BEE core - Order Representation	
Declaring Variables	(Booleans and Integers)
(1) new_bool(X)	declare Boolean X
$(2) \; \mathtt{new_int}(\mathtt{I}, \mathtt{c_1}, \mathtt{c_2})$	$\mathrm{declare}\ (\mathrm{order})\ \mathtt{I},\ \mathtt{c}_1 \leq \mathtt{I} \leq \mathtt{c}_2$
$(2b) \ \mathtt{new_int}(\mathtt{I},\mathtt{D})$	declare (order) I, member(I, D)
$(2c) \; \texttt{new_int_plusK}(\mathtt{I},\mathtt{I_1},\mathtt{c})$	$\mathrm{declare}\;(\mathrm{order})\;\mathtt{I},\;\mathtt{I_1}+\mathtt{c}=\mathtt{I}$
$(2d) \; \texttt{new_int_mulK}(\mathtt{I},\mathtt{I_1},\mathtt{c})$	$\operatorname{declare} \; (\operatorname{order}) \; \mathtt{I}, \; \mathtt{I_1} * \mathtt{c} = \mathtt{I}$
$(2\mathrm{e})\;\mathtt{new_int_divK}(\mathtt{I},\mathtt{I_1},\mathtt{c})$	declare (order) I, $I_1 / c = I$
(3) bool2int(X,I)	$(\mathtt{X} \Leftrightarrow \mathtt{I} = \mathtt{1}) \wedge (\neg \mathtt{X} \Leftrightarrow \mathtt{I} = \mathtt{0})$
$(3b) \; \mathtt{int_order2bool_array}(\mathtt{I}, \mathtt{Xs}, \mathtt{c_{min}})$	$\textstyle \bigwedge_{0 \leq \mathtt{i} < \mathtt{X}\mathtt{s} } \mathtt{X}\mathtt{s}[\mathtt{i}] \Leftrightarrow (\mathtt{I} \geq \mathtt{i} + \mathtt{C}_{\mathtt{min}})$
Boolean (reified) statements	$\mathtt{op} \in \{\mathtt{or}, \mathtt{and}, \mathtt{xor}, \mathtt{iff}\}$
$ (4) bool_eq(X_1, X_2) or bool_eq(X_1, -X_2) $	$X_1 = X_2$ or $X_1 = -X_2$
$(5) \; \mathtt{bool_array_eq_reif}([\mathtt{X}_1,\ldots,\mathtt{X}_n], \; \mathtt{X})$	$(\bigwedge_{\mathtt{i}<\mathtt{j}}\mathtt{X}_{\mathtt{i}}=\mathtt{X}_{\mathtt{j}})\Leftrightarrow\mathtt{X}$
$(6) \; \mathtt{bool_array_op}([\mathtt{X}_1, \ldots, \mathtt{X}_n])$	$X_1 \text{ op } X_2 \cdots \text{ op } X_n$
$(7) \; \mathtt{bool_array_op_reif}([\mathtt{X}_1, \ldots, \mathtt{X}_n], \; \mathtt{X})$	$\mathtt{X}_1 \text{ op } \mathtt{X}_2 \cdots \text{op } \mathtt{X}_n \Leftrightarrow \mathtt{X}$
$(8) \; {\tt bool_op_reif}({\tt X}_1, {\tt X}_2, \; {\tt X})$	\mathtt{X}_1 op $\mathtt{X}_2 \Leftrightarrow \mathtt{X}$
$(9) \; \mathtt{bool_ite}(\mathtt{X}_1, \mathtt{X}_2, \mathtt{X}_3)$	$X_1 ? X_2 : X_3$
$(10) \; {\tt bool_ite_reif}({\tt X_1, X_2, X_3, \ \tt X})$	$(X_1 ? X_2 : X_3) \Leftrightarrow X$
Integer relations (reified)	$\mathtt{rel} \in \{\mathtt{leq}, \mathtt{geq}, \mathtt{eq}, \mathtt{lt}, \mathtt{gt}, \mathtt{neq}\}$
$\textbf{and arithmetic} \qquad \qquad \texttt{op} \in \{\texttt{plus}, \texttt{times}, \texttt{div}, \texttt{mod}, \texttt{max}, \texttt{min}\}, \ \texttt{op}' \in \{\texttt{plus}, \texttt{times}, \texttt{max}, \texttt{min}\}$	
$(11) \; \mathtt{int_rel}(\mathtt{I_1},\mathtt{I_2})$	${ t I}_1$ rel ${ t I}_2$
$(12) \; \mathtt{int_rel_reif}(\mathtt{I_1},\mathtt{I_2},\;\mathtt{X})$	$\mathtt{I}_\mathtt{1} \ \mathtt{rel} \ \mathtt{I}_\mathtt{2} \Leftrightarrow \mathtt{X}$
$(13) \; \mathtt{int_array_allDiff}([\mathtt{I_1}, \ldots, \mathtt{I_n}])$	$igwedge_{ ext{i}< ext{j}} \mathtt{I}_{ ext{i}} eq \mathtt{I}_{ ext{j}}$
$(14) \; \texttt{int_array_allDiff_reif}([\mathtt{I_1}, \ldots, \mathtt{I_n}], \; \mathtt{X})$	$(\bigwedge_{\mathtt{i}<\mathtt{j}}\mathtt{I}_\mathtt{i}\neq\mathtt{I}_\mathtt{j})\Leftrightarrow\mathtt{X}$
$(15) \; \mathtt{int_array_allDiffCond}([\mathtt{I_1}, \ldots, \mathtt{I_n}], [\mathtt{X_1}, \ldots, \mathtt{X_n}])$	$\bigwedge_{\mathtt{i}<\mathtt{j}}(\mathtt{X}_\mathtt{i}\wedge\mathtt{X}_\mathtt{j}\Rightarrow\mathtt{I}_\mathtt{i}\neq\mathtt{I}_\mathtt{j})$
$(16) \; \mathtt{int_abs}(\mathtt{I_1}, \; \mathtt{I})$	$ \mathtt{I_1} =\mathtt{I}$
$(17) \; \mathtt{int_op}(\mathtt{I_1},\mathtt{I_2},\;\mathtt{I})$	${ t I_1} { t op } { t I_2} = { t I}$
$(18) \; \texttt{int_array_op'}([\mathtt{I_1}, \ldots, \mathtt{I_n}], \; \mathtt{I})$	$\mathtt{I_1}\ \mathtt{op'}\cdots\mathtt{op'}\ \mathtt{I_n}=\mathtt{I}$
Cardinality	$\mathtt{rel} {\in} \{\mathtt{leq}, \mathtt{geq}, \mathtt{eq}, \mathtt{lt}, \mathtt{gt}\}$
$(19) \; \texttt{bool_array_sum_rel}([\texttt{X}_1, \dots, \texttt{X}_n], \; \texttt{I})$	$(\Sigma \; X_{\mathtt{i}}) \; \mathtt{rel} \; \mathtt{I}$
$(20) \; \mathtt{bool_array_pb_rel}([\mathtt{c_1}, \ldots, \mathtt{c_n}], [\mathtt{X_1}, \ldots, \mathtt{X_n}], \; \mathtt{I})$	$(\Sigma c_i * X_i)$ rel I
$(21) \; \texttt{int_array_sum_rel}([\mathtt{I_1}, \ldots, \mathtt{I_n}], \; \mathtt{I})$	$(\Sigma \; extsf{I}_{ extsf{i}}) \; extsf{rel} \; extsf{I}$
$(22) \; \texttt{int_array_lin_rel}([\texttt{c}_1, \ldots, \texttt{c}_n], [\texttt{I}_1, \ldots, \texttt{I}_n], \; \texttt{I})$	$(\Sigma c_i * I_i)$ rel I
$(23) \; \texttt{int_array_sumCond_rel}([\texttt{X}_1, \dots, \texttt{X}_n], [\texttt{I}_1, \dots, \texttt{I}_n], \; \texttt{I})$	$(\Sigma \ \mathtt{X_i} * \mathtt{I_i}) \ \mathtt{rel} \ \mathtt{I}$

