Analyzing Tony Gitter's chemical data set

Available on https://zenodo.org/record/1411506#.X7w4gs1KhPY

Data set

• n_train = 72,423 training samples

• p = 1024

- Response = % inhibition
- Predictors = binary vectors of Morgan fingerprints
- Both predictors and response are standardized.

Training

- blasso ('monomvn' package) just froze and crashed.
- basad ('basad' package) works.
- 50,000 MCMC samples + 50,000 burn-in take ~ 3 hours+
- glmnet (1 for common penalty, 1 for different penalty factor) is time-consuming.
- 2,000 iterations on 7 parallel CPU cores take ~ 11hours.
- Randomly pick 2,000 MCMC samples from the last 10,000 MCMC samples.

Training

basad

- Use default package setting
- Set corresponding MCMC β samples to be zero where median probability model dictates latent variable Z = 0, to induce sparsity in MCMC β samples

glmnet

- cv.glmnet gives lambda.min = 0.001 and lambda.1se = 0.006
- Try lambda.1se to have slightly larger penalization

Compare probability of variables selected

Compare model sizes

Compare marginal posterior distributions of B's

Pick variables whose probability of being selected is larger than 0.93 for all basad's MCMC and RW schemes 1, 2 and 3.

There are 10 of them.

• Plot marginal distributions of their sampled β 's.

Compare length of 95% CI for β 's

Predictions

• n_test = 22,423

• For predictions, take sampled β 's from MCMC or RW, and multiply with test cases' predictors.

Each test case has a distribution of predictions.

95% prediction interval coverage for the ~22,000 test cases is similarly poor for all schemes

- RW scheme 1 = 12.5%
- RW scheme 2 = 19.3%
- RW scheme 3 = 23.0%
- MCMC = 19.2% (based on sparsity-induced β 's)

 Because length of prediction intervals for RW schemes 2 and 3 are relatively wider

Compare 95% prediction interval length

Prediction

- I considered 2 types of MSPE calculations
 - 1. For each of B=2,000 iterations, compute MSPE (squared prediction errors averaged across all 22,423 test cases)
 - 2. For each of n_test = 22,423 test cases, compute MSPE (squared prediction errors averaged across all 2,000 predictions)

Distribution of 2,000 MSPEs (averaged across all test cases)

Compare distribution of MSPE for each test case

test cases arranged according to MCMC samples' order of test_case_MSPE (averaged across posterior samples)