AIM:

To perform Energy demand forecasting using different models and compare the results

DATASET:

For this analysis, I have considered only a single building energy data for 1 year:

Period: 01/08/2023 to 17/7/2024

Rows: 51796

<u>Features</u>: 4 – Timestamp, R[kWh], Y[kWh], B[kWh]

In a three-phase system, active power is measured separately for each of the three phases (**R**, **Y**, and **B**), and the total active power is the sum of the power consumed in all three phases.

The top 5 entries of the dataset are:

	TIME [UTC Seconds]	R[kW]	Y[kW]	B[kW]	Unnamed: 4
0	1690828200000	1.17	0.64	0.96	NaN
1	1690828800000	1.16	0.73	0.98	NaN
2	1690829400000	1.19	0.72	0.98	NaN
3	1690830000000	1.16	0.73	0.97	NaN
4	1690830600000	1.20	0.74	0.99	NaN

METHODOLOGY:

- 1. Data Cleaning and Pre-Processing
 - Converting the Time Column to Datetime format
 - Create a new column 'Total Active Power' which is the sum of three columns – R+Y+B
 - Remove null values
 - Add new columns Date, Year, Month, Hour, Year, Weekday, Is_Weekday
 - Plot a line plot with Date on X axis and Power on Y axis

	R	Y	В	Active Power	Date	Hour	Month	Year	Weekday	ls_Weekday
TIME										
2023-08-01 00:00:00	1.17	0.64	0.96	2.77	2023-08-01	0	8	2023	1	1
2023-08-01 00:10:00	1.16	0.73	0.98	2.87	2023-08-01	0	8	2023	1	1
2023-08-01 00:20:00	1.19	0.72	0.98	2.89	2023-08-01	0	8	2023	1	1
2023-08-01 00:30:00	1.16	0.73	0.97	2.86	2023-08-01	0	8	2023	1	1
2023-08-01 00:40:00	1.20	0.74	0.99	2.93	2023-08-01	0	8	2023	1	1

2. TIMESERIES ANALYSIS

BAR PLOT

LINE PLOT

BOX PLOT

VIOLIN PLOT

HEATMAP

It can be observed that the energy consumption is more in the year 2021 and within the time from 9a.m to 5p.m

IDENTIFY OUTLIERS

```
# Perform Rosner's test
outliers = rosner_test(sm_df['Active Power'])

# Display the outliers detected
print("Detected Outliers:", outliers)

Detected Outliers: [37.36, 29.82, 28.7, 28.58000000000000, 27.59]
```

REMOVE OUTLIERS

Before

<u>After</u>

3. FORECASTING

ARIMA MODEL

Test for Stationary

Results of dickey fuller test

-1.337126
0.612021
15.000000
336.000000
-3.449963
-2.870181
-2.571373

- Decomposing the time series

- Split into training and test set
 80% train data and 20% test data
- Use Auto Arima model to get the best parameters
 Best Model (3,1,1)
- Fit the model and perform forecasting

4. TIMEGPT MODEL

- Consider a forecast horizon of 30 days

- Parameters:

Confidence level: 90% Fine Tuning steps: 200 Fine Tuning Loss: MAPE

RESULTS:

METRICS	TIMEGPT	ARIMA
MSE	0.4410	0.0145
MAE	0.4958	0.0887
RMSE	0.6641	0.1203
MAPE	10.12%	4.96%

Still work is going on to enhance the forecasting models.

References:

- 1. https://github.com/Vikasdubey0551/EDA and Timeseriesforecasting_power_consumption/blob/master/TimeseriesEDA-forecastingmodel-comparision.ipynb
- 2. https://www.analyticsvidhya.com/blog/2021/07/stock-market-forecasting-using-time-series-analysis-with-arima-model/
- 3. https://docs.nixtla.io/docs/getting-started-timegpt_quickstart