Fluids Lab 3 - Individual Calculations (12" Wind Tunnel)

Kieran Cosgrove

Pressure Distribution Graphs

Pressure Distribution 10 m/s 20 m/s Pressure (Pa) Angle (degrees)

Static pressure voltage measurements along the surface of the cylinder at different angles are converted to pascals using above linear fit, and then plotted against angle.

Pressure Coefficient Sample Calculation

 $C_{_{p}} = \text{(surface pressure - upstream static pressure) / (upstream dynamic pressure)} \\ C_{_{p}} @ 0^{\circ} - 20 \text{ m/s} = (-174.188 \text{ Pa} + 408.098 \text{ Pa}) / 233.91 \text{ Pa} \\ C_{_{p}} = 1 \\ C_{_{p}} @ 90^{\circ} - 20 \text{ m/s} = (-701.7288 \text{ Pa} + 408.098 \text{ Pa}) / 233.91 \text{ Pa} \\ C_{_{p}} = -1.255 \\ C_{_{$

Pressure Distribution

Pressure coefficient determined using the same formula in sample calculation along the surface of the cylinder at different angles and plotted against angle.

Pressure Distribution Sample Integration

Using the integral pictured below with trapezoidal numerical integration as in the spreadsheets below and attached, the drag force was found to be 0.415 N and 1.763 N for 10 m/s and 20 m/s flow speeds, respectively. 'L' and 'D' were converted to metric, the average of P*cos(theta) between two positions was used to determine the average height for the numerical integration, times the step size which is the change in theta in degrees. The pressure used was the absolute pressure, which was the absolute pressure of 100.5 kPa minus the gauge pressure.

$$F_D = \int dF_x = \frac{2\pi D}{360} L \int_0^{180} P \cos\theta \, d\theta$$

Theta		pressure	
(degrees)		absolute (Pa)	10 m/s step force
0	61.11763373	100438.88237	150.968866167417
15	70.47666902	100429.52333	140.651091221238
30	103.2332925	100396.76671	120.733467796946
45	147.5655649	100352.43444	92.6024495814621
60	189.0408687	100310.95913	58.1974005962013
75	199.040259	100300.95974	19.850201461799
90	187.5056585	100312.49434	-19.8514686925248
105	186.2331581	100313.76684	-58.2017160978013
120	186.9720293	100313.02797	-92.5858251357138
135	185.6584805	100314.34152	-120.658211639407
150	190.2723207	100309.72768	-140.508572229661
165	186.9309809	100313.06902	-150.782987714277
180	191.9799341	100308.02007	
		Force (N):	0.414695315679921

Theta	20 m		
(degrees)	gauge (Pa)	absolute (Pa)	20 m/s step force
0	170.6676047	100329.3323953	150.78441303944
15	206.3468743	100293.6531257	140.39024160448
30	339.8128161	100160.1871839	120.36449439126
45	524.4954334	99975.5045666	92.199708906907
60	684.8234484	99815.1765516	57.899359480796
75	730.6334633	99769.3665367	19.747533840024
90	693.50929	99806.49071	-19.752445983746
105	680.9895279	99819.0104721	-57.914218429157
120	683.2471899	99816.7528101	-92.119673858761
135	699.5023564	99800.4976436	-120.04089587649
150	702.8683253	99797.1316747	-139.78957780295
165	700.9390504	99799.0609496	-150.006376739
180	711.2750377	99788.7249623	
		Force (N):	1.7625625727921

Pressure Coefficient Sample Calculation

 $C_{\rm D} = ({\rm drag~force}) \ / \ (({\rm dynamic~pressure}) \ * \ ({\rm area}))$ ${\rm area} = {\rm length} \ * \ {\rm diameter~of~cylinder}$ $C_{\rm D} \ @ \ 20 \ m/s = 1.763 \ N \ / \ (229.827 \ {\rm Pa} \ * \ 0.3048 \ m \ * \ 0.019 \ m)$ $C_{\rm D} = \textbf{1.325}$ $C_{\rm D} \ @ \ 10 \ m/s = 0.415 \ N \ / \ (56.438 \ {\rm Pa} \ * \ 0.3048 \ m \ * \ 0.019 \ m)$ $C_{\rm D} = \textbf{1.270}$

Control Volume Graphs

Measured dynamic pressure voltages upstream and downstream of the cylinder are taken, averaged, and converted to pressures using the earlier linear fit. These pressures are then converted into velocities using the dynamic pressure equation given by:

$$\frac{1}{2}\rho U^2$$

These velocities were then graphed against their position vertically upstream and downstream of the cylinder.

