# IPv6 Addressing

ICT 2255

### Introduction

- •Reason for migration.
- •128 bits or 16 bytes or 16 octets.

#### Notation

- Binary
- Dotted-Decimal
  - •To be compatible with IPv4.
  - •Too long for 16-byte addresses.
- Colon Hexadecimal (colon hex)
  - •128 bits divided into 8 sections.
  - •Each section is 2 Bytes.
  - •Uses **hex** digits separated by a **colon**.

#### Colon Hexadecimal: Abbreviation

- •Many of the digits are zeros, hence can be abbreviated.
- •Leading zeros can be omitted.
- •Zero Compression : Applied only once per address.

### Mixed Representation

- Colon hex and dotted-decimal.
- •Appropriate during the transition period in which an IPv4 address is embedded in an IPv6 address (as the rightmost 32 bits).
- •Happens when all or most of the leftmost sections of the IPv6 address are 0s.
- Example

(::130.24.24.18)

#### CIDR Notation

- •IPv6 uses hierarchical addressing.
- •Hence, allows classless addressing and CIDR notation.
- •Example: FDEC::BBAA:0:FFFF/60

- •Show the unabbreviated colon hex notation for the following IPv6 addresses.
- a. 64 0s followed by 64 1s.
- b. 128 0s.
- c. 128 1s.
- d. 128 alternative 1s and 0s.
- •Show the zero contraction version of the above addresses.

#### •Abbreviate:

- a. 0000: 0000: FFFF: 0000: 0000: 0000: 0000
- b. 1234: 5678: 0000: 0000: 0000: 0000: 0000: 1111
- c. 0000: 0001: 0000: 0000: 0000: 0000: 1200: 1000
- d. 0000: 0000: 0000: 0000: FFFF: 24.123.12.6

#### Decompress

```
a. 1111 :: 2222
```

b. ::

c. 0:1::

d. AAAA: A: AA :: 1234

### Address Types

- Unicast Address
- Anycast Address (No separate block assigned)
- Multicast Address
- •Broadcasting??

### Address Space

- •2<sup>128</sup> addresses.
- •2<sup>96</sup> times of IPv4.
- •Current human population?
- •With 16 billion humans (2<sup>34</sup>), each person can have 2<sup>94</sup> addresses.
- •If we assign 2<sup>60</sup> addresses to each user each year, it takes 2<sup>68</sup> years to deplete address.

### Address Space Allocation



 $1/8 = 2^{125}$  addresses in each section.

#### Global Unicast Addresses

- •Block Prefix: 001
- •CIDR: 2000:: /3 →3 leftmost bits are same for all addresses in the block.
- •3 Levels of Hierarchy.



- •Global Routing Prefix (48 bits):
  - Route the packet through the Internet to the organization site.
  - How many sites can be defined?
- •Subnet Identifier (16 bits): How many subnets in an organization can be identified?

#### Global Unicast Addresses: Interface Identifier

- •64 bits (similar to hostid in IPv4). Nomenclature?
- •Relation between the hostid (at the IP level) and MAC address (at DLL).
  - Not possible in IPv4. Why?
  - Possible in IPv6, albeit with a constraint.
- Embedding facility of physical address eliminates the mapping process.
- •Two common physical addressing schemes to be considered:
  - •Extended Unique Identifier (EUI-64) defined by IEEE.
  - •MAC address defined by ethernet.

#### EUI-64 to Interface Identifier



•Find the interface identifier if the physical address in the EUI is

#### MAC address to Interface Identifier



•Find the interface identifier if the Ethernet physical address is

Q: An organization is assigned the block 2000:1456:2474/48. What is the CIDR notation for the blocks in the first and second subnets in this organization?

Ans: 2000:1456:2474:0000/64 and 2000:1456:2474:0001/64.

Q: An organization is assigned the block 2000:1456:2474/48. What is the IPv6 address of an interface in the third subnet if the IEEE physical address of the computer is (**F5-A9-23-14-7A-D2**)<sub>16</sub>?

