

SEQUENCE LISTING

<110> IGARD-LIEPKALNS, Christine
MALET, Jacques
RAVASSARD, Philippe

<120> POLYPEPTIDES OF THE "BASIC-HELIX-LOOP-HELIX" bHLH
FAMILY, CORRESPONDING NUCLEIC ACID SEQUENCES

<130> ST96042A-US

<140> US 9/331,356
<141> 1999-06-18

<150> FR96/15651
<151> 1996-12-19

<150> PCT/FR97/02368
<151> 1997-12-19

<160> 28

<170> PatentIn Ver. 2.1

<210> 1
<211> 1460
<212> DNA
<213> Rattus norvegicus

<400> 1
gcaggttagcg agaggagcag tccctgggcc cccgttgctg attggcccgt ggcacaggca
60
gcagccccggc aggcacgctc ctggtccggg cagagcagat aaagcgtgcc aggggacaca
120
cgattagcag ctcagaagtc cctctgggtc tcaccactgc acagaggccg aggacccct
180
ccgagcttct ttgctgcctc cagacgcaat ttactccagg cgagggcgcc tgcagctcag
240
caaaaacttcg aagcgagcag aggggttcag ctatccaccc ctgcttgact ctgaccaccc
300
gcagctctct gttcttttga gcccgaggta actaggtaac atttaggaac ctccaaagg
360
tagaaagaggg gagtggggtgg gctgtactcta gtccccgtg gagtgaccc taagtcag
420
actgtcacac ccccccttcca ttttttccca acctcaggat ggccgcctcat cccttggatg
480
cgccccaccat ccaagtgtcc caagagaccc agcaaccctt tcccgagcc tcggaccacg
540
aagtgctcag ttccaaattcc acccccaccta gccccactct cgtaccgagg gactgctccg
600
aagcagaagc aggtgactgc cgagggacat cgaggaagct ccgtgcgcgg cgccggagg
660
gcaacaggcc caagagcgag ttggcactga gcaagcagcg acgaagccgg cgcaagaagg
720
ccaacgaccg ggagcgcaac cgcatgcaca accttaactc cgccgtggat gcgctgcgcg
780

gtgtcctgcc cacccccc gatgacgcca aacttacaaa gatcgagacc ctgcgcttcg
840
cccacaacta cattttggca ctgactcaga cgctgcgcac agcggaccac agcttctacg
900
gccccgagcc ccctgtgccc tgtggggagc tgggaagccc gggagggggc tccagcggcg
960
actggggctc tatctactcc ccagttccc aagctggtag cctgagcccc acagcctcat
1020
tggaggagtt ccctggccctg caggtgccc gctcccatc ctgtctgctc cgggcaccc
1080
tggtgttctc agacttcttg tgaaggccc aaacaggccc tggcggtgg gcgctggcag
1140
aaaggagggg agtcagagct gtctgaaatg gaaggttagtg gaggcactcg agcatctcgc
1200
cccttctggc tttcattagt caggtccctg atttaaccag gattcgcaca gttccttgc
1260
gctgtgcgtg cacaaggac attgcaggct gatctcctct taaccctcct cagtgtggcc
1320
acctcaaact cccgctccaa gcagaggaga gccgtagcac taaatagttg ggagactccc
1380
atacttcctg gtgactccgc cctttcaa atctgcgggc ctccaaccac cgcttctcc
1440
agagtgacct aatccagtt
1460

Mb
A
<210> 2
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<220>
<223> n = Inosine

