

28.16 Dead Time Module (DTM)

28.16.1 Overview

Figure 93 gives an overview of the structure of the Dead Time Module (DTM).

Note: In this paragraph, the following is used. Variable n is used for CDTMs, x for channels and i is used for DTMs. (An exception for TIM names.)

Figure 93 DTM overview

The main function of the DTM is to derive for each input *DTM_IN0* to *DTM_IN3* the individual inverse signal (*DTM[i]_OUT[x]_N*) and to apply an edge specific delay between the edge of the original signal and the edge of the derived inverted signal (i.e., the dead time). This function is mainly used for controlling of half bridges.

A second function provided by DTM is to set the outputs of one channel to the value of the preceding channel if requested by a trigger on input *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN*. This feature allows a phase shift on one PWM signal to the phase of the preceding PWM signal up to the next edge on this channel.

The third function provided by DTM is to (N)AND/(N)OR/X(N)OR combine the input *DTM_IN[x]* signal of one DTM channel with the signal on input *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* (selected inside DTM_PSU and assigned to one of the signals *SHIFT[x]*) or with the combinational output (signal *COUT[x]*) of preceding channel. As a result *COUT2* may be the combined signal of *DTM_IN0* and *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* and the signal *DTM_IN1*. For *COUT3* this chain can be combined again with signal *DTM_IN3*.

The outputs of each channel may be swapped individually to provide the function of combining signals on each output of a channel.

In general, the DTM instances are placed behind the TOM and the ATOM instances, i.e., the outputs $TOM_OUT[x]$ and $TOM_OUT[x]_T$ or $ATOM_OUT[x]$ and $ATOM_OUT[x]_T$ are each routed to the DTM instance inputs $DTM_IN[y]$ and $DTM_IN[y]_T$. Four DTM instances behind a TOM instance i and two DTM instances behind an ATOM instance i are grouped together in a Cluster DTM hierarchy called CDTM[i]. The connections between DTM and the modules TOM and ATOM are depicted in **Figure 94**.

Note, depending on device configuration, not every DTM instance is available. E.g. a device may only have one DTM connected to the first four channels of ATOM. In this case, the other four channels (4 to 7) are connected directly to GTM outputs. For detailed information, which DTM instance is available, refer to corresponding device specific device specific appendix of this specification.

Figure 94 Connections of TOM and ATOM to DTM inputs DTM_IN[y]/DTM_IN[y]_T

Additionally, the DTM instances have inputs TIM_CH_INO/TIM_CH_IN1 which are driven by TIM output signals $TIM[i]_CH[x]_F_OUT$.

There are two configurations of TIM to DTM connections possible depending on the DTM channel specific configuration bit TIM_SEL.

In case of TIM_SEL=0 the connected TIM input may not be of the same cluster as the DTM.

In case of TIM_SEL=1 the TIM input is of the same cluster as the DTM.

Figure 95 Connections of TIM to DTM inputs TIM_CH_IN0/TIM_CH_IN1 for TIM_SEL=0

Figure 96 Connections of TIM to DTM inputs TIM_CH_IN0/TIM_CH_IN1 for TIM_SEL=1

There are also connections between DTM instances of same CDTM instance. For each pair of DTM instance 2i and 2i+1 the combinatorial output *COUT(3)* of DTM[2i] channel 3 is connected to DTM[2i+1] channel 0 *COUT(0-1)*.

With this a combinatorial chain over two neighbored DTM instances can be configured.

If one of the two neighbored DTM instances is not available (i.e. it is an empty instance) the inputs used for connections between two neighbored DTM instances are left open.

Note: For channel x=0 of DTM instance 2i input signals COUT[x-1] is unused and I1SEL[x] is defined as 0.

An additional link between DTM instances behind an ATOM is a forwarding of *DTM[i]_PSU_IN* signal to next available instance of DTM behind an ATOM (e.g. *DTM[i+1]_PSU_IN*).

The same link is available between all available DTM behind a TOM.

Note, for unavailable DTM[i] instances (i.e. the instance DTM[i] is called empty) the signal *DTM[i-1]_PSU_IN* is passed through empty instance DTM[i] to *DTM[i+1]_PSU_IN*, *DTM[i-1]_IN0_FEDGE* and *DTM[i-1]_IN0_REDGE* are passed through DTM[i] to *DTM[i+1]_IN0_FEDGE* and *DTM[i+1]_IN0_REDGE*.

Further connections between neighbored DTM instances are depicted in Figure 97:

Figure 97 Connections between DTM instances

28.16.2 DTM Channel

Figure 98 depicts the functions of a DTM channel.

Figure 98 DTM channel overview

The main feature of each channel is to derive the inverse signal out of the input signal $DTM_i[x]$, apply an edge dependent delay on the two resulting signal paths and provide these signals at the outputs $DTM[i]_iDUT[x]$ and $DTM[i]_iDUT[x]_iD$

There are two possibilities to apply dead time on GTM output signals. One is to use one DTM channel per TOM/ATOM channel and generate inside the DTM the second inverse signal. This is called the standard dead time generation. The second way is to generate two signals out of two TOM/ATOM channel and to apply inside the DTM only the dead time by using two cross linked DTM channel. This is called the cross dead time generation.

28.16.2.1 Standard dead time generation

The dead time can be configured for each edge individually. The bit field **RELRISE** in register **DTM[i]_CH[x]_DTV** contains the reload value for the counter and defines the delay for rising edges in multiples of selected clock ticks. The bit field **RELFALL** in register **DTM[i]_CH[x]_DTV** contains the reload value for the counter and defines the delay for falling edges in multiples of selected clock ticks.

The counter is reloaded with the value of **RELRISE** on a rising edge and reloaded with the value of **RELFALL** on a falling edge on input $DTM_IN[x]$ (or $DTM_IN[x-1]$ in case of shift enable **SH_EN_[x]**).

On a reload of the counter the flip-flop following the counter output comparator is reset and stays reset until the counter has reached 0.After reload, the counter **DT_DOWN_CNT** counts down until it reaches 0 and stops at 0.

The signal flow for function of standard dead time signal generation is depicted in Figure 99.

Figure 99 Wave signals for function of dead time generation

Note: The delay from the input signal DTM_IN[x] to the output signals DTM[i]_OUT[x] and DTM[i]_OUT[x]_N is three system clock periods by disabled feed through (see $DTO/1_[x]$ in $DTM[i]_CH_CTRL2$).

Note: The delay from the input signal DTM_IN[x] to the output signals DTM[i]_OUT[x] and DTM[i]_OUT[x]_N is one system clock periods by enabled feed through (see $DTO/1_[x]$ in $DTM[i]_CH_CTRL2$).

Note: The delay from the input signal DTM_IN[x]_T to the output signals DTM[i]_OUT[x] and DTM[i]_OUT[x]_N is three system clock periods in case of disabled feed through (see $O1F_[x]$ and $O1SEL_[x]$ in $DTM[i]_CH_CTRL2$).

Note: The delay from the input signal DTM_IN[x]_T to the output signals DTM[i]_OUT[x] and DTM[i]_OUT[x]_N is one system clock periods in case of enabled feed through (see **O1F_[x]** and **O1SEL_[x]** in **DTM[i]_CH_CTRL2**).

