Scilab Textbook Companion for High Voltage Engineering Theory and Practice by M. A. Salam, H. Anis, A. El Morshedy and R. Radwan¹

Created by
Meenakshi Pundir
M.tech
Others
Vellore institute of Technology
College Teacher
None
Cross-Checked by
Reshma Konjari

July 17, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: High Voltage Engineering Theory and Practice

Author: M. A. Salam, H. Anis, A. El Morshedy and R. Radwan

Publisher: Marcel Dekker, NY

Edition: 2

Year: 2000

ISBN: 0-8247-0402-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Electric Fields	5
3	Ionization and Deionization Processes in gases	10
4	Electrical Breakdown of Gases	20
5	The Corona Discharge	27
12	High Voltage Cables	37
16	High voltage generation	45
19	Applications of high voltage engineering in industry	56

List of Scilab Codes

Exa 2.8.5	calculate max field at sphere surface	5
Exa 2.8.6	charge on each bundle max min and avg sur-	
	face fields avg max surface voltage gradient	
		6
Exa 2.8.7	electric field induced at x equal to 1	8
Exa 2.8.8	vol of insulator required for graded design .	8
Exa 2.8.11	determine potentials within the mesh	9
Exa 3.7.1	speed of air molecules	10
Exa 3.7.2	total translational KE	10
Exa 3.7.3	max pressure in chamber	11
Exa 3.7.4	temperature at which avg KE of He atoms in	
	gas become 1 eV	12
Exa 3.7.5	volume of 1 kg of He	12
Exa 3.7.6	density of ions at dist equal to mfp and five	
	times mfp	13
Exa 3.7.7	mean square velocity of He atoms	13
Exa 3.7.8	energy of free electrons	14
Exa 3.7.9	avg separation of atoms and avg vol occupied	
	by one atom	14
Exa 3.7.10	KE in eV and velocity of phototelectron	15
Exa 3.7.11	liquid photon absorption coefficient	15
Exa 3.7.12	binding energy of the gas	16
Exa 3.7.14	diameter of the argon atom	16
Exa 3.7.15	mobility of electrons	17
Exa 3.7.17	ion density point 02 m away in both directions	
	at $25 \deg C$	17
Exa 3.7.18	diameter of cloud after drifting a distance of	
	point 05	18

Exa 3.7.19	a mean free path of electrons in nitrogen and	
	b ionization potential of nitrogen	18
Exa 4.10.1	a alpha b no of electrons emitted from cath-	
	ode per sec	20
Exa 4.10.2	electrode spacing	21
Exa 4.10.3	size of developed avalanche	21
Exa 4.10.4	distance it must travel to produce an avalanche	21
Exa 4.10.5	min distance measured from the cathode	22
Exa 4.10.7	total secondary coefficient of ionization at NTP	22
Exa 4.10.8	cal the first ionization coefficient and the sec	
	ionization coefficient	23
Exa 4.10.9	distance and voltage at the transition to a self	
	sustained discharge	24
Exa 4.10.10	breakdown voltage	25
Exa 4.10.11	electron drift velocity and ionization coefficient	25
Exa 4.10.12	a travel time of positive ions b max frequency	26
Exa 5.6.2	breakdown voltage	27
Exa 5.6.3	repeat problem 2 for gas pressures of 3 and 5	
	atmospheres	28
Exa 5.6.5	cal corona onset voltage	29
Exa 5.6.6	for gas pressure of 3 and 5 atmp cal corona	
	onset voltage	30
Exa 5.6.8	Cal positive and negative corona onset volt-	
	ages	31
Exa 5.6.9	cal corona onset voltage at standard temper-	
	ature and pressure	33
Exa 5.6.10	cal corona power loss and corona current	34
Exa 5.6.11	cal corona onset voltage and the effective ra-	
	dius of the corona envelope	35
Exa 12.17.1	radial thickness and operating voltage	37
Exa 12.17.2	value of conductor radius optimum value of r	38
Exa 12.17.3	resistivity of insulating material	38
Exa 12.17.4	KVAr	39
Exa 12.17.5	capacitance per km the KVAr	39
Exa 12.17.6	effective electrical parameters	40
Exa 12.17.7	induced sheath voltage per km	41
Exa 12.17.8	max stress and best position and voltage on	
	the intersheaths	49

Exa 12.17.9	find voltage at max stress and find max stress
Exa 12.17.10) max stress in rubber and in paper
Exa 16.7.1	ripple voltage voltage drop avg output voltage
	and ripple factor
Exa 16.7.2	ripple voltage voltage drop avg output voltage
	and ripple factor
Exa 16.7.3	ripple voltage voltage drop avg output voltage
	ripple factor and optimum no of stages for
	min voltage drop
Exa 16.7.4	find the inductance and input voltage and
	power to the transformer
Exa 16.7.5	charging current and the potential difference
	between dome and the base
Exa 16.7.6	wave eq parameters and wave generated
Exa 16.7.7	wave eq parameters and wave generated
Exa 16.7.8	wave shaping resistors R1 and R2 and also
	circuit efficiency
Exa 16.7.9	values of wave shaping resistors and max out-
	put voltage and energy rating of the generator
Exa 16.7.10	find front and tail times of the lightning im-
	pulse produced
Exa 16.7.11	parameters and eq for generated impulse cur-
	rent
Exa 19.18.1	determine separation between the particles af-
	ter falling 1m
Exa 19.18.2	cal pumping pressure
Exa 19.18.4	find vertical displacement of the drop on the
	print surface
Exa 19.18.5	electric stress and charge density on the mi-
	crophone electrode
Exa 19.18.6	space charge limited current density and cur-
	rent density at collecting electrode
Exa 19.18.7	thickness of the layer
Exa 19.18.8	velocity of the ejected ions and propulsion
	force
Exa 19.18.9	position of the particle at the exit end of the
	plate
Exa 19.18.10) minimum voltage required to generate a charge

Chapter 2

Electric Fields

Scilab code Exa 2.8.5 calculate max field at sphere surface

```
1 //Example 5 // Ch 2
2 clc;
3 clear;
4 close;
5 // given data :
6 R=0.25; // in meter sphere radius
7 R1=0.75; //gap b/w two spheres in meters
8 S=1; // in meter is equal to R1+R2
9 S1=0.067; // in meter
10 \quad S2 = 0.0048;
11 S3=0.01795;
12 \quad S4 = 0.00128;
13 Epsilon_o=8.85*1e-12;
14 Q1 = %pi*Epsilon_o;
15
16 Q=Q1/(2*%pi*Epsilon_o);
17 Qp=S1*Q;
18 Qpp=S2*Q;
19 F1=Q/R^2+Qp/(R-S1)^2+Qpp/(R-S1)^2;
20
21 \ Qs = 0.25 * Q;
```

```
22 Qsp=0.01795*Q;
23 Qspp=0.00128*Q;
24 F2=Qs/(R1-S1)^2+Qsp/(R1-S1)^2+Qspp/(R1-S1)^2
25
26 E=F1+F2
27
28 printf("Max field at surface is %e V/m",E)
29 // NOTE: answer in the book is wrong as Q = Q1/2*%pi
    *Epsilon_o
```

