## **Spatial Filters**

## **Filtering**

➤ It's a technique with which certain frequency components can be chosen or rejected.

Ex: Low pass filters allows low frequencies and suppresses High frequency components.

- ➤ Filters in image processing can be categorized into following three categories:
  - 1. Convolution-based filters.
  - 2. Order-statistics(rank) filters.
  - 3. Hybrid filters.

## **Spatial Filters**

### 1.Convolution-based filters

(shift-multiply-sum operations):

- It uses spatial masks also known as kernels, templates and windows.
- The spatial mask is convolved with the given image to achieve the required smoothing or

## **Mask Processing**



## **Mask Processing**

- Based on the type of operation to be done the value of 'Wi' is chosen.(sharpening, averaging, etc.,)
- Appropriately the type of mask is chosen 3X3 or 5X5 or 7X7

## **Neighborhood Operations**

The value assigned to a pixel is a function of its gray label and the gray labels of its neighbors.

| Z <sub>1</sub> | Z <sub>2</sub> | $Z_3$          |
|----------------|----------------|----------------|
| Z <sub>4</sub> | Z <sub>5</sub> | Z <sub>6</sub> |
| Z,             | Z <sub>8</sub> | Z <sub>9</sub> |

| W <sub>-1,-1</sub> | W <sub>-1,0</sub> | W <sub>-1,1</sub>       |
|--------------------|-------------------|-------------------------|
| W <sub>0,-1</sub>  | W <sub>0,0</sub>  | W <sub>0,1</sub>        |
| W <sub>1,-1</sub>  | W <sub>1,0</sub>  | <b>w</b> <sub>1,1</sub> |

3x3 Mask

$$Z = 1/9 (Z_1 + Z_2 + Z_3 + ..... + Z_9) = Average$$

## **Spatial Filters**

## 2.Order-statistics(rank) filters:

- They do not use convolution techniques.
- They simply arrange the pixels that are under the mask in a desired order.

> Ex: Median filter.

They are mainly used for image restoration.

### **Order Statistic Filter**

Let us assume a mask of size  $3 \times 3$ . The pixel values are arranged in ascending order  $I_1 \le I_2 \le ... \le I_9$  based on the grey scale value. The order determines the value that should replace the central pixel.

| 12 | 13 | 15 |
|----|----|----|
| 17 | 14 | 18 |
| 19 | 20 | 21 |

Using the application of order statistics, this is arranged as



## **Spatial Filters**

## 3. Hybrid filters:

- > Uses the concepts of ranking and convolution.
- Unsharp masking is a good example of hybrid filters.

## **Image Smoothing Filter**

- > A Smoothing filter is a linear filter.
- It creates an image with a smooth appearance by blurring the image and by removing noise such as Gaussian noise.

## **Image Smoothing Filter**

| 1<br>9× | 1 | 1 | 1 |
|---------|---|---|---|
|         | 1 | 1 | 1 |
|         | 1 | 1 | 1 |

Fig. 5.18 Sample 3 × 3 2D spatial mask

## Image Smoothing Filter



Fig. 5.18 Sample 3 × 3 2D spatial mask

### **Example:**

If the image is given as below, the above mask leads to the computation of the average of the neighborhood as: 1/9[1+2+3+5+4+6+7+9] = 1/9[45] = 5

| 1 | 2 | 3 |
|---|---|---|
| 5 | 4 | 6 |
| 7 | 8 | 9 |

| 1 | 2 | 3 |
|---|---|---|
| 5 | 5 | 6 |
| 7 | 8 | 9 |



(b) Original image (c) Filtering with 3 × 3 mask

## **Variable Weights**

$$\frac{1}{10} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \frac{1}{4} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \frac{1}{8} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Fig. 5.21 Sample masks with variable weights

# Example – Smoothing Operation



## Image Smoothing Example

The image at the top left is an original image of size 500\*500 pixels

The subsequent images show the image after filtering with an averaging filter of increasing sizes

-3, 5, 9, 15 and 35

Notice how detail begins to disappear



# Strange Things Along the Edges

At the edges of an image we are missing pixels to form a neighbourhood



## Possible Solutions

- Here are a few approaches to dealing with the missing edge pixels:
- Omit missing pixels
  - Only works with some filters
  - Can add extra code and slow down processing
- Pad the image
  - Typically with either all white or all black pixels
- Replicate border pixels
- Truncate the image
- Allow pixels wrap around the image
  - Can cause some strange image artifacts

# Apply mean, mode and median filter

```
    10
    20
    30
    40
    50

    12
    13
    12
    11
    12

    12
    11
    23
    34
    45

    11
    22
    33
    30
    30

    44
    55
    66
    77
    88
```

#### Mean

6 9 13 12 10 8 13 18 17 14 15 23 32 28 23 13 19 26 22 18 11 17 23 21 17

#### Mode

0 0 0 0 0 0 12 11 12 0 0 12 11 12 0 0 11 11 30 0 0 0 0 0

#### Median

0 12 12 12 0 11 12 20 30 12 11 12 22 30 12 11 23 33 34 30 0 22 30 30 0

| 0  | 12 | 12 | 12 | 0  |
|----|----|----|----|----|
| 11 | 12 | 20 | 30 | 12 |
| 11 | 12 | 22 | 30 | 12 |
| 11 | 23 | 33 | 34 | 30 |
| 0  | 22 | 30 | 30 | 0  |

