실력 완성 | 수학 I

2-3-1.사인법칙과 코사인법칙

수학 계산력 강화

(1)사인법칙

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 사인법칙

1. 사인법칙

: 삼각형 ABC에서 외접원의 반지름의 길이를 *R*이라 하면

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

2. 사인법칙의 변형

(1)
$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$

- (2) $a=2R\sin A$, $b=2R\sin B$, $c=2R\sin C$
- (3) $a:b:c=\sin A:\sin B:\sin C$
- \triangle \triangle ABC에서 다음을 구하여라. (단, R는 외접원의 반지름 의 길이)
- **1.** $b = \sqrt{2}, c = \sqrt{3}, R = 1$ 일 때, $\angle A$ 의 크기 (단, $0^{\circ} < C < 90^{\circ}$)
- **2.** $B=15^{\circ}$, $C=45^{\circ}$, a=39 W, R=3
- **3.** $A = 45^{\circ}, a = 3\sqrt{2}, b = 3\sqrt{3}$ **일 때**, $\angle C$ **의 크기**
- **4.** $C=60^{\circ}, b=5, c=5\sqrt{3}$ 일 때, $\angle A$ 의 크기
- **5.** $B=30^{\circ}, C=15^{\circ}, b=5$ 일 때, a의 값

- **6.** $A = 60^{\circ}, B = 75^{\circ}, a = 3$ 일 때, c의 값
- 7. $A = 60^{\circ}, a = \sqrt{3}$ 일 때, R의 값 (단, 0°< ∠B<90°)
- 8. $b = 12\sqrt{2}, R = 12$ 일 때, $\angle B$ 의 크기
- 9. $A = 60^{\circ}$, $B = 75^{\circ}$, c = 10일 때, R의 값
- **10.** $A = 120^{\circ}, R = 10$ 일 때, a의 값
- **11.** $B = 75^{\circ}$, $C = 60^{\circ}$, a = 29 때, R의 값
- **12.** $A = 60^{\circ}$, $a = \sqrt{3}$ 일 때, R의 값

13.
$$A = 60^{\circ}$$
, $C = 75^{\circ}$, $a = 6$ 일 때, b 의 값

21.
$$b=12$$
, $A=30^{\circ}$, $B=120^{\circ}$ 일 때, a 의 값

14.
$$B = 75^{\circ}$$
, $C = 45^{\circ}$, $c = 89$ 때, $a = 3$ 값

22.
$$a=2,\ b=2\sqrt{2},\ A=30\,^{\circ}$$
일 때, $\angle B$ 의 크기

15.
$$B = 45^{\circ}$$
, $C = 30^{\circ}$, $b = 5$ 일 때, c 의 값

23.
$$A = 45^{\circ}$$
, $a = 5\sqrt{2}$, $b = 5$ **2 III**, $\angle B$ **2 3.**

16.
$$A = 30^{\circ}$$
, $a = 4$, $c = 8$ 일 때, b 의 값

24.
$$c=5, B=30^{\circ}, C=45^{\circ}$$
일 때, b 의 값

17.
$$A = 60^{\circ}$$
, $a = 6$ 일 때, R 의 값

25.
$$a = 4$$
, $A = 60^{\circ}$, $C = 45^{\circ}$ \supseteq \Box , $c \supseteq$ \Box

18.
$$a = \sqrt{3}$$
, $A = 60$ 일 때, R 의 값

26.
$$b=2$$
, $c=\sqrt{6}$, $B=45$ 일 때, $\angle C$ 의 크기

19.
$$C=120^{\circ}, c=2\sqrt{3}, b=2$$
일 때, $\angle B$ 의 크기

27.
$$a=1, c=\sqrt{2}, C=135^{\circ}$$
일 때, $\angle A$ 의 크기

20.
$$B=135^{\circ}$$
, $a=3\sqrt{2}$, $b=6$ 일 때, $\angle A$ 의 크기

28.
$$A = 60^{\circ}$$
, $B = 45^{\circ}$, $a = \sqrt{3}$ 일 때, b 의 값

- **29.** $B=30^{\circ}, c=\sqrt{2}, b=1, \angle C$ 의 크기 (단, $0^{\circ} < C < 90^{\circ}$)
- 37. $\angle A = 30^{\circ}$, $\angle B = 135^{\circ}$, a = 5일 때, b의 값

- **30.** $c = 3\sqrt{2}$, b = 6, $\angle B = 45$ 일 때, $\angle C$ 의 크기
- **38.** b=2, c=2, $A=120^{\circ}$ 일 때, R의 값

- **31.** $c=5\sqrt{2}$, $\angle C=45^{\circ}$, $\angle A=60^{\circ}$ 일 때, a의 값
- **39.** a = 6, $B = 100^{\circ}$, $C = 50^{\circ}$ **일** 때, R**의** 값

- **32.** $A = 75^{\circ}$, $C = 60^{\circ}$, b = 10일 때, c의 값
- ightharpoonup ig의 길이)
- **33.** $A = 60^{\circ}$, $a = 4\sqrt{3}$, c = 8일 때, $\angle C$ 의 크기
- **40.** a-2b+c=0, 4a-4b+c=0**일** 때, $\sin A : \sin B : \sin C$

