WHAT IS CLAIMED IS:

1	 A system for synchronizing isochronous data packets for delivery to a 			
2	device, comprising:			
3	an isochronous data processor configured to process said isochronous data			
4	packets, said isochronous data processor inserts a data marker at beginning of each of said			
5	isochronous data packets;			
6	a firmware control configured to control operation of said isochronous data			
7	processor; and			
8	a storage medium for storing said data markers and their associated			
9	isochronous data packets.			
1	2. The system according to claim 1, wherein upon retrieving data from			
2	said storage medium, said isochronous data processor uses said data marker to synchronize			
3	data delivery to said device.			
1	3. The system according to claim 2, wherein said data delivery is			
2	synchronized in that said data delivery begins with an isochronous data packet which			
3	corresponds to a frame boundary.			
1	4. The system according to claim 1, wherein said isochronous data			
2	processor uses said data marker to re-synchronize data delivery to said device when said data			
3	delivery contains a corrupted packet.			
1	5. The system according to claim 4, wherein said data delivery is re-			
2	synchronized in that said data delivery begins with an isochronous data packet which			
3	corresponds to a next frame boundary.			
1	6. The system according to claim 1, wherein said isochronous data			
2	packets are transmitted in accordance with IEEE 1394 specification.			
1	7. A system for synchronizing isochronous data delivery, comprising:			
2	a data interface for receiving and transmitting isochronous data packets;			
3	an isochronous data processor for processing said isochronous data packets;			
4	a firmware control configured to control operation of said isochronous data			
5	processor; and			
6	a storage medium for storing said processed isochronous data packets;			

,		WIICI	sili said data iliterrace receives said isocinolious data packets iroin a		
8	device;				
9		where	ein said isochronous data processor processes said received isochrono	us	
10	data packets by inserting a data marker in front of each of said received isochronous data				
11	packets;				
12		where	ein said data marker and said each of said received isochronous data		
13	packets are s	tored or	to said storage medium; and		
14		where	ein when data are retrieved from said storage medium for delivery, said	id	
15	isochronous data processor uses said data marker to identify an isochronous data packet				
16	which corres	ponds to	o start of a frame.		
1		8.	The system according to claim 7, wherein said isochronous data are	;	
2	transmitted in accordance with IEEE 1394 specification.				
1		9.	A method for synchronizing isochronous data delivery, comprising	:	
2		receiv	ring a plurality of isochronous data packets;		
3		insert	ing a data marker at beginning of each of said plurality of isochronou	s	
4	data packets;				
5		storin	g said data marker and its associated isochronous data packet onto a		
6	storage medium; and				
7		upon	retrieving data from said storage medium, using said data marker to		
8	synchronize said isochronous data delivery.				
1		10.	A method for synchronizing isochronous data delivery, comprising	,	
2		settin	g a synchronization indicator to a first state;		
3		exam	ining an isochronous data packet to determine whether it contains a de	ata	
4	marker;				
5		if said	l isochronous data packet does not contain said data marker, discardin	ıg	
6	said isochron	ous dat	a packet and repeating said examining with another isochronous data		
7	packet if nece	essary;			
8		if said	l isochronous data packet contains said data marker, checking whethe	r	
9	said synchron	nization	indicator is set to a second state;		
10		if said	synchronization indicator is set to said second state, outputting said		
l 1	isochronous data packet to a requesting device;				

12	if said synchronization indicator is not set to second state, checking whether
13	said isochronous data packet corresponds to start of a frame;
14	if said isochronous data packet corresponds to start of said frame, setting said
15	synchronization indicator to said second state and outputting said isochronous data packet to
16	said requesting device; and
17	repeating said examining with another isochronous data packet if necessary.