BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

4 de janeiro de 2024

Índice

1	Esti	uturas de Dados	4
	1.1	Disjoint Set Union	 4
		1.1.1 DSU Completo	 4
		1.1.2 DSU Rollback	 6
		1.1.3 DSU Simples	 7
		1.1.4 DSU Bipartido	 7
	1.2	Operation Queue	 8
	1.3	Interval Tree	 8
	1.4	Segment Tree	 10
		1.4.1 Segment Tree Lazy	 10
		1.4.2 Segment Tree	 11
		1.4.3 Segment Tree 2D	 12
		1.4.4 Segment Tree Beats Max And Sum Update	 13
		1.4.5 Segment Tree Beats Max Update	 16
		1.4.6 Segment Tree Esparsa	 18
		1.4.7 Segment Tree Persisente	 20
		1.4.8 Segment Tree Kadani	 21
	1.5	Operation Stack	 22
	1.6	Fenwick Tree	 23
	1.7	LiChao Tree	 23
	1.8	Kd Fenwick Tree	 25
	1.9	Ordered Set	 26
	1.10	MergeSort Tree	 27
	1.11	Sparse Table	 29
		1.11.1 Disjoint Sparse Table	 29
		1.11.2 Sparse Table	 30
2	Gra	os	32
	2.1	Matching	 32
		2.1.1 Hungaro	 32
	2.2	Stoer-Wagner minimum cut	 32

 $\acute{\text{INDICE}}$

	2.3	LCA	33
	2.4	HLD	35
	2.5	Kruskal	36
	2.6	Bridge	37
	2.7	Shortest Paths	38
		2.7.1 Dijkstra	38
		2.7.2 SPFA	39
	2.8	Binary Lifting	39
	2.9	Fluxo	40
	2.10	Inverse Graph	44
	2.11	2 SAT	44
	2.12	Graph Center	45
	.		4=
3	Stri		47
	3.1	Aho Corasick	47
	3.2	Patricia Tree	48
	3.3	Prefix Function	49
	3.4	Hashing	50
	3.5	Trie	51
	3.6	Manacher	51
	3.7	Lyndon	52
	3.8	Suffix Array	53
4	Para	adigmas	55
	4.1	Mo	55
	4.2	Exponenciação de Matriz	57
	4.3	Busca Binaria Paralela	59
	4.4	Divide and Conquer	60
	4.5	Busca Ternaria	62
	4.6	DP de Permutacao	63
	4.7	Convex Hull Trick	63
	4.8	All Submasks	64
_	T) /T _ 4		C.F
5		temática	65
	5.1	Sum of floor(n div i)	65 65
	5.2	Primos	65 67
	5.3	NTT	67
	5.4	Eliminação Gaussiana	68
	5.5		70
	5.6	Fatoração	71

ÍNDICE	g
INDICE	et e

5.7	Teorema do Resto Chinês	72
5.8	$\mathbf{FFT} \ \dots $	73
5.9	Exponenciação Modular Rápida	74
5.10	Totiente de Euler	74
5.11	Inverso Modular	75

Capítulo 1

Estruturas de Dados

1.1 Disjoint Set Union

1.1.1 DSU Completo

DSU com capacidade de adicionar e remover vértices.

EXTREMAMENTE PODEROSO!

Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função solve()

 \bullet Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0,6ms para $3*10^5$ queries e nodos com printf e scanf.

```
Possivelmente aguenta 10^6 em 3s
```

```
struct full_dsu {
       struct change {
              int node, old_size;
       struct query {
              int l, r, u, v, type;
       stack<change> changes;
       \label{eq:constraint} \footnotesize \texttt{map} \negthinspace < \negthinspace \texttt{pair} \negthinspace < \negthinspace \texttt{int} \; , \; \; \negthinspace \texttt{int} \negthinspace > \negthinspace , \; \; \negthinspace \texttt{vector} \negthinspace < \negthinspace \texttt{query} \negthinspace > \negthinspace > \; \negthinspace \texttt{edges} \; ;
       vector < query > queries;
       {\tt vector}{<}{\tt int}{>} parent, size;
       int number_of_sets, time;
        full_dsu(int n) {
              time = 0;
               size.resize(n + 5, 1);
              number\_of\_sets \, = \, n \, ;
              loop(i, 0, n + 5) parent.push back(i);
       }
              \mathbf{return} \ (\mathbf{parent} [\mathbf{a}] = \mathbf{a} \ ? \ \mathbf{a} : \ \mathbf{get} (\mathbf{parent} [\mathbf{a}]));
       bool same(int a, int b) {
              return get(a) = get(b);
       void checkpoint() {
              {\tt changes.push}(\{-2,\ 0\})\,;
       void join(int a, int b) {
              a = get(a);
              b = get(b);
```

```
if~(a == b)~\{\\
           return;
     if (size[a] > size[b]) {
           swap(a, b);
     changes.push({a, size[b]});
     parent[a] = b;
     size[b] += size[a];
      -number_of_sets;
}
void rollback() {
     while (!changes.empty()) {
           {f auto} ch = changes.top();
           changes.pop();
           if (ch.node = -2)  {
                break;
           size[parent[ch.node]] = ch.old_size;
parent[ch.node] = ch.node;
           +\!\!+\!\!\operatorname{number\_of\_sets};
}
void ord(int &a, int &b) {
     if (a > b) {
           swap(a, b);
}
void add(int u, int v) {
     \operatorname{ord}(u, v);
     edges[{u, v}].push_back({time++, (int)1e9, u, v, 0});
void remove(int u, int v) {
     ord(u, v);
     edges[{u, v}].back().r = time++;
// consulta se dois vertices estao no mesmo // grupo
void question(int u, int v) {
     \mathrm{ord}\left(u\,,\ v\right);
     queries.push\_back(\{time, time, u, v, 1\});
     ++time;
// consulta a quantidade de grupos distintos
void question() {
     queries.push_back({time, time, 0, 0, 1});
     ++time;
}
\begin{array}{c} \text{vector} \! < \! \mathbf{int} \! > \; \text{solve} \left(\right) \; \left\{ \\ \quad \quad \mathbf{for} \; \left(\mathbf{auto} \; \left[ \; \mathbf{p} \; , \; \; \mathbf{v} \; \right] \; : \; \text{edges} \right) \; \left\{ \end{array} \right. \end{array}
           queries.insert(queries.end(), all(v));
     vector < int > vec(time, -1), ans;
     run(queries, 0, time, vec);
     for (int i : vec) {
    if (i != -1) {
                ans.push_back(i);
     return ans;
}
void run(const vector<query> &qrs, int 1, int r, vector<int> &ans) {
     if (l > r) {
           return;
```

```
checkpoint();
        vector<query> qrs_aux;
        for (auto &q : qrs) {
            if (!q.type \&\& q.l <= l \&\& r <= q.r) {
                 join (q.u, q.v);
            \} else if (r < q.l | | l > q.r) {
                 continue;
            } else {
                 qrs_aux.push_back(q);
        if (l == r) {
            for (auto &q : qrs) {
                 if (q.type && q.l == 1) {
                     ans\,[\,l\,] \ = \ number\_of\_sets\,;
                     // numero de grupos nesse tempo
                     // ans[l] = same(q.u, q.v);
                     // se u e v estao no mesmo grupo
            rollback();
            return;
        int m = (1 + r) / 2;
        run(qrs_aux, l, m, ans);
        run(qrs_aux, m + 1, r, ans);
        rollback();
    }
};
```

1.1.2 DSU Rollback

Desfaz as últimas K uniões

• Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar rollback() para ir até o último checkpoint.

O rollback não altera a complexidade, uma vez que K <= queries.

Só funciona sem compressão de caminho

• Complexidade de tempo: O(log(N))

```
struct rollback dsu {
    struct change {
        int node, old_size;
    stack<change> changes;
    vector < int > parent, size;
    int number of sets;
    rollback_dsu(int n) {
        size.resize(n + 5, 1);
        number_of_sets = n;
        for (int i = 0; i < n + 5; ++i) {
            parent.push_back(i);
    }
    int get(int a) {
        return (a = parent[a]) ? a :
            get(parent[a]);
    }
```

```
bool same(int a, int b) {
    return get(a) == get(b);
}
void checkpoint() {
    changes.push({-2, 0});
}

void join(int a, int b) {
    a = get(a);
    b = get(b);
    if (a == b) {
        changes.push({-1, -1});
        return;
    }
    if (size[a] > size[b]) {
        swap(a, b);
    }
    changes.push({a, size[b]});
    parent[a] = b;
    size[b] += size[a];
```

```
break;
   -number_of_sets;
                                                                }
void rollback(int qnt = 1 << 31) {
                                                                continue;
    for (int i = 0; i < qnt; ++i) {
       auto ch = changes.top();
                                                            size [parent [ch.node]] = ch.old_size;
                                                            parent[ch.node] = ch.node;
       changes.pop();
        if (ch.node == -1) {
                                                            +\!\!+\!\!number\_of\_sets;
                                                        }
           continue;
                                                    }
       };
```

1.1.3 DSU Simples

Verifica se dois itens pertencem a um mesmo grupo.

• Complexidade de tempo: O(1) amortizado.

Une grupos.

• Complexidade de tempo: O(1) amortizado.

```
struct DSU {
    vector < int > pa, sz;
    DSU(int n) : pa(n + 1), sz(n + 1, 1) {
        iota(pa.begin(), pa.end(), 0);
    }
    int root(int a) {
        return pa[a] = (a == pa[a] ? a :
            root(pa[a]));
    }
    bool find(int a, int b) {
        return root(a) == root(b);
    }
}

void uni(int a, int b) {
    if (ra == rb) {
        return;
    }
    if (sz[ra] > sz[rb]) {
        swap(ra, rb);
        pa[ra] = rb;
        sz[rb] += sz[ra];
    }
}
```

1.1.4 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la.

Para todas as operações:

• Complexidade de tempo: O(1) amortizado.

```
return \{a, 0\};
                                                                get(b);
                                                                return parent[a] == parent[b];
    auto val = get(parent[a]);
    parent[a] = val.fi;
                                                           bool possible_edge(int a, int b) {
    color[a] = (color[a] + val.se) \% 2;
                                                                return !same color(a, b) || !same group(a,
    return {parent[a], color[a]};
bool same_color(int a, int b) {
                                                           void join(int a, int b) {
                                                                auto val_a = get(a), val_b = get(b);
    get (a);
                                                                parent [val_a.fi] = val_b.fi;
color [val_a.fi] = (val_a.se + val_b.se + 1)
    get (b);
    return color[a] = color[b];
bool same_group(int a, int b) {
                                                           }
                                                       };
    get(a);
```

1.2 Operation Queue

Fila que armazena o resultado do operatório dos itens.

```
^{\ast} Complexidade de tempo (Push): O(1)
```

```
* Complexidade de tempo (Pop): O(1)
```

```
template <typename T> struct op_queue {
    stack < pair < T, T>> s1, s2;
    T result;
    T op(T a, T b) {
    return a; // TODO: op to compare
         // min(a, b);
           gcd(a, b);
         // lca(a, b);
    T get () {
         if (s1.empty() || s2.empty()) {
    return result = s1.empty() ? s2.top().second : s1.top().second;
         } else {
             return result = op(s1.top().second, s2.top().second);
    void add(T element) {
         result = s1.empty() ? element : op(element, s1.top().second);
         s1.push({element, result});
    void remove() {
         if (s2.empty()) {
             while (!s1.empty()) {
                 T \text{ elem} = s1.top().first;
                  s1.pop();
                  T result = s2.empty() ? elem : op(elem, s2.top().second);
                  s2.push({elem, result});
        \Upsilon remove_elem = s2.top().first;
         s2.pop();
    }
};
```

1.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L, R]. L e R inclusos

Contém funções insert(L, R, ID), erase(L, R, ID), overlaps(L, R) e find(L, R, ID).

É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

• Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

- insert()
- erase()
- upper_bound()
- etc

```
\#include < ext/pb_ds/assoc\_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
{\bf using\ namespace\ \_\_gnu\_pbds};
struct interval {
    long long lo, hi, id;
    \mathbf{bool\ operator}{<}(\mathbf{const\ interval\ \&i})\ \mathbf{const\ }\{
         return lo < i.lo || (lo == i.lo && hi < i.hi) || (lo == i.lo && hi == i.hi && id < i.id);
};
template <class CNI, class NI, class Cmp_Fn, class Allocator> struct intervals_node_update {
    {\bf typedef\ long\ long\ metadata\_type}\,;
    int sz = 0;
     {\bf virtual} CNI node_begin() {\bf const} = 0;
     {\bf virtual} CNI {\bf node\_end}() {\bf const}=0;
     inline vector<int> overlaps(const long long l, const long long r) {
         queue<CNI> q;
         q.push(node_begin());
         vector<int> vec;
         while (!q.empty()) {
              CNI it = q.front();
              q.pop();
              if (it == node_end()) {
                   {\bf continue}\,;
              if (r >= (*it) -> lo && l <= (*it) -> hi) {
                   vec.push_back((*it)->id);
              CNI l_it = it.get_l_child();
long long l_max = (l_it == node_end()) ? -INF : l_it.get_metadata();
              \mathbf{if} \ (l_{\max} > = 1) \ \{
                   q.push(l_it);
              if ((*it)->lo <= r) {
                   q.push(it.get_r_child());
         return vec;
     inline void operator()(NI it, CNI end_it) {
         const long long l_max =
              (it.get l child() == end it) ? -INF : it.get l child().get metadata();
         const long long r max =
              (it.get r child() == end it) ? -INF : it.get r child().get metadata();
         \mathbf{const\_cast} < \mathbf{long} \ \ \& > (\mathtt{it.get\_metadata}()) = \max((\ast \mathtt{it}) - \mathtt{hi}, \ \max((l\_\max, \ \mathtt{r\_max}));
    }
};
typedef tree<interval, null_type, less<interval>, rb_tree_tag, intervals_node_update> interval_tree;
```

1.4 Segment Tree

1.4.1 Segment Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 * 4 * N = O(N)

```
namespace seg {
    const int MAX = 2e5 + 5;
    const ll NEUTRAL = 0; // merge(a, neutral) = a
    ll merge(ll a, ll b) {
        return a + b;
    int sz; // size of the array
    ll tree [4 * MAX], lazy [4 * MAX];
    int le(int n) {
        return 2 * n + 1;
    int ri(int n) {
         return 2 * n + 2;
    void push(int n, int esq, int dir) {
         \mathbf{if} (lazy[n] == 0) {
             return:
         tree[n] += lazy[n] * (dir - esq + 1);
         if (esq != dir) {
             lazy[le(n)] += lazy[n];
             lazy[ri(n)] += lazy[n];
         lazy[n] = 0;
    void build (span < const ll > v, int n, int esq, int dir) {
         if (esq = dir) {
             tree[n] = v[esq];
         } else {
             int mid = (esq + dir) / 2;
             build(v, le(n), esq, mid);
             build(v, ri(n), mid + 1, dir);
             tree[n] = merge(tree[le(n)], tree[ri(n)]);
    void build (span < const ll > v) {
         sz = v.size();
         build (v, 0, 0, sz - 1);
    Il query(int 1, int r, int n = 0, int esq = 0, int dir = sz - 1) {
        \begin{array}{ll} push(n, \ esq \,, \ dir)\,; \\ \textbf{if} \ (esq > r \ || \ dir < 1) \ \{ \end{array}
             return NEUTRAL;
         if (l \le esq \&\& dir \le r) {
             return tree[n];
         int mid = (esq + dir) / 2;
        return merge(query(1, r, le(n), esq, mid), query(1, r, ri(n), mid + 1, dir));
    void update(int l, int r, ll v, int n = 0, int esq = 0, int dir = sz - 1) {
         push(n, esq, dir);
```

```
if (esq > r || dir < l) {
    return;
}
if (l <= esq && dir <= r) {
    lazy[n] += v;
    push(n, esq, dir);
} else {
    int mid = (esq + dir) / 2;
    update(l, r, v, le(n), esq, mid);
    update(l, r, v, ri(n), mid + 1, dir);
    tree[n] = merge(tree[le(n)], tree[ri(n)]);
}
}</pre>
```

1.4.2 Segment Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 *N = O(N)

```
namespace seg {
    const int MAX = 2e5 + 5;
     int n;
     ll tree [4 * MAX];
     ll merge(ll a, ll b) {
         return a + b;
     int le(int n) {
         return 2 * n + 1;
     int ri(int n) {
         return 2 * n + 2;
     void build(int n, int esq, int dir, const vector<ll> &v) {
          if (esq = dir) \{
               tree[n] = v[esq];
               int mid = (esq + dir) / 2;
               \texttt{build} \, (\, \texttt{le} \, (\, \texttt{n}\,) \,\,, \ \ \texttt{esq} \,\,, \ \ \texttt{mid} \,, \ \ \texttt{v} \,) \,\,;
               build(ri(n), mid + 1, dir, v);
               tree[n] = merge(tree[le(n)], tree[ri(n)]);
     void build (const vector < ll > &v) {
         n = v.size();
          build (0, 0, n - 1, v);
     ll query(int n, int esq, int dir, int l, int r) {
          \mathbf{if} \ (\operatorname{esq} > \operatorname{r} \ || \ \operatorname{dir} < 1) \ \{
               return 0;
          if (l <= esq && dir <= r) {
               return tree[n];
          int mid = (esq + dir) / 2;
          return merge(query(le(n), esq, mid, l, r), query(ri(n), mid + 1, dir, l, r));
     11 query(int l, int r) {
          return query (0, 0, n-1, l, r);
```

```
    void update(int n, int esq, int dir, int x, ll v) {
        if (esq > x || dir < x) {
            return;
        }
        if (esq == dir) {
            tree[n] = v;
        } else {
            int mid = (esq + dir) / 2;
            if (x <= mid) {
                 update(le(n), esq, mid, x, v);
            } else {
                 update(ri(n), mid + 1, dir, x, v);
            }
            tree[n] = merge(tree[le(n)], tree[ri(n)]);
        }
    void update(int x, ll v) {
            update(0, 0, n - 1, x, v);
        }
}
</pre>
```

1.4.3 Segment Tree 2D

Segment Tree em 2 dimensões.

