BACCALAURÉAT PROFESSIONNEL

TECHNICIEN – MENUISIER – AGENCEUR

ÉPREUVE : E2 – Technologie Sous-épreuve E.21 Unité U21 ANALYSE TECHNIQUE D'UN OUVRAGE

SESSION 2018

Durée: 4 h 00 - Coefficient: 3

DOSSIER CORRIGÉ

C	omposition du dossier	Pages
	Page de garde	1/6
	Lecture de plan	2/6
	Étude de l'escalier	3/6
	Quantitatif caisson bas petit déjeuner	4/6
	Étude de l'auge à granulé	5/6
	Résistance des matériaux	6/6

COMPÉTENCES TERMINALES EVALUÉES

C1.1 : décoder et analyser les données de définition C2.1 : choisir et adapter des solutions techniques

C2.2 : établir les plans et les tracés d'exécution d'un ouvrage C2.3 : établir les quantitatifs de matériaux et de composants

BACCALAURÉAT PROFESSIONNEL Technicien - Menuisier - Agenceur	1806 – TMA T 21	Session 2018	Dossier Corrigé
Épreuve : E2 – Technologie Sous-épreuve : E21 – Analyse technique d'un ouvrage	Durée : 4 H	Coefficient : 3	DC 1/6

Lecture de plan

- 1.1 Monsieur et madame Castets Lionel.
- 1.2 Plan de masse.
- 1.3 S.J.C, monsieur et madame Laurent.
- 1.4

Désignation	Orientation
Façade A	« Ouest », Nord-Ouest
Façade B	« Sud », Sud-Ouest
Façade C	« Est », Sud-Est
Façade D	« Nord », Nord-Est
Pièces	Expositions
Salon (uniquement les baies vitrées)	« Sud », Sud-Ouest
Chambre n°01	« Sud », Sud-Ouest
Chambre n°04	« Est » Sud-Est
Salle de bain n°02	NORD

1.5

Désignation	Nombre	Dimensions (Largeur et hauteur)
Châssis Coulissant volet Roulant	1	2400 x 2150
Châssis Coulissant volet Roulant	1	1800 x 2150
Châssis Fixe +rideau intérieur	1	600 x 950
Porte d'entrée	1	900 x 2150

- 1.6 La hauteur sous plafond de la cuisine est de 2500 mm.
- 1.7 142,59 m².
- 1.8 Dimensions du vide sur séjour : 2437 x 1900 mm.
- 1.9 Le matériau est le BA13 plaque de plâtre de 13 mm d'épaisseur.

		Pas de réponse	Réponse fausse		Bonne réponse
		1	1	+	++
1.1					
1.2	C1.11				
1.3					

		Pas de réponse	1 bonne réponse	2 et 3 bonnes réponses	4 Bonnes réponses
			-	+	++
1.4 (4 premières lignes)	C1.13				
1.4 (4 dernières lignes)	C1.14				

		Pas de réponse	1 bonne réponse	2 et 3 bonnes réponses	4 Bonnes réponses
			-	+	++
1.5 (Désignation)	C1.13				
1.5 Nombre et Dimensions	C1.15				

		Pas de réponse	Réponse fausse		Bonne réponse
			-	+	++
1.6	C1.15				
1.7	C1.12				
1.8	C1.15				
1.9	C1.14				

BACCALAURÉAT PROFESSIONNEL	Dossier	1806 –	Épreuve : E2 – Technologie	DC 2
Technicien - Menuisier - Agenceur	Corrigé	TMA T 21	Sous-épreuve : E21 – Analyse technique d'un ouvrage	DC 2

Étude de l'escalier 2.1. La hauteur à franchir est de 2840 mm.

2.2. Il y a 15 hauteurs de marches.

2.3. Il y a 14 marches (ou giron).

2.4. 2840/15=189,33mm.

Réponse fausse

Bonne réponse

NB : Les réponses sont données en mm avec 2 chiffres après la virgule.

