Zaman Serileri Verisiyle Regresyon Analizi

Zaman Serileri Analizi Ekonometrik Modelleme ve Zaman Serileri Analizi

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

21 Mayıs 2021

Taslak

- Motivasyon
- Zaman Serisi Modeli
- Gauss-Markov Varsayımları (Küçük Örneklem)
- Zaman Serisi Modeli: Tahmin
 - Tahmin Yöntemleri
 - SEKK Parametre Tahmincileri
 - SEKK Parametre Tahmincilerinin Varyansı
- SEKK Parametre Tahmincilerinin Özellikleri
 - SEKK Parametre Tahmincilerinin Sapmasızlığı
 - SEKK Parametre Tahmincilerinin Etkinliği
 - Gauss–Markov Teoremi
- Zaman Serisi Modeli: Cıkarsama
 - Normallik Varsayımı
 - Klasik Doğrusal Model Varsayımları
 - Klasik Doğrusal Model Varsayımları Altında Çıkarsama
- Fonksiyonel Form ve Kukla Değişkenler
 - Fonksiyonel Form

Motivasyon

Bu bölümde, sırasıyla aşağıdaki konular incelenecektir.

- Zaman serisi modeli
- Zaman serisi modellerinde küçük örneklemde Gauss-Markov varsayımları
- Zaman serisi modellerinde tahmin.
- Zaman serisi modellerinde Gauss-Markov varsayımları altında Sıradan En Küçük Kareler (SEKK) parametre tahmincilerinin küçük örneklem özellikleri
- Zaman serisi modellerinde küçük örneklemde Gauss-Markov Teoremi
- Zaman serisi modellerinde normallik varsayımı
- Zaman serisi modellerinde küçük örneklemde klasik doğrusal model varsayımları
- Zaman serisi modellerinde küçük örneklemde klasik doğrusal model varsayımları altında çıkarsama
- Zaman serisi modellerinde farklı fonksiyonel form ve kukla değişken kullanımı
- Zaman serisi modellerinde trend ve mevsimsellik kullanımı

Not: Yukarıdaki konular sadece doğrusal modeller düşünülerek incelenecektir.

Zaman Serisi Modeli

Zaman Serisi Model (k Bağımsız Değişkenli Statik Model Örneği)

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + u_t$$

- k: bağımsız değişken sayısı $\longrightarrow j = 1, 2, \dots, k$
- k + 1: bilinmeyen sabit β parametre sayısı $\longrightarrow \beta_0, \beta_1, \dots, \beta_k$
- n: gözlem (veri) sayısı $\longrightarrow t = 1, 2, ..., n$ ve $s = 1, 2, ..., n, t \neq s$
- y: bağımlı değişken
- x_i : j'inci bağımsız değişken $\longrightarrow x_1, x_2, \dots, x_k$
- *u*: Hata terimi. *x*'ler dışında modele dahil edilmemiş tüm faktörlerin ortak etkisi
- β_0 : Kesim parametresi (1 tane var), sabit terim olarak da adlandırılır
- β_i : x_i bağımsız değişkeni için eğim parametresi (k tane var)
- $\mathbf{x_t}$: t zamanındaki tüm bağımsız değişkenlerin temsili $\longrightarrow \mathbf{x_t} = \{x_{t1}, x_{t2}, \dots, x_{tk}\}$
- X: Tüm t zamanlarındaki \mathbf{x}_t 'lerden oluşan $n \times k$ boyutlu veri matrisi

Zaman Serisi Modeli

- Zaman serilerinde $x_{t,i}$ bağımsız değişkeninin iki indeksi vardır.
 - t zaman indeksidir.
 - j ise x'in kaçıncı bağımsız değişken olduğunu belirtir.
- FDL modellerinde her bir gecikmeli değişken ayrı bir *x* olarak tanımlanabilir.

$$x_{t1} = z_t$$
, $x_{t2} = z_{t-1}$ ve $x_{t3} = z_{t-2}$

- Zaman serisi modellerindeki varsayımları belirtmek ve üzerinde tartışmak için t zamanındaki bağımsız değişkenlerin oluşturduğu kümeyi belirtmek için $\mathbf{x_t} = (x_{t1}, x_{t2}, \dots, x_{tk})$ kullanacağız.
- Tüm t zamanlarındaki $\mathbf{x_t}$ 'lerden oluşan veri matrisi ise $n \times k$ boyutlu \mathbf{X} olacaktır.
- X matrisinin t. satırı t dönemine ait \mathbf{x}_t bağımsız değişken değerlerinden oluşur. Bu nedenle **X** matrisinin birinci satırı t = 1, ikinci satırı t = 2 ve son satırı t = nzamanındaki bağımsız değişken değerlerinin bütününü gösterir.

Bağımsız Değişken Matrisi X'e Örnek

Cinayet Modeli (Statik Model)

$$mrdrte_t = \beta_0 + \beta_1 convrte_t + \beta_2 unem_t + \beta_3 yngmle_t + u_t$$

mrdrte: şehirdeki 10000 kişi başına cinayet oranı; convrte: cinayetten hüküm giyme oranı; unem: işsizlik oranı; yngmle: 18-25 yaşları arasındaki erkeklerin oranı

• Cinayet Modeli için bağımsız değişken matrisi **X** Şekil 1'de gösterilmiştir.

TABLE 10.2 Example of X for the Explanatory Variables in Equation (10.3)			
t	convrte	unem	yngmle
1	.46	.074	.12
2	.42	.071	.12
3	.42	.063	.11
4	.47	.062	.09
5	.48	.060	.10
6	.50	.059	.11
7	.55	.058	.12
8	.56	.059	.13

Şekil 1: Cinayet Modeli: Bağımsız Değişken Matrisi X

Kaynak: Wooldridge (2016)

Gauss-Markov Varsayımları (Küçük Örneklem)

- Bu alt bölümde, küçük örneklem durumunda zaman serisi modellerindeki Gauss-Markov varsayımları (ZS.1 - ZS.6) detaylı olarak incelenecektir.
 - Verilen Gauss-Markov varsayımları sadece küçük örneklem durumunda zaman serisi verisi ile yapılan regresyon için geçerli varsayımlardır.
 - Büyük örneklem (asimptotik) için gereken Gauss–Markov varsayımları daha sonra avrıca incelenecektir.
 - Küçük örneklem ve büyük örneklem Gauss-Markov varsayımları birbirine karıstırılmamalıdır.
- Gauss-Markov varsayımları daha sonra Gauss-Markov Teoremi'ni oluşturmada kullanılacaktır.
- Gauss-Markov Teoremi ise basit zaman serisi modelinin Sıradan En Küçük Kareler Yöntemi ya da Momentler Yöntemi ile tahmini için teorik dayanak sağlamada kullanılacaktır.

Gözlem Sayısı

ZS.1: Gözlem Sayısı

Gözlem sayısı *n* tahmin edilecek anakütle parametre sayısından büyük ya da en azından eşit olmalıdır.

$$n \ge k + 1$$

Bu varsayım yatay-kesit analizindeki ÇDR.1'e denk gelmektedir.

Parametrelerde Doğrusallık

ZS.2: Parametrelerde Doğrusallık

 $\{(x_{t1}, x_{t2}, \dots, x_{tk}, y_t) : t = 1, 2, \dots, n\}$ stokastik süreci aşağıdaki doğrusal modeli izler, yani model parametrelerde doğrusaldır.

