Partial Reflection over Uniform Disquotational Truth

Mateusz Łełyk

Institute of Philosophy, University of Warsaw Supported by Foundation for Polish Science (START programme)

MOPA
Online June 22, 2020

Outline

Introduction: Reflection & Truth

The main result (hopefully)

Let Th be any elementary theory (we want Th to be given by a $\Delta_0(\text{exp})$ formula). The <u>uniform reflection principle</u> for Th is a scheme

$$\forall x (\mathsf{Prov}_{\mathsf{Th}}(\phi(\dot{x})) \to \phi(x)).$$

where $\phi \in \mathcal{L}_{\mathsf{Th}}$. This scheme will be denoted with REF(Th). We shall consider also

▶ $\Gamma(\mathcal{L})$ -REF(Th) – the restriction of REF(Th) to formulae from class Γ from language \mathcal{L} (Think $\Gamma = \Sigma_n, \Pi_n$).

Let Th be any elementary theory (we want Th to be given by a $\Delta_0(\text{exp})$ formula). The <u>uniform reflection principle</u> for Th is a scheme

$$\forall x (\mathsf{Prov}_{\mathsf{Th}}(\phi(\dot{x})) \to \phi(x)).$$

where $\phi \in \mathcal{L}_{\mathsf{Th}}$. This scheme will be denoted with REF(Th). We shall consider also

- ▶ $\Gamma(\mathcal{L})$ -REF(Th) the restriction of REF(Th) to formulae from class Γ from language \mathcal{L} (Think $\Gamma = \Sigma_n, \Pi_n$).
- ▶ $\Gamma(\mathcal{L})$ -REF $^{\alpha}$ (Th) α -many iterations of $\Gamma(\mathcal{L})$ -REF(Th).

Let Th be any elementary theory (we want Th to be given by a $\Delta_0(\text{exp})$ formula). The <u>uniform reflection principle</u> for Th is a scheme

$$\forall x (\mathsf{Prov}_{\mathsf{Th}}(\phi(\dot{x})) \to \phi(x)).$$

where $\phi \in \mathcal{L}_{\mathsf{Th}}$. This scheme will be denoted with REF(Th). We shall consider also

- ▶ $\Gamma(\mathcal{L})$ -REF(Th) the restriction of REF(Th) to formulae from class Γ from language \mathcal{L} (Think $\Gamma = \Sigma_n, \Pi_n$).
- ▶ $\Gamma(\mathcal{L})$ -REF $^{\alpha}$ (Th) α -many iterations of $\Gamma(\mathcal{L})$ -REF(Th).

Let Th be any elementary theory (we want Th to be given by a $\Delta_0(\text{exp})$ formula). The <u>uniform reflection principle</u> for Th is a scheme

$$\forall x (\mathsf{Prov}_{\mathsf{Th}}(\phi(\dot{x})) \to \phi(x)).$$

where $\phi \in \mathcal{L}_{\mathsf{Th}}$. This scheme will be denoted with REF(Th). We shall consider also

- ▶ $\Gamma(\mathcal{L})$ -REF(Th) the restriction of REF(Th) to formulae from class Γ from language \mathcal{L} (Think $\Gamma = \Sigma_n, \Pi_n$).
- ▶ $\Gamma(\mathcal{L})$ -REF $^{\alpha}$ (Th) − α -many iterations of $\Gamma(\mathcal{L})$ -REF(Th).

For later purposes, let (for a formula $\phi(x)$)

$$\mathsf{Prov}_{\mathsf{Th}}^{\phi}, \mathsf{Prov}_{\mathsf{Th}+\phi}$$

denote the oracle-provability predicates, in which as axioms we can take arbitrary sentences from Th and arbitrary sentences satisfying $\phi(x)$.

Some metamathematics of reflection principles

Proposition

For every n, $\Pi_{n+1}(\mathcal{L})$ -REF(Th) and $\Sigma_n(\mathcal{L})$ -REF(Th) coincide, provably over EA.

Some metamathematics of reflection principles

Proposition

For every n, $\Pi_{n+1}(\mathcal{L})$ -REF(Th) and $\Sigma_n(\mathcal{L})$ -REF(Th) coincide, provably over EA.

Theorem (Kreisel-Lévy)

PA coincide with EA + REF(EA).

Some metamathematics of reflection principles

Proposition

For every n, $\Pi_{n+1}(\mathcal{L})$ -REF(Th) and $\Sigma_n(\mathcal{L})$ -REF(Th) coincide, provably over EA.

