可积函数空间

桂物 肄业 2022年6月28日

1 开始之前

做一些约定: 全体实数记为 \mathbb{R} , 全体正实数记为 $\mathbb{R}_{>0}$, 带上 $+\infty$ 的非负实数记为 $[0, +\infty]$. 取定一个测度空间 (X, \mathcal{S}, μ) . 涉及的函数 \mathcal{S} -可测(以 $(\mathbb{R}, \mathcal{B})$ 作为可测空间),除非有特殊说明. 这里我只考虑实值函数,当然复值可以类似讨论. 集合 E 的测度在不至于误会时直接记作 μE . "性质 μ – a.e. "表示此性质在个 μ -零测的集合之外处处成立.

定义 1.1 (测度的推出) 可测空间 (X, S, μ) 和 (Y, U) 以及它们之间的可测映射: $f: X \to Y$,定义 $f_*\mu: U \to [0, +\infty], B \mapsto f_*\mu(B) := \mu(f^{-1}(B))$. 容易验证 $f_*\mu$ 是 (Y, U) 上测度.

2 模

定义 2.1 (p-模) $f: X \to \mathbb{R}, p \in \mathbb{R}_{>0}, f$ 的 p-模, 记作 $||f||_p$ 定义为

$$||f||_p := \left(\int_X |f| \,\mathrm{d}\mu\right)^{1/p}.$$

注: 注意 p-模不是范数.

定义 2.2 (本性最大模) $f: X \to \mathbb{R}, f$ 的本性最大模,记作 $||f||_{\infty}$ 定义为 $||f||_{\infty} := \inf \{ t \in \mathbb{R}_{>0} : |f|_{*} \mu(t, +\infty) = 0 \}.$

注: 我们有 $|f| \le ||f||_{\infty}(\mu - \text{a.e})$. 事实上, 任意 $n \ge 1$ 存在零测集 E_n 使得

$$|f(x)| \le ||f||_{\infty} + \frac{1}{n}, \forall x \in X - E_n.$$

令 $E = \bigcup_{n \geq 1} E_n$ 则 $\mu(E) = 0$ 且 $X - E \subseteq X - E_n$ 对于每个 $n \geq 1$ 成立, 所以 $|f(x)| \leq ||f||_{\infty}$ 对任意 $x \in X - E$ 成立.

定义 2.3 (p 次可积函数空间) $\forall 0 次可积函数空间, 记作 <math>\mathcal{L}^p(\mu)$, 是指

$$\mathcal{L}^{p}(\mu) := \{ f \in \mathbb{R}^{X} : ||f||_{p} < +\infty \}.$$

定理 2.1 $\forall f, g \in \mathcal{L}^p$, 有:

$$||f + g||_p^p \le 2^p (||f||_p^p + ||g||_p^p), \tag{1}$$

$$\|\alpha f\|_p = |\alpha| \|f\|_p \quad (\forall \alpha \in \mathbb{R}). \tag{2}$$

且 \mathcal{L}^p 是域 \mathbb{R} 上的线性空间.

证明.由

$$|f + g|^{p} \le (|f| + |g|)^{p}$$

$$\le (2 \max\{|f|, |g|\}))^{p}$$

$$\le 2^{p} (|f|^{p} + |g|^{p}).$$

红色部分即 $\max\{|f|,|g|\} \leq |f| + |g|$. 两边对 μ 积分得(1). (2) 由定义立得. 下证明 \mathcal{L}^p 是域 \mathbb{R} 上的线性空间.(1)保证加法封闭, 且函数的加法结合律由实数加法结合律可得, 零函数当然在 \mathcal{L}^p , 是加法单位元, 而 $f \in \mathcal{L}^p$ 也蕴含 $-f \in \mathcal{L}^p$; (2)保证 \mathcal{L}^p 对数乘封闭, 其他公理继承自线性空间 \mathbb{R}^X . 证毕

定义 2.4 (对偶指数) $\forall 1 \leq p \leq +\infty, p$ 的对偶指数, 记作 p', 是 $[1, +\infty]$ 中使得下式成立的数

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

换言之,p' := p/(p-1), 当 $p \in \{1, +\infty\}$ 则理解为函数极限.

