電源管理晶片設計與實作

Lab 2 Layout Skills & Constant-gm

TA: 温晨羽, 劉子寧

August 1st, 2023

National Yang Ming Chiao Tung University

Finger Number

Single Finger / Multiple Fingers Schematic View

Total Width = 8um Finger Width = 8um L = 180nmFinger Number = 1

更改Finger Number時, Finger Width會 自動計算為Total Width/Finger Number

Total Width = 8um Finger Width = 2um L = 180nmFinger Number = 4

CDF Parameter	Value	Display
Model Name	n_18_mm	off
Total Width	8u M	off
Finger Width	8u M	off
Length	180.0n M	off
Finger Number	1	off
mis_flag	1	off
Source Drain Metal Width	400.0n M	off
AD AS PD PS Editable		off
Drain diffusion area (m^2)	3.92e-12	off
Source diffusion area (m^2)	3.92e-12	off
Drain diffusion periphery	16.98u M	off
Source diffusion periphery	16.98u M	off
Multiplier	1	off 🔽

更改Multiplier時,上面的數值皆不會更 動,要自行計算Total Width

Layout View

設定Layout所需的Finger Number

Layout

Example: NAND layout

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Reference: http://2.zqxw.ffbayreuth-ost.de/kuy/figure-1-schematic-and-stick-diagram-of-a-two-inputnand-gate.html

Layout

♦ Deep N-Well

類比電路為了避免body effect造成的影響 $V_{TH} = VTH_0 + \left(\sqrt{|2\Phi_F + VSB|} - \sqrt{2\Phi_F}\right)$ 因此會將body接到source,而layout上則需加上deep n-well來區隔電位

Lab 2

♦ NAND2

 M_{P1} : (2µm/0.18µm)

 M_{P2} : (2µm/0.18µm)

 M_{N1} : (2 μ m/0.18 μ m)

 M_{N2} : (2µm/0.18µm)

♦SR Latch

♦ Current Reference / Current Generator

Ideal current reference

Constant-g_m with Resistance

Constant-g_m without Resistance

♦ Current Reference / Current Generator

$$(W/L)_{P1} = (W/L)_{P2}$$
, $(W/L)_{N1} = K*(W/L)_{N2}$, $K>1$

$$V_{gs, MP1} = V_{gs, MP2}$$
 (M_{P1} and M_{P2} in Saturation Region)

$$I_{ds, MP1} = I_{ds, MP2} = I_{ds, MN1} = I_{ds, MN2} = I_{REF}$$

$$V_{gs, MN1} + I_{ds, MN1} *R = V_{gs, MN2}$$

$$(I_{ds, sat} = \frac{1}{2} \mu C_{ox} \frac{W}{L} V_{ov}^2, V_{ov} = V_{gs} - V_{th})$$

National Yang Ming Chiao Tung University

◆ Current Reference / Current Generator

$$V_{\text{th, MN1}} + \left(\frac{2I_{REF}}{\mu_n c_{ox}(\frac{W}{L})_{N1}}\right)^{1/2} + I_{REF} *R = V_{\text{th, MN2}} + \left(\frac{2I_{REF}}{\mu_n c_{ox}(\frac{W}{L})_{N2}}\right)^{1/2}$$

$$\text{[W/L]}_{\text{P2}} \quad I_{\text{REF}} * R = \left(\frac{2I_{REF}}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{N2}}\right)^{1/2} - \left(\frac{2I_{REF}}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{N1}}\right)^{1/2}$$

$$I_{REF} *R = \left(1 - \frac{1}{\sqrt{K}}\right) \left(\frac{2I_{REF}}{\mu_n C_{oX}\left(\frac{W}{L}\right)_{N2}}\right)^{1/2}$$

(W/L)_{N2}
$$I_{REF}*R^2 = \frac{2}{\mu_n C_{ox}(\frac{W}{L})_{N2}} \left(1 - \frac{1}{\sqrt{K}}\right)^2$$

$$I_{REF} = \frac{2}{\mu_n C_{ox}(\frac{W}{L})_{N2}} \frac{1}{R^2} \left(1 - \frac{1}{\sqrt{K}}\right)^2$$

◆ Current Reference / Current Generator

$$V_{TH} = VT_{H0} + \left(\sqrt{|2\Phi_F + VSB|} - \sqrt{2\Phi_F}\right)$$

$$\Phi_F = \left(\frac{kT}{q}\right) \ln\left(\frac{N_{SUB}}{n_i}\right)$$

The body of N_1 needs to be connected to n_3 for the cancellation of V_{TH} .

The magnitude of mobility is complimentary to absolute temperature

Corner	TT	FF	SS	FS	SF
$I_{D,0^{\circ}C}$ (@ V_{DD} =1 V)	61	60	63	60	63
$I_{D,120^{\circ}C}$ (@ V_{DD} =1 V)	92	89	97	86	96
I _{D,0°C} (@V _{DD} =1.8 V)	69	71	71	67	75
I _{D,120°C} (@V _{DD} =1.8 V)	102	103	107	98	112

Current Reference / Current Generator

- 簡單的設計流程:
 - 1. 選定I_{REF}大小 (功耗,效能)
 - 2. 根據IRFF選擇適合的n2大小和MN2大小
 - 3. 根據I_{RFF}選擇適合的n1大小和M_{P1} ,M_{P2}大小, 需保證Mp可以工作在飽和區
 - 4. 調整M_{N1}大小(K值)和R值以達到所需電流
 - 5. 再次檢查所有電晶體的工作區間, 若需要可微調電晶體大小

Current Reference / Current Generator

特別留意

決定MOSFET操作在Saturation region與否,與drain 電壓有關,n2太高、n1太低,將使M_{N1}及M_{P2}進入 Triode region •

調整參數過程需考慮到layout時的對稱性, M_{N1} 及 M_{N2}的width和length相同,應改變m(或finger)數 來調整total width而非改變width大小。

跑dc若發現電路沒有正常運作,可在n1到n2之間, 接一或多個diode-connected的MOS,但不可讓MOS 導通。(不可給initial condition)

HW₂

Architecture and specification

All bodies of NMOS and PMOS are connected to source.

