Introduction à la Programmation

Benoit Donnet Année Académique 2021 - 2022

Agenda

- Introduction
- Chapitre 1: Bloc, Variable, Instruction Simple
- Chapitre 2: Structures de Contrôle
- Chapitre 3: Méthodologie de Développement
- Chapitre 4: Introduction à la Complexité
- Chapitre 5: Structures de Données
- Chapitre 6: Modularité du Code
- Chapitre 7: Pointeurs
- Chapitre 8: Allocation Dynamique

Agenda

- Chapitre 4: Introduction à la Complexité
 - Rappels Mathématiques
 - Principe
 - Quantification des Instructions
 - Notation de Landau
 - Exemples

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

3

Agenda

- Chapitre 4: Introduction à la Complexité
 - Rappels Mathématiques
 - √ Sommations
 - ✓ Arithmétique
 - ✓ Fonctions Usuelles
 - Principe
 - Quantification des Instructions
 - Notation de Landau
 - Exemples

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Sommations

- La somme d'une suite de termes est représentée à l'aide de la notation \sum
- Notation

$$\sum_{P} Q$$

• Exemples

$$0 + 1 + \dots + N - 1 = \sum_{i \in 0 \dots N - 1} i$$
$$0 + 1 + \dots + N - 1 = \sum_{i = 0}^{N - 1} i$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

4

Sommation (2)

• Propriétés

$$\sum_{i \in \emptyset} A = 0$$

$$\sum_{i=0}^{-1} A = 0$$

$$\sum_{i=0}^{-1} A = \sum_{i=0}^{-1} Q + \sum_{i=0}^{-1} R = \sum_{i=0}^{-1} Q + R$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Sommation (3)

• Quelques sommations utiles

$$\sum_{i=0}^{n} i = \frac{n \times (n+1)}{2}$$

$$\sum_{i=0}^{n} a \times r^{i} = \frac{a \times (r^{n+1} - 1)}{r - 1}$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

-

Arithmétique

- Opérateurs usuels
 - +, -, ×, /, mod, < , ≤
- Parties entières
 - Soit $x \in \mathbb{R}$
 - \checkmark [x] est le plus grand entier inférieur ou égal à x
 - \rightarrow **plancher** de x
 - \checkmark [x] est le plus petit entier supérieur ou égal à x
 - \rightarrow **plafond** de x

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Arithmétique (2)

- Parties entières et égalités
 - $\forall x \in \mathbb{R} \text{ et } \forall n \in \mathbb{Z}$

$$|x| = n \Leftrightarrow n \le x < n + 1$$

$$\sqrt{|x|} = n \Leftrightarrow n - 1 < x \le n$$

$$\checkmark \quad [x+n] = [x] + n$$

$$\checkmark [x+n]=[x]+n$$

- $\forall n \in \mathbb{Z}$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

c

Arithmétique (3)

- Parties entières et égalités (cont.)
 - $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}$

$$\checkmark [x] < n \Leftrightarrow x < n$$

$$\sqrt{|x|} \le n \Leftrightarrow x \le n$$

$$\sqrt{n} < \lceil x \rceil \Leftrightarrow n < x$$

$$\checkmark \quad n \leq \lfloor x \rfloor \Leftrightarrow n \leq x$$

-
$$\forall x, y \in \mathbb{R}$$

$$|x| + |y| \le |x + y| \le |x| + |y| + 1$$

$$\checkmark$$
 $\lceil x \rceil + \lceil y \rceil - 1 \le \lceil x + y \rceil \le \lceil x \rceil + \lceil y \rceil$

Fonctions Usuelles

Logarithmes

- pour b>1, x>0, y est le logarithme en base b de x si et seulement si $b^y = x$
- notation: $log_b x = y$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

11

Fonctions Usuelles (2)

- *ln*
 - fonction logarithme népérien (ou naturel), de base *e*
- log_a
 - fonction logarithme, de base *a*
 - $log_a x = ln x / ln a$
- log₂
 - fonction logarithme binaire, de base 2
 - $log_2 x = ln x / ln 2$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Fonctions Usuelles (3)

