

INTRODUCTION TO LOGIC DESIGN

Chapter 1
Digital Systems and Binary Numbers

gürtaçyemişçioğlu

OUTLINE OF CHAPTER 1

Digital Systems

Binary Numbers

Binary Arithmetic

Number-base Conversions

Octal & Hexadecimal Numbers

Complements

Signed Binary Numbers

Binary Codes

Binary Storage & Registers

Binary Logic

- Digital age and information age
- Digital computers
 - General purposes
 - Many scientific, industrial and commercial applications
- Digital systems
 - Telephone switching exchanges
 - Digital camera
 - Electronic calculators, PDA's
 - Digital TV
- Discrete information-processing systems
 - Manipulate discrete elements of information
 - For example, {1, 2, 3, ...} and {A, B, C, ...}...

DIGITAL SIGNAL

- The physical quantities or signals can assume only discrete values.
- Greater accuracy

ANALOG SIGNAL

 The physical quantities or signals may vary continuously over a specified range.

- Binary digital signal
 - An information variable represented by physical quantity.
 - For digital systems, the variable takes on discrete values.
 - Two level, or binary values are the most prevalent values.
 - Binary values are represented abstractly by:
 - Digits 0 and 1
 - Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words On and Off

 Binary values are represented by values or ranges of values of physical quantities.

Decimal Number System

- Base (also called radix) = 10
 - 10 digits
 - $-\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Digit Position
 - Integer & fraction
- Digit Weight
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

$$d_2 \times B^2 + d_1 \times B^1 + d_0 \times B^0 + d_{-1} \times B^{-1} + d_{-2} \times B^{-2}$$
(512.74)₁₀

Octal Number System

- Base = 8
 - 8 digits
 - { 0, 1, 2, 3, 4, 5, 6, 7}
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Hexadecimal Number System

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6,7, 8, 9, A, B, C, D, E, F}
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "bit x Weight"
- Formal Notation

Binary Number System

- Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "bit x Weight"
- Formal Notation
- Groups of bits
 - 4 bits = Nibble, 8 bits = Byte

The power of 2

n	2 ⁿ	n	2 ⁿ
0	20=1	8	2 ⁸ =256
1	21=2	9	2 ⁹ =512
2	2 ² =4	10	2 ¹⁰ =1024
3	23=8	11	211=2048
4	24=16	12	212=4096
5	2 ⁵ =32	20	$2^{20}=1 M$
6	2 ⁶ =64	30	2 ³⁰ =1G
7	2 ⁷ =128	40	2 ⁴⁰ =1T

ADDITION Decimal Addition

ADDITION
Binary Addition - Column Addition

SUBTRACTION
Binary Subtraction - Borrow a "Base" when needed

MULTIPLICATION
Binary Multiplication – Bit by bit

Decimal to binary conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Decimal (integer) to binary conversion

1 / 2 = 0

Example: (13)₁₀

Quotient Remainder Coefficient $a_0 = 1$ $a_0 = 1$ $a_1 = 0$ $a_2 = 1$ $a_2 = 1$

Answer:
$$(13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2$$

 $a_3 = 1$

Decimal (fraction) to binary conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Decimal (fraction) to binary conversion

Example: $(0.625)_{10}$

Integer Fraction Coefficient
$$0.625 * 2 = 1 . 25 a_{-1} = 1$$
 $0.25 * 2 = 0 . 5 a_{-2} = 0$ $0.5 * 2 = 1 . 0 a_{-3} = 1$

Answer:
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

MSB

Decimal (integer) to octal conversion

Example: (175)₁₀

Answer:
$$(175)_{10} = (a_3 a_2 a_1 a_0)_2 = (257)_8$$

Decimal (fraction) to octal conversion

Example: $(0.3125)_{10}$

Integer Fraction Coefficient
$$0.3125 * 8 = 2$$
 . 5 $a_{-1} = 2$ $0.5 * 8 = 4$. 0 $a_{-2} = 4$

Answer:
$$(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.24)_8$$

MSR ISR

- Binary to octal conversion
- $8 = 2^3$
- Each group of 3 bits represents an octal digit

Example:

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Works both ways (Binary to Octal & Octal to Binary)

- Binary to hexadecimal conversion
- $16 = 2^4$
- Each group of 4 bits represents a hexadecimal digit

Example:

Assume Zeros

Works both ways (Binary to Hex & Hex to Binary)

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

- Octal to hexadecimal conversion
- Convert to binary as an intermediate step

Decimal	Octal	Hex	Binary
00	00	0	0000
01	01	1	0001
02	02	2	0010
03	03	3	0011
04	04	4	0100
05	05	5	0101
06	06	6	0110
07	07	7	0111
08	10	8	1000
09	11	9	1001
10	12	А	1010
11	13	В	1011
12	14	С	1100
13	15	D	1101
14	16	Е	1110
15	17	F	1111

