photon energies in ILD simulation model ilcsoft v02-00-02 detector model ILD_I5_o1_v02 (silicon-W)

Daniel Jeans, KEK; late Nov 2019.

correction of gaps in ECAL coverage

currently:

at hit reconstruction level, the "BruceForceEcalGapFiller" creates additional hits in the gaps, with energy estimated by considering energy density in neighbouring cells and the size of the insensitive area

mono-energetic single photon events shot from IP sum of ecal hit energies (after hit reconstruction, before clustering) without the additional gap hits

mono-energetic single photon events shot from IP sum of ecal hit energies (after hit reconstruction, before clustering)

with the additional gap hits

→ works well within barrel modules,

but for high energy photons (>50 GeV) over-corrects energy loss between modules

sum PFO energies vs cos(theta) at different energies [with inter-module gap hits]

sum PFO energies vs cos(theta) at different energies [no inter-module gap hits]

on top of these additional gap hits, still need PFO-level photon energy corrections based on PFO direction and energy

remaining features in the barrel

phi (folded)

there are also gaps in the endcaps...

X0 y = -0.010

position across endcap quadrant (folded) [mm]

fit these geometrical energy variations in steps

- 1. equalise response across detector:
 - → phi cracks in barrel
 - → inter-module gaps in barrel, bar-end overap
 - → inter-module gaps in endcap

modelled with (sometimes asymmetric) Gaussians, with parameters that may depend on energy

2. linearise the energy response

1. equalise response across detector:

relative energy resolution

from central Gaussian fit +/- 1.5 sigma

→ well contained showers

from RMS90 / Mean90

→ include photons in "shoulders"

apply correction to type==22 PFOs in **di-quark (uu) calibration events** (in this case, we do have "gap hits" between the modules)

small enhancement of total reconstructed event energy (probably an improvement)

summary

propose to use the local "gap filler" only for gaps within ECAL modules, and not for gaps between modules

defined ~simple PFO-level corrections to photon energies

- → improve uniformity across detector
- → reduce tails of energy distributions
 - → better "RMS90" energy resolution for photons
- → ~2% energy non-linearity between 5 and 250 GeV which is already present at hit level reduced to few-per-mille level after energy correction

propose to apply these energy corrections to the photon PFOs produced by Pandora.

quick test done on hadronic events: probably some slight improvement?

comments are welcome!