- Propriétés des logarithmes
 - pour b et c > 1
 - $\sqrt{\log_b b^a} = a$
 - $\checkmark log_b(x \times y) = log_b x + log_b y$
 - $\checkmark log_b x^a = a \times log_b x$
 - $\checkmark log_c x = log_b x / log_b c$
 - \forall *n* ∈ \mathbb{N}_0 , \exists *k* tel que $2^k \le n < 2^{k+1}$
 - ✓ logarithme binaire entier

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

13

Agenda

- Chapitre 4: Introduction à la Complexité
 - Rappels Mathématiques
 - Principe
 - ✓ Idée
 - ✓ Définition
 - √ Fonctionnement
 - Quantification des Instructions
 - Notation de Landau
 - Exemples

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Idée

- Soient
 - \mathcal{P} , un problème
 - \mathcal{M} , une méthode pour résoudre le problème \mathscr{P}
- Un <u>programme</u> est la description de \mathcal{M} dans un langage de programmation

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

15

Idée (2)

- On veut
 - évaluer l'efficacité de la méthode M
 - comparer ${\mathscr M}$ avec une autre méthode ${\mathscr M}$ '
- Et ce, indépendamment de l'environnement
 - machine, système, compilateur, ...

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Définition

- Complexité des programmes
 - <u>Définition</u>: étude formelle de la *quantité de ressources* nécessaire pour l'exécution d'un programme
 - complexité spatiale: utilisation mémoire que va nécessiter le programme
 - complexité temporelle: nombre d'opérations élémentaires effectuées par un programme
- On va s'intéresser (uniquement) à la complexité temporelle

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

17

Définition (2)

- La complexité est donc une évaluation du nombre d'opérations élémentaires en fonction
 - de la taille des données
 - de la nature des données
- Notations
 - *n*, la taille des données
 - *T(n)*, fonction représentant le nombre d'opérations élémentaires
- Configurations caractéristiques
 - meilleur cas
 - ✓ cfr. INFO0902
 - pire des cas
 - cas moyen
 - ✓ cfr. INFO2050

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Fonctionnement

- 2 étapes pour déterminer la complexité d'un segment de code
 - 1. déterminer le nombre d'instructions élémentaires
 - \checkmark fonction T(n)
 - 2. borner T(n) pour représenter le pire des cas
 - ✓ notation de Landau
 - $\checkmark O(\cdot)$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

19

Agenda

- Chapitre 4: Introduction à la Complexité
 - Rappels Mathématiques
 - Principe
 - Quantification des Instructions
 - √ Règles
 - Notation de Landau
 - Exemples

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Règles

- Comment appliquer la complexité théorique à des programmes pour avoir une idée de leur efficacité?
- Solution
 - inventaire des instructions exécutées par le programme

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

21

Règles (2)

- Règles pour quantifier les instructions
 - 1. instruction de base
 - √ écriture à l'écran
 - ✓ lecture au clavier
 - √ accès à une variable
 - ✓ *T(1)*

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Règles (3)

- Règles pour quantifier les instructions (cont.)
 - 2. séquence d'instructions
 - \checkmark somme de la fonction $T(\cdot)$ de chacune des instructions

Traitement1;
$$T_{I}(\cdot)$$

$$T(\cdot) = T_{I}(\cdot) + T_{2}(\cdot)$$
 Traitement2;
$$T_{2}(\cdot)$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

23

Règles (4)

- Règles pour quantifier les instructions (cont.)
 - 3. structure conditionnelle if
 - ✓ le maximum des fonctions $T(\cdot)$ de chaque branche

if(expression)
Traitement1;

else
Traitement2;

$$T_{l}(\cdot)$$
 $T_{l}(\cdot) = \max(T_{l}(\cdot), T_{2}(\cdot))$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Règles (5)

