

Московский Государственный Университет имени М. В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Системного Анализа

Анализ системы типа муравейник

Студент 515 группы В. С. Терёшин

Руководитель практики д.ф. -м.н., профессор А. С. Братусь

Содержание

1.	Пос	тановка задачи	3
2.	Физ	ический смысл задачи	3
3.	Hax	ождение фитнеса	3
4.	Исс	ледование системы	3
	4.1.	Нахождение неподвижных точек	3
	4.2.	Нахождение якобиана системы	4
	4.3.	Исследование неподвижных точек на устойчивость	5
		4.3.1. Исследование положения равновесия 1	5
		4.3.2. Исследование положений равновесия 2-4	5
		4.3.3. Исследование положения равновесия 5	6
		4.3.4. Исследование положений равновесия 6-8	7
		4.3.5. Исследование положений равновесия 9-11	7
		4.3.6. Исследование положений равновесия 12–14	8
		4.3.7. Исследование положений равновесия 15	8
5.	При	меры	9
		Пример 1: случай 3	9
		Пример 2: случай 15	Q

1. Постановка задачи

Рассматривается динамическая система

$$\begin{cases} \dot{u}_1 = u_1 \left(\alpha u_4 + k_1 u_2 + k_2 u_3 - \overline{f} \right), \\ \dot{u}_2 = u_2 \left(\alpha u_4 + k_1 u_3 + k_2 u_1 - \overline{f} \right), \\ \dot{u}_3 = u_3 \left(\alpha u_4 + k_1 u_1 + k_2 u_2 - \overline{f} \right), \\ \dot{u}_4 = u_4 \left(\beta \left(u_1 + u_2 + u_3 \right) - \overline{f} \right). \end{cases}$$

при условиях $u_1+u_2+u_3+u_4=1,\ \alpha>0,\ \beta>0,\ k_1>0,\ k_2>0.$ Введём обозначение $S=u_1+u_2+u_3.$

2. Физический смысл задачи

Данная система представляет собой описание колонии муравьёв. Королева (u_4) обслуживается остальными членами популяции $(u_1, u_2 u u_3)$, которые помогают ей размножаться. В свою очередь, королева колонии способствует размножению других видов муравьёв. Муравьи первого, второго и третьего типов также способствуют размножению друг друга.

3. Нахождение фитнеса

Для нахождения фитнеса заметим, что так как $u_1+u_2+u_3+u_4=1$, то $\dot{u_1}+\dot{u_2}+\dot{u_3}+\dot{u_4}=0$. Выпишем уравнение на \overline{f} :

$$0 = u_1 \left(\alpha u_4 + k_1 u_2 + k_2 u_3 - \overline{f} \right) + + u_2 \left(\alpha u_4 + k_1 u_3 + k_2 u_1 - \overline{f} \right) + + u_3 \left(\alpha u_4 + k_1 u_1 + k_2 u_2 - \overline{f} \right) + + u_4 \left(\beta \left(u_1 + u_2 + u_3 \right) - \overline{f} \right) = = (\alpha + \beta) u_4 (u_1 + u_2 + u_3) + (k_1 + k_2) (u_1 u_2 + u_1 u_3 + u_2 u_3) - (u_1 + u_2 + u_3 + u_4) \overline{f}.$$

Принимая во внимание то, что $S=u_1+u_2+u_3$, а $u_1+u_2+u_3+u_4=1$, получим

$$0 = (\alpha + \beta)(1 - S)S + (k_1 + k_2)(u_1u_2 + u_1u_3 + u_2u_3) - \overline{f},$$

$$\Rightarrow \overline{f} = (\alpha + \beta)(1 - S)S + (k_1 + k_2)(u_1u_2 + u_1u_3 + u_2u_3).$$

4. Исследование системы

4.1. Нахождение неподвижных точек

 ${\rm C}$ помощью символьных вычислений среды MATLAB можно получить неподвижные точки системы:

1)
$$u_1 = 0$$
, $u_2 = 0$, $u_3 = 0$, $u_4 = a$;

