TOPOLOGICAL DATA ANALYSIS - EXERCISES

Lucas Moschen, EMAp/FGV

February 1, 2021

Contents

T	Ger	General topology									
	1.1	Important definitions	1								
	1.2	Exercises	2								
2	Homeomorphisms										
	2.1	Important definitions	Ę								
	2.2	Exercises	Ę								
3	Homotopies										
	3.1	Important definitions	Ć								
	3.2	Exercises	Ć								
4	Simplicial complexes 1:										
	4.1	Important definitions	13								
	4.2	Exercises	13								
5	Homological algebra 1										
	5.1	Important Definitions	16								
	5.2	Exercises	16								

1 General topology

1.1 Important definitions

DEFINITION 1.1.1. A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that:

- 1. $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- 2. for every infinite collection $\{O_{\alpha}\}_{{\alpha}\in A}\subset \mathcal{T}$, we have $\bigcup_{{\alpha}\in A}O_{\alpha}\in \mathcal{T}$.
- 3. for every finite collection $\{O_i\}_{1 \leq i \leq n} \subset \mathcal{T}$, we have $\bigcap_{1 \leq i \leq n} O_i \in \mathcal{T}$.

DEFINITION 1.1.2. Let $x \in \mathbb{R}^n$ and r > 0. The open ball of center x and radius r, denoted $\mathcal{B}(x,r)$, is defined as: $\mathcal{B}(x,r) = \{y \in \mathbb{R}^n, ||x-y|| < r\}$.

DEFINITION 1.1.3. Let $A \subset \mathbb{R}$ and $x \in A$. We say that A is open around x if there exists r > 0 such that $\mathcal{B}(x,r) \subset A$. We say that A is open if for every $x \in A$, A is open around x.

DEFINITION 1.1.4. Let (X, \mathcal{T}) be a topological space, and $Y \subset X$. We define the subspace topology on Y as the following set:

$$T_{|Y} = \{O \cap Y, O \in \mathcal{T}\}$$

DEFINITION 1.1.5. Let $f: X \to Y$ be a map. We say that f is continuous if for every $O \in U$, the preimage $f^{-1}(O) = \{x \in X, f(x) \in O\}$ is in \mathcal{T} .

1.2 Exercises

EXERCISE 1. Let $X = \{0, 1, 2\}$ be a set with three elements. What are the different topologies that X admits?

As we know every Topology contains \emptyset and $\{0,1,2\}$, so we can disconsider when writing the topologies, that is, all below contain these subsets.

- (2) Basic: $\{\emptyset, \{0, 1, 2\}\}\$ $\mathcal{P}(\{0, 1, 2\})$.
- (8) With $\{0\}$: $\{\{0\}\} \{\{0\}, \{0, 1\}\}\} \{\{0\}, \{1, 2\}\}\} \{\{0\}, \{0, 2\}\}\} \{\{0\}, \{0, 2\}, \{0, 1\}\}\}$ $\{\{0\}, \{2\}, \{0, 2\}\}\} \{\{0\}, \{2\}, \{0, 2\}, \{1, 2\}\}\} \{\{0\}, \{2\}, \{0, 2\}, \{0, 1\}\}$
- (8) With $\{1\}$: $\{\{1\}\} \{\{1\}, \{0, 1\}\} \{\{1\}, \{1, 2\}\} \{\{1\}, \{0, 2\}\} \{\{1\}, \{1, 2\}, \{0, 1\}\}$ $\{\{0\}, \{1\}, \{0, 1\}\} \{\{0\}, \{1\}, \{0, 1\}, \{1, 2\}\} \{\{0\}, \{1\}, \{0, 1\}, \{0, 2\}\}$
- (8) With $\{2\}$: $\{\{2\}\} \{\{2\}, \{0, 1\}\} \{\{2\}, \{1, 2\}\} \{\{2\}, \{0, 2\}\} \{\{2\}, \{0, 2\}, \{1, 2\}\}$ $\{\{1\}, \{2\}, \{1, 2\}\} - \{\{1\}, \{2\}, \{1, 2\}, \{0, 1\}\} - \{\{1\}, \{2\}, \{1, 2\}, \{0, 2\}\}$
- (3) No singleton: $\{\{0,1\}\} \{\{1,2\}\} \{\{0,2\}\}$

EXERCISE 2. Let \mathbb{Z} be the set of integers. Consider the cofinite topology \mathcal{T} on \mathbb{Z} , defined as follows: a subset $O \subset \mathbb{Z}$ is an open set if and only if $O = \emptyset$ or cO is finite. Here, $^cO = \{x \in \mathbb{Z}, x \notin O\}$ represents the complementary of O in \mathbb{Z}

1. Show that \mathcal{T} is a topology on \mathbb{Z} .

Let's verify the three axioms:

- (a) \emptyset is an open set by definition and \mathbb{Z} is open set because ${}^{c}\mathbb{Z} = \emptyset$ is finite.
- (b) Let $\{O_{\alpha}\}_{\alpha\in A}\subset \mathcal{T}$. So ${}^{c}O={}^{c}\left(\bigcup_{\alpha\in A}O_{\alpha}\right)=\bigcap_{\alpha\in A}{}^{c}O_{\alpha}\implies {}^{c}O\subset {}^{c}O_{\alpha}, \forall \alpha\in A$. If $\forall \alpha,O_{\alpha}=\emptyset$, then ${}^{c}O={}^{c}\emptyset\implies O=\emptyset$ and O is open. On the other hand, if there exists $\alpha\in A$ such that $O_{\alpha}\neq\emptyset$ we have ${}^{c}O_{\alpha}$ being finite, so is ${}^{c}O$, given the inclusion. We conclude O is open set.
- (c) Let $\{O_i\}_{1\leq i\leq n}\subset \mathcal{T}$. So ${}^cO={}^c\left(\bigcap_{1\leq i\leq n}O_i\right)=\bigcup_{1\leq i\leq n}{}^cO_i$. If $O_i=\emptyset$ for some $1\leq i\leq n,\,O=\emptyset$ because of the intersection. Alternatively, if $\forall i,O_i\neq\emptyset$ we have that cO_i is finite and a finite union of finites is finite. We conclude that O is open set.

