## Бичина Марина Б04-005, Лабораторная работа №.3.5.1

### Цель работы:

- 1. Измерить вольт-амперную тлеющего характеристику тлеющего разряда
- 2. Измерить зондовые характеристики при разных токах разряда и изучить таким образом свойства плазмы (концентрацию и температуру электронов в плазме, степень ионизации, плазменную частоту и дебаевский радиус экранирования)

#### Оборудование:

- 1. Стеклянная газоразрядная трубка, наполненная неоном
- 2. Высоковольтный источник питания
- 3. Источник питания постоянного тока
- 4. Делитель напряжения
- 5. Потенциометр
- 6. Амперметры
- 7. Вольтметры
- 8. Переключатели

#### Теоретическая справка:

Плазмой называют ионизированный газ, дебаевский радиус которого  $r_d$  во много разменьше характерного размера объема, занимаемого этим газом

Дебаевский радиус - характерная длина, с которой с расстоянием экспоненциально убывает поле иона вследствие экранирующего действия

$$r_D = \sqrt{\frac{kT_e}{4\pi ne^2}} = 743\sqrt{\frac{T_e}{n}} \tag{1}$$

так же его можно определить как амплитуду ленгиюровских колебаний плазмы, возбуждаемых тепловыми флуктуациями.

Число частиц в дебаевской сфере - число частиц, много больших единицы, для которых потенциальная энергия взаимодействия 2 заряженных частиц существенно меньше тепловой энергии. Их число примерно равно

$$N_D \approx n \cdot \frac{4}{3} \pi r_D^3 \approx 0.1 \frac{1}{e^3} \sqrt{\frac{kT_e^3}{n}}$$

Плазменная частота - время отклика на флуктуацию плотности заряда в плазме

$$\omega_p = \frac{4\pi n e^2}{m} = 5.65 \cdot 10^4 \sqrt{n} \quad => \quad r_D = \frac{\vartheta}{\omega_p} \tag{2}$$

Температура электронов в энергетических единицах

$$k_{\rm B}T_e = \frac{1}{2} \frac{eI_{\rm i_H}}{\frac{dI}{dU}|_{U=0}}$$
 (3)

Концентрация заряженных частиц:

$$n_i = \frac{I}{0.4eS} \sqrt{\frac{m_i}{2k_{\rm B}T_e}} \tag{4}$$

#### Описание установки:



Стеклянная газоразрядная трубка имеет холодный полый катод, три анода и геттерный узел. Трубка наполнена изотопом неона  ${}^2_2$ Ne при давлении 2 мм рт. ст. Катод и один из анодов (I и II) с помощью переключателя  $\Pi_1$  подключается через балластный резистор  $R_6$  ( $\approx 450$  кОм) к регулируемому ВИП с выходным напряжением до 5 кВ.

Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм.

#### Ход работы:

1. Рассмотрим ВАХ разряда: для этого по снятым данным построим график Далее по наклону прямой найдем максимальное дифференциальное сопротивление разряда, получим  $\frac{dU}{dI}=-310\pm10~$  Ом

Так же, мы можем сравнить полученных выше график с вольт-амперной характеристикой разряда в неоне. Построим график в логарифмических координатах Можно заметить, что значение сопротивления у нас вышло отрицательным. Здесь нет ошибки.

Дифференциальное сопротивление может быть отрицательным, поскольку возрастание тока приводит к возрастанию концентрации ионов, из-за чего возрастает проводимость и понижается напряжение

Сам график соответствует промежутку Д-Г



Рис. 1:



Рис. 2:

# 2. Зондовые характеристики Обработка графиков будет производится в виде:



Рис. 3: ВАХ двойного зонда



Рис. 4: семейство вольт-амперных характеристик двойного зонда  $I_3(U_3)$ , с постоянным током разряда в диапазоне от 1.5 до 5 мА

Ионный ток насыщения  $I_{\rm in}$  мы можем определить, проведя прямые по МНК: y=ax+b, где коэффициент  $b=I_{\rm in}$  (на графиках соответствует уравнению 1) Величину  $\Delta U$  мы можем определить по графику 2, подставляя  $y=I_{\rm in}$  ( $\Delta U$  соответствует значению x в данном уравнении)

3. по данным из графиков построим таблицу для  $I_p, I_{\rm in}, \Delta U$  и их погрешностей:

| $I_p$ , дел                           | 120  | 75   | 37.5 |  |
|---------------------------------------|------|------|------|--|
| $I_p$ мА                              | 4.8  | 3    | 1.5  |  |
| $I_{\mathrm{in}}$ MA                  | 111  | 55   | 27   |  |
| $\sigma_{\mathrm{i}_{\mathrm{H}}}$ MA | 4.62 | 1.22 | 0.28 |  |
| $\Delta U$ , B                        | 11.1 | 7.86 | 9    |  |
| $\sigma_{\Delta U}$ , B               | 0.65 | 0.38 | 0.15 |  |