Ans: 2000:1456:2474:0002:F7A9:23FF:FE14:7AD2/128



## Reserved/Assigned: First Section



## Reserved/Assigned: First Section

|   | Block Prefix | CIDR     | Block Assignment           | Fraction |
|---|--------------|----------|----------------------------|----------|
| 1 | 0000 0000    | 0000::/8 | Reserved (IPv4 compatible) | 1/256    |
| _ | 0000 0001    | 0100::/8 | Reserved                   | 1/256    |
|   | 0000 001     | 0200::/7 | Reserved                   | 1/128    |
|   | 0000 01      | 0400::/6 | Reserved                   | 1/64     |
|   | 0000 1       | 0800::/5 | Reserved                   | 1/32     |
|   | 0001         | 1000::/4 | Reserved                   | 1/16     |

How many addresses for the first sub-block? 2<sup>120</sup>

### Reserved/Assigned: First Section

Unspecified Address (::/128)

Used during Bootstrap.

 8 bits
 120 bits

 00000000
 All 0s

 Prefix
 Suffix

Loopback Address (::1/128)

Embedded IPv4 Address

Compatible

Mapped





### Address Space Allocation



 $1/8 = 2^{125}$  addresses in each section.



## Reserved/Assigned: Last Section

| 8 | 1110         | E000::/4  | Reserved             | 1/16   |
|---|--------------|-----------|----------------------|--------|
|   | 1111 0       | F000::/5  | Reserved             | 1/32   |
|   | 1111 10      | F800::/6  | Reserved             | 1/64   |
|   | 1111 110     | FC00::/7  | Unique local unicast | 1/128  |
|   | 1111 1110 0  | FE00::/9  | Keserved             | 1/512  |
|   | 1111 1110 10 | FE80::/10 | Link local addresses | 1/1024 |
|   | 1111 1110 11 | FEC0::/10 | Reserved             | 1/1024 |
|   | 1111 1111    | FF00::/8  | Multicast addresses  | 1/256  |

IPv6 uses two large blocks for private addressing: one at the site level and one at the link level.

### Unique Local Unicast Block

•A subblock in a unique local unicast block can be privately created and used by a site.



- •The packet carrying this type of address as the destination address is **not** expected to be routed.
- •8<sup>th</sup> bit can be 0 or 1 to define how the address is selected (locally or by an authority).
- •First 48 bits defines a subblock that looks like a global unicast address.

#### Link Local Block

- •A subblock in this block can be used as a private address in a network.
- •Has the block identifier 1111111010. The next 54 bits are set to zero.
- •The last 64 bits can be changed to define the interface for each computer.



n = 48 bits

#### Multicast Block

- •Multicast addresses are used to define a group of hosts instead of just one.
- •In IPv6 a large block of addresses are assigned for multicasting.
- •The third field defines the **scope of the group** address.



### Autoconfiguration

- 1. The host first creates a link local address for itself. How?
- 2. The host then tests to see if this link local address is unique and not used by other hosts.
  - Sends a *neighbor solicitation message* and waits for *neighbor advertisement message*.
  - If fails, uses other means for the purpose.
- 3. The host stores this address as its link-local address (for ?) and generates a global unicast address.
  - Sends a *router solicitation message* to a local router and waits for *router advertisement message* (content?).

- •Assume a host with Ethernet address (**F5-A9-23-11-9B-E2**)16 has joined the network.
- •Global unicast prefix of the organization is 3A21:1216:2165.
- •Subnet identifier is A245.
- •What would be its global unicast address?

### Renumbering

- •Renumbering of the address prefix (n) was built into IPv6 addressing.
- •Each site is given a prefix by the service provider to which it is connected.
- •If the site changes the provider, the address prefix needs to be changed.
- During the transition period, a site has two prefixes.
- •Problem?

### Book

•Behrouz A. Forouzan, "TCP/IP Protocol Suite", 4th Ed. Chapter 26.