JONES

QA 55

5 359

YB 72977

GIFT OF

Prof. R. Tracy Crawford

GAYLAMOUNI
PAMPHLET BINDER

Manufactured by
GAYLORD BROS. Inc.
Syracuse, N. Y.
Stockton, Calif.

R. J. Crawford.

FOUR-PLACE & LOGARITHMS

BY

GEORGE WILLIAM JONES

Professor of Mathematics in Cornell University

- I. FOUR-PLACE LOGARITHMS OF THREE-FIGURE
 NUMBERS.
- II. THE NATURAL SINES, COSINES, TANGENTS,
 AND COTANGENTS OF ANGLES DIFFERING
 BY TEN MINUTES, AND THEIR FOURPLACE LOGARITHMS.

A good collection of Mathematical Tables is like a Dictionary: it may lie on the shelf for months, but when it is wanted it is wanted, and its use for a single hour may be worth the price of the book.

V QASS J59

JONES' FIVE-PLACE LOGARITHMS.	
I. LOGARITHMS OF NUMBERS,	PAGES 2-19
A table of five-place logarithms of four-figure numbers, with differences for a fifth figure.	
II. TRIGONOMETRIC FUNCTIONS, A table of natural sines, cosines, tangents and co- tangents of angles 0°-180°, to minutes, and of their five-place logarithms, with differences for seconds.	20-64
III. MINOR TABLES, Natural Logarithms; Ten-Place Logarithms; Weights and Measures; Mathematical Constants; Meridional Parts; Square-Roots; Cube-Roots; Reciprocals; Sines and Tangents of Small Angles.	3–19
JONES' LOGARITHMIC TABLES.	
FOUR-PLACE, SIX-PLACE, AND TEN-PLACE. XPLANATION OF THE TABLES,	3-11
I. FOUR-PLACE LOGARITHMS, A four-place table of logarithms of the natural numbers 1, 2, 3,999, with a table of proportional differences in the margin, and of the logarithms of the	12-14
squares, cubes, square-roots, cube-roots and reciprocals of the numbers 1, 2, 3,99.	
II. FOUR-PLACE TRIGONOMETRIC FUNCTIONS, A four-place table of logarithms of the six principal trigonometric functions, with differences for minutes, and of the length of arcs in radians.	15-19
III. LOGARITHMS OF NUMBERS, A six-place table of logarithms of four-figure numbers, with a table of differences.	20–37
IV. CONSTANTS OF MATHEMATICS AND OF NATURE -WEIGHTS AND MEASURES, A table of useful constants, with the logarithms of those in common use.	38-41
V. ADDITION-SUBTRACTION LOGARITHMS, A six-place table of logarithms so related that, by their use, the logarithm of the sum and of the diff- erence of two numbers may be found from their logarithms without taking out the numbers them- selves.	42-58
VI. SINES AND TANGENTS OF SMALL ANGLES, - A table of the ratios sinA":A, tanA":A for angles 0°-5°, whereby the logarithmic sines and tangents of these small angles are found more exactly than by Table VII.	59
(SEE THE THIRD COVER PAGE.)	

E

Bafescott 12 In ere Com ford

FOUR-PLACE LOGARITHMS. 759

20 trm

FORM OF A LOGARITHM.

THE LOGARITHM of a number is the exponent of that power to which another number. the base, must be raised to give the number first named. The base commonly used is 10: and as most numbers are incommensurable powers of 10, a common logarithm, in general, consists of an integer, the characteristic, and an endless decimal, the mantissa.

If a number be resolved into two factors, of which one is an integer power of 10 and the other lies between 1 and 10, then the exponent of 10 is the characteristic, and the logarithm of the other factor is the mantissa. The characteristic is positive if the number be larger than 1, and negative if it be smaller; the mantissa is always positive. A negative characteristic is indicated by the sign - above it. The logarithms of numbers that differ only by the position of the decimal point have different characteristics but the same mantissa.

E.g. $7770 = 10^3 \times 7.77$ and $\log 7770 = 3.8904$; $.0777 = 10^{-2} \times 7.77$, and $\log .0777 = \overline{2}.8904$. TABLES OF LOGARITHMS.

The logarithms of any set of consecutive numbers, arranged in a form convenient for use, constitute a table of logarithms. Such a table to the base 10 need give only the mantissas; the characteristics are manifest. This table is arranged upon the common doubleentry plan i.e. the mantissa of the logarithm of a three-figure number stands opposite the first two figures and under the third figure. The logarithms are given correct to four places.

TO TAKE OUT THE LOGARITHM OF A NUMBER.

