

QUALITY INFORMATION DOCUMENT

QUALITY INFORMATION DOCUMENT

For OSI TAC SST product 010-010

Issue: 1.0

Contributors: Jean-Francois PIOLLÉ (IFREMER), Bruce Hackett (MET Norway)

Approval Date by Quality Assurance Review Group: under review

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue : 1.0

CHANGE RECORD

Is	ssue	Date	§	Description of Change	Author	Validated By
1	0.1	10/01/2016	All	First version of document for CMEMS V2	J-F Piollé	Bruce Hackett

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue: 1.0

TABLE OF CONTENTS

I	Executive summary	4
	I.1 Products covered by this document	4
	I.2 Summary of results	4
	I.3 Estimated Accuracy Numbers	4
II	Production Subsystem description	5
III	Validation framework	6
IV	Validation results	7

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue : 1.0

EXECUTIVE SUMMARY

I.1 Products covered by this document

The OSI TAC V3 SST products covered by this document are:

Product Name	Production Unit
SST_GLO_SST_L3S_NRT_OBSERVATIONS_010_010	IFREMER (Brest)

The SST_GLO_SST_L3S_NRT_OBSERVATIONS_010_010 is a multi-sensor level 3 gridded product, covering the Global Ocean at 0.1° horizontal resolution. It results from the merging of various satellite SST level 2 data, which have passed a significant number of quality controls, and which have been inter-calibrated through an inter-sensor bias correction procedure, using a median field generated from a set of "best quality" sensors, to provide an estimate of the night time SST based on original SST observations.

I.2 Summary of results

When compared to in-situ SST measurements, the SST products documented show the following results which are consistent with the other SST products generated at Ifremer (like ODYSSEA analyses).

I.3 Estimated Accuracy Numbers

Product Name	Mean difference	RMS difference (K)
	(K)	
SST_GLO_SST_L3S_NRT_OBSERVATIONS_010_010	-0.165	0.521

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue : 1.0

I PRODUCTION SUBSYSTEM DESCRIPTION

Figure II.5.1 Schematic diagram of the operational processing chain at IFREMER

Figure II.4.1 shows the different steps for the processing of SST products at IFREMER. In the current configuration of the chain, a selection of GHRSST L2P products is used as to build the reference for the bias correction of the other SST sources. More details on each processing step can be found in the corresponding Product User Manual.

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue: 1.0

III VALIDATION FRAMEWORK

The baseline for the validation of SST TAC products is to use drifting buoy measurements only, as recommended currently by the GHRSST group on satellite SST validation (STVAL). Mean and standard deviation of the departures from drifting buoy SST measurements are computed over pre-defined geographical areas (Figure IV.1.1). Various quality check procedures are applied on drifting buoy measurements by SST TAC Production Units to discard suspect data, using gross error checks and/or blacklists made available by various centres.

Figure III.1.1: geographical areas defined by the SST TAC for the computation of validation statistics.

However, for some SST TAC products, the use of drifting buoy measurements has limitations which can affect negatively the significance of these statistics:

- in some parts of the global ocean and in some regional seas, the number of drifting buoy measurements is very low (ex: Mediterranean Sea, Baltic Sea), and even sometimes equal to zero (ex: Black Sea). In these cases, additional statistics can be computed using other data sources (moored buoys, ARGOS floats, AATSR...)

The in situ data are averaged daily over the same pixels as the L3 product grid before comparison. We only keep nighttime measurements top be consistent with the data screening policy for the input satellite data.

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue: 1.0

IV VALIDATION RESULTS

Product Name	start date	end date	sel. area	parameter	value
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01					
0_010	2012-10-01T00:00	2016-01-01T00:00	glo	mean	-0.165
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01					
0_010	2012-10-01T00:00	2016-01-01T00:00	glo	stddev	0.521
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01					
0_010	2012-10-01T00:00	2016-01-01T00:00	glo	nbsamples	1119260
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Tropical_		
0_010	2012-10-01T00:00	2016-01-01T00:00	Atlantic	mean	-0.134
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Tropical_		
0_010	2012-10-01T00:00	2016-01-01T00:00	Atlantic	stddev	0.477
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Tropical_		
0_010	2012-10-01T00:00	2016-01-01T00:00	Atlantic	nbsamples	96377
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Tropical_		
0_010	2012-10-01T00:00	2016-01-01T00:00	Pacific	mean	-0.174
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Tropical_		
0_010	2012-10-01T00:00	2016-01-01T00:00	Pacific	stddev	0.397
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Tropical_		
0_010	2012-10-01T00:00	2016-01-01T00:00	Pacific	nbsamples	135978
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			North_Pa		
0_010	2012-10-01T00:00	2016-01-01T00:00	cific	mean	-0.190
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			North_Pa		
0_010	2012-10-01T00:00	2016-01-01T00:00	cific	stddev	0.534
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			North_Pa		
0_010	2012-10-01T00:00	2016-01-01T00:00	cific	nbsamples	193408
SST_GLO_SST_L3S_NR	2012-10-01T00:00	2016-01-01T00:00	North_At	mean	-0.194

