

Flowcharts

(Session 13)

Review - Pseudocode Rules

- Like regular code write one statement per line
- 2. Use CAPITALISATION for keywords
- 3. Indentation
 - This shows hierarchy and will get you used to programming
- 4. End multiline structures
- 5. Keep statements language independent
 - This is not a program, its **plain English**

Pseudocode

READ name, gross_pay, taxes

IF taxes > 0

net = gross_pay - taxes

ELSE

net = gross_pay

ENDIF

WRITE name, n

Overview

- Flowcharts
- Sequential Structure
- Selection Structure
- Loop Structure
- From Flowcharts to Python Code

Structures

- Three basic types of control structures:
 - sequential
 - selection
 - repetition
- Throughout this section we are going to review the structures which you will use in pseudocode and your developed programs
- To assist in your understanding we will also use flow charts

Review (Flowcharts)

- Graphically represent the flow of your program
- Flow line
- Terminal (start / stop)
- Input/output used for input output operations
- Processing used for data manipulation

Sequential

- INPUT num1
- INPUT num2
- sum = num1 + num2
- WRITE sum

Selection Structure

- Selection is as simple as yes or no. If a user enters a number, is it even? If yes, it's even, if no, it's odd.
- In Pseudocode this looks something like:

```
INPUT num

IF num is even

WRITE "Your number is even!"

ELSE

WRITE "Your number is odd!"

ENDIF
```


Selection Structure

If we look at the flow chart and the pseudocode – can you see the

Looping Structure

- Loops can be a bit confusing especially when you attempt to depict looping in flow charts.
 - This is due to the use of the diamond as a control symbol
- Thankfully pseudocode does not require a control symbol, and we can use specific keywords such as WHILE/ENDWHILE and FOR/ENDFOR
- Lets take a look at both of these.

Looping Structure: WHILE/ENDWHILE

Pseudocode

num = 0
WHILE num < 25
ADD 1 to num
WRITE num
ENDWHILE

WRITE "Finished"

Looping Structure: FOR/ENDFOR

From Flowcharts to Python Code

Pseudocode

FOR num = 1 to 10

WRITE num

ENDFOR

WRITE "Finished"

Python Code

for num in range(1, 11):
 print(num)
print("Finished")

Comparing Pseudocode and Flowcharts

- Pseudocode Advantages:
 - Easy to modify
 - Structured concepts
 - No special software requirement to write it
- Pseudocode Disadvantages
 - No visuals (can be hard to follow)
 - No accepted standards (can vary between organisations)

Questions?