Scilab code Exa 2.8.6 charge on each bundle max min and avg surface fields avg max

```
1 // Example 6 // Ch 2
2 clc;
3 clear:
4 close;
5 // given data
6 V=400*10^3; // applied voltage in kV
7 r_eq=0.08874; // equivalent radius in meters
8 H=12; // bundle height in meters
9 d=9; // pole to pole spacing in meters
10 Epsilon_o=8.85*10^-12;
11 x = sqrt((2*H)^2 + d^2);
12 Q = (V*2*\%pi*Epsilon_o) / [(log(2*H/r_eq)) - log(x/d)]
     )];
13 q = Q/2;
14 printf("charge per bundle is \%e C/m \n",Q)
15 printf("charge per subconductor is e C/m n,q)
16 r = 0.0175; //subconductor radius in meters
17 R = 0.45; //subconductor-to-subconductor spacing in
     meters
18 q = 2.44*1e-6; //charge per subconductor in C/m
19 d = 9; //in meters
20 Epsilon_o = 8.85*10^-12; //in F/m
21 x = [(1/r) + (1/R)];
```

```
22 y = [(1/r) - (1/R)];
23
24 Max = (q/(2*\%pi*Epsilon_o))*(x); //maximum surface
      field in V/m
25 printf("maximum surface field is \%e V/m \n ", Max)
26
27 Min = (q/(2*\%pi*Epsilon_o))*[y]; //minimum surface
      field in V/m
28 printf("minimum surface field is \%f V/m \n", Min)
29
30 Avg = (q/(2*\%pi*Epsilon_o))*[1/r]; //average surface
       field in V/m
31 printf("average surface field is \%f V/m \n", Avg)
32
33 E_01 = [(q/(2*\%pi*Epsilon_o))*[1/r + 1/R]] - [(q/(2*))*[1/r + 1/R]]
     pi*Epsilon_o)*[1/(d+r)+1/(d+R+r)]]; // field at
      outer point of subconductor in V/m
34 disp(E_01, "field at outer point of subconductor 1(V
      /m) = ")
35 E_02 = [(q/(2*\%pi*Epsilon_0))*[1/r + 1/R]] - [(q/(2*
     pi*Epsilon_o)*[1/(d-R-r)+1/(d-r)];
36 disp(E_02, "field at outer point of subconductor 2(V
     /m) = ")
37 E_l1 = [(q/(2*%pi*Epsilon_o))*[1/r - 1/R] - (q/(2*
      pi*Epsilon_o)*[1/(d-r)+1/(d+R-r)];
38 disp(E_11, "field at inner point of subconductor 1(V
     /m) = ")
39 \text{ E}_{12} = [(q/(2*\%pi*Epsilon_o))*[1/r - 1/R] - (q/(2*))
     pi*Epsilon_o)*[1/(d-R-r)+1/(d+R)];
40 disp(E_12, "field at inner point of subconductor 2(V
     /m) = ")
41 Avg = (E_01 + E_02)/2 // average maximum gradient in
      V/m
42 disp(Avg, "average maximum gradient is")
44 //answers in the book is wrong for subconductor 2,
     El1 and El2
```

Scilab code Exa 2.8.7 electric field induced at x equal to 1

```
1 // Example 7// Ch 2
2 clc;
3 clear;
4 close;
5 // given data
6 q = 1; // line charge in C/m
7 Epsilon_o=8.85*10^-12;
8 x1 = [1/3 + 1/7]; // infinite sequence
9 x2 = [1 + 1/5 + 1/9]; // infinite sequence
10 x3 = [1/5 + 1/9]; // infinite sequence
11 E = (q/(2*%pi*Epsilon_o))*[1 - x1 + x2 + x3 - x1];
12 printf("total electric field is %e V/m", E)
13 // answer by this program is the round of value
```

Scilab code Exa 2.8.8 vol of insulator required for graded design

```
1 // Example 7// Ch 2
2 clc;
3 clear;
4 close;
5 // given data
6 z=10; //length of graded cylindrical bushing in cm
7 a=2; // radius of conductor inside bushing in cm
8 V=150; //AC voltage in kV
9 E_bd=50; // field strength in kV/cm
10 x0 = 2;
11 x1 = 6.24;
12 t_gd = V*sqrt(2)/E_bd;
13 printf("thickness of graded design is %f cm \n", t_gd)
```

Scilab code Exa 2.8.11 determine potentials within the mesh

```
1 //Example 11// Ch 2
2 clear all
3 clc
4 close
5
6 phi1=0;
7 phi3=10;
9 phir=[phi1;phi3];
10 sl = [1.25 -0.014; -0.014 0.8381]; //elements of global
       stiffness matrix
11 sr = -[-0.7786 -0.4571; -0.4571 -0.3667]; // elements of
      global stiffness matrix
12
13 phil=inv(sl)*sr*phir
15 printf ('value of potentials at the nodes are \%f \n',
     phil)
```

Chapter 3

Ionization and Deionization Processes in gases

Scilab code Exa 3.7.1 speed of air molecules

```
1 // Example 1// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 R=8314; // gas constant in J/kg.mol.K
7 T=300; // temperature 27 deg C, 27+293=300K
8 M=32; // oxygen is diatomic
9 v = sqrt(3*R*(T/M));
10 printf("speed of oxygen molecule %f m/s",v)
11 // Note: Value of R is given wrong in book
12 // So answer in the book is wrong
```

Scilab code Exa 3.7.2 total translational KE

```
1 // Example 2// Ch 3
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 R=8314; // gas constant in J/kg.mol.K
7 T=298; //in kelvin
8 M=32; // oxygen is diatomic
9 m = 2*10^-3; // in kg
10 p=1.01*10^5; // 1 atm=1.01*10^5 N/m2
11 G = (m*R*T)/(M*p); //volume of gas
12
13 x=(3/2)*p; //no. of molecules per unit volume where x
     =N*0.5*m*v^2 is given as (3/2)*p
14 printf("volume of gas \%e m^3 \n",G)
15 KE = x*G; //total translational kinetic energy
16 printf ("total translational kinetic energy is %f J \
     n", KE)
17 // Note: Value of G is calculated in book is wrong
```

Scilab code Exa 3.7.3 max pressure in chamber

```
1  // Example 3// Ch 3
2  clc;
3  clear;
4  close;
5  // given data
6  R=8314; // gas constant in J/kg.mol.K
7  T=300; // temperature 27 deg C, 27+293=300K
8  me=0.10; //mean free path in meters
9  rm=1.7*10^-10 //molecular radius in angstrom
10  M=28 //im mole^-1
11  m0=4.8*10^-26 //mass of nitrogen molecule
12  N = 1/[4*%pi*((rm)^2)*me]; // no. of molecules in gas
13  printf("no. of molecules %e",N)
```

Scilab code Exa 3.7.4 temperature at which avg KE of He atoms in gas become 1 eV

```
1 // Example 4// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 v = 1.6*10^-19; // avg kinetic energy in j
7 k = 1.38*10^-23 //boltzmann constant in J/K
8 T = (2*v)/(3*k);
9 printf("temperature %e K",T)
```

Scilab code Exa 3.7.5 volume of 1 kg of He

```
1 // Example 6// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 m = 1; // in kg
7 M=2.016; // molecular weight of helium
8 k = 8314// gas constant in J/kg.mol.K
9 p = 1.01*10^5; // 1 atm=1.01*10^5 N/m2
10 T = 273; // in kelvin
11 G = m*k*T/(M*p); // volume of 1kg of helium in m^3
12 printf("volume of 1kg of helium is %f m^3",G)
```

Scilab code Exa 3.7.6 density of ions at dist equal to mfp and five times mfp

```
1 // Example 6// Ch 3
2 \text{ clc};
3 clear;
4 close;
5 // given data
6 z1=-1; //ion at a distance equal to mean free path, -
     x = mfp
7 z2=-5; //ion at a distance equal to five times the
     mean free path, -x=5mfp
8 / n0 is the density of ions at the origin
9 n1 = \exp(z1); //density of ions at distance equal to
     the mean free path
10 n2 = \exp(z2); // density of ions at distance equal to
     five times the mean free path
11 printf ("density of ions at distance equal to the
     mean free path %fn0",n1)
12 printf ("density of ions at distance equal to five
     times the mean free path \%fn0",n2)
```

Scilab code Exa 3.7.7 mean square velocity of He atoms

```
1  // Example 7// Ch 3
2  clc;
3  clear;
4  close;
5  // given data
6  N = 178*10^-3 //gas density in kg/m^3
7  p = 1.01*10^5 // pressure
8  v = sqrt((3*p)/N); // mean square velosity of helium atoms
```

```
9 printf("mean square velosity of helium atoms %f m/s", v)
```

Scilab code Exa 3.7.8 energy of free electrons

```
1 //Example 8// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 k = 1.38*10^-21; //boltzmanns constant
7 T = 293; // temperature in K
8 e = 1.6*10^-19;
9 E = (1.5*k*T)/e;
10 printf("energy of free electron %f eV",E)
```

 ${\it Scilab \ code \ Exa \ 3.7.9}$ avg separation of atoms and avg vol occupied by one atom

```
1 //Example 9// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 d = 0.075; //density of solid atomic hydrogen in g/cm^3
7 N_A = 6.0224*10^23; //1g of H consists of N_A atoms
8 N = N_A*d; // number of atoms/cm^3
9 printf("no. of atoms/cm^3 %e",N)
10 x = 1/N;//avg volume occupied by one atom in cm^3
11 y = (x)^(1/3);//avg seperation between atoms in cm
12 printf("avg vokume occupied by one atom %e cm^3",x)
13 printf("avg seperation between atoms %e cm",y)
```

