Bài tập Điều khiển quá trình Chủ đề Mô hình hóa lý thuyết

Sưu tầm: Thi Minh Nhựt Email: thiminhnhut@gmail.com

Thời gian: Ngày 1 tháng 10 năm 2017

1 Bài tập 1

Giả thiết Cho hệ thống như hình 1: Biết lưu lượng ra F_2 tỉ lệ với chiều cao chất lỏng theo công thức $F_2 = R.h^{3/2}$ với R là hằng số. Tiết diện của bồn chứa là A.

Hình 1: Hệ thống 1 bình chứa

Yêu cầu

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
- c. Tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
- d. Xác định hàm truyền $G(s) = \frac{H(s)}{F_1(s)}$

Bài giải

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
 - Biến vào: F_1, F_2 .
 - Biến ra: h.
 - Biến điều khiển: F_1 hoặc F_2 .
 - Biến cần điều khiển: h.
 - Biến nhiễu: F_2 hoặc F_1 .
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.

• Phương trình cân bằng vật chất:

$$\frac{dV}{dt} = F_1 - F_2 \Longleftrightarrow \frac{d(Ah)}{dt} = F_1 - F_2 \Longleftrightarrow \frac{dh}{dt} = \frac{1}{A}(F_1 - F_2) \tag{1}$$

• Thay $F_2 = R.h^{3/2}$ vào (1), ta có:

$$\frac{dh}{dt} = \frac{1}{A} (F_1 - F_2) = \frac{1}{A} \left(F_1 - R \cdot h^{3/2} \right)$$
 (2)

• Kết luận, phương trình mô tả quá trình:

$$\frac{dh}{dt} = \frac{1}{A} \left(F_1 - R.h^{3/2} \right) \tag{3}$$

- c. Tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
 - Gọi $(\overline{F_1}, \overline{h})$ là điểm làm việc cân bằng của hệ thống.
 - Gọi $F_1 = \overline{F_1} + \Delta F_1, h = \overline{h} + \Delta h.$
 - Đặt $f\left(F_{1},h\right)=\dot{h}=\frac{1}{A}\left(F_{1}-R.h^{3/2}\right)$
 - Tại điểm làm việc cân bằng $(\overline{F_1}, \overline{h})$ thì

$$f\left(\overline{F_1}, \overline{h}\right) = 0 \Longleftrightarrow \frac{1}{A} \left(\overline{F_1} - R.\overline{h}^{3/2}\right) = 0$$
 (4)

– Khai triển Taylor cho $f(F_1, h) = \dot{h} = \frac{1}{A} \left(F_1 - R.h^{3/2} \right)$, ta có:

$$\dot{h} = \Delta \dot{h} = f\left(\overline{F_1} + \Delta F_1, \overline{h} + \Delta h\right) \tag{5}$$

$$\approx \underbrace{f\left(\overline{F_1}, \overline{h}\right)}_{0} + \frac{\partial f}{\partial F_1} \bigg|_{\left(\overline{F_1}, \overline{h}\right)} \Delta F_1 + \frac{\partial f}{\partial h} \bigg|_{\left(\overline{F_1}, \overline{h}\right)} \Delta h \tag{6}$$

$$\approx \frac{1}{A} \left(\Delta F_1 - \frac{3}{2} R \overline{h}^{1/2} \Delta h \right) \tag{7}$$

• Kết luận, phương trình tuyến tính hóa của mô hình tại điểm làm việc cân bằng $(\overline{F_1}, \overline{h})$:

$$\Delta \dot{h} = \frac{1}{A} \left(\Delta F_1 - \frac{3}{2} R \overline{h}^{1/2} \Delta h \right) \tag{8}$$

d. Xác định hàm truyền $G(s) = \frac{H(s)}{F_1(s)}$

• Ta có: $\Delta \dot{h} = \frac{1}{A} \left(\Delta F_1 - \frac{3}{2} R \overline{h}^{1/2} \Delta h \right)$, thực hiện biến đổi Laplace 2 vế của phương trình ta có:

$$sH(s) = \frac{1}{A} \left[F_1(s) - \frac{3}{2} R \overline{h}^{1/2} H(s) \right]$$
 (9)

$$\iff sAH(s) + \frac{3}{2}R\overline{h}^{1/2}H(s) = F_1(s)$$
(10)

$$\iff \left(sA + \frac{3}{2}R\overline{h}^{1/2}\right)H(s) = F_1(s) \tag{11}$$

$$\iff \frac{H(s)}{F_1(s)} = \frac{1}{sA + \frac{3}{2}R\overline{h}^{1/2}}$$
 (12)

