Geometry of Measure-Preserving Flows and Hamiltonian Monte Carlo

Alessandro Barp (with Girolami, Betancourt, Kennedy, Lelievre...)
July 27, 2020

Imperial College London, University of Cambridge, Alan Turing Institute

Plan

- 1. Sampling a Measure via Measure-preserving Continuous Flows
- Euclidean Measure-preserving Diffusions; Connections with Poisson mechanics
- 3. Inspire Geometry of Smooth Measures
- 4. Geometry of Measure-preserving Flows
- 5. Measure-preserving Flows Vs Mechanics
- 6. Hamiltonian Monte Carlo
- 7. Geometric Integration and Implementation of HMC

Sampling Smooth Measures on Manifolds

Aim

Construct efficient sampling methods on manifolds for unnormalised smooth distributions using Measure-Preserving Flows

• Given a target $P \propto p_{\infty} \mu_{\mathcal{M}} = e^{-V} \mu_{\mathcal{M}}$ on \mathcal{M} , we want to generate a "sample" $(X_i)_{i=1}^N$ (e.g. MCMC), to approximate

$$P \approx P_N \equiv \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$$

• Usually want a.s. narrow/weak* convergence $P_N \to P$ to approximate expectation

$$\mathbb{E}[f] \equiv \int f \mathrm{d}P \approx \frac{1}{N} \sum_{i=1}^{N} f(X_i)$$

- Build (X_i) using P-preserving flows (dynamics, mechanics, diffusions)
- Examples: Fisher-Bingham distributions on Stiefel manifolds for directional statistics/principal component analysis, canonical distributions in molecular dynamics on holonomic manifold, distributions on covariances and Hermitian positive matrices for learning spectral density matrix, discrete actions on gauge groups...

Monte Carlo Methods

Two standard strategy to build samplers:

• Suppose $S: \mathcal{M} \to \mathcal{M}$ is a P-preserving, and $\Psi_{\delta t}: \mathcal{M} \to \mathcal{M}$ is S-reversible:

$$\Psi_{\delta t}^{-1} = S \circ \Psi_{\delta t} \circ S^{-1}$$

MCMC: Given $q^{\ell} \in \mathcal{M}$:

- 1. $q_* \leftarrow \Psi_{\delta t}(q^{\ell})$
- 2. set $q^{\ell+1} \leftarrow q_*$ with probability min $(1, |\mathcal{J}(P, \Psi_{\delta t})|(q^{\ell}))$, else $q^{\ell+1} \leftarrow \mathcal{S}(q^{\ell})$,

where
$$|\mathcal{J}(P,\Psi_{\delta t})| \equiv \mathrm{d}\Psi_{\delta t}^* P/\mathrm{d}P$$

 Take a P-preserving diffusion and approximate it, or break it into tractable P-preserving components. For example, HMC

$$\underline{\mathrm{d}Q_t = G^{-1}P_t\mathrm{d}t, \qquad \mathrm{d}P_t = -\nabla V(Q_t)\mathrm{d}t - \gamma(Q_t)G^{-1}P_t\mathrm{d}t + \sigma(Q_t)\mathrm{d}W_t}$$
Hamiltonian Mechanics

OU heat bath

 Samplers are physics-inspired, but we do not "care" about physics (we care about ergodicity, rate of convergence...) • Under some $L^1(dx)$ -integrability and uniqueness assumptions, a $P \propto e^{-V} dx$ diffusion on \mathbb{R}^n has the form [Ma et al., 2015, Thm. 2]

$$dZ_t = -(Q\nabla V + D\nabla V) dt + \nabla \cdot (Q + D) dt + \sqrt{2D} dW_t, \qquad (1)$$

Q antisymmetric, D positive semi-definite (eg Langevin/metriplectic).

