Table of contents

- Memory hierarchy
- 2 Cache memory
- 3 Main memory
- 4 Virtual memory TLB Page fault IA-32 paging

Cache

Name given to the highest or first level of the memory hierarchy encountered once the address leaves the processor

SRAM technology → fast, high cost per bit, low capacity

Divided into blocks

- contain data from consecutive memory locations
- · all blocks have the same capacity

CPU

Cache

Name given to the highest or first level of the memory hierarchy encountered once the address leaves the processor

SRAM technology → fast, high cost per bit, low capacity

- contain data from consecutive memory locations
- · all blocks have the same capacity

Cache

Name given to the highest or first level of the memory hierarchy encountered once the address leaves the processor

SRAM technology → fast, high cost per bit, low capacity

- contain data from consecutive memory locations
- · all blocks have the same capacity

Cache

Name given to the highest or first level of the memory hierarchy encountered once the address leaves the processor

SRAM technology → fast, high cost per bit, low capacity

- contain data from consecutive memory locations
- all blocks have the same capacity

Cache

Name given to the highest or first level of the memory hierarchy encountered once the address leaves the processor

SRAM technology → fast, high cost per bit, low capacity

- contain data from consecutive memory locations
- · all blocks have the same capacity

- When the processor finds a requested data item in the cache, it is called a cache hit
- When the processor does not find a data item in the cache, a cache miss occurs
- A fixed-size collection of data, block, is retrieved from the main memory and placed into the cache
- The principle of locality expresses that data contained in the block is likely to be accessed in the near future

- When the processor finds a requested data item in the cache, it is called a cache hit
- When the processor does not find a data item in the cache, a cache miss occurs
- A fixed-size collection of data, block, is retrieved from the main memory and placed into the cache
- The principle of locality expresses that data contained in the block is likely to be accessed in the near future

- When the processor finds a requested data item in the cache, it is called a cache hit
- When the processor does not find a data item in the cache, a cache miss occurs
- A fixed-size collection of data, block, is retrieved from the main memory and placed into the cache
- The principle of locality expresses that data contained in the block is likely to be accessed in the near future

- When the processor finds a requested data item in the cache, it is called a cache hit
- When the processor does not find a data item in the cache, a cache miss occurs
- A fixed-size collection of data, block, is retrieved from the main memory and placed into the cache
- The principle of locality expresses that data contained in the block is likely to be accessed in the near future

- When the processor finds a requested data item in the cache, it is called a cache hit
- When the processor does not find a data item in the cache, a cache miss occurs
- A fixed-size collection of data, block, is retrieved from the main memory and placed into the cache
- The principle of locality expresses that data contained in the block is likely to be accessed in the near future

Main memory ⇔ big block store

cache memory stores a copy of some of them

Address provided by the CPU

main memory blockblock offset

Example

Word: 1 byte

 Cache size: 32 bytes Block size: 4 bytes

Main memory size: 256 bytes

Main memory ⇔ big block store

cache memory stores a copy of some of them

Address provided by the CPU • main memory block • block offset

Example

Word: 1 byte

Cache size: 32 bytesBlock size: 4 bytes8 blocks

· Main memory size: 256 bytes

Main memory ⇔ big block store

cache memory stores a copy of some of them

Address provided by the CPU • main memory block • block offset

Example

Word: 1 byte

Cache size: 32 bytesBlock size: 4 bytes8 blocks

Main memory size: 256 bytes ⇒ 64 blocks

Features

Cache controller

Manages the cache memory

 Determines whether a memory access operation is a hit or a miss

Design characteristics

- 2 Placement strategy
 - · Where can a block be placed in the cache memory?
- 3 Replacement strategy
 - Which block should be replaced on a miss?
- Write strategy
 - · What happens on a write?

Placement strategies

Where can a block be placed in the cache memory?

