Matlab for MAT1110 (revidert versjon våren 2010)

Klara Hveberg, Tom Lindstrøm, og Øyvind Ryan $23.~{\rm mars}~2010$

Innhold

Innledning		3
1. Det aller enkleste Oppgaver til Seksjon 1		 6
2. Matriser og vektorer Oppgaver til Seksjon 2		 9
3. Komponentvise operasjoner Oppgaver til Seksjon 3		 10 12
4. Grafer Oppgaver til Seksjon 4		 13
5. Tredimensjonale grafer Oppgaver til Seksjon 5		 15 16
6. Mer om matriser Oppgaver til Seksjon 6		 18 20
7. Radoperasjoner Oppgaver til Seksjon 7		 22
8. Ta vare på arbeidet ditt Oppgave til Seksjon 8		 26
9. Programmering Input og output		 33
10. m-filer, funksjoner og script Oppgaver til Seksjon 10		 36
11. Anonyme funksjoner og linjefunks Oppgaver til Seksjon 11		 39
12. Bilder og animasjoner* Kontrastjustering	er	 44 44 45

13. Symbolske beregninger Oppgaver til Seksjon 13	48 49
14. Feilsøking Oppgaver til Seksjon 14	50 50
Oppvarmingsøvelse 1: Matrisemultiplikasjon Produktet av en matrise og en søylevektor	52 52 53 53 54
Oppvarmingsøvelse 2: Egenskaper ved determinanter Multiplisere en rad med en skalar Bytte om to rader Addere et skalarmultiplum av en rad til en annen rad Øvre triangulære matriser Nedre triangulære matriser Identitetsmatriser Permutasjonsmatriser Bonusavsnitt for spesielt interesserte	55 55 56 56 57 57 58 58
Lab 1: Lineæravbildninger og matriser Opptegning av enkle figurer Skaleringsmatriser Speilingsmatriser Speiling, rotasjoner og sammensetning av avbildninger Mer om sammensetning og generelle rotasjonsmatriser Filmer ved hjelp av for-løkker	60 62 63 64 66 68
Lab 2: Gauss-eliminasjon Gauss-eliminasjon (enkel versjon uten ombytting av rader)	69 71 72 73
Lab 3: Likningssystemer og lineær uavhengighet	74
Lab 4: Newtons metode for flere variable Newtons metode for funksjoner av en variabel	76 76 77 79 82
Oppvarmingsøvelse 1: Løsningsforslag	85
Oppvarmingsøvelse 2: Løsningsforslag	88
Lab 1: Løsningsforslag	91
Lab 2: Løsningsforslag	95
Lab 3: Hint og løsningsforslag	98
Lab 4: Løsningsforslag	105

Innledning

Dette lille notatet gir en kort innføring i Matlab med tanke på behovene i MAT 1110. Hensikten er å gi deg litt starthjelp slik at du kommer i gang med enkel programmering Avansert bruk må du lære deg andre steder (se lenkene på kursets hjemmeside). Du kan også få hjelp fra innebygde hjelpemenyer og demo'er (kommandoen help help gir deg en oversikt over hva som er tilgjengelig). Notatet forutsetter at du sitter ved maskinen og taster inn kommandoene vi gjennomgår, men det kan kanskje være lurt å ha bladd fort gjennom på forhånd slik at du vet hva som vil bli tatt opp.

I de første seksjonene i notatet (1-7) konsentrerer vi oss hovedsakelig om hvordan du kan utføre enkle beregninger. I de siste seksjonene (8-11) ser vi på litt mer avanserte ting som hvordan du tar vare på (utvalgte deler av) arbeidet ditt, hvordan du programmerer, og hvordan du lager dine egne rutiner som du kan kalle på igjen og igjen. Det kan hende at du har bruk for noe av dette stoffet før du er ferdig med de første sju seksjonene. Heftet inneholder også en seksjon om bildebehandling. Denne er ikke pensum i kurset, men kan bli brukt i forbindelse med obligatoriske oppgaver.

Du vil i dette heftet se mange kodeeksempler. Vi har prøvd å gi mange kommentarer i koden, slik at det skal være mulig å lese seg til hva som skjer. I koden vil du se at en kommentar begynner med %. Det tolkes da slik at kommentaren løper til slutten av linjen, slik at man ikke trenger å angi hvor kommentaren slutter. Kommentarene er ikke en del av selve programmet som blir kjørt. Det er en god vane å legge inn forklarende kommentarer i koden. Du vil se at funksjoner i dette heftet inneholder noen kommentarer helt i starten på hvordan input og output for funksjonen skal tolkes. Dette er helt vanlig programmeringsskikk og i mange andre språk.

Legg merke til at forskjellig bakgrunnsfarge blir brukt for forskjellige kodebiter. Dette gjøres for å skille mellom operativsystemkommandoer, shellkommandoer, ufullstendige kodebiter, og fullstendige programmer. Fargeleggingen er lik den som er brukt i kurset INF1100. Koden for alle funksjonene i heftet er også å finne på kurssidene i filer med samme navn som funksjonen.

Til slutt i heftet finner du noen større lab-oppgaver. Disse er brukt som oppgaver i kurset de siste årene. Du finner også noen enkle oppvarmingsoppgaver til labene. Labøvelsene er egnet for selvstudium, og det er derfor til en viss grad opp til deg selv hvor mye utbytte du får av dem. Du lærer absolutt mest av å prøve deg ordentlig på oppgavene på egen hånd før du kikker i fasiten. Øvelsene er bygget opp sånn at du helst bør ha forstått en oppgave ordentlig før du går løs på neste. Er du usikker på hvordan en oppgave skal løses, kan det derfor være lurt å sjekke at du forstår løsningsforslaget til oppgaven før du går videre.

Det er også laget mye annet stoff ved Universitetet i Oslo for MAT1110 enn det som finnes i dette heftet. Læreboka inneholder for eksempel også en del Matlab-tips.

Det finnes også en del kloner av Matlab, slik som Octave og Scilab. Det meste av koden i dette heftet kan kjøres uten endringer i disse omgivelsene også.

1. Det aller enkleste

Du åpner Matlab som et hvilket som helst annet program. I Unix skriver du

matlab &

mens du i Windows-lignende omgivelser klikker på Matlab-ikonet. I begge tilfeller får du opp et kommandovindu med et Matlab "prompt" >> (avhengig av oppsettet på maskinen er dette kommandovinduet enten ett av flere Matlab-vinduer eller én del av et større vindu). I kodeeksemplene i dette heftet vil vi bare vise promptet hvis vi trenger skille mellom våre egne kommandoer, og returverdiene fra dem. Etter promptet kan du skrive en kommando du vil ha utført. Skriver du f.eks.

>> 3+4

og skifter linje, blir svaret

ans=7

, og gir deg et nytt "prompt" til neste regnestykke (prøv!). Du kan prøve de andre standard regneoperasjonene ved å skrive inn etter tur

3-4 3*4 3.0/4

(husk å avslutte med et linjeskift for å utføre kommandoene). Den vanlige prioriteringsordningen mellom regneoperasjonene slik du er vant til fra avanserte lommeregnere brukes. Derfor gir kommandoen

8.0^2.0/3.0

noe annet enn

8.0^(2.0/3.0)

Vær forøvrig klar over at på enkelte maskiner er ^-tasten litt trøblete når man bruker Matlab. Som regel løser problemet seg hvis man taster "mellomrom" etter ^ og så fortsetter med neste symbol.

Matlab kjenner alle vanlige (og mange uvanlige!) funksjoner, så skriver du

sin(0.94)

blir svaret sinus til 0.94 radianer. Vær nøye med multiplikasjonstegn: Skriver du 15sin(0.94), blir svaret en feilmelding. du må skrive 15*sin(0.94) for å få regnet ut 15 sin 0.94.

En funksjon du må passe litt på, er eksponentialfunksjonen e^x som du må skrive som $\exp(x)$. Vil du regne ut $e^{2.5}$, skriver du altså $\exp(2.5)$ (og ikke potenstegnet over). I tillegg kan det være greit å vite at kvadratrotfunksjonen heter sqrt og at absoluttverdifunksjonen heter abs . Skriver du

```
exp(sqrt(abs(-0.7)))
```

regnes ut $e^{\sqrt{|-0.7|}}$. De andre standardfunksjonene heter det du er vant til: sin, cos, tan, cot, log. I tillegg heter arcusfunksjonene asin, acos, atan.

Vår gamle venn π kalles for pi. Kommandoen

```
рi
```

gir den numeriske tilnærmingen 3.14159265... til π .

Ønsker du flere (synlige) desimaler i utregningene, kan du skrive

```
format long
```

Kommandoen pi blir da besvart med 3.14159265358979. Vil du tilbake til kort format (det blir fort uoversiktlig med mange desimaler i alle tall), skriver du

format short

NOTE

Regner du ut sin(pi) får du deg kanskje en overraskelse. Istedenfor 0 blir svaret 1.2246e-16. Dette skyldes at beregninger primært skjer med avrundede tall.

Det finnes også funksjoner som runder av tall på flere måter:

```
floor(a) % Runder ned til nærmeste hele tall, ceil(a) % Runder opp til nærmeste hele tall, round(a) % Runder av til nærmeste hele tall.
```

Skal du bruke et tall flere ganger i en beregning, kan det være greit å gi det et navn. Tilordner du først verdier til variablene a og b, kan du gange dem sammen slik:

```
a=0.3124;
b=2.41;
a*b
```

La oss avslutte denne innledende seksjonen med noen knep det kan være greit å vite om (blir det for mye på en gang, får du heller komme tilbake til denne delen senere). Du kan ikke endre på en kommando som allerede er blitt eksekvert. Har du laget en liten trykkfeil, må du derfor føre inn kommandoen på nytt. Dette kan du gjøre ved klipping-og-liming, men du kan også bruke piltastene opp og ned. En oversikt over tidligere kommandoer ligger i det lille vinduet som heter "Command History", og du kan navigere frem og tilbake i disse kommandoene ved å bruke piltastene.

Dersom du ønsker å vente med å eksekvere en linje til senere, holder du skifttasten (for skifte til stor bokstav) nede mens du slår linjeskift. Matlab vil nå vente med å utføre kommandoen til du slår et linjeskift uten å bruke skift-tasten. Synes du at en kommando blir svært lang og vil fortsette den på en ny linje, kan du skrive tre punktum etter hverandre og så skifte linje. Matlab skjønner da at du ikke er ferdig med kommandoen og venter med å utføre den.

Får du problemer med en kommando og ønsker å avbryte, trykker du Ctrl-c (altså kontrolltasten og c samtidig).

Et siste nyttig triks: Ønsker du å utføre en kommando uten å skrive resultatet i vinduet, taster du et semikolon etter kommandoen. Skriver du f.eks.

```
c=a*b
```

vil c få verdien ab, men resultatet kommer ikke opp på skjermen.

Oppgaver til Seksjon 1

Oppgave 1

Regn ut: 2.2 + 4.7, 5/7, 3^2 , $\frac{2 \cdot 3 - 4^2}{13 - 2.2^2}$

Oppgave 2

Regn ut verdiene, og sjekk at resultatene er rimelige: e^1 , $\sqrt{16}$, $\cos\pi$, $\sin\frac{\pi}{6}$, $\tan\frac{\pi}{4}$, $\arcsin\frac{1}{2}$, $\arctan 1$.

Oppgave 3

Definer x=0.762 og $y=\sqrt{9.56}+e^{-1}$ og regn ut: $x+y,\ xy,\ \frac{x}{y}$ og $\sin x^2y.$

2. Matriser og vektorer

Matlab egner seg utmerket for matriseregning. Ordet Matlab er faktisk en forkortelse for "matrix laboratory", og programmet startet sin karriere som et undervisningsverktøy i lineær algebra.

Dersom vi ønsker å definere matrisen

$$A = \left(\begin{array}{rrr} 2 & -3 & 1\\ 0 & 1 & -3\\ -4 & 2 & 1 \end{array}\right)$$

skriver vi

```
A=[2 -3 1
0 1 3
-4 2 1]
```

(vi bruker hakeparenteser for å definere matriser). Synes du dette tar for stor plass, kan du isteden skrive

```
A=[2 -3 1; 0 1 3; -4 2 1]
```

der du bruker semikolon til å skille en rad fra den neste. Mellom to elementer på samme rad er det nok med et mellomrom. Synes du dette blir uoversiktlig, kan du bruke komma isteden:

```
A=[2,-3,1;0,1,-3;-4,2,1]
```

Regneoperasjoner for matriser utføres med enkle kommandoer. Har du lagt inn matrisene A og B, kan du skrive vil kommandoene

```
A+B % regner ut summen A+B
A-B % regner ut differensen A-B
A*B % regner ut produktet AB
```

Dette forutsetter at matrisene har riktige dimensjoner slik at regneoperasjonene er definert (hvis ikke blir svaret en feilmelding av typen: Matrix dimensions must agree). Eksempler på andre viktige kommandoer er

Her er et eksempel på en kjøring:

```
% taster inn matrisen A
 3
                         % ber Matlab finne egenvektorer og -verdier
                         % ber Matlab skrive ut u
                         % ber Matlab skrive ut u
          -0.7943
-0.5070
                     0.1808
-0.6023
           0.0310
                     -0.9760
-0.6167
           0.6068
                               % ber Matlab skrive ut v
                               % Matlab skriver ut v
                           0
                     1.0539
```

Dette forteller oss at A har egenvektorer

$$\begin{pmatrix} -0.5070 \\ -0.6023 \\ -0.6167 \end{pmatrix}, \begin{pmatrix} -0.7943 \\ 0.0310 \\ 0.6068 \end{pmatrix}, \text{ og } \begin{pmatrix} 0.1808 \\ -0.9760 \\ 0.1216 \end{pmatrix}$$

med egenverdier henholdsvis 6.6208, 1.4331 og -1.0539. Vær oppmerksom på at egenvektorene alltid normaliseres slik at de har lengde én, og at dette kan få dem til å se mer kompliserte ut enn nødvendig. Husk også at de tre siste kommandoene vi har sett på (inv, det, og eig) forutsetter at A er en kvadratisk matrise.

Rangen til en matrise får du ved hjelp av kommandoen rank. Kommandoen returnerer (den estimerte) rangen til A. Vi er vant til å radredusere matrisen A og telle antall pivotsøyler for å finne rangen. Dersom verdiene i matrisen er sensitive til avrundingsfeil, og vi setter en datamaskin til å gjøre utregningene ved radreduksjonen, vil ofte avrundingsfeil kunne føre til at det ser ut som om matrisen har full rang, selv om det egentlig ikke er tilfelle. I stedet kan datamaskinen beregne rangen ved å telle antall singulærverdier som er ekte større enn null! (I MAT1120 lærer vi ranger er lik antall positive singulærverdier σ_j til A). Matlab bruker denne fremgangsmåten, og antar at $\sigma_j > 0$ dersom $\sigma_j > \epsilon$ for en angitt toleranse $\epsilon > 0$. Dersom man ønsker å forandre den forhåndsdefinerte toleransen ϵ kan man angi dette ved å sende med en ekstra parameter til kommandoen ved å skrive

```
r = rank(A, $\epsilon$)
```

hvor ϵ er den ønskede toleransen.

Vektorer blir oppfattet som spesialtilfeller av matriser. En radvektor $\mathbf{b} = (b_1, b_2, \dots, b_n)$ er altså en $1 \times n$ -matrise. Vektoren $\mathbf{b} = (-2, 5, 6, -4, 0)$ lastes derfor inn med kommandoen

En søylevektor

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}$$

oppfattes som en $m \times 1$ -matrise. Du kan laste inn vektoren $\mathbf{c} = \begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}$ ved for eksempel å skrive

$$c=[7;-3;2]$$

(husk at semikolon markerer ny rad). Når du skriver vektorer er det viktig å ha tenkt igjennom om du ønsker radvektorer eller søylevektorer; du kan ikke regne med at det blir forstått at du mener en søylevektor når du skriver en radvektor! Legg merke til at hvis

$$a = (a_1, a_2, \dots, a_n)$$

er en radvektor, vil den transponerte være søylevektoren

$$a^T = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Har du lastet inn en matrise A og en søylevektor ${\bf c}$ kan du regne ut produktet $A{\bf c}$ ved å skrive

A*c

Vi har spesialkommandoer for å regne ut skalar- og vektorprodukt av vektorer.

Disse kommandoene fungerer både for rad- og søylevektorer. Den siste kommandoen forutsetter naturlig nok at vektorene er tredimensjonale.

Oppgaver til Seksjon 2

Oppgave 1

La
$$A = \begin{pmatrix} 1 & 3 & 4 & 6 \\ -1 & 1 & 3 & -5 \\ 2 & -3 & 1 & 6 \\ 2 & 3 & -2 & 1 \end{pmatrix} \text{ og } B = \begin{pmatrix} 2 & 2 & -1 & 4 \\ 2 & -1 & 4 & 6 \\ 2 & 3 & 2 & -1 \\ -1 & 4 & -2 & 5 \end{pmatrix}.$$

Regne ut; A^T , B^T , $(AB)^T$, A^TB^T , B^TA^T , A^{-1} , B^{-1} , $(AB)^{-1}$, $A^{-1}B^{-1}$, $B^{-1}A^{-1}$. Blir noen av resultatene like?

Oppgave 2

Vi har to vektorer a=(1,-2,3) og b=(2,2,-4). Sjekk at lengdene til vektorene kan finnes ved kommandoene norm(a) og norm(b). Forklar at du kan finne vinkelen mellom vektorene ved kommandoen

acos(dot(a,b)/(norm(a)*norm(b)))

Finn vinkelen.

Oppgave 3

La

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 3 & -1 & 0 \\ -4 & 0 & 2 \end{array}\right)$$

Finn A^{-1} , A^{T} og det(A). Finn også egenverdiene og egenvektorene til A.

3. Komponentvise operasjoner

Ovenfor har vi sett på de algebraiske operasjonene som brukes mest i vanlig matriseregning. Det finnes imidlertid andre operasjoner slik som det komponentvise matriseproduktet (eller Hadamard-produktet) der produktet av matrisene

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \text{og} \quad \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}$$

er

$$\begin{pmatrix} a_{11}b_{11} & a_{12}b_{12} & \dots & a_{1n}b_{1n} \\ a_{21}b_{21} & a_{22}b_{22} & \dots & a_{2n}b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1}b_{m1} & a_{m2}b_{m2} & \dots & a_{mn}b_{mn} \end{pmatrix}$$

Selv om slike komponentvise operasjoner ikke brukes mye i lineær algebra, er de viktige i Matlab siden Matlab bruker matriser til mer enn tradisjonell matriseregning. Matlab har derfor egne kommandoer for slike operasjoner. Disse kommandoene har et punktum foran det "naturlige" kommandonavnet. Skriver du f.eks.

```
A.*B % Komponentvis multiplikasjon
A./B % Komponentvis divisjon
A.^B % Komponentvis potens
```

vil vi få regnet ut matrisene der den ij-te komponenten er $a_{ij}b_{ij}$, $\frac{a_{ij}}{b_{ij}}$, og $a_{ij}^{b_{ij}}$, respektive. Vi kan også bruke disse operasjonene når den ene matrisen erstattes med et tall; f.eks. vil

```
3./A % Komponentvis divisjon av 3
A.^2 % Komponentvis kvadrat
```

produsere matrisene med komponenter $\frac{3}{a_{ij}}$ og a_{ij}^2 , respektive. En del kjente funksjoner er også tilgjengelige på matriser, er allerede komponentvise, og kan kombineres: Skriver vi

får vi matrisene med komponenter $\sin a_{ij}$, $\exp a_{ij}$, og $e^{a_{ij}b_{ij}^2}$, respektive. En annen viktig komponentvis funksjon er random-generering av tall:

```
rand(m,n) % Tilfeldig generert mxn-matrise
rand(n) % Tilfeldig generert nxn matrise
rand() % Tilfeldig generert tall
```

Alle tall blir her tilfeldig generert mellom 0 og 1. Når vi skal illustrere at en setning holder kommer vi ofte til å lage en tilfeldig generert matrise, og vise at setningen holder for denne matrisen. Som et eksempel, studer følgende kode:

```
A = rand(4,4);
B = rand(4,4);
(A+B)' - A' -B'
(A*B)' -B'* A'
```

Ser du hvilke to kjente setninger som blir illustrert her hvis du kjører koden?

Som vi skal se i neste seksjon, er de komponentvise operasjonene spesielt nyttige når vi skal tegne grafer, men det finnes også noen enklere anvendelser som vi kan se på allerede nå. Det finnes egne kommandoer for å finne summer og produkter. Har du lagt inn en vektor c, kan du finne summen og produktet til komponentene i c ved å skrive

```
sum(c)
prod(c)
```

Skal vi finne summen av de 10 første naturlige tallene, kan vi dermed skrive

```
a=[1 2 3 4 5 6 7 8 9 10];
sum(a)
```

Hvis vi også vil ha summen av de 10 første kvadrattallene, kan vi skrive

```
sum(a.^2)
```

Dette er vel og bra så lenge vi har korte summer, men hva hvis vi ønsker summen av de hundre første kvadrattallene? Det blir ganske kjedelig å taste inn vektoren $(1, 2, 3, \ldots, 100)$ for hånd. Koden nedenfor forenkler dette:

```
a=1:100 % Definerer a til å være vektoren (1,2,3,..., 100)
a=1:2:100 % Definerer a til vektoren med alle oddetallene mindre enn 100
a=b:h:c % Definerer a til å være vektoren med b som førstekomponent,
% b+h som annenkomponent, b+2h som tredjekomponent osv.
% inntil vi kommer til c. Den siste komponenten vil være det
% største tallet på formen a+nh som er mindre enn eller lik c.
```

Skal vi regne ut summen av kvadratene av alle partall opptil 100, kan vi altså skrive

```
a=2:2:100;
sum(a.^2)
```

Kommandoen linspace er nyttig hvis intervallet vi skal dele opp har "uregelmessige" endepunkter. Skriver vi f.eks.

```
a=linspace(0,pi,50);
```

får vi definert a som en vektor med 50 komponenter der første komponent er 0, siste komponent er π og avstanden mellom én komponent og den neste allltid er den samme.

Komponentvise operasjoner blir også brukt når vi regner ut integraler. $\int_0^2 e^{-\frac{x^2}{2}} dx$ kan regnes ut ved å skrive

```
>> quad('exp(-x.^2)',0,2)
ans =
0.8821
```

quad står for *quadrature*, et gammelt navn for integrasjon. Utelater du fnuttene her får du en feilmelding.

Funksjonen dblquad brukes på samme måte til å beregne dobbeltintegraler. Kommandoen

```
dblquad('x.^2.*y',0,1,-1,2)
```

beregner dobbeltintegralet $\int_0^1 \int_{-1}^2 x^2 y dy dx$. Svaret blir 0.5, som også er lett å kontrollere ved regning. Trippelintegraler regnes ut på samme måte, bortsett fra at vi bruker triplequad istedenfor doublequad, og at vi må ha med et sett ekstra koordinater for grensene for z-verdiene. Kommandoen

```
triplequad('(x+y.*exp(2*z))',0,1,1,3,0,2)
```

regner ut trippelintegralet $\int_0^1 \int_1^3 \int_0^2 (x+ye^{2z})dzdydx$. Vær oppmerksom på at det kan ta lang tid å regne ut trippelintegraler. Dersom én av integrasjonene er enkle, kan det derfor være greit å utføre den for hånd istedet for å programmere.

Oppgaver til Seksjon 3

Oppgave 1

Legg inn disse *n*-tuplene: (1, -9, 7, 5, -7), $(\pi, -14, e, 7/3)$, $(1, 3, 5, 7, 9, \dots, 99)$, og $(124, 120, 116, 112 \dots, 4, 0)$.

Oppgave 2

Legg inn tuppelet $(1, 2, 4, 8, 16, \dots 4096)$ og finn summen.

Oppgave 3

Legg inn $(0, \frac{1}{100}, \frac{2}{100}, \dots, 1)$. Bruk denne partisjonen til å lage en nedre og øvre trappesum for funksjonen $f(x) = x^2$ over intervallet [0,1] (husk MAT1100!), og regn ut disse summene. Sammenlign med integralet $\int_0^1 x^2 \, dx$.

Oppgave 4

Regn ut produktet $\frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{99}{100}$.

4. Grafer

Anta at $x = (x_1, x_2, ..., x_n)$ og $y = (y_1, y_2, ..., y_n)$ er to *n*-tupler. Kommandoen plot kan brukes på flere måter til å tegne kurver:

Vær oppmerksom på at figurene kommer i et eget vindu med navn "Figure 1", og at dette vinduet kan gjemme seg bak andre vinduer!

Vi kan utnytte metoden ovenfor til å plotte grafer av funksjoner. Trikset er å velge punktene som skal forbindes til å være (tettliggende) punkter på funksjonsgrafen. Hvis vi skal tegne grafen til sin $\frac{1}{x}$ over intervallet $[-\pi,\pi]$ velger vi først et tuppel som gir oppdeling av intervallet i mange små biter, deretter velger vi tuppelet av tilhørende funksjonsverdier, før vi til slutt plotter punktene

```
x=linspace(-pi,pi,100); % Avslutt med ; så ikke alle punktene skrives ut!
y=sin(1./x); % Punktumet betyr at operasjonene er punktvise
plot(x,y) % plotter punktene
```

Hva hvis vi har lyst til å tegne en graf til i samme vindu? Da kaller vi først kommandoen hold før vi taster inn den nye funksjonen (nedenfor er denne $z=x^2\sin\frac{1}{x}$), og plotter den:

```
hold on
z=x.^2.*sin(1./x);
plot(x,z)
```

Nå som vi har flere grafer i samme vindu kan det være lett å gå i surr på hva som er hva. Skriver du

```
legend('Dette er den første grafen','Dette er den andre grafen')
```

vil hver graf bli angitt med den assosierte teksten, slik at de kan skilles fra hverandre. Grafene du lager vil fortsette å komme i samme vindu inntil du gir kommandoen

```
hold off
```

Det hender at du vil lage en ny figur i et nytt vindu og samtidig beholde den gamle i det gamle vinduet. Da kan du bruke kommandoen figure, som får Matlab til å lage et nytt vindu med navn"Figure 2". Vil du ha enda et nytt vindu, bruker du kommandoen figure på ny og får et vindu "Figure 3". Du kan aktivere et eksisterende vindu med kommandoen

```
figure(2)
```

Etter denne kommandoen vil alle plott havne i vindu 2.

Vi skal se på noen tilleggskommandoer som kan være nyttige å kunne. Dersom du selv vil velge størrelsen på vinduet grafene skal vises i, kan du bruke en kommando av typen

```
axis([-pi, pi, -2.5, 2.5]) % Setter grensene på aksene axis('square') % Gir et kvadratisk plottevindu axis('equal') % Gir deg samme målestokk på begge aksene.
```

Du kan gi figuren en tittel, og sette navn på aksene ved å skrive

```
title('Grafen til en vakker funksjon')
xlabel('x-akse')
ylabel('y-akse')
```

Ønsker du tekst på figuren, kan du skrive

```
text(a, b, 'tekst')
```

der (a,b) er koordinatene til det punktet på figuren der teksten skal begynne. Det er lett å angi farge på grafene, samt måte grafen skal tegnes:

Av og til ønsker man å ha flere grafer side om side i den samme figuren. Kommandoen

```
subplot(m,n,p)
```

deler vinduet i $m \times n$ -delvinduer, og sørger for at den neste plot-kommandoen blir utført i det p-te delvinduet.

