Raccolta scritti Calcolo numerico

19 novembre 2020

15 gennaio 2010	2	01 febbraio 2014	58
02 febbraio 2010	4	22 febbraio 2014	60
22 febbraio 2010	6	14 giugno 2014	62
09 giugno 2010	8	05 luglio 2014	64
30 giugno 2010	10	26 luglio 2014	66
21 luglio 2010	12	20 settembre 2014	68
15 settembre 2010	14	17 gennaio 2015	70
15 febbraio 2011	16	31 gennaio 2015	72
01 marzo 2011	18	21 febbraio 2015	74
28 giugno 2011	20	13 giugno 2015	76
12 luglio 2011	22	04 luglio 2015	78
26 luglio 2011	24	25 luglio 2015	80
15 settembre 2011	26	05 settembre 2015	82
18 gennaio 2012	28	09 gennaio 2016	84
07 febbraio 2012	30	30 gennaio 2016	86
22 febbraio 2012	32	20 febbraio 2016	88
13 giugno 2012	34	11 giugno 2016	90
03 luglio 2012	36	02 luglio 2016	92
24 luglio 2012	38	23 luglio 2016	94
19 settembre 2012	40	16 settembre 2016	96
17 gennaio 2013	42	16 gennaio 2017	98
06 febbraio 2013	44	03 febbraio 2017	100
28 febbraio 2013	46	22 febbraio 2017	102
19 giugno 2013	48	12 giugno 2017	104
08 luglio 2013	50	03 luglio 2017	106
29 luglio 2013	52	24 luglio 2017	108
18 settembre 2013	54	23 settembre 2017	110
11 gennaio 2014	56	15 gennaio 2018	112

05 febbraio 2018	114 01 luglio 2019		134
21 febbraio 2018	116	22 luglio 2019	136
11 giugno 2018	118	19 settembre 2019	138
02 luglio 2018	120	14 gennaio 2020	140
23 luglio 2018	122	03 febbraio 2020	142
17 settembre 2018	124	24 febbraio 2020	14 4
14 gennaio 2019	126	15 giugno 2020	146
04 febbraio 2019	128	06 luglio 2020	148
20 febbraio 2019	130	27 luglio 2020	150
10 giugno 2019	132	22 settembre 2020	152

Ingegneria Informatica

15/01/2010

1) Calcolare il raggio spettrale della matrice

$$A = \begin{pmatrix} 2 & 0 & 1 & -7 \\ 1 & -3 & 11 & 13 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}.$$

2) Calcolare i punti fissi a cui può convergere lo schema iterativo

$$x_{n+1} = \frac{x_n^3 - 2x_n + 4}{3x_n}, \quad n = 0, 1, \dots$$

3) Determinare i valori dei parametri reali α e β per i quali risulta di grado minimo il polinomio di interpolazione relativo alla tabella di valori

- 4) Quanti sono i numeri di macchina che compongono l'insieme $\mathcal{F}(4,4,-2,2)$?
- 5) Qual è il grado di precisione della formula di quadratura

$$J_1(f) = \frac{8}{7} f\left(-\frac{1}{2}\right) + \frac{6}{7} f\left(\frac{2}{3}\right)$$

che approssima l'integrale $\int_{-1}^{1} f(x)dx$?

- 1) La matrice è partizionabile a blocchi in forma triangolare superiore con due blocchi diagonali di ordine 2 a loro volta triangolari inferiori. Segue quindi che gli autovalori sono $\lambda_1=2,\,\lambda_2=\lambda_3=-3,\,\lambda_4=5$ e che $\rho(A)=5$.
- 2) I punti fissi sono le soluzioni dell'equazione $x=\frac{x^3-2x+4}{3x}$ ed esattamente $\alpha_1=1$ e $\alpha_{2,3}=1\pm\sqrt{5}$.
- 3) Dal quadro delle differenze divise si ricava che il polinomio di interpolazione di grado minimo è $P_4(x) = x^2 3x 2$ se si sceglie $\alpha_1 = 4$ o $\alpha_2 = -1$ e $\beta = -2$.
- 4) La cardinalità dell'insieme dei numeri di macchina $\mathcal{F}(4,4,-2,2)$ è 1921.
- 5) Si verifica $E_1(1) = 0$, $E_1(x) = 0$, $E_1(x^2) = 0$ e $E_1(x^3) \neq 0$ per cui il grado di precisione della formula proposta è m = 2.

Ingegneria Informatica

02/02/2010

1) Data la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 5 & 3 \\ 3 & 0 & 1 \end{array}\right) ,$$

calcolare il polinomio caratteristico della matrice A^2 .

2) Indicare con quale ordine il metodo di Newton converge alle soluzioni della equazione

$$(x-2)^2(x-1)(x+1) = 0.$$

3) Una matrice hermitiana A ha autovalori $\lambda_1 = 3$, $\lambda_2 = 5$, $\lambda_3 = -1$ e $\lambda_4 = -6$. Calcolare il numero di condizionamento $\mu_2(A)$.

4) Una formula di quadratura ha l'errore esprimibile nella forma

$$E_n(f) = -\frac{1}{3}f^{(V)}(\theta) .$$

Qual è il grado di precisione di tale formula?

5) Il sistema lineare sovradeterminato

$$\left(\begin{array}{cc} 1 & 2 \\ -2 & -4 \\ \frac{1}{2} & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 3 \\ 4 \\ 1 \end{array}\right)$$

ha un'unica soluzione?

1) Gli autovalori della matrice A sono $\lambda_1=\lambda_2=1$ e $\lambda_3=5$. Segue che la matrice A^2 ha autovalori $\mu-1=\mu_2=1$ e $\mu_3=25$. Il suo polinomio caratteristico è

$$P(\lambda) = (-1)^3 (\lambda - 1)^2 (\lambda - 25) = -\lambda^3 + 27\lambda^2 - 51\lambda + 25.$$

- 2) Le radici dell'equazione sono $\alpha_1 = \alpha_2 = 2$, $\alpha_3 = 1$ e $\alpha_4 = -1$. Segue che l'ordine di convergenza del metodo di Newton risulta p = 1 per approssimare la radice α_1 di molteplicità 2 e di ordine di convergenza p = 2 per approssimare le due radici semplici α_3 e α_4 .
- 3) Per le matrici hermitiane risulta $\mu_2(A) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}$ per cui $\mu_2(A) = \frac{6}{1} = 6$.
- 4) Il grado di precisione m della formula è uguale all'ordine della derivata che compare nella espressione dell'errore diminuito di 1 per cui m=4.
- 5) Il sistema lineare sovradeterminato ha una unica soluzione (nel senso dei minimi quadrati) se la matrice dei coefficienti risulta di rango o caratteristica massima. Calcolando i determinanti dei minori di ordine 2 si vede che sono tutti nulli per cui r(A)=1 e quindi il sistema non ammette una soluzione unica.

Ingegneria Informatica

1) La matrice

$$A = \left(\begin{array}{rrr} 7 & 2 & 2 \\ -1 & 4 & -1 \\ 1 & 1 & 6 \end{array}\right)$$

22/02/2010

ha un autovettore dato da $x=(2,-1,1)^T$. Calcolare l'autovalore a cui è associato.

2) Indicare un intervallo reale a cui appartengono tutte le soluzioni reali dell'equazione

$$x^3 + x^2 + x + 2 = 0.$$

3) Una matrice $A \in C^{4\times 4}$ ha raggio spettrale $\rho(A)=\frac{2}{3}$. Tale matrice può avere il polinomio caratteristico dato da

$$P(\lambda) = \lambda^4 - 5\lambda^3 + \lambda^2 + \lambda + 2$$
?

4) Determinare i pesi a_0 e a_1 affinché la formula

$$J_1(f) = a_0 f\left(-\frac{2}{3}\right) + a_1 f(1)$$

che approssima $I(f) = \int_{-1}^{1} f(x)dx$ sia di tipo interpolatorio.

5) La successione di polinomi

$$P_0(x) = x^3 - 2x^2 + x + 3$$

$$P_1(x) = 3x^2 - 4x + 1$$

$$P_2(x) = -x + 1$$

$$P_3(x) = 1$$

è una successione di Sturm associata all'equazione $P_0(x) = 0$?

1) Conoscendo l'autovettore x della matrice A si ha

$$\lambda = \frac{x^H A x}{x^H x} = 7 \ .$$

2) Applicando il primo teorema di Gershgorin alla matrice di Frobenius

$$A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -1 & -1 \end{array}\right)$$

si ottiene l'intervallo reale [-4, 2].

- 3) La matrice in questione non può avere il polinomio caratteristico dato poiché il prodotto degli autovalori, tutti di modulo minore o uguale a 2/3, dovrebbe essere uguale a 2.
- 4) La formula di quadratura è di tipo interpolatorio se i pesi verificano le relazioni $a_i=\int_{-1}^1 l_i(x)dx,\ i=0,1.$ Da $l_0(x)=\frac{3}{5}(1-x)$ e $l_1(x)=\frac{3}{5}(x+\frac{2}{3})$ si ottiene

$$a_0 = \frac{6}{5}$$
, $a_1 = \frac{4}{5}$.

5) La successione proposta non risulta una successione di Sturm poiché, per esempio, risultano $V(-\infty)=1$ e $V(+\infty)=2$ in contrasto con la non crescenza della funzione V(x).

Ingegneria Informatica

9/06/2010

1) Calcolare gli autovalori della matrice

$$A = \left(\begin{array}{rrrr} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{array}\right) .$$

2) Dato l'insieme di numeri di macchina $\mathcal{F}(10,2,-2,2)$, i numeri $x_1=0.125$, $x_2=1.75,\,x_3=0.12$ e $x_4=0.01$, calcolare le rappresentazioni in \mathcal{F} dei valori

$$x_1, \quad x_2, \quad x_3, \quad x_4, \quad x_3 + x_4, \quad x_3 \cdot x_4$$
.

3) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{4 + 4x^3 - x^4}{4 + 3x} \,.$$

4) Determinare la retta di equazione y = a + bx che approssima nel senso dei minimi quadrati la funzione f(x) di cui sono noti i seguenti valori:

5) Determinare il grado di precisione algebrico della formula

$$J_4(f) = \frac{7}{45}f(-1) + \frac{32}{45}f(-1/2) + \frac{12}{45}f(0) + \frac{32}{45}f(1/2) + \frac{7}{45}f(1)$$

utilizzata per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$.

1) Si considera la matrice B = A - 2I che ha autovalori

$$\mu_1 = \mu_2 = \mu_3 = 0$$
, $\mu_4 = 4$,

da cui si ottengono gli autovalori di A

$$\lambda_1 = \lambda_2 = \lambda_3 = 2$$
, $\lambda_4 = 6$.

2) Indicando con x^* la rappresentazione del generico numero reale x, si ha

$$x_1^* = 0.13 \times 10^0 \; , \; x_2^* = 0.18 \times 10^1 \; , \; x_3^* = 0.12 \times 10^0 \; , \; x_4^* = 0.1 \times 10^{-1} \; ,$$

$$(x_3 + x_4)^* = 0.13 \times 10^0$$
, $(x_3 \cdot x_4)^* = 0.12 \times 10^{-2}$.

3) I punti fissi sono le soluzioni dell'equazione

$$x = \frac{4 + 4x^3 - x^4}{4 + 3x}$$

e quindi i valori

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = \alpha_4 = 2$.

4) Si risolve l'equazione $A^TAc = A^Tb$ con

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 1 \\ -1 \end{pmatrix}, c = \begin{pmatrix} c_0 \\ c_1 \end{pmatrix},$$

la cui soluzione è $c=\left(\frac{11}{10},-\frac{7}{10}\right)^T$ per cui la retta cercata ha equazione

$$y = \frac{11}{10} - \frac{7}{10}x \; .$$

5) La formula proposta ha grado di precisone m=5 risultando esatta per i polinomi $1, x, x^2, x^3, x^4, x^5$ ma non per x^6 .

Ingegneria Informatica

30/06/2010

1) Determinare l'espressione dell'errore relativo commesso nel calcolo della funzione

$$f(x,y) = \frac{x-y}{x+y}$$

evidenziando l'errore relativo algoritmico e l'errore relativo trasmesso dai dati.

2) L'equazione

$$x^3 - 6x^2 + 5x + 6 = 0$$

ha soluzioni $\alpha_1 = 2$, $\alpha_2 = 2 + \sqrt{7}$, e $\alpha_3 = 2 - \sqrt{7}$. Se si utilizza il metodo di Newton per approssimare tali valori, qual è l'ordine di convergenza di tale processo iterativo?

3) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{ccc} 2 & 3 & 1 \\ 1 & 3 & 1 \\ 0 & 2 & 1 \end{array}\right) .$$

4) Determinare il grado del polinomio che interpola la funzione f(x) di cui sono noti i seguenti valori:

5) Si vuole approssimare $\int_0^1 x \sin(x) dx$ utilizzando la formula di Newton-Cotes generalizzata dei Trapezi.

In quanti sotto intervalli si deve dividere l'intervallo di integrazione per ottenere una approssimazione che in valore assoluto differisca dal valore esat to meno di 10^{-3} ?

1) Si segue, per esempio, l'algoritmo di calcolo

$$r_1 = x - y$$
, $r_2 = x + y$, $r_3 = \frac{r_1}{r_2}$.

Indicando con ϵ_x e ϵ_y gli errori relativi con cui si introducono i dati w e y e ponendo ϵ_i , i=1,2,3, gli errori relativi algoritmici delle tre operazioni, si ha

$$\epsilon_f = \underbrace{\epsilon_1 - \epsilon_2 + \epsilon_3}_{\epsilon_a} + \underbrace{\frac{2xy}{x^2 - y^2}(\epsilon_x - \epsilon_y)}_{\epsilon_d}.$$

- 2) Ponendo $f(x) = x^3 6x^2 + 5x + 6$ si ha f'' = 6x 12. Segue che la convergenza del metodo di Newton è di ordine 2 per le radici α_2 e α_3 mentre risulta di ordine 3 (almeno) per la radice α_1 poiché per tale valore si annulla la derivata seconda della funzione f(x).
- 3) La fattorizzazione si può ottenere, per esempio, con il metodo di Gauss ed è

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 4/3 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 3/2 & 1/2 \\ 0 & 0 & 1/3 \end{pmatrix} .$$

4) Dal quadro delle differenze divise

x	f(x)	DD1	DD2	DD3
-2	-5			
-1	1	6		
0	1	3	-3	
1	1	2	-2	1
2	7	3	-1	1
3	25	6	0	1
4	61	11	1	1

si deduce che il polinomio di interpolazione ha grado 3 (tre).

5) Posto $f(x) = x \sin(x)$, risulta $f''(x) = 2\cos(x) - x \sin(x)$. Poiché $\sup_{x \in [0,1]} |f''(x)| = M_2 = 2$, per trovare il numero k di sottointervalli in cui dividere l'intervallo di integrazione basta risolvere la disequazione $\frac{1}{6k^2} \le \frac{10^{-3}}{2}$ (si è tenuto conto degli errori nel calcolo della formula). Si ricava

$$k \ge 19$$
.

Ingegneria Informatica 21/07/2010

1) Dato l'insieme di numeri di macchina $\mathcal{F}(10,2,-2,2)$, i numeri $x_1=1.5,\,x_2=2.3,\,$ e $x_3=0.005$ calcolare le rappresentazioni in \mathcal{F} dei valori

$$x_1, \quad x_2, \quad x_3, \quad x_1 \cdot x_3, \quad x_2 + x_3$$
.

2) La matrice

$$A = \frac{1}{20} \begin{pmatrix} 5i & 2 & -7\\ 3 & 1+2i & -1\\ 6 & -2 & 4 \end{pmatrix}$$

risulta convergente?

3) L'equazione caratteristica di una matrice quadrata di ordine n=3 è

$$\lambda^3 + 3\lambda^2 + 16\lambda + 48 = 0.$$

Calcolare il raggio spettrale della matrice.

4) Due matrici A e B hanno norma infinito $||A||_{\infty} = 3$ e $||B||_{\infty} = 5$. Delle seguenti affermazioni dire quali si possono verificare e quali no.

$$a)\,\|A\cdot B\|_{\infty} = 20\,,\quad b)\,\|A+B\|_{\infty} = 7\,,\quad c)\,\|A-B\|_{\infty} = 2\,,\quad d)\,\|B\cdot A\|_{\infty} = 12\,.$$

- 5) Una formula di quadratura ad n+1 nodi ha l'errore esprimibile nella forma $E_n(f)=Kf^{(IV)}(\theta).$
 - a) Determinare il grado di precisione m della formula.
 - b) Supponendo che risulti $E_n(x^{m+1}) = -\frac{1}{7}$, calcolare la costante K.

1) Indicando con z^* la rappresentazione del numero z, risulta

$$x_1^* = 0.15 \times 10^1$$
, $x_2^* = 0.23 \times 10^1$, $x_3^* = 0.5 \times 10^{-2}$,
 $(x_1 \cdot x_3)^* = 0.75 \times 10^{-2}$, $(x_2 + x_3)^* = 0.23 \times 10^1$.

- 2) Si ha $\|A\|_{\infty}=\frac{7}{10}$ per cui la matrice risulta convergente.
- 3) La matrice in questione ha autovalori

$$\lambda_1 = -3 \; , \quad \lambda_2 = -\lambda_3 = 4i$$

per cui $\rho(A) = 4$.

- **4)** Si ha
 - a) Non possibile
 - b) Possibile
 - c) Possibile
 - d) Possibile
- 5) Risultam=3da cui $K=-\frac{1}{7}\cdot\frac{1}{4!}=-\frac{1}{168}.$

Ingegneria Informatica

15/09/2010

1) È data la matrice

$$A = \begin{pmatrix} -1 & 0 & 0 & 1\\ 0 & \alpha & 2 & 0\\ 0 & 4 & 1 & 0\\ -1 & 0 & 0 & -2 \end{pmatrix} , \quad \alpha \in R .$$

- a) Calcolare i valori reali α per cui $\det(A) = 0$.
- b) Calcolare i valori reali α per i quali la matrice A ha autovalori tutti reali.
- 2) Calcolare i punti fissi a cui può convergere il processo iterativo

$$x_{n+1} = \frac{6 + 2x_n - x_n^3}{3x_n}, \quad n = 0, 1, \dots$$

3) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{ccc} 5 & 1 & 0 \\ 5 & 0 & 1 \\ 5 & 2 & -1 \end{array}\right) .$$

4) Determinare i parametri reali α e β in modo tale che il polinomio di interpolazione della tabella di valori

sia
$$P(x) = 3x^2 - x + 2$$

5) Determinare il grado di precisione algebrico della formula

$$J_2(f) = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$$

utilizzata per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) \ dx$.

1) La matrice risulta riducibile e simile alla matrice

$$B = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & \alpha & 2 \\ 0 & 0 & 4 & 1 \end{pmatrix}$$

il cui determinante è il prodotto dei determinanti dei blocchi diagonali. Segue $\det(A)=\det(B)=3(\alpha-8)$ per cui $\det(A)=0$ se e solo se $\alpha=8$.

Gli autovalori di A sono gli aqutovalori di B e quindi gli autovalori dei due blocchi diagonali. Dal primo blocco si ha $\lambda_{1,2} = \frac{-3 \pm i\sqrt{3}}{2}$ per cui, per qualunque valore reale di α , non si potranno avere tutti autovalori reali.

2) I punti fissi del processo iterativo sono le soluzioni dell'equazione $x=\frac{6+2x-x^3}{3x}$ e quindi

$$\alpha_1 = -3 \; , \quad \alpha_{2,3} = \pm \sqrt{2} \; .$$

3) La fattorizzazione LR della matrice è

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 5 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} .$$

4) Deve risultare $P(\alpha) = 4$ e $P(-1) = \beta$ per cui

$$\alpha_1 = 1 \; , \quad \alpha_2 = -\frac{2}{3} \; , \qquad \qquad \beta = 6 \; .$$

5) La formula data risulta esatta per $f(x)=1,x,\ldots,x^5$ mentre non lo è per $f(x)=x^6$. Segue che il grado di precisione algebrico è m=5.

Ingegneria Elettronica, Informatica, Nucleare... 15/02/2011

1) Calcolare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{x-y} \, .$$

2) È data la matrice

$$A = \begin{pmatrix} 1 & 3 & 5 & 1 \\ 0 & 6 & 3 & 2 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 3 & -1 \end{pmatrix} .$$

- a) Sono verificate le ipotesi di convergenza del metodo delle potenze?
- b) Sono verificate le ipotesi di convergenza del metodo QR?
- 3) È data la matrice

$$B = \left(\begin{array}{ccc} 5 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{array}\right) .$$

- a) $\lambda = 2i$ è autovalore della matrice B?
- b) Sono verificate le ipotesi di convergenza del metodo di Jacobi per il calcolo degli autovalori di B?
- c) Il metodo di Gauss-Seidel risulta convergente?
- 4) L'equazione

$$x(x-3)^2(x-1)^2 = 0$$

ha soluzioni $\alpha_1=0,\ \alpha_2=1$ e $\alpha_3=3.$

Se si applica il metodo di Newton per approssimare tali soluzioni, quali ordini di convergenza si hanno?

5) Il polinomio $P(x) = x^2 - x + 3$ è di interpolazione per le tabelle di valori

1) Seguendo l'agoritmo $r_1=x-y,\,r_2=x/r_1$, indicando con ϵ_1 e ϵ_2 gli errori relativi algoritmici e con $\epsilon_x,\,\epsilon_y$ gli errori relativi introdotti sui dati, si ha

$$\epsilon_f = \epsilon_2 - \epsilon_1 - \frac{y}{x - y} \epsilon_x + \frac{y}{x - y} \epsilon_y .$$

2) Gli autovalori della matrice A sono

$$\lambda_1 = 1$$
, $\lambda_2 = 6$, $\lambda_3 = 5$, $\lambda_4 = -1$

Le ipotesi di convergenza del metodo delle potenze sono verificate (matrice diagonalizzabile e l'autovalore λ_2 dominante in modulo).

Le ipotesi di convergenza del metodo QR non sono verificate perchè gli autovalori non hanno moduli due a due distinti.

3) La matrice è reale e simmetrica per cui non ha autovalori complessi. Il metodo di Jacobi per il calcolo degli autovalori converge (matrice reale e simmetrica).

Il metod di Gauss-Seidel converge poiché la matrice ${\cal B}$ risulta a predominanza diagonale forte.

- 4) Il metodo di Newton converge ad α_1 con ordine p=2 ($f''(\alpha_1) \neq 0$). La convergenza ad α_2 e α_3 si ha con ordine p=1 poiché si tratta di radici con molteplicità maggiore di 1.
- 5) Il polinomio dato non interpola la prima tabella di valori (P(2) = 5). P(x) non è il polinomio di interpolazione della seconda tabella di valori (ha grado 2 mentre dovremmo avere un polinomio di grado al più 1).

Ingegneria Elettronica, Informatica, Nucleare... 01/03/2011

1) La successione di polinomi

$$P_0(x) = x^3 - 2x^2 + x + 1$$

$$P_1(x) = 3x^2 - 4x + 1$$

$$P_2(x) = -x + 7$$

$$P_3(x) = 8$$

è una successione di Sturm?

- 2) È data una matrice $A \in C^{n \times n}$.
 - a) $||A^2|| < 1 \Longrightarrow A$ convergente?
 - b) $||A^{-1}|| < 1 \Longrightarrow A$ convergente?
 - c) È possibile che risulti $||A|| + ||A^{-1}|| < 1$?
- 3) Determinare la retta di equazione $y = c_0 + c_1 x$ che approssima nel senso dei minimi quadrati la seguente tabella di valori

4) Determinare i punti fissi della funzione

$$h(x) = -1 + \frac{5 + 5x}{x^2} \,.$$

5) Calcolare gli autovalori della matrice

$$A = \left(\begin{array}{ccc} \alpha & -1 & -1 \\ -1 & \alpha & -1 \\ -1 & -1 & \alpha \end{array} \right) \; .$$

- 1) La successione data non è una successione di Sturm poiché risulta $V(-\infty)-V(+\infty)=-1.$
- 2) La prima affermazione è vera perchè

$$\rho^{2}(A) = \rho(A^{2}) \le ||A^{2}|| < 1 \Longrightarrow \rho(A) < 1$$
.

La seconda è falsa poiché

$$\rho(A^{-1}) < ||A^{-1}|| < 1 \Longrightarrow \rho(A) > 1$$
.

La terza relazione risulta falsa essendo

$$||A|| + ||A^{-1}|| \ge \rho(A) + \rho(A^{-1}) > 1$$
.

