Transformações 2D

Uéliton Freitas

Universidade Católica Don Bosco - UCDB freitas.ueliton@gmail.com

1 de setembro de 2014

Introdução Operações Básicas Coordenadas Homogêneas Transformações Inversas Transformações Compostas Outros Tip

Sumário

- Introdução
- Operações Básicas
 - Translação
 - Rotação
 - Escala
- Coordenadas Homogêneas
 - Translação no Sistema Homogêneo
 - Rotação no Sistema Homogênio
 - Escala no Sistema Homogênio
- Transformações Inversas
- 5 Transformações Compostas
- Outros Tipos de Transformações
 - Reflexão
 - Sisalhamento
- Transformações Entre Sistemas de Coordenadas

Introdução

Transformações Geométricas

- São transformações aplicadas aos modelos de objetos:
 - Posicionamento (translação).
 - Orientação (rotação).
 - Tamanho (escala).
 - Reflexão.
 - Crisalhamento.

Transformações de Corpos Rígidos

Transformações de Corpo Rígido

- São transformações que não alteram as dimensões dos objetos:
 - Posicionamento (translação).
 - Orientação (rotação).
- Mantém as distâncias e ângulos do objeto.

Translação

Translação de um Objeto

- A translação consiste em adicionar uma "variação" as coordenadas de um objeto.
 - $x' = x + \Delta x$
 - $y' = y + \Delta y$

Translação

Translação de um Objeto

- A translação consiste em adicionar uma "variação" as coordenadas de um objeto.
 - $x' = x + \Delta x$
 - $v' = v + \Delta v$

Notação Matricial

 Utilizando uma notação matricial é possível representar a operação de translação da seguinte forma:

$$\mathbf{P}' = \mathbf{P} + \mathbf{T}$$
 $\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix}, \mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}, \mathbf{T} = \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$

Rotação de um Objeto

- Dá-se a operação de rotação de um objeto através de um eixo de rotação e um ângulo de rotação.
- No plano 2D, o eixo de rotação dá-se pelo eixo perpendicular ao plano xy.

Rotação

Rotação de um Objeto

- Para realizar a rotação de um objeto em 2D, é necessário um ângulo θ e o ponto de ponto de rotação (x, y), que é o ponto de intersecção com o eixo perpendicular ao plano xy.
 - Se $\theta > 0$, a rotação é no sentido anti-horária.
 - Se θ < 0, a rotação é no sentido horário.

Rotação de um Objeto

- Simplificando:
 - Considera-se que o ponto de rotação está na origem.
 - O raio *r* é constante.
 - ϕ é o ângulo do ponto P = (x, y) em relação a origem.
 - θ é o ângulo de rotação.

Sabemos que:

- $cos(\theta) = \frac{\text{Cateto adjacente}}{\text{Hipotenuza}}$
- $sen(\theta) = \frac{Cateto oposto}{Hipotenuza}$

Então temos que:

•
$$cos(\phi + \theta) = \frac{x'}{r} \implies x' = cos(\phi + \theta) \cdot r$$

•
$$sen(\phi + \theta) = \frac{y'}{r} \implies y' = sen(\phi + \theta) \cdot r$$

Como:

- $cos(\alpha + \beta) = cos(\alpha) \cdot cos(\beta) sen(\alpha) \cdot sen(\beta)$
- $sen(\alpha + \beta) = cos(\alpha) \cdot sen(\beta) + sen(\alpha) \cdot cos(\beta)$

Então temos que:

- $x' = r \cdot cos(\phi) \cdot cos(\theta) r \cdot sen(\phi) \cdot sen(\theta)$
- $y' = r \cdot cos(\phi) \cdot sen(\theta) + r \cdot sen(\phi) \cdot cos(\theta)$

Coordenadas Polares

- Temos que P = (x, y) pode ser escrito na forma de coordenadas polares:
 - $x = r \cdot cos(\theta)$
 - $y = r \cdot sen(\theta)$

