

7.2.2 极大似然估计法

引例(P₁₁₈例7.5)袋中放有黑球和白球共4个,今有放回地抽球三次,得到2次白球,1次黑球,试问如何估计袋中白球个数?

解 按矩估计: 总体 $X \sim B(1, m/4)$, m为未知参数,

 x_1, x_2, x_3 为样本观察值, $\alpha_1 = E(X) = m/4$ $\longrightarrow m = 4\alpha_1$

$$\hat{m} = 4\bar{x} = 4 \times \frac{1}{3}(1+1+0) = \frac{8}{3}$$

7.2.2 极大似然估计法

引例 (P₁₁₈例7.5) 袋中放有黑球和白球共4个,今有放回地抽球三次,得到2次白球,1次黑球,试问如何估计袋中白球个数?

解 设袋中的白球数为m,记p=m/4,X为抽到的白球数。

则 $X \sim B(3, p)$	X		0	1	2	3
当 $m=3$ 时,	m	p				
	0	0	1	0	0	0
P(X=2)最大,	1	1/4	27/64	27/64	9/64	1/64
+hr ^ 2	2	2/4	8/64	24/64	24/64	8/64
故 $\hat{m}=3$ 。	3	3/4	1/64	9/64	27/64	27/64
	4	1	0	0	0	1

极大似然原则: 已发生的事件,其概率应该最大。故未 知参数的选择应有利于该事件的发生。

似然函数:

$$L(x_1, x_2, \dots, x_n; \theta) = \begin{cases} \prod_{i=1}^n f(x_i; \theta) & \text{其中}f(x; \theta) 为 X 的密度函数 \\ \prod_{i=1}^n P_{\theta}(X = x_i) & \text{其中}P_{\theta}(X = x) 为 X 的分布律 \end{cases}$$

 θ 的极大似然估计值 $\hat{\theta}(x_1, x_2, \dots, x_n)$:

$$L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta} L(x_1, x_2, \dots, x_n; \theta)$$

 θ 的极大似然估计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$

通常由对数似然方程
$$\frac{\partial \ln L(\theta)}{\partial \theta_i} = 0$$
 $i = 1, 2, \dots, k$ 解出 θ_i

例1 (P_{120} 例7.6) 设寿命 $X\sim E(1/\theta)$, 试未知参数 θ 的极大似然估计量。

解
$$L(x_1,\dots,x_n;\theta) = \prod_{i=1}^n \left(\frac{1}{\theta}e^{-\frac{x_i}{\theta}}\right)$$
 $x_i > 0, \quad i = 1,2,\dots,n$

$$=\frac{1}{\theta^n}e^{-\frac{1}{\theta}\sum_{i=1}^n x_i}$$

$$\frac{\partial}{\partial \theta} \ln L = \frac{\partial}{\partial \theta} \left[-n \ln \theta - \frac{1}{\theta} n \overline{x} \right] = -\frac{n}{\theta} + \frac{n}{\theta^2} \overline{x} = 0$$

解得 估计值 $\hat{\theta} = \overline{x}$ 估计量 $\hat{\theta} = \overline{X}$ 与矩估计相同。

例2 (P_{121} 例7.8) 设总体 $X\sim N(\mu, \sigma^2)$,求 μ 和 σ^2 的极大似然估计。

解
$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

$$\ln L = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$

$$\int \frac{\partial}{\partial \mu} \ln L = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = \frac{1}{\sigma^2} (n\overline{x} - n\mu) = 0$$

$$\frac{\partial}{\partial \sigma^2} \ln L = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\hat{\mu} = \overline{x}$$
, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \widetilde{S}^2$ 与矩估计相同。

例3 (P_{174} 例7.8) 设总体 $X \sim U(a,b)$, 试求a 和b 的极大似然估计。

解
$$L(a,b) = \prod_{i=1}^{n} f(x_i; a, b) = \begin{cases} \frac{1}{(b-a)^n}, & a \le x_1, x_2, \dots, x_n \le b \\ 0, & 其它 \end{cases}$$

$$\div$$
 在 $a \leq x_1, x_2, \dots, x_n \leq b$ 下
$$a \uparrow, b \downarrow \longrightarrow (b-a) \downarrow \longrightarrow L(b, a) \uparrow$$

$$\therefore$$
 当 $a = \min_{1 \le i \le n} \{x_i\}, b = \max_{1 \le i \le n} \{x_i\}$ 时, $L(b, a) = \max$

即
$$a,b$$
的极大似然估计为: $\hat{a} = X_1^*, \hat{b} = X_n^*$ 。

性质: 若 $\hat{\theta}$ 为 θ 的极大似然估计, $u=u(\theta)$ 有反函数 $\theta=\theta(u)$,则 $\hat{u}=u(\hat{\theta})$ 为 $u=u(\theta)$ 的极大似然估计。

