

UNIVERSITI TEKNOLOGI MARA FINAL EXAMINATION

COURSE

STATISTICAL COMPUTING

COURSE CODE

: STA705

EXAMINATION

: DECEMBER 2015

TIME

: 3 HOURS

INSTRUCTIONS TO CANDIDATES

1. This question paper consists of two (2) parts :

PART A (2 Questions)
PART B (2 Questions)

- 2. Answer ALL questions in both parts using separate Answers Booklets.
- 3. Do not bring any material into the examination room unless permission is given by the invigilator.
- 4. Please check to make sure that this examination pack consists of :
 - i) the Question Paper
 - ii) two Answer Booklets provided by the Faculty
- 5. Answer ALL questions in English.

PART A

QUESTION 1

a) Write the R command using **seq** to obtain the following result:

(2 marks)

b) Produce the R command to obtain the following output by using the build-in function **rep** and **seq**.

```
10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 25 50 25 50 25 50 25 50 25 50
```

(3 marks)

c) Give the R command to reconstruct the result obtained in part (b) into the following form.

> x1					
	[,1]	[,2]	[,3]	[,4]	[,5]
[1,]	10	12	14	16	18
[2,]	20	10	12	14	16
[3,]	18	20	10	12	14
[4,]	16	18	20	25	50
[5,]	25	50	25	50	25
[6,]	50	25	50	25	50

(3 marks)

d) Use loop procedure to generate 20 sets of random samples (with set.seed=100) based on the data provided in part (a). Samples of data are shown as below:

```
[1] 12 12 16 10 14 14 [1] 18 14 16 12 16 20 [1] 12 14 18 18 12 14 .... [1] 10 16 20 18 10 12 [1] 20 10 20 18 12 20
```

(4 marks)

e) Complete the following R function to produce 20 sample means based on the results obtained in part (d).

(6 marks)

The output is obtained as follows:

```
> Find.samples(a1,20)
$data
[1] 10 12 14 16 18 20

$sample.mean
[1] 13.000 16.000 14.667 16.667 15.333 17.667 15.000 17.333 12.000 13.000
[11] 16.000 14.000 17.667 16.667 14.333 15.667 13.333 16.000 14.333 16.667
```

f) Use the function obtained in part (e) to get the sample means generated based on 500 and 1000 sets of random samples. Write the R function to produce the following plots:

(7 marks)

QUESTION 2

The information on the "road" dataset obtained from the R system is given as follows:

```
> str(road)
'data.frame': 26 obs. of 6 variables:
 $ deaths : int 968 43 588 640 4743 566 325 118 115 1545 ...
 $ drivers: int 158 11 91 92 952 109 167 30 35 298 ...
 $ popden : num 64 0.4 12 34 100 ...
 $ rural : num 66 5.9 33 73 118 73 5.1 3.4 0 57 ...
       : int 62 30 64 51 65 42 37 41 44 67 ...
 $ temp
         : num 119 6.2 65 74 105 78 95 20 23 216 ...
> road
       deaths drivers popden rural temp fuel
          968
                 158
                       64.0
                             66.0
                                   62 119.0
Alabama
          43
                 11
                       0.4
                             5.9
                                   30 6.2
Alaska
          588
                 91
                      12.0 33.0 64 65.0
Arizona
         640
                 92
                       34.0 73.0 51 74.0
Arkanas
                952
                      100.0 118.0 65 105.0
Calif
        4743
Colo
         566
                109
                      17.0 73.0 42 78.0
          325
                167
                      518.0
                            5.1
                                   37 95.0
Conn
                      226.0 3.4 41 20.0
Dela
         118
                 30
DC.
         115
                 35 12524.0
                            0.0
                                 44 23.0
                298
                      91.0 57.0 67 216.0
Florida 1545
Georgia 1302
                203
                      68.0 83.0
                                   54 162.0
                       8.1 40.0 36 29.0
Idaho
         262
                 41
                544 180.0 102.0
                                   33 350.0
Ill
         2207
                254 129.0 89.0
                                   37 196.0
Ind
        1410
Iowa
         833
                150
                       49.0 100.0 30 109.0
         669
                136
                       27.0 124.0
                                   42 94.0
Kansas
Kent
         911
                147
                      76.0 65.0 44 104.0
                      72.0 40.0
Louis
        1037
                146
                                 65 109.0
                      31.0 19.0
                                   30 37.0
Maine
        1196
                 46
                157 314.0 29.0
                                   44 113.0
Maryl
        616
                                   37 166.0
         766
                     655.0 17.0
Mass
                255
                                   33 306.0
Mich
        2120
                403 137.0 95.0
Minn
         841
                189
                      43.0 110.0
                                   22 132.0
                 85
                       46.0 59.0 57 77.0
Miss
         648
Mo
         1289
                234 63.0 100.0
                                   40 180.0
Mont
      259
                38 4.6 72.0 29 31.0
```

a) Write the R command to produce the given output.

