Lecture 38: Asymptotic properties of LSE's

We consider first the consistency of the LSE $l^{\tau}\hat{\beta}$ with $l \in \mathcal{R}(Z)$ for every n.

Theorem 3.11. Consider model

$$X = Z\beta + \varepsilon \tag{1}$$

under assumption A3 $(E(\varepsilon) = 0 \text{ and } Var(\varepsilon) \text{ is an unknown matrix}).$

Suppose that $\sup_n \lambda_+[\operatorname{Var}(\varepsilon)] < \infty$, where $\lambda_+[A]$ is the largest eigenvalue of the matrix A, and that $\lim_{n\to\infty} \lambda_+[(Z^{\tau}Z)^-] = 0$. Then $l^{\tau}\hat{\beta}$ is consistent in mse for any $l \in \mathcal{R}(Z)$.

Proof. The result follows from the fact that $l^{\tau}\hat{\beta}$ is unbiased and

$$\operatorname{Var}(l^{\tau}\hat{\beta}) = l^{\tau}(Z^{\tau}Z)^{-}Z^{\tau}\operatorname{Var}(\varepsilon)Z(Z^{\tau}Z)^{-}l$$

$$\leq \lambda_{+}[\operatorname{Var}(\varepsilon)]l^{\tau}(Z^{\tau}Z)^{-}l.$$

Without the normality assumption on ε , the exact distribution of $l^{\tau}\hat{\beta}$ is very hard to obtain. The asymptotic distribution of $l^{\tau}\hat{\beta}$ is derived in the following result.

Theorem 3.12. Consider model (1) with assumption A3. Suppose that $0 < \inf_n \lambda_-[Var(\varepsilon)]$, where $\lambda_-[A]$ is the smallest eigenvalue of the matrix A, and that

$$\lim_{n \to \infty} \max_{1 \le i \le n} Z_i^{\tau} (Z^{\tau} Z)^{-} Z_i = 0.$$

$$\tag{2}$$

Suppose further that $n = \sum_{j=1}^k m_j$ for some integers k, m_j , j = 1, ..., k, with m_j 's bounded by a fixed integer m, $\varepsilon = (\xi_1, ..., \xi_k)$, $\xi_j \in \mathcal{R}^{m_j}$, and ξ_j 's are independent.

(i) If $\sup_{i} E|\varepsilon_{i}|^{2+\delta} < \infty$, then for any $l \in \mathcal{R}(Z)$,

$$l^{\tau}(\hat{\beta} - \beta) / \sqrt{\operatorname{Var}(l^{\tau}\hat{\beta})} \to_d N(0, 1).$$
 (3)

(ii) Suppose that when $m_i = m_j$, $1 \le i < j \le k$, ξ_i and ξ_j have the same distribution. Then result (3) holds for any $l \in \mathcal{R}(Z)$.

Proof. Let $l \in \mathcal{R}(Z)$. Then

$$l^{\tau}(Z^{\tau}Z)^{-}Z^{\tau}Z\beta - l^{\tau}\beta = 0$$

and

$$l^{\tau}(\hat{\beta} - \beta) = l^{\tau}(Z^{\tau}Z)^{-}Z^{\tau}\varepsilon = \sum_{j=1}^{k} c_{nj}^{\tau} \xi_{j},$$

where c_{nj} is the m_j -vector whose components are $l^{\tau}(Z^{\tau}Z)^{-}Z_i$, $i = k_{j-1} + 1, ..., k_j$, $k_0 = 0$, and $k_j = \sum_{t=1}^{j} m_t$, j = 1, ..., k.

Note that

$$\sum_{j=1}^{k} \|c_{nj}\|^2 = l^{\tau} (Z^{\tau} Z)^- Z^{\tau} Z (Z^{\tau} Z)^- l = l^{\tau} (Z^{\tau} Z)^- l.$$
 (4)

Also,

$$\max_{1 \le j \le k} \|c_{nj}\|^{2} \le m \max_{1 \le i \le n} [l^{\tau}(Z^{\tau}Z)^{-}Z_{i}]^{2}$$

$$\le m l^{\tau}(Z^{\tau}Z)^{-} l \max_{1 \le i \le n} Z_{i}^{\tau}(Z^{\tau}Z)^{-}Z_{i},$$

which, together with (4) and condition (2), implies that

$$\lim_{n \to \infty} \left(\max_{1 \le j \le k} ||c_{nj}||^2 / \sum_{j=1}^k ||c_{nj}||^2 \right) = 0.$$

The results then follow from Corollary 1.3.

