2020年普通高等学校招生全国统一考试

文科数学

注意事项:

- 1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1.已知集合 $A=\{x||x|<3, x\in Z\}, B=\{x||x|>1, x\in Z\}, 则A\cap B=($

A. \emptyset

C. {-2, 0, 2}
D. {-2, 2}

2. (1-i) ⁴= ()

A –4 B. 4

C. –4*i* D. 4*i*

3.如图,将钢琴上的12个键依次记为 a_1 , a_2 , ..., a_{12} .设1 $\leq i < j < k \leq 12$. 若k-j=3且j-1

i=4,则称 a_i , a_i , a_k 为原位大三和弦;若k-j=4且j-

i=3,则称 a_i , a_j , a_k 为原位小三和弦. 用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为(

A. 5 B. 8 C. 10 D. 15

4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天

完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()

A. 10名

B. 18名

- C. 24名
- D. 32名

5.已知单位向量a, b的夹角为 60° ,则在下列向量中,与b垂直的是()

- A. *a*+2*b*
- B. 2*a*+*b*
- C. *a*–2*b*
- D. 2*a*–*b*

6.记 S_n 为等比数列 $\{a_n\}$ 的前n项和.若 a_5 — a_3 =12, a_6 — a_4 =24,则 $\frac{S_n}{a_n}$ = ()

A. $2^{n}-1$

- **B.** $2-2^{1-n}$
- $C. 2-2^{n-1}$
- **D.** $2^{1-n}-1$

7.执行右面的程序框图,若输入的k=0,a=0,则输出的k为()

A. 2

B. 3

C. 4

D. 5

8. 若过点 (2, 1) 的圆与两坐标轴都相切,则圆心到直线 2x - y - 3 = 0 的距离为 (

A. $\frac{\sqrt{5}}{5}$

- B. $\frac{2\sqrt{5}}{5}$
- C. $\frac{3\sqrt{5}}{5}$
- D. $\frac{4\sqrt{5}}{5}$

9.设O为坐标原点,直线x = a与双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的两条渐近线分别交于D, E两点,若

 $\Box ODE$ 的面积为8,则C的焦距的最小值为()

A. 4

B. 8

C. 16

D. 32

10.设函数 $f(x) = x^3 - \frac{1}{x^3}$,则 f(x) ()

- A. 是奇函数,且在(0,+∞)单调递增
- B. 是奇函数,且在(0,+∞)单调递减

- C. 是偶函数,且在(0,+∞)单调递增
- D. 是偶函数,且在(0,+∞)单调递减

11.已知 $\triangle ABC$ 是面积为 $\frac{9\sqrt{3}}{4}$

的等边三角形,且其顶点都在球O的球面上.若球O的表面积为 16π ,则O到平面ABC的距离为())

A.
$$\sqrt{3}$$

B.
$$\frac{3}{2}$$

D.
$$\frac{\sqrt{3}}{2}$$

12.若 $2^x - 2^y < 3^{-x} - 3^{-y}$,则()

A.
$$\ln(y-x+1) > 0$$
 B. $\ln(y-x+1) < 0$ C. $\ln|x-y| > 0$ D. $\ln|x-y| < 0$

B.
$$\ln(y-x+1) < 0$$

C.
$$\ln |x-y| > 0$$

D.
$$\ln |x - y| < 0$$

二、填空题: 本题共4小题,每小题5分,共20分.

14.记 S_n 为等差数列 $\{a_n\}$ 的前n项和. 若 $a_1 = -2$, $a_2 + a_6 = 2$, 则 $S_{10} =$ ______.

15.若
$$x$$
, y 满足约束条件 $\begin{cases} x+y \ge -1, \\ x-y \ge -1, \\ \text{则} \ z = x+2y \text{ 的 最大值是}_{2x-y \le 1,} \end{cases}$

16.设有下列四个命题:

p₁: 两两相交且不过同一点的三条直线必在同一平面内.

 p_2 : 过空间中任意三点有且仅有一个平面.

p3: 若空间两条直线不相交,则这两条直线平行.

 p_4 : 若直线 $l \subset \text{平面}\alpha$, 直线 $m \perp \text{平面}\alpha$, 则 $m \perp l$.