• Kết luận:

$$G(s) = \frac{H(s)}{F_1(s)} = \frac{1}{sA + \frac{3}{2}R\overline{h}^{1/2}}$$
(13)

2 Bài tập 2

Giả thiết Cho hệ thống như hình 2: Trong đó w_1 là dòng lưu lượng vào $[m^3/s]$, w_2 là dòng lưu lượng ra $[m^3/s]$ và h là chiều cao của mức chất lỏng [m]. Biết lưu lượng ra w_2 tỉ lệ với căn bậc hai của chiều cao mực chất lỏng bởi hằng số C_v . Diện tích mặt cắt ngang của bồn chứa là $A = 2[m^2]$. Khối lượng riêng của chất lỏng là $\rho = 500[kg/m^3]$.

Hình 2: Hê thống 1 bình chứa

Yêu cầu

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
- c. Viết phương trình động học ở trạng thái ổn định mức. Biết trạng thái ổn định: $w_1 = 2,4 \text{ m}^3/\text{s}$ và h = 1,44 m. Tìm C_v .
- d. Tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
- e. Xác định hàm truyền $G(s) = \frac{H(s)}{W_1(s)}$

Bài giải

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
 - Biến vào: w_1, w_2 .
 - \bullet Biến ra: h.
 - Biến điều khiển: w_1 .
 - ullet Biến cần điều khiển: h.
 - Biến nhiễu: w_2 .
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
 - Phương trình cân bằng vật chất:

$$\frac{dV}{dt} = w_1 - w_2 \Longleftrightarrow \frac{d(Ah)}{dt} = w_1 - w_2 \Longleftrightarrow \frac{dh}{dt} = \frac{1}{A}(w_1 - w_2) \tag{14}$$

• Thay $w_2 = C_v \sqrt{h}$ vào (14), ta có:

$$\frac{dh}{dt} = \frac{1}{A} (w_1 - w_2) = \frac{1}{A} (w_1 - C_v \sqrt{h})$$
 (15)

• Kết luận, phương trình mô tả quá trình:

$$\frac{dh}{dt} = \frac{1}{A} \left(w_1 - C_v \sqrt{h} \right) \tag{16}$$

- c. Viết phương trình động học ở trạng thái ổn định mức. Biết trạng thái ổn định: $w_1=2,4$ m^3/s và h=1,44 m. Tìm C_v .
 - Gọi $(\overline{w_1}, \overline{h})$ là điểm làm việc cân bằng của hệ thống.
 - Đặt $f(w_1, h) = \dot{h} = \frac{1}{A} \left(w_1 C_v \sqrt{h} \right)$
 - ullet Tại điểm làm việc cân bằng $(\overline{w_1}, \overline{h})$ thì

$$f\left(\overline{w_1}, \overline{h}\right) = 0 \Longleftrightarrow \frac{1}{A} \left(\overline{w_1} - C_v \sqrt{\overline{h}}\right) = 0 \tag{17}$$

Kết luận, phương trình động học ở trạng thái ổn định mức:

$$\frac{1}{A}\left(\overline{w_1} - C_v\sqrt{\overline{h}}\right) = 0\tag{18}$$

• Thông số ở trạng thái ổn định: $\overline{w_1} = 2,4 \ m^3/s$ và $\overline{h} = 1,44 \ m$, nên thay vào phương trình (18), ta có:

$$\frac{1}{A}\left(\overline{w_1} - C_v\sqrt{\overline{h}}\right) = 0 \Longleftrightarrow \frac{1}{2}\left(2, 4 - C_v\sqrt{1, 44}\right) = 0 \Longleftrightarrow C_v = 2[m^2/s] \tag{19}$$

