Механические колебания и волны

- 1. Период колебаний это...
- А) ... число колебаний за единицу времени;
- **Б)** ... число колебаний за 2π секунд;
- В) ... наибольшее по модулю отклонение тела от положения равновесия;
- Г) ...время одного колебания.
- 2. Амплитуда колебаний это...
- А) ... число колебаний за единицу времени;
- **Б)** ... число колебаний за 2π секунд;
- В) ... наибольшее по модулю отклонение тела от положения равновесия;
- Г) ...время одного колебания.
- **3.** Кинематический закон гармонических колебаний материальной точки имеет вид $x(t) = A \cdot \sin(Bt + C)$. Буквой C обозначена
 - А) фаза колебаний
 - Б) начальная фаза колебаний
 - В) циклическая частота колебаний
 - Г) амплитуда колебаний
- **4.** На рисунке 1 показаны положение математического маятника и скорость его движения в разные моменты времени. Укажите, при прохождении какого положения маятника значение его потенциальной энергии максимально.

5. На рисунке 1 показаны положение математического маятника и скорость его движения в разные моменты времени. Укажите, при прохождении какого положения маятника его кинетическая энергия уменьшается, а потенциальная – увеличивается.

- **6.** Длина волны это...
 - А) расстояние, проходимое волной за 1 с;
 - **Б)** расстояние, проходимое волной за 2π с;
 - **В)** расстояние, на которое распространяется волна за время равное периоду колебаний ее частиц;
 - Г) расстояние от источника до препятствия.

- **7.** Уравнение гармонических колебаний материальной точки имеет вид $x(t) = A \sin Bt$, где A = 0.4 м, $B = \frac{\pi}{3} \frac{pa\partial}{c}$. Определите период колебаний T точки.
- **8.** Определите период колебаний T маятника, если он за время t=10 мин он совершил N=500 колебаний.
- **9.** Определите период T колебаний груза массой m = 750 г на пружине, жесткость которой k = 12 H/м.
- **10.** Период гармонических колебаний математического маятника T=2,5 с. Определите длину нити маятника l.
- **11.** Используя график (рис.), определите циклическую частоту колебаний ω.
- 12. Груз, прикреплённый к легкой пружине, совершает гармонические колебания вдоль горизонтально расположенной оси Ох. Определите жёсткость к пружины, если амплитуда колебаний A = 6,0 см, а полная

механическая энергия груза W = 72 мДж.

- **13.** Подвешенный на пружине груз, двигаясь по вертикали, совершает свободные колебания. Расстояние $s=20\,$ см от верхнего крайнего положения до нижнего крайнего положения груз проходит за промежуток времени $\Delta t=0,40\,$ с. Определите амплитуду A и период T колебаний груза.
- **14.** Груз, подвешенный на лёгкой пружине, совершает гармонические колебания. Определите число колебаний N груза за промежуток времени t=3,14 мин, если их циклическая частота $\omega=2$ рад/с.
- **15.** При отклонении груза, подвешенного на длинной лёгкой нерастяжимой нити, от положения равновесия на угол, соответствующий его максимальному смещению по вертикали на $\Delta h_{max} = 2.0$ см, потенциальная энергия груза составила $W_{n max} = 32$ мДж. Определите массу m груза. Нулевой уровень отсчёта потенциальной энергии груза совмещён с его положением равновесия.
- **16.** Найдите скорость υ распространения волны, если период колебаний частиц в ней T=0,4 с, а длина волны $\lambda=3$ м.
- **17.** Определите скорость υ распространения звука в атмосфере Венеры, если эхолот ракеты, находящейся на стационарной орбите высотой h=1500 м, принял отраженный от поверхности Венеры сигнал через промежуток времени $\Delta t=10$ с после испускания.
- **18.** Мальчик, хлопнув в ладоши, услышал эхо через промежуток времени $\Delta t = 0.8$ с. Определите расстояние l, на котором находится препятствие, отразившее звук. Скорость звука в воздухе $\upsilon = 1224$ км/ч.
- **19.** Груз массой m, подвешенный на невесомой пружине, совершает гармонические колебания. Жесткость пружины k = 5.0 H/m, а груз совершает N = 30 колебаний за время t = 1 мин. Определите массу m груза.

- **20.** Запишите кинематический закон движения шарика, подвешенного на лёгкой нерастяжимой нити длины l=1,4 м, если амплитуда его гармонических колебаний A=5 см и максимальное отклонение в момент начала отсчёта времени показано на рисунке.
- **21.** Пружинный маятник под действием силы F = 2 Н растягивается на x = 5 см. Период колебаний маятника составляет T = 0.314 с. Определите массу m груза маятника.
- **22.** На рисунке представлен график зависимости потенциальной энергии математического маятника (относительно положения его равновесия) от времени. Определите кинетическую энергию W_{κ} маятника момент времени $t=1\,\frac{2}{3}$ с.
- **23.** Груз массой m=100 г, подвешенный на невесомой пружине, совершает гармонические колебания, амплитуда которых A=1 см. Чему равна жесткость k пружины, если модуль максимальной скорости груза $v_{max}=0.2$ м/с?

