Computer-aided simulations lab Lab L6 report: Dynamic processes on graphs

Alexandre Casarin - S306940

December 2023

1 Variables chosen

The number of nodes decided to be used in the voter model analysis was 1000, so the probability of an edge between two nodes, p_g , was equal to $\frac{10}{n} = 0.01$.

2 Consensus analysis

To calculate a good approximation of the probability and time needed for reaching a +1 consensus, for each value of initial probability p_1 , 1000 G(n=1000,p=0.01) graphs were randomly generated. Then, these graphs were simulated until they reached a consensus (not mattering if it was a +1 consensus or not). By the law of large numbers, the samples probability of reaching a +1 consensus and the mean time for it are good approximations for the real values. The table below summarizes the results obtained for the different values of p_1 .

p_1 value	+1 consensus probability estimation	consensus time estimation
0.51	50.8%	0.71s
0.55	54.8%	0.62s
0.6	58.3%	0.55s
0.7	69.8%	0.49s

The results are consistent to theoretical predictions, according to [1], since the consensus probability increases and consensus time decreases as the initial node states gets more homogeneous to +1.

References

[1] Y. Hatano and M. Mesbahi, "Agreement over random networks," IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1867-1872, 2005.