- Règles pour quantifier les instructions (cont.)
 - 4. structure conditionnelle switch
 - ✓ le maximum des fonctions $T(\cdot)$ de chaque branche

```
switch(variable) {
    case x_1: Traitement1; T_l(\cdot)
    case x_2: Traitement2; T_2(\cdot)
    ...
    case x_i: Traitementi; T_i(\cdot)
    ...
    case x_k: Traitementk; T_k(\cdot)
    default: Traitement; T_{k+1}(\cdot)
}
T_l(\cdot) = \max(T_l(\cdot), ..., T_k(\cdot), T_{k+1}(\cdot))
```

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

24

Règles (6)

- Règles pour quantifier les instructions (cont.)
 - 5. structure itérative
 - ✓ fonction $T(\cdot)$ du Corps de Boucle × le nombre de tours

while(expression)
$$T_i(\cdot)$$
 $T(\cdot) = \sum_{i=1}^k T_i(\cdot)$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Règles (7)

- Règles pour quantifier les instructions (cont.)
 - 6. programme complet
 - √ séquence d'instructions
 - ✓ cfr. Règle 2

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

27

Agenda

- Chapitre 4: Introduction à la Complexité
 - Rappels Mathématiques
 - Principe
 - Quantification des Instructions
 - Notation de Landau
 - ✓ Notation Asymptotique
 - Propriétés
 - ✓ Exemples
 - Classification
 - Exemples

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Notation Asymptotique

- Comment évaluer la complexité temporelle?
 - évaluer le nombre d'instructions élémentaires exécutées par le programme
 - \checkmark fonction $T(\cdot)$
 - √ temps d'exécution individuel supposé borné
 - borne supérieure de $T(\cdot)$ avec la notation "O"
 - √ big O
 - ✓ notation de Landau
- Notation asymptotique
 - soient f et g, deux fonctions $\mathbb{N} \to \mathbb{R}^+$ $f \in O(g) \iff \exists n_0 \in \mathbb{N}, c \in \mathbb{R}^+ : \forall n > n_0 : f(n) \le c \times g(n)$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

29

Notation Asymptotique (2)

taille du problème

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Notation Asymptotique (3)

- *n* c'est quoi?
- La complexité s'exprime toujours en fonction de la taille des données
 - en fonction du problème
 - et ses variables

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

31

Propriétés

- Propriétés de la notation "O"
 - multiplication par une constante
 - $\underline{\operatorname{si}} f(n) \in O(g(n)),$ $\underline{\operatorname{alors}} \ \forall \ k \in \mathbb{N}_0 \text{ on a } k \times f(n) \in O(g(n))$
 - addition (1)
 - $\leq \underline{\operatorname{si}} f(n), e(n) \in O(g(n)),$ $\underline{\operatorname{alors}} e(n) + f(n) \in O(g(n))$
 - addition (2)
 - $\leq \underline{\text{si }} e(n) \in O(g(n)) \text{ et } f(n) \in O(h(n))$ alors $e(n) + f(n) \in O(g(n) + h(n))$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Propriétés (2)

- Propriétés de la notation "O" (suite)
 - produit

```
\underline{\text{si }} e(n) \in O(g(n)) \text{ et } f(n) \in O(h(n))

\underline{\text{alors }} e(n) \times f(n) \in O(g(n) \times h(n))
```

- transitivité
 - $\leq \underline{\operatorname{si}} f(n) \in O(g(n)) \text{ et } g(n) \in O(h(n))$ $\underline{\operatorname{alors}} f(n) \in O(h(n))$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

21

Exemples

- $T(n) = 5 \times n + 37$
- Par quoi borner T(n)?
 - O(n)
- Preuve?
 - but: trouver une constante $c \in \mathbb{R}^+$ et un seuil n_0 à partir duquel $T(n_0) \le c \times n_0$

on remarque que $5 \times n + 37 \le 6 \times n \text{ si } n \ge 37$

$$5 \times 37 + 37 \le 6 \times 37$$

 $5 \times 38 + 37 \le 6 \times 38$

√ ...

