

📊 Final Technical Report - Titanic Survival Prediction

Project Information

Team: SG1 Team3 ML

Members: Andrés López, Héctor Eguiarte, Yahwthani Morales, Omar Vidaña

Course: COM 139 - Simulation & Visualization

University: Universidad Panamericana

Date: May 2025

© Executive Summary

Achieved Objective

We developed a machine learning model that predicts RMS Titanic passenger survival with 84.4% accuracy, exceeding the academic goal of 80% and revealing significant historical patterns about history's most famous maritime tragedy.

Key Results

- **Best Model**: Support Vector Machine (SVM) with RBF kernel
- **Performance**: 84.4% accuracy, F1=0.78, AUC=0.86
- **6 Historical Insights**: Quantitative validation of "women and children first" protocol
- Key Factor: Gender-class intersection determined survival

📊 Methodology and Data

Dataset

- Source: Kaggle Titanic Dataset
- **Dimensions**: 891 passengers × 12 original features
- Target Variable: Survival (38.4% historical rate)
- Quality: Missing values in Age (19.9%), Cabin (77.1%), Embarked (0.2%)

CRISP-DM Process

- 1. Data Understanding: Complete EDA identified gender-class patterns
- 2. Data Preparation: Smart imputation, advanced feature engineering
- 3. Modeling: 4 algorithms compared (Logistic Regression, Random Forest, SVM, Naive Bayes)
- 4. Evaluation: Cross-validation, hyperparameter tuning, error analysis
- 5. **Deployment**: Production model with historical interpretation

Feature Engineering

Successful Derived Variables

- 1. FamilySize (SibSp + Parch + 1): Families of 2-4 people \rightarrow 55-72% survival
- 2. IsAlone: Accompanied (50.6%) vs Alone (30.4%) survival
- 3. **AgeGroup**: Child (57.4%) > Young Adult (33.7%) > Senior (26.9%)
- 4. **FareBin**: Premium (58.1%) > High (45.5%) > Medium (30.4%) > Low (19.7%)
- 5. **Title** (extracted from names): Mrs (79.4%) > Miss (70.1%) > Master (57.5%) > Mr (15.7%)

Critical Interaction Variables

- Sex Pclass: female Class1 (96.8%) vs male Class3 (13.5%)
- **Age_Sex**: Adult_Female (75.3%) > Young (54.0%) > Adult_Male (16.6%)

Top 3 Most Predictive Features

- 1. AgeSex_Adult_Female (r=0.486): Adult women
- 2. SexPclass_female_Class1 (r=0.413): First-class women
- 3. **Title Mrs** (r=0.342): Female social status

Modeling and Results

Algorithm Comparison

Model	Accuracy	F1-Score	AUC-ROC	Overfitting	Interpretability
SVM	84.4%	0.781	0.859	✓ No	Low
Logistic Regression	84.3%	0.781	0.910	✓ No	High
Random Forest	83.2%	0.783	0.879	1 Yes	Medium
Naive Bayes	82.0%	0.750	0.876	✓ No	Medium

Final Model: Optimized SVM

• **Hyperparameters**: C=1, kernel='rbf', gamma='auto'

• Validation: Consistent 5-fold cross-validation

• Generalization: Stable performance across train/val/test

Detailed Metrics

• **Precision**: 84.7% (reliability in positive predictions)

• **Recall**: 72.5% (ability to find survivors)

• **F1-Score**: 78.1% (precision-recall balance)

• AUC-ROC: 85.9% (excellent discriminative capability)

C Error Analysis

16.2% Total Errors (144 cases)

False Positives (52 cases)

- Profile: Mainly young 3rd class women
- Interpretation: Model optimistic about female survival
- Historical Context: Exceptional cases where location/circumstances prevented evacuation

False Negatives (92 cases)

- Profile: Mostly men (86/92) who survived unexpectedly
- Interpretation: Cases of heroism, luck, or evacuation assistance
- Human Value: Reveal extraordinary survival stories

iii Historical Validation

Confirmed Hypotheses

H1 - "Women and Children First" Protocol

- Evidence: Women 74.2% vs Men 18.9% survival
- Ratio: 3.9x higher female survival
- Context: Birkenhead protocol faithfully applied

