Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin

Métodos de Resíduos Ponderados Material do Professor Luis Paulo da Silva Barra

Prof. Joventino de Oliveira Campos - joventino.campos@ufjf.br Departamento de Ciência da Computação Universidade Federal de Juiz de Fora

Conteúdo

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin

- 1 Introdução
- 2 Método dos Momentos
- Método da Colocação
- 4 Método de Galerkin

Conteúdo

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin

- Introdução
- 2 Método dos Momentos
- 3 Método da Colocação
- 4 Método de Galerkin

Resíduos Ponderados

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin Considere o PVC:

$$\frac{d^2u(x)}{dx^2} - 4u(x) = 4x \quad \text{com} \quad u(0) = u(1) = 0$$

Pode ser reescrita como:

$$\mathcal{L}(u)-f=0$$

onde o operador diferencial linear, \mathcal{L} , e o termo forçado, f, são dados por:

$$\mathcal{L}() = \frac{d^2()}{dx^2} - 4()$$
$$f = 4x$$

Resíduos Ponderados

Introdução

Utilizando uma solução aproximada $\tilde{u}(x)$:

$$\varepsilon(x) \equiv \mathcal{L}(\tilde{u}) - f \neq 0$$

onde $\varepsilon(x)$ é uma função de x que expressa o erro (ou resíduo) da aproximação.

Métodos de Resíduos Ponderados:

determina-se os parâmetros de uma função $\tilde{u}(x)$, de uma família previamente escolhida, de modo que a função resíduo se anule, em um sentido médio, ao longo do domínio. Isto é:

$$\int_{\Omega} \omega(x)\varepsilon(x)dx = 0$$

onde a função $\omega(x)$ pondera o erro ao longo do domínio Ω .

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin

Resíduos Ponderados

Funções de Aproximação

- combinações lineares de funções, $\tilde{u}(x) = \sum \alpha_i \Phi_i(x)$.
- formam uma base para o espaço de soluções.
- satisfazem as condições de contorno.

Funções de Ponderação

• funções de peso ou test functions, $\omega_i(x)$.

Resíduos Ponderados

Introdução

Método dos

Método da Colocação

Método de Galerkin Lembrando que o operador $\mathcal L$ é linear, e escolhidas as funções de aproximação, a sentença de resíduos ponderados fica:

$$\int_{\Omega} \omega(x)\varepsilon(x)dx = \int_{\Omega} \omega(x)\{\mathcal{L}[\tilde{u}(x)] - f(x)\}dx$$

$$= \int_{\Omega} \sum_{j=1}^{N} \omega(x)\{\mathcal{L}[\Phi_{j}(x)]\}\alpha_{j}dx - \int_{\Omega} \omega(x)f(x)dx$$

$$= \sum_{j=1}^{N} A_{j}\alpha_{j} - b$$

onde A_i e b são valores algébricos:

$$A_{j} = \int_{\Omega} \omega(x) \mathcal{L} \left[\Phi_{j}(x) \right] dx$$
$$b = \int_{\Omega} \omega(x) f(x) dx$$

Introducão

Método dos

Método da Colocação

Método de Galerkin

Resíduos Ponderados

Igualando a zero o resíduo, obtém-se:

$$\sum_{j=1}^{N} A_j \alpha_j = b$$

Utilizando N funções de ponderação, linearmente independentes, $\omega_i(x)$:

$$\sum_{i=1}^{N} A_{ij} \alpha_j = b_i, \quad \text{com} \quad i = 1, N$$

onde:

$$A_{ij} = \int_{\Omega} \omega_i(x) \mathcal{L} \left[\Phi_j(x) \right] dx$$
 e $b_i = \int_{\Omega} \omega_i(x) f(x) dx$

A solução do sistema de equações algébricas lineares acima fornece os valores dos α_j que determinam a solução desejada.

Métodos de Resíduos Ponderados

Introdução

Método dos

Método da Colocação

Método d Galerkin

Serão exemplificados a seguir os seguintes métodos:

• Momentos, $\omega_i = x^{i-1}$

- Colocação, $\omega_i = \delta (\xi_i x)$
- Galerkin, $\omega_i = \Phi_i$

Exemplos

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin Tendo em vista o PVC modelo:

$$\frac{d^2u(x)}{dx^2} - 4u(x) = 4x \quad \text{com} \quad u(0) = u(1) = 0$$

São utilizadas como funções de interpolação:

$$\Phi_j(x) = x^j(1-x)$$
 uma vez que $\Phi_j(0) = \Phi_j(1) = 0$

Conteúdo

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin

- 1 Introdução
- 2 Método dos Momentos
- 3 Método da Colocação
- 4 Método de Galerkin

Introdução

Método dos Momentos (N = 1)

Solução aproximada da forma: $\tilde{u}_1 = \alpha_1 x (1 - x)$

 $b_1 = \int_0^1 1(4x) dx = 2$

Logo, com $\omega_1 = x^{1-1} = 1$:

Portanto:

 $\mathcal{L}\left[\Phi_{1}(x)\right] = \frac{d^{2}}{dx^{2}}(x(1-x)) - 4x(1-x)$

= -2 - 4x(1-x) $= -2 - 4x + 4x^2$

 $A_{11} = \int_{2}^{1} 1(-2 - 4x + 4x^{2}) dx = -\frac{8}{3}$

 $\frac{8}{2}\alpha_1 = 2 \to \alpha_1 = -\frac{3}{4} \to \tilde{u}_1 = -\frac{3}{4}x(1-x)$

Método dos Momentos

Introdução

Método dos Momentos

Método da

Método de Galerkin

Método dos Momentos (N = 2)

Solução aproximada da forma: $\tilde{u}_2 = \alpha_1 x (1-x) + \alpha_2 x^2 (1-x)$

$$\mathcal{L}\left[\Phi_2(x)\right] = \frac{d^2}{dx^2} \left(x^2(1-x)\right) - 4x^2(1-x)$$
$$= \frac{d}{dx} \left(2x(1-x) + x^2\right) - 4x^2(1-x)$$
$$= 2 - 6x - 4x^2 + 4x^3$$

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin

Método dos Momentos (N = 2)

Logo, com $\omega_2(x) = x^{2-1} = x$, tem-se:

$$A_{21} = \int_0^1 x \left(-2 - 4x + 4x^2\right) dx = -\frac{4}{3}$$

$$A_{12} = \int_0^1 1 \left(2 - 6x - 4x^2 + 4x^3\right) dx = -\frac{4}{3}$$

$$A_{22} = \int_0^1 x \left(2 - 6x - 4x^2 + 4x^3\right) dx = -\frac{6}{5}$$

$$b_2 = \int_0^1 x (4x) dx = \frac{4}{3}$$

Método dos Momentos (N = 2)

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin Portanto:

$$\left[\begin{array}{cc} \frac{8}{3} & \frac{4}{3} \\ \frac{4}{3} & \frac{6}{5} \end{array}\right] \left\{\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}\right\} = \left\{\begin{array}{c} -2 \\ -\frac{4}{3} \end{array}\right\}$$

Cuja solução fornece: $\alpha_1 = -\frac{7}{16}$ e $\alpha_2 = -\frac{10}{16}$.

$$\tilde{u}_2 = -\frac{7}{16}(x - x^2) - \frac{10}{16}x(x - x^2)$$

Os resultados obtidos são comparados com a solução exata:

$$u(x) = \frac{e^{2x} - e^{-2x}}{e^2 - e^{-2}} - x$$

Introducão

Método dos Momentos

Método da

Método de Galerkin

Método dos Momentos Soluções

Introdução

Método dos Momentos

Método da Colocação

Método d Galerkin

Método dos Momentos

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin

Conteúdo

1 Introdução

2 Método dos Momentos

3 Método da Colocação

4 Método de Galerkin

Método da Colocação

Introducão

Método dos Momentos

Método da Colocação

Método de Galerkin

Função de ponderação:

É a função Delta de Dirac, $\delta(x-\xi)$, definida como:

$$\int_{\Omega} \delta(x - \xi) f(x) dx = \begin{cases} f(\xi), & \text{se} \quad \xi \in \Omega \\ 0, & \text{se} \quad \xi \notin \Omega \end{cases}$$

Logo:

$$A_{ij} = \int_{\Omega} \delta(x - \xi_i) \mathcal{L} \left[\Phi_j(x) \right] dx = \mathcal{L} \left[\Phi_j(\xi_i) \right]$$

е

$$b_{i} = \int_{\Omega} \delta(x - \xi_{i}) f(x) dx = f(\xi_{i})$$

Introducão

Método dos Momentos

Método da Colocação

Método de Galerkin

Método da Colocação

Solução aproximada da forma: $\tilde{u}_1 = \alpha_1 x (1 - x)$ Mantendo a mesma função de aproximação, tem-se:

$$\mathcal{L}\left[\Phi_1(x)\right] = -2 - 4x + 4x^2$$

Logo usando $\xi_1 = 0.5$:

$$A_{11} = \int_0^1 \delta(x - 0.5) \left(-2 - 4x + 4x^2 \right) dx$$
$$= \left[-2 - 4x + 4x^2 \right]_{x = 0.5} = -3$$
$$b_1 = \int_0^1 \delta(x - 0.5) 4x dx = [4x]_{x = 0.5} = 2$$

Igualando a zero a expressão do resíduo:

$$-3\alpha_{1} = 2 \rightarrow \alpha_{1} = -2/3$$
 $\bar{u} = -2(x - x^{2})/3$

Método da Colocação (N = 2)

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin Adotando $\xi_1 = 0.25 \text{ e } \xi_2 = 0.5$, tem-se:

$$\begin{array}{ll} A_{11} = \begin{bmatrix} 4x^2 - 4x - 2 \end{bmatrix}_{x = 0.25} & A_{21} = \begin{bmatrix} 4x^2 - 4x - 2 \end{bmatrix}_{x = 0.5} \\ A_{12} = \begin{bmatrix} 4x^3 - 4x^2 - 6x + 2 \end{bmatrix}_{x = 0.25} & A_{22} = \begin{bmatrix} 4x^3 - 4x^2 - 6x + 2 \end{bmatrix}_{x = 0.5} \\ b_1 = \begin{bmatrix} 4x \end{bmatrix}_{x = 0.25} & b_2 = \begin{bmatrix} 4x \end{bmatrix}_{x = 0.5} \end{array}$$

