Loading the Dataset and Initial Review

```
In [2]: M import pandas as pd

# Load the dataset
df = pd.read_csv('merged_dataset.csv')

# Display the first few rows to understand its structure and what kind of data it coudf.head()
```

Out[2]:

	WorkOrder	Item No.	Item	Shipment	DateClosed	Order Qty_x	Completed Qty	FOH	VO
0	15887.0	80-015- 11582716	ETWD BATTERY LINER, MACH	MS	2024-03-08	110.0	110.0	516.91	2072.7
1	15854.0	80-585- 7103926- 9MW	ENCLOSURE+HDWT INSTALL ASSEM	WELD	2024-03-13	1.0	1.0	2037.73	7523.9
2	15808.0	80-535- 7104257- 2M	COVER, BOTTOM, MACHINED	MS	2024-03-13	1.0	1.0	171.27	646.5
3	15807.0	80-535- 7104257- 2M	COVER, BOTTOM, MACHINED	MS	2024-03-13	1.0	1.0	231.31	867.2
4	15806.0	80-535- 7104257- 2M	COVER, BOTTOM, MACHINED	MS	2024-02-29	1.0	1.0	259.70	973.0
5 rows × 30 columns									
4									•

Assessing Data Cleanliness and Preprocessing Needs

```
In [3]:  # Check for missing values in each column
missing_values = df.isnull().sum()

# Check for duplicate rows
duplicate_rows = df.duplicated().sum()

# Checking data types for potential inconsistencies
data_types = df.dtypes

missing_values, duplicate_rows, data_types
```

Out[3]: (WorkOrder

0

ac[2].	(WOT KOT GCT	U
	Item No.	0
	Item	1
	Shipment	164
	DateClosed	0
	Order Qty_x	0
		0
	Completed Qty	-
	FOH	0
	VOH	0
	ActualMaterialCost	0
	ActualLaborCost	0
	MaterialPerUnit	0
	LaborPerUnit	0
	OHPerUnit	0
		-
	CostPerUnit	0
	Type	0
	lot	0
		3
	Program	
	Work Order	0
	Routing Number	2
	Item Bill Number	0
	Order Qty_y	0
	Hours in date range	0
	Up to date hours	0
	Machines	0
		-
	Cycle Time	27
	Predicted Hours	27
	remainHours	27
	Employee	0
		-
	WorkOrderID	0
	dtype: int64,	
	0,	
	-	C1 + C 4
	WorkOrder	float64
	Item No.	object
	Item	object
	Shipment	object
	•	-
	DateClosed	object
	Order Qty_x	float64
	Completed Qty	float64
	FOH	float64
	VOH	float64
	ActualMaterialCost	float64
	ActualLaborCost	float64
	MaterialPerUnit	object
	LaborPerUnit	object
	OHPerUnit	object
	CostPerUnit	object
	Туре	object
		-
	lot	object
	Program	object
	Work Order	object
	Routing Number	object
	Item Bill Number	object
	Order Qty_y	object
	Hours in date range	object
	Up to date hours	
		object
	Machines	object
	Cycle Time	object
	Predicted Hours	object
	remainHours	
		object
	Employee	object
	WorkOrderID	float64
	dtype: object)	
	acype. object)	

Data Cleaning Process

```
In [6]:  # Handling Missing Values and Correcting Data Types
    df['Cycle Time'] = pd.to_numeric(df['Cycle Time'], errors='coerce').fillna(0)
    df['Predicted Hours'] = pd.to_numeric(df['Predicted Hours'], errors='coerce').fillna
    df['remainHours'] = pd.to_numeric(df['remainHours'], errors='coerce').fillna(0)
    df['Shipment'].fillna('Unknown', inplace=True)
    df['Program'].fillna('Unknown', inplace=True)
    df['DateClosed'] = pd.to_datetime(df['DateClosed'])

# Confirm the changes by re-checking data types and missing values.
    df.dtypes, df.isnull().sum()
```

