Probability and Statistics Review

2019.6

Reference:

- Steven Skiena, The Data Science Design Manual, Springer, 2017
- https://www.cs.cmu.edu/~epxing/Class.../Probability_Review.ppt

Probability and Statistics

Probability

- deals with <u>predicting the likelihood of future events</u>
- theoretical branch of mathematics on the consequences of definitions
- For dice game, "each face will come up with probability
 1/6."

Statistics

- analyzes the frequency of past events
- applied mathematics trying to make sense of <u>real-world</u> <u>observations</u>
- For dice game, "I will watch a while, and keep track of how often each number comes up."

Probability

- Experiment: a procedure which yields one of a set of possible outcomes
- Sample space S: set of possible outcomes s of an experiment
- Event: specified subset of the outcomes of an experiment
- Probability p(s) of an outcome s: a number with:

$$-0 <= p(s) <= 1$$

 $-\sum_{s \in S} p(s) = 1$

- Random variable V: numerical function(assignment) on the outcomes of a probability space
- Expected value E of a random variable V on sample space S:

$$E(V) = \sum_{s \in S} p(s) \cdot V(s)$$

Probability (example)

- Experiment: tossing two six-sided dice
- Sample space S: 36 possible outcomes, namely

$$-S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), \{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), \{(4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), \{(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$$

- Event: the event that the sum of the dice equals 7 or 11
 - $E = \{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),(5,6),(6,5)\}$
- Probability of the event: p(E) = 8/36
- Random variable V: V(s) = 1, 2, 3, 4, 5, 6 for each sample s
 - P(V=7) = 1/6, p(V=12) = 1/36
- Expected value E:

$$- E(V) = 1/6(1) + 1/6(2) + 1/6(3) + 1/6(4) + 1/6(5) + 1/6(6) = 21/6$$

Compound Events and Independence

- Suppose half my students are female (event A), and Half my students are above median (event B). What is the probability a student is both A & B?
- Events A and B are independent iff

$$P(A \cap B) = P(A) \times P(B)$$

 Independence (zero correlation) is good to simplify calculations but bad for prediction (no information shared between events A and B)

Conditional Probability

The conditional probability P(A|B) is defined:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

 Conditional probability get interesting only when events are *not* independent, otherwise:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Bayes Theorem

 Bayes theorem is an important tool which reverses the direction of the dependences:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 확률분포
 - 확률변수 x 가 특정한 값을 가질 확률 정보
- Probability Density Function, PDF (확률밀도함수)
 - 연속 확률변수에서 확률변수의 분포
 - (ex) 키, 나이
- Probability Mass Function, PMF (확률질량함수)
 - 이산확률변수에서 특정값에 대한 확률
 - (ex) 주사위, 동전
- Cumulative Distribution Function, CDF (누적분포함수)

$$F_X(x) = P(X \le x)$$
 $F_{X,Y}(x,y) = P(X \le x, Y \le y)$

• Uniform Distribution(균일분포)

• Normal Distribution (정규분포)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}} (x$$
는 모든 실수)

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^{2}}{2\sigma^{2}}} dx$$

Normal Distribution (continued)

- 표준정규분포(Standard Normal Distribution)
 - 정규분포(평균 μ, 분산σ²)

확률변수 X는 X ~ N(μ, σ²)

표준정규분포(평균0, 표준편차1)
 확률변수 Z은 Z ~ N(0,1)

$$Z_i = \frac{x_i - \mu}{\sigma}$$

Z 변환

- Discrete random variable
 - (ex) 주사위를 한 번 던져 나올 값의 확률변수: X

 이항분포(Binomial Distribution): 여러 번의 연속 실험의 확률 (ex: 축구선수의 패널티킥 성공 확률이 0.8 일 때 10번 차서 7번 성공할 확률)

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

(*) p가 0이나 1에 가깝지 않고 n이 충분히 크면 이항분포는 정규분포(가우스분포)에 가까워지며, p가 1/2에 가까워짐에 따라 그래프는 좌우대칭인 산 모양 곡선이 된다.

