MC-102 — Algoritmos de ordenação

Lehilton Pedrosa

Instituto de Computação – Unicamp

Segundo Semestre de 2012

Roteiro

- Introdução
- Ordenação por seleção
- 3 Ordenação por inserção
- Ordenação por Intercalação
- Divisão e conquista
- 6 Ordenação por Particionamento
- Divisão e conquista novamente

Introdução

Problema

Escreva um programa que recebe uma lista de números inteiros e imprima-os em ordem crescente.

Introdução

Problema

Escreva um programa que recebe uma lista de números inteiros e imprima-os em ordem crescente.

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 números inteiros,
 nomes de pessoas,
 times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Estratégias diferentes levam a algoritmos diferentes.

4 / 37

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:

```
números inteiros,
nomes de pessoas,
times de futebol...:
```

 Os algoritmos podem ordenar crescente ou decrescentemente dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Estratégias diferentes levam a algoritmos diferentes.

4 / 37

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas, times de futebol...:)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Estratégias diferentes levam a algoritmos diferentes.

4 / 37

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - times de futebol...:)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - ▶ times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - ▶ times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - ▶ times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - ▶ times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - ▶ times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

Ordenação

- Vamos estudar algoritmos para ordenar conjuntos de elementos
- Os elementos podem ser de qualquer tipo que possamos comparar:
 - números inteiros,
 - nomes de pessoas,
 - ▶ times de futebol... :)
- Os algoritmos podem ordenar crescente ou decrescentemente, dependendo da direção da comparação.

Estratégias

Existem várias estratégias para ordenar:

- Selecionar o menor a cada vez e colocar na ponta
- Trocar itens fora de ordem
- Outras?

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Selecionamos o menor elemento
- Movemos o item para uma nova lista
- Repetimos tudo com a lista restante (preta)

- Não precisamos de uma nova lista! Basta
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Continuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Continuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Continuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Continuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - 3 Continuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - 3 Continuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

- Não precisamos de uma nova lista! Basta:
 - Selecionar o menor elemento
 - Trocar com o primeiro elemento da lista
 - Ontinuar com a lista restante (preta)

Algoritmo de ordenação

- Vamos implementar uma função para ordenar inteiros
- A função terá os seguintes parâmetros:
 int vetor []: vetor de inteiros onde os elementos estão
 int n: o número de elemento do vetor
- A função deverá ordenar o vetor passado crescentemente

```
Trocar dois valores inteiros
void trocar(int *a, int *b) {
   int aux = *a;
   *a = *b;
   *b = aux;
}
```

Algoritmo de ordenação

- Vamos implementar uma função para ordenar inteiros
- A função terá os seguintes parâmetros:

```
int vetor[]: vetor de inteiros onde os elementos estão
```

A função deverá ordenar o vetor passado crescentemente

```
void trocar(int *a, int *b) {
   int aux = *a;
   *a = *b;
   *b = aux;
}
```

Algoritmo de ordenação

- Vamos implementar uma função para ordenar inteiros
- A função terá os seguintes parâmetros:
 - ▶ int vetor[]: vetor de inteiros onde os elementos estão
 - int n: o número de elemento do vetor
- A função deverá ordenar o vetor passado crescentemento

```
Irocar dois valores interios
void trocar(int *a, int *b) {
   int aux = *a;
   *a = *b;
   *b = aux;
}
```

Algoritmo de ordenação

- Vamos implementar uma função para ordenar inteiros
- A função terá os seguintes parâmetros:
 - ▶ int vetor[]: vetor de inteiros onde os elementos estão
 - ▶ int n: o número de elemento do vetor
- A função deverá ordenar o vetor passado crescentemente

```
Irocar dois valores inteiros
void trocar(int *a, int *b) {
    int aux = *a;
    *a = *b;
    *b = aux;
}
```

