Inteligência Artificial

Aprendizagem não supervisionada Agrupamento (*Clustering*)

Prof. Fabio Augusto Faria

Material adaptado do Prof. Edirlei Soares de Lima (PUC-RJ)

1º semestre 2015

Tópicos

- Formas de Aprendizagem
- Tipos de algoritmos de agrupamento (clustering)
- Algoritmos de Agrupamento (k-means e k-medoid)
- Problemas
- Conclusões

Formas de Aprendizagem

- Aprendizagem Supervisionado
- Aprendizagem Não-Supervisionado

Aprendizagem Por Reforço

 No aprendizado supervisionado, todas os exemplos de treinamento eram rotulados.

 Estes exemplos são ditos "supervisionados", pois, contém tanto a entrada (atributos), quanto a saída (classe).

 Porém, muitas vezes temos que lidar com exemplos "não-supervisionados", isto é, exemplos não rotulados.

Por que?

 Coletar e rotular um grande conjunto de exemplos pode custar muito tempo, esforço, dinheiro...

- Entretanto, podemos utilizar grandes quantidades de dados não rotulados para encontrar padrões existentes nestes dados. E somente depois supervisionar a rotulação dos agrupamentos encontrados.
- Esta abordagem é bastante utilizada em aplicações de mineração de dados (data mining), onde o conteúdo de grandes bases de dados não é conhecido antecipadamente.

- O principal interesse do aprendizado nãosupervisionado é desvendar a organização dos padrões existentes nos dados através de clusters (agrupamentos) encontrados;
- Com isso, é possível descobrir similaridades e diferenças entre os padrões existentes, assim como derivar conclusões úteis a respeito deles.

• Exemplos de agrupamentos (clusters):

*Depende do atributo escolhido;

Critério de Similaridade

• A similaridade é difícil de ser definida...

*Depende do critério de similaridade;

- As etapas do processo de aprendizagem não supervisionada são:
 - (1) Seleção de atributos
 - (2) Medida de proximidade
 - (3) Critério de agrupamento
 - (4) Algoritmo de agrupamento
 - (5) Verificação dos resultados
 - (6) Interpretação dos resultados

(1) Seleção de Atributos:

- Atributos devem ser adequadamente selecionados de forma a codificar a maior quantidade possível de informações relacionada a tarefa de interesse.
- Os atributos devem ter também uma redundância mínima entre eles.

(2) Medida de Proximidade:

- Medida para quantificar quão similar ou dissimilar são dois vetores de atributos.
- É ideal que todos os atributos contribuam de maneira igual no cálculo da medida de proximidade.
 - Um atributo n\u00e3o pode ser dominante sobre o outro, ou seja, \u00e9 importante normalizar os dados.

• Diferentes técnicas de normalização[2]

$$n_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

$$n_i = \frac{x_i - mean(x)}{std(x)}$$

$$n_i = \frac{1}{2} \left[\tanh \left(001 \frac{x_i - mean(x)}{std(x)} \right) + 1 \right]$$

$$n_i = \frac{X_i}{\sum X}$$

• (3) Critério de Agrupamento:

- Depende da interpretação que o especialista dá ao termo **sensível** com base no tipo de cluster que são esperados.
- Por exemplo, um cluster compacto de vetores de atributos pode ser sensível de acordo com um critério enquanto outro cluster alongado, pode ser sensível de acordo com outro critério.

(4) Algoritmo de Agrupamento:

 Tendo adotado uma medida de proximidade e um critério de agrupamento devemos escolher um algoritmo de agrupamento que revele a estrutura agrupada do conjunto de dados.

(5) Validação dos Resultados:

- Uma vez obtidos os resultados do algoritmo de agrupamento, devemos verificar se o resultado esta correto.
- Isto geralmente é feito através de testes apropriados.

(6) Interpretação dos Resultados:

 Em geral, os resultados do agrupamento devem ser integrados com outras evidências experimentais e análises para chegar as conclusões corretas.

 Diferentes escolhas de <u>atributos</u>, <u>medidas</u> <u>de proximidade</u>, <u>critérios de agrupamento</u> e <u>algoritmos de agrupamento</u> levam a <u>resultados totalmente diferentes</u>.

