Power Flow Controllability and Flexibility in the Transmission Expansion Planning Problem: A MILP Approach

"Controlabilidade e Flexibilidade de Fluxo de Potência no Problema de Planejamento da Expansão da Transmissão: Uma abordagem de Programação Inteira Mista"

Dissertação de Mestrado (MSc.)

Aluno: Ricardo Cunha Perez

Orientador: Prof. Djalma Mosqueira Falcão, Ph.D.

UFRJ / COPPE / PEE

Março de 2014

Temário

- Introdução e Resumo do Problema
- Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- Modelos de Planejamento da Transmissão
- ► Formulações Propostas por Esta Dissertação
- Estudos de Caso
- Conclusões

Introdução

- Há várias razões para que o carregamento do sistema de transmissão seja inferior a 100%:
 - Confiabilidade (Critério N-1)
 - Proteção contra as incertezas associadas aos cenários de oferta e demanda futuros
 - Planos de expansão robustos para diferentes cenários de despacho:
 (i) sistemas hidrotérmicos e (ii) sistemas com forte inserção de fontes renováveis intermitentes (eólicas, fotovoltaicas)
- A conjunção destes fatos leva a: (i) altos investimentos para atender os diferentes cenários de despacho e a (ii) baixo nível de carregamento nos circuitos ao longo do ano

Introdução

Introdução

"If you can't explain it simply, you don't understand it well enough" – Albert Einstein

Resumão de 3 minutos

Longas Distâncias

Bacias Hidrográficas com Diferentes Regimes Hidrológicos

Incertezas Exacerbadas na Geração Hidro e Eólica

Perda da Capacidade de Regularização (Hidros a Fio D'água)

Elétrons Não Respeitam Contrato, só Kirchhoff

Equipamentos FACTS & D-FACTS > Interferem nos Parâmetros

Elétricos das Linhas - Controlabilidade e Flexibilidade Operativa

Investimentos na Transmissão

Temário

- ▶ Introdução e Resumo do Problema
- Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- ▶ Modelos de Planejamento da Transmissão
- ► Formulações Propostas por Esta Dissertação
- ▶ Estudos de Caso
- ▶ Conclusões

Controlabilidade de Fluxo de Potência

FACTS & Distributed-FACTS

- Compensação Shunt não aumenta P_{ij} transferida → Controle de Tensão e Aumento de Estabilidade
- ▶ Defasadores → Controle de defasamento angular entre regiões ou para controlar fluxo de potência, mas não aumenta a P_{ij} transferida
- ► Compensação Série → Melhor opção para aumentar a transferência de potência

Tipo de Controle	Equipmentos FACTS & Distributed-FACTS
Shunt	SVC, STATCOM
Série	SSSC, TSSC, TCSC, Phase Shifter, DSR, DSC
Série & Shunt	UPFC

Distributed-FACTS

- Distributed Series Reactors (DSRs): apresenta a habilidade de AUMENTAR a reatância da linha de transmissão
- Distributed Series Compensators (DSCs): apresenta a habilidade de AUMENTAR e
 DIMINUIR a reatância da linha de transmissão
- Um módulo de 50 μH por milha muda a impedância de um condutor típico de 138 kV cerca de 2% (10 kUS\$ / módulo)

Distributed-FACTS

Vantagens dos **DSRs e DSCs**:

- Instalação rápida e eficiente (em linha viva)
- Vida útil: 20 anos (sem manutenção)
- Sensores: corrente, frequência, AMTs, temperatura, vibração, etc.
- Não degrada mecânica e termicamente o condutor
- Diferenciais Tecnológicos em relação aos FACTS Tradicionais:
 - Modularidade → Ganho de Escala Econômica
 - Baixos Lead Times
 - Maior Confiabilidade
 - Não Apresenta Problemas de Isolamento
 - Não Interferem nos Ajustes de Proteção das Linhas: observa em 5 µs → modo de monitoração

Temário

- ► Introdução e Resumo do Problema
- ➤ Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- Modelos de Planejamento da Transmissão
- ▶ Formulações Propostas por Esta Dissertação
- ▶ Estudos de Caso
- ▶ Conclusões

Planejamento da Transmissão

- Abordagens: estática, dinâmica, pseudo-dinâmicas (forward, backward)
- Modelos de otimização para auxiliar o estabelecimento de um plano de expansão
- Neste trabalho serão utilizados -> Abordagem Estática + FPO DC +
 Cenários de Despacho

