Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

Partie I - Produit de convolution

I.A - Généralités

I.A.1) a) Soient $f \in L^1(\mathbb{R})$ et $g \in C_b(\mathbb{R})$. Soit $x \in \mathbb{R}$. La fonction $t \mapsto f(t)g(x-t)$ dt est continue sur \mathbb{R} . De plus, pour tout $t \in \mathbb{R}$, $|f(t)g(x-t)| \leq ||g||_{\infty}|f(t)|$. Puisque la fonction $t \mapsto ||g||_{\infty}|f(t)|$ est intégrable sur \mathbb{R} , il en est de même de la fonction $t \mapsto f(t)g(x-t)$ et donc f * g(x) existe. Ensuite,

$$|f * g(x)| = \left| \int_{-\infty}^{+\infty} f(t)g(x-t) \ dt \right| \leq \int_{-\infty}^{+\infty} |f(t)||g(x-t)| \ dt \leq ||g||_{\infty} \int_{-\infty}^{+\infty} |f(t)| \ dt = ||f||_{1} ||g||_{\infty}.$$

Ainsi, pour tout réel x, f*g(x) existe et $|f*g(x)| \le ||f||_1 ||g||_{\infty}$. Donc f*g est définie et bornée sur \mathbb{R} et $||f*g||_{\infty} \le ||f||_1 ||g||_{\infty}$.

$$\forall (f,g) \in L^1(\mathbb{R}) \times C_b(\mathbb{R}), \ f*g \ \mathrm{est} \ \mathrm{d\acute{e}finie} \ \mathrm{et} \ \mathrm{born\acute{e}e} \ \mathrm{sur} \ \mathbb{R} \ \mathrm{et} \ \|f*g\|_{\infty} \leqslant \|f\|_1 \|g\|_{\infty}.$$

b) Soit $(f,g) \in L^2(\mathbb{R}) \times L^2(\mathbb{R})$. Soit $x \in \mathbb{R}$. La fonction $t \mapsto f(t)g(x-t)$ est continue sur \mathbb{R} . Ensuite, pour tout réel t, la fonction $t \mapsto f(t)$ est de carré intégrable et la fonction $t \mapsto g(x-t)$ est de carré intégrable (car en posant u=x-t qui est un changement de variable admissible puisque l'application $t \mapsto x-t$ est un C^1 -difféomorphisme de \mathbb{R} sur lui-même) on obtient $\int_{-\infty}^{+\infty} (g(x-t))^2 \ dt = \int_{-\infty}^{+\infty} (g(u))^2 \ du = \|g\|_2^2 < +\infty$. On sait alors que la fonction $t \mapsto f(t)g(x-t)$ est intégrable sur \mathbb{R} et d'après l'inégalité de CAUCHY-SCHWARZ,

$$|f * g(x)| = \left| \int_{-\infty}^{+\infty} f(t)g(x-t) \, dt \right|$$

$$\leq \sqrt{\int_{-\infty}^{+\infty} (f(t))^2 \, dt} \sqrt{\int_{-\infty}^{+\infty} (g(x-t))^2 \, dt} = ||f||_2 ||g||_2.$$

Pour tout réel x, f*g(x) existe dans \mathbb{R} et $|f*g(x)| \leq ||f||_2 ||g||_2$. Donc f*g est définie et bornée sur \mathbb{R} et $||f*g||_{\infty} \leq ||f||_2 ||g||_2$.

$$\forall (f,g) \in L^2(\mathbb{R}) \times L^2(\mathbb{R}), \, f*g \text{ est définie et bornée sur } \mathbb{R} \text{ et } \|f*g\|_{\infty} \leqslant \|f\|_2 \|g\|_2.$$

I.A.2) Soit $x \in \mathbb{R}$. En posant u = x - t, on obtient

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t) dt = \int_{-\infty}^{+\infty} f(x-u)g(u) du = g * f(x).$$

On a montré que f * g = g * f.

I.A.3) Par hypothèse, il existe A > 0 tel que f et g soient nulles en dehors de [-A, A]. Soit $x \in]-\infty, -2A[\cup]2A, +\infty[$.

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t) dt = \int_{-A}^{A} f(t)g(x-t) dt.$$

Si x > 2A, alors pour tout réel $t \in [-A, A]$, x - t > 2A - A = A et donc g(x - t) = 0. Mais alors f * g(x) = 0. Si x < -2A, alors pour tout réel t de [-A, A], x - t < -2A + A = -A et donc g(x - t) = 0. Mais alors f * g(x) = 0.

En résumé, f * g est nulle en dehors de [-2A, 2A] et donc f * g est à support compact.

I.B - Produit de convolution de deux éléments de $L^2(\mathbb{R})$

I.B.1) • Supposons h uniformément continue sur \mathbb{R} . Soit $\varepsilon > 0$. Il existe $\nu > 0$ tel que pour tout $(x,y) \in \mathbb{R}^2$,

$$(|x-y|<\nu \Rightarrow |h(x)-h(y)|<\frac{\epsilon}{2}).$$

 $\text{Soit } \alpha \in]-\nu, \nu[\text{. Alors, pour tout réel } x, \, |x-(x-\alpha)| = |\alpha| < |\nu| \text{ et donc } |T_\alpha(h)(x)-h(x)| = |f(x-\alpha)-f(x)| < \frac{\epsilon}{2}. \text{ On en déduit que } \|T_\alpha(h)-h\|_\infty \leqslant \frac{\epsilon}{2} < \epsilon.$

On a montré que $\forall \epsilon > 0, \ \exists \nu > 0 / \ (|\alpha| < \nu \Rightarrow \|T_{\alpha}(h) - h\|_{\infty} < \epsilon)$ et donc que $\lim_{\alpha \to 0} \|T_{\alpha}(h) - h\|_{\infty} = 0$.

• Supposons que $\lim_{\alpha \to 0} \|T_{\alpha}(h) - h\|_{\infty} = 0$. Soit $\epsilon > 0$. Il existe $\nu > 0$ tel que pour tout $\alpha \in]-\nu,\nu[$, $\|T_{\alpha}(h) - h\|_{\infty} < \epsilon$. Soit $(x,y) \in \mathbb{R}^2$ tel que $|y-x| < \alpha$. Alors $|h(y) - h(x)| = |h(y) - h(y-(y-x))| < \|T_{y-x}(h) - h\|_{\infty} < \epsilon$. On a montré que $\forall \epsilon > 0$, $\exists \nu > 0 / \forall (x,y) \in \mathbb{R}^2$, $(|y-x| < \nu \Rightarrow |f(y) - f(x)| < \epsilon)$ et donc h est uniformément continue sur \mathbb{R} .

Finalement,

Pour toute fonction h, h est uniformément continue sur \mathbb{R} si et seulement si $\lim_{\alpha \to 0} \|T_{\alpha}(h) - h\|_{\infty} = 0$.

I.B.2) Puisque f et g sont dans $L^2(\mathbb{R})$, f * g est définie sur \mathbb{R} d'après la question I.A.1)b). Soit $\alpha \in \mathbb{R}$. Pour tout réel x, en posant $u = t + \alpha$, on obtient

$$\begin{split} T_{\alpha}\left(f\ast g\right)\left(x\right) &= f\ast g(x-\alpha) = \int_{-\infty}^{+\infty} f(t)g(x-\alpha-t) \ dt = \int_{-\infty}^{+\infty} f(u-\alpha)g(x-u) \ du = \int_{-\infty}^{+\infty} T_{\alpha}(f)(u)g(x-u) \ du \\ &= T_{\alpha}(f)\ast g(x), \end{split}$$

et donc $T_{\alpha}(f * g) = T_{\alpha}(f) * g$.

I.B.3) Soit $\alpha \in \mathbb{R}$. D'après la question I.A.1)b) et par bilinéarité du produit de convolution,

$$\|T_{\alpha}(f * g) - f * g\|_{\infty} = \|T_{\alpha}(f) * g - f * g\|_{\infty} = \|(T_{\alpha}(f) - f) * g\|_{\infty} \leqslant \|T_{\alpha}(f) - f\|_{2} \|g\|_{2}.$$

I.B.4) Supposons f à support compact. Il existe A > 0 tel que f s'annule en dehors de [-A, A]. En particulier, f est bornée sur \mathbb{R} .

Soit $\alpha \in]-1,1[$. $T_{\alpha}(f)$ s'annule en dehors de $[-A+\alpha,A+\alpha]$ et f est nulle en dehors de [-A,A]. Par suite, $T_{\alpha}(f)-f$ est nulle en dehors de [-A-1,A+1] puis

$$\|T_{\alpha}(f) - f\|_{2}^{2} = \int_{-A-1}^{A+1} (f(x - \alpha) - f(x))^{2} dx.$$

- Pour chaque $\alpha \in]-1,1[$, la fonction $x \mapsto F(x,\alpha)$ est continue par morceaux sur [-A+1,A+1].
- Pour chaque $x \in [-A 1, A + 1]$, la fonction $\alpha \mapsto F(x, \alpha)$ est continue sur]-1,1[.
- Pour chaque $(x,\alpha) \in [-A-1,A+1] \times]-1,1[,|F(x,\alpha)| \leqslant (\|f\|_{\infty}+\|f\|_{\infty})^2=4\|f\|_{\infty}^2=\phi(x)$ où ϕ est une fonction continue par morceaux et intégrable sur le segment [-A-1,A+1].

D'après le théorème de continuité des intégrales à paramètres, la fonction $\alpha \mapsto \int_{-A-1}^{A+1} (f(x-\alpha) - f(x))^2 dx$ est continue f(x)

sur] -1, 1[. En particulier,
$$\lim_{\alpha \to 0} \int_{-A-1}^{A+1} (f(x-\alpha) - f(x))^2 dx = \int_{-A-1}^{A+1} (f(x-0) - f(x))^2 dx = 0.$$

Ainsi, $\lim_{\alpha \to 0} \|T_{\alpha}(f) - f\|_{2} = 0$. Puisque d'autre part, $\forall \alpha \in \mathbb{R}$, $\|T_{\alpha}(f * g) - f * g\|_{\infty} \leqslant \|T_{\alpha}(f) - f\|_{2} \|g\|_{2}$, on a encore $\lim_{\alpha \to 0} \|T_{\alpha}(f * g) - f * g\|_{\infty} = 0$ et la question I.B.1) permet d'affirmer que f * g est uniformément continue sur \mathbb{R} .

