Representasi Bilangan Digital

Kuliah#8 TKC-205 Sistem Digital - TA 2013/2014

Eko Didik Widianto

Sistem Komputer - Universitas Diponegoro

21 Maret 2014

@2012,Eko Didik Widianto

Representasi Posisional

(Signed)

Preview Kuliah

- Rangkaian digital membutuhkan masukan bernilai digital dan menghasilkan keluaran digital (biner)
 - Nilai digital ini merepresentasikan suatu bilangan atau huruf hanya dengan simbol 0 dan 1
- Dalam sistem komputer dikenal bilangan utuh dan bilangan pecahan, yang bisa bernilai negatif maupun positif
- Huruf dinyatakan dalam kode yang dikenali oleh sistem
- Representasi digital dari bilangan dan huruf digunakan dalam operasi sistem
- Operasi bilangan yang dapat dilakukan oleh sistem meliputi operasi penjumlahan dan pengurangan
 - Dilakukan secara digital oleh unit aritmetika dan logika (ALU, arithmetic logic unit)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan

Review Kuliah

- Sebelumnya telah dibahas tentang sintesis rangkaian logika dan teknologi implementasi menggunakan CMOS. Dalam rangkaian logika, diimplementasikan variabel-variabel (masukan dan keluaran) yang menyatakan suatu keadaan switch atau kondisi atau sistem
 - Nilai keadaan yang diberikan ke rangkaian dan yang diperoleh di keluaran rangkaian dalam simulasi dan pengujian adalah nilai digital
- Selanjutnya akan dibahas tentang representasi nilai digital untuk variabel sistem digital/komputer ini

Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Data Komputer

- Komputer secara umum tersusun atas antarmuka masukan/keluaran, prosesor, memori dan media penyimpan (misalnya harddisk)
 - Dari peripheral masukan, komputer mendapatkan masukan data karakter berupa huruf, angka, simbol dan kontrol dari keyboard, misalnya A, b, 1, &, *, dan LF (line feed, ganti baris)
 - Ke peripheral masukan, komputer menampilkan data karakter di layar monitor berupa teks
- Operasi aritmetika menggunakan sistem bilangan untuk menyatakan bilangan bulat dan pecahan, positif dan negatif, bilangan sangat besar dan bilangan sangat kecil
- Karakter dan bilangan harus dinyatakan ke dalam nilai digital yang dimengerti komputer

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bahasan Kuliah

- representasi posisional: bilangan tak bertanda (unsigned), desimal, biner, oktal dan heksadesimal
- konversi bilangan
- bilangan bertanda (signed): sign-magnitude, 1's complement dan 2's complement
- bilangan pecahan fixed-point (titik tetap)
- bilangan pecahan floating-point (titik mengambang/tidak tetap)
- ▶ BCD (binary-coded decimal) untuk kode angka desimal
- kode ASCII untuk karakter

Representasi Bilangar Digital @2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

nepresentasi Lainnya

Ringkasaı

Kompetensi Dasar

- Setelah mempelajari bab ini, mahasiswa akan mampu:
 - 1. [C2] menuliskan sistem bilangan digital, dalam bentuk bilangan posisional, biner, heksadesimal, oktal, bertanda (signed) dan tak bertanda (unsigned) dengan tepat
 - 2. [C3] menuliskan bilangan pecahan ke dalam bentuk fixed-point dengan tepat dan sebaliknya
 - 3. [C3] menuliskan bilangan pecahan ke dalam bentuk floating-point presisi tunggal dan ganda dengan tepat dan sebaliknya
 - 4. [C3] merepresentasikan karakter dan angka digital ke dalam kode ASCII dan BCD dengan tepat

Link

- Website: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/
- Email: didik@undip.ac.id

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan

Representasi Posisional

Bilangan Biner

Bilangan Oktal dan Hexadesimal

Konversi Bilangan

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude

Bilangan 1's Complement

Bilangan 2's Complement

Representasi Bilangan Pecahan

Bilangan Fixed Point

Bilangan Floating Point 32-Bit

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Bilangan BCD

Kode ASCII

Ringkasan

Lisensi

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan

Bilangan Integer Desimal

- Dua tipe bilangan
 - 1. Tak bertanda (*unsigned*): bilangan yang hanya memuat nilai positif
 - 2. Bertanda (**signed**): bilangan yang memuat nilai positif dan negatif
- Bilangan bulat tak bertanda desimal, unsigned integer
 - bilangan memuat digit yang mempunyai nilai 0-9
 - Bilangan desimal n-digit dapat dinyatakan sebagai $D = d_{n-1}d_{n-2}\cdots d_1d_0$
 - Bilangan D tersebut mewakili nilai integer $V(D) = d_{n-1} \times 10^{n-1} + d_{n-2} \times 10^{n-2} + \dots + d_1 \times 10^1 + d_0 \times 10^0$ Misalnya: 8547 mewakili $8 \times 10^3 + 5 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$
 - Representasi bilangan tersebut disebut representasi posisional
- Bilangan desimal disebut bilangan radix-10 atau base-10, karena digitnya mempunayi 10 nilai yang mungkin dan tiap digit berbobot pangkat 10

@2012.Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Pecahan

Representasi Posisional Bilangan Biner

Representasi Posisional Bilangan Biner

Bilangan Biner

- Dalam sistem digital, digunakan bilangan biner atau base-2
 - Tiap digit (bit, binary digit) mempunyai nilai 0 atau 1
 - Sebuah variabel mewakili satu bit
- Representasi posisional bilangan biner n-digit: $B = b_{n-1}b_{n-2}\cdots b_1b_0$
- Bilangan B tersebut mewakili nilai integer V(B)

$$V(B) = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \dots + b_1 \times 2^1 + b_0 \times 2^0 = \sum_{i=0}^{n-1} \mathbf{b_i} \times \mathbf{2^i}$$

