Week 1

Vector

• For this course remember vector means rows or columns of numbers

Matrix

Types of Matrices

Row Matrix Column Matrix Zero Matrix $\begin{pmatrix} a & b & c \end{pmatrix} \qquad \begin{array}{c} \text{Vector Matrix} & \text{Null Matrix} \\ \begin{pmatrix} a \\ b \\ c \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

 Diagonal Matrix
 Scalar Matrix
 Unit Matrix

 $\begin{pmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c
 \end{pmatrix}$ $\begin{pmatrix}
 a & 0 & 0 \\
 0 & a & 0 \\
 0 & 0 & a
 \end{pmatrix}$ $\begin{pmatrix}
 1 & 0 & 0 \\
 0 & a & 0 \\
 0 & 0 & a
 \end{pmatrix}$

Upper Triangular Matrix Lower Triangular Matrix

$$\begin{pmatrix}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{pmatrix} \qquad \qquad \begin{pmatrix}
a & 0 & 0 \\
b & c & 0 \\
d & e & f
\end{pmatrix}$$

Properties of matrix addition and multiplication

1.
$$(A + B) + C = A + (B + C)$$
 (Associativity of addition)

2.
$$(AB)C = A(BC)$$
 (Associativity of multiplication)

3.
$$A + B = B + A$$
 (Commutativity of addition)

4.
$$AB \neq BA$$
 (In General)

Week 2 P1

L2. 1 Determinants (Part3)

Important properties and Identities

Property 1: Determinant of a product is product of the determinants

- 1. det(AB) = det(A)*det(B)
- 2. det(AB) = det(BA) here A and B are square matrices of size n
- 3. $det(A^T A) = det(A)^2$ here $(det(A^t) = det(A))$

Property 2: Switching two rows or columns changes the sign of the determinant

$$det(A) = - det(A^{\sim})$$

Property 3: Adding multiple of a row to another row leaves the determinant unchanged (Same for columns)

Property 4: Scalar multiplication of a row by a constant t multiplied the determinant by t. (same for columns)

L2.2 Cramer's Rule

$\begin{array}{c|cccc} Crammer's Rule 3x3 \\ 2x + 3y - 5z = 1 \\ x + y - z = 2 \\ 2y + z = 8 \end{array}$ $x = \frac{D_x}{D} \quad y = \frac{Dy}{D} \quad z = \frac{Dz}{D}$ $D = \begin{vmatrix} 2 & 3 & -5 \\ 1 & 1 & -1 \\ 0 & 2 & 1 \end{vmatrix} = -7$ $Dy = \begin{vmatrix} 2 & 1 & -5 \\ 1 & 2 & -1 \\ 0 & 8 & 1 \end{vmatrix} = -21$ $Dx = \begin{vmatrix} 1 & 3 & -5 \\ 2 & 1 & -1 \\ 8 & 2 & 1 \end{vmatrix} = -7$ $Dz = \begin{vmatrix} 2 & 3 & 1 \\ 1 & 1 & 2 \\ 0 & 2 & 8 \end{vmatrix} = 14$

Week 2 P2

L2.3 Solution to a system of linear equations with an invertible coefficient matrix

- If $Ab = BA = I_{N \times N}$ and is denoted by A^{-1} , B is called inverse of A
- Inverse of a matrix exist iff $det(A) \neq 0$

Adjugate of a square matrix

- $adj(A) = C^{T} where C_{ij} = (-1)^{i+j} M_{ij} cofactor$
- $A^{-1} = \frac{1}{det(A)} adj(A)$ A is nxn square matrix and det(A) is not 0

The solution of a system of linear equations with an invertible coefficient matrix

$$x = A^{-1}b$$
 here A is invertible i.e det(A) is not 0

Solutions of a homogeneous system of linear equations

$$Ax = 0$$

- Unique solution which is 0 if $det(A) \neq 0$
- Infinite solution if det(A) = 0

Properties of Adjugate of a square matrix

- $\bullet \quad adj(AB) = adj(B) \times adj(A)$
- $\bullet \quad adj(A+B) = adj(A) + adj(B)$
- $\bullet \quad adj(A^T) = adj(A)^T$
- $\bullet \quad adj(A^{-1}) = adj(A)^{-1}$

The echelon form

A matrix is a row echelon form if

• The first non-zero element in each row, called the leading entry is 1

Week 2 P3

- Each leading entry is in a column to the right of the leading entry in the previous row.
- Rows with all zero elements, if any are below rows having a non-zero element
- For a non-zero row, the leading entry in the row is the only non-zero entry in its column.

Row echelon form

Reduced row echelon form

Row Reduction

- 1. Interchange two rows e.g $R1 \leftrightarrow R2$
- 2. Scalar multiplication of a row by a constant e.g R1/3
- 3. Adding multiple of a row to another row e.g. R1 3R2

Recall from determinants

 $A \sim \sim \sim B$

1.
$$Ri \leftrightarrow Rj \Rightarrow det(A) = -det(B)$$

2.
$$Ri * c \Rightarrow det(A) = c * det(B)$$

3.
$$Ri + cRj \Rightarrow det(A) = det(B)$$

L2.6 Gaussian Elimination method

1. Augmented matrix is denoted by $[A \mid B]$ we denote the like this

System of Equations

Associated Augmented Matrix

$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ 2x_1 + 3x_2 + x_3 = 5 \\ x_1 - x_2 - 2x_3 = -5 \end{cases} \longleftrightarrow \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 3 & 1 & 5 \\ 1 & -1 & -2 & -5 \end{bmatrix}$$

Week 3 P1

L3.1 Introduction to vector spaces

Properties of addition and scalar multiplication

Let v, w and v be vectors in \Re and $a, b \in \Re$

```
i. v + w = w + v

ii. (v + w) + v = v + (w + v)

iii. The 0 vector satisfies that v + 0 = 0 + v = v

iv. The vector -v satisfies that v + (-v) = 0

v. 1v = v

vi. (ab)v = a(bv)

vii. a(v + w) = av + aw

viii. (a + b)v = av + bv
```

A **vector space** is a set with two operations (called addition and scalar multiplication With the above properties (i) to (viii).

Definition of a vector space

A vector space V over \Re is a set along with two functions

$$+: V \times V \to V$$
 and $\bullet: \Re \times V \to V$ (i.e for each pair of elements v_1 and v_2 in V , there is a unique element $v_1 + v_2$ in V and for each $c \in \Re$ and $v \in V$ there is a unique element $c.v$ in V)

It is standard to suppress the . and only write cv instead of c.v

The function + and • are required to satisfy the above mentioned rules.(i-viii)

L3.2 Some properties of vector spaces

Cancellation law of Vector addition

```
⇒If v_1, v_2, v_3 \in V such that v_1 + v_3 = v_2 + v_3 then v_1 = v_2

⇒ The vector 0 described in (iii) is unique

⇒ The vector v` described in (iv) is unique and it is standard to refer to it as -v In any Vector space V the following statements are true

• 0v = 0 for each v \in V and c0 = 0 for each c \in \Re
```

Week 3 P2

L3.3 Linear dependence

Linear Combination

Let V be a vector space and $v_1, v_2, v_3, \dots v_n \in V$. The *linear combination* of $v_1, v_2, v_3, \dots v_n$ with coefficients $a_1, a_2, a_3, \dots a_n \in \mathbb{R}$ is the vector $\sum\limits_{i=1}^n a_i v_i \in V$. A vector $v_i \in V$ is a *linear combination* of $v_1, v_2, v_3, \dots v_n$ if there exist some $a_1, a_2, a_3, \dots a_n \in \mathbb{R}$.

