

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Iron(II)

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$				
	Baes and Mesmer, 1976	Nordstrom et al., 1990	Hummel et al., 2002	Lemire et al., 2013	Brown and Ekberg, 2016
$Fe^{2+} + H_2O \rightleftharpoons FeOH^+ + H^+$	-9.3 ± 0.5	-9.5	-9.5	-9.1 ± 0.4	-9.43 ± 0.10
$Fe^{2+} + 2 H_2O \rightleftharpoons Fe(OH)_2 + 2 H^+$	-20.5 ± 1.0				-20.52 ± 0.08
$Fe^{2+} + 3 H_2O \rightleftharpoons Fe(OH)_3^- + 3 H^+$	-29.4 ± 1.2				-32.68 ± 0.15
$Fe(OH)_2(s) + 2 H^+ \rightleftharpoons Fe^{2+} + 2 H_2O$					12.27 ± 0.88

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 573–585.
- W. Hummel, U. Berner, E. Curti, F.J. Pearson, T. Thoenen, TECHNICAL REPORT 02-16, Nagra/ PSI Chemical Thermodynamic Data Base 01/01, 2002.

R.J. Lemire, U. Berner, C. Musikas, D.A. Palmer, P.Taylor, O. Tochiyama, Chemical Thermodynamics Volume 13a in the OECD Nuclear Energy Agency (NEA) Chemical Thermodynamics series, Chemical Thermodynamics of Iron, Part 1, 2013.
D.K. Nordstrom, L.N. Plummer, D. Langmuir, E. Busenberg, H.M. May, B.F. Jones and D.L. Parkhurst, Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. D.C. Melchior and R.L. Bassett (eds.). ACS Symposium Series 416. ACS, Washington DC, 1990.
Contributors: Clamenta Bratti Elvira Bura Nakić Montsarrat Eilalla, Josen Galcaran, Sofia Gama, Elèbiata Gumianna, Kontacka, Luciia Knažavić, Gabriela Lando, Pšemysl Lubal, Demetrio Milea, Andrzei Mular

Distribution diagrams

These diagrams have been computed at two Fe(II) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

