Transformateur de Sécurité

Description du modèle :

Le modèle décrit ci-après est tiré de la thèse de M. TRAN [1], [2] ansi que de celle de Mme. Diampovesa [3] et fait les suppositions suivantes :

- l'isolant entre le noyau central et les bobines est en parfait contact avec le cuivre et le noyau central.
- le contact entre le secondaire et le circuit magnétique est nul et la couche d'air prisonnière entre les deux est supposée parfaitement isolante
- le contact entre les enroulements et le circuit magnétique (autre que noyau central) est nul ou de mauvaise conduction
- toutes les surfaces verticales ont le même coefficient de convection

Nomenclature:

- a la demie largeur du bras médian du circuit magnétique en m
- b la hauteur de la cavité des bobines en m
- B_m l'induction maximale en $kg.A^{-1}.s^{-2} = T$
- -c la largeur de la cavité des bobines en m
- -d l'épaisseur du circuit magnétique en m
- e_{isol} l'épaisseur de l'isolant entre le fer et le cuivre en m
- f la fréquence de fonctionnement du circuit en $s^{-1} = Hz$
- fp le facteur de puissance (sans unité)
- f_1 le facteur de remplissage de la bobine primaire en %
- f_2 le facteur de remplissage de la bobine secondaire en %
- h le coefficient de convection thermique en $kg.s^{-3}.K^{-1} = W.m^{-2}.K^{-1}$
- I_1 le courant dans le circuit primaire en A
- I_2 le courant dans le circuit secondaire en A
- I_{10} le courant de magnétisation en A
- $-l_{1spire}$ la longueur d'une spire de la bobine primaire en m
- l_{2spire} la longueur d'une spire de la bobine secondaire en m
- L_{μ} l'inductance magnétisante en $kg.m^2.s^{-2}.A^{-2}=H$
- mv_{comer} la masse volumique du cuivre en $kg.m^{-3}$
- mv_{iron} la masse volumique du fer en $kg.m^{-3}$
- M_{copper} la masse de cuivre en kg
- M_{iron} la masse de fer en kg
- M_{tot} la masse totale du transformateur en kg
- n_1 le nombre de spires primaires (sans unités)
- n_2 le nombre de spires secondaires (sans unités)

```
— P_{iron} la perte de puissance due au fer en kg.m^2.s^{-3} = W
```

- P_i la puissance Joules en $kg.m^2.s^{-3} = W$
- P_1 la puissance du circuit en $kg.m^2.s^{-3} = W$
- q les pertes spécifiques de la tôle en $W.kg^{-1}=m^2.s^{-3}$
- Q_1 une puissance en $kg.m^2.s^{-3} = W$
- r_1 la résistance de la bobine primaire en $m^2s^{-3}A^{-2}kg=\Omega$
- r_2 la résistance de la bobine secondaire en $m^2 s^{-3} A^{-2} kg = \Omega$
- $R_{iron-air}$ résistance thermique de convection entre le fer et l'air en $K.kq^{-1}.m^{-2}.s^2 = K.W^{-1}$
- R_{cond} résistance de conduction entre le fer et le cuivre en $K.kg^{-1}.m^{-2}.s^2 =$
- $R_{copp-air}$ résistance thermique de convection entre le cuivre et l'air en $K.kg^{-1}.m^{-2}.s^2 = K.W^{-1}$
- R_2 la résistance totale ramenée au secondaire en $m^2s^{-3}A^{-2}kg=\Omega$
- $S_{iron-air}$ la surface de contact entre l'air et le fer en m^2
- $S_{copp-air}$ la surface de contact entre l'air et le cuivre en m^2
- S_1 la section du fil de la bobine primaire en m^2
- S_2 la section du fil de la bobine secondaire en m^2
- T_{ext} la Température extérieure en K
- T_{iron} la température du fer en régime permanent en C
- T_{copper} la température du cuivre en régime permanent en C
- V_1 la tension dans la bobine primaire en $kg.m^2.s^{-3}.A^{-1}=V$
- V_2 la tension dans la bobine secondaire en $kg.m^2.s^{-3}.A^{-1} = V$
- X_2 une impédance en $m^2 s^{-3} A^{-2} kg = \Omega$
- α_{cop} le coefficient de température du cuivre en K^{-1}
- ΔV_2 la chute de tension en $kg.m^2.s^{-3}.A^{-1} = V$
- η le rendement en %
- λ la conductivité thermique de l'isolant en $kg.m.s-3.K^{-1}=W.m^{-1}.K^{-1}$
- μ_0 la perméabilité du vide en $kg.m.s^{-2}.A^{-2} = T.m.A^{-1}$
- $\mu r(\frac{B_m}{1T})$ perméabilité relative des tôles (sans unité)
- ρ_{cop} la résistivité du cuivre en $m^3 s^{-3} A^{-2} kg = \Omega.m$