So that
$$v = \sum_{i=1}^{n} a_i v_i$$

Definition of Linear Dependence

A set of vectors $v_1, v_2, v_3, \dots v_n$ from a vector space V is said to be *linearly dependent*, if there exist scalars $a_1, a_2, a_3, \dots a_n$ not all zero such that

$$a_1v_1 + a_2v_2 + a_3v_3 + \dots + a_nv_n = 0$$

Equivalently , the 0 vector is a linear combination of $v_1, v_2, v_3, \dots v_n$ with non-zero coefficients.

• If a set is linearly dependent, then so is every superset of it.

L3.4 Linear Independence Part-1

Definition of linear independence

A set of vectors $v_1, v_2, v_3, \dots v_n$ from a vector space V is said to be *linearly independent* if $v_1, v_2, v_3, \dots v_n$ are not *linearly dependent*.

Equivalently: A set of vectors $v_1, v_2, v_3, \dots v_n$ from a vector space V is said to be *linearly independent* if the only linear combination of $v_1, v_2, v_3, \dots v_n$ which equals 0 is the linear combination with all coefficients 0.

Week 3 P3

The **0** vector

Let $v_1, v_2, v_3, \dots v_n$ be a set of vectors containing the **0** vector. Suppose $v_i = 0$. Then we can choose $a_i = 1$ and $a_i = 0$ for $j \neq i$

Then the linear combination of $a_1v_1 + a_2v_2 + a_3v_3 + \dots + a_nv_n$ is 0 but not all coefficients are 0. Hence, a set of vectors $v_1, v_2, v_3, \dots v_n$ containing the **0** vectors is always a linearly dependent set.

- Two non-zero vectors are *linearly independent* precisely when they are *not multiples of each other.*
- If three vectors are linearly independent then none of these vectors is a linear combination of the other two.
- To check $v_1, v_2, v_3, \dots v_n \in \mathbb{R}^m$ are linearly independent we have to check that homogeneous system of linear equations Vx=0 has only the trivial solution, where the j^{th} column of V is v_j .
- Any set of n vectors in \mathbb{R}^2 with $n \geq 3$ are linearly dependent.
- Any set of r vectors in \mathbb{R}^n with $r \geq n$ are linearly dependent.
- If $det(A) \neq 0$ then vectors are linearly independent.

Subspace

Def.

A subset W of a vector space V over \mathbb{R} is called subspace of V if W is also a Vector space over \mathbb{R} with the same operations , defined over V.

Suppose W is a given subset of V

Test for becoming a subspace

```
i. 0 \in W

ii. x \in W, y \in W \Rightarrow x + y \in W (closed under addition)

iii. c \in \mathbb{R}, x \in W \Rightarrow cx \in W (closed under scalar multiplication)

Then we say W is subspace of V
```

L4.1 What is a basis for a vector space

Span of a set of Vectors

The span of a set S (of Vectors) is defined as the set of all finite linear combinations of elements (vectors) of S, and denoted by Span(S)

i.e
$$Span(S) = \left\{ \sum_{i=1}^{n} a_{i} v_{i} \in V \mid a_{1}, a_{2}, \dots, a_{n} \in \mathbb{R} \right\}$$

Example:

Let
$$S=\{(1,0)\}\in\mathbb{R}^2$$
 Then
$$Span(S)=\{a(1,0)\mid a\in\mathbb{R}\ \}=\{(a,0)\mid a\in\mathbb{R}\ \}$$
 Thus $Span(S)$ is the X-axis in \mathbb{R}^2

Spanning set for a vector space

Let V be a vector space. A set $S \subseteq V$ is a spanning set for V if Span(S) = V

Example:

If
$$S = \{(1,0), (0,1)\}$$
 then $Span(S) = \mathbb{R}^2$
If $S = \{(1,0), (0,1), (1,2)\}$ then $Span(S) = \mathbb{R}^2$
If $S = \{(1,1), (0,1)\}$ then $Span(S) = \mathbb{R}^2$
If $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ then $Span(S) = \mathbb{R}^3$

What is the basis?

A basis B of a vector space V is a linearly independent subset of V that spans V. Example:

Let $e_i \in \mathbb{R}^n$ be the vector with i^{th} coordinate 1 and all other coordinates 0 e.g. $e_1 = (1,0,0,...,0)$

The set
$$\epsilon = \{e_1, e_2, e_3, \dots e_n\} \subseteq \mathbb{R}^n$$
 is a basis for \mathbb{R}^n

L4.2: Finding bases for vector spaces

Equivalent conditions for B to be a basis

The following conditions are equivalent to a subset $B \subseteq V$ being a basis:

- i. B is linearly independent and Span(B) = V
- ii. B is a maximal linearly independent set
- iii. B is a minimal spanning set.

How do we find a basis?

- i) Start with the ϕ and keep appending vectors which are not in the span of the set thus far obtained , until we obtain a spanning set.
- ii) Take a spanning set and keep deleting vectors which are linear combinations of the other vectors, until the remaining vectors satisfy that they are not a linear combination of the other remaining ones.

L4.3: What is the rank / dimension for a vector space.

The dimension (or rank) of a vector space is the size (or cardinality) of a basis of the vector space.

For this course: If B is a basis of V, then the rank is the number of elements in B.

For every vector space there exists a basis, and all bases of a vector space have the same number of elements (or cardinality); hence, the dimension (or rank) of a vector space (say V) is uniquely defined and denoted by dim(V) (or rank(V)) respectively.

Dimension of \mathbb{R}^n

Recall the i-th standard basis vector is \mathbb{R}^n .

$$e_i = (0, 0, 0..., 0, 1, 0... 0)$$

i.e. the i-th coordinate is 1 and 0 elsewhere

Recall that the set $\{e_1, e_2, e_3, ..., e_n\}$ is a basis of \mathbb{R}^n called the standard basis.

Hence the dimension of $\operatorname{\mathbb{R}}^n$ is n.

L4.3:

Rank of a matrix

Let A be an $m \times n$ matrix.

- \Rightarrow The **column space** of a *A* is the subspace of \mathbb{R}^m spanned by the column vector of *A*.
- \Rightarrow The **row space** of a *A* is the subspace of \mathbb{R}^n spanned by the row vectors of *A*.
- \Rightarrow The dimension of the column space of A is defined as the **column rank** of A.
- \Rightarrow The dimension of row space of A is defined as the **row rank** of A.