- Misalnya: $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (13)_{10}$
- ▶ Bilangan n-bit mewakili bilangan integer positif dari 0 . . . 2ⁿ 1

@2012,Eko Didik

Representasi Posisional

Bilangan Biner

(Signed)

Representasi Posisional

Bilangan Biner

Bilangan Oktal dan Hexadesimal

Konversi Bilangan

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude

Bilangan TS Complement

Bilangan 28 Complemen

Representasi Bilangan Pecahar

Bilangan Fixed Poin

Bilangan Floating Point 32-Bit

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Bilangan BCD

Kode ASCII

Ringkasar

Lisensi

@2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional Bilangan Biner Bilangan Oktal dan Hexadesimal

Bilangan Bertanda (Signed)

Representasi Bilangai Pecahan

Representasi Lainny

Ringkasan

Bilangan Oktal dan Hexadesimal

- Representasi posisional dapat digunakan untuk sebarang radix
 - Untuk radix r, maka untuk bilangan

$$K = k_{n-1} k_{n-2} \cdots k_1 k_0$$
 mempunyai nilai integer $\sum\limits_{i=0}^{n-1} k_i \times r^i$

- Bilangan dengan radix 8 disebut oktal
 - Digit bernilai dari 0...7
- Bilangan dengan radix 16 disebut hexadesimal (hex)
 - ▶ Digit bernilai dari 0...9 dan A...F

epresentasi Bilangan Digital @2012,Eko Didik Widianto

Representasi
Posisional
Bilangan Biner
Bilangan Oktal dan
Hexadesimal
Konversi Bilangan

Bilangan Bertanda (Signed)

Pecahan

Representasi Lainn

ingkasan

Representasi Bilangan dan Nilai Ekivalennya

Desimal	Biner	Oktal	Hexa
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7

Desimal	Biner	Oktal	Hexa
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

@2012,Eko Didik Widianto

Representasi

Bilangan Oktal dan Hexadesimal

Representasi Posisional

Bilangan Biner Bilangan Oktal dan Hexadesimal

Konversi Bilangan

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude
Bilangan 1's Complement

Bilangan 2's Complement

bilangan 23 Complemen

Representasi Bilangan Pecahan

Bilangan Fixed Poin

Bilangan Floating Point 32-Bit

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Bilangan BCD

Kode ASCII

Ringkasar

http://didik.blog.undip.ac.id

Lisensi

Representasi Posisional

Bilangan Oktal dan Hexadesimal Konversi Bilangan

Bilangan Bertand (Signed)

Representasi Bilangar Pecahan

Representasi Lainny

Ringkasan

- Konversi bilangan biner ke desimal atau sebaliknya
 - Biner ke desimal

$$V(B) = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \dots + b_1 \times 2^1 + b_0 \times 2^0$$

=
$$\sum_{i=0}^{n-1} b_i \times 2^i$$

Contoh:

$$(11101011)_2 = 2^7 + 2^6 + 2^5 + 2^3 + 2^1 + 2^0$$

= $(235)_{10} = 235$

- Desimal ke biner
 - Bagi bilangan desimal D dengan 2, memberikan hasil bagi (quotient) dan sisa. Sisa nilainya 0 atau 1. Sisa akan menjadi LSB
 - Bagi guotient dengan 2, memberikan hasil bagi dan sisa. Ulangi pembagian quotient sampai quotient=0
 - Untuk setiap pembagian, sisa akan merepresentasikan satu bit bilangan binernya

@2012,Eko Didik Widianto

Representasi Posisional

Konversi Bilangan

Contoh Desimal ke Biner

epresentasi Bilangan Digital

@2012,Eko Didik Widianto didik@undip.ac.id)

Representasi Posisional

Bilangan Biner
Bilangan Oktal dan
Hexadesimal
Konversi Bilangan

Bilangan Bertano

Representasi Bilangan

Representasi Lainnya

Ringkasan

Konversi Desimal ke Oktal dan Hexa

epresentasi Bilangan Digital

@2012,Eko Didik Widianto didik@undip.ac.id)

Representasi Posisional

Bilangan Oktal dan Hexadesimal Konversi Bilangan

Bilangan Bertanda

Representasi Bilanga Pecahan

Representasi Lainnya

ingkasan

Konversi Biner-Oktal-Heksadesimal

Biner - Oktal

1 digit oktal merupakan grup 3 digit biner

Konversi biner - oktal:

.	Biner	001	000	110	100
•	Oktal	1	0	6	4
	Oktal	2	3	6	7
•	Biner	010	011	110	111

Konversi oktal - biner:

▶ Biner - Hexadesimal

1 digit hexa merupakan grup 4 digit biner

Konversi biner - hexa:

Hexa	F	0	6	4
Biner	1111	0000	0110	0100
	~	mona.		

