אלגברה ב' - הצעה לפתרון מועד א'

תרגיל 5. יהי
$$W$$
 התת־מרחב הלינארי של \mathbb{R}^4 אשר נפרש על ידי הוקטורים W מצאו את הוקטור \mathbb{R}^4 אשר נפרש על W הת W הת W הוקטור W וואר הוקטורים W הת W הוקטורים W הוקטורים W הוקטורים W הוקטורים W הערגיל W הת W הוקטורים W הוקטור

עבך ש־ $\left\|w-egin{pmatrix}1\\2\\3\\4\end{pmatrix}
ight\|$ קטן כלל האפשר, כאשר $\|\cdot\|$ היא הנורמה המושרת מהמכפלה הפנימית הסטנדרטית $w\in W$

 $x:=egin{pmatrix}1\\2\\3\\4\end{pmatrix}$ אנו מחפשות את הוקטור ב־W שקרוב ביותר לוקטור $x:=egin{pmatrix}1\\2\\3\\4\end{pmatrix}$ אנו מחפשות את הוקטור ב-W שקרוב ביותר לוקטור לוקטור W. לשם חישוב ההטלה האורתוגונלית, נמצא בסיס אורתונורמלי של W, בעזרת האורתוגונלית ב-W של W על W

$$B:=(u_1,u_2)=\left(egin{pmatrix}1\\1\\0\\0\end{pmatrix},egin{pmatrix}1\\1\\2\end{pmatrix}
ight)$$
 של $B:=(u_1,u_2)=\left(egin{pmatrix}1\\1\\1\\2\end{pmatrix}\right)$

ננרמל את הוקטור הראשון בבסיס,

$$v_1 = \frac{u_1}{\|u_1\|} = \frac{u_1}{\sqrt{1^2 + 1^2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

 $.v_1$ ידי על ידי המרחב הנפרש על ידי נחסר מהוקטור השני את ההטלה שלו

$$\begin{aligned} w_2 &= u_2 - \langle u_2, v_1 \rangle \, v_1 \\ &= u_2 - \left\langle u_2, \frac{1}{\sqrt{2}u_1} \right\rangle \cdot \frac{1}{\sqrt{2}} u_1 \\ &= \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{2} \cdot (1+1) \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \end{aligned}$$

ננרמל את הוקטור שקיבלנו.

$$v_2 = \frac{w_2}{\|w_2\|} = \frac{w_2}{\sqrt{1^2 + 2^2}} = \frac{1}{\sqrt{5}} \begin{pmatrix} 0\\0\\1\\2 \end{pmatrix}$$

$$.P_{U}\left(v\right) = \sum_{i \in [m]} \left\langle v, e_{i} \right\rangle e_{i}$$

אצלנו נקבל כי

$$\begin{split} P_W\left(x\right) &= \left\langle x, v_1 \right\rangle v_1 + \left\langle x, v_2 \right\rangle v_2 \\ &= \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \right\rangle \cdot \frac{1}{\sqrt{5}} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \\ &= \frac{1}{2} \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{5} \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \right\rangle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \\ &= \frac{3}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{11}{5} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix} \\ &= \begin{pmatrix} \frac{3}{2} \\ \frac{11}{5} \\ \frac{22}{5} \end{pmatrix} \end{split}$$

וכאמור, זה הוקטור הקרוב ביותר ל־x ב־W, כנדרש.

תרגיל 8. האם קיים פולינום $p\left(x
ight)\in\mathbb{R}\left[x
ight]$ ממעלה לכל היותר 5 בך שלכל פולינום $p\left(x
ight)\in\mathbb{R}\left[x
ight]$ ממעלה לכל היותר $p\left(x
ight)\in\mathbb{R}\left[x
ight]$ ממעלה לכל מתקיים $p\left(x
ight)=\int_{3}^{4}q\left(t
ight)p\left(t
ight)$ ממעלה לכל היותר $p\left(x
ight)$

פתרון. כן.

ראינו בכיתה כי

$$\langle q, p \rangle \coloneqq \int_{3}^{4} q(t) p(t) dt$$

הינה מכפלה פנימית על $\mathbb{R}_{\geq 5}\left[x
ight]$. נראה כי

$$\varphi \colon \mathbb{R}_{\geq 5} [x] \to \mathbb{R}$$

$$q \mapsto q'(2)$$

עבורו $w\in V$ קיים, V, קיים מכפלה פנימית על מרחב שנונל לינארי. לפי משפט ריס, אם שפט פונקציונל לינארי על אינו פונקציונל לינארי. לפי משפט ריס, אם עבורו $p\in\mathbb{R}_{\geq 5}\left[x\right]$ אצלנו נקבל כי קיים עבורו עבורו פונקצי ליעבורו אצלנו נקבל פי אינו פונקצי עבורו

$$\mathsf{,}q^{\prime}\left(2\right)=\varphi\left(q\right)=\left\langle q,p\right\rangle =\int_{2}^{3}q\left(t\right)p\left(t\right)\mathrm{d}t$$

כנדרש.