Modelo de Transportes

▶ Função Objetivo:

$$Min \sum_{k=1}^{\Omega^1} c_k x_k$$

Sujeito a:

$$\begin{split} \sum_{k \in \Omega_i^0} f_k^0 + \sum_{k \in \Omega_i^1} f_k^1 + g_i &= d_i, \forall i = 1, \dots, I \\ -\overline{f_k^0} &\leq f_k^0 \leq \overline{f_k^0}, \forall k \in \Omega^0 \\ -\overline{f_k^1} x_k &\leq f_k^1 \leq \overline{f_k^1} x_k, \forall k \in \Omega^1 \end{split}$$

- Evita a não-linearidade presente na Segunda Lei de Kirchhoff (SLK) do modelo DC
- É um modelo muito simplificado
- Esforço computacional bastante reduzido
- As soluções obtidas com esse modelo, em geral, não são viáveis para o modelo DC

Modelo Híbrido Linear

Função Objetivo:

$$Min \sum_{k=1}^{\Omega^1} c_k x_k$$

Sujeito a:

$$\begin{split} \sum_{k \in \Omega_i^0} f_k^0 + \sum_{k \in \Omega_i^1} f_k^1 + g_i &= d_i, \forall i = 1, \dots, I \\ f_k^0 &= \gamma_k^0 \Big(\theta(i_k) - \theta(j_k) \Big), \forall k \in \Omega^0 \\ -\overline{f_k^0} &\leq f_k^0 \leq \overline{f_k^0}, \forall k \in \Omega^0 \\ -\overline{f_k^1} x_k &\leq f_k^1 \leq \overline{f_k^1} x_k, \forall k \in \Omega^1 \end{split}$$

- Circuitos existentes na rede devem obedecer o modelo DC (PLK e SLK)
- Circuitos candidatos devem obedecer apenas a PLK
- Modelo mantém a linearidade e melhora a precisão pois os ramos existentes são, em geral, a maioria
- Ainda não representa a SLK para Candidatos

Formulação Disjuntiva

Segunda Lei de Kirchhoff (SLK) para circuitos candidatos:

$$f_k = \gamma_k \, \mathbf{x_k} \big(\mathbf{\theta_i} - \mathbf{\theta_j} \big)$$

- Não linearidade associada ao produto entre a variável binária de decisão de investimento em novos circuitos x_k e o ângulo das tensões θ_{ij}
- Desigualdade linear disjuntiva substitui a igualdade não linear:

$$-M(1-x_k) \le f_k - \gamma_k (\theta_i - \theta_j) \le M(1-x_k)$$
If $x_k = 1$: $0 \le f_k - \gamma_k (\theta_i - \theta_j) \le 0$

$$f_k = \gamma_k (\theta_i - \theta_j)$$

Formulação Disjuntiva

Segunda Lei de Kirchhoff (SLK) para circuitos candidatos:

$$f_k = \gamma_k \, \mathbf{x_k} \big(\mathbf{\theta_i} - \mathbf{\theta_j} \big)$$

- Não linearidade associada ao produto entre a variável binária de decisão de investimento em novos circuitos x_k e o ângulo das tensões θ_{ii}
- Desigualdade linear disjuntiva substitui a igualdade não linear:

$$-M(1-x_k) \le f_k - \gamma_k (\theta_i - \theta_j) \le M(1-x_k)$$

If
$$x_k = 0$$
: $-M \le f_k - \gamma_k (\theta_i - \theta_j) \le M$

Formulação Disjuntiva

Segunda Lei de Kirchhoff (SLK) para circuitos candidatos:

$$f_k = \gamma_k \, \mathbf{x_k} \big(\mathbf{\theta_i} - \mathbf{\theta_j} \big)$$

- Não linearidade associada ao produto entre a variável binária de decisão de investimento em novos circuitos x_k e o ângulo das tensões θ_{ij}
- Desigualdade linear disjuntiva substitui a igualdade não linear:

$$-M(1-x_k) \le f_k - \gamma_k (\theta_i - \theta_j) \le M(1-x_k)$$

Limite de Fluxo (só imposto se candidato for construído):

$$-\mathbf{x}_{k} \, \overline{f}_{k} \leq f_{k} \leq \overline{f}_{k} \, \mathbf{x}_{k}$$

Resumo dos Modelos

- Modelo de Transportes muito simplificado (só modela PLK) tanto para existentes como para candidatos
- Modelo Híbrido Linear representa PLK e SLK para existentes, porém somente PLK para candidatos
- Modelo Disjuntivo representa PLK e SLK tanto para circuitos existentes como candidatos, porém insere as constantes disjuntivas "Big M" no problema
- Pergunta: qual é o impacto de se ter múltiplos cenários de despacho?