Konversi hexa - biner:

Notiversi flexa - bifler.						
Hexa	2	Α	С	7		
Biner	0010	1010	1100	0111		

oresentasi Bilangan Digital

@2012,Eko Didik Widianto didik@undip.ac.id)

Representasi Posisional Bilangan Biner Bilangan Oktal dan Hexadesimal Konversi Bilangan

Bilangan Bertanda Signed)

Representasi Bilangai Pecahan

Representasi Lainny

igkasan

Konversi Biner-Hexadesimal

@2012,Eko Didik Widianto

Representasi

Konversi Bilangan

Latihan

▶ Nyatakan bilangan biner 10 bit 1000110100₂ ke dalam oktal, heksadesimal dan desimal

@2012,Eko Didik Widianto

Representasi

Konversi Bilangan

Bilangan Bertanda

- Dalam sistem biner, representasi bilangan signed berisi: tanda (sign) dan besar nilai (magnitude)
 - Tanda diyatakan oleh bit paling kiri (0: bilangan positif, 1: bilangan negatif)
- Bilangan n-bit: 1 bit paling kiri menyatakan tanda, n-1 bit berikutnya menunjukan besar nilai bilangan

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude Bilangan 1's Complement Bilangan 2's Complement

Representasi Bilangan Pecahan

Representasi Lainnya

Ringkasar

isensi

Bilangan Bertanda

- ▶ Di bilangan signed, terdapat 3 format yang umum digunakan untuk representasi bilangan negatif
 - 1. Sign-Magnitude
 - 1's Complement
 - 3. 2's Complement

@2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan Bertanda (Signed) Bilangan Sign-magnitude

http://didik.blog.undip.ac.id

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > □ □

@2012.Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude

Bilangan Sign-magnitude

▶ Bilangan sign-magnitude menggunakan 1 bit paling kiri untuk menyatakan tanda (0: positif, 1: negatif) dan bit sisanya menyatakan magnitude (besar nilai bilangan). Bilangan 4-bit:

,					0 /				District Control of Difference
	0	1	2	3	4	5	6	7	Representasi Bila Pecahan
Positif	0 000	0 001	0 010	0 011	0 100	0 101	0 110	0111	Representasi Lain
Negatif	1000	1 001	1 010	1 011	1 100	1 101	1 110	1 111	Ringkasan

- Walaupun ini mudah dipahami, tapi ini tidak cocok digunakan di sistem komputer (dibahas di Operasi Bilangan)
- ▶ Latihan: Nyatakan bilangan A=-71 ke dalam bilangan sign-magnitude 8 bit

@2012.Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude

Bilangan Bertanda (Signed)

Bilangan 1's Complement

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan 1's Complement

Bilangan 1's Complement

- Skema 1's Complement:
 Bilangan n-bit negatif K dapat diperoleh dari mengurangkan
 2ⁿ 1 dengan bilangan positif ekivalennya P
 K = (2ⁿ 1) P
- ► Misalnya untuk bilangan 4-bit (n=4):

$$K = (2^4 - 1) - P = 15 - P = (1111)_2 - P$$

	0	1	2	3	4	5	6	7
Positif	0000	0001	0010	0011	0100	0101	0110	0111
Negatif	1111	1110	1101	1100	1011	1010	1001	1000

- Terlihat bahwa 1's complement dapat dibentuk dengan mengkomplemenkan tiap bit bilangan, termasuk bit tanda
- Masih ada kekurangan dari penggunaan 1's complement (dibahas di Operasi Bilangan)
- Latihan: nyatakan bilangan A=-71 ke dalam bilangan 1's complement 8 bit

@2012,Eko Didik Widianto

(didik@undip.ac.i

Bilangan Bertanda (Signed)

Representasi Posisional

Bilangan Sign-magnitude Bilangan 1's Complement

Representasi Bilangan Pecahan

Representasi Lainnya

Ringkasa

Bilangan Bertanda (Signed)

Bilangan 2's Complement

http://didik.blog.undip.ac.id

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan 2's Complement

Bilangan 2's Complement

- Skema 2's Complement:
 Bilangan n-bit negatif K dapat diperoleh dari mengurangkan 2ⁿ dengan bilangan positif ekivalennya P
 K = 2ⁿ - P
- ► Misalnya untuk bilangan 4-bit (n=4): $K = 2^4 P = 16 P = (10000)_2 P$

	0	1	2	3	4	5	6	7	8
Positif	0000	0001	0010	0011	0100	0101	0110	0111	-
Negatif	0000	1111	1110	1101	1100	1011	1010	1001	1000

- Terlihat bahwa 2's complement dapat dibentuk dengan mengkomplemenkan tiap bit bilangan dan menambahkan 1
 - (2's complement) = (1's complement) + 1
- Bilangan signed 2's complement ini yang sering digunakan dalam sistem komputer

Digital

@2012,Eko Didik

Widianto

(didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude Bilangan 1's Complement Bilangan 2's Complement

Representasi Bilangan Pecahan

- ·

Ringkasa

iconci

Aturan Mencari 2's Complement

- ▶ Jika diberikan satu bilangan signed $B = b_{n-1}b_{n-2} \cdots b_1b_0$ (baik positif maupun negatif) maka 2's complementnya $K = k_{n-1}k_{n-2} \cdots k_1k_0$ dapat diperoleh dengan
 - Melihat semua bit B dari kanan ke kiri (mulai b₀, b₁, dst) dan mengkomplemenkan semua bit setelah nilai '1' yang pertama dijumpai
 - ▶ Jika B=+76 (01001100) maka K=-76 (10110100)
 - ▶ Jika B=-81 (10101111) maka K=+81 (01010001)

Representasi Bilanga Digital @2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude Bilangan 1's Complement Bilangan 2's Complement

Representasi Bilangan Pecahan

Representasi Lainnya

Hingkasa

Bilangan Integer Bertanda 4-bit

Digital

@2012,Eko Didik

Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Bilangan 2's Complement Representasi Bilangan Pecahan

