STAT 3690 Lecture Note

Part VII: Principal component analysis

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2023/Mar/11 23:49:46

Principal component analysis (PCA)

Population PCA

- Population PCA based upon covariance matrix Σ
 - Random p-vector $\boldsymbol{X} \sim (\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - Looking for (nonrandom) p-vectors $\boldsymbol{w}_1, \dots, \boldsymbol{w}_p \in \mathbb{R}^p$ such that

 $\boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{i}=1$ and $\boldsymbol{X}^{\top}\boldsymbol{w}_{i}$ has the maximal variance and is uncorrelated with $\boldsymbol{X}^{\top}\boldsymbol{w}_{1},\ldots,\boldsymbol{X}^{\top}\boldsymbol{w}_{i-1},$

i.e.,

$$oldsymbol{w}_1 = rg\max_{oldsymbol{w} \in \mathbb{R}^p} ext{var}(oldsymbol{X}^ op oldsymbol{w}) ext{ subject to } oldsymbol{w}_1^ op oldsymbol{w}_1 = 1$$

and, for $j \geq 2$,

$$oldsymbol{w}_j = rg \max_{oldsymbol{w} \in \mathbb{R}^p} ext{var}(oldsymbol{X}^ op oldsymbol{w})$$

subject to
$$\boldsymbol{w}_j^{\top} \boldsymbol{w}_j = 1$$
 and $\text{cov}(\boldsymbol{X}^{\top} \boldsymbol{w}_j, \boldsymbol{X}^{\top} \boldsymbol{w}_{j'}) = 0$ for $j' = 1, \dots, j-1$

- (PCA Theorem) Let $\lambda_1 \geq \cdots \geq \lambda_p$ be eigenvalues of Σ . Then the above w_j is the eigenvector corresponding to λ_i .
- Vocabulary
 - * w_i : the jth vector of loadings
 - * $Z_j = (\boldsymbol{X} \boldsymbol{\mu})^{\top} \boldsymbol{w}_j \sim (0, \lambda_j)$: the jth principal component (PC) of \boldsymbol{X}
- Representation of X in terms of loadings and PCs

$$oldsymbol{X} = oldsymbol{\mu} + \sum_{j=1}^p Z_j oldsymbol{w}_j pprox oldsymbol{\mu} + \sum_{j=1}^s Z_j oldsymbol{w}_j$$

- Identities
 - * $\boldsymbol{w}_{i}^{\top}\boldsymbol{w}_{j'}=1$ if j=j' and 0 otherwise, i.e., $\{\boldsymbol{w}_{1},\ldots,\boldsymbol{w}_{p}\}$ is an orthogonal basis of \mathbb{R}^{p}

 - * $\operatorname{cov}(Z_j, Z_{j'}) = \boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{w}_{j'} = \lambda_j$ if j = j' and 0 otherwise * $\sum_{j=1}^p \operatorname{var}(Z_j) = \sum_{j=1}^p \lambda_j = \operatorname{tr}(\boldsymbol{\Sigma}) = \sum_{j=1}^p \operatorname{var}(X_j)$ * Z_j contributes $\lambda_j / \sum_{j=1}^p \lambda_j \times 100\%$ of the overall variance · Scree plot: displaying the amount of variation in each PC

 - Stopping rule (to determine s)

$$s = \min \left\{ k \in \mathbb{Z}^+ : \sum_{j=1}^k \lambda_j / \sum_{j=1}^p \lambda_j \ge 90\% \text{ (or another preset threshold)} \right\}$$

- Population PCA based upon correlation matrix
 - (Pearson) correlation matrix

$$\mathbf{R} = [\operatorname{corr}(X_i, X_j)]_{p \times p} = \operatorname{diag}\left(\frac{1}{\sqrt{\operatorname{var}(X_1)}}, \dots, \frac{1}{\sqrt{\operatorname{var}(X_p)}}\right) \mathbf{\Sigma} \operatorname{diag}\left(\frac{1}{\sqrt{\operatorname{var}(X_1)}}, \dots, \frac{1}{\sqrt{\operatorname{var}(X_p)}}\right)$$

- Loadings and PCs from **R** are not identical to those obtained from Σ
- General advice: Σ is superior when entries of X are of the same units and comparable; otherwise \mathbf{R} is preferred.
 - * Using **R** rather than $\Sigma \Leftrightarrow$ normalizing entries of **X** (i.e., $\{X_i \mathrm{E}(X_i)\}/\sqrt{\mathrm{var}(X_i)}$) before carrying on PCA
 - * Without normalizing, the component with the "smallest" units (e.g., centimeter vs. meter) could be driving most of overall variance.

