Probability and Estimation

StatML 6.2.2014

Aasa Feragen

After today's lecture you should

- Know the theoretical background for estimation of distributions
- Know the principles of Bayesian estimation
- Know standard techniques for parametric and non-parametric estimation of probability distributions
 - Maximum likelihood and maximum a posteriori estimation
 - Examples of non-parametric methods (more to come later in the course)
 - Conjugate priors
- Be able to use the above parametric techniques for estimation of Gaussian distributions in real problems
- You will meet these topics in Assignments 1 and 2!

Recall: Probability distributions important for probabilistic ML...

Recall: Probability distributions important for probabilistic ML...

Recall: Probability distributions important for probabilistic ML...

Recall from last time!

Discrete random variables:

p(x) = p(X = x) is called a probability mass function

 $x \in \mathbb{R}$ real random variable $p \colon \mathbb{R} \to \mathbb{R}$

p(x) is the probability density function of X

 $x \in \mathbb{R}$ real random variable $p \colon \mathbb{R} \to \mathbb{R}$

p(x) is the probability density function of X

 $x \in \mathbb{R}$ real random variable $p \colon \mathbb{R} \to \mathbb{R}$

p(x) is the probability density function of X

Recall from last time: The Gaussian distribution

$$p(x) = \mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$= Ce^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 bandwidth maximum

 μ is mean σ^2 is variance σ is standard deviation $\beta = \frac{1}{\sigma^2}$ is precision

Multivariate Gaussian distribution

Multivariate Gaussian distribution

Multivariate Gaussian distribution

Probability Theory Arithmetic

	Discrete	Continuous
Variables	$X \in \{x_i\}_{i=1}^M, Y \in \{y_j\}_{j=1}^L$	$X \in \mathbb{R}, Y \in \mathbb{R}$
Example	$X = X_1$ eyes on first dice, $Y = X_1 + X_2$, sum of eyes	X = height of 4-year-old Y = height of mother
Sum rule	$p(x_i) = p(X = x_i) = \sum_j p(x_i, y_j)$	$p(x_i) = p(X = x_i) = \int p(x, y) dy$
Product rule	p(X,Y) = p(Y X)p(X)	p(x,y) = p(y x)p(x)

Probability Theory Arithmetic

	Discrete	Continuous
Variables	$X \in \{x_i\}_{i=1}^M, Y \in \{y_j\}_{j=1}^L$	$X \in \mathbb{R}, Y \in \mathbb{R}$
Example	$X = X_1$ eyes on first dice, $Y = X_1 + X_2$, sum of eyes	X = height of 4-year-old Y = height of mother
Sum rule	$p(x_i) = p(X = x_i) = \sum_j p(x_i, y_j)$	$p(x_i) = p(X = x_i) = \int p(x, y) dy$
Product rule	p(X,Y) = p(Y X)p(X)	p(x,y) = p(y x)p(x)
Independence	p(X,Y) = p(X)p(Y)	p(x,y) = p(x)p(y)
Exercise:	p(y x) = p(y) if x and y are in	dependent

Example: Marginal of Gaussian

Let the joint probability $p(\mathbf{x}_a, \mathbf{x}_b)$ be Gaussian

The marginal $p(\mathbf{x}_a)$ can be estimated with the sum rule

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b$$

You will meet this in Assignment 1.3.1!

Example: Conditional of Gaussian

Let the joint probability $p(\mathbf{x}_a, \mathbf{x}_b)$ be Gaussian

$$x = \begin{pmatrix} \mathbf{x}_a \\ \mathbf{x}_b \end{pmatrix} \mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \Sigma = \begin{pmatrix} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \\ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{pmatrix} \Lambda = \Sigma^{-1} = \begin{pmatrix} \mathbf{\Lambda}_{aa} & \mathbf{\Lambda}_{ab} \\ \mathbf{\Lambda}_{ba} & \mathbf{\Lambda}_{bb} \end{pmatrix}$$

