

数据科学与工程算法基础

Algorithm Foundations of Data Science and Engineering

第八章 特征值计算

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

课 Content 程 提

1 算法引入

2 幂法

3 瑞丽商迭代法

保程提 纲

1 算法引入

2 幂法

3 瑞丽商迭代法

PageRank 与特征值

1: Set
$$\mathbf{r}^{(0)} = (\frac{1}{n}, \dots, \frac{1}{n});$$

2: For $k = 1, 2, \dots;$
3: Let $\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} \cdot M;$

- 一个概率转移矩阵为 P 的齐次有限随机游走的平稳分布为
 - π ,则满足 $\pi P = \pi$
 - π 为转移概率矩阵 P 最大特征值 1 对应的左特征向量
 - 如何有效计算随机游走的平稳分布?
 - 矩阵形式的 PageRank 算法为什么是正确的?

图的鲁棒性与特征值

Labeled graph	Degree matrix						Adjacency matrix							Laplacian matrix						
(6)	\int_{0}^{2}	0	0	0	0	0	1	0	1	0	0	1	0 \		(²	-1	0	0	-1	0
6	0	3	0	0	0	0	П	1	0	1	0	1	0		-1	3	-1	0	-1	0
(4)	0	0	2	0	0	0	П	0	1	0	1	0	0		0	-1	2	-1	0	0
I	0	0	0	3	0	0	П	0	0	1	0	1	1		0	0	-1	3	-1	-1
(3)-(2)	0	0	0	0	3	0		1	1	0	1	0	0		-1	-1	0	-1	3	0
	0 /	0	0	0	0	1/	\	0	0	0	1	0	0/		0 /	0	0	-1	0	1/

- 图的拉普拉斯矩阵 L = D A,其中 D 为对角的度矩阵, A 为邻接矩阵
- 图鲁棒性衡量了图结构受到攻击时保持结构的能力
 - 代数连通性: Laplacian 矩阵第二小特征值
 - 如何计算?

特征值与特征向量

- 对给定矩阵 $A \in \mathbb{R}^{n \times n}$ 和非零向量 v,若 $Av = \lambda v$,则 λ 是 A 的一个特征值,v 是 A 对应于特征值 λ 的特征向量
- 线性变换
 - 线性变换 = 拉伸 + 旋转
 - 矩阵 A 作用于向量 v 像是一个函数,在 A 的作用下输入 向量 v 变换为输出 λv
 - 也就是说,矩阵 A 对其特征向量只进行拉伸
 - $Av = \lambda v$ 可以改写为 $Av \lambda v = 0$ 或者 $(A \lambda I)v = 0$
 - 齐次线性方程组具有非零解,所以 $|A \lambda I| = 0$

计算特征值和特征向量

- 给定矩阵 $A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$
- 特征方程为 $|A \lambda I| = \lambda^2 3\lambda + 2 = 0$, 因此特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$
- 通过解线性方程得到特征向量 $(A \lambda_i I)v = 0$
 - 得对应于特征值 $\lambda_1 = 1$ 的特征向量为 $(1,1)^{\mathsf{T}}$
 - 得对应于特征值 $\lambda_2 = 2$ 的特征向量为 $(2,1)^T$
- ●但这种方法(高斯消元法)是不可扩展的,很难 在大规模矩阵上使用

课程提 纲

1 算法引入

2 幂法

3 瑞丽商迭代法

幂法

- 设矩阵 A 有唯一的主特征值 λ_1 (模最大)
- 可以运用幂法求解主特征值及其特征向量

```
1: Pick a starting vector \mathbf{x}^{(0)} \in \mathbb{R}^n, such that \|\mathbf{x}^{(0)}\| = 1;

2: For k = 1, 2, \cdots;

3: Let \mathbf{v} = A\mathbf{x}^{(k-1)};

4: Let \mathbf{x}^{(k)} = \frac{\mathbf{v}}{\|\mathbf{v}\|};
```

- 幂法是一种迭代算法
 - 达到收敛条件算法终止
 - 向量单位化的目的为了防止计算溢出
 - 可以利用幂法求解随机游走的平稳分布
 - 为什么幂法是收敛的?