HW₂

> All bodies of NMOS and PMOS are connected to source.

HW 2

♦ Specifications

Parameters	Target spec.		Pre-sim.	Post-sim.
V_{REF}	1.2V (+/- 1%)	Value (V)		
	@ V _{DD} =1.8V	Error (%)		
V_{REF}	1.2V (+/- 1%) @ V _{DD} =1.7V-1.9V	Value (V)		
		Error (%)		
I _{REF}	10µA (+/- 1%) @ V _{DD} =1.8V	Value (V)		
		Error (%)		
I _{REF}	10µA (+/- 5%) @ V _{DD} =1.7V-1.9V	Value (V)		
		Error (%)		
P _{VDD}	<150uW @ V _{DD} =1.8V	Power (uW)		

誤差計算方式如下:

$$\frac{V_{REF}-1.2}{1.2} \times 100\%$$

HW 2

- > 繳交一份電子檔。
- ➤ 請在報告中加入Pre-sim.和Post-sim.模擬結果,Layout圖,DRC及 LVS結果。報告中的波形圖請改用白底,並將線條加粗。
- ➤ Pre-sim.和Post-sim.模擬結果需包括V_{REF}(和I_{REF})對V_{DD}(1.7V~1.9V) 的圖,以及V_{REF}(和I_{REF})對溫度(0°C~120°C)的圖(V_{DD}=1.8V)。
- ➤ 並請於報告中簡單說明M₆/M₇及R₁尺寸設計的考量
- ▶ 作業繳交時間為2023/08/07(一)晚上12點前,請將作業報告上傳至e3

Thanks for your attention !

DC simulation (1)

開啟Analog Design Environment視窗

DC simulation (2)

DC simulation (3)

選擇DC analysis

若要sweep溫度則勾選Temperature,接 著設定要掃的溫度範圍

DC simulation (4)

如果要看component的parameter,要在option裡面點output parameter選all
 (若電路複雜度較高,通常不會選擇all,因為會佔用太多硬碟容量)

DC simulation (5)

• 設定好就可以按netlist and run開始跑模擬

DC simulation (6)

Output log

```
/home/RAID2/COURSE/aiclab/aiclabta05/simulation/inverter/spect...
 File Edit View Help
                                                               cādence
    dc: vgate = 594e-03
                               (66 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 612e-03
                               (68 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 630e-03
                               (70 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 648e-03
                               (72 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 666e-03
                               (74 \%), step = 18e-03
                                                              (2 %)
    dc: vgate = 684e-03
                               (76 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 702e-03
                               (78 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 720e-03
                               (80 %), step = 18e-03
                                                              (2 %)
                              (82 %), step = 18e-03
    dc: vgate = 738e-03
                                                              (2 %)
    dc: vgate = 756e-03
                               (84 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 774e-03
                               (86 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 792e-03
                               (88 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 810e-03
                              (90 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 828e-03
                              (92 %), step = 18e-03
                                                              (2 %)
                               (94 \%), step = 18e-03
                                                              (2 %)
    dc: vgate = 846e-03
    dc: vgate = 864e-03
                              (96 %), step = 18e-03
                                                              (2 %)
    dc: vgate = 882e-03
                              (98 %), step = 18e-03
                                                              (2 %)
                             (100 %), step = 18e-03
    dc: vgate = 900e-03
                                                              (2 %)
DC simulation time: CPU = 256.96 ms, elapsed = 2.89886 s.
Total time required for dc analysis 'dc': CPU = 4.999 ms, elapsed = 11.
Time accumulated: CPU = 257.96 ms, elapsed = 2.90254 s.
Peak resident memory used = 42.6 Mbytes.
modelParameter: writing model parameter values to rawfile.
Opening the PSF file ../psf/modelParameter.info ...
element: writing instance parameter values to rawfile.
Opening the PSF file ../psf/element.info ...
outputParameter: writing output parameter values to rawfile.
Opening the PSF file ../psf/outputParameter.info ...
designParamVals: writing netlist parameters to rawfile.
Opening the PSFASCII file ../psf/designParamVals.info ...
primitives: writing primitives to rawfile.
Opening the PSFASCII file ../psf/primitives.info.primitives ...
subckts: writing subcircuits to rawfile.
Opening the PSFASCII file ../psf/subckts.info.subckts ..
                                                              L297
```

跑完了

DC simulation (7)

查看模擬結果

DC simulation (8)

DC simulation (9)

DC Transfer Curve

更改背景顏色:

Graph→Edit

→Foreground/Background

加入marker: Marker → Place

→Trace Marker (t)

DC simulation (10)

 選擇DC Node Voltage以及DC Operating Points可以 將目前的DC 操作電壓或電流標示在schematic

DC simulation (11)

利用Results Browser去看device的參數

