

Nonlinear Elliptic Problem Model Order Reduction and Machine Learning

Model Order Reduction and Machine Learning Master's Degree in Mathematical Engineering Lucia Ghezzi. Elisabetta Roviera

June 14, 2025

Table of Contents 1 Introduction

- ► Introduction
- Method:
- Comparison of Methods for NEP
- Comparison of Methods for NEP

Nonlinear Elliptic Problem (NEP)

1 Introduction

Problem definition Given $\Omega = (0, 1)^2$, given $\mu = (\mu_0, \mu_1) \in \mathcal{P} = [0.1, 1]^2$, find $u(\mu)$ such that

$$-\Delta u(\mu) + \frac{\mu_0}{\mu_1} (e^{\mu_1 u(\mu)} - 1) = g(x; \mu)$$

with homogeneous Dirichlet condition on the boundary. The source term g is defined as:

1. For NEP1:

$$g(x; \mu) = g_1 = 100 \sin(2\pi x_0) \cos(2\pi x_1), \quad \forall x = (x_0, x_1) \in \Omega.$$

2. For NEP2:

$$g(x; \mu) = g_2 = 100 \sin(2\pi\mu_0 x_0) \cos(2\pi\mu_0 x_1), \quad \forall x = (x_0, x_1) \in \Omega.$$

Weak formulation and Newton scheme Integrating on the domain, multiplying by a general function $v \in V$ and recalling the boundary condition, we get the weak formulation: given $\mu \in \mathcal{P}$, find $u(\mu) \in V$ such that for every $v \in V$

$$F(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Omega} \frac{\mu_0}{\mu_1} (e^{\mu_1 u} - 1) v \, dx - \int_{\Omega} g v \, dx = 0.$$

To solve F(u)[v] = 0 at each Newton iteration, we solve for δu

$$\left(\int_{\Omega} \nabla \delta u \cdot \nabla v \, dx + \int_{\Omega} \mu_0 e^{\mu_1 u_k} \delta u v \, dx\right) = -\left(\int_{\Omega} \nabla u_k \cdot \nabla v \, dx + \int_{\Omega} \frac{\mu_0}{\mu_1} (e^{\mu_1 u_k} - 1) v \, dx - \int_{\Omega} g v \, dx\right)$$

and update $u_{k+1} = u_k + \delta u$.

Preliminary Domain Analysis

Check of theoretical results We know from theory that for mesh size *h* it holds

$$\mathit{Err}_{L^2}(h) = \mathit{Err}_{L^2}(h_0) \left(\frac{h}{h_0}\right)^{s+1}, \quad \mathit{Err}_{H^1}(h) = \mathit{Err}_{H^1}(h_0) \left(\frac{h}{h_0}\right)^{s}.$$

We check if the expected behavior is observed experimentally.

Choice of the mesh size The two most suitable mesh sizes are 0.00312 and 0.00019, so we evaluate the tradeoff between accuracy and cost:

Performance metrics for different mesh sizes

Metric	Mesh = 0.00312	Mesh = 0.00019
Average snapshot computation time (s)	0.5948	11.2261
Average relative error (L^2 Norm)	0.0089	0.0005
Average relative error (H^1 Norm)	0.0937	0.0224

Table of Contents 2 Methods

- Introduction
- ► Methods
- Comparison of Methods for NEP
- Comparison of Methods for NEP:

Input (4)

 μ_2

Methods

2 Methods

1. **POD**: the reduced dimension for NEP1 is N=3 and N=9 for NEP2

Hidden 1 (60)

2. PINN: frase sul pinn mooolto breve

Hidden 2 (60)

Hidden 3 (60)

Output (1)

Figure: PINNHardBC Architecture Diagram.

3. POD-NN: fully connected network with 4 hidden layers of 40 neurons, tanh activation, Adam optimizer (1r=0.001), up to 500,000 epochs, early stopping at 10^{-6} .

Table of Contents 3 Comparison of Methods for NEP1

- Introduction
- ▶ Methods
- ► Comparison of Methods for NEP1
- Comparison of Methods for NEP:

Comparison of Methods - NEP1 3 Comparison of Methods for NEP1

Performance comparison: Accuracy vs computational cost for NEP1

NEP1 Summary		POD (N=3)	PINN	PODNN
Error w.r.t. HF	L2 relative H1 relative	2.77×10^{-5} 3.07×10^{-5}	4.19×10^{-2} 2.18×10^{-1}	6.05×10^{-4} 6.04×10^{-4}
Execution Time	Avg. eval. time (s) Avg. speed-up vs HF	8.04 × 10 ⁻⁴ 15.66	1.10×10^{-3} 8.42	2.18×10^{-4} 68.62
Training	Iterations Training time (s)	-	10,689 718.11	119,274 133.36

Plots

3 Comparison of Methods for NEP1

image1.png

Figure: Comparison of High Fidelity and PINN solutions

Animated plot 3 Comparison of Methods for NEP1

Table of Contents4 Comparison of Methods for NEP2

- Introduction
- Methods
- ▶ Comparison of Methods for NEP¹
- ► Comparison of Methods for NEP2

Comparison of Methods - NEP2 4 Comparison of Methods for NEP2

Performance comparison: Accuracy vs computational cost for NEP2

NEP2 Summary		POD (N=9)	PINN	PODNN
Error w.r.t. HF	L2 relative H1 relative	5.1432×10^{-4} 9.8641×10^{-4}	2.4579×10^{-2} 1.5484×10^{-1}	2.8012×10^{-2} 2.5705×10^{-2}
Execution Time	Avg. eval. time (s) Avg. speed-up vs HF	5.5382×10^{-4} 22.327	1.1493 × 10 ⁻³ 10.0273	1.8587 × 10 ⁻⁴ 70.8458
Training	Iterations Training time (s)	-	17,415 1068.91	500,000 570.41

Plots
4 Comparison of Methods for NEP2

Animated plot 4 Comparison of Methods for NEP2

Thank you for your attention!