- Complexidade de tempo (Pré-processamento): O(N*M)
- Complexidade de tempo (Consulta em intervalo): O(log(N)*log(M))
- Complexidade de tempo (Update em ponto): O(log(N)*log(M))
- Complexidade de espaço: 4 * N * 4 * M = O(N*M)

```
const int MAX = 2505;
int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
int le(int x) {
     \textbf{return} \ 2 \ * \ x \ + \ 1;
int ri(int x) {
     \textbf{return} \ 2 \ * \ x \ + \ 2;
\mathbf{void} \ \mathrm{build} \_\mathrm{y} (\mathbf{int} \ \mathrm{nx}, \ \mathbf{int} \ \mathrm{lx} \ , \ \mathbf{int} \ \mathrm{rx} \ , \ \mathbf{int} \ \mathrm{ny} \ , \ \mathbf{int} \ \mathrm{ly} \ , \ \mathbf{int} \ \mathrm{ry}) \ \{
     if (ly = ry) {
           if (lx = rx) {
                 tree[nx][ny] = mat[lx][ly];
           } else {
                tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
     } else {
           int my = (ly + ry) / 2;
           build_y(nx, lx, rx, le(ny), ly, my);
           build_y(nx, lx, rx, ri(ny), my + 1, ry);
           tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
void build x(int nx, int lx, int rx) {
     if (lx != rx) {
           int mx = (lx + rx) / 2;
           \label{eq:build_x(le(nx), lx, mx);} build_x(le(nx), lx, mx);
           build_x(ri(nx), mx + 1, rx);
     build_y(nx, lx, rx, 0, 0, m-1);
```

```
void build() {
     build_x(0, 0, n - 1);
void update_y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v) {
     if (ly == ry) {
           if (lx = rx) {
                tree[nx][ny] = v;
           } else {
                tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
     } else {
          int my = (ly + ry) / 2;
           if (y \le my) {
                update\_y(\,nx\,,\ lx\,,\ rx\,,\ le\,(\,ny\,)\,\,,\ ly\,\,,\ my,\,\,x\,,\,\,y\,,\,\,v\,)\,;
           } else {
                update_y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
           tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
}
void update_x(int nx, int lx, int rx, int x, int y, int v) {
     if (lx != rx)
           \mathbf{int} \ \mathbf{mx} = (\mathbf{lx} + \mathbf{rx}) \ / \ 2;
           if (x \le mx) +
                update_x(le(nx), lx, mx, x, y, v);
            else {
                update_x(ri(nx), mx + 1, rx, x, y, v);
     update_y(nx, lx, rx, 0, 0, m-1, x, y, v);
void update(int x, int y, int v) {
     update_x(0, 0, n - 1, x, y, v);
\mathbf{int} \ \mathrm{sum\_y}(\mathbf{int} \ \mathrm{nx}\,, \ \mathbf{int} \ \mathrm{ny}\,, \ \mathbf{int} \ \mathrm{ly}\,, \ \mathbf{int} \ \mathrm{ry}\,, \ \mathbf{int} \ \mathrm{qly}\,, \ \mathbf{int} \ \mathrm{qry}) \ \{
     if (ry < qly || ly > qry) \{
          return 0;
     \mathbf{if} (qly <= ly && ry <= qry) {
          return tree [nx][ny];
     int my = (ly + ry) / 2;
     \textbf{return} \ \text{sum} \_y(\texttt{nx}, \ \texttt{le}(\texttt{ny}), \ \texttt{ly}, \ \texttt{my}, \ \texttt{qly}, \ \texttt{qry}) \ + \ \text{sum} \_y(\texttt{nx}, \ \texttt{ri}(\texttt{ny}), \ \texttt{my} \ + \ \texttt{1}, \ \texttt{ry}, \ \texttt{qly}, \ \texttt{qry});
int sum_x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
     if (rx < qlx || lx > qrx) {
          return 0;
     \mathbf{if} (qlx <= lx && rx <= qrx) {
          return sum_y(nx, 0, 0, m-1, qly, qry);
     sum_x(ri(nx), mx + 1, rx, qlx, qrx, qly, qry);
int sum(int lx, int rx, int ly, int ry) {
     {\bf return} \;\; {\rm sum}\_{x}(0\,,\;\; 0\,,\;\; n\,-\,1\,,\;\; lx\,,\;\; rx\,,\;\; ly\,,\;\; ry\,)\,;
}
```

1.4.4 Segment Tree Beats Max And Sum Update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

• Complexidade de tempo (Pré-processamento): O(N)

- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

```
\#include <bits/stdc++.h>
{\bf using\ namespace\ std}\;;
#define ll long long
#define INF 1e9
#define fi first
#define se second
{f typedef} pair<{f int}, {f int}> ii;
struct Node {
     int m1 = INF, m2 = INF, cont = 0;
     11 \text{ soma} = 0;
     queue<ii> lazy;
     void set(int v) {
          m1 \,=\, v\,;
          cont = 1;
          soma \, = \, v \, ;
     }
     void merge(Node a, Node b) {
          m1 = min(a.m1, b.m1);
          m2 = INF;
          if (a.m1 != b.m1) {
               m2 = min(m2, max(a.m1, b.m1));
          if (a.m2 != m1) {
               m2 = min(m2, a.m2);
          if (b.m2 != m1) {
               m2 = min(m2, b.m2);
          cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
          soma = a.soma + b.soma;
     }
     void print() {
          printf("%d %d %d %lld\n", m1, m2, cont, soma);
};
\mathbf{int}\ n\,,\ q\,;
vector<Node> tree;
int le(int n) {
     \mathbf{return} \ 2 \ * \ \mathbf{n} \ + \ \mathbf{1};
int ri(int n) {
     return 2 * n + 2;
}
\mathbf{void} \ \mathrm{push}(\,\mathbf{int}\ \mathrm{n}\,,\ \mathbf{int}\ \mathrm{esq}\,,\ \mathbf{int}\ \mathrm{dir}\,)\ \{
     while (!tree[n].lazy.empty()) {
          ii p = tree[n].lazy.front();
          tree[n].lazy.pop();
          {\bf int} \  \, {\rm op} \, = \, {\rm p.\,fi} \, \, , \  \, {\rm v} \, = \, {\rm p.\,se} \, ; \\
          if (op == 0) {
                if (v \le tree[n].m1) {
                     continue;
                tree[n].soma += (ll)abs(tree[n].ml - v) * tree[n].cont;
                tree[n].m1 = v;
```

```
\mathbf{if} \ (\,\mathrm{esq} \ != \ \mathrm{dir}\,) \ \{\,
                                tree[le(n)].lazy.push({0, v});
                                tree \left[ \, ri \, (n) \, \right]. \, lazy \, . \, push \left( \left\{ 0 \, , \ v \right\} \right);
                } else if (op == 1) {
                        tree [n]. soma += v * (dir - esq + 1);
                        \,t\,r\,e\,e\,\left[\,n\,\right].\,m1 \,\,+\!\!=\,\,v\,;
                        tree[n].m2 += v;
                        if \ (\operatorname{esq} \ != \ \operatorname{dir}) \ \{
                                tree [le(n)]. lazy.push(\{1, v\});
                                tree [ri(n)]. lazy.push(\{1, v\});
                        }
               }
       }
}
\mathbf{void} \ \mathsf{build} \ (\mathbf{int} \ \mathsf{n}, \ \mathbf{int} \ \mathsf{esq} \ , \ \mathbf{int} \ \mathsf{dir} \ , \ \mathsf{vector} {<} \mathbf{int} {>} \ \& \mathsf{v}) \ \ \{
        if~(esq == dir)~\{
                tree[n].set(v[esq]);
        } else {
                int mid = (esq + dir) / 2;
                \texttt{build} \, (\, \texttt{le} \, (\, \texttt{n}\,) \,\,, \ \ \texttt{esq} \,\,, \ \ \texttt{mid} \,\,, \ \ \texttt{v} \,) \,\,;
                build(ri(n), mid + 1, dir, v);
                tree[n].merge(tree[le(n)], tree[ri(n)]);
void build (vector < int > &v) {
        build (0, 0, n - 1, v);
// ai = max(ai, mi) em [l, r]
void update(int n, int esq, int dir, int l, int r, int mi) {
        \begin{array}{l} push\,(\,n\,,\,\,esq\,,\,\,\,di\,r\,)\,\,;\\ \textbf{if}\  \, (\,esq\,>\,r\,\,\,|\,|\,\,\,di\,r\,<\,l\,\,\,||\,\,\,mi\,<=\,\,tree\,[\,n\,]\,.\,ml)\,\,\,\{ \end{array}
               return;
        if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
                tree[n].soma += (ll)abs(tree[n].m1 - mi) * tree[n].cont;
                tree[n].m1 = mi;
                if (esq != dir) {
                        tree[le(n)].lazy.push({0, mi});
                        tree[ri(n)].lazy.push({0, mi});
        } else {
                int mid = (esq + dir) / 2;
                update(le(n), esq, mid, l, r, mi);
update(ri(n), mid + 1, dir, l, r, mi);
                tree[n].merge(tree[le(n)], tree[ri(n)]);
void update(int l, int r, int mi) {
        update(0, 0, n - 1, l, r, mi);
// soma v em [1, r]
void upsoma(int n, int esq, int dir, int l, int r, int v) {
        push(n, esq, dir);
        if (esq > r \mid \mid dir < l) {
               return;
        \mathbf{if} \ (\ \mathsf{l} \ <= \ \mathsf{esq} \ \&\& \ \mathsf{dir} \ <= \ \mathsf{r} \,) \ \ \{
                tree[n].soma += v * (dir - esq + 1);
                tree [n]. m1 += v;
                tree[n].m2 += v;
                \begin{array}{ll} \textbf{if} & (\text{esq } != \text{dir}) \text{ } \{ \\ & \text{tree} \left[ \text{le} \left( n \right) \right]. \, \text{lazy.push} \left( \left\{ 1 \,, \, \, v \right\} \right); \end{array}
                        tree [ri(n)]. lazy.push(\{1, v\});
        } else {
                \begin{array}{l} \textbf{int} \;\; \min d \; = \; (\, \text{esq} \; + \; \text{dir}\,) \; / \; 2; \\ \text{upsoma}(\, \text{le}\,(\, n) \;, \; \text{esq} \;, \; \text{mid} \;, \; l \;, \; r \;, \; v) \;; \\ \text{upsoma}(\, \text{ri}\,(\, n) \;, \; \text{mid} \; + \; 1 \;, \; \text{dir} \;, \; l \;, \; r \;, \; v) \;; \\ \text{tree}\,[\, \text{n}\,] \;. \; \text{merge}(\, \text{tree}\,[\, \text{le}\,(\, n)\,] \;, \; \text{tree}\,[\, \text{ri}\,(\, n)\,] \,) \;; \\ \end{array}
```

```
}
void upsoma(int l, int r, int v) {
    upsoma(0, 0, n - 1, l, r, v);
// soma de [l, r]
int query(int n, int esq, int dir, int l, int r) {
    \begin{array}{l} push(n, \ esq \, , \ dir) \, ; \\ \textbf{if} \ (esq > r \ || \ dir < 1) \ \{ \end{array}
         return 0;
    if (l \le esq \&\& dir \le r) {
         return tree[n].soma;
    int mid = (esq + dir) / 2;
    int query(int 1, int r) {
    return query (0, 0, n-1, l, r);
\mathbf{int}\ \mathrm{main}\,(\,)\ \{
    cin >> n;
    {\tt tree.assign} \, (4 \ * \ n \, , \ Node()) \, ;
    build(v);
}
```

1.4.5 Segment Tree Beats Max Update

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

```
\#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 1e9
struct Node {
    int m1 = INF, m2 = INF, cont = 0, lazy = 0;
    11 \text{ soma} = 0;
    void set(int v) {
        m1 = v;
        cont = 1:
        soma = v;
    void merge (Node a, Node b) {
        m1 = min(a.m1, b.m1);
        m2 = INF;
        if (a.m1 != b.m1) {
            m2 = min(m2, max(a.m1, b.m1));
        if (a.m2 != m1) {
            m2 = min(m2, a.m2);
```

```
if (b.m2 != m1) {
                m2 = min(m2, b.m2);
           cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
           soma = a.soma + b.soma;
     }
     void print() {
           printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy);
};
\mathbf{int}\ n\,,\ q\,;
vector < Node > tree;
int le(int n) { } { } { }
     return 2 * n + 1;
int ri(int n) {
     return 2 * n + 2;
}
void push(int n, int esq, int dir) {
      if \ (\,tree\,[\,n\,]\,.\,\,lazy\,<=\,tree\,[\,n\,]\,.\,m1)\ \{\,
           return;
      tree[n].soma += (ll)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
      tree[n].m1 = tree[n].lazy;
      \begin{array}{ll} \textbf{if} & (\text{esq } != \text{dir}) \text{ } \{ \\ & \text{tree} \left[ \text{le} \left( n \right) \right]. \, \text{lazy} = \max \left( \text{tree} \left[ \text{le} \left( n \right) \right]. \, \text{lazy} \,, \text{ } \text{tree} \left[ n \right]. \, \text{lazy} \right); \end{array}
           tree[ri(n)].lazy = max(tree[ri(n)].lazy, tree[n].lazy);
      tree[n].lazy = 0;
}
\mathbf{void} \ \mathtt{build} \ (\mathbf{int} \ \mathtt{n}, \ \mathbf{int} \ \mathtt{esq} \ , \ \mathbf{int} \ \mathtt{dir} \ , \ \mathtt{vector} {<} \mathbf{int} {>} \ \& \mathtt{v}) \ \ \{
      if~(esq == dir)~\{\\
           tree[n].set(v[esq]);
      } else {
           int mid = (esq + dir) / 2;
           build(le(n), esq, mid, v);
build(ri(n), mid + 1, dir, v);
tree[n].merge(tree[le(n)], tree[ri(n)]);
void build (vector < int > &v) {
     build (0, 0, n - 1, v);
// ai = max(ai, mi) em [l, r]
void update(int n, int esq, int dir, int l, int r, int mi) {
      push(n, esq, dir);
      if (esq > r || dir < l || mi <= tree[n].m1) {
           return;
      if (1 <= esq && dir <= r && mi < tree[n].m2) {
           tree[n].lazy = mi;
           push(n, esq, dir);
     } else {}
           int mid = (esq + dir) / 2;
           update(le(n), esq, mid, l, r, mi);
update(ri(n), mid + 1, dir, l, r, mi);
           tree[n].merge(tree[le(n)], tree[ri(n)]);
void update(int l, int r, int mi) {
     update(0, 0, n - 1, l, r, mi);
// soma de [l, r]
int query(int n, int esq, int dir, int l, int r) {
     push\,(\,n\,,\ esq\,,\ dir\,)\,;
```

```
if (esq > r || dir < l) {
    return 0;
}
if (l <= esq && dir <= r) {
    return tree[n].soma;
}
int mid = (esq + dir) / 2;
return query(le(n), esq, mid, l, r) + query(ri(n), mid + 1, dir, l, r);
}
int query(int l, int r) {
    return query(0, 0, n - 1, l, r);
}
int main() {
    cin >> n;
    tree.assign(4 * n, Node());
}
```

1.4.6 Segment Tree Esparsa

Consultas e atualizações em intervalos.

