CCD 成像测量金属的杨氏模量

雷逸鸣

1 计算公式

经推导可知杨氏模量计算公式为:

$$E = \frac{4mgL}{\pi d^2 \delta L}$$

1.1 测量数据

1) 金属线长度:

$$L_2 = 103.81 \text{cm}$$

 $L_1 = 28.70 \text{cm}$
 $L = L_2 - L_1 = 74.91 \text{cm}$

接下来估算不确定度, 取最小分度值

得:

$$\sigma_L = \frac{0.1 \text{cm}}{\sqrt{3}} = 0.058 \text{cm}$$

2) 金属丝直径:

测量数据:

表 1 金属丝直径测量数据

测量次数	d/mm				
1	0.321				
2	0.320				
3	0.321				
4	0.321				
5	0.320				
6	0.320				
7	0.319				
8	0.321				
9	0.322				
10	0.321				

统计上述数据得到:

$$\bar{d} = 0.3206$$
mm

由于实验使用的螺旋测微仪零点误差 $d_0 = 0.000$ mm,故不需要修正零点。

计算误差:

$$\sigma_{\bar{d}} = \sqrt{\frac{\Sigma_{i=1}^{10} \left(d_i - \bar{d}\right)^2}{10 \cdot (10 - 1)} + \left(\frac{e_d}{\sqrt{3}}\right)^2} = 5.8 \times 10^{-3} mm$$

其中ea取为最小分度值 0.01mm。

3) 砝码质量: 测量数据:

表 2 砝码质量测量数据

砝码序号	m/g
1	200.10
2	199.98
3	200.27
4	199.86
5	199.84
6	199.74
7	199.86
8	199.86
9	199.98

统计上述数据得到:

 $\bar{m} = 199.943g$

下面计算误差:

$$\sigma_{\bar{m}} = \sqrt{\frac{\Sigma_{i=1}^{9} (m_i - \bar{m})^2}{9 \cdot (9 - 1)} + \left(\frac{e_{\rm m}}{\sqrt{3}}\right)^2} = 0.054g$$

其中em取为最小分度值 0.01g。

4) 金属丝伸长量:

测量数据:

表 3 金属丝拉伸变化数据表

i	m/g	r_i/mm	$r_i^{'}/\mathrm{mm}$	$\overline{r}_{\!\scriptscriptstyle l}/{ m mm}$	$\delta L/{ m mm}$
0	0.00	2.38	2.40	2.390	0.545
1	200.10	2.5	2.51	2.505	0.535
2	400.08	2.62	2.62	2.620	0.530
3	600.35	2.72	2.72	2.720	0.545
4	800.21	2.84	2.83	2.835	0.535
5	1000.05	2.93	2.94	2.935	/
6	1199.79	3.04	3.04	3.040	/
7	1399.65	3.15	3.15	3.150	/
8	1599.51	3.26	3.27	3.265	/

求得:

$$\begin{split} \overline{\delta L} &= 0.538 \text{mm} \\ \sigma_{\overline{\delta L}} &= \sqrt{\frac{\Sigma_{i=1}^5 \left(\delta \mathcal{L}_i - \overline{\delta \mathcal{L}}\right)^2}{5 \cdot (5-1)} + \left(\frac{e_{\delta \mathcal{L}}}{\sqrt{3}}\right)^2} = 6.5 \times 10^{-3} mm \\ &= \text{其中} e_{\delta \mathcal{L}} \text{取为最小分度值 } 0.01 \text{mm}. \end{split}$$

5) 重力加速度:

取北京重力加速度 $g = 9.801m/s^2$

将以上实验数据统一整理为:

$$L = 74.910 \pm 0.06 cm$$

$$d = 0.321 \pm 0.006 mm$$

$$m = 199.94 \pm 0.06 g$$

$$\delta L = 0.538 \pm 0.007 mm$$

$$g = 9.801 m/s^{2}$$

1.2 使用逐差法处理数据

剩将上述数据代入计算公式得:

$$E = 1.686 \times 10^{11} Pa$$

计算不确定度:

