# Compulsory exercise 2: Group 24

TMA4268 Statistical Learning V2019

Silje Anfindsen and Clara Panchaud

23 mars, 2020

# Problem 1

a)

Let's find the ridge regression estimator. Remember that  $\hat{\beta}_{Ridge}$  minimizes  $RSS + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$ . Let's rewrite this in matrix notation.

$$\begin{aligned} \min_{\beta} \{ (y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta \} &= \text{develop the expression} \\ \min_{\beta} \{ y^T y - 2\beta^T X^T y + \beta^T X^T X\beta + \lambda \beta^T \beta \} & \text{take the derivative with respect to beta and set equal to } 0 \\ -2X^T y + 2X^T X\beta + 2\lambda \beta &= 0 \\ (X^T X + 2\lambda I)\beta &= X^T y \\ \beta &= (X^T X + \lambda I)^{-1} X^T y \end{aligned}$$

Therefore the estimator is  $\hat{\beta}_{Ridge} = (X^T X + \lambda I)^{-1} X^T y$ .

b)

To find the expected value and the variance-covariance matrix of  $\hat{\beta}_{Ridge}$  we need to remember the distribution of y,  $y \sim N(X\beta, \sigma^2 I)$ . Therefore we get the expected value:

$$E(\hat{\beta}_{Ridge}) = E((X^TX + \lambda I)^{-1}X^Ty) = (X^TX + \lambda I)^{-1}X^TE(y) = (X^TX + \lambda I)^{-1}X^TX\beta$$

and the variance-covariance matrix:

$$Var(\hat{\beta}_{Ridge}) = Var((X^TX + \lambda I)^{-1}X^Ty) =$$
 by property of the variance  $(X^TX + \lambda I)^{-1}X^TVar(y)((X^TX + \lambda I)^{-1}X^T)^T =$  develop the expression  $\sigma^2(X^TX + \lambda I)^{-1}X^TX(X^TX + \lambda I)^{-1}$ 

**c**)

TRUE, FALSE, FALSE, TRUE

d)

```
library(ISLR)
library(leaps)
library(glmnet)
```

We want to work with the College data. First we split it into a training and a testing set.

```
#make training and testing set
train.ind = sample(1:nrow(College), 0.5 * nrow(College))
college.train = College[train.ind,]
college.test = College[-train.ind,]

#the structure of the data
str(College)
```

```
## 'data.frame':
                   777 obs. of 18 variables:
##
               : Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 2 2 2 2 ...
## $ Apps
                : num 1660 2186 1428 417 193 ...
## $ Accept
                : num 1232 1924 1097 349 146 ...
## $ Enroll
                : num 721 512 336 137 55 158 103 489 227 172 ...
## $ Top10perc : num 23 16 22 60 16 38 17 37 30 21 ...
## $ Top25perc : num 52 29 50 89 44 62 45 68 63 44 ...
## $ F.Undergrad: num 2885 2683 1036 510 249 ...
## $ P.Undergrad: num
                      537 1227 99 63 869 ...
## $ Outstate : num 7440 12280 11250 12960 7560 ...
## $ Room.Board : num 3300 6450 3750 5450 4120 ...
## $ Books : num 450 750 400 450 800 500 450 300 660 ...
## $ Personal : num 2200 1500 1165 875 1500 ...
## $ PhD
               : num 70 29 53 92 76 67 90 89 79 40 ...
## $ Terminal : num 78 30 66 97 72 73 93 100 84 41 ...
## $ S.F.Ratio : num 18.1 12.2 12.9 7.7 11.9 9.4 11.5 13.7 11.3 11.5 ...
## $ perc.alumni: num 12 16 30 37 2 11 26 37 23 15 ...
                : num 7041 10527 8735 19016 10922 ...
## $ Expend
## $ Grad.Rate : num 60 56 54 59 15 55 63 73 80 52 ...
```

Now we will apply forward selection, using *Outstate* as a response. We have 18 variables including the response so we will obtain a model including up to 17 variables.

```
nb_predictors<-17
forward<-regsubsets(Outstate~.,college.train,nvmax=17,method="forward")
sum<-summary(forward)</pre>
```

