# UNIVERSITY OF EDUCATION, WINNEBA COLLEGE OF TECHNOLOGY EDUCATION, KUMASI DEPARTMENT OF INFORMATION TECHNOLOGY EDUCATION

## END OF FIRST SEMESTER EXAMINATION, DECEMBER 2019/2020

| COURSE CODE    | ITC 117                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| COURSE TITLE   | DISCRETE MATHEMATICS 2 HOURS 30 MINUTES                                                                                                                                                                                                                                                                                                                          |  |  |  |
| DURATION       |                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| LECTURER       | DR. F. O. BOATENG AND KWAME O. BEMPAH                                                                                                                                                                                                                                                                                                                            |  |  |  |
| INSTRUCTION(S) | <ul> <li>Answer all questions.</li> <li><u>Circle</u> the correct answer on the question paper.</li> <li>Shade the letter that corresponds to the correct answer to each question on the <u>scannable form</u> provided.</li> <li>If your answer does not appear in the options provided, write yours on the question paper and shade the letter 'E'.</li> </ul> |  |  |  |

|    | INDEX NUMBER                                                                                                                                                                                                                                                                                                                                                                                   | :                        |                                           |                 |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|-----------------|--|
|    | CLASS                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                           | Canada e a      |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                | V 0 2 2 11               |                                           |                 |  |
|    | SIXTY (60) MARK                                                                                                                                                                                                                                                                                                                                                                                | S                        |                                           |                 |  |
| 1. | <ul> <li>In which of the following statements is exclusive OR implied?</li> <li>A. You can use birth certificate or passport for the Ghana Card registration.</li> <li>B. I will vote for my preferred Assemblyman or Unit Committee Members.</li> <li>C. I will go and vote or wait for the counting of the votes.</li> <li>D. The election will be conducted on Monday or Friday.</li> </ul> |                          |                                           |                 |  |
| 2. | Determine the formula or rule that generates the terms of the sequence 15, 8, 1, -6, -1, -20, -27,                                                                                                                                                                                                                                                                                             |                          |                                           |                 |  |
|    | A. $8 + 7n$                                                                                                                                                                                                                                                                                                                                                                                    |                          | C. $22 + 7n$                              |                 |  |
|    | B. $15 - 7n$                                                                                                                                                                                                                                                                                                                                                                                   |                          | D. $22 - 7n$                              |                 |  |
| 3. | The message HDW v<br>A. DPE<br>B. KGZ                                                                                                                                                                                                                                                                                                                                                          | was encrypted using Caes | car cipher. The Decry<br>C. JFY<br>D. LHA | pted message is |  |
| 4. | The number of elements in the power sets of the sets $\{a, b, \{c, d\}\}\$ is:                                                                                                                                                                                                                                                                                                                 |                          |                                           |                 |  |
|    | A. 16                                                                                                                                                                                                                                                                                                                                                                                          | •                        | C. 8                                      |                 |  |
|    | B. 4                                                                                                                                                                                                                                                                                                                                                                                           |                          | D. None of the                            | se              |  |