Scilab code Exa 3.7.10 KE in eV and velocity of phototelectron

```
1 //Example 10// Ch 3
2 \text{ clc};
3 clear;
4 close;
5 // given data
6 l=200*10^-10;// wavelength in angstrom
7 h=4.15*10^-15; // planks constant
8 c=3*10^8;//speed of light
9 me=9.11*10^-31;
10 BE=13.6; //binding energy in eV
11 PE=(h*c)/1; //in eV
12 printf ("photon enegy %f eV", PE)
13 KE = PE-BE; //in eV
14 printf("kinetic energy of photoelectron %f ev", KE)
15 ve=sqrt((2*KE*1.6*10^-19)/me);
16 printf("velosity of photoelectron %e m/s", ve)
```

Scilab code Exa 3.7.11 liquid photon absorption coefficient

```
1 //Example 11// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 I = 1;
7 I0 = 6;
8 x=20; //in cm
9 u = -(1/x)*log(I/I0);
10 printf("absorption coefficient %f cm^-1",u)
```

Scilab code Exa 3.7.12 binding energy of the gas

```
1 //Example 12// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 c=3*10^8;
7 h=4.15*10^-15;
8 lmax=1000*10^-10;
9 We=(c*h)/lmax;
10 printf("binding energy of gas %f eV", We)
```

Scilab code Exa 3.7.14 diameter of the argon atom

```
1 //Example 14// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 p=1.01*10^5/760; // 1 torr in N/m2
7 k=1.38*10^-23;
8 T=273; //in Kelvin
9 n=85*10^2; //no of collisions per meter
10 N=p/(k*T);
11 printf("no of gas molecules %e atoms/m^3",N)
12 r_a=sqrt(n/(%pi*N*1));
13 printf("diameter of argon atom %e m",r_a)
```

Scilab code Exa 3.7.15 mobility of electrons

```
//Example 15// Ch 3
clc;
clear;
close;
// given data
Le=3;//current flow in amperes
    A=8*10^-4;//area of the electrodes in m^2
V=20;//voltage across the electrodes
    d=0.8;//spacing between the electrodes in meters
    n_e=1*10^17;//electron density in m^-3
    e=1.6*10^-19;
ke=(Ie*d)/(A*V*n_e*e);
printf("mobility of electrons %f m^2/sV",ke)
```

Scilab code Exa 3.7.17 ion density point 02 m away in both directions at 25 deg C

```
1 //Example 17// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 E = 5; // electric field in V/m
7 n_o = 10^11; //ion density in ions/m3
8 T = 293; // in kelvin
9 z = 0.02; // distance in meters
10 e = 1.6*10^-19; //in couloumb
11 k = 1.38*10^--23; // in m2 kg s-2 K-1
12 n1 = n_o*exp((-e*E*z)/(k*T)); //ion density 0.02m
      away
13 n2 = n_o*exp((e*E*z)/(k*T)); //ion density -0.02m
      away
14 printf("ion density 0.02m away %e ions/m<sup>3</sup> \n",n1)
15 printf ("ion density -0.02m away %e ions/m<sup>3</sup> \n",n2)
```

 ${\it Scilab\ code\ Exa\ 3.7.18}$ diameter of cloud after drifting a distance of point 05

```
1 //Example 18// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 E = 250; // electric field in V/m
7 r1 = 0.3*10^-3//intial diameter of cloud in meters
8 \text{ k} = 1.38*10^-23; // \text{in m2 kg s} - 2 \text{ K} - 1
9 T = 293; //in kelvin
10 e = 1.6*10^-19; // in couloumb
11 z = 0.05; // drift distance in meters
12 r = (6*k*T*z)/(e*E); //diameter\ before\ drift
13 printf("diameter before drift %e m \n",r)
14 r2 = sqrt (r1^2 + r); // diamter after drifting a
      distance
15 printf("diameter after drift %e m \n",r2)
16 // round off value calculated for r and r2
```

Scilab code Exa 3.7.19 a mean free path of electrons in nitrogen and b ionization

```
1 //Example 19// Ch 3
2 clc;
3 clear;
4 close;
5 // given data
6 a = 9003; // constant in m-1kPa-1
7 B = 256584; // in V/m. kPa
8 p = 0.5; // in kPa
9 M = 1/(a*p); // mean free path in meters
```

- 10 printf("mean free path of electron in nitrogen %e m"
 ,M)
- 11 Vi = B/a; //ionization potential of nitrogen
- 12 printf("ionization potential of nitrogen %f V", Vi)

Chapter 4

Electrical Breakdown of Gases

Scilab code Exa 4.10.1 a alpha b no of electrons emitted from cathode per sec

```
1 //Example 1// Ch 4
2 clc;
3 clear;
4 close;
5 // given data
6 I1 = 2.7*10^-8; //steady state current in Amperes
7 V = 10; // \text{voltage in kV}
8 d1 = 0.005; //spacing between the plane electrodes
     in meters
9 d2 = 0.01; // spacing incresed in meters
10 I2 = 2.7*10^-7; //increased steady state current in
     amperes
11 e = 1.6*10^-19;
12 x = 1/(d2-d1);
13 y = log(I2/I1);
14 alpha = x*y; //ionization coefficient
15 printf ("ionization coefficient \%f m^-1", alpha)
16 IO = I1*exp(-alpha*d1);//photoelctric current
17 printf("photoelectric current %e A", IO)
18 \ n0 = I0/e;
19 printf("no of electrons emitted from cathode %e
```

Scilab code Exa 4.10.2 electrode spacing

```
//Example 2// Ch 4
clc;
clear;
clear;
close;
// given data
I = 10^9;
alpha = 460.5; // ionization coefficient
d = log(I)/alpha; // electrode spacing in meter
printf("electrode spacing %f m",d)
```

$Scilab \ code \ Exa \ 4.10.3$ size of developed avalanche

```
1 //Example 3// Ch 4
2 clc;
3 clear;
4 close;
5 // given data
6 a=4*1e4;
7 b=15*1e5;
8 lb=0;
9 ub=0.0005;
10 i=integrate('(a-b*sqrt(x))','x',lb,ub)
11 as=exp(i);//Avalanche size
12 printf('Avalache size %f',as)
```

Scilab code Exa 4.10.4 distance it must travel to produce an avalanche

```
1 //Example 4// Ch 4
2 clc;
3 clear;
4 close;
5 // given data
6
7 a=7.5*1e5;
8 b=-4*1e4;
9 c=59.97;
10 p = poly([c, b,a], 'x', 'c');
11 alpha=roots(p);
12 printf('The distance it must travel to produce an avalanche of 1E9 electrons is (in m) %f',alpha(2)
)
```

Scilab code Exa 4.10.5 min distance measured from the cathode

```
1 clear all
2 clc
3 close
4
5 a=7.5*1e5;
6 b=-4*1e4;
7 c=43.75;
8 p = poly([c, b,a], 'x', 'c');
9 alpha=roots(p);
10 printf('Minimum distance measured from the cathode at which an electron may start an avalanche having a size of 1E19 is (in m) %f',alpha(2))
```

Scilab code Exa 4.10.7 total secondary coefficient of ionization at NTP

```
1 //Example 7// Ch 4
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 V = 9*10^3; //in V
7 d = 0.002; //two parallel plates spaced by distance d
       in meters
8 // 1/mean free path is equal to a*p where a is
      constant
9 s = 11253.7; // constant value in <math>m^-1kPa^-1
10 B = 273840; //constant value in V/mkPa
11 p = 101.3; // in kPa
12 E = V/d;
13 t = (-B*p)/E;
14 alpha = p * s * exp(t);
15 printf("electric field %e V/m \setminus n",E)
16 printf ("ionization cofficient \%f m^-1 \n", alpha)
17 z = 1/(\exp(alpha*d)-1); //\sec condary coefficient of
      ionization
18 printf ("secondary coefficient of ionization \%f \n", z
      )
```

