

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring

	,					
Målform:	Bokmål					
Eksamensdato:	12. desember 2014					
Varighet/eksamenstid:	09:00 – 13:00					
Emnekode:	TDAT2002					
Emnenavn:	Matematikk 2					
Klasse(r):	Ing 2					
Studiepoeng:	10 (denne deleksamenen teller 45% av sluttresultatet)					
Faglærer(e): (navn og telefonnr på eksamensdagen)	Anette Wrålsen (mobil 97 79 68 78) Hans Jakob Rivertz (mobil 93 83 21 72)					
Kontaktperson(adm.) (fylles ut ved behov – kun ved kursemner)						
Hjelpemidler:	Godkjent kalkulator emnetype 1					
Oppgavesettet består av: (antall oppgaver og antall sider inkl. forside)	5 oppgaver og 6 sider					
Vedlegg består av:	3					

Merknad:

Oppgaveteksten kan beholdes av studenter som sitter eksamenstiden ut.

NB! Les gjennom hele oppgavesettet før du begynner arbeidet, og disponer tiden.

Dersom noe virker uklart i oppgavsettet, skal du gjøre dine egne antagelser og forklare dette i besvarelsen.

Lykke til!

TDAT2002 Matematikk 2

Høst 2014

Husk: Ha alltid med nok begrunnelse/utregning til at det ikke er tvil om hvordan du har løst oppgaven for å få full uttelling!

Oppgave 1 (20%)

- a) La $A=\{1,2,3\},\ B=\{\emptyset,\{1\},2,3\}$ og $C=\{0,1\}$ være mengder. Avgjør om påstandene under er sanne eller usanne:
 - (i) $A \cup C = A$
 - (ii) $A C = \{2, 3\}$ (- = mengdedifferens)
 - (iii) $A \cap B = \{1, 2, 3\}$
 - (iv) A og C er komplementære mengder.
 - (v) $(A B) \cap C \subseteq B$
 - (vi) $\emptyset \subseteq B$
 - (vii) $\emptyset \in B$
 - (viii) $\{\emptyset\} \subseteq B$
 - (ix) $A B = A \cap B^c$
 - (x) $\mathcal{P}(C) \cap B = \emptyset$
- b) Beskriv funksjoner fra A til C (der A og C er mengdene i a)) som har følgende egenskaper:
 - (i) Surjektiv men ikke injektiv.
 - (ii) Injektiv men ikke surjektiv.
 - (iii) Verken injektiv eller surjektiv.

Hvis du mener noe av dette er umulig, forklar hvorfor.

Oppgave 2 (20%)

- a) La A og B være mengder inneholdt i en universalmengde \mathcal{U} .
 - (i) Vis eller motbevis at uansett hva A og B er, er mengdene

$$A-B$$
, $B-A$ og $A\cap B$

parvis disjunkte (det vil si at hvert par av dem er disjunkte).

- (ii) Vis eller motbevis at A B, B A og $A \cap B$ gir en oppdeling av $A \cup B$.
- b) Vis at for alle heltall n har vi at 3 ikke deler $n^2 + 1$.

Oppgave 3 (20%)

a) Finn

$$17^{35} + 676^7 \cdot 3 \pmod{39}$$
.

b) Gi et induksjonsbevis for følgende kongruensregningsregel:

For alle heltall $n \ge 1$ har vi at hvis $a \equiv c \pmod{m}$, så er

$$a^n \equiv c^n \pmod{m}$$
,

 $\mathrm{der}\ m\ \mathrm{er}\ \mathrm{et}\ \mathrm{heltall}\ \mathrm{st} \emptyset \mathrm{rre}\ \mathrm{enn}\ 1.$

Oppgave 4 (25%) Vi definerer funksjonen $f(x,y) = x^3 + 3xy^2 - 3x$.