- d. Tuyến tính hóa mô hình tại điểm làm việc cân bằng.
 - Gọi $w_1 = \overline{w_1} + \Delta w_1, h = \overline{h} + \Delta h.$
 - Khai triển Taylor cho $f(w_1, h) = \dot{h} = \frac{1}{A} \left(w_1 C_v \sqrt{h} \right)$, ta có:

$$\dot{h} = \Delta \dot{h} = f\left(\overline{w_1} + \Delta w_1, \overline{h} + \Delta h\right) \tag{20}$$

$$\approx \underbrace{f\left(\overline{w_1}, \overline{h}\right)}_{0} + \frac{\partial f}{\partial w_1} \Big|_{\left(\overline{w_1}, \overline{h}\right)} \Delta w_1 + \frac{\partial f}{\partial h} \Big|_{\left(\overline{w_1}, \overline{h}\right)} \Delta h \tag{21}$$

$$\approx \frac{1}{A} \left(\Delta w_1 - \frac{C_v}{2\sqrt{h}} \Delta h \right) \tag{22}$$

• Kết luận, phương trình tuyến tính hóa của mô hình tại điểm làm việc cân bằng $(\overline{w_1}, \overline{h})$:

$$\Delta \dot{h} = \frac{1}{A} \left(\Delta w_1 - \frac{C_v}{2\sqrt{\overline{h}}} \Delta h \right) \tag{23}$$

- e. Xác định hàm truyền $G(s) = \frac{H(s)}{W_1(s)}$
 - Ta có: $\Delta \dot{h} = \frac{1}{A} \left(\Delta w_1 \frac{C_v}{2\sqrt{\overline{h}}} \Delta h \right)$, thực hiện biến đổi Laplace 2 vế của phương trình ta có:

$$sH(s) = \frac{1}{A} \left[W_1(s) - \frac{C_v}{2\sqrt{\overline{h}}} H(s) \right]$$
 (24)

$$\iff sAH(s) + \frac{C_v}{2\sqrt{\overline{h}}}H(s) = W_1(s) \tag{25}$$

$$\iff$$
 $\left(sA + \frac{C_v}{2\sqrt{\overline{h}}}\right)H(s) = W_1(s)$ (26)

$$\iff \frac{H(s)}{W_1(s)} = \frac{1}{sA + \frac{C_v}{2\sqrt{\overline{h}}}} \tag{27}$$

• Kết luận:

$$G(s) = \frac{H(s)}{W_1(s)} = \frac{1}{sA + \frac{C_v}{2\sqrt{h}}}$$
 (28)

3 Bài tập 3

Giả thiết Cho hệ thống như hình 3: Bình chứa thứ nhất có tiết diện là A_1 và bình chứa thứ hai có tiết diện là A_2 . Các lưu lượng ra Q_b và Q_c được xác định như sau: $Q_b = C_{db}a_b\sqrt{2g(H_1 - H_2)}$ và $Q_c = C_{dc}a_c\sqrt{2gH_2}$

Hình 3: Hệ thống 2 bình chứa

Yêu cầu

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
- c. Tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
- d. Xác định hàm truyền $G(s) = \frac{H_2(s)}{Q_i(s)}$

Bài giải

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
 - Biến vào: Q_i, Q_b, Q_c .
 - Biến ra: H_1, H_2 .
 - Biến điều khiển: Q_b, Q_c .
 - Biến cần điều khiển: H_1, H_2 .
 - Biến nhiễu: Q_i .
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
 - Phương trình cho bình chứa 1:
 - Bình chứa 1:

$$\frac{dV_1}{dt} = Q_i - Q_b \Longleftrightarrow \frac{d(A_1 H_1)}{dt} = Q_i - Q_b \Longleftrightarrow \frac{dH_1}{dt} = \frac{1}{A_1} (Q_i - Q_b)$$
 (29)

– Thay $Q_b = C_{db} a_b \sqrt{2g(H_1 - H_2)}$ vào (29), ta có:

$$\frac{dH_1}{dt} = \frac{1}{A_1} \left(Q_i - Q_b \right) = \frac{1}{A_1} \left[Q_i - C_{db} a_b \sqrt{2g(H_1 - H_2)} \right] \tag{30}$$

- Phương trình cho bình chứa 2:
 - Bình chứa 2:

$$\frac{dV_2}{dt} = Q_b - Q_c \Longleftrightarrow \frac{d(A_2 H_2)}{dt} = Q_b - Q_c \Longleftrightarrow \frac{dH_2}{dt} = \frac{1}{A_2} (Q_b - Q_c)$$
(31)

