TMUA Coordinate Geometry

Syllabus

Equation of a straight line; parallel and perpendicular lines; equation of a circle; circle theorems.

Find the coordinates of the point lying between A (2,3) and B (8, -3)1a) which divides the line segment AB in the ratio 1:2.

b) Find the x-coordinate of the point where the perpendicular bisector of the line segment joining the points (2,-6) and (5,4) cuts the x-axis.

Midpoint
$$(\frac{7}{2}, -1)$$

Cradient = $\frac{10}{3}$
If gradient = $-\frac{3}{10}$

8
Midpoint
$$(\frac{7}{2}, -1)$$

Gradient = $\frac{10}{3}$
 $y = 0$

Let gradient = $-\frac{3}{10}$
 $y = 0$
 $y =$

The perpendicular bisector of the line segment joining the points (3,-5) and (1,1) passes through c) the point with coordinates (11,a). Find the value of *a*.

Midpoint
$$(2,-2)$$
 $y+2=\frac{1}{3}(x-2)$

Gradient = $\frac{6}{-2}=-3$ $x=11$
 $y+2=\frac{1}{3}(9)$

L'gradient = $\frac{1}{3}$ $y=1$

$$y + 2 = \frac{1}{3}(x - 2)$$
 $x = 11$
 $y + 2 = \frac{1}{3}(9)$
 $y = 1$
 $q = 1$

The straight line L_1 passes through points A (13,5) and B (9,2) and D. d) The straight line L_2 passes through points C (2,3) and D and is perpendicular to L_1 Find the coordinates of *D*.

gradient
$$CD = -\frac{4}{7}$$
Ab: $y-2=\frac{3}{4}(x-9)$

gradient AB =
$$\frac{3}{4}$$

gradient CD = $-\frac{4}{3}$

AB: $y-2=\frac{3}{4}(x-9)$

CD: $y-3=-\frac{4}{3}(x-2)$
 $\frac{3}{4}x-\frac{27}{4}+2=-\frac{4}{3}x+\frac{8}{4}+\frac{3}{3}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$
 $x\left(\frac{9}{12}+\frac{16}{12}\right)=\frac{32}{12}+\frac{81}{12}+\frac{12}{12}$

Find the shortest distance between the parallel lines with equations: e)

$$x + 2y = 10$$

$$y = -\frac{1}{2}x + 5$$

$$10$$

$$6$$

$$m = 2$$

$$x + 2y = 20$$

$$y = -\frac{1}{2}x + 10$$

$$y = 2x + 5 \quad x + 2y = 20$$

$$x + 4x + 10 = 20$$

$$x = 2 \quad y = 9$$

$$8 \quad (2, 9)$$

$$(0, 5)$$

A line L has equation y = 4 - 3x. A second line is perpendicular to L and passes through (-2,0). f) Find the area of the region enclosed by the two lines and the x-axis.

gradient =
$$\frac{1}{3}$$
 (-2,0)
 $y = \frac{1}{3}(\alpha + 2)$
 $y = \frac{x}{3} + \frac{2}{3}$

$$4 - 3x = \frac{1}{3}x + \frac{2}{3}$$

$$\frac{10}{3} = \frac{10}{3}x \quad \text{def} y = 1$$

The points A, B and C have coordinates (0,3) and (2, -1) and (k,1) respectively. g)

AB and BC are perpendicular. Find the area of the triangle ABC.

$$|AB| = \sqrt{4^2 + 2^2} = \sqrt{20}$$

grad
$$AB = -2$$

grad $BC = \frac{1}{2}$
 $BC: y+1 = \frac{1}{2}(x-2)$
 $y = x - 2$

Find the area of the triangle ABC.

$$|AB| = \sqrt{4^2 + 2^2} = \sqrt{20} \qquad \forall = 1 , \text{ s.e. } b \qquad c \quad (b, 1)$$

grad
$$AB = -2$$

 $grad BC = \frac{1}{2}$
 $BC: y + 1 = \frac{1}{2}(x-2)$
 $y = \frac{x}{2} - 2$
 $1BC = \sqrt{4^2 + 2^2} = \sqrt{20}$
 $Area = \frac{1}{2} \times \sqrt{20} \times \sqrt{20}$

