

the midpoint map

Use algebra

$$T(z1,...,z7) = \left(\frac{z1+z2}{2},...,\frac{z7+z1}{2}\right)$$

T(a1 E1 + ... a7 E7) = a1 L1 E1 + ... + a7 L7 E7

Primer on Projective Geometry:

$$RP^2 = \frac{1}{2}$$
 space of lines in R^3 through the origin.

 \circ $R^2 \subset RP^2$ affine patch

Invertible linear transformations act on RP2 so as to map LINES to LINES

A projectively natural "midpoint".

The projective heat map:

Coordinates on P_5 : first pass

Theorem:

On C5 the map has the regular pentagon as a global attractor.

Proof:

The map increases the product invariant F.

Tweak the coords:

Replace (x,y) by (B(x),B(y)) so that

$$= (0,0)$$

$$B(x) = \frac{ax+b}{cx+d}$$

=(infinity,infinity)

Theorem 1:

Almost every point of P5 is mapped into C5 after finitely many steps. Hence almost every point of P5 becomes asymptotically regular up to projective transformations.

Theorem 2:

WYSIWYG, except possibly for a countable union of algebraic curves.

