Modelación Axiomática de Sistemas Continuos

Martín A. Díaz-Viera

Instituto Mexicano del Petróleo mdiazv@imp.mx

Posgrado del Instituto Mexicano del Petróleo

Contenido I

- 1 Sistemas continuos
 - Introducción
 - El concepto del continuum
 - Definiciones de cuerpo y dominio
 - Sistemas de coordenadas Lagrangianas y Eulerianas
 - Volumen elemental representativo
- 2 Enfoque axiomático
 - Propiedades extensivas e intensivas
 - Ecuaciones de balance global y local
 - Ecuaciones básicas de la mecánica de medios continuos
 - Sistemas de varias fases
 - Modelos completos
- Metodología sistemática
 - Identificar fases y componentes

Contenido II

- Propiedades extensivas e intensivas
- Ecuaciones de balance por componentes
- Modelo completo

4 Ejemplo

Seferencias

Introducción

El concepto del continuum

Jefiniciones de cuerpo y dominio Sistemas de coordenadas Lagrangianas y Fule

Volumen elemental representativo

Introducción

- La mecánica de medios continuos es una rama de la mecánica.
- Se ocupa del análisis de la cinemática y del comportamiento mecánico de materiales modelados como un continuum.
- El matemático francés Augustin Louis Cauchy fue el primero en formular estos modelos en el siglo XIX, pero la investigación en el área continúa hoy en día.
- La modelación de un objeto como un continuum supone que la sustancia del objeto llena por completo el espacio que ocupa.
- El modelado de objetos de esta manera ignora que la materia está compuesta de átomos, y por lo tanto no es continua.
- Sin embargo, en las escalas de longitud mucho mayor que el de las distancias interatómicas, esos modelos son de alta precisión.

Introducción

- Las leyes físicas fundamentales, como la conservación de la masa, el momento, y la energía son la base de los modelos.
- Para derivar las ecuaciones diferenciales que describen el comportamiento de los objetos se requiere conocer las propiedades del material que están constituídos.
- Esto se realiza a través de relaciones constitutivas.

Volumen elemental representativo

Introducción

- La mecánica de medios continuos se ocupa de las propiedades físicas de los sólidos y líquidos
- Son independientes de cualquier sistema de coordenadas particular, en el que se observan.
- Estas propiedades físicas se representan por tensores.
- Los tensores tienen la propiedad de ser independiente del sistema de coordenadas.
- Pueden expresarse en el sistema de coordenadas que sea más conveniente para el cálculo.

Sistemas continuos

Conceptos básicos de los sistemas continuos:

- Los sistemas continuos están constituidos por cuerpos.
- Un cuerpo es un conjunto (infinito) de puntos materiales que en cualquier instante dado ocupa una región o dominio, en el sentido matemático, del espacio tridimensional.
- Un punto espacial es un punto fijo en el espacio definido por sus coordenadas
- Un punto material, también llamada partícula, puede ocupar distintos puntos espaciales en su movimiento a lo largo del tiempo.

Hipótesis del continuum

Hipótesis básica de los sistemas continuos:

- Consiste en considerar que un sistema continuo llena todo el espacio que ocupa.
- Cada punto espacial de un cuerpo de un sistema continuo está ocupado por un punto material (o por una partícula).
- En la teoría de los sistemas continuos se trabaja con los promedios de sus propiedades físicas.
- Existe un volumen llamado representativo, para el cual se calculan y son válidos los promedios de dichas propiedades.

Definiciones de cuerpo y dominio

Definiciones de cuerpo, subcuerpo y dominio:

- Denotaremos por B(t) al dominio, que es la región ocupada por el cuerpo ${\bf B}$ en el instante de tiempo t.
- Dado un cuerpo ${\bf B}$, toda subregión $\tilde{{\bf B}}\subset {\bf B}$, constituye a su vez otro cuerpo.
- ullet En tal caso, se puede decir que llet es un subcuerpo de llet.

Configuración espacial y de referencia del cuerpo

- Debido a la hipótesis básica de los sistemas continuos, en cualquier instante de tiempo t, y en cada punto espacial $\underline{x} \in B(t)$ de la región ocupada por el cuerpo, hay solo un punto material del cuerpo \mathbf{B} .
- La **configuración espacial** del cuerpo **B** en el instante *t*, es el lugar geométrico de las posiciones que ocupan en el espacio los puntos materiales del cuerpo en dicho instante.
- Se le denomina configuración de referencia a la configuración espacial en el instante inicial t₀ del intervalo de tiempo de interés [t₀, t_f].