Express conditional using product rule $p(\mathbf{x}_a, \mathbf{x}_b) = p(\mathbf{x}_a | \mathbf{x}_b) p(\mathbf{x}_b)$

$$\Lambda_{ij} \neq \Sigma_{ij}^{-1}$$

The conditional $p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}_a|\mu_{a|b}, \Lambda_{aa}^{-1})$

Meet this in Assignment I.3.1

Completing the square

Trick! Any function

$$f(x) = Ce^{c_1 x^2 + c_2 x + c_3}$$

can be normalized to become a Gaussian probability density function

$$\mathcal{N}(x|\mu,\sigma^2) = \tilde{C}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

because

$$c_1 x^2 + c_2 x + c_3 = c_1 \left(x + \frac{c_2}{2c_1}\right)^2 + \left(c_3 + \frac{c_2^2}{4c_1}\right)^2$$

SO

$$f(x) = Ce^{c_3 + \frac{c_2^2}{4c_1}} e^{c_1(x - \frac{-c_2}{2c_1})^2}$$

To find the μ,σ

$$-\frac{1}{2\sigma^2}(x-\mu)^2 = -\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2) = -\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} + const.$$

and set

$$c_1 = -\frac{1}{2\sigma^2}, c_2 = \frac{\mu}{\sigma^2}$$

Expectation Values

weighted average of statistic or function f over distribution

$$\mathbb{E}[f(X)] = \sum_{x} f(x)p(x)$$

$$\mathbb{E}[f(X)] = \int f(x)p(x)dx$$

Examples:
$$\max \text{ mean of } X \quad \mathbb{E}[X] = \begin{array}{c} \sum_x x p(x) & \text{discrete} \\ \int x p(x) dx & \text{continuous} \end{array}$$

discrete

continuous

Expectation Values

weighted average of statistic or function f over distribution

$$\mathbb{E}[f(X)] = \sum_{x} f(x)p(x)$$

$$\mathbb{E}[f(X)] = \int f(x)p(x)dx$$

discrete

continuous

mean of
$$X$$
 $\mathbb{E}[X] = egin{array}{ccc} \sum_x x p(x) & ext{discrete} \\ \int x p(x) dx & ext{continuous} \end{bmatrix}$

variance of
$$X$$

variance of
$$X$$

$$var(X)=\mathbb{E}[(X-\mathbb{E}[X])^2]$$
 covariance of X
$$cov(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$$

Multivariate Gaussian distribution: Covariance!

Covariance matrix!

Multivariate Gaussian distribution: Covariance!

Covariance matrix!

Multivariate Gaussian distribution: Covariance!

Covariance matrix!

Expectation Values

weighted average of statistic or function f over distribution

$$\mathbb{E}[f(X)] = \sum_{x} f(x)p(x)$$

$$\mathbb{E}[f(X)] = \int f(x)p(x)dx$$

discrete

continuous

Properties

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[X+c] = \mathbb{E}[X] + c$$

$$\mathbb{E}[cX] = c\mathbb{E}[X]$$

c is any constant

Exercise

- $var(X) = \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- $\bullet X, Y$ independent

$$\Rightarrow cov[X,Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = 0$$

Example: Gaussian

$$p(x) = \mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
$$\mathbb{E}[f(X)] = \int f(x)p(x)dx$$

mean:
$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} x dx = \mu$$

second moment: $\mathbb{E}[x^2] = \int_{\infty}^{\infty} \mathcal{N}(x|\mu,\sigma) x^2 = \mu^2 + \sigma^2$
variance: $var(x) = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \mu^2 + \sigma^2 - \mu^2 = \sigma^2$

Today's problem: Fit distribution to dataset

Given:

N real-valued observations $X = x_1, \ldots, x_N$

Assume:

 x_i drawn independently from some Gaussian distribution $\mathcal{N}(x|\mu, \sigma^2)$ i.i.d. = independent and identically distributed