Hvis du ønsker å ta vare på en figur for å kunne bruke den i et annet dokument senere, kan det være lurt å lagre den som en eps-fil (encapsulated postscript format), eller i et annet format. Dette kan du gjøre slik:

```
print -deps 'figur.eps' % Skriv innhold figurvindu til fil figur.eps
print -depsc2 'figur.eps' % Samme som kommandoen over, men i farger
print -djpeg 'figur.jpg' % Figuren blir nå i stedet lagret med JPEG
```

Oppgaver til Seksjon 4

Oppgave 1

Legg inn 6-tuplene a=(3,1,-2,5,4,3) og b=(4,1,-1,5,3,1) og utfør kommandoen plot(a,b). Utfør også kommandoene plot(a) og plot(b), og bruk hold on til å sørge for at de to siste figurene kommer i samme vindu.

Oppgave 2

Bruk kommandoen plot til å lage en enkel strektegning av et hus.

Oppgave 3

Tegn grafen til $f(x) = x^3 - 1$ over intervallet [-1, 1]. Legg så inn grafen til $g(x) = 3x^2$ i samme koordinatsystem, og velg forskjellig farge på de to grafene.

Oppgave 4

Tegn grafen til funksjonen $f(x) = \sin \frac{1}{x}$ over intervallet [-1,1]. Bruk først skrittlengde $\frac{1}{100}$ langs x-aksen. Tegn grafen på nytt med skrittlengde $\frac{1}{10000}$.

5. Tredimensjonale grafer

Det finnes flere kommandoer som kan brukes til å lage tredimensjonale figurer. Vi skal se på et par av de enkleste. Grafen til en funksjon z = f(x, y) tegnes ved å plotte funksjonsverdiene over et nett av gitterpunkter i xy-planet.

Kommandoen mesh lager konturer av grafen ved å forbinde plottepunktene på grafen med rette linjestykker. Resultatet ser ut som et fiskegarn med knuter i plottepunktene. Varianten meshc tegner i tillegg nivåkurver til funksjonen i xy-planet. La oss se hvordan vi kan tegne grafen til funksjonen $z=f(x,y)=xy\sin(xy)$ over området $-4 \le x \le 4, -2 \le y \le 2$.

Vi lager først en oppdeling av de to intervallene vi er interessert i. I koden vår har vi valgt å dele opp begge intervallene i skritt med lengde 0.05, men du kan godt velge en finere eller grovere oppdeling. Neste skritt er å lage et rutenett av oppdelingene våre, regne ut funksjonsverdiene, og til slutt plotte:

```
r=-4:0.05:4;
s=-2:0.05:2; % Lag en oppdeling av intervallene vi er interessert i
[x,y]=meshgrid(r,s); % Lag et rutenett av oppdelingene våre
z=x.*y.*sin(x.*y); % Regn ut funksjonsverdiene.
% Husk å bruke komponentvis multiplikasjon
mesh(x,y,z) % selve plottingen
```

(husk semikolon etter kommandoene, ellers vil du få lange tallremser som output!). Grafen kommer opp i et eget figurvindu akkurat som for todimensjonale figurer. Velger du surf(x,y,z) istedenfor mesh(x,y,z), får du en graf der flateelementene er fargelagt. Ved å gå inn på menyen i grafvinduet, kan du dreie flaten i rommet (aktiver musa ved å klikke på et ikon som symboliserer dreiing). Dette er ofte nødvendig for å få et godt inntrykk av hvordan grafen ser ut! Ønsker du bare å få ut nivåkurvene til en flate, kan du bruke kommandoen contour. Denne kommer i flere varianter:

Parameteren som bestemmer antall nivåkurver, eller nivåene til disse, er ofte nødvendig, siden programmet ikke alltid klarer å finne de mest interessant nivåkurvene. Det kan også tenkes at vi er interessert i helt konkrete nivåer, som programmet umulig kan gjette på. Med kommandoen clabel får du også skrevet nivået til nivåkurvene på grafen:

```
clabel(contour(x,y,z,12))
```

Normalt vil nivåkurvene bli tegnet i forskjellige farger. Dette er nyttig på skjermen, men kan være mindre praktisk dersom du ønsker å lime figuren inn i et svart-hvitt dokument. Skriver du

```
contour(x,y,z,8,'k')
```

får du 8 nivåkurver tegnet i svart ('k' er symbolet for svart farge).

Kommandoen plot3 er nyttig når du skal plotte parametriserte kurver i tre dimensjoner. Skriver du

```
t=linspace(0,10*pi,100);
x=sin(t);
y=cos(t);
z=t;
plot3(x,y,z)
```

tegnes kurven $\mathbf{r}(t) = (\sin t, \cos t, t)$ for $t \in [0, 10\pi]$.

Det finnes også støtte for å tegne vektorfelt. Skriver du

```
quiver(x,y,u,v)
```

vil et vektorfelt bli tegnet opp der x- og y-vektorene spesifiserer punktene der vektorfeltet skal tegnes opp, og der u- og v-vektorene er vektorfeltets verdi i disse punktene. Grafisk betyr dette at det i ethvert punkt (x,y) blir tegnet opp en vektor (u,v). Hvis du dropper x og y parametrene, så vil vektorene tegnes opp i et standard rutenett der alle punkter har heltallige koordinater større enn 0.

TIP

Når vi tegner vektorfelt kan det være lurt å ikke bruke for mange punkter (x, y), siden det fort tegnes så mange vektorer at disse kolliderer med hverandre.

En annen måte å visualisere vektorfelt på er å tegne strømningslinjer. Skriver du

```
streamline(x,y,u,v,1,-1)
```

vil det tegnes en kurve som går gjennom (1,-1), og som har vektorfeltet beskrevet ved x,y,u,v-verdiene som tangent i ethvert punkt.

Det finnes mange andre kommandoer du også kan bruke (og mange flere måter å modifisere kommandoene ovenfor på!). Skriv

```
help graph3d
```

for å få en oversikt over disse.

Oppgaver til Seksjon 5

Oppgave 1

Tegn grafene til disse funksjonene: $f(x,y) = x^2y^2$, $g(x,y) = \frac{\sin x}{y^2} + x^2$, $h(x,y) = \sin(e^{x+y})$. Vri på flatene for å få et best mulig inntrykk.

Oppgave 2

Tegn kurvene $\mathbf{r}_1(t) = (t, t^2, \sin t)$ og $\mathbf{r}_2(t) = (\sin^2 t, \cos^2 t, e^{-t})$. Vri på koordinatsystemet for å se kurvene best mulig.

Oppgave 3

Bruk kommandoen plot3 til å lage en tredimensjonal strektegning av en terning.

6. Mer om matriser

Siden matriser står så sentralt i Matlab, kan det være greit å vite hvordan man kan manipulere matriser på en effektiv måte. Spesielt nyttig er det å kunne legge sammen elementer i en matrise på forskjellige måter. Dette kan vi gjøre med funksjonen sum på følgende måter (A er en matrise):

Matlab har ingen funksjon som adderer elementene i hver rad. Derfor har vi her benyttet oss av et trick der vi transponerer matrisen. Dette kan brukes for eksempel til å regne ut middelverdien i en matrise, og det vi kaller for *Frobenius normen* til en matrise (ikke pensum):

På samme måte kan vi regne ut maksimum av elementene i en matrise på forskjellige måter:

```
max(A) % Returnerer en radvektor der hvert element er maks.
% av tilsvarende søyle. Du kan også skrive max(A,1).
% Hvis A er en vektor spiller det ingen rolle om den er en
% søylevektor eller radvektor: Maksimum returneres uansett.
max(A,2) % Returnerer en søylevektor der hvert element er
% maksimum av tilsvarende rad
max(max(A)) % Returnerer maksimum av alle elementene i matrisen
```

Minimum går på samme måte.

Mens sum lager en vektor/skalar fra en matrise, så finnes det også kommandoer som går den motsatte veien. Et eksempel er kommandoen diag, som lager en diagonalmatrise med elementene i input-vektoren på diagonalen.

Du har blant annet mange muligheter til å sette sammen og ta fra hverandre matriser. Dersom A er 3×3 -matrisen

$$A = \left(\begin{array}{rrr} 2 & -3 & 1\\ 0 & 1 & -3\\ -4 & 2 & 1 \end{array}\right)$$

og B er 3×2 -matrisen

$$B = \left(\begin{array}{cc} 7 & 4\\ 2 & 5\\ -1 & 3 \end{array}\right)$$

kan vi skjøte sammen A og B til 3×5 -matrisen

$$C = \left(\begin{array}{rrrr} 2 & -3 & 1 & 7 & 4 \\ 0 & 1 & -3 & 2 & 5 \\ -4 & 2 & 1 & -1 & 3 \end{array}\right)$$

ved å gi kommandoen

C=[A B]

Du kan skrive ut komponentene til en matrise med enkle kommandoer:

```
A(1,2) % skriver ut elementet i første rad, andre søyle i A
A(1,:) % skriver ut hele den første raden i A
A(:,2) % skriver ut hele den andre søylen i A
```

(legg merke til at vi nå bruker runde parenteser, og ikke de firkantede vi bruker til å bygge matriser). Du kan også bruke kolon-notasjon til å plukke ut andre deler av en matrise. Starter vi med 3×5 -matrisen C ovenfor, vil

```
C(2:3,1:4)
```

gi deg undermatrisen

$$\left(\begin{array}{cccc}
0 & 1 & -3 & 2 \\
-4 & 2 & 1 & -1
\end{array}\right)$$

som består av komponentene som ligger fra annen til tredje rad (det er dette 2:3 står for), og fra første til fjerde søyle (det er dette 1:4 står for). Kommandoen

gir deg matrisen

$$\left(\begin{array}{cc} -3 & 4\\ 2 & 3 \end{array}\right)$$

bestående av elementene som ligger i første og tredje rad og annen og femte søyle. Du kan også bruke denne notasjonen til å bytte om på radene eller søylene til en matrise. Skriver du

får du ut matrisen

$$\left(\begin{array}{cccccc}
-4 & 2 & 1 & -1 & 3 \\
2 & -3 & 1 & 7 & 4 \\
0 & 1 & -3 & 2 & 5
\end{array}\right)$$

der radene i den opprinnelige matrisen C nå kommer i rekkefølgen 3, 1, 2. Kommandoen

vil på tilsvarende måte bytte om på søylene i C.

Det finnes mange andre spesialkommandoer for å manipulere matriser. De er samlet i verktøykassen ELMAT som du får oversikt over ved å skrive

help elmat

Her følger noen kommandoer for å generere matriser man ofte kan ha nytte av. Noen av de første har vi mer eller mindre vært borti tidligere, men vi gjentar dem her for å ha alt samlet på et sted:

```
x=linspace(2,4,12) % 12-tuppelet med 12 tall jevnt fordelt fra 2 til 4
x=1:10
                       % 10-tuppelet med alle heltallene fra 1 til 10
x=1:2:10
                       % 5-tuppelet med annethvert tall fra 1 til 10
                       % 2 angir steglengden
A=zeros(3,4)
                       % 3x4-matrisen med bare nuller
                       % 3x4-matrisen med bare enere
% 3x4-matrisen med enere på hoveddiagonalen,
A=ones(3,4)
A=eye(3,4)
                       % nuller ellers
A=rand(3,4)
                       \% 3x4-matrise med tilfeldige tall mellom 0 og 1
                       % Lager en øvre triangulær matrise fra A, d.v.s. alle
% elementene under diagonalen er blir satt til 0
triu(A)
                       % Lager en nedre triangulær matrise fra A, d.v.s. alle
% elementene over diagonalen er blir satt til 0
tril(A)
randperm(5)
                       % Lager en tilfeldig permutasjon av tallene fra 1 til 5
```

Som et enkelt eksempel tar vi med at

```
A=eye(3,4)
```

gir matrisen

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)$$

Oppgaver til Seksjon 6

Oppgave 1

Skriv inn matrisene

$$A = \left(\begin{array}{ccc} 2 & -3 & 1\\ 4 & 1 & -5\\ 1 & 2 & -1 \end{array}\right)$$

og

$$B = \left(\begin{array}{rrr} -1 & 3 & 2\\ 4 & 5 & 1\\ 0 & 2 & -1 \end{array}\right)$$

og gjennomfør operasjonene

```
C=[A,B]
C(2,4)
C(:,[2 3])
C([1 3],3:5)
```

Oppgave 2

Bruk matrisen C fra forrige oppgave. Undersøk hva som skjer med matrisen når du skriver

```
C(:,3)=2*C(:,3)
C([1,3],:)=4*C([1,3],:)
```

Oppgave 3

Undersøk hva kommandoen

```
[A;B]
```

gjør når A og B er to matriser.

Oppgave 4

Bruk kommandoene

```
rand(2,2)
rand(3,3)
rand(4,4)
rand(5,5)
```

til å generere "tilfeldige" matriser. Finn egenverdiene og egenvektorene i hvert enkelt tilfelle. Hvor mange forskjellige egenverdier ser det ut til at en typisk $n \times n$ -matrise har?

7. Radoperasjoner

Denne seksjonen forutsetter at du kjenner til radoperasjoner for matriser, og at du kan bringe en matrise til (redusert) trappeform. Har du ikke lært dette ennå, kan du trygt hoppe over denne seksjonen så lenge.

Det finnes en egen kommando som bringer en matrise på redusert trappeform. Den heter \mathtt{rref} (for $\mathit{reduced}$ row $\mathit{echelon}$ form). Starter vi med matrisen

leder kommandoen

B=rref(A)

til den reduserte trappeformen

$$B = \left(\begin{array}{cccccc} 1 & 0 & 0 & -0.48 & 0.88 & -0.2 & -0.04 & 3.36 \\ 0 & 1 & 0 & 2.12 & 0.28 & 1.8 & 2.76 & 2.16 \\ 0 & 0 & 1 & 0.2 & -0.2 & 1 & 0.6 & 2.6 \end{array}\right)$$

Du kan også foreta nøyaktig de radoperasjonene du vil. Lar du

$$C = \left(\begin{array}{rrrr} 2 & -3 & 1 & 7 & 4 \\ 0 & 1 & -3 & 2 & 5 \\ -4 & 2 & 1 & -1 & 3 \end{array}\right)$$

være matrisen fra forrige seksjon, har vi allerede sett hvordan vi kan bytte om på to rader ved å bruke en kommando av typen

Denne kommandoen gir deg en ny matrise der rad 1 og 3 er ombyttet. Taster du

blir svaret

Den har altså ganget den første raden med 2. Skriver du så

legges den første raden til den siste, og du får

Du kunne ha slått sammen disse operasjonene til én ved å skrive

$$C(3,:)=C(3,:)+2*C(1,:)$$

(dersom du prøver den siste kommandoen, må du huske å tilbakeføre C til den opprinnelige verdien først!)

Man kan lure på hva som er vitsen med å kunne foreta radoperasjoner "for hånd" på denne måten når kommandoen rref er innebygd. Man støter imidlertid ofte på matriser med spesiell struktur, f.eks. svært mange nuller. Da er det ofte mer effektivt selv å programmere hvilke radoperasjoner som skal gjøres enn å kjøre en standardkommando som rref som ikke tar hensyn til strukturen til matrisene.

Radoperasjoner kan brukes til å løse lineære likningssystemer, men du har også muligheten til å finne løsningen med én kommando. Dersom A er en ikke-singulær, kvadratisk matrise og b er en vektor, kan du løse vektorlikningen Ax=b ved kommandoen

A\b

(legg merke til at skråstreken heller bakover og ikke fremover). Velger vi for eksempel

$$A = \left(\begin{array}{cccc} 1 & -1 & 4 & 3 \\ 2 & 1 & -4 & 5 \\ 6 & 3 & 1 & -2 \\ 3 & 3 & -2 & 4 \end{array}\right)$$

og

$$b = \begin{pmatrix} 1\\3\\0\\-2 \end{pmatrix}$$

gir kommandoen over svaret

$$x = \begin{pmatrix} 1.3537 \\ -2.4784 \\ -0.7023 \\ -0.0076 \end{pmatrix}$$

Oppgaver til Seksjon 7

Oppgave 1

Skriv inn matrisene

$$A = \left(\begin{array}{cccc} 2 & -3 & 1 & 1 & 4 \\ 4 & 1 & -5 & 2 & -1 \\ 1 & 2 & -1 & 2 & -1 \end{array}\right)$$

og

$$B = \left(\begin{array}{cccc} -1 & 3 & 2 & 3 & 1\\ 4 & 5 & 1 & 4 & 4\\ 0 & 2 & -1 & -3 & -1 \end{array}\right)$$

og gjennomfør operasjonene rref(A) og rref(B).

Oppgave 2

Løs likningssystemet

$$x + 3y + 4z + 6u = 3$$

$$-x + y + 3z - 5u = 5$$

$$2x - 3y + z + 6u = -2$$

$$2x + 3y - 2z + u = 0$$

Oppgave 3

Finn den generelle løsningen av likningssystemet

$$\begin{array}{rcl} 2x - 3y + 4z + 5u & = & 6 \\ x + & y + & 3u & = & 4 \\ 4x - 3y + 2z + 3u & = & 5 \end{array}$$

ved hjelp av kommandoen rref.

Oppgave 4

Skriv matrisen

$$A = \left(\begin{array}{cccccc} 0 & 3 & -2 & 7 & 1 & 2 & 7 & 0 \\ 2 & 0 & 1 & -4 & 3 & 2 & 0 & 4 \\ -1 & 3 & 4 & -1 & 2 & -5 & 6 & 2 \end{array}\right)$$

på redusert trappeform ved å utføre radoperasjonene én for én (du får altså ikke lov til å bruke \mathtt{rref} eller en lignende kommando). Beskriv den generelle løsningen til likningssystemet som har A som utvidet matrise.

Oppgave 5

 \mathbf{a}

Figuren viser spillebrettet for et enkelt terningspill. Spillerne starter på "Start" og kaster en vanlig terning for å flytte. De trenger eksakt riktig antall øyne for å gå i mål (står de på 11 og kaster en femmer, 'spretter" de altså ut til 10 ved å telle på denne måten 12-mål-12-11-10). La t_i være antall kast du må regne med å gjøre før du går i mål (dvs. det forventede antall kast) dersom du står på felt i.

Mål	12	11	10	9	8	7
Start	1	2	3	4	5	6

Forklar hvorfor

$$t_{1} = \frac{1}{6}t_{2} + \frac{1}{6}t_{3} + \frac{1}{6}t_{4} + \frac{1}{6}t_{5} + \frac{1}{6}t_{6} + \frac{1}{6}t_{7} + 1$$

$$t_{2} = \frac{1}{6}t_{3} + \frac{1}{6}t_{4} + \frac{1}{6}t_{5} + \frac{1}{6}t_{6} + \frac{1}{6}t_{7} + \frac{1}{6}t_{8} + 1$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$t_{6} = \frac{1}{6}t_{7} + \frac{1}{6}t_{8} + \frac{1}{6}t_{9} + \frac{1}{6}t_{10} + \frac{1}{6}t_{11} + \frac{1}{6}t_{12} + 1$$

$$t_{7} = \frac{1}{6}t_{8} + \frac{1}{6}t_{9} + \frac{1}{6}t_{10} + \frac{1}{6}t_{11} + \frac{1}{6}t_{12} + 1$$

$$t_{8} = \frac{1}{6}t_{9} + \frac{1}{6}t_{10} + \frac{1}{6}t_{11} + \frac{1}{3}t_{12} + 1$$

$$t_{9} = \frac{1}{6}t_{10} + \frac{1}{3}t_{11} + \frac{1}{3}t_{12} + 1$$

$$t_{10} = \frac{1}{6}t_{10} + \frac{1}{3}t_{11} + \frac{1}{3}t_{12} + 1$$

$$t_{11} = \frac{1}{6}t_9 + \frac{1}{6}t_{10} + \frac{1}{6}t_{11} + \frac{1}{3}t_{12} + 1$$

$$t_{12} = \frac{1}{6}t_8 + \frac{1}{6}t_5 + \frac{1}{6}t_6 + \frac{1}{6}t_{11} + \frac{1}{6}t_{12} + 1$$

Forklar videre hvorfor dette er et lineært likningssystem og bruk kommandoen rref til å finne løsningen. Hvor mange kast må du regne med å bruke når du står på start?

b)

Løs problemet i a) når du ikke trenger eksakt antall øyne for å komme i mål.

8. Ta vare på arbeidet ditt

Vi skal nå se på noen mer datatekniske ting om hvordan du kan ta vare på det du har gjort i. Hvis du vil ta vare på kjøringene dine med tanke på senere redigering, kan du skrive

diary filnavn

Innholdet i kommandovinduet blir nå fortløpende skrevet til filen du oppga, som blir opprettet i katalogen du står i. For å avslutte dagbokføringen, skriver du

diary off

Hvis du senere ønsker å skrive til den samme dagbokfilen, gir du kommandoen

diary on

Dagbok filer kan redigeres på vanlig måte, og egner seg derfor bra til obliger og lignende. Du kan gjøre de kjøringene du ønsker, lagre dem i dagboken , og etterpå legge til kommentarer, stryke uaktuelle utregninger osv. Vær oppmerksom på at figurer ikke lagres i dagboken!

Noen ganger ønsker vi ikke å ta vare på så mye av det vi har gjort, alt vi trenger er å beholde verdien på visse variable til senere kjøringer. Skriver du

save var x y A

lagres verdiene til x, y og A på filen var.mat. Du kan senere lese inn variablene fra denne filen ved å skrive

load var

Ønsker du å lagre alle variabelverdier, kan du skrive

save

Når du skal lagre variable, er det ofte lurt å gi dem mer beskrivende navn enn x, y, A. Et variabelnavn kan bestå av bokstaver og tall, men må begynne med en bokstav. Det skilles mellom store og små bokstaver. Du bør unngå å bruke innebygde funksjons- og kommandonavn på variablene dine.

Når du har arbeidet en stund, kan du fort miste oversikten over hvilke variabelnavn du har brukt. Kommandoen

who

gir deg en oversikt. Hvis du vil slette innholdet i variabelen x, skriver du

clear x

Vil du slette alle variablene, skriver du

clear

Oppgave til Seksjon 8

Oppgave 1

Lag en dagbok fil og rediger den.

9. Programmering

Skal du gjøre mer avanserte ting må du lære deg å programmere. Har du programmert i et annet språk tidligere bør ikke dette være særlig problematisk, siden syntaksen sannsynligvis ligner mye på det du kan fra før. Har du aldri programmert før, står du overfor en litt større utfordring. Det finnes flere innebygde hjelpefunksjoner som kan hjelpe deg. Blant annet har de fleste Shell en autokompletteringsfunksjon for kode, slik at forslag til navn på funksjoner blir listet opp for deg hvis du ikke helt husker dem selv. Mange Shell hjelper deg også med å sørge for at du setter opp nestede parenteser riktig ved kall på funksjoner.

Et program er egentlig ikke noe annet enn en sekvens av kommandoer som du vil ha utført, men det er to ting som gjør at virkelige programmer er litt mer kompliserte enn de kommandosekvensene vi hittil har sett på. Den ene er at virkelige programmer gjerne inneholder $l\emptyset kker$, dvs. sekvenser av kommandoer som vi vil at maskinen skal gjennomføre mange ganger. Vi skal se på to typer l\u00f6kker: forl\u00f6kker og while-l\u00f6kker. Den andre tingen som skiller virkelige programmer fra enkle kommandosekvenser, er at hvilken utregning som skal utf\u00f6res p\u00e5 et visst punkt i programmet, kan avhenge av resultatet av tidligere beregninger som programmet har gjort. Dette fanger vi opp med s\u00e5kalte if-else-setninger.

La oss se på et typisk problem som kan løses ved hjelp av løkker. Vi skal ta for oss *Fibonacci-tallene*, dvs. den tallfølgen $\{F_n\}$ som begynner med $F_1=1,\ F_2=1$ og tilfredsstiller

$$F_n = F_{n-1} + F_{n-2} \quad \text{for } n \ge 3$$
 (1)

Ethvert tall i følgen (bortsett fra de to første) er altså summen av de to foregående. Det er lett å bruke formelen til å regne ut så mange Fibonacci-tall vi vil:

$$F_3 = F_2 + F_1 = 1 + 1 = 2$$

$$F_4 = F_3 + F_2 = 2 + 1 = 3$$

$$F_5 = F_4 + F_3 = 3 + 2 = 5$$

$$F_6 = F_5 + F_4 = 5 + 3 = 8$$

og så videre. Vi ser at vi hele tiden utfører regnestykket i formel (1), men at vi for hvert nytt regnestykke oppdaterer n-verdien.

La oss nå lage et lite program som regner ut de 20 første Fibonacci-tallene. Programmet gjør dette ved å lage en 20-dimensjonal vektor der F_k er den k-te komponenten:

```
F=[1 1]; % forteller MATLAB at F_0=1 og F_1=1 for n=3:20 % starter for-løkken og angir hvor langt den skal løpe F(n)=F(n-1)+F(n-2); % regner ut neste Fibonacci-tall end % avslutter for-løkken
```

Det burde ikke være så vanskelig å skjønne hvordan programmet fungerer: det utfører de samme beregningene som vi gjorde ovenfor fra n=3 til og med n=20 (dvs. mellom grensene angitt i for-løkken). Vil du nå vite hva det 17. tallet i følgen er, kan du nå skrive

```
F(17)
```

I for-løkker bestemmer vi på forhånd hvor mange ganger løkken skal gjennomløpes. Ofte ønsker vi å fortsette beregningene til et visst resultat er oppnådd uten at vi på forhånd vet hvor mange gjennomløpninger som trengs. I disse tilfellene er det lurt å bruke en while-løkke. Det neste programmet illustrerer dette ved å regne ut Fibonacci-tallene inntil de når 10000:

```
F=[1 1];
n=3;
while F(n-1)<10000
F(n)=F(n-1)+F(n-2);
n=n+1;
end
```

Legg merke til at i en while-løkke må vi selv oppdatere fra n til n+1, mens denne oppdateringen skjer automatisk i en for-løkke. Dette skyldes at while-løkker er mer fleksible enn for-løkker, og at man også ønsker å tillate andre typer oppdatering enn at n går til n+1.

