

REC'D 1 0 FEB 2004 WIPO **PCT**

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 59 011.7

Anmeldetag:

16. Dezember 2002

Anmelder/Inhaber:

Tiefenbach Bergbautechnik GmbH,

45136 Essen/DE

Bezeichnung:

Ausbausteuerung zur Steuerung der Bewegungen der Ausbaueinheiten in dem Streb eines Bergwerks

IPC:

A 9161 02/00 EDV-L

E 21 C 35/24

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 16. Januar 2004 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

Klostermeyer

Diese Steuerung ist z. B. bekannt durch die DE 102 07 698.7 A1 (TBT 2104) sowie durch die DE 199 82 113.5-24 A1 (TBT 9805).

Bei dieser Ausbausteuerung können die einzelnen Ausbaueinheiten, in dieser Anmeldung als: Schilde bezeichnet, von einer zentralen Steuerung aus oder durch einzelne Steuereinheiten angesteuert werden, welche jeweils einem Schild zugeordnet sind (Schildsteuerungen). Dabei können von einer der Schildsteuerungen aus jeweils die benachbarten oder mehrere benachbarte Schilde angesteuert werden. Grundsätzlich werden die Steuersignale über eine allen Schildsteuerungen gemeinsame Leitung allen Schildsteuerungen zugeführt. Die Schildsteuerungen sind jedoch so programmiert, dass lediglich die Schildsteuerung angesprochen und zur Ausführung der Schaltbefehle veranlaßt wird, welcher das mit dem Steuerbefehl gesendete Codewort zugeordnet ist. Alle anderen Schildsteuerungen leiten das Steuersignal mit Codewort weiter.

Durch einen Fehler in einer Schildsteuerung wird die gesamte Anlage außer Betrieb gesetzt und auch eine Handsteuerung ist bis zur Fehlerbehebung nicht möglich.

Aufgabe der Erfindung ist eine Ausgestaltung der Ausbausteuerung, bei welcher Fehler in einer Schildsteuerung einfach gesucht werden können und bei der bei einem Fehler die Anlage im übrigen weiter betrieben werden kann.

Die Lösung ergibt sich aus Anspruch 1.

Wegen der Streblänge besteht die Gefahr, dass die Signale von Schildsteuerung zu Schildsteuerung so stark abgeschwächt werden, dass sie von weit entfernten Schildsteuerungen und insbesondere von der Zentralsteuerung nicht mehr empfangen werden können.

Dieses Problem wird für beide Bus-Leitungen bzw. alle übersandten Signale durch die Ausgestaltung der Erfindung nach Anspruch 2 vermieden.

Mit der einen Eingabe eines Steuerbefehls ist die gemeinsame Leitung (Bus-Leitung) belegt. Dies wird in der Ausgestaltung nach Anspruch 3 vermieden. Da gleichzeitig mit

einem Steuersignal auch andere Signale versandt werden können, wird es möglich, unabhängig von der Eingabe von Steuersignalen auch Mess - oder sonstige Zustandssignale an den Bediener bzw. die Zentralsteuerung zu übertragen. Ebenso kann bei jedem Steuersignal gleichzeitig und ohne Zeitverzögerung auch ein Quittiersignal ausgegeben werden, durch welches der Eingang und/oder die Ausführung des Steuerbefehls bestätigt wird.

Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung beschrieben.

Es zeigen:

Figur 1: Den Schnitt durch ein Streb mit einem Ausbau

Figur 2: Die schematische Aufsicht auf eine Schräm-Maschine und eine Gruppe

von Ausbauten.

Figur 3: Die schematische Anordnung von Zentralsteuerung und

Schildsteuerungen.

In Figur 1 ist eine der Ausbaueinheiten 1-18 gezeigt. In Figur 2 ist eine Mehrzahl von Ausbaueinheiten 1 bis 18 gezeigt. Die Ausbaueinheiten sind längs eines Flözes 20 angeordnet. Das Flöz 20 wird mit einer Schneideinrichtung 23, 24 einer Gewinnungsmaschine 21 in Abbaurichtung 22 abgebaut. In dem Ausführungsbeispiel hat die Gewinnungsmaschine die Form einer Schrämmaschine 21.

