Sparse Table

Oscar Gauss Carvajal Yucra

1 Introducción

En este escrito veremos el funcionamiento de la estructura $Sparse\ Table$, esta estructura nos permitirá responder preguntas en rangos de un vector con una complejidad de O(1) para aquellas operaciones que sean asociativas 1 e idempotentes 2 . Con un preproceso de $O(Nlog_2N)$ donde N es el tamaño del vector.

2 Preproceso

Para que la estructura se entienda trabajaremos con la operación *mínimo* ya que es asociativo e idempotente, para trabajar con otra operación que sea asociativa e idempotente se trabaja de forma análoga.

Este algoritmo se basa en la idea de Divide y Vencerás memorizando los resultados en una tabla de $N \times log_2 N$.

Llamemos a la tabla de memorización 'ST', la posición ST[i][j] nos guardara el índice del mínimo elemento del rango que empieza en j y tiene una longitud de 2^i .

En el siguiente vector de longitud 9:

índice:	0	1	2	3	4	5	6	7	8
A[9]:	9	20	-8	5	13	2	5	4	11

la posición $i=2,\ j=3$ de ST alojaría el índice 5 (A[5]=2) ya que es el índice del mínimo elemento del rango que empieza en j=3 y tiene longitud $2^2=4$ en otras palabras es el índice del menor elemento de entre los elementos A[3]=5, $A[4]=13,\ A[5]=2$ y A[6]=5.

La posición i=3, j=1 de ST alojaría el índice 2 (A[2]=-8) ya que es el índice del mínimo elemento del rango que empieza en j=1 y tiene longitud $2^3=8$ en otras palabras es el índice del menor elemento de entre los elementos A[1]=20, A[2]=-8, A[3]=5, A[4]=13, A[5]=2, A[6]=5, A[7]=4 y A[8]=11.

 $^{^1}$ La asociatividad indica que, cuando existen tres o más cifras en estas operaciones, el resultado no depende de la manera en la que se agrupan los términos.

²La idempotencia es la propiedad para realizar una acción determinada varias veces y aun así conseguir el mismo resultado que se obtendría si se realizase una sola vez.

La posición $i=3,\,j=4$ de ST no alojaría nada por que el rango que empieza en j=4 y tiene longitud $2^3=8$ no existe.

La tabla ST completa asociado al vector de arriba es:

ST[4][9]:	i∖j	0	1	2	3	4	5	6	7	8
	0	0	1	2	3	4	5	6	7	8
	1	0	2	2	3	5	5	7	7	-
	2	2	2	2	5	5	5	-	-	-
	3	2	2	-	-	-	-	-	-	-

Los valores de la primera fila cuando i=0 (donde se alojan los rangos que empiezan en j y tiene longitud $2^0=1$) es sencillo de calcular solo es j por que el rango solo tiene un elemento.

$$ST[0][j] = j$$

Para calcular los valores de la segunda fila cuando i=1 (donde se alojan los rangos que empiezan en j y tienen longitud $2^1=2$) debemos observar la fila anterior y preguntar por el elemento de índice ST[0][j] y por el elemento de índice ST[0][j+1] y elegir el menor.

$$ST[1][j] = \begin{cases} ST[0][j] & \text{si } A[ST[0][j]] \le A[ST[0][j+1]] \\ ST[0][j+1] & \text{si } A[ST[0][j+1]] < A[ST[0][j]] \end{cases}$$

Para calcular los valores de la tercera fila cuando i=2 (donde se alojan los rangos que empiezan en j y tienen longitud $2^2=4$) debemos observar la fila anterior y preguntar por el elemento de índice ST[1][j] y por el elemento de índice ST[1][j+2] y elegir el menor.

$$ST[2][j] = \begin{cases} ST[1][j] & \text{si } A[ST[1][j]] \le A[ST[1][j+2]] \\ ST[1][j+2] & \text{si } A[ST[1][j+2]] < A[ST[1][j]] \end{cases}$$

Para calcular los valores de la cuarta fila cuando i=3 (donde se alojan los rangos que empiezan en j y tienen longitud $2^3=8$) debemos observar la fila anterior y preguntar por el elemento de índice ST[2][j] y por el elemento de índice ST[2][j+4] y elegir el menor.

$$ST[3][j] = \begin{cases} ST[2][j] & \text{si } A[ST[2][j]] \le A[ST[2][j+4]] \\ ST[2][j+4] & \text{si } A[ST[2][j+4]] < A[ST[2][j]] \end{cases}$$

Una vez entendido como construir las columnas i > 0 podemos generalizar la construcción de la tabla de la siguiente manera.

$$ST[i][j] = \begin{cases} j & \text{si } i = 0 \\ ST[i-1][j] & \text{si } A[ST[i-1][j]] \le A[ST[i-1][j+2^{i-1}]] \\ ST[i-1][j+2^{i-1}] & \text{en otro caso} \end{cases}$$