- Complements are used in digital computers to simplify the subtraction operation and for logical manipulation. Simplifying operations leads to simpler, less expensive circuits to implement the operations.
- There are two types of complements for each base-r system:
 - diminished radix complement.
 - the radix complement

Diminished Radix Complement (r-1)'s Complement

- Given a Number = N, base = r, digits = n,
- The (r-1)'s complement of N is defined as:

$$(r^{n}-1)-N$$

Example for 6-digit <u>decimal</u> numbers:

- 9's complement is $(r^n 1)-N = (10^6-1)-N = 999999-N$
- 9's complement of 546700 is 999999–546700 = 453299

For decimal numbers r = 10 and

- -(r-1) = 9, this is called 9's complement of N.
- (10ⁿ-1)-N.
- -10^n represents a number that consist of a single 1 followed by n 0's.
- -10^{n} -1 is a number represented by n 9's.

For binary numbers r = 2 and

- r-1 = 1, this is called 1's complement of N.
- $(2^{n}-1)-N$.
- -2^n represents a binary number that consist of a 1 followed by n 0's.

For Example: 0011

- When subtracting binary digit from 1 we can have either 1-0 =1 or 1-1 =0 which causes bit to change from 0 to 1 or from 1 to 0.
- 1's complement of a binary is formed by changing 1's to 0's and 0's to 1's.
- Example: $0\ 0\ 1\ 1\ 0\ 1\ 1\ \to 1\ 1\ 0\ 0\ 1\ 0\ 0$

Example for 7-digit <u>binary</u> numbers:

- 1's complement is $(r^n 1) N = (2^7 1) N = 11111111 N$
- 1's complement of 1011000 is 1111111-1011000 = 0100111

Observation:

- Subtraction from $(r^n 1)$ will never require a borrow
- Diminished radix complement can be computed digit-by-digit

1's Complement (*Diminished Radix* Complement)

- All '0's become '1's
- All '1's become '0's
- If you add a number and its 1's complement ...

- Radix Complement, the r's Complement
- Given a Number = N, base = r, digits = n,
 - The r's complement of N is defined as:

$$r^n$$
 - N, for N \neq 0 and 0 for N = 0.

The r's complement is obtained by adding 1 to the (r – 1) 's complement,
 since

$$- = [(r^n - 1) - N] + 1.$$

$$- = r^n - N$$

10's complement of N can be formed:

- By leaving all least significant 0's unchanged.
- By subtracting first non-zero least significant digit by 10
- By subtracting all higher significant digits from 9.

2's complement of N can be formed:

 By leaving all least significant 0's and the first 1 unchanged and replacing 1's with 0's and 0's with 1's in all other higher significant digits.

- Example: Base-10
 - The 10's complement of 012398:

The 10's complement of 246700:

```
9 9 9 1 0 0 0

- 2 4 6 7 0 0

7 5 3 3 0 0
```

- 2's Complement (Radix Complement)
 - Take 1's complement then add 1
 - Toggle all bits to the left of the first '1' from the right

Example:

- Example: Base-2
 - The 2's complement of 1101100 is 0010100

- Example: Base-2
 - The 2's complement of 0110111 is 1001001

- Complement of the complement restores the number to its original value
 - r's complement of N is r^n -N
 - The complement of the complement is
 - $-r^n (r^n N) = N \rightarrow \text{original number}$

- The subtraction of two *n*-digit unsigned numbers *M N* in base *r* can be done as follows:
 - 1. Add the minuend M to the r's complement of the subtrahend N.
 - N r's complement = r^n -N
 - $= M + r^n N$
 - $= M N + r^n$
 - 2. If $M \ge N$, the sum will produce an end carry r^n , which can be discarded; what is left is the result M N.
 - 3. If M < N, the sum does not produce an end carry and is equal to rⁿ-(N-M), which is the r's complement of (N-M). To obtain the answer in a familiar form, take the r's complement of the sum and place negative sign in front.

- Example 1.5
 - Using 10's complement, subtract 72532 3250.

$$M = 72532$$
 $N = 3250$

Step1: Take 10's complement of N

Step2: To find the SUM, Add 10's complement of N to M

Step3: To find the ANSWER discard end carry 10⁵, Subtract rⁿ from SUM

- Example 1.6
 - Using 10's complement, subtract 3250 72532.

$$M = 3250$$
 $N = 72532$

Step1: Take 10's complement of N

Step2: To find the SUM, Add 10's complement of N to M

There is no end carry!

Step3: To find the ANSWER take the –(10's complement of SUM)

Example 1.7: Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X using 2's complements.

(a) Step1: Take the 2's complement of Y

Step2: Add 2's complement of Y to X

There is an end carry!

Step3: Discard the end carry.

