

A **Number System** is a way to represent numbers using a consistent set of **symbols** (digits). Just like humans speak **languages**, computers use **number systems** to process and store data.

Analogy: Number System as Languages

Language	Script Used		
English	A-Z		
Computers	0, 1, 2F (depending on base)		

→ Think of **Binary** as the language of computers, and **Decimal** as the language of humans.

Types of Number Systems

Number System	Base	Digits Used	Common Use
Binary	2	0, 1	Computers 🗏
Octal	8	0 - 7	File permissions (Linux) 🐧
Decimal	10	0 - 9	Daily life 🔐
Hexadecimal	16	0 - 9, A - F	Memory addresses 🖺

Memory Hook: BODH 🗗

Binary → Octal → Decimal → Hexadecimal Learn once, and convert between all easily!

Conversion Methods

७ 1. Decimal → Binary / Octal / Hexadecimal

✓ Method: Repeated Division by Base

Step 1: Divide the number by the base

Step 2: Note the remainder

Step 3: Repeat until quotient is 0
Step 4: Read remainders bottom to top

Example: Decimal 25 → **Binary**

```
25 \div 2 = 12 \text{ R1}
12 \div 2 = 6 \text{ R0}
6 \div 2 = 3 \text{ R0}
3 \div 2 = 1 \text{ R1}
1 \div 2 = 0 \text{ R1}
Answer = 11001
```

→ Decimal 25 = Binary 11001

② 2. **Binary** → **Decimal**

✓ **Method**: Multiply each bit by 2[^]position and add

```
Binary: 1101
= (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)
= 8 + 4 + 0 + 1 = 13
```

♂ 3. **Binary** → **Octal**

☑ Group bits in 3s from right to left

```
Binary: 110101 → Group: 110 101 → Octal: 6 5 → Answer = 65
```

ઉ 4. Binary → Hexadecimal

☑ Group bits in 4s from right

```
Binary: 11101110 → Group: 1110 1110 → Hex: E E → Answer = EE
```

७ 5. Hexadecimal → Decimal

```
Hex: 1F
= (1 \times 16^{1}) + (15 \times 16^{0})
= 16 + 15 = 31
```

& Shortcuts **&**

Binary	Hex	Octal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	_
1001	9	_
1010	Α	_
1011	В	_
1100	С	_
1101	D	
1110	E	_
1111	F	_

JavaScript Code Examples

♦ Decimal to Binary

```
let dec = 25;
let binary = dec.toString(2); // "11001"
console.log(binary);
```

♦ Binary to Decimal

```
let binary = "11001";
let decimal = parseInt(binary, 2); // 25
console.log(decimal);
```

Hexadecimal to Decimal

```
let hex = "1F";
let decimal = parseInt(hex, 16); // 31
console.log(decimal);
```

♦ Decimal to Hexadecimal

```
let dec = 255;
let hex = dec.toString(16); // "ff"
console.log(hex.toUpperCase()); // "FF"
```

Bonus: Use Cases

Field	Uses Number System
Programming	Binary, Hex (colors, memory)
Networking	Binary (IP addressing)
Security/Cryptography	Hex, Octal
File Systems	Octal (Linux permissions)

Summary with Emoji Cheat Sheet

System	Base	Symbol	mbol Memory Hook	
Binary 🔘	2	0,1	Computers	
Octal 🚳	8	0-7	Linux 🖒	
Decimal 🚳	10	0-9	Humans 😂	
Hexadecimal 🗶	16	0-9, A-F	Memory 🖺	

★ Final Tips

- ♦ Always group bits from right to left for conversion.
 ♦ Use parseInt(str, base) in JS for conversions.
- ◆ Remember: 1 Hex Digit = 4 Bits 1 Octal Digit = 3 Bits

12 ★ Number System Conversions Cheat Sheet **5**

Master the art of converting between ■ different number systems like a pro! Let's explore how to convert between ③ Decimal, Binary, Octal, and Hexadecimal using examples, logic, and C++ code!

Number Systems Explained

System	🕃 Base	Digits Used
10 Decimal	10	0123456789
Binary	2	01
⇔ Octal	8	0 to 7
Hexadecimal	16	0-9 and A-F A B AB CL 0 sos

1 Decimal → Binary / Octal / Hexadecimal

□ Logic:

- Keep dividing by the base (2/8/16).
- Save the remainders.
- Read them in reverse 🖼.