Múltiplos Cenários de Despacho

$$Min \sum_{k=1}^{K} c_k x_k$$

Sujeito a:

$$S f^n = d^n - g^n$$

$$f_{k0}^{n} = \gamma_{k0}(\theta^{n}(i_{k}) - \theta^{n}(j_{k}))$$

$$-\overline{f_{k}^{0}} \leq f_{k0}^{n} \leq \overline{f_{k}^{0}}$$

$$-\overline{f_{k}^{1}}x_{k} \leq f_{k1}^{n} \leq \overline{f_{k}^{1}}x_{k}$$

Variáveis Binárias x_k acoplam as equações do FPO para todos os cenários de despacho

Temário

- ► Introdução e Resumo do Problema
- Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- ▶ Modelos de Planejamento da Transmissão
- ► Formulações Propostas por Esta Dissertação
 - Modelo Híbrido Alternativo: Proposta da Dissertação
- ▶ Estudos de Caso
- ▶ Conclusões

Modelo Híbrido: Proposta da Dissertação

- Circuitos existentes na rede obedecem o modelo DC (PLK e SLK)
- Circuitos candidatos obedecem PLK e agora devem representar a SLK:

$$f_k^1 - \gamma_k^1 x_k \Delta \theta_{ij} = 0 \ \forall \ k \in \Omega^1$$

Objetivo: evitar a não-linearidade presente na 2ª Lei de Kirchhoff para linhas candidatas acrescentando ao mesmo tempo controlabilidade de fluxo ao sistema. Para tal, devemos contemplar a seguinte restrição:

$$0 \le \gamma_k^1 \le \overline{\gamma_k^1}$$

Multiplicando os termos por $|\Delta \theta_{ij}|$:

$$\left|f_k^1\right| \leq \overline{\gamma_k^1} \left|\Delta \theta_{ij}\right|$$

F(x) Absoluto é não linear

$$f_{k1}^n = f_{k1}^{n+} - f_{k1}^{n-}$$

$$f_{k1}^{n+} \le \overline{\gamma_k^1} \Delta \theta_k^{n+} \qquad f_{k1}^{n-} \le \gamma_k^1 \Delta \theta_k^{n-}$$

$$\Delta \theta_k^n = \Delta \theta_k^{n+} - \Delta \theta_k^{n-} = \Delta \theta_{ij}^n$$

Garantia de Fluxo em Única Direção

- Com a inserção destas equações no modelo, ainda não há garantia de que a SLK para circuitos candidatos será respeitada
- Isto ocorre porque não há restrições que garantem que somente $\Delta \theta_k^{n+}$ ou $\Delta \theta_k^{n-}$ é não nulo na solução ótima do problema
- Explicação Completa Apêndice C da Dissertação
- Partindo deste princípio, um primeiro conjunto de equações é proposto para resolver este problema:

$$\Delta \theta_k^{n+} \le K \times z_k^n$$

$$\Delta \theta_k^{n-} \le K \times (1 - z_k^n)$$

$$z_k^n \in \{0,1\}$$

Garantia de Fluxo em Única Direção

- A decisão do modelo de usar $\Delta \theta_k^{n+}$ ou $\Delta \theta_k^{n-}$ depende intrinsicamente da direção do fluxo, i.e., se o fluxo for de i para j, $\Delta \theta_k^{n+}$ é não nulo e $\Delta \theta_k^{n-}$ é zero se o fluxo for de j to i, $\Delta \theta_k^{n-}$ é não nulo e $\Delta \theta_k^{n+}$ é zero
- Assim, é proposta uma formulação mais apertada para acelerar o modelo de Fluxo de Potência Ótimo (FPO):

