ИІТМО

Основы электротехники

Отчёт по лабораторной работе №4 Исследование трёхфазных электрических цепей Группа Р3334 Вариант 74

Выполнил: Баянов Равиль Динарович

Дата сдачи отчёта: 12.12.2024

Дата защиты: -

Контрольный срок сдачи: 04.12.2024

Количество баллов:

Содержание

Цель работы	3
Часть 1	
Схема исследуемой цепи	4
Заполненная таблица З.1	8
Расчётные формулы и расчёты	9
Векторные диаграммы напряжений и токов приёмника	17
Часть 2	20
Схема исследуемой цепи	20
Заполненная таблица 3.2	23
Расчётные формулы и расчёты	24
Векторные диаграммы напряжений и токов приёмника	26
Выводы по работе	28

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть 1

Схема исследуемой цепи

1) Схема №1

4) Схема №4

Заполненная таблица 3.1

№	Вид нагрузки		U a, B	Ub , B	Uc , B	Ia, A	Ib, A	Ic, A	Ра, Вт	Рь , Вт	P c , B	U _N	I _{Nn} , A	Za, Ом	Zb, Om	Zc, Ом	
1	ая нагрузка с	Изм	44,84 2	44,84 1	44,84 1	0,133	0,133	0,133	4,506	4,506	т 4,506	0	0	1		335,9	
1		Выч	44,99 8	44,99 7	44,99 7	0,134	0,134	0,134	4,522	4,522	4,522	0	0	12	12	12	
2	Симметричная нагрузка без нулевого провода	Изм	44,89 3	44,89 2	44,89 2	0,134	0,134	0,134	4,512	4,511	4,511	0	0			335,9	
2		Выч	44,99 8	44,99 7	44,99 7	0,134	0,134	0,134	4,522	4,522	4,522	0	0	12	12	12	
3	Несимметри чная	Изм	44,85 6	44,85 5	44,85 5	0,200	0,134	0,400	6,753	4,508	13,50 6	0	0,240	224,0	335,9	112,0	
3	нагрузка с нулевым проводом	Выч	44,99 8	44,99 7	44,99 7	0,201	0,134	0,402	6,775	4,522	13,54 9	0	0,241	80	12	40	
4	Несимметричн ая нагрузка без нулевого провода	Изм	51,06 8	56,21 1	30,88 2	0,228	0,167	0,276	8,729	7,059	6,384	14,73 4	0			112,0	
4		Выч	51,08 6	56,23 1	30,89 3	0,228	0,167	0,276	8,732	7,061	6,386	14,74 0	0	80	12	40	
5	Обрыв линейного провода с нулевым проводом	Изм	44,89 9	0	44,89 8	0,200	0	0,401	6,760	0	13,51 9	0	0,347	224,0	8	112,0	
3		Выч	44,99 8	0	44,99 7	0,201	0	0,402	6,775	0	13,54 9	0	0,348	80	~	40	
6	Обрыв линейного провода без нулевого провода	Изм	51,85 6	0,000	25,92 8	0,231	0,000	0,231	9,015	0	4,507	25,92 8	0	224,0	8	112,0	
0		Выч	51,95 9	0,000	25,97 9	0,232	0,000	0,232	9,033	0	4,516	25,97 9	0	80	~	40	
7	Короткое замыкание одной фазы нагрузки без нулевого провода	Короткое Изм	Изм	77,77 6	44,90 3	77,77 4	0,349	0,927	0,700	27,22 1	-	54,40 4	44,90 3	0			
7		Выч	77,94 5	44,99 8	77,93 9	0,350	0,929	0,701	20,45 3	-	40,96 5	44,99 8	0	224,0 80	0	112,0 40	

Расчётные формулы и расчёты

$$\underline{Y}_a = \frac{1}{\underline{z}_{R_a} + \underline{z}_{L_a}}$$

$$\underline{Y}_b = \frac{1}{\underline{z}_{R_b} + \underline{z}_{L_b}}$$

$$\underline{Y}_{c} = \frac{1}{z_{R_{c}} + z_{L_{c}}}$$

$$\underline{U}_{N_n} = \frac{\underline{E}_A \underline{Y}_a + \underline{E}_B \underline{Y}_b + \underline{E}_C \underline{Y}_C}{\underline{Y}_a + \underline{Y}_b + \underline{Y}_C}$$

