UDAAN 2025

MATHS

Some Applications Of Trigonometry

DHA: 01

- Q1 The length of shadow of a building, when the sun's altitude is 60°, is 20 m less than that it was when it was 45°. The height of the building is:
 - (A) 54.48 m
- (B) 47.32 m
- (C) 64.32 m
- (D) 57.48 m
- **Q2** If a pole 15 m high casts a shadow $5\sqrt{3}$ m long, then sun's elevation is:
 - (A) 60°
- (B) 45°
- (C) 30°
- (D) 90°
- Q3 An observer 1.5 m tall is 25.5 m away from a tower and the angle of elevation of the top of the tower from the eye of the observer is 45°. The height of the tower is:
 - (A) 27 m
- (B) 30 m
- (C) 28.5 m
- (D) None of these
- Q4 If the elevation of the sun changes from 30° to 60° then the difference between the lengths of shadows of a pole 15 m high, is:
 - (A) 7.5 m
- (B) 15 m
- (C) $10\sqrt{3}m$
- (D) $5\sqrt{3}m$
- **Q5** A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is $30\degree$:
 - (A) $10\sqrt{3} \text{ m}$
 - (B) $\frac{20}{\sqrt{3}}$ m
 - (C) 10 m
 - (D) Can't be determined
- **Q6** In this adjoining figure, the length of BC is:

- (A) $2\sqrt{3}cm$
- (C) $4\sqrt{3}cm$
- (D) 3 cm
- Q7 The angle of elevation of the top of a tower at point on the ground is 30°. If on walking 20 metres toward the tower, the angle of elevation become 60°, then the height of the tower is:
 - (A) 10 metre
- (B) $\frac{10}{\sqrt{3}}$ metre
- (C) $10\sqrt{3}$ metre
- (D) None of these
- Q8 In the given figure, the positions of the observer and the object are mentioned, the angle of depression is:

- (A) 30°
- (B) 90°
- $(C) 60^{\circ}$
- (D) 45°
- Q9 The string of a kite is 100 m long and it makes an angle of 60° with the horizontal. If there is no slack in the string, the height of the kite from the ground is:

- $\begin{array}{lll} \text{(A)} \ 50\sqrt{3}m & & \text{(B)} \ 100\sqrt{3}m \\ \text{(C)} \ 50\sqrt{2}m & & \text{(D)} \ 100 \ \text{m} \end{array}$
- **Q10** The tops of two towers of heights x and y, standing on a level ground subtend angles of 30° and 60° respectively at the centre of the line joining their feet. Then, x: y is:

(A) 1: 2 (B) 2:1 (C) 1: 3 (D) 3:1

Answer	Key
--------	-----

Q1 (B)	Q6	(D)
--------	----	-----

Q5 (C) Q10 (C)

Hints & Solutions

Q1 Text Solution:

$$In \ \Delta \ ABC$$
 $an 60^0 = rac{AB}{BC} = rac{h}{x}$
 $\Rightarrow \sqrt{3} = rac{h}{x} \dots \dots (i)$

Again

$$Again$$
 $In \ \Delta \ ABD$
 $an 45^0 = \frac{AB}{BD}$
 $\Rightarrow 1 = \frac{AB}{BC + CD}$
 $\Rightarrow 1 = \frac{h}{x + 20}$
 $\Rightarrow x + 20 = h \dots (ii)$

$$from \ eq \ ig(iig) \ and \ ig(iiig) \ rac{h}{\sqrt{3}} + \ 20 \ = \ h \ \Rightarrow \ 20 \ = \ h \ - rac{h}{\sqrt{3}}$$

$$\Rightarrow 20 = h \left(1 - \frac{1}{\sqrt{3}} \right)$$

$$\Rightarrow h = \frac{20\sqrt{3}}{\sqrt{3} - 1}$$

$$\Rightarrow h = \frac{20\sqrt{3}(\sqrt{3} + 1)}{2}$$

$$\Rightarrow h = 10 \left(3 + \sqrt{3} \right)$$

$$h = 10 (3 + 1.732)$$

= $10 \times 4.732 = 47.32 m$

Video Solution:

Q2 Text Solution:

Height of the pole = 15 m Length of the shadow = $5\sqrt{3}$ m Let the angle of elevation be ' θ '.