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{2 \cdot \sigma_d}{d}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_{\delta L}}{\delta L}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2} = 0.040$$

由此得出:

$$E = 1.69 \pm 0.07 \times 10^{11} Pa$$

接下来比较误差来源:

$$\frac{\sigma_m}{m} = 3 \times 10^{-4}$$

$$\frac{\sigma_{\delta L}}{\delta L} = 0.013$$

$$\frac{\sigma_L}{L} = 8 \times 10^{-4}$$

$$\frac{2 \cdot \sigma_d}{d} = 0.037$$

由此看出,d和 δL 是主要误差来源。

1.3 最小二乘法处理数据

杨氏模量的公式可以变形为:

$$\delta L = \frac{4gL}{\pi E d^2} \cdot m$$

由于 m 的测量精度比 δL 的精度大两个数量级,故取 m 为横坐标,纵坐标取为 \overline{r} ,绘图如下:

代入公式计算得:

$$\sigma_k = k \sqrt{\frac{r^{-2} - 1}{n - 2}} = 2.6 \times 10^{-6} \text{m/kg}$$

解得:

$$E = 1.676 \times 10^{11} \text{Pa}$$

不确定度:

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{2 \cdot \sigma_d}{d}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$

带入数据得:

$$\frac{\sigma_E}{E} = \sqrt{(0.037)^2 + (8 \times 10^{-4})^2 + (4.8 \times 10^{-3})}$$
$$= 0.037$$

由此看出, d 的误差仍是主要影响因素。

$$E = 1.68 \pm 0.06 \times 10^{11} Pa$$

1.4 两种方法对比

比较计算结果,我们可以发现,两种计算方法得到的杨氏模量数值差距不大,不确定度也比较接近,需要注意的是,第二种方法由于我们取定 m 为自变量,故其不确定度被忽略了。这样做的条件是其误差较小对结果影响为一小量。

本实验最大误差来源是铁丝直径,故在改 进实验方法时,可以首先改进铁丝直径的测 量。

姓名 整图 学号 >3000 以下以 星期一第 红 页码 0] /
杨氏模量,
被决 法:
TETERAT E = TINGL TO SEL
河西量和河东· 有抗 asmm 证 有花 3.
d: 0.321 mm 0.321 mm 0.321 mm
13934m . 0.319 mm . 0.322 mm . 0.321 mm
1: 10).9 cm 29.5 cm
totten. 3.5cm
103.8cm >8.7cm.
patab:
工术实验.
L. l. = >8. Cm ls = 103.6cm. L= 74.9cm.
d. d. 321 µm 320 µm 320 µm
320 jun 321 jun 322 jun 321 jun -
TETES 1 1 2 9. On= 0.01g.
$m_1 = 200.10g$ $m_2 = 199.98g$ $m_3 = 200.21g$ $m_4 = 199.86g$
m= 199.849, m=199.749 m=199.869 ms=189.869 mq=199.989
3 = 9.801 m/s
3 = 9.801 m/c 2

姓名	学-	号	1	星期第二	组	页码 /
减弱4秒。	Do	顽	255			
1	[i/mm	ri/mm	F/mm	& Sr	dl=	ries - Vi
0	2.38	2.40	2.390	0,0 2		
	2.500	2.51	2.5065)	0.01	(_	1
2	2.62	2.62 .	2620	0.00		
	2. 2	2.72	2,720	0.00		
		2.83	2.84(-5)	0,0)		
4	2.84		2.94 (-5)	0.0		
2	2.93	2.94 .	3,04 0	aov		
6	3.04	3.04 ·		0,00		
7	3.12.	3.15	3150			
3	3.26	7.2	7.26(+5)	0.0]		
9	3.37	3.3	3.370	10.00 n		
4 3 4			2	19911	· b	
8L >	0.1076mm		E = 1.69	×10 11 kg m ⁻¹ S ⁻²	PK	
			3	Maria		Б
				23	45/4	
	67 1 50		4 4 4 4	323		