幂法分析

- 假设矩阵 A 标准化的特征向量构成一组标准正交基,满足 $v_i^{\mathsf{T}}v_j = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$
- 令 $x^{(0)}$ 为特征向量生成子空间中任意非零向量,则 $x^{(0)} = \sum_{i=1}^{n} c_i v_i$ 且 $c_1 \neq 0$
- 则 $x^{(k)}$ 收敛到主特征向量 v_1 ,因为 $\lim_{k \to \infty} A^k x^{(0)} = \lim_{k \to \infty} \sum_{i=1}^n c_i A^k v_i = \lim_{k \to \infty} \sum_{i=1}^n c_i \lambda_i^k v_i$ $= \lim_{k \to \infty} c_1 \lambda_1^k \left(v_1 + \sum_{i=1}^n \frac{c_i}{c_1} \left(\frac{\lambda_i}{\lambda_1} \right)^k v_i \right) = c_1 \lambda_1^k v_1$

幂法分析 (续)

- 假设 $|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$
- 随着迭代次数的增加,幂法 收敛速度取决于 $\frac{\lambda_2}{\lambda_1}$,即幂 法是线性收敛的
- 如果主特征值具有重数 *r*, 计算得到的特征向量将是 *r* 个特征向量的线性组合

幂法扩展

• 反幂法

- 使用 A^{-1} 而不是 A,因为 A^{-1} 的特征值是 $1/\lambda^i$
- 给出了一种求解矩阵绝对值最小的非零特征值的方法

• 平移法

- $A \mu I$ 的特征值为 $\lambda_i \mu$
- 运用幂法可以找到 $|\lambda_i \mu|$ 最大的特征值
- 运用反幂法可以找到 $|1/(\lambda_i \mu)|$ 最大的特征值,即 A 最接近 μ 的特征值
- 因为无法事先知道 λ_i ,只能尝试不同的 μ
- 难以找到矩阵 A 所有的特征值

反幂法

- 直接计算 A^{-1} 复杂度高
 - $A^{-1}x^{(k-1)} = v$ 等价于 $x^{(k-1)} = Av$
 - 求解线性方程组方法多如逐次超松弛迭代法效率更高

```
1: Pick a starting vector \mathbf{x}^{(0)} \in \mathbb{R}^n, such that \|\mathbf{x}^{(0)}\| = 1;
```

- 2: For $k = 1, 2, \dots$;
- 3: Solve $A\mathbf{v} = \mathbf{x}^{(k-1)}$ for \mathbf{v} ;
- 4: Let $\mathbf{x}^{(k)} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$;
 - 其收敛性分析与幂法相同
 - 对奇异矩阵,不能使用反幂法

平移法

- $A \mu I$ 的特征值为 $\lambda_i \mu$
- 给定 μ , 计算矩阵 A 最接近 μ 的特征值
- 1: Pick some μ close the desired eigenvalue;
- 2: Pick a starting vector $\mathbf{x}^{(0)} \in \mathbb{R}^n$, such that $\|\mathbf{x}^{(0)}\| = 1$;
- 3: For $k = 1, 2, \cdots$;
- 4: Solve $(A \mu I)\mathbf{v} = \mathbf{x}^{(k-1)}$ for \mathbf{v} ;
- 5: Let $\mathbf{x}^{(k)} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$;
 - 其收敛性与幂法相同
 - 通过选择不同的 μ ,可以找到矩阵 A 更多的特征值
 - 如何确定 μ? (二分查找)

课 Content 程 提

1 算法引入

2 幂法

3 瑞丽商迭代法

牛顿迭代法

- 假设 r 是方程 f(x) = 0 的一个解,如果 f(x) 是一个可微函数,如何求它的解?
- 牛顿迭代法
 - 1: Pick a starting point x_0 ;
 - 2: Until the convergence condition;

3:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)};$$

- 假定真实解为 r, $h = x_n r$ 表明 x_n 距离真实解的距离
- 当 h 比较小时 $0 = f(r) = f(x_n + h) \approx f(x_n) + hf'(x_n)$ $= f(x_n) + \frac{\mathrm{d}f(x)}{\mathrm{d}x} \big|_{x=x_n} \Delta(x_n)$

瑞利商

- 瑞利商 (Rayleigh Quotient)
 - 给定实对称矩阵 A,其瑞利商为 $R_A(\cdot): \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ 的函数
 - 对 $\forall x \in \mathbb{R}^n \setminus \{0\}$,其定义为 $R_A(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$
- 矩阵 A 标准化的特征向量构成一组标准正交基,满足 $v_i^{\mathsf{T}}v_j = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$
- 因此

•
$$\langle x, x \rangle = x^{\mathsf{T}} x = (\sum_{i=1}^{n} c_i v_i)^{\mathsf{T}} (\sum_{i=1}^{n} c_i v_i) = \sum_{i=1}^{n} c_i^2$$

•
$$\langle Ax, x \rangle = x^{\mathsf{T}} Ax = (\sum_{i=1}^{n} c_i v_i)^{\mathsf{T}} (\sum_{i=1}^{n} c_i A v_i) = \sum_{i=1}^{n} \lambda_i c_i^2$$

瑞利商 (续)

·瑞利商改写为
$$R_A(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle} = \frac{\sum_{i=1}^n \lambda_i c_i^2}{\sum_{i=1}^n c_i^2}$$

