RICERCA OPERATIVA

Soluzioni prova scritta del 22 Luglio 2008

GRUPPO B

 $y_1, y_2 \ge 0$

1. Dato un grafo G = (V, E), con |V| = n, sia $U = \{c_1, ..., c_n\}$ un insieme di n elementi e \mathfrak{I} una famiglia di sottoinsiemi di U così definita: $\mathfrak{I} = \{X \subseteq U : X \text{ è una colorazione ammissibile per } G\}$. La coppia (U, \mathfrak{I}) è un matroide? Giustificare la risposta oppure fornire un controesempio.

La coppia (U, \mathfrak{I}) gode della proprietà di scambio, ma non gode della proprietà di subclusione poiché l'insieme vuoto non appartiene ad \mathfrak{I} .

- 2. Il duale D del problema P) $\min 2x_1 + x_2 + 3x_3$ $x_2 + 2x_3 \le 1$ $x_1 + 4x_2 - x_3 \ge 8$ $x_1 + x_3 = 4$ $x_2, x_3 \ge 0$ [A] $\max y_1 - 8y_2 + 4y_3$ [B] $\min -y_1 + 8y_2 - 3y_3$ [C] $\max -y_1 + 8y_2 + 4y_3$ $-y_2 + y_3 \le 2$ $y_1 - 4y_2 - y_4 = -1$ $-2y_1 + y_2 + y_3 \le 3$ [C] $\max -y_1 + 8y_2 + 4y_3$ $y_2 + y_3 \ge 2$ $y_1 - 4y_2 = 1$ $-2y_1 + y_2 + y_3 \le 3$ [C] $\max -y_1 + 8y_2 + 4y_3$ $-y_2 + y_3 \le 2$ $y_1 - 4y_2 = 1$ $-2y_1 + y_2 + y_3 \le 3$
- **3.** Applicare il metodo del simplesso per determinare (se esiste) una soluzione del problema (P) dell'esercizio 2.

Cambiando x_1 in $-x_1$ e aggiungendo variabili non negative di surplus/slack il problema si riscrive in forma standard

 $y_1, y_2 \geq 0$

 $y_1, y_2, y_4 \ge 0$

La tabella

x_1	x_2	x_3	w_1	w_2	
-1	1	3	0	0	0
0	1	2	1	0	1
-1	4	-1	0	-1	8
-1	0	1	0	0	4

non è in forma canonica. Risolviamo il problema ausiliario ottenuto aggiungendo due variabili z_1 , z_2 al secondo e al terzo vincolo, e minimizzandone la somma:

x_1	x_2	x_3	w_1	w_2	z_1	z_2	
0	0	0	0	0	1	1	0
0	1	2	1	0	0	0	1
-1	4	-1	0	-1	1	0	8
-1	0	1	0	0	0	1	4

La tabella di questo problema si rende canonica sottraendo alla riga 0 le righe 2 e 3:

x_1	x_2	x_3	w_1	w_2	z_1	z_2	
2	-4	0	0	1	0	0	-12
0	1	2	1	0	0	0	1
-1	4	-1	0	-1	1	0	8
-1	0	1	0	0	0	1	4

Eseguendo un'operazione di pivot in colonna 2 si ha:

x_1	x_2	x_3	w_1	w_2	z_1	z_2	
2	0	8	4	1	0	0	-8
0	1	2	1	0	0	0	1
-1	0	<u>_9</u>	-4	-1	1	0	4
-1	0	1	0	0	0	1	4

La tabella ottenuta è ottima ma nessuna variabile z è uscita dalla base. Dal momento che la funzione obiettivo vale 8, il problema (P) non ammette soluzione.

4. Applicando il metodo di Fourier-Motzkin dire se il seguente sistema lineare ammette un'unica soluzione ovvero ammette infinite soluzioni ovvero non ammette nessuna soluzione.

$$2x_1 + x_2 - x_3 \ge -3$$
$$-x_2 - x_3 \le 2$$
$$-x_1 + 4x_2 \le 1$$
$$x_1, x_2, x_3 \ge 0$$

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<u><</u>
0	-1	-1	2
-1	4	0	1
-2	-1	1	3
-1	0	0	0
0	-1	0	0
0	0	-1	0

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<u><</u>
-2	-2	0	5
-1	4	0	1
-2	-1	0	3
-1	0	0	0
0	-1	0	0

Dall'ultima tabella, segue che $x_2 \ge 0$ e quindi il sistema ammette infinite soluzioni.