Algoritmo de ordenação

- Vamos implementar uma função para ordenar inteiros
- A função terá os seguintes parâmetros:
 - ▶ int vetor[]: vetor de inteiros onde os elementos estão
 - int n: o número de elemento do vetor
- A função deverá ordenar o vetor passado crescentemente

```
Trocar dois valores inteiros
```

```
void trocar(int *a, int *b) {
    int aux = *a;
    *a = *b;
    *b = aux;
}
```

Algoritmo de ordenação

- Vamos implementar uma função para ordenar inteiros
- A função terá os seguintes parâmetros:
 - int vetor[]: vetor de inteiros onde os elementos estão
 - int n: o número de elemento do vetor
- A função deverá ordenar o vetor passado crescentemente

```
Trocar dois valores inteiros
void trocar(int *a, int *b) {
   int aux = *a;
   *a = *b;
   *b = aux;
}
```

Menor elemento não ordenado (na lista preta) int menor_elemento(int vetor[], int n, int primeiro) { int i, menor = primeiro; for (i = primeiro + 1; i < n; i++) { if (vetor[i] < vetor[menor]) menor = i; } return menor;</pre>

```
Ordenação por seleção
int ordenar_selecao(int vetor[], int n) {
   int i, menor;
   for (i = 0; i < n; i++) {
       menor = menor_elemento(vetor, n, i);
       trocar(&vetor[i], &vetor[menor]);
   }
}</pre>
```

```
Menor elemento não ordenado (na lista preta)
int menor_elemento(int vetor[], int n, int primeiro) {
   int i, menor = primeiro;
   for (i = primeiro + 1; i < n; i++) {
      if (vetor[i] < vetor[menor])
            menor = i;
   }
   return menor;
}</pre>
```

```
Ordenação por seleção
int ordenar_selecao(int vetor[], int n) {
   int i, menor;
   for (i = 0; i < n; i++) {
       menor = menor_elemento(vetor, n, i);
       trocar(&vetor[i], &vetor[menor]);
   }
}</pre>
```

8 / 37

ldeia

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Inicialmente temos uma lista de itens desordenados
- Retiramos o primeiro elemento
- Inserimos este item em uma nova lista na ordem
- Repetimos tudo com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Continuar com a lista restante (preta)

Ideia

Como usar apenas um vetor?

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Continuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - 🗿 Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Continuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Continuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - O Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Continuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - O Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - 🧿 Inserir o elemento retirado na ordem correta
 - O Continuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Continuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - 2 Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

- Como usar apenas um vetor?
 - O primeiro elemento já está ordenado
 - Retirar o primeiro elemento desordenado
 - Procurar a posição em que deve ser inserido
 - Deslocar os elementos ordenados seguintes
 - Inserir o elemento retirado na ordem correta
 - Ontinuar com a lista restante (preta)

Algoritmo de ordenação por inserção (Insertion-Sort)

```
Posição de inserção (na lista verde)
int posicao_elemento(int vetor[], int ultimo, int elemento) {
   int i;
   for (i = 0; i <= ultimo && vetor[i] <= elemento; i++);
   return i;
}</pre>
```

```
Deslocar parte do vetor
void deslocar_subvetor(int vetor[], int primeiro, int ultimo) {
   int i;
   for (i = ultimo; i >= primeiro; i--) {
      vetor[i+1] = vetor[i];
   }
}
```

Algoritmo de ordenação por inserção (Insertion-Sort)

```
Posição de inserção (na lista verde)
int posicao_elemento(int vetor[], int ultimo, int elemento) {
   int i;
   for (i = 0; i <= ultimo && vetor[i] <= elemento; i++);
   return i;
}</pre>
```

```
Deslocar parte do vetor

void deslocar_subvetor(int vetor[], int primeiro, int ultimo) {
   int i;
   for (i = ultimo; i >= primeiro; i--) {
      vetor[i+1] = vetor[i];
   }
}
```

Algoritmo de ordenação por inserção (Insertion-Sort)

```
Ordenação por inserção
int ordenar_insercao(int vetor[], int n) {
    int i, posicao;
    int elemento;
    for (i = 1; i < n; i++) {
        elemento = vetor[i]:
        posicao = posicao elemento(vetor, i-1, elemento);
        deslocar subvetor(vetor, posicao, i-1);
        vetor[posicao] = elemento;
```

Introdução - Ordenação por Intercalação

Problema 1

Suponha que temos um vetor desordenado com 10 números. Como ordenar a primeira metade da lista números?