A three-figure number: Take out the tabular mantissa that lies in line with the first two figures of the number and under the third figure; the characteristic is the exponent of that integer power of 10 which lies next below the number.

 $E.q. \log 677 = 2.8306, \log 6.78 = 0.8312, \log .0679 = \overline{2.8319}, \log 676000 = 5.8299.$

A number of less than three figures: Make the number a three-figure number by annexing zeros, and follow the rule given above.

E.g. $\log 700 = 2.8451$, $\log 7 = 0.8451$, $\log .0071 = 3.8513$, $\log 71000 = 4.8513$.

A four-figure number: Take out the tabular mantissa of the first three figures, and add such part of the difference between this mantissa and the next greater tabular mantissa (the tabular difference), as the fourth figure is a part of 10; and so for a five-figure number, E.g. : $\log 678 = 2.8312$ and $\log 679 = 2.8319$,

 \therefore log 678.6 = 2.8312 + .0007 × 6/10 = 2.8316, log 6.7875 = 0.8312 + .0007 × 75/100 = 0.8317. TO TAKE OUT A NUMBER FROM ITS LOGARITHM.

The mantissa found in the table: Join the figure at the top that lies above the given mantissa to the two figures upon the same line at the extreme left; in this three-figure number so place the decimal point that the number shall be next above that power of 10

whose exponent is the characteristic of the logarithm. $E.q. \log^{-1} 2.8312 = 678$, $\log^{-1} 0.8451 = 7$, $\log^{-1} 3.8513 = .0071$, $\log^{-1} 5.8513 = 710000$.

The mantissa not found in the table: Take out the three-figure number of the tabular mantissa next less than the given mantissa, and to these three figures join the quotient of the difference of these two mantissas by the tabular difference.

E.g. : $\log 678 = 2.8312$ and $\log 679 = 2.8319$,

 $... \log^{-1} 2.8316 = 6784 = 678.6, \log^{-1} \overline{2}.8317 = .06785 = .06787.$

The use of trigonometric ratios and their logarithms is explained in works on trigonometry.

1	0	1	2	3	4	5	6	7	8	9
0 1 2	0000	0000	3010	4771	6021	6990	7782	8451	9031	9542
	0000	0414	0792	1139	1461	1761	2041	2304	2553	2788
	3010	3222	3424	3617	3802	3979	4150	4314	4472	4624
3 4 5	4771	4914	5051	5185	5315	5441	5563	5682	5798	5911
	6021	6128	6232	6335	6435	6532	6628	6721	6812	6902
	6990	7076	7160	7243	7324	7404	7482	7559	7634	7709
6	7782	7853	7924	7993	8062	8129	8195	8261	8325	8388
7	8451	8513	8573	8633	8692	8751	8808	8865	8921	8976
8	9031	9085	9138	9191	9243	9294	9345	9395	9445	9494
9	9542	9590	9638	9685	9731	9777	9823	9868	9912	99 56
10	0000	0043	0086 [*]	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	26 2 5	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5839	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981
50	0	1	2	3	4	5	6	7	8	9

50	0-	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
100	0	1	2	3	4	5	6	7	8	9