Representasi Lainnya Bingkasan

Ringkasan Lisensi

$b_3b_2b_1b_0$	S-M	1'S Comp	2's Comp	$b_3b_2b_1b_0$	S-M	1'S Comp	2's Con
0111	+7	+7	+7	1000	-0	-7	-8
0110	+6	+6	+6	1001	-1	-6	-7
0101	+5	+5	+5	1010	-2	-5	-6
0100	+4	+4	+4	1011	-3	-4	-5
0011	+3	+3	+3	1100	-4	-3	-4
0010	+2	+2	+2	1101	-5	-2	-3
0001	+1	+1	+1	1110	-6	-1	-2
0000	+0	+0	+0	1111	-7	-0	-1

Jangkauan Bilangan Signed

#Bit	Nama	Jangkauan
4	nible, semioctet	signed: $-(2^3)$ s/d $2^3 - 1$
		unsigned: $0 \text{ s/d } 2^4 - 1$
8	byte, octet	signed: $-(2^7)$ s/d $2^7 - 1$
		unsigned: 0 s/d 2 ⁸ - 1
16	half-word, word, short	signed: $-(2^{15})$ s/d $2^{15} - 1$
		unsigned: 0 s/d 2 ¹⁶ - 1
32	word, long, doubleword,	signed: $-(2^{31})$ s/d $2^{31} - 1$
	int	
		unsigned: 0 s/d $2^{32} - 1$
64	doubleword, int64	signed: $-(2^{63})$ s/d $2^{63} - 1$
		unsigned: 0 s/d 2 ⁶⁴ - 1
n	Integer n-bit (bentuk	signed: $-(2^{n-1})$ s/d $2^{n-1} - 1$
	umum)	
		unsigned: 0 s/d $2^n - 1$

Widianto

Representasi

(Signed)

Bilangan 2's Complement

Bilangan Desimal Pecahan

- ► Dinyatakan dengan simbol 0-9 dan , (koma) untuk memisahkan bagian bulat dan pecahan
 - ▶ Bilangan pecahan dapat bernilai positif (+) dan negatif (-)
 - ► Bilangan ini dapat bernilai sangat besar dan sangat kecil
 - ▶ konstanta temperatur Plank $T_P = 1.416833 \times 10^{32} K$
 - ▶ konstanta Boltzmann $k = 1,3806488 \times 10^{-23} J \cdot K^{-1}$.

Representasi Bilangan Digital @2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating Point 32-Bit

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Ringkasan

......

Representasi Bilangan Pecahan Digital

1. fixed-point

- Bilangan fixed-point dinyatakan dengan posisi titik tetap untuk memisahkan bagian bulat dan pecahan
- Misalnya, bilangan fixed-point A(4, 4) mempunyai 4 bit untuk nilai bulat (dan tanda) dan 4 bit untuk nilai pecahan
- Jangkauan dan resolusi bilangan dibatasi oleh jumlah bit dalam bilangan

2. floating-point

- Bilangan floating-point dinyatakan dengan posisi titik mengambang (tidak tetap)
- Dapat digunakan untuk menyatakan bilangan yang sangat besar maupun sangat kecil

Digital

@2012,Eko Didik
Widianto
(didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating Point
32-Bit
Bilangan Floating-point

Presisi Ganda

Representasi Lainnya

ingkasan

Representasi Posisional Bilangan Biner Bilangan Oktal dan Hexadesima Konversi Bilangan

Bilangan Bertanda (Signed)
Bilangan Sign-magnitude
Bilangan 1's Complement
Bilangan 2's Complement

Representasi Bilangan Pecahan
Bilangan Fixed Point
Bilangan Floating Point 32-Bit
Bilangan Floating-point Presisi Gand

Representasi Lainnya Bilangan BCD Kode ASCII

Ringkasar

http://didik.blog.undip.ac.id

@2012,Eko Didik Widianto (didik@undip.ac.id)

34

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilanga Pecahan Bilangan Fixed Point Bilangan Floating Point 32-Bit Bilangan Floating-point

Representasi Lainnya

Ringkasan

Bilangan Fixed-Point

- Bilangan fixed-point terdiri atas bagian integer (digit signifikan) dan pecahan
 - memungkinkan bilangan pecahan (mis: 75,625)
 - Digunakan di mesin yang tidak mempunyai FPU (floating-point unit)
- Notasi bilangan (n+k) bit:

$$Bn, k = b_{n-1}b_{n-2}\cdots b_1b_0, b_{-1}b_{-2}\cdots b_{-k}$$

- n: #bit integer (tanpa bit tanda), k: #bit pecahan. Misal: B3,4 adalah bilangan dengan 3 bit integer dan 4 bit pecahan yang disimpan dalam satu integer 2's complement 8-bit
- ► Nilai bilangan: $V(Bn, k) = \sum_{i=-k}^{n-1} b_i \times 2^i$ atau Q(n, k)
 - ▶ Jumlah bit: n + k + 1
 - 1 bit untuk tanda, n bit untuk bulat, dan k-bit untuk pecahan
 - 2's complement. 0: positif, 1: negatif

@2012.Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Representasi Lainnya

Contoh Bilangan Fixed-Point

▶
$$B3, 4 = (0101, 1010)_2 = 2^2 + 1 + 2^{-1} + 2^{-3} = 5,625_{10} = 5, A_{16}$$

▶ $B3, 4 = (1011, 1010)_2 = -(01000110_2) = -(2^2 + 2^{-2} + 2^{-3}) = -(8,375)$

- Rangkaian logika untuk fixed-point sama dengan bilangan integer
- ► Referensi lanjut: http://www.digitalsignallabs.com/fp.pdf

presentasi Bilangan Digital

@2012,Eko Didik Widianto didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Bilangan Floating Point 32-Bit Bilangan Floating-point

