Architecture des Ordinateurs

Mounir T. El Araki

mounir.elarakitantaoui@uic.ac.ma

CPI

Plan du cours

- Historique
- Présentation de l'architecture des ordinateurs
- Représentation interne des informations
- Encodage/décodage de l'information
- Circuits logiques
- Mémoires
- Unité centrale de traitement

Encodage

- Encoder une information en assurant son intégrité et sa compression avec des méthodes simples.
- Utilisation des codes pour représenter l'information pour résoudre les problèmes suivants:
 - Assurer l'intégrité de l'information
 - (détection et correction d'erreurs)
 - Minimiser la taille de l'information (compression),
 - Garantir la sécurité de l'information (encryptage/chiffrement).

Code détecteurs et correcteurs d'erreur

- Une information peut subir des modifications involontaires lors de sa transmission ou lors de son stockage en mémoire.
- → Utiliser des codes permettant de détecter ou même de corriger les erreurs.
- → Utiliser des bits supplémentaires (de contrôle) à ceux nécessaire pour coder l'information.
 - Codes auto-vérificateurs (e.g., contrôle de parité),
 - Codes auto-correcteurs (e.g., double parité, hamming, codes polynomiaux).

Contrôle de parité

- Code auto-vérificateur le plus simple.
- A un mot de taille 'm', on ajoute I bit de parité.
- "parité paire": la valeur du bit de parité est a l si le nombre de bit a l du mot 'm+l' est pair.
 - Exemple en parité paire : 7+1 bits
 - Valide :
 - I 1 0 0 1 1 0 0
 - 0 1 0 0 1 1 0 1
 - Erreur:
 - 0 1 0 0 1 1 0 0
- Si un bit est change par erreur la parité n'est plus vérifiée.
 L'erreur est détectée (mais pas corrigée).
 - ▶ → Retransmission de l'information.

Contrôle de double parité

- Code obtenu en effectuant un double contrôle de parité.
- A un mot de taille m, on ajoute I bit de parité transversal.
- Apres une série de mot, on ajoute 1 mot de parité (longitudinal).
 - Exemple en double parité impaire : 7+1 bits et série de 4 mots.

> Si un bit est change, l'erreur est détectée et corrigée.

La distance de Hamming

- La distance de Hamming est le nombre de bits à changer pour passer d'une configuration de bis à une autre.
 - Exemple 10010101 & 1001<u>10</u>01 à une distance de 2
- Pour n'importe quelle code incluant des membres ayant des distances de Hamming de 2, une erreur d'1 bit peut être détectée. Pourquoi?

Cube binaire de 3 bits pour trouver les distances de Hamming

 $100 \rightarrow 011$ a une distance de 3 (rouge) $010 \rightarrow 111$ a une distance de 2 (bleu)

Codes de Hamming

- Les codes de Hamming sont utilisés télécommunication et en compression
- ▶ [7,4] codes de Hamming binaire
 - Soit notre mot $(x_1 x_2 ... x_7)$
 - x_3, x_5, x_6, x_7 représente le message lui-même.

```
 \begin{array}{c} \raisebox{-4pt}{$\scriptscriptstyle \bullet$} \times_4 := \raisebox{-4pt}{$\scriptstyle \star_5$} + \raisebox{-4pt}{$\scriptstyle \star_6$} + \raisebox{-4pt}{$\scriptstyle \star_7$} \pmod{2} \\ \raisebox{-4pt}{$\scriptstyle \bullet$} \times_2 := \raisebox{-4pt}{$\scriptstyle \star_3$} + \raisebox{-4pt}{$\scriptstyle \star_6$} + \raisebox{-4pt}{$\scriptstyle \star_7$} \\ \raisebox{-4pt}{$\scriptstyle \bullet$} \times_1 := \raisebox{-4pt}{$\scriptstyle \star_3$} + \raisebox{-4pt}{$\scriptstyle \star_5$} + \raisebox{-4pt}{$\scriptstyle \star_7$} \\ \raisebox{-4pt}{$\scriptstyle \bullet$} \times_1 := \raisebox{-4pt}{$\scriptstyle \star_3$} + \raisebox{-4pt}{$\scriptstyle \star_5$} + \raisebox{-4pt}{$\scriptstyle \star_7$} \\ \end{array} \begin{array}{c} (0 \ 0 \ 0 \ 0) & \rightarrow & (0 \ 0 \ 0 \ 0 \ 0 \ 0) \\ (0 \ 0 \ 1 \ 0) & \rightarrow & (0 \ 1 \ 0 \ 1 \ 0 \ 1) \\ (0 \ 0 \ 1 \ 0) & \rightarrow & (1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1) \\ (0 \ 1 \ 0 \ 0) & \rightarrow & (1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1) \\ (0 \ 1 \ 1 \ 0) & \rightarrow & (1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0) \\ (0 \ 1 \ 1 \ 1) & \rightarrow & (0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1) \\ \vdots & \vdots & \vdots \\ \end{array}
```

