Introductory Number Theory

Yashas.N

yn37git.github.io/blog/2025/Short-Notes

Contents

1	Preliminaries	1
2	Divisibility in \mathbb{Z}^+	1
3	Congruences Linear congruences	2
4	Primes: Properties, Theorems and Conjectures. Divisibility by Small primes	3
5	Number theoretic functions	4
6	More on Congruences	6
	Primitive roots existence of primitive roots Indices Quadratic Congruence and residue	7 7 8 9
_		

Symbols used

0

 $s|_t \rightarrow such that.$ iff \rightarrow if and only if. $a|b \rightarrow a$ divides b. $\exists ! \rightarrow there exists unique.$

1 Preliminaries

Principle of Mathematical induction

- First principle : If S is a subset of positive integers (\mathbb{Z}^+) with the following :
- 1 \in S.
- $k \in S \implies k+1 \in S$.

then S is the whole set of positive integers i.e. $S = \mathbb{Z}^+$.

- Second principle (strong induction): if $S \subseteq \mathbb{Z}^+{}_s|_t$
- $1 \in S$ and
- 1,2,..., $k \in S \implies k+1 \in S$ then $S = \mathbb{Z}^+$.

2 Divisibility in \mathbb{Z}^+

- for every $a, b \in \mathbb{Z}$, \exists (unique) $q \in \mathbb{Z}$, $r \in \mathbb{Z}^+$ _s|_t a = qb + r and $o \leqslant r \leqslant |b|$.
- \blacksquare $\alpha|b$ (a divides b) iff $\alpha=qb$ for some (unique) $q\in\mathbb{Z}$
- \blacksquare a|b then |a| \leq |b|.

let d = gcd(a, b) denote greatest common divisor of a and b then

- $\blacksquare \exists ! x, y \in \mathbb{Z}_{s}|_{t} d = xa + yb$
- d = least element of $S = \{xa + yb | xa + yb > 0, x, y \in \mathbb{Z}\}.$
- set $\{xa + yb|x, y \in \mathbb{Z}\}$ contains precisely multiples of d.
- \blacksquare if a|c and b|c then ab|c if gcd(a, b) = 1.
- Euclid's lemma : a|bc and gcd(a,b) = 1 then a|c.

- \blacksquare a and b are relatively primes if gcd(a,b) = 1 iff 1 = xa + yb for some $x,y \in \mathbb{Z}$.
- if a = qb + r then gcd(a, b) = gcd(b, r). thus gcd(a, b) is the last remainder in the euclidean algorithm
- gcd(ka, kb) = |k| gcd(a, b) (here $k \neq o$) thus prime factorisation of a ad b comes into play here.
- if d = gcd(a, b) then there are relatively prime integers r, s such that a = rd and b = sd.
- \blacksquare gcd(a,bc) = 1 iff gcd(a,b) = 1 and gcd(a,c) = 1.
- \blacksquare gcd(α , n) = gcd(kn $\pm \alpha$, n) for all k $\in \mathbb{Z}^+$.
- If gcd(a,b) = d then there exist $a_1, b_1|_{s|t} a = a_1d, b = b_1d$ and $gcd(a_1, b_1) = 1$.

let l = lcm(a, b) denote the lowest common multiple of a and b. then

- \blacksquare gcd(a, b) lcm(a, b) = ab.
- \blacksquare lcm(a, b) = ab iff gcd(a, b) = 1.

Diophantine equations

Equations in one or more variable that is to be solved in integers is called a Diophantine equation.

- The linear diophantine equation ax + by = c for given $a, b, c \in \mathbb{Z}$ has a solution iff gcd(a, b)|c. (if so then as $d|c \implies c = dt = t(x_0a + y_0b) \implies x = x_0t, y = y_0t$.)
- all solutions of the above linear diophantine equation is of form

$$x = x_o + \left(\tfrac{b}{d} \right) t \quad y = y_o + \left(\tfrac{\alpha}{d} \right) t.$$

for some solution x_0 , y_0 and arbitrary $t \in \mathbb{Z}$ i.e. there are infinitely many solutions for the linear diophatine equation ax + by = c.

