FYS 4150 - Computational Physics Project 1: Solving Poisson's equation in one dimension

Maren Rasmussen Markus

Markus Leira Asprusten

METIN SAN

4. September 2018

Abstract

1. Introduction

n	General Algorithm	Special Algorithm	LU-Decomposition
10	0.030738	0.023905	
100	0.028017	0.024106	
1000	0.028026	0.024124	
10 000	0.028299	0.023557	
100 000	0.028742	0.024067	

2. Theoretical Background

3. Algorithm & Implementation

3.2 LU-decomposition

Solving the linear algebra problem with an LU decomposition is relatively simple. By decomposing the matrix $\hat{\mathbf{A}}$ into the lower triangular matrix $\hat{\mathbf{L}}$ and the upper triangular matrix $\hat{\mathbf{U}}$, where all the diagonal elements in $\hat{\mathbf{L}}$ is 1, in such a way that $\hat{\mathbf{A}} = \hat{\mathbf{L}}\hat{\mathbf{U}}$. We can then rewrite the linear algebra problem into

$$\hat{\mathbf{A}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

$$\hat{\mathbf{L}}\hat{\mathbf{U}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

$$\hat{\mathbf{U}}\hat{\mathbf{u}} = \hat{\mathbf{L}}^{-1}\hat{\mathbf{f}} = \hat{\mathbf{y}}$$

$$\implies \hat{\mathbf{L}}\hat{\mathbf{y}} = \hat{\mathbf{f}}, \hat{\mathbf{U}}\hat{\mathbf{u}} = \hat{\mathbf{y}}.$$
(1)

The problem is then to solve two equations, firstly for $\hat{\mathbf{y}}$ and lastly for $\hat{\mathbf{u}}$. Suppose the matrices have dimension $(n \times n)$. The solution can then be found by iterating n-times for each equation, to a total of 2n iterations. The Armadillo library solves this problem simply with the solve-function.

4. Results

4.5 LU-decomposition