Theorem (Kreisel-Lévy)

PA coincide with EA + REF(EA).

Theorem (Leivant)

For every n > 0, $I\Sigma_n$ and $EA + \Sigma_{n+1}(\mathcal{L}_{PA})$ -REF(EA) coincide.

Definition

UTB $^-$ (Th) is the $\mathcal{L}_{\mathcal{T}}:=\mathcal{L}_{\mathsf{Th}}\cup\{\mathcal{T}\}$ theory extending Th with all the axioms of the form

$$\forall x_1,\ldots,x_n \ T(\phi(\dot{x_1},\ldots,\dot{x_n})) \equiv \phi(x_1,\ldots,x_n),$$

for $\phi(\bar{x}) \in \mathcal{L}_{\mathsf{Th}}$.

Definition

UTB⁻(Th) is the $\mathcal{L}_T := \mathcal{L}_{\mathsf{Th}} \cup \{T\}$ theory extending Th with all the axioms of the form

$$\forall x_1,\ldots,x_n \ T(\phi(\dot{x_1},\ldots,\dot{x_n})) \equiv \phi(x_1,\ldots,x_n),$$

for $\phi(\bar{x}) \in \mathcal{L}_{\mathsf{Th}}$.

Definition

Definition

UTB⁻(Th) is the $\mathcal{L}_T := \mathcal{L}_{\mathsf{Th}} \cup \{T\}$ theory extending Th with all the axioms of the form

$$\forall x_1,\ldots,x_n \ T(\phi(\dot{x_1},\ldots,\dot{x_n})) \equiv \phi(x_1,\ldots,x_n),$$

for $\phi(\bar{x}) \in \mathcal{L}_{\mathsf{Th}}$.

Definition

1.
$$\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), \ R \in \{=,<\}.$$

Definition

UTB⁻(Th) is the $\mathcal{L}_T := \mathcal{L}_{\mathsf{Th}} \cup \{T\}$ theory extending Th with all the axioms of the form

$$\forall x_1,\ldots,x_n \ T(\phi(\dot{x_1},\ldots,\dot{x_n})) \equiv \phi(x_1,\ldots,x_n),$$

for $\phi(\bar{x}) \in \mathcal{L}_{\mathsf{Th}}$.

Definition

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), \ R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_{\mathsf{Th}}} \quad T(\dot{\neg}\phi) \equiv \neg T(\phi).$

Definition

UTB⁻(Th) is the $\mathcal{L}_T := \mathcal{L}_{\mathsf{Th}} \cup \{T\}$ theory extending Th with all the axioms of the form

$$\forall x_1,\ldots,x_n \ T(\phi(\dot{x_1},\ldots,\dot{x_n})) \equiv \phi(x_1,\ldots,x_n),$$

for $\phi(\bar{x}) \in \mathcal{L}_{\mathsf{Th}}$.

Definition

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), \ R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_{\mathsf{Th}}} \ T(\dot{\neg}\phi) \equiv \neg T(\phi)$.
- 3. $\forall \phi, \psi \in \mathsf{Sent}_{\mathcal{L}_{\mathsf{Th}}} \ T(\phi \dot{\wedge} \psi) \equiv T(\phi) \wedge T(\psi)$

Definition

UTB⁻(Th) is the $\mathcal{L}_T := \mathcal{L}_{\mathsf{Th}} \cup \{T\}$ theory extending Th with all the axioms of the form

$$\forall x_1,\ldots,x_n \ T(\phi(\dot{x_1},\ldots,\dot{x_n})) \equiv \phi(x_1,\ldots,x_n),$$

for $\phi(\bar{x}) \in \mathcal{L}_{\mathsf{Th}}$.

Definition

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), \ R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_{\mathsf{Th}}} \quad T(\dot{\neg}\phi) \equiv \neg T(\phi).$
- 3. $\forall \phi, \psi \in \mathsf{Sent}_{\mathcal{L}_{\mathsf{Th}}} \ T(\phi \dot{\wedge} \psi) \equiv T(\phi) \wedge T(\psi)$
- 4. $\forall \phi(v) \in \mathsf{Form}_{\mathcal{L}_{\mathsf{Th}}}^{\leq 1} \quad T(\dot{\exists} v \phi(v)) \equiv \exists x T(\phi(\dot{x})).$

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

The proof idea is that we can interpret finitely many axioms of UTB^- in Th by changing T to the (sufficiently large) partial truth predicate.