By (a), (b) and (c), \mathcal{T} is a topology on \mathbb{Z} .

2. Exhibit an sequence of open sets $\{O_n\}_{n\in\mathbb{N}}\subset\mathcal{T}$ such that $\bigcap_{n\in\mathbb{N}}O_n$ is not an open set. Let $O_n=\ ^c\{1,...,n\}$. Thus $^cO_n=\{1,...,n\}$ is finite and

$$^{c}\left(\bigcap_{n\in\mathbb{N}}O_{n}\right)=\bigcup_{n\in\mathbb{N}}^{c}O_{n}=\bigcup_{n\in\mathbb{N}}\left\{ 1,...,n\right\} =\mathbb{N},$$

that is not finite. Therefore, this intersection is not an open set.

EXERCISE 3. Let $x \in \mathbb{R}^n$, and r > 0. Let $y \in \mathcal{B}(x,r)$. Show that

$$\mathcal{B}(y, r - ||x - y||) \subset \mathcal{B}(x, r)$$

Let $z \in \mathcal{B}(y, r - ||x - y||)$, so $||z - y|| < r - ||x - y|| \implies ||z - y|| + ||x - y|| < r$. We can conclude that, by the triangular inequality,

$$||x - z|| \le ||x - y|| + ||z - y|| < r.$$

In that sense, $z \in \mathcal{B}(x,r)$ and $\mathcal{B}(y,r-||x-y||) \subset \mathcal{B}(x,r)$.

Remark. In the notes, the exercise is to prove $\mathcal{B}(y,||x-y||) \subset \mathcal{B}(x,r)$, however, this does not hold, because if we take y next the border of $\mathcal{B}(x,r), ||x-y|| \approx r$ and $\mathcal{B}(y,r-\epsilon) \not\subset \mathcal{B}(x,r)$.

EXERCISE 4. Let $x, y \in \mathbb{R}^n$, and r = ||x - y||. Show that

$$\mathcal{B}\left(\frac{x+y}{2}, \frac{r}{2}\right) \subset \mathcal{B}(x,r) \cap \mathcal{B}(y,r)$$

Denote $m = \frac{x+y}{2}$. Take $z \in \mathcal{B}\left(m, \frac{r}{2}\right)$. Thus, using the triangular inequality,

$$||x - z|| \le ||x - m|| + ||m - z|| = \frac{1}{2}||x - y|| + ||m - z|| < r/2 + r/2 = r$$

$$||y-z|| \le ||y-m|| + ||m-z|| = \frac{1}{2}||y-x|| + ||m-z|| < r/2 + r/2 = r$$

So $z \in \mathcal{B}(x,r)$, $z \in \mathcal{B}(y,r)$ and $z \in \mathcal{B}(x,r) \cap \mathcal{B}(y,r)$. Therefore $\mathcal{B}(m,\frac{r}{2}) \subset \mathcal{B}(x,r) \cap \mathcal{B}(y,r)$.

EXERCISE 5. Show that the open balls $\mathcal{B}(x,r)$ of \mathbb{R}^n are open sets (with respect to the Euclidean topology).

We have to prove that for every $y \in \mathcal{B}(x,r)$, there exists $\epsilon > 0$ such that $\mathcal{B}(y,\epsilon) \subset \mathcal{B}(x,r)$. Put $\epsilon = r - ||x - y||$. As we have proved in exercise 3, $\mathcal{B}(y,\epsilon) \subset \mathcal{B}(x,r)$. So $\mathcal{B}(x,r)$ is open set.

EXERCISE 6. Consider $X = \mathbb{R}$ endowed with the Euclidean topology. Are the following sets open? Are they closed?

- 1. [0,1]. It's not open set because for every $\epsilon > 0$, $\mathcal{B}(0,\epsilon) = (-\epsilon,\epsilon) \not\subset [0,1]$. It's closed because $[0,1]^c = (-\infty,0) \cup (1,\infty)$ is an union of two open sets, as we prove in item 3.
- 2. [0,1). It's not open for the same reason as before. It's not closed because $B(1,\epsilon) = (1-\epsilon,1+\epsilon) \not\subset (-\infty,0) \cup [1,\infty]$.
- 3. $(-\infty, 1)$. It's open because: take x < 1. Put r = 1 x and take $z \in \mathcal{B}(x, r)$. If z > x, $|x z| < 1 x \implies z < 1$. If z < x, it follows z < 1. It proves z < 1 and $(-\infty, 1)$ is open. It's not closed cause $\forall \epsilon > 0, \mathcal{B}(1, \epsilon) \not\subset [1, \infty)$.
- 4. the singletons. It's not open cause $\forall \epsilon > 0, x + \epsilon/2 \in \mathcal{B}(x, \epsilon)$. It's close cause $(-\infty, x) \cup (x, \infty)$ is union of open sets.

5. \mathbb{Q} . It's not open because for every open ball around a rational, there are irrationals, that is, let $x \in \mathbb{Q}$ and take $\epsilon > 0$, then there exists $y \in (\mathbb{R} - \mathbb{Q}) \cap \mathcal{B}(x, \epsilon)$. It's not closed for the same reason, for every irrational, there is rationals for every open ball.