14. Evaluate  $\overline{(1|\overline{0})} \downarrow [(1\oplus 1)|(0+1)]$ .

A. 1

C. -1

B. 0

D.  $\frac{1}{2}$ 

| 15. The number of distinguishable permutations of the letters in the word BANA |                                                                                                                                                                                                                                 |                                                                                      |  |  |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| A.                                                                             | 60                                                                                                                                                                                                                              | C. 20                                                                                |  |  |  |
| B.                                                                             | 36                                                                                                                                                                                                                              | D. 10                                                                                |  |  |  |
|                                                                                | 16. Let $R$ be a relation from A to B and is defined as $\{(1, a), (1, b), (4, b), (2, a), (4, c)\}$ . Find the $R$ -relative set, $R$ (4).                                                                                     |                                                                                      |  |  |  |
| A.                                                                             | $\{a, b, c\}$                                                                                                                                                                                                                   | C. $\{a, b, c, d\}$                                                                  |  |  |  |
| B.                                                                             | $\{a,d\}$                                                                                                                                                                                                                       | D. $\{b, c\}$                                                                        |  |  |  |
| 17. Le                                                                         | Let $Q(x)$ mean $x < 2$ what is the truth value of $\forall x \ Q(x)$ , where $D = \text{real numbers}$ ?                                                                                                                       |                                                                                      |  |  |  |
|                                                                                | TRUE FALSE                                                                                                                                                                                                                      |                                                                                      |  |  |  |
|                                                                                | Let $A = \{1, 2\}$ and $B = \{3, 4\}$ . Let $R$ be a relation from set $A$ to set $B$ defined as $\{1, 3\}$ , $\{2, 4\}$ . The complement of this relation is given by:                                                         |                                                                                      |  |  |  |
| A.                                                                             | (1,2), (2,3)                                                                                                                                                                                                                    | C. (1, 4), (2, 3)                                                                    |  |  |  |
| B.                                                                             | (1, 3), (1,4), (2,3), (2,4)                                                                                                                                                                                                     | D. (1, 4)                                                                            |  |  |  |
| A.                                                                             | a relation $R$ on a set $A$ is defined by $(x, y) \in R \Rightarrow$<br>Symmetric<br>Reflexive                                                                                                                                  | $(y, x) \notin R$ for $x \neq y$ , then the relation is C. Asymmetric D. Irreflexive |  |  |  |
| 20 Ar                                                                          | Eulerian walk in a graph $G=(V, E)$ is a walk where                                                                                                                                                                             | nich uses                                                                            |  |  |  |
|                                                                                | Each vertex exactly once                                                                                                                                                                                                        | C. Each edge exactly once                                                            |  |  |  |
| B.                                                                             | Each vertex and edge once                                                                                                                                                                                                       | D. Each edge at least once                                                           |  |  |  |
|                                                                                | r every $n \in \mathbb{N}$ satisfying $n \ge 3$ , the cycle graph $C$                                                                                                                                                           | $\delta(V)$ is always equal to:                                                      |  |  |  |
| A.<br>B.                                                                       |                                                                                                                                                                                                                                 | D. 5                                                                                 |  |  |  |
|                                                                                |                                                                                                                                                                                                                                 |                                                                                      |  |  |  |
| A.<br>B.<br>C.                                                                 | $A = \{1, 2, 3\}$ and let $R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$ Reflexive, symmetric but not transitive<br>Symmetric, transitive but not reflexive<br>Reflexive, and transitive but not symmetric<br>An equivalence relation | 2), (2, 1), (2, 3), (3, 2)}, then R is:                                              |  |  |  |
| 23. Le is:                                                                     | et R be a relation defined on Z as follows: $(a,b) \in$                                                                                                                                                                         | $R \Leftrightarrow a^2 + b^2 = 25$ , then domain of R                                |  |  |  |
|                                                                                | {3, 4, 5}                                                                                                                                                                                                                       | C. $\{0, \pm 3, \pm 4, \pm 5\}$                                                      |  |  |  |
|                                                                                | {0, 3, 4, 5}                                                                                                                                                                                                                    | D. None of these                                                                     |  |  |  |
|                                                                                |                                                                                                                                                                                                                                 |                                                                                      |  |  |  |

24. The relation *R* defined on the set  $A = \{1, 2, 3, 4, 5\}$  by  $R = \{(a,b) : |a^2 - b^2| < 16\}$  is given by:

- A.  $\{(1, 1), (2, 1), (3, 1), (4, 1), (5, 2)\}$
- C.  $\{(3,3), (4,3), (5,1), (3,4)\}$

B.  $\{(2, 2), (3, 2), (4, 2), (4, 2)\}$ 

D. None of these

25. Let  $A = \{1, 2, 3\}$  and  $B = \{1, 4, 6, 9\}$  and R is a relation from A to B defined by 'x is greater than y'. Then the range of R is given by:

A.  $\{1, 4, 6, 9\}$ 

C. {1}

B. {4, 6, 9}

D. {1, 2, 3}

26. Given that m = qn + r is a division algorithm where  $m, q, n, r \in \mathbb{Z}^+$  and  $0 \le r < n$ . If m = 16 and n = 3, find the values of q and r.

A. q = 4, r = 3

C. q = 6, r = -3

B. q = 5, r = 1

D. q = 4, r = 4

27. What is the degree of the Boolean function defined by  $F(w, x, y, z) = \overline{w}xy + xz + w$ ?

A. 3

C. 16

B. 4

D. 32

28. A \_\_\_\_\_\_ is an ordered collection of objects.

A. Set

C. Relation

B. Proposition

D. Function

29. Given the set  $A = \{17, 19, 21, 23, 25, 27, 29\}$  and  $B = \{21, 23, 27, 35\}$ , what is the cardinality of the power set P(B - A).

A. 1

C. 6

B. 2

D. 16

30. Evaluate  $(1\ 1011 \lor 0\ 1010) \oplus (1\ 0001 \downarrow 1\ 1011)$ 

A. 1 1010

C. 0 1010

B. 1 1110

D. 1 1111

Use the given information to answer question 31 and 32.

