Math 302/600 Spring 2015 Homework #9

Due April 23, Thu. in class

Note: For any Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Show that the following sets in \mathbb{R}^2 are path connected:
 - (1) $\{(x, \sin(x)) \mid x \ge 0\}$ (where you may assume that $\sin(\cdot)$ is continuous on \mathbb{R});
 - (2) $\{(x_1, x_2) \mid 0 < x_2 < 1\}.$
- 2. Let A be a path connected set in a metric space (M, d), and f be a continuous function on M. Show that f(A) is path connected.
- 3. Solve the following problems.
 - (1) Let f be a continuous function on a metric space (M, d) and A be a nonempty set in M. Show that if f is uniformly continuous on the closure of A, so is on A.
 - (2) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be continuous on \mathbb{R}^2 . Let (a, b] and (c, d) be two intervals in \mathbb{R} . Use (1) to show that g is uniformly continuous on $(a, b] \times (c, d)$.
- 4. Let $f_n(x) = \sin(nx)/(1+nx)$, and $A = [0, \infty)$.
 - (1) Show that (f_n) converges pointwise on A, and find the limit function f_* ;
 - (2) Let a > 0. Show that (f_n) converges uniformly on $[a, \infty)$ to f_* ;
 - (3) Show that (f_n) does not converge uniformly on A to f_* .
- 5. Let $f_n(x) = x^n/(1+x^n)$, and $A = [0, \infty)$.
 - (1) Show that (f_n) converges pointwise on A, and find the limit function f_* ;
 - (2) Let $a \in (0,1)$. Show that (f_n) converges uniformly on [0,a] to f_* ;
 - (3) Show that (f_n) does not converge uniformly on [0,1] to f_* .