Домашнее задание по курсу общей физики для студентов 3-го семестра

Тема 1. Электростатика

Варианты №№ 1-9 - Задача 1.1

Варианты №№ 10-18 - Задача 1.2

Варианты №№19-27 - Задача 1.3

По результатам проведённых вычислений построить графически зависимости $\frac{D(r)}{D(R)}$, $\frac{E(r)}{E(R)}$ в интервале значений r от R до R_{θ} для задач 1.1 и 1.2, и зависимости $\frac{D(y)}{D(0)}$, $\frac{E(y)}{E(0)}$ в интервале значений y от θ до d для задачи 1.3.

Все зависимости изобразить на одном графике.

Задача 2.1

Сферический диэлектрический конденсатор имеет радиусы внешней и внутренней обкладок R_{θ} и R соответственно. Заряд конденсатора равен q. Диэлектрическая проницаемость меняется между обкладками по закону $\varepsilon = f(r)$.

Рис. 1.1. Условие задачи 1.1.

Построить графически распределение модулей векторов электрического поля E, поляризованности P и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность связанных зарядов на внутренней σ'_1 и внешней σ'_2 поверхностях диэлектрика, распределение объёмной плотности связанных зарядов $\rho'(r)$, максимальную напряжённость электрического поля E и ёмкость конденсатора.

Функция $\varepsilon = f(r)$ для чётных вариантов имеет вид: $\varepsilon = \frac{R_0^n + R^n}{R^n + r^n}$.

Функция $\varepsilon = f(r)$ для нечётных вариантов имеет вид: $\varepsilon = \frac{R_0^n}{R_0^n + R^n - r^n}$

Таблица 1.1. Значения параметров R0/R и n в зависимости от номера варианта

№ варианта	R_0/R	n
1	2/1	2
2	3/1	2
3	3/2	2
4	2/1	3
5	3/1	3
6	3/2	3
7	2/1	4
8	3/1	4
9	3/2	4

Задача 1.2

Цилиндрический бесконечно длинный диэлектрический конденсатор заряжен до разности потенциалов U и имеет радиусы внешней и внутренней обкладок R_{θ} и R соответственно. Диэлектрическая проницаемость меняется между обкладками по закону $\varepsilon = f(r)$.

Рис. 1.2. Условие задачи 1.2.

Построить графически распределение модулей векторов электрического поля E, поляризованности P и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность связанных зарядов на внутренней σ'_1 и внешней σ'_2 поверхностях диэлектрика, распределение объёмной плотности связанных зарядов $\rho'(r)$, максимальную напряжённость электрического поля E и ёмкость конденсатора на единицу длины.

Функция
$$\varepsilon=f(r)$$
 для чётных вариантов имеет вид: $\varepsilon=\frac{R_0^n+R^n}{R^n+r^n}$.
Функция $\varepsilon=f(r)$ для нечётных вариантов имеет вид: $\varepsilon=\frac{R_0^n}{R_0^n+R^n-r^n}$.

Таблица 1.2. Значения параметров R0/R и n в зависимости от номера варианта

№ варианта	$ m R_0/R$	n
10	2/1	2
11	3/1	2
12	3/2	2
13	2/1	3
14	3/1	3
15	3/2	3

16	2/1	4
17	3/1	4
18	3/2	4

Задача 1.3

Плоский диэлектрический конденсатор заряжен до разности потенциалов U и расстояние между обкладками равно d. Диэлектрическая проницаемость меняется между обкладками по закону $\varepsilon = f(y)$.

Рис. 1.3. Условие задачи 1.3.

Построить графически распределение модулей векторов электрического поля E, поляризованности P и электрического смещения D между обкладками конденсатора. Определить поверхностную плотность связанных зарядов на нижней и верхней поверхностях диэлектрика, распределение объёмной плотности связанных зарядов $\rho'(y)$, максимальную напряжённость электрического поля E и ёмкость конденсатора на единицу площади.

Функция $\varepsilon = f(y)$ для чётных вариантов имеет вид: $\varepsilon = \frac{d_0^n + d^n}{y^n + d_0^n}$. Функция $\varepsilon = f(y)$ для нечётных вариантов имеет вид: $\varepsilon = \frac{d_0^n}{d_0^n - y^n}$. Здесь d_0 - известный параметр.

Таблица 2.3. Значения параметров d_0/d и n в зависимости от номера варианта.

№ варианта	d ₀ /d	N
19	1/1	0,5
20	2/1	0,5
21	3/1	0,5
22	2/1	1
23	1/1	1
24	3/1	1
25	1/1	2
26	2/1	2
27	3/1	2

Тема 2. Магнитостатика

Варианты №№ 1-9 - Задача 2.1

Варианты №№ 10-18 - Задача 2.2

Варианты №№19-27 - Задача 2.3

По результатам проведённых вычислений построить графически зависимости $\frac{B(r)}{B(R)}$, $\frac{H(r)}{H(R)}$ в интервале значений r от R до R_{θ} для задач 2.1 и 2.2, и зависимости $\frac{B(y)}{B(0)}$, $\frac{H(y)}{H(0)}$ в интервале значений y от θ до d для задачи 2.3.

