MOMI = *Q49 C0908 E/08 +SU-829-931 Electrodynamic rock breaking - uses infra-red heating to weaken rock with fissured zone transducers to position electrodes for maximum breakdown effect

MOSC MINING INST 13.07.79-SU-797621 X25 (15.05.81) E21c-37/18

13.07.79 as 797621 (26AR)

Electrodynamic rock breaking is carried out by means of electrodes mounted on a frame so as to move lengthways and traverse. In order to weaken the rock beforehand and thus reduce power costs overall, the rock is heated first by infra-red heaters (2), Lsing transducers (6) to locate the position and depth of the cracks produced in the solid so that the electrodynamic action can be concentrated in the zones with greatest fissuring and weakening for easier breaking. A screen (3) is mounted to the frame (1) between the electrodes (4) and heaters to shield the heaters from flying rock debris.

The heaters are energised and moved along on the frame to heat through the rock surface, moving from one location to the next every two minutes. The transducers locate the cracks and the electrodes are positioned over these and energised in their turn to form a breakdown channel in the rock so that the pulsed electrical energy in this channel parts the rock off the solid. Movement should be adjusted to suit the rock concerned and to enable sufficient breakdown depth to be obtained after the infrared heating stage. Bul.18/15.5.81. (4pp Dwg.No.1)

Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 130779 (21) 2797621/22-03

с присоединением заявки № _

(23) Приоритет _

Опубликовано 1505.81. Бюллетень № 18

Дата опубликования описания 150581

(II)829931

(51) М. Кл.³

E 21 C 37/18

(53) УДК _{622.243}.

94(088.8)

(72) Авторы изобретения

Н.И.Андриенко, В.Н. Захаров, Н.В.Нестеров, В.Ф.Нистратов, А.Ф. Рябов и Ю.И.Протасов

(71) Заявитель

Московский ордена Трудового Красного Знамени горный институт

(54) СПОСОБ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к горной промышленности, а именно к способам и устройствам комбинированного разрушения горных пород, и может быть использовано при отбойке горных пород от массива и проходке горных выработок.

Известен способ разрушения горных пород электрическим током, подводимым с помощью электродов, вводимых в контакт с породой и расположенным один от другого на расстоянии, достаточном для образования электропроводящего канала в межэлектродном промежутке. При реализации этого способа
электроды размещают на поверхности
разрушаемой породы на расстоянии, при
котором отсутствует перекрытие разряда по поверхности породы и происходит заглубление канала пробоя [1].

Недостатками данного способа является низкая эффективность разрушения горных пород, при больших межэлектродных промежутках (порядка одного метра) и повышенном напряжении (порядка 300 кв), вследствие чего происходит перекрытие разрядом
или электрической дугой (переменное
напряжение) этого промежутка по поверхности породы. Особенно ухудшаются условия заглубления канала

пробоя, если на поверхности породы имеются электропроводящие включения или эта поверхность сложена из диэлектрических включений массивной текстуры. В этом случае исключить перекрытие разряда по поверхности практически невозможно. Если про-изошло перекрытие межэлектродного промежутка, то электропроводность поверхности возрастает в несколько раз и дальнейшие разряды проходят через след первого разряда, увеличивая его проводимость.

ба в полной мере относятся к устройству для его осуществления, выполненному в виде двух электродов, размещенных на поверхности разрушаемой породы. Кроме того, при увеличении расстояния между электродами до величины напряженности поля Е 🗲 🗪 где Е - напряженность поля между электродами; Епер- напряженность поля, при которой происходит перекрытие межэлектродного промежутка по воздуху, перекрытие разрядом или электрической дугой межэлектродного промежутка не происходит, но и отсутствует пробой породы, что приводит к отсутствию отбойки горной по-

BEST AVAILABLE COPY

ропы, снижению производительности и росту энергоемкости разрушения.

Наиболее близким по технической сущности и достигаемому результату и изобретению является способ разрушения горных пород путем электродинамического воздействия на породинамического воздействия на породу, который осуществляют устройством для разрушения горных пород, включающим раму с электродами, которые установлены с возможностью продольного и поперечного перемещения [2].

