```
L3 ANSWER I OF 23 HCAPLUS COPYRIGHT 2000 ALS
and control on the section of the se
 paramic admonstrates sells
ALI Lepters, D.; Albrich, N.; Hansier, H. T.
CS Diateirs of Bleeseded Sciences, School of Health Sciences, University of
Wolverhampion, Wolverhampion, WY1 10H, UK
SO Anticencer Res. (2000), 20(1A), 133-133
        COREN: ANTIBLE; ESSN: U259-TUD
  PB - Emercational fractions of Ambanical Research
 DT Journal
 LA English
  CC 8 (Radiation Biochemistry)
  AB BACKGROUND: Pancreatic cancer remains the most lethal of all common human
         malignancies with a 5-yr survival rate of lower than 5%. Adjuvant and
          neoadjuvant preoperative and postoperative chemo-radiotherapy using
          5-fluorouracil, have reduced local relapse rate and slightly increased the
          median survival. Testing new and more potent radiation-sensitizing drugs
          in human pancreatic cancer cells can provide the basis for a more
         effective chemo-radiation regimen and may consequently improve treatment outcome. MATERIALS & METHODS: The present study was performed to evaluate
         the efficacy of two potent ribonucleotide reductase (RR) inhibitors:
hydroxyurea and ***trimidox*** in radio-sensitizing Panc-1 human
         pancreatic cancer cells in an attempt to identify a more effective chemo-radiotherapy regimen with minimal side effects. RESULTS: Treatment of Panc-1 cells with hydroxyurea or ***trimidox*** alone for 2 h was
          assocd, with a dose-dependent decrease in their cloning efficacy to similar extent. The IC50 of ***trimidox***, hydroxyurea or radiation alone were 2.5 + 0.3 .mu.M, 39.0 + 0.4 .mu.M and 3.2 + 0.2 Gy, resp.
         atone were 2.5 ± 0.5 mil.m, 39.0 ± 0.4 mil.m and 3.2 ± 0.2 Gy, resp.

Treatment with 39.0 microM non-cytotoxic IC50 dose of hydroxyurea for two hours before or immediately after radiation reduced the IC50 of radiation to only 1.1 ± 0.14 or 1.0 ± 0.1 Gy, resp. Treatment with 2.5 microM non-cytotoxic IC50 dose of ***trimidox*** for two hours before or
            immediately after radiation reduced the IC50 of radiation to only 1.2 +
          0.16 or 1.4 + 0.12 Gy, resp. The mean radiation enhancement ratios were 2.9 and 3.2 for hydroxyurea before and immediately after radiation. The
           greater radio-sensitizing effect of hydroxyurea compared to
          ***trimidox*** or gemcitabine could be due to its unique double action by synchronising the cancer cells into the radiosensitive GI/S border and
           inhibiting DNA damage repair. CONCLUSIONS: The present study dem
          the superiority of hydroxyurea at non-cytotoxic doses compared to the other two recent RR inhibitors: gemeitabine and ***trimidox*** in
           radio-sensitizing human pancreatic cancer cells. Hydroxyurea combined
          with radiation has significantly improved progression-free survival of advanced cervical cancer and glioblastoma patients and showed clin. benefit in combination with other chemotherapy drugs in advanced
           pancreatic cancer. The present results suggest the clin. use of
          hydroxyurea as a radiosensitizer in both pre- and post-operative chemo-radiotherapy in pancreatic cancer patients. Given the demonstrated a potent radio-sensitizing effect of hydroxyurea at non-cytotoxic doses when
             administered before or immediately after radiation and its low clin.
           toxisity, it sould be feasible to administer hydroxyurea both before and
           after radiation in pancreatic cancer patients.
    RE.CNT 35
    (1) Andre, T; Presse Med 1999, V27, P539
   (1) Andre, T; Presse Med 1999, V27, P539

(2) Burris, H; Eur J Cancer 1997, V33(supplement 1), PS18

(3) Elford, H; Proceedings of AACR 1999, V40, P591

(4) Gale, R; Blood 1998, V91, P1810 HCAPLUS

(5) Gandhi, V; J Clin Oncol 1998, V16, P2321 HCAPLUS

(6) Hall, E; Radiobiology for the Radiobiologist, Fourth edition 1994
    (7) Hassan, H; Anticancer Res 1991, V11, P481 MEDLINE
(8) Hassan, H; Haematol Reviews Commun 1997, V7, P125
  (8) Hassan, H; Haematol Reviews Commun 1997, V7, P125
(9) Hassan, H; J Cancer Res Clin Oncology 1991, V117, P227 MEDLINE
(10) Hassan, H; J Interferon Cytokine Res 1995, V16, P139
(11) Howara, T; Current Problems Cancer 1996, V20, P281
(12) Ishikawa, O; Hepatogastroenterology 1998, V45, P644 MEDLINE
(13) Iyamu, E; Biochem Biophys Res Com 1998, V247, P759 HCAPLUS
(14) Kamthan, A; Clin Oncol 1997, V15, P2920 HCAPLUS
(15) Kuo, M; Cancer Res 1998, V58, P2245 HCAPLUS
```

(16) Kuo, M; The Cancer Journal from Scientific American 1997, V3, P163 MEDLINE

(21) McGinn, C; Journal of National Cancer Institute 1996, V88, P1193 HCAPLUS

(17) Lawrence, T; Int J Radiation Oncology Biology Physics 1996, V34, P867

(18) Levin, V; Seminars Oncol 1992, V19(supplement 9), P34 (19) Lofvenberg, E. Eur J Haematol 1988, V41, P375 MEDLINE (20) McGinn, C; Current Problems Cancer 1993, V17, P273 MEDLINE

(21) McGinn, C. Journal of National Cancer Institute 1990, V86, F (22) McGinn, F; Cancer Radiotherapy 1998, V2, P696 MEDLINE (23) Pisters, P; J Clin Oncol 1998, V16, P3843 MEDLINE (24) Prott, F; Brit J Cancer 1997, V75, P597 HCAPLUS (25) Raymond, E; Eur J Cancer 1997, V33, P696 HCAPLUS

(26) Rosier, J; Int J Radiation Biology 1999, V75, P245 HCAPLUS

(27) Rubens, R; Brit J Cancer 1991, V64, P1187 MEDLINE
 (28) Schilsky, R; Seminars Oncol 1992, V19(supplement 9), P84

(29) Shewach, D; Investigational New Drugs 1996, V1, P257

HCAPLUS

```
(30) Spir. F. J Cha Ordel 1997, V.S. PAR MEDALINE

(31) Spern, J. Deugo 1999, VST, PEP MEDALINE

(32) Shifters, P. J Chi Ordel 1998, VII. PISES MEDALINE

(33) Shifters, A. Carcer 1999, VII. PISES MEDALINE

(34) Spiriters, T. Carcer Chemodorupy and Pharmacology 1994, V34, POS HCAPLUS

(35) Thomas, P. Hemiographocontrology 1998, V45, P610 MEDALINE
 L3 ANSWER 2 (F 2) HEAPLUS COPYRHENT 2003 ACS
AN 2000,244(2) HEAPLUS
 The Calendariana of Bernagiobia and F-cal production by targeting growth
     Intertainment differentiation of KMG cells with observable reduction inhibition (didox and ***trividox*** ) is combination with
       communicate
 All Iyanu, W. E.; Adunyah, S. E.; Fineld, H.; Herindii, K.; Efferd, H. L.;
 ASSESSE. T.: Turness. E. A.
CS Comprehensive Sickle Cell Center, Meharry Medical College, Nashville, TN,
 SO Am. J. Hematol. (2000), 63(4), 176-183
CODEN: AJHEDD; ISSN: 0361-8609
PB Wiley-Liss, Inc.
 DT Journal
 LA English
CC ! (Pharmacology)
  AB Upon appropriate drug treatment, the human erythroleukemic K562 cells have
      been shown to produce Hb and F-cells. Fetal Hb (Hb F) inhibits the polymn. events of sickle Hb (Hb S), thereby ameliorating the clin. symptoms of sickle cell disease. Ribonucleotide reductase inhibitors
       (RRIs) have been shown to inhibit the growth of myeloid leukemia cells
      leading to the prodn. of Hb F upon differentiation. Of the RRIs currently in use, hydroxyurea is the most effective agent for Hb F induction. We have examd, the capacity of two novel RRIs, didox (DI) and
       ***trimidox*** (TRI), in combination with streptozotocin (STZ), to induce Hb and F-cell prodn. The K562 cells were cultured with different concns. of didox-STZ or ***trimidox*** -STZ at a fixed molar ratio of
       3:1 and 1:5 for 96 h, resp. At pre-detd. time intervals, aliquots of
      cells were obtained and total Hb (benzidine pos.) levels, no. of F-cells, and Hb F were detd. by the differential staining technique, fetal Hb assay
       kit, and fluorescence cytometry resp. The effect of combined drug
      results indicate that a synergistic growth-inhibitory differentiation effect occurred when didox or ***trimidox*** was used in combination
       with STZ on K562 cells. There was an increase in the no. of both
       benzidine-pos. normoblasts and F-cells, accompanied by morphol.
       appearances typical of erythroid maturation. On day 4, the no. of
       benzidine-pos. cells showed a 6-9-fold increase and the no. of F-cells was
       between 2.5- and 5.7-fold higher than the resp. controls. Based upon
       these results, treatment with a ribonucleotide reductase inhibitor, such as didox or ***trimidox***, in combination with STZ, might offer an
        addnl. promising option in sickle cell disease therapy.
  RE.CNT 32
  RE
  (1) Arwich, A; J Surg Oncol 1979, V12, P267
  (2) Charache, S; Adv Pediatr 1990, V37, P1 MEDLINE
(3) Charache, S; Blood 1992, V79, P2555 MEDLINE
(4) Charache, S; N Engl J Med 1995, V332, P1317 MEDLINE
  (4) Charache, S; N Engl J Med 1995, V332, P1317 MEDIANE
(5) Chou, T; Adv Enzyme Regul 1984, V22, P27 HCAPLUS
(6) DeSimone, J; Proc Natl Acad Sci USA 1982, V79, P4428 HCAPLUS
(7) DeVita, V; Cancer, principles and practice of oncology 1989
(8) Desesso, J; Teratology 1994, V49, P248 HCAPLUS
  (9) Ding, M; Ann Thorac Surg 1992, V53, P1091 MEDLINE
(10) Elford, H; Biochem Biophys Res Commun 1968, V33, P129 HCAPLUS
(11) Elford, H; Cancer Res 1979, V39, P844 HCAPLUS
   (12) Elford, H; Inhibitors of ribonucleoside diphosphate reductase activity
       1989, P217
   (13) Fibach, E; Blood 1993, V81, P1630 HCAPLUS
  (13) Frivach, E. Biodo 1993, V81, P1030 FICATLUS

(14) Horiuchi, K.; Biochem Biophys Res Commun 1995, V217, P924 HCAPLUS

(15) Horiuchi, K.; Cytometry 1995, V20, P261 MEDLINE

(16) Horiuchi, K.; Exp Hematol 1994, V22, P1058 MEDLINE

(17) Iyamu, E.; J Chromatogr B 1998, V709, P119 HCAPLUS
   (18) Iyamu, W. Biochem Biophys Res Commun 1998, V247, P759
(19) Letvin, N; N Engl J Med 1984, V310, P869 HCAPLUS
(20) McLeod, D; Blood 1974, V44, P517 MEDLINE
   (21) Moore, E. International encyclopedia of pharmacology and therapeutics
       1989, P165
   (22) Noguchi, C; Blood 1981, V58, P1057 HCAPLUS
(23) Pace, B; Am J Hematol 1994, V45, P136 HCAPLUS
   (24) Perrine, S; N Engl J Med 1993, V328, P81 HCAPLUS
   (25) Reilly, M; Exp Hematol 1994, V22, P501 HCAPLUS
(26) Schechter, A; Molecular basis of blood diseases 1987, P187
    (27) Schein, P; Arch Intern Med 1973, V132, P555 MEDLINE
   (27) Schein, P. Arch Intern Med 1973, V132, F333 MEDLINE
(28) Szekeres, T; Cancer Chemother Pharmacol 1994, V34, P63 HCAPLUS
(29) van't Ried, B; J Med Chem 1979, V22, P589
(30) Veale, D; Br J Cancer 1988, V58, P70 HCAPLUS
(31) Veith, R; N Engl J Med 1985, V313, P1571 MEDLINE
(32) Zhao, K; Anticancer Res 1995, V15, P645 MEDLINE
    L3 ANSWER 3 OF 23 HCAPLUS COPYRIGHT 2000 ACS
    AN 2000:209828 HCAPLUS
    DN 132:246339
    TI Antiviral drug compositions containing lithium salts
```