Seg Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 *N = O(N)

Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))

Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

• Complexidade de tempo (Pré-processamento): O(N *log(N))

- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 * 4 * N = O(N)

```
\mathbf{const} \ \mathbf{int} \ \mathtt{SEGMAX} = \ 8\,\mathbf{e}6 \ + \ 5\,; \ // \ \ \mathsf{should} \ \ \mathsf{be} \ \ \mathsf{Q} \ * \ \log \left( \mathsf{DIR}\text{--}\mathsf{ESQ}\text{+}1 \right)
const 11 \text{ ESQ} = 0, DIR = 1e9 + 7;
struct seg {
    ll tree[SEGMAX];
     int R[SEGMAX], L[SEGMAX], ptr = 2; // 0 is NULL; 1 is First Root
      ll op(ll a, ll b) {
           return (a + b) % MOD;

\begin{array}{c}
\mathbf{int} \ \ \text{le}\left(\mathbf{int} \ \ \mathbf{i}\right) \ \{ \\
\mathbf{if} \ \ (\mathbf{L}[\mathbf{i}] == 0) \ \{ \\
\end{array}

                 L[i] = ptr++;
            return L[i];
      int ri(int i) {
            if (R[i] = 0) {
                  R[i] = ptr++;
            return R[i];
      ll query(ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR) {
            if (r < esq \mid \mid dir < l) {
                  return 0;
            if (1 <= esq && dir <= r) {
                  return tree[n];
```

```
}
void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
    if (esq == dir) {
        tree[n] = (tree[n] + v) % MOD;
    } else {
        ll mid = (esq + dir) / 2;
        if (x <= mid) {
            update(x, v, le(n), esq, mid);
        } else {
            update(x, v, ri(n), mid + 1, dir);
        }
        tree[n] = op(tree[le(n)], tree[ri(n)]);
    }
}
</pre>
```

1.4.7 Segment Tree Persisente

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N))
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

```
namespace seg {
    const 11 \text{ ESQ} = 0, DIR = 1e9 + 7;
    struct node {
         11 \ v = 0;
         node *l = NULL, *r = NULL;
         node() {
         node(ll\ v) : v(v) {
         node(node *1, node *r) : l(l), r(r) {
              \dot{v} = 1 -> v + r -> v;
         void apply() {
             if (l = NULL) {
                  l = new node();
              if (r == NULL) {
                  r = new node();
         }
    vector<node *> roots;
    void build() {
         roots.push back(new node());
    void push (node *n, int esq, int dir) {
         if (esq != dir) {
              n->apply();
     // sum v on x
    node *update(node *n, int esq, int dir, int x, int v) {
         \operatorname{push}\left(n\,,\ \operatorname{esq}\,,\ \operatorname{dir}\right);
         if (esq = dir) {
              return new node(n->v + v);
         int mid = (esq + dir) / 2;
         if (x \le mid)
```

```
\textbf{return new } \  \, \text{node} \, (\, \text{update} \, (\, n\!\!-\!\!>\!\! l \,\,, \  \, \text{esq} \,\,, \  \, \text{mid} \,, \  \, x \,, \  \, v \,) \,\,, \  \, n\!\!-\!\!>\!\! r \,) \,;
           } else {
                return new node(n \rightarrow l, update(n \rightarrow r, mid + 1, dir, x, v));
     int update(int root, int pos, int val) {
           node *novo = update(roots[root], ESQ, DIR, pos, val);
           roots.push_back(novo);
          return roots.size() -1;
      // sum in [L, R]
     ll query(node *n, int esq, int dir, int l, int r) {
          push(n, esq, dir);
if (esq > r || dir < l) {</pre>
                return 0;
           if (l <= esq && dir <= r) {
                return n \rightarrow v;
           int mid = (esq + dir) / 2;
           return query(n\rightarrow l, esq, mid, l, r) + query(n\rightarrow r, mid + 1, dir, l, r);
     il query(int root, int l, int r) {
           return query(roots[root], ESQ, DIR, 1, r);
     // kth min number in [L, R] (l_root can not be
       / 0)
     int kth(node *L, node *R, int esq, int dir, int k) {
          push(L, esq, dir);
           push(R, esq, dir);
           if (esq = dir) {
                return esq;
           int mid = (esq + dir) / 2;
           int cont = R -> l -> v - L -> l -> v;
           if (cont >= k) {
                \textbf{return} \;\; kth \, (L\!\!=\!\!>\!\! l \;,\;\; R\!\!=\!\!>\!\! l \;,\;\; esq \;,\;\; mid \;,\;\; k \,) \;;
           } else {
                \textbf{return} \;\; kth \, (L\!\!-\!\!>\!\! r \;,\;\; R\!\!-\!\!>\!\! r \;,\;\; mid \;+\; 1 \;,\;\; dir \;,\;\; k \;-\;\; cont \,) \;;
     int kth(int l root, int r root, int k) {
           return kth(roots[l_root - 1], roots[r_root], ESQ, DIR, k);
};
```

1.4.8 Segment Tree Kadani

Implementação de uma Seg Tree que suporta update de soma e query de soma máxima em intervalo.

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- \bullet Complexidade de espaço: 4 * N = O(N)

```
namespace seg {
    const int MAX = 1e5 + 5;
    struct node {
        ll pref, suff, sum, best;
    };
    node new_node(ll v) {
        return node{v, v, v, v};
    }
```

```
const node NEUTRAL = \{0, 0, 0, 0\};
node tree [4 * MAX];
node merge(node a, node b) {
     11 pref = max(a.pref, a.sum + b.pref);
11 suff = max(b.suff, b.sum + a.suff);
     11 \text{ sum} = a.\text{sum} + b.\text{sum};
     \label{eq:best_sum} \begin{array}{ll} \texttt{ll} & \texttt{best} \ = \ \max(\,\texttt{a.suff} \ + \ \texttt{b.pref} \,, \ \max(\,\texttt{a.best} \,, \ \texttt{b.best} \,) \,) \,; \end{array}
     return node{pref, suff, sum, best};
}
int n;
int le(int n) {
     return 2 * n + 1;
int ri(int n) {
     return 2 * n + 2;
\mathbf{void} \ \mathtt{build} \ (\mathbf{int} \ \mathtt{n}, \ \mathbf{int} \ \mathtt{esq} \ , \ \mathbf{int} \ \mathtt{dir} \ , \ \mathbf{const} \ \mathtt{vector} {<} \mathtt{ll} {>} \& \mathtt{v}) \ \ \{
     if (esq == dir) {
           tree[n] = new_node(v[esq]);
     } else {
           int mid = (esq + dir) / 2;
           \texttt{build} \, (\, \texttt{le} \, (\, \texttt{n}) \, \, , \, \, \, \texttt{esq} \, \, , \, \, \, \texttt{mid} \, , \, \, \, \texttt{v} \, ) \, ;
           build(ri(n), mid + 1, dir, v);
           tree [n] = merge(tree[le(n)], tree[ri(n)]);
void build (const vector < ll > &v) {
     n = v.size();
     build (0, 0, n - 1, v);
node query(int n, int esq, int dir, int l, int r) {
     if (esq > r \mid \mid dir < l) {
           return NEUTRAL;
     \mathbf{if} (l <= esq && dir <= r) {
           return tree[n];
     int mid = (esq + dir) / 2;
     return merge(query(le(n), esq, mid, l, r), query(ri(n), mid + 1, dir, l, r));
ll query(int l, int r) {
     return query (0, 0, n-1, l, r). best;
void update(int n, int esq, int dir, int x, ll v) {
     if (esq > x \mid \mid dir < x) \{
           return;
     if (esq = dir) {
           tree[n] = new_node(v);
     } else {
           int mid = (esq + dir) / 2;
           if (x \le mid) {
                 update(le(n), esq, mid, x, v);
           } else {
                 update(ri(n), mid + 1, dir, x, v);
           tree[n] = merge(tree[le(n)], tree[ri(n)]);
     }
void update(int x, ll v) {
     update(0, 0, n - 1, x, v);
```

1.5 Operation Stack

}

Pilha que armazena o resultado do operatório dos itens.

1.6 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

```
* Complexidade de tempo (Pre-processamento): O(N * log(N))
```

- * Complexidade de tempo (Consulta em intervalo): O(log(N))
- * Complexidade de tempo (Update em ponto): O(log(N))
- * Complexidade de espaço: 2 * N = O(N)

```
int soma = 0;
struct FenwickTree {
                                                                                for (; x > 0; x = lsONE(x)) {
     int n;
     vector<int> tree;
                                                                                     soma += tree[x];
     FenwickTree(int n) : n(n) {
          tree.assign(n, 0);
                                                                                return soma;
     FenwickTree(vector < int > v) :
                                                                           int query(int l, int r) {
          FenwickTree(v.size()) {
                                                                                return query(r) - query(l - 1);
          \label{eq:formula} \mbox{for } (\mbox{size\_t `i} = 1; \mbox{`i} < \mbox{`v.size}(); \mbox{$i++$)} \ \{
               update(i, v[i]);
                                                                           void update(int x, int v)
                                                                                \quad \textbf{for} \ (; \ x < n; \ x \mathrel{+=}  \operatorname{lsONE}(x)) \ \{
                                                                                     tree[x] += v;
     int lsONE(int x) {
          return x \& (-x);
                                                                           }
                                                                      };
     int query(int x) {
```

1.7 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x),

ou seja f(x) e g(x) se intersectam apenas uma vez.

- * Complexidade de consulta : O(log(N))
- * Complexidade de update: O(log(N))

LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

- * Complexidade de consulta : O(log(tamanho do intervalo))
- * Complexidade de update: O(log(tamanho do intervalo))

```
typedef long long ll;
const 11 MAXN = 1e5 + 5, INF = 1e18 + 9;
struct Line {
    ll a, b = -INF;
    ll \ \mathbf{operator}()(ll \ x) \ \{
        return a * x + b;
} tree [4 * MAXN];
int le(int n) {
    return 2 * n + 1;
int ri(int n) {
    return 2 * n + 2;
{f void} insert (Line line, {f int} n = 0, {f int} l = 0, {f int} r = MAXN) {
    int mid = (l + r) / 2;
    bool bl = line(l) < tree[n](l);
    bool bm = line(mid) < tree[n](mid);
    if (!bm) {
        swap(tree[n], line);
    if (1 == r) {
        return;
    if (bl != bm) {
        insert(line, le(n), l, mid);
      else {
        insert(line, ri(n), mid + 1, r);
}
ll query(int x, int n = 0, int l = 0, int r = MAXN) {
    if (l == r) {
        return tree[n](x);
    int mid = (1 + r) / 2;
    i\,f\ (\,x\,<\,\mathrm{mid}\,)\ \{\,
         return max(tree[n](x), query(x, le(n), l, mid));
        return max(tree[n](x), query(x, ri(n), mid + 1, r));
}
typedef long long ll;
const 11 MAXN = 1e5 + 5, INF = 1e18 + 9, MAXR = 1e18;
struct Line {
    ll\ a\,,\ b\ = -INF\,;
```

```
__int128 operator()(ll x) {
          return (\_int128)a * x + b;
     }
} tree [4 * MAXN];
int idx = 0, L[4 * MAXN], R[4 * MAXN];
int le(int n) {} {} {} {} {}
     if (!L[n]) {
          L[n] = ++idx;
     return L[n];
int ri(int n) {
     if (!R[n]) {
          R[n] = ++idx;
     return R[n];
\boldsymbol{void} insert(Line line, \boldsymbol{int} n=0, ll l=-\!\!M\!A\!X\!R\!, ll r=\!\!M\!A\!X\!R\!) { ll mid=(l+r) / 2;
     bool bl = line(1) < tree[n](1);
     \mathbf{bool} \ \mathrm{bm} = \ \mathrm{line} \, (\mathrm{mid}) \, < \, \mathrm{tree} \, [\mathrm{n}] \, (\mathrm{mid}) \, ;
     if (!bm) {
          swap(tree[n], line);
     if (1 == r) {
          return;
     if (bl != bm) {
          insert(line, le(n), l, mid);
     } else {
          insert(line, ri(n), mid + 1, r);
\_\_int128 \ query(\textbf{int} \ x, \ \textbf{int} \ n = 0, \ ll \ l = -\!MAXR, \ ll \ r = MAXR) \ \{
     if (l == r) {
          return tree [n](x);
     11 \mod = (1 + r) / 2;
     if (x < mid) 
          return max(tree[n](x), query(x, le(n), l, mid));
     } else {
          return max(tree[n](x), query(x, ri(n), mid + 1, r));
}
```

1.8 Kd Fenwick Tree

KD Fenwick Tree

```
Fenwick Tree em K dimensoes.

* Complexidade de update: O(log^k(N)).

* Complexidade de query: O(log^k(N)).

const int MAX = 10;

11 tree [MAX] [MAX] [MAX] [MAX] [MAX] [MAX] [MAX]; // insira a quantidade // necessaria de dimensoes

int lsONE(int x) {
    return x & (-x);
}

11 query(vector < int > s, int pos) {
    11 sum = 0;
    while (s[pos] > 0) {
        if (pos < s.size() - 1) {
```

1.9 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- $find_b y_o r der(x)$: retorna o item na posição x.
- $order_o f_k ey(k)$: retorna o número de elementos menores que k. (o índice de k)

```
#include <ext/pb ds/assoc container.hpp>
#include <ext/pb_ds/trie_policy.hpp>
using namespace __gnu_pbds;
typedef tree < int, null_type, less < int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
ordered_set X;
X.insert(1);
X. insert(2);
X. insert (4);
X.insert(8);
X. insert (16);
cout <<\!\!*X.\,find\_by\_order\,(1) <<\!\!endl\,;\ //\ 2
cout << *X.find_by_order(2) << endl; // 4
cout << *X.find_by_order(4) << endl; // 16
cout << (end(X) = X.find_by_order(6)) << endl; // true</pre>
\begin{array}{l} \mathtt{cout} <\!\!<\!\! \mathtt{X}.\,\mathtt{order\_of\_key}(-5) <\!\!<\! \mathtt{endl}\,;\\ \mathtt{cout} <\!\!<\!\! \mathtt{X}.\,\mathtt{order\_of\_key}(1) <\!\!<\! \mathtt{endl}\,; \end{array}
                                                   // 0
                                                   // 2
cout << X. order of key (3) << endl;
cout << X. order_of_key (4) << endl; // cout << X. order_of_key (400) << endl; //
#include <ext/pb_ds/assoc_container.hpp>
\#include < ext/pb_ds/trie\_policy.hpp>
using namespace __gnu_pbds;
template <tvpename T>
typedef tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

1.10 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

- Complexidade de construção : O(N * log(N))
- Complexidade de consulta : $O(log^2(N))$

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

- Complexidade de construção : $O(N * log^2(N))$
- Complexidade de consulta : $O(log^2(N))$
- Complexidade de update : $O(log^2(N))$

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb ds/tree policy.hpp>
using namespace __gnu_pbds;
namespace mergesort {
     typedef tree<ii, null_type, less<ii>, rb_tree_tag, tree_order_statistics_node_update>
          ordered set;
     \mathbf{const} \ \mathbf{int} \ \mathrm{MAX} = 1\,\mathrm{e}5 \;+\; 5;
     ordered_set mgtree[4 * MAX];
     vi values;
     int le(int n) {
          return 2 * n + 1;
     int ri(int n) {
          return 2 * n + 2;
     ordered\_set \ join (ordered\_set \ set\_l \,, \ ordered\_set \ set\_r) \ \{
          for (auto v : set_r) {
               set_l.insert(v);
          return set 1;
     }
     void build(int n, int esq, int dir) {
          if \ (esq == dir) \ \{
                mgtree[n].insert(ii(values[esq], esq));
          } else {
   int mid = (esq + dir) / 2;
                build (le (n) \,, \ esq \,, \ mid) \,;
                build(ri(n), mid + 1, dir);
                mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
     void build (vi &v) {
          n = v.size();
          values = v;
          build (0, 0, n-1);
     \mathbf{int} \ \operatorname{less}\left(\mathbf{int} \ n, \ \mathbf{int} \ \operatorname{esq} \,, \ \mathbf{int} \ \operatorname{dir} \,, \ \mathbf{int} \ 1 \,, \ \mathbf{int} \ r \,, \ \mathbf{int} \ k\right) \ \{
          if (esq > r | | dir < l) {
                return 0;
```

```
\mathbf{if} (l <= esq && dir <= r) {
                return mgtree [n]. order_of_key(\{k, -1\});
          int mid = (esq + dir) / 2;
          return less (le(n), esq, mid, l, r, k) + less (ri(n), mid + 1, dir, l, r, k);
     int less(int l, int r, int k) {
          \textbf{return} \ less (0\,,\ 0\,,\ n\,-\,1\,,\ l\,,\ r\,,\ k)\,;
     }
     \mathbf{void} \ \mathrm{update}(\mathbf{int} \ \mathrm{n}, \ \mathbf{int} \ \mathrm{esq} \ , \ \mathbf{int} \ \mathrm{dir} \ , \ \mathbf{int} \ \mathrm{x}, \ \mathbf{int} \ \mathrm{v}) \ \{
          if (esq > x \mid | dir < x) {
                return;
          if (esq = dir) {
                mgtree [n]. clear(), mgtree[n]. insert(ii(v, x));\\
          } else {
                int mid = (esq + dir) / 2;
                i\,f\ (\,x\,<=\,\mathrm{mid}\,)\ \{\,
                     update(le(n), esq, mid, x, v);
                } else {
                     update(ri(n), mid + 1, dir, x, v);
                mgtree[n].erase(ii(values[x], x));
                mgtree[n].insert(ii(v, x));
          }
     void update(int x, int v) {
          update(0, 0, n - 1, x, v);
values[x] = v;
     // ordered_set debug_query(int n, int esq, int
         \operatorname{dir}, \operatorname{int} l, \operatorname{int} r) {
              if_{\ \ }(esq~>~r~|\acute{|}~\grave{d}ir~<~l)~return
              ordered_set(); if (l <= esq && dir <=
              r) return mgtree[n]; int mid = (esq +
              dir) / 2; return
              \verb"join" (debug\_query" (le" (n)", esq", mid", l",
              r), debug_query(ri(n), mid+1, dir, l,
     // }
     // ordered_set debug_query(int l, int r)
     // {return debug_query(0, 0, n-1, 1, r);}
     // int greater(int n, int esq, int dir, int l,
     // int r, int k) {
              \quad \text{if (esq > r | | dir < l) return 0;} \\
              if (l <= esq && dir <= r) return
              (r-l+1) - mgtree [n]. order_of_key({k,
              le8}); int mid = (esq + dir)^{-}/2; return greater (le(n), esq, mid, l, r,
              k) \; + \; greater\left(\; ri\left(\; n\right)\;,\;\; mid + 1,\;\; dir\;,\;\; l\;,\;\; r\;,\;\;
              k);
     // int greater(int 1, int r, int k) {return
     // \text{ greater}(0, 0, n-1, l, r, k);
namespace mergesort {
     const int MAX = 1e5 + 5;
     int n;
     vi mgtree[4 * MAX];
     int le(int n) {
          return 2 * n + 1;
     int ri(int n) {
          \textbf{return} \ 2 \ * \ n \ + \ 2;
```

```
void build(int n, int esq, int dir, vi &v) {
     mgtree[n] = vi(dir - esq + 1, 0);
     if (esq = dir) {
          mgtree[n][0] = v[esq];
          int mid = (esq + dir) / 2;
          \texttt{build} \, (\, \texttt{le} \, (\, \texttt{n}\,) \;,\;\; \texttt{esq} \;,\;\; \texttt{mid} \,,\;\; \texttt{v} \,) \,;
          build(ri(n), mid + 1, dir, v);
          merge(mgtree[le(n)].begin(),
                 mgtree[le(n)].end()
                 mgtree[ri(n)].begin(),
                 mgtree[ri(n)].end(),
                 mgtree[n].begin());
     }
void build (vi &v) {
     n \, = \, v \, . \, \mathtt{size} \, (\,) \; ; \\
     build\,(0\,,\ 0\,,\ n\,-\,1\,,\ v\,)\,;
int less(int n, int esq, int dir, int l, int r, int k) {
     if (esq > r | | dir < l) {
          \textbf{return} \quad 0 \, ;
     if (l <= esq && dir <= r) {
          return lower bound(mgtree[n].begin(), mgtree[n].end(), k) - mgtree[n].begin();
     int mid = (esq + dir) / 2;
     int less(int l, int r, int k) {
     return less(0, 0, n-1, l, r, k);
}
    vi \ debug\_query(int \ n, \ int \ esq \,, \ int \ dir \,, \ int
// vi debug_qu
// l, int r) {
// if (esq
// if (l <=
// mgtree[i
// auto vl
// l, r);
// mid+1, s
         if (esq > r \mid \mid dir < l) return vi();
         if (l \ll esq \&\& dir \ll r) return
         mgtree[n]; int mid = (esq + dir) / 2;
         auto\ vl\ =\ debug\_query\left(\,l\,e\left(n\right)\,,\ esq\,,\ mid\,,\right.
        l, r); auto vr = debug_query(ri(n),
        mid+1, dir, l, r); vi ans =
         vi(vl.size() + vr.size());
        merge(vl.begin(), vl.end(),
             vr.begin(), vr.end(),
             ans.begin());
         return ans;
// vi debug_query(int l, int r) {return
// debug query (0, 0, n-1, l, r);
```