Однако эффективность разрушения горных пород остается ниэкой, так как часто между электродами нахо-дятся породы приблизительно одинакового электрического сопротивления и тогда, при подаче импульса электрической энергии, она выделяется на нескольких парах электродов, что приводит к ее длительному выделению (растеканию) без электродинамического разрушения горной породы. Эффективность разрушения резко снижается, возрастает энергоемкость и себестоимость разрушения.

Цель изобретения - повышение эффективности разрушения за счет предварительного ослабления породы.

Указанная цель достигается тем, что на горную породу воздействуют инфракрасным излучением, определяют месторасположение и величину трещин, а электродинамическое воздействие осуществляют в места наибольшей трещиноватости. Устройство для разрушения горных пород снабжено нагревателями инфракрасного излучения и акустическими датчиками контроля трещиноватости, при этом нагреватели установлены на раме, а между электродами и нагревателями смонтирован экран.

На. фиг. 1 изображено предлагаемое устройство, вид сбоку; на фиг. 2 - то же, вид сверху; на фиг. 3 - разрез A-A на фиг. 2.

Устройство для осуществления способа разрушения горных пород имеет несущую раму 1 и расположенные на ней нагреватели инфракрасного излучения 2. (см. фиг. 1-3), экран 3 размещен между последним рядом нагревателея 2 и электродами 4, которые установлены с возможностью продольного и поперечного перемещения относительно рамы 1. Через проходной изолятор 5 подводится кабель для питания электродов 4, на которых установлены датчики 6 акустического контроля, весь этот узел полвешен к диэлектрическому ползуну 7 с попереч-- ными относительно рамы 1 вырезами, которыя, в свою очередь, размещен на диэлектрических направляющих в с продольными вырезами, укрепленными на опорных изоляторах 9. В передней части устройства мениу нагревателями 2 размещены колеса 10, удерживающие раму 1 с нагревателями 2 на заданном расстоянии от поверхности горной породы. Разрушенная горная порода сразу подбирается съемным ковшом 11, который закреплен на раме 1.

Устройство работает следующим об-

Устройство устанавливают на поверхность породы, включают в сеть нагреватели 2, выводят их на заданный температурный режим и после двужминутного прогрева (в среднем) поверхности породы начинают двигать его в направлении разрушения со скоростью, позволяющей облучать новые участки породы не менее двух минут. Электроды 4.. с акустическими датчиками 6 имеют возможность продольного перемещения относительно рамы 1, что позволяет установить наибольшую трешиноватость породы на облученной поверхности. Электроды 4 останавливают и на них подают импульс электрического тока с пробивной напряженностью, достаточной для поляризации механических дефектов и пробоя канала на некоторой глубине. Выделяющаяся в канале пробоя импульсная электрическая энергия осуществляет динамическое отделение разрушенной породы от массива, которая и грузится в ковш 11. Установленный между нагревателями 2 и электродами 4 экран 3 предохраняет нагреватели от механических ударов горной породы, разрушенной электрическими импульсами. Скорость перемещения устройства выбирается в соответствии с запанной производительностью отбойки, причем учитывается необходимость нагрева породы в течение определенного времени, чтобы создать некоторую тоящину прогретого слоя. Таким образом, способ разрушения горных пород включает следующие операции, производимые в указанной последовательности: 1 предварительное воздействие на породу инфракрасным излучением, 2 - определение месторасположения и величины трения, образованных в результате 1-й операции, 3 - электродинамическое воздействие на породу для ее отделения от массива, причем это воздействие осуществляют в местах наибольшей треминоватости.

при этом имеет место следующая физическая сущность разрушения.

В результате местного нагрева по плошали и на некоторую глубину, зависящую от теплопроводности породы, возникают сжимающие термические напряжения с максимумом по периметру площади нагрева и растягивающие на контакте прогретоя породы на некоторой глубине с нагретой, причем вектор растягивающих напряжения направлен перпендикулярно нагретой поверхности горной породы. Возникающие термические напряжения достигают

соответствующего предела прочности горной породы, возникают трешины различной ширины, в том числе и направленные вглубь породы и образующие заколы, образуются каверны из-за испарения и плавления низкотемпературных включений. Все эти нарушения приводят к потере прочности горной породой, но отделения разрушенной породы от массива не происходит из-за трения возникающих отдельностей по границам трещин.

Наибольшее скопление трешин обнаруживают при продольном перемещении электродов с датчиками по наименьшей величине скорости продольных акустических волн.

