Sertion, edges, neighbours

Graphs Class 1

Adjouncy list Adjouncy Motoria

Priyansh Agarwal

(maph A set of nodes connected via Connected, o cyclic

graph

Types of Graphs

Weighted + Directed

Graph

- Undirected vs Directed
- Unweighted vs Weighted

- Complete graph

• Cyclic + Acyclic 7 H there end more than ow pathy
• Connected + Disconnected 2/w any 2 nodes

It show are any 2 nodes for which there doesn't exist o goth slw them

Undirected Diacted W

Common Terms

- Vertices + EdgesNeighbours + Degree
 - Self loop —> not (omidered Path + Walk + Cycle

 - Simple Graph
 - Bridge + Articulation Point

without appeating nodes and

fom AB Walk (10 Nowhols 0 nathour

Cycle to from A rppeating without Paup The vodes 1 edges endin nad Starting and

Trogh Sim PU 1000 & muttiple Graph with no set

Some Common Results

 An undirected graph where each node has at degree at least 2 will contain a cycle

• A directed graph where each node has at least 1 in-degree and at least 1 out-degree will contain a cycle

Some Common Results

• The sum of all degrees is even. The number of vertices with odd degree is even.

• Some more as we move ahead...

Sum = QUM 93 + ay + Ces

Representation

- Adjacency Matrix
- Adjacency List with Vector
- Adjacency List with Set
- Pros and Cons of each
 - How is Input given in problems?

A man'x nodes m edges a litt M 5 n2 C lect with adding edges trovers al remue ectos o(1)

void dts (int cus, edges, jarnt)
for (child: ebges (cuso))

Traversals

- DFS
- BFS (Single source and Multi source)
 - Application of Traversals
 - Connected components (Problem)
 - Path construction—
 - **Cycle detection**
 - Shortest Path (Problem)

Bipartite Graphs

- Algorithm
- Common Properties
 - Odd Length Cycles
 - A Tree is always bipartite
- Problem