(30) Sphz. P. 4 Cha Orcel 1997, VLS, P924 MECLENE

```
(6) Rideout; US 4724232 A 1998
IN Gallectio, Vincent S.
PA University of Kentucky Research Foundation, USA
                                                                                                                                                     (7) Varchour, US 5005517 A 1791
SUT PCI Int. Appl. 48 pp.
CORIEN: PEXXUE
                                                                                                                                                     L3 ANSWER 4 OF 23 HEAPLUS CUPYRRAMI IND ACS
AN 2000 USES HEAPLUS
                                                                                                                                                     DN 132 258326
LA English
                                                                                                                                                     11 in the sad in time compenses of the short-term besistopaints teaking
between hydronymes and ***trinidee*** or didire, nevel ribused exide
H. H.M. ALITERALIM
    HIS COMPUTERLY
                                                                                                                                                          reducture inhibition with potential anti-HIV-1 activity
CC 1-7 (Plemasseogy)
                                                                                                                                                     AU Minybew, Christopher N.; Heilips, Rossthan D.; Crescherg, Richard N.;
Birch, Nicheles J.; Efford, Howard L.; Gellicothe, Vincest S.
LN School of Health Sciences, University of Wedverhauspion, Wedverhauspion, UK
    Section come reference(s): 63
FAR CRUE
     PATENT NO.
                              BIND DATE
                                                              APPLICATION NO. DATE
                                                                                                                                                     SO Som Cells (Mismisburg, Otto) (1999), 17(6), 145-358
                                                                                                                                                          CCHREN: STCHEU; ISSN: 1006-5099
FI WO DADDINGS AT 2000000 WO DAS-US20019 DWHOUTS
                                                                                                                                                     ин AlphaMed Press
DT Journal
        TW. GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, F1, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                                                                                                                                     LA English
                                                                                                                                                     CC 1-5 (Pharmacology)
                                                                                                                                                     AB The short-term hematopoietic toxicity of the ribonucleotide reductase
AB A compn. and a pharmaceutical compn. of lithium .gamma.-linolenate and an
                                                                                                                                                         inhibitor hydroxyurea (HU) was studied in mice in comparison with that of the more potent enzyme inhibitors didox (DX) and ***trimidox*** (TX). High-dose HU, DX, and TX monotherapy (500, 460, and 220 mg/kg/day, resp.) was administered by daily i.p. injection (Monday-Friday) to C57BL/6 mice
    antiviral or antibiotic are provided. Also provided is a method of treating acquired immune deficiency syndrome (AIDS) with lithium gamma.-linolenate and zidovudine. Further provided is a method of
     decreasing the toxicity of an antiviral or antibiotic including
     administering a toxicity-reducing effective amt. of a compn. of a lithium
                                                                                                                                                          for 10 wk. Effects on hematopoiesis were established by quantitating
                                                                                                                                                          peripheral blood indexes and nos. of colony-forming units-granulocyte-
macrophage (CFU-GM) and BFU-E [not defined] from bone marrow and spl
     salt with an antiviral or antibiotic.
ST lithium salt antiviral antibiotic toxicity redn; linolenate gamma lithium
                                                                                                                                                          HU rapidly induced a macrocytic hypochromic anemia and altered white blood
     antiviral AIDS; zidovudine lithium gamma linolenate AIDS
                                                                                                                                                          cell kinetics, assocd. with myelosuppression, defined as reduced marrow
IT Antiviral agents
                                                                                                                                                          organ cellularity and induction of splenic extramedullary hematopoiesis.
     Bone marrow
                                                                                                                                                          Compared to HU, TX and DX induced fewer changes in peripheral blood
     Drug delivery systems
                                                                                                                                                         Compared to HU, TX and DX induced tever changes in peripheral blood indexes and CFU-GM and BFU-E per hematopoietic organ. In vitro human and murine marrow CFU-GM and BFU-E colony formations were assayed in the presence of increasing concns. of HU, DX, or TX (0, 1, 10, 50, 100, and 200 .mu.M). HU inhibited colony formation more than either DX or TX.
     Eosinophil
     Hematocrit
     Hematopoiesis
     Human immunodeficiency virus
                                                                                                                                                          These studies suggest that the novel ribonucleotide reductase inhibitors
     Immunostimulants
                                                                                                                                                         TX and DX may provide an effective alternative to HU in HIV-1 therapy because they cause less hematopoietic toxicity.
     Leukocyte
      Lymphocyte
                                                                                                                                                     ST hematopoiesis toxicity ribonucleotide reductase inhibitor; hydroxyurea
***trimidox*** didox hematopoiesis toxicity
     Megakaryocyte
     Murine immunodeficiency virus
                                                                                                                                                      IT Hematopoietic precursor cell
     Neutrophil
                                                                                                                                                             (granulocyte-macrophage; hematopoietic toxicity of hydroxyurea, ***trimidox*** and didox, ribonucleotide reductase inhibitors)
     Platelet (blood)
     Spleen
                                                                                                                                                           Hematopoiesis
        (antiviral drug compns. contg. lithium salts)
                                                                                                                                                             (hematopoietic toxicity of hydroxyurea, ***trimidox*** and didox,
IT Nucleoside analogs
     RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or
                                                                                                                                                             ribonucleotide reductase inhibitors)
      effector, except adverse); THU (Therapeutic use); BIOL (Biological study);
                                                                                                                                                      IT Anti-AIDS agents
                                                                                                                                                          Human immunodeficiency virus I
      USES (Uses)
                                                                                                                                                             (hematopoietic toxicity of hydroxyurea, ***trimidox*** and didox,
        (antiviral drug compns. contg. lithium salts)
                                                                                                                                                      ribonucleotide reductase inhibitors with potential anti-HIV-1 activity)

1T 127-07-1, Hydroxyurea 69839-83-4, Didox 95933-74-7, ***Trimidox***
RL: BAC (Biological activity or effector, except adverse); BIOL
 1T Toxicity
 (drug; antiviral drug compns. contg. lithium salts)

IT Hematopoietic precursor cell
                                                                                                                                                           (Biological study)
        (erythroid burst-forming; antiviral drug compns. contg. lithium salts)
                                                                                                                                                             (hematopoietic toxicity of hydroxyurea, ***trimidox*** and didox,
 IT Hematopoietic precursor cell
        (erythroid; antiviral drug compns. contg. lithium salts)
                                                                                                                                                             ribonucleotide reductase inhibitors)
                                                                                                                                                      IT 9040-57-7, Ribonucleotide reductase
 IT Hematopoietic precursor cell
                                                                                                                                                          RL: BSU (Biological study, unclassified); BIOL (Biological study)
(inhibitors: hematopoietic toxicity of hydroxyurea, ***trimidox***
        (granulocyte-macrophage colony-forming; antiviral drug compns. contg.
                                                                                                                                                             (inhibitors; hematopoietic toxicity of hydroxyurea, and didox, ribonucleotide reductase inhibitors)
        lithium salts)
 IT AIDS (disease)
                                                                                                                                                      RE.CNT 57
        (murine leukemia virus-induced AIDS-like syndrome; antiviral drug
        compns. contg. lithium salts)
                                                                                                                                                      (1) Autran, B; Science 1997, V277, P112 HCAPLUS
(2) Barry, M; Br J Clin Pharmacol 1998, V45, P221 HCAPLUS
 IT Hematopoietic precursor cell
        (myeloid; antiviral drug compns. contg. lithium salts)
                                                                                                                                                      (3) Belt, R; Cancer 1980, V46, P455 MEDLINE
 IT Megakaryocyte
                                                                                                                                                      (4) Biron, F. Antiviral Res 1996, V29, P111 HCAPLUS
(5) Biron, F. J Acquir Immune Defic Syndr Hum Retrovirol 1995, V10, P36 HCAPLUS
(6) Carmichael, J; Br J Cancer 1990, V61, P447 MEDLINE
        (promegakaryocyte; antiviral drug compns. contg. lithium salts)
 To-18-0, Cyclophosphamide 127-07-1, Hydroxyurea 3056-17-5, d4T 7481-89-2, DdC 9042-14-2, Dextran sulfate 30516-87-1, Zidovudine 69655-05-6, Dd1 69839-83-4, Didox 95933-74-7, ***Trimidox***
                                                                                                                                                      (7) Carpenter, C; JAMA 1998, V280, P78 HCAPLUS
(8) Carr, A; AIDS 1998, V12, PF51 MEDLINE
(9) Carr, A; Lancet 1998, V351, P1736 MEDLINE
      129618-40-2, Nevirapine
      RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study);
                                                                                                                                                      (10) Donehower, R; Semin Oncol 1992, V19, P11 MEDLINE
(11) Dumenil, D; Cancer Chemother Pharmacol 1979, V2, P197 MEDLINE
(12) Elford, H; Adv Enzyme Regul 1980, V19, P151 MEDLINE
      USES (Uses)
 (antiviral drug compns. contg. lithium salts)

17 554-13-2, Lithium carbonate 919-16-4, Lithium citrate 7439-93-2D,
Lithium, salts 7447-41-8, Lithium chloride, biological studies
10377-48-7, Lithium sulfate 66004-77-1 93858-64-1 93939-77-6
                                                                                                                                                       (13) Elford, H; Biochem Biophys Res Commun 1968, V33, P129 HCAPLUS
                                                                                                                                                      (14) Elford, H; Cancer Res 1979, V39, P844 HCAPLUS
(15) Elford, H; Pharmacol Ther 1985, V29, P239 HCAPLUS
(16) Finzi, D; Nat Med 1999, V5, P512 HCAPLUS
      122051-95-0, Lithium .gamma.-linolenate 122406-02-4
      RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
                                                                                                                                                       (17) Foli, A; Antiviral Ther 1997, V2, P33
                                                                                                                                                      (18) Fritzer-Szekeres, M; Life Sci 1998, V63, P545 HCAPLUS
(19) Furtado, M; N Engl J Med 1999, V340, P1614 HCAPLUS
(20) Gao, W; Biochem Pharmacol 1995, V50, P274 HCAPLUS
 (antiviral drug compns. contg. lithium salts)

1T 9001-92-7, Protease 9040-57-7, Ribonucleotide reductase 9068-38-6,
                                                                                                                                                       (21) Gao, W; Mol Pharmacol 1994, V46, P767 HCAPLUS
      Reverse transcriptase
                                                                                                                                                      (22) Gao, W; Proc Natl Acad Sci USA 1993, V90, P8925 HCAPLUS
(23) Giacca, M; AIDS Res Hum Retroviruses 1996, V12, P677 HCAPLUS
      RL: BSU (Biological study, unclassified); BIOL (Biological study)
        (inhibitors; antiviral drug compns. contg. lithium salts)
                                                                                                                                                      (23) Giacca, M; AIDS Res Hum Retroviruses 1999, V12, P077 RG
(24) Giacca, M; J Infect Dis 1996, V174, P204 HCAPLUS
(25) Gunthard, H; J Virol 1998, V72, P2422 HCAPLUS
(26) Ho, T; Lancet 1998, V351, P1736 MEDLINE
(27) Johns, D; Biochem Pharmacol 1998, V55, P1551 HCAPLUS
 RF
 (1) de Clercq; US 5116822 A 1992
(2) Horrobin; US 5216142 A 1993
                                                                                                                                                       (28) Lori, F; AIDS Res Hum Retroviruses 1997, V13, P1403 HCAPLUS
 (3) Horrobin; US 5252333 A 1993
(4) Horrobin; US 5262174 A 1993
                                                                                                                                                      (29) Lori, F, AIDS Res Hum Retroviruses 1999, V15, P619 HCAPLUS
(30) Lori, F; Science 1994, V266, P801 HCAPLUS
 (5) Lin; US 4978655 A 1990
```

```
(31) Madey, St. Prog Nati Acad Sci USA 1994, VSL P11017 HCAPLUS
                                                                                                                                                                                                  IT Dogmanakes
 (32) Maylew, C. Coll Med Biol (Neily-In-grand) 1997, V43, P1010 HCAPLUS
(33) Mayerham, A. J Vinol 1994, Vol. P533 HCAPLUS
(34) Mills, D.; Audivir Res 1992, V17(mappl 1), P76
                                                                                                                                                                                                             propertie, Milianauguse, and continuism with other sports, for
                                                                                                                                                                                                             HIV infection treatment)
                                                                                                                                                                                                  fT 127-02-1, Hydroxywca 3056-17-5, 64T 7481-39-1, D4C 5015-61-3D,
                                                                                                                                                                                                        12707-1, hydroxysta. 3935-17-3, 487 1681-37-2, DM: 5015-06-10, Acparaghuse. PEG codingates. 25321-68-30, PEG. separajense codingates. Disign-87-1, AZT 6965-05-6, Ddl 69830-83-4, Dishr. 74149-70-3, Parchecin. 95933-17-5, America. 95933-17-6, ***Trinsidox****
110361-17-3, Saledinar. 12338-81-1, 2-Chimo-0-(2-desay-1-ducto-beta-besatus-director-gladentes. 127143-14-7, BW 1490187. 12777-3-10-8.
(34) MBIS, D. ROSE AM ASSOC CENER RES 1992, V73, F739
(35) MBIS D. PROC AM ASSOC CENER RES 1992, V73, F739
(36) MATTERIA, L.J. Hefter Dis 1997, V175, F601 HCAPLUS
(37) MOSES, E.; Cell Timer Kinet 1935, V9, P479 HCAPLUS
(31) Nessin, E.; Cell Timer Kinet 1935, V9, P479 HCAPLUS
 (39) Nestral, E. Caroet Cherecher Pharmesco (397, V39, P234 HCAPLUS
(40) Palella, F. N. Engl J. Med. (308, V338, P353)
(41) Palmer, S. Antimienco Agents Chemother (559), V43, P2046 HCAPLUS
                                                                                                                                                                                                         Suprinerie 130906-02-4, MDL 101731 134674-17-4, 3TC 143621-35-6
                                                                                                                                                                                                         September 1500-02-4, Nutr. 1917) | 1500-02-1-1-3, Telephone 1500-02-1-1-3, Ph. 1500-02-1-3, Ph. 1500-
 (42) Research, F. Murmicisturary 1999, VID, PRSS HCAPLUS
                                                                                                                                                                                                        1501316-17-3, IMBERRY 150107-16-11-3 25301 1501316-15-3, MARKEN 1501316-3, MARKEN 1501316-15-3, MARKEN 1501316-15-3, MARKEN 1501316-15-
