

Einführung in die Rechnerarchitektur

Schaltwerke & VHDL

Lukas Hertel

Lehrstuhl für Rechnerarchitektur und Parallele Systeme Fakultät für Informatik Technische Universität München

10. Januar 2022

Organisatorisches

Prüfungsanmeldung bis zum 15.01.2022

Schaltwerke

- Schaltnetze mit Gedächtnis
- Speicherung möglich durch Rückkopplung
- "Latch" ist nicht getaktet
- "Flip-Flop" Pegel- oder Flankengesteuert (Getaktet)

RS-Latch

S	R	Q
0	0	
0	1	
1	0	
1	1	

	Änderung wenn	Beispiel
Pegelsteuerung		
Flankensteuerung		

Nicht getaktetes RS-Latch

Taktpegelgesteuertes RS-Flip-Flop

D-Flip-Flop

Taktpegelgesteuertes D-Flip-Flop

Taktflankengesteuertes D-Flip-Flop

■ Wie verändern um auf steigende Flanken zu reagieren?

JK-Flip-Flop Tabelle

J	K	Q
0	0	
0	1	
1	0	
1	1	

JK-Flip-Flop

D-Flip-Flop mit JK

T-Flip-Flop Tabelle

$$egin{array}{c|c} T & Q \\ \hline 0 & \\ 1 & \end{array}$$

T-Flip-Flop

Signaldeklerationen

Signal	Α	В	С	D	Ε	F	G	Н	I
Bits									

Deklarationen

- signal K:
- signal L:
- signal M:
- signal N:
- signal O:

Zuweisungen

- A <=
- B <=
- C <=
- D <=
- E <=
- F<=