- **24.** Наблюдатель услышал раскаты грома спустя время $\Delta t = 8$ с после вспышки молнии. Гроза была на расстоянии l = 2,72 км от наблюдателя, и длина волны звука грома $\lambda = 1,7$ м. Определите частоту ν звука грома.
- **25.** Найти разность фаз $\Delta \phi$ между двумя точками звуковой волны. Отстоящими друг от друга на расстоянии l=25 см, если частота колебаний $\nu=680$ Гц. Скорость звука в воздухе $\upsilon=340$ м/с.
- **26.** Посланный вертикально вниз с поверхности моря ультразвуковой сигнал гидролокатора, период колебаний которого T=0,4 мкс, отразившись от дна, возвратился обратно через промежуток времени $\Delta t=0,36$ с после посылки. Чему равна длина ультразвуковой волны λ в воде, если глубина моря h=270 м.
- **27.** Груз, прикреплённый к лёгкой пружине, совершает гармонические колебания с периодом T=8 с. Определите амплитуду A колебаний груза, если за промежуток времени t=6 с груз проходит путь s=45 см.
- **28.** Маленький шарик, подвешенный на длинной лёгкой нерастяжимой нити, совершает гармонические колебания. Определите период колебаний T, если за промежуток времени t=6 с их фаза увеличивается на $\Delta \phi=12$ рад.
- **29.** Груз на пружине совершает гармонические колебания вдоль оси Ох. Кинематический закон движения груза имеет вид $x(t) = A \cdot \sin(Bt + C)$, где A = 15 см, B = 1,6 рад/с, $C = \pi$ рад. Определите путь s, пройденный грузом, за время N = 16 полных колебаний.
- **30.** Груз на пружине совершает гармонические колебания вдоль оси Ох. Кинематический закон движения груза имеет вид $x(t) = A \cdot \sin(Bt + C)$, где A = 15 см, B = 1,6 рад/с, $C = \pi$ рад. Определите скорость v и ускорение a груза в момент максимального отклонения от положения равновесия.

- **31.** Амплитуда колебаний математического маятника $x_{max} = 6$ см, а его длина l = 90 см. Определите модуль его максимальной скорости v_{max} .
- **32.** Математический маятник массой m = 500 г и длиной l = 1,5 м совершает гармонические колебания. Определите амплитуду x_{max} колебаний, если модуль максимальной возвращающей силы, действующей на маятник, $F_{max} = 0,16$ H.
- **33.** Груз массой m=1,0 кг, прикреплённый к лёгкой пружине, совершает гармонические колебания вдоль горизонтально расположенной оси Ох. Определите максимальное значение потенциальной энергии пружины $W_{n \text{ max}}$, если смещение груза изменяется с течением времени по закону $x(t) = A \cdot \sin(\omega t + \pi)$, где A = 10 см, $\omega = 8,0$ рад/с.
- **34.** Материальная точка массой m=10 г совершает гармонические колебания с частотой v=1,5 Гц. Полная механическая энергия точки W=1,6 мДж. Найдите амплитуду A её колебаний.
- 35. Кинематический закон движения гармонического осциллятора имеет вид

$$x(t) = A \cdot \sin(Bt + C)$$
, где $A = 16$ см, $B = \frac{4\pi}{15} \frac{pao}{c}$, $C = \frac{\pi}{6}$. Чему равно максимальное

значение возвращающей силы F_{max} , если в момент времени t=2,5 с потенциальная энергия осциллятора $W_{\pi}=3,6$ мДж?

- **36.** Определите скорость υ распространения волн в данном веществе, если частота колебаний источника $\upsilon=1,0$ к Γ ц и точки, находящиеся на одном луче и расположенные на расстояниях $l_1=12,2$ м $l_2=18,2$ м от источника, колеблются с разностью фаз $\Delta \varphi=\pi/3$.
- **37.** По струне вдоль оси Os распространяется поперечная гармоническая волна длиной $\lambda = 628$ мм, модуль скорости которой $\upsilon = 40$ м/с (см. рис.). Определите модуль мгновенного ускорения a точки D струны, если амплитуда колебаний точек струны A = 2 мм.

Ответы

7. T = 6 c; 8. T = 1,2 c; 9. T = 1,57 c; 10. l = 1,6 m; 11. ω = 2,6 paμ/c; 12. k = 40 H/m; 13. A = 10 cm; T = 0,8 c; 14. N = 60; 15. m = 0,16 kг; 16. v = 7,5 m/c; 17. v = 300 m/c; 18. l = 136 m; 19. m = 0,51 kг; 20. $x = 0,5\cos(2,67t)$; 21. k = 40 H/m; 22. $W_{\kappa} = 4$ Дж; 23. k = 40 H/m; 24. v = 200 Γ μ; 25. $\Delta \varphi = \pi$; 26. $\lambda = 600$ mkm; 27. A = 15 cm; 28. A = 600 mkm; 27. A = 15 cm; 28. A = 600 m; 30. A = 0,20 m/c; 32. A = 0,384 m/c; 33. A = 0,384 m/c; 35. A = 0,384 m/c; 36. A = 0,384 m/c; 37. A = 320 m/c².