# MA3201

# Topology

Spring 2022

# Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

# Contents

| 1 | Introduction |                          |   |
|---|--------------|--------------------------|---|
|   | 1.1          | Topological spaces       | 1 |
|   | 1.2          | Topological bases        | 2 |
|   | 1.3          | Product topology         | 3 |
|   | 1.4          | Subspace topology        | 3 |
|   | 1.5          | Order topology           | 4 |
|   | 1.6          | Closed sets              | 5 |
|   | 1.7          | Interiors and closures   | 6 |
|   | 1.8          | Convergence of sequences | 7 |
| 2 | Con          | tinuous maps             | 8 |

# 1 Introduction

# 1.1 Topological spaces

**Definition 1.1.** A topology on some set X is a family  $\tau$  of subsets of X, satisfying the following.

- 1.  $\emptyset, X \in \tau$ .
- 2. All unions of elements from  $\tau$  are in  $\tau$ .
- 3. All finite intersections of elements from  $\tau$  are in  $\tau$ .

The sets from  $\tau$  are declared to be open sets in the topological space  $(X, \tau)$ .

Example. Any set X admits the indiscrete topology  $\tau_{id} = \{\emptyset, X\}$ , as well as the discrete topology  $\tau_d = \mathcal{P}(X)$ . Both of these are trivial examples.

Example. Let X be a set. The cofinite topology on X is the collection of complements of finite sets, along with the empty set. Note that when X is finite, this is simply the discrete topology.

**Definition 1.2.** Let  $\tau, \tau'$  be two topologies on the set X. We say that  $\tau$  is finer than  $\tau'$  if  $\tau$  has more open sets than  $\tau'$ . In such a case, we also say that  $\tau'$  is coarser than  $\tau$ .

## 1.2 Topological bases

**Definition 1.3.** Let  $(X, \tau)$  be a topological space. We say that  $\beta \subseteq \tau$  is a base of the topology  $\tau$  such that every open set  $U \in \tau$  is expressible as a union of elements from  $\beta$ .

**Definition 1.4.** Let X be a set, and let  $\beta$  be a collection of subsets of X satisfying the following.

- 1. For every  $x \in X$ , there exists  $x \in B \in \beta$ .
- 2. For every  $x \in X$  such that  $x \in B_1 \cap B_2$ ,  $B_1, B_2 \in \beta$ , there exists  $B \in \beta$  such that  $x \in B \subseteq B_1 \cap B_2$ .

Then,  $\beta$  generates a topology on X, namely the collection of all unions of elements of  $\beta$ .

**Lemma 1.1.** Let  $\tau$  be a topology on X, and let  $\beta \subseteq \tau$  be a collection of open sets. Then,  $\beta$  is a basis of  $\tau$ , or generates  $\tau$ , if for every  $x \in U \in \tau$ , there exists  $B \in \beta$  such that  $x \in B \subseteq U$ .

*Example.* The collection of all open balls in  $\mathbb{R}^n$  form a basis of the usual topology.

**Lemma 1.2.** Let X be equipped with the topologies  $\tau$  and  $\tau'$ , and let  $\beta$  and  $\beta'$  be the respective bases of these topologies. Then,  $\tau$  is finer than  $\tau'$  if and only if given  $x \in B' \in \beta'$ , there exists  $x \in B \in \beta$  such that  $B \subseteq B'$ .

*Example.* The collections of open balls in  $\mathbb{R}^n$  generate the same topology as the collection of all open rectangles in  $\mathbb{R}^n$ .

*Example.* Consider the topologies on  $\mathbb{R}$  generated by the following bases.

- 1.  $\beta_1 = \{(a, b) : a, b \in \mathbb{R}, a < b\}.$
- 2.  $\beta_2 = \{ [a, b) : a, b \in \mathbb{R}, a < b \}.$
- 3.  $\beta_3 = \{(a,b) : a,b \in \mathbb{R}, a < b\} \cup \{(a,b) \setminus K\} \text{ where } K = \{1/n : n \in \mathbb{Z}\}.$

We call the topology generated by  $\beta_2$  the lower limit topology, denoted  $\mathbb{R}_{\ell}$ . The topology generated by  $\beta_3$  is denoted  $\mathbb{R}_K$ . Both of these are strictly finer than the standard topology.

**Definition 1.5.** A sub-basis for some topology on X is a collection  $\rho$  of subsets of X whose union is the whole of X. The topology generated by  $\rho$  is defined to be the topology generated by the collection of all finite intersections of elements of  $\rho$ .

