if  $\mu \neq 0$ , then

$$\mu \cdot \langle a, \lambda \rangle = \langle a, \lambda \mu \rangle, 0 \cdot \langle a, \lambda \rangle = 0;$$

and

$$\lambda \cdot u = \lambda u$$
.

Furthermore, the map  $\omega \colon \widehat{E} \to \mathbb{R}$  defined such that

$$\omega(\langle a, \lambda \rangle) = \lambda, 
\omega(u) = 0,$$

is a linear form,  $\omega^{-1}(0)$  is a hyperplane isomorphic to  $\overrightarrow{E}$  under the injective linear map  $i \colon \overrightarrow{E} \to \widehat{E}$  such that  $i(u) = t_u$  (the translation associated with u), and  $\omega^{-1}(1)$  is an affine hyperplane isomorphic to E with direction  $i(\overrightarrow{E})$ , under the injective affine map  $j \colon E \to \widehat{E}$ , where  $j(a) = \langle a, 1 \rangle$  for every  $a \in E$ . Finally, for every  $a \in E$ , we have

$$\widehat{E} = i(\overrightarrow{E}) \oplus \mathbb{R}j(a).$$

*Proof.* The verification that  $\widehat{E}$  is a vector space is straightforward. The linear map mapping a vector u to the translation defined by u is clearly an injection  $i: \overrightarrow{E} \to \widehat{E}$  embedding  $\overrightarrow{E}$  as an hyperplane in  $\widehat{E}$ . It is also clear that  $\omega$  is a linear form. Note that

$$j(a+u) = \langle a+u, 1 \rangle = \langle a, 1 \rangle + u,$$

where u stands for the translation associated with the vector u, and thus j is an affine injection with associated linear map i. Thus,  $\omega^{-1}(1)$  is indeed an affine hyperplane isomorphic to E with direction  $i(\overrightarrow{E})$ , under the map  $j: E \to \widehat{E}$ . Finally, from the definition of  $\widehat{+}$ , for every  $a \in E$  and every  $u \in \overrightarrow{E}$ , since

$$i(u) + \lambda \cdot j(a) = u + \langle a, \lambda \rangle = \langle a + \lambda^{-1}u, \lambda \rangle,$$

when  $\lambda \neq 0$ , we get any arbitrary  $v \in \widehat{E}$  by picking  $\lambda = 0$  and u = v, and we get any arbitrary element  $\langle b, \mu \rangle$ ,  $\mu \neq 0$ , by picking  $\lambda = \mu$  and  $u = \mu ab$ . Thus,

$$\widehat{E} = i(\overrightarrow{E}) + \mathbb{R}j(a),$$

and since  $i(\overrightarrow{E}) \cap \mathbb{R}j(a) = \{0\}$ , we have

$$\widehat{E} = i(\overrightarrow{E}) \oplus \mathbb{R}j(a),$$

for every  $a \in E$ .