①
$$p_1 \wedge p_4$$
 ② $p_1 \wedge p_2$ ③ $\neg p_2 \vee p_3$ ④ $\neg p_3 \vee \neg p_4$

- 三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每 个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
 - (一) 必考题: 共60分.

17. $\triangle ABC$ 的内角A, B, C的对边分别为a, b, c, 已知 $\cos^2(\frac{\pi}{2} + A) + \cos A = \frac{5}{4}$.

(1) 求*A*;

(2) 若
$$b-c=\frac{\sqrt{3}}{3}a$$
, 证明: $\triangle ABC$ 是直角三角形.

18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的 数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得 到样本数据 $(x_i, v_i)(i=1, 2, ..., 20)$, 其中 x_i 和 v_i 分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野

生动物的数量,并计算得
$$\sum_{i=1}^{20} x_i = 60$$
, $\sum_{i=1}^{20} y_i = 1200$, $\sum_{i=1}^{20} (x_i - \overline{x})^2 = 80$, $\sum_{i=1}^{20} (y_i - \overline{y})^2 = 9000$,

$$\sum_{i=1}^{20} (x_i(-\overline{x}) \ y_i - \overline{y}) = 800.$$

- (1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数):
- (2) 求样本 $(x_i, y_i)(i=1, 2, ..., 20)$ 的相关系数(精确到0.01);
- (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.

附: 相关系数
$$r = \frac{\sum_{i=1}^{n} (x_i(-\overline{x}) \ y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i(-\overline{x})^2 \sum_{i=1}^{n} \ y_i - \overline{y})^2}}, \sqrt{2} = 1.414.$$

19.己知椭圆
$$C_1$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

(a>b>0)的右焦点F与抛物线 C_2 的焦点重合, C_1 的中心与 C_2 的顶点重合。过F且与x轴重直的直线交 C_1 于A,B两点,交 C_2 于C,D两点,且 $|CD|=\frac{4}{3}|AB|$.

- (1) 求 C_1 的离心率;
- (2) 若 C_1 的四个顶点到 C_2 的准线距离之和为12,求 C_1 与 C_2 的标准方程.

20.如图,已知三棱柱ABC-

 $A_1B_1C_1$ 的底面是正三角形,侧面 BB_1C_1C 是矩形,M,N分别为BC, B_1C_1 的中点,P为AM上一点. 过 B_1C_1 和P的平面交AB于E,交AC于F.

- (1) 证明: AA_1/MN ,且平面 A_1AMN 上平面 EB_1C_1F ;
- (2) 设O为 $\triangle A_1B_1C_1$ 的中心,若AO=AB=6,AO//平面 EB_1C_1F ,且 $\angle MPN=\frac{\pi}{3}$,求四棱锥B=

 EB_1C_1F 的体积.

- 21.已知函数 $f(x) = 2\ln x + 1$.
- (1) 若 $f(x) \leq 2x+c$,求c的取值范围;
- (2) 设*a*>0时, 讨论函数*g* (*x*) = $\frac{f(x) f(a)}{x a}$ 的单调性.
- (二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.

[选修4-4: 坐标系与参数方程]

22.已知曲线
$$C_1$$
, C_2 的参数方程分别为 C_1 :
$$\begin{cases} x = 4\cos^2\theta, \\ y = 4\sin^2\theta \end{cases} (\theta \text{为参数}), C_2$$
:
$$\begin{cases} x = t + \frac{1}{t}, \\ y = t - \frac{1}{t} \end{cases} (t \text{为参数}).$$

- (1) 将 C_1 , C_2 的参数方程化为普通方程;
- (2) 以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设 C_1 , C_2 的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.

[选修4—5:不等式选讲]

23.已知函数
$$f(x) = |x-a^2| + |x-2a+1|$$
.

- (1) 当a = 2时, 求不等式 f(x)... 4的解集;
- (2) 若 f(x)... 4, 求a的取值范围.