1 Determine L(M) em cada caso abaixo:

2) Dada a gramática abaixo, use o algoritmo dado em aula para definir M tal que L(M)=L(6).

G= <15,A1, la,b1,P,57 and P:1_5-765 3_A-705 5_A-70
2_5-76A 4_5-76

3 Dado o AFND, determine a gramatica 6 tal que L(6)=L(M)

(4) Determine AFD equivalente ao AFND abaixo:

1-Seja M=< $\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_1\} >$, AFND onde $\delta(q_0,0)=\{q_0,q_1\}; \delta(q_0,1)=\{q_1\}; \delta(q_1,0)=\phi; \delta(q_1,1)=\{q_0,q_1\}$ Construa um AFD equivalente a M.

2-Determine em cada caso abaixo. a linguagem aceita pelos autômato finitos abaixo:

- 3-Determine um autômato finito deterministico capaz de reconhecer a linguagem (a\cup)*bb.
- 4-Determine um autômato capaz de reconhecer o conjunto de todos os strings de {0,1} que não satisfazem a propriedade abaixo:

"x possui número par de 0 e número impar de 1"

5-Considerando a gramática $G=\langle V_N, V_T, P, S \rangle com V_T = \{a,b\}$

 $V_{N} = \{S.A,B,C.D.E,F,\} \ e \ P \colon S \to A \qquad B \to C \ , \ construa \ um \ AFD \ que \ reconheça \ L(G).$

 $A \rightarrow B$ $B \rightarrow aF$

 $A \rightarrow aS$ $F \rightarrow B$

C→bD E→aD

 $D \rightarrow E \qquad E \rightarrow bF$

AUTÔMATOS FINITOS E AS LINGUAGENS DE TIPO 3

TEOREMA: Seja $G = (V_N, V_T, P, S)$ uma gramática de tipo 3. Então há um autômato finito $M = (Q, V_T, \delta, S, F)$ com L(M) = L(G).

Idéia: $Q = V_N \cup \{A\}$

- Estado inicial de M é S
- Se P contem a produção $S \to \varepsilon$, então $F=\{S,A\}$ por outro lado $F=\{A\}$
- O estado A está em $\delta(B,a)$ se $B \to a \in P$
- $\delta(B,a)$ contem todos os C tal que $B \rightarrow aC \in P$
- $\delta(A,a) = \phi$ para cada $a \in V_{\tau}$

TEOREMA: Dado um autômato finito M, há uma gramática de tipo 3, G tal que L(G)=M.

Idéia: Sem perda de generalidade seja $M=(Q,\Sigma,\delta,q_0,F)$ um AFD; defina uma gramática de tipo 3,G= (Q,Σ,P,q_0)

- $B \rightarrow aC \in P$ se $\delta(B,a)=C$;
- $B \rightarrow a \in P$ so $\delta(B,a)=C \in C \in F$.

exemplo: Considerando a gramática $G=(\{S,B\},\{0,1\},P,S)$ onde

P:
$$S \rightarrow 0B; B \rightarrow 1S; B \rightarrow 0B; B \rightarrow 0$$

- a)Construa um AFND $M=(\{S,B,A\},\{0,1\},\delta,S,\{A\})$ onde δ é definida por...
- b)Construa um autômato finito deterministico (AFD) equivalente a M ;
- c)Construa uma gramática de tipo 3 G tal que L(M')=L(G).

- 1- Considerando a linguagem L = atubt, responda o que se pede:
- a) L pode per reconhecida por um AFND com um unico estado final?
- b) L pade ser reconhecida por um AFD com um único estado tinal?
- Z_ Sejam LieLz linguagens sobre Z:
- a) Se Li é regular e Li E Lz então pode-ec garantir que Lz é regular?
- b) Se Lz é regular e Lz S Lz então pode-se ajirmar que Lz é regular?
 - 3- Considerando o AF definido abaixo; $M = \langle Q_7 Z_7 d, q_0, \mp \rangle$ onde $Q = \{q_0, q_1\}_7 Z = \{0,1\}_7 \mp = \{q_1\}_6$ $d(q_0,0) = q_0 \quad d(q_1,1) = q_1$ $d(q_0,1) = q_1 \quad d(q_1,0) = q_0$

Determine:

- a) f(q0,10010) e f(q0,000)
- b) O diagrama de cotados de M.
- c) Uma gramation regular capaz de gerar a linguagem reconhecida por M.
- 4 Considerando a gramatica cujas regras, são:

5->0B B->15 C->1

B → 0B B → 0

B->0C C->1C

Determine:

- a) Um autômato finito não deterministra M tal que L(M)= L(G)
- b) Um autôrnato unito M' deterministico equivalente a M.
- c) Uma gramation 6' tal que L(6') = L(M')

RESULTADO:

Seja M= <Q, Z, 6, qo, F> um AF que xeconhèce a unquagem LM). As seguintes propriedades são verdadeiras.

- a) L(M) + o se esomente se existe x \in L(M) to o \in |x| < m

 onde |x| simboliza: o nº de elemento e que compoe x

 ou seja: comprimento de x e n

 representa o nº de estados de Q.
- b) L(M) é infinito se esomente se existe x & L(M) tal que