Consequence of assumption:

$$\begin{split} p(X|\mu,\sigma^2) &= p(x_1,x_2,\dots,x_N|\mu,\sigma^2) \\ &= p(x_1|\mu,\sigma^2)p(x_2|\mu,\sigma^2)\dots p(x_N|\mu,\sigma^2) \\ &= \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2) \quad \text{a likelihood!} \end{split}$$

Task:

Find the Gaussian $\mathcal{N}(x|\mu,\sigma^2)$ which best fits the data

Strategy 1:

Find the Gaussian $\mathcal{N}(x|\mu_{ML}, \sigma_{ML}^2)$ which maximises the likelihood

Today's problem: Fit distribution to dataset

Given:

N real-valued observations $X = x_1, \dots, x_N$

$$p(X|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$
 a likelihood!

Strategy 1:

Find the Gaussian $\mathcal{N}(x|\mu_{ML}, \sigma_{ML}^2)$ which maximises the likelihood

Obs!

- * Dataset is fixed
- * Variables for fitting/optimizing are μ and σ^2

log(x)

Trick!

Math problem: maximize

$$\log p(X|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \log \sigma^2 - \frac{N}{2} \log(2\pi)$$

How to do that?

Today's problem: Fit distribution to dataset

Given:

N real-valued observations $X = x_1, \dots, x_N$

$$p(X|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$
 a likelihood!

Strategy 1:

Find the Gaussian $\mathcal{N}(x|\mu_{ML},\sigma_{ML}^2)$ which maximises the likelihood

Obs!

- * Dataset is fixed
- * Variables for fitting/optimizing are μ and σ^2

log(x)

Math problem: maximize

$$\log p(X|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \log \sigma^2 - \frac{N}{2} \log(2\pi)$$

How to do that?

$$rac{\partial}{\partial \mu} \log p(X|\mu,\sigma^2) = 0$$
 $\mu_{ML} = rac{1}{N} \sum_{n=1}^N x_n$ look familiar?

Today's problem: Fit distribution to dataset

Given:

N real-valued observations $X = x_1, \ldots, x_N$

$$p(X|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$
 a likelihood!

Strategy 1:

Find the Gaussian $\mathcal{N}(x|\mu_{ML},\sigma_{ML}^2)$ which maximises the likelihood

Obs!

- * Dataset is fixed
- * Variables for fitting/optimizing are μ and σ^2

Math problem: maximize

$$\log p(X|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \log \sigma^2 - \frac{N}{2} \log(2\pi)$$

How to do that?

$$\frac{\partial}{\partial a} \log p(X|\mu_{ML}, a), \quad \sigma^2 = a$$

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$

look familiar?

Today's problem: Fit distribution to dataset

Given:

N real-valued observations $X = x_1, \ldots, x_N$

$$p(X|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$
 a likelihood!

Strategy 1:

Find the Gaussian $\mathcal{N}(x|\mu_{ML},\sigma_{ML}^2)$ which maximises the likelihood

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$

For multivariate Gaussians:

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

$$\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \mu_{\mathbf{ML}}) (\mathbf{x}_n - \mu_{\mathbf{ML}})^T$$

Second approach to parameter estimation

Bayesian statistics

Bayes' Rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Proof? (Hint: the product rule) p(x,y) = p(x|y)p(y)

Why is this a useful theorem? Remember our task of the day!

N real-valued observations $X = x_1, \ldots, x_N$ x_i drawn independently from some Gaussian distribution $\mathcal{N}(x|\mu, \sigma^2)$ i.i.d. = independent and identically distributed

Task:

Find the Gaussian $\mathcal{N}(x|\mu,\sigma^2)$ which best fits the data

Strategy 2:

Find parameters (μ, σ^2) such that $\mathcal{N}(x|\mu, \sigma^2)$ agrees the most with X. Maximise $p((\mu, \sigma^2)|X)$

Bayes' Rule

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

General setting:

w = model parameters

D =observed data

p(D|w) = likelihood of data given model

p(w|D) = probability distribution of model given data

Likelihood -- we get this from the model and the data

Choosing Priors – conjugate priors

Optimize for computability:

Choose prior which multiplies **nicely** with likelihood (that is, which leads to an algebraically nice analytic expression) Called a **conjugate** prior!

