

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 1

Galois Theory

Author: Edward McDonald

Student Number: 3375335

For this assignment, n > 1 and k is a field containing a primitive nth root of unity ζ_n , and the characteristic of k does not divide n. Let $a \in k$ be such that the polynomial $P_a(x) = x^n - a$ has no root in k. Let $K_{a,n} = k(\sqrt[n]{a})$ be a field extention of k generated by a root of P_a .

Question 1

Lemma 1. In $K_{a,n}$, P_a is expressed as a product of n distinct linear factors

$$P_a(x) = \prod_{k=1}^n (x - \zeta_n^k \sqrt[n]{a})$$

Proof. Since ζ_n is primitive, all of the elements $\zeta_n^k \sqrt[n]{a}$ for $k=1,2,\ldots,n$ are distinct and are all zeroes of P_a . Hence since P_a has at most n roots, this is all of the roots of P_a and so P_a decomposes as

$$P_a(x) = \prod_{k=1}^{n} (x - \zeta_n^k \sqrt[n]{a})$$

Question 2

For this question, $\lambda \in \mathbb{Z}/n$ and define

$$\sigma_{\lambda}: K_{a,n} \to K_{a,n}$$

by $\sigma_{\lambda}(f(\sqrt[n]{a})) = f(\zeta_n^{\lambda} \sqrt[n]{a})$ for any polynomial $f \in k[x]$.

Theorem 1. σ_{λ} is a field automorphism on $K_{a,n}$.

Proof. First since any $x \in K_{a,n}$ can be written uniquely as a sum

$$x = b_0 + b_1 \sqrt[n]{a} + b_2 \sqrt[n]{a^2} + \dots + b_{n-1} \sqrt[n]{a^{n-1}},$$
(1)

for $b_i \in k$, then $\sigma_{\lambda}(x)$ is given by

$$\sigma_{\lambda}(x) = b_0 + b_1 \sqrt[n]{a} \zeta_n^{\lambda} + b_2 \sqrt[n]{a^2} \zeta_n^{2\lambda} + \dots + b_{n-1} \sqrt[n]{a^{n-1}} \zeta_n^{\lambda(n-1)}.$$
 (2)

This shows that σ_{λ} is well defined, since the expression in equation 1 is unique so σ_{λ} must be given by 2.

To show that σ_{λ} is bijective, it suffices to find an inverse function. Let $x = f(\sqrt[n]{a}) \in K_{a,n}$, then

$$\sigma_{\lambda}(\sigma_{-\lambda}(x)) = f(\sqrt[n]{a}\zeta_n^{\lambda}\zeta_n^{-\lambda}) = x = \sigma_{-\lambda}(\sigma_{\lambda}(x)).$$

Suppose that $f(\sqrt[n]{a}), g(\sqrt[n]{a}) \in K_{a,n}$. Then,

$$\begin{split} \sigma_{\lambda}(f(\sqrt[n]{a}) + g(\sqrt[n]{a}) &= \sigma_{\lambda}((f+g)(\sqrt[n]{a})) \\ &= (f+g)(\sqrt[n]{a}\zeta_n^{\lambda}) \\ &= f(\sqrt[n]{a}\zeta_n^{\lambda}) + g(\sqrt[n]{a}\zeta_n^{\lambda}) \\ &= \sigma_{\lambda}(f(\sqrt[n]{a})) + \sigma_{\lambda}(g(\sqrt[n]{a})). \end{split}$$

Hence the function σ_{λ} is additive. An identical argument shows that σ_{λ} is multiplicative.

Corollary 1. For $\lambda \in \mathbb{Z}/n$, $\sigma_{\lambda} \in \operatorname{Aut}(K_{a,n}/k)$.

Proof. Let $b \in k$, then we have $\sigma_{\lambda}(b) = b$ since b is a degree 0 polynomial in k[x].

Hence σ_{λ} fixes k.

Question 3

Lemma 2. If $\sigma \in \operatorname{Aut}(K_{a,n}/k)$, then $P_a(\sigma(\sqrt[n]{a})) = 0$.

Proof. We simply compute $P_a(\sigma(\sqrt[n]{a}))$,

$$P(\sigma(\sqrt[n]{a})) = \sigma(\sqrt[n]{a})^n - a$$
$$= \sigma(\sqrt[n]{a}^n) - a$$
$$= \sigma(a) - \sigma(a)$$
$$= 0.$$

Lemma 3. If $\sigma \in \text{Aut}(K_{a,n}/k)$, then $\sigma = \sigma_{\lambda}$ for some $\lambda \in \mathbb{Z}/n$.

