Simple theory のセミナーノート

YasudaYasutomo

2019年12月19日

A Course in Model Theory 7章のセミナーノートです. セミナーで無駄な議論などを指摘してくださった先輩方に感謝します.

1 Forking and Dividing

この章では断りのない限り T は可算完全で無限モデルを持つと仮定して議論する. T の monster model を $\mathfrak C$ を固定する. *1

補題 1.1 (The Standard lemma). A を集合, I を tuple の無限列, J を全順序集合とする. このとき J で順序づけられた A-indiscernible で $\mathrm{EM}(I/A)$ を実現するものが存在する.

 $\mathrm{EM}(I/A)$ というのは L(A)-論理式 φ で

$$\mathfrak{C} \models \varphi(a_{i_1}, \ldots, a_{i_n}) \text{ for all } a_{i_1} < \cdots < a_{i_n} \in I$$

を満たすもの全体からなるタイプであった.

定義 **1.2** (Dividing). $b \in \mathcal{C}$ とする. *2

- 論理式 $\varphi(x,b)$ divides over A w.r.t. $k \in \omega^{*3}$ とはある列 $(b_i)_{i \in \omega}$ が存在して次を満たすことをいう.
 - 1. $\operatorname{tp}(b_i/A) = \operatorname{tp}(b/A)$ for all $i \in \omega$
 - 2. $(\varphi(x,b_i))_{i\in\omega}$ is k-inconsistent*4
- 論理式の集合 $\pi(x)$ に対して, $\pi(x)$ divides over A とはある $b \in \mathfrak{C}$ と論理式 $\varphi(x,y)$ が存在して次を満たすことをいう.
 - 1. $\pi(x) \models \varphi(x,b)$
 - 2. $\varphi(x,b)$ divides over A for some $k \in \omega$

Dividing の基本的な性質を次で示す.*5

命題 1.3. $\varphi(x,a) \models \psi(x,b)$ とし、 $\psi(x,b)$ divides over A とする.

このとき $\varphi(x,a)$ divides over A.

^{*1} 集合論的な細かいことは気にしない.

 $^{^{*2}}$ b は tuple でも問題ない.

^{*} 3 k が明示されてないときは for some $k \in \omega$ とする.

 $^{^{*4}}$ 思い出しておくと論理式の集合が k-inconsistent とは任意に k 個取り出してくると inconsistent になることだった.

^{*5} 本文中ではあっさり書かれているが重要だと思う.

証明. $\psi(x,b)$ divides over A より, $(b_i)_{i\in\omega}$ を witness として取る.

各 $i \in \omega$ について、

$$\operatorname{tp}(a/A) \cup \{ \forall x (\varphi(x,y) \to \psi(x,b_i)) \} \cup T$$

を考える. *6これは有限充足可能である.

実際 $\Delta(y) \subseteq_{\text{fin}} \operatorname{tp}(a/A)$ を取ると、 $\exists y (\bigwedge \Delta(y) \land \forall (\varphi(x,y) \to \psi(x,z)) \in \operatorname{tp}(b/A) = \operatorname{tp}(b_i/A)$ より、 $z = b_i$ に対する witness a_i をそれぞれ取れば良い.

よって各 $i \in \omega$ での実現 $(a_i)_{i \in \omega}$ を取ると構成より $\varphi(x,a)$ divides over A の witness となる.

系 1.4. φ divides over A と $\{\varphi\}$ divides over A は同値.

命題 1.5. $\pi(x)$ を論理式の集合とする.

 $\pi(x)$ divides over A ならば、ある $\Delta \subseteq_{\text{fin}} \pi(x)$ が存在して $\varphi \equiv \bigwedge \Delta$ divides over A が成立する.

論理式の集合が divide しているとき、そこから有限個取ってきて dividing を考えれば良いことは以降よく使う.

命題 1.6. $A\subseteq B$ とし、 $\varphi(x,b)$ divides over A とする. このとき B の A-conjugate \bar{B} が存在して $\varphi(x,b)$ divides over \bar{B} を満たす.

