# Unidade II: Somatórios (∑)



Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

#### Agenda

- Motivação ∑
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

# Principal Motivação na Ciência da Computação

• Levantamento de custo (e.g., tempo e memória) de algoritmos

 O custo de um algoritmo é a soma dos custos das suas operações

• Mostre o somatório dos n primeiros números inteiros

Mostre o somatório dos n primeiros números inteiros



```
Ciência da Computação
```

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
i ≤ n
∑ i
i = 1
```

Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```



Mostre o somatório dos n primeiros números inteiros



Ciência da Computação

```
Matemática
```

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

condição de parada



Mostre o somatório dos n primeiros números inteiros



Ciência da Computação

```
Matemática
```

```
int somatorio(int n){
   int soma = 0;
   for(int i = 1; i <= n; i++){
      soma += i;
   }
   return soma;
}</pre>
```



 O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
    }
    swap(menor, i);
}
```

 O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
     }
     swap(menor, i);
}
```

| i                     | 0   | 1   | 2   | 3   | n-2   |
|-----------------------|-----|-----|-----|-----|-------|
| c(i) =<br>(n - (i+1)) | n-1 | n-2 | n-3 | n-4 | <br>1 |

$$\sum_{i=0}^{n-2} (n - i - 1)$$

#### Agenda

- Motivação
- Notação ∑
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais













# Variações da Notação Sigma

$$\sum_{i=1}^{i \le n} a_i = \sum_{1 \le i \le n}^{n} a_i = \sum_{1 \le i \le n}^{i \le n} a_i$$

$$\sum_{n=1}^{4} n^2 = ?$$



#### Escolha 1 resposta:

$$1+2+3+4$$

$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

$$\sum_{n=1}^{4} n^2 = ?$$



#### Escolha 1 resposta:

$$1+2+3+4$$



$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

$$\sum_{1}^{4} 3i = ?$$

$$\sum_{1}^{4} 3i = ?$$

Neste material, a menos que dito o contrário, a notação  $\sum_{1}^{n}$  incrementa o índice i. Para evitar ambiguidade, podemos usar a notação  $\sum_{1}^{n}$ 

$$\sum_{1}^{4} 3i = (3.1) + (3.2) + (3.3) + (3.4) = 30$$



$$\sum_{1}^{4} 3i = 3 \cdot \sum_{1}^{4} i = 3 \cdot (1 + 2 + 3 + 4) = 30$$



$$\sum_{1}^{4} (3 - 2i) = ?$$

$$\sum_{1}^{4} (3 - 2i) = (3 - (2 . 1)) + (3 - (2 . 2)) + (3 - (2 . 3)) + (3 - (2 . 4)) = -8$$

$$\sum_{1}^{4} (3-2i) = \sum_{1}^{4} 3-2\sum_{1}^{4} i = (3+3+3+3)-2(1+2+3+4) = -8$$



$$\sum_{1}^{3} (2i + x) = ?$$

$$\sum_{1}^{3} (2i + x) = 2(1+2+3) + (x+x+x) = 12 + 3x$$



$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = ?$$

$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = 0 \cdot (-1) \cdot 5 + 1 \cdot 0 \cdot 4 + 2 \cdot 1 \cdot 3 + 3 \cdot 2 \cdot 2 + 4 \cdot 3 \cdot 1 + 5 \cdot 4 \cdot 0 = 0 + 0 + 6 + 12 + 12 + 0 = 30$$



Podemos afirmar que 
$$\sum_{0}^{5} i.(i-1).(5-i) = \sum_{2}^{4} i.(i-1).(5-i)$$
?

Podemos afirmar que 
$$\sum_{0}^{5} i.(i-1).(5-i) = \sum_{2}^{4} i.(i-1).(5-i)$$
?



Sim, pois como os termos  $a_0$ ,  $a_1$  e  $a_5$  são iguais a zero, o resultado dos dois somatórios é igual a  $(a_2 + a_3 + a_4)$ 

Considere a soma 4 + 25 + 64 + 121.

#### Qual expressão é igual à soma acima?



Escolha todas as respostas aplicáveis:

$$\sum_{i=0}^{3} (i^2 + 2i + 4)$$

$$\sum_{i=0}^{3} (3i+2)^2$$

Nenhuma das anteriores

Considere a soma 4 + 25 + 64 + 121.

#### Qual expressão é igual à soma acima?



Escolha todas as respostas aplicáveis:

$$\sum_{i=0}^{3} (i^2 + 2i + 4)$$

$$\sum_{i=0}^{3} (3i+2)^2 = (3x0+2)^2 + (3x1+2)^2 + (3x2+2)^2 + (3x3+2)^2 = 4+25+64+121$$

Nenhuma das anteriores

$$\sum_{m=1}^{4} 8k - 6m = ?$$



#### Escolha 1 resposta:

$$8k-6+8k-12+8k-18+8k-24$$

$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

$$\sum_{m=1}^{4} 8k - 6m = ?$$



#### Escolha 1 resposta:



$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência (∑)
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

# Somas e Relações de Recorrência

Calculamos uma soma usando, por exemplo, relações de recorrência

$$S_0 = a_0$$
  
 $S_n = S_{n-1} + a_n$ , para n > 0

As relações de recorrência serão discutidas em Teoria dos Grafos e Computabilidade (3813)

# Exemplo de Equação de Recorrência (1/2)

Quais são os valores da sequência abaixo?

# Exemplo de Equação de Recorrência (1/2)

Quais são os valores da sequência abaixo?



| i      | 0 | 1 | 2 | 3 | 4 | 5 |    |
|--------|---|---|---|---|---|---|----|
| fib(i) | 1 | 1 | 2 | 3 | 5 | 8 | :: |

# Exemplo de Equação de Recorrência (2/2)

Qual é a relação da equação abaixo?

# Exemplo de Equação de Recorrência (2/2)

Qual é a relação da equação abaixo?

$$fat(4) = ?$$

# Exemplo de Equação de Recorrência (2/2)

Qual é a relação da equação abaixo?

$$fat(1) = 1$$

$$fat(n) = n \cdot fat(n-1)$$