- Proof uses Fourier transforms to turn the question into a linear algebra problem in Fourier space.
- Not clear how to generalise this construction to manifolds.
- Intuitive generalisation to manifolds: start by replacing

$$dx \mapsto \mu_{\mathcal{M}}, \qquad Q\nabla V \mapsto X_V^{\mathcal{B}} \equiv \mathcal{B}^{\sharp}(dV),$$
$$\nabla \cdot Q \mapsto Y, \qquad \sqrt{2D} dW_t \mapsto Y_i \circ dW_t^i,$$

where $\mathcal{B}^{\sharp} \in \text{Hom}(T^*\mathcal{M}, T\mathcal{M})$.

Measure Preserving Diffusions on Manifolds

• If $dZ_t = Xdt + Y_i \circ dW_t^i$, then

$$\mathcal{L}^*f = \mathsf{div}_{\mu_{\mathcal{M}}}\left(-\mathit{fX} + \tfrac{1}{2}\mathit{Y}_i(f)\mathit{Y}_i + \tfrac{1}{2}\mathit{f}\mathsf{div}_{\mu_{\mathcal{M}}}(\mathit{Y}_i)\mathit{Y}_i\right).$$

• Thus, to have $\mathcal{L}^*e^{-V}=0$ when $\mathcal{B}=0$, we set

$$dZ_t = (X_V^{\mathcal{B}} + Y)dt + \left(-\frac{1}{2}Y_i(V)Y_i + \frac{1}{2}\operatorname{div}_{\mu_{\mathcal{M}}}(Y_i)Y_i\right)dt + Y_i \circ dW_t^i. \tag{2}$$

• The bracket diffusion (2) satisfies $\mathcal{L}^*p_{\infty}=0$ if and only if Y satisfies

$$\operatorname{div}_{\mu_{\mathcal{M}}}(X_{p_{\infty}}^{\mathcal{B}} - p_{\infty}Y) = 0. \tag{3}$$

• This should hold for all p_{∞} , so $\operatorname{div}_{\mu_{M}}(Y) = 0$, and

$$\operatorname{div}_{\mu_{\mathcal{M}}}(X_{p_{\infty}}^{\mathcal{B}}) = Y(p_{\infty}), \qquad \forall p_{\infty}. \tag{4}$$

- Y vector field, implies $\mathcal{B} \equiv \mathcal{A}$ antisymmetric (as a rank two tensor)
- (4) is precisely the definition of the modular vector field $Y \equiv X_{\mathcal{B}}^{\mu_{\mathcal{M}}}$ in Poisson mechanics [Dufour and Haraki, 1991, Weinstein, 1997]

$$\mathrm{d} Z_t = \underbrace{ \underbrace{ \underbrace{ \underbrace{ X_{\mathcal{N}}^{\mathcal{A}} \mathrm{d} t }_{e^{-V}\text{-preserving}} + \underbrace{ \beta^{-1} X_{\mathcal{A}}^{\mu_{\mathcal{M}}} \mathrm{d} t }_{\mu_{\mathcal{M}}\text{-preserving}} - \underbrace{ \underbrace{ \underbrace{ \underbrace{ \underbrace{ 2} \mathrm{div}_{\mu_{\mathcal{M}}} \mathrm{preserving} }_{\mu_{\mathcal{M}}\text{-preserving}} }^{e^{-\beta V} \mu_{\mathcal{M}}\text{-preserving}} }_{\mu_{\mathcal{M}}\text{-preserving}},$$

Canonical Geometry of Smooth Measures

- \bullet Is our generalisation complete? To answer we develop intrinsic geometry of target P
- Let P be smooth measure, locally $P = f|\mathrm{d}x|$. Denote by P^{\flat} the morphism $P^{\flat}(X) \equiv i_X P$ on $\mathfrak{X}^k(\mathcal{M})$. If P positive, we have an inverse P^{\sharp} (R-N).
- The *P*-rotationnel of a *k*-vector field for some integer $1 \le k \le n$ is defined as [Koszul, 1985]

$$\operatorname{\mathsf{curl}}_P \equiv P^\sharp \circ \operatorname{d} \circ P^\flat : \mathfrak{X}^k(\mathcal{M}) \to \mathfrak{X}^{k-1}(\mathcal{M}).$$

curl_P ∘ curl_P = 0, boundary operator. On vector fields, curl_P = div_P.
 Generalise

$$\nabla \cdot \nabla \times = 0, \qquad \delta = \star d \star.$$

- On bivectors: Modular field $X_A^P = -\text{curl}_P(A)$.
- ullet Canonical statistical calculus. Only depend on P up to normalisation.
- Smooth measure defines P-homology, which is isomorphic to the (twisted)
 de Rham cohomology

 curl_P-free fields can be represented as closed
 forms.

