UGANDA MARTYRS UNIVERSITY FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

University Examinations, Semester I 2012/2013

Second Year Examination for the Degree of Bachelor of Science (FM, GEN)

MTC 2102 Linear Algebra

Wednesday, 19 December 2012 Time: 2:00 - 5:00 pm

Instructions

- (i) Answer Five questions
- (ii) Write on both sides of the paper but begin a new question on a fresh page.

1. Consider the following system of linear equations

$$x+y+2z = -1$$

$$x-2y+z = -5$$

$$3x+y+z = 3$$

- (a) (i) Write down the augmented matrix A for the above system. (1 mark)
 - (ii) By elementary row operations reduce A to echelon form. (6 marks)
 - (iii) Use your answer in a(ii) above to solve the above system linear system. (2 marks)
- (b) Let $A = \begin{bmatrix} 1 & 3 \\ 4 & -3 \end{bmatrix}$. Find the nonzero vector $\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ such that $A\mathbf{u} = 3\mathbf{u}$.
- (c) Find the basis and dimension for the general solution of the homogeneous system of linear equations

$$x_1 + 2x_2 - 3x_3 + 2x_4 - 4x_5 = 0$$
$$2x_1 + 4x_2 - 5x_3 + x_4 - 6x_5 = 0$$
$$5x_1 + 10x_2 - 13x_3 + 4x_4 - 16x_5 = 0.$$

(7 marks)

- 2. (a) Let A and B be n-square matrices. Prove that
 - (i) tr(kA) = k tr(A) for any scalar k. (3 marks)
 - (ii) $tr(A^T) = tr(A)$ (2 marks)
 - (b) Prove that if A and B are n-square invertible matrices, then AB is also invertible. (3 marks)

 - (c) (i) Let $\mathbf{A} = \begin{bmatrix} 5 & 2 \\ 0 & k \end{bmatrix}$. Find the values of k for which \mathbf{A} is a zero of the polynomial $f(x) = x^2 7x + 10$. (4 marks)

 (ii) Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. By block matrix multiplication compute AB (5 marks)
 - (iii) Let $\mathbf{M} = \operatorname{diag}(\mathbf{A}, \mathbf{B}, \mathbf{C})$ where $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $\mathbf{B} = [5]$ and $\mathbf{C} = \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}$. Find M2. (3 marks)

- 3. (a) Let A square matrix. Prove that
 - (i) $|A^{-1}| = |A|^{-1}$ (2 marks)
 - (ii) If any two rows or columns of A are equal, then |A| = 0. (3 marks)
 - (b) Let $A = \begin{bmatrix} 4 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & 4 & 6 \end{bmatrix}$. By cofactor expansion, find the determinant of matrix A.
 - (d) (i) State Cramer's rule. (2 marks)
 - (ii) Use Cramer's rule to solve the linear system

$$-2x + 3y - z = 1$$

$$x + 2y - z = 4$$

$$-2x - y + z = -3$$

(6 marks)

- 4. (a) (i) Define an eigenvalue and eigenvector of an $n \times n$ matrix A. (2 marks)
 - (ii) Let $A = \begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$, $v_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Verify that v_1 and v_2 are eigenvectors of A and if so, find the corresponding eigenvalues. (4 marks)
 - (b) Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$
 - (i) Find the characteristic polynomial of matrix A. (3 marks)
 - (ii) Find all the eigenvalues and associated eigenvectors of matrix A. (7 marks)
 - (iii) Check whether A is diagonalizable or not. (4 marks)
- 5. (a) Let V be a non-empty set and U be a subset of V. Explain what it means to say that
 - (i) V is a vector space over a field K. (4 marks)
 - (ii) U is a subspace of V. (2 marks)
 - (b) Let V be a vector space over \mathbb{R} . Prove that for any \mathbf{u} in V
 - (i) 0u = 0 (2 marks)
 - (ii) (-1)u = -u (2 marks)
 - (c) Let $S = \{u_1, u_2, ..., u_n\}$ be a set of vectors in a vector space V.
 - (i) Explain what it means to say that
 - S is linearly independent. (1 mark)
 - S spans V. (1 mark)
 - S is a basis for V. (1 mark)
 - (ii) Show that the set $S = \{t^2 + 1, t 1, 2t + 2\}$ is a basis for the vector space P_2 , the space of all polynomials of degree two. (4 marks)
 - (d) Show that if $S = \{u_1, u_2, ..., u_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be written uniquely as a linear combination of the vectors in S. (3 marks)

- 6. (a) Let V and W be vector spaces and let $T: V \longrightarrow W$ be a mapping.
 - (i) Explain what it means to say that T is a linear transformation. (2 marks)
 - (ii) Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a function defined by

$$T(x,y) = (2x, 3x + y, x - 2y).$$

Show that T is a linear transformation. (4 marks)

(b) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 + 2x_2, 3x_2 - 2x_3)$$

and let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 , where $e_1 = (1, 0, 0), e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$. Find the standard matrix representing T. (4 marks)

- (c) Let $T:V\longrightarrow W$ be a linear transformation between vectors spaces V and W.
 - (i) Define the kernel and the range of T and show that the range of T is a subspace of W. (5 marks)
 - (ii) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined by

$$T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Find the basis and dimension of kernel of T. (5 marks)