Synthèse Séries de Fourier

P. Gosse

26 mai 2020

Table des matières

Famille orthonormée de polynômes Trigonométriques Cas complexe 1 1 Série de Fourier d'une fonction périodique 1 1 2.12 Cas d'une fonction paire ou impaire. 2 Cas d'une fonction \mathcal{C}^k Cas d'une fonction C^1 2.4.12 Cas d'une fonction C^k : . . . 2 2 Cas d'une fonction T périodique : . . Problèmes de convergence 3 Convergence de la série de FOURIER 3

1 Famille orthonormée de polynômes Trigonométriques

Les théorèmes de convergence

Inégalité de BESSEL et formule de

PARSEVAL:

Géométrie et séries de FOURIER:

1.1 Cas complexe

Proposition 1.1.1. pour tout couple d'entiers relatifs (n,m), on pose

$$I(n,m) = \int_{-\pi}^{+\pi} e^{inx} e^{-imx}$$

Alors

$$I(n,m) = \begin{cases} 0 & si \ n \neq m \\ 2\pi & si \ n = m \end{cases}$$

1.2 Cas réel

Proposition 1.2.1. pour tout couple d'entiers naturels (n, m), on pose

$$J(n,m) = \int_{-\pi}^{+\pi} \cos nx \cos mx dx$$
$$K(n,m) = \int_{-\pi}^{+\pi} \cos nx \sin mx dx$$
$$L(n,m) = \int_{-\pi}^{+\pi} \sin nx \sin mx dx$$

Alors:

3

3

4

$$J(n,m) = \begin{cases} 2\pi & si \ n = m = 0 \\ \pi & si \ n = m \neq 0 \\ 0 & si \ n \neq m \end{cases}$$

$$K(n,m) = 0 \ \forall (n,m) \in \mathbb{N}^2$$

$$L(n,m) = \begin{cases} \pi & si \ n = m \neq 0 \\ 0 & sinon \end{cases}$$

2 Série de Fourier d'une fonction périodique

2.1 Cas complexe

On suppose que f est une fonction 2π périodique, continue par morceaux sur sa période, de \mathbb{R} à valeurs dans \mathbb{C} .

Définition 2.1.1. (Coefficients et série de fourier complexes)

Pour tout $n \in \mathbb{Z}$ on appelle n ième coefficient de FOURIER complexe de f le nombre

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(t)e^{-int}dt$$

et, sous réserve de convergence, série de FOURIER valeurs réelles alors pour tout entier naturel n : complexe associée à f la série de fonctions définie par:

$$\mathcal{F}(f)(x) = \sum_{n = -\infty}^{+\infty} c_n(f)e^{inx}$$

2.2Cas réel

On suppose que f est une fonction 2π périodique, continue par morceaux sur sa période, de \mathbb{R} à valeurs dans \mathbb{R} .

Définition 2.2.1. (Coefficients et série de fourier réels) Pour tout $n \in \mathbb{N}$ on appelle n ièmes coefficients de FOURIER réels (ou trigonométriques) les nombres

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(t) \cos nt dt$$
$$b_n(f) = \frac{1}{\pi} \int_{-\pi}^{+\pi} f(t) \sin nt dt$$

et, sous réserve de convergence, série de FOURIER réelle associée à f la série de fonctions définie par :

$$\mathcal{F}(f)(x) = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} a_n(f) \cos nx + b_n(f) \sin nx$$

Conséquence 2.2.1. On a les relations suivantes entre les coefficients de fourier complexes et les coefficients de fourier réels :

$$a_n(f) = c_n(f) + c_{-n}(f)$$

 $b_n(f) = i(c_n(f) - c_{-n}(f))$

Attention: dans ce cours nous faisons la convention $a_0(f) = 2c_0(f)$ ce qui évite d'avoir à considérer une formule particulière pour calculer le coefficient $a_0(f)$ mais impose le terme $\frac{a_0(f)}{2}$ dans l'expression de la série de FOURIER.

