Notas de Clase Sobre Regresión Lineal Regresión Lineal Simple (RLS): Parte II

Nelfi González Alvarez

Profesora Asociada Escuela de Estadística e-mail: ngonzale@unal.edu.co

Isabel Cristina Ramírez Guevara

Profesora Asociada Escuela de Estadística e-mail: iscramirezgu@unal.edu.co

Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín

Escuela de Estadística 2021

Contenido I

- Propiedades estimadores MCO
- Inferencias

Contenido

- Propiedades estimadores MCO
- 2 Inferencias

Propiedades estimadores MCO bajo el modelo normal

Nota 1.1

Para más detalles y otras propiedades, Ver Sección 2.6 Capítulo 2 Notas de Clase.

El resultado principal del cual se derivan las propiedades distribucionales de los estimadores de los parámetros y de la respuesta media, es que estos son combinaciones lineales de las variables respuesta Y_1, \ldots, Y_n

Tabla 1: Estimadores como combinaciones lineales (CL) de la respuesta

4 0 1 4 4 4 5 1 4 5 1

Propiedades estimadores MCO bajo el modelo normal

Nota 1.1

Para más detalles y otras propiedades, Ver Sección 2.6 Capítulo 2 Notas de Clase.

El resultado principal del cual se derivan las propiedades distribucionales de los estimadores de los parámetros y de la respuesta media, es que estos son combinaciones lineales de las variables respuesta Y_1,\ldots,Y_n

labla 1: Estimadores como combinaciones lineales (CL) de la respuesta

Propiedades estimadores MCO bajo el modelo normal

Nota 1.1

Para más detalles y otras propiedades, Ver Sección 2.6 Capítulo 2 Notas de Clase.

El resultado principal del cual se derivan las propiedades distribucionales de los estimadores de los parámetros y de la respuesta media, es que estos son combinaciones lineales de las variables respuesta Y_1,\ldots,Y_n

Tabla 1: Estimadores como combinaciones lineales (CL) de la respuesta

Tabla 11 Estimadores como combinaciones inicares (CE) de la respaesta								
Cantidad estimada	Estimador como CL de los Y_i	Peso de Y_i en la CL						
Intercepto	$\widehat{\beta}_0 = \sum_{i=1}^n m_i Y_i$	$m_i = \frac{1}{n} - \bar{x}c_i$						
Pendiente	$\widehat{\beta}_1 = \sum_{i=1}^n c_i Y_i$	$c_i = \frac{x_i - \bar{x}}{S_{xx}}$						
Respuesta para $X = x_i$	$\widehat{Y}_i = \sum_{j=1}^n h_{ij} Y_j$	$h_{ij} = m_j + c_j x_i = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{S_{xx}},$ $h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}$						

Tabla 2: Algunas propiedades de los estimadores, respuesta ajustada y residuos

	Valores es	, ,	Covarianza	s				
Estimador	Valor esperado	Varianza	Entre	Expresión	Estimador			
		$\left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right] \sigma^2$	$\left[\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}\right] MSE$	$\widehat{\beta}_0$, $\widehat{\beta}_1$	$-\frac{\bar{x}}{S_{xx}}\sigma^2$	$-\frac{\bar{x}}{S_{xx}}$ MSE		
\widehat{eta}_0	β_0		ó	Y_i, \widehat{Y}_i	$h_{ii}\sigma^2$	h_{ii} MSE		
		$\frac{\sum_{i=1}^{n} x_i^2}{nS_{xx}} \sigma^2$	$\frac{\sum_{i=1}^{n} x_i^2}{nS_{xx}} MSE$	\widehat{Y}_i , \widehat{Y}_j	$h_{ij}\sigma^2$	h_{ij} MSE		
\widehat{eta}_1	β_1	$\frac{\sigma^2}{S_{XX}}$	$\frac{\text{MSE}}{S_{XX}}$	\widehat{E}_i , \widehat{E}_j	$-h_{ij}\sigma^2$	$-h_{ij}$ MSE		
$\widehat{\mathbf{Y}}_i$	$\beta_0 + \beta_1 x_i$	$h_{ii}\sigma^2$	h_{ii} MSE					
\widehat{E}_i	0	$(1-h_{ii})\sigma^2$	$(1-h_{ii})$ MSE					
Donde: h _{ii}	Donde: $h_{ii} = \left[\frac{1}{n} + \frac{\left(x_i - \bar{x}\right)^2}{S_{XX}}\right], h_{ij} = \left[\frac{1}{n} + \frac{\left(x_i - \bar{x}\right)\left(x_j - \bar{x}\right)}{S_{XX}}\right], \text{MSE} = \frac{\sum_{i=1}^n \widehat{E}_i^2}{n-2}$							

