Nontrivial Property

A property \mathcal{P} is a set of Turing machine descriptions.

Example: $NOT - REGULAR = \{e(M) \mid M \text{ is a TM such that } L(M) \text{ is not regular}\}.$

• \mathcal{P} is non-trivial: \mathcal{P} contains some but not all TM descriptions.

There are TMs whose languages are not regular and there are TMs whose languages are regular.

• \mathcal{P} is a property of the language of a TM: whenever $L(M_1) = L(M_2)$, either both M_1 and M_2 are in \mathcal{P} or both are not in \mathcal{P} .

Whenever $L(M_1) = L(M_2)$, either both M_1 and M_2 are in \mathcal{P} since their languages are not regular or both are not in \mathcal{P} since their languages are regular.

Rice's Theorem

Any non-trivial property \mathcal{P} that is a property of the language of a TM is undecidable.

For any $M \in \mathcal{P}$, its language L(M) is Turing recognizable. So, the theorem can also be stated as:

Any non-trivial property of Turing recognizable languages is undecidable.

Proof of Rice's Theorem

Reduction from $A_{\rm TM}$.

- T_{\emptyset} be a TM such that $L(T_{\emptyset}) = \emptyset$. Assume, without loss of generality, that T_{\emptyset} is not in \mathcal{P} . (Why?)
- There is some TM T in \mathcal{P} (since \mathcal{P} is non-trivial).
- The reduction machine on input M, w constructs a DTM M':
 - On input x:
 - * Simulate M on w.
 - * M halts and rejects w: reject x.
 - * M halts and accepts w: run T on x. Accept x if and only if T accepts x.
- What is the language of M'?
 - L(T) if M accepts w and \emptyset if M does not accept w.
- That is, M' is in \mathcal{P} if and only if M accepts w.

Corollaries of Rice's Theorem

The following languages are undecidable:

- 1. NOT $REGULAR = \{e(M) \mid M \text{ is a TM such that } L(M) \text{ is not regular}\}.$
- 2. NOT EMPTY = $\{e(M) \mid M \text{ is a TM such that } L(M) = \emptyset\}.$