証明. $I=(b_i)_{i\in\omega}$ を witness として取る. The Standard lemma で B-indiscernible $J=(c_i)_{i\in\omega}$ を $\operatorname{tp}(J/A)=\operatorname{tp}(I/A)$ となるように取る. 自己同型 $\sigma\in\operatorname{Aut}(\mathfrak{C}/A)\colon J\mapsto I$ を考えれば良い.

例 1.7. DLO において, $\varphi(x,a,b) \equiv "a < x < b"$ divides over \emptyset w.r.t. 2.

補題 1.8. $\pi(x,b)$ を論理式の集合とする. 次は同値.

- 1. $\pi(x,b)$ divides over A.
- 2. ある A-indiscernible $(b_i)_{i \in \omega}$ が存在して次を満たす.
 - $\operatorname{tp}(b_0/A) = \operatorname{tp}(b/A)$
 - $\bigcup_{i \in \omega} \pi(x, b_i)$ is inconsistent
- 3. ある A-indiscernible $(b_i)_{i \in \omega}$ が存在して次を満たす.
 - $b_0 = b$
 - $\bigcup_{i\in\omega}\pi(x,b_i)$ is inconsistent

証明. $(1 \to 2)$ $\pi(x,b)$ divides over A w.r.t. $k \in \omega$ と仮定する. $\pi(x,b)$ から有限個取ってきて $\varphi(x,b)$ divides over A w.r.t. $k \in \omega$ として良い.

 $(b_i)_{i \in \omega}$ を dividing の条件を満たすように取る. つまり

- $\operatorname{tp}(b_i/A) = \operatorname{tp}(b/A)$
- $\{\varphi(x,b_i) \mid i \in \omega\}$ is k-inconsistent

を満たすように取る. The Standard lemma より一般性を損なうことなく $(b_i)_{i\in\omega}$ は A-indiscernible として良い.

^{*6} 自由変数は y で揃えている.

このとき $\bigcup_{i\in\omega}\pi(x,b_i)$ は inconsistent.

 $(2 \to 1)$ A-indiscernible $(b_i)_{i \in \omega}$ を仮定の条件を満たすように取る. $\bigcup_{i \in \omega} \pi(x,b_i)$ は inconsistent より, $\pi(x,b)$ からその witness を有限個取りそれを $\varphi(x,b)$ とする. 取り方から $\Sigma(x) = \{\varphi(x,b_i) \mid i \in \omega\}$ は inconsistent. indiscernibility と compactness より $\Sigma(x) = \{\varphi(x,b_i) \mid i \in \omega\}$ は k-inconsistent.

 $(3 \rightarrow 2)$ 良い.

 $(2 \rightarrow 3)$ 自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$: $b_0 \mapsto b$ を考えれば良い.

系 1.9. 次は同値.

- 1. tp(a/Ab) doesn't divide over A.
- 2. 任意の A-indiscernible I で b を含むものに対して, ある Aa-indiscernible J が存在して $\operatorname{tp}(J/Ab) = \operatorname{tp}(I/Ab)$ を満たす.

- 3. 任意の A-indiscernible I で b を含むものに対して, ある \bar{a} が存在して $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ I は $A\bar{a}$ -indiscernible となる.
- 4. 任意の A-indiscernible I で b を含むものに対して、ある \bar{a} と $A\bar{a}$ -indiscernible J が存在して $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ $\operatorname{tp}(I/Ab) = \operatorname{tp}(J/Ab)$ を満たす.

証明・ $(2 \to 3)$ A-indiscernible I で b を含むものを任意に取る.仮定より Aa-indiscernible J で $\operatorname{tp}(J/Ab) = \operatorname{tp}(I/Ab)$ を満たすものを取る.自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}/Ab) \colon J \mapsto I$ を取り, $\bar{a} = \sigma(a)$ とする.このとき I は $A\bar{a}$ -indiscernible かつ $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ を満たす.

 $(3 \to 2)$ A-indiscernible I で b を含むものを任意に取る. 仮定より \bar{a} を $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ I は $A\bar{a}$ -indiscernible となるように取る. 自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}/Ab)$: $\bar{a} \mapsto a$ となるように取り, $J = \sigma$ "I とする. このとき J は Aa-indiscernible かつ $\operatorname{tp}(I/Ab) = \operatorname{tp}(J/Ab)$ を満たす.