La oss også se på et enkelt eksempel på bruk av en if-else-setning. Det litt tossete progammet printer ut de like Fibonacci-tallene samt indeksen til alle odde Fibonacci-tall. Legg merke til funksjonen $\mathbf{rem}(\mathbf{m},\mathbf{k})$ som gir oss resten når m deles på k (dersom k er lik 2 som i programmet, blir resten 0 når m er et partall, og 1 når m er et oddetall):

```
F=[1 1];
for n=3:20
                      % starter for-løkke
 F(n)=F(n-1)+F(n-2) % regner ut neste Fibonacci-tall
  if rem(F(n), 2) == 0
                      % innleder if-else setningen ved å
                      % sjekke om $F(n)$ er delelig med 2
                      % skriver ut $F(n)$ hvis det er et partall
   F(n)
                      % innleder else-delen av setningen
 else
   n
                      % skriver ut n dersom F(n) er et oddetall
  end
                      % avslutter if-else setningen
                      % avslutter for-løkken
end
```

Legg merke til at dobbelte likhetstegn (==) er brukt her. Det vanlige likhetstegnet brukes til å tilordne verdier: skriver du

```
C=D
```

får C den (forhåpentligvis allerede definerte) verdien til D. For å sjekke om to allerede definerte verdier er like, må du derfor bruke et annet symbol, nemlig det dobbelte likhetstegnet ==. Nyttige symboler av denne typen, er

Når du skriver programmer, får du også bruk for logiske operatorer som og, eller og ikke. Du skriver dem slik:

```
% % og
| % eller
~ % ikke
```

Disse operatorene returnerer de logiske verdien true og false. Som et eksempel tar vi med et lite program som skriver ut Fibonacci-tall som er partall, men ikke delelig på 4:

```
F=[1 1];
for n=3:50
 F(n)=F(n-1)+F(n-2);
if (rem(F(n),2)==0) & (rem(F(n),4)~=0)
 F(n)
 end
end
```

I litt større program har vi ofte behov for å avslutte en løkke og fortsette eksekveringen av den delen av programmet som kommer umiddelbart etter løkken. Til dette bruker vi kommandoen break. Det neste programmet illustrerer bruken. Det skriver ut alle Fibonacci-tall mindre enn 1000 (siden størrelsen på Fibonacci-tallene når 1000 før indeksen kommer til 50):

```
F=[1 1];
for n=3:50
  F(n)=F(n-1)+F(n-2);
  if F(n)>1000
    break
  end
  F(n)
end
```

La oss ta en nærmere titt på den generelle syntaksen for for-løkker, while-løkker, if-setninger og break-kommandoer (ikke bry deg om dette hvis du synes det ser rart og abstrakt ut på det nåværende tidspunkt: det kan likevel hende du får nytte av det når du har fått litt mer programmeringstrening). Syntaksen til en for-løkke er:

```
for n=start:steg:stopp
  setninger
end
```

Hvis steglengden er 1, trenger vi bare å oppgi start- og stoppverdiene. Syntaksen til en while-løkke er:

```
while feil < toleranse
  setninger
end</pre>
```

Syntaksen for if-setninger er:

```
if n < nmaks
    setninger
end</pre>
```

eller

```
if n < middel
   setninger
elseif n > middel
   setninger
else
   setninger
end
```

Syntaksen for break-kommandoer er

```
for n=1:antall
  setninger
  if feil > toleranse
    break
  end
  setninger
end
```

Vi avslutter denne seksjonen med noen ord om effektivitet. I programmene ovenfor har vi begynt med å la F være 2-tuppelet [1 1] og så utvidet lengden på tuppelet etter hvert som programmet kjører. Det viser seg at programmet går fortere dersom vi gir n-tuppelet den "riktige" størrelsen fra starten av. Det første programmet vårt blir altså raskere om vi skriver det om på denne måten:

```
F=zeros(1,20);

F(1)=1;

F(2)=1;

for n=3:20;

F(n)=F(n-1)+F(n-2);

end
```

Inntjeningen spiller selvfølgelig ingen rolle når programmet er så kort som her, men for store utregninger kan den ha betydning.

La oss helt til slutt nevne at det egentlig er enda mer effektivt å unngå for-løkker der det er mulig; ofte kan vi erstatte dem ved å bruke vektorer og komponentvise operasjoner isteden. Ønsker vi for eksempel å lage en vektor med de 5 første positive oddetallene som elementer, vil følgende for-løkke gjøre jobben:

```
for i=1:5
a(i)=2*i-1;
end
```

Men det er mer effektivt å lage vektoren på følgende måte:

```
a=2*(1:5)-1;
```

Vi skal ikke legge vekt på effektiv programmering i dette kurset, men med tanke på senere kurs er det greit å være oppmerksom på at slik bruk av "vektor-indekseringkan gjøre store programmer mye raskere.

I sammenligningen med andre programmeringsspråk kan vi generelt si at språk som C++ vil gjennomløpe for-løkker mye raskere enn Matlab. Man skulle kanskje tro at operasjoner på matriser utføres gjennom rene implementasjoner med for-løkker. For eksempel, matrisemultiplikasjon kan jo implementeres rett-fram slik:

```
function C=mult(A,B)
  [m,n]=size(A);
  [n1,k]=size(B); % Må egentlig sjekke at n=n1
  C=zeros(m,k);
  for r=1:m
```

```
for s=1:k
   for t=1:n
      C(r,s) = C(r,s) + A(r,t)*B(t,s);
   end
  end
end
```

Sammenligner du dette med å kjøre A*B i stedet vil du merke stor forskjell - ihvertfall når matrisene er store. Matlab regner derfor ikke alltid ut multiplikasjon av store matriser helt på denne måten.

Determinanten er en annen ting som kan regnes ut på en smartere måte enn ved å følge definisjonen direkte. Et program som bruker definisjonen av determinanten direkte kan se slik ut:

Funksjonen detdef er rekursiv: den kaller seg selv helt til vi har en matrise som er så liten at vi kan regne ut determinanten direkte. Sørg her spesielt for at du forstår den delen av koden hvor $(n-1) \times (n-1)$ -undermatrisen konstrueres. I koden ser du også at vi legger inn en sjekk på at matrisen er kvadratisk. Hvis den ikke er det skrives en feilmelding. Denne koden er ikke spesielt rask: determinanten kan regnes ut mye raskere med en innebygd metode. Determinanten til en matrise A kan du regne ut ved å skrive det(A) Test ut dette ved å kjøre følgende kode:

```
A=rand(9,9);
tic
det(A)
toc
tic
detdef(A)
toc
```

Her lages en (tilfeldig generert) 9×9 -matrise, og determinanten regnes ut på to forskjellige måter. I tillegg tas tiden på operasjonene: tic og toc starter og stopper den innebygde tidtakingen i Matlab, og skriver ut hvor lang tid som ble brukt. Kjør koden og se hvor mye raskere den innebygde determinantfunksjonen er! Du kan godt prøve med en tilfeldig generert 10×10 -matrise også, men da bør du være tålmodig mens du venter på at koden skal kjøre ferdig, spesielt hvis du sitter på en litt treg maskin.

Siden mye kode er tidkrevende å kjøre, kan det ofte være lurt å sette inn noen linjer med kode (for eksempel i for-løkker som kjøres mange ganger) som skriver ut på skjermen hvor langt programmet har kommet. Til dette kan du bruke funksjonen fprintf . Skriver du

```
fprintf('Nesten ferdig\n')
```

så vil programmet skrive den gitte teksten ut på skjermen (de to siste tegnene betyr linjeskift) . En litt mer avansert variant er

```
fprintf('Ferdig med %i iterasjoner av løkka',k)
```

Hvis k er en løkkevariabel, så vil koden over til enhver tid holde styr på hvor langt vi er kommet i løkka.

Input og output

Noen ganger trenger vi å skrive et program som er avhengig av input fra brukeren. Et eksempel er et program som kjører mange ting, og man vil av og til at brukeren skal få anledning til å avbryte programmet. Dette kan gjøres ved hjelp av kommandoen input:

```
svar=input('Vi du at programmet skal fortsette (J/N)? ', 's');
if strcmp(svar,'J') % Sjekker om svaret fra brukeren er 'J'
    % Fortsett å kjøre programmet, brukeren ville fortsette
elseif strcmp(svar,'N')
    % Avbryt programmet, brukeren ville ikke fortsette
end
```

På samme måte vil kommandoen disp skrive ut verdien av argumentet på displayet. Denne funksjonen skriver ut de fleste typer variable på en pen måte.

Av og til har vi bruk for å lese data fra en fil. Vi åpner og lukker en fil ved hjelp av kommandoene fopen og fclose. Videre kan vi lese tegn fra filen ved kommandoen fread. Denne kan kalles på mange forskjellige måter. Under kalles den på defaultmåten, da den leser tegn for tegn fra fila adskilt med space, og tolker hvert tegn som numeriske verdier.

```
fid = fopen('filsomskalleses.txt','r')
c = fread(fid, 5)
fclose(fid);
```

Det er også mulig å kalle fread slik at det den leser fra fila blir tolket som strenger. Tilsvarende kan vi skrive data til en fil ved hjelp av kommandoen fwrite.

```
fid = fopen('filsomskalskrives.txt', 'w');
fwrite(fid, [ 1 2 3 4 5, 'integer')
```

Legg merke til hvordan 'r' er brukt i fread og 'w' er brukt i fwrite. den første angir at fila skal åpnes i lesemodus, den andre angir at fila skal åpnes i skrivemodus. Når man åpner en fil i skrivemodus kan man åpne enten slik at man legger til de nye tegnene til slutt i den eksisterende filen, eller slik at man lager fila på nytt ved å skrive helt over den gamle.

Strengvariable

I koden over så vi et eksempel på bruk av metoden input. Denne returnerer ikke en numerisk verdi, men en tekststreng. svar er et eksempel på en strengvariabel. Funksjonen strcmp er en funksjon som sammenligner to strenger. Returverdien er sant hvis og bare hvis de er like. Varianten sprintf av funksjonen fprintf over er et eksempel på en funksjon som returnerer en strengvariabel. Skriver vi

```
svar=sprintf('Ferdig med %i iterasjoner av løkka',k)
```

vil koden returnere strengen i variabelen svar, i stedet for at denne skrives på displayet. Input til kommandoene sprintf og fprintf kalles også for formatterte strenger, det vil si strenger som blir prosessert ved at verdier blir satt inn på forskjellige steder, indikert ved prosenttegnet. Forskjellige typer variable kan bli satt inn på forskjellige måter. De viktigste er %i for innsetting av heltall, %f for innsetting av flyttall, og %s for innsetting av strengvariable.

Noen ganger får vi bruk for å konvertere mellom strengverdier og numeriske verdier. Dette gir mening for strenger som '10', som jo også har en numerisk tolkning, selv om det egentlig er en streng. Denne konverteringen kan vi gjøre med kommandoene num2str og str2num:

```
str=num2str(10) % str blir strengen '10'.
str2num(str) % Får tilbake den numeriske verdien 10.
```

Oppgaver til Seksjon 9

Oppgave 1

En følge er gitt ved $a_1 = 1$, $a_2 = 3$ og $a_{n+2} = 3a_{n+1} - 2a_n$. Skriv et program som genererer de 30 første leddene i følgen.

Oppgave 2

I denne oppgaven skal vi se på en modell for samspillet mellom rovdyr og byttedyr. Vi lar x_n og y_n betegne hhv. antall rovdyr og antall byttedyr etter n uker, og vi antar at

$$x_{n+1} = x_n(r + cy_n) y_{n+1} = y_n(q - dx_n)$$

der r er litt mindre enn 1, q er litt større enn 1, og c og d er to små, positive tall.

a)

Forklar tankegangen bak modellen

b)

Velg $r=0.98,\ q=1.04,\ c=0.0002,\ d=0.001,\ x_1=50,\ y_1=200.$ Lag et program som regner ut x_n og y_n for $n\leq 1000.$ Plott følgene x_n og y_n i samme koordinatsystem. Hvorfor er toppene til x_n forskjøvet i forhold til toppene til y_n ?

Oppgave 3

En dyrestamme består av tre årskull. Vi regner med at 40% av dyrene i det yngste årskullet lever videre året etter, mens 70% i det nest yngste årskullet lever videre året etter. Ingen dyr lever mer enn tre år. Et individ i det andre årskullet blir i gjennomsnitt forelder til 1.5 individer som blir født året etter. Et individ i det eldste årskullet blir i gjennomsnitt forelder til 1.4 individer som blir født året etter. La x_n, y_n, z_n være antall dyr i hvert årskull etter n år, og forklar hvorfor

$$x_{n+1} = 1.5y_n + 1.4z_n$$

$$y_{n+1} = 0.4x_n$$

$$z_{n+1} = 0.7y_n$$

a)

Lag et program som regner ut x_n , y_n og z_n for $1 \le n \le 100$. Plott alle tre kurvene i samme vindu. Lag et nytt vindu der du plotter alle de relative bestandene $x_n'=\frac{x_n}{x_n+y_n+z_n},\,y_n'=\frac{y_n}{x_n+y_n+z_n},\,z_n'=\frac{z_n}{x_n+y_n+z_n}.$

b)

Gjenta punkt a), men bruk andre startverdier, f.eks. $x_1 = 300, y_1 = 0, z_1=0.$ Sammenlign med resultatene i a). Gjør oppgavene enda en gang med et nytt sett av startverdier. Ser du et mønster?

c)

La
$$A=\begin{pmatrix}0&1.5&1.4\\0.4&0&0\\0&0.7&0\end{pmatrix}$$
. Forklar at $\begin{pmatrix}x_n\\y_n\\z_n\end{pmatrix}=A^{n-1}\begin{pmatrix}x_1\\y_1\\z_1\end{pmatrix}$. Bruk dette til å regne ut $x_{100},\,y_{100}$ og z_{100} for starverdiene i a). Sammenlign med dine tidligere

resultater.

10. m-filer, funksjoner og script

Hvis du skal skrive inn mange kommandoer som skal brukes flere ganger, kan det være praktisk å samle disse i en egen fil. Slike Matlab -filer skal ha endelsen .m , og kalles derfor gjerne m-filer . De inneholder Matlab -kommandoer og kan skrives inn i en hvilken som helst editor, f.eks. emacs eller den innebygde editoren i Matlab som ligger i et eget vindu (i noen versjoner spretter dette vinduet opp når du starter programmet, i andre må du klikke på et ikon i terminalvinduet for å få det opp) .

Det finnes to typer m-filer: script og funksjoner. Et script er en sekvens av Matlab-kommandoer slik vi ville ha tastet dem inn i kommandovinduet (uten promptet). Hvis vi samler kommandoer på en fil som heter filnavn.m, vil de utføres når vi skriver

filnavn

(uten endelsen .m) i kommandovinduet. For at Matlab skal finne filen, må vi stå i samme katalog som filen er lagret i (med mindre filen ligger i søkestien til Matlab). Vi kan sjekke hvilken katalog vi står i med kommandoen pwd (present working directory) og skifte katalog med kommandoen cd (change directory). Hvis kommandoene lagret på en fil returnerer en verdi kan vi også kjøre inneholde på fila ved å skrive feval(filnavn).

Hvis vi f.eks ønsker å skrive kode som finner røttene til annengradslikningen $2x^2+3x+1=0$, kan vi legge følgende kommandoer på filen annengradsligning.m

```
a=2;
b=3;
c=1;
x1=(-b+sqrt(b^2-4*a*c))/(2*a)
x2=(-b-sqrt(b^2-4*a*c))/(2*a)
```

Når vi skriver

annengradsligning

utføres alle kommandoene i filen og svarene returneres:

```
x1 -0.5000
x2 -1
```

En funksjon er en m-fil som begynner med ordet 'function' og har én eller flere inn- og ut-parametre. Disse parametrene er tall eller matriser (eller i noen få tilfeller funksjoner). Variablene som brukes i funksjoner er lokale (med mindre vi definerer en global variabel, se help global) og lagres ikke i det ordinære arbeidsrommet.

Hvis vi ønsker å lage en funksjon som finner røttene til en vilkårlig annengradslikning $ax^2 + bx + c = 0$, kan vi la brukeren spesifisere likningskoeffisientene a, b og c som inn-parametre til funksjonen, og la ut-parameteren som funksjonen returnerer, være en 2-dimensjonal radvektor som inneholder røttene r1 og r2. På filen annengrad.m legger vi da følgende funksjonskode:

Vi kan nå finne røttene til annengradslikningen $2x^2 + 3x + 1 = 0$, ved å gi kommandoen

```
[x1,x2]=annengrad(2,3,1)
```

Igjen returneres svarene $x_1 = -0.5000$ og $x_2 = -1$.

Oppgaver til Seksjon 10

Oppgave 1

Determinanten til en 2×2 -matrise er definert ved

$$\det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = ad - bc$$

Lag en m-fil (en funksjonsfil) som regner ut slike determinanter. Filen skal ha innparametre a,b,c,d og ut-parameter det $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Oppgave 2

Skriv en m-fil (en funksjonsfil) som gir løsningen tillikningssystemet

$$ax + by = e$$
$$cx + dy = f$$

når det har en entydig løsning. Filen skal virke på denne måten: Inn-parametrene er koeffisientene a,b,c,d,e,f, og ut-parametrene er løsningene x,y. Dersom likningssystemet ikke har en entydig løsning, skal programmet svare: "likningssettet har ikke entydig løsning" (det behøver altså ikke å avgjøre om likningssettet er inkonsistent eller har uendelig mange løsninger).

Oppgave 3

Lag en funksjonsfil som regner ut leddene i følgen $\{x_n\}$ gitt ved

$$x_{n+2} = ax_{n+1} + bx_n$$
 $x_1 = c, x_2 = d.$

Filen skal ha inn-parametre a,b,c,d,m og skal returnere de m første verdiene til følgen.

Oppgave 4

Lag en funksjonsfil som regner ut leddene i følgen $\{x_n\}$ gitt ved

$$x_{n+1} = ax_n(1 - x_n)$$
 $x_1 = b$.

Filen skal ha inn-parametre a,b,m, og skal returnere de m første verdiene til følgen. Sett m=100, se på tilfellene b=0.2 og b=0.8, og kjør programmet for hhv. $a=1.5,\ a=2.8,\ a=3,\ a=3.1,\ a=3.5,\ a=3.9$. Plott resultatene. Eksperimenter videre hvis du har lyst, men behold humøret selv om du ikke finner noe mønster; fenomenet du ser på er et av utgangspunktene for det som kalles "kaos-teori"!

11. Anonyme funksjoner og linjefunksjoner

I forrige seksjon så vi hvordan vi kunne lagre funksjoner ved hjelp av funksjonsfiler. Trenger vi bare en enkel funksjon noen få ganger, er det imidlertid unødvendig komplisert å skrive og lagre en egen fil, og det finnes derfor to innebygde metoder for å definere funksjoner direkte i kommanduvinduet: anonyme funksjoner ("anonymous functions") og linjefunksjoner ("inline functions"). Vær oppmerksom på at anonyme funksjoner først ble introdusert i Matlab i versjon 7, og at de derfor ikke er tilgjengelig i eldre utgaver av programmet.

La oss begynne med linjefunksjoner. Hvis vi skriver

```
f=inline('x.*sin(1./x)');
```

lagres funksjonen $f(x) = x \sin \frac{1}{x}$ (legg merke til anførselstegnene rundt funksjonsuttrykket). Ønsker vi å vite hva f(5) er, kan vi derfor skrive

```
>> f(5)
ans =
0.9933
```

Ønsker vi å plotte grafen til f, går vi frem på vanlig måte:

```
x=0.01:0.01:1;
y=f(x);
plot(x,y)
```

Metoden fungerer også på funksjoner av flere variable:

forteller oss at funksjonsverdien til funksjonen $f(x,y)=y\sin\frac{1}{x}$ i punktet (2,3) er 1.4383. Legge merke til at i sitt svar på kommandoen

```
f=inline('y.*sin(1./x)')
```

er variablene blitt ordnet slik at vi vet at x er første og y er annen variabel. Vil vi tegne grafen til f, skriver vi

```
x=0.01:0.01:1;
y=0.01:0.01:1;
[x,y]=meshgrid(x,y);
z=f(x,y);
mesh(x,y,z)
```

La oss nå gå over til anonyme funskjoner. Disse definerer du på denne måten:

```
g=@(x,y)x.^2.*y+y.*3
```

Funksjonen $g(x,y)=x^2y+y^3$ er nå lastet inn. Du kan regne ut verdier og tegne grafer på samme måte som ovenfor:

```
>> g(1,-2)
ans =
    -8
>> x=0.01:0.01:1;
>> y=0.01:0.01:1;
>> [x,y]=meshgrid(x,y);
>> z=g(x,y);
>> mesh(x,y,z)
```

Anonyme funksjoner er nyttige når du skal integrere funksjoner. Vil du f.eks. regne ut integralet $\int_0^2 e^{-\frac{x^2}{2}} dx$, skriver du

```
>> quad(@(x)exp(-x.^2),0,2)
ans =
0.8821
```

(quad står for *quadrature*, et gammelt navn for integrasjon). Utelater du @(x), får du en feilmelding:

```
>> quad(exp(-x.^2),0,2)
??? Error using ==> fcnchk
FUN must be a function, a valid string expression,
or an inline function object.
```

Det går imidlertid greit å bruke denne syntaksen til å integrere en linjefunksjon du allerede har definert:

```
>> h=inline('exp(-x.^2)');
>> quad(h,0,2)
ans =
    0.8821
```

men kommandoen fungerer fortsatt ikke dersom h er definert som en anonym funksjon!

Vi kan bruke anonyme funksjoner i to variable sammen med funksjonen dblquad til å beregne dobbeltintegraler.

```
dblquad(@(x,y)x.^2.*y,0,1,-1,2)
```

beregner dobbeltintegralet av funksjonen x^2y over rektangelet $[0,1] \times [-1,2]$. Svaret blir 0.5. Trippelintegraler regnes ut på samme måte som dobbeltintegraler, bortsett fra at vi bruker triplequad istedenfor doublequad, og at vi må ha med et sett ekstra koordinater for grensene for z-verdiene:

```
triplequad(@(x,y,z)(x+y.*exp(2*z)),0,1,1,3,0,2)
```

Vær oppmerksom på at det kan ta lang tid å regne ut trippelintegraler. Dersom én av integrasjonene er enkle, kan det derfor være greit å utføre den for hånd før du kobler inn Matlab.

Oppgaver til Seksjon 11

Oppgave 1

Definer $f(x) = \frac{\sin x}{x}$ som en linjefunksjon. Tegn grafen til f og regn ut integralet f fra $\frac{1}{2}$ til 2.

Oppgave 2

Gjenta oppgave 1, med definer nå f som en anonym funksjon.

Oppgave 3

Definer $f(x,y) = x^2y - y^2$ som en linjefunksjon og tegn grafen.

Oppgave 4

Gjenta oppgave 3, med definer nå f som en anonym funksjon.

12. Bilder og animasjoner*

Et bilde kan tolkes som en matrise, et rektangulært rutenett hvor hver rute tilsvarer et element i matrisen. En rute kalles helst $et\ piksel$ når vi snakker om bilder. I svarthvitt-bilder har hvert piksel én verdi, og hver verdi angir hvilken gråtone pikselet har. Ofte lagres svart-hvitt bilder med 256 ulike gråtoner, det vil si som matriser hvor elementene er verdier mellom 0 og 255, hvor 0 tilsvarer svart og 255 tilsvarer hvit. Fargebilder lagres ofte med såkalt rgb-format; hvert piksel får tre komponenter, én for rød(r), én for grønn(g), og den siste for blå(b). (Når vi kombinerer disse tre fargene på ulike måter kan vi produsere alle mulige farger). Det vil si at vi egentlig trenger 3 matriser for å lagre bildet.

Matlab er et utmerket verktøy til å analysere og gjøre operasjoner på bilder. De tre viktigste funksjonene er:

```
A = imread('filnavn.fmt','fmt') % leser inn et bilde med angitt
% filnavn og format, og lagrer det som en matrise A.
% ('fmt') kan være 'jpg','tif', 'gif', 'png',...
imwrite(A, 'filnavn.fmt','fmt') % skriver bildet definert av A
% til en fil, med angitt filnavn og format, jmfr. imread
% Skal du printe ut bilder som du selv har generert
% så kan du bruke denne til å skrive til fil,
% og så sende filen til printeren med et annet program.
imageview(A) % viser frem matrisen A som et bilde.
% Du kan dessverre ikke skrive ut bildet fra menyen her.
```

Når vi leser inn et bilde vil typisk verdiene lagres som heltall. Siden mange av operasjonene vi bruker antar at verdiene er av typen double, så må vi konvertere verdiene til denne typen. Vi må altså skrive

```
img = imread('mm.gif','gif');
img = double(img);
```

Verdiene i matrisen img ligger mellom 0 og 255. Størrelsen på bildet finner du ved å skrive

```
[m,n]=size(img)
```

Kontrastjustering

Som et eksempel på en operasjon vi kan gjøre på et bilde, la oss se på kontrastjustering. Pikselverdiene justeres da ved hjelp av en funksjon som avbilder [0,1] på [0,1], en såkalt kontrastjusterende funksjon. Eksempler på kontrastjusterende funksjoner er

$$f(x) = \frac{\log(x+\varepsilon) - \log(\varepsilon)}{\log(1+\varepsilon) - \log(\varepsilon)},$$

$$g(x) = \frac{\arctan(n(x-1/2))}{2\arctan(n/2)} + 1/2.$$

(a) Originalt

Figur 1: Et bilde med og uten kontrastjustering.

For å bruke en kontrastjusterende funksjon må vi i tillegg avbilde pikselverdiene fra [0,255] til [0,1], og til slutt avbilde de fra [0,1] til [0,255]. Kode for kontrastjustering med f(x) blir da seende slik ut:

Et bilde, sammen med de kontrastjusterte versjoner med f(x) og g(x) ser du i Figur 1.

Utglatting

En annen vanlig operasjon på bilder er utglatting. Ved utglatting erstattes verdiene i bildet med vektede middelverdier av de nærliggende pikslene i bildet. Vektingen er definert ved en matrise, kalt en vektmatrise (eller konvolusjonskjerne), der "midterste" verdi i matrisen bestemmer vekten for det aktuelle pikselet, verdien rett over denne bestemmer vekten for pikselet rett over det aktuelle pikselet, o.s.v. Summen av alle elementene i vektmatrisen er vanligvis 1. Utglatting med en vektmatrise kan programmeres slik:

Inne i for-løkken ser du kode som kan virke litt kryptisk. Koden skyldes at i ytterkantene av bildet er det ikke nok piksler til å matche størrelsen på vektmatrisen, slik at litt ekstra kode må til for å håndtere dette. Utglatting med matrisen

$$A_1 = \frac{1}{16} \left[\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right]$$

kan vi nå gjøre slik

```
vektmatrise = (1/16)*[ 1 2 1; 2 4 2; 1 2 1];
newimg = smooth(img, vektmatrise);
```

I Figur 2 viser vi bildet utglattet med vektmatrisen A_1 , samt vektmatrisen

$$A_2 = \frac{1}{1024} \begin{bmatrix} 1 & 6 & 15 & 20 & 15 & 6 & 1 \\ 6 & 36 & 90 & 120 & 90 & 36 & 6 \\ 15 & 90 & 225 & 300 & 225 & 90 & 15 \\ 20 & 120 & 300 & 400 & 300 & 120 & 20 \\ 15 & 90 & 225 & 300 & 225 & 90 & 15 \\ 6 & 36 & 90 & 120 & 90 & 36 & 6 \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 \end{bmatrix}$$

Som du ser gir den større vektmatrisen A_2 en større utglattingseffekt.

Gradienten til et bilde

Ved å erstatte vektmatrisen med andre matriser kan vi regne ut andre interessante bilder, for eksempel som viser hvordan bildet forandrer seg i x-retningen, eller i

(a) Utglatting med A_1

(b) Utglatting med A_2

Figur 2: Utglatting av bildet vårt med to forskjellige vektmatriser.

y-retningen. Mer presist ville vi bruke

$$\begin{array}{lllll} \text{vektmatrisex} & = & \left[\begin{array}{ccc} 0 & 0 & 0 \\ -1/2 & 0 & 1/2 \\ 0 & 0 & 0 \end{array} \right] \\ \\ \text{vektmatrisey} & = & \left[\begin{array}{ccc} 0 & 1/2 & 0 \\ 0 & 0 & 0 \\ 0 & -1/2 & 0 \end{array} \right]. \end{array}$$

Disse svarer til approksimasjoner av $\frac{\partial}{\partial x}$ og $\frac{\partial}{\partial y}$, respektive, anvendt på bildet. Gradienten til et bilde kan vi regne ut slik:

```
newimg = sqrt( smooth(img,vektmatrisex).^2 + ...
smooth(img,vektmatrisey).^2 );
```

Med denne koden kan det hende at de nye pikselverdiene faktisk ligger utenfor [0,255]. Dette kan vi løse ved å avbilde verdiene til [0,1] ved hjelp av følgende kode:

```
function newimg=mapto01(img)
  minval = min(min(img));
  maxval = max(max(img));
  newimg = (img - minval)/(maxval-minval);
```

Deretter kan vi avbilde disse verdiene tilbake på [0,1]. I Figur 3 har vi vist hvordan de partielt deriverte bildene og gradientbildet da blir seende ut.

