17. Теорема про ізоморфізм

Обравши в n-вимірному евклідовому просторі ортогональний нормований базис $e_1, e_2, ..., e_n$, можна кожний вектор $x \in \mathbb{R}^n$ записати у вигляді

$$x = \sum_{k=1}^{n} c_k e_k , \qquad (1)$$

де

$$c_k = (x, e_k)$$
.

Постає питання, як узагальнити цей розклад на випадок нескінченновимірного евклідова простору. Введемо наступні поняття.

Озн. 17.1. Система ненульових векторів $\{e_k\}$ \subset E називається **ортогональною**, якщо

$$(e_k, e_l) = 0$$
 npu $k \neq l$.

Озн. 17.2. Система $\{e_k\}$ \subset E , елементи якой задовольняють умову

$$\left(e_{k},e_{l}\right)=\begin{cases}0% & \text{якщо }k\neq l,\\1% & \text{якщо }k=l\end{cases}$$

називається ортонормованою.

Нагадаємо означення із теорії лінійних просторів.

Озн. 17.3. Найменший лінійний підпростір, що містить множину A у лінійному просторі X, називається **лінійною оболонкою** множини A, або **лінійним підпростором, що породжений множиною** A. Цей підпростір позначається як **span** A.

Зауваження 17.1. Лінійна оболонка *лінійної* множини A ϵ замкненою, але якщо множина A ϵ довільною, це не

обов'язково так. В той же час у *нормованих* просторах підпростори ϵ замкненими за означенням, тому лінійна оболонка множини в нормованому просторі ϵ замкненою.

Озн. 17.4. Система $\{e_k\} \subset E$ називається **повною**, якщо її лінійна оболонка є скрізь щільною в E, тобто $\overline{span\{e_k\}} = E$.

Озн. 17.5. Повна ортонормована система $\{e_k\}$ \subset E називається **ортонормованим базисом**.

Приклад 17.1. В просторі l_2 ортонормований базис

утворюють послідовності
$$e_i = \left(0,...,0,\underbrace{1}_{i-mu\check{u}},0,...,0,...\right).$$

Скалярний добуток:
$$(x, y) = \sum_{n=1}^{\infty} x_n y_n$$
.

Приклад 17.2. В просторі $C_2(a,b)$ ортонормований базис утворюють вектори

$$\frac{1}{2},\cos\frac{2\pi t}{b-a},\sin\frac{2\pi t}{b-a},...,\cos n\frac{2\pi t}{b-a},\sin n\frac{2\pi t}{b-a},....$$

Скалярний добуток:
$$(f,g) = \int_{-\pi}^{\pi} f(t)g(t)dt$$
.

Лема 17.1. В сепарабельному евклідовому просторі будьяка ортогональна система ϵ не більш ніж зліченною.

Доведення. Не обмежуючи загальності, розглянемо ортонормовану систему $\{\phi_k\} \subset E$. Тоді

$$\|\varphi_{k} - \varphi_{l}\| = \sqrt{(\varphi_{k} - \varphi_{l}, \varphi_{k} - \varphi_{l})} =$$

$$= \sqrt{(\varphi_{k}, \varphi_{k}) - 2(\varphi_{k}, \varphi_{l}) + (\varphi_{l}, \varphi_{l})} =$$

$$= \sqrt{(\varphi_{k}, \varphi_{k}) + (\varphi_{l}, \varphi_{l})} = \sqrt{1 + 1} = \sqrt{2}.$$

Розглянемо сукупність куль $S\left(\mathbf{\phi}_{k},\frac{1}{2}\right)$. Ці кулі не перетинаються. Якщо зліченна множина $\left\{\psi_{k}\right\}$ є скрізь щільною в E , то в кожну кулю потрапить принаймні один

щільною в E, то в кожну кулю потрапить принаимні один елемент ψ_k . Отже, потужність множини таких куль не може перевищувати потужність зліченої множини.

