Polymers: Lipids, Carbohydrates, Nucleic Acids, and Proteins

Fall 2004, AMS-691 Section 2 Topics in Applied Mathematics

Introduction to Computational Structural Biology and Drug Design

Meeting 04, 09/13/04, Topics 1 and 2

Robert C. Rizzo

*Adopted from http://web.uccs.edu/chemistry and other online sources

9/13/2004

Robert C. Rizzo, PhD

Graphical representations line ball & stick space filling

H, O, C and N make up 99+% of atoms in the human body

ELEMENT	PERCENTAGE
Oxygen	63.0
Hydrogen	25.2
Carbon	9.5
Nitrogen	1.4

Their ability to form covalent bonds by sharing electron-pair unites $H,\,O,\,C$ and N

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Four Major Groups of Biochemicals

- Lipids (fats)
- Carbohydrates (sugars)
- Nucleic Acids (DNA, RNA)
- Proteins (polymers of amino acids)

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Lipids: fats, oils, phospholipids

- insoluble in water
- largely nonpolar
- hydrophobic
- phospholipids
- phosphate group is polar
- bipolar
- cell membranes

9/13/200

Robert C. Rizzo, PhD

Carbohydrates (sugars)

- Carbohydrates are composed of H, C, O, and OH groups
- Monosaccharides (simple sugars)
- Oligosaccharides and Polysaccharides are polymers of the simple sugars

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Carbohydrates: monosaccharides (cyclic structures: Haworth representation)

Nucleic Acids

- · Storage and blueprint of genetic information.
- DNA (deoxyribonucleic acid)
- RNA (ribonucleic acid)
- Polymers of nucleotides
- Each nucleotide consists of :
- a **sugar** molecule (a carbohydrate)
 - a nitrogen containing base
 - a **phosphate** group

0/43/200

Robert C. Rizzo, PhD Stony Brook University

Nucleic acids: A sequence of 3 adjacent RNA bases (codon) encodes a particular amino acid (Genetic Code)

Genetic Code

1" base 2" base 3" base 3" base

I" base	2 nd base					
	U	C	A	G		
U	UUU Phe	UCU Ser	UAU Tyr	UGU Cys	U	
	UUC Phe	UCC Ser	UAC Tyr	UGC Cys	C	
	UUA Leu	UCA Ser	UAA Stop	UGA Stop	A	
	UUG Leu	UCG Ser	UAG Stop	UGG Trp	G	
С	CUU Leu	CCU Pro	CAU His	CGU Arg	· U	
	CUC Leu	CCC Pro	CAC His	CGC Arg	C	
	CUA Leu	CCA Pro	CAA Gln	CGA Arg	A	
	CUG Leu	CCG Pro	CAG Gln	CGG Arg	G	
A	AUU Ile	ACU Thr	AAU Asa	AGU Ser	U	
	AUC Ile	ACC Thr	AAC Asn	AGC Ser	C	
	AUA Ile	ACA Thr	AAA Lys	AGA Arg	A	
	AUG Met*	ACG Thr	AAG Lys	AGG Arg	G	
G	GUU Val	GCU Ala	GAU Asp	GGU Gly	U	
	GUC Val	GCC Ala	GAC Asp	GGC Gly	C	
	GUA Val	GCA Ala	GAA Glu	GGA Gly	A	
	GUG Val	GCG Ala	GAG Glu	GGG Gly	G	

13/2004 Robert C. Rizzo, PhD Story Brook University

Proteins: Are the most structurally and functionally diverse of life's molecules

- contain C, H, O, N, S sometimes other elements
- polymers of amino acids
- 20 naturally occurring amino acids

9/13/2004 Robert C. Rizzo, PhD 27 Stony Brook University

Proteins: The primary worker molecule in the body

- Transport- hemoglobin in blood
- Storage- ferritin in liver
- Immune response- antibodies
- Receptors- sense stimuli, e.g. in neurons
- · Channels- control cell contents
- Structure- collagen in skin
- Enzymes- catalyze biochemical reactions
- Cell functions- multi-protein machines

0/13/2004

Robert C. Rizzo, PhD

Proteins: Each amino acids (protein unit) has three components

The R group determines the character of the 20 amino acids

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: R groups have specific properties (three examples)

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

-			_
-			-
_			
-			
-			-
-			
			_
-			_
-			_
-			_
_	 	 	

Proteins: Amino acids combine to form linear polypeptides which later fold into three dimensional functional proteins Two amino archs Frysids band Carboyl end Carboyl end