Eksempler på andre operasjoner på bilder

Det er også mange andre operasjoner enn kontrastjustering og utglatting som kan gjøres enkelt. Her er noen flere eksempler:

(a) x-partielt deriverte av bildet

(b) y-partielt deriverte av bildet

(c) Gradienten til bildet

Figur 3: De partielt deriverte og gradienten av bildet

```
function imgupdown=speilingoppned(img)
  imgupdown = [];
  for k=1:m
    imgupdown(k,:) = img(m+1-k,:);
  end
```

```
function imgleftright=speilingvenstrehoyre(img)
  imgleftright = [];
  for k=1:n
    imgleftright(:,k) = img(:,n+1-k);
  end
```

Litt om animasjoner

Hvis du ønsker å lage en filmsnutt som skal spilles av flere ganger, kan det være lurt å lage en animasjon. Dette gjøres ved at vi etter hvert plott lagrer plottet i en struktur F:

```
F(t)=getframe; % plott nummer t lagres i F(t)
```

Etterpå kan vi da spille av animasjonen så mange ganger vi vil med kommandoen

```
movie(F,k,m)
```

hvor k angir angir antall ganger filmen skal kjøres, og m angir antall figurer som skal vises per sekund.

13. Symbolske beregninger

Alt vi har tatt for oss opp til nå har dreid seg om hvordan vi kan beregne ting numerisk. Med Matlab er det imidlertid også mulig å regne ut en del ting symbolsk, ved hjelp av en toolbox ved navn *Symbolic math toolbox* (denne skal være installert på alle maskinene på UIO). Det enkleste eksemplet er kanskje brøkregning. Skriver vi

```
brok=sym(1)/sym(3)+sym(1)/sym(2)
eval(brok)
```

vil første linje returnere den symbolske verdien 5/6, mens andre linje vil beregne den numeriske tilnærmingen til denne, som blir 0.8333 (sørg for at du forstår forskjellen mellom disse to!). Et annet eksempel Matlab kan regne ut symbolsk er derivasjon. Den deriverte til x^5 kan du regne ut ved å skrive

```
sym x
diff('x^5')
% Definerer x som en symbolsk variabel
```

Kommandoen sym deklarerer en symbolsk variabel.

Et tredje eksempel på symbolske beregninger, som kanskje er enda mer nyttig, er integrasjon. I Seksjon 3 så vi at

```
quad('x.^7.*exp(x.^2)',0,1)
```

regnet ut en numerisk tilnærming til integralet $\int_0^1 x^7 e^{x^2} dx$. Veldig ofte er vi interessert i hva det ubestemte integralet blir, og det hjelper ikke quad-kommandoen oss med. Ved hjelp av delvis integrasjon er det klart at det er mulig å regne ut det ubestemte integralet for hånd, men dette er tidkrevende, spesielt hvis eksponenten i eksempelet over hadde vært vesentlig høyere enn 7. Denne maskinmessige utregningen kan imidlertid gjøres ved at vi skriver

```
sym x uttrykk=int('x^7*exp(x^2)') % Symbolsk uttrykk for det ubestemte integralet
```

Her vil uttrykk være et symbolsk uttrykk for det ubestemte integralet som vi kan bruke senere. int er kommandoen som utfører integrasjonen symbolsk. Argumentet til int er et Matlab-uttrykk på samme form som i kallet til quad, med unntak av at vi ikke trenger skrive operasjonen punktvis. Det bestemte integralet på symbolsk form kan vi regne ut ved i stedet å skrive

Vi har i prosessen regnet ut to ting til i forhold til quad-kallet: et symbolsk uttrykk for det ubestemte integralet, og et eksakt uttrykk for det bestemte integralet.

Symbolsk integrasjon kan vi også gjøre i flere variable. La oss vende tilbake til dobbelintegralet $\int_0^1 \int_{-1}^2 x^2 y dy dx$, som vi regnet ut numerisk i Seksjon 3. Symbolsk kan vi regne ut dette slik:

```
syms x y
uttrykk1=int('x^2*y','y',-1,2)
uttrykk2=int(uttrykk1,'x',0,1)
eval(uttrykk2)
```

Kommandoen syms på den første linjen deklarerer alle symbolske variable (vi kunne ha listet opp flere variable her). På den andre linjen her vil det innerste integralet i $\int_0^1 \int_{-1}^2 x^2 y dy dx$, og sette inn øvre og nedre grense. resultatet blir en funksjon i x, som skrives ut. Den tredje linjen vil til slutt regne ut det ytterste intergralet, og sette inn grensene. Resultatet blir et symbolsk uttrykk for svaret. Den fjerde linjen regner til slutt ut den numeriske verdien til svaret.

Symbolske uttrykk kan være i mange variable, og de kan manipuleres. Vi kan for eksempel sette inn verdier for variablene i et symbolsk uttrykk ved hjelp av kommandoen subs. Hvis vi vender tilbake til integralet $\int_0^1 x^7 e^{x^2} dx$, og lar som over uttrykk være det symbolske uttrykket for det ubestemte integralet $\int x^7 e^{x^2} dx$ (som er et symbolsk uttrykk i x), så vil

være en annen måte å regne ut det bestemte integralet på, der vi setter inn integralgrensene i det ubstemte integralet ved hjelp av kommandoen subs. Vi setter her inn sym(1) og sym(0), siden subs produserer et nytt symbolsk uttrykk hvis vi setter inn en symbolsk verdi (Funksjonen sym produserer et symbolsk uttrykk for den gitte numeriske verdien). Hadde vi satt inn 1 og 0 i stedet, ville subs produsere den tilhørende numeriske verdien.

Ved matriseregning er det også flere ting som er nyttig å gjøre symbolsk. Spesielt radreduksjon er nyttig, siden avrundingsfeil opptrer når vi gjør radoperasjoner numerisk. La oss demonstrere dette ved hjelp av matrisen fra Oppgave 4.5.6 der du ble bedt om å regne ut den inverse til denne, og løse et likningssystem med denne. Disse operasjonene, pluss et par andre, kan også utføres slik:

Oppgaver til Seksjon 13

Oppgave 1

Regn ut det ubestemte integralet $\int x^7 e^{x^2} dx$ ovenfor for hånd.

Oppgave 2

Regn ut trippelintegralet $\int_0^1 \int_1^3 \int_0^2 (x+ye^{2z}) dz dy dx$ fra Seksjon 3 symbolsk, ved å følge oppskriften ovenfor.

14. Feilsøking

Av og til intreffer en feil i et program, eller programmet vi har skrevet ser aldri ut til å bli ferdig. I slike tilfelle må vi gjøre feilsøking. En enkel måte å gjøre feilsøking på er å sette inn noen linjer med kode (for eksempel i for-løkker som kjøres mange ganger) som skriver ut på skjermen hvor langt programmet har kommet. Til dette kan du bruke funksjonen fprintf, som vi allerede har sett på. Skriver vi fprintf på riktig sted vil vi kunne fange opp for eksempel hvilke verdier løkkevariablene har når feilen inntreffer. Dette kan ofte være nok til å skjønne hva som er feil. Det gjør det også lettere å søke videre etter feilen, siden man da kan gå videre inn i koden og feilsøke videre, for eksempel ved å sette såkalte breakpoints. Vi skal ikke gå videre inn på slik feilsøking her, eller debugging som det også kalles, siden vi kun trenger skrive korte programmer, der Matlabs feilmeldinger ofte er nok til at vi skjønner hva som er feil. I Matlabs egne feilmeldinger skrives kun en kort beskrivelse av feilen, samt hvor i koden feilen inntreffer. De vanligste feilmeldingene Matlab gir er:

- Syntaktiske feil. Det er for eksempel veldig vanlig å glemme en avsluttende end til en for- eller while-løkke.
- 2. Du aksesserer et element i en vektor som er utenfor grensene til vektoren. Matlab sier da index out of bounds... Husk at du definerer en vektor med en gitt størrelse, og at posisjonen i en vektor som du angir må være mindre enn denne.
- 3. Du ber om verdien til en variabel som ikke er definert. Matlab sier Undefined function or variable...
- 4. Du gjør en operasjon som bare er definert når størrelsene på matrisene matcher, og det viser seg at de ikke gjør det. Et eksempel er matrisemultiplikasjon når antall rader og søyler i matrisene ikke matcher. Matlab sier Matrix dimensions must agree...
- 5. I Matlab kan en funksjon kalle seg selv, og man kan da fort gjøre den feilen at programmet kaller seg selv i det uendelige. Matlab vil da feile når programmet har kalt seg selv for mange ganger.

Oppgaver til Seksjon 14

Hver oppgave nedenfor inneholder en feil. Rett opp denne slik at programmet ikke feiler

Oppgave 1

```
a=1:10;
sum=0;
for k=1:11
   sum=sum+a(k);
end
```

Oppgave 2

```
function fak=fakultet(n)
  fak=n*fakultet(n-1);
```

Oppgave 3

```
A=[1 2 3; 4 5 6];
B=[1 2; 3 4];
A*B
```

Oppvarmingsøvelse 1: Matrisemultiplikasjon

Vi skal ta utgangspunkt i den komponentvise definisjonen av matrisemultiplikasjon, og ser på hvordan multiplikasjonen kan beskrives på alternative måter ved hjelp av lineærkombinasjoner av radene eller søylene i matrisene.

Produktet av en matrise og en søylevektor

Lag en matrise og en søylevektor

```
C=[1 5 2;9 6 8;8 7 4];
x=[2; 5; 8];
```

Siden søylevektoren \mathbf{x} er en 3×1 -matrise, kan vi bruke den komponentvise definisjonen av matrisemultiplikasjon og regne ut matriseproduktet ved å skrive

```
C*x
```

Bruk deretter søylene i C som vektorer, og beregn lineærkombinasjonen av disse hvor vi bruker elementene i søylevektoren \mathbf{x} som koeffisienter:

```
c1=C(:,1);
c2=C(:,2);
c3=C(:,3);
x(1)*c1+x(2)*c2+x(3)*c3
```

Sammenlign med matriseproduktet du beregnet ovenfor.

Oppgave 1

a)

Hva forteller dette resultatet om sammenhengen mellom matriseproduktet $C\mathbf{x}$ og søylene i C? Formuler denne sammenhengen med ord.

b)

Er dette en generell sammenheng som også gjelder for andre matriser C og vektorer \mathbf{x} ? Prøv i så fall å forklare denne sammenhengen ut ifra den komponentvise definisjonen av matrisemultiplikasjon.

Søylevis matrisemultiplikasjon

Definer to matriser

```
A=[2 4 6;1 3 5;7 8 9];
B=[1 4;2 5;3 6];
```

og regn ut matriseproduktet AB. Bruk deretter søylene i B som vektorer

```
b1=B(:,1);
b2=B(:,2);
```

og regn ut produktene

```
A*b1
A*b2
```

Oppgave 2

a)

Hva er sammenhengen mellom AB, $A\mathbf{b_1}$, og $A\mathbf{b_2}$? Prøv å formulere med ord en regel for hvordan vi kan regne ut hver av søylene i matrisen AB.

b)

Er dette en generell sammenheng som også gjelder for andre matriser A og B? Prøv i så fall å forklare denne sammenhengen ut ifra den komponentvise definisjonen av matrisemultiplikasjon.

Oppgave 3

Bruk resultatene fra oppgave 1 og 2 til å forklare hvordan man kan regne ut første søyle i matriseproduktet AB ved hjelp av søylene i A. Gjør det samme for andre søyle i AB.

Sjekk at resultatet stemmer for matrisene A og B som vi definerte før oppgave 2.

Produktet av en radvektor og en matrise

Lag en matrise og en radvektor

```
R=[1 3 8;4 6 2;5 7 9];
y=[3 -4 6];
```

Siden radvektoren y er en 1×3 -matrise, kan vi bruke den komponentvise definisjonen av matrisemultiplikasjon og regne ut matriseproduktet slik:

```
y*R
```

Bruk deretter radene i R som vektorer, og beregn lineærkombinasjonen av disse hvor vi bruker elementene i vektoren y som koeffisienter:

```
r1=R(1,:);
r2=R(2,:);
r3=R(3,:);
y(1)*r1+y(2)*r2+y(3)*r3
```

Sammenlign med matriseproduktet du beregnet ovenfor.

Oppgave 4

a)

Hva forteller dette resultatet om sammenhengen mellom matriseproduktet yR og radene i R? Formuler denne sammenhengen med ord.

b)

Er dette en generell sammenheng som også gjelder for andre vektorer \mathbf{y} og matriser C? Prøv i så fall å forklare denne sammenhengen ut ifra den komponentvise definisjonen av matrisemultiplikasjon.

Radvis matrisemultiplikasjon

Definer to matriser

```
D=[1 2 3;4 5 6;7 8 9];
E=[2 4;1 3;7 8];
```

og regn ut matriseproduktet DE. Bruk deretter radene i D som vektorer

```
d1=D(1,:);
d2=D(2,:);
d3=D(3,:);
```

og regn ut produktene

```
d1*E
d2*E
d3*E
```

Oppgave 5

a)

Hva er sammenhengen mellom DE, \mathbf{d}_1E , \mathbf{d}_2E , og \mathbf{d}_3E ?

b)

Er dette en generell sammenheng som også gjelder for andre matriser D og E? Prøv i så fall å forklare denne sammenhengen ut ifra den komponentvise definisjonen av matrisemultiplikasjon.

Oppgave 6

Bruk resultatene fra oppgave 4 og 5 til å forklare hvordan man kan regne ut første rad i matriseproduktet DE ved hjelp av radene i E. Gjør det samme for andre og tredje rad i DE.

Sjekk at resultatet stemmer for matrisene D og E som vi definerte før oppgave 5.

Oppvarmingsøvelse 2: Egenskaper ved determinanter

Vi skal se på egenskaper ved determinanter og hvordan disse påvirkes av elementære radoperasjoner på matrisen. Vi ser også på determinanten til øvre-og nedretriangulære matriser, identitetsmatriser og permutasjonsmatriser.

Multiplisere en rad med en skalar

Lag en 4×4 -matrise, og beregn determinanten

```
A=[2 4 6 8;1 3 5 7;9 8 7 6;5 4 3 2];
det(A)
```

Vi skal nå se hva som skjer med determinanten hvis vi erstatter første rad i A med 5 ganger seg selv:

```
A(1,:)=5*A(1,:);
det(A)
```

Hva skjedde med determinanten? For å sjekke at dette resultatet ikke er en tilfeldighet knyttet til den spesielle matrisen A vi har valgt, skal vi generere tilfeldige 4×4 -matriser med heltallige komponenter mellom -10 og 10 slik:

```
A=round(20*rand(4)-10)
```

funksjonen rand genererer her en tilfeldig 4×4 -matrise hvor elementene er desimaltall mellom 0 og 1. Ved å multiplisere med 20, får vi elementer med heltallsdel mellom 0 og 20. Vi trekker deretter ifra 10 for å få elementer med heltallsdel mellom 10 og -10, og kommandoen round runder av til nærmeste heltall.

Oppgave 1

Generer en tilfeldig 4×4 -matrise som over, beregn determinanten, og sammenlign denne med determinanten til matrisen som fremkom ved å erstatte første rad med 5 ganger seg selv. Gjenta eksperimentet et par ganger.

a)

Hva skjedde med determinanten til matrisene når du multipliserte første rad med 5? Gjelder dette også dersom du multipliserer en annen rad med 5? Hva skjer med determinanten hvis du isteden multipliserer raden med 8? Bruk disse observasjonene til å gjette på og formulere en regel for hva som skjer med determinanten til en generell kvadratisk matrise når vi multipliserer en vilkårlig rad med en skalar.

b)

Hva tror du resultatet blir hvis du isteden multipliserer en søyle i A med en skalar? Du kan for eksempel multiplisere tredje søyle i A med 5 ved kommandoen

```
A(:,3)=5*A(:,3)
```

og deretter beregne determinanten.

Bytte om to rader

La oss først generere en tilfeldig 4×4 -matrise A med heltallige komponenter mellom 10 og -10 som over, og beregn determinanten. Vi skal undersøke hva som skjer med determinanten hvis vi bytter om rad 2 og rad 4 i matrisen A

```
A=A([1,4,3,2],:); % Her vektorindekserer vi radene i den rekkefølgen
% vi vil ha dem (rad 2 og 4 har byttet plass)
det(A)
```

Hva skjedde med determinanten? Vi skal nå sjekke om dette resultatet er en tilfeldighet som bare er knyttet til denne matrisen A.

Oppgave 2

Gjenta eksperimentet ovenfor et par ganger med nye tilfeldig genererte 4×4 -matriser.

a)

Hva skjedde med determinanten til matrisene når du byttet om rad 2 og rad 4? Gjelder det samme hvis du isteden bytter om rad 1 og rad 3? Bruk disse observasjonene til å gjette på og formulere en regel for hva som skjer med determinanten til en generell kvadratisk matrise når vi bytter om på to vilkårlige rader.

b)

Hva tror du resultatet blir hvis du isteden bytter om to søyler i A? Du kan for eksempel bytte om søyle 2 og 3 med å skrive

```
A=A(:,[1,3,2,4])
```

og beregne determinanten.

Addere et skalarmultiplum av en rad til en annen rad

Generer en tilfeldig 4×4 -matrise med heltallige komponenter mellom 10 og -10, og beregn determinanten. Vi skal nå se hva som skjer med determinanten hvis vi adderer 3 ganger andre rad til første rad:

```
A(1,:)=A(1,:)+3*A(2,:)
```

Hva skjedde med determinanten? Vi vil igjen sjekke at dette resultatet ikke er en tilfeldighet som bare er knyttet til denne matrisen A.

Oppgave 3

Gjenta eksperimentet ovenfor et par ganger med andre tilfeldig genererte 4×4 matriser

a)

Hva skjedde med determinanten til matrisene når du adderte 3 ganger andre rad til første rad? Gjelder det samme også hvis du isteden adderer 5 ganger tredje rad til andre rad? Bruk disse observasjonene til å gjette på og formulere en regel for hva som skjer med determinanten til en generell kvadratisk matrise når vi adderer et vilkårlig skalarmultiplum av en rad til en annen rad.

b)

Hva tror du resultatet blir hvis vi isteden adderer et skalarmultiplum av en søyle til en annen søyle i A? Du kan for eksempel addere 3 ganger fjerde søyle til andre søyle ved kommandoen

```
A(:,2)=A(:,2)+3*A(:,4)
```

og beregne determinanten

Øvre triangulære matriser

Vi kan generere en tilfeldig øvre triangulær 5×5 -matrise med heltallige komponenter ved å skrive

```
U=triu(round(10*rand(5)+1)) % U står for Upper diagonal matrix
```

Vi kan så beregne determinanten. Deretter kan vi ta produktet av alle elementene på hoveddiagonalen til matrisen U ved hjelp av en for-løkke:

```
diag=U(1,1);
for i=2:5
   diag=diag*U(i,i);
end
```

Hva er sammenhengen mellom de to resultatene?

Oppgave 4

Gjenta eksperimentet ovenfor et par ganger med nye tilfeldig genererte øvre triangulære matriser. Bruk disse observasjonene til å gjette på og formulere en regel for hvordan vi lett kan beregne determinanten til en øvre triangulær matrise.

Nedre triangulære matriser

Vi kan generere en tilfeldig nedre triangulær 5×5 -matrise med heltallige komponenter ved å skrive

```
L=tril(round(10*rand(5)+1)) % L står for Lower diagonal matrix
```

Vi kan så beregne determinanten. Deretter kan vi ta produktet av alle elementene på hoveddiagonalen til matrisen L ved hjelp av en for-løkke:

```
diag=L(1,1);
for i=2:5
   diag=diag*L(i,i);
end
```

Hva er sammenhengen mellom de to resultatene?

Oppgave 5

Gjenta eksperimentet ovenfor et par ganger med nye tilfeldig genererte nedre triangulære matriser. Bruk disse observasjonene til å gjette på og formulere en regel for hvordan vi lett kan beregne determinanten til en nedre triangulær matrise.

Identitetsmatriser

En identitetsmatrise har 1-ere på hoveddiagonalen og nuller overalt ellers. Vi kan generere en 5×5 -identitetsmatrise ved kommandoen

```
A=eye(5)
```

Vi kan deretter beregne determinanten.

Oppgave 6

a)

Beregn determinanten til identitetsmatrisene av dimensjon 4×4 og 6×6 . Bruk dette til å gjette på og formulere en regel for hva determinanten til en generell $n \times n$ -identitetsmatrise er.

b)

Forklar dette resultatet ved hjelp av resultatene vi kom frem til om determinanten til øvre og nedre triangulære matriser i forrige seksjon.

Permutasjonsmatriser

En permutasjonsmatrise er en kvadratisk matrise som inneholder nøyaktig en 1-er i hver rad, og en 1-er i hver søyle. Den fremkommer ved en ombytting (permutasjon) av radene i identitetsmatrisen. Når vi skal lage en 5×5 permutasjonsmatrise lager vi først en identitetsmatrise av samme størrelse

```
I=eye(5)
```

Deretter velger vi en permutasjon av radnumrene i denne matrisen (husk at en permutasjon av tallene fra 1 til 5 bare er en omstokking av disse tallene). Ønsker vi for eksempel å lage permutasjonsmatrisen hvor andre og tredje rad har byttet plass, stokker vi om på disse radene ved å skrive

```
P=I([1 3 2 4],:)
```

Vi kan også generere en tilfeldig 5×5 -permutasjonsmatrise P ved å skrive

```
P=I(randperm(5),:)
```

og deretter regne ut determinanten.

Oppgave 7

Gjenta eksperimentet ovenfor flere ganger med nye tilfeldig genererte permutasjonsmatriser. Bruk disse observasjonene til å gjette på og prøve å formulere en regel for hva determinanten til en permutasjonsmatrise er.

Hint: Merk at P fremkommer fra identitetsmatrisen ved å bytte om to og to rader et visst antall ganger. Undersøk hva som skjer når antall slike ombyttinger er et partall og hva som skjer når det er et oddetall.

Bonusavsnitt for spesielt interesserte

Egenskapene vi kom frem til i begynnelsen av denne laben kan brukes til å definere hva determinanten til en kvadratisk $n \times n$ -matrise A er. Det er imidlertid også vanlig å definere determinanten ved hjelp av såkalte elementære produkter. Et elementært produkt $\prod_i a_{i\sigma_i}$ av elementer fra matrisen inneholder nøyaktig en faktor $a_{i\sigma_i}$ fra hver rad og hver søyle. Det betyr at søyleindeksene $\sigma_1, \sigma_2, ..., \sigma_n$ er en permutasjon (omstokking) av linjeindeksene 1, 2, ..., n. Hvert elementært produkt kan utstyres med et fortegn $sign(\sigma) = (-1)^{inv(\sigma)}$ som er bestemt av antall inversjoner $inv(\sigma)$ i permutasjonen σ , det vil si av antall par (σ_i, σ_j) av søyleindekser som opptrer i invertert (omvendt) rekkefølge. Determinanten kan nå defineres som summen av alle elementære produkter forsynt med fortegn, det vil si at

$$\det A = \sum_{\sigma} sign(\sigma) \prod_{i} a_{i\sigma_{i}}.$$

Oppgave 8 (ekstraoppgave)

Prøv å for forklare følgende egenskaper ved determinanten ut ifra definisjonen av determinanten som en sum av elementærprodukter forsynt med riktig fortegn:

a)
regelen du kom frem til i oppgave 1a)

b)
regelen du kom frem til i oppgave 2a)

c)
regelen du kom frem til i oppgave 3a)

d)
regelen du kom frem til i oppgave 4a)

e)
regelen du kom frem til i oppgave 5a)

Lab 1: Lineæravbildninger og matriser

Vi skal se på sammenhengen mellom lineære transformasjoner og matriser. Vi bruker plottefunksjonen til å tegne opp ulike todimensjonale figurer og ser på hvordan vi kan transformere figurene ved å multiplisere plottepunktene med passende matriser. Til slutt bruker vi for-løkker til å lage små "filmsnutter" av figurene i bevegelse.

Opptegning av enkle figurer

For å tegne opp et kvadrat kan vi angi koordinatene til de fire hjørnepunktene i den rekkefølgen vi vil forbinde dem, og tegne inn rette streker fra ett hjørnepunkt til det neste. For å tegne opp kvadratet med hjørner i punktene (0,0), (0,4), (4,4), og (4,0), lager vi først en vektor x som består av førstekomponentene til de fire hjørnepunktene og en vektor y som består av andrekomponentene:

```
x=[0 0 4 4 0];
y=[0 4 4 0 0];
plot(x,y)
axis([-10 10 -10 10])
axis('square')
```

Legg merke til at vi har lagt til det første punktet til slutt i x- og y-vektorene også: for å få tegnet opp et fullstendig kvadrat, må vi avslutte med samme hjørnepunkt som vi startet i.

Når vi har mange plottepunkter (la oss si n stykker) er det mer oversiktlig å kunne angi plottepunktene i en $2 \times n$ -matrise hvor første rad består av x-koordinatene til punktene og andre rad består av y-koordinatene. Hver søyle i matrisen representerer da et plottepunkt. Kvadratet ovenfor blir nå representert med (2×5) -matrisen

```
K= [0 0 4 4 0; 0 4 4 0 0]
```

For å plotte kvadratet skriver vi nå

```
x=K(1,:); % x-vektor skal være første rad i matrisen K
y=K(2,:); % y-vektor skal være andre rad i matrisen K
plot(x,y) % trekker linje mellom punktene
axis([-10 10 -10 10])
axis('square')
```

For å slippe å gjenta disse kommandoene hver gang lager vi en funksjon tegn, som kan kalles med en hvilken som helst $2 \times n$ -matrise X som inn-parameter, og som tegner den tilsvarende figuren:

Etter å ha definert matrisen K som inneholder plottepunktene, kan vi nå få tegnet opp kvadratet ved å skrive

```
tegn(K)
```

Istedenfor å definere matrisen K direkte i kommandovinduet, kan vi også lage en liten funksjon kvadrat som returnerer matrisen som inneholder plottepunktene for kvadratet:

```
function X = kvadrat
    % Returnerer en matrise X som inneholder data for tegning av et kvadrat.
X= [0 0 4 4 0; 0 4 4 0 0];
```

Vi kan nå bruke funksjonen kvadrat som inn-parameter til funksjonen tegn, og tegne kvadratet ved å skrive

```
tegn(kvadrat())
```

Det kan kanskje virke unødvendig omstendelig å definere funksjoner bare for å tegne opp et kvadrat, men fordelen er at vi nå lett kan studere hvordan multiplikasjon med ulike 2×2 -matriser A virker inn på kvadratet. Siden funksjonen kvadrat returnerer en 2×5 -matrise, kan vi utføre matrisemultiplikasjonen A*kvadrat for en vilkårlig 2×2 -matrise A og få en ny 2×5 -matrise som inneholder "bildene" av plottepunktene i kvadrat etter lineærtransformasjonen representert ved matrisen A. For å tegne opp et bilde av de transformerte punktene kan vi altså skrive

```
A=[-2 0; 0 1];
tegn(A*kvadrat())
```

Vi ser nå at multiplikasjon med matrisen A har forvandlet kvadratet til et rektangel, og flyttet det mot venstre. Det er imidlertid vanskelig å se nøyaktig hvordan dette har skjedd uten å kunne følge med på hvor de enkelte hjørnepunktene er flyttet. Vi skal derfor lage en alternativ tegnefunksjon som også markerer to fritt valgte plottepunkter i forskjellige farger. Når vi allerede har laget en funksjon tegn er det lett å føye til det lille som trengs for å gjøre dette, og lagre koden som en ny funksjon tegnmedpunkter:

```
function tegnmedpunkter(X,m,n)
    % Denne funksjonen fungerer på samme måte som funksjonen tegn,
    % bortsett fra at den i tillegg tar to tall m og n som inn-parametre,
    % og markerer plottepunkt nr. m og n med hhv rød og grønn sirkel
    x = X(1,:);
    y = X(2,:);
```

```
plot(x,y,'b-',x(m),y(m),'or',x(n),y(n),'og')
axis([-10 10 -10 10])
axis('square')
% Plottekommandoen ovenfor har samme virkning som kommandoene:
% plot(x, y, 'b-') % trekker blå linje mellom punktene
% hold on % neste plott kommer nå i samme figur
% plot(x(m),y(m),'or') % markerer punkt nr m med rød sirkel
%
%
plot(x(n),y(n),'og')
hold off
%
% ingenmarkererflerepunktplottnr nskalmedinngrønni sammesirkelfigur
```

Vi kan nå få markert hjørnene (0,4) og (4,0) (plottepunkt nr 2 og nr 4) med henholdsvis en rød og en grønn sirkel ved å gi kommandoen

```
tegnmedpunkter(kvadrat(),2,4)
```

For å undersøke hva som egentlig skjer med kvadratet når vi multipliserer med matrisen A, gir vi kommandoen

```
tegnmedpunkter(A*kvadrat(),2,4)
```

Vi ser nå at kvadratet er blitt til et rektangel ved at det er speilet om y-aksen og strukket med en faktor 2 i x-retningen. Ved å sammenligne med de opprinnelige plottepunktene i matrisen kvadrat, ser vi at multiplikasjon med matrisen A har ført til at alle x-koordinatene har skiftet fortegn og blitt dobbelt så store, mens y-koordinatene er de samme som før. Men dette tilsvarer jo nettopp at alle punktene er speilet om y-aksen og flyttet dobbelt så langt i x-retningen.