Fact: **Column rank = row rank** and this number is called the rank of A.

L4.4: Rank and dimension using Gaussian elimination

Finding dimension and basis with a given spanning set.

e.g. Let us consider the vector space W spanned by the set $S = \{(1,0,1),(-2,-3,1),(3,3,0)\}$.

We will use the following steps to find the dimension and a basis for W and carry out the steps for our example.

matrix in row echelon form

$$\begin{bmatrix} 1 & 0 & 1 \\ -2 & -3 & 1 \\ 3 & 3 & 0 \end{bmatrix} \sim \sim \sim \sim \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

- ⇒ The number of non-zero rows is the dimension of the vector
- ⇒ The vectors corresponding to the non-zero rows form the basis of the vector space W. In the example, the final matrix is

Hence dimension of the vector space spanned by $\{(1,0,1),(-2,-3,1),(3,3,0)\}$ is 2 And a basis is given by (1,0,1),(0,1,-1)

L4.4:

An alternative to the row-based method.

Column method

Example

Let us consider the vector space W spanned by the set $S = \{(1,0,1),(-2,-3,1),(3,3,0)\}$. We will use the fact (see notes or slides) to find a basis for W which is a subset of S. Form the matrix with the vectors in S as the columns.

1	-2	3
0	-3	3
1	1	0

Row reduce this matrix

This matrix is in row echelon form and columns with pivot entries (leading 1s) are the first and second columns.

Therefore (1,0,1),(-2,-3,1) which are the first and second vectors in S respectively, form a basis for W.

Week 5 P1

L5.1: The null space of a matrix: finding nullity and a basis Part 1

Solution space of a homogeneous system of linear equations.

Let A be an $m \times n$ matrix

The subspace $W = \{x \in \mathbb{R}^n \mid Ax = 0\}$ of \mathbb{R}^n is called the solution space of the homogeneous system of linear equation Ax = 0 or the **null space** of A.

Note that the null space is a subspace of \mathbb{R}^n . The dimension of the null space is called **the nullity of A.**

Finding the nullity and a basis for the null space.

We have seen how to find the dimensions and a basis for the row space of A using row reduction.

We will use row reduction to also find the nullity and a basis for the null space of A.

Recall first how to find the solution space for system Ax = b i.e Gaussian elimination.

- \Rightarrow Form the augmented matrix [A|b]
- \Rightarrow Apply the same row reduction operations on the augmented matrix that are used to row reduce A to obtain the augmented matrix [R|C] where R is the matrix in reduced row echelon form obtained from A.
- \Rightarrow If the i-th column has the leading entry of some row, we call x_i a dependent variable.
- \Rightarrow If the i-th column does not have the leading entry of some row we call $x_{_i}$ an independent variable.

Finding the nullity and a basis for the null space.

nullity(A) = number of independent variables.

- \Rightarrow Assign arbitrary value t_{i} to the i-th independent variable.
- \Rightarrow Compute the value of each dependent variables in terms of $t_i s$ from the unique row it occurs in.
- \Rightarrow Every solution is obtained by letting $t_{i}s$ vary in $\mathbb R$

The vectors obtained by substituting ti=1 and $tj=0 \ \forall \ j\neq i$ as i varies constitutes a basis of the null space of A (i.e the solution space of Ax=0)

L5.2: The null space of a matrix: finding nullity and a basis - Part 2

The rank-nullity theorem

Let A be $m \times n$ matrix.

Recall the row rank of A is the dimension of the row space of A and the column rank of A is the dimension of the column space of A. These are equal and are denoted by rank(A).

rank(A) is calculated as the number of non-zero rows of the matrix R in reduced row echelon form obtained by row reduction.

Note that for a matrix R in row echelon form the

Number of non-zero rows = number of dependent variables

For the corresponding homogeneous system Rx = 0

Hence, rank(A) = number of nonzero rows of R = number of dependent variables of <math>Rx = 0

nullity(A) = number of independent variables of Rx = 0.

Therefore we have the rank-nullity theorem.

Theorem

For an $m \times n$ matrix A rank(A) + nullity(A) = n (dependent variable + independent variables = total variable)

How to check if a set of n vectors is a basis for \mathbb{R}^n

Short answer: Use determinants.

Suppose we are given n vectors of \mathbb{R}^n .

We write them as column of a matrix , thus obtaining an $n \times n$ (square) matrix

If the determinants of a matrix are 0, then the given set of vectors does not form a basis, otherwise it forms a basis.

Example:

The standard basis (1,0),(0,1) yields the Identity matrix/ with determinant 1.

The vector(1,-2),(5,-10) yields the matrix

1	5
-2	-10

With determinant 0. This is not a basis for \mathbb{R}^2 .

Week 5 P2

L5.3: What is a linear mapping - Part 1

Grocery shop example

The prices of rice, dal and oil in shop A in the town of Malgudi are as follows:

	Rice (Per kg)	Dal (per kg)	Oil (per litre)
Shop A	45	125	150

The cost of 1 kg of rice, 2kg of dal and 1 litre of oil is

$$1 \times 45 + 2 \times 125 + 1 \times 150 = 445$$
.

The cost of 2kg of rice,1 kg of dal and 2 litre of oil is

$$2 \times 45 + 1 \times 125 + 2 \times 150 = 515$$
.

The cost of x_1 kg of rice, x_2 kg of dal and x_3 kg of oil is

$$x_1 \times 45 + x_2 \times 125 + x_3 \times 150 = 45x_1 + 125x_2 + 150x_3$$

Expressions and linear combinations

The term $45x_1 + 125x_2 + 150x_3$ is an expression.

We can equivalently think of it as a function $c_{_A}$ from \mathbb{R}^3 to \mathbb{R}

Since for every value of x_1, x_2, x_3 (with coefficients 45,125,150), it is an example of a linear function.

Recall that linear combinations can be also expressed in terms of matrix multiplication e.g.

$$c_A(x_1, x_2, x_3) = 45x_1 + 125x_2 + 150x_3 =$$
 [45 125 150] $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

L5.4: What is a linear mapping - Part 2

What is a linear mapping

A linear mapping f from \mathbb{R}^n to \mathbb{R}^m can be defined as follows :

$$f(x_1, x_2, ..., x_n) = (\sum_{j=1}^n a_{1j} x_j, \sum_{j=1}^n a_{2j} x_j, ..., \sum_{j=1}^n a_{mj} x_j)$$

Where the coefficients a_{ii} s are real numbers (scalars). A linear mapping can be thought of as a collection of linear combinations.

