

A different angle to cope with dependencies

- So far, ERGM allowed us to explicitly account for (and measure) network dependencies
- Another way to capture network dependencies is by making use of latent variable models
- . Models within this class assume that latent (unobserved) variables Z_i are associated with each node i, and that all dependencies between edges is due to these latent variables

Definition: Latent Variable Network Models

A latent variable network model is a statistical model that relates the set of observed edges $Y=(Y_{ij})$ to a set of latent variables $Z=(Z_i)$. The actorspecific latent variables Z_i can, in general, be of any dimension and be in the discrete or continuous domain. All dependence between edges Y_{ij} and Y_{kh} is assumed to be captured by the latent variables z_i, z_j, z_k , and z_h .

$$Y_{ij}|z_i,z_j \sim F(z_i,z_j)$$

Intuition

- . Nodes possess some latent attributes (e.g. unobserved group membership, positioning in a social space) which influences tie behavior
- . The idea is to estimate this latent structure, to gain an understanding of it and/or control for it while doing inference on covariates
- Let us start with the simplest (and most popular) application of latent variable models... community detection

4

Community Detection in Networks

- . Networks are often organized in smaller sub-groups
- . Sometimes those subgroups are known and well defined (ex. political parties in a parliamentary network, classes in a school)
- More often that is not the case (ex. friendship circles on a facebook network, different cells in a network of terrorists)

Community Detection in Networks

- . We can treat the community membership as a latent (unobserved) variable and try to estimate it
- In models with built-in community structure, the probability of forming a tie within a group is typically higher than forming one between groups
- Other types of structures, such as core-periphery, are possible

How to perform community detection?

- . Many heuristic methods available (see Fortunato & Hric, 2016)
- . Most popular is modularity maximization: assign node to groups in a way that maximises some target function ("modularity")
- Other methods based on matrix factorization (i.e. spectral decomposition)

Heuristics - Pros and Cons

- . Pros:
 - Fast
 - Good at "pure" community detection
- Cons:
 - Not a statistical model: no uncertainty estimations, no theoretical guarantees
 - Usually not possible/straightforward to include covariates
- . Simplest statistical approach: The Stochastic Blockmodel

Stochastic Blockmodels

Stochastic Blockmodels - Main ideas

- . A probabilistic model for networks (the edges are random)
- . Each node belongs to one (unobserved) class or "block"
- The probability of any two nodes to connect depends solely on the blocks to which the two nodes belong

The Stochastic Blockmodel

We assume the conditional probability of a tie Y_{ij} to follow:

$$Y_{ij}|z_i, z_i \sim Bernoulli(p(z_i, z_j))$$

With $p(z_i, z_i)$ governed by a block-probability matrix P.

$$\pi = (0.5, 0.2, 0.3)$$

$$P = \begin{pmatrix} 0.6 & 0.1 & 0.3 \\ 0.1 & 0.5 & 0.2 \\ 0.3 & 0.2 & 0.4 \end{pmatrix}$$

$$\Leftrightarrow \frac{0.6 & 0.1 & 0.3}{0.2}$$

$$\frac{0.5}{0.75}$$
From De Nicola et al., 2022a

Stochastic Blockmodel - Estimation

- . Everything looks very simple, but...
- . Block-memberships are unknown, and need to be estimated!
- The complete data likelihood is untreatable

- Need to solve a complex estimation problem. Some routes:
 - Variational inference
 - Vertex-switching algorithms
 - MCEM algorithms

. ...

The great thing about the SBM

. Unlike pure "community detection" algorithms, able to find any type of structure, beyond classic communities

From Fortunato & Hric. 2016

...but is it always a good thing?

.