The straight line L passes through points (2,5) and (-2,3) and meets the coordinate axes h) at P and Q. Find the area of a square with side PQ.

gradient
$$L = \frac{2}{4} = \frac{1}{2}$$
 $y - 5 = \frac{1}{2}(x - 2)$
 $y = \frac{1}{2}x + 4$
 $P(0, 4) Q(-8, 0)$

$$|PQ|^2 = 4^2 + 8^2$$
= 16 + 64
= 80

i) The points A and B have coordinates (-1,4) and (3, -2) respectively.

A line L is perpendicular to AB and passes through B

Find the area of the region enclosed by L and the coordinate axes

gradient AB =
$$\frac{6}{-4} = -\frac{3}{2}$$

gradient L = $\frac{2}{3}$
y + Z = $\frac{2}{3}$ (x - 3)
y = $\frac{2}{3}$ x - 4
(0, -4) (6,0)

Area =
$$\frac{1}{2} \times 4 \times 6$$
= 12

j) The points A and B have coordinates (-4,5) and (0,4) respectively. The point C lies on the straight line through A and B such that the distance AB is the same as the distance BC. Find the coordinates of C.

k) The points A and B have coordinates $(1,4\sqrt{3})$ and $(-3+\sqrt{3},3)$ respectively. The straight line L through A and B meets the x-axis at C. Calculate the acute angle between L and the x-axis

The points A and B have coordinates (8,2) and (11,3) respectively. The point C lies on the straight line with equation x + y = 14 C $(\alpha, 44 - \alpha)$ Given that the distance AC is twice as large as the distance AB, find the two possible sets of coordinates of C.

$$|AB| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$|AC| = 2\sqrt{10} \quad AC^2 = 40$$

$$40 = (9 - 8)^2 + (12 - 9)^2$$

$$40 = 3^2 - 169 + 64 + 144 - 249 + 36$$

$$23^2 - 409 + 168 = 0 \qquad (6.8)$$

$$3^2 - 209 + 84 = 0 \qquad (14.0)$$

$$(9 - 6)(9 - 14) = 0$$

$$9 = 6, 14$$

The straight line segment joining the points (6,-3) and (14,9) is a diameter of a circle. 2a) What is the equation of the circle?

Midpoint (10,3)
Diameter =
$$\sqrt{12^2 + 8^2}$$

= $\sqrt{144 + 64}$
= $\sqrt{208}$
= $2\sqrt{52}$

Midpoint (10,3)

Radius =
$$\sqrt{52}$$

Diameter = $\sqrt{12^2 + 8^2}$

= $\sqrt{144 + 64}$

($(0.10)^2 + (y-3)^2 = 52$

The straight line segment joining the points (-4,3) and (0,5) is a chord of a circle b) with centre on the line with equation y = 3x + 5. What is the equation of the circle?

gradient
$$AB = \frac{1}{2}$$
 gradient $L = -2$
midpoint $AB = (-2, 4)$ $y - 4 = -2(52+2)$
 $y = -2x$
 $-2x = 3x + 5$
 $-5 = 5x$
 $x = -1$, $y = 2$ centre $(-1, 2)$ $(x + 1)^2 + (y - 2)^2 = 10$

Find the equation of the tangent to the circle $x^2 + y^2 - 8x - 14y + 40 = 0$ at the point (8,4) c)

$$(x-4)^2-1b+(y-7)^2-49+40=0$$

 $(x-4)^2+(y-7)^2=25$
centre $(4,7)$ radius 5
gradient radius = $-\frac{3}{4}$
by $(8,4)$
gradient rangel = $\frac{4}{3}$

$$y - 4 = \frac{4}{3}(x - 8)$$

$$3y - 12 = 4x - 32$$

$$4x - 3y = 20$$

A tangent to the circle $x^2 + y^2 = 36$ passes through the point (10,0) and crosses the positive d) y-axis. What is the coordinate of the point where the tangent meets the y-axis?