<u>Upstream Velocity Sample Calculation</u>

Given $P_{dyn} = 255.5 \text{ Pa}$ $P_{dyn} = \frac{1}{2} * (density) * (velocity)^2$ $255.5 \text{ Pa} = \frac{1}{2} * (1.225 \text{ kg/m}^3) * (velocity)^2$ Velocity = 20.42 m/s

Velocity Profiles

The negative gauge pressure (converted from a voltage using the linear fit) is then also mapped against the vertical position upstream and downstream of the cylinder.

Control Volume Integration

Positions and widths were converted to the metric system, velocity comes from velocities found for velocity profile graph. Absolute pressures are used in force from pressure integration, which is found from atmospheric pressure of 100.5 kPa minus gauge pressure. Force from pressure is found from the following:

$$\int_{y_{2,bot}}^{y_{2,top}} p_{0,2} w dy$$

Where 'p' was the average pressure between two positions, 'w' was the width, and 'dy' was the difference in height between two positions. The momentum flow integration was found from the following:

$$\int_{y_{2,bot}}^{y_{2,top}} \rho v_2^2 w dy$$

Where 'p' is the density of air, 'v^2' is the average squared velocity between two positions, 'w' was the width, and 'dy' was the difference in height between two positions. The last two positions were excluded from the control volume analysis due to the drag of the wind tunnel seen in the calculated velocities of 15.66 and 2.76 m/s at these positions.

		upstrear	n CV					
						absolute	momentum flow in	pressure force
position (m) width (m)	velocity	(m/s)	gauge pr	essure (Pa)	pressure (Pa)		(kg*m/s^2)
0.025	0.304		38224		030008254117	100078.97	3.9075348599815	774.80401495
0.050	0.304	20.24	703075	420.	865814652602	100079.134	3.8535099765654	774.81354875
0.076	0.304	18 20.0674	494416	418.	567104231395	100081.433	3.7651634025083	774.84691706
0.101		8 19.781			245650573077		3.6628339174495	
0.12		8 19.5224			.17048731703		3.6100802077607	
0.152		8 19.4983			103228907184		3.6291478136723	
0.177		8 19.625			976616933693		3.6920709131806	
0.203		19.835			850004960201		3.7480025571879	
0.228			337325		260488963988		ignore b/c drag from	
0.25		8 19.940			342585764746		ignore b/c drag from	tunnel
0.279	0.304	17.224	464521	346.	732403568684			
						Force (N):	29.868343648306	6198.971415
	downstream (V						
					gauge	absolute	momentum flow	pressure force
sition (in)	position (m)	width (m)	velocity	v (m/s)	pressure (Pa)			· ·
1	0.0254			5371916			81 4.1616107087	
2	0.0508			0184345			76 4.1368228210	
3	0.0762			0391816		100062.489		04 774.64694554
4	0.1016			3493506		100055.038		21 387.29851804
4.5	0.1143			1492537		100033.030		03 387.27523967
5	0.127			2844621		100043.011		44 193.62965911
5.25	0.13335			7334936		100043.011		81 193.62826081
5.5	0.1333			5880544		100041.566		51 193.62706909
5.75	0.1397			0732077	459.861795		82 0.7271576638	
5.75	0.14603	0.3048		8520801	457.522036		96 0.8145111334	
6.25	0.1524			3593263			78 0.8794601660	
6.5	0.13673			3393263 1284437			61 0.9463159592	
6.75	0.1031			5703053			37 0.9830211006	
7	0.1778			8071253			26 2.0023898250	
7.5	0.1905			7945954			31 2.0598786568	
8	0.2032			6244479			15 4.1577018495	
9	0.2286	0.3048		20.96962			91 ignore b/c drag	
10	0.254	0.3048		5712274			89 ignore b/c drag	from tunnel
11	0.2794	0.3048	2.756	9752763	346.445065	100153.554		
						Force (N): 30.520904653	71 6196.9811502

Control Volume Sample Drag Calculation

$$\frac{\partial}{\partial t} \int_{CV} V \rho dV' + \int_{CS} V \rho V \bar{n} dA = \sum \vec{F}$$

CV integral is 0 because system is steady state - assuming no body forces & inviscid flow

$$F_{D} = \left[\int_{y_{1,bot}}^{y_{1,top}} \rho v_{1}^{2} w dy - \int_{y_{2,bot}}^{y_{2,top}} \rho v_{2}^{2} w dy \right] + \left[\int_{y_{1,bot}}^{y_{1,top}} p_{0,1} w dy - \int_{y_{2,bot}}^{y_{2,top}} p_{0,2} w dy \right]$$

Using the same C_D function as defined above, yields the following for the CV:

$$C_D = 1.005$$

Which, when compared against the given C_D vs Reynolds' number graph, is almost exactly what should be expected for Reynolds' number for 20 m/s of 5 * 10^5 .

