GG1: Direct Kinematics

G. Aiello, G. Kosa, M. Ahmadi, E. Zoller, M. Eugster, I. Susic, and G. Rauter*

Bio Inspired RObotics in Medicine Lab, University of Basel, Basel

February 2017

E-mail: gregorio.aiello@unibas.ch

Abstract

In this short report is described the direct kinematics of the GG1 robot.

Formulation

The DH parameters of the GG1 robot are presented in Table 1

Table 1

	d	θ	a	α
D1	d_1	π	0	$\frac{\pi}{2}$
R1	0.258	R_1	0	$\frac{\pi}{2}$ $\frac{\pi}{2}$
R2	0.141	R_2	0.4347	π
R3	0.120	R_3	0.430	π
R4	0.120	R_4	0	$\frac{\pi}{2}$
R5	0.5365	R_5	0	$\bar{0}$

Knowing the DH parameters of the robot the Transformation matrix for consecutive

joints is the following:

$$^{n-1}T_n = \begin{bmatrix} \cos \theta_n & -\sin \theta_n \cos \alpha_n & \sin \theta_n \sin \alpha & a_n \cos \theta_n \\ \sin \theta_n & \cos \theta_n \cos \alpha_n & -\cos \theta_n \sin \alpha & a_n \sin \theta_n \\ 0 & \sin \alpha_n & \cos \alpha_n & d_n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

Thus the following code has been written in Matlab and calculates the final transformation matrix from the base to the end effector of the robot:

```
%% Forward kinematics GG1
```

% Aiello Gregorio, PhD Student

% Biromed Lab, University of Basel

% 9.2.2017

close all

clear all

clc

%% World reference frame and variables declaration
Tf = eye(4);

syms d_1 theta_1 theta_2 theta_3 theta_4 theta_5

%% Correct DK

% DH Params

 $d = [d_1, 0.258, 0.141, 0.120, 0.120, 0.5365];$

t = [pi, theta_1, theta_2, theta_3, theta_4, theta_5];

a = [0, 0, 0.4347, 0.430, 0, 0];

end