Package 'echoice2'

November 20, 2023

Type Package

Title Choice Models with Economic Foundation

Version 0.2.4 Date 2023-11-20

Maintainer Nino Hardt <me@ninohardt.com>

Description Implements choice models based on economic theory, including estimation using Markov chain Monte Carlo (MCMC), prediction, and more. Its usability is inspired by ideas from 'tidyverse'. Models include versions of the Hierarchical Multinomial Logit and Multiple Discrete-Continous (Volumetric) models with and without screening. The foundations of these models are described in Al-

lenby, Hardt and Rossi (2019) <doi:10.1016/bs.hem.2019.04.002>. Models with conjunctive screening are described in Kim, Hardt, Kim and Al-

lenby (2022) <doi:10.1016/j.ijresmar.2022.04.001>. Models with set-size variation are described in Hardt and Kurz (2020) <doi:10.2139/ssrn.3418383>.

License MIT + file LICENSE

BugReports https://github.com/ninohardt/echoice2/issues

URL https://github.com/ninohardt/echoice2,

http://ninohardt.de/echoice2/

Imports Rcpp, parallel, magrittr, stats, graphics, stringr, purrr, tibble, tidyselect, tidyr, rlang, forcats

Depends R (>= 3.5), dplyr, ggplot2

Suggests knitr, rmarkdown, testthat, bayesm

LinkingTo Rcpp, RcppArmadillo

Config/testthat/edition 3

Encoding UTF-8 **RoxygenNote** 7.2.3 **VignetteBuilder** knitr

NeedsCompilation yes

Author Nino Hardt [aut, cre] (https://orcid.org/0000-0001-5215-6216)

Repository CRAN

Date/Publication 2023-11-20 08:50:07 UTC

R topics documented:

dd_dem
dd_dem_sr
dd_est_hmnl
dd_est_hmnl_screen
dd_LL
dd_LL_sr
dummify
dummyvar
ec_boxplot_MU
ec_boxplot_screen
ec_demcurve
ec_demcurve_cond_dem
ec_demcurve_inci
ec_dem_aggregate
ec_dem_eval
ec_dem_summarise
ec_draws_MU
ec_draws_screen
ec_estimates_MU
ec_estimates_screen
ec_estimates_SIGMA
ec_estimates_SIGMA_corr
ec_gen_err_ev1
ec_gen_err_normal
ec_lmd_NR
ec_lol_tidy1
ec_screenprob_sr
ec_screen_summarise
ec_summarize_attrlvls
ec_trace_MU
ec_trace_screen
ec_undummy
ec_undummy_lowhigh
ec_undummy_lowmediumhigh
ec_undummy_yesno
ec_util_choice_to_long
ec_util_dummy_mutualeclusive
get_attr_lvl
icecream
icecream_discrete
logMargDenNRu
pizza
prep_newprediction
vd_add_prodid
vd_dem_summarise
vd_dem_vdm

dd_dem 3

	vd_dem_vdm_screen	3
	vd_dem_vdm_ss	38
	vd_est_vdm	39
	vd_est_vdm_screen	4(
	vd_est_vdm_ss	41
	vd_LL_vdm	42
	vd_LL_vdmss	42
	vd_LL_vdm_screen	43
	vd_long_tidy	44
	vd_prepare	44
	vd_prepare_nox	45
	vd_thin_draw	46
	%.%	47
Index		48

Discrete Choice Predictions (HMNL)

Description

dd_dem

Discrete Choice Predictions (HMNL)

Usage

```
dd_dem(dd, est, prob = FALSE, cores = NULL)
```

Arguments

dd tibble with long-format choice data

est estimation object

prob logical, report probabilities instead of demand

cores cores

Value

Draws of expected choice

See Also

dd_est_hmnl() to generate demand predictions based on this model

4 dd_dem_sr

Examples

```
data(icecream_discrete)
icecream_est <- icecream_discrete %>% filter(id<10) %>% dd_est_hmnl(R=4, cores=2)
#demand prediction
icecream_dempred <- icecream_discrete %>% filter(id<10) %>%
    dd_dem(icecream_est, cores=2)
```

dd_dem_sr

Discrete Choice Predictions (HMNL with attribute-based screening)

Description

Discrete Choice Predictions (HMNL with attribute-based screening)

Usage

```
dd_dem_sr(dd, est, prob = FALSE, cores = NULL)
```

Arguments

dd data est est

prob logical, report probabilities instead of demand

cores cores

Value

Draws of expected choice

See Also

dd_est_hmnl_screen() to generate demand predictions based on this model

dd_est_hmnl 5

dd_est_hmnl

Estimate discrete choice model (HMNL)

Description

Estimate discrete choice model (HMNL)

Usage

```
dd_est_hmnl(
   dd,
   R = 1e+05,
   keep = 10,
   cores = NULL,
   control = list(include_data = TRUE)
)
```

Arguments

dd discrete choice data (long format)

R draws keep thinning

cores no of CPU cores to use (default: auto-detect)

control list containing additional settings

Value

```
est ec-draw object (List)
```

See Also

dd_dem() to generate demand predictions based on this model

```
data(icecream_discrete)
icecream_est <- icecream_discrete %>% dd_est_hmnl(R=20, cores=2)
```

dd_est_hmnl_screen

Description

Estimate discrete choice model (HMNL, attribute-based screening (not including price))

Usage

```
dd_est_hmnl_screen(
   dd,
   price_screen = TRUE,
   R = 1e+05,
   keep = 10,
   cores = NULL,
   control = list(include_data = TRUE)
)
```

Arguments

dd discrete choice data (long format)

price_screen A logical, indicating whether price tag screening should be estimated

