Anatomia do BitTorrent

a Ciência da Computação por trás do protocolo

Paulo Cheadi Haddad Filho Orientador: José Coelho de Pina

Trabalho de Conclusão de Curso

Universidade de São Paulo São Paulo, 2013

Sumário

Ca	apa		i			
Su	ımári		i			
Li	sta de	ódigos fonte	iii			
Li	sta de	iguras	iv			
Gl	lossár		v			
Li	sta de	arefas pendentes	viii			
1	Intr	ução	1			
2	Napster, Gnutella, eDonkey e BitTorrent					
	2.1	Período pré-torrent	2			
		.1.1 Napster	3			
		.1.2 Gnutella	4			
		.1.3 eDonkey	5			
	2.2	Nascimento do BitTorrent	6			
	2.3	Mundo pós-torrent	7			
		.3.1 Questões legais	8			
		.3.2 Estudos acadêmicos	9			
3	Ana	mia do BitTorrent	10			
	3.1	Busca por informações	12			
	3.2	Fontes de arquivos	13			
	3 3	ogo da troca de arquivos	13			

4	4 Conceitos de Computação no BitTorrent		
	4.1	Estruturas de dados, listas ligadas e árvores	16
	4.2	Funções de hash	16
	4.3	Criptografia	16
	4.4	Bitfields	16
	4.5	Protocolos de redes	16
	4.6	Multicast	16
	4.7	Roteamento de pacotes	16
	4.8	IPv6	16
	4.9	Retomada de downloads	16
	4.10	Conexão com a Internet	16
	4.11	Threads	16
	4.12	Engenharia de Software	16
5	Com	entários Finais	17
6	Bibli	ografia	18
7	Visã	n Pessoal	23

Lista de códigos fonte

3.1	Exemplo de conteúdo de	arquivo .torrent	12

Lista de Figuras

3 1	Representação	de iima	transferência torrent	t	1
J.1	Representação	uc uma	transferencia torrent	·	1.

Glossário

anycast

método de endereçamento e roteamento de rede onde os datagramas de um único remetente são roteados para um membro de um grupo de receptores potenciais que estão definidos pelo mesmo intervalo no endereço de destino. Geralmente é usado para serviços que demandem alta disponibilidade. 4, 5

Audiogalaxy

P2P de compartilhamento de músicas MP3 criado em 1998. 2--4

beta tester

usuários de uma versão beta de um software. 6

checksum

escrever

. vii

DHT

do inglês *distributed hash table*; tabela de hash distribuída, ou seja, é um serviço de busca similar a uma tabela de hash, mas descentralizada e na forma de sistema distribuído. vi, 6

eDonkey

lançado em 6 de setembro de 2000, o protocolo foi inaugurado juntamente com o software que o utilizava, o eDonkey2000, mas inúmeros softwares cliente para diferentes plataforas surgiram nos dias seguintes ao lançamento. 5, 6

Gnutella

software de compartilhamento P2P desenvolvido por 3 programadores da empresa Nullsoft, recém adquirida da AOL Inc., lançado em 2000 sob a licença GPL. No dia seguinte,

a AOL ordenou indisponibilizar o software alegando problemas legais e proibindo a continuação do desenvolvimento. Alguns dias depois, o protocolo já tinha sido alvo de engenharia reversa e já havia softwares que o implementavam. 4--6, 8

ISP

do inglês *Internet Service Provider*; fornecedores de acesso a Internet, que são empresas que vendem serviço e equipamento que permitem o acesso de um computador pessoal acessar a Internet. 2

Kademlia

DHT usado em P2P que especifica a estrutura da rede e a troca de informações através de buscas de nós, guardando as localizações de recursos que estão na rede. 6

leecher

em português, sugador; nome dado ao peer que ainda não terminou um download de um torrent. 10

metadado

dados sobre outros dados; informação sobre outra informação. vii, 10

MP3

do inglês *MPEG-1/2 Audio Layer 3*; formato patenteado de compressão de dados de áudio digital que usa um método de compressão de dados com perdas. v, 2, 3

P₂P

do inglês *peer-to-peer*; redes de arquitetura descentralizada e distribuída, onde cada nó (peer) fornece e consome recursos. v, vi, 3--5, 7, 10

peer

em português significa par, colega; como são chamados cada nó da rede desse tipo, ou seja, um computador conectado. vi, vii, 4--6, 9, 10

