計數器、暫存器(設計)

7-1 簡介

本單元討論序向(邏輯)的電路中兩種重要的電路計數器與暫存器。

計數器也可說是一除頻器(frequency divider)可分成同步計數器(synchronous counter)與非同步計數器(asynchronous counter)兩種,(主要功能不外乎計數與除頻)它在數位系統中扮演著,極其重要的角色。舉凡脈波計數、頻率分割、類比到數位的轉換等工作,都需要用到它,可說應用非常廣泛。

暫存器一般可分成保存資料用的資料暫存器 (data register)與移位暫存器(shift register)兩種。

7-2 同步計數器設計

1、同步計數器的設計方式可分成控制型計數器 (controlled counter)與自發型計數器(autonomous counter)兩種。前者除了加到每一個正反器的時脈信號(cp)外,亦有一個致能控制端以啟動計數器的計數動作;後者則只要加入時脈信號,即自動發生計數動作。

無論那種類型的同步計數器,其設計方法均和一般同步序向電路的設計方法相同。

< (例題一>:控制型模8同步二進制正(倒)數計數器設計一個模 8 同步二進制正數計數器電路。假設計數器有一個控制輸入端 X,當 X為 0時,計數器暫停計數動作並且維持在目前的狀態上,當X=1(X=0),計數器正常計數。當計數器數到111(000)時,輸出端 Z 輸出一個 1 的脈波,其他的狀態下 Z均為 0

sol:

1.

2.

並行進位模式
$$T_1 = x$$
 $T_2 = x y_1$
 $T_3 = x y_1 y_2$
 $Z = x y_1 y_2 y_3$
建進位模式
 $T_1 = x$
 $T_2 = T_1 y_1$
 $T_3 = T_2 y_2$
 $Z = T_3 y_3$

М

sol:

1.

2.

並行進位模式
$$T_1 = x'$$

$$T_2 = x' y'_1$$

$$T_3 = x' y'_1 y'_2$$

$$Z = x' y'_1 y'_2 y'_3$$
連進位模式
$$T_1 = x'$$

$$T_2 = T_1 y'_1$$

$$T_3 = T_2 y'_2$$

$$Z = T_3 y'_3$$

同理可設計控制型模 8 同步二進制 正/倒 數計數器

<例題二>:自發型模 8 二進制正數計數器

設計一個模 8 同步二進制正數計數器電路。假設在每一個時脈信號的正緣時,計數器即自動往上計數一次,當計數器計數到111時,y輸出端 Z輸出一個 1 的脈波,其他狀態下,Z 均為 0。

若計數次序為特殊次序(亂數) 共模數 $N \neq 2^n$ 計數,設計原 理亦同。

2. 同步計數器依執行方式可分為兩種:

一為串聯進位同步計數器(serial-carry synchronous counter),又稱漣波進位模式(ripple carry mode)

另一為並聯同步計數器(synchronous parallel counter),又稱並行進位模式(parallel carry mode)

串聯進位同步計數器(serial-carry synchronous counter) 設計原則:

(只適用於以二進制遞增或遞減的模 2ⁿ計數器) 當計時脈衝來臨時,只有當所有較第 M 級為低 之各級均為"1"時,才會使 M 級發生反相。

例題:設計一 4 位元同步二進位計數器

3. 比較

並行進位模式的執行方式,具有較快的操作(工作)頻率。缺點則需要較多扇入數目的 AND 閘。

串聯進位模式,則每一級正反器輸入端的AND閘扇入數目最多只為 2。缺點則可操作頻率較低。 (在同步計數器中,所有 FFs 均為同時產生變化,但在下一脈衝來臨前,必須有足夠的時間讓各閘去建立適當的準位,以加至所有 FF_s和 J、K端。)

<pb> 試設計下列計數順序之同步計數器

7-3 非同步(漣波)計數器設計

(屬非同步序向電路)

利用前一級正反器的輸出作為下一級正反器的輸入來激發轉態謂之。

或組成計數器的每一正反器非同時轉態,(可能接受任一 FF 的輸出來激發轉態)

