(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-17 EXAMINATION

Subject Name: Theory of Structures Model Answer Subject Code:

17422

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer				
No.	Q. N.		Scheme			
Q.1	(A)i) Ans					
		Axis of member	01 Mark			
Q.1	(A)ii)	Write the values of maximum slope and deflection in case of simply supported beam with u.d.L. over the entire span in terms of El.				
	Ans	w kN/m				
		Maximum slope = $(w \times L^3) / (24 \times EI)$ at supports.	01 Mark			
		Maximum deflection = $(5 \times w \times L^4) / (384 \times EI)$ at midspan	01 Mark			
Q.1	(A)iii)	Write the differential equation for slope and deflection and state terms used in the				
	Ans	equation. In the theory of simple bending, curvature of beam is expressed as $-1/R = d^2y/dx^2$ For bending equation, $1/R = M/EI$				

l		$M / EI = d^2y/dx^2$	01 Mark
ŀ		$EI(d^2y/dx^2) = M_x$ differential equation	
		Where, E = Modulus of elasticity.	
		I = Moment of inertia of C/S.	01 Mark
		M_x = Bending moment at the section X-X in beam.	
Q.1	(A)iv)	State values of maximum slope and deflection for cantilever beam of span L carrying a	
		point	
	Ans	load at free end with meaning of each term.	
		W	
		2	01 Mark
		Maximum slope = (WL ²) / 2EI at free end	
		2. 4	01 Mark
		Maximum deflection = (WL ³) / 3EI at free end	
Q.1	(A)v)	State any two disadvantage of fixed beam.	
	Ans	i. A little sinking of one support over the other induces additional moment at each	
		end.	Any Two
		ii. Due to end fixity, temperature stresses are induced due to variation in	Any Two 01 Mark
		temperature. iii. Extra care has to be taken to achieve perfect fixity at ends.	Each
		iv. Frequent fluctuations in loading (moving loads) are likely to disturb end fixity.	EdCII
		v. Practically it is difficult to produce 100% fixity.	
Q.1	(A)vi)	With sketch state the different types of portal frame.	
α.1	Ans	i. Symmetrical portal frame (Non sway type) ii. Unsymmetrical portal frame (Sway type)	
	7 1113	w	01 Mark
			each
		तामा तामा तामा तामा	
	(-)		
Q.1	(A)vii)	Define carry over moment and carry over factor.	
	Ans	i. Carry over moment: It is defined as the moment induced at the far fixed end of	04.84
		beam by the action of the moment applied at the near simply supported or	01 Mark
		hinged end.	
		ii. Carry over factor: It is the ratio of moment induced at far end to the moment	01 Mark
Q.1	(applied at near end without displacing it. List out different types of roof trusses any four.	01 Mark
Q.I	(A)viii) Ans	i. King post truss ii. Queen post truss iii. Simple fink truss iv. Compound fink truss	Any Four ½ Mark
i i	AIIS	v. Fan truss vi. Pratt truss vii. Howe truss viii. North light truss	each
	(=) ·)	Define core of a section and state middle third rule.	Cacii
O 1	l (R)i)	Define core of a section and state initiale time rule.	1
Q.1	(B)i)	i Core of a section: It is defined as the region or area within which if load is applied	
Q.1	(B)i) Ans	i. Core of a section: It is defined as the region or area within which if load is applied,	02 Marks
Q.1	` ' '	produces only compressive resultant stress.	02 Marks
Q.1	` ' '		02 Marks

