

ASM2362 Data Sheet

USB3.1 Gen2 to PCI Express Gen3 x2 NVMe device bridge

Copyright Notice:

Copyright © 2008, ASMedia TECHNOLOGY INC. All Rights Reserved.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF ASMEDIA TECHNOLOGY INC. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN ASMEDIA'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, ASMEDIA ASSUMES NO LIABILITY WHATSOEVER, AND ASMEDIA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF ASMEDIA PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Products of ASMEDIA TECHNOLOGY INC. are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

ASMedia may make changes to specifications and product descriptions at any time, without notice.

ASMedia TECHNOLOGY INC. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Contact your local ASMedia sales office or your agent to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other ASMedia literature may be obtained by calling +886-2-22196088 or by visiting ASMedia's website at www.asmedia.com.tw.

ASMedia and ASMedia logo are trademarks or registered trademarks of ASMedia TECHNOLOGY INC. in Taiwan and other countries.

© 2008 祥碩科技股份有限公司,著作權所有,並保留一切權利

本文資料為與祥碩科技股份有限公司之產品相關。本文並未明示或默示授權任何智慧財產權予第三人。除在祥碩科技股份有限公司對該產品提供的買賣條款及條件以外,祥碩科技股份有限公司免於擔負任何責任,且不對產品的買賣及使用做任何明示或默示的保證,包含產品適於特殊使用目的、以及產品不侵害任何專利權、著作權或其他智慧財產權。祥碩科技股份有限公司之產品不用於醫療的、救助生命的、生命維持的、安全控管系統或核子設施等用途之上。

祥碩科技股份有限公司可隨時不經通知,逕行增訂或修改產品規格及描述。

本文之相關專利權、申請中之專利權、商標權、著作權及其餘智慧財產權均屬祥碩科技股份有限公司所有。本文及其他資訊並未明示或默示的提供任何專利、商標、著作權及其餘智慧財產權之授權。

請於下產品訂單前先聯絡當地的祥碩科技銷售處或代理商以取得最新的產品規格書。

本文提及之有訂單號碼之文件或其他詳細資料可參閱祥碩科技網站 www.asmedia.com.tw 或撥打+886-2-22196088

ASMEDIA 和 ASMEDIA 商標均為祥碩科技股份有限公司在台灣和其他國家的註冊商標或商標。

Office:

ASMedia Technology, Inc.

6F, No.115, Minquan Rd., Xindian City, Taipei County 231, Taiwan, R.O.C.

http://www.asmedia.com.tw Tel: 886-2-2219-6088 Fax: 886-2-2219-6080

Environmentally hazardous materials are not used in this product.

Revision History

Rev.	Date	Description				
0.1	December 20, 2017	Initial Release				
0.2	March 14, 2018	Update the pinout and correct the typo for pin description				
0.3	June 25, 2018	Update the electrical specification and power on sequence and package information				
0.4	July 10, 2018	Update pin description for application of internal/external regulator in pin15 VCCHIN				
1.0	Sept. 21, 2018	Update feature description Add top marking information for mass production release				
1.1	Oct. 2, 2018	Update timing spec of power on sequence				
Update the electrical specification and power on sequence and package information Update pin description for application of internal/external regulator in pin15 VCCHIN Update feature description Add top marking information for mass production release						

Table of Contents

Revision History	iii
Table of Contents	iv
List of Figures	V
1. General Description	7
2. Features	7
Package Type	8
3. Functional Diagram	
4. Pinout Diagrams	. 10
5. Pin Descriptions	
Strapping Table	
6 Electrical Characteristics	
6.1 Absolute Maximum Ratings	. 13
6.2 Recommended Operating Conditions	. 13
6.2.1 Chip Temperature (T _J , T _C) Calculation	
6.3 AC/DC Characteristics	. 14
6.3.1 PCI Express Electrical Specification	
6.3.2 USB3.1 Electrical Specification	
6.3.3 USB2.0 Electrical Specification	
6.3.4 DC Electrical Characteristics for digital pins	
6.3.4 DC Electrical Characteristics for RST# pin	
6.3.5 External Crystal Electrical Specification	
6.3.6 Differential Clock Oscillator Electrical Specification	
6.3.7 PCI Express 100MHz Output Clock Electrical Specification	
6.3.8 Internal Linear Regulator Electrical Specification	
6.3.9 Power Consumption Specification	
7. Power On Sequence	
8. Package Information	
9. Top Marking Information	. 19

List of Figures

Figure 1:	Functional Diagram of ASM2362	9
	ASM2362 pinout	
J	Differential Crystal Design	
-	waveform of power on sequence	
•	Mechanical Specification	

This page is intentionally left blank.

