

QZSS L6 Enabled Multi-band Multi-GNSS Receiver

Justin Yang

Marketing Department. High Precision Product Director

PART 1 ALLYSTAR

- Brief Profile
- News

PART 2 Multi-band Multi-GNSS Technology

- GNSS Reception Status and Advantages of each band
- The design concept of ALLYSTAR cynosure III architecture in SoC
- Output Protocol : NMEA, RTCM, Proprietary Messages

Demonstration

- RF Option A: L1 & L5 band
- RF Option B : L1 & L2 band
- RF Option C : L1 & L6 band (QZSS L6D)
- RTKLIB

PART 4 Competitive Solutions

- TAU module series
- Compatible antennas

PART 1 ALLYSTAR

- Brief Profile
- News

2018 ALLYSTAR Confidential

ALLYSTAR Technology Co. Limited (2017)

Allystar is dedicated to GNSS chips designing & algorithm, and products' designing, R&D, sales and other related business. We provide chipsets and application solutions to terminal market of consumer electronics, national vital industry, automotive industry and IoT

Addition information:

http://www.allystar.com/en/

CHINA

HONG KONG

CANADA

SINGAPORE

SHENZHEN, BEIJING

Sha Tin (Science Park)

Calgary

Worldwide Distributor

At a Glance

Team established and entered GNSS market

Acquired Fujitsu GNSS team (part of MCU business group); Re-organized HED wireless LAN team; HD8010 (GPS) shipped to Japan and China markets.

 \triangleright

В

0

S

HD8020 GNSS chipset in MP

HD8020 Beidou/GNSS SoC chip to China and WW markets; HD8020 won the first prize of Technology & Innovation at CSNC.

2015

ALLYSTAR technology established

Spin-out from HED to be location service technology provider.

Dedicated on Multi-Band GNSS chip design

2017

Multi-band Multi-GNSS SOC to support high precision applications GPS / QZS L1 , L2, L5 , L6 BDS B1 B2 B3 GLO L1OF L2OF GAL E1 E5 IRNSS L5

1st Beidou SoC supplier in China

BeiDou/GNSS products launched to the market.

HD8030 GNSS MCU chipset in MP

HD8030 GNSS MCU chip to consumer markets; HD8030 won the first prize of Technology & Innovation at CSNC.

HD8040 GNSS chipset in MP

2018

Multi-band Multi-GNSS SOC to consumer market L1 & L5 PVT

2018 ALLYSTAR Confidential

5

Technology News

LENOVO Z6/L6 SE Version

Allystar offers dual-antenna GNSS-aided INS platform

https://www.gpsworld.com/allystar-offers-dual-antenna-gnss-aided/ins-platform/

Dual-frequency GNSS smartphone supports BDS phase III signal

https://www.gpsworld.com/dual-frequency-gnss-smartphone-supports-bds-phase-iii-signal/

Allystar launches tiny dual-band GNSS module

https://www.gpsworld.com/allystar-launches-tiny-dual-band-gnss-module/

Allystar launches multi-band, multi-GNSS chip for devices

https://www.gpsworld.com/allystar-launches-multi-band-multi-gnss-chip-for-devices/

Allystar offers GNSS antenna for high-precision positioning

https://www.gpsworld.com/allystar-offers-gnss-antenna-for-high-precision-positioning/

Allystar releases multi-band GNSS raw data chip and module

https://www.gpsworld.com/allystar-releases-multi-band-gnss-raw-data-chip-and-module/

Allystar Technology Offers Multi-Band, Multi-GNSS Single Chip

https://insidegnss.com/allystar-technology-offers-multi-band-multi-gnss-single-chip/

2018 ALLYSTAR Confidential

International GNSS Seminar & Workshop

GNSS+ 2019 September @USA

Multi-Band Multi-GNSS SoC for Mass Market Applications

Summer School 2019 August @ TOKYO

QZSS L6 Enabled GNSS receiver

GNSS workshop 2019 June @INDIA

NAVIC Enabled GNSS Receiver and Testing by Spirent Simulator

PACIFIC PNT 2019 April @USA

Chip-grade Multi-Band Multi-GNSS RTK and Attitude Determination with Low Cost Dual Antennas for Mass Market Applications