Complete Recipe on Manifolds

• If $dZ_t = Xdt + Y_i \circ dW_t^i$, then

$$\mathcal{L}^*P = \mathsf{div}_P(\underbrace{\frac{1}{2}\mathsf{div}_P(Y_i)Y_i - X}_{\mathsf{Fokker-Plank \; current}})P,$$

so $\mathcal{L}^*P = 0$ iff

$$\tfrac{1}{2}\mathsf{div}_P(Y_i)Y_i - X = \mathsf{curl}_P(\mathcal{A}) + P^\sharp(\gamma), \qquad \mathcal{A} \in \mathfrak{X}^2(\mathcal{M}), \gamma \in H^{n-1}_{dR}(\mathcal{M})$$

P-preserving diffusions

$$\mathrm{d}Z_t = \underbrace{-\mathsf{curl}_P(\mathcal{A})\mathrm{d}t}_{\mathsf{conservative}} + \underbrace{P^\sharp(\gamma)\mathrm{d}t}_{\mathsf{conservative}} + \underbrace{\frac{1}{2}\mathsf{div}_P(Y_i)Y_i\mathrm{d}t}_{\mathsf{dissipative}} + \underbrace{\frac{1}{2}\mathsf{div}_P(Y_i)Y_i\mathrm{d}t}_{\mathsf{dissipative}} + \underbrace{\frac{1}{2}\mathsf{div}_P(Y_i)Y_i\mathrm{d}t}_{\mathsf{Stratonovich noise}} + \underbrace{\frac{1}{2}\mathsf{div}_P(Y_i)Y_i\mathrm{d}t}_{\mathsf{dissipative}} + \underbrace{\frac{1}{2}\mathsf{div}_P(Y_i)Y_i\mathrm{d}t}_{\mathsf{Stratonovich noise}} + \underbrace{\frac$$

- Complete Recipe

 ✓, canonical

 ✓, no integrability assumption

 ✓
- Compare with

$$dZ_t = -(Q\nabla V + D\nabla V) dt + \nabla \cdot (Q + D) dt + \sqrt{2D} dW_t.$$

Measure Preserving Dynamics Vs Mechanics

Completeness is based on the fact that

$$\operatorname{\mathsf{ker}}\operatorname{\mathsf{div}}_P=\operatorname{\mathsf{curl}}_P(\mathfrak{X}^2(\mathcal{M}))\oplus P^\sharp(H^{\dim\mathcal{M}-1}_{dR}(\mathcal{M}))$$

 Potential Theory of Measures: P-preserving flow are "locally curled" correspond to a choice of "potential" A,

$$X = \text{curl}_P(A)$$
, just as $F = -dV$, $F = dA$

Many connections between P-flows and Hamiltonian mechanics

1. Locally, $P \propto p_{\infty} |\mathrm{d}x|$

$$X|_U = \sum_{i < j} X_{\mathcal{A}^{ij}} + i_{\mathrm{d} \log \rho_{\infty}} \mathcal{A}$$

where
$$X_{\mathcal{A}^{ij}} = \partial_j \mathcal{A}^{ij} \partial_i - \partial_i \mathcal{A}^{ij} \partial_j$$
.

2. If X, Y preserve P, then

$$[X,Y] = \operatorname{curl}_P(X \wedge Y),$$

just as symplectic vector fields.

