```
m = 50; n = 128;
                                  % Measurement matrix is m x n
k = 14;
                                  % Set sparsity level x0
A = randn(m,n);
                                  % Random encoding matrix
[Q,R] = qr(A',0); A = Q';
% group sparse X0
p = 2; nn = n/2;
X0 = zeros(nn,p);
pp = randperm(nn); pp = pp(1:k);
XO(pp,:) = 1e-3*randn(k,p);
B = A * vec(X0) + 0.005 * randn(m,1);
b = B(:);
groups = p;
options.project
                = @(x,weight,tau) NormL12_project(groups,x,weight,tau);
options.primal_norm = @(x,weight ) NormL12_primal(groups,x,weight);
options.dual_norm
                 = @(x,weight
                                ) NormL12_dual(groups,x,weight);
% cd ../task7
% addpath(genpath(pwd))
% cd ../task8
% tau = mixNorm(X0,1,2);
tau = 0;
sigma = 1e-3;
[x_spg,r_spg,g_spg,info_spg] = spgl1(A,B(:),tau,sigma,zeros(size(A,2),1),options);
[x_pqn1,r_pqn1,g_pqn1,info_pqn1] = pqn11_2(A,B(:),tau,sigma,zeros(size(A,2),1),opt
figure;
subplot(3,1,1); plot(vec(X0));title('X0')
subplot(3,1,2); plot(vec(x_spg)); title('x_spg')
subplot(3,1,3); plot(vec(x_pqn1)); title('x_pqn')
title('Multiple Measurement Vector Basis Pursuit');
info_spg
info_pqn1
        ______
        SPGL1_SLIM v. 46 (Tue, 14 Jun 2011) based on v.1017
        ______
        No. rows
                                   50
                                          No. columns
                                                              : 3.78e-02
                            : 0.00e+00
        Initial tau
                                          Two-norm of b
        Optimality tol
                                          Target objective
                                                               : 1.00e-03
                            : 1.00e-04
        Basis pursuit tol
                            : 1.00e-06
                                          Maximum iterations
```

cd ../../../pqnl1 addpath(genpath(pwd))

