Przetwarzanie danych

Joanna Klimek

Informatyka, WIET

19.03.2021r.

Zadanie:

Obliczyć macierz odwrotną do $A + uv^T$, wykorzystując A^{-1} oraz $A + uv^T$, gdzie

A – macierz
$$\mathbb{R}^{N \times N}$$

u, v – wektory $\mathbb{R}^{N\times 1}$

Metody obliczeń:

- 1. Funkcją numpy.linalg.inv
- 2. Wzorem Shermana-Morrisona:

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$

3. Wzorem Shermana-Morrisona z wykorzystaniem łączności jak poniżej:

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}(uv^T)A^{-1}}{1 + v^TA^{-1}u}$$

Pomocniczy kod w Pythonie:

```
import numpy as np
import matplotlib.pyplot as plt
   n = size
   rank one update A = A + (u @ transposed v) # A + uv^T
       start = timer()
       times[method][index][i] = (end - start)
```

Tabela podsumowująca częściowe wyniki pomiarów czasów odwracania macierzy 3 metodami:

Częściowe wyniki:

Metoda 1			Metoda 2			Metoda 3		
	Rozmiar	Czasy		Rozmiar	Czasy		Rozmiar	Czasy
0	100	0.002299	0	100	0.000438	0	100	0.001927
1	100	0.002006	1	100	0.000372	1	100	0.000682
2	100	0.002180	2	100	0.000546	2	100	0.000531
3	100	0.004337	3	100	0.000430	3	100	0.000485
4	100	0.002199	4	100	0.000417	4	100	0.000441
95	1000	0.081295	95	1000	0.043798	95	1000	0.084176
96	1000	0.084547	96	1000	0.046041	96	1000	0.078787
97	1000	0.080304	97	1000	0.047207	97	1000	0.138376
98	1000	0.129869	98	1000	0.045269	98	1000	0.074722
99	1000	0.083439	99	1000	0.046438	99	1000	0.082351
[100 rows x 2 columns]			[100 rows x 2 columns]			[100 rows x 2 columns]		

Średnie czasy:

Srednie	czasy:	Srednie	czasy:	Srednie	czasy:	
Rozmiar		Rozmiar		Rozmiar		
100	0.003027	100	0.000444	100	0.000677	
200	0.006676	200	0.000570	200	0.000973	
300	0.009341	300	0.002467	300	0.002821	
400	0.012882	400	0.003253	400	0.004785	
500	0.015441	500	0.005910	500	0.008700	
600	0.021500	600	0.008580	600	0.014928	
700	0.041068	700	0.017168	700	0.031123	
800	0.052915	800	0.023417	800	0.040645	
900	0.069809	900	0.031734	900	0.055581	
1000	0.088143	1000	0.044825	1000	0.084233	
Name: C	zasy, dtype: float64	Name: C	zasy, dtype: float64	Name: Cz	zasy, dtype: float64	

Odchylenia standardowe:

Odchylenia standardowe:		Odchyle	nia standardowe:	Odchylenia standardowe:		
Rozmiar		Rozmiar		Rozmiar		
100	0.001630	100	0.000047	100	0.000448	
200	0.002066	200	0.000046	200	0.000431	
300	0.003742	300	0.000501	300	0.000403	
400	0.003413	400	0.000447	400	0.000725	
500	0.002027	500	0.001014	500	0.001175	
600	0.003366	600	0.000825	600	0.001392	
700	0.004539	700	0.000627	700	0.002381	
800	0.004767	800	0.001732	800	0.002111	
900	0.017957	900	0.001400	900	0.002876	
1000	0.014861	1000	0.001989	1000	0.019332	
Name: C	zasy, dtype: float64	Name: C	zasy, dtype: float64	Name: C	zasy, dtype: float64	

Wygenerowane wykresy:

Złożoności obliczeniowe:

Metoda 1: $O(n^3)$

Metoda 2: $O(3n^2)$

Metoda 2: $O(n^3)$

Wnioski:

Po zróżnicowaniu początkowych wielkości macierzy i poprawieniu drobnego błędu w kodzie wyniki mają dużo więcej sensu.

We wszystkich trzech metodach wraz ze wzrostem rozmiarów macierzy i wektorów wzrasta również średni czas wykonania oraz odchylenie standardowe, wzrost ten nie jest jednak liniowy. Wszystkie trzy wykresy wyglądają bardzo podobnie, ale trzecia metoda wypada najlepiej (choć różnice są minimalne).

Warto jednak podkreślić, że losowość danych miała duży wpływ na końcowe wyniki i przy każdym uruchomieniu programu wykresy wyglądały nieco inaczej.