Panracentaci Lainnya

ricpresentasi Lainnya

Ringkasan

Konversi Bilangan Fixed-Point

Representasi Bilangan Digital @2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Bilangan Floating Point 32-Bit Bilangan Floating-point

Representasi Lainnya

Ringkasan

Konversi Bilangan Fixed-Point

Digital
@2012,Eko Didik

Widianto didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Bilangan Floating Point 32-Bit

Flesisi Galiua

nepresentasi Lainnya

Ringkasan

Bilangan Fixed-Point Negatif

- ▶ Tentukan nilai bilangan fixed-point untuk $B_{3,4} = (10111010)_2$
- Solusi. B merupakan bilangan negatif

$$B_{3,4} = (1011_1010)_2$$

 $-B_{3,4} = 0100_0110$
 $= 2^2 + 2^{-2} + 2^{-3}$
 $= 4,375$
 $B_{3,4} = -4,375$

@2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Bilangan Fixed-Point Presisi

- ightharpoonup Bilangan *fixed-point* bertanda $B_{n,k}$, nilai k bisa bernilai negatif untuk menyatakan bilangan pecahan yang lebih presisi
 - ▶ Jumlah bit: n + k + 1▶ Presisi bilangan: ¹/_{2k}
- ► Tentukan nilai bilangan fixed-point $B_{-3,10} = 11100010$ Bilangan tersebut bernilai negatif, sehingga perlu dicari nilai positifnya, yaitu $-B_{-3.10}$.

```
B_{-3.10}
                    11100010
                    00011110
-B_{-3.10} =
                    0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 1 \times 2^{-6} + 1 \times 2^{-7} + 1 \times 2^{-8} + 0 \times 2^{-9}
                    0.05859375
                    0.05859375
  B_{-3.10}
```

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Jangkauan Bilangan Fixed-Point Bertanda

▶ Jangkauan bilangan *fixed-point* bertanda $B_{n,k}$ dapat dinyatakan sebagai berikut:

$$-2^n \leq B_{n,k} \leq 2^n - \tfrac{1}{2^k}$$

- ► Tentukan dan analisis jangkauan bilangan fixed-point B_{3.4} **Solusi**. Nilai bilangan paling negatifnya adalah -2^3 . atau-8, yang dinyatakan dengan 10000000. Nilai bilangan paling positif adalah $2^3 - \frac{1}{2^4}$ atau 7,9375 yang dinyatakan dengan 01111111.
- ▶ Tentukan jangkauan bilangan fixed-point bertanda B_{-2.17} **Solus**i. Bilangan bertanda $B_{-2.17}$ mempunyai n = -2, k = 17 dan dinyatakan dengan (-2 + 17 + 1) bit, yaitu 16 bit. Bilangan paling negatif bernilai -2^n , yaitu -2^{-2} atau -0,25. Bilangan paling positif bernilai $2^n - \frac{1}{2^k}$, yaitu $2^{-2} - \frac{1}{217}$. Presisi bilangan tersebut adalah $\frac{1}{217}$.

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Representasi Lainnya

Bahasan

Representasi Posisional Bilangan Biner Bilangan Oktal dan Hexadesima Konversi Bilangan

Bilangan Bertanda (Signed)
Bilangan Sign-magnitude
Bilangan 1's Complement
Bilangan 2's Complement

Representasi Bilangan Pecahan

Bilangan Fixed Poin

Bilangan Floating Point 32-Bit

Bilangan Floating-point Presisi Ganda

Representasi Lainnya Bilangan BCD Kode ASCII

Ringkasar

Lisensi http://didik.blog.undip.ac.id

@2012,Eko Didik Widianto (didik@undip.ac.id)

@2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilanga Pecahan Bilangan Fixed Point Bilangan Floating Point 32-Bit Bilangan Floating-point

Representasi Lainnya

Ringkasan

Bilangan Floating-Point

- Bilangan fixed-point mempunyai range yang dibatasi oleh digit signifikan yang digunakan untuk merepresentasikan bilangan
- Dalam beberapa aplikasi, diperlukan bilangan yang mungkin sangat besar atau sangat kecil
 - Memerlukan representasi floating-point
 - Bilangan direpresentasikan dengan mantissa yang berisi bit signifikan dan **eksponen** dari radix R
 - ► Format: mantisa × R^{eksponen}
 - Bilangan tersebut seringkali dinormalisasi terhadap radixnya. Misalnya untuk radix 10: $1,5 \times 10^{44}$ atau 1.25×10^{-36}

@2012,Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Floating Point

Format IEEE Presisi Tunggal

- IEEE mendefinisikan format 32-bit (single precision) untuk nilai floating-point (IEEE 754-1985)
 - ► 1-bit sign (S)
 - ▶ 8-bit eksponen (E)
 - 23-bit mantissa (M)
- Dalam programming dikenal dengan tipe data float (C, C++, Java) dan single (Pascal, VB, MATLAB)
- Nilai bilangan: $V(B) = (-1)^S \left(1 + \sum_{i=1}^{23} b_{-i} \times 2^{-i}\right) \times 2^{E-127}$
- ► Baca: http://en.wikipedia.org/wiki/Single_precision

Representasi Bilangan Digital @2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating Point 32-Bit Bilangan Floating-point

Presisi Garida

representasi Lainnyi

ngkasan

Bilangan Float 32-bit

- Representasi bilangan float
 - \blacksquare B = $(3E200000)_{16}$
 - ► $B=(+)(1.01)_2 \times 2^{124-127} = +(0.00101)_2 = 0.15625$

- Nilai eksponen:
 - $E_{min} = 1$, $E_{max} = 254$, menghasilkan eksponen (bias=127):

E = 1 - 127 = -126 dan E = 254 - 127 = 127

Eksponer	Signifika	ın=0 signifikan≠0	Persamaan
(E)			
0	0, -0	subnormal	$(-1)^S imes 0$.bit signifikan $ imes 2^{-126}$
1-254	Nil	ai ternormalisasi	$(-1)^S \times 1$.bit signifikan $\times 2^{E-127}$
255	∞	bukan bilangan	
		(NAN=not-a-	
		number)	

presentasi Bilangan Digital

@2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

Bilangan Floating Point 32-Bit

i resisi danua

. .