RIAA

do inglês *Recording Industry Association of America*; Associação da Indústria de Gravação da América, organização que representa as gravadoras musicais e distribuidores, e tem sido autora de ações judiciais devido a quebra de direitos autorais causada por compartilhamento indevido de música. 3

seeder

em português, semeador; nome dado ao peer que já terminou um download de um torrent e que, por estar conectado à rede, fornece partes a possíveis interessados. 10

swarm

em português, enxame; grupo de peers que estão compartilhando dados de um mesmo torrent num determinado momento. 10

swarming

também chamado de transmissão de arquivos por segmentação ou de múltiplas fontes, é a transmissão coordenada de um arquivo a partir de um ou vários locais onde este está disponível para um único destino, inclusive no caso de um arquivo em um local sendo transmitido em várias partes paralelas. Cabe ao software que faz o download juntar as partes no ponto de destino. 5, 6

tabela de hash

ou *mapa de hash*, é uma estrutura de dados que cria uma lista de correspondência chavevalor, onde os dados são guardados como os valores e indexados por seus respectivos *valores hash*. v, 6

torrent

arquivo de extensão .torrent que contém metadados como a lista dos nomes dos arquivos a serem baixados e seus tamanhos, checksums das partes do torrent, além de endereços de um ou mais trackers. vii, 10, 12

tracker

em português, rastreador; servidor que funciona como um ponto de encontro de peer. vii, 7, 10

valor hash

ou hash; valores gerados por uma tabela hash. 5, 6

Lista de tarefas pendentes

escrever	V
tá beeem resumido; desenvolve mais??	9
tudo bem fazer isso? preciso anexar o arquivo completo?	12
explicar isso [50]	13
Fazer pequena introdução aqui	14

Introdução

Aqui vou explicar o objetivo do trabalho e o que será mostrado ao longo dele.

Napster, Gnutella, eDonkey e BitTorrent

Para entendermos como e por que o BitTorrent se tornou o que é hoje, devemos voltar um pouco no tempo e rever a história que precedeu à sua criação, que é o fim da década dos anos 1990.

2.1 Período pré-torrent

Entre o final dos anos 80 e o início dos 90 [36, 49], a Internet deixou de ser uma rede de computadores usada somente por entidades governamentais, laboratórios de pesquisa e universidades, passando a ter seu acesso comercializado para o público em geral pelos fornecedores de acesso a Internet (ISPs) [41]. Com o advento do formato de áudio MP3 (MP3) [45] no final de 1991 e do seu primeiro reprodutor de áudio MP3 Winamp, o tráfego da Internet aumentou devido ao aumento da troca direta desse tipo de arquivo.

Entre 1998 e 1999, dois sites de compartilhamento gratuito de músicas foram criados: o MP3.com [44], que era um site de divulgação de bandas independentes, e o Audiogalaxy.com [29, 33]. Mais popular que o primeiro, o Audiogalaxy era um site de busca de músicas, sendo que o download e upload eram feitos a partir de um software cliente. A lista de músicas procuradas ia da página para o computador onde usuário tinha instalado o cliente, que então conectava com o do outro usuário, que era indicado pelo servidor. A lista possuía todos os arquivos que um dia

passaram pela sua rede. Se algum arquivo fosse requisitado mas o usuário que o possuísse não estivesse conectado, o servidor central do Audiogalaxy fazia a ponte, pegando o arquivo para si e enviando-o para o cliente do requisitante em seu próximo login.

O período dos 3 anos seguintes à criação desses dois sites foi muito produtivo ao mundo das redes peer-to-peer (P2P) de modo geral, onde surgiram alguns protocolos desse paradigma e inúmeros softwares que os implementavam. Os mais relevantes foram o Napster, o Gnutella, o eDonkey e o BitTorrent.

2.1.1 Napster

Em maio de 1999 surgiu o Napster [46], um programa de compartilhamento de MP3 que inovou por desfigurar o usual modelo cliente-servidor, onde um servidor central localizava os arquivos nos usuários e fazia a conexão entre os usuários, onde ocorria a transferências. O Napster foi contemporâneo do Audiogalaxy e ambos fizeram muito sucesso por cerca de 2 anos, até que começaram as ações judiciais.