2)
$$u_1 = 1$$
, $u_2 = 0$, $u_3 = 0$, $u_4 = 0$;

3)
$$u_1 = 0$$
, $u_2 = 1$, $u_3 = 0$, $u_4 = 0$;

4)
$$u_1 = 0$$
, $u_2 = 0$, $u_3 = 1$, $u_4 = 0$;

5)
$$u_1 = \frac{1}{3}$$
, $u_2 = \frac{1}{3}$, $u_3 = \frac{1}{3}$, $u_4 = 0$;

6)
$$u_1 = 0$$
, $u_2 = 0$, $u_3 = \frac{\alpha}{\alpha + \beta}$, $u_4 = \frac{\beta}{\alpha + \beta}$;

7)
$$u_1 = 0$$
, $u_2 = \frac{\alpha}{\alpha + \beta}$, $u_3 = 0$, $u_4 = \frac{\beta}{\alpha + \beta}$;

8)
$$u_1 = \frac{\alpha}{\alpha + \beta}$$
, $u_2 = 0$, $u_3 = 0$, $u_4 = \frac{\beta}{\alpha + \beta}$;

9)
$$u_1 = \frac{k_1}{k_1 + k_2}$$
, $u_2 = \frac{k_2}{k_1 + k_2}$, $u_3 = 0$, $u_4 = 0$;

10)
$$u_1 = 0$$
, $u_2 = \frac{k_1}{k_1 + k_2}$, $u_3 = \frac{k_2}{k_1 + k_2}$, $u_4 = 0$;

11)
$$u_1 = \frac{k_2}{k_1 + k_2}$$
, $u_2 = \frac{k_1}{k_1 + k_2}$, $u_3 = 0$, $u_4 = 0$;

12)
$$u_1 = \frac{\alpha k_1}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$$
, $u_2 = \frac{\alpha k_2}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$, $u_3 = 0$, $u_4 = \frac{(k_1 + k_2)\beta - k_1 k_2}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$;

13)
$$u_1 = 0$$
, $u_2 = \frac{\alpha k_1}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$, $u_3 = \frac{\alpha k_2}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$, $u_4 = \frac{(k_1 + k_2)\beta - k_1 k_2}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$;

14)
$$u_1 = \frac{\alpha k_2}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$$
, $u_2 = 0$, $u_3 = \frac{\alpha k_1}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$, $u_4 = \frac{(k_1 + k_2)\beta - k_1 k_2}{(\alpha + \beta)(k_1 + k_2) - k_1 k_2}$;

15)
$$u_1 = \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}$$
, $u_2 = \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}$, $u_3 = \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}$, $u_4 = \frac{3\beta-k_1-k_2}{3(\alpha+\beta)-k_1-k_2}$;

4.2. Нахождение якобиана системы

Якобиан данной системы равен:

$$J(u_1, u_2, u_3, u_4) = \begin{bmatrix} \frac{df_1}{du_1} & \frac{df_1}{du_2} & \frac{df_1}{du_3} & \frac{df_1}{du_4} \\ \frac{df_2}{du_1} & \frac{df_2}{du_2} & \frac{df_2}{du_3} & \frac{df_2}{du_4} \\ \frac{df_3}{du_1} & \frac{df_3}{du_2} & \frac{df_3}{du_3} & \frac{df_3}{du_4} \\ \frac{df_4}{du_1} & \frac{df_4}{du_2} & \frac{df_4}{du_3} & \frac{df_4}{du_4} \end{bmatrix}$$

К сожалению, выписать в полном виде якобиан данной системы на данном формате бумаги не представляется возможным. Он был вычислен с помощью символьных вычислений среды MATLAB, как и собственные числа далее.

4.3. Исследование неподвижных точек на устойчивость

Изолированные неподвижные точки можно проверить на устойчивость, воспользовавшись следующей теоремой:

Определение 1 (Гиперболическое положение равновесия). Положение равновесия динамической системы называется гиперболическим, если не существует собственных значений якобиана системы в этой точке, расположенных на мнимой оси.