2019

ITM/PTTI 2019 January @USA

Single-Chip Delivers Multi-Band Multi-GNSS Raw Measurement and Built-In RTK Engine For Mass Market Applications

2018

GNSS workshop 2018 October @CHINA

Multi-band Multi-GNSS SoC for Mass and Automotive Applications

PART 2 Multi-band Multi-GNSS Technology

- GNSS Reception Status and Advantages of each band
- The design concept of ALLYSTAR cynosure III architecture in SoC
- output protocol : NMEA , RTCM, Proprietary Messages

2018 ALLYSTAR Confidential

GNSS Signal and Reception Status

What are the advantages of applying in the future? Has been widely used in the consumer market

GNSS Advantages and Applications in each band

L5 band : Single Point Positioning

- L5/E5 maximizes measurement accuracy
- Multipath Mitigation based on higher chip rate
- Standalone / Mass market mainly

L2 band: Relative Positioning

- maximizes satellites visibility
- common CORS support :
 - GPS L1 / L2
 - GLO L1 / L2
 - BDS B1 / B2
- RTK Technology mainly

L6 band : Precise Point Positioning

- SSR-type correction service
- B3I / LEX is operating
- PPP Technology mainly

The design concept of CYNOSURE III architecture

- Cover all GNSS civil signals in three RF settings
- Integrate RF and Baseband into SoC

Option A:

• supports: GPS L1/L5, QZS L1/L5, BDS B1/B2a, GAL E1/E5a, GLO L1OF and IRNSS

Option B:

• supports: GPS L1/L2, QZS L1/L2, BDS B1/B2, GAL E1/E5b, GLO L10F/L20F

Option C:

• supports: GPSL1, QZS L1/L6, BDS B1/B3I, GAL E1/E6, GLO L1OF

Highlights of CYNOSURE III GNSS SoC(1/2)

Highlights of CYNOSURE III GNSS SoC(2/2)

Receiving 5 systems (GPS+QZS+BDS+GAL+GLO) at the same time to maximize satellites visibility

Output Protocol

- Standardization
- Compatibility
- Feasibility

- NMEA 0183 4.1 version (PVT solution)
- RTCM Standard 3.x
 - Multi-band Multi-system GNSS Raw e.g. Pseudo range, Phase range, SNR, Doppler
- Proprietary Binary Messages
 - IRNSS raw data , QZSS L6 raw data

Standard RTCM 3 Protocol (GNSS Raw Data)

Message type	Intended Application
MSM1	Conventional and advanced DGNSS
MSM2	Conventional RTK modes
MSM3	
MSM4	
MSM5	Storing data in a complete set of RINEX observables
MSM6	RTK with extended resolution. Real time Network data streaming.
MSM7	Transmission of a complete set of RINEX observations with extended resolution

RTCM STANDARD 10403.3

DIFFERENTIAL GNSS (GLOBAL NAVIGATION SATELLITE SYSTEMS) SERVICES – VERSION 3

System	MSM4	MSM7
GPS	L1 / L2 / L5	L1 / L2 / L5
BDS	B1 / B2 / B3	B1 / B2 / B3
GAL	E1 / E5	E1 / E5
GLO	L1 / L2	L1 / L2
QZS	L1 / L2 / L5	L1 / L2 / L5
SBS	*	*
IRNSS	-	-

System	Ephemeris
GPS	MSG 1019
BDS	MSG 1042
GAL	MSG 1045 / MSG 1046
GLO	MSG 1020
QZS	MSG 1044
SBS	-
IRNSS	-

CYNOSURE III support MSM table (I/O)

CYNOSURE III support Navigation MSG Table (O)

2018 ALLYSTAR Confidential

NAVIC sub frame data output

- ▲ There is no standard RTCM protocol to support NAVIC yet.
- Allystar supports proprietary binary messages of NAVIC sub frame output.