Temário

- ► Introdução e Resumo do Problema
- Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- ▶ Modelos de Planejamento da Transmissão
- ► Formulações Propostas por Esta Dissertação
 - Incorporação de Compensação Série: Proposta da Dissertação
- ▶ Estudos de Caso
- ▶ Conclusões

Incorporação de CS: Proposta da Dissertação

- Como visto anteriormente, a primeira formulação proposta modela um circuito com susceptância variando entre $0 \le \gamma_k^1 \le \overline{\gamma_k^1}$.
- Pergunta: e se $\overline{\gamma_k^1}$ fosse ajustado de tal forma que ele representasse uma Compensação Série (CS) em uma linha de transmissão?
- Essa é a idéia da Segunda Formulação Proposta por esta Dissertação.
- Como há equipamentos capazes de (i) aumentar, (ii) diminuir e (iii) aumentar e diminuir a susceptância da linha alvo, este trabalho propõe as seguintes convenções:
 - Compensação Positiva: CS com o intuito de aumentar a susceptância e por consequência o fluxo na linha alvo.
 - Compensação Negativa: CS com o intuito de diminuir a susceptância e por consequência o fluxo na linha alvo.
 - Compensação Dupla: CS com o intuito de aumentar e diminuir a susceptância e por consequência o fluxo na linha alvo.

Compensação Positiva – Linha Existente

Os Candidate Series Compensation Devices (CSCDs), podem compensar positivamente uma LT em $\alpha\%$ representado por γ_{max}^{CS} .

$$\overline{\gamma}_{k1} = \gamma_{max}^{CS}$$
 $0 \le \gamma_{k1} \le \gamma_{max}^{CS}$

- Então o modelo é escrito da seguinte forma:

ightharpoonup PLK: $f_{ROW}^n = f_{k0}^n + \delta_{k1}^n$

- ▶ Decomposição: $\delta_{k_1}^n = \delta_{k_1}^{n+} \delta_{k_1}^{n-}$
- \blacktriangleright SLK: $\delta_{k1}^{n+} \leq \overline{\gamma}_{k1} \Delta \theta_k^{n+}$
- \blacktriangleright SLK: $\delta_{k1}^{n-} \leq \overline{\gamma}_{k1} \Delta \theta_k^{n-}$

Compensação Positiva – Linha Existente

- Fluxo no CSCD só existe se for construído: $\delta_{k1}^{n+} \leq \overline{f_{k0}} v_k$
- Fluxo no CSCD só existe se for construído: $\delta_{k1}^{n-} \leq \overline{f_{k0}} v_k$
- ▶ Limite de Fluxo no conjunto (LT + CSCD): $-\overline{f_{k0}} \le f_{k0}^n + \delta_{k1}^n \le \overline{f_{k0}}$
- Garantia de Fluxo em Única Direção:

 $z_k^{n+}, z_k^{n-} \in \{0,1\}$

Compensação Negativa – Linha Existente

Os Candidate Series Compensation Devices (CSCDs), podem **compensar negativamente** uma LT em α % representado por γ_{min}^{CS} .

$$\overline{\gamma}_{k2} = -\gamma_{min}^{CS}$$
 $0 \le \gamma_{k2} \le -\gamma_{min}^{CS}$

- Então o modelo é escrito da seguinte forma:

Função Objetivo: $Min(\sum_{k=1}^{\Omega^1} c_k x_k) + (\sum_{k=1}^{\eta^1} c_k v_k)$

- ightharpoonup PLK: $f_{ROW}^n = f_{k0}^n \delta_{k2}^n$
- ▶ Decomposição: $\delta_{k2}^n = \delta_{k2}^{n+} \delta_{k2}^{n-}$
- \blacktriangleright SLK: $\delta_{k2}^{n+} \leq \overline{\gamma}_{k2} \Delta \theta_k^{n+}$
- \blacktriangleright SLK: $\frac{\delta_{k2}^{n-}}{\sqrt{2}} \leq \overline{\gamma}_{k2} \Delta \theta_k^{n-1}$

