Alexandre Bléron

PhD in Computer Graphics

Contact

▼ 7 boulevard Maréchal Joffre 38000 Grenoble France

■ alex.bleron@gmail.com □ +33606482283 • github.com/ennis • in linkedin.com/in/ableron

Languages

French English Spanish notions Japanese notions

Programming

C++, C#, Rust, Lua, x86 assembly OpenGL/GLSL

Software

CMake, Git, LATEX

Interests

Computer graphics, shader programming, stylized (non-photorealistic) and artist-directed rendering, procedural generation, C++

Education

2015-2018 Univ. Grenoble Alpes - Ph.D. candidate in computer graphics Real-time stylized rendering techniques for 3D scenes. Goals:

- Be able to use digital painting effects and techniques for the stylization of animated 3D scenes.
- Propose new techniques to increase the range of styles achievable with real-time stylization primitives.

Keywords: stylized rendering, temporal coherence, artistic control.

2012-2015 Grenoble INP - Ensimag - Master's degree

Followed the Master of Science in Informatics at Grenoble programme (MoSIG). Specialization in graphics, computer vision and robotics.

2010–2012 Classes Préparatoires aux Grandes Écoles

Preparatory courses. Specialization in physics, mathematics and engineering science.

Experience

Sep-Dec 2017MAGIC, NTU – Research internship

Singapore

Explored new real-time rendering techniques for the reproduction of styles inspired by digital painting, on animated scenes.

Feb-Jul 2015 INRIA - Research internship

Grenoble, France

Developed an interactive system for the edition of programmable vector textures, extending the framework proposed by Loi *et al.* (https://hal.inria.fr/hal-01141869).

Jul-Aug 2014 CGG – Internship

Massy, France

Developed a standalone version of a seismic imaging algorithm (Reverse Time Migration) for profiling.

Analyzed memory access patterns of the algorithm and its CPU cache behavior. Optimized the implementation for a recent CPU architecture.

Projects

2012–2015 Student projects

 Procedural generation of 3D models of fortresses on arbitrary terrains using shape grammars.

Personal projects

- · Small rendering engine using a path tracing algorithm.
- Graphics framework on top of OpenGL/GLSL, developed in Rust (work in progress)