Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 6. Tydzień rozpoczynający się 15. kwietnia

Zadania

- 1. Niech $X \sim \text{Geom}(p)$ (rozkład geometryczny). Wykazać, że $M_X(t) = \frac{pe^t}{1 qe^t}$.
- 2. Niech $X \sim \text{Geom}(p)$. Korzystając z funkcji $M_X(t)$ obliczyć $\mathrm{E}(X)$ oraz $\mathrm{V}(X)$.
- 3. Dla $X \sim N(\mu, \sigma^2)$ mamy $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$, $x \in \mathbb{R}$. Udowodnić, że postać $M_X(t)$ jest następująca: $M_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$.
- 4. Zmienne X_1, \ldots, X_n są niezależne i $X_k \sim N(\mu, \sigma^2)$. Znaleźć funkcję tworzącą momenty $M_{\bar{X}}(t)$ zmiennej \bar{X} (\bar{X} to średnia z X_1, \ldots, X_n), a następnie zidentyfikować rozkład zmiennej \bar{X} .
 - [**Z. 5–6**] Zmienna $X \sim \text{Gamma}(b,p)$ ma MGF postaci $M_X(t) = (1-\frac{t}{b})^{-p}$. Można skorzystać z faktu, że $\Gamma(1/2) = \sqrt{\pi}$.
- 5. Niech $X \sim N(\mu, \sigma^2)$. Znaleźć rozkład zmiennej $Y = \left(\frac{X \mu}{\sigma}\right)^2$.
- 6. Zmienne X_1, \ldots, X_n są niezależne oraz $X_k \sim N(\mu, \sigma^2)$. Znaleźć rozkład zmiennej $Z_n = \sum_{k=1}^n \left(\frac{X_k \mu}{\sigma}\right)^2$.
 - [Z. 7–8] Znaleźć rozkład, któremu podlega zmienna $Z = \sum_{k=1}^{n} X_k$. O występujących w tych zadaniach zmiennych zakładamy, że są niezależne. Rozwiązujemy zadania używając "MGFy" (funkcje generujące momenty).
- 7. $X_k \sim \text{Gamma}(b, p_k), \quad k = 1, \dots, n.$
- 8. $X_k \sim B(m_k, p), k = 1, ..., n.$
- 9. Zmienna losowa (X,Y) ma gęstość $f(x,y)=\frac{15}{2}x^2y$ (na trójkącie o wierzchołkach (0,0), (2,0), (0,1)). Wyznaczyć gestość zmiennej losowej T=X/Y.
- 10. Zakładamy, że zysk firmy jest zmienną losową U. MGF tego zysku przedstawia się wzorem $M_U(t)=\frac{2}{2-3t}$. Wyznaczyć:
 - (a) wartość oczekiwaną zysku,
 - (b) wariancję zysku,
 - (c) MGF podatku od zysku, przy założeniu stopy podatkowej liniowej, 90%.
- 11. Zmienna losowa X ma MGF o postaci $M_X(t)$. Zmienna losowa Y jest pewną funkcją zmiennej X. Co można powiedzieć o Y (założenia i od jakich zmiennych zależy Y) jeżeli:
 - (a) $M_Y(t) = M_X(2t) \cdot M_X(4t)$,
 - (b) $M_Y(t) = e^{2t} M_X(t)$,
 - (c) $M_Y(t) = 4M_X(t)$.