Information Theory

Jayadev Naram

Contents

1	Entropy	1
2	Relative Entropy	4
3	Typicality	4
4	Source Coding	5
5	Joint Typical	5
6	Channel Coding	5

1 Entropy

Definition 1.1. The *uncertainity or entropy* of a discrete random variable U that takes values in the set \mathcal{U} (also called alphabet \mathcal{U}) is defined as

$$H(U) = -\sum_{u \in \mathcal{U}} P_U(u) \log_b P_U(u),$$

where $P_U(\cdot)$ denotes the probability mass function of the random variable U.

Remark 1.2. It should be noted that when $P_U(u) = 0$, the corresponding term does not contribute to entropy because $\lim_{t\downarrow 0} t \log_b t = 0$. In view of this result, one can equivalently define entropy on the support of P_U which is defined as

$$supp(P_U) = \{u : P_U(u) > 0\} \subseteq \mathcal{U}.$$

Remark 1.3. Entropy does not depend on different possible values that U can take on, but only on the probabilities of these values.

Definition 1.4. If U is binary with two possible values u_1 and u_2 , such that $\mathbb{P}[U = u_1] = p$ and $\mathbb{P}[U = u_2] = 1 - p$, then

$$H(U) = H_b(p) = -p \log_2 p - (1-p) \log_2 (1-p), p \in [0,1],$$

where $H_b(\cdot)$ is called the **binary entropy function**.

Lemma 1.5 (IT Inequality). For any base b > 1 and any $\xi > 0$,

$$\left(1 - \frac{1}{\xi}\right) \log_b e \le \log_b \xi \le (\xi - 1) \log_b e,$$

with equalities on both sides hold iff $\xi = 1$.

Theorem 1.6. If U has r possible values, then

$$0 \le H(U) \le \log r$$
,

where

$$H(U) = 0 \iff \exists \ u \in \mathcal{U}, P_U(u) = 1,$$

 $H(U) = \log r \iff \forall \ u \in \mathcal{U}, P_U(u) = \frac{1}{r}.$

Definition 1.7. The *conditional entropy* of the random variable X given the event Y = y is defined as

$$H(X|Y=y) = -\sum_{x \in \mathcal{X}} P_{X|Y}(x|y) \log P_{X|Y}(x|y) = -\mathbb{E}\Big[\log P_{X|Y}(X|Y)\Big|Y=y\Big],$$

where the conditional probability distribution is given by

$$P_{X|Y}(x|y) = \frac{P_{X,Y}(x,y)}{P_{Y}(y)}.$$

Corollary 1.8. If X has r possible values, then

$$0 \le H(X|Y = y) \le \log r,$$

where

$$H(X|Y=y) = 0 \iff \exists \ x \in \mathcal{X}, P_{X|Y}(x|y) = 1,$$

$$H(X|Y=y) = \log r \iff \forall \ x \in \mathcal{X}, P_{X|Y}(x|y) = \frac{1}{r}.$$

Definition 1.9. The *conditional entropy* of the random variable X given the random variable Y is defined as

$$\begin{split} H(X|Y) &= \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y = y) \\ &= \mathbb{E}_Y \left[H(X|Y = y) \right] \\ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{X,Y}(x,y) \log P_{X|Y}(x|y) \\ &= -\mathbb{E} \left[\log P_{X|Y}(X|Y) \right]. \end{split}$$

Corollary 1.10. If X has r possible values, then

$$0 \le H(X|Y) \le \log r$$
,

where

$$H(X|Y) = 0 \iff \exists \ x \in \mathcal{X}, \forall \ y \in \mathcal{Y}, P_{X|Y}(x|y) = 1,$$

$$H(X|Y) = \log r \iff \forall \ x \in \mathcal{X}, \forall \ y \in \mathcal{Y}, P_{X|Y}(x|y) = \frac{1}{r}.$$

Remark 1.11. Generally, $H(X|Y) \neq H(Y|X)$.