```
fat(4) = 4 \cdot fat(3)
```

$$fat(3) = 3 \cdot fat(2)$$

$$fat(2) = 2$$
.  $fat(1)$ , contudo, sabemos que  $fat(1) = 1$ 

#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas (∑)



- Somas Múltiplas
- Alguns Métodos Gerais

# Frase de [GRAHAM, 95]

A chave do sucesso na manipulação de somas está na habilidade de transformar uma soma em outra mais

simples ou mais perto de algum objetivo



#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas



- Somas Múltiplas
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas



- Somas Múltiplas
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

- Distributividade
- Associatividade
- Comutatividade

 Distributividade: permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Por exemplo, por distributividade,  $c.a_{-1} + c.a_0 + c.a_1 = c.(a_{-1} + a_0 + a_1)$ 

 Distributividade: permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Também se aplica à divisão

$$\sum_{i \in I} \frac{a_i}{c} = \frac{1}{c} \cdot \sum_{i \in I} a_i$$

 Associatividade: permite quebrar um somatório em duas partes ou combinar dois somatórios em um

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Por exemplo, por associatividade,  $(a_{-1} + b_{-1}) + (a_0 + b_0) + (a_1 + b_1) =$  $(a_{-1} + a_0 + a_1) + (b_{-1} + b_0 + b_1)$ 

 Associatividade: permite quebrar um somatório em duas partes ou combinar dois somatórios em um

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Também se aplica à subtração

$$\sum_{i \in I} (a_i - b_i) = \sum_{i \in I} a_i - \sum_{i \in I} b_i$$

• Aplique associatividade para unificar os dois somatórios abaixo:

$$\sum_{3}^{n} a_{i} + \sum_{1}^{n} b_{i}$$

Aplique associatividade para unificar os dois somatórios abaixo:

$$\sum_{3}^{n} a_{i} + \sum_{1}^{n} b_{i}$$



= 
$$(a_3 + a_4 + a_5 + ... + a_n) + (b_1 + b_2 + b_3 + ... + b_n)$$

$$= b_1 + b_2 + \sum_{i=3}^{n} (a_i + b_i)$$

$$= -a_1 - a_2 + \sum_{i=1}^{11} (a_i + b_i)$$

Comutatividade: permite colocar os termos em qualquer ordem

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

Por exemplo, por comutatividade,  $a_{-1} + a_0 + a_1 = a_1 + a_{-1} + a_0$ 

# Exemplo de Aplicação da Comutatividade

 Os programas abaixo apresentam o mesmo resultado devido a regra de comutatividade

```
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
soma += mat[i][j];
```

```
for(int j = 0; j < n; j++)
  for(int i = 0; i < n; i++)
    soma += mat[i][j];</pre>
```

