(PROOFS USING VENN DIAGRAM)

(i)
$$A - (A - B) = A \cap B$$

(ii)
$$(A \cap B)' = A' \cup B'$$

(iii)
$$A - B = A \cap B'$$

(i)
$$A - (A - B) = A \cap B$$

$$A - B = \{1\}$$

(i)
$$A - (A - B) = A \cap B$$

$$A - (A - B) = \{2\}$$

RESULT:
$$A - (A - B) = A \cap B$$

(ii)
$$(A \cap B)' = A' \cup B'$$

 $A \cap B$

(ii)
$$(A \cap B)' = A' \cup B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

(ii)
$$(A \cap B)' = A' \cup B'$$

RESULT:
$$(A \cap B)' = A' \cup B'$$

(iii)
$$A - B = A \cap B'$$

A - B

(iii)
$$A - B = A \cap B'$$

(iii)
$$A - B = A \cap B'$$

$$A \cap B'$$

RESULT:
$$A - B = A \cap B'$$

Let A, B, C be subsets of a universal set U.

1. Idempotent Laws

a.
$$A \cup A = A$$

b.
$$A \cap A = A$$

2. Commutative Laws

a.
$$A \cup B = B \cup A$$
 b. $A \cap B = B \cap A$

3. Associative Laws

a.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

b.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

4. Distributive Laws

- a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

5. Identity Laws

a.
$$A \cup \emptyset = A$$

c.
$$A \cup U = U$$

b.
$$A \cap \emptyset = \emptyset$$

$$d. A \cap U = A$$

6. Complement Laws

a.
$$A \cup A' = U$$

c.
$$U' = \emptyset$$

b.
$$A \cap A' = \emptyset$$

$$d. \varnothing' = U$$

- 7. Double Complement Law
 - a. (A')' = A
- 8. DeMorgan's Laws
 - a. $(A \cup B)' = A' \cap B'$
 - b. $(A \cap B)' = A' \cup B'$
- Alternative Representation for Set Difference
 - a. $A B = A \cap B'$

10. Subset Laws

- a. $A \cup B \subseteq C$ iff $A \subseteq C$ and $B \subseteq C$
- b. $C \subseteq A \cap B$ iff $C \subseteq A$ and $C \subseteq B$

11. Absorption Laws

- a. $A \cup (A \cup B) = A$
- b. $A \cap (A \cup B) = A$