

Seminar Group 1, Team 2

Chong Shu Yi
Joey Tay Yi Qin
Tan Zhi Jie
Toh Xing Yu
Yeo Ying Han Yvonne

Business Problem

Model

Data Preparation

Implementation & Implications

Variable Selection

Limitations & Development

Business Problem

Business Problem Data Preparation Variable Selection

Model

mplementation & Implications

Limitations & Development

So what is our analytics approach?

Data Preparation

Our Dataset

A set of engineering candidates from **India** and their employment outcomes

Data Cleaning

Variable Selection

Velai metcar

Variable Irrelevance

Some of the behaviour of the output remains unexplained by the selected input variables or disturbed by 'noise' from insignificant variables.

(May, Dandy & Maier, 2011)

Business Problem Data Preparation Variable Selection

Model

mplementation & Implications

Limitations & Development

Models

Multivariate Adaptive Regression Splines (MARS)

earth()

Decision Trees

rpart()
randomForest()

Velai metcar

MARS

```
## Model: MARS
   library(earth)
11
   library(caTools)
   set.seed(2018)
   train <- sample.split(Y = indian$Designation, SplitRatio = 0.7)
   trainset <- subset(indian, train == T)
    testset <- subset(indian, train == F)</pre>
16
17
18
      # Degree of interactions = 1
19
      mars1 <- earth(Designation ~ ., degree = 1, nfold= 10, data=trainset, qlm=list(family=binomial))
20
      summary(mars1)
21
22
      # Degree of interactions = 2
23
      mars2 <- earth(Designation ~ ., degree = 2, nfold= 10, data=trainset, qlm=list(family=binomial))</pre>
24
      summary(mars2)
25
26
      # Degree of interactions = 3
27
      mars3 <- earth(Designation ~ ., degree = 3, nfold= 10, data=trainset, glm=list(family=binomial))</pre>
28
      summary(mars3)
29
30
      # Degree of interactions = 4
31
      mars4 <- earth(Designation ~ ., degree = 4, nfold= 10, data=trainset, glm=list(family=binomial))
32
      summary(mars4)
33
9:1
     (Top Level) $
```

family = binomial

Degree of Interaction (1 to 4)

3 n-fold remains at 10

Models

Multivariate Adaptive Regression Splines (MARS)

earth()

Decision Trees

rpart()
randomForest()

Velai metcar

Decision Trees

```
9 ## Model: CART
10 library(rpart)
11 library(rpart.plot)
    library(randomForest)
13
    library(caTools)
14
    set.seed(2018)
    train <- sample.split(Y = indian$Designation, SplitRatio = 0.7)
    trainset <- subset(indian, train == T)</pre>
18
    testset <- subset(indian, train == F)</pre>
19
      # Unpruned Tree
20
      tree1 <- rpart(Designation ~ ., data = trainset, method="class", control=rpart.control(minsplit=73,cp=0))
21
22
      summary(tree1)
23
      prp(tree1, varlen = 8)
24
25
      # Pruned Tree
26
      cp.opt <- tree1$cptable[which.min(tree1$cptable[,"xerror"]),"CP"]</pre>
      tree2 <- prune(tree1, cp = cp.opt)</pre>
28
      summary(tree2)
29
      prp(tree2,varlen = 8)
30
31
      # Random Forest
32
      set.seed(2018)
33
      rf <- randomForest(Designation~., data = trainset, type = class, ntree = 500, importance = TRUE) #mtry, nod
34
7:1
      (Top Level) $
```

- minsplit = 73
 (For-loop to test optimal minsplit)
- Prune via optimal CP

Random Forest

Mean Decrease in Gini Index for Random Forest

Results

Model	MARS				Decision Tree		
	Degree =	Degree = 2	Degree = 3	Degree = 4	Not Pruned	Pruned	Random Forest
Misclassification Rate (%)	18.1	19.4	19.4	19.4	21.8	20.3	17.8
Absolute Improvement in Neural Network (%)		1.8			5.7	1.6	5.6
Subset of Variables	neuroticism extraversion conscientiousness openess_to_experience agreeableness				collegeGPA Quant Domain agreeableness conscientiousness extraversion openess_to_experience nueroticism	extraversion conscientiousness openess_to_experience agreeableness	collegeGPA English Logical Quant Domain agreeableness conscientiousness extraversion openess_to_experience nueroticism

Model

Iterations

Number of

iterations is set to

1000.

Training

Technique

Optimization

Quasi-Newton method is used.

Activation **Function**

Number of Hidden Layers

Number of hidden layers restricted to 1 for simplicity.

Number of Hidden Units

Based on the twothird rule.

Logistic used as

Function.

the Hidden Layer Activation

Final misclassification rate of the final neural network model

Implementation & Implications

Short Run

Velai metcar

Hybrid Portal

Digital recruitment consultant that provides guaranteed responses to the client.

Point of Application

Applicant will know probabilities relating to suitability to job.
Implore them to apply for suitable jobs.

Recruitment

HR department will search for the job title. Company will be given a list of applicants ranked by suitability.

Point of Application

MOCK UP

Welcome, **JOHN DOE**

Dashboard

Profile

Jobs Applied

Preferences

Contact Us

Terms and Conditions

JOBS APPLIED

Date Organization Job Title Role

13/4/2018 ABC Pte Ltd Java Developer Software Developer

13/4/2018

DEF Pte Ltd

.net Developer

Web Developer

05/4/2018

GHI Pte Ltd

C++ Developer

Software Developer

Short Run

Velai metcar

Hybrid Portal

Digital recruitment consultant that provides guaranteed responses to the client.

Point of Application

Applicant will know probabilities relating to suitability to job.
Implore them to apply for suitable jobs.

Recruitment

HR department will search for the job title. Company will be given a list of applicants ranked by suitability.

Recruitment

MOCK UP

Velai metcar

Career Portal

Provides a full suite of career resources.
Enhances the 'Recommended for you' function.

Online Resource

Creates additional data touch points where more data can be captured about the applicant.

Enhanced Recommendations

Multi-dimensional data can aid in a holistic review of applicant.
May find the right fit more accurately.

Limitations & Development

Model

Limitations & Development

Possible Business Extension

Classification of Jobs

Sparse data & Seniority

Targeted Head Hunting

Premium service for automatic matching

Salary Predict salary range

