Third Summer School on ML for Electron Microscopy May 19 – 23 2025

Reward Functions for Decision Making

Kamyar Barakati

- Objective: purpose of the experiment (outside context)
- •Policy: what do we do depend on observation
- •Reward: what do we hope to achieve
- Value: anticipated reward

Increase in data generation:

Challenges in real Time:

- 1. Parameter Sensitivity
- 2. Labeling

We do not know what may have been overlooked or sacrificed in pursuit of a seemingly desirable result.

Design Physics Based workflows

What are we looking for? 1. Explainable 2. Reproducible 3. Fast

LMD: Local Maxima Detection **LDA:** Linear Discriminant Analysis

Key Characteristics of Rewards

- **1. Non-myopic:** Evaluates the entire outcome, not just individual actions.
- Multi-objective: Can consider multiple factors (accuracy, efficiency, completeness)
- Alignment with goals: The final reward should directly reflect how well the result meets the experimental objective.

MODEL PROBLEM

Yttrium barium copper oxide (YBCO)

Gold Ion Irradiation

Parameter space: (6, 2) σ_{\min} , σ_{\max} , T, θ , w_w, w_h

Multiobjective optimization of LoG

- Number of atoms via physical criterion like number of atoms in the structure with respect to stoichiometry
- 2. False positives (Atoms to close): < distance to their 4 nearest neighbor

Benchmarking

Number of atoms via **DCNN**

MODEL WORKFLOW

MODEL WORKFLOW

 \mathbf{W}_{W} , \mathbf{W}_{h} , $\mathbf{COV}_{\mathrm{type}}$

2 nd set Rewards	
Objective 1	Objective 2
Compactness	Perimeter

BENCHMARK VS DCNN

Stability vs Noise interference

Time

MODEL WORKFLOW

Sample: Sm-doped BiFeO₃ (BFO)

Experimental Goal: Discovery of polarization and lattice distortion

set Rewards	
Objective 1	Objective 2
Straightness	Length

(A)

[8]
[30]
[58]
[50]

[12]
[64]

(B)

(E)

(C)

[8]
[12]
[30]
[12]
[64]

REAL TIME ANALYSIS

Spectra 300 by Thermofisher

200 pixels

GPU memory required: 5 **GB Number of Units: 1**

Conclusion

- Reward Driven workflow which enables real time image analysis
- Hyperparameter tunning and optimization, keeping human insight in the loop
- Focus on physical and chemical concepts while doing the experiment

Questions?

Reference:

[1] Barakati, Kamyar, et al. "Reward driven workflows for unsupervised explainable analysis of phases and ferroic variants from atomically resolved imaging data." arXiv preprint arXiv:2411.12612 (2024).

[3] Barakati, Kamyar, et al. "Physics-based reward driven image analysis in microscopy." *Digital Discovery* 3.10 (2024): 2061-2069.

Notebook