 $\begin{aligned} \textbf{I.B.5)} & \operatorname{Soit} \ \epsilon > 0. \ \operatorname{Puisque} \ f \in L^2(\mathbb{R}), \ \operatorname{il} \ \operatorname{existe} \ A > 2 \ \operatorname{tel} \ \operatorname{que} \int_{-\infty}^{-A} f^2(t) \ dt + \int_{A}^{+\infty} f^2(t) \ dt < \frac{\epsilon^2}{32}. \ \operatorname{On} \ \operatorname{pose} \ M = \sup\{|f(x)|, \ x \in [-A,A]\} \ (M \ \operatorname{existe} \ \operatorname{car} \ f \ \operatorname{est} \ \operatorname{continue} \ \operatorname{sur} \ \operatorname{le} \ \operatorname{segment} \ [-A,A]) \ \operatorname{puis} \ \nu = \operatorname{Min} \left\{ \frac{\epsilon^2}{32(8M^2+1)}, \frac{A}{2} \right\} \ (\operatorname{de} \ \operatorname{sorte} \ \operatorname{que} \ 0 < \nu < A). \end{aligned}$

Soit f_1 la fonction continue sur \mathbb{R} , qui coïncide avec f sur $[-A+\nu,A-\nu]$, qui est nulle en dehors de [-A,A] et qui est affine sur $[-A,-A+\nu]$ et sur $[A-\nu,A]$. On note que pour $x\in [-A,-A+\nu]\cup [A-\nu,A]$, on a $|f(x)-f_1(x)|\leqslant |f(x)|+|f_1(x)|\leqslant M+M=2M$. Par suite,

$$\begin{split} \|f-f_1\|_2^2 &= \int_{-\infty}^{-A} (f-f_1)^2 + \int_{-A}^{-A+\nu} (f-f_1)^2 + \int_{-A+\nu}^{A-\nu} (f-f_1)^2 + \int_{A-\nu}^{A} (f-f_1)^2 + \int_{A}^{+\infty} (f-f_1)^2 \\ &= \int_{-\infty}^{-A} f^2 + \int_{A}^{+\infty} f^2 + \int_{-A}^{-A+\nu} (f-f_1)^2 + \int_{A-\nu}^{A} (f-f_1)^2 \\ &\leqslant \frac{\epsilon^2}{32} + 8M^2\nu \leqslant \frac{\epsilon^2}{32} + 8M^2 \times \frac{\epsilon^2}{32(8M^2+1)} < 2 \times \frac{\epsilon^2}{32} = \frac{\epsilon^2}{16} \end{split}$$

puis $\|f - f_1\|_2 \leqslant \frac{\epsilon}{4}$ (on a montré au passage que l'ensemble des fonctions continues à support compact est dense dans $L^2(\mathbb{R})$ muni de $\|\cdot\|_2$). Soit alors $\alpha \in \mathbb{R}$.

$$\|T_{\alpha}(f)-f\|_{2} \leqslant \|T_{\alpha}(f)-T_{\alpha}(f_{1})\|_{2} + \|T_{\alpha}(f_{1})-f_{1}\|_{2} + \|f_{1}-f\|_{2} = \|T_{\alpha}(f_{1})-f_{1}\|_{2} + 2\|f_{1}-f\|_{2} < \|T_{\alpha}(f_{1})-f_{1}\|_{2} + \frac{\epsilon}{2}.$$

 $\begin{aligned} & \text{Maintenant, } f_1 \text{ est continue sur } \mathbb{R} \text{ à support compact et donc } \lim_{\alpha \to 0} \left\| T_\alpha(f_1) - f_1 \right\|_2 = 0 \text{ d'après la question précédente. Par suite, il existe } r > 0 \text{ tel que pour tout } \alpha \in]-r, r[, \left\| T_\alpha(f_1) - f_1 \right\|_2 < \frac{\epsilon}{2}. \end{aligned}$

Pour $\alpha \in]-r,r[$, on a $\|T_{\alpha}(f)-f\|_{2}<\|T_{\alpha}(f_{1})-f_{1}\|_{2}+\frac{\epsilon}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$ On a montré que $\lim_{\alpha \to 0}\|T_{\alpha}(f)-f\|_{2}=0.$ Les questions I.B.1) et I.B.3) permettent encore une fois d'affirmer que f*g est uniformément continue sur \mathbb{R} .

I.C - Continuité, dérivabilité, séries de Fourier

$$\begin{tabular}{ll} \textbf{I.C.1) a) Soit } (f,g) \in L^1(\mathbb{R}) \times C_b(\mathbb{R}). \begin{tabular}{ll} Soit & F : & \mathbb{R}^2 & \to & \mathbb{R} \\ & (x,t) & \mapsto & f(t)g(x-t) \end{tabular} . \label{eq:continuous}$$

- Pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto F(x,t)$ est continue par morceaux sur \mathbb{R} .
- Pour chaque $t \in \mathbb{R}$, la fonction $x \mapsto F(x, t)$ est continue sur \mathbb{R} .
- Pour chaque $(x,t) \in \mathbb{R}^2$, $|F(x,t)| \le \|g\|_{\infty} |f(t)| = \phi(t)$ où ϕ est une fonction continue par morceaux et intégrable sur \mathbb{R} .

D'après le théorème de continuité des intégrales à paramètres, la fonction $f * g : x \mapsto \int_{-\infty}^{+\infty} f(t)g(x-t) dt$ est continue sur \mathbb{R} .

b) Soit $\varepsilon > 0$. Puisque g est uniformément continue sur \mathbb{R} , il existe $\alpha > 0$ tel que pour tout $(x,y) \in \mathbb{R}^2$,

$$|x-y| < \alpha \Rightarrow |g(x) - g(y)| < \frac{\epsilon}{\|f\|_1 + 1}.$$

Soit $(x, y) \in \mathbb{R}^2$ tel que $|x - y| < \alpha$. Alors,

$$\begin{split} |f*g(x)-f*g(y)| &\leqslant \int_{-\infty}^{+\infty} |f(t)||g(x-t)-g(y-t)| \ dt \\ &\leqslant \frac{\epsilon}{\|f\|_1+1} \int_{-\infty}^{+\infty} |f(t)| \ dt \ (\mathrm{car \ pour \ tout} \ t \in \mathbb{R}, \ |(x-t)-(y-t)| = |x-y| < \alpha) \\ &= \frac{\epsilon \|f\|_1}{\|f\|_1+1} < \epsilon. \end{split}$$

On a montré que $\forall \epsilon > 0$, $\exists \alpha > 0 / \forall (x,y) \in \mathbb{R}^2$, $(|x-y| < \alpha \Rightarrow |f * g(x) - f * g(y)| < \epsilon)$ et donc f * g est uniformément continue sur \mathbb{R} .

I.C.2) F est la fonction de la question I.C.1)a).

- Pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto F(x,t)$ est continue par morceaux et intégrable sur \mathbb{R} .
- \bullet F admet sur \mathbb{R}^2 des dérivées partielles par rapport à sa première variable x jusqu'à l'ordre k et

$$\forall i \in [1, k], \ \forall (x, t) \in \mathbb{R}^2, \ \frac{\partial^i F}{\partial x^i}(x, t) = f(t)g^{(i)}(x - t).$$

De plus,

- $\text{- Pour tout } \mathfrak{i} \in \llbracket 1, k \rrbracket, \text{ pour tout } x \in \mathbb{R}, \text{ la fonction } t \mapsto \frac{\partial^{\mathfrak{i}} F}{\partial x^{\mathfrak{i}}}(x,t) \text{ est continue par morceaux sur } \mathbb{R}.$
- Pour tout $i \in [\![1,k]\!]$, pour tout $t \in \mathbb{R}$, la fonction $x \mapsto \frac{\partial^{\frac{i}{i}} F}{\partial x^i}(x,t)$ est continue sur \mathbb{R} .
- Pour tout $i \in [1, k]$, pour tout $(x, t) \in \mathbb{R}^2$, $\left|\frac{\partial^i f}{\partial x^i}(x, t)\right| \leq \|g^{(i)}\|_{\infty} |f(t)| = \phi_i(t)$ où ϕ_i est une fonction continue par morceaux et intégrable sur \mathbb{R} .

D'après une généralisation du théorème de dérivation des intégrales à paramètres, la fonction $f*g: x \mapsto \int_{-\infty}^{+\infty} f(t)g(x-t) dt$ est de classe C^k sur $\mathbb R$ et ses dérivées successives s'obtiennent par dérivation sous le signe somme ou encore

$$\forall i \in [1, k], (f * g)^{(i)} = f * (g^{(i)}).$$

I.C.3) a) Si g est 2π -périodique, continue sur \mathbb{R} et de classe \mathbb{C}^1 par morceaux sur \mathbb{R} , la série de Fourier de g converge normalement vers la fonction g sur \mathbb{R} .

b) • Pour tout réel x,

$$(f * g)(x + 2\pi) = \int_{-\infty}^{+\infty} f(t)g(x + 2\pi - t) dt = \int_{-\infty}^{+\infty} f(t)g(x - t) dt = (f * g)(x),$$

et donc f * g est 2π -périodique.

- On sait que la série de Fourier de g converge normalement vers g sur $\mathbb R$ ou encore les deux séries numériques $\sum_{n\geqslant 0}|c_n(g)|$
- et $\sum_{n\geqslant 1} |c_{-n}(g)|$ sont convergentes.

Soit $x \in \mathbb{R}$. Pour $n \in \mathbb{Z}$ et $t \in \mathbb{R}$, posons $h_n(t) = c_n(g)f(t)e^{in(x-t)}$.

- Pour tout $n \in \mathbb{Z}$, la fonction h_n est continue par morceaux et intégrable sur \mathbb{R} (car $f \in L^1(\mathbb{R})$).
- Pour tout réel t,

$$\sum_{n\in\mathbb{Z}}h_n(t)=f(t)\sum_{n\in\mathbb{Z}}c_n(g)e^{in(x-t)}=f(t)g(x-t),$$

et la fonction $t \mapsto f(t)g(x-t)$ est continue par morceaux sur \mathbb{R} .

$$-\sum_{n\in\mathbb{Z}}\int_{-\infty}^{+\infty}|h_n(t)|\ dt = \left(\sum_{n\in\mathbb{Z}}|c_n(g)|\right)|\|f\|_1 < +\infty.$$

D'après un théorème d'intégration terme à terme (appliqué à chacune des séries /dsumn $\geqslant 0$ et $\sum_{n\leqslant -1}$), on peut écrire

$$\begin{split} f*g(x) &= \int_{-\infty}^{+\infty} f(t)g(x-t) \ dt = \int_{-\infty}^{+\infty} f(t) \left(\sum_{n \in \mathbb{Z}} c_n(g) e^{in(x-t)} \right) \ dt \\ &= \sum_{n \in \mathbb{Z}} c_n(g) \left(\int_{-\infty}^{+\infty} f(t) e^{-int} \ dt \right) e^{inx} \end{split}$$

 $\mathrm{Maintenant}, \mathrm{puisque} \ \mathrm{pour} \ \mathrm{tout} \ x \in \mathbb{R} \ \mathrm{et} \ \mathrm{tout} \ n \in \mathbb{Z}, \ \left| c_n(g) \left(\int_{-\infty}^{+\infty} f(t) e^{-int} \ dt \right) e^{inx} \right| \leqslant |c_n(g)| \|f\|_1 \ \mathrm{et} \ \mathrm{que} \sum_{n \in \mathbb{Z}} |c_n(g)| \|f\|_1 < |c_n(g)| \|f\|_1 \ \mathrm{et} \ \mathrm{que} \left| \sum_{n \in \mathbb{Z}} |c_n(g)| \|f\|_1 < |c_n(g)| \|f\|_1 <$

 $+\infty$, la série trigonométrique précédente converge normalement sur \mathbb{R} . On sait alors que cette série est la série de FOURIER de f * g (les coefficients de FOURIER de f * g se récupérant par intégration terme à terme).

Ainsi, f * g est somme de sa série de Fourier et

$$\forall n \in \mathbb{Z}, c_n(f * g) = c_n(g) \int_{-\infty}^{+\infty} f(t)e^{-int} dt.$$

I.D - Approximation de l'unité

I.D.1) Soit $x \in \mathbb{R}$. Soient $n \in \mathbb{N}$ et $\alpha > 0$.

$$\begin{split} |(f*\delta_n)(x)-f(x)| &= \left|\int_{-\infty}^{+\infty} f(x-t)\delta_n(t) \ dt - f(x) \int_{-\infty}^{+\infty} \delta_n(t) \ dt \right| = \left|\int_{-\infty}^{+\infty} (f(x-t)-f(x))\delta_n(t) \ dt \right| \\ &= \left|\int_{-\infty}^{-\alpha} (f(x-t)-f(x))\delta_n(t) \ dt + \int_{-\alpha}^{\alpha} (f(x-t)-f(x))\delta_n(t) \ dt + \int_{\alpha}^{+\infty} (f(x-t)-f(x))\delta_n(t) \ dt \right| \\ &\leqslant 2\|f\|_{\infty} \left(\int_{-\infty}^{-\alpha} \delta_n(t) \ dt + \int_{\alpha}^{+\infty} \delta_n(t) \ dt \right) + \int_{-\alpha}^{\alpha} |f(x-t)-f(x)|\delta_n(t) \ dt. \end{split}$$

Soit $\epsilon > 0$. Puisque f est continue en x, on peut choisir $\alpha > 0$ tel que $\forall t \in]-\alpha, \alpha[, |f(x-t)-f(x)| < \frac{\epsilon}{2}.$ α est ainsi dorénavant fixé.

