Final Assessment Test - November/December 2023

Course: BECE102L - Digital Systems Design
Class NBR(s): 4121 / 4125 / 4126 / 4127 / 4128 / 4129 /
4131 / 4132 / 4133 / 4134 / 4135 / 4136 /
4137 / 4138 / 4140 / 4142 / 4144 / 4145 / Slot: B1+TB1
4147 / 4148 / 4244 / 4257 / 4261 / 4265 /
4287

Time: Three Hours

Max. Marks: 100

KEEPING MOBILE PHONE/SMART WATCH, EVEN IN 'OFF' POSITION, IS TREATED AS EXAM MALPRACTICE General Instructions:

1. Assume suitable values, in case of any missing data.

2. Necessary intermediate steps for each solution is mandatory

Answer <u>ALL</u> Questions (10 X 10 = 100 Marks)

- 1. Simplify the Boolean function $F = (\bar{A}\bar{B}D + AB)C + \bar{C}$ using K-map and sketch the logic diagram using NAND gates only.
- 2. Using Boolean algebra and postulates reduce the function $F = \bar{A}\bar{B}\bar{C}D + A\bar{B}\bar{C}D + BD + BC\bar{D}$. Sketch the CMOS logic style schematic for the simplified function. Assume that both the true and complement version of each input variables are available as gate input.
- 3. i) Execute the following verilog code for the given input a=4'b1010, b=4'b1101 and compute the output Y.

module program (a, b, Y);

input [3:0] a, b;

output [4:0] Y;

assign $Y[0] = \sim (a \& b);$

assign Y[1] = (a[2] > b[0]) && (a[3] < b[3]);

assign Y[2] = (a! = b);

assign Y[3] = (a!=b)?1'b1:1'b0;

assign Y[4] = (a << 2) + (b >> 1);

endmodule

ii) Develop a Verilog code for the logic diagram given below using structural modelling.

- 4. The majority circuit is a combinational circuit, whose output is equal to 1 if the input variables have more 1's than 0's, equal to don't care when number of 0's and 1's are equal, otherwise the output is '0'.
 - i. Design a 4-input majority circuit by finding the circuit's truth table, Boolean equation, and the logic diagram. AB+C
 - ii. Using dataflow model construct the verilog code and its testbench to verify it.
- 5. Identify the Boolean function (Z) from the circuit shown below and implement the same with 3x8 decoder.

ii) Design and implement the circuit using 4x1 multiplexer which has 3 inputs (A, B, C) and one output (Y). The output is low when odd number of 1's are detected in the input, otherwise the output logic '1'. Choose A and C as the select inputs.

- Develop a Verilog code for the combinational circuit which performs 4-bit addition and subtraction operation based on the control input.
- A PQ flip-flop has four operations, no change, clear to 0, set 1 and toggle, when
 inputs P and Q are 01, 00, 11 and 10, respectively.
 - (i) Determine the characteristic table of the flip-flop.
 - (ii) Find the characteristic Equation of the flip-flop.
 - (iii) Determine the excitation table.
 - (iv) Convert the flip-flop to a D flip-flop.
- 8. Using positive edge triggered D flip-flop, design a synchronous counter which counts the following sequence 000, 111, 110, 101, 100, 011, 010, 001, 000.
- 9. Construct a Mealy based sequence detector to detect a sequence 1101 in overlapping fashion using D flip-flop.
- 10. Implement the following Boolean function with the programmable logic devices PAL and PLA.

(i) A
$$(x,y,z) = \sum m (1, 2, 4, 6)$$

(ii)
$$B(x,y,z) = \pi M(2, 3, 4, 5)$$