 (41) Rabers, R. Br.J Curcer 8991, V64, P1187 MEDLINE
(44) Retailment, O. AIDS 1994, VIZ, PFT1 HCAPLEIS
 (43) Staffer, R. Ann Incom Med 1998, V129, PWO HICAPLUS
 (46) Simonelli, C; J Acquir Immune Defic Syndr Hum Retrovirol 1996, V13, P462
                                                                                                                                                                                                         236391-66-5, GTI 2040 236391-67-6, GTI 2501 236392-18-0, Endinovere
      MEDLINE
                                                                                                                                                                                                         236392-56-6, OCX 191 236392-75-9, PL 7
 (47) Smith, D; Cancer Chemother Pharmacol 1993, V33, P139 MEDLINE
 (48) Szekeres, T; Cancer Chemother Pharmacol 1994, V34, P63 HCAPLUS
(49) Szekeres, T; Crit Rev Clin Lab Sci 1997, V34, P503 HCAPLUS
                                                                                                                                                                                                        RL: BAC (Biological activity or effector, except adverse), THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (50) Ussery, M; Intersci Conf Antimicrob Agents Chemother 1996, P188 (51) Uyeki, E; J Pharmacol Exp Ther 1976, V198, P246 HCAPLUS
                                                                                                                                                                                                            (PEG-asparaginase, and combinations with other agents, for HIV
                                                                                                                                                                                                             infection treatment)
                                                                                                                                                                                                   IT 56-84-8, L-Aspartic acid, biological studies 56-85-9, L-Glutamine,
  (52) van'T Riet, B; US 4942253 1990
                                                                                                                                                                                                        biological studies 70-47-3, L-Asparagine, biological studies RL: BOC (Biological occurrence); BPR (Biological process); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (52) van T Riet, B., US 4942233 1990
(53) van T Riet, B.; J Med Chem 1979, V22, P589 HCAPLUS
(54) Veale, D.; Br J Cancer 1988, V58, P70 HCAPLUS
 (55) Veale, D. Cancer Chemother Pharmacol 1988, V21, P53 HCAPLUS (56) Wong, J. Proc Natl Acad Sci USA 1997, V94, P12574 HCAPLUS (57) Yarbro, J; Semin Oncol 1992, V19, P1 HCAPLUS
                                                                                                                                                                                                             (PEG-asparaginase, and combinations with other agents, for HIV
                                                                                                                                                                                                             infection treatment)
                                                                                                                                                                                                   IT 9040-57-7, Ribonucleotide reductase 9068-38-6, Reverse transcriptase
                                                                                                                                                                                                         144114-21-6, Retropepsin
 L3 ANSWER 5 OF 23 HCAPLUS COPYRIGHT 2000 ACS AN 1999:511044 HCAPLUS
                                                                                                                                                                                                          RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL
                                                                                                                                                                                                         (Biological study); PROC (Process)
  DN 131:139487
                                                                                                                                                                                                             (inhibitors; PEG-asparaginase, and combinations with other agents, for
  TI Pharmaceutical compositions comprising PEG-asparaginase for the treatment
                                                                                                                                                                                                             HIV infection treatment)
       of HIV infections
                                                                                                                                                                                                   RE.CNT 8
 IN Avramis, Vassilios I.; Cohen, Lewis
PA Rhone-Poulenc Rorer Pharmaceuticals Inc., USA
                                                                                                                                                                                                   (I) Anil, T; JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND
 SO PCT Int. Appl., 81 pp.
CODEN: PIXXD2
DT Patent
                                                                                                                                                                                                   HÚMAN
                                                                                                                                                                                                        RETROVIROLOGY 1998, V17(4), PA31
                                                                                                                                                                                                    (2) Gisselbrecht, C; AMERICAN JOURNAL OF MEDICINE 1993, V95(2), P188
  LA English
  IC ICM A61K038-50
                                                                                                                                                                                                    MEDLINE
                                                                                                                                                                                                   (3) Holle, L; ANNALS OF PHARMACOTHERAPY 1997, V31(5), P616 HCAPLUS
  CC 1-5 (Pharmacology)
                                                                                                                                                                                                   (4) Inst Nat Sante Rech Med; EP 0250335 A 1987
(5) Levien, T; HOSPITAL PHARMACY 1995, V30/1, P54
        Section cross-reference(s): 63
  FAN CNT I
                                                                                                                                                                                                   (6) Los Angeles Childrens Hospital; WO 9856410 A 1998
                                                                                 APPLICATION NO. DATE
        PATENT NO.
                                         KIND DATE
                                                                                                                                                                                                    (7) Monfardini, S; CANCER TREATMENT REVIEWS 1994, V20/2, P149
                                                                                                                                                                                                   (8) Tulpule, A; BLOOD 1998, V92(10), P240B
                                          A1 19990812 WO 1999-US2480 19990209
             W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO,
                                                                                                                                                                                                   L3 ANSWER 6 OF 23 HCAPLUS COPYRIGHT 2000 ACS
                                                                                                                                                                                                   AN 1999:113524 HCAPLUS
DN 130:177527
             NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,
                                                                                                                                                                                                    TI Therapeutic process for inhibiting NF-.kappa.B
                                                                                                                                                                                                   IN Elford, Howard L.
                                                                                                                                                                                                   PA USA
SO PCT Int. Appl., 12 pp.
CODEN: PIXXD2
                 FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,
  CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
AU 9926584 AI 19990823 AU 1999-26584
PRAI US 1998-PV74066 19980209
                                                                           AU 1999-26584 19990209
                                                                                                                                                                                                   DT Patent
                                                                                                                                                                                                   LA English
IC ICM A61K
        US 1998-74066 19980209
        WO 1999-US2480 19990209
                                                                                                                                                                                                    CC I-7 (Pharmacology)
  OS MARPAT 131:139487
AB A method of inhibiting or treating Human Immunodeficiency Virus (HIV)
                                                                                                                                                                                                    FAN.CNT I
                                                                                                                                                                                                         PATENT NO.
                                                                                                                                                                                                                                            KIND DATE
                                                                                                                                                                                                                                                                                   APPLICATION NO. DATE
        infection comprises administering to a patient in need thereof an
        effective amt. of a pharmaceutically acceptable compn. comprising a
                                                                                                                                                                                                   PI WO 9906009
                                                                                                                                                                                                                                              A2 19990211
                                                                                                                                                                                                                                                                                WO 1998-US15715 19980729
        PEG-ASNase compd. and optionally at least one compd. selected from the
        proup consisting of protease inhibitor compds, ribonucleotide reductase inhibitor compds, and HIV reverse transcriptase inhibitor compds.
                                                                                                                                                                                                          WO 9906009
                                                                                                                                                                                                                                             A3 19990902
                                                                                                                                                                                                              W: CA. JP
                                                                                                                                                                                                              RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
   ST PEG asparaginase HIV infection treatment
                                                                                                                                                                                                                   PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
  IT Antiviral agents
Drug delivery systems
                                                                                                                                                                                                   PRAI US 1997-54230 19970730
OS MARPAT 130:177527
         Human immunodeficiency virus
                                                                                                                                                                                                     AB A therapeutic process is provided for the inhibition of NF-.kappa.B in
        Human immunodeficiency virus 1
            (PEG-asparaginase, and combinations with other agents, for HIV
                                                                                                                                                                                                          mammals in whose cells NF-.kappa.B has been activated by an agency
                                                                                                                                                                                                          external to said cell.
             infection treatment)
                                                                                                                                                                                                     ST nuclear factor kappaB inhibitor antiinflammatory
  IT Amino acids, biological studies
                                                                                                                                                                                                     IT Animal virus
        RL: BOC (Biological occurrence); BPR (Biological process); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
                                                                                                                                                                                                          Antitumor agents
Arteriosclerosis
            (PEG-asparaginase, and combinations with other agents, for HIV
                                                                                                                                                                                                          Chemotherapy
             infection treatment)
                                                                                                                                                                                                          Diabetes mellitus
  1T Viral RNA
         RL: BPR (Biological process); BIOL (Biological study); PROC (Process)
                                                                                                                                                                                                          Oxidizing agents
                                                                                                                                                                                                          Radiotherapy
            (PEG-asparaginase, and combinations with other agents, for HIV
  infection treatment)
IT Polyoxyalkylenes, biological studies
                                                                                                                                                                                                           Transplant (organ)
                                                                                                                                                                                                              (NF-.kappa.B activation by; therapeutic process for inhibiting
         RL: BAC (Biological activity or effector, except adverse); THU
                                                                                                                                                                                                              NF-.kappa.B)
                                                                                                                                                                                                    IT Cytokines
         (Therapeutic use); BIOL (Biological study); USES (Uses)
            (asparaginase conjugates; PEG-asparaginase, and combinations with other agents, for HIV infection treatment)
                                                                                                                                                                                                           RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
                                                                                                                                                                                                              (NF-.kappa.B activation by; therapeutic process for inhibiting
                                                                                                                                                                                                              NF-.kappa.B)
          Drug delivery systems
            (prodrugs; PEG-asparaginase, and combinations with other agents, for
                                                                                                                                                                                                     IT NF-.kappa.B
                                                                                                                                                                                                           RL: ADV (Adverse effect, including toxicity); BPR (Biological process);
             HIV infection treatment)
```