R draws keep thinning

cores no of CPU cores to use (default: auto-detect)

control list containing additional settings

Value

```
est ec-draw object (List)
```

See Also

dd_dem_sr() to generate demand predictions based on this model

```
data(icecream_discrete)
icecream_est <- icecream_discrete %>% dplyr::filter(id<20) %>%
    dd_est_hmnl_screen(R=20, cores=2)
```

dd_LL 7

dd_LL

Log-Likelihood for compensatory hmnl model

Description

Log-Likelihood for compensatory hmnl model

Usage

```
dd_LL(draw, dd, fromdraw = 1)
```

Arguments

draw A list, 'echoice2' draws object

dd A tibble, tidy choice data (before dummy-coding)

fromdraw An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

```
data(icecream_discrete)
#fit model
icecream_est <- icecream_discrete %>% dd_est_hmnl(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-dd_LL(icecream_est, icecream_discrete, fromdraw = 2)</pre>
```

dd_LL_sr

Log-Likelihood for screening hmnl model

Description

Log-Likelihood for screening hmnl model

Usage

```
dd_LL_sr(draw, dd, fromdraw = 1)
```

Arguments

draw A list, 'echoice2' draws object

dd A tibble, tidy choice data (before dummy-coding)

fromdraw An integer, from which draw onwards to compute LL (i.e., excl. burnin)

8 dummify

Value

N x Draws Matrix of log-Likelihood values

Examples

```
data(icecream_discrete)
#fit model
icecream_est <- icecream_discrete %>% dd_est_hmnl_screen(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-dd_LL_sr(icecream_est, icecream_discrete, fromdraw = 2)</pre>
```

dummify

Create dummy variables within a tibble

Description

Create dummy variables within a tibble

Usage

```
dummify(dat, sel)
```

Arguments

dat A tibble with the data.

sel A character vector with the name(s) of the variables to be dummied.

Value

tibble with dummy variables

```
\label{eq:mytest} $$ mytest=data.frame(A=factor(c('a','a','b','c','c')), B=1:5)$ $$ dummify(mytest,"A")
```

dummyvar 9

dummyvar

Dummy-code a categorical variable

Description

Dummy-code a categorical variable

Usage

```
dummyvar(data)
```

Arguments

data

one column of categorical data to be dummy-coded

Value

tibble with dummy variables

Examples

```
mytest=data.frame(attribute=factor(c('a','a','b','c','c')))
dummyvar(mytest)
```

ec_boxplot_MU

Generate MU_theta boxplot

Description

Generate MU_theta boxplot

Usage

```
ec_boxplot_MU(draws, burnin = 100)
```

Arguments

draws

A list, 'echoice2' draws object

burnin

burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

```
ec_trace_MU() to obtain traceplot
```

10 ec_boxplot_screen

Examples

```
## Not run:
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use
icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=20, cores=2)
ec_boxplot_MU(icecream_est, burnin=1)
## End(Not run)
```

ec_boxplot_screen

Generate Screening probability boxplot

Description

Generate Screening probability boxplot

Usage

```
ec_boxplot_screen(draws, burnin = 100)
```

Arguments

draws A list, 'echoice2' draws object, from a model with attribute-based screening

burnin burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

```
ec_draws_MU() to obtain MU_theta draws, ec_trace_screen() to generate traceplot
```

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_scr_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm_screen(R=20, cores=2)
ec_boxplot_screen(icecream_scr_est, burnin = 1)
```

ec_demcurve 11

ec_demcurve

Create demand curves

Description

This helper function creates demand curves

Usage

```
ec_demcurve(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)
```

Arguments

ec_long choice scenario (discrete or volumetric)

focal_product Logical vector picking the focal product for which to create a demand curve rel_pricerange Price range, relative to base case price; this is used to create demand curve

dem_fun demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric de-

mand). For discrete choice, use choice probabilities instead of choice predic-

tions.

draws ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not (optional) error realisatins (this helps make curves look smother for voumetric

models)

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>%
vd_est_vdm(R=20, keep=1, cores=2)
#demand at different price points
```

```
dem_scenarios<-
ec_demcurve(icecream%>% dplyr::filter(id<100),
  icecream%>% dplyr::filter(id<100) %>% pull('Brand')=="Store",
    c(.75,1,1.25),vd_dem_vdm,icecream_est)
#optional plot
# dem_scenarios %>%
# do.call('rbind',.) %>%
# ggplot(aes(x=scenario,y=`E(demand)`,color=Flavor)) + geom_line()
```

Description

This helper function creates demand curves

Usage

```
ec_demcurve_cond_dem(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)
```

Arguments

ec_long choice scenario (discrete or volumetric)

focal_product Logical vector picking the focal product for which to create a demand curve

rel_pricerange Price range, relative to base case price; this is used to create demand curve

dem_fun demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric demand). For discrete choice, use choice probabilities instead of choice predic-

tions.

draws ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not (optional) error realisatins (this helps make curves look smother for voumetric

models)

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

ec_demcurve_inci 13

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

Examples

```
data(icecream)
#run MCMC sampler (use way more draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>%
vd_est_vdm(R=2, keep=1, cores=2)
#demand at different price points
conddem_scenarios<-
ec_demcurve_cond_dem(icecream%>% dplyr::filter(id<20),
    icecream%>% dplyr::filter(id<20) %>% pull('Brand')=="Store",
    c(.75,1),vd_dem_vdm,icecream_est)
```

ec_demcurve_inci

Create demand-incidence curves

Description

This helper function creates demand curves

Usage

```
ec_demcurve_inci(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)
```

Arguments

ec_long choice scenario (discrete or volumetric)

focal_product Logical vector picking the focal product for which to create a demand curve rel_pricerange Price range, relative to base case price; this is used to create demand curve dem_fun demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric demand). For discrete choice, use choice probabilities instead of choice predictions.

draws ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not (optional) error realisatins (this helps make curves look smother for voumetric

models)

