## **Data Science Final Project Report**

### **Music Generator**

309505018 郭俊廷 0751231 曾揚

#### 1. Motivation:

在這次的final project中,目標是用深度學習實作鋼琴音樂的生成器。輸入一段 隨機或指定的旋律(seqence),使其接續產生後續的音符,進而形成一段新的旋律。本 文中使用預訓練好的embedding層將音調轉換成8維之vector,並用包含雙向GRU層 及self-attention層的model做監督式學習(supervised learning)。期望生成的旋律 能夠接近現實中人所創作出來的風格,困難點主要是在於如何將音樂邏輯與樂理包含在 內,包括樂曲的結構性以及和弦的彼此搭配等。

#### 2. Related Work:

我們Final Project主要是實作鋼琴音樂的生成器, 輸入一個MIDI(Musical Instrument Digital Interface)格式的鋼琴音樂檔,針對音樂的每一段和弦(chord)採用 chord2vec 作 chord embedding, 然後輸入一個音調(note)或一小段和弦(2~4個音調), 在train model架構採用兩層 self-attention layer 及三層雙向 GRU layer (Gated Recurrent Unit, a variant of Recurrent Neural Network), 再加上 dropout, chord embedding目的是為了使音調跟音調之間有相似度, 音調攜帶了和弦訊息,還可以計算一段和弦出現的機率, 最後生成出一段30秒左右的和弦(chord), 再用 pretty\_midi (a python package)把和弦(chord)轉換成MIDI格式音樂檔

# 3. Approach:

整體的目標是希望生成出來的鋼琴音,不僅有旋律,還可以很自然很有情感,跟人類演奏出來的越接近越好

#### 3-1 Data:

我們的dataset是用The MAESTRO Dataset (https://magenta.tensorflow.org/datasets/maestro), 我們是下載裡面的 maestro-v1.0.0-midi.zip, 如下圖。

| Split      | Performances | Compositions (approx.) | Duration<br>(hours) | Size<br>(GB) | Notes<br>(millions) |
|------------|--------------|------------------------|---------------------|--------------|---------------------|
| Train      | 954          | 295                    | 140.1               | 83.6         | 5.06                |
| Validation | 105          | 60                     | 15.3                | 9.1          | 0.54                |
| Test       | 125          | 75                     | 16.9                | 10.1         | 0.57                |
| Total      | 1184         | 430                    | 172.3               | 102.8        | 6.18                |

### 3-2 Data pre-processing:

我們使用 pretty\_midi (a python package)讀取MIDI鋼琴音樂檔 在 preprocessing階段, 因為每個和弦(chord)都由1~6個音調所組成, 因此我們實 作了 NoteTokenizer. NoteTokenizer的功能是記錄每個和弦分別由那些音調所組成. 每個音調分別用一個數字來表示,如下圖

88C1 57G A 5C2 57G A 5C3 57G A 5C4 A 6C4 A 6C5 57G A 5C6 67G A 6C7 57G A 5C

音調AO對應21、音調AO#對應22、音調BO對應23,以此類推,並且建立音調轉數字 note\_to\_num及數字轉音調num\_to\_note的這兩個矩陣, 把training data所有出現 過的和弦記錄在這兩個矩陣裡。

並且計算出在training data裡,不同的音調有哪些,每個音調出現的頻率高低,這三 個值。

#### 3-3 Note2vec

Note2vec是指將每個音調(note)用一個vector來表示, 以電腦來說, 兩個獨立的音 調之間是沒有任何關聯性的,訓練vector時是把容易同時出現的音符關聯性增強 所以 我們把每一個音調(note)用一個vector來表示。

我們的note2vec是採用這裡的pretrain model [1]

https://github.com/philhchen/note2vec

#### 3-4 Chord2vec

Chord2vec 最早的來源是 "Chord2Vec: Learning Musical Chord Embeddings, NIPS 2016" [2],這篇paper。Chord2vec的概念就是將每個和弦 (chord)用一個vector來表示, 那表示方式就是把每個音調相加。

在前面的Note2vec裡提到每個音調(note)用一個vector來表示,而每個和弦 (chord)是由很多個音調(note)所組成, 這篇paper提到可以把每個音調的vector相加, 變成和弦的vector, 用這個vector去表示這個和弦, 並且作者也實驗出, 這樣做有很好 的結果。



### **3-5 Proposed Model**

Input 一個音調或一個和弦, 並用Chord2vec作Chord Embedding Model架構是 bidirectional GRU-> self-attention-> dropout-> bidirectional GRU-> self-attention-> dropout-> dense-> Leaky ReLU-> dense-> output。