3) Si cerca la funzione $\phi(x)=c_0+c_1x$ dove c_0 e c_1 sono le componenti della soluzione del sistema

$$\left(\begin{array}{cc} 4 & 2 \\ 2 & 6 \end{array}\right) \left(\begin{array}{c} c_0 \\ c_1 \end{array}\right) = \left(\begin{array}{c} 2 \\ -4 \end{array}\right) .$$

Si ottiene $\phi(x) = 1 - x$.

- 4) I punti fissi sono le soluzioni dell'equazione x=h(x) che sono $\alpha_1=-1,$ $\alpha_2=\sqrt{5}$ e $\alpha_3=-\sqrt{5}.$
- 5) La matrice A può essere scritta come

$$A = (\alpha + 1)I - \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

per cui gli autovalori di A sono

$$\lambda_1 = \alpha - 2, \quad \lambda_2 = \lambda_3 = \alpha + 1.$$

Ingegneria Elettronica, Informatica, Nucleare... 28/06/2011

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{xy}{x+y} \, .$$

2) Determinare i punti fissi della funzione

$$h(x) = \frac{10 + 5x - x^3}{2x} \, .$$

3) Una matrice $A \in \mathbb{R}^{6 \times 6}$ ha autovalori

$$\lambda_1 = -10, \ \lambda_2 = -5, \ \lambda_3 = -1, \ \lambda_4 = 1, \ \lambda_5 = 3, \ \lambda_6 = 7.$$

Calcolare $\rho(A)$, $\rho(A^{-1})$ e $\rho(A^2)$.

La matrice A^{-1} verifica le ipotesi per la convergenza del metodo delle potenze?

4) È data la funzione

$$f(x) = x^3 + x^2 + x + 1.$$

Quale grado hanno i polinomi di interpolazione se si considerano, rispettivamente, 3, 4 o 5 coppie di valori $(x_i, f(x_i))$? (Si supponga che i valori x_i siano due a due distinti)

5) Determinare il peso a ed il nodo x_0 in modo tale che la formula di quadratura

$$\int_0^1 x f(x) dx = af(x_0) + E_0(f)$$

abbia grado di precisione massimo.

Si indichi il grado di precisione ottenuto.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = xy$$
, $r_2 = x + y$, $r_3 = r_1/r_2$.

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 + \epsilon_x \frac{y}{x+y} + \epsilon_y \frac{x}{x+y}$$
.

2) Si risolve l'equazione x = h(x) ottenendo i punti fissi

$$\alpha_1 = -2 \,, \qquad \alpha_{2,3} = \pm \sqrt{5} \,.$$

3) Risulta

$$\rho(A) = 10$$
, $\rho(A^{-1}) = 1$, $\rho(A^2) = 100$.

La matrice A^{-1} non verifica le ipotesi di convergenza del metodo delle potenze avendo due autovalori di modulo massimo tra loro distinti (1, -1).

4) Essendo la funzione da interpolare un polinomio di grado 3, il polinomio di interpolazione ottenuto con k coppie $(x_i, f(x_i))$ risulta di grado n con

$$k = 3 \implies n \le 2$$

$$\begin{array}{ccc} k=3 & \Longrightarrow & n \leq 2 \\ k=4 & \Longrightarrow & n=3 \\ k=5 & \Longrightarrow & n=3 \end{array}.$$

$$k = 5 \implies n = 3$$

5) Imponendo che la formula sia esatta per f(x) = 1, x si ottiene a = 1/2 e $x_0 = 2/3$. La formula ha grado di precisione m = 1 essendo $E_0(x^2) \neq 0$.

Ingegneria Elettronica, Informatica, Nucleare... 12/07/2011

- 1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10,2,-3,3)$. Dati i numeri $x_1=12.23,\ x_2=1.76$ e $x_3=0.01$, determinare le loro rappresentazioni e quelle di x_3^2 e x_3^3 nell'insieme \mathcal{F} .
- 2) Il sistema lineare

$$\begin{pmatrix} 3 & 1 & 0 & 1 \\ 2 & -7 & 1 & 0 \\ 1 & 0 & 4 & -1 \\ 1 & 1 & 1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

ha una soluzione unica?

Il metodo iterativo di Jacobi risulta convergente?

Il metodo iterativo di Gauss-Seidel risulta convergente?

3) La matrice

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

è riducibile?

- 4) È data la funzione $f(x) = 2x^2 x$. Calcolare il polinomio di interpolazione relativo ai due punti $x_0 = 0$ e $x_1 = 1$. Determinare l'espressione dell'errore stabilendone anche il massimo valore assoluto sull'intervallo [0, 1].
- 5) Si vuole approssimare il numero

$$\log 2 = \int_0^1 \frac{1}{x+1} \, dx$$

con massimo errore assoluto $T \leq 10^{-3}$. Utilizzando la formula dei trapezi, in quanti intervalli si deve suddividere l'intervallo [0,1] per avere una approssimazione dell'integrale che soddisfi la richiesta?

23

1) Le rappresentazioni richieste sono

$$\bar{x}_1 = 0.12 \times 10^2$$
, $\bar{x}_2 = 0.18 \times 10^1$, $\bar{x}_3 = 0.1 \times 10^{-1}$, $\bar{x}_3^2 = 0.1 \times 10^{-3}$, $\bar{x}_3^3 = 0$ (underflow).

- 2) La matrice A risulta a predominanza diagonale forte per cui si ha $det(A) \neq 0$ ed i metodi di Jacobi e di Gauss-Seidel sono convergenti.
- 3) Il grafo della matrice è fortemente connesso per cui la matrice risulta irriducibile.
- 4) Il polinomio di interpolazione nei punti (0,0) e (1,1) è $P_1(x)=x$. Risulta $E(x)=f(x)-P_1(x)=2x^2-2x$ per cui $\max_{x\in[0,1]}|E(x)|=1/2$.
- 5) Da $f(x)=(x+1)^{-1}$ si ha $f'(x)=-(x+1)^{-2}$ e $f''(x)=2(x+1)^{-3}$ per cui risulta $M_2=\sup_{x\in[0,1]}|f''(x)|=2$. Considerando l'espressione dell'errore della formula dei trapezi, in questo caso, si ha $|E_1^{(G)}(f)|\leq \frac{1}{k^2}$ dove k indica il numero di sottointervalli in cui si è suddiviso l'intervallo di integrazione. Considerando di riservare una parte dell'errore per il calcolo della formula, imponendo $\frac{1}{k^2}\leq \frac{T}{2}$ si ottiene $k\geq 19$.

Ingegneria Elettronica, Informatica, Nucleare... 26/07/2011

- 1) Dire, giustificando le risposte, se le seguenti affermazioni sono vere o false.
 - a) $\rho(A) = 1 \Longrightarrow ||A||_1 > 1$;
 - b) $\rho(A) = 0 \Longrightarrow ||A||_2 = 0;$
 - c) $||A||_2 = 0 \Longrightarrow \rho(A) = 0;$
 - d) $\rho(A) < 1 \Longrightarrow \rho(A^{-1}) < 1$ (se A^{-1} esiste).
- $\mathbf{2}$) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 3 & 5 \\ -1 & -3 & -5 \end{array}\right) .$$

3) Determinare il numero di radici reali dell'equazione

$$e^{-x^2} - x^2 + 2x - 1 = 0$$

indicando, per ciascuna di esse, un intervallo di separazione.

4) Risolvere, nel senso dei minimi quadrati, il sistema lineare

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

5) Qual è il grado di precisione della formula di quadratura

$$J_2(f) = f(1) + f(-1) - \frac{1}{6}f''(0)$$

che approssima l'integrale $\int_{-1}^{1} f(x)dx$?

- 1) a) NON è vera $(\rho(I) = 1 = ||I||_1)$;
 - b) NON è vera (basta pensare ad A triangolare inferiore in senso stretto);
 - c) VERA (norma nulla implica $A = \mathbf{O}$ che ha raggio spettrale nullo);
 - d) NON è vera $(\rho(A) < 1$ implica tutti autovalori di modulo minore di 1 per cui gli autovalori di A^{-1} sono tutti di modulo maggiore di 1).
- 2) La fattorizzazione LR è data da

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} .$$

- 3) Da una semplice separazione grafica si ricava che l'equazione proposta ha due radici reali $\alpha_1 = 0$ e $\alpha_2 \in [1, 2]$.
- 4) Il sistema delle equazioni normali $A^TAx = A^Tb$ legato al sistema dato è

$$\left(\begin{array}{cc} 6 & 2 \\ 2 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 1 \end{array}\right) .$$

La soluzione è $x = \frac{1}{7}(5, -1)^T$.

5) La formula proposta risulta esatta per f(x) = 1 e f(x) = x ma non per $f(x) = x^2$ per cui il grado di precisione è uguale a 1.

Ingegneria Elettronica, Informatica, Nucleare... 15/09/2011

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = x - \frac{y}{x} \,.$$

2) La matrice

$$A = \frac{1}{10} \left(\begin{array}{ccc} -1 & i & 2\\ 6 & -2i & 1\\ 2+i & 1 & -1 \end{array} \right)$$

è convergente?

3) Determinare il numero di radici reali dell'equazione

$$e^{-x} - x^2 + 4x - 3 = 0$$

indicando, per ciascuna di esse, un intervallo di separazione.

4) Il polinomio $P(x) = -x^2 + x - 2$ è di interpolazione per i valori

5) La formula di quadratura

$$J_1(f) = \left(1 - \frac{2}{e}\right)f(1) + \frac{1}{e}f(0)$$

che approssima l'integrale $\int_0^1 e^{-x} f(x) dx$ ha grado di precisione uguale a 1. Supposto che l'errore sia esprimibile nella forma $E_1(f) = K f^{(m)}(\xi)$, determinare K ed m.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = y/x$$
, $r_2 = x - r_1$.

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_2 - \frac{y}{x^2 - y} \epsilon_1 + \frac{x^2 + y}{x^2 - y} \epsilon_x + \frac{y}{x^2 - y} \epsilon_y.$$

- 2) La matrice risulta convergente essendo $||A||_{\infty} = \frac{9}{10}$.
- 3) Da una semplice separazione grafica si ricava che l'equazione proposta ha tre radici reali $\alpha_1 = \in]-4, -3[, \, \alpha_2 \in]0, 1[$ e $\alpha_3 \in]3, 4[$.
- 4) Il polinomio dato è di interpolazione verificando le relazioni $P(x_i) = y_i, i = 0, 1, 2, 3, 4.$
- 5) La formula proposta ha grado di precisone 1 per cui si ha m=2. Essendo $E_1(x^2)=1-\frac{3}{e},$ si ricava $K=\frac{e-3}{2e}.$

Ingegneria Informatica 18/01/2012

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = x(x-y) .$$

2) La matrice H = I - GA con

$$A = \begin{pmatrix} 3i & 1 & -1 \\ 2 & 5 & 1 \\ 0 & -i & 2 \end{pmatrix} \quad e \quad G = \begin{pmatrix} 1/(3i) & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}$$

è convergente?

3) Determinare il numero di radici reali dell'equazione

$$e^{-2x} - x^4 + 1 = 0$$

indicando, per ciascuna di esse, un intervallo di separazione.

4) Il polinomio $P(x) = x^4 - 2$ è il polinomio di interpolazione per i valori

5) La formula di quadratura

$$J_1(f) = \frac{3}{5} \left(f\left(\frac{1}{3}\right) - f\left(-\frac{1}{3}\right) \right)$$

che approssima l'integrale $\int_{-1}^{1} x^3 f(x) dx$ ha grado di precisione uguale a 2. Supposto che l'errore sia esprimibile nella forma $E_1(f) = Kf^{(m)}(\xi)$, determinare K ed m.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = x - y , \qquad r_2 = x \cdot r_1 .$$

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{2x - y}{x - y} \epsilon_x - \frac{y}{x - y} \epsilon_y .$$

- 2) La matrice H = I GA è la matrice di iterazione del metodo di Jacobi e risulta convergente essendo A a predominanza diagonale forte.
- 3) Da una semplice separazione grafica si ricava che l'equazione proposta ha solo una radici reale $\alpha = \in]1,2[$.
- 4) Il polinomio dato non è il polinomio di interpolazione avendo grado 4 con 4 punti assegnati.
- 5) La formula proposta ha grado di precisone 2 per cui si ha m=3. Essendo $E_1(x^3)=\frac{76}{315}$, si ricava $K=\frac{38}{945}$.

Ingegneria Informatica 07/02/2012

1) Determinare la cardinalità dell'insieme dei numeri di macchina $\mathcal{F} = (10, 3, -3.3)$. Nell'insieme \mathcal{F} , determinare la rappresentazione (per arrotondamento) dei numeri

$$\pi = 3.141592653589793\dots$$
 $\frac{1}{\sqrt{2}} = 0.707106781186547\dots$

2) Calcolare il numero di condizione $\mu_2(A)$ della matrice

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & -2 & i \\ 0 & 0 & -i & 1 \end{pmatrix}.$$

3) La funzione $\phi(x)=x^2+2x$ ha due punti fissi dati da $\alpha_1=0$ e $\alpha_2=-1$. Lo schema iterativo

$$x_{n+1} = x_n^2 + 2x_n$$
, $n = 0, 1, \dots$

risulta idoneo ad approssimare tali valori?

In caso affermativo, determinarne l'ordine di convergenza.

4) Data la tabella di valori

determinare i valori reali di α per cui il polinomio di interpolazione risulta di grado minimo.

5) Calcolare i pesi della formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{2}\right) + a_1 f\left(\frac{1}{2}\right)$$

che approssima l'integrale $\int_{-1}^{1} x^4 f(x) dx$ in modo da ottenere il massimo grado di precisione. Indicare il grado di precisione ottenuto.

1) La cardinalità dell'insieme dei numeri di macchina è $card(\mathcal{F}) = 900*7*2+1 = 12601$.

Le rappresentazioni richieste sono

$$\pi^* = 0.314 \cdot 10^1 \dots \left(\frac{1}{\sqrt{2}}\right)^* = 0.707 \cdot 10^0.$$

2) La matrice A è hermitiana per cui $\mu_2(A) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|}$. Gli autovaloori di A sono $\lambda_{1,2} = 2 \pm \sqrt{5}$, $\lambda_{3,4} = \frac{-1 \pm \sqrt{13}}{2}$ per cui risulta

$$\mu_2(A) = \frac{\max_i |\lambda_i|}{\min_i |\lambda_i|} = \frac{2 + \sqrt{5}}{\sqrt{5} - 2} = 9 + 4\sqrt{5}.$$

3) Si ha $\phi'(x) = 2x + 2$ e $\phi''(x) = 2$. Risultando

$$\phi'(0) = 2,$$
 $\phi'(-1) = 0,$ $\phi''(-1) = 2,$

il metodo non assicura la convergenza al punto fisso α_1 mentre si può avere la convergenza al punto fisso α_2 con ordine di convergenza pari a 2.

- 4) Escludendo la coppia di valori che contiene il parametro α si ha il polinomio di interpolazione $P_3(x) = x^3 x^2 + 1$. Per non alzare il grado del polinomio di interpolazione basta porre $\alpha = P_3(-2) = -11$.
- 5) Imponendo che la formula si esatta con f(x) = 1 e f(x) = x, si ottiene $a_0 = a_1 = \frac{1}{5}$. Il grado di precisione è pari a 1 risultando $E_1(x^2) \neq 0$.

Ingegneria Informatica 21/02/2012

1) Si vuole calcolare la funzione

$$f(x,y) = x y$$

nel punto $P_0 = (\pi, e)$.

Si indichi un insieme di indeterminazione a cui appartiene P_0 . Supponendo di commettere un errore assoluto algoritmico $|\delta_a| \leq 10^{-2}$ e di introdurre i dati con errori assoluti $|\delta_x| \leq 10^{-2}$ e $|\delta_y| \leq 10^{-2}$, quale sarà il massimo errore assoluto $|\delta_f|$?

- 2) Dire se le seguenti affermazioni sono vere:
 - a) $A \in \mathbb{C}^{n \times n}$ è convergente $\Longrightarrow A^2$ è convergente;
 - b) $A \in \mathbb{C}^{n \times n}$, A^2 è convergente $\Longrightarrow A$ è convergente;
 - c) le matrici di rotazione G_{rt} sono convergenti.
- 3) Calcolare i punti fissi della funzione

$$\phi(x) = x(x+2) .$$

4) L'equazione

$$(x - \sqrt{2})^2 (x - \pi)(x - e)^3 = 0$$

ha soluzioni $\alpha_1 = \sqrt{2}$, $\alpha_2 = \pi$ e $\alpha_3 = e$.

Se si applica il metodo di Newton per approssimare tali soluzioni, quali ordini di convergenza si hanno?

5) Per il calcolo dell'integrale

$$\int_{-1}^{1} \sin^2(x) dx$$

si applica la formula dei trapezi. In quanti sottointervalli (della stessa ampiezza) si deve dividere l'intervallo di integrazione in modo da ottenere una approssimazione che differisca dal valore esatto meno di 10^{-2} ?

1) Il punto P_0 appartiene, per esempio, all'insieme di indeterminazione $D = [3, 4] \times [2, 3]$.

Risultando
$$A_x = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial x} \right| = 3 \text{ e } A_y = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial y} \right| = 4$$
, si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 10^{-2} + 3 \times 10^{-2} + 4 \times 10^{-2} = 0.8 \times 10^{-1}$$
.

- 2) Una matrice è convergente se e solo se lo è il suo quadrato per cui le affermazioni a) e b) sono vere.
 Le matrici di rotazione hanno determinante uguale a 1 per cui non sono con-
- 3) I punti fissi sono le soluzioni dell'equazione x=x(x+2) e quindi sono i valori

$$\alpha_1 = 0 , \qquad \alpha_2 = -1 .$$

4) Gli ordini di convergenza del metodo di Newton sono i seguenti:

vergenti e quindi l'affermazione c) risulta falsa.

$$\begin{cases} \alpha_1 \Longrightarrow p = 1 \\ \alpha_2 \Longrightarrow p = 2 \\ \alpha_3 \Longrightarrow p = 1 \end{cases}$$

5) Da $f(x)=\sin^2(x)$ segue $f''(x)=2\cos(2x)$. L'errore della formula dei trapezi risulta quindi $|E_1^{(G)}|\leq \frac{(b-a)^3M_2}{12\,m^2}$ dove $M_2\geq \sup_{x\in [-1,1]}|f''(x)|=2$ e m è il numero di sottointervalli in cui si divide l'intervallo di integrazione. Tenendo conto degli errori che si introducono nel calcolo della formula, si impone, per esempio, $|E_1^{(G)}|\leq \frac{10^{-2}}{2}$ da cui si ricava $m\geq 17$.

Ingegneria Informatica 13/06/2012

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y,z) = \frac{x-y}{z} \, .$$

2) Determinare i punti fissi della funzione

$$h(x) = x - e^x + K ,$$

al variare del numero reale K.

3) È dato il sistema lineare Ax = b con

$$A = \begin{pmatrix} 1+3i & 1 & -2\\ 1 & 5 & 3i\\ -2 & 3i & 6 \end{pmatrix} , \quad b = \begin{pmatrix} 1\\ i\\ -i \end{pmatrix} .$$

- a) La matrice A è hermitiana?
- b) Il metodo di Jacobi risulta convergente?
- c) Il metodo di Gauss-Seidel risulta convergente?

4) Determinare il numero reale α per il quale risulta di grado minimo il polinomio di interpolazione relativo ai seguenti dati:

5) Si consideri la formula di quadratura

$$J_1(f) = f(1) + f(3)$$

che approssima l'integrale $\int_1^3 f(x)dx$. Supposto che l'errore sia esprimibile nella forma $E_1(f)=Kf^{(m)}(\xi)$, determinare K ed m.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = x - y$$
, $r_2 = r_1/z$.

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \epsilon_x \frac{x}{x-y} - \epsilon_y \frac{y}{x-y} - \epsilon_z .$$

2) Si risolve l'equazione x=h(x) ottenendo un unico punto fisso per i valori K>0 dato da

$$\alpha_1 = \log K$$
.

3) La matrice data non risulta simmetrica (per esempio, la diagonale non ha tutti valori reali).

I metodi di Jacobi e di Gauss-Seidel sono convergenti poiché la matrice A ha predominanza diagonale forte.

4) Calcolando il polinomio di interpolazione escludendo il punto $(1, \alpha)$ si ottiene $P_3(x) = x^2 + x + 1$. Il valore di α cercato è

$$\alpha = P_3(1) = 3.$$

5) La formula data ha grado di precisione 1 (si tratta della formula trapezoidale) con $E_1(x^2)=-4/3$. Si ha quindi m=2 e k=-2/3.

Ingegneria Informatica 3/07/2012

- 1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10, 2, -2, 2)$. Dati i numeri $x_1 = 16.57, x_2 = 0.219$ e $x_3 = 1.1$, determinare le loro rappresentazioni nell'insieme \mathcal{F} .
- 2) Determinare il numero delle radici reali dell'equazione

$$e^{-x} - x^2 + 2x = 0$$
,

indicandone opportuni intervalli di separazione.

3) È dato un sistema lineare Ax = b con

$$A = \begin{pmatrix} 1 & \alpha & 0 & 0 \\ 0 & 1 & \alpha & 0 \\ 0 & 0 & 1 & \alpha \\ \alpha & 0 & 0 & 1 \end{pmatrix} , \quad \alpha \in \mathbb{C} .$$

Per quali valori di α il metodo di Jacobi risulta convergente?

4) Una matrice A^2 di dimesione 3 ha i seguenti autovalori

$$\lambda_1 = \frac{1}{4}i$$
, $\lambda_2 = 4$, $\lambda_3 = 16$.

Determinare $\rho(A)$.

La matrice A è diagonalizzabile?

5) Risolvere, nel senso dei minimi quadrati, il sistema lineare

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

1) Le rappresentazioni richieste sono

$$\hat{x}_1 = 0.17 \times 10^2$$
, $\hat{x}_2 = 0.22 \times 10^0$, $\hat{x}_3 = 0.11 \times 10^1$.

2) Con una semplice separazione grafica si evidenzia che l'equazione data ha 3 radici reali separate dai seguenti intervalli:

$$\alpha_1 \in]-3,-2[, \alpha_2 \in]-1,0[, \alpha_3 \in]2,3[.$$

3) La matrice di iterazione di Jacobi è

$$H_J = -\alpha \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right) \ .$$

L'equazione caratteristica, non considerando il fattore $-\alpha$, è $\lambda^4 - 1 = 0$. Ne segue che gli autovalori di H_J sono tutti di modulo $|\alpha|$ e quindi il metodo di Jacobi converge se e solo se $|\alpha| < 1$.

4) Gli autovalori della matrice A² sono i quadrati degli autovalori di A per cui ρ(A) = 4.
La matrice A ha ordine 3 con 3 autovalori due a due distinti per cui risulta

La matrice A ha ordine 3 con 3 autovalori due a due distinti per cui risulta diagonalizzabile.

5) Il sistema delle equazioni normali $A^TAx = A^Tb$ ha matrice dei coefficienti e vettroe dei termini noti

$$A^T A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}, \quad A^T b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

La soluzione cercata è quindi $(3/7, -1/7)^T$.

Ingegneria Informatica 24/07/2012

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{y^2} \,.$$

2) La funzione

$$\phi(x) = 1 + \beta \log^2 x$$
, $\beta \in \mathbb{R} \setminus \{0\}$,

ha il punto fisso $\alpha = 1$.

Utilizzando il processo iterativo $x_{n+1} = \phi(x_n)$ per approssimare α , quale ordine di convergenza si ottiene al variare di β ?

3) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 3 & 1 \\ 2 & 0 & 2 \end{array}\right) \ .$$

4) È data la matrice

$$A = \begin{pmatrix} \alpha & 1 & 0 \\ 1 + \beta & \gamma & 1 \\ 0 & 1 & \gamma \end{pmatrix}, \quad \alpha, \beta, \gamma \in \mathbb{R}.$$

- a) Indicare per quali valori di α, β, γ la matrice A risulta simmetrica.
- b) Indicare per quali valori di α, β, γ la matrice A risulta a predominanza diagonale forte.
- c) Indicare per quali valori di α, β, γ alla matrice A risulta associato un grafo fortemente connesso.
- 5) Si consideri la formula di quadratura

$$\int_0^1 x^2 f(x) dx = a f(x_0) + E_0(f) .$$

Determinare il peso a ed il nodo x_0 in modo da ottenere la formula con grado di precisone massimo. Inoltre, si indichi il grado di precisione ottenuto.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = y^2$$
, $r_2 = x/r_1$.

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_2 - \epsilon_1 + \epsilon_x - 2\epsilon_y \ .$$

2) Si calcolano le prime derivate della funzione $\phi(x)$ che sono

$$\phi'(x) = \frac{2\beta \log x}{x}, \quad \phi''(x) = -\frac{2\beta \log x}{x^2} + \frac{2\beta}{x^2}.$$

Risultando $\phi'(1) = 0$ e $\phi''(1) = 2\beta \neq 0$, l'ordine di convergenza del metodo è 2.