Let  $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$  and the ordering of elements of U has the elements in increasing order. Let  $A = \{1, 2, 4, 6, 10\}$  and  $B = \{1, 3, 5, 6, 7, 8\}$ . Find the computer representation of the following set operations:

31.  $\overline{(A \cap B)} - B$ .

A. 0 101 000 011

C. 1 010 101 010

B. 0 101 000 101

D. 0 000 111 111

32.  $(A \oplus B) \cap A$ .

A. 1 010 101 010

C. 0 101 010 101

B. 0 110 101 000

D. 0 101 000 001

- 33. A literal is a Boolean variable or its completement.
  - A. True
  - B. False
- 34. Find the Boolean minterm that equals 1 if  $x_1 = x_4 = 0$  and  $x_2 = x_3 = x_5 = 1$ , and equals 0 otherwise.
  - A.  $x_1 x_2 x_3 x_4 x_5$

C.  $x_1 \overline{x}_2 \overline{x}_3 x_4 \overline{x}_5$ 

B.  $\overline{x}_1 x_2 x_3 \overline{x}_4 x_5$ 

- D.  $\overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5$
- 35. Find the general rule of the sequence  $-\frac{1}{3}$ ,  $\frac{2}{9}$ ,  $-\frac{4}{27}$ ,  $\frac{8}{81}$ ,....
  - A.  $U_n = -\frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$

C.  $U_n = -\frac{1}{3} + \frac{5}{9}(n-1)$ 

B.  $U_n = -\frac{1}{3} - \frac{1}{9}(n-1)$ 

- D.  $U_n = -\frac{1}{3} \left( -\frac{2}{3} \right)^{n-1}$
- 36. When is the quantification  $\exists x \forall y P(x, y)$  true for the statement P(x, y)?
  - A. There is an x for which P(x, y) is true for every y
  - B. For every x, there is a y for which P(x, y) is true
  - C. There is a pair x, y for which P(x, y) is true
  - D. P(x, y) is false for x, y
- 37. If the product of two integers is 2<sup>7</sup> 3<sup>10</sup> 5<sup>1</sup> 7<sup>9</sup> and their greatest common divisor is 2<sup>3</sup> 3<sup>4</sup>5, what is their least common multiple?
  - A.  $2^73^85^17^9$

C. 2<sup>4</sup>3<sup>4</sup>5<sup>1</sup>7<sup>11</sup>

B. 24365179

D. 385179

Use the following graph to answer questions 38 to 41.



- 38. Which of the following is **not** true about the given graph?
  - A. There exist a Hamiltonian cycle

C. The number odd vertices is even

B. There exist an Eulerian walk

- D. The number of even vertices is odd
- 39. Determine the elements in the 3rd row of the adjacency matrix in the order 1, 2, 3, 4, 5, 6.
  - A. 010110

C. 101101

B. 010110

D. 101111

- 40. Determine the elements in the 4th column of the adjacency matrix in the order 1, 2, 3, 4, 5, 6.
  - A. 010110

C. 011011

B. 110110

- D. 101111
- 41. What is the sum of the value of the degree taken over all the vertices on the graph?
  - A. 20

C. 21

B. 22

D. 25

### Use the following digraph to answer questions 42to 45.

A network of 5 computers is represent in a digraph as



- 42. Which of the following is **not** a relation, R on the vertices  $\{a, b, c, d, e\}$ ?
  - A. aRd

C.aRe

B. cRb

- D.eRb
- 43. Computer c is reachable from computer e.
  - A. True
  - B. False
- 44. Computer a is not reachable from computer d.
  - A. True
  - B. False
- 45. Determine the elements in the 2nd row of the adjacency matrix of the digraph in the order a, b, c, d, e.
  - A. 10110

C. 00110

B. 00001

D. 00111

#### Use the following digraph to answer questions 46 to 47.

Let  $A_i = \{2i+1, 3i+2, 4i+3, 5i+4\}$  for  $i = \{1, 2, 3, ...\}$ .