- on déduit que c = 6 fonctionne à partir du seuil $n_0 = 37$
- Remarque
 - on ne demande pas d'optimisation (i.e., le plus petit c et n_0 qui fonctionnent), juste donner des valeurs
 - c = 10 et $n_0 = 8$ sont donc aussi acceptables

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Exemples (2)

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

35

Exemples (3)

- $T(n) = 6 \times n^2 + 2 \times n 8$
- Par quoi borner T(n)?
 - $O(n^2)$
- Preuve
 - cherchons d'abord une constante *c*
 - \checkmark $c = 6 \Rightarrow$ ne fonctionne pas
 - \checkmark essayons avec c = 7
 - trouvons un seuil n_0 à partir duquel
 - $6 \times n^2 + 2 \times n 8 \le 7 \times n^2, \forall n > n_0$
 - ✓ un simple calcul de racines nous donne
 - $n_1 = -4/3$
 - $n_2 = 1$
 - c = 7 et $n_0 = 1$ nous donnent le résultat voulu

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Exemples (4)

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

37

Exemples (5)

- $T(n) = n^3 + 2 \times n^2 + 4 \times n + 2$
- Par quoi borner T(n)?
 - $O(n^3)$
- Preuve?
 - $\underline{\text{Si}} \ n \ge 3$

- Alors $T(n) \leq 2 \times n^{3}$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Exemples (2)

- $T(n) = n \times \log n + 12 \times n + 888$
- Par quoi borner T(n)?
 - $O(n \times \log n)$
- Preuve?
 - $\underline{Si} \ n \ge 1$
 - Alors $T(n) \le 1000 \times n \times log n$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

39

Exemples (3)

- $T(n) = 10^3 \times n^{10} n^7 + 12 \times n^4 + 2^n/10^3$
- Par quoi borner T(n)?
 - $O(2^n)$
- Preuve?
 - $\underline{\mathbf{Si}} \ n \ge 1$
 - Alors $T(n) \le 10^{10} \times 2^n$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Classification

• Classification de la complexité

Notation	Type de Complexité	Exemple	
O(1)	complexité constante	accès variable	
O(log(n))	complexité logarithmique	dichotomie	
O(n)	complexité linéaire	triangulation delaunay	
$O(n \times log(n))$	complexité linéarithmique	tri rapide	
$O(n^2)$	complexité quadratique	parcours tableau 2D	
$O(n^3)$	complexité cubique	parcours tableau 3D	
$O(e^n)$	complexité exponentielle	facteurs premiers	
O(n!)	complexité factiorelle	voyageur de commerce	
$O(2^{2^n})$	complexité doublement exponentielle	arithmétique de Presburger	

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

41

Classification (2)

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Classification (3)

• Evaluation du temps de calcul en fonction de la complexité

		Complexité			
		log(n)	n	n^2	2 ⁿ
flops	106	0,013 msec	1 sec	278 heures	10.000 ans
	109	0,013 μsec	1 msec	15 min	10 ans
	1012	0,013 nsec	1 μsec	1sec	1 semaine

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

43

Agenda

- Chapitre 4: Introduction à la Complexité
 - Rappels Mathématiques
 - Principe
 - Quantification des Instructions
 - Notation de Landau
 - Exemples
 - ✓ Permutation de 2 variables
 - ✓ Somme des *n* Premières Valeurs
 - √ Factorielle
 - Renversement de Chiffres
 - ✓ Nombres Parfaits (version 1)

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Permutation Variables

- Exemple 1
 - permutation de deux variables

tmp = x;	T(A)
x = y;	T(B)
y = tmp;	T(C)

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Permutation Variables (2)

- Par application de la règle 2
 - T = T(A) + T(B) + T(C)
- Par application de la règle 1
 - T = 1 + 1 + 1
 - = 3
- Par quoi borner T?
 - O(1)
 - complexité constante

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Somme

- Exemple 2
 - somme des *n* premières valeurs

```
#include <stdio.h>

int main(){
    unsigned int i = 1, n, somme = 0;
    scanf("%u", &n);

while(i<=n){
        somme += i;
        i++;
        i++;
        //fin while - i

    printf("Somme: %u\n", somme);
}/fin programme</pre>
T(C)
```

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

47

Somme (2)