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t2} + \dots + \beta_{k}x_{tk} + u_{t} \checkmark$$

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t2} + u_{t} \checkmark$$

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t1}^{2} + u_{t} \checkmark$$

$$y_{t} = \beta_{0} + \beta_{1}^{2}x_{t1} + \beta_{2}x_{t2} + u_{t} \checkmark$$

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \sqrt{\beta_{2}}x_{t2} + u_{t} \checkmark$$

Bu varsayım yatay-kesit analizindeki ÇDR.2'e denk gelmektedir.

Tam Çoklu Doğrusal Bağıntının Olmaması

ZS.3: Tam Çoklu Doğrusal Bağıntının Olmaması

Örneklemde (dolayısıyla altında yatan zaman serisi sürecinde) bağımsız değişkenlerin hiçbiri kendi içinde sabit değildir (yeterli değişenlik vardır) ve bağımsız değişkenler arasında tam çoklu doğrusal bağıntı (TÇDB) yoktur.

$$\sum_{t=1}^{n} (x_{tj} - \bar{x}_j)^2 > 0, \quad \forall j = 1, 2, \dots, k$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \longrightarrow \quad x_2 = 2x_1 \quad \text{TCDB VAR } \mathbf{X}$$

$$\longrightarrow \quad x_2 = x_1^2 \quad \text{TCDB YOK } \mathbf{V}$$

Bu varsayım yatay-kesit verisi analizindeki ÇDR.4'e denk gelmektedir.

- ZS.4 varsayımı bağımsız değişken x'lerin arasındaki non-lineer ilişki hakkında hiçbir kısıtlamada bulunmaz.
- ZS.4 varsayımı bağımsız değişken x'lerin doğrusal ilişkili olmasına izin verir. Fakat izin verilmeyen tek durum tam doğrusal ilişkinin olmamasıdır.
- x'lerde değişme olması, yani sabit olmamaları da bu varsayım içinde yer almaktadır.

ZS.4: Sıfır Koşullu Ortalama

Her t dönemi için, hata terimi u_t 'nin bağımsız değişkenlerin tüm dönemlerine koşullu olarak beklenen değeri sıfıra eşittir.

$$E(u_t|\mathbf{X}) = 0, \quad \forall t = 1, 2, \dots, n$$

Bu varsayım yatay-kesit analizindeki ÇDR.5'ten çok daha güçlü bir varsayımdır.

- ZS.4 varsayımı şunu söylemektedir: t dönemine ait hata terimi u_t her bir x ile tüm dönemlerde iliskisizdir.
- Bu varsayım koşullu beklenen değer cinsinden ifade edildiği için y ile x'lerin arasındaki ilişkinin biçiminin doğru olarak belirlenmesi gerekmektedir.
 - Yani, modelin fonksiyon kalıbının yanlış kurulmaması gerekir. Diğer bir deyişle, functional form misspecification olmaması gerekir.
- Eğer u_t ve **X** bağımsız ve $E(u_t) = 0$ ise, ZS.4 varsayımı otomatik olarak sağlanır.

$$\underbrace{E(u|\mathbf{X}) = E(u)}_{\text{Bağımsızlık}} \quad \text{ve} \quad E(u) = 0 \longrightarrow E(u|\mathbf{X}) = 0$$

ZS.4: Sıfır Koşullu Ortalama

$$E(u_t|\mathbf{X}) = 0, \quad \forall t = 1, 2, \dots, n$$

- ZS.4 varsayımının sağlanması için hata terimi u ve bağımsız değişken x'ler arasında iki farklı dışsallık koşulunun sağlanması gerekir.
 - Eşanlı dışsallık (contemporaneously exogeneity)
 - **Kesin dışsallık** (strict exogeneity)

ZS.4.1: Eşanlı Dışsallık

t dönemindeki u_t 'lerin sadece t dönemine ait bağımsız değişken x'lere göre koşullu beklenen değeri sıfıra eşittir.

$$E(u_t|x_{t1}, x_{t2}, \dots, x_{tk}) = E(u_t|\mathbf{x_t}) = 0, \quad \forall t = 1, 2, \dots, n$$

$$Corr(x_{tj}, u_t) = 0, \quad \forall t = 1, 2, \dots, n; \ \forall j = 1, 2, \dots, k$$

Bu koşul yatay-kesit analizindeki ÇDR.5'e denk gelmektedir.

- Bu koşul u_t 'lerin sadece t dönemine ait x'lerle (\mathbf{x}_t) ilişkisiz olmasını ifade eder.
- Eşanlı dışsallık sağlandığında bağımsız değişken x_{ti} 'ler eşanlı olarak dışsaldır.
- Eşanlı dışsallık u_t ve bağımsız değişken x'ler cari dönem itibariyle (eşanlı olarak) ilişkisiz olduğu için **cari dönem dışsallığı** olarak da anılır.

ZS.4.2: Kesin Dışsallık

t dönemindeki u_t 'lerin tüm dönemlere ait bağımsız değişken x'lere göre koşullu beklenen değeri sıfıra eşittir.

$$E(u_t|x_{s1}, x_{s2}, \dots, x_{sk}) = E(u_t|\mathbf{x_s}) = 0, \quad \forall t, s = 1, 2, \dots, n$$

$$Corr(x_{sj}, u_t) = 0, \quad \forall t, s = 1, 2, \dots, n; \ \forall j = 1, 2, \dots, k$$

Bu koşul yatay-kesit analizindeki ÇDR.5'ten çok daha güçlüdür.

- Bu koşul u_t 'lerin tüm dönemlere ait bağımsız değişken x_{sj} 'lerle ilişkisiz olmasını ifade eder. Yani,
 - s = t olduğunda u_t ve $x_{sj} = x_{tj}$ ilişkisiz olmalıdır, eşanlı dışsallık sağlanmalıdır.
 - $s \neq t$ olduğunda bile u_t ve $x_{s,i}$ ilişkisiz olmalıdır.
- Kısacası, kesin dışsallık sağlandığında otomatik olarak eşanlı dışsallık da sağlanmış olur ama bunun tersi her zaman doğru değildir.
 - Bu nedenle kesin dışsallık, eşanlı dışsallıktan daha sert/güçlü bir koşuldur.
- Kesin dışsallık sağlandığında bağımsız değişken x'ler kesin olarak dışsaldır.

• ZS.4 varsayımı, yatay-kesit analizindeki ÇDR.5'ten daha güçlü bir varsayımdır. Nedenini anlamak için yatay-kesit analizindeki ÇDR.5 varsayımını hatırlayalım.

CDR.5: Sıfır Koşullu Ortalama

$$E(u|\mathbf{x}) = 0 \longrightarrow E(u_i|\mathbf{x_i}) = 0, \quad \forall i = 1, 2, \dots, n$$

$$Corr(x_j, u) = 0 \longrightarrow Corr(x_{ij}, u_i) = 0, \quad \forall i = 1, 2, \dots, n; \ \forall j = 1, 2, \dots, k$$

- Yatay-kesit analizinde, CDR.5 varsayımı ile i. gözleme ait hata terimi u_i 'nin örneklemdeki
 - i. gözlemin bağımsız değişkenleriyle ilişkisiz olduğunu yukarıdaki gibi açıkça belirtmiştik. Yani, zaman serisi analizindeki gibi eşanlı dışsallık koşulu belirtilmişti.
 - s. gözlemin ($s \neq i$) bağımsız değişkenleriyle nasıl ilişkili olduğunu açıkça belirtmemiştik. Yani, zaman serisi analizindeki gibi kesin dışsallık koşulu belirtilmemisti.
- Yatay-kesit analizinde kesin dışsallık koşuluna gerek olmamıştı çünkü rassal örnekleme varsayımı (ÇDR.2) sayesinde u_i otomatik olarak i. gözlem haricindeki bağımsız değişkenlerden bağımsız (ilişkisiz) olmuştu.

