TD1 - Séance 2- Cours 2 Algèbre relationnelle : Exercices et exemples de cours - Produits et jointures de la BD university - (Requête Optimale)

Soit le schéma de la base de données university (MPD) suivante :

Faculty(facId, name, department, rank)

Class(<u>classNo</u>, *facId*, schedule, room)

Student(<u>stuId</u>, lastName, firstName, major, credits)

Enroll(<u>stuId</u>, <u>classNo</u>, grade)

Soit les 4 tables (relations) en intention en extension suivantes :

Relation Student(studId, lastName, firstName, major, credits)

stuId	lastName	firstName	major	credits
\$1001	Smith	Tom	History	90
\$1002	Chin	Ann	Math	36
\$1005	Lee	Perry	History	3
S1010	Burns	Edward	Art	63
\$1013	McCarthy	0wen	Math	0
\$1015	Jones	Mary	Math	42
\$1020	Rivera	Jane	CSC	15

La relation Faculty (facId, name, department, rank)

facId	name	department	rank
F101	Adams	Art	Professor
F105	Tanaka	CSC	Instructor
F110	Byrne	Math	Assistant
F115	Smith	History	Associate
F221	Smith	CSC	Professor

La relation Enroll (studid, classNumber, grade)

stuId	classNumber	grade	
\$1001	ART103A	Α	
S1001	HST205A	С	
S1002	ART103A	D	
S1002	CSC201A	F	
\$1002	MTH103C	В	
S1010	ART103A		
S1010	MTH103C		
\$1020	CSC201A	В	
S1020	MTH101B	Α	

La relation Class(classNumber, facId, schedule, room)

classNumber	facId	schedule	room	
ART103A	F101	MWF9	H221	
CSC201A	F105	TuThF10	M110	
CSC203A	F105	MThF12	M110	
HST205A	F115	MWF11	H221	
MTH101B	F110	MTuTh9	H225	
MTH103C	F110	MWF11	H225	

Demande 1:

Les deux requêtes suivantes sont équivalentes :

- ✓ R1 (version1):
 - 1) SELECT Student WHERE lastName='Chin' AND firstName ='Ann' GIVING Temp1
 - 2) Temp1 JOIN Enroll GIVING Temp2
 - 3) PROJECT Temp2 OVER (classNo, grade) GIVING Answer
- ✓ R2 (version2):

ΠclassNo,grade((σlastName='Chin' Λ firstName='Ann'(Student)) |x| Enroll)

Question:

Rédigez la requête précédente en utilisant uniquement les opérateurs fondamentaux de l'algèbre relationnelle (sélection, projection, produit cartésien, différence, renommage, etc.). À chaque étape, décrivez explicitement la relation résultante :

- [1] En intention allégée.
- [2] En extension

Réponse:

T0: temp0 $\leftarrow \sigma_{lastName='Chin'} \wedge firstName='Ann'}(Student)$

En intention:

temp0(studId, lastName, firstName, major, credits)

En extension: (5C * 1L)

temp0

studId	lastName	firstName	major	credits
S1002	Chin	Ann	Math	36

T1:

temp1 \leftarrow temp0 x Enroll

En intention:

temp1(temp0.studId, lastName, firstName, major, credits, enroll.studId,

classNumber, grade) En extension: (8C *9L)

Temp0.st udId	lastNa me	firstNa me	maj or	cred its	enroll. <u>st</u> udld	classNu mber	gra de
S1002	Chin	Ann	Mat h	36	S1001	ART103 A	A
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36			
S1002	Chin	Ann	Mat h	36	S1020	MTH101 B	A

Temp2 $\leftarrow \sigma_{\text{temp0.studid}} = \text{enroll.studid}$ (temp1)

En intention:

Temp2(temp0.studId, lastName, firstName, major, credits, enroll.studId,

classNumber, grade)

En extension: (8C *3L)

Temp2

1							
Temp0.st udId	lastNa me	firstNa me	maj or	cred its	enroll. <u>st</u> udId	classNu mber	gra de
S1002	Chin	Ann	Mat h	36	S1002	ART103 A	D
S1002	Chin	Ann	Mat h	36	S1002	CSC201 A	F
S1002	Chin	Ann	Mat h	36	S1002	MTH103 C	В

temp3 ← ∏ temp0.studld, lastName, firstName, major, credits, classNumber, grade (temp2)