 $(2,3\rightarrow 4)$ はい.

 $(4 \rightarrow 2,3)$ 今までのように自己同型で移す.

 $(1 \rightarrow 4)$ A-indiscernible I で b を含むものを任意に取る. $b_{i_0} = b$ とする. $p(x,y) = \operatorname{tp}(ab/A)$ とする.

 $\operatorname{tp}(a/Ab)$ doesn't divide over A かつ前補題より $\bigcup_{i\in I} p(x,b_i)$ は consistent. よって \bar{a} をその実現とする.

The Standard lemma を用いて $K=(c_i)_{i\in I}$ を $A\bar{a}$ -indiscernible かつ K は $\mathrm{EM}(I/A\bar{a})$ を実現するように取る. $\models p(\bar{a},c_{i_0})$ より,自己同型 $\sigma\in\mathrm{Aut}(\mathfrak{C}/A\bar{a})\colon c_{i_0}\mapsto b$ を取る. $J=\sigma$ "K とすると $A\bar{a}$ -indiscernible かつ $\mathrm{tp}(J/Ab)=\mathrm{tp}(I/Ab)$ を満たす.

 $(2 \to 1)$ $\operatorname{tp}(a/Ab)$ divides over A と仮定して矛盾を導く. $\pi(x,y) = \operatorname{tp}(ab/A)$ とする. 前補題より A-indiscernible $I = (b_i)_{i \in \omega}$ を $b_0 = b$ かつ $\bigcup_{i \in \omega} \pi(x,b_i)$ は inconsistent となるように取る.

仮定よりある \bar{a} が存在して $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ I は $A\bar{a}$ -indiscernible となる. $\models \operatorname{tp}(ab/A)[\bar{a},b]$ となり, indiscernibility から $\bigcup_{i\in\omega}\pi(\bar{a},b_i)$ は consistent. Contradiction.

例 1.10. $a \notin acl(A)$ とする. このとき tp(a/Aa) divides over A.

証明. $a \notin acl(A)$ より $a \mathcal{O} A$ -conjugate $(a_i)_{i \in \omega}$ を取る.

 $\varphi(x,a)\equiv "x=a"$ を考えると $\operatorname{tp}(a/A)=\operatorname{tp}(a_i/A)$ かつ $(\varphi(x,a_i))_{i\in\omega}$ は 2-inconsitent となる.

例 1.11. $\pi(x)$ を $\operatorname{acl}(A)$ 上で定義された無矛盾な論理式の集合とする. このとき $\pi(x)$ doesn't divide over A.

証明 $\pi(x)$ divides over A と仮定して矛盾を導く. $\pi(x)$ から有限個取ってきて $\varphi(x,b)$ divides over A とし

て良い. このとき仮定より $b \in acl(A)$ となる.

Dividing の witness を $(b_i)_{i\in\omega}$ を取る. The Standard lemma より $(b_i)_{i\in\omega}$ は A-indiscernible として良い. b は A 上代数的より, $\psi(x)$ を b を実現としてもつ A 上の algebraic formula とする. このとき全ての $i\in\omega$ に対して $\psi(x)\in\operatorname{tp}(b/A)=\operatorname{tp}(b_i/A)$ が成立する. $\psi(x)$ の取り方と indiscernibility から $b=b_i$ for all $i\in\omega$. よって $\varphi(x,b)$ は inconsistent となり, $\pi(x)$ の取り方に矛盾.

命題 **1.12.** $A \subseteq B$ とする. $\operatorname{tp}(a/B)$ doesn't divide over A かつ $\operatorname{tp}(c/Ba)$ doesn't divide over Aa とする. このとき $\operatorname{tp}(ac/B)$ doesn't divide over A

証明. $b \in B$ の元からなる finite tuple とする. I を infinite A-indiscernible で b を含むものとする.

