CZ2007 Introduction to Database Systems (Week 4)

Topic 3: Boyce-Codd Normal Form (2)

Dr. Ng Wee Keong Associate Professor

This presentation is copyright property of NTU. It is intended for students of CZ2007 only.

This Lecture

- Tricky case of BCNF
- Properties of BCNF

Tricky Case of BCNF Decomposition

- R(A, B, C, D, E)
- $A \rightarrow B, BC \rightarrow D$
- Key of R: ACE
- \blacksquare A \rightarrow B is a violation.
- Decompose R

 - \square R₁(A, B), R₂(A, C, D, E)
 - \square R₁ is in BCNF
 - \square How about R_2 ?
- Key of R₂: ACE
- Violations any?
- This is tricky...

Tricky Case of BCNF Decomposition

- In general, we may have a tricky case in BCNF decomposition, if
 - We are checking whether a table T satisfies BCNF, and there is an FD X→Y, such that
 - X contains some attribute in T, but
 - Y contains some attribute NOT in T
- Example in the previous slide:
 - \square We are checking $R_2(A, C, D, E)$
 - \square FDs that we have: $A \rightarrow B$, BC $\rightarrow D$
 - \square A is in R_2 , but B is not
 - This leads to a tricky case
 - In this case, we have to use closures to check whether R₂ is in BCNF

Checking BCNF in a Tricky Case

- We are checking $R_2(A, C, D, E)$
- FDs that we have: $A \rightarrow B$, $BC \rightarrow D$
- Check the closures:
- $\{A\}^+ = \{A, B\}$, but B is not in $R_2(A, C, D, E)$, so the closure becomes just $\{A\}^+ = \{A\}$
- Similarly, $\{C\}^+ = \{C\}$, $\{D\}^+ = \{D\}$, $\{E\}^+ = \{E\}$
- None of these indicates a violation of BCNF (trivial FDs)
- Skip {AB}+, do {AC}+ = {ACD}
- This indicates that AC→D and AC does not contain key ACE of R₂
- This means that R_2 is not in BCNF, decompose R_2

Checking BCNF in a Tricky Case

- We are checking $R_2(A, C, D, E)$
- FDs that we have: $A \rightarrow B$, $BC \rightarrow D$
- We know that $AC \rightarrow D$ violates BCNF on R_2
- Decompose $R_2(A, C, D, E)$

 - \square R₃(A, C, D), R₄(A, C, E)
- R₄ is in BCNF (ACE is key)
- What about R₃?
- \blacksquare Tricky case (A \rightarrow B); Need to use closure again

Checking BCNF in a Tricky Case

- We are checking $R_3(A, C, D)$
- FDs that we have: $A \rightarrow B$, $BC \rightarrow D$

$$\{A\}^+ = \{A, B\}$$

$$\{C\}^+ = \{C\}, \{D\}^+ = \{D\}$$

$$AC$$
⁺ = {A, B, C, D}

$$\rightarrow$$
 {AC}⁺ = {A, C, D} on R₃

$$AD$$
⁺ = {A, B, D}

$$\rightarrow$$
 {AD}⁺ = {A, D} on R₃

- $\{CD\}^+ = \{C, D\}$
- None of the closures indicate a violation of BCNF
- Therefore, R₃ is in BCNF
- Final decomposition: $R_1(D, E)$, $R_3(A, C, D)$, $R_4(A, C, E)$

Summary

- Whenever we have a tricky case in checking BCNF, we need to resort to closures
- Using closures, a table T is NOT in BCNF:
 - If there is a closure {X}+ = {Y}, such that
 - Y does not contain all attributes in T, but (not all)
 - Y contains more attributes than X (more but)
- Previous example:
 - \square R₂(A, C, D, E), with A \rightarrow B, BC \rightarrow D

 - {A, C, D} does not contain all attributes in R₂, but
 - {A, C, D} contains more attributes than {AC}

Exercise

- R(A, B, C, D, E, F)
- Given FDs: $B \rightarrow D$, $C \rightarrow E$, $DE \rightarrow A$
- Key: BCF
- B→D violates BCNF
- Decompose R:
 - R1(B, D), R2(A, B, C, E, F)
- R1 is in BCNF
- What about R2? Key BCF in R2
- C→E violates BCNF
- $\{C\}+=\{C,E\}$
- Decompose R2
 - R3(C, E), R4(A, B, C, F)

Exercise

- R(A, B, C, D, E, F)
- Given FDs: $B \rightarrow D$, $C \rightarrow E$, $DE \rightarrow A$
- **R3(C, E)** is in BCNF
- What about R4(A, B, C, F)?
- Tricky case
- Check closures

 - {AB}+ = {ABD}, {AC}+ = {ACE}, {AF}+ = {AF}, {BC}+ = {BCDEA}
- So there is a non-trivial FD: BC→A