Теорема 1 (Ляпунов, Пуанкаре). Пусть u^* — гиперболическое положение равновесия системы. Пусть n_+ , n_- — число собственных значений $J(u^*)$ с положительной и отрицательной вещественной частью соответственно. Тогда, если $n_+=0$, то положение равновесия ассимптотически устойчиво, а если $n_+>0$, то неустойчиво.

4.3.1. Исследование положения равновесия 1

Чтобы удовлетворять условию задачи, необходимо чтобы a=1. В этом случае $\overline{f}=0.$

$$J(0,0,0,1) = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ \alpha & \alpha & \alpha & 0 \end{bmatrix} =$$

Собственными значениями данной матрицы являются числа:

- 1) $\lambda_1 = 0$;
- 2) $\lambda_2 = \alpha$;
- 3) $\lambda_3 = \alpha$;
- 4) $\lambda_4 = \alpha$;

Из собственных значений невозможно установить устойчивость неподвижной точки и необходимо провести дополнительное исследование.

4.3.2. Исследование положений равновесия 2-4

В силу симметрии системы можно исследовать любое из этих положений равновесия: остальные будут обладать такими же свойствами. Рассмотрим, например, положении равновесия (1,0,0,0). В этом случае $\overline{f}=0$.

$$J(1,0,0,0) = \begin{bmatrix} \alpha+\beta & \alpha+\beta-k_2 & \alpha+\beta-k_1 & \alpha \\ 0 & k_2 & 0 & 0 \\ 0 & 0 & k_1 & 0 \\ 0 & 0 & 0 & \beta \end{bmatrix} =$$

Собственными значениями данной матрицы являются числа:

- 1) $\lambda_1 = \beta$;
- 2) $\lambda_2 = k_1;$
- 3) $\lambda_3 = k_2$;
- 4) $\lambda_4 = \alpha + \beta$;

Из собственных значений и теоремы видно, что данная точка является неустойчивой.

4.3.3. Исследование положения равновесия 5

В этом случае $\overline{f} = \frac{k_1 + k_2}{3}$, а

$$J\left(\frac{1}{3},\frac{1}{3},\frac{1}{3},0\right) = \begin{bmatrix} \frac{\alpha}{3} + \frac{\beta}{3} - \frac{2k_1}{9} - \frac{2k_2}{9} & \frac{\alpha}{3} + \frac{\beta}{3} + \frac{k_1}{9} - \frac{2k_2}{9} & \frac{\alpha}{3} + \frac{\beta}{3} - \frac{2k_1}{9} + \frac{k_2}{9} & \frac{\alpha}{3} \\ \frac{\alpha}{3} + \frac{\beta}{3} - \frac{2k_1}{9} + \frac{k_2}{9} & \frac{\alpha}{3} + \frac{\beta}{3} - \frac{2k_1}{9} - \frac{2k_2}{9} & \frac{\alpha}{3} + \frac{\beta}{3} + \frac{k_1}{9} - \frac{2k_2}{9} & \frac{\alpha}{3} \\ \frac{\alpha}{3} + \frac{\beta}{3} + \frac{k_1}{9} - \frac{2k_2}{9} & \frac{\alpha}{3} + \frac{\beta}{3} - \frac{2k_1}{9} + \frac{k_2}{9} & \frac{\alpha}{3} + \frac{\beta}{3} - \frac{2k_1}{9} - \frac{2k_2}{9} & \frac{\alpha}{3} \\ 0 & 0 & \beta - \frac{k_1}{3} - \frac{k_2}{3} \end{bmatrix}.$$

Собственными значениями данной матрицы являются числа:

- 1) $\lambda_1 = \beta \frac{k_1 + k_2}{3}$;
- 2) $\lambda_2 = \alpha + \beta \frac{k_1 + k_2}{3}$;
- 3) $\lambda_3 = -\frac{k_1 + k_2}{6} \frac{\sqrt{3}(k_1 k_2)}{6}i;$
- 4) $\lambda_4 = -\frac{k_1 + k_2}{6} + \frac{\sqrt{3}(k_1 k_2)}{6}i;$

Из собственных значений и теоремы видно, что данная точка является ассимптотический устойчивой, если $\alpha+\beta<\frac{k_1+k_2}{3}$, неустойчивой, если $\alpha+\beta>\frac{k_1+k_2}{3}$, а в случае $\alpha+\beta=\frac{k_1+k_2}{3}$ необходимо дополнительное исследование.