Remark. We shall prove the rationals are dense in the reals. Let $x \in \mathbb{Q}$ and $\epsilon > 0$. If ϵ is irrational, take $x - \epsilon/2 \subset (x - \epsilon, x + \epsilon)$. Suppose $x - \epsilon/2$ is rational, then $\frac{2x - \epsilon}{2} = \frac{m}{n}$ for some integers m and n, that is, $2x - \epsilon = 2m/n$ and $\epsilon = 2(x - \frac{m}{n}) \in \mathbb{Q}$, contradiction. So there is an irrational in $\mathcal{B}(x, \epsilon)$. If ϵ is rational, consider

$$y = \frac{1}{\sqrt{2}}(x - \epsilon) + (1 - \frac{1}{\sqrt{2}})(x + \epsilon) = (x + \epsilon) - \epsilon\sqrt{2}$$

That is a convex combination, so $y \in \mathcal{B}(x, \epsilon)$. Moreover, y is irrational, with a similar proof by contradiction. This proves the statement.

On the other hand, we must prove for every two irrationals (a, b), there is a rational between them. Denote c = b - a > 0. Let $n \in \mathbb{N}$ such that $n > \frac{1}{c} \implies cn > 1 \implies (bn - an) > 1$. So exists $m \in (an, bn) \implies m/n \in (a, b)$. This proves the second statement.

Exercise 7. A map is continuous if and only if the preimage of closed sets are closed sets.

First we shall prove that $f^{-1}({}^{c}A) = {}^{c}(f^{-1}(A))$. Let's prove the double inclusion. Take $x \in f^{-1}({}^{c}A)$. So there exists $y \in {}^{c}A$ such that f(x) = y. Suppose that $x \in f^{-1}(A)$. It implies the existence of $z \in A$ such that y = f(x) = z, absurd. So $x \in {}^{c}(f^{-1}(A))$.

Now take $x \in {}^c(f^{-1}(A))$. Therefore, $\forall y \in A, f(x) \neq y$. In that case, $f(x) \in {}^cA \implies x \in f^{-1}({}^cA)$. Then we have showed the equality.

Now let's prove the equivalence. Suppose f is a continuous map and take a closed set F. We shall prove that $f^{-1}(F)$ is closed. Well, $c(f^{-1}(F)) = f^{-1}(cF)$ is open, because cF is open, by the continuity. We conclude that $f^{-1}(F)$ is closed.

Suppose that for every closed set F, we have $f^{-1}(F)$ being closed. We will use that A is open if cA is closed. This is true because ${}^c({}^c(A)) = A$. Take an open set A. ${}^c(f^{-1}(A)) = f^{-1}({}^cA)$ is closed, because cA is. Thus $f^{-1}(A)$ is open and we have proved the continuity of f.

2 Homeomorphisms

2.1 Important definitions

DEFINITION 2.1.1. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f: X \to Y$ a map. We say that f is a homeomorphism if

- 1. f is a bijection,
- 2. $f: X \to Y$ is continuos,
- 3. $f^{-1}: Y \to X$ is continuos.

If there exists such a homeomorphism, we say that the two topological spaces are homeomorphic.

DEFINITION 2.1.2. Let (X, \mathcal{T}) be a topological space. We say that X is connected if for every open sets $O, O' \in \mathcal{T}$ such that $O \cap O' = \emptyset$ (i.e., they are disjoint), we have

$$X = O \cup O' \implies O = \emptyset \text{ or } O' = \emptyset.$$

DEFINITION 2.1.3. Let (X, \mathcal{T}) be a topological space. Suppose that there exists a collection of n non-empty, disjoint and connected open sets $(O_1, ..., O_n)$ such that

$$\bigcup_{1 \le i \le n} O_i = X.$$

Then we say that X admits n connected components.

DEFINITION 2.1.4. Let (X, \mathcal{T}) be a topological space, and $n \geq 0$. We say that it has dimension n if the following is true: for every $x \in X$, there exists an open set O such that $x \in O$, and a homeomorphism $O \to \mathbb{R}^n$.

2.2 Exercises

EXERCISE 8. Show that the topological spaces \mathbb{R}^n and $\mathcal{B}(0,1) \subset \mathbb{R}^n$ are homeomorphic.

Let $f: \mathcal{B}(0,1) \to \mathbb{R}^n$ be defined as $f(x) = \frac{x}{1-||x||}$. I observe it's well defined because ||x|| < 1. We shall prove f is a homeomorphism.

1. **Injective:** Take $x, y \in \mathcal{B}(0, 1)$ and suppose that

$$\frac{x}{1 - ||x||} = \frac{y}{1 - ||y||}.$$

Applying the norm in both sides, we obtain the equation

$$||x||(1-||y||) = ||y||(1-||x||) \implies ||x|| = ||y||.$$

On the other side x and y points to the same direction, given that

$$y = \frac{1 - ||y||}{1 - ||x||} x = \alpha x,$$

5

with $\alpha = 1$ because of the same norm. We conclude x = y.

2. Surjective: Take $y \in \mathbb{R}^n$. We shall prove that there exists $x \in \mathcal{B}(0,1)$ such that f(x) = y, that is,

$$\frac{x}{1 - ||x||} = y$$

Applying the norm we observe that if that is true, $||x|| = ||y|| - ||y||||x|| \implies ||x|| = \frac{||y||}{1+||y||}$ And $x = (1-||x||)y = \frac{1}{1+||y||}y$. We conclude that for every $y \in \mathbb{R}^n$, if we take $x = \frac{y}{1+||y||}$,

$$f(x) = \frac{y/(1+||y||)}{1-||y||/(1+||y||)} = y$$

3. Continuity of f: Consider an open set $A \subset \mathbb{R}^n$. Let $B = f^{-1}(A)$. We shall prove B is open, that is, for every $x \in B$, exists r > 0 such that $\mathcal{B}(x,r) \subset B$. Take $x = f^{-1}(y) \in B$. Because A is open, there is $\epsilon > 0$ such that $\mathcal{B}(y,\epsilon) \subset A$. Take δ such that

$$\frac{\delta}{1 - ||x|| - \delta} (1 + ||y||) < \epsilon$$

and $z = f^{-1}(w) \in \mathcal{B}(x, \delta)$.

