Cost-Sensitive Reference Pair Encoding for Multi-Label Learning

Yao-Yuan Yang and Kuan-Hao Huang and Chih-Wei Chang and Hsuan-Tien Lin

Department of Computer Science & Information Engineering National Taiwan University

June 4, 2018

Which animal?

Which animals?

Multi-label Classification (MLC)

Problem definition

- train set $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$
- label vector $\mathbf{y} \in \{0,1\}^K$ as a binary vector
 - y[k] = 1 if and only if the k-th bit is relevant
- learn a f from \mathcal{D} that maps \mathbf{x} to \mathbf{y}
- test data (\mathbf{x}, \mathbf{y}) , prediction $\hat{\mathbf{y}} = f(\mathbf{x})$
- goal is to make \hat{y} close to ground truth y

Evaluation

- cost function $C(\mathbf{y}, \hat{\mathbf{y}})$: the cost of predicting \mathbf{y} as $\hat{\mathbf{y}}$
- F1 score, Accuracy score, Hamming loss, Rank loss

Cost-Sensitive Multi-label Classification (CSMLC)

Problem definition

- train set $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^N$
- label vector $\mathbf{y} \in \{0,1\}^K$ as a binary vector
 - y[k] = 1 if and only if the k-th bit is relevant
- learn a f from \mathcal{D} and cost function C that maps \mathbf{x} to \mathbf{y}
- test data (\mathbf{x}, \mathbf{y}) , prediction $\hat{\mathbf{y}} = f(\mathbf{x})$
- ullet goal is to make \hat{y} close to ground truth y

Evaluation

- cost function $C(\mathbf{y}, \hat{\mathbf{y}})$: the cost of predicting \mathbf{y} as $\hat{\mathbf{y}}$
- F1 score, Accuracy score, Hamming loss, Rank loss

Naive approach

Binary Relevance (BR)

ullet train independent binary classifier for $\mathbf{y}_1,\ldots,\mathbf{y}_K$

Label space encoding

- add bits to label vector y, prediction error can be "corrected"
- $enc(\cdot): \{0,1\}^K \to \{0,1\}^M$
- $dec(\cdot): \{0,1\}^M \to \{0,1\}^K$
- exists no cost-sensitive code

Naive approach

Binary Relevance (BR)

ullet train independent binary classifier for $oldsymbol{y}_1,\ldots,oldsymbol{y}_{\mathcal{K}}$

Label space encoding

- add bits to label vector y, prediction error can be "corrected"
- $enc(\cdot): \{0,1\}^K \to \{0,1\}^M$
- $dec(\cdot): \{0,1\}^M \to \{0,1\}^K$
- exists no cost-sensitive code

Cost-sensitive encoding

One versus One (OVO) encoding

- multi-class classification OVO reduction
- consider each possible label vector y as an independent class
- $\mathbf{y}_{lpha}^{i}, \mathbf{y}_{eta}^{i} \in \{0,1\}^{K}$ as the reference label vector

$$enc_{ovo}(\mathbf{y})[i] = egin{cases} 1 & ext{if } \mathbf{y} = \mathbf{y}_{lpha}^i \\ 0 & ext{if } \mathbf{y} = \mathbf{y}_{eta}^i \\ 0.5 & ext{otherwise} \end{cases}$$

Cost-Sensitive encoding

ullet multi-class classification for accuracy \Rightarrow to 0/1 loss in MLC

$$enc_{cs}(\mathbf{y})[i] = \begin{cases} 1 & \text{if } C(\mathbf{y}, \mathbf{y}_{\alpha}^{i}) < C(\mathbf{y}, \mathbf{y}_{\beta}^{i}) \\ 0 & \text{if } C(\mathbf{y}, \mathbf{y}_{\alpha}^{i}) > C(\mathbf{y}, \mathbf{y}_{\beta}^{i}) \\ 0.5 & \text{otherwise}(C(\mathbf{y}, \mathbf{y}_{\alpha}^{i}) = C(\mathbf{y}, \mathbf{y}_{\beta}^{i})) \end{cases}$$

CSRPE decoding

- equivalent to finding the nearest neighbor under Hamming distance in the encoding space
- encode cost information into distance between label vectors

$$dec_{cs}(\hat{\mathbf{b}}) = \underset{\mathbf{y} \in \{0,1\}^K}{\operatorname{argmin}} d_{ham}(\hat{\mathbf{b}}, enc_{cs}(\mathbf{y}))$$

Speedup

Sampling code

- the full code length is as large as $\binom{2^K}{2}$
- redundancy
 - consider the two bits (i and j)
 - $\mathbf{y}_{lpha}^{i}=(1,1,1,0),\ \mathbf{y}_{eta}^{i}=(1,1,0,1)$
 - $\mathbf{y}_{\alpha}^{j}=(1,0,1,0),\ \mathbf{y}_{\beta}^{j}=(1,0,0,1)$
 - learning similar things (last two labels are (1,0) or (0,1)?)
- uniform sampling works well

