Lecture 3: Basic MOSFET Theory

Acknowledgements

All class materials (lectures, assignments, etc.) based on material prepared by Prof. Visvesh S. Sathe, and reproduced with his permission

Visvesh S. Sathe
Associate Professor
Georgia Institute of Technology
https://psylab.ece.uw.edu

UW (2013-2022) GaTech (2022-present)

The MOS Structure

- Metal Oxide Semiconductor
 - "Metal" implemented as poly-crystalline silicon (polysilicon) till recently
 - Conductor-insulator-semiconductor "sandwich"
 - Changing the voltage across Metal-Semiconductor varies the properties of the semiconductor

Quick Detour: Parasitic Capacitance

Impact

- Circuit Speed (Digital)
- Power (Digital)
- Bandwidth (Analog)
- Stability (Digital, Analog)

- What is capacitance exactly?
 - So what's so bad about it?
 - V-driven, not Q-driven
 - Low C → Lower Q, faster, lower energy
 - Smaller is faster (Dennard's law)
 - Major Parasitic contributors
 - MOSFET gates, MOSFET source/drains, wire

Calculate the per-unit length capacitance of an infinitely long cylindrical wire, diameter d in free space

MOS Transistor – A 10K foot view

- Capacitor charge buildup allows for a "channel" to form
- Charge density not uniform \rightarrow ? Impact on R. ? Impact on V(x)
- How can I reduce the resistance of this device further?

Cross-section

For this course

- Body of an nmos device is always tied to ground
- Body of a pmos device is always tied to Vdd

- Initially Vg<Vs
- No channel formed

- Initially Vg>Vs
- But Vg Vs < Vth → No channel formed
- $V_g V_s \rightarrow V_{gs}$
- $V_{gs} V_{th} = V_{gs}$ (Also called gate overdrive)

 V_{d}

 V_s

time

- Channel begins forming as $Vg Vs > Vth \equiv V'_{gs} > 0$ (+gate overdrive)
- Channel still does not extend to L
- Channel not very thick

- Channel begins to form as
 Vg Vs > Vth
- Channel still does not extend to L
- Channel thickness increasing

- Channel extends to L as Vg Vd > Vth
- Channel thicker now → ↓resistance
- Thickness varies along channel!

P-type body

The Substrate Contact

The Substrate Contact

The Ideal Shockley MOSFET model

- Analyze the MOS device in the linear region: $V_{gs}-V_{th}=V_{gs}'>V_{ds}$
- Recall that channel is fully formed
- Steady-state

 Current is the same at any point y along the channel

I =

I = W

$$I = W \cdot Q_d$$

$$I = W \cdot Q_d \cdot v$$

$$I = W \cdot Q_d \cdot v$$
$$= W \cdot C_{ox}$$

$$I = W \cdot Q_d \cdot v$$

= $W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right)$

$$I = W \cdot Q_d \cdot v$$

= $W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y$

$$I = W \cdot Q_d \cdot v$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y}$$

$$I = W \cdot Q_d \cdot v$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y}$$

$$I \, dy = W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV$$

$$I = W \cdot Q_{d} \cdot v$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_{y}$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y}$$

$$I \, dy = W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV$$

$$Integrating \, both \, sides \, gives \, \dots$$

$$\int_{0}^{L} I \, dy =$$

$$I = W \cdot Q_{d} \cdot v$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_{y}$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y}$$

$$I \, dy = W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV$$

$$Integrating \, both \, sides \, gives \, \dots$$

$$\int_{0}^{L} I \, dy = \int_{0}^{V_{ds}} W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV$$

$$\begin{split} I &= W \cdot Q_d \cdot v \\ &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y \\ &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y} \\ I \, dy &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV \\ Integrating \, both \, sides \, gives \, \dots \\ \int_0^L I \, dy &= \int_0^{V_{ds}} W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV \\ IL &= \mu C_{ox} W \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right] \end{split}$$

$$I = W \cdot Q_d \cdot v$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y$$

$$= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y}$$

$$I \, dy = W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV$$

$$Integrating \, both \, sides \, gives \, \dots$$

$$\int_0^L I \, dy = \int_0^{V_{ds}} W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \, dV$$

$$IL = \mu C_{ox} W \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right]$$

$$I = \mu C_{ox} \frac{W}{L} \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right]$$

$$\begin{split} I &= W \cdot Q_d \cdot v \\ &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y \\ &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y} \\ I \ dy &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \ dV \\ Integrating \ both \ sides \ gives \ \dots \\ \int_0^L I \ dy &= \int_0^{V_{ds}} W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \ dV \\ IL &= \mu C_{ox} W \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right] \\ I &= \mu C_{ox} \frac{W}{L} \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right], \qquad Letting \ \beta = \mu C_{ox} \frac{W}{L} \end{split}$$

