

Licence 1ère année, MATHÉMATIQUES ET CALCUL 1 (MC1)

Interrogation 1: Logique, ensembles, fonctions

Exercice 1. (3 pts)

Soit $E = \{a, b, c\}$ un ensemble. Est-ce que les assertions suivantes ont du sens mathématiquement? Donner une courte justification.

- a) $a \in E$
- b) $a \subset E$
- c) $\{a\} \subset E$
- d) $(a,b) \in E$
- e) $\emptyset \in E$
- f) $\emptyset \subset E$

Correction.

- a) Vrai car a est un element de E.
- b) Faux car a n'est pas un sous-ensemble de E.
- c) Vrai car $\{a\}$ est un sous-ensemble de E.
- d) Faux car (a, b) est un élément de $E \times E$.
- e) Faux car l'ensemble vide est un ensemble et non un élement de E.
- f) Vrai car l'ensemble vide est un sous-ensemble de tout ensemble.

Exercice 2. (3 pts)

1. Les assertions suivantes sont-elles vraies ou fausses? Donner une courte justification.

- a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$
- b) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$
- c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y > 0$
- 2. Donner leurs négations.

Correction.

- 1. a) Faux. On suppose par l'absurde qu'il existe un $x \in \mathbb{R}$ verifiant la propriété, i.e pour tout $y \in \mathbb{R}$, x + y > 0. Cependant, si on choisit y = -x on a x + y = x x = 0. Contradiction.
 - b) Faux. On peut choisir x = y = 0 par exemple.
 - c) Vrai. Soit $x \in \mathbb{R}$, on peut toujours trouver un $y \in \mathbb{R}$ vérifiant x + y > 0, par exemple en choisissant y = |x| + 1
- 2. a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y \le 0$
 - b) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y \le 0$
 - c) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y \le 0$

Exercice 3. (4 pts)

Soient f,g deux fonctions de $\mathbb R$ dans $\mathbb R$. Traduire en termes de quantificateurs les expressions suivantes :

- a) f est majorée.
- b) f ne s'annule jamais.
- c) f n'est pas la fonction nulle.
- d) f n'a jamais les mêmes valeurs en deux points distincts.

Correction.

- a) $\exists M > 0, \forall x \in \mathbb{R}$ f(x) < M
- b) $\forall x \in \mathbb{R}, \quad f(x) \neq 0$
- c) $\exists x \in \mathbb{R}, f(x) \neq 0$
- d) $\forall x, y \in \mathbb{R}, (x \neq y) \longrightarrow (f(x) \neq f(y))$