DAY-10

Iris

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\Iris.csv")[0:500]
df

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [3]: | df.head(10)

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

In [4]: df.describe()

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
	67 (-)		

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

```
In [6]: | df.columns
 Out[6]: Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
                 Species'],
               dtype='object')
 In [8]: x=df[['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm']]
         y=df['PetalWidthCm']
 In [9]: #to split my dataset into traning and test data
         from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [10]: | from sklearn.linear model import LinearRegression
         lr = LinearRegression()
         lr.fit(x_train,y_train)
Out[10]: LinearRegression()
In [11]: print(lr.intercept_)
         -0.3995021843654347
In [12]: |print(lr.score(x_test,y_test))
         0.9370898687255358
In [13]: |lr.score(x_train,y_train)
Out[13]: 0.9488841211306531
```

Ridge Regression

```
In [14]: from sklearn.linear_model import Ridge,Lasso
In [15]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[15]: Ridge(alpha=10)
In [16]: rr.score(x_test,y_test)
Out[16]: 0.9259706159482798
```

Lasso Regression

```
In [17]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[17]: Lasso(alpha=10)
In [18]: la.score(x_test,y_test)
Out[18]: 0.6789035012371226
         from sklearn.linear_model import ElasticNet
In [19]:
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[19]: ElasticNet()
In [20]: |print(en.intercept_)
         0.02525767501619569
In [21]: |print(en.coef_)
                                                       ]
         [0.01530862 0.
                                 0.
                                            0.
In [22]: | predict=(en.predict(x_test))
In [23]: |print(en.score(x_test,y_test))
         0.7904357858002837
```

Evaluation Metrix