$$\begin{aligned} ||y-w|| &= \left| \left| \frac{x}{1-||x||} - \frac{z}{1-||z||} \right| \right| = \frac{1}{1-||x||} \left| \left| x - \frac{1-||x||}{1-||z||} z \right| \right| \\ &= \frac{1}{1-||x||} \left| \left| x - z + z - \frac{1-||x||}{1-||z||} z \right| \right| \\ &\leq \frac{||x-z||}{1-||x||} + \frac{1}{1-||x||} \left(1 - \frac{1-||x||}{1-||z||} ||z|| \right) \\ &= \frac{||x-z||}{1-||x||} + \frac{||z||}{1-||x||} \frac{||x|| - ||z||}{1-||z||} \\ &\leq \frac{1}{1-||x||} ||x-z|| (1+||w||) \\ &\leq \frac{1}{1-||x||} ||x-z|| (1+||y-w|| + ||y||) \\ \Longrightarrow ||y-w|| &\leq \frac{||x-z||}{1-||x|| - ||x-z||} (1+||y||) \\ &< \frac{\delta}{1-||x|| - \delta} (1+||y||) < \epsilon \end{aligned}$$

So $w \in \mathcal{B}(y,\epsilon) \subset A \implies z \in B$, what proves B is open. It concludes the continuity of f.

4. Continuity of f^{-1} : The inverse is given by

$$f^{-1}(y) = \frac{y}{1 + ||y||}$$

The demonstration is quite similar to the previous item, given that the only difference is the signal.

By items (1) - (4), we conclude f is a homeomorphism and $\mathcal{B}(0,1) \simeq \mathbb{R}^n$.

Exercise 9. Show that $\mathcal{B}(x,r)$ and $\mathcal{B}(y,s)$ are homeomorphic.

Consider the function $f: \mathcal{B}(0,1) \to \mathcal{B}(c,r)$ given by $f(x) = r \cdot x + c$. Let's prove f is a

homeomorphism.

- 1. **Injective:** If $x, y \in \mathcal{B}(0,1)$ and $rx + c = ry + c \implies x = y$, because r > 0 by definition. So f is injective.
- 2. Surjective: Let $y \in \mathcal{B}(c,r)$ and x = (y-c)/r. So ||x|| = ||y-c||/r < 1, by definition. So $x \in \mathcal{B}(0,1)$ and f(x) = y what proves this function is surjective.
- 3. Continuity of f: Let $A \subset \mathcal{B}(c,r)$ open set and denote $B = f^{-1}(A)$. Take $x = f^{-1}(y) \in B$. We know there exists $\epsilon > 0$ such that $\mathcal{B}(y,\epsilon) \subset A$. Define $\delta = \epsilon/r$ and take $z = f^{-1}(w) \in \mathcal{B}(x,\delta)$.

$$||y - w|| = ||rx + c - (rz + c)|| = r||x - z|| < r\delta = \epsilon$$

Therefore $w \in \mathcal{B}(y, \epsilon) \subset A \implies z \in B$. So $\mathcal{B}(x, \delta) \subset B$, what proves B is open. This concludes the continuity of f.

4. Continuity of f^{-1} : The inverse is given by

$$f^{-1}(y) = \frac{y - c}{r}$$

This function is continuos for the same argument as before.

By items (1) - (4), we conclude f is a homeomorphism and $\mathcal{B}(0,1) \simeq \mathcal{B}(c,r)$. Since this is an equivalence relation, we have that

$$\mathcal{B}(0,1) \simeq \mathcal{B}(x,r)$$
 and $\mathcal{B}(0,1) \simeq \mathcal{B}(y,s)$ implies $\mathcal{B}(x,r) \simeq \mathcal{B}(y,s)$.

EXERCISE 10. Show that S(0,1), the unit circle of \mathbb{R}^2 , is homeomorphic to the ellipse

$$S(a,b) = \left\{ (x,y) \in \mathbb{R}^2, \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \right\},\,$$

for any a, b > 0.

Consider the function $f: \mathbb{S}(0,1) \to \mathcal{S}(a,b)$ defined as f(x,y) = (ax,by). Let's prove it is a homeomorphism.

- 1. **Injective:** Let $(x_1, y_1), (x_2, y_2) \in \mathbb{S}(0, 1)$ such that $(ax_1, by_1) = (ax_2, by_2)$. Since a, b > 0, we have $x_1 = x_2$ and $y_1 = y_2$. It proves f is injective.
- 2. Surjective: Let $(z, w) \in \mathcal{S}(a, b)$ and $(x, y) = \left(\frac{z}{a}, \frac{w}{b}\right)$. It's clear that f(x, y) = (z, w) and $x^2 + y^2 = \frac{z^2}{a^2} + \frac{w^2}{b^2} = 1$, so $(x, y) \in \mathbb{S}(0, 1)$. It proves f is surjective.
- 3. Continuity of f: Let $A \subset \mathcal{S}(a,b)$ open set and denote $B = f^{-1}(A)$. Take $(x,y) = f^{-1}(z,w) \in B$. We know there exists $\epsilon > 0$ such that $\mathcal{B}((z,w),\epsilon) \subset A$. Put δ as defined below and take $(x',y') = f^{-1}((z',w')) \in \mathcal{B}((x,y),\delta)$. Consider the norm 1

$$||(z', w') - (z, w)||_1 = ||(ax', by') - (ax, by)||_1 = ||(a(x' - x), b(y' - y))||_1$$
$$= a|x' - x| + b|y' - y|, \text{ define } c = \max\{a, b\}$$
$$\leq c(|x' - x| + |y' - y|) = c||(x' - x, y' - y)||_1$$

By the equivalente of the norms, there exists constants k_1, k_2 such that

$$||(z', w') - (z, w)|| \le k_1 ||(z', w') - (z, w)||_1 \le ck_1 ||(x' - x, y' - y)||_1 \le ck_1 k_2 ||(x' - x, y' - y)||_1$$

Then we need $\delta = \frac{\epsilon}{ck_1k_2}$ in order to prove that $(z', w') \in \mathcal{B}((z, w), \epsilon) \subset A \implies (x', y') \in B$. So $\mathcal{B}((x, y), \delta) \subset B$, what proves B is open. This concludes the continuity of f.

