Simulação Histórica

Análise de Risco R.Vicente

Resumo

- Simulação histórica ingênua, Método BRW e Método Hull-White para ativos
- Simulação histórica ingênua, Método BRW e Método Hull-White para carteiras lineares
- Carteiras não-lineares
- Séries de pagamentos pré-fixadas
- Bibliografia

Simulação Histórica Ingênua para uma ativo linear

r1 %= [V(t)-V(t-1)]/V(t-1). rn % = [V(t-n-1)-V(t-n)]/V(t-n). $V@R(95\%) = 12^a \text{ pior perda} (252 *5\% =12,6)$

Os ponderadores são escolhidos de forma a que w1+w2+...+w252=1 e w1>w2>...>w252.

V@R = w(MENOR, 1) + w(MENOR, 2) + ... w(MENOR, k) = 5%

Ordena Procura posição com soma dos

pesos = 5%

Pesos para o Método BRW

Ponderadores

r1%	ω1	
r2%	ω2	
r3%	ω3	
r4%	ω4	
r5%	ω5	
	• • •	
rN%	ωN	
r250%	ω 250	
r251%	ω251	
r252%	ω 252	

É, no entanto, necessário que os pesos somem 1 pois serão utilizados para encontrar o percentil de 5%. Precisamos normalizar os pesos. Note que:

$$1 + \lambda + \lambda^{2} + \lambda^{3} + \dots + \lambda^{251} = \frac{1 - \lambda^{252}}{1 - \lambda}$$

Então os pesos devem ser:
$$\omega_k = \frac{1-\lambda}{1-\lambda^{252}} \times \lambda^k$$

Simulação Hull-White para um ativo linear

Estimação de Volatilidade EWMA

r1%	v(t) = v1 * λ + r1%*r1% * (1–λ)
r2%	$v1 = v2 * \lambda + r2%*r2% * (1-\lambda)$
r3%	$v2 = v3 * \lambda + r3\% * r3\% * (1-\lambda)$
r4%	$v3 = v4 * \lambda + r4\% * r4\% * (1-\lambda)$
r5%	$v4 = v5 * \lambda + r5\% * r5\% * (1-\lambda)$
	•••
rN%	$v(N-1) = v(N) * \lambda + rN%*rN% * (1-\lambda)$
r249%	$v248 = v249 * \lambda + r249% * r249% * (1-\lambda)$
r250%	$v249 = v250 * \lambda + r250\% * r250\% * (1-\lambda)$
r251%	$v250 = v251 * \lambda + r251%*r251% * (1-\lambda)$
r252%	v251 = r252% * r252%

$$\sigma(t) = \sqrt{v(t)}$$
Volatilidade atual

$$\lambda \approx 0.95$$

r1 é o retorno mais atual. r252 é o retorno de 252 dias atrás.

Simulação Histórica (ingênua e BRW) para carteira linear

$$V(t) = q_1 v_1(t) + q_2 v_2(t) + \dots + q_n v_n(t)$$

Valor atual da carteira

Ativo 1	Ativo 2	Ativo n
r1_1%	r2_1%	rn_1%
r1_2%	r2_2%	rn_2%
r1_3%	r2_3%	rn_3%
r1_4%	r2_4%	rn_4%
r1_5%	r2_5%	 rn_5%
r1_k%	r2_k%	 rn_k%
r1_250%	r2_250%	 rn_250%
r1_251%	r2_251%	 rn_251%
r1_252%	r2_252%	 rn_252%

ΔV1 =v1(t) * r1_1% +v2(t)*r2_1%++vn(t)*rn_1%
ΔV2 =v1(t) * r1_2% +v2(t)*r2_2%++vn(t)*rn_2%
ΔV3 =v1(t) * r1_3% +v2(t)*r2_3%++vn(t)*rn_3%
ΔV4 =v1(t) * r1_4% +v2(t)*r2_4%++vn(t)*rn_4%
ΔV5 =v1(t) * r1_5% +v2(t)*r2_5%++vn(t)*rn_5%
ΔVk =v1(t) * r1_k% +v2(t)*r2_k%++vn(t)*rn_k%
$\Delta V250 = v1(t) * r1_250\% + v2(t) * r2_250\% + + vn(t) * rn_250\%$
$\Delta V251 = v1(t) * r1_251\% + v2(t) * r2_251\% + + vn(t) * rn_251\%$
$\Delta V252 = v1(t) * r1_252\% + v2(t) * r2_252\% + + vn(t) * rn_252\%$

Choques históricos

Cenários de valorização

Simulação Histórica Hull-White para carteira linear

$$V(t) = q_1 v_1(t) + q_2 v_2(t)$$

Valor atual da carteira

 $\sigma_{\mathrm{l}}(t), \sigma_{\mathrm{2}}(t)$ Volatilidades atuais

Ativo 1	Vol 1	Ativo 2	Vol 2
r1_1%	σ1_1%	r2_1%	σ2_1%
r1_2%	σ1_2%	r2_2%	σ2_2%
r1_3%	σ1_3%	r2_3%	σ2_3%
r1_4%	σ1_4%	r2_4%	σ2_4%
r1_5%	σ1_5%	r2_5%	$\sigma^2_5\%$
r1_k%	σ1_κ%	r2_k%	σ2_κ%
r1_250%	$\sigma 1_250\%$	r2_250%	$\sigma^{2}_{250\%}$
r1_251%	σ1_251%	r2_251%	<mark>σ2_251%</mark>
r1_252%	<mark>σ1_252%</mark>	r2_252%	<mark>σ2_252%</mark>