1.11 Sparse Table

};

1.11.1 Disjoint Sparse Table

Resolve query de range para qualquer operação associativa em O(1).

```
Pré-processamento em O(n \log n).

struct dst {
	const int neutral = 1;
	#define comp(a, b) (a | b)
	vector<vector<int>> t;
	dst(vector<int> v) {
	int n, k, sz = v.size();
	for (n = 1, k = 0; n < sz; n <<= 1, k++)
	;
	t.assign(k, vector<int>(n));
```

```
for (int j = 0, len = 1; j \le k; j++, len \iff 1) {
         for (int s = len; s < n; s += (len << 1)) {
             t[j][s] = v[s];
             t[j][s-1] = v[s-1];
               t[j][s-1-i] = comp(v[s-1-i], t[j][s-i]);
         }
      }
   int query(int l, int r) {
      if (l == r) {
         return t [0][r];
      int i = 31 -
                   builtin clz(l ^ r);
      return comp(t[\bar{i}][1], t[\bar{i}][\bar{r}]);
};
```

1.11.2 Sparse Table

Read in [English](README.en.md)

Responde consultas de maneira eficiente em um conjunto de dados estáticos.

Realiza um pré-processamento para diminuir o tempo de cada consulta.

- Complexidade de tempo (Pré-processamento): O(N * log(N))
- \bullet Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N))
- Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1)
- Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
struct SparseTable {
     int n, e;
      vector<vector<int>>> st;
     SparseTable(vector < int > \&v) : n(v.size()), e(floor(log2(n))) 
           \begin{array}{lll} st.assign\left(e\ +\ 1\,,\ vector\!<\!\!\mathbf{int}\!>\!\!(n)\,\right);\\ \textbf{for}\ (\mathbf{int}\ i\ =\ 0;\ i\ <\ n\,;\ i+\!\!+\!\!)\ \{ \end{array}
                 st[0][i] = v[i];
           for (int i = 1; i \le e; i++) {
                 for (int j = 0; j + (1 << i) <= n; j++) {
                      st\,[\,i\,][\,j\,]\,=\,min(\,st\,[\,i\,-\,1][\,j\,]\,,\ st\,[\,i\,-\,1][\,j\,+\,(1\,<<\,(\,i\,-\,1)\,)\,]\,)\,;
      \dot{/}/ O(log(N)) Query for non overlap friendly
       / operations
     int logquery(int l, int r) {
           int res = 2e9;
           for (int i = e; i >= 0; i---) {
                 if ((1 << i) <= r - l + 1) {
                      res = min(res, st[i][l]);
                      1 += 1 << i;
                 }
           return res;
     }
```

```
// O(1) Query for overlab friendly operations
// ex: max(), min(), gcd(), f(x, y) = x
int query(int l, int r) {
      // if (l > r) return 2e9;
      int i = ilogb(r - l + 1);
      return min(st[i][l], st[i][r - (1 << i) + 1]);
};</pre>
```

Capítulo 2

Grafos

2.1 Matching

2.1.1 Hungaro

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

```
Complexidade de tempo: O(n^2 * m)
```

```
const 11 \text{ INF} = 1e18 + 18;
                                                                                                              }
                                                                                                        }
vector<pair<int, int>> result;
                                                                                                  {f for} (int j = 0; j <= m; j++) {
                                                                                                        if (used[j]) {
ll hungarian(int n, int m, vector<vector<int>>> &A) {
                                                                                                              u[p[j]] += delta, v[j] -= delta;
      vector < int > u(n + 1), v(m + 1), p(m + 1), way(m)
           + 1);
      \label{eq:formula} \mbox{for (int $i = 1$; $i <= n$; $i++) {} } \mbox{}
                                                                                                              minv[j] -= delta;
           p\,[\,0\,] \ = \ i \ ;
           int j0 = 0;
            vector < int > minv(m + 1, INF);
                                                                                                  j0 = j1;
            vector < char > used (m + 1, false);
                                                                                            } while (p[j0] != 0);
           do {}
                                                                                            do {
                  used[j0] = true;
                                                                                                  int j1 = way[j0];
                  \label{eq:i0} \begin{array}{ll} {\rm ll} & {\rm i0} \, = \, p \, [\, {\rm j0} \, ] \, , \ \ {\rm delta} \, = \, {\rm INF} \, , \ \ {\rm j1} \, ; \end{array}
                                                                                                  p[j0] = p[j1];
                  \  \  \, \textbf{for} \  \  \, (\, \textbf{int} \  \  \, \textbf{j} \ = \  \, 1\,; \  \  \, \textbf{j} \ <= \  \, \textbf{m}; \  \  \, \textbf{j} + +) \  \, \{\,
                                                                                                  j0 = j1;
                        if (!used[j]) {
                                                                                            } while (j0);
                              int cur = A[i0][j] - u[i0] -
                                                                                      for (int i = 1; i \le m; i++) {
                                   v[j];
                                 (cur < minv[j]) {
                                                                                            result.emplace back(p[i], i);
                                   minv[j] = cur, way[j] = j0;
                                                                                      return - v[0];
                              if (minv[j] < delta) {</pre>
                                    delta = minv[j], j1 = j;
```

2.2 Stoer-Wagner minimum cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

CAPÍTULO 2. GRAFOS 33

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

```
const int MAXN = 555, INF = 1e9 + 7;
int n, e, adj [MAXN] [MAXN];
vector < int > bestCut;
int mincut() {
     int bestCost = INF;
      vector < int > v[MAXN];
      v[i].assign(1, i);
      int w[MAXN], sel;
     bool exist [MAXN], added [MAXN];
     memset(exist, true, sizeof(exist));
      \label{eq:formula} \textbf{for (int phase} \ = \ 0; \ phase < n - \ 1; \ phase ++) \ \{
           memset(added, false, sizeof(added));
           memset\left(w,\ 0\,,\ \mathbf{sizeof}\left(w\right)\right);
           \mbox{ for } (\mbox{ int } j = 0 \,, \mbox{ prev} \,; \mbox{ } j < n - \mbox{ phase} \,; \mbox{ } j+\!\!+\!\!) \,\, \{
                 for (int i = 0; i < n; i++) {
                       if (exist[i] \&\& !added[i] \&\& (sel = -1 || w[i] > w[sel])) 
                 bestCost = w[sel];
                             bestCut = v[sel];
                       v \, [\, prev \, ] \, . \, \, insert \, (\, v \, [\, prev \, ] \, . \, end \, (\,) \, \, , \, \, \, v \, [\, sel \, ] \, . \, begin \, (\,) \, \, , \, \, \, v \, [\, sel \, ] \, . \, end \, (\,) \, ) \, ;
                       for (int i = 0; i < n; i++) {
    adj[prev][i] = adj[i][prev] += adj[sel][i];</pre>
                       exist[sel] = false;
                 } else {
                       added[sel] = true;
                       \label{eq:formula} \mbox{for } (\mbox{int} \ i \ = \ 0\,; \ i \ < \ n\,; \ i \ ++) \ \{
                            w[i] += adj[sel][i];
                       prev = sel;
           }
     return bestCost;
}
```

2.3 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

Complexidade de tempo:

- O(Nlog(N)) Preprocessing
- O(1) Query LCA

Complexidade de espaço: O(Nlog(N))

```
#include <bits/stdc++.h>
using namespace std;
#define INF 1e9
#define fi first
#define se second
typedef pair < int, int > ii;
vector < int > tin, tout;
vector < vector < int>> adj;
vector<ii> prof;
vector < vector < ii >> st;
int n, timer;
\mathbf{void} \ \mathrm{SparseTable} (\, \mathrm{vector} \! < \! \mathrm{ii} \! > \& \! \mathrm{v}) \ \{
      int n = v.size();
      int e = floor(log2(n));
     st.assign(e + 1, vector<ii>(n));
for (int i = 0; i < n; i++) {
           st[0][i] = v[i];
      \label{eq:for} \mbox{for (int $i=1$; $i<=e$; $i++$) {}} \label{eq:formula}
           }
}
void et_dfs(int u, int p, int h) {
      tin[u] = timer++;
      {\tt prof.emplace\_back(h, u);}
      for (int v : adj[u]) {
           if (v != p) {
                \operatorname{et}_{\operatorname{dfs}}(\mathbf{v}, \mathbf{u}, \mathbf{h} + 1);
                prof.emplace_back(h, u);
           }
      tout[u] = timer++;
}
void build(int root = 0) {
      tin.assign(n, 0);
      tout.assign(n, 0);
      prof.clear();
      timer = 0;
      et_dfs(root, root, 0);
     SparseTable(prof);
}
\mathbf{int} \ \operatorname{lca}\left(\mathbf{int} \ \mathbf{u}, \ \mathbf{int} \ \mathbf{v}\right) \ \{
      int l = tout[u], r = tin[v];
      if (l > r) {
           swap(l, r);
     }
int main() {
     cin >> n;
      adj.assign(n, vector < int > (0));
      \  \  \, \textbf{for} \  \  \, (\, \textbf{int} \  \  \, \textbf{i} \, = \, 0\,; \  \, \textbf{i} \, < \, \textbf{n} \, - \, 1\,; \  \, \textbf{i} \, + \! + \!) \, \, \, \{ \,
           int a, b;
           cin >> a >> b;
           adj[a].push_back(b);
           adj[b].push_back(a);
     }
      build();
```

CAPÍTULO 2. GRAFOS 35

}

2.4 HLD

Técnica usada para otimizar a execução de operações em árvores.

- Pré-Processamento: O(N)
- Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura)
- Point Query/Update: O(Complexidade de query da estrutura)
- LCA: O(Log(N))
- Subtree Query: O(Complexidade de query da estrutura)
- \bullet Complexidade de espaço: O(N)

```
namespace hld {
     \mathbf{const} \ \mathbf{int} \ \mathrm{MAX} = \ 2\,\mathrm{e}5 \ + \ 5;
     \mathbf{int} \ \mathrm{t} \ , \ \mathrm{sz} \left[ \mathrm{MAX} \right] , \ \mathrm{pos} \left[ \mathrm{MAX} \right] , \ \mathrm{pai} \left[ \mathrm{MAX} \right] , \ \mathrm{head} \left[ \mathrm{MAX} \right] ;
     bool e = 0;
     ll merge(ll a, ll b) {
          \textbf{return} \ \max(a\,,\ b)\,;
     \} // how to merge paths
     void dfs_sz(int u, int p = -1) {
sz[u] = 1;
          if (v != p) {
                    dfs_sz(v, u);
                    sz[u] += sz[v];
                    swap(v, adj[u][0]);
               }
          }
     void dfs_hld(int u, int p = -1) {
          pos[\overline{u}] = t++;
          for (int v : adj[u]) {
   if (v != p) {
                    pai[v] = u;
                    head[v] = (v = adj[u][0] ? head[u] : v);
                    dfs hld(v, u);
               }
          }
     void build(int root) {
          dfs_sz(root);
t = 0;
          pai[root] = root;
          head[root] = root;
          dfs_hld(root);
     void build(int root, vector<ll> &v) {
          build(root);
          \verb|vector|<|ll>|aux(v.size());
          for (int i = 0; i < (int)v.size(); i++) {
               aux[pos[i]] = v[i];
          seg::build(aux);
     void build (int root,
```

```
build(root);
        e = 1;
        vector<ll> aux(edges.size() + 1);
        \quad \textbf{for (auto [u, v, w] : edges) } \{
                i\,f\ (pos\,[\,u\,]\,>\,pos\,[\,v\,]\,)\ \{
                        swap(u, v);
                aux[pos[v]] = w;
       }
        seg::build(aux);
if (pos[u] > pos[v]) {
                swap(u, v);
        if (head[u] = head[v]) {
                \textbf{return} \hspace{0.1cm} seg:: query \hspace{0.1cm} (\hspace{0.1cm} pos\hspace{0.1cm} [\hspace{0.1cm} u\hspace{0.1cm}] \hspace{0.1cm} + \hspace{0.1cm} e\hspace{0.1cm}, \hspace{0.1cm} pos\hspace{0.1cm} [\hspace{0.1cm} v\hspace{0.1cm}]) \hspace{0.1cm} ;
                \operatorname{ll} \operatorname{qv} = \operatorname{seg} :: \operatorname{query}(\operatorname{pos}[\operatorname{head}[v]], \operatorname{pos}[v]);
                11 qu = query(u, pai[head[v]]);
                return merge(qu, qv);
        }
void update(int u, int v, ll k) {
        \begin{array}{c} \textbf{if} \text{ } (\text{pos} [\text{u}] > \text{pos} [\text{v}]) \text{ } \{\\ \text{swap} (\text{u}, \text{v}); \end{array}
        \mathbf{if} (head[u] == head[v]) {
                seg::update(pos[u] + e, pos[v], k);
                seg::update\left(\,pos\left[\,head\left[\,v\,\right]\,\right]\,,\ pos\left[\,v\,\right]\,,\ k\,\right);
                update(u, pai[head[v]], k);
int lca(int u, int v) {
        if (pos[u] > pos[v]) {
                swap(u, v);
       \mathbf{return} \ (\mathbf{head}[\mathbf{u}] = \mathbf{head}[\mathbf{v}] \ ? \ \mathbf{u} : \mathbf{lca}(\mathbf{u}, \ \mathbf{pai}[\mathbf{head}[\mathbf{v}]]));
ll query subtree(int u) {
       {\bf return} \  \  {\rm seg}:: {\rm query} \, (\, {\rm pos} \, [\, u\, ] \,\, , \  \  {\rm pos} \, [\, u\, ] \,\, + \,\, {\rm sz} \, [\, u\, ] \,\, - \,\, 1) \, ;
```

2.5 Kruskal

}

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

 $Utiliza \ [DSU] (.../../Estruturas\%20 de\%20 Dados/DSU/dsu.cpp) - (disjoint \ set \ union) - para \ construir \ MST - (minimum \ spanning \ tree)$

• Complexidade de tempo (Construção): O(M log N)