5. Chi beve birra...

A voi terrestri è poco noto, ma le nostre astronavi, intendo di noi Venusiani, vanno a birra. Ma non "a tutta birra", nel senso che per ottenere una resa migliore usiamo una miscela di birra e vino. Inoltre la birra può essere normale o a doppio malto, e il vino bianco oppure rosso. Di tutto questo intruglio, per noi velenosissimo, le nostre astronavi utilizzano l'alcol, il cui contenuto percentuale in uno zq (la nostra unità di capacità, equivalente a ¾ del vostro litro) è riportato in tabella

	birra normale	birra doppio malto	vino bianco	vino rosso
alcol etilico (%)	4,2	7, 2	10,5	12,5
prezzo alla pompa (€/lt)	1,20	2,10	5,00	5,50

Paese che vai, usanza che trovi: da noi le pompe di carburante sono molto più semplici, voi avete quei grandi capannoni pieni di luci che chiamate centri commerciali, ma insomma il problema è sempre lo stesso: dobbiamo fare il pieno. Ora, per poter andare l'astronave ha bisogno di una miscela con almeno il 9% di alcol, ma il vino non può superare ¼ del totale. Pensate che possiamo trovare una soluzione? Mi dicono che conoscete metodi molto avanzati per rispondere...

Se poi una soluzione esiste davvero, quale sarebbe il minimo costo di un pieno di 10.000 zq.? Anche impostare il problema e riempire la tabella canonica sarebbe sufficiente: mettete nella prima

riga i coefficienti della funzione obiettivo, e nell'ultima colonna i termini noti. Grazie dell'aiuto, appena a casa brinderemo alla vostra salute.

Indicando rispettivamente con x_1 , ..., x_4 gli zq. di birra normale, doppio malto, vino bianco e rosso in un pieno, i vincoli da rispettare si scrivono

$$42x_1 + 72x_2 + 105x_3 + 125x_4 \ge 900.000$$

$$x_1 + x_2 \ge 7.500$$

$$x_1 + x_2 + x_3 + x_4 = 10.000$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Il costo di un pieno è dato da

$$C(\mathbf{x}) = 1.2x_1 + 2.1x_2 + 5.0x_3 + 5.5x_4$$

Per calcolare il costo minimo di un pieno conviene usare il duale:

$$\begin{array}{cccc} \max & 100(9.000y_1 + 75y_2 + 100y_3) \\ & 42y_1 + y_2 + y_3 & \leq & 1,2 \\ & 72y_1 + y_2 + y_3 & \leq & 2,1 \\ & 105y_1 + y_3 & \leq & 5,0 \\ & 125y_1 + y_3 & \leq & 5,5 \\ & & y_1, y_2 & \geq & 0 \end{array}$$

Ponendo $y_3 = u_3 - z_3$ e aggiungendo le variabili di slack si ottiene la forma canonica

y_1	y_2	u_3	z_3	w_1	w_2	w_3	w_4	
9000	75	100	-100	0	0	0	0	0
420 720 1050 1250	10	10	-10	1	0	0	0	12
720	10	10	-10	0	1	0	0	21
1050	0	10	-10	0	0	1	0	50
1250	0	10	-10	0	0	0	1	55

6. Pechino 2008

I cerchi rappresentati in figura possono essere spostati dove si vuole, a patto che il loro centro coincida con uno degli incroci della griglia riportata a tratteggio. Formulare come programmazione lineare 0-1 il problema di posizionare i cerchi in modo da minimizzare la somma delle aree delle loro intersezioni a due a due.

1 2 3 4 5 6 1 2 3 4 5 6 Poniamo $x_{ih} = 1$ se e solo se il cerchio i è posizionato all'incrocio h. Siano p = (i, j), q = (h, k) e sia a_{pq} l'area dell'intersezione della coppia di cerchi p = (i, j) quando il cerchio i (il cerchio j) è posizionato all'incrocio h (all'incrocio k). Poniamo inoltre $y_{pq} = 1$ se $x_{ih} = x_{jk} = 1$, e $y_{pq} = 0$ altrimenti. Il problema si formula allora

min
$$\sum_{p} \sum_{q} a_{pq} y_{pq}$$

 $x_{ih} + x_{jk} - 1 \le y_{pq}$ per $p = (i, j), q = (h, k)$
 $x_{ih}, y_{pq} \in \{0, 1\}$