34. a=12, A=150 °일 때, R의 값

41. a+b-2c=0, a-3b+c=0 \square $\sin A : \sin B : \sin C$

- **35.** $C=135^{\circ}, c=2\sqrt{2}, b=2, \angle A$ 의 크기
- **42.** (a+b):(b+c):(c+a)=7:6:5**일** 때, $\sin A : \sin B : \sin C$
- **36.** $A = 30^{\circ}$, $a = 3\sqrt{3}$, b = 9일 때, $\angle B$ 의 크기 (단, $0^{\circ} < B < 90^{\circ}$)
- **43.** A:B:C=1:3:2일 때, $\frac{c^2}{ab}$ 의 값

- **44.** A:B:C=1:2:3일 때, $\frac{b^2}{a^2+c^2}$ 의 값
- **45.** A:B:C=1:2:3일 때, $\frac{ab}{c^2}$ 의 값
- **46.** A:B:C=1:2:3일 때, a:b:c의 값
- **47.** $\sin A + \sin B + \sin C = \sqrt{3}$, R = 3**2 44.** a + b + c의 값
- **48.** $\sin A : \sin B : \sin C = 2 : 4 : 3$ 일 때, $\frac{ac}{b^2}$ 의 값
- **49.** $\sin A : \sin B : \sin C = 3 : 4 : 5$ 일 때, $\frac{a^2}{bc}$ 의 값
- **50.** A:B:C=1:2:3일 때, a:b:c의 값
- **51.** A:B:C=2:1:1일 때, $\frac{b^2}{ac}$ 의 값

- **52.** $3 \sin B \sin C = \sin A$, a+c=9일 때, b의 값
- **53.** $\sin A + \sin B 2 \sin C = \sqrt{2}$, a+b-2c=4일 때,
- **54.** $2 \sin A = \sin B + \sin C$, 2a-c=2일 때, b의 값
- **55.** $2 \sin A = \sin B + \sin C$, b+c=8일 때, a의 값

- \square 다음 등식을 만족하는 $\triangle ABC$ 는 어떤 삼각형인지 말하
- **56.** $a \sin A = b \sin B$

57. $a \sin A = b \sin B + c \sin C$

58. $a \sin A = b \sin B = c \sin C$

59.
$$\sin^2 A + \sin^2 B = \sin^2 C$$

60.
$$\sin(\pi - A)\sin(\frac{\pi}{2} + B) = 0$$

61.
$$\sin^2 A - \sin^2 B = 0$$

62.
$$a^2 \sin A - c^2 \sin C = 0$$

☑ 다음 물음에 답하여라.

63. 그림과 같이 \overline{BC} 를 지름으로 하는 원에 내접하는 삼각형 ABC가 있다. $\overline{AB} = 24$, $\overline{AC} = 10$ 일 때, $\sin C$ 의 값을 구하여라.

64. 다음 그림과 같은 $\triangle ABC$ 에서 A, b, c의 값을 구

(단,
$$\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
, $\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$)

65. 다음 그림과 같은 삼각형 ABC의 외접원의 반지 름의 길이 R와 \overline{AB} 의 길이 c에 대하여 $R+c^2$ 의 값 을 구하여라.

66. *x*에 대한 이차방정식

 $(\sin B - \cos A)x^2 + 2\cos Cx - \sin B - \cos A = 0$ 이 중간 을 가질 때, 삼각형 ABC는 어떤 삼각형인지 말하 여라.

정답 및 해설

- 1) 75°
- \Rightarrow 사인법칙에 의해 $\frac{\sqrt{2}}{\sin B} = \frac{\sqrt{3}}{\sin C} = 2 \cdot 1$ 이므로

$$\frac{\sqrt{2}}{\sin B}$$
 = 2 ੀ ਮੀ $\sin B = \frac{\sqrt{2}}{2}$

$$\therefore$$
 $B = 45\,^{\circ}$ 또는 $B = 135\,^{\circ}$ (∵ $0\,^{\circ} < B < 180\,^{\circ}$)

$$\frac{\sqrt{3}}{\sin C} = 2$$
에서 $\sin C = \frac{\sqrt{3}}{2}$

$$\therefore C = 60^{\circ} (\because 0^{\circ} < C < 90^{\circ})$$

그런데
$$B+C<180$$
 ° 이어야 하므로 $B=45$ °

- $A = 180^{\circ} B C = 75^{\circ}$
- 2) $\sqrt{3}$
- \Rightarrow $A+B+C=180\,^{\circ}$ 이므로 $A=120\,^{\circ}$

사인법칙에 의해
$$\frac{3}{\sin 120^{\circ}} = 2R$$
이므로

$$\frac{3}{\sqrt{3}} = 2R \qquad \therefore R = \sqrt{3}$$

$$\therefore R = \sqrt{3}$$

- 3) 75° 또는 15°
- \Rightarrow 사인법칙에 의해 $\frac{3\sqrt{2}}{\sin 45^{\circ}} = \frac{3\sqrt{3}}{\sin B}$ 이므로

$$\frac{3\sqrt{2}}{\frac{\sqrt{2}}{2}} = \frac{3\sqrt{3}}{\sin E}$$

$$\frac{3\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{3}}{\sin B} \qquad \therefore \sin B = \frac{\sqrt{3}}{2}$$

