Our Movie Recommendation System

Alex Valencia Mallory Wilson

Data Cleaning Steps

- Selected only two datasets to create our recommendation system model:
 - o 'movies'
 - o 'ratings'
- Used 'movield', 'userld', and 'rating' columns from 'ratings' dataset.
- Used 'movield' and 'title' columns from the 'movies' dataset.

Building the Baseline Model

The Number of Users Who Voted for Each Movie

- The red line represents the minimum amount of users who rated a movie.
- For this model, each movie needs 10+ reviews to be included in the recommendation system.

How Many Times a User Voted for Movies

- The red line represents the minimum amount of votes a user has given for movies.
- For this model, each user needs to vote for 50+ movies to be included in the recommendation system.

Final Steps Building Our Baseline Recommendation System Model

- CSR Matrix
 - Reduces sparsity in our final dataset.
- NearestNeighbors
 - Algorithm finds a certain number of movies that are the closest distance to your movie selection.
- Movie Recommendation Function
 - Enter a movie title to find the top 10 most similar movies based on similarity distance.
- RMSE Score: 0.8715

Building the Final Model

How the Number of Ratings Impact the Rating

- Rating on scale of 1-5
- Number of rating is the number of ratings for each movie
- As the number of ratings increase, the rating score also increases
- The higher the number of ratings seems to give a more accurate rating score

Final Steps in Creating our Final Model

- Matrix Factorization
 - Finds the user ratings, using userId and rating, for different movies and correlates the user rating with a different movie
- Only uses movies with 50 or more ratings
- Enter a movie into the function to find the 10 most correlated movies
- Final Model RMSE Score: 0.7877
- Baseline Model RMSE Score: 0.8715

Model Output

Final Model Output Compared to Baseline

Baseline Model vs. Final Model: Movies Similar to Harry Potter and the Chamber of Secrets

	Title	Distance		Distance	# of Ratings
_	SE RIA DOS BUDDANTAS		Movie Title		
1	Spider-Man (2002)	0.398373	Harry Potter and the Sorcerer's Stone (a.k.a. Harry Potter and the Philosopher's Stone) (2001)	0.884597	107
2	Ice Age (2002)	0.397131	Harry Potter and the Order of the Phoenix (2007)	0.825499	58
3	Harry Potter and the Half-Blood Prince (2009)	0.394569	Harry Potter and the Half-Blood Prince (2009)	0.692219	58
4	Lord of the Rings: The Two Towers, The (2002)	0.391141	Harry Potter and the Goblet of Fire (2005)	0.680157	71
5	Pirates of the Caribbean: The Curse of the Bla	0.367197	Harry Potter and the Prisoner of Azkaban (2004)	0.662563	93
6	Pirates of the Caribbean: Dead Man's Chest (2006)	0.349314	Star Trek (2009)	0.662398	59
7	Harry Potter and the Order of the Phoenix (2007)	0.346729	Pretty Woman (1990)	0.658711	135
8	Harry Potter and the Goblet of Fire (2005)	0.265915	28 Days Later (2002)	0.655416	58
9	Harry Potter and the Prisoner of Azkaban (2004)	0.208909	How to Train Your Dragon (2010)	0.652580	53
10	Harry Potter and the Sorcerer's Stone (a.k.a	0.196221	Deadpool (2016)		54

Baseline Model vs Final Model: Movies Similar to Inception

	Title	0.369214	Distance	# of Ratings	
9			Movie Title		
1	Hangover, The (2009)		Full Monty, The (1997)	0.909324	56

2

3

4

5

6

7

9

10

Iron Man (2008)

Fight Club (1999)

Sherlock Holmes (2009)

Django Unchained (2012)

Dark Knight Rises, The (2012)

Inglourious Basterds (2009)

Dark Knight, The (2008)

Shutter Island (2010)

Avengers, The (2012)