Output:

\$result1

deaths	rural	fuel
968	66	119
4743	118	105
1545	57	216
1302	83	162
2207	102	350
1410	89	196
833	100	109
911	65	104
1037	40	109
1196	19	37
2120	95	306
841	110	132
1289	100	180
	968 4743 1545 1302 2207 1410 833 911 1037 1196 2120 841	968 66 4743 118 1545 57 1302 83 2207 102 1410 89 833 100 911 65 1037 40 1196 19 2120 95 841 110

\$result2

	deaths	rural	fuel
Ill	2207	102	350
Mich	2120	95	306
Florida	1545	57	216
Ind	1410	89	196
Мо	1289	100	180
Georgia	1302	83	162
Minn	841	110	132
Alabama	968	66	119
Louis	1037	40	109
Iowa	833	100	109
Calif	4743	118	105
Kent	911	65	104
Maine	1196	19	37

\$result3

	deaths	popden	temp
mean	1000.654	595.735	-
median	799.500		
		66.000	
maximum	4743.000	12524.000	
sd	946.842	2437.947	13.013
coef.var	0.946	4.092	0.298
skewness	2.362	4.496	0.443
kurtosis	6.713	19.043	-1 062

(10 marks)

b) Given that the Kendall's correlation between variables **deaths** and **popden** is 0.2923, determine the correct input of **ABC** and the value of **XXX**.

```
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = ABC, statistic = cor.kd, R = 2000)

Bootstrap Statistics:
original bias std. error

t1* XXX 0.0041662 0.1932577
```

(2 marks)

Based on the above information, write the R function to get the statistic, **cor.kd**. (3 marks)

c) Using the R program given below, spot the errors and correct them.

```
Prog. 1=function (dta)
     if (dta>=0&&dta<40) status="Low Temp"
     else if (dta>=40&&dta>60) status="Moderate Temp"
     else if (dta>=60&&data<100) status="High Temp"
     else if "Invalid DATA"
}
Prog.2=function(dt)
{ kp=numeric(length(dt))
   for (i in 1:dt)
   { kp=prog.1(dta(i))
      Result=cbind(data=dt, status=kp)
      result=as.data.frame(result)
      tb=table(result) }
par(mfrow=c(1,2))
gf1=hist(tb, main="Figure 1")
gf2=piechart(tb,col=gray(seq(0.5,1.0,length=5)),
main="Figure 2")
list(freq=tb,plots=c(gf1,gf2))
```

(10 marks)

Output

PART B

QUESTION 1

An insurance company wants to evaluate their staff performance to determine who deserve to be given bonus for a particular year. In order to obtain the employee's job performance score, several criteria of employees has been considered. Those criteria are listed in the table below:

Employee_ID	Attendance	No_Customers	Experience	Gender
8867	250	176	5	М
8771	212	56	7	F
7012	118	101	6	F
8588	274	124	2	M
9101	197	95	4	M
6781	210	201	8	M
7864	201	198	9	, F
8897	141	64	5	F
5691	167	174	5	M
5821	174	105	6	F

a) Write a SAS program to read the data and store it in a temporary SAS dataset.

(4 marks)

b) Prepare a SAS format for the variable gender where M stands for MALE and F stands for Female to be used in all printout.

(6 marks)

c) Include a SAS statement to calculate the performance score based on the sum of the following weightage:

50% of overall attendance (out of 300 days),

25% of number customers (out of 300 customers)

25% of years experience (out of 10 years)

(5 marks)

d) Include SAS statements to group the variable Score as follows:

Score	Status
< 70	Without Bonus
≥ 70	With Bonus

(5 marks)

e) Include SAS statements to store the listing of employees who are eligible for the bonus in a separate dataset that contains only information on Employee ID, Gender and Score.

(5 marks)

QUESTION 2

- a) Give example to illustrate how to use the following SAS commands:
 - i) Drop
 - ii) Firstobs
 - iii) Infile
 - iv) Double Trailing @@
 - v) Merge

run;

(10 marks)

b) i) Based on the following SAS program spot 5 errors and correct them.

```
Data qmt100;
Input name gender $ test quiz final;
carrymark: (test*0.3) + (quiz*0.1);
Totmark = carrymark + (final*0.6),
lines;
Nuriz Female 70 10 95
Dinur Male 85 9 96
Salleh Male 60 7 88
Sapiah Female 43 5 50
Eliza Female 71 8 78;
run;
proq print;
```

(5 marks)

ii) Based on the **Output 1** for the corrected program in part (i) given below, add commands in your program to produce **Output 2**.

(10 marks)

_						
O		4	m	8.0	4	4
\sim	u	L	u	ш	ш.	- 1

P		***************************************					
Obs	name	gender	test	quiz	final	carrymark	Totmark
1	Nuriz	Female	70	10	95	22.0	79.0
2	Dinur	Male	85	9	96	26.4	84.0
3	Salleh	Male	60	7	88	18.7	71.5
4	Sapiah	Female	43	5	50	13.4	43.4
5	Eliza		71	8	78	22.1	68.9

Output 2

Obs	name	gender	test	quiz	final	carrymark	Totmark
1	Sapiah	Female	43	5	50	13.4	43.4
2	Eliza	Female	71	8	78	22.1	68.9
3	Salleh	Male	60	7	88	18.7	71.5
4	Nuriz	Female	70	10	95	22.0	79.0
5	Dinur	Male	85	9	96	26.4	84.0

	Analysis Variable : Totmark						
N	Mean	Std Dev	Minimum	Maximum			
5	69.3600000	15.7000955	43.4000000	84.0000000			

Obs	name	Totmark
1	Sapiah	43.4
2	Eliza	68.9
3	Salleh	71.5
4	Nuriz	79.0
5	Dinur	84.0

END OF QUESTION PAPER