Package 'psychtoolbox'

August 18, 2022

```
Title Tools for psychology and psychometrics
Version 0.0.0.9000
Description This package contains functions helping to analyse psychological data.
License CC BY 4.0
URL https://gitlab.com/lukas.novak/psychtoolbox
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.0
Imports coin,
     docxtractr,
     dplyr,
     equaltestMI,
     foreign,
     insight,
     lavaan,
     magrittr,
     rmarkdown,
     rstatix,
     stats,
     tidyr,
     expss,
     stringr,
    tidyselect,
     vctrs,
     purrr,
    reshape2,
    janitor,
    broom
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 2.10)
R topics documented:
```

2 clin_sig_chang

	lat
	asy.log.reg
	nitab
	nult.g.comp
	paq.validation.study
	RCI 10
	wo.g.comp
	word2pdf
Index	13

clin_sig_chang

Clinically significant change

Description

This easy function calculates Clinically significant change (clinical cut-off scores) as defined by Jacobson and Truax (1991).

Usage

```
clin_sig_chang(SD_0, SD_1, M_1, M_0)
```

Arguments

SD_0	standard deviation of the non-clinical population
SD_1	standard deviation of the clinical population
M_1	mean of the clinical population
M_0	mean of the non-clinical population

Format

numeric vector of values

Details

This function computes cut-off score differentiating between the clinical and non-clinical population based on the Jacobson and Truax (1991) formula (p. 13). The mathematical formula can be also found in Biescad & Timulak(2014, p. 150).

Value

numeric vector

Author(s)

dat 3

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772

See Also

RCI() function for calculation of the Reliable Change Index

Examples

```
\label{eq:clin_cut.off} \begin{split} \text{clin.cut.off=clin\_sig\_chang(SD\_0 = 3.5,} \\ \text{SD\_1 = 2.1,} \\ \text{M\_0 = 4.2,} \\ \text{M\_1 = 12.1)} \\ \text{clin.cut.off} \end{split}
```

dat

IRI validation dataset

Description

This dataset consists the two variables which were used in the study examining psychometric properties of the Interpersonal Reactivity Index.

Usage

dat

Format

A data frame with 835 rows and 2 variables:

```
Gender integer COLUMN_DESCRIPTION

IRI_EC double COLUMN_DESCRIPTION
```

Details

DETAILS

4 lasy.log.reg

lasy.log.reg

Lasy logistic regression function

Description

This function performs logistic regression and print results in tibble output. This function aims to provide the results of the regression analysis in the format, which is frequently desired in academic journals.

Usage

```
lasy.log.reg(
  independent.var,
  dependent.var,
  covariates,
  print.cov = FALSE,
  data
)
```

Arguments

```
independent.var
```

independent variable/s

dependent.var dependent variable/s

covariates covariates to be included in a model

print.cov Print effect of covariates, default is FALSE

data frame or tibble object

Format

```
An object of class "tibble"
```

Details

Currently, this function does not provide model fit indicators such as AIC or BIC.

Value

data frame

Author(s)

mitab 5

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

Examples

mitab

Measurement invariance table

Description

Measurement invariance table

Usage

```
mitab(
   group1_nam,
   group2_nam,
   ordered,
   model,
   data,
   std.lv,
   meanstructure,
   group,
   yes_no_results,
   estimator,
   robust = FALSE,
   cfi.difference = FALSE
)
```

6 mitab

Arguments

group1_nam name of the first group group2_nam name of the second group

ordered logical, if set to TRUE items will be treated as ordered variables

model lavaan model to test data data frame or tibble

std.1v logical, if TRUE than standardized loadings are stored in temporal output

meanstructure logical, if TRUE than model with meanstructure is estimated

group name of grouping variable

yes_no_results logical, if TRUE than lasy output indicating difference between models is added,

currently working only based on CFI

estimator name of estimator to be used during fitting procedure

robust logical, if TRUE, than robust results are printed, working only with estimators

providing robust results (e.g. MLR or DWLS)

cfi.difference logical, if TRUE, delta of the CFI is printed in output

Format

An object of class "tibble"

Details

This function creates table with the key output from measurement invariance testing.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). Or second edition (1999).