Таблица 1: Сводная таблица ВАХ двойного зонда для токов разряда 4.8-1.5 мА

4. Рассчитаем температуру электронов и концентрацию заряженных частиц по фор-



Рис. 5: ВАХ двойного зонда  $I_{\rm 3}(U_{\rm 3})$  для тока разряда  $I_p=4.8~{\rm mA}$ 



Рис. 6: ВАХ двойного зонда  $I_{\scriptscriptstyle 3}(U_{\scriptscriptstyle 3})$  для тока разряда  $I_p=3$  мА

мулам (3) и (4) соответственно

$$k_{\rm B}T_{e_1}=rac{1}{2}rac{eI_{\rm in}}{rac{dI}{dU}|_{U=0}}=rac{1}{2}\Delta U=rac{11.1}{2}=5.55~{
m sB}$$
 
$$k_{\rm B}T_{e_2}=3.93~{
m sB}$$
 
$$k_{\rm B}T_{e_3}=4.5~{
m sB}$$

$$n_{i_1} = \frac{I}{0.4eS} \sqrt{\frac{m_i}{2k_{\rm B}T_e}} = 6.9 \cdot 10^{16} \text{M}^{-3}$$
$$n_{i_2} = 4.57 \cdot 10^{16} \text{M}^{-3}$$



Рис. 7: ВАХ двойного зонда  $I_{\rm 3}(U_{\rm 3})$  для тока разряда  $I_p=1.5~{\rm mA}$ 

$$n_{i_3} = 2.30 \cdot 10^{16} \mathrm{m}^{-3}$$

5. Построим графики зависимостей электронной температуры и концентрации электронов от тока разряда  $T_e(I_p), n_e(I_p)$ 

| $I_p$ мА            | 4.8  | 3    | 1.5 |
|---------------------|------|------|-----|
| $k_{\rm B}T_e$ , эВ | 5.55 | 3.93 | 4.5 |

Видим, что мы не можем установить никакой зависимости температуры от тока



Рис. 8:

разряда

| $I_p$ мА            | 4.8 | 3    | 1.5  |
|---------------------|-----|------|------|
| $n_i \cdot 10^{16}$ | 6.8 | 4.57 | 2.30 |



Рис. 9:

В данном случае мы можем обнаружить линейную зависимость

6. Рассчитаем плазменную частоту  $\omega_p$ , электронную поляризационную длину  $r_De$  и дебаевский радиус экранирования  $r_D$  по формулам (2) и (1). Результаты занесем в сводную таблицу:

| $n_i \cdot 10^{16}$                | 6.8  | 4.57 | 2.30 |
|------------------------------------|------|------|------|
| $\omega_p, \cdot 10^{13} \ c^{-1}$ | 1.48 | 1.20 | 0.85 |
| $r_{De}$ cm                        | 5.6  | 7    | 9.3  |
| $r_D$ cm                           | 0.43 | 0.53 | 0.74 |

#### Выводы:

- 1. Мы измерили ВАХ тлеющего разряда. Получили значение дифференциальное сопротивление разряда, равное  $R=-310\pm10~{\rm Om}$ .
- 2. При исследовании графика зависимости установили, что наш диапазон соответствует участку Д- $\Gamma$
- 3. Исследовали зондовые характеристики при разных токах разряда. Все данные представлены в сводной таблице:

| $I_p$ , мА | $I_{\rm in},{ m mA}$ | $\Delta U$ , B | $k_{\rm B}T_e$ , эВ | $n_i \cdot 10^{16}$ | $\omega, c^{-1} \cdot 10^{13}$ | $r_{De}$ , cm | $r_D$ , cm      |
|------------|----------------------|----------------|---------------------|---------------------|--------------------------------|---------------|-----------------|
| 4.8        | 111                  | 11.1           | $55.0 \pm 3.6$      | $6.8 \pm 0.5$       | $1.5 \pm 0.1$                  | $5.6 \pm 0.6$ | $0.43 \pm 0.03$ |
| 3          | 55                   | 7.86           | $3.93 \pm 2$        | $4.57 \pm 0.20$     | $1.20 \pm 0.05$                | $7 \pm 0.4$   | $0.53 \pm 0.02$ |
| 1.5        | 27                   | 9              | $4.5.0 \pm 1.3$     | $2.30 \pm 0.04$     | $0.85 \pm 0.01$                | $9.3 \pm 0.2$ | $0.74 \pm 0.01$ |

- 4. Увидели, что для снятых нами данных какая-либо зависимость температуры от тока не обнаруживается
- 5. Обнаружили линейную зависимость концентрации от тока