Q.1	(B)ii)	Draw resultant stress diagram for $6_0 < 6_b$, $6_0 = 6_b$, $6_0 > 6_b$.				
~	(=,,	i) $6_0 < 6_b$ ii) $6_0 = 6_b$ iii) $6_0 > 6_b$				
	Ans	MIN MIN MIN MAX	01 Mark each for dia.			
		Where, 6_0 = Direct stress and 6_b = Bending stress	01 Mark			
Q.1	(B)iii)	a) State the assumptions in the analysis of frame.	OI WILL			
Ψ	Ans	1. All joints in frame are pinned or hinged.	½ mark			
		2. Loads are applied at joints only.	for each			
		3. Self-weight of members of frame is neglected.				
		4. Only axial forces (tensile and compressive) are induced in the member.				
		b) Define redundant frame and state its condition.				
	Ans	Redundant frame: It is the frame which cannot be analysed internally using basic equations	01 Mark			
		of equilibrium ($\Sigma M_A = 0$, $\Sigma F_x = 0$ and $\Sigma F_y = 0$). Condition: $m > (2j - 3)$ where, $m = Number of members and j = No. of joints.$	01 Mark			
Q.2	a)	A solid circular column of diameter 250 mm carries an axial load 'W' kN and a load of 200	OI WIGIN			
۷	, , , , , , , , , , , , , , , , , , ,	kN at an eccentricity of 150mm. Calculate minimum value of 'W' so as to avoid the tensile				
		stresses at base.				
	Ans	$A = (\pi \times 250^2) / 4 = 49087.38 \text{ mm}^2$				
		$M = P \times e = 200 \times 10^3 \times 150 = 3 \times 10^7 \text{ N-mm}$				
		$I = (\pi \times 250^4) / 64 = 1.917 \times 10^8 \text{ mm}^4$				
		y = D / 2 = 250 / 2 = 125 mm.				
		$6_0 = (W + P) / A = (W + 200 \times 10^3) / 49087.38$	01 Mark			
		$6_b = (M \times y) / I = 3 \times 10^7 \times 125 / 1.917 \times 10^8$	01 Mark			
		- 19 562 N/mm ²				
		For no tension, $6_0 = 6_b$ (W. 1.200 \(1.03\) \(1.0207 \) 28 \(1.052 \)	01 Mark			
		$(W + 200 \times 10^3) / 49087.38 = 19.562$				
		W = 760238.3 N = 760.24 kN.	01 Mark			

Q.2	b) A rectangular column 300 mm wide and 200 mm thick carries an axial load of 250 kN and a							
		clockwise moment of 5 kN m in plane bisecting 200 mm side, calculate resultant stresses						
		induced at the base.						
	Ans	Axial load = P 250 kN = 250 x 10 ³ N						
		B = 200 mm, d = 300 mm						
		A = 200 x 300 = 60000 mm ²	01 Mark					
		$I = 200 \times 300^3 / 12 = 4.5 \times 10^8 \text{ mm}^4$						
		y = d / 2 = 300 / 2 = 150 mm						
		$M = 5 \text{ kN-m} = 5 \times 10^6 \text{ N-mm}$						
		$6_0 = P / A = 250 \times 10^3 / 60000 = 4.16 \text{ N/mm}^2$	01 Mark					
		$6_b = (M \times y) / I = 5 \times 10^6 \times 150 / 4.5 \times 10^8$	01 Mark					
		= 1.67 N/mm ²						
		$6_{\text{max}} = 6_0 + 6_b = 4.16 + 1.67 = 5.83 \text{ N/mm}^2$	½ Mark					
		$6_{\text{min}} = 6_0 - 6_b = 4.16 - 1.67 = 2.49 \text{ N/mm}^2$	½ Mark					
		OMIN 00 00 1110 1107 2.13 14,11111	/2 IVIGIR					
Q.2	c)	A masonry wall 10 m high, 3 m wide and 1.5m thick is subjected to a wind pressure of 1.2						
		kN/m ² . Find maximum and minimum intensity induced on the base if the unit weight of						
		masonry is 22kN/m ³ .						
	Ans	Area at base of wall = $3 \times 1.5 = 4.5 \text{ m}^2$ Height of wall (h) = 10 m,						
		Unit weight of material (σ) = 22 kN/m ³ Weight of wall (W) = 22 x 4.5 x 10 = 990 kN.						
		$6_0 = \sigma h$ OR $6_0 = W / A$						
		$= 22 \times 10 = 220 \text{ kN/m}^2$ $= 990 / 4.5 = 220 \text{ kN/m}^2$	01 Mark					
		$I = 3 \times 1.5^3 / 12 = 0.84375 \text{ m}^4$ $y = 1.5 / 2 = 0.75 \text{ m}$	½ Mark					
		Wind force (P) = Wind pressure x b x h						
		= 1.2 x 3 x 10 = 36 kN	½ Mark					
		- 1.2 X 3 X 10 - 30 KW						
		- Moment @ base (M) = P x h/2						
		= 36 x 10 / 2 = 180 kN-m	½ Mark					
		$6_b = (M \times y) / I = 180 \times 0.75 / 0.84375 = 160 \text{ kN/m}^2$	½ Mark					
		$6_b = (NX Y)/T = 180 X 0.75 / 0.84375 = 160 KN/M$	½ Mark					
			½ Mark					
0.0	13	$6_{\text{min}} = 6_0 - 6_b = 220 - 160 = 60 \text{ kN/m}^2$	1,2,1,1,1,1					
Q.2	d)	A wooden cantilever beam of span 2.5 m has a cross section 130 mm wide and 240 mm						
		deep. A load of 6 kN is acting at free end, calculate the deflection and slope at free end						
		take $E = 1 \times 10^5 \text{ N/mm}^2$.						
	Ans	b = 130 mm, d = 240 mm, Span = 2.5 m.= 2500 mm						
		$E = 1 \times 10^5 \text{ N/mm}^2$ $I = 130 \times 240^3 / 12 = 1.4976 \times 10^8 \text{ mm}^4$ $W = 6 \text{ kN} = 6000 \text{ N}$	01 Mark					
		Slope at free end = $WL^2 / 2EI$	½ Mark					
		= $6000 \times 2500^2 / (2 \times 1 \times 10^5 \times 1.4976 \times 10^8) = 1.252 \times 10^{-3} \text{ rad.}$	01 Mark					
		Deflection at free end = WL ³ / 3EI	½ Mark					
		= $6000 \times 2500^3 / (3 \times 1 \times 10^5 \times 1.4976 \times 10^8) = 2.087 \text{ mm}.$	01 Mark					