– Thay $Q_b = C_{db} a_b \sqrt{2g(H_1 - H_2)}$ và $Q_c = C_{dc} a_c \sqrt{2gH_2}$ vào (31), ta có:

$$\frac{dH_2}{dt} = \frac{1}{A_2} \left(Q_b - Q_c \right) = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 - H_2)} - C_{dc} a_c \sqrt{2gH_2} \right]$$
(32)

• Kết luận, hệ phương trình mô tả quá trình:

$$\begin{cases}
\frac{dH_1}{dt} = \frac{1}{A_1} \left[Q_i - C_{db} a_b \sqrt{2g(H_1 - H_2)} \right] \\
\frac{dH_2}{dt} = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 - H_2)} - C_{dc} a_c \sqrt{2gH_2} \right]
\end{cases}$$
(33)

- c. Tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
 - Gọi $(\overline{Q_i}, \overline{H_1}, \overline{H_2})$ là điểm làm việc cân bằng của hệ thống gồm 2 bình chứa.
 - Gọi $Q_i = \overline{Q_i} + \Delta Q_i, H_1 = \overline{H_1} + \Delta H_1, H_2 = \overline{H_2} + \Delta H_2.$
 - Đặt $f(Q_i, H_1, H_2) = \dot{H_1} = \frac{1}{A_1} \left[Q_i C_{db} a_b \sqrt{2g(H_1 H_2)} \right]$
 - Tại điểm làm việc cân bằng $\left(\overline{Q_i},\overline{H_1},\overline{H_2}\right)$ thì

$$f\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right) = 0 \Longleftrightarrow \frac{1}{A_1} \left[\overline{Q_i} - C_{db}a_b\sqrt{2g(\overline{H_1} - \overline{H_2})}\right] = 0$$
 (34)

– Khai triển Taylor cho $f\left(Q_i,H_1,H_2\right)=\dot{H_1}=\frac{1}{A_1}\left[Q_i-C_{db}a_b\sqrt{2g(H_1-H_2)}\right]$, ta có:

$$\dot{H}_{1} = \Delta \dot{H}_{1} = f\left(\overline{Q_{i}} + \Delta Q_{i}, \overline{H_{1}} + \Delta H_{1}, \overline{H_{2}} + \Delta H_{2}\right) \\
\approx \underbrace{f\left(\overline{Q_{i}}, \overline{H_{1}}, \overline{H_{2}}\right)}_{0} + \frac{\partial f}{\partial Q_{i}} \Big|_{\left(\overline{Q_{i}}, \overline{H_{1}}, \overline{H_{2}}\right)} \Delta Q_{i} + \frac{\partial f}{\partial H_{1}} \Big|_{\left(\overline{Q_{i}}, \overline{H_{1}}, \overline{H_{2}}\right)} \Delta H_{1} + \frac{\partial f}{\partial H_{2}} \Big|_{\left(\overline{Q_{i}}, \overline{H_{1}}, \overline{H_{2}}\right)} \Delta H_{2} \tag{36}$$

$$\approx \frac{1}{A_1} \left[\Delta Q_i - \frac{2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 + \frac{2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 \right]$$
(37)

$$\approx \frac{1}{A_1} \left[\Delta Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 \right]$$
(38)

Kết luận:

$$\Delta \dot{H}_1 = \frac{1}{A_1} \left[\Delta Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 \right]$$
(39)

• Đặt
$$g(Q_i, H_1, H_2) = \dot{H}_2 = \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(H_1 - H_2)} - C_{dc} a_c \sqrt{2gH_2} \right]$$

– Tại điểm làm việc cân bằng $(\overline{Q_i}, \overline{H_1}, \overline{H_2})$ thì:

$$g\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right) = 0 \Longleftrightarrow \frac{1}{A_2} \left[C_{db} a_b \sqrt{2g(\overline{H_1} - \overline{H_2})} - C_{dc} a_c \sqrt{2g\overline{H_2}} \right] = 0 \tag{40}$$

