Introduction to Quantum Information and Computing Half 2 Lecture 5

Shrikara A, Arnav Negi, Kriti Gupta, Manav Shah, Mohammed Shamil, Shiven Sinha, Swayam Agarwal, Vineeth Bhat, Yash Adivarekar

17th February, 2023

Some Convention:

- ullet H denotes the Hadamard gate
- \bullet U_f and C_f have been used interchangeably.

Contents

3
J
 3
 3
 4
 4
 5
 5
 5
5
 5
 6
 6
 6
 7
 7
 7
 · · ·

1 Phase Kickback Oracle

Consider the CNOT gate where U_f denotes the unitary operation CNOT.

The action of U_f is given by:

$$|x\rangle|y\rangle \xrightarrow{U_f} |x\rangle|y\rangle \text{ if } f(x) = 0$$

 $|x\rangle|\overline{y}\rangle \text{ if } f(x) = 1$

$$|x\rangle, |y\rangle \in \{0, 1\}$$

Consider the case when $|y\rangle = |-\rangle$

$$|x\rangle|-\rangle \xrightarrow{U_f} \frac{(|x\rangle|0\rangle + |x\rangle|1\rangle)}{\sqrt{2}}$$

$$= \frac{|x\rangle(|0 \oplus f(x)\rangle + |1 \oplus f(x)\rangle)}{\sqrt{2}}$$

$$= |x\rangle|-\rangle \text{ if } f(x) = 0$$

$$-|x\rangle|-\rangle \text{ if } f(x) = 1$$

$$= (-1)^{f(x)}|x\rangle|-\rangle$$

If $x \in \{0,1\}^n$ and before U_f , $H^{\otimes n}$ is applied on $|x\rangle$, then the output is:

$$U_f \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} |z\rangle |-\rangle \qquad from the action of H$$

$$= \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{f(x)} |z\rangle |-\rangle \qquad from the action of U_f$$

Usually, the $|-\rangle$ in the second register is dropped when writing the phase kickback since it remains unchanged in output and is considered implicit when using the phase kickback oracle.

2 Deutsch Algorithm

2.1 The Problem

Suppose U_f is given as a black box for a boolean function $f: \{0,1\} \to \{0,1\}$, with the promise that either:

- (i) f(0) = f(1)
- (ii) $f(0) \neq f(1)$

How many queries do we need to make to U_f to determine which of the two is true?

2.2 Classical Reversible Computation

Classically, two queries to U_f are needed, one to determine the value of f(0) and one to determine the value of f(1).

We can then compare the two and decide which promise is true.

2.3 Quantum Computation

Consider the following quantum circuit:

2.3.1 Finding Final State

Finding the output:

$$\begin{split} |0\rangle|-\rangle & \xrightarrow{H\otimes \mathbb{I}} |+\rangle|-\rangle & Apply \ H \ to \ first \ register \\ & \xrightarrow{U_f} \frac{1}{\sqrt{2}} ((-1)^{f(0)}|0\rangle + (-1)^{f(1)}|-\rangle)|-\rangle & Apply \ Phase \ kickback \\ & \xrightarrow{H\otimes \mathbb{I}} \frac{1}{\sqrt{2}} ((-1)^{f(0)}|+\rangle + (-1)^{f(1)}|-\rangle)|-\rangle & Apply \ H \ to \ first \ register \\ & = \frac{1}{\sqrt{2}} \left(\frac{(-1^{f(0)})(|0\rangle + |1\rangle)}{\sqrt{2}} + \frac{(-1^{f(1)})(|0\rangle - |1\rangle)}{\sqrt{2}} \right) |-\rangle \end{split}$$

By rearranging terms containing $|0\rangle$ and $|1\rangle$, we obtain the final state $|\psi\rangle$ as

$$|\psi\rangle = \frac{1}{2} \left(((-1)^{f(0)} + (-1)^{f(1)}) |0\rangle + ((-1)^{f(0)} - (-1)^{f(1)}) |1\rangle \right)$$

Note that the $|-\rangle$ in the second register has been dropped since it is implicit for a phase kickback oracle.