$$0 = 10 m + C$$

$$c = -10 m$$

$$y = m(x - 10)$$

$$y^{2} = m^{2}(x^{2} - 20x + 100)$$

what is the coordinate of the point where the tangent meets the y-axis?

$$y = mx + C$$
 $0 = 10 m + C$
 $0 = 10 m + C$
 $0 = 10 m$
 $0 =$

Find the radius of the circle with equation $2x^2 + 2y^2 + 12x - 4y + 13 = 0$ e)

$$x^{2} + y^{2} + 6x - 2y + \frac{13}{2} = 0$$

$$(x+3)^{2} - 9 + (y-1)^{2} - 1 + \frac{13}{2} = 0$$

$$(x+3)^{2} + (y-1)^{2} = \frac{7}{2}$$

$$radius = \sqrt{\frac{7}{2}}$$

A circle has equation $x^2 + y^2 - 10x - 12y + 56 = 0$ and C is the centre of the circle. f) The tangent to the circle at A (6,4) meets the y-axis at B. Find the area of triangle ABC.

 $(x-5)^{2}-25+(y-6)^{2}-36+56=0$ $(x-5)^{2}+(y-6)^{2}=5 \qquad (5,6)$ $\gcd AC=-2 \qquad |AB|=\sqrt{6^{2}+3^{2}}=\sqrt{45}$ $\gcd AB=\frac{1}{2} \qquad |AC|=\sqrt{5}$ $y-H=\frac{1}{2}(X-6) \qquad Area ABC=\frac{1}{2}\times\sqrt{9\times5}\times\sqrt{5}$ $(0,1) \qquad y=\frac{1}{2}X+1 \qquad = 15$

A circle has centre (8,k) where k is a constant. g)

The straight line with equation y = 3x - 12 is tangent to the circle at (5,3).

Find the equation of the circle.

grad radius = $\frac{k-3}{3} = -\frac{1}{3}$ k=2 Centre (8,2) $|x|^2 = 3^2 + 1^2 = 10$ $(x-8)^2 + (y-2)^2 = 10$

A circle has centre (5,6). h)

The straight line which passes through (1,8) and (10,11) is a tangent to the circle.

Find the radius of the circle.

and the radius of the circle.

gradient of =
$$\frac{3}{9} = \frac{1}{3}$$

y = $\frac{1}{3}x + \frac{23}{3}$

gradient of = -3

radius

y = $-3x + 21$
 $y = -3x + 21$
 $y = -3x + 21$
 $y = -3x + 21$
 $y = 9$

(417)

 $y = \frac{1}{3}x + \frac{23}{3}$
 $y = -\frac{1}{3}x + \frac{23}{3}$
 $y = -\frac{1}{3}x + \frac{23}{3}$
 $y = -3x + 21$
 $y = -3x + 21$
 $y = -3x + 21$
 $y = 9$

A circle has equation $x^2 + y^2 + 2x - 4y + 1 = 0$. i)

The straight line with equation y = mx is a tangent to the circle.

Find the difference in the possible values of m.

$$(x+1)^{2} + (y-2)^{2} = 4 y=mx$$

$$(x+1)^{2} + (mx-2)^{2} = 4$$

$$x^{2} + 2x + 1 + m^{2}x^{2} - 4mx = 0$$

$$(1+m^{2})x^{2} + (2-4m)x + 1 = 0$$

$$\Delta = 0 (2-4m)^{2} - 4(1+m^{2}) = 0$$

$$1 - 4m + 4m^{2} - 1 - m^{2} = 0$$

$$3m^{2} - 4m = 0$$

$$m(3m - 4) = 0$$

- A circle has centre at the origin and radius R. j)
 - The circle fits wholly inside the circle with equation $x^2 + y^2 10x 24y = 231$.

