Introducción al Análisis Matemático Tema 2

Ejercicios Resueltos 3

Licenciatura en Matemática Curso 2022

Introducción

Presentamos a continuación una colección de Ejercicios Resueltos. Esperamos que sean provechosos para usted. Le proponemos que piense en vías de solución alternativas.

Colectivo de la asignatura

Ejercicios Resueltos

Ejercicio 1

Halle el punto c de las fórmulas del valor medio para $f(x) = 3x^2 - 5$, siendo a = -2, b = 0.

Respuesta

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$6c = \frac{3(0)^2 + 5 - (3(-2)^2 + 5)}{2} = -6 \Longrightarrow c = -1$$

Ejercicio 2

Analiza el crecimiento y los extremos relativos de las funciones siguientes:

a)
$$y = 3x^4 - 4x^3 - 12x^2$$

b)
$$y = \sqrt[3]{(x^2 - 1)^2}$$

Respuesta

a)
$$y = 3x^4 - 4x^3 - 12x^2$$

 $y' = 12x^3 - 12x^2 - 24x = 12x(x-2)(x+1)$

Haciendo el análisis de signos se concluye que la función es decreciente en $(-\infty, -1) \cup (0, 2)$ y creciente en $(-1, 0) \cup (2, +\infty)$.

Sus mínimos son $x_0 = -1$, $x_1 = 2$ y máximo es $x_2 = 0$.

b)
$$y = \sqrt[3]{(x^2 - 1)^2}$$

 $y' = \frac{4x}{3\sqrt[3]{(x^2 - 1)}}$

Se tiene que la función es creciente en $(-1,0) \cup (1,+\infty)$ y decreciente en $(-\infty,-1) \cup (0,1)$, siendo mínimos $x_0=-1,\ x_1=1$ y máximo $x_2=0$.

Ejercicio 3

Pruebe que

$$\arcsin\left(\frac{x-1}{x+1}\right) = 2\arctan\sqrt{x} - \frac{\pi}{2}.$$

Respuesta

$$\arcsin\left(\frac{x-1}{x+1}\right) = 2\arctan\sqrt{x} - \frac{\pi}{2}$$
Sea $f(x) = \arcsin\left(\frac{x-1}{x+1}\right) - 2\arctan\sqrt{x}$

$$f'(x) = \frac{2}{(1+x)2\sqrt{x}} - \frac{1}{\sqrt{1-(\frac{x-1}{x+1})^2}} \frac{2}{(x+1)^2} = 0$$

Analizando el dominio de f(x) se tiene que es aquel conjunto donde

$$-1 \le \frac{x-1}{x+1} \le 1$$

Quedando que $Dom(f) = \{x \in \mathbb{R}_+\}$. Evaluando $f(1) = -\arcsin(0) + 2\arctan 1 = 0 + 2\frac{\pi}{4} = \frac{\pi}{2}$ por lo que $f(x) = \frac{\pi}{2}$, $\forall x \ge 0$.

Ejercicio 4

Pruebe que $\sqrt{ab} \le \frac{a+b}{2}$ para a, b > 0.

Respuesta

Sea
$$f(x) = \sqrt{ax}$$
, $a > 0$, $\Longrightarrow f'(x) = \frac{\sqrt{a}}{2\sqrt{x}} > 0$, $f''(x) = -\frac{\sqrt{a}}{4}x^{-\frac{3}{2}} < 0$

Por tanto f es creciente y convexa en $(0,+\infty)$, por lo que el gráfico queda por debajo de sus tangentes. En $x=a,\ f'(a)=\frac{1}{2}$ y f(a)=a por lo que la ecuación de la recta tangente a f en a es $y=\frac{a+x}{2}$. Por lo planteado se tiene que $f(x)\leq \frac{a+x}{2}, \forall x\geq 0$, en particular $f(b)=\sqrt{ab}\leq \frac{a+b}{2}$

Ejercicio 5

Analiza la convexidad de los gráficos de las siguientes funciones

a)
$$y = x^a$$
, $x > 0$, $a \in \mathbb{R}$

b)
$$y = x^2 \ln x$$

Respuesta

a)
$$y' = ax^{a-1}$$
, $y'' = a(a-1)x^{a-2}$
Cóncava si $a(a-1) < 0$
Convexa si $a(a-1) > 0$

b)
$$y' = 2x \ln x + x$$
, $y'' = 2 \ln x + 3$
Cóncava $(0, e^{-3/2})$
Convexa $(e^{-3/2}, +\infty)$

Figura 1: Inciso (b) f(x)

Referencias

[1] Valdés, C. (2017) $Introdución\ al\ Análisis\ Matemático.$ Universidad de La Habana.