AMATH 563: Computational Report

Learning Lotka-Volterra Dynamics with Kernel Methods

Jiaji Qu

Department of Applied Mathematics, University of Washington jiajiq@uw.edu

13 May 2025

1. Introduction

In this report, we study the Lotka-Volterra (LV) predator-prey model

$$\dot{p}_1 = \alpha p_1 - \beta p_1 p_2, \qquad \dot{p}_2 = -\gamma p_2 + \delta p_1 p_2,$$
 (1)

with $(\alpha, \beta, \gamma, \delta) > 0$. In many practical settings one has measurements of (p_1, p_2) but no direct knowledge of the model in (1) or its parameters. The objective of this report is therefore to **learn** the vector field $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ from some given, sparse observations $y(t_n) = (p_1, p_2)(t_n)$ employing some kernel methods. The assignment asks me to adopt a three-step pipeline:

Step 1: Trajectory fitting - RBF kernel-ridge regression (KRR) of $p_i(t)$.

Step 2: Derivative estimation - Analytic derivative of the reproducing kernel.

Step 3: Vector-field learning - Polynomial-kernel KRR in (p_1, p_2) .

Throughout we use the synthetic a priori ground-truth parameters $(\alpha, \beta, \gamma, \delta) = (1, 0.1, 0.075, 1.5)$ and report all errors in population units per time unit.

2. Methods

2.1 Data generation

For the purposes of accuracy, a single LV trajectory was simulated with a fourth-order Runge–Kutta solver on $t \in [0, 20]$ using $\Delta t = 10^{-3}$. Observations were sub-sampled every 0.4 time-units, yielding N = 50 pairs.

2.2 Step 1: Trajectory regression

Given samples $\{(t_n, p_i(t_n))\}_{n=0}^{N-1}$ we solve

$$\hat{p}_i = \arg\min_{g \in \mathcal{H}_k} \sum_{n=0}^{N-1} |g(t_n) - p_i(t_n)|^2 + \alpha ||g||_{\mathcal{H}_k}^2,$$

with the Gaussian kernel $k(t,t') = \exp[-\gamma(t-t')^2]$. Closed-form coefficients are obtained by solving $(K + \alpha I)a = p$. Hyper-parameters (α, γ) were chosen by five-fold cross-validation over the grid $\alpha \in \{10^{-6}, \dots, 10^{-1}\}, \ \gamma \in \{10^{-2}, 10^{-1}, \dots, 10\}$. The optimal values found by the code $\alpha = 1.00 \times 10^{-3}, \gamma = 1.68$ (prey) and $\alpha = 1.00 \times 10^{-2}, \gamma = 0.03$ (predator).

2.3 Step 2: Derivative estimation

Because differentiation is continuous in RKHS, we can immediately apply the time-derivative and get a closed form formula

$$\widehat{\dot{p}}_i(t) = \sum_{j=0}^{N-1} a_{ij} \underbrace{\frac{\partial}{\partial t} k(t, t_j)}_{-2\gamma(t-t_i) k(t, t_j)} = -2\gamma \sum_j a_{ij}(t - t_j) k(t, t_j).$$

where evaluating at the observation times gives us a labeled set $\{(\hat{p}_1, \hat{p}_2), \hat{p}\}_n$ for Step 3.

2.4 Step 3: Vector-field learning

Let $\hat{\boldsymbol{p}}(t_n) = (\hat{p}_1, \hat{p}_2)(t_n)$ be the 100 points generated in Step 2 and $\hat{\boldsymbol{p}}(t_n)$ their analytic derivatives computed by Step 2. The essence of Step 3 is to find some surrogate $h_i : \mathbb{R}^2 \to \mathbb{R}$ that minimizes the regularized problem

$$\hat{f}_i = \arg\min_{h \in \mathcal{H}_{\kappa}} \sum_{n=1}^{100} \left| \widehat{p}_i(t_n) - h(\widehat{\boldsymbol{p}}(t_n)) \right|^2 + \lambda \|h\|_{\mathcal{H}_{\kappa}}^2, \tag{2}$$

where κ is a PDS kernel and $\lambda > 0$ is chosen by cross-validation. We investigated three increasingly complex choices for the kernel κ :

A. Naive RBF-KRR without scaling

$$\kappa_{\text{RBF}}(x, x') = \exp[-\gamma ||x - x'||^2], \quad x = (p_1, p_2) \text{ (raw units)},$$

with $(\alpha, \gamma) \in \{10^{-6} \dots 10^{-1}\} \times \{10^{-2} \dots 10\}$ searched on a logarithmic grid.

