2-1 Additional Practice

Vertex Form of a Quadratic Function

Graph each function. Describe how it was translated from $f(x) = x^2$.

1.
$$f(x) = x^2 + 4$$

translated up 4 units

2.
$$f(x) = (x - 3)^2$$

translated right 3 units

3.
$$f(x) = (x + 2)^2 - 1$$

translated 1 unit down and 2 units left

Identify the vertex, axis of symmetry, the maximum or minimum value, and the domain and the range of each function.

4.
$$v = (x-2)^2 + 3$$

$$x = 2$$
; Minimum:

$$y = 3$$
; Domain:

$$(-\infty, \infty)$$
; Range:

$$(3, \infty)$$

5.
$$f(x) = -0.2(x+3)^2 + 2$$
 6. $y = (x+4)^2 - 1$

Vertex:
$$(2, 3)$$
; Axis Vertex: $(-3, 2)$; Vertex: $(-4, -1)$;

Axis of Symmetry: Axis of Symmetry
$$x = -3$$
; $x = -4$; Minimum Maximum: $y = 2$; $y = -1$; Domain:

Domain:
$$(-\infty, \infty)$$

Range:
$$(-\infty, 2]$$

6.
$$y = (x + 4)^2 - 1$$

$$x = -4$$
; Minimum:

$$y = -1$$
; Domain:

Domain:
$$(-\infty, \infty)$$
; $(-\infty, \infty)$; Range:

$$(-1, \infty)$$

Write the equation of each parabola in vertex form.

$$y = 5(x - 3)^2 - 2$$

$$y = 5(x - 3)^2 - 2$$
 $y = -(x + 4)^2 - 24$ $y = 2(x + 12.5)^2 + 35.5$

10. Given the function
$$f(x) = x^2$$
, Write the equation function $g(x)$ whose graph is a translation 5 units left and 3 units down. $g(x) = (x + 5)^2 - 3$

11. The diagram shows the path of a model rocket launched from the ground. It reaches a maximum altitude of 384 ft when it is above a location 16 ft from the launch site. What quadratic function models the height of the rocket?

$$f(x) = -1.5(x - 16)^2 + 384$$