Não demorou muito tempo para a indústria da música entrar em ação contra a troca de arquivos protegidos por direitos autorais sem autorização pela Internet. Seu primeiro alvo foi o Napster, em dezembro de 1999, quando a RIAA (do inglês *Recording Industry Association of America*) entrou com processo representando várias gravadoras alegando quebra de direitos autorais [21]. Em abril de 2000, foi a vez da banda Metallica processar, como resposta à sua descoberto que uma música ainda não lançada oficialmente já circulava na rede [17, 20]. Um mês depois, outra ação, agora encabeçada pelo rapper Dr. Dre, que tinha feito pedido formal para a retirada de seu material de circular, também abriu processo [11]. Isso fez com que o Napster tivesse atenção da mídia, ganhando popularidade e atingindo o 20 milhões de usuários em meados de 2000 [24].

Em 2001, esses imbróglios judiciais resultaram numa liminar federal que ordenava a retirada de conteúdo protegido das entidades representadas pela RIAA. O Napster tentou, mas a juíza do caso não ficou satisfeita ordenando então, em julho, o desligamento da rede enquanto não conseguisse controlar o conteúdo que trafegava ali [46]. Em setembro, o Napster fez um acordo, onde pagou 26 milhões de dólares por danos já causados, uso indevido de música e também 10 milhões de dólares pelos danos futuros envolvendo royalties. Para pagar esse valor, o Napster

tentou cobrar o serviço de seus usuários, que acabaram migrando de rede P2P, inclusive para o Audiogalaxy. Não conseguindo, em 2002, o Napster decreta falência e é forçado a liquidar seus ativos. De lá para cá, foi negociado algumas vezes e atualmente pertence ao site Rhapsody [27].

O sucesso do Napster, mesmo que por curto período tempo, mostrou o potencial das redes P2P poderiam ter, e com isso novos softwares e protocolos de redes foram sendo lançados, sempre tentando se diferenciar dos outros softwares a fim de não serem novos alvos de ações judiciais. A solução para isso foi tentar descentralizar os mecanismos de indexação e de busca, que foram os pontos fracos do Napster.

2.1.2 Gnutella

O tal sucessor foi o Gnutella, em março de 2000 [38], foi uma resposta de domínio público feita com "gambiarras" para os problemas que o Napster encontrou com relação ás acusações deviolação de direitos autorais. Enquanto o Napster possuía um servidor central como estrutura que, no julgamento, foi usado como prova de que o sistema encorajava a violação de direitos autorais, o Gnutella foi modelado como um sistema P2P puro, onde todos os peers (nós da rede) são completamente iguais, sendo responsáveis pelos seus próprios atos.

O Gnutella disponibiliza arquivos da mesma forma que o Napster [4], mas sem a limitação de ser de formato de música, ou seja, qualquer arquivo pode ser compartilhado. A diferença mais significativa entre os dois protocolos é o algoritmo de busca: a abordagem do Gnutella é baseada numa forma de anycast. Isso envolve duas partes: a primeira é como cada usuário é conectado a outros nós e mantém a lista dessas conexões atualizada. A segunda parte é como ele trata as buscas e trabalha inundando de pedidos para todos os nós que estão a uma certa distância do usuário (nó-cliente). Por exemplo, se a distância limite for de 4, então todos os nós que estiverem a 4 passos a partir do cliente serão verificados, começando a partir dos mais próximos. Eventualmente, algum nó possuirá o arquivo requisitado e responderá, e assim será feita a transferência desse arquivo. Muitos softwares que implementam o protocolo vão além dessa funcionalidade básica de download simples tentando transferir de forma paralela partes diferentes do arquivo desejado de nós diferentes, tentando amenizar eventuais problemas de velocidade de rede.

Experiências sugerem assim que o sistema escala para um tamanho maior, o mecanismo

de anycast se torna extremamente caro e em algumas vezes até proibitivo. O problema ocorre nas buscas por arquivos menos populares, onde será necessário um maior número de nós perguntados.

O Gnutella ainda teve uma segunda versão [37], no final de 2002, onde utilizou o mesmo protocolo que o original, porém organizando a rede de peers em *leafs* (folhas, em inglês) e *hubs*. Um *hub* poderia ter centenas de conexões de folhas outras 7, em média, a outros *hubs*, enquanto uma folha se conectaria apenas a 2 *hubs*. Essa nova topologia, somada com uma nova tabela de índice de arquivos das folhas mantida pelos *hubs* onde estavam conectados, melhorou o desempenho das buscas, que era ruim na versão antiga.

