EE315 - Electronics Laboratory

Experiment - 3 Simulation BJT Transistor and DC Biasing

Name: Emre Nedim Hepsağ Number: 250206012

Submission Date: 23/11/2020

Preliminary Work

3=>
$$V_{LE(Sot)} = 0$$

 $I_{C} > 10nA \Rightarrow i_{C} < \beta i_{B}$
 $I_{B} > 33nA$ and $V_{div} > 4$ $\sum I_{D} = S_{oteration}$
 $V_{O} > 1_{U,vod} = 0$ of $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 - 12 \times i_{B} \times \beta$
 $V_{O} = 10 \times i_{B} \times \beta$
 $V_$

Results

1. Build the circuit given in Figure **1**.

Place an NPN transistor on the schematic and select **BC547B** as the transistor model (right-click on the transistor figure and click on "Pick New Transistor"). You will use the same transistor model for all parts of the experiment. Place a normal resistor as R_{adj} change its value until you obtain $V_{CE} = 5 \ V$ with less than 1% error.

$$R_{adi} = 60.502k$$

1.a) Measure V_{BE} and the voltages across R_B , and R_C while V_{CE} is still at **5** V. Also measure I_B , I_C , and β .

$$V_{BE}$$
 =700.60444mV V_{RB} =4.842024V V_{RC} =2.4956417V I_{B} =32.280161 μ A I_{C} =9.2431172mA β =286.34049

1.b) Change every one of the resistance values R_B , R_C , R_E , and transistor parameters β , and $V_{BE(on)}$ by 1% and record the new I_C values in the following table. Change only one of the resistor values or parameters at a time and keep the others at their original settings for each I_C measurement.

changed component	new value of I _C (mA)	percent change in I _C
R _{B+%1}	9.1998833mA	% 4.68
R _{C+%1}	9.2406501mA	% 0.270
R _{E+%1}	9.2182383mA	% 2.69
β +%1	9.4211837mA	% 19.25
V _{BE(on) +%1}	9.2361631mA	% 0.757

1.c) Which value(s) among R_B , R_C , R_E , β , and $V_{BE(on)}$ has/have the most significant effect on I_C ?

>>As we can see from the table above, β value has the most significant effect on I_C . Because increment on β directly increases I_C then other variables.

2.a) Build the circuit in Figure 2. Measure the values of IB, IC, VB, VBE, and VCE.

$$I_B = 3.6623608 \mu A$$
 $I_C = 1.0867461 m A$ $\beta = 296.73376$ $V_B = 1.7302889 V$ $V_{BE} = 639.88048 m V$ $V_{RC} = 5.1077065 V$

2.b) In practice, all component values are specified with a tolerance range. Tolerance range determines the minimum and maximum of the actual values that will be obtained if several of these components are tested. For example, a **100 k\Omega** resistor with **5** % tolerance may have an actual value between **95 k\Omega** and **105 k\Omega**. Similarly, the minimum and maximum values of β are given in transistor datasheets.

If thousands of this circuit are to be manufactured, then you had to make sure that \mathbf{V}_{CE} will be reasonable within the tolerance range of all components. Indicate in the table below, which end (" \mathbf{min} " or " \mathbf{max} ") of the tolerance range should be used for each parameter in calculation of the lowest and highest values of \mathbf{V}_{CE} .

component or parameter	For lowest V _{CE}	For highest V _{CE}
R ₁	min	max
R ₂	max	min
Rc	max	min
RE	min	max
β	max	min
V _{BE(on)}	min	max

- **3.a)** Build the circuit given in Figure 3. Use a pulse waveform as v_{drv} that changes from 0 V to 10 V in 1 ms (i.e. PULSE(0 10 0 1m 1u 1m 3m)).
- **3.b)** Measure the range of v_{drv} values in which the transistor acts as a switch.

$$v_{\text{drv-Low-Max}} = 0 \text{ to } 839.16084\text{mV}$$
 (where $v_{\text{O}} > 90\% \text{ of V}_{\text{CC}}$)

$$v_{\text{dry-High-Min}} = 3.986014V \text{ to } 10V \text{ (where } v_{\text{O}} < 10\% \text{ of } V_{\text{CC}}$$
)

(Green line is Vout, Blue line is Vdrv)

4.a) Setup the circuit in Figure **4** using the R_B and R_C values previously calculated in the preliminary work. Set ν_{drv} source timing parameters to obtain a **10 kHz** pulse signal with **50** % duty cycle (i.e. PULSE(0 10 0 1u 1u 49u 100u)). Keep the ν_{drv} source **Trise** and **Tfall** settings at **1** μ s all the time. Set simulation time long enough to observe the steady state ν_O waveform. Change the peak voltage of ν_{drv} as in the following table and record the peak-to-peak ν_O voltage.

>>There is a small difference from input to output because of VBE.

Freq. (kHz)	ν _{drv} (Vpeak)	ν _Ο (Vp-p)
	2	1.59096V
	4	3.72872V
10	6	5.73555V
	8	7.61974V
	10	9.39504V
	2	0.72281V
	4	2.01100V
125	6	3.16614V
	8	4.20109V
	10	5.13072V

4.b) Set ν_{drv} peak voltage to **10 V** and increase ν_{drv} frequency (reduce **Ton** and **Tperiod**) until the peak-to-peak ν_{O} voltage decreases down to **5 V** roughly. Make sure that duty cycle of the ν_{drv} remains as **50%** while the **Trise** and **Tfall** settings are **1 µs** all the time. Measure ν_{O} for the other ν_{drv} peak voltage settings and record the results in the table above. Plot ν_{O} amplitude (**Vp-p**) versus ν_{drv} (**Vpeak**) for the two freuency settings.

>>I plotted above with the green line.

4.c) Comment on the difference in the output signals resulting from the changes in v_{drv} peak voltage and frequency.

>>For 4a we can formulize Vo with Vo = $10-R_C*(V_{drv}-V_{BE})/R_B*\beta$. Thus, when we increase the peak to peak voltage of V_{drv} , We obtain greater range of Vo which is the same thing as $V_{0(peak-peak)}$. Due to this relationship,peak to peak voltage of Vo and V_{drv} are inversely proportional.

On the other hand, transistors are not responding to the signal instantaneously as we can see below. That's why, when we increase the frequency of V_{drv} , we are able to decrease the peak to peak voltage of Vo. (Green = Vo, Blue = Vdrv)

Conclusion

>>In the first experiment, we figured out how to measure the various values on the thansistor circuit and we saw which variable has the most significant effect on the collector current.

In the second experiment, we find out how components values affects the V_{CE} value. The relationship is proportional, for lowest V_{CE} value, we need the lowest value of the component. However, if it is inversely proportional, the relationship is exactly the opposite. This improved our approach on tolerance values.

In the third experiment, we observed the relation between Vdrv and Vcc on transitor switch circuit.

In the last experiment, we saw how a frequency and peak to peak voltage of Vdrv affects the behavior of the Vo. We observed that the bjt transistor has a switching speed which is called slew rate and it acts as a capacitor. It is more observable when we have high output impedance. When the driving signal is applied to the transistor input, some time is needed to charge the emiter-junction transition capacitance. Because of this delay time or transit time, we saw smaller peak to peak Vo voltage when there is high frequency.