Find the range of possible value of R.

$$(x-5)^{2} + (y-12)^{2} - 25 - 144 = 231$$

$$(x-5)^{2} + (y-12)^{2} = 20^{2}$$
Arstance $0 \Rightarrow cente = \sqrt{5^{2} + 12^{2}} = 13$

$$R < 20 - 13 \qquad R < 7$$

A circle is drawn inside a regular hexagon so that the circle touches each side of the hexagon. k)

What fraction of the hexagon is covered by the circle?

$$\frac{2737^{2}}{4} = \frac{2737^{2}}{4} = \frac{2737^{2}}{4} = \frac{2737^{2}}{4} = \frac{2737^{2}}{4} = \frac{11}{273} = \frac{137}{6}$$

Hexagon:
$$6 \times \frac{1}{2}a^{2} \cdot \frac{\sqrt{3}}{2} = 8 \times \frac{2}{3}c^{2} \times \frac{\sqrt{3}}{2} = 2\sqrt{3}c^{2}$$

Find the shortest distance between the circle $x^2 + y^2 + 6x + 8y = 75$ and the origin. 1)

Find the shortest distance between the critic
$$x + y + 0x + 6y = 75$$
 and the origin:

$$(x+3)^{2} + (y+4)^{2} = 100$$

$$x^{2} + \frac{16}{9}x^{2} + 6x + \frac{32}{3}x = 75$$

$$y = \frac{4}{3}x$$

$$y = \frac{4}{3}x$$

$$y = \frac{4}{3}x$$

$$y = \frac{4}{3}x$$

$$x^{2} + 6x - 27 = 0$$

x+42= R2

$$(3,4)$$
Distance = $5^{2}+4^{2}$

Find the shortest distance between the line x + 2y = 2m)

1 gradient = 2 (

$$y - 4 = 2(x - 3)$$

 $y = 2x - 2$
 $2x - 2 = -\frac{1}{2}x + 1$
 $5x = 3$ $x = \frac{6}{5}$

Find the shortest distance between the line
$$x + 2y = 2$$

and the circle $x^2 + y^2 - 6x - 8y + 21 = 0$

$$(x - 3)^2 + (y - 4)^2 = 4$$

$$2x - 4 = 2(x - 3)$$

$$y = 2x - 2$$

$$2x - 2 = -\frac{1}{2}x + 1$$

$$\frac{5}{2}x = 3$$

$$2x - 2 = \frac{9}{5}x + 1$$

$$\frac{1}{5}x = \frac{9}{5}x =$$

Find the shortest distance between the two circle with equations: n)

$$(x-5)^2 + (y-9)^2 = 45$$
 and $(5,9)$ $r = 3\sqrt{5}$

distance between centres = $\sqrt{6^2 + 12^2}$ = $6\sqrt{5}$

distance between circles
$$= 6\sqrt{5} - 3\sqrt{5} - \sqrt{5}$$

$$= 2\sqrt{5}$$

- The two circles with equations below have exactly one point in common. (x + 1)² + (y 5)² = 36 and (x 8)² + (y + 7)² 2 o)

$$(x + 1)^2 + (y - 5)^2 = 36$$

$$(x-8)^2 + (y+7)^2 = r^2$$

Find the two possible values of r

The two circles with equations below have exactly one point in common. p)

$$(x+r)^2 + (y+r)^2 = 4r^2$$
 and $(x-r)^2 + (y-2)^2 = r^2$

$$(x-r)^2 + (y-2)^2 = r^2$$

Find the value of r

Distance between centres = 3r

$$(r+2)^2 + (2r)^2 = 9r^2$$

 $r^2 + 4r + 4 + 4r^2 = 9r^2$
 $4r^2 - 4r - 4 = D$
 $r^2 - r - 1 = 0$

Circle C_I has equation $(x + 2)^2 + (y - 2)^2 = 7$ (-2,2) q) Circle C_2 has equation $(x - 6)^2 + (y - 2)^2 = 7$

The straight line L is a tangent to both circles and has a positive gradient.

The angle between L and the x-axis is θ . Find $cos\theta$ Distance between centres = 8

$$|c^2 = 1b - 7 = 9$$

$$|c = 3$$

$$\cos \theta = \frac{3}{4}$$

r) Circle C_I has equation

$$x^2 + y^2 - 10x - 10y + 41 = 0$$

Circle C_2 has centre (k,5) and touches both C_1 and the y-axis

Find the difference between the two possible values of k.

