Energijske tehnologije završni ispit

TE. Tlak je pare na ulazu u turbinu 4 MPa i temperatura 500 °C. Na izlazu iz turbine (realni proces) tlak je 100 kPa i sadržaj pare 1. Poznato je za paru na ulazu u turbinu: h=3445 kJ/kg i s=7,091 kJ/kgK; i veličine zasićenog stanja na donjem tlaku: h'=417,5 kJ/kg, s'=1,303 kJ/kgK, h"=2675 kJ/kg, s"=7,360 kJ/kgK. Temperatura je okolice 25 °C. Odrediti:

1.TE - realni rad turbine.

a) 770 kJ/kg

2.TE - eksergiju pare na ulazu u turbinu.

d) 850 kJ/kg

3.HE Odredite moguću godišnju proizvodnju hidroelektrane derivaciiske izarađene vodotoku s godišnjom krivuljom trajanja protoka Q=300-50/3*t (t [mjeseci], $Q[m^3/s]$) i Q-Hdijagramom H=400-3/2*Q ($Q([m^3/s],$ Zahvat se ostvaruje na 100 m n. v, a veličina izgradnje jednaka je očekivanom srednjem godišnjem protoku na tom mjestu. Postrojenje HE izrađeno je na 10 m n.v. Brana je visine 50 m s ugrađenim zapornicama koje se reguliraju tako da propuštaju višak vode u vodotok. Tijekom pogona nije potrebno poštivati biološki minimum. Mjesec ima 730 sati. Utjecaj ostalih veličina koje nisu zadane zanemariti.

c) 2105 GWh

4.HE Pribranska elektrana ima zahvat vode na 500 m n.v.i nazivni protok od 45 m³/s. Visina vode iza brane je 54 m u odnosu na elevaciju zahvata. Turbina promjera 6 m nalazi se na 483 m n.v. a razina donje vode je na 474 m n.v. Koliko se % poveća snaga elektrane nakon dodavanja difuzora promjera 9 m uz sve ostale parametre iste?

a) 12,8%

17.06.2008.

5.0E Plinska elektrana snage 120 MW radi u kombiniranom ciklusu uz učinkovitost od 50% i faktor opterećenja 0,25. Kao gorivo koristi plin ogrjevne moći 33 MJ/m³ koji volumno sadrži 98% metana. Kolika je masa ugljičnog dioksida (CO₂) ispuštenog iz elektrane tijekom jedne godine?

d) 110×10^3 t

EE. Za neki elektroenergetski sustav poznato je dnevno opterećenje prema podacima u tablici:

t [n]	0-4	4-6	6–9	9-12	
P [MW]	600	700	900	1500	
t [h]	12–14	14–18	18–22	22–23	23–24
P [MW]	1300	1200	1400	900	600

Sustav raspolaže jednom nuklearnom elektranom snage 500 MW; termoelektranom na ugljen snage 400 MW od čega je 100 MW tehnički minimum; dvije protočne hidroelektrane koje mogu tijekom cijelog dana davati ukupno 400 MW i jednom reverzibilnom (crpnoakumulacijskom) hidroelektranom instalirane snage 400 MW.

6.EE Koliko sati dnevno termoelektrana radi na 100 MW?

a) 11 h

7.EE Ukoliko dnevnu krivulju trajanja opterećenja aproksimiramo s tri pravca, odredi α , ako je α =0,9× β .

c) 0,62

8.EE Ukoliko je ukupna učinkovitost ciklusa skladištenia energije reverzibilnoi u hidroelektrani 0,48, koliko je energije ostalo uskladišteno promatranom danu. u (Pretpostavke: nema ograničenja spremnicima vode; uskladištenom energijom smatramo ekvivalentnu količinu električne energije koja se može dobiti iz spremnika).

Energijske tehnologije završni ispit

9.NE Nuklearna elektrana PWR tipa ima 241 gorivni element u jezgri. Svaki gorivni element sadrži 264 gorivne šipke dužine 4,2 m. Nominalna linearna gustoća snage u jezgri je 15,5 kW/m. Reaktor ima 4 rashladne petlje. Volumni protok u svakoj petlji je 28330 m³/h a porast tlaka na rashladnoj pumpi je 686 kPa. Ako znamo da se rashladnim tornjevima odvodi 2621 MW topline iz kondenzatora koliki je termički stupanj djelovanja opisane elektrane?

d) 37,0%

10.NE Nuklearni reaktor snage 4250 MWt radi na punoj snazi 14 mjeseci (mjesec ima 30 dana). Koliki je potreban maseni protok rashladnog sredstva da smo u stanju odvesti ostatnu toplinu 4 dana nakon obustave reaktora, a da pri tome porast temperature rashladnog sredstva nije viši od 15 K? Specifični toplinski kapacitet vode iznosi 5,2 kJ/kgK.

d) 153 kg/s

11.GE Binarna geotermalna TE u Costa Rici ima organski Rankineov kružni proces u kome je maseni protok 190 kg/s, a specifične entalpije na ulazu u turbinu 530 kJ/kg, na izlazu iz turbine 453 kJ/kg i na izlazu iz pojne pumpe 18,2 kJ/kg. Specifični rad pojne pumpe iznosi 3,14 kJ/kg. Odrediti potreban protok geotermalne vode uz entalpiju od 697 kJ/kg na ulazu i 569 kJ/kg na izlazu iz postrojenja.

a) 760 kg/s

17.06.2008.

12.VE Vjetroagregat snage 1,0 MW, promjera lopatica 60 m, radio je tijekom godine na prosječnim brzinama i postotku nazivne snage:

v _i [m/s]	5-11	12-24	<4 i >25
t _i [%]	40	15	45
p _i [%]	60	100	0

Odrediti proizvedenu el. en.

e) 3,42 GWh

Izračunati ukupnu potrebnu površinu za proizvodnju 10% godišnjih potreba za el. en. u Hrvatskoj (1700 GWh) korištenjem tri različita izvora energije u zadatcima koji slijede:

13.VE Korištenjem vjetroagregata (VA) nazivne snage 2 MW i faktora opterećenja 31%. Nazivna snaga se postiže kod brzine vjetra od 11 m/s i c_{pe}=0,4. Računati da je ukupna potrebna površina za svaki VA 20 puta veća od površine kruga koji opisuju lopatice. (Gustoća zraka 1,225 kg/m³.)

b) 38,4 km²

14.SE Korištenjem Sunčeve TE s ogledalima i tornjem ukupnog stupnja djelovanja 16% uz godišnju ozračenost na horizontalnu površinu od 1600 kWh/m². Računati s udjelom direktne komponente Sunčeva zračenja od 85% i dobitkom od praćenja ogledala od 35%. Ukupna površina je 3 puta veća od aktivne površine ogledala.

c) 17,4 km²

15.BM Korištenjem TE na biomasu ogrjevne vrijednosti 11 MJ/kg prinosa 15 t/ha svake godine. Ukupni stupanj djelovanja TE iznosi 31%. Računati samo potrebnu obradivu površinu.

d) 1196 km²