BENT (Biotophal starty, unclassified): BEOL (Biotophal starty): PROC

Criminors: theraparis process for intelliging NT- happe (6)

11 Asti isflatenstray drags Radical screenaars

(the appearing processes fine inhibiting NF-Jappea B)

TT | 48640-14-6, Provide kinase B

RL: ABIV (Adverse effect, including necessity), BHCL (Biological study) (NF- kappa B activation by, therapeatic process for intibilities NF- kappas B) 17 9040-57-7. Rhomadecible refactane

RL: BSV (Biological study, undicadied), BRX. (Biological study)

(rithfrom; themposis process for infinitely NT-kappa 89) 07839-83-4, N.,4-1 ribydowybeasaninio 05923-72-5, Anidox 95933-74-7. THE PARTY OF THE

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (therapeutic process for inhibiting NF-.kappa.B)

L3 ANSWER 7 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1998:727246 HCAPLUS

DN 130:90042

T1 Characterization of the enzymic activity for biphasic competition by guanoxabenz (1-(2,6-dichlorobenzylidene-amino)-3-hydroxyguanidine) at alpha.2-adrenoceptors. I. Description of an enzymic activity in spleen

AU Uhlen, Staffan; Dambrova, Maija; Tiger, Gunnar; Oliver, Douglas W.; Wikberg, Jarl E. S.

CS Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, Uppsala, Swed.
SO Biochem. Pharmacol. (1998), 56(9), 1111-1119

CODEN: BCPCA6; ISSN: 0006-2952

PB Elsevier Science Inc.

DT Journal

LA English CC 1-2 (Pharmacology)

AB The mechanism for formation of high-affinity binding of 1-(2,6-dichlorobenzylidene-amino)-3-hydroxyguanidine (guanoxabenz) to alpha.2-adrenoceptors was studied in particulate fractions from the rat spleen. The proportion of apparent high vs. low-affinity alpha.2-adrenoceptor binding sites increased with increasing incubation time and was also augmented by Mg2+ ions. The formation of high-affinity guanoxabenz binding seemed to be inhibited by a series of guanoxabenz oinding seemed to be initiotied by a series of M-hydroxyguanidine analogs to guanoxabenz, as well as by a series of metabolic inhibitors that included allopurinol, 1-chloro-2,4-dinitrobenzene, 5,5'-dithiobis-(2-nitrobenzoic acid), cibacron blue, phenyl-p-benzoquinone, didox, and ***trimidox***. The formation of guanoxabenz high-affinity binding was also inhibited in a time- and concn.-dependent fashion by preincubating the membranes with the LW03 N-hydroxyguanidine analog of guanoxabenz. Moreover, when the spleen membranes were extensively washed for 30 min with buffers at 25.degree. the guanoxabenz high-affinity binding disappeared. However, when these washed membranes were supplemented with xanthine, the apparent affinity of guanoxabenz increased four- to five-fold. Taken together, all data were compatible with the theory that the formation of high-affinity binding was dependent on the generation of a guanoxabenz metabolite that showed an approx. 100-fold greater affinity for the .alpha.2-adrenoceptors than guanoxabenz itself. Because the most potent blocker of the formation of high-affinity binding was allopurinol (apart from some N-hydroxyguanidine analogs to guanoxabenz) and since the activity could be restored with xanthine, a likely candidate responsible for the metabolic activation is

xanthine oxidase. ST guanoxabenz metab spleen adrenoceptor binding; xanthine oxidase guanoxabenz metab adrenoceptor binding

iT Cell membrane

Cerebral cortex

Drug metabolism

(metabolic activation in spleen and cerebral cortex membranes for uanoxabenz binding to .alpha.2A-adrenoceptors)

(metabolic activation in spleen membranes for guanoxabenz binding to alpha.2A-adrenoceptors)

IT .alpha.2-Adrenoceptors subtype A

RL: BPR (Biological process); BIOL (Biological study); PROC (Process) (metabolic activation in spleen membranes for guanoxabenz binding to alpha.2A-adrenoceptors)

IT 9002-17-9, Xanthine oxidase

RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)

(metabolic activation in spleen membranes for guanoxabenz binding to alpha.2A-adrenoceptors)

IT 24047-25-4, Guanoxabenz

RL: BAC (Biological activity or effector, except adverse); BPR (Biological process); BIOL (Biological study); PROC (Process) (metabolic activation in spleen membranes for guanoxabenz binding to lpha.2A-adrenoceptors)

IT 7439-95-4, Magnesium, biological studies RL: BOC (Biological occurrence); BIOL (Biological study); OCCU

(metabolic activation in spleen membranes for guanoxabenz binding to

apta 2A-atresceptori)

BE CNT 23

(I) Bergatrom, A; Acta Pharmacol Toricol 1996, V59, P270 MEDLINE

(2) Curtupes, H. Nature (London) 1951, V168, P1030

(3) Clement, B; Chern Res Toxicol 1996, V9, P662 HCAPLUS

(6) Critching, D. Biochen Biochys Res Cornell 1992, VEB3, P34 HCAPLUS
 (5) Dimbrova, M. Biochen Pharmacol 1998, VS6, P3121 BCAPLUS
 (6) Da Leen, A. Mel Pharm 1913, V21, P3 HCAPLUS

(9) Death A., Portig Ren 1972, Vol., P65 HCAPLUS (9) Burbit R. Ann Bird Cen (Paris 1940, V31, P331 HCAPLUS (9) Hui, M.; Anniviral Ren 1994, V24, P263 HCAPLUS

(17) Ed. H.; America Wei 1941, V36, P367 MEDLANE (11) Lon; F.; Cherne (Washington DC) 1994, V266, R891 HCAPLUS (12) Lovary, O. & Biol Chem 1951, V193, P265 (13) Massey, V; J Biol Chem 1970, V245, P2837 HCAPLUS

(14) Uhlen, S; Br J Pharmacol 1991, V104, P657 HCAPLUS (15) Uhlen, S; Br J Pharmacol 1992, V106, P986 HCAPLUS

(16) Uhlen, S; Eur J Pharmacol 1991, V202, P235 HCAPLUS

(17) Uhlen, S; Naunyn-Schmiedebergs Arch Pharmacol 1993, V347, P280 HCAPLUS

(18) Uhlen, S; Pharmacol Toxicol 1991, V69, P341 HCAPLUS

(19) Wang, P; J Med Chem 1990, V22, P608 (20) Ward, S; Br J Clin Pharmacol 1991, V31, P689 HCAPLUS

(21) Wikberg, J; Adrenoceptors 1995, P109 HCAPLUS

(22) Wikberg, J; Biochem Pharmacol 1998, V56, P1129 HCAPLUS (23) Xia, Y; Pharmacol Toxicol 1993, V72, P40 HCAPLUS

L3 ANSWER 8 OF 23 HCAPLUS COPYRIGHT 2000 ACS AN 1998:487631 HCAPLUS

DN 129:211378

TI Enhanced effects of Adriamycin by combination with a new ribonucleotide reductase inhibitor, ***trimidox***, in murine leukemia
AU Fritzer-Szekeres, Monika; Novotny, Ladislav; Romanova, Darina; Gobl,

Rainer; Sedlak, Jan; Vachalkova, Anna; Rauko, Peter; Elford, Howard L.;

CS Clinical Institute for Medical and Chemical Laboratory Diagnostics, Vienna, A-1090, Austria

SO Life Sci. (1998), 63(7), 545-552 CODEN: LIFSAK; ISSN: 0024-3205

PB Elsevier Science Inc.

