EDA0001 – Estruturas de Dados

Árvores AVL

Prof. Rui Jorge Tramontin Junior Departamento de Ciência da Computação UDESC / Joinville

Tópicos a serem apresentados

- Árvores;
 - Conceitos, aplicações, implementação;
- Árvores Binárias;
 - Conceitos, aplicações, implementação;
- Árvores Binárias de Busca;
 - Aplicações e implementação;
- Árvores AVL;
 - Conceitos e implementação.

Recapitulando...

 Árvores Binárias de Busca (ABB) oferecem algoritmos eficientes, na ordem de O(log n);

Recapitulando...

- Árvores Binárias de Busca (ABB) oferecem algoritmos eficientes, na ordem de O(log n);
 - Mas precisam estar balanceadas!

Recapitulando...

- Árvores Binárias de Busca (ABB) oferecem algoritmos eficientes, na ordem de O(log n);
 - Mas precisam estar balanceadas!

 Entretanto, uma ABB não consegue garantir o balanceamento!

 A manipulação de uma ABB pode levar ao seu desbalanceamento!

 A manipulação de uma ABB pode levar ao seu desbalanceamento!

 O caso extremo é quando a árvore se torna degenerada (equivalente a uma <u>lista</u> <u>encadeada</u>);

 A manipulação de uma ABB pode levar ao seu desbalanceamento!

 O caso extremo é quando a árvore se torna degenerada (equivalente a uma <u>lista</u> <u>encadeada</u>);

• Neste caso, o desempenho dos algortimos cai, tendendo à ordem linear $\rightarrow O(n)$.

 Para lidar com este problema, existem algumas implementações de ABBs autobalanceáveis;

- Para lidar com este problema, existem algumas implementações de ABBs autobalanceáveis;
 - Organizam sua estrutura a cada manipulação;

- Para lidar com este problema, existem algumas implementações de ABBs autobalanceáveis;
 - Organizam sua estrutura a cada manipulação;
 - Garantem que a altura da ABB seja sempre O(log n);

- Para lidar com este problema, existem algumas implementações de ABBs autobalanceáveis;
 - Organizam sua estrutura a cada manipulação;
 - Garantem que a altura da ABB seja sempre O(log n);

- Exemplos:
 - Árvores AVL;
 - Árvores Bicolores (red-black trees);
 - Splay Trees;

ÁRVORES AVL

Árvores AVL

- Esse tipo de árvore tem o nome formado pelas iniciais de seus inventores (1962):
 - G. M. Adelson-Velskii e E. M. Landis;

Árvores AVL

- Esse tipo de árvore tem o nome formado pelas iniciais de seus inventores (1962):
 - G. M. Adelson-Velskii e E. M. Landis;
- Uma árvore AVL é dita autobalanceável, pois realiza operações de balanceamento (rotações) após cada manipulação, se necessário;

Árvores AVL

- Esse tipo de árvore tem o nome formado pelas iniciais de seus inventores (1962):
 - G. M. Adelson-Velskii e E. M. Landis;
- Uma árvore AVL é dita autobalanceável, pois realiza operações de balanceamento (rotações) após cada manipulação, se necessário;
- Para tal, utiliza uma métrica chamada Fator de Balanceamento.

Fator de Balanceamento

 Dada a função A que calcula a altura de uma árvore;

Fator de Balanceamento

 Dada a função A que calcula a altura de uma árvore;

• Fator de Balanceamento (FB) de um nó é definido da seguite forma:

Fator de Balanceamento

 Dada a função A que calcula a altura de uma árvore;

• Fator de Balanceamento (FB) de um nó é definido da seguite forma:

$$FB = A_{(sub-\acute{a}rv.\ esquerda)} - A_{(sub-\acute{a}rv.\ direita)}$$

Definição de Árvore AVL

 Árvore AVL é uma <u>ABB que está balanceada</u>, ou seja, todos os nós possuem FB igual a -1, 0 ou +1;

Definição de Árvore AVL

 Árvore AVL é uma ABB que está balanceada, ou seja, todos os nós possuem FB igual a -1, 0 ou +1;

 Uma inserção ou remoção pode tornar uma árvore desbalanceada;

Definição de Árvore AVL

 Árvore AVL é uma ABB que está balanceada, ou seja, todos os nós possuem FB igual a -1, 0 ou +1;

- Uma inserção ou remoção pode tornar uma árvore desbalanceada;
 - Um ou mais nós com FB valendo -2 ou +2.

