

Yıldız Teknik Üniversitesi Elektrik-Elektronik Fakültesi Bilgisayar Mühendisliği Bölümü

BLM1022 Sayısal Analiz

Gr: 2

Öğr. Gör. Dr. Ahmet ELBİR Dönem Projesi

sim:		
No:		
E-posta:		

İçindekiler

Ön Bilgi	4
Ana Menü	5
Desteklenen Fonksiyonlar	6
Polinom	6
Üstel	6
Logaritmik	6
Trigonometrik	6
Ters Trigonometrik	7
Örnekler	7
Matris Girişi	10
Örnek	10
Bisection Yöntemi	11
Parametreler	11
Örnek	11
Regula-Falsi Yöntemi	12
Parametreler	12
Örnek	12
Newton-Raphson Yöntemi	
Parametreler	13
Örnek	13
NxN'lik Bir Matrisin Tersi	14
Parametreler	14
Örnek	14
Gauss Eliminasyon Yöntemi	15
Parametreler	15
Örnek	
Gauss-Seidel Yöntemi	16
Parametreler	16
Örnek	
Sayısal Türev	17
Parametreler	17
Örnek	17
Simpson Yöntemi	
Parametreler	
Örnek	18

Trapez Yöntemi	19
Parametreler	19
Örnek	19
Değişken Dönüşümsüz Gregory-Newton Enterpolasyonu	20
Parametreler	20
Örnekler	20

Ön Bilgi

Program, 10 tane belirli işlemi yerine getirebilmek için tasarlanmıştır. Bu işlemler sırasıyla şöyledir:

- 1. Bisection yöntemi
- 2. Regula-Falsi yöntemi
- 3. Newton-Rapshon yöntemi
- 4. NxN'lik bir matrisin tersi
- 5. Gauss eliminasyon yöntemi
- 6. Gauss-Seidel yöntemi
- 7. Sayısal Türev
- 8. Simpson yöntemi
- 9. Trapez yöntemi
- 10. Değişken dönüşümsüz Gregory-Newton enterpolasyonu

YÖNTE	MLERÍN Y	APILIP YAI	PILMADIĞI		DAKİ TABL ERİNİZ	ODA GÖS	TERİLDİĞİ	GİBİ 1/0 O	LARAK
1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1

Ana Menü

Çalıştırılmak istenilen işlem program çalıştırıldıktan sonra numarası girilip gereken parametrelerin verilmesiyle çalışır. Ana menüde '0' girdisi verilene kadar program çalışmaya devam eder.

Quit: 0
Bisection: 1
Regula-Falsi: 2
Newton Raphson: 3
Inverse Matrix: 4
Gauss Elimination: 5
Gauss-Seidel: 6
Numerical Differentiation: 7
Simpson's Rule: 8
Trapezoidal Rule: 9
Gregory-Newton: 10
Choice:

Desteklenen Fonksiyonlar

Kök bulma yöntemleri (1, 2, 3), sayısal türev ve integral yöntemleri (7, 8, 9) ve enterpolasyon yöntemleri (10) için ilk istenilen parametre fonksiyondur. Bu fonksiyon sırasıyla polinom, üstel, logaritmik, trigonometrik ve ters trigonometrik fonksiyon tiplerini barındıracak şekilde ayarlanabilir. Her fonksiyon tipi için, o tipten kaç tane ifade bulunduğu girildikten sonra, girilen sayı kadar o tipin parametreleri girilir. Bu tiplerin parametreleri şöyledir:

Polinom

$$x_{coef} \times x^{x_{exp}}$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

Üstel

$$fn_{coef} \times (base^{(x_{coef} \times x^{x_{exp}})})^{fn_{exp}}$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

 fn_{coef} : Fonksiyonun katsayısı

fn_{exp}: Fonksiyonun üstü

base: Üstel ifadenin tabanı

Logaritmik

$$fn_{coef} \times (\log_{base}(x_{coef} \times x^{x_{exp}}))^{fn_{exp}}$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

 fn_{coef} : Fonksiyonun katsayısı

 fn_{exn} : Fonksiyonun üstü

base: Logaritmanın tabanı

Trigonometrik

$$fn_{coef} \times trig_{fn}(x_{coef} \times x^{x_{exp}})^{fn_{exp}}$$

$$trig_{fn}$$
:
$$\begin{cases} sin, & 0 \\ cos, & 1 \\ tan, & 2 \\ cot, & 3 \end{cases}$$