. .

Contoh Bilangan Float 32-bit

- Nyatakan bilangan pecahan B = 35.625 dalam format floating-point 32-hit
- Solusi.

$$B = (35.625)_{10}$$

$$= (35)_{10} + (0.625)_{10}$$

$$= (100011)_2 + (0.1001)_2$$

$$= (100011.1001)_2 \times 2^5$$

▶ Dari hasil normalisasi 1.M di atas, diperoleh M = 000111001 dan Exp = 5, atau E = 5 + 127 = 132. Jadi, dengan nilai eksponen E = 132 = 10000100 dan mantisa M = 000111001, maka B = 0x420F4000

@2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating Point

Bilangan Float 32-bit

- Tentukan nilai pecahan desimal dari bilangan floating-point B = 0x00600000
- Solusi.

ightharpoonup Bilangan B mempunyai nilai eksponen E=0 dan mantisa $M \neq 0$, sehingga merupakan bilangan subnormal. Nilai pecahan desimal dari bilangan subnormal B adalah:

$$V(B) = (-1)^{S} \left(0 + \sum_{i=1}^{23} m_{-i} \times 2^{-i} \right) \times 2^{-126}$$

$$= (-1)^{0} \left(0 + 1 \times 2^{-1} + 1 \times 2^{-2} \right) \times 2^{-126}$$

$$= +0.75 \times 2^{-126}$$

$$= +8.816207631 \times 10^{-39}$$

@2012.Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating Point

Representasi Lainnya

Bilangan Float 32-bit Negatif

- Bilangan floating-point negatif mempunyai bentuk sign-magnitude, yaitu nilai S menunjukkan tanda sedangkan besar nilai ditunjukkan oleh mantisa dan eksponennya.
- Nyatakan format floating-point 32-bit dari bilangan A = -0.21875
- ▶ Dari nilai bilangan -A = +0.21875 adalah 0x3E600000. Dengan mengubah field S = 1, maka bilangan A dinyatakan dengan 0xBE600000

Representasi Bilanga Digital @2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point Bilangan Floating Point

32-Bit
Bilangan Floating-point

Representasi Lainnya

ingkasan

Deklarasi Bilangan di Bahasa Pemrograman

 Bilangan floating-point presisi tunggal (32-bit) ini dideklarasikan dengan tipe data float (bahasa C, C++, Java) dan single (Pascal, VB, MATLAB).

```
float anumber; // 32-bit single precision number
int main(){
anumber = -1.1245;
. . .
return 0;
```

```
@2012.Eko Didik
   Widianto
```

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Floating Point

Bahasan

Representasi Posisional Bilangan Biner Bilangan Oktal dan Hexadesima Konversi Bilangan

Bilangan Bertanda (Signed)
Bilangan Sign-magnitude
Bilangan 1's Complement
Bilangan 2's Complement

Representasi Bilangan Pecahan

Bilangan Fixed Point Bilangan Floating Point 32-Bir

Bilangan Floating-point Presisi Ganda

Representasi Lainnya Bilangan BCD Kode ASCII

Ringkasar

LISENSI http://didik.blog.undip.ac.id

@2012,Eko Didik Widianto (didik@undip.ac.id)

Digital @2012,Eko Didik Widianto (didik@undip.ac.id

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangai Pecahan Bilangan Fixed Point Bilangan Floating Point 32-Bit Bilangan Floating-point

Representasi Lainnya

Ringkasan

Presisi Ganda

Format

- ► IEEE mendefinisikan format 64-bit (double precision) untuk nilai floating-point (IEEE 754-1985)
 - ▶ 1-bit sign (S)
 - ► 11-bit eksponen (E)
 - ► 52-bit mantissa (M)
- ▶ Dalam programming dikenal dengan tipe data *double* (C, C++, Java)
- ► Nilai bilangan: $V(B) = (-1)^S \left(1 + \sum_{i=1}^{52} b_{-i} \times 2^{-i}\right) \times 2^{E-1023}$

presentasi Bilangan Digital

@2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

32-Bit Bilangan Floating-point Presisi Ganda

Popragontosi Lainnya

.....

