CONTENTS

S. No.	Name Of The Experiment	Date of Experiment	Page No.	Signature
1	西山 LAB I : 1 svibos jdo: I BA」 直動 LAB I に Benavior of voices gates	09/10/23	1-6	
	Objective &:- Using a single THOO IC, connect a circuit produces:	16/10/23	1-6	B 186
3 d	LAB-II: Objective 1:- Construct a circuit using hasic sates: F = AB + AB C	06/11/23	7-13	O the
&	Objective 2: - construct a circuit for: F = XY + X'Z + YZ Objective 3: - Construct circuit for: Objective 3: - Construct circuit for:	06/11/23	7-13	Po
9 3	LAB 3: Objective 1 Objective 2 (4), 2 b	13 11 23	14-19	A
64	LAB 4: Objective 1, Objective 2 Objective 3	13/11/23	20-25	A
\$5	IAA F: Oliontino 1	20/11/23	26 - 31	A
6	LAB 6: Objective 1, Objective 2, Objective 3	20/11/23	32 - 36	2
7	LAB 7: 8 Objectives	07/01/24	37-46	b
8	LAB 8: 3 Objectives	15/01/24	47 - 55	0/
9	LAB 9: 3 Objectives	15/01/24	56 -GLA	Y/

DIGITAL LOGIC DESIGN LAB (EET1211)

LAB I: Examine the Operation of Logic Gates

Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar

Branch:	Section:	Sub Group Number:	
Name	Registration No.	Signature	
RAJ ARYAN	2241001092	Paj Aryan	

Marks: _____/10

Remarks:

93

1

Teacher's Signature

II. PRE-LAB

9

D

de

0

TH

0

B

2

0

W Co

0

S

3

1.7400 Quad 2-input NAND gate:

A	B	F=(A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

hoping boats, com in

2. 7402 Quad 2-input NOR gates:

Α	В	F = (A+B)'
0	0	1
0	1	0
1	0	0
1	1	0

3. 7404 hex inverter:

Α	F= A'
0	1
1	0

4. 7408 Quad 2-input AND gates:

A	В	F = (A.B)
0	0	0
0	1	0
1	0	0
1	1	1

5. 7432 Quad 2-input OR gates:

Α	В	F = A+B
0	0	0
0	1	1
1	0	1
1	1	1

6. 7486 Quad 2-input XÓR gates:

Α	В	F= A T B
0	0	0
0	1	1
1	0	1
1	1	0

4. (a) An inverter:

A	A
0	1
1	0

NOT:

(b)	A	2-input	AND	:
		2		

JA	В	A·B	
0	0	0	permit (All Shrift has suffi
0	7,	0	
1	0	0	
1	7	1	

AND:

$$\begin{array}{c|c}
A & 1 \\
B & 2
\end{array}$$

$$\begin{array}{c|c}
\overline{AB} & 5 \\
\hline
6
\end{array}$$

$$\begin{array}{c|c}
\overline{(AB)} = AB$$

(C) A 2-input OR:

Andrew Constitution of the Parket	A	В	A+B
-	0	0	0
-	0	1	1
-	1	0	1
	1	1	1

$$\frac{\Lambda}{B}$$
 $\frac{\Lambda + B}{A}$

(d) A 2-input XOR:

	A	В	AOB
7	D	0	0
7	0	10	1
4	1	0	1
	1	1	0

XOR:

III: LAB:

Components Required:

Objective à

SI. No.	Components Name (Description)	Quantity
1	7400 IC (NAND)	1
a	Wires	As required

Objective 1

51. No.	Components (Description)	Quantity
	Wires	As required
l d	7400 IC (NAND)	1
3	7432 IC (OR)	1 1
4	7486 IC (XOR)	1 Halana A
5	7408 IC (AND)	1
6	7404 IC (NOW)	14
7	7402 IC (NOR)	1000

Observation Table:-

Objective 1

(a) 7400 IC (NAND):

-		
I/P	0/P	Status
1,2	3	Working
4,5	6	Working
9,10	8	Working
12,13	11	Working

(b) 7402 IC (NOR):

Ī		0.10	61.1
N. Park	I/P	0/P	status
	2,3	1 3	Working-
	5,6	4	Working
	8,9	10	Working
	11,12	13	Working

(c) 7404 IC (NOT):

1)				
1	I/P	O/P	status		
-	1	2	norking		
-	3	4	working		
	5	6	Working		
	9	8	Working		
	11	10	Working		
	1.13	12	Working		
		The state of the s	11		

(d) 74808 IC (AND):

7\P	O/P	Status
2,1	3	Working
5,84	4 6	working
10,9	8	Working
136, 12	11	Working

(e) 7432 IC (OR):

1		-	
1	I/P	0/P	Status
	1,2	3	Working
	4,5	6	Working
	9,10	8	Working
	12,13	11	Working
-			0

(F) 7486 IC (XOR):

+	I/P	O/P	Status
100	1,2	3 /	Working
	415	6	Working
	9,10	8	Working
	12, 13	11	Working

Objective 2

(a) An inverter (NOT):

A	Y	Status
0	1 1	Working
1	0	Norking

(b) A 2-input AND:

A	B	У	Status
0	0	0	Working
0	1	0	Working
1	0	0	Working
1	1	1	Working

(C) A 2-input OR:

Α	В	Y	Status
0	0	O	Norking
0	1	1	Working
1	0	1	Working
1	1	1	Working

(d) A 2-input XOR:

A	В	У	Status
0	0	0	Working
0	1	1	Working
§ 7	0	1	Working
1	1	0	Working

Conclusion :-

Objective 1

we have concluded that all pins of given ICs are working perfectly.

Objective 2

We have concluded that NAND is a universal gate because we are able to produce an inverter, AND, OR and an XOR gate using one 7400 IC.

IV: POST LAB:

1. What is the voltage range for operation of digital circuits?

The voltage range for operation of digital circuits

- 2. What is the significance of ground and V_{cc} connection?

 → V_{cc} is the power input for a device, it provides

 the voltage to the circuit generally higher than the
- 3. Which gates are known as the universal gates 8 why!
- We can construct any gates using this.
- 4. What is the min" no. of NAND gates used to realize,
- > 4 NAND gates are required to realize an XDR

Well W