Then from the figure, $\tan \theta = \frac{Perpendicular}{Perpendicular}$ $\frac{15}{5\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}$ $\tan \theta = \sqrt{3}$

$$\tan 60^{\circ} = \sqrt{3}$$
$$\therefore \theta = 60^{\circ}$$

Video Solution:

Q3 Text Solution:

Height of tower = BD

$$BD = BC + CD$$

$$BD = 1.5 + CD$$

Now In

$$\Delta ECD$$

$$an 45^0 = rac{DC}{EC}$$

$$\Rightarrow 1 = \frac{DC}{EC}$$

$$\Rightarrow 1 = \frac{DC}{25.5}$$

$$DC = 25.5 m$$

Again BD = 1.5 + 25.5 = 27 m

Video Solution:

Text Solution:

Let AO = length of shadow (initial)

AO' = length of shadow (final)

Difference = AO - AO' = OO

$$In \Delta ABO$$

$$\tan 30^0 = \frac{AB}{AO} = \frac{15}{AO}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{15}{AO}$$

$$\Rightarrow AO = 15\sqrt{3} m$$

Again,

In
$$\triangle$$
 ABO'

$$\tan 60^0 = \frac{AB}{AO'} = \frac{15}{AO'}$$

$$\Rightarrow \sqrt{3} = \frac{15}{AO'}$$

$$\Rightarrow$$
 $AO' = \frac{15}{\sqrt{3}} = 5\sqrt{3}m$

Difference = OO' = $15\sqrt{3} - 5\sqrt{3} = 10\sqrt{3}m$

Video Solution:

Q5 Text Solution:

In ∆ABC,

AB = height of pole

$$AC = Rope = 20 m$$

we have

$$\sin\!30^0 = \frac{height\ of\ pole}{20}$$

$$\Rightarrow \frac{1}{2} = \frac{height\ of\ pole}{20}$$

⇒height of pole =10 m

Video Solution:

Q6 Text Solution:

$$\sin 30^0 = \frac{BC}{AC} = \frac{Perpendicular}{Hypotenuse}$$

 $\Rightarrow \frac{1}{2} = \frac{BC}{6}$
 $\Rightarrow BC = 3cm$

Video Solution:

Text Solution:

В 0 0'

Let say h be the height of the tower, x be the initial distance and x+20 be the final distance away from the foot of the tower of the given point.

Now using trigonometry for the above triangles, $\tan 60^0 = \frac{AB}{BO} = \frac{h}{x}$

$$\sqrt{3}=rac{h}{x}$$
(1) $x=rac{h}{\sqrt{3}}$

Also,

Also,
$$\tan 30^0 = \frac{AB}{BO'}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x+20}$$

$$\Rightarrow \sqrt{3}h = x + 20$$

$$\Rightarrow \sqrt{3}h = \frac{h}{\sqrt{3}} + 20$$

$$\Rightarrow \sqrt{3}h - \frac{h}{\sqrt{3}} = 20$$

$$\Rightarrow h\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right) = 20$$

$$\Rightarrow h\left(\frac{3-1}{\sqrt{3}}\right) = 20$$

$$\Rightarrow \frac{2h}{\sqrt{3}} = 20$$

$$\Rightarrow h = 10\sqrt{3}m$$

Video Solution:

Text Solution:

The positions of the observer and the object are mentioned, the angle of depression is 60° .

Video Solution:

Q9 Text Solution:

Let height of kite = perpendicular = h and hypotenuse = length of string = 100 m $\sin\theta = \frac{Perpendicular}{hypotenuse}$

$$\sin 60^0 = \frac{h}{100}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{h}{100}$$

$$\Rightarrow h = \frac{100\sqrt{3}}{2}$$

$$\Rightarrow h = 50\sqrt{3}m$$

Video Solution:

Text Solution:

Let AB and CD be the two towers of heights x and y, respectively.

Suppose E is the centre of the line joining the feet of the two towers i.e. BD.

$$\sqrt{3}x = \frac{y}{\sqrt{3}}$$

$$\Rightarrow \frac{x}{y} = \frac{1}{3}$$

Hence, the ratio of x and y is 1:3.

Video Solution:

Android App | iOS App | PW Website