ANGLE.	SINES.	cosines.	TANGENTS.	COTANGENTS.	ANGLE.
	Nat. Log.	Nat. Log.	Nat. Log.	Log. Nat.	
0°00′ 10 20	.0000 \infty .0029 7.4637 .0058 7648	1.0000 0.0000 1.0000 0000 1.0000 0000	0000∞ 00297.4637 00587648	2.5363 343.77 2352 171.89	90°00′ 50 40
30 40 50	$ \begin{array}{c c c c c c c c c c c c c c c c c c $	$\begin{bmatrix} 1.0000 & 0000 \\ .9999 & 0000 \\ .9999 & 0000 \end{bmatrix}$.0087 9409 .0116 8.0658 .0145 1627	$\begin{array}{c} 0591 & 114.59 \\ 1.9342 & 85.940 \\ 8373 & 68.750 \end{array}$	30 20 10
1°00′ 10 20 30 40 50		.9998 9.9999 .9998 9999 .9997 9999 .9997 9999 .9996 9998 .9995 9998		1.7581 57.290 6911 49.104 6331 42.964 5819 38.188 5362 34.368 4947 31.242	89°00′ 50 40 30 20 10
2°00′ 10 20 30 40 50	.0349 8.5428 .0378 5776 .0407 6097 .0436 6397 .0465 6677 .0494 6940	.9994 9.9997 .9993 9997 .9992 9996 .9990 9996 .9989 9995 .9988 9995	.0349 8.5431 .0378 5779 .0407 6101 .0437 6401 .0466 6682 .0495 6945		88°00′ 50 40 30 20
3°00′ 10 20 30 40 50	$ \begin{array}{c} .0523 \ 8.7188 \\ .0552 \ \ 7423 \\ .0581 \ \ 7645 \\ .0610 \ \ 7857 \\ .0640 \ \ 8059 \\ .0669 \ \ 8251 \\ \end{array} $.9986 9.9994 .9985 9993 .9983 9993 .9981 9992 .9980 9991 .9978 9990	.0524 8.7194 .0553 7429 .0582 7652 .0612 7865 .0641 8067 .0670 8261	1.2806 19.081 2571 18.075 2348 17.169 2135 16.350 1933 15.605 1739 14.924	87°00′ 50 40 30 20 10
4°00′ 10 20 30 40 50	.0698 8.8436 .0727 8613 .0756 8783 .0785 8946 .0814 9104 .0843 9256	.9976 9.9989 .9974 9989 .9971 9988 .9969 9987 .9967 9986 .9964 9985	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1554 14.301 1376 13.727 1205 13.197 1040 12.706 0882 12.251 0728 11.826	86°00′ 50 40 30 20 10
5°00′ 10 20 30 40 50	.0872 8.9403 .0901 9545 .0929 9682 .0958 9816 .0987 9945 .1016 9.0070	.9962 9.9983 .9959 9982 .9957 9981 .9954 9980 .9951 9979 .9948 9977	.0875 8.9420 .0904 9563 .0934 9701 .0963 9836 .0992 9966 .1022 9.0093	0437 11.059 0299 10.712 0164 10.385 0034 10.078	85°00′ 50 40 30 20 10
6°00′ 10 20 30 40 50	$\begin{array}{cccc} .1045 & 9.0192 \\ .1074 & 0311 \\ .1103 & 0426 \\ .1132 & 0539 \\ .1161 & 0648 \\ .1190 & 0755 \end{array}$.9945 9.9976 .9942 9975 .9939 9973 .9936 9972 .9932 9971 .9929 9969	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.9784 & 9.5144 \\ 9664 & 9.2553 \\ 9547 & 9.0098 \\ 9433 & 8.7769 \\ 9322 & 8.5555 \\ 9214 & 8.3450 \end{array}$	84°00′. 50 40 30 20 10
7°00′ 10 20 30 40 50	.1219 9.0859 .1248 0961 .1276 1060 .1305 1157 .1334 1252 .1363 1345	.9925 9.9968 .9922 9966 .9918 9964 .9914 9963 .9911 9961 .9907 9959	.1228 9.0891 .1257 0995 .1287 1096 .1317 1194 .1346 1291 .1376 1385	$\begin{array}{cccc} 0.9109 & 8.1443 \\ 9005 & 7.9530 \\ 8904 & 7.7704 \\ 8806 & 7.5958 \\ 8709 & 7.4287 \\ 8615 & 7.2687 \end{array}$	83°00′ 50 40 30 20 10
8°00′ 10 20 30 40 50	$\begin{array}{c} .1392\ 9.1436 \\ .1421 1525 \\ .1449 1612 \\ .1478 1697 \\ .1507 1781 \\ .1536 1863 \end{array}$.9903 9.9958 .9899 9956 .9894 9954 .9890 9952 .9886 9950 .9881 9948	.1405 9.1478 .1435 1569 .1465 1658 .1495 1745 .1524 1831 .1554 1915	8431 6.9682 8342 6.8269 8255 6.6912 8169 6.5606 8085 6.4348	82°00′ 50 40 30 20 10
9°00′	.1564 9.1943 Nat. Log.	.9877 9.9946 Nat. Log.	.1584 9.1997 Nat. Log.	0.8003 6.3138 Log. Nat.	81°00′
ANGLE.	COSINES.	SINES.	COTANGENTS.	TANGENTS.	ANGLE.

