This example is taken from a paper, Mayerhofer, T. G. (2005). Symmetric Euler orientation representations for orientational averaging. *61*, 2611–2621.

https://doi.org/10.1016/j.saa.2004.10.002

The dielectric function is defined using a Drude-Lorentz model and the data is given here;

Table 2 Oscillator parameter of the hypothetic single crystal of orthorhombic symmetry (\bar{v}_T , S, γ in cm⁻¹)

Orientation of transition moment, M	Oscillator position, \tilde{v}_T	Oscillator strength, S	Damping constant, γ	Dielectric background, ε_{∞}
M a	200	500	10	3
$M \mid\mid b$	600	500	10	2
$M \mid\mid c$	1000	500	10	1

The published results have been taken from the paper.

For this example we need to look at the R_p polarisation, which lies in the XZ plane.

E parallel to c (010), 90 degrees azimuthal (c-lies along X)

E parallel to b (001), 90 degree azimuthal (b-lies along X)

E parallel to a (001), 0 degree azimuthal (a-lies along X)