Qual resultado é o correto?

 o que caracteriza bons e maus processos de agrupamento/clusterização?

 Para validar a saída produzida por um processo de clusterização, geralmente se recorre a critérios de otimalidade, muitas vezes definidos de forma subjetiva [1].

Tarefa de Agrupamento

Dado um conjunto de dados X:

$$X = \{x_1, x_2, \ldots, x_n\}$$

- Definimos como um m-agrupamento de X, a partição de X em m grupos (clusters) C₁, C₂, ..., C_m tal que as três condições seguintes sejam satisfeitas:
 - Nenhum cluster pode ser vazio ($C_i \neq \emptyset$).
 - A união de todos os clusters deve ser igual ao conjunto de dados que gerou os clusters, ou seja, X.
 - A interseção de dois clusters deve ser vazio, ou seja, dois cluster não podem conter vetores em comum $(C_i \cap C_j = \emptyset)$.

Agrupamento

 Os vetores contidos em um cluster C_i devem ser mais similares uns aos outros (intra) e menos similares aos vetores presentes nos outros clusters (inter).

Tipos de Clusters:

Clusters compactos

Clusters alongados elipsoidals

Clusters esféricos e

Medidas de Proximidade

Medidas de Dissimilaridade*:

- Métrica I_p ponderada;
- Métrica Norma I ponderada;
- Métrica l₂ ponderada (Mahalanobis);
- Métrica I_p especial (Manhattan);
- Distância de Hamming;

Medidas de Similaridade**:

- Produto interno (inner);
- Medida de Tanimoto;

^{*} Maior o valor, menor semelhança;

^{**} Maior o valor, maior semelhança.

Algoritmos de Agrupamento (Clustering)

- Os algoritmos de agrupamento buscam identificar padrões existentes em conjuntos de dados.
- Os algoritmos de agrupamento podem ser divididos em varias categorias:
 - Particionais ou Sequenciais;
 - Hierárquicos;
 - Baseados na otimização de funções custo;
 - Outros: Fuzzy, SOM, LVQ...

Algoritmos de Agrupamento (Clustering)

Algoritmos Particionais

- São algoritmos diretos e rápidos.
- Geralmente, todos os vetores de características são apresentados ao algoritmo uma ou várias vezes.
- O resultado final geralmente depende da ordem de apresentação dos vetores de características.

Algoritmos Particionais

- Basic Sequential Algorithmic Scheme (BSAS)
 - Todos os vetores são apresentados uma única vez ao algoritmo.
 - Número de clusters não é conhecido inicialmente.
 - Novos clusters s\(\tilde{a}\)o criados enquanto o algoritmo evolui.

Parâmetros do BSAS:

- d(x, C): métrica de distância entre um vetor de características x e um cluster C.
- **9:** limiar de dissimilaridade.
- q: número máximo de clusters.

Ideia Geral do Algoritmo:

 Para um dado vetor de características, designá-lo para um cluster existente ou criar um novo cluster (depende da distância entre o vetor e os clusters já formados).

Exemplo 1:

Qual pode ser um desafio nessa abordagem?

 Os algoritmos de agrupamento hierárquico pode ser divididos em 2 subcategorias:

Aglomerativos:

- Produzem uma sequência de agrupamentos com um número decrescente de clusters a cada passo.
- Os agrupamentos produzidos em cada passo resultam da fusão de dois clusters em um.

Divisivos:

- Atuam na direção oposta, isto é, eles produzem uma sequência de agrupamentos com um número crescente de clusters a cada passo.
- Os agrupamentos produzidos em cada passo resultam da partição de um único cluster em dois.

Exemplo 2 – Divisivo:

Processo inverso.

K-Means

- É a técnica mais simples de aprendizagem nãosupervisionada.
- Consiste em fixar k centróides (de maneira aleatória), um para cada grupo (clusters).
- Associar cada indivíduo ao seu centróide mais próximo.
- Recalcular os centróides com base nos indivíduos classificados.