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Folklore)

1.
$$\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), R \in \{=,<\}.$$

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Folklore)

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \quad T(\dot{\neg}\phi) \equiv \neg T(\phi).$

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Folklore)

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \ T(\dot{\neg}\phi) \equiv \neg T(\phi).$
- 3. $\forall \phi, \psi \in \mathsf{Sent}^{\mathsf{dpt}(\underline{n})}_{\mathcal{L}_{\mathsf{Th}}} \ T(\phi \dot{\wedge} \psi) \equiv T(\phi) \wedge T(\psi)$

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Folklore)

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), \ R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \quad \mathcal{T}(\dot{\neg}\phi) \equiv \neg \mathcal{T}(\phi).$
- 3. $\forall \phi, \psi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \ T(\phi \dot{\wedge} \psi) \equiv T(\phi) \wedge T(\psi)$
- 4. $\forall \phi(v) \in \mathsf{Form}_{\mathcal{L}_\mathsf{Th}}^{\leq 1, \mathsf{dpt}(\underline{n})} \quad T(\dot{\exists} v \phi(v)) \equiv \exists x T(\phi(\dot{x})).$

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Folklore)

- 1. $\forall s, t \ T(\dot{R}(s,t)) \equiv R(s^{\circ}, t^{\circ}), \ R \in \{=,<\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \quad \mathcal{T}(\dot{\neg}\phi) \equiv \neg \mathcal{T}(\phi).$
- 3. $\forall \phi, \psi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \ T(\phi \dot{\wedge} \psi) \equiv T(\phi) \wedge T(\psi)$
- 4. $\forall \phi(v) \in \mathsf{Form}_{\mathcal{L}_\mathsf{Th}}^{\leq 1, \mathsf{dpt}(\underline{n})} \quad T(\dot{\exists} v \phi(v)) \equiv \exists x T(\phi(\dot{x})).$

Proposition (Essentially due to Tarski)

If $\mathcal{L}_{PA} \supseteq \mathsf{Th} \supseteq \mathsf{EA}$, then $\mathsf{UTB}^-(\mathsf{Th})$ is proof theoretically conservative over Th .

Proposition (Folklore)

UTB $^-$ (Th) coincide with the following \mathcal{L}_T theory, extending Th with the following axioms

- 1. $\forall s, t \ T(R(s,t)) \equiv R(s^{\circ}, t^{\circ}), R \in \{=, <\}.$
- 2. $\forall \phi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \quad \mathcal{T}(\dot{\neg}\phi) \equiv \neg \mathcal{T}(\phi).$
- 3. $\forall \phi, \psi \in \mathsf{Sent}_{\mathcal{L}_\mathsf{Th}}^{\mathsf{dpt}(\underline{n})} \ \ T(\phi \dot{\wedge} \psi) \equiv T(\phi) \wedge T(\psi)$
- 4. $\forall \phi(v) \in \mathsf{Form}_{\mathcal{L}_\mathsf{Th}}^{\leq 1, \mathsf{dpt}(\underline{n})} \quad T(\dot{\exists} v \phi(v)) \equiv \exists x T(\phi(\dot{x})).$

for $n \in \mathbb{N}$. Sent $_{\mathcal{L}_{\mathsf{Th}}}^{\mathsf{dpt}(\underline{n})}(x)$ expresses that x is a sentence of $\mathcal{L}_{\mathsf{Th}}$ of logical depth at most n. Let $\mathsf{CT}^-{\upharpoonright}_x$ denote the above formula.

Some model theory of UTB⁻.

Proposition (Exercise)

If (\mathcal{M}, T) , $(\mathcal{M}', T') \models \mathsf{UTB}^-(\mathsf{EA})$ and $(\mathcal{M}, T) \subseteq (\mathcal{M}', T')$, then $\mathcal{M} \preceq \mathcal{M}'$.

Some model theory of UTB⁻.

Proposition (Exercise)

If (\mathcal{M}, T) , $(\mathcal{M}', T') \models \mathsf{UTB}^-(\mathsf{EA})$ and $(\mathcal{M}, T) \subseteq (\mathcal{M}', T')$, then $\mathcal{M} \preceq \mathcal{M}'$.

