Announcements

Project 1: Search

- Due Wed. June 3 at 11:59pm.
- Solo or in group of two. For groups of two, both of you need to submit your code into JOJ!

* Homework 1: Single-agent search

Due Wed. May 27 at 11:59pm.

Homework 2: Multi-agent search

Release Wed., May 27, due Wed, June 3 at 11:59pm.

Project 2: Multi-agent search

Release Wed. June 3, due Wed June 17 at 11:59pm

Ve492: Introduction to Artificial Intelligence

Games with Chance; Decision Theory

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Outline

- Multi-agent search
- * Games with chance
- Decision Theory

Single-Agent Trees

Value of a State

Multi-Agent Applications

Collaborative Maze Solving Adversarial

Team: Collaborative Competition: Adversarial

- * How could we model multi-agent problems?
 - Depends on problem assumptions

Idea 1: Independent Decision-making

 Each agent plans their own actions separately from others => Many single-agent trees

Idea 2: Joint State/Action Spaces

- Combine the states and actions of the N agents
- Search looks through all combinations of all agents' states and actions
- Think of one brain controlling many agents

Idea 3: Coordinated Decision Making

- Each agent proposes their actions and computer confirms the joint plan
- Example: <u>Autonomous driving through intersections</u>

Idea 4: Alternate Searching One Agent at a Time

* Search one agent's actions from a state, search the next agent's actions from those resulting states, etc...

Minimax Search with Two Teams

- Joint State / Action space and search for our team
- Adversarial search to predict the opponent team
- Example: Small Size Robot Soccer

Generalized minimax

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

8,8,1

Three-Person Chess

From Wikipedia

Games with Chance

Search with Random Outcomes

Games with Chance

Probabilities

Reminder: Probabilities

- * A random variable represents an event whose outcome is unknown
- * A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - * Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - \bullet Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one
- * As we get more evidence, probabilities may change:
 - * P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
 - We'll talk about methods for reasoning and updating probabilities later

Reminder: Expectations

 The expected value of a random variable is the average, weighted by the probability distribution over outcomes

Example: How long to get to the airport?

Time: 20 min x Probability: 0.25

+ 30 min x 0.50

+ 60 min x 0.25

35 min

Different Game Trees

Tictactoe, chess *Minimax*

Minimax

```
function decision(s) returns an action
return the action a in Actions(s) with the highest
value(Succ(s,a))
```



```
function value(s) returns a value

if Terminal-Test(s) then return Utility(s)

if Player(s) = MAX / then return max<sub>a in Actions(s)</sub> value(Succ(s,a))

if Player(s) = MIN / then return min<sub>a in Actions(s)</sub> value(Succ(s,a))
```

Expectimax

```
function decision(s) returns an action
return the action a in Actions(s) with the highest
value(Succ(s,a))
```


Expectimax Pseudocode

sum_{a in Outcome(s)} Pr(a) * value(Succ(s,a))

$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Depth-Limited Expectimax

Expectimax Pruning?

Expectiminimax

```
function decision(s) returns an action
return the action a in Actions(s) with the highest
value(Succ(s,a))
```



```
function value(s) returns a value

if Terminal-Test(s) then return Utility(s)

if Player(s) = MAX then return max<sub>a in Actions(s)</sub> value(Succ(s,a)) /

if Player(s) = MIN then return min<sub>a in Actions(s)</sub> value(Succ(s,a)) /

if Player(s) = CHANCE then return sum<sub>a in Actions(s)</sub> Pr(a) * value(Succ(s,a)) /
```

What Values to Use?

- For worst-case minimax reasoning, evaluation fund n scale doesn't matter
 - We just want better states to have higher evaluations (get the order/ / right)
 - Minimax decisions are invariant with respect to monotonic transf /mations on values
- Expectiminimax decisions are invariant with respect to positive affine transformations
- Expectiminimax evaluation functions have to be aligned with actual win probabilities!

Decision Theory

Decision Theory

- Decision problem:
 - ⋄ Choose a ∈ A assuming given preference relation \gtrsim over A
- Often, choice has uncertain outcomes
 - Probability distribution over outcomes
- * Here, we assume single-agent decision-making
- Which decision criterion should we choose?
 - Descriptive /
 - Normative /

Maximum Expected Utility

- * MEU principle:
 - * $\max_{p} \sum_{o} p(o) \times \underline{U}(o)$

- Why is the MEU principle considered rational?
- Where do the utilities come from?
- * Where do the probabilities come from?