- The most popular scheme is set associative, where a set is a
 group of blocks in the cache → a block is first mapped onto a set,
 and then the block can be placed anywhere within the set
- n blocks in a set → n-way set associative
- · End points of set associative
 - · Direct mapped cache: one block per set
 - Fully associative cache: only one set

Easiest placement scheme

cache block = (main memory block) MOD
$$\underbrace{\text{(# of cache blocks)}}_{2^{\times}}$$

cache block = x least significant bits of the main memory block

Example

Address issued by the CPU

$$FEh = 111111110 \longrightarrow \underbrace{111}_{} \underbrace{111}_{} 10$$

$$33h = 00110011 \longrightarrow 001 100 11$$

Address bits

- Offset → Word offset in the block
- Index → Select the set
- Tag \rightarrow Identify main memory block in the cache

Address issued by the CPU

Each cache block has a valid bit assigned

Address bits

- Offset → Word offset in the block
- Index → Select the set
- Tag \rightarrow Identify main memory block in the cache

Address issued by the CPU

· Each cache block has a valid bit assigned

11001101

11001110

11001111

В3

19

CD

Read 4Eh

Main memory

F3

01010011

Address

01001110

Read 4Eh

Read 4Eh

Main memory

F3

01010011

Address

01001110

Read 4Eh

Read 4Fh

Main memory

F3

01010011

Address

0	1	0	0	1	1	1	1

Read 4Fh

Read 50h

Main memory

F3

01010011

Address

01010000

Read 50h

Read 50h

Main memory

F3

01010011

Address

Read 50h

Read CFh

Main memory

F3

01010011

Address

1 1 0 0 1 1 1 1

Read CFh

Read CFh

Main memory

F3

01010011

Address

1 1 0 0 1 1 1 1

Direct mapped placement

Read CFh

CD

Fully associative placement

Direct mapped placement

Simple, but no flexibility

Example

· Word: 1 byte

Cache size: 32 bytes

· Block size: 4 bytes

Main memory size: 256 bytes

7	54		21	0
Tag		Index	Offs	et

37h =	0011 0111	001	101	11
F4h =	$11110100\longrightarrow$	111	101	00
56h =	0101 0110 →	010	101	10

all to the same cache block

Fully associative placement

Total freedom

Any cache block can be used

Direct mapped placement

Direct mapped placement

Fully associative placement

Fully associative placement

Fully associative placement problem

Efficient, but high cost

· number of comparators

placement policy $\begin{cases} \text{direct mapped} \Rightarrow \text{one for the whole cache} \\ \text{fully associative} \Rightarrow \text{one per block} \end{cases}$

Key

Cache blocks are grouped in sets

- · direct mapped placement to the set
- · fully associative placement inside the set

Example

Address issued by the CPU

7		4	3	21	0
	Tag		Index	Of	fset
			(s bits)		

- Blocks directly assigned to the set
- Each set has two ways
- Tag is defined by the bits not used for the set

Main memory

Α3

10

9A

BF

A4

5A

79

F3

FF

В3

19

CD

01001100

01001101

01001110

01001111

01010000

01010001

01010010

01010011

11001100

11001101

11001110

11001111

hit/miss

Address

Read 4Ch

01001100

Read 4Ch

Address

Read CEh

110011110

Read CEh

Address

Read CEh

1 1 0 0 1 1 1 0

Read CEh

Replacement strategies

When a miss occurs, which block will be replaced?

Two different scenarios

- 1 several allocations available for the block to be copied
- 2 all allocations 'are occupied'

Strategies

- Least Recently Used (LRU) → The block replaced is the one that has been unused for the longest time
- Random \rightarrow Candidate blocks are randomly selected to spread allocation uniformly

Replace Read 4Ch

Replace Read CEh

Address

Main memory 01001100 АЗ 01001101 10 01001110 9A 01001111 BF 01010000 A4 01010001 5A 01010010 79 01010011 F3 11001100 FF 11001101 ВЗ 11001110 19 11001111 CD

Replace Read CEh

Replace Read CEh

Address

Main memory 01001100 АЗ 01001101 10 01001110 9A 01001111 BF 01010000 A4 01010001 5A 01010010 79 01010011 F3 11001100 FF 11001101 ВЗ 11001110 19 11001111 CD

Writing strategies

What happens when the CPU writes a data item?

- The information in the cache is a copy of the lower levels
- Writing operations can or cannot be cached

Strategies

- · Write-trough
 - write simultaneously to several levels of the hierarchy
- Write-back
 - the block is written to the lower level when it is replaced

Cache miss

- Write allocate
 - the block is copied into the cache and then it is written
- No write allocate
 - the writing operation is performed only to main memory (it is not cached)

Higher hardware complexity ⇒ *dirty* bit

Address

Main memory A1 BB АЗ

	V	d	tag	3	2	1	0	
0	х	х	xxx	XX	XX	XX	XX	
1	х	х	xxx	XX	XX	XX	XX	
2	х	х	xxx	XX	XX	XX	XX	
3	х	х	xxx	XX	XX	XX	XX	
4	х	х	xxx	XX	XX	XX	XX	
5	х	х	xxx	XX	XX	XX	XX	
6	х	х	xxx	XX	XX	XX	XX	
7	х	х	xxx	XX	XX	XX	XX	