In Figure 1 we can look at the RSS and the adjusted  $R^2$  in order to pick the number of variables that gives the optimal result. Remember that if the difference is not very significant we would rather pick the simplest model. It seems like 5 variables would be good here.

```
par(mfrow=c(1,2))
plot(sum$rss,xlab="Number of Variables",ylab="RSS",type="l")
plot(sum$adjr2,xlab="Number of Variables",ylab="Adjusted RSq",type="l")
```

Below are the chosen variables when we decide to include 5 variables in the reduced model.

```
nb_selected_pred<-5
variables<-names( coef( forward,id=nb_selected_pred ) )</pre>
```



Figure 1: Comparison of models with different number of variables.

```
variables
## [1] "(Intercept)" "PrivateYes"
                                   "Room.Board"
                                                  "perc.alumni" "Expend"
## [6] "Grad.Rate"
We will now find the reduced model as well as the MSE (mean squared error) on the test set.
#fit the reduced model
reduced.model<-lm(Outstate~Private+Room.Board+Grad.Rate+perc.alumni+Expend, data =college.train)
summary(reduced.model)
##
## Call:
  lm(formula = Outstate ~ Private + Room.Board + Grad.Rate + perc.alumni +
##
       Expend, data = college.train)
##
## Residuals:
##
       Min
                1Q Median
                                30
                                       Max
## -7293.1 -1537.5 -159.9 1286.7 9254.8
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.711e+03 5.155e+02 -5.259 2.41e-07 ***
                                       8.075 8.92e-15 ***
## PrivateYes
                2.250e+03 2.787e+02
## Room.Board
              1.241e+00 1.205e-01 10.296 < 2e-16 ***
                                       4.910 1.35e-06 ***
## Grad.Rate
                3.855e+01 7.850e+00
## perc.alumni 6.446e+01 1.113e+01
                                       5.792 1.45e-08 ***
## Expend
                2.182e-01 2.317e-02
                                       9.417 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2159 on 382 degrees of freedom
## Multiple R-squared: 0.7452, Adjusted R-squared: 0.7419
## F-statistic: 223.4 on 5 and 382 DF, p-value: < 2.2e-16
The reduced model is
          Outstate = -2711.4329907 + 2250.1100562Private + 1.2410466Room.Board
                   +38.5491289Grad.Rate +64.4580901perc.alumni +0.218216Expend,
#find test MSE
p<-predict(reduced.model,newdata=college.test)</pre>
mse_fwd <- mean(((college.test$Outstate)-p)^2)</pre>
mse_fwd
```

## [1] 4112680

The test MSE is

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\hat{x}_i))^2 = 4.1126804 \times 10^6$$

**e**)

We will now select a model for the same dataset as in (d) but this time with the Lasso method. Again, we use both a training and testing set for the data.

```
#Make a x matrix and y vector for both the training and testing set
x_train<-model.matrix(Outstate~.,college.train)[,-1]
y_train<-college.train$Outstate
x_test<-model.matrix(Outstate~.,college.test)[,-1]
y_test<-college.test$Outstate</pre>
```

In order to select the best value for the tuning parameter  $\lambda$  we will use cross validation.

```
#perform the Lasso method and choose the best model using CV
lasso.mod = glmnet(x_train,y_train,alpha=1) #lasso method on train set
cv.lasso = cv.glmnet(x_train,y_train,alpha=1) #CV on train set
lambda.best = cv.lasso$lambda.min #select best lambda
lambda.best
```

#### ## [1] 5.093201

```
#find the test MSE
predictions<-predict(lasso.mod,s=lambda.best,newx=x_test)
mse_lasso <- mean((predictions-y_test)^2) #test MSE
mse_lasso</pre>
```

#### ## [1] 3717020

%%Check if log scale!! From cross validation we can observe that the optimal tuning parameter is  $\lambda = 5.0932009$  as this is the parameter that minimizes the MSE for the training set.

The test MSE is now  $3.7170197 \times 10^6$ , which is lower than what we found for the reduced model using forward selection in d).