Cenários de valorização

	0 011011 102 010 1 01101 1 0110
	$\Delta V1 = v1(t) * [r1_1\%/\sigma1_1\%] * \sigma1(t) + v2(t) * [r2_1\%/\sigma2_1\%] * \sigma2(t)$
	$\Delta V2 = v1(t) * [r1_2\%/\sigma1_2\%] * \sigma1(t) + v2(t) * [r2_2\%/\sigma2_2\%] * \sigma2(t)$
	$\Delta V3 = v1(t) * [r1_3\%/\sigma1_3\%] * \sigma1(t) + v2(t) * [r2_3\%/\sigma2_3\%] * \sigma2(t)$
>	$\Delta Vk = v1(t) * [r1_k\%/\sigma1_\kappa] * \sigma1(t) + v2(t) * [r2_\kappa\%/\sigma2_\kappa] * \sigma2(t)$
	$\Delta V252 = v1(t) * [r1_252\%/\sigma1_252\%] * \sigma1(t) + v2(t) * [r2_252\%/\sigma2_252\%] * \sigma2(t)$

Choques históricos

Carteiras não-lineares

Exemplo 1: Uma carteira que contenha ações negociadas no exterior. O valor da carteira será:

$$V(t) = q_1 \times v_1(t) \times BRL(t)$$

Exemplo 2: Uma carteira que contenha ações e opções de compra e venda sobre esta ação. O valor desta carteira será:

$$V(t) = q_1 v_1(t) + q_{call} CALL(v_1, \sigma_1, Y_T, T) + q_{put} PUT(v_1, \sigma_1, Y_T, T)$$

Exemplo 3: Uma carteira que contenha pagamentos futuros com juros pré-fixados.

$$V(t) = \frac{P_1}{1 + Y_{T1}(t)} + \frac{P_2}{1 + Y_{T2}(t)} + \dots + \frac{P_k}{1 + Y_{Tk}(t)}$$

Simulação histórica para carteiras não-lineares

O valor de mercado é função dos <u>fatores de risco</u> V(f1,f2,f3,...,fn). Por exemplo: $V(v,BRL) = q \times v(t) \times \text{BRL}(t)$

fator 1	fator 2	
r1_1%	r2_1%	$\Delta V1 = q * v1(t) * r1_1% * BRL$
r1_2%	r2_2%	$\Delta V2 = q * v1(t) * r1_2% * BRL$
r1_3%	r2_3%	$\Delta V3 = q * v1(t) * r1_3% * BRL$

r1_1%	r2_1%
r1_2%	r2_2%
r1_3%	r2_3%
r1_4%	r2_4%
r1_5%	r2_5%
r1_k%	r2_k%
r1_250%	r2_250%
r1_251%	r2_251%

$\Delta V1 = q * v1(t) * r1_1% * BRL(t) * r2_1%$
$\Delta V2 = q * v1(t) * r1_2% * BRL(t) * r2_2%$
$\Delta V3 = q * v1(t) * r1_3% * BRL(t) * r2_3%$
$\Delta V4 = q * v1(t) * r1_4% * BRL(t) * r2_4%$
$\Delta V5 = q * v1(t) * r1_5% * BRL(t) * r2_5%$
$\Delta Vk = q * v1(t) * r1_k% * BRL(t) * r2_k%$
•••
$\Delta V250 = q * v1(t) * r1_250% * BRL(t) * r2_250%$
ΔV251 =q*v1(t) * r1_251% * BRL(t)*r2_251%
ΔV252 =q*v1(t) * r1_252% * BRL(t)*r2_252%

Ordena

Encontra
V@R

Cenários de valorização

_252% r2_252%

Geração de cenários para Yield curves

$$V(t) = \frac{P_1}{1 + Y_{T1}(t)} + \frac{P_2}{1 + Y_{T2}(t)} + \dots + \frac{P_k}{1 + Y_{Tk}(t)}$$

$$V(t+1) = \frac{P_1}{1 + Y_{T1-1}(t+1)} + \frac{P_2}{1 + Y_{T2-1}(t+1)} + \dots + \frac{P_k}{1 + Y_{Tk-1}(t+1)}$$

A partir das curvas de mercado constroem-se cenários para variação dos juros observando-se sempre a alteração de prazo:

$$\Delta i_T^{(1)} = i_{T-1}(t) - i_T(t-1)$$

Geração de cenários para Yield curves

Cada um dos cenários é aplicado

$$\Delta i_T^{(k)} = i_{T-1}(t-k-1) - i_T(t-k)$$

$$i_{T-1}^{(k)} = i_T(t) + \Delta i_T^{(k)}$$

e o fator de desconto calculado para cada cenário:

$$1 + Y_{\text{T-1}}^{(k)} = (1 + i_{\text{T-1}}^{(k)})^{\frac{\text{T1}}{252}}$$

Os cenários de P&L da carteira são então

$$\Delta V^{(k)} = V^{(k)} - V(t) \times (1 + \text{CDI})$$

$$V^{(k)} = \frac{P_1}{1 + Y_{T1-1}^{(k)}} + \frac{P_2}{1 + Y_{T2-1}^{(k)}} + \dots + \frac{P_k}{1 + Y_{Tk-1}^{(k)}}$$

- Jorion P., Value at Risk, Irwin, 1997.
- RiskMetrics Technical Document (<u>www.riskmetrics.com</u>);

Leituras Complementares

Pritsker M., The Hidden Dangers of Historical Simulation

Hull, J. e White, A., Incorporating Volatility Updating into the Historical Simulation Method for Value at Risk