Proof. We have shown that $\sigma(\sqrt[n]{a})$ is a root of P_a , however the only roots of P_a over $K_{a,n}$ are of the form $\zeta_n^{\lambda} \sqrt[n]{a}$ for some $\lambda \in \mathbb{Z}/n$. Hence $\sigma(\sqrt[n]{a}) = \zeta_n^{\lambda} \sqrt[n]{a}$. Since $\{1, \sqrt[n]{a}\}$ generates $K_{a,n}$ as a k-space, this uniquely determines σ as σ_{λ} . \square

Theorem 2. Hence, $Aut(K_{a,n}/k)$ is isomorphic to \mathbb{Z}/n as a group.

Proof. The map $\lambda \mapsto \sigma_{\lambda}$ is a bijection since we have shown that it is surjective, and if $\sigma_{\lambda} = \sigma_{\mu}$, then $\zeta_{n}^{\lambda} = \zeta_{n}^{\mu}$ so $\lambda = \mu$ as ζ_{n} is primitive. To show that this is a group homomorphism, let $\lambda, \mu \in \mathbb{Z}/n$. Then $\sigma_{\lambda} \circ \sigma_{\mu}$ is a field automorphism fixing k, and $\sigma_{\lambda}(\sigma_{\mu}(\sqrt[n]{a})) = \sqrt[n]{a}\zeta_{n}^{\mu}\zeta_{n}^{\lambda} = \sqrt[n]{a}\zeta_{n}^{\lambda+\mu}$. Hence $\sigma_{\lambda} \circ \sigma_{\mu} = \sigma_{\lambda+\mu}$. Hence we have an isomorphism of groups.

Question 4

For this question, m|n is an integer, and $m(\mathbb{Z}/n)$ is the subgroup of \mathbb{Z}/n generated by m.

Lemma 4. $\sqrt[n]{a}$ is fixed by σ_{λ} for each $\lambda \in m(\mathbb{Z}/n)$.

Proof. Note that $\sqrt[m]{a} = \sqrt[n]{a}^{n/m}$ since n/m is an integer. Hence $\sigma_{\lambda}(\sqrt[m]{a}) = \sqrt[n]{a}^{n/m} \zeta_n^{n\lambda/m} = \sqrt[n]{a} \zeta_n^{n\lambda/m}$ Hence σ_{λ} fixes $\sqrt[n]{a}$ if and only if $n|n\lambda/m$, so we must have $m|\lambda$. Hence $\lambda \in m(\mathbb{Z}/n)$.

Theorem 3. $\sigma_{\lambda}(u) = u$ for all $\lambda \in m(\mathbb{Z}/n)$ if and only if $u \in K_{a,m}$.

Proof. Suppose first that $u \in K_{a,m}$. It is sufficient to consider the case $u = \sqrt[m]{a}$ since $\sqrt[m]{a}$ generates $K_{a,m}$ as a k-algebra. We have already shown for this case that $\sigma_{\lambda}(u) = u$ for all $\lambda \in m(\mathbb{Z}/n)$. Conversely, assume that $\sigma_{\lambda}(u) = u$ for each $\lambda \in m(\mathbb{Z}/n)$. We know that u can be uniquely written as

$$u = b_0 + b_1 \sqrt[n]{a} + \dots + b_{n-1} \sqrt[n]{a}^{n-1}.$$

for $b_i \in k$. Then if $\sigma_{\lambda}(u) = u$, we have

$$b_0 + b_1 \sqrt[n]{a} \zeta_n^{\lambda} + \dots + b_{n-1} \sqrt[n]{a}^{n-1} \zeta_n^{\lambda(n-1)} = b_0 + b_1 \sqrt[n]{a} + \dots + b_{n-1} \sqrt[n]{a}^{n-1}.$$

Hence by the uniqueness of this representation, we have $b_i = \zeta_n^{\lambda i} b_i$ for all $i = 0, \ldots, n-1$, and for all $\lambda \in m(\mathbb{Z}/n)$. If $b_i \neq 0$, we must have $\zeta_n^{\lambda i} = 1$, in particular $\zeta_n^{mi} = 1$. So n|mi. Hence there is some integer p such that pn/m = i. Thus, we can only have $b_i \neq 0$ when i is a multiple of n/m. Hence each term in the expression of u is a multiple of a power of $\sqrt[p]{a}^{n/m} = \sqrt[m]{a}$. Thus, $u \in K_{a,m}$.

If $u \in K_{a,m}$, we must prove that $\sigma_{\lambda}(u) = u$ for all $\lambda \in m(\mathbb{Z}/n)$. However it is sufficent to consider $u = \sqrt[m]{a} = \sqrt[n]{a}^{n/m}$ since this generates $K_{a,m}$ as a k-algebra. Clearly then $\sigma_{\lambda}(u) = \sqrt[m]{a}\zeta_n^{n\lambda/m}$. However since λ is a multiple of m, we conclude that $\zeta_n^{n\lambda/m} = 1$.