Throughout this document x and y will be either row or column vectors and A will always be a matrix.

Basics	
clc	Clear command window
clear	Clear all variables
clf	Clear all plots
close all	Close all plots
doc function	Open help page for function
% This is a comment	Comments
ctrl-c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places
edit filename	Opens filename in editor
disp('text')	Print text

Defining and Changing Variables	
a = 3	Define variable a to be 3
x = [1, 2, 3]	Set x to be the row vector $[1, 2, 3]$
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$
A = [1, 2; 3, 4]	Set A to be a 2×2 matrix
x(2) = 7	Change x from $[1,2,3]$ to $[1,7,3]$
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0

Basic Arithmetic and Functions		
3*4, 7+4, 2-6, 8/3	multiply, add, subtract and divide	
37	Compute 3^7	
sqrt(5)	Compute $\sqrt{5}$	
log(3)	Compute $\ln(3)$	
log10(100)	Compute $\log_{10}(100)$	
abs(-5)	Compute $ -5 $	
sin(5*pi/3)	Compute $\sin(5\pi/3)$	
floor(3.8)	Compute [3.8]	

Constructing Matrices and Vectors		
zeros(12, 5)	Make a $12 imes 5$ matrix of zeros	
ones(12, 5)	Make a 12×5 matrix of ones	
eye(5)	Make a 5×5 identity matrix	
eye(12, 5)	Make a $12 imes 5$ identity matrix	
linspace(1.4, 6.3, 1004)	Make a vector with 1004 elements evenly spaced between $1.4\ \mathrm{and}\ 6.3$	
logspace(1.4, 6.3, 1004)	Make a vector with 1004 elements where the log of the spacing is evenly increasing between 1.4 and 6.3	
7:15	Row vector of $7, 8, \ldots, 14, 15$	

Operation	ns on Matrices and Vectors
3 * x	Multiply every element of x by 3
x + 2	Add 2 to every element of x
x + y	Element-wise addition of two vectors x and y
A * y	Product of a matrix and vector
A * B	Product of two matrices
A .* B	Element-wise product of two matrices
A ^ 3	Square matrix A to the third power
A .^ 3	Every element of A to the third power
cos(A)	Compute the cosine of every element of A
abs(A)	Compute the absolute values of every element of A
Α.'	Transpose of A
Α'	Hermitian Transpose of A
inv(A)	Compute the inverse of A
det(A)	Compute the determinant of A
eig(A)	Compute the eigenvalues of A
size(A)	Get the size of A

Entries of Matrices and Vectors		
x(2:12)	The $2^{\rm nd}$ to the $12^{\rm th}$ elements of x	
x(2:end)	The 2^{nd} to the last elements of x	
x(1:3:end)	Every third element of x from the first to last	
A(5,:)	Get the 5 th row of A	
A(:,5)	Get the 5 th column of A	
A(5, 1:3)	Get the first to third elements in the 5 th row	

Keyboard Shorto	uts	
Win	Мас	description
F1	F1	docs for highlighted function
F5	光 + R	Run code
F9	光 + ←⊃	Run selected code
F11	F11	Run code line, enter functions
Shift + F5	Shift + F5	Leave debugger
F12	# + \	Insert break point
Ctrl + Pg Up/Down	Ctrl + Fn + up/down	Moves between tabs
Ctrl + shift	Ctrl + shift	Moves between components
Ctrl + C	Ctrl + C	Interrupts code
Ctrl + D	Shift +ૠ+ D	Open highlighted codes file
Ctrl + R/T	₩+ / ₩+ T	Comment/uncomment
Ctrl + N	Ctrl + N	New script
Ctrl + W	Ctrl + W	Close script
Ctrl + shift + d	Ctrl + shift + d	Docks window
Ctrl + shift + u	Ctrl + shift + u	Undocks window
Ctrl + shift + m	Ctrl + shift + m	max window

Plotting	
plot(x,y)	Plot y versus x (must be the same length)
loglog(x,y)	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx(x, y)	Plot y versus x with x on a log scale
semilogy(x, y)	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
title('A Title')	Add a title to the plot
<pre>xlabel('x label')</pre>	Add a label to the x axis
<pre>ylabel('y label')</pre>	Add a label to the y axis
legend('foo', 'bar')	Label 2 curves for the plot
grid	Add a grid to the plot
hold on	Multiple plots on single figure
figure	Start a new plot

Constants	5
pi	$\pi = 3.141592653589793$
NaN	Not a number (i.e. 0/0)
Inf	Infinity
eps	relative floating-point precision
realmax	Largest positive floating-point number $1.7977 \cdot 10^{308}$
realmin	Smallest positive floating-point number $2.2251\cdot 10^{-308}$

Saving and loading files		
mat Saves workspace variables in myfile.mat		
mat Loads variables in myfile.mat into the current workspace		
Existance of names		
Returns numeric code, depending on whether this name already exists and if so, also depending on it's category (built-in, user-defined, etc.)		
ray commands		
epeat copies of array elements		

Matrix and	i array commanus
repelem	Repeat copies of array elements
repmat	Repeat copies of array
length	Length of largest array dimension
sort	sort array elements
flip	flip order of elements
reshape	Reshape array
end	Denotes last element
size(A)	Get the size of A

Linear algebra	
x = A\b	Solves A * x = b
x = linsolve(A,B)	Solves A * x = B
[V,D] = eig(A,B)	Diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that $A*V = V*D$.
[U,S,V] = svd(A)	Singular value decomposition of matrix A , such that $A = U * S * V'$.

For loops for k = 1:5 disp(k); end

```
While loops

k = 0;
while k < 7
    k = k + 1;
end</pre>
```

```
Logicals

a = 10; % Assign a the value of 10
a == 5 % Test if a is equal to 5
false
a == 10 % Test if a is equal to 10
true
a >= 5 % Test if a is greater than or equal to 5
true
a < 11 % Test if a is less than 11
true
a ~= 4 % Test if a is not equal to 4
true
a > 1 && a ~= 10 % Test if a is greater than 1 AND
false % not equal to 10
a > 1 || a ~= 10 % Test if a is greater than 1 OR
true % not equal to 10
```

```
if a > 10
    disp('Greater than 10');
elseif a == 5
    disp('a is 5');
else
    disp('Neither condition met');
end
```

```
functions

function output = addNumbers(x, y)
    output = x + y;
end

addNumbers(10, -5)
    5
```

```
Plotting
x = linspace(-3*pi, 3*pi, 1000);
y1 = \sin(x);
y2 = cos(x);
plot(x, y1, 'k-'); % Plot sin(x) as a black line hold on % Now we can add another curve
plot(x, y2, 'r-'); % Plot cos(x) as a red line
% Set the axis limits
axis([-3*pi, 3*pi, -1.5, 1.5])
% Add axis labels
xlabel('x');
ylabel('y');
% Add a title
title('A plot of cos(x) and sin(x)');
% Add a legend
legend('sin(x)', 'cos(x)');
                  A plot of cos(x) and sin(x)
    1.5
                                           sin(x)
                                           cos(x)
    0.5
     0
    -0.5
                           0
```