_

What will the SBM find? (K=2)

The feature/bug of SBM for social networks

- The classical SBM implicitly assumes the degree structure within blocks to be relatively homogeneous
- But many real world social networks exhibit extremely skewed degree distributions
- . This leads the SBM to very often find core-periphery structures, as opposed to classical assortative communities

From Karrer & Newman, 2012

Degree-corrected SBM

- Karrer & Newman (2012) introduced the idea of degree correction
- . The probability of an edge depends not only on blockmembership, but also explicitly on node-specific heterogeneity parameters (i.e. node degree):

From Karrer & Newman, 2012

Degree-corrected SBM

- . Karrer & Newman (2012) introduced the idea of degree correction
- The probability of an edge depends not only on blockmembership, but also explicitly on node-specific heterogeneity parameters (i.e. node degree):

$$\lambda_{ij} = \exp\{\gamma_i + \gamma_j + \omega_{z_i z_j}\}\$$

From Karrer & Newman, 2012

What will the degree-corrected SBM find?

7

SBMs: Variants and Extensions

- Classical SBM is a very simple model, many other variants and extensions exist
- . Variants aimed at finding specific types of network structures
- . Some of the most prominent ones:
 - Mixed membership SBM (Airoldi et al., 2008)
 - Hierarchical SBM (Peixoto, 2014)
 - Mixture of experts SBM (Gormley & Murphy, 2010)

SBM as a model class: Features

- . Good for finding different types of community structure
- Principle, likelihood based methods, with all the perks that come with it
- . Relatively fast estimation routines exist
- . A lot of software available openly available

SBM as a model class: Features

- . Good for finding different types of community structure
- Principle, likelihood based methods, with all the perks that come with it
- . Relatively fast estimation routines exist
- . A lot of software available openly available

All in all, a solid tool for finding discrete structures in different types of networks

SBM as a model class: Limitations

- . Discrete → too simplistic
- . Not straightforward to include covariates
- . Number of communities K needs to be inputted
 - Several ways to estimate it data-driven
 - Still requires some prior assumptions (far from being solved)

SBM as a model class: Limitations

- . Discrete \rightarrow too simplistic
- . Not straightforward to include covariates
- . Number of communities K needs to be inputted
 - Several ways to estimate it data-driven
 - Still requires some prior assumptions (far from being solved)

Can we address these?

Latent Space Models

Continuous Latent Variables

- . It is quite natural to generalize the idea of discrete communities into continuous ones
- . Hoff et al. (2002) propose to "map" the network into a Euclidean latent social space, where the distance between two nodes determines their probability of being connected

The Latent Distance Model

- _a Postulates that the actors are located in a latent social space
- The closer they are in this space, the more likely they are to connect
- Specifically, log-odds of a tie between nodes *i* and *j* given by:

$$\eta_{i,j} = \log \operatorname{odds}(y_{i,j} = 1 | z_i, z_j, x_{i,j}, \alpha, \beta)$$
$$= \alpha + \beta' x_{i,j} - |z_i - z_j|.$$

Properties

Does a good job at representing patterns that are typical of social networks, such as:

Homophily

Triadic Closure

Preferential attachment

The latent position cluster model

- We can allow for model-based clustering of the latent positions, to also get communities (see Handcock et al., 2007)
- Assume the positions to come from a mixture distribution:

$$Z_i^{ ext{i.i.d.}} \sum_{g=1}^G \lambda_g ext{ MVN}_d \left(\mu_g, \sigma_g^2 I_d
ight) \quad i=1,\dots,n$$

Further extension

- We can also control for the actors' different propensity to form ties (see Krivitsky et al., 2009)
- Add node-specific random effects:

$$\eta_{i,j} = \sum_{k=1}^p eta_k x_{k,i,j} - \|Z_i - Z_j\| + \delta_i + \gamma_j$$

Further extension

- We can also control for the actors' different propensity to form ties (see Krivitsky et al., 2009)
- Add node-specific random effects:

$$\eta_{i,j} = \sum_{k=1}^p eta_k x_{k,i,j} - \|Z_i - Z_j\| + \delta_i + \gamma_j$$
, with $\delta_i^{i.i.d.} \operatorname{N}(0,\sigma_\delta^2) \quad i=1,\ldots,n$ $\gamma_i^{i.i.d.} \operatorname{N}(0,\sigma_\gamma^2) \quad i=1,\ldots,n$