 $\text{Puisque } \delta_n \text{ est positive, pour tout } n \in \mathbb{N}, \text{ on a alors } \int_{-\alpha}^{\alpha} |f(x-t)-f(x)| \delta_n(t) \ dt \leqslant \frac{\epsilon}{2} \int_{-\alpha}^{\alpha} \delta_n(t) \ dt \leqslant \frac{\epsilon}{2} \int_{-\infty}^{+\infty} \delta_n(t) \ dt = \frac{\epsilon}{2}$ et donc

$$\forall n \in \mathbb{N}, \left| (f * \delta_n)(x) - f(x) \right| \leqslant 2 \|f\|_{\infty} \left(\int_{-\infty}^{-\alpha} \delta_n(t) \ dt + \int_{\alpha}^{+\infty} \delta_n(t) \ dt \right) + \frac{\epsilon}{2}.$$

 $\mathrm{Maintenant}, \ \lim_{n \to +\infty} 2 \|f\|_{\infty} \left(\int_{-\infty}^{-\alpha} \delta_n(t) \ dt + \int_{\alpha}^{+\infty} \delta_n(t) \ dt \right) = 0 \ \mathrm{et \ donc \ il \ existe} \ n_0 \in \mathbb{N} \ \mathrm{tel \ que}$

$$\forall n\geqslant n_0,\, 2\|f\|_{\infty}\left(\int_{-\infty}^{-\alpha}\delta_n(t)\ dt+\int_{\alpha}^{+\infty}\delta_n(t)\ dt\right)<\frac{\epsilon}{2}.$$

Pour $n\geqslant n_0,$ on a $|(f*\delta_n)(x)-f(x)|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon.$ On a montré que

$$\forall x \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}/ \ \forall n \in \mathbb{N}, \ (n \geqslant n_0 \Rightarrow |(f * \delta_n)(x) - f(x)| < \varepsilon),$$

et donc que

la suite de fonctions $(f * \delta_n)_{n \in \mathbb{N}}$ converge simplement vers f sur \mathbb{R} .

I.D.2) On reprend la démonstration précédente en supposant de plus f nulle en dehors de [-A,A] pour un certain A>0. f est continue sur le segment [-A-1,A+1] et donc f est uniformément continue sur ce segment d'après le théorème de Heine. On peut donc choisir $\alpha \in]0,1[$ tel que pour tout $x\in [-A,A]$ et tout $t\in]-\alpha,\alpha[$, $|f(x-t)-f(x)|<\frac{\varepsilon}{2}$. α étant ainsi choisi indépendemment de x, pour tout x réel et $n\in \mathbb{N}$,

$$|(f*\delta_{\mathfrak{n}})(x) - f(x)| \leq 2||f||_{\infty} \left(\int_{-\infty}^{-\alpha} \delta_{\mathfrak{n}}(t) \ dt + \int_{\alpha}^{+\infty} \delta_{\mathfrak{n}}(t) \ dt \right) + \frac{\varepsilon}{2},$$

puis on choisit n_0 , cette fois-ci indépendant de x, tel que pour $n\geqslant n_0$, $2\|f\|_{\infty}\left(\int_{-\infty}^{-\alpha}\delta_n(t)\ dt+\int_{\alpha}^{+\infty}\delta_n(t)\ dt\right)<\frac{\epsilon}{2}$ et donc pour tout réel x, $|(f*\delta_n)(x)-f(x)|<\epsilon$.

On a montré que $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}/, \ \forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ (n \geqslant n_0 \Rightarrow |(f * \delta_n)(x) - f(x)| < \epsilon)$ et donc la suite de fonctions $(f * \delta_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur \mathbb{R} .

- **I.D.3) a)** Pour tout $n \in \mathbb{N}$, λ_n est l'intégrale d'une fonction continue, positive et non nulle. Donc pour tout $n \in \mathbb{N}$, $\lambda_n > 0$. On en déduit que chaque fonction h_n , $n \in \mathbb{N}$ est définie sur \mathbb{R} . Ensuite,
- $\bullet \ \ {\rm Chaque \ fonction} \ h_n, \ n \in \mathbb{N}, \ {\rm est \ positive \ sur} \ \mathbb{R} \ ({\rm car \ pour} \ t \in [-1,1], \ 1-t^2 \geqslant 0) \ {\rm et \ continue \ par \ morceaux}.$
- Pour chaque $n \in \mathbb{N}$, $\int_{\mathbb{R}} h_n = \frac{1}{\lambda_n} \int_{-1}^{1} (1-t^2)^n dt = 1$ et en particulier, puisque h_n est positive, h_n est intégrable sur \mathbb{R} .
- Soit $\varepsilon > 0$. Si $\varepsilon \geqslant 1$, alors pour tout $n \in \mathbb{N}$, $\int_{\varepsilon}^{+\infty} h_n = 0$ et donc $\lim_{n \to +\infty} h_n = 0$. On suppose dorénavant que $\varepsilon \in]0,1[$. Pour tout $n \in \mathbb{N}$,

$$\int_{0}^{+\infty} h_{n} = \frac{1}{\lambda_{n}} \int_{0}^{1} (1 - t^{2})^{n} dt.$$

Soit $n \in \mathbb{N}$. Pour tout $t \in [0,1], \ t^2 \leqslant t$ puis $0 \leqslant 1-t \leqslant 1-t^2$ et donc $(1-t)^n \leqslant (1-t^2)^n$. On en déduit que

$$\lambda_n = 2 \int_0^1 (1 - t^2)^n dt \ge 2 \int_0^1 (1 - t)^n dt = \frac{2}{n+1} > 0.$$

Mais alors,

$$0 \leqslant \frac{1}{\lambda_n} \int_{\epsilon}^{1} (1 - t^2)^n dt \leqslant \frac{n+1}{2} (1 - \epsilon^2)^n (1 - \epsilon) \leqslant (n+1)(1 - \epsilon^2)^n.$$

D'après un théorème de croissances comparées, $\lim_{n\to +\infty} (n+1)(1-\epsilon^2)^n = 0$ (car $0 \leqslant 1-\epsilon^2 < 1$) et on en déduit que $\lim_{n\to +\infty} \int_{0}^{+\infty} h_n = \lim_{n\to +\infty} \frac{1}{\lambda_n} \int_{0}^{1} (1-t^2)^n dt = 0$.

 $h_n \text{ \'etant paire, on a aussi, pour tout } \epsilon>0, \\ \lim_{n\to+\infty} \int_{-\infty}^{-\epsilon} h_n=0. \text{ Finalement}$

la suite $(h_n)_{n\in\mathbb{N}}$ est une approximation de l'unité.

b) Soit $n \in \mathbb{N}$. Pour tout réel x,

$$f * h_n(x) = \int_{-\infty}^{+\infty} f(t)h_n(x-t) dt = \frac{1}{\lambda_n} \int_{x-1}^{x+1} f(t) (1 - (x-t)^2)^n dt$$

Si $x > \frac{3}{2}$, alors $x - 1 > \frac{1}{2}$ et donc $\forall t \in [x - 1, x + 1]$, f(t) = 0. On en déduit que $f * h_n(x) = 0$.

Si $x < -\frac{3}{2}$, alors $x + 1 < -\frac{1}{2}$ et donc $\forall t \in [x - 1, x + 1]$, f(t) = 0. On en déduit que $f * h_n(x) = 0$.

Finalement, $f * h_n$ s'annule en dehors de $\left[-\frac{3}{2}, \frac{3}{2} \right]$.

 $\mathrm{Soit}\ x\in\left[-\frac{1}{2},\frac{1}{2}\right].\ \mathrm{Alors}\ -\frac{3}{2}\leqslant x-1\leqslant-\frac{1}{2}\ \mathrm{et}\ \frac{1}{2}\leqslant x+1\leqslant\frac{3}{2}.\ \mathrm{Puisque}\ f\ \mathrm{est}\ \mathrm{nulle}\ \mathrm{en}\ \mathrm{dehors}\ \mathrm{de}\ \left[-\frac{1}{2},\frac{1}{2}\right],\ \mathrm{il}\ \mathrm{reste}$

$$f*h_n(x) = \int_{-\infty}^{+\infty} f(t)h_n(x-t) \ dt = \frac{1}{\lambda_n} \int_{-1/2}^{1/2} f(t) \left(1 - (x-t)^2\right)^n \ dt.$$

 $\text{Maintenant, l'expression } \left(1-(x-t)^2\right)^n \text{ peut s'écrire sous la forme } \sum_{k=0}^{2n} \alpha_k(t) x^k \text{ où les } \alpha_k \text{ sont des polynômes en } t \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et donc } t \text{ ou les } \alpha_k \text{ sont des polynômes} \text{ et$

$$f*h_n(x) = \sum_{k=0}^{2n} \left(\frac{1}{\lambda_n} \int_{-1/2}^{1/2} f(t) \alpha_k(t) \ dt \right) x^k.$$

Par suite, la fonction $f * h_n$ est bien polynomiale sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

c) Soit f une fonction continue sur $\left[-\frac{1}{4}, \frac{1}{4}\right]$.

Soit f_1 la fonction qui coïncide avec f sur $\left[-\frac{1}{4}, \frac{1}{4}\right]$, qui est continue sur \mathbb{R} , nulle en dehors de $\left[-\frac{1}{2}, \frac{1}{2}\right]$, affine sur $\left[-\frac{1}{2}, -\frac{1}{4}\right]$ et sur $\left[\frac{1}{4}, \frac{1}{2}\right]$.

Puisque f_1 est continue sur \mathbb{R} , à support inclus dans $\left[-\frac{1}{2},\frac{1}{2}\right]$, d'après la question précédente, il existe une suite de polynômes (P_n) convergeant uniformément vers f_1 sur $\left[-\frac{1}{2},\frac{1}{2}\right]$.

En particulier, la suite de polynômes (P_n) converge uniformément vers f sur $\left[-\frac{1}{4},\frac{1}{4}\right]$.

Soit maintenant f une fonction continue sur un segment [a,b]. Soit h la fonction affine telle que h $\left(-\frac{1}{4}\right) = a$ et h $\left(\frac{1}{4}\right) = b$ (c'est-à-dire $\forall x \in \left[-\frac{1}{4},\frac{1}{4}\right]$, $h(x) = a + 2(b-a)\left(x + \frac{1}{4}\right)$) puis $g = f \circ h$.

La fonction g est une fonction continue sur $\left[-\frac{1}{4},\frac{1}{4}\right]$. Il existe donc une suite de polynômes (Q_n) convergeant uniformément vers g sur $\left[-\frac{1}{4},\frac{1}{4}\right]$.

Pour $n \in \mathbb{N}$ et $x \in [a,b]$, posons $P_n(x) = Q_n(h^{-1}(x))$. (P_n) est une suite de fonctions polynomiales sur [a,b] (puisque h^{-1} est affine). De plus

$$\begin{split} \sup\{|f(x)-P_{\mathfrak{n}}(x)|,\; x \in [\mathfrak{a},b]\} &= \sup\left\{|f(h^{-1}(y))-P_{\mathfrak{n}}(h^{-1}(y))|,\; y \in \left[-\frac{1}{4},\frac{1}{4}\right]\right\} \\ &= \sup\left\{|g(y)-Q_{\mathfrak{n}}(y)|,\; y \in \left[-\frac{1}{4},\frac{1}{4}\right]\right\}, \end{split}$$

$$\mathrm{et\ puisque\ }\lim_{n\to +\infty}\sup\left\{|g(y)-Q_n(y)|,\ y\in\left[-\frac{1}{4},\frac{1}{4}\right]\right\}=0,\ \mathrm{on\ a\ aussi\ }\lim_{n\to +\infty}\sup\{|f(x)-P_n(x)|,\ x\in[\mathfrak{a},\mathfrak{b}]\}=0.$$

Ainsi, toute fonction complexe continue sur un segment de \mathbb{R} est limite uniforme sur ce segment d'une suite de fonctions polynomiales.

I.D.4) Soit $g \in C_b(\mathbb{R})$. On suppose que $\forall f \in L^1(\mathbb{R}), \ f * g = f$.