ASIMedia Confidential

1. General Description

ASM2362 is an ASMedia first generation PCI Express(downstream port) to USB3.1(UFP) bridge, featuring interface of PCI Express Gen3 x2 and one USB3.1 Gen2 device port, providing high bandwidth up to 10Gbps between PCI Express Gen3 x2 bus and USB 3.1 SuperSpeedPlus bus. It uses for external USB3.1 Gen2 NVM Express SSD application without additional driver, reaching over 1000MB/s excellent benchmark performance, integrating USB 10Gbps mux and Configuration Channel bus for type-C connector, supporting PCI Express M.2 socket, CF Express and SSD U.2 form factor, saving power consumption through USB and PCI Express Link power management and Chip power management, compliant with NVM Express revision 1.2.1, PCI Express Base Spec Revision 3.1a, USB3.1 Revision 1.0 and USB type-C Revision 1.3.

ASM2362 is highly integrated with ASMedia USB3.1 Gen2 and PCI Express Gen3 self-designed PHYs, supplying 3.3V and 1.05V voltage, applying local 25MHz crystal, using 9x9 QFN64 RoHS Green package, supporting variable GPIOs for customized function. Target applications is for USB3.1 Gen2 NVM Express SSDs for high performance external SSD or on board SSD on PC, laptop, servers, docking stations and embedded system.

2. Features

General Feature

- ♦ USB to PCI Express NVMe SSD bridge
- ♦ Integrated 10Gbps mux for type-C application
- ♦ Integrated CC Logic for type-C application
- Support SPI interface with external ROM for customized RAM code
- ♦ Support I2C and GPIOs and UART interface
- ♦ Internal 3.3V to 2.5V LDO
- ♦ Local 25MHz crystal

Universal Serial Bus Feature

- ♦ Support up to USB3.1 Gen2
- ♦ Support BOT and UAS Protocol
- ♦ Support USB Link power management
- ♦ Support USB Hot Plug
- ♦ Support Spread Spectrum Clock Control
- Support unmap command set
- ♦ Support ATA passthrough command set
- ♦ Support vender specific command set
- ♦ Compliant with Universal Serial Bus 3.1 Revision 1.0
- ♦ Compliant with USB Type-C spec Release 1.3

PCI Express Feature

- ♦ Support up to PCI Express Gen3 x2
- ♦ Support PCI Express NVMe SSD without driver
- ♦ Support Spread Spectrum Clock Control
- ♦ 100MHz differential reference clock output
- ♦ Support variable types of PCI Express socket including M.2 and U.2 and so on.
- ♦ Support PCI Express Link power management
- ♦ Compliant with PCI Express base spec Revision 3.1a
- ♦ Compliant with PCIe M.2 Revision 1.0

NVM Express Feature

- Support NVMe power management \Diamond
- \Diamond Support NVMe: SCSI Translation Reference Revision 1.5
- \Diamond Support Trim command set
- Support NVMe Error Reporting & Recovery \Diamond
- ♦ S.M.A.R.T drive monitoring
- Compliant with NVMe Revision 1.3c

Package Type

- ASIMedia Confidential Green Package 9x9 mm2 QFN 64 (Pb-free)
- \Diamond **RoHS** Compliance

3. Functional Diagram

Figure 1: Functional Diagram of ASM2362

4. Pinout Diagrams

Figure 2: ASM2362 pinout

5. Pin Descriptions

This section provides a detailed description of each signal. The following notations are used to describe the signal type.

