a) Develop a simple linear regression model cusing Nesterov Accelerated Gradient (NAG) optimizer

2	1	
Sample	X	7
1	0.2	3.4
2	0.4	3,8
3	0.6	4.2
4	0.8	4.6

so manual calculations for two iterations with first two samples.

Step-1:
$$x,y,m=1,c=-1,\eta=0.1,epochs=2, 7=0.9,$$

 $v_m=v_c=0$

Step-4:
$$g_{m} = \frac{\partial E}{\partial m} = -(3.4 - (1+(0.9)0)0.2 - (-1+(0.9)0)$$
 $\times 6.2$

$$g_{c} = \frac{\delta E}{\delta c} = -(3.4 - (140.916) 0.2 - (-14(0.9)6)$$

= -4.2

Step-5!
$$V_m = 8V_m - ng_m$$

 $= (0.9)0 - (-0.1) \times (-0.84) = -0.084$
 $V_c = 7V_c - ng_c$
 $= (0.9)0 - (-0.1)(-4.2) = -0.42$

Step-6:
$$m = m+lm = 1-0.084 = 0.916$$
 $c = c+4 = -1-0.42 = -1.42$

Step-3: $sample = 1+1=2$

Step-8: $if(2>2)$
 $goto Step 9$
 $else$
 $goto Step 4$

Step-4: $gm = \frac{\delta E}{\delta m} = -(3.8 - (0.916 + (0.9 \times -0.084)10.4) - (-1.42 + (0.9 \times -0.084) \times 0.4))$
 $= -1.983$
 $gc = \frac{\delta E}{\delta c} = -4.954$

Step-5: $Vm = 8Vm - 9m$
 $= (0.9 \times -0.084) - (-0.1 \times -1.983) = -0.2439$
 $Vc = 8Vc - 9gc$
 $= 10.9 \times -0.42) - (-0.1 \times 4.959) = -0.8739$

Step-6: $m = m+lm = 0.916 - 0.2739 = 0.6421$
 $c = c+ve = -(.42 - 0.8739 = -2.2939)$

Step-7: $sample = 2+1 = 3$

Step-8: $if(3>2)$
 $goto Step 9$

Step-9: $itx = 1+1=2$

Step-10: if
$$(2 > 3)$$
goto step 11

else
goto step 3

Step-2: Sample = 1

Step-4: $\frac{\partial E}{\partial m} = -(3.4 - (0.642 + (0.9 \times 0.293)) \times 0.2 - (-2.293 + (0.9 \times -0.293) \times 0.2))$

$$= -1.171$$
 $\frac{\partial E}{\partial c} = -5.859$

Step-5: $V_m = 0.9 \times (-0.293) - (-0.1 \times -1.74)$

$$= -0.3627$$
 $V_c = (0.9)(-0.873) - (-0.1)(-5.859)$

Step-6: $m = 0.6421 + (-0.3627) = 0.2994$
 $c = -2.2939 - 1.3707 = -3.6646$

Step-7: Sample = $1+1=2$

Step-8: if $(2 > 2)$
goto step 9

else
goto step 4

Step-4: $\frac{\partial E}{\partial m} = -(3.8 - (0.279 + (0.9 \times -0.3627)) \times 0.9 - (-3.6646 + (0.9 \times -0.3627) \times 0.9)$

$$= -2.985$$
 $\frac{\partial C}{\partial c} = \frac{\partial E}{\partial c} = -7.4645$

Step-5:
$$V_{m} = [0.9 \times -0.3627] - (-0.1 \times -2.985)$$

 $= -0.6249$
 $V_{c} = (0.9 \times -1.3707) - (-0.1 \times -7.4645)$
 $= -1.98$

Step-6:
$$m = 0.2974 - 0.6249 = -0.3275$$

 $c = -3.6646 - -1.98 = -4.6446$

$$\frac{S \text{ tep-11:}}{C = -4.6446}$$

la lote often

t 1840 H