Computer Architecture – Assignment #4

Cache Design

1. Introduction

Cache is a smaller, faster memory which stores copies of the data from the most frequently used main memory locations.

- Higher associativity increases the chance that the latest accessed block stays in the cache.
- Data accesses often show more irregular access patterns than instruction accesses do, which lead to more associativity.

2. Assignment

In this project, the experiments have two phases.

2.1 Observation for Program Behaviors

First, discuss about the timing of how Instruction cache and Data cache operate with two programs: Insertion sort and Random access.

- The microprocessor is a MIPS-based 5-stage pipelined architecture machine and is implemented in Verilog.
- The Instruction cache is a direct-mapped cache with 32 blocks.
- The Data cache is a 2-ways set associative cache with 32 blocks (i.e, Each way has 16 blocks). The replacement policy is LRU.
- Each block has 4 32-bit words.

2.2 Cache Simulation

Second, you are going to configure two levels of caches for a microprocessor called SimpleScalar. To do so, you are going to measure the performance with three SPEC CINT95 programs.

Table 1 - CINT95 Benchmarks

Benchmark	Application Area	Specific Task
cc1	compiler	Based on the GNU C compiler version 2.5.3.
ijpeg	utility	Compression/decompression on in-memory images.
perl	interpreter	An interpreter for the Perl language.

- The SPEC benchmark suite is designed to measure the performance of a computer system, which means it requires a high performance simulator with many OS functionalities.
- SimpleScalar is a processor simulator tool that supports cache simulation, and it is sufficiently fast by implementing the simulator in C language.
- In this phase of experiments, discuss about the performance changes while altering several aspects of the cache configuration.
 - Unified cache / Separate cache
 - ◆ L1 cache size / L2 cache size
 - ◆ Large block size / Small block size
 - Direct-mapped / Set-Associative
- The performance of the cache can be measured by AMAT. Use the following values.
 - ◆ L1 cache access time is 1 cycle, L2 cache access time is 20 cycles, and Main memory access time is 200 cycles.
 - ◆ By doubling the cache size the cycle time increase 4%, and by doubling the associativity the cycle time increase 2%.

3. Experiments Guide

For the first phase, you have to check the timing and discuss about:

- How I/D L1 hit operates, how I/D L1 miss operates
- When and how main memory (L2) operates
- The differences between Insertion sort and Random access in terms of cache behaviors
- What if data size increase?

For the second phase, finding the suitable cache for given benchmark programs:

- The original purpose of the benchmark programs given (not to measure the performance)
- Discuss about the memory access patterns of the benchmark programs in the aspect of algorithm (for example: there is a matrix multiplication, so the program may show 2d array access)
- Perform experiments with several cache configurations and discuss about the results
- Discuss about the best fit cache configuration for each benchmark program and compare and discuss about the differences among the configurations
- * There is no correct answer. Just analyze suitable cache and compare program
- * The larger the memory size, the higher the price, so Think of the appropriate price and set the cache

4. 결과 Report(2장 이상으로 작성)

- 실험 내용
 - 정렬 프로그램과 Benchmarks 프로그램에 각각 적합한 cache를 찾고, 각각의 프로그램의 적합한 cache가 왜 다른 건지 프로그램을 분석하여 비교
- 검증 전략, 분석 및 결과
 - AMAT를 이용하여 적합한 Cache configuration 분석
- 문제점 및 고찰
 - 프로젝트 내용 전체 정리 및 고찰
 - Benchmarks에 최적화된 cache와 정렬 프로그램에 최적화된 cache 비교 및 분석
- Soft copy
 - Due data: 2023/06/15(목요일) 23:59시까지. (딜레이 받지 않음.)
 - 결과 Report를 작성한 파일을 압축하여 U-campus에 upload.
 - 압축 파일명 양식: 학번_이름_Assignment#4.zip
 - ex) 2099720064_김땡땡_Assignment#4.zip