次元の不変性

* * 次元の不変性 K^n の部分空間 V の基底をなすベクトルの 個数 (次元) は一定である。

つまり、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}$ と $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_l\}$ がともに V の基底ならば、k=l である。

ref: 行列と行列式の基 礎 p99

ref: 図で整理!例題で 納得!線形空間入門 p37

~38

証明

 $\mathbf{u}_1, \ldots, \mathbf{u}_l \in \langle \mathbf{v}_1, \ldots, \mathbf{v}_k \rangle$ であり、 $\mathbf{u}_1, \ldots, \mathbf{u}_l$ は線型独立であるから、有限従属性定理の抽象版より、 $l \leq k$ である。

同様にして $k \leq l$ も成り立つので、k = l である。

線型独立なベクトルと次元

・ 線形独立なベクトルの最大個数と空間の次元 線形空間 V 中の線型独立なベクトルの最大個数は dim V と等しい。

ref: 行列と行列式の基 礎 p100

証明

V の基底を $\{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_k \}$ とすると、V には k 個の線型独立なベクトルが存在する。

また、 $V = \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \rangle$ であるため、有限従属性定理の抽象版より、V 中の線型独立なベクトルの個数は k を超えることはない。 つまり、k は V に含まれる線型独立なベクトルの最大個数である。

[Todo 1: ref: 行列と行列式の基礎 p100 問 3.3]

Zebra Notes

Туре	Number
todo	1