4. Potenzreihen

Sei (c_n) eine Folge mit $c_n \geq 0$ für alle $n \in \mathbb{N}$.

Dann gilt:

 (c_n) beschränkt \Leftrightarrow (c_n) nach oben beschränkt

Es treten die folgenden Fälle auf

- (i) (c_n) ist beschränkt, dann existiert $\limsup c_n \in [0, \infty)$.
- (ii) (c_n) ist nicht beschränkt.

Lemma 4.1. Sei (c_n) eine Folge mit $c_n \geq 0$ für alle $n \in \mathbb{N}$.

Ist (c_n) beschränkt, so gilt:

$$\limsup_{n \to \infty} c_n = 0 \quad \Leftrightarrow \quad c_n \to 0$$

Beweis:

"
—" klar, da $\mathrm{HW}(c_n) = \{0\}$ (dann ist 0 auch größter Häufungswert).

"⇒" Sei $\varepsilon > 0$. Nach obigem Lemma gilt:

$$0 \le c_n \le \frac{\varepsilon}{2}$$
 für fast alle $n \in \mathbb{N}$

d.h.

$$c_n \in U_{\varepsilon}(0)$$
 für fast alle $n \in \mathbb{N}$

Ist (c_n) eine Folge mit $c_n \geq 0$ für alle $n \in \mathbb{N}$, so gibt es genau eine der folgenden Möglichkeiten:

- (i) (c_n) ist unbeschränkt
- (ii) (c_n) ist beschränkt und $\limsup c_n > 0$
- (iii) (c_n) ist beschränkt und $\limsup c_n = 0$

Definition 4.2. Sei (a_n) eine Folge und $x_0 \in \mathbb{R}$.

(1) Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

heißt eine Potenzreihe.

(2) Sei
$$c_n := \sqrt[n]{|a_n|}, n \in \mathbb{N}$$
.

Setze

$$r := \begin{cases} 0 & \text{falls } (c_n) \text{ unbeschränkt} \\ \infty & \text{falls } c_n \to 0 \\ \frac{1}{\limsup c_n} & \text{falls } c_n \text{ beschränkt und } \limsup c_n > 0 \end{cases}$$

Dann heißt r Konvergenzradius der Potenzreihe.

Im folgenden betrachten wir Potenzreihen der Form

$$\sum_{n=0}^{\infty} a_n x^n$$

d.h. solche Potenzreihen, bei denen $x_0 = 0$. Der allgemeine Fall $x_0 \in \mathbb{R}$ lässt sich durch die Transformation $y = x - x_0$ auf diesen Spezialfall zurückführen.

Satz 4.3. $\sum_{n=0}^{\infty} a_n x^n$ sei eine Potenzreihe mit dem Konvergenzradius r.

- (1) Ist r=0, so konvergiert die Potenzreihe nur für x=0.
- (2) Ist $r = \infty$, so konvergiert die Potenzreihe für jedes $x \in \mathbb{R}$.
- (3) Ist $r \in (0, \infty)$, so konvergiert die Potenzreihe absolut für |x| < r und sie divergiert für |x| > r. Für |x| = r ist keine allgemeine Aussage möglich.

Beweis: Sei $x \in \mathbb{R}$ und $c_n := \sqrt[n]{|a_n|}, b_n := a_n x^n, n \in \mathbb{N}$.

 $\text{Dann gilt: } \sqrt[n]{|b_n|} = (|a_n|\cdot|x^n|)^{\frac{1}{n}} = \sqrt[n]{|a_n|}\cdot|x| = c_n\cdot|x|\;, \quad n\in\mathbb{N}.$

- (1) $r = 0 \implies (c_n)$ ist unbeschränkt.
 - $\Rightarrow \sqrt[n]{|b_n|}$ unbeschränkt für $x \neq 0$.

 $\overset{3.14}{\Rightarrow}$ $\sum b_n$ divergiert für $x \neq 0$.

Also: $\sum b_n$ konvergiert nur für x = 0.

(2) $r = \infty \implies c_n \to 0 \implies \sqrt[n]{|b_n|} \to 0 \text{ für jedes } x \in \mathbb{R}.$

 $\stackrel{3.14}{\Rightarrow}$ $\sum b_n$ konvergiert absolut für jedes $x \in \mathbb{R}$.

(3) Sei $r \in (0, \infty)$ und $\delta := \limsup c_n$, also $r = \frac{1}{\delta}$.

Dann gilt:

$$\limsup \sqrt[n]{|b_n|} = \delta \cdot |x| = \frac{|x|}{r} < 1 \quad \Leftrightarrow \quad |x| < r$$

oder

$$\limsup \sqrt[n]{|b_n|} > 1 \quad \Leftrightarrow \quad |x| > r$$

Die Behauptung folgt dann aus dem Wurzelkriterium 3.14.

Beispiel 4.4.

(1) Bekannt: $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ konvergiert absolut für jedes $x \in \mathbb{R}$.

Also: $r = \infty$ nach 4.3.

Es ist
$$a_n = \frac{1}{n!}$$
, also $\sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n!}}$.

$$\Rightarrow \lim_{n \to \infty} \left(\sqrt[n]{n!} \right)^{-1} = 0.$$

- (2) Bekannt: die geometrische Reihe $\sum_{n=0}^{\infty} x^n$ (hier: $a_n = 1$) konvergiert absolut für |x| < 1 und divergiert für $|x| \ge 1$.
 - \Rightarrow Konvergenzradius r = 1, $\limsup \sqrt[n]{|a_n|} = 1$.
- (3) Betrachte $\sum_{n=1}^{\infty} \frac{x^n}{n}$ (hier: $a_0 = 0$, $a_n = n^{-1}$).

$$\sqrt[n]{|a_n|} = \frac{1}{\sqrt[n]{n}} \to 1$$

$$\Rightarrow \lim \sup \frac{1}{\sqrt[n]{n}} = 1$$

$$\Rightarrow$$
 Konvergenz
radius $r = \frac{1}{1} = 1$

Die Potenzreihe konvergiert also für |x| < 1 und divergiert für |x| > 1.

Für |x| = 1:

- 1. Fall x = 1: $\sum \frac{1}{n}$ divergiert \Rightarrow die Potenzreihe divergiert.
- 2. Fall $x=-1 : \sum \frac{(-1)^n}{n}$ konvergiert nach dem Leibniz-Kriterium.
 - ⇒ die Potenzreihe konvergiert (aber nicht absolut).
- (4) Betrachte $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ (hier: $a_0 = 0$, $a_n = \frac{1}{n^2} (n > 0)$).

$$\sqrt[n]{|a_n|} = \frac{1}{(\sqrt[n]{n})^2} \to 1$$
 also $\limsup \sqrt[n]{a_n} = 1$

$$\Rightarrow$$
 Konvergenz
radius $r = \frac{1}{1} = 1$

Die Potenzreihe konvergiert also absolut für |x| < 1 und divergiert für |x| > 1.

Für |x| = 1:

- 1. Fall x=1: $\sum \frac{1}{n^2}$ konvergiert absolut \Rightarrow die Potenzreihe konvergiert absolut.
- 2. Fall x=-1: $\sum \frac{(-1)^n}{n^2}$ konvergiert absolut \Rightarrow die Potenzreihe konvergiert absolut.
- (5) Betrachte $\sum_{n=0}^{\infty} n^n x^n$ (hier: $a_n = n^n$).

$$c_n := \sqrt[n]{|a_n|} = n \implies (c_n)$$
 ist unbeschränkt

$$\Rightarrow$$
 Konvergenz
radius $r = 0$

Die Potenzreihe konvergiert also nur für x = 0.