Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Расчётно-графическая работа №1 «Последовательность и её предел» по дисциплине: «Математический анализ»

Выполнили студенты 1-го курса, поток 13.3: Чураков Александр Алексеевич, Садовников Олег Юрьевич, Леонтьев Виктор Александрович, Королев Артём Викторович.

Преподаватель: Трушихина Ирина Петровна.

Оглавление

Задания	3
Задание 1.4 Метод математической индукции	
Условие:	
Решение:	
Задание 3.5 Исследование сходимости	
Условие:	
Решение:	
Опеночный лист	

Задания

Задание 1.4 Метод математической индукции

Условие:

Пользуясь методом математической индукции, докажите, что при любом $n \in \mathbb{N}$:

$$1 \cdot 2 + 2 \cdot 5 + \dots + n(3n-1) = n^2(n+1)$$

Решение:

1. (База индукции) Равенство выполняется при n=1:

$$1 \cdot 2 = 1^2(1+1)$$

2. (Индукционное предположение) При n = k равенство принимает вид:

$$1 \cdot 2 + 2 \cdot 5 + \dots + k(3k-1) = k^2(k+1)$$

3. (Шаг индукции) При n = k+1:

$$1 \cdot 2 + \dots + k \cdot (3k+1) + (k+1)(3k+2) = (k+1)^2 \cdot (k+2)$$

Из п.2 получаем

$$k^{2}(k+1) + (k+1) \cdot (3k+2) = (k+1) \cdot (k^{2} + 3k + 2)$$
$$(k+1) \cdot (k^{2} + 3k + 2) = (k+1)(k+1)(k+2)$$
$$(k+1)(k+1)(k+2) = (k+1)^{2}((k+1) + 1)$$

Что и требовалось доказать.

Вывод: благодаря методу математической индукции мы доказали, что исходное равенство выполняется.

Задание 3.5 Исследование сходимости

Условие:

Дана последовательность an. Исследуйте её поведение при $n \to \infty$.

$$a_n = -\frac{3}{5} + \frac{3}{25} - \dots + 3 \cdot \frac{(-1)^n}{5^n}$$

- 1) Вычислите предел A последовательности при $n \to \infty$.
- 2) Постройте график общего члена последовательности в зависимости от номера n.
- 3) Проиллюстрируйте сходимость (расходимость) последовательности:
 - а) вспомните определение предела последовательности, запишите его через ε , n0 и неравенство;
 - b) выберите три различных положительных числа ε 1> ε 2> ε 3;
 - с) для каждого такого числа изобразите на графике соответствующую ε -окрестность предела A (« ε -трубу»);
 - d) для каждого выбранного ε найдите на графике номер $n0 = n0(\varepsilon)$, после которого все члены последовательности попадают в ε -окрестность, или установите, что такого номера нет.

Решение:

$$x_n = 3 \cdot \left(\frac{-1}{5}\right)^n$$

1. Найдем предел последовательности

$$\lim_{n\to\infty} x_n = 0$$

- Проиллюстрируем сходимость последовательности
 - а) Докажем существование этого предела по определению

$$\begin{split} \varepsilon &> 0 \\ \left| 3 \left(\frac{-1}{5} \right)^n - 0 \right| &< \varepsilon \\ \left(\frac{1}{5} \right)^n &< \frac{\varepsilon}{3} \\ log_{0,2} \ 0, 2^n &< log_{0,2} \frac{\varepsilon}{3} \\ n &< log_{0,2} \frac{\varepsilon}{3} \end{split}$$
 пусть $n_0(\varepsilon) = \left[log_{0,2} \frac{\varepsilon}{3} \right]$

b) Пусть $\varepsilon_1=0,00000001$, пусть $\varepsilon_2=10^{-101}$, пусть $\varepsilon_3=10^{-1001}$, выберем именно такие ε , потому что при них $n_0=n_0(\varepsilon)$ получается действительно большим $n_0(\varepsilon_1)>10, n_0(\varepsilon_2)>100$ и т. д. Тогда $10^8>10^{-101}>10^{-1001}$.

с) Изобразим на графике соответствующие ε — окрестности.

d) Для каждого выбранного ε найдите на графике номер $n0=n0(\varepsilon)$, после которого все члены последовательности попадают в ε -окрестность.

$$n_0(\varepsilon_1) = \left[log_{0,2} \frac{-10^8}{3} \right] \approx 12$$

$$n_0(\varepsilon_2) = \left[log_{0,2} \frac{10^{-101}}{3} \right] \approx 101$$

$$\Pi_0(\varepsilon_3) = \left[log_{02} \frac{10^{-1001}}{3} \right] \approx 1001$$

Вывод: при решении мы нашли предел последовательности и доказали его существование по определению, через ε , n_0 , и неравенство. Построили график общего члена и ε — окрестностей.

Оценочный лист

Имя	Чураков Александр	Садовников Олег	Леонтьев Виктор	Королёв Артём
Вклад, %	100	100	100	100