```
struct Edge {
    int u, v, w;
    bool operator<(Edge const &other) {
        return w < other.w;
    }
};

vector<Edge> edges, result;
int cost;

struct DSU {
    vector<int> pa, sz;
```

```
DSU(int n) {
          sz.assign(n + 5, 1);
for (int i = 0; i < n + 5; i++) {
               pa.push_back(i);
     int root(int a) {
          \mathbf{return} \ \ \mathsf{pa}[\,\mathsf{a}\,] \ = \ (\,\mathsf{a} \ \Longrightarrow \ \mathsf{pa}[\,\mathsf{a}\,] \ \ ? \ \ \mathsf{a} \ : \ \mathsf{root}\,(\,\mathsf{pa}[\,\mathsf{a}\,])\,)\,;
     bool find (int a, int b) {
          return root(a) == root(b);
     void uni(int a, int b) {
          int ra = root(a), rb = root(b);
          return;
          if (sz[ra] > sz[rb]) {
                swap(ra, rb);
          pa[ra] = rb;
          sz[rb] += sz[ra];
void kruskal(int m, int n) {
     DSU dsu(n);
     sort(edges.begin(), edges.end());
     for (Edge e : edges) {
          if (!dsu.find(e.u, e.v)) {
                cost += e.w;
                result.push_back(e); // remove if need only cost
                dsu.uni(e.u, e.v);
          }
     }
}
```

2.6 Bridge

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
\begin{array}{lll} \textbf{int n;} & // \text{ number of nodes} \\ \textbf{vector} \! < \! \textbf{int} \! > \! > \text{adj;} & // \text{ adjacency list of graph} \end{array}
                                                                                                                                 if (low[v] > tin[u]) {
                                                                                                                                         // edge UV is a bridge
// do_something(u, v)
vector < bool > visited;
                                                                                                                        }
vector < int > tin , low;
int timer;
                                                                                                                 }
                                                                                                         }
\mathbf{void} \hspace{0.2cm} \mathbf{dfs} \hspace{0.1cm} (\hspace{0.1cm} \mathbf{int} \hspace{0.1cm} \mathbf{u} \hspace{0.1cm}, \hspace{0.1cm} \mathbf{int} \hspace{0.1cm} \mathbf{p} \hspace{0.1cm} = \hspace{0.1cm} -1) \hspace{0.1cm} \hspace{0.1cm} \{
        visited [u] = true;
                                                                                                          void find_bridges() {
        {\tt tin}\,[\,u\,] \;=\; {\tt low}\,[\,u\,] \;=\; {\tt timer} +\!\!+;
                                                                                                                  timer = 0;
        for (int v : adj[u]) {
   if (v == p) {
                                                                                                                  visited.assign(n, false);
                                                                                                                 tin.assign(n, -1);

low.assign(n, -1);
                       continue;
                                                                                                                  for (int i = 0; i < n; ++i) {
               if (visited[v]) {
                                                                                                                         if (!visited[i]) {
                       low[u] = min(low[u], tin[v]);
                                                                                                                                 dfs(i);
               } else {
                       dfs(v, u);
                                                                                                                 }
                                                                                                         }
                       low[u] = min(low[u], low[v]);
```

2.7 Shortest Paths

2.7.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

```
Complexidade de tempo: O((E + V) * log(E))
```

Dado um nó u, computa o menor caminho de u para todos os nós.

```
Complexidade de tempo: O((E + V) * log(E))
```

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: O(V * ((E + V) * log(E)))

```
const int MAX = 505, INF = 1e9 + 9;
                                                                          while (!fila.empty()) {
                                                                               auto [d, u] = fila.top();
vector < ii > adj [MAX];
                                                                               fila.pop();
int dist[MAX][MAX];
                                                                               if (d != dist[s][u]) {
                                                                                   continue;
void dk(int n) {
    for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
                                                                               for (auto [w, v] : adj[u]) { if (dist[s][v] > d + w) {
              dist[i][j] = INF;
                                                                                        dist[s][v] = d + w;
                                                                                        fila.emplace(dist[s][v], v);
                                                                                   }
    for (int s = 0; s < n; s++) {
                                                                               }
         priority\_queue < ii \;, \; \; vector < ii >, \; \; greater < ii >>
                                                                          }
             fila;
                                                                     }
         dist[s][s] = 0;
                                                                }
         fila.emplace(dist[s][s], s);
const int MAX = 1e5 + 5, INF = 1e9 + 9;
                                                                          fila.pop();
```

```
if (d != dist[u]) {
vector < ii > adj [MAX];
                                                                                           continue;
int dist[MAX];
                                                                                      \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}] \ : \ \textbf{adj} \ [\textbf{u}]) \ \{
                                                                                           if (dist[v] > d + w) { dist[v] = d + w;
void dk(int s) {
     priority\_queue{<}ii\ ,\ vector{<}ii{>},\ greater{<}ii{>}>
                                                                                                 fila.emplace(dist[v], v);
           fila:
     fill (begin (dist), end (dist), INF);
                                                                                           }
     dist[s] = 0;
                                                                                      }
     fila.emplace(dist[s], s);
                                                                                }
     while (!fila.empty()) {
                                                                           }
          auto [d, u] = fila.top();
```

```
fill(begin(dist), end(dist), INF);
dist[s] = 0;
fila.emplace(dist[s], s);
while (!fila.empty()) {
    auto [d, u] = fila.top();
    fila.pop();
    if (u == t) {
        return dist[t];
    }
}
```

```
}
if (d != dist[u]) {
    continue;
}
for (auto [w, v] : adj[u]) {
    if (dist[v] > d + w) {
        dist[v] = d + w;
}

fila.emplace(dist[v], v);

}
return -1;
}
```

2.7.2 SPFA

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

```
\textbf{const int} \ \text{MAX} = 1\,\text{e}4 \ + \ 4\,;
const ll\ INF = 1e18 + 18;
{\tt vector}\!<\!{\tt ii}\!>\;{\tt adj}\left[{\tt M\!A\!X}\right];
ll dist [MAX];
 \begin{array}{l} \mathbf{void} \ \operatorname{spfa}\left(\mathbf{int} \ \operatorname{s} , \ \mathbf{int} \ \operatorname{n}\right) \ \{ \\ \operatorname{fill}\left(\operatorname{dist} , \ \operatorname{dist} + \operatorname{n}, \ \operatorname{INF}\right); \\ \operatorname{vector}{<} \mathbf{int}{>} \ \operatorname{cnt}\left(\operatorname{n}, \ 0\right); \end{array} 
          vector < bool > inq(n, false);
          queue<int> fila;
          fila.push(s);
          inq[s] = true;
          dist[s] = 0;
while (! fila.empty()) {
                    int u = fila.front();
                     fila.pop();
                     inq[u] = false;
                     for (auto [w, v] : adj[u]) {
                               ll newd = (dist[u] = -INF ? -INF : max(w + dist[u], -INF));
                               \begin{array}{ccc} \textbf{if} & (\text{newd} < \hat{\text{dist}} [v]) & \{ \\ & \text{dist} [v] = \text{newd}; \end{array}
                                         if (!inq[v]) {
                                                   fila.push(v);
                                                   inq[v] = true;
                                                   cnt[v]++;
                                                   \begin{array}{ll} \textbf{if} & (\texttt{cnt} \, [\, v\,] \, > \, n) \, \left\{ \, \, // \, \, \, \text{negative cycle} \right. \\ & \text{dist} \, [\, v\,] \, = - INF \, ; \end{array}
                                        }
                            }
                   }
          }
}
```

2.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- Pré-processamento: O(N * log(N))
- Consulta do k-ésimo ancestral de u: O(log(N))

• LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

```
namespace st {
                                                                       return tin[u] \le tin[v] && tout[u] >=
    \quad \textbf{int} \ n, \ me, \ timer;
                                                                           tout[v];
    vector < int > tin , tout;
                                                                  int lca(int u, int v) {
    vector<vector<int>> st;
    void et_dfs(int u, int p) {
                                                                       if (is_ancestor(u, v)) {
         tin[u] = ++timer;
                                                                           return u;
         st[u][0] = p;
         for (int i = 1; i \le me; i++) {
                                                                       if (is_ancestor(v, u)) {
             st[u][i] = st[st[u][i-1]][i-1];
                                                                           return v;
         for (int v : adj[u]) {
                                                                       for (int i = me; i >= 0; i---) {
             if (v != p) {
                                                                            if \quad (!\,is\_ancestor\,(\,st\,[\,u\,]\,[\,i\,]\,,\ v)\,)\ \{
                  et_dfs(v, u);
                                                                                u = st[u][i];
         tout[u] = ++timer;
                                                                       return st[u][0];
    void build(int _n, int root = 0) {
                                                                  int ancestor (int u,
                                                                       \begin{array}{l} n = \_n; \\ \text{tin.assign}(n, \ 0); \end{array}
         tout.assign(n, 0);
         timer = 0;
                                                                                u = st[u][i];
        me \, = \, floor \, (\,log \, 2 \, (\,n\,)\,) \; ; \\
         st.assign(n, vector < int > (me + 1, 0));

et\_dfs(root, root);
                                                                       return u;
                                                                  }
                                                             }
    bool is_ancestor(int u, int v) {
namespace st {
                                                                       n = _n;
                                                                       me = floor(log2(n));
    int n, me;
    vector < vector < int>> st;
                                                                       st.assign(n, vector < int > (me + 1, 0));
                                                                       bl_dfs(root, root);
    void bl_dfs(int u, int p) {
         st[u][0] = p;
         for (int i = 1; i \le me; i++) {
                                                                  int ancestor (int u,
             st[u][i] = st[st[u][i-1]][i-1];
                                                                                int k) { // k—th ancestor of u
                                                                       for (int i = me; i >= 0; i ---) {
                                                                            if ((1 << i) & k) {
         for (int v : adj[u]) {
             if (v != p) {
                                                                                u = st[u][i];
                  bl_dfs(v, u);
                                                                       return u;
                                                                  }
    void build(int _n, int root = 0) {
                                                             }
```

2.9 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $O(V^2 * E)$, mas em grafo bipartido a complexidade é $O(\operatorname{sqrt}(V) * E)$

```
Útil para grafos com poucas arestas
```

Complexidade de tempo: $O(V * E^2)$

Computa o fluxo máximo com custo mínimo

```
Complexidade de tempo: O(V^2 * E^2)
```

```
const long long INF = 1e18;
struct FlowEdge {
    int u, v;
    long long cap, flow = 0;
    FlowEdge(\textbf{int}\ u,\ \textbf{int}\ v,\ \textbf{long}\ \textbf{long}\ cap)\ :\ u(u)\,,\ v(v)\,,\ cap(cap)\ \{
};
struct EdmondsKarp {
    int n, s, t, m = 0, vistoken = 0;
    vector < FlowEdge> edges;
    vector < vector < int >> adj;
    vector < int > visto;
    EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        visto.resize(n);
    }
    void add_edge(int u, int v, long long cap) {
        edges.emplace_back(u, v, cap);
        edges.emplace_back(v, u, 0);
adj[u].push_back(m);
        adj[v].push_back(m + 1);
        m += 2;
    }
    int bfs() {
        vistoken++;
        queue<int> fila;
        fila.push(s);
        vector < int > pego(n, -1);
        while (!fila.empty()) {
            int u = fila.front();
            if (u == t) {
                break;
            fila.pop();
            visto[u] = vistoken;
            if (edges[id].cap - edges[id].flow < 1) {
                    continue;
                int v = edges[id].v;
                 if (visto[v] = -1) {
                    continue;
                 fila.push(v);
                pego[v] = id;
            }
        if (pego[t] == -1) {
            return 0;
        long long f = INF;
        f = min(f, edges[id].cap - edges[id].flow);
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            edges[id]. flow += f;
edges[id ^ 1]. flow -= f;
```

```
return f;
     }
     long long flow() {
           long long maxflow = 0;
           \mathbf{while} \ (\mathbf{long} \ \mathbf{long} \ \mathbf{f} = \, \mathbf{bfs}\,()\,) \ \{
                maxflow += f;
           return maxflow;
     }
};
struct MinCostMaxFlow {
     int n, s, t, m = 0;
     11 \text{ maxflow} = 0, \text{ mincost} = 0;
     {\tt vector}{<}{\tt FlowEdge}{\tt > edges}\;;
     vector < vector < int >> adj;
     MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) 
           adj.resize(n);
     \begin{array}{c} \mathbf{void} \ \ \mathrm{add\_edge}(\mathbf{int} \ \mathtt{u}, \ \mathbf{int} \ \mathtt{v}, \ \mathtt{ll} \ \mathtt{cap}, \ \mathtt{ll} \ \mathtt{cost}) \ \mathtt{\{} \\ \ \ \mathtt{edges.emplace\_back}(\mathtt{u}, \ \mathtt{v}, \ \mathtt{cap}, \ \mathtt{cost}) \, ; \end{array}
           \begin{array}{lll} \texttt{edges.emplace\_back(v, u, 0, -cost);} \end{array}
           adj [u]. push_back(m);
           adj[v].push_back(m + 1);
          m \, +\! = \, 2\,;
     }
     bool spfa() {
           vector < int > pego(n, -1);
           vector<ll> dis(n, INF);
           vector < bool > inq(n, false);
           queue<int> fila;
           fila.push(s);
           dis \, [\, s \, ] \; = \; 0 \, ;
           inq[s] = 1;
           while (!fila.empty()) {
                 int u = fila.front();
                 fila.pop();
                 inq[u] = false;
                 for (int id : adj[u]) {
                      if (edges[id].cap - edges[id].flow < 1) {
                            continue;
                      int v = edges[id].v;
                      if (dis[v] > dis[u] + edges[id].cost) {
    dis[v] = dis[u] + edges[id].cost;
                            pego[v] = id;
                            if (!inq[v]) {
                                  inq[v] = true;
                                  fila.push(v);
                            }
                      }
                 }
           if (pego[t] = -1) {
                 return 0;
           11 	ext{ f} = INF;
           f = min(f, edges[id].cap - edges[id].flow);
                 mincost += edges[id].cost;
           for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
                 edges[id].flow += f;
edges[id ^ 1].flow -= f;
           maxflow += f;
           return 1;
```

```
}
     ll flow() {
           while (spfa())
           return maxflow;
     }
};
typedef long long ll;
const ll INF = 1e18;
struct FlowEdge {
     int u, v;
ll cap, flow = 0;
     FlowEdge(\textbf{int}\ u,\ \textbf{int}\ v,\ ll\ cap)\ :\ u(u)\,,\ v(v)\,,\ cap(cap)\ \{
};
struct Dinic {
     {\tt vector} < \!\! \tilde{{\tt FlowEdge}} \!\! > \; {\tt edges} \; ;
     vector < vector < int >> adj;
     int n, s, t, m = 0;

vector < int > level, ptr;
     queue < int > q;
     Dinic(\textbf{int}\ n,\ \textbf{int}\ s\,,\ \textbf{int}\ t\,)\ :\ n(n)\,,\ s(s)\,,\ t(t)\ \{
           adj.resize(n);
           level.resize(n);
           ptr.resize(n);
     }
     \mathbf{void} \ \mathrm{add\_edge}(\mathbf{int} \ \mathrm{u}, \ \mathbf{int} \ \mathrm{v}, \ \mathrm{ll} \ \mathrm{cap}) \ \{
           edges.emplace_back(u, v, cap);
           edges.emplace_back(v, u, 0);
           adj[u].push_back(m);
adj[v].push_back(m + 1);
           m += 2;
     }
     bool bfs() {
           while (!q.empty()) {
                int u = q.front();
                 q.pop();
                 for (int id : adj[u]) {
    if (edges[id].cap - edges[id].flow < 1) {</pre>
                            continue;
                      \mathbf{int}\ v = \mathrm{edges}\left[\mathrm{id}\right].v;
                      if (level[v] \stackrel{!}{!} = -1) {
                            continue;
                      level[v] = level[u] + 1;
                      q.push(v);
                 }
           return level [t] != -1;
     }
     \textbf{return} \quad 0 \, ;
           if (u == t) {
                 return f;
           int id = adj[u][cid];
                 \quad \textbf{int} \ v \, = \, edges \, [\, id \, ] \, . \, v \, ; \quad
                  if \ (level [u] + 1 != level [v] \ || \ edges [id]. cap - edges [id]. flow < 1) \ \{
                      {\bf continue}\,;
                 }
```

```
11 \ tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
             if (tr = 0) {
                 continue;
             edges[id].flow += tr;
             edges [id ^ 1]. flow -= tr;
             return tr;
        return 0;
    }
    ll flow() {
        11 \text{ maxflow} = 0;
        while (true) {
             \label{eq:fill_level.begin(), level.end(), -1);} \\
             level[s] = 0;
             q.push(s);
             if (! bfs()) {
                 break;
             fill(ptr.begin(), ptr.end(), 0);
             while (ll f = dfs(s, INF)) {
                 maxflow += f;
        return maxflow;
    }
};
```

2.10 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

• Complexidade de tempo: $O(N \log N + N \log M)$

```
#include <bits/stdc++.h>
                                                                   f.pop();
                                                                   for (int y : nodes) {
using namespace std;
                                                                       if (adj[x].count(y) == 0) \{
set < int > nodes;
                                                                           aux.insert(y);
vector < set < int >> adj;
void bfs(int s) {
                                                                   for (int y : aux) {
    queue<int> f;
                                                                       f.push(y);
    f.push(s);
                                                                       nodes.erase(y);
    nodes.erase(s);
    set < int > aux;
                                                                   aux.clear();
    while (!f.empty()) {
                                                               }
                                                          }
        int x = f.front();
```

2.11 2 SAT

Resolve problema do 2-SAT.

• Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
for (int u : gt[v]) {
    if (comp[u] == -1) {
{f struct} sat2 {
     int n;
     {\tt vector}{<\hspace{-.05cm}{\tt vector}}{<\hspace{-.05cm}{\tt int}}{>\hspace{-.05cm}>} {\tt g}\,,\ {\tt gt}\,;
                                                                                             dfs2(u, cl);
     vector < bool > used;
     \verb|vector| < \verb|int| > \verb|order| , | comp|;
     vector <bool> assignment;
                                                                             bool solve() {
     // number of variables
                                                                                  order.clear();

    \text{sat2}(\mathbf{int}_{n}) \{
    n = 2 * (n + 5);

                                                                                  used.assign(n, false);
for (int i = 0; i < n; ++i) {
          g.assign(n, vector < int > ());
                                                                                        if (!used[i]) {
          gt.assign(n, vector < int > ());
                                                                                             dfs1(i);
     void add edge(int v, int u, bool v sign, bool
          u_sign) {
                                                                                  g[2 * v + v\_sign].push\_back(2 * u +
               ! u_sign);
                                                                                        int v = order[n - i - 1];
          g[2 * u + u\_sign].push\_back(2 * v +
               ! v_sign);
                                                                                        if (comp[v] = -1) {
          gt \left[ 2 \ * \ u \ + \ ! \ u\_sign \right]. \ push\_back \left( 2 \ * \ v \ + \right. \\
                                                                                             dfs2(v, j++);
          v_sign);
gt[2 * v + !v_sign].push_back(2 * u +
               u_sign);
                                                                                  assignment.assign(n / 2, false);
                                                                                  for (int i = 0; i < n; i += 2) {
    if (comp[i] == comp[i + 1]) {
     void dfs1(int v) {
          used[v] = true;
                                                                                             return false;
          for (int u : g[v]) {
               if (!used[u]) {
                     dfs1(u);
                                                                                        assignment[i / 2] = comp[i] > comp[i +
          order.push_back(v);
                                                                                  return true;
                                                                             }
     void dfs2(int v, int cl) {
                                                                        };
          comp[v] = cl;
```

2.12 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

```
const int INF = 1e9 + 9;
vector<vector<int>>> adj;

struct GraphCenter {
   int n, diam = 0;
   vector<int>> centros, dist, pai;
   int bfs(int s) {
      queue<int>> q;
      q.push(s);
      dist.assign(n + 5, INF);
      pai.assign(n + 5, -1);
      dist[s] = 0;
   int maxidist = 0, maxinode = 0;
```

```
while (!q.empty()) {
    int u = q.front();
    q.pop();
    if (dist[u] >= maxidist) {
        maxidist = dist[u], maxinode = u;
    }
    for (int v : adj[u]) {
        if (dist[u] + 1 < dist[v]) {
            dist[v] = dist[u] + 1;
            pai[v] = u;
            q.push(v);
        }
    }
}</pre>
```

```
diam = max(diam, maxidist);
    return maxinode;
}
GraphCenter(int st = 0) : n(adj.size()) {
    int d1 = bfs(st);
    int d2 = bfs(d1);
    vector<int> path;
    for (int u = d2; u != -1; u = pai[u]) {
        path.push_back(u);
    }
}

int len = path.size();
if (len % 2 = 1) {
        centros.push_back(path[len / 2]);
        centros.push_back(path[len / 2]);
        centros.push_back(path[len / 2 - 1]);
    }
}

}

}

}

}

}

int len = path.size();

if (len % 2 = 1) {
        centros.push_back(path[len / 2]);
        centros.push_back(path[len / 2 - 1]);
    }
}

| All the = path.size();
| Control to the path size();
| Control to the path siz
```

Capítulo 3

String

3.1 Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: O(|S|+|T|), onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
const int K = 26;
struct Vertex {
    int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
    bool term = false;
    vector < int > idxs;
    char pch;
    \overline{\text{Vertex}(\mathbf{int} \ p = -1, \ \mathbf{char} \ \text{ch} = \ \text{`$`$'}) \ : \ p(p), \ pch(ch) \ \{}
         fill(begin(next), end(next), -1);
         fill(begin(go), end(go), -1);
};
vector < Vertex > aho(1);
void add_string(const string &s, int idx) {
    int \overline{\mathbf{v}} = 0;
    for (char ch : s) {
   int c = ch - 'a';
         if (aho[v].next[c] = -1) {
              aho[v].next[c] = aho.size();
              aho.emplace_back(v, ch);
         v = aho[v].next[c];
    aho[v].term = true;
    aho[v].idxs.push_back(idx);
int go(int u, char ch);
   get_link(int u) {
     if (aho[u].link = -1) {
         if (u = 0 || aho[u].p = 0) {
             aho[u].link = 0;
              aho[u].link = go(get_link(aho[u].p), aho[u].pch);
    return aho[u].link;
int go(int u, char ch) {
    int c = ch - 'a';
    if (aho[u].go[c] = -1) {
         if (aho[u].next[c] != -1) {
             aho[u].go[c] = aho[u].next[c];
         } else {
```

```
aho\,[\,u\,]\,.\,go\,[\,c\,] \;=\; u \;==\; 0 \;\;?\;\; 0 \;\;:\;\; go\,(\,get\,\_\,lin\,k\,(\,u\,)\,\,,\;\; ch\,)\,;
     return aho[u].go[c];
int exi(int u) {
     if (aho[u].exi != -1) {
          return aho[u].exi;
     int v = get_link(u);
     return aho[\overline{u}] \cdot exi = (v == 0 \mid | aho[v] \cdot term ? v : exi(v));
void process(const string &s) {
     int st = 0;
     for (char c : s) {
          st = go(st, c);
          \quad \textbf{for (int } \texttt{aux} = \texttt{st}; \texttt{aux}; \texttt{aux} = \texttt{exi(aux))} \ \{
                aho[aux].cont++;
     for (int st = 1; st < aho sz; st++) {
          if (!aho[st].term) {
                continue;
          for (int i : aho[st].idxs) {
                // Do something here
                   idx i ocurs + aho[st].cont times
                h[i] += aho[st].cont;
     }
}
```

3.2 Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo.

Implementação PB-DS, extremamente curta e confusa:

```
• Criar: patricia_tree pat;
```

- Inserir: pat.insert("sei la");
- Remover: pat.erase("sei la");
- Verificar existência: pat.find("sei la") != pat.end();
- Pegar palavras que começam com um prefixo: auto match = pat.prefix_range("sei");
- Percorrer *match*: for(auto it = match.first; it != match.second; ++it);
- Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower bound("sei");
- Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper bound("sei");

TODAS AS OPERAÇÕES EM O(|S|)

NÃO ACEITA ELEMENTOS REPETIDOS

3.3 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

KMP

String matching em O(n + m).

vector<int> prefixCount(string s) {

Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
vector<int> pi(string &s) {
      vector < int > p(s.size());
      \mbox{for (int $i=1$, $j=0$; $i< s.size()$; $i++) { \{ }}
                                                                                                 p[i] = j;
            while (j > 0 \&\& s[i] != s[j]) {
                  j = p[j - 1];
                                                                                           return p;
                                                                                     }
            if (s[i] = s[j]) {
                                                                                           t += '$';
vector<int> pi(string &s) {
                                                                                           \begin{array}{lll} vector\!<\!int\!>\;p=\;p\,i\,(\,t\,)\;,\;\;match\,;\\ \textbf{for}\;\;(\,\textbf{int}\;\;i=\;0\;,\;\;j=\;0\;;\;\;i\,<\;s\,.\,size\,(\,)\;;\;\;i++)\;\;\{\\ \textbf{while}\;\;(\,j\,>\;0\;\&\&\;s\,[\,i\,]\;\;!=\;t\,[\,j\,]\,)\;\;\{ \end{array}
      vector < int > p(s.size());
      for (int i = 1, j = 0; i < s.size(); i++) { while (j > 0 && s[i] != s[j]) {
                  j = p[j - 1];
                                                                                                        j = p[j - 1];
            if (s[i] = s[j]) {
                                                                                                  if (s[i] == t[j]) {
                  j++;
                                                                                                       j++;
                                                                                                  if (j = t.size() - 1)  {
            p[i] = j;
                                                                                                       match.push_back(i - j + 1);
      return p:
}
                                                                                           return match;
vector < int > kmp(string &s, string t)  {
                                                                                     }
vector<int> pi(string s) {
                                                                                           vector < int > p = pi(s + '\#');
      vector < int > p(s.size());
                                                                                           int n = s.size();
      \mbox{for (int $i=1$, $j=0$; $i< s.size()$; $i++) { } } \label{eq:formula}
                                                                                           {\tt vector}{<} {\tt int}{>} \ {\tt cnt} \left( \begin{smallmatrix} n \end{smallmatrix} + \begin{smallmatrix} 1 \end{smallmatrix}, \ \begin{smallmatrix} 0 \end{smallmatrix} \right);
            while (j > 0 \&\& s[i] != s[j]) {
                                                                                           for (int i = 0; i < n; i++) {
                  j = p[j - 1];
                                                                                                 cnt[p[i]]++;
            if (s[i] = s[j]) {
                                                                                           for (int i = n - 1; i > 0; i—) {
                  j++;
                                                                                                 \operatorname{cnt}[p[i-1]] += \operatorname{cnt}[i];
            p\,[\;i\;]\;=\;j\;;
                                                                                           for (int i = 0; i \le n; i++) {
                                                                                                 cnt[i]++;
      return p;
}
                                                                                           return cnt;
```

}

```
struct AutKMP {
     vector < vector < int>> nxt;
     vector<int> pi(string &s) {
         vector < int > p(s.size());
         for (int i = i, j = 0; i < s.size(); i++) {
              while (j > 0 \&\& s[i] != s[j]) {
                   j = p[j - 1];
              if (s[i] = s[j]) {
                   j++;
              p[i] = j;
         return p;
    }
    void setString(string s) {
         s += '#';
         \verb|nxt.assign(s.size(), vector<| \textbf{int}>|(26));
         vector < int > p = pi(s);
         for (int c = 0; c < 26; c++) {
              nxt[0][c] = ('a' + c = s[0]);
         \label{eq:formula} \mbox{for (int $i = 1$; $i < s.size()$; $i++) { }} \{
              for (int c = 0; c < 26; c++) { nxt[i][c] = ('a' + c == s[i]) ? i + 1 : <math>nxt[p[i-1]][c];
         }
    }
     vector < int > kmp(string &s, string &t) {
         vector < int > match;
         \mbox{for (int $i=0$, $j=0$; $i< s.size()$; $i++) { } } \label{eq:formula}
              j = nxt[j][s[i] - 'a'];
              if (j = t.size()) {
                   match.push\_back(i - j + 1);
         return match;
    }
} aut;
```

3.4 Hashing

Hashing para testar igualdade de duas strings.

A função *range(i, j)* retorna o hash da substring nesse range.

Pode ser necessário usar pares de hash para evitar colisões.

- * Complexidade de tempo (Construção): O(N)
- * Complexidade de tempo (Consulta de range): O(1)

```
struct hashing {
    const long long LIM = 10000006;
    long long p, m;
    vector < long long > pw, hsh;
    hashing (long long _p, long long _m) : p(_p), m(_m) {
        pw.resize(LIM);
        hsh.resize(LIM);
        pw[0] = 1;
        for (int i = 1; i < LIM; i++) {
            pw[i] = (pw[i - 1] * p) % m;
        }
    }
    void set_string(string &s) {</pre>
```

```
hsh[0] = s[0];
    for (int i = 1; i < s.size(); i++) {
        hsh[i] = (hsh[i - 1] * p + s[i]) % m;
    }
}
long long range(int esq, int dir) {
    long long ans = hsh[dir];
    if (esq > 0) {
        ans = (ans - (hsh[esq - 1] * pw[dir - esq + 1] % m) + m) % m;
    }
    return ans;
}
```

3.5 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): O(|S|)
- * Complexidade de tempo (Consulta de palavra): O(|S|)

```
struct trie {
                                                                     int get_value(string &s) {
   int id = 0;
    map < \mathbf{char}, \ \mathbf{int} > \ \mathrm{trie} \ [100005];
    int value[100005];
    int n nodes = 0;
                                                                          for (char c : s) {
    void insert(string &s, int v) {
                                                                               if (!trie[id].count(c)) {
         int id = 0;
                                                                                   return -1;
         for (char c : s) {
                                                                               id = trie[id][c];
              if (!trie[id].count(c)) {
                   trie[id][c] = ++n_nodes;
                                                                          return value [id];
              id = trie[id][c];
                                                                     }
                                                                };
         value[id] = v;
```

3.6 Manacher

Encontra todos os palindromos de uma string.

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s[i...j] seja um palindromo.

* Complexidade de tempo: O(N)

```
    count += d1[i] = k--;
    if (i + k > r) {
        l = i - k;
        r = i + k;
    }
}

void solve_even(string &s) {
    d2.resize(n);
    for (int i = 0, l = 0, r = -1; i < n; i++) {
        int k = (i > r) ? 0 : min(d2[l + r - i + 1], r - i + 1);
        while (0 <= i - k - 1 && i + k < n && s[i - k - 1] == s[i + k]) {
            k++;
        }
        count += d2[i] = k--;
        if (i + k > r) {
            l = i - k - 1;
            r = i + k;
        }
    }
}
mana;
```

3.7 Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
\begin{array}{c} string \ min\_cyclic\_shift(string \ s) \ \{\\ s \ += \ s;\\ int \ n = \ s. \, size ();\\ int \ i = \ 0, \ ans = \ 0;\\ while \ (i < n \ / \ 2) \ \{\\ ans = \ i;\\ int \ j = \ i + \ 1, \ k = \ i;\\ while \ (j < n \ \&\& \ s[k] <= \ s[j]) \ \{\\ if \ (s[k] < \ s[j]) \ \{\\ k = \ i;\\ \} \ else \ \{ \end{array}
```

```
vector<string> duval(string const &s) {
    int n = s.size();
                                                                            j++;
    int i = 0;
    {\tt vector}\!<\!{\tt string}\!>\ {\tt factorization}\ ;
                                                                        while (i \le k) {
    \mathbf{while} \ (\mathtt{i} \ < \mathtt{n}) \ \{
                                                                            factorization.push_back(s.substr(i, j -
         int j = i + 1, k = i;
                                                                               k));
         i += j - k;
             if(s[k] < s[j]) {
                  k \; = \; i \; ;
             } else {
                                                                   return factorization;
                                                              }
                  k++;
```

3.8 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string. Tambem Constroi a tabela LCP(Longest common prefix).

```
* Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|))
* Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))
pair<int, int> busca(string &t, int i, pair<int, int> &range) {
    int esq = range.first, dir = range.second, L = -1, R = -1;
    while (esq \le dir) {
         int mid = (esq + dir) / 2;
         if \ (s [sa[mid] + i] == t[i]) \ \{
              L = mid;
         if (s[sa[mid] + i] < t[i]) {
              esq = mid + 1;
         } else {
              \mathrm{dir} \; = \; \mathrm{mid} \; - \; 1;
    }
    esq = range.first, dir = range.second;
    while (esq \ll dir) {
         int mid = (esq + dir) / 2;
         if (s[sa[mid] + i] == t[i]) {
             R = mid;
         if (s[sa[mid] + i] <= t[i]) {
              esq = mid + 1;
         } else {
              dir = mid - 1;
    return {L, R};
// count ocurences of s on t
int busca string(string &t) {
    {\tt pair}{<} {\tt int} \;, \;\; {\tt int}{>} \;\; {\tt range} \; = \; \{0 \,, \;\; n \, - \, 1\};
     for (int i = 0; i < t.size(); i++) {
         range = busca(t, i, range);
         if (range.first == -1) {
              return 0;
    return range.second - range.first + 1;
}
const int MAX_N = 5e5 + 5;
\mathbf{struct} \ \mathtt{suffix} \_\mathtt{array} \ \{
    string s;
    int n, sum, r, ra [MAX N], sa [MAX N], auxra [MAX N], auxsa [MAX N], c [MAX N], lcp [MAX N];
    void counting_sort(int k) {
         memset(c, 0, sizeof(c));
         for (int i = 0; i < n; i++) {
              c\,[\,(\,i\,\,+\,\,k\,<\,n\,)\ \ ?\ \ ra\,[\,i\,\,+\,\,k\,]\ :\ 0\,]++;
         for (int i = sum = 0; i < max(256, n); i++) {
             sum += c[i], c[i] = sum - c[i];
         for (int i = 0; i < n; i++) {
              auxsa[c[sa[i] + k < n ? ra[sa[i] + k] : 0]++] = sa[i];
         for (int i = 0; i < n; i++) {
              sa[i] = auxsa[i];
         }
```

```
void build_sa() {
   for (int k = 1; k < n; k <<= 1) {</pre>
                counting\_sort\left(k\right);
                counting_sort(0);
auxra[sa[0]] = r = 0;
for (int i = 1; i < n; i++) {</pre>
                     auxra[sa[i]] =
                          (ra[sa[i]] = ra[sa[i-1]] \& ra[sa[i] + k] = ra[sa[i-1] + k]) ? r : ++r;
                for (int i = 0; i < n; i++) {
                      ra[i] = auxra[i];
                if (ra[sa[n-1]] = n-1) {
                      break;
          }
     void build_lcp() {
          for (int i = 0, k = 0; i < n - 1; i++) {
int j = sa[ra[i] - 1];
                while (s[i+k] = s[j+k]) {
                     k++;
                lcp[ra[i]] = k;
                if (k) {
                     k--;
          }
     }
     void set_string(string _s) {
          s = _s + _s^{,*};

n = _s. size();

for (int i = _0; i < _n; i++) {
               ra[i] = s[i], sa[i] = i;
          fbuild_sa();
build_lcp();
// for (int i = 0; i < n; i++)
// printf("%2d: %s\n", sa[i], s.c_str() +
// sa[i]);</pre>
     int operator[](int i) {
          return sa[i];
} sa;
```

Capítulo 4

Paradigmas

4.1 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

• Complexidade de tempo (Query offline): O(N * sqrt(N))

