Chronological Inference

- The archaeological record is a contemporary phenomenon. Time is an *inferred* dimension.
- All inferences are based on *models of the processes* that created the data.
 - Stratigraphic ChronologySeriation Chronology

 - Dendrochronology
 - Radiometric Dating (e.g. 14C, Uranium decay series)
 - Luminescence Dating (e.g. Optically-Stimulated Luminescence -- OSL)
- Specific inferences can be tested by comparing the results of two different models applied to different data: e.g. chronological order inferred from stratigraphy vs. order inferred from seriation.
- Objectivity from epistemic independence.

Stratigraphy

Stratigraphic Excavations at San Cristobal Pueblo, 1914*.

Fig. 20.—The San Cristotal refuse section, 9 ft. 8 in. thick, yielding three successive types of pottery. Note skull protruding from original surface soil.

*Nelson, N. C. 1916. Chronology of the Tano Ruins, New Mexico. *American Anthropologist* 18(2): 159–180.

"A visibly stratified section of the refuse exposure showing no evidence of disturbance was selected and a block of this measuring 3 by 6 feet on the horizontal and nearly 10 feet deep was excavated....I performed this work with my own hands, devoting fully three days to the task."

Seriation

Alfred Kroeber's seriation of surface collections from around Zuni Pueblo

Figure 1. Centered-Bar Graph of Relative Frequencies of Three of Kroeber's Original Ten Pottery Types Arranged in His Final Hypothesized Chronological Order

Seriation (and Chronological Inference)

- Seriation is a set of *methods* designed to solve the problem of chronological inference.
- The methods are based models of how variable values tend to be distributed across units at successive points in time.
 - **Units:** things that can be inferred to be the results of events with restricted durations, *e.g.* artifacts, assemblages of artifacts.
 - **Variable values:** the values of variables that characterize the units, *e.g. Shapes of artifacts, type frequencies in assemblages*
- Methods specify *procedures* for ordering units along a single dimension, based on the distribution of the values across them.
- The procedures allow us to achieve an order of units that fits the model.
- In a particular case, the ordering of units is a "chronological hypothesis"

Units: assemblages Variables: discrete (1/0)

Frequency Seriation:

- Units: assemblages

- Variables : continuous (% frequency of "types")

• Phyletic Seriation:

- Units: artifacts or elements

- Variables: discrete or continuous

Phyletic Seriation Model

- Objects that are close together in time are more similar than those that are far apart.
- Question: Which variables should we use of measure similarity?

Occurrence Seriation Model

- The temporal distribution of types (characters) is continuous
- There is overlap in the temporal distribution of characters

Occurrence Seriation Method

- Given a set of units, characterized in terms of presence absence of attributes (types), the ordering of units that minimizes the number of absences among the presences is likely to be a chronology.
- "the concentration principle": minimize the number of gaps
- Question: Which variables (types)?

• Ugly raw data:

	Types:	D	В	Α	С
Units:	2		1	1	
	5	1			1
	6	1			1
	4		1		1
	3		1	1	
	1			1	

• Permute rows to minimize total number of gaps down columns.

	Types:	D	В	Α	С
Units:	2		1	1	
	5	1			1
	6	1			1
	4		1		1
	3		1	1	
	1			1	
		I			

Total Gaps = 5

• Permute rows to minimize total number of gaps down columns.

	Types:	D	В	Α	С
Units:	1			1	
	2		1	1	
	3		1	1	
	4		1		1
	5	1			1
	6	1			1
		l			

Total Gaps = 0

• Permute columns to minimize number of gaps across rows.

	Types:	D	В	A	С
Units:	1			1	
	2		1	1	
	3		1	1	
	4		1		1
	5	1			1
	6	1			1
		l			

Total Gaps = ?

• Permute columns to minimize number of gaps across rows.

	Types:	Α	В	С	D
Units:	1	1			
	2	1	1		
	3	1	1		
	4		1	1	
	5			1	1
	6			1	1

Total Gaps = **0**

Frequency Seriation Model

• When the distributions of characters (types) are described in relative frequency terms, their shape in time tends to be lenticular or battleship-shaped.

