Seleccionar características según valoraciones individuales

Una vez determinado como valorar las características podemos elegir las mejores con el método <u>SelectKBest (https://scikit-learn.org/stable /modules/generated/sklearn.feature_selection.SelectKBest.html)</u>. Por ejemplo, sobre los conjuntos de datos del apartado anterior:

Out[4]:

	sepal length	sepal width	petal length	petal width	target
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [5]: from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import chi2
    X = iris[caracteristicas]
    y = iris['target']

    X_new = SelectKBest(chi2, k=3).fit_transform(X, y)
    X_new
```

```
Out[5]: array([[5.1, 1.4, 0.2],
                                             [4.9, 1.4, 0.2],
                                             [4.7, 1.3, 0.2],
[4.6, 1.5, 0.2],
                                             [5., 1.4, 0.2],
[5.4, 1.7, 0.4],
[4.6, 1.4, 0.3],
[5., 1.5, 0.2],
                                             [4.4, 1.4, 0.2],
[4.9, 1.5, 0.1],
[5.4, 1.5, 0.2],
[4.8, 1.6, 0.2],
                                             [4.8, 1.4, 0.1],
[4.3, 1.1, 0.1],
[5.8, 1.2, 0.2],
                                             [5.7, 1.5, 0.4],
[5.4, 1.3, 0.4],
[5.1, 1.4, 0.3],
                                             [5.7, 1.7, 0.3],
[5.1, 1.5, 0.3],
[5.4, 1.7, 0.2],
[5.1, 1.5, 0.4],
                                             [4.6, 1. , 0.2],
[5.1, 1.7, 0.5],
[4.8, 1.9, 0.2],
                                             [5., 1.6, 0.2],
[5., 1.6, 0.4],
[5.2, 1.5, 0.2],
                                             [5.2, 1.4, 0.2],
[4.7, 1.6, 0.2],
[4.8, 1.6, 0.2],
[5.4, 1.5, 0.4],
                                             [5.2, 1.5, 0.1],
[5.5, 1.4, 0.2],
[4.9, 1.5, 0.1],
                                             [5., 1.2, 0.2],
[5.5, 1.3, 0.2],
[4.9, 1.5, 0.1],
                                             [4.4, 1.3, 0.2],
[5.1, 1.5, 0.2],
[5. , 1.3, 0.3],
[4.5, 1.3, 0.3],
                                              [4.4, 1.3, 0.2],
                                             [5., 1.6, 0.6],
[5.1, 1.9, 0.4],
                                             [4.8, 1.4, 0.3],
[5.1, 1.6, 0.2],
[4.6, 1.4, 0.2],
[5.3, 1.5, 0.2],
                                             [5. , 1.4, 0.2],
[7. , 4.7, 1.4],
[6.4, 4.5, 1.5],
                                             [6.9, 4.9, 1.5],
[5.5, 4., 1.3],
[6.5, 4.6, 1.5],
                                             [5.7, 4.5, 1.3],
[6.3, 4.7, 1.6],
[4.9, 3.3, 1.],
[6.6, 4.6, 1.3],
                                             [5.2, 3.9, 1.4],
[5. , 3.5, 1. ],
[5.9, 4.2, 1.5],
                                             [6., 4., 1.],
[6.1, 4.7, 1.4],
[5.6, 3.6, 1.3],
                                             [6.7, 4.4, 1.4],
[5.6, 4.5, 1.5],
[5.8, 4.1, 1. ],
[6.2, 4.5, 1.5],
                                             [5.6, 3.9, 1.1],
[5.9, 4.8, 1.8],
[6.1, 4., 1.3],
[6.3, 4.9, 1.5],
[6.1, 4.7, 1.2],
[6.4, 4.3, 1.3],
                                              [6.6, 4.4, 1.4],
                                              [6.8, 4.8, 1.4],
                                             [6.7, 5. , 1.7],
[6. , 4.5, 1.5],
[5.7, 3.5, 1. ],
```