0.369175

0.367898

0.366418

0.362976

0.345888

0.340302

0.335075

0.305288

0.213876

64

52

53

66

109

74

76

62

164

Crow, The (1994)

Desperado (1995)

Maverick (1994)

Hook (1991)

Grumpier Old Men (1995)

Leaving Las Vegas (1995)

Dances with Wolves (1990)

Animal House (1978)

Interview with the Vampire: The Vampire Chronicles (1994)

0.859338

0.836421

0.817990

0.807960

0.789059

0.773249

0.753912

0.739351

0.734847

Baseline Model vs. Final Model: Movies Similar to Shrek 2

	Title	Distance		Distance	# of Ratings	
1	Star Wars: Episode III - Revenge of the Sith (0.422463	Movie Title			
2	Spider-Man 2 (2004)	0.405562	Shrek (2001)	0.821400	170	
3	Harry Potter and the Prisoner of Azkaban (2004)	0.392267	Gone in 60 Seconds (2000)	0.642714	61	
4	Spider-Man (2002)	0.384256	How to Train Your Dragon (2010)	0.639178	53	
5	Ice Age (2002)	0.372899	Eraser (1996)	0.635763	64	
			Sense and Sensibility (1995)	0.618499	67	
6	Incredibles, The (2004)	0.346440	Johnny Mnemonic (1995)	0.611842	53	
7	Finding Nemo (2003)	0.346279	Field of Dreams (1989)	0.596883	56	
8	Monsters, Inc. (2001)	0.340306	Monsters, Inc. (2001)	0.591414	132	
9	Pirates of the Caribbean: The Curse of the Bla	0.333260	Kung Fu Panda (2008)	0.579984	54	
10	Shrek (2001)	0.302120	Mr. Holland's Opus (1995)	0.568374	80	

Next Steps

- Our recommendation system model works well, but contains under 10,000 movies.
 - Include more movies for better performance.
- Make a recommendation system model using movie tags and genres.
 - Explore how movie tags and genres are correlated to other movies with the same tags and similar genres.
- Find the demographics of each user to better predict which movies they will want to watch next.
 - Age, Ethnicity, Geographic Location

Thank You

Alex Valencia

Email: asvalencia1688@gmail.com

GitHub: @asval211

Mallory Wilson

Email: mallorye1103@gmail.com

GitHub: @malloryewilson

Questions?

Index

Understanding the 'ratings' columns

userId - Users were selected at random for inclusion. Each user is represented by an id and no other information is provided.

movield - Only movies with at least one rating or tag are included in the dataset. These movie ids are consistent with those used on the MovieLens web site (e.g., id 1 corresponds to the URL https://movielens.org/movies/1). Movie ids are consistent between ratings.csv, tags.csv, movies.csv, and links.csv (i.e., the same id refers to the same movie across these four data files).

rating - Ratings are made on a 5-star scale, with half-star increments (0.5 stars - 5.0 stars).

timestamp - Timestamps represent seconds since midnight Coordinated Universal Time (UTC) of January 1, 1970.

Understanding the 'movies' columns

movield - Only movies with at least one rating or tag are included in the dataset. These movie ids are consistent with those used on the MovieLens web site (e.g., id 1 corresponds to the URL https://movielens.org/movies/1). Movie ids are consistent between ratings.csv, tags.csv, movies.csv, and links.csv (i.e., the same id refers to the same movie across these four data files).

title - Movie titles are entered manually or imported from https://www.themoviedb.org/ and include the year of release in parentheses. Errors and inconsistencies may exist in these titles.

genres - Genres are a pipe-separated list, and are selected from the following:

Action, Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western, (no genres listed)

Preprocessing Steps

- Reshaped 'ratings' dataset in the following way:
 - Set 'movield' as the index.
 - Set 'userld' as a column.
 - Set 'rating' as values within the dataset.
- Replaced missing values with 0.
- Displayed all these changes in a new dataset.