Feuille d'exercice n° 07 : **Notion d'application**

Exercice 1 (
$$^{\textcircled{N}}$$
) Soit $f: \mathbb{N} \to \mathbb{N}$ et $g: \mathbb{N} \to \mathbb{N}$. $x \mapsto x+1$ $y \mapsto \begin{cases} 0 & \text{si } y=0 \\ y-1 & \text{si } y \geq 1 \end{cases}$.

- 1) Préciser l'injectivité, la surjectivité, la bijectivité éventuelle de f et g
- **2)** Préciser $f \circ g$ et $g \circ f$.

Exercice 2 Soit
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$$

$$x \mapsto x+1-\frac{1}{x-1}$$

- 1) f est-elle injective? surjective?
- 2) Déterminer une partie E telle que $g: E \to \mathbb{R}$ soit bijective et expliciter la réciproque. $x \mapsto x+1-\frac{1}{x-1}$

Exercice 3 Soit E un ensemble.

1) Montrer que pour toutes parties A et B de E, on a

$$\mathbb{1}_{(A\cap B)} = \mathbb{1}_A \times \mathbb{1}_B,\tag{1}$$

$$\mathbb{1}_{(A^c)} = 1 - \mathbb{1}_A,\tag{2}$$

$$\mathbb{1}_{(A \cup B)} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \times \mathbb{1}_B. \tag{3}$$

2) Montrer que l'application $\mathbb{1}: \mathcal{P}(E) \to \{0,1\}^E$ est bijective. $A \mapsto \mathbb{1}_A$

Exercice 4 (\bigcirc) Soit E, F, G trois ensembles, $f: E \to F$ et $g: F \to G$. Établir les implications suivantes.

- 1) $g \circ f$ injective $\Rightarrow f$ injective 3) $g \circ f$ injective et f surjective $\Rightarrow g$ injective
- 2) $g \circ f$ surjective $\Rightarrow g$ surjective 4) $g \circ f$ surjective et g injective $\Rightarrow f$ surjective

Exercice 5 (Soient E, E', F, F' quatre ensembles, $u : E' \to E, v : F \to F'$ deux applications. On définit l'application $\varphi : F^E \to F'^{E'}$.

- 1) Vérifier que φ est bien définie.
- 2) Montrer que si v est injective et u surjective alors φ est injective.
- 3) Montrer que si v est surjective et u injective alors φ est surjective. Remarque : cette dernière question est sensiblement plus difficile que les deux premières.

Exercice 6 Soit E un ensemble et A, B deux parties fixées de E. Soit φ : $\begin{cases} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B). \end{cases}$

- 1) Qu'est-ce que $\varphi(\varnothing)$? $\varphi(\overline{A \cup B})$?
- 2) À quelle condition sur A et B, φ est-elle injective?
- 3) Est-ce que le couple (\emptyset, B) possède un antécédent par φ ?
- 4) À quelle condition sur A et B, φ est-elle surjective?

Exercice 7 (- Factorisation d'une application –

- 1) Soit $f: F \to E$ et $g: G \to E$ deux applications. Montrer qu'il existe une application $h: G \to F$ telle que $g = f \circ h$ si et seulement si $g(G) \subset f(F)$. À quelle condition h est-elle unique ?
- 2) Soit $f: E \to F$ et $g: E \to G$ deux applications. Montrer qu'il existe une application $h: F \to G$ telle que $g = h \circ f$ si et seulement si $: \forall x, y \in E, (f(x) = f(y) \Rightarrow g(x) = g(y))$. À quelle condition h est-elle unique?

Exercice 8 (\circlearrowleft) Démontrer le théorème de Cantor : « Soit E un ensemble, il n'existe pas de surjection de E dans $\mathscr{P}(E)$ ».

Indication : avec φ une application de E dans $\mathscr{P}(E)$, on pourra s'intéresser à la partie

$$A = \{x \in E \mid x \not\in \varphi(x)\}.$$

Exercice 9 (Soit E, I deux ensemble, $f: E \to I$ une application surjective. On pose, pour tout $i \in I$, $A_i = f^{\leftarrow}(\{i\})$.

Montrer que les A_i sont non vides, deux à deux disjoints, de réunion égale à E. (On dit que les A_i forment une partition de E.)

Exercice 10 ($\stackrel{\triangleright}{\triangleright}$) Soient E et F deux ensembles et $f: E \to F$ une application.

- 1) a) Montrer que, pour toute partie A de E, $A \subset f^{\leftarrow}(f(A))$.
 - b) Montrer que f est injective si et seulement si, pour toute partie A de E, $f^{\leftarrow}(f(A)) = A$.
- 2) a) Montrer que, pour toute partie B de F, $f(f^{\leftarrow}(B)) \subset B$.
 - b) Montrer que f est surjective si et seulement si, pour toute partie B de F, $f(f^{\leftarrow}(B)) = B$.

Exercice 11 (\circlearrowleft) Soient E, F deux ensembles, soit $f: E \to F$. Montrer que f est injective si et seulement si :

$$\forall A, A' \in \mathscr{P}(E), \ f(A \cap A') = f(A) \cap f(A').$$

Exercice 12 () - Parties saturées pour la relation d'équivalence associée à f - Soit $f: E \to F$ une application, et $\mathscr{S} = \{ X \subset E \mid f^{\leftarrow}(f(X)) = X \}$.

- 1) Pour $A \subset E$, montrer que $f^{\leftarrow}(f(A)) \in \mathscr{S}$.
- 2) Montrer que ${\mathscr S}$ est stable par intersection et réunion.
- 3) Soient $X \in \mathscr{S}$ et $A \subset E$ tels que $X \cap A = \emptyset$. Montrer que $X \cap f^{\leftarrow}(f(A)) = \emptyset$.
- 4) Soient X et $Y \in \mathcal{S}$. Montrer que \overline{X} et $Y \setminus X$ appartiennent à \mathcal{S} .
- **5)** Montrer que l'application $\mathscr{S} \to \mathscr{P}(f(E))$ est une bijection. $A \mapsto f(A)$