Em Notação de Matriz

$$\mathbf{P}' = \mathbf{R} \cdot \mathbf{P}$$

$$\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Coordenadas Polares

- Temos que P = (x, y) pode ser escrito na forma de coordenadas polares:
 - $x = r \cdot cos(\theta)$
 - $y = r \cdot sen(\theta)$
- Substituindo os valores temos:
 - $x' = x \cdot cos(\theta) y \cdot sen(\theta)$
 - $y' = x \cdot sen(\theta) + y \cdot cos(\theta)$

Em Notação de Matriz

$$\mathbf{P}' = \mathbf{R} \cdot \mathbf{P}$$

$$\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotação

Rotação de em Torno de um Ponto Arbitrário

• Rotação em torno de um ponto (x_r, y_r) .

Para encontrar x':

- $cos(\phi + \theta) = \frac{x' x_r}{r}$
- $x' = r \cdot cos(\phi + \theta) + x_r$
- $x' = x_r + r \cdot cos(\phi) \cdot cos(\theta) r \cdot sen(\phi) \cdot sen(\theta)$

Mas temos que:

•
$$cos(\phi) = \frac{x - x_r}{r}$$
 e $sen(\phi) = \frac{y - y_r}{r}$

Então:

•
$$x' = x_r + (x - x_r) \cdot cos(\theta) - (y - y_r) \cdot sen(\theta)$$

•
$$y' = y_r + (x - x_r) \cdot sen(\theta) + (y - y_r) \cdot cos(\theta)$$

• Escrevendo a operação em notação de matriz temos:

$$\begin{aligned} \mathbf{P}' &= \mathbf{R} \cdot \mathbf{P} + \mathbf{T} \\ \begin{bmatrix} x' \\ y' \end{bmatrix} &= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x_r - x_r \cdot \cos(\theta) + y_r \cdot \sin(\theta) \\ y_r - x_r \cdot \sin(\theta) - y_r \cdot \cos(\theta) \end{bmatrix} \end{aligned}$$

Escala de um Objeto

- Utiliza-se a escala para aumentar o tamanho de um objeto.
- Multiplica-se os valores das coordenadas x, y por um fator s:

$$\bullet \ \ x' = x \cdot s_x$$

•
$$y' = x \cdot y_x$$

Em notação matricial:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

Escala

Propriedades da Escala

• s_x e s_y devem ser maiores que zero.

- s_x e s_y devem ser maiores que zero.
- Se $s_x > 1$ e $s_y > 1$ há um aumento do objeto.

- s_x e s_y devem ser maiores que zero.
- Se $s_x > 1$ e $s_y > 1$ há um aumento do objeto.
- Se $s_x < 1$ e $s_y < 1$ há uma diminuição do objeto.

- s_x e s_y devem ser maiores que zero.
- Se $s_x > 1$ e $s_y > 1$ há um aumento do objeto.
- Se $s_x < 1$ e $s_y < 1$ há uma diminuição do objeto.
- Se $s_x = s_y$ a escala é uniforme.

- s_x e s_y devem ser maiores que zero.
- Se $s_x > 1$ e $s_y > 1$ há um aumento do objeto.
- Se $s_x < 1$ e $s_y < 1$ há uma diminuição do objeto.
- Se $s_x = s_y$ a escala é uniforme.
- Se $s_x \neq s_y$ a escala é diferencial.

Figura : Operação de escala com $s_x = 0.5$ e $s_y = 0.5$

Figura : Operação de escala com $s_x = 0.5$ e $s_v = 0.5$

• Pela formula atual o objeto é escalado e movido.

Escala

Correção da Escala de um Objeto

• Pela formula atual o objeto é escalado e movido.

Correção da Escala de um Objeto

- Pela formula atual o objeto é escalado e movido.
- Para resolver o problema do deslocamento:
 - Escolha uma posição fixa (x_f, y_f) .
 - Escala-se a distância entre o ponto fixo e as coordenadas do objeto.