```
for(int i = n-1; i >= 0; i--)
for(int j = n-1; j >= 0; j--)
soma += mat[i][j];
```

Distributividade

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Associatividade

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Comutatividade

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) ( ) 
$$\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3$$
;

b) ( ) 
$$\sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c) ( ) 
$$\sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d) 
$$\left( \right) \sum_{k=0}^{12} k^p = \left( \sum_{k=0}^{12} k \right)^p$$
;

e) ( ) 
$$\sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t$$
.

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) 
$$( ) \sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3;$$

b) 
$$(\mathbf{X}) \sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c) 
$$(1) \sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d) 
$$(\mathbf{X}) \sum_{k=0}^{12} k^p = \left(\sum_{k=0}^{12} k\right)^p;$$

e) 
$$(\checkmark) \sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t.$$

 Prove que os somatórios abaixo são iguais. Em sua resposta use a propriedade comutativa

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

 Prove que os somatórios abaixo são iguais. Em sua resposta use a propriedade comutativa

$$\sum_{0 \le i \le 4} (3 + 2.i) = \sum_{0 \le i \le 4} (3 + 2.(4-i))$$

No primeiro somatório temos (3 + 2.0) + (3 + 2.1) + (3 + 2.2) + (3 + 2.3) + (3 + 2.4) e no segundo, (3 + 2.[4-0]) + (3 + 2.[4-1]) + (3 + 2.[4-2]) + (3 + 2.[4-2]) + (3 + 2.[4-3]) + (3 + 2.[4-4]). Logo, por comutatividade, temos o mesmo somatório alterando apenas a ordem dos elementos.

#### Observação

Dado o exercício anterior, podemos afirmar que:

$$\sum_{0 \le i \le n} (3 + 2.i) = \sum_{0 \le i \le n} (3 + 2.(n-i))$$

• Nesse caso, no primeiro somatório, temos (3 + 2.0) + (3 + 2.1) + (3 + 2.2) + (3 + 2.3) + ... + (3 + 2.n) e no segundo, (3 + 2.[n-0]) + (3 + 2.[n-1]) + (3 + 2.[n-2]) + ... + (3 + 2.[n-n]). Logo, por comutatividade, temos o mesmo somatório alterando apenas a ordem dos elementos

Note que o (n-i) "simula" um decremento no valor de i

#### Lembrete

 Uma PA é uma sequência cuja diferença (razão) entre dois termos consecutivos é constante

O termo inicial, é o a e

A razão é b . i onde b uma constante e i a ordem do termo

Por exemplo, na sequência 5, 7, 9, 11, 13, ..., os valores a e b são 5 e
2, respectivamente. Logo, temos: (5 + 2.0), (5 + 2.1), (5 + 2.2), (5 + 2.3), (5 + 2.4), ...

• Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

• Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...



Os valores a e b são 1 e 3, respectivamente, logo, temos:

$$1 + 3 \cdot 0 = 1$$

$$1 + 3 \cdot 1 = 4$$

$$1 + 3 \cdot 2 = 7$$

$$1 + 3 \cdot 3 = 10$$

$$1 + 3 \cdot 4 = 13$$

. . .

 Aplique as regras de transformação para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PA

$$S_n = \sum_{0 \le i \le n} a + b.i$$

 Aplique as regras de transformação para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PA

$$S_n = \sum_{0 \le i \le n} a + b.i$$

 Aplicando a comutatividade, podemos somar do maior para o menor, trocando i por (n-i):

$$S_n = \sum_{0 \le (n-i) \le n} [a + b.(n-i)] = \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como  $S_n = \sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$ , podemos afirmar que:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como  $S_n = \sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$ , podemos afirmar que:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

Aplicando associatividade, podemos combinar os dois somatórios:

$$2S_n = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i]$$

• Como S =  $\sum_{0 \le i \le n}$  [a + b.i] =  $\sum_{0 \le i \le n}$  [a + b.n - b.i], podemos afirmar que:

$$2S = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

Aplicando associatividade, podemos combinar os dois somatórios:

$$2S_{n} = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i] = \sum_{0 \le i \le n} [2.a + b.n]$$

• Simplificando, temos

Usando distributividade, temos:

$$2S_n = \sum_{0 \le i \le n} [2.a + b.n] = (2.a + b.n) \cdot \sum_{0 \le i \le n} 1$$

Lembre que [2.a + b.n] não depende de i, logo, pode "sair" do somatório

Substituindo o somatório:



• Substituindo o somatório:

$$2S_n = (2.a + b.n)(n+1)$$

Substituindo o somatório:

$$2S_n = (2.a + b.n)(n+1)$$

Dividindo por dois, temos:

$$S_n = \sum_{0 \le i \le n} [a + b.i] = (2a + bn)(n+1)$$

• Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de  $0 + 1 + 2 + 3 + ... + n = \sum_{0 \le i \le n} i$ 

• Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de  $0 + 1 + 2 + 3 + ... + n = \sum_{\substack{0 \le i \le n}} i$ 

Resposta: Nesse caso, temos uma progressão cujos valores a e b são zero e um, respectivamente

$$S_{n} = \sum_{0 \le i \le n} [0 + 1.i] = (2.0 + 1.n).(n+1) = \underline{n.(n+1)}$$
2



Dada a fórmula fechada do somatório dos *n* primeiros números inteiros,
 mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

Dada a fórmula fechada do somatório dos *n* primeiros números inteiros,
 mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
int somatorio(int n){
    return ((n * (n+1))/2);
}
```



## Exercício (1)

 Faça um método int somatorioPA(double a, double b, int n) que retorna o somatório dos n primeiros termos de uma PA com termo inicial a e razão b.

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Aplicando associatividade, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = \sum_{0 \le i \le n-2} n - \sum_{0 \le i \le n-2} i - \sum_{0 \le i \le n-2} 1$$



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• Simplificando, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - \sum_{0 \le i \le n-2} i - (n-1)$$



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Sabendo que:

$$\sum_{0 \le i \le n} i = \underline{n(n+1)} \implies \sum_{0 \le i \le n-2} i = (\underline{n-2})(\underline{n-1})$$



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (\underline{n-2})(\underline{n-1}) - (\underline{n-1})$$



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Assim, temos:



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

· Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (n-2)(n-1) - (n-1)$$

$$= 2n(n-1) - (n-2)(n-1) - 2(n-1)$$

$$= 2n^2 - 2n - [n^2 3n + 2] - 2n + 2$$



• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos que ele realiza  $\sum_{0 \le i \le n-2} (n - i - 1)$  comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

· Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (n-2)(n-1) - (n-1)$$

$$= 2n(n-1) - (n-2)(n-1) - 2(n-1)$$

$$= 2n^2 - 2n - [n^2 - 3n + 2] - 2n + 2$$

$$= \frac{n^2}{2} - \frac{n}{2} = \Theta(n^2)$$



• Justifique a igualdade:

$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

Justifique a igualdade:

$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

Resposta: Os dois somatórios são iguais, entretanto, o segundo faz uma soma a mais que é com seu primeiro termo cujo valor é zero.



Justifique a diferença:

$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

Justifique a diferença:

$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

Resposta: Os somatórios são diferentes, porque, não necessariamente, o primeiro termo (a<sub>0</sub>) é igual a zero



• Justifique a igualdade:

$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Justifique a igualdade:

$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Resposta: O resultado dos dois somatórios é  $(a_1 + a_2 + a_3 + ... + a_n)$ 



 Por que a primeira fórmula é mais adequada? (Dica: mostre os termos quando i = 0, 1, 2, 3, 4, 5, ..., n-1 e n)

$$\sum_{i=2}^{n-1} i \cdot (i-1) \cdot (n-i) = \sum_{i=0}^{n} i \cdot (i-1) \cdot (n-i)$$

Por que a primeira fórmula é mais adequada? (Dica: mostre os termos quando i = 0, 1, 2, 3, 4, 5, ..., n-1 e n)

$$\sum_{i=2}^{n-1} i \cdot (i-1) \cdot (n-i) = \sum_{i=0}^{n} i \cdot (i-1) \cdot (n-i)$$



Resposta: O primeiro somatório desconsidera os termos a<sub>0</sub>, a<sub>1</sub> e a<sub>n</sub> cujo valor é zero.

