Inteligência Artificial I

Machine Learning - Aprendizagem de Máquina

Profa. Leticia T. M. Zoby leticia.zoby@udf.edu.br

Machine Learning -Aprendizado de Máquina

- ► Modelo Supervisionado
 - ► Classificação
 - ► Naives Bayes
 - ►Árvore de Decisão
 - ► Redes Neurais
 - ► Máquina de vetores-suporte (Support Vector Machine SVM)
 - ►K-vizinhos mais próximos
- ► Modelo Não Supervisionado
 - ► Algoritmo de agrupamento (clustering)
 - **KMeans**
 - ▶ Decomposição em valores singulares

Naives Bayes

▶Introdução a Classificação [1]

Rio de	Total	Probabilidade
Janeiro		
Comprou	37	68.5%
Não comprou	17	31.5%
Total	54	

São Paulo	Total	Probabilidade
Comprou	67	27.5%
Não comprou	177	72.5%
Total	244	

- ▶Introdução a Classificação: Naive Bayes
 - Probabilidade
 - ? Localidade
 - ? Compra
 - ▶ Probabilidade Condicional Se um cliente é do RJ tem mais chances de comprar, se for de SP, tem menos.
 - método do maximum a posteriori

Rio de	Total	Probabilidade
Janeiro Comprou	37	68.5%
Não comprou	17	31.5%
Total	54	

São Paulo	Total	Probabilidade
Comprou	67	27.5%
Não comprou	177	72.5%
Total	244	

- ▶Introdução a Classificação: Naive Bayes
 - ► Probabilidade condicional
 - ▶ Dada que o cliente é do RJ, ele vai comprar?
 - ▶ Dada que o cliente é do SP, ele vai comprar?
 - Na matemática:
 - ▶P(Comprar | Rio de Janeiro)
 - ▶P(Comprar | São Paulo)

Rio de	Total	Probabilidade
Janeiro		
Comprou	37	68.5%
Não comprou	17	31.5%
Total	54	

São Paulo	Total	Probabilidade
Comprou	67	27.5%
Não comprou	177	72.5%
Total	244	

▶Introdução a Classificação

Rio de	Total	Probabilidade	São Paulo	Total	Probabilidade
Janeiro					
Comprou	37	68.5%	Comprou	67	27.5%
Não comprou	17	31.5%	Não comprou	177	72.5%
Total	54		Total	244	
\$ > 5000	Total	Probabilidade	\$ <= 5000	Total	Probabilidade
Comprou	32	80%	Comprou	47	18%
Não comprou	8	20%	Não comprou	211	82%
Total	40		Total	258	

- ▶Introdução a Classificação: Naive Bayes
 - ▶ Probabilidade condicional
 - ▶ "variáveis independentes"

```
P(Comprar | Rio de Janeiro, <=5000)
```

P(Comprar | São Paulo, <=5000)

P(Comprar | São Paulo, <=5000) = P(Comprar | São Paulo) * P(Comprar | <=5000)

P(Comprar | São Paulo) = 27.5%

 $P(Comprar | \le 5000) = 18\%$

= 27.5% * 18% = 0,250 * 0,18

= 0.0495 = 4.95

= 5%

São Paulo	Total	Probabilidade
Comprou	67	27.5%
Não comprou	177	72.5%
Total	244	
\$ <= 5000	Total	Probabilidade
Comprou	47	18%
Não comprou	211	82%
Total	258	

from sklearn.naive_bayes import GaussianNB

nb_model = GaussianNB()

Árvore de Decisão

Árvore de Decisão

- Um método "divide e conquista" para o problema de aprendizado de um conjunto de instâncias independentes, onde a classificação é dada pelo nó folha, partindo-se da raiz da árvore.
- · Similares SE e ENTÃO
- São construídas a partir de uma sequencia de testes nos seus dados de treino.
- Leva em consideração os valores dos atributos nos dados disponíveis para treino.
- Principais algoritmos: ID3 e C4.5.

Árvore

Árvore de Decisão

• Exemplo:

Dia	Aspecto	Temperatura	Umidade	Vento	Jogar tênis
D1	sol	quente	elevada	fraco	não
D2	sol	quente	elevada	forte	não
D3	nuvens	quente	elevada	fraco	sim
D4	chuva	ameno	elevada	fraco	sim
D5	chuva	fresco	normal	fraco	sim
D6	chuva	fresco	normal	forte	não
D7	nuvens	fresco	normal	fraco	sim
D8	sol	ameno	elevada	fraco	não
D9	sol	fresco	normal	fraco	sim
D10	chuva	ameno	normal	forte	sim
D11	sol	ameno	normal	forte	sim
D12	nuvens	ameno	elevada	forte	sim
D13	nuvens	quente	normal	fraco	sim
D14	chuva	ameno	elevada	forte	não

Árvore de Decisão

• Exemplo:

Árvore de Decisão

• Exemplo:

Árvore de Decisão

· Como criar uma árvore de decisão?