Note: The reset level of the output signals DTM[i]_OUT[x] connected from ATOM module depends on the hardware configuration value atom_out_reset_level_c chosen by silicon vendor.

Note: The reset level of the output signals DTM[i]_OUT[x]_N connected from ATOM module is defined by the inverse hardware configuration value atom_out_reset_level_c chosen by silicon vendor.

Note: The reset level of the output signals DTM[i]_OUT[x] connected from TOM module is defined by the hardware configuration value tom_out_reset_level_c chosen by silicon vendor.

Note: The reset level of the output signals DTM[i]_OUT[x]_N connected from TOM module is defined by the inverse hardware configuration value tom_out_reset_level_c chosen by silicon vendor.

28.16.2.2 Cross channel dead time

A second way to apply a dead time value on two output signals is the cross channel dead time.

In opposite to the dead time described in **Section 28.16.2.1** the cross channel dead time mode does not generate out of one signal the corresponding inverse signal but tries to apply the dead time on the input signals of two neighbored DTM channel.

To do this, two neighbored DTM input signals (on DTM channel (2k) and (2k+1) for k=0,1) are cross linked together in the way that a falling edge on one channel leads to a hold phase of current signal value on the cross linked channel.

This behavior is reached by the following:

A falling edge on e.g. channel (2k) reloads the **DT_DOWN_CNT** with the value of **RELFALL**. While this counter is counting down, the output signal of the cross linked channel (2k+1) keeps its value. If the counter **DT_DOWN_CNT** has reached 0 again, the channel (2k+1) output is released and can follow the value on its input. The timing of the cross channel dead time is depicted in the following figure:

Figure 100 shows the behavior in case of input edges at *DTM_IN[2k]* and *DTM_IN[2k+1]* occur at the same point in time. Then the falling edge is forwarded immediately (with only two clock cycles delay) and the rising edge is delayed additionally by the number of clock ticks specified by the **RELFALL** parameter of the cross linked channel.

Figure 100 Cross channel dead time timing diagram

In case of high level (i.e. 1) at the DTM inputs $DTM_IN[2k]$ and $DTM_IN[2k+1]$ at the same point in time, the channel of (2k) has higher priority than the corresponding channel (2k+1). This means that in this case the input $DTM_IN[2k+1]$ if forced immediately at channel input to low level (i.e. 0).

As a result the DTM output of channel *DTM_OUT[2k+1]* can never be high if the cross linked channel *DTM_OUT[2k]* is high.

28.16.3 Phase Shift Control Unit

The phase shift unit (DTM_PSU) is depicted in the following figure. It supports the second major function of the DTM module to allow phase shifting of PWM signal on one of the channels.

Figure 101 Phase Shift Unit overview

This sub-module provides an additional counter **BLK_DOWN_CNT** and reload register **RELBLK** (bit field of register **DTM[i]_PS_CTRL**). The counter is reloaded on an edge detected on one of the selected signals *INO_edge* to *IN2_edge* (selected by bit field **SHIFT_SEL** in register **DTM[i]_PS_CTRL**). Then, the counter counts down until it reaches 0. While the counter is counting down, it blocks the trigger (i.e. the selected one of the signals *SHIFT[x]*) of one of the channels by one of the input signals *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN*.

If the counter **BLK_DOWN_CNT** is not counting, a pulse on the input *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* is forwarded to one of the selected DTM_PSU outputs *SHIFT[x]*. This signal triggers in the selected channel (if **SH_EN_x=1**) the update of the first flip-flop on channel x (i.e. representing *IN[x]_DLY*) to the input value *DTM_IN[x-1]* of the preceding channel. If this update leads to an edge, the succeeding part of DTM channel derives the inverse signal and applies the corresponding dead time (i.e. the edge delay) to the output signals of the channel.

Note: For channel x=0 input signals DTM_IN[x-1] is unused and **SH_EN_[x]** is defined as 0.

Figure 102 shows an example of phase shifting on channel 1.

Figure 102 Example wave of phase shift on channel 1

28.16.4 Multiple output signal combination

Each channel provides additionally the possibility to combine the channel inputs $DTM_IN[x]$ and SHIFT[x] or COUT[x-1] (selected by **I1SEL_[x]**) by an AND or an XOR gate (selected by **O1F_[x]**).

It is recommended to use the combination of signals only if bit field **RELBLK** of register **DTM[i]_PS_CTRL** is 0. Otherwise, the signal *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* may be disturbed by the blanking window counter.

Together with the inverter inside sub-module DTM_PSU (selected by **IN_POL**), the inverter on each output of a channel (selected by **POLO_[x]/POL1_[x]**) and the possibility to change polarity of *DTM_IN[x]* inside connected TOM/ATOM channel, a (N)AND, (N)OR or X(N)OR combination of the signals is possible.

28.16.4.1 Combination of input signal TIM_CH_IN/AUX_IN with TOM/ATOM signal

If the input selection **I1SEL_[x]** of a channel x is set to 0, the output selection **O1SEL_[x]** is set to 1 and **SWAP_[x]** is set to 0, depending on **PSU_IN_SEL** either *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* can be combined with signal *DTM_IN[x]*.

The function of combination on DTM output $DTM[i]_OUT[x]_N$ (and also COUT[x]) is defined by **O1F_[x]** in the following way:

Table 61 Function of combination on DTM channel x=0 output DTM[i]_OUT[x]_N (and also COUT[x])

	O1F_x	POL1_x	IN_POL	(A)TOM output inverted		
XOR	01	0	0	no		
AND	10	0	0 no			
XNOR	01	1	0	no		
NAND	10	1	0	no		
XNOR	01	1	1	yes		
OR	10	1	1	yes		
XOR	01	0	1	yes		
NOR	10	0	1	yes		

Note:

The inversion of the (A)TOM output can be reached by switching the **SL** bit (for TOM and ATOM SOMP/SOMC mode).

28.16.4.2 Combination of multiple TOM/ATOM output signals

If the input selection **I1SEL_[x]** of a channel x (with x=1...3) is set to 1, the output selection **O1SEL_[x]** is set to 1 and **SWAP_[x]** is set to 0, the output of the preceding DTM channel *COUT[x-1]* can be combined with signal *DTM_IN[x]*.

The function of combination on DTM output $DTM[i]_OUT[x]_N$ (and also COUT[x]) is defined by **O1F_[x]** in the following way:

Table 62 Function of combination on DTM on channel x=1...3 output DTM[i]_OUT[x]_N (and also COUT[x])

	O1F_x	POL1_x	POL1_x-1	(A)TOM output inverted		
XOR	01	0	0	no		
AND	10	0	0	no		
XNOR	01	1	0	no		
NAND	10	1	0	no		
XNOR	01	1	1	yes		
OR	10	1	1	yes		
XOR	01	0	1	yes		
NOR	10	0	1	yes		

By setting **I1SEL_[x]** to 1 on all four channel, a combination of all four signals *DTM_IN0* to *DTM_IN3* can be achieved (combinatorial chain).

To allow also combination of signals generated for output $DTM[i]_OUT[x]$, the outputs 0 and 1 can be swapped by setting bit **SWAP_[x]** for channel x.

28.16.4.3 Pulse generation on edge

Another feature of the DTM is to generate on the second output $DTM[i]_OUT[x]_N$ a pulse on every edge of corresponding input signal $DTM[i]_IN[x]$.