We can write the expression on the RHS in matrix forms as Ax

where
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 and $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

Linearity of linear mappings

It follows that a linear mapping satisfies linearity, i.e for any $c \in \mathbb{R}$ (Scalar)

$$f(x_1 + cy_1, x_2 + cy_2, ..., x_n + cy_n) = f(x_1, x_2, ..., x_n) + cf(y_1, y_2, ..., y_n)$$

L5.5: What is a linear transformation

Formal definition of Linear transformation

A function $f: V \to W$ between two vector spaces V and W is said to be a linear transformation if for any two vectors v_1 and v_2 in the vector space V and for any $c \in \mathbb{R}$ (scalar) the following conditions hold:

$$\Rightarrow f(v_1 + v_2) = f(v_1) + f(v_2)$$

$$\Rightarrow f(cv_1) = cf(v_1)$$

Linear mappings are linear transformation

Examples

3.
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 $f(x, y, z) = (x/2, 3y, 5z)$

4.
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 $f(x, y, z) = (4y - z, 3y + 11/19z, 5x - 2z, 23y)$

1-1 and onto functions

Recall that a function $f: V \to W$ is 1-1 (or injective) if $f(v_1) = f(v_2)$ implies $v_1 = v_2$

Recall that a function $f: V \to W$ is onto (or surjective) if for every $w \in W$ there exists $v \in V$ Such that f(v) = w

For a linear transformation, being 1-1 is equivalent to f(v) = 0 implies v = 0.

What is an Isomorphism

Recall that a function $f: V \to W$ is bijective (or a bijection) if it is 1-1 and onto.

Note that being a bijection is equivalent to : for any $w \in W$ there exists a unique $v \in V$ such that f(v) = w.

A linear transformation $f:V\to W$ between two vector spaces V and W is said to be an isomorphism if it is a bijection.

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 $f(x,y) = (2x,y)$

Bases determine linear transformations

Let V be a vector space with basis $\{v_1, v_2, ..., v_n\}$.

Let $f:V\to W$ be a linear transformation. Then the ordered vectors $f(v_1), f(v_2), \dots f(v_n)$ uniquely determine f.

L6.1: Linear transformations, ordered bases and matrices

Important property of finite dimensional vector spaces

Let V be a vector space with dimension n. Choose a basis $\{v_{1}, v_{2}, v_{3} ..., v_{n}\}$.

Define $f: V \to \mathbb{R}^n$ by extending the function sending the basis vector v_i to the standard basis vector $e_i \in \mathbb{R}^n$ for each i.

Then f is an isomorphism.

The matrix corresponding to a linear transformation with respect to ordered bases

Let $f: V \to W$ be a linear transformation.

Let $\beta = v_1, v_2, v_3 ..., v_n$ be an ordered basis of V and $\gamma = w_1, w_2, w_3 ..., w_n$ be an ordered of W.

Each $f(v_i)$ can be uniquely written as a linear combination of $w_i s$, where i = 1, 2, ..., n and

$$j = 1, 2, \dots m.$$

$$f(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$f(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$\vdots$$

$$f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

The matrix corresponding to the linear transformation f with respect to the ordered bases β and γ is given by

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \vdots & \vdots & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

E.g Let
$$V = W = \mathbb{R}^2$$
, $\beta = \gamma = (1,0), (1,1)$ and $f(x,y) = (2x,y)$.

$$f(1,0) = (2,0) = 2(1,0) + 0(1,1)$$

$$f(1,1) = (2,1) = 1(1,0) + 1(1,1)$$

Hence the matrix corresponding to f w.r.t the ordered bases

$$\{(1,0),(1,1)\}$$
 is $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$

Recovering the linear transformation

Let $\beta = v_1, v_2, v_3 \dots, v_n$ and $\gamma = w_1, w_2, w_3 \dots, w_n$ be ordered bases of V and W respectively.

Suppose A is an $m \times n$ matrix. What is the corresponding linear transformation?

Let
$$v \in V$$
. Express $v = \sum_{j=1}^{n} c_{j} v_{j}$. Define

$$f(v) = \sum_{j=1}^{n} c_{j} \sum_{i=1}^{m} A_{ij} w_{i}$$

Check that *f* is a linear transformation!

Letting $c_k = 1$ and $c_j = 0$ for all $j \neq k$, we get that $f(v_k) = A_{1k}w_1 + A_{2k}w_2 + ... + A_{mk}w_m$.

Hence the matrix corresponding to f is indeed A.

Fixed ordered bases: Linear transformations ↔ matrices

Let β and γ be ordered bases for vector spaces V and W respectively where n = dim(V) and m = dim(W).

There is a bijection:

{ linear transformation from V to W } \leftrightarrow { $m \times n$ matrix }.

L6.2: Image and kernel of linear transformations

Definitions of kernel and image

Let $f: V \to W$ be a linear transformation.

Define the kernel of f (denoted by ker(f)) as :

$$ker(f) = \{v \in V \mid f(v) = 0\}.$$

Define the image of f (denoted by Im(f)) as :

$$Im(f) = \{ w \in W \mid \exists v \in V \text{ for which } f(v) = w \}.$$

Im(f) is another name for the "range of the function f".

The kernel and injectivity of a linear transformation

Recall that a function $f: V \to W$ is 1-1 (or injective) if $f(v_1) = f(v_2)$ implies $v_1 = v_2$.

Recall that a linear transformation f being 1-1 (or injective) is equivalent to f(v) = 0 implies v = 0.

Rewriting the last part in terms of ker(f), we see that a linear transformation is 1-1 (or injective) is equivalent to ker(f) = 0.

A linear transformation f is 1-1 iff ker(f) = 0.

The image and surjectivity of a linear transformation

Recall that a function $f: V \to W$ is onto (or surjective) if for each $w \in W$, exists some $v \in V$ such that f(v) = w.

It follows from the definition that a function $f: V \to W$ being onto (or surjective) is equivalent to Range(f) = W.

Writing this out for linear transformations, we see that : a linear transformation $f: V \to W$ is onto iff Im(f) = W.

Kernels and null spaces

Let $f: V \to W$ be a linear transformation. Let $\beta = v_1, v_2, v_3, v_n$ and $\gamma = w_1, w_2, w_3, v_n$ be ordered bases of V and W respectively.

Let A be the matrix corresponding to f with respect to β and γ .

Recall that for
$$v = \sum_{j=1}^{n} c_j v_j \in V$$
, $f(v) = \sum_{j=1}^{n} c_j \sum_{i=1}^{m} A_{ij} w_i$.

Hence,
$$f(v) = 0 \Leftrightarrow \sum_{j=1}^{n} A_{ij} c_{j} = 0$$
 for all i .

Thus,
$$v = \sum_{j=1}^{n} c_j v_j \in ker(f) \Leftrightarrow c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Is in the null space of *A*.

Images and column spaces

Let $f: V \to W$ be a linear transformation. Let $\beta = v_1, v_2, v_3$..., v_n and $\gamma = w_1, w_2, w_3$..., w_n be ordered bases of *V* and *W* respectively.

Let *A* be the matrix corresponding to *f* with respect to β and γ .

Recall that for
$$v = \sum_{j=1}^{n} c_j v_j \in V$$
, $f(v) = \sum_{j=1}^{n} c_j \sum_{i=1}^{m} A_{ij} w_i$.