cd ../experiments/help_spgl1/modifying/task17mmv/

Iter	<i>Objective</i>	Relative Gap	Rel Error	gNorm	stepG	nnzX
0	3.7837286e-02	0.0000000e+00	3.68e-02	1.142e-02	0.0	0
1	3.7018887e-02	1.9178835e-03	3.60e-02	1.050e-02	-0.3	2
2	2.4811620e-02	1.1349219e-03	2.38e-02	1.029e-02	0.0	29
3	1.7501491e-02	3.4784980e-04	1.65e-02	4.672e-03	0.0	44
4	1.6109616e-02	7.7432176e-05	1.51e-02	3.006e-03	0.0	39
5	1.5942848e-02	6.4538172e-05	1.49e-02	2.861e-03	0.0	39
6	1.5675134e-02	3.8385538e-05	1.47e-02	2.669e-03	0.0	36
7	1.5653908e-02	8.8563419e-05	1.47e-02	3.153e-03	0.0	38
8	1.5803922e-02	1.9576987e-04	1.48e-02	3.777e-03	0.0	34
9	1.5502439e-02	2.3280673e-05	1.45e-02	2.615e-03	0.0	35
10	1.5477641e-02	1.0453473e-05	1.45e-02	2.480e-03	0.0	35
11	1.5473870e-02	8.8985610e-06	1.45e-02	2.471e-03	0.0	35
12	1.5467471e-02	3.7164004e-06	1.45e-02	2.429e-03	0.0	36
13	1.5465380e-02	8.5392620e-06	1.45e-02	2.478e-03	0.0	36
14	1.5466276e-02	1.5323373e-05	1.45e-02	2.518e-03	-0.3	35
15	1.5462919e-02	1.7574099e-06	1.45e-02	2.419e-03	0.0	36
16	1.5462667e-02	1.3363741e-06	1.45e-02	2.413e-03	0.0	36
17	2.5939185e-03	4.4815928e-05	1.59e-03	5.043e-04	0.0	67
18	2.3707348e-03	1.4732182e-05	1.37e-03	3.933e-04	0.0	68
19	2.2759705e-03	1.2012127e-05	1.28e-03	3.720e-04	0.0	68
20	2.1483731e-03	3.5659203e-05	1.15e-03	4.481e-04	0.0	65
21	2.2360964e-03	5.4967477e-05	1.24e-03	5.379e-04	-0.3	60
22	2.0124307e-03	1.5023042e-05	1.01e-03	3.540e-04	0.0	63
23	1.9711825e-03	6.5729312e-06	9.71e-04	3.113e-04	0.0	62
24	1.9616787e-03	5.7669250e-06	9.62e-04	3.063e-04	0.0	62
25	1.9049126e-03	1.4009385e-05	9.05e-04	3.323e-04	0.0	62
26	1.8904184e-03	7.5462552e-06	8.90e-04	3.075e-04	-0.3	62
27	1.8766098e-03	6.4370171e-06	8.77e-04	2.965e-04	0.0	62
28	1.8673076e-03	5.1875994e-06	8.67e-04	2.926e-04	0.0	61
29	1.8584736e-03	4.1929105e-06	8.58e-04	2.844e-04	0.0	61
30	1.8483747e-03	6.2215066e-06	8.48e-04	2.954e-04	0.0	59
31	1.8488053e-03	1.5956749e-05	8.49e-04	3.315e-04	0.0	61
32	1.8312540e-03	8.0702256e-06	8.31e-04	3.020e-04	0.0	59
33	1.8210719e-03	3.8731326e-06	8.21e-04	2.787e-04	0.0	60
34	1.8160653e-03	3.5669436e-06	8.16e-04	2.770e-04	0.0	59
35	1.7697630e-03	9.0953960e-06	7.70e-04	2.929e-04	0.0	59
36	1.7756678e-03	1.4316007e-05	7.76e-04	3.221e-04	-0.3	58
37	1.7501263e-03	5.3896837e-06	7.50e-04	2.751e-04	0.0	59
38	1.7434710e-03	2.6800886e-06	7.43e-04	2.639e-04	0.0	59
39	1.7410092e-03	2.5329733e-06	7.41e-04	2.627e-04	0.0	59
40	1.7271006e-03	4.2183228e-06	7.27e-04	2.713e-04	0.0	58
41	1.7246386e-03	4.2716223e-06	7.25e-04	2.688e-04	-0.3	58
42	1.7216669e-03	5.8024552e-06	7.22e-04	2.770e-04	0.0	58
43	1.7190241e-03	2.6546792e-06	7.19e-04	2.609e-04	0.0	58
44	1.7172383e-03	2.9957891e-06	7.17e-04	2.630e-04	0.0	58
45	1.7154846e-03	1.7306285e-06	7.15e-04	2.566e-04	0.0	58
46	1.7122827e-03	6.2177892e-06	7.12e-04	2.775e-04	0.0	58
47	1.7163767e-03	9.3831754e-06	7.16e-04	2.902e-04	-0.3	58
48	1.7076438e-03	4.2953881e-06	7.08e-04	2.678e-04	0.0	58
49	1.7063553e-03	1.7486946e-06	7.06e-04	2.556e-04	0.0	58
50	1.7051212e-03	1.9268590e-06	7.05e-04	2.563e-04	0.0	58
51	1.7015749e-03	8.2287849e-06	7.02e-04	2.847e-04	-0.3	56

