Problem 7.6

Faisal Memon

May 25, 2024

1 Problem

Show that for

$$z = \beta + \Omega h$$

$$rac{\partial oldsymbol{z}}{\partial oldsymbol{h}} = oldsymbol{\Omega}^T$$

2 Answer

Using numerator-layout notation. z is $m \times 1$ and h is $n \times 1$. Ω is $m \times n$.

$$\begin{split} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{h}} &= \begin{bmatrix} \frac{\partial z_1}{h_0} & \frac{\partial z_1}{h_1} & \frac{\partial z_1}{h_2} & \cdots & \frac{\partial z_0}{h_n} \\ \frac{\partial z_2}{h_0} & \frac{\partial z_2}{h_1} & \frac{\partial z_2}{h_2} & \cdots & \frac{\partial z_1}{h_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_m}{h_0} & \frac{\partial z_m}{h_1} & \frac{\partial z_m}{h_2} & \cdots & \frac{\partial z_m}{h_n} \end{bmatrix} \\ z_i &= \beta_i + \sum_j \omega_{ij} h_j \end{split}$$
Therefore $\frac{\partial z_i}{\partial h_j} = \omega_{ij}$

Looking at the top row of the matrix, it is comprised of each ω_{0j} of the first row of Ω . However, the text book uses the denominator layout. This transposes our above matrix.

$$\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{h}} = \begin{bmatrix} \frac{\partial z_1}{h_1} & \frac{\partial z_2}{h_1} & \frac{\partial z_3}{h_1} & \dots & \frac{\partial z_m}{h_1} \\ \frac{\partial z_1}{h_2} & \frac{\partial z_2}{h_2} & \frac{\partial z_3}{h_2} & \dots & \frac{\partial z_m}{h_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial z_1}{h_n} & \frac{\partial z_2}{h_n} & \frac{\partial z_3}{h_n} & \dots & \frac{\partial z_m}{h_n} \end{bmatrix}$$

Looking at the top row of the matrix, it is comprised of each ω_{j0} of the first column of Ω . And therefore the answer is a matrix comprising ω_{ji} which is Ω^T .