

Few Matches or Almost Periodicity: Faster Pattern Matching with Mismatches in Compressed Texts

Karl Bringmann, Marvin Künnemann, and Philip Wellnitz

Max Planck Institute for Informatics, Saarland Informatics Campus (SIC), Saarbrücken, Germany

Pattern Matching

Given a text t and a pattern p, is p a substring of t?

Pattern Matching with Mismatches

Given a text t, a pattern p, and an integer k, does t have a length-|p| substring with Hamming-distance at most k to p?

Finding ANPAN, k=2

Pattern Matching with Mismatches

Given a text t, a pattern p, and an integer k, does t have a length-|p| substring with Hamming-distance at most k to p?

Thm. [Gawrychowski,Uznanski'18]

Pattern matching with k mismatches on a text of length n and a pattern of length m can be solved in time $\widetilde{O}((m+k\sqrt{m})\cdot n/m)$.

Pattern Matching with Mismatches

Given a text t, a pattern p, and an integer k, does t have a length-|p| substring with Hamming-distance at most k to p?

Thm. [Gawrychowski, Uznanski'18]

Pattern matching with k mismatches on a text of length n and a pattern of length m can be solved in time $\widetilde{O}((m+k\sqrt{m})\cdot n/m)$.

Matching (conditional) lower bound [GU'18]

SESWEETROLLMOSTCOMMONLYFILLEDWITHREDBEANPASTEANPANCANALSOBEPREPAREDWITHOTHERFILI

ANPAN

What if the text is much larger than the pattern?

ANPANISA JAPANESESWEETROLLMOSTCOMMONLYFILLEDWITHREDBEANPASTEANPANCANALSOBEPREPAREDWITHOTHERFILLINGSINCLUDINGWHITEBEANSGREENBEANSSESAMEANDCHESTNUT

ANPAN

What if the text is much larger than the pattern and given in a compressed representation?

ANPANISA JAPANESESWEETROLLMOSTCOMMONLYFILLEDWITHREDBEANPASTEANPANCANALSOBEPREPAREDWITHOTHERFILLINGSINCLUDINGWHITEBEANSGREENBEANSSESAMEANDCHESTNUT

ANPAN

Straight-Line Program (SLP)

A Straight-Line Program or SLP \mathcal{T} is a context-free grammar that generates exactly one string eval(\mathcal{T}).

Straight-Line Program (SLP)

Straight-Line Program (SLP)

An SLP \mathcal{T} is a set of non-terminals $\{T_1, \ldots, T_n\}$ and productions of the form $T_i \to \sigma$ or $T_i \to T_\ell T_r$, where $\ell, r < i$. We write eval(\mathcal{T}) = eval(T_n) for the generated string.

$$T_1
ightarrow A; T_2
ightarrow N; T_3
ightarrow P$$

*T*₃

Straight-Line Program (SLP)

$$T_1
ightarrow A; T_2
ightarrow N; T_3
ightarrow P$$
 $T_4
ightarrow T_1 T_2; T_5
ightarrow T_4 T_3$

Straight-Line Program (SLP)

$$T_1
ightarrow A$$
; $T_2
ightarrow N$; $T_3
ightarrow P$ $T_4
ightarrow T_1 T_2$; $T_5
ightarrow T_4 T_3$ $T_6
ightarrow T_5 T_4$

Straight-Line Program (SLP)

$$T_1
ightarrow A; T_2
ightarrow N; T_3
ightarrow P$$
 $T_4
ightarrow T_1 T_2; T_5
ightarrow T_4 T_3$ $T_6
ightarrow T_5 T_4; T_7
ightarrow T_6 T_4$

Problem	uncompressed	LZW/LZ78 text $n = \Omega(\sqrt{N})$	SLP text $n = \Omega(\log N)$	
Pattern Matching	O(N + m) [KMP'77]	O(n + m) ** [G'12]	Õ(n + m)	
PM with <i>k</i> Mismatches	$\widetilde{O}(\frac{N}{m}(m+k\sqrt{m}))$ [GU'18]	$O(n\sqrt{m}k^2)$ [GS'13]	$\widetilde{O}(nm \operatorname{poly}(k))$ [T'14,BLRS'15]	