Measure Preserving Mechanics

In general we can decompose

$$\operatorname{curl}_{P}(\mathcal{A}) = \underbrace{\operatorname{curl}_{\mu_{\mathcal{M}}}(\mathcal{A})}_{\mu_{\mathcal{M}}\text{-preserving}} + \underbrace{i_{\operatorname{d}\log p_{\infty}}\mathcal{A}}_{p_{\infty}\text{-preserving}}.$$

- What potentials give rise to score-based P-preserving flows?
- Recall $\operatorname{curl}_{\mu_{\mathcal{M}}}(\mathcal{A}) = -X_{\mathcal{A}}^{\mu_{\mathcal{M}}} : f \mapsto \operatorname{div}_{\mu_{\mathcal{M}}}(X_f^{\mathcal{A}}).$
- Thus $\mu_{\mathcal{M}}$ is invariant measure for \mathcal{A} -mechanics

$$\{X_f^{\mathcal{A}} \equiv i_{\mathrm{d}f}\mathcal{A} : f \in C^{\infty}(\mathcal{M})\}$$

iff $\operatorname{curl}_{\mu_{\mathcal{M}}}(\mathcal{A}) = 0$; \Longrightarrow space of $\mu_{\mathcal{M}}$ -preserving \mathcal{A} -mechanics is $\ker \operatorname{curl}_{\mu_{\mathcal{M}}}|_{\mathcal{X}^{2}(\mathcal{M})} = \operatorname{curl}_{\mu_{\mathcal{M}}}(\mathfrak{X}^{3}(\mathcal{M})) \oplus \mu_{\mathcal{M}}^{\sharp}(H_{dR}^{\dim \mathcal{M}-2}(\mathcal{M}))$

Machine Learning 2015 < Mathematical Physics 1887.

• Splitting Methods: if $p_{\infty} = \prod_i e^{-V_j}$

$$\operatorname{curl}_{\rho_{\infty}\mu_{\mathcal{M}}}(\mathcal{A}) = i_{\operatorname{d}\log\rho_{\infty}}\mathcal{A} = -\sum_{i}i_{\operatorname{d}V_{j}}\mathcal{A},$$

no "Jacobian", MC is simply energy difference.

Hamiltonian Monte Carlo: Canonical Mechanics

• Given $P=e^{-V}\mu_{\mathcal{M}}$, where $\mu_{\mathcal{M}}$ is Riemannian measure. Use mechanics to propose new sample by viewing V as a potential energy

$$\underbrace{m\ddot{q} = -\partial V}_{\text{Flat Newton}} \longrightarrow \underbrace{\frac{\nabla \dot{q}}{\mathrm{d}t} = -\nabla V}_{Riemannian \ Newton}$$

• 2nd-order, tangent bundle flow

Solution preserves

$$\mu_H \propto \mathrm{e}^{-H(q, \mathbf{v})} \omega_\flat^n \equiv \mathrm{e}^{-\frac{1}{2}\|\mathbf{v}\|_q^2 - V(q)} \omega_\flat^n, \quad \omega_\flat^n \text{ symplectic measure},$$
 on $T\mathcal{M}$, and

$$\mathsf{Proj}_*\mu_{\mathsf{H}} = \mathsf{P}.$$

ullet Flow of mechanics preserves μ_H , projection of μ_H -samples are P-samples

Geodesic Integrators

- A1: Hamiltonian Mechanics is a natural volume-preserving mechanics
- A2: velocity flip S(q, v) = (q, -v) preserves μ_H , so if integrator $\Psi_{\delta t}: T\mathcal{M} \to T\mathcal{M}$ is

S-reversible $\Psi_{\delta t}^{-1} = S \circ \Psi_{\delta t} \circ S$; volume preserving $(\Psi_{\delta t})_* \omega_{\flat}^n = \omega_{\flat}^n$, then MDMC

- Let $z^* \equiv \Psi_{\delta t}(z^n)$
- accept z^* with probability min $\left(1, e^{-(H(z^*)-H(z^n))}\right)$. If accepted, then $z^{n+1} \equiv z^*$. Else $z^{n+1} \equiv S(z^*)$.
- A3: If we know geodesics of $\mu_{\mathcal{M}}$, can use geodesic integrators $X_H = \frac{1}{2}X_V + X_T + \frac{1}{2}X_V$