ANGLE.	SINES.	COSINES.	TANGENTS. COTANGEN	TS. ANGLE.
9°00′ 10 20 30 40	Nat. Log. .1564 9.1943 .1593 2022 .1622 2100 .1650 2176 .1679 2251 .1708 2324	Nat. Log. .9877 9.9946 .9872 9944 .9868 9942 .9863 9940 .9858 9938	Nat. Log. Log. Nat. 1.584 9.1997 0.8003 6.31 1.614 2078 7922 6.19 1.644 2158 7842 6.08 1.673 2236 7764 5.97 1.703 2313 7687 5.87 1.733 2389 7611 5.76	138 81°00′ 50 344 40 758 30 708 20
50 10°00′ 10 20 30 40 50	.1736 9.2397 .1765 2468 .1794 2538 .1822 2606 .1851 2674 .1880 2740	.9848 9.9934 .9843 9931 .9838 9929 .9833 9927 .9827 9924 .9822 9922	.1763 9.2463 0.7537 5.67 .1793 2536 7464 5.57 .1823 2609 7391 5.48 .1853 2680 7320 5.39 .1883 2750 7250 5.39 .1914 2819 7181 5.23	713 80°00′ 764 50 845 40 955 30 993 20
11°00′ 10 20 30 40 50	.1908 9.2806 .1937 2870 .1965 2934 .1994 2997 .2022 3058 .2051 3119	.9816 9.9919 .9811 9917 .9805 9914 .9799 9912 .9793 9909 .9787 9907	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	558 50 394 40 .52 30 130 20 729 10
12°00′ 10 20 30 40 50	.2079 9.3179 .2108 3238 .2136 3296 .2164 3353 .2193 3410 .2221 3466	$\begin{array}{cccc} .9781 & 9.9904 \\ .9775 & 9901 \\ .9769 & 9899 \\ .9763 & 9896 \\ .9757 & 9893 \\ .9750 & 9890 \\ \end{array}$.2126 9.3275 0.6725 4.70 .2156 3336 6664 4.68 .2186 3397 6603 4.57 .2217 3458 6542 4.51 .2247 3517 6483 4.44 .2278 3576 6424 4.38	382 50 36 40 30 30 194 20 397 10
13°00′ -10 20 30 40 50	.2250 9.3521 .2278 3575 .2306 3629 .2334 3682 .2363 3734 .2391 3786	.9744 9.9887 .9737 9884 .9730 9881 .9724 9878 .9717 9875 .9710 9872	.2309 9.3634 0.6366 4.35 .2339 3691 6309 4.27 .2370 3748 6252 4.27 .2401 3804 6196 4.16 .2432 3859 6141 4.11 .2462 3914 6086 4.06	747 50 193 40 353 30 26 20 311 10
14°00′ 10 20 30 40 50	.2419 9.3837 .2447 3887 .2476 3937 .2504 3986 .2532 4035 .2560 4083	$\begin{array}{c} .9703 \ 9.9869 \\ .9696 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.2493 9.3968 0.6032 4.01 2524 4021 5979 3.96 .2555 4074 5926 3.91 .2586 4127 5878 3.86 .2617 4178 5822 3.85 .2648 4230 5770 3.77	317 50 36 40 367 30 208 20
15°00′ 10 20 30 40 50	.2588 9.4130 .2616 4177 .2644 4223 .2672 4269 .2700 4314 .2728 4359	$\begin{array}{c} .9659 \ 9.9849 \\ .9652 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	391 50 470 40 059 30 656 20 10
16°00′ 10 20 30 40 50	.2756 9.4403 .2784 4447 .2812 4491 .2840 4533 .2868 4576 .2896 4618	$\begin{array}{c} .9613\ 9.9828 \\ .9605 9825 \\ .9596 9821 \\ .9588 9817 \\ .9580 9814 \\ .9572 9810 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	195 50 24 40 759 30 102 20 152 10
17°00′ 10 20 30 40 50	.2924 9.4659 .2952 4700 .2979 4741 .3007 4781 .3035 4821 .3062 4861	.9563 9.9806 .9555 9802 .9546 9798 .9537 9794 .9528 9790 .9520 9786	.3057 9.4853 0.5147 3.27 .3089 4898 5102 3.28 .3121 4943 5057 3.20 .3153 4987 5018 3.17 .3185 5031 4969 3.13 .3217 5075 4925 3.10	50 41 40 30 397 20 84
18°00′	.3090 9.4900 Nat. Log.	.9511 9.9782 Nat. Log.	.3249 9.5118 0.4882 3.07 Nat. Log. Log. Na	
ANGLE.	COSINES.	SINES.	COTANGENTS. TANGENT	s. ANGLE.