 ${
m Scilab\ code\ Exa\ 4.10.8}$ cal the first ionization coefficient and the sec ionization

```
10 d1 = 0.005; //in meters
11 d2 = 0.01504; //in meters
12 d3 = 0.019; //in meters
13 // first ionization coefficients alpha1, alpha2 and
     alpha3
14 alpha1 = log(x)/d1;
15 alpha2 = log(y)/d2;
16 alpha3 = log(w)/d3;
17 printf ("first ionization coefficient \%f m^-1 \n",
     alpha1)
18 printf("second ionization coefficient \%f m^-1 \n",
     alpha2)
19 printf ("third ionization coefficient \%f m^-1 \n",
     alpha3)
20 // E/p and p were maintained constant so at d3 the
     secondary ionization coefficient mechanism must
     be acting without any change in alpha
21 z = (w - \exp(alpha1*d3))/(w*(\exp(alpha1*d3)-1));//
     secondary ionization coefficient
22 printf ("secondary ionization coefficient %f \n",z)
```

Scilab code Exa 4.10.9 distance and voltage at the transition to a self sustained

```
1 //Example 9// Ch 4
2 clc;
3 clear;
4 close;
5 // given data
6 E = 1596; //in V/m
7 p = 0.133; //in kPa
8 a = E/p; // in V/m kPa kept constant as in example 8
9 alpha1 = 39.8; //from example 8
10 z = 0.0363; //from example 8
11 d = (1/alpha1)*[log(1/z + 1)]; // distance at the transition to a self-sustained discharge
```

Scilab code Exa 4.10.10 breakdown voltage

```
1 //Example 10// Ch 4
2 clc;
3 clear;
4 close;
5 // given data
6 d = 0.001; //in meters
7 p = 101.3; //in kPa
8 alpha = (17.7 + \log(d))/d; //ionization coefficient
     in m^-1
9 x = alpha/p; //in m^-1kPa^-1
10 s = 11253.7; // constant in m-1kPa-1
11 B = 273840; //constant in V/m kPa
12 E1 = p/((-1/B)*log(x/s)); // in V/m
13 Vs1 = E1*d; //break down voltage in V
14 printf ("ionization coefficient %f m^-1 \n", alpha)
15 printf ("electric field %e V/m \n", E1)
16 printf ("breakdown voltage %f kV \n", Vs1*10^-3)
17 E2 = 468*10^4; // in V/m
18 Vs2 = E2*d; //breakdown voltage by meel and loeb's eq
19 printf("breakdown voltage %f kV \n", Vs2*10^-3)
```

 ${\it Scilab\ code\ Exa\ 4.10.11}$ electron drift velocity and ionization coefficient

```
1 //Example 11// Ch 4
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 d = 0.05; //electron current of an avalanche in
        uniform field gap of d in meters
7 t = 0.2*10^-6; //current decline abruptly in t sec
8 tc = 35*10^-9; //time constant
9 ve = d/t; //electron drift velocity in m/s
10 alpha = 1/(tc*ve); //townsend's ionization
        coefficient
11 printf("electron drift velocity %e m/s",ve)
12 printf("ionization coefficient %f m^-1",alpha)
```

Scilab code Exa 4.10.12 a travel time of positive ions b max frequency

```
1 //Example 12// Ch 4
2 clc;
3 clear;
4 close;
5 // given data
6 V = 200; //alternating voltage in kV(rms)
7 x = 0.1; //uniform gap in meters
8 f = 50; //frequency of voltage in Hz
9 k = 1.4*10^-4; //mobility of positive ions in m2/s.V
10 Ea = V*sqrt(2)*10^3/x; // alternating field in V/m
11 printf("alternating field %e V/m", Ea)
12 w = k*Ea/(2*\%pi*f);
13 t = sinm(x/w)/314;
14 printf ("travel time of positive ions from one
      electrode to other %f sec",t)
15 fmax = k*Ea/(2*\%pi*x)
16 printf ("maximum frequency that can be applied %f Hz"
      ,fmax)
```

Chapter 5

The Corona Discharge

Scilab code Exa 5.6.2 breakdown voltage

```
1 //Example 2// Ch 5
2 clc;
3 clear;
4 close;
5 // given data
6 d = 0.001; //in meters
7 p = 101.3; //gas pressure in kPa
8 C = -2400.4; //constant value
9 A = 0.027; //constant value
10 As = 10^8; // avalanche size
11 //secondary ionization coefficient is much smaller
     than unity therefore ionization coefficient (
     alpha) is equal to electron attachment
      coefficient
12 E = (2400.4*p)/0.027; //alpha is equal to e-
     attachment coeff occurs at this eq
13 Vs1 = E*d; //breakdown voltage in V
14 printf ("electric field %e V/m n, E)
15 printf ("breakdown voltage %f V \n", Vs1)
16 Vs2 = (\log(As) - C*p*d)/A; //in V
17 printf ("breakdown voltage corresponding to an
```

```
avalanche size %f V \n", Vs2)

// as the avalanche self-space charge is neglected
the breakdown voltage will be same irrespective
of the polarity of the stressed plate acc. to eq
(5.4) N2>=N1;

Vspos = 9.4; //in kV when N2>=N1 in which no of e- in
second avalanche is greater than equal to no of
e- in first avalanche
printf("positive voltage breakdown %f kV \n", Vspos)
Vsneg = 9.2; //in kV when Neph >= 1 where Neph is no
of e-photoemitted from the cathode
printf("negative voltage breakdown %f kV \n", Vsneg)
```

Scilab code Exa 5.6.3 repeat problem 2 for gas pressures of 3 and 5 atmospheres

```
1 //Example 3// Ch 5
2 clc:
3 clear;
4 close;
5 // given data
6 d = 0.001; //in meters
7 p1 = 3*101.3; //gas pressure of 3 atmp in kPa
8 p2 = 5*101.3; //gas pressure of 5 atmp in kPa
9 C = 2400.4; // constant value
10 A = 0.027; //constant value
11 As = 10^8; //avalanche size
12 Vs1 = C*p1*d/A; //breakdown voltage at 3 atm
13 Vs2 = C*p2*d/A;//breakdown voltage at 5 atm
14 Vs3 = (\log(As)+C*p1*d)/A;//breakdown voltage at 3
     atm corresponding to an avalanche size
15 Vs4 = (\log(As) + C*p2*d)/A; //breakdown voltage at 5
     atm corresponding to an avalanche size
16 printf ("breakdown voltage at 3 atm \%f kV \n", Vs1
      *10^-3)
17 printf("breakdown voltage at 5 atm \%f kV \n", Vs2
```

```
*10^-3)
18 printf ("breakdown voltage at 3 atm corresponding to
     an avalanche size \%f kV \n", Vs3*10^-3)
19 printf ("breakdown voltage at 5 atm corresponding to
     an avalanche size \%f kV \n", Vs4*10^-3)
20 //acc to eq N2>=N1 and Neph>=1 with increase of gas
       pressure improves the dielectric strength of the
       gas since breakdown voltage increses with gas
21 Vs1pos = 27.5; //postive breakdown voltage at 3 atm
22 Vs1neg = 27.73; //negative breakdown voltage at 3 atm
      in kV
23 Vs2pos = 45.2; // postive breakdown voltage at 5 atm
     in kV
24 Vs2neg = 45.5; //negative breakdown voltage at 5 atm
     in kV
25 printf ("positive breakdown voltage at 3 atm %f kV \n
     ", Vs1pos)
26 printf ("negative breakdown voltage at 3 atm %f kV \n
     ", Vs1neg)
27 printf ("positive breakdown voltage at 5 atm %f kV \n
     ", Vs2pos)
28 printf ("negative breakdown voltage at 5 atm %f kV \n
     ", Vs2neg)
```

Scilab code Exa 5.6.5 cal corona onset voltage

```
1 //Example 5// Ch 5
2 clc;
3 clear;
4 close;
5 // given data
6 d=0.001;
7 a = 0.1*10^-2; //radii of concentric circle in meters
```

```
8 b = 2.1*10^-2; //radii of concentric circle in meters
9 p = 101.3; //gas pressure in kPa
10 p1=3*p;
11 p2=5*p;
12 C = -2400.4; // constant value
13 A = 0.027; // constant value
14 As = 10^8; // avalanche size
15 ri = 0.0772; //in m
16 \quad VO = [\log(10^8) - {(C*p)*(ri-a)}]*(b-a)/[A*{(1/a)-(1/a)}]
17 printf("corona onset voltage is %f kV \n", VO)
18 V0pos = 13.1; //in kV
19 V0neg = 13.7; //in kV
20 printf ("positive corona onset voltage %f kV \n",
      VOpos)
21 printf ("negative corona onset voltage %f kV \n",
      VOneg)
22
23 //acc. to eq N2>=N1 and Neph>=1 with increase of gas
       pressure improves the dielectric strength of the
       gas since breakdown voltage increses with gas
      pressure
```