$$\underline{E}_A = E_A e^{j0^o}$$

$$\underline{E}_B = E_B e^{-j120^o}$$

$$\underline{E}_C = E_C e^{j120^o}$$

$$\underline{U}_a = \underline{E}_A - \underline{U}_{N_n}$$

$$\underline{U}_b = \underline{E}_B - \underline{U}_{N_n}$$

$$\underline{U}_C = \underline{E}_C - \underline{U}_{N_n}$$

$$I_a = U_a * Y_a$$

$$\underline{I}_b = \underline{U}_b * \underline{Y}_b$$

$$\underline{I}_c = \underline{U}_c * \underline{Y}_c$$

$$\underline{I}_{N_n} = \underline{I}_a + \underline{I}_b + \underline{I}_c$$

$$P_a = U_a I_a \cos \varphi_a$$

$$P_b = U_b I_b \cos \varphi_b$$

$$P_c = U_c I_c \cos \varphi_c$$

Опыт №1:

$$\underline{Y}_{a} = \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{252 + j\omega L_{a}} = \frac{1}{252 + j314,159 \cdot 0,707}$$
$$= 0,003e^{-j41,393^{\square}} [\text{Om}^{-1}]$$

$$\begin{split} & \underline{Y}_b = \frac{1}{\underline{Z}_{R_b} + \underline{Z}_{L_b}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{ll}}} \, [\text{Om}^{-1}] \\ & \underline{Y}_c = \frac{1}{Z_{R_c} + Z_{L_c}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{ll}}} \, [\text{Om}^{-1}] \\ & \underline{U}_{N_n} = \frac{\underline{E}_A \underline{Y}_a + \underline{E}_B \underline{Y}_b + \underline{E}_C \underline{Y}_C}{\underline{Y}_a + \underline{Y}_b + \underline{Y}_C} \approx 0 \, [\text{B}] \\ & \underline{E}_A = E_A e^{j0^o} = 44,998 \cdot e^{j0^{\text{ll}}} \, [\text{B}] \\ & \underline{E}_B = E_B e^{-j120^o} = 44,998 \cdot e^{-j120^{\text{ll}}} \, [\text{B}] \\ & \underline{E}_C = E_C e^{j120^o} = 44,998 \cdot e^{j120^{\text{ll}}} \, [\text{B}] \\ & \underline{U}_a = \underline{E}_A - \underline{U}_{N_n} = 44,998 \cdot e^{j120^{\text{ll}}} \, [\text{B}] \\ & \underline{U}_b = \underline{E}_B - \underline{U}_{N_n} = 44,998 \cdot e^{j120^{\text{ll}}} \, [\text{B}] \\ & \underline{U}_c = \underline{E}_C - \underline{U}_{N_n} = 44,998 \cdot e^{j120^{\text{ll}}} \, [\text{B}] \\ & \underline{U}_b = \underline{U}_b * \underline{Y}_a = 44,998 \cdot e^{j120^{\text{ll}}} \, [\text{B}] \\ & \underline{U}_b = \underline{U}_b * \underline{Y}_a = 44,998 \cdot e^{j120^{\text{ll}}} \, [\text{B}] \\ & \underline{U}_c = \underline{U}_c * \underline{Y}_c = 44,998 \cdot e^{j120^{\text{ll}}} \cdot 0,003e^{-j41,393^{\text{ll}}} = 0,134e^{-41,393^{\text{ll}}} \, [\text{A}] \\ & \underline{L}_b = \underline{U}_c * \underline{Y}_c = 44,998 \cdot e^{j120^{\text{ll}}} \cdot 0,003e^{-j41,393^{\text{ll}}} = 0,134e^{78,608^{\text{ll}}} \, [\text{A}] \\ & \underline{L}_{N_n} = \underline{L}_a + \underline{L}_b + \underline{L}_c \approx 0 \, [\text{A}] \\ & P_a = U_a I_a \cos \varphi_a = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_b = U_b I_b \cos \varphi_b = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[\text{BT}] \\ & P_c = U_c I_c \cos \varphi_c = 44,998 \cdot 0,134 \cdot \cos$$