ANGLE.	SINES.	COSINES.	TANGENTS. COTANGENT	rs. ANGLE.
ANGLE.				
18°00′ 10 20 30 40 50	Nat. Log. .3090 9.4900 .3118 4939 .3145 4977 .3173 5015 .3201 5052 .3228 5090	Nat. Log. .9511 9.9782 .9502 9778 .9492 9774 .9483 9774 .9474 9765 .9465 9761	Nat. Log. Log. Na .3249 9.5118 0.4882 3.07 .3281 5161 4839 3.04 .3314 5203 4797 3.01 .3346 5245 4755 2.98 .3378 5287 4713 2.99 .3411 5329 4671 2.98	777 72°00° 475 50 478 40 387 30 300 20
19°00′ 10 20 30 40 50	.3256 9.5126 .3283 5163 .3311 5199 .3338 5235 .3365 5270 .3393 5306	.9455 9.9757 .9446 9752 .9436 9748 .9426 9743 .9417 9739 .9407 9734	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	770 50 502 40 239 30 980 20
20°00′ 10 20 30 40 50	3420 9.5341 .3448 5375 .3475 5409 .3502 5443 .3529 5477 .3557 5510	.9397 9.9730 .9387 9725 .9377 9721 .9367 9716 .9356 9711 .9346 9706	.3640 9.5611 0.4389 2.7 .3673 5650 4350 2.75 .3706 5689 4311 2.69 .3739 5727 4273 2.66 .3772 5766 4234 2.60 .3805 5804 4196 2.65	228 50 985 40 746 30 511 20 10
21°00′ 10 20 30 40 50	$\begin{array}{c} .3584 \ 9.5543 \\ .3611 \ 5576 \\ .3638 \ 5609 \\ .3665 \ 5641 \\ .3692 \ 5673 \\ .3719 \ 5704 \end{array}$.9336 9.9702 .9325 9697 .9315 9692 .9304 9687 .9293 9682 .9283 9677	.3839 9.5842 0.4158 2.60 .3872 5879 4121 2.50 .3906 5917 4083 2.50 .3939 5954 4046 2.55 .3973 5991 4009 2.51 .4006 6028 3972 2.44	326 50 305 40 386 30 172 20 360 10
22°00′ 10 20 30 40 50	.3746 9.5736 .3773 5767 .3800 5798 .3827 5828 .3854 5859 .3881 5889	.9272 9.9672 .9261 9667 .9250 9661 .9239 9656 .9228 9651 .9216 9646	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	545 50 342 40 142 30 945 20 750 10
23°00′ 10 20 30 40 50	.3907 9.5919 .3934 5948 .3961 5978 .3987 6007 .4014 6036 .4041 6065	$\begin{array}{ccccc} .9205 & 9.9640 \\ .9194 & 9635 \\ .9182 & 9629 \\ .9171 & 9624 \\ .9159 & 9618 \\ .9147 & 9613 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	369 50 183 40 998 30 317 20 337 10
24°00′ 10 20 30 40 50	$\begin{array}{cccc} .4067 & 9.6093 \\ .4094 & 6121 \\ .4120 & 6149 \\ .4147 & 6177 \\ .4173 & 6205 \\ .4200 & 6232 \end{array}$	$\begin{array}{c} .9135\ 9.9607 \\ .9124 \\ .9602 \\ .9112 \\ .9596 \\ .9100 \\ .9088 \\ .9584 \\ .9075 \\ .9579 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	286 50 113 40 943 30 775 20
25°00′ 10 20 30 40 50	.4226 9.6259 .4253 6286 .4279 6313 .4305 6340 .4331 6366 .4358 6392	.9063 9.9573 .9051 9567 .9038 9561 .9026 9555 .9013 9549 .9001 9543	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	283 50 123 40 965 30 809 20 355 10
26°00′ 10 20 30 40 50	$\begin{array}{cccc} .4384 & 9.6418 \\ .4410 & 6444 \\ .4436 & 6470 \\ .4462 & 6495 \\ .4488 & 6521 \\ .4514 & 6546 \end{array}$.8988 9.9537 .8975 9530 .8962 9524 .8949 9518 .8936 9512 .8923 9505	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	353 50 204 40 057 30 012 20 768 10
27°00′	.4540 9.6570 Nat. Log.	.8910 9.9499 Nat. Log.	.5095 9.7072 0.2928 1.96 Nat. Log. Log. Na	
ANGLE.	COSINES.	SINES.	COTANGENTS. TANGENT	S. ANGLE.

