32768-word × 8-bit High Speed CMOS Static RAM

Features

- High speed: Fast access time 85/100/120/150 ns (max)
- · Low power standby and low power operation
 - Standby: 200 μW (typ)/ 10 μW (typ)(L-/L-SL-version)
 - Operation: 40 mW (typ) (f = 1 MHz)
- · Single 5 V supply
- Completely static RAM: No clock or timing strobe required
- · Equal access and cycle time
- Common data input and output, three-state output
- · Directly TTL compatible-all inputs and outputs
- Battery back up operation capability (L-/L-SL-version)

Ordering Information

Туре No.	Access time	Package
HM62256P-8	85 ns	600-mil 28-pin
HM62256P-10	100 ns	─plastic DIP (DP-28)
HM62256P-12	120 ns	
HM62256P-15	150 ns	
HM62256LP-8	85 ns	_
HM62256LP-10	100 ns	_
HM62256LP-12	120 ns	
HM62256LP-15	150 ns	
HM62256LP-10SL	100 ns	
HM62256LP-12SL	120 ns	
HM62256LP-15SL	150 ns	_

Access time	Package
85 ns	28-pin plastic
100 ns	SOP (FP-28DA)
120 ns	
150 ns	
85 ns	_
100 ns	
120 ns	_
150 ns	_
100 ns	_
120 ns	
150 ns	_
	85 ns 100 ns 120 ns 150 ns 85 ns 100 ns 150 ns 100 ns 120 ns 120 ns 150 ns

Pin Arrangement

Note: This device is not available for new application.

4496203 0024947 126 HITACHI

Block Diagram

Truth Table

CS	ŌĒ	WE	Mode	V _{CC} current	I/O pin	Reference cycle
Н	x	x	Not selected	I _{SB} , I _{SB1}	High Z	
L	L	н	Read	Icc	Dout	Read cycle No. 1–3
L	н	L	Write	Icc	Din	Write cycle No. 1
L	L	L	Write	lcc	Din	Write cycle No. 2

Note: x means H or L

5-14

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Voltage on any pin relative to V _{SS}	V _T	-0.5 to +7.0	V	
Power dissipation	P _T	1.0	w	
Operating temperature	T _{opr}	0 to +70	°C	
Storage temperature	T _{stg}	-55 to +125	°C	
Temperature under bias	T _{bias}	-10 to +85	℃	

Note: -3.0 V min for pulse width ≤ 50 ns

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	
Supply voltage	V _{cc}	4.5	5.0	5.5	V	
	V _{SS}	0	0	0	V	
Input voltage	V _{IH}	2.2		6.0	٧	
	V _{IL}	- 0.5*	_	0.8	V	

Note: -3.0 V min for pulse width ≤ 50 ns

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Paramete	r	Symbo	l Min	Typ *1	Max	Unit	Test condition
Input leakage current Output leakage current			_	_	2	μА	V _{IN} = V _{SS to} V _{CC}
		I _{LO}	_	_	2	μА	$CS = V_{IH}$ or $\overline{OE} = V_{IH}$ or $\overline{WE} = V_{IL}$ $V_{I/O} = V_{SS}$ to V_{CC}
Operating supply cur		Icc	_	8	15	mA	CS = V _{IL} , I _{I/O} = 0 mA
Average	HM62256-8	l _{CC1}	_	50	70	mA	Min. cycle, duty = 100%,
operating power	HM62256-10		_	40	70	mA	$\overline{CS} = V_{IL}, I_{I/O} = 0 \text{ mA}$
supply current	HM62256-12	_	_	35	70	mA	
	HM62256-15	_	_	33	70	mA	
		I _{CC2}		8	15	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{ VIH} = \text{V}_{\text{CC}}, \text{V}_{\text{IL}} = \text{0V},$ $\text{I}_{\text{I/O}} = \text{0 mA } f = \text{1 MHz}$

4496203 0024949 TT9 HITACHI

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$) (cont)

Parameter	Symb	ol Min	Typ *1	Max	Unit	Test condition	
Standby power supply current	I _{SB}	_	0.5	3	mA	CS = V _{IH}	
	I _{SB1}	_	0.04	2	mA	<u>CS</u> ≥ V _{CC} – 0.2V, 0V ≤ V _{IN}	
		— 2 ^{,5}		100*2	μА		
		_	2*3	50 ^{*3}			
Output voltage	V _{OL}			0.4	V	I _{OL} = 2.1 mA	
	V _{OH}	2.4	_		٧	I _{OH} = -1.0 mA	

Notes: 1. Typical values are at V_{CC} = 5.0 V, Ta = 25°C and specified loading.

