

# Révisions de seconde : atomes et molécules

## > Répartition des électrons à l'intérieur de l'atome :

Les Z (numéro atomique) électrons d'un atome se répartissent en couche électronique :

La première notée K ne peut contenir que 2 électrons au maximum.

La deuxième notée L ne peut contenir que 8 électrons au maximum.

La troisième notée M ne peut en contenir que 18.

La nième couche ne peut contenir que 2\*n² électrons au maximum (Principe de Pauli)

# > Configuration électronique d'un atome :

Il donne la répartition des électrons dans les différentes couches. Pour établir cette configuration on remplit d'abord la première couche puis une fois saturée on passe à la deuxième et ainsi de suite.



# > Stabilité des éléments chimiques :

Les éléments chimiques les plus stables de la classification périodique des éléments sont les gaz rares (ou nobles), dernière colonne de la classification périodique.

Ceci est du à leur configuration électronique, la dernière couche occupée (**couche externe**) étant saturée à 2 ou 8 électrons.

| Hélium | Не | Z = 2  | 2  | $(K)^2$                 |
|--------|----|--------|----|-------------------------|
| Néon   | Ne | Z = 10 | 10 | $(K)^2(L)^8$            |
| Argon  | Ar | Z = 18 | 18 | $(K)^{2}(L)^{8}(M)^{8}$ |

Afin d'acquérir de la stabilité, les **autres atomes** de la classification vont essayer **d'obtenir la configuration électronique du gaz rare le plus proche d'eux** dans la classification périodique. Pour cela ils ont deux possibilités :

- Gagner ou perdre des électrons et ainsi former des ions.
- S'associer entre eux pour former des molécules.

Ils sont alors obligés de respecter la règle du duet ou de l'octet :

- Règle du duet : Les éléments de numéro atomique inférieur ou égal à 4 évoluent de manière à acquérir la structure électronique (K)<sup>2</sup> de l'hélium.
- Règle de l'octet : Les éléments de numéro atomique supérieur à 4 évoluent de manière à acquérir la structure électronique du néon (K)²(L)<sup>8</sup> ou de l'argon (K)²(L)<sup>8</sup>(M)<sup>8</sup>.
  Ils portent alors 8 électrons (un octet) sur leur couche externe.

#### > Formation d'ions :

<u>Ex :</u> Pour être stable, l'atome d'aluminium (Z=13) va essayer d'obtenir la configuration électronique du gaz rare le plus proche, c'est-à-dire le néon (Z=10).

Il va donc devoir perdre 3 électrons et formera ainsi l'ion aluminium Al<sup>3+</sup>

$$Al: (K)^{2}(L)^{8}(M)^{3}$$
 et  $Al^{3+}: (K)^{2}(L)^{8}$  (même configuration que Ne)

<u>Ex :</u> Pour être stable, l'atome d'oxygène (Z=8) va essayer d'obtenir la configuration électronique du gaz rare le plus proche, c'est-à-dire le néon (Z=10).

Il va donc devoir gagner 2 électrons et formera ainsi l'ion oxyde O<sup>2</sup>-

$$O: (K)^2 (L)^6$$
 et  $O^{2-}: (K)^2 (L)^8$  (même configuration que Ne)



# > Formation de molécules :

Pour former des molécules les atomes vont se lier par des **liaisons covalentes (ou doublets liants)**. Une liaison covalente est formée par deux électrons, **un électron venant de chaque atome** participant à la liaison.

Une fois la liaison formée, on considère que les deux électrons de la liaison appartiennent aux deux atomes :

Ex: Prenons un atome d'H (Z=1):  $(K)^1$  et un atome de Cl(Z=17):  $(K)^2(L)^8(M)^7$ L'atome d'H doit **obtenir un électron** supplémentaire pour obéir à la règle du **duet**. L'atome de Cl doit **obtenir un électron** supplémentaire pour obéir à la règle de l'**octet**.

Les deux atomes vont se lier par une liaison covalente et partager chacun un de leurs électrons. On formera alors la molécule H-Cl.

On dit que la **covalence** des atomes H et Cl **est 1**, ils doivent former une liaison covalente pour respecter les règles de stabilité.

# Nombre de liaisons covalentes que doit former un atome :

Ils doivent respecter la règle de l'octet (ou du duet)

 $\underline{\text{Ex pour le carbone}}$ : C (Z=6): (K)2(L)4, il doit obtenir **4 électrons pour respecter l'octet** il **formera donc 4 liaisons covalentes dans les molécules**.

Pour les autres atomes :

| Famille   | Nombre de          |  |  |
|-----------|--------------------|--|--|
| (colonne) | liaisons formées : |  |  |
| Carbone   | 4                  |  |  |
| Azote     | 3                  |  |  |
| Oxygène   | 2                  |  |  |
| Halogène  | 1                  |  |  |