

Introdução à Química-Física

Aula teórico-prática nº1

Conceitos importantes:

- identificar o reagentes limitante numa reação e utilizá-lo para calcular o rendimento do produto e a quantidade do reagente em excesso que permanece após a reação estar completa;
- calcular concentração de uma solução preparada por diluição de outra de concentração conhecida; fazer cálculos de massa ou volume utilizando dados como a densidade de uma substância.

Problemas retirados dos fundamentos

- **3**. A densidade do gás hélio a 273 K e 1 atm é 0,17685 g.L⁻¹. Qual o volume de um balão contendo 10 g de hélio nas mesmas condições? (56 L)
- **31.** O aspartame (C₁₄H₁₈N₂O₅) é um adoçante artificial. Escreva a equação química acertada correspondente à combustão (reacção com O₂) do aspartame originando dióxido de carbono gasoso, água líquida e azoto gasoso.
- **35.** Que massa de ferro se pode obter por redução de 10,00 g de óxido de ferro (III) (Fe₂O₃) numa fornalha de CO, de acordo com a reacção seguinte:

$$Fe_2O_3$$
 (s) + 3CO (g) \rightarrow 2 Fe (s) + 3 CO₂ (g)

(massa molar Fe = $55,85 \text{ g.mol}^{-1}$). (m_{Fe}= $6,99 \text{ g; n}_{Fe}$ = 0,125 mol)

41. O carbeto de cálcio, CaC_2 , reage com a água para formar hidróxido de cálcio e o gás inflamável etino (acetileno). Esta reacção foi outrora utilizada nas lâmpadas das bicicletas devido à facilidade de transporte dos reagentes. Qual o reagente limitante quando 1,00 x 10^2 g de água reagem com 1,00 x 10^2 g de CaC_2 ? Que massa de acetileno pode ser produzida? Que massa de reagente em excesso permanece depois de completa a reacção?

$$(CaC_2; m_{C_2H_2} = 40.6 g; m_{H_2O} = 43.8 g)$$

$$CaC_{2}(s) + 2 H_{2}O(I) \rightarrow Ca(OH)_{2}(aq) + C_{2}H_{2}(g)$$

Problemas de estequiometria e concentrações

- **1.** Por aquecimento de 15,22 g de uma mistura de $CaCO_3$ e de $MgCO_3$, obtém-se 8,29 g de uma mistura de CaO e MgO. Calcule a percentagem de $CaCO_3$ existente na mistura inicial. Ca=40 g mol^{-1} Mg=24,3 g mol^{-1} (% mássica $CaCO_3=81,3$; % $molar CaCO_3=78,6$ %)
- **3.** Dissolvem-se 0,094 g de CuSO₄.5H₂O em água destilada até se perfazer o volume de 500 cm³ num balão volumétrico. Diluem-se 2,00 cm³ desta solução a fim de preparar uma segunda solução noutro balão volumétrico de 500 cm³. Calcule a concentração de CuSO₄ no segundo balão, bem como a massa de CuSO₄.5H₂O de que necessitaria para preparar directamente esta solução. Cu=63,5 g mol⁻¹ S=32 g mol⁻¹ ([CuSO₄]=3,01x10⁶ mol dm⁻³; m CuSO_{4.5H₂O}=0,38 mg)