生命科学基础 I

物质代谢 脂代谢 β氧化面临的挑战

孔宇

西安交通大学生命科学与技术学院 2020年3月10日

🧇 β-氧化的挑战

- ❖不饱和脂肪酸的氧化
- *奇数脂肪酸的氧化
- ❖含有分支的脂肪酸的氧化

🥗 β-氧化的挑战

β-C含有甲基

生命科学基础I

不饱和脂肪酸的β-氧化

- ❖当顺式的双键进入β号位以后,将不能继续进 行β-氧化。
- ❖需特殊的异构酶即烯脂酰-COA异构酶来改变 双键的位置和性质,使之变为可被脂酰-COA脱 **氢酶识别的2号位的反式双键**

生命科学基础I

Polyunsaturated Fatty Acids

Slightly more complicated

- ☆ Same as for oleic acid, but only up to a point:
 - 3 cycles of β-oxidation
 - enoyl-CoA isomerase
 - 1 more round of β-oxidation
 - trans- Δ^2 , cis- Δ^4 structure is a problem!
- ☆2,4-Dienoyl-CoA reductase to the rescue!

生命科学基础 I

西安克通大學

生命科学基础I

多不饱和脂肪酸(亚油酸)的β-氧化

፟ 奇数脂肪酸的氧化

- ❖奇数脂肪酸的氧化实际上就是丙酰-CoA的氧 化,因为碳原子数目≥5以上的奇数脂肪酸完 全可以和偶数脂肪酸一样进行β-氧化直到丙 酰-CoA出现为止。
- ❖丙酰-CoA的氧化是将它转变为偶数的琥珀酰-CoA即可。

生命科学基础I

what about 3-C leftovers?

生命科学基础I

丙酰-CoA的氧化的利用

the coenzyme B₁₂ reaction

L-Methylmalonyl-CoA

Succinyl-CoA

生命科学基础I

西安交通大學

Branched-Chain Fatty Acids

- An alternative to α -oxidation is required
- Branched chain FAs with branches at oddnumber carbons are not good substrates for βoxidation
- $\diamond \alpha$ -oxidation is an alternative
- ArrPhytanic acid Arr-oxidase decarboxylates with oxidation at the alpha position
- $\diamond \alpha$ -oxidation occurs past the branch

生命科学基础 I

The β-oxidation pathway for phytanic acid oxidation.

生命科学基础I

西安克通大學

超长链脂肪酸的β-氧化

- ❖大于18个碳原子的脂酰-CoA难以进入线粒体进行β-氧化,可进入过氧化物酶体或乙醛酸循环体进行β-氧化。
- ❖脂酰-CoA进入过氧化物酶体或乙醛酸循环体需要膜上的一种运输蛋白,但不需要肉碱。

西安克通大学

生命科学基础I