Proposition (Exercise 2)

If
$$\mathcal{M} \preceq \mathcal{M}'$$
, and $(\mathcal{M}', T') \models \mathsf{UTB}^-(\mathsf{EA})$, then $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \mathsf{UTB}^-(\mathsf{EA})$.

Theorem (Enayat-Visser, Leigh)

CT⁻(Th) is conservative over Th for all reasonable Th.

Denote with $CT_n(Th)$ the extension of $CT^-(Th)$ with induction for Σ_n formulae.

Theorem (Enayat-Visser, Leigh)

CT⁻(Th) is conservative over Th for all reasonable Th.

Denote with $CT_n(Th)$ the extension of $CT^-(Th)$ with induction for Σ_n formulae.

Theorem (Kotlarski-Smoryński-Wcisło, Ł.)

The arithmetical part of $CT_0(PA)$ is $REF^{\omega}(PA)$.

Having a truth predicate one might consider a "finitization" of the uniform reflection scheme. This principle is called Global Reflection for Th

$$\forall \phi \in \mathcal{L}_{\mathsf{Th}} \; \mathsf{Prov}_{\mathsf{Th}}(\phi) \to \mathcal{T}(\phi)$$
 (GR)

Theorem (Cieśliński-Kotlarski-Łełyk)

Over CT⁻(PA) the following principles coincide:

Having a truth predicate one might consider a "finitization" of the uniform reflection scheme. This principle is called Global Reflection for Th

$$\forall \phi \in \mathcal{L}_{\mathsf{Th}} \; \mathsf{Prov}_{\mathsf{Th}}(\phi) \to \mathcal{T}(\phi)$$
 (GR)

Theorem (Cieśliński-Kotlarski-Łełyk)

Over CT⁻(PA) the following principles coincide:

1. Δ_0 -induction for \mathcal{L}_T .

Having a truth predicate one might consider a "finitization" of the uniform reflection scheme. This principle is called Global Reflection for Th

$$\forall \phi \in \mathcal{L}_{\mathsf{Th}} \ \mathsf{Prov}_{\mathsf{Th}}(\phi) \to \mathcal{T}(\phi)$$
 (GR)

Theorem (Cieśliński-Kotlarski-Łełyk)

Over CT⁻(PA) the following principles coincide:

- 1. Δ_0 -induction for \mathcal{L}_T .
- 2. GR(PA).

Having a truth predicate one might consider a "finitization" of the uniform reflection scheme. This principle is called Global Reflection for Th

$$\forall \phi \in \mathcal{L}_{\mathsf{Th}} \; \mathsf{Prov}_{\mathsf{Th}}(\phi) \to \mathcal{T}(\phi)$$
 (GR)

Theorem (Cieśliński-Kotlarski-Łełyk)

Over CT⁻(PA) the following principles coincide:

- 1. Δ_0 -induction for \mathcal{L}_T .
- 2. GR(PA).
- 3. $\forall \phi \in \mathcal{L}_{\mathsf{PA}} \; \mathsf{Prov}_{\emptyset}^{\mathsf{T}}(\phi) \to T(\phi)$.

The most important property of CT₀

In what follows, if $(\mathcal{M}, T) \models \mathsf{CT}_0$ and $a \in M$, then T_a denotes the restriction of T for formulae of logical depth at most a (this makes sense inside of \mathcal{M}).

Theorem (Ł.-Wcisło)

Suppose $(\mathcal{M}, T) \models \mathsf{CT}_0$. Then for every $b \in M$, $(\mathcal{M}, T_{b+1}) \models \mathsf{CT}^- \upharpoonright_b + \mathsf{Ind}(\mathcal{L}_T)$.

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Delta_0\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{REF}(\mathsf{Th}).$$

This is fairly obvious, since for every $\phi \in \mathcal{L}_{\mathsf{Th}}$, $\mathcal{T}(\phi)$ is a $\Delta_0(\mathcal{L}_{\mathcal{T}})$ formula.

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Delta_0\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{REF}(\mathsf{Th}).$$

This is fairly obvious, since for every $\phi \in \mathcal{L}_{\mathsf{Th}}$, $\mathcal{T}(\phi)$ is a $\Delta_0(\mathcal{L}_{\mathcal{T}})$ formula.

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Sigma_1\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{CT}^-.$$

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Delta_0\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{REF}(\mathsf{Th}).$$

This is fairly obvious, since for every $\phi \in \mathcal{L}_{\mathsf{Th}}$, $\mathcal{T}(\phi)$ is a $\Delta_0(\mathcal{L}_{\mathcal{T}})$ formula.

