日本国特許庁 PCT/JP2004/000488 JAPAN PATENT OFFICE TPO4488 21.01.04

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 1月21日

出 願 番 号 Application Number:

人

特願2003-012671

[ST. 10/C]:

[JP2003-012671]

0 5 MAR 2004

出 願
Applicant(s):

矢崎総業株式会社

PRIORITY DOCUMENT
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 2月19日

【書類名】

特許願

【整理番号】

P-43649

【提出日】

平成15年 1月21日

【あて先】

特許庁長官殿

【国際特許分類】

CO1F 5/14

CO1F 5/22

C08K 3/10

CO8K 3/22

【発明者】

【住所又は居所】 静岡県裾野市御宿1500 矢崎部品株式会社内

【氏名】

小玉 耕司

【発明者】

【住所又は居所】 長崎県長崎市横尾四丁目7-5

【氏名】

江頭 誠

【特許出願人】

【識別番号】 000006895

【氏名又は名称】 矢崎総業株式会社

【代理人】

【識別番号】

100105647

【弁理士】

【氏名又は名称】 小栗 昌平

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100105474

【弁理士】

【氏名又は名称】

本多 弘徳

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 1

100108589

【弁理士】

【氏名又は名称】 市川 利光

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100115107

【弁理士】

【氏名又は名称】 高松 猛

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100090343

【弁理士】

【氏名又は名称】 栗宇 百合子

【電話番号】

03-5561-3990

【手数料の表示】

【予納台帳番号】 092740

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0002922

【プルーフの要否】

眊

【書類名】

明細書

【発明の名称】 水酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒 子、それらの製造方法、それらの表面処理方法、およびそれらを用いた樹脂組成

【特許請求の範囲】

【請求項1】 マグネシウム塩と金属水酸化物との反応により合成されたこ とを特徴とする水酸化マグネシウム。

【請求項2】 マグネシウム塩と金属水酸化物とを10~100℃の温度範 囲で反応させたことを特徴とする請求項1記載の水酸化マグネシウム。

【請求項3】 粒径が10nm~10μmの範囲であることを特徴とする請 求項1記載の水酸化マグネシウム。

【請求項4】 反応性を有するシリコーンにより表面処理されたことを特徴 とする請求項1記載の水酸化マグネシウム。

【請求項5】 合成時に同時に表面処理されたことを特徴とする請求項4記 載の水酸化マグネシウム。

【請求項6】 反応性を有するシリコーンを含む溶液で表面処理されたこと を特徴とする請求項4記載の水酸化マグネシウム。

【請求項7】 マグネシウム塩と金属水酸化物とを反応させることを特徴と する水酸化マグネシウムの製造方法。

【請求項8】 マグネシウム塩と金属水酸化物とを10~100℃の温度範 囲で反応させることを特徴とする請求項7記載の水酸化マグネシウムの製造方法 0

【請求項9】 得られる水酸化マグネシウムの粒径が10nm~10μmの 範囲であることを特徴とする請求項7記載の水酸化マグネシウムの製造方法。

【請求項10】 マグネシウム塩と金属水酸化物とをシリカ粒子の存在下で 反応させて得られたことを特徴とする水酸化マグネシウム・シリカ複合化粒子。

【請求項11】 マグネシウム塩と金属水酸化物との反応により水酸化マグ ネシウムを合成した後の分散液とシリカを合成した後の分散液とを混合して得ら れたことを特徴とする水酸化マグネシウム・シリカ複合化粒子。

【請求項12】 水酸化マグネシウムとシリカを機械的に混合して得られたことを特徴とする水酸化マグネシウム・シリカ複合化粒子。

【請求項13】 水酸化マグネシウムとシリカを溶媒でスラリー状にして得られたことを特徴とする水酸化マグネシウム・シリカ複合化粒子。

【請求項14】 マグネシウム塩と金属水酸化物とを $10\sim100$ ℃の温度範囲で反応させたことを特徴とする請求項10 または11 記載の水酸化マグネシウム・シリカ複合化粒子。

【請求項15】 粒径が $10 \text{ nm} \sim 10 \text{ }\mu\text{m}$ の範囲であることを特徴とする請求項 $11 \sim 13$ のいずれかに記載の水酸化マグネシウム・シリカ複合化粒子。

