MCMC- TP1

Abdelouahed Benjelloun

February 2017

1 Exercice 3:

1. Le risque empirique s'écrit $R_n = \frac{1}{n} \sum (y_i - \langle W, x_i \rangle)^2$, le gradient stochastique consiste à écrire :

Algorithm 1 Gradient sctochastique

- 1: Initialisation : $w^* = w_0$
- 2: Boucle k = 1 : K

$$i \sim U([0, N])$$

$$w^* = w^* - \alpha_k * (-2y_i * x_i + 2 < x_i, w^* > x_i)$$

Dans l'algorithme fourni nous avons choisi $\alpha_k = \frac{1}{k}$, les indices de la descente sont choisis d'une manière uniforme. Le vecteur W a été choisi : W = (1, -1)

2. Résultats de la simulation sans bruit : on trouve $w^* = (1.1, -1.06)$

Figure 1: Data avec label sans bruit

Figure 2: Résultat de GS, K=100

3. Résultats de la simulation avec bruit gaussien $\epsilon \sim \frac{1}{5}*N(0,1)$: on trouve $w^*=(1.07,-1.02)$

Figure 3: Data avec label sans bruit

Figure 4: Résultat de GS, K=100

Exercice 1 8" $0 \quad x = R \text{ Good of } t = R \text{ SM O}$ Ef(xit) = Ef(Roso, Roma) = \int \(\frac{1}{2\pi} \) \\ \frac{1}{2\pi} \\ = I I re x2+12 theter, flx, 4) drdo Ff(KIT) = Som - X22 / Ext (X, T) dxdt or dxdx = rdxde donc EXNN(0,1) et X, 7; ndequidants * similer ravec la loi de R Rejeat * X = R Cos * Y = R NM 9