

CURSO DE DISEÑO PCB

❖ ¿POR QUÉ DEBERÍAS APRENDER A CREAR TARJETAS ELECTRÓNICAS (PCB's)?

Hoy en día la tecnología está más presente que nunca en nuestras vidas, y aprender a crear diseños PCB's nos permitirán concretar todos nuestros proyectos o circuitos electrónicos que tenemos hechos en un protoboard o simulado en una computadora. También, todas aquellas ideas que tenemos en la cabeza, ya sea proyectos de IOT, proyectos de automatización Industrial, proyectos embebidos, proyectos de innovación, entretenimiento, etc.

❖ ¿POR QUÉ TOMAR EL CURSO DE ELECTROALL?

- ➤ Tenemos más de 7 años de experiencia en el desarrollo y creación de esquemáticos y diseños PCB's.
- ➤ A lo largo de nuestra carrera hemos diseñado más de 1500 PCB's para proyectos de IOT, proyectos industriales, proyectos embebidos, proyectos de entretenimiento y proyectos de innovación.
- ➤ Hemos colaborado con muchas empresas, emprendedores e ingenieros de software y hardware.
- > Soy el INSTRUCTOR OFICIAL de EasyEDA en español.
- Al finalizar el curso se otorgará CERTIFCADO de diseño PCB a Cargo de la misma compañía
 de
 EasyEDA.

OBJETIVO

Al terminar el curso:

- Serás capaz de diseñar esquemáticos electrónicos profesionales
- Serás capaz de diseñar tarjetas de circuitos impresos (PCB's)
- Podrás integrar fácilmente la tarjeta PCB en modelados 3D
- Serás capaz de integrar cualquier microcontrolador a tus diseños PCB's
- > Serás capaz de mandar a ensamblar tarjetas electrónicas a cualquier empresa que fabrica y ensambla PCB's y PCBA

RESUMEN DE LOS TEMAS DEL CURSO

Módulo 1	Módulo 2	Módulo 3	Módulo 4
Reconocimiento tipos de	Gestión para la elección de	Metodologías para la	Generación de superficie de
dispositivos.	componentes adecuados.	organización de	disipación general y para un
EasyEDA PRO para PC	Creación del esquemático	componentes en el diseño	componente específico.
> Reconocimiento del	electrónico.	PCB.	Integración de logos
programa.	Creación de nuevos dispositivos	Correcta distribución de	personalizados.
Organización y gestión de	"símbolos, huellas".	componentes (TOP, BOT).	 Generación de Esquemático,
proyecto.	Integración modelo 3d de los	Manejo del gestor de reglas	Gerber, pick&place, BOM.
Creación de mesa de trabajo	componentes	de diseño.	Generar archivo 3D de toda la
y membrete.	Correcta organización del	Creación de pistas con	placa.
Gestión de atajos de	esquemático electrónico	medidas adecuadas.	Mandar a ensamblar.
teclados.	Verificación y corrección de errores.	Creación de TearDrop	Feedback de todo lo
1 // 12//	Conversión de esquemático a PCB.	(Lágrimas).	aprendido.

❖ DETALLES MÓDULO 1

1 Reconocimiento de dispositivos electrónicos

- Tipos de empaquetados de dispositivos electrónicos
- THT, 'through hole technology'
 - Axial, Radial, SIL, DIP, TO-92, TO-220, TO-3, TO-126
- SMT, 'Surface Mount Technology'
 - SOT23, SOT223, SOP, TSOP, QFP, DPAK, BGA, QFN,
 - 0402, 0603, 0805, 1206,
- THT vs SMT, cual es mejor?

2 EasyEDA PRO para PC

- ¿Por que EasyEDA?
- Instalación de EasyEDA PRO para PC.
- Reconocimiento de las herramientas principales de diseño de esquemático

3 Organización y gestión de proyecto

Carpetas, Subcarpetas, proyecto, esquemáticos; páginas, PCB.

4 Creación y configuración de mesa de trabajo y membrete personalizado

- Creación de membrete personalizada
- Personalización de atajos de teclado

❖ DETALLES MÓDULO 2

5 Gestión para la elección de componentes adecuados.

 Estrategias de elección de componentes en stock listo para el ensamble.

6 Creación del esquemático electrónico.

- Integración de componentes en el esquemático electrónico.
- Correcta integración de las fuentes de alimentación
 - VCC, +XV, GND, PGND, AGND
- Integración de buses y etiquetas como alternativa de cableados desordenados.

7 Creación de un nuevo dispositivo

- Creación de footprint (huella) de un componente
- Creación de un solo dispositivo sólido
- Creación de un dispositivo con varias partes

8 Diseño modelo 3d de los componentes

- Creación y modificación de componentes nativos de EasyEDA.
- Integración de diseño de componentes en 3D desde otros programas externos (solidworks)
- Lista de páginas webs gratuitos para descargar componentes en 3D
- Correcta organización de las etiquetas de referencia de los componentes
- Integración y administración de Testpoint
- Convertir de esquemático electrónico a PCB

❖ DETALLES MÓDULO 3

- 9 Reconocimiento de las herramientas mas importantes del diseño PCB.
 - Árbol y propiedades del proyecto
- 10 Metodologías para la organización de componentes en el diseño PCB.
 - Correcta alineación de todo tipo de componentes
 - Correcta distribución de componentes
 - Correcto desplazamiento de los componentes electrónicos
 - Ubicación de componentes en la capa superior (TOP), o en la parte inferior (BOT).
 - Aislamiento de corrientes diferentes
- 11 Gestión de reglas de diseño para la correcta distribución de las pistas, según el tipo de proyecto
- 12 Creación de pistas con medidas adecuadas
 - Cálculo de ancho de pista, según el consumo de corriente
- 13 Correcta conexión de las pistas y vias con los respectivos pads
- 14 Creación de TearDrop (gotas de Lágrimas).

DETALLES MÓDULO 4

15 Generación de superficie de disipación

- Generación de superficie de disipación en toda la placa
- Generación de superficie de disipación en un lugar especifico
- Generación de superficie de disipación para un componente específico.
- Tipos de superficie de disipación.
- Generación de superficies de disipación descubierta
- Gestión de sutura de vías.

16 Integración de logos personalizados.

- Marca o logo de tipo cobre descubierto en la parte superior e inferior
- Marca o logo de tipo serigrafia en la parte superior e inferior

17 Generación de archivos para la manufactura. Gerber, pick&place, BOM.

- Generación del archivo gerber para la fabricación del diseño pcb
- Generación de las coordenadas donde se va a colocar cada componente (PICK&PLACE) para PCBA
- Generación de la lista de materiales (BOM) para PCBA

18 Generar archivo 3d de toda la PCB

Generación de archivo 3D de toda la placa para integrar en un diseño de solidworks u otros softwares a fines

19 Mandar a ensamblar

- Interpretación de las especificaciones y tipo de materiales de las compañías que fabricarán nuestro diseño
- Mandar a ensamblar tarjetas profesionales de todo tipo de colores

20 Feedback de todo lo aprendido

- Un breve repaso de algún tema en particular a sugerencia de los estudiantes
- Preguntas, respuestas y sugerencias.