The lasso yields sparse models which involves only a subset of variables. Lasso performs variable selection by forcing some of the coefficient estimates to be exactly zero. The selected variables that was not put to zero are displayed below.

```
c<-coef(lasso.mod,s=lambda.best,exact=TRUE)</pre>
inds<-which(c!=0)
variables<-row.names(c)[inds]</pre>
variables
   [1] "(Intercept)" "PrivateYes"
                                       "Apps"
                                                      "Accept"
                                                                     "Enroll"
  [6] "Top10perc"
                       "Top25perc"
                                       "F.Undergrad"
                                                     "P.Undergrad" "Room.Board"
## [11] "Books"
                       "Personal"
                                       "PhD"
                                                      "Terminal"
                                                                     "S.F.Ratio"
```

"Grad.Rate"

## Problem 2

#### **a**)

FALSE, FALSE, TRUE, FALSE

## [16] "perc.alumni" "Expend"

## b)

The basis functions for a cubic spline with knots at each quartile, of variable X are,

$$b_0(X) = 1$$
  $b_4(X) = (X - q_1)_+^3$   
 $b_1(X) = x$   $b_5(x) = (X - q_2)_+^3$   
 $b_2(X) = x^2$   $b_6(X) = (X - q_3)_+^3$   
 $b_3(X) = x^3$ 

**c**)

We will now investigate the realtionship between *Outstate* and the 6 of the predictors, *Private*, *Room.Board*, *Terminal*, *perc.alumni*, *Expend*, and *Grad.Rate*.

```
ds1 = college.train[c("Private", "Outstate")] #binary variable
ds2 = college.train[c("Room.Board", "Outstate")]
ds3 = college.train[c("Terminal", "Outstate")]
ds4 = college.train[c("perc.alumni", "Outstate")]
ds5 = college.train[c("Expend", "Outstate")]
ds6 = college.train[c("Grad.Rate", "Outstate")]

par(mfrow=c(2,3))
plot(ds1)
plot(ds2)
plot(ds3)
plot(ds4)
plot(ds5)
plot(ds6)
```



From each of the plots above we can conclude that at least Terminal and Expend seems to have a non-linear relationship with Outstate. These two variables therefore might benefit from a non-linear transformation. The others variables, Room.Board, perc.alumni and Grad.Rate seem to have a linear realtionship with the response variable. The binary variable Private is presented through a boxplot. Generally the data seem to cathegorize quite well into these two classes of private and public universities where the trend is a higher out-of-state tuition for private universities, except for some outliers for public universities where the outcome is very high and therefore can seem to belong to a private universities. Anyway, we cannot transform a binary variable.

## d)

We will now fit several polynomial regression models for Outstate with Terminal as the only covariate. Each polynomial will have a degree from d = 1, ... 10.

```
library(ggplot2)
#make a dataframe
ds = College[c("Terminal", "Outstate")]
n = nrow(ds)
# chosen degrees
deg = 1:10
#now iterate over each degree d
dat = c() #make a empty variable to store predicted values for each degree
MSE_{poly} = c(rep(0,10)) #make a empty variable to store MSE for each degree
for (d in deg) {
    # fit model with this degree
   mod = lm(Outstate ~ poly(Terminal, d), ds[train.ind, ])
    #dataframe for Terminal and Outstate showing result for each degree over all samples
   dat = rbind(dat, data.frame(Terminal = ds[train.ind, 1], Outstate = mod$fit,
                                degree = as.factor(rep(d,length(mod$fit)))))
    # training MSE
   MSE_poly[d] = mean((predict(mod, ds[-train.ind, ]) - ds[-train.ind, 2])^2)
}
# plot fitted values for different degrees
ggplot(data = ds[train.ind, ], aes(x = Terminal, y = Outstate)) +
    geom_point(color = "darkgrey") + labs(title = "Polynomial regression")+
    geom_line(data = dat, aes(x = Terminal, y = Outstate, color = degree))
```

# Polynomial regression



We will now choice a suitable smoothing spline model to predict Outstate as a function of Expend and plot the fitted function.

```
library(splines)

#plot training set for Expend as only covariate
plot(college.train$Expend, college.train$Outstate, col = "darkgrey", main="Smoothing spline", xlab="Exp
#perform CV in order to find optimal number of df
fit = smooth.spline(college.train$Expend, college.train$Outstate, cv=TRUE)
df <- fit$df #choose df from CV
l <- fit$lambda

#add fitted function from smoothing spline
lines(fit, col="red", lwd=2)
legend("topright", legend=c("4.6 DF"), col="red", lty=1, lwd=2, cex=.8)</pre>
```

# **Smoothing spline**



```
#training MSE
pred = predict(fit, newdata=college.train)
MSE_spline = mean( (college.train$Outstate - pred$y)^2 )
```