其中 self-attention機制是來自於Google的Transformer, "Attention Is All You Need, NIPS 2017" [6], 他的計算方式有三個步驟, 1. encoder self attention,存在於encoder間. 2. decoder self attention,存在於decoder間,3. encoder-decoder attention,這種attention算法和過去的attention model相似。self-attention跟以前的Sequence-to-sequence和Attention model相比,多了encoder-decoder attention,Transformer 也證明了word-pair 之間的關係比word-chain 更為重要,而且針對非常長的文本序列,提出了一種只關注 r 個鄰居的self-attention機制,使運算效率增加許多。

| Model: "generate_scores_rnn"                                                | , , , ,                  | ,       |
|-----------------------------------------------------------------------------|--------------------------|---------|
| Layer (type)                                                                | Output Shape             | Param # |
| input_1 (InputLayer)                                                        | [(None, 50)]             | 0       |
| embedding (Embedding)                                                       | (None, 50, 8)            | 504088  |
| bidirectional (Bidirectional                                                | (None, 50, 256)          | 105984  |
| seq_self_attention (SeqSelfA                                                | [(None, 50, 256), (None, | 65537   |
| dropout (Dropout)                                                           | (None, 50, 256)          | Θ       |
| bidirectional_1 (Bidirection                                                | (None, 50, 256)          | 296448  |
| seq_self_attention_1 (SeqSel                                                | [(None, 50, 256), (None, | 65537   |
| dropout_1 (Dropout)                                                         | (None, 50, 256)          | Θ       |
| bidirectional_2 (Bidirection                                                | (None, 256)              | 296448  |
| dropout_2 (Dropout)                                                         | (None, 256)              | Θ       |
| dense (Dense)                                                               | (None, 64)               | 16448   |
| leaky_re_lu (LeakyReLU)                                                     | (None, 64)               | Θ       |
| dense_1 (Dense)                                                             | (None, 63011)            | 4095715 |
| Total params: 5,446,205 Trainable params: 5,446,205 Non-trainable params: 0 |                          |         |

## 3-6 Training detail

我們使用seq\_len = 50, epochs=4, batch size = 96, frame\_per\_second = 5, 總 共63010種和弦去作training, seq\_len = 50是指我們input給GRU layer(Gated Recurrent Unit)的長度是50。在訓練的一開始,為了使input的長度為50, 我們在旋律的開頭填補了49個空音符做為初始的input,接續產生後續的旋律。

在Loss function是用sparse\_categorical\_crossentropy, optimizer是用adam Train完後把model存起來, 就可以開始generate了。

# 4. Experimental Results:



輸入A3 音調 的生成 Visualize Self-Attention

輸入B3 音調 的生成 Visualize Self-Attention

## 一些demo結果:

輸入一個音調G3, 所生成的鋼琴音樂 one\_note\_G3.wav 輸入一個音調B3, 所生成的鋼琴音樂 one\_note\_B3.wav 輸入一個音調A3, 所生成的鋼琴音樂 one\_note\_A3.wav

### 5. Conculsion:

在一開始我們沒有使用Chord2vec作Chord embedding時, 所生成出來的鋼琴音樂很像在亂彈, 很難聽又沒有節奏感, 後來找到NIPS 2016那篇paper後[2], 加入了Chord2vec作Chord embedding, 弦律才聽起來比較正常、比較美妙。在train model時採用Transformer的self-attention機制, 相比以前的Seq2seq和Attention model, 他加入了encoder-decoder之間的attention, 並且計算每個音調跟音調之間的關聯, 在Feedforward時考慮上下和弦之間的關聯性, 可以讓生成出來的音樂更有連貫性, 聽起來更像是人類彈的, 最後也證明這個作法可以得到不錯的結果。

### 6. Future:

這次在找資料意外發現OpenAI的Jukebox (<a href="https://openai.com/blog/jukebox/">https://openai.com/blog/jukebox/</a>) Jukebox是用VAE (Variational AutoEncoder)實作的,希望未來可以用VAE (Variational AutoEncoder)或 GAN (Generative Adversarial Network) 搭配 Chord2vec去生成看看,因為生成的方法很多種,說不定用VAE或GAN 會有更不同風格的弦律產生,說不定會更好聽。

## 7. Teamwork Assignment:

曾揚:

data preprocessing(note2vec, chord2vec), Paper survey

## 郭俊廷:

collecting data, model architecture, training model, spotlight video, PPT, report.

#### 8. References:

- (1) <a href="https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15846208.pdf?fbclid=lwAR3wtcBfW03907YmQeuhRxlsTTwL9z7S6RcVzrg7KN-mDjOHHKs\_VaaB0Ko">https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15846208.pdf?fbclid=lwAR3wtcBfW03907YmQeuhRxlsTTwL9z7S6RcVzrg7KN-mDjOHHKs\_VaaB0Ko</a>
- (2) http://www.cs.nott.ac.uk/~psztg/cml/2016/papers/CML2016\_paper\_5.pdf
- (3) https://magenta.tensorflow.org/datasets/maestro
- (4) https://github.com/philhchen/note2vec
- (5) https://github.com/CyberZHG/keras-self-attention
- (6) https://arxiv.org/pdf/1706.03762.pdf