Let $w = \sum_{i=1}^{m} d_i w_i \in W$. Then $w \in Im(f)$ precisely when there exist scalars c_j ; j = 1, 2, ..., n

such that $\sum_{i=1}^{n} A_{ij} c_j = d_i$ for all i.

Equivalently
$$w = \sum_{i=1}^{m} d_i w_i \in Im(f)$$
 if there exists a column vector $c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$

Such that the column vector

$$d = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{bmatrix} = Ac.$$

Hence,
$$w = \sum_{i=1}^{m} d_i w_i \in Im(f) \Leftrightarrow$$

$$d = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{bmatrix}$$

Is in the column space of *A*.

Bases for the kernel and image of a linear transformation

Let $f: V \to W$ be a linear transformation. Let $\beta = v_1, v_2, v_3$..., v_n and $\gamma = w_1, w_2, w_3$..., w_n be ordered bases of V and W respectively.

Let *A* be the matrix corresponding to f with respect to β and γ .

The relation between kernels and null spaces derived earlier actually yields an isomorphism between them.

In particular, the vectors
$$\begin{bmatrix} c_{11} \\ c_{12} \\ \vdots \\ c_{1n} \end{bmatrix}, \begin{bmatrix} c_{21} \\ c_{22} \\ \vdots \\ c_{2n} \end{bmatrix}, \dots, \begin{bmatrix} c_{k1} \\ c_{k2} \\ \vdots \\ c_{kn} \end{bmatrix}$$
 form a basis

for the null space of A precisely when $v'_1, v'_2, ...$ where $v_i' = \sum_{j=1}^n c_{ij} v_j$, form a basis for $\ker(f)$

Similarly, the relation between images and column spaces derived earlier yields an isomorphism between them.

In particular, the vectors
$$\begin{bmatrix} d_{11} \\ d_{12} \\ \vdots \\ d_{1m} \end{bmatrix}, \begin{bmatrix} d_{21} \\ d_{22} \\ \vdots \\ d_{2m} \end{bmatrix}, \ldots, \begin{bmatrix} d_{r1} \\ d_{r2} \\ \vdots \\ d_{rm} \end{bmatrix} \text{ form a basis}$$
 for the column space of A precisely when $w_1', w_2', \ldots, w_r' \in im(f)$, where $w_i' = \sum_{j=1}^m d_{ij}w_j$, form a basis for $im(f)$.

Note further that under this isomorphism, the columns of A, which form a spanning set of the column space of A, correspond to the images $f(v_i)$, which form a spanning set for im(f).

The rank-nullity theorem for linear transformations

Let $T: V \to W$ be a linear transformation.

The rank of T (denoted rank(T)) is the dimension of Im(T).

The nullity of T (denoted nullity(T)) is the dimension of ker(T).

Reinterpreting the rank-nullity theorem for matrices, we obtain:

rank(T) + nullity(T) = dim(V)

L7.1: Equivalence and similarity of matrices

Equivalence of matrices

Let A and B be two matrices of order $m \times n$. We say A is **equivalent** to B if B = QAP for some invertible $n \times n$ matrix P and for some invertible $m \times m$ matrix Q.

Other characteristics:

- 1) A can be transformed into B by a combination of elementary row and column operations.
- 2) rank(A) = rank(B)

Equivalence of matrices is an equivalence relation i.e.

- \Rightarrow A is equivalent to itself
- \Rightarrow A is equivalent to B implies B is equivalent to A.
- \Rightarrow A is equivalent to B and B to C implies A is equivalent to C.

Linear transformations and equivalence of matrices

Considere a linear transformation $T: V \to W$, two ordered bases β_1 and β_2 for V, and two ordered bases γ_1 and γ_2 for W.

Let A be the matrix corresponding to T with respect to the bases β_1 and γ_1 and β be the matrix corresponding to T with respect to the bases β_2 and γ_2 .

Then A is equivalent to B!

$$B = QAP$$

Similar matrices

An $n \times n$ matrix A is similar to an $n \times n$ matrix B if there exists an $n \times n$ invertible matrix P such that $B = P^{-1}AP$.

Note that similarity is an equivalence relation, i.e.:

- \Rightarrow A is similar to itself
- \Rightarrow A is similar to B implies B is similar to A.
- \Rightarrow A is similar to B and B to C implies A is similar to C.

Important properties of similar matrices

Suppose *A* and *B* are similar matrices. Then the following properties hold :

- \Rightarrow A and B are equivalent.
- \Rightarrow A and B have the same rank.

$$\Rightarrow det(B) = det(P^{-1}AP) = det(P^{-1})det(A)det(P) = \frac{1}{det(P)}det(A)det(P) = det(A).$$

 \Rightarrow Several other invariants of A and B are the same such as the characteristic polynomial, minimal polynomial and eigenvalues (with multiplicity)

Linear transformations and similarity of matrices

Consider a linear transformation $T: V \to W$ and two ordered bases β and γ for V. Let A be the matrix corresponding to T with respect to the basis β and B the matrix corresponding to T with respect to the basis γ .

Then A is similar to B!

$$B = P^{-1}AP$$

Why do we care about similarity? Because under some basis, we hope that the corresponding matrix is a diagonal matrix which gives an easy geometric understanding of the linear transformation.

L7.2: Affine subspaces and affine mappings

Affine Subspaces

Let V be a vector space. An affine subspace of V is a subset L such that there exists $v \in V$ and a vector subspace $U \subseteq V$ such that

$$L = v + U := \{v + u | u \in U\}.$$

We say an affine subspace L is n-dimensional if the corresponding subspace U is n-dimensional.

The subspace U corresponding to an affine subspace is unique.

However the vector v is not unique and in fact can be any vector in L.

Affine subspaces are thus **translates** of a vector subspace of *V*.

Affine Subspaces in \mathbb{R}^2

- ⇒ Points
- ⇒ Lines
- \Rightarrow the entire plane $\ensuremath{\mathbb{R}}^2$

A subset which is not an affine subspace : the parabola $y = x^2 + 1$ or the curve $y^2 = x^3$.

Affine Subspaces in \mathbb{R}^3

- ⇒ Points
- ⇒ Lines
- ⇒ Planes
- \Rightarrow the entire space \mathbb{R}^3

Example: Two-dimensional affine subspaces in $\operatorname{\mathbb{R}}^3$ can expressed as

 $l = v + \lambda_1 v_1 + \lambda_2 v_2 \text{ where } \lambda_1, \lambda_2 \in \mathbb{R} \text{ and } v \text{ ,} v_1, v_2 \text{ are vectors in } \mathbb{R}^3$

The solution set to a system of linear equations

Let Ax = b be a linear system of equations.

