Digital Electronic Circuits Section 1 (EE, IE)

Lecture 24

Feedback Shift Register

Linear feedback:
$$y = C_1x_1 + C_2x_2 + C_3x_3 + C_4x_4 + C_5x_5 + C_6x_6 + C_7x_7 + C_8x_8$$

 $C_i = 0 \text{ or } 1 \implies \text{ when } 1$, the output bit is tapped

+ : Sum operation obtained by Ex-OR

Linear feedback example:

$$y = x_1 + x_2 + x_7$$

If shift register (SR) contains, $10011011 \rightarrow y = 1 + 0 + 1 = 0$ With clock trigger, SR value $01001101 \rightarrow y = 0 + 1 + 0 = 1$...

Nonlinear feedback example: $y = x_1x_2 + x_7$

Feedback Polynomial

Example:

$$f(x) = x^{8} + x^{7} + x^{4} + x^{2} + x + 1$$

$$f(x) = x^{8} + x^{7} + x^{2} + x + 1$$

$$f(x) = x^{8} + x^{7} + 1$$

Tap from bit 7 and 8 Ex-Ored and fed as serial input to bit 1

$$f(x) = 1 + C_1 x^1 + C_2 x^2 + C_3 x^3 + C_4 x^4 + C_5 x^5 + C_6 x^6 + C_7 x^7 + C_8 x^8$$

For *n*-bit shift register, degree of the polynomial is *n*.

Pseudorandom Sequence

_						
	Q	R	S	T	Serial in $= S \oplus T$	Clock cycle
	1	1	1	1	0	1
	0	1	1	1	0	2
	0	0	1	1	0	3
	0	0	0	1	1	4
	1	0	0	0	0	5
	0	1	0	0	0	6
	0	0	1	0	1	7
	1	0	0	1	1 -	8
	1	1	0	0	0	9
	0	1	1	0	1	10
	1	0	1	1	0	11
	0	1	0	1	1	12
	1	0	1	0	1	13
	1	1	0	1	1	14
	1	1	1	0	1	15
	1	1	1	1	0	16 (repeats)

$$f(x) = x^4 + x^3 + 1$$

Cycle length = 15

Pseudorandom sequence: 000100110101111..

If *QRST* = 0000, it remains locked i.e. no change in state

Also possible with Ex-NOR feedback where 1111 excluded.

Non-Maximal Length

Q	R	S	T	Serial in $= R \oplus S$	Clock cycle
1	1	1	1	0	1
0	1	1	1	• 0	2
0	0	1	1	1	3
1	0	0	1	0	4
0	1	0	0	1	5
1	0	1	0	1	6
1	1	0	1	1	7
1	1	1	0	0	8
0	1	1	1	• 0	9

$$f(x) = x^3 + x^2 + 1$$

Cycle length = 7

Primitive Polynomials

- Polynomials that produce maximal length $(2^n 1)$ sequence are called primitive polynomials.
- Necessary (but, not sufficient condition) to be primitive polynomial
 - No. of taps even
 - Tap numbers are co-prime
- If tap sequence of *n*-bit LFSR generating primitive polynomial is *n*, *m*, *l*, *k*, ..., 0 then the tap sequence *n n*, *n m*, *n l*, *n k*, ..., *n* 0 i.e.
 0, *n m*, *n l*, *n k*, ..., *n* will also give primitive polynomial.

Degree	Polynomial [#]
2, 3, 4, 6, 7	$x^n + x + 1$
5	$x^5 + x^2 + 1$
8	$x^8 + x^6 + x^5 + x + 1$
9	$x^9 + x^4 + 1$
10	$x^{10} + x^3 + 1$

*Polynomial that requires minimum number of Ex-OR gates for given degree.

Internal Feedback

$$f(x) = x^4 + x^3 + 1$$

Cycle length = 15

Pseudorandom sequence with int. feedback: 101011001000111..

