数字逻辑基础课程 project_3 设计报告 ——使用 ALU 完成 Y= (A+2) XOR (A+B)

学号: 13013013013 姓名: 朕是太上皇

一•设计思路

由于本次pj要求只是用一个ALU模块,而要分别完成 A+2,A+B,XOR 三个操作,因此一个时钟周期是无法完成的。故而应采用寄存器分别存储操作对象和结果,以类似"排队"的方式先后进过 ALU。同时采用状态机控制每次进入 ALU 的对象,在若干时钟周期后完成该操作。下面是代码综合得到的电路图:

较为重要元件的功能:

mux_1:用来选择 a 或是操作完成的(a+2)进入 ALU;

mux 2 及 mux 3: 选择 b, 4' h2, 操作得到的 a+b 中一个进入 ALU;

regi_7: 存储输出的 y; state:状态机,控制各参数的取值;

学号:13013013013 姓名:朕是太上皇

二•仿真波形图

∻	Msgs														
-	0010	0100		1001		1101		0101		0001		0110		1101	
	1111	0001		0011		1101		0010		1101				1100	
 → /tb	1011		0110 (0101	0011 (0000	(1011 (1100	0111 (0000	(1111 (1010	0101 (0000	(0111	0000	(0011 (1110	1101 0000	(1000 (0011	1011 (0000	1
♦ /tb	0														

如图所示,上次操作完成后,顺序输出 a+2, a+b, (a+2) xor (a+b) 的结

果, 然后清 0;

三•综合结果(硬件开销与时钟频率)

通过使用 quartus prime 应用,可得到该电路运行在 50ns 的周期当中。以下为硬件开销:

	Resource	Usage
1	Estimate of Logic utilization (ALMs needed)	20
2		
3		19
1	7 input functions	3
2	6 input functions	4
3	5 input functions	4
4	4 input functions	1
5	<=3 input functions	7
4		
5	Dedicated logic registers	27
6		
7	I/O pins	13
8		
9	Total DSP Blocks	0
10		
11	Maximum fan-out node	clock~input
12	Maximum fan-out	27
13	Total fan-out	167
14	Average fan-out	2.32

四·时序约束条件(sdc)

另附 sdc 文件。

//本次 project 感谢社会人士"古今第一龌龊人"的贴心帮助。