Bilangan Float 64-bit

Bilangan double B 0x3FD50000000000000

= +0.328125

S=0 F=1021 M=1+0.25+0.0625=1.3125 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$$V(\mathbf{B}) = (-1)^{S} \left(1 + \sum_{i=1}^{52} m_{-i} \times 2^{-i} \right) \times 2^{E - 1023}$$
$$= (-1)^{0} \left(1 + 1 \times 2^{-2} + 1 \times 2^{-4} \right) \times 2^{1021 - 1023}$$
$$= +1.3125 \times 2^{-2}$$

Atau:

$$V(B) = (-1)^{S} 1.M \times 2^{E-1023}$$

$$= (-1)^{0} 1.0101 \times 2^{1021-1023}$$

$$= +1.0101 \times 2^{-2}$$

$$= 0.010101$$

$$= 2^{-2} + 2^{-4} + 2^{-6}$$

$$= 2032.812.6 \text{ ki W idianto (didik@undip.ac.id)}$$

@2012,Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating-point Presisi Ganda

Nilai Eksponen

@2012,Eko Didik	
Widianto	

Eksponer	Mantissa (M)		Representasi bilangan	Representasi Posisional
(E)	M =	$M \neq 0$	rtepresentasi bilangan	Bilangan Bertanda (Signed)
	0			Representasi Bilanga
0	0, -0	subnormal	$(-1)^S \times 0.M \times 2^{-126}$	Pecahan Bilangan Fixed Point
1-2046	Nilai ternormalisasi		$(-1)^S \times 1$.bit signifikan $\times 2^{E-1023}$	Bilangan Floating Point 32-Bit
2047	∞	bukan bilangan		Bilangan Floating-point Presisi Ganda
		(NAN=not-a-		Representasi Lainnya
		number)		Ringkasan

- ▶ Nilai ekstrem bilangan floating-point presisi ganda 64-bit adalah untuk E=0 dan E=2047, yaitu
 - ightharpoonup E = 0 menyatakan bilangan nol (jika M = 0) dan subnormal (jika $M \neq 0$)
 - E = 2047 menyatakan bilangan tak terhingga (jika M = 0) dan NAN/not-a-number (jika $M \neq 0$);

@2012,Eko Didik Widianto (didik@undip.ac.id) anto (didik@undip.ac.id) 53

Contoh Bilangan Float 64-bit

- Nyatakan bilangan pecahan B = 35.625 dalam format floating-point 64-bit
- Solusi. Bilangan B dipecah menjadi bilangan utuh dan bilangan pecahan, seperti di fixed-point. Normalisasi 1.M

$$B = (35.625)_{10}$$

$$= (35)_{10} + (0.625)_{10}$$

$$= (100011)_2 + (0.1001)_2$$

$$= (100011.1001)_2$$

$$= (1.000111001)_2 \times 2^5$$

▶ Diperoleh M = 000111001 dan Exp = 5, atau E = 5 + 1023 = 1028. Jadi, nilai eksponen E = 1028 = 10000000100 dan mantisa M = 000111001, sehingga B = 0x4041C800000000

oresentasi Bilangan Digital

@2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan Floating Point 32-Bit

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Ringkasan

Bilangan Float 64-bit Negatif

- Nyatakan format floating-point 64-bit dari bilangan B = -0.328125
- ▶ Dari Contoh sebelumnya, nilai bilangan -B = 0.328125 = 0x3FD5000000000000. Dengan mengubah bit tanda S = 1, maka bilangan A dinyatakan dengan 0xBFD5000000000000

Digital

@2012,Eko Didik

Widianto

(didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point

32-Bit Bilangan Floating-point Presisi Ganda

Representasi Lainnya

lingkasan

Deklarasi Bilangan di Bahasa Pemrograman

 Bilangan floating-point presisi ganda (32-bit) ini dideklarasikan dengan tipe data double (bahasa C, C++, Java)

```
double anumber; // 64-bit double precision number
int main(){
anumber = -1.1245;
...
return 0;
}
```

```
Representasi Bilangan
Digital
@2012,Eko Didik
Widianto
(didik@undip.ac.id)
```

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Bilangan Fixed Point Bilangan Floating Point

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Ringkasan

Liconci

Representasi Digital Lainnya

- BCD (binary coded decimal)
 - Digunakan untuk data angka di keypad numerik saat ditekan, misalnya kalkulator
- ASCII (American Standard Code for Information Interchange)
 - Informasi teks yang tersusun atas karakter, dari masukan, tampilan keluaran dan format pengiriman data

@2012.Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan

Representasi Lainnya

Ringkasan

Bahasan

Representasi Posisional Bilangan Biner

Bilangan Oktal dan Hexadesima

Konversi Bilangan

Bilangan Bertanda (Signed)

Bilangan Sign-magnitude

Bilangan 1's Complement

Bilangan 2s Complemen

Representasi Bilangan Pecahan

Bilangan Fixed Poin

Bilangan Floating Point 32-Bi

Bilangan Floating-point Presisi Ganda

Representasi Lainnya

Bilangan BCD

Kode ASCII

Ringkasar

Lisensi

http://didik.blog.undip.ac.id

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Representasi Lainnya Bilangan BCD

Ringkasan

Licensi

BCD (Binary-Coded Decimal)

- ▶ Binary-coded-decimal mengkodekan bilangan desimal dalam bentuk biner
- Karena terdapat 10 nilai yang harus diwakili, diperlukan 4 bit per digit
 - Dari 0=0000 sampai 9=1001
 - ightharpoonup Contoh: $(011111000)_{BCD} = (78)_{10}$
- BCD digunakan di sistem komputer terdahulu dan kalkulator. keypad numerik
 - Menyediakan format yang memadai saat informasi numerik perlu ditampilkan di display sederhana berorientasi digit
 - ► Tapi, membutuhkan rangkaian yang kompleks untuk melakukan operasi aritmatika dan masalah efisiensi kode (6 buah kode tidak digunakan)

@2012.Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Representasi Lainnya Bilangan BCD

