ANO: 10° ANO **DATA: JUN** 

## TEMA: RADICAIS. GEOMETRIA. FUNÇÕES.

## TIPO: FICHA DE REVISÕES GLOBAL

LR MAT EXPLICAÇÕES

**1.** Considera as funções a, b, c e d, bijetiva, definidas em  $\mathbb{R}$  em  $\mathbb{R}$ . Sabe-se que a(2) = 5, b(2) = -3, c(1) = -3 e d(-3) = 2. Determine:

a) 
$$a^{-1}(5)$$

b) 
$$(d \circ c)(1)$$

c) 
$$(b^{-1} \circ d^{-1})(2)$$

**2.** Considere as funções  $f \in g$  definidas de  $\mathbb{R}$  em  $\mathbb{R}$  por f(x) = 5 - 6x e  $g(x) = 5 - 3x^2$ .

a) Mostre que f é uma função bijetiva.

b) Justifique que g não é injetiva nem sobrejetiva.

c) Existe algum valor de x, tal que f(x) = g(x)? Se sim, qual ou quais?

d) Determine uma expressão analítica da função  $f^{-1}$ .

3. Na figura ao lado está uma representação gráfica de uma função f, real de variável real, bijetiva.

Em qual das figuras seguintes pode estar a representação gráfica da função  $f^{-1}$ (função inversa de f)?



(A)



(B)



(C)



(D)



4. Indica o domínio das seguintes funções:

$$f(x) = \frac{3x}{x^2 - 1}$$
;  $g(x) = -5x + \sqrt{4 - x^2}$ ;  $h(x) = 2x + 1$ 

- **5.** A figura representa parte do gráfico de uma função f.
  - **5.1** Indica:
    - a) o domínio e o contradomínio de f.
    - b) os zeros de f.
    - c) um intervalo onde *f* seja decrescente.
    - d) o conjunto solução da condição  $f(x) \le 0$ .



- **5.2** Construa uma tabela de variação de f e indique, caso existam, os extremos de f.
- **5.3** Indique, justificando, o valor lógico da seguinte proposição: "f é uma função limitada".
- **5.4** Indique o domínio e o contradomínio das funções definidas por:

a) 
$$g(x) = f(x - 1)$$

b) 
$$h(x) = -2f(x)$$

- **6.** Considere a família de funções afins definida por: g(x) = (a-2)x + 3 ( $a \in \mathbb{R}$ ).
  - **6.1** Determine os valores de a, de modo que g seja decrescente.
  - **6.2** Considere a = -1 e prova que g não é par nem ímpar.
- 7. Uma empresa de telecomunicações anuncia o seguinte plano de preços para as chamadas telefónicas feitas a partir de um telefone registado na empresa:
  - 12 cêntimos pelo primeiro minuto de conversação (se a chamada durar menos de um minuto, o preço a pagar também é de 12 cêntimos);
  - 0,1 cêntimos por segundo a partir do primeiro minuto.

Por exemplo, se uma chamada durar um minuto e meio, o preço a pagar é 15 cêntimos (12 cêntimos pelo primeiro minuto, mais 0,1 cêntimos por cada um dos 30 segundos seguintes). Indique qual das expressões seguintes dá o preço a pagar, em cêntimos, por uma chamada feita a partir de um telefone registado nessa empresa, em função do tempo t de duração da chamada, medido em segundos.

(A) 
$$\begin{cases} 12t & \text{se } t \le 60 \\ 12 + 0, 1(t - 60) & \text{se } t > 60 \end{cases}$$
(B) 
$$\begin{cases} 12 & \text{se } t \le 60 \\ 12 + 0, 1t & \text{se } t > 60 \end{cases}$$

(B) 
$$\begin{cases} 12 & \text{se } t \leq 60 \\ 12 + 0.1t & \text{se } t > 60 \end{cases}$$

(C) 
$$\begin{cases} 12 & \text{se } t \le 60 \\ 12 + 0.1(t - 60) & \text{se } t > 60 \end{cases}$$
(D) 
$$\begin{cases} 12 & \text{se } t \le 60 \\ 12 + 0.1t & \text{se } t > 60 \end{cases}$$

(D) 
$$\begin{cases} 12 & \text{se } t \le 60 \\ 12 + 0.1t & \text{se } t > 60 \end{cases}$$

8. Na figura está representado um triângulo [ABC], retângulo em A e de hipotenusa 10 cm, e um quadrado [AEFM], em que M é o ponto médio de [AB].