3) La fattorizzazione LR è data da

$$L = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right) \;, \quad R = \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right) \;.$$

- 4) La matrice risulta simmetrica se $\alpha, \gamma \in \mathbb{R}$ e $\beta = 0$. La matrice ha predominanza diagonale forte se $|\alpha| > 1$ e $|\gamma| > 1 + |1 + \beta|$ (cioè $|\gamma| > 2 + \beta$ se $\beta \ge -1$ o $|\gamma| > -\beta$ se $\beta < -1$). La matrice ha un grafo associato fortemente connesso (quindi risulta irriducibile) se $\beta \ne -1$.
- 5) Imponendo che la formula sia esatta per f(x)=1, x si ottiene a=1/3 e $x_0=3/4$. La formula ha grado di precisione m=1 essendo $E_0(x^2)\neq 0$.

Ingegneria Informatica 19/09/2012

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{x-y} \, .$$

2) Determinare il numero delle radici reali dell'equazione

$$e^x - |x - 2| = 0$$

indicando per ciascuna soluzione un intervallo di separazione.

3) Determinare per quali valori complessi di α e β la matrice

$$A = \begin{pmatrix} \alpha & 0 & 1 & 5 \\ 3 & 2\alpha & 7 & 9 \\ 0 & 0 & 3\beta & 0 \\ 0 & 0 & 8 & \alpha \end{pmatrix}, \quad \alpha, \beta \in \mathbb{C},$$

risulta convergente.

4) È dato il polinomio $P(x) = x^3 - 2x^2 - x - 1$.

a) Il polinomio P(x) è il polinomio di interpolazione relativo alla tabella di valori

b) Il polinomio P(x) è il polinomio di interpolazione relativo alla tabella di valori

5) Per approssimare l'integrale $I = \int_0^2 f(x) dx$ si utilizza la formula di quadratura

$$J_2(f) = \frac{1}{3}f(0) + \frac{4}{3}f(1) + \frac{1}{3}f(2)$$

che ha grado di precisione m=3.

Supponendo che si possa esprimere l'errore come $E_2(f) = Kf^{(s)}(\xi)$, determinare K e s.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = x - y$$
, $r_2 = x/r_1$.

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_2 - \epsilon_1 - \frac{y}{x - y} \epsilon_x + \frac{y}{x - y} \epsilon_y .$$

- 2) L'equazione data ha una sola soluzione reale α appartenente all'intervallo]0,0.5[.
- 3) Gli autovalori della matrice A sono $\lambda_1 = \lambda_2 = \alpha$, $\lambda_3 = 2\alpha$ e $\lambda_4 = 3\beta$. Ne segue che la matrice risulta convergente se e solo se

$$|\alpha| < \frac{1}{2}$$
 e $|\beta| < \frac{1}{3}$.

- 4) Il polinomio P(x) non è il polinomio di interpolazione della prima tabella di valori perché il suo grado è maggiore di 2 mentre è il polinomio di interpolazione relativo alla seconda tabella di valori.
- 5) Avendo la formula grado di precisione 3, risulta s=4. Dall'errore $E_2(x^4)=-\frac{4}{15}$ si ricava $K=-\frac{1}{90}$.

Ingegneria Informatica 17/01/2013

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = x^2 - xy.$$

2) Determinare il numero delle radici reali dell'equazione

$$e^{-x^2} - x^2 + x = 0$$

indicando per ciascuna soluzione un intervallo di separazione.

3) Calcolare il numero di condizionamento in norma 2 della matrice

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right) \ .$$

4) È data la tabella di valori

Calcolare i valori α e β per i quali risulta minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I=\int_{-1}^1 f(x)dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{3}\right) + a_1 f\left(\frac{1}{3}\right) .$$

Calcolare i pesi a_0 e a_1 in modo da ottenere la formula con massimo grado di precisione. Indicare il grado di precisione ottenuto.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = x - y , \qquad r_2 = x \cdot r_1 .$$

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{2x - y}{x - y} \epsilon_x - \frac{y}{x - y} \epsilon_y$$
.

2) L'equazione data ha due soluzioni reali

$$\alpha_1 \in]-1,0[, \alpha_2 \in]1,2[.$$

3) Gli autovalori della matrice A sono $\lambda_1=-1,\ \lambda_2=3,\ \lambda_3=2.$ Essendo hermitiana, segue che la matrice ha numero di condizionamento

$$\mu_2(A) = \frac{\max_{1 \le i \le 3} |\lambda_i|}{\min_{1 \le i \le 3} |\lambda_i|} = \frac{3}{1} = 3.$$

- 4) Il polinomio di interpolazione di grado minimo si ottiene per $\alpha=3$ o $\alpha=-2$ e per $\beta=1$. Il polinomio di interpolazione è $P_4(x)=x^2-x-1$.
- 5) Imponendo esatta la formula per f(x) = 1, x si ottiene $a_0 = a_1 = 1$. Risultando $E(x^2) \neq 0$, il grado di precisione è m = 1.

Ingegneria Informatica 06/02/2013

- 1) Dire se sono possibili le seguenti affermazioni.
 - a) Se $||A||_2 = 1$ può risultare $||A||_2 + \rho(A) = 2.5$?
 - b) Se $\rho(A) = 1$ può risultare $||A||_2 + \rho(A) = 2.5$?
 - c) Se $||A||_2 = 2$ può risultare $||A^2||_2 = 5$?
 - d) Se $\rho(A^2) = 3$ può risultare $||A||_1 = 1$?
- 2) L'equazione

$$x^4 - 4x^3 + 3x^2 + 4x - 4 = 0$$

ha soluzioni

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = \alpha_4 = 2$.

Dire se sono soddisfatte le condizioni necessarie per la convergenza del metodo di bisezione ai valori α_i , i=1,2,3,4.

3) La matrice

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

è riducibile.

Determinare una matrice di permutazione P che riduce la matrice data.

4) Risolvere, nel senso dei minimi quadrati, il sistema lineare Ax = b con

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

5) Il polinomio $P(x)=2x^3-3x^2+x$ è il polinomio di interpolazione di Hermite della funzione f(x) di cui conosciamo i valori

$$f(0) = 0$$
, $f(1) = 0$, $f'(0) = 1$, $f'(1) = 1$?

- 1) Dalle proprietà delle norme matriciali e dal Teorema di Hirsh si ha
 - a) Non risulta possibile percheé $||A||_2 + \rho(A) \le 2$;
 - b) È possibile perché $||A||_2 + \rho(A) \ge 1 + ||A||_2$;
 - c) Non risulta possibile perché $||A^2||_2 \le ||A||_2 ||A||_2 \le 4$;
 - d) Non risulta possibile perché $\rho(A) = \sqrt{3}$ e quindi $||A||_1 \ge \sqrt{3} > 1$.
- 2) Il metodo di bisezione converge se applicato per la approssimazione delle radici semplici α_1 e α_2 . Non converge per approssimare $\alpha_{3,4}$ essendo questa radice di molteplicità pari (manca il cambio di segno della funzione).
- 3) Dallo studio del grafo orientato si individua una matrice di permutazione che riduce la matrice data; per esempio, $P_1 = (\mathbf{e}^{(2)}|\mathbf{e}^{(1)}|\mathbf{e}^{(3)}|\mathbf{e}^{(4)})$. La forma ridotta della matrice

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)$$

si ottiene con $P = (\mathbf{e}^{(2)}|\mathbf{e}^{(4)}|\mathbf{e}^{(3)}|\mathbf{e}^{(1)}).$

4) La soluzione si ottiene dal sistema delle equazioni normali $A^TAx = A^Tb$

$$\left(\begin{array}{cc} 4 & 10 \\ 10 & 30 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 10 \end{array}\right)$$

la cui soluzione è $x = (1, 0)^T$.

5) Il polinomio dato è il polinomio di interpolazione di Hermite poiché risulta di grado 3 (k+1) punti con k=1 \Rightarrow grado massimo 2k+1=3) e verifica le condizioni

$$P(0) = 0$$
, $P(1) = 0$, $P'(0) = 1$, $P'(1) = 1$.

46

Ingegneria Informatica 28/02/2013

1) Si hanno la funzione

$$f(x,y) = \frac{x}{y}$$

ed i valori $x_0 \in]0.2, 0.3[$ e $y_0 \in]0.5, 0.6[$.

Determinare, in valore assoluto, il massimo errore assoluto trasmesso dai dati che si può ottenere nel calcolo di $f(x_0, y_0)$.

2) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrr} 2 & -1 & 0 \\ -2 & 3 & 1 \\ 2 & 1 & 1 \end{array}\right) .$$

3) Un sistema lineare Ax = b ha matrice dei coefficienti

$$A = \begin{pmatrix} \alpha & 1 & \alpha \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} , \quad \alpha \in \mathbb{R} \setminus \{0\} .$$

- a) Per quali valori reali di α converge il metodo di Jacobi?
- b) Per quali valori reali di α converge il metodo di Gauss-Seidel?
- 4) È data l'equazione

$$x^4 - K(x+2) = 0 , \quad K \in \mathbb{R} .$$

Determinare i valori reali di K per i quali l'equazione data ha soluzioni di molteplicità maggiore di 1.

5) Per approssimare l'integrale $I = \int_0^4 f(x) dx$ si utilizza la formula di quadratura

$$J_3(f) = \frac{1}{4}f(0) + \frac{3}{4}f\left(\frac{4}{3}\right) + \frac{3}{4}f\left(\frac{8}{3}\right) + \frac{1}{4}f(4)$$
.

Determinare il grado di precisione della formula proposta.

1) Ponendo $D =]0.2, 0.3[\times]0.5, 0.6[$ risulta

$$\sup_{(x,y)\in D} \left|\frac{\partial f}{\partial x}\right| = 2\;, \quad \sup_{(x,y)\in D} \left|\frac{\partial f}{\partial y}\right| = \frac{6}{5}\;,$$

si ha

$$|\delta_d| \le 2 \cdot 0.1 + \frac{6}{5} \cdot 0.1 = \frac{8}{25}$$
.

2) Si ha

$$L = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right) \;, \quad R = \left(\begin{array}{rrr} 2 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{array} \right) \;.$$

3) Si ha

$$H_J = - \begin{pmatrix} 0 & 1/\alpha & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} , \quad H_{GS} = - \begin{pmatrix} 0 & 1/\alpha & 1 \\ 0 & -1/\alpha & -1 \\ 0 & -1/\alpha & -1 \end{pmatrix} .$$

Gli autovalori di H_J sono $\lambda_1=0,\,\lambda_{2,3}=\pm\sqrt{rac{lpha+1}{lpha}}$ mentre gli autovalori di H_{GS} sono $\mu_{1,2}=0$ e $\mu_3=-\frac{\alpha+1}{\alpha}$. Entrambi i metodi risultano convergenti se $\alpha<-\frac{1}{2}$.

4) Risolvendo il sistema

$$\begin{cases} x^4 - K(x+2) & = & 0 \\ 4x^3 - K & = & 0 \end{cases}$$

si ottengono i valori degli zeri di molteplicità maggiore di 1 $x_1=0$ e $x_2=-\frac{8}{3}$ che corrispondono, rispettivamente, a $K_1=0$ e $K_2=-\frac{2048}{27}$.

5) La formula proposta è non integra esattamente le costanti per cui non risulta adatta ad approssimare l'integrale dato.

Ingegneria Informatica 19/06/2013

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{y^2}{x - y} \,.$$

2) Determinare i punti fissi della funzione

$$h(x) = 1 + (x - 1)^2.$$

3) È dato il sistema lineare Ax = b con

$$A = \begin{pmatrix} 5 & \frac{5}{2} & \frac{5}{2} \\ -\frac{1}{2} & -1 & -\frac{1}{2} \\ \frac{3}{2} & \frac{3}{2} & 3 \end{pmatrix} , \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} .$$

Il metodo di Jacobi per la risoluzione di tale sistema lineare risulta convergente?

4) Determinare il polinomio che interpola la funzione $f(x) = \cos\left(\frac{\pi}{4}x\right)$ nei punti $x_0 = 0, x_1 = 1, e x_2 = 2.$

5) Si consideri la formula di quadratura

$$J_1(f) = \frac{3}{2} (f(1) + f(2))$$

che approssima l'integrale $\int_0^3 f(x)dx$.

Supposto che l'errore sia esprimibile nella forma $E_1(f) = Kf^{(m)}(\xi)$, determinare K ed m.

1) Per il calcolo di f(x,y) seguiamo l'algoritmo

$$r_1 = y^2$$
, $r_2 = x - y$, $r_3 = r_1/r_2$.

L'errore relativo nel calcolo della funzione è

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 - \frac{x}{x - y} \epsilon_x + \frac{2x - y}{x - y} \epsilon_y$$
.

2) Si risolve l'equazione x = h(x) ottenendo due punti fissi dati da

$$\alpha_1 = 1$$
, $\alpha_2 = 2$.

3) Il metodo di Jacobi ha matrice di iterazione

$$H_J = -rac{1}{2} \left(egin{array}{ccc} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{array}
ight) \; .$$

La matrice H_J ha autovalori $\lambda_1=-1,\ \lambda_{2,3}=1/2$ per cui il metodo non risulta convergente.

4) Il polinomio di interpolazione si calcola partendo dalla tabella di valori

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 \\ \hline f(x) & 1 & \sqrt{2}/2 & 0 \\ \end{array}$$

ed è dato da

$$P_2(x) = \frac{1 - \sqrt{2}}{2}x^2 + \frac{2\sqrt{2} - 3}{2}x + 1$$
.

5) La formula data ha grado di precisione 1 con $E_1(x^2)=3/2$. Si ha quindi m=2 e k=3/4.

Ingegneria Informatica 8/07/2013

- 1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10,2,-3,3)$. Dati i numeri $x_1=22.8765483, x_2=0.4377827$ e $x_3=0.0324455$, determinare le loro rappresentazioni nell'insieme \mathcal{F} .
- 2) La funzione $\phi(x)=(x-3)^2+3$ ha come punti fissi i valori $\alpha_1=3$ e $\alpha_2=4$. Il metodo iterativo

$$x_{n+1} = (x_n - 3)^2 + 3$$
, $n = 0, 1, 2, ...$

può risultare convergente ad α_1 e/o α_2 ?

Nel caso in cui risulti convergente, quale è il suo ordine di convergenza?

3) Data la matrice

$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) ,$$

calcolare gli autovalori di $A = I + \alpha B$ con $\alpha \in \mathbb{R}$.

- 4) Per le matrici $A, B \in \mathbb{R}^{n \times n}$ risulta $||A||_2 = 1.5$ e $||B||_2 = 4$. Delle seguenti affermazioni dire quali si possono verificare e quali no.
 - a) La matrice A è convergente;
 - b) $\rho(A) = 1.5$;
 - c) $\rho(AB) = 7;$
 - d) $||A + B||_2 = 5$.
- 5) Si consideri la formula di quadratura

$$J_2(f) = a_0 f\left(-\frac{1}{3}\right) + a_1 f(0) + a_2 f\left(\frac{1}{3}\right)$$

che approssima l'integrale $I(f) = \int_{-1}^{1} f(x)dx$.

Si calcolino i pesi a_0 , a_1 e a_2 in modo da ottenere la formula che ha massimo grado di precisione.

Si indichi il grado di precisione ottenuto.

1) Le rappresentazioni richieste sono

$$\hat{x}_1 = 0.23 \times 10^2$$
, $\hat{x}_2 = 0.44 \times 10^0$, $\hat{x}_3 = 0.32 \times 10^{-1}$.

- 2) Risultando $\phi'(3) = 0$ e $\phi''(3) = 2$ si deduce che il metodo può convergere con ordine 2 per approssimare il punto fisso α_1 . Da $\phi'(4) = 2$ si deduce che il metodo non assicura la convergenza al punto fisso α_2 .
- 3) La matrice B ha autovalori $\mu_1=0$ e $\mu_{2,3}=\pm\sqrt{2}$. Gli autovalori di A sono quindi $\lambda_1=1$ e $\lambda_{2,3}=1\pm\alpha\sqrt{2}$.
- 4) Dalle proprietà delle norme matriciali e dal teorema di Hirsh si ha:
 - a) possibile;
 - b) possibile;
 - c) impossibile;
 - d) possibile.
- 5) Imponendo che la formula sia esatta per $f(x) = 1, x, x^2$ si ricava $a_0 = a_2 = 3$ e $a_1 = -4$. La formula così ottenuta risulta esatta anche per $f(x) = x^3$ ma non per $f(x) = x^3$

Ingegneria Informatica 29/07/2013

1) Si vuole calcolare la funzione

$$f(x,y) = x \cdot y$$

nel punto $P_0 = (\sqrt{2}, \sqrt{5})$ $(\sqrt{2} = 1.414213..., \sqrt{5} = 2.236067...)$. Si indichi un insieme di indeterminazione a cui appartiene P_0 .

Supponendo di commettere un errore assoluto algoritmico $|\delta_a| \leq 10^{-2}$ e di introdurre i dati con errori assoluti $|\delta_x| \leq 10^{-2}$ e $|\delta_y| \leq 10^{-2}$, quale sarà il massimo errore assoluto $|\delta_f|$?

- 2) Una matrice $A \in \mathbb{C}^{3\times 3}$ ha autovalori $\lambda_1 = 2$, $\lambda_2 = -2$ e $\lambda_3 = \sqrt{2}$. Dire se le seguenti affermazioni sono vere:
 - a) A è convergente;
 - b) A^2 è convergente;
 - c) A^{-1} è convergente;

Infine, determinare, se esistono, valori $\alpha \in \mathbb{R}$ per i quali la matrice αA^2 risulta convergente.

3) Determinare i valori reali α per i quali il sistema

$$\begin{pmatrix} 1 & \alpha \\ 1 & 2 \\ \alpha & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

ha soluzione unica nel senso dei minimi quadrati.

4) L'equazione

$$x^3 - 3x^2 + x + 1 = 0$$

ha soluzioni $\alpha_1 = 1 - \sqrt{2}$, $\alpha_2 = 1 + \sqrt{2}$ e $\alpha_3 = 1$.

Se si applica il metodo di Newton per approssimare tali soluzioni, quali ordini di convergenza si hanno?

5) Calcolare i pesi a_0 , a_1 e a_2 della formula di quadratura

$$J_2(f) = a_0 f(0) + a_1 f(3/2) + a_2 f(1)$$

che approssima l'integrale $I(f)=\int_{-1}^2 f(x)dx$ in modo da avere il massimo grado di precisione. Indicare il grado di precisione ottenuto.

1) Il punto P_0 appartiene, per esempio, all'insieme di indeterminazione $D = [1,2] \times [2,3]$.

Risultando $A_x = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial x} \right| = 3$ e $A_y = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial y} \right| = 2$, si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 10^{-2} + 3 \times 10^{-2} + 2 \times 10^{-2} = 6 \times 10^{-2}$$
.

Assumendo, per esempio, $P_1=(1.41,2.23)$ si ha $f(P_1)=3.14$ e $f(P_0)=3.162277\ldots$

- 2) Le matrici A e A^2 non sono convergenti avendo raggio spettrale maggiore di 1. La matrice A^{-1} risulta convergente essendo $\rho(A^{-1})=1/\sqrt{2}$. La matrice αA^2 è convergente se $|\alpha|<1/4$.
- 3) La matrice dei coefficienti risulta di rango massimo (cioè 2) per ogni valore reale di α per cui la soluzione nel senso dei minimi quadrati del sistema proposto è unica $\forall \alpha \in \mathbb{R}$.
- 4) Gli ordini di convergenza del metodo di Newton sono i seguenti:

$$\begin{cases} \alpha_1 \Longrightarrow p = 2 \\ \alpha_2 \Longrightarrow p = 2 \\ \alpha_3 \Longrightarrow p \ge 3 \end{cases}$$

5) Imponendo che la formula sia esatta per $f(x)=1,x,x^2,$ si ottengono i pesi

$$a_0 = \frac{5}{2}, \qquad a_1 = 2, \qquad a_2 = -\frac{3}{2}.$$

Il grado di precisione è m=2 poiché si ha $E_2(x^3)\neq 0$.

Ingegneria Informatica 18/09/2013

- 1) Si consideri l'insieme dei numeri di macchina $M = \mathcal{F}(10, 3, -3, 3)$.
 - a) Indicare la cardinalità dell'insieme M.
 - b) Calcolare la precisione di macchina.
- 2) Il polinomio $P(x) = x^4 + x^3 3x^2 x + 2$ ha le radici $\alpha_{1,2} = 1$, $\alpha_3 = -1$ e $\alpha_4 = -2$.

Se si vuole calcolare la "vera" successione di Sturm relativa al polinomio P(x), quale polinomio deve essere scelto come primo polinomio $P_0(x)$ di tale successione?

3) È data l'equazione

$$e^{x+1} + K(x+2) = 0$$
, $K \in \mathbb{R}$.

Determinare K in modo che l'equazione abbia una soluzione di molteplicità maggiore di 1.

4) Data la matrice

$$A = \left(\begin{array}{ccc} 1/2 & 0 & 1\\ 1 & 2 & 1\\ 0 & 0 & 1/4 \end{array}\right) ,$$

calcolare il polinomio caratteristico della matrice A^{-1} .

5) Determinare la retta di equazione y = a + bx che approssima nel senso dei minimi quadrati la funzione f(x) di cui sono noti i seguenti valori:

- 1) La cardinalità dell'insieme M è card $(M) = 1 + 2(10^3 10^2)(3 (-3) + 1) = 12601.$ La precisione di macchina risulta pari a $\frac{1}{2}10^{-2} = 0.005$.
- 2) $P_0(x) = P(x)/(x-1) = x^3 + 2x^2 x 2$.
- 3) Per avere soluzioni di molteplicità superiore ad 1 si devono avere contemporaneamente nulle la funzione e la sua derivata prima. Imponendo tali condizioni si verifica che si ha una sola soluzione di molteplicità 2 data da x=-1 per K=-1.
- 4) Gli auttovalori di A sono $\lambda_1=2$, $\lambda_2=1/2$ e $\lambda_3=1/4$. Segue che gli autovalori di A^{-1} sono $\mu_1=1/2$, $\mu_2=2$ e $\mu_3=4$. Il polinomio caratteristico di A^{-1} è quindi dato da

$$P(\mu) = (-1)^3(\mu - \frac{1}{2})(\mu - 2)(\mu - 4) = -\mu^3 + \frac{13}{2}\mu^2 - 11\mu + 4.$$

5) I coefficienti a e b si ottengono risolvendo il sistema delle equazioni normali $A^TAc=g$ con

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} , \quad c = \begin{pmatrix} a \\ b \end{pmatrix} , \quad g = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} .$$

La soluzione è data da a = -1/6 e b = 3/2.

Ingegneria Informatica 11/01/2014

1) Si determini l'eerore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{x+y} \,.$$

- 2) Dire se le seguenti affermazioni sono vere o sono false.
 - a) A^3 matrice convergente $\Longrightarrow A$ matrice convergente;
 - b) A matrice convergence \implies A^3 matrice convergence;
 - c) $||A||_1 = 1.01 \Longrightarrow A$ matrice non convergente;
 - d) $\rho(A) = 1.001 \Longrightarrow A$ matrice non convergente.
- 3) $\alpha=2$ è punto fisso di una funzione $\phi(x)$ e risulta $\phi'(x)=\frac{1}{2}+\frac{1}{4}(x-2)^2$ per $x\in[1,3].$

Scegliendo $x_0 = \frac{3}{2}$, il metodo iterativo $x_{n+1} = \phi(x_n)$ risulta convergente?

4) Data la tabella di valori

determinare i valori del parametro reale α che rendono minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I=\int_0^1 (1+x)f(x)dx$ si utilizza la formula di quadratura

$$J_0(f) = a_0 f(x_0) .$$

Determinare il peso a_0 ed il nodo x_0 che danno la formula con grado di precisione massimo indicando tale grado di precisione.

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = \frac{x}{r_1}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 + \frac{y}{x+y} \left(\epsilon_x - \epsilon_y \right) .$$

- 2) a), b), d) sono implicazioni vere mentre c) è una implicazione falsa.
- 3) La funzione $\phi'(x)$ risulta positiva (per ogni x reale) e minore o uguale a $\frac{3}{4}$ per ogni $x \in [1,3]$. Sono quindi verificate le ipotesi del Teorema di Convergenza Locale per cui il metodo risulta convergente scegliendo come punto iniziale
- 4) Dal quadro delle differenze divise si ricava che il polinomio di interpolazione risulta di grado minimo se $\alpha=0$ o $\alpha=3$. In particolare, il polinomio di interpolazione è $P_3(x) = x^2 - x$.
- 5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x si ottiene il sistema

$$\begin{cases} a_0 = \frac{3}{2} \\ a_0 x_0 = \frac{5}{6} \end{cases}$$

da cui si ricava $a_0=\frac32$ e $x_0=\frac59$. La formula ottenuta non risulta esatta per $f(x)=x^2$ per cui il grado di precisione è m=1.