אכן, $\alpha \in \mathbb{R}$ ועבור $q_1,q_2 \in \mathbb{R}_{\geq 5}\left[x\right]$ מתקיים מתקיים לינארי, פונקציונל לינארי, כי עבור

$$\varphi (\alpha q_1 + q_2) = (\alpha q_1 + q_2)'(2) = (\alpha q_1' + q_2')(2) = \alpha q_1'(2) + q_2'(2) = \alpha \varphi (q_1) + \varphi (q_2)$$

כאשר בשוויון השני השתמשנו בלינאריות הנגזרת ובשוויון השלישי בהגדרת סכום וכפל בסקלר של פונקציות.

תהיי איזומטריה. האם בהכרח קיימת $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$, ותהי תסוף־מימדי מעל פנימית סוף־מימדי מעל $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ $S^2=T$ בך ש־ $S\in \mathrm{End}_{\mathbb{C}}(V)$ איזומטריה

פתרון. כן.

נזכר כי T איזומטריה אם $\|v\| = \|Tv\|$ לכל $\|Tv\| = \|v\|$, וכי ראינו בהרצאה שזה שקול לכך ש $T^*T = \mathrm{Id}_V$, כלומר B לכך שT אוניטרית. בפרט נקבל כי T נורמלית, ולכן לפי משפט הפירוק הספקטרלי קיים בסיס אורתונורמלי . של אלבסונית מטריצה $[T]_B=\mathrm{diag}\,(\lambda_1,\ldots,\lambda_n)$ עבורם $\lambda_1,\ldots,\lambda_n$ של V $|\lambda_i|=1$ ניזבר בי אופרטור נורמלי הינו אוניטרי אם ורק אם כל הערכים העצמיים שלו על מעגל היחידה. לבן

 $t_i\in\mathbb{R}$ ועבור ערבים $\cos{(heta)}\coloneqq\cos{(heta)}+i\sin{(heta)}$ כאשר $\lambda_i=\cos{(heta_i)}$ ועבור ערבים , $i\in[n]$

נסמן $i \in [n]$ לכל $\mu_i \coloneqq \mathrm{cis}\left(rac{ heta_i}{2}
ight)$ ונקבל כי

$$\mu_i^2 = \left(\operatorname{cis}\left(\frac{\theta_i}{2}\right)\right)^2$$

$$= \operatorname{cis}\left(2 \cdot \frac{\theta_i}{2}\right)$$

$$= \operatorname{cis}\left(\theta_i\right)$$

$$= \lambda_i$$

 $[S]_B=\mathrm{diag}\,(\mu_1,\ldots,\mu_n)$ יהי $S\in\mathrm{End}_{\mathbb{C}}\,(V)$ יהי

אז S נורמלי לפי משפט הפירוק הספקטרלי כי קיים בסיס אורתונורמלי B המלכסן את אוניטרי כי הוא S אז אז Sנורמלי עם ערכים עצמיים על מעגל היחידה, ולפי אותה טענה מהכיתה בה השתמשנו קודם. בנוסף,

$$[S^{2}]_{B} = [S]_{B}^{2}$$

$$= \operatorname{diag}(\mu_{1}, \dots, \mu_{n})^{2}$$

$$= \operatorname{diag}(\mu_{1}^{2}, \dots, \mu_{n}^{2})$$

$$= \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})$$

$$= [T]_{B}$$

. ולכן $S^2=T$ ננדרש

תרגיל 10. האם קיימות מטריצות A_i ובן $A_1,\dots,A_6\in M_2\left(\mathbb{C}\right)$ בך ש־ $A_1,\dots,A_6\in M_2\left(\mathbb{C}\right)$ ובן $1\leq i\leq 6$ הפולינום האופייני של A_i שווה ל־ $1\leq i\leq 6$ לבל $1\leq i\leq 6$ לבל הפולינום האופייני של

פתרון. לא.

עבור מעריצה ריבועית A, הערכים העצמיים של A^2 הם ריבועי הערכים העצמיים של A. הערכים העצמיים של A^2 הם ריבועי הערכים העצמיים של A^2 , הערכים האופייני שלה, ולכן אם A^2 עם פולינום אופייני A^2 עבורם האופייני שלה, ולכן אם A^2 עם פולינום אופייני של A^2 הוא A^2 ואז הערכים העצמיים האפשריים של A הם ערכי A^2 עבורם A^2 , כלומר A^2 נניח בשלילה שקיימות A^2 , במתואר בשאלה, ונקבל כי לכולן ערכים עצמיים בקבוצה A^2 , במתואר בשאלה, ונקבל A^2 צורת ז'ורדן שלה הינה בהכרח אחת מבין A^2 המטריצות הראות

$$J_{2}\left(1\right),J_{2}\left(-1\right),\operatorname{diag}\left(1,1\right),\operatorname{diag}\left(1,-1\right),\operatorname{diag}\left(-1,-1\right)$$

אותה אורת ז'ורדן אבל אז A_i, A_j עבורם לי $1 \leq i < j \leq 6$ אבל כי קיימים מעקרון שובך היונים נקבל כי קיימים

$$A_i \cong J \cong A_i$$

ולכן A_i ו־מות, בסתירה להנחה.