Program 10

Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Dataset

YearsExperience	Salary
1.1	39343
1.3	46205
1.5	37731
2	43525
2.2	39891
2.9	56642
3	60150
3.2	54445
3.2	64445
3.7	57189
3.9	63218
4	55794
4	56957
4.1	57081
4.5	61111
4.9	67938
5.1	66029
5.3	83088
5.9	81363
6	93940
6.8	91738

Code:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('salary_data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

Predicting the Test set results

```
y_pred = regressor.predict(X_test)
# Visualizing the Training set results
viz train = plt
viz_train.scatter(X_train, y_train, color='red')
viz_train.plot(X_train, regressor.predict(X_train), color='blue')
viz train.title('Salary VS Experience (Training set)')
viz_train.xlabel('Year of Experience')
viz_train.ylabel('Salary')
viz_train.show()
# Visualizing the Test set results
viz_test = plt
viz_test.scatter(X_test, y_test, color='red')
viz_test.plot(X_train, regressor.predict(X_train), color='blue')
viz_test.title('Salary VS Experience (Test set)')
viz_test.xlabel('Year of Experience')
viz_test.ylabel('Salary')
viz_test.show()
```

OUTPUT