En particulier, $\forall n \in \mathbb{N}$, $h_n * g = h_n$. D'après la question I.D.1), la suite $(h_n)_{n \in \mathbb{N}}$ converge simplement vers g sur \mathbb{R} . Soit $t \in \mathbb{R}$

- Si |t|>1, pour tout $n\in\mathbb{N},$ $h_n(t)=0$ et donc $g(t)=\lim_{n\to+\infty}h_n(t)=0.$
- Si $t \in [-1,1] \setminus \{0\}$, d'après la question I.D.3)a), pour tout $n \in \mathbb{N}$, $0 \leqslant h_n(t) \leqslant \frac{n+1}{2}(1-t^2)^n$ et donc $g(t) = \lim_{n \to +\infty} h_n(t) = 0$ d'après un théorème de croissances comparées.
- Enfin, g(0) = 0 par continuité de g en 0.

En résumé, g est nécessairement la fonction nulle et on doit donc avoir $\forall f \in L^1(\mathbb{R}), f = f * 0 = 0$. Réciproquement, la fonction nulle ne convient pas car il existe des fonctions non nulles dans $L^1(\mathbb{R})$ comme par exemple la fonction $x \mapsto e^{-x^2}$. Il n'existe donc pas d'application $g \in C_b(\mathbb{R})$ telle que $\forall f \in L^1(\mathbb{R}), f * g = f$.

Partie II - Transformée de Fourier

 $\textit{\textbf{II.A -}} \ \text{Soit} \ f \in L^1(\mathbb{R}). \ \text{Posons} \quad F : \quad \mathbb{R}^2 \quad \rightarrow \quad \mathbb{R} \\ (x,t) \quad \mapsto \quad f(t)e^{-ixt} \quad \text{de sorte que pour tout réel } x, \ \widehat{f}(x) = \int_{-\infty}^{+\infty} F(x,t) \ dt.$

- Pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto F(x, t)$ est continue par morceaux sur \mathbb{R} .
- Pour chaque $t \in \mathbb{R}$, la fonction $x \mapsto F(x, t)$ est continue sur \mathbb{R} .
- Pour chaque $(x,t) \in \mathbb{R}^2$, $|F(x,t)| = |f(t)| = \phi(t)$ où ϕ est une fonction continue par morceaux et intégrable sur \mathbb{R} .

D'après le théorème de continuité des intégrales à paramètres, la fonction $\hat{f}: x \mapsto \int_{-\infty}^{+\infty} f(t)g(x-t) dt$ est définie et continue sur \mathbb{R} .

 $\mathrm{Pour\ tout\ } x \in \mathbb{R}, \ |\widehat{f}(x)| \leqslant \int_{-\infty}^{+\infty} |f(t)| \ dt = \|f\|_1. \ \mathrm{Donc} \ \left\|\widehat{f}\right\|_{\infty} \leqslant \|f\|_1 \ \mathrm{et\ } \widehat{f} \ \mathrm{est\ born\acute{e}e\ sur\ } \mathbb{R}. \ \mathrm{Finalement\ } \|f\|_{\infty} = \|f\|_1 \ \mathrm{Pour\ } \|f\|_1 \ \mathrm{Pour\ }$

$$\forall f \in L^1(\mathbb{R}), \ \widehat{f} \in C_b(\mathbb{R}) \ \mathrm{et} \ \left\| \widehat{f} \right\|_\infty \leqslant \|f\|_1.$$

II.B - Transformée de Fourier d'un produit de convolution

II.B.1) a) D'après la question I.C.1).a), f * g est définie et continue sur \mathbb{R} . La fonction $(x,t) \mapsto f(t)g(x-t)$ est continue sur \mathbb{R}^2 et de plus, en posant u = x - t,

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(t)g(x-t)| \ dx \right) \ dt = \int_{-\infty}^{+\infty} |f(t)| \left(\int_{-\infty}^{+\infty} |g(u)| \ du \right) \ dt = \|f\|_1 \|g\|_1 < +\infty$$

D'après le théorème de Fubini, la fonction $f*g:x\mapsto \int_{-\infty}^{+\infty}f(t)g(x-t)\ dt$ est intégrable sur $\mathbb R$ et

$$\begin{split} \int_{-\infty}^{+\infty} f * g(x) \; dx &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) g(x-t) \; dt \right) \; dx \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(t) g(x-t) \; dx \right) \; dt = \int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} g(x-t) \; dx \right) \; dt \\ &= \int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} g(u) \; du \right) \; dt \; (\text{en posant } u = x-t) \\ &= \left(\int_{-\infty}^{+\infty} g(u) \; du \right) \int_{-\infty}^{+\infty} f(t) \; dt \\ &= \int_{\mathbb{R}} f \times \int_{\mathbb{R}} g. \end{split}$$

b) Ainsi, $f * g \in L^1(\mathbb{R})$ et donc $\widehat{f * g}$ est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$. La fonction $(t,u) \mapsto f(u)g(t-u)e^{-ixt}$ est continue sur \mathbb{R}^2 et de plus, en posant v = t-u,

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |f(u)g(t-u)e^{-ixt}| \ dt \right) \ du = \int_{-\infty}^{+\infty} |f(u)| \left(\int_{-\infty}^{+\infty} |g(v)| \ dv \right) \ dt = \|f\|_1 \|g\|_1 < +\infty$$

D'après le théorème de Fubini,

$$\begin{split} \widehat{f*g}(x) &= \int_{-\infty}^{+\infty} (f*g)(t) e^{-ixt} \ dt = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(u) g(t-u) \ du \right) e^{-ixt} \ dt \\ &= \int_{-\infty}^{+\infty} f(u) \left(\int_{-\infty}^{+\infty} g(t-u) e^{-ixt} \ dt \right) \ du = \int_{-\infty}^{+\infty} f(u) \left(\int_{-\infty}^{+\infty} g(\nu) e^{-ix(\nu+u)} \ d\nu \right) du \ (\mathrm{en \ posant} \ \nu = t-u) \\ &= \int_{-\infty}^{+\infty} f(u) e^{-ixu} \left(\int_{-\infty}^{+\infty} g(\nu) e^{-ix\nu} \ d\nu \right) du = \int_{-\infty}^{+\infty} f(u) e^{-ixu} \widehat{g}(x) du = \widehat{g}(x) \int_{-\infty}^{+\infty} f(u) e^{-ixu} du \\ &= \widehat{f}(x) \widehat{g}(x), \end{split}$$

et donc $\widehat{f * g} = \widehat{f} \times \widehat{g}$.

II.B.2) Un contre-exemple Construisons une fonction f dans $L^1(\mathbb{R})$ et paire telle que $f^2 \notin L^1(\mathbb{R})$ ou encore telle $f \notin L^2(\mathbb{R})$.

Soit f la fonction paire, continue sur \mathbb{R} , nulle sur $[0,2-\frac{1}{8}]$ et en dehors des intervalles $\left[n-\frac{1}{n^3},n+\frac{1}{n^3}\right],\ n\geqslant 2$, affine sur chaque $\left[n-\frac{1}{n^3},n\right],\ n\geqslant 2$, et telle que $\forall n\geqslant 2$, f(n)=n. Alors

$$\int_{\mathbb{R}} |f| = 2 \sum_{n=2}^{+\infty} \frac{\frac{2}{n^3} \times n}{2} = 2 \sum_{n=2}^{+\infty} \frac{1}{n^2} < +\infty,$$

et donc $f \in L^1(\mathbb{R})$. D'autre part, pour $n \geqslant 2$,

$$\int_{n}^{n+\frac{1}{n^{3}}} f^{2}(x) dx = \int_{n}^{n+\frac{1}{n^{3}}} \left(-n^{4}\left(x-n-\frac{1}{n^{3}}\right)\right)^{2} dx = n^{8} \left[\frac{\left(x-n-\frac{1}{n^{3}}\right)^{3}}{3}\right]_{n}^{n+\frac{1}{n^{3}}} = n^{8} \frac{1}{3n^{9}} = \frac{1}{3n},$$

puis

$$\int_{\mathbb{R}} f^2 \geqslant \sum_{n=2}^{+\infty} \int_{n}^{n+\frac{1}{n^3}} f^2(x) \ dx = \sum_{n=2}^{+\infty} \frac{1}{3n} = +\infty,$$

et donc $f \notin L^2(\mathbb{R})$. Maintenant,

$$f*f(0) = \int_{-\infty}^{+\infty} f(t)f(-t) \ dt = \int_{-\infty}^{+\infty} f^2(t) \ dt = +\infty,$$

et donc f et q = f sont deux éléments de $L^1(\mathbb{R})$ tels que f * q(0) n'est pas défini.

II.C - Sinus cardinal

II.C.1) Soit $n \in \mathbb{N}^*$. k_n est continue sur \mathbb{R} (car $k_n(\pm n) = 0$) à support compact. En particulier, k_n est dans $L^1(\mathbb{R})$. D'après la question II.A-, $\widehat{k_n}$ est définie et continue sur \mathbb{R} .

Pour $x \neq 0$, une intégration par parties fournit

$$\begin{split} \widehat{k_n}(x) &= \int_{-n}^n \left(1 - \frac{|t|}{n}\right) e^{-ixt} \; dt = \int_{-n}^n \left(1 - \frac{|t|}{n}\right) \cos(xt) \; dt - i \int_{-n}^n \left(1 - \frac{|t|}{n}\right) \sin(xt) \; dt \\ &= 2 \int_0^n \left(1 - \frac{t}{n}\right) \cos(xt) \; dt \; (\text{par parit\'e}) \\ &= 2 \int_0^1 (1 - u) \cos(nxu) \; ndu \; (\text{en posant } t = nu) \\ &= 2 \left(\left[(1 - u) \frac{\sin(nxu)}{x}\right]_0^1 + \int_0^1 \frac{\sin(nxu)}{x} \; du\right) = \frac{2}{x} \left[\frac{-\cos(nxu)}{nx}\right]_0^1 = \frac{2}{n} \frac{1 - \cos(nx)}{x^2} = \frac{4}{n} \frac{\sin^2\left(\frac{nx}{2}\right)}{x^2} \\ &= n \frac{\sin^2\left(\frac{nx}{2}\right)}{\left(\frac{nx}{2}\right)^2} = n\phi\left(\frac{nx}{2}\right), \end{split}$$

ce qui reste vrai pour x = 0 par continuité de $\widehat{k_n}$.

$$\boxed{ \forall n \in \mathbb{N}^*, \, \forall x \in \mathbb{R}, \, \widehat{k_n}(x) = n\phi\left(\frac{nx}{2}\right). }$$

 $\text{II.C.2) } \phi \text{ est continue sur } \mathbb{R} \text{ } (\operatorname{car} \lim_{x \to 0} \frac{\sin x}{x} = 1) \text{ et est dominée par } \frac{1}{x^2} \text{ en } +\infty \text{ ou } -\infty. \text{ Donc } \phi \in L^1(\mathbb{R}).$

II.C.3) • Chaque fonction $K_n: x \mapsto \frac{1}{2\pi} \widehat{k_n}(x) = \frac{n}{2\pi} \varphi\left(\frac{nx}{2}\right)$ est continue sur \mathbb{R} et positive.

• Pour $n \in \mathbb{N}^*$,

$$\int_{\mathbb{R}} K_n = \int_{-\infty}^{+\infty} \frac{n}{2\pi} \phi\left(\frac{nx}{2}\right) dx = \int_{-\infty}^{+\infty} \frac{n}{2\pi} \phi\left(u\right) \ \frac{2du}{n} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \phi(u) \ du = 1.$$

et en particulier, puisque K_n est positive, K_n est intégrable sur \mathbb{R} .

• Soit $\epsilon > 0$. Pour $n \in \mathbb{N}^*$,

$$\int_{\epsilon}^{+\infty} K_n(x) dx = \int_{\epsilon}^{+\infty} \frac{n}{2\pi} \frac{\sin^2\left(\frac{nx}{2}\right)}{\frac{n^2x^2}{4}} dx = \frac{2}{n\pi} \int_{\epsilon}^{+\infty} \frac{\sin^2\left(\frac{nx}{2}\right)}{x^2} dx$$
$$\leqslant \frac{2}{n\pi} \int_{\epsilon}^{+\infty} \frac{1}{x^2} dx = \frac{2}{n\pi\epsilon}.$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $0 \leqslant \int_{\epsilon}^{+\infty} \widehat{k_n}(x) \ dx \leqslant \frac{2}{n\pi\epsilon}$ et donc $\lim_{n \to +\infty} \int_{\epsilon}^{+\infty} \widehat{k_n}(x) \ dx = 0$. Par parité, on a aussi $\lim_{n \to +\infty} \int_{-\infty}^{-\epsilon} \widehat{k_n}(x) \ dx = 0$.

