السلسلة -2- بكالوريا الجزائر -2009-

التمرين الأول: (الشعبة: العلوم التجربية)

تتكون دارة كهربائية المبينة في الشكل -1- من العناصر التالية موصولة على التسلسل:

- . $E=6\ V$ مولد كهربائى توتره ثابت مولد
 - . $C=1.2\mu F$ مكثفة سعتها
 - . $R=2K\Omega$ ناقل أومى مقاومته
 - K قاطعة K

- . $C \cdot R \cdot E \cdot \frac{du_c(t)}{dt} \cdot u_c(t)$ بتطبيق قانون جمع التوترات أوجد المعادلة التفاضلية التي تربط بين $u_c(t)$
- . كحل لها $u_c(t)=E(1-e^{-rac{1}{R.C}})$: حقق إن كانت المعادلة التفاضلية المحصلة عليها تقبل العبارة
 - $^{-}$ حدد وحدة المقدار $^{-}$ ، ما مدلوله العملى بالنسبة لدارة الكهر بائية $^{+}$ أذكر اسمه
 - 4- أحسب قيمة التوتر الكهربائي $u_c(t)$ في اللحظات المدونة في الجدول التالي :

			-	• • • •	
t(ms)	0	6	12	18	24
$u_c(t)(V)$					

- . $u_c(t) = f(t)$ أرسم المنحنى البياني -5
- : أوجد العبارة الحرفية للشدة اللحظية للتيار الكهربائي i(t) بدلالة الحرفية للشدة اللحظية للتيار الكهربائي أوجد العبارة الحرفية المتحلقية المتحل
 - . $(t = \infty)$ و (t=0)
 - $(t=\infty)$ عبارة الطاقة الكهربائية المخزنة في المكثفة ، احسب قيمتها عندها -7 .

التمرين الثاني: (الشعبة: العلوم التجربية)

لدينا مكثفة $q=0.6 imes 10^{-6}C$ مشحونة مسبقا بشحنة كهربائية مقدر ها $q=0.6 imes 10^{-4}\mu$ ، وناقل أومي مقاومته $q=15K\Omega$ نحقق دارة الكهربائية على التسلسل باستعمال المكثفة والناقل الأومي وقاطعة K . في اللحظة Mنغلق القاطعة M

- 1- أرسم مخطط الدارة الموصوفة سابقا.
 - 2- مثل على المخطط:
- جهة مرور التيار الكهربائي في الدارة .
 - u_c و بين u_R و u_c .
- u_{c} التواضلية بدلالة u_{c} التوترات أوجد المعادلة التفاضلية بدلالة u_{c}
 - $u_c(t) = a.e^{bt}$: إن حل المعادلة التفاضلية السابقة هو من الشكل $b \cdot a$ عين يطلب تعين قيمة كل منهما $b \cdot a$
 - u_c أكتب العبارة الزمنية للتوتر u_c .
 - : -1- الشكل الشكل الشكل يا تسمح برسم البيان الشكل $u_c=f(t)$
- اشرح على البيان الطريقة المتبعة للتأكد من القيم المحسوبة سابقا (السؤال 5).

(الشعبة: رياضيات و تقنى رياضي

التمرين الثالث :

نربط على التسلسل العناصر الكهربائية التالية:

- E = 12 V مولد ذي توتر ثابت E = 12 V
- . $r=10\Omega$ مقاومتها L=300mH .
 - $_{\cdot}$. $R=110\Omega$ ناقل أومي مقاومته
 - قاطعة K الشكل -1-
 - : K نغلق القاطعة t=0
- أوجد المعادلة التفاضلية التي تعطى شدة التيار الكهربائي في الدارة .
- I_0 كيف يكون سلوك الوشيعة في النظام الدائم ؟ وما هي عندئذ عبارة شدة التيار الكهربائي I_0 الذي يجتاز الدارة I_0
 - -1- اعتبار العلاقة $i(t) = A(1 e^{-rac{t}{ au}})$ حلا للمعادلة التفاضلية المطلوبة في السؤال -1-
 - أ- أوجد العبارة الحرفية لكل من A و au .
 - بـ استنتج عبارة التوتر الكهربائي u_{BC} بين طرفي الوشيعة .
 - u_{BC} أ- أحسب قيمة التوتر الكهربائي u_{BC} في النظام الدائم .
 - ب- أرسم كيفيا شكل البيان $u_{BC}=f(t)$

