Advanced Manufacturing Processes

Unit 1: Introduction to Non-Traditional Machining (NTM)

३ 1.1 Basic Concept of Non-Traditional Machining (NTM)

Definition:

Non-Traditional Machining (NTM) refers to those machining processes that **remove material** from the workpiece **without using traditional cutting tools** like in lathes, milling, etc.

◆ These use ♠ energy, ♠ water, ♀ light, or ⋄ chemical reactions instead of sharp cutting tools.

Main Idea:

→ NTM = Material removed by non-mechanical methods.

Example:

• Laser beam cutting, EDM (Electric Discharge Machining), Water Jet Cutting, etc.

1.2 Necessity of Non-Traditional Machining

- ★ Traditional methods can't do everything. So NTM is needed when:
 - 1. Material is **very hard or brittle** (e.g., ceramics, hardened steel).
 - Complex shapes needed (tiny holes, deep cavities).
 - 3. Heat-sensitive materials (no tool contact = no heat damage).
 - 4. Very **tight tolerances** and **good surface finish** required.
 - 5. Machining of materials that are **non-conductive** or **non-metallic** (e.g., glass, plastic).

Real-life example:

Making micro-holes in spectacle frames using lasers (traditional drill won't work).

*** 1.3 Classification of Non-Traditional Machining Processes**

Based on Energy Used:

Туре	Process	Example
Mechanical	Uses mechanical energy	Water Jet Machining (WJM)
∳ Electrical	Uses spark discharge	Electric Discharge Machining (EDM)
% Thermal	Uses heat energy	Laser Beam Machining (LBM), Plasma Arc
Chemical	Uses chemical reaction	Chemical Machining (CHM)
Electrochemical	Combo of electricity + chemical	Electrochemical Machining (ECM)

✓ 1.4 Advantages, Limitations & Field of Applications

Advantages:

- Can cut any material, even the hardest ones
- No tool wear (since no contact in most methods)
- Can create **micro features** and complex shapes
- Excellent surface finish

Limitations:

- High cost of machines 🤑
- Slow material removal rate
- Skilled operator required
- Some methods not suitable for mass production

Field of Applications:

- Aerospace 🛪 (e.g., turbine blade machining)
- Medical (e.g., surgical tools)
- **Electronics (e.g.**, micro-holes in circuit boards)
- Automobile 🚜 (e.g., fuel injector nozzle)

1.5 Comparison: Traditional vs Non-Traditional Machining

Feature	Traditional	Non-Traditional
Tool Contact	Yes (tool touches work)	No/Minimum contact
Tool Wear	High	Low/None
Accuracy	Moderate	Very High
Material Type	Only soft & ductile	Any material
Surface Finish	Normal	Excellent
Cost	Cheaper	Expensive

Quick Revision:

- NTM = No cutting tool. Uses ♠, ♠, ♀ or ➢ instead.
- Useful for hard, brittle, or heat-sensitive materials.
- High precision, low tool wear, but expensive and slow.
- Types = Mechanical, Electrical, Thermal, Chemical, Electrochemical.