Effect of Job Training on Wages of Disadvantaged Workers

Modeling and Representation of Data

The Data

Control Group

The Data

Control Group

Treatment Group

Job Training

Goal

Likeliness of workers with job training having non zero wages

Goal

Likeliness of workers with job training having non zero wages

Interaction effects
between job
training and
demographics

Goal

Likeliness of workers with job training having non zero wages

Interaction effects
between job
training and
demographics

Interesting associations with positive wages

(re78 - response variable)

Real Annual Earnings in 1974 vs 1978 by Job Training

Real Annual Earnings in 1975 vs 1978 by Job Training

(re78 - response variable)

Real Annual Earnings in 1974 vs 1978 by Job Training

Real Annual Earnings in 1975 vs 1978 by Job Training

The data is not balanced

Predictors

(we did not include)

(treat - main predictor)

Conditional Probabilities of re78 by Treat

	training	no training
income	0.76	0.77
no income	0.24	0.23

Pearson's Chi-squared test with Yates' continuity correction

X-squared	df	p-value
0.086	1	.77

Binned Education and Income in Year 1978

Transformed educ into a factor variable with two levels

$positiveWages_i|x_i{\sim}Bernoulli(\pi_i)$

$$log(\pi_i/1-\pi_i) = eta_0 + eta_1 black_{i1} + (eta_2 treat_{i2} * eta_3 age_{i3}) + eta_4 educ_{i4} + eta_5 married_{i5}$$

$positiveWages_i|x_i{\sim}Bernoulli(\pi_i)$

$$log(\pi_i/1-\pi_i) = eta_0 + eta_1 black_{i1} + (eta_2 treat_{i2} * eta_3 age_{i3}) + eta_4 educ_{i4} + eta_5 married_{i5}$$

Summary of Final Model

		_		
Coefficients	Estimate	Std. Error	Z value	P value
(Intercept)	-0.39	0.74	-0.52	0.60
treat - no training	-1.21	0.74	-1.65	0.10
age	-0.02	0.03	-0.72	0.47
black - not black	-0.70	0.25	-3.06	0.00 **
edunew - >8yrs	-0.56	0.23	-2.45	0.01 *
married - not married	0.33	0.23	1.41	0.16
treat - no training:age	0.06	0.03	2.22	0.03 *

Interaction Effects 2:2

(treat and age)

Predicted Probability vs. Age by Treat

Interesting Insight

THANK YOU!