$$\begin{split} & \frac{\text{Equations}:}{-B_m = \frac{V_1*\sqrt{2}}{4*\pi*n_1*a*d*f}} \\ & -l_{1spire} = 2*(d+2*a) + \pi*\frac{c}{2} \\ & -l_{2spire} = 2*(d+2*a) + \pi*c*\frac{3}{2} \\ & -\mu r(x) = \frac{1}{2.12*10^{-4} + \frac{(1-2.12*10^{-4})*x^2*7.358}{x^2*7.358+1.18*10^6}} \\ & -L_{\mu} = \mu_0*\mu r(\frac{B_m}{1T})*n_1^2*\frac{a*d}{2a+b+c} \\ & -M_{iron} = mv_{iron}*4*a*d*(2*a+b+c) \end{split}$$

$$\begin{array}{l} - P_{iron} = q * M_{iron} * \frac{f}{50Hz} * \frac{B_m}{1T}^2 \\ - R_{cond} = \frac{e_{isol}}{\lambda * b * (4 * a + 2 * a)} \\ - S_{copp-air} = b * (4 * a + 2 * \pi * c) \\ - S_{iron-air} = 4 * a * (b + 4 * a + 2 * c) + 2 * d * (6 * a + 2 * c + b) \\ - R_{copp-air} = \frac{1}{h * S_{copp-air}} \\ - R_{iron-air} = \frac{1}{h * S_{iron-air}} \end{array}$$

Les equations suivantes forment un système non causal.

$$\begin{array}{l} - & n_2 = n_1 * \frac{(V_2 + \Delta V_2)}{V_1} \\ - & P_j = R_2 * I_2^2 \\ - & Q_1 = \frac{V_1^2}{L_{\mu*2*\pi*f}} + X_2 * I_2^2 + V_2 * I_2 * sin(acos(fp)) \\ - & r_1 = \rho_{cop} * (1 + \alpha_{cop} * T_{copper}) * \frac{n_1 * l_{1spire}}{S_1} \\ - & r_2 = \rho_{cop} * (1 + \alpha_{cop} * T_{copper}) * \frac{n_2 * l_{2spire}}{S_2} \\ - & R_2 = r_2 + (\frac{n_2}{n_1})^2 * r_1 \\ - & T_{copper} = T_{ext} + R_{copp-air} * \frac{R_{cond} * P_j + R_{iron-air} * (P_j + P_{iron})}{R_{copp-air} + R_{iron-air} + R_{cond}} \\ - & T_{iron} = T_{ext} + R_{iron-air} * \frac{R_{copp-air} * P_j + (R_{copp-air} + R_{cond}) * P_{iron}}{R_{copp-air} + R_{iron-air} + R_{cond}} \\ - & X_2 = \mu_0 * n_2^2 * c * (4 * a + 2 * d + \pi * c) * \frac{2*\pi * f}{3*b} \\ - & \Delta V_2 = I_2 * (R_2 * fp + X_2 * sin(acos(fp))) \end{array}$$

Les equations suivantes découlent su système précédent.

$$- f_1 = \frac{2*n_1*s_1}{b*c}$$

$$- f_2 = \frac{2*n_2*s_2}{b*c}$$

$$- M_{copper} = mv_{copper} * (n_1 * s_1 * l_{1spire} + n_2 * s_2 * l_{2spire})$$

$$- M_{tot} = M_{iron} + M_{copper}$$

$$- P_1 = P_{iron} + P_j + V_2 * I_2 * fp$$

$$- I_1 = \frac{\sqrt{P_1^2 + Q_1^2}}{V_1}$$

$$- I_{10} = \sqrt{(\frac{P_{iron}}{V_1})^2 + (\frac{V_1}{L_{\mu}*2*\pi*f})^2}$$

$$- \eta = \frac{V_2*I_2*fp}{V_2*I_2*fp + P_{iron} + P_j}$$

Cahier des Charges :

Dans cet exemple, on cherche les valeurs de $a, b, c, d, s_1, s_2, n_1, n_2, r_1, r_2$ et i_2 qui minimisent M_{tot} en respectant les contraintes détaillées ci-dessous et les équations présentées précédemment. On notera que les variables géomé-

triques (section, dimensionnement du fer) sont discrètes car les pièces sont commandées dans un catalogue et pas fabriquées sur mesures.

