## **PKPD Single Ascending Dose User Manual**

Document Version:00

Author(s): Pinyan Liu

## **Table of Contents**

### 1. OVERALL DESCRIPTION

| 1.1.Description                                                                                     |
|-----------------------------------------------------------------------------------------------------|
| 1.2.Operating Environment · · · · · · · · · · · · · · · · · · ·                                     |
| 1.3.Parameters                                                                                      |
| 1.4.Datasets                                                                                        |
| 1.5.Required Packages·····5                                                                         |
| 1.6.Constraints·····5                                                                               |
| 2. EXAMPLE                                                                                          |
| 2.1.Sample Data Used in Following Examples6                                                         |
| 2.2.Example 1: Summary of PK Over Time (Concentration Over Time Grouped by Dose)·····9              |
| 2.3.Example 2: Summary of PK Over Time (Concentration Over Time Faceted by Dose)······10            |
| 2.4.Example 3: Summary of PK Over Time (Dose Normalized AUC and Cmax vs Dose) 11                    |
| 2.5.Example 4: Summary of PK Over Time (Concentration Over Time Grouped by Weight)·······13         |
| 2.6.Example 5: Summary of PD Over Time (Concentration Over Time Grouped by Weight)·······14         |
| 2.7.Example 6: Summary of PD Over Time (Dose-Response Relationship on baseline and day 85)·······15 |
| 2.8.Example 7: Summary of PD Over Time (Dose-Response Relationship on Different                     |
| Day)16                                                                                              |
| 2.9.Example 8: Summary of PD Over Time (Weight Effects on Dose-Response Relationship) 17            |
| 2.10.Example 9: Summary of PD Over Time (Exposure-Response Relationship For Concentration) 18       |
| 2.1.Example10: Summary of PD Over Time (Exposure-Response Relationship For AUC)                     |

#### 1. OVERALL DESCRIPTION

### 1.1 Description

The PKPD Single Ascending Dose is intended to allow the user to plot Exposure-Response relationship of summaries of PK/PD over time by different dose levels. This document contains exploratory plots for single ascending dose PK and PD data as well as the R code that generates these graphs. The plots presented here are based on simulated data.

### 1.2 Operating Environment

The function will be used with R Version 4.0.2 and RStudio.

#### 1.3 Parameters

| Parameters | Created | Usage                                               |
|------------|---------|-----------------------------------------------------|
| ID         | N       | Integer; unique subject ID                          |
| TIME       | N       | Numeric; time relative to first drug administration |
| NOMTIME    | N       | Numeric; nominal time                               |
| LIDV       | N       | Numeric; observation on a linear scale              |
|            |         | (observation type determined by CMT), units         |
|            |         | determined by EVENTU column                         |
| CMT        | N       | Integer; compartment number (determines             |
|            |         | observation type):                                  |
|            |         | CMT1 = Dosing event                                 |
|            |         | CMT2 = PK concentration                             |
|            |         | CMT3 = Continuous response data                     |
| CENS       | N       | Integer; censored values (0 = not censored, 1 =     |
|            |         | censored)                                           |
| TRTACT     | N       | Factor; treatment group label                       |
| PROFTIME   | N       | Numeric; time within PROFDAY                        |
| DOSE       | N       | Integer; Dose in mg                                 |
| IPRED      | N       | Numeric; individual prediction                      |
| DAY_label  | Y       | Factor; label the day (Day 0 = Baseline)            |

| TRTACT_low2high | Y | Factor; arrange TRTACT levels from low to high  |
|-----------------|---|-------------------------------------------------|
| TRTACT_high2low | Y | Factor; arrange TRTACT levels from high to low  |
| LIDVNORM        | Y | Numeric; dose normalization                     |
| CYCLE           | N | Integer; count of drug administrations received |
| NAME            | N | Factor; description of event                    |
| AUC_last        | Y | Numeric; integral of TIME and LIDV              |
| Cmax            | Y | Numeric; maximum of LIDV                        |

