

FIG. 1

FIG. 4A

FIG. 4B

FIG. 3

FIG. 8

GENERAL RANGING PROCESS

FIG. 7A

5A

CU MONITORS GAP DURING PLURALITY OF SIGNATURE SEQUENCE FRAMES IN THE AUTHENTICATION INTERVAL AND PERFORMS CORRELATIONS DURING EACH GAP.

196/197
CU COUNTS THE NUMBER OF GAPS IN AUTHENTICATION INTERVAL THAT HAVE ACTIVITY AND COMPARES THAT NUMBER TO THE TOTAL NUMBER OF FRAMES IN THE AUTHENTICATION INTERVAL TO DETERMINE IF THE 50% ACTIVITY LEVEL LIMIT HAS BEEN EXCEEDED.

GREATER THAN 50% ACTIVITY

50% ACTIVITY DETECTED

199
198

CU IDENTIFIES RU FROM SIGNATURE AND BROADCASTS IDENTITY SO DETERMINED.

204
CU BROADCASTS MESSAGE TO ALL RU'S INSTRUCTING ALL RU'S ATTEMPTING SYNCHRONIZATION TO EXECUTE THEIR COLLISION RESOLUTION PROTOCOLS.

200
RU WITH IDENTITY BROADCAST BY CU RECOGNIZES ITS IDENTITY IN BROADCAST AND ENTERS FINE TUNING MODE.

206
EACH RU ATTEMPTING TO SYNCHRONIZE EXECUTES A RANDOM DECISION WHETHER TO CONTINUE ATTEMPTING TO SYNCHRONIZE OR TO STOP, WITH A 50% PROBABILITY OF EITHER OUTCOME.

202
CU INSTRUCTS RU ON HOW TO ADJUST ITS DELAY IN ORDER TO CENTER THE CORRELATION PEAK IN THE MIDDLE OF THE GAP/GUARDBAND.

208
RU'S THAT HAVE DECIDED TO CONTINUE RETRANSMIT THEIR SIGNATURE WITH THE SAME TIMING AS WAS USED ON THE LAST ITERATION

5B
FIG. 7B

TO FIG. 7C
5C

FIG. 7C
5C

6
FIG. 8
DEAD RECKONING RE-SYNC

CU INCLUDES IT
MUST ALTER ITS
DELAY VECTOR TO
ALLOW THE FARDEST
RU'S TO SYNCHRONIZE
TO THE SAME FRAME
AS THE NEAREST RU'S
AND BROADCASTS A
MESSAGE TO ALL RU'S
INDICATING WHEN AND
BY HOW MUCH IT WILL
ALTER ITS DELAY
VECTOR

248

EACH RU RECEIVES
BROADCAST AND
ALTERS ITS DELAY
VECTOR BY AMOUNT
INSTRUCTED AT TIME
CU ALTERS ITS DELAY
VECTOR

250

EACH RU REINITIATES
SYNCHRONIZATION
PROCESS

7
FIG. 9
PRECURSOR EMBODIMENT

RJ45 DIGITAL MODEM BLOCK DIAGRAM

FIG. 12

FIG. 13¹⁰

15
FIG. 17

11
FIG. 18

FIG. 101c

FIG. 15

13

16
FIG. 20

PREFERRED TRELLIS ENCODER

FIG. 42

17

MAPPING FOR FALL-BACK MODE - LSB'S

FIG. 43

21

18
FIG. 21

CODE	INPHASE	QUADRATURE	
0000	111	111	= -1 -
0001	001	111	= 1 -
0010	001	001	= 1 +
0011	111	001	= -1 +
0100	011	111	= 3 -
0101	001	011	= 1 + 3 *
0110	101	001	= -3 +
0111	111	101	= -1 - 3 *
1000	011	011	= +3 + 3 *
1001	101	011	= -3 + 3 *
1010	101	101	= -3 - 3 *
1011	011	101	= 3 - 3 *
1100	111	011	= -1 + 3 *
1101	101	111	= -3 -
1110	001	101	= 1 - 3 *
1111	011	001	= 3 +

403

19
FIG. 22

INFORMATION
VECTOR [B]
FOR EACH
SYMBOL

ORTHOGONAL
CODE MATRIX

$$483 \begin{bmatrix} 0110 \\ 1111 \\ 1101 \\ 0100 \\ \vdots \end{bmatrix} \times \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,144} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,144} \\ \vdots & \vdots & & \vdots \end{bmatrix}$$