Candidate set

- infeasible to search the full label space $\{0,1\}^K$
- search only in a subset (candidate set) of the label vectors
- reasonable choice is all distinct label vectors in training set

Convergence

CSRPE converges steadly with the increase of code length

Compare with other encoding algorithms

Data set	F1 score ↑				Accuracy score ↑			
Data Set	REP RREP HAMR CSRPE							
					REP	RREP	HAMR	
Corel5k	.0683	.1028	.0608	.2455	.0471	.0696	.0408	.1664
CAL500	.3388	.3527	.3152	.4083	.2097	.2179	.1925	.2645
bibtex	.3636	.3761	.3658	.4663	.3063	.3103	.3094	.3926
enron	.5441	.5336	.5459	.5911	.4303	.4215	.4344	.4772
medical	.7883	.7757	.7877	.8203	.7559	.7431	.7604	.7939
genbase	.9897	.9893	.9896	.9878	.9859	.9852	.9856	.9835
yeast	.6119	.6130	.6171	.6670	.5047	.5065	.5120	.5653
flags	.6954	.6965	.7005	.7222	.5849	.5860	.5913	.6056
scene	.5895	.5926	.6365	.7860	.5791	.5816	.6258	.7620
emotions	.5968	.5773	.6100	.6655	.5179	.4959	.5320	.5775
Data set	Rank loss ↓				Hamming loss ↓			
	REP	RREP	HAMR	CSRPE	REP	RREP	HAMR	CSRPE
Corel5k	618.1	597.2	623.5	490.2	.0095	.0097	.0094	.0108
CAL500	1500.	1477.	1537.	1305.	.1522	.1416	.1490	.1651
bibtex	132.6	124.1	131.5	104.9	.0124	.0130	.0124	.0134
enron	43.39	44.06	43.40	34.32	.0489	.0499	.0485	.0500
medical	5.454	5.733	5.601	5.330	.0104	.0107	.0102	.0100
genbase	.2461	.2422	.2525	.3863	.0012	.0011	.0011	.0014
yeast	9.609	9.565	9.443	8.451	.1941	.1933	.1932	.1891
flags	3.123	3.139	3.078	3.010	.2591	.2591	.2599	.2585
scene	1.136	1.149	1.031	0.679	.0914	.0970	.0848	.0821
emotions	1.789	1.906	1.764	1.591	.1966	.2110	.1953	.1994

- under Hamming loss, algorithms perform competitively
- CSRPE is able to generalize better across cost functions

Cost-Sensitive Multi-label Active learning (CSMLAL)

Active learning setting

- labeled pool $\mathcal{D}_l = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N_l}$
- ullet unlabeled pool $\mathcal{D}_u = \{\mathbf{x}^{(n)}\}_{n=1}^{N_u}$
- MLC classifier f_t trained on \mathcal{D}_I
- cost function C

CSMLAL

- for iterations t = 1, ..., T
 - **1** consider \mathcal{D}_u , \mathcal{D}_l , f_t , C, query $\mathbf{x}_t \in \mathcal{D}_u$ with label vector \mathbf{y}_t

 - $oldsymbol{0}$ train f_{t+1} on \mathcal{D}_l
- the goal is to minimize the average cost of f_t on the testing instances evaluated on C
- let classifier perform better with less data labeled

CSRPE for CSMLAL

Uncertainty sampling

- ullet calculating a value for each instance in \mathcal{D}_u
- greedily choose the most uncertain instance
- various way of evaluating the uncertainty

CSRPE

- encoded vector of the prediction: $\mathbf{\bar{b}} = \textit{enc}_{\textit{cs}}(f_t(x))$
- predicted encoded vector from CSRPE: $\hat{\mathbf{b}} = h(\mathbf{x})$
- nearest encoded vector of \hat{b} : $\tilde{\mathbf{b}} = enc_{cs}(dec_{cs}(\hat{\mathbf{b}}))$
- Cost estimation uncertainty
 - $d_{ham}(\hat{\mathbf{b}}, \tilde{\mathbf{b}})$
 - how well CSRPE estimates the cost between encoded vectors
- Cost utility uncertainty
 - $d_{ham}(\hat{\mathbf{b}}, \bar{\mathbf{b}})$
 - how uncertain f_t is under the current cost function

Compare with active learning algorithms

CSRPE performs the best across different criteria

Conclusion

Cost-sensitive code

- derived cost-sensitive encoding from OVO code
- captures cost information in distance of encoded vectors

Multi-lable classification

- exploit the redundancy between classifiers by uniform sampling
- nearest-neighbor-based decoding on a candidate set
- generalize better across different cost functions

Active learning

- the encoding provides better estimation of uncertainty
- generalize better than other active learning algorithms

Thank you for listening. Any question?