Ջ Example: Convert 25₁₀ to Binary

```
25 \div 2 = 12 \text{ R1}
12 \div 2 = 6 \text{ R0}
6 \div 2 = 3 \text{ R0}
3 \div 2 = 1 \text{ R1}
1 \div 2 = 0 \text{ R1}
Binary: 11001_2
```

☆ Convert 125₁₀ to Octal

```
125 ÷ 8 = 15 R5

15 ÷ 8 = 1 R7

1 ÷ 8 = 0 R1

Octal: 175<sub>8</sub> ✓
```

Ջ Convert 255₁₀ to Hex

```
255 ÷ 16 = 15 R15 (F)
15 ÷ 16 = 0 R15 (F)
Hex: FF<sub>16</sub> ☑
```

2 Binary → Decimal / Octal / Hexadecimal

Convert 1101₂ to Decimal

```
(1\times2^3) + (1\times2^2) + (0\times2^1) + (1\times2^0) = 8+4+0+1 = 13_{10}
```

☆ Convert 101110₂ to Octal

```
Group: 101 \ 110
101_2 = 5_8
110_2 = 6_8
Octal: 56_8 \ \checkmark
```

Convert 11011011₂ to Hex

```
Group: 1101 1011
1101_{2} = D
1011_{2} = B
Hex: DB_{16}
```

3 Octal → Decimal / Binary

☆ Convert 57₈ to Binary

```
5_8 = 101_2
7_8 = 111_2
Binary: 101111_2
```

4 Hexadecimal → Decimal / Binary / Octal

Convert 2F₁6 to Decimal

```
(2\times16^{1}) + (15\times16^{0}) = 32 + 15 = 47_{10}
```

Convert A3₁6 to Binary

```
A = 1010_2

3 = 0011_2

Binary: 10100011_2 \checkmark
```

Convert 1F₁6 to Octal

```
1 = 0001_2
F = 1111_2
Binary = 00011111
Group in 3s \rightarrow 001 \ 111 \ 1 = 0011111_2
Octal = 37_8
```

Quick Reference Table

10 Decimal	Binary	Q Octal	
1	00012	1 ₈	1 ₁₆
2	00102	2 ₈	2 ₁₆
3	00112	3 ₈	3 ₁₆
4	01002	48	4 ₁₆
5	01012	5 ₈	5 ₁₆
6	01102	68	6 ₁₆
7	01112	7 ₈	7 ₁₆
8	1000 ₂	10 ₈	8 ₁₆
9	10012	11 ₈	9 ₁₆
10	1010 ₂	12 ₈	A ₁₆
11	10112	13 ₈	B ₁₆
12	1100 ₂	14 ₈	C ₁₆
13	11012	15 ₈	D ₁₆
14	11102	16 ₈	E ₁₆
15	11112	17 ₈	F ₁₆

C++ Code for Conversions

✓ Decimal → Binary / Octal / Hex

```
#include <iostream>
#include <stack>
using namespace std;
void decimalToBase(int num, int base) {
    stack<char> st;
    string digits = "0123456789ABCDEF";
    while (num > 0) {
        st.push(digits[num % base]);
        num /= base;
    while (!st.empty()) {
       cout << st.top();</pre>
        st.pop();
    }
    cout << endl;</pre>
}
int main() {
    int num;
    cout << "Enter Decimal Number: ";</pre>
    cin >> num;
    cout << "[12] Binary: ";
    decimalToBase(num, 2);
    cout << "Q Octal: ";</pre>
    decimalToBase(num, 8);
    decimalToBase(num, 16);
    return 0;
}
```

Example

Input: num = 29 Output:

```
Binary: 11101
Octal: 35
Hex: 1D
```

☑ Binary **→** Decimal / Octal / Hex

```
#include <iostream>
#include <cmath>
```

```
using namespace std;
int binaryToDecimal(long long binary) {
    int decimal = 0, i = 0;
    while (binary > ∅) {
        decimal += (binary % 10) * pow(2, i++);
        binary /= 10;
    return decimal;
}
int main() {
    long long binary;
    cout << "Enter Binary Number: ";</pre>
    cin >> binary;
    int decimal = binaryToDecimal(binary);
    cout << "Decimal: " << decimal << endl;</pre>
    cout << "Octal: " << oct << decimal << endl;</pre>
    cout << "Hex: " << hex << decimal << endl;</pre>
    return 0;
}
```

⊘ Octal **→** Decimal / Binary / Hex

```
#include <iostream>
#include <cmath>
#include <bitset>
using namespace std;
int octalToDecimal(int octal) {
    int decimal = 0, i = 0;
    while (octal > 0) {
        decimal += (octal % 10) * pow(8, i++);
        octal /= 10;
    return decimal;
}
int main() {
    int octal;
    cout << "Enter Octal Number: ";</pre>
    cin >> octal;
    int decimal = octalToDecimal(octal);
    cout << "Decimal: " << decimal << endl;</pre>
    cout << "Binary: " << bitset<16>(decimal) << endl;</pre>
    cout << "Hex: " << hex << decimal << endl;</pre>
```


Conversions You Now Know:

igspace Decimal \leftrightarrow Binary / Octal / Hex igspace Binary \leftrightarrow Decimal / Octal / Hex igspace Octal / Decimal / Binary / Octal

Congratulations! You've unlocked the full power of number system conversions! 🌮 💡