

We will prove that every amount of postage greater than or equal to 12¢ can be formed using 4¢ and 5¢ stamps. Another way to express this is to say for all $n \ge 12$ ¢, n¢ = $a \cdot 4$ ¢ + $b \cdot 5$ ¢ for $a \ge 0$ and $b \ge 0$. Thus we will let P(n) be the proposition that n¢ = $a \cdot 4$ ¢ + $b \cdot 5$ ¢ $\land a \ge 0$ $\land b \ge 0$.

Base Case: (P(12)):

$$12 = 3 \cdot 4 + 0 \cdot 5$$

Thus the base case is true.

Inductive Hypothesis $(P(k) \to P(k+1))$, where P(k) is the assumption that $k = a \cdot 4 + b \cdot 5$ $\land a \ge 0 \land b \ge 0$.

We assume that P(k) is true, but we will break P(k) down into 2 possibilities: either we use at least one 4¢ stamp to make k¢ of postage, or we do not use any 4¢ stamps to make k¢ of postage. We prove each case separately. First we formally define the cases:

a.	P(k)		Assumption
b.	$P(k) \wedge T$	a	Identity
c.	$P(k) \land ($ uses 4¢ stamps \lor uses no 4¢ stamps $)$	b	Negation
d.	$(P(k) \land \text{uses } 4\text{¢ stamps}) \lor$	С	Distribution
	$(P(k) \land \text{ uses no } 4 \text{¢ stamps})$		
e.	$(P(k) \land a \ge 1) \lor (P(k) \land a = 0)$	d	(Alternate
			expression using
			definition of P(k)

Thus we have two cases to consider. For case 1, we will explain in English, then show the proof.

Case 1: The assumption is that we can make $k \notin postage$ using some combination of $4 \notin postage$ and $5 \notin postage$, and we have used at least one $4 \notin postage$. We take away one $4 \notin postage$, which gives us $(k-3) \notin postage$, then substitute a $5 \notin postage$ which brings us to $(k+1) \notin postage$ using only $4 \notin postage$ and $5 \notin postage$.

Formal proof:

a. $P(k) \land \text{ uses } 4\text{\mathfrak{c} stamps}$		Assumption	
b. $P(k) \wedge (a \ge 1)$		(Equivalent expression)	
c. $P(k)$	b	Simplification	
d. $k = a \cdot 4 + b \cdot 5 $ $ \land a \ge 0 \land b \ge 0 $	С	Definition of P(k)	
e. $k = a \cdot 4 + b \cdot 5 $	d	Simplification	
f. $(k+1)$ ¢ = $a \cdot 4$ ¢ + $b \cdot 5$ ¢ + 1¢	e	Math (add 1¢ to both	
		sides)	
g. $(k+1)$ ¢ = $(a-1) \cdot 4$ ¢ + $b \cdot 5$ ¢ + 4¢ +	f	Math	
1¢			
h. $(k+1)$ ¢ = $(a-1) \cdot 4$ ¢ + $b \cdot 5$ ¢ + 5 ¢	g	Math	
i. $(k+1)$ ¢ = $(a-1) \cdot 4$ ¢ + $(b+1) \cdot 5$ ¢	h	Math	
Let $a' = a - 1$ and $b' = (b + 1)$			
j. $a \ge 1$	b	Simplification	
$k. a' \geq 0$	j	Math	
$l. b \geq 0$	d	Simplification	
$m. b' \geq 0$	1	Math	
n. $(k+1)$ ¢ = a' · 4¢ + b' · 5¢	i	Substitution / Math	
o. $(k+1)$ ¢ = $a' \cdot 4$ ¢ + $b' \cdot 5$ ¢ $\wedge a' \ge 0$ \wedge	k,m,n	Conjunction	
$b' \ge 0$			
p. P(k+1)	О	Definition of P(k+1)	
p. 1 (K+1)	U	Deminuon or r (k+1)	