Correção da Escala de um Objeto

- Pela formula atual o objeto é escalado e movido.
- Para resolver o problema do deslocamento:
 - Escolha uma posição fixa (x_f, y_f) .
 - Escala-se a distância entre o ponto fixo e as coordenadas do objeto.
- Obtemos x' e y' da seguinte forma:

$$x' - x_f = s_x \cdot (x - x_f)$$
$$y' - y_f = s_y \cdot (y - y_f)$$

Correção da Escala de um Objeto

- Pela formula atual o objeto é escalado e movido.
- Para resolver o problema do deslocamento:
 - Escolha uma posição fixa (x_f, y_f) .
 - Escala-se a distância entre o ponto fixo e as coordenadas do objeto.
- Obtemos x' e y' da seguinte forma:

$$x' - x_f = s_x \cdot (x - x_f)$$

$$y' - y_f = s_y \cdot (y - y_f)$$

Assim:

$$x' = x \cdot s_x + x_f(1 - s_x)$$

$$y' = y \cdot s_y + y_f(1 - s_y)$$

Em Notação Matricial

• $x_f(1-s_x)$ e $y_f(1-s_y)$ são constantes para todas as coordenadas do objeto.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x_f(1 - s_x) \\ y_f(1 - s_y) \end{bmatrix}$$

Coordenadas Homogêneas

- Podem descrever objetos 2D usando matrizes 3x3.
- Um ponto 2D é representado da seguinte forma utilizando coordenadas homogêneas:

$$P(x_h, y_h, h) = P(\frac{x}{w}, \frac{y}{w}, 1), h \neq 0$$

- h é denominado fator homogêneo, e por conveniência h = 1.
- Pode ser visto como a projeção do espaço 2D no plano h.

Coordenadas Homogêneas

 Mas por que transformar as coordenadas 2D dos objetos em coordenadas 3D?

Coordenadas Homogêneas

- Mas por que transformar as coordenadas 2D dos objetos em coordenadas 3D?
 - Escrever as transformações como multiplicação de matrizes.

A Translação no Sistema Homogêneo é dada por:

$$x'_h = 1 \cdot x_h + 0 \cdot y_h + \Delta x \cdot h$$

$$y'_h = 0 \cdot x_h + 1 \cdot y_h + \Delta y \cdot h$$

$$h = 0 \cdot x_h + 0 \cdot y_h + 1 \cdot h$$

A Translação no Sistema Homogêneo em Notação de Matriz

$$\begin{bmatrix} x_h' \\ y_h' \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_h \\ y_h \\ h \end{bmatrix}$$

Transformando de Volta ao Plano 2D

$$\frac{x_h'}{h} = \frac{1 \cdot x_h + 0 \cdot y_h + \Delta x \cdot h}{h} \Rightarrow x' = x + \Delta x$$

$$\frac{y_h'}{h} = \frac{0 \cdot x_h + 1 \cdot y_h + \Delta y \cdot h}{h} \Rightarrow y' = y + \Delta y$$

$$\frac{h}{h} = \frac{0 \cdot x_h + 0 \cdot y_h + 1 \cdot h}{h} \Rightarrow h = 1$$

Coordenadas Homogêneas

Matriz de Translação no Espaço 2D

$$\mathbf{P'} = \mathbf{T}(\Delta x, \Delta y) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Coordenadas Homogêneas

Matriz de Rotação no Espaço 2D

$$\begin{array}{c|c} \mathbf{P'} = \mathbf{R}(\theta) \cdot \mathbf{P} \\ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Coordenadas Homogêneas

Matriz de Escala no Espaço 2D

$$\mathbf{P'} = \mathbf{S}(s_x, s_y) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Transformações Inversas

Inversa da Translação

$$\mathbf{P'} = \mathbf{T}^{-1}(\Delta x, \Delta y) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta x \\ 0 & 1 & -\Delta y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Basta inverter os sinais de Δx e Δy .

Transformações Inversas

Inversa da Rotação

$$\mathbf{P'} = \mathbf{R}^{-1}(\theta) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Utilizado para rotacionado no sentido horário.
- Nete caso, $\mathbf{R}^{-1} = \mathbf{R}^t$.

Transformações Inversas

Inversa da Escala

$$\mathbf{P'} = \mathbf{S}^{-1}(s_x, s_y) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Basta fazer a escala com o inverso dos valores.