#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas



- Somas Múltiplas
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

# Propriedade (P1): Combinando Conjuntos

 Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cup I'} a_i + \sum_{i \in I \cap I'} a_i$$

# Propriedade (P1): Combinando Conjuntos

 Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cup I'} a_i + \sum_{i \in I \cap I'} a_i$$

Observe que a união garante todos os elementos e a interseção, os repetidos

# Propriedade (P1): Combinando Conjuntos

 Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cup I'} a_i + \sum_{i \in I \cap I'}$$

Observe que a união garante todos os elementos e a interseção, os repetidos

Se A = 
$$\{1, 2, 3\}$$
 e B =  $\{3, 5, 7\}$ , então A  $\cup$  B =  $\{1, 2, 3, 5, 7\}$  e A  $\cap$  B =  $\{3\}$ 

# Aplicando P1 em Conjuntos Quase Disjuntos

$$\sum_{1}^{m} a_{i} + \sum_{m}^{n} a_{i} = a_{m} + \sum_{1}^{n} a_{i}, 1 \le m \le n$$

## Exercício (2)

Aplique P1 para unificar os somatórios abaixo

$$\sum_{1}^{m-3} a_{i} + \sum_{m}^{n} a_{i} = a_{m} + \sum_{1}^{n} a_{i}, 1 \le m \le n$$

• Dada uma soma genérica qualquer  $S_n = \sum_{0 \le i \le n} a_i$ 

$$S_{n+1} = S_n + a_{n+1}$$

2a Forma  

$$S_{n+1} = \sum_{0 \le i \le n+1} a_0 + \sum_{1 \le i \le n+1} a_i$$

• Dada uma soma genérica qualquer  $S_n = \sum_{0 \le i \le n} a_i$ 

$$S_{n+1} = S_n + a_{n+1}$$

2a Forma  

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_i = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

• Dada uma soma genérica qualquer  $S_n = \sum_{0 \le i \le n} a_i$ 

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Em ambos: 
$$a_1 + a_2 + a_3 + a_4 + ... + a_{n+1}$$

• Dada uma soma genérica qualquer  $S_n = \sum_{0 \le i \le n} a_i$ 

$$S_{n+1} = S_n + a_{n+1}$$

2a Forma
$$S_{n+1} = \sum_{0 \le i \le n+1} = a_0 + \sum_{1 \le i \le n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

# Propriedade (P2): Base para a Perturbação

• Dada uma soma genérica qualquer  $S_n = \sum_{0 \le i \le n} a_i$ 

• Podemos reescrever  $S_{n+1} = a_0 + a_1 + a_2 + ... + a_{(n+1)}$  de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

# Propriedade (P2): Base para a Perturbação

Resumindo, temos as duas igualdades:

$$S_{n+1} = S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

$$1^a \text{ Forma}$$
Na prática, para perturbar, resolveremos a igualdade abaixo
$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Isso, frequentemente, resulta na equação fechada para S<sub>n</sub>

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$a_i = a.x^i$$
 COLA

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$= S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_{n+1} = S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n = S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Aplicando  
a distributiva  

$$x \cdot \sum_{0 \le i \le n} (a.x^i)$$

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

$$S_{n+1} = S_n + a.x^{n+1} = a.x^0 + x \sum_{0 \le i \le n} (a.x^i)$$

Aplicando  $x \cdot \sum_{0 \le i \le n} (a.x^{i})$  a distributiva

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x^0 + x\sum_{0 \le i \le n} (a.x^i)$$
Sabendo
$$x \cdot \sum_{0 \le i \le n} (a.x^i) = x.S_n$$

$$0 \le i \le n$$

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$



Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n = S_n + a.x^{n+1} = a.x^0 + xS_n = a.x^0$$

Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$



Aplique P2 para obter a fórmula fechada da soma S<sub>n</sub> dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

$$S_n + a.x^{n+1} = a.x + xS_n$$

• Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n$$

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1}$$

Invertendo o lado dos termos em vermelho

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$(1 - x) S_n = a - a.x^{n+1}$$

Colando S<sub>n</sub> em evidência

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$(1 - x) S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n = \underline{a - a.x}^{n+1}$$
, para x \neq 1  
1 - X

Invertendo o lado de (1-x)

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$(1 - x) S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n = \underline{a - a.x}^{n+1}$$
, para  $x \ne 1 \Rightarrow 1 - x$ 

$$S_n = \sum_{i \le n} a_i x^i = \underline{a - a_i x^{n+1}}, \text{ para } x \ne 1$$
  
 $0 \le i \le n$   $1 - x$ 

Fazendo algebrismo, temos:

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$(1 - x) S_n = a$$

$$S_n = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0$$

$$S_n = \sum_{i \le n} a_i x^i = \underline{a - a_i x^{n+1}}, \text{ para } x \ne 1$$
  
 $0 \le i \le n$   $1 - x$ 

• Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i.2^i$$

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

#### Aplicando P2, temos:

$$S_n + (n+1).2^{n+1} = 0.2^0 + \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$a_i = i.2^i$$
 COLA

$$S_n = \sum_{0 \le i \le n} i.2^i$$

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$



Aplicando P2, temos:





• Como  $0.2^0 = 0$ , temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$



Aplicando associatividade, temos:

$$S_{n} + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$\sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$



Aplicando associatividade, temos:





Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

Lembre que  $2^{i+1} = 2 \times 2^{i}$ 

Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} i.2^i + \sum_{0 \le i \le n} 2^i$$



Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = 2\sum_{0 \le i \le n} i.2^i + 2\sum_{0 \le i \le n} 2^i$$



Substituindo S<sub>n</sub>, temos:

$$S_n + (n+1).2^{n+1} = 2\sum_{0 \le i \le n} + 2\sum_{0 \le i \le n} 2^i$$

$$S_{n} = \sum_{0 \le i \le n} i.2^{i}$$



Substituindo S<sub>n</sub>, temos:





Substituindo S<sub>n</sub>, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + 2\sum_{0 \le i \le n} 2^{i}$$



• E agora José?

$$S_n + (n+1).2^{n+1} = 2.S_n + 2 \sum_{0 \le i \le n} 2^i$$

E agora José?



Vimos que:





Logo:





Logo:





Logo:





 $0 \le i \le n$  1 - 2 -1

• Logo:





Logo:



• Fazendo algebrismo, temos:

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1)$$



• Fazendo algebrismo, temos:

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n$$

Invertendo os termos em vermelho de lado



• Fazendo algebrismo, temos:

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2$$

Invertendo S<sub>n</sub> de lado



• Fazendo algebrismo, temos:

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2$$

Resolvendo (n+1).2<sup>n+1</sup>



Fazendo algebrismo, temos:

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} - 2^{n+1} + 2$$

Resolvendo 2<sup>n+1</sup> - 2.2<sup>n+1</sup>



Fazendo algebrismo, temos:

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} - 2^{n+1} + 2 \Rightarrow$$

$$S_n = (n-1).2^{n+1} + 2$$

Colocando 2<sup>n+1</sup> em evidência



• Finalmente:

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$



#### Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas ∑
- Alguns Métodos Gerais

## Somas Múltiplas

 Os termos de um somatório podem ser especificados por dois ou mais índices, por exemplo:

$$\sum_{1 \le i, j \le 3} a_i b_j = a_1 b_1 + a_1 b_2 + a_1 b_3 + a_2 b_1 + a_2 b_2 + a_2 b_3 + a_3 b_1 + a_3 b_2 + a_3 b_3$$

#### Somas Múltiplas

 Outra forma de representação é utilizando dois somatórios, por exemplo:

$$\sum_{1 \le i, j \le 3} a_i b_j = \left(\sum_{j \le 3} a_i\right) \left(\sum_{j \le 3} b_j\right)$$

#### Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- ◆ Alguns Métodos Gerais (∑



#### Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais (∑



#### Método Procure!!!

 Possivelmente, todos as fórmulas de somatórios que você precisará estão resolvidas na literatura, logo, procure





#### Método Procure!!!

 Possivelmente, todos as fórmulas de somatórios que você precisará estão resolvidas na literatura, logo, procure







#### Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais (∑



#### Somatório do Quadrado Perfeito

 Este material explica cada método mostrando a fórmula do somatório do quadrado perfeito dos n primeiros inteiros

$$S_n = \sum_{0 \le i \le n} i^2 = \underline{n (n+1)(2n+1)}, para n \ge 0$$

| n              | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7   | 8   | 9   | 10  | 11  | 12  |  |
|----------------|---|---|---|----|----|----|----|-----|-----|-----|-----|-----|-----|--|
| n <sup>2</sup> | 0 | 1 | 4 | 9  | 16 | 25 | 36 | 49  | 64  | 81  | 100 | 121 | 144 |  |
| S <sub>n</sub> | 0 | 1 | 5 | 14 | 30 | 55 | 91 | 140 | 204 | 285 | 385 | 506 | 650 |  |

 Se, em um passe de mágica (ou inspiração ou dedução), descobrimos a resposta, basta prová-la por indução matemática



#### Prova por Indução

• 1º Passo (passo base): Provar que a fórmula é verdadeira para o primeiro valor (na equação substituir n pelo primeiro valor)

• 2º Passo (indução propriamente dita): Supondo que n > 0 e que a fórmula é válida quando trocamos n por (n-1)

$$S_n = S_{n-1} + a_n$$

 $S_{n-1} = \acute{e}$  a equação substituindo n por (n-1)  $a_n = n-\acute{e}$ simo termo da sequência

Assim, temos a fórmula a ser provada:

$$S_n = \sum_{0 \le i \le n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
, para  $n \ge 0$ 

• 1º Passo (passo base):

$$S_0 = 0.(0+1).(2.0+1) = 0 \Rightarrow \text{verdadeiro}$$

$$S_n = S_{n-1} + a_n$$



$$S_{n-1} = (n-1) ((n-1)+1)(2(n-1)+1) = (n-1)(n)(2n-1)$$
6

$$S_n = S_{n-1} + a_n$$

• 2º Passo (indução propriamente dita):

$$S_n = S_{n-1} + a_n$$
  
 $S_n = (n-1)(n)(2n-1) + n^2$ 

Substituindo S<sub>n-1</sub> e a<sub>n</sub>

• 2º Passo (indução propriamente dita):

$$S_n = S_{n-1} + a_n$$
  
 $S_n = (n-1)(n)(2n-1) + n^2 \Rightarrow$   
 $6$   
 $6S_n = (n-1)(n)(2n-1) + 6n^2$ 