Coordenadas materiales o Lagrangianas:
 Son las coordenadas del vector de posición

$$\underline{X} = (X_1, X_2, X_3) \tag{1}$$

que ocupa un punto material del cuerpo ${\bf B}$ en el instante inicial t_0 en la configuración de referencia.

Coordenadas espaciales o Eulerianas:
 Son las coordenadas del vector de posición

$$\underline{x} = (x_1, x_2, x_3) = \underline{p}(\underline{X}, t) = (p_1, p_2, p_3)$$
 (2)

que ocupa el punto material \underline{X} del cuerpo \mathbf{B} en el instante t en la configuración espacial.

• Al haber una relación biunívoca entre ambos sistemas de coordenadas, podemos definir la inversa de la función $\underline{p}(\underline{X},t)$ a la cual denotaremos por

$$\underline{p}^{-1}(\underline{x},t) \equiv \underline{X} \tag{3}$$

 La región ocupada por el cuerpo B cambia con el tiempo debido al movimiento, si fijamos el tiempo t entonces

$$B(t) = \underline{p}(\mathbf{B}, t) \tag{4}$$

- Para observar la trayectoria de un punto material X, sólo debemos fijar dicho punto y variar t en la función p(X, t).
- Esto permite obtener la velocidad $\underline{V}(\underline{X},t)$ de cualquier punto material \underline{X} .
- La velocidad $\underline{V}(\underline{X},t)$ se define como

$$\underline{V}(\underline{X},t) = \frac{\partial}{\partial t}\underline{\rho}(\underline{X},t) \tag{5}$$

• Es la derivada de la posición con respecto al tiempo cuando el punto material se mantiene fijo.

Figura 1: Esquema de la relación entre la configuración de referencia del cuerpo \mathbf{B} , las coordenadas materiales \underline{X} y las coordenadas espaciales \underline{X} de un punto material $\underline{X} \in \mathbf{B}$.

Volumen elemental representativo

- En los sistemas continuos se trabaja con los promedios de sus propiedades físicas y existe un volumen elemental (o elemento de volumen) llamado representativo, para el cual se calculan y son válidos los promedios de dichas propiedades.
- Ejemplo: Sea $b(r, \underline{x})$ una esfera de radio r con centro en \underline{x} en el cuerpo material B(t) .
- Sean $V(b(r,\underline{x}))$ y $M(b(r,\underline{x}))$ el volumen y la masa de la esfera, respectivamente.
- Se puede definir la densidad de masa en el punto \underline{x} como:

$$\rho(\underline{x}) = \lim_{r \to 0_+} \frac{M(b(r,\underline{x}))}{V(b(r,\underline{x}))} \tag{6}$$

Propiedades intensivas

- Son propiedades muy específicas que no dependen de la cantidad de la materia.
- Por ejemplo, la densidad de masa o la densidad de volumen y que pueden expresarse como funciones definidas para cada tiempo en cada uno de los puntos del sistema continuo.
- Son funciones que están definidas en la posición \underline{x} del punto material \underline{X} al tiempo t.
- Pueden ser funciones escalares como la concentración de cierta sustancia al tiempo t o vectoriales como la velocidad, que depende del punto material X y del tiempo t.

Propiedades intensivas

- Una propiedad intensiva con valores vectoriales es equivalente a tres escalares, correspondientes a cada una de sus tres componentes.
- En resumen, las propiedades intensivas son funciones definidas en los puntos materiales de un cuerpo.
- Son funciones que hacen corresponder a cada punto material y cada tiempo en un número real o un vector del espacio Euclidiano tridimensional R³.
- Hay dos formas de representar a las propiedades intensivas: la representación Euleriana y la representación Lagrangiana.

Propiedades intensivas: representación Lagrangiana

- En honor a Joseph Louis Lagrange (1736-1813).
- Consideremos una propiedad intensiva escalar, tal que en el instante t toma en el punto material \underline{X} el valor

$$\phi(\underline{X},t)$$

definiendo una función $\phi: \mathbf{B} \to \mathbb{R}^1$ para cada instante t, a la que se le llama representación Lagrangiana de la propiedad intensiva considerada.

 Esta representación es más utilizada en el estudio de los sólidos.

Propiedades intensivas: representación Euleriana

- En honor a Leonard Euler (1707-1783).
- Consideremos una propiedad intensiva, tal que en el instante t toma en el punto material que ocupa la posición \underline{x} el valor

$$\psi(\underline{x},t)$$

definiendo una fución $\psi: B(t) \to \mathbb{R}^1$ para cada instante t, a la que se le llama representación Euleriana de la función considerada.