【請求項16】 反応性を有するシリコーンにより表面処理されたことを特徴とする請求項11~13のいずれかに記載の水酸化マグネシウム・シリカ複合化粒子。

【請求項17】 製造時に同時に表面処理されたことを特徴とする請求項16記載の水酸化マグネシウム・シリカ複合化粒子。

【請求項18】 反応性を有するシリコーンを含む溶液で表面処理されたことを特徴とする請求項16記載の水酸化マグネシウム・シリカ複合化粒子。

【請求項19】 マグネシウム塩と金属水酸化物とをシリカ粒子の存在下で 反応させることを特徴とする水酸化マグネシウム・シリカ複合化粒子の製造方法。

【請求項20】 マグネシウム塩と金属水酸化物との反応により水酸化マグネシウムを合成した後の分散液とシリカを合成した後の分散液とを混合することを特徴とする水酸化マグネシウム・シリカ複合化粒子の製造方法。

【請求項21】 水酸化マグネシウムとシリカを機械的に混合することを特徴とする水酸化マグネシウム・シリカ複合化粒子の製造方法。

【請求項22】 水酸化マグネシウムとシリカを溶媒でスラリー状にすることを特徴とする水酸化マグネシウム・シリカ複合化粒子の製造方法。

【請求項23】 マグネシウム塩と金属水酸化物とを10~100℃の温度 範囲で反応させることを特徴とする請求項19または20記載の水酸化マグネシ ウム・シリカ複合化粒子の製造方法。 【請求項24】 得られる水酸化マグネシウム・シリカ複合化粒子の粒径が 10 nm~10 μmの範囲であることを特徴とする請求項19~22のいずれかに記載の水酸化マグネシウム・シリカ複合化粒子の製造方法。

【請求項25】 水酸化マグネシウムまたは水酸化マグネシウム・シリカ複合化粒子を反応性を有するシリコーンにより表面処理することを特徴とする表面処理方法。

【請求項26】 水酸化マグネシウムまたは水酸化マグネシウム・シリカ複合化粒子の合成または製造時に同時に表面処理することを特徴とする請求項25記載の表面処理方法。

【請求項27】 反応性を有するシリコーンを含む溶液で表面処理することを特徴とする請求項25記載の表面処理方法。

【請求項28】 請求項 $1\sim6$ のいずれかに記載の水酸化マグネシウムまたは請求項 $10\sim18$ のいずれかに記載の水酸化マグネシウム・シリカ複合化粒子と樹脂とを含有することを特徴とする樹脂組成物。

【請求項29】 水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有することを特徴とする樹脂組成物。

【請求項30】 水酸化マグネシウム粒子が表面処理されていることを特徴とする請求項29に記載の樹脂組成物。

【請求項31】 水酸化マグネシウム粒子がステアリン酸で表面処理されていることを特徴とする請求項30に記載の樹脂組成物。

【請求項32】 水酸化マグネシウム粒子が請求項1~6のいずれかに記載のものであることを特徴とする請求項29に記載の樹脂組成物。

【請求項33】 シリカ粒子が乾式シリカまたは湿式シリカであることを特徴とする請求項29に記載の樹脂組成物。

【請求項34】 シリカ粒子が乾式シリカであることを特徴とする請求項3 3に記載の樹脂組成物。

【請求項35】 シリカ粒子がメチル基で表面処理されていることを特徴とする請求項29に記載の樹脂組成物。

【請求項36】 水酸化マグネシウム粒子とシリカ粒子とを合計で30~5

0wt%含有することを特徴とする請求項29に記載の樹脂組成物。

【請求項37】 シリカ粒子を2~20wt%含有することを特徴とする請 求項36に記載の樹脂組成物。

【請求項38】 樹脂が低密度ポリエチレンであることを特徴とする請求項 28または29に記載の樹脂組成物。

【請求項39】 請求項28または29に記載の樹脂組成物からなるシース 層を備える電線。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、水酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒子、そ れらの製造方法、それらの表面処理方法、およびそれらを用いた樹脂組成物、電 線に関する。詳細には、難燃性に優れ、かつ耐磨耗性、その他の強度や弾性率等 も良好な樹脂組成物、電線とすることができる水酸化マグネシウム、水酸化マグ ネシウム・シリカ複合化粒子、それらの製造方法、それらの表面処理方法、およ びそれらを用いた樹脂組成物、電線に関する。

[0002]