- $\Rightarrow b = 0$: In this case, it is a homogeneous system and as seen before, the solution set is subspace of \mathbb{R}^n , namely the null space $\eta(A)$ of A.
- $\Rightarrow b \notin \text{column space of } A$: In this case, Ax = b does not have a solution, so the solution set is the empty set.
- $\Rightarrow b \in \text{column space of } A$: In this case, the solution set L is an affine subspace of \mathbb{R}^n . Specifically it can be described as $L = v + \eta(A)$ where v is any solution of the equation Ax = b

Affine mappings of affine subspaces

Let L and L` be affine subspaces of V and W respectively. Let $f: L \to L$ ` be a function. Consider any vector $v \in L$ and the unique subspace $U \subseteq V$ such that L = v + U. Note that $f(v) \in L$ ` and hence L` = f(v) + U` where U` is the unique subspace of W corresponding to L`. Then f is an affine mapping from L to L` if the function $g: U \to U$ ` defined by g(u) = f(u + v) - f(v) is a linear transformation.

For a linear transformation $T: U \to U$ and fixed vectors $v \in L$ and $v \in L$, an affine mapping f can be obtained by defining f(v + u) = v + T(u), and in fact every affine mapping is obtained in this way.

An example and an important special case

Let T(x, y, z) = (2x + 3y + 2, 4x - 5y + 3). Then this is an affine mapping from \mathbb{R}^3 to \mathbb{R}^2 .

Let $T: V \to W$ be a linear transformation and $w \in W$, then the mapping

$$T$$
: $V \to W$

$$T`(v) = w + T(v)$$

Is an affine mapping from V to W.

L7.3: Lengths and angles

The dot product of two vectors in \mathbb{R}^2

Consider the two vectors (3,4) and (2,7) in \mathbb{R}^2 . The dot product of these two vectors gives us a scalar as follows:

$$(3,4).(2,7) = 3 \times 2 + 4 \times 7 = 6 + 28 = 34$$

For two general vectors (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 , the dot product of these two vectors is the sclar computed as follows :

$$(x_1, y_1). (x_2, y_2) = x_1 x_2 + y_1 y_2.$$

The length of a vector in \mathbb{R}^2

Let us find the length of the vector (3,4) in \mathbb{R}^2 .

Using Pythagoras' theorem, the length of the vector (3,4) is $\sqrt{3^2+4^2}=5$ units.

The relation between length and dot product in $\operatorname{\mathbb{R}}^2$

Observe that (3, 4). $(3, 4) = 3^2 + 4^2$, and hence the length of (3, 4) is the square root of the dot product of the vector with itself.

Length of the vector $(3, 4) = \sqrt{(3, 4) \cdot (3, 4)} = \sqrt{3^2 + 4^2} = 5$

More generally, the length of the vector $(x, y) \in \mathbb{R}^2$ is $\sqrt{x^2 + y^2} = \sqrt{(x, y) \cdot (x, y)}$

The angle between two vectors in \mathbb{R}^2

 \Rightarrow The angle between the vectors u and v and measures how far the direction is of v from u (or vice versa). e.g. θ is the angle between u=(3,4) and v=(1,5).

- \Rightarrow It is measured in degrees (between 0 and 360) or radians (between 0 and 2Π).
- \Rightarrow The angle is often described by computing its trigonometric functions (e.g., sin, cos, tan).

The dot product and the angle between two vectors in \mathbb{R}^2

Let u and v be two vectors in \mathbb{R}^2 . Then we can compute the angle θ between the vectors u and v using the dot products as :

$$cos(\theta) = \frac{u.v}{\sqrt{(v.v)\times(u.u)}}$$

The angle between two vectors in \mathbb{R}^3 and the dot product

The angle between the vectors u and v in \mathbb{R}^3 is the angle between them computed by passing a plane through them. (same logic as in \mathbb{R}^2)

It measures how far the direction is of v from u (or vice versa) on that plane.

L7.4: Inner products and norms on a vector space

Inner product on a vector space

An inner product on a vector space V is a function $\langle .,. \rangle : V \times V \to \mathbb{R}$ satisfying the following :

$$\Rightarrow \langle v, v \rangle > 0$$
 for all $v \in V \setminus \{0\}$; $\langle v, v \rangle = 0$ iff $v = 0$.

$$\Rightarrow \langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle$$

$$\Rightarrow \langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle$$

$$\Rightarrow \langle cv_1, v_2 \rangle = c \langle v_2, v_1 \rangle = \langle v_1, cv_2 \rangle \text{ where } c \in \mathbb{R}$$

A vector space V together with an inner product $\langle .,. \rangle$ is called an inner product space.

The dot product is an example of an inner product

Recall that the dot product of $u=(u_{_1},u_{_2},...,u_{_n})$ and $v=(v_{_1},v_{_2},...,v_{_n})$ be in \mathbb{R}^n is

$$u. v = u_1 v_1 + u_2 v_2 + ... + u_n v_n.$$

This yield a function

$$\langle .,. \rangle \colon V \times V \to \mathbb{R} \; ; \langle u,v \rangle = u.\, v$$

An example of an inner product on \mathbb{R}^2

The following is an example of an inner product on \mathbb{R}^2 :

$$\langle .,. \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

$$\langle v, v \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$$

Where
$$u=(x_1,x_2)$$
 and $v=(y_1,y_2)$ be in \mathbb{R}^2

Norm on a vector space

A norm on a vector space \emph{V} is a function

$$||.||: V \to \mathbb{R}$$
$$x \to ||x||$$

Satisfying the following conditions:

$$\Rightarrow ||x + y|| \le ||x|| + ||y||, \text{ for all } x, y \in V$$

$$\Rightarrow ||cx|| = |c| ||x||$$
 for all $c \in \mathbb{R}$ and for all $x \in V$

$$\Rightarrow$$
 $||x|| \ge 0$ for all $x \in V$; $||x|| = 0$ iff $x = 0$

Length as an example of a norm

Recall that the length of a vector $u=(x_1,x_2,...,x_n)\in\mathbb{R}^n$ is

$$||u|| = \sqrt{(x_1^2 + x_2^2 + ... + x_n^2)}$$

The length function $\mathbb{R}^n \to \mathbb{R}$ is a norm on \mathbb{R}^n .

An example of a norm on $\operatorname{\mathbb{R}}^n$

The following is an example of a norm on \mathbb{R}^n :

Define
$$||u|| = |x_1| + |x_2| + ... |x_n|$$
 for $u = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$.

The inner product induces a norm

Let V be an inner product space with inner product $\langle .,. \rangle$.

Then the function $||.||:V\to\mathbb{R}$ define by $||v||=\sqrt{\langle v,v\rangle}$ is a norm of V.

L8.1: Orthogonality and linear independence

The geometric intuition of orthogonal vectors

If the angle θ between two vectors u and v in \mathbb{R}^n is a right angle (i.e 90^o), then $cos(\theta) = 0 = \frac{u \cdot v}{||u|| ||v||}$ then $u \cdot v = 0$. e.g. (1, 2, 3) and (2, 2, -2) are orthogonal.

