Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3224	К работе допущен
Студент	Маликов Г. И.	Работа выполнена
Преполаватель	Смирнов А. В.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.10

Изучение свободных затухающих электромагнитных колебаний

1. Цель работы.

Изучение основных характеристик свободных затухающих колебаний.

2. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф	Цифровой	Настраиваемый	Настраиваемый

3. Экспериментальная установка

Оборудование, использованное для выполнения лабораторной работы:

- 1. Блок генератора напряжений ГН1.
- 2. Осциллограф ОЦЛ2.
- 3. Стенд с объектом исследования С3-ЭМ01.
- 4. Проводники Ш4/Ш2 (4 штуки), Ш2/Ш2 (3 штуки), 2Ш4/BNC (2 штуки).

Рисунок 1 - Общий вид установки

Рисунок 2 - Рабочая схема для первого случая

Рисунок 3 - Рабочая схема для второго случая

4. Результаты прямых измерений и их обработка.

Рисунок 4 - Результаты измерений

Логарифмический декремент вычисляется по формуле: $\lambda = \frac{1}{n} ln \frac{2U_i}{2U_{i+n}}$

$$\lambda = \frac{1}{n} \ln \frac{2U_i}{2U_{i+n}}$$

Согласно графику зависимости логарифмического декремента λ от сопротивления магазина Rм получаем аппроксимирующую прямую равной y = 0.0052x + 0.331. Так угол наклона составляет $arctan(0.0052) \approx 0.3^\circ$, а собственное сопротивление контура R_0 равен:

$$-R_M|_{\lambda=0} = -\left(\frac{-0.331}{0.0052}\right) \approx 63.654 \text{ Om}$$

Для нахождения полного сопротивления воспользуемся формулой:

$$R = R_M + R_0$$

Индуктивность катушки находится по следующей формуле:

$$L = \frac{\pi^2 R^2 C}{\lambda^2}$$

Среднее значение L:

$$L_{cp} = 8.0922 \; \text{мГн}$$

Значение индуктивности L катушки стенда составляет 10 мГн ± 10%

Вычислим период колебаний в контуре при $R_M = 200,400$ Ом используя формулу

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

 $R_M = 200 \, \text{Om}$:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} \approx 0.086 \text{ MC}$$

Экспериментальное значение периода равен 0.087 мс, $\delta T = 0.95\%$

 $R_M = 400 \, \text{Om}$:

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} \approx 0.094 \text{ MC}$$

Экспериментальное значение периода равен 0.087 мс, $\delta T = 7.42\%$

Вычислим добротность контура Q используя формулу: $Q = \frac{2\pi}{1-e^{-2\lambda}}$

$$Q = \frac{2\pi}{1 - e^{-2\lambda}}$$

Для сравнения полученных результатов вычислим также по следующей формуле:

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$

 $R_M = 20 \, \text{Om}$:

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} = \frac{1}{83.654} \cdot \sqrt{\frac{10 \cdot 10^{-3}}{0.022 \cdot 10^{-6}}} \approx 8.059$$

 $R_M = 30 \, \text{Om}$:

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} = \frac{1}{93.654} \cdot \sqrt{\frac{10 \cdot 10^{-3}}{0.022 \cdot 10^{-6}}} \approx 7.199$$

Сравнивая со значениями, вычисленными ранее, эти значения добротности оказываются меньше.

R_M , Ом	Т, мс	$2U_i$, B	$2U_{i+n}$, B	n	λ	Q	R, Om	L, мГн
20	0.087	4.76	2	2	0.4336	10.836	83.654	8.0838
30	0.087	4.44	2.7	1	0.4974	9.970	93.654	7.6976
40	0.087	4.2	2.44	1	0.5431	9.484	103.654	7.9096
50	0.087	3.96	2.26	1	0.5609	9.318	113.654	8.916
60	0.087	3.74	2	1	0.6259	8.800	123.654	8.4737
70	0.087	3.4	1.68	1	0.7050	8.313	133.654	7.8042
80	0.087	3.2	1.44	1	0.7985	7.879	143.654	7.0275
90	0.087	3	1.36	1	0.7911	7.908	153.654	8.1906
100	0.087	2.84	1.24	1	0.8287	7.763	163.654	8.4681
200	0.087	1.56	0.4	1	1.3610	6.725	263.654	8.1487
300	0.087	0.84	0.12	1	1.9459	6.414	363.654	7.5832
400	0.087	0.4	0.04	1	2.3026	6.347	463.654	8.8040

Таблица 1 - Результаты первого задания

Экспериментально было найдено значение сопротивления, при котором исчезает периодичность процесса разряда конденсатора $R_{\rm крит}=1000~{\rm Om}.$ Учитывая полное сопротивление $R=R_M+R_0$ получим $R_{\text{крит}} = 1063.654 \text{ Ом.}$