2.5. $2529 + 66 + ((2 \times \pi \times 406) / 4) = 3232,42 \text{ mm}.$

2.6. 3232,42 / 14 = 230,88 mm.

2.7. Rapport H/G: 189,33 / 230,88 = 0,82.

> Relation G + 2H: $230,88 + 2 \times 189,33 = 609,54 \text{ mm}.$

Conclusion: l'escalier est conforme.

		Ъ	R	_ E	В
		1	ı	+	++
2.4			_		
2.5	C1.1				
2.6	7				
2.7					

2.8. Tracer le balancement des marches de la deuxième volée sur la vue en plan. (Échelle 1 : 20)

1	
И	
М З	
4.	E
5.	\display \di
6	Xc /
7	a
8.	
L) B

<u>- 1</u> -	2	
B		4
1		5
-		6
-		7
D		8
		9
		10
		11
		12
		13
		14
		15
	4	7

Quantitatif caisson bas petit déjeuner

3.1

FEUILLE DE DÉBIT						
Ensemble, s	ous ens	semble :	Clien	t : Castets L	ionel	Page 1/1
Caisson bas	s petit d	éjeuner				
Désignation	Nbre	Matière	Longueur	Largeur	Épaisseur	Cubage(m ³)
						Surface(m²)
						Longueur(ml)
Bois	massi	f				
	Tiroir à	l'anglaise				
Cotés	2	Pin	550	80	16	0,001408 m ³
Façades	2	Pin	419	80	16	0,0017264 m ³
Tiı	roir Inte	rmédiaire				
Cotés	2	Pin	550	200	16	0,00352 m ³
Façades	2	Pin	419	200	16	0,0026816 m ³
		Tiroir Bas				
Cotés	2	Pin	550	260	16	0,004576 m ³
Façades	2	Pin	419	260	16	0,00697216 m ³
				TOTA	AL MASSIF	0,02088416 m ³
Pannea	ux déri	vés				
Fonds Tiroirs	3	PPSM	532	433	8	0,691068 m²
		blanc	332	455	O	0,091000111
		Caisson				
Cotés	2	PPSM	764	589	19	0,899992 m²
		blanc	704	303	13	0,000002111
Dessus	2	PPSM	589	495	19	0,58311 m²
Dessous		blanc	303	433	13	0,00011111
Façades	2	PPSM	495	398	19	0,388484 m²
tiroirs		Gris	400	000	10	
			TAL PANNE			0,691068 m ²
			ANNEAUX é			1,483102 m ²
TOTAL F			PANNEAUX	épaisseur ´	19 mm Gris	0,388484 m²
	de cha					
Chant		ABS	2522		1	2,522ml
caisson		blanc				
Chant tiroirs		ABS gris	3556		1	3,556ml

		Pas de réponse	1 à 7 bonnes réponses	8 et 14 bonnes réponses	15 à 22 bonnes réponses
		-	-	+	++
3.1	C2.31				_

		Pas de réponse	1 à 15 bonnes réponses	16 et 35 bonnes réponses	36 à 50 bonnes réponses
		-	1	+	++
3.2	C2.31				

BACCALAURÉAT PROFESSIONNEL
Technicien - Menuisier - Agenceur

Dossier
Corrigé

TMA T 21

Epreuve : E2 – Technologie
Sous-épreuve : E21 – Analyse
technique d'un ouvrage

DC 4

1806 –

RÉSISTANCE DES MATÉRIAUX

• Contrainte de flexion de l'étagère :

5.1 Rechercher les dimensions de l'étagère ainsi que la charge linéique (en N/mm) :

> Longueur (I): 1730 mm

>

Largeur (b): 600 mm
Epaisseur (h): 24 mm
Charge linéique (q): 0,25 N/mm

		Pas de réponse	1 bonne réponse	2 ou 3 bonnes réponses	4 bonnes réponses
			-	+	++
5.1	C2.11				