Network of COVID-19 Twitter elites

- Start from database with all tweets about COVID-19 (Banda et al., 2021)
- Rank tweets by their popularity (likes + retweets + replies)
- _o A user is "elite" if they have a tweet on COVID-19 with popularity > 2000
- Result: 1024 tweets by a total of 363 users

Application to COVID-19 Twitter elites

- _o Start from database with all tweets in German about COVID-19
- Rank tweets by their popularity (likes + retweets + replies)
- _o A user is "elite" if they have a tweet on COVID-19 with popularity > 2000
- Result: 1024 tweets by a total of 363 users

text	author	tweet_popularity
Wir haben keinen einzigen #COVID19 Pati	Ricardo Lange	29,422
Der Bundesgesundheitsminister fordert so	Jens Clasen	25,852
Über Freiheit und Eigenverantwortung spr	Dunja Hayali 💝=👅 🧠	25,832
Kosten einer BioNTech-Impfdosis: 19,95K	Krankenpflegel	25,725
Das Letzte, was das Coronavirus sieht, b	Fabian Köster	25,205
"Der Weg hierher und hier raus ist ein h	Christian Drosten	21,368
Wir stecken tief in der Schuld unserer P	Prof. Karl Lauterbach	21,208
Echt stark, wie gut wir Covid-19 im Grif	Cornelius W. M. Oettle	20,367
 Nachdem ich mich heute bei der dpa z 	Carsten Watzl	19,434
Um das noch einmal ganz klar zu sagen:	Jens Clasen	19,415

Network of COVID-19 Twitter elites

- . We naturally define an edge from user A to user B if A follows B on Twitter
- . Resulting network of 363 users has 12182 directed edges (9.2% density)

SENDER	RECEIVER	
c_drosten	Karl_Lauterbach	
Karl_Lauterbach	c_drosten	
jensspahn	c_drosten	
BrinkmannLab	FlyingDoc	
Alice_Weidel	JoanaCotar	
		From De Nicola et al., 2022b

LSM as a model class: Features

- . Good for a more nuanced view than discrete SBM
- . In our example: Beyond polarization on social media
- Great for graphical representation: positions have a probabilistic meaning
- . Uncertainty quantification
- Possible to incorporate covariates (but interpretation changes greatly)

LSM as a model class: Chief limitation

. Fails at capturing disassortative structures

LSM as a model class: Chief limitation

- . Fails at capturing disassortative structures
 - Example:

LSM: Terms of use

- . Best to use LSMs only when reasonable to believe that the network is (mostly) homophilic and triadic
- . That is not always known a priori
- . Real world network can also display mixed patterns:

LSM: Terms of use

- . Best to use LSMs only when reasonable to believe that the network is (mostly) homophilic and triadic
- . That is not always known a priori
- . Real world network can also display mixed patterns:

LSM: Terms of use

- Best to use LSMs only when reasonable to believe that the network is (mostly) homophilic and triadic
- . That is not always known a priori
- . Real world network can also display mixed patterns:

LSM: Terms of use

- . Best to use LSMs only when reasonable to believe that the network is (mostly) homophilic and triadic
- . That is not always known a priori
- . Real world network can also display mixed patterns:

Additive and Multiplicative Effect Models

AME: Motivation and framework

- . Network data often exhibit dependencies of different orders:
 - First order: Node-specific heterogeneity
 - Second order: Reciprocity
 - Third order: Triadic effects
- The AME network model (Hoff, 2021) is designed to capture all of these type of dependencies simoultaneously.