I/O Type	Definition
1	Input pin
0	Output pin
В	Bi-directional pin
Di	Differential pin
Р	Power pin
G	Ground pin
OD	Open Drain

Bi-directional pin Differential pin Power pin Ground pin Open Drain						
Pin name	Pin NO.	TYPE	Power	Descriptions		
UDP	19	10	VCCHU	Positive Signal of USB2.0 on Type-C		
UDM	20	10	VCCHU	Negative Signal of USB2.0 on Type-C		
UTXP0	23	Di O	VCCLU	Positive Signal of SuperSpeed USB Lane 0 Transmitter for Type-C Configuration Channel 1		
UTXN0	24	Di O	VCCLU	Negative Signal of SuperSpeed USB Lane 0 Transmitter for Type-C Configuration Channel 1		
UTXP1	26	Di O	VCCLU	Positive Signal of SuperSpeed USB Lane 1 Transmitter for Type-C Configuration Channel 2		
UTXN1	25	Di O	VCCLU	Negative Signal of SuperSpeed USB Lane 1 Transmitter for Type-C Configuration Channel 2		
URXP0	28	Di I	VCCLU	Positive Signal of SuperSpeed USB Lane 0 Receiver for Type-C Configuration Channel 1		
URXN0	29	Di I	VCCLU	Negative Signal of SuperSpeed USB Lane 0 Receiver for Type-C Configuration Channel 1		
URXP1	31	Di I	VCCLU	Positive Signal of SuperSpeed USB Lane 1 Receiver for Type-C Configuration Channel 2		
URXN1	30	Di I	VCCLU	Negative Signal of SuperSpeed USB Lane 1 Receiver for Type-C Configuration Channel 2		
VBUS	12	I	VCCH	USB VBUS input		
CC1	13	I	VCCH	Configuration Channel 1 for USB Lane 0 on Type-C		
CC2	14	I	VCCH	Configuration Channel 2 for USB Lane 1 on Type-C		
PECLKN	37	Di O	VCCLP	Negative Signal of PCI Express Differential Clock		
PECLKP	38	Di O	VCCLP	Positive Signal of PCI Express Differential Clock		
PRXN1	50	Di I	VCCLP	Negative Signal of PCI Express Lane 1 Receiver		
PRXP1	51	Di I	VCCLP	Positive Signal of PCI Express Lane 1 Receiver		
PRXN0	59	Di I	VCCLP	Negative Signal of PCI Express Lane 0 Receiver		
PRXP0	60	Di I	VCCLP	Positive Signal of PCI Express Lane 0 Receiver		
PTXN1	53	Di O	VCCLP	Negative Signal of PCI Express Lane 1 Transmitter		
PTXP1	54	Di O	VCCLP	Positive Signal of PCI Express Lane 1 Transmitter		
PTXN0	56	Di O	VCCLP	Negative Signal of PCI Express Lane 0 Transmitter		
PTXP0	57	Di O	VCCLP	Positive Signal of PCI Express Lane 0 Transmitter		
PERST#	5	I	VCCH	Reset Signal for PCI Express interface		
RST#	46	I	VCCH	Power on Reset		
TEST_EN	1	I	VCCH	Test enable pin, internal weak pull down		
I2C_DATA_P	2	10	VCCH	I2C data, internal weak pull high		
I2C_CLK_P	3	10	VCCH	I2C clock, internal weak pull high		
GPIO0	43	10	VCCH	GPIO0, internal weak pull high		
GPIO1	42	10	VCCH	GPIO1, internal weak pull high		
GPIO2	41	10	VCCH	GPIO2, Internal weak pull high		
GPIO3	45	10	VCCH	GPIO3, internal weak pull high		
GPIO4	6	10	VCCH	GPIO4, SPI Chip Select when external SPI flash attach,		

