Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему: «Вычисление интеграла с помощью квадратурных формул»

Выполнил: студент группы 09-222 Романов И. И. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы	4
3	Выводы	7
4	Листинг программы	8

1 Постановка задачи

Необходимо изучить и сравнить различные способы приближённого вычисления функции ошибок

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt \tag{1}$$

1. Протабулировать $\operatorname{erf}(x)$ на отрезке [a,b] с шагом h и точностью ε , основываясь на ряде Маклорена, предварительно вычислив его. Получив таким образом таблицу из 11 точек вида:

$$x_0 x_1 x_2 \dots$$

 f_0 f_1 f_2 ...

$$f_i = \text{erf}(x_i), \quad x_i = a + ih, \quad i = 0, \dots, n.$$

- 2. Вычислить $\operatorname{erf}(\mathbf{x})$ при помощи пяти составных квадратурных формул при $h = (x_{i+1} x_i)$:
 - 2.1. Формула правых прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg(x_i) \tag{2}$$

2.2. Формула центральных прямоугольников:

$$J_N(x) = \sum_{i=1}^n hg\left(\frac{x_i + x_{i+1}}{2}\right)$$
 (3)

2.3. Формула трапеции:

$$J_N(x) = \sum_{i=1}^n h \frac{g(x_i) + g(x_{i+1})}{2}$$
 (4)

2.4. Формула Симпсона:

$$J_N(x) = \sum_{i=1}^n \frac{h}{6} \left[g(x_i) + 4g\left(\frac{x_i + x_{i+1}}{2}\right) + g(x_{i+1}) \right]$$
 (5)

2.5. Формула Гаусса:

$$J_N(x) = \sum_{i=1}^n \frac{h}{2} \left[g \left(x_i + \frac{h}{2} \left(1 - \frac{1}{\sqrt{3}} \right) \right) + g \left(x_i + \frac{h}{2} \left(1 + \frac{1}{\sqrt{3}} \right) \right) \right]$$
 (6)

Вычисления проводятся от начала интегрирования до каждой из 11 точек, увеличивая количество разбиений между точками в 2 раза до тех пор, пока погрешность больше ε .

2 Ход работы

Для того чтобы найти значение функции в точке, необходимо протабулировать искомый интеграл на отрезке [a, b] с шагом h = 0.2 и точностью ε . Для этого:

1. Найдём разбиение подинтегральной функции e^{-t^2} в ряд Маклорена, подставив в стандартное разбиение функции e^x в ряд Маклорена $x = -t^2$:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \implies e^{-t^2} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!}$$
 (7)

2. Проинтегрируем полученное выражение на интеграле [0, х]:

$$\frac{2}{\sqrt{\pi}} \int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!} dt = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n-1)n!} \bigg|_{0}^{x} = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n-1)n!}$$
(8)

3. Выделим два общих члена a_n , a_{n+1} из полученного выражения и найдём $q_n = \frac{a_{n+1}}{a_n}$:

$$a_n = \frac{(-1)^n x^{2n+1}}{n!(2n+1)}, \quad a_{n+1} = \frac{(-1)^{n+1} x^{2n+3}}{(n+1)!(2n+3)}.$$
 (9)

$$q_n = \frac{-x^2(2n+1)}{(n+1)(2n+3)}. (10)$$

Таким образом,

$$a_n = a_0 \prod_{n=0}^{n-1} q_n. (11)$$

Для каждой точки $x_i = a + ih$ найдём значение $erf(x_i)$ и составим таблицу результатов (Таблица 1).

x_i	$erf(x_i)$
0,0	0,0000000000
0,2	0,2227025926
0,4	0,4283923805
0,6	0,6038561463
0,8	0,7421009541
1,0	0,8427006602
1,2	0,9103140831
1,4	0,9522852302
1,6	0,9763484001
1,8	0,9890906215
2,0	0,9953226447

Таблица 1 - точки x_i и значения разложения в ряд Маклорена функции $erf(x_i)$

После нахождения значений разложения в ряд Маклорена в точках, вычислим значение erf(x) при помощи 5 составных квадратурных формул. Для каждой формулы составим свою таблицу. В таблицах будут находится значения точки, для которой производились расчёты, значение разбиения в ряд Маклорена в точке, значение найденного с помощью формулы интеграла в точке, модуль разницы между значениями найденного интеграла и разбиения, количества разбиений, которые пришлось совершить для нахождения значения интеграла с нужной точностью.