Proteins: Amino acid R groups
(hydrophobic)

- Isoleucine Ile I
 CH(CH₃)(CH₂CH₃)
- Methionine Met M
 CH₂SCH₂CH₃
- Phenylalanine Phe F
 CH₂(C₆H₅)

9/13/2004 Robert C. Rizzo, PhD 34
Storry Brook University

Proteins: Amino acid R groups (hydrophobic)

Tryptophan

O

H₂N—CH-C—OH

CH₂

HN

Robert C. Rizzo, PhD

Story Brook University

35

Proteins: Amino acid R groups (hydrophilic and uncharged)

- Serine Ser S
 CH₂OH
- Threonine Thr T $CH(OH)(CH_3)$

9/13/2004 Robert C. Rizzo, PhD Strong Brook University

Proteins: Amino acid R groups (hydrophilic and uncharged) • Tyrosine Tyr Y H₂N—CH-C—OH CH₂

Proteins: Amino acid R groups (hydrophilic and uncharged) • Glycine Gly G – H Asparagine Asn - CH₂CONH₂ • Glutamine Gln Q - CH₂CH₂CONH₂ C • Cysteine Cys - CH₂SH Robert C. Rizzo, PhD Stony Brook University

Robert C. Rizzo, PhD Stony Brook University

Proteins: Amino acid R groups (hydrophilic and uncharged) • Pro line Pro P COH Rigid ring - can induce kinks in polypeptide chain

Proteins: Amino (hydrophilic a	_	_
Aspartic acidCH₂COOH	Asp	D (-1)
 Glutamic acid CH₂CH₂COOH 	Glu	E (-1)
• Histidine	His	H (0, +1)
CH₂ N		
9/13/2004 Robert C. Riz.	rzo, PhD	40

Proteins: Amino acid R groups (hydrophilic and charged) • Lysine Lys K (+1) - CH₂CH₂CH₂CH₂NH₂ • Arginine Arg R (+1) H₂N-CH-C-OH CH₂ CH₂

Proteins: Sequence homology example

Cyt c amino acid residues from several species

SpeciesSequence (20-29)HumanVEKGGKHKTGHorseVEKGGKHKTGFruit flyVEAGGKHKVGPotatoVDKGAGHKEG

9/13/2004 Robert C. Rizzo, PhD Stony Brook University

Proteins: Sequence determines structure

All of the information necessary for folding the peptide chain into its native structure is contained in the primary amino acid structure of the poly peptide.

Certain positions along the chain may act as nucleation points

Protein chain must avoid local energy minima

Chaperones (a type of helper protein) may assist folding

13/2004 Robert C. Rizzo, PhD Story Brook University

Proteins: Folding funnel model

Unfolded structures lie around the top. As the protein folds, it falls down the wall of the energy funnel to more stable conformations.

The native, folded structure is at the bottom.

Ken Dill, Nature Structural Biol. **4**, 10-19 (1997).

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: 4 Elements of Protein Structure

- Primary
 - -Order of amino acids in linear chain
 - •N terminus (start, by convention) C-terminus (end)
- Secondary
 - –Portions of linear chain fold into regular conformations $\bullet \alpha$ -helix β -sheet, reverse turns, etc
- •Tertiary structure
 - -Overall shape
- •Quaternary structure
 - -Protein consisting of several peptide chains

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Protein fold: compact, globular folding arrangement of the polypeptide chain $(1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ} \text{ structure})$

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: Polypeptides adopt conformations

- Backbone conformation has 2 degrees of freedom per residue
 - These are two "torsion" angles (bond rotations) Phi: C-N-C^\alpha-C and Psi: N-C^\alpha-C-O
- Conformation can be illustrated on 2D plot of Phi versus Psi (Ramachandran plot)
- · Steric interference limits possible values of Phi and Psi
 - Gly less restricted.
 Pro more restricted

Robert C. Rizzo, PhD Stony Brook University

Proteins: Allowed combinations of N-Ca (Phi) and Ca-C bonds (Psi) (ramachandran plot) · G. N. Ramachandran: plot phi vs psi & indicate regions of no steric conflict • The sterically favorable combinations are the basis for preferred secondary structures

Robert C. Rizzo, PhD Stony Brook University

phi

Proteins: Ramachandran plot examples Gly Pro psi psi phi phi Less restricted – side chain is only H More restricted side chain of amino acid forms a ring