Frequency Seriation Method

• The ordering of units in which battleship-shaped distributions of types emerge is likely to be a chronology.

Question: Which variables (types)?

Frequency Seriation

• The ugly raw data

Frequency Seriation

• Permute the rows so that the battleship curves emerge.

Questions

- What is being dated?
- Which way is up?
- How can we check the order really is a chronology?

Questions

What is being dated?

Archaeological assemblages are "*time averaged*": they integrate artifact breakage and discard events taking place over a period of time. So the event being data is a function of the entire period over which the assemblage accumulated.

cf. Sediments in a deposit.

Which way is up?

We need independent evidence.

How can we check the order really is a chronology?

We need independent evidence.

Conditions

1. Units have similar durations

Fig. 3. The effect upon the seriation pattern of one group or unit not of comparable duration with the remainder of the included units. A-D are the classes, 1-16 are the groups of which 8 is the non-comparable unit.

Conditions

2. Units come from the same "cultural tradition"

Fig. 4. Two independent orders resulting from the seriation of groups drawn from two different stylistic traditions. A - F are the classes and 1 - 7 are the groups. The placement of 5 - 7 at the bottom of the chart is arbitrary and they could have been placed at the top of the chart with equal justification.

3. Units come from the same "local area".

"Same Local Area"

 Deetz and Dethlefsen show that different local areas (town cemeteries) show different patterns of battleship-shaped curves for grave-stone types.

Fig. 1. Eastern Massachusetts, showing cemetery locations.

Source: Dethlefsen, E. and J. Deetz

1966 Death's heads, cherubs and Willow trees: experimental archaeology in colonial cemeteries. *American Antiquity* 31:502-510.

Fig. 2. Universal motifs. α, death's head; b, cherub; c, urn and willow.

Fig. 3. Graphs showing stylistic sequences in three cemeteries.

"Same Local Area"

Lipo et al. show that you can use the "local area" criterion to identify local areas – neighborhoods within which assemblages show the battleship-shaped curves for ceramic types – a single evolving tradition.

FIG. 9. Map of Lower Mississippi Valley Survey: Assemblages from the St. Francis and Mer regions from Phillips et al. (1951).

Source: Lipo, Carl P., Mark E. Madsen, Robert C. Dunnell, and Tim Hunt.

1997 Population structure, cultural transmission, and frequency seriation. *Journal of Anthropological Archaeology* 16 (4): 301-333.

FIG. 11. Ford's seriation of the Memphis area data using only assemblages collected from the surface and decorated, shell tempered ceramic types. It is clear, that the neither the seriations in Fig. 10 nor Fig. 11 meet the expectations of the model.

FIG. 13. Geographic distribution of solution clusters of all PFG assemblages. Numbers (1-8) refer to the seriation solutions from Fig. 12.

Conditions

4. No sampling issues.

Assemblages are large enough so that estimates of type proportions in them mirror actual type frequencies in the underlying population of sherds: sampling error does not obscure patterns.

5. Battleship-Shaped Curves Rule.

The underlying type frequencies really do have Battleship-Shaped curves. They are "historical types"

Frequency Seriation

Conditions

- Battleship curves <u>if</u>
 - assemblages have similar durations.
 - assemblages from same local area and cultural tradition.
 - little sampling error
 - "historical types" = battleship-shaped curves

Evaluation

- Goodness of fit to the model
 - Do the assemblages and types you have chosen seriate?
 - Evidence of discontinuity in the sequence?
 - Lack of fit is a learning opportunity!
- Agreement with independently derived chronological hypotheses
 - Does the order from one seriation match the order from a second seriation, based on independent data?
 - Does the order correlate with orders based on independent data and independet models theoretical models? (e.g. 14C, dendrochronology, OSL, stratigraphy?

