On considère la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ définie par

$$T_0 = 1$$
 et $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$

- 1. (a) Calculer T_2 , T_3 et T_4 .
 - (b) Calculer le degré et le coefficient de T_n pour tout $n \in \mathbb{N}$.
 - (c) Calculer le coefficient constant de T_n .
- 2. (a) Soit $\theta \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$ on a $T_n(\cos(\theta)) = \cos(n\theta)$.

 - (b) En déduire que $\forall x \in [-1, 1]$, on a $T_n(x) = \cos(n \arccos(x))$.
 - (a) En utilisant la question 2a), déterminer les racines de T_n sur [-1,1]. (b) Combien de racines distinctes a-t-on ainsi obtenues? Que peut on en déduire? (c) Donner la factorisaiton de T_n pour tout $n \in \mathbb{N}^*$.