Lecture 20 Class equation and applications

Cagrangés theorem: If $H \le G$, G finite, then |H| |IG|.

Covollery: if |G| = p, a prime, then $G \cong \mathbb{Z}p$.

Proof: The $g \in G$, $g \ne e$ then $\langle g \rangle \le G$ so $|\langle g \rangle||p$ so $|\langle g \rangle| = p$ so $|\langle g \rangle| = G$. Thus G is cyclic.

Corollary: Any two groups of order p (p prime) are isomorphic.

A general problem is to try to figure out how many non isomorphic groups there are of a given order. One tool is the classequestion.

Recall G actson G by conjugation $g \cdot h = ghg^{-1}$. The orbits are the conjugacy classes [h] The stubilizer of $h \in G$ is the controllier Cent(h) = $\{g \mid gh = hg\}$. The center is $Z(G) = \{g \mid gh = hg\}$ for all $h \in G$.

Observe $g \in Z(G) \iff Cent(g) = G$. By orbit stubilizer theorem: $|[g]| = \frac{|G|}{|cent(g)|}$. $g \in Z(G) \iff |[g]| = 1$

Classequetion Assume Gisfinite. Then

 $|G| = |2(G)| + \sum_{\substack{\text{Conj.} \\ \text{Clusses} \\ [g] = G \setminus \frac{1}{2}(G)}} \frac{|G|}{|Cent(g)|}$

Proof conjugueous classes one a partition of G. 12(6) cents the classes of size one, the other term counts the rest.

$$\frac{E}{G} = \frac{G}{3} = \frac{E(S)}{3} = \frac{E(S)}{3$$

$$[(12)] = \{(12), ((3), (23))\}$$

$$cent(((2))) = \{c, (12)\}$$

$$[(123)] = \{(123), (132)\}$$

$$cent(((123))) = \{e, (123), (132)\}$$

$$|Z(s_3)| + \frac{|s_3|}{|\text{Cent}((12))|} + \frac{|s_3|}{|\text{Cent}((123))|} = 1 + \frac{6}{2} + \frac{6}{3} = 1 + 3 + 2 = 6$$

Some applications:

Proposition: If $|G| = p^n$, p prime, then $Z(G) \neq \{e\}$ (thre exist nontrivial elements in the center)

Provide If g = Z(6) the | Cent(g) | divides |6/=p" and is less than pⁿ so 161 is also divisible by p. 16ut(g)1

So in the class equation, p divides 191 and polivides $\frac{\sum_{\text{curj}} \frac{|G|}{|\text{cart}(g)|} \cdot S_0 p \text{ divides } |\frac{1}{2}(G)| \cdot S_{\text{ince}} |\frac{1}{2}(G)| z|,$ $\frac{\text{curjes}}{(G) = 6 \cdot 2(G)} \frac{|2(G)|}{|2(G)|} \cdot \text{is at least } p \cdot \frac{1}{2}(G)$ 12(G) | is at least p. 10

Proposition: If $|G| = p^2$ then either $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Proof If G is cyclic, G = Zp and we are done. So suppose G is not agalic. Then any nonidentity element has order p: If $g \neq e$, $\langle g \rangle / p^2$ and $1 < kg > | < p^2 so$

1<9> = p.

By previous theorem, we can find $g_1 \in Z(6)$, $g_1 \neq C$.

then $\langle g_1 \rangle \stackrel{\sim}{=} \mathbb{Z}_p$. Now take $g_2 \in G \setminus \langle g_1 \rangle$.

then $\langle g_2 \rangle \cong \mathbb{Z}_p$.

Because $g_1 \in Z(G)$, g_1 and g_2 commute.

Next we claim $\langle g_1 \rangle \cap \langle g_2 \rangle = \{e\}$. In fact, $|\langle g_1 \rangle \cap \langle g_2 \rangle| = |\langle g_2 \rangle| = P$. So either $|\langle g_1 \rangle \cap \langle g_2 \rangle| = 1$, and $\langle g_1 \rangle \cap \langle g_2 \rangle = \{e\}$ as desired. or $|\langle g_1 \rangle \cap \langle g_2 \rangle| = |\langle g_2 \rangle|$ and $\langle g_1 \rangle \cap \langle g_2 \rangle = \langle g_2 \rangle$; then $g_2 \in \langle g_1 \rangle$ contrary to the construction. So $\langle g_1 \rangle \cap \langle g_2 \rangle = \{e\}$

Then $\langle g_1 \rangle \langle g_2 \rangle$ is a subgroup of G isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ (recognition theorem for direct products) But $|G| = p^2$, so $G = \langle g_1 \rangle \langle g_2 \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Proposition If $|G| = p^n$, p prime, n > 1, then there is a nontrivial proper normal subgroup $N: 2e3 \subseteq N \subseteq G$.

Furthermore, N can be chosen so that every subgroup $H \le N$ is normal in G.

Proof If G is non abelian, Z(G) is a proper subgroup.

By the first proposition, Z(G) is nontrivial.

Also 2(6) is always a normal subgroup of G and any subgroup of 2(6) is normal in G.

It remains to consider the case of 6 abelian.

In that case every subgroup is normal.

Let g ∈ G, g + e. Then | <g>| = ps for some 1≤s≤n.

If S < N, we take $N = \langle g \rangle$.

If s=n, then gP has order p^n-1, so we take N=<gP>. (a)

Corollary If $|G|=p^n$, p grime, there is a sequence of normal subgroups

{e}=Go \(\varphi \) \(\varp

Proof: Induction on n. If n=1, $G=\mathbb{Z}_p$ and the conclusion is time. Suppose the conclusion holds for all graps of order p^k , k < n. Let G be a grap of order p^n . Use proposition to find nontrivial proper normal $N \leq G$, such that every subsump of N is normal in G. thu $|N| = p^k$ for some k < n, and $|G/N| = p^k$, n-k < n.

By induction, there are subgraps

1eq = G₀ ≤ G₁ ≤ ··· ≤ G_k = N |G_i|=pⁱ all G_i \ G_i.

and

9e4=Go = G, = ... = Gn-k = G/N | TGj = p all G; SGN.

Refrie $G_{i+k} = \pi^{-1}(\overline{G}_i)$ when $\pi: G \to G/N$ is the quotient map. Thus these subgraps are normal in G and $|G_{i+k}| = |G_i||N| = p^{i+k}$

Thun $\{e^{2}\} \subseteq G_{0} \subseteq G_{1} \subseteq \cdots \subseteq G_{k} \subseteq G_{k+1} \subseteq \cdots \subseteq G_{k} \subseteq G_{k} \subseteq G_{k+1} \subseteq G_{k} \subseteq G$

& the desired sequence. 19