Опыт №2:

$$\underline{Y}_{a} = \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{252 + j\omega L_{a}} = \frac{1}{252 + j314,159 \cdot 0,707}$$

$$= 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{z}_{R_{b}} + \underline{z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{z_{R_{a}} + z_{L_{a}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\circ}} [\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{A} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{C}}{\underline{Y}_{A} + \underline{Y}_{b} + \underline{Y}_{C}} \approx 0 \text{ [B]}$$

$$\underline{E}_{A} = E_{A}e^{j0^{\otimes}} = 44,998 \cdot e^{j0^{\otimes}} \text{ [B]}$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\otimes}} = 44,998 \cdot e^{-j120^{\otimes}} \text{ [B]}$$

$$\underline{E}_{C} = E_{C}e^{j120^{\otimes}} = 44,998 \cdot e^{j120^{\otimes}} \text{ [B]}$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\otimes}} \text{ [B]}$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\otimes}} \text{ [B]}$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\otimes}} \text{ [B]}$$

$$\underline{I}_{a} = \underline{U}_{a} * \underline{Y}_{a} = 44,998 \cdot e^{j0^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,134e^{-j41,393^{\otimes}} \text{ [A]}$$

$$\underline{I}_{b} = \underline{U}_{b} * \underline{Y}_{b} = 44,998 \cdot e^{-j120^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,134e^{-j161,393^{\otimes}} \text{ [A]}$$

$$\underline{I}_{C} = \underline{U}_{C} * \underline{Y}_{C} = 44,998 \cdot e^{j120^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,134e^{j78,608^{\otimes}} \text{ [A]}$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{C} = 0 \text{ [A]}$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 44,998 \cdot 0,134 \cdot \cos(41,393^{\otimes}) = 4,522 \text{ [BT]}$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 44,998 \cdot 0,134 \cdot \cos(41,393^{\otimes}) = 4,522 \text{ [BT]}$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 44,998 \cdot 0,134 \cdot \cos(41,393^{\otimes}) = 4,522 \text{ [BT]}$$

Опыт №3:

$$\underline{Y}_{a} = \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0472}$$

$$= 0,004e^{-j41,433^{\circ}}[\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\circ}}[\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\circ}}[\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{C}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{C}} \approx 0 \text{ [B]}$$

$$\underline{E}_{A} = E_{A}e^{j0^{\circ}} = 44,998 \cdot e^{j0^{\circ}}[\text{B}]$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\circ}} = 44,998 \cdot e^{-j120^{\circ}}[\text{B}]$$

$$\underline{E}_{C} = E_{C}e^{j120^{\text{ll}}} = 44,998 \cdot e^{j120^{\text{ll}}} [B]$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\text{ll}}} [B]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\text{ll}}} [B]$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\text{ll}}} [B]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 44,998 \cdot e^{j0^{\text{ll}}} \cdot 0,004e^{-j41,433^{\text{ll}}} = 0,201e^{-j41,433^{\text{ll}}} [A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 44,998 \cdot e^{-j120^{\text{ll}}} \cdot 0,003e^{-j41,393^{\text{ll}}} = 0,134e^{-j161,393^{\text{ll}}} [A]$$

$$\underline{I}_{C} = \underline{U}_{C} \cdot \underline{Y}_{C} = 44,998 \cdot e^{j120^{\text{ll}}} \cdot 0,009e^{-j41,433^{\text{ll}}} = 0,402e^{j78,568^{\text{ll}}} [A]$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0,201e^{-j41,433^{\text{ll}}} + 0,134e^{-j161,393^{\text{ll}}} + 0,402e^{j78,568^{\text{ll}}}$$

$$= 0,241e^{j64,668^{\text{ll}}} [A]$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 44,998 \cdot 0,201 \cdot \cos(41,433^{\text{ll}}) = 6,775[BT]$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 44,998 \cdot 0,134 \cdot \cos(41,393^{\text{ll}}) = 4,522[BT]$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 44,998 \cdot 0,402 \cdot \cos(41,433^{\text{ll}}) = 13,549[BT]$$