Oppgave 1

Skriv funksjonen kvadrat og tegn som beskrevet ovenfor. Kjør koden

```
tegn(A*kvadrat)
```

for å studere kva som skjer med kvadratet når matrisen A er henholdsvis

The a student RVa som skjer med RVadratet nar matrix
a)
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 d) $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
b) $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ e) $A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}$
c) $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ f) $A = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$

Beskriv hva som skjer med kvadratet i hvert enkelt tilfelle (du kan eventuelt bruke funksjonen tegnmedpunkt hvis du synes det er vanskelig å se hva som skjer), og forsøk å forklare hvorfor multiplikasjon med matrisen gir denne virkningen.

Skaleringsmatriser

Vi skal nå bruke metoden fra forrige avsnitt til å tegne opp en litt mer komplisert figur. Vi lager følgende funksjon for opptegning av et hus (tegn inn punktene på et papir først for å være sikker på at du forstår hvordan opptegningen foregår):

Oppgave 2

Finn en matrise slik at mulitiplikasjon med matrisen

a)

gjør huset halvparten så stort

b)

gjør huset halvparten så bredt

c)

gjør huset halvparten så høyt

Tegn i hvert tilfelle opp det nye huset ved å bruke kommandoen

```
tegn(A*hus())
```

Speilingsmatriser

Vi lager følgende funksjon for opptegning av en seilbåt (igjen bør du starte med å tegne inn punktene på et papir så du skjønner hvordan figuren fremkommer).

Oppgave 3

a)

Finn en matrise A slik at mulitiplikasjon med A får båten til å seile i motsatt retning.

b)

Finn en speilingsmatrise A som får båten til å kullseile (dvs vipper båten opp ned). Tegn opp resultatene ved hjelp av kommandoen

```
tegn(A*baat())
```

Speiling, rotasjoner og sammensetning av avbildninger

Vi skal nå leke litt med sammensetning av speilinger og rotasjoner for å lage ulike monogrammer av bokstavene M og H. Vi lager først en funksjon monogrammet() som returnerer en matrise med plottepunktene for å tegne opp monogrammet MH:

```
function X = monogramMH

% Lager en matrise X som inneholder data for tegning av monogrammet MH.

% Kan f.eks kalles med tegn(A*monogram) for ulike 2*2-matriser A

M=[0 -1 -1.7 -3.5 -5.3 -6 -7 -6 -5 -3.5 -2 -1 0;...

-3 -3 1.5 -1.2 1.5 -3 -3 3 3 0.5 3 3 -3];

H=[0 0 1 1 3 3 4 4 3 3 1 1 0;...

-3 3 3 0.5 0.5 3 3 -3 -3 -0.5 -0.5 -3 -3];

X=[M,H]; % Skjøter sammen de to matrisene med M etterfulgt av H

% NB! Har egentlig med punktet (0,-3) en gang mer enn nødvendig (både

% i slutten av M og i starten av H) når vi skjøter sammen bokstavene,

% men det er lettere å se hvordan bokstavene M og H fremkommer på

% denne måten.
```

Som i de foregående seksjonene skal vi visualisere hva som skjer med plottepunktene når vi multipliserer med ulike 2×2 -matriser A. La oss si at vi ønsker at monogrammet MH skal skrives med skråstilte bokstaver (kursiv). For at bokstavene skal helle litt mot høyre, må vi bruke en skjær-matrise (shear matrix) som adderer et lite tillegg til x komponenten, og dette tillegget bør være proporsjonalt med y-komponenten til punktet (slik at det blir mer forskjøvet mot høyre jo høyere opp i bokstaven punktet ligger). Vi kan for eksempel sjekke resultatet for følgende skjær-matrise:

```
A=[1 0.2; 0 1]
tegn(A*monogramMH())
```

Ønsker vi isteden å gjøre bokstavene smalere ved å krympe dem litt i x-retningen, må vi bruke en skaleringsmatrise som multipliserer alle x-koordinatene med en faktor som er mindre enn 1. Vi kan for eksempel bruke matrisen

```
B=[0.8 0; 0 1]
tegn(B*monogramMH())
```

De to foregående typene matriser har vi sett tidligere (oppgave 1), men hva om vi ønsker å finne en matrise som både skråstiller bokstavene og samtidig gjør dem smalere? Hvis vi tenker oss at dette gjøres i to trinn, kan vi først lage plottematrisen for det kursiverte monogrammet, og deretter lage denne smalere:

```
tegn(B*(A*monogramMH()))
```

Vi får samme resultat om vi først danner produktmatrisen BA, og anvender denne på plottepunktene til monogrammet:

```
tegn((B*A)*monogramMH())
```

Sammensetning av avbildninger svarer altså til matrisemultiplikasjon av matrisene som representerer operasjonene.

Oppgave 4

Ta utgangspunkt i monogrammet MH. I hvert av punktene a)-c) nedenfor skal du finne en matrise A (speiling eller rotasjon) slik at mulitiplikasjon med A omdanner monogrammet MH til monogrammet

- a) HM
- b) WH
- c) HW

Sjekk resultatet i hvert tilfelle ved å skrive

```
tegn(A*monogramMH())
```

d)

Lag tre korte funksjoner speilomx(), speilomy(), og roter180(), som returnerer de speilings-og rotasjonsmatrisene du fant i punkt a)-c). Disse funksjonene kan du benytte i resten av oppgaven.

e)

I hvert av tilfellene nedenfor skal du finne en speiling eller rotasjon som

- -avbilder MH på HM
- -avbilder HM videre på WH
- -avbilder WH videre på HW

Her kan det være nyttig å spare på resultatet fra hvert trinn i en matrise som du så kan arbeide videre med i neste trinn. Hvis du i første trinn bruker en matrise A (som returneres av en av de tre funksjonene du laget ovenfor), bør du altså skrive ting som

```
monogramHM = A * monogramMH()
tegn(monogramHM)
monogramWH = B * monogramHM
tegn(monogramWH)
```

osv...

f)

Forklar hvordan resultatene i punkt b) og e) gir oss to måter å avbilde monogrammet MH på monogrammet WH. Bruk disse observasjonene til å finne en sammenheng mellom speiling om x-aksen i forhold til speiling om y-aksen etterfulgt av en rotasjon på 180 grader.

 $\mathbf{g})$

Sammenlign matrisen fra funksjonen speilomx() med matrisen du får ved å bruke kommandoen

```
speilomy()*roter180()
```

Kan du forklare hvordan dette henger sammen med (og underbygger) observasjonen fra punkt f)?

h)

Finner du flere sammensetninger som er like?

Mer om sammensetning og generelle rotasjonsmatriser

Vi skal illustrere generelle rotasjonsmatriser i form av bevegelser til timeviseren på en klokke, og starter derfor med å lage funkjoen klokkeskive for å tegne opp en klokkeskive med timemarkører:

```
% Tegner opp en sirkulær klokkeskive med tall som markerer timene
t=0:0.05:2*pi;
x=6*cos(t);
y=6*sin(t);
plot(x,y) % tegner sirkelskive med radius 6
axis([-10 10 -10 10])
axis('square')
h=0.3; % for å høyrejustere posisjon av tall
text(5*cos(pi/2)-h,5*sin(pi/2),'12')
% pga tekstboksens
% setter tallplasseringsom timemarkører
text(5*cos(pi/3),5*sin(pi/3),'1')
text(5*cos(pi/6),5*sin(pi/6),'2')
text(5*cos(0),5*sin(0),^3)
text(5*cos(-pi/6),5*sin(-pi/6),'4')
text(5*cos(-pi/3),5*sin(-pi/3),'5')
text(5*cos(-pi/2)-h,5*sin(-pi/2),'6')
text(5*cos(4*pi/3),5*sin(4*pi/3),'7')
text(5*cos(7*pi/6),5*sin(7*pi/6),'8')
text(5*cos(pi),5*sin(pi),'9')
text(5*cos(5*pi/6)-h,5*sin(5*pi/6),'10')
text(5*cos(2*pi/3)-h,5*sin(2*pi/3),'11')
title('Klokke')
% Vi kunne også ha brukt en for-løkke til å plassere timemarkørene:
% for t=1:12
% text(5*cos(pi/2-t*pi/6)-h,5*sin(pi/2-t*pi/6),int2str(t))
% end
```

Det neste vi trenger er en timeviser. På samme måte som i de foregående seksjonene kan vi tegne en pil som starter i origo og peker rett opp (mot kl 12) ved å spesifisere plottepunktene i en matrise, og sende denne som inn-parameter til funksjonen tegn (som vi laget i oppgave 1). Vi lager derfor en funksjon klokkepil som returnerer matrisen med plottepunktene for timeviseren:

Vi kan nå tegne en klokke der timeviseren peker på 12, ved å skrive

```
klokkeskive()
hold('on')  # sørger for at timeviseren kommer i samme figur
tegn(klokkepil())
hold('off')  # ingen flere plott skal i samme figur
```

Ideen er nå at vi kan få timeviseren til å peke på ulike klokkeslett ved hjelp av en rotasjonsmatrise A og kommandoen

```
tegn(A*klokkepil())
```

La oss si at vi ønsker at timeviseren skal peke på tallet 3. Det betyr at vi må dreie den 90 grader med klokka (dvs en vinkel på $-\frac{\pi}{2}$ radianer). For å finne rotasjonsmatrisen

til en dreining på $-\frac{\pi}{2}$ radianer, ser vi hva basisvektorene $e_1=(1,0)$ og $e_2=(0,1)$ avbildes på: bildene av disse blir søylene i rotasjonsmatrisen. Slik finner vi raskt ut at rotasjonsmatrisen for vinkelen $-\frac{\pi}{2}$ er

```
A=[0 1;-1 0]
```

Vi kan sjekke at vi har funnet den riktige matrisen ved å bruke kommandoen

```
tegn(A*klokkepil())
```

for å se at vi nå får en pil som peker rett mot høyre. Generelt er det gjerne litt mer arbeid å finne rotasjonsmatrisen til en vinkel, selv om du kan bruke samme fremgangsmåte som ovenfor (men for å finne koordinatene til billedvektorene må du benytte cosinus og sinus til rotasjonsvinkelen).

Oppgave 5

a)

Finn matriser A og B slik at mulitiplikasjon med

- 1. matrisen A dreier viseren en time frem
- 2. matrisen B dreier viseren to timer frem

Her skal du selv beregne rotasjonsmatrisene til de aktuelle vinklene ved hjelp av metoden beskrevet ovenfor. Sjekk resultatene ved å bruke kommandoene

```
klokkeskive()
hold('on')
tegn(A*klokkepil()) % Bytt ut A med B i punkt ii)
hold('off')
```

b)

Forklar hvordan du istedenfor å beregne rotasjonsmatrisen B direkte slik du gjorde ovenfor, kan benytte (en potens av) matrisen A til å dreie viseren to timer frem.

c)

Lag en funksjon roter() som tar en vinkel v (i radianer) som inn-parameter og returnerer rotasjonsmatrisen til vinkelen v. Test funksjonen ved å bruke den til å tegne opp en klokke hvor viseren peker på ett, og en klokke hvor viseren peker på fem. Til dette kan du bruke kommandoen

```
tegn(roter(t*(-pi)/6)*klokkepil())
```

for passende verdier av t.

 \mathbf{d}

Forklar hvordan du isteden kan dreie timeviseren t timer frem ved hjelp av rotasjonsmatrisen A fra punkt a) og utfør dette for de to klokkeslettene i punkt c). Hvilken av de to metodene krever flest regneoperasjoner?

Filmer ved hjelp av for-løkker

Vi skal avslutte denne laben med å bruke funksjonene vi allerede har laget til å simulere en tikkende klokke. Dette gir en enkel illustrasjon av hvordan vi kan bruke for-løkker. For å illustrere ideen skal vi først se et eksempel på en for-løkke som får båten fra oppgave 2 til å seile av sted over figurvinduet fra høyre mot venstre. Båtens forflytning er riktignok ikke en lineæravbildning i planet og kan derfor ikke uttrykkes ved multiplikasjon med en 2×2 -matrise, men eksemplet illustrerer hvordan vi kan bruke for-løkker til å generere bilder i bevegelse:

```
% Script: seilendebaat
% Viser en baat som seiler av sted fra høyre billedkant mot venstre.
% Henter inn plottepunktene til baaten fra matrisen generert av
% scriptet baat.m
% Tegner opp alt i et aksesystem med skala [-10 10] i begge retninger
% ved hjelp av funksjonsprosedyren tegn.m
B=baat; % leser inn plottepunktene fra baat.m
X=1/4*[B(1,:)+32; B(2,:)]; % krymper baaten og plasserer den i høyre
% billedkant
tegn(X); % tegner det første bildet av baaten
for t=1:160
    X=[X(1,:)-0.1*t; X(2,:)]; % flytter baaten skrittvis mot venstre
    tegn(X); % tegner baaten i den nye posisjonen
    pause(0.05) % venter 0.05 sek før neste bilde tegnes
% F(t)=getframe; % lagrer hvert plott i strukturen F
end
% movie(F,1,20)
```

"filmsnutten" kan nå kjøres ved å kalle funksjonen seilendebaat()

Oppgave 6

Bruk fremgangsmåten ovenfor til å skrive en funksjon tikkendeklokke som tegner opp en en klokke som går en runde med timeviseren. Du kan f.eks la klokka gå med en fart på 5 sekunder per sekund ved å skrive

```
pause(1)
```

som venter ett sekund før neste bilde tegnes.

For å lage en animasjon av den seilende båten i det forrige eksemplet, så kan vi bare fjerne kommentartegnet foran de to linjene som kaller kaller funksjonene vi lærte om i Seksjon om animasjoner, i funksjonen seilendebaat over.

Oppgave 7 (ekstraoppgave)

Lag en animasjon av den tikkende klokken.

Lab 2: Gauss-eliminasjon

Vi skal se på hvordan vi kan lage funksjoner som utfører Gauss-eliminasjon på matriser, dvs. som bringer dem på trappeform ved hjelp av elementære radoperasjoner. Hvis du føler at du har god kontroll på Gauss-eliminasjon og ikke vil ha hjelp til programmeringen, kan du godt hoppe over innledningen og gå rett løs på oppgave 3 og 4, hvor du først skal lage en funksjon som bringer en vilkårlig matrise over på trappeform, og deretter en som bringer matrisen på redusert trappeform (uten å bruke den innebygde funksjonen rref).

Gauss-eliminasjon (enkel versjon uten ombytting av rader)

La oss starte med å repetere hvordan vi utfører gauss-eliminasjon på en konkret matrise

$$A = \left(\begin{array}{ccc} 6 & -2 & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{array}\right).$$

Vår første oppgave er å sørge for at vi har noe forskjellig fra 0 i posisjon (1,1) i første søyle, og skaffe oss nuller under dette elementet ved å trekke passende multiplum av første rad ifra radene nedenfor. Siden A(1,1)=6, betyr det at vi må trekke A(2,1)=A(1,1)=9/6=3/2 av første rad fra andre rad for å få 0 i posisjonen under pivot-elementet, så vi skriver

```
k=A(2,1)/A(1,1);

A(2,:)=A(2,:)-k*A(1,:)
```

Deretter sørger vi for å få 0 i tredje rad ved å trekke A(3,1)/A(1,1)=3/6=1/2 av første rad fra tredje rad:

```
k=A(3,1)/A(1,1);

A(3,:)=A(3,:)-k*A(1,:)
```

Vi står nå igjen med matrisen

$$A = \left(\begin{array}{ccc} 6 & -2 & 0\\ 0 & 2 & 1\\ 0 & 8 & 5 \end{array}\right),$$

og er altså ferdig med å skaffe oss nuller under pivot-elementet i første søyle. Vi går nå videre til andre søyle hvor pivot-elementet er A(2,2)=2. For å skaffe oss nuller i søylen under pivot-elementet, må vi nå bare trekke A(3,2)/A(2,2)=8/2=4 ganger andre rad fra tredje rad:

```
k=A(3,2)/A(2,2);

A(3,:)=A(3,:)-k*A(2,:)
```

Vi står nå igjen med matrisen

$$A = \left(\begin{array}{ccc} 6 & -2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array}\right),$$

og er altså ferdig med å bringe matrisen over på trappeform. Algoritmen vi fulgte ovenfor kan oppsummeres i følgende programskisse:

Det er viktig å være klar over at kommandoen

definerer en heltalls-matrise og man er derfor utsatt for feilberegninger i form av heltallsdivisjon når man manipulerer rader og søyler i matrisen. Dersom du ønsker å beregne den reduserte trappeformen til en matrise ved hjelp av funksjonen rref() i MAT11201ib, trenger du ikke å bekymre deg for dette. I oppgavene nedenfor skal du imidlertid programmere funksjoner som tar inn en matrise og manipulerer denne, og det er da svært viktig at du tenker over hva slags type matrise du jobber med. Den enkleste løsningen er å konvertere matrisen til en double-matrise (uavhengig om den allerede er en slik matrise) som det første du gjør i funksjonen. Dette kan gjøres ved bruk av kommandoen:

Oppgave 1

Lag en funksjon gausså som utfører Gauss-eliminasjon på matrisen

$$A = \left(\begin{array}{ccc} 6 & -2 & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{array}\right)$$

ved hjelp av for-løkker (bruk to for-løkker nestet inni hverandre). I hvert trinn skal du altså selv regne ut de riktige multiplumene av pivotraden som skal trekkes fra radene nedenfor.

Oppgave 2

Bruk ideen fra funksjonen i forrige oppgave til å lage en funksjon gauss som tar en matrise A som inn-parameter, utfører Gauss-eliminasjon og returnerer matrisen på trappeform. Du kan forutsette at matrisen A kan bringes på trappeform uten at du støter på null-elementer i pivot-posisjoner underveis. Det betyr at du finner pivotelementene på hoveddiagonalen i posisjonene (j,j). Du kan også anta at matrisen er kvadratisk, hvis du synes det gjør oppgaven lettere. Du trenger ikke å lage en robust funksjon som sjekker at disse antagelsene er oppfylt for matrisen A. Kommandoen

```
[m,n]=size(A)
```

kan brukes til å lese inn dimensjonen til matrisen A.

Gauss-eliminasjon med ombytting av rader

I eksemplet i forrige avsnitt var vi "heldige" og unngikk å støte på null-elementer i pivot-posisjoner underveis i prosessen. Generelt må vi imidlertid regne med å støte på slike null-elementer, og må da lete etter et ikke-trivielt element lenger nede i samme søyle. Hvis vi finner et slikt ikke-trivielt element, flytter vi dette opp i pivot-posisjonen ved å bytte om rader i matrisen. Hvis det bare står nuller under nullelementet i pivot-posisjonen, går vi videre til neste søyle, men begynner da å lete etter pivot-elementet i samme rad som vi lette i forrige søyle. Det betyr at pivot-posisjonen i søyle nr j ikke nødvendigvis lenger er posisjonen (j,j) på hoveddiagonalen (trappetrinnene har ikke nødvendigvis dybde 1), så vi må føre regnskap med radindeksen og søyleindeksen hver for seg. La oss starte med å se på et eksempel hvor det dukker opp et null-element i en pivot posisjon, og hvor alle elementene i søylen nedenfor er null. Vi ser på matrien

$$A = \left(\begin{array}{ccc} 0 & 0 & 7\\ 5 & -5 & 10\\ 1 & -1 & 6 \end{array}\right)$$

Vår første oppgave er å prøve å skaffe et ikke-trivielt pivot-element i posisjon (1,1) i første søyle. Vi leter da nedover i første søyle etter et ikke-trivielt element, og finner dette i rad 2. Vi kan derfor skaffe oss et ikke-trivielt pivot-element ved å bytte om første og andre rad:

```
A([1 \ 2],:)=A([2 \ 1],:)
```

Matrisen vår er nå på formen

$$A = \left(\begin{array}{ccc} 5 & -5 & 10\\ 0 & 0 & 7\\ 1 & -1 & 6 \end{array}\right)$$

og vi skaffer oss nuller under pivot-elementet i første søyle ved å trekke passende multiplum av første rad ifra radene nedenfor. Vi har allerede 0 i posisjonen rett under pivot-elementet, og trenger derfor ikke å gjøre noe med rad 2. For å få 0 i tredje rad, trekker vi A(3,1)/A(1,1)=1/5 ganger første rad fra tredje rad:

```
k=A(3,1)/A(1,1);

A(3,:)=A(3,:)-k*A(1,:)
```

Vi står nå igjen med matrisen

$$A = \left(\begin{array}{ccc} 5 & -5 & 10 \\ 0 & 0 & 7 \\ 0 & 0 & 4 \end{array}\right)$$

og er altså ferdig med å skaffe oss nuller under pivot-elementet i første søyle. Vi går nå videre til andre søyle og leter etter et pivot-element i posisjon (2,2). Siden elementet A(2,2) er 0, leter vi nedover i søylen etter et ikke-trivielt element å flytte opp. Men alle elementene nedenfor er også 0, så vi har ikke noe å utrette i denne søylen. Vi går derfor videre til søyle nr 3 og leter denne gangen etter et pivot-element i posisjon (2,3) (vi befinner oss altså ikke lenger på diagonalen, men leter videre i samme rad som vi startet på i forrige søyle). Her finner vi et ikke-trivielt element A(2,3)=7, og nuller ut elementet nedenfor i samme søyle ved å trekke A(3,3)/A(2,3)=4/7 ganger andre rad fra tredje rad:

```
k=A(3,3)/A(2,3);

A(3,:)=A(3,:)-k*A(2,:)
```

Vi står nå igjen med matrisen

$$A = \left(\begin{array}{ccc} 5 & -5 & 10\\ 0 & 0 & 7\\ 0 & 0 & 0 \end{array}\right),$$

og er altså ferdig med å bringe matrisen over på trappeform. Eksemplet illustrerer at vi gjennomløper søylene etter tur på samme måte som i forrige avsnitt, men at vi denne gangen også må holde styr på radene: vi skal øke radindeksen med 1 dersom pivot-elementet vi finner (etter eventuell ombytting av rader) er forskjellig fra 0, men la radindeksen forbli den samme dersom vi bare får et null-element i pivotposisjonen. Vi skal nå se hvordan vi kan modifisere funksjonen gauss til å takle matriser hvor vi også kan støte på null-elementer i pivot-posisjoner og må bytte om rader underveis. Ideen er altså at hver gang vi støter på et slikt null-element A(i,j)=0 i en pivot-posisjon, leter vi etter ikke-trivielle elementer nedenfor dette nullelementet i søyle j. Dersom vi finner et slikt ikke-trivielt element $A(p,j) \neq 0$, bytter vi om radene p og i, og fortsetter som i funksjonen ovenfor. Ved vanlig Gauss-eliminasjon står vi fritt til å bytte om rad j og en hvilken som helst rad nedenfor som har et ikke-trivielt element i søyle j (ved programmering kan vi f.eks bestemme oss for å bytte med den første aktuelle raden vi finner). For å redusere avrundingsfeilene lønner det seg imidlertid å velge rad p på en slik måte at A(p,j)er størst mulig i absoluttverdi. Dersom vi alltid velger p på denne måten (uansett om det opprinnelige elementet i pivot-posisjonen er 0 eller ikke) kalles funksjonen Gauss-eliminasjon med delvis pivotering. Denne funksjonen er enkel å implementere ved hjelp av en ferdig innebygd funksjon max som finner det største elementet i en søylevektor:

```
[maksverdi,p]=max(y)
```

Funksjonene returnerer hhv. det maksimale elementet maksverdi i søylevektoren y og nummeret p til raden hvor dette elementet befinner seg.

Gauss-eliminasjon med delvis pivotering

Vi kan nå skissere en algoritme for å utføre Gauss-eliminasjon med delvis pivotering. For å legge oss nærmest mulig opp til den enkle algoritmen vi skisserte før oppgave 1, skal vi basere oss på for-løkker. Dette krever at vi i visse situasjoner må avbryte en løkke ved hjelp av kommandoen break. Vår programskisse er som følger:

Lag en funksjon gauss_delpiv som tar en vilkårlig $m \times n$ -matrise A som innparameter, utfører Gauss-eliminasjon med delvis pivotering på den og returnerer matrisen på trappeform. Du kan følge programmskissen ovenfor, men kan gjerne bruke en while-løkke isteden.

Gauss-Jordan-eliminasjon

Hittil har vi bare sett på funksjoner som bringer en matrise over på trappeform ved hjelp av Gauss-eliminasjon. I dette avsnittet skal vi se på hvordan vi kan utvide disse til en funksjon som bringer matrisen på redusert trappeform. Dette oppnås gjerne ved såkalt bakoverreduksjon, dvs at vi etter å ha fått matrisen på trappeform starter i nederste rad og skaffer oss nuller over pivot-elementet (hvis det fins et) i denne raden. Deretter gjør vi det samme over pivot-elementet i nest nederste rad osv. oppover. Fordelen med denne metoden er at vi skaffer nuller som vi drar med oss og har nytte av i senere utregninger etter hvert som vi jobber oss oppover (og dette gjør jobben mye lettere når vi utfører regningene for hånd). Når vi skal programmere, er det imidlertid enklere å gjøre disse operasjonene underveis i Gauss-eliminasjonen. Da trenger vi bare et par linjer ekstra med programkode for å skrive funksjonen gauss_delpiv om til en funksjon som utfører Gauss-Jordan-eliminasjon og bringer matrisen over på redusert trappeform.

Oppgave 4

Utvid funksjonen gauss_delpiv til en funksjon gauss_jordan som tar en matrise A som inn-parameter, utfører Gauss-Jordan-eliminasjon på den og returnerer matrisen på redusert trappeform. Hint: Du må sørge for to ting:

- i) Gjør alle pivot-elementene til 1-ere ved å dele pivot-raden med pivot-elementet.
- ii) Skaff nuller i søylen over hvert pivot-element ved å trekke et passende multiplum av pivot-raden fra radene ovenfor.

