

Tarea 1: funciones periódicas y series trigonométricas de Fourier

Juan Sebastian Manrique Moreno

Ecuaciones Diferenciales, Proyecto Académico de Física, Universidad Distrital Francisco José de Caldas Septiembre de 2022

1. Periodo de una función

- 1. Encontrar el periodo de las siguientes funciones:
 - $a) f(t) = cos(\pi t)$
 - b) $f(t) = \sin(t) + \sin(\frac{t}{2}) + \sin(\frac{t}{5})$

Solución:

Para la solución de este ejercicio, se tiene en cuenta la forma general para hallar el periodo de una función trigonométrica, por tanto, para toda función trigonométrica con periodo natural T_n , se tiene su periodo T_f de la siguiente manera:

$$T_f = \frac{T_n}{B} \tag{1}$$

Dónde B yace de la forma general de una función trigonométrica, la cuál es:

$$f(t) = A\sin(Bx + C) + D$$

Forma usada para cualquier función trigonométrica no necesariamente para la función seno, de esta manera, solo analizando la forma de la función y además conociendo el periodo natural de la función que estemos utilizando, podremos conocer el periodo de dicha función.

Los periodos naturales de las diferentes funciones trigonométricas son:

- Para seno, coseno, secante y cosecante es 2π .
- Para tangente y cotangente es π .

Para una superposición de funciones, se debe buscar el mínimo común múltiplo (m.c.m.) de esta manera se busca en qué instante todas las funciones pertenecientes a la superposición están en fase, o lo que sería igual a que comparten el mismo periodo.

Teniendo todo esto en cuenta y aplicándolo, resulta:

a)
$$f(t) = \cos(\pi t)$$

Tomando (1) y teniendo $B = \pi$ y $T_n = 2\pi$, el periodo T_f de la función es:

$$T_f = \frac{2\pi}{\pi} \Rightarrow T_f = 2 \tag{2}$$

Obteniendo así que el periodo de la función es $T_f = 2$.

b)
$$f(t) = \sin(t) + \sin(\frac{t}{3}) + \sin(\frac{t}{5})$$

Tomando (1) nuevamente y teniendo $B_1=1$, $B_2=\left(\frac{1}{3}\right)$, $B_3=\left(\frac{1}{5}\right)$ y $T_n=2\pi$ para todas las funciones superpuestas, definimos T_f para cada una y posteriormente hallamos el m.c.m. entre ellas, así de esta manera obtener el periodo general de la función, por tanto:

$$T_{f1} = \frac{2\pi}{1} \Rightarrow T_{f1} = 2\pi$$
 (3)

$$T_{f2} = \frac{2\pi}{\frac{1}{3}} \Rightarrow T_{f2} = 6\pi$$
 (4)

$$T_{f3} = \frac{2\pi}{\frac{1}{5}} \Rightarrow T_{f3} = 10\pi$$
 (5)

Usando los resultados obtenidos en (3), (4) y (5)

De esta manera se concluye qué:

$$T_f = 30\pi \tag{6}$$

- 2. Si f(t) es una función periódica de t con periodo T, demostrar que f(at), para $a \neq 0$, es una función periódica de t con periodo $\frac{T}{a}$.
- 2. Sección 1

$$Ecuaciones$$
 (7)

$$texto1 = texto - - - 2$$

$$texto - - - 2 = texto - - - - - 3$$

$$texto - - - - - 3 = texto4$$

Solución:

A la hora de demostrar que una función f(t) posee un periodo T y lo que implicaría que tiene la forma f(t+T)

3. Sección 2

 ${\rm \footnotemark{w}Texto}{}^{\circ}$

3.1. Subsección 1

«Variación entre dos y una columna» —

3.2. Subsección 2

 ${\rm ~`Texto")}$

Figura 1: Inserción de una figura

3.2.1. Subsubsección 1

4. Conclusiones

<Texto>

«Conclusión»

5. Anexos

 \ll Anexo \gg