(b) Y – X: Step1: Take the 2's complement of X

```
1 0 1 0 1 0 0
```

0 1 0 1 1 0 0

Step2: Add 2's complement of X to Y

There is no end carry!

Step3: To find the answer Y - X = -(2's complement of SUM)

```
1 1 0 1 1 1 1
```

• Subtraction of unsigned numbers can also be done by means of the (r-1)'s complement. Remember that the (r-1) 's complement is one less then the r's complement.

Example 1.8 :Repeat Example 1.7, but this time using 1's complement.

(a)
$$X - Y = 1010100 - 1000011(84 - 67 = 17)$$

Step1: Take the 1's complement of Y

Step2: Add1's complement of Y to the X

Step3: Remove the end carry and add 1 (End-around carry)

Example 1.8 :Repeat Example 1.7, but this time using 1's complement.

(a)
$$Y - X = 1000011 - 1010100 (67 - 84 = -17)$$

Step1: Take the 1's complement of X

Step2: Add1's complement of X to the Y

There is NO end carry!

Step3: To find the answer Y - X = -(1's complement of SUM)

- To represent negative integers, we need a notation for negative values.
- It is customary to represent the sign with a bit placed in the left most position of the number since binary digits.
- The convention is to make the sign bit
 - 0 for positive and 1 for negative.
- Example
 - Signed-magnitude representation: 10001001
 - Signed-1's complement representation: 11110110
 - Signed-2's complement representation: 11110111
- Table 1.3 lists all possible four-bit signed binary numbers in the three representations.

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

- Arithmetic addition
 - The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic.
 - If the signs are the same;
 - we add the two magnitudes and give the sum the common sign.
 - If the signs are different;
 - we subtract the smaller magnitude from the larger and give the difference the sign of the larger magnitude.

- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits.
- A carry out of the sign-bit position is discarded.
- Example:

Example:

- Arithmetic Subtraction
 - In 2's-complement form:
 - 1. Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).
 - 2. A carry out of sign-bit position is discarded.

$$(\pm A) - (+B) = (\pm A) + (-B)$$

 $(\pm A) - (-B) = (\pm A) + (+B)$

- Example:
 - $(-6) (-13) \rightarrow (11111010 11110011)$

```
- 6 1 1 1 1 1 0 1 0
+13 - 0 0 0 0 1 1 0 1
+ 7 0 0 0 0 0 1 1 1
```


- BCD Code
 - A number with k decimal digits will require 4k bits in BCD.
 - Decimal 396 is represented in BCD with 12bits as:

Each group of 4 bits representing one decimal digit.

- A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9.
- The binary combinations
 1010 through 1111 are not used and have no meaning in BCD.

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- Example:
 - Consider decimal 185 and its corresponding value in BCD and binary:

BCD Addition

- Consider the addition of two decimal digits in BCD
- Since each digit does not exceed 9
- The sum cannot be greater than 9 + 9 + 1 = 19
 - the 1 in the sum being a previous carry
- Suppose we add the BCD digits as if they were binary numbers
- The binary sum will produce a result in the range from 0 to 19
- In binary this will be from 0000 to 10011, but in BCD it is from 0000 to 1 1001
 - The first 1 being a carry and the next four bits being the BCD digit sum

BCD Addition

- When binary sum is equal to or less than 1001 (without a carry)
 - The corresponding BCD digit is correct
- When the binary sum is greater than or equal to 1010
 - The result is an invalid BCD digit
- The addition of $6 = (0110)_2$ to the binary sum converts it to the correct digit and also produces a carry as required
- This is because the difference between a carry in the most significant bit position of the binary sum and a decimal carry.
 - 16 10 = 6

- BCD Addition
 - Consider the following three addition of two decimal digits in BCD

• The addition of two n-digit unsigned BCD numbers follows the same procedure.

- Consider the addition of 184 + 576 = 760 in BCD

0 0 0 1 1 0 0 0 0 1 0 0 1 8 4

+ 0 1 0 1 1 1 1 + 0 1 1 0 +5 7 6

Binary Sum 0 1 1 1 1 0 0 0 0 1 1 0

Add 6 + 0 1 1 0 0 0 0 7 6 0

- The representation of signed decimal numbers in BCD is similar to the representation of signed numbers in binary.
- We can use either the familiar sign and magnitude system or the signed-complement system.
- The sign of a decimal number is usually represented with four bits to conform to the 4-bit code of the decimal digits.
 - "+" with 0 0 0 0 and "-" with 1001 (BCD equivalent of 9)

- The signed-complement system can be either the 9's or the 10's complement.
 - But the 10's complement is the one most often used.
- To obtain the 10's complement of a BCD number:
 - First take the 9's complement
 - 9's complement is calculated from the subtraction of each digit from 9.
 - Then add one to the least significant digit

- The procedures developed for the signed-2's complement system in the previous section apply also to the signed-10's complement system for decimal numbers.
- Addition is done by:
 - adding all digits,
 - including the sign digit and
 - discarding the end carry.
- This assumes that all negative numbers are in 10's complement form.