 $\operatorname{tp}(a/B)$ doesn't divide over A より,Aa-indiscernible J で $\operatorname{tp}(J/Ab) = \operatorname{tp}(I/Ab)$ を取る.このとき "x = b" $\in \operatorname{tp}(I/Ab) = \operatorname{tp}(J/Ab)$ より,J はまた b を含む.

また $\operatorname{tp}(c/Ba)$ doesn't divide over Aa より Aac-indiscernible K で $\operatorname{tp}(K/Aab) = \operatorname{tp}(J/Aab)$ を満たすものを取る. よって $\operatorname{tp}(ac/B)$ doesn't divide over A.

Forking を定義する.

定義 1.13 (Forking). $\pi(x)$ を論理式の集合とする. $\pi(x)$ forks over A とはある論理式 $\varphi_l(x)$ ($l < d \in \omega$) が存在して次を満たすことをいう.

- $\pi(x) \models \bigvee_{l < d} \varphi_l(x)$
- $\varphi_l(x)$ divides over A

明らかに Dividing の方が Forking より強い. 逆は一般には成立しない*⁷が, あとで定義される simple theory ではこれらが一致する. *⁸

余談 1.

- Divide は「分かれる」という意味がある.
- Fork は「分岐する」という意味がある.

命題 1.14 (Non-forking is closed). $p \in S(B)$ forks over A とする.

このときある $\varphi \in p$ が存在して、任意の $q \in S(B)$ に対して $\varphi \in q$ ならば q forks over A が成立する.

証明**.** $p \models \bigvee_{l < d} \varphi_l$ とすると compactness よりある $\pi \subseteq_{\text{fin}} p$ が存在して $\pi \models \bigvee_{l < d} \varphi_l$ が成立する. $\varphi = \bigwedge \pi$ とすれば良い.

系 1.15. $p \in S(B)$ forks over A と仮定する. このときある $B_0 \subseteq_{\operatorname{fin}} B$ が存在して $p \upharpoonright AB_0$ forks over A. \square

補題 1.16. 論理式の集合 π は A で有限充足可能とする. このとき π doesn't fork over A.

証明. そうではないと仮定して矛盾を導く. $\pi \models \bigvee_{l < d} \varphi_l(x)$ とする. このときある l < d 存在して $\varphi_l(x)$ は A での実現を持つ. これは $\varphi_l(x)$ divides over A であることに矛盾.

^{*&}lt;sup>7</sup> 有理数上の cyclic order とか考えるとダメ.

^{*8} いい話.

補題 1.17. $A \subseteq B$ とし、 π を B 上の partial type とする. また π doesn't fork over A と仮定する. このとき π の拡張 $p \in S(B)$ が存在して p doesn't fork over A.

証明. p を π を含む L(B)-論理式の集合で A 上 fork しないもので極大なものとすれば良い.

2 Simple theory

この章では断りのない限り T は可算完全で無限モデルを持つと仮定して議論する.

定義 2.1 (Simple).

- 論理式 $\varphi(x,y)$ が k-TP*9を持つとはある $(a_s \mid \emptyset \neq in^{<\omega}\omega)$ が存在して次を満たすことをいう.
 - 1. 任意の $s \in {}^{<\omega}\omega$ について, $\{\varphi(x,a_{s^{\hat{}}(i)}) \mid i \in \omega\}$ は k-inconsitent
 - 2. 任意の $\sigma \in {}^{\omega}\omega$ について, $\{\varphi(x, a_s) \mid \emptyset \neq s \sqsubset \sigma\}$ は consitent
- theory T が simple であるとは TP を持つ論理式が存在しないときのことをいう.

TP を考えるときはパラメタなしの論理式を考えれば十分である. totally transcendental なら simple である.

次の dividing sequence の概念は有用である.

定義 2.2. Δ をパラメタなし論理式の有限集合とする. δ を順序数とする.

このとき $(\varphi_i(x,a_i) \mid i < \delta)$ が Δ -k-dividing sequence over A であるとは次を満たすことをいう.

- $\varphi_i(x,y) \in \Delta$
- $\varphi_i(x, a_i)$ divides over $A \cup \{a_j \mid j < i\}$ w.r.t. $k \in \omega$
- $\{\varphi_i(x, a_i) \mid i < \delta\}$ is consistent

 δ を dividing sequence の長さという.