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5)

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5);

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5);

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5);

Ordenando a primeira parte

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5);

E se quiséssemos ordenar a segunda parte?

Ordenando a primeira parte

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5);

E se quiséssemos ordenar a segunda parte?

Ordenando a primeira parte

Suponha que

- temos uma função ordenar(int vetor[], int ini, int fim)
- ela ordena o vetor da posição ini até fim
- o vetor é indexado da posição 1 até 10
- executamos ordenar(vetor, 1, 5);

E se quiséssemos ordenar a segunda parte?

- agora queremos ordenar a segunda parte
- executamos ordenar(vetor, 6, 10);

- agora queremos ordenar a segunda parte
- executamos ordenar(vetor, 6, 10);

- agora queremos ordenar a segunda parte
- executamos ordenar(vetor, 6, 10);

- agora queremos ordenar a segunda parte
- executamos ordenar(vetor, 6, 10);

Ordenando tudo

Problema

Suponha que temos um vetor de 10 números com as duas metades já ordenadas. Como criar um novo vetor com todos os elementos ordenados?

Ordenando tudo

Problema

Suponha que temos um vetor de 10 números com as duas metades já ordenadas. Como criar um novo vetor com todos os elementos ordenados?

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo veto
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

- Percorremos os dois subvetores,
- pegamos o menor e inserimos no novo vetor e continuamos
- Depois movemos o resto.

Observação

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista

- Divisão: Quebramos um problema em vários subproblemas menores
- Conquista: Combinamos a solução dos problemas menores

Observação

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista

- Divisão: Quebramos um problema em vários subproblemas menores
- Conquista: Combinamos a solução dos problemas menores

Observação

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista

- Divisão: Quebramos um problema em vários subproblemas menores
- Conquista: Combinamos a solução dos problemas menores

Observação

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista

- Divisão: Quebramos um problema em vários subproblemas menores
- Conquista: Combinamos a solução dos problemas menores

Observação

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista

- Divisão: Quebramos um problema em vários subproblemas menores
- Conquista: Combinamos a solução dos problemas menores

Divisão e conquista

Observação

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

Divisão e conquista

Com isso podemos resolver o problema em duas partes:

- Divisão: Quebramos um problema em vários subproblemas menores
- Conquista: Combinamos a solução dos problemas menores

Convenções para a intercalação

• Os dois subvetores estão armazenados em vetor:

O primeiro nas posições de meio + 1 até fim

- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX

Exemplo #define MAX 100

Convenções para a intercalação

- Os dois subvetores estão armazenados em vetor:
 - O primeiro nas posições de ini até meio
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX
 Example #define MAX 100

Convenções para a intercalação

- Os dois subvetores estão armazenados em vetor:
 - O primeiro nas posições de ini até meio
 - O segundo nas posições de meio + 1 até fim
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX

Exemplo #define MAX 100

Convenções para a intercalação

- Os dois subvetores estão armazenados em vetor:
 - O primeiro nas posições de ini até meio
 - O segundo nas posições de meio + 1 até fim
- Precisamos de um vetor auxiliar do tamanho do vetor

Convenções para a intercalação

- Os dois subvetores estão armazenados em vetor:
 - O primeiro nas posições de ini até meio
 - O segundo nas posições de meio + 1 até fim
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX

Exemplo #define MAX 100

Convenções para a intercalação

- Os dois subvetores estão armazenados em vetor:
 - O primeiro nas posições de ini até meio
 - O segundo nas posições de meio + 1 até fim
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX
 - Exemplo #define MAX 100

Intercalar subvetores int intercalar(int vetor[], int ini, int meio, int fim) { int auxiliar[MAX]; // vetor auxiliar int i = ini, j = meio + 1, k = 0; // indices dos vetores // intercala while(i <= meio && j <= fim) { if (vetor[i] <= vetor[j])</pre> auxiliar[k++] = vetor[i++]; else auxiliar[k++] = vetor[j++]; } // copia resto de cada subvetor while (i <= meio) auxiliar[k++] = vetor[i++]; while (j <= fim) auxiliar[k++] = vetor[j++];</pre> // copia de auxiliar para vetor for (i = ini, k=0; i <= fim; i++, k++) vetor[i] = auxiliar[k]: }

Convenções para ordenação

- Recebemos um vetor de tamanho *n* com limites:
 - O vetor termina na posição vetor [fim]
- Dividimos o vetor em dois subvetores de tamanho $\frac{n}{2}$
- O caso base é um vetor de tamanho 0 ou 1

Ordenação por intercalação

```
void ordenar_intercalacao(int vetor[], int ini, int fim) {
   int meio;

if (ini < fim) {
    meio = (ini + fim) / 2;
    ordenar_intercalacao(vetor, ini, meio);
    ordenar_intercalacao(vetor, meio + 1, fim);
    intercalar(vetor, ini, meio, fim);
}</pre>
```

Convenções para ordenação

- Recebemos um vetor de tamanho n com limites:
 - O vetor começa na posição vetor[ini]
- Dividimos o vetor em dois subvetores de tamanho $\frac{n}{2}$
- O caso base é um vetor de tamanho 0 ou 1

Ordenação por intercalação

```
void ordenar_intercalacao(int vetor[], int ini, int fim) {
   int meio;

if (ini < fim) {
    meio = (ini + fim) / 2;
    ordenar_intercalacao(vetor, ini, meio);
    ordenar_intercalacao(vetor, meio + 1, fim);
    intercalar(vetor, ini, meio, fim);
}</pre>
```

Convenções para ordenação

- Recebemos um vetor de tamanho *n* com limites:
 - O vetor começa na posição vetor[ini]
 - O vetor termina na posição vetor [fim]
- Dividimos o vetor em dois subvetores de tamanho ;
- O caso base é um vetor de tamanho 0 ou 1

Ordenação por intercalação

```
void ordenar_intercalacao(int vetor[], int ini, int fim) {
   int meio;

if (ini < fim) {
    meio = (ini + fim) / 2;
    ordenar_intercalacao(vetor, ini, meio);
    ordenar_intercalacao(vetor, meio + 1, fim);
    intercalar(vetor, ini, meio, fim);
}</pre>
```

Convenções para ordenação

- Recebemos um vetor de tamanho *n* com limites:
 - O vetor começa na posição vetor[ini]
 - O vetor termina na posição vetor[fim]
- Dividimos o vetor em dois subvetores de tamanho $\frac{n}{2}$.
- O caso base é um vetor de tamanho 0 ou 1

```
Ordenação por intercalação

void ordenar_intercalacao(int vetor[], int ini, int fim) {
   int meio;

if (ini < fim) {
   meio = (ini + fim) / 2;
   ordenar_intercalacao(vetor, ini, meio);
   ordenar_intercalacao(vetor, meio + 1, fim);
   intercalar(vetor, ini, meio, fim);
}</pre>
```