ANGLE.	SINES.	COSINES.	TANGENTS. COTANGENTS.	ANGLE.
27°00′ 10 20 30 40	Nat. Log. .4540 9.6570 .4566 6595 .4592 6620 .4617 6644 .4643 6668	Nat. Log. .8910 9.9499 .8897 9492 .8884 9486 .8870 9479 .8857 9473	Nat. Log. Log. Nat. .5095 9.7072 0.2928 1.9626 .5132 7103 2897 1.9486 .5169 7134 2866 1.9347 .5206 7165 2855 1.9210 .5243 7196 2804 1.9074	63°00′ 50 40 30 20
50 28°00′ 10 20 30 40 50	.4669 6692 .4695 9.6716 .4720 6740 .4746 6763 .4772 6787 .4797 6810 .4823 6833	.8843 9466 .8829 9.9459 .8816 9453 .8802 9446 .8788 9439 .8774 9432 .8760 9425	.5280 7226 2774 1.8940 .5317 9.7257 0.2743 1.8807 .5354 7287 2713 1.8676 .5392 7317 2683 1.8546 .5430 7348 2652 1.8418 .5467 7378 2622 1.8291 .5505 7408 2592 1.8165	10
29°00′ 10 20 30 40 50	.4848 9.6856 .4874 6878 .4899 6901 .4924 6923 .4950 6946 .4975 6968	.8746 9.9418 .8732 9411 .8718 9404 .8704 9397 .8689 9390 .8675 9383	.5543 9.7438 0.2562 1.8040 .5581 7467 2533 1.7917 .5619 7497 2503 1.7796 .5658 7526 2474 1.7675 .5696 7556 2444 1.7556 .5735 7585 2415 1.7437	
30°00′ 10 20 30 40 50	.5000 9.6990 .5025 7012 .5050 7033 .5075 7055 .5100 7076 .5125 7097	.8660 9.9375 .8646 9368 .8631 9361 .8616 9353 .8601 9346 .8587 9338	.5774 9.7614 0.2386 1.7321 .5812 7644 2356 1.7205 .5851 7673 2327 1.7090 .5890 7701 2299 1.6977 .5930 7730 2270 1.6864 .5969 7759 2241 1.6753	60°00′ 50 40 30 20 10
31°00′ 10 20 30 40 50	.5150 9.7118 .5175 7139 .5200 7160 .5225 7181 .5250 7201 .5275 7222	.8572 9.9331 .8557 9323 .8542 9315 .8526 9308 .8511 9300 .8496 9292	.6009 9.7788 0.2212 1.6643 .6048 7816 2184 1.6534 .6088 7845 2155 1.6426 .6128 7873 2127 1.6319 .6168 7902 2098 1.6212 .6208 7930 2070 1.6107	50 40 30 20 10
32°00′ 10 20 30 40 50 33°00′	.5299 9.7242 .5324 7262 .5348 7282 .5373 7302 .5398 7322 .5422 7342	.8480 9.9284 .8465 9276 .8450 9268 .8434 9260 .8418 9252 .8403 9244	.6249 9.7958 0.2042 1.6003 .6289 7986 2014 1.5900 .6330 8014 1986 1.5798 .6371 8042 1958 1.5697 .6412 8070 1930 1.5597 .6453 8097 1903 1.5497	58°00′ 50 40 30 20 10
10 20 30 40 50 34°00′	.5446 9.7361 .5471 7380 .5495 7400 .5519 7419 .5544 7438 .5564 7457	.8387 9.9236 .8371 9228 .8355 9219 .8339 9211 .8323 9203 .8307 9194	.6494 9.8125 0.1875 1.5899 .6536 8153 1847 1.5301 .6577 8180 1820 1.5204 .6619 8208 1792 1.5108 .6661 8235 1765 1.5013 .6703 8263 1737 1.4919	57°00′ 50 40 30 20 10
10 20 30 40 50 35°00′	.5592 9.7476 .5616 7494 .5640 7513 .5664 7531 .5688 7550 .5712 7568	.8290 9.9186 .8274 9177 .8258 9169 .8241 9160 .8225 9151 .8208 9142	.6745 9.8290 0.1710 1.4826 .6787 8317 1683 1.4733 .6830 8344 1656 1.4641 .6873 8371 1629 1.4550 .6916 8398 1602 1.4460 .6959 8425 1575 1.4370	56°00′ 50 40 30 20 10 55°00′
10 20 30 40 50 36°00′	.5736 9.7586 .5760 7604 .5783 7622 .5807 7640 .5831 7657 .5854 7675	.8192 9.9134 .8175 9125 .8158 9116 .8141 9107 .8124 9098 .8107 9089	.7002 9.8452 0.1548 1.4281 .7046 8479 1521 1.4193 .7089 8506 1494 1.4106 .7133 8533 1467 1.4019 .7177 8559 1441 1.3934 .7221 8586 1414 1.3848 .7265 9.8613 0.1387 1.3764	50 40 30 20 10 54°00′
ANGLE.	Nat. Log.	Nat. Log.	Nat. Log. Log. Nat. COTANGENTS. TANGENTS.	ANGLE.

