모호이동성원함수에 의한 모호추론환원성의 개선

리봉록, 곽선일

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《첨단돌파전을 힘있게 벌려야 나라의 과학기술전반을 빨리 발전시키고 지식경제의 로대를 구축해나갈수 있습니다.》

대표적인 모호추론방법들인 추론의 합성규칙(CRI: Compositional Rule of Inference)에 의한 방법[1], 3항조따름원리(TIP: Triple Implication Principle)[2], 5항조따름원리(QIP: Quintuple Implication Principle)[3], 류사도에 기초한 방법(AARS: Approximate Analogical Reasoning Scheme)[4]들은 환원성이 낮은 결함을 가지고있다.

론문에서는 선행연구들의 제한성을 극복하기 위하여 모호이동성원함수에 기초한 새로운 모호추론방법(모호이동긍정법(FMP-MMF: Fuzzy Modus Ponens), 모호이동부정법 (FMT-MMF: Fuzzy Modus Tollens))을 제안하였다.

1. 모호추론방법과 평가함수

모호이동성원함수(MMF: Moving Membership Function)는 모호규칙의 전건부성원함수값 4와 주어진 전제의 성원함수값 4*의 차의 합평균으로 다음과 같이 계산한다.

$$MMF(A_l^*, A) = \left[\sum_{k=1}^r [\mu_{A^*kl} - \mu_{Ak}]^2 / r \right]^{1/2}$$
 (1)

여기서 r는 모호모임의 리산점의 개수이며 μ_{A^*kl}, μ_{Ak} 는 주어진 전제와 규칙의 전건부의 성원함수이다.

모호이동성원함수에 의한 모호이동긍정법과 모호이동부정법은 다음과 같다.

FMP-MMF:
$$B_l^* = (\widetilde{B}_l - \eta_l)/(\xi_l - \eta_l)$$
 (2)

FMT-MMF:
$$A_l^* = (\widetilde{A}_l - \eta_l)/(\xi_l - \eta_l)$$
 (3)

여기서 $l=1,2,\cdots,s$ 는 FMP에서 주어진 전제 A_l^* 의 첨수이고 B_l^* 은 l 번째 전제 A_l^* 에 대한 추론결과이다. X는 전체 대상모임이고 $x\in X, A\in F(X)$ 이다. A_l^*,\widetilde{A}_l 과 A는 전체 모임 F(X)에서 정의된 모호모임이다. Y는 전체 대상모임이고 $y\in Y, B\in F(Y)$ 이다. B_l^*,\widetilde{B}_l 과 B는 전체 모임 F(Y)에서 정의된 모호모임이다. ξ_l 과 η_l 은 각각 준모호추론결과 \widetilde{B}_l (FMP-MMF)와 \widetilde{A}_l (FMT-MMF)의 최대값, 최소값이다.

모호추론방법들의 환원성을 다음의 식에 따라 평가한다.

$$RPCF_{FMP} = \frac{1}{s} \sum_{l=1}^{s} RPCF_{FMP}^{l}$$
 (4)

$$RPCF_{FMT} = \frac{1}{s} \sum_{l=1}^{s} RPCF_{FMT}^{l}$$
 (5)

$$RPCF_{FR} = \frac{1}{2} \sum_{l=1}^{s} \left(RPCF_{FMP}^{l} + RPCF_{FMT} \right)$$
 (6)

2. 실험 및 평가

클라스 1, 2에 대하여 선행방법 CRI, TIP, QIP, AARS와 제안한 방법의 환원성을 MATLAB-2017상에서 실험을 진행하고 비교하였다.

클라스 1,2에서 모호추론방법들을 비교하였다.(표)

표. 클라스 1,2에서 모호추론방법들의 비교

추론방법	선행방법				제안한 방법
	CRI	TIP	QIP	AARS	MMF
FMP/%	89.948	92.456	88.210	86.703	91.148
FMT/%	68.060	35.190	35.190	27.685	91.938
Ave./%	79.004	63.828	61.700	57.194	91.543

클라스 1은 FMP에서는 주어진 전제가

A, very A, more or less A, not A

이며 FMT에서는 주어진 전제가

not B, not very B, not more or less B, B

이다.

클라스 2는 FMP에서는 주어진 전제가

A, very A, more or less A, s.t.A not A

이고 FMT에서는 주어진 전제가

not B, not very B, s.t. B

이다. 여기서 s.t.는 《약간 편기된》의 략자이다.

실험을 통하여 제안한 방법이 클라스 1, 2에서 CRI에 비하여 12.539%, TIP에 비하여 27.715%, QIP에 비하여 29.843%, AARS에 비하여 34.349%만큼 환원성지표를 각각 개선하였다. 이것은 모호이동성원함수를 리용하는 제안한 방법이 합성규칙이나 3항조따름원리, 5항조따름원리, 류사도를 적용하는 방법보다 합리적이고 효과적이라는것을 알수있다.

맺 는 말

모호이동성원함수에 의한 모호추론방법과 환원성평가함수를 제안함으로써 인간의 사유과정을 모형화하는 새로운 연구방향을 열어놓게 되였으며 공업로의 온도 및 압력조종,로보트궤도조종들에 적용할수 있는 과학적기를을 마련하게 되였다.

참 고 문 헌

- [1] Lotfi A. Zadeh; Information Sciences, 8, 3, 199, 1975.
- [2] M. Mizumoto et al.; Fuzzy Sets and Systems, 8, 4, 253, 1982.
- [3] Bao-Qui Zhou et al.; Information Sciences, 297, 11, 202, 2015.
- [4] Guannan Deng et al.; Information Sciences, 288, 9, 290, 2014.

주체109(2020)년 11월 5일 원고접수

An Improvement of Fuzzy Reasoning Reductive Property by Fuzzy Moving Function

Ri Pong Rok, Kwak Son Il

In this paper we proposed a new fuzzy reasoning method based on fuzzy moving membership function and then improved the reductive property of fuzzy reasoning.

Keywords: fuzzy reasoning, reductive property, fuzzy moving membership function