Physics 137B Lecture 6

Keshav Balwant Deoskar

January 29, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	Jan	uary 29 - Second order and Degenerate Perturbation Theory	2
	1.1	Second Order Perturbation Theory	2
	1.2	Degenerate Perturbation Theory	3

1 January 29 - Second order and Degenerate Perturbation Theory

Recap

• We've been trying to develop *Perturbation Theory* in order to solve problems with Hamiltonians of the form:

$$\hat{H} = \underbrace{\hat{H}_0}_{\text{known sol}} + \lambda \hat{H}'$$

• We did so by assuming we could parametrize the Eigen-states and Eigen-energies as functions of some small parameter λ

$$|n^{(\lambda)}\rangle = \sum_{j} \lambda^{j} |n^{(j)}\rangle$$
$$E_{n}^{(\lambda)} = \sum_{j} \lambda^{j} E_{n}^{(j)}$$

(If this cannot be done, then the system we are studying is non-perturbative).

ullet So far, we've found the $\it Leading\ order\ corrections$ for $\it non-degenerate\ systems$ to be

$$\begin{split} E_n^{(1)} &= \langle n^{(0)} | \hat{H}' | n^{(0)} \rangle \\ | n^{(1)} \rangle &= \sum_{k \neq n} | k^{(0)} \rangle \frac{\langle k^{(0)} | \hat{H}' | n^{(0)} \rangle}{E_n^{(0)} - E_k^{(0)}} \end{split}$$

1.1 Second Order Perturbation Theory

In second order PT, we also grab the λ^2 coefficients:

$$\mathcal{O}(\lambda^2): \lambda^2 \left[(\hat{H}_0 - E_n^{(0)}) |n^{(2)}\rangle + (\hat{H}' - E_n^{(1)}) |n^{(1)}\rangle - E_n^{(2)} |n^{(0)}\rangle \right] = 0$$

Once again, we act on the equation with $|n^{(0)}\rangle$:

$$\implies \underbrace{\langle n^{(0)} | (\hat{H}_0 - E_n^{(0)}) | n^{(2)} \rangle}_{=0} + \langle n^0 | \hat{H}' | n^{(1)} \rangle \rangle - E_n^{(1)} \underbrace{\langle n^{(0)} | n^{(1)} \rangle}_{=0} = 0$$

$$\implies \underbrace{E_n^{(2)} = \langle n^0 | \hat{H}' | n^{(1)} \rangle \rangle}_{=0}$$

Using the expression we get for $|n^{(1)}\rangle$:

$$\Longrightarrow E_n^{(2)} = \sum_{n \neq k} \frac{\langle n^{(0)} | \hat{H}' | k^{(0)} \rangle \langle k^{(0)} | \hat{H}' | n^{(0)} \rangle}{E_n^{(0)} - E_k^{(0)}}$$

[Write about the possible interpretation as the state benig propagated and then returning back above by watching recording]

Interesting fact: When we were finding the states using 1st order PT we wrote

$$|n\rangle = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle$$

and said we wouldn't worry about normalization, but in fact they are normalized up to second order corrections:

$$\implies \langle n|n\rangle = \langle n^{(0)}|n^{(0)}\rangle + \lambda \left(\underbrace{\langle n^{(0)}|n^{(1)}\rangle}_{0} + \underbrace{\langle n^{(1)}|n^{(0)}\rangle}_{0}\right) + \mathcal{O}(\lambda^{2})$$
$$= 1 + \mathcal{O}(\lambda^{2})$$

This came abbout because we had $|n^{(1)}\rangle = \sim_{k\neq n} (stuff)$ summing over states k not equal to n.

Now, what about $|n^{(2)}\rangle$? We have two choices:

Choice #1: Once again sum over states $k \neq n$

$$|n^{(2)}\rangle = \sum_{k \neq n} |k^{(0)}\rangle c_{nk}^{(2)}$$

In this case, we yet again get normalized states

Choice #2: Include k = n

$$|n^{(2)}\rangle = \sum_{k} |k^{(0)}\rangle c_{nk}^{(2)}$$

In this case, we can determine $c_{nn}^{(2)}$ from the normalization condition

$$\langle n|n\rangle = 1 + \mathcal{O}(\lambda^3)$$

For now, we will follow Choice #1. So, let

$$|n^{(2)}\rangle = \sum_{k \neq n} |{}^{(0)}\rangle c_{nk}^{(2)}$$

Then

$$\implies \left(\hat{H}_0 - E_n^{(0)}\right) \sum_{k \neq n} |k^{(0)}\rangle c_{nk}^{(2)} + \left(\hat{H}' - E_n^{(0)}\right) |n^{(1)}\rangle 0 E_n^{(2)} |n^{(0)}\rangle = 0$$

Let $l \neq n$. Then,

$$\begin{split} & \sum_{k \neq n} \langle l^{(0)} | k^{(0)} \rangle c_{nk}^{(2)} \left(E_k^{(0)} - E_n^{(0)} \right) + \langle l^{(0)} | \left(\hat{H}' - E_n^{(0)} \right) | k^{(0)} \rangle - E_n^{(0)} \underbrace{\langle l^{(0)} | n^{(0)} \rangle}_{0} = 0 \\ \Longrightarrow c_{nk}^{(2)} &= \sum_{k \neq n} \frac{E_n^{(1)}}{E_n^{(0)} - E_l^{(0)}} + \sum_{k \neq n} \sum_{l \neq n} \frac{\langle k^{(0)} | \hat{H}' | l^{(0)} \rangle \langle l^{(0)} | \hat{H}' | n^{(0)} \rangle}{(E_n^{(0)} - E_k^{(0)})(E_n^{(2)} - E_l^{(0)})} \end{split}$$

[THE ABOVE ARE DUBIOUS; DOUBLE-CHECK THE CALCULATIONS LATER]

1.2 Degenerate Perturbation Theory

So far, we've assumed that our systems have stationary states which are non-degerate. However, in many situations we have orthogonal states $|a^{(0)}\rangle$ and $|b^{(0)}\rangle$ with $\langle a^{(0)}|b^{(0)}\rangle=0$ but with

$$\hat{H}^{(0)}|a^{(0)}\rangle = E^{(0)}|a^{(0)}\rangle$$
$$\hat{H}^{(0)}|b^{(0)}\rangle = E^{(0)}|b^{(0)}\rangle$$

So, we'll have to tweak our approach. We will try to use the parameter λ to split the energies.