20 A

~~FIG. 20A~~

REAL
PART OF
INFO
VECTOR
[b] FOR
FIRST
SYMBOL

$$405 \begin{bmatrix} +3 \\ -1 \\ -1 \\ +3 \end{bmatrix}$$

REAL
PART OF
RESULT
VECTOR

$$407 \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ -8 \end{bmatrix} 409$$

$$\begin{bmatrix} b_{\text{REAL}} \end{bmatrix} \times \begin{bmatrix} \text{CODE MATRIX} \end{bmatrix} = \begin{bmatrix} R_{\text{REAL}} \end{bmatrix} = \text{"CHIPS OUT" ARRAY-REAL}$$

20 B

~~FIG. 20B~~

LSBs $y_1\ y_0$	PHASE	$1+jQ$
00	0	$3-j$
01	90	$1+j3$
10	180	$-3+j$
11	-90	$-1-j3$

MSBs $y_3\ y_2$	PHASE difference (2nd-1st symbol)	$1+jQ$ WHEN $LSB=00$	$1+jQ$ WHEN $LSB=01$	$1+jQ$ WHEN $LSB=10$	$1+jQ$ WHEN $LSB=11$
00	0	$3-j$	$1+j3$	$-3+j$	$-1-j3$
01	90	$1+j3$	$-3+j$	$-1-j3$	$3-j$
10	180	$-3+j$	$-1-j3$	$3-j$	$1+j3$
11	-90	$-1-j3$	$3-j$	$1+j3$	$-3+j$

LSB & MSB FALLBACK MODE MAPPINGS

FIG. 44

22

FIG. 24

FIG. 25

EMBODIMENT 1
CARRIER RECOVERY

FIG. 35

25

FIG. 36

26

FIG. 27

DIGITAL MODEM BLOCK DIAGRAM

29
FIG. ~~26~~

Page 94, Line 8
Remove and Re-

FIG. 31

FIG. 28A 32

CU TRANSMITTER
P DATA STREAM
CONSTANT 72
13 B,T
GARNER
CODE

FIG. 27 33 T_d RU / CU (LAT, HOP)

FIG. 39 35

³⁶
FIG. 40

³⁷
FIG. 41

FINE TUNING
TO CENTER
BARKER CODE

FIG. 27

38

FIG. 28B
39

FIG. 28C
40

FIG. 28D
41

RU RANGING
FIG. 29

CU RANGING & CONTENTION RESOLUTION
RANGING AND CONTENTION RESOLUTION
CLOSED

FIG. 31⁴⁶

41

CONTENTION RESOLUTION - RU
USING BINARY STACK

FIG. 33 49
114

RANGING - RU SIDE
BINARY TREE
ALGORITHM

FIG. 32

50
49

FIG. 31

50

FIG. 52

51

STATE MACHINE

FIG. 53

52

EQUALIZATION
TRAINING ALGORITHM

TIME
ALIGN-
MENT

POWER
ALIGNMENT

FIG. 45A
53A

UPSTREAM
EQUALIZATION

CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION.

1114

RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES.

1116

CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT(COEFFICIENT) ADJUSTMENTS.

1118

TAP WEIGHT (COEFFICIENT) ADJUSTMENTS CONTINUE UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO.

1120

AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU.

1122

RU SETS FINAL FFE & DFE COEFFICIENTS INTO PRECODE FFE/DFE FILTER IN TRANSMITTER.

1124

CU SETS COEFFICIENTS OF FFE 765 AND DFE 820 TO ONE FOR RECEPTION OF UPSTREAM PAYLOAD DATA.

1126

TO FIG. 45C

FIG. 45B

538

54c
FIG. ~~45C~~

53c

FIG. 49

54

FIG. 50 5/6

51
56

SYNCHRONOUS TDMA SYSTEM

FIG. 54

OFFSET	1B ASIC		2A ASIC	
(Chips)	RGSRH	RGSRL	RGSRH	RGSRL
0	0x0000	0x8000	0x0001	0x0000
1/2	0x0000	0xC000	0x0001	0x8000
1	0x0000	0x4000	0x0000	0x8000
-1	0x0001	0x0000	0x0002	0x0000