3 Congruences

$a \equiv b \pmod{n}$

is defined as true if n|(a-b) (note $a,b\in Z$ and $1 < n \in \mathbb{Z}^+$) otherwise $a \not\equiv b \pmod n$.

properties

 $\blacksquare \equiv \mod n$ is a equivalence relation on \mathbb{Z} for any n > 1.

if $a \equiv b \pmod{n}$ and $c \equiv b \pmod{n}$ then

- $\blacksquare a + c \equiv b + d \pmod{n}.$
- \blacksquare ac \equiv bd (mod n).
- $\blacksquare a^k \equiv b^k \pmod{n}$ for $k \in \mathbb{Z}^+$.
- it is not true that $ca \equiv cb \pmod{n} \implies a \equiv b \pmod{n}$.
- $ca \equiv cb \pmod{n} \implies a \equiv b \pmod{n/d}$ where $d = \gcd(c, n)$.
- if $a \equiv b \pmod{n}$ and m|n then $a \equiv b \pmod{m}$.
- if gcd(n, m) = 1, $a \equiv b \pmod{n}$ and $a \equiv b \pmod{m}$ then $a \equiv b \pmod{mn}$
- if $a \equiv b \pmod{n}$ and d|n, a, b then $a/d \equiv b/d \pmod{n}/d$.
- $\blacksquare \star$ if $a \equiv b \pmod{n}$ then gcd(a,n) = gcd(b,n).
- if $ac \equiv bd \pmod{n}$. and $b \equiv d \pmod{n}$ with gcd(b, n) = 1 then $a \equiv c \pmod{n}$.

3.1 Linear congruences

equation $ax \equiv b \pmod{n}$ has a solution iff d|b for $d = \gcd(a, n)$. if so the this equation has d mutually incongruent solutions mod n. (use: this is same as solutions for diophantine equation ax - ny = b).

from above point $ax \equiv b \pmod{n}$. has a unique solution mod n iff gcd(a, n) = 1.

system of linear congruence equations

$$\begin{aligned} a_1 x &\equiv b_1 \pmod{m_1}, \\ a_2 x &\equiv b_2 \pmod{m_2}, \\ &\vdots \\ a_k x &\equiv b_k \pmod{m_k}. \end{aligned}$$

where $m_i's$ are relatively prime pairs is equivalent to solving system

$$x \equiv c_1 \pmod{n_1},$$
 $x \equiv c_2 \pmod{n_2},$
 \vdots
 $x \equiv c_k \pmod{n_k}.$

Chinese Remainder Theorem

for $n_i \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for $i \neq j$ the system of linear congruence equations

$$x \equiv a_1 \pmod{n_1},$$
 $x \equiv a_2 \pmod{n_2},$
 \vdots
 $x \equiv a_k \pmod{n_k}.$

has a simultaneous solution. This solution is unique upto mod $n = n_1 n_2 ... n_k$.

And this solution is given by $x = a_1 N_1 x_1 + a_2 N_2 x_2 ... a_k N_k x_k$ where $N_i = n/n_i = n_1 ... n_{i-1} n_{i+1} ... n_k$, for $N_i x_i \equiv 1 \pmod{n_i}$.

The system of linear congruences

$$ax + by \equiv r \pmod{n}$$

 $cx + dy \equiv s \pmod{n}$

has a unique solution mod n whenever gcd(ad - bc, n) = 1.

Fermat's Little Theorem

for a prime p and p /a we have $a^{p-1} \equiv 1 \pmod{p}$. (use as $\{a, 2a, ..., (p-1)a\}$ forms complete congruence residue of p so a.2a.. $(p-1)a \equiv 1.2.. (p-1) \pmod{p} \implies (p-1)! a^{p-1} \equiv (p-1)! \pmod{p}$.)

