Introduction to Machine Learning for NLP I

Benjamin Roth, Nina Poerner, Marina Speranskaya

CIS LMU München

Outline

- This Course
- 2 Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- 6 Summary

Course Overview

- Foundations of machine learning
 - loss functions
 - linear regression
 - ▶ logistic regression
 - gradient-based optimization
 - neural networks and backpropagation
- Deep learning tools in Python
 - Numpy
 - Pytorch
 - Keras
 - (some) Tensorflow?
- Architectures for NLP
 - CNNs, RNNs, Self-Attention (Transformer)
- Applications
 - Word Embeddings
 - Sentiment Analysis
 - Relation extraction
 - Practical project (NLP related, optional)

Lecture Times, Tutorials

- Course homepage: dl-nlp.github.io
- This is where exercise sheets and lecture slides are posted
- 9-11 is supposed to be the lecture slot, and 11-12 the tutorial slot ...
- ... but we will not stick to that allocation
- We will sometimes have longer Q&A-style/interactive "tutorial" sessions, sometimes more lectures (see next slide)
- Tutor: Marina Speranskaya
 - Will discuss exercise sheets in the tutorials
 - Will help you with the project

Plan

	9-11 slot		11-12 slot	Ex. sheet		
10/16	Overview / ML Intro I			Rea	ding: Linear algebra	
10/23	Linear algebra Q&A / ML II		ML II	Rea	ding: Probability	
10/30	Probability Q&A / ML III		Numpy	Nur	npy	
11/6	Pytorch Intro		Pytorch	Pytorch		
11/13	Word2Vec		Numpy Q&A	Pytorch/Word2Vec		
,				-	•	
	9-11 slot	11-12 slot		E>	Ex. sheet	
11/20	RNNs, Pytorch Q&A	Wor	d2Vec Q&A	Re	Reading: LSTM/GRU	
11/27	LSTM discussion	Keras		Keras/Tagging		
12/4	CNN	Atte	ntion / BERT	Keras/CNN		
12/11	Attention / BERT	Kera	s/Tagging Q&A			
12/18	Project announcement	Kera	s/CNN Q&A	_		
9-11 slot			11-12 slot		Ex. sheet	

	9-11 slot	11-12 slot	Ex. sheet
1/8	Exam	_	_
1/15	Regularization	Help with projects	_
1/22	Hyperparameters	Help with projects	_
1/29	Project Q&A	Projects Q&A	_
2/5	Project presentations	presentations	_

Formalities

- This class is graded by a written exam (Klausur) in the week after Christmas
- Additional bonus points can be earned by:
 - Exercise sheets (before Christmas)
 - Project and presentation (after Christmas)
- If you got more than 50% of possible bonus points, they count for up to 10% of the exam.
- Formula:

$$g_{\mathsf{final}} = \min(M, g_{\mathsf{exam}} + \frac{M}{10} \cdot \max(0, 2 \cdot (g_{\mathsf{bonus}} - 0.5)))$$

$$g_{\mathsf{bonus}} = \frac{1}{3}g_{\mathsf{project}} + \frac{2}{3}g_{\mathsf{exercises}}$$

• where *M* is the maximum possible number of points.

Work load

- 6 ECTS, 14 weeks
 - \Rightarrow avg work load \sim 13hrs / week (3 in class, 10 at home)
 - ▶ in the first weeks, spend enough time to read and prepare so that you are not lost later
 - from beginning of November to Christmas: programming assignments coding takes time, and can be frustating (but rewarding)!

Exam

- Will cover material from the lectures and reading assignments up to Christmas
- So even if you do not hand the reading assignments, it is a good idea to read them.
- Mostly conceptual questions, no code (no need to learn pytorch function names by heart!)

Exercise sheets

- Optional (bonus points!)
- Exercise sheets 1, 2 and 5 are reading assignments with questions
- Other sheets are programming exercises
- Format: jupyter notebooks
- All exercise sheets contribute equally

Project

- Optional (bonus points!)
- Project topic & data will be distributed before Christmas
- You should work in groups of 2 or 3
- All groups work on the same data
- Must hand in code
- Grading scheme TBA: probably a combination of results (good performance on test set), code quality, creativity
- Optional project presentation in the last week before Easter (may give bonus points, TBA)

Good project code ...

- ... shows that you master the techniques taught in the lectures and exercises.
- ... shows that you can make "own decisions": e.g. adapt model / task / training data etc if necessary.
- ... is well-structured and easy to understand (telling variable names, meaningful modularization – avoid: code duplication, dead code)
- ... is correct
- ... is within the scope of this lecture (time-wise should not exceed $4\times 10h$)

A good project presentation ...

