ITMO

Методы повышения устойчивости эволюционного поиска больших графов

Логойда Роман Васильевич

Специальность: «Искусственный интеллект и машинное обучение»
Научный руководитель: к.т.н. Никитин Николай Олегович

Верхнеуровневая задача

- Ориентированный граф без петель и весов
- Граф может быть как плотным, так и разреженным
- Размерность графа неизвестна

Задача: найти граф решая задачу оптимизации по заданным метрикам

Проблематика

Чем больше размерность графа:

- Увеличивается время вычисления
- Увеличивается требуемое место под хранение в памяти
- Увеличивается пространство поиска
 - Проблема изоморфных графов

И это при прямом кодировании графа из n вершин до n^2-n ребёр

Проблематика

Рассмотрим матрицу смежностей (как вариант прямого кодирования) порядка n. Вариантов для поиска: 2^{n^2-n}

Исключим изоморфные графы: А000273

Оценка снизу:
$$\frac{2^{n^2-n}}{n!}$$

Прикладное значение

Проект **GOLEM** от ITMO AIM.club

- Поиск графов по заданным метрикам
- Используется прямое кодирование (граф как ссылочная структура)
- Поиск больших графов (в рамках задачи ≥ 40) затрудняется деградацией
 - Рост размерности без улучшения метрики
 - Увеличение времени вычисления

Мотивировка

- Пересмотреть прямое кодирование
 - Использовать заданные метрики
 - Непрямое кодирование
- Использовать информацию o Fitness landscape
- Рассмотреть подзадачу для DAG (AutoML, NAS, BN, ...)

Идея 1: вектор инвариантов

Неспецифичные метрики на графах, как правило, используются информацию об инвариантах:

- (n вершин, m рёбер)
- Вектор степеней вершин
- Собственные числа, определитель матрица смежностей

Идея 1: вектор инвариантов

Плюсы:

- Уменьшенная размерность решения
- Элементы кодировки интерпретируемы

Минусы:

- Нужно проверять допустимость такого вектора
- Сильная привязка к искомым метрикам

Вывод:

В рамках общей задачи теряется гибкость фреймворка GOLEM. Более не рассматривается

Идея 2: матрица смежностей v.2

Можно модифицировать матрицу смежностей:

- Задать значение матрицы через формулу с параметром p $a_{i,j} = f(i,j,p)$
- Задать значение матрицы через вероятностное распределение
- Матрица как блочная матрица с эволюцией блоков

Идея 2: матрица смежностей v.2

Можно оценить долю неизоморфных графов: $\frac{1}{n!}$ (см. Проблематика)

Идея 2: матрица смежностей v.2

Плюсы:

• Уменьшенное хранение в памяти

Минусы:

- Потеря в точности
- Остаются остальные недостатки м. с.

Вывод:

Не стоит для дальнейшего рассмотрения

Идея 3: непрямое кодирование

Кодирование фенотип = генотип в случае графов не использует накапливаемую информацию о признаках графа.

Предлагается использовать клеточное кодирование

Оригинальный подход имеет ряд недостатков:

- Операторы не отображают высокоуровневые признаки графа
- Возникновение интронов
- Bloating

Ряд работ, где использование непрямого кодирования используется для накапливания полезной информации в индивидах:

- XC-NAS (2023) [https://doi.org/10.48550/arXiv.2312.07760]
- Simple Genetic Operators are Universal Approximators of Probability Distributions (2022)
 [https://doi.org/10.48550/arXiv.2202.09679]
- A Flexible Variable-length Particle Swarm Optimization Approach to Convolutional Neural Network Architecture Design (2021) [https://ieeexplore.ieee.org/document/9504716]
- Evolutionary NAS with Gene Expression Programming of Cellular Encoding(2020)
 [https://doi.org/10.48550/arXiv.2005.13110]

Предложение:

- Добавить высокоуровневые признаки граф как конструктор
 - Добавить цикл
 - Добавить регулярный граф
 - Задать степень вершине
- Без операторов удаления исключение интронов
- Логическая оптимизация по шаблонам
- Генетические операторы:
 - Мутация операторов
 - Скрещивание с проверкой допустимости

Задача:

- NSGA2
- Пространство поиска 80
- Размерность целевого графа 60
- Начальная популяция 20
- 10 независимых запусков

медленный старт непрямой кодировки и GOLEM (накопление размерности)

на больших итерациях непрямая кодировка имеет больше недоминируемых решений чем прямая

framework		deap_de			deap_ce golem_de			
dom	inance	deap_ce	golem_de	deap_de	golem_de	deap_de	deap_ce	
	gen							•
	10	17	14	0	1	0	4	
	20	21	25	0	2	0	7	
	30	27	31	4	5	0	5	
	40	21	33	9	15	0	13	
	50	35	47	17	21	0	16	/
	60	37	46	25	27	5	29	
	70	42	35	36	34	52	41	
	80	46	54	42	39	92	49	
	90	51	64	78	45	130	56	
	100	49	67	94	44	140	59	
	120	45	33	114	53	153	68	
	140	29	20	121	49	180	72	
	160	18	9	145	42	180	74	
	180	14	8	152	44	180	67	
—	200	12	10	156	41	180	71	

Плюсы:

- Использование признаков графов обеспечивает лучшую сходимость чем при прямом кодировании
- Выигрыш по расходу памяти

Минусы:

- Нельзя просто так задать операторы, нужны проверки
- Предположение выигрыш в пространстве поиска с некоторой размерности нивелируется (ожидается примерно с ~300 вершин)

Вывод:

Относительно GOLEM не удалось достичь успеха, но относительно прямого кодирования – да

Идея 4: графовые эмбеддинги

Перед эволюционным поиском обучается автоэнкодер:

 $enc:ind \rightarrow emb$

 $dec: emb \rightarrow metric$

РОС: обучение автоэнкодера заняло больше времени, чем достижение GOLEM приемлемых результатов (<= 100 вершин)

Дальнейшие действия

- Использовать информацию o Fitness landscape
- Исследовать применимость графовых эмбеддингов

Спасибо за внимание