H2 - Social Class Determinant

- **Evidence**: 1st class (63.0%) > 2nd class (47.3%) > 3rd class (24.2%)
- Interpretation: Privileged access to lifeboats
- Social Implication: 1912 social structure reflected in survival

H4 - Gender-Class Intersection

- Extreme Evidence: 1st class women (96.8%) vs 3rd class men (13.5%)
- Multiplicative Factor: Gender + Social class = More precise prediction
- **Top Features**: The 3 most predictive variables involve this intersection

Validation with Historical Data

- Lifeboat Capacity: 1,178 people (53% of 2,224 onboard)
- Actual Survivors: ~710 people (32% historical vs 38.4% dataset)
- Protocol: Our model faithfully captures "women and children first"

Performance by Subgroups

By Gender

- Women: Recall=97.4% (excellent at detecting female survivors)
- Men: Precision=100% (conservative, only predicts survival when very confident)

- Class 1: Precision=97% (very accurate for first class)
- Class 2: Accuracy=92.4% (best overall performance)
- Class 3: Recall=62% (difficulty predicting third-class survival)

Ethical Reflection

The model reflects real historical biases of the era (1912), not algorithmic biases. Performance differences across subgroups reflect the social inequalities that determined survival access.

Lessons for Modern Protocols

Applicable Insights

- 1. Evacuation Planning: Consider all social classes equitably
- 2. Clear Protocols: Define transparent and fair priorities
- 3. Sufficient Capacity: Ensure emergency resources for 100% occupancy
- 4. Predictive Analysis: Use ML to optimize evacuation plans

Value of Historical Analysis

- Quantification: Convert historical narratives into measurable data
- Validation: Confirm or refute historical theories with statistical evidence
- Learning: Extract lessons applicable to modern situations

Robustness and Limitations

Model Strengths

- **No Overfitting**: Consistent performance across sets
- Generalization: Stable AUC in cross-validation (0.856 ± 0.031)
- **Interpretability**: Results aligned with historical knowledge
- **Reproducibility**: Fully documented and replicable pipeline

Identified Limitations

- **A** Dataset Size: 891 samples for 29 features (30:1 ratio)
- Missing Data: 19.9% Age imputation may introduce bias
- A Biased Survivors: Only passengers in lifeboats, not water victims
- **A SVM Interpretability**: RBF kernel complicates direct explanation

Potential Improvements

- Ensemble Methods: Combine multiple models for greater robustness
- External Data: Incorporate cabin location information
- Temporal Analysis: Consider exact sinking timeline
- Cross-Validation: Temporal if data from other shipwrecks becomes available

Academic Objectives <

• **Performance**: 84.4% accuracy > 80% target

Methodology: Complete CRISP-DM application

• Algorithms: Systematic comparison of 4 ML techniques

• **Documentation**: Complete development log with challenges

Historical Contribution in

• Quantitative Validation: "Women and children first" protocol statistically confirmed

• Intersectionality: Gender + Social class as critical determining factor

• Exceptional Cases: Model errors reveal extraordinary human stories

• Modern Lessons: Insights applicable to current emergency protocols

Technical Impact 🔬

• Error Analysis: 16.2% errors provide insights about the disaster's chaotic nature

• Reproducibility: Complete pipeline available for future research

• Methodology: Framework applicable to analysis of other historical events

References and Resources

Data Sources

- Kaggle Titanic Dataset
- Encyclopedia Titanica (historical validation)
- British Board of Trade Report (1912)

Technical Methodology

- James, G. et al. "An Introduction to Statistical Learning"
- Castillo, G. "ML-Practical.pdf" (course document)
- Scikit-learn documentation

Historical Context

- Lord, Walter. "A Night to Remember" (1955)
- Official British disaster investigation (1912)
- Naval historical archives

Final Technical Report

Project SG1_Team3_ML

Universidad Panamericana - May 2025