Teoria dos Números (1.1 da ementa)

Prof. Rafael Alves Bonfim de Queiroz rafael.queiroz@ufop.edu.br

Order

- Observe that we define order in Z in terms of the positive integers N.
- All the usual properties of this order relation are a consequence of the following two properties of N:
 - P1 If a and b belong to N, then a + b and ab belong to N.
 - P2 For any integer a, either $a \in N$, a = 0, or $-a \in N$.
- The following notation is also used:
 - ▶ a > b means b < a: a is greater than b.
 - $ightharpoonup a \le b$ means a < b or a = b: a is less than or equal to b.
 - ▶ $a \ge b$ means $b \le a$: a is greater than or equal to b.

Inequalities

- The relations <, >, ≤ and ≥ are called inequalities in order to distinguish them from the relation = of equality.
- Representation of the integers as points on a straight line, called the number line R
- We note that a < b if and only if a lies to the left of b on the number line R . For example, 2 < 5; -6 < -3; $4 \le 4$; 5 > -8; $6 \ge 0$; $-7 \le 0$
- We also note that a is positive iff a > 0, and a is negative iff a < 0. (Recall "iff" means "if and only if")

Inequalities

- Proposition: The relation \leq in Z has the following properties:
 - ▶ (i) $a \le a$, for any integer a.
 - (ii) If $a \le b$ and $b \le a$, then a = b.
 - (iii) If $a \le b$ and $b \le c$, then $a \le c$.
- Proposition (Law of Trichotomy): For any integers a and b, exactly one of the following holds: a < b, a = b, or a > b
- Proposition: Suppose $a \le b$, and let c be any integer. Then:
 - ▶ (i) $a + c \le b + c$.
 - (ii) $ac \le bc$ when c > 0; but $ac \le bc$ when c < 0.

Absolute Value

- The absolute value of an integer a. written |a|, is formally defined by if $a \ge 0$, |a| = a; if a < 0, |-a| = a
- Accordingly, |a| > 0 except when a = 0.
- Geometrically speaking, |a| may be viewed as the distance between the points a and 0 on the number line R.
- Also, |a-b|=|b-a| may be viewed as the distance between the points a and b. For example: (a) |-3|=3; |7|=7; |-13|=13; (b) |2-7|=|-5|=5; |7-2|=|5|=5
- Some properties of the absolute value function follow.
- Proposition: Let a and b be any integers. Then:
 - (i) $|a| \ge 0$, and |a| = 0 iff a = 0
 - ▶ (ii) $-|a| \le a \le |a|$
 - (iii) |ab| = |a||b|
 - ▶ (iv) $|a \pm b| \le |a| + |b|$
 - $(v) |a| |b| \le |a \pm b|$

Mathematical Induction

- The principle of mathematical induction stated below essentially asserts that the positive integers N begin with the number 1 and the rest are obtained by successively adding 1.
- That is, we begin with 1, then 2 = 1 + 1, then 3 = 2 + 1, then 4 = 3 + 1, and so on.
- The principle makes precise the vague phrase "and so on."

- **Princípio da Indução Matemática**: Seja *S* um conjunto de inteiros positivos com as duas propriedades a seguir:
 - ▶ (i) 1 pertence a S.
 - (ii) Se k pertence a S, então k+1 pertence a S.

Então S é o conjunto de todos os inteiros positivos.

- **Princípio de Indução Matemática**: Seja P uma proposição definida sobre os inteiros $n \ge 1$ tal que:
 - ▶ (i) P(1) é verdadeiro.
 - (ii) P(k+1) é verdadeiro sempre que P(k) for verdadeiro. Então P é verdadeiro para todo inteiro $n \ge 1$.

Example 1

- Let P be the proposition that the sum of the first n odd numbers is n^2 ; that is: $P(n): 1+3+5++(2n-1)=n^2$
- The *nth* odd number is 2n-1 and the next odd number is 2n+1.
- Clearly, P(n) is true for n = 1; that is: $P(1) : 1 = 1^2$
- Suppose P(k) is true. (This is called the inductive hypothesis.) Adding 2k+1 to both sides of P(k) we obtain $1+3+5++(2k-1)+(2k+1)=k^2+(2k+1)=(2k+1)^2$ which is P(k+1)
- ullet We have shown that P (k + 1) is true whenever P(k) is true. By the principle of mathematical induction, P is true for all positive integers n.

Example 2

- The symbol n! (read: n factorial) is defined as the product of the first n positive integers; that is: 1! = 1, $2! = 2 \cdot 1 = 2$, $3! = 3 \cdot 2 \cdot 1 = 6$, and so on.
- This may be formally defined as follows: 1! = 1 and (n + 1)! = (n + 1)(n!), for n > 1
- Observe that if S is the set of positive integers for which ! is defined, then S satisfies the two properties of mathematical induction.
- Hence the above definition defines ! for every positive integer.
- There is another form of the principle of mathematical induction which is sometimes more convenient to use. Namely:
- Theorem (Induction: Second Form): Let P be a proposition defined on the integers $n \ge 1$ such that:
 - ▶ (i) *P*(1) is true.
 - ▶ (ii) P(k) is true whenever P(j) is true for all $1 \le j < k$.
 - ▶ Then *P* is true for every integer $n \ge 1$.

Well-Ordering Principle

- A property of the positive integers which is equivalent to the principle of induction, although apparently very dissimilar, is the well-ordering principle
- Teorema [**Princípio da Boa Ordem**]: Seja S um conjunto não vazio de inteiros positivos. Então S contém um mínimo elemento; isto é, S contém um elemento a tal que $a \le s$ para cada s em S

Well-Ordering Principle

- Generally speaking, an ordered set S is said to be well-ordered if every subset of S contains a first element. Thus Teorema [Princípio da Boa Ordem]: states that N is well ordered.
- A set S of integers is said to be bounded from below if every element of S is greater than some integer m (which may be negative). (The number m is called a lower bound of S.)
- A simple corollary of the above theorem follows:
- Corollary 11.7: Let S be a nonempty set of integers which is bounded from below. Then S contains a least element.