– Khai triển Taylor cho $g\left(Q_{i},H_{1},H_{2}\right)=\dot{H_{2}}=\frac{1}{A_{2}}\left[C_{db}a_{b}\sqrt{2g(H_{1}-H_{2})}-C_{dc}a_{c}\sqrt{2gH_{2}}\right]$, ta có:

$$\dot{H}_2 = \Delta \dot{H}_2 = g \left(\overline{Q_i} + \Delta Q_i, \overline{H_1} + \Delta H_1, \overline{H_2} + \Delta H_2 \right) \tag{41}$$

$$\approx \underbrace{g\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)}_{0} + \frac{\partial g}{\partial H_1} \Big|_{\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)} \Delta H_1 + \frac{\partial g}{\partial H_2} \Big|_{\left(\overline{Q_i}, \overline{H_1}, \overline{H_2}\right)} \Delta H_2 \tag{42}$$

$$\approx \frac{1}{A_2} \left[\frac{2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 + \frac{-2gC_{db}a_b}{2\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 - \frac{2gC_{dc}a_c}{2\sqrt{2g\overline{H_2}}} \Delta H_2 \right]$$
(43)

$$\approx \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \Delta H_2 \right]$$
(44)

Kết luận:

$$\Delta \dot{H}_2 = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \Delta H_2 \right]$$
(45)

• Kết luận, phương trình tuyến tính hóa của mô hình tại điểm làm việc cân bằng $(\overline{Q_i}, \overline{H_1}, \overline{H_2})$:

$$\begin{cases}
\Delta \dot{H}_{1} = \frac{1}{A_{1}} \left[\Delta Q_{i} - \frac{gC_{db}a_{b}}{\sqrt{2g(\overline{H_{1}} - \overline{H_{2}})}} \Delta H_{1} + \frac{gC_{db}a_{b}}{\sqrt{2g(\overline{H_{1}} - \overline{H_{2}})}} \Delta H_{2} \right] \\
\Delta \dot{H}_{2} = \frac{1}{A_{2}} \left[\frac{gC_{db}a_{b}}{\sqrt{2g(\overline{H_{1}} - \overline{H_{2}})}} \Delta H_{1} - \frac{gC_{db}a_{b}}{\sqrt{2g(\overline{H_{1}} - \overline{H_{2}})}} \Delta H_{2} - \frac{gC_{dc}a_{c}}{\sqrt{2g\overline{H_{2}}}} \Delta H_{2} \right]
\end{cases} (46)$$

d. Xác định hàm truyền $G(s) = \frac{H_2(s)}{Q_i(s)}$

• Ta có: $\Delta \dot{H}_1 = \frac{1}{A_1} \left[\Delta Q_i - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 \right]$, thực hiện biến đổi Laplace

2 vế của phương trình ta có:

$$sH_1(s) = \frac{1}{A_1} \left[Q_i(s) - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s) \right]$$
(47)

$$\iff sA_1H_1(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_1(s) = Q_i(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_2(s)$$

$$\tag{48}$$

$$\iff \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] H_1(s) = Q_i(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s)$$

$$\tag{49}$$

$$\iff H_1(s) = \frac{Q_i(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s)}{sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}}$$

$$(50)$$

• Ta có: $\Delta \dot{H}_2 = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_1 - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \Delta H_2 - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \Delta H_2 \right]$, thực hiện biến đổi

Laplace 2 vế của phương trình ta có:

$$sH_2(s) = \frac{1}{A_2} \left[\frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1(s) - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s) - \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} H_2(s) \right]$$
(51)

$$\iff sA_2H_2(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_2(s) + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}}H_2(s) = \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}H_1(s)$$
(52)

$$\iff \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s) = \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_1(s)$$
 (53)

$$\iff \frac{\sqrt{2g(\overline{H_1} - \overline{H_2})}}{gC_{db}a_b} \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s) = H_1(s)$$
 (54)

$$\iff \frac{\sqrt{2g(\overline{H_1} - \overline{H_2})}}{gC_{db}a_b} \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s) = \frac{Q_i(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s)}{sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}}$$

$$(55)$$

$$\iff \frac{\sqrt{2g(\overline{H_1} - \overline{H_2})}}{gC_{db}a_b} \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s)$$

$$= Q_i(s) + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s)$$
(56)

$$\iff \frac{\sqrt{2g(\overline{H_1} - \overline{H_2})}}{gC_{db}a_b} \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] H_2(s)$$

$$- \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} H_2(s) = Q_i(s)$$
(57)

$$\iff \left\{ \frac{\sqrt{2g(\overline{H_1} - \overline{H_2})}}{gC_{db}a_b} \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right\} H_2(s) = Q_i(s)$$

$$(58)$$

$$\iff \frac{H_2(s)}{Q_i(s)} =$$

$$\frac{1}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}$$
(59)