N: length of uncompressed text

n: length of compressed text

k: number of mismatches

m: length of pattern

*: allows compressed pattern

Problem	uncompressed	LZW/LZ78 text	SLP text
		$n = \Omega(\sqrt{N})$	$n = \Omega(\log N)$
Pattern Matching	<i>O</i> (<i>N</i> + <i>m</i>) [KMP'77]	<i>O</i> (<i>n</i> + <i>m</i>)	Õ(n+m) ∗ [J'15]
PM with <i>k</i>	$\widetilde{O}(\frac{N}{m}(m+k\sqrt{m}))$	$O(n\sqrt{m}k^2)$	$\widetilde{O}(nm\operatorname{poly}(k))$
Mismatches	(m) [GU'18]	[GS'13]	[T'14,BLRS'15]

N: length of uncompressed text

n: length of compressed text

k: number of mismatches

m: length of pattern

*: allows compressed pattern

Problem	uncompressed	LZW/LZ78 text	SLP text
		$n = \Omega(\sqrt{N})$	$n = \Omega(\log N)$
Pattern	O(N+m)	O(n+m) **	$\widetilde{O}(n+m)$ **
Matching	[KMP'77]	[G'12]	[J'15]
PM with k	$\widetilde{O}(\frac{N}{m}(m+k\sqrt{m}))$	$\frac{O(n\sqrt{m}k^2)}{n}$	$\widetilde{\mathcal{O}}(nm\operatorname{poly}(k))$
Mismatches	[GU'18]	$\widetilde{O}(\mathit{nk}^4 + \mathit{mk})$	

N: length of uncompressed text

n: length of compressed text

k: number of mismatches

m: length of pattern

*: allows compressed pattern

Problem	uncompressed	LZW/LZ78 text	SLP text
			$n = \Omega(\log N)$
Pattern	O(N+m)	O(n+m) **	$\widetilde{O}(n+m)$ **
Matching	[KMP'77]	[G'12]	[J'15]
PM with k	$\widetilde{O}(\frac{N}{m}(m+k\sqrt{m}))$	$O(n\sqrt{m}k^2)$	$\widetilde{\mathcal{O}}\!(nm\operatorname{poly}(k))$
Mismatches	[GU'18]	$\widetilde{O}(nk^4+mk)$	

N: length of uncompressed text

n: length of compressed text

k: number of mismatches

m: length of pattern

*: allows compressed pattern

Improvement obtained via new structural insight in solution structure

Fact (Folklore)

Fact (Folklore)

t	р		
p	p	[

Fact (Folklore)

Fact (Folklore)

Fact (Folklore)

Fact (Folklore)

t		Χ	X	Χ	Χ	X
ſ			X	X	X	X
ט {						
		X	X	Χ	X	

What is the solution structure of Pattern Matching with Mismatches?

If there are at least 2 k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

If there are at least two k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

If there are at least two k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

■ p and t not periodic, but 2k k-matches of p in t

If there are at least $\frac{\partial}{\partial t} \Omega(poly(k))$ k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

Insight 1

Periodicity only if number of k-matches of p in t is $\Omega(poly(k))$

If there are at least $\Omega(\text{poly}(k))$ k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

$$\rho \underbrace{ \begin{bmatrix} \mathbf{A} & \mathbf{A} & \cdots & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A}^m \end{bmatrix}}_{\mathbf{A}^m}$$

If there are at least $\Omega(\text{poly}(k))$ k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

If there are at least $\Omega(\text{poly}(k))$ k-matches of p in t, then p and t are periodic and every k-match of p starts at a position 1 + i|x|?

lacksquare O(m) k-matches of p in t, but p and t not perfectly periodic

If there are at least $\Omega(\text{poly}(k))$ k-matches of p in t, then p and t are periodic up to O(k) mismatches and every k-match of p starts at a position 1 + i|x|?