事实上由
$$L(x_1, x_2,...,x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2,...,x_n; \theta)$$

记 $\hat{u}=u(\hat{\theta})$,则 $\hat{\theta}=\theta(\hat{u})$,因此

$$L(x_1, x_2,...,x_n; \theta(u)) = \max_{u \in U} L(x_1, x_2,...,x_n; \theta(u))$$

例3(P_{122} 例7.10) 设总体 $X \sim N(\mu, \sigma^2)$,求 σ 的极大似然估计。

解 由 $\sigma > 0$, $\sigma = \sqrt{\sigma^2}$ 有反函数,再由例2知 $\hat{\sigma}^2 = \tilde{S}^2$

故

$$\hat{\sigma} = \tilde{S} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 (练习17.4)

§ 7.3 估计量的评选原则

7.3.1 无偏性

例1 证明样本均值 \overline{X} 为总体期望 $\mu = E(X)$ 的无偏估计。

解
$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = E(X) = \mu$$

一般(
$$P_{123}$$
例7.11) $E(A_K) = \frac{1}{n} \sum_{i=1}^n E(X_i^k) = E(X^k) = \alpha_k$

例2 (P_{123} 例7.12) 证明样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ 是总体方差 $D(X) = \sigma^2$ 的无偏估计。

证明
$$E(S^2) = E\left[\frac{1}{n-1}\left(\sum_{i=1}^n X_i^2 - n\overline{X}^2\right)\right]$$

 $= \frac{1}{n-1}\left[nE(X_1^2) - nE(\overline{X}^2)\right]$
 $\frac{D(X) = E(X^2) - (EX)^2}{E(X^2) = D(X) + (EX)^2} = \frac{1}{n-1}\left[n(\sigma^2 + \mu^2) - n(D(\overline{X}) + \mu^2)\right]$
 $= \frac{1}{n-1}\left[n\sigma^2 + n\mu^2 - \sigma^2 - n\mu^2\right]$
 $= \sigma^2$

注1 例2说明 $\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ 不是 σ^2 的无偏估计。

$$: E(\widetilde{S}^2) = E(\frac{n-1}{n}S^2) = \frac{n-1}{n}\sigma^2 \xrightarrow[n \to \infty]{} \sigma^2$$
~ 渐近无偏估计

注2 $\hat{\theta}$ 为 θ 的无偏估计,但 $u(\hat{\theta})$ 不一定是 $u(\theta)$ 的无偏估计。

例如: 若D(X)>0,则

$$E[(\hat{\mu})^2] = E(\overline{X}^2) = D(\overline{X}) + [E(\overline{X})]^2 > [E(\overline{X})]^2 = \mu^2$$
 (习题7.13)

注3 无偏估计不唯一,如 X_1 和 \overline{X} 均为 $\mu = E(X)$ 的无偏估计。

事实上对任何 c_1, c_2, \dots, c_n , 当 $c_1 + c_2 + \dots + c_n = 1$ 时,

$$E(\sum_{i=1}^{n} c_i X_i) = \mu$$

7.3.2 有效性

若 $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$, 且 $D(\hat{\theta}_1) \le D(\hat{\theta}_2)$, 则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效

比如
$$E(X_1) = E(\overline{X}) = \mu$$
,但 $D(X_1) = \sigma^2$, $D(\overline{X}) = \frac{1}{n}\sigma^2$

故 $\hat{\mu} = \overline{X}$ 比 $\hat{\mu}_1 = X_1$ 有效。

 $\hat{\theta}_0$ 为 θ 的最小方差无偏估计量~

 $E(\hat{\theta}_0) = \theta$, 且对 θ 的一切无偏估计 $\hat{\theta}$ 有:

$$D(\hat{\theta}_0) \le D(\hat{\theta})$$

例3 在总体期望 $\mu = E(X)$ 的线性无偏估计类

$$\overline{U} = \left\{ \hat{\mu} = \sum_{i=1}^{n} c_i X_i \middle| \sum_{i=1}^{n} c_i = 1 \right\}$$
中求 μ 最小方差无偏估计。

解
$$E(\hat{\mu}) = \sum_{i=1}^{n} c_i E(X_i) = \sum_{i=1}^{n} c_i \mu = \mu, \quad \hat{\mu} \in \overline{U}$$

曲Cauchy-Schwarz不等式 $(\sum_{i=1}^n a_i b_i)^2 \le (\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2)$

$$D(\hat{\mu}) = \sum_{i=1}^{n} c_i^2 D(X) = \frac{1}{n} (\sum_{i=1}^{n} 1^2) (\sum_{i=1}^{n} c_i^2) D(X)$$
$$\geq \frac{1}{n} (\sum_{i=1}^{n} 1 \times c_i)^2 D(X) = \frac{1}{n} D(X)$$