Proteins: Regular repeating structures

- Repetition of phi/psi combination
- Low energy structures maximum formation of hydrogen bonds
- Proposed on the basis of models combined with experimental data:
 - α -helix from the X-ray pattern from hair
 - **\beta-sheet** from the X-ray pattern from silk

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: Structural motif, alpha helix (α -helix)

- First proposed by Linus Pauling and Robert Corey in 1951
- Identified in keratin by Max Perutz
- A common component of proteins
- Stabilised by H-bonds in backbone NH...O=C

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: Structural motif, alpha helix $(\alpha$ -helix)

- Each C=O (residue *n*) forms a hydrogen bond with the amide (H on N) hydrogen of residue *n*+4
- Helix is stabilized by many hydrogen bonds (which are nearly parallel to long axis of the helix)
- All C=O groups point toward the C-terminus (entire helix is a dipole with:
 - (+) N terminus, (-) C terminus)

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: Amino acid side chains (R groups) project outward from the alpha helix axis

Proteins: Structural motif, beta sheet (β-sheet Also first postulated by Pauling and Corey, 1951 Strands may be parallel or antiparallel Side chains point alternatively on opposite sides of the sheet Nearly fully extended

Proteins: β-sheets

- C=O, N-H groups form H-bonds between neighbouring strands
- Sheets pleat to maintain correct H-bond stereochemistry
- H-bonds are straighter & stronger in anti-parallel sheets.
- Side chains point alternatively on opposite sides of the sheet
- Strands may be:

parallel Phi = -119° Psi = 113° antiparallel Phi = -139° Psi = 135°

9/13/2004

Robert C. Rizzo, PhD Stony Brook Universit

Proteins: Structural motif, a reverse turn (note peptide bonds are trans, and H-bond) Beta turns allows the polypeptide chain to change direction quickly | Robert C. Rizzo, Ph.D. | Story flood, University | 1913/2004 | Robert C. Rizzo, Ph.D. | Story flood, University | 1913/2004 | Robert C. Rizzo, Ph.D. | Story flood, University | 1913/2004 | Robert C. Rizzo, Ph.D. | Story flood, University | 1913/2004 | Robert C. Rizzo, Ph.D. | Story flood, University | 1913/2004 | Robert C. Rizzo, Ph.D. | Story flood, University | 1913/2004 | Robert C. Rizzo, Ph.D. | Robert C.

Proteins: Domains

A single domain may have a particular function (e.g. binding small molecules, catalyzing a single reaction)

Interfaces between two separate domains provide grooves and pockets on the surface of a protein for binding sites

In multifunctional enzymes, each catalytic activity can be in a different domains

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: Domains often correspond with the linear amino-acid primary sequence (single amino-acid codes shown)

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Proteins: Amino acids in tertiary structure

9/13/2004

Robert C. Rizzo, PhD Story Brook University

Summary: Four Major Groups of Biochemicals

- Lipids (hydrophobic)
- Carbohydrates (sugars)
- Nucleic Acids (codes protein primary sequence)
- Proteins are polymers of amino acids (20 types)

9/13/2004

Robert C. Rizzo, PhD Stony Brook University

Summary: 20 amino-acids

13/2004 Robert C. Rizzo, PhD Stony Brook University

Summary: Proteins fold into globular compact arrangements

- Polypeptide chain folds to optimize packing of the hydrophobic residues in the interior core of the protein
- Backbone conformation has 2 degrees of freedom per residue: Phi versus Psi Ramachandran plot
- Primary, secondary, tertiary, quaternary structures
- Conserved Domains (sequence/structure/function)

13/2004 Robert C. Riz. Steam Brook II

		Organism	Number of genes in the genome	H <u>UMAN TARGETS</u>
Bacteria	2	Myscoplasma genitalium	517	~30,00 genes ~200, 00 proteins
Yeast		Saccharomyces cerevisiae	6,275	~10 % interesting:
	100	Arabidopsis thaliana	~ 20,000	20K human genome targets
	8	Caenorhabditis elegans	19,099	PATHOGENS
	8	Haemophilus influenzae	1,743	Viruses, bacteria, fungi, parasites
Fruit Fly		Drosophila melanogaster	13,601	have smaller genomes but larger fraction could be targets
	1.00	Neisseria meningitdis	2,158	Say 100 organisims*1000 genes
Human	***	Homo sapiens	~ 30,000	100K infectious disease targets