GRAFOS

Un grafo consta de un conjunto de nodos (o vértices) y un conjunto de arcos (o aristas). Cada arco del grafo se especifica como un par de nodos.

Esta imagen representa un grafo, donde los nodos son {A, B, C, D, E, F, G, H} y

(A, B), (A, D), (A, C), (C, D), (C, F), (E, G), (A, A) son los arcos.

Si los pares de nodos que constituyen los arcos son pares ordenados, se dice que el grafo es un grafo dirigido.

GRAFOS

Si los pares de nodos están ordenados, se obtiene un grafo dirigido. {<A, B>, <A, D>, <A, C>, <C, D>, <C, F>, <E, G>, <A, A> }

Observe que un grafo no necesita ser un árbol, pero un árbol si es un grafo. Observe que un nodo no necesita tener arcos asociados.

Definiciones:

Grado: cantidad de arcos incidentes en un nodo. Ej: A grado 5, C grado 3

Grado Interno: cantidad de arcos que inciden llegando al nodo. Ej. A -1, C -1

Grado Externo: cantidad de arcos que inciden saliendo del nodo. Ej. A – 4, C - 2

GRAFOS

Es posible asociar un número con cada arco. Un grafo de este tipo se denomina grafo con peso o red. El número asociado con el arco se denomina peso.

Una trayectoria de longitud k del nodo A al nodo B se define como una secuencia de k+1 nodos n_1 , n_2 , ..., n_k tal que n_1 = A y n_{k+1} = B, y n_i con n_{i+1} son todos adyacentes para todos los i entre 1 y k.

Ej. Hay una trayectoria de longitud 1 desde A a C, 2 trayectorias de longitud 2 de B a G, no hay trayectoria de B a C, etc.

Aplicaciones de Grafos

Los grafos pueden representar, por ejemplo, ciudades y las distancias entre si, y la posibilidad de dirigirse de una ciudad a otra.

Pueden representar los pasos y tiempos necesarios para llegar de un origen a un objetivo deseado.

Representación de Grafos

Su representación se suele hacer mediante una matriz, de n x n, siendo n la cantidad de nodos, y representando con el valor TRUE (1) los nodos adyacentes, y con FALSE (0) los que no lo son.

	A	В	C	D	E
A	0	0	1	1	0
В	0	0	1	0	0
C	0	0	0	1	1
D	0	0	0	0	1
E	0 0 0 0	0	0	1	0

Cierre Transitivo de un Grafo

	A	В	C	D	E	
A	0	0	1	1	0	
В	0	0	1	0	0	
B C	0	0	0	1	1	
D	0	0	0	0	1	
E	0	0	1 1 0 0	1	0	
Matriz						

	A	В	C	D	E
A	0	0	0	1	1
В	0	0	0	1	1
C	0	0	0	1	1
D	0	0	0	1	0
E	0	0	0	1 1 1 1 0	1
				_	

Matriz de orden 2

Matriz: es la matriz que representa el grafo.

Matriz₂: es la matriz que representa las relaciones de orden 2 del grafo.

> **Matriz de Cierre Transitivo: es la matriz** que garantiza que hay una trayectoria entre los nodos i y j (de cualquier longitud)

	A	В	C	D	E
A	0	0	1	1	1
В	0	0	1	1	1
C	0	0	0	1	1
D	0	0	0	1	1
E	0	0	0	1 1 1 1 1	1

Aplicaciones de Grafos

Los grafos pueden representar, por ejemplo, nodos, y la posibilidad de llegar de un nodo a otro nodo.

También pueden representar ciudades y las distancias entre si, de esta forma se pueden desarrollar algoritmos que permitan calcular la menor distancia entre 2 ciudades.

Otra utilidad es representar redes de agua, gas, electricidad, donde se represente entre cada nodo la posibilidad de transportar algo a una determinada cantidad limitada.

De manera de representar mediante un grafo la posibilidad de traslado de energía, las capacidades máximas a transportar y los nodos o sectores de conflicto.

Representación Ligada de Grafos

- La representación de un grafo mediante una matriz, generalmente trae problemas, ya que debemos conocer la cantidad de nodos antes de comenzar y además debemos reservar un montón de espacio para un grafo quizás no muy poblado de arcos.
- La solución sin duda tiende a representar un grafo mediante una lista ligada de nodos y listas ligadas de arcos.

Representación Ligada de Grafos