Exercise

- R(A, B, C, D, E, F)
- Given FDs: $B \rightarrow D$, $C \rightarrow E$, $DE \rightarrow A$
- R3(C, E) is in BCNF
- What about R4(A, B, C, F)?
- Key of R4: BCF
- There is a non-trivial FD: $BC \rightarrow A$
- It violates BCNF
- R_5 Decompose R4 □ R5(B, C, A), R6(B, C, F)
- Final decomposition:
 - R1(B, D), R3(C, E), R5(B, C, A), R6(B, C, F)

 R_2

This Lecture

- Tricky case of BCNF
- Properties of BCNF

Properties of BCNF Decomposition

- Good properties
 - No update or deletion anomalies
 - Very small redundancy
 - The original table can always be reconstructed from the decomposed tables (this is called the lossless join property)

Lossless Join Property

Name	<u>NRIC</u>	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

The table above can be perfectly reconstructed using the decomposed tables below

Name	<u>NRIC</u>	Address
Alice	1234	Jurong East
Bob	5678	Pasir Ris

NRIC	<u>Phone</u>
1234	67899876
1234	83848384
5678	98765432

Why BCNF guarantees lossless join?

- Say we decompose a table R into two tables R₁ and R₂
- The decomposition guarantees lossless join, whenever the common attributes in R₁ and R₂ constitute a superkey of R₁ or R₂
- Example
 - R(A, B, C) decomposed into R₁(A, B) and R₂ (B, C), with B being the key of R₂
 - R(A, B, C, D) decomposed into R₁(A, B, C) and R₂ (B, C, D), with BC being the key of R₁

Why BCNF guarantees lossless join?

- The decomposition of R guarantees lossless join, whenever the common attributes in R₁ and R₂ constitute a superkey of R₁ or R₂
- BCNF Decomposition of R
 - □ Find a BCNF violation X→Y
 - Compute {X}⁺
 - R₁ contains all attributes in {X}⁺
 - R₂ contains X and all attributes NOT in {X}⁺
 - X is both in R₁ and R₂
 - And X is a superkey of R₁
 - □ Therefore, R₁ and R₂ is a lossless decomposition of R

Properties of BCNF Decomposition

- Good properties
 - No update or deletion anomalies
 - Very small redundancy
 - The original table can always be reconstructed from the decomposed tables (this is called the lossless join property)
- Bad property
 - It may not preserve all functional dependencies

- Given: Table R(A, B, C)
 - \square with AB \rightarrow C, C \rightarrow B
- Keys: {AB}, {AC}
- BCNF Decomposition
 - \square R₁(B, C)
 - \square R₂(A, C)
- Non-trivial FD on R_1 : $C \rightarrow B$
- Non-trivial FD on R₂: none
- The other FD AB \rightarrow C is "lost"; not in R₁ nor R₂
- This why we say that a BCNF decomposition does not always preserve all FDs

- Why do we want to preserve FDs?
- Because we want to make it easier to avoid "inappropriate" updates
- Previous example
 - We have two tables $R_1(B, C)$, $R_2(A, C)$
 - \square We have $C \rightarrow B$ and $AB \rightarrow C$
 - Due to $AB \rightarrow C$, we are not suppose to have two tuples (a1, b1, c1) and (a1, b1, c2)

- Why do we want to preserve FDs?
- Because we want to make it easier to avoid "inappropriate" updates
- Previous example
 - We have two tables $R_1(B, C)$, $R_2(A, C)$
 - \square We have $C \rightarrow B$ and $AB \rightarrow C$
 - Due to $AB \rightarrow C$, we are not suppose to have two tuples (a1, b1, c1) and (a1, b1, c2)
 - But as we store A and B separately in R₁ and R₂, it is not easy to check whether such two tuples exist at the same time

b1 c2

a1

- Why do we want to preserve FDs?
- Because we want to make it easier to avoid "inappropriate" updates
- Previous example
 - We have two tables $R_1(B, C)$, $R_2(A, C)$
 - \square We have $C \rightarrow B$ and $AB \rightarrow C$
 - Due to AB \rightarrow C, we are not suppose to have two tuples (a1, b1, c1) and (a1, b1, c2)
 - But as we store A and B separately in R₁ and R₂, not easy to check whether such two tuples with similar AB exist at the same time
 - □ If someone wants to insert (a1, b1, c2), not easy for us to check whether (a1, b1, c1) already exists
 - This is less than ideal

Third Normal Form (3NF)

- A relaxation of BCNF that
 - Is less strict
 - Allows decompositions that always preserve functional dependencies
- Will discuss in the next lecture

Next lecture:

Topic 4: Third Normal Form (1)

