

Departamento de Engenharia Informática

Administração de Sistemas Ficha de Avaliação

28 de Novembro de 2006 - Duração: 1h45m + 15m

RESOLVA CADA GRUPO EM FOLHAS SEPARADAS

GRUPO I

1- Que informação é enviada pelo router A e pelo router B? Quais as consequências no encaminhamento:

- a) Usando RIP V1?
- b) Usando EIGRP?
- c) Configure os IPs das interfaces que estão ligadas ao Router C (apresentando as linhas de comandos). Considere que as interfaces são a Serial2/0 e Serial3/0.

Nota: Para as alíneas a) e b), assuma que as configurações estão bem feitas.

2- Configure os routers da figura anterior de modo a utilizarem o protocolo de encaminhamento EIGRP (apenas o router A e o router B trocam informação entre eles).

GRUPO II

3- Indique o(s) erro(s) de configuração? Justifique. Apresente as soluções para a sua correcção.

Departamento de Engenharia Informática

Administração de Sistemas Ficha de Avaliação

28 de Novembro de 2006 - Duração: 1h45m + 15m

RESOLVA CADA GRUPO EM FOLHAS SEPARADAS

- 4- A sua empresa tem para utilização a rede 194.168.1.0/24. Considere que pretende implementar uma solução que satisfaça os seguintes requisitos:
- Departamento comercial 60 máquinas
- Departamento técnico 32 máquinas
- Departamento marketing 10 máquinas
- Departamento qualidade 6 máquinas
- Departamento recursos humanos 14 máquinas

De modo a minimizar o desperdício de endereços IP, apresente uma solução que aproveite ao máximo o nº de IPs disponíveis.

Nota: Cada departamento deve ter a sua "rede".

GRUPO III

5- Efectue a agregação dos caminhos à esquerda do "Router0", de modo a que todos os destinos permaneçam atingíveis.

- 6- Considere a figura (da página seguinte):
- a) Configure correctamente todas as portas do Switch0.
- b) Configure todo o sistema de modo a que seja possível existir comunicação entre a VLAN1 e a VLAN2. Faça as alterações que considere necessárias para resolver o problema. Nota: Apenas tem de explicar as alterações e as respectivas configurações.

Departamento de Engenharia Informática

Administração de Sistemas Ficha de Avaliação

28 de Novembro de 2006 - Duração: 1h45m + 15m

RESOLVA CADA GRUPO EM FOLHAS SEPARADAS

GRUPO IV

- 7- Configure o sistema (nos locais mais "adequados"!), de modo a que satisfaça os seguintes requisitos:
- a)
- 1- A subrede 172.16.1.0/24 não aceita "pings" do exterior
- 2- A subrede 172.16.1.0/24 não aceita tráfego da subrede 192.168.3.0/25
- 3- Apenas as máquinas 192.168.2.5 e 192.168.1.6 não acedem ao servidor de jogos (porta 1100)
- 4- A rede 192.168.2.0 não pode aceder ao servidor http
- 5- Na rede 192.168.1.0 apenas a máquina 192.168.1.6 acede ao servidor http
- 6- A impressora apenas pode ser utilizada por máquinas que se encontrem em 192.168.2.0/24 e 192.168.3.0/25
- b) Que protocolo de encaminhamento utilizaria na configuração dos routers? Justifique (Assuma que nem todos os routers são da Cisco).

Departamento de Engenharia Informática

Administração de Sistemas Ficha de Avaliação

28 de Novembro de 2006 - Duração: 1h45m + 15m

8- Considere a seguinte figura:

A sua empresa dispõe de quatro endereços IP "públicos". O acesso à Internet por parte dos PCs é feito através da utilização do *Proxy*. Configure o sistema de modo a que o servidor de mail, o servidor http, o proxy e os PCs acedam à Internet. Tenha em atenção que os três servidores têm de ser "vistos" do exterior.

- a) Utilize NAT estático.
- b) Para reduzir os custos, a sua empresa tem apenas um endereço IP livre. Configure o sistema de modo a dar acesso à Internet a todas as máquinas. (Sugestão: Utilize PAT).