Ingegneria Informatica 01/02/2014

1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10,2,-3,3)$. Dati i numeri $x_1=0.0015,\ x_2=1.5768,\ x_3=0.7385$ e $x_4=0.0016$, determinare le loro rappresentazioni nell'insieme \mathcal{F} .

Determinare anche la rappresentazione in \mathcal{F} del numero $x_5 = x_1 - x_4$.

2) La matrice

$$A = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -2 & 1 & 2 \\ 2 & 0 & 1 & 0 \\ -1 & 7 & 1 & 3 \end{pmatrix}$$

è riducibile.

Determinare una matrice di permutazione che riduce la matrice A.

3) È data l'equazione

$$(x^2-1)(x-2)^2=0$$
.

Calcolare le soluzioni di tale equazione e per ciascuna di esse determinare l'ordine con cui converge il metodo di Newton.

4) Il polinomio $P(x) = x^3 - x^2 - x - 1$ è il polinomio di interpolazione della tabella di valori

5) Per approssimare l'integrale $I = \int_1^3 f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = f(3) + f(1)$$
.

Determinare il grado di precisione m della formula data.

Supponendo che si possa esprimere l'errore come $E_1(f) = Kf^{(s)}(\xi)$, determinare K e s.

1) Le rappresentazioni in \mathcal{F} dei numeri dati sono

$$\hat{x}_1 = 0.15 \times 10^{-2}$$
, $\hat{x}_2 = 0.16 \times 10^1$, $\hat{x}_3 = 0.74 \times 10^0$,
 $\hat{x}_4 = 0.16 \times 10^{-2}$, $\hat{x}_5 = -0.10 \times 10^{-3}$.

2) Una matrice che riporta A in forma ridotta è, per esempio,

$$P = \left(e^{(1)}|e^{(3)}|e^{(2)}|e^{(4)}\right) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3) L'equazione data ha soluzioni

$$\alpha_1 = \alpha_2 = 2 , \quad \alpha_3 = 1 , \quad \alpha_4 = -1 .$$

Il metodo di Newton converge ad α_1 con ordine p=1 essendo una radice con molteplicità uguale a 2.

Ponendo $f(x) = (x^2 - 1)(x - 2)^2$ si ha $f''(x) = 12x^2 - 24x + 6$ che non si annulla in $\alpha_{3,4}$ per cui il metodo di Newton converge a tali valori con ordine p = 2.

- 4) Il polinomio dato non è il polinomio di interpolazione dei valori dati perché ha grado 3 mentre, con tre punti, il polinomio di interpolazione deve avere al massimo grado 2.
- 5) La formula data ha grado di precisione m=1 (risulta esatta per f(x)=1,x mentre si ha $E_1(x^2)=-\frac{4}{3}$). Ne segue che s=2 e $K=-\frac{2}{3}$. (Si poteva arrivare allo stesso risultato osservando che la formula data è la formula trapezoidale)

Ingegneria Informatica 22/02/2014

1) Siano $x \in [1, 2]$ e $y \in [-2, -1]$ e si consideri la funzione

$$f(x,y) = \frac{y}{x} .$$

Indicare come si deve eseguire l'operazione di divisione e con quale errore assoluto si devono introdurre x e y per avere $|\delta_f| \le 10^{-2}$.

2) È data la funzione

$$\phi(x) = \frac{-x^3 + 2x + 2}{x} \, .$$

Determinare i punti fissi della funzione $\phi(x)$.

A quali di tali punti fissi è assicurata la convergenza del metodo iterativo $x_{n+1} = \phi(x_n), n = 0, 1, 2, \ldots$?

3) La matrice

$$A = \begin{pmatrix} 1+i & -1/2 & 0 & 0\\ 0 & 1-i & 1/2 & 0\\ 0 & 0 & -1-i & 1/2\\ -1/2 & 0 & 0 & -1+i \end{pmatrix}$$

ha autovalori reali?

4) È dato il sistema lineare sovradeterminato Ax = b con

$$A = \begin{pmatrix} \alpha & 1 \\ 1 & 1 \\ 1 & \alpha \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

Per quali valori reali α il sistema ha una unica soluzione nel senso dei minimi quadrati?

5) Determinare il peso a_0 ed il nodo x_1 per i quali la formula di quadratura

$$\int_{-1}^{1} f(x)dx = a_0 f(-1) + \frac{4}{3} f(x_1) + E_1(f)$$

ha grado di precisione massimo.

Indicare il grado di precisione m ottenuto.

1) Il punto $P_0 = (x, y)$ appartiene all'insieme di indeterminazione $D = [1, 2] \times [-2, -1]$.

Risultano $A_x = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial x} \right| = 2$ e $A_y = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial y} \right| = 1$. Per ottenere la precisione richiesta basta quindi che risulti, per esempio,

$$|\delta_a| \le \frac{1}{2} 10^{-2}$$
, $A_x |\delta_x| \le \frac{1}{4} 10^{-2}$, $A_y |\delta_y| \le \frac{1}{4} 10^{-2}$.

Ne segue che basta arrotondare la divisione alla seconda cifra decimale introducendo le approssimazioni di x e y com massimo errore assoluto minore di 10^{-3} (che equivale ad introdurli troncandone i valori alla terza cifra decimale).

2) Per ottenere i punti fissi basta risolvere l'equazione

$$x = \frac{-x^3 + 2x + 2}{x} \,.$$

Le soluzioni sono $\alpha_1=-1,\ \alpha_2=\sqrt{2}$ e $\alpha_3=-\sqrt{2}.$ Risultando

$$\phi'(\alpha_1) = 0$$
, $\phi'(\alpha_2) = -(2\sqrt{2} + 1)(<-1)$, $\phi'(\alpha_1) = 2\sqrt{2} - 1(>1)$,

il metodo assicura la sua convergenza solo al punto fisso α_1 .

- 3) All'unione dei cerchi di Gershgorin non appartengono valori reali per cui la matrice data ha solo autovalori complessi.
- 4) La soluzione del sistema nel senso dei minimi quadrati risulta unica se la matrice A ha rango massimo e quindi uguale a 2. L'unico valore α che rende la matrice A di rango uguale a 1 è $\alpha = 1$.
- 5) Imponendo che la formula data sia esatta per f(x)=1 e f(x)=x si ha $a_0=\frac{2}{3}$ e $x_1=\frac{1}{2}$. Risultando $E_1(x^2)\neq 0$, il grado di precisione è m=1.

Ingegneria Informatica 14/06/2014

1) Siano $x \in [2,3], y \in [1,2]$ e si consideri la funzione

$$f(x,y) = x y$$
.

Determinare il massimo errore assoluto commesso introducendo i due valori x e y con massimo errore assoluto $|\delta_x|, |\delta_y| \leq 10^{-2}$ e arrotondando il risultato della operazione alla terza cifra decimale.

2) È data l'equazione

$$x\log(x) - 2 = 0.$$

Determinare quante sono le soluzioni reali di tale equazione. Indicare un intervallo di separazione per ogni soluzione.

3) La matrice

$$A = \left(\begin{array}{ccc} 2 & -1 & 8 \\ 0 & 1 & 0 \\ 5 & 2 & 3 \end{array}\right)$$

risulta riducibile.

Indicare una matrice di permutazione P che la riduce.

4) È data la tabella di valori

Per quali valori reali α il polinomio di interpolazione risulta di grado minimo?

5) Per approssimare l'integrale $I = \int_0^2 f(x) dx$ si utilizza la formula di quadratura

$$J_2(f) = \frac{1}{3}f(0) + \frac{4}{3}f(1) + \frac{1}{3}f(2)$$
.

Determinare il grado di precisione m della formula data.

1) È noto che con $D = [2,3] \times [1,2]$ risulta

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y|$$

 $\begin{array}{l} \operatorname{con}\, A_x \geq \sup_D \left| \frac{\partial f}{\partial x} \right| \, \operatorname{e}\, A_y \geq \sup_D \left| \frac{\partial f}{\partial y} \right|. \\ \operatorname{Risultando}\, A_x = 2 \, \operatorname{e}\, A_y = 3 \, \operatorname{si}\, \operatorname{ha} \end{array}$

$$|\delta_f| \le \frac{1}{2} 10^{-3} + 2 \cdot 10^{-2} + 3 \cdot 10^{-2} = 5.05 \cdot 10^{-2}.$$

- 2) Con una seplice separazione grafica (per esempio $g(x) = \log(x)$ e h(x) = 2/x) si deduce che l'equazione ha una sola soluzione reale α con $\alpha \in [2,3]$.
- 3) Costruendo il grafo orientato associato alla matrice A si nota che il secondo nodo non risulta collegato agli altri due nodi per cui una matrice che riduce la matrice data è

$$P = (e^{(2)}|e^{(1)}|e^{(3)}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 4) Escludendo la coppia di valori $(0, \alpha)$ si costruisce il polinomio di interpolazione relativo alle altre tre coppie di valori ottenendo $P_2(x) = x^2 1$. Ne segue che per non aumentare il grado del polinomio di interpolazione di deve scegliere $\alpha = P_2(0) = -1$.
- 5) La formula data non è altro che la formula di Simpson applicata all'intervallo [0,2] per cui il suo grado di precisione è m=3.

Ingegneria Informatica 05/07/2014

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y,z) = \frac{x+y}{z} \,.$$

2) Calcolare i punti fissi (reali) della funzione

$$\phi(x) = \frac{2 - x^2}{x^3} \,.$$

3) Gli autovalori di una matrice $A \in \mathbb{C}^{3\times 3}$ sono

$$\lambda_1 = \frac{1}{2}i \;, \quad \lambda_2 = -\frac{1}{3} \;, \quad \lambda_3 = i \;. \label{eq:lambda_1}$$

- a) Calcolare il raggio spettrale della matrice A.
- b) La matrice A^4 risulta convergente?
- 4) Calcolare i valori reali del parametro K per i quali l'equazione

$$e^{-x} - Kx^2 = 0 , \quad K \in \mathbb{R} ,$$

ha soluzioni con molteplicità superiore a 1.

5) È data la tabella di valori

Determinare la retta di equazione y = ax + b che approssima i valori dati nel senso dei minimi quadrati.

1) Seguendo l'algoritmo $r_1 = x + y$ e $r_2 = r_1/z$, si ha l'errore relativo dato da

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{x}{x+y} \epsilon_x + \frac{y}{x+y} \epsilon_y - \epsilon_z$$
.

2) Per ottenere i punti fissi basta risolvere l'equazione

$$x = \frac{2 - x^2}{r^3} \, .$$

Le soluzioni reali sono $\alpha_1 = -1$, $\alpha_2 = 1$.

- 3) Il raggio spettrale è $\rho(A) = 1$ e la matrice A^4 (come la matrice A) non risulta convergente avendo un autovalore di modulo uguale a 1.
- 4) Ponendo $f(x) = e^{-x} Kx^2$, le soluzioni di molteplicità maggiore di 1 devono azzerare la funzione e la sua derivata prima. Si deve quindi risolvere il sistema

$$\begin{cases} e^{-x} - Kx^2 = 0\\ -e^{-x} - 2Kx = 0 \end{cases}$$

che ha un'unica soluzione reale x = -2 con $K = e^2/4$.

5) La soluzione nel senso dei minimi quadrati si ottiene ponendo

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}, \quad g = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \quad c = \begin{pmatrix} a \\ b \end{pmatrix}$$

e risolvendo il sistema "normale" $\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{c} = \boldsymbol{A}^T\boldsymbol{g}.$

Si ottiene la soluzione $c = (3/5, 1/10)^T$ per cui la retta cercata ha equazione

$$y = \frac{3}{5}x + \frac{1}{10} \,.$$

Ingegneria Informatica 26/07/2014

1) Siano $x \in [2,3], y \in [1,2]$ e si consideri la funzione

$$f(x,y) = x y$$
.

Determinare il massimo errore assoluto che si deve commettere nella introduzione dei dati e con quale massimo errore assoluto si deve eseguire l'operazione per avere un massimo errore assoluto finale $|\delta_f| \leq 10^{-3}$.

2) L'equazione

$$\log(x) - \frac{1}{x} = 0$$

ha una unica soluzione $\alpha \in [1.5,2]$. Dire se, scegliendo opportunamente il valore iniziale x_0 , il metodo iterativo

$$x_{n+1} = e^{1/x_n}$$
, $n = 0, 1, 2, \dots$

può risultare convergente con limite $\alpha.$

3) Gli autovalori di una matrice $A \in \mathbb{C}^{3\times 3}$ sono

$$\lambda_1 = 2i$$
, $\lambda_2 = 1$, $\lambda_3 = 1 + i$.

Determinare i valori $\alpha \in \mathbb{R}$ per i quali la matrice $B = \alpha A$ risulta convergente.

4) È data la matrice

$$A = \begin{pmatrix} 1 + \alpha & \alpha & 0 \\ 1 & 5 & 2 \\ 0 & \beta & \beta \end{pmatrix} , \quad \alpha, \beta \in \mathbb{R} .$$

Determinare i valori reali dei parametri α e β per i quali, rispettivamente,

- a) A risulta simmetrica,
- b) A risulta a predominanza diagonale forte,
- c) A risulta a predominanza diagonale debole,
- 5) Calcolare i pesi a_0 e a_1 in modo tale che la formula di quadratura

$$\int_{1}^{2} x^{4} f(x) dx \simeq a_{0} f(1) + a_{1} f(2)$$

abbia grado di precisione (algebrico) massimo.

1) Il punto $P_0=(x,y)$ appartiene all'insieme di indeterminazione $D=[2,3]\times [1,2].$

Risultano $A_x = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial x} \right| = 2$ e $A_y = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial y} \right| = 3$. Per ottenere la precisione richiesta basta quindi che risulti, per esempio,

$$|\delta_a| \le \frac{1}{2} 10^{-3}$$
, $A_x |\delta_x| \le \frac{1}{4} 10^{-3}$, $A_y |\delta_y| \le \frac{1}{4} 10^{-3}$.

Ne segue che basta arrotondare la divisione alla terza cifra decimale introducendo l'approssimazione di x com massimo errore assoluto minore di 10^{-4} (troncare alla quarta cifra decimale) e l'approssimazione di y con massimo errore assoluto minore di $\frac{1}{2}10^{-4}$ (arrotondare alla quarta cifra decimale).

- 2) Il metodo iterativo proposto ha la funzione di iterazione data da $\phi(x) = e^{1/x}$ con derivata $\phi'(x) = -\frac{1}{x^2}e^{1/x}$. Sull'intervallo [1.5, 2] si ha $|\phi'(x)| < \frac{1}{4}e^{2/3} < 1$ per cui il metodo, scegliendo opportunamente il valore iniziale, risulta convergente.
- 3) Deve risultare $|\alpha \lambda_i| < 1, i = 1, 2, 3$. Ne segue che la matrice B risulta convergente se $|\alpha| < \frac{1}{2}$.
- 4) La matrice A è simmetrica se α = 1 e β = 2. Osservando la terza riga si deduce che non esistono valori dei parametri per i quali A sia a predominanza diagonale forte. La predominanza diagonale debole si ha per ogni valore reale di β con la condizione |1 + α| ≥ |α| che risulta verificata per α ≥ −1/2.
- 5) Imponendo che la formula data sia esatta per f(x)=1 e f(x)=x si ha $a_0=\frac{57}{30}$ e $a_1=\frac{129}{30}$. Risultando $E_1(x^2)\neq 0$, il grado di precisione è m=1.

Ingegneria Informatica 20/09/2014

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = x - y^2.$$

2) È data l'equazione

$$e^{-x} + x^2 - 2 = 0.$$

Determinare il numero delle radici reali indicando per ciascuna di esse un intervallo di separazione di ampiezza non superiore a 1.

3) È data la matrice

$$A = \left(\begin{array}{ccc} 5 & i & -2i \\ -i & 0 & 1 \\ 2i & 1 & 1 \end{array} \right) .$$

- a) La matrice A è hermitiana?
- b) $\lambda = 1 + i$ è autovalore della matrice?
- c) $\lambda = 11$ è autovalore della matrice?

4) Determinare i valori reali α per i quali il sistema lineare sovradeterminato

$$\begin{pmatrix} 1 & \alpha \\ 1 & \alpha^2 \\ 2 & \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

ha un'unica soluzione nel senso dei minimi quadrati.

5) Calcolare il peso a_0 ed il nodo x_0 in modo tale che la formula di quadratura

$$\int_0^1 e^{-x} f(x) \, dx \simeq a_0 f(x_0)$$

abbia grado di precisione (algebrico) massimo. Indicare il grado di precisione ottenuto.

1) Seguendo l'algoritmo $r_1 = y \cdot y$ e $r_2 = x - r_1$ si ha l'errore relativo dato da

$$\epsilon_f = -\frac{y^2}{x-y^2}\epsilon_1 + \epsilon_2 + \frac{x}{x-y^2}\epsilon_x - \frac{2y^2}{x-y^2}\epsilon_y \ .$$

- 2) Da una semplice separazione grafica si verifica che l'equazione data ha due soluzioni reali $\alpha_1\in]-1,0[$ e $\alpha_2\in]1,\sqrt{2}[$.
- 3) La matrice A è hermitiana.

Il numero 1+i non può essere autovalore perché gli autovalori di una matrice hermitiana sono tutti numeri reali.

Il numero 11 non è autovalore di A perché, sul piano complesso, è esterno all'unione dei cerchi di Gershgorin.

- 4) Il sistema ha una unica soluzione nel senso dei minimi quadrati se la matrice dei coefficienti ha rango uguale a 2 (rango massimo). Tale rango si ha per ogni valore reale $\alpha \neq 0$.
- 5) Imponendo che la formula risulti esatta per f(x)=1, x si ricava $a_0=\frac{e-1}{e}$ e $x_0=\frac{e-2}{e-1}$. Il grado di precisione ottenuto è m=1 risultando $E(x^2)\neq 0$.

1343 s

Ingegneria Informatica 17/01/2015

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x^2}{x+y} \, .$$

2) Dire se le seguenti affermazioni sono vere o sono false.

a)
$$||A||_2 < 2 \Longrightarrow \rho(A) < \sqrt{2};$$

b)
$$||A||_{\infty}^2 < 2 \Longrightarrow \rho(A) < \sqrt{2}$$
;

c)
$$A = A^H \Longrightarrow ||A||_2 = \rho(A);$$

d)
$$A = A^H \Longrightarrow ||A||^2 < ||A^2||$$
.

3) Calcolare le soluzioni dell'equazione

$$x^3 + 3x^2 - 4 = 0$$

indicando per ciascuna di esse l'ordine con cui converge il metodo di Newton se applicato per la loro approssimazione.

4) Data la tabella di valori

determinare i valori dei parametri reali α e β che rendono minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I=\int_0^1 f(x)dx$ si utilizza la formula di quadratura

$$J_0(f) = a_0 f(x_0) .$$

Determinare il peso a_0 ed il nodo x_0 che danno la formula con grado di precisione massimo indicando il grado di precisione raggiunto.

71

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = x^2$, $r_3 = \frac{r_2}{r_1}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_3 + \epsilon_2 - \epsilon_1 + \frac{x+2y}{x+y} \epsilon_x - \frac{y}{x+y} \epsilon_y$$
.

- 2) a) e d) non sono vere mentre lo sono b) e c).
- 3) L'equazione ha soluzioni

$$\alpha_1 = 1$$
, $\alpha_{2,3} = -2$.

Il metodo di Newton converge con ordine 2 nella approssimazione di α_1 mentre ha ordine 1 se si approssima α_2 .

4) Dal quadro delle differenze divise si ricava che il polinomio che interpola i dati che non coinvolgono α e β è $P(x) = x^2 - 1$. Da questo si ricavano

$$\alpha = 0$$
, $\beta = 2$.

5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x si ottiene il sistema

$$\begin{cases} a_0 = 1 \\ a_0 x_0 = \frac{1}{2} \end{cases}$$

da cui si ricava $a_0=1$ e $x_0=\frac{1}{2}$. La formula ottenuta non risulta esatta per $f(x)=x^2$ per cui il grado di precisione è m=1.

Ingegneria Informatica 31/01/2015

1) Determinare una maggiorazione del valore assoluto dell'errore assoluto nel calcolo della funzione

$$f(x,y) = x \cdot y$$

nel punto $P_0 = (\pi, \sqrt{3})$ introducento π arrotondato alla seconda cifra decimale, $\sqrt{3}$ troncato alla quarta cifra decimale ed arrotondando il risultato alla terza cifra decimale.

2) La matrice

$$A = \left(\begin{array}{cccc} 1 & 0 & 2 & 1 \\ 0 & 7 & 0 & 1 \\ 5 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

è riducibile.

Determinare una matrice di permutazione P che riporta la matrice A in forma triangolare inferiore a blocchi con blocchi diagonali quadrati.

3) Si consideri l'equazione

$$e^{-x} - x^2 - \frac{1}{2} = 0.$$

Individuare un intervallo di separazione per ciascuna radice dell'equazione data dicendo anche se le condizioni di convergenza del metodo di bisezione sono verificate.

4) È dato il sistema lineare sovradeterminato Ax = b con

$$A = \begin{pmatrix} \alpha & 1 \\ \alpha^2 & 1 \\ 1 & \alpha \end{pmatrix} , \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} , \quad b = \begin{pmatrix} 1 \\ \alpha \\ \alpha^2 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

Calcolare i valori reali α per i quali il sistema non ha una unica soluzione nel senso dei minimi quadrati.

5) Per approssimare l'integrale $I=\int_{-1}^1 f(x)dx$ si utilizza la formula di quadratura

$$J_2(f) = af(-1/2) + bf(0) + cf(1/2)$$
.

Determinare i pesi a, b e c che danno la formula con grado di precisione massimo indicando il grado di precisione raggiunto.

73

1) Ponendo $\pi \in [3, 4] \text{ e } \sqrt{3} \in [1, 2] \text{ si ha}$

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = \frac{1}{2} \times 10^{-3} + 2\frac{1}{2} \times 10^{-2} + 4 \times 10^{-2} = 1.09 \times 10^{-2}.$$

- 2) La matrice A è trasformata nella sua forma ridotta utilizzando la matrice di permutazione $P = (e^{(4)}|e^{(2)}|e^{(3)}|e^{(1)}).$
- 3) L'equazione data una radice reale $\alpha_1 \in [0.01, 1]$. Le condizioni di convergenza del metodo di bisezione sono verificate essendo la funzione $f(x) = e^{-x} - x^2 - \frac{1}{2}$ continua nell'intervallo di separazione e cambiando di segno una sola volta nello stesso intervallo.
- 4) La matrice A ha rango 1 se e solo se $\alpha = 1$ e quindi solo per tale valore il sistema lineare ha infinite soluzioni nel senso dei minimi quadrati.
- 5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x e $f(x) = x^2$ si ottiene il sistema

$$\begin{cases} a+b+c = 2 \\ -\frac{1}{2}a + \frac{1}{2}c = 0 \\ \frac{1}{4}a + \frac{1}{4}c = \frac{2}{3} \end{cases}$$

da cui si ricava $a=c=\frac43$ e $b=-\frac23$. La formula ottenuta risulta esatta per $f(x)=x^3$ ma non per $f(x)=x^4$ per cui il grado di precisione è m=3.

Ingegneria Informatica 21/02/2015

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{y^2} \, .$$

2) Calcolare gli autovalori della matrice

$$A = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 1 & & & 0 \end{pmatrix} \in \mathbb{R}^{n \times n} .$$

3) È data l'equazione

$$e^{-x} + Kx^2 = 0 , \quad K \in \mathbb{R} .$$

Determinare i valori reali K per i quali l'equazione data ha radici di molteplicità maggiore di uno.

4) Il polinomio $P(x) = 2x^2 + x + 1$ è il polinomio di interpolazione di Hermite relativo ai dati

$$\begin{array}{c|cccc} x & 0 & -1 \\ \hline f(x) & 1 & 2 \\ \hline f'(x) & 1 & -3 \\ \end{array} ?$$

5) Per approssimare l'integrale $I=\int_0^1 x f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = \frac{1}{6}f(0) + \frac{1}{3}f(1)$$
.

Determinare il grado di precisione m della formula data.