(Autonomous)

		(ISO/IEC - 27001 - 2013 Certifi						
		Integrating						
		Ely = $(-18 \times x^3)/3 + [18(x-3)^3]$	3]/3 + [18(x - 6) 3]/3 + 2 x + 2 2					
		At $x = 0$; y = 0 in eq ⁿ . 2						
		$0 = 0 + C_2$						
		C ₂ = 0						
		At $x = 9$; y = 0 in eq ⁿ . 2						
		$0 = (-18 \times 9^3)/3 + [18(9-3)^3]/3$	$3 + [18(9-6)^3]/3 + C_1 \times 9 + 0$					
		C ₁ = 324		01 Mark				
		Hence $C_1 = 324$ and $C_2 = 0$ Slope equation:						
		dy/dx = $1/EI[(-18 \times x^2) + 18(x)]$	$-2)^2 + 19(x - 6)^2 + 224$					
		Deflection equation:	-3) + 10 (x - 0) + 324]	01 Mark				
		$y = 1/EI[(-6 \times x^3) + 6(x - 3)^3 +$	$-6(x-6)^31+324x$	01 Morle				
Q.3	b)	A simply supported beam of 6 m span carries	, , -	01 Mark				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0)	support.	a point load of oo kill at 2111 Holli left					
	Ans	Calculate deflection below point load in term	s of EI use Macaulay's method.					
		60 kN X	X 60 kN					
		OR OR	c					
	RA=40 kN ^{2m}							
		× ×	x x					
		Reactions:	^					
		$\Sigma M_A = 0$						
		$= 60 \times 2 - R_B \times 6$		01 Mark				
		$R_B = 120 / 6 = 20 \text{ kN}.$						
		$R_A = 60 - 230 = 40 \text{ kN}.$						
		Taking section X-X at distance 'x' from A	Taking section X-X at distance 'x' from B					
		$M_x = 40 \times x - 60(x - 2)$	$M_x = 20 \times x - 60(x - 4)$					
		$ EId^2y/dx^2 = -Mx$	$EId^2y/dx^2 = -Mx$					
		$= -40 \times x + 60(x - 2)$	$= -20 \times x + 60(x - 4)$					
		Integrating	Integrating	01 Mark				
		Eldy/dx = $(-40 \times x^2)/2 + [60(x-2)^2]/2 + C_1$	Eldy/dx = $(-20 \times x^2)/2 + [60(x-4)^2]/2 + C_1$	OTINIQLE				
		Integrating	Integrating					
		Ely = $(-20 \times x^3)/3 + [30(x-2)^3]/3 + C_1x +$	Ely = $(-10 \times x^3)/3 + [30(x-4)^3]/3 + C_1x +$					
		C ₂	C ₂					
		At $x = 0$; $y = 0$ in Ely eq ⁿ .	At $x = 0$; $y = 0$ in Ely eq ⁿ .					
		$0 = 0 + C_2$	$0 = 0 + C_2$					
		$C_2 = 0$	$C_2 = 0$					
		At $x = 6$; $y = 0$ in Ely eq ⁿ .	At $x = 6$; y = 0 in Ely eq ⁿ .					
		$0 = (-20 \times 6^3)/3 + [10(9-2)^3] + C_1 \times 6 + 0$	$0 = (-10 \times 6^3)/3 + [10(9-4)^3] + C_1 \times 6 + 0$					
		$C_1 = 133.33$	$C_1 = 106.67$					
		Hence $C_1 = 133.33$ and $C_2 = 0$	Hence $C_1 = 106.67$ and $C_2 = 0$					