Departamento de Engenharia Informática Administração de Sistemas

Router# enable
Router# configure terminal

Router(config)# interface othernet [slot_#/[port_#] Router(config-if)# media-type media_type Router(config-if)# speed 10[100]auto Router(config-if)# [no] half-duplex

Router(config)# interface serial [slot_#/]port_#
Router(config-if)# clock rate rate_in_bits_per_second

Router(config)# interface type [slot_#/[port_#] Router(config-if)# ip address IP_address subnet_mask

Router(config)# ip host name_of_host [TCP_port_#]

IP_address_of_host [2nd_IP_address...]

Router(config)# ip name-server IP_address_of_DNS_server [2nd_server's_IP address ...]

Router# show interfaces [type [slot_#/[port_#]]
Router# show ip interface [type [slot_#/[port_#]]]
Router# show ip interface brief
Router# show hosts
Router# show version
Router# show running-config
Router# show ip route
Router# show ip protocols

Router(config)# ip route destination_network_#
[subnet_mask]
IP_address_of_next_hop_neighbor
[administrative_distance] [permanent]

Router(config)# ip route 0.0.0.0 0.0.0.0

IP_address_of_next_hop_neighbor
[administrative_distance] [permanent]

Router(config)# ip classless

Router(config)# interface type port_#.subinterface_#
[point|multipoint]

Router(config)# interface type port_#.subinterface_#
Router(config-subif)# encapsulation isl|dot1q VLAN_#

Router(config)# router name_of_the_IP_routing_protocol

Router(config-router)# network IP_network_#

Router(config)# router rip Router(config-router)# version 1|2

Router(config)# router eigrp autonomous_system_#
Router(config-router)# network IP_network_#
Router# show ip eigrp neighbors
Router# show ip eigrp topology
Router# show ip eigrp traffic
Router# debug ip eigrp

Router(config)# access-list 1-99|1300-1999 permit|deny source_IP_address [wildcard_mask] [log]

Router(config)# interface type |slot_#|port_# Router(config-if)# ip access-group ACL_# in|out

Router(config)# access-list 100-199|2000-2699 permit|deny

IP_protocol
source_address source_wild\$card_mask
{protocol_information}
destination_address destination_wildcard_mask
{protocol_information} [log]

Router(config)# access-list 100-199|2000-2699

permit|deny

tcp|udp

source_address source_wildcard_mask

[operator source_port_#]

destination_address destination_wildcard_mask

[operator destination_port_#]

operator= eq | lt | gt | neq | range

[established] [log]

Router(config)# access-list 100-199|2000-2699
permit|deny icmp
source_address source_wildcard_mask
destination_address destination_wildcard_mask
[icmp_message] [log]

Router(config)# interface type [slot_#/[port_# Router(config-if)# ip nat inside]outside

Router(config)# ip nat inside source
list standard_IP_ACL_#
pool NAT_pool_name
Router(config)# ip nat pool NAT_pool_name
beginning_inside_global_IP_address
ending_inside_global_IP_address
netmask_subnet_mask_of_addresses

Router(config)# ip nat inside source
list standard_IP_ACL_#
pool NAT_pool_name overload
Router(config)# ip nat pool NAT_pool_name
beginning_inside_global_IP_address
ending_inside_global_IP_address
netmask_subnet_mask_of_addresses

Switch(config)# interface type slot_#/port_#
Switch(config)# ip address IP_address subnet_mask
Switch(config)# ip default-gateway router's_IP_address
Switch# copy running-config startup-config

Switch # vlan database
Switch (vlan)# vtp domain VTP_domain_name
Switch (vlan)# vtp server|client|transparent
Switch (vlan)# vtp password VTP_password
Switch (vlan)# vtp pruning
Switch (vlan)# abort
Switch # show vtp status
Switch (config)# interface type 0/port_#
Switch (config-if)# switchport mode trunk|dynamic desirable| dynamic auto|nonegotiate

Switch (config-if)# switchport trunk native vlan VLAN_# Switch # vlan database Switch (vlan)# vlan VLAN_# [name VLAN_name] Switch (config)# interface type 0/port_# Switch (config-if)# switchport mode access Switch (config-if)# switchport access vlan VLAN_#

10000000	1100000	11100000	11110000
128	192	224	240
11111000	11111100	11111110	11111111
248	252	254	255