Contenido

- Propiedades estimadores MCO
- Inferencias
 - Inferencias sobre los parámetros del MRLS
 - Inferencias sobre la respuesta media y valores futuros
 - Análisis de Varianza (ANOVA)

Inferencias sobre los parámetros del MRLS

Tabla 3: Pruebas de significancia en intervalos de confianza (I.C) sobre los coeficientes de regresión, bajo $E_i \stackrel{iid}{\sim} N(0, \sigma^2)$.

Parámetro	Test de significancia	Estadístico de prueba	I.C del (1 – α) 100 %
β0	$H_0: \beta_0 = 0$ $H_1: \beta_0 \neq 0$	$T_0 = \frac{\widehat{\beta}_0 - \beta_0}{\sqrt{\frac{\text{MSE} \sum_{i=1}^{n} x_i^2}{nS_{xx}}}} \sim t_{n-2}$ $\text{con } \beta_0 = 0 \text{ en el test de}$ significancia.	$\widehat{\beta}_0 \pm t_{\alpha/2, n-2} \sqrt{\frac{\text{MSE} \sum\limits_{i=1}^n x_i^2}{n S_{xx}}}$
β1	$H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$	$T_0 = \frac{\widehat{\beta_1} - \beta_1}{\sqrt{\frac{\text{MSE}}{S_{xx}}}} \sim t_{n-2}$ $\cos \beta_1 = 0 \text{ en el test de}$ significancia.	$\widehat{\beta}_1 \pm t_{\alpha/2, n-2} \sqrt{\frac{\text{MSE}}{S_{xx}}}$

Criterio de rechazo de H_0 : En ambas pruebas es

A un nivel de significancia α : si $|T_0| > t_{\alpha/2, n-2}$;

Con valor P: si $P(|t_{n-2}| > |T_0|)$ es pequeño.

Inferencias sobre la respuesta media y valores futuros

Tabla 4: Inferencias sobre la respuesta media y respuesta futura en $X = x_0$, bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

		0 . 1 ()						
Para la respuesta media en $X = x_0 : \mu_{\mathcal{V} X_0}$								
H_0	Estadístico de prueba	Intervalo de confianza del $(1-\alpha)$ 100 %						
$\mu_{y x_0} = c$	$T_0 = \frac{\widehat{Y}_0 - c}{\sqrt{\text{MSE} \times h_{00}}} \sim t_{n-2}$	$\widehat{Y}_0 \pm t_{\alpha/2, n-2} \sqrt{\text{MSE} \times h_{00}}$						
	Para una respuesta futura en $X = x_0: Y_0$							
Pronóstico	Estadístico	Intervalos de predicción del $(1-\alpha)$ 100 %						
$\widehat{Y}_{0} \qquad T_{0} = \frac{\widehat{Y}_{0} - Y_{0}}{\sqrt{MSE\left[1 + h_{00}\right]}} \sim t_{n-2} \qquad \widehat{Y}_{0} \pm t_{\alpha/2, n-2} \sqrt{MSE\left[1 + h_{00}\right]}$								
Con: $\widehat{Y}_0 = \widehat{I}$	Con: $\widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$, $h_{00} = \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{YY}}$							

No se recomienda realizar extrapolaciones por fuera del rango de variación observado en la variable X, pues es posible que por fuera de éste, la relación estadística formulada no resulte válida.