<400> 2
aatkhgmngn agcgcnndkcg cryg
24

<210> 3
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primers

<400> 3
ggcsrdtytc agggtsybga yctt
24

<210> 4
<211> 25

~~<212> DNA
<213> Artificial Sequence~~

<220>
~~<223> Description of Artificial Sequence: PCR Primers~~

<400> 4
aacaccttaact ccgcgcgtgga tgcgc
25

~~<210> 5
<211> 18
<212> DNA
<213> Artificial Sequence~~

<220>
~~<223> Description of Artificial Sequence: PCR Primers~~

<400> 5
cgcgggtgtcc tgccccacc
18

~~<210> 6
<211> 6
<212> DNA
<213> Artificial Sequence~~

<220>
~~<223> Description of Artificial Sequence: E box~~

Ans
M
<400> 6
caggttg
6

<210> 7
<211> 6
<212> DNA
<213> Artificial Sequence

<220>
~~<223> Description of Artificial Sequence: Mutated E box~~

<400> 7
tccgttg
6

<210> 8
<211> 214
<212> PRT
<213> Rattus norvegicus

<400> 8
Met Ala Pro His Pro Leu Asp Ala Pro Thr Ile Gln Val Ser Gln Glu

1 5 10 15
Thr Gln Gln Pro Phe Pro Gly Ala Ser Asp His Glu Val Leu Ser Ser
20 25 30
Asn Ser Thr Pro Pro Ser Pro Thr Leu Val Pro Arg Asp Cys Ser Glu
35 40 45
Ala Glu Ala Gly Asp Cys Arg Gly Thr Ser Arg Lys Leu Arg Ala Arg
50 55 60
Arg Gly Gly Arg Asn Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gln
65 70 75 80
Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Met
85 90 95
His Asn Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr
100 105 110
Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala
115 120 125
His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His
130 135 140
Ser Phe Tyr Gly Pro Glu Pro Pro Val Pro Cys Gly Glu Leu Gly Ser
145 150 155 160
Pro Gly Gly Ser Ser Gly Asp Trp Gly Ser Ile Tyr Ser Pro Val
165 170 175
Ser Gln Ala Gly Ser Leu Ser Pro Thr Ala Ser Leu Glu Glu Phe Pro
180 185 190
Gly Leu Gln Val Pro Ser Ser Pro Ser Cys Leu Leu Pro Gly Thr Leu
195 200 205
Val Phe Ser Asp Phe Leu
210

<210> 9
<211> 1330
<212> DNA
<213> Homo sapiens

<400> 9
cctcgaccc cattctctct tcttttctcc tttggggctg gggcaactcc caggcgaaaa
60
cgccctgcagc tcagctgaac ttggcgacca gaagcccgct gagctccccca cggccctcg
120
tgctcatcgc tctctattct tttgcgcgg tagaaaggta atatggag gccttcgagg
180
gacgggcagg ggaaaagaggg atcctctgac ccagcgaaaa ctgggaggat ggctgtttt
240

gttttttccc acctagcctc ggaatcgccgg actgcgccgt gacggactca aacttaccct
300
tccctctgac cccgcccgtag gatgacgcct caaccctcgg gtgcgccccac tgtccaagtg
360
acccgtgaga oggagcggtc cttccccaga gcctcggaaag acgaagtgac ctgccccacg
420
tccgccccgc ccagccccac tcgcacacccg gggaaactgac cagaggcggg agagggaggc
480
tgccgagggg cccccgagaa gctccggca cggcgccggg gacgcagccg gcctaagagc
540
gagttggcac tgagcaagca gcgcacggagt cggcgaaaga aggccaacga ccgcgagcgc
600
aatcaaatgc acgacacctaa ctcggcactg gacgcctgc gcggtgtcct gcccacccctc
660
ccagacgacg cgaagctcac caagatcgag acgctgcgt tcgcccacaa ctacatctgg
720
gcgcgtgactc aaacgctgacg datagcggac cacagcttgt acgcgcgtgaa gccgcggcg
780
ccgcactgacg gggagctggg cagcccgaggc ggtccccccg gggactgggg gtccctctac
840
tccccagtct cccaggctgg cagctgagt cccgcgcgt cgctggagga ggcacccggg
900
ctgcgtggggg ccacctcttc cgcctgcttg agcccgaggca gtctggcttt cttagatttt
960
ctgtgaaagg acctgtctgt cgctggctg tgggtgctaa gggtaaggaa gagggaggaa
1020
gccgggagcc gtagagggtg gccgacggcg gcggccctca aaagcacttg ttccctctgc
1080
ttctcccttag ctgacccctg gccggcccgag gcctccacgg gggcggtagg ctgggttcat
1140
tccccggccc tccgagccgc gccaacgcac gcaacccttg ctgcgtccccg cgcaagtgg
1200
gcattgcaaa gtgcgctcat tttaggcctc ctctctgcca ccacccata atccattca
1260
aagaatacta gaatggtagc actacccggc cggagccgccc caccgtcttg ggtcggcccta
1320
ccctcaactca
1330