Insight 2

Periodicity only up to O(k) mismatches

If there are at least $\Omega(\text{poly}(k))$ k-matches of p in t, then p and t are periodic up to O(k) mismatches and every k-match of p starts at a position 1 + i|x|?

Main Result

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$, or
- t': shortest substring of t such that any k-match of p in t is also a k-match in t' Both t' and p have HD O(k) to the same periodic string x and all k-matches of p in t' start at a position $1 + i \cdot |x|$.

Main Result

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$, or
- t': shortest substring of t such that any k-match of p in t is also a k-match in t' Both t' and p have HD O(k) to the same periodic string x and all k-matches of p in t' start at a position $1 + i \cdot |x|$.

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

t			
			-

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

t'		
n		

■ Consider *t'*: shortest substring of *t* that contains all *k*-matches

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

t'

■ Split p into 16k parts p_i of equal length

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

t'

ρ _____

■ Fix a p_i

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

• Consider prefix x_i of p_i that is also a period of p_i

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

■ Find first 3k mismatches between p and x_i^* before and after p_i

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

■ Find first 3k mismatches between p and x_i^* before and after p_i

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

New Structural Insights

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Insight

Any k-match of p in t' must match at least one p_i 's **exactly**.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

■ Fix a *p_i*

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

• Fix a p_i ; count k-matches where p_i is matched exactly

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

• Consider occurrences of x_i in t'

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Problem

Up to O(m) exact matches of x_i in t'.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

■ Consider **power stretches** of x_i in t' of length $\geq |p_i|$

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

■ Consider **power stretches** of x_i in t' of length $\geq |p_i|$ \Rightarrow at most 150k different power stretches

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

• Fix a power stretch t_i of x_i in t'.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

■ Fix a power stretch t_i of x_i in t'.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Insight

Must align at least one mismatch.

Theorem (Structural Insight)

For pattern p and text t, |t| < 2|p|, at least one of the following holds:

- The number of k-matches of p in t is at most $1000k^2$, or
- Both t' and p have HD < 20k to a periodic x; all k-matches start at position $1 + i \cdot |x|$.

Insight

At most $O(k^4)$ matches: O(k) parts in p, O(k) stretches, $O(k^2)$ matches per combination.

Main Result

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$, or
- t': shortest substring of t such that any k-match of p in t is also a k-match in t' Both t' and p have Hamming distance O(k) to the same periodic string x and all k-matches of p in t' start at a position $1 + i \cdot |x|$.

Faster Algorithm

Theorem (Algorithm)

Pattern matching with k mismatches on a text t given by an SLP of size n and a pattern p of length m can be solved in time $O(n k^3 (k \log k + \log m) + k m)$.

Faster Algorithm

Theorem (Algorithm)

Pattern matching with k mismatches on a text t given by an SLP of size n and a pattern p of length m can be solved in time $O(n k^3 (k \log k + \log m) + k m)$.

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

PC-String, inst. J_1 k, p, f_1 with O(k) factors

PC-String, inst. J_2 k, p, f_2 with O(k) factors

PC-String, inst. J_n k, p, f_n with O(k) factors

 $O(k^3(k \log k + \log m))$ algorithm

Karl Bringmann, Marvin Künnemann, and **Philip Wellnitz**Faster Pattern Matching with Mismatches in Compressed Texts

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

PC-String, inst. J_1 k, p, f_1 with O(k) factors

PC-String, inst. J_2 k, p, f_2 with O(k) factors

PC-String, inst. J_n k, p, f_n with O(k) factors

 $O(k^3(k \log k + \log m))$ algorithm

III Dan nax planck institut

SIC Saarland Informatics

algorithm

Karl Bringmann, Marvin Künnemann, and **Philip Wellnitz**Faster Pattern Matching with Mismatches in Compressed Texts

Theorem (Algorithm for pc-strings)

Pattern matching with k mismatches on a pattern p of length m and a p-pc-string f of size O(k) representing at most 2m characters, can be solved in time $O(k^3(k \log k + \log m))$. (With O(km) preprocessing on p.)