 Esta representación es más utilizada en el estudio de los fluidos.

Propiedades extensivas e intensivas

Ecuaciones de balance global y local Ecuaciones básicas de la mecánica de medios continuos Sistemas de varias fases Modelos completos

Propiedades intensivas

• Ambas representaciones satisfacen las siguientes identidades:

$$\phi(\underline{X},t) \equiv \psi\left(p(\underline{X},t),t\right) \quad y \quad \psi(\underline{x},t) \equiv \phi(p^{-1}(\underline{X},t),t) \tag{7}$$

Sin embargo

$$\phi(\underline{X},t) \neq \psi(\underline{x},t) \tag{8}$$

• Dado que si tomamos $\underline{x} = \underline{X}$, en general

$$\phi(\underline{X}, t) \neq \psi(\underline{X}, t) \tag{9}$$

Propiedades intensivas

 Por ejemplo, la representación Lagrangiana de la velocidad de un punto material se expresa como:

$$\frac{\partial \underline{p}}{\partial t}(\underline{X},t) = \underline{V}(\underline{X},t) \equiv \underline{v}(\underline{p}(\underline{X},t),t) \tag{10}$$

donde $\underline{v}(\underline{x},t)$ es la representación Euleriana de la velocidad,

Entonces se cumple que

$$\underline{v}(\underline{x},t) \equiv \underline{V}(\underline{p}^{-1}(\underline{x},t),t) \tag{11}$$

 La velocidad en el punto <u>x</u> del espacio físico, es igual a la velocidad del punto material que pasa por dicho punto en el instante t.

La derivada material

- Si obtenemos la derivada parcial con respecto al tiempo de la representación Lagrangiana, $\phi(\underline{X},t)$, de una propiedad intensiva.
- De acuerdo a la definición de la derivada parcial de una función, es la tasa de cambio con respecto al tiempo que ocurre en un punto material fijo, el resultado final es

$$\frac{\partial \phi}{\partial t}(\underline{X}, t) = \frac{\partial \psi}{\partial t}(\underline{p}(\underline{X}, t), t) + \sum_{i=1}^{3} \frac{\partial \psi}{\partial x_{i}}(\underline{p}(\underline{X}, t), t) \frac{\partial p_{i}}{\partial t}(\underline{X}, t)$$

$$= \frac{\partial \psi}{\partial t} + \underline{v} \cdot \nabla \psi \qquad (12)$$

La derivada material

- Tiene interés evaluar la tasa de cambio con respecto al tiempo que ocurre en un punto material fijo.
- La derivada material se puede denotar por el siguiente operador:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \underline{v} \cdot \nabla \tag{13}$$

Propiedades extensivas

- Son propiedades muy generales de cualquier sustancia que dependen de la cantidad de la materia, por ejemplo, el peso, la masa, el volumen, la longitud, etc.
- Se denotan por E(t) o bien E(B,t) y funciones que a cada cuerpo B de un sistema continuo y a cada tiempo t le asocia un número real o un vector en \mathbb{R}^3 y puede expresarse como sigue:

$$E(t) = \int_{B(t)} \psi(\underline{x}, t) d\underline{x}$$
 (14)

donde $\psi(\underline{x},t)$ es la representación euleriana de una propiedad intensiva.

Relación entre propiedades intensivas y extensivas

- Existe una relación biunívoca entre las propiedades extensivas e intensivas.
- Dada la representación euleriana $\psi(\underline{x},t)$ de cualquier propiedad intensiva.
- Su integral sobre el dominio ocupado por cualquier cuerpo define una propiedad extensiva e inversamente.
- Dada una propiedad extensiva cuando el integrando define una propiedad intensiva.

Propiedades extensivas e intensivas Ecuaciones de balance global y local Ecuaciones básicas de la mecánica de medios continuos Sistemas de varias fases Modelos completos

Relaciones entre propiedades intensivas y extensivas

Ejemplos de relaciones entre propiedades intensivas y extensivas:

Masa	\leftrightarrow	Densidad(de masa)
Momento lineal	\leftrightarrow	Densidad de momento lineal

Momento angular \leftrightarrow Densidad de momento angular

Energía \leftrightarrow Energía específica

Energía cinética \leftrightarrow Energía cinética específica

Energía interna \leftrightarrow Energía interna específica

 $\mbox{Volumen} \quad \leftrightarrow \quad \mbox{La función constante, idéntica a la unidad}$

Propiedad Intensiva

Volumen de huecos ↔ Porosidad

Propiedad Extensiva

Ecuación de balance global

- En la mecánica de medios continuos los modelos matemáticos se basan en el balance de las propiedades extensivas en cada cuerpo del sistema continuo.
- Para realizar estos balances, debemos identificar las causas por las que las propiedades extensivas de cualquier cuerpo pueden cambiar, las cuales pueden ser:
 - Por lo que se genera o se destruye en el interior del cuerpo.
 - Por el flujo que se importa o exporta a través de la frontera.