【従来の技術】

電線被覆材等の樹脂組成物の技術分野において、水酸化マグネシウムは無毒性 、低発煙性、非腐食性の優れた難燃剤として、従来のハロゲン系難燃剤に代わり 、近年、その使用量が増加している(例えば、特許文献 1 参照。)。しかし、水 酸化マグネシウム粒子の粒径は、通常 10μm以上であり、このような粒径の水 酸化マグネシウム粒子は、ベースとなるポリマーに対する分散が十分でなく水酸 化マグネシウムを添加したプラスチック複合体の機械的物性や成形特性を低下さ せることが問題となっている。

[0003]

また、水酸化マグネシウムがその難燃性を発揮するにはポリマーに対して約6 0 w t %もの高濃度の添加が要求され、このような高濃度の水酸化マグネシウム を添加したプラスチック複合体は、やはりその機械的物性や成形特性が低下して

しまうという問題がある(例えば、特許文献 2 参照。)。これは水酸化マグネシウムの多量添加によるポリマーの相対量の減少と、水酸化マグネシウム自体の親水性に起因している。

また、これらの問題を解決するために、高級脂肪酸等による水酸化マグネシウム表面の疎水化や、各種の助剤の混合による水酸化マグネシウム添加量の低減が試みられている(例えば、特許文献3参照。)。しかしながら、このような試みを行なっても、十分満足できる樹脂組成物を得ることはできなかった。

[0004]

【特許文献1】

特開平2000-63583号公報(第1-2頁)

【特許文献2】

特開平2001-288313号公報 (第2頁)

【特許文献3】

特開平2002-128966号公報 (第1-2頁)

[0005]

【発明が解決しようとする課題】

本発明者等は、上記の従来の技術の問題点を解決し、難燃性に優れ、かつ耐磨 耗性、その他の強度や弾性率等も良好な樹脂組成物、電線とすることができる水 酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒子、それらの製造方法 、それらの表面処理方法、およびそれらを用いた樹脂組成物、電線を提供するこ とを目的とする。

[0006]

【課題を解決するための手段】

本発明者は、上記の目的を達成するために鋭意検討した結果、水酸化マグネシウムの合成方法を工夫することにより通常よりも小さい粒径のものが得られることと、樹脂組成物にシリカ粒子を共添加することにより従来よりも水酸化マグネシウムの添加量を少なくできることを見出し、本発明を成すに至った。

即ち、本発明は以下の構成からなるものである。

[0007]

- (1) マグネシウム塩と金属水酸化物との反応により合成されたことを特徴とす る水酸化マグネシウム。
- (2)マグネシウム塩と金属水酸化物とを10~100℃の温度範囲で反応させ たことを特徴とする前記(1)の水酸化マグネシウム。
- (3) 粒径が10 nm~10 μmの範囲であることを特徴とする前記(1)の水 酸化マグネシウム。
- (4) 反応性を有するシリコーンにより表面処理されたことを特徴とする前記 (1)の水酸化マグネシウム。
- (5)合成時に同時に表面処理されたことを特徴とする前記(4)の水酸化マグ ネシウム。
- (6) 反応性を有するシリコーンを含む溶液で表面処理されたことを特徴とする 前記(4)の水酸化マグネシウム。

[0008]

- (7) マグネシウム塩と金属水酸化物とを反応させることを特徴とする水酸化マ グネシウムの製造方法。
- (8)マグネシウム塩と金属水酸化物とを10~100℃の温度範囲で反応させ ることを特徴とする前記(7)の水酸化マグネシウムの製造方法。
- (9)得られる水酸化マグネシウムの粒径が10nm~10μmの範囲であるこ とを特徴とする前記(7)の水酸化マグネシウムの製造方法。

[0009]

- (10) マグネシウム塩と金属水酸化物とをシリカ粒子の存在下で反応させて得 られたことを特徴とする水酸化マグネシウム・シリカ複合化粒子。
- (11) マグネシウム塩と金属水酸化物との反応により水酸化マグネシウムを合 成した後の分散液とシリカを合成した後の分散液とを混合して得られたことを特 徴とする水酸化マグネシウム・シリカ複合化粒子。
- (12)水酸化マグネシウムとシリカを機械的に混合して得られたことを特徴と する水酸化マグネシウム・シリカ複合化粒子。
- (13)水酸化マグネシウムとシリカを溶媒でスラリー状にして得られたことを 特徴とする水酸化マグネシウム・シリカ複合化粒子。

[0010]