- Implementation of structural insight
- Need e.g. tools for finding first O(k) mismatches to a periodic string or finding all power stretches of a given string in a pc-string

Theorem (Algorithm for pc-strings)

Pattern matching with k mismatches on a pattern p of length m and a p-pc-string f of size O(k) representing at most 2m characters, can be solved in time $O(k^3(k \log k + \log m))$.

- (With O(km) preprocessing on p.)
- Implementation of structural insight
- Need e.g. tools for finding first O(k) mismatches to a periodic string or finding all power stretches of a given string in a pc-string

Theorem (Algorithm for pc-strings)

Pattern matching with k mismatches on a pattern p of length m and a p-pc-string f of size O(k) representing at most 2m characters, can be solved in time $O(k^3(k \log k + \log m))$.

(With O(km) preprocessing on p.)

- Implementation of structural insight
- Need e.g. tools for finding first O(k) mismatches to a periodic string or finding all power stretches of a given string in a pc-string

Faster Algorithm

Theorem (Algorithm) ~

Pattern matching with k mismatches on a text t given by an SLP of size n and a pattern p of length m can be solved in time $O(n k^3 (k \log k + \log m) + k m)$.

Open Problems

Open Problems

Improve insight to O(k) mismatches in the aperiodic case

Theorem (Structural Insight/) [KW'19+]

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most O(k), or
- t': shortest substring of t such that any k-match of p in t is also a k-match in t' Both t' and p have Hamming distance O(k) to the same periodic string x and all k-matches of p in t' start at a position $1 + i \cdot |x|$.

Open Problems

- Improve insight to O(k) mismatches in the aperiodic case
- Improve dependence on k in the algorithm

Theorem (Algorithm)

Pattern matching with k mismatches on a text t given by an SLP of size n and a pattern p of length m can be solved in time $O(n k^3 (k \log k + \log m) + k m)$.

Open Problems

- Improve insight to O(k) mismatches in the aperiodic case
- Improve dependence on k in the algorithm
- Fully-compressed setting (p also given as an SLP)
- Pattern Matching with Errors (Edit distance instead of Hamming distance)

All matches start at the union of two intervals.

Insight 3

Arithmetic progression only approximates all matches

Theorem (Structural Insight)

Given strings p of length m and t of length at most 2m, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$.
- t': shortest substring of t such that any k-match of p in t is also a k-match in t'

There is a substring x of p, with |x| = O(m/k), such that $\delta_H(p, x^*[1, m]) \leq O(k)$ and $\delta_H(t', x^*[1, |t'|]) \leq O(k)$.

Theorem (Structural Insight)

Given strings p of length m and t of length at most 2m, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$.
- t': shortest substring of t such that any k-match of p in t is also a k-match in t'

There is a substring x of p, with |x| = O(m/k), such that $\delta_H(p, x^*[1, m]) \leq O(k)$ and $\delta_H(t', x^*[1, |t'|]) \leq O(k)$.

Theorem (Structural Insight)

Given strings p of length m and t of length at most 2m, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$.
- t': shortest substring of t such that any k-match of p in t is also a k-match in t'

There is a substring x of p, with |x| = O(m/k), such that $\delta_H(p, x^*[1, m]) \leq O(k)$ and $\delta_H(t', x^*[1, |t'|]) \leq O(k)$.

Theorem (Structural Insight)

Given strings p of length m and t of length at most 2m, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$.
- t': shortest substring of t such that any k-match of p in t is also a k-match in t'

There is a substring x of p, with |x| = O(m/k), such that $\delta_H(p, x^*[1, m]) \leq O(k)$ and $\delta_H(t', x^*[1, |t'|]) \leq O(k)$.

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most $O(k^2)$, and
- Both t and p have HD O(k) to the same periodic string.

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most $O(k^2)$, and
- Both t and p have HD O(k) to the same periodic string.