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $O(Q * N^{(2/3)})$

```
typedef pair<int , int> ii ;
int block_sz; // Better if 'const';
namespace mo {
     struct query {
   int l, r, idx;
          \mathbf{bool\ operator}{<}(\mathtt{query\ q})\ \mathbf{const}\ \{
               int _l = l / block_sz;
int _ql = q.l / block_sz;
return ii(_l, (_l & 1 ? -r : r)) < ii(_ql, (_ql & 1 ? -q.r : q.r));</pre>
     vector < query > queries;
     void build(int n) {
          block sz = (int) sqrt(n);
          // TODO: initialize data structure
     inline void add_query(int l, int r) {
          queries.push_back({l, r, (int)queries.size()});
     inline void remove(int idx) {
             TODO: remove value at idx from data
          // structure
     inline void add(int idx) {
          // TODO: add value at idx from data
          // structure
     }
```

```
inline int get_answer() {
         // TODO: extract the current answer of the
         // data structure
         return 0;
    vector < int > run() {
         vector < int > answers (queries.size());
         sort(queries.begin(), queries.end());
         int L = 0;
         int R = -1;
         add(--L);
              while (R < q.r) {
                  add(++R);
              while (L < q.l) {
                  remove (L++);
              while (R > q.r) {
                  remove (R--);
              answers [q.idx] = get_answer();
         return answers;
    }
};
{f typedef} pair<{f int}, {f int}> ii;
\mathbf{typedef} \ \mathtt{tuple} {<} \mathbf{int} \ , \ \mathbf{int} \ , \ \mathbf{int} {>} \ \mathtt{iiii} \ ;
int block_sz; // Better if 'const';
vector < in \overline{t} > vec;
namespace mo {
    struct query {
    int l, r, t, idx;
         bool operator < (query q) const {
             vector < query > queries;
    {\tt vector}{<}{\tt ii}{>}\ {\tt updates}\,;
    void build(int n) {
         block\_sz \, = \, pow(1.4142 \, * \, n \, , \, \, 2.0 \, \, / \, \, 3) \, ;
         // TODO: initialize data structure
    inline void add_query(int l, int r) {
         queries.push_back({l, r, (int)updates.size(), (int)queries.size()});
     inline void add_update(int x, int v) {
         updates.push_back({x, v});
     inline void remove(int idx) {
         // TODO: remove value at idx from data
         // structure
    inline void add(int idx) {
         // TODO: add value at idx from data
         // structure
     inline void update(int 1, int r, int t) {
         \mathbf{auto} \ \&[\mathtt{x}\,,\ \mathtt{v}\,] \ = \ \mathtt{updates}\,[\,\mathtt{t}\,]\,;
         if (l <= x && x <= r) {
              remove(x);
         }
```

```
swap(vec[x], v);
          if (1 \le x \&\& x \le r) {
               add(x);
     inline int get_answer() {
          // TODO: extract the current answer from
          // the data structure
          return 0;
     }
     vector < int > run() {
          vector < int > answers (queries.size());
          sort(queries.begin(), queries.end());
          int L = 0;
          int R = -1;
          int T = 0;
           \begin{array}{cccc} \textbf{for} & (\texttt{query} & \texttt{q} & \texttt{queries}) & \{ & \\ & \textbf{while} & (T < \texttt{q.t}) & \{ & \\ & \texttt{update}(L, \ R, \ T++); \end{array} 
               while (L > q.l) {
                     add(--L);
                while (R < q.r) {
                     add(++R);
                while (L < q.l) {
                     remove(L++);
                while (R > q.r) {
                     remove (R--);
                answers[q.idx] = get_answer();
          return answers;
};
```

4.2 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ mant\'{e}m \ i \\ mant\'{e}m \ i^2 \end{pmatrix}$$
 mantém $dp[i]$

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = log(c) + \sum_{i=1}^{k} log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
ll dp[100];
mat T;
#define MOD 1000000007
mat mult(mat a, mat b) {
        \  \, \text{mat res} \, (\, a \, . \, \, \text{size} \, (\,) \, \, , \  \, \text{vi} \, (\, b \, [\, 0 \, ] \, . \, \, \text{size} \, (\,) \, ) \, ) \, ; \\
       for (int i = 0; i < a.size(); i++) {
              for (int j = 0; j < b[0]. size(); j++) {
                      \  \, \textbf{for} \  \, (\, \textbf{int} \  \, k \, = \, 0\,; \  \, k \, < \, b\,.\,\, \texttt{size}\,(\,)\,\,; \  \, k+\!+\!) \,\,\, \{ \,
                           res[i][j] += a[i][k] * b[k][j] %
                                 MOD;
                           res[i][j] %= MOD;
             }
       return res;
}
mat exp mod(mat b, ll exp) {
      mat res(b.size(), vi(b.size()));
```

```
for (int i = 0; i < b.size(); i++) {
    res[i][i] = 1;
}

while (exp) {
    if (exp & 1) {
        res = mult(res, b);
    }
    b = mult(b, b);
    exp /= 2;
}

return res;
}

// MUDA MUITO DE ACORDO COM O PROBLEMA
// LEIA COMO FAZER O MAPEAMENIO NO README
11 solve(11 exp, 11 dim) {
    if (exp < dim) {
        return dp[exp];
    }
</pre>
```

```
T. assign(dim, vi(dim));
// TO DO: Preencher a Matriz que vai ser
// exponenciada T[0][1] = 1; T[1][0] = 1;
// T[1][1] = 1;

mat prod = exp_mod(T, exp);
mat vec;

    vec.assign(dim, vi(1));
    for (int i = 0; i < dim; i++) {
        vec[i][0] = dp[i]; // Valores iniciais
}

mat ans = mult(prod, vec);
    return ans[0][0];
}</pre>
```

4.3 Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

• Complexidade de tempo: $O((N+Q)\log(N) * O(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas e O(F), o custo de avaliação da função.

```
namespace parallel_binary_search {
    typedef tuple int, int, long long, long long query; //{value, id, l, r}
                                                               // pode ser um mapa se
// for muito esparso
    vector < query > queries [1123456];
                                                               // definir pro tamanho
    long long ans[1123456];
                                                               // das queries
    long long l, r, mid;
    int id = 0:
    void set_lim_search(long long n) {
        1 = 0;
        r = n;
        mid = (1 + r) / 2;
    void add_query(long long v) {
         queries[mid].push_back(\{v, id++, l, r\});
    void advance_search(long long v) {
         // advance search
    bool satisfies (long long mid, int v, long long l, long long r) {
         // implement the evaluation
    bool get_ans() {
         // implement the get ans
    void parallel_binary_search(long long l, long long r) {
         bool go = 1;
         while (go) {
             go = 0;
             int \ i = 0; // outra logica se for usar
                         // um mapa
             for (auto &vec : queries) {
                  advance_search(i++);
                 for (auto q : vec) {
                      {f auto} \ [v\,, \ {
m id} \ , \ l \ , \ r\,] \ = \ q\,;
                      if (1 > r) {
                          continue:
                      go \, = \, 1\,;
                      // return while satisfies
```

4.4 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

* Complexidade de tempo: O(n * k * log(n) * O(query))

Divide and Conquer com Query on demand

```
<!- *Read in [English](README.en.md)* ->
```

Usado para evitar queries pesadas ou o custo de pré-processamento.

É preciso fazer as funções da estrutura janela, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
namespace DC {
     vi dp_before, dp_cur;
    void compute(int l, int r, int optl, int optr) {
         \mathbf{i}\,\mathbf{f}\ (\,l\ >\ r\,)\ \{
              return;
         int mid = (l + r) \gg 1;
         pair<ll, int> best = \{0, -1\}; // \{INF, -1\} se quiser minimizar for (int i = optl; i <= min(mid, optr); i++) \{
              best = max(
                   best, \{(i ? dp\_before[i-1] : 0) + query(i, mid), i\}); // min() se quiser minimizar
         dp_cur[mid] = best.first;
         int opt = best.second;
         compute(\,l\;,\;\;mid\;-\;1\,,\;\;opt\,l\;,\;\;opt\,)\;;
         compute(mid + 1, r, opt, optr);
    }
     ll solve(int n, int k) {
         dp before.assign(n + 5, 0);
         dp_cur.assign(n + 5, 0);
         for (int i = 0; i < n; i++) {
              dp_before[i] = query(0, i);
         for (int i = 1; i < k; i++) {
              compute(0, n - 1, 0, n - 1);
              dp_before = dp_cur;
         return dp_before[n-1];
    }
};
```

```
namespace DC {
    struct range { // eh preciso definir a forma // de calcular o range
        vi freq;
        11 \text{ sum} = 0;
        {\bf int}\ l\,=\,0\,,\ r\,=\,-1;
        sum \; +\!= \; freq \, [\, v\, ]\,;
            freq[v]++;
        void advance_r(int v) { // Mover o 'r' do range
                                  // para a direita
            sum += freq[v];
            freq[v]++;
            r++;
        freq[v]--;
            sum = freq[v];
            l++;
        freq[v]--;
            sum = freq[v];
            r ---;
        }
        void clear (int n) { // Limpar range
            r = -1;
            sum = 0;
            freq.assign(n + 5, 0);
        }
    } s;
    vi dp_before, dp_cur;
    void compute(int l, int r, int optl, int optr) {
        if (l > r) {
            return;
        int mid = (l + r) >> 1;
        pair < ll, int > best = \{0, -1\}; // \{INF, -1\} se quiser minimizar
        while (s.l < optl) {
            s.advance_l(v[s.l]);
        while (s.l > optl) {
            s.back_l(v[s.l-1]);
        \mathbf{while} \ (\mathbf{s.r} < \mathbf{mid}) \ \{
            s.advance_r(v[s.r + 1]);
        while (s.r > mid) {
            s.back_r(v[s.r]);
        }
        vi removed;
        \mbox{ for } \mbox{ (int } \mbox{ i = optl; } \mbox{ i <= min(mid, optr); } \mbox{ i++) } \{
            best = min(best, \{(i ? dp\_before[i-1] : 0) + s.sum, i\}); // min() se quiser minimizar removed.push\_back(v[s.l]);
            s.advance_l(v[s.1]);
        for (int rem : removed) {
            s.back_l(v[s.l-1]);
        dp cur[mid] = best.first;
        int opt = best.second;
        compute(l, mid - 1, optl, opt);
        compute(mid + 1, r, opt, optr);
```

```
}

ll solve(int n, int k) {
    dp_before.assign(n, 0);
    dp_cur.assign(n, 0);
    s.clear(n);
    for (int i = 0; i < n; i++) {
        s.advance_r(v[i]);
        dp_before[i] = s.sum;
    }
    for (int i = 1; i < k; i++) {
        s.clear(n);
        compute(0, n - 1, 0, n - 1);
        dp_before = dp_cur;
    }
    return dp_before[n - 1];
}
</pre>
```

4.5 Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

• Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

Busca Ternária em Espaço Discreto

// minimizing. To maximize use >= to

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas). Versão para espaços discretos.

 \bullet Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
double eval (double mid) {
                                                                                           minimizing. To maximize use >= to
     // implement the evaluation
                                                                                            compare
}
                                                                                           (\operatorname{eval}(\operatorname{mid} 1) \le \operatorname{eval}(\operatorname{mid} 2)) {
                                                                                             r\ =\ mid\_2\,;
double ternary_search(double l, double r) {
                                                                                        } else {
     \quad \textbf{int} \ k \, = \, 100; \quad
                                                                                             l = mid_1;
      while (k--) {
           double step = (1 + r) / 3;

double mid_1 = 1 + step;
                                                                                  return 1;
           double mid^2 = r - step;
                                                                            }
long long eval (long long mid) {
     // implement the evaluation
{\bf long~long~discrete\_ternary\_search(long~long~l\,,~long~long~r)~\{}
     long long ans = -1;
     r--; // to not space r while (l <= r) {
           \mathbf{long} \ \mathbf{long} \ \mathbf{mid} = (1 + r) \ / \ 2;
```

```
// compare
if (eval(mid) <= eval(mid + 1)) {
    ans = mid;
    r = mid - 1;
} else {
    l = mid + 1;
}
return ans;
}</pre>
```

4.6 DP de Permutação

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
const int lim = 17;
                             // setar para o maximo
                                                                                                  final
    de itens
long double dist[lim][lim]; // eh preciso dar as
                                                            long double res = 1e13; // pode ser maior se
                               distancias de n para
                                                                precisar
long double dp[lim][1 << lim];</pre>
                                                                (int i = 0; i < n; i++) 
                                                                if (!(mask & (1 << i))) {
int limMask = (1 << lim) - 1; // 2**(maximo de
                                                                    long double aux = solve(i, mask | (1 <<
                                                                         i), n);
    itens) - 1
                                                                     if (mask) {
long double solve(int atual, int mask, int n) {
    if (dp[atual][mask] != 0) {
                                                                        aux += dist[atual][i];
        return dp[atual][mask];
                                                                     res = min(res, aux);
    if (mask = (1 << n) - 1)  {
                                                                }
        return dp[atual][mask] = 0; // o que fazer
            quando
                                                            return dp[atual][mask] = res;
                                                        }
                                     // chega no
```

4.7 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas

Complexidade de tempo:

- Inserir reta: O(1) amortizado
- Consultar x: O(log(N))
- Consultar x quando x tem crescimento monotônico: O(1)

```
const ll INF = 1e18 + 18;
bool op(ll a, ll b) {
   return a >= b; // either >= or <=
}</pre>
```

```
struct line {
    ll a, b;
    ll get(ll x) {
        return a * x + b;
    îl intersect(line l) {
         return (l.b - b + a - l.a) / (a - l.a); // rounds up for integer
deque<pair<line, ll>>> fila;
void add_line(ll a, ll b) {
    line nova = \{a, b\};
     if \ (! \, fila.empty() \, \&\& \, fila.back(). \, first.a == a \, \&\& \, fila.back(). \, first.b == b) \, \{
         return;
    while (!fila.empty() && op(fila.back().second, nova.intersect(fila.back().first))) {
         fila.pop_back();
    il x = fila.empty() ? -INF : nova.intersect(fila.back().first);
    fila.emplace back(nova, x);
int mid = (esq + dir) / 2;
         if (op(x, fila[mid].second)) {
             esq = mid + 1;
             r \; = \; mid \, ;
         } else {
             \mathrm{dir} \; = \; \mathrm{mid} \; - \; 1;
    return fila[r].first.get(x);
^{\prime}// O(1), use only when QUERIES are monotonic!
ll get(ll x) {
    while (fila.size() \geq 2 \&\& op(x, fila[1].second)) {
         fila.pop_front();
    return fila.front().first.get(x);
}
```

4.8 All Submasks

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $O(3^N)$

Capítulo 5

Matemática

5.1 Sum of floor(n div i)

```
Computa \sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor
```

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

 \bullet Complexidade de tempo: O(sqrt(n)).

```
const int MOD = 1e9 + 7;
long long sumoffloor(long long n) {
    long long answer = 0, i;
    for (i = 1; i * i <= n; i++) {
        answer += n / i;
        answer %= MOD;
    }
    i--;
    for (int j = 1; n / (j + 1) >= i; j++) {
        answer += (((n / j - n / (j + 1)) % MOD) * j) % MOD;
        answer %= MOD;
    }
    return answer;
}
```

5.2 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

• Complexidade de tempo: O(N * log(log(N)))

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números menores do que 2^64 .

• Complexidade de tempo: O(log(N))

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $O(N^{(1/2)})$

```
vector < bool > sieve(int n) {
                                                                                                                  i) {
      {\tt vector}{<}{\tt bool}{\gt} \ {\tt is\_prime} \, (\texttt{n} \, + \, 5 \, , \ {\tt true}) \, ;
                                                                                                                  is_prime[j] = false;
      is_prime[0] = false;
      is prime [1] = false;
                                                                                                     }
      long long sq = sqrt(n + 5);
      \mbox{ for } (\mbox{ long } \mbox{ iong } \mbox{ i} \ = \ 2\,; \ \mbox{ i} \ <= \ \mbox{sq}\,; \ \mbox{ i} ++) \ \{
                                                                                              return is_prime;
             if (is_prime[i]) {
                                                                                        }
                   \textbf{for (long long } j \ = \ i \ * \ i \ ; \ j \ < \ n \ ; \ j \ +\!\!=
\mathbf{bool} \ \mathrm{is\_prime}(\mathbf{int} \ \mathrm{n}) \ \{
      \label{eq:condition} \mbox{for (long long d = 2; d * d <= n; d++) } \{
             if (n % d == 0) {
                                                                                               return true;
                                                                                        }
                   return false;
long long power(long long base, long long e, long long mod) {
      long long result = 1;
      base \% = \text{mod};
      while (e) {
             if (e & 1) {
                   result = (\__int128) \, result * base \% \; mod;
             base = (\__int128)base * base \% mod;
             e >>= 1;
      return result;
}
\textbf{bool} \ is\_composite(\textbf{long long} \ n, \ \textbf{long long} \ a, \ \textbf{long long} \ d, \ \textbf{int} \ s) \ \{
      \begin{array}{lll} \textbf{long long } x = power(a, d, n); \\ \textbf{if } (x == 1 \mid \mid x == n-1) \end{array} 
            return false;
      for (int r = 1; r < s; r++) {
            x = (\_int128)x * x % n;
             if (x = n - 1) {
                   return false;
      return true;
}
\begin{array}{c} \textbf{bool} \ \ \text{miller\_rabin(long long } n) \ \{ \\ \textbf{if} \ (n < 2) \ \{ \end{array}
            return false;
      \quad \mathbf{int} \ r \ = \ 0 \, ;
      long long d = n - 1;
      while ((d \& 1) = 0) {
            d >\!> = 1\,, \,\, +\!\!\!+\!\! r\,;
      \mathbf{for} \ (\mathbf{int} \ a \ : \ \{2\,,\ 3\,,\ 5\,,\ 7\,,\ 11\,,\ 13\,,\ 17\,,\ 19\,,\ 23\,,\ 29\,,\ 31\,,\ 37\})\ \{
             if (n == a) {
                   return true;
             if (is_composite(n, a, d, r)) {
                   return false;
```

```
}
}
return true;
}
```

5.3 NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômino; Somente para inteiros.

• Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 .

