

Probability and Stochastic Processes

Lecture 04: Probability Basics (Sample Space, Algebra, σ -Algebra)

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

08 August 2025

Sample Space

We begin with two universally accepted entities:

- Random experiment
- Outcome (denoted by ω) source of randomness

Definition (Sample Space)

The sample space (denoted by Ω) of a random experiment is the set of all possible outcomes of the random experiment.

Example: Tossing a coin once

- If our interest is in the face that shows, then $\Omega = \{H, T\}$
- If our interest is in the velocity with which the coin lands on ground, then $\Omega=[0,\infty)=\mathbb{R}_+$
- If our interest is in the number of times coin flips in air, then $\Omega = \mathbb{N}$

Example: Toss a coin n times, for some finite n

Interest: faces that show up

$$\Omega = \{H, T\}^n$$

Example: Toss a coin countably infinitely many times

Interest: faces that show up

$$\Omega = \{H, T\}^{\mathbb{N}}$$

Remark

Often times, we are not interested in a particular outcome $\omega \in \Omega$ occurred or not. We are often interested in whether a **subset** of outcomes occurred or not.

• For $\Omega = \{H, T\}^{10}$, we may be interested in "Did we get > 5 heads"?

Event

Informal Definition (Event)

Informally,^a an event is a subset of outcomes "of interest" to us.

^aWe shall give a more formal definition of an event later.

Example: Toss a coin 3 times; interest is in the faces that show up $\Omega = \{H, T\}^3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

Event A of interest: at least 2 heads show up

 $A = \{HHH, THH, HTH, HHT\}$

Note

If an outcome $\omega \in A$ occurs, we say that the event A occurs.

Algebra

Definition (Algebra)

Let Ω be a sample space.

A collection \mathscr{A} of subsets of Ω is called an algebra if it satisfies the following properties:

- 1. $\Omega \in \mathscr{A}$.
- 2. $A \in \mathscr{A} \implies A^{\complement} \in \mathscr{A}$ (closure under complements).
- 3. $A_1, A_2 \in \mathscr{A} \implies A_1 \cup A_2 \in \mathscr{A}$.

Note: An algebra is a collection of all events of interest to us.

Note:

$$A_1,\ldots,A_n\in\mathscr{A} \implies igcup_{i=1}^n A_i\in\mathscr{A} \quad ext{for all } n\in\mathbb{N} \quad ext{(closure under finite unions)},$$
 $A_1,\ldots,A_n\in\mathscr{A} \implies igcap_i A_i\in\mathscr{A} \quad ext{for all } n\in\mathbb{N} \quad ext{(closure under finite intersections)}.$

Examples of Algebra

- Given a sample space Ω , the smallest algebra is $\mathscr{A}_{\mathrm{smallest}} = \{\emptyset, \Omega\}$
- Given a sample space Ω , the largest algebra is $\mathscr{A}_{\mathrm{largest}} = 2^{\Omega}$
- For $\Omega = \{1, \dots, 6\}$, complete the following collection to make it an algebra:

$$\mathscr{A} = \bigg\{\emptyset, \Omega, \{1,2\}, \{3,4\}, \bigg\}$$

- Consider the experiment of tossing a coin till first head is observed
 - $-\Omega = \{H, TH, TTH, TTTH, \cdots\}$
 - Let $\mathscr{C} = \left\{\emptyset, \Omega, \{H\}, \{TH\}, \{TTH\}, \{TTTH\}, \dots\right\} = \left\{\emptyset, \Omega, \text{ all singleton subsets of } \Omega\right\}.$
 - Is \mathscr{C} an algebra? No!
 - Can we convert \mathscr{C} to an algebra by including more subsets of Ω ? Yes!
 - Let $\alpha(\mathscr{C})$ denote the smallest algebra constructed starting from \mathscr{C}

Does Algebra Suffice?

• Consider the experiment of tossing a coin till first head is observed

$$\begin{split} &- \ \Omega = \{\textit{H}, \textit{TH}, \textit{TTH}, \textit{TTTH}, \cdots \} \\ &- \ \mathscr{C} = \left\{\emptyset, \Omega, \{\textit{H}\}, \{\textit{TH}\}, \{\textit{TTH}\}, \{\textit{TTTH}\}, \cdots \right\} \\ &- \ \text{Let} \ \mathscr{A} = \alpha(\mathscr{C}) \end{split}$$

Consider the event

$$A^* = \{ \# \text{ of tosses is even} \} = \{ TH, TTTH, TTTTTH, \cdots \}$$

• Does $A^* \in \mathcal{A}$? No!

What went wrong?

 A^* cannot be expressed as a union of finite number of elements of $\mathscr{C}!$

σ -Algebra

Definition (σ -Algebra)

Let Ω be a sample space.

A collection \mathscr{F} of subsets of Ω is called a σ -algebra if it satisfies the following properties:

- $\Omega \in \mathscr{F}$.
- $A \in \mathscr{F} \implies A^{\complement} \in \mathscr{F}$ (closed under complements).
- $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathscr{F}$ (closure under countably infinite unions).

Remark: The symbol σ in σ -algebra connotes countably infinite unions.

Remarks:

- Elements of a σ -algebra are called events
- An event $A \in \mathscr{F}$ is also referred to as an \mathscr{F} -measurable set
- The pair (Ω, \mathscr{F}) is called a measurable space

Examples of σ -Algebra

- Given a sample space Ω , the smallest σ -algebra is $\mathscr{F}_{\mathrm{smallest}} = \{\emptyset, \Omega\}$
- Given a sample space Ω , the largest σ -algebra is $\mathscr{F}_{\mathrm{largest}} = 2^{\Omega}$
- For $\Omega = \{1, \dots, 6\}$, complete the following collection to make it a σ -algebra:

$$\mathscr{F}=\left\{\emptyset,\Omega,\{1,2\},\{3,4\},
ight.$$

- Consider the experiment of tossing a coin till first head is observed
 - $\Omega = \{H, TH, TTH, TTTH, \cdots\}$
 - $\mathscr{C} = \left\{ \emptyset, \Omega, \{H\}, \{TH\}, \{TTH\}, \{TTTH\}, \dots \right\} = \left\{ \emptyset, \Omega, \text{ all singleton subsets of } \Omega \right\}.$
 - Is \mathscr{C} a σ -algebra? No!
 - Can we convert \mathscr{C} to a σ -algebra by including more subsets of Ω ? Yes!
 - Let $\sigma(\mathscr{C})$ denote the smallest σ -algebra constructed starting from \mathscr{C}

Algebra vs σ -Algebra

- Consider the experiment of tossing a coin till first head is observed
 - $$\begin{split} & \ \Omega = \{\textit{H}, \textit{TH}, \textit{TTH}, \textit{TTTH}, \cdots \} \\ & \ \mathscr{C} = \left\{\emptyset, \Omega, \{\textit{H}\}, \{\textit{TH}\}, \{\textit{TTH}\}, \{\textit{TTTH}\}, \cdots \right\} \\ & \ \text{Let} \ \mathscr{A} = \alpha(\mathscr{C}) \\ & \ \text{Let} \ \mathscr{F} = \sigma(\mathscr{C}) \end{split}$$

Observe the Following Properties

- $A^* = \{TH, TTTH, TTTTTH, \cdots\} \notin \mathscr{A}, \qquad A^* = \{TH, TTTH, TTTTTH, \cdots\} \in \mathscr{F}$
- $\mathscr{A}\subseteq\mathscr{F}$, i.e., a σ -algebra is a larger collection than its precursor algebra
- A σ -algebra satisfies all the properties of an algebra, but an algebra may not satisfy the properties of a σ -algebra