Compensação Negativa – Linha Existente

- Fluxo no CSCD só existe se for construído: $\delta_{k2}^{n+} \leq \overline{f_{k0}} v_k$
- Fluxo no CSCD só existe se for construído: $\delta_{k2}^{n-} \leq \overline{f_{k0}} v_k$
- ▶ Limite de Fluxo no conjunto (LT + CSCD): $-\overline{f_{k0}} \le f_{k0}^n \delta_{k2}^n \le \overline{f_{k0}}$
- Garantia de Fluxo em Única Direção:

$$\triangleright z_k^{n-} \geq \delta_{k2}^{n-}/\overline{f_{k0}}$$

$$\blacktriangleright \Delta \theta_k^{n+} \leq K(1-z_k^{n-})$$

$$\blacktriangleright \Delta \theta_k^{n-} \le K(1-z_k^{n+})$$

$$z_k^{n+}, z_k^{n-} \in \{0,1\}$$

Compensação Negativa – Linha Existente

- Fluxo no CSCD só existe se for construído: $\delta_{k2}^{n+} \leq \overline{f_{k0}} v_k$
- Fluxo no CSCD só existe se for construído: $\delta_{k2}^{n-} \leq \overline{f_{k0}} v_k$
- ▶ Limite de Fluxo no conjunto (LT + CSCD): $-\overline{f_{k0}} \le f_{k0}^n \delta_{k2}^n \le \overline{f_{k0}}$
- Garantia de Fluxo em Única Direção:

- $z_k^{n+}, z_k^{n-} \in \{0,1\}$

Compensação Dupla nada mais é do que a combinação da Compensação Positiva com a Negativa!

Compensação Dupla – Linha Existente

- ▶ Limite de Fluxo no conjunto (LT + CSCD): $-\overline{f_{k0}} \le f_{k0}^n + \delta_{k1}^n \delta_{k2}^n \le \overline{f_{k0}}$
- Fluxo no CSCD (Comp. Positiva): $\delta_{k1}^{n+} \leq \overline{f_{k0}} v_k \in \delta_{k1}^{n-} \leq \overline{f_{k0}} v_k$
- ▶ Fluxo no CSCD (Comp. Negativa): $\delta_{k2}^{n+} \leq \overline{f_{k0}} v_k$ e $\delta_{k2}^{n-} \leq \overline{f_{k0}} v_k$
- ► SLK (Comp. Positiva): $\delta_{k1}^{n+} \leq \overline{\gamma}_{k1} \Delta \theta_k^{n+} e \delta_{k1}^{n-} \leq \overline{\gamma}_{k1} \Delta \theta_k^{n-}$
- ► SLK (Comp. Negativa): $\delta_{k2}^{n+} \leq \overline{\gamma}_{k2} \Delta \theta_k^{n+} e \delta_{k2}^{n-} \leq \overline{\gamma}_{k2} \Delta \theta_k^{n-}$
- ► Garantia de Fluxo em Única Direção:
- $ightharpoonup z_k^{n+} \geq \frac{\delta_{k1}^{n+}}{f_{k0}} \operatorname{e} z_k^{n-} \geq \frac{\delta_{k1}^{n-}}{f_{k0}}$
- $> z_k^{n+} \ge \frac{\delta_{k2}^{n+}}{f_{k0}} e z_k^{n-} \ge \frac{\delta_{k2}^{n-}}{f_{k0}}$

$$\Delta \theta_k^{n+} \le K(1 - z_k^{n-})$$

$$\Delta \theta_k^{n-} \le K(1 - z_k^{n+})$$

$$z_k^{n+} + z_k^{n-} \le v_k$$

$$z_k^{n+}, z_k^{n-} \in \{0,1\}$$

CSCD em Linha Candidata

- Restrição de Precedência (só posso construir CSCD se Linha for construída): $v_k \le x_k$
- ▶ Limite de Fluxo no conjunto (LT + CSCD): $-\overline{f_{k1}}x_k \le f_{k1}^n + \delta_{k1}^n \delta_{k2}^n \le \overline{f_{k1}}x_k$
- ▶ Onde f_{k1}^n também é decomposto: $f_{k1}^n = f_{k1}^{n+} + f_{k1}^{n-}$ Gap de Integralidade
- Garantia de Fluxo em Única Direção:

$$ightharpoonup z_k^{n-} \ge f_{k1}^{n-} / \overline{f_{k1}}$$

$$z_k^{n+}, z_k^{n-} \in \{0,1\}$$

$$z_k^{n+} \ge f_{k1}^{n+}/2\overline{f_{k1}}$$

$$z_k^{n-} \ge f_{k1}^{n-}/2\overline{f_{k1}}$$

Compensação
$$> z_k^{n+} + z_k^{n-} \le x_k$$

$$z_k^{n+}, z_k^{n-} \in \{0,1\}$$

Compensação

Negativa

Temário

- ► Introdução e Resumo do Problema
- ➤ Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- ▶ Modelos de Planejamento da Transmissão
- ► Formulações Propostas por Esta Dissertação
- Estudos de Caso
- ▶ Conclusões

