

深度学习课程实验报告

实验一:手写数字识别

姓名			
学号。	2024E8015082070		
院所	中国科学院软件研究所		

2025年4月18日

目录

1	实验	概述	3				
	1.1	实验目的	3				
	1.2	实验要求	3				
	1.3	数据集介绍	3				
2	解决	方案	4				
	2.1	数据集加载与预处理	4				
		2.1.1 数据集加载代码 (PyTorch 实现)	4				
		2.1.2 数据预处理说明	5				
		2.1.3 数据增强	5				
		2.1.4 数据可视化检查	5				
	2.2	网络结构设计	6				
	2.3	损失函数设计	8				
	2.4	优化器设计	8				
3	实验流程						
	3.1	搭建环境	9				
	3.2	构建 CNN 并在 MINST 数据集上进行训练	9				
4	实验	结果与分析	9				
	4.1	训练动态分析	9				
	4.2	错误样本推测分析	.0				
	4.3	优化方向 1	1				
	4.4	完整训练曲线	.1				
5	負结	·	2				

1 实验概述

1.1 实验目的

- 掌握卷积神经网络基本原理;
- 掌握 PyTorch (或其他框架) 的基本用法以及构建卷积网络的基本操作;
- 了解 PyTorch (或其他框架) 在 GPU 上的使用方法。

1.2 实验要求

- 搭建 PyTorch (或其他框架) 环境;
- 构建一个规范的卷积神经网络组织结构;
- 在 MNIST 手写数字数据集上进行训练和评估,实现测试集准确率达到 98% 及以上;
- 按规定时间在课程网站提交实验报告、代码以及 PPT。

1.3 数据集介绍

MNIST 数据集是由 0 - 9 手写数字图片和数字标签所组成的,由 60000 个训练样本和 10000 个测试样本组成,每个样本都是一张 28 * 28 像素的灰度手写数字图片。如图 1所示:

图 1: MINST 数据集

MNIST 数据库一共有四个文件案,分别为

- train-images-idx3-ubyte.gz: 训练集图片 (9912422 字节), 55000 张训练集, 5000 张验证集
- train-labels-idx1-ubyte.gz: 训练集图片对应的标签 (28881 字节)

- t10k-images-idx3-ubyte .gz: 测试集图片 (1648877 字节), 10000 张图片
- t10k-labels-idx1-ubyte.gz: 测试集图片对应的标签(4542 字节)

图片是指 0-9 手写数字图片,而标签则是对应该图片之实际数字。

2 解决方案

2.1 数据集加载与预处理

使用 PyTorch 的 torchvision.datasets.MNIST 接口加载数据集,并对图像进行标准 化处理(均值 0.1307,标准差 0.3081)。训练集和测试集分别通过 DataLoader 按批次加载(batch_size=64),训练数据随机打乱以增强泛化性。数据预处理流程包括:

- 转换为 Tensor 并归一化到 [0, 1];
- 标准化到 [-1, 1] 区间以加速模型收敛。

2.1.1 数据集加载代码 (PyTorch 实现)

```
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
5 # 数据预处理: 转换为Tensor -> 标准化 (MNIST的均值和标准差)
6 transform = transforms.Compose([
     transforms.RandomRotation(10),
                                            # 随机旋转 (-10°到+10
        • )
     transforms.ToTensor(),
                                            # PIL图像或numpy数组
        -> Tensor, 并归一化到[0,1]
     transforms.Normalize((0.1307,), (0.3081,)) # 标准化到[-1,1]区间
10])
11
12 # 加载训练集和测试集
train_data = datasets.MNIST(
     root='./data',
                         #数据集保存路径
14
                         # 加载训练集
     train=True,
15
     download=True,
                         # 自动下载 (如果本地不存在)
     transform=transform # 应用预处理
18)
19 test_data = datasets.MNIST(
```

```
root='./data',
     train=False,
                           # 加载测试集
21
     transform=transform
 )
23
 # 创建数据加载器 (DataLoader)
25
 train_loader = DataLoader(
     dataset=train_data,
27
     batch_size=batch_size,
28
                            # 打乱训练数据顺序
     shuffle=True,
                           #多线程加载(可选)
     num_workers=2
30
31
  test_loader = DataLoader(
32
     dataset=test_data,
33
     batch_size=batch_size,
     shuffle=False
                            # 测试集无需打乱
 )
```

