2. Intervalos de Confiança

ANADI

Licenciatura em Engenharia Informática

Instituto Superior de Engenharia do Porto

Ano letivo 2018/2019

Relembrando:

- população: conjunto de todos os objetos cujas características pretendemos estudar;
- amostra: qualquer subconjunto finito da população;
- medidas como a média e o desvio padrão são usadas para descrever amostras e populações.

Estas medidas chamam-se:

- parâmetros: quando se referem às características da população;
- estatísticas: quando se referem às características de uma amostra. As estatísticas estimam o valor dos parâmetros que pretendemos determinar.

A amostragem é uma técnica de seleção de elementos de uma população para se estimar propriedades e características da população.

Uma amostra aleatória simples de uma população finita X_1, X_2, \ldots, X_n é uma amostra obtida por um processo de amostragem aleatória simples com reposição, isto é, em que as observações X_1, X_2, \ldots, X_n

- são independentes,
- 2 têm a mesma distribuição de probabilidade,
- e, por isso, dizem-se independentes e identicamente distribuídas (i.i.d.).

Uma amostra aleatória simples de uma população infinita é uma amostra em que as observações X_1, X_2, \ldots, X_n são i.i.d..

Estimador e estimativa

Partindo de estatísticas baseadas numa amostra aleatória, é possível fazer inferências acerca do valor de parâmetros de uma população.

- Estimador pontual de um parâmetro θ de uma população: é uma estatística $\hat{\Theta}$ usada para estimar o valor de θ .
- Estimativa pontual de um parâmetro θ de uma população: é um valor $\hat{\theta}$ de uma estatística $\hat{\Theta}$.

parâmetro da população, $ heta$	estimador de $ heta$, $\hat{\Theta}$	estimativa de $ heta$, $\hat{ heta}$
média, μ	$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
variância, σ^2	n-1 · · - · ·	$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n\bar{x}^2 \right)$
proporção, p	$\hat{P} = \frac{\sum_{i=1}^{n} X_i}{n}, X_i \sim Bernoulli(p)$	$\hat{\rho} = \frac{\sum_{i=1}^{n} x_i}{n}$

Intervalos de confiança

Ao fazer uma estimativa de um parâmetro θ de uma população queremos conhecer a grandeza do erro de amostragem.

Como os estimadores pontuais não dão essa informação, determina-se um intervalo onde se espera encontrar o valor do parâmetro θ :

Intervalo de confiança (IC) de $(1-\alpha) \times 100\%$ para θ : é um intervalo aleatório $[LI(\hat{\Theta}), LS(\hat{\Theta})]$ em que os limites de confiança $LI(\hat{\Theta})$ e $LS(\hat{\Theta})$ são duas estatísticas amostrais tais que

$$P(LI(\hat{\Theta}) \le \theta \le LS(\hat{\Theta})) = 1 - \alpha$$

sendo $1-\alpha$ o coeficiente de confiança e $\alpha \in]0,1[$ o nível de significância.

Idealmente, um intervalo aleatório deverá ter amplitude pequena (grande precisão) e coeficiente de confiança elevado (probabilidade elevada do IC conter o parâmetro desconhecido θ).

Para um tamanho de amostra fixo, o coeficiente de confiança só pode aumentar, se a amplitude do intervalo também aumentar.

Para valores do coeficiente de confiança elevados, a amplitude do IC aumenta rapidamente.

Assim, os valores mais típicos do coeficiente de confiança $1-\alpha$ são 0.99, 0.95 e 0.90.

O problema de determinar um IC para um parâmetro θ (ou seja, $LI(\hat{\Theta})$ e $LS(\hat{\Theta})$) reduz-se a encontrar um estimador pontual de θ cuja distribuição de probabilidade seja conhecida e não dependa de θ .