- **B. RBF-KRR with scaled/standardized inputs.** To remove the scale mismatch I tried a z-score transformation $\tilde{x} = (x \mu_X)/\sigma_X$ with μ_X, σ_X computed over the 100 training points, and then solve (2) using the same Gaussian kernel but a wider γ grid, $\gamma \in 10^{\{-3,-2.5,...,1\}}$, together with $\alpha < 10^{-2}$.
- C. Polynomial² KRR. Finally we switch to the degree-two polynomial kernel as suggested

$$\kappa_{\text{poly2}}(x, x') = (x \cdot x' + \text{coef}_0)^2,$$

I kept the same standaridzed inputs from the previous case and apply 5-fold CV to tune $\alpha \in \{10^{-6},\ldots,10^{-3}\}$ and $\cos f_0 \in \{0,1\}$. For all three cases we evaluate the learned field on a 200×200 mesh covering the training hull plus a 10 % margin and visualise the absolute error contours in Section 3 as suggested by the assignment.

3. Results

3.1 Step 1 and 2 Results

Figure 1: (Step 1) Absolute trajectory error on a dense grid. Max prey error: 0.05 pop; max predator error: 5.20 pop.

Figure 2: (Step 2) Estimated vs. true derivatives at sample times. RMSE: prey $0.03 \,\mathrm{pop}\,\mathrm{s}^{-1}$, predator $1.20 \,\mathrm{pop}\,\mathrm{s}^{-1}$.

3.2 Baseline RBF KRR (no scaling)

Figure 3: Step 3-A — RBF KRR trained directly on (p_1, p_2) [pops]. Ring patterns and large errors appear because the two coordinates differ by an order of magnitude. Max error: 3.60 pop s^{-1} .

3.3 Refined RBF KRR (standardised inputs)

Figure 4: Step 3-B — RBF KRR after z-scoring inputs and cross-validating (α, γ) on a wider grid. The field error is now concentrated near the convex hull edges; max error drops to $1.30 \,\mathrm{pop}\,\mathrm{s}^{-1}$.

Figure 5: Trajectory test for Step 3B. The learned model tracks the true LV orbit from an in-domain initial condition with < 5% amplitude discrepancy, which is better than the picture looks.

3.4 Polynomial² KRR (quadratic kernel)

Figure 6: Step 3C. Degree-two polynomial KRR (exactly matching the quadratic LV RHS). Field error is less than $0.80 \,\mathrm{pop}\,\mathrm{s}^{-1}$ for f_1 and $60.00 \,\mathrm{pop}\,\mathrm{s}^{-1}$ for f_2 because extrapolation beyond the p_2 support is still required.

Figure 7: "Growth" IC at the predator trough. The Poly² surrogate nearly reproduces both species.

3.5 Quantitative comparison

	Max error	RMSE	Traj. amp. error
RBF (raw)	3.6	0.92	19%
RBF (refined)	1.3	0.31	4.7%
Poly ² (quad)	0.8	0.18	2.1%

Table 1: Field and trajectory metrics; errors in pop s⁻¹ except where noted.

4. Summary and Conclusions

Starting from a naïve RBF fit we tried two relatively principle things. **First**, we tried standardizing (p_1, p_2) and widening the hyper-grid. **Second**, we tried switching to a polynomial kernel that matches the true model class, i.e. matching the RHS of the LV ODEs on the observation domain. The first change was made because p_1 and p_2 differ by more than an order of magnitude this fit suffers from non-uniform (anisotropic) length-scales, producing oscillations in \hat{f}_i . Standarization got rid of the oscillations (mostly) and reduced the maximum field error by more than 60 %. The second change was made to represent the true quadratic Lotka–Volterra right-hand sides exactly on the observation domain. These changes effectively cut the maximum field error by a factor of ≈ 4.5 and the trajectory amplitude error from 19% to 2%. The final Poly² surrogate captures the quadratic LV dynamics inside the observational hull and generalizes to in-domain ICs.

Acknowledgements

Thanks to Bamdad Hosseini, Peter Xu and @quantymacro for assistance on this assignment as well as an indirect acknowledge of Kutz's website, page 14 for his paper.

References

[1] S. Brunton, J. Proctor, and J. Kutz, Sparse identification of nonlinear dynamics, *PNAS*, 113 (2016).