One-Shot Learning for Semantic Segmentation

Jia Zheng

SIST, ShanghaiTech

June 12, 2018

Outline

Introduction

- 2 Approach
- Result

Outline

Introduction

2 Approach

Result

Problem Setup

Given a support set $S = \{(I^i, Y^i(I))\}_{i=1}^k$ of k image-binary mask pairs and query image I_q , the goal is to predict a binary mask \hat{M}_q for semantic class I. Note that the semantic classes in train set and test set are mutually exclusive.

Outline

Introduction

2 Approach

Result

Overview

Figure: OSLSM [5]

Method

In the conditioning branch, we input the support set $S = \{I, Y(I)\}$ and produce a set of parameters,

$$w, b = g(S)$$

In the other branch, we extract a dense feature $F_q = \phi(I_q)$ from I_q , and use feature F_a and these parameters w, b to get the final mask

$$\hat{M}_q^{mn} = \sigma(w^{\top} F_q^{mn} + b)$$

Architecture

Conditioning Branch

Masking

Mask image with its corresponding label so it contains only the target object instead of the first layer to recieve the four channel image-mask pair as input.

Weight Hashing

To avoid over-fitting, employ a weight hashing layer from [2] to map the 1000-dimension vector output from the layer of VGG to the 4097 dimension of $\{w, b\}$.

Data sampling in Training

- **1** Sample an image-label (I_q, Y_q) uniformly from D_{train}
- **2** Sample a class $l \in L_{train}$ uniformly and use it to produce the binary mask $Y_q(l)$
- **②** Support set S is formed by picking one image-label pair at random from $D_{train} \{(I_q, Y_q)\}$ with class I present

Extension to k-Shot

We use k labeled image to produce k sets of parameters. Each simple classifier has high precision but low recall. We ensemble these masks of classifiers by a logical OR operator.

One-Shot Learning for Semantic Segmentatio

Outline

Approach

Result

Baseline

- Base classifiers (1-NN and logistic regression)
- Fine-tunning on support set (Suggested by [1])
- Co-segmentation by Composition [3]
- Siamese Network for One-Shot Dense Matching [4]

i = 0			i = 1	i = 2			i = 3		
aeroplane, bicycle, bird, boat, bottle bu		bus, car	, cat, chair, cow	diningtable, dog, horse, motorbike, j		person	potted plant, sheep, sofa, tr		fa, train, tv/moni
Methods (1-		-shot)	PASCAL-5 ⁰	PASCAL-51	PASCAL-5 ²	PASC	CAL-5 ³	Mean	
1-NN			25.3	44.9	41.7	18.4		32.6	
LogReg			26.9	42.9	37.1	18.4		31.4	
Finetuning			24.9	38.8	36.5	3	0.1	32.6	
Siamese			28.1	39.9	31.8	2	5.8	31.4	
Ours			33.6	55.3	40.9	33.5		40.8	
Methods (5- Co-segmenta		shot)	PASCAL-5 ⁰	PASCAL-5 ¹	PASCAL-5 ²	PASC	CAL-5 ³	Mean	
		tation	25.1	28.9	27.7	2	6.3	27.1	
	1-NN		34.5	53.0	46.9	2	5.6	40.0	
	LogReg		35.9	51.6	44.5	2	5.6	39.3	
	Ours		35.9	58.1	42.7	3	9.1	43.9	

Table 1: Mean IoU results on PASCAL- 5^i . **Top:** test classes for each fold of PASCAL- 5^i . The **middle** and **bottom** tables contain the semantic segmentation meanIoU on all folds for the 1-shot and 5-shot tasks respectively.

Qualitative results

Illustration on conditioning effect

Effect of increasing the size of the support set

Reference

- Sergi Caelles et al. "One-shot video object segmentation". In: CVPR. 2017.
- Wenlin Chen et al. "Compressing neural networks with the hashing trick". In: ICML, 2015.
- Alon Faktor and Michal Irani. "Co-segmentation by composition". In: *ICCV*. 2013.
- Gregory Koch. "Siamese Neural Networks for One-Shot Image Recognition". PhD Thesis. University of Toronto, 2015.
- Amirreza Shaban et al. "One-Shot Learning for Semantic Segmentation". In: *BMVC*. 2017.

June 12, 2018

Thanks

Thanks for Attention!