6.1111 10.7778 14.0000 17.2222 12.5556 8.6667 15.8889 21.5556 28.5556 21.3333 9.0000 16.5556 21.0000 25.5556 18.0000 17.2222 30.7778 39.0000 47.3333 33.7778 14.6667 25.6667 31.4444 36.0000 25.0000

## **Gaussian Filters**

- Gaussian filters choose the weight of the mask according to the shape of the Gaussian function.
- The value of the center pixel is greater and as the distance between the pixel and the center pixel increases, the mask weight decreases.
- Useful in smoothing as well as removing noises of normal distribution types.

## **Gaussian Filters**

$$G(x,y) = \frac{1}{2\sigma^2} e^{-\frac{x^2+y^2}{\sigma^2}}$$



Fig. 5.22 Gaussian filters (a) Gaussian low-pass 3 × 3 filter (b) Gaussian low-pass 5 × 5 filter

## **Directional Smoothing**

- Most of the filters are isotropic. (Effect of filter is same in all the directions).
- In image processing applications, it may be necessary to select only certain features, in particular direction. Such filters are called anisotropic filters.
- Directional smoothing filters are useful in reducing the effect of edges from blurring by excessive smoothing.

## **Directional Smoothing - Procedure**

- 1. The spatial average is calculated in several directions.
- 2. The direction that is associated with the minimum is detected and is used as part of the convolution process to replace the centre pixel.

## **Conservative smoothing**

- 1. For a centre pixel, find the pixel values of its 8-neighborhood.
- 2. Find the maximum and minimum pixel values.
- Compare the value of the centre pixel with the maximum and minimum values.
  - (a) If the value of the centre pixel > maximum value, set the centre pixel value to the maximum value.
  - (b) If the value of the centre pixel < minimum value, set the centre pixel value to the minimum value.
  - (c) Otherwise, retain the centre pixel value as it is.

- It enhances the details of an image.
- High frequency components have detailed information in the form of edges and boundaries.
- Edges are significant local intensity variations that exists between two different regions.
- Sharpening algorithms are used to separate object outline.
  So, they are also called as edge enhancement or edge crispening algorithm.

- High pass and Laplacian filters extracts edges.
- All contrast information is lost.
- This affects the quality of the image.

- Using derivatives.
  - First order derivative filter.
  - Second order derivative filter.

### First order derivative filter

- Must be zero in areas of constant gray level
- Non zero at the onset of a gray level step or ramp
- Non zero along ramps

### Second order derivative filter

- Zero in flat areas
- Non zero at onset and end of a gray level step or ramp
- Zero along ramps of constant slope



- First order derivative generally produce thicker edges in an image
- Second order derivatives give stronger response to fine details such as thin lines and isolated points
- First order derivative have stronger respose to gray level step
- Second order derivative produce a double response at step edges
  - Second order derivatives are better suited for image enhancement

Laptacian Operator

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = f(x+1) + f(x-1) - 2f(x) \stackrel{\text{1-D}}{\leftarrow}$$

$$\frac{\partial^{2} f}{\partial x^{2}} = f(x+1) + f(x-1) - 2f(x,y) - 2f(x,y)$$

$$\frac{\partial^{2} f}{\partial x^{2}} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^{2} f}{\partial x^{2}} = f(x+1,y) + f(x,y-1) - 2f(x,y)$$

$$\nabla^{2}f = \frac{\partial^{2}f}{\partial x^{2}} + \frac{\partial^{2}f}{\partial y^{2}}$$

$$= \left[f(x+1,y) + f(x-1,y) + f(x,y+1) - 4f(x,y)\right]$$

# **Sharpening filters (Laplacian Mask)**



# **Sharpening filters (Laplacian Mask)**



$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & +4 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

Fig. 5.24 Four sample Laplacian masks



Fig. 5.25 Image sharpening spatial filters (a) Original image (b) Laplacian high-pass filter result

## **High-Boost Filter**

High-boost image = 
$$(A)$$
 (Original) – (Low-pass)  
=  $(A - 1)$  (Original) + (Original – Low-pass)  
=  $(A - 1)$  (Original) + (High-pass)





(b) Result of a high-boost filter

## **Unsharp Masking**

The procedure for implementing an unsharp mask is as follows:

- Read the image.
- Blur the image using any image smoothing filters. This stage requires a convolution based smoothing filter. Let the smooth or blurred image be f(x, y).
- 3. Let the mask = original image  $\overline{f}(x, y)$ .
  - Subtracting the blurred version from the original image results in an image where there is a visible emphasis in edges.
- Add to the original image the weighted portion of the mask, to restore some of the lost visual information.

$$g(x, y) = f(x, y) + k \times \text{mask}$$

If k=1 → unsharp masking
If k>1 → High – Boost filtering