- 如果 $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$,则
 - $\bullet \ \lambda_1 = \max_{\mathbb{R}^n \setminus \{0\}} R_A(x)$
 - $\bullet \ \lambda_n = \min_{\mathbb{R}^n \setminus \{0\}} R_A(x)$
 - 对实矩阵 A, v_j 为特征值 λ_j 对应的特征向量,则 $R_A(v_j) = \lambda_j$
 - 因此 $\lambda_1 \geq R_A(x) \geq \lambda_n$

瑞利商迭代法

- 在平移法中,放松固定平移值 μ 的假设
 - 每轮迭代中平移值随着迭代向量的变化而变化
 - 瑞利商迭代法

```
1: Pick a starting vector \mathbf{x}^{(0)} \in \mathbb{R}^n, such that \|\mathbf{x}^{(0)}\| = 1;

2: Let \lambda^{(0)} = r(\mathbf{x}^{(0)}) = (\mathbf{x}^{(0)})^T A \mathbf{x}^{(0)};

3: For k = 1, 2, \cdots;

4: Solve (A - \lambda^{(k-1)}I)\mathbf{v} = \mathbf{x}^{(k-1)} for \mathbf{v};

5: Let \mathbf{x}^{(k)} = \frac{\mathbf{v}}{\|\mathbf{v}\|};

6: Let \lambda^{(k)} = r(\mathbf{x}^{(k)}) = (\mathbf{x}^{(k)})^T A \mathbf{x}^{(k)};
```

- 当实矩阵 A 是对称矩阵时,瑞利商迭代法一定收敛
 - 瑞利商迭代法为什么收敛?
 - 收敛到什么?

瑞利商迭代法分析

- 定义函数 $f(v, \lambda) = Av \lambda v$
- 计算函数 $f(v, \lambda)$ 的全微分 $(\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y)$, 得到 $\Delta f(v, \lambda) = (A \lambda I) \Delta v (\Delta \lambda) v$
- 牛顿迭代法第 k+1 轮给出的近似解可以计算为 $0 = f(v_k, \lambda_k) + \Delta f(v_k, \lambda_k)$ $= (A \lambda_k I)(v_k + \Delta v_k) (\Delta \lambda_k)v_k$ $= (A \lambda_k I)v_{k+1} (\Delta \lambda_k)v_k$
- 因此, $v_{k+1} = (\Delta \lambda_k)(A \lambda_k I)^{-1}v_k$

瑞利商迭代法收敛性分析

• 为简单起见,仅考虑两个最大的主特征值

$$R_{A}(x^{(k)}) \approx \frac{(c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2})^{T}(c_{1}\lambda_{1}^{k+1}v_{1} + c_{2}\lambda_{2}^{k+1}v_{2})}{(c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2})^{T}(c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2})}$$

$$= \frac{c_{1}^{2}\lambda_{1}^{2k+1} + c_{2}^{2}\lambda_{2}^{2k+1}}{c_{1}^{2}\lambda_{1}^{2k} + c_{2}^{2}\lambda_{2}^{2k}} = \lambda_{1} + O\left(\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2k}\right)$$

- ullet 瑞利商迭代法是收敛的,其极限为最大主特征值 λ_1
- ullet 随着迭代次数的增加,瑞利商收敛速度取决于 $\left(rac{\lambda_2}{\lambda_1}
 ight)^2$

瑞利商迭代法 VS 幂法

降阶技术

- 矩阵 A 标准化的特征向量构成一组标准正交基,满足 $v_i^{\mathsf{T}}v_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- 通过正交分解可得 $A = \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}$
 - 。求得主特征值 λ_1 后,构造矩阵 $A^{(1)} = \sum_{i=2}^{n} \lambda_i v_i v_i^{\mathsf{T}}$
 - 因为 $A^{(1)} = \sum_{i=2}^{n} \lambda_i v_i v_i^{\mathsf{T}} = A \lambda_1 v_1 v_1^{\mathsf{T}}$
 - 计算 $A^{(1)}v_i = \begin{cases} 0 & \text{if } i = 1 \\ \lambda_i v_i & \text{otherwise} \end{cases}$

降阶技术 (续)

- 通过降阶技术,把原矩阵的特征值变为 $0,\lambda_2,...,\lambda_n$,且满足 $|\lambda_2| \ge ... \ge |\lambda_n| \ge 0$
- •运用幂法或者瑞利商迭代法可以进一步求解矩阵 $A^{(1)}$ 的主特征值
- 依次迭代,定义矩阵 $A^{(k+1)} = A^{(k)} \lambda_k v_k v_k^{\mathsf{T}}$,求得后续特征值和特征向量

本章小结

- 特征值计算方法
 - 幂法
 - 反幂法
 - 瑞利商迭代法
 - 降阶方法
- 特征值与特征向量的应用场景
 - 图中顶点 PageRank 值
 - 图鲁棒性度量
 - 特征提取
 - 数据降维