 \therefore $B = 60^{\circ}$ $\stackrel{\leftarrow}{\text{\bot}}$ $B = 120^{\circ}$ (\because $0^{\circ} < B < 135^{\circ}$) 이때, $C = 180^{\circ} - A - B$ 이므로

- $C=75\,^{\circ}$ 또는 $C=15\,^{\circ}$
- 4) 90°
- \Rightarrow 사인법칙에 의해 $\frac{5}{\sin B} = \frac{5\sqrt{3}}{\sin 60^{\circ}}$ 이므로

$$\frac{5}{\sin B} = \frac{5\sqrt{3}}{\frac{\sqrt{3}}{2}} \qquad \therefore \sin B = \frac{1}{2}$$

$$\therefore \sin B = \frac{1}{2}$$

 $\therefore~B = 30~^{\circ}~(\because~0~^{\circ} < B < 120~^{\circ})$

- 이때, $A = 180^{\circ} B C$ 이므로 $A = 90^{\circ}$
- 5) $5\sqrt{2}$
- \Rightarrow A+B+C=180 ° 이므로 A=135 °

사인법칙에 의해 $\frac{5}{\sin 30^{\circ}} = \frac{a}{\sin 135^{\circ}}$ 이므로

$$\frac{5}{\frac{1}{2}} = \frac{a}{\frac{\sqrt{2}}{2}} \qquad \therefore a = 5\sqrt{2}$$

$$\therefore a = 5\sqrt{2}$$

- 6) $\sqrt{6}$
- \Rightarrow $A+B+C=180\,^{\circ}$ 이므로 $C=45\,^{\circ}$

사인법칙에 의해 $\frac{3}{\sin 60^{\circ}} = \frac{c}{\sin 45^{\circ}}$ 이므로

$$\frac{3}{\sqrt{3}} = \frac{c}{\sqrt{2}} \qquad \therefore c = \sqrt{6}$$

$$\therefore c = \sqrt{6}$$

7) 1

사인법칙에 의하여 $\frac{\overline{BC}}{\sin A} = 2R$ 이므로

$$\frac{\sqrt{3}}{\sin 60^{\circ}} = 2R$$

$$\frac{\sqrt{3}}{\sin 60^{\circ}} = 2R \qquad \therefore R = \frac{\sqrt{3}}{2 \sin 60^{\circ}} = 1$$

- 8) 45° 또는 135°
- \Rightarrow 사인법칙에 의해 $\frac{12\sqrt{2}}{\sin B} = 2 \cdot 12$ 이므로

$$\sin B = \frac{\sqrt{2}}{2}$$

이때, 0°< B < 180°이므로

$$B = 45^{\circ} \quad \Xi = 135^{\circ}$$

9) $5\sqrt{2}$

 $C = 180^{\circ} - (60^{\circ} + 75^{\circ}) = 45^{\circ}$

사인법칙에 의하여

$$\frac{\overline{AB}}{\sin C} = 2R$$
이므로 $\frac{10}{\sin 45^{\circ}} = 2R$

$$\therefore R = \frac{10}{2 \sin 45^{\circ}} = 5\sqrt{2}$$

- 10) $10\sqrt{3}$
- \Rightarrow 사인법칙에 의해 $\frac{a}{\sin 120^{\circ}} = 2 \cdot 10$ 이므로

$$\frac{a}{\sqrt{3}} = 20 \qquad \therefore a = 10\sqrt{3}$$

$$\therefore \ a = 10\sqrt{3}$$

- 11) $\sqrt{2}$
- \Rightarrow A+B+C=180 ° 이므로 A=45 °

사인법칙에 의해 $\frac{2}{\sin 45^{\circ}} = 2R$ 이므로

$$\frac{2}{\sqrt{2}} = 2R \qquad \therefore R = \sqrt{2}$$

$$\therefore R = \sqrt{2}$$

$$\Rightarrow$$
 사인법칙에 의해 $\frac{\sqrt{3}}{\sin 60^{\circ}} = 2R$ 이므로

$$\frac{\sqrt{3}}{\sqrt{3}} = 2R \qquad \therefore R = 1$$

13)
$$2\sqrt{6}$$

$$\Rightarrow$$
 $A+B+C=180$ ° 이므로 $B=45$ °

사인법칙에 의해
$$\frac{6}{\sin 60^{\circ}} = \frac{b}{\sin 45^{\circ}}$$
이므로

$$\frac{6}{\frac{\sqrt{3}}{2}} = \frac{b}{\frac{\sqrt{2}}{2}} \qquad \therefore b = 2\sqrt{6}$$

$$\therefore b = 2\sqrt{6}$$

14) $4\sqrt{6}$

$$\Rightarrow$$
 $A+B+C=180\,^{\circ}$ 이므로 $A=60\,^{\circ}$

사인법칙에 의해
$$\frac{a}{\sin 60^{\circ}} = \frac{8}{\sin 45^{\circ}}$$
이므로

$$\frac{a}{\frac{\sqrt{3}}{2}} = \frac{8}{\frac{\sqrt{2}}{2}} \qquad \therefore a = 4\sqrt{6}$$