Lab 3: Likningssystemer og lineær uavhengighet

Vi skal lage en funksjon som bruker den reduserte trappeformen til en matrise for å avgjøre om et likningssystem er konsistent, hvor mange løsninger det eventuelt har, og om søylevektorene i matrisen er lineært uavhengige eller ikke. I tillegg til å gi deg en test på om du har fått med deg sammenhengen mellom disse begrepene, vil lab-øvelsen gi deg trening i å skrive funksjoner som er litt mer omfattende enn de du tidligere har laget.

Oppgave 1

Skriv en funksjon linavh som tar en vilkårlig matrise A som inn-parameter, og som skriver ut den reduserte trappeformen til matrisen sammen med beskjed om hvorvidt søylene i matrisen er lineært avhengige eller lineært uavhengige. Her er poenget at du bare skal bruke informasjon fra trappematrisen (og du har derfor ikke lov til å bruke den innebygde funksjonen rank selv om du skulle kjenne til begrepet rang). Du kan bruke funksjonen rref til å bringe en matrise på redusert trappeform.

Oppgave 2

Skriv en funksjon inkons som tar en vilkårlig matrise A og en vektor \mathbf{b} som innparametre, og som skriver ut den reduserte trappeformen til den utvidete matrisen $[A, \mathbf{b}]$ sammen med beskjed om hvorvidt matriselikningen $A\mathbf{x} = \mathbf{b}$ er konsistent eller inkonsistent. (Hvis systemet er konsistent, trenger ikke denne funksjonen å avgjøre hvor mange løsninger systemet har).

Oppgave 3

Utvid funksjonen inkons fra forrige oppgave til en funksjon antlosn som tar en vilkårlig matrise A og en vektor \mathbf{b} som inn-parametre, og som i tillegg til å avgjøre om matriselikningen $A\mathbf{x} = \mathbf{b}$ er konsistent eller inkonsistent, også gir beskjed om hvor mange løsninger (en eller uendelig mange) systemet har dersom det er konsistent.

Oppgave 4

I denne oppgaven får du bruk for følgende matriser og søylevektorer:

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 5 & 0 & 10 \\ 1 & 0 & 6 \end{pmatrix} B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 3 & 4 & 6 \\ 3 & 1 & 4 & 2 \\ 5 & 5 & 7 & 10 \end{pmatrix} C = \begin{pmatrix} 1 & 2 & 3 & 4 & 1 \\ 5 & 3 & 4 & 6 & 2 \\ 3 & 1 & 4 & 2 & 3 \\ 5 & 5 & 7 & 10 & 4 \end{pmatrix}$$

$$D = \begin{pmatrix} 5 & 2 & 7 & 5 \\ 7 & 7 & 4 & 9 \\ 4 & 3 & 9 & 8 \\ 3 & 5 & 9 & 6 \\ 2 & 2 & 6 & 8 \end{pmatrix} E = \begin{pmatrix} 1 & 7 & 6 & 2 & 2 & 6 \\ 0 & 3 & 4 & 6 & 4 & 8 \\ 9 & 5 & 5 & 8 & 8 & 1 \\ 2 & 1 & 3 & 5 & 7 & 6 \\ 3 & 10 & 4 & 6 & 5 & 1 \end{pmatrix}$$
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix} \mathbf{d} = \begin{pmatrix} 4 \\ 14 \\ 6 \\ 10 \\ 4 \end{pmatrix}$$

a)

Test funksjonen linavh på matrisene A, B, C, D, og E og sjekk om svaret er riktig.

b)

Test funksjonen inkons med følgende inn-parametre og sjekk om svaret er riktig: $(A, \mathbf{a}), (B, \mathbf{b}), (C, \mathbf{b}), (D, \mathbf{d}), (E, \mathbf{d})$. Dersom funksjonen svarer at et likningssystem er konsistent, skal du bruke funksjonen antlosn til å avgjøre hvor mange løsninger systemet har.

Lab 4: Newtons metode for flere variable

Vi lager en funksjon som utfører Newtons metode på funksjoner av flere variable, for å finne tilnærmede løsninger til systemer av ikke-lineære likninger. Vi ser også på hva som skjer hvis vi bruker Newtons metode på funksjoner av en kompleks variabel. Her skal vi spesielt studere hvordan ulike valg av startverdier påvirker konvergensen, og se at dette leder til noen fascinerende geometriske figurer som kalles fraktaler. Hvis du føler at du har god kontroll på Newtons metode for funksjoner av en variabel, kan du godt hoppe over innledningen, gjøre oppgave 2, og deretter gå videre til avsnittet om Newtons metode for funksjoner av en kompleks variabel.

Newtons metode for funksjoner av en variabel

Newtons metoden i en variabel lager stadig bedre tilnærminger x_n til nullpunkter til en funksjon f ved hjelp av formelen

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

La oss først se et enkelt eksempel på hvordan vi kan utnytte denne formelen for å få finne en tilnærmet verdi for nullpunktet til funksjonen $f(x) = x^2 - 2$ (eller med andre ord finne en tilnærmet verdi for kvadratroten av 2). Siden den deriverte av f er f'(x) = 2x, blir rekursjonsformelen vi skal bruke i dette tilfellet

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}.$$

For å regne ut de 5 første tilnærmingsverdiene fra Newtons metode med startverdi $x_0 = 1$, kan vi derfor bruke følgende for-løkke:

```
x=1;
for t=1:5
  x=x-(x^2-2)/(2*x) % Beregner neste tilnærmingsverdi
end
```

Det kan nå være lurt å sjekke om den siste verdien som blir beregnet (som nå ligger i variabelen x) faktisk er en god tilnærming til nullpunktet for funksjonen, ved å regne ut funksjonsverdien i dette punktet:

x^2-2

a)

Bruk en for-løkke til å regne ut de 5 første tilnærmingsverdiene Newtons metode gir til nullpunktet som funksjonen $f(x) = x^3 + 2x^2 - 2$ har i intervallet mellom 0 og 1. Du kan bruke startverdien $x_0 = 1$. (Husk at du først må finne rekursjonsformelen for denne funksjonen ved å regne ut f'(x) og sette inn i den generelle formelen for Newtons metode.) Ser det ut som om tilnærmingene konvergerer mot en bestemt verdi? Undersøk i så fall om denne verdien faktisk er et nullpunkt for funksjonen ved å regne ut funksjonsverdien i dette punktet.

b)

Hvor mange iterasjoner må gjennomføres før de fire første desimalene i tilnærmings verdien ikke endrer seg? Hvor mange iterasjoner må gjennomføres før de tolv første desimalene ikke endrer seg?

Litt om konvergens

Det er ikke sikkert at følgen av approksimasjoner vi får ved Newtons metode konvergerer mot nullpunktet vi er på jakt etter, men sjansen for at metoden fungerer blir større hvis startpunktet x_0 ligger i nærheten av det faktiske nullpunktet. En god (men ikke sikker) indikasjon på at approksimasjonene konvergerer, er at forskjellen mellom to påfølgende ledd x_n og x_{n+1} i følgen blir liten. Når man skal programmere Newtons metode, er det derfor vanlig å spesifisere en toleranse (f.eks 10^{-12}) og stoppe iterasjonene dersom forskjellen mellom x_n og x_{n+1} (i absoluttverdi) blir mindre enn denne toleransen. Man antar da at x_{n+1} er et godt estimat for nullpunktet (men man bør egentlig sjekke at funksjonsverdien i dette punktet faktisk er nær 0). Dersom approksimasjonene ikke konvergerer, risikerer man at differensen mellom x_{n+1} og x_n aldri blir mindre enn den oppgitte toleransen, så for å unngå å bli gående i en evig løkke av iterasjoner, bør man også spesifisere et maksimalt antall iterasjoner som skal utføres.

La oss vende tilbake til eksempelet med funksjonen $f(x) = x^2 - 2$, og se på hvordan vi kan modifisere for-løkken slik at iterasjonene av Newtons metode (med startverdi $x_0 = 1$) utføres inntil $f(x_n)$ er mindre enn en toleranse 0.0001, men likevel slik at den ikke utfører mer enn maksimalt 20 iterasjoner:

```
epsilon=0.0001; % angir den ønskede toleransen n_max=20; % maksimalt antall iterasjoner som skal utføres n=1; % startverdi x=1; % startverdi while abs(f(x)) > 0.0001 \& n <= n_max = x=-(x^2-2)/(2*x); n=n+1; end
```

Når vi skal lete etter nullpunktene til en funksjon ved hjelp av Newtons metode, vil det ofte være aktuelt å prøve med litt forskjellige startverdier. Det kan derfor være lurt å lage en funksjon newton hvor vi kan spesifisere startverdien som innparameter. For å kunne benytte funksjonen på forskjellige funksjoner uten å måtte endre rekursjonsformelen hver gang, kan det også være greit å bruke den generelle rekursjonsformelen $x_{n+1} = x_n - \frac{f(x)}{f'(x)}$ i newton og la den hente informasjon om den aktuelle funksjonen og dens deriverte fra egne funksjoner f og df. Disse kan for eksempel være anonyme funksjoner, slik at vi trenger bare sende med nye slike som inn-parametre til metoden newton når vi bytter funksjon. Funksjonen vår får følgende signatur:

```
function x = newton(x,f,df)
    % Funksjon som utfører Newtons metode
    % x: startpunkt for iterasjonen
    % f: funksjon som regner ut funksjonsverdiene
    % df: funksjon som regner ut verdiene til den deriverte
    % Utparameter x: den beregnede tilnærmingsverdien til nullpunktet
    <Programkode: Denne skal du lage i oppgave 2>
```

Ønsker vi f.eks å bruke funksjonen newton på funksjonen $f(x) = x^3 + 2x^2 - 2$ (fra oppgave 1), kan vi sende de to anonyme funksjonene

```
@(x)x^3+2*x^2-2
@(x)3*x^2+4*x
```

som inn-parametre til newton slik:

```
x=newton(2, @(x)x^3+2*x^2-2, @(x)3*x^2+4*x)
```

Oppgave 2

a)

Lag en funksjon newton som leser inn verdiene til en funksjon og dens deriverte fra to anonyme funksjoner, og beregner tilnærmingsverdier for nullpunktet ved hjelp av disse verdiene. Som innparametre skal funksjonen ta et startpunkt start og de to funksjonene f og df Prosedyren skal deretter utføre Newtons metode inntil differensen mellom x_{n+1} og x_n er mindre enn en toleranse på 0.0000001, eller den har utført det maksimale antall iterasjoner som du tillater (du kan f.eks la dette være maksit=30). Til slutt skal funksjonen returnere den sist beregnede tilnærmingsverdien som utparameter.

Tips: Dersom iterasjonsindeksen din heter t, kan du legge til følgende linje i iterasjonsløkka for å få en pen utskrift på skjermen av t, den tilhørende tilnærmingsverdien x som blir beregnet for nullpunktet i hvert trinn, og tilhørende funksjonsverdi f(x) i dette punktet:

```
fprintf('itnr=%3d x=%15.12f f(x)=%15.12fnn',t,x,fx)
```

b)

Test funksjonen du lagde i a) på funksjonen $f(x) = x^3 + 2x^2 - 2$ (fra oppgave 1) for å finne tilnærmingsverdier for nullpunktet funksjonen har i intervallet [0,1].

c)

Lag et plott av funksjonen $f(x) = x^3 + 2x^2 - 30x - 5$ over intervallet [-8, 6] for å danne deg et bilde av hvor nullpunktene ligger. Bruk deretter funksjonen du lagde i a) til å finne tilnærmingsverdier for hvert av de tre nullpunktene. Du kan for eksempel bruke startverdiene $x_0 = 1, 4, \text{ og } -4.$

d)

Vi skal nå se på noen tilfeller hvor Newtons metode virker dårlig. Vi skal først ta for oss funksjonen $g(x) = x^3 - 5x$. Lag et plott av denne funksjonen over intervallet [-3,3] og kjør deretter Newtons metode med startpunktet $x_0 = 1$. Hva skjer med iterasjonene? Kan du se hvorfor dette skjer utifra grafen du plottet? Undersøk om det samme problemet oppstår hvis du kjører Newtons metode på nytt med startpunktet $x_0 = 2$ isteden.

La oss deretter prøve Newtons metode på funksjonen $h(x)=x^{1/3}$. Her er x=0 opplagt det eneste nullpunktet. Lag et plott av funksjonen over intervallet [-4,4] for å danne deg et bilde av hvordan grafen oppfører seg i nærheten av nullpunktet. Kjør deretter Newtons metode med startpunkt $x_0=1$. Nærmer tilnærmingsverdiene seg nullpunktet x=0? Prøv å forklare hva som skjer utifra grafen.

Tips: For å unngå at det returneres komplekse røtter av negative tall, kan det være lurt å representere funksjonen $h(x) = x^{1/3}$ på følgende måte:

```
y=sign(x).*abs(x).^(1/3);
```

Newtons metode for funksjoner av en kompleks variabel

I forrige seksjon studerte vi Newtons metode for å finne tilnæringsverdier for nullpunkter til funksjoner av en reell variabel, men det viser seg at metoden fungerer like godt for funksjoner av en kompleks variabel. Du har sannsynligvis ikke vært borti komplekse funksjoner tidligere, men hvis du foreløpig bare godtar påstanden om at de kan deriveres på samme måte som reelle funksjoner, vil du kunne plugge dem inn i rekursjonsformelen for Newtons metode og se hva som skjer. Som vanlig begynner vi da med å gjette på et startpunkt x_0 , som denne gangen er et komplekst tall på formen a + ib og altså kan tolkes som et punkt (a, b) i planet. Deretter bruker vi rekursjonsformelen til å danne oss en følge av komplekse tall som (forhåpentligvis) er stadig bedre tilnærminger til et nullpunkt for funksjonen vi studerer. Da vi studerte Newtons metode på funksjoner av en reell variabel, så vi at startpunktet vi valgte kunne være avgjørende for om følgen av tilnærminger konvergerte, hvilket nullpunkt de eventuelt konvergerte mot og hvor fort de konvergerte mot dette. Generelt økte sjansen for konvergens hvis startpunktet vi valgte lå nær det virkelige nullpunktet, men fasongen på grafen var også avgjørende. For funksjoner av komplekse variable, er situasjonen enda mer innviklet - så innviklet at det å studere hvilke nullpunkter de forskjellige startpunktene i planet gir oss konvergens mot, leder til kompliserte og fascinerende figurer som kalles fraktaler. Dette skal du få en liten smakebit på i denne seksjonen hvor vi skal studere Newtons metode på komplekse funksjoner av typen $f(z) = z^3 + az + b$ for ulike verdier av konstantene a og b. Som nevnt kan vi derivere disse funksjonene på vanlig måte og få at $f'(z) = 3z^2 + a$, så rekursjonsformelen for Newtons metode blir i dette tilfellet $z_{n+1} = z_n - \frac{z^3 + az + b}{3z^2 + a}.$

En funksjon på formen $f(z)=z^3+az+b$ har tre (komplekse) nullpunkter, og det vi ønsker å gjøre, er å fargelegge (et område av) planet slik at vi kan se hvilke startpunkter som gir konvergens mot samme nullpunkt når vi bruker Newtons metode. For hvert av de tre nullpunktene til funksjonen velger vi altså ut en farge og deretter fargelegger vi alle startpunkter som gir konvergens mot samme nullpunkt, i den fargen som vi valgte for nullpunktet.

La oss se hvordan vi kan lage et slikt bilde. Først må vi definere hvilke komplekse tall vi ønsker å studere som startpunkter for Newtons metode (dvs hvilket området i planet vi ønsker å studere). La oss velge å se på de komplekse tallene hvor både realdelen og imaginærdelen ligger mellom -2 og 2. Vi kan ikke studere alle disse punktene siden det er uendelig mange av dem, men vi lager oss et tett gitter av punkter i dette området:

```
x=-2:0.01:2;
y=-2:0.01:2;
[X,Y]=meshgrid(x,y);
[m,n]=size(X); %tar vare på størrelsen for senere bruk i løkke
```

Deretter vil vi finne numeriske tilnærmingsverdier for nullpunktene til funksjonen vi skal studere (da blir det enkelt å sjekke hvilket nullpunkt tilnærmings verdiene konvergerer mot). Til dette kan vi bruke den innebygde funksjonen roots, som returnerer en vektor med nullpunktene til et polynom med gitte koeffisienter. Funksjonen $f(z) = z^3 + az + b$ får koeffisientene representert ved radvektoren [1,0,a,b] (husk å ta med koeffisienten 0 foran det "usynligeleddet z^2). Aller først må vi imidlertid spesifisere hvilken funksjon vi vil studere ved å angi verdiene av konstantene a og b. Vi vil starte med å studere funksjonen $f(z) = z^3 - 1$ og velger derfor

```
a=0;
b=-1;
p=[1 0 a b];
rts=roots(p);
```

Nå er vi klare til å gjennomløpe ett og ett punkt i gitteret og utføre Newtons metode med dette punktet som startverdi. Som tidligere velger vi først et maksimalt antall iterasjoner som skal utføres, og en toleranse som avgjør når tilnærmingsverdiene er så nær et nullpunkt at vi vil avbryte iterasjonene. Deretter bruker vi en dobbelt for-løkke til å gjennomløpe punktene i gitteret. For hvert punkt bruker vi Newtons metode med punktet som startverdi og kjører gjentatte iterasjoner inntil tilnærmingsverdiene eventuelt kommer innenfor den oppgitte toleransen fra ett av nullpunktene. I så fall avbryter vi løkka og gir punktet den fargeverdien vi har tilegnet nullpunktet vi fikk konvergens mot. I dette tilfellet vil vi bruke fargeverdien 1 (blå) for det første nullpunktet rts(1), fargeverdien 44 (gul) for det andre nullpunktet rts(2), og fargeverdien 60 (rød) for det tredje nullpunktet rts(3). Vi lagrer fargeverdiene til punktene i en matrise T slik at punkt nr (j,k) i gitteret får fargeverdien angitt av elementet T(j,k) i matrisen. Før vi starter løkkene, initialiserer vi alle elementene i T til fargeverdien 27 (turkis), så de startpunktene som eventuelt ikke gir oss konvergens mot noe nullpunkt i løpet av det maksimale antallet iterasjoner vi utfører, vil beholde denne fargen.

```
n=30:
tol=0.001;
T=27*ones(m,n);
for j=1:m
  for k=1:n %gjennomløper punktene i gitteret
z=X(j,k)+i*Y(j,k); %omgjør punkt i gitter til komplekst tall
    %Så kjøres iterasjoner av Newtons metode med punktet som startverdi
    for t=1:n
      z=z-(z^3+a*z+b)/(3*z^2+a);
       if abs(z-rts(1))<tol
         T(j,k)=1;
         break;
       end
       if abs(z-rts(2))<tol
         T(j,k)=44;
         break;
       if abs(z-rts(3))<tol
         T(j,k)=60;
         break;
       end
    end %for t
  end %for k
end %for i
```

Nå kan vi få fargelagt punktene i det aktuelle området i planet med fargeverdien bestemt i matrisen T ved å skrive

a)

Lag en funksjon kompleks som genererer et bilde av hvilke punkter i planet som konvergerer mot de forskjellige nullpunktene til funksjonen $f(z) = z^3 - 1$.

b)

Gjør de endringene som skal til i funksjonen fra punkt a) for å få tilsvarende bilder for funksjonene $f(z) = z^3 + 2z$ (dvs at du setter parametrene til å være a = 2 og b = 0) og $f(z) = z^3 - z + 2$ (dvs at a = -1 og b = 2).

Hittil har vi laget bilder som forteller hvilket nullpunkt de forskjellige startpunktene gir konvergens mot, men bildene gir ingen informasjon om hvor raskt konvergensen går. For å få et bilde som også inneholder informasjon om konvergenshastigheten til de forskjellige startpunktene, kan vi justere litt på fargeverdiene slik at punktene får lysere fargevalør jo langsommere konvergensen går. Istedenfor bare å sette fargeverdiene til 1, 44 eller 60, kan vi justere fargeverdiene etter hvor mange iterasjoner som er utført, f.eks på følgende måte:

```
if abs(z-rts(1))<tol
    T(j,k)=1+t*(23/maxit);
    break;
end
if abs(z-rts(2))<tol
    T(j,k)=48-t*(23/maxit);
    break;
end
if abs(z-rts(3))<tol
    T(j,k)=64-t*(23/maxit);
    break;
end</pre>
```

Merknad: Ikke bli forvirret over at vi gir et lite tillegg i det første tilfellet, men gjør et lite fradrag i de to neste. Det kommer bare av at fargeskalaen vi bruker er slik at blåfargen blir lysere for høyere verdier, mens gul og rød blir lysere for lavere verdier.

Oppgave 4

a)

Modifiser koden fra forrige oppgave slik at bildet gir informasjon om konvergenshastigheten til de ulike startpunktene i tillegg til hvilket nullpunkt de gir konvergens mot. Du kan gjerne gjøre om koden til en funksjon som tar a og b som innparametre, slik at du lett kan eksperimentere med ulike funksjoner.

b)

Generer et bilde for funksjonen $f(z) = z^3 - 1$ og beskriv hva bildet viser. Prøv å gjette på hvor nullpunktene ligger utifra bildet.

c)

Generer tilsvarende bilder for funksjonene $f(z) = z^3 + 2z$ og $f(z) = z^3 - z + 2$.

Oppgave 5

Modifiser funksjonen fra forrige oppgave slik at du fritt kan velge sentrum og forstørrelse. Bruk funksjonen på funksjonen $f(z) = z^3 - 1$, og lag en sekvens av bilder

som zoomer inn på origo, og deretter en tilsvarende sekvens som zoomer inn på punktet (-0.8,0).

Hint: Første del av funksjonen vi har brukt tidligere, kan f.eks omskrives slik:

```
sentrumx=0;
sentrumy=0;
lengde=2;
x=linspace(sentrumx-lengde, sentrumx+lengde, 400);
y=linspace(sentrumy-lengde, sentrumy+lengde, 400);
```

Her har du nå mulighet for å velge andre koordinater for sentrumspunktet og andre intervallengder. Du kan for eksempel zoome inn mot origo ved først å sette lengde=1, deretter lengde=0.5, og til slutt lengde=0.25. Flytt deretter sentrum litt mot venstre ved å velge sentrumx=-0.8, og foreta en tilsvarende innzooming der.

Ekstraoppgave

Hvis du har gjennomført den frivillige slutten på lab 1, hvor du lærte å lage animasjoner, kan du prøve å lage en animasjon som viser innzooming mot et punkt på fraktalen.

Newtons metode for flere variable

La oss se på hvordan Newtons metode kan generaliseres til å løse likningssystemer av typen:

$$f(x,y) = 0$$

$$g(x,y) = 0$$

Definerer vi den vektorvaluerte funksjonen $\mathbf{F}(x,y) = (f(x,y),g(x,y))$ har vi lært at Newtons metode i to variable tar formen

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n \\ y_n \end{pmatrix} - \mathbf{F}'(x_n, y_n)^{-1} \mathbf{F}(x_n, y_n)$$
$$= \begin{pmatrix} x_n \\ y_n \end{pmatrix} - \begin{pmatrix} \frac{\partial f}{\partial x}(x_n, y_n) & \frac{\partial f}{\partial y}(x_n, y_n) \\ \frac{\partial g}{\partial x}(x_n, y_n) & \frac{\partial g}{\partial y}(x_n, y_n) \end{pmatrix}^{-1} \begin{pmatrix} f(x_n, y_n) \\ g(x_n, y_n) \end{pmatrix},$$

der (x_n, y_n) er tilnærminger til løsningen til likningene våre, og der $\mathbf{F}'(x, y)$ er Jacobimatrisen til \mathbf{F} i punktet (x, y). Vi kan implementere dette på to måter:

```
x=x-inv(J(x))*f(x) % Metode 1

x=x-J(x)\setminus f(x) % Metode 2
```

hvor J(x) er Jacobi-matrisen.

Oppgave 6

a)

Lag en funksjon newtonfler som leser inn verdiene til en vektorvaluert funksjon ${\bf F}$ og dens Jacobimatrise J, og bruker disse verdiene til å til å beregne tilnærmingsverdier til nullpunktet ved hjelp av Newtons metode. Som innparametre skal funksjonen ta et startpunkt ${\bf x}$ (angitt som en søylevektor) og funksjoner ${\bf F}$ og ${\bf J}$ som returnerer funksjonsverdienene og verdiene til Jacobimatrisen. Både ${\bf F}$ og ${\bf J}$ skal være anonyme funksjoner som tar en vektor som input, og returnerer en vektor/matrise

som output. Prosedyren skal deretter utføre Newtons metode inntil normen (bruk funsksjonen norm) til $F(x_n)$ er mindre enn en toleranse 0.0000001, eller den har utført 30 iterasjoner. Funksjonen skal til slutt returnere den sist beregnede tilnærmingsverdien.

Tips: Dersom iterasjonsindeksen din heter n, kan du legge til følgende kode i iterasjonsløkka for å få en pen utskrift på skjermen av n, alle tilnærmingsverdiene x som blir beregnet for nullpunktet og tilhørende funksjonsverdi F(x):

```
fprintf('itnr=%2d x=[%13.10f,%13.10f] F(x)=[%13.10f,%13.10f]nn',...
n,x(1),x(2),F(1),F(2))
```

b)

I resten av denne oppgaven skal vi studere likningssystemet

$$x^2 + y^2 - 48 = 0$$
$$x + y + 6 = 0$$

Lag et implisitt plott av de to likningene i samme figurvindu (du kan for eksempel lage et kontur-plott med en enkelt nivåkurve for funksjonsverdien 0). Bruk figuren til å bestemme hvor mange løsninger dette likningssystemet har.

c)

Bruk figuren du lagde i punkt b) til å finne fornuftige startverdier for Newtons metode, og kjør deretter funksjonen newtonfler med disse startverdiene for å finne tilnærmede verdier for nullpunktene.

Oppgave 7

Dersom du har fulgt den generelle løsningsmetoden vi antydet i teksten da du lagde funksjonen newtonfler i forrige oppgave, burde den også fungere for systemer av mer enn to variable. Du kan undersøke dette ved å legge inn vektorvaluerte funksjoner med flere komponenter i de anonyme funksjonene som sendes som innparametre til funksjonen. Vil du for eksempel løse et likningssystem på formen

$$f(x, y, z) = 0$$

$$g(x, y, z) = 0$$

$$h(x, y, z) = 0$$

definerer du bare anonyme funksjoner

```
F = [f; g; h]
J = [dfx,dfy,dfz;dgx,dgy,dgz;dhx,dhy,dhz]
```

som representerer funksjonen og dens Jacobimatrise, og sender disse som parametre til newtonfler. Prøv ut dette for å finne en tilnærmet løsning på likningssystemet

$$y^{2} + z^{2} - 3 = 0$$

 $x^{2} + z^{2} - 2 = 0$
 $x^{2} - z = 0$

ved hjelp av Newtons metode.

Merknad: I kallet på fprintf som vi benyttet tidligere for å få en pen utskrift på skjermen av alle de beregnede tilnærmingsverdiene, ba vi bare om å få skrevet ut de to første komponentene til x og F(x). For å få en utskrift av alle de tre komponentene (med litt færre desimaler enn sist, slik at vi får plass å skjermen), kan du f.eks modifisere koden slik:

```
fprintf('itnr=%2d x=[%9.6f,%9.6f,%9.6f] F(x)=[%9.6f,%9.6f,%9.6f]nn',...
n,x(1),x(2),x(3),F(1),F(2),F(3))
```

Ellers er det ingen endirnger som trengs å gjøres i koden til newtonfler.