Die Schrämmaschine 21 ist mittels einer Schrämtrosse, die nicht dargestellt ist, in Schneidrichtung 19 verfahrbar. Sie besitzt zwei Schneidwalzen 23, 24, die mit unterschiedlicher Höhe eingestellt sind und die Kohlewand abfräsen. Die gebrochene Kohle wird von der Schrämmaschine, auch "Walzenlader" genannt, auf einen Förderer geladen. Der Förderer besteht aus einer Rinne 25, in welcher ein Panzerförderer längs der Kohlefront bewegt wird. Die Schrämmaschine 21 ist längs der Kohlefront verfahrbar. Die Rinne 25 ist in einzelne Einheiten unterteilt, die zwar miteinander verbunden sind, jedoch relativ zueinander eine Bewegung in Abbaurichtung 22 ausführen können. Jede der Einheiten ist durch eine Zylinder-

Bei jedem der Kraftgeber handelt es sich – wie bereits erwähnt – um hydraulische Zylinder/Kolbeneinheiten.

Diese Zylinder/Kolbeneinheiten werden über Ventile 44, Vorsteuerventile 45 betätigt. An dem Vorsteuerventil ist die Ventilsteuerung 40, d.h. ein Gehäuse mit der darin befindlichen Ventilsteuerung befestigt.

In Fig. 2 bewegt sich die Schrämmaschine nach rechts. Daher muß der Kohlenstoßfänger der Ausbaueinheit 17 zurückgeklappt sein. Andererseits wird die Einheit der Rinne 25 an der Ausbaueinheit 9, die sich – in Fahrtrichtung 19 - hinter der Schrämmaschine 21 befindet, in Richtung auf die abgebaute Kohlewand vorgerückt. Ebenso befinden sich die folgenden Ausbaueinheiten 8,7,6, 5 und 4 im Vorwärtsgang mit Richtung auf den Streb bzw. auf die abgebaute Kohlenwand. An diesen Ausbaueinheiten wird der Kohlenstoßfänger bereits wieder heruntergeklappt. Die Ausbaueinheiten 3, 2, 1 sind fertig gerückt und bleiben in dieser Position, bis die Schrämmaschine sich wieder von rechts nähert.

Die Steuerung dieser Bewegungen geschieht teils automatisch in Abhängigkeit von den Bewegungen und der momentanen Position der Schrämmaschine, teils von Hand. Hierzu ist jedem der Ausbauten 1-18 jeweils eine Schildsteuerung 34 zugeordnet. Jeweils einer Gruppe von Ausbauten bzw. Schildsteuerungen ist eine Strebsteuerung 33 zugeordnet. Jeweils eines der Schildsteuergeräte 34 ist einem der Ausbauten 1-18 zugeordnet und mit den Vorsteuerventilen 45 und Hauptventilen 44

sämtlicher Kraftgeber der Ausbaueinheit 1, 2, 3 (bis 18) über jeweils eine Ventilsteuerung 40 (Mikroprozessor) verbunden.

Jede der Schildsteuerungen dient als zentrale Ausbausteuerung. Jedoch kann einer Gruppe von mehreren Schildsteuerungen eine Strebsteuerung 33 oder auch der Gesamtheit der Schildsteuerungen eine zentrale Ausbausteuerung (Hauptzentrale 50 und/ oder Hilfszentrale 51) übergeordnet sein, die mit den Schildsteuerungen verbunden ist. Eine derartige Ausführung ist in Figur 2 gezeigt.

Die zentrale Ausbausteuerung besteht aus der Hauptzentrale 50 und der Hilfszentrale 51.