Ecuación de balance global

- En la teoría de sistemas continuos, el postulado básico para la formulación de las ecuaciones de balance de las propiedades extensivas es:
- Cualquier variación de la propiedad extensiva proviene de lo que se genera o se destruye dentro del cuerpo o de lo que entra o sale a través de su frontera.
- Pero también debemos tener en cuenta que puede haber discontinuidades (ver Figura 2).

Esquema de un cuerpo material B(t)

Figura 2: Esquema de un cuerpo material B(t) con frontera $\partial B(t)$, donde \underline{n} es su vector normal externo. La superficie de discontinuidad $\Sigma(t)$ tiene vector normal \underline{n}_{Σ} y se mueve con velocidad \underline{v}_{Σ} . B(t) se mueve a velocidad \underline{v} .

Ecuación de balance global

Esto conduce a la siguiente ecuación de balance global:

$$\frac{d}{dt}E(t) = \int\limits_{B(t)} g(\underline{x}, t)d\underline{x} + \int\limits_{\partial B(t)} q(\underline{x}, t)d\underline{x} + \int\limits_{\Sigma(t)} g_{\Sigma}(\underline{x}, t)d\underline{x} \quad (15)$$

- $g(\underline{x}, t)$ es el término fuente en el interior del cuerpo B(t), por unidad de volumen por unidad de tiempo.
- $q(\underline{x}, t)$ es lo que se importa o exporta a través de la frontera del cuerpo $\partial B(t)$, es decir, es el flujo de la propiedad extensiva a través de la frontera del cuerpo, por unidad de área, por unidad de tiempo.
- $g_{\Sigma}(\underline{x},t)$ es término fuente por unidad de área en $\Sigma(t)$.

Ecuación de balance global

• Para cada tiempo t, existe un campo vectorial $\underline{\tau}(\underline{x},t)$ tal que el flujo de la propiedad extensiva a través de la frontera se puede expresar como:

$$q(\underline{x},t) \equiv \underline{\tau}(\underline{x},t) \cdot \underline{n}(\underline{x},t)$$

donde \underline{n} es la normal exterior a la frontera $\partial B(t)$ (Figura 2),

 Entonces la ecuación de balance global se puede reescribir como:

$$\frac{d}{dt}E(t) = \int\limits_{B(t)} g(\underline{x}, t)d\underline{x} + \int\limits_{\partial B(t)} \underline{\tau}(\underline{x}, t)\cdot\underline{n}(\underline{x}, t)d\underline{x} + \int\limits_{\Sigma(t)} g_{\Sigma}(\underline{x}, t)d\underline{x}$$
(16)

Ecuaciones de balance local

- A cada sistema continuo le corresponde una familia de propiedades extensivas.
- El modelo matemático del sistema está constituido por las condiciones de balance de las propiedades extensivas.
- Sin embargo, las propiedades extensivas mismas no se utilizan directamente en la formulación del modelo.
- En su lugar se usan las propiedades intensivas asociadas a las propiedades extensivas.
- Esto es posible porque las **ecuaciones de balance global** son equivalentes a las llamadas **condiciones de balance local**.
- Las condiciones de balance local son de dos tipos: ecuaciones diferenciales y condiciones de salto.

Ecuación diferencial de balance local

 Son ecuaciones diferenciales parciales que se deben satisfacer en cada punto del espacio ocupado por el sistema continuo, y son de la forma siguiente:

$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\psi \underline{\nu}) = g + \nabla \cdot \underline{\tau} \qquad \forall \underline{x} \in B(t) \setminus \Sigma(t) \quad (17)$$

- $\psi(\underline{x},t)$ es la propiedad intensiva que corresponde a E(t).
- $\underline{v}(\underline{x},t)$ es la velocidad Euleriana de las partículas.
- $g(\underline{x}, t)$ es el término fuente en B(t).
- $\underline{\tau}(\underline{x},t)$ es el campo de flujo a través de la frontera $\partial B(t)$.