Oppvarmingsøvelse 1: Løsningsforslag

Oppgave 1

a)

Vi kan beregne matriseproduktet $C\mathbf{x}$ ved å ta en lineærkombinasjon av søylene i C med koeffisienter gitt ved komponentene i x.

b)

Dette er en generell sammenheng. Den komponentvise definisjonen av matrisemultiplikasjon sier at vi får i-te komponent i søylevektoren $C\mathbf{x}$ ved å ta skalarproduktet av i-te rad i C med vektoren \mathbf{x} , det vil si at i-te komponent i $C\mathbf{x}$ er en lineær kombinasjon av elementene i i-te rad fra C med komponentene i \mathbf{x} som koeffisienter. Siden vi altså bruker de samme koeffisientene (fra \mathbf{x}) hver gang vi uttrykker en komponent i $C\mathbf{x}$ som en slik lineær kombinasjon, betyr dette at vektoren $C\mathbf{x}$ er en lineær kombinasjon av søylevektorene i C med komponentene i \mathbf{x} som koeffisienter.

Oppgave 2

a)

Vi får første søyle i matriseproduktet AB ved å multiplisere A med første søyle i B. Tilsvarende fremkommer andre søyle i AB ved å multiplisere A med andre søyle i B.

b)

Dette er en generell sammenheng: Vi får k-te søyle i matriseproduktet AB ved å multiplisere A med k-te søyle i B. Ifølge den komponentvise definisjonen av matriseprodukt får vi i-te element i k-te søyle i produktmatrisen AB ved å ta skalarproduktet av linje i i A med søyle k i B. Det betyr at i-te komponent i k-te søyle i AB er en lineær kombinasjon av elementene i i-te rad fra A med komponentene i k-te søyle i B som koeffisienter. Siden vi altså bruker de samme koeffisientene (fra k-te søyle i B) for hver slik lineær kombinasjon, betyr dette at vi får k-te søyle i produktmatrisen AB ved å ta en lineær kombinasjon av søylene i A med koeffisienter fra k-te søyle i B. Men fra oppgave 1 vet vi at dette er det samme som å multiplisere A med k-te søyle i B.

Oppgave 3

Første søyle i AB er en lineær kombinasjon av søylene i A med koeffisienter fra første søyle i B. Tilsvarende er andre søyle i AB en lineær kombinasjon av søylene

i A med koeffisienter fra andre søyle i B. Vi kan sjekke at dette resultatet stemmer for matrisene A og B fra oppgave 2 ved å lage tre søylevektorer

```
a1=A(:,1);
a2=A(:,2);
a3=A(:,3);
```

og sjekke at første og andre søyle i AB er lik lineærkombinasjonene

```
b1(1)*a1+b1(2)*a2+b1(3)*a3
b2(1)*a1+b2(2)*a2+b2(3)*a3
```

(Sammenlign enten med A*B(:; 1) og A*B(:; 2), eller med A*b1 og A*b2)

Oppgave 4

a)

Vi kan beregne matriseproduktet $\mathbf{y}R$ ved å ta en lineærkombinasjon av radene i R med koeffisienter gitt ved komponentene i \mathbf{y} .

b)

Dette er en generell sammenheng. Den komponentvise definisjonen av matrisemultiplikasjon sier at vi får j-te komponent i radvektoren $\mathbf{y}R$ ved å ta skalarproduktet av \mathbf{y} med j-te søyle i R, det vil si at j-te komponent i $\mathbf{y}R$ er en lineær kombinasjon av elementene i j-te søyle fra R med komponentene i \mathbf{y} som koeffisienter. Siden vi altså bruker de samme koeffisientene (fra \mathbf{y}) hver gang vi uttrykker en komponent i $\mathbf{y}R$ som en slik lineær kombinasjon, betyr dette at vektoren $\mathbf{y}R$ er en lineær kombinasjon av radvektorene i R med komponentene i R som koeffisienter.

Oppgave 5

a)

Vi får første rad i DE ved å multiplisere første rad i D med E. Tilsvarende fremkommer andre rad i DE ved å multiplisere andre rad i D med E, og tredje rad i DE fremkommer ved å multiplisere tredje rad i D med E.

b)

Dette er en generell sammenheng: Vi får i-te rad i matriseproduktet DE ved å multiplisere i-te rad i D med E. Ifølge den komponentvise definisjonen av matriseprodukt får vi k-te element i i-te rad i produktmatrisen DE ved å ta skalarproduktet av linje i i D med søyle k i E. Det betyr at k-te komponent i i-te rad i DE er en lineær kombinasjon av elementene i k-te søyle i E med komponentene i i-te rad fra E0 som koeffisienter. Siden vi altså bruker de samme koeffisientene (fra E1-te rad i E2) for hver slik lineær kombinasjon, betyr dette at vi får E2-te rad i produktmatrisen E3-te rad i E4-te rad i E5. Men fra oppgave 4 vet vi at dette er det samme som å multiplisere E3-te rad i E5-te rad i E6-te rad i E7-te rad i E8-te rad i E9-te rad i E9-

Oppgave 6

Første rad i DE er en lineær kombinasjon av radene i E med koeffisienter fra første rad i D. Tilsvarende er andre (hhv. tredje) rad i DE en lineær kombinasjon av radene i E med koeffisienter fra andre (hhv. tredje) rad i D. Vi kan sjekke at dette resultatet stemmer for matrisene D og E fra oppgave 5 ved å lage tre radvektorer:

```
e1=A(1,:);
e2=A(2,:);
e3=A(3,:);
```

og sjekke at første, andre, og tredje rad i DEer lik lineærkombinasjonene

```
d1(1)*e1+d1(2)*e2+d1(3)*e3
d2(1)*e1+d2(2)*e2+d2(3)*e3
d3(1)*e1+d3(2)*e2+d3(3)*e3
```

(Sammenlign enten med D*E(1; :), D*E(2; :), og D*E(3; :), eller med d1*E, d2*E, og d3*E).

Oppvarmingsøvelse 2: Løsningsforslag

Oppgave 1

a)

Determinanten til den nye matrisen blir 5 ganger så stor som determinanten til den opprinnelige. Generelt gjelder det at hvis vi erstatter en vilkårlig rad med en skalar k ganger raden, blir determinanten til den nye matrisen k ganger så stor som den opprinnelige.

b)

Hvis vi multipliserer en søyle med skalaren k, blir determinanten til den nye matrisen k ganger så stor som den opprinnelige.

Oppgave 2

a)

Når vi bytter om to rader i en kvadratisk matrise, skifter determinanten fortegn.

b)

Determinanten skifter fortegn.

Oppgave 3

a)

Når vi adderer et skalarmultiplum av en rad til en annen rad, forblir determinanten uforandret.

b)

Determinanten forblir uforandret.

Oppgave 4

Determinanten til en øvre triangulær matrise er lik produktet av elementene på hoveddiagonalen.

Oppgave 5

Determinanten til en nedre triangulær matrise er lik produktet av elementene på hoveddiagonalen.

a)

Determinanten til en identitetsmatrise er lik 1.

b)

Siden identitetsmatrisen er både øvre triangulær og nedre triangulær, vet vi fra forrige seksjon at determinanten er lik produktet av elementene på hoveddiagonalen. Resultatet følger derfor av at alle elementene på hoveddiagonalen er 1-ere.

Oppgave 7

Determinanten til en permutasjonsmatrise er 1 eller -1 avhengig av om antall inversjoner i permutasjonen er et partall eller et oddetall. Vi vet fra tidligere at hver gang vi bytter om to rader i en matrise, så skifter determinanten fortegn. Dersom vi må bytte om rader et partall antall ganger, blir determinanten lik determinanten til identitetsmatrisen, altså 1, og hvis vi må bytte om rader et odde antall ganger, blir determinanten lik -1.

Oppgave 8 (ekstraoppgave)

a)

Vi skal forklare hvorfor det er slik at hvis vi erstatter en vilkårlig rad med en skalar k ganger raden, så blir determinanten til den nye matrisen k ganger så stor som den opprinnelige. Dette kan vi se ut ifra definisjonen av determinanten ved elementære produkter forsynt med fortegn, fordi alle de elementære produktene vil bli k ganger større siden de inneholder nøyaktig ett element fra den nye raden, og dette elementet er k ganger å stort som det opprinnelige elementet.

b)

Vi skal forklare hvorfor det er slik at når vi bytter om to rader i en kvadratisk matrise, skifter determinanten fortegn. Dette kan vi se ut ifra definisjonen av determinanten som en sum av elementære produkter forsynt med fortegn, fordi alle de elementære produktene vil skifte fortegn når vi bytter om to rader i matrisen. Ved en slik ombytting vil vi enten fjerne eller legge til et odde antall inversjoner i søylepermutasjonen σ , slik at fortegnet $sign(\sigma) = (-1)^{inv(\sigma)}$ skifter til motsatt verdi.

Ved ombytting av linje i og j (hvor i < j) vil to matriseelementer $a_{i\sigma_i}$ og $a_{j\sigma_j}$ som inngår i et elementært produkt $\prod_i a_{i\sigma_i}$, opptre som elementene $a_{j\sigma_i}$ og $a_{i\sigma_j}$ i den nye matrisen, og søyleindeksparet (σ_i, σ_j) vil nå gjenfinnes som det inverterte paret (σ_j, σ_i) . Dette bidrar til at antall inversjoner endres med 1.

For $k \neq i, j$ vil søyleindeksparene (σ_k, σ_i) og (σ_k, σ_j) gjenfinnes som (σ_k, σ_j) og (σ_k, σ_i) . Hvis k < i eller k > j, blir ingen av parene invertert. Hvis i < k < j, blir begge parene invertert. Disse tilfellene bidrar altså til at antall inversjoner endres med et partall. Alt i alt ser vi derfor at antall inversjoner endres med et oddetall ved en ombytting av to rader i matrisen.

c)

Vi skal forklare hvorfor det er slik at når vi adderer et skalarmultiplum av en rad til en annen rad, forblir determinanten uforandret. Det følger fra definisjonen av determinanten ved elementære produkter at determinanten er additiv som funksjon av rad i, det vil si at hvis rad i kan skrives som en sum av to vektorer \mathbf{v}_1 og \mathbf{v}_2 , så blir determinanten lik summen av determinantene til de matrisene vi får ved å putte inn henholdsvis \mathbf{v}_1 og \mathbf{v}_2 som rad i.

Fra oppgave 2 vet vi også at dersom vi bytter om to rader i en matrise, så skifter determinanten fortegn. Hvis vi har en matrise der to rader er like, og bytter om disse radene, skal altså determinanten skifte fortegn. Men siden den nye matrisen er lik den opprinnelige (vi byttet jo bare om to like rader), må determinanten samtidig være lik den opprinnelige. Det eneste tallet D som oppfyller D=-D er D=0. Det følger derfor at hvis to rader i en matrise er like, så er determinanten 0.

Av disse to observasjonene følger resultatet: Hvis vi erstatter i-te rad i en matrise med i-te rad pluss k ganger j-te rad, blir determinanten til den nye matrisen ved linearitet lik den opprinnelige determinanten pluss k ganger determinanten til en matrise hvor den i-te raden er erstattet med den j-te raden fra den opprinnelige matrisen. Men siden den i-te og den j-te raden i den sistnevnte matrisen er like, slik at determinanten til denne matrisen er 0, så følger konklusjonen.

d)

Vi skal forklare hvorfor determinanten til en øvre triangulær matrise er lik produktet av elementene på hoveddiagonalen. Det følger av definisjonen av determinanten ved elementærprodukter at det eneste elementærproduktet som ikke blir 0, er produktet av elementene på hoveddiagonalen (alle andre elementærprodukter må inneholde et element som ligger under hoveddiagonalen (forklar!) og blir derfor 0).

e)

Vi skal forklare hvorfor determinanten til en nedre triangulær matrise er lik produk tet av elementene på hoveddiagonalen. Dette kommer av at det eneste elementærproduktet som ikke blir 0, er produktet av elementene på hoveddiagonalen (alle andre elementærprodukter må inneholde et element som ligger over hoveddiagonalen og blir derfor 0).

Lab 1: Løsningsforslag

Oppgave 1

a)

Kvadratet blir dobbelt så stort. Multiplikasjon med A fordobler både x-koordinatene og y-koordinatene til punktene i kvadrat.

b)

Kvadratet blir dobbelt så langt i x-retningen (så det blir et rektangel). Multiplikasjon med A fordobler alle x-koordinatene og lar y-koordinatene forbli uendret.

c)

Kvadratet speiles om x-aksen. Multiplikasjon med A bytter fortegn på y-koordinaten til hvert punkt, mens x-koordinaten forblir uendret.

d)

Kvadratet kollapser til et linjestykke (nedre sidekant) langs x-aksen. Multiplikasjon med A setter alle y-koordinatene til 0, mens x-koordinatene forblir uendret. Dette tilsvarer å projisere alle punktene ned på x-aksen.

e)

Kvadratet blir deformert som om toppen dyttes mot høyre mens bunnen ligger i ro. Multiplikasjon med A forandrer ikke på y-koordinaten, men x-koordinaten får et tillegg som er halvparten av y-koordinaten (dvs at x-koordinaten får et større tillegg jo høyere opp i kvadratet punktet ligger). Dette er et eksempel på en såkalt skjær-avbildning.

f)

Kvadratet roteres 45 grader (mot klokka). Multiplikasjon med A avbilder vektoren (1,0) på vektoren $(\sqrt{2}/2,\sqrt{2}/2)$ som også fremkommer ved å dreie vektoren (1,0) en vinkel på 45 grader mot klokka. Tilsvarende avbildes vektoren (0,1) på vektoren $(-\sqrt{2}/2,\sqrt{2}/2)$, som fremkommer ved å dreie vektoren (0,1) en vinkel på 45 grader mot klokka. Vi skal senere se at dette er et spesialtilfelle av en generell rotasjonsmatrise.

Oppgave 2

Koden som løser a), b), og c) blir som følger:

```
A=[0.5 0; 0 0.5];  % a) Skrumper figuren i begge retninger
A=[0.5 0; 0 1];  % b) Skrumper bare i x-retningen
A=[1 0; 0 0.5];  % c) Skrumper bare i y-retningen
```

Koden som løser a) og b) blir som følger:

```
A= [-1 0;0 1]; % a) x-koordinaten må skifte fortegn
A= [1 0;0 -1]; % b) y-koordinaten må skifte fortegn
```

Oppgave 4

Koden som løser a), b), og c) blir som følger:

```
A= [-1 0;0 1]; % a) x-koordinaten må skifte fortegn
A= [1 0;0 -1]; % b) y-koordinaten må skifte fortegn
A= [-1 0;0 -1]; % c) Roter pi radianer (180 grader)
```

d)

Koden for speilomx(), speilomy(), og roter180() blir som følger:

```
function A = speilomx()
    % Returnerer matrise for speiling om x-aksen.
A=[1 0; 0 -1];

function A = speilomy()
    % Returnerer matrise for speiling om y-aksen.
A= [-1 0; 0 1];

function A = roter180()
    % Returnerer rotasjonsmatrise for dreining 180 grader.
A= [-1 0; 0 -1];
```

e)

```
monogramHM = speilomy() * monogramMH() ; % Speiling av MH om y-aksen gir HM tegn(monogramHM)
monogramWH = roter180() * monogramHM ; % Rotasjon av HM 180 grader gir WH tegn(monogramWH)
monogramHW = speilomy() * monogramWH ; % Speiling av WH om y-aksen gir HW tegn(monogramHW)
monogramMH = roter180() * monogramHW ; % Rotasjon av HW 180 grader gir MH tegn(monogramMH)
```

f)

Fra punkt b) vet vi at vi kan gå direkte fra MH til WH ved å speile om x-aksen. Og fra punkt e) vet vi at vi oppnår det samme ved først å speile MH om y-aksen og deretter rotere resultatet HM en vinkel på 180 grader. Disse observasjonene tyder på at det å speile om x-aksen gir samme resultat som det å først speile om y-aksen og deretter rotere 180 grader.

g)

Matrisene vi får ved de to kommandoene

```
speilomx()
speilomy()*roter180()
```

er like, siden sammensetning av avbildninger tilsvarer multiplikasjon av matrisene som representerer avbildningene.

h)

Vi ser for eksempel at vi kan komme fra MH til HW på to forskjellige måter: Vi kan enten gå direkte fra MH til HW ved å rotere 180 grader, eller vi kan først speile MH om x-aksen slik at vi får WH, og deretter speile WH og y-aksen og få HW. Dette tyder på at det å rotere 180 grader gir samme resultat som først å speile om x-aksen og deretter speile om y-aksen. Sjekke at matrisene speilomy()*speilomx() og roter180() er like.

Oppgave 5

a)

Koden som løser i) og ii) blir som følger:

```
% i) dreier pila 30 grader med klokka
A = [ cos(-pi/6) -sin(-pi/6); sin(-pi/6) cos(-pi/6)]
% ii) dreier pila 60 grader med klokka
B = [ cos(-pi/3) -sin(-pi/3); sin(-pi/3) cos(-pi/3)]
```

b)

A dreie viseren to timer frem er det samme som å dreie viseren en time frem to ganger etter hverandre. Siden vi vet at sammensetning av avbildninger tilsvarer matrisemultiplikasjon, kan vi altså benytte matrisen A for å dreie viseren to timer frem.

c)

Funksjonen roter() kan skrives slik:

```
function X = roter(v)
    % Denne funksjonen tar som input en vinkel v
    % og returnerer matrisen som roterer figuren en vinkel v.
    X = [ cos(v) -sin(v); sin(v) cos(v)];
```

Vi tester denne ved å skrive

d)

Som i punkt b) vet vi at det å dreie viseren t
 timer frem er det samme som å dreie viseren en time frem t
 ganger, og at sammensetning av avbildninger tilsvarer matrisemultiplikasjon. Vi kan der
for bruke matrisen A til å dreie klokkeviseren t
 timer frem ved å skrive

```
tegn(A^t*klokkepil())
```

Metoden med bruk av potenser krever flere regneoperasjoner enn metoden som baserer seg direkte på rotasjonsmatrisene, og forskjellen blir større jo større t er, siden antall regneoperasjoner som kreves for å beregne A vokser eksponentielt med t, mens det å beregne $\sin t$ og $\cos t$ ikke blir noe mer komplisert når t vokser.

Oppgave 6

tikkendeklokke kan skrives slik:

```
% Script: tikkendeklokke
% Viser en timeklokke som går en runde (1 time per sekund).
% Henter inn en ferdig opptegnet klokkeskive generert av scriptet
% klokkeskive.m
\% Plottepunktene for en timeviser som peker rett opp (kl 12) er
% definert i en matrise som genereres av scriptet klokkepil.m
Denne timeviseren roteres vha en rotasjonsmatrise og tegnes opp % i samme figur som klokkeskiven ved hjelp av funksjonsprosedyren
% tegn.m
for i=1:13
  klokkeskive % script som tegner opp klokkeskiven
  tegn(roter((i-1)*(-pi/6))*klokkepil) % tegner den roterte viseren
 hold off
  pause(1) % venter 1 sek før neste figur tegnes
  % F(t)=getframe; % lagrer hvert plott i strukturen F
end
% movie(F,1,1)
```

Oppgave 7 (ekstraoppgave)

Vi kan lage en klokkeanimasjon ved å fjerne kommentarene foran to av linjene i funksjonen tikkendeklokke over.

Lab 2: Løsningsforslag

Oppgave 1

gaussA kan skrives slik:

```
A=[6 -2 0;9 -1 1;3 7 5];
for j=1:2 % gjennomgår en og en søyle (unntatt siste)
  for i=j+1:3 % gjennomgår en og en rad nedenfor pivoten
    k = A(i,j)/A(j,j); % finner riktig multiplum å trekke fra
    A(i,:) = A(i,:) -k*A(j,:); % nuller ut elementene under pivoten
  end %for i
end% forj
```

Vi sjekker at vi får samme resultat som da vi utførte skrittene manuelt:

```
>> gaussA
>> A
```

Oppgave 2

gauss kan skrives slik:

Oppgave 3

gauss_delpiv kan skrives slik:

```
function U = gauss_delpiv(A);
     [m,n]=size(A) % leser inn antall rader m og antall søyler n i matrisen A
     i=1; % Vi starter i første rad og setter derfor radindeksen 'i' lik 1
    % Vi skal nå gjennomgå en og en søyle:
         % For hver søyle j skal vi finne elementet med størst absoluttverdi
            i denne søylen fra rad nr i og nedover til rad m, dvs blant elementene
         % i A(i:m,j). Verdien av det maksimale elementet returneres i variabelen
         % maksverdi, mens antall rader vi måtte gå nedover fra rad nr i for å
         % finne det maksimale elementet, returneres i variabelen p.
         % (Dersom det fins flere like store maksimale elementer i en søyle,
         % velger MATLAB den første raden som inneholder et slikt maksimalt
         % element.)
         [maksverdi,p] = max(abs(A(i:m,j)));
         % Nå kan vi beregne radnummeret q til raden hvor det maksimale elementet % i søyle nr j befinner seg ved å justere indeksen 'p' (vi må legge til
         % (i-1) rader siden letingen etter maksimalelementet begynte i rad nr i)
        q = p+i-1;
% Så flytter vi rad nr q med det maksimale elementet opp ved å bytte om
% rad q og rad i (den øverste raden vi holder på med i dette trinnet)
A([i q],:) = A([q i],:);
% With the state of the make implementation of the property 
         % Vi har nå fått det maksimale elementet i søyle nr j som vårt nye
         % pivot-element A(i,j). Resten av prosedyren er den samme som før:
         % Vi ønsker å nulle ut alle elementene under pivot-elementet i søyle j. % Hvis pivot-elementet A(i,j) vi nå har fått er forskjellig fra null,
         % skal vi først dele alle rader nedenfor med dette pivot-elementet for
         % å finne det riktige multiplumet av rad nr i som vi må trekke fra den
         % aktuelle raden for å nulle ut elementet under pivot-elementet i søyle
         % nr j. Deretter trekker vi fra det riktige multiplumet av rad nr i. if A(i,j) == 0
             for r=i+1:m
                  k = A(r,j)/A(i,j);

A(r,:) = A(r,:) -k*A(i,:);
             end % forr
             \% Vi skal nå gå videre til neste søyle og lete etter et pivot-element i \% neste rad. Vi øker derfor radindeksen 'i' med 1. Hvis radindeksen blir
              % større enn totalt antall rader i matrisen, avbryter vi prosessen.
              i=i+1;
             if i>m
                 break
             end
         end % if A(i,j)
         % Hvis elementet i pivot-posisjonen (i,j) er null, vet vi (siden det % var det maksimale elementet i søylen) at alle elementer under også er
         % null.
    \overset{\vee}{\text{N}} Vi skal da bare gå videre til neste søyle uten å øke radindeksen. end% forj
    U=A;
```

Bemerkning: Generelt er det tidsbesparende å unngå for-løkker dersom man kan bruke vektor-indeksering isteden. I rutinene ovenfor kunne vi erstattet den innerste for-løkken (4 linjer) med følgende to linjer:

```
k(i+1:m,j) = A(i+1:m,j)/A(i,j);

A(i+1:m,j:n) = A(i+1:m,j:n) -k(i+1:m,j)*A(i,j:n);
```

Oppgave 4

gauss_jordan kan skrives slik:

```
function U = gauss_jordan(A);
% Fil: gauss_jordan.m
% Funksjon som tar en matrise A som inn-parameter, utfører
% gauss-jordan-eliminasjon med delvis pivotering på denne matrisen og
% returnerer matrisen på redusert trappeform U.
[m,n]=size(A)
i=1;
j=1;
while (i<=m) & (j<=n)
    [maksverdi,p] = max(abs(A(i:m,j)));
    q = p+i-1;
    A([i q],:) = A([q i],:);
    if A(i,j) = 0
        A(i,:) = A(i,:)/A(i,j); % skaffer ledende 1-er i pivot-raden
        for r=1:m % går gjennom alle radene
        if r =i % bortsett fra rad nr i (pivot-raden)
            k = A(r,j);
            A(r,:) = A(r,:) -k*A(i,:); % nuller ut elementet i søyle j
        end %if
    end % forr
    i = i + 1;
    j = j + 1;
    else % her er A(i,j) = 0
        j = j + 1;
    end %if
end % while
U=A;</pre>
```

Lab 3: Hint og løsningsforslag

Hint til Oppgave 1

Du kan godt løse oppgaven ved å bruke en for-løkke og break, men vi velger å gi en programskisse som benytter en while-løkke. Her trenger du bare å erstatte innmaten i de to parantesene <gi brukeren beskjed om søylene er lineært avhengige eller uavhengige. og
betingelse oppfylt> med riktig kode:

```
function linavh(A)
  % Fil: linavh.m
  % Funksjon som tar en matrise som inn-parameter og sjekker om
  % søylene i matrisen er lineært avhengige eller uavhengige.
  [m,n]=size(A);
  if m<n
    <gi brukeren beskjed om søylene er lineært avhengige eller uavhengige.</p>
   U=rref(A)
   uavh=true;
    j=1;
   while uavh==true & j<=n
      if <betingelse oppfylt>
       disp('Søylevektorene er lineært avhengige')
       uavh=false;
      end
      j=j+1;
    end
    if uavh==true
      disp('Søylevektorene er lineært uavhengige')
    end
  end
```

Hint til oppgave 2

Her trenger du bare å erstatte innmaten i parantesen

betingelser oppfylt> med riktig kode:

```
function inkons(A,b)
  % Fil: inkons.m
  % Funksjon som tar en matrise A og en vektor b som inn-parameter, og
  % sjekker om ligningssystemet A*x=b er konsistent eller inkonsistent.
  [m,n]=size(A);
  if length(b) =m
    disp('Vektoren du tastet inn har feil dimensjon')
  else
   Aug=[A,b]; % utvidet matrise med dimensjon m*(n+1)
   U=rref(Aug)
   konsistent=true;
  i=1;
  while konsistent==true & i<=m</pre>
```

```
if <betingelser oppfylt>
    disp('Ligningssystemet er inkonsistent')
    konsistent=false;
end
i=i+1;
end
if konsistent==true
    disp('Ligningssystemet er konsistent')
end
end
```

Hint til oppgave 3

Her trenger du bare å erstatte inn maten i de fire parantesene
betingelse oppfylt>,
betingelser oppfylt>, <gi brukeren beskjed om antall løsninger> og <gi variab elen entydig riktig sannhetsverdi>, med riktig kode:

```
function antlosn(A,b)
  % Fil: antlosn.m
  \% Funksjon som tar en matrise A og en vektor b som inn-parameter, og
  % sjekker om ligningssystemet A*x=b er inkonsistent eller konsistent.
  % Dersom ligningssystemet er konsistent, sjekker funksjonen om det
  % har uendelig mange løsninger eller en entydig løsning.
  [m,n]=size(A);
  if length(b) =m
    disp('Yektoren du oppga har feil dimensjon i forhold til matrisen')
    Aug=[A,b]; % utvidet matrise med dimensjon m*(n+1)
    U=rref(Aug)
   i=1;
   konsistent=true;
    while konsistent == true & i<=m
      if <betingelser oppfylt>
        disp('Ligningssystemet er inkonsistent')
       konsistent=false;
      end
      i=i+1;
    end
    if konsistent==true
      disp('Ligningssystemet er konsistent')
      entydig=true;
      if m<n
        <gi brukeren beskjed om antall løsninger>
        <gi variabelen entydig riktig sannhetsverdi>
      else
        while entydig==true & (j<=n) % trenger ingen radindeks siden n<=m
          if <betingelse oppfylt>
            disp('Systemet har uendelig mange løsninger')
            entydig=false;
          end
          j=j+1;
        end
        if entydig==true
          disp('Ligningssystemet har nøyaktig en løsning')
        end
      end% if m<n
    end % if konsistent
 end % if length
```

