Experiment No. 1
Analyze the Boston Housing dataset and apply appropriate
Regression Technique
Date of Performance:
Date of Submission:

Aim:

Analyze the Boston Housing dataset and apply appropriate Regression Technique.

Objective:

Ablility to perform various feature engineering tasks, apply linear regression on the given dataset and minimise the error.

Theory:

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on — the kind of relationship between dependent and independent variables they are considering, and the number of independent variables getting used.

Linear regression performs the task to predict a dependent variable value (y) based on a given independent variable (x). So, this regression technique finds out a linear relationship between x (input) and y(output). Hence, the name is Linear Regression.

In the figure above, X (input) is the work experience and Y (output) is the salary of a person. The regression line is the best fit line for our model.

Dataset:

The Boston Housing Dataset

The Boston Housing Dataset is a derived from information collected by the U.S. Census Service concerning housing in the area of Boston MA. The following describes the dataset

columns:

CRIM - per capita crime rate by town

ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS - proportion of non-retail business acres per town.

CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX - nitric oxides concentration (parts per 10 million)

RM - average number of rooms per dwelling

AGE - proportion of owner-occupied units built prior to 1940

DIS - weighted distances to five Boston employment centres

RAD - index of accessibility to radial highways

TAX - full-value property-tax rate per \$10,000

PTRATIO - pupil-teacher ratio by town

B - 1000(Bk - 0.63)² where Bk is the proportion of blacks by town

LSTAT - % lower status of the population

MEDV - Median value of owner-occupied homes in \$1000's

Code:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
BostonTrain = pd.read_csv("/content/archive (3).zip")
BostonTrain.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN	36.2
Т														

BostonTrain.info()

BostonTrain.describe()

BostonTrain.drop('CRIM', axis = 1, inplace=True)
BostonTrain.plot.scatter('RM', 'MEDV')

plt.subplots(figsize=(12,8))
sns.heatmap(BostonTrain.corr(), cmap = 'RdGy')

sns.pairplot(BostonTrain, vars = ['LSTAT', 'PTRATIO', 'INDUS', 'TAX', 'NOX', 'RAD', 'AGE', 'MEDV'])

Conclusion:

What are features have been chosen to develop the model? Justify the features chosen to estimate the price of a house.

- 1. CRIM per capita crime rate by town
- 2. CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- 3. NOX nitric oxides concentration (parts per 10 million)
- 4. RM average number of rooms per dwelling
- 5. DIS weighted distances to five Boston employment centres
- 6. RAD index of accessibility to radial highways
- 7. TAX full-value property-tax rate per \$10,000
- 8. LSTAT % lower status of the population

Comment on the Mean Squared Error calculated

- 1. Calculate Mean Square Error:0.04(+/- 0.04)
- 2. The Mean Square Error measures how close a regression line is to a set of data points
- 3. Lesser the Mean Square Error refers to Smaller is the error and Better the estimator