Higher hardware complexity ⇒ *dirty* bit

Write FFh in 4Dh

Address

Main memory A1 BB АЗ

	٧	d	tag	3	2	1	0
0	0	х	XXX	XX	XX	XX	XX
1	0	х	XXX	XX	XX	XX	XX
2	0	х	XXX	XX	XX	XX	XX
3	1	0	010	A1	89	34	17
4	1	0	010	63	27	BB	99
5	0	х	XXX	XX	XX	XX	XX
6	0	х	xxx	XX	XX	XX	XX
7	0	х	xxx	XX	XX	XX	XX
= Mux							

Higher hardware complexity ⇒ *dirty* bit

Write FFh in 4Dh

Higher hardware complexity ⇒ *dirty* bit

Read EEh

Address

Main memory A1 BB АЗ

	V	d	tag	3	2	1	0
0	0	х	xxx	XX	XX	XX	XX
1	0	х	xxx	XX	XX	XX	XX
2	0	х	XXX	XX	XX	XX	XX
3	1	1	010	A1	89	FF	17
4	1	0	010	63	27	BB	99
5	0	х	xxx	XX	XX	XX	XX
6	0	х	xxx	XX	XX	XX	XX
7	0	х	xxx	XX	XX	XX	XX

Higher hardware complexity ⇒ *dirty* bit

Read EEh Main memory A1 BB

Α3

Higher hardware complexity ⇒ *dirty* bit

Read EEh

Address

Main memory A1 BB АЗ

	V	d	tag	3	2	1	0
0	0	х	xxx	XX	XX	XX	XX
1	0	х	xxx	XX	XX	XX	XX
2	0	х	XXX	XX	XX	XX	XX
3	1	1	010	A1	89	FF	17
4	1	0	010	63	27	BB	99
5	0	х	XXX	XX	XX	XX	XX
6	0	х	xxx	XX	XX	XX	XX
7	0	х	xxx	XX	XX	XX	XX
The state of the s							

Higher hardware complexity ⇒ *dirty* bit

Read EEh

Address

	V	d	tag	3	2	1	0
0	0	х	xxx	XX	XX	XX	XX
1	0	х	xxx	XX	XX	XX	XX
2	0	х	XXX	XX	XX	XX	XX
3	1	0	111	77	А3	29	11
4	1	0	010	63	27	BB	99
5	0	х	XXX	XX	XX	XX	XX
6	0	х	xxx	XX	XX	XX	XX
7	0	х	XXX	XX	XX	XX	XX
The state of the s							

Higher hardware complexity ⇒ *dirty* bit

Read EEh Main memory A1 BB

Α3

Coherence problems

- The CPU reads and writes from the cache memory
- The cache memory stores copies from the main memory

Memory location with different values

Any other device accessing the main memory?

Coherence problems may appear

- Main memory is modified ⇒ The CPU accesses an obsolete data item
- ② CPU writes to cache ⇒ Main memory obsolete

What devices can access the main memory?

- 1 I/O interfaces mapped in the address space
- 2 I/O interfaces via Direct Memory Access (DMA)

Solutions

- Set areas as non-cacheable
 - · it is not optimal for DMA interfaces
- 2 Snooping
 - · observes control and address lines
 - · stops the interface to undo incoherences

Coherence problems

I/O interface reads from the main memory

- ✓ Write-through ⇒ no problem
- **X** Write-back ⇒ problems with dirty blocks

I/O interface writes in the main memory

- Write-through ⇒ problem if the block is cached
- Write-back ⇒ problem if the block is cached (furthermore, it may be a dirty block)

I/O interface reading + write-back

The block to be read is a dirty block

- 1 dirty block in cache ⇒ incoherence with the main memory
- 2 the peripheral device requests reading the block (11000010)
- 3 the cache controller stops the reading operation and updates the block in the main memory
- 4 the reading operation is now allowed

	V	d	tag	3	2	1	0
0	1	1	110	77	19	11	FF

I/O interface reading + write-back

The block to be read is a dirty block

- 1 dirty block in cache ⇒ incoherence with the main memory
- 2 the peripheral device requests reading the block (11000010)
- 3 the cache controller stops the reading operation and updates the block in the main memory
- 4 the reading operation is now allowed

