Softwaretechnik

Projektmanagement

Prof. Dr.-Ing. Norbert Siegmund Software Systems

Inhalt

- Aufgaben des Projektmanagements
 - Projektplanung
 - Projektzeitplan
 - Reagieren auf Terminprobleme
- Risikomanagement

Lernziele

- Aufgaben des Projektmanagements verstehen
- Nötiges Wissen über die Formalitäten von Projekten erfahren
- Zeitpläne für Projekte erstellen
- Grundlegendes Verständnis für Risikomanagement haben

Warum Projektmanagement?

• Viele Softwareprodukte wurde innerhalb eines *Projektes* erstellt (im Gegensatz zum produzierenden Gewerbe)

Projektherausforderung = rechtzeitige Auslieferung im festgelegten Budget

- Kernmerkmale eines Projektes
 - Zeitlich abgeschlossen
 - Definiertes Ziel
 - Einmaliges Unterfangen
 - Ressourcenbeschränkung

Was ist Projektmanagement?

Project Management = *Plan the work* and *work the plan*

- Managementfunktionen:
 - Planung: Abschätzung und zeitl. Einteilung von Ressourcen
 - Organisation: Wer macht was?
 - Mitarbeiterinnen: Rekrutierung von motivierten Personen
 - *Dirigieren*: Sicherstellung, dass das Team zusammenarbeitet
 - Monitoring (Controlling): Erkenne Abweichungen im Plan und korrigiere Aktionen

Arten von Projekten

- Entwicklungsprojekt ("Wir bauen SW als Produkt")
 - Auftraggeberin und Auftragnehmerin i.d.R. Teil derselben Organisation
 - Nutzende sind in der Regel außerhalb der Organisation
- Auftragsprojekt ("Wir bauen SW als Produkt für Auftraggeber")
 - Auftragnehmerin und Auftraggeberin strikt getrennt
 - Auftraggeberin nicht unbedingt gleich Nutzende
- <u>EDV-Projekt</u>
 - Nutzende, Auftragnehmerin und Auftraggeberin sind Teil der gemeinsamen Organisation
 - Gemeinsame Vorgesetzte
- System-Projekt
 - Nutzende, Auftraggeberin und Auftragnehmerin evtl. vermischt
 - Projektteam nur teilweise Teil der Organisation
 - Stark unterschiedliche Kompetenzen

Aufgaben während Projektmanagement

- Projektantrag
- Projekt- und Zeitplanung
- Risikomanagement
- Projektkostenkalkulation
- Projektüberwachung
- Auswahl und Beurteilung des Personals
- Präsentation und Erstellen von Berichten

Projektplanung

Projektplanung

Projektplan

- Einführung: Ziele und Randbedingungen festlegen (Pflichtenheft)
- Projektorganisation: Personen, Rollen, Teams
- Risikoanalyse: Beschreibung und Bewertung von Risiken
- Arbeitsaufteilung, Verantwortlichkeiten, Weisungsbefugnisse
- Projektzeitplan: Wer, wann, was? Meilensteine, Lieferschritte
- Überwachungs- und Berichterstattungsinstrumente: Wann und wie wird geprüft und berichtet?
- Der Projektplan wird während des Projekts angepasst

Meilensteine

- Erkennbarer Endpunkt einer Teilaufgabe
- Für Projektmanagerin zur Überwachung/Überprüfung des Fortschritts
- Berichte, Prototypen, fertige Teilsysteme
- Überprüfbarkeit:
 - "Implementierung zu 80% abgeschlossen" kein geeigneter Meilenstein
 - Besser: Anforderung X erfüllt

Lieferschritte

- Projektresultat für Kundin
- Ähnlich Meilenstein, aber für Kundin
- Berichte, Prototypen, fertige Teilsysteme
- Sollten genau wie Meilensteine etwa alle 2-3 Wochen fällig sein

Lastenheft

- Spezifiziert durch Kundinnen / Auftraggeberin
- Beschreibt Sicht der Auftraggeberin
 - Was ist der IST-Zustand und was sind Gründe für das Projekt?
 - Was sind die Ziele des Projektes?
 - Welche Anforderungen gibt es (Katalog, Spezifikation)?
- Wird oft in Ausschreibungen verwendet
- Anforderungen sind sehr allgemein und wenig beschränkend formuliert

Möglicher Aufbau eines Lastenheftes

- Einführung
- Beschreibung des Ist-Zustands
- Beschreibung des Soll-Konzepts
- Beschreibung von Schnittstellen
- Funktionale Anforderungen
- Nichtfunktionale Anforderungen
 - Benutzbarkeit, Zuverlässigkeit, Effizienz, Änderbarkeit, etc.
- Risikoakzeptanz
- Skizze des Entwicklungszyklus und der Systemarchitektur oder auch ein Struktogramm
- Lieferumfang
- Abnahmekriterien

