UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

Roteiro de Aula Prática - Cálculo de Sub-redes IPv4

DISCIPLINA: DCA0130 – Redes de Computadores

PROFESSOR: Carlos Manuel Dias Viegas

Esta prática tem como objetivo estudar o cálculo de sub-redes IPv4.

- Os requisitos para a realização desta prática são ter assistido às videoaulas sobre o protocolo IP e cálculo de sub-redes disponibilizadas no SIGAA;
- Esta prática deve ser realizada em duplas, podendo ser formadas por alunos de diferentes turmas da disciplina de redes de computadores (DCA0130) do semestre 2021.1;
- Esta prática deve ser respondida diretamente neste documento e deverá ser submetida até o dia 08/08/2021 no SIGAA;
- Para todas as respostas, devem ser apresentados os cálculos e a descrição do raciocínio para a obtenção dos resultados. Respostas sem os cálculos não são consideradas.

Nome do discente (1): Mariana Brito Azevedo Turma: 01

Nome do discente (2): Thaís de Araújo de Medeiros Turma: 01

TAREFAS

1) Uma rede 132.16.10.0/24 é capaz de fornecer 256 IPs. Em um projeto de redes foi solicitado que essa rede seja dividida em 4 sub-redes de tamanho igual. Proceda aos cálculos e preencha a tabela abaixo.

Sub-r ede	Faixa de endereços IP <u>disponíveis</u> para utilização e respectiva máscara (CIDR)		Endereço de rede	Endereço de broadcast	Quantos hosts em cada sub-rede
1	132.16.10.1 até 132.16.10.62	/26	132.16.10.0	132.16.10.63	62
2	132.16.10.65 até 132.16.10.126	/26	132.16.10.64	132.16.10.127	
3	132.16.10.129 até 132.16.10.190	/26	132.16.10.128	132.16.10.191	
4	132.16.10.193 até 132.16.10.254	/26	132.16.10.192	132.16.10.255	

ESPAÇO CÁLCULOS E EXPLICAÇÕES:

Máscara /24 -> 24 bits para rede e 8 bits para host

Quantos bits precisaremos "pegar emprestado" do host para dividir as 4 sub-redes?

 $2^n = 4 -> n = 2 -> Assim$, teremos agora /26, 26 bits para rede e 6 bits para o host

Temos 256 IPs, o que nos daria 256/4 = 64 IPs por rede. Entretanto, sempre haverá um endereço de rede e um de broadcast. Dessa forma, na prática, teremos 64-2 = 62 hosts em cada sub-rede As faixas de endereços IP são preenchidas de 64 em 64 IPs, sendo o primeiro destinado ao endereço de rede, e o último, ao endereço de broadcast.

- 2) Um administrador de rede precisa obter as informações da sub-rede à qual pertence o IP 192.168.10.132/22. Para isso, responda às seguintes perguntas:
 - a) Qual a máscara da sub-rede (na notação decimal)? 255.255.252.0
 - b) Qual o endereço de rede e de broadcast?

Endereço de rede: 11000000.10101000.00001000.00000000

Endereço de broadcast: 11000000.10101000.00001011.11111111

- c) Quantos são os endereços IP disponíveis nesta sub-rede? 1022 endereços IP
- d) Qual o primeiro e o último endereço IP utilizável da sub-rede? O primeiro é 192.168.8.1 e o último é 192.168.11.254

ESPAÇO CÁLCULOS E EXPLICAÇÕES:

Letra A:

22 bits para rede e 10 bits para o host. Assim, teremos: 1111111111111111111111100.00000000 = 255.255.252.0. Iremos colocar 1 para os bits de rede e 0 para os bits de host

Letra B:

Notação 192.168.10.132 = 11000000.10101000.00001010.10000100

A Máscara de sub-rede é: 111111111111111111111100.00000000

Endereço de rede: 11000000.10101000.00001000.00000000

Endereço de broadcast: 11000000.10101000.00001011.11111111

Letra C:

Como temos 10 bits para o host, teremos 2^10 - 2 endereços disponíveis (visto que precisamos eliminar o endereço de rede e o de broadcast). Assim, serão 1024-2 = 1022 endereços IP disponíveis

Letra D:

1º endereço utilizável: 11000000.10101000.00001000.00000001 = 192.168.8.1

Último endereco utilizável: 11000000.10101000.0001011.11111110 = 192.168.11.254

3) Projete uma máscara de sub-rede para que a rede 10.13.137.0/24 seja dividida em múltiplas redes

com 6 hosts cada.

a) Qual a máscara de sub-rede na notação decimal? 255.255.255.248

b) Quantas sub-redes podem ser obtidas com essa capacidade de hosts? 32 sub-redes

c) Qual a faixa de IPs da terceira sub-rede? 10.13.137.17 a 10.13.137.22

ESPAÇO CÁLCULOS E EXPLICAÇÕES:

Letra A:

Cada rede sub-rede deverá possuir 8 endereços IP, visto que ela terá os 6 hosts especificados na

questão além dos endereços de rede e de broadcast. Como temos uma máscara /24, isso quer dizer

que teremos 24 bits para rede e 8 bits para host, ou seja, 2^8 = 256 IPs no total. Considerando que

cada uma das nossas sub-redes precisará de 8 endereços IP (já incluindo o de rede e o de broadcast),

iremos ter 256/8 = 32 sub-redes. Para formar essas 32 sub-redes, teremos que utilizar 2ⁿ = 32 ->

n=5 bits dos host para formar essas sub-redes. Assim, agora teremos 29 bits para a rede e 3 bits para

o host.

Representando máscara /29, teremos: 11111111.111111111.11111111.11111000

255.255.255.248

Letra B: Como visto na questão anterior, teremos 32 sub-redes

Letra C:

Sub-rede 1: 10.13.137.0 a 10.13.137.7

Sub-rede 2: 10.13.137.8 a 10.13.137.15

Sub-rede 3: 10.13.137.16 a 10.13.137.23. Porém, desconsiderando o endereço de rede e de broadcast,

teremos a faixa 10.13.137.17 a 10.13.137.22