+ F IVI		Ontitle
Out[6]:	(WorkOrder	float64
	Item No.	object
	Item	object
	Shipment	object
	DateClosed	datetime64[ns]
	Order Qty_x	float64
	Completed Qty	float64
	FOH	float64
	VOH	float64
	ActualMaterialCost	float64
	ActualLaborCost	float64
	MaterialPerUnit	object
	LaborPerUnit	object
	OHPerUnit	object
	CostPerUnit	object
	Type	object
	lot	object
	Program	object
	Work Order	object
	Routing Number	object
	Item Bill Number	object
	Order Qty_y	object
	Hours in date range	object
	Up to date hours	object
	Machines	object
	Cycle Time	float64
	Predicted Hours	float64
	remainHours	float64
	Employee WorkOrderID	object float64
	dtype: object,	110004
	WorkOrder	0
	Item No.	0
	Item No.	1
	Shipment	0
	DateClosed	0
	Order Qty_x	0
	Completed Qty	0
	FOH	0
	VOH	0
	ActualMaterialCost	0
	ActualLaborCost	0
	MaterialPerUnit	0
	LaborPerUnit	0
	OHPerUnit	0
	CostPerUnit	0
	Туре	0
	lot	0
	Program	0
	Work Order	0
	Routing Number	2
	Item Bill Number	0
	Order Qty_y	0
	Hours in date range	0
	Up to date hours	0
	Machines	0
	Cycle Time	0
	Predicted Hours	0
	remainHours	0
	Employee	0
	WorkOrderID	0
	dtype: int64)	

Exploratory Data Analysis (EDA)

```
In [7]:
            import matplotlib.pyplot as plt
            import seaborn as sns
            # Set the aesthetic style of the plots
            sns.set style("whitegrid")
            # Summary statistics for labor-related columns
            labor_statistics = df[['Cycle Time', 'Predicted Hours', 'remainHours', 'ActualLaborC
            # Distribution plots for labor-related columns
            fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))
            fig.suptitle('Distribution of Labor-Related Metrics', fontsize=16)
            for ax, column in zip(axes.flatten(), ['Cycle Time', 'Predicted Hours', 'remainHours
                sns.histplot(df[column], kde=True, bins=30, ax=ax)
                ax.set title(column)
                ax.set_xlabel('')
                ax.set ylabel('Frequency')
                ax.xaxis.get_label().set_fontsize(12)
                ax.yaxis.get_label().set_fontsize(12)
            plt.tight_layout(rect=[0, 0.03, 1, 0.95])
            # Trends over time
            labor trend data = df.groupby(df['DateClosed'].dt.to period('M'))[['Cycle Time', 'Pr
            labor trend data['DateClosed'] = labor trend data['DateClosed'].dt.to timestamp()
            # Plotting labor hours trend over time
            fig, ax = plt.subplots(figsize=(14, 6))
            labor_trend_data.plot(x='DateClosed', y=['Cycle Time', 'Predicted Hours', 'remainHou
            ax.set_title('Labor Hours Trend Over Time', fontsize=16)
            ax.set_xlabel('Date', fontsize=14)
            ax.set_ylabel('Total Hours', fontsize=14)
            ax.legend(title='Labor Metrics')
            plt.xticks(rotation=45)
            plt.tight_layout()
            labor statistics
```

Out[7]:

	Cycle Time	Predicted Hours	remainHours	ActualLaborCost
count	434.000000	434.000000	434.000000	434.000000
mean	9.584032	16.494977	-9.546313	2159.752419
std	21.227471	24.857878	24.779028	10922.555809
min	-0.220000	-22.290000	-234.000000	0.000000
25%	0.112500	1.445000	-14.305000	556.227500
50%	0.950000	8.310000	-5.980000	943.590000
75%	8.310000	16.222500	0.000000	1779.657500
max	147.170000	147.170000	82.150000	203835.680000

Distribution of Labor-Related Metrics

Deep Dive Analysis

Relationship Between Predicted Hours and Actual Labor Cost

Identifying High Labor Cost Work Orders

Out[9]:

	WorkOrder	ActualLaborCost	DateClosed
433	5966.0	203835.68	2022-06-23
283	12785.0	99903.04	2024-01-24
147	13976.0	17084.07	2023-09-05
180	13616.0	10385.50	2024-01-24
287	12726.0	9569.11	2023-07-25

Correlation Analysis

Out[10]:

	Cycle Time	Predicted Hours	remainHours	ActualLaborCost
Cycle Time	1.000000	0.753286	-0.015541	0.031626
Predicted Hours	0.753286	1.000000	0.065792	0.045396
remainHours	-0.015541	0.065792	1.000000	-0.052120
ActualLaborCost	0.031626	0.045396	-0.052120	1.000000

Labor Cost Trend Analysis

Cycle Time Trend Analysis

Throughput Analysis


```
In [ ]: M
```