\$PIRNSF, ...

2018 ALLYSTAR Confidential

QZSS L6 Raw Data Output (1/2)

QZSS L6 Raw Data Output (2/2)

Original:

Class ID(1) Message ID (1) payload length(2) SVN(2) Sync word (2) Freq ID(1) data length(1), value = N data (N*4) checksum(2)

New:											
Sync word (2)	Class ID(1)	Message ID (1)	payload length(2)	SVN(2)	data length(1), value = N + 2	GPS Week Number(2)	GPS Time of week in ms(4)	SNR (1)	Flag(1)	data (N* 4)	checksum(2)

Extend data: big endian Others: little endian

Flag definition:

```
// QZSS L6 raw data flag, there is 8 bit can be used.
enum{
QZSL6 ALL GOOD = 0x0,
QZSL6_RS_FAILED = 0x1,
 QZSL6 WEEK NOT CONFIRM = 0x2,
 QZSL6 TOW NOT CONFIRM = 0x4,
```

Header Description:

Sync word	0xF1D9
Class ID	0x2
Message ID	0x10
SVN	Follow the NMEA format, QZSS L6 SVN is "prn +700"
Freq ID	0
Data length	Word size

Flexible channels to track L6D and L6E

- •Tracking L6D and L6E at the same time (max. 8 dedicated channels)
- Standard RTCM SSR-Type output
- Lowest Power consumption : 38 mA
- Smallest module size: 7.6mm x 7.6mm x 1.9mm

QZSS L6 Application Note:

SALLYSTAR

- One module to access L1/L5(Option A) or L1/L2(Option B)
- One module to access QZS LEX signal (Option C)
- Over all power consumption is < 90 mA

L1/L2 or L1/L5

7 x 7 mm

PART 3 Demonstration

• RF Option A: L1 & L5 band

• RF Option B : L1 & L2 band

• RF Option C: L1 & L6 band

2018 ALLYSTAR Confidential

Tools

FTP server

<u>Address</u>: fcd.allystar.com

user : hd_cynosure3

password : hd_cynosure3@0929

EVB

Driver

√ • GUI program

- Satrack.exe

- RTKLIB

√ Firmware

(Allystar GUI Tool – Satrack.exe)

RTCM Protocol compatible with RTKLIB (Open source tool, Author : T. Takasu)

Steps to access GNSS signal via Satrack and EVB

Change Firmware

FTP server

<u>Address</u>: fcd.allystar.com

user : hd_cynosure3

password : hd_cynosure3@0929

Choose specific firmware to update

Configure the GNSS receptions and bands

- ▲ Cynosure III SoC has only 40 tracking channels
- Flexible command to choose specific Reception and frequency

Satrack.exe:

- View
- AS Messages
- > CFG
- > NAVSAT
 - Choose frequencies
 - Send

Relevant commands, please refer to PI-4-1712-Satrack V1.29-User Manual.pdf

Demo via RTKLIB (1/2)

Demo via RTKLIB (2/2)

PART 4 Competitive Solutions

- TAU module series
- Compatible antennas

2018 ALLYSTAR Confidential

Advantages based on CYNOSURE III Technology

Can easily design competitive multi-band multi-GNSS solutions with smallest size and lowest power consumption

L1 Band GNSS Antenna – AGR6301

GNSS Reception	GPS/QZS L1, BDS B1, GAL L1OF, GAL E1, SBAS
Specifications	Architecture: Dual Feed Network Axial Ratio: < 2dB Gain: 3~5dBi Polarization: RHCP LNA gain: 25dB typ. Noise Figure: < 2dB Output SWR: < 1.5 Output Impedance: 50 Ohm Out-band rejection: > 1640Mhz (>40dB) Support Voltage: 1.8~5.5 V Power consumption: 7.5mA(3.3V typ.)
Mechanicals	Size: L45.8 x W47 x H14mm Interface: SMA-M-M Mounting: Magnet mount Water Proof: IP67