Python Plotting & Calculation Code:

```
import numpy as np
import matplotlib.pyplot as plt
import json
import csv
from math import cos, pi, radians, sqrt

def main():
    global density
    density = 1.225 # air density

    global lab_data
    lab_data = json.load(open("lab_data.json","r+"))

    global voltage_to_pressure_func
    voltage_to_pressure_func = step_1(plot = True)

# surface pressure analysis
```

```
slow_pressure_list, fast_pressure_list = step_2(plot = True)
   step_3(slow_pressure_list, fast_pressure_list, plot = True)
  slow_drag, fast_drag = 0.415, 1.763 # get values from spreadsheet
  # control volume analysis
  slow_cd = cd(slow_drag, "slow_speed")
  fast_cd = cd(fast_drag, "fast_speed")
  print(slow_cd, fast_cd)
  up_v, down_v = step_4(plot = True)
  up_p, down_p = step_5(plot = True)
  # up_v, up_p, down_v, and down_p to be used in spreadsheet to integrate
  cv_drag = 1.3377 # get values from spreadsheet
  cv_fast_cd = cd(cv_drag, "fast_speed")
  print(cv_fast_cd)
# linear fit of calibration data
def step_1(plot = False):
  # converts inH20 to pascals
  inH20_to_Pa = lambda pressure_list: [x * 248.84 for x in pressure_list]
  y = inH20_to_Pa(lab_data.get("manometer").get("manometer_height"))
  x = lab_data.get("manometer").get("voltage_readout")
  voltage_to_pressure_func = np.poly1d(np.polyfit(x, y, 1))
  if plot:
      plt.plot(x,y, 'yo', x, voltage_to_pressure_func(x), '--k')
      plt.ylabel("Pressure Reading (Pa)")
      plt.xlabel("Voltage Reading (V)")
      plt.show()
  return voltage_to_pressure_func
# show pressure distribution around cylinder for 2 different velocities
def step_2(plot = False):
  slow_volt = lab_data.get("slow_speed_voltage")
   fast_volt = lab_data.get("fast_speed_voltage")
```

```
slow_speed_data = [voltage_to_pressure_func(avg(lst)) for lst in
slow_volt]
   fast_speed_data = [voltage_to_pressure_func(avg(lst)) for lst in
fast_volt]
   theta = [i for i in range(0,190,15)]
  if plot:
      plt.plot(theta, slow_speed_data)
       plt.plot(theta, fast_speed_data)
      plt.ylabel("Pressure (Pa)")
      plt.xlabel("Angle (degrees)")
      plt.legend(["10 m/s", "20 m/s"])
       plt.title("Pressure Distribution")
       plt.show()
  return slow_speed_data, fast_speed_data
# show Cp distribution around cylinder for 2 different velocities
def step_3(slow_pressure_list, fast_pressure_list, plot = False):
  up_p = lab_data.get("upstream_pressures")
  def cp(data, speed):
       # Cp = (surface pressure - upstream static pressure) / (upstream
dynamic pressure)
       up_dyn_p =
voltage_to_pressure_func(up_p.get(speed).get("voltage_dyn"))
       up_stat_p =
voltage_to_pressure_func(up_p.get(speed).get("voltage_stat"))
       return (-data + up_stat_p) / up_dyn_p
  slow cp data = [cp(x, "slow speed") for x in slow pressure list]
  fast\_cp\_data = [cp(x, "fast\_speed") for x in fast\_pressure\_list]
  theta = [i for i in range(0,190,15)]
  if plot:
      plt.plot(theta, slow_cp_data)
       plt.plot(theta, fast_cp_data)
       plt.ylabel("Cp")
       plt.xlabel("Angle (degrees)")
       plt.legend(["10 m/s", "20 m/s"])
       plt.title("Pressure Distribution")
```

```
plt.show()
# find velocity profiles up & downstream and plot them against position
def step_4(plot = False):
  # p = 1/2 * density * velocity ^ 2 (pressure to velocity func)
   p_to_vel = lambda pressure : sqrt(pressure * 2 / density)
   up_voltages = [avg(data) for data in
lab_data.get("upstream_cv").get("p_dyn")]
   down_voltages = [avg(data) for data in
lab_data.get("downstream_cv").get("p_dyn")]
   up_velocities = [p_to_vel(voltage_to_pressure_func(volt)) for volt in
up_voltages]
   down_velocities = [p_to_vel(voltage_to_pressure_func(volt)) for volt in
down_voltages]
   if plot:
       plt.plot(lab_data.get("upstream_cv").get("positions"),
up_velocities)
       plt.plot(lab_data.get("downstream_cv").get("positions"),
down_velocities)
       plt.ylabel("Velocity (m/s)")
       plt.xlabel("Position (in)")
       plt.legend(["Upstream", "Downstream"])
       plt.title("Velocity Profiles")
       plt.show()
   return up_velocities, down_velocities
# plot position against static pressure
def step_5(plot = False):
   up_voltages = [avg(data) for data in
lab_data.get("upstream_cv").get("p_static")]
   down_voltages = [avg(data) for data in
lab_data.get("downstream_cv").get("p_static")]
   up_pressures = [voltage_to_pressure_func(volt) for volt in up_voltages]
   down_pressures = [voltage_to_pressure_func(volt) for volt in
down_voltages]
   if plot:
```

```
plt.plot(lab_data.get("upstream_cv").get("positions"),
up_pressures)
       plt.plot(lab_data.get("downstream_cv").get("positions"),
down_pressures)
       plt.ylabel("Pressure (Pa)")
       plt.xlabel("Position (in)")
       plt.legend(["Upstream", "Downstream"])
       plt.title("Static Pressure Profiles")
       plt.show()
   return up_pressures, down_pressures
# # # helper functions # # #
# Cd = drag/(dynamic_pressure * Area)
def cd(drag, speed):
   dynamic_voltage =
lab_data.get("upstream_pressures").get(speed).get("voltage_dyn")
   area = lab_data.get("cylinder_data").get("length") *
lab_data.get("cylinder_data").get("diameter")
   return drag / (voltage_to_pressure_func(dynamic_voltage) * area)
avg = lambda a_list: sum(a_list)/len(a_list)
if ___name___ == "___main___":
   main()
```

