Interpreting Bits: Binary and Hexadecimal Numbers

Z. Jerry Shi
Department of Computer Science and Engineering
University of Connecticut

CSE3666: Introduction to Computer Architecture

Outline

- Binary numbers
 - Addition and subtraction
- Two's complement numbers
 - Addition and subtraction
 - Negation
 - Sign extension
- Hexadecimal numbers
- ASCII
- Practice

https://zhijieshi.github.io/cse3666/binarynumbers/

Reading: Section 2.4, and hex to binary conversion in Section 2.5

Questions

• What are the decimal representations of the following binary numbers? What can we learn from these exercises?

$$Q1: \underbrace{1101}_{g_{+++}} \rightarrow (13)_{g_{+}}$$

Q2: 11010
$$(26)_{10}$$

Q3:
$$110100$$

$$2^{5}2^{4}2^{3}2^{2}2^{2}$$

$$2^{5}+2^{4}+2^{2} = (52)$$

Questions

• What are the decimal representations of the following binary numbers? What can we learn from these exercises?

$$1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13$$

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$
$$= 2 \times (1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}) + 0 = 26$$

Q3: 110100

Can you quickly find out the answer to Q3?

Shift bits

Given v,

Shift right by one bit, the value becomes v/2

n-bit binary numbers

- Very often, the number of bits available is fixed
- The range of values that can be represented by *n* bits is

For example:

10 bits can represent any values from 0 to 1,023

16 bits can represent any values from 0 to 65,535

32 bits can represent any values from 0 to 4,294,967,295

Powers of 2:

1K:
$$2^{10} = 1024$$
 64K: $2^{16} = 65,536$

1M:
$$2^{20} = 1,048,576$$

Question

• At least, how many bits do you need to represent 100 different values?

- A. 5
- B. 6
- C. 7
- D. 8
- E. Don't know

Addition of numbers

Subtraction of binary numbers

0b1101 - 0b0111

How about negative numbers?

-3-2-101234

Suppose we have 3 bits.

We know how to convert each number to decimal.

How can we represent negative numbers with bits?

	_
In decimal	?
0	
1	
2	
3	
4	
5	
6	
7	
	In decimal 0 1 2 3 4 5

Two's complement numbers

- The most popular method is two's complement numbers
 - There are other schemes. Almost all processors now use 2's complement
- Use half of bit patterns for negative values (which half?)

Bits	As binary	As 2's complement
000	0	Ů ()
001	1 (
010	2	2
011	3	3
100	4	(XI) ? (-4)
101	5	(72)? -3
110	6	(X3)? /2
111	7	(F4)? [-9]

Reading two's complement numbers

Given an *n*-bit 2's complement number

$$b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

The value is

$$-b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \dots + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$$

Another way:

If the sign is 0, the value = the unsigned value.

If the sign is 1, the value = the unsigned value -2^n

4-bit two's complement number:
$$0b1001 = -8 + 0 + 0 + 1 = -7 = 9 - 16$$

$$0b1100 = -8 + 4 + 0 + 0 = -4 = 12 - 16$$

Example: 3-bit binary numbers

We have two ways to interpret the bits

unsigned: binary numbers (without sign)

signed: \(\) two's complement numbers

Bits	Unsigned	Signed
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-4
101	5	-3
110	6	-2
111)	7	(-1)

Why 2's complement numbers?

• Math: the signed/unsigned values are congruent modulo 2^n

$$-1 \equiv 2^n - 1 \bmod 2^n$$

- We can use the same method/circuit to perform addition and subtraction for both unsigned and signed numbers
- For 2's complement numbers, if the sign is 1, we look at how far it is away from the next 0 (2^n)

2's complement numbers: range of values

- When dealing with 2's complement numbers, we need to know the number of bits
 - For example, 4-bit, 8-bit, 16-bit, etc., 2's complement number.
 - We always write leading 0s for 2's complement numbers

Given an n-bit 2'c complement number:

$$b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

$$-b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \dots + b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0$$
What are the smallest and largest values can be represented by these bits?

