Questions?

SO FAR: VECTORS (FET)

e V yecker spage

ROW VECTORS (BRA) E VY: V -> #

linear func.

what is transpose/adjoint/ Hermitian orgugate? > way of forning vectors into raw vec.

lgives a sense of there being only one type of object)

TO UNDERSTAND THIS, WE NEED TO INTRODUCE AN ADDITIONAL MATHEMATICAL OBJECT:

dot product / mner product / meters

7 · M

〈バ、M〉

S(A'M)

(v/w) - suggestive!

PROPERTIES: VXV -> #

takes 2 vecs, spits out #

bilinear

& 8(x+x, 'm) = 8(x'm)+8(x',n) (2(x, xx+m,)=8(x,m)+8(x,m,)

[onlyat] symmetric g(x, w) = g(w, x)*

dimplest eg: EUCLIDEAN SPACE in CARTESIAN ODORDS

A.M = (1, m) = 1, m, + 1, m, + 1, m, + 1, m, + 1 - -

SPECIFIC to this example

+ N₅ M₁ & (e⁵'e⁷) + N₅ M₅ & (e⁵'e⁵) + ... = N₁ M₁ & (e¹'e⁷') + N₁ M₅ & (e⁵'e⁵') + ... A(N, m) = & (N₁e¹' + N₅e⁵' + ...) Wols developed (1) Mirr smus populo ... (') 's

FOR OPTHONORMAL BASES (mice bases)

g(e:,e;) = ±8';

Signature (has to do w)

space vs. time')

but not true in general

se: rouse opproining tes:

curve offices

J cree Probe)

there are a lot of subtleties here

Seg how does this make sense for
polar coordinates?

END UP GAING INTO SOME DIPF. GEOMETRY

(hint: related to the idea that
"POSITION VECTORS DO NOT EXIST"

((2, 02) ((2, 0

think about this, i

B(x,m) = N, B" M, IN INDICES:

LOOKS ALMOST LIKE MATRIX MULTIPLICATION.

BSERVE . (V'g') is an object who have longer index

(MM); I saw versor!

takes vec, gnes #

"metric what vector pre-loaded"

g(V, L) a vector of spits out #

por it here g(V, w)

so the metric takes vectors I turns them mto row vectors.

san also debute involve metric.

> sportent; 317 Bix = 78x!

rector space

(SPACE US SPACETIME)

in general, we week all <u>complex</u> functions.

Les so we often write "row rector" as

Hermitian conjugate transpose to complex conjugate

$$\langle x | = |x \rangle^{+}$$

$$= \langle x | y \rangle$$

$$= \langle x, y \rangle$$

SARAJUE SECRITATED

"length of a vector" | \(\times \ \ \times \ \t

Tusually relevant blo it is possessived -> IDEA of symmetry, conserved aumi

|| X || > X

nucoiont under

$$||b||_s = E_s - E_s = W_s$$

(note units)

WHAT ABOUT function space?

DIFF OPERATION O = PO(X) + PO(X) = PO(X) (= PO(X) + PO(X) (= PO(X) (= PO(X) + PO(X) (= PO(

almost like our techtoemations.

except me availy decited above , boundary one

LET'S NOT MAKE A BIG DEAL ABOUT BC GODAY.

given functions (you may evers from QM)

 $\langle f, g \rangle = \int f^*(x) g(x) dx$

(MSIND ODDERS' LOS EXAMBRE)

MOUSE DENGLO1: $\langle f, g \rangle_{M} = \int q^{x} M(x) + \int_{A} (x) d(x)$ MOUSE DENGLO1: $\langle f, g \rangle_{M} = \int_{A} q^{x} M(x) + \int_{A} (x) d(x)$

SO WHAT?

now that we have "matrices" of that act on "vectors" It> of an inner product (1.8)

CAN TALK ABOUT [O.F]

O17> 15 a vector 107>

<o+>1 = <+10+

or. This is like $\begin{cases} \underline{v}' = \underline{A} \underline{v} \\ \underline{v}' \underline{w} = \underline{v}'^{\mathsf{T}} \underline{w} = \underline{v}'^{\mathsf{T}} \underline{A}^{\mathsf{T}} \underline{w} \end{cases}$

in am: Tot

SPECIAL OPERATIONS: HERMITIAN/SELF-ADJUINT

why? - 20 Real RIGENVAMES (CO)

HERMITIAN :

IR eigval

DOMPLECE BASIS OF OPTIFICE FICENVECTORS

ever gives a noturel basis!

Ø = -9x3

Doursin: Co. 1) m1 f(0) = 6(1) = 0

(12, square wheglable functions)

INNER PROP: <f. 8>= 10 dx fx g

is ot = 0 ?

(p, 20) = (01, 9)

- 1 dx f 4 (2°g)

-19x (3,t)x 8

= - (9t) *8 1, + 18t) + 38 9x

= + t + 3 d / - l t + (3 d) qx

= - 19x fx (3sd)

EIBENVECTORS (you aready know)

 $f_n(x) = sm(n\pi x)$

 $\lambda^{0} = 0_{5} \mu_{5}$

(SIN (ULLX) BN (WILX) 9x = 800

Name to

I we know from Fourier thoong that this spans "nice" 12 functions over [0,1] w/ DIRICHLET BC.