选题编号: __094779

清华大学出版社

勘误表

书名:控制之美(卷1)——控制理论从传递函数到状态空间

译著者: 王天威

责任编辑: 复审者: 终审者: 2022 年 09 月 03 日

第5次印刷

页	行	问 题	修改
103	式 (8.4.2)	$x(t) = 1 + C_1 e^{S_{cl_{p_1}}t} + C_2 e^{S_{cl_{p_1}}t} = 1 + C_1 e^{-1.29t} + C_2 e^{-2.71t}$	$x(t) = C_0 + C_1 e^{S_{cl_{p_1}}t} + C_2 e^{S_{cl_{p_1}}t} = C_0 + C_1 e^{-1.29t} + C_2 e^{-2.71t}$
103	式 (8.4.2) 下面两行	1是一个常数	C ₀ 是一个常数
103	式 (8.4.2)	$x(t) = 1 + C_3 e^{-2t} \sin(\omega t + \varphi)$	$x(t) = C_0 + C_3 e^{-2t} \sin(\omega t + \varphi)$

第 1-4 次印刷

	5 1-4 次印刷		
页	行	问 题	修改
15	第四行	一个圆做逆时针运动	一个圆做顺时针运动
15	图 2.2.2	ωt	-ωt
22	图 3.1.1(b)	$G(s) = \frac{1}{ms^2 + Bs + k}$	$G(s) = \frac{1}{ms^2 + bs + k}$
23	式 (3.1.5) 下一行	现在将式 (3.1.3) 和 (3.1.5) 写成紧凑	现在将式(3.1.3)到(3.1.5)写成紧凑
29	式 (3.2.14)	$\frac{\mathrm{d}z_2(t)}{\mathrm{d}t} = 4z_1(t) - z_2(t)$	$\frac{\mathrm{d}z_2(t)}{\mathrm{d}t} = 4z_1(t) - \frac{2}{2}z_2(t)$
39	式 (3.3.17)	$\begin{bmatrix} 2C_1\cos 2t + 2C_1\mathrm{j}\sin 2t + 2C_2\cos t - 2C_2\mathrm{j}\sin t \\ \mathrm{j}C_1\cos 2t - C_1\sin 2t - \mathrm{j}C_2\cos 2t - C_2\sin 2t \end{bmatrix}$	$\begin{bmatrix} 2C_1\cos 2t + 2C_1j\sin 2t + 2C_2\cos 2t - 2C_2j\sin 2t \\ jC_1\cos 2t - C_1\sin 2t - jC_2\cos 2t - C_2\sin 2t \end{bmatrix}$
41	式 (3.3.24)	$\bar{\mathbf{z}}(t) = \begin{bmatrix} \bar{z}_1(t) \\ \bar{z}_2(t) \end{bmatrix} = \begin{bmatrix} C_1 e^{1+j2t} \\ C_2 e^{1-j2t} \end{bmatrix} = e^t \begin{bmatrix} C_1 e^{j2t} \\ C_2 e^{-j2t} \end{bmatrix}$	$\overline{\mathbf{z}}(t) = \begin{bmatrix} \overline{z}_1(t) \\ \overline{z}_2(t) \end{bmatrix} = \begin{bmatrix} C_1 e^{(1+j2)t} \\ C_2 e^{(1-j2)t} \end{bmatrix} = e^t \begin{bmatrix} C_1 e^{j2t} \\ C_2 e^{-j2t} \end{bmatrix}$
41	倒数第三段与图 3.3.11(a)	本例中,螺旋线的方向是顺时针的	本例中,螺旋线的方向是 <mark>逆</mark> 时针的
43	倒数第二行	$(\frac{dM(t)}{dt} = -aY(t) < 0) \dots (\frac{dM(t)}{dt} = -aY(t) > 0)$ $Y(t_3) < 0$	$ (\frac{dM(t)}{dt} = -bY(t) < 0) \dots (\frac{dM(t)}{dt} = -bY(t) > 0) $ $ Y(t_3) > 0 $
44	图 3.4.2 右上角	$Y(t_3) < 0$	$Y(t_3) > 0$
47	第5段	其中,符号定义与维度如表 3.3.1 所示;	其中,符号定义与维度如表 3.1.1 所示;
54	图 4. 3. 1 第三段	$U_2(s) = 20 U_2(s) = \begin{cases} 20 & t \ge 0 \\ 0 & t < 0 \end{cases}$	$U_2(s) = \frac{20}{s}$
56	第二行	冲激响应的时域表达	单位阶跃响应的时域表达
58	式(5.1.5)	$-2\zeta\omega_n z_2$	$-2\zeta\omega_n$
62	式 (5.3.9)	$1 - e^{-\zeta \omega_n t} \left[\frac{1}{2} \left(1 - \frac{\zeta}{\sqrt{1 - \zeta^2}} \mathbf{j} \right) e^{\omega_n \sqrt{1 - \zeta^2} \mathbf{j} t} - \frac{1}{2} \left(1 + \frac{\zeta}{\sqrt{1 - \zeta^2}} \mathbf{j} \right) e^{-\omega_n \sqrt{1 - \zeta^2} \mathbf{j} t} \right]$	$\begin{aligned} 1 - \mathrm{e}^{-\zeta\omega_n t} [\frac{1}{2} \left(1 - \frac{\zeta}{\sqrt{1 - \zeta^2}} \mathrm{j} \right) \mathrm{e}^{\omega_n \sqrt{1 - \zeta^2} \mathrm{j} t} \\ + \frac{1}{2} \left(1 + \frac{\zeta}{\sqrt{1 - \zeta^2}} \mathrm{j} \right) \mathrm{e}^{-\omega_n \sqrt{1 - \zeta^2} \mathrm{j} t}] \end{aligned}$
	l .		

