AI for Medicine - Reading Notes

Yuanzhe (Roger) Li

2020 May

Notes on some of the recommended readings from the specialization.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

U-Net: Convolutional Networks for Biomedical Image Segmentation

- Materials
 - Authors' website
 - Heet Sankesara's U-Net article contains PyTorch and Tensorflow implementations.
- Technical notes
 - Architecture

Figure 1: 3D U-Net

- * Contraction: blocks of 3x3 conv. layers followed by 2x2 max pooling, with the number of feature maps doubles after each block to increase "what" (complex structure) and reduce "where".
- * Bottleneck: mediates between the contraction and expansion layers.
- * **Expansion**: blocks of 3x3 conv. layers followed by 2x2 up-sampling layers, with the number of feature maps halved after each block to maintain symmetry (for concatenation).
- Transposed convolution (up-sampling)
 - * A transposed convolution is a convolution where the implementation of the forward and backward passes are swapped to achieve effective up-sampling. It is commonly used in semantic segmentation tasks which requires to predict values for each pixel.
 - * See slides from INFO8010 deep learning course, and the tutorial A guide to convolution arithmetic for deep learning for details.
- Loss function
 - * Pixel-wise soft-max over the final feature map combined with cross entropy.
- The U-Net paper uses warping error for evaluation.

- * The warping error between two segmentations is the minimum mean square error between the pixels of the target segmentation and the pixels of a topology-preserving warped source segmentation.
- * Mathematically, warping error is defined as $D(T||L^*) = \min_{L < |L^*|} ||T L||^2$, where L^* is the ground truth labeling, T is a candidate labeling, and L is any warping of L^* .
- $\ast\,$ See article Segmentation Metrics for details about Pixel/Warping/Rand errors.