Cardinality Module K only support non-negative integers $(24) bool_array_sum_modK([X_1, ..., X_n], c, I)$ $((\Sigma X_i) \mod c) = I$ (25) bool_array_sum_divK($[X_1, \ldots, X_n], c, I$) $((\Sigma X_i) / c) = I$ (26) bool_array_sum_divModK($[X_1, \ldots, X_n], c, I_d, I_m$) $((\Sigma X_i) \mod c) = I_d$ $((\Sigma X_i) / c) = I_m$ (27) $int_array_sum_modK([I_1,...,I_n],c, I)$ $((\Sigma I_i) \mod c) = I$ (28) $int_array_sum_divK([I_1,...,I_n],c, I)$ $((\Sigma I_{i}) / c) = I$ (29) int_array_sum_divModK($[I_1, \ldots, I_n], c, I_d, I_m$) $((\Sigma I_i) / c) = I_d$ $((\Sigma I_i) \mod c) = I_m$ Boolean arrays relations (reified) $\mathtt{rel} \in \{\mathtt{eq},\mathtt{neq}\}$ if the arrays are of different length then pad shorter with zeros Xs_1 rel Xs_2 (30) bool_arrays_rel(Xs_1, Xs_2) (31) bool_arrays_rel_reif(Xs₁, Xs₂, X) $\mathtt{Xs_1}\ \mathtt{rel}\ \mathtt{Xs_2} \Leftrightarrow \mathtt{X}$ (32) bool_arrays_lex(Xs_1, Xs_2) $\mathtt{Xs_1} \preceq \mathtt{Xs_2}$ (33) bool_arrays_lexLt(Xs₁, Xs₂) $Xs_1 \prec Xs_2$ (34) bool_arrays_lex_reif(Xs_1, Xs_2, X) $\mathtt{Xs}_1 \preceq \mathtt{Xs}_2 \Leftrightarrow \mathtt{X}$ $\mathtt{Xs_1} \prec \mathtt{Xs_2} \Leftrightarrow \mathtt{X}$ (35) bool_arrays_lexLt_reif(Xs₁, Xs₂, X) Integer arrays relations (reified) $\mathtt{rel} \in \{\mathtt{eq}, \mathtt{neq}\}$ (36) int_arrays_rel(Is₁, Is₂) $Is_1 rel Is_2$ (37) int_arrays_rel_reif(Is₁, Is₂, X) $\mathtt{Is_1}\ \mathtt{rel}\ \mathtt{Is_2} \Leftrightarrow \mathtt{X}$ (38) int_arrays_lex(Is₁, Is₂) $\text{Is}_1 \preceq \text{Is}_2$ (39) int_arrays_lexLt(Is₁, Is₂) $\text{Is}_1 \prec \text{Is}_2$ (40) int_arrays_lex_implied(Is₁, Is₂, X) $\mathtt{X}\Rightarrow\mathtt{Is}_1 \preceq \mathtt{Is}_2$ (41) int_arrays_lexLt_implied(Is₁, Is₂, X) $\mathtt{X}\Rightarrow\mathtt{Is}_1\prec\mathtt{Is}_2$ (42) int_arrays_lex_reif(Is₁, Is₂, X) $\operatorname{Is}_1 \preceq \operatorname{Is}_2 \Leftrightarrow X$ $(43) \; \texttt{int_arrays_lexLt_reif}(\texttt{Is}_1, \texttt{Is}_2, \texttt{X})$ $\text{Is}_1 \prec \text{Is}_2 \Leftrightarrow X$

