

### **CONJUNTOS LEBESGUE MESURABLES**

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 08) 06.FEBRERO.2023

**Ejemplo 5:** Todo cerrado  $F \subseteq \mathbb{R}^n$  es Lebesgue-mesurable.

**Prueba:** Sea  $F \subseteq \mathbb{R}^n$  un conjunto cerrado. Separamos la prueba en dos casos:

• Si *F* es compacto, dado  $\varepsilon >$  0, tomemos  $G \subseteq \mathbb{R}^n$  un abierto tal que

$$F \subseteq G$$
 y  $|G| \le |F|_e + \varepsilon$ .

Como G es abierto y F cerrado, entonces G-F es abierto. Entonces, G-F puede escribirse como una unión enumerable disjunta de intervalos abiertos  $G-F=\bigcup_{b}I_{b}$ . En particular

$$|G-F|_e = |G-F| = \Big|\bigcup_k I_k\Big| \le \sum_k |I_k|.$$

Mostramos ahora que  $\sum_k |I_k| < \varepsilon$ . Observe que  $F \cup \bigcup_k I_k \subseteq G$ , y como F y los  $I_k$  son todos disjuntos, entonces  $|F|_e + \sum_k |I_k|_e = |F \cup \bigcup_k I_k| \le |G|$ , De ahí que  $\sum |I_k| \le |G| - |F|_e < \varepsilon.$ 

 Para el caso general en que F es un cerrado arbitrario, consideremos las intersecciones

$$F_k = F \cap \overline{\mathbb{D}_k(O)} = \{ \mathbf{x} \in F : ||\mathbf{x}|| \le k \}, \qquad k = 1, 2, 3, \dots$$

Cada  $F_k$  es cerrado, pues es la intersección de dos cerrados, y es limitado. Luego, todos los  $F_k$  son compactos, y del punto anterior, todos estos son Lebesgue-mesurables. Además,

$$\bigcup_{k\geq 1} F_k = \bigcup_{k\geq 1} \left( F \cap \overline{\mathbb{D}_k(\mathsf{O})} \right) = F \cap \left( \bigcup_{k\geq 1} \overline{\mathbb{D}_k(\mathsf{O})} \right) = F \cap \mathbb{R}^n = F.$$

Así,  $\emph{F}$  es la unión enumerable de conjuntos mesurables. Portanto  $\emph{F}$  es mesurable.  $\Box$ 

**Ejemplo 6:** El complemento  $E^c$  de cualquier conjunto  $E \subseteq \mathbb{R}^n$  Lebesgue-mesurable, es Lebesgue-mesurable.

**Prueba:** Sea  $E \subseteq \mathbb{R}^n$  mesurable. Para cada  $k \in \mathbb{Z}^+$ , considemos abiertos  $G_k \subseteq \mathbb{R}^n$  con

$$E\subseteq G_k \qquad y \qquad |G_k-E|<rac{1}{k}.$$

Tomamos  $H = \bigcup_{k>1} G_k^c$ . Entonces H es mesurable, por ser unión enumerable de cerrados.

Además, 
$$E \subseteq G_k \ \forall k \Rightarrow G_k^c \subseteq E^c \ \forall k \Rightarrow H = \bigcup_{k>0} G_k^c \subseteq E^c.$$

Escribimos  $E^c = H \cup (E^c - H) = H \cup Z$ . Entonces, para cada  $k \ge 1$ 

$$Z=E^c-H=E^c-\bigcup_k G_k^c\subseteq E^c-G_k^c=E^c\cap G_k=G_k\cap E^c=G_k-E,$$

y  $|Z|_e \le |G_k - E| < \frac{1}{k}$ , para todo  $k \ge 1$ . Portanto  $|Z|_e = 0$ , y Z es mesurable. Así,  $E^c = H \cup Z$  es unión de mesurables, y es mesurable.

**Ejemplo 7:** Toda intersección enumerable  $E = \bigcap_{k \geq 1} E_k$  de conjuntos Lebesgue-mesurables  $E_k \subseteq \mathbb{R}^n$ , es Lebesgue-mesurable.