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue : 1.0

T OBSERVATIONS 01			lantic		
0 010					
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			North_At		
0_010	2012-10-01T00:00	2016-01-01T00:00	lantic	stddev	0.515
SST_GLO_SST_L3S_NR			1011111	314.431	0.010
T_OBSERVATIONS_01			North_At		
0_010	2012-10-01T00:00	2016-01-01T00:00	lantic	nbsamples	488583
SST_GLO_SST_L3S_NR	2012 10 01100.00	2010 01 01100.00	Tarrete	mosampies	100303
T OBSERVATIONS 01			Southern		
0 010	2012-10-01T00:00	2016-01-01T00:00	Ocean	mean	-0.165
SST_GLO_SST_L3S_NR	2012 10 01100.00	2010 01 01100.00	_Occur	mean	0.105
T_OBSERVATIONS_01			Southern		
0 010	2012-10-01T00:00	2016-01-01T00:00	Ocean	stddev	0.620
SST_GLO_SST_L3S_NR	2012 10 01100.00	2010 01 01100.00	_Occur	Stadev	0.020
T_OBSERVATIONS_01			Southern		
0_010	2012-10-01T00:00	2016-01-01T00:00	Ocean	nbsamples	149586
SST_GLO_SST_L3S_NR	2012-10-01100.00	2010-01-01100.00	_Ocean	Tibsattiples	149380
T OBSERVATIONS 01			North_W		
0_010	2012-10-01T00:00	2016-01-01T00:00	est Shelf	mean	-0.205
SST_GLO_SST_L3S_NR	2012-10-01100.00	2010-01-01100.00	est_sileii	mean	-0.203
			North M		
T_OBSERVATIONS_01	2012-10-01T00:00	2016-01-01T00:00	North_W est Shelf	stddev	0.520
0_010	2012-10-01100:00	2016-01-01100:00	est_snen	stadev	0.520
SST_GLO_SST_L3S_NR			Nouth M		
T_OBSERVATIONS_01	2012 10 01700:00	2016 01 01700.00	North_W		17002
0_010	2012-10-01T00:00	2016-01-01T00:00	est_Shelf	nbsamples	17903
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01	2012 10 01700:00	2016 01 01700.00	IDI DOOC		0.201
0_010	2012-10-01T00:00	2016-01-01T00:00	IBI_ROOS	mean	-0.201
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01	2042 40 04700 00	2046 04 04 700 00	101 0000		0.506
0_010	2012-10-01T00:00	2016-01-01T00:00	IBI_ROOS	stddev	0.536
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01					
0_010	2012-10-01T00:00	2016-01-01T00:00	IBI_ROOS	nbsamples	66582
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Black_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	mean	0.147
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Black_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	stddev	0.664
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Black_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	nbsamples	410

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue : 1.0

SST_GLO_SST_L3S_NR					
T OBSERVATIONS 01			South_Pa		
0_010	2012-10-01T00:00	2016-01-01T00:00	cific	mean	-0.150
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			South_Pa		
0 010	2012-10-01T00:00	2016-01-01T00:00	cific	stddev	0.442
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			South Pa		
0 010	2012-10-01T00:00	2016-01-01T00:00	cific	nbsamples	148266
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Baltic_Se		
0 010	2012-10-01T00:00	2016-01-01T00:00	a	mean	0.266
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Baltic_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	stddev	0.705
SST_GLO_SST_L3S_NR					
T OBSERVATIONS 01			Baltic_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	nbsamples	33
SST_GLO_SST_L3S_NR					
T OBSERVATIONS 01			South_At		
0_010	2012-10-01T00:00	2016-01-01T00:00	lantic	mean	-0.090
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			South_At		
0_010	2012-10-01T00:00	2016-01-01T00:00	lantic	stddev	0.551
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			South_At		
0_010	2012-10-01T00:00	2016-01-01T00:00	lantic	nbsamples	185436
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Actual_N		
0_010	2012-10-01T00:00	2016-01-01T00:00	W_Shelf	mean	-0.125
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Actual_N		
0_010	2012-10-01T00:00	2016-01-01T00:00	W_Shelf	stddev	0.523
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Actual_N		
0_010	2012-10-01T00:00	2016-01-01T00:00	W_Shelf	nbsamples	2006
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Arctic_Oc		
0_010	2012-10-01T00:00	2016-01-01T00:00	ean	mean	-0.438
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Arctic_Oc		
0_010	2012-10-01T00:00	2016-01-01T00:00	ean	stddev	0.584
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Arctic_Oc		
0_010	2012-10-01T00:00	2016-01-01T00:00	ean	nbsamples	15580

Ref: CMEMS-OSI-QUID-010-010

Date: 10 January 2016

Issue: 1.0

SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Land_Lak		
0_010	2012-10-01T00:00	2016-01-01T00:00	e_River	mean	-0.162
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Land_Lak		
0_010	2012-10-01T00:00	2016-01-01T00:00	e_River	stddev	0.686
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Land_Lak		
0_010	2012-10-01T00:00	2016-01-01T00:00	e_River	nbsamples	26
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Indian_O		
0_010	2012-10-01T00:00	2016-01-01T00:00	cean	mean	-0.119
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Indian_O		
0_010	2012-10-01T00:00	2016-01-01T00:00	cean	stddev	0.534
SST_GLO_SST_L3S_NR					
T_OBSERVATIONS_01			Indian_O		
0_010	2012-10-01T00:00	2016-01-01T00:00	cean	nbsamples	111793
SST_GLO_SST_L3S_NR			Mediterr		
T_OBSERVATIONS_01			anean_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	mean	-0.168
SST_GLO_SST_L3S_NR			Mediterr		
T_OBSERVATIONS_01			anean_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	а	stddev	0.588
SST_GLO_SST_L3S_NR			Mediterr		
T_OBSERVATIONS_01			anean_Se		
0_010	2012-10-01T00:00	2016-01-01T00:00	a	nbsamples	21621

<u>Table V.5.1</u> Mean (K), standard deviation (K), and number of match-ups for differences between High Resolution Global SST multi-sensor composite and in-situ SST measurements provided by IN-Situ TAC. The statistics were computed from 2012-01-01 to 2016-01-01.