Examen du mardi 16 janvier 2024

durée: 2 heures

Exercice 1. Écrire un algorithme pour calculer chacune des valeurs suivantes :

- 1. pour $x \in \mathbb{R}$ donné, calculer |x|,
- 2. pour $n \in \mathbb{N}$ donné, calculer n!,
- 3. pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés, calculer x^n , de manière itérative, puis récursive, (de manière basique, sans exponentiation rapide),
- 4. pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés, calculer $S = \sum_{k=0}^{n} \frac{x^k}{k!}$; pour ce calcul, on donnera un algorithme basique utilisant les algorithmes précédents, et un algorithme minimisant le nombre d'opérations.
- **Exercice 2.** 1. Soit (u_n) la suite définie comme suit : $u_0 = 1$, $u_1 = 2$ et $u_{n+2} = 3u_n + 2u_{n+1}$. Écrire un algorithme itératif qui prend en entrée élément $n \in \mathbb{N}$ et qui renvoie u_n .
 - 2. Écrire un algorithme récursif qui prend en entrée élément $n \in \mathbb{N}$ et qui renvoie u_n .
 - 3. Soit $(v_n) \in \mathbb{R}^{\mathbb{N}^*}$ la suite définie comme suit : $v_1 = 1$, $v_2 = 3$ et si $n \in \mathbb{N}$, $\begin{cases} v_{2n} = v_n^2 + 5 \\ v_{2n+1} = v_n v_{n+1} + 7 \end{cases}$ Écrire un algorithme qui prend en entrée un élément $n \in \mathbb{N}^*$ et qui détermine v_n .

Exercice 3. Soit $L = [a_0, \ldots, a_{n-1}]$, où les a_i sont des entiers. On rappelle le principe du tri par sélection, pour trier la liste L: on cherche d'abord l'entier (ou un des entiers) i tel que a_i est le plus petit élément de la liste. On échange ensuite a_0 et a_i . On obtient alors une suite $L_1 = [a_i, b_1, \ldots, b_{n-1}]$. On réitère ensuite le processus avec $[b_1, \ldots, b_{n-1}]$, et ainsi de suite.

Écrire un algorithme qui prend en entrée un liste d'entiers et qui la trie, en utilisant le tri par sélection.

Exercice 4. (équation de Pell-Fermat) On considère l'équation (E) $x^2-2y^2=1$, d'inconnues $x,y\in\mathbb{N}^*$. Écrire un algorithme qui renvoie la liste de tous les couples (x,y) qui sont solution de (E) et qui vérifient $y\leq 100$.

- **Exercice 5.** 1. Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n! \cdot n}$. Montrer que (u_n) et (v_n) sont adjacentes.
 - 2. On admet que (u_n) tend vers e. Écrire un algorithme qui prend en entrée en réel positif ϵ et qui renvoie une valeur approchée à ϵ près de e.

Exercice 6. (issu du CAPES 2019)

1. L'algorithme suivant termine-t-il? On justifiera soigneusement la réponse.

Algorithme	Commentaire
$A \leftarrow -3$	← est le symbole pour l'affectation d'une variable.
$N \leftarrow 0$	
Tant que $A \leq 1,9$	Boucle « Tant que ».
$N \leftarrow N+1$	
$A \leftarrow \frac{1}{2}A + 1$	
Fin Tant que	
Afficher $N+1$	Valeur affichée par l'algorithme.

2. On décide de lancer un dé parfaitement équilibré, dont les faces sont numérotées de 1 à 6, jusqu'à obtenir la face 6. Recopier et compléter l'algorithme ci-dessous, affichant le nombre de lancers nécessaires pour obtenir la face 6 dans cette expérience aléatoire.

Algorithme	Commentaire
$A \leftarrow \text{Al\'eaEntre}(1,6)$	\leftarrow est le symbole pour l'affectation d'une variable. AléaEntre(1,6) génère aléatoirement et de façon équiprobable une valeur dans l'ensemble $\{1, 2, 3, 4, 5, 6\}$.
$I \leftarrow \dots$ Tant que $A \neq 6$ $Partie \ \hat{a}$ $compléter$	La valeur affectée à la variable I est à compléter. Boucle « Tant que ».
Fin Tant que Partie à compléter	