(الشعبة: رياضيات و تقني رياضي ً

التمرين الرابع:

نحقق التركيب الكهربائي التجريبي المبين في الشكل المقابل باستعمال التجهيز

- مكثفة سعتها (C) غير مشحونة
- . $(R=R'=470\Omega)$ مقاومتیهما ومیین مقاومتیهما
 - $_{-}$ مولد ذي توتر ثابت (E)
 - بادلة (K) ، اسلاك توصيل .
- 1- نضع البادلة عند الوضع (1) في اللحظة t=0:
- أ- بين على الشكل جهة التيار الكهربائي المار في الدارة ثم مثل بأسهم
 - . u_c و u_R
- . q عبر عن u_c و u_c بدلالة شحنة المكثفة $q=q_A$ ثم أوجد المعادلة التفاضلية التي تحققها الشحنة q
- $E\cdot R\cdot C$ عبر عن A و A عبر عن A عبر عن A بدلالة A .
 - د- اذا كانت قيمة التوتر الكهربائي عند نهاية الشحن بين طرفي المكثفة (5V) ، استنتج قيمة (E)
 - . (C) استنتج سعة المكثفة كيا تخزن طاقة ($E_c=5mJ$) ، استنتج سعة المكثفة
 - 2- نجعل البادلة الآن عند الوضع (2):
 - أ- ماذا يحدث للمكثفة ؟
 - (K) البادلة (2) ألم الموافق للوضعين (1) أم (2) البادلة البادلة (K

حل السلسلة -2- بكالوريا الجزائر -2009-

التمرين الأول : (الشعبة : العلوم التجربية)

 $C \cdot R \cdot E \cdot \frac{du_c(t)}{dt} \cdot u_c(t)$ ينظبيق قانون جمع التوترات إيجاد المعادلة التفاضلية التي تربط بين $u_c(t)$

$$u_R=R$$
. $Crac{du_c}{dt}$ ومنه $i=Crac{du_c}{dt}$ و $u_R=R$. $u_c+u_R=E$ اومنه $u_c+u_R=E$

إذن : $\frac{du_c}{dt} + \frac{1}{R.C}u_c = \frac{E}{R.C}$ و هو المطلوب

: التحقق إن كانت المعادلة التفاضلية المحصلة عليها تقبل العبارة : $u_c(t) = E(1-e^{-\frac{1}{R.C}})$ كحل لها -2

: باشتقاق عبارة $u_c(t)$ بالنسبة لزمن نجد $\frac{du_c}{dt} = rac{E}{R.C} e^{-rac{t}{R.C}}$ ثم نعوضها في المعادلة التفاضلية السابقة نجد

$$\frac{E}{R.C} = \frac{E}{R.C} \iff \frac{E}{R.C} e^{-\frac{t}{R.C}} - \frac{E}{R.C} e^{-\frac{t}{R.C}} + \frac{E}{R.C} = \frac{E}{R.C} \iff \frac{E}{R.C} e^{-\frac{t}{R.C}} + \frac{1}{R.C} E (1 - e^{-\frac{t}{R.C}}) = \frac{E}{R.C}$$

إذن $u_c(t)=E(1-e^{-rac{\iota}{R.C}})$ إذ

:RC تحديد وحدة المقدار

التحليل البعدي:

$$[R] = \frac{[V]}{[I]} \iff R = \frac{u_R}{i} \iff u_R = R.i$$

$$[C] = \frac{[I] \times [T]}{[V]} \iff i = C \frac{du_c}{dt}$$

. (s) ومنه الجداء [R] \times [C] له نفس وحدة قياس الزمن ويقدر بوحدة الثانية [R] \times [C] ومنه الجداء [R] بالمراكبة [R] \times [C] ومنه الجداء [R] ومنه الجداء [R] المراكبة [R] \times [C] المراكبة [R] \times [C]

- يمثل علميا: الزمن اللازم لبلوغ التوتر بين طرفي المكثفة %63 من قيمته العظمى أثناء الشحن.

