# Random Algorithms for Random Things

Benedetto Jacopo Buratti - Homework I January 12, 2017

#### Abstract

This first homework covers the main concepts behind bayesian inference and some related issues. In the **first** and **second** exercises we focus on conjugate analysis, a classical approach to bayesian inference, used in the special occasion where the posterior distribution has the same distribution of the likelihood function. In the **third** and **fourth** exercise we introduce the Integral Transformation Formula, which will be the core, with unifrom pseudo-random numer generator of exercises **fifth** and **sixth** Finally in the **seventh**, **eighth** and **nineth** exercises we introduce and use the acceptance and rejection algorithm and apply in in a variety of situations.

### Contents

| Glossary                                              | 1  |
|-------------------------------------------------------|----|
| Conjugate Analysis on Bernulli Sample                 | 3  |
| Parametric Space of Intrest                           |    |
| Ingredients for Bayesian Inference                    |    |
| Likelihood Function                                   |    |
| Prior Distribution                                    |    |
| Posterior Distribution                                | 3  |
| Conjugate Analysis on the Dugongs Sample              | 4  |
| Likelihood                                            | 4  |
| Maximum Likelihood Estimate                           | 4  |
| Vector of parameters of Interest                      | 4  |
| Maximum a Posteriori Estimates                        | 4  |
| Integral Transform Method                             | 5  |
| Parametric Space of Intrest                           | 5  |
| Beta-Bernoulli Conjugate analysis                     | 6  |
| Parametric Space of Intrest                           | 6  |
| Simulating a Pareto Distribution                      | 7  |
| First Moment with Monte Carlo                         | 7  |
| Empirical Distribution vs Desired Target Distribution |    |
| Beta-Bernoulli Conjugate analysis                     | 9  |
| Parametric Space of Intrest                           |    |
| Beta-Bernoulli Conjugate analysis                     | 10 |
| Parametric Space of Intrest                           |    |
| Beta-Bernoulli Conjugate analysis                     | 11 |
| Parametric Space of Intrest                           |    |
| ·                                                     |    |
| Beta-Bernoulli Conjugate analysis                     | 12 |
| Parametric Space of Intrest                           | 12 |

# Glossary

- 1. p for "probability", the cumulative distribution function (c. d. f.)
- 2. q for "quantile", the inverse c. d. f.

- 3. d for "density", the density function (p. f. or p. d. f.) 4. r for "random", a random variable having the specified distribution

### Conjugate Analysis on Bernulli Sample

### Parametric Space of Intrest

We define the Parametric Space of Intrest as:

**Definition 1.1** A parametric space is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model.

Given the previous definition the parametric space of interest, which is the probability of success of a single event, is  $\Theta \in [0,1]$ 

#### Ingredients for Bayesian Inference

#### Likelihood Function

The likelihood function for a series of Bernoulli experiment could be considered as a Binomial distribution, hence given the definition of likelihood:

**Definition 1.2** The *likelihood function* of a set of parameter values, , given outcomes x, is equal to the probability of those observed outcomes given those parameter values. More specifically we define the likelihoodFor a iid sample in the following way:

$$\mathcal{L}_{x_1,\dots X_n}(\theta|x) = P(x|\theta) = \prod_{i=1}^{10} f(x_i|\theta)$$
(1)

Since our idd sample is generated by  $X_i \sim Ber(p)$  which  $f(x|\theta) = p$ , therefore our 10 Bernoulli Trials' likelihood is:

$$\mathcal{L}_{\mathbf{x}}(\theta) = \prod_{i=1}^{10} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^3 (1 - \theta)^7$$
 (2)

since in our case we have had 3 successess and 7 failures.

#### **Prior Distribution**

Since we have no particular information about the experiment we should use a non-informative prior, which ever distribution we use in the modelling.

Another important point to take into account before choosing the prior is that our process is generated by  $X_i \sim Ber(p)$ . This means that we are able to use conjugate analysis in order to choose a suitable prior.

Given those two element we know that given a  $X_i \sim Ber(p)$  likelihood function and  $X_i \sim Beta(s_1, s_2)$  as a prior, our postetior distribution would be distributed as a prior. Moreover, taking into account the requirement of non-informativeness of the prior we should use a Beta(0.5, 0.5).