$$\therefore \ a = 4\sqrt{6}$$

15)
$$\frac{5\sqrt{2}}{2}$$

$$\Rightarrow$$
 사인법칙에 의해 $\frac{5}{\sin 45}$ $=$ $\frac{c}{\sin 30}$ 이므로

$$\frac{5}{\sqrt{2}} = \frac{c}{\frac{1}{2}} \qquad \therefore c = \frac{5\sqrt{2}}{2}$$

$$\therefore c = \frac{5\sqrt{2}}{2}$$

16) $4\sqrt{3}$

$$\Rightarrow$$
 사인법칙에 의해 $\frac{4}{\sin 30^{\circ}} = \frac{8}{\sin C}$ 이므로

$$\frac{4}{\frac{1}{2}} = \frac{8}{\sin C} \qquad \therefore \sin C = 1$$

$$\therefore$$
 sin $C=$

$$\therefore C = 90^{\circ} (\because 0^{\circ} < C < 150^{\circ})$$

따라서 $\triangle ABC$ 는 c를 빗변으로 하는 직각삼각형 이므로 $b = \sqrt{8^2 - 4^2} = 4\sqrt{3}$

17) $2\sqrt{3}$

 $ightharpoonup \Delta ABC$ 의 외접원의 반지름의 길이를 R이라 하면 사인법칙에 의해 $\frac{6}{\sin 60^{\circ}} = 2R$ 이므로

$$\frac{6}{\sqrt{3}} = 2R \qquad \therefore R = 2\sqrt{3}$$

18) 1

$$\Rightarrow$$
 사인법칙에 의하여 $\frac{\sqrt{3}}{\sin 60^{\circ}} = 2R$

$$\therefore R = \frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} \cdot \frac{1}{2} = 1$$

$$\Rightarrow$$
 사인법칙에 의해 $\frac{2}{\sin B} = \frac{2\sqrt{3}}{\sin 120^{\circ}}$ 이므로

$$\frac{2}{\sin B} = \frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} \qquad \therefore \sin B = \frac{1}{2}$$

$$\therefore \sin B = \frac{1}{2}$$

$$\therefore B = 30^{\circ} (\because 0^{\circ} < B < 60^{\circ})$$

20) 30°

$$\Rightarrow$$
 사인법칙에 의해 $\frac{3\sqrt{2}}{\sin A} = \frac{6}{\sin 135^{\circ}}$ 이므로

$$\frac{3\sqrt{2}}{\sin A} = \frac{6}{\sqrt{2}} \qquad \therefore \sin A = \frac{1}{2}$$

$$\therefore \sin A = \frac{1}{2}$$

$$\therefore \ A = 30 \degree \ (\because \ 0 \degree < A < 45 \degree)$$

21) $4\sqrt{3}$

$$\Rightarrow$$
 사인법칙에 의하여 $\frac{a}{\sin 30^\circ} = \frac{12}{\sin 120^\circ}$ 이므로 $a\sin 120^\circ = 12\sin 30^\circ$, $\frac{\sqrt{3}}{2}a = 6$

$$\therefore a = \frac{12}{\sqrt{3}} = 4\sqrt{3}$$

22) 45° 또는 135°

$$\Rightarrow$$
 사인법칙에 의하여 $\frac{2}{\sin 30^{\circ}} = \frac{2\sqrt{2}}{\sin B}$ 이므로 $2\sin B = 2\sqrt{2}\sin 30^{\circ}$

$$\therefore \sin B = 2\sqrt{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2}$$

$$0\,^{\circ} < B < 180\,^{\circ}$$
이므로 $B = 45\,^{\circ}$ 또는 $B = 135\,^{\circ}$

$$\Rightarrow$$
 사인법칙에 의해 $\frac{5\sqrt{2}}{\sin 45^{\circ}} = \frac{5}{\sin B}$ 이므로

$$\frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}} = \frac{5}{\sin B} \qquad \therefore \sin B = \frac{1}{2}$$

$$\therefore \sin B = \frac{1}{2}$$

$$\therefore B = 30^{\circ} (\because 0^{\circ} < B < 135^{\circ})$$

24)
$$\frac{5\sqrt{2}}{2}$$

$$\Rightarrow$$
 사인법칙에 의하여 $\frac{b}{\sin 30^{\circ}} = \frac{5}{\sin 45^{\circ}}$ 이므로

$$b \sin 45^{\circ} = 5 \sin 30^{\circ}, \ \frac{\sqrt{2}}{2}b = \frac{5}{2}$$

$$\therefore b = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2}$$

25)
$$\frac{4\sqrt{6}}{3}$$

$$\Rightarrow$$
 사인법칙에 의하여 $\frac{c}{\sin 45^{\circ}} = \frac{4}{\sin 60^{\circ}}$ 이므로

$$c \sin 60^{\circ} = 4 \sin 45^{\circ}, \frac{\sqrt{3}}{2}c = 2\sqrt{2}$$

$$\therefore c = \frac{4\sqrt{2}}{\sqrt{3}} = \frac{4\sqrt{6}}{3}$$

- 26) 60° 또는 120°
- \Rightarrow 사인법칙에 의하여 $\frac{2}{\sin 45^{\circ}} = \frac{\sqrt{6}}{\sin C}$ 이므로 $2 \sin C = \sqrt{6} \sin 45$

$$\therefore \sin C = \sqrt{6} \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}$$