Intervalos de confiança para a média populacional $(\sigma^2 \text{ conhecido})$

Para populações normais ou, pelo Teorema do Limite Central, para amostras de tamanho suficientemente grande, sabemos que

$$ar{X} \sim \mathcal{N}\Big(\mu, rac{\sigma^2}{n}\Big) \Leftrightarrow Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Na prática, usa-se esta aproximação quando a variância σ^2 é conhecida e as amostras são de tamanho superior ou igual a 30.

Seja z_p , 0 , o percentil <math>100p da distribuição N(0,1). Então

$$P(-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}) = 1 - \alpha,$$

ou seja,

$$P\Big(-z_{1-\alpha/2} \le \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z_{1-\alpha/2}\Big) = 1-\alpha,$$

e, portanto,

$$P\left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Obtemos então o intervalo

$$\left[\bar{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right].$$

Este intervalo aleatório tem uma probabilidade $1-\alpha$ (exata, no caso normal, ou aproximada) de conter o verdadeiro, mas desconhecido, valor da média μ .

Depois de realizarmos a amostragem, substituímos \bar{X} por \bar{x} e obtemos o intervalo determinístico

$$IC_{(1-\alpha)\times 100\%}(\mu) = \left[\bar{x} - z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{x} + z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right],$$

que nos dá $(1-\alpha) \times 100\%$ de confiança do erro cometido (ou seja, o valor absoluto da diferença entre \bar{x} e μ) ser inferior a $z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$.

Este (intervalo centrado na média amostral) não é o único intervalo de $(1-\alpha) \times 100\%$ de confiança, mas é aquele em que a amplitude é mínima.

Intervalos de confiança para a média populacional $(\sigma^2 \text{ desconhecida})$

Usualmente, a variância da população, σ^2 , é desconhecida, pelo que temos de recorrer à estatística S^2 (variância amostral) e usar a variável aleatória $T=\frac{\bar{X}-\mu}{S/\sqrt{n}}$.

Teorema

Se \bar{X} é a média e S^2 a variância de uma a.a. i.i.d. de tamanho n, extraída de uma população normal com média μ e variância σ^2 , então

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim T(n-1),$$

onde T é a distribuição t-Student com n-1 graus de liberdade.

Resumindo:

Sejam X_1,X_2,\ldots,X_n uma a.a. i.i.d. de uma população com média μ e variância σ^2 . Sejam \bar{X} e S^2 a média e a variância da a.a.. Então:

$X \sim N(\mu, \sigma^2)$	σ^2 conhecido	$n \ge 30$	Estatística de teste	$IC_{(1-lpha) imes 100\%}(\mu)$
Sim	Sim	Indiferente	$Z = rac{ar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	
Não	Sim	Sim	$Z = rac{ar{X} - \mu}{\sigma / \sqrt{n}} \underset{aprox}{\sim} N(0, 1)$	$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$
Sim	Não	Indiferente	$T=rac{ar{X}-\mu}{S/\sqrt{n}}\sim T(n-1)$	$\left[\bar{X} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}, \bar{X} + t_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$
Não	Não	Sim	$Z=rac{ar{X}-\mu}{S/\sqrt{n}} \mathop{\sim}\limits_{aprox} N(0,1)$	$\left[\bar{X} - z_{1-\alpha/2} \frac{s}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \frac{s}{\sqrt{n}}\right]$

Nota: Para amostras de tamanho suficientemente grande (tipicamente, $n \ge 30$) os resultados obtidos ao usar-se a distribuição normal standardizada para aproximar a distribuição t-Student são muito próximos (o IC quando se usa a distribuição normal tem mais precisão), pelo que, no software R usualmente usa-se a distribuição t-Student.