Convenções para ordenação

- Recebemos um vetor de tamanho *n* com limites:
 - O vetor começa na posição vetor[ini]
 - O vetor termina na posição vetor[fim]
- Dividimos o vetor em dois subvetores de tamanho $\frac{n}{2}$.
- O caso base é um vetor de tamanho 0 ou 1.

```
void ordenar_intercalação

void ordenar_intercalação(int vetor[], int ini, int fim) {
   int meio;

if (ini < fim) {
    meio = (ini + fim) / 2;
    ordenar_intercalação(vetor, ini, meio);
    ordenar_intercalação(vetor, meio + 1, fim);
    intercalar(vetor, ini, meio, fim);</pre>
```

Convenções para ordenação

- Recebemos um vetor de tamanho *n* com limites:
 - O vetor começa na posição vetor[ini]
 - O vetor termina na posição vetor[fim]
- Dividimos o vetor em dois subvetores de tamanho $\frac{n}{2}$.
- O caso base é um vetor de tamanho 0 ou 1.

```
Ordenação por intercalação
void ordenar_intercalacao(int vetor[], int ini, int fim) {
   int meio;

   if (ini < fim) {
       meio = (ini + fim) / 2;
       ordenar_intercalacao(vetor, ini, meio);
       ordenar_intercalacao(vetor, meio + 1, fim);
       intercalar(vetor, ini, meio, fim);
}</pre>
```

Convenções para ordenação

- Recebemos um vetor de tamanho *n* com limites:
 - O vetor começa na posição vetor[ini]
 - O vetor termina na posição vetor[fim]
- Dividimos o vetor em dois subvetores de tamanho $\frac{n}{2}$.
- O caso base é um vetor de tamanho 0 ou 1.

```
Ordenação por intercalação

void ordenar_intercalacao(int vetor[], int ini, int fim) {
    int meio;

    if (ini < fim) {
        meio = (ini + fim) / 2;
        ordenar_intercalacao(vetor, ini, meio);
        ordenar_intercalacao(vetor, meio + 1, fim);
        intercalar(vetor, ini, meio, fim);
    }
}</pre>
```

21 / 37

Ordenação por intercalação - Exemplo

```
#include "stdio.h"
#define MAX 100
void intercalar(int vetor[], int ini, int meio, int fim);
void ordenar_intercalacao(int vetor[], int ini, int fim);
int main() {
    int i;
    int vetor[] = \{4, 5, 1, 0, 7, 6, 3, 2\};
    ordenar intercalacao(vetor, 0, 7);
    for (i = 0; i < 8; i++)
        printf("%d\n", vetor[i]);
```

Ordenação por intercalação - Exemplo

```
#include "stdio.h"
#define MAX 100
void intercalar(int vetor[], int ini, int meio, int fim);
void ordenar_intercalacao(int vetor[], int ini, int fim);
int main() {
    int i;
    int vetor[] = \{4, 5, 1, 0, 7, 6, 3, 2\};
    ordenar intercalacao(vetor, 0, 7);
    for (i = 0; i < 8; i++)
        printf("%d\n", vetor[i]);
```

Repare que como podemos inicializar um vetor em C com constantes!

22 / 37

Ordenação por intercalação - Chamadas

Ordenação por intercalação - Retornos

Introdução - Ordenação por Particionamento

Problema 1

Suponha que temos um vetor desordenado com 10 números. Como fazer com que números *pequenos* (menores que 5) fiquem antes dos números *grandes* (maiores que 5)?

Considere a função

• int particionar(int vetor[], int ini, int fim)

Considere a função

- int particionar(int vetor[], int ini, int fim)
 - ▶ a primeira parte do vetor contém elementos "pequenos"

a segunda parte do vetor contém elementos "grandes"

Considere a função

- int particionar(int vetor[], int ini, int fim)
 - a primeira parte do vetor contém elementos "pequenos"
 - a segunda parte do vetor contém elementos "grandes"

Combinando

Problema 2

Suponha que o subvetor

- da posição **pos** a **fim**: contenha apenas elementos grandes
- da posição ini a pos 1: contenha apenas elementos pequenos

Como ordenar?