- Consider the addition (+375) + (-240) = +135
- Step1: Find the 10's complement of (-240)

• Step 2: Add 10's complement of (-240) to 375 and discard the end carry.

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Gray code:

- The output data of many physical systems produce quantities that are continuous.
- These data must be converted into digital form before they are applied to a digital system.
- Continuous or analog information is converted into digital form by means of an analog-to-digital converter.

Gray code:

- It is convenient to use gray code to represent the digital data when it is converted from analog data.
- The advantage is that only bit in the code group changes in going from one number to the next.
 - Error detection.
 - Representation of analog data.
 - Low power design.

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

- American Standard Code for Information Interchange (ASCII)
 Character Code (Refer to Table 1.7)
- A popular code used to represent information sent as characterbased data.
- It uses 7-bits to represent 128 characters:
 - 94 Graphic printing characters.
 - 34 Non-printing characters.
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return).
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

Table 1.7 *American Standard Code for Information Interchange (ASCII)*

				b7b6b5				
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	Α	Q	a	q
0010	STX	DC2	**	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB		7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	x
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	Ì
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

Control characters

NIIII	NL. II	DIE	Data link assess
NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

- ASCII has some interesting properties:
 - Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆
 - Upper case A-Z span 41₁₆ to 5A₁₆
 - Lower case a-z span 61₁₆ to 7A₁₆
 - Lower to upper case translation (and vice versa) occurs by flipping bit 6.

- Error-Detecting Code
 - To detect errors in data communication and processing, an <u>eighth</u>
 <u>bit</u> is sometimes added to the ASCII character to indicate its parity.
 - A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.
- Example:
 - Consider the following two characters and their even and odd parity:

	With even parity	With odd parity
ASCII A = 1000001	01000001	11000001
ASCII T = 1010100	11010100	01010100

- Error-Detecting Code
 - Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
 - A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
 - A code word has even parity if the number of 1's in the code word is even.
 - A code word has odd parity if the number of 1's in the code word is odd.
 - Example:
 - Message A: 10001001 1 (even parity)
 - Message B: 10001001 0 (odd parity)

Registers

 A binary cell is a device that possesses two stable states and is capable of storing one of the two states.

1/0

 A register is a group of binary cells. A register with *n* cells can store any discrete quantity of information that contains *n* bits.

0 1 1 0 1 0 1 1

n cells ——— 2ⁿ possible states

- A binary cell
 - Two stable state
 - Store one bit of information
 - Examples: flip-flop circuits, ferrite cores, capacitor
- A register
 - A group of binary cells
 - AX in x86 CPU
- Register Transfer
 - A transfer of the information stored in one register to another.
 - One of the major operations in digital system.An example in next slides.

Figure 1.1 Transfer of information among register

- The other major component of a digital system
 - Circuit elements to manipulate individual bits of information
 - Load-store machine

LD R1;

LD R2;

ADD R3, R2, R1;

SD R3;

- Definition of Binary Logic
 - Binary logic consists of binary variables and a set of logical operations.
 - The variables are designated by letters of the alphabet, such as A, B,
 C, x, y, z, etc., with each variable having two and only two distinct possible values: 1 and 0,
 - Three basic logical operations: AND, OR, and NOT.

- 1. AND operation is represented by a dot (·) or by the absence of an operator.
 - Example: X · Y = Z or X Y = Z
 - "X AND Y is equal to Z".
 - Z =1 if only X = 1 and Y = 1; otherwise Z = 0.
 - X, Y and Z are binary variables and can be equal either to 1 or 0, nothing else.

- 2. OR operation is represented by a plus (+).
 - Example: X + Y = Z
 - "X OR Y is equal to Z".
 - Z = 1 if X = 1 OR Y = 1 or if both X = 1 OR Y = 1.
 - If both X = 0 OR Y = 0, then Z = 0.

- 3. NOT operation is represented by a prim (') sometimes by an overbar (-)
 - Example: X' = Z or $\overline{X} = Z$
 - "NOT X is equal to Z".
 - If X = 1, then Z = 0, but if X = 0, then Z = 1.
 - The **NOT** operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

• Truth tables, Boolean expressions and Logic Gates

AND

X	Υ	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$Z = X \cdot Y$$

OR

<u>X</u>	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$Z = X + Y$$

NOT

X	Z
1	0
0	1

$$\overline{X} = Z$$

Example of binary signals

Graphic Symbols and Input-Output Signals for Logic gates:

(a) two input AND gate

(b) two input OR gate

(c) NOT gate or Inverter

Graphic Symbols and Input-Output Signals for many input logic gates:

(a) three input AND gate

(b) four input OR gate