學號: B05901068 系級:電機三 姓名: 蕭如芸

1. (2%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何?並請用 與上述 CNN 接近的參數量,實做簡單的 DNN model,同時也說明其模型架構、 訓練參數和準確率為何?並說明你觀察到了什麼?

(Collaborators: B05901158 林緯瑋)

CNN model:使用簡化版的VGG,有使用batch normalization和dropout。Conv2D的部分,filter大小皆為(3, 3),一共有六層,每層filter數量為64-64-128-128-128-128; Dense的部分有三層,unit數量為512-512-7。總參數量為1,875,143。

DNN model: 和CNN model—樣有使用batch normalization和dropout。Dense有五層, unit數量為512-512-512-256-7。總參數量為1,845,767。

CNN和DNN model的詳細架構如下:

CNN model		DNN model
Conv2D(64, (3, 3), padding = 'same')	Flatten	Flatten
BatchNormalization	Dense(512)	Dense(512)
Activation('relu')	BatchNormalization	BatchNormalization
Conv2D(64, (3, 3))	Activation('relu')	Activation('relu')
BatchNormalization	Dropout(0.35)	Dropout(0.4)
Activation('relu')	Dense(512)	Dense(512)
MaxPooling2D(2, 2)	BatchNormalization	BatchNormalization
Dropout(0.25)	Activation('relu')	Activation('relu')
Conv2D(128, (3, 3), padding = 'same')	Dropout(0.35)	Dropout(0.4)
Activation('relu')	Dense(7)	Dense(512)
Conv2D(128, (3, 3))	Activation('softmax')	BatchNormalization
Activation('relu')		Activation('relu')
MaxPooling2D(2, 2)		Dropout(0.4)
Dropout(0.25)		Dense(256)
Conv2D(128, (3, 3), padding = 'same')		BatchNormalization
BatchNormalization		Activation('relu')
Activation('relu')		Dropout(0.4)
Conv2D(128, (3, 3))		Dense(7)
BatchNormalization		Activation('softmax')
Activation('relu')		
MaxPooling2D(2, 2)		
Dropout(0.25)		

<u>訓練參數</u>: CNN和DNN model皆使用batch_size = 100, epochs = 20。有使用相同的 data normalization和data augmentation。

準確率:

	CNN model	DNN model
Public	0.68487	0.46976
Private	0.68208	0.45667

CNN model的表現明顯比DNN model好。

另外,kaggle上準確率最高的結果是使用三個不同的CNN model預測出來的結果做majority vote。三個model的架構大致相同,只有在最後三層dense的部分,分別使用512-128-7、512-256-7、512-512-7。

2. (1%) 承上題,請分別畫出這兩個model的訓練過程 (i.e., loss/accuracy v.s. epoch) (Collaborators: 無)

不論是loss還是accuracy,CNN的表現都比DNN好,而且validation set的準確率在CNN model的趨勢比較穩定。

3. (1%) 請嘗試 data normalization, data augmentation, 說明實作方法並且說明實行前後對準確率有什麼樣的影響?

(Collaborators: 無)

Data normalization: 將data除以255,使所有數字介於0~1之間

Data augmentation: 使用Keras的ImageDataGenerator實作隨機旋轉和水平翻轉,

產生五倍的training data

→ ImageDataGenerator(rotation_range = 10, horizontal_flip = True)

	Public	Private
raw	0.64614	0.63109
normalization	0.64363	0.63583
normalization + augmentation	0.68487	0.68208

Normalization對準確率幫助不大,可能是因為model有使用batch normalization,因此是否有做data normalization影響不大。而data augmentation可以大幅提高準確率,大約提高了4%。

4. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] (Collaborators: 無)

觀察confusion matrix,容易分類錯誤的有:

Angry誤判成Sad、Fear誤判成Angry、Fear誤判成Sad、Sad誤判成Fear、
Sad誤判成Neutral、Neutral誤判成Happy、Neutral誤判成Sad
因此,我認為Angry、Fear、Sad彼此容易用混,還有Sad和Neutral也容易用混。