Transformações Compostas

 Utilizando coordenadas homogêneos é possível fazer várias transformações em um objeto utilizando apenas uma matriz de transformação.

Transformações Compostas

- Utilizando coordenadas homogêneos é possível fazer várias transformações em um objeto utilizando apenas uma matriz de transformação.
- A matriz obtida das várias transformações é obtida pela multiplicação das mesmas:zz

$$\mathbf{P}' = \mathbf{M}_1 \cdot \mathbf{M}_2 \cdot \mathbf{P}$$
 $\mathbf{P}' = (\mathbf{M}_1 \cdot \mathbf{M}_2) \cdot \mathbf{P}$
 $\mathbf{P}' = \mathbf{M} \cdot \mathbf{P}$

A transformação é dada por M ao invés de M₁ e M₂.

Propriedades de Matrizes

• A Multiplicação de matrizes é associativa:

$$\textit{M}_1 \cdot \textit{M}_2 \cdot \textit{M}_3 = (\textit{M}_1 \cdot \textit{M}_2) \cdot \textit{M}_3 = \textit{M}_1 \cdot (\textit{M}_2 \cdot \textit{M}_3)$$

Propriedades de Matrizes

• A Multiplicação de matrizes é associativa:

$$M_1 \cdot M_2 \cdot M_3 = (M_1 \cdot M_2) \cdot M_3 = M_1 \cdot (M_2 \cdot M_3)$$

- É possível multiplicar as matrizes da esquerda para a direita e da direita para a esquerda:
 - Pré-Multiplicação:da esquerda para a direita As transformações são especificadas na ordem que são aplicadas: $M_1 \to M_2 \to M_3$

Propriedades de Matrizes

• A Multiplicação de matrizes é associativa:

$$M_1 \cdot M_2 \cdot M_3 = (M_1 \cdot M_2) \cdot M_3 = M_1 \cdot (M_2 \cdot M_3)$$

- É possível multiplicar as matrizes da esquerda para a direita e da direita para a esquerda:
 - Pré-Multiplicação:da esquerda para a direita As transformações são especificadas na ordem que são aplicadas: $M_1 \to M_2 \to M_3$
 - Pós-Multiplicação:da direita para a esquerda As transformações são especificadas na ordem inversa que são aplicadas:

$$M_3 \rightarrow M_2 \rightarrow M_1$$

• Utilizada pelo OpenGI

Propriedades de Matrizes

A Multiplicação de matrizes não é comutativa:
 M₁ · M₂ ≠ M₂ · M₁

Figura : (a) Há uma translação depois uma rotação - (b) Há uma rotação depois uma translação.

 $\mathbf{P}' = \mathbf{T}(t_{2_{\mathsf{x}}}, t_{2_{\mathsf{y}}}) \cdot \mathbf{T}(t_{1_{\mathsf{x}}}, t_{1_{\mathsf{y}}}) \cdot \mathbf{P}$

Transformações Compostas

Composição de Duas Translações

$$\begin{aligned} \mathbf{P}' &= \mathbf{T}(t_{2_x}, t_{2_y}) \cdot \{ \mathbf{T}(t_{1_x}, t_{1_y}) \cdot \mathbf{P} \} \\ \mathbf{P}' &= \{ \mathbf{T}(t_{2_x}, t_{2_y}) \cdot \mathbf{T}(t_{1_x}, t_{1_y}) \} \cdot \mathbf{P} \\ \begin{bmatrix} 1 & 0 & t_{1_x} \\ 0 & 1 & t_{1_y} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & t_{2_x} \\ 0 & 1 & t_{2_y} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{1_x} + t_{2_x} \\ 0 & 1 & t_{1_y} + t_{2_y} \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Composição de Duas Rotações

$$\begin{aligned} \mathbf{P}' &= \mathbf{R}(\theta_1) \cdot \mathbf{R}(\theta_2) \cdot \mathbf{P} \\ \mathbf{P}' &= \mathbf{R}(\theta_1) \cdot \{\mathbf{R}(\theta_2) \cdot \mathbf{P}\} \\ \mathbf{P}' &= \{\mathbf{R}(\theta_1) \cdot \mathbf{R}(\theta_2)\} \cdot \mathbf{P} \\ \mathbf{P}' &= \{\mathbf{R}(\theta_1) \cdot \mathbf{R}(\theta_2)\} \cdot \mathbf{P} \\ \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) & 0 \\ \sin(\theta_1) & \cos(\theta_1) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) & 0 \\ \sin(\theta_2) & \cos(\theta_2) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) & 0 \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

