Tema 2

Límites de Funciones

Ejercicios Resueltos

Ejercicio 1

Demuestra, aplicando la definición de límite, que $\lim_{x\to 2} (x^2 + x + 2) = 8$

Solución:

 $\lim_{x \to 2} (x^2 + x + 2) = 8 \text{ si y sólo si } \forall \epsilon > 0, \exists \delta > 0 / 0 < |x - 2| < \delta \Rightarrow |x^2 + x + 2 - 8| < \epsilon$ Pero $|x^2 + x + 2 - 8| < \epsilon \Rightarrow |x^2 + x - 6| < \epsilon \Rightarrow |(x - 2)(x + 3)| < \epsilon \Rightarrow |x - 2| |x + 3| < \epsilon$ Puede tomarse $\delta < 1$ para simplificar los cálculos, y con $|x - 2| < \delta$ se tiene $x \in (1, 3)$ y |x + 3| < 6. Entonces $|x - 2| |x + 3| < 6 \delta$. Tomando $\delta = \min\{1, \epsilon/6\}$, queda demostrado que $|x^2 + x - 6| < \epsilon$ cuando $0 < |x - 2| < \delta$.

Ejercicio 2

Demuestra, aplicando la definición de límite, que $\frac{\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty$

Solución:

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty \quad \Leftrightarrow \left[\forall k \in \mathbb{R}^+, \ \exists \ \delta > 0 \ / \ |x-1| < \delta \ \Rightarrow \ \frac{1}{(x-1)^2} > k \right]$$
Pero,
$$\frac{1}{(x-1)^2} > k \ \Leftrightarrow \ 0 < (x-1)^2 < \frac{1}{k}$$
. Por otra parte, si $0 < |x-1| < \delta$ será $|x-1|^2 < \delta^2$, de

donde $\frac{1}{|x-1|^2} > \frac{1}{\delta^2}$ Basta tomar por tanto $\delta^2 < \frac{1}{k}$, o lo que es lo mismo, $\delta < \frac{1}{\sqrt{k}}$. De esta forma se consigue que si $0 < |x-1| < \delta$, entonces $\frac{1}{|x-1|^2} > \frac{1}{\delta^2} > k$

Ejercicio 3

Demuestra que $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Solución:

Se probará utilizando la propiedad 4 del apartado 2.2.

En la figura puede observarse que :

área triángulo OAB < área sector OAB < área triángulo OAC

Si x es la medida en radianes del arco AB y el radio es OA = 1, resulta: $\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$ Entonces para todo x, $0 < x < \frac{\pi}{2}$: $\sin x < x < \tan x$

Y por tanto $\frac{1}{\sin x} > \frac{1}{x} > \frac{1}{\tan x}$. Multiplicando por $\sin x > 0$ se obtiene $1 > \frac{\sin x}{x} > \cos x$ designaldad ésta que teniendo en cuenta que todas las funciones que intervienen son pares, es válida para todo $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ - $\{0\}$ el $\lim_{x \to 0} \frac{\sin x}{x} = 1$ por ser $\lim_{x \to 0} \cos x = 1$.

Ejercicio 4

¿Existe el límite de $f(x) = \begin{cases} 4 - x & \text{si } x < 1 \\ 4x - x^2 & \text{si } x \ge 1 \end{cases}$ cuando x tiende a 1?

Solución:

Calculando los límites laterales:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (4 - x) = 4 - 1 = 3 \text{ y } \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (4x - x^{2}) = 4 - 1 = 3$$
Puede concluirse, por tanto que existe el límite y vale
$$\lim_{x \to 1} f(x) = 3$$

En la gráfica puede observarse las dos partes diferentes que constituyen la función, a la izquierda del 1 una recta y a su derecha una parábola, pero en el 1 toman el mismo valor.

Ejercicio 5

Estudia la existencia del $\lim_{x\to 0} \left(1 - \frac{|x|}{r}\right)$

Solución:

Teniendo en cuenta que |x| = x si $x \to 0^+$ y |x| = -x si $x \to 0^-$, se tiene:

$$\lim_{x \to 0^{-}} \left(1 - \frac{|x|}{x} \right) = \lim_{x \to 0^{-}} \left(1 - \frac{-x}{x} \right) = 1 + 1 = 2$$

$$\lim_{x \to 0^{+}} \left(1 - \frac{|x|}{x} \right) = \lim_{x \to 0^{+}} \left(1 - \frac{x}{x} \right) = 1 - 1 = 0$$

Los límites laterales existen, pero como no son iguales se concluye que no existe el límite.

Ejercicio 6

Resuelve los siguientes límites:

a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

b)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$

a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$
 b) $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}$ c) $\lim_{x \to -\infty} (x + \sqrt{x^2 + 3})$

Solución:

a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \left(\frac{0}{0}\right) = \lim_{x \to 2} \frac{(3 + x)(x - 2)}{x - 2} = \lim_{x \to 2} (3 + x) = 5$$

b)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{(\sqrt{1+x} - 1)(\sqrt{1+x} + 1)}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{x}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{1}{(\sqrt{1+x} + 1)} = \frac{1}{2}$$

c)
$$\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 3} \right) = (-\infty + \infty) = \lim_{x \to -\infty} \frac{\left(x + \sqrt{x^2 + 3} \right) \left(x - \sqrt{x^2 + 3} \right)}{\left(x - \sqrt{x^2 + 3} \right)}$$
$$= \lim_{x \to -\infty} \frac{-3}{\left(x - \sqrt{x^2 + 3} \right)} = \left(\frac{-3}{-\infty} \right) = 0$$

