Non-Trivial Commutative Symmetry

by Sven Nilsen, 2020

In this paper I introduce non-trivial commutative symmetry.

Commutativity and anti-commutativity are important mathematical properties of binary operators. However, from the perspective of path semantics, these two properties can be treated as one property:

$$\forall$$
 a, b { f(a, b) = g(f(b, a)) } $\land \exists f \iff \forall g$

In path semantical notation:

$$f \le f[swap \rightarrow g]$$
 \land $\exists f \le \forall g$

This generalized property of commutativity is called "non-trivial commutative symmetry", or just "commutative symmetry" for a short version.

The motivation for this is to prove properties that are more generic.

The condition $\exists f \iff \forall g$ is weaker than f having an identity element, but serves a similar role.

Strictly said, $\exists f \iff \forall g$ is implied by $\forall a, b \in f(a, b) = g(f(b, a))$, because for every output of f(a, b), there must be an output of g which gets mapped from $\forall g$ which comes from f(b, a). For every output of f(a, b) there is an output of f(b, a), which is a tautology when g and g are enumerated from the same type. Therefore, $\exists f \iff \forall g$.

However, since $\exists f \iff \forall g$ is not easy to see, it is defined explicitly to be used in theorem proving.

One can use "commutative symmetry" to refer to "non-trivial commutative symmetry". The reason for this is that it is closer to the standard usage of commutativity and anti-commutativity.

There is a "trivial commutative symmetry" which can be added, which allows stronger proofs:

$$f[g \times g \rightarrow id] \iff f$$

However, trivial commutative symmetry is not necessary for generalized commutativity.

When trivial commutative symmetry is added, one uses "full commutative symmetry" or "commutative symmetric path", due to the simplified definition:

$$f[swap \rightarrow id] \iff f[g]$$