CAPES 2018

Thème: modélisation

L'exercice

Une balle tombe d'une hauteur de 20 mètres. Elle rebondit à chaque fois aux trois quarts de la hauteur précédente. On considère que la balle est immobile dès que la hauteur du rebond est inférieure à 1 mm.

- 1. Déterminer au bout de combien de rebonds la balle est considérée comme immobile.
- 2. Déterminer la distance totale parcourue par la balle.

Les réponses de deux élèves de première scientifique

Élève 1

J'ai utilisé une feuille de tableur :

	A	В	С
1	Hauteur de laquelle la balle tombe (en m)	Nombre de rebonds	Distance parcourue
2	20	1	20
3	15	2	35
:	:	÷	:
36	0,0011	35	79,99661
37	0,0008	36	79,99746

En étirant les cellules vers le bas, je peux déterminer que :

- 1. La balle effectue 36 rebonds avant de s'immobiliser.
- 2. Elle aura parcouru une distance d'environ 79,997 mètres.

Élève 2

J'ai programmé l'algorithme suivant sur ma calculatrice :

 $D \leftarrow 20\,000$ $H \leftarrow 20\,000$

l'obtiens ces résultats :

 $N \leftarrow 0$

1. La balle effectue 35 rebonds.

while H > 1 do

2. Elle aura parcouru environ 180 mètres.

 $D \leftarrow D + 2 * H$ $H \leftarrow 0,75 * H$

 $N \leftarrow N + 1$

end

return(N, D)

Le travail à exposer devant le jury

- 1 Analysez les productions des deux élèves en mettant en évidence leurs réussites et leurs éventuelles erreurs. Vous préciserez l'aide que vous pourriez leur apporter.
- 2 Présentez une correction de cet exercice telle que vous l'exposeriez devant une classe de première scientifique.
- 3 Proposez deux exercices sur le thème *modélisation* à des niveaux de classes différents et dont l'un au moins permet notamment de développer la compétence « calculer ».