Problem 1

Show that 91 is a pseudoprime to bases 3 and 17.

We need to show that $3^{91} \equiv 3 \pmod{91}$ and $17^{91} \equiv 17 \pmod{91}$. Since (3,91) = (17,91) = 1, we can use Euler's method. We need to find $\phi(91)$ first.

$$91 = 7 \times 13$$

$$\phi(91) = 91 \left(1 - \frac{1}{7}\right) \left(1 - \frac{1}{13}\right)$$

$$= 91 \left(\frac{6}{7}\right) \left(\frac{12}{13}\right)$$

$$= 72$$

Thus, $3^{72} \equiv 1 \pmod{91}$ and $17^{72} \equiv 1 \pmod{91}$. Let's make a squaring table for 3.

$$3^{1} \equiv 3 \pmod{91}$$

 $3^{2} \equiv 9 \pmod{91}$
 $3^{4} \equiv 81 \pmod{91}$
 $3^{8} \equiv 6561 \equiv 9 \pmod{91}$
 $3^{16} \equiv 81 \pmod{91}$

$$3^{91} \equiv 3^{72+16+2+1} \pmod{91}$$

 $\equiv 3^{72} \cdot 3^{16} \cdot 3^2 \cdot 3^1 \pmod{91}$
 $\equiv 1 \cdot 81 \cdot 9 \cdot 3 \pmod{91}$
 $\equiv 2187 \pmod{91}$
 $\equiv 3 \pmod{91}$

Now, let's make a squaring table for 17.

$$17^{1} \equiv 17 \pmod{91}$$
 $17^{2} \equiv 289 \equiv 16 \pmod{91}$
 $17^{4} \equiv 256 \equiv 74 \pmod{91}$
 $17^{8} \equiv 5476 \equiv 16 \pmod{91}$
 $17^{16} \equiv 256 \equiv 74 \pmod{91}$

$$17^{91} \equiv 17^{72+16+2+1} \pmod{91}$$

$$\equiv 17^{72} \cdot 17^{16} \cdot 17^2 \cdot 17^1 \pmod{91}$$

$$\equiv 1 \cdot 74 \cdot 16 \cdot 17 \pmod{91}$$

$$\equiv 20128 \pmod{91}$$

$$\equiv 17 \pmod{91}$$

Thus, 91 is a pseudoprime to bases 3 and 17.

Problem 2

Show that $2821 = 7 \times 13 \times 31$ is a Carmichael number.

We need to prove that for all $a \in \mathbb{Z}$ such that (a, 2821) = 1, $a^{2821} \equiv a \pmod{2821}$. $2821 = 7 \times 13 \times 31$. Since these are all prime, we can set up 3 congruences with Fermat's little theorem.

$$a^6 \equiv 1 \pmod{7}$$

 $a^{12} \equiv 1 \pmod{13}$
 $a^{30} \equiv 1 \pmod{31}$

$$a^{2821} \equiv a^{6 \cdot 471 + 1} \pmod{7}$$

$$\equiv a^{6 \cdot 471} \cdot a^{1} \pmod{7}$$

$$\equiv 1 \cdot a \pmod{7}$$

$$\equiv a \pmod{7}$$

$$a^{2821} \equiv a^{12 \cdot 235 + 1} \pmod{13}$$

$$\equiv a^{12 \cdot 235} \cdot a^{1} \pmod{13}$$

$$\equiv 1 \cdot a \pmod{13}$$

$$\equiv a \pmod{13}$$

$$\equiv a \pmod{13}$$

$$\equiv a \pmod{31}$$

$$\equiv a^{30 \cdot 94 + 1} \pmod{31}$$

$$\equiv a^{30 \cdot 94 \cdot a^{1}} \pmod{31}$$

$$\equiv a^{30 \cdot 94} \cdot a^{1} \pmod{31}$$

$$\equiv a \pmod{31}$$

Thus, we have our 3 final congruences:

$$a^{2821} \equiv a \pmod{7}$$

 $a^{2821} \equiv a \pmod{13}$
 $a^{2821} \equiv a \pmod{31}$

We could use the Chinese Remainder Theorem, but it is trivial to see that, since the bases are all the same and the moduli |2821, we can simply combine these congruences to get $a^{2821} \equiv a \pmod{2821}$. Thus, 2821 is a Carmichael number.

Problem 3

From the last homework, we know that 25 is a base-7 pseudoprime. Decide whether it is a strong pseudoprime.

From the last homework, we have $7^25 \equiv 7 \pmod{25}$. $25 - 1 = 2^3 \cdot 3$, so we can use the Miller test. We can start with $7^3 \pmod{25}$ and continue square until we reach -1.

$$7^{3} \equiv 343 \pmod{25}$$

 $\equiv 325 + 18 \pmod{25}$
 $\equiv 18 \pmod{25}$
 $7^{6} \equiv 18^{2} \pmod{25}$
 $\equiv 324 \pmod{25}$
 $\equiv 24 \pmod{25}$
 $\equiv -1 \pmod{25}$
(2)

Since $7^6 \equiv -1 \pmod{25}$, it passes the test, but 25 is not prime, so it is a strong pseudoprime to base 7.

Problem 4

For each statement below, mark "Y" if the statement shows that 25,326,001 cannot be prime. Otherwise, answer "N".

- (a) 11251|25326001
- **(b)** $2^{25326001} \equiv 2 \pmod{25326001}$
- (c) $7^{25326001} \equiv 5872860 \pmod{25326001}$
- (d) $3^{1582875} \equiv 1 \pmod{25326001}$
- (e) $43^{1582875} \equiv 12668627 \pmod{25326001}$ and $43^{3165750} \equiv 1 \pmod{25326001}$
- (a) Y, if there is factor that isn't 1 or 25,326,001, then it obviously can't be prime.
- (b) N, while it seems to pass Fermat's little theorem, it could be a pseudoprime as the converse of a statement is not always true.
- (c) \underline{Y} , if it were prime, then $7^{25326001} \equiv 7 \pmod{25326001}$. Since it doesn't, it fails Fermat's little theorem and thus cannot be prime.
- (d) \underline{N} , 1582875 is 25326001 with all the 2s factored out and is thus the start of the Miller test. Since it is $\equiv 1$ and, thus, passes the test, we can not definitively conclude anything about its primality.
- (e) \underline{Y} , 1582875 is 25326001 with all the 2s factored out and, thus, $43^{1582875} \equiv 12668627$ (mod 25326001) is the start of the Miller test. The next step is to square it, which is provided for us: $43^{3165750} \equiv 1 \pmod{25326001}$. We would continue squaring to see if we get a value $\equiv -1$, but since this second step is $\equiv 1$, all future steps will also be $\equiv 1$. Thus, since it is never $\equiv -1$, it fails the Miller test and cannot be prime.