2.3.2 Probability Distribution

The probabilities of the final states being $|0\rangle$ and $|1\rangle$ can be calculated from the square of the corresponding amplitudes of $|0\rangle$ and $|1\rangle$, giving

$$\mathbb{P}(|0\rangle) = \frac{1}{4} \left((-1)^{f(0)} + (-1)^{f(1)} \right)^2$$

$$\mathbb{P}(|1\rangle) = \frac{1}{4} \left((-1)^{f(0)} - (-1)^{f(1)} \right)^2$$

2.3.3 Resolving a Promise

To resolve which one of the two promises are true, we measure the final state. If f(0) = f(1)

$$\langle 0|\psi\rangle = 1$$
$$\langle 1|\psi\rangle = 0$$

If
$$f(0) \neq f(1)$$

$$\langle 0|\psi\rangle = 0$$
$$\langle 1|\psi\rangle = 1$$

Thus, if the final state is orthogonal to $|1\rangle$, then f(0) = f(1) and if it is orthogonal to $|0\rangle$, then $f(0) \neq f(1)$.

2.3.4 Comparison

We observe that the quantum computer needs only 1 query while the classical reversible computer needed 2 queries to U_f .

3 Deutsch-Jozsa Algorithm

3.1 The Problem

This is a generalisation of the Deutsch algorithm that we previously saw. In this algorithm, the boolean function f is from n-bit strings to a bit, i.e. $f: \{0,1\}^n \to \{0,1\}$.

Promises:

(i) f is constant, i.e.
$$f(x) = 0 \ \forall x \in \{0,1\}^n \ \text{or} \ f(x) = 1 \ \forall x \in \{0,1\}^n$$

(ii) f is balanced, i.e.

$$f(x) = 0$$
 for $\frac{2^n}{2}$ values of x
 $f(x) = 1$ for the other $\frac{2^n}{2}$ values of x

3.2 Classical Reversible Computing

Classically, to resolve a promise with probability 1, the worst case number of queries needed to U_f is $\frac{2^n}{2} + 1$. This is when out of the 2^n possible n-bit strings to evaluate, the first half, i.e. $\frac{2^n}{2}$ strings all give the same output, either 0 or 1. Now, we need one additional query to resolve a promise. If it is the same as the result of the first half of bit strings, then f is constant, else f is balanced.

3.3 Quantum Computing

3.3.1 Finding the Final state

$$|0\rangle^{\otimes n}|-\rangle \xrightarrow{H^{\otimes n} \otimes \mathbb{I}} \frac{1}{\sqrt{2^n}} \left(\sum_{x \in \{0,1\}^n} |x\rangle \right) |-\rangle \qquad \qquad Applying \ H^{\otimes n} on first register set$$

$$\xrightarrow{U_f} \frac{1}{\sqrt{2^n}} \left(\sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \right) |-\rangle \qquad \qquad Applying \ phase \ kickback$$

$$\xrightarrow{H^{\otimes n} \otimes \mathbb{I}} \frac{1}{\sqrt{2^n}} \left(\sum_{x \in \{0,1\}^n} (-1)^{f(x)} \frac{1}{\sqrt{2}} \left(\sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle \right) \right) \qquad Applying \ H^{\otimes n} on first register set$$

$$|\psi\rangle = \frac{1}{2^n} \sum_{x,z \in \{0,1\}^n} \left((-1)^{f(x)+x \cdot z} |z\rangle \right) \qquad Final \ state$$

Checking the inner product of the final state with an n-bit string of 0s,

$$\langle 00...0 | \psi \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \qquad f(x) \in \{0,1\}$$

$$=1 \qquad \qquad if \ f(x) = 0, \ f(x) \ is \ constant$$

$$-1 \qquad \qquad if \ f(x) = 1, \ f(x) \ is \ constant$$

$$0 \qquad \qquad if \ f(x) \ is \ balanced$$

3.3.2 Probabilities of Final State

Finding the probabilities of the final state using the squares of amplitudes,

$$\mathbb{P}(|00...0\rangle) = (\pm 1)^2 = 1$$
 if $f(x)$ is constant $0^2 = 0$ if $f(x)$ is balanced

3.3.3 Resolving a Promise

If f(x) is constant, then the measured final state $|\psi\rangle$ will be $|00...0\rangle$ with probability 1.

If f(x) is balanced, then the measured final state $|\psi\rangle$ is a state other than $|00...0\rangle$ with probability 1.

3.3.4 Comparison

Compared to the classical reversible computer, which needed a worst case of $\frac{2^n}{2}+1$ queries to C_f , the quantum computer needs only 1 query to U_f to resolve a promise. This is an exponential speedup. Note, however, that this exponential speedup is when we must resolve the correct promise with probability 1. If we allow for an ε uncertainty to both, the speedup offered by the quantum computer will reduce to $\mathcal{O}(\log \frac{1}{\varepsilon})$, as seen in Assignment 1.