Se  $x = \overline{AB}$ , então, a área do triângulo não ocupada é dada por:



(c) 
$$\frac{2x\sqrt{100-x^2}-x^2}{4}$$

(B) 
$$x\sqrt{100-x^2}-x^2$$

(D) 
$$\frac{x\sqrt{100-x^2}}{2}$$



**9.** Sem recorrer, à calculadora, exceto para eventuais cálculos numéricos, resolva, em  $\mathbb{R}$ , as seguintes inequações:

a) 
$$(2x-1)^2 \le (x+2)^2$$

d) 
$$|2x-1|-7=-10$$

b) 
$$(x-1)(1-2x) \ge 0$$

e) 
$$|4 - 3x| < 5$$

c) 
$$|x-4| = \frac{1}{3}$$

f) 
$$3|-x+3| \ge 9$$

- **10.** Considera a função h, real de variável real:  $h(x) = \begin{cases} x^2 + 1 & se & x \ge 0 \\ x^2 9 & se & x < 0 \end{cases}$ 
  - 10.1 Determine o conjunto dos zeros de h.
  - 10.2 Representa graficamente a função h.
- 11. Na figura está representada parte do gráfico de uma função f, real de variável real, de domínio R.

O gráfico de f é a união de duas semirretas, tem eixo de simetria de equação x = 2, f(0) = 1 e f(2) = -1.



- 11.1 Determine uma expressão analítica de f.
- 11.2 Sem recorrer à calculadora determine:
  - a) os valores de x para os quais  $f(x) \ge 1$ .
  - b) os zeros e o contradomínio da função g, definida por g(x) = -f(x) 1.
- **12.** Resolva, em  $\mathbb{R}$ , as seguintes condições:

a) 
$$\sqrt{6-x} = -x$$

d) 
$$\sqrt{x+2} = \sqrt{3x-5} - 1$$

b) 
$$\sqrt{2x-1} = \sqrt{x+4}$$

c) 
$$\sqrt[3]{2x-3} = -1$$

e) 
$$\sqrt{7 - x} \ge 4$$

**13.** Determine o conjunto solução da condição  $x(x-1)^2(x-2) \le 0$ .

**14.** Estude a paridade das seguintes funções, reais de variável real, definidas por:

a) 
$$f(x) = -x^2 + 3x^4$$
 b)  $g(x) = |3x| + 2$  c)  $i(x) = -2\sqrt[3]{x}$  d)  $l(x) = x^2 + x^3$ 

b) 
$$g(x) = |3x| + 2$$

$$c) i(x) = -2\sqrt[3]{x}$$

$$d) l(x) = x^2 + x^3$$

- **15.** Considere as funções  $f \in g$ , reais de variável real, definidas por  $f(x) = x^2 4$  e g(x) = x.
  - a) Caracterize a função  $g \circ f$ .
  - b) Determine o conjunto solução da equação  $g \circ f(x) = x + 2$ .
- 16. Na figura, está representada parte do gráfico de uma função f, de domínio  $]-\infty$ , 6], constituído por um arco de parábola e uma semirreta. A semirreta tem origem no ponto (0,0) e passa em (-2,1). Os pontos de coordenadas (0,0) e (4,0) pertencem ao arco de parábola e o vértice tem coordenadas (2,-2).



- a) Defina analiticamente a função.
- b) Represente graficamente a função definida por p(x) = |f(x-2)|.
- c) Indique o conjunto solução da condição f(x) > 0.
- d) Indique uma restrição de f injetiva.
- 17. Na figura está representado um cilindro reto inscrito num cone igualmente reto. Sabe-se que:



- o eixo do cilindro está contido no eixo do cone;
- as geratrizes do cone são tangentes à circunferência que limita a base superior do cilindro;



- o cone tem 12 cm de altura e 4 cm de raio da base;
- o cilindro tem x cm de altura,
- 17.1 Mostre que o volume do cilindro, em função de x e em centímetros cúbicos, é dado por:

$$V(x) = \pi \left( \frac{x^3}{9} - \frac{8x^2}{3} + 16x \right)$$

Sabendo que o cilindro tem 50 cm<sup>3</sup> de volume, determine recorrendo à calculadora gráfica, o raio da 17.2 base e a altura.

**18.** Seja f uma função bijetiva e ímpar tal que f(5) = -3 e seja g a função real de variável real definida por  $g(x) = \sqrt[3]{2x - 3}$ . Qual é o valor de  $(f^{-1} \circ g)(15)$ ?