Опыт №4:

$$\begin{split} \underline{Y}_{a} &= \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472} \\ &= 0,004e^{-j41,433^{\text{ll}}}[\text{Om}^{-1}] \\ \underline{Y}_{b} &= \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{ll}}}[\text{Om}^{-1}] \\ \underline{Y}_{c} &= \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\text{ll}}}[\text{Om}^{-1}] \\ \underline{U}_{N_{n}} &= \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{c}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} = \\ &= \frac{44,998(e^{j0^{\text{ll}}} \cdot 0,004e^{-j41,433^{\text{ll}}} + e^{-j120^{\text{ll}}} \cdot 0,003e^{-j41,393^{\text{ll}}} + e^{j120^{\text{ll}}} \cdot 0,009e^{-j41,433^{\text{ll}}}) \\ &= 14,740e^{j106,094^{\text{ll}}}[\text{B}] \\ \underline{E}_{A} &= E_{A}e^{j0^{\text{ll}}} = 44,998 \cdot e^{j0^{\text{ll}}}[\text{B}] \\ \underline{E}_{B} &= E_{B}e^{-j120^{\text{ll}}} = 44,998 \cdot e^{j120^{\text{ll}}}[\text{B}] \\ \underline{E}_{C} &= E_{C}e^{j120^{\text{ll}}} = 44,998 \cdot e^{j120^{\text{ll}}}[\text{B}] \end{split}$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\otimes}} - 14,740e^{j106,094^{\otimes}} = 51,086e^{-j16,094^{\otimes}} [B]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{-j120^{\otimes}} - 14,740e^{j106,094^{\otimes}} = 56,231e^{-j109,114^{\otimes}} [B]$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\otimes}} - 14,740e^{j106,094^{\otimes}} = 30,893e^{j126,585^{\otimes}} [B]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 51,086e^{-j16,094^{\otimes}} \cdot 0,004e^{-j41,433^{\otimes}} = 0,228e^{-j57,527^{\otimes}} [A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 56,231e^{-j109,114^{\otimes}} \cdot 0,003e^{-j41,393^{\otimes}} = 0,167e^{-j150,507^{\otimes}} [A]$$

$$\underline{I}_{C} = \underline{U}_{C} \cdot \underline{Y}_{C} = 30,893e^{j126,585^{\otimes}} \cdot 0,009e^{-j41,433^{\otimes}} = 0,276e^{j85,153^{\otimes}} [A]$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{C} = 0[A]$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 51,086 \cdot 0,228 \cdot \cos(41,433^{\otimes}) = 8,732 [BT]$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 56,231 \cdot 0,167 \cdot \cos(41,393^{\otimes}) = 7,061 [BT]$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 30,893 \cdot 0,276 \cdot \cos(41,433^{\otimes}) = 6,386 [BT]$$

Опыт №5:

$$\underline{Y}_{a} = \frac{1}{\underline{Z}_{R_{a}} + \underline{Z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472}$$

$$= 0,004e^{-j41,433^{\text{T}}} [\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{Z}_{R_{b}} + \underline{Z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0[\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{\text{T}}} [\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{a} + \underline{E}_{B}\underline{Y}_{b} + \underline{E}_{C}\underline{Y}_{C}}{\underline{Y}_{a} + \underline{Y}_{b} + \underline{Y}_{c}} \approx 0 [\text{BT}]$$

$$\underline{E}_{A} = E_{A}e^{j0^{\text{T}}} = 44,998 \cdot e^{j0^{\text{T}}} [\text{BT}]$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\text{T}}} = 44,998 \cdot e^{j120^{\text{T}}} [\text{BT}]$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j0^{\text{T}}} [\text{BT}]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 0[\text{BT}]$$

$$\underline{U}_{b} = \underline{E}_{C} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{\text{T}}} [\text{BT}]$$

$$\underline{I}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 44,998 \cdot e^{j0^{\circ}} \cdot 0,004e^{-j41,433^{\circ}} = 0,201e^{(-j41,433^{\circ})}[A]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 0 \cdot 0 = 0 [A]$$

$$\underline{I}_{c} = \underline{U}_{c} \cdot \underline{Y}_{c} = 44,998 \cdot e^{j120^{\circ}} \cdot 0,009e^{-j41,433^{\circ}} = 0,402e^{j78,568^{\circ}}[A]$$

$$\underline{I}_{N_{n}} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0,201e^{(-j41,433^{\circ})} + 0 + 0,402e^{j78,568^{\circ}}$$

$$= 0,348e^{j48,567^{\circ}}[A]$$

$$P_{a} = U_{a}I_{a}\cos\varphi_{a} = 44,998 \cdot 0,201 \cdot \cos(41,433^{\circ}) = 6,775 [BT]$$

$$P_{b} = U_{b}I_{b}\cos\varphi_{b} = 0 [BT]$$

$$P_{c} = U_{c}I_{c}\cos\varphi_{c} = 44,998 \cdot 0,402 \cdot \cos(41,433^{\circ}) = 13,549 [BT]$$

