Симетрични оператори.

Нека $A \in \mathbb{R}_{n \times n}$ е квадратна матрица с реални елементи. Ще казваме, че матрицата A е *симетрична*, ако $A^t = A$. Малко по-подробно, ако $A = (\alpha_{ij})_{n \times n}$, то $\alpha_{ij} = \alpha_{ji}$ за всеки $ij = 1, 2, \ldots, n$.

Твърдение 1. Ако A е реална симетрична матрица, то всички характеристични корени на A са реални числа.

Доказателство. Нека λ е характеристичен корен на матрицата $A = (\alpha_{ij})_{n \times n}$ (в най-общия случай $\lambda \in \mathbb{C}$). Разглеждаме хомогенната система

(*)
$$\begin{vmatrix} (\alpha_{11} - \lambda)x_1 + & \alpha_{12}x_2 + \dots + & \alpha_{1n}x_n & = 0, \\ \alpha_{11}x_1 + & (\alpha_{12} - \lambda)x_2 + \dots + & \alpha_{1n}x_n & = 0, \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & &$$

Детерминантата на (*) е

$$\begin{vmatrix} \alpha_{11} - \lambda & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} - \lambda & \dots & \alpha_{2n} \\ \dots & \dots & \ddots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} - \lambda \end{vmatrix} = f_A(\lambda) = 0$$

и следователно системата (*) има ненулево решение

$$(\xi_1, \xi_2, \dots, \xi_n) \neq (0, 0, \dots, 0).$$

В такъв случай са изпълнени равенствата

за числата $\xi_1, \xi_2, \dots, \xi_n \in \mathbb{C}$. Нека $i = 1, 2, \dots, n$. Тогава i-тото равенство от (**) е

$$\alpha_{i1}\xi_1 + \dots + (\alpha_{ii} - \lambda)\xi_i + \dots + \alpha_{in}\xi_n = 0$$

или еквивалентно

$$\sum_{i=1}^{n} \alpha_{ij} \xi_j = \lambda \xi_i.$$

Двете страни на последното равенство умножаваме с $\overline{\xi_i}$, т.е. комплексно спрегнатото на ξ_i , за да получим

$$\sum_{j=1}^{n} \alpha_{ij} \xi_j \overline{\xi_i} = \lambda |\xi_i|^2.$$

Сумираме всички подобни равенства за i менящо се от 1 до n, което ни дава

$$\underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \xi_{j} \overline{\xi_{i}}}_{=b} = \lambda \underbrace{\sum_{i=1}^{n} |\xi_{i}|^{2}}_{=a}.$$

Числото $a=|\xi_1|^2+|\xi_2|^2+\cdots+|\xi_n|^2$ е реално положително число. За спрегнатото на b имаме от симетричността на A

$$\overline{b} = \overline{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \xi_{j} \overline{\xi_{i}}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{\alpha_{ij}} \overline{\xi_{j}}.\overline{\overline{\xi_{i}}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \overline{\xi_{j}} \xi_{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ji} \xi_{i} \overline{\xi_{j}} = b$$

и по този начин b също е реално число. Следователно $\lambda = \frac{b}{a}$ и $\lambda \in \mathbb{R}$. \square

Нека V е евклидово пространство с $\dim V = n < \infty$, а $\varphi \in \operatorname{Hom}(V)$. Казваме, че операторът φ е cuметричен, ако за всеки два вектора $x,y \in V$ е изпълнено $(\varphi(x),y)=(x,\varphi(y))$. За да е в сила последното е достатъчно $(\varphi(e_i),e_j)=(e_i,\varphi(e_j))$ за всеки $i,j=1,2,\ldots,n$ за кой да е базис e_1,e_2,\ldots,e_n на V.

Следващото твърдение разкрива връзката между симетричните оператори и симетричните матрици.

Твърдение 2. Нека e_1, e_2, \ldots, e_n е ортонормиран базис на евклидовото пространство V. Нека $\varphi \in \text{Hom}(V)$ и има матрица A спрямо дадения базис. Тогава φ е симетричен оператор тогава и само тогава, когато A е симетрична матрица.

Доказателство. Нека $A=(\alpha_{ij})\in\mathbb{R}_{n\times n}$. Тогава имаме, че

$$(\varphi(e_i), e_j) = (\alpha_{1i}e_1 + \dots + \alpha_{ji}e_j + \dots + \alpha_{ni}e_n, e_j)$$

$$= \alpha_{1i}\underbrace{(e_1, e_j)}_{=0} + \dots + \alpha_{ji}\underbrace{(e_j, e_j)}_{=1} + \dots + \alpha_{ni}\underbrace{(e_n, e_j)}_{=0}$$

$$= \alpha_{ji}(e_j, e_j) = \alpha_{ji}.$$

По абсолютно същия начин получаваме, че

$$(e_i, \varphi(e_i)) = \alpha_{ii}.$$

Сега φ е симетричен $\Leftrightarrow (\varphi(e_i), e_j) = (e_i, \varphi(e_j))$ за всеки $i, j = 1, 2, \dots, n$ $\Leftrightarrow \alpha_{ji} = \alpha_{ij}$ за всеки $i, j = 1, 2, \dots, n \Leftrightarrow A$ е симетрична матрица.

