MATH 122

Exam 2 Review — Solutions

Problem 1.

(a)
$$f'(x) > 0$$
: $(-2, \infty)$; $f'(x) < 0$: $(-\infty, -2)$

(b)
$$f''(x) > 0$$
: $(-\infty, \infty)$; $f''(x) < 0$: Nowhere

(c)
$$x = -2$$
, local min

(d) None

(e)
$$f(-6) > 0$$
, $f'(1) > 0$, $f''(-3) > 0$, $f'(-2) = 0$

(f) A line touching f(x) only at x = -5 with the same 'slope.' [Sketch this yourself!]

Problem 2.

(a)
$$20x^3 - 7 + \frac{2}{3}x^{-2/3} + 0$$

(b)
$$12x^3 \log_5 x + 3x^4 \cdot \frac{1}{x \ln 5}$$

(c)
$$8(e^x - 4)^7 \cdot e^x$$

(d)
$$\frac{5(2x+4)-2(5x-1)}{(2x+4)^2}$$

Problem 3.

(a) Increasing:
$$(2,8)$$
; Decreasing: $(-\infty,2) \cup (8,\infty)$

(b)
$$x = 2$$
: local min; $x = 8$: local max

(c) Concave up:
$$(-\infty, 5)$$
; Concave Down: $(5, \infty)$

(d)
$$x = 5$$

Problem 4.

(a)
$$6x^5 \cdot 4^{-x} \log_2(3x) + (-4^x \ln 4) \cdot x^6 \log_2(3x) + \frac{3}{3x \ln 2} \cdot x^6 4^{-x}$$

1

(b)
$$6(x9^{\sqrt{x}}-5)^5 \cdot \left(1 \cdot 9^{\sqrt{x}} + x \cdot 9^{\sqrt{x}} \ln 9 \cdot \frac{1}{2} x^{-1/2} - 0\right)$$

(c)
$$\frac{\left(3^x \ln 3 \cdot \ln x + 3^x \cdot \frac{1}{x}\right) (5x - 4) - 5(3^x \ln x)}{(5x - 4)^2}$$

Problem 5.

- (a) Using h = 0.001, we find $C'(2) \approx 12.003$.
- (b) C'(2) = 12
- (c) y = 12x + 138
- (d) 164.4
- (e) Underestimate

Problem 6.

- (a) Increasing: $(-\infty, -5) \cup (4, \infty)$; Decreasing: (-5, 4)
- (b) Concave Down: $(-\infty, -\frac{1}{2})$; Concave Up: $(-\frac{1}{2}, \infty)$
- (c) $x = -\frac{1}{2}$
- (d) x = -5: local maxima; x = 4: local minima
- (e) Global Maxima: 236 at x=-2; Global Minima: -304 at x=4