 ${
m Scilab\ code\ Exa\ 5.6.6}$ for gas pressure of 3 and 5 atmp cal corona onset voltage

```
1 //Example 6// Ch 5
2 clc;
3 clear;
4 close;
5 // given data
6 d=0.001;
7 a = 0.1*10^-2; //radii of concentric circle in meters
8 b = 2.1*10^-2; //radii of concentric circle in meters
9 p = 101.3; //gas pressure in kPa
10 p1=3*p;
```

```
11 p2=5*p;
12 C = -2400.4; //constant value
13 A = 0.027; // constant value
14 As = 10^8; // avalanche size
15 ri = 0.0772; //in m
16 V01 = [\log(10^8) - {(C*p1)*(ri-a)}]*(b-a)/[A*{(1/a)}]
      -(1/ri)}];
17 V02 = [\log(10^8) - {(C*p2)*(ri-a)}]*(b-a)/[A*{(1/a)}]
      -(1/ri)}];
18 printf ("corona onset voltage at 3atmp is %f kV \n",
     V01)
19 printf ("corona onset voltage at 5atmp is \%f kV \n",
     V02)
20 V01pos = 41.9; //in kV at 3 atmp
21 V01neg = 42.2; //in kV at 3 atmp
22 V02pos = 69.2; // in kV at 5 atmp
23 V02neg = 69.8; // in kV at 5 atmp
24 printf ("positive corona onset voltage %f kV \n",
      V01pos)
25 printf ("negative corona onset voltage \%f kV \n",
     V01neg)
26 printf ("positive corona onset voltage %f kV \n",
     V02pos)
27 printf("negative corona onset voltage %f kV \n",
      V02neg)
28
  //answer given in the book is wrong
29
30 //acc to eq N2>=N1 and Neph>=1 with increase of gas
       pressure improves the dielectric strength of the
       gas since breakdown voltage increses with gas
      pressure
```

Scilab code Exa 5.6.8 Cal positive and negative corona onset voltages

```
1 //Example 8// Ch 5
```

```
2 clc;
3 clear;
4 close;
5 // given data
7 delta=1; //at standard temp and pressure
8 r=1; //radius of conductors in cm
9 s=40; //subconductor to subconductor spacing in cm
10 D=500; //phase to phase spacing in cm
11 E0=30*delta*(1+(0.3/sqrt(delta*r)));//corona onset
      field in kVpeak/cm
12 printf("corona onset field %f kVpeak/cm",E0)
13
14 V01=E0*log(D/r);//corona onset voltage using single
      conductor
15 printf ("corona onset voltage V01 is %f kVpeak", V01)
16 V01rms=V01/sqrt(2);//rms onset voltage in kV
17 printf("corona rms onset voltage V01rms %f kV",
     V01rms)
18
19 x2 = log(D /(sqrt(s*r)));
20 \text{ y2} = (1+((2*r)/s));
21
22 V02=2*E0*r*(x2/y2); //corona onset voltage using
      bundle-2 conductor arranged horizontally and
      vertically
23 printf("corona onset voltage V02 is %f kVpeak", V02)
24 V02rms=V02/sqrt(2);//rms onset voltage in kV
25 printf ("corona rms onset voltage 
m V02rms is 
m \%f kV",
     VO2rms)
26
27
28 \times 3 = \log(D /((sqrt(2)*(s)^2*r)^0.3));
29 y3 = (1+((3*sqrt(3)*r)/s));
31 V03=3*E0*r*(x3/y3);//corona onset voltage using
      bundle-3 conductor arranged at vertices of an
      upright or inverted triangle
```

```
32 printf ("corona onset voltage V03 is %f kVpeak", V03)
33 V03rms=V03/sqrt(2);//rms onset voltage in kV
34 printf("corona rms onset voltage V03rms is %f kV",
      V03rms)
35
36
37 \text{ x4} = \log(D /((sqrt(2)*(s)^3*r)^0.25));
38 y4 = (1+((4*sqrt(2)*r)/s));
39
40 V04=4*E0*r*(x4/y4); //corona onset voltage using
      bundle-4 conductor arranged at vertices of a
      square
41 printf("corona onset voltage V04 is %f kVpeak", V04)
42 V04rms=V04/sqrt(2);//rms onset voltage in kV
43 printf("corona rms onset voltage V04rms is %f kV",
     V04rms)
44
45
46 	ext{ x5} = log(D /((sqrt(2)*(s)^3*r)^0.25));
47 \text{ y5} = (1+((3*sqrt(2)*r)/s));
48
49 V05=4*E0*r*(x5/y5);//corona onset voltage using
      bundle-4 conductor arranged at vertices of a
      diamond form square
50 printf("corona onset voltage V05 is %f kVpeak", V05)
51 V05rms=V05/sqrt(2);//rms onset voltage in kV
52 printf ("corona rms onset voltage V05rms is \% f kV",
     V05rms)
53
54 //acc. to eq 5.18 in question 7 corona onset voltage
       is calculated
```

 ${
m Scilab\ code\ Exa\ 5.6.9}$ cal corona onset voltage at standard temperature and pressur

```
1 //Example 9// Ch 5
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 Deq=600; // mean geometric distance b/w conductors in cm
7 delta=1; // at standard temp and pressure
8 r=1; // radius of conductors in cm
9 E0=30*delta*(1+(0.3/sqrt(delta*r))); // corona onset field in kVpeak/cm
10 printf("corona onset field %f kVpeak/cm",E0)
11 V0=E0*log(Deq); // corona onset voltage
12 printf("corona onset voltage %f kVpeak",V0)
13 V0rms=V0/sqrt(2); // rms onset voltage in kV
14 printf("corona rms onset voltage %f kV",V0rms)
```

Scilab code Exa 5.6.10 cal corona power loss and corona current

```
1 //Example 10// Ch 5
2 clc:
3 clear;
4 close;
5 // given data
6 m1=0.92; //smoothness coefficient
7 m2=0.95; //weather coefficient
8 Deq=600; //mean geometric distance b/w conductors in
9 V = 275; //line operating at voltage V in kV
10 p=75; // pressure in cm Hg
11 t = 35; //in degree C
12 r=1; //radius of conductors in cm
13 delta=3.92*p/(273+t); // relative air density
14 printf ("relative air density %f", delta)
15 E0=30*delta*(1+0.3/sqrt(delta*r))*m1*m2; //corona
     onset field
```

```
16  printf("corona onset field %f kVpeak/cm",E0)
17  V0 = E0*log(Deq);//onset voltage in kVpeak
18  printf("onset voltage %f kVpeak",V0)
19  V0rms=V0/sqrt(2);//rms onset voltage
20  printf("rms onset voltage %f kV",V0rms)
21  V0ll=V0rms*sqrt(3);//onset voltage line to line
22  printf("line to line onset voltage %f kV line to line",V0ll)
23  K= 0.05;
24  f=50;//in Hz
25  Vph=(V*10^3)/sqrt(3);
26  Pc=3.73*K*f*(Vph^2)*10^-5/(Deq/r)^2;
27  printf("corona power loss %f kW/(cond.km)",Pc)
28  Ic=Pc/Vph;
29  printf("corona current %e A/km",Ic)
```

 ${f Scilab\ code\ Exa\ 5.6.11}$ cal corona onset voltage and the effective radius of the co

```
1 //Example 10// Ch 5
2 clc;
3 clear;
4 close;
5 // given data
6 m1=0.9;//smoothness coefficient
7 m2=0.9; //weather coefficient
8 r=3.175; //radius of conductor in cm
9 V=525; //rated voltage in kV where no corona is
10 delta=1; // relative air-density factor
11 Deq=112.63; //in cm
12 E0=30*delta*(1+0.3/sqrt(delta*r))*m1*m2;//corona
     onset field
13 printf("corona onset field %f kVpeak/cm",E0)
14 E0rms=E0/sqrt(2);
15 printf ("rms corona onset field %f kV/cm", E0rms)
```

```
16  V0=E0*r*log(Deq);
17  printf("corona onset voltage %f kV", V0)
18  V011=V0*sqrt(3);
19  printf("corona onset voltage lin to line %f kV", V011
     )
20  V1=2.5*V;//line to line voltage higher than V0 so
          corona is present on the conductor
21  re=5;//effective radius of corona envelope in cm
22  printf("envelope radius %f cm", re)
```

