Computer Graphics, Lab Assignment 10

Handed out: May 22, 2019

Recommended due: 15:00, May 22, 2019

Hard due: 23:59, May 22, 2019 (NO SCORE for late submissions!)

Submit your assignment only through the GitLab.

- 1. Write down a Python program to compare 4 orientation interpolation methods.
 - A. First, implement following functions:
 - B. exp & log functions
 - i. exp(rv)
 - 1. Converts a rotation vector to a rotation matrix
 - 2. You can use Rodrigues' rotation formula or the method in 10-Animation slides.
 - 3. Returns a rotation matrix
 - ii. log(R)
 - 1. Converts a rotation matrix to a rotation vector
 - 2. You can use the method in 10-Animation slides.
 - 3. Returns a rotation vector (the length of the vector is the rotation angle)
 - C. Interpolation functions:
 - i. slerp(R1, R2, t) slerp
 - 1. R1 & R2: rotation matrices for start & end orientations
 - ii. interpolateRotVec(rv1, rv2, t) interpolate each element of two vectors
 - 1. rv1 & rv2: rotation vectors for start & end orientations
 - iii. **interpolateZYXEulerAngles(euler1, euler2, t)** interpolate each element of two euler angle tuples
 - 1. euler1 & euler2: tuples of ZYX Euler angles for start & end orientations (euler1[0]: xang, euler1[1]: yang, euler1[2]: zang)

- iv. interpolateRotMat(R1, R2, t) interpolate each element of two matrices
 - 1. R1 & R2: rotation matrices for start & end orientations
- D. For all interpolation functions:
 - i. All interpolation functions return a rotation matrix
 - ii. The parameter t ranges from 0.0 to 1.0
- E. Start from the uploaded code skeleton (LabAssignment10-1-code-skeleton.py).
- F. You will need to use
 - i. The given lerp() for interpolateRotVec(), interpolateZYXEuler(), interpolateRotMat()
 - ii. The given ZYXEulerToRotMat() for interpolateZYXEuler()
 - iii. Your exp(), log() implementation for slerp(), interpolateRotVec()
- G. Program usage (already implemented in the code skeleton):
 - i. When the program is run, only slerp() result is visible
 - ii. A key: Toggle slerp() result
 - iii. S key: Toggle interpolateRotVec() result
 - iv. D key: Toggle interpolateZYXEuler() result
 - v. F key: Toggle interpolateRotMat() result
 - vi. Z key: Hide all results
 - vii. X key: Show all results
- H. Set the window title to **[studentID]-[assignment#]-[prob#]** and the window size to (480,480).
- I. Expected result: Uploaded LabAssignment10-1.mp4
- J. Submit a single .py file [studentID]-[assignment#]-[prob#].py