Type Fossils

- A second approach to chronological inference, based on artifacts.
- Assign units to periods of time, based on the presence/absence of types.
- Type dates must be known on other grounds

Type Fossils

Creamware: 1760-1820

Pearlware: 1780-1830

- Terminus post quem (TPQ): Date after which
- *Terminus ante quem* (TAQ): Date before which

Hybrid Methods

- Pipestem dating
- Mean ceramic dating used in historical archaeology (and the Southwestern US)

Pipestem Dating

Harrington histograms

Source:

Harrington, JC

1954

Dating stem fragments of 17th and 18th century tobacco pipes. *Quarterly Bulletin of the Archaeological Society of Virginia*

Pipestem Dating

Harrington histograms ... transposed!

Harrington Histograms → Mean Bore Diameters

$$\bar{x} = \frac{\sum_{i=1}^{n} f_i i}{\sum_{i=1}^{n} f_i}$$

1. The Data							
Median Date	4	5	6	7	8	9 To	tal
1775	77	20	3	0	0	0	10
1730	13	72	15	0	0	0	10
1695	0	12	72	16	0	0	10
1665	0	0	18	57	25	0	10
1635	0	0	0	21	59	20	10
2. Products							
1775	308	100	18	0	0	0	
1730	52	360	90	0	0	0	
1695	0	60	432	112	0	0	
1665	0	0	108	399	200	0	
1635	0	0	0	147	472	180	
3. Sum of Produc	cts		4.	Mean B	ore Diam	neter	
1775	426			1775	4.26		
1730	502			1730	5.02		
1695	604			1695	6.04		
1665	707			1665	7.07		

7.99

1635

1635

799

i=1 through n indexes the bore diameter class values (e.g. 2,3,4,5,6,..../64th inch) $f_i =$ the frequency (count) for the i'th class

Regressions of Date on Diameter

Mean Ceramic Dating

$$\bar{x} = \frac{\sum_{i=1}^{n} f_i m_i}{\sum_{i=1}^{n} f_i}$$

i = 1 through n indexes the ware type classes.

 f_i = the frequency (count) for the *i'th* ware type.

 $m_i =$ manufacturing midpoint for the i'th ware type

1. The Data

Type: Median Date:	Creamware 1790	Delft 1750	Pearlware 1805	WhiteSaltGlaze 1760	Total
Dry Well	666	0	0	169	835
Site7	331	90	51	46	518
Bldg.O	492	40	89	36	657
House	102	8	75	2	187
Bldg.T	326	21	156	26	529
2. Products	S				

1192140	0	0	297440
592490	157500	92055	80960
880680	70000	160645	63360
182580	14000	135375	3520
583540	36750	281580	45760
	592490 880680 182580	592490 157500 880680 70000 182580 14000	592490 157500 92055 880680 70000 160645 182580 14000 135375

3. Sum of	Products	4. MCD	
Dry Well	1489580	Dry Well	1783.9
Site7	923005	Site7	1781.9
Bldg.O	1174685	Bldg.O	1788.0
House	335475	House	1794.0
Bldg.T	947630	Bldg.T	1791.4

Source:

South, Stanley

1972 Evolution and Horizon as Revealed in Ceramic Analysis in Historical Archaeology. Conference on Historic Site Archaeology Papers 6:71-116.

