

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年11月18日

■ 模型参数测量

1.画出低频小信号电路

并写出 β 、 g_m 、 r_π 、 A_v

计算公式 (课堂测试)

- 2.使 I_B = $60\mu A, E_C$ =15V
- 3.任意波形发生器输出

1KHz、7.5V信号v_b

4. 用示波器测量交流电压

并计算 β 、 g_m 、 r_π 、 A_v

(输出波形不失真)

- 课堂测试中存在的问题:
 - *R_C*串并联?

■ 课堂测试中存在的问题:

■ R_c串并联?

理想直流电压源: 短路

- 根据叠加原理,在分析交流通路时, 直流激励信号置零,即直流电压 $V_{DD}=0$,只有将其短路才能使该处压降为零。
- 从小信号模型的角度理解:交流通路里,所分析的电学量都是变化量 + $\Delta u \times \Delta i$,而直流电压源 v_{in} 的电压恒定,变化量 Δu = 0。

- 课堂测试中存在的问题:
 - r_{π} 未知,能否计算 i_{b} ?

▶ 1. 电流增益:

$$\beta = \frac{\partial i_C}{\partial i_B} \bigg|_{O} = \frac{i_C}{i_b}$$

其中:
$$i_c = \frac{v_{ce}}{R_2 \parallel R_C} = \frac{v_{ce}(R_2 + R_C)}{R_2 \times R_C}$$

$$i_b = ?$$

- 课堂测试中存在的问题:
 - i_b 如何计算?

▶ 1. 电流增益:

$$\beta = \frac{\partial i_C}{\partial i_B} \bigg|_{O} = \frac{i_C}{i_b}$$

其中:
$$i_b = \frac{v_{in} - v_{be}}{R_1} + \frac{v_{be}}{R_B}$$
 ?
$$i_b = \frac{v_{in} - v_{be}}{R_1} - \frac{v_{be}}{R_B}$$
 ?

- 课堂测试中存在的问题:
 - i_b 如何计算?

▶ 1. 电流增益:

$$\beta = \frac{\partial i_C}{\partial i_B} \bigg|_{O} = \frac{i_C}{i_b}$$

其中:
$$i_b = \frac{v_{in} - v_{be}}{R_1} + \frac{v_{be}}{R_B}$$
 ×
$$i_b = \frac{v_{in} - v_{be}}{R_1} - \frac{v_{be}}{R_B} \quad \checkmark$$

- 课堂测试中存在的问题:
 - $v_{in} = v_{be} \text{ or } v_b?$

> 电路的电压增益:

$$A_{v} = \frac{v_{out}}{v_{in}}$$

■ 课堂测试中存在的问题:

$$v_{in} = v_b$$

> 电路的电压增益:

$$A_{v} = \frac{v_{out}}{v_{in}}$$

模型参数

$$\beta = \frac{\partial i_C}{\partial i_B} \bigg|_{Q} = \frac{i_C}{i_b} \quad v_{in} \bigcirc$$

$$g_m = \frac{\partial i_C}{\partial v_{BE}} \bigg|_Q = \frac{i_C}{v_{be}}$$

> 3. 输入电阻:

$$r_{\pi} = \frac{v_{be}}{i_b} = \frac{\beta}{g_m}$$

▶ 4. 电路的电压增益:

$$A_v = \frac{v_{out}}{v_{in}}$$

其中:
$$i_c = \frac{v_{ce}}{R_2 \parallel R_C} = \frac{v_{ce}(R_2 + R_C)}{R_2 \times R_C}$$

$$i_b = \frac{v_{in} - v_{be}}{R_1} - \frac{v_{be}}{R_B}$$

$$v_{out} = v_{ce}$$

- 实验测量中存在的问题:
 - \triangleright 电流增益 β 应该是100,测得却是50
 - 峰值、峰峰值、有效值之间的关系?

- 实验测量中存在的问题:
 - \triangleright 电流增益 β 应该是100,测得却是50
 - ightharpoonup 峰值、峰值: 峰峰值=2 \times 峰值= 2 $\sqrt{2}\times$ 有效值

电压有效值:

把直流电和交流电分别 通过两个相同的电阻器 件,如果在交流电的一 个周期时间内它们产生 的热量相等,那么就把 此直流电的电压作为此 交流电的有效值

- 实验测量中存在的问题:
 - ▶ 任意波形发生器显示的电压与示波器测得的电压差1倍?

