Du 20 au 23 janvier

I | Exercices uniquement

ON2 Interférences à deux ondes

II | Cours et exercices

M1 Cinématique du point

- I **Description et paramétrage du mouvement** : système et point matériel, notion de référentiel, relativité du mouvement, exemples de référentiels, outils mathématiques, projection de vecteurs.
- II **Position, vitesse et accélération** : position et déplacement élémentaire, équations horaires et trajectoires ; vitesse et vitesse instantanée, notation pointée ; accélération et accélération instantanée.
- III Exemples de mouvements : rectiligne uniforme, rectiligne uniformément accéléré, courbe uniformément accéléré.

M2 Dynamique du point

- I Introduction : inertie et quantité de mouvement, forces fondamentales.
- II **Trois lois de Newton** : principe d'inertie, principe fondamental de la mécanique, loi des actions réciproques.
- III **Ensembles de points** : centre d'inertie, quantité de mouvement d'un ensemble de points, théorème de la résultante cinétique, méthode générale de résolution.
- IV Forces usuelles : poids, chute libre avec angle initial; poussée d'Archimède; frottements fluides, chute avec frottements linéaires et quadratique, résolution par adimensionnement; frottements solides; force de rappel d'un ressort et longueur d'équilibre vertical.

III Cours uniquement

M3 Mouvements courbes

- I Mouvement courbe dans le plan : position, variation des vecteurs de base, déplacement élémentaire, vitesse, accélération en coordonnées polaires.
- II **Exemples de mouvements plans** : mouvement circulaire, circulaire uniforme, repère de FRENET, démonstration.
- III **Application : pendule simple** : tension d'un fil, pendule simple.
- IV Mouvement courbe dans l'espace : coordonnées cylindriques, coordonnées sphériques.

Questions de cours possibles

M2 Dynamique du point

- 1) Énoncer les trois lois de Newton (L.M2.1, 2 et 3). Définir le centre d'inertie d'un ensemble de points (Df.M2.3), le vecteur quantité de mouvement d'un ensemble de points et son lien avec le centre d'inertie (Df.M2.4, Pt et Dm.M2.2), énoncer et démontrer le théorème de la résultante cinétique (Th et Pr.M2.1).
- 2) (Dm.M2.3) Déterminer les **équations horaires** ainsi que la **trajectoire** du lancer d'une masse avec une vitesse initiale \overrightarrow{v}_0 faisant un angle α avec l'horizontale. Une attention particulière sera portée à l'établissement du système d'étude. Déterminer alors la portée, la flèche du tir ainsi que le temps de vol, au choix (potentiellement multiple) de l'interrogataire
- 3) (Ap.M2.2) Déterminer la proportion immergée d'un glaçon. On donne $\rho_{\text{eau}} = 1,00 \times 10^3 \,\text{km} \cdot \text{m}^{-3}$ et $\rho_{\text{glace}} = 9,17 \times 10^2 \,\text{kg} \cdot \text{m}^{-3}$.
- 4) (Dm.M2.4 et 5, Ap.M2.3) Déterminer la vitesse limite et le temps caractéristique du mouvement pour une chute libre sans vitesse initiale avec frottements **linéaires ou quadratiques**, avec l'approche désirée.
- 5) Présenter les lois du frottement de COULOMB (Df.M2.9, Pt.M2.7, Ex.M2.3), et refaire l'exercice (TDM2.app|III/2) :

On considère un plan incliné d'un angle α par rapport à l'horizontale. Une brique de masse m est lancée depuis le bas du plan vers le haut, avec une vitesse v_0 . On suppose qu'il existe des frottements solides, avec f le coefficient de frottements solides tel que f = 0,20.

- 1 Établir l'équation horaire du mouvement de la brique lors de sa montée.
- 2 Déterminer la date à laquelle la brique s'arrête, ainsi que la distance qu'elle aura parcourue. Commenter l'expression littérale.
- 6) (Dm.M2.6) Position d'équilibre d'un ressort vertical : présenter le système, déterminer la longueur d'équilibre, déterminer l'équation différentielle sur la position de la masse, solution pour des conditions initiales données par l'interrogataire.

M3 Mouvements courbes

- 7) Présenter les coordonnées **cylindriques** avec un schéma introduisant la base et indiquant l'expression de $\overrightarrow{OM}(t)$ dans cette base (Df.M3.6). Démontrer les expressions de $d\overrightarrow{u_r}$ et $d\overrightarrow{u_\theta}$, en déduire à l'aide d'un schéma l'expression de $d\overrightarrow{OM}$ en polaires et justifier son expression en cylindriques, puis démontrer $\overrightarrow{v}(t)$ et $\overrightarrow{a}(t)$ en cylindriques (Pt.M3.8, Dm.M3.2, 3, 4 et 5).
- 8) Établir succinctement la vitesse et l'accélération pour un mouvement circulaire de rayon R, puis pour le mouvement circulaire uniforme de rayon R (Ipl.M3.1 et 2). Un schéma est attendu.
- 9) Présenter la base de FRENET sur une trajectoire quelconque (Df.M3.4), démontrer les expressions de $\vec{v}(t)$ et $\vec{a}(t)$ dans cette base (Dm.M3.6).
- 10) (Dm.M3.7) Étude du pendule simple : mise en situation, équation différentielle, linéarisation, résolution. Que se passe-t-il pour de grands angles? Tracer l'allure de l'évolution de T/T_0 en fonction de θ_0 .