TD7: Émission et réception stéréo

Pour transmettre une émission radio en stéréophonie, on code les signaux issus de deux microphones g(t) et d(t) sous la forme :

$$x_1(t) = (g(t) - d(t)) + \alpha(g(t) - d(t))\cos(4\pi f_0 t) + A_0\cos(2\pi f_0 t)$$

Les signaux g(t) et d(t) couvrent une bande de fréquences délimitée par $F_m=30Hz, F_M=15kHz$ et $f_0=19kHz.$

1- $x_1(t)$ peut être réaliser selon le schéma bloc suivant :

- 2- L'allure du spectre de x_1 est la suivante :
 - Il n'y a pas de recouvrement de spectre, f_0 étant supérieur à F_M .
- 3- La bande passante du signal est $B = [F_m; 2f_0 + F_M]$
- 4- Le but du montage recevant $x_1(t)$ est de restituer g(t) et d(t) sur des voies séparées(stéréo).

On considère le montage suivant :

Figure 1. Démultiplexage stéréo

Chaque élément a un rôle propre :

• M : doubleur(de fréquence)

• G :ampli de gain G

• F_1 : filtre passe-bande centré sur $2f_0$

• F_2 : filtre passe-bande centré sur f_0

• ${\cal F}_3$: filtre passe-bas de fréquence de coupure supérieur à ${\cal F}_m$

• ${\cal F}_4$: filtre passe-bas de fréquence de coupure supérieur à ${\cal F}_m$

Les signaux intérmédiaires sont :

•
$$s_1(t) = \alpha(g-d)cos(2\omega_0 t)$$

•
$$s_2(t) = A_0 cos(\omega_0 t)$$

•
$$s_3(t) = g + d$$

•
$$s_4(t) = k A_0^2 (\frac{1}{2}\alpha(g-d) + \frac{1}{2}\alpha(g-d)\cos(4\omega_0 t))$$

•
$$s_5(t) = k.A_0^2 \alpha(g-d)$$

Déterminons maintenant les sorties :

•
$$a = s_5 + Gs_3 = k.A_0^2 \alpha.g \text{ si } G = \frac{1}{2}k.A_0^2 \alpha$$

•
$$b = Gs_3 - s_5 = k.A_0^2 \alpha.d \text{ si } G = \frac{1}{2}k.A_0^2 \alpha$$

•
$$c = g + d$$

5- Réception hétérodyne : on reçoit sur trois canaux centrés respectivement sur $f_{p1},\,f_{p2}$ et f_{p3} :

$$s_n(t) = A_n cos(2\pi f_{pn}t + 2\pi k_f \int_{-\infty}^t x_n(t)d\tau)$$

Les spectres des signaux en sortie w du multiplieur sont représentés sur la photo suivante :

Et le zoom pour faire plaisir à l'autre génie :

6- F_5 a une bande passante B_0 et une fréquence centrale $f_{OL}-f_{p1}$, de sorte que : $Q=\frac{f_{OL}-f_{p1}}{B_0}=\frac{f_{F1}}{B_0}=26.75$ Une autre altérnative est de prendre une bande passante B_0 et une fréquence

Une autre altérnative est de prendre une bande passante B_0 et une fréquence centrale $f_{OL} + f_{p1}$ et donc Q = 519 (mais Q est alors trop élevé, et difficile à réaliser).

- 7- On a $y(t)=A_ycos(2\pi f_{FL}t+2\pi k_f\int_{-\infty}^tx_1(t)d\tau)$ donc le signal FM est constitué de la porteuse de fréquence f_{F1} et l'info est x_1
- 8- En l'absence de multiplieur et d'OL le canal à sélectionner aurait été centré sur f_{p_1} . Il aurait fallut un filtre F_5 centré sur f_{p_1} (très élevé) donc $Q=\frac{f_p}{B_0}>>\frac{f_{FI}}{B}$ et qui plus est accordable(fréquence centrale réglable) donc plus compliqué (WHOOOTT?!!??)

9- On suppose que $f_{FI}=1 \mathrm{MHz}$ et qu'on reçoit en plus un signal de porteuse : $f_i=f_{OL}+f_{FI}=f_{p1}+2f_{FI}=105.5 MHz$ Dans le récepteur hétérodyne f_i se retrouve multiplié par f_{OL} .

Par conséquent, en sortie de F_5 (centrée sur f_{FI}) on récupère le transport du signal f_i .

Le problème est que l'on brouille la réception du canal à f_{p1} lui aussi transposé à f_{FI}

 f_i est la fréquence image de f_{P1} .

10- si $f_{FI}=10.7MHz$ alors $f_i=f_pi+2f_{FI}=114.2MHz$. Donc ce signal est filtré par la bande passante de l'ampli de réception limité a 108MHz. Il n'y a plus de problème.