Озн. 17.6. Ортонормована система $\{\phi_k\} \subset E$ називається **замкненою**, якщо для довільного $f \in E$ виконується рівність Парсеваля

$$\sum_{k=1}^{\infty} c_k^2 = \|f\|^2.$$
 (2)

Озн. 17.6. Нехай $\{ \phi_k \} \subset E$ — ортонормована система в евклідовому просторі, а f — довільний елемент із E. Поставимо у відповідність елементу $f \in E$ послідовність чисел

$$c_k = (f, \varphi_k), k = 1, 2, ...$$

Числа c_k називаються координатами, або коефіцієнтами $\mathbf{\Phi}$ ур'є елемента f по системі $\{\mathbf{\phi}_k\}$ \in E , а ряд

$$\sum_{k=1}^{\infty} c_k \varphi_k$$

називається **рядом Фур'** ϵ елемента f по системі $\{\phi_k\} \in E$.

Теорема 17.1. Ряд Фур'є збігається тоді і лише тоді, коли система $\{\phi_k\}$ $\in E$ є замкненою.

Доведення. Розглянемо суму

$$S_n = \sum_{k=1}^n \alpha_k \varphi_k$$

і для заданого числа n відшукаємо коефіцієнти α_k , що мінімізують $\left\|f-S_n\right\|^2$.

$$||f - S_n||^2 = \left(f - \sum_{k=1}^n \alpha_k \varphi_k, f - \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$= (f, f) - 2\left(f, \sum_{k=1}^n \alpha_k \varphi_k\right) + \left(\sum_{k=1}^n \alpha_k \varphi_k, \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$= ||f||^2 - 2\sum_{k=1}^n \alpha_k c_k + \sum_{k=1}^n \alpha_k^2 =$$

$$= ||f||^2 - \sum_{k=1}^n c_k^2 + \sum_{k=1}^n (\alpha_k - c_k)^2.$$

Мінімум цього виразу досягається тоді, коли останній член дорівнює нулю, тобто, коли

$$\alpha_k = c_k, k = 1, 2, ..., n$$
.

В цьому випадку

$$||f - S_n||^2 = ||f||^2 - \sum_{k=1}^n c_k^2.$$
 (3)

Оскільки $\|f - S_n\|^2 \ge 0$, то

$$\sum_{k=1}^{n} c_k^2 \le \|f\|^2.$$

Переходячи до границі при $n \to \infty$, отримуємо нерівністю Бесселя:

$$\sum_{k=1}^{\infty} c_k^2 \le \left\| f \right\|^2. \tag{4}$$

Із тотожності (3) випливає, що рід Фур'є збігається тоді і лише тоді, коли виконується рівність Парсеваля, тобто система є замкненою.

Теорема 17.2. В сепарабельному евклідовому просторі E будь-яка повна ортонормована система ϵ замкненою, і навпаки.

Доведення. Необхідність. Нехай система $\{\phi_k\} \subset E$ є замкненою. Тоді за теоремою 17.1 для довільного елемента $f \in E$ послідовність часткових сум його ряду Фур'є збігається до f. Це означає, що $\overline{span\{\phi_k\}} = E$, тобто система $\{\phi_k\}$ є повною.

Достатність. Нехай система $\{\phi_k\}$ є повною, тобто довільний елемент $f \in E$ можна скільки завгодно точно апроксимувати лінійною комбінацією $\sum_{k=1}^n \alpha_k \phi_k$ елементів системи $\{\phi_k\}$:

$$\forall \varepsilon > 0 \exists \sum_{k=1}^{n} \alpha_k \varphi_k : \left\| f - \sum_{k=1}^{n} \alpha_k \varphi_k \right\| < \varepsilon.$$

За теоремою 17.1 елементом найкращого наближення серед усіх сум вигляду $\sum_{k=1}^{n} \alpha_k \phi_k$ є ряд Фур'є. Отже, цей ряд збігається, а, значить, виконується рівність Парсеваля, тобто система $\{\phi_k\}$ є замкненою.

Теорема Рісса-Фішера. Нехай $\left\{ \mathbf{\phi}_{k} \right\} \subset E$ — довільна ортонормована система в гільбертовому просторі E, а числа $c_{1}, c_{2}, ..., c_{n}, ...$ ϵ такими, що ряд $\sum_{k=1}^{\infty} c_{k}^{2}$ ϵ збіжним. Тоді існує такий елемент $f \in E$, такий що $c_{k} = \left(f, \mathbf{\phi}_{k} \right)$ і $\sum_{k=1}^{\infty} c_{k}^{2} = \left(f, f \right) = \left\| f \right\|^{2}$.