Chapter 12

High Voltage Cables

Scilab code Exa 12.17.1 radial thickness and operating voltage

```
1 //Example 1// Ch 12
2 \text{ clc};
3 clear;
4 close;
5 // given data
6 r1=2;//inner coaxial cable radius
7 r2=5;//sheath radius over the insulation
8 Em1=40; //max stress in the insulation in kV/cm
9 Em2=25; //max stress in the insulation in kV/cm
10 \text{ epsilon1=6};
11 epsilon2=4;
12 x = Em1/Em2;
13 r=x*((epsilon1*r1)/(epsilon2));//radial thickness of
       the dielectric
14 printf("radial thickness of the dielectric %f cm",r)
15 inner=r-r1; //inner thickness of dielectric
16 outer=r2-r; //outer thickness of dielectric
17 printf ("inner thickness of dielectric %f cm", inner)
18 printf ("outer thickness of dielectric %f cm", outer)
19 V1=Em1*r1*log(r/r1);//voltage drop across dielectric
       in kV
```

Scilab code Exa 12.17.2 value of conductor radius optimum value of r

```
//Example 2// Ch 12
clc;
clear;
close;
// given data
V=100;//in kV
Em=55;//max permissible gradient in kV/cm
// voltage gradient at the conductor surface is inversely proportional to the core radius
r=V*sqrt(2)/Em;//conductor radius in cm
printf("conductor radius %f cm",r)
```

Scilab code Exa 12.17.3 resistivity of insulating material

```
1 //Example 3// Ch 12
2 clc;
3 clear;
4 close;
5 // given data
6 l=10*10^3; // core cable length in m
7 Res=0.5; // insulation resistance in Mohms
```

Scilab code Exa 12.17.4 KVAr

```
1 //Example 4// Ch 12
2 clc;
3 clear;
4 close;
5 // given data
6 l=10;//length of cable in km
7 C4=0.5*10^-6 * 1;//in F
8 printf("Capacitance %f F",C4)
9 f=50;//in Hz
10 V=10^4;//in V
11 Ic=2*V*2*%pi*f*C4/sqrt(3);//line charging current in A
12 chargKVA=sqrt(3)*V*Ic*10^-3;
13 printf("charging KVA %f KVAr",chargKVA)
```

Scilab code Exa 12.17.5 capacitance per km the KVAr

```
1 //Example 5// Ch 12
2 clc;
3 clear;
4 close;
5 // given data
6 C2 = 0.75/3; // capacitance between 3 core bunched together and lead sheath in uF/km
7 C3=0.56//in uf/km
```

```
8 V=33*10^3;
9 f=50;//in Hz
10 C4=0.5*(C2+C3)*10;//capacitance per km b/w any two cores
11 printf("capacitance per km b/w any two cores %f uF", C4)
12 ChargKVAr=V^2*2*%pi*f*C4/10^9;
13 printf("Charging KVAr %f KVAr", ChargKVAr)
14 //given ans in book is wrong the capacitance of 10km b/w 2 cores is 4.05uF
```

Scilab code Exa 12.17.6 effective electrical parameters

```
1 //Example 6// Ch 12
2 clc;
3 clear;
4 close;
5 // given data
6 1=85; //in km
7 r=1;//core cables of conductore radius r in cm
8 f = 50; //in Hz
9 Rex=3.0; //external radii in cm
10 Rin=2.5; //internal radii in cm
11 Rac=0.0875; //conductor AC resistance in ohms/km
12 rest=23.2*10^-6; //resistivity of lead in ohms cm
13 tc=0.004; //temperature coefficient
14 Rc=Rac*(1+tc*f)*1;//conductor resistance in ohms
15 Rsh=rest*1*10^5/(%pi*(Rex^2-Rin^2));
16 printf("conductor resistance %f ohms", Rc)
17 printf("resistance of sheath %f ohms", Rsh)
18 rsh=0.5*(Rin+Rex);//mean radius of sheath
19 D=8; //cable to cable spacing in cm
20 Xm=2*\%pi*f*2*log(D/rsh)*10^-7*l*10^3; //conductor to
     sheath mutual inductive reactance for 85km length
21 printf("inductive reactance %f ohms", Xm)
```

Scilab code Exa 12.17.7 induced sheath voltage per km

```
1 //Example 7// Ch 12
2 clc;
3 clear:
4 close;
5 // given data
6 D=15;//conductor spacing in cm
7 rsh=2.75; //sheath radius in cm
8 I=250; //current in A
9 f = 50; //in Hz
10 Xm=2*\%pi*f*2*log(D/rsh)*10^-7*10^3; //conductor to
     sheath mutual inductive reactance
11 E=I*Xm; //indused sheath field in V/km
12 printf("indused sheath field %f V/km",E)
13 E1=sqrt(3)*E; // voltage b/w sheaths when bonded at
     one end
14 printf("voltage b/w sheaths when bonded at one end
     %f V/km", E1)
```

Scilab code Exa 12.17.8 max stress and best position and voltage on the intersheat

```
1 //Example 8// Ch 12
2 clc;
3 clear;
4 close;
5 // given data
6 a=2;
7 b=5.3;
8 \text{ alpha=(b/a)}^0.33;
9 r1=1.385; //radii of intersheaths in cm
10 r2=1.92; // radii of intersheaths in cm
11 r=1;//conductor radius in cm
12 ri=2.65; //sheath of inside radius in cm
13 V=66; // voltage in kv
14 Vpeak=66*sqrt(2)/sqrt(3);//peak voltage
15 V2=Vpeak/(1+1/alpha+(1/alpha)^2);//in kV
16 V1 = (1+1/r1) * V2; //in kV
17 printf("\%f kV", V2)
18 printf("%f kV", V1)
19 Emax0=Vpeak/(r*log(ri/r));
20 printf ("max stress without sheaths \%f kV/cm", Emax0)
21 Emin0=Vpeak/(ri*log(ri/r));
22 printf ("min stress without sheaths %f kV/cm", Emino)
23 Emax=3*Emax0/(1+alpha+alpha^2);
24 printf("max stress \%f kV/cm", Emax)
25 Emin=Emax/alpha;
26 printf("min stress %f kV/cm", Emin)
```

Scilab code Exa 12.17.9 find voltage at max stress and find max stress

```
1 //Example 9// Ch 12
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 V = -18.2; // in kV
7 V1 = 45.2; // in kV
8 V2 = 23; // in kV
9
10 E1max = 2.28*(V-V1); // max stress in layers
11 E2max = 2.12*(V1-V2); // max stress in layers
12 E3max = 2.06*V2; // max stress in layers
13
14 // as E1max=E2max=E3max=Emax
15 Emax = 2.06*V2;
16 printf("max stress is %f kV", Emax)
```

Scilab code Exa 12.17.10 max stress in rubber and in paper

```
1 //Example 10// Ch 12
2 clc;
3 clear;
4 close;
5 // given data
6 a=1;//inner thickness of cable in cm
7 epsilonr1=4.5;
8 epsilonr2=3.6;
9 \text{ r1=2;} // \text{in cm}
10 b=2.65; // in cm
11 V = 53.8; //in kV
12 \operatorname{Emax1=V/(a*[log(r1)+(epsilonr1/epsilonr2)*log(1.325))}
13 printf("max stress in rubber %f kV/cm", Emax1)
14 Emax2=V/(r1*[((epsilonr2/epsilonr1)*log(r1))+ log
      (1.325)]);
15 printf("max stress in paper \%f kV/cm", Emax2)
```

Chapter 16

High voltage generation

Scilab code Exa 16.7.1 ripple voltage voltage drop avg output voltage and ripple f

```
1 clear all
2 clc
3 close
5 iload=5*1e-3;//Load current in A
  // Capacitances of Cockcroft-Waltobn type voltage
      doubler in F
8 C1=0.01*1e-6;
9 C2=0.05*1e-6;
10
11 f=50; //frequency in Hz
12 Vs=100*1e3//Supply voltage in V
13
14 //Ripple voltage in volt
15 \text{ dv=iload/(C2*f)}
16 printf('Ripple voltage in V \%f', dv)
17
18 // Voltage drop in Volt
19 Vdrop=iload/f*(1/C1+1/(2*C2))
20 printf('Voltage drop in V %f', Vdrop)
```

```
21
22 //Average output voltage
23 V_av=2*sqrt(2)*Vs-Vdrop//in V
24 printf('Avarage voltage in V %f',V_av)
25
26 //Ripple factor
27 RF=Vdrop/(2*sqrt(2)*Vs)*100//in percentage
28 printf('Ripple voltage in percentage %f',RF)
```