Ejercicio 7

Calcula el valor de *a* para que $\lim_{x \to \infty} \left(\frac{x+a}{x-a} \right)^x = 4$

Solución:

$$\lim_{x \to \infty} \left(\frac{x+a}{x-a} \right)^x = (1^{\infty}) = e^{\lim_{x \to \infty} \left[\left(\frac{x+a}{x-a} - 1 \right)^x \right]} = e^{\lim_{x \to \infty} \left[\left(\frac{x+a-x+a}{x-a} \right)^x \right]} = e^{\lim_{x \to \infty} \left(\frac{2ax}{x-a} \right)} = e^{2a}$$

$$\text{Y para que } e^{2a} = 4 \implies 2a = L4 \implies a = \frac{1}{2}L4 = L(4^{1/2}) = L\sqrt{4} = L2$$

Ejercicio 8

Halla las asíntotas horizontales y verticales de $f(x) = \frac{2x^2 - 2}{x^2 - 2x}$

Solución:

Como
$$\lim_{x \to \infty} \frac{2x^2 - 2}{x^2 - 2x} = 2 \implies y = 2$$
 es una asíntota horizontal
Y por ser $\lim_{x \to 0} \frac{2x^2 - 2}{x^2 - 2x} = \infty$, $\lim_{x \to 2} \frac{2x^2 - 2}{x^2 - 2x} = \infty \implies x = 0$, $x = 2$ son asíntotas verticales.

Ejercicio 9

Calcula el
$$\lim_{x \to 1} \frac{1-x}{1-\sqrt[3]{x}}$$

Solución:

Al igual que para la diferencia de cuadrados se tiene que $a^2 - b^2 = (a + b)(a - b)$, para la diferencia de cubos es $a^3 - b^3 = (a^2 + ab + b^2)(a - b)$. Por tanto:

$$\lim_{x \to 1} \frac{1 - x}{1 - \frac{3}{\sqrt{x}}} = \lim_{x \to 1} \frac{1^3 - (\frac{3}{\sqrt{x}})^3}{1 - \frac{3}{\sqrt{x}}} = \lim_{x \to 1} \frac{\left(1 + \frac{3}{\sqrt{x}} + (\frac{3}{\sqrt{x}})^2\right)\left(1 - \frac{3}{\sqrt{x}}\right)}{1 - \frac{3}{\sqrt{x}}} = \lim_{x \to 1} \frac{1 + \frac{3}{\sqrt{x}} + (\frac{3}{\sqrt{x}})^2}{1} = 3$$

Ejercicio 10

¿Para qué valores del parámetro a existe el $\lim_{x \to 0} f(x)$ siendo $f(x) = \begin{cases} e^{ax} & \text{si } x \le 0 \\ \frac{x^2}{2} + x + 1 & \text{si } x > 0 \end{cases}$

Solución:

Hallando los límites laterales:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} e^{ax} = e^{0} = 1 \quad \text{y} \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} \frac{x^{2}}{2} + x + 1 = 1$$

Por tanto, el límite existe y vale $\lim_{x\to 0} f(x) = 1$ para cualquier valor del parámetro.

Ejercicios Propuestos

(Las soluciones se encuentran al final)

- 1.- Sabiendo que $\lim_{x \to 0} \frac{\sin x}{x} = 1$, calcula $\lim_{x \to a} \frac{\sin(x a)}{x^2 a^2}$
- 2.- Pon un ejemplo de una función f(x) que verifique $\lim_{x\to 0} f(x) = +\infty$ y $\lim_{x\to \infty} f(x) = 0$
- 3.- Calcula los siguientes límites, si existen:

a)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$

a)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$
 b) $\lim_{x \to \infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - 2x - 1})$

- 4.- Definiendo la función "parte entera" E(x) = mayor número entero menor o igual que x, demuestra que no existe el $\lim_{x \to 3} E(x)$.
- 5.- ¿Existe el $\lim_{x \to -4} \frac{|x+4|}{|x+4|}$?
- 6.- Demuestra, aplicando la definición de límite, que $\lim_{x \to 3} (6x + 1) = 19$
- 7.- ¿Con qué proximidad a 2 se debe tomar x para que 8x 5 se encuentre a una distancia de 11 menor que a) 0.01 b) 0.001?
- 8.- Indica la indeterminación que presentan y resuelve los siguientes límites en el infinito:

a)
$$\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right)$$

a)
$$\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right)$$
 b) $\lim_{x \to \infty} \left(\sqrt{\frac{x+2}{x+1}} \right) \frac{1}{\sqrt{x+2} - \sqrt{x+1}}$

9.- Comprueba que
$$\lim_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + \sqrt{x} + \sqrt{x}}} = 1$$

10.- Halla las asíntotas horizontales y verticales de
$$f(x) = L\left(\frac{x+1}{x-1}\right)$$

Soluciones:

1.-
$$\frac{1}{2a}$$

2.- Por ejemplo,
$$f(x) = \frac{1}{x^2}$$

- 4.- El límite no existe por ser distintos los límites laterales.
- 5.- El límite no existe por ser distintos los límites laterales.

7.- a)
$$\delta < \frac{0.01}{8} = 0.00125$$
 b) $\delta < \frac{0.001}{8} = 0.000125$

b)
$$\delta < \frac{0.001}{8} = 0.000125$$