Inferencias sobre la respuesta media y valores futuros

Tabla 4: Inferencias sobre la respuesta media y respuesta futura en $X = x_0$, bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

Para la respuesta media en $X=x_0: \mu_{\mathcal{Y} X_0}$							
H_0	Estadístico de prueba	Intervalo de confianza del $(1-\alpha)$ 100 %					
$\mu_{y x_0} = c$	$T_0 = \frac{\widehat{Y}_0 - c}{\sqrt{\text{MSE} \times h_{00}}} \sim t_{n-2}$	$\widehat{Y}_0 \pm t_{\alpha/2, n-2} \sqrt{\text{MSE} \times h_{00}}$					
	Para una respuesta futura en $X = x_0: Y_0$						
Pronóstico	Estadístico	Intervalos de predicción del $(1-\alpha)$ 100 %					
\widehat{Y}_0 $T_0 = \frac{\widehat{Y}_0 - Y_0}{\sqrt{\text{MSE}[1 + h_{00}]}} \sim t_{n-2}$ $\widehat{Y}_0 \pm t_{\alpha/2, n-2} \sqrt{\text{MSE}[1 + h_{00}]}$							
Con: $\widehat{Y}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 x_0$, $h_{00} = \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}$							

No se recomienda realizar extrapolaciones por fuera del rango de variación observado en la variable X, pues es posible que por fuera de éste, la relación estadística formulada no resulte válida.

Figura 1: (a) Ilustración recta ajustada, intervalos de confianza y de predicción: Observe que la recta de regresión está en medio de los intervalos y pasa por el punto medio de los datos, también observe que los intervalos de confianza (IC) son más estrechos que los intervalos de predicción (IP); (b) Ilustración extrapolación dañina: Al considerar solamente datos (x,y) en el intervalo $x_1 \le x \le x_2$, el MRLS lograría una buena aproximación de la verdadera relación, pero al extrapolar con la recta ajustada por fuera del rango $x_1 \le x \le x_2$, ya no tendríamos un buen desempeño del modelo: la extrapolación causaría errores significativos con respecto a la estimación de la relación verdadera.

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

Propiedades:

g.l denota grados de libertad.

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

Propiedades:

Descomposición de la variablilidad total ó SST							
$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{}$	=	$\sum_{i=1}^{n} (\widehat{Y}_i - \bar{Y})^2$	+	$\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$			
Total (SST)		Explicada (SSR)		No explicada (SSE)			
↓ SST	=	$\widehat{\beta}_1 S_{xy}$	+	↓ SSE			
o bien: SST	=	$\widehat{\beta}_1^2 S_{xx}$	+	SSE			
g.1(SST)	=	g.1(SSR)	+	g.1(SSE)			
n-1		1		n-2			

g.l denota grados de libertad.

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

Descomposición de la variablilidad total ó SST

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\widehat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

$$\text{Total (SST)} \qquad \text{Explicada (SSR)} \qquad \text{No explicada (SSE)}$$

$$\text{SST} = \widehat{\beta}_1^2 S_{xy} + \text{SSE}$$

$$\text{o bien:}$$

$$\text{SST} = \widehat{\beta}_1^2 S_{xx} + \text{SSE}$$

$$g.1(\text{SST}) = g.1(\text{SSR}) + g.1(\text{SSE})$$

$$n-1 \qquad 1 \qquad n-2$$

g.l denota grados de libertad.

