étant respectivement décroissante et croissante, on obtient l'encadrement de la somme S de la série $\sum (-1)^n u_n$:

$$S_1 \leqslant \cdots \leqslant \boxed{S_{2n+1} \leqslant S \leqslant S_{2n}} \leqslant \cdots \leqslant S_0.$$

Il est par ailleurs possible de majorer les restes d'une série alternée $\sum (-1)^n u_n$:

$$|R_n| = \left| \sum_{k=n+1}^{+\infty} (-1)^k u_k \right| \le |u_{n+1}|.$$

En effet, pour n = 2p + 1:

$$|R_{2p+1}| = |S - S_{2p+1}| = S - S_{2p+1} \le S_{2p+2} - S_{2p+1} = (-1)^{2p+2} u_{2p+1} = u_{2p+2}.$$

Et pour n = 2p:

$$|R_{2p}| = |S - S_{2p}| = S_{2p} - S \le S_{2p} - S_{2p+1} = -(-1)^{p+1}u_{2p+1} = u_{2p+1}.$$

Exemple

- $\begin{array}{l} \text{ La s\'erie } \sum \frac{(-1)^n}{n} \text{ est convergente.} \\ \text{ La s\'erie } \sum \frac{(-1)^n}{\sqrt{n}} \text{ est convergente.} \\ \text{ La s\'erie } \sum (-1)^n \sin\left(\frac{1}{n}\right) \text{ est convergente.} \\ \text{Les s\'eries pr\'ec\'edentes fournissent des exemples de s\'eries qui convergent mais pas absolument.} \end{array}$

Remarques

La série $\sum \frac{(-1)^n}{n^2}$ converge mais nul besoin d'utiliser le théorème des séries alternées car cette série

4.D -Produit de Cauchy de deux séries absolument convergentes

Exercice 41

- 1. Calcular $\sum_{n=0}^{+\infty} \frac{1}{2^n} \sum_{n=0}^{+\infty} \frac{1}{2^n}.$
- 2. Calculer $\sum_{n=0}^{+\infty} \frac{1}{4^n}$.

L'exemple, ci-dessus, montre qu'en général $\sum_{n=0}^{+\infty}u_n\sum_{n=0}^{+\infty}v_n\neq\sum_{n=0}^{+\infty}u_nv_n$.

Ce n'est d'ailleurs même pas vrai en général pour des sommes finies : $(u_0 + u_1)(v_0 + v_1) \neq u_0v_0 + u_1v_1$.

En revanche, on sait sommer un tel produit de plusieurs manières :

$$\left(\sum_{p=0}^{n} u_{p}\right) \left(\sum_{q=0}^{n} v_{q}\right) = \sum_{0 \leqslant p,q \leqslant n} u_{p} v_{q} = (u_{0} + u_{1} + \dots + u_{n})(v_{0} + v_{1} + \dots + v_{n})$$

$$= u_{0}(v_{0} + v_{1} + \dots + v_{n}) + \dots + u_{n}(v_{0} + v_{1} + \dots + v_{n}) = \sum_{p=0}^{n} \sum_{q=0}^{n} u_{p} v_{q}$$

$$= v_{0}(u_{0} + u_{1} + \dots + u_{n}) + \dots + v_{n}(u_{0} + u_{1} + \dots + u_{n}) = \sum_{q=0}^{n} \sum_{p=0}^{n} v_{p}$$

$$= \sum_{(p,q) \in [0,n]^{2}} u_{p} v_{q} \neq u_{0} v_{0} + u_{1} v_{1} + \dots + u_{n} v_{n}.$$

On peut également choisir de sommer les termes de cette somme double suivant les diagonales :

$$\sum_{p=0}^{n} u_p \sum_{q=0}^{n} v_q = \sum_{k=0}^{2n} \sum_{\substack{p+q=k\\0 \leqslant p, q \leqslant n}} u_p v_q$$

On note que $p + q = k \iff q = k - p$. A condition d'avoir

$$p \in [0, n]$$
 et $k - p \in [0, n]$,

on obtient une autre manière d'écrire cette somme :

$$\sum_{p=0}^{n} u_p \sum_{q=0}^{n} v_q = \sum_{k=0}^{2n} \sum_{\substack{0p \leqslant n \\ 0 \leqslant k - p \leqslant n}} u_p v_{k-p}$$

Définition 42: produit de Cauchy

Soient $\sum u_n$ et $\sum v_n$ deux séries à valeurs complexes.