- 27) 30°
- \Rightarrow 사인법칙에 의하여 $\frac{1}{\sin A} = \frac{\sqrt{2}}{\sin 135^{\circ}}$ 이므로 $\sqrt{2} \sin A = \sin 135$

$$\therefore \sin A = \frac{\sqrt{2}}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2}$$

- 0°<A<180°이므로 A=30° 또는 A=150° 그런데 A+C<180°이어야 하므로 A=30°
- 28) $\sqrt{2}$
- \Rightarrow 사인법칙에 의해 $\frac{\sqrt{3}}{\sin 60^{\circ}} = \frac{b}{\sin 45^{\circ}}$ 이므로

$$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} = \frac{b}{\frac{\sqrt{2}}{2}} \qquad \therefore b = \sqrt{2}$$

$$\therefore b = \sqrt{2}$$

29) 45°

사인법칙에 의하여 $\frac{1}{\sin 30^{\circ}} = \frac{\sqrt{2}}{\sin C}$ 이므로

$$\sin C = \sqrt{2} \times \frac{1}{2} = \frac{\sqrt{2}}{2}$$
 $\therefore C = 45^{\circ}$

- 30) 30°
- \Rightarrow 사인법칙에 의해 $\frac{6}{\sin 45^{\circ}} = \frac{3\sqrt{2}}{\sin x}$ 이므로

$$\frac{6}{\sqrt{2}} = \frac{3\sqrt{2}}{\sin x} \qquad \therefore \sin x = \frac{1}{2}$$

$$\therefore \sin x = \frac{1}{2}$$

$$\therefore x = 30^{\circ} (\because 0^{\circ} < x < 135^{\circ})$$

- 31) $5\sqrt{3}$
- \Rightarrow 사인법칙에 의해 $\frac{x}{\sin 60^{\circ}} = \frac{5\sqrt{2}}{\sin 45^{\circ}}$ 이므로

$$\frac{x}{\frac{\sqrt{3}}{2}} = \frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}} \qquad \therefore x = 5\sqrt{3}$$

$$\therefore x = 5\sqrt{3}$$

32)
$$5\sqrt{6}$$

⇒ A+B+C=180°이므로 B=45°

사인법칙에 의해
$$\frac{10}{\sin 45^{\circ}} = \frac{c}{\sin 60^{\circ}}$$
이므로

$$\frac{10}{\frac{\sqrt{2}}{2}} = \frac{c}{\frac{\sqrt{3}}{2}} \qquad \therefore c = 5\sqrt{6}$$

$$\therefore c = 5\sqrt{6}$$

- 33) 90°
- \Rightarrow 사인법칙에 의해 $\frac{4\sqrt{3}}{\sin 60^{\circ}} = \frac{8}{\sin C}$ 이므로

$$\frac{4\sqrt{3}}{\sqrt{3}} = \frac{8}{\sin C} \qquad \therefore \sin C = 1$$

$$\therefore$$
 sin $C=1$

$$\therefore$$
 $C = 90^{\circ} (\because 0^{\circ} < C < 120^{\circ})$

- 34) 12
- ⇨ △ABC의 외접원의 반지름의 길이를 R라 하면 사인법칙에 의하여 $\frac{12}{\sin 150^{\circ}}$ = 2R

$$\therefore R = \frac{12}{\frac{1}{2}} \cdot \frac{1}{2} = 12$$

35) 15°

사인법칙에 의하여 $\frac{2}{\sin B} = \frac{2\sqrt{2}}{\sin 135}$ 이므로

$$\sin B = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$$

 \therefore B = 30 ° Ξ_{L} B = 150 °

$$\therefore$$
 A = 180 ° - (30 ° + 135 °) = 15 °

36) 60°

사인법칙에 의하여 $\frac{3\sqrt{3}}{\sin 30^{\circ}} = \frac{9}{\sin B}$ 이므로

$$3\sqrt{3} \sin B = 9 \times \frac{1}{2}, \sin B = \frac{\sqrt{3}}{2}$$

$$\therefore$$
 B = 60 °

37) $5\sqrt{2}$

$$\Rightarrow$$
 사인법칙에 의해 $\frac{5}{\sin 30^{\circ}} = \frac{x}{\sin 135^{\circ}}$ 이므로

$$\frac{5}{\frac{1}{2}} = \frac{x}{\frac{\sqrt{2}}{2}} \qquad \therefore \quad x = 5\sqrt{2}$$

38) 2

$$\Rightarrow$$
 $b=c=2$ 에서 \triangle ABC는 $B=C$ 인 이등변삼각형이 므로 $B=C=\frac{1}{2}(180\,^{\circ}-120\,^{\circ})=30\,^{\circ}$