Under the conditions of Theorem 3.12, $Var(\varepsilon)$ is a diagonal block matrix with $Var(\xi_j)$ as the jth diagonal block, which includes the case of independent ε_i 's as a special case.

Exercise 80 shows that condition (2) is almost a necessary condition for the consistency of the LSE.

The following lemma tells us how to check condition (2).

Lemma 3.3. The following are sufficient conditions for (2).

- (a) $\lambda_+[(Z^{\tau}Z)^-] \to 0$ and $Z_n^{\tau}(Z^{\tau}Z)^-Z_n \to 0$, as $n \to \infty$.
- (b) There is an increasing sequence $\{a_n\}$ such that $a_n \to \infty$, $a_n/a_{n+1} \to 1$, and $Z^{\tau}Z/a_n$ converges to a positive definite matrix.

Proof. (a) Since $Z^{\tau}Z$ depends on n, we denote $(Z^{\tau}Z)^{-}$ by A_n .

Let i_n be the integer such that $h_{i_n} = \max_{1 \le i \le n} h_i$.

If $\lim_{n\to\infty} i_n = \infty$, then

$$\lim_{n \to \infty} h_{i_n} = \lim_{n \to \infty} Z_{i_n}^{\tau} A_n Z_{i_n} \le \lim_{n \to \infty} Z_{i_n}^{\tau} A_{i_n} Z_{i_n} = 0,$$

where the inequality follows from $i_n \leq n$ and, thus, $A_{i_n} - A_n$ is nonnegative definite. If $i_n \leq c$ for all n, then

$$\lim_{n \to \infty} h_{i_n} = \lim_{n \to \infty} Z_{i_n}^{\tau} A_n Z_{i_n} \le \lim_{n \to \infty} \lambda_n \max_{1 \le i \le c} \|Z_i\|^2 = 0.$$

Therefore, for any subsequence $\{j_n\} \subset \{i_n\}$ with $\lim_{n\to\infty} j_n = a \in (0,\infty]$, $\lim_{n\to\infty} h_{j_n} = 0$. This shows that $\lim_{n\to\infty} h_{i_n} = 0$.

(b) Omitted.

If $n^{-1} \sum_{i=1}^{n} t_i^2 \to c$ and $n^{-1} \sum_{i=1}^{n} t_i \to d$ in the simple linear regression model (Example 3.12), where c is positive and $c > d^2$, then condition (b) in Lemma 3.3 is satisfied with $a_n = n$ and, therefore, Theorem 3.12 applies.

In the one-way ANOVA model (Example 3.13),

$$\max_{1 \leq i \leq n} Z_i^{\tau}(Z^{\tau}Z)^{-}Z_i = \lambda_{+}[(Z^{\tau}Z)^{-}] = \max_{1 \leq j \leq m} n_j^{-1}.$$

Hence conditions related to Z in Theorem 3.12 are satisfied if and only if $\min_j n_j \to \infty$. Some similar conclusions can be drawn in the two-way ANOVA model (Example 3.14). Functions of unbiased estimators

If the parameter to be estimated is $\vartheta = g(\theta)$ with a vector-valued parameter θ and U_n is a vector of unbiased estimators of components of θ , then $T_n = g(U_n)$ is often asymptotically unbiased for ϑ .

Assume that g is differentiable and $c_n(U_n - \theta) \rightarrow_d Y$. Then

$$\operatorname{amse}_{T_n}(P) = E\{ [\nabla g(\theta)]^{\tau} Y \}^2 / c_n^2$$

(Theorem 2.6). Hence, T_n has a good performance in terms of amse if U_n is optimal in terms of mse (such as the UMVUE or BLUE).

Example 3.22. Consider a polynomial regression of order p:

$$X_i = \beta^{\tau} Z_i + \varepsilon_i, \qquad i = 1, ..., n,$$

where $\beta = (\beta_0, \beta_1, ..., \beta_{p-1}), Z_i = (1, t_i, ..., t_i^{p-1}),$ and ε_i 's are i.i.d. with mean 0 and variance $\sigma^2 > 0$.

Suppose that the parameter to be estimated is $t_{\beta} \in \mathcal{T} \subset \mathcal{R}$ such that

$$\sum_{j=0}^{p-1} \beta_j t_{\beta}^j = \max_{t \in T} \sum_{j=0}^{p-1} \beta_j t^j.$$

Note that $t_{\beta} = g(\beta)$ for some function g.

