Math 332 A - Mathematical Statistics

Ethan Jensen

January 31, 2020

HW p.286 #1,5,6,13

1 p. 286 #1

If $X_1, X_2, ..., X_n$ constitute a random sample from a population with the mean μ , what condition must be imposed on the constants $a_1, a_2, ..., a_n$ so that

$$a_1X_1 + a_2X_2 + \dots + a_nX_n$$

is an unbiased estimator of μ ?

Since $a_1X_1 + a_2X_2 + ... + a_nX_n$ is an unbiased estimator of μ , we can write

$$E(a_1X_1 + a_2X_2 + \dots + a_nX_n) = \mu$$

Expected Value is a linear operator. We can write

$$a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n) = \mu$$

Each $X_1, X_2, ..., X_n$ come from a population with mean μ we know that $E(X_1) = E(X_2) = ... = E(X_n) = \mu$ we can factor out a μ

$$\mu(a_1 + a_2 + \dots + a_n) = \mu$$

$$\sum_{k=1}^{n} a_k = 1$$

2 p. 286 #5

Given a random sample of size n from a population that has a known mean μ and the finite variance σ^2 , show that

$$\frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \mu)^2$$

is an unbiased estimator of σ^2 .

By Definition 8.5, the above sum is exactly σ^2 .

$$\therefore E\left(\frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \mu)^2\right) = E(\sigma^2) = \sigma^2$$

It is an unbiased estimation of σ^2 .

3 p. 286 #6

Use the results of Theorem 8.1 on page 233 to show that \overline{X}^2 is an asymptotically unbiased estimator of μ^2 .

By Theorem 4.10 we know
$$\operatorname{var}(X) = E(\overline{X}^2) - (E(\overline{X}))^2$$

By Theorem 8.1,
$${\rm var}\overline{X}=\frac{\sigma^2}{n}$$
 and $E(\overline{X})=\mu$ $\frac{\sigma^2}{n}=E(\overline{X}^2)-\mu^2$

Note that $E(\overline{X}^2) - \mu^2$ is the bias of the estimator \overline{X}^2 . As $n \to \infty$ the bias of the estimator goes to 0. $\therefore \overline{X}^2$ is an asymptotically unbiased estimator of μ^2 .

4 p. 286 #13

Show that if $\hat{\Theta}$ is an unbiased estimator of θ and $var(\hat{\Theta}) \neq 0$, then $\hat{\Theta}^2$ is not an unbiased estimator of θ^2 .

By Definition 4.5 we can write

$$var(\hat{\Theta}) = E((\hat{\Theta} - \theta)^2) = E(\hat{\Theta}^2) - 2\theta E(\hat{\Theta}) + \theta^2$$

Since $\hat{\Theta}$ is an unbiased esit mator of θ , $E(\hat{\Theta}) = \theta$

$$var(\hat{\Theta}) = E(\hat{\Theta}^2) - 2\theta^2 + \theta^2$$

$$E(\hat{\Theta}^2) = var(\hat{\Theta}) + \theta^2$$

Since $var(\hat{\Theta})$ is non-zero, $E(\hat{\Theta}^2) \neq \theta^2$

 $\therefore \hat{\Theta}^2$ is a biased estimator of θ^2 .