Scilab code Exa 16.7.2 ripple voltage voltage drop avg output voltage and ripple f

```
1
2 clear all
3 clc
4 close
6 iload=5*1e-3;//Load current in A
8 // Capacitances of Cockcroft-Waltobn type voltage
      tripler in F
9 C1=0.01*1e-6;
10 C2=0.05*1e-6;
11 C3=0.10*1e-6;
12
13 f=50; //frequency in Hz
14 Vs=100*1e3//Supply voltage in V
15
16 //Ripple voltage in V
17 dv = iload/f * (2/C1+1/C3)
18 printf('Ripple voltage in V %f', dv)
19
20 //Voltage drop in V
21 Vdrop=iload/f*(1/C2+1/C1+1/(2*C3))
22 printf('Voltage drop in V %f', Vdrop)
23
```

```
// Average output voltage in V
V_av=3*sqrt(2)*Vs-Vdrop
printf('Avarage voltage in V %f',V_av)
// Ripple factor in percentage
RF=Vdrop/(3*Vs*sqrt(2))*100
printf('Ripple voltage in percentage %f',RF)
```

Scilab code Exa 16.7.3 ripple voltage voltage drop avg output voltage ripple facto

```
1 clear all
2 clc
3 close
5 Vs = 200*1e3//Supply voltage
6 f=50//Frequency in Hz
7 n=12//Number of stages
9 C=0.15*1e-6//Each stage capacitance in F
10 iload=5*1e-3//Load current in A
11
12 //Ripple voltage in V
13 dv=iload/(f*C*2)*n*(n+1)
14 printf('Ripple voltage in V %f', dv)
15
16 // Voltage drop in V
17 Vdrop=iload/(f*C)*(2*n^3/3+n^2/2-n/6+n*(n+1)/4)
18 printf('Voltage drop in V %f', Vdrop)
19
20 // Average output voltage in V
V_{av}=2*n*sqrt(2)*Vs-Vdrop
22 printf('Avarage voltage in V %f', V_av)
23
24 //Ripple factor in percentage
25 RF=Vdrop/(2*n*Vs*sqrt(2))*100
```

```
26 printf('Ripple voltage in percentage %f',RF)
27
28 //Otimum number of stages
29 nopt=sqrt(sqrt(2)*f*C*Vs/iload)
30 printf('Optimum number of stgaes for minimum voltage drop %f',int(nopt))
```

Scilab code Exa 16.7.4 find the inductance and input voltage and power to the tran

```
1 clear all
2 clc
3 close
5 f=50; // Power frequency
6 xl=8/100;//leakage reactance
7 r=3.5/100; //resistance
8 Vc=500;//Charging voltage in kV
9 Ic=4; // Charging current in A
10 capc=100; //kVA rating of transformer
11 vhigh=250; // Voltage rating of secondary of
      transformer in kV
12 vlow=220; // Voltage rating of primary of transformer
      in V
13
14 // Reactance of cable in kiloohm
15 Xc=Vc/Ic
16
17 //Leakage recatance of transformer in kiloohm
18 XL=xl*(vhigh^2/capc)
19
20 // Additional series inductance
21 \text{ xh}=Xc-XL;
22
23 //Inductance of the required series inductor in
     Henry
```

```
24 L=xh/(2*\%pi*f)*1e3;
25 printf ('Inductance of the required series inductor
      in %f Henry \n',L)
26
27 // Total circuit resistance in kiloohm
28 R=r*(vhigh^2/capc)
29
30 //The maxium current can be supplied by transformer
      in A
31 I=capc/vhigh;
32
33 Vsec = I*R;
34 printf("exciting voltage on the transformer
      secondary \%f\ kV\ n", Vsec)
35
36 //Exciting voltage of secondary of transformer in kV
37 Vexsec=I*R;
38
39 //Input voltage to primary of transformer in V
40 Vin=Vexsec*1e3*vlow/(vhigh*1e3);
41 printf('Input voltage to primary of transformer in
      %f V \setminus n', Vin)
42
43 //Input power to transformer in kW
44 Pin=Vin*capc/vlow
45 printf ('Input power to primary of transformer in %f
     kW \setminus n', Pin)
```

Scilab code Exa 16.7.5 charging current and the potential difference between dome

```
1 clear all
2 clc
3 close
4
5 u=10//speed of belt in m/s
```

Scilab code Exa 16.7.6 wave eq parameters and wave generated

```
1 clear all
2 clc
3 close
5 C1=0.125*10^-6; //in Farad
6 C2=1*10^-9; //in Farad
7 R1=360; // in ohms
8 R2 = 544; //in ohms
9 theta = sqrt(C1*C2*R1*R2); //in usec
10 n = 1/[1+(1+(R1/R2))*(C2/C1)];
11 alpha = (R2*C1)/(2*theta*n);
12 printf ("theta parameter of wave eq \%f us \n", theta
      *10^6)
13 printf("n the parameter of circuit eq \%f \n",n)
14 printf("alpha parameter of circuit eq %f \n",alpha)
15 T2 = 10.1*theta; //duration of lightning impulse
      pulse in us
16 T1 = T2/45; //duration of lightning impulse pulse in
```

```
us
17 printf ("duration of lightning impulse pulse %f us \n
     ", T2*10^6)
18 printf ("duration of lightning impulse pulse %f us \n
     ",T1*10^6)
19 //answer in the book for T1 is wrong
20
21 \quad T = T1/T2;
22 printf ("generated lighting impulse is \%f us \n", T)
23 alpha1 = [alpha-sqrt((alpha^2)-1)]/theta;//in us^-1
24 alpha2 = [alpha+sqrt((alpha^2)-1)]/theta;//in us^-1
25 printf("aplha1 parameter of wave eq is \% f us\hat{-}1 \n",
      alpha1*10^-6)
26 printf("aplha1 parameter of wave eq is %f us^1 \n",
      alpha2*10^-6)
27
28 //answer in the book is slightly different
29 // Now eq of waveform of generated pulse is e(t)
      =99.75(e^{-0.015}t - e^{-2.77}t)
```

Scilab code Exa 16.7.7 wave eq parameters and wave generated

```
1 clear all
2 clc
3 close
4
5 C1=0.125*10^-6; //in Farad
6 C2=1*10^-9; //in Farad
7 R1=360; //in ohms
8 R2=544; //in ohms
9 theta = sqrt(C1*C2*R1*R2); //in usec
10 n = 1/[1+(R1/R2)+(C2/C1)];
11 alpha = (R2*C1)/(2*theta*n);
12 printf("theta parameter of wave eq %f us \n", theta *10^6)
```

```
13 printf ("n the parameter of circuit eq \%f n",n)
14 printf("alpha parameter of circuit eq %f \n",alpha)
15 T2 = 16.25*theta; //duration of lightning impulse
     pulse in us
16 T1 = T2/120; //duration of lightning impulse pulse in
17 printf("duration of lightning impulse pulse %f us \n
     ",T2*10^6)
18 printf ("duration of lightning impulse pulse %f us \n
     ",T1*10^6)
19 //answer in the book for T1 is wrong
20
21 \quad T = T1/T2;
22 printf("generated lighting impulse is \%f us \n",T)
23 alpha1 = [alpha-sqrt((alpha^2)-1)]/theta;//in us^-1
24 alpha2 = [alpha+sqrt((alpha^2)-1)]/theta;//in us^-1
25 printf("aplha1 parameter of wave eq is \%f us^-1 \n",
     alpha1*10^-6)
26 printf("aplha1 parameter of wave eq is \%f us^1 n",
     alpha2*10^-6)
27
28 // Now eq of waveform of generated pulse is e(t)
      =60.2(e^-0.0088t - e^-4.62t)
```

 ${f Scilab\ code\ Exa\ 16.7.8}$ wave shaping resistors R1 and R2 and also circuit efficienc

```
1 clear all
2 clc
3 close
4
5 //Elements of circuits
6 C1=0.125*1e-6; //in F
7 C2=1e-9; //in F
8
9 T1=250*1e-6;
```

```
10 T2=2500*1e-6;

11 alpha=4;

12 theta=T2/6;

13

14 X=(1+C2/C1)*1/alpha^2;

15 R1=alpha*theta/C2*(1-sqrt(1-X));//in ohm

16

17 R2=alpha*theta/(C1+C2)*(1+sqrt(1-X));//in ohm

18

19 //Circuit efficiency

20 eta=1/(1+(1+R1/R2)*C2/C1)

21 printf('Circuit efficiency %f',eta)
```