This can be reached by configuring **O1SEL_[x]** to 1, i.e. selecting signal $edge_trigg_[x]$ as the output signal (**O1F_[x]** has to be 0b00). The signal $edge_trigg_[x]$ is depicted in **Figure 99**.

The pulse length can be adjusted individually for each edge type by the configuration value **REL_RISE** and **REL_FALL** of register **DTM[i]_CH[x]_DV**.

The parameter **REL_RISE** defines the pulse length in case of a rising edge on input *DTM[i]_IN[x]*, the parameter **REL_FALL** define the pulse length in case of a falling edge on input *DTM[i]_IN[x]*.

The generated edge signal $edge_trigg_[x]$ can be combined with the output signal of the preceding DTM channel x-1 at channel input COUT[x-1] (see **Figure 98**).

With the configuration of **CIS**[**x**]=1 and **I1SEL**_[**x**]=1, **CII**[**x**]=0 and **POL1**_[**x**]=1, the signal *edge*_*trigg*_[*x*] of channel x is ORed with the inverse signal at channel input *COUT*[*x*-1]. The signal at **COUT**[**x**-1] can be inverted by changing **POL1**_[**x**-1] of channel x-1.

As a result of this configuration one can generate at each edge on DTM input $DTM_IN[x]$ a pulse signal and OR-combine these generated pulse signals with the generated signal of preceding DTM channel. If the combinatorial chain is configured over all four DTM channel the final signal is available at last DTM output DTM_OUT3_N .

28.16.5 Synchronous update of channel control register 2

It is possible to use the shadow register **DTM[i]_CH_CTRL2_SR** and a selected edge of one of the channel 0 to 3 to update the work register **DTM[i]_CH_CTRL2**.

The update mechanism and its configuration are depicted in Figure 103.

Figure 103 Synchronous update mechanism of register DTM[i]_CH_CTRL2

If enabled by the bit field **UPD_MODE** of register **DTM[i]_CTRL** (i.e. **UPD_MODE**=1xx), the register **DTM[i]_CH_CTRL2_SR** serves as a shadow register **DTM[i]_CH_CTRL2**. The update is then triggered by an edge on one of the selected inputs *DTM_IN0* to *DTM_IN3*.

The synchronous update allows the user to change output polarity, the selection of constant signal level, the constant signal level itself and the switch to/from feed through path on all four channels in parallel synchronized to one of the input edges on *DTM_INO* to *DTM_INO*.

28.16.6 DTM output shut off

A fast shut off for the eight outputs of DTM instance i can be triggered by one of the two assigned inputs TIM[n]_CH_IN or DTM[i]_AUX_IN or the two inputs TIM[m]_CH_IN or DTM[i-1]_AUX_IN of the previous DTM instance i-1. The selection of the trigger signal source is done by the bits **PSU_IN_SEL** and **DTM_SEL(1)** (see **Figure 101**). The selected trigger signal is named *SHUT_OFF*.

Enabling of the shut off feature is done by setting **UPD_MODE(2:0)** to one of the values 0b001, 0b010 or 0b011.

The shut off behavior of the DTM outputs is defined by the value of register **DTM[i]_CH_CTRL2_SR**.

If the shut off feature is enabled by **UPD_MODE**, as long as the signal *SHUT_OFF_SYNC* is 0, the register **DTM[i]_CH_CTRL2** defines the output signal behavior.

If the signal SHUT_OFF_SYNC is 1, the register **DTM[i]_CH_CTRL2_SR** defines the output signal behavior.

The signal SHUT_OFF_SYNC is set to 1 if signal SHUT_OFF switches to 1. The reset depends on value of UPD_MODE(2:0).

There are three different ways to reset the signal SHUT_OFF_SYNC to 0:

- the CPU writes a 1 to bit SHUT_OFF_RST of register DTM_CH_CTRL1
- synchronous to an edge on DTM channel 0 input of this DTM instance i or on an edge on DTM channel 0 input of preceding DTM instance i-1.
- asynchronous if signal SHUT_OFF switches back to 0

Additionally, setting UPD_MODE(2:0) to value 0b000 or 0b1xx resets also the signal SHUT_OFF_SYNC.

Figure 103 depicts the shut off feature and the different shut off release possibilities.

Note: The reset of SHUT_OFF_SYNC has lower priority than the set of this signal.

A second shadow register **DTM[i]_CH_SR** exist for the eight **SL** bits (SLx_y_SR) of the shadow register **DTM[i]_CH_CTRL2_SR**.

If enabled by configuration bit **SR_UPD_EN** of register **DTM[i]_CTRL**, the update of **SL** bits of register **DTM[i]_CH_CTRL2_SR** can be triggered by one of the signals selected by bit field **DTM_SEL** of register **DTM[i]_CTRL**. This trigger signal is either the rising or the falling edge detected on *DTM[i]_IN0* of instance i or the rising or the falling edge on *DTM[i-1]_IN0* of preceding instance i-1.

As depicted in **Figure 95** the DTM input signal *TIM_CH_IN0*, *TIM_CH_IN1* or *DTM_AUX_IN* can be forwarded to the succeeding instance. Thus, it can be used to trigger shut off in two consecutive DTM instances.

28.16.7 DTM connections on GTM top level

The DTM, if present, is placed behind the outputs of a TOM or ATOM. The outputs of the DTM are routed directly to the top level ports of GTM. If there is a DTM placed behind a TOM or ATOM depends on the GTM device configuration.

In case of a DTM behind a TOM or ATOM, the outputs (A)TOM_OUT and (A)TOM_OUT_T are connected to DTM inputs DTM_IN and DTM_IN_T. The outputs of the DTM are routed directly to the top level of GTM. The behavior of DTM after reset is shown in **Figure 104**.

Figure 104 DTM behavior after reset

To route the signal $DTM[k]_IN[z]_T$ to the DTM output $DTM_[k]_OUT[z]_N$, the following DTM channel configuration has to be chosen:

O1F_[x] = 11, **O1SEL_[x]**=1 and **DT1_[x]**=1.

The signals names and the signal routing in the case of no DTM instance is placed behind a TOM or ATOM is shown in **Figure 105**.

Figure 105 (A)TOM output signal routing in case of no DTM instance available

28.16.8 CDTM Configuration Register Overview

Table 63 Configuration Register Overview

Register name	Description					
CDTM[i]_DTM[j]_CTRL	CDTMi DTMj global configuration and control register	332				
CDTM[i]_DTM[j]_CH_CTRL1	CDTMi DTMj channel control register 1	334				
CDTM[i]_DTM[j]_CH_CTRL2	CDTMi DTMj channel control register 2	337				
CDTM[i]_DTM[j]_CH_CTRL2_SR	CDTMi DTMj channel control register 2 shadow	340				
CDTM[i]_DTM[j]_CH_CTRL3	CDTMi DTMj channel control register 3	343				
CDTM[i]_DTM[j]_PS_CTRL	CDTMi DTMj phase shift unit configuration and control register	345				
CDTM[i]_DTM[j]_CH[z]_DTV	CDTMi DTMj dead time reload values	346				
CDTM[i]_DTM[j]_CH_SR	CDTM DTMj channel shadow register	347				

28.16.9 Configuration Register Description

28.16.9.1 Register CDTM[i]_DTM[j]_CTRL

CDTM0 DTM0 Global Configuration and Control Register

CDTMi_DTMj_CTRL (i=0-4;j=0-1,4-5)