Nell'ipotesi che l'errore sia esprimibile come $E_1(f) = Kf^{(s)}(\xi)$, determinare K

1) Considerando l'algoritmo

$$r_1 = y^2$$
, $r_2 = x/r_1$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 + \epsilon_x - 2\epsilon_y .$$

2) La matrice A è una matrice di Frobenius e la sua equazione caratteristica risulta essere $\lambda^n-1=0$. Ne segue che gli autovalori di A sono le radici n-sime dell'unità

$$\lambda_j = \cos\left(\frac{2j\pi}{n}\right) + i\sin\left(\frac{2j\pi}{n}\right), \quad j = 0, 1, \dots, n-1.$$

- 3) Posto $f(x)=e^{-x}+Kx^2$, basta imporre che siano contemporaneamente verificate le equazioni f(x)=0 e f'(x)=0. Si ottiene chequesto risulta verificato se x=-2 e $K=-\frac{e^2}{4}$.
- 4) Il polinomio dato è il polinomio di interpolazione di Hermite relativo ai valori dati perché ha grado 2 (quindi non superiore a 2k + 1 = 3) e si ha

$$P(0) = 0 \;, \quad P(-1) = 2 \;, \quad P'(0) = 1 \;, \quad P'(-1) = -3 \;.$$

5) La formula data ha grado di precisione m=1 (risulta esatta per f(x)=1,x mentre si ha $E_1(x^2)=-\frac{1}{12}$). Ne segue che s=2 e $K=-\frac{1}{24}$.

Ingegneria Informatica 13/06/2015

1) Una matrice $A \in \mathbb{C}^{4\times 4}$ ha il polinomio caratteristico dato da

$$P(\lambda) = \lambda^4 - 3\lambda^3 + \lambda^2 - 1.$$

- a) Determinare det(A).
- b) A ha un autovalore nullo?
- c) A risulta convergente?
- 2) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{x^3 + 4x^2 - 2x - 4}{x^3} \,.$$

- 3) Determinare la cardinalità dell'insieme dei numeri di macchina F(3, 5, -2, 2).
- 4) Calcolare i pesi della formula

$$J_1(f) = af(0) + bf(1)$$

che approssima l'integrale $\int_0^1 e^x f(x) dx$. Indicare il grado di precisone della formula ottenuta.

5) Calcolare il polinomio di interpolazione relativo alla tabella

- 1) Dal polinomio caratteristico (di grado pari) si deduce che il $\det(A) = -1$. Da questo segue che non si possono avere autovalori nulli essendo il determinante il prodotto degli autovalori. Infine, la matrice non risulta convergente avendo $|\det(A)| \geq 1$.
- 2) I punti fissi dono le soluzioni dell'equazione $x = \phi(x)$. Si hanno quindi i punti fissi

$$\alpha_1 = -1, \quad \alpha_2 = 2, \quad \alpha_3 = \sqrt{2}, \quad \alpha_4 = -\sqrt{2}.$$

- 3) La cardinalità dell'insieme di numeri di macchina è card(F)=1621.
- 4) I pesi della formula si ottengono imponendo che risulti esatta per le funzioni f(x)=1 e f(x)=x. Si ottiene quindi

$$a = e - 2$$
, $b = 1$.

La formula ottenuta non risulta è esatta per $f(x)=x^2$ per cui il grado di precisione ottenuto è m=1.

5) Il polinomio di interpolazione è $P_4(x) = x^2$.

Ingegneria Informatica 04/07/2015

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x^2 - y}{x} \,.$$

2) È data la matrice

$$A = \begin{pmatrix} -3i & 1/2 & 1/2 \\ -i & 4 & 2i \\ -1/2 & 0 & -3 \end{pmatrix} .$$

- a) La matrice A ha 3 (tre) autovalori distinti?
- b) La matrice ha un autovalore $\lambda = 0$?
- 3) È data l'equazione

$$x^2 - 1 - \cos(x) = 0.$$

Indicare il numero delle radici reali dell'equazione data individuando anche intervalli di separazione di tali radici.

4) Risolvere nel senso dei minimi quadrati il sistema lineare sovradeterminato

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 1 \end{pmatrix} \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad = \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} .$$

5) Per approssimare l'integrale $I=\int_{-1}^1 f(x)dx$ si utilizza la formula di quadratura

$$J_3(f) = \frac{1}{4} \left(f(-1) + 3f(-1/3) + 3f(1/3) + f(1) \right) .$$

Determinare il grado di precisione m della formula data.

Nell'ipotesi che l'errore sia esprimibile come $E_1(f) = Kf^{(s)}(\xi)$, determinare K

1) Considerando l'algoritmo

$$r_1 = y/x$$
, $r_2 = x - r_1$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = -\frac{y}{x^2 - y}\epsilon_1 + \epsilon_2 + \frac{x^2 + y}{x^2 - y}\epsilon_x - \frac{y}{x^2 - y}\epsilon_y .$$

2) I cerchi di Gerhgorin relativi alla matrice A sono due a due disgiunti per cui si hanno tre autovalori distinti.

All'unione dei tre cerchi non appartiene l'origine degli assi del piano di Gauss per cui $\lambda=0$ non può essere autovalore di A.

- 3) L'equazione data ha 2 (due) soluzioni $\alpha_1 \in]-\pi/2, -1[$ e $\alpha_2 \in]1, \pi/2.[$
- 4) Si ha il sistema delle "equazioni normali" $A^TAx = A^tb$

$$\left(\begin{array}{cc} 3 & 2 \\ 2 & 6 \end{array}\right) \quad \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \quad = \quad \left(\begin{array}{c} 1 \\ -1 \end{array}\right)$$

la cui soluzione è $(x_1, x_2)^T = (4/7, -5/14)^T$.

5) La formula data ha grado di precisione m=3 (risulta esatta per $f(x)=1,x,x^2,x^3$ mentre si ha $E_3(x^4)=-\frac{16}{135}$). Ne segue che s=4 e $K=-\frac{2}{405}$.

Ingegneria Informatica 25/07/2015

1) Si determini la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & 0 \end{array}\right) .$$

- 2) Sia $A \in \mathbb{C}^{n \times n}$ una matrice con $\rho(A) = \frac{7}{5}$. Dire se le seguenti affermazioni possono essere o non essere verificate.
 - a) $||A||_1 = 3/2$.
 - b) $||A||_{\infty} = 1.2$.
 - c) $\rho(A^2) = 49/25$.
 - d) $\rho(A^{-1}) = 4/7$.
- 3) Indicare i valori reali K per i quali l'equazione

$$x^2 + x - Ke^x = 0$$

ha soluzioni reali di molteplicità superiore a uno.

4) Determinare i valori reali α e β per i quali risulta minimo il grado del polinomio che interpola i dati della tabella

Indicare il polinomio ottenuto.

5) Si vuole applicare la formula dei trapezi per approssimare l'integrale

$$I = \int_0^1 \cos(x) dx$$

con massimo errore assoluto $E \leq 10^{-3}$.

Si determini il minimo numero di intervalli in cui suddividere [0,1] per poter soddisfare la richiesta.

1) La fattorizzazione richiesta è data da

$$L = \left(\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right) \;, \quad R = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right) \;.$$

- 2) Le affermazioni a) e c) sono vere o realizzabili mentre risulta impossibile che si verifichino le affermazioni b) e d).
- 3) Posto $f(x)=x^2+x-Ke^x$, basta imporre che siano contemporaneamente verificate le equazioni f(x)=0 e f'(x)=0. Si ottiene che questo risulta verificato se $x^*=\frac{1\pm\sqrt{5}}{2}$ e $K=\frac{2x^*+1}{e^x}$.
- 4) Escludendo dalla tabella i due punti che coinvolgono α e β , si ottiene il polinomio di interpolazione $P_4(x) = 2x^2 x + 1$. Per non essere costretti ad elevare il grado di tale polinomio basta scegliere $\beta = P_4(3) = 16$ e α tra le soluzioni dell'equazione $2x^2 x 3 = 0$ che sono $\alpha_1 = -1$ e $\alpha_2 = 1.5$.
- 5) La derivata seconda della funzione integranda è $f'' = -\cos(x)$ per cui il suo valore assoluto sull'intervallo di integrazione può essere maggiorato con 1. Indicato con m il numero di intervalli necessari, tale valore deve soddisfare la disequazione $\frac{(b-a)^3}{12m^2}|f''(x)| \leq \frac{10^{-3}}{2}$ (si deve tenere conto degli errori che si commetteranno nel calcolo effettivo della approssimazione dell'integrale). Ne segue

$$m \ge 13$$
.

Ingegneria Informatica 05/09/2015

1) Si vuole calcolare la funzione

$$f(x,y) = x/y^2$$

nel punto $P_0 = (\sqrt{2}, e)$.

Si indichi un insieme di indeterminazione a cui appartiene P_0 . Supponendo di commettere un errore assoluto algoritmico $|\delta_a| \leq 10^{-2}$ e di introdurre i dati con errori assoluti $|\delta_x| \leq 10^{-2}$ e $|\delta_y| \leq 10^{-2}$, quale sarà il massimo errore assoluto $|\delta_f|$?

2) Calcolare gli autovalori della matrice

$$A = \begin{pmatrix} 1 & \alpha & \alpha \\ \alpha & 1 & \alpha \\ \alpha & \alpha & 1 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

3) Determinare i punti fissi a cui può convergere lo schema iterativo

$$x_{n+1} = \frac{1 + 2x_n - x_n^4}{2x_n^2}, \quad n = 0, 1, 2, \dots$$

4) Determinare l'equazione della retta y = ax + b che approssima nel senso dei minimi quadrati la funzione f(x) di cui si conoscono i valori

5) Calcolare i pesi a_0 e a_1 in modo tale che la formula di quadratura

$$\int_0^1 x^2 f(x) dx \simeq a_0 f(0) + a_1 f(1)$$

abbia grado di precisione (algebrico) massimo. Indicare il grado di precisione ottenuto.

1) Consideriamo l'insieme di indeterminazione $D=[1,2]\times[2,3]$. Si ha quindi $A_x=\sup_{(x,y)\in D}\left|\frac{\partial f}{\partial x}\right|=\frac{1}{4}$ e $A_y=\sup_{(x,y)\in D}\left|\frac{\partial f}{\partial y}\right|=\frac{1}{2}$. Ne segue che

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = \frac{7}{400}$$

2) Sommando ad A la matrice $(\alpha-1)I$ si ottiene una matrice piena con tutti elementi uguali ad α i cui autovalori sono $\mu_1=\mu_2=0$ e $\mu_3=3\alpha$. Gli autovalori di A sono quindi

$$\lambda_1 = \lambda_2 = 1 - \alpha, \qquad \lambda_3 = 2\alpha + 1.$$

- 3) I punti fissi sono le soluzioni dell'equazione $x=\frac{1+2x-x^4}{2x^2}$ per cui si ha $\alpha_1=-1$ (molteplicità 3) e $\alpha_2=1$.
- 4) L'equazione delle retta si ricava risolvendo il sistema lineare $A^TAx = A^Tf$ con

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}, \quad x = \begin{pmatrix} a \\ b \end{pmatrix}, \quad f = \begin{pmatrix} 1 \\ 2 \\ 5 \\ 10 \end{pmatrix}.$$

Si ottiene il sistema lineare

$$\left(\begin{array}{cc} 14 & 6 \\ 6 & 4 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 42 \\ 18 \end{array}\right)$$

la cui soluzione è $a=3,\,b=0.$ La retta cercata ha equazione y=3x.

5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x si ottengono i pesi $a_0 = \frac{1}{12}$ e $a_1 = \frac{1}{4}$. La formula ha grado di precisione m = 1 poiché $E_1(x^2) \neq 0$.

Ingegneria Informatica 09/01/2016

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x+y}{x-y} \, .$$

2) È data la matrice

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) \ .$$

Determinare i valori reali α per i quali risulta convergente la matrice $B=I+\alpha A.$

3) Dire quanti punti fissi ha la funzione

$$\phi(x) = 2e^x - x^2$$

indicando per ciascuno di essi un intervallo di separazione.

4) Data la tabella di valori

determinare i valori del parametro reale α che rendono minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(-1/2) + a_1 f(2/3)$$
.

Determinare i pesi a_0 e a_1 che danno la formula con grado di precisione massimo indicando il grado di precisione raggiunto.

SOLUZIONE MODIFICARE

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = x - y$, $r_3 = \frac{r_1}{r_2}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 - \frac{2xy}{x^2 - y^2} \epsilon_x + \frac{2xy}{x^2 - y^2} \epsilon_y .$$

- 2) Gli autovalori della matrice $I + \alpha A$ sono $\lambda_1 = 1 + 3\alpha$ e $\lambda_2 = 1 \alpha$. Non esistono valori reali del parametro α tali da rendere entrambi gli autovalori di modulo minore di 1.
- 3) La funzione $\phi(x)$ ha un solo punto fisso $\alpha \in]-2,-1[$.
- 4) Dal quadro delle differenze divise si ricava che il polinomio interpolante di grado minimo si ottiene per $\alpha=2$ ed è $P_3(x)=x^2+x$.
- 5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x si ottiene il sistema

$$\begin{cases} a_0 + a_1 = 2 \\ -\frac{1}{2}a_0 + \frac{2}{3}a_1 = 0 \end{cases}$$

da cui si ricava $a_0 = \frac{8}{7}$ e $a_1 = \frac{6}{7}$.

La formula ottenuta risulta esatta per $f(x) = x^2$ ma non per $f(x) = x^3$ per cui il grado di precisione è m = 2.

Ingegneria Informatica 30/01/2016

1) Si vuole calcolare la funzione

$$f(x,y) = x \cdot y$$

in un punto $P_0 \in [0, 1] \times [1, 2]$.

Per avere un errore assoluto $|\delta_f| \leq 10^{-2}$, quali limitazioni devono soddisfare l'errore assoluto algoritmico $|\delta_a|$ e gli errori assoluti $|\delta_x|$ e $|\delta_y|$?

2) La matrice

$$A = \left(\begin{array}{rrrr} -1 & 0 & 0 & 1\\ 0 & 3 & 1 & 2\\ 2 & 2 & 4 & 0\\ 5 & 0 & 0 & 1 \end{array}\right)$$

è riducibile. Determinare una matrice di permutazione ${\cal P}$ che riduce la matrice data.

3) Le soluzioni distinte dell'equazione

$$x^5 + 3x^4 - 2x^3 - 6x^2 + x + 3 = 0$$

sono $\alpha_1 = 1$, $\alpha_2 = -1$ e $\alpha_3 = -3$.

Se si applicasse il metodo di Newton per approssimarle, quale ordine di convergenza otterremmo per ciascuna di esse?

4) Data la tabella di valori

determinare la retta di equazione y=ax+b che approssima la funzione nel senso dei minimi quadrati.

5) Si vuole approssimare l'integrale $I(f)=\int_0^1 e^{-x}dx$ utilizzando la formula dei trapezi.

In quanti sotto intervalli si deve dividere l'intervallo di integrazione per avere una approssimazione con un errore massimo $E \leq 10^{-2}$?

1) È noto che

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y|.$$

La limitazione richiesta si ottiene se, per esempio, $|\delta_a| \leq 10^{-2}/2$, $A_x |\delta_x| \leq 10^{-2}/4$ e $A_y |\delta_y| \leq 10^{-2}/4$. Avendo $A_x = 2$ e $A_y = 1$ si ottiene $|\delta_x| \leq 10^{-2}/8$ e $|\delta_y| \leq 10^{-2}/4$. Ciò significa arrotondare il risultato della moltiplicazione alla seconda cifra decimale e introdurre le approssimazioni di x e y troncandone i valori alla terza cifra decimale.

- **2)** Una matrice che riduce $A \in P = \{e^{(1)}|e^{(4)}|e^{(3)}|e^{(2)}\}.$
- 3) Le soluzioni α_1 e α_2 hanno molteplicità 2 per cui il metodo di Newton converge a tali valori con ordine p=1 mentre converge ad α_3 con ordine $p\geq 2$ (con ulteriori conti si verifica p=2).
- 4) Il sistema delle equazioni normali $A^TAc = A^Tb$ è dato da

$$\left(\begin{array}{cc} 18 & 4 \\ 4 & 4 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 4 \end{array}\right) .$$

La soluzione è $a=-3/14,\,b=17/14.$

5) Da $f(x) = e^{-x}$ si ottiene $M_2 = \sup_{x \in [0,1]} |f''| = 1$. Imponendo che l'errore della formula dei trapezi sia minore di $10^{-2}/2$ si ha

$$\frac{(b-a)^3 M_2}{12L^2} \leq \frac{10^{-2}}{2} \quad \Longrightarrow \quad \frac{1}{12L^2} \leq \frac{10^{-2}}{2} \quad \Longrightarrow \quad L \geq 5 \; .$$

Ingegneria Informatica 20/02/2016

- 1) Una matrice $A \in \mathbb{C}^{3\times 3}$ ha autovalori $\lambda_1 = 1$, $\lambda_2 = -1$ e $\lambda_3 = 1/2$. Indicare per quali valori reali α risulta convergente la matrice $B = \alpha I + A$.
- 2) Fattorizzare LR la matrice

$$A = \left(\begin{array}{rrr} -1 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -1 \end{array}\right) .$$

3) È data l'equazione

$$e^{-x} + Kx = 0$$
, $K \in \mathbb{R}$.

Calcolare i va
olri reali K per i quali l'equazione ha radici di molte
plicità maggiore di uno indicando i valori di tali radici.

4) Data la tabella di valori

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline f(x) & -1 & 1 \\ \hline f'(x) & 1 & 5 \\ \end{array},$$

il polinomio $H(x) = x^4 + x - 1$ è il polinomio di interpolazione di Hermite relativo a tale tabella?

5) Si approssima l'integrale $I(f) = \int_{-2\sqrt{3}}^{2\sqrt{3}} f(x) dx$ con la formula

$$J_1(f) = 2\sqrt{3}f(-2) + 2\sqrt{3}f(2).$$

Supponendo di poter scrivere $E_1(f) = Kf^{(s)}(\xi)$, determinare K e s.

- 1) Risulta evidente che non esistono valori reali di α che rendono convergente la matrice B.
- 2) Si ha

$$L = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{array}\right) , \qquad R = \left(\begin{array}{rrr} -1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{array}\right) .$$

- 3) Ponendo $f(x) = e^{-x} + Kx$ e risolvendo il sistema dato dalle equazioni f(x) = 0 e f'(x) = 0 si ottiene una unica radice di molteplicità maggiore di 1 data da $\alpha = -1$ corrispondente a K = e.
- 4) Il polinomio H(x) non è il polinomio di interpolazione di Hermite avendo grado 4 invece di avere al massimo grado 3.
- 5) La formula proposta risulta esatta per $f(x)=1,x,x^2,x^3$ mentre $E(x^4)=\frac{256}{5}\sqrt{3}.$ Da questo si ha s=4 e $K=\frac{32}{15}\sqrt{3}.$

1343.5

Ingegneria Informatica 11/06/2016

1) Si vuole calcolare la funzione

$$f(x,y) = x - y$$

in un punto $P_0 \in [1, 2] \times [2, 3]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq \frac{1}{2} 10^{-2}$ e di introdurre i valori x e y con errori $|\delta_x| \leq 10^{-2}$ e $|\delta_y| \leq 10^{-2}$.

Quale è il massimo errore assoluto $|\delta_f|$?

2) Un sistema lineare Ax = b ha matrice dei coefficienti

$$A = \begin{pmatrix} 1 & \alpha & 0 \\ \alpha & 1 & -\alpha \\ 0 & -\alpha & 1 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

Per quali valori reali α converge il metodo iterativo di Jacobi per risolvere tale sistema?

3) Determinare i punti fissi reali della funzione

$$\phi(x) = \frac{x^2 - 5x + 6}{x^2 + x} \,.$$

4) Data la tabella di valori

determinare la retta y = a + bx che approssima la funzione f(x) nel senso dei minimi quadrati.

5) Si approssima l'integrale $I(f) = \int_{-1}^{1} e^{x} f(x) dx$ con la formula

$$J_1(f) = a_0 f(-1) + a_1 f(1).$$

Determinare i pesi a_0 e a_1 in modo da ottenere la formula con grado di precisione massimo.

Indicare il grado di precisione ottenuto.

1) Risultando $\frac{\partial f}{\partial x}=1$ e $\frac{\partial f}{\partial y}=-1$ si ha

$$|\delta_f| \le |\delta_a| + |\delta_x| + |\delta_y| = \frac{5}{2} 10^{-2}$$
.

2) La matrice di iterazione di Jacobi è

$$H_J = \left(\begin{array}{ccc} 0 & -\alpha & 0 \\ -\alpha & 0 & \alpha \\ 0 & \alpha & 0 \end{array} \right) .$$

Gli autovalori di H_J sono

$$\lambda_1 = 0$$
, $\lambda_2 = \alpha \sqrt{2}$, $\lambda_3 = -\alpha \sqrt{2}$

per cui il metodo risulterà convergente se $|\alpha| < \frac{\sqrt{2}}{2}$.

- 3) Ponendo $x = \phi(x)$ e risolvendo tale equazione si ottiene un unico punto fisso (reale) $\alpha = 1$.
- 4) Posto

$$A^T = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{array} \right) \quad b^T = \left(\begin{array}{cccccc} 0 & 1 & 1 & -1 & 1 \end{array} \right) \; ,$$

si risolve il sistema lineare $A^TAx = A^Tb$ dove $x = (a, b)^T$. Tale sistema è dato da

$$\left(\begin{array}{cc} 5 & 0 \\ 0 & 10 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 2 \\ 0 \end{array}\right)$$

e la sua soluzione è $(\frac{2}{5},0)^T$. L'equazione della retta cercata è $y=\frac{2}{5}$.

5) Imponendo che formula proposta risulti esatta per f(x) = 1, x si ottiene

92

$$a_0 = \frac{e^2 - 3}{2e}$$
, $a_1 = \frac{e^2 + 1}{2e}$.

Risultando $E(x^2) = -\frac{4}{e}$ si deduce che il grado di precisione risulta m=1.

Ingegneria Informatica 02/07/2016

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x^2}{x+y} \, .$$

2) La matrice

$$A = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 2 \\ 1 & 3 & 1 & 0 & 5 \\ 0 & 0 & 6 & 0 & 0 \\ 2 & 1 & 0 & 4 & 0 \\ 3 & 0 & 0 & 0 & 1 \end{array}\right)$$

è riducibile. Determinare una matrice di permutazione ${\cal P}$ che riduce la matrice data.

3) È data l'equazione

$$e^{-x} + Kx^2 = 0 , \quad K \in \mathbb{R} .$$

Calcolare i vaolri reali K per i quali l'equazione ha radici di molteplicità maggiore di uno indicando i valori di tali radici.

4) Data la tabella di valori

determinare i valori reali α per i quali il polinomio di interpolazione risulta di grado minimo.

5) Si vuole approssimare l'integrale $I(f) = \int_0^1 \frac{2}{1+2x} dx$ utilizzando la formula dei trapezi.

93

In quanti sotto intervalli si deve dividere l'intervallo di integrazione per avere una approssimazione con un errore massimo $E \leq 10^{-2}$?

1) Seguendo l'algoritmo

$$r_1 = x^2$$
, $r_2 = x + y$, $r_3 = r_1/r_2$

si ha

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 + \frac{x+2y}{x+y} \epsilon_x - \frac{y}{x+y} \epsilon_y \; .$$

- **2)** Una matrice che riduce $A \in P = \{e^{(1)}|e^{(5)}|e^{(3)}|e^{(4)}|e^{(2)}\}.$
- 3) Le radici di molteplicità maggiore di uno sono le soluzioni del sistema dato dalle equazioni f(x) = 0 e f'(x) = 0. Si ricava che esiste una unica soluzione di molteplicità maggiore di uno data da $\alpha = -2$. Tale radice si ottiene se $K = -\frac{e^2}{4}$.
- 4) Dal quadro delle differenze divise si ottiene che le differenze divise del secondo ordine sono uguali fra loro se $\alpha = -1$.
- 5) Da $f(x)=2(1+2x)^{-1}$ si ottiene $M_2=\sup_{x\in[0,1]}|f''(x)|=16$. Imponendo che l'errore della formula dei trapezi sia minore di $10^{-2}/2$ si ha

$$\frac{(b-a)^3 M_2}{12L^2} \le \frac{10^{-2}}{2} \quad \Longrightarrow \quad \frac{16}{12L^2} \le \frac{10^{-2}}{2} \quad \Longrightarrow \quad L \ge 17 \ .$$

Ingegneria Informatica 23/07/2016

1) Si vuole calcolare la funzione

$$f(x,y) = x - y$$

in un punto $P_0 \in [0,1] \times [2,3]$ con un errore assoluto $|\delta_f| \leq 10^{-2}$. Indicare come eseguire l'operazione e con quale errore introdurre x e y per rispettare tale limitazione.

2) Il polinomio caratteristico $P(\lambda) = \det(A - \lambda I)$ di una matrice A assume i seguenti valori:

Quale è la dimensione della matrice A?