62	式 (5.3.10a)	$x(t) = 1 - e^{-\zeta \omega_n t} \left[\frac{1}{2} \left(1 - \frac{\zeta}{\sqrt{1 - \zeta^2}} j \right) e^{\omega_d j t} \right]$	$x(t) = 1 - e^{-\zeta \omega_n t} \left[\frac{1}{2} \left(1 - \frac{\zeta}{\sqrt{1 - \zeta^2}} \mathbf{j} \right) e^{\omega_d \mathbf{j} t} \right]$
		$-\frac{1}{2}\left(1+\frac{\zeta}{\sqrt{1-\zeta^2}}\mathbf{j}\right)e^{-\omega_d\mathbf{j}t}$	$+\frac{1}{2}\left(1+\frac{\zeta}{\sqrt{1-\zeta^2}}i\right)e^{-\omega dit}$
		$=1-e^{-\zeta\omega_n t}\left[\frac{1}{2}\left(e^{\omega_d jt}-e^{-\omega_d jt}\right)\right]$	$=1-e^{-\zeta\omega_n t}\left[\frac{1}{2}\left(e^{\omega_d jt}+e^{-\omega_d jt}\right)\right]$
		$+\frac{1}{2}\frac{\zeta}{\sqrt{1-\zeta^2}}\mathrm{j}(-\mathrm{e}^{\omega_d\mathrm{j}t}+\mathrm{e}^{-\omega_d\mathrm{j}t})$	$+\frac{1}{2}\frac{\zeta}{\sqrt{1-\zeta^2}}\mathrm{j}(-\mathrm{e}^{\omega_d\mathrm{j}t}+\mathrm{e}^{-\omega_d\mathrm{j}t})$
63	式 (5.3.10b)	$\frac{1}{2} \left(e^{\omega_d jt} - e^{-\omega_d jt} \right) = \cos \omega_d t$	$\frac{1}{2} \left(e^{\omega_d it} + e^{-\omega_d it} \right) = \cos \omega_d t$
67	式 (5.4.6b)	$(T_p) = 1 - e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}} \sqrt{\frac{1}{1-\zeta^2}} \sqrt{1-\zeta^2} = 1 + e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$	$(T_p) = 1 + e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}} \sqrt{\frac{1}{1-\zeta^2}} \sqrt{1-\zeta^2} = 1 + e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$
83	式(7.2.7)	$=\frac{10\alpha r - \alpha C}{K_P + 10\alpha}$	$=\frac{10\alpha r + \alpha C}{K_P + 10\alpha}$
92	图 8.1.2	$G_{cl}(s) = \frac{1}{s^3 + 3s^2 + Ks + 1}$	$G_{cl}(s) = \frac{Ks}{s^3 + 3s^2 + Ks + 1}$
		$G_{cl}(s) = \frac{1}{s^3 + 3s^2 + Ks + 1}$ $G(s) = \frac{1}{s^3 + 3s^2 + 1}$	$G_{cl}(s) = \frac{Ks}{s^3 + 3s^2 + Ks + 1}$ $G(s) = \frac{Ks}{s^3 + 3s^2 + 1}$
92	式 (8.1.1b) 下一行	若要研究 $G_{cl}(s) = \frac{1}{s^3 + 3s^2 + Ks + 1}$	若要研究 $G_{cl}(s) = \frac{\kappa s}{s^3 + 3s^2 + \kappa s + 1}$
92	第二行	首先需要将控制系统转化为图 8.1.1 所示的标准形式 后再进行处理。	首先需要找到闭环传递函数分母部分 $1 + KG(s)$ 中的 $G(s)$ 后再进行处理。