Wilson's Theorem

 $\begin{array}{l} p \text{ is a prime iff } p|(p-1)!+1 \text{ i.e. } (p-1)! \equiv \\ -1 \pmod{p} \text{ (use for } 1 < \alpha < p-1, \alpha \ /|p \text{ so} \\ \exists! \alpha' \in \{2,3,...p-2\}_s|_t \ \alpha\alpha' \equiv 1 \ (\text{mod } p) \text{ so } 2.3...p-2 \} \\ 2 = (p-2)! \equiv 1 \ (\text{mod } p).) \end{array}$

Primes: Properties, Theorems and Conjectures.

let $p,q\in\mathbb{Z}^+$ be primes (p>1 is prime in \mathbb{Z}^+ if only divisors of p are 1 and p.) and $\forall \alpha b\in\mathbb{Z}$.then

- $\blacksquare p|ab \implies p|a \text{ or } p|b$
- $\blacksquare p|a^k \implies p|a \text{ or } p|a^k.$

Fundamental Theorem of Arithmetic

Every positive integer n > 1 is a prime or product of primes such that its representation of the form

$$n = p_1^{l_1} p_2^{l_2} ... p_k^{l_k}.$$

for primes $\mathfrak{p}_1 < \mathfrak{p}_2 < \ldots < \mathfrak{p}_k$ and $l_i \in \mathbb{Z}^+$ is unique.

- there exists prime p appearing in prime factorization of a i.e. $a = pm_s|_t p \leq \sqrt{a}$.
- if a > 1 is not divisible by any prime $p \le \sqrt{a}$ then a is a prime (simple restatement of above point.)
- There are an Infinite number of primes in **7**⁺
- let p_n denote the n^{th} prime in ascending order of primes then $p_n < 2^n$.
- for n > 2 there exists a prime such that n (use: if not then <math>n! 1 is not prime and all its prime divisors are $p \le n \implies p|n!$ thus $p \le n$

leading to contradiction $p|_1$.)

- Goldbach conjecture : every even integer is sum of two numbers that are either prime or 1.
- *twin prime* question : are there infinitely many twin prime pairs (primes with a gap of 2 integers between them).
- for $n \in \mathbb{Z}^+$ there are n consecutive integers all of them composite ((n+1)! + 2, (n+1)! + 3, ..., (n+1)! + (n+1)).

Dirichlet theorem

If a and b are relatively prime positive integers, then the arithmetic progression a, a + b, a + 2b, a + 3b,.. contains infinitely many primes.

Fermat Kraitchik Factorisation method

- for odd integer n if $n = x^2 y^2$ then clearly n = (x + y)(x y) or if n is composite i.e. n = ab then $n = (\frac{a+b}{2})^2 (\frac{a-b}{2})^2$ holds as both a, b are odd.
- So rearranging we get $x^2 n = y^2$ now search for smallest integers $k_s|_t k^2 \ge n$ and look at numbers $k^2 n$, $(k+1)^2 n$, $(k+2)^2 n$,.. until a value $m \ge \sqrt{n}$ is found making $m^2 n$ a square to give a factorisation of n = ml.
- this process cannot go indefinitely as $(\frac{n+1}{2})^2 n = (\frac{n-1}{2})^2$ gives trivial factorisation n = n.1.
- \blacksquare thus this process terminates for some m and n is composite if not then clearly n is a prime.

4.1 Divisibility by Small primes

let $a = a_m 10^m + a_{m-1} 10m - 1 + ... + a_1 10 + a_0$ be the decimal representation of a then

2|a iff unit digits of $a = a_0 = 2,4,8$ or o.

3,9|a iff 3,9| $a_m + a_{m-1}$... + $a_1 + a_0$ i.e. iff sum of the digits in decimal representation

of a is divisible by 3 or 9 (use $10 \equiv 1 \pmod{9} \equiv 1 \pmod{3}$.)

 $4|a \text{ iff } 4|10a_1 + a_0 \text{ i.e. iff } 4 \text{ divides the number formed by tens and units digits of a. (use <math>10^k \equiv 0 \pmod{4}$ if $k \ge 2$).

 $5|a \text{ iff } a_0 = 0 \text{ or } 5.$

11|a iff 11| $a_0 - a_1 + a_2 ... + (-1)^m a_m$ (use 10 = -1 (mod 11)).

7, 11, 13|a iff 7, 11, 13|[($100a_2 + 10a_1 + a_0$) $-(100a_5 + 10a_4 + a_3) + (100a_8 + 10a_7 + a_6)$.] i.e. 7, 11, 13 divides a iff alternating sum of 3 digits taken at a time in digits of a is divisible by 7, 11, 13 (use 7.11.13 = 1001 and if n is even $10^{3n} = 1, 10^{3n+1} = 10, 10^{3n+2} = 100$ (mod 1001). of if n is odd $10^{3n} = -1, 10^{3n+1} = -10, 10^{3n+2} = -100$ (mod 1001)).