Orthogonal vectors

Two vectors u and v of an inner product space V are said to be orthogonal if $\langle u, v \rangle = 0$.

e.g. consider $\operatorname{\mathbb{R}}^2$ with the inner product

$$\langle u, v \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$$
 where $u = (x_1, x_2)$ and $v = (y_1, y_2)$.

Then the vectors (1, 1) and (1, 0) are orthogonal (w.r.t this inner product).

An orthogonal set of vectors

An orthogonal set of vectors of an inner product space V is a set of vectors whose elements are mutually orthogonal.

Explicitly, if $S = \{v_1, v_2, ..., v_k\} \subseteq V$, then S is an orthogonal set of vectors if $\langle v_i, v_j \rangle = 0$ for $i, j \in \{1, 2, ..., k\}$ and $i \neq j$.

e.g. consider \mathbb{R}^3 with the usual inner product i.e. the dot product. Then the set $S = \{(4, 3, -2), (-3, 2, -3), (-5, 18, 17)\}$ is an orthogonal set of vectors.

Orthogonality and linear independence

Let $\{v_1, v_2, ..., v_k\}$ be an orthogonal set of vectors in the inner product space V.

Then $\{v_1, v_2, ..., v_k\}$ is a linearly independent set of vectors.

What is an orthogonal basis

Let V be an inner product space. A basis consisting of mutually orthogonal vectors is called an orthogonal basis.

Since an orthogonal set of vectors is already linearly independent, an orthogonal set is a basis precisely when it is a maximal orthogonal set (i.e. there is no orthogonal set strictly containing this one).

If dim(V) = n, then $orthogonal\ basis \equiv orthogonal\ set\ of\ n\ vectors$.

Example of orthogonal bases:

- 1. The standard basis
- 2. $\{(4,3,-2),(-3,2,-3),(-5,18,17)\}\subseteq\mathbb{R}^3$.
- 3. Consider \mathbb{R}^2 with the inner product

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2.$$

Then $\{(1, 1), (1, 0)\}$ is an orthogonal basis.

L8.2: What is an orthonormal basis?

An orthonormal set of vectors of an inner product space *V* is an orthogonal set of vectors such that the norm of each vector of the set is 1.

Explicitly , if $S = \{v_{_1}, v_{_2}, ..., v_{_k}\} \subseteq \mathit{V}$, then S is an orthonormal set of vectors if

$$\langle v_i, v_j \rangle = 0 \text{ for } i, j \in \{1, 2, ..., k\} \text{ and } i \neq j.$$

And
$$||v_i|| = 1 \ \forall i \in \{1, 2, ..., k\}$$

e.g. consider \mathbb{R}^4 with the usual inner product i.e. the dot product. Then the set $\{(\frac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},0),(\frac{2}{\sqrt{42}},\frac{1}{\sqrt{42}},\frac{1}{\sqrt{42}},\frac{6}{\sqrt{42}}),(\frac{2}{3},0,\frac{2}{3},\frac{-1}{3})\}$ is an orthogonal set of vectors.

What is an orthonormal basis?

An orthonormal basis is an orthonormal set of vectors which forms a basis.

Equivalently: An orthonormal basis is an orthogonal basis where the norm of each vector is 1.

Equivalently: An orthonormal basis is a maximal orthonormal set.

Example: The standard basis w.r.t the usual inner product forms an orthonormal basis.

Obtaining orthonormal sets from orthogonal sets

Let V be an inner product space. If $\Gamma = \{v_1, v_2, ..., v_k\}$ is an orthogonal set of vectors, then we can obtain an orthonormal set of vectors β from Γ by

$$\beta = \{\frac{v_1}{||v_1||}, \frac{v_2}{||v_2||}, ..., \frac{v_k}{||v_k||}\}.$$

Example : Consider \mathbb{R}^2 with the usual inner product and the orthogonal basis

$$\Gamma = \{(1,3), (-3,1)\}$$

Then $\beta = \{\frac{1}{\sqrt{10}} (1,3), \frac{1}{\sqrt{10}} (-3,1)\}$ is an orthonormal basis of \mathbb{R}^2 .

Why are orthonormal bases important?

Suppose $\Gamma = \{v_1, v_2, ..., v_k\}$ is an orthonormal basis of an inner product space V and let $v \in V$.

Then v can be written as $v = c_1 v_1 + c_1 v_1 + \dots + c_n v_n$.

How do we find c_1 , c_2 ,..., c_n ? For any basis, this means writing a system of linear equations and solving it.

But since Γ is orthonormal , we can use the inner product and compute $c_i = \langle v | , v_i \rangle$.

L8.3: Projections using inner products

Shortest distance in \mathbb{R}^2

A and B are points in the plane \mathbb{R}^2 and we want to find the nearest point from B on the line passing through A and the origin. Drop a perpendicular from B on to the line. Let A and A be the vectors corresponding to the points A and B respectively.

The projection of a vector to a subspace

Let V be an inner product space, $v \in V$ and $W \subseteq V$ be a subspace. Then the projection of v onto W is the vector in W, denoted by projw(v), computed as follows : Find an orthonormal basis $\{v_1, v_2, ..., v_\nu\}$ for W.

Define
$$projw(v) = \sum_{i=1}^{n} \langle v, v_i \rangle v_i$$
.

Fact: The definition is independent of the chosen orthonormal basis (i.e. the expression on the RHS does not change even if you choose a different orthonormal basis).

The projection of v onto W is the vector in W closest to v. Note that "closest" is in terms of the distance based on the norm induced by the inner product.

Projection on a vector and orthogonal bases

Let V be an inner product space and $v, w \in V$. Define $proj_{w}(v) = proj_{w}(v)$.

Note that an orthonormal basis for $\langle w \rangle$ is $\frac{w}{||w||}$ and hence

$$proj_{w}(v) = \langle v, \frac{w}{||w||} \rangle \frac{w}{||w||} = \frac{\langle v, w \rangle}{||w||^2} w = \frac{\langle v, w \rangle}{\langle w, w \rangle} w.$$

Similarly, if $\{v_1, v_2, ..., v_n\}$ is an orthogonal basis for a subspace W, then $\{\frac{v_1}{||v_1||}, \frac{v_2}{||v_2||}, ..., \frac{v_n}{||v_n||}\}$ is an orthonormal basis for W and hence

$$proj_{w}(v) = \sum_{i=1}^{n} \langle v, \frac{v_{i}}{||v_{i}||} \rangle \frac{v_{i}}{||v_{i}||} = \sum_{i=1}^{n} \frac{\langle v, v_{i} \rangle}{\langle v_{i}, v_{i} \rangle} = \sum_{i=1}^{n} proj_{v_{i}}(v).$$

Projection as a linear transformation

Let V be an inner product space and W be a subspace.

Then the projection of vectors in V to W is a linear transformation from V to W with image W. Denote this linear transformation as $P_{_W}$.

