

CUSTOMER CHURN

Prediction & Analysis

IS 675 - Deep Learning for Business Group 9 - Mahaam Ahmed, Natalie Rath, Natalie Nguyen

Table of contents

01 Project Overview

D2 About the Data

03 Neural Network

04 Machine Learning

OF Performance Comparison

06 Conclusion

Project Overview

Project Overview

INDUSTRY

Subscription-based entertainment company (Netflix, Disney+, Hulu, etc.)

PROBLEM

Customer churn – when customers terminate their subscription, is a crucial metric for subscription-based businesses.

Goal – Predict customer churn and analyze customer behavior

EFFECTS

Churn consequences:

- Revenue Loss
- Reduced market share
- Increased customer acquisition costs

OZAbout the Data

About the Data

Data Description

Anonymized information about customer subscriptions and their interaction with the service.

Data shape:

~ 240K rows x 21 columns

Independent Variables

20 features total:

- 10 categorical
- 9 numerical
- 1identifier

Target Variable

Churn:

- 0 Not churn
- 1 Churn

Data Preprocessing

Churn patterns in numerical attributes

Account Age vs. Churn:

 Customers with lower account ages are more prone to churn
 ⇒ Customer loyalty

Monthly Charges vs. Churn:

 Customers with higher monthly charges are more likely to churn ⇒ Cost

Support Tickets per Month vs. Churn:

Churned customer has higher volumes of support tickets
 ⇒ Service dissatisfaction

Feature Selection

Feature importance using Random Forest

Feature Selection

Data Balancing

Class Imbalance

Ratio between non-churn and churn customers = **45:1**

Implemented Method

Undersampling:

- Decreasing the number of instances in the majority class to balance it with the minority class.
- Risk: Information loss

03

Neural Network Model

Model Architecture

- Data Split: 60/40
- Type: Feedforward Neural Network
- Layers: 4

Input: Features

Output: 0 Not Churn or 1 Churn

Dataset size: Large

Hyperparameter Tuning: Random Search

Number of Neurons

Range from 32 to 512 (more neurons are able to capture more complex patterns to predict churn)

Activation Functions

- ReLu (most common)
- Sigmoid (probabilities)
- Tanh (zero-centered)

Learning Rate

Range from 0.0001 to 0.1 (influences stability of training process)

Optimizers

- SGD optimizer
- Adam optimizer (popular)

Hyperparameter Tuning: Best Model

Number of Neurons: Activation Function:

Hidden Size 1: 256

Hidden Size 2: 256

Learning Rate: 0.1

Sigmoid

Optimizer:

Adam

```
Hyperparameters 1: Hidden Size 1: 256, Hidden Size 2: 256, Learning Rate: 0.1000, Activation Function: Sigmoid, Optimizer: Adam
-- Epoch 0, Training Loss: 0.7060
-- Epoch 2, Training Loss: 0.7314
-- Epoch 4, Training Loss: 0.7303
```

-- Epoch 6, Training Loss: 0.7283 -- Epoch 8, Training Loss: 0.7316 -- Epoch 9, Training Loss: 0.7306

Test Loss: 0.5252

Lower test loss = better performance

Performance Evaluation

Classification Report for Neural Network - Train Data

	precision	recall	f1-score	support
0	0.61	0.84	0.70	44182
	0.74	0.45	0.56	44182
accuracy			0.65	88364
macro avg	0.67	0.65	0.63	88364
weighted avg	0.67	0.65	0.63	88364

Classification Report for Neural Network - Test Data

		precision	recall	f1-score	support
	0	0.87	0.84	0.86	79836
	1	0.38	0.45	0.41	17679
accur	racy			0.77	97515
macro	avg	0.63	0.65	0.64	97515
veighted	avg	0.78	0.77	0.78	97515

Performance Evaluation

Classification Report for Neural Network - Test Data

	precision	recall	f1-score	support
0	0.87	0.84	0.86	79836
1	0.38	0.45	0.41	17679
accuracy			0.77	97515
macro avg	0.63	0.65	0.64	97515
weighted avg	0.78	0.77	0.78	97515

O No Churn: 0

The model is predicting no churn 84% of the time, 87% of these calls are correct!

O Churn: 1

The rate of predicting churn is 45% but the amount of times this is actually correct is 38%.