Scilab code Exa 16.7.9 values of wave shaping resistors and max output voltage and

```
1 clear all
2 clc
3 close
5 \text{ n=8;} //\text{no ofstage}
6 C1=0.16*1e-6; // Each stage capacitor in F
7 C2=1e-9; //Load capacitance in F
8 T2=50*1e-6;
9 T1=1.2*1e-6;
10 Vch=120; // Charging voltage in kV
11
12 //Total capacitance in F
13 CT=C1/n;
14
15 alpha=6.4;
16 theta=T2/9.5;
17
18 X=(1+C2/C1)/alpha^2;
19 R1=alpha*theta/C2*(1-sqrt(1-X)); //in ohm
20
```

```
R2=alpha*theta/(CT+C2)*(1+sqrt(1-X)); //in ohm
// Perstage shaping resistance in ohm
printf('Perstage shaping resistance in %f ohm',R1/n)

Vdc=n*Vch;
eta=1/(1+(1+R1/R2)*C2/CT)

// Maximum output voltage
Vmax=eta*Vdc;
printf('Maxium output voltage in %f kV',Vmax)

// Energy rating in J
E=0.5*CT*(Vdc*1e3)^2;
printf('Energy rating in %f J',E)
```

 ${
m Scilab\ code\ Exa\ 16.7.10}$ find front and tail times of the lightning impulse produce

```
1 clear all
2 clc
3 close
5 \text{ n=12;}//\text{no ofstage}
6 C1=0.125*1e-6; // Each stage capacitor in F
7 C2=1000e-12; //Load capacitance in F
8 R1=70; // Front resistance in ohm
9 R2=400; // Tail resistance in ohm
10
11 R1T=R1*n;
12 R2T=R2*n;
13 C1T=C1/n;
14
15 theta=sqrt(C1T*C2*R1T*R2T);
16
17 eta=1/(1+(1+R1T/R2T)*C2/C1T);
18
```

```
alpha=R2T*C1T/(2*eta*theta);

// Wavetail time in us
T2=7*theta*1e6;
printf('Wave tail time in us %f',T2)

// Wave front time in us
T1=T2/25;
printf('Wave front time in us %f',T1)
```

Scilab code Exa 16.7.11 parameters and eq for generated impulse current

Chapter 19

Applications of high voltage engineering in industry

 ${
m Scilab\ code\ Exa\ 19.18.1}$ determine separation between the particles after falling 1

```
1 clear all
2 clc
3 close
4
5 qm=10*1e-6; //q/m ratio in C/kg
6 E=8*1e5; // Electric field in V/m
7 g=9.8; // Universal gravitational constant
8
9 y=-1; //in meters
10 t=sqrt(-2*y/g);
11
12 // Calculation of separation distance between particles
13 x=(qm*E*t^2)/2;
14 printf('Distance of separation between particles in %f m',2*x)
```

Scilab code Exa 19.18.2 cal pumping pressure

```
1 clear all
2 clc
3 close
4
5 rho=30*1e-3; //Charge density in C/m^3
6 Vo=30*1e3; //Voltage in V
7
8 //Calculation of pumping pressure
9 P=Vo*rho;
10 printf('Pumping pressure is %f N/m^2',P)
```

Scilab code Exa 19.18.4 find vertical displacement of the drop on the print surfac

```
1 clear all
2 clc
3 close
5 dia=0.03*1e-3;//Diameter of drop in m
6 rho=2000; // Desnity of ink in kg/m
7 vz=25;//velocity in z direction in m/sec
8 L1=15*1e-3;//Length of deflection plate in m
9 L2=12*1e-3;//distance from the exit end of the
      deflection plate to the print surface in m
10 q=100*1e-15; // Charge of drop in C
11 d=2*1e-3;//Spacing in m
12 Vo=3500; // Charging voltage in V
13
14 //Mass of drop in kg
15 m = (4/3) * \%pi * rho * (dia/2)^3;
16
17 to=L1/vz;
18 vxo=q*Vo*to/(m*d);
19 xo = 0.5 * vxo * to;
```

```
20
21 t1=(L1+L2)/vz;
22 printf("time required for the drop to reach the
        print surface is %f s \n",t1)
23
24 //Calculation of vertical displacement of the drop
        on the print surface in mm
25 x1=xo+vxo*(t1-to);
26 printf('Vertical displacement of the drop on the
        print surface is %f m \n',x1)
```

Scilab code Exa 19.18.5 electric stress and charge density on the microphone elecr

```
1 clear all
2 clc
3 close
4
5 epsr=2.8; // Dielectric constant of plastic
6 epso=8.84*1e-12;//Permittivity of air in F/m
7 rho_s=25*1e-6;//Surface charge in C/m^3
8 a=25*1e-6; // Thickness of palstic in m
9 b=75*1e-6; // \operatorname{distance} in m
10
11 //Calculation of electric stress in the foil/plastic
       laminate in MV/m
12 Ea=b*rho_s/(a*epso+b*epso*epsr)
13 printf('Electric stress Ea in the foil/plastic
      laminate in \%f MV/m \n', Ea/1e6)
14
15 Eb=a*rho_s/(a*epso+b*epso*epsr);
16 printf("field inside the electret \%f V/m \n",Eb)
17 // Calculation of charge desnity in uC/m<sup>2</sup>
18 \text{ rho\_sc=epso*Eb};
19 printf ('Calculation of charge desnity in %f uC/m^2 \
      n', rho_sc*1e6)
```

Scilab code Exa 19.18.6 space charge limited current density and current density a

```
1 clear all
2 clc
3 close
4
5 epso=8.84*1e-12; // Permittivity of air in F/m
6 mui=1.5*1e-4; // Mobility in m^2/sec.V
7 V=100; // Applied voltage in V
8 d=0.01; // Distance between two parallel plates in m
9 mus=0.001*mui; // Miobility of charged smoke particles
10
11 // Calculation of current density in nA/m^2
12 J=4*epso*mus*V^2/d^3;
13 printf('Calculation of current density in %f nA/m^2', J*1e9)
```

Scilab code Exa 19.18.7 thickness of the layer

```
1 clear all
2 clc
3 close
4
5 epso=8.84*1e-12; // Permittivity of air in F/m
6 rho=15*1e-3; // Charge density in C/m^3
7 Ebd=3*1e6; // Breakdown voltage in V/m
8
9 // Thickness of dust layer in mm
10 dbd=Ebd*epso/rho
11 printf('Thickness of dust layer is %f mm',dbd*1e3)
```

Scilab code Exa 19.18.8 velocity of the ejected ions and propulsion force

```
clear all
cls
clc
close

mi=133*1.67*1e-27;//Mass of cesium in kg
qi=1.6*1e-19;//Charge in C
Va=3500;//Accelerating voltage in V
I=0.2;//Ion current in A

//Calculation of velocity of ejected ions in km/s
vi=sqrt(2*qi*Va/mi);
printf('Velocity of ejected ions is %f m/s',vi)
//Calculation of propulsion force in mN
F=vi*mi*I/qi
printf('propulsion force is %f N',F)
```

Scilab code Exa 19.18.9 position of the particle at the exit end of the plate

```
1 clear all
2 clc
3 close
4
5 V = 120*10^3; //voltage b/w collecting parallel
    plates in V
6 d=0.6; //in meters
7 y1=1.2; //vertical dimension of the plates in m
8 cm = 10*10^-6; //charge to mass ratio in C/kg
9 g =-9.8; //gravitational force
```

Scilab code Exa 19.18.10 minimum voltage required to generate a charge

```
1 clear all
2 clc
3 close
4
5 a=25*10^-6; // jet radius in m
6 b=750*10^-6; // concentric cylinder of radius
7 q=50*10^-12; // charge
8 l = 120*10^-6; // length of jet inside the cylinder
9 Epsilon_o = 8.84*10^-12;
10 C=(2*%pi*Epsilon_o*1)/log(b/a);
11 printf("capacitance is %e F",C)
12 r=50*10^-6; // drop radius
13 Vp = (3*a^2*log(b/a)*q)/(8*%pi*Epsilon_o*r^3);
14 printf("min voltage required for generating drops %f kV", Vp/1e3)
```