		(ISO/IEC - 2/001 - 2013 Certinec	u)	
		y =(1/EI)[(- 20 x x^3)/3+10(x – 2) ³ +133.33 x]	Deflection equation- y = $(1/EI)[(-10 \times x^3)/3+10(x - 4)^3+106.67x]$	01 Mark
		Put $x = 2$ in eq ⁿ .	For deflection under load Put $x = 4$ in eq ⁿ . $y_c = (1/EI)[(-10 \times 4^3)/3 + 0 + 106.67 \times 4]$ = 213.33 / EI	01 Mark
Q.3	c) Ans	State how B. M. is find out for a fixed beam usi sketch. After calculating fixed end moments and si		
		fixed end moment diagram and superimpose sover it as shown in fig below.	imply supported bending moment diagram	
		MA y1	m2 F.E.M.DIA. MB	02 Marks
		Let net bending moment at 1 and 2 are m_1 and Calculate y_1 and y_2 by interpolation. Then $m_1 = M_1 - y_1$ and $m_2 = M_2 - y_2$	1 m_2 respectively.	02 Marks
Q.3	d) Ans	Using first principle find fixed end moment for span. W L/2 WL/4 S.S.B.M.DIA.	a fixed beam carrying point load at mid	01 Mark
		F.E.M.DIA. Due to symmetry, $M_A = M_B$	MB = MA	
		Area of S. S. B. M. Dia. = a_1 = 0.5 x L x W. Area of F. E. M. Dia. = M_A x L. Area of simply supported bending mom diagram $a_1 = a_2$	/L/4 = WL² / 8 nent diagram = Area of fixed end moment	01 Mark 01 Mark
		$WL^2/8 = M_A x L$ Hence $M_A = WL/8$ And $M_B = WL/8$	3	01 Mark
Q.3	e) Ans	Explain imperfect and perfect frame in detail. Perfect frame : It is the simple frame in which r (m) satisfies the equation $m = 2j - 3$. Such fram analysed by using basic equations of equilibrium.	nes are internally determinate i.e. can be	02 Marks

