Week 3: ML Pipeline

What we have learnt so far

Data Preparation

feature scaling, stratified sampling Prepare training set and test set

Model Selection:

Binary classification models: Perceptron and Adaline Both are linear models

Model Evaluation:

Accuracy score: how many the classifier got it right

One-Vs-Rest: Multi-class classification

ML Pipeline

- Create new feature column with attribute combinations

· Data Preparation and Feature Engineering

Fine tune the model. E.g. GridSearchCV

Process categorical feature. E.g. 1-hot encodingFeature transformation. E.g. Standardization

- Prepare training set: Stratified Sampling v.s. Random

- Feature imputation

Cross validationHyper-parameter Tuning

- Create feature process pipeline

Model Selection/Evaluation

One-Vs-Rest may not always work

Black points are not separable with a single binary classifier

The decomposition will not work for these cases!

Gradient Descent Revisit

An optimization algorithm used for finding the weights (or coefficients) of machine learning algorithms.

Cost Function for Adaline: Sum of Squared Errors

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y^{(i)} - \phi(z^{(i)}) \right)^{2}$$

Stochastic Gradient Descent

$$\Delta w = \eta \sum_{i} \left(y^{(i)} - \phi(z^{(i)}) \right) x^{(i)}$$

$$\approx \eta \left(y^{(i)} - \phi(z^{(i)}) \right) x^{(i)}$$

- Enables inexpensive evaluations of the sumfunction and the sum gradient (an approximation)
- Adjust weights with each sample
- Samples are selected randomly & re-shuffle the training set for every epoch.

Mini-Batch Gradient Descent

The **batch size** is a hyper-parameter of that controls the number of training samples in each iteration of weight update

Model Evaluation

Limitation of using a single training/test partition:

- May not have enough data
- A single training set doesn't tell us how sensitive accuracy is to a particular training sample.

Random Partitions

Stratified Sampling

When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set

Cross Validation

iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	s_2 s_3 s_4 s_5	s ₁
2	\mathbf{S}_1 \mathbf{S}_3 \mathbf{S}_4 \mathbf{S}_5	s_2
3	s ₁ s ₂ s ₄ s ₅	s_3
4	S ₁ S ₂ S ₃ S ₅	S ₄
5	S ₁ S ₂ S ₃ S ₄	s ₅

12

Performance Evaluation

- Accuracy: the measure as the percentage of predicted results that match the expected results.
- But...

Cross Validation - Example

Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	s ₂ s ₃ s ₄ s ₅	s ₁	11 / 20
2	s ₁ s ₃ s ₄ s ₅	S ₂	17 / 20
3	s ₁ s ₂ s ₄ s ₅	S ₃	16 / 20
4	s ₁ s ₂ s ₃ s ₅	S ₄	13 / 20
5	s ₁ s ₂ s ₃ s ₄	s ₅	16 / 20

accuracy = 73/100 = 73%

. .

Confusion Matrix

accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

Performance Evaluation

• **Precision**: the measure of the proportion of <u>positive</u> predictions was actually correct.

$$precision = TP / (TP + FP)$$

 Recall (Sensitivity): the measure of the proportion of actual positives was identified correctly.

$$recall = TP / (TP + FN)$$

To fully evaluate the effectiveness of a model, must examine both precision and recall, but these two measure are often in tension.

16

Type I & Type II Errors

17