LCDP - Codici correttori

Saftoiu Vlad Alexandru 14 febbraio 2018

Indice

Ĺ	Traccia	2
2	Introduzione	2
	Algoritmo somme-prodotti a scambio di messaggi 3.1. Factor graph	2

1 Traccia

- 1. introduzione/descrizione LDPC (e brevissima storia?)
- 2. check matrix sparsa
- 3. sum-product algorithm
- 4. factor graph
- 5. esempi concreti di impiego di codici correttori LDPC

2 Introduzione

Un codice LDPC è un codice ottimo con una buona distanza, a patto di riuscire a costruire un decoder efficiente che, dato l'output \mathbf{r} sul canale C, individua la codeword \mathbf{t} con la probabilità $P(\mathbf{r}|\mathbf{t})$ maggiore. Decodificare un codice LD-PC è un problema NP-completo, un approcio che possiamo seguire per ottenere un decoder è dato dall'utilizzo dell'algoritmo somme-prodotti a scambio di messaggi.

3 Algoritmo somme-prodotti a scambio di messaggi

Obiettivo: trovare \mathbf{x} che massimizza $P^*(\mathbf{x}) = P(\mathbf{x})1[\mathbf{H}\mathbf{x} = \mathbf{z}]'$.

Anche conosciuto come propagation-belief algorithm, è un algoritmo utilizzato per fare inferenza sulle strutture ad albero (ed in maniera approssimata anche sui grafi) calcolando le probabilità marginali di un modello grafico con N variabili $\bar{x} = (x_1, x_2, x_N)$ a valori su un alfabeto finito \mathcal{X} .

3.1 Factor graph

Un $factor\ graph$ è un grafo bipartito che rappresenta la fattorizzazione di una funzione, in particolare viene utilizzato per rappresentare i fattori di una distribuzione di probabilità. In un $factor\ graph$ un fattore che è 0 oppure 1 viene chiamato constraint.