2.1.3 eDonkey

O protocolo eDonkey inovou em muitos aspectos de seus precursores, tendo papel fundamental na história das redes P2P e sua consolidação como ferramenta de compartilhamento especializado em arquivos grandes.

O eDonkey implementou o primeiro método de download por swarming, que é chamado o método onde peers fazem downloads de diferentes partes de um arquivo e de peers diferentes, utilizando de forma efetiva a largura de banda de rede para todos os peers ao invés de ficar limitado somente à banda de um único peer.

Outra melhoria foi a busca: no seu lançamento, os servidores eram separados entre si, porém nas versões seguintes permitiu que eles formassem uma rede de buscas. Isso permitiu que os servidores repassassem buscas de seus clientes conectados localmente a outros servidores, facilitando a localização de peers conectados em qualquer servidor da rede de buscas, aumentando a capacidade de download do enxame.

Uma terceira diferença com o Napster foi o uso de valores hash de arquivos nos resultados de busca ao invés dos simples nomes dos arquivos. As buscas geradas pelos usuários eram baseadas em palavras-chave e comparadas com a lista de nomes de arquivos armazenada no servidor, mas o servidor retornava uma lista de pares de nomes de arquivos com seus repectivos valores valor hash. Enfim, quando o usuário selecionasse o arquivo desejado, o cliente iniciaria o download do arquivo usando o seu valor valor hash. Desse modo, um arquivo poderia ter muitos

nomes entre os diferentes peer e servidores, mas seria considerado idêntico para download se possuísse o mesmo valor hash.

A arquitetura da rede em dois níveis usando cliente e servidor alcançou um meio termo entre as redes centralizadas, como o Napster, e as descentralizadas, como o Gnutella, já que o servidor central no primeiro era um alvo estável para ações legais, enquanto o segundo rapidamente mostrou-se inviável devido ao tráfego massivo de buscas entre peers.

Por fim, a inovação mais importante foi o uso de tabelas de hash distribuídas (DHTs), em específico o Kademlia, como algoritmo de indexação e busca nos servidores centrais dos arquivos através da rede eDonkey. Além de ser uma das causas da melhora no desempenho nas buscas, DHTs possuem ainda outras características como tolerância a falhas e escalabilidade. O Kademlia ainda oferece outras vantagens como armazenamento de dados eficiente; anonimato; segurança de rede, conteúdo e usuário; e autenticação.

2.2 Nascimento do BitTorrent

Em meados dos anos 90, Bram Cohen era um programador que tinha largado a faculdade no segundo ano do curso de Ciência da Computação da Universidade de Buffalo, Nova Iorque, para trabalhar em empresas *pontocom*. A última delas foi a MojoNation, uma empresa que desenvolvia um software de distribuição de arquivos criptografados por swarming, que ele já tinha percebido ser uma vantagem com relação ao Kazaa, que fazia transferências de uma única origem.

Em abril de 2001, Bram saiu da MojoNation e começou a modelar o protocolo BitTorrent, lançando a primeira implementação em Python em julho de 2001. Em fevereiro de 2002, ele apresentou o seu trabalho na CodeCon [8] e na mesma época começou a testá-lo, usando uma coleção de material pornográfico para atrair beta testers [28]. O software começou a ser usado imediatamente pelos usuários.

Nesse meio tempo, Bram ainda passou pela Valve [34], empresa de desenvolvimento de jogos, para trabalhar no sistema de distribuição online do jogo Half Life 2. Em 2004, saiu da Valve e voltou o foco ao Torrent. Em setembro, fundou a BitTorrent Inc. com seu irmão Ross

Cohen e o parceiro de negócios Ashwin Navin, sendo então responsável pelo desenvolvimento do protocolo. Nesse mesmo ano, o BitTorrent passou a ser bastante utilizado, quando surgiram os primeiros programas de televisão e filmes compartilhados pelo protocolo.