Søylene i en matrise A er lineært avhengige hvis og bare hvis det tilsvarende homogene likningssystemet $A\mathbf{x}=\mathbf{0}$ har uendelig mange løsninger. Dette vil være tilfelle dersom det finnes frie variable, dvs dersom det finnes pivot-frie søyler. Dette vil opplagt finnes hvis matrisen har flere søyler enn rader, dvs hvis m < n. Hvis $m \geq n$ kan vi teste om det finnes pivot-frie søyler ved å undersøke om det finnes elementer på diagonalen som er 0 i den reduserte trappeformen til matrisen A. Det første null-elementet vi finner hvis vi leter nedover diagonalen, må stå i en pivot-fri søyle (vær sikker på at du skjønner hvorfor! Dette betyr ikke at vi kan finne alle pivot-frie søyler bare ved å lete etter nuller på diagonalen! Men siden vi bare er interessert i om det finnes noen pivot-fri søyle, er det nok å finne den første):

```
function linavh(A)
  % Fil: linavh.m
  % Funksjon som tar en matrise som inn-parameter og sjekker om
  % søylene i matrisen er lineært avhengige eller uavhengige.
  % Søylene er lineært avhengige hvis det tilsvarende homogene
  % ligningssystemet har uendelig mange løsninger, dvs dersom det % finnes frie variabler. Dette tilsvarer at det finnes pivot-frie % søyler, noe som vil være tilfelle hvis m<n eller hvis det finnes
  % elementer på diagonalen som er null i den reduserte trappeformen.
  [m,n]=size(A);
  if m<n
    disp('Søylevektorene er lineært avhengige pga flere søyler enn rader')
  else
    U=rref(A)
    uavh=true;
    j=1;
    while uavh==true & j<=n
       if U(j,j)=0 % Sjekker om det fins et null-element på diagonalen
         disp('Søylevektorene er lineært avhengige')
         uavh=false;
       end
       j=j+1;
    end
    if uavh==true
       disp('Søylevektorene er lineært uavhengige')
  end
```

Oppgave 2

Et likningssystem av typen $A\mathbf{x} = \mathbf{b}$ er konsistent hvis og bare hvis den reduserte trappeformen til den utvidete matrisen $\begin{pmatrix} A & \mathbf{b} \end{pmatrix}$ ikke har en rad på formen $[00\cdots 0\mathbf{c}]$ hvor \mathbf{c} er forskjellig fra $\mathbf{0}$:

```
function inkons(A,b)
  % Fil: inkons.m
  % Funksjon som tar en matrise A og en vektor b som inn-parameter, og
  % sjekker om ligningssystemet A*x=b er konsistent eller inkonsistent.
  % Husk at et slikt ligningssystem er konsistent hvis og bare hvis den
  % reduserte trappeformen til den utvidete matrisen ikke har en rad på
  % formen [0 0 ...0 c] hvor c er forskjellig fra null.
  [m,n]=size(A);
  if length(b)~=m
    disp('Vektoren du tastet inn har feil dimensjon')
  else
    Aug=[A,b]; % utvidet matrise med dimensjon m*(n+1)
    U=rref(Aug)
    konsistent=true;
```

```
i=1;
while konsistent==true & i<=m
  if (U(i,1:n)==zeros(1,n)) & (U(i,n+1)~=0)
    disp('Ligningssystemet er inkonsistent')
    konsistent=false;
  end
  i=i+1;
end
  if konsistent==true
    disp('Ligningssystemet er konsistent')
end
end</pre>
```

Et konsistent likningssystem $A\mathbf{x} = \mathbf{b}$ har uendelig mange løsninger dersom det finnes frie variabler, dvs dersom det finnes søyler som ikke har pivot-elementer. Dette vil være tilfelle hvis matrisen har flere søyler enn rader, eller hvis det finnes null-elementer på diagonalen:

```
function antlosn(A,b)
  % Fil: antlosn.m
  \% Funksjon som tar en matrise A og en vektor b som inn-parameter og \% sjekker om ligningssystemet A*x=b er inkonsistent eller konsistent.
  % Dersom ligningssystemet er konsistent, sjekker funksjonen om det
  % har uendelig mange løsninger eller en entydig løsning.
  % Husk at systemet har uendelig mange løsninger dersom det finnes
  % frie variabler, dvs dersom det finnes søyler som ikke har % pivot-elementer. Dette vil være tilfelle hvis m<n eller hvis det
  % finnes null-elementer på diagonalen A(j,j).
  [m,n]=size(A);
  if length(b)~=m
    disp('Vektoren du oppga har feil dimensjon i forhold til matrisen')
  else
    Aug=[A,b]; % utvidet matrise med dimensjon m*(n+1)
    U=rref(Aug)
    % Sjekker om ligningssystemet er inkonsistent ved å lete etter
    % en rad på formen [0 0 ... 0 c] hvor c er forskjellig fra null.
    i=1:
    konsistent=true;
    while konsistent & i<=m
      if (U(i,1:n)==zeros(1,n)) & (U(i,n+1)^{-0})
         disp('Ligningssystemet er inkonsistent')
         konsistent=false;
      end
       i=i+1;
    end
    if konsistent
      disp('Ligningssystemet er konsistent')
      entydig=true; if m<n % det må finnes pivot-frie søyler
         disp('Systemet har uendelig mange løsninger')
         entydig=false;
      else
         j=1;
         while entydig==true & (j<=n) % trenger ingen radindeks siden n<=m
           if U(j,j)==0 % det må finnes pivot-frie søyler
             disp('Systemet har uendelig mange løsninger')
             entydig=false;
           end
           j=j+1;
         end
         if entydig
           disp('Systemet har nøyaktig en løsning')
```

```
end
end %if m<n
end % if konsistent
end % if length
```

a)

Resultatet av programkjøringen bør være:

b)

Resultatet av programkjøringene bør være:

υ =							
1 0 0	0 0 0	0 1 0	0 0 1				
Liknings	systeme	et er in	ıkonsiste	ent			
Ω =							
1 0	0 1	0 0	0 0				
0	0	1 0	0 0)			
Liknings	-						
U =	J						
1.00		0	(0.9600	
	0	0000.1	1.000) 0	0	-1.4800 1.6800	
T '1 '	0	0		_	1.0000	-2.0400	
Liknings U =	systeme	et er Ko	nsisten	,			
1.00	00	0	() 0	0	0.9600	
1.00		0000.		2.0000	0	-1.4800 1.6800	
	Ö	ŏ	(-	-2.0400	
Liknings Systemet	systeme har ue	et er ko endelig	nsistent mange l	; Ksninger			
U =		J		J			
1	0	0	0 (
0	1	0	0 2)			
0 0	0 0	0 0	1 0				
Liknings	systeme	et er ko	nsisten	;			
Ω =							
1 0	0 1	0 0	0 0				
0	0	1 0	0 0)			
0	0	0	0 (
Liknings Systemet	systeme har nø	et er ko Syaktig	nsisten en løsn:	ing			
Ω =							
1.00		0	(0	-1.0308	-1.2568
	0	0000.1	1.000) 0	0	-0.5992 1.6646	-0.8876 1.2700
	0	0 0	(1.0000	0.3321 0.2866	1.9416 -0.0166
Liknings	systeme	et er ko	nsisten	;			
Π =							
1.00		0 0.0000	(0	-1.0308 -0.5992	-1.2568 -0.8876
	0	0	1.000) 0	0	1.6646 0.3321	1.2700 1.9416
	Ö	Ö	Ò		1.0000	0.2866	-0.0166
Liknings Systemet	systeme har ue	et er ko endelig	nsistent mange lo	;			
•		- 3	J -/	- 0			

Lab 4: Løsningsforslag

I det følgende har vi først brukt kommandoen format long før vi kjører all kode, for å se flere desimaler i tilnærmingsverdiene.

Oppgave 1

a)

Kjører vi for-løkken

```
x=1;
for t=1:5
    xny=x-(x^3+2*x^2-2)/(3*x^2+4*x);
    x=xny
end
```

får vi svaret

Det ser ut som om tilnærmingene konvergerer mot et punkt. For å teste om funksjonsverdien i dette punktet er nær 0, gir vi kommandoen

```
>> x^3+2*x^2-2
ans = -2.220446049250313e-16
```

Funksjonsverdien i punktet er altså svært nær 0.

b)

Etter tre iterasjoner forandrer ikke de fire første desimalene i tilnærmingen seg lenger. Etter fire iterasjoner forandrer ikke de tolv første desimalene seg lenger.

Oppgave 2

a)

Koden for funksjonen newton blir slik:

b)

For å kunne bruke funksjonen newton på funksjonen $f(x) = x^3 + 2x^2 - 2$, skriver vi to anonyme funksjoner hvor vi spesifiserer funksjonen og dens deriverte $f'(x) = 3x^2 + 4x$:

```
@(x)x^3+2*x^2-2
@(x)3*x^2+4*x
```

Vi kjører funksjonen newton på funksjonen f med startpunkt $x_0 = 1$, og får (hvis du har brukt den anbefalte kommandoen fprintf for å få pen utskrift på skjermen)

c)

Først plotter vi funksjonen $f(x) = x^3 + 2x^2 - 30x - 5$ over intervallet [-8, 6] ved å skrive

```
x=[-8:0.1:6];
y=x.^3+2.*x.^2-30.*x-5;
plot(x,y)
```

For å kunne bruke funksjonen newton på $f(x)=x^3+2x^2-30x-5$ og dens deriverte $f'(x)=3x^2+4x-30$ med startpunkt $x_0=1$, skriver vi

Vi ser at funksjonsverdien i tilnærmingspunktet er svært nær 0, så dette er en god tilnærming til et nullpunkt for funksjonen. Ved å skifte ut startpunktet med hhv 4 og -4, får vi på tilsvarende måte tilnærmingsverdier x=4.66323383636907 og x=-6.49823244654976 for de to andre nullpunktene til funksjonen.

d)

For å studere funksjonen $g(x) = x^3 - 5x$ lager vi først et plott av funksjonen over intervallet [-3, 3] ved å skrive:

```
x=-3:0.1:3;
y=x.^3-5.*x;
plot(x,y)
```

For å kunne bruke funksjonen newton på funksjonen $g(x) = x^3 - 5x$ og dens deriverte $g'(x) = 3x^2 - 5$ med startpunkt $x_0 = 1$, skriver vi

```
>> x=newton(1,0(x)x^3-5*x,0(x)3*x^2-5)
```

Vi ser da at tilnærmingsverdiene hopper mellom 1 og -1 (går i sykel), og nærmer seg altså ikke noe nullpunkt for funksjonen (funksjonsverdiene i de to punktene er hhv -4 og 4). Arsaken til denne oppførselen er at tangenten til grafen over startpunktet x=1 skjærer x-aksen i punktet x=-1 (som altså blir neste tilnærmingspunkt), mens tangenten til grafen over punktet x=-1 skjærer x-aksen i punktet x=1 (slik at det neste tilnærmingspunktet blir lik starpunktet). Dermed fører Newtons metode oss bare i en sykel mellom disse to punktene. Når vi etterpå prøver med startpunktet x=2, konvergerer tilnærmingsverdiene pent mot et tilnærmet nullpunkt x=2.23606797749979 for funksjonen. Oppgaven illustrerer altså hvor stor betydning valg av startpunkte kan ha for om Newtons metode konvergerer eller ikke: velger vi startpunktet $x_0=1$ vil tilnærmingsverdiene gå inn i en sykel og ikke konvergere mot noe nullpunkt, men velger vi startpunktet $x_0=2$, får vi rask konvergens mot et nullpunkt.

Vi lager et plott av funksjonen $h(x) = x^{1/3}$ over intervallet [-4, 4] ved å skrive:

```
x=[-4:0.05:4];
y=sign(x).*abs(x).^(1./3);
plot(x,y)
```

For å bruke funksjonen newton på funksjonen $h(x) = x^{1/3}$ og dens deriverte $h'(x) = \frac{1}{3}x^{-2/3}$ med startpunkt $x_0 = 1$, skriver vi

```
>> x=newton(1, 0(x)sign(x)*abs(x)^(1/3), 0(x)(1/3)*abs(x)^(-2/3))
```

Her vil tilnærmingsverdiene divergere lenger og lenger bort fra nullpunktet til funksjonen. Arsaken til denne oppførselen er at tangenten til grafen over startpunktet $x_0 = 1$, er så slak at det neste tilnærmingspunktet x_1 (som ligger der hvor tangenten krysser x-aksen) blir liggende lenger borte fra nullpunktet origo enn x gjorde. Tangenten i det nye tilnærmingspunktet x er enda slakere, og fører oss derfor enda lenger bort fra origo for å finne neste tilnærmingsverdi x_2 osv.

Oppgave 3

a)

Funksjonen kompleks kan skrives slik:

```
% Script som genererer et bilde av hvilke punkter i planet som % gir konvergens mot samme nullpunkt når vi bruker Newtons metode % på den komplekse funksjonen f(z)=z^3+a*z+b % Punktene i planet tilordnes en farge som angir hvilket av % nullpunktene de gir konvergens mot. % Vi lager først et m*n-gitter av punkter i planet, og deretter
```

```
\% genererer vi en m*n-matrise T som inneholder fargeverdiene hvert av
% punktene skal ha.
% Fargeverdien i et punkt finner vi ved å bruke Newtons metode på
% punktet, og se om resultatet havner nær ett av nullpunktene for % funksjonen. Vi gir de punktene som konvergerer mot samme nullpunkt,
% den samme fargen.
% Lager vektorer som inneholder hhv real-of imaginærdelen til
% punktene i gitteret vi skal studere
x=[-2:0.01:2]
y=[-2:0.01:2];
[X,Y] = meshgrid(x,y);
[m,n]=size(X);
maxit=30; % maksimalt antall iterasjoner som skal utføres
tol=0.001; %toleranse
T=27*ones(m,n); %initialiserer fargene til å være 27 (turkis)
% Velger parametere til funksjonen f(z)=z^3+a*z+b
b=-1;
% Vi angir koeffisientene foran potensene av z i polynomet z^3+a*x+b:
p=[1 0 a b];
% Vi lar Matlab finne numeriske verdier for de tre nullpunktene til polynomet:
rts=roots(p);
% Så gjennomløper vi ett og ett punkt i gitteret ved en dobbelt for-løkke:
for j=1:m
  for k=1:n
    z=X(j,k)+i*Y(j,k);
    % Kjører gjentatte iterasjoner av Newtons metode på det aktuelle
    % punktet i gitteret inntil det ligger nærmere et av
    % nullpunktene enn den angitte toleransen (eller til vi har utført % maxit antall iterasjoner).
    % Fargeverdien til punktet registreres i matrisen T og settes til
    % hhv 1 (blå), 44 (gul) eller 60 (rød) avhengig av hvilket nullpunkt
    % det gir konvergens mot.
    for t=1:maxit
       z=z-(z^3+a*z+b)/(3*z^2+a);
       if abs(z-rts(1))<tol
         T(j,k)=1;
         break;
       end
       if abs(z-rts(2))<tol
         T(j,k)=44;
         break;
       if abs(z-rts(3))<tol
         T(j,k)=60;
         break;
      end
    end %for t
  end %for k
end %for j
image(x,y,T) %fargelegger punktet (x(j),y(k)) i planet med fargen
% angitt av verdien av matrise-elementet T(j,k)
axis xy % setter aksesystemet i vanlig xy-orientering;
colorbar %t egner opp søyle med fargeverdiene ved siden av plottet
```

b)

Den eneste modifikasjonen du trenger å gjøre i scriptet fra punkt a) er å sette parameterverdiene til å være a=2 og b=0, og deretter a=-1 og b=2.

Oppgave 4

a)

En modifisert funksjon som gir punktene dypere fargevalør jo raskere konvergens de gir mot et nullpunkt, kan se slik ut:

```
function kompleks(a,b)
  % Prosedyre som genererer et bilde av hvilke punkter i planet som
  % gir konvergens mot samme nullpunkt når vi bruker Newtons metode
  % på den komplekse funksjonen f(z)=z^3+a*z+b, hvor koeffisientene
  % a og b er innparametre til prosedyren.
  % Punktene i planet tilordnes en farge som angir hvilket av
  % nullpunktene de gir konvergens mot.
  \% I denne versjonen gir vi i tillegg punktene dypere fargevalør jo \% raskere konvergensen mot nullpunktet går.
  x=[-2:0.01:2];
  y=[-2:0.01:2];
  [X,Y] = meshgrid(x,y);
  [m,n]=size(X);
  maxit=30; % maksimalt antall iterasjoner som skal utføres
  tol=0.001; %toleranse
  T=27*ones(m,n); %initialiserer alle fargeverdiene til 27 (turkis)
  % Vi angir koeffisientene foran potensene av z i polynomet z^3+a*z+b:
  p=[1 0 a b];
% Vi lar Matlab finne numeriske verdier for de tre nullpunktene til polynomet:
  rts=roots(p)
  % Så gjennomløper vi ett og ett punkt i gitteret ved en dobbelt
  % for-løkke:
  for j=1:m
    for k=1:n
      z=X(j,k)+i*Y(j,k);
      \% Kj\phirer gjentatte iterasjoner av Newtons metode på det aktuelle
      % punktet i gitteret inntil resultatet ligger nærmere et av
      % nullpunktene enn den angitte toleransen (eller til vi har utført
      % maxit antall iterasjoner).
      \% Fargeverdien til punktet registreres i matrisen T og settes til
      % hhv. blå (verdier fra 1 og litt oppover), gul (verdier fra 48 % og litt nedover) eller rød (verdier fra 64 og litt nedover)
      % avhengig av hvilket nullpunkt det gir konvergens mot. Vi
% indikerer konvergenshastigheten ved å justere fargeverdien slik
      % at fargevaløren blir lysere jo langsommere konvergensen går.
      for t=1:maxit
         z=z-(z^3+a*z+b)/(3*z^2+a);
         if abs(z-rts(1))<tol
           T(j,k)=1+t*(23/maxit);
           break;
         end
         if abs(z-rts(2))<tol
           T(j,k)=48-t*(23/maxit);
           break:
         end
         if abs(z-rts(3))<tol
           T(j,k)=64-t*(23/maxit);
          break;
         end
      end %for t
    end %for k
  end %for j
  image(x,y,T) %fargelegger punktet (x(j),y(k)) i planet med fargen
  %angitt av verdien av matrise-elementet T(j,k)
  axis xy %setter aksesystemet i vanlig xy-orientering;
  colorbar %tegner opp søyle med fargeverdiene ved siden av plottet
```

b)

Nullpunktene er de tre prikkene med mørkest fargevalør i de største fargeområdene av blått, gult og rødt. Vi ser at rundt hvert nullpunkt er det et forholdsvis stort område hvor alle punkter konvergerer mot nullpunktet, men konvergensen går raskere (dypere fargevalør) jo nærmerer nullpunktet startpunktet ligger. Inni hvert hovedfargeområde finner vi imidlertid mindre områder som konvergerer mot de andre nullpunktene, og dette gir det intrikate fraktale bildet.

c)

Her setter du bare parameterverdiene til å være a = 2 og b = 0, og deretter a = -1 og b = 2.

Oppgave 5

Den modifiserte funksjonen som gir mulighet til å flytte sentrum og zoome inn på et hvilket som helst punkt, kan se slik ut:

```
function komplekszoom(sentrumx,sentrumy,zoom)
% Prosedyre som genererer et bilde av hvilke punkter i planet som
  % gir konvergens mot samme nullpunkt når vi bruker Newtons metode
  % på den komplekse funksjonen f(z)=z^3+a*z+b
  % Punktene i planet tilordnes en farge som angir hvilket av
  % nullpunktene de gir konvergens mot, og hvor rask konvergensen er.
% Denne versjonen kan brukes til å zoome inn på et hvilket som helst
  % punkt (xsentrum, ysentrum) som angis som innparameter til prosedyren.
    I tillegg angis ønsket forstørrelse ved innparameteren zoom. Hvis vi
  % ikke ønsker å forstørre noe, velges zoom=1, ønsker vi dobbelt
  % forstørrelse, velges zoom=2 osv.
% Vi regner ut (halve) lengden på intervallet ved hjelp av den
  % oppgitte forstørrelsen gitt ved innparameteren zoom.
  % Denne lengden er i utgangspunktet lik 2 før forstørrelse.
  lengde=2/zoom;
  x=linspace(sentrumx-lengde,sentrumx+lengde,400);
  y=linspace(sentrumy-lengde, sentrumy+lengde, 400);
  [X,Y] = meshgrid(x,y);
  [m,n]=size(X);
  maxit=30; % maksimalt antall iterasjoner som skal utføres
  tol=0.001; %toleranse
  T=27*ones(m,n); %initialiserer alle fargeverdiene til å være 27 (turkis)
  % Velger parametere til funksjonen f(z)=z^3+a*z+b
  a=0;
  b=-1;
  % Vi angir koeffisientene foran potensene av z i polynomet z^3+a*x+b:
  p=[1 0 a b];
% Vi lar Matlab finne numeriske verdier for de tre nullpunktene til polynomet:
  rts=roots(p)
  % Så gjennomløper vi ett og ett punkt i gitteret ved en dobbelt
  for j=1:m
    for k=1:n
      z=X(j,k)+i*Y(j,k);
      for t=1:maxit
         z=z-(z^3+a*z+b)/(3*z^2+a);
         if abs(z-rts(1))<tol
           T(j,k)=1+t*(23/maxit);
          break;
         end
         if abs(z-rts(2))<tol
          T(j,k)=48-t*(23/maxit);
          break;
         if abs(z-rts(3))<tol
          T(j,k)=64-t*(23/maxit);
          break;
         end
      end %for t
    end %for k
  end %for j
  image(x,y,T) %fargelegger punktet (x(j),y(k)) i planet med fargen
  %angitt av verdien av matrise-elementet T(j,k)
  axis xy %setter aksesystemet i vanlig xy-orientering, ellers ville
  %verdiene på y-aksen går i motsatt retning av vanlig
  colorbar %tegner opp søyle med fargeverdiene ved siden av plottet
```

For å lage en liten sekvens av bilder som zoomer inn på origo, kan vi f.eks doble forstørrelsen hver gang ved å gi kommandoene

```
komplekszoom(0,0,1)
komplekszoom(0,0,2)
komplekszoom(0,0,4)
komplekszoom(0,0,8)
```

Tilsvarende kan vi lage en sekvens av bilder som zoomer inn på punktet (-0.8,0) ved å bytte ut første parameter med -0.8.

Ekstraoppgave

For å lage en animasjon som zoomer mer gradvis inn på punktet (-0.8,0), kan vi blåse opp forstørrelsene langsommere ved å velge en mindre oppblåsningsfaktor, f.eks faktor=1.25 (da vi fordoblet bildestørrelsen ovenfor var denne faktoren lik 2). Følgende kommandoer lager en slik animasjon:

```
faktor=1.25;
makszoom=10;
for t=1:makszoom
  komplekszoom(-0.8,0,faktor^t);
  F(t)=getframe; % plott nummer t lagres i F(t)
end
movie(F,1,2); %spiller animasjonen en gang med 2 bilder pr sekund.
```

Oppgave 6

a)

Vi kan skrive funksjonen newtonfler slik

```
function x=newtonfler(x,F,J)
  % Funksjon som utfører Newtons metode på en
  % vektorvaluert funksjon
  % x: søylevektor som inneholder startpunktet for iterasjonen
  % F: funksjon som regner ut funksjonsverdiene
  % J: Funksjon som regner ut Jacobimatrisen
 epsilon=0.0000001;
 N=30;
 n=0;
  while norm(F(x)) > epsilon & n<=N
    x=x-J(x)\F(x);
    fval = F(x);
   fprintf('itnr=%2d x=[%13.10f,%13.10f] F(x)=[%13.10f,%13.10f] \setminus n',...
            n,x(1),x(2),fval(1),fval(2))
   n = n + 1;
  end
```

b)

Vi tegner opp nivåkurvene f(x,y) = 0 og g(x,y) = 0 i samme figurvindu (og skriver plottet til filen kontur.eps) med følgende kode:

```
r=-10:0.1:10;
s=-10:0.1:10;
[x,y]=meshgrid(r,s);
f=x.^2+y.^2-48;
g=x+y+6;
contour(x,y,f,[0 0]) % tegner opp en nivåkurve hvor f=0
hold('on')
contour(x,y,g,[0 0]) % tegner opp en nivåkurve hvor g=0
axis('square')
hold('off')
print -deps 'kontur.eps'
```

Av figuren ser vi at de to nivåkurvene skjærer hverandre i to punkter, så likningssystemet har to løsninger.

c)

Vi ser av figuren i punkt a) at de to nullpunktene ligger i nærheten av (-7,1) og (1,-7), så det kan være lurt å prøve disse som startverdier. Vi utfører Newtons metode på vår vektorvaluerte funksjon og på dens Jacobimatrise med startpunkt (-7,1), ved hjelp av koden

```
>> x=newtonfler([-7;1],...

@(x)[x(1)^2+x(2)^2-48; x(1)+x(2)+6],...

@(x)[2*x(1) 2*x(2); 1 1])

x =

-6.872983346207417

0.872983346207417
```

Denne verdien er nær å være et nullpunkt, som utskriften fra for-løkken viser oss. NB! Husk på at startpunktet skal angis som en søylevektor. For å finne en tilnærmingsverdi til det andre nullpunktet, bruker vi startpunktet (1, -7) og skriver

Denne verdien er også nær å være et nullpunkt

Oppgave 7

For å kjøre funksjonen newtonfler på dette likningssystemet med startpunkt x = (1, -7, 5), skriver vi

Også her er verdien som regnes ut veldig nær å være et nullpunkt

Register

abs(), 4	inv(), 7
$a\cos(), 5$	legend(), 13
arange(), 15	linspace(), 11
asin(), 5	$\log(), 5$
atan(), 5	108(), 0
axis(), 14	max(), 18
$\operatorname{ceil}()$, 5	$\operatorname{mesh}(), 15$
clabel, 15	$\operatorname{meshc}(), 15$
colorbar, 80	meshgrid(), 15
contour(), 15	$\min(), 18$
$\cos(), 5$	movie(), 47
$\cot(), 5$	
cross(), 9	norm(), 9
(1000)	num2str, 34
dblquad, 12, 40	
det(), 7	ones(), 19
diag(), 18	
disp, 33	pause(), 68
	pi, 5
dot(), 9	plot(), 13
eig(), 7	plot 3(), 16
eval, 48	print, 14
$\exp(), 4$	prod(), 11
	1 ()/
eye(), 19	quad, 12, 40
fclose, 33	quiver(), 16
figure(), 13	- 07
	rand(), 10
floor(), 5	randperm(), 19
fopen, 33	rank(), 8
format, 5	roots(), 80
fprintf, 32	round(), 5
fread, 33	$\operatorname{rref}(), 22$
fwrite, 33	(),
graph3d, 16	sign(), 79
8Pa)	$\sin(), 5$
help(), 3	size(), 18
hold(), 13	sprintf, 33
(), -	$\operatorname{sqrt}(), 4$
image(), 80	str2num, 34
imageview(), 42	strcmp, 33
imread(), 42	streamline(), 16
imwrite(), 42	subplot(), 14
input, 33	subs, 49
int, 48	sum(), 11
	**

surf(), 15

sym, 48

syms, 49

tan(), 5 text(), 14 title(), 14

tril(), 19

triplequad, 12, 40

triu(), 19

xlabel(), 14

ylabel(), 14

zeros(), 19