Máquinas com pilhas

Teoria da computação

Prof. Allan Rodrigo Leite

Máquina com pilhas

- Diferencia-se da Máquina de Turing pelo fato de possuir a memória de entrada separada das memórias de trabalho e saída
 - Formalizada por vários autores na década de 60
- Memória auxiliar
 - Utiliza uma estrutura do tipo pilha
 - Cada máquina possui zero ou mais pilhas
 - As pilhas não tem limitação de tamanho
- Com duas ou mais pilhas, equivale ao poder computacional da classe de Máquinas de Turing para linguagens recursivamente enumeráveis
 - Este tipo de linguagem será abordada nas aulas seguintes

Máquina com pilhas

- Uma máquina com pilhas possui:
 - Programa associado (fluxograma)
 - Partida
 - Parada
 - Desempilhar (utilizado para desvio condicional)
 - Empilhar (utilizado para armazenamento de dados na memória de trabalho)

Máquina com pilhas

- Uma máquina com pilhas é descrita por $M = (\Sigma, D)$
 - Σ: alfabeto de símbolos de entrada
 - D: programa ou diagrama de fluxos, construído a partir dos componentes elementares
 - Partida, parada, desvio, empilha e desempilha
- Consiste basicamente de três partes
 - Variável X: representa a fita entrada
 - Variáveis Y_i ($i \ge 0$): estruturas do tipo pilha, utilizadas como memória de trabalho
 - Programa
 - Sequência finita de instruções
 - Representado como um diagrama de fluxos onde cada vértice é uma instrução

Componentes

- Partida
 - Existe somente uma instrução de início em um programa
- Parada
 - Existem duas alternativas de instruções de parada em um programa
 - Uma de aceitação (aceita) e outra de rejeição (rejeita)

Componentes

- Desvio e desempilha (desvios condicionais)
 - Determinam o fluxo do programa de acordo com o símbolo mais à esquerda da palavra armazenada na variável X (desvio) ou no topo da pilha Y_i (desempilha)
 - X ← ler(X) denota uma leitura destrutiva
 - Lê o símbolo mais à esquerda de X ou do topo de Y_i, retirando o símbolo lido

Componentes

- Empilha
 - Empilha um símbolo S $\in \Sigma$ no topo da pilha indicada
 - Concatena o símbolo na extremidade da palavra armazenada na variável Yi

- Elementos básicos
 - Existe somente uma partida, mas podem existir diversas (zero ou mais) instruções de parada (aceita ou rejeita)
 - Pode também ficar em loop infinito
 - Em um desvio e desempilha, se X (e Y_i) contém e, então segue o fluxo correspondente
 - Caso contrário, lê o símbolo mais à esquerda de X (no topo de Y_i) e remove-o após a decisão da próxima instrução

- Exemplo 1
 - Linguagem para duplo balanceamento LDB = $\{a^nb^n \mid n \geq 0\}$
 - Máquina com pilhas
 - PDB = $({a, b}, D)$
 - D é um fluxograma tal que:
 - ACEITA(PDB) = LDB
 - REJEITA(PDB) = Σ^* LDB
 - LOOP(PDB) = \emptyset

- Exemplo 1 (cont.)
 - Linguagem para duplo balanceamento LDB = $\{a^nb^n \mid n \geq 0\}$
 - Máquina com pilhas
 - PDB = $({a, b}, D)$
 - Estratégia
 - Utiliza-se uma única pilha
 - Lê o prefixo de símbolos a da entrada (X) e empilha em Y
 - Quando encontra o primeiro b em X, começa a desempilhar os símbolos a em Y
 - Se a sequência de símbolos b em X acabar junto com a sequência de símbolos a em Y, então aceita a cadeia, do contrário rejeita

- Exemplo 1 (cont.)
 - LDB = { $a^nb^n | n \ge 0$ }
 - Máquina com pilhas
 - PDB = $({a, b}, D)$
 - Aceita
 - ab, aabb, aaabbb
 - Rejeita
 - aba, aab, aaabbbb

- Exemplo 1 (cont.)
 - Entrada aabb

- Exemplo 2
 - Linguagem para duplo balanceamento LDB = $\{sa^nb^nt \mid n \geq 0\}$, considerando o prefixo e sufixo set, respectivamente
 - Máquina com pilhas
 - PDB = $({a,b,s,t},D)$
 - Aceita
 - st, sabt, saabbt, saaabbbt
 - Rejeita
 - sat, sab, aabbt

- Exemplo 2 (cont.)
 - LDB = $\{ sa^nb^nt \mid n \geq 0 \}$
 - Máquina com pilhas
 - PDB = $({a, b}, D)$
 - Aceita
 - st, sabt, saabbt, saaabbbt
 - Rejeita
 - sat, sab, aabbt

Máquinas com duas pilhas

- Classe de linguagens representadas depende de quantidade de pilhas
 - Nenhuma pilha: corresponde ao autômato finito, capaz de reconhecer a classe das linguagens regulares
 - Uma pilha: corresponde ao autômato de pilha, capaz de reconhecer a classe das linguagens livre de contexto
 - Duas ou mais pilhas: corresponde a Máquinas de Turing capazes de reconhecer linguagens recursivamente enumeráveis

Linguagens enumeráveis recursivamente
Linguagens sensíveis ao contexto
Linguagens livres de contexto
Linguagens regulares

Máquina com duas pilhas

- Exemplo 3
 - LTB = { $a^nb^nc^n \mid n \ge 0$ }
 - Máquina com pilhas
 - PTB = $({a, b, c}, D)$
 - Aceita
 - abc, aabbcc, aaabbbccc
 - Rejeita
 - abac, aabc, aaabbbc