3) L'equazione

$$e^x + 3x - 2 = 0$$

ha una sola radice reale $\alpha \in]0,1[$.

Il metodo iterativo

$$x_{n+1} = \frac{2 - e^{x_n}}{3}$$

risulta idoneo per approssimare tale radice?

4) È data la matrice

$$A = \begin{pmatrix} 1 & \alpha & 0 \\ \alpha & 1 & -\alpha \\ 0 & -\alpha & 1 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

Calcolare $||A||_2$.

5) È data la formula di quadratura

$$\int_0^1 f(x)dx = \frac{1}{8} \left(f(0) + 3f\left(\frac{1}{3}\right) + 3f\left(\frac{2}{3}\right) + f(1) \right) + E_3(f).$$

Si determini il grado di precisione di tale formula.

- 1) Risultando $A_x=A_y=1$, basta introdurre i due valori x e y con massimo errore assoluto $|\delta_x|, |\delta_y| \leq \frac{10^{-2}}{4}$ (basta troncare alla terza cifra decimale) e calcolare il risultato della operazione arrotondando alla seconda cifra decimale.
- 2) Dal quadro delle differenze si deduce che il polinomio che interpola i valori dati è di grado 2 per cui la dimensione di A risulta uguale a 2.
- 3) La funzione di iterazione del metodo proposto è $\phi(x)=\frac{2-e^x}{3}$. Risultando $\phi'(x)=-\frac{e^x}{3}$ si ha $|\phi'(x)|\leq \frac{e^x}{3}<1$ per cui il metodo può convergere.
- 4) Gli autovalori della matrice B=A-I sono $\mu_1=0$ e $\mu_{2,3}=\pm\alpha\sqrt{2}$. Gli autovalori di A sono quindi $\lambda_1=1$ e $\lambda_{2,3}=1\pm\alpha\sqrt{2}$. La matrice A è reale e simmetrica per cui

$$||A||_2 = \rho(A) = \max_{i=1,2,3} |\lambda_i| = 1 + \sqrt{2}|\alpha|.$$

5) La formula proposta risulta esatta per $f(x) = 1, x, x^2, x^3$ ma non per x^4 per cui ha grado di precisione m = 3.

Ingegneria Informatica 16/09/2016

1) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & -2 & -1 \end{array}\right) .$$

2) La matrice

$$A = \left(\begin{array}{ccc} \alpha & \beta & \beta \\ \beta & \alpha & \beta \\ \beta & \beta & \alpha \end{array}\right) , \quad \alpha, \beta \in \mathbb{R} ,$$

è matrice dei coefficienti di un sistema lineare Ax = b.

Per quali valori reali di α e β risulta convergente il metodo di Jacobi per approssimare la soluzione di tale sistema?

3) L'equazione

$$e^{-x} - x^2 + 2x = 0$$

ha una radice reale $\alpha \in]2,3[$.

Il metodo di Newton converge se si sceglie $x_0 = 3$?

4) Una equazione algebrica ha la seguente successione di Strurm:

$$P_0(x) = x^4 + x^3 - x^2 + x - 2$$

$$P_1(x) = 4x^3 + 3x^2 - 2x + 1$$

$$P_2(x) = 11x^2 - 14x + 33$$

$$P_3(x) = 19x + 88$$

$$P_4(x) = -1$$

Quante sono le soluzioni reali di tale equazione?

5) Calcolare peso e nodo della formula di quadratura

$$\int_{-\pi/2}^{\pi/2} \cos(x) f(x) dx = a_0 f(x_0) + E_0(f)$$

in modo da avere il grado di precisione massimo. Si indichi il grado di precisione ottenuto.

97

1) Risulta

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} .$$

2) La matrice di iterazione

$$H_J = -\frac{\beta}{\alpha} \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)$$

ha autovalori $\lambda_{1,2}=-rac{\beta}{\alpha}$ e $\lambda_3=2rac{\beta}{\alpha}$ per cui si ha convergenza se $|rac{\beta}{\alpha}|<rac{1}{2}.$

- 3) Posto $f(x) = e^{-x} x^2 + 2x$, sull'intervallo [2,3] si ha f'(x) < 0 e f'' < 0 per cui scegliendo $x_0 = 3$ il metodo di Newton converge.
- 4) Risulta $V(-\infty) V(\infty) = 2$ per cui l'equazione ha due radici reali.
- 5) Imponendo che la formula proposta sia esatta per f(x)=1, x si ottiene $a_0=2$ e $x_0=0$. Poiché risulta $E_0(x^2)\neq 0$, il grado di precisione della formula è m=1.

Ingegneria Informatica 16/01/2017

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{y}{x+y} \, .$$

2) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 3 & 3 & 2 \\ 6 & 6 & 5 \end{array}\right) .$$

3) L'equazione f(x) = 0 ha le soluzioni

$$\alpha_1 = -3$$
, $\alpha_2 = \alpha_3 = 1$, $\alpha_4 = 7$.

Con quale ordine converge il metodo di Newton se applicato per approssimare tali valori?

4) A è una matrice di ordine non superiore a 4. Data la tabella di valori

determinare l'ordine della matrice A e dire se risulta invertibile.

99

5) Per approssimare l'integrale $I=\int_1^5 f(x)dx$ si utilizza la formula di quadratura

$$J_1(f) = 2f(1) + 2f(5).$$

Supposto che risulti $E_1(f) = Kf^{(s)}$, determinare K e s.

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = \frac{x}{r_1}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 + \frac{x}{x+y} (\epsilon_y - \epsilon_x)$$
.

2) Risulta

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} .$$

- 3) Il metodo di Newton converge con ordine $p \geq 2$ a $\alpha_{1,4}$ mentre converge con ordine p = 1 a $\alpha_{2,3}$.
- 4) Dal quadro delle differenze divise si ricava che il polinomio caratteristico risulta di grado 2 ed è dato da $P(\lambda) = \lambda^2 + \lambda$. Segue che la matrice ha un autovalore nullo e quindi non è invertibile.
- 5) La formula risulta esatta per f(x)=1 e f(x)=x mentre si ha $E_1(x^2)=-32/3$. Da questo derivano i valori

$$s = 2$$
, $K = -\frac{16}{3}$.

Ingegneria Informatica 3/02/2017

1) Si vuole calcolare la funzione

$$f(x,y) = \frac{x}{y}$$

in un punto $P_0 \in [1, 2] \times [2, 3]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq \frac{1}{2}10^{-2}$ e di introdurre i valori x e y con errori $|\delta_x| \leq \frac{1}{2}10^{-3}$ e $|\delta_y| \leq 10^{-3}$. Quale è il massimo errore assoluto $|\delta_f|$?

2) È dato il sistema lineare Ax = b con

$$A = \begin{pmatrix} 3i & -1 & 2i \\ 2 & 6+i3 & 1 \\ 2+i & -4 & 7+i \end{pmatrix} , \qquad b = \begin{pmatrix} 2i \\ 3-i \\ 0 \end{pmatrix} .$$

- a) Il metodo di Jacobi converge?
- b) Il metodo di Gauss-Seidel converge?
- 3) Calcolare i punti fissi (reali) della funzione

$$\phi(x) = \frac{x^2 + x - 1}{x^2} \, .$$

4) È data la tabella di valori

Determinare i valori reali α che rendono minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_2(f) = a_0 f(-1) + a_1 f\left(\frac{1}{2}\right) + a_2 f(1)$$
.

Calcolare i pesi a_0 , a_1 e a_2 che individuano la formula con grado di precisione massimo. Indicare il gardo di precisione ottenuto.

1) Risultando $A_x = A_y = 1/2$, si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = \frac{1}{2} 10^{-2} + \frac{1}{4} 10^{-3} + \frac{1}{2} 10^{-3} = \frac{23}{4} 10^{-3}.$$

- 2) Entrambi i metodi iterativi convergono perchè la matrice A è a predominanza diagonale debole e irriducibile.
- 3) I punti fissi della funzione si ottengono risolvendo l'equazione $x = \phi(x)$. Si hanno due punti fissi uno dei quali con molteplicià 2: $\alpha_{1,2} = 1$ e $\alpha_3 = -1$.
- 4) Dal quadro delle differenze divise, non considerando il punto che coinvolge il parametro α , si ricava che il polinomio di interpolazione è $P_4(x) = x^2 x + 1$. In questo caso non esistono valori reali del parametro che rendano nullo il polinomio. Non esistono nemmeno valori reali α che rendono il polinomio di interpolazione di grado 3 per cui il polinomio risulterà di grado 4 per ogni valore reale del parametro.
- 5) Imponendo che la formula sia esatta per $f(x) = 1, x, x^2$ si ottengono i pesi

$$a_0 = \frac{5}{9}, \qquad a_1 = \frac{16}{9}, \qquad a_2 = -\frac{1}{3}.$$

La formula ottenuta non risulta esatta per $f(x) = x^3$ per cui il grado di precisione è m = 2.

Ingegneria Informatica 22/02/2017

1) Si vuole calcolare la funzione

$$f(x,y) = x - y$$

in un punto $P_0 \in [1, 2] \times [0, 1]$.

Per avere un errore assoluto $|\delta_f| \leq 10^{-3}$, quali limitazioni devono soddisfare l'errore assoluto algoritmico $|\delta_a|$ e gli errori assoluti $|\delta_x|$ e $|\delta_y|$?

2) Calcolare gli autovalori della matrice

$$A = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix}.$$

La matrice soddisfa le ipotesi di convergenza del metodo delle potenze?

3) Una matrice A ha raggio spettrale $\rho(A)=3.$ Dire quali delle seguenti affermazioni si può realizzare

- a) $||A||_2 = 3$;
- b) $||A^{-1}||_2 \ge \rho(A)$;
- c) $||A^2||_2 \le 5$;
- d) $\rho(A^2) = 6$.

4) È data l'equazione

$$2x^2 + 2 - Ke^{-x} = 0, \qquad K \in \mathbb{R}.$$

Determinare I valori reali K per i quali si hanno soluzioni di molteplicità maggiore di uno indicando il valore di tali radici.

5) Per approssimare l'integrale $I = \int_{-1}^{1} x^4 f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(1) + a_1 f(-1)$$
.

Determinate i pesi a_0 e a_1 per i quali si ha il massimo grado di precisione. Si indichi il grado di precisione ottenuto.

- 1) Suddividendo l'errore totale in parti uguali, si ha $|\delta_a| \leq \frac{1}{2} 10^{-3}$ (si arrotonda il risultato della operazione alla terza cifra decimale). Essendo $A_x = A_y = 1$ basta porre $|\delta_x|$ e $|\delta_y|$ entrambi minori di $\frac{1}{4} 10^{-3}$ (si troncano i dati alla quarta cifra decimale).
- 2) Gli autovalori della matrice sono

$$\lambda_1 = 0, \quad \lambda_2 = -2, \quad \lambda_3 = 2, \quad \lambda_4 = 4.$$

La matrice risulta diagonalizzabile (ha autovalori due a due distinti) ed ha un autovalore di modulo dominante (λ_4) per cui le ipotesi del metodo delle potenze sono verificate.

- 3) Si verifica che a) e b) si possono verificare mentre risultano impossibili le affermazioni c) e d).
- 4) Uguagliando a zero la funzione $2x^2+2-Ke^{-x}$ e la sua derivata, si ricava che si hanno soluzioni di molteplicità maggiore di 1 se K=4/e ottenendo la radice doppia x=-1.
- 5) Imponendo che la formula proposta sia esatta per per f(x) = 1 e f(x) = x si ottengono i pesi $a_0 = a_1 = \frac{1}{5}$. La formula non risulta esatta per $f(x) = x^2$ per cui il gardo di precisione ottenuto è m = 1.

Ingegneria Informatica 12/06/2017

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x, y, z) = \frac{x + y}{z} .$$

2) Calcolare la fattorizazione LR della matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ -1 & 2 & 2 \\ -1 & -6 & -2 \end{array}\right) .$$

3) Determinare il numero di radici reali della equazione

$$e^x + 2x^2 - x - 5 = 0$$

indicando per ciascuna di esse un intervallo di separazione.

4) Determinare la retta di equazione y = a + bx che approssima nel senso dei minimi quadrati la funzione f(x) di cui si conoscono i valori

5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(-1/2) + 3f(x_0)$$
.

Calcolare il peso a_0 ed il nodo x_0 che individuano la formula con grado di precisione massimo. Indicare il grado di precisione ottenuto.

1) Seguendo l'algoritmo $r_1 = x + y$, $r_2 = r_1/z$ si ottiene

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{x}{x+y} \epsilon_x + \frac{y}{x+y} \epsilon_y - \epsilon_z.$$

2) La fattorizzazione richiesta è data da

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} , \quad R = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} .$$

3) L'equazione data ha due soluzioni. Possibili intervalli di separazione sono

$$\alpha_1 \in [-1.5, -1], \quad \alpha_2 \in [1.1.5].$$

4) I coefficienti a e b si determinano risolvendo il sistema $A^TAc = A^Tb$ con

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ -2 \\ 4 \\ 1 \end{pmatrix}, \quad c = \begin{pmatrix} a \\ b \end{pmatrix}.$$

La soluzione è $c=\frac{1}{35}(58,-19)^T$ per cui la retta cercata ha equazione $y=\frac{58}{35}-\frac{19}{35}x$.

5) Imponendo che la formula sia esatta per f(x) = 1, x si ottiene il peso $a_0 = -1$ e il nodo $x_0 = -\frac{1}{6}$. La formula ottenuta non risulta esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.

Ingegneria Informatica 3/07/2017

1) Si vuole calcolare la funzione

$$f(x) = x^2$$

in un punto $P_0 \in [2,3]$.

Per avere un errore assoluto $|\delta_f| \leq 10^{-2}$, quali limitazioni devono soddisfare l'errore assoluto algoritmico δ_a e l'errore assoluto δ_x ?

2) Una matrice $A \in \mathbb{C}^{4\times 4}$ ha autovalori

$$\lambda_1 = 3$$
, $\lambda_2 = -3$, $\lambda_3 = i$, $\lambda_4 = 2i$.

- a) La matrice A soddisfa le ipotesi di convergenza del metodo delle potenze?
- b) La matrice A^{-1} soddisfa le ipotesi di convergenza del metodo delle potenze?
- 3) La matrice

$$A = \left(\begin{array}{cccc} 2 & 0 & 3 & 1 \\ 0 & 5 & 0 & 0 \\ 2 & 0 & 1 & 3 \\ 2 & 0 & 4 & 1 \end{array}\right)$$

è riducibile.

Determinare una matrice di permutazione P che riduce la matrice data.

4) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{x^3 + 6}{4x - 1} \,.$$

5) Per approssimare l'integrale $I(f)=\int_{-1}^1 f(x)dx$ si utilizza la formula di quadratura

$$J_2(f) = \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right).$$

Determinate il grado di precisione di tale formula.

- 1) Suddividendo l'errore totale in parti uguali, si ha $|\delta_a| \leq \frac{1}{2}10^{-2}$ (si arrotonda il risultato della operazione alla seconda cifra decimale). Essendo $A_x = 6$ basta porre $|\delta_x| < \frac{1}{12}10^{-2}$ (si arrotondano i dati alla terza cifra decimale).
- 2) La matrice A non soddisfa le ipotesi del teorema del metodo delle potenze avendo due autovalori distinti di modulo massimo. La matrice A⁻¹ soddisfa le ipotesi del teorema del metodo delle potenze avendo un unico autovalore di modulo massimo e risultando diagonalizzabile (autovalori due a due distinti).
- 3) Dallo studio del grafo orientato si ottiene, per esempio,

$$P = (e^{(3)}|e^{(1)}|e^{(4)}|e^{(2)})$$
.

4) Risolvendo l'equazione $x = \phi(x)$ si ottengono tre punti fissi

$$\alpha_1 = -1$$
. $\alpha_2 = 2$, $\alpha_3 = 3$.

5) La formula proposta risulta esatta per per $f(x) = 1, x, x^2, x^3, x^4, x^5$ ma non per $f(x) = x^6$ per cui il gardo di precisione è m = 5.

Ingegneria Informatica 24/07/2017

1) Si vuole calcolare la funzione

$$f(x,y) = xy$$

in un punto $P_0 \in [2, 3] \times [1, 2]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq \frac{1}{2}10^{-2}$ e di introdurre i valori x e y con errori $|\delta_x| \leq \frac{1}{2}10^{-2}$ e $|\delta_y| \leq \frac{1}{2}10^{-2}$.

Quale è il massimo errore assoluto $|\delta_f|$?

2) La matrice

$$H = \left(\begin{array}{cccc} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{array}\right)$$

è la matrice di iterazione di un metodo iterativo per la approssimazione della soluzione di un sistema lineare.

Tale metodo converge?

3) È dato il sistema lineare sovradeterminato Ax = b con

$$A = \begin{pmatrix} 1 & \alpha \\ 3 & \alpha \\ \alpha & 1 \end{pmatrix} , \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

Indicare i valori reali del parametro α per i quali si ha una unica soluzione del sistema nel senso dei minimi quadrati.

4) È data l'equazione

$$\log(x) - \frac{1}{x} = 0$$

che ha una unica soluzione $\alpha \in [1.5, 2]$. Il metodo iterativo

$$x_{n+1} = e^{1/x_n}, \quad n = 0, 1, 2, \dots$$

è idoneo per approssimare α ?

5) Per approssimare l'integrale $I(f)=\int_0^2 f(x)dx$ si utilizza la formula di quadratura

$$J_3(f) = \frac{1}{4} \left(f(0) + 3f(2/3) + 3f(4/3) + f(2) \right) .$$

Supposto che l'errore commesso sia scrivibile nella forma $E_3(f) = Kf^{(s)}(\theta)$, determinare K e s.

1) Risultando $A_x = 2$ e $A_y = 3$, si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 3 \times 10^{-2}$$
.

- 2) IL metodo non converge poiché la matrice H ha autovalori di modulo maggiore di 1. Infatti l'insieme degli autovalori è $\{3, 3, 3, 7\}$.
- 3) La matrice del sistema lineare sovradeterminato ha rango uguale a due per ogni $\alpha \in \mathbb{R}$ per cui il sistema ha una unica soluzione nel senso dei minimi quadrati qualunque si il valore reale del parametro α .
- 4) La funzione di iterazione del metodo proposto è $\phi(x)=e^{1/x}$. Si ha $\phi'(x)=-\frac{1}{x^2}e^{1/x}$ che sull'intervallo [1.5, 2] ha modulo minore di $\frac{4e^{2/3}}{9}<1$. Sono quindi verificate le ipotesi del teorema di convergenza locale ed il metodo può risultare convergente se si sceglie un "buon" punto di partenza.
- 5) La formula risulta esatta per $f(x)=1,x,x^2,x^3$ ma non per $f(x)=x^4$ per cui si ha s=4. Sapendo che $E_3(x^4)=-\frac{16}{135}$ si ottiene $K=-\frac{2}{405}$.

Ingegneria Informatica 23/09/2017

- 1) Si consideri l'insieme dei numeri di macchina dato da $\mathcal{F}(10, 2, -2, 2)$. Dati i numeri a=11.52, b=0.01 e c=9.27 se ne dia la loro rappresentazione rd(a), rd(b) e rd(c) in \mathcal{F} . Infine, calcolare rd(x)=rd(a)*rd(b) e rd(y)=rd(a)*rd(c).
- 2) La matrice

$$A = \left(\begin{array}{ccc} 5 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & 2 & -12 \end{array}\right)$$

è diagonalizzabile?

- 3) L'equazione $e^{-x} 2x^2 + 3x + 4 = 0$ ha una soluzione $\alpha \in [2,3]$. Per la approssimazione di α , determinare un valore iniziale che consente la convergenza del metodo di Newton.
- 4) La funzione $f(x) = x^4 x^3 x^2 + 2x 2$ assume i valori

Calcolare il polinomio che interpola i valori dati.

5) È dato l'integrale $I(f) = \int_0^1 e^{\sin(x)} dx$. Se si vuole approssimare l'integrale con massimo errore assoluto E tale risulti che $|E| < 10^{-2}$. Con quanti intervalli si deve applicare la formula generalizzata dei trapezi?

1) Si ha

$$rd(a) = 0.12 \times 10^{2}$$
, $rd(b) = 0.1 \times 10^{-1}$, $rd(c) = 0.93 \times 10^{1}$.

Inoltre

$$x = 0.12$$
, $y = OVERFLOW$.

- 2) Si applica Gershgorin e si trovano tre cerchi due a due disgiunti per cui, dal secondo teorema di Gershgorin, gli autovalori della matrice sono due a due distinti e quindi A risulta diagonalizzabile.
- 3) Posto $f(x) = e^{-x} 2x^2 + 3x + 4$, sull'intervallo dato, risultano f'(x) < 0 e f''(x) < 0 per cui un punto iniziale che rende convergente il metodo di Newton è $x_0 = 3$.
- 4) Il polinomio cercato è la funzione f(x) che ha grado inferiore a 6 (7 sono i valori assegnati) tenendo conto dell'unicità del polinomio di interpolazione.
- 5) L'errore commesso nella applicazione della formula dei trapezi è $E=-\frac{(b-a)^3}{12n^2}f''(\theta)$. Essendo $f''(x)=e^{\sin(x)}(\cos^2(x)-\sin(x))$, si ha (grossolanamente) |f''(x)|<2e. Tenuto conto del contributo dell'errore trasmesso dai dati, imponendo $|E|=\frac{1}{12n^2}2e<\frac{1}{2}10^{-2}$, si ottiene $n\geq 10$.

A DICALLA

Ingegneria Informatica 15/01/2018

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{x-y} .$$

2) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrrr} -1 & -1 & -1 & -1 \\ -1 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 \\ 0 & 0 & -3 & 1 \end{array}\right) .$$

3) Determinare intervalli di separazione dei punti fissi della funzione

$$\phi(x) = e^x - x - 2.$$

4) È data la funzione $f(x) = x^2 - x + 3$.

Calcolare il polinomio $P_1(x)$ di interpolazione relativo ai due punti $x_0 = -1$ e $x_1 = 1$.

Determinare l'espressione di $E_1(x) = f(x) - P_1(x)$ stabilendone anche il massimo valore assoluto sull'intervallo [-1, 1].

5) Per approssimare l'integrale $I = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{2}\right) + a_1 f\left(\frac{2}{3}\right).$$

Determinare i pesi a_0 e a_1 in modo da ottenere il massimo grado di precisione algebrico.

Indicare il grado di precisione ottenuto.

1) Considerando l'algoritmo

$$r_1 = x - y$$
, $r_2 = \frac{x}{r_1}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 + \frac{y}{x - y} (\epsilon_y - \epsilon_x)$$
.

2) Risulta

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & -3 & -3 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

3) Si devono separare le soluzioni dell'equazione $x=e^x-x-2$. Si evidenziano due soluzioni α_1,α_2 con

$$\alpha_1 \in]-1, -1/2[, \quad \alpha_2 \in]3/2, 2[.$$

- 4) Il polinomio cercato è $P_1(x) = -x + 4$. L'errore commesso è $E(x) = f(x) P_1(x) = x^2 1$. Sull'intervallo dato, il massimo errore in valore assoluto si ha per x = 0 e quindi risulta $\max_{x \in [-1,1]} |E(x)| = |E(0)| = 1$.
- 5) Imponendo che la formula risulti esatta per f(x) = 1 e f(x) = x si ottengono i pesi $a_0 = 8/7$ e $a_1 = 6/7$.

La formula così ottenuta risulta esatta anche per $f(x) = x^2$ ma non per $f(x) = x^3$ per cui il grado di precisione è m = 2.

Ingegneria Informatica 5/02/2018

1) Si vuole calcolare la funzione

$$f(x,y) = x/y$$

in un punto $P_0 \in [1, 2] \times [3, 4]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq \frac{1}{2} 10^{-3}$ e di introdurre i valori x e y con errori $|\delta_x| \leq \frac{1}{2} 10^{-2}$ e $|\delta_y| \leq \frac{1}{2} 10^{-2}$. Quale è il massimo errore assoluto $|\delta_f|$?

2) Calcolare gli autovalori della matrice

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right) .$$

3) Calcolare i valori reali del parametro K per i quali l'equazione

$$e^{-x} - K(x-1) = 0$$
, $K \in \mathbb{R}$,

ha soluzioni con molteplicità superiore a 1.

4) Il polinomio $P(x) = x^4 - 3x^3 + x^2 + x + 1$ è il polinomio di interpolazione relativo alla tabella

5) Per approssimare l'integrale $I=\int_0^2 f(x)dx$ si utilizza la formula di quadratura

$$J_2(f) = \frac{1}{3} \left(4f\left(\frac{1}{2}\right) - 2f(1) + 4f\left(\frac{3}{2}\right) \right) .$$

Supposto che risulti $E_2(f) = Kf^{(s)}$, determinare K e s.

