

Semester 1, 2021 Ling Luo

Outline

- Regression
- Parameter Estimation
 - Optimisation
 - Computing the Optimal Solution
 - Gradient Descent
- Application and Evaluation

Categorical Features and Classes

- For classification problems, classes are categorical
- Attributes can be categorical or continuous → discretise
- Continuous attributes lead to different methods or strategies,
 e.g. Naïve Bayes with continuous attributes

What if the class were continuous?

Regression

- Continuous attributes → continuous class
- Assuming a linear relationship between the attribute values a_k and the continuous class c, we have:

$$c = w_0 + \sum_{k=1}^{D} w_k a_k$$

where w_k is a weight corresponding to a_k

Regression

- Can we predict housing prices?
- A friend has a house which is 750 square feet. Can we estimate the price of this house?

- Linear regression captures a **linear relationship** between:
 - An outcome variable y (or called response variable, dependent variable, label) and
 - One or more **predictors** $x_1, ..., x_D$ (or called independent variable, explanatory variable, feature)
- At its most basic, the relationship can be expressed as a line:

$$y = f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_D x_D = \beta \cdot x$$

where $\mathbf{x} = [x_0, x_1, \dots, x_D], x_0 = 1$

- Linear functions capture changes in one variable that correlate linearly with changes in another variable.
- A simple assumption! They are less descriptive than non-linear functions, but permit simpler mathematical strategies.
- For some variables, this assumption makes sense.
 Example: The more umbrellas you sell, the more money you make. How much money you make is directly proportional to how many umbrellas you sell.

Training and Prediction

Training set: N examples

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N),$$

 $x_i = [x_{i0}, x_{i1}, x_{i2}, ..., x_{iD}]$

Find the optimal $\boldsymbol{\beta} = [\beta_0, \beta_1, \beta_2, ..., \beta_D]$

Predict a continuous valued output

$$\hat{y} = \boldsymbol{\beta} \cdot \boldsymbol{x}_{test}$$

- We want to choose the best line.
 - Operationally, the line that minimises the *distance* between all points and the line.
 - Recall Euclidean distance: $d(A,B) = \sqrt{\sum_{k=1}^{D} (a_k b_k)^2}$

Week 6, Lecture 1 COMP30027 Machine Learning 10

- Least squares method: find the line that minimises the sum of the squares of the vertical distances between predicted \hat{y} and actual y.
- Minimise the Mean Squared Error (MSE) of N data points

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \beta \cdot x_i)^2$$

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{arg min}} MSE$$
 loss function

 Good news! MSE is convex, the local minimum is a global minimum

- **Solution:** calculate partial derivatives of the loss function, with respect to β , for N instances and D attributes
- Set $\frac{\partial}{\partial \beta_0}$ and all $\frac{\partial}{\partial \beta_k}$ to 0, and solve D+1 equations with D+1 unknowns

doned form solver of
$$\hat{\beta}$$
 = arg min $\frac{1}{N} \sum_{i=1}^{N} (y_i - \beta \cdot x_i)^2$

$$\frac{\partial}{\partial \beta_0} = -\frac{2}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i) \qquad \frac{\partial}{\partial \beta_k} = -\frac{2}{N} \sum_{i=1}^{N} x_{ik} (y_i - \hat{y}_i)$$

Parameter Estimation

- Optimisation
- Computing the Optimal Solution
- Gradient Descent

Optimisation

- Learning can be viewed as an optimisation problem
- Given an evaluation metric M (like Accuracy or Error), a dataset T, a feature representation F(T), and a learner L with parameters θ
 - Maximise or minimise $M(\theta; L, F(T))$, where learner L and dataset F(T) are fixed
 - If \underline{M} is error rate, $\widehat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$
- Learning => finding parameters that optimise some criterion M for model L and feature representation F(T)

How to find the optimal solution?

$$\hat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$$

- Analytic solution
- Exhaustive solution
- Grid search
- Iterative approximation

$$\hat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$$

Analytic Solution

- closed form, can be computed exactly
- requires solving a system of equations

$$\frac{\partial (Error)}{\partial \theta_1} = 0, \frac{\partial (Error)}{\partial \theta_2} = 0, \dots, \frac{\partial (Error)}{\partial \theta_D} = 0$$

- e.g. for linear regression, $\hat{\beta} = (X^T X)^{-1} X^T y$
- challenges: derivatives can be undefined or not calculable

$$\hat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$$

```
Exhaustive solution not for continuous values & discrete
```

- For each $\theta \in \{k_1, k_2, ..., k_n\}$, calculate $Error(\theta; L, F(T))$
- For M parameters, each taking N unique values, it requires N^M train-evaluate cycles M^M
- Works for methods with a small number of hyperparameters, taking a small number of values, e.g. KNN
 - Similarity measure: Euclidean, Manhattan, cosine,...
 - Voting strategy: majority, ID, ILD,...
 - Number of neighbours: 1, 2, 3, ...