<210> 10
<211> 214
<212> PRT
<213> Homo sapiens

<400> 10
Met Thr Pro Gln Pro Ser Gly Ala Pro Thr Val Gln Val Thr Arg Glu
1 5 10 15

Thr Glu Arg Ser Phe Pro Arg Ala Ser Glu Asp Glu Val Thr Cys Pro
20 25 30

Thr Ser Ala Pro Pro Ser Pro Thr Arg Thr Pro Gly Asn Cys Ala Glu
35 40 45

Ala Glu Glu Gly Gly Cys Arg Gly Ala Pro Arg Lys Leu Arg Ala Arg
50 55 60

Arg Gly Gly Arg Ser Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gln
65 70 75 80

Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Met
85 90 95

His Asp Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr
100 105 110

Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala
115 120 125

His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His
130 135 140

Ser Leu Tyr Ala Leu Glu Pro Pro Ala Pro His Cys Gly Glu Leu Gly
145 150 155 160

Ser Pro Gly Gly Pro Pro Gly Asp Trp Gly Ser Leu Tyr Ser Pro Val
165 170 175

Ser Gln Ala Gly Ser Leu Ser Pro Ala Ala Ser Leu Glu Glu Arg Pro
180 185 190

Gly Leu Leu Gly Ala Thr Ser Ser Ala Cys Leu Ser Pro Gly Ser Leu
195 200 205

Ala Phe Ser Asp Phe Leu
210

ab
AL

<210> 11
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 11
caacgaccgg cagcgcaa
18

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 12
gcccgatgt agtttgtggc gaag
24

~~<210> 13
<211> 60
<212> DNA
<213> Artificial Sequence~~

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 13
atcggtgaga ctcgttaccag cagagtacg agagagacta cacggtaactg gnnnnnnnnn
60

~~<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence~~

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 14
agacgacgacg aagctcacca
20

~~<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence~~

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 15
gctcaccaag atcgagacgc tgcg
24

~~<210> 16
<211> 25
<212> DNA
<213> Artificial Sequence~~

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 16
atcggtgaga ctcgttaccag cagag
25

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

Am A

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 17
tcgtaccage agagtcacga gagag
25

<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 18
ctgccaggct gggagactg
19

<210> 19
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 19
ctgcatctat ctaatgctcc tctcgctacc tgctcactct gcgtgacatc
50

<210> 20
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 20
gatgtcacgc agagttagca ggtag
25

<210> 21
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 21

agcctgggag actggggagt aga
23

<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 22
agagttagca ggttagcgaga ggag
24

<210> 23
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 23
cgctatgcgc agcgtttgag tc
22

<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 24
cctcggaccc cattctctct tcttt
25

<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR Primer

<400> 25
tgagttaggg tagggcgacc caag
24

<210> 26

<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 26
aggaagctcc gggca
15

<210> 27
<211> 1381
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 27
gggcgaaauug ggcccggacgu cgcaugcucc cggccggccau ggcccgcccc uuuugagugag
60
gguaggggcga cccaagacgg uggggcggcuc cggccggua gugcuaccau ucuaguauuc
120
uuugaaugggg auuauggggu gguggcagag aggaggccua aaaugagcgc acuuugcaau
180
gcccacuuucg cgccggcagc agcaaggguu gcgugcguug gcgcggcucg gagggccgg
240
gaaugaaccc agccuaccgc ccccguggag gccugggccc gcaggggguc agcuagggag
300
aagcagaagg aacaagugcu uuugagggcc ggcgcgcucu acggcuucccg
360
gcucccuucc ucuccuuac ccuuagcacc cacagcccag cgacagacag guccuuucac
420
agaaaaaucug agaaaagccag acugccuggg cucaaggcagg cggaagaggu ggcccccagc
480
agcccgccguc gcuccuccag cgacgcggcg ggacucaggc ugccagccug ggagacuggg
540
gaguagaggg acccccaguc cccggggggc cccgcugggc ugcccagcuc cccgcagugc
600
ggcgccggcg gcuccagcgc guacaaggcug ugguccgcua ugcccagcgu uugagucagc
660
gcccagaugu aguugugggc gaagcgcagc gucucgaucu ugugagacuu cgccgcuc
720
ggaaaggugg gcaggacacc ggcgcaggcg uccagugccg aguugagguc gugcauucga
780
uugcgcucgc ggcgcuggc cuucuuucgc cgacuccgc ggcgcuggcu cagugccaa
840
ucgcucuuag gccggcugcg ucccccgcgc cgugcccgga gcuuuccucgg ggccccucgg
900
cagccucccu cuucggccuc ugcccagc ggcgcaggc gagugggggcu gggcgcccc
960
gacguggggc aggucacuuuc gcuuucccgag gcuuucccgagg aggaccgcuc cgucucac
1020
ucacuuggac agugggcgca cccgaggguu gagggcgucau ccuacggcg ggcgcagg
1080

