Two Higgs are Better than One

PHILIP ROBERT HEBDA

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

PHYSICS

ADVISER: DANIEL MARLOW

June 2015

© Copyright by Philip Robert Hebda, 2015. All rights reserved.

Abstract

This is a LATEX template and document class for Ph.D. dissertations at Princeton University. It was created in 2010 by Jeffrey Dwoskin, and adapted from a template provided by the math department. Their original version is available at: http://www.math.princeton.edu/graduate/tex/puthesis.html

This is **NOT** an official document. Please verify the current Mudd Library dissertation requirements [2] and any department-specific requirements before using this template or document class.

Your abstract can be any length, but should be a maximum of 350 words for a Dissertation for ProQuest's print indicies (or 150 words for a Master's Thesis); otherwise it will be truncated for those uses [1].

Dwoskin Ph.D. Dissertation Template — version 1.0, 5/19/2010

Acknowledgements

I would like to thank the Math department for providing the original document class file that this class is based upon. I would like to thank my parents, without whom my life would not be possible. I would also like to thank my advisor, my dissertation committee, and my research collaborators because every graduate student needs to do so. And finally, I thank the members of my research group, to whom I leave this template to save you some of the trouble I had to go through getting my dissertation to compile in LATEX.

Don't forget to ask your advisor if your work was sponsored by a grant that needs to be acknowledged in this section.

To my parents.

Contents

	Abs	tract	iii		
	Ack	nowledgements	iv		
	List	of Tables	ix		
	List	of Figures	X		
1	Introduction				
	1.1	Higgs Discovery	1		
	1.2	The Standard Model	1		
	1.3	Successes of the SM	1		
	1.4	Shortcomings of the SM	1		
	1.5	diHiggs as a probe of SM and New Physics	1		
2	Exp	perimental Facility	2		
	2.1	CERN	2		
	2.2	LHC	2		
	2.3	CMS	2		
3 Physics Objects			3		
	3.1	Photons	3		
	3.2	Jets	3		
1	Rig	Data	1		

	4.1	The Trigger System	4			
	4.2	Data Storage Worldwide	4			
5	Background Processes					
	5.1	Real processes	5			
	5.2	Fakes	5			
	5.3	Simulation	5			
6	Event Selection					
	6.1	Signal Simulation	6			
	6.2	Hgg Reconstruction	6			
	6.3	Hbb Reconstruction	6			
	6.4	Resonant Reconstruction	6			
	6.5	Optimization Studies	6			
7	Systematic Uncertainties					
	7.1	Photon Uncertainties	7			
	7.2	Jet Uncertainties	7			
	7.3	Other Experimental Sources	7			
	7.4	Theory Uncertainties	7			
	7.5	Impact on Analysis	7			
8	Results and Prospects					
	8.1	Resonant Results	8			
	8.2	Nonresonant Results	8			
	8.3	The Future	8			
9	Con	nclusion	9			
${f A}$	Mo	m, this is for you.	10			

B Other Projects			11			
	B.1	Lumi Results	11			
	B.2	PLT Results	11			
	В.3	W' Results	11			
	B.4	VHbb Results	11			
Bi	Bibliography					

List of Tables

List of Figures

Introduction

This is the introduction. Physics is awesome.

- 1.1 Higgs Discovery
- 1.2 The Standard Model
- 1.3 Successes of the SM
- 1.4 Shortcomings of the SM
- 1.5 diHiggs as a probe of SM and New Physics

Experimental Facility

2.1 CERN

overview of facilities, experiments, history

2.2 LHC

proton beams, how do they work?

2.3 CMS

plenty of subsections here for tracker, ecal, hcal, solenoid, muons talk about trigger and storage later

Physics Objects

Talk about stuff used in the analysis

- 3.1 Photons
- 3.2 Jets

Big Data

data taking eff, pretty lumi plot

- 4.1 The Trigger System
- 4.2 Data Storage Worldwide

Background Processes

- 5.1 Real processes
- 5.2 Fakes
- 5.3 Simulation

Event Selection

This section describes how we got from events with collections of photons and jets to 2 higgs candidates, and in the resonant case to a resonant candidate

- 6.1 Signal Simulation
- 6.2 Hgg Reconstruction
- 6.3 Hbb Reconstruction
- 6.4 Resonant Reconstruction
- 6.5 Optimization Studies

Separate resonant and nonresonant here

Systematic Uncertainties

- 7.1 Photon Uncertainties
- 7.2 Jet Uncertainties
- 7.3 Other Experimental Sources
- 7.4 Theory Uncertainties
- 7.5 Impact on Analysis

Results and Prospects

- 8.1 Resonant Results
- 8.2 Nonresonant Results

both SM and anomolous couplings

8.3 The Future

Conclusion

Some rehash of abstract and intro

Appendix A

Mom, this is for you.

Explain the work of this thesis to my mom and anybody else.

Appendix B

Other Projects

- B.1 Lumi Results
- B.2 PLT Results
- B.3 W' Results
- B.4 VHbb Results

Bibliography

- [1] ProQuest. PQ/UMI GradWorks Guide F2006. http://www.princeton.edu/~mudd/thesis/Submissionguide.pdf, 2006.
- [2] Seeley G. Mudd Manuscript Library. Submitting your Doctoral Dissertation or Masters Thesis to the Mudd Manuscript Library. http://www.princeton.edu/~mudd/thesis/, May 2009.