Data JSON File:

```
{
    "manometer":
    {
        "manometer_height":[0,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0],

"voltage_readout":[-0.03,0.485,0.988,1.710,2.012,2.502,3.018,3.525,4.046,4
.550,5.054]
    },
    "slow_speed_voltage":
    [
```

```
[0.255, 0.254, 0.256],
    [0.293, 0.294, 0.292],
    [0.426],
    [0.610, 0.607, 0.610, 0.600, 0.603],
    [0.782, 0.770, 0.775, 0.771, 0.774],
    [0.811, 0.802, 0.832, 0.811, 0.814, 0.820],
    [0.772, 0.762, 0.763, 0.781, 0.765, 0.766],
    [0.772, 0.750, 0.774, 0.768, 0.762, 0.748, 0.767],
    [0.779, 0.775, 0.769, 0.754, 0.753],
    [0.763, 0.757, 0.768, 0.758, 0.766, 0.752],
    [0.784, 0.787, 0.763, 0.793, 0.770],
    [0.767, 0.751, 0.780, 0.750, 0.775, 0.772],
    [0.879, 0.757, 0.751, 0.767, 0.781, 0.783]
],
"fast_speed_voltage":
[0.702, 0.699, 0.701, 0.700, 0.697],
    [0.844, 0.847, 0.843, 0.841, 0.848, 0.845],
    [1.389, 1.382, 1.385, 1.380, 1.390, 1.385, 1.395],
    [2.133, 2.135, 2.141, 2.133, 2.154, 2.129, 2.130],
    [2.785, 2.763, 2.805, 2.799, 2.785],
    [2.957, 2.983, 2.976, 2.953, 2.998],
    [2.810, 2.816, 2.848, 2.803, 2.789, 2.870],
    [2.805, 2.781, 2.756, 2.784, 2.771, 2.734],
    [2.774, 2.813, 2.754, 2.764, 2.800],
    [2.868, 2.837, 2.832, 2.861, 2.823, 2.861],
    [2.947, 2.784, 2.893, 2.897, 2.848, 2.795],
    [2.862, 2.884, 2.902, 2.803, 2.903, 2.763],
    [2.918, 2.913, 2.832, 2.922, 2.889]
"upstream_pressures":
{
    "slow_speed":
        "voltage_dyn":0.236,
        "voltage_stat":0.492
    },
    "fast_speed":
```

```
"voltage_dyn":0.940,
        "voltage_stat":1.640
   }
},
"cylinder_data":
    "length":0.3048,
    "diameter": 0.019,
    "note":"IN METERS"
},
"upstream_cv":
{
    "positions": [1,2,3,4,5,6,7,8,9,10,11],
    "p_static":
        [1.719, 1.717, 1.713],
        [1.713, 1.720, 1.714],
        [1.711, 1.709, 1.699],
        [1.680, 1.684, 1.678],
        [1.657, 1.654, 1.657],
        [1.654, 1.653, 1.648],
        [1.663, 1.662, 1.665],
        [1.675, 1.675, 1.675],
        [1.675, 1.677, 1.678],
        [1.676, 1.677, 1.678],
        [1.419, 1.412, 1.413]
   ],
    "p_dyn":
        [1.035, 1.038, 1.037],
        [1.026, 1.027, 1.026],
        [1.012, 1.004, 1.009],
        [0.980, 0.978, 0.982],