- Par application des règles 2 & 6
 - T(n) = T(A) + T(B) + T(C)
- Par application de la règle 1
 - T(n) = 1 + T(B) + 1
- Quid de *T*(*B*)?
 - application de la règle 5

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Somme (3)

• Evaluation de *T*(*B*)

```
while(i<=n) {
    somme += i;
    i++;
}//fin while - i</pre>
T(B')
T(B'')
T(B'')
```

- Quid de *T*(*B*') et *T*(*B*'')?
 - application de la règle 1
 - T(B') = 1
 - T(B'') = 1

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

49

Somme (4)

- Quid de *T*(*B*)?
 - application de la règle 5

$$T(B) = \sum_{i=1}^{n} \left(T(B') + T(B'') \right)$$
$$= \sum_{i=1}^{n} (1+1)$$
$$= 2 \times n$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Somme (5)

- Il vient donc
 - T(n) = T(A) + T(B) + T(C) $= 1 + 2 \times n + 1$ $= 2 \times n + 2$
- Par quoi borner T(n)?
 - -O(n)
 - complexité linéaire

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

51

Factorielle

- Exemple 3
 - factorille de *n*

```
#include <stdio.h>

int main(){
    unsigned int i=1, fact=1, n;
    scanf("%u", &n);

    While(i<=n){
        fact *= i;
        i++;
        }//fin while - i

    printf("factorielle: %u\n", fact);
}//fin programme</pre>
T(C)
```

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Factorielle (2)

- Par application des règles 2 & 6
 - -T(n) = T(A) + T(B) + T(C)
- Par application de la règle 1
 - -T(n) = 1 + T(B) + 1
- Quid de *T*(*B*)?
 - même raisonnement que pour la somme
 - $T(B) = 2 \times n$
- Il vient
 - $T(n) = 1 + 2 \times n + 1$ $= 2 \times n + 2$
- Par quoi borner T(n)?
 - -O(n)
 - complexité linéaire

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

50

Renversement

- Exemple 4
 - renverser les chiffres des nombres en base 10 entre 1 et *fin*
- Fonctionnement
 - $-35276 \rightarrow 67253$
 - $-19 \rightarrow 91$
 - $-3 \rightarrow 3$
 - $0 \rightarrow 0$
- Raisonnement
 - cfr. Chap. 3

Renversement (2)

```
#include <stdio.h>
int main(){
   unsigned int i = 1, fin, n, r = 0;
                                                  T(A)
   scanf("%u", &fin);
   while(i<=fin) {</pre>
      r = 0;
                                                  T(B')
      n = i;
      while(n > 0){
         r = 10*r + n%10;
                                                  T(B") T(B)
         n /= 10;
      }//fin while - n
      printf("%u %u\n", i, r);
                                                 T(B"")
      i++;
     /fin while -
}//fin programme
```

Renversement (3)

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

• Par application des règles 2 & 6

$$T(fin) = T(A) + T(B)$$

• Par application des règles 1 & 5

$$T(fin) = T(A) + T(B)$$

$$= 1 + \sum_{i=1}^{fin} \left(T(B') + T(B'') + T(B''') \right)$$

$$= 1 + \sum_{i=1}^{fin} \left(1 + T(B'') + 1 \right)$$

• Quid de *T(B'')*?

Renversement (4)

- Evaluation de *T*(*B*")
 - déterminer le nombre de tours de la boucle

```
while(n>0){
    r = 10*r + n*10;
    n = n/10;
}//fin while - n

évaluation gardien 0: n = n (i.e., n = n/10^{\circ})
évaluation gardien 1: n = n/10 (i.e., n = (n/10^{\circ})/10)
évaluation gardien 2: n = n/10^{\circ} (i.e., n = (n/10^{\circ})/10)
...
évaluation gardien k: n = n/10^{k} (i.e., n = (n/10^{k-1})/10)
```

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

57

Renversement (5)

- Evaluation de *T*(*B*") (cont.)?
- quand est-ce que la boucle s'arrête?
 - n > 0
 - $n/10^k > 0$ doit être satisfait
- Estimer la valeur de *k*?