ZS.4: Sıfır Koşullu Ortalama

$$E(u_t|\mathbf{X}) = 0, \quad \forall t = 1, 2, \dots, n$$

• Zaman serisi analizinde ise rassal örnekleme neredeyse hiçbir zaman uygun

- değildir. Değişkenler stokastik yani rassaldır fakat örnekleme rassal değildir. • Bu nedenle u_t 'nin hiç bir zaman aynı dönemdeki bağımsız değişken $x_{s,i}$ 'lerle
- ilişkili olmadığını, yani kesin dışsallığın sağlandığını, açıkça varsaymamız gerekir.
- ZS.4 varsayımın sağlanırsa, yatay-kesit analizindeki rassal örnekleme varsayımına (CDR.2) gerek kalmaz.
- ZS.4 sağlandığında otomatik olarak kesin dışsallık koşulu sağlanır ve x'lerin kesin olarak dışsal olduğunu söyleriz.
- Daha sonraki konularda gösterileceği gibi SEKK parametre tahmincilerinin
 - tutarlılığı için eşanlı dışsallık koşulunun sağlanması yeterlidir.
 - sapmasızlığı için kesin dışsallık koşulunun sağlanması gereklidir.

ZS.4: Sıfır Koşullu Ortalama

$$E(u_t|\mathbf{X}) = 0, \quad \forall t = 1, 2, \dots, n$$

- ZS.4 varsayımı, hata terimi *u*'nun ve *x*'lerin kendi geçmişleriyle olan korelasyonuna (ilişkili olmasına) izin vermektedir.
- İzin verilmeyen durum, u_t 'nin beklenen değerinin x'lerle zaman içinde ileri ve geriye doğru ilişkili olmasıdır. Yani, u_t 'nin ortalaması bağımsız değişken x'lerle tüm dönemlerde iliskisiz olmalıdır.
- ZS.4 varsayımının sağlanmamasına yol açan başlıca iki faktör dışlanmış değişken (omitted variable) ve **ölçme hataları**dır (measurement error).
- Ancak daha az belirgin başka nedenler de ZS.4 varsayımının ihlaline yol açabilir.
- Şimdi, basit statik model üzerinden ZS.4 varsayımının ihlaline yol açan ancak belirgin olmayan bu nedenleri inceleyelim.

• Aşağıdaki basit statik modeli, yani bağımsız değişkenler arasında gecikmeli değişkenin olmadığı modeli ele alalım:

$$y_t = \beta_0 + \beta_1 z_t + u_t$$

- ZS.4 varsayımı, sadece hata terimi u_t 'nin ve bağımsız değişken z_t ile ilişkisiz olmasını gerektirmiyor.
- ZS.4 varsayımı ayrıca, hata terimi u_t 'nin, z_t 'nin tüm geçmiş $\{z_{t-1}, z_{t-2}, \dots\}$ ve gelecek $\{z_{t+1}, z_{t+2}, \dots\}$ değerleri ile de ilişkisiz olmasını koşul olarak koyuyor.
- ZS.4 varsayımının iki sonucu vardır:
 - \bigcirc z_t 'nin y_t üzerindeki **gecikmeli etkisi** (lagged effect) yoktur. Eğer gecikmeli etkisi varsa, FDL modeli tahmin edilmelidir.
 - Kesin dışsallık koşulu, u'da t anında oluşacak bir değişmenin z_t'nin gelecek değerlerine etki etmeyeceğini varsayar. Bu durum, y_t 'den z_t 'nin gelecek değerlerine bir etkinin, yani geri bildirim (feedback), olmadığı anlamına gelir.
- Bu iki sonuçtan biri sağlanmazsa, ZS.4 varsayımı ihlal edilmiş olur.
- Şimdi, ZS.4 varsayımına ait bu iki sonucun ihlaline yol açabilecek durumlara basit statik modeller üzerinden örnek verelim.

ZS.4 varsayımının birinci sonucu ile ilgili olarak:

- Eğer z_t 'nin y_t üzerinde gecikmeli etkisi varsa ve FDL modeli tahmin edilmezse ZS.4 varsayımı ihlal edilmiş olur.
- Örneğin, doğru modelin z_t ve z_{t-1} bağımsız değişkenlerini içerdiğini, yani z_t 'nin y_t üzerinde gecikmeli bir etkisinin olduğunu, varsayalım.
- Fakat, araştırmacının bağımsız değişken z_{t-1} 'i model dışında bırakıp yanlış modeli kullandığını düşünelim.
- Eğer z_{t-1} 'yi modele doğrudan sokmazsak (yanlış modeli kullanırsak), onu yanlış modeledeki hata teriminin (v_t) içine almış oluruz.

$$y_t = \beta_0 + \beta_1 z_t + \beta_2 z_{t-1} + u_t$$
 (Doğru Model)

$$y_t = \beta_0 + \beta_1 z_t + v_t$$
 (Yanlış Model)

$$v_t = \beta_2 z_{t-1} + u_t$$
 (Yanlış Model Hata Terimi)

 Zaman serilerinin geçmiş değerleriyle genellikle yüksek derecede ilişkili olduğu düşünülürse, yani $Corr(z_t, z_{t-1}) \neq 0$, yanlış modeledeki hata terimi v_t ve z_t ilişkili olacak ve ZS.4 varsayımı ihlal edilecektir.

$$Corr(z_t, v_t) \neq 0 \longrightarrow Corr(z_t, \beta_2 z_{t-1} + u_t) \neq 0$$

ZS.4 varsayımının ikinci sonucu ile ilgili olarak:

- u'da t anında oluşacak bir değişme z_t 'nin gelecek değerlerine etki ediyorsa, yani y_t 'den z_t 'nin gelecek değerlerine bir etki varsa ZS.4 varsayımı ihlal edilmiş olur.
- Örneğin, şehirlerde işlenen kişi başına cinayet sayılarını, nüfus başına düşen polis sayısı ile açıklayan cinayet modelini ele alalım:

Cinayet Modeli (Statik Model)

$$mrdrte_t = \beta_0 + \beta_1 polpc_t + u_t$$

mrdrte: kişi başına cinayet sayısı; polpc: nüfus başına düşen polis sayısı

- Yukarıdaki modelde, u_t 'nin $polpc_t$ ile ilişkisiz olmasını varsaymamız makuldur.
 - Hatta u_t 'nin $polpc_t$ 'nin geçmiş değerleri ile de ilişkisiz olduğunu varsayalım.
- Diyelim ki şehir yönetimi polis sayısını geçmiş cinayet sayısına göre değiştiriyor.
 - Bu durumda, $mrdrte_t \rightarrow polpc_{t+1}$ yönünde bir geri bildirim etkisi olacaktır.
 - Bu ise, $u_t \to polpc_{t+1}$ yönündeki bir diğer etkileşimi dolaylı olarak ifade edecektir çünkü fonksiyonel form gereği daha yüksek $mrdrte_t$ daha yüksek u_t 'den kaynaklanır.
 - Sonuç olarak, u_t ve $polpc_{t+1}$ ilişkili olacak, yani $Corr(u_t, polpc_{t+1}) \neq 0$, ve ZS.4 varsayımı ihlal edilecektir.