5 Number theoretic functions

Any function whose domain is the set of positive integers (\mathbb{Z}^+) is called a number theoretic function or arithmetic function.

let $\sum_{d|n} f(d)$ sum over all divisors of n i.e. for

eg:
$$\sum_{d|6} f(d) = f(1) + f(2) + f(3) + f(6)$$
.

Multiplicative Function

a number theoretic function f(k) is called a multiplicative function if f(mn) = f(m)f(n) whenever gcd(m, n) = 1.

if f(d) is multiplicative then $F(n) = \sum_{d \mid n} f(d)$

is also a multiplicative function.

Mobius inversion Formula

■ Define Mobius function

$$\mu(n) = \begin{cases} 1 & \text{if } n = 0 \\ o & \text{if } p^2 | n \text{ for some prime p} \\ (-1)^r & \text{if } n = p_1 p_2 ... p_r \text{ where } p_i's \\ & \text{are distint primes.} \end{cases}$$

 \blacksquare let $\mathbb{F}(n) = \sum_{d \mid n} \mu(d)$ then

$$\mathbb{F}(\mathfrak{n}) = \begin{cases} \mathfrak{1} & \text{if } \mathfrak{n} = \mathfrak{1} \\ \mathfrak{0} & \text{otherwise.} \end{cases}$$

- \blacksquare clearly $\mu(n)$ and $\mathbb{F}(n)$ are multiplicative.
- The Formula : if f, F are two number theoretic functions such that

$$F(n) = \sum_{d \mid n} f(d)$$

then

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) F(d).$$

Clearly from above we get if

 $F(n) = \sum_{d \mid n} f(d)$ is multiplicative then f(n) is also multiplicative.

Positive Divisors function

for a given integer n let $\tau(n)$ denote the number of positive divisors of n and $\sigma(n)$ denote the sum of these divisors then

- $\blacksquare \ \tau(n) = \sum_{d \mid n} \mathbf{1}.$
- $\blacksquare \ \sigma(n) = \sum_{a \vdash a} d.$

Now if $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ is prime factorisation of n then

$$\tau(n) = (k_1 + 1)(k_2 + 1)..(k_r + 1)$$
$$= \prod_{1 \le i \le r} (k_1 + 1).$$

(use for each p_i there are $k_i + 1$ choices for divisors of n given by $d=\mathfrak{p}_1^{\mathfrak{a}_1}\mathfrak{p}_2^{\mathfrak{a}_2}..\mathfrak{p}_r^{\mathfrak{a}_r}$ for $o\leqslant \mathfrak{a}_{\mathfrak{i}}\leqslant k_{\mathfrak{i}}$ respectively).

$$\begin{split} \sigma(n) &= \frac{p_1^{k_1+1}-1}{p_1-1} \frac{p_2^{k_2+1}-1}{p_2-1} ... \frac{p_r^{k_r+1}-1}{p_r-1} \\ &= \prod_{1\leqslant i\leqslant r} \frac{p_i^{k_i+1}-1}{p_i-1}. \end{split}$$

(use the factors in the product $(1 + p_1 + p_1^2 + ... +$ $\mathfrak{p}_{_{1}}^{k_{_{1}}})(\mathbf{1}+\mathfrak{p}_{_{2}}+\mathfrak{p}_{_{2}}^{2}+\ldots+\mathfrak{p}_{_{2}}^{k_{_{2}}})..\,(\mathbf{1}+\mathfrak{p}_{_{r}}+\mathfrak{p}_{_{r}}^{2}+\ldots+\mathfrak{p}_{_{r}}^{k_{_{r}}})$ are the only values d can take if d|n).