定理 2.2 (杨不等式) 设 $p \in (1, +\infty)$. 任意 $a, b \ge 0$ 成立

$$ab \le \frac{a^p}{p} + \frac{b'}{p'}. (3)$$

注: $p = +\infty, p' = 1$ 上式右边可能无意义, 不考虑.

证明. 只需证明 a, b 均为正实数的情形, 固定 b > 0, 定义 $f: \mathbb{R}_{>0} \to \mathbb{R}$,

$$f(a) := \frac{a^p}{p} + \frac{b'}{p'} - ab.$$

求微分得 f 极小值点(唯一, 故也就是最小值点), 不难证明最小值为零. 证毕.

定理 2.3 $p \in [1, +\infty], f, h: X \to \mathbb{R}$ 则

$$||fh||_1 \le ||f||_p ||h||_{p'}. \tag{4}$$

证明. 情形一, $1 . 先设 <math>||f||_p = ||h||_{p'} = 1$. 由(3)得

$$|fh| \le \frac{|f|^p}{p} + \frac{|h|^{p'}}{p'}.$$

积分得

$$||fh||_1 \le \frac{1}{p} + \frac{1}{p'} = 1.$$

其余的情形, 不妨设 $||f||_p \neq 0$, $||h||_{p'} \neq 0$, 考虑

$$f_1 = \frac{f}{\|f\|_p}, h_1 = \frac{h}{\|h\|_{p'}},$$

则 $||f_1||_p = ||h_1||_{p'} = 1$, 由刚刚的结果 $||fh||_1 \le 1$, 于是由 (2) 即得(4).

定理 2.4 设 (X, S, μ) 是有限测度空间,且 $0 . 则有 <math>\forall f \in \mathcal{L}^q(\mu)$:

$$||f||_p \le \mu(X)^{(q-p)/(pq)} ||f||_q.$$

此外, $\mathcal{L}^q(\mu) \subseteq \mathcal{L}^p(\mu)$.

证明. 任意给定 $f \in \mathcal{L}^q(\mu)$ 令 r = q/p > 1,其对偶指数 r' = r/(r-1) = q/(q-p). 由(4)得:

$$\int_X |f|^p d\mu \le \left(\int_X \left(|f|^p \right)^r d\mu \right)^{1/r} \left(\int_X 1^{r'} d\mu \right)^{1/r'}.$$

整理右边再两侧取 1/p 次方即得不等式. 不等式直接说明 $f \in \mathcal{L}^p$, 证毕.

定理 2.5 设 $1 \le p \le +\infty, f \in \mathcal{L}^p$. 则

$$||f||_p = \sup \left\{ \left| \int_X f h \, \mathrm{d}\mu \right| : h \in \mathcal{L}^{p'}(\mu) \, \mathbb{E} ||h||_{p'} \le 1 \right\}.$$

证明. 不妨设 $||f||_p > 0$,否则易证不等式两边都是 0. 记右边被取 sup 的集合为 A. 任意 $h \in \mathcal{L}^{p'}(\mu)$ 且 $||h||_{p'} \le 1$,由(4)得

$$\left| \int_X f h \, \mathrm{d}\mu \right| \le \int_X |f h| \, \mathrm{d}\mu \le ||f||_p ||h||_{p'} \le ||f||_p.$$

从而 $||f||_p \ge \sup A$. 另一方面, 令 $h: X \to \mathbb{R}$,

$$h(x) = \frac{f(x)|f(x)|^{p-2}}{\|f\|_p^{p/p'}},$$

则

$$\int_{X} fh \, d\mu = ||f||_{p}^{-p/p'} \int_{X} |f|^{p} \, d\mu$$

$$= ||f||_{p}^{-p/p'+p}$$

$$= ||f||_{p}.$$

其中红色处用到 p' = p/(p-1), 即 p - p/p' = 1. 且

$$||h||_{p'} = \left(\int_{X} \frac{|f|^{(p-1)p'}}{||f||_{p}^{p}} d\mu \right)^{1/p'}$$

$$= \left(\int_{X} \frac{|f|^{p}}{||f||_{p}^{p}} d\mu \right)^{1/p'}$$

$$= ||f||_{p}^{-p/p'} \left(\int_{X} |f|^{p} d\mu \right)^{1/p'}$$

$$= ||f||_{p}^{-p/p'} ||f||_{p}^{p/p'}$$

$$= 1.$$

由此,得 $\sup A \ge ||f||_p$. 证毕.