Theorem 1.12 (Conditioning Reduced Uncertainty). For any two discrete random variables X and Y,

$$H(X|Y) \leq H(X)$$
,

where equality holds iff X and Y are independent, i.e., $X \perp Y$.

Remark 1.13. The conditioning reduces entropy-rule only applies to random variables, but not to events. In particular,

$$H(X|Y=y) \leq H(X)$$
.

To understand why this is the case, consider the following example.

Theorem 1.14 (Chain Rule). Let X_1, \ldots, X_n be n discrete random variables. Then

$$H(X_1, \dots, X_n) = H(X_1) + H(X_2|X_1) + \dots + H(X_n|X_1, \dots, X_{n-1}) = \sum_{k=1}^n H(X_k|X^{(k-1)}),$$

where $X^{(k-1)} = X_{1_k-1}$.

Definition 1.15. The *mutual information* between the random variables X and Y is given by

$$I(X;Y) = H(X) - H(X|Y).$$

Remark 1.16. Notice that

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$

$$\Longrightarrow H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$\Longrightarrow I(X;Y) = I(Y;X).$$

Remark 1.17. When $X \perp Y$, we have I(X;Y) = 0. And also that I(X;X) = H(X).

Remark 1.18. From the chain rule it follows that

$$H(X|Y) = H(X,Y) - H(X),$$

and thus we obtain

$$I(X;Y) = H(X) + H(Y) - H(X,Y).$$

Remark 1.19. The mutual information can be expressed as follows.

$$\begin{split} I(X;Y) &= H(X) - H(X|Y) \\ &= \mathbb{E} \big[-\log P_X(X) \big] - \mathbb{E} \big[P_{X|Y}(X|Y) \big] \\ &= \mathbb{E} \bigg[\log \frac{P_{X|Y}(X|Y)}{P_X(X)} \bigg] \\ &= \mathbb{E} \bigg[\log \frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)} \bigg] \\ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{X,Y}(x,y) \log \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}. \end{split}$$

Theorem 1.20. Let X and Y be two random variables. Then

$$0 \le I(X;Y) \le \min\{H(X), H(Y)\}.$$

where equality holds on the left-hand side iff $P_{X,Y} = P_X P_Y$, i.e., iff $X \perp Y$, and equality holds on the right-hand side iff X determines Y or vice versa.

Theorem 1.21 (Chain Rule). Let X, Y_1, \ldots, Y_n be n+1 discrete random variables. Then

$$I(X; Y_1, \dots, Y_n) = I(X; Y_1) + I(X; Y_2 | Y_1) + \dots + I(X; Y_n | Y_1, \dots, Y_{n-1}) = \sum_{k=1}^n I(X; Y_k | Y^{(k-1)}).$$

Remark 1.22. Comments on Notation of Entropy and Mutual Information.

Theorem 1.23 (Uniqueness of the Definition of Entropy).

2 Relative Entropy

3 Typicality

Definition 3.1. We say that a sequence of random variables $\{X_n\}$ converges in probability to a random variable X if for all $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \mathbb{P}\big[|X_n - X| > \varepsilon\big] = 0.$$

Lemma 3.2 (Markov Inequality). Let X be a nonnegtaive random variable of finite mean $\mathbb{E}[X] < \infty$. Then for all a > 0, we have

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

Lemma 3.3 (Chebyshev Inequality). Let X be a random variable with finite mean μ and finite variance σ^2 . Then for all $\varepsilon > 0$, we have

$$\mathbb{P}[|X - \mu| \ge \varepsilon] \le \frac{\sigma^2}{\varepsilon}.$$

Lemma 3.4 (Weak Law of Large Numbers). Let $\{Z_n\}$ be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ an variance σ^2 . Let

$$S_n = \frac{1}{n} \sum_{k=1}^n Z_k$$

be the sample mean. Then $\{S_n\}$ converges in probability to μ . In particular,

$$\mathbb{P}[|S_n - \mu| \ge \varepsilon] \le \frac{\sigma^2}{n\varepsilon^2}.$$

Definition 3.5 (Type). Let $x^{(n)}$ be a sequence of n elements drawn from a finite-cardinality alphabet \mathcal{X} . The **empirical probability mass function** of $x^{(n)}$, also referred to as its **type**, is defined for $x \in \mathcal{X}$ as