DT Journal

LA English

CC 1-6 (Pharmacology)

AB Ribonucleotide reductase is the rate limiting enzyme of de novo DNA synthesis; its activity is significantly increased in tumor cells related to the proliferation rate. Therefore the enzyme is considered to be an excellent target for cancer chemotherapy. In the present study we tested the in vitro and in vivo antitumor effects of a drug combination using ***trimidox*** (3,4,5-trihydroxybenzamidoxime), a novel inhibitor of ribonucleotide reductase with adriamycin, a widely used anticancer drug. This combination was selected because adriamycin generates free radicals being responsible for cardiotoxic side effects, ***trimidox*** has been shown to be a good free radical scavenger. The in vitro cytotoxic effect of the drug combination was examd. in L1210 mouse leukemia cells employing a MTT chemosensitivity assay. Incubation of these cells with adriamycin and ***trimidox*** together yielded less than additive cytotoxic effects compared to either drug alone. These effects were not caused by the involvement of p-glycoprotein mediated drug efflux.

However, when the effect of ***trimidox*** and adriamycin in combination was examd. in L1210 leukemia bearing mice antitumor effects of adriamycin could be enhanced by the presence of ***trimidox***. Our data indicate, that the in vivo combination of adriamycin together with

trimidox might be beneficial for the treatment of malignancies.

trimidox Adriamycin leukemia inhibition

IT Drug transport

(P-glycoprotein-mediated; enhanced effects of Adriamycin by combination with a new ribonucleotide reductase inhibitor, ***trimidox***, in murine leukemia)

IT Leukemia inhibitors

Synergistic drug interactions

(enhanced effects of Adriamycin by combination with a new ribonucleotide reductase inhibitor, ***trimidox***, in murine leukemia)

IT 25316-40-9 Adriamycin 95933-74-7. ***Trimidox*** RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (enhanced effects of Adriamycin by combination with a new ribonucleotide reductase inhibitor, ***trimidox***, in murine

IT 9040-57-7, Ribonucleotide reductase

RL: BSU (Biological study, unclassified); BIOL (Biological study) (enhanced effects of Adriamycin by combination with a new ribonucleotide reductase inhibitor, ***trimidox***, in murine

L3 ANSWER 9 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1998:429154 HCAPLUS

DN 129:170304
TI ***Trimidox*** -mediated morphological changes during erythroid differentiation is associated with the stimulation of hemoglobin and

F-cell production in human K561 cells

- ALI byerra, Efe W.; Ackerych, Secret E.; Elfied, Howard L.; Finold, Huger, Turner, Errest A.
- CS Comprehensive Sichle Cell Center, Nichelle, TN, 17203, USA
- 50 Biochem Binghys Res. Commun. (1999), 247(3), 719-764.
 COMMUN. BERLIAN, INSN: 6008-2913.
- PR Abelonic Press
- DT Americal
- 1.4 Frailith
- CC 1-1 (Phonescology)
- ***Trimidoc*** ().4.5-selbydrocydengamidostme) has been shown to reduce the activity of chamacleotale reductive with accompanies growth interiors and differentiation of manualism cells. Hydroxys.com (PRI) is the certy referencies title restautant intellister in else, one for the treatment and management of skills cell anomia, since this compd. Increases fetal Hb (Hb F) prodn.: a potent inhibitor of sickle Hb (Hb,SS) polymn. However, the main limitations of HU is its lack of potency, myelosuppression and short half life. These studies investigated the effects of ***trimidox*** on the induction of Hb and F-cells prodn. in K562 erythroleukemia cells. Our study reveals that ***trimidox*** exhilt concn. dependent inhibitory effect on K562 cells with increase in benzidine pos. normoblasts and F-cells prodn. as well as morphol. changes typical of erythroid differentiation. These findings provide the first evidence that the growth inhibitory differentiation of cells induced by
- ***trimidox*** enhance Hb and F-cells prodn. (c) 1998 Academic Press.

 ST ***trimidox*** fetal Hb ribonucleotide reductase; sickle Hb ***trimidox*** ribonucleotide reductase inhibition
- IT Erythrocyte

differentiation, ***trimidox*** -mediated morphol. changes during erythroid differentiation is assocd. with the stimulation of Hb and F-cell prodn. in human K562 cells)

IT Sickle cell anemia

- ***trimidox*** -mediated morphol. changes during erythroid differentiation is assocd, with the stimulation of Hb and F-cell produ. in human K562 cells)
- IT 95933-74-7, ***Trimidox***

RL: ADV (Adverse effect, including toxicity); BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

- ***trimidox*** -mediated morphol. changes during erythroid differentiation is assocd. with the stimulation of Hb and F-cell prodn. in human K562 cells)
- IT 9034-63-3, Hemoglobin F 9040-57-7, Ribonucleotide reductase RL: BPR (Biological process); BIOL (Biological study); PROC (Process)

 (***trimidox*** -mediated morphol. changes during erythroid differentiation is assocd. with the stimulation of Hb and F-cell prodn. in human K562 cells)
- L3 ANSWER 10 OF 23 HCAPLUS COPYRIGHT 2000 ACS
- AN 1998:415518 HCAPLUS
- T1 Interaction of gallium nitrate with other inhibitors of ribonucleotide reductase: effects on the proliferation of human leukemic cells
- AU Myette, Michael S., Elford, Howard L., Chitambar, Christopher R.
- CS Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI. 53226, USA
- SO Cancer Lett. (Shannon, Irel.) (1998), 129(2), 199-204 CODEN: CALEDQ; ISSN: 0304-3835
- PB Elsevier Science Ireland Ltd.
- DT Journal
- LA English
- CC 1-6 (Pharmacology)
- AB Ribonucleotide reductase, a key enzyme in deoxyribonucleotide synthesis, is an important target for cancer chemotherapy. Drugs that inhibit its individual components may act synergistically to block DNA synthesis. Prior work has established that gallium inhibits the R2 subunit of ribonucleotide reductase. We show that gallium acts synergistically with the ribonucleotide reductase inhibitors gemcitabine and hydroxyurea to inhibit the proliferation of CCRF-CEM cells. In contrast, combinations of gallium with the ribonucleotide reductase inhibitors amidox, didox, or ***trimidox*** produced antagonistic effects on cell growth. Spectroscopy anal. revealed that as a result of their metal-binding properties, amidox, didox and ***trimidox*** formed complexes with gallium, thus negating potential synergistic actions. Our results have
- important implications in the design of clin. trials using these ribonucleotide reductase inhibitors in combination. ST ribonucleotide reductase inhibitor gallium leukemia
- IT DNA formation

Leukemia inhibitors

Synergistic drug interactions

(interaction of gallium nitrate with other inhibitors of ribonucleotide reductase and effects on proliferation of human leukemic cells)

IT 127-07-1, Hydroxyurea 13494-90-1, Gallium nitrate 69839-83-4, Didox 95058-81-4, Gemcitabine 95933-72-5, Amidox 95933-74-7, ***Trimidox***

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (interaction of gallium nitrate with other inhibitors of ribonucleotide reductase and effects on proliferation of human leukemic cells)

IT 9040-57-7, Ribonucleotide reductase

- RECEIVED (BEARDING MADE TECHNISHED): RECEIVED (BEARDING MADY) (interaction of galliam attract with other tabletons of reconstitution reduction and effects on proliferation of human heatening cells)
- L3 ANSWER II OF 23 HOAPLUS COPYRIGHT 2009 ACS
- DN: 178-149455
- TI DNA-contraine enjoying of new international conduction inhibitors
- AND REPAIR, PROFIT, RECEMBERS. DEFENS, MERCHANA, EAR, MAGRACAN, KANDERSKE,
- Novetey, Lafeilay, Ellier, Howard L.; Serkores, Thortes CS Department of Experimental Therapy, Cancer Research Institute, Slovak Academy of Sciences, Businisms, SK-8123Z, Shovakin
- SO AMERICA Res. (1997). TRISAN 1497-1440 CODEN: ANTRID4; ISSN: 6250-7009
- PD Autkauser Research
- DT Journal
- CC 1-12 (Pharmacology)
- AB The DNA-protective activity of hydroxyurea (HU) and novel ribonucleotide reductase (RR) inhibitors amidox (AX), didox (DX) and ***trimidox** (TX) was examd, using hydrogen peroxide as the DNA-damaging agent. The exposure of superspiralized plasmid DNA mols. (pBR 322) to H2O2 under precisely defined in vitro conditions initiates a change in DNA topol. (DNA form I relaxes to DNA form II). This electrophoretically monitored change in the plasmid DNA topol. is related to the induction of ss-DNA breaks and corresponds with DNA exposition to free radicals. The inhibition of DNA relaxation (the prevention of DNA damage induced by hydrogen peroxide) depended on the free radical scavenging capacity of the drugs investigated. HU exerted DNA protective activity at a concn. of 4 mM, AX at concn. of 1 .mu.M, TX at a concn. of 5 .mu.M and DX at a concn of 25 .mu.M (the free radical scavenging activity increases from HU to AX in following manner: HU .mchlt. $DX \le TX \le AX$). It can be concluded that the new synthetic RR-inhibitor AX which is being investigated at the preclin. level as a potential anti-cancer drug possess the highest capacity for scavenging of free radicals.
- ST DNA protection ribonucleotide reductase inhibitor; radical scavenging ribonucleotide reductase inhibitor DNA
- IT DNA damage

Radical scavengers

(DNA-protective activity of new ribonucleotide reductase inhibitors and hydroxyurea in relation to radical scavenging capacity)

IT 7722-84-1, Hydrogen peroxide, biological studies

RL: ADV (Adverse effect, including toxicity); BPR (Biological process); BIOL (Biological study); PROC (Process)

(DNA-protective activity of new ribonucleotide reductase inhibitors and

(DNA-protective activity of new noonucleotide reductase innoviors hydroxyurea in relation to radical scavenging capacity)

17 127-07-1, Hydroxyurea 69839-83-4, Didox 95933-72-5, Amidox RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(DNA-protective activity of new ribonucleotide reductase inhibitors and hydroxyurea in relation to radical scavenging capacity)

IT 9040-57-7, Ribonucleotide reductase

RL: BSU (Biological study, unclassified); BIOL (Biological study) (inhibitors; DNA-protective activity of new ribonucleotide reductase inhibitors and hydroxyurea in relation to radical scavenging capacity)