ANGLE.	SINES.	COSINES.	TANGENTS.	COTANGENTS.	ANGLE.
36°00′ 10 20 30 40 50	Nat. Log. .5878 9.7692 .5901 7710 .5925 7727 .5948 7744 .5972 7761 .5995 7778	Nat. Log. .8090 9.9080 .8073 9070 .8056 9061 .8039 9052 .8021 9042 .8004 9033	Nat. Log7265 9.8613 .7310 8639 .7355 8666 .7400 8692 .7445 8718 .7490 8745	Log. Nat. 0.1387 1.3764 1361 1.3680 1334 1.3597 1308 1.3514 1282 1.3432 1255 1.3351	54°00′ 50 40 30 20 10
37°00′ 10 20 30 40 50	.6018 9.7795 .6041 7811 .6065 7828 .6088 7844 .6111 7861 .6134 7877	.7986 9.9023 .7969 9014 .7951 9004 .7934 8995 .7916 8985 .7898 8975	.7536 9.8771 .7581 8797 .7627 8824 .7673 8850 .7720 8876 .7766 8902	1203 1.3190 1176 1.3111 1150 1.3032 1124 1.2954 1098 1.2876	53°00′ 50 40 30 20 10
38°00′ 10′ 20 30 40 50	.6157 9.7893 .6180 7910 .6202 7926 .6225 7941 .6248 7957 .6271 7973	.7880 9.8965 .7862 8955 .7844 8945 .7826 8935 .7808 8925 .7790 8915	.7813 9.8928 .7860 8954 .7907 8980 .7954 9006 .8002 9 32 .8050 9058	1046 1.2723 1020 1.2647 0994 1.2572 0968 1.2497 0942 1.2423	52°00′ 50 40 30 20 10
39°00′ 10 20 30 40 50	.6293 9.7989 .6316 8004 .6338 8020 .6361 8035 .6383 8050 .6406 8066	.7771 9.8905 .7753 8895 .7735 8884 .7716 8874 .7698 8864 .7679 8853	.8098 9.9084 .8146 9110 .8195 9135 .8243 9161 .8292 9187 .8342 9212	0890 1.2276 0865 1.2203 0839 1.2131 0813 1.2059 0788 1.1988	51°00′ 50 40 30 20 10
40°00′ 10 420 30 40 50	.6428 9.8081 .6450 8096 .6472 8111 .6494 8125 .6517 8140 .6539 8155	.7660 9.8843 .7642 8832 .7623 8821 .7604 8810 .7585 8800 .7566 8789	.8391 9.9238 .8441 9264 .8491 9289 .8541 9315 .8591 9341 .8642 9366	0736 1.1847 0711 1.1778 0685 1.1708 0659 1.1640 0634 1.1571	50°00′ 50 40 30 20 10
41°00′ 10 20 30 40 50	.6561 9.8169 .6583 8184 .6604 8198 .6626 8213 .6648 8227 .6670 8241	.7547 9.8778 .7528 8767 .7509 8756 .7490 8745 .7470 8733 .7451 8722	.8693 9.9392 .8744 9417 .8796 9443 .8847 9468 .8899 9494 .8952 9519	0583 1.1436 0557 1.1369 0532 1.1303 0506 1.1237 0481 1.1171	49°00′ 50 40 30 20 10
42°00′ 10 20 30 40 50	.6691 9.8255 .6713 8269 .6734 8283 .6756 8297 .6777 8311 .6799 8324	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.9004 9.9544 .9057 9570 .9110 9595 .9163 9621 .9217 9646 .9271 9671	0430 1.1041 0405 1.0977 0379 1.0913 0354 1.0850 0329 1.0786	48°00′ 50 40 30 20 10
43°00′ 10 20 30 40 50	.6820 9.8338 .6841 8351 .6862 8365 .6884 8378 .6905 8391 .6926 8405	.7314 9.8641 .7294 8699 .7274 8618 .7254 8606 .7234 8594 .7214 8582	.9325 9.9697 .9380 9722 .9435 9747 .9490 9772 .9545 9798 .9601 9823	0278 1.0661 0253 1.0599 0228 1.0588 0202 1.0477 0177 1.0416	47°00′ 50 40 30 20 10
44°00′ 10 20 . 30 40 50	.6947 9.8418 .6967 8431 .6988 8444 .7009 8457 .7030 8469 .7050 8482	.7193 9.8569 .7173 8557 .7153 8545 .7133 8532 .7112 8520 .7092 8507	.9657 9.9848 .9713 9874 .9770 9899 .9827 9924 .9884 9949 .9942 9975	0126 1.0295 0101 1.0235 0076 1.0176 0051 1.0117 0025 1.0058	46°00′ 50 40 30 20 10
45°00′	.7071 9.8495 Nat. Log.	.7071 9.8495 Nat. Log.	1.0000 0.0000 Nat. Log.	0.0000 1.0000 Log. Nat.	45°00′
ANGLE.	COSINES.	SINES.	COTANGENTS.	TANGENTS.	ANGLE.