2.1.2 数据预处理说明

标准化(Normalization)公式如式1所示:

$$normalized_pixel = \frac{original_pixel - mean}{std}$$
 (1)

其中, MNIST 的均值 mean=0.1307, 标准差 std=0.3081, 标准化后数据分布更稳定, 加速模型收敛。

2.1.3 数据增强

为了提升模型鲁棒性,将数据进行随机旋转:

```
transform = transforms.Compose([
transforms.RandomRotation(10), #随机旋转(-10°到+10°)
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]
```

2.1.4 数据可视化检查

加载后可通过以下代码检查数据格式和内容:

如图 2所示:

图 2: 数据可视化

2.2 网络结构设计

本实验采用卷积神经网络(CNN)结构,基于 PyTorch 实现,包含两个卷积层和全连接层,具体设计如下:

```
kernel_size=5,
                                # 5x5卷积核
12
                 stride=1,
                                 # 步长1
13
                                 # 填充2, 使得输出尺寸与输入一致(28
                 padding=2
14
                   x28 \rightarrow 28x28)
             ),
                                 # ReLU激活函数
             nn.ReLU(),
16
             nn.MaxPool2d(kernel_size=2) # 2x2最大池化, 输出尺寸减半
17
                (28x28 \rightarrow 14x14)
         )
18
1.9
         # 第二层卷积: 输入通道16, 输出通道32, 卷积核5x5
20
         self.conv2 = nn.Sequential(
21
             nn.Conv2d(16, 32, 5, 1, 2), # 参数简写形式: in_channels,
22
                 out_channels, kernel_size, stride, padding
             nn.ReLU(),
23
             nn.MaxPool2d(2)
                                        # 输出尺寸 (14x14 -> 7x7)
24
         )
25
26
         # 全连接层: 输入32*7*7 (展平后的特征向量), 输出10类 (MNIST数
            字0-9)
         self.fc = nn.Linear(32 * 7 * 7, 10)
28
29
     def forward(self, x):
                                  # 第一层卷积+池化
         x = self.conv1(x)
31
         x = self.conv2(x)
                                  # 第二层卷积+池化
32
         x = x.view(x.size(0), -1) # 展平多维特征图 [batch_size,
            32*7*7]
                                  # 全连接层分类
         output = self.fc(x)
34
         return output
35
```

具体如图 3所示 网络结构说明:

图 3: 网络结构图

- 卷积层: 通过 nn.Conv2d 提取局部特征,配合 ReLU 激活函数增强非线性表达能力。
- 池化层: 使用 MaxPool2d 降低特征图尺寸,减少计算量并增强平移不变性。
- 全连接层:将展平后的特征映射到 10 维输出(对应 0-9 分类)。

2.3 损失函数设计

采用交叉熵损失 (Cross-Entropy Loss), 适用于多分类任务:

```
loss_func = nn.CrossEntropyLoss()
```

设计说明:

- 交叉熵损失直接计算预测概率分布与真实标签的差异, 无需手动对输出做 Softmax (PyTorch 的 CrossEntropyLoss 已内置此功能)。
- 损失函数如式 2所示:

$$Loss = -\sum_{i=1}^{N} y_i log(p_i)$$
 (2)

其中 y_i 为真实标签, p_i 为预测概率。

2.4 优化器设计

使用 Adam 优化器,结合动态学习率调整策略:

```
import torch.optim as optim

optimizer = optim.Adam(
    model.parameters(), # 优化模型的所有可训练参数
    lr=0.001, # 初始学习率
    betas=(0.9, 0.999) # 动量参数 (默认值)

7

# (可选) 学习率调度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma = 0.1) # 每5轮学习率乘以0.1
```

设计说明:

• Adam 优势: 自适应调整学习率,结合动量(Momentum)和 RMSProp,适合非平稳目标函数。

• 参数选择:

- lr=0.001: 经验性初始值,过大易震荡,过小收敛慢。
- betas=(0.9, 0.999): 控制梯度的一阶和二阶矩估计衰减率 (默认值通常效果良好)。

3 实验流程

3.1 搭建环境

- 下载 IDE: VScode
- 安装 Python 以及 Anaconda
- 创建虚拟环境: conda create -n pytorch python=3.10

图 4: 'pytorch' 编译环境

3.2 构建 CNN 并在 MINST 数据集上进行训练

完整的 PyTorch 手写数字识别代码附在该目录下。 运行结果如图 5所示:

4 实验结果与分析

4.1 训练动态分析

- (1) 损失值变化趋势
- Epoch $1 \rightarrow$ Epoch 5:
 - 初始损失: 2.3069 → 最终损失: 0.0019
 - 第1轮快速下降,后续波动收敛(符合预期)
- 关键节点:

图 5: 运行结果图

- Epoch 3 后损失稳定在 0.01 以下
- Epoch 5 出现最低单批次损失 0.0019

(2) 测试准确率变化 关键结论:

Epoch	准确率 (%)	提升幅度 (%)
1	98.36	_
2	98.36	0.00
3	98.83	0.47
4	98.79	-0.04
5	99.05	0.26

表 1: 各训练周期准确率及提升幅度

- 数据增强(随机旋转)未导致准确率波动,说明增强幅度合理
- 最终准确率突破 99%, 显著超过实验要求

4.2 错误样本推测分析

- 高频错误类别
 - 5 ↔ 6 (旋转后弧形相似)
 - 7 ↔ 1 (斜线书写风格干扰)
 - 9 ↔ 4 (闭合特征受旋转影响)

- 数据增强的影响
 - 随机旋转可能使部分数字边界模糊(如8变为0)
 - 建议检查: 第5轮测试集中被误分类的17张样本具体类别

4.3 优化方向

针对当前已优秀的指标, 仍可尝试以下进阶优化:

优化方向	具体方案	预期效果
数据增强	添加 ±5° 平移变换	提升对位置变化的鲁棒性
模型结构	在最后一个池化层后添加 nn.Dropout(0.3)	进一步抑制过拟合
学习率调度	使用 CosineAnnealingLR 替代固定学习率	更平滑的收敛过程
错误分析	可视化所有错误样本,统计混淆矩阵	精准定位薄弱环节

表 2: 各训练周期准确率及提升幅度

4.4 完整训练曲线

5 轮批次的损失和准确率如图 6所示:

图 6: 完整训练曲线

损失下降趋势:

- 第1轮到第3轮损失快速下降(0.152→0.032),表明模型快速学习。
- 第 4 轮轻微反弹 $(0.032 \rightarrow 0.042)$,可能与数据增强的随机性有关,但未影响最终性能。

准确率 plateau:

- 第2轮准确率未提升,但损失持续下降,说明模型在优化决策边界。
- 最终准确率突破 99%, 验证了数据增强的有效性。

5 总结

本次实验基于 PyTorch 构建了一个双层 CNN 模型,在 MNIST 手写数字数据集上 实现了 99.05% 的测试准确率,超额完成实验目标 (98%)。通过实验,我对 CNN 的核 心设计有了更深刻的理解:

• 卷积层的作用:

- 通过局部感受野(5×5 卷积核)提取边缘、纹理等低级特征,逐步组合为数字的全局结构。
- 参数共享显著减少了参数量(对比全连接层),适合处理图像的空间相关性。
- 池化层的意义:最大池化(2×2)在保留关键特征的同时降低分辨率,提升了模型的平移不变性和计算效率。
- 数据增强的平衡: 随机旋转增强了模型对书写变体的鲁棒性, 但需控制幅度(如 ±10°), 避免过度扭曲语义特征。
- 优化与收敛: Adam 优化器自适应调整学习率,配合交叉熵损失,使模型快速收敛 (5 轮内达到 99%+准确率)。

对于改进的方向也许可尝试加入 Dropout 层或更复杂的结构(如 ResBlock)以进一步提升鲁棒性。

总之,实验验证了 CNN 在图像分类任务中的高效性,尤其是其局部感知和层次化特征提取的能力。