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Sigma_1\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{CT}^-.$$

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Delta_0\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{REF}(\mathsf{Th}).$$

This is fairly obvious, since for every $\phi \in \mathcal{L}_{\mathsf{Th}}$, $\mathcal{T}(\phi)$ is a $\Delta_0(\mathcal{L}_{\mathcal{T}})$ formula.

Proposition (Beklemishev-Pakhomov)

$$\mathsf{UTB}^-(\mathsf{EA}) + \Sigma_1\text{-REF}(\mathsf{UTB}^-(\mathsf{Th})) \vdash \mathsf{CT}^-.$$

This once again is fairly obvious, since $CT^-|_X$ is a $\Pi_2(\mathcal{L}_T)$ sentence and

$$EA \vdash \forall x Prov_{UTB^-(Th)}(CT^-\upharpoonright_{\dot{x}}).$$

Theorem (Beklemishev-Pakhomov)

The arithmetical consequences of CT_0 and $UTB^-(EA) + \Sigma_1(\mathcal{L}_T)$ -REF(UTB $^-(EA)$) coincide.

Theorem (Beklemishev-Pakhomov)

The arithmetical consequences of CT_0 and $UTB^-(EA) + \Sigma_1(\mathcal{L}_T)$ -REF(UTB $^-(EA)$) coincide.

Question

Does
$$CT_0 \vdash \Sigma_1(\mathcal{L}_T)$$
-REF(UTB⁻(EA))?

Theorem (Beklemishev-Pakhomov)

The arithmetical consequences of CT_0 and $UTB^-(EA) + \Sigma_1(\mathcal{L}_T)$ -REF(UTB $^-(EA)$) coincide.

Question

Does
$$CT_0 \vdash \Sigma_1(\mathcal{L}_T)$$
-REF(UTB⁻(EA))?

Theorem (Beklemishev-Pakhomov)

The arithmetical consequences of CT_0 and $UTB^-(EA) + \Sigma_1(\mathcal{L}_T)$ -REF(UTB $^-(EA)$) coincide.

Question

Does
$$CT_0 \vdash \Sigma_1(\mathcal{L}_T)$$
-REF(UTB⁻(EA))?

Claim: It does.

For starters: Δ_0 -reflection for the disquotational truth

Theorem (Beklemishev-Pakhomov)

 $\mathsf{UTB}^-(\mathsf{PA}) + \Delta_0(\mathcal{L}_T)\text{-REF}(\mathsf{UTB}^-(\mathsf{PA}))$ is arithmetically conservative over $\mathcal{L}_{\mathsf{PA}}\text{-REF}(\mathsf{PA})$.

Fix any $(\mathcal{M}, T) \models \mathcal{L}_{PA}\text{-REF}(PA) + \text{UTB}(PA)$. For every a, let $T \upharpoonright_a$ denote the restriction of T to formulae of logical depth at most a. Observe that for every $n \in \mathbb{N}$

$$(\mathcal{M}, T) \models \forall \phi(\mathsf{dpt}(\phi) \leq n \land \mathsf{Prov}_{\mathsf{PA}}^{T \upharpoonright n}(\phi) \to T(\phi)).$$

So by overspill there exists a $c > \mathbb{N}$ such that

$$(\mathcal{M}, T) \models \forall \phi (\mathsf{dpt}(\phi) \leq c \land \mathsf{Prov}_{\mathsf{PA}}^{T \upharpoonright c}(\phi) \to T(\phi)).$$

Δ_0 -reflection for the disquotational truth

$$(\mathcal{M}, T) \models \forall \phi(\mathsf{dpt}(\phi) \leq c \land \mathsf{Prov}_{\mathsf{PA}}^{T \upharpoonright c}(\phi) \to T(\phi)).$$
 (*)

Consider the following (\mathcal{M}, T) definable theory

$$\mathsf{Th} := \mathsf{PA} + \{ \phi \mid \mathsf{dpt}(\phi) \leq c \land T(\phi) \} \,.$$

Work in (\mathcal{M}, T) . (*) witnesses that Th is consistent. Moreover, the trivial conservativity proof for UTB⁻(PA) shows that

$$UTB^{-}(Th)$$

is consistent as well. Let $\mathcal{M}'=(M',T',S')$ be an (\mathcal{M},T) definable model for UTB $^-$ (Th), where S' is a satisfaction relation for (M',T').