52	1.6933347e-03	5.9690496e-06	6.93e-04	2.727e-04	-0.3
53	1.6884183e-03	1.2250873e-06	6.88e-04	2.507e-04	0.0
54	1.6873970e-03	1.9059979e-06	6.87e-04	2.537e-04	0.0
55	1.6842637e-03	1.7398455e-06	6.84e-04	2.526e-04	0.0
56	1.6830251e-03	5.7111559e-06	6.83e-04	2.701e-04	-0.3
57	1.6839257e-03	4.7490521e-06	6.84e-04	2.667e-04	0.0
58	1.6801303e-03	4.5477660e-06	6.80e-04	2.647e-04	0.0
59	1.6790897e-03	1.2827283e-06	6.79e-04	2.496e-04	0.0
60	1.6782995e-03	1.6653903e-06	6.78e-04	2.512e-04	0.0
61	1.6795121e-03	1.0826415e-05	6.80e-04	2.899e-04	0.0
62	1.6646261e-03	1.0902646e-05	6.65e-04	2.908e-04	-0.3
63	1.6527776e-03	1.4330404e-06	6.53e-04	2.467e-04	0.0
64	1.6518668e-03	1.3360466e-06	6.52e-04	2.461e-04	0.0
65	1.6509688e-03	1.0805984e-06	6.51e-04	2.449e-04	0.0
66	1.6492726e-03	3.5767570e-06	6.49e-04	2.561e-04	0.0
67	1.6486612e-03	1.1615279e-06	6.49e-04	2.449e-04	-0.3
68	1.6481957e-03	1.4616451e-06	6.48e-04	2.462e-04	0.0
69	1.6477634e-03	9.8584250e-07	6.48e-04	2.439e-04	0.0
70	1.6467220e-03	3.9270586e-06	6.47e-04	2.575e-04	0.0
71	1.6460054e-03	1.0829419e-06	6.46e-04	2.441e-04	-0.3
72	1.6456655e-03	1.0924810e-06	6.46e-04	2.441e-04	0.0
73	1.6451403e-03	9.4326335e-07	6.45e-04	2.434e-04	0.0
74	1.6436892e-03	6.0075957e-06	6.44e-04	2.454e 04 2.669e-04	-0.3
7 5	1.6435166e-03	3.5445224e-06	6.44e-04	2.546e-04	-0.3
7 <i>5</i>	1.6416184e-03	9.9039495e-07	6.42e-04	2.431e-04	0.0
77	1.6414266e-03	8.0534945e-07	6.41e-04	2.422e-04	0.0
78	1.6403419e-03	8.1912367e-07	6.40e-04	2.422e-04	0.0
7 <i>9</i>	1.6414357e-03	5.6353466e-06	6.41e-04	2.422e 04 2.641e-04	-0.3
80	1.6376547e-03	2.4002043e-06	6.38e-04	2.490e-04	-0.3
81	1.6366720e-03	8.1684652e-07	6.37e-04	2.416e-04	0.0
82	1.6364142e-03	7.6157836e-07	6.36e-04	2.413e-04	0.0
83	1.6358235e-03	9.0153592e-07	6.36e-04	2.419e-04	0.0
84	1.6360899e-03	5.7831971e-06	6.36e-04	2.415e 04 2.644e-04	-0.3
85	1.6345046e-03	6.9754544e-07	6.35e-04	2.407e-04	-0.3
86	1.6343186e-03	6.4805763e-07	6.34e-04	2.404e-04	0.0
87	1.6332210e-03	8.0589517e-07	6.33e-04	2.410e-04	0.0
88	1.6333558e-03	3.6177741e-06	6.33e-04	2.544e-04	-0.3
89	1.6320901e-03	8.3141926e-07	6.32e-04	2.411e-04	-0.3
90	1.6317263e-03	5.6712188e-07	6.32e-04	2.397e-04	0.0
91	1.6315267e-03	7.2678234e-07	6.32e-04	2.404e-04	0.0
92	1.6311822e-03	1.2745868e-06	6.31e-04	2.430e-04	0.0
93	1.6309938e-03	9.3792386e-07	6.31e-04	2.415e-04	-0.3
94	1.6308734e-03	5.7348953e-07	6.31e-04	2.413e 04 2.397e-04	0.0
95	1.6307734E 03	7.7217614e-07	6.31e-04	2.406e-04	0.0
96	1.6306459e-03	2.6923927e-06	6.31e-04	2.491e-04	0.0
97	1.6300459e-03	7.2157153e-07	6.30e-04	2.491e-04 2.404e-04	-0.3
98	1.6299377e-03	5.4125855e-07	6.30e-04	2.394e-04	0.0
99	1.6297114e-03	5.8792374e-07	6.30e-04	2.394e-04 2.396e-04	0.0
100	1.6297114e-03 1.6297137e-03	2.5180305e-06	6.30e-04	2.487e-04	-0.3
101	1.2506414e-03	4.9839055e-05	2.51e-04	3.643e-04	0.0
102	1.0439987e-03	5.1210353e-06	4.40e-05	1.711e-04	0.0
	01377070 03	J.1210333C 00	1.100 00	1.,110 04	J.0