- ... is short (10 min. per team)
- ... is targeted to your fellow students, who do not know details beforehand
- ... contains interesting stuff: unexpected observations? conclusions
 / recommendations? did you deviate from some common practice?
- ... demonstrates that all team members worked together on the project

Outline

- This Course
- 2 Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- Deep Learning
- 5 Linear Regression: Overview and Cost Function
- 6 Summary

Machine Learning for NLP

- What are the alternatives?
- Advantages and disadvantages?
 - Accuracy
 - Coverage
 - Resources required (data, expertise, human labour)
 - ► Reliability/Robustness
 - Explainability

Outline

- This Course
- Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- 6 Summary

A Definition

"A computer program is said to learn from **experience** E with respect to some class of **tasks** T and **performance measure** P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell 1997)

A Definition

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Mitchell 1997)

- Learning: Attaining the ability to perform a task.
- A set of examples ("experience") represents a more general task.
- Examples are described by *features*: sets of numerical properties that can be represented as vectors $\mathbf{x} \in \mathbb{R}^n$.

Outline

- This Course
- Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- **6** Summary

Data

"A computer program is said to learn from experience E [...], if its performance [...] improves with experience E."

- Dataset: collection of examples
- Design matrix

$$\mathbf{X} \in \mathbb{R}^{n \times m}$$

- n: number of examples
- m: number of features
- Example: $X_{i,j}$ count of feature j (e.g. a stem form) in document i, intensity of j'th pixel in image i
- Unsupervised learning:
 - Model X, or find interesting properties of X.
 - Example: Clustering (find groups of similar images/documents)
 - ► Training data: only X.
- Supervised learning:
 - Predict specific additional properties from X.
 - ► E.g., sentiment classification: Predict sentiment (1–5) of amazon review
 - ▶ Training data: Label vector $\mathbf{v} \in \mathbb{R}^n$ together with $\mathbf{X}^{\leftarrow \mathbb{R}^n}$

Outline

- This Course
- Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- **6** Summary

Machine Learning Tasks

"A computer program is said to learn [...] with respect to some class of **tasks T** [...] if its performance at **tasks in T** [...] improves [...]"

Types of Tasks:

- Classification
- Regression
- Structured Prediction
- Anomaly Detection
- synthesis and sampling
- Imputation of missing values
- Denoising
- Clustering
- Reinforcement learning
- . . .

Task: Classification

• Which of *k* classes does an example belong to?

$$f: \mathbb{R}^n \to \{1 \dots k\}$$

- Typical example: Categorize image patches
 - ▶ Feature vector: color intensities for each pixel; derived features.
 - Output categories: Predefined set of labels

- Typical example: Spam Classification
 - ► Feature vector: High-dimensional, sparse vector. Each dimension indicates occurrence of a particular word, or other email-specific information.
 - ▶ Output categories: "spam" vs. 'ham"

Task: Classification

Identifying civilians killed by police with distantly supervised entity-event extraction

Katherine A. Keith, Abram Handler, Michael Pinkham, Cara Magliozzi, Joshua McDuffie, and Brendan O'Connor College of Information and Computer Sciences University of Massachusetts Amherst

 EMNLP 2017: Given a person name in a sentence that contains keywords related to police ("officer", "police" ...) and to killing ("killed", "shot"), was the person a civilian killed by police?

Text	Person killed by police?
Alton Sterling was killed by police.	True
Officers shot and killed Philando Castile.	True
Officer Andrew Hanson was shot.	False
Police report Megan Short was fatally shot in apparent murder-suicide.	False

Task: Regression

• Predict a numerical value given some input.

$$f: \mathbb{R}^n \to \mathbb{R}$$

- Typical examples:
 - ▶ Predict the risk of an insurance customer.
 - Predict the value of a stock.

Task: Regression

Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses

Ryan Lowe $^{\heartsuit^*}$ Michael Noseworthy $^{\heartsuit^*}$ Iulian V. Serban $^{\diamondsuit}$ Nicolas A.-Gontier $^{\heartsuit}$ Yoshua Bengio $^{\diamondsuit\ddagger}$ Joelle Pineau $^{\heartsuit\ddagger}$

 ACL 2017: Given a response in a multi-turn dialogue, predict the value (on a scale from 1 to 5) how natural a response is.