In order to choose a suitable model we did cross validation. The optimal number of degrees of freedom is df = 4.660711, which gives the smoothing parameter  $\lambda = 0.0075385$ 

We will now calculate the training MSE for the polynomial regression models and the smoothing spline model. For the polynomial regression models we find it easiest to look at the MSE by presenting a plot with MSE for each degree.

```
#MSE for polynomial regression models (1-10)
plot(1:10,MSE_poly, type = "o", pch = 16, xlab = "degree", main = "Test error")
```

# **Test error**



min(MSE\_poly)

## [1] 10914136

#MSE for smoothing spline
MSE\_spline

## [1] 31072818

The training MSE for the two methods are (discuss is it is as expected!)

# Problem 3

**a**)

FALSE, TRUE, TRUE, FALSE

b)

To predict *Outstate* we first try fitting the simple tree-based method, Regression Trees. Since we have learned that decision trees often suffer from high variance we will divide our training data into two new sets and fit a tree on each. If this is the case we will get two quite different trees.

```
library(tree)
set.seed(1)
```

```
#make new training and testing set - random split
new.train.ind = sample(1:nrow(college.train), 0.5 * nrow(college.train))
new.college.train1 = college.train[new.train.ind, ]
new.college.train2 = college.train[-new.train.ind, ]

#fit a tree on the full data set and two new trees with the two new traning sets
full.tree = tree(Outstate ~ .,college.train) #full tree
tree.mod1 = tree(Outstate ~ .,new.college.train1)
tree.mod2 = tree(Outstate ~ .,new.college.train2)

#plot the two tree based on a smaller part of the training set
par(mfrow=c(1,2))
plot(tree.mod1)
text(tree.mod1, pretty = 0)
plot(tree.mod2)
text(tree.mod2, pretty = 0)
```



```
#find test MSE for full tree
yhat = predict(full.tree, newdata = college.test, n.trees = 500)
mse_pure <- mean((yhat- college.test$Outstate)^2)
mse_pure</pre>
```

## [1] 4185923

#### maybe we dont need to actually do the pruning, and go directly boosting?

Now we try pruning and check whether this will improve performance.

```
set.seed(1)
cv.college = cv.tree(full.tree)
tree.min = which.min(cv.college$dev)
best = cv.college$size[tree.min]
plot(cv.college$size, cv.college$dev, type = "b")
points(cv.college$size[tree.min], cv.college$dev[tree.min], col = "red", pch = 20)
```



We see that 7 is on the same level of deviance as for size 10, since this is the smallest number for the size we pick 7. Let us now prune the tree to make it size 7.

```
pr.tree = prune.tree(tree.mod1, best = 7)
#plot(pr.tree)
#text(pr.tree, pretty = 0)

#find test mse
yhat.prune = predict(pr.tree, newdata = college.test, n.trees = 500)
mse.prune <- mean((yhat.prune- college.test$Outstate)^2)
mse.prune</pre>
```

## [1] 6599665

#### done with pruning (maybe remove the pruning part?)

We observe that the two decision trees above are quite different where different variables act as the most important factors for splitting. We conclude that the regression tree therefore suffer from high variance. We will try the boosting approach in order to train the tree and decrease the variance. The boosting approach grows several trees where each tree is grown using information from previously grown trees. The final prediction is a weighted sum of the trees. We have three tuning parameters: the number of trees B, the shrinkage parameter  $\lambda$  and the number of splits in each tree (interaction depth) d. These parameters can be decided with cross validation.

```
library(gbm)
set.seed(1)
#fit a boosted tree to the training data - use CV in order to decide the tuning parameters
boost.cv = gbm(Outstate ~ .,data=college.train, distribution="gaussian", cv.folds = 10)
boost.cv$n.trees
## [1] 100
#check relative importance of variables
summary(boost.cv, plotit = FALSE)
##
                       var
                              rel.inf
                    Expend 48.7606794
## Expend
## Room.Board
               Room.Board 16.7531438
## Private
                   Private 11.5500639
## Grad.Rate
                 Grad.Rate 8.6394004
## perc.alumni perc.alumni 5.3690550
## Books
                     Books 1.4002392
## P.Undergrad P.Undergrad 1.2444213
## F.Undergrad F.Undergrad 1.1475416
## PhD
                       PhD 0.8009306
## Top10perc
                 Top10perc 0.7754256
## Top25perc
                 Top25perc 0.6867535
## Personal
                  Personal 0.6569089
## Enroll
                    Enroll 0.6280889
## Terminal
                  Terminal 0.4908188
## Apps
                      Apps
                           0.4825551
## S.F.Ratio
                 S.F.Ratio 0.3442051
## Accept
                    Accept
                           0.2697689
```