例題1:設計一個模 8 非同步正數計數器

狀態表: $\therefore 2^k \ge N = 8 \therefore k = 3 \text{ (FFs)}$

現態				次点	造
Q_3	\mathbf{Q}_2	\mathbf{Q}_{1}	Q_3	Q_2	\mathbf{Q}_{1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

定義:

 $0: 0 \rightarrow 0$

 $1: 1 \rightarrow 1$

 $\alpha: 0 \rightarrow 1$

 $\beta: 1 \rightarrow 0$

Q(t) –	\rightarrow Q(t+1)	J	K
0	0	0	Ø
0	1	1	Ø
1	0	Ø	1
1	1	Ø	0

$Q_3 Q_2$	Q ₁ 00	0.1	4.4	1.0
Q_3	00	01	11	10
0	0	0	α	0
1	1	1	\mathfrak{D}	1

$$J_1 = K_1 = 1$$
$$ck_1 = cp$$

$$\begin{array}{c|c}
Q_3 \\
0 & \alpha \\
1 & \beta
\end{array}$$

$$J_2 = K_2 = 1$$

$$J_3 = K_3 = 1$$

$$ck_3 = \beta (Q_2)$$

$$ck_2 = \beta (Q_1)$$

邏輯電路

例題2:設計一個模 8 非同步倒數計數器

Sol:

狀態表:

	現息	にい		次為	より
Q_3	\mathbf{Q}_2	\mathbf{Q}_{1}	Q_3	\mathbf{Q}_{2}	Q_1
0	0	0	1	1	1
1	1	1	1	1	0
1	1	0	1	0	1
1	0	1	1	0	0
1	0	0	0	1	1
0	1	1	0	1	0
0	1	0	0	0	1
0	0	1	0	0	0

$$J_1 = K_1 = 1$$
$$ck_1 = cp$$

$$J_2 = K_2 = 1$$

$$ck_2 = \alpha (Q_1)$$

$$= \beta (Q_1)$$

$$J_3 = K_3 = 1$$

$$ck_3 = \alpha (Q_2)$$

$$= \beta (Q_2)$$

例題3:設計一個模 8 非同步正數/倒數計數器電路

Sol:

加一選擇電路

(2×1多工器)

或

(AOI 電路) And-OR-inverter 例題4:事先設定計數器 (presetable counter)

一般正反器均有兩個非同步輸入端:預置(preset PR) 與清除(clear CLR),可以改變其輸入狀態。

例題4: BCD其他模組計數器設計

數列某一特定數加以解碼

- $1. PR: 當狀態 S_{N-1} 發生時,加以解出,並用 以 preset 某些正反器。$
- 2. CLR:當狀態 S_N 發生時,加以解出,並用以 clear 計數器中某些正反器。

模10非同步正數計數器(使用PR方式) $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9$, $15 \rightarrow 0 \rightarrow$

模10非同步正數計數器(使用CLR方式) $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10$, $0 \rightarrow$

缺點:將產生一個額外的錯誤脈波

解決方法:

- 1.加一閃脈(strobe)控制信號,其出現才取出output
- 2.改由同步計數器執行

	現	態			次	態	
Q_8	Q_4	\mathbf{Q}_2	\mathbf{Q}_1	Q_8	Q_4	\mathbf{Q}_2	Q_1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

define:

$$0: 0 \rightarrow 0$$

$$1: 1 \rightarrow 1$$

$$\alpha: 0 \rightarrow 1$$

$$\beta: 1 \rightarrow 0$$

Q(t)	> Q(t+1)	J	K
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	0

Q_2	Q_2Q_1				
Q_8Q_4	12 -1	00	01	11	10
	00	0	α	β	1
	01	0	α	β	1
	11	X	×	×	×
	10	0	0	X	×
	-				