Все зависимости изобразить на одном графике.

Задача 2.1

Проводник с током, равномерно распределённым по его поперечному сечению и имеющему плотность j, имеет форму трубки, внешний и внутренний радиусы которой равны R_0 и R соответственно. Магнитная проницаемость меняется по закону $\mu = f(r)$.

Рис. 2.1. Условие задачи 2.1.

Построить графически распределения модулей векторов индукции магнитного поля B и напряжённости магнитного поля H, а также модуля вектора намагниченности J в зависимости от r в интервале от R до R_{θ} . Определить поверхностную плотность токов намагничивания i'_{Π} на внутренней и внешней поверхностях трубки и распределение объёмной плотности токов намагничивания $i'_{06}(r)$.

Функция $\mu = f(r)$ для чётных вариантов имеет вид: $\mu = \frac{R^n + r^n}{2R^n}$.

Функция $\mu = f(r)$ для нечётных вариантов имеет вид: $\mu = \frac{R_0^n + R^n - r^n}{R^n}$.

Таблица 2.1. Значения параметров R0/R и n в зависимости от номера варианта

№ варианта	R_0/R	n
1	2/1	1
2	2/1	2
3	2/1	3
4	3/1	1
5	3/1	2
6	3/1	3

7	3/2	1
8	3/2	2
9	3/2	3

Задача 2.2

По коаксиальному кабелю, радиусы внешнего и внутреннего проводника которого равны R_0 и R соответственно, протекает ток I. Пространство между проводниками заполнено магнетиком, магнитная проницаемость которого меняется по закону $\mu = f(r)$.

Рис. 2.2. Условие задачи 2.2.

Построить графически распределения модулей векторов индукции B и напряжённости H магнитного поля, а также вектора намагниченности J в зависимости от r в интервале от R до R_{θ} . Определить поверхностную плотность токов намагничивания $i'_{\text{п}}$ на внутренней и внешней поверхностях магнетика и распределение объёмной плотности токов намагничивания $i'_{\text{об}}(r)$. Определить индуктивность единицы длины кабеля.

Функция $\mu = f(r)$ для чётных вариантов имеет вид: $\mu = \frac{R_0^n + r^n}{R_0^n + R^n}$.

Функция $\mu = f(r)$ для нечётных вариантов имеет вид: $\mu = \frac{R^n + r^n}{2R^n}$.

Таблица 2.2. Значения параметров R0/R и n в зависимости от номера варианта

№ варианта	R_0/R	n
10	2/1	1
11	2/1	2
12	2/1	3
13	3/1	1
14	3/1	2
15	3/1	3
16	3/2	1
17	3/2	2
18	3/2	3

Задача 2.3

Два плоских проводника с токами I, текущими в противоположных направлениях, разделены слоем магнетика толщиной d. Ширина проводников равна L (L>>d). Магнитная проницаемость m магнетика меняется в направлении оси y по закону $\mu=f(y)$.

Рис. 2.3. Условие задачи 2.3.

Построить графически распределения модулей векторов индукции B и напряжённости H магнитного поля, а также вектора намагниченности J в зависимости от y в интервале значений от θ до d. Определить поверхностную плотность токов намагничивания $i'_{\rm n}$ на верхней и нижней поверхностях магнетика и распределение объёмной плотности токов намагничивания $i'_{\rm of}(y)$. Определить индуктивность единицы длины этой двухполосной линии.

Функция $\mu = f(y)$ для чётных вариантов имеет вид: $\mu = \frac{y^n + d_0^n}{d_0^n}$.

Функция $\mu = f(y)$ для нечётных вариантов имеет вид: $\mu = \frac{y^n + d^n}{d^n}$.

Таблица 2.3. Значения параметров d_0/d и n в зависимости от номера варианта.

№ варианта	d ₀ /d	n
19	2/1	0,5
20	2/1	1
21	2/1	2
22	3/1	0,5
23	3/1	1
24	3/1	2
25	3/2	0,5
26	3/2	1
27	3/2	2

Тема 3. Электромагнитная индукция. Работа и энергия в электростатическом и магнитном полях.

Задача 3.1. По двум гладким медным шинам, установленным вертикально в однородном магнитном поле B, скользит под действием силы тяжести медная перемычка массы m, которая замыкает электрическую цепь, приведенную на рисунке. Расстояние между шинами l. Сопротивления шин, перемычки и скользящих контактов, а также самоиндукция контура пренебрежимо малы. Найти закон движения перемычки Y(t) при условии, что начальная скорость, ток через индуктивность и заряд на конденсаторе равны 0, $Y(0) = Y_0$.