 $\textbf{CDTMi DTMj Global Configuration and Control Register} (0E4000_{H} + i*400_{H} + j*40_{H}) \qquad \textbf{Application Reset Value:}$

0000 0000_H

CDTMi_DTMj_CTRL (i=5-6;j=0-3)

CDTMi DTMj Global Configuration and Control Register(0E4000_H+i*400_H+j*40_H) Application Reset Value:

0000 0000_H

CDTMi_DTMj_CTRL (i=0-4;j=2-3)

CDTMi DTMj Global Configuration and Control Register(0E4000_H+i*400_H+j*40_H) Application Reset Value:

0000 0000_H

CDTMi_DTMj_CTRL (i=5-6;j=4-5)

 $\textbf{CDTMi DTMj Global Configuration and Control Register} (\textbf{0E4000}_{H} + \textbf{i*400}_{H} + \textbf{j*40}_{H}) \qquad \textbf{Application Reset Value:}$

0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							0								SHUT_ OFF_R ST
							r								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		0			1	SR_UP D_EN	0	UI	PD_MOI	DE	DTM	_SEL	CLK	_SEL
1	1	1	r		1		rw	r	1	rw		r	w	r	w

Field	Bits	Туре	Description
CLK_SEL	1:0	rw	Clock source select 00 _B SYS_CLK selected 01 _B CMU_CLK0 selected 10 _B CMU_CLK1 selected (if DTM is connected to an ATOM) / CMU_FXCLK0 selected (if DTM is connected to a TOM)
			11 _B CMU_CLK2 selected (if DTM is connected to an ATOM) / CMU_FXCLK1 selected (if DTM is connected to a TOM)
DTM_SEL	3:2	rw	Select DTM update and SHUT_OFF reset signal $0X_B$ Shut off by signal TIM_CH_INO , TIM_CH_INI or DTM_AUX_IN $1X_B$ Shut off by signal $DTM[i-1]_PSU_IN$ 00_B Select falling edge on DTM[i] channel 0 input 01_B Select rising edge on DTM[i-1] channel 0 input 10_B Select falling edge on DTM[i-1] channel 0 input 11_B Select rising edge on DTM[i-1] channel 0 input 0b1 = shut off by signal DTM[i-1]_PSU_IN

AURIX™ TC3xx

Field	Bits	Туре	Description
UPD_MODE	6:4	rw	Update mode Note: If an INx_edge is not implemented, the value is unused. A write with this unused value returns 0b10 on status. 000 _B Asynchronous update - DTM[i]_CH_CTRL2_SR not used for update of DTM[i]_CH_CTRL2 001 _B Shut off release by writing 1 to bit SHUT_OFF_RST of register DTM[i]_CTRL 010 _B Shut off release by an edge on DTM[i]_IN0 or DTM[i-1]_IN0 (defined by bit field DTM_SEL of register DTM[i]_CTRL) 011 _B Shut off release by shut off signal SHUT_OFF (defined by bits PSU_IN_SEL and IN_POL of register DTM[i]_PS_CTRL and DTM_SEL(2) of register DTM[i]_CTRL) 100 _B Signal IN0_edge used to trigger update of DTM[i]_CH_CTRL2 with content of DTM[i]_CH_CTRL2_SR 101 _B Signal IN1_edge used to trigger update of DTM[i]_CH_CTRL2 with content of DTM[i]_CH_CTRL2_SR 110 _B Signal IN2_edge used to trigger update of DTM[i]_CH_CTRL2 with content of DTM[i]_CH_CTRL2_SR
SR_UPD_EN	8	rw	Shadow register update enable 0 _B No update of SLx_y_SR register bits in register DTM[i]_CH_CTRL2_SR 1 _B Update of SLx_y_SR register bits in register DTM[i]_CH_CTRL2_SR on trigger
SHUT_OFF_R ST	16	rw	Shut off reset Writing a 1 releases shut off (resets signal SHUT_OFF_SYNC if selected by UPD_MODE(2:0)=0b001)
0	7, 15:9, 31:17	r	Reserved Read as zero, shall be written as zero.

28.16.9.2 Register CDTM[i]_DTM[j]_CH_CTRL1

CDTM0 DTM0 Channel Control Register 1

CDTMi_DTMj_CH_CTRL1 (i=0-4;j=0-1,4-5)

CDTMi DTMj Channel Control Register 1 (0E4004_H+i*400_H+j*40_H)

CDTMi_DTMj_CH_CTRL1 (i=5-6;j=0-3)

CDTMi DTMj Channel Control Register 1 (0E4004_H+i*400_H+j*40_H)

CDTMi_DTMj_CH_CTRL1 (i=0-4;j=2-3)

CDTMi DTMj Channel Control Register 1 (0E4004_H+i*400_H+j*40_H)

CDTMi_DTMj_CH_CTRL1 (i=5-6;j=4-5)

CDTMi DTMj Channel Control Register 1 (0E4004_H+i*400_H+j*40_H)

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000 H

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	0	011	F_3	SWAP _3	SH_EN _3	I1SEL_ 3	01SEL _3	0	XDT_E N_2_3	01	F_2	SWAP	SH_EN _2	I1SEL_ 2	01SEL _2
1	r	r۱	N	rw	rw	rw	rw	r	rw	r	W	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	011	F_ 1	SWAP	SH_EN _1	I1SEL_ 1	01SEL _1	0	XDT_E N_0_1	01	F_0	SWAP _0	0	I1SEL_ 0	01SEL _0
	r	r۱	N	rw	rw	rw	rw	r	rw	r	W	rw	r	rw	rw

Field	Bits	Туре	Description
O1SEL_0	0	rw	Output 1 select channel 0
			0 _B Inverse dead time signal selected
			1 _B Special function on output 1 selected (defined by O1F_0)
I1SEL_0	1	rw	Input 1 select channel 0
			Note: If i is even, I1SEL_0 is not implemented. Then the bit is read as zero
			and shall be written as zero.
			0 _B Signal (PSU_)SHIFT0 selected
			1 _B Signal COUT3 from DTM[i-1] selected
SWAP_0	3	rw	Swap outputs DTM[i]_CH[0]_OUT0 and DTM[i]_CH[0]_OUT1 (before
_			final output register)
			0 _B Outputs not swapped
			Swap outputs DTM[i]_OUT0 and DTM[i]_OUT0_N
O1F_0	5:4	rw	Output 1 function channel 0
			00 _B Signal edge_trigg is selected
			01 _B XOR of DTM[i]_IN0 and signal SHIFT0
			10 _B AND of DTM[i]_IN0 and signal SHIFT0
			11 _B DTM[i]_IN0_T selected