Dividing sequence を使って TP を特徴付けることができる.

補題 2.3.

- 1. φ が k-TP を持つと仮定する. このとき任意の A と δ について, 長さ δ の φ -k-dividing sequence over A が存在する.
- 2. 長さが無限の Δ -k-dividing sequence over \emptyset が存在すると仮定する. このときある $\varphi \in \Delta$ が存在して, φ は k-TP を持つ.

証明. (1) φ が k-TP を持つとする. δ が極限順序数のときのみ考えれば十分である. * 10 compactness から任意の $\kappa \in \text{ON}$ について, $(a_s \mid \emptyset \neq s \in {}^{<\delta}\kappa)$ が存在して次を満たす.

- 任意の $s\in{}^{<\delta}\kappa$ について, $\{\varphi(x,a_{s}\hat{\ }\langle i\rangle)\mid i<\kappa\}$ は k-inconsistent
- 任意の $\sigma \in {}^{\delta}\kappa$ について, $\{\varphi(x, a_s) \mid \emptyset \neq s \sqsubset \sigma\}$ は consitent

 $^{^{*9}}$ tree property

^{*10} 短くすればいい

正則基数 κ を $\kappa > 2^{\max\{|T|,|A|,\delta\}}$ となるように十分大きく取る. infinite path $\sigma \in {}^{\delta}\kappa$ を全ての $s \sqsubset \sigma$ について, $A \cup \{a_t \mid t \sqsubseteq s\}$ 上の $a_{s \hat{\ } (i)}$ のタイプが等しくなるような $i < \kappa$ が無限個存在するように取る.

これは κ が十分大きいことから帰納的に構成すれば良い.

このような σ に対して、構成より $(\varphi(x, a_{\sigma \upharpoonright i+1} \mid i < \delta))$ は φ -k-dividing sequence over A となる.*11

(2) $(\varphi_i(x,a_i)\mid i\in\omega)$ を Δ -k-dividing sequence over \emptyset とする. Δ は有限より $(\varphi(x,a_i)\mid i\in\omega)$ を φ -k-dividing sequence over \emptyset として良い. φ が k-TP を持つことを示す.

各 $i \in \omega$ について, $(a_i^n)_{n \in \omega}$ を $\varphi(x, a_i)$ divides over $\{a_j \mid j < i\}$ w.r.t. k の witness として取り固定する. つまり各 $i \in \omega$ について次が成立している.

- $\operatorname{tp}(a_i^n / \{a_j \mid j < i\}) = \operatorname{tp}(a_i / \{a_j \mid j < i\})$ for all $n \in \omega$
- $\{\varphi(x, a_i^n \mid n \in \omega\}$ is k-inconsistent

 $(b_s \mid \emptyset \neq s \in {}^{<\omega}\omega)$ を次のように帰納的に構成する. $s \in {}^{i+1}\omega$ に対して, $\bar{b} = (b_{s \mid 1}, \ldots, b_{s \mid i})$ まで定義したとする. さらに $\operatorname{tp}(a_0, \ldots, a_{i-1}) = \operatorname{tp}(\bar{b})$ を満たすと仮定する. 自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}) \colon (a_0, \ldots, a_{i-1}) \mapsto \bar{b}$ を取り, $b_s = \sigma(a_i^{s(i)})$ とする.

構成より $(b_s \mid \emptyset \neq s \in {}^{<\omega}\omega)$ は求めるものとなっている.

命題 **2.4.** T を simple とする. Δ を論理式の有限集合, $k \in \omega$ とする.

このとき Δ -k-dividing sequence の長さは有限の上限を持つ.

証明. そうではないと仮定して矛盾を導く. 長さ無限の Δ -k-dividing sequence over \emptyset を構成する. $\Delta = \{\varphi_1, \ldots, \varphi_l\}$ とする.