Таблица 3.1.1 Номера вариантов и значения параметров L , R , C для соответствующего номера рисунка.

N вар.	L	C	R	№ Рис.
1	L_0		$Bl\sqrt{\frac{L}{m}}$	3.1.1
2		C_0	R_0	3.1.2
3	L_0	C_0		3.1.3
4	L_0		0	3.1.1

5	L_0		R_0	3.1.4
6	<u> </u>	C_0	R_0	3.1.5
7	L_0	C_0		3.1.6
8	L_0		$4Bl\sqrt{rac{L}{m}}$	3.1.1
9	L_0		$\frac{Bl}{4}\sqrt{\frac{L}{m}}$	3.1.4

Задача 3.2.1. По двум гладким медным шинам скользит перемычка массы m, закон движения которой задан Y = f(t). Сопротивление перемычки равно R_0 , поперечное сечение S, концентрация носителей заряда (электронов) в проводнике перемычки равна n_0 . Сверху шины замкнуты электрической цепью, состоящей либо из конденсатора ёмкости C, либо из индуктивности L или из сопротивления R в соответствии с рисунком. Расстояние между шинами l. Система находится в однородном переменном магнитном поле с индукцией $\mathbf{B}(t)$, перпендикулярном плоскости, в которой перемещается перемычка. Сопротивление шин, скользящих контактов, а также самоиндукция контура пренебрежимо малы. Ток через индуктивность, конденсатор и сопротивление в начальный момент времени равны 0.

Найти:

- закон изменения тока I(t);
- максимальное значение тока I_{max} ;
- закон изменения проекций силы Лоренца на ось X (F_{nx}) и на ось Y (F_{ny}), действующей на электрон;
- закон изменения напряженности электрического поля в перемычке E(t);
- силу F(t), действующую на перемычку, необходимую для обеспечения заданного закона движения.

Установить связь между силой Ампера, действующей на перемычку, и силой Лоренца, действующей на все электроны в перемычке.

Построить зависимости тока через перемычку $\frac{I(t)}{I_{max}}$, силы Ампера $\frac{F_a(t)}{F_{amax}}$.

Закон движения перемычки для всех вариантов $Y = ae^{-nt}$;

Закон изменения магнитного поля для нечетных вариантов $B_z = c e^{-mt}$, для четных вариантов $B_z = -c e^{-mt}$. Константы a и c считать известными.

Таблица 3.2.1. Номера вариантов и значения параметров n, m для соответствующего номера рисунка.

N вар	n	m	№ Рис.
10	$\frac{2R_0}{L}$	2n	3.2.1
11	2m	$\frac{2R_0}{L}$	3.2.1
12	$\frac{R_0}{2L}$	2n	3.2.1
13	2m	$\frac{R_0}{2L}$	3.2.1
14	2m	$\frac{\overline{2L}}{2}$ $\overline{R_0C}$	3.2.2
15	$\frac{2}{R_0C}$	2n	3.2.2
16	$\frac{1}{2R_0C}$	2n	3.2.2
17	n	2n	3.2.3
18	2m	m	3.2.3

Задача 3.2.2. По двум гладким медным шинам скользит невесомая перемычка, к которой приложена переменная сила F(t). Сопротивление перемычки равно R_0 , поперечное сечение S, концентрация носителей заряда (электронов) в проводнике перемычки равна n_0 . Перемычка замыкает электрическую цепь, состоящую либо из конденсатора ёмкости C, либо из индуктивности L или из сопротивления R, в соответствии с рисунком. Расстояние между шинами l. Система находится в однородном переменном магнитном поле с индукцией B(t), перпендикулярном плоскости, в которой перемещается перемычка. Сопротивление шин, скользящих контактов, а также самоиндукция контура пренебрежимо малы. Ускорение перемычки в начальный момент времени конечно, а положение ее определено и равно $Y(0) = Y_0$.

Найти:

- закон изменения тока *I(t)*;
- закон движения перемычки Y = Y(t);
- максимальное значение Y_{max} ;
- законы изменения проекции силы Лоренца на ось $X(F_{nx})$ и на ось $Y(F_{ny})$, действующей на электрон;
- закон изменения напряженности электрического поля в перемычке E(t);

Установить связь между силой Ампера, действующей на перемычку, и силой Лоренца, действующей на все электроны в перемычке.

Построить зависимости тока через перемычку $\frac{I(t)}{I_{max}}$, $\frac{Y(t)}{Y(0)}$

Закон движения перемычки для всех вариантов $F_Y = -fe^{-nt}$;

Закон изменения магнитного поля для нечетных вариантов $B_z = c \, e^{-mt}$, для четных вариантов $B_z = -c \, e^{-mt}$. Константы f и c считать известными.