4. Continuity of f^{-1} : The inverse is given by

$$f^{-1}((z,w)) = (z/a, w/b)$$

This function is continuos for the same argument as before.

By items (1) - (4), we conclude f is a homeomorphism and $S(0,1) \simeq S(a,b)$.

Exercise 11. Show that [0,1) and (0,1) are not homeomorphic.

We shall prove by contradiction. Suppose these exists a homeomorphism $f:[0,1)\to (0,1)$. Let 0 < z = f(0) < 1 and define the following function

$$g:(0,1)\to (0,z)\cup (z,1)$$

$$x\mapsto g(x)=f(x)$$

This function is well defined given that z is not image of other point but 0. The function is injective because if $g(y) = g(x) \implies f(y) = f(x) \implies x = y$, given that f is injective. This function is also surjective since f is and 0 < w < 1 and $w \ne z$, it's clear that $f(0) \ne w$. As g is an induced map of a continuos function, by Proposition 1.21 from the notes, it's continuos and so is its inverse. We conclude g is a homeomorphism.

Now I will prove that (0,1) admits only 1 connected component, that is, it's connected. Suppose it's not and there exists $O,O'\subset(0,1)$ open disjoint sets such that $(0,1)=O\cup O'$ and none of them are empty sets. Let $a\in O,b\in O'$ with a< b without loss of generality. Define $\alpha=\sup\{x\in\mathbb{R}:[a,x)\subset O\}$. It's well defined because this set is not empty, given O is open and b is an upper bound. Then $\alpha\leq b$. Suppose $\alpha\in O'$, then there exists r>0 such that $(\alpha-r,\alpha+r)\subset O'$. We know that for every $\epsilon>0$, there exists $w\in(\alpha-\epsilon,\alpha]$ such that $[a,w)\subset O$. That is a contradiction since there exists $w\in(\alpha-r,\alpha)$ such that $[a,w)\subset O$. So $\alpha\in O\implies(\alpha-r,\alpha+r)\subset O$, for some r. We infer that $[a,\alpha+r)\subset O$, what is an absurd. Therefore (0,1) is connected.

For a similar argument, we prove that (0, z) and (z, 1) are connected. This implies that the union admits 2 connected components.

In that sense, we have a homeomorphism between a topological space with 1 connected component and other with 2 connected components, what is a contradiction by Proposition 2.14 from the notes. We conclude that [0,1) and (0,1) are not homeomorphic.

3 Homotopies

3.1 Important definitions

DEFINITION 3.1.1. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f, g: X \to Y$ two continuous maps. A homotopy between f and g is a map $F: X \times [0,1] \to Y$ such that:

- 1. $F(\cdot,0)$ is equal to f,
- 2. $F(\cdot,1)$ is equal to q,
- 3. $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

Remark. Before asking for $F: X \times [0,1] \to Y$ to be continuous, we have to give $X \times [0,1]$ a topology. The topology we choose is the product topology. Consider the topological space (X, \mathcal{T}) , and endow [0,1] with the subspace topology of \mathbb{R} , denoted $T_{[0,1]}$. The product topology on $X \times [0,1]$, denoted $T \otimes T_{[0,1]}$, is defined as follows: a set $O \subset X \times [0,1]$ is open if and only if it can be written as a union $U_{\alpha \in A}O_{\alpha} \times O'_{\alpha}$ where every O_{α} is an open set of X and X are open set of X and X are open set of X and X are open set of X.

DEFINITION 3.1.2. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- 1. $g \circ f: X \to X$ is homotopic to the identity map $id: X \to X$,
- 2. $f \circ g: Y \to Y$ is homotopic to the identity map $id: Y \to Y$,

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

DEFINITION 3.1.3. Let (X, \mathcal{T}) be a topological space and $Y \subset X$ a subset, endowed with the subspace topology $T_{|Y|}$. A retraction is a continuous map $r: X \to Y$ such that $\forall y \in Y, r(y) = y$.

A deformation retraction is a homotopy $F: X \times [0,1] \to Y$ between the identity map $id: X \to X$ and a retraction $r: X \to Y$.

3.2 Exercises

EXERCISE 12. Let $f: \mathbb{R}^n \to X$ be a continuous map. Then f is homotopic to a constant map.

I must prove that there exists a homotopy between f and a constant map. Consider the function $F: \mathbb{R}^n \times [0,1] \to X$ defined as

$$F(x,t) = f(tx)$$

It's clear that F(x,0) = f(0), for every $x \in \mathbb{R}^n$. So it's the constant map f(0). We also have that $F(x,1) = f(x), \forall x \in \mathbb{R}^n$. Moreover, let's prove F is continuos. Denote $F' : \mathbb{R}^n \times \mathbb{R} \to X$ the function F'(x,t) = f(xt) and $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ the function g(x,t) = xt. So $F' = f \circ g$.

Let's prove g is a continuous function. As we are dealing with a real-valued function, by Proposition 1.19 from the notes, I can use the $\epsilon - \delta$ proof. Let $(x, t) \in \mathbb{R}^{n+1}$ and $\epsilon > 0$. In the proof I use the norm 1, without loss of generality because of the equivalence of norms in \mathbb{R}^n . Put

 $\delta = \min\{1, \frac{\epsilon}{\max\{||x||, |t|+1\}}\} \text{ and suppose } ||(x,t) - (x',t')|| = ||x - x'|| + |t - t'| < \delta. \text{ So,}$

$$\begin{aligned} ||xt - x't'|| &= ||xt - xt' + xt' - x't'|| \\ &\leq |t - t'|||x|| + |t'|||x - x'|| \\ &\leq |t - t'|||x|| + (|t| + \delta)||x - x'|| \\ &< \max\{||x||, |t| + \delta\}\delta \\ &\leq \max\{||x||, |t| + 1\}\delta \leq \epsilon \end{aligned}$$

By this, g is a continuos function. Since f is also continuos, the composition F' is also continuos, by Proposition 1.18. By Proposition 1.21, when we endow F' in $\mathbb{R}^n \times [0,1]$, we obtain a continuos function, that is F is continuos. Then we conclude that f is homotopic to a constant function.