Et en inversant ces relations:

$$c_n(f) = \frac{1}{2} \left(a_n(f) - ib_n(f) \right)$$
$$c_{-n}(f) = \frac{1}{2} \left(a_n(f) + ib_n(f) \right)$$

Cas d'une fonction paire ou impaire 2.3

Proposition 2.3.1. Si f est une fonction paire 2π périodique continue par morceaux sur sa période à

$$a_n(f) = \frac{2}{\pi} \int_0^{+\pi} f(t) \cos nt dt$$
$$b_n(f) = 0$$

 $Si\ f\ est\ impaire\ 2\pi\ p\'eriodique\ continue\ par\ morceaux$ sur sa période à valeurs réelles alors pour tout entier naturel n :

$$a_n(f) = 0$$

$$b_n(f) = \frac{2}{\pi} \int_0^{+\pi} f(t) \sin nt dt$$

Cas d'une fonction C^k 2.4

Cas d'une fonction \mathcal{C}^1 2.4.1

Proposition 2.4.1. Soit f une fonction 2π périodique, de classe C^1 sur sa période à valeurs dans $\mathbb R$ ou \mathbb{C} . Alors pour tout entier relatif n:

$$c_n(f') = (in)c_n(f)$$

et pour tout entier naturel n :

$$a_n(f') = nb_n(f) \ et \ b_n(f') = -na_n(f)$$

Conséquence 2.4.1. Si f est C^1 sur $[-\pi, +\pi]$ alors

$$c_n(f) \stackrel{+\infty}{=} O\left(\frac{1}{n}\right)$$

Cas d'une fonction C^k : 2.4.2

Proposition 2.4.2. Par récurrence on démontre aisément que si f a toutes les propriétés précédentes mais est de plus C^k sur sa période (avec $k \geq 2$) alors pour tout entier relatif n:

$$c_n(f^{(k)}) = (in)^k c_n(f)$$

Ce qui implique alors que

$$c_n(f) \stackrel{+\infty}{=} O\left(\frac{1}{n^k}\right)$$

2.5Cas d'une fonction T périodique :

Proposition 2.5.1. Soit f une fonction T périodique à valeurs dans \mathbb{R} ou \mathbb{C} , continue par morceaux sur sa période. On pose $\omega = \frac{2\pi}{T}$ et on définit alors les coefficients de Fourier complexes de f pour tout $n \in \mathbb{Z}$ par

$$c_n(f) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-in\omega t}$$

et la série de fourier complexe associée à f par :

$$\mathcal{F}(f)(x) = \sum_{n = -\infty}^{+\infty} c_n(f)e^{in\omega x}$$

Dans le cas réel, on définit les coefficients de FOU-RIER réels de f pour tout $n \in \mathbb{N}$ par

$$a_n(f) = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos n\omega t dt$$
$$b_n(f) = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin n\omega t dt$$

et la série de fourier réelle associée à f par :

$$\mathcal{F}(f)(x) = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f) \cos n\omega x + b_n(f) \sin n\omega x)$$

3 Problèmes de convergence

3.1 Convergence de la série de FOURIER

Proposition 3.1.1. Si fest une fonction 2π périodique continue par morceaux sur sa période et à valeurs dans \mathbb{R} ou \mathbb{C} , en posant $u_0(x) = \frac{a_0(f)}{2}$ et pour tout $n \geq 1$, $u_n(x) = a_n(f) \cos nx + b_n(f) \sin nx$, on a le résultat suivant :

Si les séries $\sum_{n\geq 0} a_n(f)$ et $\sum_{n\geq 1} b_n(f)$ sont absolument convergentes alors la série de fonctions $\sum_{n\geq 0} u_n(x)$ converge normalement sur \mathbb{R} .

Conséquence 3.1.1. 1. La série de FOURIER de f est alors intégrable terme à terme sur \mathbb{R} et si la série $\sum_{n\geq 0} u_n'(x)$ converge également uniformément sur \mathbb{R} elle est en plus dérivable terme à terme sur \mathbb{R} .

En tous les cas, la série de FOURIER de f est 2π périodique et continue sur \mathbb{R} .

2. Dans les hypothèses précédentes, si on suppose de plus les séries $\sum_{n\geq 0} a_n(f)$ et $\sum_{n\geq 0} b_n(f)$ absolument convergentes, en posant $g(x) = \mathcal{F}(f)(x)$ et en utilisant les résultats du paragraphe 1 on montre que $\mathcal{F}(g) = \mathcal{F}(\mathcal{F}(f)) =$

 $\mathcal{F}(f)$. Ce qui laisse penser que l'opérateur série de FOURIER agit comme un opérateur linéaire bien connu.

3.2 Les théorèmes de convergence

Proposition 3.2.1. (Premier théorème de DI-RICHLET)

Si f est une fonction 2π périodique, de classe \mathcal{C}^1 par morceaux sur sa période, alors la série de FOURIER de f converge simplement vers la régularisée f^* de f sur \mathbb{R} où

$$\forall x \in \mathbb{R} \quad f^*(x) = \frac{f(x^+) + f(x^-)}{2}$$

En particulier, en tout point de continuité de f, la série de FOURIER de f converge simplement vers f(x).

