研究室紹介

最所研究室

目次

- > はじめに
- > 研究紹介
 - > 脆弱性情報に基づいたセキュリティ対策
 - > 試行錯誤できるセキュリティ演習
 - > コンテナセキュリティ
 - > Webサービスのオートスケーリング
- > おわりに

はじめに

最所研究室とは

Webサービスの品質向上を

目的とした研究を行なっています

研究内容:

ネットワーク, セキュリティ, クラウド

場所:

1号館10階北側

ゼミ:

週1回(現在は木曜13:00~)

就職先傾向:

ITインフラ系, Web系, SI系

例えば...

サイトにアクセスしづらい状態が発生!!

⇒サーバ増やせば解決するけど, 無駄にサーバを増やしたくない

⇒どうすれば効率良く増減できる?

メリット

開発経験, 運用経験を積める

⇒就活で有利に働く

研究を自由に進められる

⇒自力で進める力が身に付く

院生が多い

⇒手厚いサポートを受けられる

最所研究室

脆弱性情報に基づいたセキュリティ対策

目的

ゼロデイ攻撃による被害が甚大 標的型攻撃と組み合わされる

キーワード

情報セキュリティ,ゼロデイ攻撃, 標的型攻撃,脆弱性,BYOD

ゼロデイ攻撃

リリース直後 脆弱性の公開 パッチの配布 パッチの適用

標的型攻擊

昨年 順位	個人	順位	組織	昨年 順位
1位	スマホ決済の不正利用	1位	ランサムウェアによる被害	5位
2位	フィッシングによる個人情報等の詐取	2位	標的型攻撃による機密情報の窃取	1位
7位	ネット上の誹謗・中傷・デマ	3位	テレワーク等のニューノーマルな働き方 を狙った攻撃	NEW

最所研究室

https://air.eng.kagawa-u.ac.jp

引用: IPA, 情報セキュリティ10大脅威2021, https://www.ipa.go.jp/security/vuln/10threats2021.html

脆弱性情報に基づいたセキュリティ対策

脆弱性情報に基づいたセキュリティ対策

こんなことに 興味がある人

- ✓ゼロデイ攻撃対策
- ✓標的型攻擊対策
- ✓ 脆弱性対策
- ✓ サーバ
- ✓ネットワーク

最所研究室

VEW

試行錯誤ができるセキュリティ演習

目的

知識と経験を持つ**セキュリ ティ人材**が**不足**している.

防御演習を試行錯誤することで, **セキュリティ人材の 育成**を目指す.

セキュリティ教育 + 試行錯誤 = ? セキュリティ人材の育成

サイバー攻撃から防御する

- 防御手法の調査 (調査)
- 防御手法の選別 (選別)
- 防御手法の試行錯誤 (試行)

サイバー防御の演習を試行錯誤 "ぷろてつくん"

最所研究室

試行錯誤ができるセキュリティ演習

試行錯誤ができるセキュリティ演習

防御 スコア

- ・成功度合い
- 他の受講者と共有
- 対抗意識を促す

試行 錯誤

- ・セーブ&リストア
- 防御手法を何度も実践
- 最適な防御手法を検討

単独で 自宅演習

- 手を動かせる
- ・ 自宅で長期間
- COVID-19でも安心

最所研究室

試行錯誤ができるセキュリティ演習

技術

セキュリティ, ハードニング, 仮想マシン, シェルスクリプト,

まだまだ発展の余地がたくさん!

いろいろ足りていないとも

コンテナセキュリティ

目的

コンテナ型仮想環境内で マルウェアの実行を防ぎたい

システムコールをフィルタ

コンテナで使用するシステムコール をリストアップするシステムを開発

OS, コンテナ型仮想化, システムコールフィルタ

最所研究室 https://air.eng.kagawa-u.ac.jp

コンテナ型仮想化

仮想化手法の1つ 仮想マシン(VM)より軽量かつ高速 システムコールの攻撃に脆弱

App App (MySQL) (Apache) OS OS Virtual Virtual Hardware Hardware **VMM** (Virtual Box, KVM)

Container (MySQL)

Container (Apache)

Linux

Container Runtime (Docker, CRI-O)

Linux

VM Container

https://github.com/sai-lab/sprofiler

11

コンテナセキュリティ

課題

人間がアプリの使用するシステムコールをすべて把握するのは 困難

解決策

システムコールを自動で解析

- 1. 実行形式バイナリファイルから解析
- 2. アプリケーションを実行して使用されたシステムコールを記録

最所研究室

コンテナセキュリティ

身につく技術

- 低レイヤー(OS, 仮想化技術)の知識
- コーディングカ
- 最新の技術の動向を追いかける力
 - Linuxカーネルの最新技術
 - Kubernetesなどのコンテナ技術

進路

業種:情報通信

• 職種: ソフトウェアエンジニア

• 業務: クラウドサービスの開発

Webサービスのオートスケーリング

目的

インターネットの普及により, Web サーバへのアクセスが多様化し, ア クセス数の予測が難しくなっている. 本研究では, クラウド(仮想化技術) を用い, アクセス数に応じてWeb サーバの増減を行うことで, 快適な Webサービスを提供するオートス ケーリング機構を開発する.

> 分散Webシステム, オートスケール, 負荷分散, 仮想化技術

最所研究室 https://air.eng.kagawa-u.ac.jp

用語

・オートスケール

仕事量に応じてサービス能力を動的に変更 する仕組み.

・クラウド

ユーザがインフラやソフトウェアを持たなくても, インターネットを通じて, サービスが必要なときに必要な分だけ利用できる仕組み.

・キャッシュサーバ

Webサーバのデータの複製し、そのサーバに代わって応答するサーバ.

・ロードバランサ

サービスにかかる負荷を複数のサーバに振り分ける装置.

Webサービスのオートスケーリング

背景

畑

- クラウドを用いたキャッシュサーバ
 - クラウド環境の発展
 - クラウド上の仮想マシンを用いてキャッシュサーバを構築
 - 負荷分散によって、より安定したWebサービスを提供
- キャッシュサーバを用いる場合の問題点
 - 負荷に対して用意したキャッシュサーバ数が

二〉少ない : 過負荷の場合に**応答性の改善が不十分**

【〉多い : リソース過剰で**余分なコスト発生**

目的

- 大量のリクエストがあっても応答性を維持
- 負荷量に対してサーバ数を最適化し余剰なコストを削減
 - 二〉オートスケール

(負荷の監視 + 動的な起動(スケールアウト)・停止(スケールイン))

最所研究室

おわりに

最所研究室とは?

- Webサービスの品質向上
- ● 1号館10階
- Contact@air.eng.kagawa-u.ac.jp

研究テーマ	目的	技術
脆弱性情報に基づいた セキュリティ対策	組織のセキュリティ向上	ゼロデイ攻撃,標的型攻撃,脆弱性
試行錯誤できる セキュリティ演習	セキュリティ人材の育成	仮想マシン,シェルスクリプト, ハードニング
コンテナセキュリティ	マルウェアからのコンテナ保護	OS, コンテナ型仮想化, システムコールフィルタ
Webサービスの オートスケーリング	Webサービスの可用性向上	分散Webシステム, 負荷分散, 仮想化技術

最所研究室

Prof. Saisho, Mr. Iiguni, Mr. Takehara, Mr. Nishioka, Mr. Hata, Mr. Goto, Ms. Ishizuka