Já em maio de 2005, Cohen lança uma nova versão do BitTorrent que não precisa de trackers, juntamente com um site de buscas de conteúdo na Internet. Em setembro, a empresa recebe do investidor David Chao \$8.5 milhões de dólares. No final desse ano, a BitTorrent Inc. e a MCAA [43] fizeram um acordo que a empresa de ajudar os usuário a encontrar conteúdos não autorizado dos representados da associação, que não ajudou no combate a pirataria pois já havia outros sites de busca nessa época, como o TorrentSpy, Mininova, NewNova e o The Pirate Bay.

2.3 Mundo pós-torrent

Desde o fechamento do site de buscas, a BitTorrent Inc. tem desenvolvido outros softwares baseados na tecnologia P2P [5], como transmissão de vídeos ao vivo (BitTorrent Live), sincronização de arquivos entre computadores ligados à Internet (BitTorrent Sync), publicação e distribuição de conteúdo de artistas a seus fãs (BitTorrent Bundles), entre outros serviços comerciais.

Como protocolo, o BitTorrent criou um novo paradigma de transmissão de informação pela Internet, sendo utilizado de inúmeras formas e motivos.

- alguns softwares de podcasting, como o Miro [22], passaram a usar o protocolo como forma de lidar com a grande quantidade de downloads de programas online;
- o site da gravadora DGM Live fornece o conteúdo via torrent após a venda [10];
- VODO [30] é um site de divulgação e distribuição de filmes sob a licença Creative
 Commons e que faz a publicação em outros sites de buscas de torrent;
- canais como a americana CBC [7] e a holandesa VPRO [9] já disponibilizaram programas de sua programação para download. A norueguesa NRK o faz para conteúdos em HD
 [25] e, apesar de algumas restrições de direitos, tem aumentado a oferta;

- o serviço da Amazon Web Services de armazenamento de conteúdo via web service, a Amazon S3, permite o uso de torrent para a transmissão de arquivos [1];
- as empresas de desenvolvimento de jogos CCP Games, produtora do jogo Eve Online, usa o protocolo para distribuir o instalador de seu jogo [2]. A Blizzard, dona de Diablo III, StarCraft II e World of Warcraft, distribui esses jogos e ainda suas eventuais atualizações [6];
- o governo britânico distribuiu os detalhes de seus gastos [15], enquanto a Universidade do Estado da Flórida usa para transmitir grandes conjuntos de dados científicos para seus pesquisadores [18];
- Facebook [12] e Twitter [14] usam para transmitir o código atualizado de seus sites para seus servidores de aplicação de forma eficiente [13].

Em 2013, o BitTorrent é um dos maiores geradores de tráfego de rede do mundo, ao lado do NetFlix, Youtube, Facebook e acessos HTTP [19], e segue em uma tendência de aumento.

2.3.1 Questões legais

Desde que surgiu, o BitTorrent, bem como os outros protocolos, chamou atenção dos defensores de direitos autorais e acabou sendo alvo de medidas judiciais. Porém, assim como o Gnutella e ao contrário do Napster, por possuir uma estrutura descentralizada e não armazenar dados sob direitos, dificulta o trabalho de se identificar usuários desses dados.

Ainda assim, não existe um consenso sobre os efeitos financeiros do compartilhamento de arquivos protegidos por direitos autorais, onde o principal argumento utilizado pelos reclamantes é que estes têm fortes prejuízos e, por isso, entram com ações indenizatórias de grandes valores. Existem alguns estudos que tentam medir esse prejuízo; um dos mais recentes [26] mostrou que não existem evidências de diminuição das receitas das empresas cujo conteúdo é pirateado e que o combate contra os usuários infringentes não tem o impacto esperado, que é de reduzir o compartilhamento.

2.3.2 Estudos acadêmicos

tá beeem resumido; desenvolve mais??

Academicamente, o protocolo é bastante estudado desde o seu surgimento, onde são focados efeitos do algoritmo original e alguns estudos de ajuste fino de seu funcionamento. Os pontos principais são o algoritmo do jogo da troca de pedaços, estudos das topologias das redes formadas pelos peers e melhorias de eficiência com alterações nessas topologias.

Anatomia do BitTorrent

O BitTorrent é uma rede P2P onde cada um de seus usuários assume o papel híbrido de servidor, que fornece os arquivos, e de cliente, que adquire os arquivos. Cada computador é chamado de peer.