Ако φ е симетричен оператор, и A е матрицата му спрямо ортонормиран базис на V, то Твърдение 2 дава, че матрицата A е симетрична, а според Твърдение 1 всички характеристични корени на A, λ_1 , λ_2 , λ_n са реални числа. Имайки предвид определението за собствена стойност на линеен оператор и горните разсъждения достигаме до

Твърдение 3. Симетричен оператор на евклидово пространство V с $\dim V = n$ има n на брой собствени стойности. C други думи всички характеристични корени на φ са негови собствени стойности. (Ще отбележим само, че собствените стойности $\lambda_1, \lambda_2, \ldots, \lambda_n$ в общия случай не са различни числа, т.е. те трябва да бъдат броени заедно с кратностите си.)

Преминаваме към

Твърдение 4. Нека φ е симетричен оператор на евклидовото пространство V. Ако x и y са два собствени вектора на φ , отговарящи на различни собствени стойности λ и μ , то $x \perp y$ (x и y са ортогонални, m.e. (x,y) = 0).

Доказателство. По определението за собствени вектори имаме, че $x \neq o, \varphi(x) = \lambda x$ и $y \neq o, \varphi(y) = \mu y$, а по условие имаме, че $\lambda \neq \mu$. Понеже φ е симетричен, то получаваме последователно

$$(\varphi(x), y) = (x, \varphi(y)),$$
$$(\lambda x, y) = (x, \mu y),$$
$$\lambda(x, y) = \mu(x, y),$$
$$(\lambda - \mu)(x, y) = 0,$$

но т.к. $\lambda \neq \mu$ това е възможно единствно при (x,y)=0.

Теорема (за диагонализация). Нека φ е симетричен оператор на п-мерното евклидово пространство V. Тогава съществува ортонормиран базис

$$f_1, f_2, \ldots, f_n,$$

на V, спрямо който матрицата на оператора е диагонална матрица

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Доказателство. Според Твърдение 3 φ има n на брой собствени стойности $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$. Нека f_1, f_2, \ldots, f_n са съответните им собствени вектори. Ще проведем доказателството с индукция по n – размерността на пространството V. При n=1 нека $f_1 \in V$ е единичен вектор, т.е. $|f_1|=1$. Тогава f_1 образува ортонормиран базис на V. Матрицата на φ е $(\lambda_1)_{1\times 1}, \lambda_1 \in \mathbb{R}$ и очевидно е диагонална. Нека допуснем, че $n\geq 2$ и че твърдението е изпълнено за n-1 Ще го докажем за n. Нека λ_1 е собствена стойност на φ , а f_1 е съответстващият й собствен вектор. Без ограничение на общността можем да считаме, че $|f_1|=1$. Да разгледаме множеството

$$W = \{x \in V | (x, f_1) = 0\}.$$

1. $W \leq V$. Наистина за произволни вектори $x,y \in W$ и произволни числа $\alpha,\beta \in \mathbb{R}$ имаме

$$(\alpha x + \beta y, f_1) = \alpha(x, f_1) + \beta(y, f_1) = \alpha.0 + \beta.0 = 0$$

и следователно $\alpha x + \beta y \in W$.

- $2. \dim W = n-1.$ Наистина, f_1 може да се допълни до ортогонален базис f_1, a_2, \ldots, a_n на V. Тогава $a_2, \ldots, a_n \perp f_1$ и следователно $a_2, \ldots, a_n \in W$. Тъй като a_2, \ldots, a_n са линейно независими, то $\dim W \geq n-1$. Ако допуснем, че W = n, то W = V и ще имаме $(f_1, f_1) = 0$ което е невъзможно, т.к. $f_1 \neq o$. Така $\dim W = n-1$.
- 3. За всеки вектор $x \in W$ е изпълнено и $\varphi(x) \in W$. Наистина, ако $x \in W$, то $(x, f_1) = 0$. Оттук получаваме

$$(\varphi(x), f_1) = (x, \varphi(f_1)) = (x, \lambda_1 f_1) = \lambda_1 (x, f_1) = \lambda_1 .0 = 0.$$

1. и 2. означават, че W е евклидово пространство с $\dim W = n-1$. 3. означава, че φ е симетричен оператор на W. Тогва според индукционното предположение съществува ортонормиран базис f_2,\ldots,f_n на W, спрямо който матрицата на φ е диагонална

$$D' = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 \\ 0 & \lambda_3 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Векторите $f_1; f_2, \ldots, f_n$ образуват ортонормиран базис на V. Освен това $\varphi(f_i) = \lambda_i f_i$ за всяко $i = 1, 2, \ldots, n$ което означава, че матрицата на φ е

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Принципът на математическата индукция доказва теоремата.

Следствие. Ако $A \in \mathbb{R}_{n \times n}$ е симетрична матрица, то съществува неособена матрица $T \in \mathbb{R}_{n \times n}$, такава че

$$T^{-1}AT = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \ddots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

е диагонална матрица. $(\lambda_1, \lambda_2, \dots, \lambda_n$ са характеристичните корени на A.)

Нека V е n-мерно евклидово пространство и e_1, e_2, \ldots, e_n е ортонормиран базис на V. Съществува единствен $\varphi \in \operatorname{Hom}(V)$, такъв че матрицата му спрямо този базис да е симетрична. От Твърдение 2 следва, че φ е симетричен оператор. Според теоремата съществува ортонормиран базис f_1, f_2, \ldots, f_n на V, спрямо който матрицата на φ е D. Нека T е матрицата на прехода от e към f тогава $D = T^{-1}AT$.

Забележка: Като матрица на прехода между два ортонормирани базиса на пространството V матрицата T има свойството $TT^t = E$, т.е. $T^{-1} = T^t$. Матрици с това свойство се наричат *ортогонални*.