ZS.4 varsayımı hakkında önemli notlar:

• Dağıtılmış gecikme modellerinde (DL), u_t 'nin z_t 'nin geçmiş $\{z_{t-1}, z_{t-2}, \dots\}$ değerleriyle ilişkili olması sorun olmaz ve ZS.4 varsayımını ihlal etmez. Çünkü modelde modelde z_t'nin geçmiş değerlerini bağımsız değişken olarak zaten kullanıyoruz, yani kontrol ediyoruz.

• Ancak, u_t 'den z_t 'nin gelecek değerlerine doğru bir geri bildirim etkisi, yani

- $u_t \to z_{t+1}, z_{t+2}, \ldots$, her zaman sorun yaratacak ve ZS.4 varsayımını ihlal edecektir.
- Kesin dışsal olan bağımsız değişken z_t 'ler, y_t 'nin geçmiş değerlerinden etkilenmez.
 - Örneğin, t yılındaki yağmur miktarı, Y_t , bu yılın ve önceki yılların buğday üretiminden, $\{Q_t, Q_{t-1}, Q_{t-2}, \dots\}$, etkilenmez.

$$Q_t = \beta_0 + \beta_1 Y_t + \beta_2 Y_{t-1} + u_t$$

- Bu aynı zamanda şu anlama da gelir: gelecek yılların yağmur miktarı, $\{Y_{t+1}, Y_{t+2}, \dots\}$, bu yılın ve geçen yılların buğday üretiminden $\{Q_t, Q_{t-1}, Q_{t-2}, \dots\}$ etkilenmez.
- Kısacası, yağmur miktarını belirten Y_t'ler kesin dışsaldır ve ZS.4 varsayımının ikinci sonucu olan kesin dışsallık koşulu sağlanır.

ZS.4 varsayımı hakkında önemli notlar:

- Ancak, tüm tarım girdileri yağmur gibi değildir.
- Örneğin, işgücü girdisini çiftlik sahibi geçen yılın hasılasına bakarak belirleyebilir.

$$R_t = \beta_0 + \beta_1 L_t + u_t$$

- Yani, bu yılın işgücü miktarı L_t geçen yılın hasılası R_{t-1} 'den etkilenmiştir.
- Dolayısıyla, kesin dışsallık koşulu sağlanmaz ve ZS.4 varsayımı ihlal edilir.
- Sosyal bilimlerde kullandığımız pek çok bağımsız zaman serisi değişkeni böyledir.
 - Örneğin: para arzı artış hızı, sosyal refah harcamaları, yollardaki hız limitleri vs.
 - Tüm bu bağımsız değişkenler, çoğu zaman, bağımlı değişken y'nin geçmişte aldığı değerlere bakılarak belirlenmetedir, dolayısıyla da kesin dışsal koşulu sağlanmaz ve ZS.4 varsayımı ihlal edilir.

ZS.4 varsayımı hakkında önemli notlar:

- ZS.4 varsayımı çoğu zaman gerçekçi olmamasına rağmen SEKK parametre tahmincilerinin sapmasız olmasını sağlamak için kullanılır.
- Çoğu zaman ZS.4 varsayımı ondan daha katı olan **rassal-olmama varsayımı** ile değiştirilir.

Rassal-Olmama (Non-randomness) Varsayımı

Bağımsız değişken x'ler rassal (stokastik) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerler alırlar.

- Rassal-olmama varsayımı otomatik olarak ZS.4 varsayımını sağlar.
- Ancak, rassal-olmama varsayımının zaman serileri gözlemleri için doğru olmayacağı çok açıktır.
- Oysa, ZS.4 varsayımı *x*'lerin rassalık niteliğine dayandığı için daha gerçekçidir.
- Ancak, sapmasızlığın sağlanması için $x \leftrightarrow u$ ilişkisinin nasıl olması gerektiği konusunda, kesin dışsallık koşulu gibi katı koşullar gerekir.

Otokorelasyonun Olmaması

ZS.5: Otokorelasyonun Olmamasi

Her $t \neq s$ için, **X**'e göre koşullu olarak iki farklı zaman dönemine ait hata terimleri arasında korelasyon yoktur.

$$Corr(u_t, u_s | \mathbf{X}) = 0$$
, $\forall t, s = 1, 2, ..., n$ ve $t \neq s$
 $Corr(u_t, u_s) = 0$, $\forall t, s = 1, 2, ..., n$ ve $t \neq s$ (u_t ve \mathbf{X} bağımsız olduğunda)

ZS.5 varsayımı aşağıdaki eşitlikleri de sağlar.

ZS.5: Otokorelasyonun Olmamasi

$$Cov(u_t, u_s | \mathbf{X}) = 0$$
 ve $E(u_t u_s | \mathbf{X}) = 0$, $\forall t, s = 1, 2, ..., n$ ve $t \neq s$
$$Cov(u_t, u_s) = 0$$
 ve $E(u_t u_s) = 0$, $\forall t, s = 1, 2, ..., n$ ve $t \neq s$
$$(u_t \text{ ve } \mathbf{X} \text{ ba\S{msiz} oldu\S{u}nda})$$

 ZS.5 varsayımı sağlanmadığında, hata terimleri dönemleri boyunca ilişkilidir yani otokorelasyon (autocorrelation) içeriyor demektir.

Otokorelasyonun Olmaması

- Otokorelasyon, ard arda gelen *u*'ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar.
 - Bu durum, daha önce verilen faiz denkleminde şu anlama gelecektir: eğer t döneminde faiz oranı beklenmedik biçimde yüksek olursa, sonraki dönemlerde faiz oranı büyük ihtimalle ortalamanın üstünde olacaktır.
 - Bu durum birçok zaman serisi uygulamasında hata terimlerinin genel karakteridir.
- Oysa, ZS.5 varsayımı sağlandığında, yani otokorelasyon olmadığında, hata terimleri tamamen birbirinden bağımsız olarak rasgele dağılır.
- ZS.5 varsayımı, bağımsız değişkenlerin kendi zamanları arasındaki korelasyon hakkında hiçbir varsayımda bulunmaz.
- Otokorelasyon varsayımı yatay-kesit analizindeki rassallık varsayımı (ÇDR.3) nedeniyle otomatik olarak sağlanır. Sadece çok ekstrem durumlarda gerekli olduğundan yatay-kesit analizinde otokorelasyon varsayımı genellikle kullanılmaz.
 - Rassal örnekleme varsayımı altında herhangi iki i ve s gözlemlerine ait hata terimleri, u_i ve u_s , birbirinden bağımsızdır. Bu durum, bağımsız değişkenlere göre koşullu olarak da geçerlidir.
- Çoğunlukla, otokorelasyon sadece zaman serileri analizine özgü bir sorundur.