- (14)マグネシウム塩と金属水酸化物とを10~100℃の温度範囲で反応さ せたことを特徴とする前記(10)または(11)の水酸化マグネシウム・シリ
- (15) 粒径が10 n m \sim 10 μ mの範囲であることを特徴とする前記(11) .~(13)のいずれかの水酸化マグネシウム・シリカ複合化粒子。
 - (16) 反応性を有するシリコーンにより表面処理されたことを特徴とする前記
- (11)~(13)のいずれかの水酸化マグネシウム・シリカ複合化粒子。
- (17) 製造時に同時に表面処理されたことを特徴とする前記(16)の水酸化 マグネシウム・シリカ複合化粒子。
- (18) 反応性を有するシリコーンを含む溶液で表面処理されたことを特徴とす る前記(16)の水酸化マグネシウム・シリカ複合化粒子。

[0011]

- (19)マグネシウム塩と金属水酸化物とをシリカ粒子の存在下で反応させるこ とを特徴とする水酸化マグネシウム・シリカ複合化粒子の製造方法。
- (20)マグネシウム塩と金属水酸化物との反応により水酸化マグネシウムを合 成した後の分散液とシリカを合成した後の分散液とを混合することを特徴とする 水酸化マグネシウム・シリカ複合化粒子の製造方法。
- (21)水酸化マグネシウムとシリカを機械的に混合することを特徴とする水酸 化マグネシウム・シリカ複合化粒子の製造方法。
- (22) 水酸化マグネシウムとシリカを溶媒でスラリー状にすることを特徴とす る水酸化マグネシウム・シリカ複合化粒子の製造方法。

[0012]

- (23)マグネシウム塩と金属水酸化物とを10~100℃の温度範囲で反応さ せることを特徴とする前記(19)または(20)の水酸化マグネシウム・シリ カ複合化粒子の製造方法。
- (24) 得られる水酸化マグネシウム・シリカ複合化粒子の粒径が10nm~1 0 μmの範囲であることを特徴とする前記(19)~(22)のいずれかの水酸 化マグネシウム・シリカ複合化粒子の製造方法。

[0013]

- (25)水酸化マグネシウムまたは水酸化マグネシウム・シリカ複合化粒子を反 応性を有するシリコーンにより表面処理することを特徴とする表面処理方法。
- (26) 水酸化マグネシウムまたは水酸化マグネシウム・シリカ複合化粒子の合 成または製造時に同時に表面処理することを特徴とする前記(25)の表面処理 方法。
- (27) 反応性を有するシリコーンを含む溶液で表面処理することを特徴とする 前記(25)の表面処理方法。

[0014]

 $(2\ 8)$ 前記 $(1)\sim(6)$ のいずれかの水酸化マグネシウムまたは前記 $(1\ 0)$)~(18)のいずれかの水酸化マグネシウム・シリカ複合化粒子と樹脂とを含 有することを特徴とする樹脂組成物。

[0015]

- (29)水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有することを特徴と する樹脂組成物。
- (30)水酸化マグネシウム粒子が表面処理されていることを特徴とする前記 (29)の樹脂組成物。
- (31)水酸化マグネシウム粒子がステアリン酸で表面処理されていることを特 徴とする前記(30)の樹脂組成物。
- (32)水酸化マグネシウム粒子が前記(1)~(6)のいずれかのものである ことを特徴とする前記(29)の樹脂組成物。

[0016]

- (33) シリカ粒子が乾式シリカまたは湿式シリカであることを特徴とする前記
- (29)の樹脂組成物。
- (34) シリカ粒子が乾式シリカであることを特徴とする前記(33)の樹脂組 成物。
- (35) シリカ粒子がメチル基で表面処理されていることを特徴とする前記 (2 9)の樹脂組成物。
- (36) 水酸化マグネシウム粒子とシリカ粒子とを合計で30~50wt%含有

することを特徴とする前記(29)の樹脂組成物。

(37) シリカ粒子を2~20wt%含有することを特徴とする前記(36)の 樹脂組成物。

[0017]

- (38)樹脂が低密度ポリエチレンであることを特徴とする前記(28)または
- (29)の樹脂組成物。
- (39) 前記(28) または(29) の樹脂組成物からなるシース層を備える電 線。

[0018]

