

Bridging knowledge gaps with technology

HUMAN HEALTH RISKS IN SPACE EXPLORATION

Susana (Susi) Zanello, Ph.D.
Universities Space Research Association (USRA)
NASA Johnson Space Center (JSC)

HUMAN EXPLORATION

NASA's Path to Mars

EARTH RELIANT

MISSION: 6 TO 12 MONTHS
RETURN TO EARTH: HOURS

Mastering fundamentals
aboard the International
Space Station

U.S. companies
provide access to
low-Earth orbit

PROVING GROUND

MISSION: 1 TO 12 MONTHS
RETURN TO EARTH: DAYS

Expanding capabilities by
visiting an asteroid redirected
to a lunar distant retrograde orbit

Traveling beyond low-Earth orbit
with the Space Launch System
rocket and Orion spacecraft

MARS READY

MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS

Exploring Mars, its moons
and other deep space
destinations

Human Research Roadmap

- The NASA Human Research Program (HRP) uses an Integrated Research Plan to identify the approach and research activities planned to address these risks
- <http://humanresearchroadmap.nasa.gov/>

Space Radiation

International Space Station Astronaut Biodosimetry

Total exchanges increased post-mission in all cases

Categories of Radiation Risk

Four categories of risk of concern to NASA:

- **Carcinogenesis (morbidity and mortality risk)**
- **Acute and Late Central Nervous System (CNS) risks**
 - ✓ immediate or late functional changes
- **Chronic & Degenerative Tissue Risks**
 - ✓ cataracts, heart-disease, etc.
- **Acute Radiation Risks** – sickness or death

Differences in biological damage of heavy nuclei in space with x-rays, limits Earth-based data on health effects for space applications

- New knowledge on risks must be obtained
- Confounds biomarker development and interpretation

Visual Impairment and Intracranial Pressure (VIIP) Risk: Proposed Pathophysiology

1. Weightlessness-induced headward fluid shift

2. Fluid shift increases intracranial pressure (ICP)

3. Elevated ICP & fluid shift transmitted to the eye

Courtesy Christian Otto, MD, HRP VIIP Project Scientist, July. 2014

Neurovestibular/Sensorimotor Perturbations

- Space motion sickness
- Spatial disorientation
- Lunar, Mars and post Earth return balance and locomotion problems
- Sensorimotor Training Programs

*The Balance System:
Vestibular
Ocular Reflex*

Risk of bone fracture and early onset of osteoporosis

- Bone atrophy occurs due to space travel.
- DXA-measured areal BMD has been shown to be an incomplete indicator of whole bone strength.
- Knowledge regarding changes in bone geometry and microarchitecture is incomplete.
- The relative contribution of microarchitecture and geometry to bone strength is not known but the literature indicates that it could be substantial.
- Due to the multiple contributors to bone strength, the full impact of spaceflight on whole bone strength is unknown.
- The state of bone loading for different mission scenarios is unknown

EXERCISE PHYSIOLOGY

- ✓ Risk of Impaired Performance Due to Reduced Muscle Mass, Strength and Endurance:

Reduced mass, strength, and endurance in-flight

Crew may be unable to perform mission tasks

CARDIOVASCULAR

- ✓ Risk Of Cardiovascular Disease and Other Degenerative Tissue Effects From Radiation Exposure
- ✓ Risk of Cardiac Rhythm Problems
- ✓ Risk of Orthostatic Intolerance During Re-Exposure to Gravity

TECHNOLOGY AREA NEEDS

Key Technologies

Increase knowledge
Close gaps

Operations
Occupational health
Mission success

Biomedical research

Pharmacokinetics

iPSC- In situ drug delivery

Cell/tissue/animal models

Sensorimotor and exercise countermeasures equipment

Non-exercise countermeasures including artificial gravity

Genomic screening and health status

Biomedical sensors/scanners

Inflight sample analysis

Integrated Biomedical informatics

Non-invasive ICP

Space medicine

Disease and therapeutic monitoring

Autonomous medical decision, simulation and training

Sterilization/surgical methods

Drug delivery/packaging

Non-invasive renal stone treatment

Crosscutting areas

Human Health and Countermeasures

Focuses on understanding, characterizing, and counteracting the body's adaptation to microgravity, enabling healthy astronauts to accomplish mission objectives and return to normal life following a mission.