	<u> </u>		1				
		Imperfect frame: It is the simple frame in which number of joints (j) and number of					
		members (m) does not satisfy the equation $m = 2j - 3$. Such frames are internally	02 Marks				
		indeterminate/redundant or deficient.					
		If $m > 2j - 3$; then frame is called as indeterminate/redundant frame and cannot be					
		analysed by using basic equations of equilibrium ($\Sigma M_A = 0$, $\Sigma F_x = 0$ and $\Sigma F_y = 0$).					
		If $m < 2j - 3$; then frame is called as deficient frame and it is unstable frame.					
Q.3	f)	Determine the forces along with nature in the members AB,AE, EB and EF for frame					
		subjected to a load as shown is Fig. using method of joints.					
		6 kN 6 kN 2 kN					
		G 2M FV 2M VE 2M V					
		0.5M A					
		В					
		С					
		D					
	Ans	Consider joint A.					
		2 kN					
		$\Theta = \tan^{-1}(0.5/2)$ = 14.04 ⁰ FAE					
		= 14.04° A					
		FAB					
			02 Marks				
		Assuming F_{AE} and F_{AB} both tensile.					
		$\Sigma F_y = 0$; $2 + F_{AB} \sin 14.04 = 0$					
		F _{AB} = -2/ Sin14.04 = -8.24 i.e 8.24 kN (Compressive)					
		$\Sigma F_x = 0$; $-F_{AE} - F_{AB} \cos 14.04 = 0$					
		$-F_{AE} - (-8.24)\cos 14.04 = 0$					
		F _{AE} = 8.0 kN (Tensile)					
		Consider joint E.					
		6 kN					
		FEF ▼F FAE = 8kN					
		FEF VE FAE = 8KN					
		▼ The state of th					
		FEB	02 Marks				
		Assuming F _{EF} and F _{EB} both tensile.					
		$\Sigma F_{x} = 0; -F_{EF} + 8.0 = 0$					
		$F_{EF} = 8.0 \text{ kN (Tensile)}$					
		$\Sigma F_{y} = 0; -6.0 - F_{EB} = 0$					
		$F_{EB} = -6.0$ i.e 6.0 kN (Compressive)					
		Manhar T 5					
		Member Force Nature					
		AB 8.24 kN Compressive					
		AE 8.0 kN Tensile					
		EB 6.0 kN Compressive					
1	i	EF 8.0 kN Tensile					

Q.4	a)	State Clapeyron's theorem and also write the Clapeyron's three moment theorem for	
	,	beam with different moment of inertial giving meaning of each term.	
	Ans.	Clapeyrons theorem: For two span continuous beam having uniform moment of inertia	
		supported at A, B, and C and subjected to any external loading, the support moments M _A ,	
		M_B and M_C at the supports A, B and C respectively are given by the relation,	02 Marks
		$M_A \times L_1 + 2M_B(L_1 + L_2) + M_C \times L_2 = -[(6 \times a_1 \times x_1/L_1) + (6 \times a_2 \times x_2/L_2)]$	
		MA - MC	
		L1 MB L2	
		① ②	
		x1 x2	
		If moment of inertia is not constant then Clapeyrons theorem can be stated in form of	
		following equation.	
		$M_A \times (L_1/I_1) + 2M_B[(L_1/I_1) + (L_2/I_2)] + M_C \times (L_2/I_2) = -[(6 \times a_1 \times x_1/L_1I_1) + (6 \times a_2 \times x_2/L_2I_2)]$	01 Mark
		Where,	
		L ₁ & L ₂ are length of span AB & BC resp.	
		I ₁ & I ₂ are Moment of inertia of span AB & BC resp.	
		a ₁ & a ₂ are area of simply supported BMD of span AB & BC resp.	01 Mark
		$x_1 \& x_2$ are distances of centroid of simply supported BMD from A & C resp.	
Q.4	b)	Explain the concept of imaginary zero span in case of Clapeyron's theorem.	
	Ans	When the ends of continuous beam are fixed, then an imaginary span is considered to	
		the left or right of the fixed support as the case may be and Clapeyrons theorem is applied	
		to the imaginary span and its adjescent span as per regular procedure.	02 Marks
		If left end is fixed then consider imaginary span left of this support and If right end is	
		fixed then consider imaginary span on right side of that support.	
		Clapeyrons theorem is applied as below.	
			01 Mark
		A	
		Lo L1 B L2	
		A ₀ -A is imaginary span left to fixed end A.	
		For span A ₀ -A and AB	04.841
		$M_{A0} \times L_0 + 2M_A(L_0 + L_1) + M_B \times L_1 = -[(6 \times a_0 \times x_0/L_0) + (6 \times a_1 \times x_1/L_1)]$	01 Mark
		$0 + 2M_A(L_1) + M_B \times L_1 = -[0 + (6 \times a_1 \times x_1/L_1)]$	
		Where M_{A0} , L_0 and x_0 are terms related to imaginary span.	
Q.4	c)	A beam ABC is supported at A, B and C span AB and BC are of lengths 3 m and 4 m	
		respectively. AB carries a u.d.L. of 15 kN/m over entire span and BC carries central point	
		load of 30 kN. Calculate support moment at B using three moment theorem.	
			04.54
			01 Mark