Propiedades:

- ③ SSR/ σ^2 y SSE/ σ^2 son estadísticamente independientes.
- El estadístico F_0 : Bajo H_0 : $β_1 = 0$,

$$F_0 = \frac{\text{SSR/g.l(SSR)}}{\text{SSE/g.l(MSE)}}$$
$$= \frac{\text{SSR}}{\text{MSE}} \sim f_{1,n-2} \quad (1$$

 \bigcirc F_0 es el cuadrado del estadístico T_0 del test de sig-

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

 $\underbrace{g.1(SSE)}_{n-2}$

g.1(SSR)

g.l denota grados de libertad.

g.1(SST)

n-1

Propiedades:

- SSR/ σ^2 y SSE/ σ^2 son estadísticamente independientes.
- ① El estadístico F_0 : Bajo H_0 : $\beta_1 = 0$,

$$F_0 = \frac{\text{SSR/g.l}(\text{SSR})}{\text{SSE/g.l}(\text{MSE})}$$
$$= \frac{\text{SSR}}{\text{MSE}} \sim f_{1,n-2} \quad (1)$$

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

SSE

g.1(SSE)

n-2

$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} \widehat{(Y_i - \bar{Y})}^2 + \sum_{i=1}^{n} (Y_i - \widehat{Y_i})^2$ $Total (SST) \qquad Explicada (SSR) \qquad No explicada (SSE)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$

 $\widehat{\beta}_1^2 S_{xx}$

g.1(SSR)

Descomposición de la variablilidad total ó SST

g.l denota grados de libertad.

o bien: SST

g.1(SST)

n-1

Propiedades:

- SSR/ σ^2 y SSE/ σ^2 son estadísticamente independientes.
- El estadístico F_0 : Bajo H_0 : $\beta_1 = 0$,

$$F_0 = \frac{\text{SSR/g.l(SSR)}}{\text{SSE/g.l(MSE)}}$$
$$= \frac{\text{SSR}}{\text{MSE}} \sim f_{1,n-2} \quad (1)$$

○ F_0 es el cuadrado del estadístico T_0 del test de sig-

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

g.1(SSE)

n-2

$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\widehat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$ Total (SST) $\overset{\Downarrow}{\text{SST}} = \overset{\Downarrow}{\widehat{\beta}_1^2} S_{xy} + \overset{\Downarrow}{\text{SSE}}$ o bien: $SST = \overset{?}{\widehat{\beta}_1^2} S_{xx} + SSE$

g.1(SSR)

Descomposición de la variablilidad total ó SST

g.l denota grados de libertad.

g.1(SST)

n-1

Propiedades:

- SSR/ σ^2 y SSE/ σ^2 son estadísticamente independientes.
- **1** El estadístico F_0 : Bajo H_0 : $\beta_1 = 0$,

$$F_0 = \frac{\text{SSR/g.l (SSR)}}{\text{SSE/g.l (MSE)}}$$
$$= \frac{\text{SSR}}{\text{MSE}} \sim f_{1,n-2} \quad (1)$$

○ F_0 es el cuadrado del estadístico T_0 del test de sigulificação de β_1 .

Bajo $E_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ se tienen los siguientes resultados:

g.1(SSE)

n-2

$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{Total (SST)}} = \underbrace{\sum_{i=1}^{n} (\widehat{Y}_i - \bar{Y})^2}_{\text{Explicada (SSR)}} + \underbrace{\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2}_{\text{No explicada (SSE)}} \\ \downarrow \\ \text{SST} = \widehat{\beta}_1^2 S_{xy} + \underbrace{\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2}_{\text{No explicada (SSE)}} \\ \downarrow \\ \text{SSE}$ o bien: $SST = \widehat{\beta}_1^2 S_{xx} + SSE$

Descomposición de la variablilidad total ó SST

g.l denota grados de libertad.

g.1(SST)

n-1

Propiedades:

- SSR/ σ^2 y SSE/ σ^2 son estadísticamente independientes.
- El estadístico F_0 : Bajo H_0 : $\beta_1 = 0$,

$$\begin{split} F_0 &= \frac{\text{SSR/g.l}\left(\text{SSR}\right)}{\text{SSE/g.l}\left(\text{MSE}\right)} \\ &= \frac{\text{SSR}}{\text{MSE}} \sim f_{1,n-2} \quad (1) \end{split}$$

• F_0 es el cuadrado del estadístico T_0 del test de significancia de β_1 .