Das Kabel 58 (Busleitung) verbindet alle Schildsteuerungen 34 unter einander. Über jede Schildsteuerungen werden die Ausbaubefehle weiter gegeben. Durch den Ausbaubefehl wird in einem bestimmten Schild eine bestimmte Ausbaufunktion z. B. im Sinne des Raubens, Schreitens, Setzen ausgelöst. Dieser Ausbaubefehl wird von allen Schildsteuerungen 34 über die Busleitung 58 empfangen und weitergegeben. Alle Ausbaubefehle einer der Strebsteuerungen werden unmittelbar der mit der Strebsteuerung 33 direkt verbundenen Schildsteuerung zugeleitet. Von dieser Schildsteuerung gelangen die Ausbaubefehle sodann über die Busleitung 58 an alle anderen Schildsteuerungen 34. Durch eine vorbestimmte Kodierung wird jedoch nur eine der Schildsteuerungen 1-18 oder eine Gruppe von Schildsteuerungen aktiviert zur Durchführung der jeweiligen Ausbaufunktionen. Die aktivierte Schildsteuerung setzt sodann den erhaltenen Ausbaubefehl um in Ventilsteuerbefehle an die den betroffenen Ausbauten zugeordneten Steuerventilen bzw. Hauptventilen. Die automatische Auslösung der Funktionen und Funktionsabläufe ist z.B in der DE-A1 195 46 427.3 beschrieben.

Zur zentralen Handbedienung der Befehlseingabe dient das Steuergerät 37, das als Handgerät ausgeführt ist und von dem Bediener mitgeführt wird. Zur Befehlseingabe kann der Bediener außerhalb des Strebs oder zumindest entfernt von dem augenblicklichen Abbauort stehen.

Das Handgerät ist über Funk mit den Funkempfängern 38 der Strebsteuergeräte 33 verbunden. Das quaderförmige Handgerät weist auf einer Seite (Steuerseite)

Bedientasten auf. Über diese Tasten ist auch der Code der jeweils zu bedienenden Ausbausteuerung (eine der Schildsteuerungen 34.1, 34.2...) eingebbar und ein Ausbaubefehl zur Auslösung einer gewünschten Funktion oder eines gewünschten Funktionsablaufs (z. B. Rauben oder Schreiten). auslösbar. Zur Funkübertragung dient z.B die Antenne 39 des Handgeräts.

Wenn der Bediener das Handgerät um dessen Längsachse um 180° wendet, erblickt er die Steuerseite des Handgeräts. Diese ist mit zwei Dioden, einem Display sowie weiteren Tasten ausgestattet. Der Bediener kann mit seiner Kopflampe die beiden Dioden anleuchten. Nur wenn er dabei die eine der Dioden abdeckt , z.B. mit einem Finger, wird die Kontrollfunktion das Handgeräts ausgelöst. Zur Kontrolle gibt der Bedlener den Code des zu Kontrollierenden Ausbaus ein. Dadurch tritt das Handgerät abgestimmten mit einem Infrarotsender/Empfänger 35 über Infrarotsender/Empfänger 36 an der durch Code angesprochenen Strebsteuerung 33 in Verbindung. Mittels einer der Tastenkönnen nun bestimmte Funktionen oder Betriebszustände abgefragt werden. Hierzu ist in der Strebsteuerung ein Programm hinterlegt, mit dem eine Sequenz von Abfragen über Funktionen, Betriebszustände und Funktionsabläufe eines bestimmten Schildes (Ausbaus) an die durch Code angesprochene Schildsteuerung gerichtet und durchgeführt werden kann. Die erhaltenen Daten werden sodann mittels der Infrarotsender/Empfänger 35,36 an das Handgerät übertragen und auf dem Display dargestellt. Auf diese Weise kann sich der Bediener davon überzeugen, ob ein bestimmter Ausbau noch voll funktionsfähig ist oder ob eine Wartung oder der Austausch von Funktionselementen oder Steuerelementen erforderlich ist.

Dadurch wird ein sicherer, störungsfreier und robuster Betrieb der Schrämmaschine und des Ausbaus mit geringem Bedienungsaufwand möglich. Es hat sich herausgestellt, daß auch im Untertagebetrieb eine sichere störungsfreie Funkübertragung der erforderlichen Positions- und Richtungssignale möglich ist und daß die Ausbausteuerung auch bei erheblicher Streblänge über einen oder wenige Funkempfänger zuverlässig steuerbar ist. Zu diesem Zwecke besitzt die Steuereinrichtung die Eigenheit, daß Signale, die an eine oder einzelne der Steuereinrichtungen übergeben werden, an die übrigen

weitergeleitet werden und über die gemeinsame Rechnerkapazität eine sichere Ermittlung der jeweils anzusprechenden Ausbaueinheiten möglich ist. Zur technischen Ausführung wird im übrigen auf die DE 195 46 427.3 verwiesen.