Sabit Varyans

ZS.6: Sabit Varyans (Homoscedasticity)

 u_t hata teriminin \mathbf{X} 'e göre koşullu varyansı her t dönemi için sabittir.

$$Var(u_t|\mathbf{X}) = \sigma^2, \quad \forall t = 1, 2, ..., n$$

$$Var(y_t|\mathbf{X}) = \sigma^2, \quad \forall t = 1, 2, ..., n$$

$$Var(u_t) = \sigma^2, \quad \forall t = 1, 2, ..., n$$
 (u_t ve \mathbf{X} bağımsız olduğunda)

ZS.6 varsayımı aşağıdaki eşitlikleri de sağlar.

ZS.6: Sabit Varyans (Homoscedasticity)

$$E(u_t^2|\mathbf{X}) = \sigma^2$$
$$E(u_t^2) = \sigma^2$$

 $(u_t \text{ ve } \mathbf{X} \text{ bağımsız olduğunda})$

- ZS.6 varsayımının sağlanmadığı duruma değişen varyans (heteroscedasticity) denir.
- ullet σ regresyonun standart sapmasıdır (bilinmiyor, bu nedenle tahmin edilecek).
- Bu varsayım SEKK parametre tahmincilerinin varyanslarının ve standart hatalarının türetilmesinde ve etkinlik özelliklerinin belirlenmesinde kullanılır.

Sabit Varyans

• Sabit varyans varsayımının ihlal edildiği duruma örnek olarak aşağıdaki faiz denklemini ele alalım.

Faiz Denklemi

$$i3_t = \beta_0 + \beta_1 inf_t + \beta_2 def_t + u_t$$

i3: Üç aylık hazine bonosu faiz oranı; inf: enflasyon oranı; def: bütçe açığının gayri safı milli hasılaya oranı

- ZS.4 varsayımı faiz oranı $i3_t$ 'yi etkileyen hata terimi u_t 'nin zamanla değişmeyen sabit bir varyansa sahip olduğunu söyler.
- Para politikası rejimindeki değişimler faiz oranındaki değişkenliği etkilediğinden ZS.4 varsayımı rahatlıkla ihlal edilebilir.
- Bunun ötesinde, faiz oranındaki değişkenlik enflasyon oranına ve bütçe açığına bağlı olabilir. Böyle bir durum da sabit varyans varsayımını ihlal eder.
- $Var(u_t|\mathbf{X})$, \mathbf{X}' e bağımlı olduğunda genellikle t zamanındaki bağımsız değişken x_t'lere bağımlı olur.

Zaman Serisi Modeli: Tahmin

- Bu alt bölümde, basit zaman serisi modellerinde
 - Anakütle Regresyon Fonksiyonu (ARF)
 - ARF'nin tahmini olan Örneklem Regresyon Fonksiyonu (ÖRF)
 - ÖRF'nin tahmin yöntemleri üzerinde
 - SEKK parametre tahmincileri
 - SEKK parametre tahmincilerinin varyansları

üzerinde kısaca durulacaktır.

- Bu konular hakkındaki detaylı bilgi "Ekonometri I Çoklu Doğrusal Regresyon Modeli: Tahmin" konusunda bulunabilir.
 - Zaman serisi analizinde *i* indeksinin yerine *t* indeksinin kulanıldığına dikkat edin.
 - Yukarıda sıralanan konuların anlatımı sırasında kullanılan formüllerin ve teoremlerin türetilmesi yatay-kesit analizindekine çok benzer olduğundan özellikle gösterilmemiştir.

Tahmin Yöntemleri

Model, ARF ve ÖRF

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + u_t$$
 (Model)

$$E(y_t|\mathbf{X}) = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk}$$
 (ARF)

$$\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_{t1} x_{t1} + \hat{\beta}_2 x_{t2} + \dots + \hat{\beta}_k x_{tk}$$
 (ÖRF)

- Örneklem Regresyon Fonksiyonu (ÖRF), iki yöntemle tahmin edilebilir.
 - Sıradan En Küçük Kareler Yöntemi
 - Momentler Yöntemi
- İki yöntem de aynı tahmin sonuçlarını verir.

SEKK Parametre Tahmincileri

Ana Model

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + u_t$$
 (Model)

$$\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_{t1} + \hat{\beta}_2 x_{t2} + \dots + \hat{\beta}_k x_{tk}$$

• β_0 kesim parametresinin tahmini $\hat{\beta}_0$ (1 tane var):

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \dots - \hat{\beta}_k \bar{x}_k$$

• β_j eğim parametresinin tahmini, ya da x_i 'nin eğim parametresinin tahmincisi, $\hat{\beta}_i$ (*k* tane var):

$$\hat{\beta}_{j} = \frac{\sum_{t=1}^{n} \hat{r}_{tj} y_{t}}{\sum_{t=1}^{n} \hat{r}_{tj}^{2}}, \quad \forall j = 1, 2, \dots, k$$

(ÖRF)

SEKK Parametre Tahmincileri

• x_i 'nin eğim parametresinin tahmincisi $\hat{\beta}_i$ (k tane var):

$$\hat{\beta}_{j} = \frac{\sum_{t=1}^{n} \hat{r}_{tj} y_{t}}{\sum_{t=1}^{n} \hat{r}_{tj}^{2}}, \quad \forall j = 1, 2, \dots, k$$

burada $\hat{r}_{t,i}, x_i$ 'nin diğer tüm x'ler $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ üzerine uygulanan regresyondan elde edilen kalıntılardır.

- Yardımcı regresyondan elde edilen kalıntı \hat{r}_i , x_i içindeki diğer tüm x'lerin $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ etkisi çıkarıldıktan sonraki x_i 'yi ifade eder.
- Bu işlemdeki amaç, bağımsız değişken x'ler arasındaki çoklu doğrusal bağıntı nedeniyle bağımlı değişken *y* üzerinde oluşabilecek dolaylı etkiyi kaldırmaktır.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

ZS.1 - ZS.6, Gauss-Markov varsayımları (küçük örneklemde), altında

$$Var(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{t=1}^n (x_{tj} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

- Yukarıdaki varyans formülü, Gauss-Markov varsayımları altında yatay-kesit analizi için türettiğimiz varyans ile neredeyse aynıdır.
- Yatay-kesit analizinde varyansı etkileyen faktörler (gözlem sayısı, çoklu doğrusal bağıntı vb.) zaman serisi analizinde de yine aynı etkiyi gösterir.
 - σ^2 gözlenemeyen hata terimi *u*'nun varyansıdır. Bu nedenle σ^2 hata varyansı, σ ise regresyonun standart sapması olarak adlandırılır.
 - *SST_i*, *x_i*'deki örneklem değişkenliğini ifade eder.
 - R_i^2 ise x_j 'nin diğer tüm x değişkenlerine regresyonundan (kesim parametresi içeren) elde edilen belirlilik katsayısıdır.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

ZS.1 - ZS.6, Gauss-Markov varsayımları (küçük örneklemde), altında

$$Var(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{t=1}^n (x_{tj} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

- Hata terimi u gözlenemediği için hata varyansı σ^2 bilinmez.
- Bu nedenle, SEKK parametre tahmincilerinin varyansı $Var(\hat{\beta}_i|\mathbf{X})$ 'ların tahmini için öncelikle hata varyansı σ^2 'nin tahmin edilmesi gerekir.
- ullet Buradaki önemli nokta, $Var(\hat{eta}_i|\mathbf{X})$ 'ların sapmasız tahmin edilmesi gereklidir. Bu nedenle, σ^2 'nin de aynı şekilde sapmasız tahmin edilmesi gerekir.