• Kết luân:

$$G(s) = \frac{H_2(s)}{Q_i(s)} = \frac{1}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \left[sA_1 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} \right] \left[sA_2 + \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}} + \frac{gC_{dc}a_c}{\sqrt{2g\overline{H_2}}} \right] - \frac{gC_{db}a_b}{\sqrt{2g(\overline{H_1} - \overline{H_2})}}$$
(60)

4 Bài tập 4

Giả thiết Cho hệ thống như hình 4: Các lưu lượng ra q_1 và q_0 được xác định như sau: $q_1 = \frac{h_1 - h_2}{R_1}$ và $q_0 = \frac{h_2}{R_2}$

Hình 4: Hệ thống 2 bình chứa

Yêu cầu

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
- c. Nếu phương trình phi tuyến hãy tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
- d. Xác định hàm truyền $G(s) = \frac{H_2(s)}{Q_{in}(s)}$

Bài giải

- a. Xác định các biến vào, biến ra, biến điều khiển, biến cần điều khiển và biến nhiễu.
 - Biến vào: q_{in}, q_1, q_0 .
 - Biến ra: h_1, h_2 .
 - Biến điều khiển: q_1, q_0 .
 - Biến cần điều khiển: h_1, h_2 .
 - Biến nhiễu: q_{in} .

- b. Viết phương trình động học cho mức chất lỏng trong bồn chứa.
 - Phương trình cho bình chứa 1:
 - Bình chứa 1:

$$\frac{dV_1}{dt} = q_{in} - q_1 \Longleftrightarrow \frac{d(A_1 h_1)}{dt} = q_{in} - q_1 \Longleftrightarrow \frac{dh_1}{dt} = \frac{1}{A_1} (q_{in} - q_1)$$

$$\tag{61}$$

- Thay $q_1 = \frac{h_1 - h_2}{R_1}$ vào (61), ta có:

$$\frac{dh_1}{dt} = \frac{1}{A_1} \left(q_{in} - q_1 \right) = \frac{1}{A_1} \left(q_{in} - \frac{h_1 - h_2}{R_1} \right) \tag{62}$$

- Phương trình cho bình chứa 2:
 - Bình chứa 2:

$$\frac{dV_2}{dt} = q_1 - q_0 \Longleftrightarrow \frac{d(A_2h_2)}{dt} = q_1 - q_0 \Longleftrightarrow \frac{dh_2}{dt} = \frac{1}{A_2}(q_1 - q_0) \tag{63}$$

- Thay $q_1 = \frac{h_1 - h_2}{R_1}$ và $q_0 = \frac{h_2}{R_2}$ vào (63), ta có:

$$\frac{dh_2}{dt} = \frac{1}{A_2} \left(q_1 - q_0 \right) = \frac{1}{A_2} \left(\frac{h_1 - h_2}{R_1} - \frac{h_2}{R_2} \right) \tag{64}$$

• Kết luận, hệ phương trình mô tả quá trình:

$$\begin{cases}
\frac{dh_1}{dt} = \frac{1}{A_1} \left(q_{in} - \frac{h_1 - h_2}{R_1} \right) \\
\frac{dh_2}{dt} = \frac{1}{A_2} \left(\frac{h_1 - h_2}{R_1} - \frac{h_2}{R_2} \right)
\end{cases} (65)$$

- c. Nếu phương trình phi tuyến hãy tuyến tính hóa phương trình xây dựng được xung quanh vị trí cân bằng dựa trên phương pháp khai triển Taylor.
 - Ta có:

$$\begin{cases}
\frac{dh_1}{dt} = \frac{1}{A_1} \left(q_{in} - \frac{h_1 - h_2}{R_1} \right) \\
\frac{dh_2}{dt} = \frac{1}{A_2} \left(\frac{h_1 - h_2}{R_1} - \frac{h_2}{R_2} \right)
\end{cases}
\iff
\begin{cases}
\frac{dh_1}{dt} = \frac{1}{A_1} \left(q_{in} - \frac{1}{R_1} h_1 + \frac{1}{R_1} h_2 \right) \\
\frac{dh_2}{dt} = \frac{1}{A_2} \left[\frac{1}{R_1} h_1 - \left(\frac{1}{R_1} + \frac{1}{R_2} \right) h_2 \right]
\end{cases}$$
(66)

- Do hệ phương trình (66) đã tuyến tính rồi nên ta không cần phải tuyến tính hóa.
- Nếu ta đi tuyến tính hóa hệ phương trình (66) thì cho kết quả không thay đổi.
 - Gọi $(\overline{q_{in}}, \overline{h_1}, \overline{h_2})$ là điểm làm việc cân bằng của hệ thống gồm 2 bình chứa.