Es wurde bereits ausgeführt, daß die Schildsteuerungen 34 unter einander durch das Kabel 58 verbunden sind, das bei bisherigen Ausführungen nur zwei. Adern aufweist und das zur seriellen Übertragung Jeweils eines Codeworts und des Ausbaubefehls dient. Nur diejenige der Schildsteuerungen 34/ Ausbaueinheit wird angesprochen, deren eingespeichertes Codewort mit dem übertragenen Codewort identisch ist. Bei dem Kabel 58 handelt es sich also um ein zweiadriges Kabel, das in Form einer Busteitung von einer Schildsteuerung 34 zur nächsten verlegt ist und über die dazwischen liegenden Schildsteuerungen 34 auch die Hauptzentrale 50 und die Hilfszentrale 51 miteinander verbindet.

Nach dieser Erfindung wird statt des bisherigen einzigen zweiadrigen Kabels 58 dazu parallel ein zweites zweiadriges Kabel 59, in dieser Anmeldung als Parallel-Bus bezeichnet, verlegt. Die Kabel 58, 59 sind in dieser Anmeldung auch als Bus-Leitungen bezeichnet.

Das Prinzip der Verschaltung der Kabel in den einzelnen Schildsteuerungen 34 ist in Figur 3 dargestellt. Gezeigt sind zwei Schildsteuerungen 34.1 und 34.2 von einer Vielzahl von Schildsteuerungen. Die Schildsteuerungen sind über Bus-Leitungen 58 und 59 mit der Hauptzentrale 50 und der Hilfszentrale 51 verbunden. Die Bus-Leitung 58 besitzt die beiden Fasen 58.1 und 58.2; die Bus-Leitung 59 besitzt die beiden Fasen 59.1 und 59.2.

Sämtliche vier Fasen beider Busleitungen sind den Eingangselementen 52 der Schildsteuerungen 34.1, 34.2,... aufgeschaltet. Von den Eingangselementen aus werden die einkommenden Signale in den Schildsteuerungen verarbeitet, d. h. zunächst darauf hin geprüft, ob das mitgesendete Codewort dem eingespeicherten und dieser jeweiligen Schildsteuerung zugeordneten Codewort entspricht. Sofern die übertragenden Signale Steuersignale sind, erfolgt sodann die entsprechende Verarbeitung und Weitergabe an die entsprechenden Funktionselemente des Schilds, die zuvor beschrieben worden sind.

Jeweils eine Fase 58.2 bzw. 59.2 jeder der Busleitungen wird sodann einem Schaltelement 53 zugeführt. Die entsprechenden Fasen verlassen das Schaltelement 53 über den Ausgang und werden sodann dem entsprechenden Schaltelement 53 der benachbarten Schildsteuerung 34.2 zugeführt. In dem Schaltelement 53 können beide Fasen 58.2 und 59.2 synchron oder einzeln aufgetrennt werden.

Die andere Fase 58.1 bzw. 59.1 der Bus-Leitungen 58 bzw. 59 werden sodann einem Verstärker-Element 54 zugeführt. Die entsprechenden Fasen werden von dem Ausgang des Verstärkungselementes jeweils dem Verstärkungselement der benachbarten Schildsteuerung 34.2 zugeführt. Jede Schildsteuerung 34.1, 34.2 ... besitzt sodann ein weiteres "rechtes" Eingangselement 52, welches die Signale empfängt und verarbeitet, welche von der rechten Seite, d.h. der Hilfszentrale 51 oder einer weiter rechts gelegenen Schildsteuerung 34.3 kommen. Benachbarte Schildsteuerungen 34.1, 34.2 sind also wiederum durch zwei Kabel, von denen jedes zwei Fasen besitzt, verbunden.