4.3.4. Исследование положений равновесия 6-8

В силу симметрии будем исследовать положение равновесия $\left(\frac{\alpha}{\alpha+\beta},0,0,\frac{\beta}{\alpha+\beta}\right)$. В этом случае $\overline{f}=\frac{\alpha\beta}{\alpha+\beta}$.

$$J\left(\frac{\alpha}{\alpha+\beta},0,0,\frac{\beta}{\alpha+\beta}\right) = \begin{bmatrix} \frac{\alpha\left(\alpha-\beta\right)}{\alpha+\beta} & -\frac{\alpha\left(-\alpha^2+k_2\,\alpha+\beta^2-1\,k_1\,\beta\right)}{(\alpha+\beta)^2} & -\frac{\alpha\left(-\alpha^2+k_1\,\alpha+\beta^2-1\,k_2\,\beta\right)}{(\alpha+\beta)^2} & \frac{\alpha^2}{\alpha+\beta} \\ 0 & \frac{\alpha\,k_2}{\alpha+\beta} & 0 & 0 \\ 0 & 0 & \frac{\alpha\,k_1}{\alpha+\beta} & 0 \\ \frac{\alpha\,\beta}{\alpha+\beta} & \frac{\alpha\,\beta\,(\alpha+\beta-k_1-k_2)}{(\alpha+\beta)^2} & \frac{\alpha\,\beta\,(\alpha+\beta-k_1-k_2)}{(\alpha+\beta)^2} & 0 \end{bmatrix}.$$

Собственными значениями данной матрицы являются числа:

1)
$$\lambda_1 = \frac{\alpha^2}{\alpha + \beta}$$
;

2)
$$\lambda_2 = -\frac{\alpha\beta}{\alpha+\beta};$$

3)
$$\lambda_3 = \frac{\alpha k_1}{\alpha + \beta}$$
;

4)
$$\lambda_4 = \frac{\alpha k_2}{\alpha + \beta}$$
;

Из собственных значений и теоремы видно, что данная точка является неустойчивой, как и другие в этой группе.

4.3.5. Исследование положений равновесия 9-11

Будем исследовать положение равновесия $\left(\frac{k_1}{k_1+k_2},\frac{k_2}{k_1+k_2},0,0\right)$. В этом случае $\overline{f}=\frac{k_1k_2}{k_1+k_2}$.

$$J\left(\frac{k_1}{k_1+k_2}, \frac{k_2}{k_1+k_2}, 0, 0\right) = \begin{bmatrix} \frac{k_1(\alpha+\beta-k_2)}{k_1+k_2} & \frac{k_1(\alpha+\beta)}{k_1+k_2} & \frac{k_1(\alpha+\beta-k_1)}{k_1+k_2} & \frac{\alpha k_1}{k_1+k_2} \\ \frac{k_2(\alpha+\beta)}{k_1+k_2} & \frac{k_2(\alpha+\beta-k_1)}{k_1+k_2} & \frac{k_2(\alpha+\beta-k_2)}{k_1+k_2} & \frac{\alpha k_2}{k_1+k_2} \\ 0 & 0 & \frac{k_1+k_2}{k_1+k_2} & 0 \\ 0 & 0 & 0 & \frac{\beta k_1+\beta k_2-k_1k_2}{k_1+k_2} \end{bmatrix}.$$

Собственными значениями данной матрицы являются числа:

1)
$$\lambda_1 = \frac{k_1^2 - k_1 k_2 + k_2^2}{k_1 + k_2};$$

2)
$$\lambda_2 = \alpha + \beta - \frac{k_1 k_2}{k_1 + k_2}$$
;

