Algebraic Properties of the Gaussian Integers

Matt McCarthy

April 2016

Theorem. The Gaussian Integers, denoted $\mathbb{Z}(i)$, form a Euclidean domain.

1 Background

Before we can talk about Euclidean domains, we first need to introduce the definition of a ring.

Definition 1 (Ring). Let R be a nonempty set, and let $+: R^2 \to R$ and $\cdot: R^2 \to R$ be binary operations on R. Then we say R is a ring if all of the following hold.

- 1. The structure (R, +) is an abelian group.
- 2. For any $a, b, c \in R$, a(bc) = (ab)c (Multiplicative Associativity).
- 3. For any $a, b, c \in R$, a(b+c) = ab + ac (Left Distributivity).
- 4. For any $a, b, c \in R$, (a + b)c = ac + bc (Right Distributivity).