First Name: Last Nam	ne: Student ID:
Functions: Transformations and Properties	
1. For each relation given,	
a. state the domain and range;	
b. identify whether the relation is a function or not.	
i. {(1,1),(2,1),(3,2),(4,3),(5,5),(6,8)}	ii. x = -2
iii. $y = (x+1)^2 - 2$	iv. $(x-1)^2+y^2=9$
m. y -(X+1) -2	IV. (x-1) +y - 9
$v. y = -3\sqrt{x+2} + 5$	vi. $y = 2^{x-4} + 3$

2. If f(x)=2x-3 and $g(x)=6x^2+3x-18$, determine the value(s) of x such that f(x)=g(x).

3. The graph of y=f(x) is shown.

Determine the following:

- a. the value of f(0)
- b. the value of x such that f(x)=0
- c. the value of f(4)-f(-4)
- d. state the domain and range

4. Given $f(x)=(x-3)^2$ and g(x)=4x+3, determine in simplest form

$$a. f(x)-g(x)$$

c.
$$f(x)g(x)$$

e.
$$g(g(x))$$

f.
$$[g(x)]^2$$

5. If f(x)=5-2x+k and f(f(k))=13, determine the value of f(-4).

6. If g(x)=1-3x and $f(g(x))=9x^2-6x+5$, determine the value of f(5).

7. Given the graphs of y=f(x) and y=g(x) as shown in the graph below

identify the following.

- a. where f(x)=g(x)
- b. the interval(s) where g(x)<0
- c. the interval(s) where $f(x) \ge g(x)$
- d. the interval(s) where both functions are decreasing.
- e. the local maxima and minima for both functions

8. Solve. Write your answers using interval notation.

a.
$$-3 < \frac{2x+5}{3} \le 5$$

b.
$$\frac{3}{x-2} > 1$$

$$c. \frac{3x-6}{4x-8} \le 1$$

d.
$$x(x+3)(x-4) > 0$$

9. Given the graph of the function y=f(x), draw the graphs of the following transformed function y=2f(-(x-4))-2:

10. The function f(x) satisfies the equation f(x)=f(x-1)+f(x+1) for all values of x. Define f(1)=1 and f(3)=3; then, f(2)=1+3=4. Determine the value of f(1867).