Wojciech Kołowski

March 2021

Greetings

2 General idea

First-class types

General info

- The lectures will be held weekly on Fridays.
- Don't worry if you miss a lecture the slides are pretty massive and the talks are going to be recorded.
- Each lecture ends with some exercises which will help you familiarize yourself with F* and better understand the ideas covered in the talk.
- But you don't need to do them if you don't want to.
- This talks repo: https://github.com/wkolowski/ Dependent-Types-and-Theorem-Proving

Plan of lectures

- Lecture 1: Programming with dependent types.
- Lecture 2: Proving theorems with dependent types.
- Lecture 3: Differences between programming and proving.
- Lecture 4: Examples of bigger programs and longer proofs.
- Lecture 5: A deeper dive into F*.

Learning outcomes

- You won't be scared of all those obscure, scary and mysterious names and notations.
- You will get basic familiarity with the ideas behind dependent types.
- You will begin to see logic and mathematics in a very different light, much closer to your day job (at least if you are a programmer working in F#).
- If you do the exercises, you will gain a basic proficiency in F*.

Introducing F*

- F* (pronounced "eff star") is a general-purpose purely functional programming language.
- Member of the ML family, syntactically most similar to F#.
- Aimed at program verification.
- Dependent types.
- Refinement types.
- Effect system.
- Not a .NET language.
- Neither compiled nor interpreted it's a proof assistant, i.e. just a typechecker.
- To run a program, it has to be extracted to some other language, like F#, OCaml, C or WASM, and then compiled.

Don't worry, be happy, ask lots of questions

I KNOW YOU DIDN'T UNDERSTAND THE PREVIOUS SLIDE, BUT BY THE END OF THESE TALKS, YOU WILL – AND THAT'S THE POINT!

Useful F* links

- You can run F* inside your browser (and have a nice tutorial guide you): http://www.fstar-lang.org/tutorial/
- GitHub: https://github.com/FStarLang/FStar
- Homepage: http://www.fstar-lang.org/
- Download: http://www.fstar-lang.org/#download
- Papers (not approachable for ordinary mortals): http://www.fstar-lang.org/#papers
- Talks/presentations (more approachable):
 http://www.fstar-lang.org/#talks (some of these are quite approachable if you're interested)

Prerequisites

- To understand what we will be talking about, you should have a working knowledge of F# and the basic concepts of functional programming, namely:
- Functions as first-class citizens, including higher-order functions.
- Algebraic data types, including sum types and product types.
- Pattern matching and recursion.
- Even if you know these, you may be unfamiliar with the particular names – for example, "sum types" is a name used in academia and Haskell, but in F# they are better known as "tagged unions".
- We will now see some code that shows how these things look in F* (see the file Lecture1/Prerequisites.fst).

Dependencies

- To understand dependent types, first we have to understand dependency. It's easiest to do this by listing the forms of dependency you are likely to be familiar with:
- Values can depend on values: we can think that the sum n + m is a number that depends on the numbers n and m. This dependency can be expressed as a function: fun (n m : int) -> n + m.
- Values can depend on types. For example, the identity function fun (x : 'a) -> x depends on the type 'a.
- Types can depend on types. For example, the F# type Set<'a> depends on the type 'a.

Naming the dependencies

- I bet you spotted the pattern in the previous slide, but it's a good idea to also have a name for the feature provided by each kind of dependency.
- Values can depend on values: (first-class) functions.
- Values can depend on types: polymorphism (i.e. "generics").
- Types can depend on types: type operators.

Dependent types

- There's yet another kind of dependency, which is not present in F#, but is present in F* and is the topic of this lecture.
- Types can depend on values: dependent types.
- But what are dependent types good for? You have been living your whole life without them, after all!

Matrix multiplication

- We can only multiply matrices whose dimensions match, i.e. we can multiply an $n \times m$ matrix by a $m \times k$ and get an $n \times k$ matrix as a result.
- How to model this in our favourite programming language without dependent types?
- The best we can do is to have a types of matrices Matrix and then matrix multiplication has type matmult: Matrix -> Matrix -> Matrix.
- What happens when we call it with matrices of the wrong dimensions?
- matmult $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is well-typed, but will throw an

IllegalArgumentException or some other kind of runtime error, or maybe it will crash even less gracefully.

Matrix multiplication with dependent types

- In a language with dependent types we can create a type Matrix n m of $n \times m$ matrices and give multiplication the type matmult : $(n : \mathbb{N}) \rightarrow (m : \mathbb{N}) \rightarrow (k : \mathbb{N}) \rightarrow$ Matrix n m \rightarrow Matrix m k \rightarrow Matrix n k
- Now matmult is a function which takes five arguments: the three matrix dimensions and the two matrices themselves.
- After giving it the dimensions of the first matrix from the previous slide, matmult 2 2 has type (k : N) → Matrix 2 2 → Matrix 2 3 → Matrix 2 3.
- It is clear that matmult 2 2 k $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is not well-typed for any k, because the last argument is of type Matrix 3 3, but an argument of type Matrix 2 k was expected.

Array access

- When accessing the *i*-th element of an array, *i* must be smaller than the length of the array.
- How to model this in our favourite programming language without dependent types?
- We have a type Array A of arrays whose elements are of type A and we can access its elements with a function get: Array A -> int -> A.
- What happens, when i is greater than the length of the array?
 Or, what happens when i is negative?
- get [| 'a'; 'b'; 'c'] 5 is well-typed, but will throw an IndexOutOfBoundsException or result in a segmentation fault.

Array access with dependent types 1/2

- In a language with dependent types we can have a type Array
 A n of arrays holding elements of type A and whose length is the natural number n.
- Then we have a few possibilities to model the type of get.
- get : $(n : \mathbb{N})$ -> Array A n -> $(i : \mathbb{N})$ -> i < n -> A.
- In this variant, the fourth argument of get is a proof that the index isn't out of bounds (we will cover proofs in the next lecture).
- We can't prove 5 < 3, so we don't have any proof to feed into get 3 [| 'a'; 'b'; 'c' |] 5 : 5 < 3 -> Char.

Array access with dependent types 2/2

- get : (n : \mathbb{N}) -> Array A n -> (i : \mathbb{N} {i < n }) -> A.
- In this variant we use refinement types (which we will cover later today) to automatically guarantee that i isn't out of bounds.
- get 3 [| 'a'; 'b'; 'c' |] 5 is not well-typed, because the typechecker can't prove 5 < 3, and thus 5 is not of type $\mathbb{N}\{5 < 3\}$.

Greetings 0000000