Hamiltonian Monte Carlo

Ergodicity: \mathcal{A} -mechanics preserve energy, and we want small energy difference during numerical integration for good acceptance rate \longrightarrow but then we get stuck in level sets H=c

A4: We can simply add Gaussian heat bath to MDMC associated to lift

$$\mu_H = \pi^* P \wedge Gaussian.$$

and obtain

$$\mathsf{HMC} = \mathsf{MDMC} + \mathsf{heat} \; \mathsf{bath}$$

Energy Conservation: Shadow Hamiltonian

- Can use Mechanical Integrator: preserving energy, symmetries or ω_{\flat} (cant have all three).
- A5: If symplectic: $\Psi_{\delta t}^* \omega_{\flat} = \omega_{\flat}$, using Hamilton-Jacobi theorem/Jacobi identity there exist nearby shadow Hamiltonian whose flow is $\Psi_{\delta t} \implies$ acceptance-rate remains high
- Unlike "Theory of Numerical Integrators": we don't care about correct trajectories!
- A6: Theory of symplectic integrators:
 - Hamiltonian: splitting method:

$$H = \underbrace{ rac{1}{2} \| \cdot \|^2}_{ ext{geodesic flow}} + \underbrace{V}_{ ext{vertical gradient step}}, \qquad V = V_{ ext{hard}} + V_{ ext{easy}}$$

- ullet Lagrangian: discrete variational principle o symmetry for free
- Generating Functions and Hamilton-Jacobi PDE

$$F: T^*\mathcal{M} \to T^*\mathcal{M} \quad \text{is symplectic iff} \quad \mathrm{d}\iota_F^*\Xi = 0$$
 where $\Xi \equiv \pi_1^*\Theta - \pi_2^*\Theta$. Thus locally $\iota_F^*\Xi = \mathrm{d}S$
$$p = -\frac{\partial S}{\partial g}(q,Q), \qquad P = \frac{\partial S}{\partial Q}(q,Q).$$

ullet Shadow for Splitting + Invariant Measures \implies Unimodular Poisson

Implementing HMC

- ullet Every potential on $\mathcal{M}=\mathcal{G}/\mathcal{K}$ is a potential with symmetry on \mathcal{G}
- Consider right action of $\mathcal K$ on $\mathcal G$, momentum map $J:\mathcal G imes \mathfrak g o \mathfrak k^*$
- If action is Hamiltonian and system K-invariant, reduced space is target space $J^{-1}(0)/K \cong TM$

For geodesic orbit manifolds, all geodesics are homogeneous. For naturally reductive $J^{-1}(0) = \mathcal{G} \times \mathfrak{p}$, and HMC is straightforward [Barp et al., 2019].

- ullet For holonomic manifolds $\mathcal{M}=f^{-1}(0)$, can use RATTLE for kinetic step...
- ... but must add reversibility check! [Lelièvre et al., 2018]

Partition function of lattice QCD

$$Z = \int \prod_{x,\mu} dU_{\mu}(x) d\phi^{\dagger} d\phi e^{-S_{WG} - \phi^{\dagger}(DD^{\dagger})^{-1}\phi}.$$

Here $U_{\mu}(x) \in \mathrm{SU}(3)$ is discretised gauge field, $\mathrm{d}U_{\mu}(x)$ is Haar measure, ϕ pseudofermions, S_{WG} is Wilson gauge action (discretisation of Yang-Mills action), D is Wilson-Dirac operator (discretised Dirac operator).

Introduce fictitious momenta on the links, to obtain

$$H = S_{WG} + \phi^\dagger (DD^\dagger)^{-1} \phi + \tfrac{1}{2} \sum_{\mathbf{x},\mu} \langle p_{\mathbf{x},\mu}, p_{\mathbf{x},\mu} \rangle_{\mathfrak{su}(3)} \,.$$

Need to construct mechanics on SU(3). Define

$$\omega \equiv -\mathrm{d}(p_i \pi^* \theta^i) = \underbrace{\pi^* \theta^i \wedge \mathrm{d} p_i}_{\text{usual "dx} \wedge \mathrm{d} p^\text{" term}} + \underbrace{\frac{1}{2} p_i c_{jk}^i \pi^* \theta^j \wedge \pi^* \theta^k}_{\text{additional non-abelian term}},$$

and use representations.

