程序验证方法 研究生课程 Chapter 3 (3.1, 3.2, 3.4) while Programs

> 朱惠彪 华东师范大学 软件学院

Contents

- 3.1 Syntax
- 3.2 Semantics
- 3.3 Verification
- 3.4 Proof Outlines

Syntax

$$S ::= skip \mid u = t \mid S_1; S_2$$

 $\mid if B then S_1 else S_2 fi \mid while B do S_1 od$

var(S): the set of all simple and array variables that appear in S.

change(S): the set of all simple and array variables that can be modified by S.

- A mapping $\mathcal{M}[S]$ from proper(initial) states to final states
- Configuration: $< S, \sigma >$
- Transition: $\langle S, \sigma \rangle \rightarrow \langle R, \tau \rangle$
- Empty program: E

 $R \equiv E$ means that S terminates in au

• Transition axioms and rules(σ is a proper state)

- (i) $\langle skip, \sigma \rangle \rightarrow \langle E, \sigma \rangle$,
- (ii) $\langle u := t, \sigma \rangle \rightarrow \langle E, \sigma[u := \sigma(t)] \rangle$,
- (iii) $\frac{\langle S_1, \sigma \rangle \to \langle S_2, \tau \rangle}{\langle S_1; S, \sigma \rangle \to \langle S_2; S, \tau \rangle}$,
- (iv) < if B then S_1 else S_2 fi, $\sigma > \rightarrow < S_1, \sigma >$ where $\sigma \models B$,
- (v) < if B then S_1 else S_2 fi, $\sigma > \rightarrow < S_2, \sigma >$ where $\sigma \models \neg B$,
- (vi) < while B do S od, $\sigma > \rightarrow < S$; while B do S od, $\sigma >$ where $\sigma \models B$,
- (vii) < while B do S od, $\sigma > \rightarrow < E, \sigma >$, where $\sigma \models \neg B$.

Definition 3.1 (S is a while program and σ is a proper state)

(1) transition sequence: a finite or infinite sequence of

configuration $< S_i, \sigma_i > (i \ge 0)$ such that

$$\langle S, \sigma \rangle = \langle S_0, \sigma_0 \rangle \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \dots \rightarrow \langle S_i, \sigma_i \rangle \rightarrow \dots$$

(2) computation: a transition sequence of S starting in σ .

A computation terminates in τ if it is finite and its last configuration is of the form $\langle E, \tau \rangle$.

A computation diverges if it is infinite.

(3) To describe the effect of finite transition sequences we use the transitive, reflexive closure →* of the transition relation →:

$$\langle S, \sigma \rangle \to^* \langle R, \tau \rangle$$

holds when there exist configurations $\langle S_1, \sigma_1 \rangle, \ldots, \langle S_n, \sigma_n \rangle$ with $n \geq 0$ such that

$$\langle S, \sigma \rangle = \langle S_1, \sigma_1 \rangle \rightarrow \ldots \rightarrow \langle S_n, \sigma_n \rangle = \langle R, \tau \rangle$$

holds. In the case when $n = 0, \langle S, \sigma \rangle = \langle R, \tau \rangle$ holds.

Deterministic programs

Lemma 3.1. (Determinism) For any while program S and a proper state σ , there is exactly one computation of S starting in σ .

• If S did not terminate then it can be executed for at least one step

Lemma 3.2. (Absence of Blocking) If $S \not\equiv E$ then for any proper state σ there exists a configuration $\langle S_1, \tau \rangle$ such that

$$\langle S, \sigma \rangle \rightarrow \langle S_1, \tau \rangle$$
.

Definition 3.2. We now define two input/output semantics for while programs. Each of them associates with a program S and a proper state $\sigma \in \Sigma$ a set of output states.