Field	Bits	Туре	Description
XDT_EN_0_1	6	rw	Cross dead time enable on channels 0 and 1 Note: TSELO_[x] and SH_EN_1 must be '0' for using cross dead time to avoid wrong input signals. (x:0,1) OB Cross dead time disabled on channels 0 and 1 LB Cross dead time enabled on channels 0 and 1 Note: When a '1' is written to bit XDT_EN_0_1, the internal register IN[x]_dly1, IN[x]_dly2 and DT_DOWN_CNT is reset to '0' (x:0,1)
O1SEL_1	8	rw	Output 1 select channel 1 0 _B Inverse dead time signal selected 1 _B Special function on output 1 selected (defined by O1F_1)
I1SEL_1	9	rw	Input 1 select channel 1 0 _B Signal (PSU_)SHIFT1 selected 1 _B Signal COUT1 selected
SH_EN_1	10	rw	Shift enable channel 1 0 _B DTM[i]_IN0 is not used; no input signal shift 1 _B Signal selected by I1SEL_1 triggers update of DTM[i]_IN1 with input of DTM[i]_IN0 -> input signal shift
SWAP_1	11	rw	Swap outputs DTM[i]_CH[1]_OUT0 and DTM[i]_CH[1]_OUT1 (before final output register) 0 _B Outputs not swapped 1 _B Swap outputs DTM[i]_OUT1 and DTM[i]_OUT1_N
01F_1	13:12	rw	Output 1 function channel 1 00 _B Signal edge_trigg is selected 01 _B XOR of DTM[i]_IN1 and signal SHIFT1/OUT0 10 _B AND of DTM[i]_IN1 and signal SHIFT1/OUT0 11 _B DTM[i]_IN1_T selected
O1SEL_2	16	rw	Output 1 select channel 2 0 _B Inverse dead time signal selected 1 _B Special function on output 1 selected (defined by O1F_2)
I1SEL_2	17	rw	Input 1 select channel 2 0 _B Signal (PSU_)SHIFT2 selected 1 _B Signal COUT1 selected
SH_EN_2	18	rw	Shift enable channel 2 0 _B DTM[i]_IN1 is not used; no input signal shift 1 _B Signal selected by I1SEL_2 triggers update of DTM[i]_IN2 with input of DTM[i]_IN1 -> input signal shift
SWAP_2	19	rw	Swap outputs DTM[i]_CH[2]_OUT0 and DTM[i]_CH[2]_OUT1 (before final output register) 0 _B Outputs not swapped 1 _B Swap outputs DTM[i]_OUT2 and DTM[i]_OUT2_N
O1F_2	21:20	rw	Output 1 function channel 2 00 _B Signal edge_trigg is selected 01 _B XOR of DTM[i]_IN2 and signal SHIFT2/OUT1 10 _B AND of DTM[i]_IN2 and signal SHIFT2/OUT1 11 _B DTM[i]_IN2_T selected

Field	Bits	Туре	Description
XDT_EN_2_3	22	rw	Cross dead time enable on channels 0 and 1 Note: TSELO_[x] and SH_EN_[x] must be '0' for using cross dead time to avoid wrong input signals. (x:2,3) OB Cross dead time disabled on channels 2 and 3 LB Cross dead time enabled on channels 2 and 3 Note: When a '1' is written to bit XDT_EN_2_3, the internal register IN[x]_dly1, IN[x]_dly2 and DT_DOWN_CNT is reset to '0' (x:2,3)
O1SEL_3	24	rw	Output 1 select channel 3 0 _B Inverse dead time signal selected 1 _B Special function on output 1 selected (defined by O1F_3)
I1SEL_3	25	rw	Input 1 select channel 3 0 _B Signal (PSU_)SHIFT3 selected 1 _B Signal COUT2 selected
SH_EN_3	26	rw	Shift enable channel 3 0 _B DTM[i]_IN2 is not used; no input signal shift 1 _B Signal selected by I1SEL_3 triggers update of DTM[i]_IN3 with input of TM[i]_IN2-> input signal shift
SWAP_3	27	rw	Swap outputs DTM[i]_CH[3]_OUT0 and DTM[i]_CH[3]_OUT1 (before final output register) 0 _B Outputs not swapped 1 _B Swap outputs DTM[i]_OUT3 and DTM[i]_OUT3_N
O1F_3	29:28	rw	Output 1 function channel 3 00 _B Signal edge_trigg is selected 01 _B XOR of DTM[i]_IN3 and signal SHIFT3 / OUT2 10 _B AND of DTM[i]_IN3 and signal SHIFT3 / OUT2 11 _B DTM[i]_IN3_T selected
0	2, 7, 15:14, 23, 31:30	r	Reserved Read as zero, shall be written as zero.

28.16.9.3 Register CDTM[i]_DTM[j]_CH_CTRL2

CDTM0 DTM0 Channel Control Register 2

CDTMi_DTMj_CH_CTRL2 (i=0-4;j=0-1,4-5)

CDTMi DTMj Channel Control Register 2 (0E4008 $_{
m H}$ +i*400 $_{
m H}$ +j*40 $_{
m H}$)

CDTMi_DTMj_CH_CTRL2 (i=5-6;j=0-3)

CDTMi DTMj Channel Control Register 2 (0E4008_H+i*400_H+j*40_H)

CDTMi_DTMj_CH_CTRL2 (i=0-4;j=2-3)

CDTMi DTMj Channel Control Register 2 (0E4008 $_{
m H}$ +i*400 $_{
m H}$ +j*40 $_{
m H}$)

CDTMi_DTMj_CH_CTRL2 (i=5-6;j=4-5)

CDTMi DTMj Channel Control Register 2 (0E4008_H+i*400_H+j*40_H)

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000 H

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DT1_3	SL1_3	OC1_3	POL1_	DT0_3	SL0_3	OC0_3	POLO_	DT1_2	SL1_2	OC1_2	POL1_ 2	DT0_2	SL0_2	OC0_2	POLO_ 2
rw	rw	rw	rw												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DT1_1	SL1_1	OC1_1	POL1_ 1	DT0_1	SL0_1	OC0_1	POLO_ 1	DT1_0	SL1_0	OC1_0	POL1_ 0	DT0_0	SLO_0	OC0_0	POLO_ 0
rw	rw	rw	rw												

Field	Bits	Туре	Description
POLO_0	0	rw	Polarity on output 0 channel 0 0 _B Output signal not inverted 1 _B Output signal inverted
OC0_0	1	rw	Output 0 control channel 0 0 _B Functional output 1 _B Constant output defined by SL0_0
SLO_O	2	rw	Signal level on output 0 channel 0 0 _B Signal Level is 0 on output if OC0_0=1 1 _B Signal Level is 1 on output if OC0_0=1
DT0_0	3	rw	Dead time path enable on output 0 channel 0 0 _B Feed through from DTM_IN0 to DTM[i]_OUT0 enabled 1 _B Dead time path enabled
POL1_0	4	rw	Polarity on output 1 channel 0 0 _B Output signal not inverted 1 _B Output signal inverted
OC1_0	5	rw	Output 1 control channel 0 0 _B Functional output 1 _B Constant output defined by SL1_0
SL1_0	6	rw	Signal level on output 1 channel 0 0 _B Signal Level is 0 on output if OC1_0=1 1 _B Signal Level is 1 on output if OC1_0=1