 $t \qquad \boxed{ \textbf{P} \hspace{.1cm} |\hspace{.08cm} \textbf{U} \hspace{.1cm} |\hspace{.08cm} \textbf{N} \hspace{.1cm} |\hspace{.08cm} \textbf{A} \hspace{.1cm} |\hspace{.08cm} \textbf{N} \hspace{.1cm} |\hspace{.08cm} \textbf{P} \hspace{.1cm} |\hspace{.08cm} \textbf{A} \hspace{.1cm} |\hspace{.08cm} \textbf{N} \hspace{.1cm} |\hspace{.08cm} \textbf{P} \hspace{.1cm} |\hspace{.08cm} \textbf{A} \hspace{.1cm} |\hspace{.08cm} \textbf{N} }$

Finding ANPAN, k = 2 non-periodic case

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most $O(k^2)$, and
- Both t and p have HD O(k) to the same periodic string.

t PUNRANPAMPAN

Finding ANPAN, k = 2 non-periodic case

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most $O(k^2)$, and
- Both t and p have HD O(k) to the same periodic string.

t PUNRANPAMPAN

Finding ANPAN, k = 2 non-periodic case

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most $O(k^2)$, and
- Both t and p have HD O(k) to the same periodic string.

Finding ANPAN, k = 2 non-periodic case

Theorem (Structural Insight)

For pattern p and text t, $|t| \le 2|p|$, it holds at least one of:

- The number of k-matches of p in t is at most $O(k^2)$, and
- Both t and p have HD O(k) to the same periodic string.

Theorem (Structural Insight)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, then both t and p have a HD < 20k to the same periodic string.

Theorem (Structural Insight)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, then both t and p have a HD < 20k to the same periodic string.

Main Steps:

- At least $1000k^2$ k-matches of p in t and p has a HD < 6k to a specific periodic string $x \in x(p)$ $\implies t$ has a Hamming Distance < 20k to x
- p has HD $\geq 6k$ to any specific periodic string $x \in x(p)$ \Longrightarrow Less than $1000k^2$ k-matches of p in t

Theorem (Structural Insight)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, then both t and p have a HD < 20k to the same periodic string.

Main Steps:

- At least $1000k^2$ k-matches of p in t and p has a HD < 6k to a specific periodic string $x \in x(p)$ $\implies t$ has a Hamming Distance < 20k to x
- p has HD $\geq 6k$ to any specific periodic string $x \in x(p)$ \implies Less than $1000k^2$ k-matches of p in t

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

t		

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

p

■ Split *p* into 16*k* parts *p_i* of equal length

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

■ Split *p* into 16*k* parts *p_i* of equal length

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

p		
	$\widetilde{p_i}$	

■ Fix a p_i

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

• Consider prefix x_i of p_i that is also a period of p_i

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

■ Find first 3k mismatches between p and x_i^* before and after p_i

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to a periodic string $x \in x(p)$, then t has HD < 20k to x.

■ Find first 3k mismatches between p and x_i^* before and after p_i

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to some x_i^* , $1 \le i \le 16k$, then t has HD < 20k to x_i^* .

Lemma (Step 1)

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to some x_i^* , $1 \le i \le 16k$, then t has HD < 20k to x_i^* .

Claim (Proof omitted)

If there are at least 2 + 16k k-matches of p in t, all starting positions of k-matches differ by (integer) multiples of $|x_i|$.

Lemma (Step 1)

Lemma (Step 1)

-	

Lemma (Step 1)

t																
X_i^*	Xi	Xi	Xį	Xi	Xi	Xi	Xi	Xi								
•																
<u> </u>																
$oldsymbol{ ho}$				Ď;)											
	`			Pi								Ţ.				
												ρ_{l}				

Lemma (Step 1)

Lemma (Step 1)

Lemma (Step 1) ✓

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to some x_i^* , $1 \le i \le 16k$, then all starting positions of k-matches differ by multiples of $|x_i|$ and t has HD < 20k to x_i^* .

