NM PROJECT PHASE-3

Product Demand Prediction (Case Study)

A product company plans to offer discounts on its product during the upcoming holiday season. The company wants to find the price at which its product can be a better deal compared to its competitors. For this task, the company provided a dataset of past changes in sales based on price changes. You need to train a model that can predict the demand for the product in the market with different price segments.

- 1. Product Code
- 2. Wearhouse
- 3. Product_Category
- 4. Date
- 5.Order_Demand

I hope you now understand what kind of problem statements you will get for the product demand prediction task. In the section below, I will walk you through predicting product demand with machine learning using Python.

Product Demand Prediction using Python

Let's start by importing the necessary Python libraries and the dataset we need for the task of product demand prediction:

import pandas as pd

import numpy as np

import plotly.express as px

import seaborn as sns

import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split

```
df = pd.read_csv('/content/drive/MyDrive/Historical Product Demand.csv')
df.head()
  Product_Code Warehouse Product_Category
                                      Date Order_Demand
0 Product_0993
               Whse_J
                        Category_028 2012/7/27
1 Product_0979
               Whse_J
                         Category_028 2012/1/19
                                                 500
                      Category_028
2 Product_0979
              Whse_J
                                   2012/2/3
                                                 500
3 Product_0979
               Whse_J
                         Category_028
                                   2012/2/9
                                                 500
  Product_0979
               Whse_J
                         Category_028 2012/3/2
                                                 500
df.shape
(1048575, 5)
df.columns
dtype='object')
df.Product_Code.unique()
array(['Product_0993', 'Product_0979', 'Product_1159', ...,
        'Product_0237', 'Product_0644', 'Product_0853'], dtype=object)
df.Warehouse.unique()
array(['Whse_J', 'Whse_S', 'Whse_C', 'Whse_A'], dtype=object)
df.Product_Category.nunique()
33
df.dtypes
Product Code
                      object
Warehouse
                      object
Product_Category
                      object
                      object
Order Demand
                      object
dtype: object
```

```
def check_order_demand(x):
    try:
        int(x)
    except:
        return False
    return True
#Check where Order_demand is not an integer
df[~df.Order_Demand.apply(lambda x: check_order_demand(x))].head(6)
Product_Code Warehouse Product_Category Date Order_Demand
```

```
112290
          Product 2169
                          Whse A
                                        Category 024
                                                       2012/8/9
                                                                           (1)
 112307
          Product 2132
                          Whse A
                                        Category_009 2012/11/1
                                                                          (24)
 112308
          Product_2144
                          Whse\_A
                                        Category_009 2012/11/1
                                                                          (24)
 112356
          Product_2118
                          Whse_A
                                        Category_009
                                                       2012/3/7
                                                                          (50)
                          Whse_A
 112357
          Product_2120
                                        Category_009 2012/3/7
                                                                         (100)
 112360 Product_1794
                          Whse_A
                                        Category_024 2012/6/28
                                                                           (1)
def change_to_int(x):
   try:
       return int(x)
   except:
       return int(x[1:-1])
check = '(10)'
change_to_int(check)
```

10

```
df.Order_Demand = df.Order_Demand.apply(lambda x: change_to_int(x) )
```

df.describe()

Order_Demand

count	1.048575e+06
mean	4.906977e+03
std	2.892678e+04
min	0.000000e+00
25%	2.000000e+01
50%	3.000000e+02
75%	2.000000e+03
max	4.000000e+06

	Code	Warehouse	Category	Date	Demand
0	Product_0993	Whse_J	Category_028	2012/7/27	100
1	Product_0979	Whse_J	Category_028	2012/1/19	500
2	Product_0979	Whse_J	Category_028	2012/2/3	500
3	Product_0979	Whse_J	Category_028	2012/2/9	500
4	Product_0979	Whse_J	Category_028	2012/3/2	500

```
100 * df.isna().sum()[3]/ df.shape[0]
```

```
1.0718355863910545
```

```
df = df.dropna()
df.isna().sum()
```

Code 0
Warehouse 0
Category 0
Date 0
Demand 0
dtype: int64

```
df.Date.min(), df.Date.max()
```

('2011/1/8', '2017/1/9')

```
sns.countplot(x = 'Warehouse', data = df)

<Axes: xlabel='Warehouse', ylabel='count'>
sns.countplot(x = 'Warehouse', data = df)

<Axes: xlabel='Warehouse', ylabel='count'>

800000

700000

6000000

4000000

2000000

1000000
```

Whse_S

Warehouse

Whse_C

Whse_A

0

in another tab. Show diff

Whse_J

```
# Plot the 5 most popular category
df.Category.value_counts().head(5).plot(kind = 'bar', color = color_pal[2])
plt.xlabel('Category')
plt.show()
 400000
 300000
 200000
 100000
        0
                                    Category
```



```
df.Demand.skew()
```

31.432925049321977

```
# Total Demand by Warehouse
warehouse_Demand = df.groupby('Warehouse')['Demand'].sum()
warehouse_Demand
```

Warehouse

Whse_A 147877431 Whse_C 585071404 Whse_J 3363200396 Whse_S 1038024700 Name: Demand, dtype: int64

<Axes: ylabel='Sum of the demand'>

 $warehouse_Demand.plot(kind = 'barh', ylabel = 'Sum of the demand')$


```
df.groupby('Warehouse')['Demand'].mean().plot(kind = 'barh')
plt.show()
```


df.head()

	Code	Warehouse	Category	Date	Demand
0	Product_0993	Whse_J	Category_028	2012/7/27	100
1	Product_0979	Whse_J	Category_028	2012/1/19	500
2	Product_0979	Whse_J	Category_028	2012/2/3	500
3	Product_0979	Whse_J	Category_028	2012/2/9	500
4	Product_0979	Whse_J	Category_028	2012/3/2	500

```
# features, Target variable
Features = ['day_of_the_week', 'Quarter','Month', 'Year', 'Week']
target = ['Demand']
```