Cada transferência por BitTorrent está associada a um arquivo de metadados chamado *torrent*. Esse arquivo contém informações sobre os arquivos que formam o pacote de dados daquele conjunto de dados e também um ou mais endereços de trackers, que mantém listas atualizadas dos peers que estão compartilhando os dados, atualizado em períodos de tempo curtos (usualmente 30 minutos).

Enquanto um peer estiver fazendo download de um torrent é chamado de leecher (sugador), pois ainda estará consumindo dados de outros peers; quando o download acabar, passará a ser um seeder (semeador), que somente envia dados para outros peers.

Peers que participam do compartilhamento de um arquivo torrent específico fazem parte do swarm (enxame), onde os dados contidos no pacote desse arquivo são compartilhados com os outros de forma independente e paralela por partes.

Figura 3.1: Representação de uma transferência torrent

3.1 Busca por informações

Os arquivos torrent ficam disponíveis em vários sites de índice, como o ThePirateBay, o Kickass ou Torrentz, muitas vezes em mais de um deles ao mesmo tempo. Apesar de todo conteúdo compartilhado possuir um arquivo torrent, não necessariamente um arquivo torrent está sendo compartilhado, podendo inclusive estar extinto. Por questões didáticas, usaremos um arquivo torrent do filme 'A Noite dos Mortos Vivos' de 1960 [23], que é de domínio público e livre de direitos autorais.

Se abrirmos esse arquivo, veremos um conteúdo ilegível de forma compacta. Após tratar o conteúdo, obtemos o seguinte (parcialmente apagado para questões de formatação):

tudo bem fazer isso? preciso anexar o arquivo completo?

```
2
3
4
5
6
7
8
9
         36:http://btl.archive.org:6969/announce
         13:announce-list
             136:http://bt2.archive.org:6969/announcee
         7:comment
i1343715473e
             5:files
                      5:crc32
                      8:030208fe
                      6:length
                      i4127671704e
                      3:md5
                      32:627f5a428f9e454ccfcb29d31b87169a
                      10:1079402480
                      129:night_of_the_living_dead.mpege
                      40.5e44bb1b3f700240249a5287c64dc02dc56d034b
             24:night_of_the_living_dead 12:piece length
             i4194304e
             23720:<binary>
         6:locale
         5:title
         24:night_of_the_living_dead
         8:url-list
             28:http://archive.org/download/
             39:http://ia600301.us.archive.org/22/items
             39:http://ia700301.us.archive.org/22/items
```

Código fonte 3.1: Exemplo de conteúdo de arquivo .torrent

continua...

explicar isso [50]

3.2 Fontes de arquivos

Mostrarei o processamento dos dados adquiridos na seção anterior e como ele organiza a lista das fontes de arquivos usando a tabela hash DHT Kademlia.

3.3 Jogo da troca de arquivos

Explicarei o algoritmo tit-for-tat padrão do protocolo BitTorrent, que vem da Teoria dos Jogos, e como o Transmission o implementa.

Conceitos de Computação no BitTorrent

Fazer pequena introdução aqui.

Aqui mostrarei detalhes técnicos sobre as partes coadjuvantes do BitTorrent e do Transmission.

4.1	Estruturas de dados, listas ligadas e árvores
4.2	Funções de hash
4.3	Criptografia
4.4	Bitfields
4.5	Protocolos de redes
4.6	Multicast
4.7	Roteamento de pacotes
4.8	IPv6
4.9	Retomada de downloads
4.10	Conexão com a Internet
4.11	Threads
4.12	Engenharia de Software

Comentários Finais

Bibliografia

- [1] Amazon Simple Storage Service (Amazon S3) --- Amazon S3 Functionality. [Online; acessado em 7-outubro-2013]. URL: http://aws.amazon.com/s3/#functionality.
- [2] CCP Aporia. *All quiet on the EVE Launcher front?* [Online; acessado em 5-outubro-2013]. 11 de mar. de 2013. URL: http://community.eveonline.com/news/dev-blogs/74573.
- [3] Kennon Ballou. *R.I.P. Audiogalaxy*. [Online; acessado em 30-setembro-2013]. 21 de jun. de 2002. URL: http://www.kuro5hin.org/story/2002/6/21/171321/675.
- [4] Kenneth P. Birman. *Reliable Distributed Systems: Technologies, Web Services, and Applications*. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005, pp. 532–534. ISBN: 0387215093.
- [5] BitTorrent. URL: http://www.bittorrent.com/.
- [6] Blizzard Downloader --- Wowpedia. [Online; acessado em 5-outubro-2013]. 2013. URL: http://wowpedia.org/index.php?title=Blizzard_Downloader&oldid=3198520.
- [7] CBC to BitTorrent Canada's Next Great Prime Minister. URL: http://archive.is/ VYmFD.
- [8] Codecon 2002 --- Schedule. 2002. URL: http://web.archive.org/web/20021012072819/http://codecon.org/2002/program.html#bittorrent.
- [9] M. Denters. *Download California Dreaming*. [Online; acessado em 7-outubro-2013]. 8 de nov. de 2010. URL: http://tegenlicht.vpro.nl/nieuws/2010/november/creative-commons.html.