 $P' = S(s_{x_2}, s_{y_2}) \cdot S(s_{x_1}, s_{y_1}) \cdot P$

Transformações Compostas

Composição de Duas Escalas

$$\mathbf{P}' = \mathbf{S}(s_{x_2}, s_{y_2}) \cdot \{\mathbf{S}(s_{x_1}, s_{y_1}) \cdot \mathbf{P}\}$$

$$\mathbf{P}' = \{\mathbf{S}(s_{x_2}, s_{y_2}) \cdot \mathbf{S}(s_{x_1}, s_{y_1})\} \cdot \mathbf{P}$$

$$\begin{bmatrix} s_{x_2} & 0 & 0 \\ 0 & s_{y_2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_{x_1} & 0 & 0 \\ 0 & s_{y_1} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} s_{x_1} \cdot s_{x_2} & 0 & 0 \\ 0 & s_{y_1} \cdot s_{y_2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotação 2D Com Ponto de Rotação

- Este tipo de transformação é feita utilizando várias transformações:
 - Translada-se o ponto de referência do objeto à origem.
 - Aplica-se a transformação de rotação.
 - Translada-se o ponto de referência do objeto para a origem.

Em Notação Matricial

$$\mathbf{P}' = \mathbf{R}(x_r, x_r, \theta) \cdot \mathbf{P}$$
$$\mathbf{R}(x_r, x_r, \theta) = \mathbf{T}(\Delta x, \Delta y) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}^{-1}(\Delta x, \Delta y)$$

$\mathbf{R}(x_r, x_r, \theta)$ Em Notação Matricial

$$\begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -\Delta x \\ 0 & 1 & -\Delta y \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) & x_r - x_r \cdot \cos(\theta) + y_r \cdot \sin(\theta) \\ \sin(\theta) & \cos(\theta) & y_r - y_r \cdot \cos(\theta) - x_r \cdot \sin(\theta) \\ 0 & 0 & 1 \end{bmatrix}$$

Figura : Passos para efetuar rotação em torno de um ponto referencial.

Escala 2D com Ponto de Referência

- Utiliza-se várias transformações para efetuar a escala:
 - Translada-se o ponto de referência do objeto à origem.
 - Aplica-se a transformação de escala.
 - Translada-se o ponto de referência do objeto para a origem.

Em Notação Matricial

$$\mathbf{P}' = \mathbf{S}(x_f, y_f, s_x, s_y) \cdot \mathbf{P}$$

$$\mathbf{S}(x_f, y_f, s_x, s_y) = \mathbf{T}(x_f, y_f) \cdot \mathbf{S}(s_x, s_y) \cdot \mathbf{T}^{-1}(x_f, y_f)$$

$\mathbf{S}(x_f, y_f, s_x, s_y)$ Em Notação Matricial

$$\begin{bmatrix} 1 & 0 & x_f \\ 0 & 1 & y_f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_f \\ 0 & 1 & -y_f \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & x_f(1 - s_x) \\ 0 & s_y & y_f(1 - s_y) \\ 0 & 0 & 1 \end{bmatrix}$$

Figura: Passos para efetuar escala em torno de um ponto referencial.

Escala em Direções Gerais

- Os tipos de escalas apresentadas até agora apenas escalam em x e y.
- Para efetuar escalas em direções gerais é necessário:
- Rotacionar o objeto.
- Escalar o objeto.
- Rotacionar novamente.