Examples

```
# The famous Holzinger and Swineford (1939) example
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

library(lavaan)
dat <- HolzingerSwineford1939
res.tab.mi <- mitab(
group1_nam = "Grant-White",
group2_nam = "Pasteur",
ordered = FALSE,
model = HS.model,</pre>
```

mult.g.comp 7

```
data = dat,
std.lv = TRUE,
meanstructure = TRUE,
group = "school",
yes_no_results = TRUE,
estimator = "MLR",
robust = TRUE,
cfi.difference = TRUE)
print(res.tab.mi)
```

mult.g.comp

Robust multi-group comparison

Description

This function allows to compare multiple groups in multiple outcome variables with violated parametric assumptions.

Usage

```
mult.g.comp(df, outcome.var, groups)
```

Arguments

df data frame or tibble object outcome.var continuous variable/s groups grouping variable/s

Format

An object of class "tibble"

Details

Currently, this function does not report effect size from post-hoc tests.

Two group comparison:

If there is less than three groups, the Welch test or the Wilcoxon test depending on data distribution.

Three and more groups comparison:

If more than two groups are present in data, the Dunn test or Games-Howell test is performed.

Value

data frame

Author(s)

8 paq.validation.study

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

Examples

paq.validation.study paq.validation.study

Description

This dataset contains data which were used for validation of the Perth Alexithymia Questionnaire in the Czech Republic.

Usage

```
paq.validation.study
```

Format

A data frame with 848 rows and 53 variables:

P_DIF double COLUMN_DESCRIPTION

P_DDF double COLUMN_DESCRIPTION

P_DAF double COLUMN_DESCRIPTION

N_DIF double COLUMN_DESCRIPTION N_DDF double COLUMN_DESCRIPTION

N_DAF double COLUMN_DESCRIPTION

G_EOT double COLUMN_DESCRIPTION

G_DIF double COLUMN_DESCRIPTION

G_DDF double COLUMN_DESCRIPTION

G_DAF double COLUMN_DESCRIPTION

paq.validation.study 9

family_status integer COLUMN_DESCRIPTION

Gender integer COLUMN_DESCRIPTION

TEQ_1 double COLUMN_DESCRIPTION

TEQ_3 double COLUMN_DESCRIPTION

TEQ_5 double COLUMN_DESCRIPTION

TEQ_16 double COLUMN_DESCRIPTION

TEQ_CON_2 double COLUMN DESCRIPTION

TEQ_CON_4 double COLUMN_DESCRIPTION

TEQ_CON_14 double COLUMN_DESCRIPTION

TEQ double COLUMN DESCRIPTION

Age double COLUMN_DESCRIPTION

age_group double COLUMN_DESCRIPTION

age.quality double COLUMN DESCRIPTION

ethnicity integer COLUMN_DESCRIPTION

education integer COLUMN_DESCRIPTION

economical_status integer COLUMN_DESCRIPTION

PAQ_1 double COLUMN_DESCRIPTION

PAQ_2 double COLUMN DESCRIPTION

PAQ_3 double COLUMN_DESCRIPTION

PAQ_4 double COLUMN_DESCRIPTION

PAQ_5 double COLUMN_DESCRIPTION

PAQ_6 double COLUMN_DESCRIPTION

PAQ_7 double COLUMN_DESCRIPTION

PAQ_8 double COLUMN_DESCRIPTION

PAQ_9 double COLUMN_DESCRIPTION

PAQ_10 double COLUMN_DESCRIPTION

PAQ_11 double COLUMN_DESCRIPTION

PAQ_12 double COLUMN_DESCRIPTION

PAQ_13 double COLUMN_DESCRIPTION

PAQ_14 double COLUMN_DESCRIPTION

PAQ_15 double COLUMN_DESCRIPTION

PAQ_16 double COLUMN_DESCRIPTION

PAQ_17 double COLUMN_DESCRIPTION

PAQ_18 double COLUMN_DESCRIPTION

PAQ_19 double COLUMN_DESCRIPTION

PAQ_20 double COLUMN_DESCRIPTION

PAQ_21 double COLUMN_DESCRIPTION PAQ_22 double COLUMN DESCRIPTION

PAQ_23 double COLUMN DESCRIPTION

PAQ_24 double COLUMN_DESCRIPTION

PAQ double COLUMN DESCRIPTION

edu_dich integer COLUMN_DESCRIPTION

econom_stat_dich integer COLUMN_DESCRIPTION

10 RCI

dichotomization of variables

paq.validation.study <- paq.validation.study %>% dplyr::mutate(edu_dich = as.factor(ifelse(education == "University master or higher", "University", "lower_edu")), econom_stat_dich = as.factor(ifelse(economical_status == "Student", "Student", "non_student")))