Δ_0 -reflection for the disquotational truth

$$\mathsf{Th} := \mathsf{PA} + \{\phi \mid \mathsf{dpt}(\phi) \leq c \land T(\phi)\}\$$

$$\mathcal{M}' := (M', T') \models_{S'} \mathsf{UTB}^-(\mathsf{Th})$$

Claim: $\mathcal{M} \leq_{e} \mathcal{M}'$

Indeed, if $\mathcal{M} \models \neg \phi(a)$ for $a \in M$, then $(\mathcal{M}, T) \models T(\neg \phi(\underline{a})) \land \mathsf{dpt}(\phi(\underline{a})) \le c$. Hence $\neg \phi(\underline{a}) \in \mathsf{Th}$, hence $\mathcal{M}' \models_{S'} \neg \phi(a)$.

Claim 2: $(\mathcal{M}, T' \upharpoonright_{\mathcal{M}}) \models \mathsf{UTB}^-$. This follows, since $(\mathcal{M}', T') \models_{S'} \mathsf{UTB}^-$ and $\mathcal{M} \preceq \mathcal{M}'$.

Claim 3: $(\mathcal{M}, T' \upharpoonright_{M}) \models \Delta_{0}(\mathcal{L}_{T})$ -REF(UTB $^{-}$ (PA)). Pick a $\Delta_{0}(\mathcal{L}_{T})$ formula $\phi(x)$, $a \in M$ and, working in $(\mathcal{M}, T' \upharpoonright_{M})$ suppose $\mathsf{Prov}_{\mathsf{UTB}^{-}(\mathsf{PA})}(\phi(\underline{a}))$. Hence $(M', T') \models_{S'} \phi(a)$. Since

$$(\mathcal{M}, T' \upharpoonright_M) \subseteq_e (M', T'),$$

we are done.

Outline

Introduction: Reflection & Truth

The main result (hopefully)

Theorem

$$\mathsf{CT}_0 \vdash \Delta_0(\mathcal{L}_T)\text{-REF}(\mathsf{UTB}(\mathsf{PA}) + T).$$

Fix an arbitrary $(\mathcal{M},T)\models \mathsf{CT}_0$, a $\Delta_0(\mathcal{L}_T)$ -formula $\phi(x)$ and $a\in M$. Suppose that $\mathcal{M}\models \mathsf{Prov}_{\mathsf{UTB}}^{T_{d'}}(\phi(\underline{a}))$, for some $d'\in M$. Let $b\in M$ be big enough so that for every $T'\!\upharpoonright_b = T\!\upharpoonright_b$ and every $\mathcal{M}'\supseteq_e \mathcal{M}$

$$(\mathcal{M}, T \upharpoonright_b) \models \phi(a) \iff (\mathcal{M}', T') \models \phi(a).$$

Claim: There exists $\mathcal{M}' \supseteq_e \mathcal{M}$ and $T' \upharpoonright_b = T \upharpoonright_b$ such that $(\mathcal{M}', T') \models \phi(a)$.

Claim: There exists $\mathcal{M}' \supseteq_e \mathcal{M}$ and $T' \upharpoonright_b = T \upharpoonright_b$ such that $(\mathcal{M}', T') \models \phi(a)$.

Let c fix $T \upharpoonright_b$ in \mathcal{M} , i.e. $\phi \in c^{\mathcal{M}}$ iff

$$\phi \in T \upharpoonright_b \lor (\phi = \neg \psi \land \psi < b \land \psi \notin T \upharpoonright_b).$$

Let b' be big enough such that $c \subseteq T_{b'}$ and let $d = \max\{d', b'\}$. Internally in (\mathcal{M}, T) consider the following theory \mathcal{L}_T -definable theory

Th := UTB + PA +
$$\{\phi \in \Sigma_d \mid T(\phi)\}$$
.

We claim that $\mathcal{M} \models \mathsf{Con}_{\mathsf{Th}}$. This holds, since

1. The proof of conservativity of UTB over (any extension of) PA formalizes in PA.

Claim: There exists $\mathcal{M}' \supseteq_e \mathcal{M}$ and $T' \upharpoonright_b = T \upharpoonright_b$ such that $(\mathcal{M}', T') \models \phi(a)$.