Context	Reference response	Model responses	Human	ADEM
			score	score
photo to see my television debut go to -	yeah it was me . haha i	i'm not sure. i just don't know what to do with it.	3	1.602
some. some on $\langle url \rangle$ - hehe $\langle url \rangle \rightarrow$	'd kinda forgotten about	2) you heard the horsepower productions remix of lee scratch	1	1.513
it really was you? i thought ppl were rec-	it it was filmed a while	perry's 'exercising' off his 'mighty upsetter' album?		
ognizing someone who looked like you!	ago	you wont chug a fuzzy peach navel	1	1.744
were the oysters worth the wait?		4) they were!	5	3.274
just beat call of duty!! → want a cookie?	im in kenmore at the	1) i'm gonna get a new phone some moro	1	1.848
\rightarrow yes!! \rightarrow come get it	moment	2) no way man.	5	4.265
-		wow i just got a free pizza coupon! get yours	1	0.921
		before theres no more! <url></url>		
		4) i'm going to go to the mall.	1	2.634
am i out of twitter jail yet? testing →	any news on meeting	i'm not sure if i'm going to be able to get it.	3	1.912
yeah. i posted bail → thanks. i am a	our user? i go to the	good to see another mac user in the leadership ranks	4	1.417
right chatter tweetbox on sundays. same	us on friday and i don	3) awww poor baby hope u get to feeling better soon. maybe		
happened last sunday lol	't want to miss anything	some many work days at piedmont	2	1.123
	arranged	4) did you tweet too much?	5	2.539

Task: Structured Prediction

- Predict a multi-valued output with special inter-dependencies and constraints.
- Typical examples:
 - Part-of-speech tagging

Syntactic parsing

- Machine Translation
- Often involves search and problem-specific algorithms.

Task: Structured Prediction

Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou, Bo Xu Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R. China

 ACL 2017: jointly find all relations relations of interest in a sentence by tagging arguments and combining them.

Task: Reinforcement Learning

- In reinforcement learning, the model (also called agent) needs to select a serious of actions, but only observes the outcome (reward) at the end.
- The goal is to predict actions that will maximize the outcome.
 Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Mike Lewis¹, Denis Yarats¹, Yann N. Dauphin¹, Devi Parikh^{2,1} and Dhruv Batra^{2,1}

¹Facebook AI Research

²Georgia Institute of Technology

• EMNLP 2017: The computer negotiates with humans in natural language in order to maximize its points in a game.

Task: Anomaly Detection

- Detect atypical items or events.
- Common approach: Estimate density and identify items that have low probability.

- Examples:
 - Quality assurance
 - Detection of criminal activity
- Often items categorized as outliers are sent to humans for further scrutiny.

Task: Anomaly Detection

Using Automated Metaphor Identification to Aid in Detection and Prediction of First-Episode Schizophrenia

E. Darío Gutiérrez¹ Philip R. Corlett² Cheryl M. Corcoran³ Guillermo A. Cecchi¹

 ACL 2017: Schizophrenia patients can be detected by their non-standard use of mataphors, and more extreme sentiment expressions.

Supervised and Unsupervised Learning

- Unsupervised learning: Learn interesting properties, such as probability distribution p(x)
- Supervised learning: learn mapping from x to y, typically by estimating p(y|x)
- Supervised learning in an unsupervised way:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{\sum_{y'} p(\mathbf{x}, y')}$$

Outline

- This Course
- 2 Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- **6** Summary

Performance Measures

"A computer program is said to learn [...] with respect to some [...] **performance measure** *P*, if its performance [...] **as measured by** *P*, improves [...]"

- Quantitative measure of algorithm performance.
- Task-specific.

Discrete vs. Continuous Loss Functions

- Discrete Loss Functions
 - Accuracy (how many samples were correctly labeled?)
 - ► Error Rate (1 accuracy)
 - Precision / Recall
 - Accuracy may be inappropriate for skewed label distributions, where relevant category is rare

$$F1\text{-score} = \frac{2 \cdot \mathsf{Prec} \cdot \mathsf{Rec}}{\mathsf{Prec} + \mathsf{Rec}}$$

- Discrete loss functions cannot indicate a wrong decision is
- They are not differentiable (hard to optimize)
- Often algorithms are optimized using a continuous loss (e.g. hinge loss) and evaluated using another loss (e.g. F1-Score).

Examples for Continuous Loss Functions

- Squared error (regression): $(y f(\mathbf{x}))^2$
- Hinge loss (classification):
 - \rightarrow max $(0, 1 f(\mathbf{x}) \cdot \mathbf{y})$
 - (assume that $y \in \{-1, 1\}$)
- ...
- These loss functions are differentiable. So we can use them for gradient descent (more on that later).

Outline

- This Course
- Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- Deep Learning
- 5 Linear Regression: Overview and Cost Function
- 6 Summary

Deep Learning

- Learn complex functions, that are (recursively) composed of simpler functions.
- Many parameters have to be estimated.

