6/11/20	Page
01	CS 663 Shubham Lahiya (180108020)
	Assignment 4 Prathameth Bele(180110020) Latika Patel (180100062)
93.	Matrix A -/ mxn./msn.
	P = ATA
	9 = AAT
(a)	To prove: for any vector y, prove ytly 7,0. 4 for any vector z, prove ztgz 7,0
	$y^{T} P_{Y} = y^{T} A^{T} A y$ $= (Ay)^{T} (Ay) \qquad (XY)^{T} = Y^{T} X^{T}$
	let Ay = m, where m is a rector with appropriate
	$= m ^{2} = Ay ^{2} > 0.$
	Similarly. $z^{t}Qz = z^{t}AA^{T}z$ $= (A^{T}z)^{T}A^{T}z$
	$= A^{\dagger}z ^2 > 0.$
	Let u be an eigenvector of P, je. Pu= lu
	we know yt Py 7,0
	$\Rightarrow u^{t} P u > 0$ $\Rightarrow \lambda u^{t} u > 0$ $\therefore u^{t} u = 1$
	⇒ 人utu 7,0 :: utu=1 =1 入70

Similarly, let v be an eigenvector of p, with eigenvalue u

we know that, ztqz >0

> vtqv >0

→ Vt µ V >0

コ ルン ロ

Therefore, eigenvalues of born P and of are non-negative.

show Au is eigenvector of p with eigenvalue &

 $Pu = \lambda u$ $A^{T}Au = \lambda u$

Premultiplying bomsides with A.

AAT (Au) = XlAu)

9 (Au) = 1 (Au)

:. Au is eigenvector of 9 nith eigenvalue v.

Similarly, given that vis an eigenvector of of min eigenvalue
$=) Q V = \mu V$
> AATV = μV
Premoltiplying with AT,
$= ATA (ATV) = \mu(ATV)$
$= P(A^{T}v) = \mu(A^{T}v)$
: ATV is eigenvector of I with eigenvalue p.
No of elements.
u 9s eigenveutor of p.
P = ATA size(p) = nxn nxm mxn
:. Number of dements in u = n.
vis eigenvector of q.
q = AA! Size(q) = mxm.
mxn nxm
: Number of element in v = m.

vo is an eigenvector of 9. (c) · 9 v; = H, v; Where Me is the eigenvalue corresponding to the eigenvector v; of q. u; ATVi [[ATV; 1] Au; = AATV ILAT VIII Q = AAT = Qvi 11 AT VIII2 Mi Vi 11 AT VILL Aui = 7 Vo No = Mi From (a) , we know that 40 70. MATU; 11 11ATV:112 = magnitude of vector ATV; Which 9s non-negative Thus, yo go non-negative.

	V V
	A is of size man.
(d).	airen, U= [V1 V2 V3 Vm]
	$\frac{V}{n_{x}n} = \left[\frac{u_{1} \left[u_{2} \right] u_{3} - \dots u_{n} \right]}{n_{x}n}$
	Let us consider, For PE 21,2,-m3, Au; = Y; V;
	For i t [m+1, m+2n], Au; = 0
	from (c), we have, Aui = 1; v;
	=) AV = UF where FP3 a
	Pre-multiplying with VT Your diagonal elements
	=1 AVVT = UTVT -O
	each other and of magnitude 1.
for	ui's i +j,
	$u_i^{t}u_j = v_{\underline{q}^{t}} \underbrace{A A^{t}v_j^{t}}_{(A^{T}v_i)_{\underline{q}^{t}}} = \underbrace{v_i^{t}}_{ A^{T}v_i^{t} }_{1 A^{T}v_j^{t} }_{2}$
	111111111111111111111111111111111111111
	= Mvity = 0
	$\frac{1}{ A^{T}v_{i} } = 0$ $\frac{1}{ A^{T}v_{i} } = 0$

: uils are ormogonal 4 magnitude =1
by definition. uit ve =0 from () AVVT = UTVT · · VVT== A = UTVT The PI me Singular Value Decomposition(SVD) for matrix Amen