Sistemas de información

Índice

1. Conceptos generales a la información	3
1.1. Dominio	3
1.2. Atributo	3
1.3. Dependencias funcionales	3
1.4. Atributos clave	4
1.5. Cardinalidad	4
2. Modelado de datos	5
2.1. Objetivo del modelado de datos	5
2.2. Principios del modelado de datos	5
2.3. Restricciones semánticas del modelado de datos	5
2.4. Fases del modelado de un sistema de información	5
3. Sistemas de información	7
3.1. Propiedades de un sistema de información	7
3.2. Mecanismos de abstracción de un sistema de información	7
4. Bases de datos	8
4.1. Esquema de una Base de Datos	8
4.2. Niveles de los lenguaies de las bases de datos	8

1. Conceptos generales a la información

1.1. Dominio

- Conjunto de valores homogéneos con un nombre que los identifica.
- Puede ser limitado o ilimitado.
- Cuando en el dominio se permite la ausencia de valor, se considera que puede tener valores **nulos**

1.2. Atributo

- Es cada una de las **propiedades** de un objeto al cual están ligados
- Tipos
 - o Simple
 - o Atributos Claves
 - Se representan con el nombre subrayado
 - Las claves alternativas se representan con una A en la línea que va desde el atributo a la entidad o la relación
 - Compuesto
 - Compuesto por más de un atributo
 - Multivaluado
 - La elipse es de doble línea
 - Cardinalidad de los atributos en la línea desde el atributo a la entidad o relación
 - Calculado o derivados
 - La elipse es de línea discontinua
 - o Permitir valores nulos

1.3. Dependencias funcionales

- Son propiedades inherentes al contenido semántico de los datos
- Determinan las restricciones de integridad de la intrarelación
- Son **invariantes** en el tiempo
- Tipos
 - o Simple $A \rightarrow B$
 - Un atributo determina funcionalmente a otro, si y sólo si, para cada valor del atributo A, corresponde un único valor del atributo B
 - También se conoce a A, como **determinante**, ya que determina funcionalmente otro atributo
 - o Compleja
 - Transitiva $A \rightarrow B \rightarrow C$
 - Multivaluada
 - Decimos que en una relación hay una dependencia funcional multivaluada A
 → B, cuando A → B de manera independiente al resto de los atributos, es
 decir, B, no tiene absolutamente nada que ver con los otros atributos del
 obieto
- Descriptor: Un conjunto de atributos

1.4. Atributos clave

- Las claves son atributos que determinan funcionalmente de alguna manera algún otro atributo
- Identificación **única**
- Irreducible
- Según el caso al que se aplique puede ser:
 - Clave candidata
 - o Clave primaria
 - o Clave alternativa

1.5. Cardinalidad

- Llamamos cardinalidad al **grado de participación** de objetos con respecto de otro
- Suele hablarse en términos de participación **mínima** y **máxima**
- Valores típicos: (0,1), (1,1), (0,n), (1,n), (n,m)

2. Modelado de datos

2.1. Objetivo del modelado de datos

- Independencia física. No tiene que estar asociado a nada físico, ni a ninguna tecnología
- Independencia lógica. Que las actualizaciones de datos no influya sobre los programas y usuarios
- Flexibilidad. Poder presentar los datos de forma que se guiera
- Uniformidad. Las estructuras de datos presentan un aspecto uniforme
- Sencillez. Tiene que ser sencillo de comprender

2.2. Principios del modelado de datos

- Todos los modelos
 - Expresividad: deben tener suficientes conceptos para expresar perfectamente la realidad.
 - o Simplicidad: deben ser simples para que los esquemas sean fáciles de entender.
 - o Minimalidad: cada concepto debe tener un significado distinto.
 - **Formalidad**: todos los conceptos deben tener una interpretación única, precisa y bien definida.
- Además los modelos gráficos, aunque no exclusivamente de ellos
 - Compleción gráfica: Es completo si todos sus conceptos poseen representación
 - o Facilidad de lectura. Todos los elementos son fácilmente distinguibles

2.3. Restricciones semánticas del modelado de datos

- Intrarelación
 - Es como están relacionados los datos de un objeto
 - o Restricciones del propio dominio de los atributos
 - Restricciones de identificación
 - Clave
- Interrelación
 - Es como se relacionan los objetos entre sí
 - o Cardinalidad
 - De correspondencia entre clases y objetos
 - En inserciones
 - La agregación y la generalización no están soportadas totalmente
 - Integridad referencial
 - En el MR se hace mediante la clave ajena
 - Se usa en las Actualizaciones de datos
 - En los sistemas software también pueden desencadenar de un evento de usuario

