TUTORIAL 2 SEQUENTIAL LOGIC CIRCUIT

Overview

- We will review the following concept in this tutorial:
- Sequential logic circuits
 - Have memory
 - □ Output depends on the current input(s) and value stored in the memory (called *state*)
- Clock
- Timing diagram
 - □ To describe the behavior of the circuit along time
- Work with a few practical examples
 - ☐ S-R latch and D latch with NAND gates
 - □ Edge-triggered D flip-flop
 - Register
 - Binary counter

Clock

- A clock acts as a global signal that gives all the components in the system an indication of time.
- Clock is used in sequential logic to decide and co-ordinate state updates.
- A clock signal has three important key words that you need to know:

S-R Latch: the Simplest Memory Element

- A S-R latch (Set-Reset latch) using NOR gates shown below is the simplest memory element.
- Un-clocked memory element (Asynchronous device)

S	R	Action on Q
0	0	latched
0	1	Q = 0
1	0	Q = 1
1	1	forbidden

Question: How does this circuit "stores" information? What is the size of the information being stored?

S-R Latch with NAND Gates

- S-R latch (Set-Reset latch) can also be implemented by NAND gates
- Un-clocked memory element (Asynchronous device)

$\bar{\mathcal{S}}$	$ar{R}$	Action on Q
0	0	forbidden
0	1	Q = 1
1	0	Q = 0
1	1	latched

Note

- □ S-R NAND latch is an inverted version of S-R NOR latch. Thus, the truth table is also inverted.
- ☐ The input signal is effective when it is de-asserted.

A Clocked Memory Element: D-latch

- The value stored in a D-latch can be updated iff the clock is asserted (i.e. C=1).
- An implementation using NOR gates is shown below. S-R latch (Set-Reset latch) can also be implemented NAND gates

C (Clock)	D	Action on Q	
0	0	Nothing changed	
0	1	Nothing changed	
1	0	Q = 0	
1	1	Q = 1	

Note

- □ the S-R latch on the right part of the D-latch circuit.
- ☐ From the circuit, argue whether it is possible to do update when the clock is not asserted?

D-latch with NAND Gates

- D latch can also be implemented with NAND gates as shown in below figure.
 - Clocked memory element (Synchronous device)

C (Clock)	D	Action on Q	
0	0	Nothing changed	
0	1	Nothing changed	
1	0	Q = 0	
1	1	Q = 1	

$$Q = (D \ nand \ C) \ nand \ \overline{Q}, \qquad \overline{Q} = (\overline{D} \ nand \ C) \ nand \ Q.$$

$$\overline{Q} = (\overline{D} \text{ nand } C) \text{ nand } Q.$$

D Flip-flop

- A D Flip-flop can be updated only on a falling/rising clock edge.
 - ☐ There are many ways to create a D flip flop, the figure below (from the lecture notes) shows a D flip flop created from two D latches.

- Question: Can this flip-flop be updated on a rising or falling clock edge?
- Question: Without adding new hardware (wires are OK), how to modify the device so that it can be updated on the other clock edge?

Exercise

- Given the input (D) and clock transitions (Clk) of the Figure below, determine the output of the device if it is a:
 - ☐ (a) Falling-edge triggered D flip flop.
 - □ (b) Rising-edge-triggered D flip-flop.

Solution

Register File

- A register file is a piece of hardware that allows reading from and writing to the desired registers.
- It is usually implemented by way of fast static RAMs with multiple ports.

- How do you read from a register (what are the inputs)?
- How do you write to a register (what are the inputs)?

Synchronous Binary Counters

- Synchronous digital circuit Binary counter with 2-bit memory
 - □ Only has clock signal as input
 - At each clock pulse, the counter takes up a new state and thus goes through a specific count sequence.
 - ☐ The block diagram, structure and state transition diagram of a two-bit binary counter is of the following form.
 - Design the state sequencing logic which consists of the two combinational circuits labelled Circuit 1 and Circuit 2.

Truth Table and K-map

Step 1: Construct the truth table (or transition table)

Inputs (t_n)		Outputs (t_{n+1})	
Q_1	Q_2	D_1	D_2
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Step 2: Construct the corresponding K-map

Truth Table and K-map

Step 3: Simplified logic function

Step 4: Circuit design