Teorem: Hata Varyansı σ^2 'nin Sapmasız Tahmini

ZS.1 - ZS.6, Gauss-Markov varsayımları (küçük örneklemde), altında hata varyansı σ^2 'nin sapmasız bir tahmincisi:

$$\hat{\sigma}^2 = \frac{\sum_{t=1}^{n} \hat{u}_t^2}{n - k - 1} = \frac{SSR}{n - k - 1}$$

burada SSR kalıntı kareleri toplamını ifade eder.

- Serbestik derecesi (bağımsız bilgi sayısı) $\longrightarrow s.d. = n (k + 1) = n k 1$
- $\hat{\sigma}$ regresyonun standart sapması σ 'nın bir tahmincisidir ve regresyonun standart hatası olarak adlandırılır.

• $\hat{\sigma}^2$ tahmin edildikten sonra $Var(\hat{\beta}_i|\mathbf{X})$ 'nın formülünde yerine koyulup $Var(\hat{\beta}_i|\mathbf{X})$ 'nın sapmsız bir tahmincisi hesaplanabilir.

$\hat{\beta}_i$ 'ların **X**'e Göre Koşullu Varyans Tahminleri

$$Var(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma^2}{SST_j(1-R_j^2)} \longrightarrow \widehat{Var(\hat{\beta}_j|\mathbf{X})} = \frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- Genelde, $Var(\hat{\beta}_i|\mathbf{X})$ ve $Var(\hat{\beta}_i|\mathbf{X})$ arasındaki ayrım yazımda net olarak gösterilmez.
 - $\hat{\beta}_j$ 'ların varyans tahmini denildiğinde $Var(\hat{\beta}_i|\mathbf{X})$ kastedilmesine rağmen yazıdaki gösterimde genelde $Var(\hat{\beta}_i|\mathbf{X})$ kullanılır.
 - Bu derste aynı yolu izleyip $\hat{\beta}_i$ 'ların X'e göre koşullu varyans tahminini $Var(\hat{\beta}_i|\mathbf{X})$ ile göstereceğiz.

$$Var(\hat{\beta}_j|\mathbf{X}) = \frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}, \quad \forall j=1,2,\ldots,k$$

$\hat{\beta}_i$ 'ların **X**'e Göre Koşullu Standart Sapmaları (sd)

$$sd(\hat{\beta}_{j}|\mathbf{X}) = \sqrt{Var(\hat{\beta}_{j}|\mathbf{X})} \longrightarrow sd(\hat{\beta}_{j}|\mathbf{X}) = \frac{\sigma}{\sqrt{SST_{j}(1-R_{j}^{2})}}, \quad \forall j=1,2,\ldots,k$$

$\hat{\beta}_i$ 'ların **X**'e Göre Koşullu Standart Hataları (se)

$$se(\hat{\beta}_j|\mathbf{X}) = \sqrt{Var(\hat{\beta}_j|\mathbf{X})} \longrightarrow se(\hat{\beta}_j|\mathbf{X}) = \frac{\hat{\sigma}}{\sqrt{SST_j(1-R_j^2)}}, \quad \forall j=1,2,\ldots,k$$

• $se(\hat{\beta}_i|\mathbf{X})$, ZS.6 (sabit varyans) varsayımına dayanan $Var(\hat{\beta}_i|\mathbf{X})$ formülünden türetildiği için ZS.6 varyasımının sağlanmaması durumunda, yani değişen varyans varsa, $Var(\hat{\beta}_i|\mathbf{X})$ ve $se(\hat{\beta}_i|\mathbf{X})$ tahminleri sapmalı olur.

SEKK Parametre Tahmincilerinin Özellikleri

Bu alt bölümde, sırasıyla aşağıdaki konular kısaca incelenecektir.

- Zaman serisi modellerinde Gauss-Markov varsayımları altında SEKK parametre tahmincilerinin küçük örneklem özellikleri
 - Sapmasızlık
 - Etinlik
- Zaman serisi modellerinde küçük örneklemde Gauss-Markov Teoremi

SEKK Parametre Tahmincilerinin Sapmasızlığı

Teorem: SEKK Parametre Tahmincilerinin Sapmasızlığı

ZS.1 - ZS.4 varsayımları altında SEKK parametre tahmincileri X'e göre koşullu olarak sapmasızdır.

$$E(\hat{\beta}_0|\mathbf{X}) = \beta_0$$

$$E(\hat{\beta}_j|\mathbf{X}) = \beta_j, \quad \forall j = 1, 2, ..., k$$

- Sapmasızlık, SEKK parametre tahmincilerinin örneklem dağılımlarının ortalamasının (beklenen değerinin) bilinmeyen anakütle parametrelerine eşit olduğunu söyler.
- Bu teoremin ispatı yatay-kesit analizi için verilen SEKK parametre tahmincilerinin sapmasızlığı teoreminin ispatıyla aynıdır.
 - Ancak, yatay-kesit analizindeki rassal örnekleme varsayımının (ÇDR.2) yerini zaman serisi analizinde "bağımsız değişken x'lerin değerleri tüm zamanlar için kontrol edilmişken, her bir t dönemi için u_t sıfır ortalamaya sahiptir" varsayımı, yani TS.4 varsayımı, almıştır.
- ZS.1 ZS.4 varsayımları sağlanmazsa SEKK parametre tahmincileri sapmalı olur.

SEKK Parametre Tahmincilerinin Etkinliği

Teorem: SEKK Parametere Tahmincilerinin Etkinliği

ZS.5 - ZS.6 varsayımları altında SEKK parametre tahmincileri X'e göre koşullu olarak etkindir.

$$Var(\hat{\beta}_j|\mathbf{X}) = \frac{\sigma^2}{SST_j(1-R_j^2)}, \quad \forall j=1,2,\ldots,k$$

- SEKK paramatre tahmincileri $\hat{\beta}_i$ 'ların etkin olması en küçük/minimum varyanslı olması anlamına gelir.
- Bu teoremin ispatı yatay-kesit analizi için verilen SEKK parametre tahmincilerinin etkinlik teoreminin ispatıyla aynıdır.
- ZS.5 ZS.6 varsayımları sağlanmazsa SEKK parametre tahmincileri etkin olmaz.

Gauss-Markov Teoremi

Gauss-Markov Teoremi

ZS.1 - ZS.6 varsayımları altında SEKK parametre tahmincileri X'e göre koşulu olarak, tüm doğrusal sapmasız tahminciler arasında etkin/en iyi (minimum varyanslı) olanlarıdır.

Başka bir ifadeyle, ZS.1 - ZS.6 varsayımları altında SEKK parametre tahmincileri $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ anakütle parametreleri $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ 'nın **D**oğrusal En İyi Sapmasız Tahmin Edicileridir (DESTE ya da BLUE—Best Linear Unbiased Estimator).

- Gauss-Markov Teoremi regresyon modelinin SEKK yöntemiyle tahmini için teorik dayanak sağlar.
 - ZS.1 ZS.6 varsayımlarından biri bile ihlal edilirse Gaus-Markov Teoremi geçersiz olur.
 - ZS.4 sağlanmazsa SEKK parametre tahmincilerinin sapmasızlık özelliği, ZS.5 ve ZS.6 sağlanmazsa etkinlik özelliği kaybolur.
- SEKK parametre tahmincileri, ZS.1 ZS.6 varsayımları altında tıpkı yatay-kesit analizinde ÇDR.1 - ÇDR.7 varsayımları altında olduğu gibi arzu edilir küçük örneklem özelliklerine sahip olurlar.

