EL6363 Lab 2

Mininet Tutorial

Lab2 Objectives

- Introduction to Software Defined Network
- Master the simulation tool: Mininet
- Understand the operation of Openflow and observe its messages
- Interfacing with Open Virtual Switch (OVS)
- Implement a simple flow-based routing algorithm

IP Match Action IP: 10.10.0.0/24 Send to port 0 Switch & Networking IP: 10.10.1.0/24 Send to port 1 Port 0 Port 1 **Action** Send to port 0 Send to port 1 Port 0 Port 1 Host 2 **IP:** 10.10.0.1 **IP:** 10.10.0.2 **IP:** 10.10.1.3

Host 3

MAC: 00:03

MAC Match

Host 1

MAC: 00:01

MAC: 00:02

MAC: 00:01

MAC: 00:02

Software Defined Network

Flow & Packets

ts

Software Defined Network

Flow table & Flow entry

Controller

Match	Action
any	To controller

Pktln: Packet-in

Match	Action
any	To controller

Pktln: Packet-in

PktOut: Packet-out

Match	Action
any	To controller

Pktln: Packet-in

PktOut: Packet-out

FlowMod: flow entry modification

Match	Action
IP= ;TCP=	To port 1
any	To controller

Host 1

Pktln: Packet-in

PktOut: Packet-out

Pktln: Packet-in

PktOut: Packet-out

Match	Action
IP= ;TCP=	To port 2
•	. o po. t =

Pktln: Packet-in

PktOut: Packet-out

In Lab 2

We use OpenFlow command to control SDN switches. (set up flow entries)

SDN Switch

SDN Switch

Open vSwitch: Software switch

OpenFlows: Protocol between control plane & data plane

Open vSwitch: Software switch

Packet-in
Packet-out
FlowMod

OpenFlows: Protocol between control plane & data plane

Mininet

- Creates scalable Networks (up to hundreds of nodes)
- Emulator (send real packets within your PC)
- Able to work with any kind of OpenFlow controller
- Easy to program
- Open source project (Free!!)

What does Mininet provide?

- Mininet emulates software defined networks.
- Create virtual hosts and virtual switches
- Test the connectivity and performance in a virtual environment

Tasks & Steps

Lab2 Steps

- Install and run mininet
- Follow mininet walkthrough and learn its commands
- Capture OpenFlow messages passed through mininet hosts
- Create a customized topology
- Install custom forwarding rules on switches

Installing mininet (Option 1) - recommended

- Install a Ubuntu VM using either VMWare Player or VirtualBox
- Install mininet through apt-get (remember to update first)
 - sudo apt-get update
 - sudo apt-get install mininet
- Test installed mininet
 - sudo mn --test pingall
- To install default ovs controller
 - sudo apt-get install openvswitch-testcontroller
 - sudo cp /usr/bin/ovs-testcontroller /usr/bin/ovs-controller

Running mininet

Controller

H S1 H 2

Mininet Walkthrough

- Follow the official mininet walkthrough
 - http://mininet.org/walkthrough/
 - Example:

Display Startup Options Let's get started with Mininet's startup options. Type the following command to display a help message describing Mininet's startup options: \$ sudo mn -h

- Learn
 - How to Run mininet
 - mininet's basic commands

1. Observe the OpenFlow Control message

1. Run the Mininet topology Open Wireshark in <u>Ubuntu</u> and start!!

1. Run the Mininet topology

2. Create custom topology and install rules

2. Create custom topology and install rules

 Simulate a software defined network with 2 hosts and 5 switches

Creating a custom topology

```
H1 = self.addHost('H1')
H2 = self.addHost('H2')
S1 = self.addSwitch('S1')
S2 = self.addSwitch('S2')

# Add links
self.addLink(H1,S1)
self.addLink(S1,S2)
self.addLink(S2,H2)
```

Add hosts and switches

Refer to: https://github.com/mininet/mininet/blob/master/custom/topo-2sw-2host.py

Creating a custom topology

Add hosts and switches

H1 = self.addHost('H1')

H2 = self.addHost('H2')

S1 = self.addSwitch('S1')

S2 = self.addSwitch('S2')

Add links self.addLink(H1 , S1) self.addLink(S1, S2)

self.addLink(S2, H2)

sudo mn --custom *.py --topo mytopo--controller remote

Refer to: https://github.com/mininet/mininet/blob/master/custom/topo-2sw-2host.py

Manually installing rules on OVS nodes

Write the rule yourself "Teach" the switches

(a switch is also called a "bridge")

Manually installing rules on OVS nodes

Action

Match

- In the lab we need these commands (you may need to sudo):
 - ovs-ofctl show s1
 - ovs-ofctl dump-flows s1
 - ovs-ofctl add-flow s1 in_port=1,actions=output:2
 - ovs-ofctl add-flow s1 priority=500,in_port=1,dl_type=0x0800,nw_proto=6,actions=output:2

Example:

(Important!!!) For more details refer to: https://manpages.ubuntu.com/manpages/xenial/man8/ovs-ofctl.8.html

Manually installing rules on OVS nodes

- In the lab we need these commands (you may need to sudo):
 - ovs-ofctl show s1
 - ovs-ofctl dump-flows s1
 - ovs-ofctl add-flow s1 in_port=1,actions=output:2
 - ovs-ofctl add-flow s1 priority=500,in port=1,dl type=0x0800,nw proto=6,actions=output:2

Match	Action
in_port=1	Output: 2

Example:

• (Important!!!) For more details refer to: http://manpages.ubuntu.com/manpages/xenial/man8/ovs-ofctl.8.html

2. Create custom topology and install rules

- Implement flow-based routing instead of destination-based routing
 - Traffic from H1 → H2
 - HTTP traffic with d_port=80, follow path: A-B-D
 - other traffic, follow path: A-C-E-D
 - Traffic from H2 → H1
 - HTTP traffic with s_port=80, follow path: D-C-A
 - other traffic, follow path: D-B-E-C-A
- Generate traffic and verify your result with Wireshark

Lab2 Overview (part 1)

Port vs TCP port

TCP port

Labels for application

Port Number	Protocol	Application
20	TCP	FTP data
21	TCP	FTP control
22	TCP	SSH
25	TCP	SMTP
53	UDP, TCP	DNS
80	TCP	HTTP (WWW)
110	TCP	POP3
443	TCP	SSL

Generate traffic and verify your result with vviresnark

Useful tips

- To clean up the Mininet
 - \$ mn –c
- Open terminal on one host in Mininet
 - mininet> xterm h1
- Run command on host
 - mininet> h1 <commands>
- To generate traffic
 - iperf/hping (Refer to lab 1) for HTTP packets
 - ping to generate ICMP packets

Lab2 Overview (part 2)

- Given switches with N ports, create a 2-stage fat-tree topology with hosts in Mininet
 - Make N a variable in your topology file/program

• Ex:

N=6