- L3 ANSWER 12 OF 23 HCAPLUS COPYRIGHT 2000 ACS
- AN 1998:26676 HCAPLUS
- DN 128:136198
- TI Enhanced effects of adriamycin by combination with a new ribonucleotide reductase inhibitor, ***trimidox***, in murine leukemia
- AU Novotny, L.; Romanova, D.; Gobl, R.; Sedlak, J.; Vachalkova, A.; Rauko, P.: Fritzer-Szekeres, M.: Elford, H. L.: Szekeres, T.
- CS Cancer Research Inst., SAS, Bratislava, SK-812 32, Slovakia
- SO Haematol. Blood Transfus. (1998), 39(Acute Leukemias VII), 556-561 CODEN: HBTRDV; ISSN: 0171-7111
- PB Springer-Verlag
- DT Journal LA English
- CC 1-6 (Pharmacology)
- AB Ribonucleotide reductase is the rate limiting enzyme of de novo DNA synthesis; its activity is significantly increased in tumor cells related to the proliferation rate of the tumor cell. Therefore the enzyme is considered to be an excellent target for cancer chemotherapy. In the present study we tested the in vitro and in vivo antitumor effects of a drug combination using ***trimidox*** (3,4,5trihydroxybenzohydroxamidoxime), a novel inhibitor of ribonucleotide reductase with adriamycin, a widely used anticancer drug. This combination was selected because adriamycin generates free radicals, which are responsible for cardiotoxic side effects of adriamycin treatment, and because ***trimidox*** has been shown to be a good free radical scavenger. The in vitro cytotoxic effect of the drug combination was examd. in L 1210 mouse leukemia cells employing an MTT chemo-sensitivity assay. Simultaneous in vitro incubation of these cells yielded antagonistic cytotoxic effects compared to either drug alone. These effects were not caused by the involvement of p-glycoprotein mediated drug efflux. However, when the effect of ***trimidox*** and adriamycin in combination was examd. in L 1210 leukemia bearing mice, antitumor effects of adriamycin could be enhanced by the presence of ***trimidox***. Animals were treated on day two after tumor cell injection with 5 mg/kg

NNS increase in Bib spen, resp. However, ariends, which were wested with buth drugs, showed a 65% increase of their life spen. Our data inchase, that he visto resides of drug constensions abould be lunergreeed with extreme continuous and auggest that the in vivo combination of atmempts together with ****trinidan*** reight be beneficial for the

ST adminische frakenta ***trinddes*** Piglycoprotein

IT Uma interaction

Leadersto reflicers

distribution in the heart effects entire transity of construction of seduciase irlibitor ***trireidas.***)

II P-gragantare

- RL: BSU (Biological study, unclassified); BMN. (Diological study) (adriamycin antileukemic effects enhancement by ribonucleotide reductase inhibitor ***trimidox***)

 1T 25316-40-9, Adriamycin 95933-74-7, ***Trimidox***
- RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (adriamycin antileukemic effects enhancement by ribonucleotide reductase inhibitor ***trimidox***)
- L3 ANSWER 13 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1997:795554 HCAPLUS

DN 128:123476

- T1 Effective use of ribonucleotide reductase inhibitors (didox and ***trimidox***) alone or in combination with didanosine (ddl) to suppress disease progression and increase survival in murine acquired immunodeficiency syndrome (MAIDS)
- AU Mayhew, Christopher; Oakley, Oliver; Piper, James; Hughes, Nedda K.; Phillips, Jonathan; Birch, Nicholas J.; Elford, Howard L.; Gallicchio, Vincent S.
- CS Laboratory of Experimental Immunohematopoiesis and Developmental Therapeutics, Departments of Clinical Sciences and Internal Medicine Chandler Medical Center, University of Kentucky, Lexington, KY, 40536, USA SO Cell. Mol. Biol. (Paris) (1997), 43(7), 1019-1029 CODEN: CMOBEF; ISSN: 0145-5680

PB C.M.B. Association

- DT Journal
- LA English
- CC 1-5 (Pharmacology)

AB Ribonucleotide reductase inhibitors (RRIs) have been recently shown to inhibit retroviral replication. We examd, a new series of RRIs, 3.4-dihydroxybenzohydroxamic acid (Didox) and 3.4.5-trihydroxybenzohydroxamidoxime (***Trimidox***) for their ability to thiyaroxyoenzonydioxandoxine ('Hinidox') for the ability alter disease progression in murine acquired immunodeficiency syndrome (MAIDS), both alone and in combination with 2',3'-dideoxyinosine (ddl). MAIDS disease was induced by inoculation of female C57BL/6 mice with the LP-BM5 murine leukemia virus (MuLV) and disease progression characterized by extensive peripheral lymphadenopathy and splenomegaly. Efficacy of treatment with these drugs was based upon their ability to influence survival and disease pathophysiol, by monitoring the development of splenomegaly. Toxicity was detd. by changes in body wt., total peripheral white blood cell count and hematocrit. Didox or ***trimidox*** monotherapy was assocd. with increased survival and decreased disease pathophysiol., with no apparent toxicity. Combined with ddl, their ability to reduce development of viral induced splenomegaly was enhanced compared to ***trimidox***, didox or ddl alone. These results demonstrate RRIs have potent activity in reversing the disease manifestations characteristic of MAIDS. Further studies are warranted to det. human clin, efficacy.

ST ribonucleotide reductase inhibitor didanosine murine AIDS; antiviral didox

trimidox didanosine AIDS HIVI

1T AIDS (disease)

Antiviral agents

Drug interactions

Human immunodeficiency virus 1

(ribonucleotide reductase inhibitors (didox and ***trimidox***) alone or in combination with didanosine: suppression of MAIDS)

IT 9040-57-7, Ribonucleotide reductase

RL: BSU (Biological study, unclassified); BIOL (Biological study) (inhibitors; ribonucleotide reductase inhibitors (didox and **trimidox***) alone or in combination with didanosine: suppression of MAIDS)

IT 69655-05-6, Didanosine 69839-83-4, Didox 95933-74-7, ***Trimidox*** RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(ribonucleotide reductase inhibitors (didox and ***trimidox***) alone or in combination with didanosine: suppression of MAIDS)

- L3 ANSWER 14 OF 23 HCAPLUS COPYRIGHT 2000 ACS
- AN 1997:567538 HCAPLUS
- DN 127:243220
- Ti Selective inhibition of I.kappa.B.alpha. phosphorylation and HIV-1 LTR-directed gene expression by novel antioxidant compounds
- AU Lee, Raymond; Beauparlant, Pierre; Elford, Howard; Ponka, Premysl; Hiscott, John
- CS Lady Davis Institute for Medical Research, McGill University, Montreal, PO. H3T 1E2, Can.

SO Minlegy (1997), 134(2), 137-290 CODEN: VIRLAN, ISSN 6642-6622

Apademic DT Journal

LA English

CC 1-12 (Pharmicology)

AB Outlates gress extraces the NF-Jupps B-Rel transcription fictions which are inversed in the activation of runnerous incommercialistics genes and the harest instanted efficiency visus type 1 (HEV-1) long terminal report (LTR). In the present study, we count. the effects of established and sevel comple including enfortering observations reductes with himse and tron chelators on NF. Lappas B activation and HEV LTR-mediated gene expression induced by TNF- tiptas. N-Acetykyweine (NAC), pyrrolidinatifiainaribaruste (PDTC), and ***Trinadox*** (TD) at virinasis conces, inhibited TINF-, alpha, induced NF-, kappa, B bindley in Arrive cells. Pretreatment of cells with these compds, prior to stimulation prevented I.kappa.B.alpha. degrdn. Phosphorylation of I.kappa.B.alpha., a prerequisite for its signal-induced degrdn., was abrogated in these cells, indicating that oxidative stress is an essential step in the NF-.kappa.B activation pathway. On the other hand, iron chelators desferrioxamine, pyridoxal isonicotinoyl hydrazone (PIH), and salicylaldehyde isonicotinoyl hydrazone (SIH) showed no inhibition of TNF-.alpha.-induced NF-.kappa.B DNA-binding activity. Synergistic induction of HIV-1 LTR-mediated gene expression by TNF-.alpha. and the HIV-1 transactivator Tat in Jurkat cells was significantly suppressed in the presence of NAC and TD, but not PDTC. The inhibition of NAC and TD on LTR-directed gene expression was diminished when NF-.kappa.B-binding sites in the LTR were deleted, indicating that these compds. affected the NF- kappa B component of the synergism. Iron chelators PIH and SIH also showed some inhibitory effect on LTR-mediated gene activation, presumably through an NF-.kappa.B-independent mechanism. These expts. demonstrate that TD, at concn. 50 times lower than the effective concn. of NAC, potently inhibits NF-.kappa.B activity and suppresses HIV LTR expression

> Owa: 4th

ST antioxidant NFkB HIV1 gene IT Antioxidants (pharmaceutical) Human immunodeficiency virus 1

(inhibition of I.kappa.B.alpha. phosphorylation and HIV-1 LTR-directed gene expression by antioxidants)

IT Tumor necrosis factor alpha.

RL: BAC (Biological activity or effector, except adverse); BIOL

(inhibition of I.kappa.B.alpha. phosphorylation and HIV-1 LTR-directed gene expression by antioxidants)
IT LTR (long terminal repeat)

RL: BPR (Biological process), BIOL (Biological study), PROC (Process) (inhibition of I.kappa.B. alpha. phosphorylation and HIV-1 LTR-directed gene expression by antioxidants)

IT NF- kappa B

RL: BPR (Biological process); BIOL (Biological study); PROC (Process) (inhibition of I.kappa.B.alpha. phosphorylation and HIV-1 LTR-directed gene expression by antioxidants)

Chelating agents

(iron; inhibition of I.kappa.B.alpha. phosphorylation and HIV-I LTR-directed gene expression by antioxidants)
IT 70-51-9, Desferrioxamine 495-84-1, Salicylaldehyde isonicotinoyl

hydrazone 616-91-1, N-Acetylcysteine 737-86-0, Pyridoxal isonicotinoyl hydrazone 25769-03-3, 1-Pyrrolidinecarbodithioic acid 69839-83-4, Didox 95933-72-5, Amidox 95933-74-7, ***Trimidox*** RL: BAC (Biological activity or effector, except adverse); BIOL

(inhibition of I.kappa.B.alpha. phosphorylation and HIV-1 LTR-directed gene expression by antioxidants)

L3 ANSWER 15 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1997:529356 HCAPLUS

DN 127:130355

- T1 The effect of new combinations of antimetabolites and ***trimidox*** on cancer cells AU Romanova, D.; Raslova, H.; Plaschke, K.; Novotny, L.; Fritzer, M.
- CS Ustav experimentalnej onkologie, Bratislava, 812 32, Slovakia

SO Farm. Obz. (1995), 64(7-8), 180-187 CODEN: FAOBAS; ISSN: 0014-8172

PB Zdravotnicke Vydavatelstvo HERBA

DT Journal; General Review

1-0 (Pharmacology)

- AB A review with 22 refs. The effects of ***trimidox***, a new inhibitor of ribonucleotide reductase, used in combination with antimetabolites arabinosylcytosine (ara-C) and gemcitabine (difluorodideoxycytidine) used in anticancer chemotherapy were studied in vitro cultures of human colon cancer HT-29 cells. The effects ***trimidox*** were compared with the effects of thiazofurine combined with hypoxanthine or allopurinol. The cytostatic effects were also evaluated in human leukemic cells HL-60. The levels of ribonucleoside and deoxyribonucleoside triphosphates and cell cycle responses were detd. The mechanisms of ***trimidox*** action. biochem, pathways, anticancer activity, synergism, and cytotoxicity are
- discussed.