- 实验测量中存在的问题:
 - ▶ 任意波形发生器显示的电压与示波器测得的电压差1倍?
 - ➤ 任意波形发生器: Utility->Output Setup->High Z

Back

- 场效应管(Field Effect Transistor, FET)
 - 利用输入回路的电场效应来控制输出回路的电流的半导体器件
 - 仅靠半导体中的多数载流子导电,又称<mark>单极型晶体管</mark>
 - 体积小、重量轻、寿命长、噪音低、热稳定性好、耗电低…
 - 场效应管是现代超大规模数字集成电路的基础器件

■ K656 增强型 NMOS

K656 NMOS

■ Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Ratings	Unit
Drain to Source breakdown voltage	$ m V_{DSS}$	50	V
Gate to Source voltage	V _{GSO}	8	V
Drain current	I_{D}	100	mA
Max drain current	I_{DP}	200	mA
Allowable power dissipation	P_{D}	200	mW
Channel temperature	T_{ch}	150	°C
Storage temperature	T _{stg}	-55 to +150	°C

■ K656 增强型 NMOS

■ 直流通路分析

电容:视为开路。

• 原因: 容抗为 $1/j\omega C$, 直流信号的角频率 $\omega = 0$, 容抗无穷大。

电感:视为短路。线圈电阻另外考虑。

• 原因: 感抗为 $j\omega L$,直流信号的角频率 $\omega = 0$,感抗为零。

理想交流电压源:视为短路。

• 原因:根据叠加原理,在分析直流通路时,交流激励信号置零,即交流电压 $u_i=0$,只有将其短路才能使该处压降为零。

理想交流电流源:视为开路。

• 原因:根据叠加原理,在分析直流通路时,交流激励信号置零,即交流电流 $i_i = 0$,只有将其开路才能使该处无电流。

■ 交流通路分析

电容:如果容值极大,视为短路。如果频率极高,视为短路。

• 原因: 容抗为 $1/j\omega C$, 如果 $C \to \infty$ 或 $\omega \to \infty$, 容抗接近零。

电感:如果感值极大,视为开路。如果频率极高,视为开路。

- 原因: 感抗为 $j\omega L$, 如果 $L \to \infty$ 或 $\omega \to \infty$, 感抗接近无穷大 理想直流电压源: 视为短路。
- 原因:根据叠加原理,在分析交流通路时, 直流激励信号置零,即直流电压 $V_{DD}=0$,只有将其短路才能使该处压降为零。
- 从小信号模型的角度理解:交流通路里,所分析的电学量都是变化量 Δu 、 Δi ,而直流电压源的电压恒定,变化量 $\Delta u = 0$ 。理想直流电流源:视为开路。
- 原因:根据叠加原理,在分析交流通路时,直流激励信号置零,即直流电流 $I_{SS} = 0$,只有将其开路才能使该处无电流。
- 从小信号模型的角度理解:交流通路里,所分析的电学量都是变化量 Δu 、 Δi ,而直流电流源的电流恒定,变化量 $\Delta i = 0$ 。

■ MOS管的低频小信号等效电路

■ MOS管的低频小信号等效电路

▶ 1. 低频跨导:

$$g_m = \frac{\partial i_D}{\partial v_{GS}} \bigg|_Q = \frac{i_d}{v_{gs}}$$

▶ 2. 输出电阻:

$$r_{ds} = r_o = \frac{v_{ds}}{i_d}$$

> 3. 沟道长度调制系数:

$$\lambda \approx \frac{1}{r_{ds} \times I_D}$$

▶ 4. 电路的电压增益:

$$A_{v} = \frac{v_{out}}{v_{in}}$$

■ 恒流区低频跨导(忽略沟道长度调制效应)

$$\therefore I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$\therefore g_m = \frac{\partial I_D}{\partial V_{GS}}$$

$$= \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$= \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

$$= \frac{2I_D}{V_{GS} - V_{TH}}$$

- 恒流区低频跨导(忽略沟道长度调制效应)
 - 直流工作点确定后, I_D 和 g_m 保持不变

- 步骤一:设置直流工作点
- 1.调节 E_G 使 E_G =4.5V左右
- 2.调节 E_D 使 E_D =30V左右
- 3.检查是否处在恒流区
- 4. 测量并记录/D

2: Drain

3: Gate

电压源 产生电压 E_D 和 E_G

手持式万用表1测量电压 V_{cs}

手持式万用表2 测量电压*V*₀。

台式万用表 测量电流/。

- 步骤二:模型参数测量
- 1.画出低频小信号电路

并写出 g_m 、 r_{ds} 、 λ 、 A_v

计算公式 (课堂测试)

2.保持直流工作点不变,

使任意波形发生器输出

1KHz、0.1V信号v_g

 $3.测量不同<math>R_L$ 下的 v_{ds}

通过方程组计算得到r_{ds}

4.计算 g_m 、 λ 、 A_v

- 步骤二:模型参数测量
- 1.画出低频小信号电路

并写出 g_m 、 r_{ds} 、 λ 、 A_v

计算公式(课堂测试)

2.保持直流工作点不变,

使任意波形发生器输出

- 1KHz、0.1V信号v_g
- $3.测量不同<math>R_L$ 下的 v_{ds} ,

通过方程组计算得到 r_{ds}

4.计算 g_m 、 λ 、 A_v

思考题

■思考题:

- 1. MOS管的直流电阻 R_{GS} 和 R_{DS} 如何变化?
- 2. R_L 阻值变化后,低频跨导 g_m 是否变化?为什么?

东族學說其大學 東京族學說其大學 東京族學說其大學

谢谢!