Таблица 3.2.2 Номер вариантов и значения параметров п, m для соответствующего номера рисунка.

N вар.	n	M	№ Рис.
19	n	2n	3.2.4
20	2m	M	3.2.4
21	n	3n	3.2.4
22	3m	M	3.2.4
23	2m	M	3.2.5
24	n	2n	3.2.5
25	n	3n	3.2.5
26	n	2n	3.2.6
27	2m	M	3.2.6

Задачи для индивидуальной подготовки.

Задача 3.3.1. В плоский воздушный конденсатор с квадратными пластинами (lx l), расстояние между которыми d (d<<l), медленно вдвигают с постоянной скоростью V квадратную металлическую пластину того же размера и толщиной d_l . Конденсатор подключен к электрической цепи, состоящей из источника ЭДС величиной $\mathfrak E$ с внутренним сопротивлением r и сопротивления R, в соответствии с рисунком.

Задача 3.3.2. В плоский воздушный конденсатор с квадратными пластинами (l x l), расстояние между которыми d (d << l), медленно вдвигают с постоянной скоростью V квадратную диэлектрическую пластину того же размера и толщиной d с диэлектрической проницаемостью ε . Конденсатор подключен к электрической цепи, состоящей из источника ЭДС величиной $\mathfrak E$ с внутренним сопротивлением r и сопротивления R, в соответствии с рисунком.

Пренебрегая краевыми эффектами во всех задачах определить:

- 1. Закон изменения заряда на конденсаторе q = q(t).
- 2. Закон изменения силы тока I(t), протекающего через сопротивление R.
- 3. Энергию, выделившуюся на сопротивлении R за время движения.

В предположении, что в схеме на рисунке 3.3.1. $R = \infty$, для всех задач определить:

- 4. Работу, совершенную за время движения пластин внешними силами.
- 5. Работу, совершенную источником.
- 6. Изменение энергии конденсатора.

Таблица 3.3.1 Номера вариантов и соотношения параметров d_1/d для соответствующего номера рисунка и номера задачи.

N вар	d ₁ /d	№ рис.	№ Зад.
1	1/2	3.3.1	3.3.1
2	1/3	3.3.2	3.3.1
3	1/2	3.3.1	3.3.2
4	1/3	3.3.2	3.3.2

Задача 3.3.3. Длинный соленоид радиуса R_{θ} с числом витков N имеет сердечник с магнитной проницаемостью μ , плотно вставленный в него на всю длину. Соленоид постоянно подключен к электрической схеме, состоящей из источника ЭДС величиной ϵ с внутренним сопротивлением ϵ и сопротивления ϵ в соответствии с рисунком. Длина соленоида ϵ >> ϵ 0. Сердечник медленно извлекают из соленоида с постоянной скоростью ϵ 0.

Задача 3.3.4. Длинный соленоид радиуса R_0 с числом витков N имеет сердечник выполненный из сверхпроводника радиуса $R_0/\sqrt{2}$, вставленный в него на всю длину. Соленоид подключен к электрической схеме, состоящей из источника ЭДС величиной \mathbf{E} с внутренним сопротивлением r и сопротивления R, в соответствии с рисунком. Длина соленоида $l >> R_0$. Сердечник медленно извлекают из соленоида с постоянной скоростью V.

Задача 3.3.5. Длинный воздушный соленоид радиуса R_{θ} имеет число витков N. Соленоид подключен к электрической схеме, состоящей из источника ЭДС величиной E с внутренним сопротивлением r и сопротивления R, в соответствии с рисунком. Длина соленоида $l >> R_{\theta}$. Соленоид медленно растягивают на 1/10 длины с постоянной скоростью V. Считать, что радиус соленоида остается при этом постоянным. Во всех задачах сопротивление соленоида считать пренебрежимо малым в сравнении с r и R. В задачах условие которых соответствует рисунку 3.3.5, исследуемый процесс начинается одновременно с переключением ключа E из положения E в положения E.

Пренебрегая краевыми эффектами во всех задачах определить:

- 1. Закон изменения тока через соленоид I(t).
- 2. В предположении, что в схеме на рисунке 3.3.3. $R = \infty$, для всех задач определить:
 - а. Работу, совершенную за время движения внешними силами над сердечниками или соленоидом.
 - b. Силу, необходимую для извлечения сердечника или растягивания соленоида с заданной скоростью.
 - с. Изменение энергии соленоида.

N вар.	№ рис.	№ Зад.
5	3.3.3	3.3.3
6	3.3.4	3.3.3
7	3.3.5	3.3.3
8	3.3.3	3.3.4
9	3.3.4	3.3.4
10	3.3.5	3.3.4
11	3.3.3	3.3.5
12	3.3.4	3.3.5
13	3.3.5	3.3.5