사인법칙에 의하여
$$\frac{2}{\sin 30^{\circ}} = 2R$$

$$\therefore R = \frac{2}{\frac{1}{2}} \cdot \frac{1}{2} = 2$$

39) 6

$$\Rightarrow$$
 A+B+C=180°이므로
A=180°-(100°+50°)=30°

사인법칙에 의하여
$$\frac{6}{\sin 30^{\circ}} = 2R$$

$$\therefore R = \frac{6}{\frac{1}{2}} \cdot \frac{1}{2} = 6$$

40) 2:3:4

$$\Rightarrow a-2b+c=0$$

$$4a - 4b + c = 0$$

$$3a - 2b = 0 \qquad \qquad \therefore \quad a = \frac{2}{3}b$$

$$-b$$

◎을 ⊙에 대입하면

$$\frac{2}{3}b - 2b + c = 0 \qquad \therefore c = \frac{4}{3}b$$

$$\therefore c = \frac{4}{3}t$$

따라서
$$a:b:c=\frac{2}{3}b:b:\frac{4}{3}b=2:3:4$$
이므로

 $\sin A : \sin B : \sin C = a : b : c = 2 : 3 : 4$

41) 5:3:4

$$\Rightarrow a+b-2c=0$$

$$a - 3b + c = 0$$

⊙-ⓒ을 하면

$$4b - 3c = 0$$

$$4b-3c=0$$
 $\therefore b=\frac{3}{4}c$ \cdots

©을 ①에 대입하면

$$a + \frac{3}{4}c - 2c = 0 \qquad \therefore \quad a = \frac{5}{4}c$$

$$\therefore a = \frac{5}{4}a$$

따라서
$$a:b:c=\frac{5}{4}c:\frac{3}{4}c:c=5:3:4$$
이므로

 $\sin A : \sin B : \sin C = a : b : c = 5 : 3 : 4$

42) 3:4:2

$$2a+2b+2c=18k$$
 \therefore $a+b+c=9k$ \cdots

$$9k \quad \cdots \quad \bigcirc$$

©에서 ③의 각 식을 빼면
$$a=3k$$
, $b=4k$, $c=2k$
∴ $\sin A : \sin B : \sin C = a : b : c$
 $= 3k : 4k : 2k = 3 : 4 : 2$

$$\Rightarrow$$
 $A+B+C=180\,^{\circ}$ 이고, $A:B:C=1:3:2$ 이므로 $A=180\,^{\circ} imes rac{1}{6}=30\,^{\circ}$, $B=180\,^{\circ} imes rac{3}{6}=90\,^{\circ}$, $C=180\,^{\circ} imes rac{2}{6}=60\,^{\circ}$

:
$$\sin A : \sin B : \sin C = \frac{1}{2} : 1 : \frac{\sqrt{3}}{2} = 1 : 2 : \sqrt{3}$$

이때, $a:b:c=\sin A:\sin B:\sin C=1:2:\sqrt{3}$ 이므 로 a=k, b=2k, $c=\sqrt{3}k$ 라 하면

$$\frac{c^2}{ab} = \frac{(\sqrt{3}k)^2}{k \cdot 2k} = \frac{3}{2}$$

44) $\frac{3}{5}$

⇒ 사인 법칙의 변형에 의하여 $a:b:c=\sin A:\sin B:\sin C=1:\sqrt{3}:2$ 이므로 $a = k, b = \sqrt{3} k, c = 2k (k > 0)$ 라고 하자. $\therefore \frac{b^2}{a^2+c^2} = \frac{3k^2}{k^2+4k^2} = \frac{3}{5}$

45)
$$\frac{\sqrt{3}}{4}$$

 \Rightarrow A+B+C=180 ° 이고, A:B:C=1:2:3이므로 $A = 180^{\circ} \times \frac{1}{6} = 30^{\circ}, B = 180^{\circ} \times \frac{2}{6} = 60^{\circ},$ $C = 180^{\circ} \times \frac{3}{6} = 90^{\circ}$

$$\therefore \sin A : \sin B : \sin C = \frac{1}{2} : \frac{\sqrt{3}}{2} : 1 = 1 : \sqrt{3} : 2$$

이때, $a : b : c = \sin A : \sin B : \sin C = 1 : \sqrt{3} : 2$ 이므로 $a = k, \ b = \sqrt{3} k, \ c = 2k$ 라 하면
$$\frac{ab}{c^2} = \frac{k \cdot \sqrt{3} k}{4k^2} = \frac{\sqrt{3}}{4}$$

46) $1:\sqrt{3}:2$

 \Rightarrow $A+B+C=\pi$ 이므로, $A=\frac{\pi}{6}$, $B=\frac{\pi}{3}$, $C=\frac{\pi}{2}$ $\triangle ABC$ 의 외접원의 반지름을 R이라 하자. 이때 사인법칙에 의하면 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ 에 $A = 2R\sin A = 2R\sin\frac{\pi}{6} = R,$ $b = 2R\sin B = 2R\sin\frac{\pi}{3} = \sqrt{3}R,$ $c = 2R \sin C = 2R \sin \frac{\pi}{2} = 2R$. 따라서 $a:b:c=R:\sqrt{3}R:2R=1:\sqrt{3}:2$