- \blacksquare $\tau(n)$ and $\sigma(n)$ are multiplicative functions.
- $\blacksquare n^{\tau(n)/2} = \prod_{d|n} d.$
- $\blacksquare \tau(n)$ is odd iff n is a perfect square.
- \blacksquare $\sigma(n)$ is odd iff n is a perfect square of twice a perfect square (use: for odd prime
- $\blacksquare \sum_{d|n} \sigma(d) = \sum_{n|d} \frac{n}{d} \tau(d).$

Greatest integer function

Let [x] for real number x denote the largest integer less than or equal to x i.e. [x] is a unique integer satisfying $x - 1 < [x] \le x$

- \blacksquare every $x = [x] + \theta$ for $0 \le \theta < 1$.
- if p appears in the prime factorisation of n then the highest exponent of p dividing n! is given by

$$\sum_{k=1}^{\infty} \left[\frac{n}{d} \right].$$

clearly this series converges as $[n/p^k] = o$ for $p^k > n$.

■ if f, F are two number theoretic functions such that

$$F(n) = \sum_{d|n} f(d)$$

then for $N \in \mathbb{Z}^+$

$$\sum_{n=1}^{N} F(n) = \sum_{k=1}^{N} f(k) \left[\frac{N}{k} \right].$$

Euler's φ function

Define $\phi(n)$ as the number of positive integers $\leqslant n$ that are relatively prime to n.

- $\blacksquare \phi(p) = p 1$ for a prime p.
- ϕ is a multiplicative function. if $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ is its prime factorisation then

$$\begin{split} \varphi(n) &= p_1^{k_1-1}(p_1-1)..p_2^{k_2-1}(p_2-1) \\ &..p_r^{k_r-1}(p_r-1) \\ &= n(1-\frac{1}{p_1})(1-\frac{1}{p_2})..(1-\frac{1}{p_r}). \end{split}$$

- $\blacksquare \Phi(2^k) = 2^{k-1}.$
- $\blacksquare \phi(n)$ is even $\forall n > 2$.

- $\blacksquare \ \frac{\sqrt{n}}{2} \leqslant \varphi(n) \leqslant n \ (\text{use } p-1 > \sqrt{p} \ \text{and} \\ k-1/2 \geqslant k/2).$
- if n has r distinct primes in its prime factorisation then $2^r | \phi(n)$.
- if d|n then $\phi(d)|\phi(n)$.

6 More on Congruences

for n>1 and $gcd(\alpha,n)=1$. If $a_1,a_2,...,a_{\varphi(n)}$ are positive integers less than n and relatively prime to n then $aa_1,aa_2,...,aa_{\varphi(n)}$ is also congruent to $a_1,a_2,...,a_{\varphi(n)}$ modulo n in some order.

Euler's Theorem

for $n \in \mathbb{Z}^+$ and $gcd(\mathfrak{a}, \mathfrak{n}) = \mathfrak{1}$ we have

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

(use above point or induction on power of p by fermat's and binomial theorem.)

- if $gcd(\mathfrak{m},\mathfrak{n}) = 1$ then $\mathfrak{m}^{\varphi(\mathfrak{n})} + \mathfrak{n}^{\varphi(\mathfrak{m})} \equiv 1$ (mod $\mathfrak{m}\mathfrak{n}$)

$$n = \sum_{d|n} \phi(d)$$

(use if $n=p^k$ then $\sum_{d|n=p^k} \varphi(n)=1+(p-1)+(p^2-p)+\ldots+(p^k-p^{k-1})=p^k$ and multiplicity of φ for multiplicity of $\sum_{d|n} \varphi(d)$). \blacksquare sum of positive integers less than n and relatively prime to n is equal to $\frac{n\varphi(n)}{2}$ (use gcd(a,n)=gcd(n-a,n) so $\{n-a_1,n-a_2,\ldots n-a_{\varphi(n)}\}=\{a_1,a_2,\ldots a_{\varphi(n)}\}$ integers relatively prime to n so the set sum is also equal).

7 Primitive roots

for n > 1 and gcd(a, n) = 1, define **Order** of a modulo n as the smallest +ve integer $k_s|_t a^k \equiv 1 \pmod{n}$.

if a has order k modulo n

- then $a^h \equiv 1 \pmod{n}$ iff k|h, in particular k| $\phi(n)$.
- $\blacksquare a^i \equiv a^j \pmod{n}$ iff $i \equiv j \pmod{k}$.
- integers $a, a^2, ..., a^k$ are incongruent modulo n.
- \blacksquare \mathfrak{a}^{h} has order $\frac{k}{\gcd(k,h)}$

primitive root

for $gcd(\mathfrak{a},\mathfrak{n})=\mathfrak{1}$ if a has order $\varphi(\mathfrak{n})$ (maximum order) then a is called primitive root of $\mathfrak{n}.$

if a is primitive root of n then

- \blacksquare if n has primitive roots then there are $\varphi(\varphi(n))$ of them (use order argument).