- [10] DGM Live --- FAQ. [Online; acessado em 7-outubro-2013]. URL: http://www.dgmlive.com/help.htm#whatisbittorrent.
- [11] Dr. Dre Raps Napster. [Online; acessado em 30-setembro-2013]. 18 de abr. de 2000. URL: http://www.wired.com/techbiz/media/news/2000/04/35749.
- [12] Ernesto. BitTorrent And MPAA join forces. 23 de nov. de 2005. URL: http://torrentfreak.com/BitTorrent-and-mpaa-join-forces/.
- [13] Ernesto. BitTorrent Makes Twitter's Server Deployment 75x Faster. 16 de jul. de 2013. URL: http://torrentfreak.com/bittorrent-makes-twitters-server-deployment-75-faster-100716/.
- [14] Ernesto. Twitter Uses BitTorrent For Server Deployment. 10 de fev. de 2013. URL: http://torrentfreak.com/twitter-uses-bittorrent-for-server-deployment-100210/.
- [15] Ernesto. *UK Government Uses BitTorrent to Share Public Spending Data*. 4 de jun. de 2010. URL: http://torrentfreak.com/uk-government-uses-bittorrent-to-share-public-spending-data-100604/.
- [16] Elle Cayabyab Gitlin. *BitTorrent gets US\$8.75 million in VC money*. 29 de set. de 2005. URL: http://arstechnica.com/uncategorized/2005/09/5363-2/.
- [17] Daniela Hernandez. *April 13, 2000: Seek and Destroy Metallica Sues Napster*. [Online; acessado em 30-setembro-2013]. 13 de abr. de 2012. URL: http://www.wired.com/thisdayintech/2012/04/april-13-2000-seek-and-destroy-metallica-sues-napster/.
- [18] HPC Data Repository. [Online; acessado em 7-outubro-2013]. URL: http://www.hpc.fsu.edu/index.php?option=com_wrapper&view=wrapper&Itemid=80.
- [19] Sandvine Inc. Global Internet Phenomena Report --- 1H 2013. Online; retirado de http:
 //macaubas.com/wp-content/uploads/2013/05/Sandvine_Global_Internet_
 Phenomena_Report_1H_2013.pdf. 2013. URL: https://www.sandvine.com/
 downloads/general/global-internet-phenomena/2013/sandvine-globalinternet-phenomena-report-1h-2013.pdf.
- [20] Christopher Jones. *Metallica Rips Napster*. [Online; acessado em 30-setembro-2013]. 13 de abr. de 2000. URL: http://www.wired.com/politics/law/news/2000/04/35670.