				internal weak pull high
				GPIO5, SPI data output when external SPI flash attach, as
GPIO5	7	10	VCCH	strapping pin for "SKT_DET" when power on. Please refer to
GFIOS	GPIO5 /		VCCH	strapping table. Internal weak pull high
				GPIO6, SPI clock output when external SPI flash attach,
GPIO6	10	10	VCCH	internal weak pull high
				GPIO7, SPI data input when external SPI flash attach,
GPIO7	11	10	VCCH	internal weak pull high
GPIO8	47	10	VCCH	GPIO8, internal weak pull high
57.75	- '	10		UART transmitter, as strapping pin for "MEMREPAIR" when
UART_TX	62	I	VCCH	power on. Internal weak pull high
UART_RX	63	Ο	VCCH	UART receiver, Internal weak pull high
HDDPC	48	0	VCCH	Power control for NVMe SSD, internal weak pull high
REXT	33	I	VCCH	External resistor 12.1 kohm+/-1%
XI	35	ı	VCCH	Crystal Input
XO	36	0	VCCH	Crystal Output
λO	00		10011	Regulator Input with VCCH
VCCHIN	15	5 P	VCCH	Please keep connecting to 3.3V, even if external 2.5V
7001111	.0	•	10011	regulator is applied.
VCCLO	16	Р	VCCL	Regulator output to supply VCCL
	4, 9, 17,	-		
	21, 32, 39.	_		
VDD	40, 49, 55,	Р	VDD	Core power supply input
	61			
VCCL	34	Р	VCCL	Low voltage VCC power input
VCCLU	22	Р	VCCL	Low voltage VCC power input for USB
VCCLP	52, 58	Р	VCCL	Low voltage VCC power input for PCI Express
VCCH	8, 44, 64	Р	VCCH	High voltage VCC power input
VCCHU	18	Р	VCCH	High voltage VCC power input for USB PHY
GNDA	27	G		Analog Ground

Strapping Table

Function control for PCIe Hot plug support

GPI05	SKT_DET
Н	Support
L	Not support

Function control for internal memory repair

	,
UART_TX	MEMREPAIR
Н	Enable
1	Disable

6 Electrical Characteristics

6.1 Absolute Maximum Ratings

Stresses the below parameter listed under absolute maximum rating may cause the device permanent damage. This is a stress rating only, and the function operating of the device at these or any other conditions over those parameter in the recommended operating condition is not implied. It is recommended to have a clamp circuit to protect the device with abnormal exhibit voltage spikes while power is switched on or off.

Parameter	Range	Unit	
Power Supply	-0.5 ~ VCC+0.5	V	
DC Input Voltage	-0.5 ~ VCC+0.5	V	
Output Voltage	-0.5 ~ VCC+0.5 V		
Storage Temperature	JEDEC J-STD-033B	MSL 3	

6.2 Recommended Operating Conditions

Symbols	Parameter	Min.	Тур.	Max.	Units	Remark
V_{CCH}	High voltage VCC power supply	3.0	3.3	3.6	V	
V _{CCHU}	High voltage VCC power supply for USB	3.0	3.3	3.6	V	
V_{CCL}	Low voltage VCC power supply	2.3	2.5	2.7	V	
V _{CCLU}	Low voltage VCC power supply for USB	2.3	2.5	2.7	V	
V_{CCLP}	Low voltage VCC power supply for PCIe	2.3	2.5	2.7	V	
V_{DD}	Core power supply	1.00	1.05	1.1	V	
T _C	Operating Case Temperature	0		85	°C	
TJ	Silicon Junction Temperature	0	25	120	°C	
HBM	Human Body mode		2		KV	

6.2.1 Chip Temperature (T_J, T_C) Calculation

Symbols	Parameter	How to get?
T _A	Ambient temperature	Measure temperature around chip
T _J	Operating junction temperature	$T_J = \Theta_{JA} * Power + T_A$
T _C	Operating case temperature	$T_C = T_J - \Psi_{JT} * Power$
R_{JA}	Junction to Ambient thermal resistance	20.3 (data from package vender)
RJC	Junction to case thermal resistance	4.2 (data from package vender)
Ψ_{JT}	Junction to top thermal characterization	0.07 (data from package vender)
Power	Chip power consumption	Measure chip power consumption

- ➤ Thermal test board condition, please refer to JEDEC JESD51-5
- Thermal test method environmental conditions refer to JESD51-2
- Example: If chip power consumption is 1.365W; $T_A = 57^{\circ}C$ $T_J = 20.3*1.365 + 57 = 84.71^{\circ}C < 120^{\circ}C$

$$T_C = 84.71 - 0.07*1.365 = 84.61^{\circ}C < 85^{\circ}C$$

6.3 AC/DC Characteristics

6.3.1 PCI Express Electrical Specification

(Refer to PCI Express Base Specification Rev. 3.0)