EC1 – 3 Barras – Exemplo Didático

Candidato Híbrido (2,3):

► Formulação do Candidato Híbrido funcionou com êxito e o passou o máximo possível de fluxo na linha (2,3), respeitando os limites de fluxo

EC1 – 3 Barras – Exemplo Didático

Candidato (2,3) Modelado através da Formulação Disjuntiva:

► FPO DC executado após modelo de expansão mostra que a adição do candidato (2,3) não é suficiente para eliminar a sobrecarga na rede

EC1 – 3 Barras – Exemplo Didático

► CSCD (1,2) com Compensação Positiva (50%):

 CSCD (1,2) compensa a linha alvo em 50% e elimina a ocorrência de corte de carga na expansão e por consequência a sobrecarga no FPO DC

EC1 – 3 Barras – Exemplo Didático

► CSCD (1,2) com Compensação Positiva (50%):

 CSCD (1,2) compensa a linha alvo em 50% e elimina a ocorrência de corte de carga na expansão e por consequência a sobrecarga no FPO DC

EC1 – 3 Barras – Exemplo Didático

CSCD (1,3) com Compensação Negativa (50%):

 CSCD (1,3) compensa a linha alvo em 50% e elimina a ocorrência de corte de carga na expansão e por consequência a sobrecarga no FPO DC

EC2 – IEEE24-Bus – Benchmark Case

- O sistema sob análise apresenta 30 circuitos existentes e 84 candidatos: 56 duplicações; 28 em 14 novos corredores
- 4 cenários de despacho: G1 a G4

Estudo de Caso 2 – Benchmark Case

- ► Sistema: IEEE-24Bus
- Benchmarking para valoração dos benefícios técnicos trazidos pelos CSCDs e pela metodologia proposta
- ▶ Planos de Expansão Analisados:
 - BAU → Único Cenário de Despacho
 - BAU → Todos Cenários de Despacho
 - BAU + CSCDs → Único Cenário de Despacho
 - BAU + CSCDs → Todos Cenários de Despacho
- ▶ 101 CSCDs (em todas LTs existentes e candidatas) → compensação dupla (50%) e baixo custo

Planos de Exp.: BAU & Único Cenário

Cenário de Despacho: G1

Cenário de Despacho: G2

Planos de Exp.: BAU & Único Cenário

Cenário de Despacho: G3

Cenário de Despacho: G4

Planos de Exp.: BAU & Único Cenário

Cenário de Despacho	G1	G2	G3	G4
# Circuitos Adicionados	19	16	15	15
Custo Plano de Expansão [M\$]	860	864	814	736
Custo Plano de Expansão [%]	117%	117%	111%	100%
Tempo CPU [Segundos]	5	4	8	4

- ▶ Plano de Expansão mais econômico → G4
- ► G1 é 17% mais oneroso que G4
- ▶ G2 é 17% mais oneroso que G4
- ▶ G3 é 11% mais oneroso que G4

Planos de Exp.: BAU & Todos Cenários

- ▶ 51% mais oneroso que G4
- Nível de carregamento médio sistêmico: 65.3% (9% de redução)

Cenário de Despacho	Todos Cenários
# Circuitos Adicionados	21
Custo Plano de Expansão [M\$]	1113
Custo Plano de Expansão [%]	151%
Tempo CPU [Segundos]	520

Cenário de Despacho	G1	G2	G3	G4	Média
Carregamento - BAU & Único Cenário [%]	69.5%	72.8%	70.0%	74.9%	71.8%
Carregamento - BAU & Todos Cenários [%]	69.8%	67.2%	62.2%	62.2%	65.3%

Planos de Exp.: BAU & Todos Cenários

- ▶ 51% mais oneroso que G4
- Nível de carregamento médio sistêmico: 65.3% (9% de redução)

Cenário de Despacho	Todos Cenários
# Circuitos Adicionados	21
Custo Plano de Expansão [M\$]	1113
Custo Plano de Expansão [%]	151%
Tempo CPU [Segundos]	5 20

Altos Investimentos e Baixos Carregamentos!

