9 Function spaces

Let A, B be qbses, their function space B^A is given by the following:

- The set of points B^A is the set $\mathbf{Qbs}(A, B)$ of qbs morphisms $f: A \to B$.
- The set of random elements \mathcal{R}_{B^A} is the set curry $[\mathbf{Qbs}(\mathbb{R} \times A, B)]$, consisting of functions $\alpha : \mathbb{R} \to \mathbf{Qbs}(A, B)$ that, when uncurried, are qbs morphisms uncurry $(\alpha) : \mathbb{R} \times A \to B$.

Exercises Ex.9.1–Ex.9.3 unpack these definitions and show that they realise the familiar interface to functions — evaluation/application and abstraction — as well as the qbs axioms. You can skip them and come back after you've used the function space in the later exercises.

 $\nabla 9.1.$ Let A, B be absest and $\gamma: \mathbb{R} \times A_1 \to B_2$ be any set theoretic function. Show:

- If $\gamma : \mathbb{R} \times A \to B$ is a qbs morphism, then its curried form curry $\gamma := \lambda r.\lambda a.\gamma(r,a)$ is pointwise a qbs morphism: curry $\gamma : \mathbb{R} \to \mathbf{Qbs}(A,B)$.
- curry $\gamma \in \mathcal{R}_{B^A}$ iff for every measurable $\varphi : \mathbb{R} \to \mathbb{R}$ and random element $\alpha \in \mathcal{R}_A$, the following function is a random element:

$$(\lambda r. \gamma(\varphi r, \alpha r)) \in \mathcal{R}_B$$

abla9.2. Let A, B be qbses.

- Validate the constant and precomposition qbs axioms for the function space.
- Let $\vec{\gamma} \in \mathcal{R}_{B^A}$ be a sequence of random elements in the function space, $\mathbb{R} = \biguplus_n U_n$ a countable partition of the reals into Borel sets, $\varphi : \mathbb{R} \to \mathbb{R}$ a measurable function, and $\alpha \in \mathcal{R}_A$ a random element. Let $V_n := \varphi^{-1}[U_n]$.
 - Evaluate the recombination $\langle \lambda r.(\text{uncurry } \gamma_n)(\varphi r, \alpha r) \rangle_n$ along \vec{V} at any $s \in V_m$.
 - = Let γ be the recombination of $\vec{\gamma}$ along \vec{U} . Evaluate (uncurry γ)($\varphi s, \alpha s$) at any $s \in V_m$.
 - Validate the recombination axiom for the function space.
- Show that evaluation eval : $B^A \times A \to A$ is a qbs morphism.

$$\nabla 9.3.$$
 Show that $\langle B^A, \text{eval} \rangle$ is the exponential of B by A (cf. Sec. 4).

We equip the Borel subsets \mathcal{B}_A of a qbs A with the structure of a qbs. Identifying a Borel subset $U \subseteq A$, with its indicator function $[- \in U] : A \to 2$ (cf. Ex.8.1), we define

$$\mathcal{B}_A \coloneqq 2^A$$

abla9.4. Show that the following functions are qbs morphisms:

- Membership testing: $(\epsilon): A \times \mathcal{B}_A \to 2$
- Complementation: $\neg: \mathcal{B}_A \to \mathcal{B}_A$
- Countable unions and intersection: $\bigcup_I, \bigcap_I : \mathcal{B}_A^I \to \mathcal{B}_A$, for I countable set.

 $\nabla 9.5$. Let A be a qbs with a countable carrier. Show that the following functions are qbs morphisms:

- Equality testing, subset containment: $(=), (\subseteq), (\subset) : \mathcal{B}_A^2 \to \mathcal{B}_A$.
- Inhabitation: $(\neq \varnothing)$: $\mathcal{B}_A \to 2$.

Δ

Δ

2 REFERENCES

 $\nabla 9.6$. Using the techniques in Sec. A, there is a Borel set $U \in \mathcal{B}_{\mathbb{R}}$ and a measurable function $f : \mathbb{R} \to \mathbb{R}$ such that the image $f[\mathbb{R}]$ is not Borel (cf. Ex.A.13).

Use this fact and show that the following functions are *not* qbs morphisms:

- Inhabitation: $(\neq \emptyset)$: $\mathcal{B}_{\mathbb{R}} \to \mathbb{Z}$.
- Equality and containment $(=), (\subseteq), (\subset) : \mathcal{B}_{\mathbb{R}}^2 \to \mathcal{B}_{\mathbb{R}}$.
- Disjointness: $(- \cap = \emptyset) : \mathcal{B}_{\mathbb{R}}^2 \to 2$.

 $\nabla 9.7.$ If A = I is a finite discrete qbs, then \mathcal{B}_A is a finite discrete qbs.

 Δ

 ∇ 9.8. Let $U \subseteq \mathcal{B}_{\mathbb{R} \times \mathbb{R}}$ be a Borel set. Its section at r is the set $U_r := \{s \in \mathbb{R} | \langle r, s \rangle \in U\}$. A set $\mathcal{U} \subseteq \mathcal{B}_{\mathbb{R}}$ is Borel on Borel when, for every Borel set $U \subseteq \mathbb{R} \times \mathbb{R}$, the set of sections of U that are in \mathcal{U} is Borel: $\{r \in \mathbb{R} | U_r \in \mathcal{U}\} \in \mathcal{B}_{\mathbb{R}}$.

Show that \mathcal{U} is Borel on Borel iff $\mathcal{U} \in \mathcal{B}_{\mathcal{B}_{\mathbb{R}}}$.

The observation that this descriptive-set-theoretic notion coincides with the Borel sets on a higher-order space is due to Sabok et al. (2021). △

abla 9.9. Let A be a qbs. Show that a function $\alpha : \mathbb{R} \to \ \ A$ is a random element in \mathcal{R}_A iff it is a qbs morphism $\alpha : \mathbb{R} \to A$.

The last exercise provides a qbs of random elements, by setting: $\mathcal{R}_A := A^{\mathbb{R}}$.

abla 9.10. Define functors $\mathcal{B}_{-}: \mathbf{Qbs}^{\mathrm{op}} \to \mathbf{Qbs}$ and $\mathcal{R}_{-}: \mathbf{Qbs} \to \mathbf{Qbs}$, and construct a natural isomorphism $\mathcal{R}_{\mathcal{B}_{A}} \cong \mathcal{B}_{\mathbb{R} \times A}$.

 $\nabla 9.11$. Show that \mathcal{R}_{-} preserves strong epimorphisms (cf. Ex.8.14): if $e: A \twoheadrightarrow B$ is a strong epimorphism, then $\mathcal{R}_{e}: \mathcal{R}_{A} \to \mathcal{R}_{B}$ is also a strong epimorphism.

References

Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. Probabilistic programming semantics for name generation. *Proc. ACM Program. Lang.*, 5(POPL):1–29, 2021. 10.1145/3434292. URL https://doi.org/10.1145/3434292.