Autonomous Medical Care:

The capability to provide medical care during a mission with little or no real-time support from Earth.

Behavioral Health and Performance (BHP):

Focuses on maintaining the psychosocial and psycho-physiological functions of the crew throughout space flight missions and providing an optimal set of countermeasures.

Advanced Human Support Technologies (AHST):

Focuses on developing efficient, reliable and autonomous technologies and systems to support human habitation in spacecraft and planetary dwellings.

Discipline Teams

Bone Loss

Cardiovascular Alterations

Environmental Health

Immunology & Infection

Skeletal Muscle Alterations

Sensory-Motor Adaptation

Nutrition

VIIP

Clinical capabilities (space medicine)

Behavioral Health & Performance and Space

Human Factors (Cognitive)

Advanced Environmental Monitoring & Control

Advanced Extravehicular Activity

Advanced Food Technology

Advanced Life Support

Space Human Factors Engineering

EXPLORATION MEDICAL SYSTEMS

VIIP SYNDROME AND NON-INVASIVE ICP MEASUREMENT

Visual and
ocular tests on
ISS

Intracranial
pressure (ICP)
measurement is
invasive

Current non-invasive ICP measurement technologies under evaluation

SCREENING TECHNOLOGIES

- Currently screening done for physical and psychological conditions
- Biomarker screening and health status monitoring for anticipated medical conditions at all systems levels and individual susceptibilities to environmental stressors and disease
- Pre-flight and in-flight personalized medicine and pharmacogenomics for better diagnosis, treatment and prognosis
- Based on more sensitive and specific biomarker tests originating from medical research/industry (pharma and companion diagnostics)

SCREENING/MONITORING TECHNOLOGIES

New Paradigm For Multi-modal Multiplex Diagnostics

- Quantitative
- Save Time
- Broad Dynamic Range
- Mid/High Multiplex

Breadth of Applications

- Infectious Disease
 - Pathogen Detection
 - Viral Load
- Disease, health status, screening
 - Methylation, SNP, CNV
- Non-Clinical Fields of Use
 - Microbial Detection-Food

PHARMACOLOGY: Concern of Clinically Relevant Unpredicted Effects of Medication

DRUG
DELIVERY

PHARMACOKINETICS: time course of drug absorption, distribution, metabolism and excretion.

PHARMACODYNAMICS: relationship between drug concentration at the site of action and the resulting effect

DRUG PACKAGING

- Easy dispensing
- Longer shelf life

MODELS

Microorganism culture (BioServe)

Cell culture

Cell culture system (Wyle)

Tissue culture

Bioreactor

Human body on a chip

Plant/Animal models

Biomass production system (Orbitec)

Biosentinels
('biological instrument', an organism that can help us understand constraints to a certain environment).

ISS

Micro-satellites

Commercial/
International
collaborations
(Russian Bion)

Animal Enclosure Module (AEM)

Examples of ISS Implementation Partners

HUMAN FLIGHT ANALOGS

- A ground analog creates a situation that produces effects on the human body similar to those experienced in spaceflight and space exploration
 - ✓ Physiological
 - ✓ Cognitive/behavioral
- Not all experiments can be done in flight
- Resources are limited (time, dollars)
- Takes significantly longer to complete studies (multiple flights needed to achieve required n)
- Allows for selection of best candidate countermeasures before using them in flight
- Saves time and money as studies can be completed more quickly and less expensively on the ground.

HEAD DOWN TILT BED REST

- 6° Head-down Tilt
 - serves as a model for studying the physiological changes that occur during spaceflight **under controlled conditions**
 - provides a ground-based platform for comparison to spaceflight;
 - provides a mechanism for testing countermeasures prior to being used in flight.
 - Excellent ground-based analog for bone, muscle and cardiovascular systems.

DLR Institute of Aerospace Medicine
Denhivab, Cologne, Germany

NASA Bed Rest
Facility,
Galveston TX

NEEMO AND POLAR ENVIRONMENTS

PARABOLIC FLIGHTS

<https://flightopportunities.nasa.gov/about/program/>

THANK YOU

QUESTIONS?