	٧	d	tag	3	2	1	0
0	1	1	110	77	19	11	FF

I/O interface reading + write-back

The block to be read is a dirty block

- 1 dirty block in cache ⇒ incoherence with the main memory
- 2 the peripheral device requests reading the block (11000010)
- 3 the cache controller stops the reading operation and updates the block in the main memory
- 4 the reading operation is now allowed

	٧	d	tag	3	2	1	0
0	1	0	110	77	19	11	FF

The block to be read is a dirty block

- 1 dirty block in cache ⇒ incoherence with the main memory
- 2 the peripheral device requests reading the block (11000010)
- 3 the cache controller stops the reading operation and updates the block in the main memory
- 4 the reading operation is now allowed

	٧	d	tag	3	2	1	0
0	1	0	110	77	19	11	FF

- 1 block cached and coherent with the main memory
- 2) the peripheral device requests writing the block (11000011)
- 3 the cache controller allows the writing operation
- 4) the block in the cache is invalidated

	٧	tag	3	2	1	0
0	1	110	CD	19	В3	FF

- 1 block cached and coherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- 3 the cache controller allows the writing operation
- 4) the block in the cache is invalidated

	٧	tag	3	2	1	0
0	1	110	CD	19	В3	FF

- 1 block cached and coherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- 3 the cache controller allows the writing operation
- 4) the block in the cache is invalidated

	٧	tag	3	2	1	0
0	1	110	CD	19	В3	FF

- 1 block cached and coherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- 3 the cache controller allows the writing operation
- 4 the block in the cache is invalidated

11000000	FF
11000001	В3
11000010	19
11000011	AA

	٧	tag	3	2	1	0
0	0	110	CD	19	В3	FF

The block is cached (and dirty)

- 1 the block is cached and dirty ⇒ incoherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- In the cache controller stops the writing operation and updates the block in the main memory
- 4 the writing operation is allowed and the block in the cache is invalidated

	V	d	tag	3	2	1	0
0	1	1	110	77	19	11	FF

The block is cached (and dirty)

- 1 the block is cached and dirty ⇒ incoherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- 3 the cache controller stops the writing operation and updates the block in the main memory
- 4 the writing operation is allowed and the block in the cache is invalidated

	V	d	tag	3	2	1	0
0	1	1	110	77	19	11	FF

The block is cached (and dirty)

- 1 the block is cached and dirty ⇒ incoherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- 3 the cache controller stops the writing operation and updates the block in the main memory
- the writing operation is allowed and the block in the cache is invalidated

	V	d	tag	3	2	1	0
0	1	0	110	77	19	11	FF

The block is cached (and dirty)

- 1 the block is cached and dirty ⇒ incoherent with the main memory
- 2 the peripheral device requests writing the block (11000011)
- 3 the cache controller stops the writing operation and updates the block in the main memory
- 4 the writing operation is allowed and the block in the cache is invalidated

	٧	d	tag	3	2	1	0
0	0	0	110	77	19	11	FF

Cache organization

- Number of cache levels
- · Type of information stored

Cache levels

Problem

Large performance gap between the cache and the main memory

Solution

Tradeoff between cache latency and hit rate Several levels of cache are used \Rightarrow cut down the performance penalty

- called L1, L2, L3, etc.
- intermediate speed and capacity
- · usually, three levels

Type of information

Unified cache

A single cache stores all types of information

Separated caches

Data cache and instruction cache

Type of information

Unified cache

A single cache stores all types of information

- ✓ simple, a single piece of hardware
- leverages the blocks
- higher hit rate

Separated caches

Data cache and instruction cache

- replicated hardware
- x fixed amount of cache blocks per type
- lower hit rate
- ✓ concurrent accesses ⇒ L1 is usually separated

Example: Intel Core i7 2700K

L1 separated cache: data (4x) and code (4x)

- 4 × 32 KB
- 64 words per block (64 bytes)
- 8 ways

Unified L2 cache (4x)

- 4 × 256 KB
- 64 words per block (64 bytes)
- 8 ways

Unified L3 cache

- 8 MB
- 64 words per block (64 bytes)
- 16 ways

Example: Intel Core i7 2700K

L1 separated cache: data (4x) and code (4x)

 4 × 32 KB 4 × 32 KB
 64 words per block (64 bytes)
 64 sets 8 ways

Unified L2 cache (4x)

- 4 × 256 KB
- 64 words per block (64 bytes)
- 8 ways

Unified L3 cache

- 16 ways

8 MB
 64 words per block (64 bytes)