1) Risultando $\frac{\partial f}{\partial x}=1/y$ e $\frac{\partial f}{\partial y}=-x/y^2$ si ha

$$|\delta_f| \le |\delta_a| + |\delta_x|/3 + 2|\delta_y|/9 = \frac{59}{18}10^{-3}$$
.

2) Gli autovalori della matrice B = A - I sono le radici quarte di -1 (B è una matrice di Frobenius) per cui gli autovalori di A sono

$$\lambda_i = 1 + \cos\left(\frac{\pi}{4} + k\frac{\pi}{2}\right) + i \sin\left(\frac{\pi}{4} + k\frac{\pi}{2}\right), \quad k = 0, 1, 2, 3.$$

3) Per avere una soluzione α di molteplicità maggiore di 1 devono annullarsi la funzione e la sua derivata prima. Risolvendo il sistema che ne deriva si ha

$$K = -1$$
, $\alpha = 0$.

- 4) Il polinomio proposto non è il polinomio di interpolazione avendo grado 4 mentre con 4 punti si ha un polinomio di interpolazione di grado non superiore a 3.
- 5) La formula risulta esatta per $f(x) = 1, x, x^2, x^3$ mentre si ha $E_2(x^4) = 7/30$. Da questo derivano i valori

$$s = 4$$
, $K = \frac{7}{720}$.

Ingegneria Informatica 21/02/2018

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x+y}{x} \, .$$

2) Una matrice $A \in \mathbb{C}^{4\times 4}$ ha autovalori

$$\lambda_1 = 1, \quad \lambda_2 = \frac{1}{2}, \quad \lambda_3 = -\frac{1}{5}, \quad \lambda_4 = \frac{\sqrt{3}}{2} + \frac{1}{2}i.$$

La matrice A verifica le condizioni per la applicazione del metodo delle potenze? La matrice A^{-1} verifica le condizioni per la applicazione del metodo delle potenze?

- 3) Risolvere l'equazione $x^4 4x^3 + 3x^2 + 4x 4 = 0$. Il metodo di bisezione risulta convergente se utilizzato (su intervalli opportuni) per approssimare le soluzioni di tale equazione?
- 4) Determinare i numeri reali α per i quali risulta di grado minimo il polinomio che interpola i dati riportati nella tabella che segue:

5) Per approssimare l'integrale $I = \int_0^1 \frac{1}{x+1} dx$ (= log 2) si utilizza la formula dei trapezi.

In quanti sotto intervalli si deve suddividere l'intervallo di integrazione per otte nere una approssimazione con massimo errore assoluto $|E| \leq 10^{-2}$?

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = \frac{r_1}{x}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{y}{x+y} (\epsilon_y - \epsilon_x)$$
.

- 2) Applicato alla matrice A il metodo delle potenze non converge non avendo un solo autovalore (eventualmente di molteplicià maggiore di 1) di modulo massimo ($|\lambda_1| = |\lambda_4|$ e $\lambda_1 \neq \lambda_4$). La matrice A^{-1} ha un solo autovalore di modulo massimo $1/\lambda_3$.
- 3) L'equazione data ha soluzioni

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = \alpha_4 = 2$.

Il metodo di bisezione (applicato su intervalli opportuni) converge per approssimare α_1 e α_2 (radici sempici) ma non per approssimare α_3 (radice di molteplicità 2).

- 4) Dal quadro delle differenze divise si ricava che il polinomio di interpolazione risulta di grado minimo (grado=2) se $\alpha = 1$ o $\alpha = -6$.
- 5) Essendo $f''(x) = 2(x+1)^{-3}$ si ha $M_2 = \sup_{x \in [0,1]} |f''(x)| = 2$. Imponendo che l'errore commesso nel sostituire l'integrale esatto con la formula di quadratura dei trapezi non superi $\frac{1}{2}10^{-2}$, si ricava che si devono utilizzare almeno 6 (sei) sottointervalli.

Ingegneria Informatica 11/06/2018

- 1) Calcolare la cardinalità dell'insieme dei numeri di macchina F(7, 2, -3, 3).
- 2) È data la matrice

$$A = \begin{pmatrix} \alpha & 1 & 0 \\ -1 & 3\alpha & 1 \\ 0 & -1 & 5\alpha \end{pmatrix} , \quad \alpha \in \mathbb{R}^+ .$$

- a) Determinare l'insieme dei valori reali e positivi del parametro α per i quali i cerhi di Gershgorin sono due a due disgiunti.
- **b)** Per tali valori di α la matrice A risulta diagonalizzabile?
- 3) Calcolare i punti fissi della funzione

$$\phi(x) = \begin{cases} \frac{x^2 + 2}{2x} & \text{se} \quad x^2 - 2 \ge 0\\ 1 + x - \frac{1}{2}x^2 & \text{se} \quad x^2 - 2 < 0 \end{cases}.$$

- 4) È data la funzione $f(x) = \sin\left(\frac{\pi}{3}x\right)$. Calcolare il polinomio $P_2(x)$ di interpolazione relativo ai punti $x_0 = 0, x_1 = 1$ e $x_2 = 2$.
- 5) Per approssimare l'integrale $I = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{2}\right) + \frac{3}{2}f(x_0).$$

Determinare il peso a_0 e il nodo x_0 in modo da ottenere il massimo grado di precisione algebrico.

Indicare il grado di precisione ottenuto.

- 1) La cardinalità richiesta è data da $2(\beta-1)\beta^{m-1}(U-L+1)+1$ dove β è la base della rappresentazione, m è il numero delle cifre rappresentate nella mantissa, L e U sono, rispettivamente, il minimo ed il massimo esponente da dare alla base nella rappresentazione del numero. Nel caso considerato si ha $\beta=7$, m=2, L=-3 e U=3 per cui la cardinalità risulta uguale a 589.
- 2) Affinché i tre cerchi di Gerhgorin siano due a due disgiunti deve risultare $\alpha>3/2$. Per tali valori la matrice è diagonalizzabile avendo tre autovalori due a due distinti.
- 3) I punti fissi sono le soluzioni dell'equazione $x = \phi(x)$. Risolvendo tale equazione si determinano due punti fissi $\alpha_1 = \sqrt{2}$ e $\alpha_2 = -\sqrt{2}$
- 4) Il polinomio cercato è $P_2(x) = \frac{\sqrt{3}}{4}(-x^2 + 3x)$.
- 5) Imponendo che la formula risulti esatta per f(x) = 1 e f(x) = x si ha $a_0 = 1/2$ e $x_0 = 1/6$. La formula così ottenuta non è esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.

Ingegneria Informatica 02/07/2018

1) Si vuole calcolare la funzione

$$f(x,y) = \frac{x^2}{y}$$

in un punto $P_0 \in [-2, -1] \times [2, 3]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq \frac{1}{2} 10^{-2}$ e di introdurre i valori x e y con errori $|\delta_x| \leq \frac{1}{2} 10^{-2}$ e $|\delta_y| \leq \frac{1}{2} 10^{-2}$.

Quale è il massimo errore assoluto $|\delta_f|$?

2) La matrice

$$A = \frac{1}{8} \left(\begin{array}{rrr} 3 & 1 & 5 \\ 1 & 3 & 0 \\ 0 & 0 & 5 \end{array} \right)$$

è convergente?

3) Studiare l'equazione

$$e^{-x} - Kx = 0$$
, $K \in \mathbb{R}$,

al variare del parametro reale K.

4) È data la tabella di valori

Determinare la retta di equazione y = ax + b che approssima la funzione f(x) nel senso dei minimi quadrati.

5) Per approssimare l'integrale $I=\int_{\sqrt{2}}^{\sqrt{8}}f(x)dx$ si utilizza la formula di quadratura

$$J_1(f) = \frac{\sqrt{2}}{2} \left(f\left(\sqrt{8}\right) + f\left(\sqrt{2}\right) \right) .$$

Supposto che risulti $E_1(f) = Kf^{(s)}$, determinare K e s.

1) Risultando $\frac{\partial f}{\partial x}=2x/y$ e $\frac{\partial f}{\partial y}=-x^2/y^2$ si ha

$$|\delta_f| \le |\delta_a| + 2 \cdot |\delta_x| + 1 \cdot |\delta_y| = 2 \cdot 10^{-2}$$
.

- 2) Gli autovalori della matrice A sono $\lambda_1 = 1/2$, $\lambda_2 = 1/4$ e $\lambda_3 = 5/8$. Il raggio spettrale di A è $\rho(A) = 5/8$ per cui la matrice risulta convergente.
- 3) Da una semplice separazione grafica si evidenziano le seguenti possibilità:

$$\begin{cases} K < -e & 2 \text{ soluzioni distinte} \\ K = -e & 2 \text{ soluzioni coincidenti} \\ -e < K \le 0 & \text{nessuna soluzione} \\ K > 0 & 1 \text{ soluzione} \end{cases}$$

- 4) Risolvendo il sistema delle equazioni normali, la retta ha equazione y = 3x 2 (da notare che tale retta è anche interpolante).
- 5) La formula risulta esatta per f(x) = 1, x mentre si ha $E_1(x^2) = -\sqrt{2}/3$. Da questo derivano i valori

$$s=2\,,\qquad K=-\frac{\sqrt{2}}{6}\,.$$

ME DICTURATION

Ingegneria Informatica 23/07/2018

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x^2}{x+y} \ .$$

2) Calcolare la fattorizzazione LR della matrice

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & -2 & 2 & -1 \\ 0 & 0 & -3 & 2 \end{pmatrix} .$$

3) Il numero $\alpha = \sqrt{3}$ è punto fisso della funzione

$$\phi(x) = x^3 - 9x + 7\sqrt{3} \ .$$

- a) Esistono valori x_0 che rendono convegente la successione $x_{n+1} = \phi(x_n)$?
- b) Per tali valori iniziali, quale è l'ordine di convergenza del metodo?
- 4) È data la tabella di valori

$$\begin{array}{c|cccc} x & 0 & 1 & -2 & -1 \\ \hline f(x) & 2\alpha & -11 & \alpha^2 & 1 \end{array}, \quad \alpha \in \mathbb{R} \ .$$

Determinare i valori reali di α per i quali il polinomio di interpolazione risulta di grado minimo.

5) Per approssimare l'integrale $I = \int_0^1 e^{-\cos(x)} dx$ si utilizza la formula dei trapezi. In quanti sottointervalli si deve suddividere l'intervallo di integrazione per ottenere una approssimazione con massimo errore assoluto $|E| \leq 10^{-2}$?

1) Considerando l'algoritmo

$$r_1 = x^2$$
, $r_2 = x + y$, $r_3 = \frac{r_1}{r_2}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 + \frac{x + 2y}{x + y} \epsilon_x - \frac{y}{x + y} \epsilon_y$$
.

2) Risulta

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3) La derivata prima della funzione $\phi(x)$ si annulla in α per cui, per il teorema di convergenza locale, esistono valori iniziali che rendono convergente lo schema iterativo proposto.

La derivata seconda della funzione $\phi(x)$ non si annulla in α per cui lo schema itertivo ha ordine di convergenza p=2.

4) Dal quadro delle differenze divise si ricava che esistonodue valori di α che rendono il polinomio di interpolazione di grado 2:

$$\alpha_1 = -4$$
 $(P_2(x) = 3x^2 - 6x - 8);$ $\alpha_2 = -2$ $(P_2(x) = -x^2 - 6x - 4).$

5) Se si maggiora |f''(x)| con 2, imponendo $|E_1^{(G)}| \leq 10^{-2}/2$, si ottiene che il numero di intervalli da utilizzare è $L \geq 6$.

MA DICALIANI

Ingegneria Informatica 17/09/2018

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x-y}{y^2} \, .$$

2) È data la matrice

$$A = \left(\begin{array}{rrrr} 1 & -1 & 3 & 5 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 7 & 0 \\ 3 & 1 & 1 & 2 \end{array}\right) .$$

La matrice A risulta riducibile?

Nel caso di risposta affermativa, indicare una matrice di permutazione che la riduce.

3) Data l'equazione

$$\log|x| - x = 0,$$

indicare il numero delle soluzioni reali e, per ciascuna di esse, individuare un intervallo di separazione.

4) Data la funzione

$$f(x) = x^2 - 6x + 2,$$

calcolare il polinomio di interpolazione $P_1(x)$ relativo ai punti $x_0 = 0$ e $x_1 = 2$. Calcolare $\max_{x \in [0,2]} |f(x) - P_1(x)|$.

5) Per approssimare l'integrale $I = \int_1^2 x f(x) dx$ si utilizza la formula

$$J_2(f) = af(1) + f(x_0)$$
.

Determinare il peso a ed il nodo x_0 in modo da ottenere il massimo grado di precisione. Indicare il grado di precisione raggiunto.

1) Considerando l'algoritmo

$$r_1 = x - y$$
, $r_2 = y^2$, $r_3 = \frac{r_1}{r_2}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 + \frac{x}{x - y} \epsilon_x - \frac{2x - y}{x - y} \epsilon_y$$
.

- 2) La matrice A risulta riducibile ed una matrice di permutazione che la riduce è $P = (e^{(2)}|e^{(3)}|e^{(4)}|e^{(1)})$.
- 3) Da una semplice separazione grafica si deduce che l'equazione data ha una sola soluzione reale $\alpha \in]-1,0[$.
- 4) Risulta $P_1(x) = -4x + 2$ ed il massimo cercato è uguale a 1.
- 5) Imponendo che la formula risulti esatta per f(x) = 1, x si ha a = 1/2 e $x_0 = 11/6$. La formula così ottenuta non risulta esatta per $f(x) = x^2$ per cui il massimo grado di precisione raggiungibile è m = 1.

AE DICALIATION AT A STATE

Ingegneria Informatica 14/01/2019

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = x^2 - y .$$

2) Una matrice $A \in \mathbb{C}^{3 \times 3}$ ha autovalori

$$\lambda_1 = 1$$
, $\lambda_2 = i$, $\lambda_3 = -i$.

Quale è il polinomio caratteristico della matrice A^{-1} ?

3) Determinare intervalli di separazione dei punti fissi della funzione

$$\phi(x) = \frac{2 + \log x}{x} \, .$$

4) È data la tabella di valori

Determinare la retta di equazione y = ax + b che approssima la funzione f(x) nel senso dei minimi quadrati.

5) Per approssimare l'integrale $I(x^2f)=\int_{-1}^1 x^2\,f(x)dx$ si utilizza la formula di quadratura

$$J_1(f) = \frac{1}{3} \left(f \left(-\sqrt{\frac{3}{5}} \right) + f \left(\sqrt{\frac{3}{5}} \right) \right) .$$

Supposto che risulti $E_1(f) = Kf^{(s)}$, determinare $K \in s$.

1) Considerando l'algoritmo

$$r_1 = x \cdot x \;, \quad r_2 = r_1 - y \;,$$

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \frac{x^2}{x^2 - y} \epsilon_1 + \epsilon_2 + 2 \frac{x^2}{x^2 - y} \epsilon_x - \frac{y}{x^2 - y} \epsilon_y.$$

2) Gli autovalori della matrice A^{-1} sono i reciproci degli autovalori di A per cui il polinomio caratteristico di A^{-1} è

$$P(\lambda) = -(\lambda - 1)(\lambda - \frac{1}{i})(\lambda + \frac{1}{i}) = -(\lambda - 1)(\lambda + i)(\lambda - i).$$

3) Si devono separare le soluzioni dell'equazione $x=\phi(x)$, cioè le soluzioni dell'equazione $x^2-2-\log x=0$. Si evidenziano due soluzioni α_1,α_2 con

$$\alpha_1 \in]0.01, 1/2[, \alpha_2 \in]1, 2[.$$

4) Ponendo

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ -1 & 1 \\ -2 & 1 \end{pmatrix}, f = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 3 \end{pmatrix}, x = \begin{pmatrix} a \\ b \end{pmatrix}$$

e risolvendo il sistema delle equazioni normali $A^TAx = A^Tf$ si ottiene la retta di equazione y = 2.

5) La formula risulta esatta per $f(x) = 1, x, x^2, x^3$ ma non per $f(x) = x^4$ per cui il grado di precisione è m = 3.

Ne segue che s=4 ed essendo $E_1(x^4)=\frac{8}{175}$ si ottiene $K=\frac{1}{525}$.

Ingegneria Informatica 4/02/2019

1) Si vuole calcolare la funzione

$$f(x,y) = x - y$$

in un punto $P_0 \in [1,2] \times [-2,-1]$ e si vuole commettere un errore assoluto E con $|E| \le 10^{-2}$.

Con quale massimo errore assoluto si devono introdurre i valori x e y e come come si deve eseguire l'operazione proposta per rientrare nella limitazione richiesta?

2) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{rrrr} 4 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ -4 & 0 & 0 & 0 \end{array}\right) .$$

3) L'equazione

$$x^4 + 4x^3 + 3x^2 - 4x - 4 = 0,$$

ha una soluzione $\alpha = -2$.

Il metodo di bisezione risulta idoneo per approssimare α ?

4) È data la tabella di valori

Determinare i valori reali di α per i quali il polinomio di interpolazione risulta di grado minimo.

5) Per approssimare l'integrale $I(f) = \int_{-1}^{2} f(x) dx$ si utilizza la formula di quadratura

$$J_2(f) = \frac{5}{2}f(0) + 2f\left(\frac{3}{2}\right) - \frac{3}{2}f(1)$$
.

Determinare il grado di precisione m della formula proposta e verificare se $E_2(f)=-\frac{1}{725}f^{(IV)}(\xi).$

1) Risultando $\frac{\partial f}{\partial x}=1$ e $\frac{\partial f}{\partial y}=-1$ si ha

$$|\delta_f| \le |\delta_a| + |\delta_x| + |\delta_y|.$$

Imponendo $|\delta_a| \leq \frac{1}{2}10^{-2}$ e $|\delta_x|, |\delta_y| \leq \frac{1}{4}10^{-2}$ si rientra mella limitazione richiesta. Questo equivale ad arrotondare il risultato della operazione alla seconda cifra decimale ed introdurre i due dati troncati alla terza cifra decimale.

2) La fattorizzazione richiesta è

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 4 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

3) Il polinomio a primo membro ha la fattorizzazione

$$x^4 + 4x^3 + 3x^2 - 4x - 4 = (x+2)^2(x-1)(x+1).$$

Essendo la radice $\alpha=-2$ di molteplicità 2, il metodo di bisezione non risulta applicabile.

- 4) Dal quadro delle differenze divise si ricava che la colonna delle differenze divise del secondo ordine risulta costante per $\alpha = 1$ e quindi per tale valore si ottiene il polinomio di interpolazione di grado minimo.
- 5) La formula risulta esatta per $f(x) = 1, x, x^2$ ma non per $f(x) = x^3$ per cui ha grado di precisione m = 2 e quindi l'errore non puo' dipendere dalla derivata quarta della funzione integranda (dipende dalla derivata terza).

A DICTAL

Ingegneria Informatica 20/02/2019

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x-y}{y} .$$

2) Una matrice $A \in \mathbb{C}^{4\times 4}$ ha raggio spettrale $\rho(A) = 4/5$. La matrice A può avere il polinomio

$$P(\lambda) = \lambda^4 - 6\lambda^3 + 2\lambda^2 + \lambda - 1/2$$

come polinomio caratteristico?

3) L'equazione

$$e^{-x} - x^2 + 2x = 0$$

ha una soluzione $\alpha \in [2,3]$. Individuare un valore iniziale x_0 partendo dal quale il metodo di Newton converge ad α .

4) È dato il sistema lineare

$$\begin{pmatrix} \alpha & 1 \\ 1 & -1 \\ -1 & \alpha^2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

Per quali valori reali di α il sistema ha una unica soluzione nel senso dei minimi quadrati?

5) Per approssimare l'integrale $I(f) = \int_0^1 f(x) dx$ si utilizza la formula

$$J_1(f) = a_1 f\left(\frac{1}{3}\right) + \frac{1}{2}f(x_0).$$

Determinare il peso a_1 ed il nodo x_0 in modo da ottenere il massimo grado di precisione possibile. Indicare il grado di precisione raggiunto.

1) Considerando l'algoritmo

$$r_1 = x - y$$
, $r_2 = \frac{r_1}{r}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 + \epsilon_2 + \frac{x}{x - y} (\epsilon_x - \epsilon_y)$$
.

2) Dalla ipotetica equazione caratteristica si deduce $\sum_{i=1}^4 \lambda_i = 6.$ Poiché

$$\left| \sum_{i=1}^{4} \lambda_i \right| \le \sum_{i=1}^{4} |\lambda_i| \le 4\rho(A) = \frac{16}{5} = 3.2$$

risulta che l'equazione data non può essere l'equazione caratteristica.

- 3) Posto $f(x) = e^{-x} x^2 + 2x$ si ha $f'(x) = -e^{-x} 2x + 2$ e $f''(x) = e^{-x} 2$. Nell'intervallo assegnato risultano f'(x) < 0 e f''(x) < 0 per cui un punto di partenza a partire dal quale il metodo di Newton converge è $x_0 = 3$.
- 4) La matrice dei coefficienti ha rango 2 (e quindi il sistema ha una unica soluzione nel senso dei minimi quadrati) per $\alpha \in \mathbb{R} \setminus \{-1\}$.
- 5) Imponendo che la formula risulti esatta per f(x)=1, x si ottiene $a_1=\frac{1}{2}$ e $x_0=\frac{2}{3}$. La formula ottenuta non è esatta per $f(x)=x^2$ per cui il grado di precisione ottenuto è m=1.

Ingegneria Informatica 10/06/2019

- 1) Calcolare la cardinalità dell'insieme dei numeri di macchina F(3, 3, -3, 3).
- 2) È data la matrice

$$A = \left(\begin{array}{cccc} -1 & 3 & 0 & 2\\ 0 & 2 & 0 & 7\\ 5 & -3 & -2 & 1\\ 0 & 1 & 0 & 4 \end{array}\right) .$$

Dire se la matrice A è riducibile e, nel caso in cui lo sia, indicare una matrice di permutazione che la riduce.

3) È data l'equazione

$$e^{-x} - 2x^2 + x + 1 = 0.$$

Indicare il numero delle soluzioni reali e, per ciuascuna di esse, dare un intervallo di separazione.

4) È data la tabella di valori

Determinare i valori reali di α per i quali il polinomio di interpolazione risulta di grado minimo.

5) Per approssimare l'integrale $I = \int_1^4 f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(2) + a_1 f(3).$$

Determinare i pesi a_0 e a_1 in modo da ottenere il massimo grado di precisione algebrico.

Indicare il grado di precisione ottenuto.

- 1) La cardinalità richiesta è data da $2(\beta-1)\beta^{m-1}(U-L+1)+1$ dove β è la base della rappresentazione, m è il numero delle cifre rappresentate nella mantissa, L e U sono, rispettivamente, il minimo ed il massimo esponente da dare alla base nella rappresentazione del numero. Nel caso considerato si ha $\beta=3$, m=3, L=-3 e U=3 per cui la cardinalità risulta uguale a 253.
- 2) La matrice A risulta riducibile (si deduce dal grafo orientato ad essa abbinato) e una matrice di permutazione che la riduce è $P = (e^{(4)}, e^{(2)}, e^{(1)}, e^{(3)})$.
- 3) Da una semplice separazione grafica si ricava che l'equazione data ha 3 soluzioni con $\alpha_1 \in]-3, -2[, \alpha_2 \in]-2, -1[$ e $\alpha_3 \in]1, 2[$.
- 4) Dal quadro delle differenze divise si ottiene che per $\alpha = 1$ il polinomio di interpolazione risulta di grado 1 ed esattamente $P_3(x) = -x + 1$.
- 5) Imponendo che la formula risulti esatta per f(x) = 1 e f(x) = x si ha $a_0 = a_1 = 3/2$. La formula così ottenuta non è esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.

A DICALLA

Ingegneria Informatica 01/07/2019

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{y}{x^2} \, .$$

2) La matrice

$$A = \frac{1}{10} \left(\begin{array}{rrrr} 1 & 0 & 7 & 8 \\ 18 & 5 & 11 & 59 \\ 0 & 0 & -6 & 0 \\ 0 & 0 & 80 & 7 \end{array} \right)$$

risulta convergente?

3) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{x^4 + 4x^2 + 10x - 12}{5x^2} \ .$$

4) È data la funzione $f(x) = -x^2 - x + 2$. Calcolare il polinomio $P_1(x)$ di interpolazione relativo ai punti $x_0 = 0$ e $x_1 = 1$. Posto $E_1(x) = f(x) - P_1(x)$, determinare

$$\max_{x \in [0,1]} |E_1(x)| .$$

5) Per approssimare l'integrale $I=\int_{1}^{2}xf(x)dx$ si utilizza la formula di quadratura

$$J_0(f) = a_0 f(x_0).$$

Determinare il peso a_0 e il nodo x_0 in modo da ottenere il massimo grado di precisione algebrico.