## 1.3 Product topology

**Definition 1.6.** Let  $(X_1, \tau_1)$ ,  $(X_2, \tau_2)$  be topological spaces. Then  $\tau_1 \times \tau_2$  generates the product topology on  $X_1 \times X_2$ .

*Example.* The product topology on  $\mathbb{R} \times \mathbb{R}$ , where  $\mathbb{R}$  is equipped with the standard topology, coincides with the standard topology on  $\mathbb{R}^2$ .

**Lemma 1.3.** If  $\beta_1, \beta_2$  are bases of the topologies  $\tau_1, \tau_2$ , then  $\beta_1 \times \beta_2$  and  $\tau_1 \times \tau_2$  generate the same product topology.

Proof. Given  $(x_1, x_2) \in U$  where  $U \subseteq X_1 \times X_2$  is open in the product topology, recall that U can be written as a union of the basic open sets  $U_{1i} \times U_{2i}$ , where  $U_{1i} \in \tau_1$  and  $U_{2i} \in \tau_2$ . Suppose that  $(x_1, x_2) \in U_1 \times U_2$ . Thus, we can choose  $B_1 \in \beta_1$ ,  $B_2 \in \beta_2$  such that  $x_1 \in B_1 \subseteq U_1$  and  $x_2 \in B_2 \subseteq U_2$ . Thus,  $(x_1, x_2) \in B_1 \times B_2 \subseteq U_1 \times U_2 \subseteq U$ .

**Definition 1.7.** The projection maps are defined as  $\pi_i: X_1 \times \cdots \times X_k \to X_i, (x_1, \dots, x_k) \mapsto x_i$ .

**Lemma 1.4.** The collection of elements of the form  $\pi_1^{-1}(U_1)$  or  $\pi_2^{-1}(U_2)$ , where  $U_1 \in \tau_1$  and  $U_2 \in \tau_2$ , forms a sub-basis of the product topology on  $X_1 \times X_2$ .

*Proof.* Note that  $\pi_1^{-1}(X_1) = X_1 \times X_2$ . Now it is easy to see that finite intersections of elements of the form  $U_1 \times X_2$  or  $X_1 \times U_2$  where  $U_1, U_2$  are open, are all of the form  $U_1 \times U_2$  which is precisely a basis of the product topology.

Corollary 1.4.1. We can restrict ourselves to the sub-basis of elements of the form  $\pi_1^{-1}(B_1)$  or  $\pi_2^{-1}(B_2)$ , where  $B_1 \in \beta_1$ ,  $B_2 \in \beta_2$  for some bases  $\beta_1$ ,  $\beta_2$  of  $\tau_1$ ,  $\tau_2$ .

#### 1.4 Subspace topology

**Definition 1.8.** Let  $(X, \tau)$  be a topological space, and let  $Y \subset X$ . Then the collection  $U \cap Y$  for all  $U \in \tau$  comprises the subspace topology  $\tau_Y$  on Y induced by the topology  $\tau$  on X.

**Lemma 1.5.** If  $\beta$  is a basis for the topology on X, and  $Y \subset X$ , then the collection  $B \cap Y$  for all  $B \in \beta$  generates the subspace topology on Y.

**Lemma 1.6.** An open set of Y is open in X if Y is open in X.

*Proof.* Let  $U \subset Y$  be open in Y, then  $U = V \cap Y$  for some open set V in X. If additionally Y is open in X, this immediately shows that U is open in X.

**Theorem 1.7.** Let  $(X, \tau_X)$ ,  $(Y, \tau_Y)$  be topological spaces, and let  $A \subseteq X$ ,  $B \subseteq Y$ . Then, there are two ways of assigning a natural topology on  $A \times B$ .

- 1. Take the product topology on  $X \times Y$ , and consider the subspace topology induced by it on  $A \times B$ .
- 2. Take the subspace topologies on A induced by  $\tau_X$ , B induced by  $\tau_Y$ , and consider the product topology generated by them on  $A \times B$ .

These two methods generate the same topology on  $A \times B$ .

*Proof.* Open sets in 1 look like  $(U \times V) \cap (A \times B)$ , where  $U \in \tau_X$ ,  $V \in \tau_Y$ ). Open sets in 2 look like  $(U' \cap A) \times (V' \cap B)$ , where  $U' \in \tau_X$ ,  $V' \in \tau_Y$ , which can be rewritten as  $(U' \times V') \cap (A \times B)$ . It is easy to see that these describe precisely the same sets.

#### 1.5 Order topology

**Definition 1.9.** Let X be a set with a simple order <. Then the collection of sets of the form (a,b),  $[a_0,b)$ ,  $(a,b_0]$  where  $a_0$  is the minimal element of X,  $b_0$  is the maximal element of X, generate the order topology on X.