$$\frac{n}{10^k} > 0$$

$$\frac{n}{10^k} \ge 1$$

$$n \ge 10^k$$

$$\log_{10} n \ge k$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Renversement (6)

- Evaluation de *T*(*B*") (cont.)
- Dans le pire des cas, on effectue T(B'') pour n = fin
- Donc
 - $T(B'') = \log_{10}(fin)$
- Il vient donc
 - $T(fin) = 1 + fin \times log_{10}(fin)$ $= fin \times log_{10}(fin) + 1$
- Par quoi borner *T*(*fin*)?
 - $O(fin \times log_{10} (fin))$
 - complexité linéarithmique

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Nombres Parfaits

```
#include <stdio.h>
int main(){
  unsigned int nMax, n, som, div;

printf("Entrez une valeur pour nMax: ");
  scanf("%u", &nMax);

for(n=1; n<nMax; n++){
   som = 0;

  for(div=1; div<n; div++){
    if(!(n % div))
      som += div;
   }//fin for - div
   if(som==n)
      printf("%u\n", n);
  }//fin for - n
}//fin programme</pre>
```

Nombres Parfaits (2)

```
#include <stdio.h>
int main(){
 unsigned int nMax, n=1, som, div;
 printf("Entrez une valeur pour nMax: ");
                                                         T(A)
 scanf("%u", &nMax);
 while(n<nMax){</pre>
   som = 0;
                                                T(B')
   div = 1;
   while(div<n){
     if(!(n % div))
                                               T(B")
       som += div;
                                                          T(B)
     div++;
   }//fin for - div
   if(som==n)
                                               T(B")
     printf("%u\n", n);
  }//fin for - n
}//fin programme
```

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

61

Nombres Parfaits (3)

- Par application des règles 2 & 6
 - T(nMax) = T(A) + T(B)
- Par application des règles 1 & 5

$$T(nMax) = T(A) + T(B)$$

$$= 1 + \sum_{n=1}^{nMax-1} \left(T(B') + T(B'') + T(B''') \right)$$

$$= 1 + \sum_{n=1}^{nMax-1} \left(1 + T(B'') + 1 \right)$$

• Quid de *T(B'')*?

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Nombres Parfaits (4)

- Evaluation *T*(*B*")
 - application de la règle 5

- Application de la règle 3
 - $T_1(B'') = 1$
- Application de règle 1
 - $T_2(B'') = 1$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

63

Nombres Parfaits (5)

• Il vient donc

$$T(B'') = \sum_{div=1}^{n-1} \left(T_1(B'') + T_2(B'') \right)$$

$$= \sum_{div=1}^{n-1} (1+1)$$

$$= \sum_{div=1}^{n-1} 2$$

$$= 2 \times n - 2$$

- Dans le pire des cas, T(B'') est exécuté nMax-1 fois
- On a donc
 - $T(B'') = 2 \times (nMax 1)$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Nombres Parfaits (6)

• On a donc, pour T(B)

$$T(B) = \sum_{n=1}^{nMax-1} \left(T(B') + T(B'') + T(B''') \right)$$

$$= \sum_{n=1}^{nMax-1} \left(2 + T(B'') \right)$$

$$= \sum_{n=1}^{nMax-1} \left(2 + 2 \times (nMax - 1) \right)$$

$$= nMax - 1 \times \left(2 \times (nMax - 1) + 2 \right)$$

$$= 2 \times nMax^2 - 2 \times nMax$$

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

65

Nombres Parfaits (7)

- Il vient donc
 - T(nMax) = T(A) + T(B) $= 1 + 2 \times nMax^{2} 2 \times nMax$ $= 2 \times nMax^{2} 2 \times nMax + 1$
- Par quoi borner *T(nMax)*?
 - $O(nMax^2)$
 - complexité quadratique

INFO0946 - ULiège - 2021/2022 - Benoit Donnet

Exercices

- Donner la complexité théorique:
 - recherche des nombres parfaits version 2
 - recherche des nombres parfaits version 3

INFO0946 - ULiège - 2021/2022 - Benoit Donnet