Máquina com duas pilhas

- Exemplo 3 (cont.)
 - LTB = { $a^nb^nc^n \mid n \geq 0$ }
 - Máquina com pilhas
 - PTB = $({a, b, c}, D)$
 - Aceita
 - abc, aabbcc, aaabbbccc
 - Rejeita
 - · abac, aabc, aaabbbc

- Um autômato com duas pilhas é:
 - Uma máquina universal
 - Similar à máquina com duas pilhas
- Programa é especificado utilizando uma noção de estados
 - Enquanto uma máquina com pilhas usa-se um diagrama de fluxos
 - Possui o mesmo poder computacional da Máquina de Turing
- Diagramas de fluxo são úteis desenvolvimento de algoritmos e na visualização da estruturação e computação
- Máquinas com estados são mais indicadas para estudos teóricos formais e em geral são mais fáceis de serem implementados

- Um autômato com duas pilhas é composto por:
 - Fita: dispositivo de entrada que contém a informação a ser processada
 - Duas pilhas: memórias auxiliares que podem ser usadas livremente para leitura e gravação
 - Cada pilha é dividida em células, armazenando um símbolo do alfabeto auxiliar que pode inclusive ser igual ao alfabeto de entrada
 - Em uma estrutura do tipo pilha, a leitura ou gravação é sempre feita pelo topo
 - A pilha não possui tamanho fixo e nem máximo
 - O tamanho corrente de uma pilha igual ao tamanho da palavra armazenada
 - O valor inicial da pilha é vazio

- Um autômato com duas pilhas é composto por: (cont.)
 - Unidade de controle: reflete o estado corrente da máquina
 - Possui um número finito e predefinido de estados, uma cabeça de fita e uma cabeça para cada pilha
 - Cabeça da fita: unidade de leitura que acessa uma célula da fita de cada vez e movimenta-se uma célula da fita de cada vez e movimenta-se exclusivamente para a direita
 - Cabeça da pilha: unidade de leitura e gravação para cada pilha a qual move para cima ao gravar e para baixo ao ler um símbolo
 - Acessa um símbolo de cada vez, sempre posicionada no topo
 - A leitura exclui o símbolo lido do topo

- Um autômato com duas pilhas é composto por: (cont.)
 - Função de transição: comanda a leitura da fita, leitura e gravação das pilhas e define o estado da máquina
 - O símbolo ? refere-se à omissão do parâmetro de leitura
 - Indica o teste da correspondente pilha vazia ou de toda a palavra de entrada lida
 - O símbolo ϵ na leitura da fita ou de alguma pilha indica que o autômato não lê nem move a cabeça
 - Pelo menos uma leitura deve ser realizada ou sobre a fita ou sobre alguma pilha
 - O símbolo € na gravação indica que nenhuma gravação é realizada na pilha e não move a cabeça

- Autômato com duas pilhas ADP = $< \Sigma, Q, \Pi, q_0, F, V >$
 - Σ: alfabeto de símbolos de entrada
 - Q: conjunto de estados possíveis do autômato finito
 - Π: função programa ou função de transição
 - q_0 : estado inicial onde $q_0 \in Q$
 - F: conjunto de estados finais onde F ⊂ Q
 - V: alfabeto auxiliar utilizado nas pilhas

Função programa

- Exemplo: $\Pi(p,?,a,\epsilon) = \{(q,\epsilon,b)\}$
- Se
 - p: estado corrente
 - ?: entrada completamente lida na fita
 - a: lido o símbolo a na pilha 1
 - ε: não será lido nenhum símbolo na pilha 2
- Então
 - q: estado a ser assumido
 - ε: não grava na pilha 1
 - b: grava b na pilha 2

Exemplo 4

- Linguagem de triplo balanceamento LTB = $\{a^nb^nc^n \ge 0\}$
- Autômato com duas pilhas
 - ATP = $\langle \Sigma, Q, \Pi, q_0, F, V \rangle$
 - Σ : alfabeto de símbolos de entrada $\{a,b\}$
 - Q: conjunto de estados possíveis do autômato finito -?
 - Π: função programa ou função de transição -?
 - q₀: estado inicial
 - F: conjunto de estados finais ?
 - V: alfabeto auxiliar ?

Exemplo 4

- Linguagem de triplo balanceamento LTB = $\{a^nb^nc^n \ge 0\}$
- Autômato com duas pilhas

```
• ADP = < \{a,b\}, \{q_0,q_1,q_2,q_3\}, \Pi,q_0,\{q_3\}, \{B,C\} >
```

•
$$\Pi(q_0, a, \varepsilon, B) = (q_0, \varepsilon, \varepsilon)$$

•
$$\Pi(q_0,b,B,\epsilon) = (q_1,\epsilon,C)$$

•
$$\Pi(q_1, b, B, \epsilon) = (q_1, \epsilon, C)$$

•
$$\Pi(q_1, c, \epsilon, ?) = (q_2, c, \epsilon)$$

•
$$\Pi(q_2, c, \epsilon, ?) = (q_2, c, \epsilon)$$

•
$$\Pi(q_0,?,?,\epsilon) = (q_3,?,\epsilon)$$

•
$$\Pi(q_2,?,?,\epsilon) = (q_3,?,\epsilon)$$

- Exemplo 4
 - Linguagem de triplo balanceamento LTB = $\{a^nb^nc^n \ge 0\}$
 - Autômato com duas pilhas
 - ADP = $< \{a,b\}, \{q_0,q_1,q_2,q_3\}, \Pi,q_0, \{q_3\}, \{B,C\} >$