 - Gọi $q_{in} = \overline{q_{in}} + \Delta q_{in}, h_1 = \overline{h_1} + \Delta h_1, h_2 = \overline{h_2} + \Delta h_2.$ Đặt $f(q_{in}, h_1, h_2) = \dot{h_1} = \frac{1}{A_1} \left(q_{in} \frac{h_1 h_2}{R_1} \right)$
 - * Tại điểm làm việc cân bằng $(\overline{q_{in}}, \overline{h_1}, \overline{h_2})$ thì

$$f\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right) = 0 \Longleftrightarrow \frac{1}{A_1} \left(\overline{q_{in}} - \frac{\overline{h_1} - \overline{h_2}}{R_1}\right) = 0 \tag{67}$$

* Khai triển Taylor cho $f(q_{in}, h_1, h_2) = \dot{h_1} = \frac{1}{A_1} \left(q_{in} - \frac{h_1 - h_2}{B_1} \right)$, ta có:

$$\dot{h_1} = \Delta \dot{h_1} = f\left(\overline{q_{in}} + \Delta q_{in}, \overline{h_1} + \Delta h_1, \overline{h_2} + \Delta h_2\right) \tag{68}$$

$$\approx \underbrace{f\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)}_{0} + \frac{\partial f}{\partial q_{in}} \Big|_{\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)} \Delta q_{in} + \frac{\partial f}{\partial h_1} \Big|_{\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)} \Delta h_1 + \frac{\partial f}{\partial h_2} \Big|_{\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)} \Delta h_2$$

$$(69)$$

 $\approx \frac{1}{A_1} \left(\Delta q_{in} - \frac{\Delta h_1}{R_1} + \frac{\Delta h_2}{R_2} \right)$ (70)

(71)

* Kết luận:

$$\Delta \dot{h_1} = \frac{1}{A_1} \left(\Delta q_{in} - \frac{\Delta h_1}{R_1} + \frac{\Delta h_2}{R_1} \right) \tag{72}$$

- Đặt
$$g(q_{in}, h_1, h_2) = \dot{h_2} = \frac{1}{A_2} \left(\frac{h_1 - h_2}{R_1} - \frac{h_2}{R_2} \right)$$

* Tại điểm làm việc cân bằng $\left(\overline{q_{in}},\overline{h_1},\overline{h_2}\right)$ thì:

$$g\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right) = 0 \Longleftrightarrow \frac{1}{A_2} \left(\frac{\overline{h_1} - \overline{h_2}}{R_1} - \frac{\overline{h_2}}{R_2}\right) = 0 \tag{73}$$

* Khai triển Taylor cho $g\left(q_{in},h_1,h_2\right)=\dot{h_2}=\frac{1}{A_2}\left(\frac{h_1-h_2}{R_1}-\frac{h_2}{R_2}\right)$, ta có:

$$\dot{h_2} = \Delta \dot{h_2} = g \left(\overline{q_{in}} + \Delta q_{in}, \overline{h_1} + \Delta h_1, \overline{h_2} + \Delta h_2 \right) \tag{74}$$

$$\approx \underbrace{g\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)}_{0} + \frac{\partial g}{\partial h_1} \bigg|_{\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)} \Delta h_1 + \frac{\partial g}{\partial h_2} \bigg|_{\left(\overline{q_{in}}, \overline{h_1}, \overline{h_2}\right)} \Delta h_2 \tag{75}$$

$$\approx \frac{1}{A_2} \left(\frac{\Delta h_1}{R_1} - \frac{\Delta h_2}{R_1} - \frac{\Delta h_2}{R_2} \right) \tag{76}$$

$$\approx \frac{1}{A_2} \left[\frac{\Delta h_1}{R_1} - \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \Delta h_2 \right] \tag{77}$$

