Теория категорий Конструкции в категориях

Валерий Исаев

27 января 2020 г.

План лекции

Мономорфизмы и эпиморфизмы

Произведения

Мономорфизмы

- В категории **Set** морфизм является изоморфизмом тогда и только тогда, когда он инъективен и сюръективен.
- Верно ли это в произвольной категории?
- Чтобы данный вопрос имел смысл, нам понадобится обощение понятия инъективных и сюръективных функций.
- ▶ Морфизм $f: X \to Y$ называется мономорфизмом, если для любых стрелок $g, h: Z \to X$ равенство $f \circ g = f \circ h$ влечет g = h.

$$Z \xrightarrow{g} X \xrightarrow{f} Y \implies g = h$$

 Мономорфизмы в Set – это в точности инъективные функции.

Мономорфизмы в алгебраических категориях

Proposition

В любой алгебраической категории (Grp, Ab, Ring, ...) мономорфизмы — это в точности инъективные функции.

Доказательство.

Докажем для \mathbf{Grp} , для остальных можно доказать аналогично. Пусть $f:A\to B$ — инъективный гомоморфизм групп, и $g,h:C\to A$ — такие, что $f\circ g=f\circ h$. Так как f — мономорфизм множеств, то g и h равны как функции над множествами. Но отсюда следует, что они равны как гомоморфизмы групп.

Наоборот, если f — мономорфизм, то пусть $a_1, a_2 \in A$ такие, что $f(a_1) = f(a_2)$. Тогда рассмотри пару гомоморфизмов $g_1, g_2: \mathbb{Z} \to A$ таких, что $g_i(1) = a_i$. Так как $f \circ g_1 = f \circ g_2$, то $g_1 = g_2$. Следовательно $a_1 = g_1(1) = g_2(1) = a_2$.

Эпиморфизмы

lacktriangle Морфизм f:X o Y называется епиморфизмом, если

$$X \xrightarrow{f} Y \xrightarrow{g} Z \implies g = h$$

- ▶ Эпиморфизмы в Set это в точности сюръективные функции.
- Эпиморфизмы в категориях моноидов и колец не обязательно сюръективны.
- ▶ Примеры: $\mathbb{N} \hookrightarrow \mathbb{Z}$, $\mathbb{Z} \hookrightarrow \mathbb{Q}$.

Эпиморфизмы в **Set**

Proposition

Эпиморфизмы в **Set** – это в точности сюръективные функции.

Доказательство.

Пусть $f:A\to B$ — сюръекция, и $g,h:B\to C$ — такие, что $g\circ f=h\circ f$. Тогда для любого $b\in B$ существует $a\in A$ такой, что f(a)=b. Следовательно g(b)=g(f(a))=h(f(a))=h(b). Наоборот, если $f:A\to B$ — эпиморфизм, то пусть $g,h:B\to \{0,1\}$ — такие, что g всегда равно 1, а h(b) равно 1 в точности когда существует $a\in A$ такой, что f(a)=b. Тогда $g\circ f=h\circ f$. Следовательно g=h. Следовательно для любого $b\in B$ верно, что h(b)=g(b)=1, то есть существует $a\in A$ такой, что f(a)=b, то есть f — сюръекция.

Расщепленные моно- и эпиморфизмы

- lacktriangle Морфизм f:A o B называется расщепленным мономорфизмом, если существует g:B o A такой, что $g\circ f=id_A.$
- lacktriangmode Морфизм g:B o A называется расщепленным эпиморфизмом, если существует f:A o B такой, что $g\circ f=id_A.$
- ▶ Любой расщепленный мономорфизм является мономорфизмом. Действительно, если $f \circ h_1 = f \circ h_2$, то $h_1 = g \circ f \circ h_1 = g \circ f \circ h_2 = h_2$.
- Любой расщепленный эпиморфизм является эпиморфизмом. Доказательство аналогично предыдущему.