本発明の水酸化マグネシウムは、マグネシウム塩と金属水酸化物との反応によ り合成されたことにより、粒径が10nm~10μmの範囲の従来よりも小さい ものとなり、ベースとなるポリマーに対する分散が良好となり、該水酸化マグネ シウムを添加したプラスチック複合体の機械的物性や成形特性を低下させること がなくなった。

[0019]

また、水酸化マグネシウ粒子とシリカ粒子と樹脂とを含有する樹脂組成物は、 水酸化マグネシウムの添加量が40wt%以下であっても難燃性が十分となるた め、樹脂成分に対する水酸化マグネシウムの量が多くなり過ぎず、機械的物性や 成形特性を低下させることがなく、寧ろ、降伏強度及び伸び率等を向上させるこ とができた。該樹脂組成物が、比較的少量の水酸化マグネシウム添加量で難燃性 が向上した理由としては、明確ではないが、樹脂中に分散しているシリカ粒子が 、該樹脂組成物の燃焼時に溶融したポリマー(樹脂)の移動を妨げるため、ドリ ッピングを防ぎ水酸化マグネシウムの難燃効果を向上させたと考えられる。

[0020]

【発明の実施の形態】

以下、本発明について詳細に説明する。

マグネシウム塩と金属水酸化物との反応により合成される水酸化マグネシウム の製造方法としては、マグネシウム塩と金属水酸化物を1:1~1:0.5(マグネシウ ム塩:金属水酸化物)モルの範囲の水溶液にて行なうことが好ましい。ここで、

マグネシウム塩に対し金属水酸化物のモル比が1より多い場合は、金属水酸化物 が反応系内に残り使用時の特性に悪影響を与えることがある。また、0.5未満の 場合は、水酸化マグネシウムの粒子径が大きくなるばかりか、収率が悪くなるこ とがあり、量産に向いていない場合がある。

[0021]

また、水溶液濃度は0.1mol/リットル~10mol/リットル、温度10~120℃ にて 反応を行なうことが好ましい。水溶液濃度が0.1mol/リットル未満の場合は、収 率に対する水の使用量が多くかつ、処理時間が長くかかり量産的でないことがあ る。10mol/リットル以上の場合は、水溶液粘度が高くなり作業性に悪影響を及ぼ すことがある。

[0022]

反応後、余分なイオンを取り除き乾燥させることにより水酸化マグネシウムを 得ることが出来る。

余分なイオンを取り除く方法としては、特に限定はされないが、遠心分離機、 プレス、イオン透過膜、限外濾過膜等の方法が利用できる。

乾燥の方法としては、等に限定されないがオープン、スプレードライ、スラリ ードライ、アグロマスタ等が周知であり、適宜利用できる。

上記の様にして合成された水酸化マグネシウムは、非常に微細で樹脂との複合 化において、機械特性、耐磨耗性、難燃性を向上させることが可能となる。

[0023]

水酸化マグネシウムとシリカの複合化は、以下の方法が挙げられる。

- 1) 水酸化マグネシウム合成時にシリカ粒子を添加し、共に乾燥させる方法。
- 2) 水酸化マグネシウムを合成した分散液と別にシリカを合成した分散液を混合 して、乾燥させる方法。
- 3) 水酸化マグネシウムとシリカを機械的に混合させる方法。
- 4) 水酸化マグネシウムとシリカを溶媒でスラリー状にし乾燥させる方法。

[0024]

1) の方法として、マグネシウム塩または金属水酸化物の水溶液またはその両 方の水溶液にシリカをそのまま、または水溶液としたものを添加しておき、前記

の水酸化マグネシウム合成方法に基づき反応後、乾燥させる。

この時、添加するシリカの粒径は特に制限はないが、後に樹脂との複合化を考 慮すると $lnm\sim l_{\mu}$ mが適当である。

2) の方法として、水酸化マグネシウムを合成した分散液にシリカをそのまま または分散液としたものを添加後、乾燥させる。

この時、添加するシリカの粒径は特に制限はないが、後に樹脂との複合化を考 慮すると1nm~1mが適当である。

[0025]

- 3) の方法として、水酸化マグネシウムとシリカをボールミル、アトライタ、 メカノフュージョン、アグロマスタ、ジェットミル、カウンタージェットミル等 の機器を用いて製造することが出来る。
- 4) の方法として、2) と同意であるが、合成水酸化マグネシウム以外の市販 の水酸化マグネシウムを原料と用いた場合で、方法は2)と同じである。
- 上記1)~4)のいずれの方法でも水酸化マグネシウム・シリカ複合化粒子は 製造可能であり、その形態は水酸化マグネシウムにシリカの微粒子が取り巻くよ うに付いた状態となっている。