Table 1: Syntax of BEE Constraints.

BEE core - Direct Representation	
Declaring Variables	
$(1) \ \texttt{new_int_direct}(\texttt{I}, \texttt{c}_1, \texttt{c}_2)$	declare (direct) $I, c_1 \le I \le c_2$
$(1b) \; {\tt new_int_direct}({\tt I}, {\tt D})$	$\operatorname{declare} \left(\operatorname{direct}\right) \mathtt{I}, \mathtt{member}(\mathtt{I}, \mathtt{D})$
$(1c) \; {\tt new_int_direct_plusK}({\tt I}, {\tt I_1}, {\tt c})$	$\mathrm{declare}\ (\mathrm{direct})\ \mathtt{I},\ \mathtt{I_1}+\mathtt{c}=\mathtt{I}$
	$igwedge_{0 \leq \mathtt{i} < \mathtt{Xs} } \mathtt{Xs}[\mathtt{i}] \Leftrightarrow (\mathtt{I} = \mathtt{i} + \mathtt{C}_{\mathtt{min}})$
Integer relations (reified)	$\mathtt{rel} \in \{\mathtt{leq}, \mathtt{geq}, \mathtt{eq}, \mathtt{lt}, \mathtt{gt}, \mathtt{neq}\}$
$(3) $ direct_rel (I_1, I_2)	I ₁ rel I ₂
$(4) \; \mathtt{direct_array_allDiff}([\mathtt{I_1}, \ldots, \mathtt{I_n}])$	$\bigwedge_{i < j} I_i \neq I_j$

Table 2: Syntax of Direct BEE Constraints.

BEE core - Mix Representation

BEE integers can have multi bit-level representations, and can be defined using one of the following: new_int (order), new_direct (direct), new_int_dual (order & direct).

While most BEE constraints are applied only on the Order encoding of the integer (Table 1), few applied only on the Direct encoding (Table 2), and other few applied on both (e.g. int_array_allDiff).

When a constraint is applied on an integer and the integer doesn't have (all) the requested representation(s) BEE will add the required representation to the integer and add a channeling constraint automatically.

Declaring Mix Variables	
$(1) \; \texttt{new_int_dual}(\mathtt{I}, \mathtt{c_1}, \mathtt{c_2})$	declare (order & direct) I, $c_1 \leq I \leq c_2$
$(1b) \; \texttt{new_int_dual_plusK}(\texttt{I}, \texttt{I}_1, \texttt{c})$	declare (order & direct) $\mathtt{I},\mathtt{I_1}+c=\mathtt{I}$
Channeling Variables	
$(2) channel_int2direct(I)$	Adds Direct representation to an Order integer.
$ (3) \verb channel_direct2int(I) \\$	Adds Order representation to a Direct integer.

Table 3: Syntax of Mix BEE Constraints.