EXIT -- Found a root

```
Products with A'
                        103
                                 Project time (secs):
                                                         0.1
                  :
Newton iterations
                        3
                                 Mat-vec time (secs) :
                                                         0.3
                 :
Line search its
               •
                        55
                                 Subspace iterations :
______
PQNL1 SLIM v. 46 (Tue, 14 Jun 2011) based on v.1017
______
                    :
                                                      :
No. rows
                           50
                                  No. columns
                                                             128
Initial tau
                   : 0.00e+00
                                  Two-norm of b
                                                      : 3.78e-02
Optimality tol
                   : 1.00e-04
                                 Target objective
                                                     : 1.00e-03
                                 Maximum iterations
Basis pursuit tol
                    : 1.00e-06
                                                             500
    0 3.7837286e-02 0.0000000e+00 3.68e-02 1.142e-02
                                                        0.0
                                                                 0
Inside of minConf PQN
Iteration FunEvals Projections
                                 Step Length
                                                     rNorm2
                                                                 0
        1
                 1
                           4
                                 1.00000e+00
                                               1.76290e-02
                                                              2.992
        2
                 1
                          10
                                 1.00000e+00
                                               1.65187e-02
                                                              1.649
        3
                 1
                          19
                                 1.00000e+00
                                               1.59213e-02
                                                              8.579
        4
                 1
                          29
                                 1.00000e+00
                                               1.57007e-02
                                                              6.451
        5
                 1
                          39
                                 1.00000e+00
                                               1.56062e-02
                                                              4.370
        6
                 1
                          49
                                 1.00000e+00
                                               1.55363e-02
                                                              2.632
        7
                 1
                                 1.00000e+00
                                               1.55127e-02
                                                              2.147
                          61
        8
                 1
                          77
                                 1.00000e+00
                                               1.54942e-02
                                                              1.959
        9
                 1
                          94
                                 1.00000e+00
                                               1.54835e-02
                                                              1.561
       10
                  1
                          107
                                 1.00000e+00
                                               1.54746e-02
                                                              1.279
                                 1.00000e+00
                                               1.54677e-02
                                                              9.937
       11
                  1
                          126
break of testUpdateTau, exit minConf PQN
                                                                37
   11 1.5467745e-02 1.2066222e-05 1.45e-02 2.510e-03
                                                       0.0
Inside of minConf_PQN
                                 Step Length
Iteration
          FunEvals Projections
                                                                 0
                                                    rNorm2
       12
                 1
                                 1.00000e+00
                                               3.17844e-03
                                                              6.253
                           4
       13
                           9
                                 1.00000e+00
                 1
                                               2.99858e-03
                                                              4.802
       14
                 1
                          17
                                 1.00000e+00
                                               2.74327e-03
                                                              3.054
       15
                                 1.00000e+00
                                               2.65400e-03
                                                              2.562
                  1
                          28
                 1
                          39
                                 1.00000e+00
                                               2.57063e-03
                                                              2.163
       16
                                                              1.892
                                 1.00000e+00
                                               2.51343e-03
      17
                 1
                          54
                          72
                                 1.00000e+00
      18
                 1
                                               2.47165e-03
                                                              1.645
      19
                          89
                                 1.00000e+00
                                               2.43966e-03
                                                              1.595
                 1
                                               2.40248e-03
       20
                 1
                         106
                                 1.00000e+00
                                                              1.774
                                                              1.783
       21
                 1
                         131
                                 1.00000e+00
                                               2.36620e-03
      22
                 1
                         146
                                 1.00000e+00
                                               2.33126e-03
                                                              1.491
       23
                 1
                         164
                                 1.00000e+00
                                               2.29407e-03
                                                              1.175
                                 1.00000e+00
                                               2.27366e-03
      24
                 1
                         183
                                                              1.104
      25
                 1
                         200
                                 1.00000e+00
                                               2.25557e-03
                                                              1.003
       26
                 1
                         215
                                 1.00000e+00
                                               2.24585e-03
                                                              7.778
       27
                                 1.00000e+00
                                               2.23614e-03
                                                              7.311
                 1
                         234
                                                              7.534
       28
                 1
                         243
                                 1.00000e+00
                                               2.23177e-03
       29
                 1
                         267
                                 1.00000e+00
                                               2.22290e-03
                                                              8.144
       30
                         288
                                 1.00000e+00
                                               2.21359e-03
                                                              8.496
                 7
                                 1.00000e+00
                                                              8.576
       31
                 1
                         318
                                               2.20097e-03
```