$$\hat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$$

Grid Search

numeric

- For each numerical $\theta \in R$
 - Identify boundaries of range R_- , R_+
 - Divide range $[R_-, R_+]$ into equal-width samples select step size
 - calculate $Error(\theta; L, F(T))$ for each sample
- More samples: closer to optimal estimate, but more time required

large step size miss the optimal astimate

$$\hat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$$

Iterative approximation

- **1.** Initialisation: set iter = 0, guess θ^0
- **2. Evaluate**: compute $Error(\theta^{iter}; L, F(T))$
- 3. **Termination**: decide whether to stop
- **4. Update:** compute θ^{iter+1} based on θ^{iter} ; increase

$$iter := iter + 1$$

5. Repeat: Go to Step 2

$$\hat{\theta} = \arg\min_{\theta \in \Theta} Error(\theta; L, F(T))$$

Gradient Descent

$$\theta^{iter+1} \coloneqq \theta^{iter} - \alpha \nabla Error(\theta^{iter}; L, F(T))$$

$$\theta_k^{iter+1} \coloneqq \theta_k^{iter} - \alpha \frac{\partial Error(\theta_k^{iter})}{\partial \theta_k^{iter}}$$

- Find the direction: $\nabla Error(\theta)$ is a vector of partial derivative terms, which measures the slope (=gradient) of the function
- Each update reduces the error slightly

- lpha is learning rate, which defines how big a step to update $heta_k^{iter}$
 - If α is too small, the algorithm might be slow.
 - If α is too large, you might miss the minimum

More generally, for non-convex loss function

For linear regression

Enor
$$i = (y_t - \beta x_i)^2$$

Enor mean = $\frac{1}{N} \sum (y_i - (\beta x_i)^2)^2$

$$\beta_k^{iter+1} \coloneqq \beta_k^{iter} - \alpha \frac{\partial \ Error(\beta_k^{iter})}{\partial \beta_k^{iter}} = \beta_k^{iter} + \frac{2\alpha}{N} \sum_{i=1}^N x_{ik} (y_i - \widehat{y_i^{iter}})$$

Gradient descent steps for iteration *iter*

- Calculate prediction $\widehat{y_i^{iter}}$ for each training instance
- Compare prediction with actual value y_i
- Multiply by the corresponding attribute value x_{ik}
- Update weight β_k after all the training instances are processed

Application and Evaluation

Linear Regression Application

Example on a dataset with more features

PRP = - 56.1 + 0.049 MYCT+ 0.015 MMIN+ 0.006 MMAX+ 0.630 CACH- 0.270 CHMIN+ 1.460 CHMAX

Table: CPU dataset

MYCT	MMIN	ММАХ	CACH	CHMIN	СНМАХ	PRP
125	256	6000	256	16	128	199
29	8000	32000	32	8	32	253
29	8000	32000	32	8	32	253
29	8000	32000	32	8	32	253
29	8000	16000	32	8	16	132
26	8000	32000	64	8	32	290
23	16000	32000	64	16	32	381

Categorical Attributes

- We can easily map nominal attributes onto numeric attributes through binarisation or one-hot encoder
- If we treat each resulting binary feature as continuous, we can use linear regression as it is

Evaluation

- It doesn't make sense to evaluate numeric prediction tasks in the same manner as classification tasks
 - true positive matches (direct hits) are an unreasonable expectation
 - regression can make use of the inherent ordering and scale of the outputs
- There are many scoring metrics for regression tasks, all of which are based on the **absolute or relative difference** between the predicted value \hat{y}_i and actual y_i value of test instances

Evaluation Metrics

Mean Squared Error (MSE):

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

• Root Mean Squared Error (RMSE): scale down ≈ |yi-yi)

$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i-\hat{y}_i)^2}$$

• Root Relative Squared Error (RRSE): relative to baseline $\bar{y} = \frac{1}{N} \sum y_i$

$$\sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

Evaluation Metrics

 Correlation Coefficient (Pearson's correlation): statistical correlation between predicted and actual values

strong positive correlation
$$r = \frac{S_{\hat{Y}Y}}{\sqrt{S_{\hat{Y}}S_{Y}}}$$

$$S_{\hat{Y}Y} = \frac{\sum_{i}(\hat{y}_{i} - \bar{\hat{y}})(y_{i} - \bar{y})}{N-1}$$

$$S_{\hat{Y}} = \frac{\sum_{i}(\hat{y}_{i} - \bar{\hat{y}})^{2}}{N-1}, S_{Y} = \frac{\sum_{i}(y_{i} - \bar{y})^{2}}{N-1}$$

Evaluation Metrics

Which metric to use?

The relative ranking of methods across the different metrics is reasonably stable, such that the actual choice of metric isn't crucial

	Α	В	С	D
RMSE	67.8	91.7	63.3	57.4
RRSE	42.2	57.2	39.4	35.8
СС	0.88	0.88	0.89	0.91

Beyond Linear Relationship

- Linear regression is an intuitive model, with relatively easy implementation
- But can we really expect a linear relationship between feature values and target variables?
- Other regression methods
 - regression trees
 - locally weighted linear regression
 - support vector regression
 - ...

Beyond Linear Relationship

Polynomial of x as input variables

$$\varphi(x) = [1, x, x^2, x^3, ..., x^D]$$

$$\mathbf{z} = [z_0, z_1, z_2, z_3, ..., z_D]$$

$$\hat{y} = \boldsymbol{\beta} \cdot \mathbf{z}$$

Can capture nonlinear relationship regarding x

Week 6, Lecture 1 COMP30027 Machine Learning 34

Summary

- What is linear regression, and how does it operate?
- How is learning a type of optimisation? rearning ~ optimation
- What is gradient descent, and why is it used for linear regression?
- How can we evaluate regression tasks?