Pflichtenheft

- Spezifiziert durch Auftragnehmerin
 - Fasst alle Anforderungen konkret und vollständig zusammen
 - Bildet Grundlage für vertraglich festgehaltene Leistungen
 - Präzisiert das Lastenheft und beschreibt wie die Anforderungen aus dem Lastenheft realisiert werden
- Folgende Punkte sind enthalten:
 - Funktionale Anforderungen (inkl. Datendefinitionen)
 - Nicht-funktionale Anforderungen (Performance, ...)
 - Anforderungen an technische Realisierung (welche HW/OS,...)
 - Anforderungen an Projektablauf (Meilensteine, Risiko,...)
 - Benutzungsschnittstelle (Wie Präsentation)

Zeitplanung

Zeitplanung

- Zerlegt Projekt in Arbeitspakete (Dauer 1 bis 10 Wochen)
- Arbeitspakete klein genug wählen, dass realistische Kostenschätzung möglich ist
- Abhängigkeiten zwischen Arbeitspaketen definieren und minimieren
- Schätzt Zeiten und Ressourcen
- Erstellt sinnvolle Reihenfolge und Parallelität
- Zeitpuffer einplanen, eventuelle Probleme berücksichtigen
- Softwareunterstützung hilfreich, z.B. Microsoft Project, GanttProject, Kplato, uvm.

Was ist die minimale Projektdauer?

Arbeitspaket	Dauer in Tagen	Abhaengigkeiten
T1	8	
T2	15	
T3	15	T1
T4	10	
T5	10	T2, T4
T6	5	T1, T2
T7	20	T1
Т8	25	T4
Т9	15	T3, T6
T10	15	T5, T7
T11	7	Т9
T12	10	T11

Netzplan

Kritischer Pfad

- Längster Pfad im Netzplan:
 - 55 Tage
 - Puffer T8: 20 Tage

- Verzögerung vom Paketen auf kritischem Pfad -> Gesamtverzögerung
 - Dort besonders genau planen
 - Zeiten ggf. verkürzen durch Projektaufgaben umstrukturieren;
 - Pessimistisch planen
- Andere Pakete ggf. unkritisch, berechenbarer Puffer

Gantt-Diagramm

Gantt-Diagramm für Ressourcen

Zeitplanung

- Zeitplan ändert sich ständig
- Erfahrung zum Schätzen notwendig
- Trotzdem schwierig durch Neuartigkeit des Projekts und schnell wechselnde Technologie
- Vergleich mit ähnlichen Projekten zur besseren Zeitplanung (sinnvoll, diese in einer Datenbank zu speichern)

Reagieren auf Zeitprobleme

- Myth:
 - "If we get behind schedule, we can add more programmers and catch up."
- Reality:
 - Adding more people typically slows a project down.

Zeitprobleme I

- Abschätzung der Schwierigkeit eines Problems und die Kosten für die Entwicklung einer Lösung ist schwierig
- Produktivität ist nicht proportional zur Anzahl der Leute die an einer Aufgabe arbeiten
- *Hinzufügen von Leuten* in einer späten Projektphase *verlangsamt* das Projekt durch *Kommunikationsoverhead*
- Das Unerwartete passiert immer.
- Das Herunterfahren von Testen und Reviews ist ein *Rezept für ein Desaster*.
- Nachts Arbeiten? Nur ein kurzfristiger Nutzen!

Zeitprobleme II

- Personalmangel (Krankheit, Fluktuation, ...)
- Fehlende Qualifikation
- Unvorhergesehene Schwierigkeiten
- Unrealistische Aufwandsabschätzungen
- Nicht bedachte Abhängigkeiten
- Zusätzliche Leistungsanforderungen
- Typisch bei Studierendenprojekten:
 - Überraschende Prüfungszeit
 - Ungleichmäßige Arbeitsverteilung
 - Einarbeitungszeit unterschätzt

Fast-schon-fertig-Syndrom

- Letzten 10 % der Arbeit -> 40 % der Zeit
- Fortschritt messbar machen
- Nicht nur auf Schätzungen der Entwicklerin verlassen

Umgehen mit Zeitproblemen

• Welche Möglichkeiten gibt es, mit Zeitproblemen umzugehen?

Umgehen mit Zeitproblemen: Planungsphase

- Berichte eindeutig was du weißt und was du nicht weißt und warum!
- Berichte eindeutig was du planst, um das Unwissen abzustellen
- Stelle sicher, dass *alle frühen Meilensteine* erreicht werden können
- Zeitprobleme so *früh wie möglich* entdecken
- Plan to *replan*

Umgehen mit Zeitproblemen: Umsetzungsphase

- Einsatz von zusätzlichem Personal, insb. hochqualifiziertes Personal für spezielle Aufgaben
- Temporäres Erhöhen der Arbeitszeit (Überstunden, Urlaubssperre), aber nur kurzfristig möglich
- Verbesserter Tool- und Methodeneinsatz
- Optimierung der Arbeitsabläufe
- Verschiebung der Deadline
- Geringerer Leistungsumfang
 - Prioritäten vergeben, inkrementelles Ausliefern
 - Fertigstellungstermin verschieben

Kostenschätzung und Risiko

Risiken

• "If you don't actively attack risks, they will actively attack you."