Rotação

- Quando um nó apresenta FB +2 ou -2, é necessário realizar um procedimento para balanceá-lo;
 - Pocedimento é chamado de Rotação;

Rotação

- Quando um nó apresenta FB +2 ou -2, é necessário realizar um procedimento para balanceá-lo;
 - Pocedimento é chamado de Rotação;
- Uma rotação consiste na troca de papéis entre o nó e seu filho (que está na direção do desbalanceamento);
 - Na prática, é um ajuste de ponteiros;

Rotação

- Quando um nó apresenta FB +2 ou -2, é necessário realizar um procedimento para balanceá-lo;
 - Pocedimento é chamado de Rotação;
- Uma rotação consiste na troca de papéis entre o nó e seu filho (que está na direção do desbalanceamento);
 - Na prática, é um ajuste de ponteiros;
- Uma rotação preserva a <u>ordem dos valores</u>;
 - Condição para ABB.

ROTAÇÃO À DIREITA

• Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.

- Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).

- Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à direita de Y;

- Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à direita de Y;
 - Caso exista, o nó C que ficou órfão de Y, é assumido pelo nó X (como seu filho à esquerda).

- Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à direita de Y;
 - Caso exista, o nó C que ficou órfão de Y, é assumido pelo nó X (como seu filho à esquerda).

- Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à direita de Y;
 - Caso exista, o nó C que ficou órfão de Y, é assumido pelo nó X (como seu filho à esquerda).

- Condição: sempre que um nó X tem FB +2 e seu filho à esquerda Y tem FB +1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à direita de Y;
 - Caso exista, o nó C que ficou órfão de Y, é assumido pelo nó X (como seu filho à esquerda).

Árvore balanceada?

Árvore balanceada? Sim!

• Inserção do valor 12;

• Inserção do valor 12;

ROTAÇÃO À ESQUERDA

• Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.

- Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).

- Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à esquerda de Y;

- Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à esquerda de Y;
 - Caso exista, o nó B que ficou órfão de Y, é assumido pelo nó X (como seu filho à direita).

- Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à esquerda de Y;
 - Caso exista, o nó B que ficou órfão de Y, é assumido pelo nó X (como seu filho à direita).

- Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à esquerda de Y;
 - Caso exista, o nó B que ficou órfão de Y, é assumido pelo nó X (como seu filho à direita).

- Condição: sempre que um nó X tem FB -2 e seu filho à direta Y tem FB -1 ou 0.
- Execução: Filho (Y) assume a posição nó pai (X).
 - X torna-se o filho à esquerda de Y;
 - Caso exista, o nó B que ficou órfão de Y, é assumido pelo nó X (como seu filho à direita).

Árvore balanceada?

Árvore balanceada? Sim!

Inserção do valor 82;

• Inserção do valor 82;

Inserção do valor 82;

Exemplo: rotação à esquerda

Exemplo: rotação à esquerda

Considerações

 É possível que mais de um nó fique com FB +2 ou -2;

Considerações

 É possível que mais de um nó fique com FB +2 ou -2;

- Neste caso, basta balancear o de maior nível;
 - Maior nível significa "mais abaixo";

Considerações

 É possível que mais de um nó fique com FB +2 ou -2;

- Neste caso, basta balancear o de maior nível;
 - Maior nível significa "mais abaixo";

 Balanceando o nó mais abaixo, o(s) nó(s) acima dele são também balanceados.

Árvore balanceada?

Árvore balanceada? Sim!

• Inserção do valor 5;

• Inserção do valor 5;

• Inserção do valor 5;

Inserção do valor 5 → Qual nó deve ser balanceado?

OUTRO EXEMPLO...

Árvore balanceada!

Inserção do valor 47;

Inserção do valor 47;

Inserção do valor 47;

Rotação simples não funcionou! Sinais diferentes!

ROTAÇÃO DUPLA

• À direita:

Condição: nó com FB +2 e seu filho à esquerda com FB -1;

• À direita:

- Condição: nó com FB +2 e seu filho à esquerda com FB -1;
- Execução:
 - 1. Rotação à esquerda no nó filho da esquerda;

• À direita:

- Condição: nó com FB +2 e seu filho à esquerda com FB -1;
- Execução:
 - 1. Rotação à esquerda no nó filho da esquerda;
 - 2. Rotação à direita no próprio nó.

