《基于多保真度模型的高比例新能源配电网潮流不确定性表征方法》论文附录

附录 A

表 A1 风速及风电机组参数

Tab. A1 Parameters of wind speed and wind turbine

序	Weibull 分布 参数		风机出力参数			
号	形状	尺度	$v_{ m in}$	$v_{ m out}$	$v_{ m N}/$	$P_{ m N}$
	参数	参数	(m/s)	(m/s)	(m/s)	kW
1	3.0	7.5	3.5	20.0	14.5	600
2	2.0	7.0	3.0	19.0	13.0	600
3	2.5	6.0	3.5	20.0	15.5	600
4	2.5	7.5	3.0	18.5	13.0	750
5	3.0	6.0	3.5	19.0	14.0	750
6	2.5	7.5	3.0	19.5	15.5	750
7	3.0	6.0	3.5	19.0	12.0	750

表 A2 光照强度及光伏电池参数

Tab. A2 Parameters of irradiation intensity and photovoltaic cell

序号	Beta	分布参数	分布式光伏电池板参数		
	ξ_a	ξ_b	A/m^2	η/%	
1	0.40	8.56	25200	15	
2	0.45	9.81	19800	14	
3	0.50	8.94	24375	16	
4	0.40	8.56	25200	15	
5	0.45	9.81	19800	14	
6	0.50	8.94	24375	16	
7	0.40	8.56	25200	15	

附录 B

图 B1 不同计算负担下 $E(\theta_{81})$ 与 $D_2(\theta_{81})$ 的 MSE 计算结果 Fig. B1 Results of MSE for $E(\theta_{81})$ and $D_2(\theta_{81})$ under different computation burdens

图 B2 不同计算负担下 $J_4(\theta_{81})$ 与 $J_8(\theta_{81})$ 的 MSE 计算结果 Fig. B2 Results of MSE for $J_4(\theta_{81})$ and $J_8(\theta_{81})$ under different computation burdens

附录 C

原文在第一节"1 源-荷不确定性模型"中,分别采用 Weibull 分布、Beta 分布和正态分布刻画风机、光伏和负荷的源-荷输入随机性,下面是对本文所述源-荷不确定性模型所采用建模方法的详细说明:

(1) 基于风速 Weibull 分布的风机出力模型 风速的 PDF 通常认为满足 Weibull 分布^[18]:

$$f(v) = \frac{\xi_k}{\xi_c} \left(\frac{v}{\xi_c} \right)^{\xi_k - 1} \exp \left[-\left(\frac{v}{\xi_c} \right)^{\xi_k} \right]$$
 (C1)

式中:v为风速; ξ_k 、 ξ_c 分别为 Weibull 分布的形状参数和尺度参数。

进而,采用分段线性函数描述风速与风电机组出力之间的关系[26]:

$$P_{\text{wind}} = \begin{cases} kv + b, & v_{\text{in}} \le v < v_{\text{N}} \\ P_{\text{N}}, & v_{\text{N}} \le v \le v_{\text{out}} \\ 0, & \text{otherwise} \end{cases}$$
 (C2)

式中: $v_{\text{in}} \times v_{\text{out}} \times v_{\text{N}}$ 分别为风机的切入、切出和额定风速; P_{N} 为风机的额定输出功率; $k \times b$ 为形状参数, $k=P_{\text{N}}/(v_{\text{N}}-v_{\text{in}})$, $b=P_{\text{N}}v_{\text{in}}/(v_{\text{in}}-v_{\text{N}})$ 。

(2) 基于光照强度 Beta 分布的光伏出力模型 光照强度的 PDF 通常认为满足 Beta 分布^[18]:

$$f(r) = \frac{\Gamma(\xi_a + \xi_b)}{\Gamma(\xi_a)\Gamma(\xi_b)} \left(\frac{r}{r_{\text{max}}}\right)^{\xi_a - 1} \left(1 - \frac{r}{r_{\text{max}}}\right)^{\xi_b - 1}$$
(C3)

式中: r、 r_{max} 分别为光照强度和最大光照强度; ξ_a 、 ξ_b 为 Beta 分布的形状参数; $\Gamma(\cdot)$ 为伽玛函数。

进而,采用如下函数关系表示光照强度与光伏出力之间的关系[26]:

$$P_{\text{solar}} = rA\eta \tag{C4}$$

式中: A 为光伏阵列有效面积; η 为光电转化效率。

(3) 基于正态分布的节点负荷

负荷的随机波动通常认为满足正态分布[18]:

$$f\left(\Delta P_{\rm L}\right) = \frac{1}{\sqrt{2\pi}\xi_{\sigma}} \exp\left(-\frac{\left(\Delta P_{\rm L} - \xi_{\mu}\right)^2}{2\xi_{\sigma}^2}\right) \tag{C5}$$

式中: ξ_{μ} 、 ξ_{σ} 分别为正态分布的均值和标准差; $\Delta P_{\rm L}$ 为负荷的有功功率波动量。

参考文献:

[18] 方晓涛,严正,王晗,等.考虑源-荷随机-模糊特征的配电网潮流不确定性量化方法[J].中国电机工程学报,2022,42(20):7509-7523.

FANG Xiaotao, YAN Zheng, WANG Han, et al. Uncertainty quantification method of distribution network power flow considering the random and fuzzy characteristics of source-load. Proceedings of the CSEE, 2022, 42(20): 7509-7523 (in Chinese).

[26] 张喆,李庚银,魏军强.考虑分布式电源随机特性的配电网电压质量概率评估[J].中国电机工程学报,2013,33(13):150-156.

ZHANG Zhe, LI Gengyin, WEI Junqiang. Probabilistic evaluation of voltage quality in distribution networks considering the stochastic characteristic of distributed generators. Proceedings of the CSEE, 2013, 33(13): 150-156 (in Chinese).