

Attachment Learning for Multi-Channel Allocation in Distributed OFDMA Networks

Lu WANG

Computer Science and Engineering, HKUST Dec 9, 2011

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
- Conclusion

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
- Conclusion

Introduction

OFDMA Paradigm

OFDMA

Orthogonal Frequency-Division Multiple Access

OFDMA Paradigm

OFDMA

Orthogonal Frequency-Division Multiple Access

OFDMA Paradigm

OFDMA

Orthogonal Frequency-Division Multiple Access

Contends for a certain subcarrier in a certain time slot for transmission

Fine-grained channel access

Efficient multichannel allocation approach

Previous Approaches

Previous Approaches

Costly Coordination >
Reduce the effective throughput of data traffic!

The Problem

The Problem

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
- Conclusion

Observation 1/2

- Interference cancellation
 - ZigZag Decoding [SIGCOMM'08]
 - Using interference-free chunk of packet to decoding the collided chunk in an iterative way

Observation 2/2

- Correlated Equilibrium in Game theory
 - each player chooses his/her action according to the value of a public correlation signal

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
- Conclusion

AT-Learning Architecture

AT-Learning Architecture

Roadmap

- Introduction
- Motivation
- AT-Learning Design
 - Correlation signal generation
 - Correlation signal generation
- Performance Evaluation
- Conclusion

AT-Learning Architecture

Learning and Adaptation

- Attachment transmission to generate implicit coordination signal.
- Transmitting coordination signal and data traffic simultaneously.

Learning and Adaptation

- Attachment transmission to generate implicit coordination signal.
- Transmitting coordination signal and data traffic simultaneously.

Attachment Transmission

- Narrower the channel width of attached signal.
- Transmit the attached signal on one particular subcarrier with higher energy.

Attachment Detection

 Detect and record the energy which exceeds the threshold

Attachment Cancellation

- Record the attached signal on "clean" preamble
- Cancel out the attached signal in subsequent data

Attachment Cancellation

- Record the attached signal on "clean" preamble
- Cancel out the attached signal in subsequent

Attachment Cancellation

- Record the attached signal on "clean" preamble
- Cancel out the attached signal in subsequent data

Roadmap

- Introduction
- Motivation
- AT-Learning Design
 - Correlation signal generation
 - Correlation signal learning
- Performance Evaluation
- Conclusion

AT-Learning Architecture

Attachment Learning **MAC Layer** PHY Layer **Multi-Player** Attachment transmission Game **Function Function** provide correlation **Achieve Correlated** Support Equilibrium signal

MAC Layer design

 To achieve the Correlated Equilibrium of Multiplayer game, we propose a Learning Based MAC

To *learn* the access decision according to each value of the *correlation signal*

C _t	0	1	2	•••	C-2	C-1
$f_m(C_t)$	S ₁	0	S ₅	•••	S ₂	S ₆

Learning and Adaptation

Strategy Learning

Learning and Adaptation

Learning and Adaptation

AT-Learning Review

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
 - Feasibility of Attachment Transmission
 - Performance of Correlation Learning
 - Performance of AT-Learning
- Conclusion

Implementation

GNU radio with 10 USRP2 nodes

Attachment Transmission

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
 - Feasibility of Attachment Transmission
 - Performance of Correlation Learning
 - Performance of AT-Learning
- Conclusion

Correlation Learning

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
 - Feasibility of Attachment Transmission
 - Performance of Correlation Learning
 - Performance of AT-Learning
- Conclusion

AT-Learning

Gain: up to 300%

Roadmap

- Introduction
- Motivation
- AT-Learning Design
- Performance Evaluation
- Conclusion

Conclusion

- We design a cross layer Attachment-Learning for multichannel allocation in distributed wireless networks.
- We design Attachment Transmission to costeffectively transmit correlation signal.
- We formulize the multichannel allocation problem as multi-player game to achieve Correlative Equilibrium, which is TDMA-like performance.

Thank You! Q&A

How to ensure fairness and convergence time

Channel

Subchannel space: C: = {0, 1... C-1}

Implicit coordination signal

Signal space: K :={ 0, 1... K-1}

Station

Station space: N (Normally N>C)

Every station observe the same coordination signal