[0026]

本発明に用いられるマグネシウム塩としては、特に限定されないが、例えば塩 化マグネシウム等が好ましい。

また、本発明に用いられる金属水酸化物としては、特に限定されないが、例え ば水酸化ナトリウム等が好ましい。

[0027]

上記水酸化マグネシウム粒子および水酸化マグネシウム・シリカ複合化粒子は 表面処理されていても良い。

表面処理により該粒子に付与される物質としては特に限定されないが、反応性 を有するシリコーン、ステアリン酸等が挙げられる。

[0028]

反応性を有するシリコーンとしては、特に限定されないが、ジメチルシリコー ンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーン

オイル、アミノ基、エポキシ基、カルボキシル基、カルビノール基、シラノール 基、メタクリル基、メルカプト基、フェノール基等の官能基を有する有機変性シ リコーンオイル等が挙げられる。

上記の反応性を有するシリコーンは、それ自身が持つ官能基によって、水酸化 マグネシウムの分散性を向上させる。またこれらのシリコーンは焼成時にガラス 成分(SiO2)となり、難燃性を向上させる作用も有する。

[0029]

以下に、水酸化マグネシウム粒子および水酸化マグネシウム・シリカ複合化粒 子の表面処理方法について説明する。

1) 粒子合成時に同時に表面処理する方法

粒子合成反応後、余分なイオンを除去した後、分散液中に表面処理剤を溶媒と 共に添加し、乾燥後100~200℃の温度で、数分から2時間の範囲で反応さ せる方法。

2) 溶液で表面処理する方法

粒子を、表面処理剤を含む溶液に含侵させ、粒子全体が表面処理剤で覆われた 後、乾燥させ100~200℃の温度で、数分から2時間の範囲で反応させる方 法と表面処理剤を含む溶液のミスト内をくぐらせた粒子を乾燥後100~200 ℃の温度で、数分~2時間の範囲で反応させる方法。 等が用いられる。

[0030]

次に、水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有する樹脂組成物に ついて説明する。

水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有する該樹脂組成物に用い られる水酸化マグネシウム粒子としては、前記の通り表面処理されていることが 好ましいが、中でもステアリン酸で表面処理されていることが好ましい。

水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有する樹脂組成物に用いら れるシリカ粒子としては、特に限定されず、乾式シリカまたは湿式シリカのいず れでも良いが、乾式シリカが非常に微細であることから、樹脂中への分散が良好 となり好ましい。また、該シリカ粒子は、メチル基(CH3基)で表面処理され

ていることが好ましい。メチル基で表面処理された乾式シリカを用いると、樹脂 とシリカの密着性が向上され、さらに難燃性が向上する。

[0031]

該樹脂組成物において、水酸化マグネシウム粒子とシリカ粒子との含有量は特 に限定されないが、水酸化マグネシウム粒子およびシリカ粒子に対するポリマー の相対量の減少による機械的物性や成形特性を低下させることなく、また、十分 な難燃性が付与されるようになるように適宜選択されるが、水酸化マグネシウム 粒子とシリカ粒子との合計で30~50wt%の範囲であることが好ましく、よ り好ましくは40wt%前後である。

また、シリカ粒子の含有量は2~20wt%の範囲であることが好ましく、よ り好ましくは5wt%である。

[0032]

水酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒子またはシリカ粒 子と樹脂とを含有する樹脂組成物の製造方法(粒子と樹脂の複合化方法)として は、特に限定されないが、2軸ロールミル、ニーダー、バンバリーミキサー、イ ンターミックス、1軸、2軸混練機等の一般的に用いられる加工機械を使用する ことができる。

[0033]

水酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒子またはシリカ粒 子と樹脂とを含有する樹脂組成物に用いられる樹脂材料としては、特に限定され ないが、ポリ塩化ビニル (PVC)、ポリエチレン (PE)、ポリプロピレン (PP)、テフロン(登録商標)、ポリエチレンテレフタレート(PET)、ナイ ロン(PA)、エチレンーエチルアクリレート共重合体(EEA)、エチレンー 酢酸ビニル共重合体(EVA)、ポリエーテルスルホン(PES)、ポリイミド 、ポリフェニレンスルフィド(PPS)、ポリエーテルニトリル(PEN)、オ レフィン系エラストマー、スチレン系エラストマー、ポリブチレンテレフタレー ト (PBT)、ナイロン6 (PA6)、ナイロン66 (PA66)、ナイロン4 6 (PA46)、ナイロン6T (PA6T (HPA))、ポリフェニレンエーテ ル (PPE)、ポリオキシメチレン (POM)、ポリアリレート (PAR)、ポ