- 47) $6\sqrt{3}$
- \Rightarrow 외접원의 반지름의 길이를 R라 하면

$$\frac{a}{2R} + \frac{b}{2R} + \frac{c}{2R} = \sqrt{3} \text{ oil } \lambda$$

$$a+b+c=2\sqrt{3} R = 6\sqrt{3}$$

- 48) $\frac{3}{8}$
- $\Rightarrow a:b:c=\sin A:\sin B:\sin C=2:4:3이므로$ $a=2k,\ b=4k,\ c=3k$ 라 하면 $\frac{ac}{b^2}=\frac{2k\cdot 3k}{16k^2}=\frac{3}{8}$
- 49) $\frac{9}{20}$
- ⇒ a:b:c= sin A:sin B:sin C=3:4:5이므로
 a=3k, b=4k, c=5k라 하면 $\frac{a^2}{bc} = \frac{9k^2}{4k \cdot 5k} = \frac{9}{20}$
- 50) $1:\sqrt{3}:2$
- 다 $A+B+C=180\,^\circ$ 이고 A:B:C=1:2:3이므로 $A=180\,^\circ \times \frac{1}{6}=30\,^\circ$ $B=180\,^\circ \times \frac{2}{6}=60\,^\circ$

$$C = 180^{\circ} \times \frac{3}{6} = 90^{\circ}$$

- $\therefore \sin A : \sin B : \sin C = \frac{1}{2} : \frac{\sqrt{3}}{2} : 1$
- $=1:\sqrt{3}:2$

사인 법칙의 변형에 의하여

- $a:b:c=\sin A:\sin B:\sin C=1:\sqrt{3}:2$
- 51) $\frac{\sqrt{2}}{2}$
- \Rightarrow $A+B+C=180\,^{\circ}$ 이고, A:B:C=2:1:1이므로 $A=180\,^{\circ} imesrac{2}{4}=90\,^{\circ}$, $B=180\,^{\circ} imesrac{1}{4}=45\,^{\circ}$,

$$C = 180^{\circ} \times \frac{1}{4} = 45^{\circ}$$

- : $\sin A : \sin B : \sin C = 1 : \frac{\sqrt{2}}{2} : \frac{\sqrt{2}}{2} = \sqrt{2} : 1 : 1$
- 이때, $a:b:c=\sin A:\sin B:\sin C=\sqrt{2}:1:1$ 이므로 $a=\sqrt{2}k,\ b=k,\ c=k$ 라 하면

$$\frac{b^2}{ac} = \frac{k^2}{\sqrt{2} k \cdot k} = \frac{\sqrt{2}}{2}$$

- 52) 3
- \Rightarrow 외접원의 반지름의 길이를 R라 하면

$$3 \cdot \frac{b}{2R} - \frac{c}{2R} = \frac{a}{2R} \, \text{GeV}$$

- 3b = a + c = 9
- $\therefore b = 3$
- 53) $\sqrt{2}$

 \Rightarrow $\sin A + \sin B - 2 \sin C = \sqrt{2}$ 에서 외접원의 반지름의 길이를 R라 하면

$$\frac{a}{2R} + \frac{b}{2R} - 2 \cdot \frac{c}{2R} = \sqrt{2}$$

$$2\sqrt{2}R = a + b - 2c = 4 \qquad \therefore R = \sqrt{2}$$

- 54) 2
- \Rightarrow $2 \sin A = \sin B + \sin C$ 에서 외접원의 반지름의 길이를 R라 하면

$$2 \cdot \frac{a}{2R} = \frac{b}{2R} + \frac{c}{2R}$$

$$2a = b + c$$
 $\therefore b = 2a - c = 2$

- 55) 4
- \Rightarrow 외접원의 반지름의 길이를 R라 하면

$$2 \cdot \frac{a}{2R} = \frac{b}{2R} + \frac{c}{2R} \, \text{on} \, \lambda$$

$$a = b + c = 8$$
 $\therefore a =$

- 56) a = b인 이등변삼각형
- ⇒ 사인법칙에 의하여

$$\sin A = \frac{a}{2R}, \sin B = \frac{b}{2R}$$

이것을 주어진 식에 대입하면

$$a \times \frac{a}{2R} = b \times \frac{b}{2R}$$

$$a^2=b^2 \qquad \quad \therefore \ a=b \ \left(\ \because \ a>0, \ b>0 \right)$$

따라서 삼각형 ABC는 a=b인 이등변삼각형이다.

- 57) ∠A=90°인 직각삼각형
- $\Rightarrow a \sin A = b \sin B + c \sin C$

 $\Delta ext{ABC}$ 의 외접원의 반지름의 길이를 R라 하면

$$a \cdot \frac{a}{2R} = b \cdot \frac{b}{2R} + c \frac{c}{2R}$$

$$a^2 = b^2 + c^2$$

따라서 $\triangle ABC는 \angle A = 90$ °인 직각삼각형이다.

- 58) 정삼각형
- $\Rightarrow a \sin A = b \sin B = c \sin C$ 에서

$$\sin A = \frac{a}{2R}, \sin B = \frac{b}{2R}, \sin C = \frac{c}{2R}$$

$$a \cdot \frac{a}{2R} = b \cdot \frac{b}{2R} = c \cdot \frac{c}{2R}$$

$$a^2 = b^2 = c^2 \qquad \therefore \quad a = b = c$$

따라서 △ABC는 정삼각형이다.

- 59) ∠*C*=90°인 직각삼각형
- $\Rightarrow \sin^2 A + \sin^2 B = \sin^2 C \circlearrowleft A$

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$ 이므로

$$\left(\frac{a}{2R}\right)^2 + \left(\frac{b}{2R}\right)^2 = \left(\frac{c}{2R}\right)^2$$

$$a^2 + b^2 = c^2$$

따라서 \triangle ABC는 \angle C = 90 $^{\circ}$ 인 직각삼각형이다.

