

<u>Lecture 8: Distance measures</u> 课程 □ <u>Unit 3 Methods of Estimation</u> □ <u>between distributions</u> 10. Motivation and Introduction to the Kullback-Leibler (KL)

Divergence

10. Motivation and Introduction to the Kullback-Leibler (KL) Divergence An Estimation Strategy and Definition of Kullback-Leibler (KL) Divergence

Start of transcript. Skip to the end.

So let's try to find something that does that a little better.

So before that, let's see.

Now I've probably trashed my toleration distance a little too much.

Maybe you don't want to move on from this.
But let's say it's still something that works.
Let's say we have two continuous
distributions

视频 下载视频文件 字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

Definition of Kullback-Leibler (KL) Divergence

Let $\bf P$ and $\bf Q$ be **discrete** probability distributions with pmfs $\bf p$ and $\bf q$ respectively. Let's also assume $\bf P$ and $\bf Q$ have a common sample space $\bf E$. Then the **KL divergence** (also known as **relative entropy**) between $\bf P$ and $\bf Q$ is defined by

$$ext{KL}\left(\mathbf{P},\mathbf{Q}
ight) = \sum_{x \in E} p\left(x
ight) \ln \left(rac{p\left(x
ight)}{q\left(x
ight)}
ight),$$

where the sum is only over the support of \mathbf{P} .

Why do we sum only over the support of P?

We use the following limit to justify the definition above. At any point $x \in E$ outside the support of \mathbf{P} but where $q(x) \neq 0$:

$$\lim_{p/q\to 0^+} q\left(\frac{p}{q}\right) \ln\left(\frac{p}{q}\right) = q \lim_{p/q\to 0^+} \left(\frac{p}{q}\right) \ln\left(\frac{p}{q}\right)$$
$$= q\cdot (0) = 0 \quad \text{(by L'hopital's rule)}.$$

<u>Hide</u>

Analogously, if ${\bf P}$ and ${\bf Q}$ are **continuous** probability distributions with pdfs ${\bf p}$ and ${\bf q}$ on a common sample space ${\bf E}_i$, then

where the integral is again only over the support of ${f P}$.

Computing KL Divergence I

1/1 point (graded)

Let
$$X \sim \mathbf{P}_X = \mathrm{Ber}\,(1/2)$$
 and let $Y \sim \mathbf{P}_Y = \mathrm{Ber}\,(1/2)$. What is $\mathrm{KL}\,(\mathbf{P}_X,\mathbf{P}_Y)$?

Solution:

Let p be the pmf of the distribution $\mathrm{Ber}\,(1/2)$. Note that the sample space is the discrete set $E=\{0,1\}$. Then

$$egin{aligned} \operatorname{KL}\left(\mathbf{P}_{X},\mathbf{P}_{Y}
ight) &= p\left(1
ight) \ln \left(p\left(1
ight)/p\left(1
ight)
ight) + p\left(0
ight) \ln \left(p\left(0
ight)/p\left(0
ight)
ight) \ &= \left(1/2
ight) \ln \left(1
ight) + \left(1/2
ight) \ln \left(1
ight) = 0. \end{aligned}$$

Remark: Although KL divergence is not a distance on probability distributions (as we defined above), it does satisfy some of the axioms. For example,

- $\mathrm{KL}\left(\mathbf{P},\mathbf{Q}\right)\geq0$ (nonnegative), and
- $\mathrm{KL}\left(\mathbf{P},\mathbf{Q}\right)=0$ only if \mathbf{P} and \mathbf{Q} are the same distribution (definite).

Note that the result of this problem is consistent with the second property.

提交

你已经尝试了1次(总共可以尝试3次)

□ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Lecture 8: Distance measures between distributions / 10. Motivation and Introduction to the Kullback-Leibler (KL) Divergence