Abschlussprüfung 2016 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Name:				_ Vorna	me: _								
Klasse:	Platzziffer:							Punkte:					
	Aufgabe A	1						Haup	ttermin				
A 1.0	Der Wertverlu lich. Der Rest sich näherung	wert y E	uro des l	E-Bikes	"Blitz"	(Neupro	eis 3500 l	Euro) na	ch x Jahre	en lässt			
A 1.1	Ergänzen Sie die Wertetabelle auf Ganze gerundet und zeichnen Sie sodann den Graphen der Funktion f in das Koordinatensystem.												
	X	0	1	2	3	4	5	6	7	8			
	3500·0,85 ^x												
	3	500 4											
		000											
	2	500											
	2	000											
	1	500											
	1	000											
		500											
		O	1 2	3	4	5 6	7	8 x		2 P			
A 1.2	Berechnen Sie Jahren.	e den Wo	ertverlus	t des E-	Bikes "	Blitz" ii	n Euro na	ach den	ersten dre				
A 1.3	Ermitteln Sie	mithilfe	des Gra	iphen de	er Funk	tion f	nach wel	cher Zei	t sich de	1 P er			
	Wert des E-Bi	ikes "Blit	z" halbio	ert hat.						-			
								1 1 1		2 P			

A 2.0 Die Zeichnung zeigt das Trapez ABCD mit [AB] || [CD].

Es gilt: $\overline{AB} = 9 \text{ cm}$; $\overline{CD} = 4.5 \text{ cm}$; $\overline{AL} = 3 \text{ cm}$; $\overline{DL} = 4 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie das Maß δ des Winkels ADC.

2 P

A 2.2 Verlängert man die Seite [AB] über B hinaus um x cm und verkürzt gleichzeitig die Strecke [DL] von D aus um x cm, so entstehen für $x \in \mathbb{R}$; $x \in]0;4[$ Trapeze $AB_nC_nD_n$ mit $[AB_n] \parallel [C_nD_n]$ und $\overline{C_nD_n} = 4,5$ cm .

Zeichnen Sie das Trapez $AB_1C_1D_1$ für x = 2 in die Zeichnung zu A 2.0 ein.

1 P

A 2.3 Geben Sie den Wert für x an, für den man das gleichschenklige Trapez $AB_2C_2D_2$ erhält.

1 P

A 2.4 Berechnen Sie den Flächeninhalt A der Trapeze $AB_nC_nD_n$ in Abhängigkeit von x.

[Ergebnis: $A(x) = (-0.5x^2 - 4.75x + 27) \text{ cm}^2$]

A 2.5 Begründen Sie durch Rechnung, dass es unter den Trapezen $AB_nC_nD_n$ für $x \in]0;4[$ kein Trapez mit einem Flächeninhalt von $28\,\text{cm}^2$ gibt.

A 3.0 Eine Schreinerei stellt Spielzeugkreisel aus Holz her. Die nebenstehende Zeichnung des Axialschnitts eines Rotationskörpers mit der Rotationsachse BM dient als Vorlage für solche Spielzeugkreisel.

Es gilt:
$$\overline{AC} = 5 \text{ cm}$$
; $\overline{BM} = 4.5 \text{ cm}$;
 $\overline{AN} = \overline{BN}$; $\angle BFE = 77^{\circ}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 3.1 Berechnen Sie die Länge der Strecke [FM] und die Länge der Strecke [GN].

Ergebnisse: $\overline{FM} = 1,04 \text{ cm}; \overline{GN} = 0,58 \text{ cm}$

A 3.2 Berechnen Sie das Volumen V eines solchen Spielzeugkreisels.