(i) The partial correctness semantics is a mapping

$$\mathcal{M}[S]: \Sigma \to \mathcal{P}(\Sigma)$$

with

$$\mathcal{M}[S](\sigma) = \{\tau \mid \langle S, \sigma \rangle \to^* \langle E, \tau \rangle \}.$$

(ii) The total correctness semantics is a mapping

$$\mathcal{M}_{tot}\llbracket S \rrbracket : \Sigma \to \mathcal{P}(\Sigma \cup \{\bot\})$$

 $\mathcal{M}_{tot}\llbracket S \rrbracket : \Sigma \to \mathcal{P}(\Sigma \cup \{\bot\}) \mid \bot indicates divergence$

with

$$\mathcal{M}_{tot}[S](\sigma) = \mathcal{M}[S](\sigma) \cup \{\bot \mid S \text{ can diverge from } \sigma\}.$$

Example 3.1. Consider the program

$$S \equiv a[0] := 1; \ a[1] := 0; \ \mathbf{while} \ a[x] \neq 0 \ \mathbf{do} \ x := x + 1 \ \mathbf{od}$$

and let σ be a proper state in which x is 0.

```
< S, \sigma >
\rightarrow < a[1] := 0; while a[x] \neq 0 do x := x + 1 od, \sigma[a[0] := 1] >
\rightarrow < while a[x] \neq 0 do x := x + 1 od, \sigma' >
\sigma' = \sigma[a[0] := 1][a[1] := 0]
\rightarrow < x := x + 1; while a[x] \neq 0 do x := x + 1 od, \sigma' >
\rightarrow < while a[x] \neq 0 do x := x + 1 od, \sigma'[x := 1] >
\rightarrow < E, \sigma'[x := 1] >.
```

Thus S when activated in σ terminates in five steps. We have

$$\mathcal{M}[\![S]\!](\sigma) = \mathcal{M}_{tot}[\![S]\!](\sigma) = \{\sigma'[x := 1]\}.$$

Now let τ be a state in which x is 2 and for i = 2, 3, ..., a[i] is 1. The computation of S starting in τ has the following form where τ' stands for $\tau[a[0]:=1][a[1]:=0]$:

$$\tau[a[0] := 1][a[1] := 0]$$
: $S \equiv a[0] := 1; \ a[1] := 0; \ \text{while } a[x] \neq 0 \ \text{do} \ x := x + 1 \ \text{od}$

$$\langle S, \tau \rangle$$

$$\rightarrow$$
 < $a[1] := 0$; while $a[x] \neq 0$ do $x := x + 1$ od, $\tau[a[0] := 1] >$

$$\rightarrow$$
 < while $a[x] \neq 0$ do $x := x + 1$ od, $\tau' >$

$$\to < x := x + 1; \text{ while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \tau' > 0$$

$$\to$$
 < while $a[x] \neq 0$ do $x := x + 1$ od, $\tau'[x := \tau(x) + 1] >$

. . .

$$\to$$
 < while $a[x] \neq 0$ do $x := x + 1$ od, $\tau'[x := \tau(x) + k] >$

. . .

Thus S can diverge from τ . We have $\mathcal{M}[S](\tau) = \emptyset$ and $\mathcal{M}_{tot}[S](\tau) = \{\bot\}$.

Properties of Semantics

- Notations:
 - $\checkmark \Omega$: a while program such that for all proper states σ

$$\mathcal{M}[\![\Omega]\!](\sigma) = \emptyset \qquad \mathcal{M}_{tot}[\![\Omega]\!](\sigma) = \{\bot\}$$

✓ N: stands for M or
$$M_{tot}$$
 $\mathcal{M}[S](\bot) = \emptyset$ and $\mathcal{M}_{tot}[S](\bot) = \{\bot\}$

$$\mathcal{N}[S](X) = \bigcup_{\sigma \in X} \mathcal{N}[S](\sigma).$$
$$X \subseteq \Sigma \cup \{\bot\}$$

(while B do S od)⁰ = Ω , (while B do S od)^{k+1} = if B then S; (while B do S od)^k else skip fi.

Lemma 3.3. (Input/Output)

```
(i) \mathcal{N}[S] is monotonic; that is, X \subseteq Y \subseteq \Sigma \cup \{\bot\} implies \mathcal{N}[S](X) \subseteq \mathcal{N}[S](Y).

(ii) \mathcal{N}[S_1; S_2](X) = \mathcal{N}[S_2](\mathcal{N}[S_1](X)).

(iii) \mathcal{N}[(S_1; S_2); S_3](X) = \mathcal{N}[S_1; (S_2; S_3)](X).

(iv) \mathcal{N}[\mathbf{if} B \mathbf{then} S_1 \mathbf{else} S_2 \mathbf{fi}](X) = \mathcal{N}[S_1](X \cap [B]) \cup \mathcal{N}[S_2](X \cap [\neg B]) \cup \{\bot \mid \bot \in X \text{ and } \mathcal{N} = \mathcal{M}_{tot}\}.
```

(v) $\mathcal{M}[$ while B do S od $] = \bigcup_{k=0}^{\infty} \mathcal{M}[$ (while B do S od) k].