Let c fix $T \upharpoonright_b$ in \mathcal{M} , i.e. $\phi \in c^{\mathcal{M}}$ iff

$$\phi \in T \upharpoonright_b \lor (\phi = \neg \psi \land \psi < b \land \psi \notin T \upharpoonright_b).$$

Let b' be big enough such that $c \subseteq T_{b'}$ and let $d = \max\{d', b'\}$. Internally in (\mathcal{M}, T) consider the following theory \mathcal{L}_T -definable theory

$$\mathsf{Th} := \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \}.$$

We claim that $\mathcal{M} \models \mathsf{Con}_{\mathsf{Th}}$. This holds, since

- 1. The proof of conservativity of UTB over (any extension of) PA formalizes in PA.
- 2. $(\mathcal{M}, T) \models \forall \phi \in \mathcal{L}_{\mathsf{PA}}(\mathsf{Prov}_{\mathsf{PA}}^T(\phi) \to T(\phi)).$

Claim: There exists $\mathcal{M}' \supseteq_e \mathcal{M}$ and $T' \upharpoonright_b = T \upharpoonright_b$ such that $(\mathcal{M}', T') \models \phi(a)$.

Let c fix $T \upharpoonright_b$ in \mathcal{M} , i.e. $\phi \in c^{\mathcal{M}}$ iff

$$\phi \in T \upharpoonright_b \lor (\phi = \neg \psi \land \psi < b \land \psi \notin T \upharpoonright_b).$$

Let b' be big enough such that $c \subseteq T_{b'}$ and let $d = \max\{d', b'\}$. Internally in (\mathcal{M}, T) consider the following theory \mathcal{L}_T -definable theory

$$\mathsf{Th} := \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \}.$$

We claim that $\mathcal{M} \models \mathsf{Con}_\mathsf{Th}$. This holds, since

- 1. The proof of conservativity of UTB over (any extension of) PA formalizes in PA.
- 2. $(\mathcal{M}, T) \models \forall \phi \in \mathcal{L}_{\mathsf{PA}}(\mathsf{Prov}_{\mathsf{PA}}^T(\phi) \to T(\phi)).$

Claim: There exists $\mathcal{M}' \supseteq_e \mathcal{M}$ and $T' \upharpoonright_b = T \upharpoonright_b$ such that $(\mathcal{M}', T') \models \phi(a)$.

Let c fix $T \upharpoonright_b$ in \mathcal{M} , i.e. $\phi \in c^{\mathcal{M}}$ iff

$$\phi \in T \upharpoonright_b \lor (\phi = \neg \psi \land \psi < b \land \psi \notin T \upharpoonright_b).$$

Let b' be big enough such that $c \subseteq T_{b'}$ and let $d = \max\{d', b'\}$. Internally in (\mathcal{M}, T) consider the following theory \mathcal{L}_T -definable theory

Th := UTB + PA +
$$\{\phi \in \Sigma_d \mid T(\phi)\}$$
.

We claim that $\mathcal{M} \models \mathsf{Con}_\mathsf{Th}$. This holds, since

- 1. The proof of conservativity of UTB over (any extension of) PA formalizes in PA.
- 2. $(\mathcal{M}, T) \models \forall \phi \in \mathcal{L}_{\mathsf{PA}}(\mathsf{Prov}_{\mathsf{PA}}^T(\phi) \to T(\phi)).$

Let (\mathcal{M}', T') be any (\mathcal{M}, T_d) definable model of Th.

$$\begin{split} c^{\mathcal{M}} &= T \upharpoonright_b \cup \{ \neg \phi \mid \phi < b \land \phi \notin T \upharpoonright_b \} \,. \\ \mathsf{Th} &= \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \} \,. \\ \mathcal{M} &\models "(\mathcal{M}', T') \models \mathsf{Th}". \end{split}$$

We check:

▶ $\mathcal{M}' \supseteq_e \mathcal{M}$. This holds, since \mathcal{M}' is an (\mathcal{M}, T_d) -definable model of Q and $(\mathcal{M}, T_d) \models PA^*$.

$$c^{\mathcal{M}} = T \upharpoonright_b \cup \{ \neg \phi \mid \phi < b \land \phi \notin T \upharpoonright_b \}.$$

$$\mathsf{Th} = \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \}.$$

$$\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{Th}".$$

- ▶ $\mathcal{M}' \supseteq_e \mathcal{M}$. This holds, since \mathcal{M}' is an (\mathcal{M}, T_d) -definable model of Q and $(\mathcal{M}, T_d) \models PA^*$.
- ▶ $(\mathcal{M}', T') \models \phi(a)$. This holds, since $\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{UTB} + \phi"$, for every $\phi \in \Sigma_{d'}$ and $\mathcal{M} \models \mathsf{Prov}_{\mathsf{UTB}(\mathsf{PA})}^{T_{d'}}(\phi(\underline{a}))$.

