

University of Applied Sciences

FACHBEREICH
INGENIEUR- UND
NATURWISSENSCHAFTEN

PROTOKOLL PHYSIKALISCHE CHEMIE

Adsorptionsisotherme (ADS)

Erscheinungen an Phasengrenzen

Gruppe 3.2 (BCUC4)

Teilnehmer:

Roman-Luca Zank

Protokollführer: Roman-Luca Zank

Datum der Versuchsdurchführung: Online

Abgabedatum: 05.08.2020

Status: Erstabgabe

Merseburg den 05.08.2020

Inhaltsverzeichnis

1	Einleitung und Versuchsziel	2		
2	Versuchsdurchführung	5		
3	Ergebnisse	6		
4	Fehlerbetrachtung	6		
5	Diskussion der Ergebnisse	6		
6	Zusammenfassung und Fazit	6		
Lit	Literaturverzeichnis			
Ar	nhang	8		

1 Einleitung und Versuchsziel

Im theoretischen Praktikumsversuch "Adsorptionsisotherme" werden die zur Verfügung gestellten Messdaten, für die Adsorption einer wässrigen Kaliumiodid-Lösung an Aktivkohle, ausgewertet. Es ist anzunehmen, dass die Messdaten unter Raumtemperatur aufgenommen wurden. Zur Beschreibung der Adsorptionsisotherme sind die Modelle von Freundlich und Langmuir anzuwenden.

Theoretische Grundlagen

Um das sich einstellende Gleichgewicht der Beladung b bei konstanter Temperatur beschreiben zu können, werden Adsorptionsisotherme genutzt. Sie geben als Funktion die Beladung b, je nach Aggregatzustand des Adsorptives, in Abhängigkeit vom Druck p oder der Konzentration c an. Alternativ kann auch anstelle der Beladung b der Bedeckungsgrad Θ genutzt werden.

Grundbegriffe

Adsorption und Desorption

Wird das Binden von Teilchen an eine flüssige oder feste Phasengrenze provoziert, so spricht man bei diesem Vorgang von Adsorption. Das Ablösen der Teilchen von einer solchen Phasengrenze nennt sich Desorption. Die Teilchen, welche an eine feste oder flüssige Phasengrenze adsorbieren können selbst aus einer festen, flüssigen oder gasförmigen Phase entstammen. In der Praxis findet sich häufiger die Adsorption von Teilchen an eine feste Phasengrenze.

Je nachdem welcher Mechanismus beim Adsorptionsprozess wirkt, wird dieser entweder der Chemisorption, aufgrund von sich ausbildenden chemischen Bindungen oder der Physisorption zugeordnet. Letztere liegt in diesem theoretischen Versuch vor und beruht auf physikalischen Wechselwirkungen zwischen der Phasengrenze und den zu adsorbierenden Teilchen.

Nomenklatur von Adsorptionsvorgängen

Um die Mechanismen der Adsorption beschreiben zu können, werden verschiedene Fachtermini genutzt, welche zum Teil in Abbildung 1 dargestellt sind. Im folgenden ist eine Kurzbeschreibung der wichtigsten Begriffe aufgelistet:

- Adsorbat, hier Iod: der adsorbierter Stoff
- Adsorbens, hier Aktivkohle: das adsorbierende Material
- Adsorptiv, hier Kaliumiodid-Lösung: stoffabgebende Phase

Abb. 1: Skizze zu Begriffen der Adsorption

Um zu quantifizieren wie gut oder in welchem Ausmaß ein Adsorptionsprozess abläuft oder abgelaufen ist, werden die Begriffe Beladung b und Bedeckungsgrad Θ eingeführt. Die Beladung b beschreibt dabei das Verhältnis zwischen der Masse von Adsorbat zur Masse des Adsorbens (siehe Gl. 1).

$$b = \frac{m_{\text{Adsorbat}}}{m_{\text{Adsorbens}}} \tag{1}$$

Für die relative Beladung, sprich dem Bedeckungsgrad Θ , wird eben diese Beladung in das Verhältnis für die maximale Beladung des Adsorbens gesetzt (siehe Gl. 2). Die maximale Beladung b_{∞} wird dabei unter der Annahme bestimmt, dass die Adsorptionsplätze der Adsorbensoberfläche alle monomolekular besetzt sind.

$$\Theta = \frac{b}{b_{\infty}} \tag{2}$$

Freundlich-Isotherme

$$b = k \cdot c^n \qquad | \ln (...)$$

$$\ln(b) = \ln(k) + n \cdot \ln(c) \tag{3}$$

Langmuir-Isotherme

$$\frac{1}{b_{\infty}} \cdot \frac{1}{K} \cdot \frac{1}{c} + \frac{1}{b_{\infty}} = \frac{1}{b} \qquad | \cdot c |$$

$$\frac{1}{b_{\infty}} \cdot \frac{1}{K} + \frac{1}{b_{\infty}} \cdot c = \frac{c}{b} \qquad | \cdot b |$$

$$\frac{b}{b_{\infty}} \cdot \frac{1}{K} + \frac{b}{b_{\infty}} \cdot c = c \qquad | \frac{b}{b_{\infty}} = \Theta$$

$$\Theta \cdot \frac{1}{K} + \Theta \cdot c = c$$

$$\Theta \cdot \left(\frac{1}{K} + c\right) = c$$

$$\Theta = \frac{b}{b_{\infty}} = \frac{c}{\frac{1}{K} + c}$$
(4)

