

Department of Computer Science Miskatonic University

Panda Cubs, Distributed Networks and Others

How They Survive in Distributed Networks and Why?

September 2, 2021

Contents

- 1 Elements
- Overlays

¹/₁₇

Outline for Elements

1 Elements
Blocks
List Environments
Illustrations

Overlays

²/₁₇

Definition

The definition below is from Angluin 1980.

Definition

Here is a definition block.

Theorem

The following is proved in Yamashita and Kameda 1996, pp. 74-75.

Theorem

Here is a theorem block.

Alert

If you want to alert something, just do it.

Notice

I can eat glass. It does not hurt me.

You Can Also Define by Yourself

Conjecture

An (x,bx)-biregular graph $G=(U\cup V,E)$ is the union of b edge-disjoint bipartite x-regular subgraphs.

Unordered/Order List

What a panda cub can bite:

- Bamboos
- Cookies
- Glass, of course

What you have to do next:

- Eat
- Pray
- B Love

//17

Elements List Environments

List With Item Labels

Morgan An American financier and banker

Bach A German composer and musician

Naipaul A Trinidad and Tobago-born British writer

Elements List Environments

Figures

(Photo by Pascal Müller on Unsplash)

Elements Illustrations

Tables

Table 1

ID	Age	Salary	Panda
1	11	11111	11
2	7	78	0
3	121	0	302
4	43	18744	1
5	88	-342	6344

Table 2

Elements Illustrations (10/17)

Outline for Overlays

- Elements
- Overlays
 Usages
 Examples

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally. An example:

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally. An example:

One

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally. An example:

- One
- Two

The command \pause makes the text following it to be shown only from the next slide on, which is a command using \onslide internally. An example:

- One
- Two
- Three

\uncover, \visible & \only

- \uncover The text occupies space and is still typeset, but it is not shown or only shown as if transparent
 - \visible It is almost the same as \uncover, except that if the text is not shown, it is never shown transparently, but rather it is not shown at all
 - **\only** The text is inserted only into the specified slides and for other slides, it is thrown away and occupies no space

A labelling is a set of local labelling functions.

• The vertex-labelled graph *G*

A labelling is a set of local labelling functions.

- The vertex-labelled graph *G*
- The local labelling function f_{ν_3} , for $f_{\nu_3}(\nu_2)=2$ and $f_{\nu_3}(\nu_4)=1$

A labelling is a set of local labelling functions.

- The vertex-labelled graph *G*
- The local labelling function f_{ν_3} , for $f_{\nu_3}(\nu_2)=2$ and $f_{\nu_3}(\nu_4)=1$
- The labelling $\mathbf{f} = \{f_{\nu_1}, f_{\nu_2}, f_{\nu_3}, f_{\nu_3}, f_{\nu_4}, f_{\nu_5}\}$

References

- Angluin, Dana (1980). "Local and global properties in networks of processors". In: Proceedings of the twelfth annual ACM symposium on Theory of computing. Acm, pp. 82–93 (cit. on p. 4).
- Yamashita, Masafumi and Tsunehiko Kameda (1996). "Computing on anonymous networks: part I—characterizing the solvable cases". In: *IEEE Transactions on parallel and distributed systems* 7.1, pp. 69-89 (cit. on p. 5).

¹⁶/₁₇

/1/

Thank you very much!

Q & A

$$1 \le s_{\mathbf{f}} \le 36$$

$\frac{T_1}{v_1}$		
v_1		

$$1 \le s_{\mathbf{f}} \le 36$$

$\frac{T_1}{v_1}$	T_2		
v_1	v_2		

$$1 \le s_{\rm f} \le 18$$

T_1	T_2		
v_1	v_2 v_3		
	v_3		

$$2 \le s_{\rm f} \le 18$$

${T}_1$	T_2	T_3	
v_1	$v_2 \ v_3$	$ u_4 $	
	v_3		

$$2 \le s_{\mathbf{f}} \le 12$$

T_1	T_2	T_3	T_4	
v_1	v_2	v_4	v_5	
	v_2 v_3			

$$2 \le s_{\mathbf{f}} \le 9$$

T_1	T_2	T_3	T_4	
v_1	v_2	v_4	v_5	
	v_2 v_3	$\begin{array}{c c} v_4 \\ v_6 \end{array}$		

$$2 \le s_{\mathbf{f}} \le 9$$

T_1	T_2	T_3	T_4	
v_1	v_2	$ u_4 $	$oldsymbol{ u}_5 \ oldsymbol{ u}_7$	
	v_2 v_3	$\begin{array}{c c} v_4 \\ v_6 \end{array}$	v_7	

$$2 \le s_{\mathbf{f}} \le 9$$

T_1	T_2	T_3	T_4	
v_1	v_2	v_4	v_5	
$oldsymbol{v}_1 \ oldsymbol{v}_8$	v_2 v_3	$v_4 \ v_6$	$oldsymbol{ u}_5 \ oldsymbol{ u}_7$	

$$2 \le s_{\mathbf{f}} \le 9$$

T_1	T_2	T_3	T_4	
v_1	v_2	v_4	v_5 v_7	
$egin{array}{c} u_1 \ u_8 \end{array}$	v_2 v_3	$egin{array}{c} u_4 \ u_6 \ u_9 \end{array}$	v_7	
		v_9		

$$3 \le s_{\mathbf{f}} \le 9$$

T_1	T_2	T_3	T_4	
v_1	v_2	ν_4	v_5	
$egin{array}{c} u_1 \ u_8 \end{array}$	v_2 v_3	$egin{array}{c} u_4 \ u_6 \ u_9 \end{array}$	v_7	
		v_9	v_{10}	

$$3 \le s_{\mathbf{f}} \le 9$$

T_1	$\mid T_2 \mid$	T_3	T_4	
v_1	v_2	ν_4	v_5	
$egin{array}{c} u_1 \ u_8 \end{array}$	v_2 v_3	$v_6 \ v_9$	v_7	
		v_9	v_{10}	
			v_{11}	

$$6 \le s_{\bf f} \le 9$$

T_1	T_2	T_3	T_4	
v_1	v_2	ν_4	v_5	
v_8	v_3	v_6	v_7	
		v_9	v_{10}	
			v_{11}	
			v_{12}	

$$6 \le s_{\bf f} \le 9$$

Given a graph with 36 vertices, s_f can be 1, 2, 3, 4, 6, 9, 12, 18 or 36:

${T}_1$	T_2	T_3	T_4	T_5
v_1	v_2	$ u_4 $	v_5	
v_8	v_3	v_6	v_7	
		v_9	v_{10}	
			v_{11}	
			v_{12}	

$$6 \le s_{\mathbf{f}} \le 9$$

The squares above are v_{13} 's possible places.

Can You Explain the Order of Terms in List of Symbols?

- It is automatically generated by the external MakeIndex program along with LaTeX package nomencl, using default settings
- Yes, it even looks bizarre to me as well

Your Paper is Hard to Understand . . .

After today's presentation, do you feel a little better?

$$Your \ answer = \begin{cases} Yes & Phew, thank you! \\ No & Is it too late to say sorry? \end{cases}$$