2. These characterisitcs are guaranteed only for L-version.

3. These characterisitcs are guaranteed only for L-SL version.

Capacitance ($Ta = 25^{\circ}C$, f = 1 MHz)

Parameter	Symbol	Тур	Max	Max Unit Test Condition 6 pF V _{IN} = 0 V 8 pF V _{I/O} = 0 V	Test Condition
Input capacitance	C _{IN}	_	6	pF	V _{IN} = 0 V
Input/output capacitance	C _{I/O}		8	рF	V _{I/O} = 0 V

Note: These parameters are sampled and not 100% tested.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, Ta = 0 to +70°C unless otherwise noted)

AC Test Conditions:

• Input pulse levels: 0.8 V to 2.4 V

• Input and output timing reference levels: 1.5 V

· Input rise and fall times: 5 ns

• Output load: 1TTL gate and $C_L = 100 \text{ pF}$ (including scope and jig)

Read Cycle

HM62256-8 HM62256-10 HM62256-12 HM62256-15

Symbol	Min	Max	·Min	Max	Min	Max	Min	Max	Unit
t _{RC}	85	_	100		120		150	_	ns
t _{AA}	_	85		100		120		150	ns
t _{ACS}	_	85	_	100	_	120	_	150	ns
t _{OE}	_	45	_	50		60	_	70	ns
t _{OH}	5	_	10		10		10	_	ns
tclz	10	_	10	_	10	_	10	_	ns
tolz	5		5		5	_	5	_	ns
^t cHZ	0	30	0	35	0	40	0	50	ns
tонz	0	30	0	35	0	40	0	50	ns
	tacs tacs toe toh tclz tolz	t _{AA} — t _{ACS} — t _{OE} — t _{OH} 5 t _{CLZ} 10 t _{OLZ} 5 t _{CHZ} 0	t _{RC} 85 — t _{AA} — 85 t _{ACS} — 85 t _{OE} — 45 t _{OH} 5 — t _{CLZ} 10 — t _{CLZ} 5 — t _{CHZ} 0 30	t _{RC} 85 — 100 t _{AA} — 85 — t _{ACS} — 85 — t _{OE} — 45 — t _{OH} 5 — 10 t _{CLZ} 10 — 10 t _{OLZ} 5 — 5 t _{CHZ} 0 30 0	t _{AC} 85 — 100 — t _{AA} — 85 — 100 t _{ACS} — 85 — 100 t _{OE} — 45 — 50 t _{OH} 5 — 10 — t _{CLZ} 10 — 10 — t _{OLZ} 5 — 5 — t _{CHZ} 0 30 0 35	t _{AA} - 85 - 100 - 120 t _{AA} - 85 - 100 - t _{ACS} - 85 - 100 - t _{OE} - 45 - 50 - t _{OH} 5 - 10 - 10 t _{CLZ} 10 - 10 - 10 t _{OLZ} 5 - 5 - 5 t _{CHZ} 0 30 0 35 0	t _{AC} 85 — 100 — 120 — t _{AA} — 85 — 100 — 120 t _{ACS} — 85 — 100 — 120 t _{OE} — 45 — 50 — 60 t _{OH} 5 — 10 — 10 — t _{CLZ} 10 — 10 — 10 — t _{CLZ} 5 — 5 — 5 — t _{CHZ} 0 30 0 35 0 40	t _{AA} - 85 - 100 - 120 - 150 t _{AA} - 85 - 100 - 120 - t _{ACS} - 85 - 100 - 120 - t _{OE} - 45 - 50 - 60 - t _{OH} 5 - 10 - 10 - 10 t _{CLZ} 10 - 10 - 10 - 10 t _{OLZ} 5 - 5 - 5 - 5 t _{CHZ} 0 30 0 35 0 40 0	t _{AA} - 85 - 100 - 120 - 150 - t _{AA} - 85 - 100 - 120 - 150 t _{ACS} - 85 - 100 - 120 - 150 t _{OE} - 45 - 50 - 60 - 70 t _{OH} 5 - 10 - 10 - 10 - 10 - t _{CLZ} 10 - 10 - 10 - 10 - 10 t _{CLZ} 5 - 5 - 5 - 5 - 5 t _{CHZ} 0 30 0 35 0 40 0 50