Multiplicando a equação por seis

$$S_n = S_{n-1} + a_n$$
  
 $S_n = (n-1)(n)(2n-1) + n^2 \Rightarrow$   
 $6$   
 $6S_n = (n-1)(n)(2n-1) + 6n^2 \Rightarrow$   
 $6S_n = (n^2-n)(2n-1) + 6n^2$ 
Resolvendo (n-1)(n)

#### • 2º Passo (indução propriamente dita):

$$S_{n} = S_{n-1} + a_{n}$$

$$S_{n} = (\underline{n-1})(\underline{n})(\underline{2n-1}) + n^{2} \Rightarrow 6$$

$$6S_{n} = (\underline{n-1})(\underline{n})(\underline{2n-1}) + 6n^{2} \Rightarrow 6$$

$$6S_{n} = (\underline{n^{2}-n})(\underline{2n-1}) + 6n^{2} \Rightarrow 6$$

$$6S_{n} = [\underline{2n^{3}-n^{2}-2n^{2}+n}] + 6n^{2}$$

Resolvendo (n²-n)(2n-1)

#### • 2º Passo (indução propriamente dita):

$$S_{n} = S_{n-1} + a_{n}$$

$$S_{n} = (n-1)(n)(2n-1) + n^{2} \Rightarrow$$

$$6$$

$$6S_{n} = (n-1)(n)(2n-1) + 6n^{2} \Rightarrow$$

$$6S_{n} = (n^{2}-n)(2n-1) + 6n^{2} \Rightarrow$$

$$6S_{n} = [2n^{3} - n^{2} - 2n^{2} + n] + 6n^{2} \Rightarrow$$

$$S_{n} = 2n^{3} + 3n^{2} + n$$

$$6$$

Resolvendo os termos com n<sup>2</sup> e invertendo o lado do "6"

$$S_{n} = S_{n-1} + a_{n}$$

$$S_{n} = (n-1)(n)(2n-1) + n^{2} \Rightarrow$$

$$6$$

$$6S_{n} = (n-1)(n)(2n-1) + 6n^{2} \Rightarrow$$

$$6S_{n} = (n^{2}-n)(2n-1) + 6n^{2} \Rightarrow$$

$$6S_{n} = [2n^{3} - n^{2} - 2n^{2} + n] + 6n^{2} \Rightarrow$$

$$S_{n} = 2n^{3} + 3n^{2} + n \Rightarrow$$

$$6$$

$$S_{n} = n(n+1)(2n+1)$$

$$6$$

$$cqd$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) =$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.



Usando associatividade



• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.



Sabendo o valor dos dois somatórios



• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.



Efetuando algebrismo



 Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) = \sum_{0}^{n} 3 + \sum_{0}^{n} i = \sum_{0}^{n} 3 + \sum_{0}^{n} i = \frac{3(n+1) + \frac{n(n+1)}{2}}{2} = \frac{6n + 6 + n^{2} + n}{2} = \frac{n^{2} + 7n + 6}{2}$$

Continuando nosso algebrismo



• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a



$$\sum_{0}^{n} (3+i) =$$

$$\sum_{0}^{n} 3 + \sum_{0}^{n} i =$$

$$3(n+1) + \frac{n(n+1)}{2} =$$

$$\frac{6n+6+n^2+n}{2} =$$

$$\frac{n^2 + 7n + 6}{2}$$

Prova por indução:

1) Passo base:



2) Indução propriamente dita:

Provando por indução

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{0}^{n} (3+i) =$$

$$\sum_{0}^{n} (3+i) = \sum_{0}^{n} 3 + \sum_{0}^{n} i = \sum_{0}^{n} 3 + \sum_{0}^{n}$$

$$3(n+1) + \frac{n(n+1)}{2} =$$

$$\frac{6n+6+n^2+n}{2} =$$

$$\frac{n^2+7n+6}{2}$$

Passo base

Prova por indução:

1) Passo base:

$$\frac{0^2 + 7.0 + 6}{2} = 3 \ (verdadeiro)$$



2) Indução propriamente dita:

 Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a Prova por indução: usando indução matemática.

1) Passo base:

$$\sum_{0}^{n} (3+i) =$$

$$\sum_{i=0}^{n} 3 + \sum_{i=0}^{n} i =$$

$$3(n+1) + \frac{n(n+1)}{2} =$$

$$\frac{6n+6+n^2+n}{2} =$$

$$\frac{n^2 + 7n + 6}{2}$$

Indução propriamente dita





2) Indução propriamente dita:

$$S_n = S_{n-1} + a_n$$

$$S_n = \frac{(n-1)^2 + 7(n-1) + 6}{2} + (3+n)$$

$$S_n = \frac{(n^2 - 2n + 1) + (7n - 7) + 6}{2} + \frac{2(3+n)}{2}$$

$$S_n = rac{(n^2 - 2n + 1) + (7n - 7) + 6 + (6 + 2n)}{2}$$
 $S_n = rac{n^2 + 7n + 6}{2} \; (verdadeiro) \; \; extbf{CQC}$ 

$$S_n = \frac{n^2 + 7n + 6}{2} \ (verdadeiro)$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

 Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i + 1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$



Resolvendo

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

#### usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^{2} + 4i + 1) - 4i^{2}] =$$

$$\sum_{1}^{n} [4i+1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$

Prova por indução:

1) Passo base:



2) Indução propriamente dita:

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

#### usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i+1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$

#### Prova por indução:

1) Passo base:

$$2.1^2 + 3.1 = 5 \ (verdadeiro)$$



2) Indução propriamente dita:

Passo base

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

#### usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i + 1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

 $2n^2 + 3n$ 

Indução propriamente dita

#### Prova por indução:

1) Passo base:

$$2.1^2 + 3.1 = 5 \ (verdadeiro)$$



2) Indução propriamente dita:

$$S_n = S_{n-1} + a_n$$

$$S_n = 2(n-1)^2 + 3(n-1) + (4n+1)$$

$$S_n = 2(n^2 - 2n + 1) + (3n - 3) + (4n + 1)$$

$$S_n = (2n^2 - 4n + 2) + (3n - 3) + (4n + 1)$$

$$S_n = 2n^2 + 3n \; (verdadeiro)$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

 Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

Resolvendo



 $10n^2 + 10n$ 

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

#### usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

$$10n^{2} + 10n$$

#### Prova por indução:

1) Passo base:



2) Indução propriamente dita:

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

#### usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

#### Prova por indução:

1) Passo base:

$$10.1^2 + 10.1 = 20 \ (verdadeiro)$$



2) Indução propriamente dita:

Passo base

 $10n^2 + 10n$ 

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

#### usando indução matemática.

$$\sum_{i=1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{i=1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{i=1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{i=1}^{n} [20i] =$$

 $20\frac{n(n+1)}{2} =$ 

$$10n^2 + 10n$$

Indução propriamente dita

#### Prova por indução:

1) Passo base:

$$10.1^2 + 10.1 = 20 \ (verdadeiro)$$



2) Indução propriamente dita:

$$S_n = S_{n-1} + a_n$$

$$S_n = 10(n-1)^2 + 10(n-1) + (20n)$$

$$S_n = 10(n^2 - 2n + 1) + (10n - 10) + 20n$$

$$S_n = (10n^2 - 20n + 10) + (10n - 10) + 20n$$

$$S_n = 10n^2 + 10n \ (verdadeiro)$$

 No Exercício Resolvido (24), encontramos a fórmula abaixo. Prove por indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

• No Exercício Resolvido (24), encontramos a fórmula abaixo. Prove por

indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

#### Prova por indução:

1) Passo base:

2) Indução propriamente dita:



No Exercício Resolvido (24), encontramos a fórmula abaixo. Prove por

indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

Prova por indução:

1) Passo base:

$$(0-1)2^{0+1} + 2 = 0$$
 (verdadeiro)

2) Indução propriamente dita:

Passo base



• No Exercício Resolvido (24), encontramos a fórmula abaixo. Prove por

indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

Indução propriamente dita

#### Prova por indução:

1) Passo base:

$$(0-1)2^{0+1} + 2 = 0 \ (verdadeiro)$$

2) Indução propriamente dita:

$$S_n = S_{n-1} + a_n$$

$$S_n = [((n-1)-1)2^{(n-1)+1}+2] + (n2^n)$$

$$S_n = (n-2)2^n + 2 + n2^n$$

$$S_n = (2n - 2)2^n + 2$$

$$S_n = (n-1)2^n 2 + 2$$

$$S_n = (n-1)2^{n+1} + 2 \ (verdadeiro)$$



### Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- ◆ Alguns Métodos Gerais (∑



#### Método: Perturbe a Soma

Aplicamos:

 Regras básicas de transformação (distributividade, associatividade e comutatividade)

Propriedades P1 e P2

• Aplique perturbação para encontrar a fórmula do somatório abaixo

$$S_n = \sum_{0 \le i \le n} i^2$$

Aplique perturbação para encontrar a fórmula do somatório abaixo

$$S_n = \sum_{0 \le i \le n} i^2$$

Aplicando P2, temos:

$$a_i = i^2$$
 COLA

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

$$S_n + a_{n+1} = 0^2 + \sum_{0 \le i \le n} (i+1)^2$$

• Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2$$

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1)$$

Resolvendo (i+1)<sup>2</sup>

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i^2 + 2i + 1) \Rightarrow$$

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} i^2 + \sum_{0 \le i \le n} 2i + \sum_{0 \le i \le n} 1$$



Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \implies$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \implies$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} i^{2} + \sum_{0 \le i \le n} 1$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} i^{2} + \sum_{0 \le i \le n} 1$$

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + \sum_{0 \le i \le n} 2i + \sum_{0 \le i \le n} 1$$

Substituindo

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + \sum_{0 \le i \le n} + \sum_{0 \le i \le n} 1$$
Duas vezes o somatório de Gauss, ou seja, n (n+1)

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + n(n+1) + \sum_{0 \le i \le n} 1$$

Substituindo

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + n(n+1) + \sum_{0 \le i \le n} 1$$

$$(n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + n(n+1) + (n+1)$$

Substituindo

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + n(n+1) + (n+1)$$

Temos um problema, pois

as somas se anulam...

E agora José?

Continuando, temos:

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i+1)^{2} \Rightarrow$$

$$S_{n} + (n+1)^{2} = \sum_{0 \le i \le n} (i^{2}+2i+1) \Rightarrow$$

$$S_{n} + (n+1)^{2} = S_{n} + n(n+1) + (n+1)$$

Temos um problema, pois

as somas se anulam...

... vamos tentar o

somatório dos cubos!!!