Riemannian Manifold HMC

• Target is posterior $P = \rho_{post}(\theta|\omega)\mathrm{d}\theta$. Want Riemannian metric on $\mathcal M$ that locally matches Hessian of posterior

$$\Sigma_{post,\omega}(heta) \equiv -rac{\partial^2}{\partial heta^i \partial heta^j} \log
ho_{post}(heta|\omega)$$

• Average over data (statistical manifold $\phi(\theta) \equiv \rho(\omega|\theta) d\omega$)

$$\int \Sigma_{post,\omega}(\theta) \rho(\omega|\theta) d\omega = \underbrace{\phi^* g^F}_{Fisher Matrix}(\theta) + \Sigma_{prior}(\theta)$$

• setting $G(\theta) \equiv \phi^* g^F(\theta) + \Sigma_{\textit{prior}}$, the target Hamiltonian of RMHMC is then

$$H(\theta, v) = -\log \rho_{post}(\theta|\omega) + \frac{1}{2}\log \det G(\theta) + \frac{1}{2}v^{\top}G(\theta)v.$$

- Fake reference measures... typically canonical (not necessarily geodesic)
- "Non-separable" Hamiltonian symmetry-break
- No manifold involved! Should be Statistical Model/Information Geometric HMC
- RM/Geodesic/Lagrangian Monte Carlo → just HMC

HMC for Molecular Dynamics

- Typical Applications: Molecular constraints, Blue Moon Sampling, Thermodynamic Integration
- Molecular Constraints define holonomic manifolds: RATTLE/SHAKE but need reversibility check
- Blue Moon Sampling idea: microcanonical distribution $(\mu_{mc,E})$

$$\mathbb{E}_{\mu_H}[f] = \frac{1}{\int_{\mathcal{F}} e^{-H} \omega^n} \int_{\mathbb{R}} \mathbb{E}_{\mu_{mc,E}}[f] e^{-E} \mathrm{d}(E) \mathrm{d}E.$$

• Thermodynamic Integration: Macroscopic states are often defined using reaction coordinates $\xi: \mathcal{M} \to \mathbb{R}^m$, with Free energy $F: \mathbb{R}^m \to \mathbb{R}$

$$F \equiv -\frac{1}{\beta} \log \frac{\mathrm{d}(\pi^* \xi)_{\sharp} \mu_H}{\mathrm{d}(\mathrm{d} x)}.$$

Want to calculate energy difference

$$F(x_1) - F(x_0) = \int_0^1 \frac{\partial F}{\partial x^i} \big|_{\ell(t)} \frac{\mathrm{d} \ell^i}{\mathrm{d} t} \big|_t \mathrm{d} t, \qquad \frac{\partial F}{\partial x^i}(x) = \int_{\xi^{-1}(x)} \cdots$$

Barp, A., Kennedy, A., and Girolami, M. (2019).

Hamiltonian monte carlo on symmetric and homogeneous spaces via symplectic reduction.

arXiv preprint arXiv:1903.02699.

Dufour, J.-P. and Haraki, A. (1991).

Rotationnnels et structures de poisson quadratiques.

Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 312(1):137–140.

Koszul, J.-L. (1985).

Crochet de schouten-nijenhuis et cohomologie.

Astérisque, 137:257-271.

Lelièvre, T., Rousset, M., and Stoltz, G. (2018).

Hybrid monte carlo methods for sampling probability measures on submanifolds.

arXiv preprint arXiv:1807.02356.

Ma, Y.-A., Chen, T., and Fox, E. (2015).

A complete recipe for stochastic gradient mcmc.

In Advances in Neural Information Processing Systems, pages 2917–2925.

Weinstein, A. (1997).

The modular automorphism group of a poisson manifold.

Journal of Geometry and Physics, 23(3-4):379–394.