EXERCISE 13. Let $f: \mathbb{S}_1 \to \mathbb{S}_2$ be a continuous map which is not surjective. Prove that it is homotopic to a constant map where the unit sphere $\mathbb{S}_{n-1} = \{x \in \mathbb{R}^n, ||x|| = 1\}$.

Let $x_0 \in \mathbb{S}_2$ such that $x_0 \notin f(\mathbb{S}_1)$ and consider the constant map $g(x) = -x_0$, for every $x \in \mathbb{S}_1$. Let $F : \mathbb{S}_1 \times [0,1] \to \mathbb{S}_2$ be defined as

$$F(x,t) = 2\frac{(1-t)f(x) - tx_0}{||(1-t)f(x) - tx_0||}$$

The first thing we must prove it's well defined. Suppose that $(1-t)f(x) - tx_0 = 0$. If t = 1, then $x_0 = 0$, an absurd given that $||x_0|| = 2$. If t < 1, $f(x) = \frac{t}{1-t}x_0$ and applying the norm on both sides $2 = ||f(x)|| = \frac{t}{1-t}||x_0|| = 2\frac{t}{1-t} \implies t = 1/2$. If that is the case, $f(x) - x_0 = 0 \implies f(x) = x_0$, contradiction. Observe that ||f(x)|| = 2 because $f(x) \in \mathbb{S}_2$. Moreover, for all x and t, $||F(x,t)|| = 2 \implies F(\mathbb{S}_1, [0,1]) \subset \mathbb{S}_2$.

Now let's prove it's a homotopy:

- 1. $F(x,0) = 2 \frac{f(x)}{||f(x)||} = f(x), \forall x \in \mathbb{S}_1.$
- 2. $F(x,1) = 2\frac{-x_0}{||x_0||} = -x_0, \forall x \in \mathbb{S}_1.$
- 3. Consider the extension of the function $F': \mathbb{S}_1 \times [0,1] \to \mathbb{R}^3$. This function is continuous because it's a combination os continuos function. So F is continuous because it's a restriction of F'. I needed to extend the function because (1-t)f(x) is not necessary in the sphere, so I couldn't prove it's continuos. However, when extended we see each part is continuos.

By (1) - (3), we have proved F is a homotopy and f are homotopic to a constant function. Remark. If the functions is surjective, it's harder to prove, and I couldn't yet. For instance, this is a reference¹ (but the answers use specialized tools)

EXERCISE 14. Show that being homotopic is a transitive relation between maps: for every triplet of maps $f, g, h: X \to Y$, if f, g are homotopic and g, h are homotopic, then f, h are homotopic.

https://math.stackexchange.com/questions/3807715/

We shall prove there exist a homotopy H between f and h. By assumption, there exists a homotopy F between f and g and a homotopy G between g and h. Define $H: X \times [0,1] \to Y$ such that

$$H(x,t) = \begin{cases} F(x,2t), & 0 \le t \le 1/2\\ G(x,2t-1), & 1/2 < t \le 1 \end{cases}$$

that is, H behaves as F until it reaches a half. When that occurs, H(x,1/2) = F(x,1) = g(x) = G(x,0). After that, H follows G until the end of the interval. So, it's clear that $H(x,0) = F(x,0) = f(x), \forall x \in X$ and $H(x,1) = G(x,1) = h(x), \forall x \in X$. Moreover, since F and G are continuos and in the point t = 1/2, both functions agree, H is continuos and, therefore, f and h are homotopic.

EXERCISE 15. Show that being homotopy equivalent is an equivalence relation (reflexive, symmetric and transitive).

- 1. (reflexive): Consider the identity map $id: X \to X$, that is continuos. We shall prove that this function is homotopic to itself. Consider $F: X \times [0,1] \to X$ given by F(x,t) = x for every x and t. It's clear this is a homotopy because F(x,0) = F(x,1) = x and it's continuos. Moreover $id \circ id = id$ by definition of identity. Therefore, there exists a homotopy equivalence between id and itself. We conclude $X \approx X$.
- 2. (symmetric): Suppose $X \approx Y$. So, there exists continuos functions $f: X \to Y$ and $g: Y \to X$ that form a homotopy equivalence. This means that $g: Y \to X$ and $f: X \to Y$ are a homotopy equivalence as well. So $Y \approx X$.
- 3. (transitive): Suppose $X \approx Y$, and let $f_1: X \to Y$ and $g_1: Y \to X$ form a homotopy equivalence. Also suppose $Y \approx Z$ and let $f_2: Y \to Z$ and $g_2: Z \to Y$ form a homotopy equivalence. Define $f_3 = f_2 \circ f_1$ and $g_3 = g_1 \circ g_2$. Let's proof this is a homotopy equivalence. Both functions are continuos given that they are a composition of continuos functions.
 - (a) $g_3 \circ f_3 = g_1 \circ g_2 \circ f_2 \circ f_1$ is homotopic to $id: X \to X$.

Let F_1 be a homotopy between $g_1 \circ f_1$ and id and F_2 a homotopy between $g_2 \circ f_2$ and id. Define

$$F_3(x,t) = \begin{cases} g_1 \circ F_2(\cdot, 2t) \circ f_1(x), & 0 \le t \le 1/2 \\ F_1(x, 2t - 1), & 1/2 < t \le 1 \end{cases}$$

So $F_3(x,0) = g_1(F_2(f_1(x),0)) = g_1(g_2(f_2(f_1(x)))) = g_3 \circ f_3(x)$, for every x and $F_3(x,1) = F_1(x,1) = x$, for every x. When t = 1/2,

$$F_3(x, 1/2) = q_1(F_2(f_1(x), 1)) = q_1(f_1(x)) = F_1(x, 0)$$

By this equality and the fact that composition of continuos functions is a continuos map, we conclude that F_3 is continuos. This implies that $g_3 \circ f_3$ is homotopic to the identity.

