

Mašinsko učenje 2024

Sadržaj

*

Zadatak 1 - Rekapitulacija

Zadatak 1 - Rekapitulacija

Zadatak 1 - Rekapitulacija

- Procenat uspešnosti: 82% (28/34).
- Najveće preklapanje izvornih kodova prema alatu za detekciju plagijata: 18%.
- Najbolji rezultati po terminima:

Termin	Tim	RMSE
Ponedeljak - G4	tim7_24	77.66
Utorak - G5	placeholder	93.54
Utorak - G3	T&M	81.90
Četvrtak - G2	@	81.30
Petak - G1	Tehno trube	81.30

Zadatak 1 - Rekapitulacija

- Dobre stvari (na nivou generacije):
 - Vizuelizacija podataka
 - Rad sa outlier-ima
 - Rad sa trening skupom podataka
 - Implementacija algoritama
 - Računanje metrike
 - Propratni izveštaji.

- Stvari koje mogu biti bolje (na nivou generacije):
 - Normalizacija podataka.

- Višestruka regresija:
 - Prediktovati cenu (kolona Cena u evrima) automobila u Srbiji na osnovu više atributa.
 - Zadatak je uspešno urađen ukoliko se na kompletnom testnom skupu podataka dobije RMSE (Root Mean Square Error) manji od 4100.
 - Algoritmi mašinskog učenja se samostalno implementiraju zabranjena upotreba algoritama iz biblioteka.
 - Rok za izradu zadatka je 16.04.2024. u 23:59h.
 - Instalirane biblioteke za Zadatak 2:
 - NumPy
 - Pandas
 - SciPy.

• Sledeći termin vežbi (odbrana Zadatka 2 i predstavljanje Zadatka 3):

Termin	Datum
Ponedeljak - G4	22.04.2024.
Utorak - G5	23.04.2023.
Utorak - G3	23.04.2023.
Četvrtak - G2	25.04.2023.
Petak - G1	26.04.2023.

- Atributi (kolone) na osnovu kojih se prediktuje cena:
 - Marka marka/proizvođač
 - Grad mesto gde se automobil nalazi
 - Godina proizvodnje godina proizvodnje automobila
 - Karoserija vrsta karoserije automobila:
 - Hečbek, Limuzina, Karavan, Džip/SUV, Monovolumen (MiniVan), Kupe, Kabriolet/Roadster, Pickup
 - Gorivo pogonsko gorivo:
 - Dizel, Benzin, Benzin + Gas (TNG), Benzin + Metan (CNG), Hibridni pogon, Hibridni pogon (Dizel), Hibridni pogon (Benzin)
 - Zapremina motora zapremina motora u cm³

- Atributi (kolone) na osnovu kojih se prediktuje cena:
 - Kilometraza broj pređenih kilometara
 - Konjske snage broj konjskih snaga
 - Menjac vrsta menjača:
 - **■** Manuelni, Automatski

- Gradivo za Zadatak 2 obuhvata kompletno gradivo od početka semestra zaključno sa Metodom maksimalne verodostojnosti (Predavanje 5 planirano za 27.03.2024.).
- Koncepti za Zadatak 2:
 - Rad sa kategoričkim podacima
 - Matrica korelacije
 - Višestruka linearna regresija y=h(x1, x2, ..., xd).
 - Regularizacija
 - Neparametarski pristup

- Rad sa kategoričkim podacima:
 - Atributi (kolone) Marka, Grad, Karoserija, Gorivo i Menjac sadrže kategoričke podatke.
 - Neke od tehnika za rad sa kategoričkim podacima su:
 - Label Encoding konvertovanje kategoričkih podataka u broj iz opsega [0, broj-klasa-1], npr.: za kolonu Menjac vrednosti [Manuelni, Automatski] će se konvertovati u vrednosti [0, 1].
 - One Hot Encoding konvertovanje svake klase u novu kolonu i pridruživanje vrednosti 1 ili 0 (True ili False), npr.: za kolonu Menjac ćemo dobiti dve binarne kolone Manuelni i Automatski.
 - Custom Binary Encoding kombinacija Label Encoding-a i One Hot Encoding-a kako bi se kreirala dodatna kolona od značaja.

- Matrica korelacije:
 - Svaki element u matrici pokazuje koeficijent korelacije između 2 promenljive iz opsega [-1, 1] gde:
 - 1 označava savršenu pozitivnu korelaciju (kako jedna promenljiva raste, tako raste i druga)
 - **0** označava da nema korelacije
 - -1 označava savršenu negativnu korelaciju (kako jedna promenljiva raste, druga opada).
 - Razumevanje matrice korelacije može pomoći u:
 - Izboru promenljivih za modele
 - Otkrivanju mogućih uzročno-posledičnih veza
 - Izbegavanju problema multikolinearnosti.

- Matrica korelacije:
 - NumPy:
 - correlation_matrix = np.corrcoef(data)
 - o Pandas:
 - correlation_matrix = df.corr()

- Regularizacija:
 - Modifikacija optimizacionog problema koje ograničava prilagodljivost modela i čini ga manje podložnim preprilagođavanju
 - Lasso (L1):
 - Gradient Descent
 - Coordinate Descent
 - Ridge (L2):
 - Gradient Descent
 - Closed Form Solution
 - Elastic Net:
 - Linearna kombinacija L1 i L2

- Neparametarski pristup:
 - Jednostavnost i fleksibilnost
 - Nearest Neighbors
 - Kernel Regression

- Saveti za rešavanje zadatka:
 - Podsetiti se gradiva sa predavanja
 - Vizuelizovati i analizirati podatke
 - Pokušati smanjiti dimenzionalnost problema
 - Isprobati i parametarske i neparametarske pristupe
 - Ako se radi normalizacija podataka, obratiti pažnju kako se radi i kako će se računati RMSE metrika

- Dodatno istraživanje:
 - Gradivo obrađeno na predavanjima je dovoljno kako bi se zadatak uspešno uradio
 - Dodatnim istraživanjem (pod)oblasti i problema moguće je ostvariti bolje rezultate.
 - Ohrabruje se dodatno istraživanje i primena istraženog, uz (jedino) ograničenje da (novi, istraženi) algoritmi moraju biti algoritmi višestruke regresije
 - Ne postoje ograničenja što se tiče tehnika za obradu podataka i rad sa trening skupom
 - Pošaljite asistentu e-mail ukoliko niste sigurni da li nešto sme ili ne sme da se iskoristi za izradu zadatka.