### 1.4 Datasets

| Datasets               | Derivation                                           |
|------------------------|------------------------------------------------------|
|                        | Derived from case1_pkpd (simulated dataset in R),    |
| pkpd_data              | arrange by dose, including newly created variables:  |
|                        | TRTACT_low2high, TRTACT_high2low, DAY_label          |
| pk_data                | Derived from pkpd_data, filter when CMT==2,          |
|                        | including new variable: LIDVNORM                     |
| pk_data_cycle1         | Derived from pk_data, filter when CYCLE==1           |
| pd_data                | Derived from pkpd_data, filter when CMT==3           |
| pd_data_baseline_day85 | Derived from pkpd_data, filter when CMT==3 and       |
|                        | DAT_label = "Baseline" and "Day 85"                  |
| event_data             | Derived from pkpd_data, filter when CMT==1           |
| nk vs nd data          | Derived from pkpd_data, filter when LIDV is not NA;  |
| pk_vs_pd_data          | rename concentration= '2' and response= '3'          |
| NCA                    | Derived from pk_data_cycle1, including new variable: |
| NCA                    | AUC_last, Cmax                                       |
| AUC_last               | Derived from NCA, filter when param=="AUC_last"      |
|                        | Derived from pk_vs_pd_data. Filter when              |
| pk_vs_pd_data_day85    | DAY_label=="Day 85"; concentration and response is   |
|                        | not NA; left joined with AUC_last                    |

### 1.5 Required Packages

| Package   | Usage                                          |
|-----------|------------------------------------------------|
|           | Exploratory Graphics for Pharmacometrics.      |
| xgxr      | Supports a structured approach for exploring   |
|           | PKPD data                                      |
| ggplot2   | Create Graphics                                |
|           | A fast, consistent tool for working with data  |
| dplyr     | frame like objects, both in memory and out of  |
|           | memory.                                        |
|           | Tools to help to create tidy data, where each  |
| tidare    | column is a variable, each row is an           |
| tidyr     | observation, and each cell contains a single   |
|           | value.                                         |
| caTools   | Contains several basic utility functions       |
|           | including: fast calculation of AUC.            |
|           | Fonts that are imported into extrafont can be  |
| extrafont | used with PDF or PostScript output files. On   |
| Cattatont | Windows, extrafont will also make system fonts |
|           | available for bitmap output.                   |

Packages should be installed in advance by install.packages("package name")

### 1.5 Constraints

NA

#### 2. EXAMPLE

#### 2.1 Sample Data Used in Following Examples

Sample data (part) is the pkpd data.



#### Sample Data 1. pkpd data (part)

#### Sample call:

#### **#Load Datasets**

#### **#Simulate Datasets**

```
pkpd_data<-case1_pkpd %>% arrange (DOSE) %>% select(-IPRED) %>%

mutate (TRTACT_low2high=factor (TRTACT,levels=unique(TRTACT)),

TRTACT_high2low=factor (TRTACT,levels=rev(unique(TRTACT))),

DAY_label=paste ("Day", PROFDAY),

DAY_label=ifelse (DAY_label=="Day 0","Baseline", DAY_label))
```

```
LOQ=0.05 #ng/ml
dose max=as.numeric(max(pkpd data$DOSE))
pk_data<-pkpd_data %>% filter (CMT==2) %>%
         mutate (LIDVNORM = LIDV / as.numeric(DOSE))
pk data cycle1<-pk data %>% filter (CYCLE==1)
pd data<-pkpd data %>% filter (CMT==3)
pd_data_baseline_day85<-pkpd_data %>%
                       filter (CMT==3, DAY label %in% c ("Baseline", "Day 85"))
event data<-pkpd data %>% filter (CMT==1)
pk_vs_pd_data<-pkpd_data %>% filter (!is.na (LIDV)) %>% select(-c(EVENTU,NAME)) %>%
               spread (CMT, LIDV) %>% rename (Concentration='2', Response='3')
NCA<-pk_data_cycle1 %>% group_by(ID,DOSE) %>% filter(!is.na(LIDV)) %>%
      #Make Two New Variables: AUC_last & Cmax
      Summarize (AUC last=caTools::trapz (TIME,LIDV), Cmax=max(LIDV)) %>%
      #Except for ID, DOSE, Transpose the Rest Variables
      tidyr::gather(PARAM, VALUE, -c(ID, DOSE)) %>% ungroup() %>%
      mutate (VALUE_NORM=VALUE/DOSE)
AUC_last<-NCA %>% filter (PARAM=="AUC_last") %>%
          rename (AUC last = VALUE) %>% select (-c (DOSE, PARAM, VALUE NORM))
pk_vs_pd_data_day85 <- pk_vs_pd_data %>% filter (DAY_label=="Day 85",
                      !is.na (Concentration), !is.na(Response)) %>% left_join(AUC_last)
#Create Variables' Units
time_units_dataset <- "hours"
```

```
time_units_plot <- "days"

trtact_label <- "Dose"

dose_label <- "Dose (mg)"

conc_label <- "Concentration (ng/ml)"

auc_label <- "AUCtau (h.(bg/ml))"

concnorm_label <- "Normalized Concentration (ng/ml)/mg"

sex_label <- "Sex"

w100_label <- "WEIGHTB>100"

pd_label <- "FEV1 (ml)"

cens_label <- "Censored"
```