リエーテルイミド(PEI)、液晶ポリマー(LCP)、環状オレフィン共重合 体(COC)、ポリメチルペンテン(PMP)、PPアロイ、PA66アロイ、 ポリカーボネート (PC)、アクリル、シリコーン、エチレンープロピレンージ エン三元共重合体(EPDM)、クロロプレン、ウレタン、塩素化ポリエチレン 、ニトリルまたはニトリルゴム(NBR)及びこれらの樹脂やゴムを2種類以上 組み合せた樹脂やゴム等が挙げられる。

水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有する樹脂組成物に用いら れる樹脂としては、低密度ポリエチレンが好ましい。

[0034]

水酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒子またはシリカ粒 子と樹脂とを含有する樹脂組成物には、その他の添加剤を加えても良い。添加剤 としては特に限定されないが、老化防止剤、酸化防止剤、滑剤、充填剤等の配合 薬品を使うことが出来る。

上記樹脂組成物には、さらに、珪酸マグネシウム、炭酸カルシウム等の添加剤 を加えることで、コストダウン等を図ることが可能となる。

[0035]

【実施例】

以下に、本発明を実施例により説明するが、本発明はこれらに限定されるもの ではない。

〔実施例1〕

0.75mol/リットルの塩化マグネシウム溶液と1.5mol/リットル の水酸化ナトリウム溶液を混合して60℃で反応させた。その結果、粒径が50 ~150nmの水酸化マグネシウムを得ることができた。

〔比較例1〕

水酸化マグネシウム鉱石(ブルーナイト)からの再合成を行なった。その結果 、得られた水酸化マグネシウムの粒径は500~1500nmの範囲であった。

[0036]

〔実施例2〕

ベースポリマーとして低密度ポリエチレン(LDPE、 三井化学製:ミラソン353

0, 密度:0.924 g/cm³) を、また実施例1で得られた水酸化マグネシウムをステ アリン酸で表面処理したものと下記表1に示す各種の乾式および湿式シリカを用 いて複合体を作製した。

[0037]

【表1】

*****	粒子径 (μm)	かさ密度 (g/L)	表面処理
乾式シリカ1 乾式シリカ2	0.012 0.012	50	-
湿式シリカ 1 湿式シリカ 2	9-12	120-160	CH3基

[0038]

まず、ベースポリマーを120℃~130℃の2本ロールを用いて溶融させ、これに 所定量の水酸化マグネシウムとシリカを添加して混練し、複合体シートを作製し た。さらにこのシートを150×150 mm、厚さ1 mmまたは3 mmの型枠に入れ、圧縮 成形してサンプルシートを作製した。成形条件は170℃で30 kg、5分間の予備加 圧の後、150 kgで2分間とし、その後、室温まで5分で冷却した。難燃性および機 械的特性を評価するために、このサンプルシートから試験片を作製した。難燃性 測定の試験片は、3 mm厚のシートより80×50 mmの短冊を打ち抜き、JIS K 7201-2に従いD型キャンドル燃焼試験機(東洋精機製作所製)を用いて酸素指数を評価 した。機械的特性は、JIS K 7113に規定されるダンベル3号型試験片を1 mm厚シ ートより打ち抜き、ストログラフR型(東洋精¥機製作所製)を用いて、引っ張 り試験を行なった。引っ張り速度は50 mm/minとし、試験片中央部に20 mm間隔の 標線をつけ、破断時の伸びを実測した。

[0039]

図1にLDPEにステアリン酸で表面処理した水酸化マグネシウムを35 wt%、各種 シリカをそれぞれ5 wt%添加した複合体シートの酸素指数の結果を示す。また、 比較のために、LDPEにステアリン酸表面処理水酸化マグネシウムのみをそれぞれ 40 wt%、50 wt%添加した場合の結果も示す。これらの結果から、水酸化マグネシ