Exemplo usando o Algoritmo ID3

- O ID3 é um algoritmo simples que constrói uma árvore de decisão sob as seguintes premissas:
 - · Cada vértice (nodo) corresponde a um atributo, e cada aresta da árvore a um valor possível do atributo.
 - Uma **folha** da árvore corresponde ao valor esperado da **decisão** segundo os dados de treino utilizados (classe).
- · A explicação de uma determinada decisão está na trajetória que vai da raiz até a folha representativa desta decisão.

Árvore de Decisão - Algoritmo ID3

• Pseudo código (adaptado Mitchell, 1997):

ID3(Exemplos, Atributo-objetivo, Atributos)

```
// ID3 retorna uma árvore de decisão que classifica corretamente os Exemplos determinados
// Exemplos são os exemplos de treinamento.
// Atributo-objetivo é o atributo cujo valor deve ser predito pela árvore.
// Atributos são uma lista de outros atributos que podem ser testados pela árvore de decisão.
Início
       Crie um nodo Raiz para a árvore
       Se todos os Exemplos são positivos
          Então retorna a Raiz da árvore com o rótulo = sim
       <u>Se</u> todos os Exemplos são negativos
          Então retorna a Raiz da árvore com o rótulo = não
       Se Atributos for vazio
          Então retorna a Raiz da árvore com o rótulo = valor mais comum do Atributo-objetivo em Exemplos
          Senão
             A \leftarrow um atributo de Atributos que melhor classifica Exemplos (atributo de decisão)
             Raiz \leftarrow A (rótulo = atributo de decisão A)
             Para cada possível valor v_i de A faça
               Acrescenta um novo arco abaixo da Raiz, correspondendo à resposta \mathbf{A} = \mathbf{v}_i
               Seja Exemplos_{vi} o subconjunto de Exemplos que têm valor v_i para A
                Se Exemplos_{vi} for vazio
                  Então acrescenta na extremidade do arco um nodo folha
                                           com rótulo = valor mais comum do Atributo-objetivo em Exemplos
                  Senão acrescenta na extremidade do arco a sub árvore
                           ID3(Exemplos<sub>vi</sub>, Atributo-objetivo, Atributos -{A})
       Retorna Raiz (aponta para a árvore)
```

Árvore de Decisão - Algoritmo ID3

• Pseudo código (adaptado Mitchell, 1997):

```
ID3(Exemplos, Atributo-objetivo, Atributos)
```

- // ID3 retorna uma árvore de decisão que classifica corretamente os Exemplos determinados
- // Exemplos são os exemplos de treinamento.
- // Atributo-objetivo é o atributo cujo valor deve ser predito pela árvore.
- // Atributos são uma lista de outros atributos que podem ser testados pela árvore de decisão.

Início

Crie um nodo Raiz para a árvore

Se todos os Exemplos são positivos

Então retorna a *Raiz* da árvore com o rótulo = sim

Se todos os Exemplos são negativos

Então retorna a Raiz da árvore com o rótulo = não

Se Atributos for vazio

Então retorna a *Raiz* da árvore com o rótulo = valor mais comum do *Atributo-objetivo* em *Exemplos* Senão

 $A \leftarrow$ um atributo de *Atributos* que melhor classifica *Exemplos* (atributo de decisão)

 $Raiz \leftarrow A$ (rótulo = atributo de decisão A)

Para cada possível valor v_i de A faça

Acrescenta um novo arco abaixo da *Raiz*, correspondendo à resposta $\mathbf{A} = v_i$

Seja $Exemplos_{vi}$ o subconjunto de Exemplos que têm valor v_i para A

Se Exemplosvi for vazio

Então acrescenta na extremidade do arco um nodo folha

com rótulo = valor mais comum do Atributo-objetivo em Exemplos

Senão acrescenta na extremidade do arco a sub árvore

ID3(Exemplos_{vi}, Atributo-objetivo, Atributos -{A})

Retorna Raiz (aponta para a árvore)

<u>Fim</u>

from sklearn.tree import DecisionTreeClassifier

Árvore de Decisão - Algoritmo ID3

• A seleção dos nodos a serem utilizados na árvore é baseada na Teoria da Informação de Shannon, mais especificamente nos conceitos de **entropia** e **ganho de informação**

Entropia

Quantidade necessária de informação para identificar a classe de um caso

$$Entropia(S) = -(p_1 \log_2 p_1 + p_2 \log_2 p_2 + ... + p_n \log_2 p_n)$$

onde:

S é o conjunto de amostras (registros)

 $m{n}$ é o número de valores possíveis da classe

 $\mathbf{p_i}$ é a proporção de amostras da classe i em relação ao total de amostras