        [0.958, 0.954, 0.952],
        [0.952, 0.953, 0.952],
        [0.963, 0.965, 0.966],
        [0.983, 0.985, 0.988],
        [0.994, 0.995, 0.993],
        [0.997, 0.996, 0.994],
        [0.745, 0.742, 0.747]
```

```
},
  "downstream_cv":
  {
"positions":[1,2,3,4,4.5,5,5.25,5.5,5.75,6,6.25,6.5,6.75,7,7.5,8,9,10,11],
      "p_static":
      [
          [1.774, 1.780, 1.773, 1.775],
          [1.779, 1.776, 1.772],
          [1.781, 1.787, 1.781, 1.784],
          [1.806, 1.824, 1.810, 1.814],
          [1.832, 1.847, 1.831, 1.828, 1.840],
          [1.858, 1.870, 1.860, 1.856, 1.868, 1.862],
          [1.889, 1.864, 1.866, 1.867, 1.859],
          [1.866, 1.855, 1.863, 1.882, 1.875],
          [1.873, 1.869, 1.883, 1.871],
          [1.861, 1.870, 1.860, 1.854, 1.876, 1.866],
          [1.853, 1.846, 1.849, 1.864, 1.869, 1.868],
          [1.836, 1.843, 1.841, 1.833, 1.841, 1.835],
          [1.824, 1.829, 1.828, 1.831, 1.816, 1.831],
          [1.818, 1.821, 1.822, 1.816],
          [1.796, 1.803, 1.794, 1.801, 1.807, 1.807],
          [1.782, 1.793, 1.790, 1.786, 1.793],
          [1.785, 1.781, 1.786, 1.783],
          [1.802, 1.804, 1.811, 1.812, 1.809],
          [1.417, 1.416, 1.408, 1.413]
      ],
      "p_dyn":
      Γ
          [1.099, 1.102, 1.103, 1.100],
          [1.098, 1.096, 1.094, 1.093],
          [1.092, 1.091, 1.082, 1.087],
          [1.037, 1.024, 1.039, 1.017, 1.028],
          [0.962, 0.942, 0.974, 0.962, 0.929, 0.941],
          [0.840, 0.879, 0.807, 0.893, 0.826, 0.756, 0.864, 0.840],
          [0.690, 0.770, 0.731, 0.673, 0.789, 0.707, 0.733, 0.730],
          [0.679, 0.652, 0.708, 0.680, 0.704, 0.639, 0.666, 0.780],
          [0.651, 0.722, 0.785, 0.747, 0.686, 0.674, 0.836, 0.650],
          [0.753, 0.808, 0.793, 0.884, 0.835, 0.784, 0.812, 0.893],
```

```
[0.913, 0.845, 0.919, 0.942, 0.902, 0.874, 0.936, 0.886],
[0.960, 0.938, 0.974, 0.969, 0.953, 0.941, 0.907, 1.010],
[0.998, 1.032, 0.982, 0.997, 1.306, 1.001, 1.022, 1.001],
[1.026, 1.021, 1.038, 1.041, 1.035, 1.040],
[1.081, 1.069, 1.083, 1.077, 1.082, 1.091],
[1.097, 1.089, 1.095, 1.097, 1.091],
[1.095, 1.104, 1.102, 1.103, 1.098],
[0.634, 0.613, 0.615, 0.604],
[0.022, 0.043, 0.025, 0.013]
]
}
```