Pregunta 1 (2,5 puntos)

Sea A un conjunto y $f\colon A\longrightarrow A$ una aplicación. Se define f^n para todo $n\in\mathbb{N}$ mediante

$$\begin{cases} f^0 &= I_A \text{ (aplicación identidad en A)} \\ f^{n+1} &= f^n \circ f \end{cases}$$

Demuestre por inducción sobre n lo siguiente:

- a) $f^{n+1} = f \circ f^n$ para todo $n \in \mathbb{N}$;
- b) si f es biyectiva entonces $(f^{-1})^n = (f^n)^{-1}$ para todo $n \in \mathbb{N}$.

Pregunta 2 (2,5 puntos)

Se dice que el orden de un conjunto ordenado (U, \preceq) es denso (o divisible) si para todo $a, b \in U$ tales que $a \prec b$ existe $c \in U$ tal que $a \prec c \prec b$. Sean (U, \preceq) y (V, \preccurlyeq) dos conjuntos ordenados tales que existe una aplicación biyectiva $f: U \to V$ cumpliendo que para todo $a, b \in U$, $a \preceq b$ si y sólo si $f(a) \preccurlyeq f(b)$.

- a) Demuestre que el orden de U es denso si y sólo si es denso el orden de V.
- b) Deduzca de lo anterior si existe una aplicación biyectiva $f: \mathbb{Z} \to \mathbb{Q}$ cumpliendo que para todo $a, b \in \mathbb{Z}$ si $a \leq b$ entonces $f(a) \leq f(b)$.

Pregunta 3 (2,5 puntos) Sea $(A, +, \cdot)$ un anillo conmutativo unitario. Dados H y P dos subconjuntos no vacíos de A, se considera la suma H + P y el producto $H \cdot P$ definidos por:

$$H + P = \{a + b \mid a \in H \ y \ b \in P\}$$

$$H \cdot P = \{a_1b_1 + a_2b_2 + \dots + a_nb_n \mid a_i \in H, b_i \in P, i = 1, 2\dots, n \text{ y } n \in \mathbb{N}^*\}.$$

Sean I y J dos ideales de A.

- a) Demuestre: i) $I \cdot J \subset I \cap J$; ii) $(I + J) \cdot (I \cap J) \subset (I \cdot J)$.
- b) Demuestre que si A = I + J entonces $I \cdot J = I \cap J$.

Pregunta 4(2,5 puntos)

Sea en \mathbb{C} la ecuación $(z-1)^n-(z+1)^n=0$ siendo $n\in\mathbb{N}^*$.

- a) Demuestre que si $\omega \in \mathbb{C}$ es solución de la ecuación si y sólo si es solución de dicha ecuación el opuesto de $\omega, -\omega$
- b) Resuelva la ecuación.