Exercise 1. Short answers:

- 1. If \vec{u} and \vec{v} are parallel, what is the algebraic relation between them?
- 2. Suppose a line ℓ is normal to a plane π . What is the relation between \vec{v}_{ℓ} and \vec{n}_{π} ?
- 3. If $f: \mathbb{R}^3 \to \mathbb{R}$ is a function, how many components does its gradient ∇f have?
- 4. If $\nabla f(\vec{a}) \cdot \vec{u} < 0$, does f increase or decrease in the direction of \vec{u} at \vec{a} ?
- 5. If f has detHf > 0 and $f_{xx} > 0$ at $\vec{x} = \vec{a}$, can you conclude if f has a maximum, minimum, or saddle point at \vec{a} ?
 - 1. \vec{u} and \vec{v} are multiples. This means $\vec{v} = c\vec{u}$ for some scalar c.
 - 2. If the line is normal to the plane, it's parallel to the normal vector of the plane. So $\vec{v}_{\ell} \parallel \vec{n}_{\pi}$.
 - 3. A three-dimensional function has 3 entries on its gradient.
 - 4. This means that the directional derivative is negative in direction of u. So it's aligned opposite to $\nabla f(\vec{a})$, this means that it's decreasing in direction of \vec{u} at \vec{a} .
 - 5. Positive determinant of Hessian implies that the function doesn't have a saddle point. As f_{xx} is positive, f looks like a happy face in the x direction, therefore it's a minimum.

Exercise 2. Consider the function f(x,y) = 8x + 8y on the region described by $\{4x^2 = y^2 - 1\}$. There are two critical points. Follow these steps to classify them:

- 1. Identify the function f you're optimizing.
- 2. Identify the constraint as q=0.
- 3. Write the Lagrange equation: $\nabla f = \lambda \nabla g$.
- 4. Solve for \vec{x} in terms of λ , then use g=0 to find λ .
- 5. Find \vec{x} using λ and classify the points by evaluating f.
 - 1. The function to optimize is f(x,y) = 8x + 8y.
 - 2. The constraint is

$$g(x,y) = 4x^2 - y^2 + 1 = 0.$$

3. The Lagrange equation is

$$(8,8) = \lambda(8x,-2y).$$

4. We may solve for x,y via the equations

$$\begin{cases} 8 = 8x \\ 8 = -2y \end{cases} \Rightarrow \begin{cases} \frac{1}{\lambda} = x \\ \frac{-4}{\lambda} = y \end{cases}$$

So plugging these values into g=0 we get:

$$4\left(\frac{1}{\lambda}\right)^2 - \left(\frac{-4}{\lambda}\right)^2 + 1 = 0 \Rightarrow \frac{-12}{\lambda^2} = -1 \Rightarrow \lambda = \pm 2\sqrt{3}.$$

5. The critical values are thus

$$(x_1, y_1) = \left(\frac{1}{2\sqrt{3}}, \frac{-2}{\sqrt{3}}\right)$$
 and $(x_2, y_2) = \left(\frac{-1}{2\sqrt{3}}, \frac{2}{\sqrt{3}}\right)$

$$f(x_1,y_1) = \frac{8}{2\sqrt{3}} + \frac{-16}{\sqrt{3}} = \frac{-12}{\sqrt{3}}$$
 and $f(x_2,y_2) = \frac{-8}{2\sqrt{3}} + \frac{16}{\sqrt{3}} = \frac{12}{\sqrt{3}}$

The critical values are thus $(x_1,y_1) = \left(\frac{1}{2\sqrt{3}}, \frac{-2}{\sqrt{3}}\right) \quad \text{and} \quad (x_2,y_2) = \left(\frac{-1}{2\sqrt{3}}, \frac{2}{\sqrt{3}}\right).$ Plugging them into f we get the values $f(x_1,y_1) = \frac{8}{2\sqrt{3}} + \frac{-16}{\sqrt{3}} = \frac{-12}{\sqrt{3}} \quad \text{and} \quad f(x_2,y_2) = \frac{-8}{2\sqrt{3}} + \frac{16}{\sqrt{3}} = \frac{12}{\sqrt{3}}$ where we see that $f(x_1,y_1) < f(x_2,y_2)$ so (x_2,y_2) is a maximizing point whereas (x_1,y_1) is a minimizing point minimizing point.