Assignment: Identify key mutations in a cancer dataset and classify them as oncogenes or tumour suppressors.

Cancer dataset chosen for assignment-BRCA

1. Retrieve mutation data from cBioPortal or COSMIC for a cancer type.

Database used for the assignment – cBioPortal

- BRCA was entered in search bar
- Breast Cancer information from TCGA, Firehouse Legacy was selected
- "Explore Selected Studies" option was selected

Analysing Data

1. Km Plot

*KM_Plot_Overall_(months) - Notepad					
File Edit Format View Help					
Study ID	Patient ID	OS_STATUS	OS_MONTHS		
brca_tcga	TCGA-3C-AAAU	0:LIVING	132.95		
brca_tcga	TCGA-3C-AALI	0:LIVING	131.57		
brca_tcga	TCGA-3C-AALJ	0:LIVING	48.42		
brca_tcga	TCGA-3C-AALK	0:LIVING	47.57		
brca_tcga	TCGA-4H-AAAK	0:LIVING	11.43		
brca_tcga	TCGA-5L-AAT0	0:LIVING	48.52		
brca_tcga	TCGA-5L-AAT1	0:LIVING	48.32		
brca_tcga	TCGA-5T-A9QA	0:LIVING	9.95		
brca_tcga	TCGA-A1-A0SB	0:LIVING	8.51		
brca_tcga	TCGA-A1-A0SD	0:LIVING	14.36		
brca_tcga	TCGA-A1-A0SE	0:LIVING	43.4		
brca_tcga	TCGA-A1-A0SF	0:LIVING	48.06		
brca_tcga	TCGA-A1-A0SG	0:LIVING	14.26		
brca_tcga	TCGA-A1-A0SH	0:LIVING	47.21		
brca_tcga	TCGA-A1-A0SI	0:LIVING	20.86		
brca_tcga	TCGA-A1-A0SJ	0:LIVING	13.67		
brca_tcga	TCGA-A1-A0SM	0:LIVING	7.95		
brca_tcga	TCGA-A1-A0SN	0:LIVING	39.29		
brca_tcga	TCGA-A1-A0SO	0:LIVING	27.99		
brca_tcga	TCGA-A1-A0SP	0:LIVING	19.19		
brca_tcga	TCGA-A1-A0SQ	0:LIVING	18.2		
brca_tcga	TCGA-A2-A04N	0:LIVING	143.04		
brca_tcga	TCGA-A2-A04P	1:DECEASED	18		
brca_tcga	TCGA-A2-A04Q	0:LIVING	78.35		
brca_tcga	TCGA-A2-A04R	0:LIVING	121.85		

- 100% survival rate at time = 0 which means everyone was alive at the start, then steep drop meant Patients started dying quickly. Only 30% of that group survived to the end of the observed period.
- Patients significantly worse disease-free survival, with only 40% remaining disease-free by the end of the study period suggesting that this alteration may be associated with increased recurrence risk.

2. Cancer typed associated with BRCA

 BRCA causes breast cancer in high frequencies and specifically Breast Invasive Ductal Carcinoma (73.5% frequency) followed by Breast Invasive Lobular Carcinoma (18.7%)

3. Mutated genes

The most commonly mutated genes were PIK3CA (32%), TP53 (30%), TTN (16.4%), CDH1(11%) and GATA3 (9%),

4. CNA genes and Mutation count vs Fraction genome altered

In Mutation count vs Fraction genome altered

- High Mutation count and low fraction genome altered was seen in 1 sample. These tumours have a **high mutation load** but **low chromosomal instability**. Likely driven by **point mutations** rather than large-scale genomic alterations.
- Low Mutation count and increase in fraction genome altered was seen in about 55 samples indicated by pink and yellow dots. This pattern is suggestive of **chromosomally unstable tumors**, potentially driven by **copy number alterations** rather than point mutations
- Low Mutation count and high fraction genome altered was seen in 1 sample These tumours have **low mutation load** but **high chromosomal instability**. Characterized by **large-scale copy number alterations**, such as **amplifications** or **deletions**. This indicates that the tumour might be driven by **copy number-driven oncogenes** or **loss of tumour suppressors**, rather than by **point mutations**

In CNA genes

AMP - Amplification and HOMDEL - Homologous Deletion

CNA Type	Typical Role	Example
AMP	Oncogene	MYC, PVT1, CASC8, POU5F1B

HOMDEL Tumour suppressor LINC01193, CHST6, RN7SL515P

AMP- Often seen in **oncogenes**. Amplification can **drive cancer** by overactivating growth-promoting pathways.

HOMODEL- Typically affects **tumour suppressor genes**. Loss of these genes removes the cell's natural defence against uncontrolled growth or DNA damage.