Ringkasan

Contoh BCD

- Nyatakan bilangan 78 dalam kode BCD
 - Solusi. Bilangan 78 mempunyai 2 digit desimal, yaitu 7 dan 8.
 - Digit 7 dikodekan ke BCD menjadi 0111
 - Digit 8 dikodekan dengan 1000
 - Kode BCD dari bilangan 78 adalah 01110000 atau bisa dituliskan 0111 0000 (Tanda hanya digunakan untuk menandakan tiap digit)
- Tentukan bilangan desimal yang dinyatakan dengan kode BCD 001000010010
 - Solusi. Kode BCD tersebut dapat diuraikan sebagai berikut:

RCD 0010 0001 0010 Desimal 2

Jadi, kode BCD 001000010010 menyatakan bilangan 212

@2012,Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan Representasi Lainnya

Bilangan BCD

Ringkasan

Aplikasi dan Kekurangan

Jam biner

Kekurangan:

- membutuhkan rangkaian yang kompleks untuk melakukan operasi aritmetika
 - Rangkaian penjumlah BCD lebih kompleks daripada penjumlah biner
- Kode ini kurang efisien
 - 4 bit yang digunakan hanya menyatakan 10 simbol, sedangkan 6 simbol lainnya tidak digunakan

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan BCD Kode ASCII

Ringkasan

Bahasan

Representasi Lainnya

Kode ASCII

http://didik.blog.undip.ac.id

@2012.Eko Didik Widianto (didik@undip.ac.id)

@2012.Eko Didik Widianto

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Kode ASCII

Kode ASCII

- Kode yang sering digunakan untuk merepresentasikan informasi di komputer
 - American Standard Code for Information Interchange
 - bilangan, huruf, tanda baca dan kontrol kode
- Kode ASCII menggunakan pola 7-bit untuk merepresentasikan 128 simbol
 - digit bilangan (0-9)
 - karakter (a-z dan A-Z)
 - tanda baca
 - kode kontrol

@2012,Eko Didik

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Representasi Lainnya

Kode ASCII

Kode ASCII

- Lihat: http://en.wikipedia.org/wiki/ASCII
- Sumber: http://en.wikipedia.org/wiki/File:ASCII_Code_Chart-Quick_ref_card.png

Representasi Bilanga Digital @2012,Eko Didik Widianto (didik@undip.ac.id)

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Bilangan BCD

Kode ASCII

Ringkasan

.___:

Contoh ASCII

- Nyatakan kalimat "Sistem Digital" ke dalam kode ASCII
- Solusi. Kalimat tersebut terdiri atas 14 karakter, yaitu S-i-s-t-e-m-spasi-D-i-g-i-t-a-l

Karakter	S	i	s	t	е	m	spasi
ASCII	1010011	1101001	1110011	1110100	1100101	1101101	0100000
(biner)							
Karakter	D	i	g	а	t	а	I
Karakter ASCII	D 1000100		g 1100111		t 1110100	a 1100001	l 1101100

@2012,Eko Didik Widianto

> Representasi Posisional

(Signed)

Kode ASCII

Variasi ASCII

- Kode ASCII ekstended 8-bit mempunyai tambahan simbol untuk 128 karakter grafik (local glyph)
 - http://en.wikipedia.org/wiki/Extended ASCII
- Unicode/UCS (Universal Character Set) ISO/IEC 10646
 - Unicode/UCS dinyatakan dengan identitas kode unik (disebut code point) dan kode dalam format 8 bit, 16 bit, dan 32 bit
 - Dapat menyatakan lebih banyak karakter, sekitar 110.000 karakter
 - Unicode 8 bit, 16 bit dan 32 bit dikenal sebagai UTF-8. UTF-16. UTF-32

@2012,Eko Didik Representasi Posisional Bilangan Bertanda (Signed) Representasi Bilangan

Representasi Lainnya

Kode ASCII

Ringkasan

Ringkasan Kuliah

- Yang telah kita pelajari hari ini:
 - Representasi posisional: biner, oktal, desimal dan heksadesimal
 - Bilangan tak bertanda dan bertanda (sign-magnitude, 1's complement dan 2's complement)
 - Bilangan pecahan fixed-point
 - Bilangan pecahan floating-point 32-bit dan 64-bit
 - Bilangan BCD
 - Bilangan ASCII
- Bab berikutnya akan operasi aritmetika dan rangkaiannya. meliputi penjumlahan dan pengurangan, menggunakan format bilangan yang telah dijabarkan di bab ini
- ► Pelajari: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/

Representasi Posisional

Bilangan Bertanda (Signed)

Representasi Bilangan Pecahan

Ringkasan

Lisensi

Creative Common Attribution-ShareAlike 3.0 Unported (CC **BY-SA 3.0)**

Anda bebas:

- untuk Membagikan untuk menyalin, mendistribusikan, dan menyebarkan karya, dan
- untuk Remix untuk mengadaptasikan karya

Di bawah persyaratan berikut:

- Atribusi Anda harus memberikan atribusi karya sesuai dengan cara-cara yang diminta oleh pembuat karya tersebut atau pihak yang mengeluarkan lisensi. Atribusi yang dimaksud adalah mencantumkan alamat URL di bawah sebagai sumber.
- ▶ **Pembagian Serupa** Jika Anda mengubah, menambah, atau membuat karya lain menggunakan karya ini, Anda hanya boleh menyebarkan karya tersebut hanya dengan lisensi yang sama, serupa, atau kompatibel.
- ▶ Lihat: Creative Commons Attribution-ShareAlike 3.0 Unported License
- ► Alamat URL: http://didik.blog.undip.ac.id/2014/02/25/tkc205-sistemdigital-2013-genap/

@2012.Eko Didik

Representasi Posisional

(Signed)

Representasi Bilangan Pecahan