3. Random Variables and Probability Distributions - Random generator

Lai Hui Shan m5281022

Let Z be a random variable with a uniform distribution on [0,1], and let X be a continuous-valued random variable with cumulative distribution function F_X .

1. Why does the Distribution Function F_X Have an Inverse Function F_X^{-1} ?

For a continuous random variable X with cumulative distribution function F_X , the function $F_X(x)$ is monotonic and strictly increasing on its support (the range of possible values for X). This monotonicity implies that for each $p \in (0,1)$, there is a unique value x such that $F_X(x) = p$. Therefore, F_X has an inverse function F_X^{-1} , which satisfies

$$F_X(F_X^{-1}(p)) = p, \quad p \in (0,1).$$

The inverse ${\cal F}_X^{-1}$ allows us to "map" probabilities back to the corresponding values of X.

2. Proving
$$\mathbb{P}(Z \leq z) = F_X(F_X^{-1}(z)), \quad z \in \mathbb{R}$$

Since Z is a uniform random variable on [0,1], we have:

$$\mathbb{P}(Z \leq z) = z, \quad 0 \leq z \leq 1.$$

For $z \in (0,1)$, let $X = F_X^{-1}(Z)$. Then the probability that Z is less than or equal to some value z is the probability that $X \leq F_X^{-1}(z)$:

$$\mathbb{P}(Z \leq z) = \mathbb{P}(X \leq F_X^{-1}(z)).$$

Since F_X is the cumulative distribution function of X, we know that

$$\mathbb{P}(X \leq F_X^{-1}(z)) = F_X(F_X^{-1}(z)).$$

Thus, we have shown that:

$$\mathbb{P}(Z \leq z) = F_X(F_X^{-1}(z)), \quad z \in (0,1).$$

3. Generating a Value of X Using U

To generate a value of X from a uniform random variable $U \sim U[0,1]$, we can use the inverse transform sampling method:

1. Generate a value U from the uniform distribution on [0,1].

2. Compute $X = F_X^{-1}(U)$.

Since U is uniform on [0,1] and $F_X^{-1}(U)$ maps uniformly distributed values to the distribution of X, the random variable $X=F_X^{-1}(U)$ will follow the distribution defined by F_X .

This method allows us to transform uniformly distributed values into samples from the distribution of X.