 x_{coef} : x'in katsayısı

 x_{exp} : x'in üstü

 fn_{coef} : Fonksiyonun katsayısı

fn_{exn}: Fonksiyonun üstü

Ters Trigonometrik

$$fn_{coef} imes trig_{fn}(x_{coef} imes x^{x_{exp}})^{fn_{exp}}$$

$$trig_{fn} : \begin{cases} arcsin, & 0 \\ arccos, & 1 \\ arctan, & 2 \\ arccot, & 3 \end{cases}$$

$$x_{coef} : imes x' in imes katsayısı$$

$$x_{exp} : imes x' in imes tü$$

$$fn_{coef} : imes fonksiyonun imes katsayısı$$

$$fn_{exp} : imes fonksiyonun imes tü$$

Örnekler

$$3x^2 + 5x + 7$$

```
Polynomial count:
Polynomial: x_coef * x ^ x_exp
x's cofactor (x_coef):
x's exponent (x_exp):
Added: 3.000000 * x ^ 2.000000
Polynomial: x_coef * x ^ x_exp
x's cofactor (x_coef):
x's exponent (x_exp):
-
Added: 5.000000 * x ^ 1.000000
Polynomial: x_coef * x ^ x_exp
x's cofactor (x_coef):
x's exponent (x_exp):
Added: 7.000000 * x ^ 0.000000
Exponential count:
Logarithmic count:
Trigonometric count:
Inverse trigonometric count:
Function: 3.000000 * x ^ 2.000000 + 5.000000 * x ^ 1.000000 + 7.000000 * x ^ 0.000000
```

$2x^3 + 5 \times 2^x - \log_2(x^3) + 3 \times \tan(x)^2 + \arcsin(x)$

```
Polynomial count:
1
Polynomial: x_coef * x ^ x_exp
x's cofactor (x coef):
x's exponent (x exp):
Added: 2.000000 * x ^ 3.000000
Exponential count:
Exponential: fn_coef * (base ^ (x_coef * x ^ x_exp)) ^ fn_exp
x's cofactor (x_coef):
x's exponent (x exp):
Function cofactor (fn coef):
Function exponent (fn exp):
Base (base):
Added: 5.000000 * (2.000000 ^ (1.000000 * x ^ 1.000000)) ^ 1.000000
Logarithmic count:
Logarithmic: fn_coef * (log _ base (x_coef * x ^ x_exp)) ^ fn_exp
x's cofactor (x_coef):
x's exponent (x exp):
Function cofactor (fn_coef):
Function exponent (fn_exp):
Base (base):
Added: -1.000000 * (log _ 2.000000 (1.000000 * x ^ 3.000000)) ^ 1.000000
```

```
Trigonometric count:
Trigonometric: fn_coef * <trig_fn>(x_coef * x ^ x_exp) ^ fn_exp
Trigonometric function (trig fn):
sin: 0, cos: 1, tan: 2, cot: 3
x's cofactor (x coef):
x's exponent (x_exp):
Function cofactor (fn coef):
Function exponent (fn_exp):
Added: 3.000000 * tan(1.000000 * x ^ 1.000000) ^ 2.000000
Inverse trigonometric count:
Inverse trigonometric: fn_coef * arc<trig fn>(x coef * x ^ x exp) ^ fn exp
Inverse trigonometric function (trig fn):
arcsin: 0, arccos: 1, arctan: 2, arccot: 3
x's cofactor (x coef):
x's exponent (x_exp):
Function cofactor (fn_coef):
Function exponent (fn_exp):
Added: 1.000000 * arcsin(1.000000 * x ^ 1.000000) ^ 1.000000
```

```
Function: 2.000000 * x ^ 3.000000 + 5.000000 * (2.000000 ^ (1.000000 * x ^ 1.000000)) ^ 1.000000 + -1.000000 * (log _ 2.000000 (1.000000 * x ^ 3.000000)) ^ 1.000000 + 3.000000 * tan(1.000000 * x ^ 1.000000) ^ 2.000000 + 1.000000 * arcsin(1.000000 * x ^ 1.000000) ^ 1.000000
```

Matris Girişi

Matrisin tersi (4) ve lineer denklem çözümü yöntemleri (5, 6) için ilk istenilen parametre NxN'lik bir kare matris için N değeridir. Bu değer girildikten sonra matrisin elemanları satır satır alınır.