 ST review ***trimidox*** antitumor combination araC gemcytabine IT Antitumor agents

Drug interactions

用动的翻 HT-EV cell

deniment office of ****trinidos*** in continuos of entiretabolites in career cells)

II 63-94-0, Hyperarables 127-07-1, Hydrosysten 141-94-4, Arma 313-DD-1, Allegarical 60034-80-8, Transferin 67839-83-4, Distor 95059-36-4, Generalism 95933-74-7, ****Ertensferi*** RL: HAC (Brokepind artisty or effector, except adverse); THU (Therapeuts uset, BICL (Biological study); USES (Uses)
(astitutes effect of ***tristion*** in continuous of artimendadies in carcer cells)

LI ANSWER 16 OF 23 INCAPIAIS COPYRIGHT 2000 ACS

AN 1997-1998 IB HUAPLUS

- TI Genotoxic properties of the newly synthesized antineoplastic agents amidox, didox, and ***trimidox***

 AU Miadokova, E.; Macakova, K.; Podstavkova, S.; Vlcek, D.
- CS Department Genetics, Faculty Sciences, Bratislava, 84215, Slovakia
- SO Pharmazie (1997), 52(7), 540-544 CODEN: PHARAT; ISSN: 0031-7144
- PB Govi-Verlag Pharmazeutischer Verlag
- LA English
- CC 1-6 (Pharmacology)

Section cross-reference(s): 4

AB Toxic and genotoxic effects of 3 polyhydroxy-substituted benzohydroxamates (amidox, didox, and ***trimidox***), having antineoplastic activities by the mechanism of the ribonucleotide reductase activity inhibition, were evaluated by reverse mutation assay on Salmonella typhimurium strains TA97, TA98, TA100, TA102. While amidox did not exert any toxic effect, didox, and ***trimidox*** were toxic. The toxicity of the test chems. was dependent on the structure of their mol. and the repair capacity of the test strains. ***Trimidox*** exhibited the highest toxicity, and it was proved as a direct-acting frameshift mutagen. Its mutagenic effect was increased after a metabolic activation. Amidox and didox can be classified as frameshift promutagens.

ST antineoplastic agent amidox didox ***trimidox*** genotoxicity

IT Frameshift mutation

(genotoxicity of antineoplastic agent ***trimidox*** caused by)

IT Antitumor agents

(genotoxicity of antineoplastic agents amidox, didox, and ***trimidox***)

IT Genotoxicity

(of antineoplastic agents amidox, didox, and ***trimidox***)

IT 69839-83-4, Didox 95933-72-5, Amidox 95933-74-7, ***Trimidox***
RL: ADV (Adverse effect, including toxicity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(genotoxicity of antineoplastic agents)

IT 9047-64-7

RL: BPR (Biological process); BIOL (Biological study); PROC (Process) (genotoxicity of antineoplastic agents amidox, didox, and
trimidox caused by inhibition of)

- L3 ANSWER 17 OF 23 HCAPLUS COPYRIGHT 2000 ACS
- AN 1997:327317 HCAPLUS
- DN 127:39615
- T1 The new inhibitors of ribonucleotide reductase. Comparison of some physicochemical properties
- AU Romanova, Darina; Vachalkova, Anna; Szekeres, Thomas; Elford, Howard L.; Novotny, Ladislav
- CS Cancer Res. Inst. Slovak Academy Sci., Bratislava, SK-81232, Slovakia SO J. Pharm. Biomed. Anal. (1997), 15(7), 951-956
- CODEN: JPBADA; ISSN: 0731-7085
- PB Elsevier
- DT Journal
- LA English CC 63-5 (Pharmaceuticals)

Section cross-reference(s): 22

AB Amidox (AX), didox (DX) and ***trimidox*** (TX), compds. synthesized as new ribonucleotide reductase inhibitors, have been investigated by UV spectrophotometry, polarog. HPLC. The expts. were performed at various pH values. The changes in UV absorption of the compds. studied were recorded and it was demonstrated that these changes are related to the pH and to structural features of the investigated mols. Only amidox and

trimidox were reduced during polarog, expts. in Britton-Robinson buffer. The redn. of both compds. proceeded in 2 1-electron steps in acid solns. One 2-electron diffuse irreversible wave was obsd. at basic pH values. The values of the half-wave potential became more neg. with increasing pH values. HPLC assay also showed changes in the retention of compds. investigated, particularly when the pH of the mobile phase was close to the dissoon, const. of the particular drug. The changes of physicochem, properties detected by the methods are related to different

chem. structures (the most significant changes were obsd. in alk. pH).

ST ribonucleotide reductase inhibitor physicochem property; polarog ribonucleotide reductase inhibitor; UV spectrometry ribonucleotide reductase inhibitor

IT Electrochemical reduction UV and visible spectroscopy

(physicochem peopernies of ribossubscribs refecues (tibibbon) IT (2010-57-T, Riberankeride reduction

RL: BSU (Birlegical study, exclassifical; BIOL (Biologica) study) (physicochem properties of ribusculoctido reductios inhibitars)

#0000-13-4 Dides 95935-72-5, Amides 95935-74-7, ****Trinides***
RL: PRP (Proportion); THU (Thompsentic me); BHOL (Biological analy); USES

en proportios de ribaresclocidos realectivo infribitore)

L3 ANSWER IT OF 23 HEAPLUS COMPRISHT 2000 ACS

AN 1995-1007345 HCAPLAIS

ON TEACHNESS

II. Iron binding capacity of ***Intelacoc*** Q.4.5tribule as become identical. a new inhibitor of the courses observables

AU Szekeres, Thomas; Vielnascher, Elisabeth; Novotny, Ladislav; Vachalkova, Anna; Fritzer, Monika; Findenig, Gabriele; Goebl, Rainer; Elford, Howard L., Goldenberg, Hans

CS Inst. Medizinsche Chemie, Univ. Wien, Vienna, Austria

SO Eur. J. Clin. Chem. Clin. Biochem. (1995), 33(11), 785-9 CODEN: EJCBEO; ISSN: 0939-4974

DT Journal

LA English

CC 1-6 (Pharmacology)

AB Ribonucleotide reductase is the rate limiting enzyme of deoxynucleo triphosphate synthesis and is considered to be an excellent target of cancer chemotherapy. ***Trimidox***, a newly synthesized compd., inhibits this enzyme and has in vitro and in vivo antitumor activity. As ***trimidox*** was able to upregulate the expression of the transferrin receptor in HL-60 human promyelocytic leukemia cells, the authors have now investigated the capability of ***trimidox*** to interfere with iron metab. The authors show by photometric and polarog, methods that ***trimidox*** is able to form an iron complex. However, its cytotoxic action cannot be circumvented by addn. of iron-satd. transferrin or iron-ammonium citrate, indicating that the iron complexing capacity is not responsible for the mechanism of action of this compd. When HL-60, K562 or L1210 leukemia cells were incubated with the ***trimidox*** -iron complex itself, the authors could observe increases of the 50% growth

inhibitory capacity of the complex in comparison with ***trimidox*** alone. The authors conclude that ***trimidox*** is able to form an iron complex, but in contrast to other agents, the anticancer activity cannot be contributed to this effect alone. Further studies will have to elucidate the mol. mechanism of action of this new and promising anticancer agent.

ST iron ***trimidox*** complex ribonucleotide reductase antitumor

IT Neoplasm inhibitors

(iron binding capacity of ***trimidox*** (3,4,5trihydroxybenzamidoxime), a new inhibitor of the enzyme ribonucleotide

IT 9068-66-0, Ribonucleotide reductase

RL: BPR (Biological process); BIOL (Biological study); PROC (Process) (inhibitor, iron binding capacity of ***trimidox** (3,4,5-trihydroxybenzamidoxime), a new inhibitor of the enzyme

ribonucleotide reductase)

IT 1185-57-5D, Ferric ammonium citrate, ***trimidox*** RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)

iron binding capacity of ***trimidox*** (3,4,5-trihydroxybenzamidoxime), a new inhibitor of the enzyme ribonucleotide

IT 95933-74-7, ***Trimidox***

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (iron binding capacity of ***trimidox*** (3,4,5trihydroxybenzamidoxime), a new inhibitor of the enzyme ribonucleotide reductase)

IT 7439-89-6, Iron, biological studies

RL: BPR (Biological process); BIOL (Biological study); PROC (Process) (iron binding capacity of ***trimidox*** (3,4,5trihydroxybenzamidoxime), a new inhibitor of the enzyme ribonucleotide

L3 ANSWER 19 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1995:982076 HCAPLUS

TI Ribonucleotide reductase as target for enzyme-directed chemotherapy.

Effects of ***trimidox*** (3,4,5-trihydroxybenzohydroxamidoxime), a
new inhibitor of ribonucleotide reductase

AU Findenig, G.; Vielnascher, E.; Goebl, R.; Fritzer-Szekeres, M.; Szekeres,

CS Inst. Med. Chem., Univ. Wien, Vienna, A-1090, Austria SO Wien. Klin. Wochenschr. (1995), 107(22), 694-7 CODEN: WKWOAO; ISSN: 0043-5325

DT Journal; General Review

LA German CC 1-0 (Pharmacology)

Section cross-reference(s): 7

AB A review with 28 refs. describing the biochem., morphol., and cytotoxic effects of ***trimidox*** and other polyhydroxy-substituted

benzohydroxamate derivs. on leukemia cell lines. Selection criteria,

effects, and combinations used to enzyme-rangesed chemotherapy are described for those element british reflect the inhabiters

51 Trices bestelptivasside cancer chroniberary. ***Irlandon*** blocken cytomete effect leaders in review, observatentials reduction inhibition **Irintero*** orden

11 Neuglium infribitioni

(chomodecable reduction to larger for emprise-directed characterrapy)

11 VIF13-74-7, ****Testalox***

RL: BAC (Fictogical activity or effector, except adverse). THU (Therapeutic me), BICL (Biological study), USES (Uses) tribusacioniste refectane es targas for empres-árectos chemorbarapy)

11 9147-Pd-7 Hibaron dectale reduction

RL: BSU (Biological study, understied): BHOL (Biological study) (rleanedestale reduction as tieges for encytes-directed characterismics)

L3 ANSWER 20 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1995:270272 HCAPLUS

TI Synergistic growth inhibitory and differentiating effects of

trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells

AU Szekeres, Thomas; Fritzer, Monika; Strobl, Herbert; Gharehbaghi, Kamran; Findenig, Gabriele; Elford, Howard L.; Lhotka, Christian; Schoen, Hans J.; Jayaram, Hiremagalur N.