Probability density distribution of model given data

Likelihood -- we get this from the model and the data $p(w|D) \propto p(D|w)p(w)$

Prior knowledge and/or conjugate prior

Remember: Product of Gaussians is (unnormalized) Gaussian

Maximum a Posteriori (MAP) estimate

Example: Infer mean μ , assume known variance σ^2

Dataset $X = \{x_1, \ldots, x_N\}$ as before

Likelihood:

$$p(X|\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Prior:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

Example: Infer mean μ , assume known variance σ^2

Likelihood:

$$p(X|\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Prior:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

Distribution we want to estimate:

$$p(\mu|X) \propto p(X|\mu)p(\mu) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)\mathcal{N}(\mu|\mu_0,\sigma_0^2)$$
 Gaussian! (complete the square)
$$= \mathcal{N}(\mu|\mu_N,\sigma_N^2)$$

Completing the square

Trick! Any function

$$f(x) = Ce^{c_1 x^2 + c_2 x + c_3}$$

can be normalized to become a Gaussian probability density function

$$\mathcal{N}(x|\mu,\sigma^2) = \tilde{C}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

because

$$c_1 x^2 + c_2 x + c_3 = c_1 \left(x + \frac{c_2}{2c_1}\right)^2 + \left(c_3 - \frac{c_2^2}{4c_1}\right)^2$$

SO

$$f(x) = Ce^{c_3 + \frac{c_2^2}{4c_1}} e^{c_1(x - \frac{-c_2}{2c_1})^2}$$

To find the μ,σ

$$-\frac{1}{2\sigma^2}(x-\mu)^2 = -\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2) = -\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} + const.$$

and set

$$c_1 = -\frac{1}{2\sigma^2}, c_2 = \frac{\mu}{\sigma^2}$$

Example: Infer mean μ , assume known variance σ^2

Likelihood:

$$p(X|\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Prior:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

Distribution we want to estimate:

$$p(\mu|X) \propto p(X|\mu)p(\mu) = \prod_{n=1}^{N} \mathcal{N}(x_{n}|\mu,\sigma^{2})\mathcal{N}(\mu|\mu_{0},\sigma_{0}^{2})$$
 Gaussian! (complete the square)
$$= \mathcal{N}(\mu|\mu_{N},\sigma_{N}^{2})$$

$$= \prod_{n=1}^{N} C_{n}e^{-\frac{1}{2\sigma^{2}}(x_{n}-\mu)^{2}}C_{\mu}e^{-\frac{1}{2\sigma_{0}^{2}}(\mu-\mu_{0})^{2}}$$

Example: Infer mean μ , assume known variance σ^2

Likelihood:

$$p(X|\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Prior:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

Distribution we want to estimate:

$$p(\mu|X) \propto p(X|\mu)p(\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu,\sigma^2)\mathcal{N}(\mu|\mu_0,\sigma_0)^2$$

$$\begin{array}{c} \textbf{Gaussian!} \\ \text{(complete the square)} \end{array} = \mathcal{N}(\mu|\mu_N,\sigma_N^2) \\ = \prod_{n=1}^{N} C_n e^{-\frac{1}{2\sigma^2}(x_n-\mu)^2} C_\mu e^{-\frac{1}{2\sigma_0^2}(\mu-\mu_0)^2} \\ \text{so the exponential is } -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n-\mu)^2 - \frac{1}{2\sigma_0^2} (\mu-\mu_0)^2 \\ = \mu^2 (-\frac{N}{2\sigma^2} - \frac{1}{2\sigma_0^2}) + \mu (-\frac{1}{\sigma^2} \sum_{n=1}^{N} x_n - \frac{\mu_0}{\sigma_0^2}) + const. \end{array}$$

Example: Infer mean μ , assume known variance σ^2

Likelihood:

$$p(X|\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Prior:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