*Example.* The order topology on  $\mathbb{N}$  is precisely the discrete topology.

**Definition 1.10.** Let  $X_1, X_2$  be simply ordered sets. The dictionary order on  $X_1 \times X_2$  is defined as follows:  $(x_1, x_2) < (y_1, y_2)$  if  $x_1 < y_1$ , or if  $x_1 = y_1$  and  $x_2 < y_2$ .

Example. Consider  $X = \{1, 2\} \times \mathbb{N}$ , where both  $\{1, 2\}$  and  $\mathbb{N}$  are endowed with the discrete topology. Note that the product topology on X is the discrete topology.

Now consider the dictionary order on X. Here, (1,1) is the smallest element, so we can list the elements of X in ascending order. Note that every (1,m)<(2,n), for all  $m,n\in\mathbb{N}$ . Now, note that all singletons  $\{(1,m)\}$  are open in the order topology on X. The same is true for the singletons  $\{(1,n)\}$  for all n>1. However, the singleton  $\{(2,1)\}$  is not open in the order topology.

Example. Consider  $\mathbb{R}$  with the usual topology, and  $X = [0,1) \cup \{2\}$ . Then,  $\{2\}$  is open in the subspace topology on X, but it is not open in the order topology on X.

**Lemma 1.8.** The open rays of the form  $(a, +\infty)$  and  $(-\infty, a)$  in X form a sub-basis of the order topology on X.

*Proof.* Note that  $(a,b)=(-\infty,b)\cap(a,+\infty), [a_0,b)=(-\infty,b), \text{ and } (a,b_0]=(a,+\infty).$ 

**Definition 1.11.** Let X be a simply ordered set, and  $Y \subseteq X$ . Then, we say that Y is convex in X if given  $a, b \in Y$  such that a < b, the interval  $(a, b) = \{x \in X : a < x < b\} \subseteq Y$ .

**Theorem 1.9.** Let Y be convex in X. Then, the subspace topology and the order topology on Y induced from the order topology on X coincide.

#### 1.6 Closed sets

**Definition 1.12.** Let  $(X, \tau)$  be a topological space. A set  $F \subseteq X$  is said to be closed in X if  $F^c = X \setminus F \in \tau$ .

Example. The sets  $\emptyset$ , X are closed in every topological space  $(X, \tau)$ .

Example. In a set equipped with the discrete topology, every set is both open and closed.

Lemma 1.10. Arbitrary intersections, and finite unions of closed sets are closed.

**Theorem 1.11.** Let  $(X,\tau)$  be a topological space, and let  $Y \subset X$  be equipped with the subspace topology. Then, a set  $F \subseteq Y$  is closed in Y if and only if  $F = Y \cap G$ , where G is closed in X.

*Proof.* Let  $F \subset Y$ . Now, F is closed in Y,  $Y \setminus F = Y \cap F^c$  is open in Y,  $Y \cap F^c = Y \cap U$  where U is open in X,  $F = Y \cap (Y \cap F^c)^c = Y \cap (Y \cap U)^c = Y \cap U^c$  where  $U^c$  is closed. The steps are reversible.

**Lemma 1.12.** A closed set of Y is closed in X if Y is closed in X.

#### 1.7 Interiors and closures

**Definition 1.13.** Let  $A \subseteq X$  where  $(X, \tau)$  is a topological space.

- 1. The interior of A is defined as the union of all open sets contained in A. This is denoted by  $A^{\circ}$ .
- 2. The closure of A is defined as the intersection of all closed sets containing A. This is denoted by  $\overline{A}$ .

Remark. The interior of a set is open, and the closure of a set is closed.

**Lemma 1.13.** Let  $Y \subset X$  be topological spaces, and let  $A \subseteq Y$ . Also let  $\overline{A}_X$ ,  $\overline{A}_Y$  denote the closures of A in X, Y respectively. Then,  $\overline{A}_Y = \overline{A}_X \cap Y$ .

# **Theorem 1.14.** Let $A \subset X$ . Then,

- 1.  $x \in \overline{A}$  if and only if every open set containing x has non-empty intersection with A.
- 2.  $x \in \overline{A}$  if and only if every basic open set containing x has non-empty intersection with A, given that the topology on X is generated by those basic open sets.

**Definition 1.14.** Let  $A \subseteq X$  where  $(X, \tau)$  is a topological space. We say that  $x \in X$  is a limit point of X if for every open set U containing x, the deleted neighbourhood  $U \setminus \{x\}$  has non-empty intersection with A. The set of limit points of A is denoted by A'.

*Example.* Let X be a set endowed with the discrete topology. Then, given any set  $A \subseteq X$ , we have  $A' = \emptyset$ .