Field	Bits	Type	Description
DT1_0	7	rw	Dead time path enable on output 1 channel 0 0 _B Feed through from DTM_IN0 to DTM[i]_OUT0_N enabled 1 _B Dead time path enabled
POL0_1	8	rw	Polarity on output 0 channel 1 0 _B Output signal not inverted 1 _B Output signal inverted
OC0_1	9	rw	Output 0 control channel 1 0 _B Functional output 1 _B Constant output defined by SL0_1
SL0_1	10	rw	Signal level on output 0 channel 1 0 _B Signal Level is 0 on output if OC0_1=1 1 _B Signal Level is 1 on output if OC0_1=1
DT0_1	11	rw	Dead time path enable on output 0 channel 1 0 _B Feed through from DTM_IN1 to DTM[i]_OUT1 enabled 1 _B Dead time path enabled
POL1_1	12	rw	Polarity on output 1 channel 1 0 _B Output signal not inverted 1 _B Output signal inverted
OC1_1	13	rw	Output 1 control channel 1 0 _B Functional output 1 _B Constant output defined by SL1_1
SL1_1	14	rw	Signal level on output 1 channel 1 0 _B Signal Level is 0 on output if OC1_1=1 1 _B Signal Level is 1 on output if OC1_1=1
DT1_1	15	rw	Dead time path enable on output 1 channel 1 0 _B Feed through from DTM_IN1 to DTM[i]_OUT1_N enabled 1 _B Dead time path enabled
POL0_2	16	rw	Polarity on output 0 channel 2 0 _B Output signal not inverted 1 _B Output signal inverted
OC0_2	17	rw	Output 0 control channel 2 0 _B Functional output 1 _B Constant output defined by SL0_2
SL0_2	18	rw	Signal level on output 0 channel 2 0 _B Signal Level is 0 on output if OC0_2=1 1 _B Signal Level is 1 on output if OC0_2=1
DT0_2	19	rw	Dead time path enable on output 0 channel 2 0 _B Feed through from DTM_IN2 to DTM[i]_OUT2 enabled 1 _B Dead time path enabled
POL1_2	20	rw	Polarity on output 1 channel 2 0 _B Output signal not inverted 1 _B Output signal inverted
OC1_2	21	rw	Output 1 control channel 2 0 _B Functional output 1 _B Constant output defined by SL1_2

AURIX™ TC3xx

Field	Bits	Туре	Description
SL1_2	22	rw	Signal level on output 1 channel 2 0 _B Signal Level is 0 on output if OC1_2=1 1 _B Signal Level is 1 on output if OC1_2=1
DT1_2	23	rw	Dead time path enable on output 1 channel 2 0 _B Feed through from DTM_IN2 to DTM[i]_OUT2_N enabled 1 _B Dead time path enabled
POL0_3	24	rw	Polarity on output 0 channel 3 0 _B Output signal not inverted 1 _B Output signal inverted
OC0_3	25	rw	Output 0 control channel 3 0 _B Functional output 1 _B Constant output defined by SL0_3
SL0_3	26	rw	Signal level on output 0 channel 3 0 _B Signal Level is 0 on output if OC0_3=1 1 _B Signal Level is 1 on output if OC0_3=1
DT0_3	27	rw	Dead time path enable on output 0 channel 3 0 _B Feed through from DTM_IN3 to DTM[i]_OUT3 enabled 1 _B Dead time path enabled
POL1_3	28	rw	Polarity on output 1 channel 3 0 _B Output signal not inverted 1 _B Output signal inverted
OC1_3	29	rw	Output 1 control channel 3 0 _B Functional output 1 _B Constant output defined by SL1_3
SL1_3	30	rw	Signal level on output 1 channel 3 0 _B Signal Level is 0 on output if OC1_3=1 1 _B Signal Level is 1 on output if OC1_3=1
DT1_3	31	rw	Dead time path enable on output 1 channel 3 O _B Feed through from DTM_IN3 to DTM[i]_OUT3_N enabled 1 _B Dead time path enabled

28.16.9.4 Register CDTM[i]_DTM[j]_CH_CTRL2_SR

CDTM0 DTM0 Channel Control Register 2 Shadow

CDTMi_DTMj_CH_CTRL2_SR (i=0-4;j=0-1,4-5)

CDTMi DTMj Channel Control Register 2 Shadow(0E400C_H+i*400_H+j*40_H) Application Reset Value: 0000

0000_H

CDTMi_DTMj_CH_CTRL2_SR (i=5-6;j=0-3)

CDTMi DTMj Channel Control Register 2 Shadow(0E400C_H+i*400_H+j*40_H) Application Reset Value: 0000

0000_H

CDTMi_DTMj_CH_CTRL2_SR (i=0-4;j=2-3)

CDTMi DTMj Channel Control Register 2 Shadow(0E400C_H+i*400_H+j*40_H) Application Reset Value: 0000

0000_H

CDTMi_DTMj_CH_CTRL2_SR (i=5-6;j=4-5)

CDTMi DTMj Channel Control Register 2 Shadow(0E400C_H+i*400_H+j*40_H) Application Reset Value: 0000

0000_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DT1_3 _SR	SL1_3 _SR	OC1_3 _SR	POL1_ 3_SR	DTO_3 _SR	SLO_3 _SR	OC0_3 _SR	POLO_ 3_SR	DT1_2 _SR	SL1_2 _SR	OC1_2 _SR	POL1_ 2_SR	DTO_2 _SR	SL0_2 _SR	OC0_2 _SR	POLO_ 2_SR
rw	rw	rw	rw												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DT1_1	SL1_1	OC1_1	POL1_	DT0_1	SL0_1	OC0_1	POLO_	DT1_0	SL1_0	OC1_0	POL1_	DT0_0	SL0_0	OC0_0	POLO_
_SR	_SR	_SR	1_SR	_SR	_SR	_SR	1_SR	_SR	_SR	_SR	0_SR	_SR	_SR	_SR	0_SR
rw	rw	rw	rw												

Field	Bits	Type	Description
POL0_0_SR	0	rw	Polarity on output 0 channel 0 shadow register 0 _B Output signal not inverted
			1 _B Output signal inverted
OC0_0_SR	1	rw	Output 0 control channel 0 shadow register
			0 _B Functional output
			1 _B Constant output defined by SL0_0
SL0_0_SR	2	rw	Signal level on output 0 channel 0 shadow register
			0 _B Signal Level is 0 on output if OC0_0=1
			1 _B Signal Level is 1 on output if OC0_0=1
DT0_0_SR	3	rw	Dead time path enable on output 0 channel 0 shadow register
			0 _B Feed through from DTM_IN0 to DTM[i]_OUT0 enabled
			1 _B Dead time path enabled
POL1_0_SR	4	rw	Polarity on output 1 channel 0 shadow register
			0 _B Output signal not inverted
			1 _B Output signal inverted