Ecuación diferencial de balance local

ullet La ecuación diferencial de balance local puede expresarse en términos de la derivada material de ψ como:

$$\frac{D\psi}{Dt} + \psi \nabla \cdot \underline{v} = g + \nabla \cdot \underline{\tau} \qquad \forall \underline{x} \in B(t) \setminus \Sigma(t)$$
 (18)

- $\psi(\underline{x},t)$ es la propiedad intensiva que corresponde a E(t).
- $\underline{v}(\underline{x}, t)$ es la velocidad Euleriana de las partículas.
- $g(\underline{x}, t)$ es el término fuente en B(t).
- $\underline{\tau}(\underline{x},t)$ es el campo de flujo a través de la frontera $\partial B(t)$.

Condiciones de salto

• Las condiciones de salto son ecuaciones algebraicas que las discontinuidades deben satisfacer en cada punto de la superficie de discontinuidad $\Sigma(t)$, y se escriben como:

$$\llbracket \psi(\underline{v} - \underline{v}_{\Sigma}) - \underline{\tau} \rrbracket \cdot \underline{n}_{\Sigma} = g_{\Sigma} \qquad \forall \underline{x} \in \Sigma(t).$$
 (19)

- $\underline{v}_{\Sigma}(\underline{x},t)$ es la velocidad de la discontinuidad $\Sigma(t)$.
- $g_{\Sigma}(\underline{x},t)$ es el término fuente en $\Sigma(t)$.
- $\underline{n}_{\Sigma}(\underline{x},t)$ es la normal a la superficie de discontinuidad $\Sigma(t)$.
- Los límites por ambos lados de $\Sigma(t)$ existen, pero son diferentes.

$$\llbracket f \rrbracket = \lim_{\underline{x} \to \Sigma^+} f(\underline{x}) - \lim_{\underline{x} \to \Sigma^-} f(\underline{x}) \ \text{ es el salto de la función } f.$$

Ecuaciones básicas de la mecánica de medios continuos

No.	P. Extensiva	P. Intensiva	<u>T</u>	g	gΣ	Ec. de Balance Local	Condición de salto
1	Masa M(t)	ρ	0	0	0	$\frac{D\rho}{Dt} + \rho \nabla \cdot \underline{v} = 0$	$\llbracket \rho(\underline{v} - \underline{v}_{\Sigma}) \rrbracket \cdot n_{\Sigma} = 0$
2	Momento Lineal $\mathfrak{M}(t)$	ρ <u>ν</u>	₫	ρ <u>b</u>	0	$\rho \frac{Dv}{Dt} - \nabla \cdot \underline{\underline{\sigma}} - \rho \underline{\underline{b}} = 0$	$\llbracket \rho \underline{\nu} (\underline{\nu} - \underline{\nu}_{\Sigma}) - \underline{\underline{\sigma}} \rrbracket \cdot n_{\Sigma} = 0$
3	Momento Angular $\mathfrak{M}_{\mathfrak{s}}(t)$	$\rho(\underline{x} \times \underline{v})$	<u>x</u> × <u>a</u>	$\rho(\underline{x} \times \underline{b})$	0	$\underline{\underline{\sigma}} = \underline{\underline{\sigma}}^T$	$[\![\rho(\underline{x}\times\underline{v})(\underline{v}-\underline{v}_{\Sigma})-\underline{x}\times\underline{\underline{\sigma}}]\!]\cdot n_{\Sigma}=0$
4	Energía $\mathcal{E}(t)$	$\rho(E + \frac{1}{2} \mid \underline{v} \mid^2)$	$\underline{q} + \underline{\underline{\sigma}} \cdot \underline{\underline{\nu}}$	$\rho(h + \underline{b} \cdot \underline{v})$	0	$\rho \frac{DE}{Dt} = \nabla \cdot \underline{q} + \rho h + \underline{\underline{\sigma}} \cdot \nabla \underline{\underline{v}}$	$\left[\left[\rho(E+\frac{1}{2}\underline{\nu}\cdot\underline{\nu})(\underline{\nu}-\underline{\nu}_{\Sigma})-(\underline{q}+\underline{\underline{\sigma}}\cdot\underline{\nu})\right]\right]\cdot n_{\Sigma}=0$

Cuadro 1: Ecuaciones básicas de la mecánica de medios continuos.