Distribution we want to estimate:

$$p(\mu|X) \propto p(X|\mu)p(\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2) \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$
Gaussian!
(complete the square)
$$= \mathcal{N}(\mu|\mu_N, \sigma_N^2)$$

$$= \prod_{n=1}^{N} C_n e^{-\frac{1}{2\sigma^2}(x_n - \mu)^2} C_\mu e^{-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2}$$
so the exponential is
$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2$$

$$= \mu^2 \left(-\frac{N}{2\sigma^2} - \frac{1}{2\sigma_0^2}\right) + \mu \left(-\frac{1}{\sigma^2} \sum_{n=1}^{N} x_n - \frac{\mu_0}{\sigma_0^2}\right) + const.$$

$$c_1$$

in the polynomial $c_1\mu^2 + c_2\mu + c_3$

Completing the square

Trick! Any function

$$f(x) = Ce^{c_1 x^2 + c_2 x + c_3}$$

can be normalized to become a Gaussian probability density function

$$\mathcal{N}(x|\mu,\sigma^2) = \tilde{C}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

because

$$c_1 x^2 + c_2 x + c_3 = c_1 \left(x + \frac{c_2}{2c_1}\right)^2 + \left(c_3 - \frac{c_2^2}{4c_1}\right)^2$$

SO

$$f(x) = Ce^{c_3 + \frac{c_2^2}{4c_1}} e^{c_1(x - \frac{-c_2}{2c_1})^2}$$

To find the μ,σ

$$-\frac{1}{2\sigma^2}(x-\mu)^2 = -\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2) = -\frac{x^2}{2\sigma^2} + \frac{x\mu}{\sigma^2} + const.$$

and set

$$c_1 = -\frac{1}{2\sigma^2}, c_2 = \frac{\mu}{\sigma^2}$$

Example: Infer mean μ , assume known variance σ^2

Likelihood:

$$p(X|\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Prior:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

Distribution we want to estimate:

$$p(\mu|X) \propto p(X|\mu)p(\mu) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2) \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$
Gaussian!
(complete the square)
$$= \mathcal{N}(\mu|\mu_N, \sigma_N^2)$$

$$= \prod_{n=1}^{N} C_n e^{-\frac{1}{2\sigma^2}(x_n - \mu)^2} C_\mu e^{-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2}$$
so the exponential is $-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2$

$$= \mu^2 (-\frac{N}{2\sigma^2} - \frac{1}{2\sigma_0^2}) + \mu (-\frac{1}{\sigma^2} \sum_{n=1}^{N} x_n - \frac{\mu_0}{\sigma_0^2}) + const.$$

$$c_1$$

in the polynomial $c_1\mu^2+c_2\mu+c_3$ and we compute

$$\mu_{N} = \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{0} + \frac{N\sigma_{0}}{N\sigma_{0}^{2} + \sigma^{2}} \mu_{ML} \qquad \frac{1}{\sigma_{N}^{2}} = \frac{1}{\sigma_{0}^{2}} + \frac{N}{\sigma^{2}}$$

$$\mu_{MAP} = \operatorname{argmax}_{\mu} p(\mu|X) = \mu_{N}$$

Bayesian Statistics – ML lingo

The formula
$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$

In plain words
$$p(model|data) = \frac{p(data|model)p(model)}{p(data)}$$

ML lingo
$$posterior = \frac{likelihood \cdot prior}{evidence}$$

Two ways of estimating the distribution

Task:

Find the Gaussian $\mathcal{N}(x|\mu,\sigma^2)$ which best fits the data

Maximum Likelihood (ML)= estimate:

Choose parameters w that maximize p(D|w) (likelihood function)

Maximum a Posteriori (MAP) estimate

Choose parameters w that maximize p(w|D) (posterior probability)

Non-parametric estimation

- Sometimes, it is not possible to model a probability density function parametrically
- Estimate it from the data!