```
[5.5, 3.8, 1.1],
[5.5, 3.7, 1. ],
[5.8, 3.9, 1.2],
[6., 5.1, 1.6],
[5.4, 4.5, 1.5],
[6., 4.5, 1.6],
[6.7, 4.7, 1.5],
[6.3, 4.4, 1.3],
[5.6, 4.1, 1.3],
[5.5, 4., 1.3],
[5.5, 4.4, 1.2],
[6.1, 4.6, 1.4],
[5.8, 4., 1.2],
[5. 6, 4.2, 1.3],
[5.6, 4.2, 1.3],
[5.7, 4.2, 1.2],
[5.7, 4.2, 1.3],
[6.2, 4.3, 1.3],
[5.1, 3., 1.1],
[5.7, 4.1, 1.3],
[6.3, 6., 2.5],
[5.8, 5.1, 1.9],
[7.1, 5.9, 2.1],
[6.3, 5.6, 1.8],
[6.5, 5.8, 2.2],
[7.6, 6.6, 2.1],
[4.9, 4.5, 1.7],
[7.3, 6.3, 1.8],
[6.7, 5.8, 1.8],
[7.2, 6.1, 2.5],
[6.5, 5.1, 2.],
[6.4, 5.3, 1.9],
[6.8, 5.5, 2.1],
[5.7, 5. , 2. ],
[5.8, 5.1, 2.4],
[6.4, 5.3, 2.3],
[6.5, 5.5, 1.8],
[7.7, 6.7, 2.2],
[7.7, 6.9, 2.3],
[7.7, 6.9, 2.3],
[6., 5., 1.5],
[6.9, 5.7, 2.3],
[5.6, 4.9, 2.],
[7.7, 6.7, 2.],
[6.3, 4.9, 1.8],
[6.7, 5.7, 2.1],
[7.2, 6., 1.8],
[6.2, 4.8, 1.8],
[6.1, 4.9, 1.8],
[6.4, 5.6, 2.1],
[7.2, 5.8, 1.6],
[7.4, 6.1, 1.9],
[7.9, 6.4, 2.],
[6.4, 5.6, 2.2],
[6.3, 5.1, 1.5],
[6.1, 5.6, 1.4],
[7.7, 6.1, 2.3],
[6.3, 5.6, 2.4],
[6.4, 5.5, 1.8],
[6. , 4.8, 1.8],
[6.9, 5.4, 2.1],
[6.7, 5.6, 2.4],
[6.9, 5.1, 2.3],
[5.8, 5.1, 1.9],
[6.8, 5.9, 2.3],
[6.7, 5.7, 2.5],
[6.7, 5.2, 2.3],
[6.3, 5. , 1.9],
[6.5, 5.2, 2.],
[6.2, 5.4, 2.3],
[5.9, 5.1, 1.8]])
```

```
In [6]: # Cargar el conjunto de datos
    from sklearn import datasets
    dataset = datasets.fetch_openml(name='delta_elevators', version=1, as_frame=True)
    delta = dataset.frame
    delta
```

Out[6]: _

	climbRate	Altitude	RollRate	curRoll	diffClb	diffDiffClb	Se
0	2.0	-50.0	-0.0048	-0.001	0.2	0.00	-0.001
1	6.5	-40.0	-0.0010	-0.009	0.2	0.00	0.003
2	-5.9	-10.0	-0.0033	-0.004	-0.1	0.00	-0.001
3	-6.2	-30.0	-0.0022	-0.011	0.1	0.00	-0.002
4	-0.2	-40.0	0.0059	-0.005	0.1	0.00	0.001
		:	•••				
9512	5.0	-30.0	0.0013	-0.004	0.2	0.00	0.004
9513	1.4	0.0	0.0024	0.019	-0.2	-0.01	-0.001
9514	-3.5	-10.0	-0.0082	0.004	-0.1	0.00	-0.003
9515	-2.4	-10.0	-0.0065	-0.012	0.2	-0.02	-0.001
9516	4.7	-10.0	0.0018	-0.020	0.3	0.00	0.001

9517 rows × 7 columns