En intention:

Temp3(temp0.<u>studId</u>, lastName, firstName, major, credits, <u>classNumber</u>, grade)

En extension: (7C *3L)

Temp3

1 emps							
Temp0.stud	lastNam	firstNam	majo	credit	classNumb	grad	
Id	e	e	r	S	er	e	
S1002	Chin	Ann	Math	36	ART103A	D	
S1002	Chin	Ann	Math	36	CSC201A	F	
S1002	Chin	Ann	Math	36	MTH103C	В	

T2:

answer $\leftarrow \Pi_{classNo,grade}(temp3)$

En intention:

answer (classNumber, grade)

En extension: (2C *3L)

answer

classNumber	grade
ART103A	D
CSC201A	F

MTH103C B

Question 1 : synthèse et optimisation

Sans sélection préalable :

Si nous effectuons la jointure sans appliquer la sélection sur la table Student (c'est-à-dire que nous joignons toutes les lignes de Student avec toutes les lignes de Enroll), cela impliquerait une jointure entre les 7 lignes de Student et les 9 lignes de Enroll. Cela donne :

7×9=63 comparaisons

Avec sélection préalable :

Si nous appliquons d'abord la sélection pour filtrer uniquement l'étudiant "Ann Chin" dans la table Student, la sélection va réduire la table Student à une seule ligne.

Ensuite, cette seule ligne de Student sera jointe avec la table Enroll, ce qui implique seulement les comparaisons nécessaires pour l'id de l'étudiant (supposons que l'étudiant "Ann Chin" soit inscrit dans 9 cours). Ainsi, la jointure donne :

1×9=9 comparaisons

Résumé des performances :

Sans sélection préalable : 63 comparaisons

• Avec sélection préalable : 9 comparaisons

Conclusion:

L'optimisation avec la sélection préalable réduit le nombre de comparaisons de 63 à 9, ce qui est un gain de performance significatif, surtout lorsque le nombre d'enregistrements dans les tables augmente. Dans ce cas précis, appliquer la sélection avant la jointure améliore l'efficacité de la requête de manière notable.

```
Questions/TAF-R:
Refaire la même synthèse pour les deux requêtes suivantes :
 ✓ R3(version3):
\Pi_{classNo,grade}(\Pi_{stuld}(\sigma_{lastName='Chin'}, \Lambda_{firstName='Ann'}(Student)) | x | Enroll)
 ✓ R4(version4):
Π<sub>classNo,grade</sub>(σ<sub>lastName='Chin' Λ firstName='Ann'</sub>(Student |x| Enroll))
Bilan et synthèse d'optimisation!
Donner la requête optimale. Justifier!
Le code dans le langage SQL de cette demande est :
Jointure implicite (norme SQL-89)
SELECT E.classNo, E.grade
FROM Student S, Enroll E
WHERE S.stuld = E.stuld
       AND S.lastName = 'Chin'
       AND S.firstName = 'Ann';
Ou, Jointure explicite (norme SQL-92 et versions suivantes)
SELECT E.classNo, E.grade
FROM Student S
       JOIN Enroll E ON S.stuld = E.stuld
       WHERE S.lastName = 'Chin' AND S.firstName = 'Ann';
```

```
FROM (
SELECT S.stuld
FROM Student S
WHERE S.lastName = 'Chin'
AND S.firstName = 'Ann'
) SubQuery
JOIN Enroll E ON SubQuery.stuld = E.stuld;
```

<u>Demande 2</u>: Nous souhaitons trouver les identifiants de tous les étudiants inscrits dans les classes du professeur Adams.

Donner la version optimale en AR. Il faut suivre la même démarche de la demande 1.

Donner le code en SQL. Avec jointure implicite et explicite.

<u>Demande 3</u>: L'opération Rename/ rename operator, ρ (CM) Les données de cette demande c'est dans le TD1.

«Trouvez l'ID et le nom des instructeurs qui gagnent plus que l'instructeur dont l'ID est 10101 et moins que l'instructeur dont l'ID 12121»

AR - Donner deux versions :

- 1) nous voulons faire tout cela en plusieurs expressions
- 2) nous voulons faire tout cela en une seule expression (comme en CM)

SQL - Donner le code en SQL

Ou, avec une sous-requête : SELECT E.classNo, E.grade