

misez sur les compétences qui feront la différence.

CRÉATEUR DE COMPÉTENCES

Circuits logiques 1 Circuits combinatoires

- Algèbre de Boole
- Fonctions d'une variable
- Fonctions de deux variables
- Synthèse d'un circuit combinatoire
- Analyse d'un circuit combinatoire
- Multiplexeurs et démultiplexeurs
- Décodeurs Codeurs Transcodeurs

Introduction

Les **circuits logiques** exécutent des opérations sur des variables logiques, transportent et traitent des signaux logiques.

On distingue deux types de circuits logiques :

- les circuits **combinatoires** qui sont des circuits idéalisés où le temps de propagation des signaux n'est pas pris en considération. Les signaux de **sortie** ne **dépendent** que des signaux **d'entrée**, appliqués à l'instant considéré ;
- les circuits **séquentiels** qui sont des circuits où il faut **tenir compte du temps de propagation des signaux et de la mémoire du circuit**. Les signaux de sortie dépendent des signaux d'entrée appliqués antérieurement.

Algèbre de Boole

- La **fonction logique** d'un circuit combinatoire peut se **définir** par le tableau de correspondance entre les états d'entrée et les états de sortie.
- Un tel tableau est appelé table de vérité.
- La table de vérité d'une fonction de **n variables** a autant de **lignes** que d'états d'entrée, soit **2**ⁿ .
- Toute **fonction logique** peut être **réalisée** à l'aide d'un petit nombre de fonctions logiques de base appelées aussi **opérateurs logiques** ou **portes** [gates].
- Pour chacun de ces états, la sortie peut prendre la valeur 0 ou 1. Ainsi, pour n variables on a (2²)ⁿ fonctions possibles.

Fonctions d'une variable

La table de vérité des fonctions d'une variable a donc deux états d'entrée.

	а		Z_0	Z_1	Z_2	Z_3	$Z_0 = 0$	constante
•		 					$Z_1 = a$	identité
1 0 1 0 1 $Z_3=1$ constante	0		0	0	1	1	$Z_2 = \overline{a}$	complémentation
	1		0	1	0	1	$Z_3 = 1$	constante

Fonctions logiques d'une variable a

On définit ainsi un ensemble de 2 ² = 4 fonctions d'une variable.

L'opérateur NON [NOT]

la fonction Z_2 , dite de complémentation, est réalisée par l'opérateur NON ou **inverseur** (Z = a).

Fonctions de deux variables

 La table de vérité des fonctions de deux variables a et b indique qu'il y a 16 fonctions possibles pour ces deux variables.

Symboles des principaux opérateurs logiques

Fonctions de deux variables Les opérateurs ET [AND] et OU [OR]

Table de vérité des fonctions ET et OU

- La fonction intersection ou produit logique $Z = a \times b = ab = a \cap b$ est réalisée par l'opérateur ET. Z vaut 1 si et seulement si a et b valent 1.
- La fonction réunion ou somme logique Z = a + b = a U b est réalisée par l'opérateur
 OU. Z vaut 1 si a ou b ou les deux valent 1 .
- Les trois fonctions NON, ET, OU sont souvent appelées opérateurs de base ; elles définissent à elles seules une importante structure algébrique : l'algèbre de Boole.

industries technologiques

Fonctions de deux variables Théorèmes fondamentaux de l'algèbre de BOOLE

Théorème des constantes	a + 0 = a	$a \times 0 = 0$
	a + 1 = 1	$a \times 1 = a$
Idempotence	a + a = a	$a \times a = a$
Complémentation	$a + \overline{a} = 1$	$a \times a = 0$
Commutativité	a+b=b+a	$a \times b = b \times a$
Distributivité	a + (bc) = (a+b)(a+c)	
	a(b+c) = (ab) + (ac)	
Associativité	a + (b + c) = (a + b) + c =	= a + b + c
	a(bc) = (ab)c = abc	
Théorèmes de De Morgan	$\overline{ab} = \overline{a} + \overline{b}$	$\overline{a+b} = \overline{a} \ \overline{b}$
Autres relations	a = a	a + (ab) = a
	$a + (\bar{a}b) = a + b$	a(a+b) = a
	$(a+b)(a+\overline{b})=a$	

- Voici, en résumé et sans démonstration, les principales propriétés de cette structure algébrique.
- Un minterm est le produit logique de toutes les variables d'entrée apparaissant chacune sous la forme vraie (la variable vaut 1) ou sous la forme complémentée (la variable vaut 0).
- un maxterm est une somme logique de ces variables.

Fonctions de deux variables L'opérateur XOR

a	b	a ⊕	b
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Table de vérité du XOR ($Z = a \oplus b$)

- L'opérateur XOR, appelé aussi OU exclusif [eXclusive OR] réalise une fonction de deux variables où Z vaut 1 si et seulement si une seule des deux variables vaut 1.
 - minterms: $Z = a \oplus b = ab + ab$.
 - maxterms: $Z = a \oplus b = (a + b)(a + b)$.