- [21] David Kravets. *Dec. 7, 1999: RIAA Sues Napster*. [Online; acessado em 30-setembro-2013]. 7 de dez. de 2009. URL: http://www.wired.com/thisdayintech/2009/12/1207riaa-sues-napster/.
- [22] Miro. [Online; acessado em 7-outubro-2013]. URL: http://getmiro.com.
- [23] Moving Image Archive Night of the Living Dead (1968). [Online; acessado em 16-outubro-2013]. URL: http://archive.org/details/night_of_the_living_dead.
- [24] Napster: 20 million users. [Online; acessado em 30-setembro-2013]. 19 de jul. de 2000. URL: http://cnnfn.cnn.com/2000/07/19/technology/napster/index.htm.
- [25] NRKbeta. [Online; acessado em 7-outubro-2013]. URL: http://nrkbeta.no/bittorrent/.
- [26] Press Release: Global Napster usage plummets, but new file-sharing alternatives gaining ground, reports Jupiter Media Metrix. [Online; acessado em 8-outubro-2013]. Out. de 2013. URL: http://www.lse.ac.uk/media@lse/documents/MPP/LSE-MPP-Policy-Brief-9-Copyright-and-Creation.pdf.
- [27] Rhapsody.com. [Online; acessado em 30-setembro-2013]. URL: http://www.rhapsody.com.
- [28] Clive Thompson. *The BitTorrent Effect*. Jan. de 2005. URL: http://www.wired.com/wired/archive/13.01/bittorrent.html.
- "Um pouco de história: redes P2P de compartilhamento de arquivos". Em: *Revista PnP* 10 (out. de 2008). [Online; retirado de http://www.thecnica.com/artigos/PnP_10_02.pdf], p. 12. URL: http://www.revistapnp.com.br/pnp_10.php.
- [30] *VODO --- About*. [Online; acessado em 7-outubro-2013]. URL: http://www.dgmlive.com/help.htm#whatisbittorrent.
- [31] Wikibooks. The World of Peer-to-Peer (P2P) --- Wikibooks, The Free Textbook Project. [Online; acessado em 3-outubro-2013]. 2012. URL: http://en.wikibooks.org/w/index.php?title=The_World_of_Peer-to-Peer_(P2P)&oldid=2316492.
- [32] Wikipedia. Anycast --- Wikipedia, The Free Encyclopedia. [Online; acessado em 2-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Anycast&oldid=574680440.
- [33] Wikipedia. *Audiogalaxy --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 29-setembro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Audiogalaxy&oldid=560950036.

- [34] Wikipedia. *Bram Cohen --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 7-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Bram_Cohen&oldid=574084830.
- [35] Wikipedia. *EDonkey network --- Wikipedia, The Free Encyclopedia*. [Online; acessado em 3-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title= EDonkey_network&oldid=568576016.
- [36] Wikipedia. File sharing --- Wikipedia, The Free Encyclopedia. [Online; acessado em maio de 2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=File_sharing&oldid=556034682.
- [37] Wikipedia. *Gnutella2 --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 2-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Gnutella2&oldid=556794729.
- [38] Wikipedia. *Gnutella --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 2-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=574304390.
- [39] Wikipedia. *Hash function --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 5-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title= Hash_function&oldid=574871670.
- [40] Wikipedia. *Hash table --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 5-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title= Hash_table&oldid=575499828.
- [41] Wikipedia. Internet service provider --- Wikipedia, The Free Encyclopedia. [Online; acessado em 29-setembro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Internet_service_provider&oldid=573549991.
- [42] Wikipedia. *Kademlia --- Wikipedia*, *The Free Encyclopedia*. [Online; acessado em 3-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Kademlia&oldid=575742258.
- [43] Wikipedia. Motion Picture Association of America --- Wikipedia, The Free Encyclopedia. [Online; acessado em 7-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Motion_Picture_Association_of_America&oldid=575124240.

- [44] Wikipedia. MP3.com --- Wikipedia, The Free Encyclopedia. [Online; acessado em 29-setembro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=MP3.com&oldid=571025541.
- [45] Wikipedia. MP3 --- Wikipedia, The Free Encyclopedia. [Online; acessado em 29-setembro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=MP3&oldid=574123988.
- [46] Wikipedia. *Napster --- Wikipedia, The Free Encyclopedia*. [Online; acessado em 30-setembro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Napster&oldid=573999770.
- [47] Wikipedia. Recording Industry Association of America --- Wikipedia, The Free Encyclopedia. [Online; acessado em 30-setembro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Recording_Industry_Association_of_America&oldid=574192660.
- [48] Wikipedia. Segmented file transfer --- Wikipedia, The Free Encyclopedia. [Online; acessado em 5-outubro-2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Segmented_file_transfer&oldid=533100656.
- [49] Wikipedia. *Timeline of file sharing --- Wikipedia, The Free Encyclopedia*. [Online; acessado em 28 de setembro de 2013]. 2013. URL: http://en.wikipedia.org/w/index.php?title=Timeline_of_file_sharing&oldid=571061187.
- [50] Theory.org Wiki. BitTorrentSpecification --- Theory.org Wiki, [Online; accessed 17-October-2013]. 2013. URL: https://wiki.theory.org/index.php?title=BitTorrentSpecification&oldid=2527#Bencoding.

Visão Pessoal