Reihen 1

Definition 1.1

Folge der Partialsummen heißt Reihe.

Reihe konvergent, wenn eine Summe existiert.

Reihe divergent, wenn die Folge der Partialsummen divergent.

1.2 Absolute Konvergenz

1.2.1 Definition

Eine Reihe $\sum_{k=1}^\infty a_k$ heißt genau dann absolut konvergent, wenn die zugehörige Reihe $\sum_{k=1}^\infty |a_k|$ konvergiert.

Bsp

$$\begin{array}{l} \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} \\ a_k = -\frac{1}{2k-1} < - \text{ ungeraden} \\ b_k = \frac{1}{2k} < - \text{ geraden} \end{array}$$

$$\begin{array}{l} b_k \text{ ist harmonische Reihe} \\ \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} = \infty \\ a_k : a_k = -\frac{1}{2k-1} \\ M := 1 + |\lim_{n \to \infty} \sum_{k=1}^n (-1)^k \frac{1}{k}| \end{array}$$

Umsortieren der Glieder von a_k und b_k . Anfang aller Glieder von b_k kommen bis die Summe größer als M+1 ist, dann das nächste a_k wählen, so ist die nächste Partialsumme größer als M.