1.					
	vdd E	$E = cl * vdd^2 I$	$D = cl * vdd/(vdd-vt)^gamma E*D$	v t	0.1
	0.8	6.4E-016	1.27192802068645E-015 8.140	034E-031 cl	1E-015
	0.9	8.1E-016	1.20288892499009E-015 9.743	340E-031 gamm	na 1.3
	1	1E-015	1.14679221936466E-015 1.146	679E-030	
	1.1	1.21E-015	1.1E-015 1.3	331E-030	
	1.2	1.44E-015	1.06015839165256E-015 1.526	663E-030	
	1.3	1.69E-015	1.025670187749E-015 1.733	338E-030	
	1.3	1.69E-015	1.025670187749E-015 1.733	338E-030	

Energy vs. Delay

Energy-Delay Product vs. Supply Voltage

ELEC 466 – Assignment 4 Shaun Aiken, V00838297

- 2. The power required to turn off, remain off, and turn back on must be less than the power required to idle for the same period of time.
- 3. Answers assume the all processors must use the same V_{dd} a) $E = C * V_{dd}^2 ((8/8) + (8/8) + (6/8) + (0/8)) = (11/4) * C * V_{dd}^2$ for given schedule
 - b) Reconfiguring the tasks so that task 3 runs on P1 at t=0, task 5 runs on P2 at t=3, and task 6 runs on P2 at t=8, the energy consumption is unchanged:

$$E_{\text{static}} = C * V_{\text{dd}}^2 ((5/8) + (6/8) + (5/8) + (6/8)) = (11/4) * C * V_{\text{dd}}^2$$

c) Using the schedule from b), the voltage can be scaled to $\frac{3}{4}$ of V_{dd} , so the energy is 9/16 (68.75%) of E in part b).

$$E_{scaled} = 11/4 * C * (3/4 * V_{dd})^2$$

d) If all processes are allowed to finish by t=16, then tasks 1, 2, and 6 can be assigned to P1, and tasks 3, 4, and 5 can be assigned to P2. This uses 11/16 time units on each processes, allowing V_{dd} to be scaled by 11/16, giving an energy use of 121/256 (47.27%) of E in part b).

$$E_{scaled} = 11/4 * C * (11/16 * V_{dd})^2$$

4. Answers assume the all processors must use the same V_{dd}

a)
$$E = C * V_{dd}^2 ((8/8) + (0/8) + (0/8) + (6/8) + (8/8) + (8/8)) = (15/4) * C * V_{dd}^2$$
 for given schedule

- b) Starting task 4 at t=0 on P2, and task 6 at t=6 on P2, P1 will be used 8/16, P2 and P3 will be used 11/16. The energy used will remain the same.
- c) Using the following schedule, the voltage can be scaled to 13/16 $\ensuremath{V_{\text{dd}}}\xspace$:
- P1 executes: task 2 at t=0, task 4 at t=3; P2 executes: task 3 at t=0, task 6 at t=0; P3 executes: task 1 at t=0, task 5 at t=2.

$$E_{scaled} = 15/4 * C * (13/16 * V_{dd})^2$$

d) Using the schedule in c), but moving task 5 to t=0, and task 1 to P2 at t=8, energy used is as follows:

$$E_{scaled} = 15/4 * C * (11/16 * V_{dd})^2$$

5. Unscaled, the given tasks schedule with a meta-period of 120 time units, and the only processor idle time is 20 units from t=100 to t=120. This gives a starting point for scaling at $5/6~V_{dd}$.

T1 T2	T3	T4	T1	T4	T2	T4	T5	T1	T3	T5	T2	T1	T5
T1 dea	T1 deadlines												
T2 dea	dlines		•										
T3 dea	dlines												
T4 deadline													
T5 dea	T5 deadline												