- (1) Selecione k centróides iniciais.
 - (2) Forme k clusters associando cada exemplo ao seu centróide mais próximo.
 - (3) Recalcule a posição dos centróides com base no centro de gravidade do cluster.
- (4) Repita os passos 2 e 3 até que os centróides não sejam mais movimentados.

• Exemplo:

• Exemplo: k = 3

Seleciona-se k centróides iniciais.

• Exemplo: k = 3

• Exemplo: k = 3

• Exemplo: k = 3

• Exemplo: k = 3

• Exemplo: k = 3

• Exemplo: k = 3

• Exemplo: k = 3

Repite-se os passos anteriores até que os centróides não se movam mais.

• Exemplo: k = 3

• Exemplo: k = 3

• Exemplo: k = 3

Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.

Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.

Problemas do K-Means

 O principal problema do K-Means é a dependência de uma boa inicialização.

Critérios de Otimização [2]

- O problema consiste em encontrar os clusters que minimizam/maximizam um dado critério.
- Alguns critérios de otimização:
 - Soma dos Erros Quadrados.
 - Critérios de Dispersão

Soma dos Erros Quadrados

- É o mais simples e usado critério de otimização em clustering.
- Seja n_i o número de exemplos no cluster D_i e seja $\mathbf{m_i}$ a média desse exemplos $m_i = \frac{1}{n_i} \sum_{x \in D_i} x$
- A soma dos erros quadrados é definida $J_e = \sum_{i=1}^{c} \sum_{x \in D_i} ||x m_i||^2$

Soma dos Erros Quadrados

Adequado nesses casos

- Separação natural

Não é muito adequado para dados mais dispersos.

Outliers podem afetar bastante os vetores médios **m**

• Vetor médio do cluster $m_i = \frac{1}{n_i} \sum_{x \in D_i} x$

$$\mathbf{m} = \frac{1}{n} \sum_{D} X$$

$$S_i = \sum_{x \in D_i} (x - m_i)(x - m_i)^t$$

$$S_w = \sum_{i=1}^c S_i$$

$$S_B = \sum_{i=1}^{c} n_i (m_i - m)(m_i - m)^t$$

Relação Within-Between

Caso não ideal

Baixo between (S_b)

Baixa distância entre os clusters.

Alto within

 Podemos entender melhor os critérios de dispersão analisando o seguinte exemplo:

Diferentes clusters para c=2 usando diferentes critérios de otimização

Algoritmo K-Medoids

 Diferença para o k-means é que o representante do grupo é uma instância do próprio grupo e não mais um centróide (ponto médio);

Características Desejáveis

- descobrir clusters com forma arbitrária;
- identificar clusters de tamanhos variados;

trabalhar com objetos com qualquer número de atributos (dimensões)[4];

Características Desejáveis

- ser escalável para lidar com qualquer quantidade de objetos;
- exigir o mínimo de conhecimento para determinar os parâmetros de entrada;
- encontrar o número adequado de clusters[4].[3]

- O aprendizado não-supervisionado ou agrupamento (agrupamento) busca extrair informação relevante de dados não rotulados.
- Existem vários algoritmos agrupamento de dados.
- Diferentes escolhas de atributos, medidas de proximidade, critérios de agrupamento e algoritmos de agrupamento levam a resultados totalmente diferentes.

- O problema de clusterização é NP-Completo;
- Para um conjunto com 10 elementos:
 - com 2 clusters são 511 grupos possíveis;
 - na clusterização automática serão 115.975_{[4].}

 Na área de negócios, Clustering pode ajudar a descobrir grupos distintos nas bases de clientes;

• E caracterizar os grupos de clientes baseado nos padrões de compras[4].

 Etapa de pré-processamento para outros algoritmos, tais como caracterização e classificação, que iriam então operar nos clusters detectados[4].

Referência

- 1- Análise de Dados em Bioinformática Profs. Moscato & Von Zuben DCA/FEEC/Unicamp.
- 2- Aula de Clustering de pixels por Kmeans. A. Falcão & D. Menotti (UNICAMP e UFOP)
- 3- Aula de Análise de Agrupamento. C. A. A. Varella (UFRRJ).
- 4- Aula de Clustering. S. Tinôco (UFOP).