 $au=R.\,C$ اسمه : ثابت الزمن ، يرمز له بالرمز -

4- حساب قيمة التوتر الكهربائي $u_c(t)$ في اللحظات المدونة في الجدول التالي :

		· • • • •	ي پ		• •
t(ms)	0	6	12	18	24
$u_c(t)(V)$	0	3.79	5.19	5.70	5.89

- منحنى البياني $u_c(t) = f(t)$ الشكل -1- 5- رسم المنحنى البياني
- i(t) الحبارة الحرفية للشدة اللحظية للتيار الكهربائي -6

: C ، R ، E بدلالة

الدينا :
$$\frac{i = C \frac{du_c}{dt}}{c}$$
 و منه نجد و منه نجد

$$i(t) = \frac{E}{R}e^{-\frac{t}{R.C}}$$

: $(t=\infty)$ و (t=0): عساب قيمتها في اللحظتين

$$i(0) = \frac{E}{R}e^{-\frac{0}{R.C}} = \frac{E}{R} = \frac{6}{5 \times 10^3} = 1.2 \text{ mA}$$

 $i(\infty) = 0 \ mA$

7- كتابة عبارة الطاقة الكهربائية المخزنة في المكثفة

$$E_C = \frac{1}{2}C.E^2.\left(1 - e^{-\frac{t}{\tau}}\right)^2$$
 $E_C = \frac{1}{2}C.u_c^2(t)$

- الطاقة الأعظمية : $u_c(\infty) = E$ ومنه

 $E_C(\infty) = 21.6 \,\mu j$: ومنه $E_C(\infty) = \frac{1}{2} C.E^2 = 0.5 \times 1.2 \times 10^{-6} \times 6^2 = 2.16 \times 10^{-5} j$

(الشعبة: العلوم التجربية) التمرين الثاني:

1- و 2- أنظر الشكل المقابل:

:
$$u_c$$
 و u_R ايجاد العلاقة بين u_R

 $u_c = -u_R \quad \longleftarrow \quad u_c + u_R = 0$

 u_c النون جمع التوترات إيجاد المعادلة التفاضلية بدلالة u_c -4

بتطبیق قانون جع التوترات نجد : $u_C + u_R = 0$ لدینا :

$$i = C \frac{du_c(t)}{dt}$$
 $u_R = R.i$

ومنه
$$\frac{du_c(t)}{dt} + \frac{1}{R.C}u_c(t) = 0$$
 : إذن $u_R = R.C \frac{du_c(t)}{dt}$ وهو المطلوب

ابتين $b \cdot a$ حيث $u_c(t) = a.e^{bt}$: إن حل المعادلة التفاضلية السابقة هو من الشكل -5

- تعبن قبمة كل من *h هو ا*

: نعوض في المعادلة التفاضلية نجد $\frac{du_c(t)}{dt}=a imes b\ e^{b.t}$: نبت عبارة $u_c(t)$ بالنسبة لزمن نجد

$$b = -\frac{1}{R.C} \iff (b + \frac{1}{R.C}) = 0 \iff a e^{bt} (b + \frac{1}{R.C}) = 0 \iff a \times b e^{bt} + \frac{a}{R.C} e^{bt} = 0$$

t(ms)