CS Inst. Med. Chem., Univ. Vienna Med. Sch., Vienna, Austria

SO Blood (1994), 84(12), 4316-21 CODEN; BLOOAW; ISSN: 0006-4971

DT Journal

LA English

CC 1-6 (Pharmacology)

AB Increased ribonucleotide reductase (RR) activity has been linked with malignant transformation and tumor cell growth. Therefore, this enzyme is considered to be an excellent target for cancer chemotherapy. The authors have examd, the effects of a newly patented RR inhibitor, ***trimidox*** (3.4,5-trihydroxybenzohydroxamidoxime). ***Trimidox*** inhibited the growth of human promyelocytic leukemia HL-60 cells with an IC50 of 35 .mu.mol/L. Incubation of HL-60 cells with 50 .mu.mol/L ***trimidox**** for 24 h decreased deoxyguanosine triphosphate (dGTP) and deoxycytidine triphosphate (dCTP) pools to 24% and 39% of control values, resp. Incubation of HL-60 cells with 20 to 80 .mu.mol/L ***trimidox*** even up to a period of 4 days did not alter the distribution of cells in different phases of cell cycle. Sequential incubation of HL-60 cells with

trimidox* (25 .mu.mol/L) for 24 h and then with 10 .mu.mol/L

tiazofurin (an inhibitor of inosine monophosphate dehydrogenase) for 4 days produced synergistic growth inhibitory activity, and the cell no. decreased to 16% of untreated controls. When differentiation-linked cell surface marker expressions were detd. in cells treated with

trimidox and tiazofurin, a significantly increased fluorescent

intensity was obsd. for the CD 11b (2.9-fold), CD 33 (1.9-fold), and HLA-D cell surface antigens. Expression of the transferrin receptor (CD71) increased 7.3-fold in cells treated with both agents, compared with untreated controls. The results suggest that ***trimidox*** in combination with tiazofurin might be useful in the treatment of leukemia.

ST promyelocytic leukemia inhibitor ***trimidox*** tiazofurin synergism

IT Transferrin receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (synergistic growth inhibitory and differentiating effects of

trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells)

IT Neoplasm inhibitors

(promyelocytic leukemia, synergistic growth inhibitory and differentiating effects of ***trimidox*** and tiazofurin in human promyelocytic leukemia HL-60 cells)

IT Drug interactions

(synergistic, synergistic growth inhibitory and differentiating effects of ***trimidox*** and tiazofurin in human promyelocytic leukemia HL-60 cells)

IT Receptors

RL: BSU (Biological study, unclassified); BIOL (Biological study) (transferrin, synergistic growth inhibitory and differentiating effects of ***trimidox*** and tiazofurin in human promyelocytic leukemia HL-60 cells)

IT 60084-10-8, Tiazofurin 95933-74-7, ***Trimidox*** RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (synergistic growth inhibitory and differentiating effects of

trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells)

IT 9040-57-7, Ribonucleotide reductase

RL: BSU (Biological study, unclassified); BIOL (Biological study) (synergistic growth inhibitory and differentiating effects of

trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells)

L3 ANSWER 21 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1995:79317 HCAPLUS

DN 123:102138

TI Synergistic cytotoxic effects of chemotherapeutic drugs on colon tumor cells by simultaneous inhibition of de novo and salvage metabolic pathways AU Szekeres, T., Fritzer, M., Schoen, H. J., Findenig, G., Lhotka, C. CS LEST, Med. Chem., Univ. When, Vienna, A-1090, Austria. Warn Klim. Wortherniche. (1994), 106(14), 459-63 CODEN: WKWOAO, ISSN: 0043-5325

DT James I.A. German

AB The option de effect (CE) of various drug continuities was exclused with the human horar cell line HT-29. ***Trimidea*** was continued with Ana-C or 7.2-differen-dropycythine (DFEC). Pyrentistic CEs were obed. Cofferny sen, decrement to 78-73% of the cubel, addition cyletrosicity by sequential occations with ***trinsiden*** and OrDC. The combination of transfernit with ***trinsiden*** and DrDC. The combination of transfernit with allogated led to intelligen of hypocentime-quarter phosphorizons transferance and apparaistic CE. Thus, entery new decreased to 60 and 27% of the crice, additive extendelly.

cancer chemotherapy colon tumor cell

IT Drug interactions

(synergistic cytotoxic effects of chemotherapeutic drugs on colon tumor cells)

IT Neoplasm inhibitors

(colon, synergistic cytotoxic effects of chemotherapeutic drugs on colon tumor cells)

Intestine, neoplasm

(colon, inhibitors, synergistic cytotoxic effects of chemotherapeutic

drugs on colon tumor cells)

1T 9016-12-0, Hypoxanthine-guanine phosphoribosyl transferase
RL: BSU (Biological study, unclassified); BIOL (Biological study) (in synergistic cytotoxic effects of chemotherapeutic drugs on colon tumor cells)

IT 68-94-0, Hypoxanthine 147-94-4, Ara-C 315-30-0, Allopurinol 60084-10-8, Tiazofurin 95933-74-7, ***Trimidox*** 103882 103882-84-4, 2',2'-Difluorodeoxycytidine

RL: BAC (Biological activity or effector, except adverse); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (synergistic cytotoxic effects of chemotherapeutic drugs on colon tumor

L3 ANSWER 22 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1994:569910 HCAPLUS

DN 121:169910

TI Biochemical and antitumor activity of ***trimidox***, a new inhibitor of ribonucleotide reductase

AU Szekeres, Thomas; Gharehbaghi, Kamran; Fritzer, Monika; Woody, Michael; Srivastava, Arun; van't Riet, Bart; Jayaram, Hiremagalur N.; Elford, Howard L

CS Inst. Med. Chem., Univ. Vienna, Austria

SO Cancer Chemother. Pharmacol. (1994), 34(1), 63-6 CODEN: CCPHDZ; ISSN: 0344-5704

DT Journal

CC 1-6 (Pharmacology)
AB ***Trimidox*** (3.4,5-trihydroxybenzamidoxime), a newly synthesized

analog of didox (N,3,4-trihydroxybenzamide) reduced the activity of ribonucleotide reductase (EC 1.17.4.1) in exts. of L1210 cells with an IC50 of 5 .mu.M, whereas hydroxyurea, the only ribonucleotide reductase inhibitor in clin. use, exhibited an IC50 of 500 .mu.M. Ribonucleotide reductase activity was also measured in situ by incubating L1210 cells for 24 h with ***trimidox*** at 7.5 .mu.M (a concn. that inhibited cell proliferation by 50%) or at 100 .mu.M for 2 h; these concns. resulted in a decrease in enzyme activity to 22% and 50%, resp., of the control value.

Trimidox and hydroxyurea were cytotoxic to L1210 cells, with IC50 values of 7.5 and 50 .mu.M, resp. Vs. ribonucleotide reductas ***trimidox*** and hydroxyurea had IC50 values of 12 and 87 .mu.M, resp.
Trimidox concn.-dependently increased the life span of mice bearing L1210 leukemia. The antitumor activity appeared more pronounced in female mice than in male mice. These findings suggest that

trimidox is a new and potent inhibitor of ribonucleotide reductase and that it is a promising candidate for the chemotherapy of cancer in humans.

trimidox antitumor ribonucleotide reductase

IT Neoplasm inhibitors

(***trimidox*** as, ribonucleotide reductase inhibition in relation

IT 127-07-1, Hydroxyurea 69839-83-4, Didox 95933-74-7, ***Trimidox*** (ribonucleotide reductase- and neoplasm-inhibiting activities of)

(***trimidox*** inhibition of, neoplasm inhibition in relation to)

L3 ANSWER 23 OF 23 HCAPLUS COPYRIGHT 2000 ACS

AN 1993:182829 HCAPLUS

T1 Prevention of activation of HIV-I by antiviral agents in OM-10.1 cells

AU Feorino, P. M.; Butera, S. T.; Folks, T. M.; Schinazi, R. F. CS Sch. Med., Emory Univ., Atlanta, GA, 30322, USA SO Antiviral Chem. Chemother. (1993), 4(1), 55-63

CODEN: ACCHEH; ISSN: 0956-3202

DT Journal

LA English

1-5 (Pharmacology)

AB The development of a reliable and simple system for evaluating compds.

that could prevent activation of latent HIV would allow us to devise new therapeutic approaches. These compds. could eventually be used in combination with drugs that are effective against acute and chronic infections. The OM-10.1 cell line is a chronically infected clone which remains CD4+ until HIV-1 activation with tumor necrosis factor-.alpha. A variety of compds. are known to have antiviral properties against either acutely or chronically infected cells were evaluated for their ability to inhibit HIV induced expression in these cells. The authors also examd. the effect of several compds. that interact with biochem, pathways that may interfere with or enhance the reactivation process. These included nucleoside analogs, cytokines, steroidal and non-steroidal anti-inflammatory agents, polyoxometalates, a TAT inhibitor, various natural products (including nerve growth factor, N-acetyl-L-cysteine, taxol, and interferons), TIBO, porphyrins, and various oligomers. CD4 cellular expression and supernatant reverse transcriptase activity were quantitated as markers of induced viral expression. Among several compds. evaluated, 3'-fluoro-3'-deoxythymidine (FLT), interferon .gamma., Ro 5-3335 (a TAT inhibitor) and desferrioxamine were modest and selective inhibitors of HIV-1 activation.

ST antiviral HIV1 activation inhibition; immunodeficiency virus activation antiviral

IT Virucides and Virustats

Interferons (HIV-I activation prevention by)

Virus, animal

(human immunodeficiency 1, activation of, antiviral agents in

prevention of)
[T 50-24-8, Prednisolone 50-78-2, Aspirin 53-43-0, Dehydroepiandrosterone 53-86-1, Indomethacin 61-68-7, Mefenamic acid 70-51-9, Desferrioxamine 127-07-1, Hydroxyurea 616-91-1, N-Acetyl-L-cysteine 651-48-9 3056-17-5, 2',3'-Didehydro-3'-deoxythymidine 4428-95-9 7481-89-2, 2',3'-Dideoxycytidine 9061-61-4, Nerve growth factor 15687-27-1, lbuprofen 25526-93-6, 3'-Fluoro-3'-deoxythymidine 25609-92-1 25609-92-1D, thiolated 28507-02-0 28802-05-3 30195-30-3, Ro 5-3335 3369-31-2, Zomepirac 35218-75-8 35711-34-3, Tolectin 36322-90-4, Piroxicam 38194-50-2, Sulindac 41107-56-6, 3'-Fluoro-2',3'dideoxyuridine 51246-79-8, 3'-Fluoro-2',3'-dideoxycytidine 69655-05-6, 2',3'-Dideoxyinosine 69839-83-4, Didox 81777-50-6 84472-85-5, CS-87 87190-79-2, CS-92 89899-81-0, HPA-23 92739-63-4 95933-74-7, ***Trimidox*** 115249-95-1, 3'-Fluoro-2',3'-dideoxy-5-methylcytidine 120947-28-6, GLQ 223 123027-56-5 126320-77-2, R-82150 132885-30-4 136632-04-7 136632-06-9 136632-07-0 136891-12-8, BCH 189 142168-25-0 142168-26-1 143491-54-7 143823-92-1, JM 2820 (HIV-1 activation prevention by)

=> logoff

ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF LOGOFF? (Y)/N/HOLD:y

COST IN U.S. DOLLARS

SINCE FILE TOTAL

ENTRY SESSION

FULL ESTIMATED COST

57.39

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL

ENTRY SESSION

CA SUBSCRIBER PRICE

-12.80

STN INTERNATIONAL LOGOFF AT 13:49:04 ON 31 MAY 2000