Example: Range of values

For *n*-bit two's complement numbers:

 -2^{n-1} can be represented but 2^{n-1} cannot

Examples

Number of bits	Smallest	Largest
8	-2^{7} -128	27 127
(12)	-2048	2047
16	-32768	32767
32	-2,147,483,648	2,147,483,647

What are the bits for the smallest values?

What are the bits for the largest values?

Negate 2's complement numbers

Given the bits representing x, find out the bits for -x x can be positive or negative

Steps:

- 1. Complement all the bits in x, i.e., $1 \to 0$ and $0 \to 1$ | flip all bits
- 2. Add 1 to the complemented bits | +1

Explanation:

The two steps do: 0 - x = (-1 + 1) - x = (-1 - x) + 1Bit pattern of -1 is 111...111

"Subtract x from -1" is the same as "flip the bits in x"

Example: negate 2's complement numbers

From +2 to -2		From -2 to $+2$
0000 0010 1111 1101	where we start flip bits	1111 1110 where we start 0000 0001 flip bits
1 1111 1110	add 1	1 0000 0010 add 1

Question

What is the value of the following 2's complement numbers?

Addition and subtraction of 2's complement numbers

- Addition: Same methods as (unsigned) binary numbers
- Subtraction:

$$a - b = a + (-b) = a + (\sim b) + 1$$

We just need an adder!

Flip bits in b

Exercises

Find the sum and differences of 1111_2 and 0100_2 .

Keen the lower 4 1-14 Cm Keep the lower 4 bits of the results.

Sign Extension alignment

- Representing a 2's complement number with more bits
 - And preserve the value!
- Replicate the sign bit to the left

- And preserve the value.

Replicate the sign bit to the left

- Compared with unsigned values where we just extend with 0s

Sign=1, pad;

Examples: 8-bit to 16-bit

```
0000\ 0010 => 0000\ 0000\ 0000\ 0000\  (same for signed and unsigned)
1111 1110 => 1111 1111 1111 1110 (sign extension for signed)
1111 1110 => 0000 0000 1111 1110 (0 extension for unsigned)
```

Sign extension or 0 extension? Depends on how we interpret bits

Question

• Which of the following signed number can be saved in a byte and still has the correct value?

What if they are unsigned? None

Hexadecimal

• The radix is 16 and there are 16 digits

Hex digits	0 – 9	a	b	C	d	e	f
Decimal value	0-9	10	11	12	13	14	15

Use 0x or a subscript of 16 to indicate hexadecimal numbers

0xABCD or ABCD₁₆

Why hexadecimal?

More compact for representing bits

Hexadecimal representation is shorter than binary representation

- Easier for human to read/write/compute
- Easy to convert between hexadecimal digits and bits

Conversion between hexadecimal and binary

- Hexadecimal is more compact to represent bits
 - Each hex digit represents 4 bits
 - 8 hex digits for 32 bits, and 16 for 64 bits

Mapping between hex digits and bits

	$\overline{}$						
0	0b0000	4	0b0100	8	0b1000 (C (12)	0b1100
1	0b0001	5	0b0101	9	0b1001	D (13)	0b1101
2	0b0010	6	0b0110	A (10)	0b1010	E (14)	0b1110
3	0b0011	7	0b0111	B (11)	0b1011	F (15)	0b1111

Example: to binary: convert each hex digit to 4 bits

ECA8 6420₁₆

110 1100 1010 1000 0110 0100 0010 0000₂

R 6 4 2 0

Example

Sometimes the number of bits is not a multiple of 4

bits to hex: 0 extended to a multiple of 4

hex to bits: only keep the bits at the right end

This is part of the green card

Question

- What is the hexadecimal representation of the following bits?
 - Note that we do not care how the bits are interpreted
 - They could be unsigned or signed

1010 1001 1010 A 9 A

1100 0111 0110 _ 7 6

Addition of hexadecimal numbers

We (humans) convert hex digits to decimal and then convert results back

$$9 + 3 = 12 = 0xC$$

$$0xA + 0xB + 0$$

$$= 10 + 11 + 0$$

$$= 21$$

$$= 16 + 5$$

$$= 0x15$$

$$0x5 + 0xF + 1$$

$$= 0x5 + 0x10$$

$$= 0x15$$

$$1 + 7 + 6 = 14 = 0xE$$

ASCII: Representing Characters

We also use bits to represent characters!