Pseudorandom sequence with ext. feedback: 000100110101111.. (earlier)

Q	R	S	T	Serial i = T	n	Input to T FF	Clock cycle
1	1	1	1	1		0	1
1	1	1	0	0		1	2
0	1	1	1	1		0	3
1	0	1	0	0		1	4
0	1	0	1	1		1	5
1	0	1	1	1		0	6
1	1	0	0	0		0	7
0	1	1	0	0	1	1	8
0	0	1	1	1		0	9
1	0	0	0	0		0	10
0	1	0	0	0		0	11
0	0	1	0	0		1	12
0	0	0	1	1		1	13
1	0	0	1	1		1	14
1	1	0	1	1 _		1	15
1	1	1	1	1		0	(repeats)

Ext. feedback

Primitive polynomial for external feedback also gives maximal length for internal feedback and generates pseudorandom sequence (different).

External Input

Example: Cycle Redundancy Check (CRC)

Transmitter

Message: 1100101(000)

Remainder: 010

Coded

message: **1100101010**

3 check bits

Receiver

Remainder: 000

No error

CRC is specially useful

for detecting burst error

Clock	S _{in}	Q_1	Q_2	Q_3
0	1	0	0	0
1	1	1	0	0
2	0	1	1	0
3	0	0	1	1
4	1	1	1	1
5	0	0	0	1
6	1	1	1	0
7	0	1	1	1
8	0	1	0	1
9	0	1	0	0
10	-	0	1	0

 $Q_1Q_2Q_3$: initialized with 000

Transmitter

Clock	S _{in}	Q_1	Q_2	Q_3
0	1	0	0	0
1	1	1	0	0
2	0	1	1	0
3	0	0	1	1
4	1	1	1	1
5	0	0	0	1
6	1	1	1	0
7	0	1	1	1
8	1	1	0	1
9	0	0	0	0
10	end	0	0	0

Receiver

Application

- Fast Counter: Simpler feedback for which higher clock rate is possible.
- Test pattern generator: Pseudorandom pattern is efficient in high fault-coverage of Application-Specific Integrated Circuit (ASIC).
- Scrambling: LFSR output is Ex-Ored with data to widen the bandwidth.
- Cryptography: Pseudorandom numbers are generated from an LFSR with a seed value which serves as cryptographic key and provides efficient encryption / decryption.
- Error Control Code: Used in Cycle Redundancy Check (CRC) for data transmission and storage. It is popular as it is easy to implement.

(CRC-16: $g(x) = x^{16} + x^{15} + x^2 + 1$ can detect up to 16 burst error)

Serial Addition

- Initially, register A and B store the addend and augend.
- Least significant bits are first out serially when addition starts.
- Initially, D flip-flop is reset. It stores
 the carry generated from i-th bit
 addition and feed that as input to
 (i+1)-th bit addition.
- Sum bit is serially entered in A.
- If required, next number to be added with former two can be serially entered in B.

Serial Addition

Clock 0: A: 00001010 B: 00001011 Q: 0

Clock 1: A: 10000101 Q: 0
B: x0000101

Clock 2: A: 01000010 Q: 1
B: xx000010

•••

x: 0 or 1 depending on next no., if any, to be added

8 clock cycles to complete 8 bit addition

Serial Multiplication

 $X_3 X_2 X_1 X_0$: 1101 $y_3 y_2 y_1 y_0$: 1011 1101 (13)

1101 (13)₁₀ 1011 (11)₁₀ -----10001111 (143)₁₀

Example

 $X_3 X_2 X_1 X_0$: 1101 $Y_3 Y_2 Y_1 Y_0$: 1011

Clock

 $x_3x_2x_1x_0$: 1101 1101 y_3 : 1 y_2 : 0

AND o/p: *M* output: M at adder i/p (in blue): Other adder i/p (in blue): Addition result (in blue): *M* at clock trigger:

Review: Combinatorial Divider Circuit

Serial Division

1 and 5 can use Half-subtractor

 $D_7 \dots D_4$: 4-bit remainder $D_3 \dots D_0$: 4-bit quotient

Χ

2-to-1

(x-y) Full Subtractor

У

Unit Cell

References:

□ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
 Applications 8e, McGraw Hill
 □ Lloris Ruiz A., Castillo Morales E., Parrilla Roure L., García Ríos A. Number Systems.
 In: Algebraic Circuits. Intelligent Systems Reference Library, vol 66. Springer, Berlin,
 Heidelberg