Proposition 3.2.2. (Second théorème de DIRI-CHLET)

Si f est une fonction 2π périodique, de classe \mathcal{C}^1 par morceaux sur sa période et **continue** sur \mathbb{R} , alors la série de FOURIER de f converge normalement vers la fonction f sur \mathbb{R} .

Autrement dit $(\forall x \in \mathbb{R}) \mathcal{F}(f)(x) = f(x)$.

4 Géométrie et séries de FOURIER:

On note $E = \mathcal{C}^1_{2\pi}(\mathbb{R}, \mathbb{C})$ l'ensemble des applications 2π périodiques de \mathbb{R} dans \mathbb{C} , \mathcal{C}^1 par morceaux mais continues sur leur période.

Sur $E \times E$ on définit φ à valeurs dans \mathbb{C} :

$$(f,g) \mapsto \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(t) \overline{g(t)} dt$$

qui est un produit hermitien sur l'espace vetoriel complexe E (l'analogue d'un produit scalaire sur un \mathbb{R} espace vetoriel). La norme associée (ou norme de la convergence en moyenne quadratique) est donnée pour tout $f \in E$ par :

$$||f||_2 = \sqrt{\frac{1}{2\pi} \int_{-\pi}^{+\pi} |f(t)|^2 dt}$$

 $\mathcal{F}(f)(x)$ et en utilisant les résultats du paragraphe 1 on montre que $\mathcal{F}(g) = \mathcal{F}(\mathcal{F}(f)) =$ la famille $(e_n)_{n \in \mathbb{Z}}$ où $e_n(t) = e^{int}$ forme une famille orthonormée de E pour ce produit hermitien. On pose

$$P_p = \{ e_n \mid n \in \{-p, -p+1, \dots, 0, 1, \dots p-1, p\} \}$$

$$P = \{ e_n \mid n \in \mathbb{Z} \}$$

 P_p est un espace pré hilbertien complexe de dimension 2p+1 sur \mathbb{C} et P est un espace hilbertien de dimension infinie dénombrable sur \mathbb{C} dont $(e_n)_{n\in\mathbb{Z}}$ est une base orthonormée.

Dans ce cadre on peut interpréter $\mathcal{F}: f \mapsto \sum_{n=-\infty}^{n=+\infty} c_n(f)e^{inx}$ comme un endomorphisme de E et on a vu en 3.1 que c'est un projecteur de E.

Si $f \in E$ on note $g_p(f)$ le projeté orthogonal de f sur P_p . Comme (e_{-p}, \ldots, e_p) en est une base orthonormée il est immédiat que

$$g_p(f) = \sum_{n=-p}^{n=p} (f|e_n)e_n$$

mais par définition du produit scalaire hermitien :

$$(f|e_n) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(t)e^{-int}dt = c_n(f)$$

4.1 Inégalité de BESSEL et formule de PARSEVAL :

Proposition 4.1.1. (Inégalité de BESSEL) $Si \ f \in E \ on \ a \ pour \ tout \ p \in \mathbb{N}$:

$$\sum_{n=-p}^{+p} |c_n|^2 \le \frac{1}{2\pi} \int_{-\pi}^{+\pi} |f(t)|^2 dt$$

dans le cas complexe, et dans le cas réel :

$$\frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_{n=1}^{p} (a_n(f)^2 + b_n(f)^2)$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{+\pi} |f(t)|^2 dt$$

Conséquence 4.1.1. Les théorèmes de convergence de 3.2 impliquent que $\lim_{p\to+\infty} \|f-g_p(f)\|_2 = 0$ et on a donc l'égalité

$$||f||_2^2 = \sum_{n=-\infty}^{n=+\infty} |c_n(f)|^2$$

On en déduit la :

Proposition 4.1.2. (Formule de Parseval) Pour $f \in E$ on a l'équlité :

$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} |f(t)|^2 dt = \sum_{n=-\infty}^{+\infty} |c_n|^2$$

dans le cas complexe et dans le cas réel :

$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} |f(t)|^2 dt = \frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n(f)^2 + b_n(f)^2)$$

Remarque 4.1. On montre que la formule de PAR-SEVAL est encore valable si on suppose que f est seulement continue par morceaux sur sa période.