14 ec_dem_aggregate

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

Examples

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<50) %>%
vd_est_vdm(R=20, keep=1, cores=2)
#demand at different price points
inci_scenarios<-
ec_demcurve_inci(icecream%>% dplyr::filter(id<50),
    icecream%>% dplyr::filter(id<50) %>% pull('Brand')=="Store",
    c(.75,1,1.25),vd_dem_vdm,icecream_est)
```

ec_dem_aggregate

Aggregate posterior draws of demand

Description

Aggregate demand draws, e.g. from individual-choice occasion-alternative level to individual level. (using the new demand draw format)

Usage

```
ec_dem_aggregate(de,groupby)
```

Arguments

de demand draws

groupby grouping variables (as (vector of) string(s))

Value

Aggregated demand predictions

ec_dem_eval

Examples

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=4, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
  icecream %>% dplyr::filter(id<10) %>%
    vd_dem_vdm(icecream_est)
#aggregate
brand_lvl_pred_demand <-
  icecream_predicted_demand %>% ec_dem_aggregate("Brand")
```

ec_dem_eval

Evaluate (hold-out) demand predictions

Description

This function obtains proper posterior fit statistics. It computes the difference between true demand and each draw from the demand posterior. Then, fit statistics are obtained.

Usage

```
ec_dem_eval(de)
```

Arguments

de

demand draws (output from vd_dem_x function)

Value

Predictive fit statistics (MAE, MSE, RAE, bias, hit-probability)

data(icecream) #run MCMC sampler (use way more than 50 draws for actual use) icecream_est <-icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=20, keep=1, cores=2) #Generate demand predictions icecream_predicted_demand= icecream %>% dplyr::filter(id<100) %>% vd_dem_vdm(icecream_est) #evaluate in-sample fit (note: too few draws for good results) ec_dem_eval(icecream_predicted_demand)

16 ec_dem_summarise

ec_dem_summarise

Summarize posterior draws of demand

Description

Adds summaries of posterior draws of demand to tibble. (using the new demand draw format)

Usage

```
ec_dem_summarise(de, quantiles)
ec_dem_summarize(de, quantiles = c(0.05, 0.95))
```

Arguments

de demand draws

quantiles Quantiles for Credibility Intervals (default: 90% interval)

Value

Summary of demand predictions

```
data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
icecream %>% dplyr::filter(id<10) %>%
    vd_dem_vdm(icecream_est)
#aggregate
brand_lvl_pred_demand <-
icecream_predicted_demand %>% ec_dem_aggregate("Brand")
#summarise
brand_lvl_pred_demand %>% ec_dem_summarise()
```

ec_draws_MU

ec_draws_MU

Obtain MU_theta draws

Description

Obtain MU_theta draws

Usage

```
ec_draws_MU(draws)
```

Arguments

draws

A list, 'echoice2' draws object

Value

A tibble, long format, draws of MU

See Also

 $ec_draws_screen()$ to obtain screening parameter draws (where applicable), $ec_trace_MU()$ to generate a traceplot of MU_theta draws

Examples

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm(R=20, cores=2)
ec_draws_MU(icecream_est)
```

ec_draws_screen

Obtain Screening probability draws

Description

Obtain Screening probability draws

Usage

```
ec_draws_screen(draws)
```

Arguments

draws

A list, 'echoice2' draws object

18 ec_estimates_MU

Value

A tibble, long format, draws of MU

See Also

ec_draws_MU() to obtain MU_theta draws, ec_trace_screen() to generate a traceplot of screening draws

Examples

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_scr_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm_screen(R=20, cores=2)
ec_draws_screen(icecream_scr_est)
```

ec_estimates_MU

Obtain upper level model estimates

Description

Obtain upper level model estimates

Usage

```
ec_estimates_MU(est, quantiles = c(0.05, 0.95))
```

Arguments

est is an 'echoice2' draw object (list)

quantiles quantile for CI

Value

tibble with MU (upper level) summaries

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm(R=20, cores=2)
#Upper-level summary
icecream_est %>% ec_estimates_MU
```

ec_estimates_screen 19

ec_estimates_screen Summ

Summarize attribute-based screening parameters

Description

Summarize attribute-based screening parameters from an attribute-based screening model in 'echoice2'

Usage

```
ec_estimates_screen(est, quantiles = c(0.05, 0.95))
```

Arguments

est is an 'echoice2' draw object (list) from a model with attribute-based screening

quantiles quantile for CI

Value

tibble with screening summaries

Examples

```
#run MCMC sampler (use way more than 20 draws for actual use)
data(icecream)
est_scr_icecream <- vd_est_vdm_screen(icecream%>%dplyr::filter(id<30), R=20, cores=2)
#summarise draws of screening probabilities
ec_estimates_screen(est_scr_icecream)
#Note: There is no variance in this illustrative example - more draws are needed</pre>
```

ec_estimates_SIGMA

Obtain posterior mean estimates of upper level covariance

Description

Obtain posterior mean estimates of upper level covariance

Usage

```
ec_estimates_SIGMA(est)
```

Arguments

est

is an 'echoice2' draw object (list)

Value

estimates of upper level covariance

Examples

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm(R=20, cores=2)
icecream_est %>% ec_estimates_SIGMA %>% round(2)
```

```
ec_estimates_SIGMA_corr
```

Obtain posterior mean estimates of upper level correlations

Description

Obtain posterior mean estimates of upper level correlations

Usage

```
ec_estimates_SIGMA_corr(est)
```

Arguments

est

is an 'echoice2' draw object (list)

Value

estimates of upper level correlations

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm(R=20, cores=2)
icecream_est %>% ec_estimates_SIGMA_corr %>% round(2)
```

ec_gen_err_ev1 21

			-
ec	gen	err	evil

Simulate error realization from EV1 distribution

Description

Simulate error realization from EV1 distribution

Usage

