ФГБОУ ВО "МГТУ ИМ. Г.И. НОСОВА", МНОГОПРОФИЛЬНЫЙ КОЛЛЕДЖ

СОРЕВНОВАНИЕ ЧЕЛЯБИНСКОЙ ОБЛАСТИ ПО СПОРТИВНОМУ ПРОГРАММИРОВАНИЮ «КОД ИНДУСТРИИ» 2025

APIKittens

KOMAHДA APIKittens

Филимонов Михаил

Лучевников Лев

Дувакин Андрей

Наставник: Тутарова Власта Диляуровна

ЗАДАЧИ

- разработать алгоритмическое ядро для оптимального планирования работ группы идентичных промышленных роботов-манипуляторов;
- ядро должно преобразовать список операций по перемещению объектов в синхронизированное во времени и пространстве расписание, гарантирующее отсутствие коллизий.

Фокус решения - на эффективных алгоритмах назначения задач и пространственно-временного планирования траекторий с учётом кинематических ограничений роботов.

ПРОБЛЕМА

- 1. Отсутствие скоординированной системы управления роботами;
- 2. Риск столкновений роботов при пересечении траекторий движения;
- 3. Сложность минимизации общего времени цикла при распределении операций;
- 4. Проблема исключения простоев оборудования и обеспечения равномерной загрузки роботов;
- 5. Требование сохранения производительности алгоритма при росте числа роботов до 100+ единиц.

АРХИТЕКТУРА РЕШЕНИЯ

Интерфейс пользователя

- Загрузка файла
- Панель визуализации

Алгоритмическое ядро

- Модуль назначения задач
- Модуль планирования пути
- Модуль предотвращения коллизий

Кинематика и оптимизация

- Решение обратной кинематики
- Алгоритм оптимизации времени
- Задача визуализации результатов планирования

СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

Решение сценария 1:

- Полное исключение коллизий между роботами
- Гарантированное соблюдение безопасных расстояний
- Эффективная временная синхронизация в общих зонах

Решение сценария 2:

- Равномерное распределение операций между роботами
- Минимизация холостых перемещений
- Сбалансированная загрузка оборудования

При тестировании остальных сценариев функциональность приложения продолжала стабильно расти.

СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

СТЕК ТЕХНОЛОГИЙ

Qt designer

ПРЕИМУЩЕСТВА СТЕКА

- **Python** сложные математические расчеты: обратная кинематика, интерполяция путей, проверка коллизий;
- **Qt Designer** интуитивный интерфейс для визуализации: 2D-сцена роботов, временная шкала, таблицы waypoints.

Загрузка входных Проверка корректности данных Данные валидны Основной алгоритм планирования Распределение операций между Для каждого робота Генерация траектории Глобальная проверка коллизий Обнаружены коллизии? Да Разрешение коллизий

БЛОК-СХЕМЫ АЛГОРИТМА

БЛОК-СХЕМЫ АЛГОРИТМА

Загрузка данных	Исходные данные		
Визуализация	Выберите файл	\(\dagge\)	
Выходные данные			
Переключение темы			
Выход			
ДОХІВО		Расчитать	

Переключение темы

Выход

КИЛЛЕРФИЧИ

- 1. Возможность настройки масштаба, времени и скорости;
- 2. Возможность переключения цвета темы.
- 3. Интерактивные сенсоры, которые показывают текущее расстояние между роботами в реальном времени (находится в разработке)

РАЗВИТИЕ ПРОДУКТА

3 квартал 2025 - базовая функциональность в рамках хакатона:

- основной алгоритм планирования;
- базовая визуализация траекторий движения роботов;
- поддержка форматов входных/выходных файлов.

4 квартал 2025 - промышленные функции;

- интеграция с ROS/ROS2;
- Использование симуляторов, таких как Gazebo + Movelt!;
- Скачивание видеоматериалов с демонстрацией движений роботов;
- АРІ для мониторинга в реальном времени.

2026 год - развитие экосистемы;

- прогнозная оптимизация на основе ML;
- корпоративные решения для крупных заводов.

СПАСИБО ЗА ВНИМАНИЕ