Sistemas de varias fases

- Una fase está compuesta por varios componentes completamente superpuestos, que se mueven todos a la misma velocidad \underline{v}_{α} .
- Sea N el número de fases y $\alpha = 1, ..., N$ el número de la fase.
- Sea M_{α} el número de componentes y γ es el número de la componente dentro de la fase α , es decir, $\gamma = 1, ..., M_{\alpha}$.
- Se somete a balance un conjunto de propiedades extensivas que tiene asociado un conjunto de propiedades intensivas.
- En éste caso, consideraremos únicamente una propiedad intensiva por componente la cual se denotará por ψ_{α}^{γ} .
- Sea E_{α}^{γ} su propiedad extensiva correspondiente.

Sistemas de varias fases

• $\psi_{\alpha}^{\gamma}(\underline{x},t)$ es la **propiedad intensiva** asociada a la **propiedad** extensiva E_{α}^{γ} como sigue:

$$E_{\alpha}^{\gamma}(t) = \int_{B(t)} \psi_{\alpha}^{\gamma}(\underline{x}, t) d\underline{x}, \ \alpha = 1, ..., N, \gamma = 1, ..., M_{\alpha}$$
 (20)

Ecuaciones de balance global

$$\frac{dE_{\alpha}^{\gamma}(t)}{dt} = \int_{B(t)} g_{\alpha}^{\gamma}(\underline{x}, t) d\underline{x} + \int_{\partial B(t)} \underline{\tau}_{\alpha}^{\gamma}(\underline{x}, t) \cdot \underline{n}(\underline{x}, t) d\underline{x} (21)
+ \int_{\Sigma(t)} g_{\Sigma\alpha}^{\gamma}(\underline{x}, t) d\underline{x}, \ \alpha = 1, ..., N, \gamma = 1, ..., M_{\alpha}$$

Sistemas de varias fases

Ecuaciones diferenciales de balance local

$$\frac{\partial}{\partial t}\psi_{\alpha}^{\gamma} + \nabla \cdot (\psi_{\alpha}^{\gamma} \underline{v}_{\alpha}) = g_{\alpha}^{\gamma} + \nabla \cdot \underline{\tau}_{\alpha}^{\gamma}, \qquad \forall \underline{x} \in B(t) \setminus \Sigma(t) (22)$$

$$\alpha = 1, ..., N, \gamma = 1, ..., M_{\alpha}$$

Condiciones de salto de balance local

$$[\psi_{\alpha}^{\gamma}(\underline{\nu}_{\alpha} - \underline{\nu}_{\Sigma\alpha}) - \underline{\tau}_{\alpha}^{\gamma}] \cdot \underline{n}_{\Sigma} = g_{\Sigma\alpha}^{\gamma}, \quad \forall \underline{x} \in \Sigma(t) \quad (23)$$

$$\alpha = 1, ..., N, \gamma = 1, ..., M_{\alpha}$$

Modelos completos

Los modelos de los sistemas continuos están constituidos por:

- Una colección de propiedades extensivas e intensivas.
- El conjunto de ecuaciones de balance local correspondientes (diferenciales y de salto).
- Suficientes relaciones que liguen a las propiedades intensivas entre sí y que definan a g, <u>T</u> y <u>v</u> en términos de éstas, las cuales se conocen como leyes constitutivas.
- Sin embargo, el sistema de ecuaciones resultantes no constituye un modelo completo.

Modelos completos

- En general las ecuaciones diferenciales tienen muchas soluciones.
- Por lo que es necesario complementarlas con condiciones iniciales y de frontera.
- El modelo de un sistema continuo es completo si define un problema bien planteado.
- Un problema con valores iniciales y de frontera es bien planteado si se cumple que:
 - Existe una única solución y
 - Ésta depende de las condiciones iniciales y de frontera de manera continua

Modelos completos

Condiciones iniciales

Cuando en la ecuación diferencial interviene el tiempo, se incluyen condiciones iniciales que expresan el valor de la solución u al tiempo inicial t=0.

$$u(\underline{x},0) = u_0(\underline{x}), \qquad \forall \underline{x} \in B(t)$$
 (24)

Condiciones de frontera

Se imponen en la frontera exterior del dominio y pueden ser de varios tipos.