Fonctions de deux variables Propriétés du XOR

$$a \oplus b = \overline{ab} + a\overline{b}$$

$$a \oplus 0 = a$$

$$a \oplus 1 = \overline{a}$$

$$a \oplus b = b \oplus a$$

$$a \oplus b = \overline{a} \overline{b} + ab = (a+b)(\overline{a}+\overline{b}) = (a+b)\overline{ab}$$

$$\overline{a \oplus b} = ab + \overline{a} \overline{b}$$

$$a \oplus a = 0$$

$$a \oplus \overline{a} = 1$$

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

Propriétés du XOR

Fonctions de deux variables Les opérateurs complets

- Il existe des opérateurs complets tels que différents assemblages d'un même opérateur (complet) **permettent** de **réaliser** les trois fonctions **ET**, **OU** et **NON**.
- Ces opérateurs complets sont les opérateurs NAND et NOR.

Exemple de réalisation des opérateurs ET et OU

Fonctions de deux variables Les opérateurs NAND et NOR

Table de vérité du NAND et du NOR

Réalisation de ET, OU, NON avec des NAND et des NOR

misez sur les compétences qui feront la différence.

On peut les

exprimer les

opérateurs **NON**, **ET**

seul opérateur, soit

et **OU** à partir **d'un**

NAND, soit **NOR**.

on **utilise** ainsi une

logique NAND ou

une logique NOR.

Synthèse d'un circuit combinatoire

- Le **problème** est le suivant : à partir de la **définition** d'une **fonction** logique, par exemple sa table de vérité, il faut **déterminer** un **logigramme** (représentation graphique d'un circuit logique) qui **réalise** cette **fonction**.
- La marche à suivre pour faire la synthèse d'un circuit combinatoire est la suivante :
 - construire la table de vérité de la fonction logique; en dériver une expression algébrique (par exemple, somme logique des minterms);
 - → **simplifier** cette **expression** en la transformant en une expression équivalente plus simple (par exemple, par passage de la forme canonique à un polynôme contenant un nombre minimal d'opérateurs). Il existe plusieurs méthodes de simplification : tables de **Karnaugh**, théorèmes de l'algèbre de Boole ;
 - → réaliser la fonction logique à l'aide d'opérateurs divers (NON, ET, OU, XOR, NAND, NOR, etc). Il existe de nombreuses solutions.

Synthèse d'un circuit combinatoire Tables de Karnaugh

• Les **tables** (ou diagrammes) de **Karnaugh** permettent de **simplifier** des **fonctions** Logiques. Cette méthode est particulièrement utile avec un nombre de **variables**

inférieur à 6.

• Soit une fonction définie par sa table de vérité

$$Z(a,b) = \bar{a}b + a\bar{b} + ab$$

Selon le théorème d'idempotence on peut

écrire :
$$Z(a,b) = \overline{ab} + a\overline{b} + ab$$

d'où :
$$Z = a(b + \overline{b}) + b(a + \overline{a}) = a + b$$

а	b	Z
0 0 1	0 1 0 1	0 1 1 1

	_		a
	b a	0	1
	0		1
b	1	1	1

- Pour remplir la table de Karnaugh à partir de la table de vérité, on attribue la valeur
 1 aux cases correspondantes aux états d'entrée où la fonction est vraie.
- La méthode de simplification consiste à encercler tout ensemble de cases occupées, adjacentes sur la même ligne ou sur la même colonne.
 - Les **recouvrements** sont **permis**. Dans l'exemple Z = a + b

Synthèse d'un circuit combinatoire Table de Karnaugh avec 3 variables

• Soit la fonction Z suivante, exprimée sous sa forme canonique :

$$Z(a,b,c) = \overline{a}\overline{b}\overline{c} + a\overline{b}c + a\overline{b}\overline{c} + abc \; .$$

Table de Karnaugh à trois variables

• L'expression simplifiée est $Z = ac + \overline{bc}$.

Synthèse d'un circuit combinatoire Table de Karnaugh avec 4 variables

• Soit la fonction Z suivante, donnée sous sa forme canonique :

$$Z(a,b,c,d) = \overline{abcd} + \overline{abcd}$$

Table de Karnaugh à quatre variables

• L'expression simplifiée est $Z = d + \overline{bc} + \overline{abc}$.

Synthèse d'un circuit combinatoire Table de Karnaugh avec 4 variables

 Dans une table de Karnaugh, les 4 coins sont des cases adjacentes. Par exemple, avec la forme canonique suivante :

$$Z(a,b,c,d) = \overline{abcd} + a\overline{bcd} + \overline{abcd} + \overline{abcd} + a\overline{bcd}.$$

- D'une façon générale, la **méthode** de **simplification** d'une fonction de quatre variables par Karnaugh est la suivante :
 - encercler d'abord les cases à 1 qui ne sont pas adjacentes à d'autres 1 et ne peuvent donc pas former des blocs de deux cases;
 - encercler celles qui peuvent former des groupes de deux cases mais pas de quatre cases ;
 - encercler celles qui peuvent se combiner en blocs de quatre cases mais pas de huit cases;
 - → enfin, encercler les groupes de huit.

