LEVERAGING MCTS FOR **OPTIMAL DECK BUILDING STRATEGIES** A PRESENTATION BY SPARSH **AMARNANI AND SAMAN KITTANI**

Rules for the Game

Goal: Collect The Most Money

Take Turns: **Buy Cards** Or Play Cards

Use Value Cards to **Buy Shop** Cards

Play Special Cards To **Thwart Your Rival**

Rules for the Game

Ability card Blackhole: A Card For A Card

Ability card Steal: Steal A Card

Discard **Hand And** draw to Three

End of Turn

MDP MODELING

- State Space:
 - Big!
 - N(Initial Shop States) = 420
 - N(initial Hand States) = 20
 - N(initial States)
 - = N(Initial Shop States) * 2(N(initial Hand States))
 - · = 16800
 - Approx. Max N(states from a action) = 105

MCTS

Steps

- heuristic based approach.
- Progressive Widening Variation
 - Used to mitigate consequences of vast state space
 - Limit new sampled states

• Select:

- Pick Best Leaf Node
- UCB1 algorithm
- Rollout:
 - Simulate ('bias' random)
 - o lose = -1 / win = 1
- back-propogate
- Repeat

Assumptions

- We assumed
 deferring turn is
 undesirable
- Smarter Rollout
 policies and value
 functions could
 improve
 performance

Progressive Widening

 By selecting appropriate parameters, we limited the number of sampled states per action to 40

Conclusion

- few seconds for 10,000 iterations
- MCTS is a key tool for vast state space challenges.