# 2.2 Example1: Summary of PK Over Time (Concentration Over Time Grouped by Dose)

### Sample Call:



# 2.3 Example2: Summary of PK Over Time (Concentration Over Time Faceted by Dose)

#### Sample Call:



## 2.4 Example3: Summary of PK Over Time (Dose Normalized AUC and Cmax vs Dose)

### Sample Call:

```
ggplot(data=NCA,aes(x=DOSE,y=VALUE_NORM))+
geom_boxplot(aes(group=DOSE),width=8)+
geom smooth(method="lm",color="black")+
facet_wrap(~PARAM,scales="free_y")+
labs(x=dose_label,title="Dose Nomalized AUC and Cmax vs Dose")+
theme(legend.position = "none",plot.title=element_text(family="Times New
     Roman",size=(12),hjust = 0.5))+
theme(axis.title.y = element blank())
#Choose Only 30,100 And 300 Sose
ggplot(data=NCA[!NCA$DOSE==3 & !NCA$DOSE ==10,],
aes(x=DOSE,y=VALUE_NORM))+
geom_boxplot(aes(group=DOSE))+
geom_smooth(method = "lm",color="black")+
facet_wrap(~PARAM,scales="free_y")+
labs(x=dose_label,title="Dose Nomalized AUC and Cmax vs Dose (part)")+
theme(plot.title=element_text(family="Times New Roman",size=(12),hjust = 0.5))+
theme(axis.title.y = element blank())
```





# 2.5 Example4: Summary of PK Over Time (Concentration Over Time Grouped by Weight)

### Sample Call:



# 2.6 Example5: Summary of PD Over Time (Concentration Over Time Grouped by Weight)

### Sample Call:



# 2.7 Example6: Summary of PD Over Time (Dose-Response Relationship on baseline and day 85)

### Sample Call:





## 2.8 Example7: Summary of PD Over Time (Dose-Response Relationship on **Different Day)**

### Sample Call:

```
ggplot(data=pd_data,aes(x=DOSE,y=LIDV,group=DOSE))+
xgx\_geom\_ci(conf\_level = 0.95)+
facet_grid(~DAY_label)+
labs(x=dose_label,y=pd_label,color=trtact_label,title="FEV1 by Dose for Visits")+
theme(legend.position = "bottom",plot.title=element_text(family="Times New
      Roman", size=(12), hjust = 0.5))
```





# 2.9 Example8: Summary of PD Over Time (Weight Effects on Dose-Response Relationship)

### Sample Call:



# 2.10 Example9: Summary of PD Over Time (Exposure-Response Relationship For Concentration)

### Sample Call:



# 2.11 Example10: Summary of PD Over Time (Exposure-Response Relationship For AUC)

### Sample Call:

```
gAUC=g + aes(x=AUC_last)+xlab(auc_label)
print(gAUC)
```