При наложении импульсного электрического поля на электроды и создании некоторой напряженности поля борта трещин и других механических
дефектов поляризуются и возникающие
заряды накапливаются во время импульсного электрического разряда на
указанных дефектах и создают собственный потенциал, величина которого
может составлять 80-90%, от величины наложенного поля.

Пробой дефектов происходит не по поверхности породы, где ширина тре шин наибольшая, а на некоторой глубине, которая может достигать до 1/3, где t - расстояние между электродами. Скопившиеся заряды создают поле, достаточное для пробоя сузившейся трещины. Пробой трешин и других дефектов на глубине приводит к снижению электрического сопротивления или потере электрической прочности объема горной породы, которая становится меньше, чем сопротивление - поверхности. Это создает благоприятные условия для развития канала пробоя на указанной глубине с выделением в нем импульсной электрической энергии и динамического отделения ранее ослабленной инфракрасным излучением горной породы от массива.

Поскольку процесс нагрева и определения месторасположения и величины трешин осуществляется на большой площади непрерывно, а импульсы электрического тока накладываются с частотой до 1Гц, то процесс разрушения практически непрерывен, что создает объективные условия для применения его при поточной технологии.

Формула изобретения

1. Способ разрушения горных пород путем электродинамического воздействия на породу, о т л и ч а ю щ и йсся тем, что, с целью повышения эффективности разрушения за счет предварительного ослабления породы, на горную породу воздействуют инфракрасным излучением, определяют месторасположение и величину трешин, а электродинамическое воздействие осуществляют в места наибольшей трешиноватости.

2. Устройство для осуществления способа по п.1, включающее раму с электродами, которые установлены с возможностью продольного и поперечного перемещения, о т л и ч а ю щ еее с я тем, что оно снабжено нагревателями инфракрасного излучения и акустическими датчиками контроля трещиноватости, при этом нагреватели установлены на раме, а между электродами и нагревателями смонтирован экран.

Источники информации, принятые во внимание при экспертизе 1. Авторское свидетельство СССР № 341944, кл. Е 21 С 37/18, 1970. 2. Авторское свидетельство СССР Е 21 С 37/18, 1973.

40

Составитель О.Серегина Техред Ж. Кастелевич Корректор С. Щомак

Редактор Н.Ромжа

Тираж 627

Подписное

Заказ 2727/18 ВНИИПИ Государственного комитета СССР по делам изобретения и открытия 113035, Москва, ж-35, Раушская наб., д. 4/5 EP 0397236 NOV 1990

90-343212/46 LO1 U11 X24 PHIG 08.05.89 PHILIPS GLOEILAMPEN NV *EP -397-236-A 08.05.89-NL-001143 (14.11.90) B23k-26 B26f-03/06 B28d-01/22 C03b-33/09 H011-21/30

Cleaving plate of brittle material - by traversing heated zone located asymmetrically relative to cutting line
C90-148779 R(DE FR GB IT)

A plate of brittle material is divided asymmetrically along a cutting line extending from a crack initiation in one edge by localised application of heat to at least one surface whereby a crack is propagated. The heat is applied asymmetrically with respect to that line.

Pref. a spot-shaped heat zone and the plate are moved relatively to one another so that the spot follows the cutting line. The deviation of the crack from the line is monitored and the realtive movement adjusted accordingly, both as to speed of travel and lateral displacement of the spot from the cutting line.

In an alternative embodiment a linear heat source is used having a shape corresponding to that of the cutting line.

ADVANTAGE

When the plate is divided asymmetrically differing stresses are developed on opposite sides of the tip of the crack,

L(1-G7)

and as a result the crack tends to diverge from the desired path. This deviation can be overcome by locating the heat source asymmetrically to the line to equalise the stresses.

EMBODIMENT

Heat spot produced by energy source (5) is caused to traverse plate (3) along cutting line (7), the spot being offset to one side of the line. The plate region round the crack tip is monitored by video camera (13) and the image processed to produce control data for the speed and position of the spot. (5pp461HPDwgNo2/7).

EP-397236-A

© 1990 DERWENT PUBLICATIONS LTD.

128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
Suite 303, McLean, VA22101, USA
Unauthorised copying of this abstract not permitted.