Logistic Regression CPSC 6430 Report Lake Summers

Problem Description

Given a data set representing capacitor quality control testing data, develop a logistic regression algorithm that will determine if a capacitor will fail or pass quality control.

Data Description

The initial data was a set of 118 examples showing capacitors failing and passing the quality control tests (Figure 1). Each record had three tab-separated entries. The first is a float representing the results of one test, the second being the result of another test. The third is either a 1.0 if the capacitor passed QC and a 0.0 if it failed QC. The data was then split up into two data sets: a training set of 85 examples, and a test set of 33 examples.

Figure 1

Model Description

The input files were altered similar to how you showed in the project 4 description. I went with the Power=4 and ended up with the relationship between the new features and the original features as shown in below.

```
x1: x1^1 x2^0
x2: x1^2 x2^0
x3: x1^3 x2^0
x4: x1^4 x2^0
x5: x1^0 x2^1
x6: x1^1 x2^1
x7: x1^2 x2^1
x8: x1^3 x2^1
x9: x1^4 x2^1
x1: x1^1 x2^2
x11: x1^1 x2^2
x11: x1^1 x2^2
x12: x1^2 x2^2
x14: x1^4 x2^2
x15: x1^0 x2^3
x16: x1^1 x2^3
x16: x1^1 x2^3
x17: x1^2 x2^3
x18: x1^3 x2^3
x19: x1^4 x2^3
x19: x1^4 x2^3
x20: x1^0 x2^4
x21: x1^1 x2^4
x22: x1^2 x2^4
x24: x1^4 x2^4
```

Initial Values:

Weights:

- [[0.]
 - [0.]
 - [0.]
 - [0.]

 - [0.]
 - [0.] [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.]

 - [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.]
 - [0.] [0.]
 - [0.]
 - [0.]
 - [0.]]

Alpha: 0.01

J: 0

Final Values:

Alpha: 0.01

Weights:

- [[3.25661719] [2.14481154]

 - [-6.11343653]
 - [2.03284481]
 - [-4.44128612]
 - [4.19820937]
 - [-3.88643454]
 - [-2.34653885]
 - [0.93768656]
 - [-1.06326493]
 - [-4.72565897]
 - [-1.21701778]
 - [-2.61145927]
 - [0.77493135]
 - [-1.14189647]
 - [-0.97221444]

[-1.85155329] [-1.6442211] [0.34796851] [-0.68663579] [-4.29876347] [-1.72368966] [-1.43744731] [0.21530624] [-0.57067768]]

Iterations: 110000

Final J on Training Set: 0.35020586661571024

J vs Number of Iterations:

Value of J on Test Set: 0.35327338

		Predicted QC Result	
		N	Υ
Actual QC Result	N	TN = 13	FP= 3
	Υ	FN = 3	TP = 14

Results

A confusion matrix for the results of the logistic regression is shown above.

Final Values:

Given the initial training data of 85 capacitors and the results of their quality control tests, the logistic regression model was able to correctly predict the outcome of a test of the capacitors in the training data (33 capacitors) 81.8% of the time.

Accuracy: 0.8181818181818182 Precision: 0.8181818181818182 Recall: 0.8235294117647058 F1: 0.8235294117647058