1. Правые прямоугольники:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	0,2227025926	0,2226983160	0,0000042766	1024
0,4	0,4283923805	0,4283596873	0,0000326931	1024
0,6	0,6038561463	0,6037563682	0,0000997782	1024
0,8	0,7421009541	0,7418920994	0,0002088547	1024
1,0	0,8427006602	0,8423525691	0,0003480911	1024
1,2	0,9103140831	0,9098084569	0,0005056262	1024
1,4	0,9522852302	0,9516219497	0,0006632805	1024
1,6	0,9763484001	0,9764841199	0,0001357198	1024
1,8	0,9890906215	0,9891686440	0,0000780225	1024
2,0	0,9953226447	0,9953628182	0,0000401735	1024

Таблица 2 - таблица значений для формулы Правых прямоугольников

2. Центральные прямоугольники:

	T /	7	7 /	7.7
x_i	$J_0(x_i)$	$J_(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	$0,\!2227025926$	$0,\!2227027565$	0,0000001639	64
0,4	0,4283923805	0,4283923209	0,0000000596	256
0,6	0,6038561463	0,6038563848	0,0000002384	256
0,8	0,7421009541	0,7421010733	0,0000001192	512
1,0	0,8427006602	0,8427013755	0,0000007153	512
1,2	0,9103140831	0,9103139043	0,0000001788	512
1,4	0,9522852302	0,9522854686	0,0000002384	512
1,6	0,9763484001	0,9763489366	0,0000005364	256
1,8	0,9890906215	0,9890908003	0,0000001788	512
2,0	0,9953226447	0,9953227639	0,0000001192	256

Таблица 3 - таблица значений для формулы Центральных прямоугольников

3. Формула трапеций:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	$0,\!2227025926$	0,2229140997	0,0002115071	128
0,4	0,4283923805	0,4287676811	0,0003753006	512
0,6	0,6038561463	0,6043169498	0,0004608035	512
0,8	0,7421009541	0,7425656319	0,0004646778	512
1,0	0,8427006602	0,8431062102	0,0004055500	512
1,2	0,9103140831	0,9106265903	0,0003125072	512
1,4	0,9522852302	0,9525024891	0,0002172589	512
1,6	0,9763484001	0,9764841199	0,0001357198	512
1,8	0,9890906215	0,9891686440	0,0000780225	512
2,0	0,9953226447	0,9953628182	0,0000401735	512

Таблица 4 - таблица значений для формулы Трапеций

4. Формула Симпсона

4.1. Вывод формулы Симпсона через интегральный полином Лагранжа: Формула для полинома Лагранжа:

$$L_n(x) = \sum_{i=0}^n f(x_i) \prod_{i \neq j, j=0}^n \frac{x - x_j}{x_i - x_j}$$
 (12)

По трём узлам
$$(x_1 = a, x_2 = \frac{a+b}{2}, x_3 = b)$$
 : $L_2 = f(a) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}}\right) \left(\frac{x-b}{a-b}\right) + f(b) \left(\frac{x-b}{2}\right) \left(\frac{x-b}{2}\right) \left(\frac{x-b}{2}\right) \left(\frac{x-b}{2}\right) \cdot \left(\frac{x$

Проинтегрируем выражение по интервалу [a,b]:

$$\int_{a}^{b} L_{2}(x)dx = f(a)c_{1} + f\left(\frac{a+b}{2}\right)c_{2} + f(b)c_{3}$$
(13)

где
$$c_1 = \frac{b-a}{6}, c_2 = \frac{2}{3}(b-a), c_3 = \frac{b-a}{6}.$$

Тогда:

$$\int_{a}^{b} L_{2}(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$
 (14)

4.2. Значения полученные для формулы Симпсона:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	0,2227025926	0,2227026075	0,0000000149	2
0,4	0,4283923805	0,4283923805	0,0000000000	4
0,6	0,6038561463	0,6038562059	0,0000000596	8
0,8	0,7421009541	0,7421009541	0,0000000000	8
1,0	0,8427006602	0,8427007794	0,0000001192	16
1,2	0,9103140831	0,9103139639	0,0000001192	16
1,4	0,9522852302	0,9522852302	0,0000000000	8
1,6	0,9763484001	0,9763483405	0,0000000596	16
1,8	0,9890906215	0,9890906215	0,0000000000	32
2,0	0,9953226447	0,9953221679	0,0000004768	32

Таблица 5 - таблица значений для формулы Симпсона

5. Формула Гаусса:

x_i	$J_0(x_i)$	$J(x_i)$	$ J_0(x_i) - J_N(x_i) $	N
0,0	0,0000000000	0,0000000000	0,0000000000	2
0,2	$0,\!2227025926$	0,2227025777	0,0000000149	2
0,4	0,4283923805	0,4283923209	0,0000000596	4
0,6	0,6038561463	0,6038560867	0,0000000596	8
0,8	0,7421009541	0,7421008945	0,0000000596	8
1,0	0,8427006602	0,8427007794	0,0000001192	16
1,2	0,9103140831	0,9103140235	0,0000000596	16
1,4	0,9522852302	0,9522851706	0,0000000596	8
1,6	0,9763484001	0,9763484001	0,0000000000	16
1,8	0,9890906215	0,9890905023	0,0000001192	32
2,0	0,9953226447	0,9953223467	0,0000002980	32

Таблица 6 - таблица значений для формулы Гаусса

3 Выводы

Проделав все вычисления, можно сделать выводы, что более комплексные методы вычисления интеграла, как формула Гаусса и Симпсона, показыают наилучшие результаты за меньшее количество разбиений. В это же время худшие результаты вычисления показыают методы правых прямоугольников и метод трапеций, приводя к довольно большому значению ошибки.