Lemma 3.4. (Change and Access)

(i) For all proper states σ and τ , $\tau \in \mathcal{N}[S](\sigma)$ implies

$$\tau[Var - change(S)] = \sigma[Var - change(S)].$$

(ii) For all proper states σ and τ , $\sigma[var(S)] = \tau[var(S)]$ implies

$$\mathcal{N}[S](\sigma) = \mathcal{N}[S](\tau) \mod Var - var(S).$$

- (i) every program S changes at most the variables in change(S)
- (ii) every program S accesses at most the variables in var(S)

Note: We say that two sets of states X and Y *agree modulo* Z, and write $X = Y \mod Z$, if $\{\sigma[Var - Z] \mid \sigma \in X\} = \{\sigma[Var - Z] \mid \sigma \in Y\}$. (page 34)

Verification

• Please see a separate file.

- Formal proofs are long and tedious to follow.
- It is better to organize the proof in small local isolated steps
- We can use the structure of the program to structure our proof!

The idea

■ For the program $P = c_1$; c_2 ; c_3 ; ... c_n we want to show

$$\vdash \{\phi_0\}P\{\phi_n\}$$

■ We can split the problem into smaller ones if we find formulas ϕ_i 's such that

$$\vdash \{\phi_i\}c_i\{\phi_{i+1}\}$$

The idea

• Thus we have to find a calculus for presenting a proof $\{\phi_0\}P\{\phi_n\}$ by interleaving formulas with code

```
\{\phi_2\}
```

- **◆** Partial Correctness
- ➤ Definition 3.6. (Proof Outline: Partial Correctness)
- Let S* stand for the program S annotated,
 with assertions, some of them labeled by the keyword inv.
- We define the notion of a proof outline for partial correctness inductively by the formation axioms and rules.

- A formation axiom φ is a proof outline.
- A formation rule

$$\frac{\varphi_1, \dots, \varphi_k}{\varphi_{k+1}}$$

If $\varphi_1, ..., \varphi_k$ are proof outlines, then φ_{k+1} is a proof outline.

```
(i) \{p\} skip \{p\}
 (ii) \{p[u := t]\}\ u := t \{p\}
(iii) \frac{\{p\} \ S_1^* \ \{r\}, \{r\} \ S_2^* \ \{q\}}{\{p\} \ S_1^*; \ \{r\} \ S_2^* \ \{q\}}
        \frac{\{p \land B\} \ S_1^* \ \{q\}, \{p \land \neg B\} \ S_2^* \ \{q\}}{\{p\} \ \textbf{if} \ B \ \textbf{then} \ \{p \land B\} \ S_1^* \ \{q\} \ \textbf{else} \ \{p \land \neg B\} \ S_2^* \ \{q\} \ \textbf{fi} \ \{q\}}
(iv)
                                            \{p \wedge B\} S^* \{p\}
         \{ \mathbf{inv} : p \} while B do \{ p \wedge B \} S^* \{ p \} od \{ p \wedge \neg B \}
        where S^{**} results from S^{*} by omitting some annotations of the form
        \{r\}. Thus all annotations of the form \{\mathbf{inv}:r\} remain.
```

If every subprogram T of S is preceded by
 exactly one assertion in S* called pre(T),
 then a proof outline {p} S*{q} for partial correctness
 is called standard.

Theorem 3.2.

- (i) Let $\{p\}$ S^* $\{q\}$ be a proof outline for partial correctness. Then $\vdash_{PD} \{p\}$ S $\{q\}$.
- (ii) If $\vdash_{PD} \{p\}$ S $\{q\}$, there exists a standard proof outline for partial correctness of the form $\{p\}$ S* $\{q\}$.

 \vdash_{PD} stands for provability in the system PW augmented by the set of all true assertions.