Products with A

146

:

Total time (secs):

0.8

```
32
                   1
                            354
                                     1.00000e+00
                                                    2.18997e-03
                                                                    7.833
        33
                    1
                            374
                                     1.00000e+00
                                                     2.18177e-03
                                                                    6.693
        34
                    1
                            400
                                     1.00000e+00
                                                     2.17446e-03
                                                                    5.891
       35
                   1
                            437
                                     1.00000e+00
                                                    2.16739e-03
                                                                    5.202
       36
                    1
                            459
                                     1.00000e+00
                                                     2.16248e-03
                                                                    4.318
        37
                   1
                            491
                                     1.00000e+00
                                                     2.15809e-03
                                                                    4.383
       38
                   1
                            519
                                    1.00000e+00
                                                    2.15465e-03
                                                                    4.216
       39
                            547
                                    1.00000e+00
                                                    2.14986e-03
                                                                    4.466
                   1
                                                                    3.889
        40
                   1
                            563
                                    1.00000e+00
                                                     2.14706e-03
                                                                    3.351
        41
                   1
                            581
                                    1.00000e+00
                                                     2.14476e-03
        42
                    1
                            598
                                    1.00000e+00
                                                    2.14322e-03
                                                                    2.989
        43
                    1
                            618
                                     1.00000e+00
                                                     2.14208e-03
                                                                    2.478
                                     1.00000e+00
                                                     2.14110e-03
                                                                    2.042
        44
                    1
                             638
break of testUpdateTau, exit minConf_PQN
    44 2.1410984e-03 1.9891529e-06 1.14e-03 3.214e-04
                                                             0.0
Inside of minConf PQN
Iteration FunEvals Projections
                                    Step Length
                                                          rNorm2
                                    1.00000e+00
                                                    1.08401e-03
                                                                    9.797
                             4
find BP solution
EXIT -- Found a root
Products with A
                          49
                                     Total time
                                                  (secs) :
                                                               4.6
                                                               4.5
Products with A'
                           49
                                     Project time (secs) :
                   :
Newton iterations :
                           3
                                     Mat-vec time (secs) :
                                                               0.2
info\_spg =
           tau: 0.2189
         rNorm: 0.0010
          rGap: 5.1210e-06
         gNorm: 1.7106e-04
          stat: 1
          iter: 102
        nProdA: 146
       nProdAt: 103
        nNewton: 3
    timeProject: 0.0805
    timeMatProd: 0.3076
        itnLSQR: 0
        options: [1x1 struct]
      timeTotal: 0.7529
        xNorm1: [102x1 double]
        rNorm2: [102x1 double]
         lambda: [102x1 double]
info pgn1 =
```

0

tau: 0.2188 rNorm: 0.0011 rGap: 4.2664e-06

```
gNorm: 1.6911e-04

stat: 1
   iter: 45
   nProdA: 49
   nNewton: 3

timeProject: 4.5234

timeMatProd: 0.2161
   itnLSQR: 0
   options: [1x1 struct]
   timeTotal: 4.6322
   xNorm1: [45x1 double]
   rNorm2: [45x1 double]
   lambda: [45x1 double]
```


show result

```
figure('Name','Solution paths')
plot(info_spg.xNorm1,info_spg.rNorm2,info_pqn1.xNorm1,info_pqn1.rNorm2);hold on
scatter(info_spg.xNorm1,info_spg.rNorm2);
scatter(info_pqn1.xNorm1,info_pqn1.rNorm2);hold off
legend('SPGL1_sasha','PQN11')
axis tight
```


Published with MATLAB® 7.13