1 Setting

We fix a smooth bounded connected set $\Omega \subset \mathbb{R}^d$, a function $V \in C^2(\overline{\Omega}; \mathbb{R})$ and consider the differential operator

$$L_0 := \frac{1}{2}\Delta - \nabla V \cdot \nabla .$$

More generally one may take

$$L_0 := \frac{1}{2} \nabla \cdot a \nabla + b \cdot \nabla ,$$

or even work with general Markov processes...

We denote by $u:[0,\infty)\times\overline{\Omega}\to\mathbb{R}$ the unique solution of

$$\begin{cases} \partial_t u(t,x) = L_0 u(t,x) & \text{for } (t,x) \in (0,\infty) \times \Omega \\ u(0,x) = 1 & \text{for } x \in \Omega \\ u(t,x) = 0 & \text{for } (t,x) \in (0,\infty) \times \partial\Omega \end{cases}.$$

Probabilistic interpretation: $u(t,x) = \mathbb{P}_x(\tau_{\Omega} > t)$.

Note that u > 0 and that $u(t, \cdot) \in C^2(\Omega; \mathbb{R})$. For each $0 \le t \le T$ let $U_{t,T}: \Omega \to \mathbb{R}$ be given by

$$U_{t,T}(x) := \log u(T - t, x) ,$$

and consider the differential operator

$$L_t^T := L_0 + \nabla U_{t,T} \cdot \nabla .$$

For each fixed T > 0, we denote by $\{\mathbb{P}_x^T\}_{x \in \Omega}$ the family of Markov distributions induced by the time-dependent generator $L^T := (L_t^T)_{t \in [0,T]}$ on the path space $C([0,T];\Omega)$.

Probabilistic interpretation: condition to not be absorbed until time T...

We define for each path $X \in C([0,T];\Omega)$ the empirical measure

$$\mu_T(X) := \frac{1}{T} \int_0^T \delta_{X_t} dt .$$

The goal is to study the asymptotic behaviour when $T \to \infty$ of the probability distribution P_x^T on $\mathcal{P}(\Omega)$ (the set of probability distributions on Ω) given by

$$P_x^T := \mathbb{P}_x^T \circ \mu_T^{-1} .$$

More precisely, we would like to show:

"Theorem"

 $\{P_x^T\}_{T>0}$ satisfies for $T\to\infty$ a large deviation principle (uniformly for x in a compact ?) with speed T and rate function

$$I(\mu) = -\inf_{f \in C_c^2(\mathbb{R}; (0, \infty))} \int \frac{Lf}{f} d\mu ,$$

where

$$L := L_0 + \nabla \log \varphi \cdot \nabla$$
,

and φ is characterized by $\varphi > 0$ and existence of $\lambda > 0$ such that

$$\begin{cases}
-L_0 \varphi(x) = \lambda \varphi & \text{for } x \in \Omega \\
\varphi(x) = 0 & \text{for } x \in \partial \Omega .
\end{cases}$$

We denote in the sequel by $\{\mathbb{Q}_x^T\}_{x\in\Omega}$ the family of Markov distributions induced by the generator L on the path space $C([0,T];\Omega)$.

Probabilistic interpretation: process conditioned to never be absorbed, "Q-process".

Remark 1.1. It follows from the usual Donsker-Varadhan principle that $Q_x^T := \mathbb{Q}_x^T \circ \mu_T^{-1}$ satisfies an LDP with rate I (reference?).

2 proof

Upper bound

.

do usual perturbation with gradient fields, the problem is: time dependent drift, how should the perturbing drift depend on t, T?

mi sembra ne avevamo discusso a luglio, dovrei riuscire a ricostruirlo.

Lower bound

Instead of doing upper and lower bound, maybe it is easier to show that Q_x^T and P_x^T are exponentially equivalent? Something like: let ν, η random elements in $\mathcal{P}(\Omega)$ define on the same probability space and having distribution respectively P_x and Q_x . We want to show that for every $\delta > 0$

$$\limsup_{T \to \infty} T^{-1} \log \mathscr{P}(|\nu - \eta| > \delta) = -\infty.$$

References