$b = -\frac{1}{RC} = -666.7$

الابتدائية : لما t=0 لدينا عبارة الثابت a من الشروط الابتدائية : لما a

$$a = E = 6 V$$
: إذن $u_c(0) = a.e^{b \times 0} = a = \frac{q}{c} = \frac{0.6 \times 10^{-6}}{1 \times 10^{-7}} = 6V = E$

 u_c العبارة الزمنية للتوتر -6

$$u(V)$$
 $u_c(t) = 6.e^{-666.7}$ $b = -666.7$ و $a = E = 6V$ و $u_c(t) = a.e^{bt}$: -1- إن العبارة الزمنية $u_c = f(t)$ $u_c(0) = 6V = a$: $v_c(0) = 6V = a$: $v_c($

$$u_c(0)=6\,V=a$$
 : بیانیا

$$\tau = 1.5 \times 10^{-3} \, s$$

$$\tau = -\frac{1}{b} = \frac{-1}{-666.7} = 1.5 \times 10^{-3} s$$

وهي نفس القيم لـ $b \cdot a$ المتحل عليها في السؤال -5-

(الشعبة: رياضيات و تقني رياض

1- إيجاد المعادلة التفاضلية التي تعطى شدة التيار الكهربائي في الدارة:

 $u_R + u_h = E$: بتطبيق قانون جمع التوترات

 $(R+r)i+Lrac{di}{dt}=E$: نعلم أن $u_{a}=R.i+r.i+Lrac{di}{dt}=E$ أي $u_{a}=R.i$ أي $u_{b}=ri+Lrac{di}{dt}$

بقسمة طرفي المعادلة على L نجد : $rac{di}{dt} + rac{di}{dt} + rac{R+r}{dt}$ و هي المعادلة التفاضلية لتطور شدة التيار الكهربائي في الدارة .

2- في النظام الدائم تسلك الوشيعة سلوك ناقل أومي عادي لأن : $rac{di}{dt}=0$ عندئذ عبارة شدة التيار الكهربائي I_0 الذي

$$I_0=rac{E}{(R+r)}=0.1A$$
 پيجتاز الدارة : يجتاز الدارة

-1- اعتبار العلاقة $i(t) = A(1-e^{-rac{t}{ au}})$ حلا للمعادلة التفاضلية المطلوبة في السؤال

 τ و τ أ- إيجاد العبارة الحرفية لكل من t

نعوض في المعادلة التفاضلية نجد : يالاشتقاق بالنسبة لزمن نجد : بالاشتقاق بالنسبة لزمن نجد : بالاشتقاق بالنسبة لزمن نجد : $i(t)=A(1-e^{-\frac{t}{ au}})$

$$A = \frac{E}{(R+r)}$$
 \leftarrow $\frac{A(R+r)}{L} = \frac{E}{L}$ ε $\tau = \frac{L}{(R+r)}$ \leftarrow $\frac{1}{\tau} - \frac{(R+r)}{L} = 0$: إذن

 $u_h=u_{Bc}$ ب- استنتاج عبارة التوتر الكهربائي u_{Bc} بين طرفي الوشيعة : بوضع $u_b=E-u_R=E-R.i$: بتطبيق قانون جمع التوترات $u_R+u_b=E$: بتطبيق قانون جمع

$$u_b = E - R\left(I_0(1 - e^{-\frac{(R+r)}{L}t})\right) = E - RI_0 + R.I_0.e^{-\frac{(R+r)}{L}t}$$

$$I_0 = \frac{E}{(R+r)}$$
 حنعلم أن $E = I_0.R + I_0.r$ ومنه $E = I_0(R+r)$

$$u_b = I_0 \cdot \left(r + R \cdot e^{-\frac{(R+r)}{L}t}\right)$$
 ومنه $u_b = I_0 \cdot r + R \cdot I_0 \cdot e^{-\frac{(R+r)}{L}t}$

$$u_{bC}(V)$$
 $u_{b} = I_{0}.\left(r + R.e^{-\frac{(R+r)}{L}t}\right)$ ومنه $u_{b} = I_{0}.r + R.I_{0}.e^{-\frac{(R+r)}{L}t}$