$$\pi(x|x^{(n)}) = \frac{|\{i \in [n] : x_i = x\}|}{n},$$

where $[n] = \{1, ..., n\}.$

Theorem 3.6. Let $\{X_n\}$ be an i.i.d. sequence of random variables with $X_i \sim P_X(x_i)$. Then $\forall x \in \mathcal{X} \text{ and for all } \varepsilon > 0$, we have

$$\lim_{n\to 0} \mathbb{P}[|\pi(x|X^{(n)}) - P_X(x)| > \varepsilon] = 0,$$

or in other words, $\{\pi(x|X^{(n)})\}\$ converges in probability to $P_X(x)$ for all $x \in \mathcal{X}$.

Definition 3.7 (Typical Set). The **set of** ε **-typical** n**-sequences** for a random variable $X \sim P_X$ and $\varepsilon \in (0,1)$ (simply typical set) is defined as

$$\mathcal{T}_{\varepsilon}^{(n)}(X) = \{x^{(n)} : |\pi(x|x^{(n)}) - P_X(x)| \le \varepsilon P_X(x), \forall x \in \mathcal{X}\}.$$

Remark 3.8. For an element $x \in \mathcal{X}$ which has $P_X(x)$ cannot be a part of typical sequence. Suppose such an x belonged to a sequence $x^{(n)}$, then $\pi(x|x^{(n)}) > 0$. Consequently, we have $|\pi(x|x^{(n)}) - P_X(x)| = \pi(x|x^{(n)}) > 0 = \varepsilon P_X(x)$ for all $\varepsilon > 0$, which shows that $x^{(n)}$ is not a typical sequence.

Lemma 3.9 (Typical Average Lemma). Consider a typical sequence $x^{(n)} \in \mathcal{T}_{\varepsilon}^{(n)}(X)$. Then for any nonnegtaive function $g(\cdot)$ on \mathcal{X} , we have

$$(1-\varepsilon)\mathbb{E}[g(X)] \le \frac{1}{n} \sum_{k=1}^{n} g(x_k) \le (1+\varepsilon)\mathbb{E}[g(X)].$$

4 Source Coding

5 Joint Typical

Definition 5.1 (Joint Type). Let $(x^{(n)}, y^{(n)})$ be a sequence of a pair of n length sequences from a finite-cardinality alphabet $(\mathcal{X}, \mathcal{Y})$. The **joint empirical probability mass function** of $(x^{(n)}, y^{(n)})$, also referred to as its **joint type**, is defined for $x \in \mathcal{X}$ as

$$\pi(x,y|x^{(n)},y^{(n)}) = \frac{|\{i \in [n] : (x_i,y_i) = (x,y)\}|}{n}.$$

Remark 5.2. The X-marginal of X, Y-joint empirical probability mass function is the X-empirical probability mass function.

Definition 5.3 (Jointly Typical Set). The **set of** ε **-jointly typical** n**-sequences** for a random variable $(X,Y) \sim (P_X,P_Y)$ and $\varepsilon \in (0,1)$ (simply jointly typical set) is defined as

$$\mathcal{T}_{\varepsilon}^{(n)}(X,Y) = \{(x^{(n)}, y^{(n)}) : |\pi(x, y|x^{(n)}, y^{(n)}) - P_{X,Y}(x, y)| \le \varepsilon P_{X,Y}(x, y), \forall \ x \in \mathcal{X}, y \in \mathcal{Y}\}.$$

Remark 5.4. If
$$(x^{(n)}, y^{(n)}) \in \mathcal{T}_{\varepsilon}^{(n)}(X, Y)$$
, then $x^{(n)} \in \mathcal{T}_{\varepsilon}^{(n)}(X)$ and $y^{(n)} \in \mathcal{T}_{\varepsilon}^{(n)}(Y)$.

6 Channel Coding

References