PRIME Factorisation

It n = 20, then l=2 => keep dividing n by i, until it cannot be divided further $\frac{20}{2} = 10 \Rightarrow \frac{10}{2} \Rightarrow 5000 \text{ Now this cannot be divided}$ (=3 =) 5 in not dinivible by 3 (= 4 =) 11 11 (=5=) It gets divided. So stop (as n=1 now); Yun on 25,32,28 same procedure; Pornerso that devides cannot be largor than In; void prime_factorisation(int n) { vector<int>v; for(int i = 2; i*i <=n;i++){ - Keep dividing n by i; (until possible) while (n % i == 0) n/= i, $v.push_back(i)$; if ($n \ge 1$) v.push_back(n); - Store prime number that dividusit. for(int): v) cout \leq < i << " "; cout << endl; If n could not be dévided by any i, 'this means it's prime, and its prime paun itself.

No of divisors

 $N = 54 = 21 \times 3$

Using P&C =) The possible numbers we can form from these factors are >

From 2 =) either we pick 0'29 = we have 2 options

From 3=) Cither we pick ① 3's

"" 11 11 2 3's

op Hons here

So we can form total = $(2) \times (3) = 6$ Numbers out by this; Now Generalizing it \Rightarrow $N = p_1^2 \cdot p_2^2 \cdot p_3^2$ (Prime Factorization) No of total divisors = (a+1)(b+1)(c+1)