Q_2Q_1	L			
	00	01	11	10
00	0	0	α	0
01	1	1	β	1
11	X	X	×	×
10	0	0	×	×
10	U	U	X	X

 Q_8

 Q_8Q_4

Q_2Q_1				
	00	01	11	10
00	0	0	0	0
01	0	0	α	0
11	X	X	×	×
10	1	β	X	X
•				

Q_1				
Q_2Q_2				
Q_8Q_4	00	01	11	10
00	1Ø	Ø1	Ø1	1,0
01	1Ø	Ø1	Æ1	1.0
11	×	×	X	X
10	1ø	ø1	×	×

$$J_1 = K_1 = 1$$
$$ck_1 = cp$$

Q_2 Q_2		
Q_8Q_4	0	1
00	1,0	<i>Ø</i> 1
01	1,0	Ø 1
11	×	×
10	0,0	×

$$J_2 = Q'_8$$

$$K_2 = 1$$

$$ck_2 = \beta(Q_1)$$

$J_4 = 1$
$K_4 = 1$
$ck_4 = \beta(Q_2)$

$$\begin{array}{c|cccc}
0 & 1 \\
00 & 00 & 00 \\
01 & 00 & 10 \\
11 & \times & \times \\
10 & 00 & \times
\end{array}$$

$$J_8 = Q_4Q_2$$

$$K_8 = 1$$

$$ck_8 = \beta(Q_1)$$

BCD 漣波計數器邏輯圖

7-4 計數器分析

<例題1>非同步計數器電路分析 分析下圖的非同步計數器電路

sol: 注意:在非同步計數器中,必須將正反器時脈輸入端的觸發信號列入考慮。

建狀態檢查表分析之(控制端輸入)

現態	$J_8 K_8$	$J_4 K_4$	$J_2 K_2$	$J_1 K_1$	次	能
$Q_8 Q_4 Q_2 Q_1$	$\operatorname{ck}_{8} = \beta(Q_{1})$	$\operatorname{ck}_{4} = \beta \left(\mathbf{Q}_{2} \right)$	$ck_2 = \beta(Q_1)$	$ck_1 = cp$	$Q_8 Q_4$	$Q_2 Q_1$
0 0 0 0	0 1	1 1	1 1	1 1	0 0	0 1
0 0 0 1	0 1	1 1	1 1	1 1	0 0	1 0
0 0 1 0	0 1	1 1	1 1	1 1	0 0	1 1
0 0 1 1	0 1	1 1	1 1	1 1	0 1	0 0
0 1 0 0	0 1	1 1	1 1	1 1	0 1	0 1
0 1 0 1	0 1	1 1	1 1	1 1	0 1	1 0
0 1 1 0	1 1	1 1	1 1	1 1	0 1	1 1
0 1 1 1	1 1	1 1	1 1	1 1	1 0	0 0
1 0 0 0	0 1	1 1	0 1	1 1	1 0	0 1
1 0 0 1	0 1	1 1	0 1	1 1	0 0	0 0

<例題2>同步計數器電路分析 分析下圖的同步計數器電路

sol: 由JK正反器的特性方程式:

$$Q(t+1) = J Q'(t) + K'Q(t)$$

得 $Q_1(t+1) = Q'_2Q'_1 + Q_2Q_1 = Q_2 \odot Q_1$
 $Q_2(t+1) = Q_1Q'_2 + Q_1Q_2 = Q_1$

P	'S	NS		
Q_2	Q_1	Q_2	Q_1	
0	0	0	1	
0	1	1	0	
1	0	0	0	
1	1	1	1	

正常迴圈因雜訊影響電源重置,將無法回

11

根據前知非自我啟動(self-starting)與自動修正(self-correcting)電路

<例題3>重新設計上例電路,使成為自我啟動電路 Sol:

$$J_1 = Q'_2 \quad K_1 = 1$$

$$J_1 = Q'_2$$
 $K_1 = 1$
 $J_2 = Q_1$ $K_2 = 1$

在MSI計數器中,較常用的非同步計數器有 SN7490(除2與除5),SN7492(除2與除6)及SN7493(除 2與除8)等電路。較常用的同步計數器則有下列幾 種:

- (1)可預置BCD正數計數器(SN74160/74162)
- (2)可預置BCD正數/倒數計數器(SN74190/74192)
- (3)可預置 4位元二進制正數計數器(SN74161/74163)
- (4)可預置 4位元二進制正數/倒數計數器 (SN74191/74193)

74161/74163:清除控制為同步方式。(需等下一個 CP來臨,才CLR)

74193: 為非同步清除輸入端

7-5 暫存器與移位暫存器

1.暫存器(register):是一群二進制儲存單元的集合,可以用來儲存二進位資料,每一個儲存單元通常為一個正反器。(7474)

4 位元 register

通常一群 FFs 對脈衝寬度有作用時稱為閂 通常一群 FFs 對脈衝轉變時起作用的稱為記錄器

優點:(最)簡單

缺點:連續的脈波序列將連續地取樣輸入信號因而 連續的改變正反器的輸出。

解決辦法:加一載入(load)控制,只在適當(或需要)時,才將輸入載入 FF,其他時候則保持不變。

buffer目的: 減輕外部電路(即推動電路)對這些控制端的負載效應。

- 2.移位暫存器(shift register):也是暫存器的一種,除了有儲存的功能外,還可以將儲存資料作適當的移位。
- <1>就資料的進出方式可分為四種:
- (1) 串聯輸入、串聯輸出(serial-in serial-out; SISO)。
- (2) 串聯輸入、並聯輸出(serial-in parallel-out; SIPO) 暫存器。
- (3)並聯輸入、並聯輸出(parallel-in parallel-out; PIPO)暫存器。
- (4)並聯輸入、串聯輸出(parallel-in serial-out; PISO) 暫存器。

- <2>就移位的動作可分為:
- (1)單向移位暫存器(unidirectional shift register)
 - 1. 左移
 - 2. 右移
- (2)雙向移位暫存器(bidirectional shift register)

(1)單向移位暫存器

右移

左移

(2)雙向移位暫存器

<例題>利用兩條模態控制線(S₁,S₀)設計一具有平行載入能力的3數元雙向式移位暫存器。其移位暫存器模態控制效果如下:

模態控制 S ₁ S ₀	暫存器運算
0 0	不變
0 1	右移
1 0	左移
1 1	載入並行資料

一般來說,暫存器同時具有載入並行資料能力與右

一般來說,習行品內時具有載八並行員杆能力與石 移和左移的功能時,則稱為通用移位暫存器 (universal shift register)。

因此可當作下列四種功能暫存器使用

- (1) SISO Reg.
- (2) SIPO Reg.
- (3) PIPO Reg.
- (4) PISO Reg.

sol:

3.移位暫存器的應用(常用)

<1> 資料格式(data format)轉換;

在大多數的數位系統內,資料的傳送都是並列的方式,但是當該系統欲傳送資料到外部(例如終端機,terminal)時,則必須以串列方式傳送,結果該系統與外部電路之間的通信必須透過一個資料格式轉換電路,常用的方式為採用PISO reg。將並列資料載入該暫存器後,再以串列輸出方式取出。反之,則採用SIPO reg。

在實際應用中,由於移位暫存器的長度是有限的,因此必須將資料序列分成資料框 (frame)。而其長度則等於移位暫存器的長度。

一般而言,兩個數位系統間的資料轉移方式可分成並列轉移(parallel transfer)與串列傳輸(serial transfer)兩種。就速度而言,並列方式遠較串列方式為快;就成本而言,若考慮長距離的資料傳送,則以串列方式較低。

例題:(串列資料轉移)

設計一個串列資料轉移系統,當轉移控制輸入 (TC)為高電位時,移位暫存器 A 的 4 個位元資料則 依序以串列方式轉移到移位暫存器 B 中。

Sol:

※除了直接轉移資料到另一個移位暫存器中之外, 兩個暫存器中的資料也可能經過一番運算之後再轉 移到另一個移位暫存器或回原先的暫存器之中。

例題:4位元串列加法器

<pb.>上序向電路部份若改用JK FF作為記憶元件電路如何設計?