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m. If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m. If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

■ Recall: Split p into 16k parts p_i of equal length

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Insight

Any k-match of p in t must match at least 15k p_i 's **exactly**.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

p

■ Fix a *p_i*

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

■ Fix a p_i ; count k-matches where p_i is matched exactly

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

■ Search for x_i in t

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Problem

Up to O(m) exact matches of x_i in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

■ Search for **power stretches** of x_i in t of length $\geq |p_i|$

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Insight

Only $\leq 150k$ different power stretches of x_i in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

■ Fix a power stretch t_i of x_i in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

■ Fix a power stretch t_i of x_i in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Insight

Must align at least *k* mismatches.

Insight

At most $O(k^4)$ matches: O(k) parts in p, O(k) streches, $O(k^2)$ matches per combination.

Lemma (Step 1) ✓

Fix a pattern p of length m and a text t of length at most 2m. If the number of k-matches of p in t is at least $1000k^2$, and p has HD < 6k to some x_i^* , $1 \le i \le 16k$, then all starting positions of k-matches differ by multiples of $|x_i|$ and t has HD < 20k to x_i^* .

Lemma (Step 2)

Fix a pattern p of length m and a text t of length at most 2m.

If the pattern p has a HD $\geq 6k$ to all strings x_i^* , $1 \leq i \leq 16k$, then there are less than $1000k^2$ k-matches of p in t.

Theorem (Structural Insight) <

Given strings p of length m and t of length at most 2m, at least one of the following holds:

- The number of k-matches of p in t is at most $O(k^2)$.
- t': shortest substring of t such that any k-match of p in t is also a k-match in t'

There is a substring x of p, with |x| = O(m/k), such that $\delta_H(p, x^*[1, m]) \leq O(k)$ and $\delta_H(t', x^*[1, |t'|]) \leq O(k)$.

Moreover, any k-match of p in t' starts at a position of the form $1 + i \cdot |x|$ with $0 \le i \le (|t'| - |p|)/|x|$ (but not every starting position $1 + i \cdot |x|$ necessarily yields a k-match).

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

PC-String, inst. J_1 k, p, f_1 with O(k) factors

PC-String, inst. J_2 k, p, f_2 with O(k) factors

<u>:</u>

PC-String, inst. J_n k, p, f_n with O(k) factors

 $O(k^3(k \log k + \log m))$ algorithm

algorithm

Pattern-Compressed String [GS'13]

Let p be a string of length m. We call a string $f = v_1 \dots v_q, \sum_{i=1}^q |v_i| \le 2m$ a p-pattern-compressed string (pc-string) if every v_i is a substring of p. We call the v_i 's factors of f.

PC-String, inst. J_1 k, p, f_1 with O(k) factors

PC-String, inst. J_2 k, p, f_2 with O(k) factors

PC-String, inst. J_n k, p, f_n with O(k) factors

 $O(k^3(k \log k + \log m))$ algorithm

algorithm

Theorem (Algorithm for pc-strings)

Pattern matching with k mismatches on a pattern p of length m and a p-pc-string f of size O(k) representing at most 2m characters, can be solved in time $O(k^3(k \log k + \log m))$.

(With O(km) preprocessing on p.)

- Implementation of structural insight
- Need e.g. tools for finding first O(k) mismatches to a periodic string or finding all power stretches of a given string in a pc-string

Theorem (Algorithm for pc-strings)

Pattern matching with k mismatches on a pattern p of length m and a p-pc-string f of size O(k) representing at most 2m characters, can be solved in time $O(k^3(k \log k + \log m))$.

(With O(km) preprocessing on p.)

- Implementation of structural insight
- Need e.g. tools for finding first O(k) mismatches to a periodic string or finding all power stretches of a given string in a pc-string

Theorem (Algorithm for pc-strings)

Pattern matching with k mismatches on a pattern p of length m and a p-pc-string f of size O(k) representing at most 2m characters, can be solved in time $O(k^3(k \log k + \log m))$.

- (With O(km) preprocessing on p.)
- Implementation of structural insight
- Need e.g. tools for finding first O(k) mismatches to a periodic string or finding all power stretches of a given string in a pc-string

Navigation