Gauss-Markov Teoremi

Carl Friedrich Gauss (1777-1855) Kaynak: Wikipedia

Andrey Markov (1856-1922) Kaynak: Wikipedia

Zaman Serisi Modeli: Çıkarsama

- Bu alt bölümde, basit zaman serisi modellerinde
 - Normallik varsayımı
 - Klasik doğrusal model (KDM) varsayımları
 - KDM varsayımları altında SEKK parametre tahmincilerinin küçük örneklem özellikleri
 - KDM varsayımları altında çıkarsama

üzerinde kısaca durulacaktır.

- Bu konular hakkındaki detaylı bilgi "Ekonometri I Çoklu Doğrusal Regresyon Modeli: Çıkarsama" konusunda bulunabilir.
 - Zaman serisi analizinde *i* indeksinin yerine *t* indeksinin kulanıldığına dikkat edin.
 - Yukarıda sıralanan konuların anlatımı sırasında kullanılan formüllerin ve teoremlerin türetilmesi yatay-kesit analizindekine çok benzer olduğundan özellikle gösterilmemiştir.

Normallik Varsayımı

• Zaman serileri analizinde hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmek için yatay-kesit analizindeki varsayımın bir benzerini kullanacağız.

ZS.7: Normallik Varsayımı

 u_t hata terimleri, X'ten bağımsızdır, ve bağımsız ve özdeş dağılımlıdır (iid - **i**dentically and independently distributed). u_t hata terimleri, ortalaması 0 ve varyansı σ^2 olan normal dağılma uyar.

$$u \sim N(0, \sigma^2)$$

Bu varsayım yatay-kesit analizindeki ÇDR.8'e denk gelmektedir.

- Normallik varsayımı önceki varsayımlardan çok daha kuvvetli bir varsayımdır.
 - ZS.7 varsayımı, ZS.4, ZS.5 ve ZS.6 varsayımlarının geçerli olmasını zorunlu kılar.
 - Bir başka deyişle, ZS.7 sağlanmışsa, ZS.4, ZS.5 ve ZS.6 otomatik olarak sağlanmış olur.
 - Bağımsızlık ve normallik varsayımları nedeniyle ZS.7 varsayımı daha katı bir varsayımdır.

Klasik Doğrusal Model Varsayımları

- ZS.1 ZS.7 varsayımlarına klasik doğrusal model (KDM) varsayımları denir.,
 - Gauss-Markov varsayımları: ZS.1 ZS.6
 - KDM varsayımları: ZS.1 ZS.7 (Gauss–Markov varsayımları + Normallik varsayımı)
- KDM varsayımları altında SEKK parametre tahmincileri X'e göre koşulu olarak, sadece doğrusal sapmasız tahminciler arasında değil, doğrusal olsun ya da olmasın, tüm tahminciler arasında sapmasız ve etkin/en iyi (minimum varyanslı) olanlarıdır.

Klasik Doğrusal Model Varsayımları Altında Çıkarsama

Teorem: Normal Örneklem Dağılımları

ZS.1 - ZS.7 varsayımları (KDM varsayımları) altında, SEKK parametre tahmincilerinin X'e göre koşulu dağılımı normaldir. Sıfır hipotezi altında *t* –istatistikleri *t* dağılımına, F-istatistikleri F dağılımına uyar. Güven aralıkları standart biçimde oluşturulabilir.

- Yukarıdaki teorem, ZS.1 ZS.7 sağlandığında yatay-kesit analizindeki tahmin ve çıkarsama ile ilgili olarak elde edilen tüm sonuçların zaman serileri analizinde de uygulanabileceğini ifade ediyor.
- Zaman serileri anakizi için KDM varsayımları ZS.1 ZS.7, yatay-kesit analizi varsayımlarına kıyasla daha katı koşullar getirir.
 - Özellikle kesin dışsallık (ZS.4) ve otokorelasyon olmaması (ZS.5) varsayımları çoğu zaman gerçekçi olmaktan uzak olabilirler.

Örnek 1: Statik Phillips Eğrisi Modeli

• Zaman serisi modellerinde t-testi ile çıkarsamaya (tekil kısıt) örnek vermek için daha önce kullandığımız Statik Phillips Eğrisi modelini ele alalım.

Statik Phillips Eğrisi Modeli

$$inf_t = \beta_0 + \beta_1 unem_t + u_t$$

in f: enflasyon oranı; unem: issizlik oranı

- Bu formadaki bir Phillips Eğrisi modeli doğal işsizlik oranı ve beklenen enflasyonun sabit olduğunu varsayar.
- Makroekonomi teorisinin işaret ettiği işsizlik ve enflasyon arasındaki ters ilişki bilgisini kullanarak, ortalamada işssizlik ve enflasyon arasındaki eşanlı ödünümü araştırmak için

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 < 0$

tek kuyruklu (sol kuyruk) hipotez testini uygulayabiliriz.

• Eğer KDM varsayımları geçerliyse SEKK *t*-istatistiği kullanılabilir.

Örnek 1: Statik Phillips Eğrisi Modeli

Statik Phillips Eğrisi Modeli

$$\widehat{inf_t} = 1.05 + 0.50 \ unem_t$$

 $n = 56; \quad R^2 = 0.062; \quad \overline{R}^2 = 0.044$

- $\hat{\beta}_1$ beklenenin aksine pozitif (+) işaretli çıkmıştır. Enflasyonla işsizlik arasında beklediğimiz zıt yönlü bir eşanlı ödünüm gözükmemektedir.
 - Bu sonucun nedeni kısmen de olsa modelin yetersizliğinden olabilir. Daha sonra göreceğimiz gibi, beklenen enflasyonun modele dahil edildiği genişletilmiş (augmented) Phillips eğrisi modeli daha başarılı sonuç verecektir.
 - Bu sonucun olası bir diğer nedeni ise KDM varsayımlarının sağlanmaması olabilir.
- $\hat{\beta}_1$ 'e ait *t*-istatistiği yaklaşık olarak 1.89'dur ve bu istatistiğe ait
 - çift kuyruklu hipotez testindeki ($H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$) p-değeri 0.063'tür.
 - sol kuyruklu hipotez testindeki ($H_0: \beta_1 = 0$ vs. $H_1: \beta_1 < 0$) p-değeri 0.968'dir.

Örnek 2: Statik Faiz, Bütçe Açığı ve Enfalsyon Modeli

• Zaman serisi modellerinde t-testi ile çıkarsamaya (tekil kısıt) örnek vermek için enflasyon ve bütçe açığının faiz üzerindeki etkisini araştıran statik modeli ele alalım.

Statik Faiz, Bütçe Açığı ve Enfalsyon Modeli

$$i3_t = \beta_0 + \beta_1 inf_t + \beta_2 def_t + u_t$$

i3: 3 aylık devlet tahvili faiz oranı; in f: enflasyon oranı; de f: bütçe açığı (GSYH'ya oran olarak)

 Makroekonomi teorisinin işaret ettiği bütçe açığı ve faiz oranı arasındaki pozitif yönlü ilişki bilgisini kullanarak, ortalamada bütçe açığı ve faiz oranı arasındaki esanlı ödünümü araştırmak için

$$H_0: \beta_2 = 0$$
 vs. $H_2: \beta_2 > 0$

tek kuyruklu (sağ kuyruk) hipotez testini uygulayabiliriz.