 Perturbando o somatório dos cubos para encontrar a fórmula fechada do somatório dos quadrados

$$SCUBO_{n} = \sum_{0 \le i \le n}^{3} i^{3}$$

Assim, aplicando P2 no somatório dos cubos, temos:

Scubo<sub>n</sub> + acubo<sub>n+1</sub> = 
$$0^3 + \sum_{0 \le i \le n} (i+1)^3$$

$$a_i = i^3$$
 COLA

$$S_n + a_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Assim, aplicando P2 no somatório dos cubos, temos:

Scubo<sub>n</sub> + acubo<sub>n+1</sub> = 
$$\sum_{0 \le i \le n} (i+1)^3 \Rightarrow$$
  
Scubo<sub>n</sub> +  $(n+1)^3 = \sum_{0 \le i \le n} (i^3+3i^2+3i+1)$ 

Resolvendo (i+1)<sup>3</sup>

Assim, aplicando P2 no somatório dos cubos, temos:

$$Scubo_{n} + acubo_{n+1} = \sum_{0 \le i \le n} (i+1)^{3} \Rightarrow$$

$$Scubo_{n} + (n+1)^{3} = \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$Scubo_{n} + (n+1)^{3} = \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$0 \le i \le n \quad 0 \le i \le n \quad 0 \le i \le n \quad 0 \le i \le n$$

Aplicando associatividade

Assim, aplicando P2 no somatório dos cubos, temos:

$$S_{CUBO_{n}} + a_{CUBO_{n+1}} = \sum_{0 \le i \le n} (i+1)^{3} \Rightarrow$$

$$S_{CUBO_{n}} + (n+1)^{3} = \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + (n+1)^{3} = \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i^{2}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

$$S_{CUBO_{n}} + \sum_{0 \le i \le n} (i^{3}+3i+1) \Rightarrow$$

Assim, aplicando P2 no somatório dos cubos, temos:

$$S_{CUBO_n} + a_{CUBO_{n+1}} = \sum_{0 \le i \le n} (i+1)^3 \Rightarrow$$

$$S_{CUBO_n} + (n+1)^3 = \sum_{0 \le i \le n} (i^3+3i^2+3i+1) \Rightarrow$$

$$S_{CUBO_n} + (n+1)^3 = \sum_{0 \le i \le n} i^3 + \sum_{0 \le i \le n} 3i^2 + \sum_{0 \le i \le n} 3i + \sum_{0 \le i \le n} 1 \Rightarrow$$

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + 3n(n+1) + (n+1)$$

Substituindo

#### Continuando:

$$Scubo_n + (n+1)^3 = Scubo_n + 3S_n + 3n(n+1) + (n+1) \Rightarrow 2$$

#### • Continuando:

Scubo<sub>n</sub> + (n+1)<sup>3</sup> = Scubo<sub>n</sub> + 3S<sub>n</sub> + 
$$\frac{3n(n+1)}{2}$$
 + (n+1)  $\Rightarrow$ 

$$(n+1)^3 = 3S_n + \frac{3n(n+1)}{2}$$
 + (n+1)

Eliminando Scubon

#### Continuando:

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + 3n(n+1) + (n+1) \Rightarrow 2$$

$$(n+1)^3 = 3S_n + 3n(n+1) + (n+1) \Rightarrow 2$$

$$6S_n = 2(n+1)^3 - 3n(n+1) - 2(n+1)$$

Multiplicando a equação por dois e invertendo S<sub>n</sub> de lado

#### Continuando:

$$Scubo_{n} + (n+1)^{3} = Scubo_{n} + 3S_{n} + 3n(n+1) + (n+1) \Rightarrow 2$$

$$(n+1)^{3} = 3S_{n} + 3n(n+1) + (n+1) \Rightarrow 2$$

$$6S_{n} = 2(n+1)^{3} - 3n(n+1) - 2(n+1) \Rightarrow 3n(n+1) - 3n^{2} - 3n - 2n - 2$$

Resolvendo expressão em vermelho

#### Continuando:

Scubo<sub>n</sub> + (n+1)<sup>3</sup> = Scubo<sub>n</sub> + 3S<sub>n</sub> + 
$$\frac{3n(n+1)}{2}$$
 + (n+1)  $\Rightarrow$ 

$$(n+1)^3 = 3S_n + \frac{3n(n+1)}{2} + (n+1)$$

$$6S_n = 2(n+1)^3 - 3n(n+1) - 2(n+1)$$

$$6S_n = 2(n^3 + 3n^2 + 3n + 1) - 3n^2 - 3n - 2n - 2$$

$$6S_n = 2n^3 + 6n^2 + 6n + 2 - 3n^2 - 3n - 2n - 2$$

Resolvendo expressão em vermelho

#### Continuando:

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + \frac{3n(n+1)}{2} + (n+1) \Rightarrow 2$$

$$(n+1)^3 = 3S_n + \frac{3n(n+1)}{2} + (n+1) \Rightarrow 3S_n + \frac{3$$

Resolvendo expressão em vermelho

em vermelho

#### Continuando:

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + 3n(n+1) + (n+1) \Rightarrow 2$$

$$(n+1)^3 = 3S_n + 3n(n+1) + (n+1) \Rightarrow 3S_n + 3n(n+1) + (n+1) \Rightarrow 3S_n + 3n^2 + 3n + 1) - 3n^2 - 3n - 2n - 2 \Rightarrow 3S_n = 2n^3 + 3n^2 + n \Rightarrow 3S_n + 3S_$$

# Exercício (2)

 Faça um vídeo explicando como encontramos o somatório dos quadrados perfeitos (tempo máximo de 5 minutos)

# Exercício (3)

 Um algoritmo de ordenação tradicional é o Inserção. Faça a análise de complexidade desse algoritmo para os números de comparações e movimentações entre registros no pior e melhor caso