Probability/cumulative distribution

The cdf is the running sum of the pdf:

$$C(X \le k) = \sum_{x \le k} P(X = x)$$

 The pdf and cdf contain exactly the same information, one being the integral / derivative of the other.

Visualizing Cumulative Distributions

Apple iPhone sales have been exploding, right?

How explosive is that growth, really?

- Cumulative distributions present a misleading view of growth rate.
 - The incremental change is the derivative of this function,
 which is hard to visualize

Descriptive Statistics

- Descriptive statistics provides ways to capture the properties of a given data set / sample.
 - Central tendency measures describe the center around the data is distributed.
 - Variation or variability measures describe data spread
- Centrality measure
 - Mean: arithmetic, geometric, harmonic $\mu_X = rac{1}{n} \sum_{i=1}^n x_i$
 - Median
 - Mode

$$\left(\prod_{i=1}^n a_i\right)^{1/n} = \sqrt[n]{a_1 a_2 \cdots a_n}.$$

Uni-variate Descriptive Statistics

 Different ways you can describe patterns found in uni-variate data include central tendency: mean, mode and median and dispersion: range, variance, maximum, minimum, quartiles, and standard deviation.

Pie chart [left] & Bar chart [right] of Marital status from loan applicants table.

Bi-variate Descriptive Statistics

• Bi-variate analysis involves the analysis of two variables for the purpose of determining the empirical relationship between them. The various plots used to visualize bi-variate data typically are scatter-plot, box-plot.

Scatter Plots

The simplest way to visualize the relationship between two quantitative variables, x and y. For two continuous variables, a scatterplot is a common graph. Each (x, y) point is graphed on a Cartesian plane, with the x axis on the horizontal and the y axis on the vertical. Scatter plots are sometimes called correlation plots because they show how two variables are correlated.

Correlation

 The correlation coefficient r quantifies the strength and direction of the linear relationship between two quantitative variables. The correlation coefficient is defined as:

The Three Ms

- Mean(평균): the average result
- Median(중간값): the score that divides the result in half the middle value
- Mode(최빈치): the most common result

Which measure is best?

- Mean is meaningful for <u>symmetric distributions</u> without outliers: e.g. height and weight.
- Median is better for <u>skewed distributions</u> or <u>data</u> <u>with outliers</u>: e.g. wealth and income.
- Bill Gates adds \$250 to the mean per capita wealth but nothing to the median.

Boxplots

 Box plots are especially useful for indicating whether a distribution is skewed and whether there are potential unusual observations (outliers) in the data set.

Variance Metric: Standard Deviation

• The variance is the square of the standard deviation sigma. $\frac{n}{\sum (x_i - \bar{x})^2}$

 $\hat{\sigma} = \sqrt{\frac{\sum_{i}^{n} n - 1}{n - 1}}$

 Distributions with the same mean can look very different. But together, the mean and standard deviation fairly well characterize any distribution.

Standard Deviation

Three different data distributions with same mean (100) and different standard deviation (5,10,20)

Correlation

$$r = \frac{\sum (x - \bar{x}) \left(y - \bar{y}\right)}{\left(n - 1\right) s_x s_y}$$

where sx and sy represent the standard deviation of the x-variable and the y-variable, respectively. $-1 \le r \le 1$.

Positive correlation (r > 0), Negative correlation (r < 0), No correlation (r = 0)

Information Theory

- P(X) encodes our uncertainty about X
 - Some variables are more uncertain that others

- How can we quantify this intuition?
 - Information: $\log \frac{1}{p(x)}$
 - Entropy: average number of bits required to encode X

$$H_P(X) = E\left[\log \frac{1}{p(x)}\right] = \sum_{x} P(x) \log \frac{1}{P(x)} = -\sum_{x} P(x) \log P(x)$$