 KI Lösung warum ? Citavi Website G Esetzmäßigkeit ? Lambert Beersches Gesetz Warum Extinktion über 1,5 kritisch

2 Versuchsdurchführung

Geräte

- $\hbox{-} Spektral fotometer \\$
- Schüttelmaschine
- Pipetten
- Erlenmeyerkolben
- Maßkolben

- 3 Ergebnisse
- 4 Fehlerbetrachtung
- 5 Diskussion der Ergebnisse
- 6 Zusammenfassung und Fazit

Literatur

- [1] FOTH, Hans-Jochen: Freiheitsgrad. Version: 2005. https://roempp.thieme.de/lexicon/RD-06-01838, Abruf: 02.07.2020
- [2] STEPHAN, Peter; KABELAC, Stephan; KIND, Matthias: VDI-Wärmeatlas: Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. 12th ed. 2019. MORGAN KAUFMANN, 2019 (VDI Springer Reference). http://dx.doi.org/10.1007/978-3-662-52989-8. http://dx.doi.org/10.1007/978-3-662-52989-8. ISBN 3662529890

Hochschule Merseburg (FH) FB Ingenieur- und Naturwissenschaften **Praktikum Physikalische Chemie**

Gruppe:

Name: 25 06.2020 Datum:

CUC 4 Matrikel:

Versuchsauswertung "Binäres Dampf-Flüssigkeits-Gleichgewicht"

Komponente 1: Ethans

Komponente 2: Cyclohexan

Luftdruck (Hg-Barometer, temperaturkorrigierter Wert) p/kPa = 100, 841

Messergebnisse (Temperatur, Zusammensetzung von L- und V-Phase)

(Reinstoffdampfdrücke bei Messtemperatur, Aktivitätskoeffizienten, und Berechnungsergebnisse

Partialdrücke)

Nr.	g^{\scriptscriptstyleLV}	SW	x_1^{L}	SW	x_1^{\vee}	p_{01}	p_{02}	<i>γ</i> 1	<i>γ</i> ₂	p_1	p_2
	°C	(L-Phase)	Ethanol	(V-Phase)	Ethonol	kPa Etherel	kPa Gloharan	Ethanol	Cyclohera	kPa CHamel	kPa Cydoleson
1	78,709	1,359	O ₁ \$36	1,358	1,005	102,361	9 5,315	O ₇ 934	-1,322	101,345	-0,504
2	74,350	1,360	0,987	1,375	0,826	85,610	83,300	0,986	16,203	83,235	17,546
3	71,380	1,365	0, 338	1,383	0,723	75,586	75,819	1,028	5,342	72,308	27, 933
4	63,444	1,368	0,907	1,387	0,667	63,605	71,235	1,005	5,063	67,261	33,580
5	68,168	1,371	0,873	1,391	0,607	65,883	68, 336	1,064	4,566	61,210	39,631
6	67,277	1,374	0,838	1,333	0,576	63,335	66,367	1,093	3,977	58,084	42,757
7	66,160	1,381	0,750	1,335	0,545	60, 383	63,962	1,214	2,869	54,358	45,883
8	77,996	1,423	0,013	1,420	0,082	93,444	93,26Z	4,376	1,012	8,269	92,752
9	73,657	1,422	0,040	1,413	0,224	83, 175	81,505	6,783	1,000	22,588	78,253
10	70,381	1,422	0,040	1,408	0,313	72,447	73,426	11,101	0,974	37,168	68,673
11	68,180	1,420	0,082	1,406	0,356	65, 923	68,362	6,641	1,035	3 5 , 8 33	64, 3 42
12	65,843	1,414	ol z oa	1,402	0,427	53, 813	63, 503	3,523	1,143	43,059	57, 782
13	65, 374	1,407	0,338	1,401	0,445	58,338	62,312	2,276	1,357	44, 874	55,847
14											

Azeotroper Punkt bei

 $9/^{\circ}C(az) = 65.15$ $x_1^{L}(az) = 0.455$ $9/^{\circ}C(az) = 65.14$ $x_1^{L}(az) = 0.545$ Literaturvergleich:

exakte Angabe der Literaturquelle:

WE

Berechnete Parameter des WILSON-Modells:

 $\lambda_{12}/(K) = 0,2449$ $\lambda_{21}/(K) = 0,2265$