Read Timing Waveform (1)

4496203 0024951 657 **■ HITACHI**

Read Timing Waveform (2)

Read Timing Waveform (3)

4496203 0024952 593 HITACHI

Write Cycle

HM62256-8	HM62256-10	HM62256-12 HM62256-15
-----------	------------	-----------------------

Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	twc	85	_	100	_	120	_	150	_	ns
Chip selection to end of write	tcw	75		80	_	85	_	100	_	ns
Address valid to end of write	t _{AW}	75	_	80	_	85	_	100		ns
Address set up time	tas	0	_	0		0	_	0	_	ns
Write pulse width	t _{WP}	60	_	60		70		90		ns
Write recovery time	twR	10	_	0	_	0	_	0		ns
Write to output in high Z	t _{WHZ}	0	30	0	35	0	40	0	50	ns
Data to write time overlap	t _{DW}	40	_	40		50	_	60	_	ns
Data hold from write time	t _{DH}	0	_	0	-	0	_	0	_	ns
Output disable to output in high Z	^t onz	.0	30	0	35	0	40	0	50	ns
Output active from end of write	tow	5	_	5		5		5	_	ns

Write Timing Waveform (1) (OE Clock)

4496203 0024953 42T HITACHI

not be applied.

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

5-19

Write Timing Waveform (2) (OE Fixed Low)

Notes: 1. A write occurs during the overlap (twp) of a low CS and a low WE.

- 2. twn is measured from the earlier of CS or WE going high to the end of write cycle.
- During this period, I/O pins are in the output state. The input signals out of phase must not be applied.
- If the CS low transistion occurs simultaneously with the WE low transition or after the WE low transition, outputs remain in a high impedance state.
- 5. Dout is in the same phase of written data of this write cycle.
- 6. Dout is the read data of next address.
- 7. If CS is low during this period, I/O pins are in the output state. Out of phase input signals must not be appplied to I/O pins.

4496203 0024954 366 **■ HITACHI**

5-20

Low V_{CC} Data Retention Characteristics (Ta = 0 to +70°C)

These characteristics are guaranteed only for L- and L-SL version.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
V _{CC} for data retention	V _{DR}	CS ≥ V _{CC} - 0.2 V	2.0		_	٧	
Data retention current	ICCDR	V _{CC} = 3.0 V, CS ≥ 2.8 V	_		50 °2	μА	
		0 V ≤ V _{IN}	_	_	10 '3		
Chip deselect to data retention time	t _{CDR}	See retention waveform	0		_	ns	
Operation recovery time	t _R	See retention waveform	t _{RC} *1		_	ns	

Notes: 1. t_{RC} = read cycle time

- These characteristics are guaranteed only for L-version, V_{IL} = -0.3 V min, 20 μA max. at Ta = 0 to 40°C.
- These characteristics are guaranteed only for L-SL version, V_{IL} = -0.3 V min, 3 μA max. at Ta = 0 to 40°C.

Low V_{CC} Data Retention Waveform

4496203 0024955 2T2 **HITACHI**

Characteristic Curves

1.6 Ta = Supply current I_{CC1} (normalized) 25°C 1.4 1.2 1.0 8.0 0.6 0.4 4.50 4.75 5.00 5.25 5.50 Supply voltage V_{CC} (V)

Supply Current vs. Supply Voltage (1)

Supply Current vs. Supply Voltage (2)

Supply Current vs. Supply Voltage (3)

Supply Current vs. Ambient Temperature (1)

4496203 0024956 139 HITACHI

5-22

Supply Current vs. Ambient Temperature (2)

Supply Current vs. Ambient Temperature (3)

Access Time vs. Supply Voltage

Access Time vs. Ambient Temperature

4496203 0024957 075 **■ HITACHI**

Standby Current vs. Supply Voltage

Standby Current vs. Ambient Temperature

Supply Current vs. Frequency (Read)

Supply Current vs. Frequency (Write)

4496203 0024958 TO% 📼

HITACHI

5-24

Input Low Voltage vs. Supply Voltage

Input High Voltage vs. Supply Voltage

Output Current vs. Output Voltage (High)

Output Current vs. Output Voltage (Low)

4496203 0024959 948 HITACHI

Access Time vs. Load Capacitance

5-26