MOSFET Current Flow

$$\begin{split} I &= W \cdot Q_d \cdot v \\ &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu E_y \\ &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \frac{\partial V}{\partial y} \\ I \ dy &= W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \ dV \\ Integrating \ both \ sides \ gives \ \dots \\ \int_0^L I \ dy &= \int_0^{V_{ds}} W \cdot C_{ox} \left(V_{gs} - V_{th} - V(y) \right) \cdot \mu \ dV \\ IL &= \mu C_{ox} W \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right] \\ I &= \mu C_{ox} \frac{W}{L} \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right], \qquad Letting \ \beta = \mu C_{ox} \frac{W}{L} \\ I &= \beta \left[(V_{gs} - V_{th}) V_{ds} - \frac{1}{2} V_{ds}^2 \right] \end{split}$$

- Equation corresponds to device in Linear (or Triode) region
 - Channel is continuous from source to drain
- Question: Plot I_{ds} vs. V_{ds} for a fixed V_{gs}

- Equation corresponds to device in Linear (or Triode) region
 - Channel is continuous from source to drain
- Question: Plot I_{ds} vs. V_{ds} for a fixed V_{gs}
- What happens for $V_{ds} > V_{gs} V_{th}$?

- Equation corresponds to device in Linear (or Triode) region
 - Channel is continuous from source to drain
- Question: Plot I_{ds} vs. V_{ds} for a fixed V_{gs}
- What happens for $V_{ds} > V_{gs} V_{th}$?

- Equation corresponds to device in Linear (or Triode) region
 - Channel is continuous from source to drain
- Question: Plot I_{ds} vs. V_{ds} for a fixed V_{gs}
- What happens for $V_{ds} > V_{gs} V_{th}$?

- Equation corresponds to device in Linear (or Triode) region
 - Channel is continuous from source to drain
- Question: Plot I_{ds} vs. V_{ds} for a fixed V_{gs}
- What happens for V_{ds}>V_{gs}-V_{th}?
 - Device enters saturation
 - The channel "pinches-off" (More on this shortly)

Break-out session: Figure out the PMOS...

MOSFET Operation: Saturation

- Saturation condition: $V_{gs} V_{th} \leq V_{ds}$
 - $V_{gs} V_{th}$ (also denoted as V_{gs}), the gate overdrive is less than the on-voltage
- Current "levels-off"
 - I_d no longer a function of V_{ds} (to the first order. More on this later)
 - Depends only on V_{gs} and V_{th}

$$I_{ds} = \frac{1}{2}\beta(V_{gs} - V_{th})^2$$
 if $0 < V_{gs} - V_{th} < V_{ds}$

- In reality, I_{ds} is not constant as V_{ds} increases
- Depletion region forms beyond a "pinch-off" region

- In reality, I_{ds} is not constant as V_{ds} increases
- Depletion region forms beyond a "pinch-off" region

But if there is no channel, how do e- get over to the drain?

- In reality, I_{ds} is not constant as V_{ds} increases
- Depletion region forms beyond a "pinch-off" region

- In reality, I_{ds} is not constant as V_{ds} increases
- Depletion region forms beyond a "pinch-off" region

- Simplifying assumption:
 - Fractional change in channel length is proportional to V_{DS}
 - If ΔL is the depletion width, Let $\frac{\Delta L}{L} = \lambda V_{ds}$

- Simplifying assumption:
 - Fractional change in channel length is proportional to V_{DS}
 - If ΔL is the depletion width, Let $\frac{\Delta L}{L} = \lambda V_{ds}$

Nal to V_{DS}

What is the gradient of this line?