• Eğer KDM varsayımları geçerliyse SEKK *t*-istatistiği kullanılabilir.

Örnek 2: Statik Faiz, Bütçe Açığı ve Enfalsyon Modeli

Statik Faiz, Bütçe Açığı ve Enfalsyon Modeli

$$\widehat{i3}_t = 1.73_{(0.431)} + 0.605_{(0.083)} inf_t + 0.513_{(0.118)} def_t$$

 $n = 56; \quad R^2 = 0.602; \quad \overline{R}^2 = 0.587_{(0.083)}$

- $\hat{\beta}_2$ beklenildiği gibi pozitif (+) işaretli çıkmıştır. Faiz oranı ile bütçe açığı arasında beklediğimiz pozitif yönlü bir eşanlı ödünüm gözükmektedir.
 - Diğer her şey sabitken, bütçe açığındaki yüzde 1 puanlık artış faizde 0.513 puanlık artış yaratıyor.
- $\hat{\beta}_2$ 'e ait *t*-istatistiği yaklaşık olarak 4.33'tür ve bu istatistiğe ait
 - çift kuyruklu hipotez testindeki ($H_0: \beta_2 = 0$ vs. $H_1: \beta_2 \neq 0$) p-değeri 0.00006'dır.
 - sağ kuyruklu hipotez testindeki ($H_0: \beta_2 = 0$ vs. $H_1: \beta_2 > 0$) p-değeri 0.00003'tür.

Örnek 3: FDL₍₂₎ Phillips Eğrisi Modeli

• Zaman serisi modellerinde F-testi ile çıkarsamaya (çoklu kısıt) örnek için daha önce kullandığımız Statik Phillips Eğrisi modelinin $FDL_{(2)}$ versiyonunu ele alalım.

FDL₍₂₎ Phillips Eğrisi Modeli

$$inf_t = \alpha_0 + \delta_0 unem_t + \delta_1 unem_{t-1} + \delta_2 unem_{t-2} + u_t$$

in f: enflasyon oranı; unem: işsizlik oranı

Modelin istatistiki olarak genel anlamlılığını araştırmak için

$$H_0: \delta_0 = \delta_1 = \delta_2 = 0$$
 vs. $H_1: H_0$ doğru değil

hipotez testini uygulayabiliriz.

• Tüm gecikmeli değişken parametrelerinin birlikte istatistiki olarak anlamlı olup olmadığını araştırmak için

$$H_0: \delta_1 = \delta_2 = 0$$
 vs. $H_1: H_0$ doğru değil

hipotez testini uygulayabiliriz. Eğer boş hipotez reddedilirse, $FDL_{(2)}$ modeline ihtiyaç vardır. Aksi durumda statik model kullanılmalıdır.

• Eğer KDM varsayımları geçerliyse SEKK *F*-istatistiği kullanılabilir.

Örnek 3: FDL₍₂₎ Phillips Eğrisi Modeli

FDL₍₂₎ Phillips Eğrisi Modeli

$$\widehat{\inf_{t}} = -0.124 + 0.903 \ unem_{t} - 0.856 \ unem_{t-1} + 0.668 \ unem_{t-2}$$

$$n = 54; \quad R^{2} = 0.149; \quad \overline{R}^{2} = 0.098$$

- Modelin istatistiki olarak genel anlamlılığını araştıran hipotez testine ait F-istatistiği 2.93'tür.
 - Bu teste ait p-değeri 0.042'dir.
- Tüm gecikmeli değişken parametrelerinin birlikte istatistiki olarak anlamlı olup olmadığını araştıran hipotez testine ait *F*-istatistiği 1.70'tür.
 - Bu teste ait p-değeri 0.191'dir.

Fonksiyonel Form ve Kukla Değişkenler

- Bu alt bölümde, zaman serisi modellerinde
 - Farklı fonksiyonel formların kullanımı
 - Kukla değişkenlerin kullanımı

üzerinde kısaca durulacaktır.

- Bu konular hakkındaki detaylı bilgi sırasıyla "Ekonometri I Basit Doğrusal Regresyon Modeli: Tahmin" ve "Ekonometri II - Kukla Değişkenler" konusunda bulunabilir.
 - Zaman serisi analizinde *i* indeksinin yerine *t* indeksinin kulanıldığına dikkat edin.
 - Yukarıda sıralanan konularla ilgili bilgi, formül ve teoremler yatay-kesit analizindekine çok benzer olduğundan özellikle gösterilmemiştir.

Fonksiyonel Form

- Yata-kesit analizinde gördüğümüz tüm fonksiyonel formlar zaman serisi analizinde de kullanılabilir.
- Özellikle logaritmik form zaman serilerinde sıklıkla kullanılmaktadır.
 - Logaritmik form kullanarak bağımsız değişken x'lerin bağımlı değişken y üzerindeki etkisini, ölçü birimlerimden bağımsız olarak, **sabit yüzde** cinsinden elde edebiliriz.

Fonksiyonel Form: Örnek 1

 Zaman serisi modellerinde fonksiyonel form kullanmaya örnek vermek için Amerika'daki asgari ücretin Porto Riko'daki istihdam üzerindeki etkisini araştıran statik modeli ele alalım.

Statik İstihdam ve Asgari Ücret Modeli

$$\ln(prepop_t) = \beta_0 + \beta_1 \ln(mincov_t) + \beta_2 \ln(usgnp_t) + u_t$$

prepop: Porto Riko'daki istihdam oranı; mincov: asgari ücretin ortalama ücrete göre göreceli önemi; usqnp: Amerika Gayri Safi Milli Hasıla (GSMH)

• Asgari ücretin ortalama ücrete göre göreceli önemini belirten *mincov* değişkeni şu şekilde hesaplanmıştır.

$$\frac{avgmin}{avgwage} \times avgcov$$

burada avqmin: ortalama asgari ücret; avqwaqe: ortalama ücret; avqcov: asgari ücret yasasından faydalanan çalışanların oranıdır.

Fonksiyonel Form: Örnek 1

Statik İstihdam ve Asgari Ücret Modeli

$$\ln(\widehat{prepop_t}) = -1.05 + 0.154 \ln(\min cov_t) - 0.012 \ln(usgnp_t)$$

$$n = 38: \quad R^2 = 0.661: \quad \overline{R}^2 = 0.641$$

- Modelin istatistiki olarak genel anlamlılığını araştıran hipotez testine ait F-istatistiği 2.93'tür.
 - Bu teste ait p-değeri 0.042'dir.
- Tüm gecikmeli değişken parametrelerinin birlikte istatistiki olarak anlamlı olup olmadığını araştıran hipotez testine ait *F*-istatistiği 1.70'tür.
 - Bu teste ait p-değeri 0.191'dir.

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Güriş, S. (2005). Ekonometri: Temel Kavramlar. Der Yayınevi.

Hyndman, R.J. ve G. Athanasopoulos (2018). Forecasting: Principles and Practice. O'Texts.

Stock, J.H. ve M.W. Watson (2015). Introduction to Econometrics.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

