当MMEdu遇上行空板——"智能稻草人"项目的后续研究

谢作如 浙江省温州中学 程龙恺 上海人工智能实验室

摘要:从确定问题、收集数据到选择AI模型,最后训练出一个可行的AI模型,是中小学AI科创活动的重要流程。但在AI模型训练出来后,还需要部署在各种开源硬件上使其成为一个真正的"AI产品"或者AI应用,这才是AI科创活动的最终目标。本文以"智能稻草人"项目为例,介绍了将AI模型部署到开源硬件上的多种方案,重点介绍了搭建AI推理服务器和转换AI模型两种常见方案,并分别进行了分析和测试。

关键词: MMEdu, 深度学习, AI模型部署, AI科创活动

中图分类号:G434 文献标识码: A 论文编号: 1674-2117 (2022) 23-0077-03

● 问题的提出

在上一期专栏文章中,笔者设计了一个名为"智能稻草人"的科创项目。温州实验中学的老师觉得很不错,于是在全校范围开展了这个主题的项目式学习。学生们结合校园中的各种真实问题收集数据,然后借助MMEdu训练模型。学生很喜欢这个项目,研究进展顺利,模型识别效果也很不错。随着项目学习的推进,他们提出了一个新的问题:如何在开源硬件上应用MMEdu模型?

显然,这样的需求是从真实问题解决的角度提出的——因为总不能搬出一台计算机来作为运行AI模型的终端。虽然有很多品牌的开源硬件应用在中小学的创客教育中,但能够运行AI模型的开

源硬件性能要求较高,需要支持 Linux系统,如虚谷号、香橙派、冲锋舟、行空板等。从应用的便捷程 度上来说,行空板是中小学目前最 热门的选择,其自带的大屏幕很 适合做各种智能作品。于是笔者将 问题聚焦为如何在行空板上应用 MMEdu模型。

● 在行空板上应用MMEdu 模型的方案分析

行空板是一款拥有自主知识产权的国产教学用开源硬件,集成LCD彩屏、Wi-Fi蓝牙、多种常用传感器和丰富的拓展接口,支持常见的USB设备,接上普通的USB摄像头、USB小音箱就能完成一个智能稻草人的作品原型。如果加上舵机、电磁阀之类的执行器,则可以实

现如智能灌溉、智能门禁等常见的 创客作品;如果加上物联网MQTT 消息的传递,则可以实现远程管 理,做出智联网的作品来。

经过分析,在行空板上应用 MMEdu模型有多种方案,分别介 绍如下。

方案1:在行空板上安装 MMEdu

所谓"解铃还须系铃人",要想在行空板上使用MMEdu模型,最自然的想法肯定是在行空板上安装MMEdu。不过,这并非推荐的方案,因为行空板只有512M的内存,MMEdu基于OpenMMLab进行二次开发,包含了多个对系统要求较高的Python模块,环境安装比较困难。

方案2: 让行空板远程调用 MMEdu的推理服务

参考百度AI开放平台的做法, 可以把行空板看成是一个带摄像 头的Wi-Fi终端, AI模型推理工作 放在一台PC机上,部署为"推理服 务器"。行空板把拍摄到的照片传 送给服务器,再根据返回的数据执 行相应任务,如图1所示。

方案3:在行空板上部署 ONNX或者NCNN环境

ONNX的全称是"Open Neural Network Exchange",即 "开放的神经网络切换",旨在实现 不同神经网络开发框架之间的互通 互用。ONNX支持多平台,推理环 境搭建非常方便,是部署AI应用主 流选择。MMEdu支持导出ONNX 模型,行空板也能够部署ONNX的 推理环境。

除了ONNX外, NCNN也是可 行的选择。NCNN是一个跨平台的 神经网络前向计算框架,为移动端 的推理做了优化,行空板已经提供 了安装NCNN环境的教程,以及推 理的DEMO。

● 行空板远程调用MMEdu的

推理服务

1.AI推理服务器代码的实现

借助Flask或者fastapi, 搭建 一个类似百度AI开放平台并不困 难,稍微有点Python基础的就能完 成。核心代码如图2所示。

2.远程推理代码的编写

借助Request库,三四行代码

就能实现将图片传送到Web服务 器,并获得返回信息。参考代码如下 页图3所示,其中"10.1.2.1"为Web 服务器的IP地址。

作为智能稻草人作品,行空板 肯定是要接上摄像头,然后定时 将画面发给服务器。拍照一般使用 OpenCV库,代码也非常简洁。下页 图4中的代码实现了启动摄像头,拍 照后传送图片到服务器,然后输出 返回到信息。