We notice that *Expend* has a very high relative influence and therefore seems to be the most important variable in the data. We will now look at the test MSE for the method.

```
yhat.boost = predict(boost.cv, newdata = college.test)

## Using 91 trees...

mse_boost <- mean((yhat.boost - college.test$Outstate)^2)
mse_boost</pre>
```

#### ## [1] 3114600

The test MSE for the boosted tree,  $MSE_{boosted} = 3.1145996 \times 10^6$  is smaller than for the Regression tree approach,  $MSE_{non-boosted} = 4.1859232 \times 10^6$ . Therefore the boosted tree will probably do a better prediction of the response. Write something about pros/cons for the chosen method (boosting) maybe compared to pure regression trees.

**c**)

We will now compare the test MSEs among the methods used on the data set *College* so far. That is: the two linear model selection methods, forward selection and Lasso method, non-linear methods, polynomial regression and smoothing splines and at last the tree-based method Boosted regression trees.

```
MSE <- c(mse_fwd,mse_lasso,min(MSE_poly),MSE_spline,mse_pure, mse_boost)

Method <- c("Forward selection", "Lasso", "Polynomial regression", "Smoothing spline", "Regression Tree df <- data.frame(Method, MSE)

kable(df)
```

| Method                | MSE      |
|-----------------------|----------|
| Forward selection     | 4112680  |
| Lasso                 | 3717020  |
| Polynomial regression | 10914136 |
| Smoothing spline      | 31072818 |
| Regression Tree       | 4185923  |
| Boosting              | 3114600  |
|                       |          |

The method performing best in terms of prediction error is the boosted regression tree. But if the aim is to develop a interpretable model we would probably have chosen the regression tree.

## Problem 4

Start by loading the data of diabetes from a population of women.

**a**)

In order to anseer on the Mulitple choice we have to present the training data.

#### summary(d.train)

```
##
       diabetes
                          npreg
                                             glu
##
           :0.0000
                      Min. : 0.000
                                               : 56.00
                                                         Min.
                                                                 : 30.00
    Min.
                                       Min.
    1st Qu.:0.0000
                      1st Qu.: 1.000
##
                                        1st Qu.: 96.75
                                                          1st Qu.: 64.00
##
   Median :0.0000
                      Median : 2.000
                                       Median :114.00
                                                         Median: 71.00
##
           :0.3333
                      Mean
                             : 3.467
                                               :120.13
                                                          Mean
                                                                 : 71.56
##
    3rd Qu.:1.0000
                      3rd Qu.: 5.250
                                        3rd Qu.:140.25
                                                          3rd Qu.: 80.00
##
    Max.
           :1.0000
                             :17.000
                                       Max.
                                               :199.00
                                                         Max.
                                                                 :110.00
                      Max.
         skin
##
                          bmi
                                           ped
                                                             age
                                                               :21.00
   Min.
           : 7.00
                     Min.
                            :18.20
                                     Min.
                                             :0.0850
                                                       Min.
   1st Qu.:22.00
                     1st Qu.:27.98
##
                                     1st Qu.:0.2567
                                                       1st Qu.:23.00
   Median :29.00
                     Median :32.80
                                     Median :0.4150
                                                       Median :27.00
##
           :29.14
                            :33.03
##
  Mean
                     Mean
                                     Mean
                                             :0.5004
                                                       Mean
                                                               :31.55
                                     3rd Qu.:0.6210
    3rd Qu.:36.00
                     3rd Qu.:37.12
                                                       3rd Qu.:37.25
   Max.
           :99.00
                            :67.10
                                             :2.4200
                                                               :81.00
##
                     Max.
                                     Max.
                                                       Max.
```