Опыт №6:

$$\underline{Y}_{a} = \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472}$$

$$= 0,004e^{-j41,433^{28}} [\text{Om}^{-1}]$$

$$\underline{Y}_{b} = \frac{1}{\underline{z}_{R_{b}} + \underline{z}_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0 [\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{z_{R_{c}} + z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{28}} [\text{Om}^{-1}]$$

$$\underline{U}_{N_{n}} = \frac{\underline{E}_{A}\underline{Y}_{b} + \underline{E}_{b}\underline{Y}_{b} + \underline{E}_{c}\underline{Y}_{c}}{\underline{Y}_{b} + \underline{Y}_{b} + \underline{Y}_{c}} = \frac{44,998(e^{j0^{28}} \cdot 0,004e^{-j41,433^{28}} + e^{j120^{8}} \cdot 0,009e^{-j41,433^{28}})}{0,004e^{-j41,433^{28}} + 0,009e^{-j41,433^{28}}} = 25,979e^{j90^{8}} [\text{B}]$$

$$\underline{E}_{A} = E_{A}e^{j0^{28}} = 44,998 \cdot e^{j0^{28}} [\text{B}]$$

$$\underline{E}_{B} = E_{B}e^{-j120^{28}} = 44,998 \cdot e^{j120^{28}} [\text{B}]$$

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{28}} [\text{B}]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 0 [\text{B}]$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{N_{n}} = 44,998 \cdot e^{j120^{28}} - 25,979e^{j90^{28}} = 25,979e^{j50,001^{28}} [\text{B}]$$

$$\underline{U}_{a} = \underline{U}_{a} \cdot \underline{Y}_{a} = 51,959e^{-j29,999^{28}} \cdot 0,004e^{-j41,433^{28}} = 0,232e^{-j71,432^{28}} [\text{A}]$$

$$\underline{I}_{b} = \underline{U}_{b} \cdot \underline{Y}_{b} = 0 [\text{A}]$$

$$\underline{I}_{c} = \underline{U}_{c} \cdot \underline{Y}_{c} = 25,979e^{150,001^{8}} \cdot 0,009e^{-j41,433^{8}} = 0,232e^{j108,568^{88}} [\text{A}]$$

$$\begin{split} \underline{I}_{N_n} &= \underline{I}_a + \underline{I}_b + \underline{I}_c = 0 \text{ [A]} \\ P_a &= U_a I_a \cos \varphi_a = 51,959 \cdot 0,232 \cdot \cos(41,433) = 9,033 \text{ [BT]} \\ P_b &= U_b I_b \cos \varphi_b = 0 \text{ [BT]} \\ P_c &= U_c I_c \cos \varphi_c = 25,979 \cdot 0,232 \cdot \cos(41,433) = 4,516 \text{[BT]} \end{split}$$

Опыт №7:

OTHER TABLE 1:
$$Y_{a} = \frac{1}{Z_{R_{a}} + Z_{L_{a}}} = \frac{1}{168 + j\omega L_{a}} = \frac{1}{168 + j314,159 \cdot 0,472}$$

$$= 0,004e^{-j41,433^{3}}[Om^{-1}]$$

$$Y_{b} = \frac{1}{Z_{R_{b}} + Z_{L_{b}}} = \frac{1}{252 + j314,159 \cdot 0,707} = \infty[Om^{-1}]$$

$$Y_{c} = \frac{1}{Z_{R_{c}} + Z_{L_{c}}} = \frac{1}{84 + j314,159 \cdot 0,236} = 0,009e^{-j41,433^{3}}[Om^{-1}]$$

$$U_{N_{n}} = \frac{E_{A}Y_{a} + E_{B}Y_{b} + E_{C}Y_{c}}{Y_{a} + Y_{b} + Y_{c}} = E_{B} = 44,998 \cdot e^{-j120^{3}}[B]$$

$$E_{A} = E_{A}e^{j0^{3}} = 44,998 \cdot e^{j0^{3}}[B]$$

$$E_{B} = E_{B}e^{-j120^{3}} = 44,998 \cdot e^{j120^{3}}[B]$$

$$E_{C} = E_{C}e^{j120^{3}} = 44,998 \cdot e^{j120^{3}}[B]$$

$$U_{a} = E_{A} - U_{N_{n}} = 44,998 \cdot e^{j120^{3}}[B]$$

$$U_{b} = E_{B} - U_{N_{n}} = 0 \quad [B]$$

$$U_{c} = E_{C} - U_{N_{n}} = 44,998 \cdot e^{j120^{3}} - 44,998 \cdot e^{-j120^{3}} = 77,945e^{j30,008^{3}}[B]$$