Найдем теоретическое критическое сопротивление используя формулу:
$$R_{\text{крит}} = 2 \cdot \sqrt{\frac{L}{C}} = 2 \cdot \sqrt{\frac{10 \cdot 10^{-3}}{0.022 \cdot 10^{-6}}} \approx 1348.399 \; \text{Ом}$$

Вычислим теоретическое значение периода используя L=10 мГн с формулой Томсона:

$$T=2\pi\sqrt{LC}$$

С, мкФ	$T_{ m эксп}$, мс	$T_{ m Teop}$, мс	$\delta T = \frac{T_{\text{эксп}} - T_{\text{теор}}}{T_{\text{теор}}}$, %
0.022	0.0885	0.0932	5.04
0.033	0.11	0.1141	3.63
0.047	0.135	0.1362	0.89
0.47	0.436	0.4308	1.22

Таблица 2 - Результаты второго задания

5.Графики

График 1 - Зависимость логарифмического декремента от сопротивления магазина

Зависимости логарифмического декремента от сопротивления в контуре линейна с аппроксимирующей прямой y = kx + b, k = 0.0052, b = 0.331

График 2 - Зависимость добротности от полного сопротивления

График 3 - Зависимость периода колебаний от ёмкостей конденсатора

6. Результаты

В ходе выполнения лабораторной работы были получены следующие значения:

Индуктивность катушки:

$$L_{cp} = 8.0922 \text{ мГн}$$

Сопротивление в контуре:

$$R_0 = 63.654 \,\mathrm{Om}$$

Практическое критическое сопротивление контура:

$$R_{\text{KDUT}} = 1063.654 \, \text{OM}$$

Теоретическое критическое сопротивление контура:

$$R_{\text{KDUT}} = 1348.399 \text{ OM}$$

7. Вывод

В ходе лабораторной работы были изучены основные характеристики свободных затухающих колебаний. Графически была подтверждена прямая зависимость логарифмического декремента от сопротивления в контуре. Также было подтверждено, что добротность контура обратно пропорциональна сопротивлению контуру, а период колебаний возрастает с ростом емкости конденсатора. Экспериментально было найдено значение сопротивления, при котором исчезает периодичность процесса разряда конденсатора. Полученные результаты соответствуют теоретическим расчетам, что подтверждает правильность выполнения работы и корректность полученных данных.

8. Вопросы

- 1. Как в этой работе находят сопротивление катушки?
- 2. При каком значении R в исследуемом контуре зависимость $\lambda(R)$ отличается от линейной зависимости $\lambda = \frac{R}{2L} 2\pi \sqrt{LC}$ на 1%?
- 3. Откуда такое различие между добротностью, вычисленной через логарифмический декремент, и добротностью, вычисленной через параметры контура?
- 4. Найти величину $\frac{T^2}{C}$ для всех C.
 - 1. Собственное сопротивление контура находится через аппроксимирующую прямую графика зависимости логарифмического декремента от сопротивления магазина. Логарифмический декремент напрямую связан с энергией, теряемой системой за один цикл колебаний. В идеальном контуре без потерь амплитуда колебаний не изменяется, и логарифмический декремент равен нулю.
 - 2. Различия между значениями добротности могут возникать из-за того, что эти два определения описывают разные аспекты поведения колебательного контура. Добротность, определенная через параметры контура, описывает внутренние свойства контура, в то время как добротность, определенная через логарифмический декремент, описывает динамику колебаний в контуре.

3.

$$\left| \frac{\lambda(R) - \lambda}{\lambda(R)} \right| \le 1\%$$

$$\lambda = \frac{R}{2L} 2\pi \sqrt{LC}$$

$$\lambda(R) = \beta \cdot T = \frac{R}{L} \frac{\pi}{\sqrt{\frac{1}{Lc} - \frac{R^2}{4L^2}}}$$

$$\begin{vmatrix} \frac{R}{L}\pi\sqrt{LC} - \frac{R}{L}\pi\frac{1}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} \end{vmatrix} = \begin{vmatrix} \frac{\sqrt{LC}}{1} \\ \frac{R}{L}\pi\frac{1}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} \end{vmatrix} = \begin{vmatrix} \frac{\sqrt{LC}}{1} \\ \frac{1}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} - 1 \end{vmatrix} = \begin{vmatrix} \sqrt{LC} \cdot \sqrt{\frac{1}{$$

4.

С, мкФ	$T_{\mathfrak{g}\mathfrak{K}\mathfrak{C}\Pi}^2$	$T_{ m Teop}^2$
	C	\mathcal{C}
0.022	0.3560	0.3948
0.033	0.3667	0.3948
0.047	0.3878	0.3948
0.47	0.4045	0.3948

Так как теоретический период находится через $T = 2\pi\sqrt{LC}$, то при $\frac{T^2}{C} = 4\pi^2 L$. Это означает что в экспериментальных данных мы видим изменение индуктивности, при чем она увеличивается.