Zahlentheorie - reelle Zahlen

Aufgabe 1: Rechnen im Quellsystem

Wandeln Sie folgende Zahlen per Rechnung im Quellsystem ins Dual- und Hexadezimalsystem um:

- 0.10011₂
- 11.010010₂
- 0.2575₁₀
- 0.203125₁₀
- 0.AED₁₆
- 7.CE₁₆

Aufgabe 2: Rechnen im Zielsystem

Wandeln Sie folgende Zahlen per Rechnung im Zielsystem ins Dezimal- und Hexadezimalsystem um:

- 0.10011₂
- 11.010010₂
- 0.2575₁₀
- 0.AED₁₆
- 7.CE₁₆

Aufgabe 3: Festkommadarstellung

Stellen Sie die folgenden Zahlen in Festkommadarstellung Dual mit 4 Vor- und 4 Nachkommastellen dar:

- 3.5₁₀
- 15.9375₁₀
- 16.75₁₀
- 8.96875₁₀

Aufgabe 4: Gleitkommadarstellung – normalisiert $\left[\frac{1}{R} \le m < 1\right]$

Geben Sie folgende Zahlen normalisiert an:

- 10011 * 2⁰
- 0.001011 * 8¹²
- 0.110110 * 2⁻⁵⁹
- 0.000011 * 8¹³

Wandeln Sie folgende normalisierte Gleitkommazahlen in dezimale VZ+Betrag Darstellung um: (VZ = 0 bedeutet +)

Vorzeichen (1bit)	Mantisse (23bit)	Exponent(8bit) (Exzess-64)
0	11101100	01010101
1	1001101100	01001111
0	100001	10000000

Aufgabe 5: IEEE-754

IEEE-754 definiert 5 Formate, die zur Darstellung eingesetzt werden

normalisiert	± 0 < Exp < 3	jedes Bitmuster
denormalisiert	± 000000	jedes Bitmuster ungleich 0
Null	± 000000	0 0 0
unendlich	± 111111	.11 0
keine Zahl (NaN)	± 111111	. 11 jedes Bitmuster ungleich 0

VZ: 1bit Mantisse: 23bit Exponent: 8bit

Geben Sie folgende Zahlen in IEE-754 Darstellung normalisiert als Bitfolge an:

- 10011.0 * 2⁰
- -0.001011 * 2⁹
- 0.110110 * 2⁵

Zusatzaufgabe: Grenzen der Gleitkommadarstellung

Für die Darstellung $z = m \cdot 2^e$ von binären, normalisierten Gleitkommazahlen stehen insgesamt 24 Stellen zur Verfügung, davon 1 Bit für das Vorzeichen und 8 Bit für den Exponenten. Die Exponenten seien kodiert in

- Einerkomplement-Darstellung
- Zweierkomplement-Darstellung
- •Exzess-128-Darstellung

Lösen Sie für alle Fälle folgende Aufgaben:

- 1. Was ist der Unterlauf- und Überlaufbereich der Darstellung?
- 2. Welche Zahl wird durch das Bitmuster e = 11010101 und m = 111001110 ... 0 dargestellt?
- 3. Wie groß ist der Abstand zwischen zwei benachbarten, darstellbaren Zahlen z in den Bereichen:

$$2^{-32} \le z < 2^{-31}$$
, $2^{-12} \le z < 2^{-11}$, $2^2 \le z < 2^3$, $2^{27} \le z < 2^{28}$

4. Ist die Zahl z = $187 + \frac{71}{512}$ darstellbar? Welche darstellbaren Zahlen haben minimalen Abstand von z? Geben Sie deren Bitmuster und den Abstand an.