Let $\hat{\beta}$ be the LSE of β .

Then the estimator $\hat{t}_{\beta} = g(\hat{\beta})$ is asymptotically unbiased and its amse can be derived under some conditions.

Example 3.23. In the study of the reliability of a system component, we assume that

$$X_{ij} = \boldsymbol{\theta}_i^{\tau} z(t_i) + \varepsilon_{ij}, \quad i = 1, ..., k, \ j = 1, ..., m.$$

Here X_{ij} is the measurement of the *i*th sample component at time t_j ;

z(t) is a q-vector whose components are known functions of the time t;

 $\boldsymbol{\theta}_i$'s are unobservable random q-vectors that are i.i.d. from $N_q(\theta, \Sigma)$, where θ and Σ are unknown;

 ε_{ij} 's are i.i.d. measurement errors with mean zero and variance σ^2 ;

 $\boldsymbol{\theta}_i$'s and ε_{ij} 's are independent.

As a function of t, $\theta^{\tau}z(t)$ is the degradation curve for a particular component and $\theta^{\tau}z(t)$ is the mean degradation curve.

Suppose that a component will fail to work if $\theta^{\tau}z(t) < \eta$, a given critical value.

Assume that $\theta^{\tau}z(t)$ is always a decreasing function of t.

Then the reliability function of a component is

$$R(t) = P(\boldsymbol{\theta}^{\tau} z(t) > \eta) = \Phi\left(\frac{\theta^{\tau} z(t) - \eta}{s(t)}\right),$$

where $s(t) = \sqrt{[z(t)]^{\tau} \Sigma z(t)}$ and Φ is the standard normal distribution function.

For a fixed t, estimators of R(t) can be obtained by estimating θ and Σ , since Φ is a known function.

It can be shown (exercise) that the BLUE of θ is the LSE

$$\hat{\theta} = (Z^{\tau}Z)^{-1}Z^{\tau}\bar{X},$$

where Z is the $m \times q$ matrix whose jth row is the vector $z(t_j)$, $X_i = (X_{i1}, ..., X_{im})$, and \bar{X} is the sample mean of X_i 's.

The estimation of Σ is more difficult.

It can be shown (exercise) that a consistent (as $k \to \infty$) estimator of Σ is

$$\hat{\Sigma} = \frac{1}{k} \sum_{i=1}^{k} (Z^{\tau} Z)^{-1} Z^{\tau} (X_i - \bar{X}) (X_i - \bar{X})^{\tau} Z (Z^{\tau} Z)^{-1} - \hat{\sigma}^2 (Z^{\tau} Z)^{-1},$$

where

$$\hat{\sigma}^2 = \frac{1}{k(m-q)} \sum_{i=1}^k [X_i^{\tau} X_i - X_i^{\tau} Z (Z^{\tau} Z)^{-1} Z^{\tau} X_i].$$

Hence an estimator of R(t) is

$$\hat{R}(t) = \Phi\left(\frac{\hat{\theta}^{\tau}z(t) - \eta}{\hat{s}(t)}\right),$$

where

$$\hat{s}(t) = \sqrt{[z(t)]^{\tau} \hat{\Sigma} z(t)}.$$

$$Y_{i1} = X_i^{\tau} Z (Z^{\tau} Z)^{-1} z(t)$$

$$Y_{i2} = [X_i^{\tau} Z (Z^{\tau} Z)^{-1} z(t)]^2$$

$$Y_{i3} = [X_i^{\tau} X_i - X_i^{\tau} Z (Z^{\tau} Z)^{-1} Z^{\tau} X_i] / (m - q)$$

 $Y_{i2} = [X_i^{\tau} Z(Z^{\tau} Z)^{-1} z(t)]^2$ $Y_{i3} = [X_i^{\tau} X_i - X_i^{\tau} Z(Z^{\tau} Z)^{-1} Z^{\tau} X_i] / (m - q)$ $Y_i = (Y_{i1}, Y_{i2}, Y_{i3}) \text{ It is apparent that } \hat{R}(t) \text{ can be written as } g(\bar{Y}) \text{ for a function}$

$$g(y_1, y_2, y_3) = \Phi\left(\frac{y_1 - \eta}{\sqrt{y_2 - y_1^2 - y_3[z(t)]^{\tau}(Z^{\tau}Z)^{-1}z(t)}}\right).$$

Suppose that ε_{ij} has a finite fourth moment, which implies the existence of $Var(Y_i)$. The amse of R(t) can be derived (exercise).