Search.01: Problemformalisierung, Zustandsraum (3P)

- 1. E = Anzahl Elf am Startpunkt -> 0 3
 - O = Anzahl Ork am Startpunkt -> 0 3
 - P = Pferd am Starpunkt -> (0, 1)

Zustand = (E, O, P)

Aktionen:

1x Elf

2x Elf

1x Ork

2x Ork

1x Elf + 1x Ork

Startzustand: (3, 3, 1) Endzustand: (0, 0, 0)

Notes: Stehen an einen Ufer Orks ohne Elfen gibt es auch keinen Konflikt.

2.

0 (W) = 0 | D(W) = 170 ; f(W) = 0+170 = 170 WATOI 9 (E) = 0+186 = 186 , H (F) = 900; F(E)=586 9 (M) = 0 + 103 = 103 ; H (N) = 537; F (W) = 640 LWE586, WN 640: I WMG40] 8 (Mil) = 103+167 = 270; b (Mi) = 0; f (Mi) = 20 ement [WNM; 270 Algorithmus Max. Fintrage Durchlaufe 2 Tietensonono 4 4 Breiten sache 41 Beispiel von Wurzburg In den kleinen nach Murchen verhalben sich die Algorithmen Fast identisch

Dominanz (1P)

Eine Heuristik $h_1(n)$ dominiert eine Heuristik $h_2(n)$ bedeutet, dass $h_1(n)$ größere Werte nutzt. Und da diese Heuristik die Zulassungsbedingung erfüllen muss, (Nämlich die tatsächliche Kosten nicht zu übersteigen) ist sie somit präziser und damit näher an der Realität.

Stadt	$h_2(n)$	$h_1(n)$	h*(n)
Stadt A	100 km	120 km	130 km
Stadt B	50 km	55 km	56 km
Stadt C	80 km	95 km	110km