Finalement, la suite de fonctions $(K_n)_{n\geq 1}$ est une approximation de l'unité.

II.D - Inversion de Fourier

II.D.1) Soit $n \in \mathbb{N}^*$. On a

$$\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} |k_n(x)f(y)e^{-ix(t-y)}| dx \right) \ dy = \int_{-\infty}^{+\infty} |f(y)| \left(\int_{-\infty}^{+\infty} k_n(x) \ dx \right) \ dy = n \int_{-\infty}^{+\infty} |f(y)| \ dy = n \|f\|_1 < +\infty,$$

et, toujours d'après le théorème de Fubini,

$$\begin{split} I_n(t) &= \frac{1}{2\pi} \int_{-n}^n k_n(x) \left(\int_{-\infty}^{+\infty} f(y) e^{ixy} \, dy \right) e^{-ixt} \, \, dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(y) \left(\int_{-\infty}^{+\infty} k_n(x) e^{-ix(t-y)} \, dx \right) \, \, dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(y) \widehat{k_n}(t-y) \, \, dy = \int_{-\infty}^{+\infty} f(y) K_n(t-y) \, \, dy \\ &= (f * K_n)(t) \end{split}$$

II.D.2) Soit $t \in \mathbb{R}$.

- Chaque fonction $\kappa_n: x \mapsto k_n(x)\widehat{f}(-x)e^{-itx}, n \in \mathbb{N}^*$, est continue par morceaux sur \mathbb{R} .
- Soit $x \in \mathbb{R}$. Pour $n \geqslant |x|, \ k_n(x) = 1 \frac{|x|}{n}$ et donc $\lim_{n \to +\infty} k_n(x) = 1$. Mais alors, la suite de fonctions $(\kappa_n)_{n \in \mathbb{N}^*}$ converge simplement vers la fonction $x \mapsto \widehat{f}(-x)e^{-itx}$ sur \mathbb{R} . De plus, la fonction $x \mapsto \widehat{f}(-x)e^{-itx}$ est continue par morceaux sur \mathbb{R} d'après la question II.A-.
- Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, $|\kappa_n(x)| \le |\widehat{f}(-x)| = \psi(x)$ où ψ est une fonction continue par morceaux et intégrable sur \mathbb{R} (puisque \widehat{f} est dans $L^1(\mathbb{R})$).

D'après le théorème de convergence dominée, la suite $\left(\int_{-\infty}^{+\infty} \kappa_n(x) \ dx\right)_{n \in \mathbb{N}^*}$ converge et

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} \kappa_n(x) \ dx = \int_{-\infty}^{+\infty} \widehat{f}(-x) e^{-itx} \ dx$$

puis

$$\forall t \in \mathbb{R}, \lim_{n \to +\infty} f * K_n(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(-x) e^{-itx} \ dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(y) e^{ity} \ dy \ (\text{en posant } y = -x).$$

En résumé, la suite de fonctions $(f*K_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers la fonction $t\mapsto \widehat{\left(\widehat{f}\right)}(-t)$.

D'autre part, la question I.D.1) permet d'affirmer que si on suppose de plus f bornée sur \mathbb{R} , alors la suite de fonctions $(f*K_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers f sur \mathbb{R} . La formule d'inversion de Fourier est donc démontrée pour les fonctions $f\in L^1(\mathbb{R})$, bornées sur \mathbb{R} et telles que $\widehat{f}\in L^1(\mathbb{R})$. Il reste à vérifier que dans le cas général $(f\in L^1(\mathbb{R})$ le résultat persiste.

Soit $f \in L^1(\mathbb{R})$. Vérifions que la suite de fonctions $(f * K_n)_{n \in \mathbb{N}}$ converge simplement vers f sur \mathbb{R} . Soit $\varepsilon > 0$. Soient $t \in \mathbb{R}$, $\alpha > 0$ et $n \in \mathbb{N}$. On choisit déjà $\alpha > 0$ indépendant de n (mais dépendant de t), tel que $\sup\{|f(t-x)-f(t)|, \ x \in [-\alpha,\alpha]\} < \frac{\varepsilon}{2}$ (ce qui est possible puisque, f étant continue sur le segment [-1,1] par exemple, f est uniformément continue sur ce segment).

$$\left| \int_{-\alpha}^{\alpha} (f(t-x) - f(t)) K_n(x) \ dx \right| \leqslant \sup\{ |f(t-x) - f(t)|, \ x \in [-\alpha, \alpha] \} \int_{-\alpha}^{\alpha} K_n(x) \ dx < \frac{\epsilon}{2} \times 1 = \frac{\epsilon}{2},$$

et comme à la question I.D.1), on a alors tout $n \in \mathbb{N}$,

$$\begin{split} |(f*K_n)(t) - f(t)| &= \left| \int_{-\infty}^{-\alpha} (f(t-x) - f(t)) K_n(x) \ dx + \int_{-\alpha}^{\alpha} (f(t-x) - f(t)) K_n(x) \ dx + \int_{\alpha}^{+\infty} (f(t-x) - f(x)) K_n(x) \ dx \right| \\ &\leq \frac{\varepsilon}{2} + \int_{-\infty}^{-\alpha} |f(t-x) - f(t)| K_n(x) \ dx + \int_{\alpha}^{+\infty} |f(t-x) - f(t)| K_n(x) \ dx. \end{split}$$

Soit $t \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$,

$$\begin{split} \int_{\alpha}^{+\infty} |f(t-x) - f(t)| K_n(x) \ dx &\leq \int_{\alpha}^{+\infty} |f(t-x)| n \phi \left(\frac{nx}{2}\right) \ dx + |f(t)| \int_{\alpha}^{+\infty} K_n(x) \ dx \\ &\leq \frac{4}{n\pi} \int_{\alpha}^{+\infty} \frac{|f(t-x)|}{x^2} \ dx + |f(t)| \int_{\alpha}^{+\infty} K_n(x) \ dx \end{split}$$

la fonction $x\mapsto \frac{|f(t-x)|}{x^2}$ étant intégrable sur $[\alpha,+\infty[$ car continue sur $[\alpha,+\infty[$ et dominée en $+\infty$ par la fonction intégrable $x\mapsto |f(t-x)|$. Puisque la suite $(K_n)_{n\in\mathbb{N}}$ est une approximation de l'unité, on a $\lim_{n\to+\infty}\frac{4}{n\pi}\int_{\alpha}^{+\infty}\frac{|f(t-x)|}{x^2}\,dx+|f(t)|\int_{\alpha}^{+\infty}K_n(x)\,dx=0$ et donc $\lim_{n\to+\infty}\int_{\alpha}^{+\infty}|f(t-x)-f(t)|K_n(x)\,dx=0$. De même, $\lim_{n\to+\infty}\int_{-\infty}^{-\alpha}|f(t-x)-f(t)|K_n(x)\,dx=0$. Par suite, il existe $n_0\in\mathbb{N}$ (dépendant de t) tel que pour tout $n\geqslant n_0$,

$$\int_{-\infty}^{-\alpha} |f(t-x) - f(t)| K_n(x) \ dx + \int_{\alpha}^{+\infty} K_n(x) \ dx < \frac{\varepsilon}{2}.$$

 $\text{Mais alors, pour tout } n \geqslant n_0, \ |f*K_n(t) - f(t)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \ \text{On a ainsi montr\'e que la suite de fonctions } (f*K_n) \ \text{converge simplement vers } f \ \text{sur } \mathbb{R}. \ \text{On en d\'eduit la formule d'inversion de Fourier valable pour tout } f \in L^1(\mathbb{R}) \ \text{tel que } \widehat{f} \in L^1(\mathbb{R}),$

$$\forall x \in \mathbb{R}, f(t) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{f}(x) e^{itx} dx.$$

On note que $\forall t \in \mathbb{R}$, $f(t) = \widehat{\widehat{(f)}}(-t)$ et donc f est nécessairement bornée sur \mathbb{R} d'après la question II.A-.

Partie III - Convolution et codimension finie

III.A -

III.A.1) Soit $g \in C_b(\mathbb{R})$. Donc $\forall f \in L^1(\mathbb{R})$, la fonction $t \mapsto f(t)g(-t)$ est intégrable sur \mathbb{R} d'après I.A.1)b). Donc $\phi_g(f)$ existe. De plus, $\phi_g(f) = (f * g)(0)$.

 $\varphi:g\mapsto \varphi_g$ est bien une application, clairement linéaire, de $L^1(\mathbb{R})$ dans $\left(L^1(\mathbb{R})\right)^*$. Vérifions que cette application est injective.

Soit $g \in C_b(\mathbb{R})$.

$$\begin{split} \phi_g &= 0 \Rightarrow \forall f \in L^1(\mathbb{R}), \ \int_{\mathbb{R}} f(t)g(-t) \ dt = 0 \\ &\Rightarrow \forall f \in L^1(\mathbb{R}), \ \forall \alpha \in \mathbb{R}, \ \int_{\mathbb{R}} f(u-\alpha)g(\alpha-u) \ du = 0 \ (\mathrm{en \ posant} \ t = u - \alpha) \\ &\Rightarrow \forall \alpha \in \mathbb{R}, \ \forall f \in L^1(\mathbb{R}), \ \int_{\mathbb{R}} T_\alpha(f)(u)g(\alpha-u) \ du = 0 \\ &\Rightarrow \forall \alpha \in \mathbb{R}, \ \forall h \in L^1(\mathbb{R}), \ \int_{\mathbb{R}} h(u)g(\alpha-u) \ du = 0 \\ &(\mathrm{en \ appliquant} \ \grave{a} \ f = T_{-\alpha}(h) \ o\grave{u} \ h \in L^1(\mathbb{R}) \ (\mathrm{et \ donc} \ T_{-\alpha}(h) \in L^1(\mathbb{R}))) \\ &\Rightarrow \forall h \in L^1(\mathbb{R}), \ h * g = 0. \end{split}$$

En particulier, si $(\delta_n)_{n\in\mathbb{N}}$ est une approximation de l'unité, on a $\forall n\in\mathbb{N}$, $\delta_n*g=0$. Comme $g\in C_b(\mathbb{R})$, la suite $(\delta_n*g)_{n\in\mathbb{N}}$ converge simplement vers g sur \mathbb{R} d'après la question I.D.1). Quand n tend vers $+\infty$, on obtient g=0. On a montré que φ est injective.

Soit $(g_1, \ldots, g_p) \in (C_b(\mathbb{R}))^p$. Soit $(\lambda_1, \ldots, \lambda_p) \in \mathbb{C}^p$.

$$\sum_{k=1}^p \lambda_k \phi_{g_k} = 0 \Leftrightarrow \phi\left(\sum_{k=1}^p \lambda_k g_k\right) = 0 \Leftrightarrow \sum_{k=1}^p \lambda_k g_k = 0,$$

et donc

$$(\phi_{g_1}, \dots, \phi_{g_p})$$
 est libre $\Leftrightarrow (g_1, \dots, g_p)$ est libre.

III.A.2) Si $\operatorname{rg}(f_n)_{n\in\mathbb{N}}=0$, toutes les f_n sont nulles puis K=E. Un supplémentaire de E est $\{0\}$ et donc la codimension de K est 0 qui est bien le rang de la famille $(f_n)_{n\in\mathbb{N}}$.

Supposons $\operatorname{rg}(f_n)_{n\in\mathbb{N}}=\mathfrak{p}\in\mathbb{N}^*$. Quite à renuméroter, on peut supposer qu'une base de $\operatorname{Vect}(f_n)_{n\in\mathbb{N}}$ est $(f_0,\ldots,f_{\mathfrak{p}-1})$.

$$\mathrm{Soit}\ n\geqslant p.\ f_n\in \mathrm{Vect}(f_0,\dots,f_{p-1})\ \mathrm{et}\ \mathrm{donc}\ \bigcap_{k=0}^{p-1}\mathrm{Ker}(f_k)\subset \mathrm{Ker}(f_n)\ \mathrm{puis}\ K=\bigcap_{k=0}^{p-1}\mathrm{Ker}(f_k).$$

 $\text{Montrons alors par récurrence que } \forall p \in \mathbb{N}^*, \, \text{si } (f_k)_{0 \leqslant k \leqslant p-1} \, \text{ est libre, alors } \bigcap_{i=1}^r \operatorname{Ker}(f_k) \, \text{admet un supplémentaire } F_p \, \operatorname{det}(f_k) \cap \operatorname{Ker}(f_k) = 0$ dimension \mathfrak{p} .