6.3.2 USB3.1 Electrical Specification

(Refer to Universal Serial Bus 3.1 Specification Rev. 1.0)

6.3.3 USB2.0 Electrical Specification

(Refer to Universal Serial Bus Specification Rev. 2.0)

6.3.4 DC Electrical Characteristics for digital pins

(Including VBUS, PERST, I2C, UART, HDDPC and GPIOs)

Symbols	Parameter	Min.	Тур.	Max.	Units
V_{IH}	Input High Voltage Level	2.0			V
V_{IL}	Input Low Voltage Level			0.8	V
V_{HYS}	Input Hysteresis	0.32	0.37	0.4	mV
$V_{TH\text{-}L2H}$	Threshold of Schmitt Trigger low to high	1.4	1.6	1.8	V
$V_{TH\text{-H2L}}$	Threshold of Schmitt Trigger high to low	1	1.23	1.4	V
V_{OH}	Output High Voltage Level	2.4			V
V_{OL}	Output Low Voltage Level			0.4	V
I _{OH}	Output Driving Current while V _{OH}	12			mA
I _{OL}	Output Driving Current while Vol	12			mA
D	Internal Pull-up resistance while Vin=0V	65	96	140	ΚΩ
R _{UP}	Internal Pull-up resistance while Vin=VCC/2 V	38	56	81	ΚΩ
D	Internal Pull-down resistance while Vin=VCC	59	96	142	ΚΩ
R_{DN}	Internal Pull-down resistance while Vin=VCC/2 V	35	55	79	ΚΩ
	Input pull-up leakage current after Vin is read, Rup is off & Iil < 1uA when VIN=0	21	34.4	56	uA
I _{IL-UP}	Input pull-up leakage current after Vin is read, Rup is off & Iil < 1uA when VIN=VCC/2	18	29.4	47	uA
	Input pull-down leakage current after Vin is read, Rdn is off & Iil < 1uA when VIN=VCC	21	34.5	60	uA
I _{IL-DN}	Input pull-down leakage current after Vin is read, Rdn is off & Iil < 1uA when VIN=VCC/2	18	30	50	uA

6.3.4 DC Electrical Characteristics for RST# pin

Symbols	Parameter	Min.	Тур.	Max.	Units
V_{IH}	Input High Voltage Level	2.6			V
V_{IL}	Input Low Voltage Level			1.4	V
V_{HYS}	Input Hysteresis	0.21	0.23	0.25	mV
$V_{TH\text{-}L2H}$	Threshold of Schmitt Trigger low to high	1.9	2.2	2.55	V
$V_{TH ext{-}H2L}$	Threshold of Schmitt Trigger high to low	1.65	1.97	2.35	V
Input	Input pull-up leakage current while Vin=0V			1	mA

6.3.5 External Crystal Electrical Specification

Symbols	Parameter	Min.	Тур.	Max.	Units
fxtal	Frequency		25		MHz
Δfxtal	Long Term Stability (at 250C)	-30		30	ppm
t c	Temperature Stability	-30		30	ppm
FA	Aging	-5		5	ppm
CL	Load Capacitance (Single-end mode)		16		pF
Со	Shunt Capacitance	1	3	7	pF

Figure 3: Differential Crystal Design

6.3.6 Differential Clock Oscillator Electrical Specification

Note: The table describes the specification of clock with external 25MHz crystal. Please refer to figure 3.