4 Листинг программы

```
#include <algorithm>
2 #include <cmath>
3 #include <iostream>
#include <vector>
6 using namespace std;
8 namespace constans {
9 const int STEPS = 1024;
const float LEFT_BORDER = 0;
const float EPSILON = 1e-6;
const float E = 2.71828182846;
13 } // namespace constans
14
15 float Tfunc(float x) {
   int n = 0;
16
   float node_0 = x;
17
   float ans = x;
18
    while (fabs(node_0) > 1e-6) {
19
      float q = (-1)*(((2*n + 1)*x*x)/(2*n*n + 5*n + 3));
20
     node_0 *= q;
21
     ans += node_0;
22
      n++;
23
24
    return (2/sqrt(M_PI))*ans;
25
26 }
27
 float func(float t) { return (2 / sqrt(M_PI)) * pow(constans::E, -(t
     * t)); }
29
30 float leftRectangles(float (*func)(float), const float &a, float b,
                         int steps) {
31
    float result = 0.0;
32
    float h = (b - a) / steps;
33
    float x_i = 0.0;
34
    for (int i = 0; i < steps; i++) {</pre>
35
      x_i = a + h * i;
36
      result += h * func(x_i);
37
    }
38
    return result;
39
40 }
```

```
float rightRectangles(float (*func)(float), const float &a, float b,
                            int steps) {
43
    float result = 0.0;
44
    float h = (b - a) / steps;
45
    float x_i_1 = 0.0;
46
    for (int i = 1; i <= steps; i++) {</pre>
47
      x_{i_1} = a + h * i;
48
      result += h * func(x_i_1);
49
50
    return result;
51
<sub>52</sub> }
53
  float middleRectangles(float (*func)(float), const float &a, float b,
                             int steps) {
55
    float result = 0.0;
56
    float h = (b - a) / steps;
57
    float x_i = 0.0;
58
    float x_i_1 = 0.0;
59
    for (int i = 1; i <= steps; i++) {</pre>
60
      x_i = a + h * (i - 1);
61
      x_{i_1} = a + h * i;
62
      result += h * func((x_i + x_{i-1}) / 2);
63
    }
64
    return result;
65
66 }
67
  float trapezeFormula(float (*func)(float), const float &a, float b,
                           int steps) {
69
    float result = func(a) + func(b);
70
    float h = (b - a) / steps;
71
    float x_i_1 = 0.0;
72
    for (int i = 1; i <= steps; i++) {</pre>
73
      x_{i_1} = a + h * i;
74
      result += 2 * func(x_i_1);
75
    }
76
    result *= h / 2;
77
    return result;
78
79 }
80
81 float SypmsonsFormula(float (*func)(float), const float &a, float b,
                            int steps) {
    float h = (b - a) / steps;
```

```
float result = 0;
       float x = 0;
85
       for (int i = 0; i < steps; i++)</pre>
86
       {
87
           result += (func(x) + 4 * func(x + h / 2) + func(x + h)) * h /
88
                6;
           x += h;
89
       }
90
       return result;
91
  }
92
93
  float GaussFormula(float (*func)(float), const float &a, float b, int
       steps) {
       float h = (b - a) / steps;
95
       float ad1 = (1 - 1.0 / sqrt(3)) * h / 2;
96
       float ad2 = (1 + 1.0 / sqrt(3)) * h / 2;
97
       float result = 0;
98
       float x = 0;
99
       for (int i = 0; i < steps; i++)</pre>
100
101
           result += (func(x + ad1) + func(x + ad2)) * h / 2;
102
           x += h;
103
104
       return result;
105
106 }
107
  void CalculateFunc(vector<float> points,
108
                        float (*function)(float (*func)(float), const
109
                           float &,
                                             float, int)) {
110
     for (auto point : points) {
111
       int i = 1;
112
       float last_j = 0.0;
113
       float j = 0.0;
114
       do {
115
         i *= 2;
116
         last_j = j;
117
         j = function(func, constans::LEFT_BORDER, point, i);
118
       } while (abs(last_j - j) > constans::EPSILON && i < constans::
119
          STEPS);
120
       float difference = abs(Tfunc(point) - j);
121
122
```

```
printf(
123
            "x_i = %.11f | J_o = %.101f | J_n = %.101f | | J_o - J_n | =
124
               %.10lf | N "
           " = %d \n "
125
           point, Tfunc(point), j, difference, i);
126
     }
127
128
129
130
  int main() {
131
     vector < float > points = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
132
                                 1.2, 1.4, 1.6, 1.8, 2.0};
133
     cout << "Правые прямоугольники \n";
134
     CalculateFunc(points, rightRectangles);
135
     cout << "Левые прямоугольники \n";
136
     CalculateFunc(points, leftRectangles);
137
     cout << "Центральные прямоугольники\n";
138
     CalculateFunc(points, middleRectangles);
139
     cout << "Трапеции\n";
140
     CalculateFunc(points, trapezeFormula);
141
     cout << "Симпсон\n";
142
     CalculateFunc(points, SypmsonsFormula);
143
     cout << "Γayc\n";
144
     CalculateFunc(points, GaussFormula);
145
     return 0;
146
147 }
```