(b) $f_3 \circ g_3 = f_1 \circ f_2 \circ g_2 \circ g_1$ is homotopic to $id: Z \to Z$. This follows a quite similar demonstration and can be omitted. By the points above f_3 and g_3 is a homotopy equivalence what proves $X \approx Z$. Consequently, homotopy equivalence is an equivalence relation.

Exercise 16. Classify the letters of the alphabet into homotopy equivalence classes.

I will consider the upper case alphabet and each letter will be considered as a topological space (a subset from \mathbb{R}^2), for example the letter O is homotopy equivalent to a circle, while L is to an interval, or equivalently, a point. Observe that most of the letters are equivalent to a point, because we can think in a continuous reduction. When we have a hole, such as A, D, R, O, P, Q, this continuity is impossible since we'll have a point break. B is a special case because we can't deform into a point without breaking points and also we cannot join the holes in one. So there is three classes, given by its representatives

- 1. O
- 2. B
- 3. I

A	В	С	D	\mathbf{E}	F	G	Н	I	J	K	L	Μ
1	2	3	1	3	3	3	3	3	3	3	3	3
N	О	Р	Q	R	\mathbf{S}	Т	U	V	W	X	Y	Z
3	1	1	1	1	3	3	3	3	3	3	3	3

4 Simplicial complexes

4.1 Important definitions

DEFINITION 4.1.1. The standard simplex of dimension n is the following subset of R^{n+1} ,

$$\Delta_n = \{x = (x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1} | \forall i, x_i \ge 0 \text{ and } \sum_{i=1}^{n+1} x_1 = 1\}.$$

For any collection of points $a_1,...,a_k \in \mathbb{R}^n$, we define their convex hull as:

$$conv(\{a_1, ..., a_k\}) = \left\{ \sum_{1 \le i \le k} t_i a_i | \sum_{1 \le i \le k} t_i = 1, t_1, ..., t_k \ge 0 \right\}$$

DEFINITION 4.1.2. Let V be a set (called the set of vertices). A simplicial complex over V is a set K of subsets of V (called the simplices) such that, for every $\sigma \in K$ and every non-empty $\tau \subset \sigma$, we have $\tau \in K$. If $\sigma \in K$ is a simplex, its non-empty subsets $\tau \subset \sigma$ are called faces of σ , and σ is called a coface of τ . Moreover, its dimension is $|\sigma|-1$ and the dimension of a simplicial is the maximum dimension of its simplices.

DEFINITION 4.1.3. Let K be a simplicial complex, with vertex V = [1, n]. In \mathbb{R}^n , consider, for every $i \in [1, n]$, the vector $e_i = (0, ..., 1, 0, ..., 0)$ (i^{th} coordinate 1, the other ones 0). Let |K| be the subset of \mathbb{R}^n defined as:

$$|K| = \bigcup_{\sigma \in K} conv(\{e_j, j \in \sigma\}).$$

Endowed with the subspace topology, $(|K|, T_{|K|})$ is a topological space, that we call the **topological** realization of K.

DEFINITION 4.1.4. Let (X, \mathcal{T}) be a topological space. A triangulation of X is a simplicial complex K such that its topological realization $(|K|, T_{||K|})$ is homeomorphic to (X, \mathcal{T}) .

Definition 4.1.5. Let K be a simplicial complex of dimension n. Its Euler characteristic is the integer

$$\chi(K) = \sum_{0 \le i \le n} (-1)^i \cdot (number \ of \ simplices \ of \ dimension \ i).$$

DEFINITION 4.1.6. The Euler characteristic of a topological space is the Euler characteristic of any triangulation of it.

4.2 Exercises

Exercise 17. Give a triangulation of the cylinder.

We can think a triangulation of the cylinder in that following form: each circular section is mapped into a triangle graph. On the other hand, the line can be mapped to an edge. Since a cylinder can be written as $\mathbb{S}_1 \times \mathbb{R}$, the triangulation as well.

Let's write down:

$$K = \{[0, 1, 3], [0, 2, 3], [2, 3, 5], [2, 4, 5], [4.5, 1], [4, 1, 0]\}$$

EXERCISE 18. What are the Euler characteristics of Examples 4.5 and 4.6? What is the Euler characteristic of the icosahedron?

Exemplo 4.5:

$$K = \{[0], [1], [2], [3], [0, 1], [1, 2], [2, 3], [3, 0], [0, 2], [1, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]\}.$$

$$\chi(K) = 4 - 6 + 4 = 2$$

Exemplo 4.6:

$$K = \{[0], [1], [2], [3], [0, 1], [1, 2], [1, 3], [0, 2], [2, 3], [3, 0],$$

$$[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3], [0, 1, 2, 3]$$
.

$$\chi(K) = 4 - 6 + 4 - 1 = 1$$

D20: It has 20 faces (dimension 2), 30 edges (dimension 1) and 12 vertices (dimension 0), its Euler characteristic is 12 - 30 + 20 = 2 (Euler relation).