**Prueba:** Sea  $E = \bigcap_{k \ge 1} E_k$ , donde los  $E_k \subseteq \mathbb{R}^n$  son mesurables, para  $k = 1, 2, 3, \ldots$  De la

propiedad anterior, los  $E_k^c$  son todos mesurables, y portanto la unión enumerable  $\bigcup_k E_k^c$ , es mesurable.

Luego,

$$E = \bigcap_{k \ge 1} E_k = \Big(\bigcup_{k \ge 1} E_k^{\mathsf{c}}\Big)^{\mathsf{c}}$$

es el complemento de un mesurable. Portanto es Lebesgue-mesurable.  $\Box$ 

**Ejemplo 8:** Si  $E_1, E_2 \subseteq \mathbb{R}^n$  son Lebesgue-mesurables, entonces  $E_1 - E_2$  es Lebesgue-mesurable.

**Preuba:** De la propiedad anterior, si  $E_1$ ,  $E_2$  son mesurables, entonces  $E_2^c$  es también mesurable. De ahí que  $E_1 - E_2 = E_1 \cap E_2^c$  corresponde a una intersección de mesurables. Portanto, es Lebesgue-mesurable.

Para mostrar la igualdad, observe que vale la unión disjunta  $E_1=E_2\cup(E_1-E_2)$ , de modo que

$$|E_1|_e = |E_2|_e + |E_1 - E_2|_e.$$

Como todos estos conjuntos son mesurables, obtenemos

$$|E_1| = |E_1|_e = |E_2|_e + |E_1 - E_2|_e = |E_2| + |E_1 - E_2|,$$

de modo que  $|E_1-E_2|=|E_1|-|E_2|$ .  $\square$ 

#### Definición

Sea X un conjunto no vacío. Una  $\sigma$ -álgebra  $\mathcal F$  en X, es una colección de subconjuntos de X que satisface

- i)  $A \in \mathcal{F} \implies A^c \in \mathcal{F}$ ,
- ii)  $\{A_i\}_{i=1}^{\infty} \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ ,

**Nota:** La propiedad de que  $\varnothing$ ,  $X \in \mathcal{F}$ , se deduce de las propiedades (i) y (ii) en la defición. Basta tomar la colección vacía  $L = \{\}$ , y obtenemos que  $\varnothing = \bigcup_{A_i \in L} A_i \in \mathcal{F}$ . De (i), tenemos que  $X = \varnothing^c \in \mathcal{F}$ .

### Proposición

La colección de conjuntos Lebesgue-mesurables de  $\mathbb{R}^n$  es una  $\sigma$ -álgebra.  $\Box$ 

### Proposición

Sea  $\{E_k\}_{k\geq 1}$  una colección enumerable de conjuntos mesurables en  $\mathbb{R}^n$ . Entonces los conjuntos  $\liminf_k E_k$  y  $\limsup_k E_k$  son Lebesque-mesurables.

Prueba: Basta recordar que

$$\lim_{k}\inf E_{k}=\bigcup_{n=1}^{\infty}\bigcap_{k\geq n}E_{k}\qquad y\qquad \lim_{k}\sup E_{k}=\bigcap_{n=1}^{\infty}\bigcup_{k\geq n}E_{k}.$$

Luego, como intersecciones enumerables o uniones enumerables de mesurables son mesurables, se sigue el resultado.  $_{\square}$ 

Las  $\sigma$ -álgebras de un conjunto no vacío X, también forman estructuras particulares.

#### Proposición

Sea X un conjunto no vacío, y sea  $\{\mathcal{F}_\ell\}_{\ell\in\Lambda}$  una colección arbitraria de  $\sigma$ -álgebras de X. Entonces, la intersección  $\mathcal{F}=\bigcap\mathcal{F}_\ell$  es también una  $\sigma$ -álgebra.