Доведення. Розглянемо суму

$$f_n = \sum_{k=1}^n c_k \varphi_k .$$

Тоді,

$$||f_{n+p} - f_n||^2 = ||c_{n+1} \varphi_{n+1} + \dots + c_{n+p} \varphi_{n+p}||^2 = \sum_{k=n+1}^{n+p} c_k^2.$$

Оскільки ряд $\sum_{k=1}^{\infty} c_k^2$ є збіжним, а простір E — повним,

послідовність $\left\{f_n\right\}_{n=1}^{\infty}$ збігається до деякого елемента $f\in E$. Оцінимо наступний скалярний добуток.

$$(f, \varphi_i) = (f_n, \varphi_i) + (f - f_n, \varphi_i).$$

При $n \geq i$ перший доданок дорівнює c_i , а другий доданок при $n \to \infty$ прямує до нуля, оскільки

$$|(f-f_n,\mathbf{\varphi}_i)| \leq ||f-f_n|| ||\mathbf{\varphi}_i||.$$

Ліва частина рівності від n не залежить. Переходячи до границі при $n \to \infty$, доходимо висновку, що

$$(f, \mathbf{\varphi}_i) = c_i$$
.

Оскільки за означенням елемента f

$$\lim_{n\to\infty} ||f-f_n|| = 0,$$

то

$$\left(f - \sum_{k=1}^{n} c_k \varphi_k, f - \sum_{k=1}^{n} c_k \varphi_k\right) = \left(f, f\right) - \sum_{k=1}^{n} c_k^2 \to 0$$
 при $n \to \infty$.

Отже,

$$\sum_{k=1}^{\infty} c_k^2 = (f, f).$$

Теорема про ізоморфізм. Довільні два сепарабельних гільбертових простора ϵ ізоморфними один до одного.

Доведення. Покажемо, що кожний гільбертів паростір H ϵ ізоморфним простору l_2 . Це доведе теорему про ізоморфізм.

Виберемо в H довільну повну ортонормовану систему $\{\phi_k\}\subset H$ і поставимо у відповідність елементу $f\in H$ сукупність його коефіцієнтів Фур'є за цією системою $c_1,c_2,...,c_n,...$ Оскільки $\sum_{k=1}^\infty c_k^2<\infty$, то послідовність $\{c_1,c_2,...,c_n,...\}$ належить l_2 . І навпаки, за теоремою Рісса—Фішера довільному елементу $\{c_1,c_2,...,c_n,...\}\in l_2$ відповідає деякий елемент $f\in H$, у якого числа

 $c_1, c_2, ..., c_n, ...$ ϵ коефіцієнтами Фур'є за системою $\left\{ \mathbf{\phi}_k \right\} \subset E$. Ця відповідність ϵ взаємно-однозначною. Крім того, якщо

$$f \leftrightarrow \{c_1, c_2, ..., c_n, ...\},$$

i

$$g \leftrightarrow \{d_1, d_2, ..., d_n, ...\},$$

то

$$f + g \leftrightarrow \{c_1 + d_1, c_2 + d_2, ..., c_n + d_n, ...\}$$

i

$$\alpha f \leftrightarrow \{\alpha c_1, \alpha c_2, ..., \alpha c_n, ...\}.$$

Крім того, із рівності Парсеваля випливає, що

$$(f,f) = \sum_{k=1}^{\infty} c_k^2, (g,g) = \sum_{k=1}^{\infty} d_k^2,$$

$$(f+g,f+g) = (f,f) + 2(f,g) + (g,g) =$$

$$= \sum_{k=1}^{\infty} (c_k + d_k)^2 = \sum_{k=1}^{\infty} c_k^2 + 2\sum_{k=1}^{\infty} c_k d_k + \sum_{k=1}^{\infty} d_k^2.$$

Отже,

$$(f,g) = \sum_{k=1}^{\infty} c_k d_k .$$

Таким чином, установлена відповідність між елементами просторів H і l_2 є ізоморфізмом. \blacksquare

Література

1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — М.: Наука, 1981. — с. 149–157.