- \bullet Pour p = 1, si (f_0) est libre, f_0 est une forme linéaire non nulle. Donc $\mathrm{Ker}(f_0)$ est un hyperplan ou encore il existe une droite vectorielle D telle que $E=\mathrm{Ker}(f_0)\oplus D.$ \bigcap $\mathrm{Ker}(f_k)$ admet donc un supplémentaire de dimension 1.
- Soit $p \ge 1$. Supposons le résultat acquis pour p. Soit $(f_k)_{0 \le \le p}$ une famille libre de formes linéaires. Alors $(f_k)_{0 \le \le p-1}$ est libre et par hypothèse de récurrence, il existe F_p sous-espace de E de dimension p tel que

$$E = \bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k) \oplus F_p.$$

 $\text{V\'erifions alors que} \bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k) \not\subset \operatorname{Ker}(f_p). \text{ Soit } \ \psi \ : \ F_p \ \mapsto \ \mathbb{C}^p \\ x \ \mapsto \ (f_k(x))_{0\leqslant k\leqslant p-1} \ . \ \psi \ \text{est lin\'eaire. De plus, pour } x \in F_p,$

$$x \in \mathrm{Ker} \psi \Rightarrow \forall k \in [\![0,p-1]\!], \ f_k(x) = 0 \Rightarrow x \in \bigcap_{k=0}^{p-1} \mathrm{Ker}(f_k),$$

et donc x=0 puisque F_p est un supplémentaire de $\bigcap_{k=0}^r \operatorname{Ker}(f_k)$. Par suite, ψ est injective et finalement ψ est un isomorphisme de F_p phisme de F_p sur \mathbb{C}^p .

Soit $(e_i)_{0\leqslant i\leqslant p-1}$ l'image par l'isomorphisme ψ^{-1} de la base canonique de \mathbb{C}^p . $(e_i)_{0\leqslant i\leqslant p-1}$ est une base de F_p telle que $\forall (i,j) \in [0,p-1]^2, f_i(e_j) = \delta_{i,j}.$

Supposons par l'absurde que $\bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k) \subset \operatorname{Ker}(f_p)$. Soit $f = \sum_{k=0}^{p-1} f_p(e_k) f_k$. Alors - Pour $0 \le k \le p-1$, $f(e_k) = f_p(e_k)$ et donc f et f_p coïncident sur une base de F_p puis f et f_p coïncident sur F_p . - Les restrictions de f et f_p à $\bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k)$ sont nulles et en particulier coïncident.

Finalement, f et f_p coïncident sur deux sous espaces supplémentaires de E et donc $f_p = f = \sum_{k=0}^{p-1} f(e_k) f_k$ ce qui contredit

la liberté de la famille $(f_k)_{0\leqslant k\leqslant p}$. Finalement $\bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k) \not\subset \operatorname{Ker}(f_p)$.

On peut donc choisir un vecteur x_p dans \bigcap $\operatorname{Ker}(f_k)$ et non dans $\operatorname{Ker}(f_p)$. Soit $D = \operatorname{Vect}(x)$. Puisque $x \notin \operatorname{Ker}(f_p)$, on a déjà $E = Ker(f_p) \oplus D$ puis

$$\begin{split} E &= \left(\left(\bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k) \right) \cap (\operatorname{Ker}(f_p) \oplus D) \right) \oplus F_p \\ &= \bigcap_{k=0}^p \operatorname{Ker}(f_k) \oplus \left(\left(\bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k) \right) \cap D \right) \oplus F_p \ (\operatorname{car} D \subset \bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k)) \\ &= \bigcap_{k=0}^p \operatorname{Ker}(f_k) \oplus D \oplus F_p \ (\operatorname{car} D \subset \bigcap_{k=0}^{p-1} \operatorname{Ker}(f_k)) \\ &= \bigcap_{k=0}^p \operatorname{Ker}(f_k) \oplus F_{p+1}, \end{split}$$

où $F_{p+1} = D \oplus F_p$ est de dimension p+1.

Le résultat est démontré par récurrence.

Supposons enfin que $\operatorname{rg}(f_n)_{n\in\mathbb{N}}=+\infty$. Alors, pour tout $\mathfrak{p}\in\mathbb{N}, \operatorname{rg}(f_n)_{n\in\mathbb{N}}\geqslant \mathfrak{p}.$

Soit
$$p \in \mathbb{N}^*$$
, il existe $(f_{n_0}, \dots, f_{n_{p-1}})$ libre extraite de $(f_n)_{n \in \mathbb{N}}$. On a $K \subset \bigcap_{k=0}^{p-1} \operatorname{Ker} f_{n_k} = K'$ et donc

$$\operatorname{codim}(K) \geqslant \operatorname{codim}(K') = \mathfrak{p}.$$

Ainsi, $\forall p \in \mathbb{N}^*$, $\operatorname{codim}(K) \geq p$ et donc $\operatorname{codim}(K) = +\infty$. Dans tous les cas,

$$\operatorname{codim}(K) = \operatorname{rg}(f_n)_{n \in \mathbb{N}}.$$

III.A.3)

$$\begin{split} N_g &= \left\{ f \in L^1(\mathbb{R}) / \ \forall \alpha \in \mathbb{R}, \ f * g(-\alpha) = 0 \right\} = \left\{ f \in L^1(\mathbb{R}) / \ \forall \alpha \in \mathbb{R}, \ f * (T_\alpha(g)) = 0 \right\} \\ &= \left\{ f \in L^1(\mathbb{R}) / \ \forall \alpha \in \mathbb{R}, \ \phi_{T_\alpha(g)}(f) = 0 \right\} = \bigcap_{\alpha \in \mathbb{R}} \operatorname{Ker} \left(\phi_{T_\alpha(g)} \right). \end{split}$$

 $\mathrm{Si}\ \mathrm{rg}\left(\phi_{\mathsf{T}_{\alpha}\left(g\right)}\right)_{\alpha\in\mathbb{R}}=\mathfrak{p}\in\mathbb{N},\ \mathrm{on}\ \mathrm{peut}\ \mathrm{extraire}\ \left(\phi_{\mathsf{T}_{\alpha_{k}}\left(g\right)}\right)_{0\leqslant k\leqslant p-1}\ \mathrm{base}\ \mathrm{de}\ \mathrm{Vect}\left(\phi_{\mathsf{T}_{\alpha}\left(g\right)}\right)_{\alpha\in\mathbb{R}}.\ \mathrm{Dans}\ \mathrm{ce}\ \mathrm{cas},$

$$\bigcap_{\alpha\in\mathbb{R}}\operatorname{Ker}\left(\phi_{\mathsf{T}_{\alpha}\left(g\right)}\right)=\bigcap_{k=0}^{p-1}\operatorname{Ker}\left(\phi_{\mathsf{T}_{\alpha_{k}}\left(g\right)}\right),$$

et donc, d'après la question précédente, $\bigcap_{\alpha\in\mathbb{R}}\mathrm{Ker}\left(\phi_{T_{\alpha}(g)}\right) \ \mathrm{est} \ \mathrm{de} \ \mathrm{codimension} \ p=\mathrm{rg}\left(\phi_{T_{\alpha}(g)}\right)_{\alpha\in\mathbb{R}}.$

Si $\operatorname{rg}\left(\phi_{\mathsf{T}_{\alpha}(g)}\right)_{\alpha\in\mathbb{R}}=+\infty$, on peut extraire $\left(\phi_{\mathsf{T}_{\alpha_{n}}(g)}\right)_{n\in\mathbb{N}}$ famille libre de Vect $\left(\phi_{\mathsf{T}_{\alpha}(g)}\right)_{\alpha\in\mathbb{R}}$. Dans ce cas, $\bigcap_{\alpha\in\mathbb{R}}\operatorname{Ker}\left(\phi_{\mathsf{T}_{\alpha}(g)}\right)$ est de codimension supérieure ou égale à $\operatorname{rg}\left(\phi_{\mathsf{T}_{\alpha_{n}}(g)}\right)_{n\in\mathbb{N}}=+\infty$.

Dans tous les cas, $\operatorname{codim}(N_g) = \operatorname{rg}\left(\phi_{T_\alpha(g)}\right)_{\alpha \in \mathbb{R}}$. D'après la question III.A.1), ce rang est aussi le rang de $(T_\alpha(g))_{\alpha \in \mathbb{R}}$ c'est-à-dire la dimension de V_q .

$$\forall g \in C_b(\mathbb{R}), \, \operatorname{codim}(N_g) = \dim(V_g).$$

 $\begin{aligned} \textbf{III.A.4) a)} \ \ V_g &= \mathrm{Vect} \left(t \mapsto e^{\mathfrak{i} \beta (t - \alpha)} \right)_{\alpha \in \mathbb{R}} \\ &= \mathrm{Vect} \left(t \mapsto e^{-\mathfrak{i} \alpha \beta} g(t) \right)_{\alpha \in \mathbb{R}} \\ &= \mathrm{Vect} (g) \subset V_g \ (\text{car } V_g \ \text{est un espace vectoriel}). \ \text{Finalement, } V_g &= \mathrm{Vect} (g). \end{aligned}$

Ainsi, V_g est une droite vectorielle et d'après la question précédente, N_g est de codimension 1.

 $b) \text{ Pour } k \in \mathbb{Z}, \text{ on pose } \forall t \in \mathbb{R}, \ g_k(t) = e^{ikt}. \text{ On sait que la famille } (g_k)_{k \in \mathbb{Z}} \text{ est libre (famille orthonormale pour le produit scalaire } (u,v) \mapsto \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{u(t)} v(t) \ dt).$

 $\mathrm{Pour}\; n \in \mathbb{N}^*, \, \mathrm{on\; pose}\; g = \sum_{k=0}^{n-1} g_k.\; g \mathrm{\; est\; un\; \'el\'ement\; de\;} C_b(\mathbb{R})\; (\|g\|_\infty \leqslant n).$

 $\begin{array}{l} \mathrm{Puisque} \ \forall \alpha \ \in \ \mathbb{R}, \ T_{\alpha} \left(\sum_{k=0}^{n-1} g_k \right) \ = \ \sum_{k=0}^{n-1} e^{-\mathrm{i} k \alpha} g_k \ \in \ \mathrm{Vect}(g_k)_{0 \leqslant k \leqslant n-1}, \ \mathrm{on} \ \mathrm{a} \ V_g \ \subset \ \mathrm{Vect}(g_k)_{0 \leqslant k \leqslant n-1}. \ \mathrm{En} \ \mathrm{particulier}, \\ \dim(V_g) \leqslant n. \end{array}$

 $\begin{array}{l} \mathrm{Maintenant}, \, V_g \,\, \mathrm{contient} \,\, \mathrm{les} \,\, T_{\frac{21\pi}{n}}(g), \, 0 \leqslant l \leqslant n-1. \,\, \mathrm{La} \,\, \mathrm{matrice} \,\, \mathrm{de} \,\, \mathrm{la} \,\, \mathrm{famille} \,\, \left(T_{\frac{21\pi}{n}}(g)\right)_{0 \leqslant k, l \leqslant n-1} \,\, \mathrm{dans} \,\, \mathrm{la} \,\, \mathrm{base} \,\, (g_k)_{0 \leqslant k \leqslant n-1} \,\, \mathrm{de} \,\, \mathrm{Vect}(g_k)_{0 \leqslant k, l \leqslant n-1} \,\, \mathrm{est} \,\, \mathrm{la} \,\, \mathrm{matrice} \,\, \mathrm{de} \,\, \mathrm{Vandermonde} \,\, \left(e^{2ikl\pi/n}\right)_{0 \leqslant k, l \leqslant n-1}. \,\, \mathrm{Puisque} \,\, \mathrm{les} \,\, e^{2ik\pi/n}, \, 0 \leqslant k \leqslant n-1, \,\, \mathrm{sont} \,\, \mathrm{deux} \,\, \mathrm{de$