Der Schalter 53 mit seinen beiden Schaltelementen ist normaler Weise geschlossen, so dass eine Durchleitung stattfindet. Die Auftrennung der Busleitungen findet jedoch statt, wenn Störungen auftreten. Zum einen kann hierdurch die Fehlersuche erleichtert werden. Dazu werden von einer der Steuereinrichtungen (Hauptzentrale, Hilfzentrale, Handgerät, Strebsteuerung oder Schildsteuerung) die Schaltelemente der rechts bzw. links liegenden Schildsteuerungen einzeln und der Reihe nach geöffnet und sodann ein Kontrollsignal eingegeben. Da das Kontrollsignal sofort von den angesprochenen Schildsteuerungen quittiert wird, kann festgestellt werden, welche der Schildsteuerungen jenseits der fehlerhaften Schildteuerung liegen. Zum anderen kann die Auftrennung im Fehlerfalle erfolgen, um eine fehlerhafte Schildsteuerung zu isolieren und von der Busleitung bzw. den Busleitungen abzutrennen. Dadurch bleiben die anderen Schildsteuerungen ansteuerbar und die Fehlerbehebung kann ohne Stillegung des Strebs erfolgen.

In dem Verstärkungselement 54 erfolgt eine Auffrischung der einkommenden Digitalsignale. Das geschieht dadurch, dass in dem Verstärkungselement festgestellt wird, ob die einkommenden Signale einen bestimmten vorgegebenen Schwellwert

übersteigen. Wenn dies der Fall ist, werden im Ausgang Signale größerer Stärke, vorzugsweise von der ursprünglichen Stärke erzeugt, damit die Durchleitung der Signale durch sämtliche Schildsteuerungen gewährleistet ist. Diese Art der Verstärkung bietet sich insbesondere an, da die Steuersignale, Messsignale usw. in digitaler Form übertragen werden.

Wenn nun von einer der Zentralen 50, 51 oder von dem Eingabegerät 37 (Figur 2) ein Steuerbefehl in das System eingegeben wird, so erfolgt der Transport des Steuerbefehls über die jeweils freie Bus-Leitung 58 oder 59. Dabei werden die Steuerbefehle in der beschriebenen Weise durch die einzelnen Schildsteuerungen 34.1, 34.2 durchgeleitet. Lediglich diejenige Schildsteuerung wird angesprochen, deren eingespeichertes Codewort mit dem Codewort übereinstimmt, welches dem Steuersignal beigegeben ist. Der Empfang und /oder die Ausführung des entsprechenden Steuerbefehls kann durch ein Rückmelde-Signal quittiert werden, da die eine der beiden Bus-Leitungen 58 bzw. 59 hierfür zur Verfügung steht. Die Rückmeldung kann sofort und ohne Zeitverzögerung erfolgen, so dass an dem Eingabegerät, d.h. Hauptzentrale 50, Hilfszentrale 51 oder Steuergerät 37 auch eine sofortige Kontrolle möglich ist. Die entsprechenden Steuersignale werden an die Ventlisteuerung 40 (Figur 1) weiter geleitet). Hierdurch wird der Stellmagnet des Vorsteuerventils 45 aktiviert und das jeweilige Hauptventil 44 des Kraftgebers 30 betätigt. Nunmehr können auch die Signale der Drucksensoren, die zur Steuerung und Überwachung an jedem der Kraftgeber und/ oder Ventile angeordnet sind, zurück über die Bus-Leitungen übertragen werden.

- 1-18. Ausbaueinheiten 1 bis 18
- 19. Schneidrichtung 19
- 20. Flöz 20
- 21. Gewinnungsmaschine Schrämmmaschine 21
- 22. Abbaurichtung 22
- 23. Schneidrichtung Schneidwalzen 23,24
- 24. Schneideinrichtung Schneidwalze
- 25. Förderer, Rinne, Einheit 25
- 26. Bodenplatte
- 27. Dachplatte
- 28. Rad 28
- 29. Zylinder-Kolben-Einheit, Schreitkolben, Kraftgeber 29
- 30. Zylinder-Kolben-Einheit, Kraftgeber
- 31. Rechner, Mikroprozessor 31,
- 32. Funkempfänger 32
- 33. Strebsteuerung, zentrale Ausbausteuerung, Strebsteuergerät
- 34. Steuergerät 34, Schildsteuerung, Schildsteuergerät, Ausbausteuerung
- 35. Infrarotsender/Empfänger 35
- 36. Infrarotsender/Empfänger 36
- 37. Steuergerät, Handgerät
- 38. Antenne, Funkempfänger
- 39. Antenne des Handgeräts
- 40. Ventilsteuerung, Mikroprozessor, Steuergerät 40
- 41. Sensoren
- 42. Netzteil
- 44 , Steuerventil 44
- 45 Vorsteuerventil, Steuerventil 45
- 46 Befehlskabel 46
- 47 Stellmagnet 47
- 48 Kohlestoßfänger 48
- 50 Hauptzentrale
- 51 Hilfszentrale
- 52 Eingangselement
- 53 Schaltelement
- 54 Verstärkungselement, Auffrischung
- 58. Kabel, Bus-Leitung
 - 58.1 Fase
 - 58.2 Fase
- 59. Kabel, Bus-Leitung, Parallel-Bus
 - 59.1 Fase
 - 59.2 Fase