サイズの議論により $f \in {}^{\omega}\Delta$ を任意の $m \in \omega$ について $f \upharpoonright m$ の順で Δ -k-dividing sequence over \emptyset が存在するように取る. *12定数記号 $c, a_0, \ldots, a_n, \ldots$ $(n \in \omega), a_n^0, \ldots, a_n^i, \ldots$ $(n \in \omega, i \in \omega)$ を用意する. 次のtheory を考える. *13

- \bullet T
- $\{\varphi_{f(n)}(c, a_n) \mid n \in \omega\}$
- $\operatorname{tp}(a_n^i/\{a_0,\ldots,a_{n-1}) = \operatorname{tp}(a_n/\{a_0,\ldots,a_{n-1}) \text{ for each } n \in \omega, i \in \omega$
- $\{\varphi(x, a_n^i) \mid i \in \omega\}$ is k-inconsistent for each $n \in \omega$

これは仮定より有限充足可能. 実際有限個取ってきたとき十分長い $f \upharpoonright m$ の順に論理式が並んだ Δ -k-dividing sequence over \emptyset を取り解釈をそれに当てれば良い.*¹⁴

よって compactness より欲しいものが得られる.

命題 2.5. T は無限完全で無限モデルを持つ theory とする. 次は同値.

- 1. T は simple
- 2. 任意の B と任意の $p \in S_n(B)$ についてある $A \subseteq B$ が存在して, $|A| \le |T|$ かつ p doesn't divide over A を満たす.

 $^{^{*11}}$ i+1 で切っているところが効いている

 $^{^{*12}}$ compactness を使いたいので dividing sequence に出てくる論理式をあらかじめ決めておく

^{*13} 長いので箇条書きで書いている

 $^{^{*14}}$ このために f を取った

3. ある順序数 κ が存在して、任意の $M \models T$ と任意の $p \in S_n(M)$ に対してある $A \in [M]^{\leq \kappa}$ が存在して、p doesn't divide over A を満たす.

証明. $(2 \rightarrow 3)$ 良い.

 $(1 \to 2)$ まず $p \in S_n(B)$ doesn't divide over B より |B| > |T| のときを考えれば十分である.

そうではないと仮定して矛盾を導く. 仮定より B と $p \in S_n(B)$ を取る. 帰納的に列 $(\varphi_i(x,b_i))_{i<|T|^+}$ を次のように構成する.

- 各 φ_i はp に属す論理式
- $\varphi_i(x, b_i)$ divides over $\{b_i \mid j < i\}$ w.r.t. $k \in \omega$
- $b_i \in B$

 $\varphi_i(x,y)$ 全体のサイズは |T| 以下より, φ -k-dividing sequence $(\varphi(x,b_i))_{i<|T|^+}$ が取れる. これは T が simple であることに矛盾.

 $(3\to 1)$ 対偶を示す. 任意に順序数 κ を取る. T は simple でないから長さ κ^+ の φ -k-dividing sequence $(\varphi(x,b_i))_{i<\kappa^+}$ を取る.

次を満たすようなTのモデルの列を取る.

- $M_0 \prec M_1 \prec \dots$
- 任意のj < i について, $b_i \in M_i$
- $\phi(x,b_i)$ divides over M_i

これは命題 1.6. を使うことで取れる. $M=\lim M_i \models T$ とする. サイズ κ の部分集合はどこかの M_i で捕まっているのでこれは 3 を満たさない.

命題 **2.6.** T を simple とし, $p \in S(A)$ とする. このとき p doesn't fork over A.

証明. p forks over A と仮定する. $p \models \bigvee_{l < d} \varphi_l(x, b)$ とする. $\Delta = \{\varphi_l(x, y) \mid l < d\}$ とおく.

 $n \in \omega$ の帰納法で長さ n の Δ -k-dividing sequence over A を構成する. さらに dividing sequence は p と consistent となるように構成する.

 $(\psi_i(x,a_i))_{i < n}$ まで構成したとする. \bar{b} を b の A-conjugate で $(\psi_i(x,a_i))_{i < n}$ が dividing sequence over $A\bar{b}$ となるように取る. このとき $p \models \bigvee_{l < d} \varphi_l(x,\bar{b})$ より, $\varphi_l(x,\bar{b})$ を $p \cup \{\psi_i(x,a_i) \mid i < n\}$ となるように取る.