Intervalos de confiança para a diferença entre médias populacionais

Sejam $X_1, X_2, \ldots, X_{n_X}$, e $Y_1, Y_2, \ldots, Y_{n_Y}$, a.a. i.i.d. de duas populações com médias μ_X e μ_Y e variâncias σ_X^2 e σ_Y^2 , respetivamente. Sejam \bar{X} e \bar{Y} e S_X^2 e S_Y^2 as médias e as variâncias respetivas das a.a.. Então:

popul.	σ_X^2, σ_Y^2	$n_X \ge 30$	Estatística de teste	Limites $IC_{(1-lpha) imes 100\%}(\mu_X-\mu_Y)$
normais	conhecidas	$n_Y \ge 30$	Estatistica de teste	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$
Sim	Sim	Indif.	$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} \sim N(0, 1)$	$(\bar{X} - \bar{Y}) \mp z_{1-\alpha/2} \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$
Não	Sim	Sim	$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_{\bar{X}} - \mu_{\bar{Y}})}{\sqrt{\frac{\sigma_{\bar{X}}^2}{n_{\bar{X}}^2} + \frac{\sigma_{\bar{Y}}^2}{n_{\bar{Y}}^2}}} \underset{aprox}{\sim} N(0, 1)$	
Sim	Não, iguais	Indif.	$T = \frac{(\bar{X} - \bar{Y}) - (\bar{X} - \mu_{\bar{Y}})}{S\sqrt{\frac{1}{n_{\bar{X}}} + \frac{1}{n_{\bar{Y}}}}} \sim T(n_{\bar{X}} + n_{\bar{Y}} -$	
Não	Não, iguais	Sim	$Z = \frac{(\dot{X} - \ddot{Y}) - (\mu_{\dot{X}} - \mu_{\dot{Y}})}{S\sqrt{\frac{1}{n_{\dot{X}}} + \frac{1}{n_{\dot{Y}}}}} \underset{aprox}{\sim} N(0, 1)$	
Ind.	Não, difer.	Sim	$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{N_X} + \frac{S_Y^2}{N_Y}}} \underset{aprox}{\sim} N(0, 1)$	$(\bar{X} - \bar{Y}) \mp z_{1-\alpha/2} \sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}$

onde
$$S^2 = \frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}$$

Ana Moura (ISEP)

Intervalos de confiança para uma proporção

Para amostras de tamanho n suficientemente grande ($np \ge 5$ e $n(1-p) \ge 5$), sabemos, pelo Teorema do Limite Central, que a proporção amostral

$$\hat{P} = \frac{\sum_{i=1}^{n} X_i}{n} \underset{\mathsf{aprox}}{\sim} N\left(p, \frac{p(1-p)}{n}\right) \Leftrightarrow Z = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} \underset{\mathsf{aprox}}{\sim} N(0, 1).$$

Usando um procedimento análogo, torna-se agora simples determinar o intervalo de confiança a $(1-\alpha) \times 100\%$ para a proporção p:

$$\Big[\hat{P}-z_{1-\alpha/2}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}},\hat{P}+z_{1-\alpha/2}\sqrt{\frac{\hat{P}(1-\hat{P})}{n}}\Big].$$

Este intervalo aleatório tem uma probabilidade aproximada $1-\alpha$ de conter o verdadeiro, mas desconhecido, valor da proporção p.

Intervalos de confiança para a diferença entre proporções

Dadas duas amostras aleatórias i.i.d., mutuamente independentes, de tamanhos n_1 e n_2 , suficientemente grandes, foi visto que, pelo Teorema do Limite Central, a diferença entre as proporções amostrais

$$\hat{P}_1 - \hat{P}_2 \underset{aprox}{\sim} N(p_1 - p_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2})$$

e (...), portanto, o intervalo

$$\Big[(\hat{P}_1-\hat{P}_2)-z_{1-\alpha/2}\sqrt{\frac{\hat{P}_1(1-\hat{P}_1)}{n_1}+\frac{\hat{P}_2(1-\hat{P}_2)}{n_2}},(\hat{P}_1-\hat{P}_2)+z_{1-\alpha/2}\sqrt{\frac{\hat{P}_1(1-\hat{P}_1)}{n_1}+\frac{\hat{P}_2(1-\hat{P}_2)}{n_2}}\Big].$$

Este intervalo aleatório tem uma probabilidade aproximada $1-\alpha$ de conter o verdadeiro, mas desconhecido, valor da proporção p_1-p_2 .