L1 / L2 band GNSS Antenna – AGR6302

GNSS Reception GPS/QZS L1 L2, BDS B1 B2I, GLO L1OF, GAL E1 E5b, SBAS

Specifications Architecture : Quad Feed Network

Axial Ratio: < 2dB

Gain: 3~5dBi

Polarization: RHCP LNA gain: 31dB typ. Noise Figure: < 2dB Output SWR: < 2

Output Impedance: 50 Ohm

Out-band rejection: In-Band +- 80Mhz (>35dB)

Support Voltage: 2.5~5.5 V

Power consumption: 22mA(3.3V typ.)

Mechanicals Size: D79 x H24mm

Interface: SMA-M-M

Mounting: Magnet mount

Water Proof: IP67

2018 ALLYSTAR Confidential

L1 / L5 band GNSS Antenna – AGR6303

GPS/QZS L1 L5, BDS B1 B2a, GLO L1OF, GAL E1 E5a, SBAS

Specifications Architecture : Quad Feed Network

Axial Ratio : < 2dB

Gain: 3~5dBi

Polarization: RHCP LNA gain: 31dB typ. Noise Figure: < 2dB Output SWR: < 2

Output Impedance: 50 Ohm

Out-band rejection: In-Band +- 80Mhz (>35dB)

Support Voltage: 2.5~5.5 V

Power consumption: 22mA(3.3V typ.)

Mechanicals Size: D79 x H24mm

Interface : SMA-M-M

Mounting: Magnet mount

Water Proof: IP67

GNSS Reception

L1 / L6 band GNSS Helix Antenna

GNSS Reception GPS/QZS L1 L6

Specifications Architecture : Helix

Gain: L1 > 1.5 dBi; L6 > 2.0 dBi

Polarization: RHCP LNA gain: 31dB typ. Noise Figure: < 2dB Output SWR: < 2

Output Impedance: 50 Ohm

Out-band rejection: In-Band +- 80Mhz (>35dB)

Support Voltage: 3~5 V

Power consumption : < 40mA(3.3V typ.)

Mechanicals Size: D27.5 x H58.6mm

Interface : SMA-J

QZS # PRN 193 : L1 L6

QZS # PRN 194 : L1 L6

QZS # PRN 195 : L1 L6

QZS # PRN 199 : L1 L6

(2019.06.01 Hong Kong)

Low Cost L1 / L5 Passive Patch Antennas

GNSS Reception GPS/QZS L1 L5, BDS B1 B2a, GLO L1OF, GAL E1 E5a, NAVIC, SBAS

Specifications Architecture : Single Feed Stack

Axial Ratio: L1 < 4dB; L5 < 13dB

Gain: 3~5dBi

Polarization : RHCP Output SWR : < 2

Output Impedance: 50 Ohm

Mechanicals Size: Type A (35x35mm + 25x25mm)

Type B (25x25mm + 15x15mm)

Type A Typ

Low Cost L1 / L5 Band Linear antenna

	GNSS					
Frequency	Peak Gain (dB)	Average gain (dBi)	Efficiency (%)			
1176.45MHz	1.65	-3.15	48.45%			
1227MHz	2.28	-1.87	64.98%			
1575.42MHz	3.48	-1.31	73.94%			

THANK YOU

Allystar is glad to boost the location and Internet of Things (IoT) applications with the latest multi-frequency GNSS SoC (system on chip) technology

L1 / L5 band design applications

Realizing in smart phone

HD8040

The latest <u>Lenovo</u> smart phone offers dual-frequency GNSS capable of tracking

GPS L1, L5

BDS B1, B2a

GALE1, E5a

GLO L1OF,

IRNSS (HD8041D only),

the Z6 SE, using an Allystar chipset.