5.2 Calculer le moment fléchissant maximum (N.mm)

	Pas de réponse	Résultat faux		La réponse est juste	
			-	+	++
5.2 Le résultat	C2.12				
L					

5.3 Calculer le module de résistance à la flexion (en mm³)

$$W_{el\ y} = \frac{b*h^2}{6} = \frac{600*24^2}{6} = \frac{345600}{6} = 57600 \, mm^3$$

	Pas de réponse	Résultat faux	Bon raisonnement, calcul faux	La réponse est juste	
			-	+	++
5.3 Le résultat	C2.12				
5.4 Le résultat	02.12				

5.4 Calculer la contrainte d'exploitation de flexion dans l'étagère en bois (en Mpa)

$$\sigma m, d = \frac{Mf, y}{Wel, y} = \frac{93528}{57600} = 1,62 MPa$$

5.5 Rechercher la contrainte de résistance admissible par le matériau à la flexion (en MPa) :

5.6 Calculer la résistance de flexion admissible par le matériau (en MPa)

5.7 Vérifier la contrainte de flexion :

$$\sigma m, d < fm, d$$

(Contrainte dans la lame) (contrainte de matériau)

Conclusion : l'étagère résiste aux efforts soumis.

an onone opaniio.							
		Pas de réponse	Mauvaise réponse	1 bonne réponse	2 bonnes réponses		
			1	+	++		
5.7	C2.13						

BACCALAURÉAT PROFESSIONNEL Technicien - Menuisier - Agenceur	Dossier Corrigé	1806 – TMA T 21	Épreuve : E2 – Technologie Sous-épreuve : E21 – Analyse technique d'un ouvrage	DC 6
---	--------------------	--------------------	--	------

• Flèche instantanée de l'étagère :

MPa)

5.8 Rechercher le module d'élasticité axial (en l
E o, moyen = 12000 MPa

		Pas de réponse	Mauvaise répons		La réponse est ju
			-	+	++
5.8	C2.11				

5.9 Calculer le moment quadratique (en mm⁴)

$$I gy = \frac{b * h^3}{12} = \frac{600 * 24^3}{12} = \frac{600 * 13824}{12} = \frac{82944000}{12} = 691200 \text{ mm}^4$$

5.10 Calculer la flèche instantanée (en mm)

$$f inst < \frac{5 q * l^4}{384 E_{o moyen} \cdot l Gy} = \frac{5 * 0.25 * 1730^4}{384 * 12000 * 691200} = \frac{11196813012500}{3185049600000} = 3.51 mn$$

5.11 Vérifier que la flèche instantanée soit $<\frac{L}{300}$

$$f inst < \frac{L}{300} = \frac{1730}{300} = 5,76mm$$

Conclusion : la flèche se déforme de 3.51 mm (inférieure à la flèche maxi 5.76 mm)

		Pas	Ré	Bon r	La répo
		1	1	+	++
5.11	C2.13				
5.12	C2.11				

5.12 Rechercher le coefficient de fluage k def :

K def = 0,60 <

5.13 Calculer la flèche finale (en mm)

$$ffin = finst (1 + kdef) = 3.51 * (1 + 0.6) = 5.61 mm$$

		7			
		Pas de réponse	Mauvaise réponse	Bon raisonnement, calcul faux	La réponse est juste
		4	1	+	++
5.13	C2.12				
5.14	C2.13				
\ <u>\</u>					

5.14 Vérifier la flèche finale.

$$ffin < \frac{L}{300} = \frac{1730}{300} = 5,76mm$$

Conclusion: 5,61 < 5,76 la flèche est vérifié.

BACCALAURÉAT PROFESSIONNEL Technicien - Menuisier - Agenceur	Dossier Corrigé	1806 – TMA T 21	Épreuve : E2 – Technologie Sous-épreuve : E21 – Analyse technique d'un ouvrage	DC 7
---	--------------------	--------------------	--	------