- On appelle **produit de Cauchy** de ces deux séries la série de terme général $c_n = \sum_{p=0}^n u_p v_{n-p}$.
- Les \mathbf{sommes} $\mathbf{partielles}$ du produit de cauchy sont donc les sommes finies doubles :

$$C_n = \sum_{k=0}^{n} c_k = \sum_{k=0}^{n} \sum_{p=0}^{k} u_p v_{k-p}.$$

Théorème 43: ACV du produit de Cauchy de séries ACV

Le produit de Cauchy de deux séries complexes absolument convergentes est absolument convergent et sa somme $C = \lim_{n \to +\infty} C_n$ vérifie :

$$\sum_{k=0}^{+\infty} c_k = \sum_{k=0}^{+\infty} \sum_{p=0}^{k} u_p v_{k-p} = \left(\sum_{p=0}^{+\infty} u_p\right) \left(\sum_{q=0}^{+\infty} v_q\right).$$

Exemple

- Soit x un nombre complexe tel que |x| < 1. La série $\sum x^n$ est donc absolument convergente.
- Le produit de Cauchy de la série $\sum x^n$ est alors absolument convergent donc convergent et a pour somme $C = \sum_{n=0}^{+\infty} x^p \sum_{q=0}^{+\infty} x^q = \frac{1}{1-x} \frac{1}{1-x} = \frac{1}{(1-x)^2}$.
- On peut exprimer la somme C du produit de Cauchy d'une autre manière :

$$C = \sum_{k=0}^{+\infty} c_k = \sum_{k=0}^{+\infty} \sum_{p=0}^{k} x^p x^{k-p} = \sum_{k=0}^{+\infty} \sum_{p=0}^{k} x^k = \sum_{k=0}^{+\infty} (k+1)x^k.$$

On obtient par unicité de la somme du produit de Cauchy :

$$\sum_{k=0}^{+\infty} (k+1)x^k = \frac{1}{(1-x)^2}.$$

Exercice 44

- 1. Montrer que pour tout $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ converge absolument. On note $\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$.
- 2. Soient $(a, b) \in \mathbb{C}^2$.

En justifiant son existence déterminer la somme du produit de Cauchy de $\sum \frac{a^n}{n!}$ par $\sum \frac{b^n}{n!}$. En déduire que $\exp(a+b) = \exp(a) \exp(b)$.

Solution. 1. Soit $z \in \mathbb{C}$. On étudie la convergence absolue de la série $\sum \frac{z^n}{n!}$.

- Si z=0 alors pour tout $n\geqslant 0,$ $\sum_{k=0}^n\frac{z^k}{k!}=1$ d'où la convergence (absolue) dans ce cas.
- Si $z \neq 0$, on utilise la règle de d'Alembert :

$$\frac{|z|^{n+1}}{(n+1)!}\frac{n!}{|z|^n} = \frac{|z|}{(n+1)} \underset{n \to +\infty}{\longrightarrow} 0 < 1.$$

D'où la convergence absolue de la série $\sum \frac{z^n}{n!}$ encore dans ce cas.

2. Les séries $\sum \frac{a^n}{n!}$ et $\sum \frac{b^n}{n!}$ sont toutes deux absolument convergentes. Leur produit de cauchy est donc absolument convergent et

$$\sum_{p=0}^{+\infty} \frac{a^p}{p!} \sum_{q=0}^{+\infty} \frac{b^q}{q!} = \sum_{k=0}^{+\infty} \sum_{p=0}^{k} \frac{a^p}{p!} \frac{b^{k-p}}{(k-p)!} \iff \exp(a) \exp(b) = \sum_{k=0}^{+\infty} \sum_{p=0}^{k} \frac{\binom{k}{p}}{k!} a^p b^{k-p}$$
$$\iff \exp(a) \exp(b) = \sum_{k=0}^{+\infty} \frac{1}{k!} (a+b)^k$$

On a démontré que $\exp(a) \exp(b) = \exp(a+b)$.