```
ec_gen_err_ev1(ec_dem, draws, seed = NULL)
```

Arguments

ec_dem discrete or volumetric choice data, with or without x

draws from volumetric demand model

seed seed for reproducible error realisations; seet is automatically reset of running

this function

Value

error realizations

Examples

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>%
vd_est_vdm(R=100, keep=1, cores=2)
#generate error realizations
errs<- ec_gen_err_ev1(icecream %>% dplyr::filter(id<100), icecream_est, seed=123)</pre>
```

ec_gen_err_normal

Simulate error realization from Normal distribution

Description

Simulate error realization from Normal distribution

Usage

```
ec_gen_err_normal(ec_dem, draws, seed = NULL)
```

ec_lmd_NR

Arguments

ec_dem discrete or volumetric choice data, with or without x

draws from volumetric demand model

seed seed for reproducible error realisations; seet is automatically reset of running

this function

Value

error realizations

Examples

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>%
vd_est_vdm(R=10, keep=1, error_dist = "Normal", cores=2)
#generate error realizations
errs<- ec_gen_err_normal(icecream %>% dplyr::filter(id<10), icecream_est, seed=123)</pre>
```

 ec_1md_NR

Obtain Log Marginal Density from draw objects

Description

This is a helper function to quickly obtain log marginal density from a draw object

Usage

```
ec_lmd_NR(est)
```

Arguments

est

'echoice2' draw object

Details

Draws are split in 4 equal parts from start to finish, and LMD is computed for each part. This helps to double-check convergence.

Value

```
tibble with LMDs (first 25% of draws, next 25% of draws, ...)
```

ec_lol_tidy1 23

Examples

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=20, cores=2)
#obtain LMD by quartile of draws
ec_lmd_NR(icecream_est)
```

ec_lol_tidy1

Convert "list of lists" format to long "tidy" format

Description

Convert "list of lists" format to long "tidy" format

Usage

```
ec_lol_tidy1(data_lol, X = "X", y = "y")
```

Arguments

data_lol A list of data frames containing design matrices and response vectors

X The column name of the design matrix, default: "X"

y The column name of the response vector, default: "y"

Value

A tidy data frame with columns for each design matrix column, the response vector, and an id column indicating which data frame the row came from

```
loldata<-list()
loldata[[1]]=list()
loldata[[1]]$y = c(1,2)
loldata[[1]]$X= data.frame(brand1=c(1,0, 1,0),brand2=c(0,1, 0,1),price=c(1,2))
loldata[[2]]=list()
loldata[[2]]$y = c(1,1)
loldata[[2]]$X= data.frame(brand1=c(1,0, 1,0),brand2=c(0,1, 0,1),price=c(1,2))
ec_lol_tidy1(loldata)</pre>
```

24 ec_screen_summarise

ec_screenprob_sr

Screening probabilities of choice alternatives

Description

Obtain draws of screening probabilities of choice alternatives

Usage

```
ec_screenprob_sr(xd, est, cores=NULL)
```

Arguments

xd data

est ec-model draws cores (optional) cores

Value

Draws of screening probabilities of choice alternatives

Examples

```
data(icecream)
icecream_est <- icecream %>% filter(id<10) %>% vd_est_vdm_screen(R=10, price_screen=TRUE, cores=2)
ec_screenprob_sr(icecream %>% filter(id<10), icecream_est, cores=2)</pre>
```

ec_screen_summarise

Summarize posterior draws of screening

Description

Adds summaries of posterior draws of demand to tibble. (using the new demand draw format)

Usage

```
ec_screen_summarise(sc, quantiles = c(0.05, 0.95))
ec_screen_summarize(sc, quantiles = c(0.05, 0.95))
```

Arguments

sc tibble containing screening draws in .screendraws

quantiles Quantiles for Credibility Intervals (default: 90% interval)

ec_summarize_attrlvls 25

Value

Summary of screening probabilities

Examples

```
data(icecream)
icecream_est <- icecream %>% vd_est_vdm_screen(R=20, price_screen=TRUE, cores=2)
#consideration set by respondent
cons_ss <-
ec_screenprob_sr(icecream, icecream_est, cores=2) %>%
group_by(id, task) %>%
   summarise(.screendraws=list(purrr::reduce(.screendraws ,`+`))) %>%
   ec_screen_summarise() %>%
   group_by(id) %>%
   summarise(n_screen=mean(`E(screening)`))
```

ec_summarize_attrlvls Summarize attributes and levels

Description

Summarize attributes and levels in tidy choice data containing categorical attributes (before dummy-coding)

Usage

```
ec_summarize_attrlvls(data_in)
ec_summarise_attrlvls(data_in)
```

Arguments

data_in

A tibble, containing long-format choice data

Details

This functions looks for categorical attributes and summaries their levels This is helpful when evaluating a new choice data file.

Value

A tibble with one row per attribute, and a list of the levels

```
data(icecream)
ec_summarize_attrlvls(icecream)
```

26 ec_trace_screen

ec_trace_MU

Generate MU_theta traceplot

Description

Generate MU_theta traceplot

Usage

```
ec_trace_MU(draws, burnin = 100)
```

Arguments

draws A list, 'echoice2' draws object

burnin burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

```
ec_boxplot_MU() to obtain boxplot
```

Examples

```
## Not run:
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=10, cores=2)
ec_trace_MU(icecream_est)
## End(Not run)
```

ec_trace_screen

Generate Screening probability traceplots

Description

Generate Screening probability traceplots

Usage

```
ec_trace_screen(draws, burnin = 100)
```

ec_undummy 27

Arguments

draws A list, 'echoice2' draws object, from a model with attribute-based screening

burnin burn-in to remove

Value

A ggplot2 plot containing traceplots of draws

See Also

```
ec_draws_MU() to obtain MU_theta draws, ec_boxplot_screen() to generate boxplot
```

Examples

```
## Not run:
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use
icecream_scr_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm_screen(R=20, cores=2)
ec_trace_screen(icecream_scr_est, burnin=1)
## End(Not run)
```

ec_undummy

Converts a set of dummy variables into a single categorical variable

Description

Given a set of dummy variables, this function converts them into a single categorical variable. The categorical variable is created by determining which variables are active (i.e. have a value of 1) for each observation and assigning a category based on the set of active variables. If necessary, a reference level can be specified to ensure that all possible categories are represented. Often, all brands of a brand attribute are added as brand intercepts, while other categorical attributes are coded with respect to a reference level.