3.测试情况记录

将一台笔记本电脑(CPU为 I5-9750, 内存为16G) 设置为AI推 理服务器,在启动GPU(NVIDIA GeForce GTX 1650)的情况下,对 "MobileNet"的模型进行推理,平 均速度是0.15秒左右,而仅仅使用 CPU推理,速度也差不多。可见,AI 推理在普通电脑上是没有太大的 压力的,算力已经够了。

为了方便中小学的师生们部署 AI应用, XEdu的开发小组特意编写 了一个名为"EasyAPI"的小程序(如 下页图5),只要训练好MMEdu的模 型,设置必要的路径参数,即可生成 Python代码,也可以直接运行,让计 算机变身为AI推理服务器。

图1

#导入库部分省略

app = FastAPI()

@app.post("/upload")

async def upload_file(files: UploadFile = File(...)):

fileUpload = f"./upload/{files.filename}"

with open(fileUpload, "wb") as buffer:

shutil.copyfileobj(files.file, buffer)

网络模型的名称

model = cls(backbone='MobileNet')

训练出来的模型权重文件

checkpoint = '../XEdu/best.pth'

数据集的类别说明文件

class_path = '../XEdu/classes.txt'

model.load_checkpoint(device='cuda',checkpoint=checkpoint,class_ path=class_path)

result = model.fast_inference(fileUpload)

chinese_result = model.print_result(result)

return {"tag":chinese_result[0]['预测结果'],"acc":chinese_result[0]['置信度']}

uvicorn.run(app=app,host="0.0.0.0",port=80,workers=1)

图2

上传本地图片后返回信息 import requests url = "http://10.1.2.1/upload" files = {'files': open('qingtian3.jpg', 'rb')} result = requests.post(url=url, files=files) print(result.text)

图3

调用摄像头后返回 import cv2 import requests cap = cv2.VideoCapture(0)url = "http://10.1.2.1/upload" if(cap.isOpened()): ret_flag, Vshow = cap.read()#得到每帧图像 save_url = 'save_data/test.jpg' cv2.imwrite(save_url,cv2.resize(Vshow,(224, 224))) files = {'files': open(save_url, 'rb')} result = requests.post(url=url, files=files) print(result.text) else: print('摄像头未启动')

图4

图5

Python

python ./tools/deploy.py \

configs/mmcls/classification_onnxruntime_static.py \ convert-config/resnet50.py \ #网络结构配置文件 models/best_accuracy_top-1_epoch_47.pth \ #ill 练出的权重文件

data/hand_draw/data/train/paper/1.png \ #任 意一张输入图片

- --work-dir work_dir \ #模型转换后输出文件
- --show \
- --device cpu

图6

● 在行空板 上部署ONNX和 NCNN环境

1.环境安装

绝大多数的系 统都支持ONNX, 行空板上可以通 过Pip命令安装 "onnxruntime"。对 于NCNN,行空板则 提供了安装教程和编 译好的文件,也可以 通过Pip方式安装。

2.将MMEdu 模型转换为ONNX 和NCNN模型

转换模型看起 来是一件很专业的 事情,其实只要找到 相应的工具即可。借 助OpenMMLab的 classification模块, 只要一句命令,就能 直接将模型导出为 ONNX格式的模型 (如图6)。

MMEdu提供 了更加简单的转换 方式。使用model对 象的convet方法, 就能直接导出指定 的模型格式文件, 如转换为ONNX 的代码为"model. convert(backend type='onnx')",是不是很简单。

需要强调的是,还没有做过优 化的ONNX模型在行空板上推理 速度有点慢,测试结果大约是2秒, 如果换成树莓派和jetsonnano,则 速度应该会更快一些。这还需要进 一步研究。

● 总结

"智能稻草人"项目实际上是 一个范围很广的AI科创主题,几乎 绝大多数的AI安防类产品原理都 类似稻草人。根据解决的问题采集 相应的数据,再选择合适的网络模 型。在MMEdu系列工具的支持下, 用AI解决问题其实并不难。对于网 络结构比较复杂的模型,推荐使用 方式2。从测试中可以看出,在局域 网下传输图像数据,速度其实是很 快的。对于模型比较简单,而且部 署Web服务器比较麻烦的应用场 景,则推荐使用方式3。

在完成这组AI科创案例后, 笔 者能够逐步明确一条中小学AI科 创的学习路径,即在标准的主流的 AI框架上学习训练模型,再通过相 应的AI模型转换和部署工具,运行 在常见的开源硬件上。这样既能够 学习到主流的AI开发知识,又能很 好地扩展开源硬件在AI方面的应 用。当然,学习AI也不会局限于某一 种开源硬件。e