MCDs for Monticello Sites

Median I	Date	1790	1790	1790	1	750	1805	1805	1860	18	00	1843		1805	1805	1888	•	1818	1785	1770	1760
	Type	່ວ່	CrOverg		CrTrans	Delft	Pe	Pe∆nnul		PeFlow	PeHandp		PeMocha	PePoly	Dochol		PeSpong	PeTrans	PoHandp	Polivera	StWhite
Dry Well		666	0		0	0	0	()	0	C)	0	0		0	0	C	25	5 19	7 169
Site7		331	0		0	90	51		7	0	10)	0	1		4	0	2	. 18	}	1 46
Bldg.O		492	7		2	40	89	1	1	1	76	6	2	16	2	7	0	33	3 224	124	4 36
House		102	0		1	8	75		1	2	53	}	1	11	1:	2	0	54	. 108	3 6 ⁻	1 2
Bldg.T		326	1		1	21	156	1:	5	0	87	,	5	75	4	5	1	113	127	7 6	3 26
SmokeH		467	66		0	0	57		2	0	99)	28	157	9	4	0	358	267	7 202	2 65
Bldg.R		236	3		1	4	185	1	4	3	95	5	4	43	2	9	8	59	151	1 48	8 2
Bldg.L		181	3		0	3	98		4	0	59)	3	54	2	9	0	126	81	J 59	9 7
Stewart		286	3		15	0	135	1:	5	0	86	6	0	340	4	7	0	1	63	3 20	0 0
Bldg.S		402	2		1	12	541	4	1	0	229)	3	167	11	8	8	340	275	5 15	3 14
BH		116	18		0	0	360		4	0	82	<u>)</u>	0	43	5	5	0	1	85	;	0 1
Kitchen		332	0		0	16	1199	13)	23	256	6	19	117	18	0	76	1218	634	1 21	1 5

Site	MC Date
Dry Well	1781.4
Site7	1782.9
Bldg.O	1788.1
House	1793.2
Bldg.T	1794.9
SmokeH	1795.3
Bldg.R	1796.7
Bldg.L	1797.3
Stewart	1798.1
Bldg.S	1798.9
ВН	1799.6
Kitchen	1804.3

Problems with the MCD and Pipe stem Formulas?

Problems with the MCD and Pipestem Formulas

- they are formulaic!
 - no matter what the data look like, you can always get an answer.
 - no indication if the solution fits the seriation model!

The Solution

- Sort the assemblages in their MCDs and plot the resulting seriation diagram: do you see the battleship-shaped curves?
- Do two seriations and compare the results: do they agree?
 - pipestem bore diameter seriation order vs. ceramic seriation order
 - ratio of wrought /cut nails vs. ceramics seriation order

Correspondence Analysis

1. Iteration 1					
Type:	Creamware	Delft	Pearlware	WhiteSaltGlaze	Scores
Random Numbers:	0.273366978	0.760887	0.92061152	0.164707505	
Dry Well	0.80	0.00	0.00	0.20	0.251375
Site7	0.64	0.17	0.10	0.09	0.412147
Bldg.O	0.75	0.06	0.14	0.05	0.384773
House	0.55	0.04	0.40	0.01	0.552651
Bldg.T	0.62	0.04	0.29	0.05	0.47825
2. Iteration 2	1.348169562	0.137663	0.45538671	0.137976796	
Dry Well	0.80	0.00	0.00	0.20	
Site7	0.64	0.17	0.10	0.09	
Bldg.O	0.75	0.06	0.14	0.05	
House	0.55	0.04	0.40	0.01	
Bldg.T	0.62	0.04	0.29	0.05	
3. Iteration 3					
Dry Well	0.80	0.00	0.00	0.20	1.103232
Site7	0.64	0.17	0.10	0.09	0.942482
Bldg.O	0.75	0.06	0.14	0.05	1.087218
House	0.55	0.04	0.40	0.01	0.925372
Bldg.T	0.62	0.04	0.29	0.05	0.977357

Correspondence Analysis

MCD vs. CA

Frequency Seriation Methods

Comparison of Model Assumptions

1. Frequency Seriation

- types display battleship-shaped curves on a single gradient (time)
- temporal overlap of types
- same "local area" and "cultural tradition"
- similar time averaging across assemblages
- little sampling error

2. Correspondence Analysis

- all of the above. Plus....
- types display Gaussian curves on one or more gradients
- uniformly distributed type maxima, type variances, assemblages.

3. Mean Ceramic Dating

- all of the above. Plus....
- types display Gaussian curves on a single gradient
- type variances similar
- dates of type maxima are known

4. Pipe-stem Dating

- bore diameter class maxima are evenly spaced in time.