 V_{ds}

- Simplifying assumption:
 - Fractional change in channel length is proportional to V_{DS}
 - If ΔL is the depletion width, Let $\frac{\Delta L}{L} = \lambda V_{ds}$

what is the gradient of this line?

- Simplifying assumption:
 - Fractional change in channel length is proportional to V_{DS}
 - If ΔL is the depletion width, Let $\frac{\Delta L}{L} = \lambda V_{ds}$

$$I_{ds} = \frac{1}{2} \mu C_{ox} \frac{W}{(L - \Delta L)} (V_{gs} - V_{th})^2$$

What is the gradient of this line?

- Simplifying assumption:
 - Fractional change in channel length is proportional to V_{DS}
 - If ΔL is the depletion width, Let $\frac{\Delta L}{L} = \lambda V_{ds}$

$$I_{ds} = \frac{1}{2} \mu C_{ox} \frac{W}{(L - \Delta L)} (V_{gs} - V_{th})^2$$
$$= \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{gs} - V_{th})^2 (1 + \frac{\Delta L}{L})$$

What is the gradient of this line?

- Simplifying assumption:
 - Fractional change in channel length is proportional to V_{DS}
 - If ΔL is the depletion width, Let $\frac{\Delta L}{L} = \lambda V_{ds}$

$$I_{ds} = \frac{1}{2} \mu C_{ox} \frac{W}{(L - \Delta L)} (V_{gs} - V_{th})^2$$

$$= \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{gs} - V_{th})^2 (1 + \frac{\Delta L}{L})$$

$$= \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{gs} - V_{th})^2 (1 + \lambda V_{ds})$$

What is the gradient of this line?

PMOS Operation

- Essentially a dual of the NMOS device operation
- For conduction: $Vg Vs < -Vth \rightarrow Vs Vg > Vth \rightarrow Vsg > Vth$
 - Gate overdrive continues to have to exceed Vth
- A lot more convenient to work with Vsg, Vsd and always work with positive Vth values (convention adopted in this class)
- Exercise: Derive the current equation of the PMOS device
- Note: PMOS carrier μ_p is lower than NMOS $\mu_n \rightarrow \psi$ current drive for the same gate overdrive.

Vsg , Vsd , Vth relationship	PMOS operating region
$V_{sg} < V_{th}$	Cutoff (Not conducting)
$0 < V_{sg}-V_{th} < V_{sd}$	Saturation
$V_{sg}-V_{th} > V_{sd}$	Linear

PMOS Operation

- Essentially a dual of the NMOS device operation
- For conduction: $Vg Vs < -Vth \rightarrow Vs Vg > Vth \rightarrow Vsg > Vth$
 - Gate overdrive continues to have to exceed Vth
- A lot more convenient to work with Vsg, Vsd and always work with positive Vth values (convention adopted in this class)
- Exercise: Derive the current equation of the PMOS device
- Note: PMOS carrier μ_p is lower than NMOS $\mu_n \rightarrow \downarrow$ current drive for the same gate overdrive.

Vsg , Vsd , Vth relationship	PMOS operating region
$V_{sg} < V_{th}$	Cutoff (Not conducting)
$0 < V_{sg}-V_{th} < V_{sd}$	Saturation
$V_{sg}-V_{th} > V_{sd}$	Linear

How can I fix that if I want equal drive strength?

- Zeroth order, Cap = W*L*C_{ox}
 - Overlap capacitance (Gate-source, Gate-drain)
 - Channel-connected cap
 - Source, drain contact cap (approximately α W)

- Zeroth order, Cap = W*L*C_{ox}
 - Overlap capacitance (Gate-source, Gate-drain)
 - Channel-connected cap
 - Source, drain contact cap (approximately α W)

- Zeroth order, Cap = W*L*C_{ox}
 - Overlap capacitance (Gate-source, Gate-drain)
 - Channel-connected cap
 - Source, drain contact cap (approximately α W)

- Zeroth order, Cap = W*L*C_{ox}
 - Overlap capacitance (Gate-source, Gate-drain)
 - Channel-connected cap
 - Source, drain contact cap (approximately α W)

- Zeroth order, Cap = W*L*C_{ox}
 - Overlap capacitance (Gate-source, Gate-drain)
 - Channel-connected cap
 - Source, drain contact cap (approximately α W)

Cap depends on fet state: What is the order below?

