RIOIEI 의한 RIPARE 1

10주차. 서포트벡터머신

이혜선 교수

포항공과대학교 산업경영공학과

10주차. 서포트벡터머신

1차시 서포트벡터머신 I

2차시 서포트벡터머신 II

3차시 서포트벡터머신 Ⅲ

어모트벡터머신(Support Vector Machine)

어모트벡터머신(Support Vector Machine)

✓ 선형 SVM

<분리 가능한 경우의 하이퍼플레인>

H1: w' x + b = 1

H2: w' x + b = -1

H와 평행인 두 하이퍼플레인 (단, H1과 H2 사이에 객체 X)

H1, H2는 각각의 범주에서 H(분리 하이퍼플레인)와 가장 가까운 객체를 포함하는 평면

H1와 H2간의 거리(margin): 2/||w||

- **어모트벡터머신**(Support Vector Machine)
- - ▶ H1와 H2간의 거리를 최대로 하는 분리 하이퍼플레인을 찾자!

Max
$$\frac{2}{w'w}$$

Subject to
 $w'x_i + b \ge 1$ for $yi = 1$ $(i = 1, ..., N)$
 $w'x_i + b \le -1$ for $yi = -1(i = 1, ..., N)$

최적화 문제 변환

Min
$$\frac{w'w}{2}$$

Subject to

$$y_i(w'x_i + b) \ge 1 \ (i = 1, ..., N)$$

학습 표본 객체: N개

 $ilde{\mathbf{x}}_i$: N개의 변수로 이루어진 i번째 객체 벡터

 $y_i : x_i$ 분류에 대응하는 범주에 대한 값(두 가지의 범주를 갖는다고 가정, $y_i = 1$ or -1)

어모트벡터머신(Support Vector Machine)

✓ 비선형 SVM

<비선형 하이퍼플레인 도출>

<고차원(커널) 공간으로의 변환>

대부분의 패턴은 선형적으로 분리 불가능

- 🗼 비선형 패턴의 입력공간을 선형 패턴의 'feature space'로 변환
- 🔀 Kernel method로 비선형 경계면 도출

oiris **데이터 설명**

☑ iris 데이터(iris.csv)

input변수(독립변수) outp					
	А	В	С	D	E
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	5.1	3.5	1.4	0.2	setosa
	4.9	3	1.4	0.2	setosa
	4.7	3.2	1.3	0.2	setosa
	4.6	3.1	1.5	0.2	setosa
	5	3.6	1.4	0.2	setosa
	5.4	3.9	1.7	0.4	setosa
	4.6	3.4	1.4	0.3	setosa
	5	3.4	1.5	0.2	setosa
	4.4	2.9	1.4	0.2	setosa
	4.9	3.1	1.5	0.1	setosa
	5.4	3.7	1.5	0.2	setosa
	4.8	3.4	1.6	0.2	setosa
	4.8	3	1.4	0.1	setosa

put변수(종속변수, 타겟변수)

타겟변수(y): setosa, versicolor, virginica

Iris setosa

Iris versicolor Iris virginica

● 서포트벡터머신 패키지와 함수

- ☑ 서포트벡터머신을 수행하기 위한 패키지 : e1071
- ✓ 서포트벡터머신 함수 : svm

```
install package for support vector machine
install.packages("e1071")
                                                    e1071: svm함수 사용을 위한 패키지
library (e1071)
#help(svm)
# install package for confusionMatrix
                                                    caret: confusionMatrix 사용을 위한 패키지
#install.packages("caret")
library(caret)
# set working directory
setwd("D:/tempstore/moocr")
# read data
iris<-read.csv("iris.csv",stringsAsFactors = TRUE)
                                                    데이터 불러오기
attach(iris)
```

- 서포트벡터머신 결과
- ☑ 서포트벡터머신 함수: svm(y변수~x변수, data=)
- ☑ iris 데이터의 서포트벡터머신 결과(전체 데이터를 사용한 결과)

```
## classification
# 1. use all data
m1<- svm(Species ~., data = iris)
summary(m1)
```

🤰 svm에서 주어지는 옵션(default)

kernel=radial basis function, $\frac{1}{4} = \frac{1}{4}$

svm의 결과 요약

> summary(m1)

```
svm(formula = Species ~ ., data = iris)
  SVM-Type: C-classification
             radial
 SVM-Kernel:
Number of Support Vectors: 51
(8 22 21)
Number of classes: 3
Levels:
setosa versicolor virginica
```

● 서포트벡터머신 결과

☑ svm모델에 적용한 예측범주와 실제범주 비교(전체 데이터를 사용한 결과)

```
# classify all data using svm result (m1)
# first 4 variables as attribute variables
x<-iris[, -5]
pred <- predict(m1, x)
# Check accuracy (compare predicted class(pred)
# y <- Species or y<-iris[.5]
v<-iris[.5]
library(caret)
confusionMatrix(pred, y)
```

```
> confusionMatrix(pred, y)
Confusion Matrix and Statistics
            Reference
             setosa versicolor virginica
Prediction
                 50
  setosa
  versicolor
  virginica
```

```
x<-iris[, -5]
```

iris데이터에서 타겟값인 5번째 열을 제외한 데이터, 즉 4개의 독립변수들만 있는 데이터

```
pred<-predict(m1, x)</pre>
```

svm모델 m1을 적용하여 예측된 범주값을 pred로 저장

오분류율

(2+2)/150=0.0266 (2.66%)

● 서포트벡터머신 결과 - 시각화

☑ iris 데이터의 서포트벡터머신 결과(전체 데이터를 사용한 결과)

svm결과를 그림으로 시각화 # visualize classes by color plot(m1, iris, Petal.Width~Petal.Length, slice=list(Sepal.Width=3, SVM classification plot Petal Width 4개 변수 중 petal.width와 petal.length가 중요 변수