Unfair dice

Image patches

- A histogram H(X) of the random variable X is a table of frequency counts of N experiments (or data points):
 - Subdivide the domain of X, e.g. the set of real numbers, into M bins of width Δ (bin volume in D-dim.).
 - 2. For the i'th bin, let H(i) be the frequency count of how many times X falls into the bin.
- Probability estimate: Probability of falling in the i'th bin

$$p(X \in \Delta i) = H(i)/N$$

(Probability estimator)

• Probability density estimate:

$$p(x) = H(i)/(N \Delta)$$

- A histogram H(X) of the random variable X is a table of frequency counts of N experiments (or data points):
 - Subdivide the domain of X, e.g. the set of real numbers, into M bins of width Δ (bin volume in D-dim.).
 - 2. For the i'th bin, let H(i) be the frequency count of how many times X falls into the bin.
- Probability estimate: Probability of falling in the i'th bin

$$p(X \in \Delta i) = H(i)/N$$

(Probability estimator)

Probability density estimate:

$$p(x) = H(i)/(N \Delta)$$

- A histogram H(X) of the random variable X is a table of frequency counts of N experiments (or data points):
 - Subdivide the domain of X, e.g. the set of real numbers, into M bins of width Δ (bin volume in D-dim.).
 - 2. For the i'th bin, let H(i) be the frequency count of how many times X falls into the bin.
- Probability estimate: Probability of falling in the i'th bin

$$p(X \in \Delta i) = H(i)/N$$

(Probability estimator)

Probability density estimate:

$$p(x) = H(i)/(N \Delta)$$

- A histogram H(X) of the random variable X is a table of frequency counts of N experiments (or data points):
 - Subdivide the domain of X, e.g. the set of real numbers, into M bins of width Δ (bin volume in D-dim.).
 - 2. For the i'th bin, let H(i) be the frequency count of how many times X falls into the bin.
- Probability estimate: Probability of falling in the i'th bin

$$p(X \in \Delta i) = H(i)/N$$

(Probability estimator)

Probability density estimate:

$$p(x) = H(i)/(N \Delta)$$

Non-Parametric Density Estimation: Kernels (Parzen windows)

Replace histograms with estimates around arbitrary points xin \mathbb{R}^{D}

Count the number of points around x using a kernel function centered on x kernel = bin)

$$K = \sum_{n=1}^{N} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right)$$

Equivalently, put a kernel centered on each data point $\ x$ and sum the values of the kernel functions at

Assume: The volume of the bin defined by the kernel is $V=h^{\cal D}$

Probability density kernel estimate using a Gaussian kernel:

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{\sqrt{2\pi}h} e^{-\frac{\|\mathbf{x} - \mathbf{x}_n\|^2}{2h^2}}$$

OBS! a "kernel" is not a "kernel" -- multiple uses of the word in ML

Why parametric estimation?

- What's good about it?
- What's bad about it?

Why parametric estimation?

- What's good about it?
 - Analytic expression
 - Computational speed
 - Precise solutions

- What's bad about it?
 - Restrictive choice of models
 - (Gaussians are the nice, easy ones!)

Why nonparametric estimation?

- What's good about it?
- What's bad about it?

Why nonparametric estimation?

- What's good about it?
 - No assumptions on distributions
 - Easy to understand and implement (the ones we've seen)

- What's bad about it?
 - Not exact
 - Computationally expensive

Recall: Probability distributions important for probabilistic ML...

 We will meet ML and MAP again in 2 weeks, for regression

Summary: After today's lecture you should

- Know the theoretical background for estimation of distributions
- Know the principles of Bayesian estimation
- Know standard techniques for parametric and non-parametric estimation of probability distributions
 - Maximum likelihood and maximum a posteriori estimation
 - Examples of non-parametric methods
 - Conjugate priors
- Be able to use the above parametric techniques for estimation of Gaussian distributions in real problems
- Corresponding reading material: (CB pages 1-28 and 78-113, 120-127)

Next time!

- Christian!
- Ingredients of statistical learning theory (loss, risk minimization, bounds)
- Reading material: (CB sections 1.3, 1.5, 2.5.2, 7.1.5; KBML sections 2.1 until 2.2.1)