**Lemma 1.15.** A closed set contains all its limit points.

*Proof.* Let  $F \subseteq X$  be closed in X, and let  $x \in F'$ . Then given any open set containing x, we have  $U \cap F \supseteq (U \setminus \{x\}) \cap F \neq \emptyset$ , hence  $x \in \overline{F} = F$ .

**Lemma 1.16.** Let  $A \subseteq X$  where  $(X, \tau)$  is a topological space. Then,  $\overline{A} = A \cup A'$ .

*Proof.* It is clear that  $\overline{A} \supseteq A \cup A'$ . Now pick  $x \in \overline{A}$ . If  $x \notin A$ , then we know that given any open neighbourhood U of x, we have non-empty  $U \cap A$ . Furthermore, this intersection can never contain x, hence  $x \in A'$ . This proves that  $\overline{A} \subseteq A \cup A'$ .

## 1.8 Convergence of sequences

**Definition 1.15.** Let  $\{x_n\}_{n=1}^{\infty}$  be a sequence of points from  $(X,\tau)$ , and let  $x \in X$ . We say that this sequence converges to x, denoted  $x_n \to x$ , if every open neighbourhood of x contains the tail of this sequence. In other words, given  $U \in \tau$  such that  $x \in U$ , there must exist  $N \in \mathbb{N}$  such that  $x_n \in U$  for all  $n \geq N$ .

Example. Let  $X = \{a, b, c\}$ , and  $\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$ . Then, the constant sequence of b's converges to all three points a, b, c.

Example. Let  $X = \mathbb{R}$ , and  $\tau$  be the collection of all intervals (-a, a) together with  $\emptyset, \mathbb{R}$ . Then, the constant sequence of 0's converges to every point in  $\mathbb{R}$ .

**Definition 1.16.** Let  $(X, \tau)$  be a topological space. We say that this topological space is Hausdorff if given any two distinct points  $x, y \in X$ , there exist open sets  $U, V \in \tau$  such that  $x \in U, y \in V$ , and  $U \cap V = \emptyset$ .

Example. The real numbers under the standard topology is Hausdorff.

**Theorem 1.17.** Let  $(X, \tau)$  be a Hausdorff topological space, and let  $\{x_n\}_{n=1}^{\infty}$  be a sequence of points in X. Then, this sequence can converge to at most one point in X.

*Proof.* Suppose that  $\{x_n\}_{n=1}^{\infty}$  converges to distinct points  $x, y \in X$ . Then there exist disjoint open neighbourhoods U, V such that  $x \in U, y \in V$ . Convergence means that both U and V contain a tail of the sequence, which is a contradiction.

**Lemma 1.18.** The singleton sets in a Hausdorff space are closed.

*Proof.* Let  $x \in X$  where  $(X, \tau)$  is Hausdorff. Pick  $y \neq x$ , whence there exist  $U_y, V_y \in \tau$ , such that  $x \in U_y, y \in V_y$ , and  $U_y \cap V_y = \emptyset$ . In particular,  $\{x\} \cap V_y = \emptyset$ . We now have

$$X\setminus\{x\}=\bigcup_{y\neq x}V_y,$$

which is open.

**Theorem 1.19.** The topology induced by a metric is Hausdorff.

*Proof.* Given a metric space X and distinct points  $x, y \in X$ , we set r = |x - y|, U = B(x, r/3), V = B(y, r/3).

# 2 Continuous maps

**Definition 2.1.** Let  $f: X \to Y$  be a function between the topological spaces  $(X, \tau_X)$  and  $(Y, \tau_Y)$ . We say that f is continuous if for every  $U \in \tau_Y$ , we have  $f^{-1}(U) \in \tau_X$ . In other words, the pre-image of every open set in Y must be open in X.

**Lemma 2.1.** A function  $f: X \to Y$  is continuous if and only if given a base  $\beta$  of Y, we have  $f^{-1}(U) \in \tau_X$  for every  $U \in \beta$ .

*Example.* The identity function id:  $\mathbb{R}_{\ell} \to \mathbb{R}$  is continuous, while the identity function id:  $\mathbb{R} \to \mathbb{R}_{\ell}$  is not. This is because the topology on  $\mathbb{R}_{\ell}$  is strictly finer than that on  $\mathbb{R}$ .

**Definition 2.2.** Let  $f: X \to Y$  be a function between the topological spaces  $(X, \tau_X)$  and  $(Y, \tau_Y)$ . We say that f is a homeomorphism if f is continuous, f is invertible, and  $f^{-1}$  is continuous. We also say that X and Y are homeomorphic when such a homeomorphism between them exists.