Homework 6

Ahmed Alelg - 201507470

Thursday 19^{th} March, 2020

Use Simpson's Rule to approximate $\int_1^{1.5} x^2 lnx \ dx$ and find a bound for the error.

Answer:
$$\int_1^{1.5} x^2 \ln x \ dx \approx \frac{1.5-1}{3\cdot 2} (f(1) + 4f(1.25) + f(1.5)) = 0.08333(0 + 4 \cdot 0.348661 + 0.912296) = \boxed{0.19224530741309842}$$

$$E(h)=(0.5^5/90)\cdot f^{(4)}(\zeta)$$
 Because $f^{(4)}(x)=-2/x^2$. We have $|E(1.25)|\leq (0.5^5/90)\cdot f^{(4)}(1)=0.0006944$ since it is increasing as x decreases.

Consider the following quadrature formula: $\int_1^{-1} f(x)dx = af(-1) + bf(1) + cf'(-1) + df'(1)$ Determine the constants a,b,c and d such that this formula has degree of precision 3.

Answer		
degree	RHS	LHS
0	$\int_{1}^{-1} x^{0} dx = x _{1}^{-1} = 2$ $\int_{1}^{-1} x^{1} dx = 0.5x^{2} _{1}^{-1} = 0$	a + b
1	$\int_{1}^{-1} x^{1} dx = 0.5x^{2} _{1}^{-1} = 0$	b-a+c+d
2	$\int_{1}^{1} x^{2} dx = 0.333x^{3} _{1}^{-1} = 0.666$	a+b-2c+2d
3	$\int_{1}^{-1} x^{3} dx = 0.25x^{4} _{1}^{-1} = 0$	b - a + 3c + 3d

Gaussian elimination gives values as $\boxed{a=1,b=1,\,c=1/3,\,d=-1/3}$