Wstęp do Modelu Standardowego – zadania 2

- 1. Tensor pola elektromagnetycznego zdefiniowany jest jako: $F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$. Proszę napisać macierz z elementami tego tensora.
- 2. Proszę "wyprowadzić" równanie Kleina-Gordona, podstawiając operatory pędu i energii do niezmiennika relatywistycznego. Jakiej postaci mogą być rozwiązania równania Kleina-Gordona?
- 3. Proszę zapisać równanie Kleina-Gordona we współrzędnych sferycznych, a następnie pokazać, ze funkcja (tzw. potencjał Yukawy) $\Psi(r)=\frac{g_0}{4\pi r}\,e^{-r/R}$, gdzie g_0 , $R=\frac{1}{m}$ to stałe jest jego rozwiązaniem. Jak zinterpretować $\Psi(r)$ dla m=0?
- 4. Jakie warunki powinny spełniać macierze γ w równaniu Diraca $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$, aby było ono zgodne z równaniem Kleina-Gordona $\left(-\frac{\partial^{2}}{\partial t^{2}}\Psi+\nabla^{2}\right)=m^{2}\psi$?
- 5. Sprawdzić, czy podstawienie $\Psi \to e^{i\theta} \Psi$ (globalna zmiana fazy) zmienia lagranżian Diraca.
- 6. Pokazać jak lokalna symetria cechowania $\Psi \to e^{i\theta(x)}\Psi$ lagranżianu wprowadza oddziaływania elektronu z fotonem.