Developing A Flight Delay Prediction Model Using Machine Learning

PROBLEM STATEMENT:

The problem of flight delay prediction is approached most often by predicting a delay class or value. However, the aviation industry can benefit greatly from probabilistic delay predictions on an individual flight basis, as these give insight into the uncertainty of the delay predictions. Therefore, in this study, two probabilistic forecasting algorithms, Mixture Density Networks and Random Forest regression, are applied to predict flight delays at a European airport. The algorithms estimate well the distribution of arrival and departure flight delays with a Mean Absolute Error of less than 15 min. To illustrate the utility of the estimated delay distributions, we integrate these probabilistic predictions into a probabilistic flight-to-gate assignment problem. The objective of this problem is to increase the robustness of flight-to-gate assignments. Considering probabilistic delay predictions, our proposed flight-to-gate assignment model reduces the number of conflicted aircraft by up to 74% when compared to a deterministic flight-to-gate assignment model. In general, the results illustrate the utility of considering probabilistic forecasting for robust airport operations' optimization.

Who does the problem affect?	Persons who use the Flight on
	traveling
What are the boundaries of the	People who use flight and facing
problem?	issues of flight delay.
What is the issue?	The impact of flight delay can be a risk
	and this risk represents financial
	losses, the dissatisfaction of
	passengers, time losses, loss of

	reputation and bad business relations.
	If an airline doesn't deal with this
	problem immediately, it will cause
	other problems
When does the issue occur?	During the weather condition has
	changed in suddenly that time the
	issues occur.
Where does the issue occur?	The issue occurs in the flight take off,
	landing place and air place.
Why is it important that we fix the	predicting flight delays can improve
problem?	airline operations and passenger
	satisfaction, which will result in a
	positive impact on the economy. In
	this study, the main goal is to compare
	the performance of machine learning
	classification algorithms when
	predicting flight delays.
What methodology used to solve the	They have used techniques like
issue?	Decision Trees, AdaBoost, and K-
	Nearest Neighbors for predicting
	individual flight delays. A binary
	classification was performed by the
	model to predict the scheduled flight
	delay