注: $p = +\infty$ 当然也成立,只是没有什么必要了,毕竟几乎处处小于等于 1 直接用更好.

定理 2.6 (Minkowski 不等式) 设 $1 \le p \le +\infty$ 且 $f, g \in \mathcal{L}^p(\mu)$ 则成立三角不等式

$$||f + g||_p \le ||f||_p + ||g||_p.$$
(5)

证明. 情形一, $p = +\infty$. 设 $||f||_{\infty} = F$, $||g||_{\infty} = G$ 且 F, $G < +\infty$ 否则 (5) 显然成立. 由 $|f(x)| \le F(\mu - \text{a.e.})$ 和 $|g(x)| \le G(\mu - \text{a.e.})$ 故存 在 $X_1, X_2 \subseteq X$ 使得 $\mu(X_1) = \mu(X_2) = 0$ 且 $|f(x)| \le F$, $\forall x \in X - X_1$, $|g(x)| \le G$, $\forall x \in X - X_2$. 令 $X_3 = X_1 \cup X_2$ 则 $\mu(X_3) = 0$ 且 $|f(x) + g(x)| \le |f(x)| + |g(x)| \le F + G$, $\forall x \in X - X_3$.

情形二, $1 \leq p < +\infty$. 首先我们有 (1) 保证 $f + g \in \mathcal{L}^p(\mu)$. 且任意 $h \in L^{\sqrt{(\mu)}}, \|h\|_{p'} \leq 1$ 有

$$\left| \int_{X} (f+g)h \, \mathrm{d}\mu \right| \le \int_{X} |fh| \, \mathrm{d}\mu + \int_{X} |gh| \, \mathrm{d}\mu$$

$$\le ||f||_{p} ||h||_{p'} + ||g||_{p} ||h||_{p'}$$

$$\le ||f||_{p} + ||g||_{p}.$$

其中红色不等号即(4).

定理 2.7 $\mu(X) < +\infty$ 则 $\forall f \in \mathcal{L}^{+\infty}(\mu)$ 有

$$||f||_{\infty} = \lim_{p \to +\infty} ||f||_p.$$

证明. 设 $M = \|f\|_{\infty}$,则存在 $E \subseteq X$ 使得 $\mu(E) = 0$ 且 $|f(x)| \le M, \forall x \in X - E$. 于是

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

$$= \left(\int_{X-E} |f|^p d\mu\right)^{1/p}$$

$$\leq \left(M^p \mu(X-E)\right)^{1/p},$$

红色部分由积分对区域可加,以及 $\int_E |f|^p d\mu = 0$ 即得. 令 $p \to +\infty$ 得 $\limsup_{p \to +\infty} \|f\|_p \leq M$. 另一方面,任意 $\varepsilon > 0, |f|_* \mu(M - \varepsilon, +\infty) > 0$. 设

$$A = |f|^{-1}(M - \varepsilon, +\infty)$$
. 进而

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

$$\geq \left(\int_A |f|^p d\mu\right)^{1/p}$$

$$\geq \left(\mu(A)(M-\varepsilon)^p\right)^{1/p}.$$

进而

$$\liminf_{p \to +\infty} ||f||_p \ge M - \varepsilon.$$

由 ε 的任意性得到

$$\liminf_{p \to +\infty} ||f||_p \ge M.$$

综上

$$M \le \liminf_{p \to +\infty} ||f||_p \le \limsup_{p \to +\infty} ||f||_p \le M.$$

证毕.