Отчет о выполнении лабораторной работы 3.5.1

Изучение плазмы газового разряда в неоне.

Севастьян Черняков и Георгий Чирков

ФУПМ МФТИ, 10.10.2023

Цель работы: изучение вольт-амперной характеристики тлеющего разряда, изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания (ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теория

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad} \ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma = nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $son \partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ – средние скорости электронов и ионов, S – площадь зонда, n – плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ – *плавающего потенциала*.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{H}}$ – электронный ток насыщения, а минимальное $I_{i\text{H}}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4neS\sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iH}} \right)$$
$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iH}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
(11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
(12)

Ход работы

Измеряем напряжение зажигания в лампе: $< U_{
m 3am}> = 211 \pm 1$ В.

С помощью вольтметра V_1 и амперметра A_1 снимаем ВАХ разряда $U_1 = f(I_p)$ для тока в диапазоне $0.5 \div 5$ мА (см. Таблица 1). Построим график:

Рис. 1: Вольт-амперная характеристика разряда.

По наклону определим максимальное сопротивление заряда (с учётом того, что вольтметр подключен через делитель напряжения с коэффициентом 10): $R_{max} = (8.5 \pm 0.2) \cdot 10^4$ Ом.

С помощью вольтмертра V_2 и амперметра A_2 снимем BAX двойного зонда $I_2=f(U_2)$ при фиксированного токе разряда I_p в трубке в диапозоне $-25 \div 25$ В, процессе измерений меняя полярность зонда при нулевом токе. Измерения проведём для $I_p=5$ мА, $I_p=3$ мА и $I_p=1.5$ мА (Таблица 2).

Результаты измерений представим на графиках с отцентрованными $\left(I_0 = \frac{1}{2} \sum I\right)$:

Приближая кривые формулой $I=A\mathrm{th}(BU)+CU,$ найдём токи насыщения $I_{i\mathrm{H}}$ и температуры электронов $T_e.$

Считая концентрации и
онов и электронов равными, найдём их, пользуясь формулой (7). Рассчитаем плазменную частоты ω_p по формуле (5) и радиус Дебая r_D , оценим среднее число и
онов в дебаевской сфера N_D по формуле (4) и степень и
онизации α , приняв $P\approx 1$ мбар, и занесём все результаты в таблицу.

I_p , мА	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,10^4\;{ m pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D	α , 10^{-7}
5.0	41 ± 4	58 ± 6	144 ± 10	49 ± 3	30	24
3.0	42 ± 4	33 ± 4	107 ± 9	66 ± 5	40	13
1.5	41 ± 6	16 ± 2	75 ± 8	94 ± 10	57	7

Результаты измерений

U_1 , B	23.9	24.15	24.35	24.4	24.81	25.40	26.20	27.71	30.92	34.19	35.09
I_p , мА	4.60	4.04	3.56	3.12	2.80	2.36	2.00	1.56	1.20	0.80	0.52

Таблица 1: Зависимость $U_1 = f(I_p)$.

$I_p = 5.0 \text{ MA}$		$I_p = 3.0 \text{ мA}$			1.5 мА
U_2 , B	I_2 , мк A		I_2 , мк A	U_2 , B	I_2 , мк A
25	102	-25	-65.42	25	39.27
22	106	-22	-64.26	22	37.92
19	104.4	-19	-62.38	19	36.62
16	99.7	-16	-59.58	16	35.18
13	90.4	-13	-55.88	13	33.18
10	77	-10	-46.63	10	29.53
8	65.2	-8	-39.23	8	26.28
6	51.5	-6	-29.8	6	21.91
4	34.5	-4	-18.4	4	16.01
2	16	-2	-6.29	2	9.32
0	0	0	0	0	0
-2	-3.88	2	14.81	-2	-4.94
-4	-22.2	4	27.08	-4	-11.55
-6	-39.75	6	38.18	-6	-17.1
-8	-54.63	8	47.57	-8	-21.5
-10	-66.44	10	54.94	-10	-24.67
-13	-79.83	13	63.07	-13	-27.95
-16	-89	16	68.06	-16	-29.75
-19	-93.12	19	71.08	-19	-30.97
-22	-95.55	22	73.16	-22	-32.1
-25	-90.28	25	74.42	-25	-33.2

Таблица 2: Зависимость $I_2 = f(U_2)$.