Deep Learning

- Main Advantage: Feature learning
 - Models learn to capture most essential properties of data (according to some performance measure) as intermediate representations.
 - No need to hand-craft feature extraction algorithms

Neural Networks

- First training methods for deep nonlinear NNs appeared in the 1960s (Ivakhnenko and others).
- Increasing interest in NN technology (again) since around 10 years ago ("Neural Network Renaissance"):
 Orders of magnitude more data and faster computers now.
- Many successes:
 - Image recognition and captioning
 - Speech regonition
 - NLP and Machine translation
 - Game playing (AlphaGO)
 - **.**..

Machine Learning

• Deep Learning builds on general Machine Learning concepts

$$\mathsf{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} \sum_{i=1}^m \mathcal{L}(f(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$

• Fitting data vs. generalizing from data

Outline

- This Course
- Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- 6 Summary

Linear Regression

- For one instance:
 - ▶ Input: vector $\mathbf{x} \in \mathbb{R}^n$
 - ▶ Output: scalar $y \in \mathbb{R}$

(actual output: y; predicted output: \hat{y})

Linear function

$$\hat{y} = \mathbf{w}^T \mathbf{x} = \sum_{j=1}^n w_j x_j$$

Benjamin Roth, Nina Poerner, Marina Speran Introduction to Machine Learning for NLP I

Linear Regression

Linear function:

$$\hat{\mathbf{y}} = \mathbf{w}^T \mathbf{x} = \sum_{j=1}^n w_j x_j$$

• Parameter vector $\mathbf{w} \in \mathbb{R}^n$ Weight w_j decides if value of feature x_j increases or decreases prediction \hat{y} .

Linear Regression

- For the whole data set:
 - ▶ Use matrix **X** and vector **y** to stack instances on top of each other.
 - ▶ Typically first column contains all 1 for the intercept (bias, shift) term.

$$\mathbf{X} = \begin{bmatrix} 1 & x_{12} & x_{13} & \dots & x_{1n} \\ 1 & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{m2} & x_{m3} & \dots & x_{mn} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

For entire data set, predictions are stacked on top of each other:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$

- Estimate parameters using $\mathbf{X}^{(train)}$ and $\mathbf{y}^{(train)}$.
- Make high-level decisions (which features...) using $\mathbf{X}^{(dev)}$ and $\mathbf{y}^{(dev)}$.
- Evaluate resulting model using $\mathbf{X}^{(test)}$ and $\mathbf{y}^{(test)}$.

Simple Example: Housing Prices

 Predict property prices (in 1K Euros) from just one feature: Square feet of property.

$$\mathbf{X} = \begin{bmatrix} 1 & 450 \\ 1 & 900 \\ 1 & 1350 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 730 \\ 1300 \\ 1700 \end{bmatrix}$$

• Prediction is:

$$\hat{\mathbf{y}} = \begin{bmatrix} w_1 + 450w_2 \\ w_1 + 900w_2 \\ w_1 + 1350w_2 \end{bmatrix} = \begin{bmatrix} 1 & 450 \\ 1 & 900 \\ 1 & 1350 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \mathbf{X}\mathbf{w}$$

- ullet will contain costs incurred in any property acquisition
- w₂ will contain remaining average price per square feet.
- Optimal parameters are for the above case:

$$\mathbf{w} = \begin{bmatrix} 273.3 \\ 1.08 \end{bmatrix} \quad \hat{\mathbf{y}} = \begin{bmatrix} 759.1 \\ 1245.1 \\ 1731.1 \end{bmatrix}$$

Linear Regression: Mean Squared Error

• Mean squared error of training (or test) data set is the sum of squared differences between the predictions and labels of all *m* instances.

$$MSE^{(train)} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i^{(train)} - y_i^{(train)})^2$$

• In matrix notation:

$$\begin{split} \textit{MSE}^{(train)} &= \frac{1}{m} || \hat{\mathbf{y}}^{(train)} - \mathbf{y}^{(train)} ||_2^2 \\ &= \frac{1}{m} || \mathbf{X}^{(train)} \mathbf{w} - \mathbf{y}^{(train)} ||_2^2 \end{split}$$

Outline

- This Course
- Why Machine Learning?
- Machine Learning Definition
 - Data (Experience)
 - Tasks
 - Performance Measures
- 4 Deep Learning
- 5 Linear Regression: Overview and Cost Function
- **6** Summary

Summary

- Machine learning definition
 - Data
 - Task
 - Cost function
- Machine learning tasks
 - Classification
 - Regression
- Deep Learning
 - many successes in recent years
 - feature learning instead of feature engineering
 - builds on general machine learning concepts
- Linear regression
 - Output depends linearly on input
 - Cost function: Mean squared error
- Next up: estimating the parameters