**(A)** 3

**(B)** -3

**(C)** 5

**(D)** -5

19. Qual das condições seguintes define, em referencial o.n. Oxyz, uma reta paralela ao eixo Oz?

(A)  $(x, y, z) = (7,0,0) + k(1,0,0), k \in \mathbb{R}$ 

**(B)**  $(x, y, z) = (1,1,0) + k(7,0,0), k \in \mathbb{R}$ 

(C)  $(x, y, z) = (1,1,0) + k(0,0,7), k \in \mathbb{R}$ 

**(D)**  $(x, y, z) = (0,0,7) + k(1,1,0), k \in \mathbb{R}$ 

**20.** Considera a função, de domínio  $\mathbb{R}$ , definida por  $f(x) = \begin{cases} x^2 + 2 & se & x \leq 0 \\ x^3 - 1 & se & x > 0 \end{cases}$ 

Indica o valor de  $f\left(5^{-\frac{1}{3}}\right) \times f(0)$ . **(A)**  $-\frac{8}{5}$  **(B)**  $-\frac{1}{5}$ 

(C)  $\sqrt[3]{25} + 2$ 

**(D)**  $-\sqrt[3]{25} - 1$ 

- **21.** São dados o número real a < 0 e a função, de domínio  $\mathbb{R}$ , definida por  $g(x) = \sqrt[3]{x-a}$ . Quanto ao gráfico de g, pode-se concluir que:
  - (A) Tem a concavidade voltada para baixo em  $]-\infty,0]$  e tem a concavidade voltada para cima em  $[0,+\infty[$ .
  - **(B)** Tem a concavidade voltada para cima em  $]-\infty,0]$  e tem a concavidade voltada para baixo em  $[0,+\infty[$ .
  - (C) Tem a concavidade voltada para baixo em  $]-\infty$ , a] e tem a concavidade voltada para cima em  $[a, +\infty[$ .
  - **(D)** Tem a concavidade voltada para cima em  $]-\infty$ , a] e tem a concavidade voltada para baixo em  $[a, +\infty[$ .
- 22. Na figura está representada, num referencial xOy, parte da parábola que é o gráfico de uma função f.

Sabe-se que:



- o ponto V tem de coordenadas (-1, -3).
- 22.1 Indique os intervalos de monotonia.
- Mostre que:  $f(x) = 2x^2 + 4x 1$ . 22.2
- 22.3 Relativamente à função f, indique:
  - **22.3.1** uma equação do eixo de simetria;
  - 22.3.2 o extremo absoluto;
  - **22.3.3** o número de soluções da equação f(x) = -5;
  - **22.3.4** os zeros.
- 22.4 Seja g a função de domínio  $\mathbb{R}$ , definida por g(x) = -f(2x) + 1. Determine o contradomínio de g.



22.5 Considera as seguintes proposições:

$$p: \exists x_1, x_2 \in D_f, f(x_1) = f(x_2) \land x_1 \neq x_2$$

q: Se P, Q e R são pontos do gráfico da função f tal que  $x_P < x_Q < x_R$ , então  $m_{PQ} > m_{QR}$ .

$$r$$
: Para  $\forall x \in ]0,1[,f(x) \ge 0.$ 

Indica o valor lógico de  $(p \land \sim q) \lor r$ . Justifica a tua resposta.

- **23.** Considera as funções reais definidas por  $f(x) = \sqrt{5x-4}$  e g(x) = 6-3x.
  - 23.1 Indica o domínio de cada uma das funções.
  - **23.2** Caracteriza a função  $f \circ g$ .
  - **23.3** Justifica a existência da função  $f^{-1}$  e caracterize-a.
  - **23.4** Usando exclusivamente métodos analíticos, determine o conjunto-solução da condição  $f(x) \frac{x+4}{2} = 0$ .
- **24.** Na figura está representado o triângulo [ABC], retângulo em B. Sabe-se que:
  - $\overline{AB} = 9$ ;
  - $\overline{AC} = 15$ ;
  - $\overline{BC} = 12$ .

Considera um ponto D que se desloca ao longo do cateto [AB], nunca coincidindo com o vértice B.

Sejam  $x = \overline{AD}$  e P(x) o perímetro do triângulo [ADC] seja superior ou igual a 34.

Começa por mostrar que  $P(x) = x + 15 + \sqrt{x^2 - 18x + 225}$ .