Carregan

Carregamento - BAU

aus Cena

69.07

2%

62.2%

62.**2**%

65.3%

Midia

718%

Cenário de Despacho	G1	G2	G3	G4	Todos
# Circuitos Adicionados	16	15	14	14	21
# CSCDs Adicionados	8	8	12	4	15
Custo Plano de Expansão [M\$]	790	796	720	728	972
Custo Plano de Expansão [%]	92%	92%	88%	99%	87%
Tempo CPU [Segundos]	305	33	179	10	5266

- ▶ Redução de Investimentos em TODOS os casos
- Maior número de CSCDs adicionados quando todos cenários de despacho são considerados
- Maior economia quando todos cenários de despacho são considerados

Cenário de Despacho	G1	G2	G3	G4	Todos
# Circuitos Adicionados	16	15	14	14	21
# CSCDs Adicionados	8	8	12	4	15
Custo Plano de Expansão [M\$]	790	796	720	728	972
Custo Plano de Expansão [%]	92%	92%	88%	99%	87%
Tempo CPU [Segundos]	305	33	179	10	5266

- Redução de Investimentos em TODOS os casos
- Maior número de CCDs adi pados quendo todos cenários
 - de de Maior Nº Cenários → Maior a Demanda por Flexibilidade Operativa!
- ► Maior ecama

considerados

Cenário de Despacho	G1	G2	G3	G4	Todos
# Circuitos Adicionados	16	15	14	14	21
# CSCDs Adicionados	8	8	12	4	15
Custo Plano de Expansão [M\$]	790	796	720	728	972
Custo Plano de Expansão [%]	92%	92%	88%	99%	87%
Tempo CPU [Segundos]	305	33	179	10	5266

- Redução de Investimentos em TODOS os casos
- Maior número de CCDs adi pados quendo todos cenários
 - de de Maior Nº Cenários → Maiores são os efeitos técnicos e econômicos!
- ▶ Maior ecama

considerados

Realce da Controlabilidade e Flexibilidade de Fluxo de Potência promovida pela formulação proposta:

CSCD #ID	G1	G2	G3	G4
1	-7%	+50%	+50%	
2		-50%		
3	-11%	+50%		
4		-50%	-50%	-50%
5		+49%		
6		+50%	+50%	
7		-50%	+50%	
8		+50%		
9		+45%	-46%	
10		+50%	+50%	
11	+40%	+50%	+50%	+46%
12		+50%		
13		-50%		
14	-27%	-25%		-25%
15		+50%	+50%	

Realce da Controlabilidade e Flexibilidade de Fluxo de Potência promovida pela formulação proposta:

CSCD #ID	G1	G2	G3	G4
1	-7%	+50%	+50%	
2		-50%		
3	-11%	+50%		
4		-50%	-50%	-50%
5		-49%		

Um setpoint de operação específico para cada cenário de despacho!

11	+40%	+50%	+50%	+46%
12		+50%		
13		-50%		
14	-27%	-25%		-25%
15		+50%	+50%	

Carregamento da Rede – Comparação

- Comparação do nível de carregamento da rede entre os casos:
 BAU & BAU + CSCDs
- Quando apenas um único cenário de despacho é considerado:

Único Cenário de Despacho	Média
Carregamento da Rede - BAU [%]	71.8%
Carregamento da Rede - BAU + CSCDs [%]	73.1%

Quando todos cenários de despacho são considerados:

Todos Cenários de Despacho	Média
Carregamento da Rede - BAU [%]	65.3%
Carregamento da Rede - BAU + CSCDs [%]	67.5%

► Aumento do nível de carregamento médio dos circuitos → Maior utilização dos recursos já construídos

Configuração de Dezembro 2016 → 5822 barras e 8432 circuitos

- Simulação da operação eletro-energética do SIN através do Modelo SDDP para obtenção dos Cenários de Despacho
- Com o intuito de se capturar a variabilidade dos despachos, foram selecionados os percentis P1, P25, P50, P75 e P100 do total de geração do NE → Além da variabilidade, captura a autossuficiência do NE (máxima importação e máxima exportação)
- ► Foi feito um equivalente da Região Nordeste para diminuir o esforço computacional → 1220 barras e 1785 circuitos (187 linhas da Rede Básica sendo monitoradas)
- As linhas pertencentes ao plano de expansão 2013–2016 foram consideradas candidatas (88 linhas de transmissão)