7.1 existence of primitive roots

Lagrange Theorem

for a prime p and integral coefficient polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} \dots a_1 x + a_0$ with $a_n \not\equiv o \pmod{n}$ has at most n incongruent solutions modulo p for equation $f(x) \equiv o \pmod{p}$ (use induction).

for a prime p if d|p-1 then $\blacksquare x^d-1 \equiv o \pmod{p}$ has exactly d solutions incongruent modulo p.

- there are exactly $\phi(d)$ incongruent integers having order d modulo p.
- in particular there are $\phi(p-1)$ primitive roots modulo p.

for $k\geqslant 3$ the integer 2^k has no primitive roots (use induction to prove $a^{2^{k-2}}\equiv 1\pmod{2^k} \forall a$).

for m,n>2 if gcd(m,n)=1 then integer mn doesn't have a primitive root (use both $\varphi(n), \varphi(m)$ are even so $h=lcm(\varphi(n), \varphi(m))=\varphi(n)\varphi(m)/gcd(m,n)\leqslant \varphi(n)\varphi(m)/2$ so by euler's theorem $a^h\equiv 1\pmod n$ and $mn\geq 1\pmod m$ so $a^h\equiv 1\pmod m$

from above we get n doesn't have a primitive root if

- 2 odd primes divide n
- \blacksquare n = 2^kp for k \geqslant 2 and 2 /p

if p is an odd prime and r a primitive root of p then

- \blacksquare from above point we get r or r' is a primitive root of p²

let r be a primitve root of p such that $r^{p-1} \not\equiv 1 \pmod{p^2}$ then

 \blacksquare for each $k \ge 2$

$$r^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}.$$

(use induction). \blacksquare r is a primitive root of p^k (use all above points).

Integer of form $2p^k$ for odd prime p has a primitive root (use $\varphi(2p^k) = \varphi(p^k)$ so any odd primitive root r of p^k is a primitive root of $2p^k$ (this exists as: if primitive root of p^k r' is even then $r = r' + p^k$ is odd)).

Summary

An integer n > 1 has a primitive root iff

$$n = 2, 4, p^k \text{ or } 2p^k$$

for odd prime p and $k \in \mathbb{Z}^+$.

7.2 Indices

Relative Index

If for a given $n \in \mathbb{Z}^+$ has a primitive root r then for $\alpha_s|_t \gcd(\alpha,n) = \mathfrak{1}$ the smallest integer $k_s|_t \alpha \equiv r^k \pmod{n}$ is called the index of a relative to r denoted by $k = ind_r \alpha$ (i.e. $r^{ind_r \alpha} \equiv \alpha \pmod{n}$).

let n have a primitive root r and gcd(a, n) = gcd(b, n) = 1 then

- \blacksquare o \leqslant ind_r a \leqslant φ (a).
- \blacksquare ind_r(ab) \equiv ind_r a + ind_r b (mod $\phi(n)$).
- \blacksquare ind_r $a^k \equiv k$ ind_r $a \pmod{\phi(n)}$.
- \blacksquare ind_r 1 \equiv 0 (mod $\phi(n)$)

Binomial Congruence

for $n \in \mathbb{Z}^+$ having a primitive root (any) r and gcd(a,n) = 1, the binomial congruence

$$x^k \equiv a \pmod{n} \quad k \geqslant 2$$

is equivalent to the linear congruence

$$k \operatorname{ind}_r x \equiv \operatorname{ind}_r a \pmod{\varphi(a)}$$

thus the binomial congruence has a solution x_o iff for $d=gcd(\alpha,\varphi(n))$, $d|ind_r\alpha$. If so then there are exactly d incongruent solutions.

eg: if n = p an odd prime and k = 2 then $\phi(p) = p - 1$ and as $d = \gcd(2, p - 1) = 2$ we have

$$x^2 \equiv \mathfrak{a} \ (mod \ \mathfrak{p})$$

has a solution iff $2|\inf_r \alpha$, if s exactly 2 solutions. Now as r^k runs through p-1 values $(k=\inf_r \alpha)$, we get this binomial congruence has solution for precisely p-1/2 values of α .