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

0.4	f)	Calculate cua	nort moments b	moment distribution	mothad	for six	on continuous as		
Q.4	f)	shown	port moments by	moment distribution	memod	ioi give	en continuous as		
		in fig.							
		iii iig.	6 kN	5 LN/					
		Δ		5 kN/m	· · · · · · · · · · · · · · · · · · ·				
			(I)	(21)	•				
	Ans		3m	B 4m	C				
	7 11.15	$M_{\Delta R} = -6 \times 3/$	/8 = – 2.25 kN-m	$M_{BA} = 6 \times 3/8 =$	= 2.25 kN	l-m			
			1/12 = -6.67 kN-r	5, (
		Joint	Member	Stiffness (k)	Σ		D.F. = k/Σk]	
		В	BA	3 x EI/3 = EI	2.5	· - 1	EI/2.5EI = 0.4	01 Mark	
		В	B BC 3 x 2EI/4 =1.5EI 2.5EI 1.5EI/2.5EI = 0.6						
								_	
		Joint		Α		В	С]	
		Members		AB	BA	ВС	СВ]	
		Dist ⁿ . factor		1.0	0.4	0.6	1.0		
		F.E.M.		- 2.25	2.25	- 6.67		02 Marks	
		Balancing		2.25	1.768	2.652			
		Carry over			1.125	- 3.33		1	
		Balancing			0.882	1.323		-	
		Final momer	nts	0.0	6.025	- 6.02	25 0.0]	
		C	antato MD	C 025 l.N (II.a.a.a.i.a.a.)				01 Mark	
Q.5	a)			6.025 kN-m (Hogging)	than int	ornal di	ameter. The height of		
Q.5	a)						75 kN/m ² . Find out the		
		-	=	to avoid tension at th	-				
				nit wt. of chimney mat			_ *		
	Ans		_	1.6 x internal diamete		,			
			mney (h) = 32 m		. ,				
		Horizontal wi	nd pressure (p) =	1.75 kN/m ²					
		Unit weight o	f material $(\sigma) = 1$	$.8 \text{ kN/m}^3$ C = 0.6	5				
				n²				01 Mark	
			nd force $(P) = p x$						
			= 1.7	'5 x 32 x 1.6d x 0.6					
			= 53	.76d				01 Mark	
		Moment abou	ut base (M) = Px						
				76d x 32/2				01 Mark	
				0.16d				OTIVIALK	
		$I = (\pi / 64)(D^4)$							
		$= (\pi / 64)[(1$.6d) ⁴ – d ⁴]		WIND		3.35m	01 Mark	
		= 0.273d ⁴			(\ /	/ / ["	for stress	
		$y_{max} = 0.8d$	/·					dia.	
		$\delta_b = M \times y_{max}/$	_						
			x 0.8d / 0.273d ⁴						
		= 2520.6 / For no tension					1152 kN/m2	01 Mark	
		FUI IIU LEIISIOI	11,				1152 kN/m2		