FIG. 58

Training Algorithm

FIG. 59

Initial 2-Step Training Algorithm

2 - STEP INITIAL EQUALIZATION TRAINING
FIG. 60

EQ Stability Check

Note: $Thrld_{coeff} = 7F00H$ $Thrld_{stable} = 10^{-3}$

FIG. 61

Periodic 2-Step Training Algorithm

FIG. 6 2

RACM Correction

Note: $Thrld_{amp} = TBD$

$Thrld_{phase} = TBD$

OPTIONAL AMPLIFIER CORRECTION

FIG. 63

EQ Convergence Check

Note: $Thrl_{converge} = 10^{-5}$

FIG. 64

Power Alignment Flow Chart

FIG. 65

FIG. 66

Total Turn Around (TTA) in frames = Offset

FIG. 67

FIG. 68

Figure 3.1: Frame start propagation along the channel

FIG. 69

~~Figure 69~~ Control message (downstream) and function (upstream) propagation in a 3 frames TTA channel

FIG. 70

Center of gap no. 1

Figure 3.4: Overall view of the CU sensing windows in a “boundless ranging” algorithm

FIG. 71

Chip\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	...	0
2	1	0	0	1	1	1	1	...	
3	0	0	0	1	1	1			
4	0	0	0	1	0	0	0	...	0
5	0	1	0	0	1				
6	0	0	1	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	...	

FIG. 72

UPLINK EQUALIZATION

CU SENDS MESSAGE TO RU TELLING IT TO SEND EQUALIZATION DATA TO CU USING ALL 8 OF THE FIRST 8 ORTHOGONAL CYCLIC CODES AND BPSK MODULATION.

1116

RU SENDS SAME TRAINING DATA TO CU ON 8 DIFFERENT CHANNELS SPREAD BY EACH OF FIRST 8 ORTHOGONAL CYCLIC CODES.

1118

CU RECEIVER RECEIVES DATA, AND FFE 765, DFE 820 AND LMS 830 PERFORM ONE INTERATION OF TAP WEIGHT(COEFFICIENT) ADJUSTMENTS.

1120

TAP WEIGHT (COEFFICIENT) ADJUSTMENTS CONTINUE UNTIL CONVERGENCE WHEN ERROR SIGNALS DROP OFF TO NEAR ZERO.

1122

AFTER CONVERGENCE DURING TRAINING INTERVAL, CU SENDS FINAL FFE AND DFE COEFFICIENTS TO RU.

IN CU

1124

CONVOLVES SE CIRCUIT
FILTERS FINAL FFE & DFE
COEFFICIENTS INTO PRECODE
FFE/DFE FILTER IN COEFFICIENTS
TRANSMITTER AND LOAD NEWLY

TRANSPARENCY
VALUES

CALCULATED
COEFFICIENTS
INTO RU
XMTR PRECODE
FILTER

CU SETS COEFFICIENTS OF
PRE 765 AND DFE 820 TO
ONE FOR RECEPTION OF
UPSTREAM PAYLOAD DATA.

TO FIG. 45B

FIG. 45B
54B

53B

FAXED TO
DI MUELLER
10/25/00
(909) 596-3733

FROM FIG. 45B

112B

DOWNTREAM
EQUALIZATION

CU SENDS EQUALIZATION TRAINING DATA TO RU SIMULTANEOUSLY ON 8 CHANNELS SPREAD ON EACH CHANNEL BY ONE OF THE FIRST 8 ORTHOGONAL CYCLIC CODES MODULATED BY BPSK.

1130

RU RECEIVER RECEIVES EQUALIZATION TRAINING DATA IN MULTIPLE ITERATIONS AND USES LMS 830, FFE 765, DFE 820 AND DIFFERENCE CALCULATION CIRCUIT 832 TO CONVERGE ON PROPER FFE AND DFE TAP WEIGHT COEFFICIENTS.

1132

AFTER CONVERGENCE, CPU READS FINAL TAP WEIGHT COEFFICIENTS FOR FFE 765 AND DFE 820 AND LOADS THESE TAP WEIGHT COEFFICIENTS INTO FFE/DFE CIRCUIT 764; CPU SETS FFE 765 AND DFE 820 COEFFICIENTS TO INITIALIZATION VALUES.

CONVOLVES THESE SG FILTER TAP WEIGHTS WITH THE OLD FILTER TAP WEIGHTS OF THE FFE AND DFE FILTERS OF RE CIRCUIT 764 AND LOADS THE NEWLY CALCULATED TAP WEIGHT INTO THE FFE AND DFE FILTERS OF THE CE CIRCUIT

FIG. 45C

53C

Initial 2-Step Training Algorithm

2 - STEP INITIAL EQUALIZATION TRAINING

FIG. 60