An Image is Worth 16x16 Words

Transformers for Image Recognition at Scale

Dosovitskiy et, al. 2021, ICLR.

Presented by:
Joshua Owoyemi, (PhD)

@ MLT __init__ 2021.07.18

Outline

- Introduction
- From MLP to Transformers
- Recap on Self-Attention
- Transformers for image recognition
- Experiments and Results

Introduction

- Claims of the paper
 - CNNs are not necessary
 - Attention-based network can result in substantially fewer computation
- Why this paper is important
 - Challenges the inductive bias of CNNs
 - Opens up alternate perspectives to solving vision-related tasks
- The main idea of the paper
 - Apply Transformers (NLP-centered network) to vision related task

MLPs to Transformers

- Attention mechanism helps to build and quantify interdependence*
- Self-attention builds interdependence within input elements
- Has become de-facto standard in language processing tasks

- Attention mechanism helps to build and quantify interdependence*
- Self-attention builds interdependence within input elements
- Has become de-facto standard in language processing tasks

- Attention mechanism helps to build and quantify interdependence*
- Self-attention builds interdependence within input elements
- Has become de-facto standard in language processing tasks

- Map input vectors to
 - Query: $q_i = W_Q X_i$,
 - Key: $k_i = W_K X_i$,
 - $Value: v_i = W_V X_i$,

- Map input vectors to
 - Query: $q_i = W_Q X_i$,
 - Key: $k_i = W_K X_i$,
 - $Value: v_i = W_V X_i$,
- Compute weights vector: $A = softmax(qk^T) \in \mathbb{R}^{N \times N}$

- Map input vectors to
 - Query: $q_i = W_Q X_i$,
 - Key: $k_i = W_K X_i$,
 - $Value: v_i = W_V X_i$,
- Compute weights vector: $A = softmax(qk^T) \in \mathbb{R}^{N \times N}$
- Obtain context vectors: $C_i = Av$

Self-attention layer:

$$C_j = f(X, X, X)$$

- Inputs: $X = [x_1, x_2, \dots x_m]$
- Parameters: W_K, W_O, W_V

The Transformer Model

The Transformer Model for Vision

- Split image into patches of the same shape
 - $N = {}^{HW}/{}_{P^2}$, number of patches

Class **Vision Transformer** (ViT)

- Split image into patches of the same shape
 - $N = {}^{HW}/{}_{P^2}$, number of patches
- Flatten patches to sequence of 1D vectors
 - $X \in \mathbb{R}^{H \times W \times C} \to X_P \in \mathbb{R}^{N \times (P^2 \cdot C)}$

Class

- Split image into patches of the same shape
 - $N = {}^{HW}/{}_{P^2}$, number of patches
- Flatten patches to sequence of 1D vectors
 - $X \in \mathbb{R}^{H \times W \times C} \to X_P \in \mathbb{R}^{N \times (P^2 \cdot C)}$
- Map to latent vector size D with trainable linear projections

 Prepend a learnable embedding for [class] to the sequence of embedded patches

- Prepend a learnable embedding for [class] to the sequence of embedded patches
- Add position embeddings

 The transformer encoder is alternating layers of multiheaded self-attention and MLP blocks

 The transformer encoder is alternating layers of multiheaded self-attention and MLP blocks

- The transformer encoder is alternating layers of multiheaded self-attention and MLP blocks
- Layer normalization is applied before every block and residual connection after every block

 The classification head is implemented by an MLP with one hidden layer during pretraining and a single linear layer during fine-tuning.

- ViT is pretrained on large datasets and pre-train head is replaced with $D \times K$ feedforward layer
- ViT can handle arbitrary sequence length up to memory constraints, pre-trained position embeddings may no longer be meaningful

ImageNet

1k classes, 1.3M images

ImageNet-21k

21k classes, 14M images

JFT300M

(proprietary)
18k classes, 303M images

 Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNetbased baselines on all datasets, while taking substantially less computational resources to pre-train

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

- Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNetbased baselines on all datasets, while taking substantially less computational resources to pre-train
- ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, ResNets perform better with smaller pre-training datasets but plateau sooner than ViT

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

- ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, ResNets perform better with smaller pre-training datasets but plateau sooner than ViT
- Vision Transformers generally outperform ResNets with the same computational budget.

- No significant difference between implementations of 1D and 2D positional embeddings.
- The model learns to encode distance within the image in the similarity of position embeddings

Final Points

- Transformers lack some inductive biases inherent to CNNs, such as translation equivariance and locality and therefore do not generalize well when trained on insufficient amount of data
- There are still unaddressed challenges
 - Application to other vision tasks; detection and segmentation
 - How to do large scale self-supervised pre-training

Thank you