Usage

```
ec_undummy(data_in, set_members, attribute_name, ref_level = NULL)
```

Arguments

data_in a data frame containing the dummy variables

set_members a character vector of the names of the dummy variables

attribute_name a character string representing the name of the new categorical variable

ref_level a character string representing the name of the reference level. If specified, a

new dummy variable will be created for this level, and it will be used as the

reference category for the categorical variable. Defaults to NULL.

Value

a data frame with the same columns as data_in, except for the dummy variables in set_members, which are replaced with the new categorical variable attribute_name

Examples

```
minidata=structure(list(id = c("1", "1", "1", "1", "2", "2", "2", "2"),
task = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L),
alt = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L),
brand1 = c(1, 0, 1, 0, 1, 0, 1, 0),
brand2 = c(0, 1, 0, 1, 0, 1, 0, 1),
price = c(1, 2, 1, 2, 1, 2, 1, 2),
x = c(1, 0, 0, 1, 1, 0, 1, 0)),
class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L))
minidata %>% ec_undummy(c('brand1', 'brand2'), "brand")
```

ec_undummy_lowhigh

Convert dummy-coded variables to low/high factor

Description

Convert dummy-coded variables to low/high factor

Usage

```
ec_undummy_lowhigh(vec_in)
```

Arguments

vec_in

A vector of dummy-coded variables (0/1)

Value

A factor vector with levels "low" and "high"

```
ec\_undummy\_lowhigh(c(0,1,0,1,1))
```

ec_undummy_lowmediumhigh

Convert dummy-coded variables to low/medium/high factor

Description

Convert dummy-coded variables to low/medium/high factor

Usage

```
ec_undummy_lowmediumhigh(vec_in)
```

Arguments

vec_in

A vector of dummy-coded variables (0/1/2)

Value

A factor vector with levels "low", "medium" and "high"

Examples

```
ec_undummy_lowmediumhigh(c(0,1,2,1,0,2))
```

ec_undummy_yesno

Convert dummy-coded variables to yes/no factor

Description

Convert dummy-coded variables to yes/no factor

Usage

```
ec_undummy_yesno(vec_in)
```

Arguments

vec_in

A vector of dummy-coded variables (0/1)

Value

A factor vector with levels "no" and "yes"

Examples

```
ec\_undummy\_yesno(c(0,1,0,1,1))
```

```
ec_util_choice_to_long
```

Convert a vector of choices to long format

Description

Converts a vector of choices into a long format data frame, where each row represents a single choice and contains the choice status for each alternative.

Usage

```
ec_util_choice_to_long(myvec, all_index)
```

Arguments

myvec A vector of choices, where each element represents the index of the chosen

alternative.

all_index A vector of all the possible alternative indices.

Value

A tibble with columns 'x', 'task', and 'alt', where 'x' is a binary indicator of whether the alternative was chosen or not, 'task' is the task index, and 'alt' is the alternative index.

```
#There are 3 alternatives in this task. 
#Since there are 3 observations in myvec, there are 3 tasks total. 
ec_util_choice_to_long(c(1, 2, 1), c(1, 2, 3))
```

```
ec_util_dummy_mutualeclusive
```

Find mutually exclusive columns

Description

This function finds pairs of columns in a data frame that are mutually exclusive, i.e., that never have positive values at the same time.

Usage

```
ec_util_dummy_mutualeclusive(data_in, filtered = TRUE)
```

Arguments

data_in A data frame containing the data.

filtered A logical value indicating whether to return only the mutually exclusive pairs

(TRUE) or all pairs (FALSE). Default is TRUE.

Value

A tibble containing all pairs of mutually exclusive columns in the data frame.

Examples

```
 \begin{aligned} & \text{minidata=structure(list(id = c("1", "1", "1", "1", "2", "2", "2", "2"),} \\ & \text{task = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L),} \\ & \text{alt = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L),} \\ & \text{brand1 = c(1, 0, 1, 0, 1, 0, 1, 0),} \\ & \text{brand2 = c(0, 1, 0, 1, 0, 1, 0, 1),} \\ & \text{price = c(1, 2, 1, 2, 1, 2, 1, 2),} \\ & \text{x = c(1, 0, 0, 1, 1, 0, 1, 0)),} \\ & \text{class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, -8L))} \\ & \text{ec\_util\_dummy\_mutualeclusive(minidata)} \end{aligned}
```

get_attr_lvl

Obtain attributes and levels from tidy choice data with dummies

Description

Obtain attributes and levels from tidy choice data with dummies

Usage

```
get_attr_lvl(tdc)
```

32 icecream_discrete

Arguments

tdc

A tibble with choice data

Value

tibble

Examples

```
mytest=data.frame(A=factor(c('a','a','b','c','c')), B=1:5)
dummied_data = dummify(mytest,"A")
get_attr_lvl(dummied_data)
```

icecream

icecream

Description

Volumetric Conjoint data, ice cream category

Details

Data from volumetric conjoint analysis in the ice cream category. 300 respondents total. Volumetric demand in units of 4 ounces each. Attributes include brand name, flavor, and container size.

icecream_discrete

icecream_discrete

Description

Discrete-Choice Conjoint data, ice cream category

Details

Data from discrete choice conjoint analysis in the ice cream category. 300 respondents total. Attributes include brand name, flavor, and container size.

logMargDenNRu 33

logMargDenNRu

Log Marginal Density (Newton-Raftery)

Description

This function uses the quick-and-dirty Newton-Raftery approximation for log-marginal-density.

