Trustworthy Localized Corrections-guided Mutual Learning for Multi-View Learning

Qiuran Li^{1,3}, Yi Luo^{2,3}, Yan Sun³, Tong Wu^{2,3}, Aiguo Chen^{3,4,†}

TABLE I DETAILS OF EACH DATASET

Dataset	Size	K	Dimensionality
Caltech101	8677	101	4096/4096
CUB	11788	10	1024/300
HandWritten	2000	10	240/76/216/47/64/6
PIE	680	68	484/256/279
Scene15	4485	15	20/59/40

I. Proof 1

Proof. An upper bound, denoted by M, exists upon convergence. The inequation is given by:

$$0 \le (\log(S_f) - \log(S_{ww}))^2 \le M$$

Assume that $S_f \geq S^{ww}$, which then obtain the following formula:

$$0 \le log(S_f) - log(S_{ww}) \le \sqrt{M}$$

 $\Delta_S = S_f - S_{ww}$ is calculated as follows:

$$\Delta_S = S_{ww} \left(e^{\log(S_f) - \log(S_{ww})} - 1 \right)$$

$$\leq S_{ww} \left(e^{\sqrt{M}} - 1 \right)$$

Similarly, the lower bound of Δ_S is calculated as:

$$\Delta_S \ge S_{ww} \left(1 - e^{-\sqrt{M}} \right)$$

In summary, the scope of Δ_S is determined by the following inequation:

$$S_{ww}\left(1 - e^{-\sqrt{M}}\right) \le \Delta_S \le S_{ww}\left(e^{\sqrt{M}} - 1\right)$$

II. DATASETS

Details of each dataset is shown in Table I. **Caltech101** [1] comprises 8766 images across 11 categories, each represented by two views. **CUB** [2] comprises 11788 images, each paired with textual descriptions, spanning 200 different categories

[†]Corresponding author: Aiguo Chen. Email: qiuranli@std.uestc.edu.cn (Qiuran Li), agchen@uestc.edu.cn (Aiguo Chen).

Algorithm 1 TLCML algorithm

/*Training*/

Input: Multi-View dataset: $D_N^M = \{\{\boldsymbol{x}_n^m\}^M, \boldsymbol{y}_n\}_N$

Output: Parameters of model

1: Initialize the parameters of model.

2: while not converged do

3: **for** m=1:M **do**

4: $e^m \leftarrow \text{view-specific MENN};$

Subjective opinion ← Dirichlet distribution;

6: Obtain the loss of view-specific MENN with Eq. 3;

7: end for

5:

8: Concatenate all of evidence;

9: Obtain joint opinion with TML module;

10: Obtain the joint loss of with Eq. 3;

11: Obtain the consistency loss with Eq. 7;

12: Obtain the boundary loss with Eq. 9;

13: Obtain the overall loss with Eq. 11;

14: Update the parameters;

15: end while

/*Test*/

Calculate the decisions and corresponding uncertainty.

of birds. **HandWritten** [3] comprises 2000 samples, evenly distributed across 10 classes corresponding to the digits '0' to '9', with each class containing 200 samples. **PIE** [4] comprises 680 facial images from 68 distinct subjects. Three feature types, intensity, LBP, and Gabor, are extracted from each image. **Scene15** [5] comprises 4485 images spanning 15 categories, encompassing both indoor and outdoor scenes. Three types of features GIST, PHOG, and LBP are extracted from the dataset.

III. ALGORITHM

The detailed procedure of our method had been comprehensively outlined in Algorithm 1.

REFERENCES

- Fei-Fei Li, Marco Andreeto, Marc'Aurelio Ranzato, and Pietro Perona, "Caltech 101," 4 2022.
- [2] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, "cub," Tech. Rep. CNS-TR-2011-001, California Institute of Technology, 2011.
- [3] Robert Duin, "Multiple Features," UCI Machine Learning Repository, 1998, DOI: https://doi.org/10.24432/C5HC70.

¹ School of Computer Science and Engineering, University of Electronic Science and Technology of China, China;

² School of Information and Software Engineering, University of Electronic Science and Technology of China, China;

³ Laboratory of Intelligent Collaborative Computing, University of Electronic Science and Technology of China, China;

⁴ Ubiquitous Intelligence and Trusted Services Key Laboratory of Sichuan Province

- [4] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade, and S. Baker, "Multi-pie," 12 2013.
 [5] Nouman Ali and Bushra Zafar, "15-Scene Image Dataset," 8 2018.