• À direita:

- Condição: nó com FB +2 e seu filho à esquerda com FB -1;
- Execução:
 - 1. Rotação à esquerda no nó filho da esquerda;
 - 2. Rotação à direita no próprio nó.

• À esquerda:

Condição: nó com FB -2 e seu filho à direita com FB +1;

• À direita:

- Condição: nó com FB +2 e seu filho à esquerda com FB -1;
- Execução:
 - 1. Rotação à esquerda no nó filho da esquerda;
 - Rotação à direita no próprio nó.

À esquerda:

- Condição: nó com FB -2 e seu filho à direita com FB +1;
- Execução:
 - Rotação à direita no nó filho da direita;

• À direita:

- Condição: nó com FB +2 e seu filho à esquerda com FB -1;
- Execução:
 - Rotação à esquerda no nó filho da esquerda;
 - Rotação à direita no próprio nó.

À esquerda:

- Condição: nó com FB -2 e seu filho à direita com FB +1;
- Execução:
 - Rotação à direita no nó filho da direita;
 - Rotação à esquerda no próprio nó.

Exemplo de rotação dupla

Árvore balanceada.

Exemplo de rotação dupla

- Ao se inserir o valor 2, o nó 3 torna-se desbalanceado.
- É preciso fazer uma rotação dupla à direita.

Exemplo de rotação dupla

Exemplo de rotação dupla

• É importante se lembrar que, no final, o nó deve ser rotacionado, conforme o sinal:

- É importante se lembrar que, no final, o nó deve ser rotacionado, conforme o sinal:
 - +2 → à direita;
 - $-2 \rightarrow$ à esquerda;

• É importante se lembrar que, no final, o nó deve ser rotacionado, conforme o sinal:

```
+2 → à direita;
```

−2 → à esquerda;

 Porém, como o filho tem sinal invertido, é preciso rotacioná-lo antes, na direção contrária;

- É importante se lembrar que, no final, o nó deve ser rotacionado, conforme o sinal:
 - +2 → à direita;
 - $-2 \rightarrow$ à esquerda;

- Porém, como o filho tem sinal invertido, é preciso rotacioná-lo antes, na direção contrária;
 - Portanto, rotaciona-se primeiro o filho (com o "neto");

- É importante se lembrar que, no final, o nó deve ser rotacionado, conforme o sinal:
 - +2 → à direita;
 - $-2 \rightarrow$ à esquerda;

- Porém, como o filho tem sinal invertido, é preciso rotacioná-lo antes, na direção contrária;
 - Portanto, rotaciona-se primeiro o filho (com o "neto");
 - Depois, rotaciona-se o próprio nó.

• Valor 47 foi inserido >> Rotação dupla à esquerda!

• 1ª rotação: nó 50, à direita;

• 1ª rotação: nó 50, à direita;

• 1º rotação: nó 50, à direita;

• 1ª rotação: nó 50, à direita;

 Para a operação de <u>inserção</u>, basta incluir o novo nó, avaliar o tipo de rotação, e executar a rotação.

- Para a operação de inserção, basta incluir o novo nó, avaliar o tipo de rotação, e executar a rotação.
 - Se mais de um nó tiver FB ±2, basta balancear o nó de maior nível.

- Para a operação de <u>inserção</u>, basta incluir o novo nó, avaliar o tipo de rotação, e executar a rotação.
 - Se mais de um nó tiver FB ±2, basta balancear o nó de maior nível.
- No entanto, a operação de <u>remoção</u> é mais complexa:

- Para a operação de <u>inserção</u>, basta incluir o novo nó, avaliar o tipo de rotação, e executar a rotação.
 - Se mais de um nó tiver FB ±2, basta balancear o nó de maior nível.
- No entanto, a operação de <u>remoção</u> é mais complexa:
 - Caso haja alguma rotação, o balanceamento local pode caisar outro(s) desequilíbrio(s);

- Para a operação de <u>inserção</u>, basta incluir o novo nó, avaliar o tipo de rotação, e executar a rotação.
 - Se mais de um nó tiver FB ±2, basta balancear o nó de maior nível.
- No entanto, a operação de <u>remoção</u> é mais complexa:
 - Caso haja alguma rotação, o balanceamento local pode caisar outro(s) desequilíbrio(s);
 - Se necessário, será preciso realizar recursivamente várias rotações a partir do novo nó desbalanceado até o raiz.

Exercício

• Remova o nó 8 (será preciso balancear mais de uma vez).