- 46. Find  $\bigcup_{i=3}^{4} A_i A_1$ .
  - A. {7, 9, 11, 14, 15, 19, 24}

C. {11, 14, 15, 19, 24}

B. {9, 14, 19, 24}

D. {}

- 47. Find  $\bigcap_{2}^{4} A_{i} \oplus A_{3}$ 
  - A. {7, 11, 15, 19}

C. {9, 14, 19, 24}

B. {7, 9, 11, 14, 15, 19, 24}

D. {11, 14, 15, 19, 24}

- 48. Evaluate  $\sum_{k=0}^{3} (3^k k)$ 
  - A. 34

C. 46

B. 36

D. 56

49. Evaluate 
$$\sum_{m=0}^{1} \prod_{n=m+1}^{2} (2^m - 2n)$$
.

$$C. -3$$
  
D. 6

Use the following argument to answer questions 50 to 52.

Let P(x, y) be the statement "3x < 4y - 1" and the universe of discourses are gives as

follows: 
$$D_1 = \{x : 0, 1, 2\}$$
 and  $D_2 = \{y : \frac{1}{2}, \frac{3}{2}, 2\}$ 

Determine the truth value of the following quantifications.

50. 
$$\exists x \forall y P(x, y)$$

51. 
$$\forall x \exists y P(x, y)$$

52. 
$$\exists x \exists y P(x, y)$$

Use the following argument to answer questions 53 to 55.

Let p, q and r be propositions such that

p: I vote in the Assemblyman election

q: My preferred Assemblyman won

r: I have development in my area

53. I voting in the Assemblyman election or my preferred Assemblyman winning is necessary for me to have development in my area.

A. 
$$(p \lor q) \to r$$

C. 
$$(r \rightarrow p) \lor q$$

B. 
$$r \rightarrow (p \lor q)$$

D. 
$$(p \rightarrow r) \lor q$$

54. If I did not vote in the Assemblyman election and my preferred Assemblyman won, then I will not have development in my area.

A. 
$$(\sim p \land q) \rightarrow \sim r$$

C. ~ 
$$p \land (q \rightarrow \sim r)$$

B. 
$$\sim r \rightarrow (\sim p \land q)$$

D. 
$$\sim r \rightarrow (\sim p \lor q)$$

55. It is not the case that whenever I have development in my area then my preferred Assemblyman won.

A. 
$$\sim (r \rightarrow q)$$

$$C. \sim r \rightarrow q$$

B. 
$$\sim (q \rightarrow r)$$

D. 
$$\sim q \rightarrow r$$

## Use the following argument to answer questions 56 to 57.

Voting for an Assemblyman is not sufficient for me to have development in your area. I have development in my area. Therefore, it is not the case that voting for an Assemblyman is necessary to have development in your area.

Let V and D represent the following statements in the argument above.

- V: Voting for an Assemblyman
- D: I have development in my area
- 56. Which of the following is the symbolic form of the argument?

A. 
$$(V \rightarrow \sim D) \land D \Rightarrow \sim (D \rightarrow V)$$

C. 
$$\sim (V \to D) \land D \Longrightarrow \sim (V \to D)$$

B. 
$$\sim (V \to D) \land D \Longrightarrow \sim (D \to V)$$

D. 
$$\sim (V \to D) \land D \Longrightarrow \sim V \to D$$

- 57. Determine the validity of the argument.
  - A. Valid
  - B. Not valid
  - C. The validity of the argument cannot be determined
  - D. None of the above

### Use the following logical circuit to answer questions 58 - 60.



58. Provide the expression for the output labelled A.

A. 
$$xyz \oplus \overline{xyz}$$

C. 
$$(x+y+z) \oplus \overline{(x+y+z)}$$

B. 
$$xyz \downarrow \overline{xyz}$$

D. 
$$(x+y+z) \downarrow \overline{(x+y+z)}$$

59. Provide the expression for the output labelled **B**.

C. 
$$x + y + z$$

B. 
$$\overline{x}yz$$

D. 
$$\overline{x} + y + z$$

60. Provide the expression for the output labelled C.

A. 
$$\left(xyz \oplus \overline{xyz}\right)\overline{z}\left(\overline{x} + y + z\right)$$

C. 
$$\left(xyz \downarrow \overline{xyz}\right) \overline{z} \left(\overline{x} + y + z\right)$$

A. 
$$(xyz \oplus \overline{xyz})\overline{z}(\overline{x} + y + z)$$
 C.  $(xyz \downarrow \overline{xyz})\overline{z}(\overline{x} + y + z)$   
B.  $(xyz) + \overline{z} + (x + y + z \oplus (\overline{x + y + z}))$  D.  $(xyz \oplus \overline{xyz}) + \overline{z} + (\overline{x} + y + z)$ 

D. 
$$\left(xyz \oplus \overline{xyz}\right) + \overline{z} + \left(\overline{x} + y + z\right)$$