Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ©] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08	Rev 1.16	AI	22/05/25

CONTINUOUS INTERNAL EVALUATION - 2

Dept: AI	Sem / Div: 4	Sub: Artificial Intelligence	S Code: BAD402
Date:28/5/2025	Time: 3:00-4:30	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's
	PART A			
1	Explain the Syntax and Semantics of First Order Logic.	8	L2	CO4
	Explain the following with respect to the First Order Logic: i) Assertions and Queries in First Order Logic ii) The Kinship Domain iii) Numbers, Sets and Lists	10	L2	CO4
	i) A simple Knowledge Base ii) A simple Inference procedure iii) Logical Equivalence	7	L3	CO3
	OR		_	
2	Explain Unification and Lifting in Detail.	8	L2	CO4
1	Explain Forward Chaining Algorithm in detail with an example Criminal (West).	10	L	2 CO4
	Using the Simple Knowledge base, Modus Ponen and Inference rule prove that neither [1,2] nor [2,1] contains	7	L	CO3
	a pit. PART B			1
3	a Explain the basic probability notation in Detail:) Sample space, ii) The probability associated with a		1.2	CO5

Proposition, iii) Prior Probability, iv) Posterior Probability, v) Joint Probability , vi) Probability Density Function, vii) Random variable.			
b Illustrate the probabilistic reasoning in Wumpus World Scenario.	10	L3	CO5
c Deduce the R17 label by the simple resolution rule applied to Wumpus world to proove that there is pit in 3,1 ie P3,1.	7	L3	CO3
OR			
4 a Explain Bayes Rule and its Use in detail.	8	L2	CO5
t illustrate the absolute or marginal Independence with respect to Quantifying Uncertainity.	10	L3	CO5
c Write a pseudocode function PL-RESOLVE for a simple resolution algorithm for propositional logic that returns the set of all possible clauses.		L	CO

Frepared by: Prof. Akshaya D. Shetty

3315