Table de Karnaugh avec les quatre coins occupés

Synthèse d'un circuit combinatoire Synthèse d'un additionneur binaire

- L'additionneur binaire est un circuit logique capable de faire la somme de deux nombres binaires selon le principe de la table d'addition suivante :
- Le demi-additionneur ne tient pas compte de la retenue éventuelle provenant d'une opération précédente.

a	+	b	=	Somme
0	+	0	=	0
0	+	1	=	1
1	+	0	=	1
1	+	1	=	0

Table d'addition

а	b		S		R	
0	0		0		0	S = Somme
0	1		1		0	R = Retenue
1	0	ĺ	1	ĺ	0	
_	_	i	_	i	_	

Table de vérité du demi-additionneur

$$S = \overline{ab} + a\overline{b} = a \oplus b$$
 et $R = ab$

avec une retenue = 1

Synthèse d'un circuit combinatoire Synthèse d'un additionneur binaire

• L'étage d'additionneur est composé de deux demi-additionneurs et d'une

porte OU.

- L'additionneur complet est obtenu en utilisant en parallèle plusieurs étages additionneurs (il faut autant d'étages que de bits composant les nombres binaires).
- Ces étages doivent être connectés : il suffit de connecter chaque sortie R' à l'entrée R de l'étage suivant.

industries technologiques

Synthèse d'un circuit combinatoire Analyse d'un circuit combinatoire

- L'analyse consiste à retrouver la fonction d'un circuit dont on connaît uniquement le logigramme. Cette fonction est unique.
- La marche à suivre pour faire l'analyse d'un circuit combinatoire est la suivante :
 - en **procédant** des **entrées vers** les **sorties**, donner, **pour** chaque **opérateur** l'expression de sa **sortie** en **fonction** de ses **entrées**, jusqu'à obtention d'une expression pour chaque fonction (sortie) réalisée par le circuit ;
 - → donner la table de vérité correspondante ;
 - → en déduire le rôle du circuit.

Synthèse d'un circuit combinatoire Analyse d'un circuit combinatoire

Exemple d'analyse d'un circuit

• Étant donné le logigramme présenté dans la figure, déterminer la fonction X .

b	d		\overline{b}		bd	\bar{d}	X
0	0		1 1		0 0 0 1	1 0	1 1
1 1	0 1		0		0 1	1 0	1 1

Table de vérité

- Expression de la fonction : $X = \overline{b} + bd + \overline{c}d + c\overline{d}$.
- On peut simplifier : $X = \overline{b} + bd + \overline{d}(c + \overline{c}) = \overline{b} + bd + \overline{d}$.
- On obtient $X = \overline{b} + d + \overline{d} = \overline{b} + 1 = 1$.

Synthèse d'un circuit combinatoire Multiplexeurs et démultiplexeurs

- Mis à part l'additionneur, d'autres circuits combinatoires jouent un **rôle important** dans l'ordinateur, en particulier les **multiplexeurs** et les **démultiplexeurs**.
- Le **multiplexeur** (MUX) est un circuit qui accepte **plusieurs** signaux logiques (données) en **entrée** et **n'autorise** qu'un **seul** d'entre eux en **sortie**,
- le **démultiplexeur** (DEMUX) a **une** seule ligne d'**entrée** et de **nombreuses** lignes en **sortie**. Il **transmet l'entrée** sur une seule ligne en **sortie**.

Synthèse d'un circuit combinatoire Multiplexeurs et démultiplexeurs

Démultiplexeur

 On appelle démultiplexeur (DEMUX) tout système combinatoire réalisant les 2ⁿ minterms de n variables qui correspondent aux n lignes de sélection.

Synthèse d'un circuit combinatoire Multiplexeurs et démultiplexeurs

K₀āb

 $K_1 \bar{a} b$

K₂a b̄

 K_3ab

MUX (2 variables)

Multiplexeur

- On appelle multiplexeur (MUX) tout système combinatoire réalisant la fonction universelle de n variables qui correspondent aux n lignes de sélection.
- Dans le cas de **deux variables**, la **fonction universelle** est définie de la manière suivante : $Z(a,b) = K_0 a \bar{b} + K_1 a \bar{b} + K_2 a \bar{b} + K_3 a b$.
- On appelle a et b les lignes de commande et K_n, K₁, K₂ et K₂ les lignes de données.
- Le MUX est donc un sélecteur de données.

Synthèse d'un circuit combinatoire Décodeurs - Codeurs - Transcodeurs

Exemple de codeur

Codeur à 8 entrées

Synthèse d'un circuit combinatoire TD / TP