#### Posterior Distribution

The core of Bayesian Inference is knowledge update via Bayes Theorem

**Theorem 1.1** The Bayes Theorem states posterior probability of an event is the consequence of two antecedents, a prior probability and a "likelihood function" derived from a statistical model for the observed data.

Thanks to this theorem we are able to update knowledge about the parameter space  $\theta$ .

$$\pi(\theta|x) \propto \theta^{3} (1-\theta)^{7} \cdot \theta^{-0.5} (1-\theta)^{-0.5} = \theta^{3.5} \theta^{7.5}$$
(3)

which is, as expected,  $\pi(\theta|\mathbf{x}) \sim Beta(3.5, 7.5)$ 

\subsection(Bayesian Inference)

Now that we have a computed our posterior distribution we are able to perform bayesian inference using Beta(3.5, 7.5). Just to demosntrare the possibility we compute the following

## Conjugate Analysis on the Dugongs Sample

### Likelihood

First of all we to load the Dugongs into R:

```
## $x  
## [1] 1.0 1.5 1.5 1.5 2.5 4.0 5.0 5.0 7.0 8.0 8.5 9.0 9.5 9.5  
## [15] 10.0 12.0 12.0 13.0 13.0 14.5 15.5 15.5 16.5 17.0 22.5 29.0 31.5  
## 
## $Y  
## [1] 1.80 1.85 1.87 1.77 2.02 2.27 2.15 2.26 2.47 2.19 2.26 2.40 2.39 2.41  
## [15] 2.50 2.32 2.32 2.43 2.47 2.56 2.65 2.47 2.64 2.56 2.70 2.72 2.57  
## 
## $N  
## [1] 27  
As reported on dataset website Y_i \sim N(m_i, t), with:  
1. i = 1, ..., 27
```

- $2. \ m_i = a bg^{X_i}$
- 3. a, b > 0
- 4. 0 < g < 1

Hence, according to definition 1.1 the likelihood for the given dataset is:

$$\mathcal{L}_{\mathbf{x}}(\theta) = \prod_{i=1}^{27} \theta^{x_i} \frac{1}{\sigma \sqrt{2\pi}} exp \frac{1}{2} \left( \frac{x_i - \alpha - s\beta \gamma^{x_i}}{\tau} \right)$$
 (4)

#### Maximum Likelihood Estimate

Now that we have the maximum likelihood estimate, we are able to compute the MLE using opt

### Vector of parameters of Interest

### Maximum a Posteriori Estimates

# **Integral Transform Method**

## Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$ 

## Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$ 

### Simulating a Pareto Distribution

```
## Loading required package: stats4
## Loading required package: splines
```

#### First Moment with Monte Carlo

Given a a random variable distributed  $X \sim Par(2.5, 1)$  which density is:

$$F_X(x) = \begin{cases} \frac{5}{2}x^{-\frac{7}{2}} & \text{if } x \ge 1\\ 0 & \text{if } x < 1 \end{cases}$$
 (5)

Which graph is:

library("VGAM")

```
x <- seq(from=1, to=100, by=0.01)
curve(dpareto(x, shape=2.5, scale=1), xlim = c(0,10), ylim=c(0,3), type="l", main="Pareto Distribution",
    ylab="density", col="red")</pre>
```

### **Pareto Distribution**



Since this is a well known distribution, of which first moment is easily computable in closed form, is intresting to check how closely a Monte Carlo simulation is able to estimate the exact parameter.

In order to do this we have two options:

- 1. Generate a random sample from R-Cran Built in Pareto distribution
- 2. Use the Inverse Transform Method, using a Uniform Distribution as instrumental function

However, in advance to any techinque we need to know, exploiting the LLN, how many samples we need in order to estimate with a confidence of  $10^-2$  the mean.

The first option is pretty straightfoward since we can use R built in function:

```
first <- rpareto(85000, shape=2.5, scale=1)
I_hat = mean(first)
I_hat</pre>
```

## [1] 1.662475

The second one consist in the Integral Transform Method which using the inverse function of the Pareto and a Uniform RNG allows us to sample from a pareto:

Since Par(2.5, 2) first moment is given by, we can see how the two approaches compares:

## Empirical Distribution vs Desired Target Distribution

Now that can also check two different EDF and see that the while qualitatively there is no much difference between the two approaches, from a efficiency point of view there two order of magnitude slower.

## Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$ 

## Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$ 

## Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$ 

## Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$