

ФГАОУ ВО «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

ТЕСТИРОВАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Лабораторная работа №3

Нагрузочное и стресс-тестирование

Лабушев Тимофей Группа Р3402

Задание

 ${\bf C}$ помощью программного пакета $Apache\ JMeter$ провести нагрузочное и стресс-тестирование веб-приложения в соответствии с вариантом задания.

В ходе нагрузочного тестирования необходимо протестировать 3 конфигурации аппаратного обеспечения и выбрать среди них наиболее дешёвую, удовлетворяющую требованиям по максимальному времени отклика приложения при следующей нагрузке:

- 1. максимальное количество параллельных сессий 14;
- 2. средняя нагрузка, формируемая одной сессией 20 запросов в минуту;
- 3. максимально допустимое время обработки запроса 880 мс.

При выборе конфигурации принять следующие стоимости:

- Конфигурация 1 \$2100
- Конфигурация 2 \$3200
- Конфигурация 3 \$3800

В ходе стресс-тестирования необходимо определить, при какой нагрузке выбранная на предыдущем шаге конфигурация перестаёт удовлетворять требованиям по максимальному времени отклика. Для этого необходимо построить график зависимости времени отклика приложения от нагрузки.

Тестовой план JMeter для нагрузочного тестирования

Структура тестового плана:

- Thread Group (Number of Threads: 14, Loop Count: 50)
 - HTTP Request (http://...&conf=1)
 - Constant Throughput Timer (20 samples per minute)
- Thread Group (Number of Threads: 14, Loop Count: 50)
 - HTTP Request (http://...&conf=2)
 - Constant Throughput Timer (20 samples per minute)
- Thread Group (Number of Threads: 14, Loop Count: 50)
 - HTTP Request (http://...&conf=2)
 - Constant Throughput Timer (20 samples per minute)

Для запуска тестового плана использовалась следующая команда:

```
apache-jmeter-5.3/bin/jmeter -n -t load-test.jmx -l load-test.csv
```

Где load-test.jmx — файл конфигурации тестового плана, load-test.csv — файл с выходными значениями, в который записываются показатели каждого отправленного запроса.

Результаты нагрузочного тестирования

По собранным данным составим сравнительную таблицу конфигураций:

Конфигурация	Максимальное время обработки запроса, мс	Среднее время обработки запроса, мс	Стоимость
1	2296	757	\$2100
2	767	553	\$3200
3	524	354	\$3800

Максимальное время обработки запроса при использовании первой конфигурации в разы превышает требования к системе, однако среднее время обработки запроса им удовлетворяет.

Чтобы убедиться, что высокий показатель не был единичным случаем, построим график изменения времени обработки запросов на протяжении теста:

Можем увидеть, что при использовании первой конфигурации превышение максимально допустимого времени происходит многократно. Таким образом, **оптимальной является вторая конфигурация**, которая удовлетворяет требованиям и имеет меньшую стоимость по сравнению с третьей.

Тестовой план JMeter для стресс-тестирования

Стресс-тестирование произведено для второй конфигурации, которая была выбрана как наиболее дешевая, при этом удовлетворяющая заданным требованиям.

Структура тестового плана:

- Thread Group (Number of Threads: 200, Ramp-up period: 90 seconds)
 - HTTP Request (http://...&conf=2)
 - Constant Throughput Timer (20 samples per minute)

Тестовый план запускается следующей командой:

apache-jmeter-5.3/bin/jmeter -n -t load-test.jmx -l load-test.csv

Результаты стресс-тестирования

Построим график зависимости максимального и среднего времени обработки запросов от числа одновременных пользователей:

Начиная с **69** одновременных пользователей, система прекращает удовлетворять требованиям к максимальному времени обработки запроса. Среднее время обработки запроса продолжает оставаться ниже 880 мс в пределах 100 пользователей.

При достижении 150 пользователей наблюдается странный эффект: время обработки запросов резко падает. Объяснение подобному поведению можно найти, построив график частоты ошибок, возвращаемых сервером:

Начиная со 151 одновременного пользователя выбранная конфигурация не справляется с нагрузкой и начинает отказывать в обслуживании, возвращая ошибки НТТР 503.

Исходный код

 $\verb|https://github.com/timlathy/itmo-fourth-year/tree/master/Software-Testing-7th-Term/Lab4|$

Выводы

В ходе выполнения работы был рассмотрен инструмент для проведения нагрузочного тестирования $Apache\ JMeter$. Было произведено сравнение трех конфигураций на основании данных, собранных в ходе тестирования, и принято решение о выборе оптимальной из них.

Для выбранной конфигурации также было произедено стресс-тестирование, в ходе чего было определено максимальное количество одновременных пользователей, удовлетворяющих требованиям, а также число пользователей, при котором система начинает отказывать в обслуживании.