- a) Regn ut de første ordens og andre ordens partiellderiverte til f. Skriv ned gradienten ∇f .
- b) Bestem de kritiske punktene til f(x, y).
- c) Regn ut diskriminanten $D = f_{xx}f_{yy} f_{xy}^2$ for alle de kritiske punktene og bestem hvilke typer disse er (sadelpunkt, lokalt minimum, lokalt maksimum.)
- d) La C være sirkelen med radius $\sqrt{3}$ og senter i origo. $(g(x,y)=x^2+y^2=3.)$ Vis med hjelp av Lagrange multiplikator at på sirkelen C har f(x,y) seks kritiske punkter $(\pm 2,0), (\pm 1,\pm \sqrt{2}).$
- e) Finn ligningen til tangentplanet til grafen z = f(x, y) i punktet (1, 1, 1).

Oppgave 5 (15%)

- a) Finn gradienten til f(x, y, z) = xy + 2yz + 3zx.
- b) Finn den retningsderiverte til f(x, y, z) i retningen $\mathbf{u} = (1/3, 2/3, 2/3)$ i punktet (1, 1, 1).
- c) I hvilken retning øker f(x, y, z) mest i punktet (1, 1, 1)?

1. Logikk

Logikklovene

Kommutative lover: $p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$

Assosiative lover: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive lover: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Identitets lover: $p \wedge \mathbf{t} \equiv p$ $p \vee \mathbf{c} \equiv p$ Negasjons lover: $p \vee \sim p \equiv \mathbf{t}$ $p \wedge \sim p \equiv \mathbf{c}$

Dobbel negativ-lov: $\sim (\sim p) \equiv p$

Idempotente lover: $p \wedge p \equiv p$ $p \vee p \equiv p$ Universalgrenselover: $p \vee \mathbf{t} \equiv \mathbf{t}$ $p \wedge \mathbf{c} \equiv \mathbf{c}$

DeMorgans lover: $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$

Absorpsjonslover: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Negasjon av t og c: \sim t \equiv c \sim c \equiv t

2. Induksjon og rekursjon

Regneregler for rekker

Hvis $a_m, a_{m+1}, a_{m+2}, \ldots$ og $b_m, b_{m+1}, b_{m+2}, \ldots$ er følger av reelle tall og c er et reellt tall, har vi følgende for ethvert heltall $n \geq m$:

$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)$$
$$\left(\prod_{k=0}^{n} a_k\right) \cdot \left(\prod_{k=0}^{n} b_k\right) = \prod_{k=0}^{n} (a_k \cdot b_k)$$

Noen kjente rekker

Summen av de n første heltallene: For alle heltall $n \ge 1$ er

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Summen av en geometrisk rekke: For alle heltall $n \geq 0$ og alle reelle tall $r \neq 1$ er

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

Prinsippet for matematisk induksjon

La P(n) være en påstand om heltall n, og la a være et bestemt heltall. Anta videre følgende:

- 1) P(a) er sann. (Basissteg)
- 2) For ethvert heltall $k \geq a$, hvis P(k) er sann så er P(k+1) sann. (Induktivt steg)

Da er P(n) sann for alle heltall $n \ge a$.

Prinsippet for sterk matematisk induksjon

La P(n) være en påstand om heltall n, og la a og b være bestemte heltall slik at $a \leq b$. Anta videre følgende:

- 1) $P(a), P(a+1), \dots, P(b)$ er sanne. (Basissteg)
- 2) For ethvert heltall k > b, hvis P(i) er sann for alle heltall i slik at $a \le i < k$, så er P(k) sann. (Induktivt steg)

Da er P(n) sann for alle heltall $n \geq a$.

Andreordens lineære homogene differensligninger med konstante koeffisienter

La følgen $a_0, a_1, a_2 \dots$ oppfylle en differensligning

$$a_k = Aa_{k-1} + Ba_{k-2}$$
 for alle heltall $k \ge 2$ og reelle tall A, B ,

og la a_0 og a_1 være gitte tall (initialbetingelser).

Tilfelle 1: Distinkte røtter

Hvis den karakteristiske ligningen

$$t^2 - At - B = 0$$

har to forskjellige røtter r og s, er følgen gitt ved formelen

$$a_n = Cr^n + Ds^n$$
 for alle $n \ge 0$.

Tilfelle 2: Sammenfallende røtter

Hvis den karakteristiske ligningen

$$t^2 - At - B = 0$$

bare har en dobbelrot t=r, er følgen gitt ved formelen

$$a_n = Cr^n + Dnr^n$$
 for alle $n \ge 0$.