 $\mathrm{Finalement,}\ \dim(V_g) = n\ (\mathrm{et}\ \mathrm{une}\ \mathrm{base}\ \mathrm{de}\ V_g\ \mathrm{est}\ (g_k)_{0\leqslant k\leqslant n-1}).\ \mathrm{D'après}\ \mathrm{la}\ \mathrm{question}\ \mathrm{III.A.3}),\ N_g\ \mathrm{est}\ \mathrm{de}\ \mathrm{codimension}\ n$

III.B - Hypothèse A

III.B.1) Soit $g \in C_b(\mathbb{R})$. On suppose que g est de classe C^{∞} sur \mathbb{R} et que toutes les dérivées de g sont bornées. D'après la question I.C.2), pour tout $f \in L^1(\mathbb{R})$, f * g est de classe C^{∞} sur \mathbb{R} et $\forall k \in \mathbb{N}$, $(f * g)^{(k)} = f * g^{(k)}$. Soit $k \in \mathbb{N}$. Soit $f \in L^1(\mathbb{R})$.

$$f \in N_{q^{(k)}} \Rightarrow f * g^{(k)} = 0 \Rightarrow (f * g)^{(k)} = 0 \Rightarrow (f * g)^{(k+1)} = 0 \Rightarrow f \in N_{q^{(k+1)}}.$$

Donc la suite $(N_{g^{(k)}})_{k\in\mathbb{N}}$ est croissante au sens de l'inclusion puis la suite $(\operatorname{codim}(N_{g^{(k)}}))_{k\in\mathbb{N}}$ est décroissante. Puisque $\operatorname{codim}(N_{g^{(0)}}) \in \mathbb{N}$, la suite des codimensions est nécessairement constante à partir d'un certain rang (dans le cas contraire, l'une des codimensions au moins serait un entier strictement négatif) puis la suite $(N_{g^{(k)}})_{k\in\mathbb{N}}$ est constante à partir d'un certain rang p (dans le cas contraire, la suite des codimensions ne serait pas constante à partir d'un certain rang). On note n la valeur constante des codimensions à partir d'un certain rang.

On a donc $N_{g^{(\mathfrak{p})}}=N_{g^{(\mathfrak{p}+1)}}=\ldots=N_{g^{(\mathfrak{p}+n)}}=\bigcap_{k=0}^{\mathfrak{p}}\left(\bigcap_{\alpha\in\mathbb{R}}\operatorname{Ker}\left(T_{\alpha}(g^{(n+k)})\right)\right).$ Si la famille $(g^{(n+k)})_{0\leqslant k\leqslant \mathfrak{p}}$ était libre, il en

serait de même de la famille $\left(\phi_{g^{(n+k)}}\right)_{0\leqslant k\leqslant p}$ d'après la question III.A.1) et l'intersection de noyaux ci-dessus serait de codimension au moins égale à n+1 d'après la question III.A.2) ce qui n'est pas.

Donc la famille $(g^{(n+k)})_{0 \le k \le p}$ est liée ou encore g est solution d'une équation différentielle linéaire à coefficients constants.

III.B.2) On suppose que l'équation caractéristique de cette équation différentielle linaire homogène à coefficients constants d'ordre $n \in \mathbb{N}^*$ s'écrit :

$$\prod_{j=1}^k (z-z_j)^{\alpha_j}=0,$$

où les $z_j, 1 \leqslant j \leqslant k$, sont des nombres complexes deux à deux distincts et les $\alpha_j, 1 \leqslant j \leqslant k$, sont des entiers naturels non nuls tels que $\sum_{j=1}^k \alpha_j = n$. On sait alors qu'il existe des polynômes $P_j, 1 \leqslant j \leqslant k$, où $\forall j \in [\![1,k]\!], \deg(P_j) \leqslant \alpha_j - 1$ tels que

$$\forall t \in \mathbb{R}, \ g(t) = \sum_{i=1}^k P_j(t) e^{z_j \, t} \quad (*).$$

Montrons par récurrence sur n que, si $g \neq 0$, $\forall j \in [1, k]$, $\text{Re}(z_j) = 0$ et $P_j \in \mathbb{C}_0[X]$.

- \bullet Le résultat est immédiat si $\mathfrak{n}=1.$
- \bullet Soit $n\geqslant 1.$ Supposons le résultat acquis pour n. Soit $g\neq 0$ de la forme (*) au rang n+1.

- Si $k=1,\, \forall t\in\mathbb{R},\, g(t)=P_1(t)e^{z_1t}$ où P_1 est un polynôme non nul de degré au plus n+1.

Pour tout $t \in \mathbb{R}$, $|g(t)| = |P_1(t)|e^{\operatorname{Re}(z_1)t}$. Si $\operatorname{Re}(z_1) > 0$, $|g(t)| \underset{t \to +\infty}{\to} +\infty$ d'après un théorème de croissances comparées ce qui est exclu puisque g est bornée et Si $\operatorname{Re}(z_1) < 0$, $|g(t)| \underset{t \to -\infty}{\to} +\infty$ ce qui est exclu. Donc $\operatorname{Re}(z_1) = 0$.

 $\mathrm{Par\ suite,\ pour\ tout\ } t \in \mathbb{R}, \, |g(t)| = |P_1(t)|. \ \mathrm{Si\ } P_1 \ \mathrm{n'est\ pas\ constant}, \, |g(t)| \underset{t \to +\infty}{\to} +\infty \ \mathrm{ce\ qui\ est\ exclu}.$

Donc P_1 est constant.

- Si $k \ge 2$, pour $t \in \mathbb{R}$, posons $h(t) = g'(t) - z_k g(t)$. La fonction h vérifie aussi l'hypothèse A. Ensuite, pour tout réel t,

$$h(t) = \sum_{j=1}^{k} (z_j P_j(t) + P'_j(t) - z_k P_j(t)) e^{z_j t} = \sum_{j=1}^{k-1} ((z_j - z_k) P_j(t) + P'_j(t)) e^{z_j t} + P'_k(t) e^{z_k t}.$$

L'écriture ci-dessus est de la forme $\sum_{j=1}^k Q_j(t)e^{z_jt}$ où les Q_j sont des polynômes dont le degré total est au plus

$$\sum_{j=1}^{k-1} \alpha_j + \alpha_k - 1 = (n+1) - 1 = n.$$

Il est connu que h est nulle si et seulement si tous les Q_j sont nuls (une famille de fonctions de la forme $t \mapsto P(t)e^{zt}$ où les polynômes P sont tous non nuls et les z sont deux à deux distincts est libre). Dans ce cas, pour j < k, $(z_j - z_k)P_j + P'_j = Q_j = 0$ puis $P_j = 0$ car si $P_j \neq 0$, $\deg(Q_j) = \deg(P_j)$ (car $z_j - z_k \neq 0$). Ensuite, $P'_k = 0$ et donc P_k est une constante λ (non nulle).

Mais alors, $\forall t \in \mathbb{R}, \ g(t) = \lambda e^{z_k t}$ ce qui impose $\operatorname{Re}(z_k) = 0$. Le résultat est démontré quand h = 0.

Si $h \neq 0$, par hypothèse de récurrence, les Q_j , $1 \leqslant j \leqslant k$, sont des constantes et les z_j , $1 \leqslant j \leqslant k$, sont imaginaires purs. Pour j < k, si P_j n'est pas constant, $\deg(Q_j) = \deg(P_j) > 0$ ce qui est exclu. Donc les polynômes P_j , $1 \leqslant j \leqslant k-1$, sont constants. Enfin, P_k' est constant et donc P_k est de degré au plus 1. Mais si P_k est de degré 1,

 $|g(t)|\underset{t\to +\infty}{\sim} |P_k(t)|\underset{t\to +\infty}{\to} +\infty \text{ ce qui est exclu. Donc } P_k \text{ est constant.}$

Le résultat est démontré par récurrence.

Ainsi, si g vérifie l'hypothèse A et si N_q est de codimension finie, g est nécessairement de la forme

$$g \; : \; t \mapsto \sum_{j=1}^k \alpha_j e^{i\beta_j t},$$

où les β_i sont des réels deux à deux distincts et les α_i sont des complexes.

Réciproquement, si g est de cette forme, comme à la question III.A.4.b), $V_g \subset \operatorname{Vect}\left(e_{i\beta_j}\right)_{1 \leqslant j \leqslant k}$ où $e_{\beta_j}(t) = e^{i\beta_j t}$ et donc V_g est de dimension finie puis N_g est de codimension finie.

III.C - Cas général

III.C.1) Par hypothèse, $\dim(V_g) = n$ (d'après la question III.A.3)). Donc, il existe $(\alpha_i)_{1 \leqslant i \leqslant n} \in \mathbb{R}^n$ tel que $(T_{\alpha_i}(g))_{1 \leqslant i \leqslant n}$ soit une base de V_g . Mais alors

$$\forall \alpha \in \mathbb{R}, \, \exists (m_i(\alpha))_{1 \leqslant i \leqslant n} \in \mathbb{C}^n \, \, \mathrm{tel} \, \, \mathrm{que} \, \, T_\alpha(g) = \sum_{i=1}^n m_i(\alpha) T_{\alpha_i}(g).$$

III.C.2) a) On supposer que $p \in \mathbb{N}^*$.

Pour chaque $x \in \mathbb{R}$, la fonction $e_x : F \to \mathbb{C}$ est un élément de F^* . Puisque $\dim(F) = \mathfrak{p}$, on sait que $\dim(F^*) = \mathfrak{p}$.

Soit $r \leqslant p$ le rang de la famille $(e_x)_{x \in \mathbb{R}}$. Soit $(e_{\alpha_1}, \dots, e_{\alpha_r})$ une base de $\mathrm{Vect}(e_x)_{x \in \mathbb{R}} \subset F^*$. Pour chaque x, il existe $(\lambda_i(x))_{1 \leqslant i \leqslant r} \in \mathbb{C}^r$ tel que

$$e_{x} = \sum_{i=1}^{k} \lambda_{i}(x) e_{\alpha_{i}},$$

ou encore

$$\forall x \in \mathbb{R}, \, \exists (\lambda_i(x))_{1 \leqslant i \leqslant r} \in \mathbb{C}^r / \, \forall f \in F, \, f(x) = \sum_{i=1}^r f(\alpha_i) \lambda_i(x).$$

Mais alors $(\lambda_i)_{1\leqslant i\leqslant r}$ est une famille de fonctions de $\mathbb R$ dans $\mathbb C$ telle que $\forall f\in F,\, f=\sum_{i=1}^r f(\alpha_i)\lambda_i.$ Par suite $F\subset \mathrm{Vect}(\lambda_i)_{1\leqslant i\leqslant r}$ et donc

$$p = \dim(F) \leq \dim(\operatorname{Vect}(\lambda_i)_{1 \leq i \leq r}) \leq r.$$

Finalement p = r. Par suite, $(e_{\alpha_1}, \dots, e_{\alpha_p})$ est une famille libre de F^* de cardinal $p = \dim(F^*) < +\infty$ et donc $(e_{\alpha_1}, \dots, e_{\alpha_p})$ est une base de F^* .