Örnek

$$N = 3, \qquad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

```
N:
3
[0][0]:
[0][1]:
2
[0][2]:
3
[1][0]:
[1][1]:
5
[1][2]:
[2][0]:
[2][1]:
8
[2][2]:
Matrix: [
    1.000000
                2.000000 3.000000
    4.000000
                5.000000
                            6.000000
    7.000000
                8.000000
                            9.000000
```

Bisection Yöntemi

Parametreler

Fonksiyon

start: Başlangıç değeri

end: Bitiş değeri

epsilon: Hata miktarı

Stopping criterion: Durma koşulu = $\begin{cases} f(x) \le epsilon, & 1\\ \frac{end-start}{2^n} \le epsilon, & 2 \end{cases}$

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: $x^3 - 7x^2 + 14x - 6$

start: 0

end: 1

epsilon: 0.01

Stopping criterion: 2 (Durma koşulu = $\frac{end-start}{2^n} \le epsilon$)

Max iterations: 100

```
Function: 1.000000 * x ^ 3.000000 + -7.000000 * x ^ 2.000000 + 14.000000 * x ^ 1.000000 + -6.000000 * x ^ 0.000000
end:
epsilon:
0.01
0.01
f(x) <= epsilon: 1
(end - start) / 2^n <= epsilon: 2
Choice:</pre>
Max iterations:
start
                : +0.000000
end : +1.000000
mid : +0.500000
f(start) : -6.000000
f(end)
f(mid)
end
mid
               : +1.000000
: +0.750000
f(start) : -0.625000
f(end) : +2.000000
f(mid) : +0.984375
end
mid
f(start) : -0.625000
f(end) : +0.984375
f(mid) : +0.259766
iteration : 3
                : +0.500000
: +0.625000
start
. +0.625000
mid : +0.562500
f(start) : -0.625000
f(end) : +0.2507
f(mid) : -0.161865
iteration : 4
Result: 0.562500
```

Regula-Falsi Yöntemi

Parametreler

Fonksiyon

start: Başlangıç değeri

end: Bitiş değeri

epsilon: Hata miktarı

Stopping criterion: Durma koşulu = $\begin{cases} f(x) \le epsilon, & 1\\ \frac{end-start}{2^n} \le epsilon, & 2 \end{cases}$

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: $x^3 - 2x^2 - 5$

start: 2

end: 3

epsilon: 0.01

Stopping criterion: 1 (Durma koşulu = $f(x) \le epsilon$)

Max iterations: 100

Newton-Raphson Yöntemi

Parametreler

Fonksiyon

 x_0 : x'in başlangıç değeri

epsilon: Hata miktarı

Max iterations: Maksimum iterasyon sayısı

Örnek

Fonksiyon: $x^3 - 7x^2 + 14x - 6$

 $x_0:0$

epsilon: 0.000001

Max iterations: 100

```
Function: 1.000000 * x ^ 3.000000 + -7.000000 * x ^ 2.000000 + 14.000000 * x ^ 1.000000 + -6.000000 * x ^ 0.000000
epsilon:
0.000001
Max iterations:
100
xn
          : +0.000000
          : +0.428571
        : -6.000000
: +14.000000
f'(xn)
iteration : 1
          : +0.428571
         : +0.569724
: -1.206997
xn+1
f(xn)
f'(xn) : +8.551020
iteration : 2
          : +0.569724
          : +0.585592
          : -0.111039
          : +6.997622
iteration : 3
          : +0.585592
          : +0.585786
f(xn)
f'(xn)
          : -0.001328
          : +6.830466
iteration : 4
xn
          : +0.585786
          : +0.585786
          : -0.000000
          : +6.828427
iteration : 5
Result: 0.585786
```

Rapor benzer şekilde devam etmelidir, örnek olduğu için devamı eklenmemiştir. Yukarıdaki örneklerin raporda aynen olması beklenmemektedir, değerler ve çıktılar gerçek değildir. Sizler tarafından belirlenen örneklerle test yapmanız ve raporlamanız gerekir