		PAGES
VII.	TRIGONOMETRIC FUNCTIONS, A five-place table of natural sines, cosines, tangents, and cotangents of angles 0°-180°, to minutes, and a six-place table of their logarithms, with differences	60-104
	of logarithms for seconds expressed in units of the sixth decimal place.	
VIII.	NATURAL LOGARITHMS, A six-place table of natural logarithms of the decimal numbers, .01, .02, .03,9.99, of the natural numbers 1, 2, 3,1218, and of the prime numbers between 1218 and 10000.	105-117
IX.	PRIME AND COMPOSITE NUMBERS, A table of prime and composite numbers from 1 to 20000, with the factors of the composite numbers that are not divisible by 2 or 5, and ten-place logarithms of the primes.	
X.	SQUARES,	138-139
	A table of the squares of the natural numbers 1, 2, 3,999.	
XI.	CUBES,	140-141
XII.	SQUARE-ROOTS,	142-145
XIII.	CUBE-ROOTS, A table of the cube-roots, to four decimal places, of the natural numbers 1, 2, 3,999 of the decimals .1, .2, .3,99.9, and of the decimals .01, .02, .03,9.99.	146-151
XIV.	RECIPROCALS, A table of the reciprocals of the decimal numbers .01, .02, .03,9,99.	152-153
XV.	QUARTER-SQUARES, A table of the quarter-squares of the natural numbers 1, 2, 3,2000.	
XVI.	BESSEL'S COEFFICIENTS, A table of Bessel's coefficients for second, third, fourth, and fifth differences, for interpolation.	158
XVII.	BINOMIAL COEFFICIENTS, A table of binomial coefficients for second, third, fourth, and fifth differences, for interpolation.	159
XVIII.	ERRORS OF OBSERVATION, A table of ordinates of the probability-curve, values of probability integrals, and other values.	160

Mathematical Text-Books.

PRICE-LIST, OCTOBER 1, 1896.

I. A DRILL-BOOK IN TRIGONOMETRY.

SECOND EDITION.

For the elementary and the advanced work of high-school and college classes, 12mo, cloth, xvi+192 pp. Single copies by mail, \$1.00.
All cash orders (carriage at the buyer's cost), 75 cents.

II. A DRILL-BOOK IN ALGEBRA.

THIRD EDITION.

For the more advanced classes in the high schools and academies and the lower classes in the colleges.

12mo, cloth, xvi+272 pp. Single copies by mail, \$1.00. All cash orders (carriage at the buyer's cost), 75 cents. AN ANSWER-BOOK, for teachers only, 25 cents. A BOX OF QUESTION-CARDS, for the class-room, 75 cents.

III. LOGARITHMIC TABLES.

SIXTH EDITION.

Eighteen tables, (four-place, six-place and ten-place,) with explanations, for use in the class-room, the laboratory, and the office. Large open pages, fine heavy parer.

Royal 8vo, cloth, 160 pp. Single copies by mail, \$1.00.

All cash orders (carriage at the buyer's cost), 75 cents.

IV. FOUR-PLACE LOGARITHMS.

Two tables: one of the logarithms of three-figure numbers, the other of trigonometric ratios and their logarithms for angles differing by ten minutes.

12mo, paper, 8 pp. Single copies by mail, 5 cents.

All cash orders (carriage at the buyer's cost), 4 cents.

V. FIVE-PLACE LOGARITHMS.

FIRST EDITION.

Eleven tables: one of the logarithms of four-figure numbers, one of trigonometric ratios and their logarithms for angles differing by minutes, and nine minor tables, for the use of high-school and college classes. Large open pages, fine heavy paper.

Royal 8vo, cloth, 64 pp. Single copies by mail, 60 cents.

All cash orders (carriage at the buyer's cost), 45 cents.

VI. PROBLEMS IN ALGEBRA, FOR BEGINNERS.

IN PREPARATION.

VII. HIGHER ALGEBRA.

IN PREPARATION.

Single copies of these books (except the last) will be sent free to teachers of mathematics, for their inspection.

GEORGE W. JONES, Publisher,

No Agents.

ITHACA, N. '

GAYLAMOUNT
PAMPHLET BINDER

Manufactured by
GAYLORD BROS. Inc.
Syracuse, N. Y.
Stockton, Calif.

YB 72977

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

QASS

Return to desk from which borrowed.

This book is DUE on the last date stamped below.

ASTRONOMY LIBRARY

TOT 17 1982

LD 21-100m-11,'49 (B7146s16)476