Some properties of the projection $P_{_{W}}$

The linear transformation P_{W} has some interesting properties (some of which actually characterize it) :

i)
$$P_{W}(v) = v$$
, for all $v \in W$

ii)
$$Img(P_w) = W$$

iii)
$$\boldsymbol{W}^{\perp} = \{v | v \in V, \ such \ that \ \langle v, w \rangle = 0 \ \forall \ w \in W \}$$
 is the null space of \boldsymbol{P}_{W}

$$iv) P_W^2 = P_W$$

$$||P_{W}(v)|| \le ||v||.$$

L8.4: The Gram-Schmidt process

An overview of the Gram-Schmidt process

In an inner product space

Any basis x_1, x_2, \dots, x_n

Orthonormal basis

$$v_1, v_2, \ldots, v_n$$

Example and intuition

Consider the basis $\beta = \{(1, 2, 2), (-1, 0, 2), (0, 0, 1)\}$ for \mathbb{R}^3 . Can we use this to obtain an orthonormal basis for \mathbb{R}^3 ?

Let $v_1 = (1, 2, 2)$. We want a vector which is orthogonal to v_1 , i.e. a vector in $\langle v_1 \rangle^{\perp}$, so we use the projection P_{v_1} to v_1 .

Define
$$v_2 = (-1, 0, 2) - P_{v1}((-1, 0, 2)) = (-\frac{4}{3}, -\frac{2}{3}, \frac{4}{3})$$

We want a vector which is orthogonal to both v_1 and v_2 , i.e. a vector in $Span(\{v_1, v_2\})^{\perp}$, so we use the projection $P_{Span(\{v_1, v_2\})}$ to $Span(\{v_1, v_2\})$.

Define
$$v_3 = (0,0,1) - P_{v_1}((0,0,1)) - P_{v_2}((0,0,1)) = (\frac{2}{9}, -\frac{2}{9}, \frac{1}{9})$$

Thus $\{v_1, v_3, v_3\}$ is an orthogonal basis and dividing each vector by its norms yields an orthonormal basis $\{(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}), (-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}), (\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})\}$.

The Gram-Schmidt process

Let *V* be an inner product space with a basis $\{x_1, x_2, ..., x_n\}$.

Define the orthogonal basis $\{v_1, v_2, ..., v_n\}$ and the corresponding orthonormal basis $\{w_1, w_2, ..., w_n\}$ as follows :

$$\begin{split} v_1 &= x_1; & w_1 = \frac{v_1}{||v_2||} \\ v_2 &= x_2 - \langle x_2, w_1 \rangle \; ; & w_2 = \frac{v_1}{||v_2||} \\ \vdots & \vdots & \vdots \\ v_i &= x_i - \langle x_i, w_1 \rangle w_1 - \langle x_i, w_2 \rangle w_2 - \dots - \langle x_i, w_{i-1} \rangle w_{i-1}; & w_i = \frac{v_i}{||v_i||} \\ \vdots & \vdots & \vdots \\ v_n &= x_n - \langle x_n, w_1 \rangle w_1 - \langle x_n, w_2 \rangle w_2 - \dots - \langle x_n, w_{n-1} \rangle w_{n-1}; & w_n = \frac{v_n}{||v_i||} \end{split}$$

Main Take-homes

Theorem: Any finite-dimensional vector space with an inner product has an orthonormal basis. Any basis can be changed to an orthonormal basis using the Gram-Schmidt process.

L8.5: Orthogonal transformations and rotations

Let V be an inner product space and T be a linear transformation from V to V. T is said to be orthogonal transformation if

$$\langle T_{_{V}}, T_{_{W}}\rangle = \langle v, w\rangle \quad \forall \, v, w \, \in V.$$

When $V = \mathbb{R}^n$ with the usual inner product, a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if it preserves angles and lengths.

Fact: It is enough to demand that the linear transformation preserves lengths. In that case, angles automatically get preserved (think of triangle congruences).

Finding the rotation matrix in \mathbb{R}^2

Consider the standard basis $\{(1,0),(0,1)\}$ of \mathbb{R}^2 . Rotate the plane by an angle θ . The vectors obtained after rotation tell us the matrix corresponding to this linear transformation.

Let T_{θ} be the corresponding linear transformation. Then $T_{\theta}(1,0)=(cos(\theta),sin(\theta))$ and $T_{\theta}(0,-1)=(-sin(\theta),cos(\theta))$. Thus the matrix corresponding to this linear transformation is

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Note
$$R_{\theta}^{T} = R_{-\theta}$$
 and $R_{\theta}^{T} R_{\theta}^{T} = R_{\theta}^{T} R_{\theta}^{T} = I$

Further note that since angles and lengths are preserved and the standard basis is orthonormal, the rotated vectors are also orthonormal and therefore yield and orthonormal basis of \mathbb{R}^2 .

Rotations in \mathbb{R}^3

Consider the rotations about the axes in \mathbb{R}^3 . Since these clearly preserve angles and distances and are linear transformations, they are orthogonal transformations.

Rotations about the axes can be described by considering its effect on the standard basis $\{e_1, e_2, e_3\}$.

When considering the rotation about the Z-axis, e_3 remains unchanged and the XY-plane gets rotated exactly as in the previous case of \mathbb{R}^2 . Therefore its matrix is

RE VIDEOS

$$T_3(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Similarly, the matrix corresponding to rotation about the X-axis is

$$T_1(\theta) = egin{pmatrix} 1 & 0 & 0 \ 0 & cos(heta) & -sin(heta) \ 0 & sin(heta) & cos(heta) \end{pmatrix}$$

and the matrix corresponding to rotation about the Y-axis is

$$T_2(\theta) = egin{pmatrix} \cos(\theta) & 0 & -\sin(\theta) \ 0 & 1 & 0 \ \sin(\theta) & 0 & \cos(\theta) \end{pmatrix}.$$

Notice: $T_i(\theta)^T = T_i(-\theta)$ and $T_i(\theta)^T T_i(\theta) = T_i(\theta) T_i(\theta)^T = I$.

Another example of an orthogonal transformation

Let us define a linear transformation $\mathcal{T}:\mathbb{R}^3 \to \mathbb{R}^3$, where

$$T(x_1, x_2, x_3) = \frac{1}{3}(x_1 - 2x_2 + 2x_3, 2x_1 - x_2 - 2x_3, 2x_1 + 2x_2 + x_3).$$

Then evaluating T on the standard basis $\{e_1, e_2, e_3\}$ yields :

$$T(e_1) = v_1 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$
 $T(e_2) = v_2 = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right)$
 $T(e_3) = v_3 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$.

Thus, the matrix corresponding to T is $A=\frac{1}{3}\begin{pmatrix}1&-2&2\\2&-1&-2\\2&2&1\end{pmatrix}$.

Orthogonal matrices

As $\{v_1, v_2, v_3\}$ is an orthonormal set, the linear transformation T is an orthogonal transformation.

Observe that $AA^{T} = A^{T}A = I_{3}$.

A square matrix A is called an orthogonal matrix if $AA^T = A^TA = I_3$