aagguaagu uugaguccgu cacggcgca g uccgcgauuc cgaggcuagg ugaaaaaaa
1140
caaaaacagc cauccucca gcccccgug ggucagagga ucccucuuuc cccugcccgu
1200
ccucgaagg ccucaaaua uuaccuuucu accggcgca aagaauagag agcgaugagc
1260
agcgagggcc guggggagcu cagcggcgu cuggucgcca aguucagcug agcugcaggc
1320
gccccgccc gggaguuugcc ccagccccaa aggagaaaag aagagagaau gggguccgag
1380
g
1381

<210> 28
<211> 1427

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Probe

<400> 28

agcuaugcau ccaacgcguu gggagcucuc ccauaugguc gaccugcagg cggccgcgaa
60
uucacuagug auuccucgga ccccauucuc ucuucuuuuuc uccuuugggg cuggggcaac
120
ucccaggcg gggcgccugc agcucagcug aacuuggcga ccagaagccc gcugagcucc
180
ccacggccu cgcugcuau cgucucuau ucuuuugcgc cgguaagaaag guauauuuug
240
gaggccuucg agggacgggc aggggaaaga gggauccucu gacccagcgg gggcugggag
300
gauggcuguu uuuguuuuuu cccaccuagc cucggauucg cggacugcgc cgugacggac
360
ucaaacuuac ccuuccucu gaccccgccg uaggaugacg ccucaacccu cggugcgc
420
cacuguccaa gugacccgug agacggagcg guccuucccc agagccucgg aagacgaagu
480
gaccugccccc acguccgccc cgccccagccc cacucgcaca cccgggaacu ggcgcagaggc
540
ggaagagggg ggcugccgag gggccccc gagcucccg gacccggcgc ggggacgcag
600
ccggccuaag agcgaguugg cacugagcaa gcagcgacgg agucggcgaa agaaggccaa
660
cgaccgcgag cgcaaucgaa ugcacgaccu caacucggca cuggacgccc ugcccggugu
720
ccugccacc uucccagacg acgcgaagcu caccaagauc gagacgcugc gcuucgc
780
caacuacauc ugcccgcuga cucaaacgcu ggcgcuaagcg gaccacagcu uguacgc
840
ggagccgccc ggcgcgcacu ggcgggagcu gggcagccc ggcggucccc cccggacug
900
ggggucccuc uacuccccag ucucccaggc ugcccgcug aguucccgccg cgucgcugga
960
ggagccgaccc gggcugcugg gggccaccuc uuccgcugc uugagcccag gacagc
1020

M
M

uuucucagau uuucugugaa aggaccuguc ugucgcuggg cuguggugc uaagguaag
1080
ggagagggag ggagccggga gccguagagg guggccgacg gcggcgccc ucaaaagcac
1140
uuguuccuuc ugcuucuccc uagcugaccc cuggccggcc caggccucca cgggggcggu
1200
aggcuggguu cauuccccgg cccuccgagc cgcccaacg cacgcaaccc uugcugcugc
1260
ccgcgcgaag ugggcauugc aaagugcgcu cauuuuaggc cuccucucug ccaccacccc
1320
auaauccaa ucaaagaaua cuagaauggu agcacuaccc ggccggagcc gcccacccguc
1380
uugggucgcc cuacccucac ucaaaucgaa uuccccggc cgccaug
1427