60)
$$B = \frac{\pi}{2}$$
인 직각삼각형

$$\sin(\pi-A)=\sin A, \quad \sin\left(\frac{\pi}{2}+B\right)=\cos B$$
이므로,
$$\sin(\pi-A)\sin\left(\frac{\pi}{2}+B\right)=\sin A\cos B=0$$
에 서
$$\sin A=0 \ \ \text{또는} \ \cos B=0. \ \ \text{그런데} \ \ 0< A<\pi$$
이므로
$$\sin A\neq 0. \ \ \therefore \ \cos B=0$$
에서 $B=\frac{\pi}{2}$ 따라서 $\triangle ABC$ 는 $B=\frac{\pi}{2}$ 인 직각삼각형이다.

61)
$$a = b$$
인 이등변삼각형

다
$$\sin^2 A - \sin^2 B = 0$$
에서 $\sin A = \frac{a}{2R}$, $\sin B = \frac{b}{2R}$ 이므로 $\left(\frac{a}{2R}\right)^2 - \left(\frac{b}{2R}\right)^2 = 0$ $a^2 - b^2 = 0$, $(a+b)(a-b) = 0$ $a = b$ ($a = b$) 이동변삼각형이다.

62)
$$a = c$$
인 이등변삼각형 $\Rightarrow a^2 \sin A - c^2 \sin C$ 에서

$$\sin A = \frac{a}{2R}$$
, $\sin C = \frac{c}{2R}$ 이므로 $a^2 \cdot \frac{a}{2R} - c^2 \cdot \frac{c}{2R} = 0$ $a^3 - c^3 = 0$, $(a - c)(a^2 + ac + c^2) = 0$ $\therefore a = c \ (\because a^2 + ac + c^2 > 0)$ 따라서 $\triangle ABC = a = c$ 인 이들변삼각형이다.

63)
$$\frac{12}{13}$$

$$\Rightarrow$$
 $\triangle ABC$ 는 $\angle BAC=\frac{\pi}{2}$ 인 직각삼각형이므로, $\overline{BC}=\sqrt{24^2+10^2}=26$. 따라서 $\sin C=\frac{\overline{AB}}{\overline{BC}}=\frac{24}{26}=\frac{12}{13}$.

64)
$$A = 105^{\circ}$$
, $b = 2$, $c = 2\sqrt{2}$

 $\frac{\sqrt{6} + \sqrt{2}}{\sin 105^{\circ}} = \frac{c}{\sin 45^{\circ}}$ 이므로

다
$$A+B+C=180\,^\circ$$
이므로 $A=105\,^\circ$ 사인법칙에 의해
$$\frac{\sqrt{6}+\sqrt{2}}{\sin 105\,^\circ}=\frac{b}{\sin 30\,^\circ}$$
이고, $\sin 105\,^\circ=\sin 75\,^\circ$ 이므로
$$b=\frac{\sqrt{6}+\sqrt{2}}{\sin 105\,^\circ}\times\sin 30\,^\circ=\frac{\sqrt{6}+\sqrt{2}}{\frac{\sqrt{6}+\sqrt{2}}{4}}\times\frac{1}{2}=2$$

$$c = \frac{\sqrt{6} + \sqrt{2}}{\sin 105^{\circ}} \times \sin 45^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} \times \frac{\sqrt{2}}{2} = 2\sqrt{2}$$

65) 55

다 사인법칙에 의하면
$$\frac{5}{\sin 30^{\circ}} = 2R$$
에서
$$R = \frac{5}{2\sin 30^{\circ}} = 5.$$
한편 $\frac{c}{\sin 45^{\circ}} = 2 \times 5 = 10$ 에서
$$c = 10\sin 45^{\circ} = 5\sqrt{2}.$$

$$\therefore R + c^2 = 5 + (5\sqrt{2})^2 = 55.$$

66) C = 90°인 직각삼각형

⇒ 주어진 이차방정식이 중근을 가지려면 판별식이 0 이어야 한다

$$\stackrel{\sim}{\neg}$$
, $D/4 = \cos^2 C + (\sin B - \cos A)(\sin B + \cos A) = 0$
 $\Rightarrow \cos^2 C + \sin^2 B - \cos^2 A = 0$

$$\Rightarrow 1 - \sin^2 C + \sin^2 B - (1 - \sin^2 A) = 0$$

$$\Rightarrow 1 - \sin^2 C + \sin^2 B - (1 - \sin^2 A) =$$

$$\Rightarrow \sin^2 A + \sin^2 B - \sin^2 C = 0$$

 $\triangle ABC$ 의 외접원의 반지름을 R이라 할 때 사인 법칙에 의하면 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ 에서 $\sin A = \frac{a}{2B}$, $\sin B = \frac{b}{2B}$, $\sin C = \frac{c}{2B}$ 이므로 $\left(\frac{a}{2R}\right)^2 + \left(\frac{b}{2R}\right)^2 = \left(\frac{c}{2R}\right)^2 \implies \frac{a^2}{4R^2} + \frac{b^2}{4R^2} = \frac{c^2}{4R^2}$ 에서 $a^2 + b^2 = c^2$.

따라서 $\triangle ABC$ 는 c를 빗변으로 하는 직각삼각형 이다.