**Prueba:** Mostramos las propiedades (i) y (ii) en la definición de  $\sigma$ -álgebra.

- i) Sea  $A \in \mathcal{F} = \bigcap_{\ell} \mathcal{F}_{\ell}$ . Entonces  $A \in \mathcal{F}_{\ell}$ , para todo  $\ell \in \Lambda$ . Luego, como cada  $\mathcal{F}_{\ell}$  es  $\sigma$ -álgebra, tenemos que  $A^c \in \mathcal{F}_{\ell}$ , para todo  $\ell \in \Lambda$ . Portanto,  $A^c \in \bigcap_{\ell} \mathcal{F}_{\ell} = \mathcal{F}$ .
- ii) Sea  $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ , una colección enumerable de conjuntos en  $\mathcal{F} = \bigcap_{\ell} \mathcal{F}_{\ell}$ . De nuevo,  $\{A_i\}_{i=1}^{\infty} \subseteq \in \mathcal{F}_{\ell}$ , para todo  $\ell \in \Lambda$ . Como cada  $\mathcal{F}_{\ell}$  es  $\sigma$ -álgebra, tenemos que  $\bigcup_i A_i \in \mathcal{F}_{\ell}$ , para todo  $\ell \in \Lambda$ . Portanto,  $\bigcup_i A_i \in \bigcap_{\ell} \mathcal{F}_{\ell} = \mathcal{F}$ .

Esto muestra que la intersección  $\mathcal{F}=\bigcap_\ell \mathcal{F}_\ell$  es también  $\sigma$ -álgebra de X.  $\square$ 



**Obs!** Contrario a la propiedad que acabamos de mostrar, la unión de  $\sigma$ -álgebras en X no necesariamente es de nuevo una  $\sigma$ -álgebra en X. (Buscar un contra-ejemplo!)

Dada una colección  $\mathcal C$  de subconjuntos de X, consideramos la familia de todas las  $\sigma$ -álgebras de X que contienen a  $\mathcal C$ :

$$\Phi = \{ \mathcal{F} : \mathcal{F} \text{ es } \sigma\text{-\'algebra de } X, \text{ y } \mathcal{C} \subseteq \mathcal{F} \}.$$

Claramente la familia  $\Phi$  es no vacía, ya que al menos  $\mathcal{P}(X)$ , el conjunto potencia de X, es una  $\sigma$ -álgebra de X que contiene a  $\mathcal{C}$ .

Definimos  $\sigma(\mathcal{C}) = \bigcap \Phi = \bigcap_{\mathcal{F} \in \Phi} \mathcal{F}$ . Observe que  $\sigma(\mathcal{C})$  es una  $\sigma$ -álgebra (proposición anterior), y además  $\mathcal{C} \subseteq \sigma(\mathcal{C})$ .

#### Definición

A  $\sigma(C)$  se le llama la  $\sigma$ -álgebra generada por C. Esta es la menor  $\sigma$ -álgebra de X que contiene a C.

De lo anterior tenemos

#### Proposición

Sea X un conjunto no-vacío. Las  $\sigma$ -álgebras de X forman un conjunto ordenado con la inclusión.

Además, esta estructura es un retículo: Si  $\mathcal{A}, \mathcal{B}$  son  $\sigma$ -álgebras de X, entonces su ínfimo es  $\mathcal{A} \cap \mathcal{B}$ , y su supremo es  $\sigma(\mathcal{A} \cup \mathcal{B})$ .



#### Definición

Sea X un espacio topológico. La menor  $\sigma$ -álgebra de X que contiene a todos los abiertos de X se llama la  $\sigma$ -álgebra de Borel de X, denotada por  $\mathcal{B}(X)$ .

Nos interesa el caso particular en que  $X=\mathbb{R}^n$ , y su álgebra de Borel  $\mathcal{B}(\mathbb{R}^n)$ . A los elementos de  $\mathcal{B}(\mathbb{R}^n)$  les llamamos los **borelianos** de  $\mathbb{R}^n$ .

#### **Teorema**

Todo boreliano de  $\mathbb{R}^n$  es Lebesgue-mesurable.

**Prueba:** Sea  $\mathcal{M}$  la colección de todos los conjuntos Lebesgue-mesurables en  $\mathbb{R}^n$ . Sabemos que  $\mathcal{M}$  es una  $\sigma$ -álgebra y que  $\mathcal{M}$  contiene a todos los abiertos de  $\mathbb{R}^n$ . En particular,  $\mathcal{M}$  es una  $\sigma$ -álgebra en la familia  $\Phi$  de  $\sigma$ -álgebras que define a  $\mathcal{B}(\mathbb{R}^n)$ . Así

$$\mathcal{B}(\mathbb{R}^n) = \bigcap \Phi \subseteq \mathcal{M}.$$