Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ» Институт ИВТИ Кафедра Управления и информационных технологий

Отчет по учебной практике

студента группы А-01-19 курса 1 **Черемных Юрия Алексеевича**

Почта: CheremnykhYurA@mpei.ru

Вариант: 19

Проверил: Полотнов М.М.

Оглавление

1) Назначение программы	3
2) Структура программы и руководство пользователя	3
«Как программа работает?»	3
Структура программы со схемой	4
3) Описание процедур и модулей	5
4) Пример работы контрольной задачи	6
5) Цели дополнительного исследования и методика выполнения	6
6) Результаты применения программы в процессе исследования	7
7) Выводы по проделанному исследованию	9

1) Назначение программы

Разработанная программа должна осуществлять опрос датчиков и оптимизировать объект градиентным методом

2) Структура программы и руководство пользователя «Как программа работает?»

- 1. Ввод пользователем исходных данных, таких как количество шагов поиска, номер датчика, количество каналов управления, начальные значения каналов управления, величина шага поиска.
- 2. Программа подает управляющее воздействие на объект, используя введенные данные
- 3. Опрашивает датчик
- 4. При помощи градиентного метода оптимизации вычисляет оценку производных в приращениях
- 5. Вычисляет оценку коррекции и заменяет старые управляющие значения воздействий на новые
- 6. Повторяет N раз
- 7. Выводит таблицу со всеми промежуточными данными

Структура программы со схемой.

Программа состоит из основной функции *main*, процедуры ввода данных, расчета оценки производной в приращениях, расчета новый управляющий воздействий (более подробно о каждой функции на стр 5)

3) Описание процедур и модулей

1. Процедура ввода исходных данных

Процедура обеспечивает ввод номера датчика (M), число каналов управления (K), массив из номеров каналов управления (L), шага поиска (D), массив из начальных управляющих воздействий (U).

void input(int &M, int &K, int L[ARR], double &D, double U[])

2. Функция, возвращающая оценку производной в приращениях

На вход подаются число каналов управления (L), управляющие воздействия, номер текущего канала управления (так как в задании сказано использовать процедуру для расчета одной оценки производной), шаг поиска, номер датчика, измеренное значения с датчика (Y), полученное значение с датчика после рас четов (Y1) (для вывода промежуточных значений, модель объекта (plant)

double gradient(int L[], double U[], int i, double D, int M, double Y, double &Y1, Plant plant)

3. Функция считает $(P1^2+P2^2+...+Pk^2)^{1/2}$

double sqrt_sum_squares(double P[], int K)

- 4. Процедура, которая вычисляет новые значения управляющий воздействий
- К количество канал управления
- \mathbf{Q} оценка коррекции, вычисляемая по формуле $\mathbf{Q} = \mathbf{D}/(\mathbf{P}1^2 + \mathbf{P}2^2 + ... + \mathbf{P}\mathbf{k}^2)^{1/2}$
- Р массив оценок производных, вычисляемый в функции 2
- U начальные управляющие воздействия

void new_U(double U2[], int K, double Q, double P[], double U[])

4) Пример работы контрольной задачи

```
Enter number of sensor : 35
Enter the number of control channels : 2
**************************
        NUMBERS OF CONTOL CHANNELS
Enter the number of the 1st control channnel :
Enter the number of the 2st control channnel : 8
**************************
        INITIALS VALUES
Enter the initial value of the 7st control channnel : 23
Enter the initial value of the 8st control channnel : 1
Enter search step value : 0.8
        RESULT OUTPUTS
                                                        Y1 2
                                                                                                 U'1
                                                                                                                U'2
                                           Y1 1
                                                        458.238 6.54659
555.787 22.8692
681.328 -25.4904
                              368.555 373.792
437.736 456.031
                                                                                    112.104
                                                                                                  23.0466
                                                                                                               1.79864
                                                                                                               2.5892
   23.0466
                 1.79864
                                                                                    147.564
                              437.736
   23.1692
                 2.5892
                              564.818
                                           544.426
                                                                                    145.637
                                                                                                  23.0312
                                                                                                                3.37722
   23.0312
                              680.44
                                                         840.872
                                                                      -10.4546
                                                                                                  22.9896
                                                                                                                4.17614
                                                                                    200.541
   22.9896
                 4.17614
                               832.659
                                           815.698
                                                         1001.64
                                                                                                  22.9097
                                                                                                                4.97214
                                                                      -21.2018
                                                                                    211.23
   22.9097
                               1002.64
                                                         1007.91
                                                                      3.88882
                                                                                                  23.3165
                                                                                                               5.66099
                                                                       -8.38683
                               1018.02
                                                         1005.97
                                                                                    -15.0521
   22.9271
                              998.155
                                           1007.69
                                                         1001.2
                                                                                    3.80733
                                                                                                  23.6892
   23.6892
                               1011.56
                                           1012.16
                                                                      0.754334
                                                                                                               4.40888
10 23.7625
                 4.40888
                              865.998
                                           881.662
                                                         1015.6
                                                                      19.5796
                                                                                    187.003
                                                                                                  23.8458
Q = 0.00425475
Y = 865.998
M = 35
```

5) Цели дополнительного исследования и методика выполнения

Целью исследования является изучение «траектории движения» значений управления при поиске оптимальных значений и ее зависимости от шага поиска.

Для выполнения исследование приведем несколько примеров работы программы при различных значениях шага поиска и построим графики

6) Результаты применения программы в процессе исследования

1. Возьмем пример из контрольного задания (пункт 4 $\, \, D = 0.8 \,)$

Как мы видим траектория движения плавная и точная, но для достижения оптимального значения понадобилось 7 — 9 шагов (циклов)

2. Пример при D = 1.2

В этом примере траектория более ломаная, но результат был достигнут с 5 – 6 циклом

7) Выводы по проделанному исследованию

Проанализировав результаты исследования и ознакомившись с графиками можно сделать вывод: чем ниже значение шага поиска, тем точнее проводится поиск, но циклов (шагов N) требуется больше, следовательно и вычислительной мощности также требуется больше. А при большем значении шага поиска исследование проводится быстрее, но с меньшей точностью.

С исходным кодом проекта можно ознакомится по ссылке

https://github.com/yurchest/practice