92	图 8.1.4	原图计算有错误	删掉
92	例 8.1.2	将图 8.1.3 所示的非单位反馈闭环控制系统转化为单位反馈闭环控制系统	如图 8.1.3 所示的非单位反馈闭环控制系统应如何分析其根轨迹?
92	倒数第二行	其对应的单位反馈闭环控制系统如图 8.1.4 所示,因此需要通过 <i>G</i> (<i>s</i>) <i>H</i> (<i>s</i>)进行根轨迹分析。	其闭环传递函数分母部分为 $1 + H(s)KG(s)$,因此需要通过 $G(s)H(s)$ 进行根轨迹分析。
99	式 (8.3.3c)	$\varphi = \arctan((-\frac{1}{2})/(-\frac{\sqrt{3}}{6})) = -\frac{5}{6}\pi$	$\varphi = \arctan((\frac{\sqrt{3}}{6})/(\frac{1}{2})) - \pi = -\frac{5}{6}\pi$
102	式 (8.4.1b)	$\theta = \frac{2q+1}{n-m} = \frac{2q+1}{2-0}\pi$	$\theta = \frac{2q+1}{n-m}\pi = \frac{2q+1}{2-0}\pi$
105	式 (8.4.7b)	$\theta = \frac{2q+1}{n-m} = \frac{2q+1}{3-I}\pi$	$\theta = \frac{2q+1}{n-m}\pi = \frac{2q+1}{3-I}\pi$
106 108	图 8. 4. 7 图 8. 4. 9	$\theta = \frac{2q+1}{n-m} = \frac{2q+1}{2-0}\pi$ $\theta = \frac{2q+1}{n-m} = \frac{2q+1}{3-1}\pi$ $G(s) = \frac{1}{(s+1) + (s+3)}$	$\theta = \frac{2q+1}{n-m}\pi = \frac{2q+1}{2-0}\pi$ $\theta = \frac{2q+1}{n-m}\pi = \frac{2q+1}{3-1}\pi$ $G(s) = \frac{1}{(s+1)(s+3)}$
111	倒数第二行	$U(s) = K_P E(s) + K_L \frac{1}{s} + K_D s$	$G(s) = K_P + K_I \frac{1}{s} + K_D s$
113	式 (9.2.4)	$\mathcal{L}[A\sin(\omega_{i}t) + B\sin(\omega_{i}t)]$ $= \mathcal{L}[A\sin(\omega_{i}t)] + \mathcal{L}[A\cos(\omega_{i}t)]$	$\mathcal{L}[A\sin(\omega_i t) + B\cos(\omega_i t)] = \mathcal{L}[A\sin(\omega_i t)] + \mathcal{L}[B\cos(\omega_i t)]$
123	第三行	比如50dB是日常交流的声音强度	比如60dB是日常交流的声音强度
132	图 10.1.1	F_{x_3}	F_{x_1}
135	第三行	对一个质量为 m_1	对一个质量为 $m_1 = 1kg$
142	第二行	考虑本节例子	考虑一个例子
142	式 (10.3.17)	$\frac{\mathrm{d}z(t)}{dt} = Az(t) + B$	$\frac{\mathrm{d}z(t)}{dt} = Az(t) + Bu(t)$
144	式 (10.3.21)	$= Ae(t) - Az_d + Bu(t)$	$= Ae(t) - Az_d - Bu(t)$
150	第二段	实际上是将图 10.3.2 和图 10.4.1 结合起来	实际上是将图 10.3.3 和图 10.4.1 结合起来
152	倒数第一行	之间的误差为 $\frac{\pi}{4}$ -sin $\frac{\pi}{4}$ ×100% = 11%	之间的误差为 $\frac{\pi - \sin{\frac{\pi}{4}}}{\sin{\frac{\pi}{4}}} \times 100\% = 11\%$
157	式 (B. 2. 4)	$a_0^* \cos nx + b_n \sin nx$	$a_n^* \cos nx + b_n \sin nx$
157	式 (B. 2. 6)	$\int_{-\pi}^{\pi} f_T(x) dx = \frac{1}{2\pi} a_0^*$	$\int_{-\pi}^{\pi} f_T(x) \mathrm{d}x = \frac{2\pi}{\alpha_0^*}$