$$u_b(t) = \frac{E}{R+r} (r + Re^{-\frac{(R+r)}{L}t}) \ \langle \Box \Box$$

 u_{BC} أـ حساب قيمة التوتر الكهربائي u_{BC} في النظام الدائم:

$$u_b = I_0 \cdot \left(r + R \cdot e^{-\frac{(R+r)}{L}t} \right)$$

$$u_{BC} = I_0.r = 0.1 \times 1 = 1V$$

:
$$u_{BC}=f(t)$$
 ب- رسم كيفيا شكل البيان

(الشعبة: رياضيات و تقني رياضي َ

التمرين الرابع:

1- نضع البادلة عند الوضع (1) في اللحظة 0=t:

 u_c و u_R أ- لاحظ على الشكل جهة التيار الكهربائي المار في الدارة وأسهم التوترين u_R

 $q=q_A$ بدلالة شحنة المكثفة u_c ب و u_R بدلالة شحنة المكثفة

$$u_R=R$$
. $i=Rrac{dq}{dt}$: ومنه $i=rac{dq}{dt}$ و $u_c=rac{q}{c}$

- المعادلة التفاضلية التي تحققها الشحنة q

بتطبيق قانون جمع التوترات:

$$R$$
 وبقسمة طرفي المعادلة على المقدار $u_c + R \frac{dq}{dt} = E$

 $\frac{dq}{dt} + \frac{1}{RC}q = \frac{E}{R}$: نحصل على المطلوب

. $q(t)=A(1-e^{-lpha t})$: من الشكل حلا من التفاضلية حلا من الشكل .

 $: E \cdot R \cdot C$ التعبير عن A و A بدلالة

: نعوض المعادلة التفاضلية نجد $\frac{dq}{dt}=A$. $\alpha e^{-\alpha t}$ \iff $q(t)=A(1-e^{-\alpha t})$

$$A. e^{-\alpha t} \left(\alpha - \frac{1}{RC} \right) + \frac{A}{RC} = \frac{E}{R} \iff A. \alpha e^{-\alpha t} + \frac{1}{RC} A (1 - e^{-\alpha t}) = \frac{E}{R}$$

$$A = E.C \iff \frac{A}{RC} = \frac{E}{R}$$
 وذن $\alpha = \frac{1}{RC} \iff \alpha - \frac{1}{RC}$ وذن علم المحافظة علم المحافظة

$$q(t)=E.\,C(1-e^{-rac{t}{R.C}})$$
 : أي أن

د- استنتاج قيمة (E) اذا كانت قيمة التوتر الكهربائي عند نهاية الشحن بين طرفي المكثفة (5V) عندئذ التيار $v_c = E = 5V$ المكثفة مشحونة نهائيا $v_c = E = 5V$: (i=0)

 $E_c = 5mJ$ عندما تشحن المكثفة كليا تخزن طاقة (C) عندما تشحن المكثفة كليا تخزن طاقة

$$C = \frac{2 \times 5 \times 10^{-3}}{5^2} = 4 \times 10^{-4} F = 100 \mu F$$

$$C = \frac{2 \times E_C}{F^2}$$

$$E_C = \frac{1}{2} C \cdot u_{c max}^2 = \frac{1}{2} C \cdot E^2$$

2- نجعل البادلة الآن عند الوضع (2):

أ- يحدث للمكثفة تفريغ كهربائي في الناقل الأومى .

(K) البادلة (K) ثم (K) ثم (K) ثم (K) ثم (K) ثم أدر ثم الموافق للوضعين (K)

 $au_1 = R.\,C = 470 imes 400 imes 10^{-6} = 0.188s$: عابت الزمن في الوضع (1) للبادلة :

 $\overline{ au_2=(R+R')}$. $\overline{C}=(2 imes R) imes C=2 au_1$: ثابت الزمن في الوضع

- نستنتج أن ثابت الزمن لدارة التفريغ يعادل ضعف ثابت الزمن لدارة الشُحن .