St Petersburg Paradox

* Game:

- * How much would you pay to play this game? $3, 4, \dots$
- * Expectation:

*
$$\frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 8 + \frac{1}{16} \cdot 16 + \dots = 1 + 1 + 1 + 1 + \dots = + \infty$$

*
$$EU(L) = \sum_{o \in O} p(o) \log(o)$$

Axiomatization of MEU

- Decision under uncertainty
 - Outcomes: any consequences from a choice
 - * Lotteries: distributions over outcomes
 - ♦ Preference relation over lotteries: ≥
- * Two decision models seen so far: EU and minimax
- Axiomatization of decision model C:
 - * If set of conditions on > are satisfied, $L \gtrsim L' \Leftrightarrow C(L) \geq C(L')$

Transitivity

* For any three lotteries, L, L', and L'':

*
$$(L \gtrsim L')$$
 and $(L' \gtrsim L'') => (L \gtrsim L'')$
 $L'' \gtrsim L$

Is it a reasonable axiom?

Money pump argument:

- * If L' > L'', then an agent with L' would pay (say) 1 cent to get L'
- * If L > L', then an agent with L' would pay (say) 1 cent to get L
- * If L" > L, then an agent with L would pay (say) 1 cent to get L''

Axioms of MEU

* Completeness

- * $L \gtrsim L'$ or $L' \gtrsim L$
- * Transitivity
 - * $(L \gtrsim L')$ and $(L' \gtrsim L'') => (L \gtrsim L'')$

- * $(L \gtrsim L') => [p, L; 1-p, L''] \gtrsim [p, L'; 1-p, L'']$
- * Continuity

*
$$(L \gtrsim L') \gtrsim L'') => \exists p, [p, L; 1-p, L''] \sim L'$$

Characterization of MEU

- * Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944; Machine, 1988]
 - * If \geq satisfies the 4 previous axioms, there exists a utility function $U: O \rightarrow \mathbb{R}$ such that
 - $* L \gtrsim L' \Leftrightarrow EU(L) \geq EU(L')$
 - * $EU(L) = \sum_{o \in O} p_L(o)U(o)$
- If we agree with the 4 axioms, we should apply MEU
- However, most axioms are debatable
- More general axiomatization where probabilities are not assumed to be given (Savage, 1954)
- Decision theory moved to more general notion of rationality

Risk-Sensitive Decision-Making

- Certainty equivalent of lottery L
 - * Outcome o_L such that $U(o_L) = EU(L)$
- Risk-neutral decision-making
 - * $o_L = \sum_{o \in O} p_L(o) \times o$
 - * This is the case if U linear
- Risk-averse decision-making
 - * $o_L < \sum_{o \in O} p_L(o) \times o$
 - * This is the case if U concave
- Risk-seeking decision-making
 - * $o_L > \sum_{o \in O} p_L(o) \times o$
 - This is the case if U convex

Preference Elicitation

- Utility function is unique up to a positive affine transformation
- * How to specify a utility function for a given decision problem?
 - * Assume U is normalized $U(o^+)=1$ and $U(o^-)=0$
 - * Compare any outcome with binary lotteries:
 - * For which p, is this true: $o \sim [p, o^+; 1-p, o^-]$?
 - * The answer gives U(o) = p
 - Extend to a all lotteries

Uncertainty Elicitation

- * How to specify a probability distribution for a given decision problem, if unknown?
 - * For which o, is this true: $[E, o^+; E^c, o^-] \sim [1, o; 0, o^-]$
 - * The answer gives P(E) = U(o)

Allais Paradox (1953)

- What do you prefer?
 - * A: [0.8, \$4k; 0.2; \$0]
 - * B: [1.0, \$3k; 0.0; \$0]
- * What do you prefer?
 - * C: [0.2, \$4k; 0.8; \$0]
 - * D: [0.25, \$3k; 0.75; \$0]
- * Usually, B > A and C > D
- * However, incompatible with MEU! Assuming U(\$0)=0:
 - * B > A => U(\$3k) > 0.8 U(\$4k)
 - * C > D => U(\$4k) > U(\$3k)

Ellsberg Paradox

- * Urn with 30 red balls and 60 other balls, which are either black or yellow.
- * What do you prefer?
 - * A: [R, \$100; B or Y; \$0]
 - * B: [B, \$100; R or Y; \$0]
- What do you prefer?
 - * C: [R or Y, \$100; B; \$0]
 - * D: [B or Y, \$100; R; \$0]
- * Usually, A > B and D > C
- * However, incompatible with MEU!

Summary

- Multi-agent problems can require more space or deeper trees to search
 - * Bounded-depth search and approximate evaluation functions
 - Alpha-beta pruning
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - * Monte Carlo tree search (Go)
 - * Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges lots to do!
 - * $b = 10^{500}$, $|S| = 10^{4000}$, m = 10,000
- Basics of decision theory