Em Notação Matricial

$$S(s_1, s_2, \theta) = R^{-1}(\theta) \cdot S(s_1, s_2) \cdot R(\theta)$$

Figura : Transformação com $\mathit{s}_1 = 1, \mathit{s}_2 = 2$ e $\theta = 45^\circ$

Reflexão - Espelhamento

• Espelha-se as coordenadas do objeto de acordo com o eixo a ser espelhado, rotacionando 180°.

Reflexão em y = 0

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reflexão em x = 0

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reflexão em
$$x = 0$$
 e $y = 0$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Sisalhamento

• Distorce o objeto no eixo x ou y.

Sizalhamento no eixo x

$$x' = x + sh_{x} \cdot y$$

$$y' = y$$

$$\begin{bmatrix} 1 & sh_{x} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Figura : Sisalhamento no eixo $x com sh_x = 2$.

Transformações Entre Sistemas de Coordenadas

 Em computação gráfica, em várias vezes é necessário a transformação de um sistema de coordenadas em outro.

Como efetuar a transformação?

- Para efetuar a transformação:
 - Translada-se o objeto para a origem.
 - Efetua-se a rotação em $-\theta$.
- $M_{xy,x'y'} = R(-\theta) \cdot T(-x,-y)$.

Nova orientação da cena.

- Esta transformação nos dá uma nova orientação da cena.
- A cena é a mesma, mas com uma nova referência x', y'.

Transformações Entre Sistemas de Coordenadas

• A sub matriz de rotação (2x2) é ortogonal:

$$\begin{bmatrix} r_{xx} & r_{xy} & tr_x \\ r_{yx} & r_{yy} & tr_y \\ 0 & 0 & 1 \end{bmatrix}$$

 Cada linha e coluna da submatriz formam um vetores ortogonais e unitários.

$$r_{xx}^2 + r_{xy}^2 = r_{yx}^2 + r_{yy}^2 = 1$$

 $r_{xx} \cdot r_{xy} + r_{yx} \cdot r_{yy} = 0$

Transformações Entre Sistemas de Coordenadas

• A sub matriz de rotação (2x2) é ortogonal:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta) \\ -\sin(\theta) \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \sin(\theta) \\ \cos(\theta) \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Transformações Entre Sistemas de Coordenadas

- r_{xx} e r_{xy} é um vetor unitário no eixo x.
- r_{yx} e r_{yy} é um vetor unitário no eixo y.

$$\begin{bmatrix} r_{xx} & r_{xy} & 0 \\ r_{yx} & r_{yy} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{xx} \\ r_{xy} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} r_{xx} & r_{xy} & 0 \\ r_{yx} & r_{yy} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{yx} \\ r_{yy} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Transformações Entre Sistemas de Coordenadas

- Utilizando as propriedades citadas, é possível criar um novo método para transformar x e y em x' e y'.
 - Para tal fim é encontrado um vetor V, que indica a orientação positiva do eixo y' do novo sistema de coordenadas x'y'.

Transformações Entre Sistemas de Coordenadas

- Utilizando as propriedades citadas, é possível criar um novo método para transformar x e y em x' e y'.
 - Para tal fim é encontrado um vetor V, que indica a orientação positiva do eixo y' do novo sistema de coordenadas x'y'.

Transformações Entre Sistemas de Coordenadas

 Podemos especificar V como um vetor unitário e um ponto no espaço xy:

$$v = \frac{\mathbf{V}}{|\mathbf{V}|} = (v_x, v_y)$$

 O vetor u ortogonal a v e que representa a direção do eixo x' pode ser obtido da seguinte forma:

$$u = (v_x, -v_y) = (u_x, u_y)$$

Transformações Entre Sistemas de Coordenadas

 Como qualquer matriz de rotação pode ser expressa como um conjunto de vetores ortogonais, temos que:

$$\begin{bmatrix} u_x & u_y & 0 \\ v_x & v_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transformações Entre Sistemas de Coordenadas

ullet É possível especificar ${f V}$ no sistema x'y' por meio de um ponto

$$P_0$$
.
 $v = \frac{P_1 - P_0}{|P_1 - P_0|}$

