Реализация протокола Open Shortest Path First

Данил Пестряков

23 ноября 2022 г.

Содержание

1	Постановка задачи							
2	Pea	Реализация						
	2.1	Описа	ание работы протокола					
	2.2		ленный маршрутизатор (DR)					
3	Рез	ультат	ъi					
	3.1	Линей	иная топология сети					
		3.1.1	Исходное состояние					
		3.1.2	После отключения маршрутизатора с номером 2					
	3.2		огия сети кольцо					
		3.2.1	Исходное состояние					
		3.2.2	После отключения маршрутизатора с номером 4					
	3.3	Топол	огия сети звезда					
		3.3.1	Исходное состояние					
		3.3.2	После отключения маршрутизатора с номером 4					
4	Вы	воды						
5	Ссылка на github							
6	Приложения							

1 Постановка задачи

- Реализовать протокол **OSPF**
- Топология сети: линейная, кольцо, звезда
- Рассмотреть перестройку таблиц достижмости при стохастических разрывах связи

OSPF (англ. Open Shortest Path First) - протокол динамической маршрутизации, основанный на технологии отслеживания состояния канала и использующий для нахождения кратчайшего пути алгоритм Дейкстры.

Протокол OSPF распространяет информацию о доступных маршрутах между маршрутизаторами одной автономной системы.

2 Реализация

2.1 Описание работы протокола

Принцип работы заключается в следующем:

- 1. После включения маршрутизаторов протокол ищет непосредственно подключённых соседей и устанавливает с ними «дружеские» отношения.
- 2. Затем они обмениваются друг с другом информацией о подключённых и доступных им сетях. То есть они строят карту сети (топологию сети). Данная карта одинакова на всех маршрутизаторах
- 3. На основе полученной информации запускается алгоритм SPF (Shortest Path First, «выбор наилучшего пути»), который рассчитывает оптимальный маршрут к каждой сети. Данный процесс похож на построение дерева, корнем которого является сам маршрутизатор, а ветвями пути к доступным сетям. Данный процесс, то есть конвергенция, происходит очень быстро.

Модель реализована на языке **Python**. Все роутеры работают в отдельных потоках, создаваемых с использованием модуля *threading*.

2.2 Выделенный маршрутизатор (DR)

Выделенный маршрутизатор (designated router, **DR**) — управляет процессом рассылки LSA (link-state advertisement, объявление о состоянии канала) в сети. Каждый маршрутизатор сети устанавливает отношения смежности с DR. Информация об изменениях в сети отправляется маршрутизатором, обнаружившим это изменение, на выделенный маршрутизатор, а тот, в свою очередь, отвечает за то, чтобы эта информация была отправлена остальным маршрутизаторам сегмента множественного доступа.

3 Результаты

3.1 Линейная топология сети

3.1.1 Исходное состояние

Взято 5 маршрутизаторов. Модель сети: 0 - 1 - 2 - 3 - 4

Таблица 1: Таблицы достижимости линейной топологии сети из 5 маршрутизаторов из исходного состояния

Маршрутизатор	Оптимальные маршруты
0	0
	$0 \rightarrow 1$
	$0 \rightarrow 1 \rightarrow 2$
	$0 \rightarrow 1 \rightarrow 2 \rightarrow 3$
	$0 \to 1 \to 2 \to 3 \to 4$
1	$1 \rightarrow 0$
	1
	$1 \rightarrow 2$
	$1 \rightarrow 2 \rightarrow 3$
	$1 \to 2 \to 3 \to 4$
2	$2 \rightarrow 1 \rightarrow 0$
	$2 \rightarrow 1$
	2
	$2 \rightarrow 3$
	$2 \rightarrow 3 \rightarrow 4$
3	$3 \to 2 \to 1 \to 0$
	$3 \rightarrow 2 \rightarrow 1$
	$3 \rightarrow 2$
	3
	$3 \rightarrow 4$
4	$4 \to 3 \to 2 \to 1 \to 0$
	$4 \rightarrow 3 \rightarrow 2 \rightarrow 1$
	$4 \rightarrow 3 \rightarrow 2$
	$4 \rightarrow 3$
	4

3.1.2 После отключения маршрутизатора с номером 2

Модель сети: 0 - 1 3 - 4

3.2 Топология сети кольцо

3.2.1 Исходное состояние

Взято 5 маршрутизаторов. Модель сети: 0 - 1 - 2 - 3 - 4 - 0

Таблица 2: Таблицы достижимости линейной топологии сети из 5 маршрутизаторов после отключения маршрутизатора 2

Маршрутизатор	Оптимальные маршруты		
0	0		
	$0 \rightarrow 1$		
1	$1 \rightarrow 0$		
	1		
3	3		
	$3 \rightarrow 4$		
4	$4 \rightarrow 3$		
	4		

Таблица 3: Таблицы достижимости кольца из 5 маршрутизаторов в исходном состоянии

7.6	
Маршрутизатор	Оптимальные маршруты
0	0
	$0 \rightarrow 1$
	$0 \rightarrow 1 \rightarrow 2$
	$0 \rightarrow 4 \rightarrow 3$
	$0 \rightarrow 4$
1	$1 \rightarrow 0$
	1
	$1 \rightarrow 2$
	$1 \rightarrow 2 \rightarrow 3$
	$1 \rightarrow 0 \rightarrow 4$
2	$2 \rightarrow 1 \rightarrow 0$
	$2 \rightarrow 1$
	2
	$2 \rightarrow 3$
	$2 \rightarrow 3 \rightarrow 4$
3	$3 \rightarrow 4 \rightarrow 0$
	$3 \rightarrow 2 \rightarrow 1$
	$3 \rightarrow 2$
	3
	$3 \rightarrow 4$
4	$4 \rightarrow 0$
_	$4 \to 0 \to 1$
	$4 \rightarrow 3 \rightarrow 2$
	$4 \rightarrow 3$
	4
	_ <u> </u>