Para constantes entre 10^9 e 10^{18} é necessário codar também [big convolution](big convolution.cpp).

```
typedef long long ll;
typedef vector<ll> poly;
11 \ \operatorname{mod}[3] \ = \ \{998244353LL \,, \ 1004535809LL \,, \ 1092616193LL \};
ll res = 1;
    while (e) {
        if (e & 1) {
            res = (res * b) \% m;
        e /= 2;
        b = (b * b) \% m;
    return res;
}
void ntt(poly &a, bool invert, int id) {
    11 n = (11)a.size(), m = mod[id];
    \mbox{for (ll $i=1$, $j=0$; $i < n$; $+\!\!+\!\!i$) } \{
        ll bit = n \gg 1;
        \quad \mathbf{for} \ (\,;\ \mathbf{j}\,>=\,\mathbf{bit}\,;\ \mathbf{bit}\,>\!>=\,1)\ \{\,
             j \ -\!\!= \ bit \; ;
        j += bit;
        if (i < j) {
             swap(a[i], a[j]);
    \mathbf{for} (ll len = 2, wlen; len <= n; len <<= 1) {
        wlen = invert ? root_1[id] : root[id];
        for (ll i = len; i < root_pw[id]; i <<= 1) { wlen = (wlen * wlen) % m;}
        \hat{for} (ll i = 0; i < n; i += len) {
             11 w = 1;
             a[i + j] = (u + v) \% m;
                 a[i + j + len / 2] = (u - v + m) \% m;

w = (w * wlen) \% m;
        }
    if (invert) {
```

```
ll\ inv\ =\ modInv(n\,,\ m)\,;
         for (ll i = 0; i < n; i++) {
             a[i] = (a[i] * inv) % m;
    }
}
poly convolution (poly a, poly b, int id = 0) {
    11 n = 1LL, len = (1LL + a.size() + b.size());
    while (n < len) {
        n = 2;
    a.resize(n);
    b.resize(n);
    ntt(a, 0, id);
    ntt(b, 0, id);
    answer[i] = (a[i] * b[i]);
    ntt(answer, 1, id);
    return answer;
}
11 mod_mul(ll a, ll b, ll m) {
    return (__int128)a * b % m;
ll ext_gcd(ll a, ll b, ll &x, ll &y) {
    if (!b) {
        x = 1;
        y = 0;
        return a;
    } else {
         ll g = ext_gcd(b, a \% b, y, x);
        y \stackrel{\tilde{}}{=} a / b * x;
        return g;
    }
}
// convolution mod 1,097,572,091,361,755,137
poly \ big\_convolution(poly \ a, \ poly \ b) \ \{
    poly r0, r1, answer;
    r0 = convolution(a, b, 1);

r1 = convolution(a, b, 2);
    ll \ s, \ r, \ p = mod[1] * mod[2];
    \operatorname{ext} \operatorname{gcd} (\operatorname{mod} [1], \operatorname{mod} [2], r, s);
    answer.resize(r0.size());
    for (int i = 0; i < (int)answer.size(); i++) {
        return answer;
}
```

5.4 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

• Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss_mod2](gauss_mod2.cpp) é muito mais rápido.

```
const double EPS = 1e-9;
                                                                                                }
{f const} int INF = 2; // it doesn't actually have to
                                                                                          }
                          // be infinity or a big number
                                                                                     ++row:
int gauss (vector < vector < double >> a, vector < double >
     &ans) {
     int n = (int)a.size();
                                                                               ans.assign(m, 0);
     int m = (int)a[0].size() - 1;
                                                                               for (int i = 0; i < m; ++i) {
                                                                                     if (where [i] != -1) {
                                                                                          ans[i] = a[where[i]][m] /
     vector < int > where (m, -1);
     for (int col = 0, row = 0; col < m && row < n;
                                                                                               a [ where [ i ] ] [ i ];
          ++col) {
          int sel = row;
           for (int i = row; i < n; ++i) {
                                                                               \mathbf{for} \ (\mathbf{int} \ \mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; ++\mathbf{i}) \ \{
                if (abs(a[i][col]) > abs(a[sel][col]))  {
                                                                                     double sum = 0;
                     sel = i;
                                                                                     for (int j = 0; j < m; ++j) {
                                                                                          sum += ans[j] * a[i][j];
           \mathbf{if} (abs(a[sel][col]) < EPS) {
                                                                                     \mathbf{if} (abs(sum - a[i][m]) > EPS) {
                                                                                          return 0;
                continue;
           for (int i = col; i \ll m; ++i) {
                                                                               }
                swap(a[sel][i], a[row][i]);
                                                                               for (int i = 0; i < m; ++i) {
                                                                                     \mathbf{if} (where [\mathbf{i}] = -1) {
           where [col] = row;
                                                                                          return INF;
           \  \  \, \textbf{for} \  \, (\, \textbf{int} \  \, i \, = \, 0\,; \  \, i \, < \, n\,; \, +\!\!\!+\!\!\! i\,) \  \, \{\,
                if (i != row) {
                                                                               }
                     double c = a[i][col] / a[row][col];
                                                                               return 1;
                     for (int j = col; j <= m; ++j) { a[i][j] -= a[row][j] * c;
const int N = 105;
const int INF = 2; // tanto faz
   n \rightarrow numero de equacoes, <math>m \rightarrow numero de
// variaveis a[i][j] para j em [0, m - 1] \rightarrow
// coeficiente da variavel j na iesima equacao
/// a[i][j] para j == m -> resultado da equação da
// iesima linha ans -> bitset vazio, que retornara
// a solucao do sistema (caso exista)
\mathbf{int} \ \ \mathbf{gauss} \ (\ \mathbf{vector} < \mathbf{bitset} < \! N \!\! > \mathbf{a} \ , \ \ \mathbf{int} \ \ \mathbf{n} \ , \ \ \mathbf{bitset} < \! N \!\! > \mathbf{\&ans} \ ) \ \ \{
     vector < int > where (m, -1);
     for (int col = 0, row = 0; col < m && row < n; col++) {
           for (int i = row; i < n; i++) {
                if (a[i][col]) {
                     swap(a[i], a[row]);
                     break;
                }
           if (!a[row][col]) {
                {\bf continue}\,;
           where [col] = row;
           \label{eq:formula} \mbox{for (int $i = 0$; $i < n$; $i++) { }} \label{eq:formula}
                if (i != row && a[i][col]) {
                     a[i] ^= a[row];
          row++;
     }
     \  \  \, \textbf{for} \  \, (\, \textbf{int} \  \  \, \textbf{i} \, = \, 0\,; \  \, \textbf{i} \, < \, \text{m}; \  \, \textbf{i} \, + +) \, \, \, \{ \,
           if (where [i] != -1) {
                ans[i] = a[where[i]][m] / a[where[i]][i];
     for (int i = 0; i < n; i++) {
           int sum = 0;
```

5.5 GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

 \bullet Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores $x \in y$ tal que a * x + b * y = gcd(a, b).

• Complexidade de tempo: O(log(n))

```
long long gcd(long long a, long long b) {
                                                               }
    \mathbf{return} \ (\mathbf{b} = 0) \ ? \ \mathbf{a} : \gcd(\mathbf{b}, \ \mathbf{a} \% \ \mathbf{b});
int extended_gcd(int a, int b, int &x, int &y) {
                                                                         tie(y, y1) = make_tuple(y1, y - q * y1);
                                                                         tie(a, b) = make tuple(b, a - q * b);
    x = 1, y = 0;
    int x1 = 0, y1 = 1;
    while (b) {
                                                                    return a;
         int q = a / b;
                                                               }
         tie(x, x1) = make\_tuple(x1, x - q * x1);
ll extended_gcd(ll a, ll b, ll &x, ll &y) {
                                                                        ll g = extended_gcd(b, a \% b, y, x);
    if (b = 0) {
                                                                        y = a / b * x;
         x = 1;
                                                                        return g;
         y = 0;
                                                                    }
         return a;
                                                               }
    } else {
```

5.6 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $O(\sqrt{n})$

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento O(MAX)
- Complexidade de tempo: Fatoraração O(quantidade de fatores de N)
- \bullet Complexidade de espaço: O(MAX)

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

• Complexidade de tempo: $O(N^{1/4} \cdot log(N))$

Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$
- Complexidade de espaço: $O(N^{1/2})$

```
vector < int > factorize(int n) {
    vector < int > factors;
    for (long long d = 2; d * d <= n; d++) {
        while (n % d == 0) {
            factors.push_back(d);
            n /= d;
        }
    }
    return factors;
}</pre>
```

```
namespace sieve {
     const int MAX = 1e4;
     int lp [MAX + 1], factor [MAX + 1];
     vector < int > pr;
                                                                          vector<int> factorize(int x) {
     void build() {
                                                                               if (x < 2) {
          for (int i = 2; i \le MAX; ++i) {
                                                                                    return {};
               if (lp[i] = 0) {
                    lp[i] = i;
                                                                               vector<int> v;
                    pr.push_back(i);
                                                                               \mbox{for } (\mbox{int } \mbox{lpx} = \mbox{lp} [\mbox{x} \mbox{]}; \mbox{ } x > = \mbox{lpx}; \mbox{ } x =
                                                                                    factor[x]) {
               for (int j = 0; i * pr[j] <= MAX; ++j) {
                                                                                    v.emplace_back(lp[x]);
                    lp[i * pr[j]] = pr[j];
                    factor [i * pr[j]] = i;
if (pr[j] == lp[i]) {
                                                                               return v;
                                                                          }
                                                                     }
                         break;
```

```
\mathbf{long} \ \mathbf{long} \ \mathbf{mod\_mul}(\mathbf{long} \ \mathbf{long} \ \mathbf{a}, \ \mathbf{long} \ \mathbf{long} \ \mathbf{b}, \ \mathbf{long}
                                                                                                  if (x = y) {
                                                                                                        x \, = \, +\!\!\!\!\!\!\! + \!\!\!\!\! i \,\, , \  \, y \, = \, \, f \, (\, x\,) \, ;
      long m) {
      \mathbf{return} \ (\_\_int128)\, \mathbf{a} \ * \ \mathbf{b} \ \% \ \mathbf{m};
                                                                                                  if ((q = mod mul(prd, max(x, y) - min(x, y)))
                                                                                                        y), n))) {
long long pollard_rho(long long n) {
                                                                                                        prd = q;
      auto f = [n](\overline{long} \ long \ x) 
                                                                                                  \dot{x} = f(x), y = f(f(y));
            \mathbf{return} \ \operatorname{mod\_mul}(x, x, n) + 1;
      \label{eq:long_state} \mbox{long long } x \, = \, 0 \, , \ y \, = \, 0 \, , \ t \, = \, 30 \, , \ prd \, = \, 2 \, , \ i \, = \, 1 \, ,
                                                                                            \mathbf{return} \ \_\_\gcd(\,\mathrm{prd}\,,\ n)\,;
      while (t++ % 40 || __gcd(prd, n) == 1) {
   usa miller rabin.cpp!! olhar em
                                                                                            if (miller rabin(n)) {
    matematica/primos\ usa\ pollar\_rho.cpp!!\ olhar\ em
                                                                                                  return {n};
    matematica/fatoracao
                                                                                            long long x = pollard_rho(n);
vector<long long> factorize(long long n) {
                                                                                            auto l = factorize(x), r = factorize(n / x);
                                                                                            l.insert(l.end(), all(r));
      if (n == 1) {
            return {};
                                                                                            return 1;
                                                                                     }
```

5.7 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

```
ll extended_gcd(ll a, ll b, ll &x, ll &y) {
    if (b = 0) {
        x = 1;
        y = 0;
        return a;
    } else {
         ll g = extended_gcd(b, a \% b, y, x);
        y = a / b * x;
        return g;
    }
}
11 crt(vector<1l> rem, vector<1l> mod) {
    int n = rem.size();
    if (n == 0) {
        return 0;
       [int 128 \ ans = rem[0], \ m = mod[0];
    for (int i = 1; i < n; i++) {
         11 x, y;
         11 g = extended_gcd(mod[i], m, x, y);
         if ((ans - rem[\overline{i}]) \% g != 0) {
             return -1;
         ans = ans + (\_int128)1 * (rem[i] - ans) * (m / g) * y;
        m = (\underline{-int128})(\underline{mod}[i] / g) * (m / g) * g;
         ans = (ans \% m + m) \% m;
    return ans;
}
```

5.8 FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

- Complexidade de tempo (caso médio): O(N * log(N))
- Complexidade de tempo (considerando alto overhead): $O(n * log^2(n) * log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
typedef vector < cd > poly;
const double PI = acos(-1);
void fft (poly &a, bool invert = 0) {
     int n = a.size(), log_n = 0;
     while ((1 << log_n) < n)  {
         \log_n ++;
     \mbox{for (int $i=1$, $j=0$; $i< n$; $+\!\!+\!\!i$) } \label{eq:continuous}
          int bit = n >> 1;
          {f for}\ (;\ j>=\ {f bit}\ ;\ {f bit}>>=1)\ \{
              j = bit;
          j += bit;
         if (i < j) {
              swap(a[i], a[j]);
    }
    double angle = 2 * PI / n * (invert ? -1 : 1);
     poly root (n / 2);
     for (int i = 0; i < n / 2; ++i) {
  root[i] = cd(cos(angle * i), sin(angle * i));
    }
      \mbox{ for } (\mbox{long long len} \ = \ 2; \ \mbox{len} \ <= \ n; \ \mbox{len} \ <<= \ 1) \ \ \{ \mbox{}
          \textbf{long long step} = n / len;
          long long aux = len / 2;
          for (long long i = 0; i < n; i += len) {
               for (int j = 0; j < aux; ++j) {
                   cd\ u = a[i + j],\ v = a[i + j + aux] * root[step * j];
                   a[i + j] = u + v;
                   a[i + j + aux] = u - v;
              }
         }
     if (invert) {
         for (int i = 0; i < n; ++i) {
              a\left[ \ i\ \right] \ /=\ n\,;
     }
}
vector<long long> convolution(vector<long long> &a, vector<long long> &b) {
    int n = 1, len = a.size() + b.size();
     \mathbf{while} \ (n < len) \ \{
         n <<= 1;
    a.resize(n);
    b.resize(n);
     poly \ fft\_a(a.begin(),\ a.end());
    fft(fft_a);
poly fft_b(b.begin(), b.end());
     fft(fft_b);
     poly c(n);
     for (int i = 0; i < n; ++i) {
```

5.9 Exponenciação Modular Rápida

Computa $(base^{exp})\%mod$.

}

- Complexidade de tempo: O(log(exp)).
- Complexidade de espaço: O(1)

```
1l exp_mod(ll base, ll exp) {
    ll b = base, res = 1;
    while (exp) {
        if (exp & 1) {
            res = (res * b) % MOD;
        }
    }
    return res;
}
```

5.10 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

• Complexidade de tempo: $O(N^{(1/2)})$

Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

• Complexidade de tempo: O(N * log(log(N)))

5.11 Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

Modular Inverse

Calculates the modular inverse of a.

Uses the $[\exp_mod](/Matemática/Exponenciação\%20Modular\%20Rápida/exp_mod.cpp)$ algorithm, thus expects MOD to be prime.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended gcd](/Matemática/GCD/extended gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

```
ll inv[MAX];
                                                                                                         \label{eq:formula} \mbox{for } (\mbox{int} \ \ i \ = \ 2; \ \ i \ < \mbox{MAX}; \ \ i++) \ \{
                                                                                                                inv[i] = m - (m / i) * inv[m \% i] \% m;
\mathbf{void} \ \mathtt{compute\_inv}( \ \mathbf{const} \ \ \mathtt{ll} \ \ \mathtt{m} = \mathtt{MO\!D}) \ \ \{
                                                                                                 }
       inv[1] = 1;
\begin{array}{lll} \textbf{const} & \texttt{ll INVB} = (\texttt{MOD} + 1) \ / \ 2; \ // \ \texttt{Modular inverse of the base} \,, \\ \ // \ \texttt{for} \ 2 \ \texttt{it is} \ (\texttt{MOD} + 1)/2 \end{array}
ll inv[MAX]; // Modular inverse of b^i
{\bf void}\ {\bf compute\_inv()}\ \{
      inv[0] = 1;
for (int i = 1; i < MAX; i++) {
    inv[i] = inv[i - 1] * INVB % MOD;</pre>
}
ll inv(ll a) {
                                                                                                 }
      return exp_mod(a, MOD - 2);
int inv(int a) {
                                                                                                               return (x \% m + m) \% m;
       int x, y;
       int g = extended\_gcd(a, MOD, x, y);
                                                                                                         return -1;
       if (g == 1) {
                                                                                                 }
```