Paseo de borracho 2D

J. Abellán

20 de septiembre de 2016

Paseo del borracho en dos dimensiones

Un borracho sale de un bar situado justo en el centro de una plaza. Da pasos a la derecha/izquierda, arriba/abajo con la misma probabilidad: p=0.5. Después de dar np=10 de pasos ¿podrá salir de la plaza en la que se encuentra?

```
paso <- c( - 1, 1 )

np <- 1000

xo <- 1.5 * sqrt( np )

#Coordenadas X, Y como suma de los pasos al azar
X <- cumsum( sample( paso, np, replace = T ) )

Y <- cumsum( sample( paso, np, replace = T ) )

plot( X, Y,

    type = "l",

    xlim = c( - xo, xo ),

    ylim = c( - xo, xo )

)

abline( h = 0, v = 0 )</pre>
```


Para tener una respuesta estadísticamente significativa debemos hacer muchos experimentos, es decir, paseos y tomar nota de la posición final.

```
paso <- c( - 1, 1 )
npasos <- 100
sgm <- sqrt( npasos )</pre>
xo <- 2 * sgm^2
Npaseos <- 100000
X <- Y <- rep( 0, Npaseos )</pre>
for( i in 1 : Npaseos ) {
  #Sólo interesa la posición final
  X[ i ] <- sum( sample( paso, npasos, replace = T ) )</pre>
  Y[ i ] <- sum( sample( paso, npasos, replace = T ) )
}
\# Comprobamos que los desplazamientos X e Y
#son normales de media cero y desviación raiz(npasos)
x1 \leftarrow -4 * sgm ; x2 \leftarrow 4 * sgm
x \leftarrow y \leftarrow seq(x1, x2, length.out = 1000)
hist( X, 50, prob = T, main = "Desplazamiento horizontal" )
lines( x, dnorm( x, 0, sgm ), col = 2 )
```

Desplazamiento horizontal

hist(Y, 50, prob = T, main = " Desplazamiento vertical")
lines(y, dnorm(y, 0, sgm), col = 2)

Desplazamiento vertical

#Cuadrado de la distancia final normalizada #La distribución teórica será ji-cuadrado con 2 grados de libertad

```
Z2n <- ( X / sgm )^2 + ( Y / sgm )^2
# grados de libertad
gdl <- 2
hist( Z2n, 50, xlab = "Z2n", probability = T, main = paste( "N =", npasos ) )
#Curva teórica
z2n <- seq( 0, 5 * gdl, length.out = 1000 )
lines( z2n, dchisq( z2n, gdl ), col = 2 )</pre>
```

N = 100


```
#Pero interesa el cuadrado de la distancia al centro en unidades originales: Z2=X^2+Y^2
Z2 <- sgm^2 * Z2n
hist( Z2, 50, xlab = "Z^2", probability = T, main = paste( "N = ", npasos ) )
z2 <- sgm^2 * z2n
lines( z2, dchisq( z2n, gdl ) / sgm^2, col = 2 )</pre>
```

N = 100


```
#Finalmente, distancia al centro en unidades originales
Z <- sqrt( Z2 )
hist( Z, 50, prob = T, main = paste( "N = ", npasos ) )
z <- sqrt( z2 )
lines( z, dchisq( z2n, gdl ) * 2 * z / sgm^2, col = 2 )</pre>
```