Le code de Hamming [7,4]

- Soit $a = x_4 + x_5 + x_6 + x_7$ (=1 Ssi un de ces bits est en erreur)
- Soit b = $x_2 + x_3 + x_6 + x_7$
- soit $c = x_1 + x_3 + x_5 + x_7$
- Si erreur (assume en plus une) alors 'abc' est la représentation binaire de l'indice de bit d'erreur.

Si $(y_1, y_2, ..., y_7)$ est le résultat et abc \neq 000, alors on assume que le bit 'abc' est une erreur et on le change. Si 'abc'=000, on assume pas d'erreur.

Exemple utilisation de L₃

Suppose (I 0 I 0 0 I 0) est réceptionné.

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

100 est 4 en binaire, donc le message initial était (1011010).

Compression

Objectif

- Diminuer le nombre de bits utilisés pour le stockage et la transmission des informations. Les algorithmes de compression se caractérisent par les facteurs suivants :
 - le taux de compression,
 - la qualité de compression (avec ou sans perte d'information),
 - ▶ le temps de compression.

Codage de huffman

- ▶ Algorithme de compression sans perte, très connu.
- Réduit le nombre de bits utilisés pour représenter les caractères les plus fréquent,
- Augmente le nombre de bits utilisés pour représenter les caractères peu fréquent,
- Un arbre binaire donne le codage pour chaque caractère.

Codage de Huffman: Exemple simple

- Suppose on a un message qui consiste de 5 symboles,
 e.g. [►♣♣♠ ⊕ ►♣☼► ⊕]
- Comment peut on coder ce message utilisant des 0/1 pour que le message ait une longueur minimale (pour transmission ou sauvegarde)
- ▶ 5 symboles → au moins 3 bits
- Pour un encodage simple,
 - ▶ la longueur du code est 10*3=30 bits

>	000	
*	001	
∌	010	
±	011	
✡	100	

Codage de Huffman: Exemple simple

Intuition: Les symboles les plus fréquents doivent avoir des codes plus petits. Seulement, on doit distinguées chaque code, puisqu'ils n'auront pas la même longueur.

Pour le code de Huffman

Symbol	Freq.	Code
•	3	00
*	3	01
9	2	10
*	1	110
☆	1	111

Codage de l'algorithme de Huffman

- 1. Prendre les symboles les mois probables de l'alphabet
- 2. Combiner ces deux symboles en un seul symbole, et on répète.

Codage de l'algorithme de Huffman

Caractère	Fréquence	Fixé	Huffman
Е	125	0000	110
Т	93	0001	011
Α	80	0010	000
0	76	0011	001
I	73	0100	1011
N	71	0101	1010
S	65	0110	1001
R	61	0111	1000
Н	55	1000	1111
L	41	1001	0101
D	40	1010	0100
С	31	1011	11100
U	27	1100	11101
Total	838	4.00	3.6229