U5 - Electricity

What is the circuit symbol of a switch?	- o - switch open
	- switch closed
What is the circuit symbol of a cell/battery?	— — cell
	- battery
What is the circuit symbol of a diode?	diode
What is the circuit symbol of both a resistor and variable resistor?	resistor
	variable resistor
What is the circuit symbol of a L.E.D?	L.E.D.
What is the circuit symbol of a lamp?	——— Lamp
What is the circuit symbol of a fuse?	- Juse
What is the circuit symbol of a voltmeter?	— voltmeter
What is the circuit symbol of an ammeter?	——— ammeter
	These ideally should have zero resistance.
What is the circuit symbol of a thermistor?	thermistor

What is the circuit symbol of a L.D.R?	L.D.R.
What happens to both insulators and conductors when a voltage is applied across them and why?	 In insulators, no current passes ∵ electrons are fixed. In metallic conductors, current passes ∵ some electrons are delocalised (i.e., the charge carriers).
What is 1 C?	The amount of charge that flows via a point in 1 s when there is a current of 1 A.
What is current?	 The rate of the flow of charge. 1 A is 1 C flowing via a point every second.
What is current to under constant resistance and why?	The emf of the battery : the more energy supplied to the charge carriers, the faster they will move.
How does charge flow? And how does the the flow of current differ?	 Charge flows from - to + due to repulsion and attraction. Current flows opposite to charge by convention. Always make conventional current on diagrams unless stated otherwise.
What is potential difference and hence 1 V?	 The energy transferred (work done) per unit of charge. 1 V is 1 J transferred per coulomb of charge.
Why are voltmeters used in parallel?	Have a very high resistance : you want as little current to pass through them : you put them in parallel. You still need a tiny bit of current to calculate voltage.
When is maximum power delivered to the load?	When load resistance = internal resistance.
What can resistance be described as?	How hard it is for current to flow through a component.

	It being $R = V/I$ means it's a measure of how much current you get for a particular p.d.
What is resistance caused by?	The repeated collisions between the charge carriers and positive ions.
Why does resistance lead to the material heating up?	Energy is transferred during the collisions between the charge carriers and the positive ions.
Why does an increase in temperature increase resistance?	Particles vibrate more frequently (1) : collide more frequently with charge carriers (1) preventing them from flowing through so easily.
Why is resistivity useful?	It allows resistances of different materials to be compared when under the same physical conditions .
How does resistance vary with dimensions and why?	 It increases with length ∵ charge carriers have more to flow through. It decreases with area ∵ charge carriers have more options in taking the path of least resistance.
What is Ohm's Law?	"Provided physical conditions remain constant, the current via an ohmic conductor is directly proportional to the p.d. across it."
	This means that doubling the p.d. doubles the current in the circuit (as the particles have more energy so move faster).
What is a non-ohmic conductor?	A conductor whose resistance isn't constant.
Give an example of an ohmic conductor with its current-voltage graph	A resistor at constant temperature.

Give the current-voltage graph of a filament bulb with an explanation	Its resistance increases as it heats up due to wasted energy.
What does a diode do and how?	It only allows current to flow in the forward direction by having a very high resistance in the backwards direction.
What applications do diodes have?	To protect components in circuits.
Give the current-voltage graph of a diode with an explanation	 Has a threshold voltage of 0.60 V before conduction. Can conduct in the reverse direction if the p.d. is high enough (this is its breakdown voltage).
Give an example of a semiconductor	A thermistor.
What key feature does a thermistor have, what does this mean and why?	Negative temperature coefficient (NTC) ⇒ its resistance decreases (1) as its temperature increases (1) as electrons are released (1).
What happens to a LDR as light intensity changes?	Its resistance decreases as its light intensity increases.

	Light Intensity
What is a superconductor defined as?	A material with ZERO RESISTANCE at or below its critical temperature.
Why are superconductors used (with examples)?	To have NO ENERGY LOSSES in machines with huge currents (e.g., in particle accelerators).
What is an intrinsic semiconductor?	A pure semiconducting material.
How does resistance work in series and why?	Total resistance = sum of all individual resistances $: V_T = V_1 + V_2 \Rightarrow IR_T = IR_1 + IR_2 \Rightarrow R_T = R_1 + R_2.$
How does current work in series and why?	It is the same wherever you put the ammeter because it's a rate .
What is the effective resistance for parallel resistors and why?	 The reciprocal of the total resistance is equal to the sum of the reciprocals of the resistances of all the components. As it increases the possible routes for current to take thus making it easier for current to flow and thus the effective resistance smaller. This is because you that know I_T = I₁ + I₂ ⇒ V/R_T = V/R₁ + V/R₂ ⇒ 1/R_T = 1/R₁ + 1/R₂
How does p.d. work in parallel and why?	Same across all lines ∵ it is merely the energy transferred per coulomb of charge which is the same for each coulomb.
How does current work in parallel and why?	It splits up at a junction according to resistance ; more current will flow via the least resistance because voltage has to be constant.
	Think of charge as being lazy, more will flow down the route with the least resistance.
What is Kirchhoff's First Law?	"At any junction, the sum of the currents entering = the sum of the currents leaving."

	T
	This is fundamentally a statement about the conservation of charge.
What is Kirchhoff's Second Law?	"In any loop (path) around a circuit, the sum of the emf's = the sum of the p.d.'s."
	<u>S</u> econd for <u>S</u> um.
Justify Kirchhoff's Second Law	Each charge carrier must transfer all its energy within the circuit and return to the cell with none remaining.
What is electromotive force (ϵ) ?	The energy transferred (1) by the cell per unit charge (1).
What does an ideal voltmeter measure around a cell?	Terminal p.d.
What is a potential divider?	A circuit that uses two or more resistors in series to supply a variable p.d .
What fact is the potential divider based on and why? And what does this mean?	 P.d. ∝ resistance under constant current ∵ electrons need more energy to overcome the resistance. Meaning the resistor with greater resistance will have a greater share of the p.d.
What is equal in a potential divider circuit and why?	The ratio of the voltages to the ratio of the resistances because current is constant. $\frac{V_{out}}{V_{in}} = \frac{R_{out}}{R_T}$
Give a developed application of a potential divider	Temperature control. E.g., for the diagram below, if R_1 is a thermistor, when it gets colder, its resistance increases \Rightarrow the its p.d. (V_{out}) increases too which could then be used to turn on a heater.

Why is measuring emf using an open/close switch and a voltmeter not ideal in reality?

There's still some current flowing through the circuit to power the voltmeter so by $\varepsilon = V + Ir$, $\varepsilon \neq V$. This current leads to the internal resistance having an effect.

Thus, it's better to measure emf indirectly. Yet, in an ideal physics world, where a voltmeter has infinite resistance, no current passes via the circuit so the internal resistance has no effect so the emf is displayed.

How do e.m.f sources in opposite polarities work?

- Current will flow from the positive to negative terminal of the source with the largest emf.
- The source acting in opposite reduces the total emf.