The AME Network Model

. The AME Probit model specifes the probability of a tie as:

$$\mathbb{P}(Y_{ij} = 1|W) = \boldsymbol{\Phi}(\boldsymbol{\theta}^{\top} x_{ij} + e_{ij}),$$

- . Where:
 - $m{\Phi}$ is the standard normal cumulative distribution function
 - $\theta^{\top} x_{ij}$ accommodates the inclusion of covariates
 - $_{\circ}$ e_{ij} can be viewed as a structured residual

The AME Network Model

. The structured error e_{ij} is a function of the latent variables:

$$e_{ij} = a_i + b_j + u_i v_j + \varepsilon_{ij}$$

The AME Network Model

. The structured error e_{ij} is a function of the latent variables:

$$e_{ij} = a_i + b_j + u_i v_j + \varepsilon_{ij}$$

- . a_i and b_j are zero-mean additive effects for sender i and receiver j, which account for first order dependencies
 - More specifically:

$$(a_1,b_1),...,(a_n,b_n) \overset{ ext{i.i.d.}}{\sim} N_2(0,\pmb{\Sigma}_1), \quad ext{with} \quad \pmb{\Sigma}_1 = egin{pmatrix} \pmb{\sigma}_a & \pmb{\sigma}_{ab} \ \pmb{\sigma}_{ab} & \pmb{\sigma}_b \end{pmatrix}$$

The AME Network Model

. The structured error e_{ij} is a function of the latent variables:

$$e_{ij} = a_i + b_j + u_i v_j + \varepsilon_{ij}$$

The AME Network Model

. The structured error e_{ij} is a function of the latent variables:

$$e_{ij} = a_i + b_j + u_i v_j + \varepsilon_{ij}$$

- . $\ensuremath{\epsilon_{ij}}$ is a zero-mean residual term, accounting for second order dependency, i.e. reciprocity
 - More specifically:

$$\{(\boldsymbol{\varepsilon}_{ij}, \boldsymbol{\varepsilon}_{ji}) : i < j\} \stackrel{\mathrm{i.i.d.}}{\sim} N_2(0, \Sigma_2), \quad \mathrm{with} \quad \Sigma_2 = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

The AME Network Model

. The structured error e_{ij} is a function of the latent variables:

$$e_{ij} = a_i + b_j + u_i v_j + \varepsilon_{ij}$$

The AME Network Model

. The structured error e_{ij} is a function of the latent variables:

$$e_{ij} = a_i + b_j + u_i v_j + \varepsilon_{ij}$$

. u_i and v_j are d-dimensional multiplicative "latent positions" accounting for third order dependencies, with

$$(u_1, v_1), ..., (u_n, v_n) \sim \mathcal{N}_{2d}(0, \Sigma_3)$$

AME: Pros and cons

Advantages:

- . Incredibly flexible, able to represent many network structures
- . Has been shown to generalize both SBM and LSM

Disadvantages:

- Incredibly complex, estimation slow
- Multiplicative latent space is not as interpretable nor good for representation as the LSM

AME: How to use

- . Given it's complexity AME is a suboptimal choice when focus is on interpretability and visualization of the latent structure
- To the contrary, it is an ideal fit when underlying network dependencies are unkown, and the focus is on estimating covariate effects controlling for the network structure
- . Many such cases, especially in the social sciences

Application: Historical forex network

- . In 1900, every financial center featured a foreign exchange market were bankers bought and sold foreign currency against the domestic one.
- Foreign exchange market activity was monitored in local bulletins, which allowed Flandreau and Jobst (2005) to collect a global dataset.

Application: Historical forex network

- . In 1900, every financial center featured a foreign exchange market were bankers bought and sold foreign currency against the domestic one.
- Foreign exchange market activity was monitored in local bulletins, which allowed Flandreau and Jobst (2005) to collect a global dataset.
- . This gives rise to a directed network, where:
 - Countries are nodes
 - A directed edge i \rightarrow j is present if currency from country j is traded within the financial center of country i