I begge tilfeller bestemmes C og D ut fra initialbetingelsene.

3. Mengdelære

Mengdelovene

Alle mengder er inneholdt i en universalmengde U.

Kommutative lover: $A \cap B = B \cap A$ $A \cup B = B \cup A$

Assosiative lover: $(A \cap B) \cap C = A \cap (B \cap C) \qquad (A \cup B) \cup C = A \cup (B \cup C)$

Distributive lover: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Identitets lover: $A \cap U = A \qquad \qquad A \cup \emptyset = A$

Negasjonslover: $A \cup A^c = U \qquad \qquad A \cap A^c = \emptyset$

Dobbel negativ-lov: $(A^c)^c = A$

Idempotente lover: $A \cap A = A$ $A \cup A = A$ Universalgrenselover: $A \cup U = U$ $A \cap \emptyset = \emptyset$

DeMorgans lover: $(A \cap B)^c = A^c \cup B^c \qquad (A \cup B)^c = A^c \cap B^c$

Absorpsjonslover: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

Komplement av U og \emptyset : $U^c = \emptyset$ $\emptyset^c = U$

Mengdedifferensloven: $A - B = A \cap B^c$

4. Tallteori

$Aritmetikkens\ fundamental teorem$

Gitt et heltall n eksisterer det et positivt heltall k, forskjellige primtall $p_1, p_2, p_3, \ldots, p_k$ og positive heltall $e_1, e_2, e_3, \ldots, e_k$ slik at

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdot \ldots \cdot p_k^{e_k}.$$

Videre er denne måten å skrive n som et produkt av primtall på unik bortsett fra rekkefølgen på faktorene.

Euklids algoritme

Euklids algoritme brukes til å bestemme $\gcd(A,B)$ for to heltall A og B, der vi antar at $A>B\geq 0$.

- 1. Hvis B = 0, er gcd(A, B) = A.
- 2. Hvis ikke, finn q og r slik at

$$A = Bq + r$$
 slik at $0 \le r < B$.

Da er qcd(A, B) = qcd(B, r).

3. Sett A := B og B := r og gå tilbake til trinn 1.

Regneregler for kongruenser

La a,b,c,d,n være heltall slik at n>1, og anta at $a\equiv c\pmod n$ og $b\equiv d\pmod n$. Da har vi at

- a) $(a+b) \equiv (c+d) \pmod{n}$
- b) $(a-b) \equiv (c-d) \pmod{n}$
- c) $ab \equiv cd \pmod{n}$
- d) $a^m \equiv c^m \pmod{n}$ for alle positive heltall m.

5. RSA

RSA er offentlig nøkkel-kryptografi. Et RSA-kryptosystem er basert på to (helst veldig store) primtall p og q.

Prosedyre for å finne nøkler

- 1. Finn et tall e som er relativt primisk med (p-1)(q-1) og finn så en positiv invers d til dette tallet modulo (p-1)(q-1).
- 2. La n = pq. Da blir (n, e) offentlig $n \emptyset k k e l$ og
- 3. (n,d) privat nøkkel.

Kryptering og dekryptering

Du ønsker å sende en melding M. Du må da kjenne mottakerens offentlige nøkkel (n, e).

- Den krypterte meldingen C er gitt ved

$$C \equiv M^e \pmod{n}$$
.

- C dekrypteres av mottakerenved å beregne

$$M \equiv C^d \pmod{n}$$
.

6. Flervariabelanalyse

Diverse formler

Likningen for sirkelen med radius r og sentrum i (x_0, y_0) :

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

Likningen for ellipsen med sentrum i (x_0, y_0) og halvakser a og b:

$$1 = \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2}$$

Tangentplanet til funksjonen z = f(x, y) i punktet (x_0, y_0, z_0) :

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Lineærapproksimasjonen til funksjonen z = f(x, y) rundt punktet $(x_0, y_0, f(x_0, y_0))$:

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Gradienten til en funksjon z = f(x, y):

$$\nabla f = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}$$

Den retningsderiverte til en funksjon z = f(x, y) i retningen gitt ved enhetsvektoren \vec{u} :

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$