Indicare il grado di precisione ottenuto.

1) Seguendo l'algoritmo $r_1=x^2$ e $r_2=\frac{y}{r_1}$ si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 - 2\epsilon_x + \epsilon_y$$
.

2) La matrice A ha autovalori

$$\lambda_1 = \frac{1}{10}$$
, $\lambda_2 = \frac{5}{10}$, $\lambda_3 = -\frac{6}{10}$, $\lambda_4 = \frac{7}{10}$.

Quindi $\rho(A)=\frac{7}{10}$ per cui la matrice risulta convergente.

3) I punti fissi sono le soluzioni dell'equazione $x = \phi(x)$. Risolvendo tale equazione si determinano quattro punti fissi

$$\alpha_1 = 2 \; , \quad \alpha_2 = 3 \; , \quad \alpha_{3,4} = \pm \sqrt{2} \; .$$

4) Il polinomio cercato è $P_1(x) = 2(1-x)$. Segue $E_1(x) = -x^2 + x$ che assume il suo massimo valore assoluto per x = 1/2 e risulta

$$\max_{x \in [0,1]} |E_1(x)| = \frac{1}{4}.$$

5) Imponendo che la formula risulti esatta per f(x) = 1 e f(x) = x si ha $a_0 = 3/2$ e $a_0 = 14/9$.

La formula così ottenuta non è esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.

Ingegneria Informatica 22/07/2019

1) Si vuole calcolare la funzione

$$f(x,y) = x \cdot y$$

in un punto $P_0 \in D = [-2, -1] \times [1, 3]$.

Si suppone di commettere un errore algoritmico $|\delta_a| \leq 10^{-3}$ e di introdurre i valori x e y con errori $|\delta_x| \leq 10^{-3}$ e $|\delta_y| \leq 10^{-3}$.

Quale è il massimo errore assoluto $|\delta_f|$?

 $\mathbf{2}$) Calcolare la fattorizzazione LR della matrice

$$A = \left(\begin{array}{cccc} 2 & 2 & 2 & 2 \\ -2 & -1 & 0 & -1 \\ -2 & -1 & -1 & -1 \\ -2 & -1 & -1 & 1 \end{array}\right) .$$

3) L'equazione

$$e^{-x} - x^2 + 4x - 3 = 0$$

ha una soluzione $\alpha \in [-4, -3]$. Indicare un punto iniziale x_0 a partire dal quale il metodo di Newton risulta convergente.

4) Risolvere nel senso dei minimi quadrati il sistema lineare sovradeterminato

$$\begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

5) Per approssimare l'integrale $I = \int_1^2 \log x \, dx$ si utilizza la formula dei trapezi. Indicare il numero di sottointervalli in cui si deve suddividere l'intervallo di integrazione in modo da ottenere un massimo errore assoluto E(f) che verifichi $|E(f)| \leq 10^{-2}$.

1) Risultando $A_x = \max_{(x,y) \in D} \left| \frac{\partial f}{\partial x} \right| = 3$ e $A_y = \max_{(x,y) \in D} \left| \frac{\partial f}{\partial y} \right| = 2$ si ottiene

$$|\delta_f \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 10^{-3} + 5 \cdot 10^{-3} = \frac{3}{500}$$
.

2) La fattorizzazione cercata è

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 1 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- 3) Risultando f'(x) < 0 e f''(x) > 0 per ogni $x \in [-4, -3]$, un buon punto di partenza per il metodo di Newton è $x_0 = -4$.
- 4) Si risolve il sistema delle equazioni normali dato da

$$\left(\begin{array}{cc} 4 & 0 \\ 0 & 10 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 6 \end{array}\right)$$

ottenendo $(x_1, x_2)^T = (0, 3/5)^T$.

5) Si ha $M_2 = \max_{x \in [1,2]} |f''(x)| = 1$. Imponendo che l'errore commesso nella applicazione della formula dei trapezi soddisfi $|E_1^{(G)}(f)| \leq \frac{1}{2} 10^{-2}$ si ottiene che l'intervallo di integrazione deve essere suddiviso in $m \geq 5$ sottointervalli.

Ingegneria Informatica 19/09/2019

1) La matrice

$$A = \begin{pmatrix} 69 & 0 & 57 & 0 \\ 0 & 12 & 0 & -44 \\ 57 & 0 & 69 & 0 \\ 0 & -44 & 0 & 12 \end{pmatrix}$$

ha un autovettore dato da $x = (0, -\sqrt{2}/2, 0, \sqrt{2}/2)^T$. Quale è l'autovalore ad esso associato?

2) Dire quante sono le soluzioni reali dell'equazione

$$e^{-x^2} - x^2 - x = 0$$

indicando un intervallo di separazione per ciascuna di esse.

3) Calcolare il numero di condizionamento $\mu_2(A)$ (norma 2) della matrice

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 16 \end{array}\right) .$$

4) Determinare l'equazione della retta y=ax+b che approssima nel senso dei minimi quadrati la tabella di valori

5) Per approssimare l'integrale $I(e^x f) = \int_{-1}^0 e^x f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(-1) + a_1 f(0) .$$

Determinare i pesi a_0 e a_1 in modo che si abbia il massimo grado di precisione massimo indicandone il valore.

1) Dal quoziente di Raileigh si ha

$$\frac{x^H A x}{x^H x} = \frac{56}{1} = 56 \ .$$

2) Con una semplice separazione grafica si ricava che l'equazione data ha 2 soluzioni reali tali che, per esempio,

$$\alpha_1 \in]-1.5, -1[, \alpha_2 \in]0.5, 1[.$$

3) La matrice è reale e simmetrica con autovalori

$$\lambda_1 = -1$$
, $\lambda_2 = 1$, $\lambda_3 = 16$.

Segue

$$\mu_2(A) = \frac{\max |\lambda_i|}{\min |\lambda_i|} = \frac{16}{1} = 16.$$

4) Si risolve il sistema delle equazioni normali dato da

$$\left(\begin{array}{cc} 10 & 0 \\ 0 & 5 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 4 \\ 3 \end{array}\right)$$

ottenendo $(a,b)^T = (2/5,3/5)^T$. La retta cercata ha quindi equazione

$$y = \frac{2}{5}x + \frac{3}{5} \, .$$

5) Imponendo che la formula risulti esatta per f(x) = 1, x si ottiene il sistema lineare

$$\begin{array}{rcl}
a_0 & + & a_1 & = & 1 - 1/e \\
-a_0 & & = & 2/e - 1
\end{array}$$

la cui soluzione è

$$a_0 = 1 - \frac{2}{e}$$
, $a_1 = \frac{1}{e}$.

La formula non risulta esatta per $f(x) = x^2$ per cui il massimo grado di precisione è m = 1.

A DICALIA

Ingegneria Informatica 14/01/2020

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x-y}{xy} \, .$$

2) È data la matrice

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{array}\right) .$$

Se A è la matrice dei coefficienti di un sistema lineare, il metodo iterativo di Jacobi risulta convergente?

3) Indicare il numero delle soluzioni reali della equazione

$$x e^{-x} + 1 = 0$$

determinando per ciascuna di esse un intervallo di separazione.

- 4) È data la funzione $f(x) = x^3 3x + 1$. Si determini il polinomio $P_1(x)$ che la interpola nei punti $x_0 = -1$ e $x_1 = 1$. Si calcoli il massimo di $|f(x) P_1(x)|$ sull'intervallo $[x_0, x_1]$.
- 5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_3(f) = \frac{1}{4} \left(f(-1) + 3f\left(-\frac{1}{3}\right) + 3f\left(\frac{1}{3}\right) + f(1) \right).$$

Supposto che risulti $E_3(f) = Kf^{(s)}(\theta)$, determinare $K \in s$.

1) Considerando l'algoritmo

$$r_1 = x - y$$
, $r_2 = xy$, $r_3 = r_1/r_2$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 + \frac{y}{x - y} \epsilon_x - \frac{x}{x - y} \epsilon_y .$$

2) La matrice di iterazione di Jacobi è

$$H_J = \left(\begin{array}{ccc} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right) \ .$$

Gli autovalori della matrice H_J sono

$$\lambda_1 = 0 \,, \quad \lambda_{2,3} = \pm i$$

per cui $\rho(H_J) = 1$ e quindi il metodo non converge.

- 3) L'equazione proposta ha una sola soluzione reale $\alpha \in]-1,-1/2[$.
- 4) Risulta $P_1(x) = -2x + 1$ e quindi $E(x) = x(x^2 1)$. Il massimo cercato si ha per $x = -\frac{\sqrt{3}}{3}$ e vale $\frac{2\sqrt{3}}{9}$.
- 5) La formula risulta esatta per $f(x)=1, x, x^2, x^3$ ma non per $f(x)=x^4$ per cui il grado di precisione è m=3. Ne segue che s=4 ed essendo $E_1(x^4)=-\frac{16}{135}$ si ottiene $K=-\frac{2}{405}$.

A DICALLA

Ingegneria Informatica 3/02/2020

1) È data la funzione

$$f(x,y) = \frac{x}{y} \, .$$

Determinare come si deve eseguire l'operazione e con quale precisione si devono inserire i dati se si vuole calcolare la funzione in un punto $(x_0, y_0) \in [1, 2] \times [-2, -1]$ commettendo un errore assoluto δ_f con $|\delta_f| < 10^{-2}$.

2) È data la matrice

$$A = \left(\begin{array}{ccc} 2 & -\alpha & 0 \\ -\alpha & 2 & \alpha \\ 0 & \alpha & 2 \end{array} \right) \;, \quad \alpha \in \mathbb{R} \;.$$

Per quali valori reali di α la matrice A risulta convergente?

3) Determinare i punti fissi della funzione

$$\phi(x) = \frac{x^4 + x^3 - x + 6}{7x} \, .$$

4) È data la tabella di valori

$$\frac{x \mid 0 \quad \beta \quad 1 \quad 3 \quad -1}{f(x) \mid 1 \quad 7 \quad 2 \quad \alpha \quad 4}, \quad \alpha, \beta \in \mathbb{R}.$$

Calcolare i valori reali di α e β in modo che il polinomio di interpolazione risulti di grado minimo.

5) Si vuole approssimare il valore dell'integrale $\int_0^{1/2} \cos(x^2) dx$ utilizzando la formula dei trapezi commettendo un massimo errore $|E| < 10^{-2}$. Quanti sottointervalli sono necessari?

- 1) Si pongono $|\delta_f| < \frac{1}{2}10^{-2}$ e $|\delta_d| < \frac{1}{2}10^{-2}$. Risultano $A_x = 1$ e $A_y = 2$ per cui $|\delta_x| < \frac{1}{4}10^{-2}$ e $|\delta_y| < \frac{1}{8}10^{-2}$. Quindi, per rientrare nella limitazione richiesta, basta introdurre x e y troncati alla terza cifra decimale e arrotondare il risultato dell'operazione alla seconda cifra decimale.
- 2) Si considera la matrice

$$B = A - 2I = \alpha \left(\begin{array}{rrr} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) .$$

Gli autovalori della matrice B sono $\mu_1 = 0$ e $\mu_{2,3} = \pm \alpha \sqrt{2}$. Segue che gli autovalori di A sono

$$\lambda_1 = 2$$
, $\lambda_{2,3} = 2 \pm \alpha \sqrt{2}$,

per cui la matrice A non risulta convergente essendo $\rho(A) \geq 2$ per ogni $\alpha \in \mathbb{R}$.

3) Si deve risolvere l'equazione $x = \phi(x)$, cioè l'equazione $x^4 + x^3 - 7x^2 - x + 6 = 0$. Le soluzioni (e quindi i punti fissi di $\phi(x)$) sono

$$\alpha_1 = 1$$
, $\alpha_2 = -1$, $\alpha_3 = -3$, $\alpha_4 = 2$.

- 4) Considerando solo le coppie $(x_i, f(x_i))$ che non coinvolgono i parametri α e β si ottiene il polinomio di interpolazione $P(x) = 2x^2 x + 1$. Per non alzare il grado del polinomio basta inserire $\alpha = P(3) = 16$ e $\beta_1 = 2$ o $\beta_2 = -3/2$ che sono le soluzioni di P(x) = 7.
- 5) Si ha $M_2 \geq \sup_{x \in [0,1/2]} |f''(x)| = 3$. Imponendo che l'errore commesso nella applicazione della formula dei trapezi soddisfi $|E_1^{(G)}(f)| \leq \frac{1}{2} 10^{-2}$ si ottiene che l'intervallo di integrazione deve essere suddiviso in $m \geq 3$ sottointervalli.

Ingegneria Informatica 24/02/2020

1) Si vuole calcolare la funzione

$$f(x,y) = x/y$$

in un punto $P_0 \in D = [1, 3] \times [4, 5]$.

Si suppone di arrotondare il risultato dell'operazione alla 2^a cifra decimale e di introdurre i valori x e y con errori $|\delta_x| \le 10^{-2}$ e $|\delta_y| \le 10^{-2}$.

Quale è il massimo di $|\delta_f|$?

2) È dato un sistema lineare Ax = b con matrice dei coefficienti

$$A = \left(\begin{array}{rrr} -2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right) .$$

Il metodo iterativo di Gauss-Seidel converge?

3) Determinare intervalli di separazione delle soluzioni della equazione

$$e^x + 2x - 2 = 0.$$

Per ciascuna delle soluzioni indicare un punto iniziale che rende convergente il metodo di Newton.

4) È dato il sistema lineare sovradeterminato Ax = b con matrice dei coefficienti

$$A = \begin{pmatrix} \alpha & \alpha^2 \\ \alpha & -\alpha \\ 1 & 1 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

Indicare i valori reali di α per i quali il sistema ha una unica soluzione nel senso dei minimi quadrati.

5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_3(f) = a_0 f(x_0) + \frac{3}{4} \left(f\left(-\frac{1}{3}\right) + f\left(\frac{1}{3}\right) \right) + a_0 f(-x_0).$$

Determinare il peso a_0 ed il nodo x_0 in modo da ottenere il massimo grado di precisione. Indicare il grado di precisione raggiunto.

1) Risultano $|\delta_a \leq \frac{1}{2} 10^{-2}, \, A_x = \frac{1}{4}$ e $A_y = \frac{3}{16}.$ Segue

$$|\delta_f| \le \frac{1}{2} 10^{-2} + \frac{1}{4} 10^{-2} + \frac{3}{16} 10^{-2} = \frac{15}{16} 10^{-2},$$

2) La matrice di iterazione di Gauss-Seidel risulta

$$H_{GS} = (D - E)^{-1}F = \begin{pmatrix} -1/2 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 & 0 \\ 0 & -1/2 & 0 \\ 0 & -1/2 & 0 \end{pmatrix}.$$

I suoi autovalori sono

$$\lambda_1 = \lambda_2 = 0 \,, \qquad \lambda_3 = -\frac{1}{2} \,,$$

per cui il metodo risulta convergente.

3) Da una separazione grafica si evidenzia che l'equazione data ha una sola soluzione $\alpha \in [0, 1]$.

Posto $f(x) = e^x + 2x - 2$, sull'intervallo [0, 1], si hanno f'(x) e f''(x) entrambe positive per cui il metodo di Newton converge sicuramente se si sceglie $x_0 = 1$.

- 4) Affinché il sistema abbia una unica soluzione nel senso dei minimi quadrati, la matrice A deve risultare di rango massimo. Guardando i tre minori di ordine 2 estraibili da A, si conclude che il rango risulta uguale a 2 per $\alpha \neq 0$.
- 5) Imponendo che la formula risulti esatta per $f(x) = 1, x, x^2$ si ottiene

$$a_0 = \frac{1}{4}$$
, $x_0 = \pm 1$.

La formula ottenuta risulta esatta anche per $f(x) = x^3$ ma non per $f(x) = x^4$ per cui il grado di precisione è m = 3.

Test Telematico di Calcolo Numerico

Ingegneria Informatica 15/06/2020

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{y}{x^2} \,.$$

2) Calcolare gli autovalori della matrice

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 4 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right).$$

La matrice A risulta convergente?

3) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{7x - 6}{r^2}.$$

4) Per approssimare l'integrale $I(x^4f) = \int_{-1}^1 x^4 f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f\left(-\frac{1}{2}\right) + a_1 f(1)$$
.

Determinare i pesi a_0 e a_1 in modo da ottenere il massimo grado di precisione. Indicare il grado di precisione raggiunto.

1) Si segue l'algoritmo $r_1 = x \cdot x, r_2 = y/r_1$. L'errore relativo complessivo è

$$\epsilon_f = \epsilon_{r_2} = \epsilon_2 - \epsilon_{r_1} + \epsilon_y = \epsilon_2 - \epsilon_1 - 2\epsilon_x + \epsilon_y$$

2) La matrice -A risulta di Frobenius. Segue che gli autovalori di -A sono gli zeri dell'equazione $\lambda^4 + 4 = 0$ per cui gli autovalori di A sono le radici quarte di -4 cambiate di segno.

Essendo tutti gli autovalori di modulo $\sqrt{2}$, la matrice non risulta convergente.

3) I punti fissi sono le soluzioni dell'equazione

$$x = \frac{7x - 6}{x^2}$$

Riducendo allo stesso denominatore si deduce che i punti fissi sono le soluzioni non nulle dell'equazione $x^3 - 7x + 6 = 0$. Quindi i valori cercati sono

$$\alpha_1 = 1 , \quad \alpha_2 = 2 , \quad \alpha_3 = -3.$$

4) Imponendo che la formula risulti esatta per f(x) = 1, x si ottengono i valori

$$a_0 = \frac{4}{15}$$
, $a_1 = \frac{2}{15}$.

La formula trovata non risulta esatta per $f(x) = x^2$ per cui il grado di precisione (algebrico) è m = 1.

Test Telematico di Calcolo Numerico

Ingegneria Informatica 6/07/2020

1) Calcolare la fattorizzazione LR della matrice

$$A = \begin{pmatrix} -1 & 0 & -1 & 0 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 0 & -1 \\ -1 & 1 & -2 & 2 \end{pmatrix} .$$

2) Calcolare le soluzioni dell'equazione

$$x^4 + 2x^3 - 3x^2 - 8x - 4 = 0.$$

Se si applicasse il metodo di Newton per approssimare le soluzioni, quale ordine di convergenza si avrebbe?

3) È data la tabella di valori

Calcolare i valori reali di α e β in modo che il polinomio di interpolazione risulti di grado minimo.

4) È dato il sistema lineare sovradeterminato Ax = b con matrice dei coefficienti

$$A = \begin{pmatrix} 1 & -\alpha \\ \alpha & 1 \\ 1 & -\alpha \\ \alpha & 1 \end{pmatrix} , \quad \alpha \in \mathbb{R} .$$

Indicare i valori reali di α per i quali il sistema ha una unica soluzione nel senso dei minimi quadrati.

1) Risultano

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

2) L'equazione data ha soluzioni

$$\alpha_1 = 2, \qquad \alpha_2 = -2, \qquad \alpha_{3,4} = -1.$$

Il metodo di Newton ha ordine di convergenza p=2 nella approssimazione delle radici semplici e ordine di convergenza p=1 per approssimare α_3 .

- 3) Il polinomio di interpolazione relativo ai tre punti che non coinvolgono α e β è $P_2(x) = x^2 1$.

 Quindi, per non avere un polinomio di grado superiore, calcoliamo $\alpha = P_2(1) = 0$ e da $P_2(\beta) = 15$ si hanno i valori $\beta_{1,2} = \pm 4$.
- 4) Affinché il sistema abbia una unica soluzione nel senso dei minimi quadrati, la matrice A deve risultare di rango massimo. Guardando i sei minori di ordine 2 estraibili da A, si conclude che il rango risulta uguale a 2 per ogni $\alpha \in \mathbb{R}$.

Test Telematico di Calcolo Numerico

Ingegneria Informatica 27/07/2020

1) Si vuole calcolare la funzione

$$f(x,y) = \frac{x}{x+y}$$

in un punto $P_0 \in D = [0,1] \times [1,2]$. Si suppone di arrotondare il risultato alla 2^a cifra decimale e di introdurre i valori x e y con errori $|\delta_x| \le 10^{-2}$ e $|\delta_y| \le 10^{-3}$. Quale è il massimo di $|\delta_f|$?

2) Verificare se la matrice

$$A = \begin{pmatrix} 3 & 0 & 1 & 0 \\ 5 & -1 & 4 & 1 \\ 0 & 0 & 2 & 0 \\ 2 & 2 & 1 & 1 \end{pmatrix}$$

risulta riducibile indicando, se è il caso, una matrice di permutazione che la riduce.

3) È data la funzione $f(x) = x^3 - x + 1$. Calcolare il polinomio $P_1(x)$ di interpolazione relativo ai punti $x_0 = 0$ e $x_1 = 2$. Posto $E_1(x) = f(x) - P_1(x)$, determinare

$$\max_{x \in [0,2]} |E_1(x)|$$
.

4) Si vuole approssimare il valore dell'integrale $\int_0^1 e^{x^2} dx$ utilizzando la formula dei trapezi commettendo un massimo errore $|E| < 10^{-2}$.

Quanti sottointervalli sono necessari?

1) Risultano $|\delta_a| \leq \frac{1}{2} 10^{-2}, \, A_x = 2$ e $A_y = 1.$ Segue

$$|\delta_f| \le \frac{1}{2} 10^{-2} + 2 \cdot 10^{-2} + 10^{-3} = 2.6 \cdot 10^{-2},$$

2) Dallo studio del grafo orientato si deduce che la matrice A risulta riducibile ed una matrice di permutazione che la riduce è

$$P = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \ .$$

3) Il polinomio $P_1(x)$ risulta (banalmente) $P_1(x)=3x+1$. Da questo segue $E_1(x)=x^3-4x$. Dallo studio della derivata prima si ottiene che $\max_{x\in[0,2]}|E_1(x)|$ si ottiene per $x=\frac{2}{3}\sqrt{3}$ per cui

$$\max_{x \in [0,2]} |E_1(x)| = \frac{16}{9} \sqrt{3} .$$

4) Imponendo che l'errore commesso con la formula dei trapezi sia minore (in valore assoluto) di $\frac{1}{2}10^{-2}$ e tenendo conto che $\sup_{x\in[0,1]}|f''(x)|=6$ e si ottiene

$$\frac{(b-a)^3}{12K^2}6e \le \frac{1}{2}10^{-2} \implies K \ge 17.$$

Test Telematico di Calcolo Numerico

Ingegneria Informatica 22/09/2020

1) Determinare l'espressione dell'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x-y}{x\,y}$$

2) La matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}, \qquad \alpha, \beta \in \mathbb{R}$$

è la matrice dei coefficienti di un sistema lineare.

Per quali valori reali di α e β risulta convergente il metodo di Jacobi?

Per quali valori reali di α e β risulta convergente il metodo di Gauss-Seidel?

3) È data la funzione

$$\phi(x) = \frac{e^x}{5}.$$

Indicare intervalli di separazione dei punti fissi della funzione $\phi(x)$.

4) Si vuole approssimare il valore dell'integrale

$$I(\sqrt{x}f) = \int_0^1 \sqrt{x} f(x) dx$$

utilizzando la formula

$$J_1(f) = a_0 f(0) + a_1 f(1)$$
.

Determinare i pesi a_0 e a_1 in modo da ottenere la formula con massimo grado di precisione. Indicare il grado di precisione ottenuto.

1) Seguendo l'algoritmo $r_1=x-y,\,r_2=xy,\,r_3=r_1/r_2$ si ha

$$\epsilon_f = \epsilon_{r_3} = \epsilon_1 - \epsilon_2 + \epsilon_3 + \frac{y}{x - y} \epsilon_x - \frac{x}{x - y} \epsilon_y$$

2) Risultano

$$H_J = - \left(\begin{array}{ccc} 0 & 0 & 0 \\ \alpha & 0 & \beta \\ 0 & 0 & 0 \end{array} \right) \;, \quad H_{GS} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -\beta \\ 0 & 0 & 0 \end{array} \right) \;.$$

I due metodi risultano convergenti per ogni coppia di valori $\alpha, \beta \in \mathbb{R}$ essendo $\rho(H_J) = \rho(H_{GS}) = 0$.

3) I punti fissi della funzione $\phi(x)$ sono le soluzioni dell'equazione

$$x = \frac{e^x}{5} \, .$$

Con una semplice separazione grafica si evidenzia che si hanno due punti fissi

$$\alpha_1\in]0,1[\;,\qquad \alpha_2\in]2,3[$$

4) Imponendo che la formula di quadratura proposta risulti esatta per f(x) = 1, x si ha

$$a_0 = \frac{4}{15}$$
, $a_1 = \frac{2}{5}$.

La formula non risulta esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.