* Kết luận:

$$\Delta \dot{h_2} = \frac{1}{A_2} \left[\frac{\Delta h_1}{R_1} - \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \Delta h_2 \right]$$
 (78)

– Kết luận, phương trình tuyến tính hóa của mô hình tại điểm làm việc cân bằng $(\overline{q_{in}}, \overline{h_1}, \overline{h_2})$:

$$\begin{cases}
\Delta \dot{h_1} = \frac{1}{A_1} \left(\Delta q_{in} - \frac{\Delta h_1}{R_1} + \frac{\Delta h_2}{R_1} \right) \\
\Delta \dot{h_2} = \frac{1}{A_2} \left[\frac{\Delta h_1}{R_1} - \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \Delta h_2 \right]
\end{cases} (79)$$

d. Xác định hàm truyền $G(s) = \frac{h_2(s)}{Q_{in}(s)}$

• Ta có: $\frac{dh_1}{dt} = \frac{1}{A_1} \left(q_{in} - \frac{h_1}{R_1} \right)$, thực hiện biến đổi Laplace 2 vế của phương trình ta có:

$$sH_1(s) = \frac{1}{A_1} \left[Q_{in}(s) - \frac{H_1(s)}{R_1} + \frac{H_2(s)}{R_1} \right]$$
(80)

$$\iff sA_1H_1(s) + \frac{1}{R_1}H_1(s) = Q_{in}(s) + \frac{H_2(s)}{R_1}$$
 (81)

$$\iff \left(sA_1 + \frac{1}{R_1}\right)H_1(s) = Q_{in}(s) + \frac{H_2(s)}{R_1} \tag{82}$$

$$\iff H_1(s) = \frac{Q_{in}(s) + \frac{H_2(s)}{R_1}}{sA_1 + \frac{1}{R_1}}$$

$$\tag{83}$$

• Ta có: $\frac{dh_2}{dt} = \frac{1}{A_2} \left[\frac{h_1}{R_1} - \left(\frac{1}{R_1} + \frac{1}{R_2} \right) h_2 \right]$, thực hiện biến đổi Laplace 2 vế của phương trình ta có:

$$sH_2(s) = \frac{1}{A_2} \left[\frac{H_1(s)}{R_1} - \left(\frac{1}{R_1} + \frac{1}{R_2} \right) H_2(s) \right]$$
(84)

$$\iff sA_2H_2(s) + \left(\frac{1}{R_1} + \frac{1}{R_2}\right)H_2(s) = \frac{H_1(s)}{R_1}$$
 (85)

$$\iff \left[sA_2 + \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right] H_2(s) = \frac{H_1(s)}{R_1}$$

$$\tag{86}$$

$$\iff \left[sA_2 + \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right] H_2(s) = \frac{Q_{in}(s) + \frac{H_2(s)}{R_1}}{R_1 \left(sA_1 + \frac{1}{R_1} \right)}$$
(87)

$$\iff \left[sA_2 + \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right] H_2(s) = \frac{Q_{in}(s) + \frac{H_2(s)}{R_1}}{sA_1R_1 + 1}$$
 (88)

$$\iff$$
 $(sA_1R_1+1)\left[sA_2+\left(\frac{1}{R_1}+\frac{1}{R_2}\right)\right]H_2(s)=Q_{in}(s)+\frac{H_2(s)}{R_1}$ (89)

$$\iff$$
 $(sA_1R_1+1)\left[sA_2+\left(\frac{1}{R_1}+\frac{1}{R_2}\right)\right]H_2(s)-\frac{H_2(s)}{R_1}=Q_{in}(s)$ (90)

$$\iff \left\{ (sA_1R_1 + 1) \left[sA_2 + \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right] - \frac{1}{R_1} \right\} H_2(s) = Q_{in}(s)$$
 (91)

$$\iff \frac{H_2(s)}{Q_{in}(s)} = \frac{1}{\left(sA_1R_1 + 1\right)\left[sA_2 + \left(\frac{1}{R_1} + \frac{1}{R_2}\right)\right] - \frac{1}{R_1}}$$
(92)

• Kết luận:

$$G(s) = \frac{H_2(s)}{Q_{in}(s)} = \frac{1}{\left(sA_1R_1 + 1\right)\left[sA_2 + \left(\frac{1}{R_1} + \frac{1}{R_2}\right)\right] - \frac{1}{R_1}}$$
(93)