Improving above arguments we have the binomial congruence

$$x^k \equiv a \pmod{n} \quad k \geqslant 2$$

has a solution iff

$$a^{\varphi(n)/d} \equiv 1 \pmod{n}$$
.

for $d=gcd(k,\varphi(n))$ (use this is equivalent to $\frac{\varphi(n)}{d}$ ind $_r$ $a\equiv o\pmod{\varphi(a)}$ which has a solution iff $d\mid ind_r$ a).

thus

$$x^k \equiv a \pmod{p}$$

has solution iff

$$a^{p-1/d} \equiv 1 \pmod{p}$$
.

for
$$d = \gcd(k, p - 1)$$
.

Exponential Congruence

for an odd prime p with primitive root r, the exponential congruence

$$a^x \equiv b \pmod{p}$$

has a solution iff for $d = gcd(ind_r a, p - 1)$, $d|iind_r b$. If then there are d incongruent solutions modulo p - 1.

7.3 Quadratic Congruence and residue

main problem

■ for a given off prime p the quadratic congruence

$$ax^2 + bx + c \equiv o \pmod{p}$$

where $a \not\equiv o \pmod{p}$ hold iff

$$(2\alpha x + b)^2 \equiv b^2 - 4\alpha c \pmod{p}$$
.

(use gcd(a,p) = 1 so gcd(4a,p) = 1 so the congruence is equivalent to $4a(ax^2 + bx + c) \equiv (2ax + b)^2 - (b^2 - 4ac) \equiv 0 \pmod{p}$)

- so solving this quadratic congruence is equivalent to solving $y^2 \equiv d \pmod{p}$ and $y \equiv 2\alpha x + b \pmod{p}$ where $d = b^2 4\alpha c$.
- So this problem boils down to solving quadratic congruence of form $x^2 \equiv a \pmod{p}$.
- if x_0 is solution of the above congruence then $p x_0$ is also another $\not\equiv \pmod{p}$ solution given $a \neq o \pmod{p}$.
- thus by lagrange theorem these exhaust incongruent solutions modulo p.

Quadratic residue

for an odd prime p and gcd(a,p) = 1 is the quadratic congruence $x^2 \equiv a \pmod{p}$ has a solution the a is said to be quadratic residue of p otherwise a is quadratic nonresidue of p.

Euler's criterion

a is quadratic residue of p (an odd prime) iff

$$a^{(p-1)/2} \equiv 1 \pmod{p}.$$

(use if r is primitive root of p then a \equiv r^k (mod p) and a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv 1 (mod p) so p-1|k(p-1)/2 or k = 2j).

now $(a^{(p-1)/2} - 1)(a^{(p-1)/2} + 1) \equiv a^{p-1} - 1 \equiv 0 \pmod{p}$ so either $a^{(p-1)/2} \equiv 1 \text{ or } -1 \pmod{p}$

Thus if $a^{(p-1)/2} \equiv -1 \pmod{p}$ then a is quadratic nonresidue of p.

Legendre symbol

for an odd prime p and gcd(a,p) = 1 define $(\frac{a}{p}) = \begin{cases} 1 & \text{if a is quadratic residue of p,} \\ -1 & \text{if a is quadratic nonresidue} \\ & \text{of p.} \end{cases}$

if a and b are relatively prime to odd prime p then

- $\blacksquare \mathfrak{a}^{(\mathfrak{p}-1)/2} \equiv (\frac{\mathfrak{a}}{\mathfrak{p}}) \pmod{\mathfrak{p}}.$
- $\blacksquare a \equiv b \pmod{p} \implies (\frac{a}{p}) = (\frac{b}{p}).$
- $\blacksquare \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right).$
- $\blacksquare \left(\frac{\dot{a}^2}{p}\right) = 1$
- $\blacksquare \left(\frac{1}{p}\right) = 1 \text{ and } \left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

for off prime p

$$\sum_{\alpha=1}^{p-1} \left(\frac{a}{p}\right) = 0.$$

Hence there are precisely (p-1)/2 quadratic residue and (p-1)/2 quadratic nonresidue of p (use if r is primitive root of p then $x^2 \equiv r \pmod{p}$ has no solution so $r^{(p-1)/2} \equiv -1$

$$(\text{mod } p) \text{ so } \sum_{a=1}^{p-1} (\frac{a}{p}) = \sum_{k=1}^{p-1})$$

