Samsung Data Challenge 2018

교통사망사고정보 Data Completion

Timmy YeongTaek Oh Samsung Data Challenge 2018

- Problem & Data Overview
- Data Split & Augmentation
- Model Structure
- Result

Problem & Data Overview

- Problem Overview (Test Data 기준)
 - Imputation Missing Values based on other values
 - Missing Variables can be any variable in test data (Figure 1)
 - -> Self Data Completion
- How to Solve?
 - AutoEncoder with Missing Value
 - ➤ Baseline on Multiple Imputation using Denoising AutoEncoder (MIDA)

(Figure 2)

주야	요일	사망자 수	사상자 수	중상자 수) 경상자 수	부상신 고자수	발생지 시도	발생지 시군구	사고유 형_대분 류	사고유 형_중분 류	법규위 반	도로형 태_대분 류	도로형 태	당사자 종별_1 당_대분 류	당사자 종별_2 당_대분 류
야간	금			C)	0	경기	화성시	차대차	측면충 돌	중앙선 침범	단일로	기타단 일로	승용차	승합차
야간	화	1	1	C	0	0	대구	북구				단일로	기타단 일로	승용차	화물차
주간		1	1	C	0	0	서울	동작구			신호위 반	교차로	교차로 내	화물차	원동기 장치자 전거
	일			C	0	0	전북	고창군	차대사 람	기타	부당한 회전	교차로	교차로 내		보행자

Figure 1. Sample of Test Data

Problem & Data Overview

- # of data: Train 25037, Test:?
 - Train Data: 12.01 ~ 17.06 기간의 교통사망사고정보 데이터
 - Test Data: 17.07 이후의 교통사망사고정보 데이터 (Not provided)
- # of Variables : Train(27) ⊃ Test(16)
 - Categorical Variables: 11
 - Numerical Variables: 5
- Metric for Variables
 - Categorical Variable : $C \times \sum_{i=1}^{k_2} \delta_{c_i d_i}$
 - Categorical Loss: Categorical Cross Entropy
 - Numerical Variable : $B \times \sum_{i=1}^{k_1} \exp\left\{-\left(\frac{n_i m_i}{s_j}\right)^2\right\}$
 - Numerical Loss: Mean Squared Error

발생년	사고유형
발생년월일시	법규위반_대 분류
발생분	법규위반
주야	도로형태_대 분류
요일	도로형태
사망자수	당사자종별_1 당_대분류
사상자수	당사자종별_1 당
중상자수	당사자종별_2 당_대분류
경상자수	당사자종별_2 당
부상신고자수	발생위치X_U TMK
발생지시도	발생위치Y_U TMK
발생지시군구	경도
사고유형_대 분류	위도
사고유형_중 분류	

Table 1. Variables in data

Data Split & Augmentation

- Training Set / Validation Set (85% / 15%)
 - 1. 15% Random Sampling from Training Data (Time Shuffled) * 2
 - 2. 15% Latest Data in Training Data (Time Not Shuffled)
- Masking missing values
 - Categorical variables: mask '0' for missing categorical value
 - Numerical variables: mask '-1' value on missing and create missing table $(n \times 5)$

Data Split & Augmentation

- **>>**
- Random masking on Training Data on every step
 - gives data augmentation effects
- Fixed masking on Validation Data for early stopping
- Different Fixed masking on Validation Data for parameter tuning (self-test)
 - to prevent overfitting on validation set

Model Structure

Projection Layer

Hidden Layer2

Hidden Layer

Concatenate Embedding Layer

Model Structure (Categorical Label)

Projection Layer

Hidden Layer2

Hidden Layer

Concatenate Embedding Layer

Model Structure (Categorical Label)

Category-wise softmax&argmax, Categorical loss

Model Structure (Numerical Label Path1)

Projection Layer

Hidden Layer2

Hidden Layer

Concatenate Embedding Layer

Model Structure (Numerical Label Path2)

Projection Layer

Hidden Layer2

Hidden Layer

Concatenate Embedding Layer

Model Structure (Numerical Label Path3)

Projection Layer

Hidden Layer2

Hidden Layer

Concatenate Embedding Layer

Result on Validation Test

- Total Loss = Categorical Loss + 2* Numerical Loss
 - ✓ Categorical Loss: Categorical Cross Entropy per categorical variable
 - ✓ Numerical Loss : Average 3 Path MSE on Continuous Label
 - Categorical score : $C \times \sum_{i=1}^{k_2} \delta_{c_i d_i}$
 - Numerical score : $B \times \sum_{i=1}^{k_1} \exp\left\{-\left(\frac{n_i m_i}{s_j}\right)^2\right\}$
- 3 different validation-data split Models
 - ✓ 2 Random Shuffle split
 - ✓ 1 Latest Split
- Final Model is ensemble 3 models by averaging scores

Model No.	Split Type(seed)	Category Score	Numerical Score	Total Score
1	Random (1000)	0.6417	0.9479	1.5896
2	Random (2000)	0.6470	0.9468	1.5938
3	Latest	0.6103	0.9440	1.5544

Conclusion

- DAE 를 이용하여 미래 교통사고사망정보의 데이터를 예측(복원)하는 모델을 개발
- Numeric 변수에 대해서는 스코어 기준 평균 0.94점의 높은 성능을 보임
 Categorical 변수에 대해서는 스코어 기준 평균 0.63점의 상대적으로 낮은 성능을 보임
- 해당 모델은 변수 수의 확장에 따른 Flexible한 모델
 데이터별 변수가 많아지면 전체 성능을 향상할 수 있음
 즉, 현재는 테스트셋에 존재하는 변수만 사용하여 학습을 하였으나 트레이닝 셋에 존재하는
 기타 변수들에 대해서도 추가 수집이 가능하다면 성능이 높아질 것으로 보임
- 또한 현재 모델은 해당 도메인 이외에도 의료 레코드, 금융정보 등 타 도메인의 결측치가 많은 데이터에 대해서도 호환 가능한 모델

Thank you