	T	6 6							01 Mark
		576 = 2520.6							OI Walk
		$d^2 = 4.38$	/ u						
	d = 4.56 d = 2.092 m								
									01 Mark
D = 1.6 x 2.092 = 3.35 m									
		$O_{\text{max}} = 2 O_{\text{d}} =$	2 X 5/0 = 1152 i	KIN/III					01 Mark
Q.5	b) A beam ABCD is supported at A, B and C span CD is having overhang AB = 6 m BC = 4 m								
		and CD = 1.5	m span AB carrie	s UDL of 15	kN/m over e	ntire span ar	id BC carries រុ	point load	
		of30 kN at 1 r	n from support E	B and a point	load of 15 k	N acts at free	e end at D. De	etermine	
		support mom	ents using mome	ent distribut	ion method a	and draw BM	ID.		
	Ans				30 kN		15 kN		
			15 kN/m		4m	С	<u>,</u>		
			A 6m	1	4m	1.5m	- D		
			2.		າ				
			$5^2/12 = -45.0 \text{ kN}$						02 marks
	$M_{BC} = -30 \times 1 \times 3^2/4^2 = -16.875 \text{ kN-m}$ $M_{BC} = 30 \times 1^2 \times 3/4^2 = 5.625 \text{ kN-m}$								
		$MCD = -15 \times 1.5 = -22.5 \text{ kN-m}$							
		Joint	Member		ess (k)	Σk	D.F. =		
		В	BA		5 = 0.5EI	1.25EI	0.5EI/1.25		02 Marks
			ВС	3 x EI/4	=0.75EI		0.75EI/1.2	5EI = 0.6	
		Joint		Α		В		С	
		Members		AB	BA	В	СВ	CD	
		Dist ⁿ . factor		1.0	0.4	0.6	1.0	0.0	
		F.E.M.		- 45.0	45.0	- 16.875	5.625	- 22.5	02 Marks
		Balancing		45.30	-11.25	- 16.875	16.875	0.0	
		Carry over			22.5	8.44			
		Balancing			-12.38	-18.56			
		Final momer	nts	0.0	43.87	- 43.87	22.5	-22.5	
				22.0					
				67.5					
	43.87								
									02 Marks
					22.5	22.5			OZ WIGHKS
							<u> </u>		
			ac**	B. N	1. D.	31111			
	B. M. D.								

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Reactions:

Ans

$$\Sigma M_A = 0 = 50 \times 3 - 10 \times 3 - R_D \times 9$$

$$R_D = 13.33 \text{ kN}$$

$$R_{AV} = 50 - 13.33 = 36.67 \text{ kN}$$

$$\Sigma F_V = 0$$

$$R_{AH} - 10 = 0$$

$$R_{AH} = 10 \text{ kN}$$

Taking section along EF, EC and BC

Assuming all forces Tensile

01 Mark

02 Marks

01 Mark

Taking moment @ C;

$$-13.33 \times 3 - 10 \times 10 - F_{EF} \times 3 = 0$$

$$F_{EF} = -23.33$$
 i.e. 23.33 kN (Compressive)

Taking moment @ E;

$$F_{CB} \times 3 - 13.33 \times 6 = 0$$

$$F_{CB} = 26.67 \text{ kN (Tensile)}$$

$$\Sigma F_V = 0 = 13.33 + F_{CE} \sin 45$$

$$F_{CE} = -18.85$$
 i.e. 18.85 kN (Compressive)

Taking section along EF, EC, EB and BA

01 Mark

$$\Sigma F_V = 0 = 13.33 - 18.85 \sin 45 + F_{BE}$$

$$F_{BE} = 0$$

01 Mark

		(ISO/IEC - 27001 - 2013 Certified)						
-		Member Force Nature						
		BC 26.67 kN Tensile						
		BE 0	02 Marks					
		EF 23.33 kN Compressive						
		EC 18.85 kN Compressive						
Q.6	a) Ans	A simply supported beam of 6 m span carries an u.d.l. of 20 kN/m over point load of 60 kN at 2 m from right hand support using Macaulay's point of maximum deflection and find its value in terms of El.						
	Alls	20 kN/m B 20 kN/m B C RA = 80 kN 4m						
		Reactions: $\Sigma M_A = 0$						
		60 x 4 + 20 x 6 x 3 - R _B x 6 = 0 R _B = (240 + 360) / 6 = 100 kN.	01 Mark					
		$R_A = 20 \times 6 + 60 - 100 = 80 \text{ kN}.$						
		Taking section X-X at distance ' x ' from B.						
	$M_x = 100 \times x - 60(x - 2) - 20 \times x^2/2$ $EId^2y/dx^2 = -M_x$							
		$= -100 \times x + 60(x - 2) + 20 \times x^{2}/2$						
		Integrating						
		Eldy/dx = $(-100 \times x^2/2) + [60(x - 2)^2/2] + 10 \times x^3/3 + 10$ Integrating	- C ₁ 1 01 Mark					
		Ely = $(-50 \times x^3/3) + [30(x-2)^3/3] + 10 \times x^4/12 + C_1x$	+ C ₂ 2 01 Mark					
		At $x = 0$; y = 0 in eq ⁿ . 2						
		$0 = 0 + C_2$						
		$C_2 = 0$						
		At $x = 6$; $y = 0$ in eq ⁿ . 2 $0 = (-50 \times 6^3/3) + [30(6-2)^3/3] + 10 \times 6^4/12 + C_16 + C_16$						
		$0 = (-50 \times 6 / 3) + [30(6 - 2) / 3] + 10 \times 6 / 12 + C_{16} + C_{16}$ $C_{1} = 313.33$	2					
		Hence $C_1 = 313.33$ and $C_2 = 0$	01 Mark					
		Slope equation:						
		$dy/dx = 1/EI(-50 \times x^2) + [30(x-2)^2] + 10 \times x^3/3 + 31$	3.33					
		Deflection equation:						
		$y = 1/EI(-50 \times x^3/3) + [10(x-2)^3] + 10 \times x^4/12 + 313$.33 <i>x</i> II 01 Mark					
		Deflection is maximum where slope changes the sign i.e. slope = 0						
		Maximum deflection will be in between A and C						
		Hence, $6 > x > 2$						
		Equating Equ ⁿ I with zero.						
		$0 = 1/\text{EI}(-50 \times x^2) + [30(x-2)^2] + 10 \times x^3/3 + 313.33$						
		$= -50 \times x^{2} + 30x^{2} - 120x + 120 + 10 \times x^{3}/3 + 313.33$						