 $\mathbf{b)} \bullet \mathrm{Si} \mathrm{\ la\ famille\ } (f_i)_{1\leqslant i\leqslant p} \mathrm{\ est\ li\acute{e}e}, \mathrm{\ il\ existe\ } (\alpha_i)_{1\leqslant i\leqslant p} \in \mathbb{C}^n \mathrm{\ tel\ que\ } (\alpha_1,\ldots,\alpha_p) \neq (0,\ldots,0) \mathrm{\ et\ } \sum_{i=1}^p \alpha_i f_i = 0.$

 $\text{Mais alors, si on note L_i, $1\leqslant i\leqslant p$, les lignes de $\operatorname{Det}(f_i(\alpha_j))_{1\leqslant i\leqslant p}$, on a $\sum_{i=1}^p \alpha_i L_i = 0$ et donc la famille $(L_i)_{1\leqslant i\leqslant p}$ est liée. On en déduit que $\operatorname{Det}(f_i(\alpha_j))_{1\leqslant i\leqslant p} = 0$. }$

• Si Det $(f_i(a_j))_{1 \leqslant i \leqslant p} = 0$, il existe $(\alpha_i)_{1 \leqslant i \leqslant p} \in \mathbb{C}^n$ tel que $(\alpha_1, \dots, \alpha_p) \neq (0, \dots, 0)$ et $\sum_{i=1}^p \alpha_i L_i = 0$. Soit $f = \sum_{i=1}^p \alpha_i f_i$. f est un élément de F tel que pour tout $j \in [1, p]$,

$$e_{\alpha_j}(f) = f(\alpha_j) = \sum_{i=1}^p \alpha_i f_i(\alpha_j) = 0.$$

Mais $(e_{\alpha_j})_{1\leqslant j\leqslant n}$ est une base de F^* et on sait que les coordonnées de f dans la préduale de $(e_{\alpha_j})_{1\leqslant j\leqslant n}$ sont les $e_{\alpha_j}(f)$ et sont donc nulles. Par suite, f=0 ou encore $\sum_{i=1}^p \alpha_i f_i=0$. Ceci montre que la famille (f_1,\ldots,f_p) est liée.

On a montré que (f_1, \ldots, f_p) est liée si et seulement si $\operatorname{Det}(f_i(\mathfrak{a}_j))_{1 \leqslant i \leqslant p} = \emptyset$ ou encore, par contraposition,

$$(f_1,\ldots,f_p)$$
 est libre si et seulement si Det $(f_i(a_j))_{1\leqslant i\leqslant p}\neq 0.$

 $\begin{aligned} & \textbf{III.C.3)} \ V_g \ \mathrm{est} \ \mathrm{de} \ \mathrm{dimension} \ n \ \mathrm{et} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ V_g \ \mathrm{est} \ (T_{\alpha_i}(g))_{1 \leqslant i \leqslant n}. \ \mathrm{D'après} \ \mathrm{la} \ \mathrm{question} \ \mathrm{III.C.2}), \ \mathrm{il} \ \mathrm{existe} \ \mathrm{des} \ \mathrm{r\'eels} \ \alpha_1, \\ \ldots, \alpha_n, \ \mathrm{tels} \ \mathrm{que} \ \mathrm{det} \ (T_{\alpha_i}(g)(\alpha_j))_{1 \leqslant i,j \leqslant n} \neq 0. \end{aligned}$

Soit $\alpha \in \mathbb{R}$. On sait que $T_{\alpha}(g) = \sum_{i=1}^n m_i(\alpha) T_{\alpha_i}(g)$. Mais alors,

$$\forall j \in [\![1,n]\!], \sum_{i=1}^n \left(T_{\alpha_i}(g)\right)(a_j)m_i(\alpha) = T_{\alpha}(g)(a_j).$$

On a obtenu un système de n équations linéaires à n inconnues (les $m_i(\alpha)$, $1 \le i \le n$) dont le déterminant n'est pas nul c'est-à-dire un système de Cramer. Les formules de Cramer fournissent alors des égalités du type :

$$\forall i \in [1, n], \ m_i(\alpha) = \sum_{j=1}^n \lambda_{i,j} T_{\alpha}(g)(\alpha_j)$$

où les $\lambda_{i,j}$ sont des complexes indépendants de α . Plus explicitement, on a donc

$$\forall i \in [\![1,n]\!], \, \forall \alpha \in \mathbb{R}, \, m_i(\alpha) = \sum_{i=1}^n \lambda_{i,j} g(\alpha_j - \alpha).$$

Puisque g est de classe C^k sur \mathbb{R} , il en est de même des fonctions $\mathfrak{m}_i,\,1\leqslant i\leqslant n$.

III.C.4) Soit $r \in \mathbb{N}^*$. D'après les questions I.A.1) et I.C.1), $\Phi_r : C_b(\mathbb{R}) \to C_b(\mathbb{R})$ est bien une application et même $\mathfrak{u} \mapsto \mathfrak{u} * \mathfrak{h}_r$ un endomorphisme par bilinéarité du produit de convolution. De plus,

$$V_{h_{r}*g} = \operatorname{Vect}\left(\mathsf{T}_{\alpha}(h_{r}*g)\right)_{\alpha \in \mathbb{R}} = \operatorname{Vect}\left(\mathsf{T}_{\alpha}(g)*h_{r}\right)_{\alpha \in \mathbb{R}} = \Phi_{r}\left(\operatorname{Vect}\left(\mathsf{T}_{\alpha}(g)\right)_{\alpha \in \mathbb{R}}\right) = \Phi_{r}\left(V_{g}\right).$$

Mais alors, $\dim (V_{h_r*q}) = \dim (\Phi_r (V_q)) \leqslant \dim (V_q) < +\infty$.

 $\mbox{\bf III.C.5) Pour $r \in \mathbb{N}^*$, on note encore Φ_r l'application Φ_r : $V_g \rightarrow V_{h_r*g}$. On sait déjà que Φ_r est une application $u \mapsto u*h_r$$

linéaire surjective. Il s'agit de vérifier que pour r assez grand, l'application Φ_r est un isomorphisme. Il revient au même de démontrer que l'image de la base $(T_{\alpha_i}(g))_{1\leqslant i\leqslant n}$ de V_g , à savoir la famille $(T_{\alpha_i}(g)*h_r)_{1\leqslant i\leqslant n}$, est une base de V_{h_r*g} .

Il existe $(a_j)_{1\leqslant j\leqslant n}\in\mathbb{R}^n$ tel que $\det\left((T_{\alpha_i}(g))(a_j)\right)_{1\leqslant i,j\leqslant n}\neq 0$ et d'autre part, puisque $g\in C_b(\mathbb{R})$, la suite de fonctions $(h_r*g)_{t\in\mathbb{N}^*}$ converge simplement vers g sur \mathbb{R} . On en déduit que la matrice $\left((T_{\alpha_i}(h_r*g))(a_j)\right)_{1\leqslant i,j\leqslant n}$ tend vers la matrice $\left((T_{\alpha_i}(g))(a_j)\right)_{1\leqslant i,j\leqslant n}$ quand r tend vers $+\infty$. Par continuité du déterminant, on a encore

$$\lim_{r\to +\infty} \det \left((T_{\alpha_i}(h_r*g))(a_j) \right)_{1\leqslant i,j\leqslant n} = \det \left((T_{\alpha_i}(g))(a_j) \right)_{1\leqslant i,j\leqslant n} \neq 0.$$

Mais alors, à partir d'un certain rang r_0 , $\det\left((T_{\alpha_i}(h_r*g))(\alpha_j)\right)_{1\leqslant i,j\leqslant n}\neq 0$. La question III.C.2)b) permet d'affirmer que, pour $r\geqslant r_0$, la famille $\left(\phi_{T_{\alpha_i}(h_r*g)}\right)_{1\leqslant i\leqslant n}$ est libre. Il en est de même de la famille $(T_{\alpha_i}(h_r*g))_{1\leqslant i\leqslant n}$ et donc, pour $r\geqslant r_0$, $\dim\left(V_{h_r*g}\right)\geqslant n$. Puisque d'autre part, $\dim\left(V_{h_r*g}\right)\leqslant n$, on a finalement

$$\forall r\geqslant r_0,\,\dim\left(V_{h_r*q}\right)=n.$$

III.C.6) • Montrons que $\forall r \ge 2$, $h_r \in C^{r-1}(\mathbb{R})$.

- h_r est continue sur \mathbb{R} , paire, de classe C^{∞} sur [-1,1], nulle sur $]-\infty,-1]\cup[1,+\infty[$.
- h_r admet en 1 des dérivées à gauche à tout ordre. De plus,

$$h_r(t) = \frac{2^r}{t \to 1^{-1}} \frac{2^r}{\lambda_r} (1-t)^r + o((1-t)^r).$$

La formule de Taylor-Young permet d'affirmer que $\forall k \in [0, r-1], (h_r)_g^{(k)}(1) = 0 = (h_r)_d^{(k)}(1)$. Par suite, $\forall k \in [0, r-1], h_r$ est k fois dérivable en 1 et $f^{(k)}(1) = 0$. En particulier, $h_r^{(r-1)}(1) = 0$. h_r étant d'autre part de classe C^{r-1} sur $[0, 1] \cup [1, +\infty[$, h_r est finalement de classe C^{r-1} sur $[0, +\infty[$ puis sur \mathbb{R} .

- D'après la question I.C.2), on en déduit que $\forall r \in \mathbb{N}^*, h_r * g \in C^{r-1}(\mathbb{R})$.
- $\bullet \text{ Pour tout r\'eel } \alpha, \, T_{\alpha}(g) = \sum_{i=1}^n m_i(\alpha) T_{\alpha_i}(g) \text{ et donc pour tout } r \in \mathbb{N}^* \text{ et tout } \alpha \in \mathbb{R},$

$$T_{\alpha}(h_r*g) = h_r*T_{\alpha}(g) = h_r*\left(\sum_{i=1}^n m_i(\alpha)T_{\alpha_i}(g)\right) = \sum_{i=1}^n m_i(\alpha)h_r*T_{\alpha_i}(g).$$

D'après la question précédente, pour r assez grand, $\dim(V_{h_r*g})=n$. On peut alors effectuer le même travail qu'à la question III.C.3) en remplaçant les $T_{\alpha_i}(g), 1 \leqslant i \leqslant n$, par les $h_r*T_{\alpha_i}(g), 1 \leqslant i \leqslant n$, où cette fois-ci les $h_r*T_{\alpha_i}(g), 1 \leqslant i \leqslant n$, sont de classe C^{r-1} :

$$\forall i \in [\![1,n]\!], \, \forall \alpha \in \mathbb{R}, \, m_i(\alpha) = \sum_{i=1}^n \lambda_{i,j} h_r * g(\alpha_j - \alpha),$$

pour r assez grand et des a_i , $1 \leqslant i \leqslant n$, correctement choisis.

• Mais alors les fonctions m_i , $1 \le i \le n$, sont de classe C^{r-1} sur $\mathbb R$ pour tout $r \in \mathbb N^*$ et donc les fonctions m_i , $1 \le i \le n$, sont de classe C^{∞} sur $\mathbb R$.

III.C.7) Pour tout réel
$$\alpha$$
, $g(\alpha) = T_{-\alpha}(g)(0) = \sum_{i=1}^n m_i(-\alpha)T_{\alpha_i}(g)(0)$ et donc g est de classe C^{∞} sur \mathbb{R} .

Vérifions que alors toutes les dérivées de g sont bornées. On sait que

$$\forall \alpha \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ g(x-\alpha) = \sum_{i=1}^{n} m_i(\alpha)g(x-\alpha_i).$$

En dérivant par rapport à x, on obtient

$$\forall \alpha \in \mathbb{R}, \, \forall x \in \mathbb{R}, \, \forall k \in \mathbb{N}, \, g^{(k)}(x - \alpha) = \sum_{i=1}^{n} m_i(\alpha) g^{(k)}(x - \alpha_i).$$

En particulier, pour x = 0 et en remplaçant α par $-\alpha$, on obtient

$$\forall \alpha \in \mathbb{R}, \, \forall x \in \mathbb{R}, \, \forall k \in \mathbb{N}, \, g^{(k)}(\alpha) = \sum_{i=1}^n m_i(-\alpha)g^{(k)}(-\alpha_i).$$

La question III.C.3) (expression des \mathfrak{m}_i en fonction de g) montre en particulier que les fonctions \mathfrak{m}_i , $1 \leqslant i \leqslant \mathfrak{n}$, sont bornées sur \mathbb{R} et donc $\forall k \in \mathbb{N}$, $g^{(k)}$ est bornée sur \mathbb{R} .

Ainsi, la fonction g vérifie l'hypothèse A ce qui ramène à la partie A. Les fonctions $g \in C_b(\mathbb{R})$ telles que N_g est de codimension finie sont les fonctions de la forme

$$t\mapsto \sum_{k=1}^p\alpha_ke^{i\beta_kt}$$

où les α_k sont des complexes et les β_k sont des réels deux à deux distincts.