 $\varphi_l(x,b), \psi_0(x,a_0), \dots, \psi_{n-1}(x,a_{n-1})$ は Δ -k-dividing sequence over A consistent with p となる. *15 これは T が simple であることに矛盾.

定義 2.7. p を A 上のタイプとする. p の拡大 q が A 上 fork しているとき forking extension という.

系 2.8. $A \subseteq B$ とし, T を simple とする. 任意の A 上のタイプは B 上のタイプへの non-forking extension を持つ.

定義 2.9. $A \downarrow_C B^{*16}$ とは、任意の $\bar{a} \in [A]^{<\omega}$ について $\operatorname{tp}(\bar{a}/BC)$ doesn't fork over C を満たすことをいう.

 $^{^{*15}}$ 先頭にくっつけるのが大事

^{*16} A is independent form B over C という

定義 2.10. I を全順序, $\bar{a}=(a_i)_{i\in I}$ を列とする.

- \bar{a} \vec{b} independent over A とは、全ての $i \in I$ について $a_i \downarrow_A \{a_j \mid j < i\}$ を満たすときのことをいう.
- \bar{a} が Morley sequence over A とは, \bar{a} が independent over A かつ A-indiscernible であることをいう.
- \bar{a} が Morley sequence in p over A とは、 \bar{a} が Morley sequence over A かつ p の実現からなる列であるときをいう.

命題 **2.11.** M をモデルとし, $A \subseteq M$ とする. p を M 上のタイプとする. また M は $|A|^+$ -saturated と仮定する. このとき p forks over A と p divides over A は同値.

証明. p forks over A とする. このときある $\varphi(x,m) \in p$ が存在して, $\varphi(x,m) \models \bigvee_{l < d} \varphi_l(x,b)$ となる. $\operatorname{tp}(b/Am)$ の解を $\bar{b} \in M$ とする. このときある $\varphi_l(x,\bar{b}) \in p$ となり, p divides over A.

命題 **2.12.** q を A-invariant global type*17とする. このとき q doesn't fork over A.

証明. q doesn't devide over A を示せば良い. $\varphi(x,b) \in q$ を dividing formula とする. $(b_i)_{i \in \omega}$ をその witness とする. q は A-invariant より, 各 $i \in \omega$ について $\varphi(x,b_i) \in q$ となり矛盾. よって q doesn't devide over A.

例 2.13. q を A-invariant global type とする. 列 $(b_i)_{i \in \omega}$ を各 b_i が $q \upharpoonright A \cup \{b_j \mid j < i\}$ を実現するように取る. このとき $(b_i)_{i \in \omega}$ は Morley sequence over A.

証明. 仮定の条件を満たす列を good ということにする. good な列の部分列はまた good となる.

まず indiscernibility を示す. good な列 (a_0,\ldots,a_n) と (b_0,\ldots,b_n) に対して $\operatorname{tp}(a_0,\ldots,a_n/A)=\operatorname{tp}(b_0,\ldots,b_n/A)$ を示せば良い. $n\in\omega$ についての帰納法で示す.

 $\operatorname{tp}(a_0,\ldots,a_{n-1}/A)=\operatorname{tp}(b_0,\ldots,b_{n-1}/A)$ を仮定する。 自己同型 $\sigma\in\operatorname{Aut}(\mathfrak{C}/A)$: $(a_0,\ldots,a_{n-1})\mapsto (b_0,\ldots,b_{n-1})$ を取る。このとき $\sigma(\operatorname{tp}(a_n/A\cup\{a_0,\ldots,a_{n-1}\}))=\operatorname{tp}(b_n/A\cup\{b_0,\ldots,b_{n-1}\})$ が成立することから良い。

次に independence を示す. これは q doesn't fork over A であることから良い.

参考文献

[1] Tent, K., and Ziegler, M. (2012). A Course in Model Theory (Lecture Notes in Logic). Cambridge: Cambridge University Press.

 $^{^{*17}}$ $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ で不変なもの