Université Chouaib Doukali: EST de Sidi Bennour Génie Informatique-S1 2018-2019

CC1- Analyse1

Exercise 1 (04 points)

Montrer que $\sqrt{2}$ n'est pas un nombre rationnel.

Exercise 2 (04 points)

Soit $f: \mathbb{Q} \longrightarrow \mathbb{Q}$ telle que

$$\forall x, y \in \mathbb{Q}, f(x+y) = f(x) + f(y).$$

- (1) On suppose que f est constante égale a C. determiner C.
- (2) Calculer f(0).
- (3) Montrer que $\forall x \in \mathbb{Q}, f(-x) = f(x)$.
- (4) Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{Q}, f(nx) = nf(x)$. Généraliser cette propriété a $n \in \mathbb{Z}$.
- (5) On pose a = f(1). Montrer que $\forall x \in \mathbb{Q}, f(x) = ax$.

Exercise 3 (06 points)

On considére la suite (u_n) définie par :

$$u_0 = 1, u_{n+1} = u_n + 2n + 3, \forall n \in \mathbb{N}$$

- (1) Etudier la monotonie de la suite (u_n) .
- (2) Démontrer que pour tous entier natural n, $u_n > n^2$.
- (3) Quelle est la limite de la suite (u_n) .
- (4) Conjecturer une expression de (u_n) en fonction de n, puis démontrer la propriété ainsi conjecturée.

Exercise 3 (06 points)

On considére une suite (u_n) , définie sur \ltimes dont aucun terme n'est nul. On définit alors la suite (u_n) , définie sur \ltimes par $v_n = \frac{1}{u_n}$. indiquer si elle est vraie ou fausse.

- (1) Si (u_n) est décroissante, alors (v_n) est croissante.
- (2) Si (u_n) est minorée par 2, alors (v_n)) est minorée par 1.
- (3) Si (u_n) est divergente, alors (v_n) converge vers zéro.