EXERCISES FOR 520-2

1. March 28, 2017

Exercise 1. Let $E \to X$ be a smooth complex vector bundle and $\mathscr E$ be its sheaf of smooth sections. Show that if $\mathscr U = \{U_\alpha\}_{\alpha \in I}$ is a good cover for X then $\check H^k(\mathscr U,\mathscr E) = 0$ for k>0. [Hint: fix a partition of unity η for $\mathscr U$ and define a nullhomotopy $s: \check C^k(\mathscr U,\mathscr E) \to \check C^{k-1}(\mathscr U,\mathscr E)$ by

(1)
$$(s\omega)_{\alpha_0\cdots\alpha_{k-1}} = \sum_{\alpha} \eta_{\alpha}\omega_{\alpha_0\cdots\alpha_{k-1}\alpha}.$$

where $\omega \in \check{C}^k(\mathscr{U},\mathscr{E})$.]

Exercise 2. Construct explicitly the long exact sequence for Čech cohomology.

Exercise 3. Check that for a good cover \mathscr{U} of X, the group $\check{\mathrm{H}}^1(\mathscr{U},\underline{\mathrm{GL}(1,\mathbb{C})})$ is isomorphic to the group of isomorphism classes of complex line bundles on X.

Exercise 4. Recall that the Todd genus of a complex line bundle $L \to X$ is the (inhomogeneous) cohomology class $\mathrm{Td}(L) = f(c_1(L))$ where $c_1(L)$ is the first Chern class of L and $f(x) = x/(1 - e^{-x})$. Compute the Todd genus of a rank 2 complex vector bundle $E \to X$ in terms of $c_1(E)$ and $c_2(E)$.