Case 2, we will explain in English, then show the proof. The assumption is that we can make $k \notin postage$ using some combination of $4 \notin and 5 \notin stamps$, but we do not use any $4 \notin stamps$. Since our claim is for postages of $\geq 12 \notin$, there must be at least $3 \times 5 \notin stamps$ to reach a value $\geq 12 \notin$, which implies that $k \geq 3 \times 5 = 15$. We remove $3 \times 5 \notin stamps$, which gives us $(k-15) \notin in postage$, then substitute a $4 \times 4 \notin stamps$ which adds $16 \notin in postage$ and brings us to $(k+1) \notin in postage$. Thus we can make correct $(k+1) \notin in postage$ using only $4 \notin in postage$.

To prove this case we use the following lemma:

Lemma 1: if there are no $4\$ stamps, then there are at least three $5\$ stamps. Alternately, using the definition of P(k), this can be expressed as: $(P(k) \land a=0) \rightarrow (b \ge 3)$.

Lemma 1:

a.	$P(k) \wedge a=0$		Assumption
b.	a = 0	a	Simplification
C.	P(k)	a	Simplification
d.	$k = a \cdot 4 + b \cdot 5 $	С	Definition of P(k)
e.	$k = a \cdot 4 + b \cdot 5 $	d	Simplification
f.	$k = a \cdot 4 + b \cdot 5 \wedge a = 0$	b,e	Conjunction
g.	$k \ge 12$		Definition of P(k)
h.	$k = a \cdot 4 + b \cdot 5 \wedge a = 0 \wedge k \ge 12$	f,g	Conjunction
i.	$k = 0 \cdot 4 + b \cdot 5 \wedge k \ge 12$	h	Math
j.	$k = 0 \cdot 4 + b \cdot 5 \ge 12 $	i	Math
k.	$b \cdot 5 \Leftrightarrow 212 \Leftrightarrow$	j	Math
l.	$b \ge \frac{12\mathfrak{c}}{5\mathfrak{c}}$	k	Math
	$b \geq 3$	l	Math (since b is an
			integer)

We can now prove Case 2:

n.	$P(k) \wedge a=0$		Assumption	
0.	P(k)	n	Simplification	
p.	$k = a \cdot 4 + b \cdot 5 + a \ge 0 \land b \ge 0$	0	Definition of P(k)	
q.	$k\mathfrak{c} = a \cdot 4\mathfrak{c} + b \cdot 5\mathfrak{c}$	p	Simplification	
r.	$(k+1) \mathfrak{c} = a \cdot 4 \mathfrak{c} + b \cdot 5 \mathfrak{c} + 1 \mathfrak{c}$	q	Math (add 1¢ to both	
			sides)	
S.	$(k+1)$ ¢ = $a \cdot 4$ ¢ + $(b-3) \cdot 5$ ¢ + 15 ¢ +	r	Math	
	1¢			
t.	$(k+1) = a \cdot 4 + (b-3) \cdot 5 + 16$	S	Math	
u.	$(k+1)\mathfrak{c} = (a+4)\cdot 4\mathfrak{c} + (b-3)\cdot 5\mathfrak{c}$	t	Math	
Let $a' = a + 4$ and $b' = (b - 3)$				
V. (a = 0	n	Simplification	
W.	$b \ge 3$	v	Lemma 1	
Х.	b' ≥ 0	w	Math	
y.	$a' \ge 0$	v	Math	
Z.	$(k+1) = a' \cdot 4 + b' \cdot 5 $	u	Substitution / Math	
aa.	$(k+1)$ ¢ = a' · 4¢ + b' · 5¢ \wedge $\alpha' \geq 0 \wedge$	x,y,z	Conjunction	
	b' ≥ 0			
bb.	P(k+1)	aa	Definition of P(k+1)	

Thus we have shown that $P(k) \rightarrow P(k+1)$ in both cases.