Sample PCA

- $X = [X_1, \ldots, X_n]_{n \times n}^{\top}$
 - i.e., X_i^{\top} is the *i*th row of X
 - Assuming $oldsymbol{X}_{i\cdot} \overset{ ext{iid}}{\sim} (oldsymbol{\mu}, oldsymbol{\Sigma})$
- Estimate the loadings w_i through the eigenvectors of sample covariance matrix S or sample correlation $matrix \hat{\mathbf{R}}$
- Score matrix of the first s PCs

$$\mathbf{Z} = [Z_{ij}]_{n \times s} = \widetilde{\mathbf{X}} \widehat{\mathbf{W}}$$

- $\tilde{\boldsymbol{X}} = [\boldsymbol{X}_1. \bar{\boldsymbol{X}}_{\text{row}}, \dots, \boldsymbol{X}_n. \bar{\boldsymbol{X}}_{\text{row}}]_{n \times p}^{\top}$: row-centered \boldsymbol{X} (i.e. the sample mean has been subtracted
 - * $\bar{X}_{\text{row}} = n^{-1} \sum_{i=1}^{n'} X_i$.
- $-\widehat{\mathbf{W}} = [\widehat{\boldsymbol{w}}_1, \dots, \widehat{\boldsymbol{w}}_s]_{p \times s} \colon \widehat{\boldsymbol{w}}_j \text{ is the estimate of } \boldsymbol{w}_j \\ -Z_{ij} = (\boldsymbol{X}_{i\cdot} \bar{\boldsymbol{X}}_{row})^{\top} \widehat{\boldsymbol{w}}_j \colon \text{the } j\text{th PC score for the } i\text{th observation}$

Geometric interpretation of (sample) PCA

- The definition of PCA as a linear combination that maximises variance is due to H. Hotelling (1933, Journal of Educational Psychology, 24, 417–441).
- PCA was introduced earlier by K. Pearson (1901, Philosophical Magazine, Series 6, 2(11), 559–572) to minimize the overall error in reconstructing data points

$$(ar{m{X}}_{\mathrm{row}}, \widehat{m{\mathbf{W}}}, m{Z}_{i\cdot}) = rg\min_{m{ heta}, m{\mathbf{A}}, m{\mathbf{B}}_i} \sum_{i=1}^n (m{X}_{i\cdot} - m{ heta} - m{\mathbf{A}} m{\mathbf{B}}_i)^ op (m{X}_{i\cdot} - m{ heta} - m{\mathbf{A}} m{\mathbf{B}}_i)$$

 $- \mathbf{Z}_{i \cdot} = [Z_{i1}, \dots, Z_{is}]$: the *i*th row of score matrix \mathbf{Z}

Application of (sample) PCA

- Image compression: mnist is a list with two components: train and test. Each of these is a list with two components: images and labels.
 - The images component is a matrix with each row for one image consisting of $28 \times 28 = 784$ entries (pixels). Their value are integers between 0 and 255 representing grey scale.

- The labels con	mponents is a vector	representing the digit	shown in the image

- PC regression (PCR): regression on PC scores
 - 1. Perform PCA on the observed data matrix of explanatory variables, usually centered
 - 2. Regress the outcome vector(s) on the selected PCs as covariates using linear regression to get a vector of estimated regression coefficients
 - 3. Transform this coefficient vector back to the scale of the actual covariates
- Note that the prediction of PCR is identical to that of linear regression, when all the PCs are included.
- Example of PCR: dataset Prostate comes from a study that examined the correlation between the level of prostate-specific antigen and a number of clinical measures in men who were about to receive a radical prostatectomy; see Stamey et al, 1989, Journal of Urology 141(5), 1076–1083.
 - lcavol: log(cancer volume)
 - lweight: log(prostate weight)
 - age: patient age
 - lbph: log(benign prostatic hyperplasia amount)
 - svi: seminal vesicle invasion
 - lcp: log(capsular penetration)
 - gleason: Gleason score
 - pgg45: percentage Gleason scores 4 or 5
 - lpsa: log(prostate specific antigen)

Summary of PCA

- Procedure
 - 1. Create PCs which are weighted sums of (centered) explanatory variables, with eigenvectors of (sample) correlation/covariance matrix taken as weights.
 - 2. Take PCs as surrogates of (centered) explanatory variables for various techniques
- Pros and cons
 - Doable without strong distribution assumption
 - Uninterpretable PCs
 - Not involving response; abandoned PCs possibly related to response