Example 3.6. Let us reconsider the integer division program studied in Example 3.4. We present the correctness formulas (3.5), (3.6) and (3.7) in the following form:

```
\{x \geq 0 \land y \geq 0\}
 quo := 0; rem := x;
                                       label the loop invariant
 \{\mathbf{inv}:p\}
                                  p \equiv quo \cdot y + rem = x \wedge rem \geq 0
 while rem \geq y do
      \{p \land rem \ge y\}
      rem := rem - y; quo := quo + 1
 od
 \{p \land rem < y\}
 \{quo \cdot y + rem = x \land 0 \le rem < y\},\
\{q_1\}\{q_2\} stand for the implication q_1 \rightarrow q_2 is true
```

• The proof outlines $\{p\} S^* \{q\}$

enjoy the following useful and intuitive property:

whenever the control of S in a given computation starting in a state satisfying p reaches a point annoated by an assertion, this assertion is true.

• at(T,S): the remainder of S that is to be executed when the control is at subprogram T.

• Example

$$S \equiv$$
while $x \ge 0$ do if $y \ge 0$ then $x := x - 1$ else $y := y - 2$ fi od, $T \equiv y := y - 2$,

$$\operatorname{at}(T,S) \equiv \operatorname{at}(y := y-2,S) \equiv y := y-2;S$$

➤ Definition 3.7. **T** is a subprogram of **S**. We define a program at(T,S) by the following clauses:

- (i) if $S \equiv S_1$; S_2 and T is a subprogram of S_1 , then $\mathbf{at}(T, S) \equiv \mathbf{at}(T; S_1)$; S_2 and if T is a subprogram of S_2 then $\mathbf{at}(T, S) \equiv \mathbf{at}(T, S_2)$;
- (ii) if $S \equiv \mathbf{if} B \mathbf{then} S_1 \mathbf{else} S_2 \mathbf{fi}$ and T is a subprogram of S_i , then $\mathbf{at}(T, S) \equiv \mathbf{at}(T, S_i)$ (i = 1, 2);
- (iii) if $S \equiv \text{while } B \text{ do } S' \text{ od } \text{and } T \text{ is a subprogram of } S', \text{ then } \text{at}(T, S) \equiv \text{at}(T, S'); S;$
- (iv) if $T \equiv S$ then $\mathbf{at}(T, S) \equiv S$.

Theorem 3.3. (Strong Soundness) Let $\{p\}$ S^* $\{q\}$ be a standard proof outline for partial correctness. Suppose that

$$\langle S, \sigma \rangle \to^* \langle R, \tau \rangle$$

for some state σ satisfying p, program R and state τ . Then

- if $R \equiv \operatorname{at}(T, S)$ for a subprogram T of S, then $\tau \models \operatorname{pre}(T)$,
- if $R \equiv E$ then $\tau \models q$.

- **◆** Total Correctness
- > Definition 3.8. (Proof Outline: Total Correctness)
- Let S^* and S^{**} stand for the program S annotated,

with assertions, some of them labeled by the keyword inv,

and integer expressions, all labled by the keyword bd.

The notion of a proof outline for total correctness is defined as for partial correctness,
 except for formation rule (v) dealing with loops.

$$\{p \land B\} \ S^* \ \{p\}$$

$$\{\mathbf{inv} : p\} \ \mathbf{while} \ B \ \mathbf{do} \ \{p \land B\} \ S^* \ \{p\} \ \mathbf{od} \ \{p \land \neg B\}$$

$$(viii)$$

$$replaced \ by$$

$$\{p \land B\} \ S^* \ \{p\},\$$
 $\{p \land B \land t = z\} \ S^{**} \ \{t < z\},\$
 $p \to t \ge 0$

{bd: t} represents the bound function of the loop while B do S od.

 $\{\mathbf{inv}: p\}\{\mathbf{bd}: t\}$ while B do $\{p \land B\}$ S^* $\{p\}$ od $\{p \land \neg B\}$

where t is an integer expression and z is an integer variable not occurring in p, t, B or S^{**} .

where

Example 3.7. The following is a proof outline for total correctness of the integer division program DIV studied in Example 3.4:

```
\{x \ge 0 \land y > 0\}
quo := 0; rem := x;
\{\mathbf{inv}: p'\}\{\mathbf{bd}: rem\}
while rem \ge y do
      \{p' \land rem \ge y\}
     rem := rem - y; quo := quo + 1
      \{p'\}
od
\{p' \land rem < y\}
\{quo \cdot y + rem = x \land 0 \le rem < y\},\
p' \equiv quo \cdot y + rem = x \wedge rem \ge 0 \wedge y > 0.
```

Thank You!