$$U_{a} = U_{a} \cdot Y_{a} = 77,945e^{j30,008^{3}} \cdot 0,004e^{-j41,433^{3}} = 0,350e^{-j11,425^{3}}[A]$$

$$U_{b} = U_{b} \cdot Y_{b} = 0,929e^{j208,9^{3}}[A]$$

$$U_{c} = U_{c} \cdot Y_{c} = 77,939e^{90^{3}} \cdot 0,009e^{-j41,433^{3}} = 0,701e^{j48,567^{3}}[A]$$

$$U_{N_{n}} = U_{a} + U_{b} + U_{c} = 0 \quad [A]$$

$$P_{a} = U_{a}I_{a} \cos \varphi_{a} = 77,945 \cdot 0,350 \cdot \cos(41,433) = 20,453 \quad [BT]$$

$$P_{b} = U_{b}I_{b} \cos \varphi_{b} = 0 \quad [BT]$$

$$P_{c} = U_{c}I_{c} \cos \varphi_{c} = 77,939 \cdot 0,701 \cdot \cos(41,433) = 40,965 \quad [BT]$$

Векторные диаграммы напряжений и токов приёмника

1.

2.

4.

5.

Часть 2

Схема исследуемой цепи

1) Схема №1

2) Схема №2

Заполненная таблица 3.2

№	Вид нагрузки		Ia, A	Ib, A	Ic, A	Iab, A	Ibc, A	Ica, A	Pab, Вт	Рьс, Вт	Рса, Вт	Zab, Ом	Zbc, Ом	Zca, Ом
		Изм	0,401	0,402	0,402	0,232	0,232	0,232	13,064	13,063	13,064	335,91 2	335,91 2	335,91 2
1	Симметричная нагрузка	Выч	0,402	0,402	0,402	0,232	0,232	0,232	13,064	13,063	13,064	335,91 2	335,91 2	335,91 2
		Изм	0,917	0,505	0,836	0,348	0,232	0,696	19,603	13,063	39,206	224,08 0	335,91 2	112,04 0
2	Несимметричная нагрузка	Выч	0,920	0,505	0,836	0,348	0,232	0,696	19,603	13,063	39,206	224,08 0	335,91 2	112,04 0
		Изм	0,915	0,348	0,696	0,348	0,000	0,696	19,603	0	39,206	224,08 0	335,91 2	112,04 0
3	Обрыв одной фазы нагрузки	Выч	0,920	0,348	0,696	0,348	0,000	0,696	19,603	0	39,206	224,08 0	335,91 2	112,04 0
		Изм	0,345	0,348	0,000	0,348	0,000	0,000	19,603	0	0	224,08 0	335,91 2	112,04 0
4	Обрыв двух фаз нагрузки	Выч	0,348	0,348	0,000	0,348	0,000	0,000	19,603	0	0	224,08 0	335,91 2	112,04 0
	Обрыв	Изм	0,000	0,350	0,350	0,116	0,232	0,116	3,775	13,063	6,538	335,91 2	335,91 2	335,91
5	линейного провода с симметричной нагрузкой	Выч	0,000	0,351	0,350	0,116	0,232	0,116	3,775	13,063	6,539	335,91 2	335,91 2	335,91 2
	Обрыв	Изм	0,832	0,000	0,836	0,139	0,139	0,696	7,834	4,520	39,206	224,08 0	335,91 2	112,04 0
6	линейного провода с несимметрично й нагрузкой	Выч	0,833	0,000	0,836	0,139	0,139	0,696	7,834	4,519	39,206	224,08 0	335,91 2	112,04 0