Sol:狀態表:

現態	輸入	次態	輸出	
Q	X Y	R	S	J K
0	0 0	0	0	0 φ
0	0 1	0	1	0 φ
0	1 0	0	1	0 φ
0	1 1	1	0	1ϕ
1	0 0	0	1	ϕ 1
1	0 1	1	0	$\phi = 0$
1	1 0	1	0	$\phi = 0$
1	1 1	1	1	ϕ 0

Q-	$\rightarrow Q_{t+1}$	J	K
0	0	0	φ
0	1	1	φ
1	0	φ	1
1	1	φ	0

JQ = xy, KQ = x'y' = (x+y)', $S = x \oplus y \oplus Q$

※前已討論過並加器,在此我們討論串加器(serial adder)設計,比較下得:串列運算比較慢,但所需的設備較少,也因為並行運算較快,所以數位計算機中大多以並行方式來運算。

<2>序列產生器

※所謂序列產生器是指一個外加時脈同步下產生特定0或1序列的數位系統。這種電路可以當作計數器,時序產生器...等等。

※一般而言,一個序列的長度(length)定義為該序列 在未重覆之前所含有的連續位元之數目。

在欲產生長度為S的序列,至少須使用n個正反器, 而且n滿足下列條件:

$S \leq 2^n - 1$

基本n級序列產生器電路結構

<例題1>設計一個非週期性序列產生器電路,產生下列 序列:

$$S \leq 2^n - 1$$

Sol:真值表:
$$S \le 2^n - 1$$
 $13 \le 2^n - 1 \Rightarrow n=4$

	D1	WXYZ
S ₀	1	0001
S_1	0	1000
S ₂	0	0100
S 3	1.	0010
S ₄	1	1001
S 5	0	1100
S ₆	1	0110
S 7	1	1011
S ₈	1	1101

→ ※ 假設移位reg. 初值為0001 (可利用CLR、PRE設定)

$$D_1=Z+Y$$

<例題2>設計一個非週期性序列產生器電路,產生下列

序列: 0 1 1 1 1 0 1 ↑ ↑ ↑ MSB LSE

Sol:
$$\Rightarrow S \leq 2^{n} - 1 \Rightarrow 7 = 2^{n} - 1 \Rightarrow \therefore n = 3$$

真值表:

	D1	XYZ
S ₀	1	101
S_1	1	110
S_2	1	1 1 1
S 3	0	1 1 1
S ₄	1	011
S 5	0	101
S 6	1	010
S ₀	1	1 0 1

r

※表中發現有(如)其 x y z 的輸出相同(101)但卻要產生不同的D1值,因不可能設計出這樣的組合邏輯電路。解決這種矛盾的方法是增加正反器的數目。

故取n=4

真值表:

	D1	WXYZ
S ₀	1	1101
S_1	1	1110
S_2	0	1111
S 3	1	0111
S ₄	0	1011
S 5	1	0101
S 6	1	1010
S ₀	1	1101

$$D'_1 = wyz$$

$$D_1 = (wyz)'$$

※最大長度序列又稱假亂數序列(pseudo-random sequence,簡稱pr序列)或假雜音序列(pseudo-noise sequence)。

<3>其他

標準環形(standard-ring)

1. 環形計數器

扭環(twisted-ring);又稱詹森

- 2.計數器(Johnson counter)或尾端交換計數器(switchtail counter):為一種 n 位元交換尾端計數器,以 2n 個解碼器供給 2n 個定時信號。(時序產生器)
- 3.應用於磁碟中的資料錯誤檢查或計算機通信網路中錯誤檢查的CRC (cyclic redundancy code)產生器/檢查器。

(Digital monostable)

定時信號: (時序產生器) time sequence generator

標準環形計數器 (啟始=1000)

計數器與解碼器

四個定時信號的順序

扭環計數器(模8) 2n:1 (偶模)

	WXYZ	Decode
1	0000	W'Z'
2	1000	W X'
3	1100	XY'
4	1110	YZ'
5	1111	W'Z
6	0111	X'X
7	0011	X'Y
8	0001	Y'Z

設計2n-1:1 同序列產生器設

2n-1:1(奇模)