ウムのみを添加した場合よりも、その一部をシリカで置き換えた方が酸素指数は高くなり、難燃性が向上した。特に乾式シリカでこの効果は大きく、CH3基で表面処理した乾式シリカでは難燃性がさらに向上した。これは非常に微細な乾式シリカ粒子がLDPE中に分散しており、複合体燃焼時にシリカ粒子が溶融したポリマーの移動を妨げるため、ドリッピングを防ぎ水酸化マグネシウムの難燃効果を向上させたと考えられる。CH3基で表面処理した乾式シリカを用いると、LDPEとシリカの密着性が向上され、さらに難燃性が向上したと考えられる。一方、湿式シリカでは、シリカ粒子が大きくなるため乾式シリカに比べて難燃性が劣ったと考えられる。

[0040]

図2に、LDPE-ステアリン酸表面処理水酸化マグネシウムーCH3表面処理乾式シリカ複合体の酸素指数に及ぼす乾式シリカの添加量の影響を示す。この場合、LDPEに対する水酸化マグネシウムと乾式シリカの添加量の合計は常に40 wt%の一定とした。この結果、乾式シリカが5 wt%のときに酸素指数が最も高くなることがわかった。乾式シリカの添加量が5 wt%以下の場合は、燃焼時のポリマーの移動の抑制効果が小さく、一方、シリカの添加量が5 wt%以上では、水酸化マグネシウムの相対量が少なくなり、難燃効果が減少して酸素指数が増加したと考えられる。

[0041]

これらの複合体の降伏強度と伸び率の関係を図3に示す。乾式シリカの添加は複合体の降伏強度を増大させ、伸び率を向上させた。特に、伸び率は少量のシリカの添加で大幅に向上し、また、添加量が増加してもあまり低下しなかった。降伏強度はシリカの添加量に比例して増加した。これはポリマー中に微細分散するシリカによる補強効果のためと考えられる。

以上の結果からCH3表面処理乾式シリカの添加はLDPE - 水酸化マグネシウム複合体の難燃性を向上させるために有効であることわかった。また、複合体の強度および伸び率も改善されることがわかった。

[0042]

【発明の効果】

ページ: 17/E

本発明の水酸化マグネシウムは、マグネシウム塩と金属水酸化物との反応によ り合成されたことにより、粒径が10nm~10μmの範囲の従来よりも小さい ものとなり、ベースとなるポリマーに対する分散が良好となり、該水酸化マグネ シウムを添加したプラスチック複合体の機械的物性や成形特性を低下させないも のとすることができた。

また、本発明の水酸化マグネシウ粒子とシリカ粒子と樹脂とを含有する樹脂組 成物は、水酸化マグネシウムの添加量が40wt%以下であっても難燃性が十分 となるため、樹脂成分に対する水酸化マグネシウムの量が多くなり過ぎず、機械 的物性や成形特性を低下させることがなく、寧ろ、降伏強度及び伸び率等を向上 させることができた。

【図面の簡単な説明】

【図1】

実施例2における、水酸化マグネシウムと各種シリカを添加した複合体シート の難燃性を示すグラフ。

【図2】

実施例2における、水酸化マグネシウムとシリカを添加した複合体シートのシ リカ添加量と難燃性の関係を示すグラフ。

【図3】

実施例2における、水酸化マグネシウムとシリカを添加した複合体シートのシ リカ添加量と伸び率および降伏強度の関係を示すグラフ。

【書類名】

図面

【図1】

【図2】

【図3】

【書類名】

要約書

【要約】

【課題】 難燃性に優れ、かつ耐磨耗性、その他の強度や弾性率等も良好な樹脂組成物、電線とすることができる水酸化マグネシウム、水酸化マグネシウム・シリカ複合化粒子、それらの製造方法、それらの表面処理方法、およびそれらを用いた樹脂組成物、電線を提供する。

【解決手段】 マグネシウム塩と金属水酸化物との反応により、またはマグネシウム塩と金属水酸化物とをシリカ粒子の存在下で反応等により得られ、樹脂とともに含有させて樹脂組成物とすることができる。水酸化マグネシウム粒子とシリカ粒子と樹脂とを含有することを特徴とする樹脂組成物は、そのシリカ粒子がメチル基で表面処理された乾式シリカであることが好ましい。

【選択図】 なし

ページ:

1/E

特願2003-012671

出願人履歴情報

識別番号

[000006895]

1. 変更年月日 [変更理由]

1990年 9月 6日 新規登録

住 所 氏 名

東京都港区三田1丁目4番28号

矢崎総業株式会社