Search for Flavor Changing Neutral Currents in Top Quark Decays

Fake Rates and Initial Asimov Fits

Jason Barkeloo

January 16, 2020

Overview

Brief Background
The Top Quark
FCNC at the LHC

Fake Rate Studies $e \rightarrow \gamma \text{ Fake Rate Studies}$ Basic 1D Fake Rate Scale Factor $j \rightarrow \gamma \text{ Fake Rate Studies: ABCD Method}$

Outlook and Conclusions

Top Quark Decays in the SM

$$t \rightarrow bW \approx 99.83\%$$

$$t \rightarrow sW \approx 0.16\%$$

▶
$$t \rightarrow dW \approx 0.01\%$$

- $ightharpoonup t o q_{u,c} X \approx 10^{-17} 10^{-12}$
- Limits on $t \rightarrow \gamma q$ processes: [Phys.Lett. B800 135082]

►
$$t \to \gamma u < 2.8 \times 10^{-5}$$

►
$$t \to \gamma c < 18 \times 10^{-5}$$

FCNC: What are we looking for? $t\bar{t} o W(o I u) b + q \gamma$

Will further investigate BJets here.

- ► Final state topology
 - ► One Neutrino, from W
 - ► One Lepton, from W
 - One B-jet, SM Top
 - One Photon, FCNC Top
 - ► One Jet, FCNC Top

Fake Rate Studies

Want to be able to correct the number of fake photons predicted in MC to those present in Data

Fake Rate Object Selection

- ► Want to calculate fake rate in events which could enter the signal region.
- ► Create 2 control regions: $Z \rightarrow ee$ and $Z \rightarrow e\gamma$
- ► Require:
 - Common Object Selection (MET, Jets, Triggers, etc.)
 - ► Exactly 1Bjet
 - lacktriangledown Z
 ightarrow ee : 2 Opposite Sign Electrons, 86.1 GeV $< m_{e^+e^-} <$ 96.1 GeV
 - $ightharpoonup Z
 ightarrow e \gamma$:1 Electron, \geq 1 Photon, 86.1 GeV $< m_{e\gamma} <$ 96.1 GeV
- ► Tag and Probe Method used
- ► Systematic determined by varying tail size and other parameters

$m_{ee}, m_{e\gamma}$

Data and MC

Scale Factor

$$\mathsf{FR}^{\mathsf{e-fake}} = rac{N_{\mathsf{e},\gamma}}{N_{\mathsf{e},\mathsf{e}}}$$

$$\mathsf{SF}^{\text{e-fake}}_{\mathsf{FR}} = \frac{\mathsf{FR}^{\text{e-fake}}_{\mathsf{data}}}{\mathsf{FR}^{\text{e-fake}}_{\mathsf{MC}}}$$

Basic Scale Factor can be calculated for the entire spectrum:

$$\mathsf{SF}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathsf{FR}} = 0.97 \pm 0.01$$

In practice this scale factor is calculated for converted and unconverted photons as well as in bins of η and ϕ

Data and MC Distributions

2D Fake Rates

ightharpoonup Converted γ

ightharpoonup Unconverted γ

$j \rightarrow \gamma$ Fake Rate Studies

Majority of hadronic fake photons from from $t\bar{t}$ events where a final state jet radiates a non-prompt photon. Similarly radiated photons for W+jets and single top processes can enter the signal region through the radiation of a non-prompt photon.

ABCD Method

$$\frac{\textit{N}^{\text{h-fake}}_{\textit{D}}}{\textit{N}^{\text{h-fake}}_{\textit{C}}} = \frac{\textit{N}^{\text{h-fake}}_{\textit{A}}}{\textit{N}^{\text{h-fake}}_{\textit{B}}} \text{ and } \frac{\textit{N}^{\text{h-fake}}_{\textit{D}}}{\textit{N}^{\text{h-fake}}_{\textit{A}}} = \frac{\textit{N}^{\text{h-fake}}_{\textit{C}}}{\textit{N}^{\text{h-fake}}_{\textit{B}}}$$

Want uncorrelated variables, use a correction factor to account to ensure closure

$$heta_{
m MC} = rac{N_{
m D,MC}^{
m h-fake}/N_{
m C,MC}^{
m h-fake}}{N_{
m A,MC}^{
m h-fake}/N_{
m B,MC}^{
m h-fake}}$$

$$N_{ ext{D,est.}}^{ ext{h-fake}} = rac{N_{ ext{A,data}}^{ ext{h-fake}} imes N_{ ext{C,data}}^{ ext{h-fake}}}{N_{ ext{B,data}}^{ ext{h-fake}}} imes heta_{ ext{MC}}$$

$$\mathsf{SF}^{\mathsf{h\text{-}fake}} = \frac{\mathsf{N}^{\mathsf{h\text{-}fak}}_{\mathsf{D},\mathsf{est}}}{\mathsf{N}^{\mathsf{h\text{-}fak}}_{\mathsf{D},\mathsf{M}}}$$

Barkeloo

Asimov Data Fit

Asimov Likelihood

Outlook

- ► Fake rates have been calculated and applied
- ► Full systematics samples (slowly) running on the grid
- ► Fitting machinery mostly in place now, should be ready once samples finish
- ► Questions?

Backup

FCNC Diagrams

No Photon Region Scale Factors Applied in Validation

Region

Jets/AntiKT

$$\begin{aligned} d_{ij} &= min(\frac{1}{p_{ti}^2}, \frac{1}{p_{tj}^2}) \frac{\Delta_{ij}^2}{R^2} \\ d_{iB} &= \frac{1}{p_{ti}^2} \\ \Delta_{ij}^2 &= (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \end{aligned}$$

- ▶ Find minimum of entire set of $\{d_{ii}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ▶ If d_{iB} is the minimum i is labelled as a final jet and removed from the list of particles
- ightharpoonup Repeat until all particles are part of a jet with distance between jet axes Δ_{ij} is greater than R

$$\mathcal{L}_{tq\gamma}^{eff} = -ear{c}rac{i\sigma^{\mu
u}q_
u}{m_t}(\lambda_{ct}^LP_L + \lambda_{ct}^RP_R)tA_\mu + H.c.$$