Technical Design Document

Section 1 - List of Features Captured from GDD

1.1 List of Features Based on the Game Design Document

- Top Down Isometric
- Game world with
- 3D objects
- Characters
- Weapons
- Forest
- Windows platform deployed
- Story
- Cutscenes
- Audio and sound effects
- Enemies (Free Asset)
- Enemy with group AI with A* path finding
- Comprehensive/informative HUD
- Menu
- Interactive objects
- Farm
- Traders (Likely)
- Mine Trees for wood, Stone for stone, etc.

Section 2 - Choice of Game Engine

The game engine that has been chosen is Unity 3D, Unity is a development tool set. Some of the features that Unity possesses are:

- Animation
- Al
- Audio system
- Editing of the game environment
- C# scripting
- · Physics support
- Rendering

Section 3 - Task Breakdown

These are the tasks that must be completed to finish the game

Figure 1 Al Task Breakdown

pls help [©].

Figure 2 Player Task Breakdown

Figure 3 Gameplay Task Breakdown

Figure 4 Assets Task Breakdown

Figure 5 UI Task Breakdown

Section 4 - UML Class Diagram

Figure 6 UML Diagram

Section 5 - High-Level Diagrams to Explore Software Design

5.1 Layout Diagrams:

The layout diagram illustrates the layout of the level in the game. This is shown in Figure 6 below:

Figure 6 Layout Diagram

(Place Holders)

Farm→

Combat→

5.2 Technology Diagram:

The technology diagram indicates the technology that is going to be used for different aspects of the game and is displayed in Figure 7

Figure 7 Technology Diagram →

5.3 Team Diagram:

The team diagram represents the teams and their members, and is shown in Figure 8.

Figure 8 Team Diagram →

5.4 Implementation Diagram:

Figure 9 Implementation Diagram →

flow of the different stages of the creation of the game

• It also includes what weeks each stage will take place at as seen above

5.5 Gameplay Diagram:

This gameplay diagram is a simple flowchart of how to play the game, which is shown in Figure 10 Figure 10 Gameplay Diagram

Section 6 - Art Tools

6.1 3Ds Max

6.1.1 Version:

• 2017

6.1.2 About 3Ds Max:

Design software providing integrated 3D modelling, animation and rendering tools
6.1.3 What will it be Used For:3D modeling
6.2 Photoshop
6.2.1 Version
• 2020
6.2.2 About
Texture the model that we have created

6.2.3 What will it be Used For:

- Texturing
- Drawing

6.3 Audacity:

6.3.1 Version

• 2.33

6.3.2 About Audacity

- · Audio editor for recording, slicing and mixing audio
- Allows live audio to be recorded and tapes and records to be converted into digital recordings

6.3.3 What will it be Used For:

• Possibly music, or sound effects

Section 7 - 3D Objects & Terrain

7.1 3D Objects:

- Farmers Shelter
 - This will be where the farm is, as well as the farmers house
- Forest Battlegrounds
 - This will be where the farmable trees are, as well as stone, and the enemies will be placed here too
- Fishing Area (Probably)
 - Fish swimming around inside, and a mini game to catch them for food

7.2 Terrain:

- Farmers Shelter
 - Soil- Flowers
- Forest Battlegrounds
 - Dirt Road Trees Rocks Bushes
- Fishing Area (Probably)
 - Mini pool with fish swimming.

Section 8 - Collision Detection, Physics & Interaction

8.1 Collision Detection:

- This is where there will need to be detection of the intersection of two or more objects within the game
- Characters cannot walk through objects objects must remain solid with the exception of a few items like pick ups.
- Collision Detection will be needed for when:
- · Character gets hit by enemies and vice versa
- Enemy and player collides
- Enemies colliding with each other
- Enemies colliding with the environment
- Farmer house colliding with the character
- To enforce collision detection in the game:
- A* algorithm will be used
- Unity's physics system can be used
- Steering behaviours Collision Avoidance can be used

8.2 Physics

- This is the component that makes the game have similarities to real life
- Objects and players must react to player input and player decision (movement for example)
- Must be realistic
- Friction and gravity
- Physics will be needed for:
- Character and Enemy movement
- To enforce physics in the game:
- Unity will be used

8.3 Interaction:

- This is how characters interact with the game world
- Player Interaction with objects/items:
- Interacting with enemies
- Interacting with the farm
- Interacting with forest (eg. mining trees for wood)
- Enemy interaction:
- Enemy remain following a path unless triggered by character presence/ or they do not spawn until player is near
- Once triggered, enemies will begin attacking the character until the character goes a set distance from the path.
- Once the player is out of range, the enemy will return to their path and cease to exist, or just continue on their path
- To enforce interaction in the game:
- Unity can be used with triggers and colliders

Section 9 - Game Logic & Artificial Intelligence

9.1 Game Logic:

C# in Unity using visual studio 2019

9.2 Artificial Intelligence:

A* for movement, and group AI for the enemies

Section 10 - Audio

10.1 Audio Effects:

• Record sound using Audacity or free sounds from the internet.