Test ANOVA del MRLS

Tabla 5: Tabla ANOVA del modelo de regresión lineal simple

Fuente	SC	g.l	CM	ECM	F_0	Valor P
Regresión Error	SSR SSE	1 n – 2	MSR = SSR/1 $MSE = SSE/(n-2)$	$E[MSR] = \sigma^2 + \beta_1^2 S_{XX}$ $E[MSE] = \sigma^2$	MSR/MSE	$P(f_{1,n-2} > F_0)$
Total	SST	n-1	MST = SST/(n-1)			

H₀: "El modelo lineal de Y en X no es significativo para explicar la variabilidad de Y'

$$H_0: B_1 = 0$$

VS

H₁: "El modelo lineal de Y en X es significativo para explicar la variabilidad de Y"

$$H_1: \beta_1 \neq 0$$

2)

A un nivel de significancia α se rechaza H_0 en favor de H_1 si $F_0 > f_{\alpha,1,n-2}$, donde $f_{\alpha,1,n-2}$ es tal que $P(f_{1,n-2} > f_{\alpha,1,n-2}) = \alpha$. O con valor P si $P(f_{1,n-2} > F_0)$, y si es "pequeño".

Test ANOVA del MRLS

Tabla 5: Tabla ANOVA del modelo de regresión lineal simple

I	Fuente	SC	g.l	CM	ECM	F_0	Valor P
	Regresión Error	SSR SSE	1 n – 2	MSR = SSR/1 $MSE = SSE/(n-2)$	$E[MSR] = \sigma^2 + \beta_1^2 S_{XX}$ $E[MSE] = \sigma^2$	MSR/MSE	$P(f_{1,n-2} > F_0)$
	Total	SST	n-1	MST = SST/(n-1)			

 H_0 : "El modelo lineal de Y en X no es significativo para explicar la variabilidad de Y" si y solo si,

 $H_0: \beta_1 = 0.$

VS.

 H_1 : "El modelo lineal de Y en X es significativo para explicar la variabilidad de Y"

si y solo si,

$$H_1: \beta_1 \neq 0. \tag{2}$$

A un nivel de significancia α se rechaza H_0 en favor de H_1 si $F_0 > f_{\alpha,1,n-2}$, donde $f_{\alpha,1,n-2}$ es tal que $P(f_{1,n-2} > f_{\alpha,1,n-2}) = \alpha$. O con valor P si $P(f_{1,n-2} > F_0)$, Y si es "pequeño".

Test ANOVA del MRLS

Tabla 5: Tabla ANOVA del modelo de regresión lineal simple

Fuente	SC	g.l	CM	ECM	F_0	Valor P
Regresión Error	SSR SSE	1 n-2	MSR = SSR/1 $MSE = SSE/(n-2)$	$E[MSR] = \sigma^2 + \beta_1^2 S_{xx}$ $E[MSE] = \sigma^2$	MSR/MSE	$P(f_{1,n-2} > F_0)$
Total	SST	n-1	MST = SST/(n-1)			

 H_0 : "El modelo lineal de Y en X no es significativo para explicar la variabilidad de Y" si y solo si,

 $H_0: \beta_1 = 0.$

vs.

H₁: "El modelo lineal de Y en X es significativo para explicar la variabilidad de Y"

si y solo si,

$$H_1:\beta_1\neq 0. \tag{2}$$

A un nivel de significancia α se rechaza H_0 en favor de H_1 si $F_0 > f_{\alpha,1,n-2}$, donde $f_{\alpha,1,n-2}$ es tal que $P(f_{1,n-2} > f_{\alpha,1,n-2}) = \alpha$. O con valor P si $P(f_{1,n-2} > F_0)$, y si es "pequeño".