BP神经网络

广州泰迪智能科技有限公司 张敏

从鸢尾花数据集开始

类别列和前4列到底有何关系,能否通过已知样本构造出如下映射关系 f ? $class = f(Sepal_length, Sepal_width, Petal_length, Petal.width)$

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

巴普洛夫关于神经反射的实验

 $class = f(Sepal_length, Sepal_width, Petal_length, Petal.width)$

Sepal.Len gth	Sepal.Wid th	Petal.Leng th	Petal.Wi dth	class
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
7	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.3	3.3	6	2.5	virginica
5.8	2.7	5.1	1.9	virginica
6.5	3	5.8	2.2	?
6.2	2.9	4.3	1.3	?

神经元结构

神经元结构

 x_j 为输入信号,f为传递函数, $w_{i,j}$ 表示与神经元 x_j 连接的权值, y_i 表示输出值, θ 表示阈值

前向网络

特点: 每层只接受前一层的信息, 没有反馈, 如感知器网络。

有反馈的前向神经网络

特点:输出层对输入层有反馈信息,如认知机和回归BP网络。

层内有互相结合的前向网络

特点:可以实现同一层内神经元之间的横向抑制或兴奋作用。

相互结合型网络

特点: 任意两个神经元之间都可能有联系。

张敏

传递函数的类型

$$f(x) = \begin{cases} 1 & x_i \ge \theta \\ 0 & x_i < \theta \end{cases}$$

$$f(x_i) = \begin{cases} 1 & x_i \ge x_2 \\ ax_i + b & x_1 \le x_i < x_2 \\ 0 & x_i < x_1 \end{cases}$$

$$S$$
型

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

	x_1	x_2	у
0	0.29	0.23	0.14
1	0.50	0.62	0.64
2	0.00	0.53	0.28
3	0.21	0.53	0.33
4	0.10	0.33	0.12
5	0.06	0.15	0.03
6	0.13	0.03	0.02
7	0.24	0.23	0.11
8	0.28	0.03	0.08
9	0.38	0.49	?
10	0.29	0.47	?

$$y = x_1^2 + x_2^2$$

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$f'(x) = f(x)(1 - f(x))$$

$$\hat{\mathbf{y}}_j = f(\boldsymbol{\beta}_j - \boldsymbol{\theta}_j)$$

$$E = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j - y_j)^2 \longrightarrow \frac{\partial E}{\partial \hat{y}_j} = \hat{y}_j - y_j$$

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial \hat{y}_j} \cdot \frac{\partial \hat{y}_j}{\partial \beta_j} \cdot \frac{\partial \beta_j}{\partial w_{hj}}$$

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{hj}}$$
輸出层
$$\frac{\partial \beta_{j}}{\partial w_{hj}} = b_{h} \quad \frac{\partial E}{\partial \hat{y}_{j}} = \hat{y}_{j} - y_{j}$$

$$\frac{\partial \hat{y}_{j}}{\partial \beta_{j}} = f'(\beta_{j} - \theta_{j})$$

$$= f(\beta_{j} - \theta_{j})(1 - f(\beta_{j} - \theta_{j}))$$

$$= \hat{y}_{j}(1 - \hat{y}_{j})$$

$$g_{j} = -\frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}}$$

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial y_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial \beta_{j}}$$

$$= \eta g_{j}b_{h}$$

$$\frac{\partial E}{\partial w_{hj}} = \hat{y}_{j}(1 - \hat{y}_{j})(y_{j} - \hat{y}_{j})$$

$$= \eta g_{j}b_{h}$$

$$\frac{\partial B}{\partial w_{hj}} = \hat{y}_{j}(1 - \hat{y}_{j})(y_{j} - \hat{y}_{j})$$

$$\frac{\partial B}{\partial w_{hj}} = \hat{y}_{j}(1 - \hat{y}_{j})(y_{j} - \hat{y}_{j})$$

$$\frac{\partial B}{\partial w_{hj}} = \eta \hat{y}_{j}(1 - \hat{y}_{j})(y_{j} - \hat{y}_{j})b_{h}$$

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -\eta \frac{\partial E}{\partial \hat{y}_{j}} \cdot \frac{\partial \hat{y}_{j}}{\partial \beta_{j}} \cdot \frac{\partial \beta_{j}}{\partial w_{hj}}$$

$$= \eta g_{j} b_{h}$$

$$= \eta \hat{y}_{j} (1 - \hat{y}_{j}) (y_{j} - \hat{y}_{j}) b_{h}$$

$$\nabla \theta_{j} = -\eta g_{j}$$

$$= -\eta \hat{y}_{j} (1 - \hat{y}_{j}) (y_{j} - \hat{y}_{j})$$

$$= -\eta \frac{\partial E}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h} x_i$$

$$= \eta b_h (1 - b_h) \sum_{j=1}^{l} w_{hj} g_j x_i$$

$$\nabla \gamma_h = -\eta e_h$$

$$= \eta \frac{\partial E}{\partial b_h} \cdot \frac{\partial b_h}{\partial \alpha_h}$$

$$= -\eta b_h (1 - b_h) \sum_{j=1}^{l} w_{hj} g_j$$

 $\nabla v_{ih} = \eta e_h x_i$

$$\Delta w_{hj} = \eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j) b_h \text{ whise}$$

$$\nabla \theta_j = -\eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j)$$

$$\nabla v_{ih} = \eta b_h (1 - b_h) \sum_{j=1}^l w_{hj} g_j x_i$$

$$\nabla \gamma_h = -\eta b_h (1 - b_h) \sum_{j=1}^l w_{hj} g_j$$

网络训练过程

输入:训练集数据、学习速率yita

过程:

- 在(0,1)范围内随机初始化网络中所有连接权和阈值
- repeat
 - 根据网络输入和当前参数计算网络输出值y
 - 计算输出层神经元梯度项 g_i
 - 计算隐层神经元梯度项恶 e_h
 - 跟新连接权值和阈值
- until达到停止条件
- 输出:连接权值和阈值

网络训练过程

Sigmoid Net_out

w_out		
$input_1$		
$input_2$		
$input_3$		
$input_4$		
theata		

	x_1	x_2	у
0	0.29	0.23	0.14
1	0.50	0.62	0.64
2	0.00	0.53	0.28
3	0.21	0.53	0.33
4	0.10	0.33	0.12
5	0.06	0.15	0.03
6	0.13	0.03	0.02
7	0.24	0.23	0.11
8	0.28	0.03	0.08
9	0.38	0.49	?
10	0.29	0.47	?

网络训练过程

神经网络

应用:对iris数据集进行分类

• 训练集: 80%, 分层抽样

• 测试集: 20%, 余下

- 1. 利用80%训练集样本构建一个网络
- 2. 将20%样本的前4列作为网络输入,输出每个样本的类别
- 3. 将模型输出结果与实际分类进行比较,对模型进行评价

$$f(x) = sigmoid(x) = \frac{1}{1 + e^{-x}}$$

def sigmoid(x): #映射函数 return 1/(1+math.exp(-x))

import math

import numpy as np

import pandas as pd

from pandas import DataFrame,Series

#中间层神经元输入和输出层神经元输入

Net_in = DataFrame(0.6,index=['input1','input2','theata'],columns=['a'])

Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a'])

 $Net_{in.ix}[2,0] = -1$

Out_in.ix[4,0] = -1

#中间层和输出层神经元权值

W_mid =

DataFrame(0.5,index=['input1','input2','theata'],colum ns=['mid1','mid2','mid3','mid4'])

W_out =

DataFrame(0.5,index=['input1','input2','input3','input4 ','theata'],columns=['a'])

W_mid_delta =

DataFrame(0,index=['input1','input2','theata'],columns =['mid1','mid2','mid3','mid4'])

W_out_delta =

DataFrame(0,index=['input1','input2','input3','input4','t heata'],columns=['a'])


```
#中间层的输出
for i in range(0,4):
   Out in.ix[i,0] = sigmoid(sum(W mid.ix[:,i]*Net in.ix[:,0]))
#输出层的输出/网络输出
res = sigmoid(sum(Out_in.ix[:,0]*W_out.ix[:,0]))
                                                                                    Out_in
error = abs(res-real)
                                                  Net_in
                                                                                  input_1
                                                input_1
                                                                                  input_2
                                                                                                    Sigmoid
                                                                                                                 Net_out
                                                input<sub>2</sub>
                                                                      Sigmoid
                                                                                  input<sub>3</sub>
                                                theata
                                                                                  input_4
                                                                                  theata
                                                            w_{mid}
                                                                                              w_out
                                                          M_1 M_2 M_3 M_4
                                                                                            input_1
                                                    input_1
                                                                                            input<sub>2</sub>
                                                                                            input<sub>3</sub>
                                                    input_2
                                                                                            input<sub>4</sub>
                                                    theata
                                                                                            theata
```

$$\Delta w_{hj} = \eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j) b_h$$

$$\nabla \theta_j = -\eta \hat{y}_j (1 - \hat{y}_j) (y_j - \hat{y}_j)$$

#输出层权值变化量

W_out_delta.ix[:,0] = yita*res*(1-res)*(real-res)*Out_in.ix[:,0]

 $W_{out_delta.ix}[4,0] = -(yita*res*(1-res)*(real-res))$

W_out = W_out + W_out_delta #输出层权值更新

$$\nabla v_{ih} = \eta b_h (1 - b_h) \sum_{j=1}^l w_{hj} g_j x_i$$

$$\nabla \gamma_h = -\eta b_h (1 - b_h) \sum_{j=1}^l w_{hj} g_j$$

#中间层权值变化量

for i in range(0,4):

 $W_{mid_delta.ix[:,i]} = yita*Out_{in.ix[i,0]}*(1-Out_{in.ix[i,0]})*W_{out.ix[i,0]}*res*(1-res)*(real-res)*Net_{in.ix[:,0]}$

 $W_{mid_delta.ix[2,i]} = -(yita*Out_{in.ix[i,0]}*(1-Out_{in.ix[i,0]})*W_{out.ix[i,0]}*res*(1-res)*(real-res))$

W_mid = W_mid + W_mid_delta #中间层权值更新

Thanks