Field	Bits	Type	Description
OC1_0_SR	5	rw	Output 1 control channel 0 shadow register
			0 _B Functional output
			1 _B Constant output defined by SL1_0
SL1_0_SR	6	rw	Signal level on output 1 channel 0 shadow register
			0 _B Signal Level is 0 on output if OC1_0=1
			1 _B Signal Level is 1 on output if OC1_0=1
DT1_0_SR	7	rw	Dead time path enable on output 1 channel 0 shadow register
			O _B Feed through from DTM_IN0 to DTM[i]_OUTO_N enabled
			1 _B Dead time path enabled
POLO_1_SR	8	rw	Polarity on output 0 channel 1 shadow register
			0 _B Output signal not inverted
			1 _B Output signal inverted
OC0_1_SR	9	rw	Output 0 control channel 1 shadow register
			0 _B Functional output
			1 _B Constant output defined by SL0_1
SL0_1_SR	10	rw	Signal level on output 0 channel 1 shadow register
			0 _B Signal Level is 0 on output if OC0_1=1
			1 _B Signal Level is 1 on output if OC0_1=1
DT0_1_SR	11	rw	Dead time path enable on output 0 channel 1 shadow register
			O _B Feed through from DTM_IN1 to DTM[i]_OUT1 enabled
			1 _B Dead time path enabled
POL1_1_SR	12	rw	Polarity on output 1 channel 1 shadow register
			0 _B Output signal not inverted
	10		1 _B Output signal inverted
OC1_1_SR	13	rw	Output 1 control channel 1 shadow register
			0 _B Functional output
			1 _B Constant output defined by SL1_1
SL1_1_SR	14	rw	Signal level on output 1 channel 1 shadow register
			0 _B Signal Level is 0 on output if OC1_1=1
			1 _B Signal Level is 1 on output if OC1_1=1
DT1_1_SR	15	rw	Dead time path enable on output 1 channel 1 shadow register
			0 _B Feed through from DTM_IN1 to DTM[i]_OUT1_N
			1 _B Dead time path enabled

V2.0.0

2021-02

Field	Bits	Туре	Description
POL0_2_SR	16	rw	Polarity on output 0 channel 2 shadow register
			0 _B Output signal not inverted
			1 _B Output signal inverted
OC0_2_SR	17	rw	Output 0 control channel 2 shadow register
			O For the selection
			0 _B Functional output
CLO O CD	10		1 _B Constant output defined by SL0_2
SL0_2_SR	18	rw	Signal level on output 0 channel 2 shadow register
			0 _B Signal Level is 0 on output if OC0_2=1
			1 _B Signal Level is 1 on output if OCO_2=1
DT0_2_SR	19	rw	Dead time path enable on output 0 channel 2 shadow register
			0 _B Feed through from DTM_IN2 to DTM[i]_OUT2
			0_B Feed through from DTM_IN2 to DTM[i]_OUT21_B Dead time path enabled
POL1_2_SR	20	rw	Polarity on output 1 channel 2 shadow register
POLI_Z_3K	20	IVV	Potarity on output I channet 2 shadow register
			0 _B Output signal not inverted
			1 _B Output signal inverted
OC1_2_SR	21	rw	Output 1 control channel 2 shadow register
			0 _B Functional output
			1 _B Constant output defined by SL1_2
SL1 2 SR	22	rw	Signal level on output 1 channel 2 shadow register
3L1_2_3K	22	I VV	Signattevet on output I channet 2 shadow register
			0 _B Signal Level is 0 on output if OC1_2=1
			1 _B Signal Level is 1 on output if OC1_2=1
DT1_2_SR	23	rw	Dead time path enable on output 1 channel 2 shadow register
			0 _B Feed through from DTM_IN2 to DTM[i]_OUT2_N
			1 _B Dead time path enabled
POL0_3_SR	24	rw	Polarity on output 0 channel 3 shadow register
			0 _B Output signal not inverted
			1 _B Output signal inverted
OC0_3_SR	25	rw	Output 0 control channel 3 shadow register
			0 _B Functional output
			1 _B Constant output defined by SL0_3
SL0_3_SR	26	rw	Signal level on output 0 channel 3 shadow register
			0 _B Signal Level is 0 on output if OC0_3=1
			1 _B Signal Level is 1 on output if OC0_3=1

Field	Bits	Туре	Description
DT0_3_SR	27	rw	Dead time path enable on output 0 channel 3 shadow register
			0 _B Feed through from DTM_IN3 to DTM[i]_OUT3 1 _B Dead time path enabled
POL1_3_SR	28	rw	Polarity on output 1 channel 3 shadow register
			0_B Output signal not inverted1_B Output signal inverted
OC1_3_SR	29	rw	Output 1 control channel 3 shadow register
			0 _B Functional output 1 _B Constant output defined by SL1_3
SL1_3_SR	30	rw	Signal level on output 1 channel 3 shadow register
			0 _B Signal Level is 0 on output if OC1_3=1 1 _B Signal Level is 1 on output if OC1_3=1
DT1_3_SR	31	rw	Dead time path enable on output 1 channel 3 shadow register 0 _B Feed through from DTM_IN3 to DTM[i]_OUT3_N 1 _B Dead time path enabled

28.16.9.5 Register CDTM[i]_DTM[j]_CH_CTRL3

CDTM0 DTM0 Channel Control Register 3

CDTMi_DTMj_CH_CTRL3 (i=0-4;j=0-1,4-5)

CDTMi DTMj Channel Control Register 3 (0E4028 $_{
m H}$ +i*400 $_{
m H}$ +j*40 $_{
m H}$)

CDTMi_DTMj_CH_CTRL3 (i=5-6;j=0-3)

CDTMi DTMj Channel Control Register 3 (0E4028 $_{
m H}$ +i*400 $_{
m H}$ +j*40 $_{
m H}$)

CDTMi_DTMj_CH_CTRL3 (i=0-4;j=2-3)

CDTMi DTMj Channel Control Register 3 (0E4028_H+i*400_H+j*40_H)

CDTMi_DTMj_CH_CTRL3 (i=5-6;j=4-5)

CDTMi DTMj Channel Control Register 3 (0E4028_H+i*400_H+j*40_H)

Application Reset Value: 0000 0000_H

	15	14	r 13	12	rw 11	rw 10	rw 9	rw 8	7	6	5	4	rw 3	rw 2	rw 1	rw 0
0 TSEL1 TSEL0 CIS1 CII1 0 TSEL1 TSEL0 CIS0 CII0			0			TSEL0	CIS1	CII1		O)				CIS0	CIIO

Field	Bits	Type	Description
CIIO	0	rw	Combinational input invert channel 0 0 _B Do not invert input 1 _B Invert input
CIS0	1	rw	Combinational input select channel 0 0 _B Select input DTM[i]_IN0 1 _B Select internal signal edge_trigg_0
TSELO_0	2	rw	Input selection for dead time / edge trigger generation 0 _B Use DTM[i]_IN0 as input for dead time / edge trigger generation 1 _B Use DTM[i]_IN0_T as input for dead time / edge trigger generation
TSEL1_0	3	rw	Input selection combinational logic path 0 _B Use DTM[i]_IN0 as input for combinational logic path 1 _B Use DTM[i]_IN0_T as input for combinational logic path
CII1	8	rw	Combinational input invert channel 1 0 _B Do not invert input 1 _B Invert input
CIS1	9	rw	Combinational input select channel 1 0 _B Select input DTM[i]_IN1 1 _B Select internal signal edge_trigg_1
TSEL0_1	10	rw	Input selection for dead time / edge trigger generation 0 _B Use DTM[i]_IN1 as input for dead time / edge trigger generation 1 _B Use DTM[i]_IN1_T as input for dead time / edge trigger generation
TSEL1_1	11	rw	Input selection combinational logic path 0 _B Use DTM[i]_IN1 as input for combinational logic path 1 _B Use DTM[i]_IN1_T as input for combinational logic path
CII2	16	rw	Combinational input invert channel 2 0 _B Do not invert input 1 _B Invert input
CIS2	17	rw	Combinational input select channel 2 0 _B Select input DTM[i]_IN2 1 _B Select internal signal edge_trigg_2
TSELO_2	18	rw	Input selection for dead time / edge trigger generation 0 _B Use DTM[i]_IN2 as input for dead time / edge trigger generation 1 _B Use DTM[i]_IN2_T as input for dead time / edge trigger generation
TSEL1_2	19	rw	Input selection combinational logic path 0 _B Use DTM[i]_IN2_T as input for dead time / edge trigger generation 1 _B Use DTM[i]_IN2_T as input for combinational logic path
CII3	24	rw	Combinational input invert channel 3 0 _B Do not invert input 1 _B Invert input
CIS3	25	rw	Combinational input select channel 3 0 _B Select input DTM[i]_IN3 1 _B Select internal signal edge_trigg_3