		(150/1EC - 27001 - 2015 Certified)	
		$0 = -20 \times x^2 - 120x + 3.33 \times^3 + 433.33$	01 Mark
		Solving this equation by trial and error method.	
		x = 2.89 m	
		Hence deflection is maximum at distance 2.89 m from B	
		For y_{max} , put $x = 2.89$ in equ ⁿ II	
		$y_{max} = 1/EI(-50 \times 2.89^3/3) + [10(2.89 - 2)^3] + 10 \times 2.89^4/12 + 313.33 \times 2.89$	01 Mark
		= 568.4 / EI	OT Mark
Q.6	b)	A fixed beam of span 8 m carries 5 kN/m udl over entire length along with a point load of	
		40 kN at 2m from left hand support. Find net BM at point load and draw BMD and SFD.	
	Ans	A C C MAB RA 2m 6m RB MBA	
		$M_{AB} = (40 \times 2 \times 6^2 / 8^2) + (5 \times 8^2 / 12)$	01 Mark
		$= 71.67 \text{ kN-m}$ $M_{BA} = (40 \times 2^2 \times 6 / 8^2) + (5 \times 8^2 / 12)$	01 Mark
		= 41.67 kN-m	OI Wark
		Reactions:	
		$\Sigma M_A = 0$	
		40 x 2 + 5 x 8 x 4 + 41.67 - 71.67 - R _B x 8 = 0	
		$R_B = (80 + 160 - 30) / 8$	
		= 26.25 kN.	01 Mark
		$R_A = 5 \times 8 + 40 - 26.25 = 53.75 \text{ kN}.$	
		Bending moment at point load	
		$M_C = -71.67 + 53.75 \times 2 - 5 \times 2 \times 1$	04.841
		= 25.83 kN-m Shear force calculations:	01 Mark
		At $B = -26.25 \text{ kN}$	
		At C, just right = $-26.25 + 5 \times 6 = 3.75 \text{ kN}$	02 Mark
		At C, just left = $-26.25 + 5 \times 6 + 40 = 43.75 \text{ kN}$	02 Wark
		At D = 53.75 kN	
		53.75 kN 43.75 kN	04.141
		3.75 kN	01 Mark
		S. F. D. 26.25 kN	
		90 kN-m 71.67 kN-m	
		41.67 kN-m	
		41.07 KN-III	
			01 mark
		B. M. D.	
Q.6	c)	A beam ABCD is supported at A, B and C, CD being overhang AB = 4 m, BC = 5 m and	
		CD = 1m AB and BC carries a central point of 15kN and 12kN respectively and a point load	
		Of 6 kN at D. Calculate support moments using three moment theorem and draw SFD and	
		BMD giving net BM.	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