- Planos de Expansão Analisados:
 - BAU → Único Cenário de Despacho
 - CS1 → BAU & Todos Cenários de Despacho
 - CS2 → BAU + DSRs em LT existentes & Todos Cenário de Despacho
 - CS3 → BAU + DSRs em LT existentes + TCSCs em LTs candidatas & Todos Cenários de Despacho
- Custos de linhas calculados Banco de Preços da ANEEL
- ► Custos dos TCSCs → função quadrática de MVAr
- DSRs → reatância de compensação (reatância da linha, ampacidade e número de condutores por fase) → número de DSRs necessários → Custo Total
- Nível máximo de compensação de 30% para todos CSCDs

► BAU para Único & Todos Cenários de Despacho:

Cenário de Despacho	P1	P25	P50	P75	P100	Todos
# Linhas Adicionadas	19	19	16	18	26	25
# Linhas no Plano Robusto	11	15	12	18	18	All
Custo Plano de Expansão [M\$]	649	529	330	347	727	745
Custo Plano de Expansão [%]	197%	161%	100%	105%	221%	226%
Tempo CPU [Segundos]	35	3	2	2	78	283

► BAU + CSCDs para **Todos** Cenários de Despacho:

Case Study	# Linhas Adicionadas	# Linhas no Plano CS1	# CSCDs Adicionados	em Linhas	Investmentos em CSCDs [M\$]	Custo Plano Expansão [M\$]	Economia [M\$]	CPU Time [Minutos]
CS1	25	All	-	745	-	745	-	5
CS2	24	21	4	695	24	719	26	26
CS3	23	22	4	694	21	715	30	43

Temário

- ► Introdução e Resumo do Problema
- ➤ Controlabilidade de Fluxo de Potência & Equipamentos FACTS / Distributed-FACTS
- ▶ Modelos de Planejamento da Transmissão
- ▶ Formulações Propostas por Esta Dissertação
- ▶ Estudos de Caso
- Conclusões

Conclusões

- A formulação MILP para Candidatos Híbridos alcançou os objetivos propostos:
 - Evita não-linearidade presente na Segunda Lei de Kirchhoff (SLK) para circuitos candidatos
 - Alcança resultados mais próximos do modelo DC sem a inserção das constantes disjuntivas "Big M"
 - Adiciona flexibilidade de fluxo de potência para o circuito candidato
 - Porém, insere variáveis inteiras no problema associadas à direção do fluxo → esforço computacional

Conclusões

- A formulação MILP de Compensação Série alcançou os objetivos propostos:
 - CSCD pode ser conectado à linha existente ou candidata
 - Nível de compensação máximo do equipamento definido pelo usuário
 - Além do nível, é possível definir o TIPO de Compensação: Positiva,
 Negativa ou Dupla
 - Formulação proposta apresenta um setpoint de operação específico para cada cenário de despacho → controlabilidade e flexibilidade operativa almejada
- Possibilidade de utilização de solvers comerciais para MILPs

Trabalhos Futuros

- Na formulação proposta, o nível máximo de compensação é definido pelo usuário:
 - Investigar a relação entre nível de compensação e custo (curva linear, côncava ou convexa?) → esforços direcionados para formulação na qual o próprio modelo decidirá o trade-off ótimo entre nível de compensação e custo
- Mais Pesquisas em controlabilidade e flexibilidade de FPO:
 - Esforços para determinação da Real-time Dynamic Thermal Rating
 (RDTR) → aplicações diretas na operação → limites térmicos mais
 realistas de linhas poderão também apresentar aplicações no
 planejamento da transmissão

Trabalhos Futuros

- Mais Pesquisas em controlabilidade e flexibilidade de FPO:
 - Análise do efeito conjunto → Defasadores + CSCDs
 - Intensa pesquisa industrial no momento: DC Breakers → Modelagem de Links DC Multi-terminais e de Redes DC (PLK e SLK) no FPO DC
 - Possibilidade de modelar variáveis binárias na MILP associadas ao chaveamento e alteração da configuração da Rede DC de acordo cenários de despacho e condições operativas

A ciência avança!

Obrigado!

Ricardo Perez