Ausbausteuerung zur Steuerung der Bewegungen der Ausbaueinheiten in dem Streb eines Bergwerks

mit einer Zentralsteuerung und

mit einer Vielzahl von Steuereinhelten, von denen jeder Ausbaueinheit jeweils eine Steuereinheit (Schildsteuerung) örtlich und funktionell zugeordnet ist;

die Schildsteuerungen sind mit der Zentralsteuerung und untereinander durch eine Busleitung verbunden, über welche jede der Schildsteuerungen zur Eingabe eines Steuerbefehls von der Zentralsteuerung oder einer benachbarten Schildsteuerung aus anrufbar ist;

jede Schildsteuerung ist derart programmiert, daß über die Busleitung einkommende Steuerbefehl, welche mit einem jeweils der angerufenen Schildsteuerung zugeordneten Codeworts belegt sind, der Schildsteuerung zur Ausführung übergebbar ist.

dadurch gekennzeichnet daß

jede Schildsteuerung ein Schaltelement aufweist, durch welches eine Fase zumindest einer der Busleitungen auftrennbar ist.

- Ausbausteuerung nach Anspruch 1, dadurch gekennzeichnet, daß die Schildsteuerung einen Verstärker für die nicht mit einem jeweils der angerufenen Schildsteuerung zugeordneten Codewort belegten Signale aufweist, welche über zumindest eine der beiden Busleitungen einkommen.
- 3. Ausbausteuerung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schildsteuerungen durch eine gleichartige zweite Busleitung (Parallelbus) mit der Zentralsteuerung und mit einander verbunden sind, und daß die Schildsteuerung derart programmiert ist, daß über eine der Busleitungen einkommende Signale, welche nicht mit einem jeweils der angerufenen

Schildsteuerung zugeordneten Codeworts belegt sind, an die benachbarte Schildsteuerung weitergeleitet werden.

Zusammenfassung

Die Ausbausteuerung zur Steuerung der Bewegungen der Ausbaueinheiten in dem Streb eines Bergwerks besitzt einer Zentralsteuerung und eine Vielzahl von Steuereinheiten, von denen jeder Ausbaueinheit jeweils eine Steuereinheit (Schildsteuerung) örtlich und funktionell zugeordnet ist; Die Schildsteuerungen sind mit der Zentralsteuerung und untereinander durch zwei Busleitungen verbunden, über welche jede der Schildsteuerungen zur Eingabe eines Steuerbefehls von der Zentralsteuerung oder einer benachbarten Schildsteuerung aus anrufbar ist. Jede Schildsteuerung ist derart programmiert, daß über die Busleitung einkommende Steuerbefehl, welche mit einem jeweils der angerufenen Schildsteuerung zugeordneten Codeworts belegt sind, der Schildsteuerung zur Ausführung übergebbar ist. Jede Schildsteuerung weist ein Schaltelement auf, durch welches die Busleitung(en) in der Schildsteuerung auftrennbar ist (sind). Durch die gleichartige zweite Busleitung (Parallelbus) können einkommende Signale, welche nicht mit einem jeweils der angerufenen Schildsteuerung zugeordneten Codeworts belegt sind, an die benachbarte Schildsteuerung weitergeleitet werden.

Fig. 3