RCI

Reliable Change Index (RCI)

Description

This function calculates Reliable Change Index (RCI) as modified by Wiger and Solberg (2001, p.148).

Usage

```
RCI(SD_0, test.ret.rel)
```

Arguments

SD_0 standard deviation of the non-clinical population

test.ret.rel test-retest reliability of the instrument

Format

numeric vector of values

Details

This function computes value corresponding to "the minimum amount of change that could not be attributed to the error of measurement" (Biescad & Timulak, 2014, p. 150). If score change from before to post treatment is lower that value resulting from this function, than change in client score can not be attributed to the effectiveness of the therapy but rather other factors such as a measurement error (Biescad & Timulak, 2014). This function is a result of modification of the original Jacobson and Truax (1991) formula by Wiger and Solberg (2001, p.148).

Value

numeric vector

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal

two.g.comp 11

```
of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772
```

Wiger, D. E., & Solberg, K. B. (2001). Tracking Mental Health Outcomes: A Therapist's Guide to Measuring Client Progress, Analyzing Data, and Improving Your Practice (1., Vol. 2001). Wiley.

See Also

clin_sig_chang() function for calculation of the clinical cut-off scores

Examples

```
re.ch.in = RCI(SD_0 = 4.87, test.ret.rel = 0.66)
re.ch.in
```

two.g.comp

Automatic two-groups comparison

Description

Automatic two-groups comparison

Usage

```
two.g.comp(df, y, group.var)
```

Arguments

df data frame or tibble with one socio-demographic variable and one continuous

variable

y continuous variable group.var binary grouping variable

Format

An object of class "tibble"

Details

This function computes either Wilcox test or t-test depending on whether homogeneity of variances assumption is met or not.

Value

data frame

Author(s)

12 word2pdf

References

Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). Or second edition (1999).

Examples

```
# data loading
data(dat)
# running the function
two.g.comp.out.EC = two.g.comp(df = dat, y = "IRI_EC", group.var = "Gender")
# printing the output
print(two.g.comp.out.EC)
```

word2pdf

word to pdf

Description

Conversion of word document to pdf using either R Markdown package or Libre office. The latter represents higher quality approach - in general.

Usage

```
word2pdf(imp_file, out_file)
```

Arguments

Format

An object of class "pdf"

Details

this function is currently running only on windows

Value

pdf file

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

Examples

```
# example from word do pdf
#word2pdf(imp_file = "example.docx",out_file = "example1.pdf")
```

Index

```
* Dunn-test
    mult.g.comp, 7
* Games-Howell
    mult.g.comp, 7
* MI,
    mitab, 5
* Wilcoxon
    two.g.comp, 11
* a
    mitab, 5
* comparison,
    two.g.comp, 11
* datasets
    dat, 3
    paq.validation.study, 8
* equivalence,
    mitab, 5
* group
    two.g.comp, 11
* invariance
    mitab, 5
* logistic-regression
    lasy.log.reg, 4
* measurement
    mitab, 5
* multiple-groups
    mult.g.comp, 7
* of
    mitab, 5
* pdf,word
    word2pdf, 12
* test,
    mult.g.comp, 7
* testing,
    \verb|mult.g.comp|, 7
* test
    two.g.comp, 11
* two
    {\sf two.g.comp}, 11
{\tt clin\_sig\_chang, 2}
clin_sig_chang(), 11
dat, 3
```

```
lasy.log.reg, 4
mitab, 5
mult.g.comp, 7
paq.validation.study, 8
RCI, 10
RCI(), 3
two.g.comp, 11
word2pdf, 12
```