Application: Historical forex network

- Interested in understanding the effect of several factors on currency trade between countries, which is an important indicator of economic influence.
- . Nodal covariates:
 - Gold standard, GDP per-capita, democracy index
- . Dyadic covariates:
 - Distance, reciprocal trade volume

rical	forex netwo	ork	
		AME	Classical Probit
	Intercept	-4.845 (5.310)	
Sender (Gold standard	-0.629(0.397)	-0.354 (0.155)*
	Gold standard log-GDP per-capita Democracy index Currency coverage	-0.453(0.419)	-0.259(0.152)
	Democracy index	-0.033(0.064)	-0.025(0.026)
	Currency coverage	1.418 (0.405)***	0.470 (0.137)***
Receiver	Gold standard	-0.599(0.667)	$-0.468 (0.191)^*$
	log-GDP per-capita	$0.426\ (0.703)$	$0.240 \; (0.159)$
	Democracy index	0.121 (0.102)	0.066 (0.019)***
	Currency coverage	2.734 (0.691)***	1.363 (0.181)***
Dyadic	Distance	-1.019(0.151)***	$-0.471 (0.064)^{***}$
	Gold standard log-GDP per-capita Democracy index Currency coverage Distance log-trade volume	0.488 (0.081)***	0.346 (0.036)***
***p < 0.001;	**p < 0.01; *p < 0.05		From De Nicola et al., 2022c

Takeaways

- . Dependencies matter!
- Latent variable models are one way to measure them and/or take them into account
- There is no single best: different networks require different approaches
- . Different research questions also are answered with different models

Latent Variable Models: Overview

- . **Stochastic blockmodels** are good to find group structures of different kinds, and can capture stochastic equivalence
- Latent distance models are great for representing and understanding networks in which nodes that behave similarly tend to connect to each other frequently
- . **AME models** are optimal when the focus is on measuring the effect of exogenous covariates, while controlling for the network

References (1)

- Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics reports. 659, 1-44.
- De Nicola, G., Sischka, B., & Kauermann, G. (2022a). Mixture models and networks: The stochastic blockmodel. Statistical Modelling, 22(1-2), 67-94.
- Adamic, L. A., & Glance, N. (2005, August). The political blogosphere and the 2004 US election: divided they blog. In Proceedings of the 3rd international workshop on Link discovery (pp. 36-43).
- Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. *Physical review E*, 83(1), 016107.
- Airoldi, E. M., Blei, D., Fienberg, S., & Xing, E. (2008). Mixed membership stochastic blockmodels. Advances in neural information processing systems, 21.
- Peixoto, T. P. (2014). Hierarchical block structures and high-resolution model selection in large networks. *Physical Review X*, 4(1), 011047.

References (2)

- Gormley, I. C., & Murphy, T. B. (2010). A mixture of experts latent position cluster model for social network data. Statistical methodology, 7(3), 385-405.
- 8. Hoff, P. D., A. E. Raftery, and M. S. Handcock (2002). Latent space approaches to social network analysis. Journal of the american Statistical association 97(460), 1090–1098.
- Handcock, M. S., A. E. Raftery, and J. M. Tantrum (2007). Model-based clustering for social networks. Journal of the Royal Statistical Society. Series A (Statistics in Society) 170(2), 301–354.
- Krivitsky, P. N. and M. S. Handcock (2008). Fitting position latent cluster models for social networks with latentnet. Journal of statistical software 24.
- 11. Banda, J. M., R. Tekumalla, G. Wang, J. Yu, T. Liu, Y. Ding, E. Artemova, E. Tutubalina, and G. Chowell (2021). A large-scale covid-19 witter chatter dataset for open scientific research—an international collaboration. Epidemiologia 2(3), 315–324.
- De Nicola, G., Tuekam Mambou, V. H., and Kauermann, G. (2022b) COVID-19 and social media: Beyond polarization. Arxiv preprint arXiv:2207.13352

References (3)

- Bearman, P. S., Moody, J., & Stovel, K. (2004). Chains of affection: The structure of adolescent romantic and sexual networks. *American journal of sociology*, 110(1), 44-91.
- 14. Hoff, P. (2021). Additive and multiplicative effects network models. Statistical Science, 36(1), 34-50.
- 15.Flandreau, M., & Jobst, C. (2005). The ties that divide: a network analysis of the international monetary system, 1890–1910. The Journal of Economic History, 65(4), 977-1007.
- 16.De Nicola, G., Fritz, C., Mehrl, M., & Kauermann, G. (2022c). Statistical Network Data Analysis in Economics. arXiv preprint arXiv:2210.14860.