Abschlussprüfung 2016 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

	Aufgabe B 1 Haupttermin	
B 1.0	Die Parabel p mit dem Scheitel $S(4 -2)$ hat eine Gleichung der Form $y=0,25x^2+bx+c$ mit $G=I\!R\times I\!R$ und $b,c\in I\!R$. Die Gerade g hat die Gleichung $y=0,5x+2$ mit $G=I\!R\times I\!R$.	
B 1.1	Zeigen Sie durch Rechnung, dass die Parabel p die Gleichung $y=0,25x^2-2x+2$ hat. Zeichnen Sie sodann die Parabel p sowie die Gerade g für $x\in [-1;11]$ in ein Koordinatensystem ein. Für die Zeichnung: Längeneinheit 1 cm; $-1 \le x \le 11; -3 \le y \le 11$	3 P
B 1.2	Die Punkte $A(0 2)$ und $C(10 7)$ sind die Schnittpunkte der Parabel p mit der Geraden g . Sie sind zusammen mit Punkten $B_n \left(x \mid 0, 25x^2 - 2x + 2\right)$ auf der Parabel p Eckpunkte von Drachenvierecken AB_nCD_n mit der Geraden g als Symmetrieachse. Zeichnen Sie das Drachenviereck AB_1CD_1 für $x=6$ in das Koordinatensystem zu B 1.1 ein und geben Sie das Intervall für x an, für das es Drachenvierecke AB_nCD_n gibt.	2 P
B 1.3	Zeigen Sie rechnerisch, dass das Drachenviereck AB ₁ CD ₁ bei B ₁ rechtwinklig ist.	3 P
B 1.4	Unter den Drachenvierecken AB_nCD_n gibt es die Drachenvierecke AB_2CD_2 und AB_3CD_3 , bei denen die Eckpunkte B_2 und B_3 auf der x-Achse liegen.	
	Bestimmen Sie die Koordinaten der Punkte B ₂ und B ₃ .	2 P
B 1.5	Bestätigen Sie durch Rechnung, dass für den Flächeninhalt A der Drachenvierecke AB_nCD_n in Abhängigkeit von der Abszisse x der Punkte B_n gilt:	
	$A(x) = (-2,5x^2 + 25x) FE$.	3 P
B 1.6	Unter den Drachenvierecken AB _n CD _n gibt es die Raute AB ₄ CD ₄ . Zeichnen Sie die Raute AB ₄ CD ₄ mit dem Diagonalenschnittpunkt M in das Koordinatensystem zu B 1.1 ein. Ermitteln Sie sodann rechnerisch die Gleichung der Geraden MB ₄ .	
	Teilergebnis: $M(5 4,5)$	4 P

Abschlussprüfung 2016

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Aufgabe B 2 Haupttermin B 2.0 Das rechtwinklige Dreieck ABC mit der Hypotenuse [BC] ist die Grundfläche der Pyramide ABCS (siehe Skizze). Die Spitze S liegt senkrecht über dem Punkt A. Es gilt: $\overline{AC} = 10 \text{ cm}$; $\overline{AB} = 7 \text{ cm}$; $\overline{AS} = 9 \text{ cm}$. В Runden Sie im Folgenden auf zwei Stellen nach dem Komma. Zeichnen Sie das Schrägbild der Pyramide ABCS, wobei die Strecke [AC] auf der B 2.1 Schrägbildachse und der Punkt C links vom Punkt A liegen soll. Für die Zeichnung gilt: q = 0.5; $\omega = 45^{\circ}$. Bestimmen Sie sodann rechnerisch die Länge der Strecke | CS | und das Maß ε des Winkels ACS. Ergebnisse: $\overline{CS} = 13,45 \text{ cm}; \epsilon = 41,99^{\circ}$ 4 P $F\ddot{u}r \;\; Punkte \;\; F_n \;\; auf \;\; der \;\; Strecke \;\; \left[AC\right] \;\; gilt: \;\; \overline{AF_n}(x) = x \;\; cm \;\; mit \;\; x \in {\rm I\!R} \;\; und$ B 2.2 $0\!<\!x\!<\!10\,.$ Die Punkte $F_{\!_{n}}$ sind Eckpunkte von Rechtecken $AD_{\!_{n}}E_{\!_{n}}F_{\!_{n}}$ $D_n \in [AB]$ und $E_n \in [BC]$. Zeichnen Sie das Rechteck $AD_1E_1F_1$ für x = 4 in das Schrägbild zu B 2.1 ein. Berechnen Sie sodann die Länge der Strecken [E_nF_n] in Abhängigkeit von x und ermitteln Sie rechnerisch den Wert für x, für den man das Quadrat AD₀E₀F₀ erhält. Ergebnis: $\overline{E_n F_n}(x) = (-0.7x + 7) \text{ cm}$ 4 P Berechnen Sie den Flächeninhalt A der Rechtecke AD_nE_nF_n in Abhängigkeit B 2.3

von x.

Bestimmen Sie sodann den Wert für x, für den der Flächeninhalt der Rechtecke AD_nE_nF_n maximal wird.

Der Punkt T liegt auf der Strecke [CS] mit $\overline{TS} = 2$ cm. T ist die Spitze von Pyrami-B 2.4 den $AD_nE_nF_nT$ mit den Rechtecken $AD_nE_nF_n$ als Grundflächen und der Höhe h. Zeichnen Sie die Pyramide AD₁E₁F₁T und die Höhe h in das Schrägbild zu B 2.1 ein. Zeigen Sie sodann, dass gilt: h = 7,66 cm. 3 P

Begründen Sie, dass für das Maß α der Winkel TF_nC gilt: α < 138,01°. B 2.5 Berechnen Sie anschließend die untere Intervallgrenze für α .

Teilergebnis: $\overline{AT} = 7,80 \text{ cm}$

4 P

2 P