COPRODUCT OF OPERADS

DANIEL R. BARRERO R.

1. Trees

Definition 1. An n-tree is the data (V, E, s, t) where

- V is a finite set of vertices,
- E is a finite set of edges,
- $s: E \to V \cup [1..n]$ is the source map^1 , and
- $t: E \to V \cup \{0\}$ is the target map.

This data is restricted to satisfy the following conditions:

- (1) It defines a graph-theoretic tree with vertices $V \cup [0..n]$ and edges E.
- (2) There is exactly one $e \in E$ such that t(e) = 0.

We use $u \to^e v$ to denote² that $e \in E$ has source u and target v.

2. Free operads

Let $U: \mathrm{Op} \to \mathrm{Top}^{\mathbf{N}}$ be the forgetful functor and let F be its left adjoint. Its existence is a result of Boardman and Vogt in [1].

Definition 2. Let C be a collection. A C-labelled planar n-tree is a planar n-tree such that each vertex with k children is labelled by an element of C_k .

3. The construction

Given two operads O and O', the F-U adjoint pair gives epimorphisms

(1)
$$\epsilon : FU O \to O$$

(2)
$$\epsilon': FU\ O' \to O'.$$

If the category Op had coproducts, we would have an operad epimorphism³

(3)
$$\epsilon + \epsilon' : (FU \ O) + (FU \ O') \to O + O'.$$

Drawing inspiration⁴ from the fact that left adjoints preserve colimits [2], we may define

$$(4) (FU O) + (FU O') := F ((U O) + (U O')).$$

Date: August 6, 2025.

¹Here we're using the comprehension $[a..b] := \{t \in \mathbf{Z} \mid a \le t \le b\}$

²Since the vertices and edges form a tree, specifying the edge is redundant. We will keep this definition for the time being in order to fluidly converse with the authors.

³It being an epimorphism is not immediate, but the property is necessary for the validity of the construction.

⁴We haven't established nor cited any relevant categorical properties for operads.

and therefore compute a quotient of F $((U\ O)+(U\ O'))$ that is a coproduct of O and O'.

4. Comments

- **4.1.** The result by B & V is that the forgetful functor is *monadic*.
- **4.2.** The full statement that motivates (4) is that *Right adjoints preserve limits* and left adjoints preserve colimits. It can be found in [2].
- **4.3.** The definition (4) suggests that "at the FU-level coproducts are trivially definied."
- **4.4.** Justify that $\epsilon + \epsilon'$ in (3) is an epimorphism.
- **4.5.** The number of edges of a tree given by definition 1 is probably

$$(\#\ V) + n,$$

where n is the number of leaves.

References

- [1] BOARDMAN, J. M., AND VOGT, R. M. Homotopy invariant algebraic structures on topological spaces, vol. 347 of Lect. Notes Math. Springer, Cham, 1973.
- [2] Riehl, E. Category theory in context. Mineola, NY: Dover Publications, 2016.