Fornecendo:

$$-3\alpha_1 - \frac{3}{2}\alpha_2 = 2$$
$$-\frac{11}{4}\alpha_1 + \frac{5}{16}\alpha_2 = 1$$

Cuja solução é: $\alpha_1 = -0.41975$ e $\alpha_2 = -0.49383$. Logo a aproximação procurada é:

$$\tilde{u} = -0.41975 (x - x^2) - 0.49383x (x - x^2)$$

Método da Colocação

Método da Colocação

(N=2)

Alternativamente, adotando $\xi_1 = 1/3$ e $\xi_2 = 2/3$, tem-se:

$$\begin{aligned} A_{11} &= \begin{bmatrix} 4x^2 - 4x - 2 \end{bmatrix}_{x=1/3} & A_{21} &= \begin{bmatrix} 4x^2 - 4x - 2 \end{bmatrix}_{x=2/3} \\ A_{12} &= \begin{bmatrix} 4x^3 - 4x^2 - 6x + 2 \end{bmatrix}_{x=1/3} & A_{22} &= \begin{bmatrix} 4x^3 - 4x^2 - 6x + 2 \end{bmatrix}_{x=2/3} \\ b_1 &= \begin{bmatrix} 4x \end{bmatrix}_{x=1/3} & b_2 &= \begin{bmatrix} 4x \end{bmatrix}_{x=2/3} \end{aligned}$$

Fornecendo:

$$-\frac{26}{9}\alpha_1 - \frac{8}{27}\alpha_2 = \frac{4}{3}$$
$$-\frac{26}{9}\alpha_1 - \frac{70}{27}\alpha_2 = -\frac{8}{3}$$

cuja solução é $\alpha_1 = -0.40198$ e $\alpha_2 = -0.58064$. Resultando na aproximação:

$$\tilde{u} = -0.40198 (x - x^2) - 0.58064x (x - x^2)$$

Introdução

Método dos

Método da Colocação

Método de Galerkin

Método da Colocação Soluções

Introducão

Método dos

Método da Colocação

Método de Galerkin

Método da Colocação

Conteúdo

Introdução

Método do: Momentos

Método da Colocação

Método de Galerkin

- 1 Introdução
- 2 Método dos Momentos
- 3 Método da Colocação
- 4 Método de Galerkin

Método de Galerkin

(N=1)

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin São utilizadas como funções de ponderação as funções de aproximação.

Logo, com a mesma função de aproximação $\omega_1 = \Phi_1 = (x - x^2)$

$$A_{11} = \int_0^1 (x - x^2) \left[-2 - 4x + 4x^2 \right] dx = -\frac{7}{15}$$

е

$$b_1 = \int_0^1 (x - x^2) 4x dx = \frac{1}{3}$$

que resulta em

$$-\frac{7}{15}\alpha_1 = \frac{1}{3}$$

de onde $\alpha_1 = -5/7$ e $\bar{u} = -5(x - x^2)/7$.

Introdução

Método dos

Método da Colocação

Método de Galerkin

Método de Galerkin (N = 2)

$$A_{11} = \int_0^1 (x - x^2) (4x^2 - 4x - 2) dx$$

$$A_{12} = \int_0^1 (x - x^2) (4x^3 - 4x^2 - 6x + 2) dx$$

$$b_1 = \int_0^1 (x - x^2) (4x) dx$$

$$A_{21} = \int_0^1 x (x - x^2) (4x^2 - 4x - 2) dx$$

$$A_{22} = \int_0^1 x (x - x^2) (4x^3 - 4x^2 - 6x + 2) dx$$

$$b_2 = \int_0^1 x (x - x^2) (4x) dx$$

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin

Método de Galerkin (N = 2)

Fornecendo:

$$-\frac{7}{15}\alpha_1 - \frac{7}{30}\alpha_2 = \frac{1}{3}$$
$$-\frac{7}{30}\alpha_1 - \frac{6}{35}\alpha_2 = \frac{1}{5}$$

cuja solução é $\alpha_1 = -0.40994$ e $\alpha_2 = -0.60870$. Resultando na aproximação:

$$\tilde{u} = -0.40994 (x - x^2) - 0.60870x (x - x^2)$$

Introdução

Método dos

Método da

Método de Galerkin

Método de Galerkin

Introdução

Método dos

Método da

Método de Galerkin

Método de Galerkin

Introducão

Método dos

Método da Colocação

Método de Galerkin

Comparação entre os métodos (N=2)

Soluções

Introducão

Método do

Método da Colocação

Método de Galerkin

Comparação entre os métodos (N=2)

Resíduos

Introdução

Método dos Momentos

Método da Colocação

Método de Galerkin

Características

- Funções de aproximação globais.
- Sistemas de equaçõoes algébricas com matrizes cheias.
- Matrizes, de maneira geral, não simétricas.
- Matrizes simétricas no método de Galerkin, dependendo do operador diferencial L.