Variables de Décision					
Paramètre	Valeur min	Valeur max	Valeur initiale	Unité	
a	0.002	1.0	0.0225	m	
b	0.006	1.0	0.095	m	
c	0.0035	1.0	0.04	m	
d	0.0052	1.0	0.465	m	
e_{isol}	10^{-3}			m	
f	50			Hz	
fp	0.8			(/)	
h	10			$W.m^{-2}.K^{-1}$	
I_2	8.0	1.0	$+\infty$	A	
mv_{copper}	8800			$kg.m^{-3}$	
mv_{iron}	7800			$kg.m^{-3}$	
n_1	200	1.0	1200	(/)	
n_2	1	1.0	10000	(/)	
q	1.0			$m^2.A^2.kg^{-2}$	
r_1	0	1.0	$+\infty$	Ω	
r_2	0	1.0	$+\infty$	Ω	
s_1	$0.05515 * 10^{-6}$	1.0	$19.635 * 10^{-6}$	m^2	
s_2	$0.05515 * 10^{-6}$	1.0	$19.635 * 10^{-6}$	m^2	
T_{ext}	40			C	
V_1	230			V	
V_2	24			V	
α_{cop}	$3.8 * 10^{-3}$			K^{-1}	
λ	0.15			$W.m^{-1}.K^{-1}$	
μ_0		$4\pi * 10^{-7}$		$T.m.A^{-1}$	
ρ_{cop}		$1.72 * 10^{-8}$		$\Omega.m$	

Sorties					
Paramètre	Type	Valeur	Unité		
T_{copper}	Intervalle	[0; 120]	C		
T_{iron}	Intervalle	[0; 100]	C		
η	Intervalle	[0.8; 1]	(%)		
$\frac{\Delta V_2}{V_2}$	Intervalle	[0; 0.1]	(/)		
$\frac{I_{10}}{I_1}$	Intervalle	[0; 0.1]	(/)		
M_{tot}	Intervalle	[0; 2.6]	kg		
f_1	Intervalle	[0; 0.5]	(%)		
f_2	Intervalle	[0; 0.5]	(%)		

Le reste des sorties n'est pas contraint et n'est pas dans le tableau pour ne pas l'encombrer inutilement.

Fonction Objectif:

$$f_{obj}(V) = M_{tot} = M_{iron} + M_{copper}$$

Test de Fiabilité:

Afin de vérifier la validité du modèle proposé, il convient de tester ce dernier avec plusieurs sets de valeurs. Vous trouverez ci-après un ensemble de valeurs d'entrée et ainsi que les résultats attendus pour les sorties d'intérêt sur la base des valeurs de [1].

	0 / 1	0.10
Grandeur	Set 1	Set 2
a	$18 * 10^{-3}$	$6.165 * 10^{-3}$
b	$54 * 10^{-3}$	$7.006 * 10^{-2}$
c	$18 * 10^{-3}$	$7.731 * 10^{-3}$
d	$33.5 * 10^{-3}$	0.1726
I_2	8.288	8.165
n_1	722	366
n_2	82	42
s_1	$0.3318 * 10^{-6}$	0.2121
s_2	$2.835 * 10^{-6}$	2.703
B_m	1.189	1.330
M_{copper}	0.811	103.0
M_{iron}	2.032	97.72
M_{tot}	2.844	3.658
P_i	2.873	5.288
P_j	16.999	23.92
L_{mu}	16.41	7.413
R_2	36.13	0.3589
T_{copper}	108.98	103.0
T_{iron}	98.55	97.72
η	0.88	0.8430
$\frac{I_{10}}{I_1}$	0.047	0.09994
$ \begin{array}{c c} \hline \frac{\Delta V_2}{I_1} \\ \underline{\Delta V_2} \\ \hline f_1 \end{array} $	0.087	0.09973
f_1	0.493	0.2866
f_2	0.478	0.4191

Références

- [1] T. V. Tran, "Problèmes combinatoires et modèles multi-niveaux pour la conception optimale des machines électriques." https://tel.archives-ouvertes.fr/tel-00425590v3, March 2011.
- [2] T. V. Tran, "Design of a safety isolating transformer." http://optimisation.12ep.ec-lille.fr/benchmarks/safety_ transformer/files/safety_transformer_equations.pdf.
- [3] S. Diampovesa, "Modèles de synthèse pour la conception en génie électrique. application à l'électrification des véhicules.," pp. 86–91, June 2021.