Symbols	Parameter		Тур.	Max.	Units
fxtal	Frequency		25		MHz
Δf XTAL	Long Term Stability (at 250C)	-150		150	ppm
Сх	External Load Capacitance (Differential mode)		10		pF
Статац	Total external equivalent Capacitance from XI pin to XO pin (Differential mode)	9	11	15	pF
RTOTAL	Total external equivalent Series Resistance from XI pin to XO pin (Differential mode)			60	Ω

6.3.7 PCI Express 100MHz Output Clock Electrical Specification

Symbols	Parameter	Min.	Тур.	Max.	Units
Vон	Differential Output High Voltage	150			mV
Vон	Differential Output Low Voltage			-150	mV
Vcross	Absolute crossing point voltage	250		550	mV
t _{CROSS_DELTA}	Variation of V _{CROSS} over all rising clock edges			140	mV
t _{PERIOD_AVG}	Average clock period accuracy	-300		300	ppm
t cc1	Cycle to Cycle Jitter			150	Ps
toc	Reference Duty Cycle	40		60	%
RTrising	Rising Edge Rate	0.6		4.0	V/ns
RTFALLING	Falling Edge Rate	-4.0		-0.6	V/ns

6.3.8 Internal Linear Regulator Electrical Specification

Symbols	Parameter	Min.	Тур.	Max.	Units
V _{IN}	Input Voltage Range	3.0	3.3	3.6	V
V _{OUT}	Output Voltage Range	2.3	2.5	2.7	V
I _{MAX}	Maximum capacity of current			300	mA

6.3.9 Power Consumption Specification

Symbols	Parameter	Max.	Units
I _{CCHMAX}	Maximum Current consumption of V_{CCH}	8	mA
I _{CCLMAX}	Maximum Current consumption of V_{CCL}	165	mA
I _{DDMAX}	Maximum Current consumption of V_{DD}	530	mA
SM	confilò		

7. Power on Sequence

Figure 4: waveform of power on sequence

Symbols	Parameter		Тур.	Max.	Units
tvccH2vccL	tvcch2vccl V _{CCL} (90%) available after V _{CCH} (90%) available		5	10	ms
tvcch2vdd	V _{DD} (90%) available after V _{CCH} (90%) available			90	ms
t rst	RST (90%) ready after V _{CCH} (90%) available				ms
t _{25CLKOUT}	25MHz clock available after RST#(90%) assert			10	ms
t _{PECLKOUT}	PCI Express Reference Clock output after RST#(90%) assert	100			ms
t _{PERST}	PCI Express Reset (90%) assert after PCI Express Reference Clock output	0			ms

8. Package Information

* CONTROLLING DIMENSION: MM

	SYMBOL MILLIMETER			INCH			
		MIN.	иом.	MAX.	MIN.	NOM.	MAX.
	Α			0.90			0.035
	A1	0.00	0.01	0.05	0.00	0.0004	0.002
	A2		0.65	0.70		0.026	0.028
	A3	С	.20 R	EF.	0.008 REF.		
	b	0.20	0.25	0.30	0.008	0.010	0.012
407	D	9	.00 b:	sc	0.354 bsc		bsc
	D1	8.75 bsc			0.344 bsc		
	D2	7.20	7.30	7.40	0.284	0.287	0.291
	Е	9.00 bsc			0.354 bsc		
	E1	8	3.75 b	sc	0.344 bsc		
	E2	7.20	7.30	7.40	0.284	0.287	0.291
	L	0.30	0.40	0.50	0.012	0.016	0.020
	е	0.50 bsc 0.020			020 Ь	bsc	
	0 1	0.		12"	0.		12
	R	0.09			0.004		
	TOI	ERANC	ES OF	FORM	AND	POSITIO	NC
	aaa	0.10 0.004					
	bbb		0.10)		0.004	
	ccc		0.05	5		0.002	

- 1.ALL DIMENSIONS ARE IN MILLIMETERS.
- 2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM)
- 3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.
- 4.DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED
- BETWEEN 0.20 AND 0.25 mm FROM TERMINALTIP.
- 5.THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE
- PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- 6.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- 7.PACKAGE WARPAGE MAX 0.08 mm.
- 8.APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
- 9.APPLIED ONLY TO TERMINALS.
- 10.PACKAGE CORNERS UNLESS
- OTHERWISE SPECIPIED
- ARE R0.175±0.025 mm.

Figure 5: Mechanical Specification

9. Top Marking Information

- 1. asmedia: ASMedia Logo
- 2. ASM2362: Product Name
- 3. B: Version of ASMedia Logo
- 4. XXXXXXXXX: Serial No. Reserved for Vendor
- 5. YYWW: Date Code