$$c^{\mathcal{M}} = T \upharpoonright_b \cup \{ \neg \phi \mid \phi < b \land \phi \notin T \upharpoonright_b \}.$$

$$\mathsf{Th} = \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \}.$$

$$\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{Th}".$$

- ▶ $\mathcal{M}' \supseteq_e \mathcal{M}$. This holds, since \mathcal{M}' is an (\mathcal{M}, T_d) -definable model of Q and $(\mathcal{M}, T_d) \models PA^*$.
- ▶ $(\mathcal{M}', T') \models \phi(a)$. This holds, since $\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{UTB} + \phi"$, for every $\phi \in \Sigma_{d'}$ and $\mathcal{M} \models \mathsf{Prov}_{\mathsf{UTB}(\mathsf{PA})}^{T_{d'}}(\phi(\underline{a}))$.
- ▶ $T' \upharpoonright_b = T \upharpoonright_b$. This holds, since for $\psi < b$

$$\psi \in T_b \Leftrightarrow \mathcal{M} \models "\mathcal{M}' \models \psi" \tag{1}$$

$$\Leftrightarrow \mathcal{M} \models "(\mathcal{M}', T') \models T(\psi)" \tag{2}$$

$$\Leftrightarrow \psi \in T'.$$
 (3)

$$c^{\mathcal{M}} = T \upharpoonright_b \cup \{ \neg \phi \mid \phi < b \land \phi \notin T \upharpoonright_b \}.$$

$$\mathsf{Th} = \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \}.$$

$$\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{Th}".$$

- ▶ $\mathcal{M}' \supseteq_e \mathcal{M}$. This holds, since \mathcal{M}' is an (\mathcal{M}, T_d) -definable model of Q and $(\mathcal{M}, T_d) \models PA^*$.
- ▶ $(\mathcal{M}', T') \models \phi(a)$. This holds, since $\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{UTB} + \phi"$, for every $\phi \in \Sigma_{d'}$ and $\mathcal{M} \models \mathsf{Prov}_{\mathsf{UTB}(\mathsf{PA})}^{T_{d'}}(\phi(\underline{a}))$.
- ▶ $T' \upharpoonright_b = T \upharpoonright_b$. This holds, since for $\psi < b$

$$\psi \in T_b \Leftrightarrow \mathcal{M} \models "\mathcal{M}' \models \psi" \tag{1}$$

$$\Leftrightarrow \mathcal{M} \models "(\mathcal{M}', T') \models T(\psi)"$$
 (2)

$$\Leftrightarrow \psi \in T'.$$
 (3)

$$c^{\mathcal{M}} = T \upharpoonright_b \cup \{ \neg \phi \mid \phi < b \land \phi \notin T \upharpoonright_b \}.$$

$$\mathsf{Th} = \mathsf{UTB} + \mathsf{PA} + \{ \phi \in \Sigma_d \mid T(\phi) \}.$$

$$\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{Th}".$$

- ▶ $\mathcal{M}' \supseteq_e \mathcal{M}$. This holds, since \mathcal{M}' is an (\mathcal{M}, T_d) -definable model of Q and $(\mathcal{M}, T_d) \models PA^*$.
- ▶ $(\mathcal{M}', T') \models \phi(a)$. This holds, since $\mathcal{M} \models "(\mathcal{M}', T') \models \mathsf{UTB} + \phi"$, for every $\phi \in \Sigma_{d'}$ and $\mathcal{M} \models \mathsf{Prov}_{\mathsf{UTB}(\mathsf{PA})}^{T_{d'}}(\phi(\underline{a}))$.
- $T' \upharpoonright_b = T \upharpoonright_b$. This holds, since for $\psi < b$

$$\psi \in T_b \Leftrightarrow \mathcal{M} \models "\mathcal{M}' \models \psi" \tag{1}$$

$$\Leftrightarrow \mathcal{M} \models "(\mathcal{M}', T') \models T(\psi)" \tag{2}$$

$$\Leftrightarrow \psi \in T'$$
. (3)