Расчётные формулы и расчёты

$$\underline{U}_{ab} = \underline{E}_A - \underline{E}_B$$

$$\underline{U}_{bc} = \underline{E}_B - \underline{E}_C$$

$$\underline{U}_{ca} = \underline{E}_{C} - \underline{E}_{A}$$

$$\underline{I}_{ab} = \underline{U}_{ab}\underline{Y}_{ab}$$

$$\underline{I}_{bc} = \underline{U}_{bc}\underline{Y}_{bc}$$

$$\underline{I}_{ca} = \underline{U}_{ca}\underline{Y}_{ca}$$

$$I_A = I_{ab} - I_{ca}$$

$$\underline{I}_B = \underline{I}_{bc} - \underline{I}_{ab}$$

$$I_C = I_{ca} - I_{bc}$$

Опыт №1:

$$\underline{Y}_{a} = \frac{1}{\underline{z}_{R_{a}} + \underline{z}_{L_{a}}} = \frac{1}{252 + j\omega L_{a}} = \frac{1}{252 + j314,159 \cdot 0,707}$$
$$= 0,003e^{-j41,393^{\square}}[\text{Om}^{-1}]$$

$$\underline{Y}_b = \frac{1}{\underline{z}_{R_b} + \underline{z}_{L_b}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{2}} [\text{Om}^{-1}]$$

$$\underline{Y}_{c} = \frac{1}{z_{R_{c}} + z_{L_{c}}} = \frac{1}{252 + j314,159 \cdot 0,707} = 0,003e^{-j41,393^{\text{d}}} [\text{Om}^{-1}]$$

$$E_A = E_A e^{j0^{2}} = 44,998 \cdot e^{j0^{2}} [B]$$

$$\underline{E}_{B} = E_{B}e^{-j120^{\circ}} = 44,998 \cdot e^{-j120^{\circ}}$$
 [B]

$$E_C = E_C e^{j120^{\circ}} = 44,998 \cdot e^{j120^{\circ}}$$
 [B]

$$\underline{U}_{ab} = \underline{E}_A - \underline{E}_B = 44,998 \cdot e^{j0^{\square}} - 44,998 \cdot e^{-j120^{\square}} = 77,938e^{j30^{\square}}$$

$$\underline{U}_{bc} = \underline{E}_B - \underline{E}_C = 44,998 \cdot e^{-j120^{\circ}} - 44,998 \cdot e^{j120^{\circ}} = 77,938e^{j30^{\circ}}$$

$$\underline{U}_{Ca} = \underline{E}_{C} - \underline{E}_{A} = 44,998 \cdot e^{j120^{\square}} - 44,998 \cdot e^{j0^{\square}} = 77,938e^{j30^{\square}}$$

$$\underline{I}_{ab} = \underline{U}_{ab}\underline{Y}_{ab} = 77,938e^{j30^{\circ}} \cdot 0,003e^{-j41,393^{\circ}} = 0,232e^{-j11,393^{\circ}}$$
 [A]

$$\underline{I}_{bc} = \underline{U}_{bc}\underline{Y}_{bc} = 77,938e^{j30^{\square}} \cdot 0,003e^{-j41,393^{\square}} = 0,232e^{-j131,393^{\square}}$$
[A]

$$\underline{I}_{ca} = \underline{U}_{ca}\underline{Y}_{ca} = 77,938e^{j30^{\circ}} \cdot 0,003e^{-j41,393^{\circ}} = 0,232e^{j108,608^{\circ}} [A]$$

$$\underline{I}_{A} = \underline{I}_{ab} - \underline{I}_{ca} = 0,232e^{-j11,393^{\circ}} - 0,232e^{j108,608^{\circ}} = 0,402e^{-j41,393^{\circ}} [A]$$

$$\underline{I}_{B} = \underline{I}_{bc} - \underline{I}_{ab} = 0,232e^{-j131,393^{\circ}} - 0,232e^{-j11,393^{\circ}} = 0,402e^{-j161,393^{\circ}} [A]$$

$$\underline{I}_{C} = \underline{I}_{ca} - \underline{I}_{bc} = 0,232e^{j108,608^{\circ}} - 0,232e^{-j131,393^{\circ}} = 0,402e^{j78,608^{\circ}} [A]$$

Векторные диаграммы напряжений и токов приёмника

1.

2.

4.

5.

Выводы по работе

Выполнив данную лабораторную работу, мы узнали принцип работы трёхфазных электрических цепей. Выяснили как соотносятся между собой значения элементов цепи со способом соединения трёхфазной цепи и с равномерной, и неравномерной нагрузкой и с наличием и отсутствием нулевого провода. Заметим, что наличие нулевого провода балансирует напряжения на фазах в независимости от того какой ток протекает в этих фазах.