R Basic Data Analysis Primer and Cheat Sheet

Coding Variables

Make sure your variables are of the correct type before doing analysis.

Categorical variables should be set as factors and continuous variables set as numerics

```
#Set a variable as a factor:
dataFrame$variable<-as.factor(dataFrame$variable)

#Set a variable as a numeric:
dataFrame$variable<-as.numeric(dataFrame$variable)</pre>
```

Summary Statistics

Mean:

```
mean(dataFrame$x,na.rm=T)
```

Median:

```
median(dataFrame$x,na.rm=T)
```

Standard Deviation:

```
sd(dataFrame$x,na.rm=T)
```

Summary:

```
#This function outputs a number of useful summary values summary(dataFrame$x)
```

Difference Between Two Means

Between-Subjects t-Test

To test the difference between the means of two different groups of people, do a between-subjects t-test:

Within-Subjects t-Test

To test the difference between the means of two measurements of the same people at two different times, do a within-subjects t-test:

Difference Across Multiple Means

To test the difference between the means of 3 or more groups of people that differ along a single variable, do a one-way ANOVA:

To test the difference between group means as a function of multiple variables, do an n-way ANOVA:

To test the difference between multiple (>=3) means measured on the same people at different points in time, do a within-subjects ANOVA.

To do this, you first must "melt" your data from "wide format" to "long format."

Often we store data like this:

Participant	Observation 1	Observation 2
1	4	3
2	7	1

This is "wide" data. Melting data reorganizes it to "long" format like this:

Participant	Observation $\#$	Score
1	1	4
1	2	3
2	1	7
2	2	1

One easy way to do this is the *melt()* function inside the **reshape2** package:

You can then do a a within-subjects ANOVA on the melted data:

Associations Between Continuous Variables

If you want to see if two continuous variables are associated with one another, do a correlation test:

If you want to see if one continuous outcome variable is associated with multiple predictors (continuous or categorical), do a regression:

Basic Data Cheat Sheet

Test	Code	
Mean	mean(dataFrame x , na.rm=T), colMeans(dataFrame $[n_1:n_2]$, na.rm=T)	
Median	median(dataFrame\$x, na.rm=T)	
Standard deviation	sd(dataFrame\$x, na.rm=T)	
Summary	summary(dataFrame\$x)	
Between-subjects t-test	tTestName<-t.test(y~x, data=dataFrame)	
Within-subjects t-test	$tTestName < -t.test(dataFrame\$measure1, \ dataFrame\$measure2, \ paired = T)$	
One-way ANOVA	anovaName<-lm(y~x, data=dataFrame)	
Two-way ANOVA	anovaName<-lm(y~x1*x2, data=dataFrame)	
Melt data (reshape2)	dataMelt<-melt(dataFrame, measure.vars=c("y1","y2"), variable.name="x", value.name="y")	
Within-subjects ANOVA	$anovaName < -aov(y \sim x + Error(PIN), data = dataMelt)$	
Correlation	cor.test(dataFrame\$x, dataFrame\$y)	
Regression	$regName < -lm(y \sim x1 + x2, data = dataFrame)$	