

CLAIMS

1. A compound represented by the following formula

(I) :

wherein R¹ and R² each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms; R³, R⁴, R⁶, and R⁷ each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms; R⁵ represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acylamino group having 2 to 10 carbon atoms, or a substituted or unsubstituted heterocyclic group having 1 to 6 carbon atoms; R⁸ represents a hydrogen atom or a substituted or unsubstituted acyl group having 2 to 10 carbon atoms; and R⁹, R¹⁰, R¹¹, R¹², and R¹³ each independently represent a hydrogen atom or a substituent; provided that R¹ and R² may be bonded to each other to form a ring.

2. The compound according to claim 1, wherein R⁹, R¹⁰, R¹¹, R¹², and R¹³ each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a nitro group, a cyano group, a substituted or unsubstituted alkoxy carbonylamino group having 2 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkoxy carbonyl group having 2 to 10 carbon atoms.

3. The compound according to claim 1, which is represented by the following formula (II):

wherein R¹ and R² each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms; R⁵ represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acylamino group having 2 to 10 carbon atoms, or a substituted or unsubstituted heterocyclic group having

1 to 6 carbon atoms; and R⁹, R¹⁰, R¹¹, R¹², and R¹³ each independently represent a hydrogen atom, a halogen atom, an alkyl group, a cyano group, a nitro group, a carboxyl group, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, a substituted or unsubstituted acylamino group having 2 to 10 carbon atoms, a substituted or unsubstituted aminocarbonylamino group having 2 to 10 carbon atoms, a substituted or unsubstituted alkoxycarbonylamino group having 2 to 10 carbon atoms, a substituted or unsubstituted aryloxycarbonylamino group having 6 to 10 carbon atoms, a substituted or unsubstituted sulfamoyl group having 0 to 10 carbon atoms, a substituted or unsubstituted alkylsulfonyl group having 1 to 10 carbon atoms, a substituted or unsubstituted arylsulfonyl group having 6 to 10 carbon atoms, a substituted or unsubstituted acyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aryloxycarbonyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxycarbonyl group having 2 to 10 carbon atoms, or a substituted or unsubstituted carbamoyl group having 1 to 10 carbon atoms; provided that R¹ and R² may be bonded to each other to form a ring.

4. The compound according to claim 3, wherein R⁵ represents a hydrogen atom, an unsubstituted alkyl group having

1 to 5 carbon atoms, or an unsubstituted aryl group having 6 to 10 carbon atoms.

5. The compound according to claim 3, wherein R⁵ represents a hydrogen atom.

6. The compound according to claim 3, wherein R⁹, R¹⁰, R¹¹, R¹², and R¹³ each independently represent a hydrogen atom, a halogen atom, a nitro group, or an alkyl group having 1 to 5 carbon atoms which is unsubstituted or is substituted by one or more halogen atoms.

7. The compound according to claim 3, wherein one of R¹⁰, R¹¹, and R¹² represents a hydrogen atom, an alkyl group, a halogen atom, a nitro group, an alkoxy group, an acylamino group, or a carbamoyl group, and R⁹ and R¹³ each represent a hydrogen atom.

8. The compound according to claim 3, wherein R⁹, R¹⁰, R¹¹, R¹², and R¹³ each represent a hydrogen atom.

9. A process for producing a compound represented by the following formula (I) which comprises reacting a compound represented by the following formula (III) with a compound represented by the following formula (IV):

wherein R¹ and R² each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms; R³, R⁴, R⁶, and R⁷ each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms; R⁵ represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted acylamino group having 2 to 10 carbon atoms, or a substituted or unsubstituted heterocyclic group having 1 to 6 carbon atoms; R⁸ represents a hydrogen atom or a substituted or unsubstituted acyl group having 2 to 10 carbon atoms; and R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, and R¹⁸ each independently represent a hydrogen atom.

or a substituent; provided that R¹ and R² may be bonded to each other to form a ring.

10. The process according to claim 9, wherein the reacting is made at a temperature of -20°C to 200°C for 5 minutes to 10 hours.