Usage

```
logMargDenNRu(11)
```

Arguments

11

A vector of log-likelihood values (i.e., draws)

Details

Approximation of LMD based on Newton-Raftery. It is not the most accurate, but a very fast method.

Value

A single numeric value representing the log marginal density

Examples

```
logll_values <- c(-4000, -4001, -4002)
logMargDenNRu(logll_values)</pre>
```

pizza

pizza

Description

Volumetric Conjoint data, pizza category

Details

Data from volumetric conjoint analysis in the frozen pizza category.

34 vd_add_prodid

prep_newprediction

Match factor levels between two datasets

Description

Makes sure the factor levels in data_new are aligned with data_old This is helpful for demand simulations.

Usage

```
prep_newprediction(data_new, data_old)
```

Arguments

data_new New long-format choice data data_old Old long-format choice data

Value

long-format choice data

Examples

```
data(icecream)
prep_newprediction(icecream, icecream)
```

vd_add_prodid

Add product id to demand draws

Description

This adds a unique product identifier to demand draw objects.

Usage

```
vd_add_prodid(de)
```

Arguments

de

demand draws

Value

est

vd_dem_summarise 35

Examples

```
data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=4, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
  icecream %>% dplyr::filter(id<10) %>%
    vd_dem_vdm(icecream_est)
#add prodid
icecream_predicted_demand_w_id<-icecream_predicted_demand %>% vd_add_prodid
```

vd_dem_summarise

Summarize posterior draws of demand (volumetric models only)

Description

Adds summaries of posterior draws of demand to tibble. (using the new demand draw format)

Usage

```
vd_dem_summarise(de, quantiles = c(0.05, 0.95))
vd_dem_summarize(de, quantiles = c(0.05, 0.95))
```

Arguments

de demand draws

quantiles Quantiles for Credibility Intervals (default: 90% interval)

Value

Summary of demand predictions

```
data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
icecream %>% dplyr::filter(id<10) %>%
    vd_dem_vdm(icecream_est)
#aggregate
brand_lvl_pred_demand <-
icecream_predicted_demand %>% ec_dem_aggregate("Brand")
```

36 vd_dem_vdm

```
#summarise
brand_lvl_pred_demand %>% vd_dem_summarise()
```

vd_dem_vdm

Demand Prediction (Volumetric Demand Model)

Description

Generating demand predictions for volumetric demand model. Reminder: there is no closed-form solution for demand, thus we need to integrate not only over the posterior distribution of parameters and the error distribution. The function outputs a tibble containing id, task, alt, p, attributes, draws from the posterior of demand. Error realizations can be pre-supplied to the epsilon_not. This helps create smooth demand curves or conduct optimization.

Usage

```
vd_dem_vdm(
  vd,
  est,
  epsilon_not = NULL,
  error_dist = NULL,
  tidy = TRUE,
  cores = NULL
)
```

Arguments

va	data
est	ec-model draws
epsilon_not	(optional) error realizations
error_dist	(optional) A string defining the error term distribution (default: 'EV1')
tidy	(optional) apply 'echoice2' tidier (default: TRUE)
cores	(optional) cores (default: auto-detect)

Value

Draws of expected demand

See Also

prep_newprediction() to match vd's factor levels, ec_gen_err_ev1() for pre-generating error realizations and vd_est_vdm() for estimating the corresponding model vd_dem_vdm_screen 37

Examples

```
data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
  icecream %>% dplyr::filter(id<20) %>%
    vd_dem_vdm(icecream_est, cores=2)
#column .demdraws contains draws from posterior of predicted demand
```

vd_dem_vdm_screen

Demand Prediction (Volumetric demand, attribute-based screening)

Description

Generating demand predictions for volumetric demand model with attribute-based screening. Reminder: there is no closed-form solution for demand, thus we need to integrate not only over the posterior distribution of parameters and the error distribution. The function outputs a tibble containing id, task, alt, p, attributes, draws from the posterior of demand. Eerror realisations can be pre-supplied to the epsilon_not. This helps create smooth demand curves or conduct optimization.

Usage

```
vd_dem_vdm_screen(vd, est, epsilon_not = NULL, error_dist = NULL, cores = NULL)
```

Arguments

vd data

est ec-model draws

epsilon_not (optional) error realizations

error_dist (optional) A string defining the error term distribution (default: 'EV1')

cores (optional) cores

Value

Draws of expected demand

See Also

prep_newprediction() to match vd's factor levels, ec_gen_err_normal() for pre-generating error realizations and vd_est_vdm_screen() for estimating the corresponding model 38 vd_dem_vdm_ss

Examples

```
data(icecream)
#run MCMC sampler (use way more than 20 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% vd_est_vdm_screen(R=20, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
  icecream %>% dplyr::filter(id<20) %>%
    vd_dem_vdm_screen(icecream_est, cores=2)
#column .demdraws contains draws from posterior of predicted demand
```

vd_dem_vdm_ss

Demand Prediction (Volumetric demand, accounting for set-size variation, EVI errors)

Description

Generating demand predictions for volumetric demand model with set-size adjustment. Reminder: there is no closed-form solution for demand, thus we need to integrate not only over the posterior distribution of parameters and the error distribution. The function outputs a tibble containing id, task, alt, p, attributes, draws from the posterior of demand. Eerror realizations can be pre-supplied to the epsilon_not. This helps create smooth demand curves or conduct optimization.

