	September 20th, 2024
	When $x^3 - kx^2 - 10kx + 25$ is divided by $x - 2$, the remainder is 9. Find the ue of k. as per the remainder theorem, if $f(x)$ is divided by $x - b$, then the remainder is $f(b)$. with this, we know that $f(2) = 9$, and we can use this to solve for k $f(x) = x^3 - kx^2 - 10kx + 25$ $f(2) = (2)^3 - k(2)^2 - 10k(2) + 25$ $g(2) = 8 - 4k - 20k + 25$
	9 = -24k + 33 $24k = 24$ $k = 1$
2.	If $2x^3 - 9x^2 + 13x + k$ is divisible by $2x - 1$, then it is also divisible by (A) $x - 2$ (B) $x - 1$ (C) $x + \frac{1}{2}$ (D) $x - \frac{1}{2}$ (E) $2x + 1$
	if $f(x) = 2x^3 - 9x^2 + 13x + k$ is divisible by $2x - 1$, then as per the factor the orem, it means $f(\frac{1}{2}) = 0$, and using this, we can solve for k . $f(\frac{1}{2}) = 2(\frac{1}{2})^3 - 9(\frac{1}{2})^2 + 13(\frac{1}{2}) + k$ $0 = 2(\frac{1}{2})^3 - 9(\frac{1}{2})^2 + 13(\frac{1}{2}) + k$ $0 = 2(\frac{1}{8}) - 9(\frac{1}{4}) + 13(\frac{1}{2}) + k$ $0 = \frac{1}{4} - \frac{9}{4} + \frac{13}{2} + k$ $0 = \frac{-8}{4} + \frac{26}{4} + k$ $0 = \frac{18}{4} + k$
	$k = \frac{-9}{2}$ $f(x) = 2x^3 - 9x^2 + 13x - \frac{9}{2}$ $f2(x) = 2(2x^3 - 9x^2 + 13x - \frac{9}{2})$ $f2(x) = 4x^3 - 18x^2 + 26x - 9$
	now that we have the value of k , we can determine values of x that will create another divisor, which can be done by using the factors of the first term of the equation as denominators, and the factors of the last term of the equation as numerators. This creates these possibilities:
	creates these possibilities: $\frac{\pm(1,3,9)}{\pm(1,2,4)}$ with this, we can create multiple fractions, and substitute them into $f(x)$ until on of them produces no remainder.
	$f(\frac{1}{1}) = 2(1)^3 - 9(1)^2 + 13(1) - \frac{9}{2} = \frac{3}{2}$ $f(\frac{-1}{1}) = 2(-1)^3 - 9(-1)^2 + 13(-1) - \frac{9}{2} = \frac{-57}{2}$ $f(\frac{3}{1}) = 2(3)^3 - 9(3)^2 + 13(3) - \frac{9}{2} = \frac{23}{2}$ $f(\frac{1}{4}) = 2(\frac{1}{4})^3 - 9(\frac{1}{4})^2 - 13(\frac{1}{4}) - \frac{9}{2} = -1.78125$ $f(\frac{-1}{4}) = 2(\frac{-1}{4})^3 - 9(\frac{-1}{4})^4 - 13(\frac{-1}{4}) - \frac{9}{2} = -8.34375$ or maybe I could just relalize that $2x - 1 = x - \frac{1}{2}$ which is answer D.
of	If one root of the equation $x^3 - 5x^2 + 5x - 1 = 0$ is $2 - \sqrt{3}$, then find the sunthe other two roots. if m, n and 1 are non-zero roots of the equation $x^3 - mx^2 + nx - 1 = 0$, then
5. is	The remainder when $f(x) = x^5 - 2x^4 + ax^3 - x^2 + bx - 2$ is divided by $x + -7$. When $f(x)$ is divided by $x - 2$, the remainder is 32. Determine the mainder when $f(x)$ is divided by $x - 1$. $f(-1) = (-1)^5 - 2(-1)^4 + a(-1)^3 - (-1)^2 + b(-1) - 2$ $-7 = -1 - 2 - a - 1 - b - 2$ $-7 = -6 - a - b$
	$-1 = -a - b$ $a = 1 - b$ $f(2) = (2)^5 - 2(2)^4 + a(2)^3 - (2)^2 + b(2) - 2$ $32 = 32 - 32 + 8a - 4 + 2b - 2$ $32 = -6 + 8a + 2b$ $19 = 4a + b$
	19 = 4(1-b) + b $19 = 4 - 4b + b$ $15 = -3b$ $b = -5$
	a = 1 - b $a = 1 - (-5)$ $a = 1 + 5$ $a = 6$
	$f(x) = x^5 - 2x^4 + (6)x^3 - x^2 + (-5)x - 2$ $f(x) = x^5 - 2x^4 + 6x^3 - x^2 - 5x - 2$
	$f(1) = (1)^5 - 2(1)^4 + 6(1)^3 - (1)^2 - 5(1) - 2$ $f(1) = 5 - 2 + 6 - 1 - 5 - 2$ $f(1) = 1$ $\therefore \text{ the remainder is 1 when } f(x) \text{ is divided by } x - 1.$
	For the polynomial $f(x) = ax^3 + bx^2 + cx + d$, the sum of the coefficients is all to zero. (i.e. $a + b + c + d = 0$). a) Show that the polynomial is divisible by $x - 1$. as per the remainder theorem, if $f(x)$ is to be divided by $x - b$, the remainder with
	always be $f(b)$. In this case, b is 1, so the remainder is equal to $f(1)$. when 1 is inputted for x , all of the coefficients stay the same because $1^n = 1$, meaning that the remainder would be equal to the sum of the coefficients of the equation and so the remainder is 0 when $f(x)$ is divided by $x - 1$. Because of this, as per the factor theorem, we know that $x - b$ is a factor of $f(x)$ iff $f(b) = 0$, and in this case that is true, meaning that $x - 1$ is a factor of $f(x) = ax^3 + bx^2 + cx + d$. b) Solve $2x^3 - 3x^2 + 1 = 0$.
	c) Find the sum of the coefficients in the expansion of $g(x)=(x+2)(x^2-2x+1)^2$ Find a and b so that the quartic function $f(x)=a^2x^4+3x^3+b^2x^2+4abx+4abx+4abx+4abx+4abx+4abx+4abx+4abx$
lea by 8.	ves a remainder of 10 on division by $x+1$ and a remainder of 20 on division x . An unknown polynomial $f(x)$ of degree 37 yields a remainder of 1 when
of (x -	rided by $x-1$, a remainder of 3 when divided by $x-3$, and a remainder 21 when divided by $x-5$. Find the remainder when $f(x)$ is divided by $x-1$, $(x-3)(x-5)$. if $ax^3 + bx + c$, with $a \neq 0, c \neq 0$, has a factor of the form $x^2 + px + 1$, show
tha	if $ax^3 + bx + c$, with $a \neq 0, c \neq 0$, has a factor of the form $x^2 + px + 1$, shown at $a^2 - c^2 = ab$. Given that the cubic equation $x^3 - 3x^2 + ax + b = 0$ has rational coefficient
	Given that the cubic equation $x^3 - 3x^2 + ax + b = 0$ has rational coefficient d has the root $-1i\sqrt{3}$, determine the values of a and b.