- Ordenamos recursivamente o primeiro subvetor
- Depois o segundo subvetor

Combinando

Problema 2

Suponha que o subvetor

- da posição pos a fim: contenha apenas elementos grandes
- da posição ini a pos 1: contenha apenas elementos pequenos

Como ordenar?

- Ordenamos recursivamente o primeiro subvetor
- Depois o segundo subvetor

Combinando

Problema 2

Suponha que o subvetor

- da posição pos a fim: contenha apenas elementos grandes
- da posição ini a pos 1: contenha apenas elementos pequenos

Como ordenar?

- Ordenamos recursivamente o primeiro subvetor
- Depois o segundo subvetor

- Divisão: Separamos elementos pequenos e grandes
- Conquista: Ordenamos cada subvetor

```
QuickSort
void quick_sort(int vetor[], int ini, int fim) {
    int pos;

    if (ini < fim) {
        pos = particionar(vetor, ini, fim);

        quick_sort(vetor, ini, pos - 1);
        quick_sort(vetor, pos, fim);
    }
}</pre>
```

- Divisão: Separamos elementos pequenos e grandes
- Conquista: Ordenamos cada subvetor

```
QuickSort
void quick_sort(int vetor[], int ini, int fim) {
    int pos;

    if (ini < fim) {
        pos = particionar(vetor, ini, fim);

        quick_sort(vetor, ini, pos - 1);
        quick_sort(vetor, pos, fim);
    }
}</pre>
```

- Divisão: Separamos elementos pequenos e grandes
- Conquista: Ordenamos cada subvetor

```
QuickSort
void quick_sort(int vetor[], int ini, int fim) {
    int pos;

    if (ini < fim){
        pos = particionar(vetor, ini, fim);

        quick_sort(vetor, ini, pos - 1);
        quick_sort(vetor, pos, fim);
    }
}</pre>
```

- Divisão: Separamos elementos pequenos e grandes
- Conquista: Ordenamos cada subvetor

```
QuickSort
void quick_sort(int vetor[], int ini, int fim) {
   int pos;

   if (ini < fim){
      pos = particionar(vetor, ini, fim);

      quick_sort(vetor, ini, pos - 1);
      quick_sort(vetor, pos, fim);
   }
}</pre>
```

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - primeira: apenas elementos menores ou iguais ao pivô
 - segunda: apenas elementos maiores que o pivô

- Obtemos o valor do pivô:
 - escolhemos sempre o valor do último elemento
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - primeira: apenas elementos menores ou iguais ao pivô
 - segunda: apenas elementos maiores que o pivô

- Obtemos o valor do pivô:
 - escolhemos sempre o valor do último elemento
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - primeira: apenas elementos menores ou iguais ao pivô
 - segunda: apenas elementos maiores que o pivô

- Obtemos o valor do pivô:
 - escolhemos sempre o valor do último elemento
- Procuramos elementos fora de ordem:
 - ▶ do início ao fim: em busca de elementos maiores que o pivô
 - do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - primeira: apenas elementos menores ou iguais ao pivô
 - 2 segunda: apenas elementos maiores que o pivô

- escolhemos sempre o valor do último elemento
- Procuramos elementos fora de ordem: do início ao fim: em busca de elementos maiores que o pivô do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - 1 primeira: apenas elementos menores ou iguais ao pivô
 - 2 segunda: apenas elementos maiores que o pivô

- Obtemos o valor do pivô:
 - escolhemos sempre o valor do último elemento
- Procuramos elementos fora de ordem:
 do início ao fim: em busca de elementos maiores que o pivô
 do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - 1 primeira: apenas elementos menores ou iguais ao pivô
 - 2 segunda: apenas elementos maiores que o pivô

- Obtemos o valor do pivô:
 - escolhemos sempre o valor do último elemento
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - do fim ao início: em busca de elementos menores ou iguais ao pivô
- I rocamos os elementos em posições erradas

Como particionar um vetor?