而 $D(\overline{X}) = \frac{1}{n}D(X)$,故 $\hat{\mu}_0 = \overline{X}$ 是 μ 的最小方差线性无偏估计。

7.3.3 一致性

若
$$\forall \varepsilon > 0$$
,有 $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1$

则称 $\hat{\theta}$ 为 θ 的一致估计。

例4 由大数定律
$$\lim_{n\to\infty} P(|\overline{X}-\mu|<\varepsilon)=1$$

知样本均值 \overline{X} 是总体均值 μ 的一致估计。

例5 证明正态总体的样本方差 S^2 是 σ^2 的一致估计。

$$\mathbf{iE} \quad \because \frac{n-1}{\sigma^2} S^2 \sim \chi^2(n-1) , \quad E(S^2) = \sigma^2$$

$$D(S^{2}) = \frac{\sigma^{4}}{(n-1)^{2}} D(\frac{(n-1)}{\sigma^{2}} S^{2}) = \frac{2\sigma^{4}}{(n-1)}$$

由切比雪夫不等式
$$P(|S^2 - \sigma^2| < \varepsilon) \ge 1 - \frac{2\sigma^4}{(n-1)\varepsilon^2} \longrightarrow 1$$

练习12.5 海船上雷达显示器是半径为R的一个圆,由方位物(灯塔)反射回来的信号以光点的形式均匀分布呈现在这个圆的任意一点处,求光点到圆心距离的数学期望。

解 设光点到圆心的坐标为(X,Y),由题意知(X,Y)的密度函数为

$$f(x,y) = \begin{cases} \frac{1}{\pi R^2}, & x^2 + y^2 \le R^2 \\ 0, & \text{!} \text{!} \text{!} \text{!} \end{cases}$$

$$E(\sqrt{X^2 + Y^2}) = \iint_{x^2 + y^2 \le R^2} \frac{\sqrt{x^2 + y^2}}{\pi R^2} dx dy$$

$$= \int_0^{2\pi} \int_0^R \frac{r}{\pi R^2} r dr d\theta = \frac{2}{3}R$$

练习13.3 在长为*l* 的线段上任取两点,求两点间距离的期望及方差。

解一设此两点为X和Y,则(X,Y)的联合密度函数为

$$f(x,y) = f(x)f(y) = \begin{cases} 1/l^2, & 0 \le x, y \le l \\ 0, & \text{ i.i.} \end{cases}$$

$$E(|X - Y|) = \int_0^l \int_0^l |x - y| \frac{1}{l^2} dx dy$$

$$= \int_0^l \left[\int_0^x \frac{x - y}{l^2} dy \right] dx + \int_0^l \left[\int_0^y \frac{y - x}{l^2} dx \right] dy = \frac{l}{3}$$

$$E(|X - Y|^2) = \int_0^l \int_0^l (x - y)^2 \frac{1}{l^2} dx dy = \frac{l^2}{6}$$

$$D(|X - Y|) = \frac{l^2}{6} - (\frac{l}{3})^2 = \frac{l^2}{18}$$

练习13.3 在长为*l* 的线段上任取两点,求两点间距离的期望及方差。

解 \parallel 设此两点为X和Y,则 Z=|X-Y| 的分布函数为

$$F_{Z}(z) = P(|X - Y| \le z) = \iint_{|x - y| \le z} f(x, y) dx dy$$

$$= \begin{cases} 0, & z < 0 \\ [l^{2} - (l - z)^{2}]/l^{2}, & 0 \le z \le l \\ 1, & z > 1 \end{cases}$$

$$f_Z(z) = F_Z'(z) = 2(l-z)/l^2$$
 $0 \le z \le 1$

$$E(Z^2) = \int_0^1 z^2 \times 2(l-z)/l^2 dz = l^2/6$$

$$D(Z) = l^2 / 18$$

习题4.7 设一个试验有*m*个等可能的结果,求至少一个结果连接发生*k*次的独立试验的期望次数。

解 设 X_k 为有一个结果接连发生k次的实验次数,

记 $E_k = E(X_k)$ 。 则

$$X_k = X_{k-1} + [1 \times \frac{1}{m} + (1 - \frac{1}{m})X_k]$$

$$E_k = E_{k-1} + 1 \times \frac{1}{m} + (1 - \frac{1}{m})E_k \implies E_k = mE_{k-1} + 1$$

$$E_1 = 1 \implies E_k = 1 + m + m^2 + \dots + m^{k-1} = \frac{m^k - 1}{m - 1}$$
 (m>1)