3.2.2 После отключения маршрутизатора с номером 4

Модель сети: 0 - 1 - 2 - 3

Таблица 4: Таблицы достижимости кольца из 5 маршрутизаторов после отклю-

чения маршрутизатора 4

<u> </u>	
Маршрутизатор	Оптимальные маршруты
0	0
	$0 \rightarrow 1$
	$0 \to 1 \to 2$
	$0 \to 1 \to 2 \to 3$
1	$1 \rightarrow 0$
	1
	$1 \rightarrow 2$
	$1 \rightarrow 2 \rightarrow 3$
2	$2 \rightarrow 1 \rightarrow 0$
	$2 \rightarrow 1$
	2
	$2 \rightarrow 3$
3	$3 \to 2 \to 1 \to 0$
	$3 \rightarrow 2 \rightarrow 1$
	$3 \rightarrow 2$
	3

3.3 Топология сети звезда

3.3.1 Исходное состояние

Взято 5 маршрутизаторов. Модель сети:

- 2 0
- 2 1
- 2 3
- 2 4

Таблица 5: Таблицы достижимости звезды из 5 маршрутизаторов в исходном со-

стоянии

Маршрутизатор	Оптимальные маршруты
0	0
· ·	$0 \to 2 \to 1$
	$0 \to 2$
	$0 \to 2$ $0 \to 2 \to 3$
1	$0 \rightarrow 2 \rightarrow 4$
1	$1 \to 2 \to 0$
	1
	$1 \rightarrow 2$
	$1 \rightarrow 2 \rightarrow 3$
	$1 \to 2 \to 4$
2	$2 \to 0$
	$2 \rightarrow 1$
	2
	$2 \rightarrow 3$
	$2 \rightarrow 4$
3	$3 \rightarrow 2 \rightarrow 0$
	$3 \rightarrow 2 \rightarrow 1$
	$3 \rightarrow 2$
	3
	$3 \rightarrow 2 \rightarrow 4$
4	$4 \rightarrow 2 \rightarrow 0$
	$4 \rightarrow 2 \rightarrow 1$
	$4 \rightarrow 2$
	$4 \rightarrow 2 \rightarrow 3$
	4
	T

3.3.2 После отключения маршрутизатора с номером 4

Модель сети:

- 2 0
- 2 1
- 2 3

Таблица 6: Таблицы достижимости звезды из 5 маршрутизаторов после отключения маршрутизатора 4

opa i			
Маршрутизатор	Оптимальные маршруты		
0	0		
	$0 \rightarrow 2 \rightarrow 1$		
	$0 \rightarrow 2$		
	$0 \rightarrow 2 \rightarrow 3$		
1	$1 \rightarrow 2 \rightarrow 0$		
	1		
	$1 \rightarrow 2$		
	$1 \to 2 \to 3$		
2	$2 \rightarrow 0$		
	$2 \rightarrow 1$		
	2		
	$2 \rightarrow 3$		
3	$3 \rightarrow 2 \rightarrow 0$		
	$3 \rightarrow 2 \rightarrow 1$		
	$3 \rightarrow 2$		
	3		

4 Выводы

В рамках работы была реализована программная модель, позволяющая объединять произвольное количество роутеров в сети с помощью протокола Open Shortest Path First. Корректность работы алгоритма построения кратчайших путей подтверждена тестированием на трёх видах топологий сети.

По результатам сравнения свойств различных топологий, в предположении равенства весов всех каналов связи, можно сделать следующие выводы:

- При линейной топологии максимальная длина пути между узлами может достигать n 1, где n число роутеров в сети. При этом выход из строя любого узла, кроме крайних, нарушает связность сети, и разбивает её на две компоненты.
- При звездной топологии максимальная длина пути при любом числе узлом не превосходит 2. Выход из строя любого нецентрального узла не нарушает связность, но при отключении центрального роутера сеть полностью «разваливается», и все остальные узлы оказываются изолированными
- При кольцевой топологии максимальная длина пути в 2 раза меньше, чем в линейной, и может быть порядка n/2. При этом в отличие от линейно топологии, выход из строя одного любого узла не нарушает связность, но при выходе из строя двух узлов сеть также распадается на две компоненты.

Также в приложениях приведены протоколы выполнения программы.

5 Ссылка на github

https://github.com/DanilPestryakov/comps_networks

6 Приложения

```
shortest ways from 0:
shortest ways from 1:
```

Рис. 1: Линейная топология. Исходное состояние

```
router0 got: "LSU 2 dropped"
shortest ways from 4:
shortest ways from 1:
```

Рис. 2: Линейная топология. Удаление роутера с номером 2

```
shortest ways from 4:
```

Рис. 3: Топология кольцо. Исходное состояние

```
router2 got: "LSU 4 dropped"
shortest ways from 1:
shortest ways from 0:
shortest ways from 3:
```

Рис. 4: Топология кольцо. Удаление роутера с номером 4

```
shortest ways from 3:
shortest ways from 4:
```

Рис. 5: Топология звезда. Исходное состояние

```
shortest ways from 3:
router2 got: "LSU 0->2"
router2 got: "LSU 1->2"
shortest ways from 0:
router2 got: "LSU 3->2"
shortest ways from 1:
shortest ways from 2:
```

Рис. 6: Топология звезда. Удаление роутера с номером 4