Usage

```
vd_dem_vdm_ss(vd, est, epsilon_not = NULL, cores = NULL)
```

Arguments

vd data

est ec-model draws

epsilon_not (optional) error realizations

cores (optional) cores

Value

Draws of expected demand

See Also

prep_newprediction() to match vd's factor levels, ec_gen_err_ev1() for pre-generating error realizations and vd_est_vdm_ss() for estimating the corresponding model

vd_est_vdm 39

Examples

```
data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<10) %>% vd_est_vdm_ss(R=10, keep=1, cores=2)
#Generate demand predictions
icecream_predicted_demand=
  icecream %>% dplyr::filter(id<10) %>%
    vd_dem_vdm_ss(icecream_est, cores=2)
#column .demdraws contains draws from posterior of predicted demand
```

vd_est_vdm

Estimate volumetric demand model

Description

Estimate volumetric demand model

Usage

```
vd_est_vdm(
  vd,
  tidy = TRUE,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  error_dist = "EV1",
  control = list(include_data = TRUE)
)
```

Arguments

vd A tibble, containing volumetric demand data (long format)
tidy A logical, whether to apply 'echoice2' tidier function (default: TRUE)

R A numeric, no of draws

keep A numeric, thinning factor

cores An integer, no of CPU cores to use (default: auto-detect)

error_dist A string defining the error term distribution, 'EV1' or 'Normal'

control A list containing additional settings

Value

An 'echoice2' draw object, in the form of a list

40 vd_est_vdm_screen

See Also

```
vd_dem_vdm() to generate demand predictions based on this model
vd_est_vdm_screen() to estimate a volumetric demand model with screening
```

Examples

```
data(icecream)
#run MCMC sampler (use way more than 10 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<50) %>% vd_est_vdm(R=10, cores=2)
```

vd_est_vdm_screen

Estimate volumetric demand model with attribute-based conjunctive screening

Description

Estimate volumetric demand model with attribute-based conjunctive screening

Usage

```
vd_est_vdm_screen(
  vd,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  error_dist = "EV1",
  price_screen = TRUE,
  control = list(include_data = TRUE)
)
```

Arguments

vd volumetric demand data (long format)

R draws keep thinning

cores no of CPU cores to use (default: auto-detect)

error_dist A string defining the error term distribution, 'EV1' or 'Normal' (default: 'EV1')

price_screen A logical, indicating whether price tag screening should be estimated (default:

TRUE)

control list containing additional settings

Value

```
est ec-draw object (List)
```

vd_est_vdm_ss 41

Examples

```
data(icecream)
icecream_est <- icecream %>% vd_est_vdm_screen(R=10, cores=2)
```

 $vd_est_vdm_ss$

Estimate volumetric demand model accounting for set size variation (1st order)

Description

This model REQUIRES variation in choice-set size

Usage

```
vd_est_vdm_ss(
  vd,
  order = 1,
  R = 1e+05,
  keep = 10,
  cores = NULL,
  control = list(include_data = TRUE)
)
```

Arguments

vd volumetric demand data (long format) with set size variation

order integer, either 1 or 2 (for now), indicating linear or quadratic set-size effect

R draws keep thinning

cores no of CPU cores to use (default: auto-detect)

control list containing additional settings

Value

```
est ec-draw object (List)
```

```
data(icecream)
#note that for this example dataset, the model is not identified
#because the data lacks variation in set size
icecream_est <- icecream %>% vd_est_vdm_ss(R=10, cores=2)
```

vd_LL_vdmss

vd_LL_vdm

Log-Likelihood for compensatory volumetric demand model

Description

Log-Likelihood for compensatory volumetric demand model

Usage

```
vd_LL_vdm(draw, vd, fromdraw = 1)
```

Arguments

draw A list, 'echoice2' draws object

vd A tibble, tidy choice data (before dummy-coding)

fromdraw An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

Examples

```
data(icecream)
#fit model
icecream_est <- icecream %>% vd_est_vdm(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-vd_LL_vdm(icecream_est, icecream, fromdraw = 2)
dim(loglls)</pre>
```

 vd_LL_vdmss

Log-Likelihood for volumetric demand model with set-size variation

Description

Log-Likelihood for volumetric demand model with set-size variation

Usage

```
vd_LL_vdmss(draw, vd, fromdraw = 1)
```

Arguments

draw A list, 'echoice2' draws object

vd A tibble, tidy choice data (before dummy-coding)

fromdraw An integer, from which draw onwards to compute LL (i.e., excl. burnin)

vd_LL_vdm_screen 43

Value

N x Draws Matrix of log-Likelihood values

Examples

```
data(icecream)
#fit model
#note: this is just for demo purposes
#on this demo dataset, the model is not identified
#due to a lack of set size variation
icecream_est <- icecream %>% vd_est_vdm_ss(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-vd_LL_vdmss(icecream_est, icecream, fromdraw = 2)
#300 respondents, 10 draws
dim(loglls)</pre>
```

vd_LL_vdm_screen

Log-Likelihood for conjunctive-screening volumetric demand model

Description

Log-Likelihood for conjunctive-screening volumetric demand model

Usage

```
vd_LL_vdm_screen(draw, vd, fromdraw = 1)
```

Arguments

draw A list, 'echoice2' draws object

vd A tibble, tidy choice data (before dummy-coding)

fromdraw An integer, from which draw onwards to compute LL (i.e., excl. burnin)

Value

N x Draws Matrix of log-Likelihood values

```
data(icecream)
#fit model
icecream_est <- icecream %>% filter(id<20) %>% vd_est_vdm_screen(R=10, keep=1, cores=2)
#compute likelihood for each subject in each draw
loglls<-vd_LL_vdm_screen(icecream_est, icecream%>% filter(id<20), fromdraw = 2)
dim(loglls)</pre>
```

vd_prepare

vd_long_tidy

Generate tidy choice data with dummies from long-format choice data

Description

Generate tidy choice data with dummies from long-format choice data

Usage

```
vd_long_tidy(longdata)
```

Arguments

longdata

tibble

Value

tibble

Examples

```
data(icecream)
vd_long_tidy(icecream)
```

vd_prepare

Prepare choice data for analysis

Description

This utility function prepares tidy choice data for fast MCMC samplers.