Tipos de condiciones de frontera

Dirichlet

Especifica los valores que toma la solución $u(\underline{x},t)$ en la frontera $\partial B(t)$

$$u(\underline{x},t) = u_{\partial}(\underline{x},t), \qquad \forall \underline{x} \in \partial B(t)$$
 (25)

Neumann

Se prescribe la derivada normal la solución $u(\underline{x},t)$ en la frontera $\partial B(t)$

$$\nabla u(\underline{x},t) \cdot \underline{n} = \frac{\partial u(\underline{x},t)}{\partial n} = g_{\partial}(\underline{x},t), \qquad \forall \underline{x} \in \partial B(t) \quad (26)$$

Tipos de condiciones de frontera

Robin

Es una combinación lineal de las dos anteriores.

$$\alpha(\underline{x},t)u(\underline{x},t) + \beta(\underline{x},t)\nabla u(\underline{x},t) \cdot \underline{n} = \gamma(\underline{x},t), \ \forall \underline{x} \in \partial B(t)$$
(27)

 $\gamma(\underline{x},t)$ es la función prescrita en la frontera exterior.

Metodología sistemática

- ullet Identificar fases lpha y componentes γ del sistema continuo.
- Establecer el conjunto de propiedades extensivas E_{α}^{γ} e intensivas $\psi_{\alpha}^{\gamma}(\underline{x},t)$ por fases α y componentes γ .
- Definir las relaciones constitutivas para g_{α}^{γ} , $\underline{\tau}_{\alpha}^{\gamma}$ y $g_{\Sigma_{\alpha}}^{\gamma}$.
- Escribir las ecuaciones de balance local de cada propiedad intensiva de las componentes por fases.
- Obtener las ecuaciones de balance total de cada propiedad intensiva por componentes.
- Establecer las condiciones iniciales y de frontera.
- Verificar que el problema esté bien planteado.

Identificar fases y componentes

- Identificar las fases y los componentes del sistema continuo.
- Sea N el número de fases.
- Sea *M* el número total de componentes.
- Se puede construir una matriz (tabla) binaria $M \times N$ de fases y componentes.
- Dicha matriz estará definida por:

$$\textit{m}_{\gamma\alpha} = \left\{ \begin{array}{ll} 1, & \text{si existe el componente } \gamma \text{ en la fase } \alpha \\ 0, & \text{si no existe el componente } \gamma \text{ en la fase } \alpha \end{array} \right.$$

Identificar fases y componentes

Propiedades extensivas e intensivas Ecuaciones de balance por componentes Modelo completo

Identificar fases y componentes

		Fases							
Componentes		fase ₁	fase ₂		fase_{lpha}		fase _N		
	$componente_1$	1	1		0		1		
	componente ₂	0	1		1		0		
	i:	:	:		:		:		
	$componente_{\gamma}$	1	1		0		1		
	:	:	:		:		:		
	$componente_M$	1	0		1	• • •	0		

Cuadro 2: Matriz (tabla) binaria $M \times N$ de fases y componentes.

Propiedades extensivas e intensivas

Fases	Componentes	Propiedades	Propiedades	Fuentes	Flujos	Fuentes
		extensivas E_k	intensivas $\psi_{\pmb{k}}$	en $B(t)$	en $\partial B(t)$	en $\Sigma(t)$
fase ₁	$\{\gamma: m_{\gamma 1}=1\}$	$E_{k_1}^{\gamma}$	$\psi_{k_1^{\gamma}}$	$g_{k_1}^{\gamma}$	$\underline{\tau}_{k1}^{\gamma}$	$g_{\Sigma k_1^{\gamma}}$
1	<u> </u>	:	:	:	:	:
$fase_{\alpha}$	$\{\gamma: m_{\gamma\alpha}=1\}$	$E_{k_{lpha}^{\gamma}}$	$\psi_{oldsymbol{k}_{oldsymbol{lpha}}^{\gamma}}$	$g_{k\alpha}^{\gamma}$	$\underline{\tau}_{k\alpha}^{\gamma}$	$g_{\Sigma k\alpha}^{\gamma}$
:	:	:	:	:	:	:
fase _N	$\{\gamma: m_{\gamma N}=1\}$	$E_{k}^{\gamma}_{N}$	$\psi_{k}{}_{N}^{\gamma}$	g _{kN}	$\frac{\gamma}{\mathcal{I}_{kN}}$	gΣk _N

Cuadro 3: Propiedades extensivas e intensivas k por fases y componentes.

Notación:

- $E_{k\alpha}^{\gamma}$ propiedad extensiva k de la componente γ en la fase α ,
- $\psi_{k\alpha}^{\gamma}$ propiedad intensiva k de la componente γ en la fase α ,
- $g_{k\alpha}^{\gamma}$ término fuente de la propiedad extensiva k en B(t),
- $\mathcal{L}_{k_{\alpha}}^{\gamma}$ término de flujo de la propiedad extensiva k en $\grave{\partial} \acute{B}(t)$, $g_{\Sigma k_{\alpha}}$ término fuente de la propiedad extensiva k en $\Sigma(t)$.

