SI 618 Homework 1

Step 1: Load data

First the provided TSV data file is loaded into R using the **read.table()** function. Here are the first 15 rows of the data frame:

##		country				region	area
##	1	AFGHANISTAN				Asia	652230.0
##	2	ALBANIA				Europe	28748.0
##	3	ALGERIA				Africa	2381741.0
##	4	AMERICAN SAMOA				Oceania	199.0
##	5	ANDORRA				Europe	468.0
##	6	ANGOLA				Africa	1246700.0
##	7	ANGUILLA	${\tt Central}$	${\tt America}$	&	the Caribbean	91.0
##	8	ANTIGUA AND BARBUDA	Central	${\tt America}$	&	the Caribbean	442.6
##	9	ARGENTINA				South America	2780400.0
##	10	ARMENIA				Asia	29743.0
##	11	ARUBA	Central	America	&	the Caribbean	180.0
##	12	AUSTRALIA				Oceania	7741220.0
##	13	AUSTRIA				Europe	83871.0
	14	AZERBAIJAN				Asia	86600.0
##	15	•	Central	America	&	the Caribbean	13880.0
##		population					
	1	30419928					
##		3002859					
##		37367226					
##		54947					
##	-	85082					
	6	18056072					
	7	15423					
##		89018					
##	_	42192494					
	10	2970495					
	11	107635					
	12	22015576					
##		8219743					
	14	9493600					
##	15	316182					

Step 2: Scatter plot of log transformed data

Natural logarithms of the area and the population of each country are computed and used to produce the following scatter plot using the \mathbf{plot} () function.

Step 3: Data aggregation by region

The areas and populations of all countries in a region are summed up using the **aggregate()** function, respectively. Then the following two pie charts are created using the **pie()** function.

Area of Regions

Population of Regions

Step 4: Visualization of Population per sq km of Regions

A new data frame is created to contain the population per sq km of each region using the **data.frame()** function. The data frame is then sorted by population per sq km in decreasing order with the help of the **order()** function. Finally, the following bar plot is created using the **barplot()** function.