2.4. Fases del modelado de un sistema de información

- Análisis (Fase conceptual)
 - Investigación
 - o La conclusión de la investigación nos lleva a un modelado conceptual
 - Se formalizan las estructuras que se observan en el mundo real

- El modelo por excelencia es el **MER** que además tiene una fácil conversión al **MR**, cosa que se hace a posteriori
- **Diseño** (Fase lógica)
 - o Lógico
 - Se formaliza un esquema que sea el puente entre la fase anterior y el SGBD que se vaya a utilizar
 - El sistema por excelencia es el MR
 - Físico teórico
 - Diccionario de datos
 - El sistema se especifica en otros parámetros, como por ejemplo, forma de almacenar los datos, ...
- Implementación (Fase física)
 - o Físico
 - Aquí se definen los sistemas informáticos que se van a utilizar
 - Programas, carga de datos, pruebas, requerimientos, especificaciones, ...

3. Sistemas de información

3.1. Propiedades de un sistema de información

- Estáticas
 - o No varían en el tiempo
 - o Que tipo de información se maneja
- Dinámicas
 - o Evolución de los datos en el tiempo
 - o Concepto de instantánea o instancia
- Restricciones de integridad
 - o Definición de los valores válidos de nuestro sistema

3.2. Mecanismos de abstracción de un sistema de información

- Clasificación
 - o Definir un objeto como una clase de objetos
 - o Dominios
 - DiasSemana={Lunes, Martes, ...}
- Agregación
 - o Definir una clase de objetos a partir de otros
 - o Tabla: Es una agregación de campos
- Generalización/Especialización
 - o Definir tipos de subclases
 - o Clases (coches, motos, vehículos)

4. Bases de datos

4.1. Esquema de una Base de Datos

- Se define esquema de una base de datos como la relación lógica y semántica de un conjunto de datos u objetos
- Tipos
 - o **Interno**: Describe el esquema físico, como se guardan los datos
 - Conceptual: Como se relacionan los Datos, Relaciones, Dominios, ...
 - o Externo: Parte de la información que cada usuario puede ver

4.2. Niveles de los lenguajes de las bases de datos

- Cada modelo de datos tiene competencia con uno o más lenguajes de modelado
- Estos lenguajes suelen ser declarativos y no procedimentales, ya que se usan para especificar que es lo que el usuario quiere, y no el cómo llegar a esos datos
- Estos niveles suelen tener un fundamento matemático
- ADL
 - o Lenguaje con el que se especifica el almacenamiento físico de la base de datos
- **DDL** (Definition data lenguaje)
 - o Es el lenguaje mediante el que se puede definir el modelo lógico de una base de datos
 - o Comprende la modificación en la parte estática
 - o No hay un lenguaje teórico para este nivel, se suele utilizar un pseudos-lenguaje natural
 - Insertar columna nif en Empleado
 - o El lenguajes por excelencia es el MER
 - Política de permisos
- MDL (Manipulating Data Language)
 - Es el lenguaje con el que puede modificar la instantánea de una bases de datos
 - o Comprende la modificación en la parte **dinámica** como por ejemplo la actualización de datos
 - No hay un lenguaje teórico para el MDL, se suele utilizar un pseudos-lenguaje natural
 - Insertar <...,> en Empleado
 - Eliminar la tupla Empleado con NP=10
 - Actualizar Salario de la tupla Empleado con NSS='79877788' cambiándolo a '43532666'
 - Existen políticas de actualización de datos
 - Hay principalmente 3 tipos de operaciones: **borrar, insertar y modificar**.
 - Dependiendo del sistema, existen políticas de **acciones** y de **propagación**: rechazar, anular, propagar, valor por defecto, sin acción, disparar un procedimiento de usuario,
- VDL o VML (View Data/Manipulating Language, ..., o QML?)
 - o Declaración de vistas y consultas
 - Hay 2 vertieres
 - una que incluye este lenguaje en MDL, ya que se utiliza mucho para Actualizaciones de datos
 - Otra Dada su naturaleza puramente consultiva, prefieren definirlo como otro lenguaje más
 - Es el lenguaje con el que se crea una representación de la información que deseemos de una instantánea de la base de datos

- Existen lenguajes matemáticos y lógicos en este campo (pertenezca o no al MDL), por lo tanto se fundamenta en campos de la ciencia ampliamente asentados
 - Álgebra Relacional (aplicable al MR)
 - Cálculo relacional orientado a dominios (aplicable al MR)
 - Cálculo relacional orientado a tuplas (aplicable al MR)
- **DCL** (Data Control Language)
 - Es el lenguaje con el que se establecen los derechos sobre una base de datos
 - Son propios de de los administradores