3/30/21 11:10 AM

Speaker: Srinivas Chilukuri (ZS Associates)

Date: 03/30/2021

Structured datasets have unique challenges of their own Capture biases

- Missing data Small data
- Class imbalance

GAN overview for image generation

Applications of GANs

Synthetic generation of tabular data

- Generator create values according to schema of columns
- Discriminator produces log probability

Domain specific tabular GANs

- E-commerce:
 - Generate low-dimensional dense representation of e-commerce orders
 - To generate plausible orders data for new products
- Insurance: (tackle data privacy issue)
 - Generate accessible insurance datasets for actuarial studies
 - Tweaked CTGAN for imbalance categorical levels
- Medical (medGAN)
 - Generate privacy preserving, accessible healthcare datasets
 - Use of recurrent Encoders/Decoders for handling sequences
 - Does not handle lab values, clinical notes, diagnostic images, ...
- Relational datasets

It transforms each record in a relational table into a sample $t \in \mathbb{R}^d$. (2) It takes the samples as input to train a deep generative model G using the adversarial training framework in GAN. (3) It utilizes the trained G to generate a set of synthetic samples, which are then transformed back into fake records.

Original data

Missing data imputation

- Through masking data points in original dataset

Reinforcement

G is trained by RL where the reward is a combination of D and the objectives, and is passed back to the policy function via Monte Carlo sampling. We penalize non-unique sequences. **Future directions**

1. How to evaluate tabular GANs?

Sample similarity Basic statistics

- Column correlations
- Mirror column associations
- PCA variance correlation
- Machine learning efficacy - Evaluate how downstream ML model performance varies with real data, synthetic

data, real data + synthetic

Privacy evaluations

- Check how many samples are replicated from the training (real) dataset **Human evaluations**

- On the lines of Turing test to see whether humans can distinguish between real and
- In domain specific implementations, this will help with understanding which patterns

- synthetic data
- GANs are able to learn
- Open challenges

2.

- Data hungry Adaptive Discriminator Augmentation
- Mode collapse for imbalanced categorical data - Domain specific data still requires significant work e.g. HER data is still not realistic