Last name(s)	Name	ID
Midterm EDA exam	Length: 2h45min	11/11/2019
 The exam has 7 sheets, 14 sid Write your full name and ID Write your answers to all pro Unless otherwise indicated, a Whenever we mention cost, a 	on every sheet. oblems in the exam sheets within all your answers must be jus	tified.
Problem 1		(1 point)
(a) (0.5 pts.) The solution to the totically $T(n) = \Theta($ answer.		$\Theta(\sqrt{n}) + \Theta(\sqrt{n})$ is asymptot have to justify your
b) (0.5 pts.) For which $X \in \{O, A\}$	$\Omega,\Theta\}$ does it hold that $\log_2(n)$	$Y(\log_2(\log_2(n^2))?$

Last name(s)	Name		ID	
Problem 2			(2.5	points)
Given a natural number $n \ge 1$, any function of integers and be represented as a vector of integers				$., n-1$ }
For example, if $n = 5$ and $f(0) = 2$, $f(1)$ unction f can be represented by the vectors this representation of functions.				
(a) (0.75 pts.) Consider the following code	e:			
<pre>int i, vector <i ())="" (i="" <="" f.="" if="" mystery_aux(f,g,i+1,r);="" pre="" r[i]="f[g[i]];" size="" {="" }=""></i></pre>	nt >& <i>r</i>) {			
<pre>vector < int> mystery(const vector // Precondition: f and g have f // they contain numbers betwee vector < int> r(f. size ()); mystery_aux(f,g,0,r); return r; }</pre>	the same size an	nd	' <int>& g</int>){
What does the function <i>mystery</i> return	ı? You do not ha	ve to j	ustify you	r answer.
If we denote by n the size of f , what is	s the cost of <i>mys</i>	tery a	s a functio	n of <i>n</i> ?

(b) (0.75 pts.) Let us now consider the following code:	
<pre>vector < int > mystery_2(const vector < int > & f, int k) { if (k == 0) { vector < int > r(f. size ()); for (int i = 0; i < f. size (); ++i) r[i] = i; return r; } else return mystery(f, mystery_2(f,k-1));</pre>	
}	
What does the function <i>mystery</i> _2 return? You do not have to justify your answer.	
What is the cost of $mystery_2$ as a function of only k ?	

(c) (1 pt.) Complete the following function so that it returns the same vector as $mystery_2$ but it is asymptotically more efficient. Analyze its cost as a function of k.

```
vector <int> mystery_2_quick(const vector <int>& f, int k) {
    if (k == 0) {
        vector <int> r(f. size ());
        for (int i = 0; i < f. size (); ++i) r[i] = i;
        return r;
    }
}</pre>
```

Cost analysis as a function of *k*:

Last name(s)	Name	ID

Problem 3 (3.25 points)

Given a set S of m = 2n different integers, we want to put them in pairs so that the sum of their products is maximum. That is, we look for the maximum expression of the form $x_0*x_1 + x_2*x_3 + \ldots + x_{2n-2}*x_{2n-1}$, where the x_i 's are all the elements of S.

For example, if $S = \{5, 6, 1, 3, 8, 4\}$, two possible expressions are 1*5 + 6*3 + 4*8, that adds 55, and 5*4 + 1*8 + 3*6, that adds 46. Between these two expressions, we prefer the first one. However, there are still better expressions.

The function *max_sum* computes the maximum sum of products in *S*:

```
int pos_max (const vector < int>& v, int l, int r) {
   int p = l;
   for (int j = l + 1; j ≤ r; ++j)
      if (v[j] > v[p]) p = j;
   return p;
}

int max_sum (vector < int>& S) {
   int sum = 0;
   int m = S. size ();
   for (int i = 0; i < m; ++i) {
      int p = pos_max(S,i,m-1);
      swap(S[i], S[p]);
      if (i%2 == 1) sum += S[i-1]*S[i];
   }
   return sum;
}</pre>
```

(a) (1 pt.) Analyze the worst-case cost of *max_sum* as a function of *m*, the number of elements in *S*.

(
(1.25 p	ots.) Prove that the	function <i>max_sur</i>	m returns the max	kimum sum of pro	0-
expres	first prove that if x is sion that contains to maximum. Then, along on x .	the products $x_0 *$	x y and $x_1 * z$, for	some $y, z \in S$ car	n-
nduct					
nduct					
nduct					
nduci					
nduct					
nduci					
nduc					
nduci					

Last name(s)	Name	ID
)

Last name(s)	Name	ID	

Problem 4 (3.25 points)

An important multi-sport event will be held during the next $n \ge 3$ days. We know that there exists an important black market buying and selling tickets and we want to take profit from it. We know that we can always buy or sell a ticket and we also know the prices of the tickets for every day, given as a sequence $(p_0, p_1, \ldots, p_{n-1})$.

(a) (1.25 pts.) We have realized that the sequence of prices has a very particular form. There is a unique day $0 \le d \le n-1$ with minimum price p_d and we know that $p_1 > p_2 > \cdots > p_d$ and $p_d < p_{d+1} < \cdots < p_{n-1}$.

Our goal is to buy a ticket on day c and sell it on day v with $0 \le c \le v \le n-1$ so that we maximize our profit. That is, we want $p_v - p_c$ to be maximum. Fill in the gaps in the following code so that function max_profit returns the pair < c, v > in time $\Theta(\log n)$ and analyze why the resulting function has this cost.

Note: the expression ($B ? E_T : E_F$) is equivalent to E_T if the Boolean expression B is true, and is equivalent to E_F otherwise.

Cost analysis:

(b) (1 pt.) From now on, assume that the sequence *p* does not have the form mentioned in part a), but it is an arbitrary sequence of natural numbers.

Given a day k, in which we need to have a ticket, we want to discover which is the maximum profit we can take by buying the ticket in a certain day c and selling it in a certain day v, but making sure that we have the ticket on day k. That is, not every pair (c,v) is valid, we need that $0 \le c \le k \le v \le n-1$. Implement a function with cost $\Theta(n)$ that computes this maximum profit.

Last name(s)	Name	ID
(1 pt.) We finally tackle the gen any form and we want to com ponds to buying the ticket on d at a high level how you would ximum profit and analyze its o points.	npute the maximum p lay c and selling it after d implement a functior	rofit $p_v - p_c$ that corresrwards on day v . Explain that computes this ma-
<i>Hint:</i> the function of part b) car algorithm.	n be useful to impleme	nt a divider-and-conquer