## max(d.train\$npreg)#max nr of pregnancies

#### ## [1] 17

## head(d.train) #overview of data

```
diabetes npreg glu bp skin bmi
                                        ped age
                   7 109 80
## 339
             1
                              31 35.9 1.127
## 270
             1
                   7 152 88
                              44 50.0 0.337
## 210
             1
                   9 119 80
                              35 29.0 0.263
## 117
                              32 34.2 0.260
                   9 112 82
## 390
                   8 151 78
                              32 42.9 0.516 36
             1
## 217
                   2 90 68
                              42 38.2 0.503 27
             1
```

plot(d.train) #look at correlation between variables



plot(diabetes~npreg, data=d.train)



ggplot(d.train,aes(x=glu,y=bmi,color=diabetes))+geom\_point()



TRUE, TRUE, FALSE (not sure about the first and last)

# **b**)

We will now fit a support vector classifier with linear boundary and a support vector machine with radial boundary to find good functions that predict the diabetes status of a patient.

```
#make response variable a factor
d.train$diabetes <- as.factor(d.train$diabetes)
d.test$diabetes <- as.factor(d.test$diabetes)

set.seed(10111)

#make a grid
#</pre>
```

**c**)

d)

## Problem 5

```
id <- "1VfVCQvWt121UN39NXZ4aR9Dmsbj-p90U" # google file ID
GeneData <- read.csv(sprintf("https://docs.google.com/uc?id=%s&export=download",
    id), header = F)
colnames(GeneData)[1:20] = paste(rep("H", 20), c(1:20), sep = "")
colnames(GeneData)[21:40] = paste(rep("D", 20), c(1:20), sep = "")
row.names(GeneData) = paste(rep("G", 1000), c(1:1000), sep = "")</pre>
```

a)

We start by performing hierarchical clustering on the dataset. We try the complete, single and average linkage for both the Euclidian and correlation-based distance.

```
hc.eucl.complete=hclust(dist(t(GeneData),method="euclidian"), method="complete")
hc.eucl.average=hclust(dist(t(GeneData),method="euclidian"), method="average")
hc.eucl.single=hclust(dist(t(GeneData),method="euclidian"), method="single")

correlation<-dist(cor(GeneData))
hc.corr.complete=hclust(correlation, method="complete")
hc.corr.average=hclust(correlation, method="average")
hc.corr.single=hclust(correlation, method="single")

par(mfrow=c(2,3))
plot(hc.eucl.complete,main="Complete Linkage, Euclidian distance", xlab="", sub="", cex=.9)
plot(hc.eucl.average, main="Average Linkage, Euclidian distance", xlab="", sub="", cex=.9)
plot(hc.eucl.single, main="Single Linkage, Euclidian distance", xlab="", sub="", cex=.9)
plot(hc.corr.complete,main="Complete Linkage, correlation-based distance", xlab="", sub="", cex=.9)
plot(hc.corr.average, main="Average Linkage, correlation-based distance", xlab="", sub="", cex=.9)
plot(hc.corr.single, main="Single Linkage, correlation-based distance", xlab="", sub="", cex=.9)
```

## Complete Linkage, Euclidian dist: Average Linkage, Euclidian dista Single Linkage, Euclidian distar



# plete Linkage, correlation-based age Linkage, correlation-based gle Linkage, correlation-based d



The dendograms seem to recognize that there are two different groups. ## b)

We now use the dendograms to cluster the tissues into two groups.

##

D1

D2

D3

D4

D5

D6

D7

D8

```
cutree(hc.eucl.complete, 2)
##
             НЗ
                      Н5
                          Н6
                               H7
                                   Н8
                                        H9 H10
                                               H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
                           1
                                1
##
    D1
        D2
             D3
                 D4
                      D5
                          D6
                               D7
                                   D8
                                       D9 D10 D11
                                                   D12 D13 D14
                                                                 D15 D16 D17 D18
                                                                                   D19 D20
                           2
                                    2
                                                                                          2
cutree(hc.eucl.average,
##
        H2
             НЗ
                 H4
                      Н5
                          Н6
                               H7
                                   Н8
                                       H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
     1
          1
              1
                   1
                       1
                           1
                                1
                                    1
                                                           1
        D2
             D3
                 D4
                      D5
                          D6
                                                   D12 D13 D14
                                                                 D15
                                                                     D16 D17
                                                                              D18
##
    D1
                               D7
                                   D8
                                        D9 D10 D11
                                                                                   D19
                                                                                       D20
                           2
                                                                        2
                   2
                                2
                                    2
                                                           2
cutree(hc.eucl.single, 2)
##
             НЗ
                      Н5
                          Н6
                               H7
                                   Н8
                                        H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
          1
     1
              1
                       1
                           1
                                1
                                    1
    D1
        D2
             D3
                 D4
                      D5
                          D6
                               D7
                                   D8
                                       D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
                       2
                           2
                                2
                                    2
                                         2
                                                           2
                                                               2
                                                                    2
                                                                        2
                                                                                 2
                                                                                          2
##
                                             2
                                                      2
                                                                            2
cutree(hc.corr.complete, 2)
                      Н5
                          Н6
                               H7
                                   Н8
                                       H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
    H1
        H2
             НЗ
                 H4
##
```