- ASCII: a standard that use 7 bits to represent 128 characters
 - Including digits, English letters, and special characters
 - And 33 control characters

Example: 65 for 'A', 66 for 'B', 110 for '^'

- An ASCII character is stored in a byte
 - Only use 7 bits. The MSB is always 0
 - Latin-1 extends ASCII to 256 characters (using all 8 bits in a byte)

ASCII Table (partial)

ASCII values are in decimal Control characters (0 - 31) are not shown

ASCII value	Char- acter										
32	space	48	0	64	@	80	Р	96	`	112	р
33	!	49	1	65	Α	81	Q	97	а	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	S
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	Е	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	T	55	7	71	G	87	W	103	g	119	W
40	(56	8	72	Н	88	Х	104	h	120	Х
41)	57	9	73	I	89	Y	105	i	121	у
42	*	58	:	74	J	90	Z	106	j	122	Z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	I	124	1
45	-	61	=	77	М	93]	109	m	125	}
46		62	>	78	N	94	٨	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	DEL

Representation and interpretation

• A value has different representations

- Computers only deal with bits
- You can write in any format. Compiler/assembler converts it to the same bits, if the representation is supported
- Bits can be interpreted in different ways
 - E.g., unsigned numbers, 2's complement numbers
 - We are going to learn a few more ways

Memorize

Powers of 2, at least to 1024

Mapping between single hex digits and 4 bits

Mapping between single hex digits and numbers in [0, 15]

Example

- The immediate in the following ADDI instructions are the same!
 - Character '0' is not the same as number 0

```
addi s1, x0, '0' Ascul addi s2, x0, 48 lee addi s3, x0, 0x30 hex
\# s1 == s2 \text{ and } s1 == s3
# lower eight bits are 0011 0000
add s4, x0, x0 2ero
# s4 != s1

Reg number = 0
```

Study the remaining slides yourself

2's-Complement (signed) numbers

 Need to know the number of bits to read 2's complement numbers

• The left-most bit (the MSB) is the sign bit

0: for non-negative numbers. The value is the same as unsigned.

1: for negative numbers. The value is the unsigned value -2^n

• Some commonly seen representations:

```
-1: 0b 1111 1111 ... 1111
```

-2: 0b 1111 1111 ... 1110

Most-negative: 0b 1000 0000 ... 0000

Most-positive: 0b 0111 1111 ... 1111

Example: counting by 5 in hexadecimal

Count by 5 in hexadecimal, starting from 0.

0x0,		
0x5,	0xA,	0xF,
0x14,	0x19,	0x1E,
0x23,	0x28,	0x2D,
0x32,	0x37,	•••

Do you see any patterns?

Example: radix 10 to radix 1000

We often add thousands separators when writing large numbers Basically, we convert decimal numbers to radix 1000 numbers It is easy to do because $1000 = 10^3$

Why 2's complement number works

Why 2's complement number works

	complement s values in red	value	ned picks es in this olumn
Bits	Į.		
000	-8	0	8
001	-7	1	9
010	-6	2	10
011	-5	3	11
100	-4	4	12
101	-3	5	13
110	-2	6	14
111	-1	7	15

Question

• What is the value of the following 4-bit number? 1001

We have to agree on how to interpret the bits first.

unsigned: binary numbers (without sign)

signed: two's complement numbers

unsigned: 9

signed: -7

There will be a problem if a program writes 9 and another program reads -7

Subtraction of binary numbers

0b1101 - 0b0111

The borrow bits are from the next higher place.

Subtraction of hexadecimal numbers

7 5 A 9

Misc

- Convert a binary number to decimal number
 - It means "find out the value of the unsigned binary number and represent the same value in decimal".
- Convert a decimal number to an *n*-bit 2's complement number
 - It means "represent the same value of the decimal number with *n*-bit 2's complement number".
 - The bits can be represented by hexadecimal digits, too
- Hexadecimal number as *n*-bit 2's complement number
 - It means "treat the bits specified by the hexadecimal digits as *n*-bit 2's complement number."