Thus from above point we have for an odd prime p having primitive root r: quadratic residue of p are congruent to even powers of r modulo p and quadratic nonresidues congruent of p to odd powers of r modulo p.

Gauss's Lemma

for an odd prime p and gcd(a,p) = 1 if there are n integers in the set $\{a, 2a, 3a, ..., \frac{p-1}{2}a\}$ whose remainder upon division by p exceeds p/2 then

$$(\frac{\alpha}{p}) = (-1)^n$$

$$(\frac{2}{p}) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \end{cases}.$$

(use gauss's lemma)

From above point and similarities of $(p^2 - 1)/8$ we get if p is an odd prime then

$$(\frac{2}{p}) = (-1)^{\frac{p^2-1}{8}}$$

if p is an odd prime and a an odd integer with gcd(a,p) = then

$$\left(\frac{\alpha}{p}\right) = (-1)^{\sum_{k=1}^{(p-1)/2} [k\alpha/p]}$$

where $\left[\cdot\right]$ denotes the greatest integer function.

Quadratic Reciprocity Law

if p and q are distinct odd primes then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

Consequences: if p and q are distinct odd primes then

$$(\frac{p}{q})(\frac{q}{p}) = \begin{cases} 1 & \text{if } p \text{ or } q \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}.$$

$$(\frac{p}{q}) = \begin{cases} (\frac{q}{p}) & \text{if p or } q \equiv 1 \pmod{4} \\ -(\frac{q}{p}) & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}.$$

Calculation of $(\frac{a}{p})$

if $\mathfrak{a}=\pm 2^{k_0}\mathfrak{p}_1^{k_1}\mathfrak{p}_2^{k_2}..\,\mathfrak{p}_r^{k_r}$ is its prime factorisation then

$$(\tfrac{\alpha}{p})=(\tfrac{\pm 1}{p})(\tfrac{2}{p})^{k_0}(\tfrac{p_1}{p})^{k_1}(\tfrac{p_2}{p})^{k_2}..(\tfrac{p_r}{p})^{k_r}.$$

Thus we can invert above for odd primes p_i to get a smaller denominator by above point and continue this process until we end up with blocks only of form $(\frac{\pm 1}{q_i})$ and $(\frac{2}{q_i})$ for odd primes $q_i \leqslant p$ which can be easily calculated by $(\frac{-1}{q_i}) = (-1)^{(q_i-1)/2}$ and $(\frac{2}{q_i}) = (-1)^{(q_i^2-1)/8}.$

for odd prime p and gcd(a, p) = 1

$$x^2 \equiv a \pmod{p^n}$$

is solvable iff $(\frac{\alpha}{p}) = 1$.

for odd integer a

- $\blacksquare x^2 \equiv a \pmod{2}$ is always solvable.
- \blacksquare $x^2 \equiv a \pmod{4}$ is solvable iff $a \equiv 1 \pmod{4}$.
- $x^2 \equiv a \pmod{2^n}$ for $n \ge 3$ is solvable iff $a \equiv 1 \pmod{8}$.

From above points we have if $n=2^{k_0}p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ for odd primes p_i and $gcd(\mathfrak{a},\mathfrak{n})=\mathfrak{1}$ then $\mathfrak{x}^2\equiv\mathfrak{a}\pmod{\mathfrak{n}}$ is solvable iff

- $\blacksquare \left(\frac{\alpha}{p_i}\right) = 1$
- \blacksquare $a \equiv 1 \pmod{4}$ if $4 \mid n$ but $8 \mid n$ or $a \equiv 1 \pmod{8}$ if $8 \mid n$.

7 References

[1] David M. Burton: Elementary number theory, McGraw·Hill, 7, (2010).