Field	Bits	Туре	Description
TSELO_3	26	rw	Input selection for dead time / edge trigger generation 0 _B Use DTM[i]_IN3 as input for dead time / edge trigger generation 1 _B Use DTM[i]_IN3_T as input for dead time / edge trigger generation
TSEL1_3	27	rw	Input selection combinational logic path 0 _B Use DTM[i]_IN3 as input for combinational logic path 1 _B Use DTM[i]_IN3_T as input for combinational logic path
0	7:4, 15:12, 23:20, 31:28	r	Reserved Read as zero, shall be written as zero.

28.16.9.6 Register CDTM[i]_DTM[j]_PS_CTRL

CDTM0 DTM0 Phase Shift Unit Configuration and Control Register

CDTMi_DTMj_PS_CTRL (i=0-4;j=0-1,4-5)

CDTMi DTMj Phase Shift Unit Configuration and Control Register(0E4010_H+i*400_H+j*40_H) Application Reset Value: 0000 0000_H

CDTMi_DTMj_PS_CTRL (i=5-6;j=0-3)

CDTMi DTMj Phase Shift Unit Configuration and Control Register(0E4010_H+i*400_H+j*40_H) Application Reset Value: 0000 0000_H

CDTMi_DTMj_PS_CTRL (i=0-4;j=2-3)

CDTMi DTMj Phase Shift Unit Configuration and Control Register(0E4010_H+i*400_H+j*40_H) Application Reset Value: 0000 0000_H

CDTMi_DTMj_PS_CTRL (i=5-6;j=4-5)

CDTMi DTMj Phase Shift Unit Configuration and Control Register(0E4010_H+i*400_H+j*40_H) Application Reset Value: 0000 0000_H

Field	Bits	Туре	Description
RELBLK	9:0	rw	Reload value blanking window A value of 0x000 resets counter BLK_DOWN_CNT.
PSU_IN_SEL	16	rw	PSU input selection 0 _B TIM_CH_IN0 or TIM_CH_IN1 selected 1 _B DTM_AUX_IN selected
IN_POL	17	rw	Input polarity 0 _B Input signal is not inverted 1 _B Input signal is inverted

Field	Bits	Туре	Description
TIM_SEL	18	rw	TIM input selection 0 _B Select TIM_IN0 1 _B Select TIM_IN1
SHIFT_SEL	21:20	rw	Shift select Note: If a channel is not implemented, the value is unused. A write with this unused value returns 0b10 on status. OOB DTM channel 1 is connected via signal SHIFT1 with TIM_CH_INO, TIM_CH_IN1, or DTM_AUX_IN O1B DTM channel 2 is connected via signal SHIFT2 with TIM_CH_INO, TIM_CH_IN1, or DTM_AUX_IN 10B DTM channel 3 is connected via signal SHIFT3 with TIM_CH_INO, TIM_CH_IN1, or DTM_AUX_IN 11B DTM channel 0 is connected via signal SHIFT0 with TIM_CH_INO, TIM_CH_IN1, or DTM_AUX_IN
0	15:10, 19, 31:22	r	Reserved Read as zero, shall be written as zero.

28.16.9.7 Register CDTM[i]_DTM[j]_CH[z]_DTV

CDTM0 DTM0 Channel z Dead Time Reload Values

CDTMi_DTMj_CHz_DTV (i=0-4;j=0-1,4-5;z=0-3)

CDTMi DTMj Channel z Dead Time Reload Values(0E4014_H+i*400_H+j*40_H+z*4)Application Reset Value: 0000 0000_H

CDTMi_DTMj_CHz_DTV (i=5-6;j=0-3;z=0-3)

CDTMi DTMj Channel z Dead Time Reload Values(0E4014_H+i*400_H+j*40_H+z*4)Application Reset Value: 0000 0000_L

CDTMi_DTMj_CHz_DTV (i=0-4;j=2-3;z=0-3)

CDTMi DTMj Channel z Dead Time Reload Values(0E4014_H+i*400_H+j*40_H+z*4)Application Reset Value: 0000 0000_H

CDTMi_DTMj_CHz_DTV (i=5-6;j=4-5;z=0-3)

CDTMi DTMj Channel z Dead Time Reload Values(0E4014_H+i*400_H+j*40_H+z*4)Application Reset Value: 0000 0000_H

Field	Bits	Туре	Description
RELRISE	9:0	rw	Reload value for rising edge dead time
RELFALL	25:16	rw	Reload value for falling edge dead time

Field	Bits	Туре	Description	
0	15:10,	r	Reserved	
	31:26		Read as zero, shall be written as zero.	

28.16.9.8 Register CDTM[i]_DTM[j]_CH_SR

CDTM0 DTM0 Channel Shadow Register

CDTMi_DTMj_CH_SR (i=0-4;j=0-1,4-5) CDTMi DTMj Channel Shadow Register (0E4024_H+i*400_H+j*40_H) CDTMi_DTMj_CH_SR (i=5-6;j=0-3) CDTMi DTMj Channel Shadow Register (0E4024_H+i*400_H+j*40_H)

CDTMi_DTMj_CH_SR (i=0-4;j=2-3) CDTMi DTMj Channel Shadow Register (0E4024_H+i*400_H+j*40_H) Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000_H

Application Reset Value: 0000 0000_H

CDTMi			-			(0E402	 4 _H +i*4	 100 _H +j*	40 _H)	Ар	plicatio	on Res	et Valu	e: 0000	0000 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'			'				0	'	'	'		'		
					I		l	r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				0				_	_	_	_	_	SLO_1 _SR_S R	_	_
1	1	1	I .	r	1		1	rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
SL0_0_SR_SR	0	rw	Shadow register for bit SL0_0_SR of register DTM[i]_CH_CTRL2_SR
SL1_0_SR_SR	1	rw	Shadow register for bit SL1_0_SR of register DTM[i]_CH_CTRL2_SR
SL0_1_SR_SR	2	rw	Shadow register for bit SL0_1_SR of register DTM[i]_CH_CTRL2_SR
SL1_1_SR_SR	3	rw	Shadow register for bit SL1_1_SR of register DTM[i]_CH_CTRL2_SR
SL0_2_SR_SR	4	rw	Shadow register for bit SL0_2_SR of register DTM[i]_CH_CTRL2_SR
SL1_2_SR_SR	5	rw	Shadow register for bit SL1_2_SR of register DTM[i]_CH_CTRL2_SR
SL0_3_SR_SR	6	rw	Shadow register for bit SL0_3_SR of register DTM[i]_CH_CTRL2_SR
SL1_3_SR_SR	7	rw	Shadow register for bit SL1_3_SR of register DTM[i]_CH_CTRL2_SR
0	31:8	r	Reserved
			Read as zero, shall be written as zero.