Propiedades extensivas e intensivas

Definir por propiedad extensiva $E_{k\alpha}^{\gamma}$ usando relaciones constitutivas:

- ullet $\psi_{k_{lpha}}^{\gamma}$ propiedad intensiva k de la componente γ en la fase lpha
- $g_{k\alpha}^{\ \gamma}$ término fuente de la propiedad extensiva k en B(t),
- $\underline{ au}_{k\alpha}^{\ \gamma}$ término de flujo de la propiedad extensiva k en $\partial B(t)$,
- $g_{\Sigma k\alpha}^{\ \gamma}$ término fuente de la propiedad extensiva k en $\Sigma(t)$.

Ecuaciones de balance local por componentes

Ecuación diferencial

$$\frac{\partial \psi_{\alpha}^{\gamma}}{\partial t} + \nabla \cdot (\psi_{\alpha}^{\gamma} \underline{\nu}_{\alpha}) = g_{\alpha}^{\gamma} + \nabla \cdot \underline{\tau}_{\alpha}^{\gamma}; \quad \forall \underline{x} \in B(t) \setminus \Sigma(t)$$
 (28)

Condición de salto

$$\llbracket \psi_{\alpha}^{\gamma}(\underline{\nu}_{\alpha} - \underline{\nu}_{\Sigma_{\alpha}}) - \underline{\tau}_{\alpha}^{\gamma} \rrbracket \cdot n_{\Sigma} = g_{\Sigma_{\alpha}}^{\gamma}; \quad \forall \underline{x} \in \Sigma(t)$$
 (29)

Ecuaciones de balance total por componentes

- Se obtiene las ecuaciones de balance total de cada propiedad intensiva por componentes sumando por todas las fases.
- Con lo cual conseguiremos obtener un sistema de M ecuaciones diferenciales con r número de incógnitas.
- Si ocurre que $r \ge M$, a fin de lograr un sistema de ecuaciones determinado, se hace necesario considerar relaciones adicionales.

Modelo completo

- Establecer las condiciones iniciales y de frontera.
- Verificar que el problema esté bien planteado.

Ejemplo

- Transporte de una componente (trazador) en una fase fluida en un medio poroso.
- Ver presentación Noyola2017_MsThesis_presentacion.pdf [8].

Referencias

- M. B. Allen, I. Herrera and G. F. Pinder, Numerical modeling in science and engineering, John Wiley & Sons., USA, (1988).
- [2] I. Herrera and G. F. Pinder, Mathematical Modeling in Science and engineering: An Axiomatic Approach, John Wiley & Sons., USA, (2012).
- [3] COMSOL Multiphysics, Modeling Guide Version 3.4, COMSOL AB, USA, (2007).
- [4] M. A. Díaz-Viera and A. Ortiz-Tapia, Modelación Matemática, Numérica y Computacional de Flujo y Transporte en Medios Porosos, Notas del curso, CDMX, México (2018).
- [5] B. Flemisch, M. Darcis, K. Erbertseder, B. Faigle, A. Lauser, K. Mosthaf, S. Muthing, P. Nuske, A. Tatomir, M. Wolff, R. Helmig, "DuMu^X: Dune for multi-{phase, component, scale, physics,...} flow and transport in porous media", Advances in Water Resources, 34 (9), 1102 - 1112, (2011).
- [6] E. Linares and M. A. Díaz-Viera, Modelo de flujo y transporte en medios porosos en FEniCS usando el método de elementos finitos mixtos. Aplicación a un caso de estudio para la simulación de un proceso de inyección de agua de baja salinidad a escala de laboratorio., Universidad Nacional Autónoma de México, México, (2018).
- [7] A. Logg, K. A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, Springer-Verlag, Berlin, (2012).
- [8] M. Noyola-Rodríguez and M. A. Díaz-Viera, Modelo de transporte en medios porosos a escala de laboratorio para la simulación del proceso de taponamientodestaponamiento por microorganismos., Universidad Nacional Autónoma de México, México, (2017).
- [9] C. A. Romano-Pérez and M. A. Díaz-Viera, Modelos de fractura discreta para la simulación de flujo y transporte en medios porosos fracturados., Universidad Nacional Autónoma de México, México, (2018).

54 / 55

Sistemas continuos Enfoque axiomático Metodología sistemática Ejemplo Referencias

Gracias!!!

Preguntas / Comentarios