EXERCISE 19. Let K be a simplicial complex (with vertex set V). A sub-complex of K is a set $M \subset K$ that is a simplicial complex. Suppose that there exists two sub-complexes M and N of K such that $K = M \cup N$. Show the inclusion-exclusion principle:

$$\chi(K) = \chi(M) + \chi(N) - \chi(M \cap N)$$

Denote k_i the number of simplices of dimension i, that is, $\chi(K) = \sum_{0 \le i \le k} (-1)^i k_i$, with k being its dimension. Each simplex of dimension i belongs to M, to N or both. Denote k_i^M, k_i^N and k_i^{MN} the number od simplices of dimension i in M, N and $M \cap N$ respectively. So

$$k_i = k_i^M + k_i^N - k_i^{MN}.$$

Therefore,

$$\chi(K) = \sum_{0 \leq i \leq k} (-1)^i (k_i^M + k_i^N - k_i^{MN}) = \sum_{0 \leq i \leq k} (-1)^i k_i^M + \sum_{0 \leq i \leq k} (-1)^i k_i^N - \sum_{0 \leq i \leq k} (-1)^i k_i^{MN}$$

Let m and n be the dimension of M and N, respectively. Now I shall prove $M \cap N$ is a simplicial

complex. Take $\sigma \subset M \cap N$ and $\tau \subset \sigma$, then $\tau \subset \sigma \in M$ and $\tau \subset \sigma \in N$, what implies $\tau \in M \cap N$. It proves its a simplicial complex with dimension p. We know the dimension of M is m, so it implies that for all i > m, $k_i^M = 0$. Suppose not and let $k_j^M > 0$ for some j > m, we would have a simplex with dimension greater or equal than m. This is a contradiction, because the the dimension of M is the maximum dimension of its simplices. This holds for N and $M \cap N$.

$$\chi(K) = \sum_{0 \le i \le k} (-1)^i (k_i^M + k_i^N - k_i^{MN}) = \sum_{0 \le i \le k} (-1)^i k_i^M + \sum_{0 \le i \le k} (-1)^i k_i^N - \sum_{0 \le i \le k} (-1)^i k_i^{MN}$$

We conclude that

$$\chi(K) = \sum_{0 \le i \le m} (-1)^i k_i^M + \sum_{0 \le i \le n} (-1)^i k_i^N - \sum_{0 \le i \le p} (-1)^i k_i^{MN} = \chi(M) + \chi(N) - \chi(M \cap N)$$

Exercise 20. What is the Euler characteristic of a sphere of dimension 1? 2? 3?

We may find the Euler characteristic of one triangulation of the sphere. So we first need to find a triangulation for the sphere $\mathbb{S}_n \subset \mathbb{R}^{n+1}$. We can think in the simplex in this space. In \mathbb{R}^2 it's the triangle, in \mathbb{R}^3 it's the tetrahedron, in \mathbb{R}^4 it's the 5-cell and so on. The simplex in \mathbb{R}^{n+1} has n+2 vertices and each vertex connect to all the other. We have also n+2 simplices of dimension n, because each has n+1 points, that is, $\binom{n+2}{n+1} = n+2$. For each of them, we must include all its subsets.

Now we can calculate the Euler characteristic for each triangulation and therefore each sphere.

$$\chi(\mathbb{S}_1) = -3 + 3 = 0$$

$$\chi(\mathbb{S}_2) = 4 - 6 + 4 = 2$$

$$\chi(\mathbb{S}_3) = -5 + 10 - 10 + 5 = 0$$

$$\chi(\mathbb{S}_4) = 6 - 15 + 20 - 15 + 6 = 2$$

EXERCISE 21. Using the previous exercise, show that $\mathbb{R}^3 - \{0\}$ and $\mathbb{R}^4 - \{0\}$ are not homotopy equivalent.

Suppose that $\mathbb{R}^3 - \{0\}$ and $\mathbb{R}^4 - \{0\}$ are homotopy equivalent. By Example 3.15, \mathbb{S}_{n-1} is homotopic equivalent to $\mathbb{R}^n - \{0\}$. By this and using the transitive property we conclude that \mathbb{S}_2 and \mathbb{S}_3 are homotopic equivalent. If that is true, we infer that they have the same Euler characteristic, what is a contraction by the last exercise. Hence $\mathbb{R}^3 - \{0\}$ and $\mathbb{R}^4 - \{0\}$ are not homotopy equivalent.

The computational exercises (22 - 26) can be found in the Github²

EXERCISE 22. Build triangulations of the letters of the alphabet, and compute their Euler characteristic.

Exercise 23. For every n, triangulate the bouquet of n circles (see below). Compute their Euler characteristic.

 $^{^2 \}verb|github.com/lucasmoschen/topological-data-analysis/blob/main/tutorials/tutorial-1.ipynb|$

Exercise 24. Implement the following triangulation of the torus.

EXERCISE 25. Consider the following dataset of 30 points $x_0, ..., x_{29}$ in \mathbb{R}^2 .

Write a function that takes as an input a parameter $r \geq 0$, and returns the simplicial complex $\mathcal{G}(r)$ defined as follows:

- 1. the vertices of $\mathcal{G}(r)$ are the points $x_0, ..., x_{29}$,
- 2. for all $i, j \in [[0, 29]]$ with $i \neq j$, the edge [i, j] belongs to $\mathcal{G}(r)$ if and only if $||x_i x_j|| \leq r$.

Compute the number of connected components of G(r) for several values of r. What do you observe?

EXERCISE 26. A Erdos-Renyi random graph $\mathcal{G}(n,p)$ is a simplicial complex obtained as follows:

- 1. $add \ n \ vertices \ 1, ..., n,$
- 2. for every $a, b \in [[1, n]]$, add the edge [a, b] to the complex with probability p.

Builds a function that, given n and p, outputs a simplicial complex $\mathcal{G}(n,p)$. Observe the influence of p on the number of connected components of $\mathcal{G}(10,p)$ and $\mathcal{G}(100,p)$.

5 Homological algebra

5.1 Important Definitions

5.2 Exercises

EXERCISE 27. Let V be a $\mathbb{Z}/2\mathbb{Z}$ -vector space, and W a linear subspace. Using Proposition 5.2, prove that

$$\dim V/W = \dim V - \dim W.$$

Exercise 28. Let (G, +) be a group, potentially non-commutative. Prove that

$$\forall g \in G, g+g=0 \implies G \text{ is commutative.}$$