Usage

```
vd_prepare(dt, Af = NULL)
```

Arguments

dt tidy choice data (columns: id, task, alt, x, p, attributes)

Af (optional) contains a full design matrix (for attribute-based screening), or, more

generally, a design matrix used for attribute-based screening

Details

Note: This function is only exported because it makes it easier to tinker with this package. This function re-arranges choice data for fast access in highly-optimized MCMC samplers. It Precomputes task-wise total expenditures sumpsx and generates indices xfr,xto,lfr,lto for fast data access.

vd_prepare_nox 45

Value

list containing information for estimation functions

Examples

vd_prepare_nox

Prepare choice data for analysis (without x being present)

Description

This utility function prepares tidy choice data (without x) for fast data access.

Usage

```
vd_prepare_nox(dt, Af = NULL)
```

Arguments

dt tidy choice data (columns: id, task, alt, p, attributes)

Af (optional) contains a full design matrix (for attribute-based screening), or, more generally, a design matrix used for attribute-based screening

Details

Note: This function is only exported because it makes it easier to tinker with this package. This function re-arranges choice data for fast access, mainly for demand prediction.

Value

list containing information for prediction functions

46 vd_thin_draw

Examples

vd_thin_draw

Thin 'echoice2'-vd draw objects

Description

Thin 'echoice2'-vd draw objects

Usage

```
vd_thin_draw(est, burnin_perc = 0.5, total_draws = NULL)
```

Arguments

est is an 'echoice2' draw object (list)
burnin_perc how much burn-in to remove

total_draws how many draws to keep after thinning

Value

```
thinned 'echoice2' draw object (list)
```

```
data(icecream)
#run MCMC sampler (use way more than 50 draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<100) %>% vd_est_vdm(R=10, keep = 1, cores=2)
#without thinning, yields R=50 draWs
dim(icecream_est$MUDraw)
icecream_est_thinned <- vd_thin_draw(icecream_est,.5)
#26 draws left after thinning about half
dim(icecream_est_thinned$MUDraw)</pre>
```

%.%

%.%

Get the attribute of an object

Description

Get the attribute of an object

Usage

```
obj %.% attrname
```

Arguments

obj The object to get the attribute from. attrname The name of the attribute to get.

Value

The attribute of the object.

```
obj <- list(a = 1, b = 2)
attributes(obj)$test="hello"
`%.%`(obj, "test")</pre>
```

Index

%.%, 47	ec_screen_summarise, 24
	ec_screen_summarize
dd_dem, 3	(ec_screen_summarise), 24
$dd_dem(), 5$	ec_screenprob_sr, 24
dd_dem_sr, 4	ec_summarise_attrlvls
$dd_dem_sr(), 6$	<pre>(ec_summarize_attrlvls), 25</pre>
dd_est_hmnl, 5	ec_summarize_attrlvls, 25
$dd_{est_hmnl}(), 3$	ec_trace_MU, 26
dd_est_hmnl_screen, 6	ec_trace_MU(), 9, <i>17</i>
dd_est_hmnl_screen(), 4	ec_trace_screen, 26
dd_LL, 7	ec_trace_screen(), 10, 18
dd_LL_sr, 7	ec_undummy, 27
dummify, 8	ec_undummy_lowhigh, 28
dummyvar, 9	ec_undummy_lowmediumhigh, 29
	ec_undummy_yesno, 29
ec_boxplot_MU, 9	ec_util_choice_to_long, 30
ec_boxplot_MU(), 26	ec_util_dummy_mutualeclusive, 31
ec_boxplot_screen, 10	•
ec_boxplot_screen(), 27	get_attr_lvl, 31
ec_dem_aggregate, 14	
ec_dem_eval, 15	icecream, 32
ec_dem_summarise, 16	icecream_discrete, 32
ec_dem_summarize(ec_dem_summarise), 16	LagMangDanNDu 22
ec_demcurve, 11	logMargDenNRu, 33
ec_demcurve_cond_dem, 12	pizza, 33
ec_demcurve_inci, 13	prep_newprediction, 34
ec_draws_MU, 17	prep_newprediction(), 36–38
ec_draws_MU(), 10, 18, 27	prep_newprediction(), 30 30
ec_draws_screen, 17	vd_add_prodid, 34
ec_draws_screen(), 17	vd_dem_summarise, 35
ec_estimates_MU, 18	vd_dem_summarize(vd_dem_summarise), 35
ec_estimates_screen, 19	vd_dem_vdm, 36
ec_estimates_SIGMA, 19	vd_dem_vdm(), 40
ec_estimates_SIGMA_corr, 20	vd_dem_vdm_screen, 37
ec_gen_err_ev1, 21	vd_dem_vdm_ss, 38
ec_gen_err_ev1(), 11, 13, 14, 36, 38	vd_est_vdm, 39
ec_gen_err_normal, 21	vd_est_vdm(), 36
ec_gen_err_normal(), 11, 13, 14, 37	vd_est_vdm_screen, 40
ec_1md_NR, 22	vd_est_vdm_screen(), 37, 40
ec_lol_tidy1, 23	vd_est_vdm_ss, 41
= -: 3 / -	=

INDEX 49

```
vd_est_vdm_ss(), 38
vd_LL_vdm, 42
vd_LL_vdm_screen, 43
vd_LL_vdmss, 42
vd_long_tidy, 44
vd_prepare, 44
vd_prepare_nox, 45
vd_thin_draw, 46
```