Cap depends on fet state: What is the order below?

Cap depends on fet state: What is the order below?

Cap depends on fet state: What is the order below?

Optional assignment: Why do I not see the accumulation cap in the 11 case?

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

 Avoiding poor layout decisions (Geometry, topology)

Source

Gate

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

Junction Capacitance

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Drain

Gate

Source

 Avoiding poor layout decisions (Geometry, topology)

Junction Capacitance

- Capacitance of the depletion region
 - Area, Perimeter terms
 - Depends on both process and design
- Junction capacitance is significant and needs to be controlled
 - "Halo-doping" in the fabrication process

Gate

Drain

Source

 Avoiding poor layout decisions (Geometry, topology)

Is This a Good Idea?

Capacitance of a MOS transistor

- $C_{gate} = W*L*C_{ox}$
- $C_{\text{source}} = C_{j} (W) + C_{gs}(W)$
- $C_{drain} = C_j(W) + C_{gd}(W)$

Detour: Miller impedance

- $Z_1 = Z/(1-A)$,
- $Z_2 = Z/(1-A^{-1})$
- Specifically, if A=-1
 - $Z_1 = Z_2 = Z/2$
 - If Z is a capacitance, Capacitance doubles

Quick Example

Quick Example

Miller Capacitance in Inverters

- Write down C_{in} in terms of C_{gs} , C_{gd} (Drain voltages held constant)
- C_{in} in terms of Cg* for an inverter:
- Source, Drain voltage transitions result of Gate voltage transition
 - Affects delay and power differently

Miller Capacitance in Inverters

- Write down C_{in} in terms of C_{gs} , C_{gd} (Drain voltages held constant)
- C_{in} in terms of Cg* for an inverter:
- Source, Drain voltage transitions result of Gate voltage transition
 - Affects delay and power differently

- Perceived capacitance different for power and delay
 - Faster transition rate

 ⇔ Higher miller cap,
 but for a shorter time
 - Energy impact (C_{gd} increases by a factor of ~2)
 - Delay impact (maximum delayrelevant miller cap multiplier is ~3)

- Perceived capacitance different for power and delay
 - Faster transition rate

 ⇔ Higher miller cap,
 but for a shorter time
 - Energy impact (C_{gd} increases by a factor of ~2)
 - Delay impact (maximum delayrelevant miller cap multiplier is ~3)

- Perceived capacitance different for power and delay
 - Faster transition rate

 ⇔ Higher miller cap,
 but for a shorter time
 - Energy impact (C_{gd} increases by a factor of ~2)
 - Delay impact (maximum delayrelevant miller cap multiplier is ~3)

- Perceived capacitance different for power and delay
 - Faster transition rate ⇔ Higher miller cap, but for a shorter time
 - Energy impact (C_{gd} increases by a factor of ~2)
 - Delay impact (maximum delayrelevant miller cap multiplier is ~3)

- Perceived capacitance different for power and delay
 - Faster transition rate ⇔ Higher miller cap, but for a shorter time
 - Energy impact (C_{gd} increases by a factor of ~2)
 - Delay impact (maximum delay-relevant miller cap multiplier is ~3)

- Perceived capacitance different for power and delay
 - Faster transition rate ⇔ Higher miller cap, but for a shorter time
 - Energy impact (C_{gd} increases by a factor of ~2)
 - Delay impact (maximum delayrelevant miller cap multiplier is ~3)
- Miller cap affects both input and output

Miller Capacitance in CMOS gates

• Breakout: What signal transitions result in the worst case input cap for M1?

Reading Assignments

• Required:

- From sand to a wafer: http://www.youtube.com/watch?v=i8kxymmjdoM
- Nice video of simplified process fabrication step at: http://www.youtube.com/watch?v=OBiu2agne_U
- Slightly more up-to-date overview of process fabrication http://www.youtube.com/watch?v=-GQmtITMdas&list=PL17EE400FD24FFE20&index=7

Recommended :

- Section 1.5
- Weste&Harris , Chapter 2-2.2

Optional

• Weste & Harris, Chapter 2-2.4

Reading assignment

• Section 1.5

- Optional Reading
 - Read up on body effect
 - Velocity saturation and the short channel transistor model