Ideia

- Escolhemos um valor pivô
- Separamos o vetor em duas partes:
 - primeira: apenas elementos menores ou iguais ao pivô
 - segunda: apenas elementos maiores que o pivô

- Obtemos o valor do pivô:
 - escolhemos sempre o valor do último elemento
- 2 Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas

Algoritmo de particionamento

```
Particionar vetor
int particionar(int vetor[], int ini, int fim) {
    int pivo;
    pivo = vetor[fim];
    while (ini < fim) {
        while (ini < fim && vetor[ini] <= pivo)</pre>
            ini++:
        while (ini < fim && vetor[fim] > pivo)
            fim--;
        troca(&vetor[ini], &vetor[fim]);
    }
    return ini; // ini é a posição do primeiro elemento grande
```


- Obtemos o valor do pivô
- Procuramos elementos fora de ordem:

- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:

- Trocamos os elementos em posições erradas
- Ontinuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- 2 Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- 2 Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- 2 Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- 1 Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - ▶ do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
 - Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
 - Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- 2 Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- 2 Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

- 1 Obtemos o valor do pivô:
- Procuramos elementos fora de ordem:
 - do início ao fim: em busca de elementos maiores que o pivô
 - ▶ do fim ao início: em busca de elementos menores ou iguais ao pivô
- Trocamos os elementos em posições erradas
- Continuamos passo 2 até índices se encontrarem

Exercício 1

- Reescreva a função ordenar_selecao para que ela não utilize as funções auxiliares (menor_elemento e trocar).
- Reescreva a função ordenar_insercao para que ela não utilize funções auxiliares. Na implementação acima, nós selecionamos a posição de inserção do elemento primeiro e depois deslocamos um subvetor. Mas podemos fazer as duas coisas de uma só vez. Qual a vantagem?
- Na função ordenar_selecao, é realmente necessária a última iteração do laço de repetição? Por quê? E para a função ordenar_insercao?

Exercício 2

- Escreva uma função para ordenar um vetor de Pessoa em ordem decrescente de idade e, havendo empate, em ordem crescente de nome.
- Suponha que existe um vetor de pessoas. Queremos criar um vetor de mulheres ordenado por idade em ordem decrescente e, havendo empate, em ordem crescente de nome. Não queremos modificar o vetor original mas também não queremos desperdiçar espaço nem duplicar informação. Para isso: (i) crie um vetor de ponteiros para pessoas; (ii) modifique a questão 1 para que ela receba um vetor de ponteiros. Implemente essa estratégia e explique suas vantagens e como ela funciona.
- Ao invés de usar ponteiros, você poderia usar índices para o vetor original. Explique as vantagens e desvantagens.

Ordenação da bolha

https://www.youtube.com/watch?v=lyZQPjUT5B4

Exercício 3 - Ordenação da bolha

```
Bubble-Sort
void ordenar bolha(int vetor[], int n) {
    int i, mudou;
    do {
        mudou = 0;
        for (i = 1; i < n; i++) {
            if (vetor[i-1] > vetor[i]) {
                trocar(&vetor[i-1], &vetor[i]);
                mudou = 1;
    } while (mudou);
```

- Explique o que faz e qual é a ideia do algoritmo.
- ② Faça um teste de mesa para um vetor com elementos (5,4,3,2,1) e para um vetor com elementos (1,4,3,2,5). Conte as trocas.
- Você consegue dizer por que o algoritmo tem esse nome? Por quê?

Exercício 4

Problema

Escreva uma função que recebe um vetor de inteiros ordenado decrescentemente e um número, realize uma busca binária e devolva a posição do número no vetor. Depois reescreva essa função de maneira recursiva

Exercício 5

- Aplique o algoritmo de particionamento sobre o vetor (13, 19, 9, 5, 12, 21, 7, 4, 11, 2, 6, 6) com pivô igual a 6.
- Modifique o algoritmo QuickSort para ordenar vetores em ordem decrescente.