5. Other information

Number of Samples Per Patient- 99.4% patients gave one sample

Sex- 98.5% seen in females, 1.1% in males

Ethnicity- maximum % seen in NOT HISPANIC OR LATINO (80%)

Sample type- 99.4% have sample taken from original tumour

Race- White (68.8%), Africans (16%)

Diagnosis Age- Maximum cases in age range of 60 to 65

2. Use OncoKB to classify genes as oncogenes or tumour suppressors.

Genes with High frequency of mutation from Cbioportal was obtained-

PIK3CA, TP53, CDH1, GATA3, MAP3K1

From OncoKB gene list the genes can be searched and whether they are tumour suppressing or oncogenic can be found out. First PIK3CA was searched and OncoKB classified it as an Oncogene, Similarly information about other genes were also obtained

Sr.NO	Gene	Oncogene/Tumour Suppressor
1	PIK3CA	Oncogene
2	TP53	Tumour Suppressor
3	CDH1	Tumour Suppressor
4	GATA3	Tumour Suppressor
5	MAP3K1	Tumour Suppressor
6	NCOR1	Tumour Suppressor
7	PTEN	Tumour Suppressor

3. Analyse mutational hotspots in IGV (Integrative Genomics Viewer).

Mutational hotspots are **regions in a gene** (often specific codons or exons) that are **frequently mutated across many samples**, usually because they affect the gene's function in cancer.

Utilized IGV (Integrative Genomics Viewer) of cBioportal to analyze copy number variation (CNV) and identify mutation hotspots using segmented CNV data obtained from cBioPortal.

Genes	Protein Change	Colour represented in IGV	Type of mutation
GATA3	X308_splice	Yellow	Splice
CDH1	A575Gfs*13	Black	FS ins
AR	L881Q	Green	Missense
CHEK2	D77H	Green	Missense
DPYD	S260R	Green	Missense
USP8	R763W	Green	Missense
USP8	N764K	Green	Missense
DBH	R329C	Green	Missense
CACNA1C	A2055T	Green	Missense

The data was loaded into IGV, where blue and red color tracks represent deletions and amplifications respectively. IGV's human ref seq and CNV tracks were used to locate and interpret mutation hotspots based on their log2 ratio values:

- **Log2 ratio > 0**: Copy number gain/amplification (**red**)
- Log2 ratio < 0: Copy number loss/deletion (blue)
- Normal copy number regions appeared near the baseline ($\log 2 \approx 0$)

The presence of **dense vertical red lines** and consistent red CNV segments in IGV across multiple samples highlights **potential amplification hotspots**. Conversely, **clusters of blue segments** indicate **deletion hotspots**.

These CNV-driven mutations, particularly in genes like MLL3, CDKN2A, and PHKG1, may represent driver events in tumorigenesis. For instance:

- MLL3 amplifications could dysregulate chromatin and transcription.
- **CDKN2A**, while typically deleted in cancers, showed copy gain here, possibly reflecting complex alterations.
- **PHKG1** deletion may disrupt glycogen metabolism in tumor cells.

Figure showing Amplification Hotspots

Figure showing Deletion Hotspots

Red Regions

Region	Mutation Hotspots	Mean CN Log2value	Interpretation
chr7:53,604,469–55,109,914	PHKG1	2.54	High Amplification in PHKG1
chr7:86,456,237–87,008,509	TMEM243	0.3198	Slight Amplification in TMEM243
chr7:92,185,806–92,463,876	TECPR1	0.77	Moderate Amplification in TECPR1
chr4:53,918,177-54,948,410	LNX1	1.6355	High Amplification in LNX1

Blue Regions

Mutation	Location	Log2 values	Interpretation
Hotspots			
MLLT3	chr9:19,529,532-	-3.28	Strong homozygous deletion
HACD4	20,039,441	-1.5569	Deep deletion
IFNE	to	-2.02	Homozygous deletion
CDKN2B	chr9:21,702,086-	-3.28	Strong homozygous deletion
ELAVL2	29,383,583	-4.4531	Very Deep Deletion
IZUMO3		-3.37	Strong homozygous deletion
TUSC1		-0.827	Shallow deletion
CAAP1		-0.8028	Shallow deletion
MOB2B		-4.606	Very Deep Deletion
LINGO2		-0.76	Shallow deletion

Other Blue Regions-

chr1:81,048,805-81,338,857 - GNG5 Amplification- Moderate Deletion chr10:22,973,855-26,115,303 - AB1 Amplification - Moderate Deletion

4. Discuss how mutations in DNA repair genes contribute to tumour progression.

DNA repair genes (like BRCA1, BRCA2, ATM, ATR, MLH1, MSH2, RAD51, etc.) are responsible for fixing errors or damage in the DNA. When these genes are mutated, cells accumulate more genetic errors over time, which can lead to genomic instability and cancer.

There is pathway alteration in the following - PI3K,WNT,NOTCH,HIPPO,PI3K,MYC CELL CYCLE

Pathway	Function	What Alterations Imply in Cancer
PI3K/AKT/mTOR	Controls cell survival, growth, and metabolism	Alterations often lead to enhanced cell proliferation and resistance to cell death
WNT	Regulates cell fate, stem cell renewal, and differentiation	Dysregulation promotes uncontrolled growth and maintenance of cancer stem cells
Notch	Involved in cell communication and differentiation	Abnormal activity can result in unregulated cell proliferation or impaired differentiation
Hippo	Controls organ size, cell contact inhibition, and apoptosis	Alterations lead to tissue overgrowth and contribute to tumor formation
MYC	Regulates cell cycle, metabolism, and DNA replication	Overactivation supports aggressive growth and metabolic reprogramming in tumors
Cell Cycle	Governs cell division and checkpoints	Alterations cause loss of control over cell division and genomic instability