Tom Gilb

- <u>Projektrisiken</u>: Schedule, Ressourcen, Größe, Personal, Moral, ändernde Anforderungen, ...
- <u>Produktrisiken</u>: Technologien (Implementierung, Sprachen), Verifikation, Wartung, ...
- <u>Businessrisiken</u>: Markt, Verkäufe, Management, Standards, ...

Typische Risiken

Risiko	Art	Beschreibung
Personalveraenderung	Projekt	Erfahrenes Personal verlaesst das Projekt vorzeitig, Krankheit
Managementveraenderung	Projekt	Neues Management mit anderen Prioritaeten
Hardware/Software nicht verfuegbar	Projekt	Zulieferung unverzichtbarer Hardware/Software unpuenktlich
Aenderung von Anforderungen	Projekt und Produkt	Mehr Aenderungen als erwartet
Verzoegerung in Spezifikation	Projekt und Produkt	Wichtige Schnittstellen nicht rechtzeitig bekannt
Unterschaetzung des Umfangs	Projekt und Produkt	
Technologieveraenderung	Wirtschaftlich	Neue Technologie verdraengt benutzte
Produktkonkurrenz	Wirtschaftlich	Konkurenzprodukt vorher auf dem Markt

Risikomanagementprozess

Risikoerkennung

- Teamarbeit, Ideensammlung, Checklisten
- Beispiele
 - Technologische Risiken: langsame Datenbank, fehlerhafte Komponente
 - Personenbezogene Risiken: Krankheit, unqualifiziertes Personal
 - Unternehmensbezogene Risiken: Managementwechsel
 - Risiken durch Werkzeuge: Code-Generator ineffizient
 - Anforderungsrisiken: Kundin versteht Konsequenzen von Anforderungsänderungen nicht
 - Schätzrisiken: Anzahl der Fehlerbehebungen wird unterschätzt

Risikoanalyse

- Schätzung von Wahrscheinlichkeit und Auswirkungen
- Erfahrung des Projektleiters nötig
- Grobe Skalen reichen
 - gering (<10%), niedrig (<25%), mittel (<50%), hoch (<75%), sehr hoch
 - katastrophal, ernst, tolerierbar, unbedeutsam
- Fokus auf die Top-10-Risiken

Risikoplanung

- Vermeidungsstrategien (Risiko vermeiden)
- Minimierungsstrategien (Konsequenzen minimieren)
- Notfallpläne
- -> Erfahrung der Projektleiterin nötig
- Beispiele:
 - Kundinnenakzeptanz unklar: Prototyp entwickeln
 - Krankheit des Personals: Überschneidungen bei Arbeiten einplanen, Abhängigkeiten vermeiden
 - Datenbankleistung: Andere Datenbank kaufen
 - Finanzielle Probleme des Unternehmens: Zusammenfassung an Management, die Beitrag des Projekts erklärt

Typische Strategien im Risikomanagement

- Früh *Prototypen* entwickeln
- Inkrementelle Entwicklung
- Gutes Personal rekrutieren
- Teambildende Maßnahmen
- Wiederverwendung, Komponenten einkaufen

Chief Programming Teams (Beispiel)

- Besteht aus einem Kern von Spezialistinnen, die von anderen unterstützt werden
 - Chefprogrammiererin übernimmt volle Verantwortung für Design, Programmierung, Testen und Installation des Systems
 - Backup-Programmiererin hält sich über den Stand der Arbeiten aktuell und entwickelt Testfälle
 - Bibliothekarin verwaltet sämtliche Information
 - Andere Rollen: Projektadmin, Tool-Dev, Doku-Schreiberin, Sprach-/Systemexpertin, Testerin, und Programmiererin,
 ...
- Erfolgreich, aber mit Problemen:
 - Schwierig einen talentierten Chefprogrammiererin zu finden
 - Kann normale Organisationsstrukturen stören
 - Kann demotivierend für Nicht-Chefprogrammiererin sein

Directing Teams

- Managerin unterstützen / dienen ihrem Team
 - Managerinnen stellen sicher, dass das Team alle notwendigen Ressourcen und Informationen besitzt
 - "The manager's function is not to make people work, it is to make it possible for people to work"

Tom DeMarco

- Verantwortung erfordert Autorität
 - Managerinnen müssen delegieren: Vertraue deinen eigenen Leuten und sie werden dir vertrauen

Was Sie mitgenommen haben sollten:

- Nennen und erklären Sie die Aufgaben einer Projektmanagerin.
- Skizzieren Sie den Prozess zur Projektplanung
- Erklären Sie die Begriffe Meilenstein und Lieferschritt und nennen Sie je ein gutes und ein schlechtes Beispiel. Warum sind diese besonders bei Softwareprojekten notwendig?
- Bestimmen Sie die minimale Projektdauer aus Tabelle X, entweder mit Gantt oder einem Netzplan.
- Nennen/Erklären Sie X typische Zeitprobleme und Techniken, mit diesen umzugehen.
- Nennen/Erklären Sie X typische Risiken und Techniken, mit diesen umzugehen.