Árvore de Decisão - Algoritmo ID3

Entropia

Considerando apenas **2 valores possíveis da classe**, a entropia é dada pela fórmula:

Entropia (S) = $-(p_{+} \log_2 p_{+} + p_{-} \log_2 p_{-})$

Onde:

S é a totalidade de amostras do conjunto

 p_+ é a proporção de amostras positivas

p_ é a proporção de amostras negativas

Exemplo:

Se S é uma coleção de 14 exemplos com 9 instâncias positivas (classe=sim) e 5 negativas (classe=não), então:

Entropia (S) = $-(9/14) \text{ Log }_2(9/14) - (5/14) \text{ Log }_2(5/14) = 0.940$

Árvore de Decisão - Algoritmo ID3

Ganho da Informação

É a redução esperada da entropia ao utilizarmos um atributo na árvore

O ganho de informação é dado por:

Ganho (S, A) = Entropia (S) - \sum ((|Sv| / |S|) * Entropia (Sv))

Onde:

Ganho (S, A) é o ganho do atributo A sobre o conjunto S

Sv = subconjunto de S para um valor do atributo A

|Sv| = número de elementos de Sv

|S| = número de elementos de S

Exemplo de dados para concessão de empréstimo bancário

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Selecionando o melhor atributo:

$$Entropia(S) = -9/14 log_2(9/14) - 5/14 log_2(5/14) = 0,940$$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Amarelo = classe *não* Verde = classe *sim*

Selecionando o melhor atributo

Entropia(montante=médio) = $-2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Selecionando o melhor atributo

Entropia(montante=médio) = $-2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971$ Entropia(montante=baixo) = $-4/4 \log_2 (4/4) - 0/4 \log_2 (0/4) = 0$

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Selecionando o melhor atributo

```
Entropia(montante=médio) = -2/5 \log_2 (2/5) - 3/5 \log_2 (3/5) = 0,971
Entropia(montante=baixo) = -4/4 \log_2 (4/4) - 0/4 \log_2 (0/4) = 0
Entropia(montante=alto) = -3/5 \log_2 (3/5) - 2/5 \log_2 (2/5) = 0,971
```

caso	montante	idade	salário	conta	empréstimo
1	médio	sênior	baixo	sim	não
2	médio	sênior	baixo	não	não
3	baixo	sênior	baixo	sim	sim
4	alto	média	baixo	sim	sim
5	alto	jovem	alto	sim	sim
6	alto	jovem	alto	não	não
7	baixo	jovem	alto	não	sim
8	médio	média	baixo	sim	não
9	médio	jovem	alto	sim	sim
10	alto	média	alto	sim	sim
11	médio	média	alto	não	sim
12	baixo	jovem	baixo	não	sim
13	baixo	sênior	alto	sim	sim
14	alto	média	baixo	não	não

Selecionando o melhor atributo

```
Entropia(S) = -9/14 \log_2(9/14) - 5/14 \log_2(5/14) = 0.940
Entropia(montante=médio) = -2/5 \log_2(2/5) - 3/5 \log_2(3/5) = 0.971
Entropia(montante=baixo) = -4/4 \log_2 (4/4) - 0/4 \log_2 (0/4) = 0
Entropia(montante=alto) = -3/5 \log_2(3/5) - 2/5 \log_2(2/5) = 0.971
Entropia (idade = senior) = -2/4 \log_2(2/4) - 2/4 \log_2(2/4) = 1
Entropia (idade = média) = - 3/5 \log_2 (3/5) - 2/5 \log_2 (2/5) = 0.971
Entropia (idade = jovem)= - 4/5 \log_2 (4/5) - 1/5 \log_2 (1/5) = 0,722
Ganho (S,montante) = 0.940 - (5/14). 0.971 - (4/14). 0 - (5/14). 0.971 =
```

0,246

Ganho (S,idade) = 0,940 - (4/14). 1 - (5/14). 0,971 - (5/14). 0,722 = 0,049

Ganho (S,salário) = 0,940 - (7/14). 0,592 - (7/14). 0,985 = 0,151

Ganho (S,conta) = 0,940 - (8/14). 0,811 - (6/14). 1 = 0,047

Escolha do próximo atributo

Referências

- Baranauskas, J. A. (2011). Notas de aula "Aprendizado de Máquina Conceitos e Definições". USP.
- Duda, R., Hart, P., Stork, D., Pattern Classification (2000). John Wiley & Sons.
- Goldschmidt, R. Passos, E. Bezerra, E. Data Mining (2015). Elsevier.
- Mitchell, T. M. Machine Learning (1997). McGraw–Hill.
- Quinlan, J. R. Induction of Decision Trees. Machine Learning (1986),
 Springer.
- Silveira, G., Bullock, B. (2017). "Machine Learning- Introdução à classificação". Casa do Código, Brasil