Option C: Matrix as an element type

- We fix a λ and define a new "vector element type" a $\lambda \times \lambda$ matrix of words (e.g., $\lambda = 2$)
- A vector register of length L holds L/λ^2 of these matrices (e.g., $L=16, L/\lambda^2=4$)
- "Some" number of registers hold an $8\lambda \times \lambda$ panel of A ($8\lambda \times \lambda$ matrices)
- 2 registers hold a $\lambda \times {}^{2L}/_{\lambda}$ panel of B (${}^{2L}/_{\lambda^2}$ $\lambda \times \lambda$ matrices)
- 16 registers hold an $8\lambda \times {}^{2L}/_{\lambda}$ panel of C (16L words)
- We compute $C_{8\lambda \times^{2L}/\lambda} \leftarrow A_{8\lambda \times \lambda} \times B_{\lambda \times^{2L}/\lambda} + C_{8\lambda \times^{2L}/\lambda}$
- Total of $16L\lambda$ multiply-adds
- Minimum time = $\lambda\Delta$ cycles
- Maximum computation rate $R = \frac{16L}{\Delta} = 4L$ madds/cycle
- This is the upper bound with 16 registers for C
- Total of $2L + 8\lambda^2$ words loaded $(2L + 8\lambda^2)_{\lambda\Lambda}$ words/cycle)
- $\eta = \frac{16L\lambda}{2L+8\lambda^2} = \left[\frac{8\lambda}{5}, 8\lambda\right)$ madds/word
- This works $\forall L \geq \lambda^2$ words
- Single- and double-precision are compatible $\forall L \geq 2\lambda^2$ words

Option C: Compute instructions

+

- A vector of matrix multiplies
 - $C_{\lambda \times \lambda} \leftarrow \pm A_{\lambda \times \lambda} \times B_{\lambda \times \lambda} \pm C_{\lambda \times \lambda} \ (^{L}/_{\lambda^{2}} \text{ times})$
 - Computations: λL madds/instruction
 - Latency: $\lambda\Delta$
 - Must dispatch/issue $^4/_{\lambda}$ computational instructions/operations every cycle to achieve maximum computation rate (4L madds/cycle)

Option C: Software impact

- For Option C to work, both A and B must be packed into $\lambda \times \lambda$ blocks A in column-major, B in row-major
- Both the compute and packing kernels must be modified to support matrix operations
- C panel must also be reformatted for load/store