15.3.2021

Домашнее задание №2 пммс

Бакытбек уулу Нуржигит, БПИ197, вариант 1 ниу вшэ

- 1) Рассчитал <u>100 псевдослучайных чисел</u> при помощи <u>программы</u>(метод серединных квадратов, z1 = 1661).
- 2) Первые 10 чисел: 0.1661 0.7589, 0.5929, 0.153, 0.3409, 0.6212, 0.5889, 0.6803, 0.2808, 0.8848
 - 3) В <u>Excel</u> (Лист "100") рассчитал количество чисел в диапазонах [0, 0.1), [0.1, 0.2), ..., [0.9, 1) и построил гистограмму из 100 чисел.

	[0,	[0.1,	[0.2,	[0.3,	[0.4,	[0.5,	[0.6,	[0.7,	[0.8,	[0.9,
Range	0.1)	0.2)	0.3)	0.4)	0.5)	0.6)	0.7)	0.8)	0.9)	1)
count	7	11	11	14	5	10	12	8	14	8

4) Проверим гипотезу, что последовательность имеет распределение R(0, 1), критерием хи-квадрат.

$$H_0$$
: $p_0=p_1=\dots=p_9=rac{1}{10}$ p_i — вероятность попасть в i — й интервал H_A : $\exists \; i,j \colon p_i
eq p_j$

$$\chi^{2} = \sum_{j=1}^{k} \frac{\left(O_{j} - E_{j}\right)^{2}}{E_{j}} \sim \chi_{k-1}^{2}$$

$$O_j$$
 — наблюдаемые частоты, $E_j=rac{1}{10}$ — ожидаемые частоты, $\qquad k=10$

			$(O_j-E_j)^2$
Range	O_j	E_{j}	$\overline{E_j}$
[0, 0.1)	7	10	0.9
[0.1, 0.2)	11	10	0.1
[0.2, 0.3)	11	10	0.1
[0.3, 0.4)	14	10	1.6
[0.4, 0.5)	5	10	2.5
[0.5, 0.6)	10	10	0
[0.6, 0.7)	12	10	0.4
[0.7, 0.8)	8	10	0.4
[0.8, 0.9)	14	10	1.6
[0.9, 1)	8	10	0.4

$$\chi^2 = \sum_{j=1}^k rac{{(o_j - E_j)}^2}{E_j} = 8$$
 (рассчитал в Excel, лист "100").

$$\chi^2_{9,0.05} = 16.9189776$$

 $\chi^2 < \chi^2_{9,0.05}
ightarrow$ нет оснований отвергать гипотезу H_0 .

Cчитаем что последовательность равномерна распределена на (0,1).

Сделал гистограмму в <u>Excel</u> (лист "1000"), сразу видно, что распределение не равномерное.

Это произошло из-за зацикливания при z = 4100.

			-		- '		[0.6,	[0.7,	[0.8,	[0.9,
Range	0.1)	0.2)	0.3)	0.4)	0.5)	0.6)	0.7)	0.8)	0.9)	1)
count	7	11	2487	14	2480	10	2486	8	2489	8

Проверим гипотезу, что последовательность имеет распределение R(0, 1), критерием хи-квадрат.

$$H_0$$
: $p_0=p_1=\dots=p_9=rac{1}{10}$ p_i — вероятность попасть в i — й интервал H_A : $\exists \; i,j \colon p_i \neq p_j$

$$\chi^{2} = \sum_{j=1}^{k} \frac{\left(O_{j} - E_{j}\right)^{2}}{E_{j}} \sim \chi_{k-1}^{2}$$

$$O_j$$
 — наблюдаемые частоты, $E_j=rac{1}{10}$ — ожидаемые частоты, $\qquad k=10$

			$\left(O_j-E_j\right)^2$
Range	O_j	E	$\overline{E_j}$
[0, 0.1)	7	1000	986.049
[0.1, 0.2)	11	1000	978.121
[0.2, 0.3)	2487	1000	2211.169
[0.3, 0.4)	14	1000	972.196
[0.4, 0.5)	2480	1000	2190.4
[0.5, 0.6)	10	1000	980.1
[0.6, 0.7)	2486	1000	2208.196
[0.7, 0.8)	8	1000	984.064
[0.8, 0.9)	2489	1000	2217.121
[0.9, 1)	8	1000	984.064

$$\chi^2 = \sum_{j=1}^k \frac{(O_j - E_j)^2}{E_j} = 14711.48$$

(рассчитал в <u>Excel</u>, лист "10000").

$$\chi^2_{9,0.05} = 16.9189776$$

$$\chi^2 > \chi^2_{9,0.05}$$

 \rightarrow отвергаем гипотезу H_0 , то есть не считаем последовательность равномерно распределенной R(0,1).

5) <u>Программа</u> считывает <u>данные</u> и подсчитывает количество перестановок и записывает результат в файл.

123	132	213	231	312	3 2 1
83	82	6	79	3	80

Сразу видно, что распределение не равномерное, это из-за зацикливания при z = 4100. Цикл длины 4, поэтому 4 ярко выраженных столбца.

Проверим гипотезу, что последовательность равновероятна, <u>критерием хиквадрат</u>.

$$H_0$$
: $p_0=p_1=\dots=p_5=rac{1}{6}$ p_i — вероятность попасть в i — ую перестановку. H_A : $\exists \; i,j \colon p_i \neq p_i$

$$\chi^{2} = \sum_{j=1}^{k} \frac{\left(O_{j} - E_{j}\right)^{2}}{E_{j}} \sim \chi_{k-1}^{2}$$

$$O_j$$
 — наблюдаемые частоты, $E_j=rac{1}{6}$ — ожидаемые частоты, $\qquad k=6$

	O_j	E_j	$\frac{\left(O_j - E_j\right)^2}{E_j}$
123	83	55.5	13.62612613
132	82	55.5	12.65315315
213	6	55.5	44.14864865
231	79	55.5	9.95045045
312	3	55.5	49.66216216
3 2 1	80	55.5	10.81531532

$$\chi^2 = \sum_{j=1}^k \frac{(o_j - E_j)^2}{E_j} = 140.85$$

(рассчитал в <u>Excel</u>, лист "Перестановки").

$$\chi^2_{5,0.05} = 11.07049769$$

$$\chi^2 > \chi^2_{9,0.05}$$

ightarrow отвергаем гипотезу H_0 , считаем, что последовательность не независима.

Таким образом, метод моего варианта оказался несостоятельным для генерации элементов из-за цикла при z = 4100 с длиной 4. Поэтому постоянно повторяется этот цикл.