D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

```
##
cutree(hc.corr.average,
                                         H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
        H2
             НЗ
                  H4
                      Н5
                           Н6
                                Н7
                                    Н8
##
     1
          1
               1
                   1
                        1
                            1
                                 1
                                      1
                                          1
                                                   1
                                                        1
                                                             1
                                                                  1
                                                                      1
                                                                           1
##
    D1
        D2
             D3
                  D4
                      D5
                           D6
                                D7
                                    D8
                                         D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
##
     2
          2
               2
                   2
                        2
                            2
                                 2
                                      2
                                          2
                                               2
                                                        2
                                                             2
                                                                 2
                                                                      2
                                                                           2
                                                                               2
                                                                                    2
                                                                                             2
cutree(hc.corr.single, 2)
##
        H2
             НЗ
                  H4
                      Н5
                           Н6
                                H7
                                    Н8
                                         H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
##
     1
          1
               1
                   1
                        1
                            1
                                 1
                                      1
                                          1
                                               1
                                                   1
                                                        1
                                                             1
                                                                  1
                                                                      1
                                                                           1
                                                                               1
                                                                                    1
##
    D1
        D2
             D3
                  D4
                      D5
                           D6
                                D7
                                    D8
                                         D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
                   2
##
                        2
                            2
                                 2
                                      2
                                          2
                                               2
                                                   2
                                                        2
                                                             2
                                                                      2
                                                                           2
```

We know that the first 20 come from one group and the rest from the other group. Therefore it seems like all linkage and distance measure perform perfectly.

## **c**)

The elements of the vector  $\phi$  are called loadings and define a direction in the feature space along which the data varies the most. The data is a  $n \times p$  matrix X.

For the first principal component we want  $Z_1 = \phi_1 X$  subject to  $||\phi_1||_2 = 1$ . We want  $Z_1$  to have the highest possible variance  $V(Z_1) = \phi_1^T \Sigma \phi_1$ , where  $\Sigma$  is the covariance matrix of X. The first principal component scores are then the column eigenvector corresponding to the largest eigenvalue of  $\Sigma$ . ## d)

```
color<-c(rep(1,200),rep(2,300))
```

How to color based on tissues group of patients???

```
pca_gene=prcomp(GeneData, scale=TRUE)
plot(pca_gene$x[,1:2], col=c("red","blue")[color],pch=19,xlab="Z1",ylab="Z2")
```



Now we calculate the proportion of variance explained (PVE) by the 5 first components.

```
pve=100*pca_gene$sdev^2/sum(pca_gene$sdev^2)
cumsum(pve)[5]
```

#### ## [1] 28.63481

About 28 percent of the variance is explained by first 5 PC (?)

## **e**)

Use your results from PCA to find which genes that vary the most accross the two groups. ??



```
## f)
km.out = kmeans(t(GeneData), 2, nstart = 20)
km.out$cluster
##
    H1
        H2
             НЗ
                 H4
                     Н5
                          Н6
                              H7
                                   Н8
                                       H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
         2
              2
                  2
                           2
                                    2
                                        2
##
     2
                       2
                                2
                                             2
                                                 2
                                                      2
                                                          2
                                                              2
                                                                   2
                                                                       2
                                                                            2
                                                                                         2
##
    D1
        D2
             DЗ
                 D4
                     D5
                          D6
                              D7
                                   D8
                                       D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20
                                                          1
                                                               1
                                                                   1
                                                                                1
##
                       1
                                1
                                                                       1
```

# References

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning with Applications in R. New York: Springer.