Performance Evaluation

• ROC Curve score = 0.65

 Demonstrates moderate ability/effectiveness to predict churn

• Favorable Curve: Top Right

 Shows good tradeoff between sensitivity (true positive rate) and specificity (false positive rate)

04

Machine Learning Model

Top 3 Keylas Pass Tyres atures:

1. Accou<mark>nt Age (in months)</mark>

AverageViewingDuration <= 0.466 entropy = 0.952 samples = 38344 value = [24105, 14239] class = Yes

2. Average Viewing Duration (Minutes viewed per

entropy = 0.914 samples = 28276 Session) entropy = 1.0 samples = 21744 value = [10773, 10971] class = No ewingHoursPerWeek <= 0.413 entropy = 0.994 samples = 19802 value = [10809, 8993] class = Yes

entropy = 0.859 samples = 18542 value = [13296, 5246] class = Yes

3. Viewing Hours Per Week (total hours of watching samples = 15076

Samples = 15076

Hours Per Week (total hours of watching samples = 10721

content) and content downloaded per month

AccountAge <= 0.496 entropy = 1.0 samples = 88364 value = [44182, 44182] class = Yes

O No Churn: 0

The precision is higher for predicting not churn, which as we know by now is the safe prediction. The model is predicting no churn 55% of the time, which probably contributed by the balanced data. 90% of these calls are correct!

value = [10809, 8993] class = Yes

Churn: 1

entropy = 0.96

entropy = 0.938

entropy = 0.735 samples = 8973

The rate of predicting churn is 71% but the amount of times this is actually correct is 26%.

Random Forest Model

Classification Report for Random Forest - Train Data:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	119769
1	1.00	1.00	1.00	26503
accuracy			1.00	146272
macro avg	1.00	1.00	1.00	146272
weighted avg	1.00	1.00	1.00	146272

Random Forest	Classificat	ion Repor	t:			
	precision	recall	f1-score	support		
9	0.83	0.98	0.90	79836		
1	0.53	0.08	0.14	17679		
accuracy			0.82	97515		
macro avg	0.68	0.53	0.52	97515		
weighted avg	0.77	0.82	0.76	97515		

Random Forest Model

Random Forest	Classification Report:			
	precision	recall	f1-score	support
0	0.83	0.98	0.90	79836
1	0.53	0.08	0.14	17679
accuracy			0.82	97515
macro avg	0.68	0.53	0.52	97515
weighted avg	0.77	0.82	0.76	97515

O No Churn: 0

The model is predicting no churn 98% of the time, which probably contributed by the balanced data. Only 83% of these calls are correct!

O Churn: 1

The rate of predicting churn is 8% but the amount of times this is actually correct is 53%.

Gradient Boosted Trees Model

Classification Report for Gradient Boosted Tree - Train Data

	precision	recal1	f1-score	support
0	0.83	0.98	0.90	119769
1	0.59	0.10	8.17	26503
accuracy			0.82	146272
macro avg	0.71	0.54	0.54	146272
weighted avg	0.79	0.82	0.77	146272

Classificatio	n Report: precision	recall	f1-score	support
9	0.83	0.98	8.90	79836
1	0.58	0.10	9.16	17679
accuracy			0.82	97515
macro avg	0.70	0.54	0.53	97515
weighted avg	0.79	0.82	0.77	97515

Gradient Boosted Trees Model

Classificat	tio				
		precision	recall	f1-score	support
	e	0.83	0.98	0.90	79836
	1	0.58	0.10	9.16	17679
accurac	у			0.82	97515
macro av	/g	0.70	0.54	0.53	97515
weighted an	/g	0.79	0.82	0.77	97515

O No Churn: 0

The model is predicting no churn 98% of the time, which probably contributed by the balanced data. Only 83% of these calls are correct!

O Churn: 1

The rate of predicting churn is 10% but the amount of times this is actually correct is 58%

ROC-AUC Curve

- The winning model on the ROC-AUC Model is the Gradient Boosted Trees!
- The Random Forest is a very close second
- The Decision Tree did have the best Precision for predicting no churn but that is not a measure of best overall performance.
- There is higher sensitivity and fewer false positives.
- All models are better than random guessing

05

Performance Comparison

Model Comparison & Analysis

Observations

Gradient Boosted Tree ranks #1:

- Highest accuracy
- Balanced precision and recall for both classes
- Highest AUC score
- ⇒ Overall better performance

Model Comparison & Analysis

06 Conclusion

Recommendations

- 1. Share Feature Importance of identified features contributing to churn
- Personalized Marketing Strategies to increase customer retention and satisfaction
- Dynamic Pricing Modeling to align with customer preferences

Thanks!

Do you have any questions?

Group 9
Mahaam Ahmed, Natalie Nguyen & Natalie Rath