Сбалансированные категории

- Категория называется сбалансированной, если любой мономорфный и эпиморфный морфизм является изоморфизмом.
- ► Примеры сбалансированных категорий: **Set**, **Grp**, **Ab**.
- Примеры несбалансированных категорий: категории моноидов и колец.
- ▶ Любой эпиморфный расщепленный мономорфизм является изоморфизмом. Действительно, если $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A$, то $f\circ g\circ f=id_B\circ f$. Следовательно $f\circ g=id_B$.
- Любой мономорфный расщепленный эпиморфизм является изоморфизмом. Доказательство аналогично предыдущему.

План лекции

Мономорфизмы и эпиморфизмы

Произведения

Терминальные объекты

- ightharpoonup В категориях **Set** и **Hask** существует много похожих объектов: \mathbb{Z} и *Integer*, $\{*\}$ и (), $A \times B$ и (a, b).
- Существует ли обобщение этих конструкций в произвольных катгеориях?
- ▶ Объект A некоторой категории ${\bf C}$ называется *терминальным*, если для любого объекта B существует уникальная стрелка $B \to A$.
- ightharpoonup Другими словами, A является терминальным, если для любого B множество $Hom_{\mathbf{C}}(B,A)$ одноэлементно.

Примеры терминальных объектов

- ▶ В Set множество терминально тогда и только тогда, когда оно одноэлементно.
- В Grp группа терминальна тогда и только тогда, когда она одноэлементна.
- ▶ В **Hask** есть следующие терминальные объекты: (), $data\ Unit = Unit$.
- Утверждение строчкой выше не является верным :(
- В группоиде существует терминальный объект только если он тривиален.

Уникальность терминальных объектов

Proposition

Любые два терминальных объекта изоморфны.

Доказательство.

Если A и B — терминальные объекты, то существует пара стрелок $f:A\to B$ и $g:B\to A$. При этом по уникальности верно, что $g\circ f=id_A$ и $f\circ g=id_B$.

Терминальный объект обычно обозначают 1. Уникальный морфизм из X в 1 обычно обозначают $!_X:X \to 1$.

Декартово произведение

- Множество B вместе с парой функций $\pi_i: B \to A_i$ является декартовым произведением множеств A_1 и A_2 , если для любых $a_i \in A_i$ существует уникальный $b \in B$ такой, что $\pi_i(b) = a_i$.
- Объект B вместе с парой отображений $\pi_i: B \to A_i$ называется декартовым произведением A_1 и A_2 , если для любых $f_i: C \to A_i$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.

Уникальность декартова произведения

Proposition

Если (B, π_i^B) и (C, π_i^C) – произведения объектов A_1 и A_2 , то B и C изоморфны.

Доказательство.

По определению декартова произведения существуют стрелки $g:B\to C$ и $h:C\to B$ как на диаграмме ниже. По уникальности $h\circ g=id_B$ и, аналогично, $g\circ h=id_C$.

Произведение множества объектов

- ▶ Если $\{A_i\}_{i\in I}$ колекция объектов некоторой категории, то объект B вместе с морфизмами $\pi_i: B \to A_i$ называется декартовым произведением объектов A_i , если для любой коллекции морфизмов $\{f_i: C \to A_i\}_{i\in I}$ существует уникальная стрелка $h: C \to B$ такая, что $\pi_i \circ h = f_i$.
- lacktriangle Декартово произведение объектов $\{A_i\}_{i\in I}$ уникально с точностью до изоморфизма.
- lacktriangledown Оно обозначается $\prod_{i\in I}A_i$. Если $I=\{1,\dots n\}$, то оно обозначается $A_1\times\dots\times A_n$. Уникальный морфизм $C\to A_1\times\dots\times A_n$ обозначается $\langle f_1,\dots f_n\rangle$.

Декартовы категория

Категория, в которой существует терминальный объект и бинарные произведения, называется *декартовой*.

Proposition

Категория декартова тогда и только тогда, когда в ней существуют все конечные произведения.

Доказательство.

Терминальный объект — произведение пустого множества объектов, бинарные произведения — произведение двух объектов. И наоборот, произведение A_i можно сконструировать как

$$A_1 \times (A_2 \times \ldots (A_{n-1} \times A_n) \ldots)$$

Это можно доказать по индукции.