Ahora veamos una implementación en C++, y recordar que para calcular 2^x de forma rápida en C++ debemos usar el desplazamiento de bits 1 << x.

```
#define N 500050
   #define LN 20
   long long A[N];
   int ST[LN][N];
   void STInit(int n){
      for (int j=0; j<n; j++) ST[0][j]=j;
for (int i=1; (1<<i )<=n; i++)
         for(int j=0; j+(1<<i)<=n; j++){
10
            int a=ST[i-1][j]; // primera mitad
int b=ST[i-1][j+(1<<(i-1))]; // segunda mitad</pre>
11
12
           if( A[a] < A[b]) ST[i][j] = a;</pre>
13
14
            else ST[i][j]=b;
15
16
```

Donde LN es un valor techo aproximado de log_2N , A es el vector donde están los elementos y ST que es la tabla que vimos atrás.

En lugar de guardar índices también se puede guardar el valor de la operación realizada.

3 Query

Ahora con la tabla creada ST debemos ser capaces de responder en O(1) cual es el elemento mínimo dado un rango del vector.

Dado un rango [I,J] del vector podemos decir que una parte o toda la respuesta esta en algún lugar de la columna I por que sabemos que la columna I guarda los resultados de los rangos que empiezan en I. También podemos decir que en la posición i=0, j=J esta parte o toda la respuesta ya que el rango por lo menos incluye un elemento osea que J-I+1>=1, si $J-I+1\geq 2$ podemos decir que en la posición i=1, j=I esta parte o toda la respuesta, si $J-I+1\geq 4$ podemos decir que en la posición i=2, j=I esta parte o toda la respuesta, si $J-I+1\geq 8$ podemos decir que en la posición i=3, j=I esta parte o toda la repuesta, y así hasta que para algún x no cumpla que $J-I+1\geq 2^x$.

Debemos encontrar el máximo x que cumpla $J-I+1\geq 2^x$ despejando tenemos $x=log_2(J-I+1)$ entonces estamos seguros que se cumple $J-I+1\geq 2^x$ y podemos estar seguros que ST[x][I] esta parte o toda la respuesta por que guarda la respuesta del prefijo de longitud 2^x del rango, también podemos preguntar por $ST[x][J-2^x+1]$ por que guarda la respuesta del sufijo de longitud 2^x del rango.

Entonces tenemos:

$$Query(I,J) = \begin{cases} ST[x][I] & \text{si } A[ST[x][I]] \le A[ST[x][J-2^x+1]] \\ ST[x][J-2^x+1] & \text{en otro caso} \end{cases}$$
 donde x es $log_2(J-I+1)$

Veamos un ejemplo, si queremos preguntar por el rango [2,6] nuestro x seria 2, cumpliendo con $5 \ge 2^2 (J - I + 1 \ge 2^x)$ y debemos preguntar por las casillas

$$i = x = 2, j = I = 2$$
 y por $i = x = 2, j = J - 2^{x} + 1 = 3$.

indice	9	20	-8	5	13	2	5	4	11
A:	0	1	2	3	4	5	6	7	8

	i	i,j	0	1	2	3	4	5	6	7	8	
		0	0	1	2	3	4	5	6	7	8	
ST[4][9]	: [1	0	2	2	3	5	5	7	7	-	
		2	2	2	2	5	5	5	-	-	-	
		3	2	2	/ -	-\	-	-	-	-	-	
indice del minimo del rango:												
indice	-8	5	1	3	2		indic	e	5	13	2	5
A[2-5]	2	3	4	4	5		A[3-6]		3	4	5	6

Siendo el resultado 2 lo que significa que del rango [2,6] el mínimo elemento se encuentra en la posición 2 que es el valor A[2] = -8 siendo el elemento buscado. Ahora veamos una implementación en C++:

```
int STQuery(int I, int J){
   int x=32-_builtin_clz(J-I+1)-1;
   if( A[ ST[x][I] ] < A[ ST[x][ J-(1<<x)+1 ] ] )
   return ST[x][I];
   return ST[x][J-(1<<x)+1];
}</pre>
```

Para hallar $log_2(M)$ en C++ se puede hacer de una forma muy ingeniosa: Restamos 32 con la cantidad de ceros a la izquierda que tiene el entero M con $_builtin_clz(M)$ así tendremos la cantidad de bits que se usa para representar M en binario sin ceros a la izquierda. Si M fuera 8 entonces $32-_builtin_clz(M)$ llegaría a ser 4, si M fuera 9 entonces $32-_builtin_clz(M)$ llegaría a ser 5. Entonces x llegaría a ser el resultado anterior menos 1. Al final tenemos que $log_2(M)=32-_builtin_clz(M)-1$

4 Bibliografía

https://www.topcoder.com/community/data-science/data-science-tutorials/