3)
$$\lambda_3 = \beta - \frac{k_1 k_2}{k_1 + k_2}$$
;

4)
$$\lambda_4 = -\frac{k_1 k_2}{k_1 + k_2}$$
;

Рассмотрим числитель λ_1 :

$$k_1^2 - k_1 k_2 + k_2^2 = (k_1 - k_2)^2 + k_1 k_2 > 0.$$

Из собственных значений и теоремы видно, что данная точка является неустойчивой, как и другие в этой группе, если $\beta \neq \frac{k_1k_2}{k_1+k_2}$ и $\alpha+\beta \neq \frac{k_1k_2}{k_1+k_2}$.

4.3.6. Исследование положений равновесия 12-14

Данные положения равновесия существуют при $k_1k_2 < \beta(k_1+k_2)$. Будем исследовать положение равновесия

$$\left(\frac{\alpha k_1}{(\alpha+\beta)(k_1+k_2)-k_1k_2}, \frac{\alpha k_2}{(\alpha+\beta)(k_1+k_2)-k_1k_2}, 0, \frac{(k_1+k_2)\beta-k_1k_2}{(\alpha+\beta)(k_1+k_2)-k_1k_2}\right).$$

К сожеланию, якобиан и его собственные значения в этих точках имеют слишком громоздкий вид, поэтому мы его приводить не будем. Заметим лишь, что с помощью символьных вычислений среды MATLAB удалось установить, что эти точки почти всегда являются неустойчивыми положениями равновесия (существуют противоположные по знаку вещественные собственные значения).

4.3.7. Исследование положений равновесия 15

Данное положение равновесия существует при $k_1 + k_2 < 3\beta$. Будем исследовать положение равновесия

$$\left(\frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{3\beta-k_1-k_2}{3(\alpha+\beta)-k_1-k_2}\right).$$

$$J\left(\frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{\alpha}{3(\alpha+\beta)-k_1-k_2}, \frac{3\beta-k_1-k_2}{3(\alpha+\beta)-k_1-k_2}\right) = \begin{bmatrix} \frac{\alpha(\alpha-\beta)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha(\alpha-\beta+k_1)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha(\alpha-\beta+k_2)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha^2}{3\alpha+3\beta-k_1-k_2} \\ \frac{\alpha(\alpha-\beta+k_2)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha(\alpha-\beta)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha(\alpha-\beta+k_1)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha^2}{3\alpha+3\beta-k_1-k_2} \\ \frac{\alpha(\alpha-\beta+k_1)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha(\alpha-\beta+k_2)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha(\alpha-\beta)}{3\alpha+3\beta-k_1-k_2} & \frac{\alpha^2}{3\alpha+3\beta-k_1-k_2} \\ -\frac{\alpha(k_1-3\beta+k_2)}{3\alpha+3\beta-k_1-k_2} & -\frac{\alpha(k_1-3\beta+k_2)}{3\alpha+3\beta-k_1-k_2} & -\frac{\alpha(k_1-3\beta+k_2)}{3\alpha+3\beta-k_1-k_2} & 0 \end{bmatrix}.$$

Собственными значениями данной матрицы являются числа:

1)
$$\lambda_1 = \frac{\alpha(k_1 + k_2 - 3\beta)}{3(\alpha + \beta) - k_1 - k_2}$$

2)
$$\lambda_2 = -\frac{3\alpha^2}{3(\alpha+\beta)-k_1-k_2};$$

3)
$$\lambda_3 = \frac{1}{2(3(\alpha+\beta)-k_1-k_2)} \left(-\alpha(k_1+k_2) - \sqrt{3}(k_1-k_2)i \right);$$

4)
$$\lambda_4 = \frac{1}{2(3(\alpha+\beta)-k_1-k_2)} \left(-\alpha(k_1+k_2) + \sqrt{3}(k_1-k_2)i\right);$$

Из собственных значений, полученных с помощью MATLAB, видно, что данная неподвижная точка является устойчивой, когда существует, то есть когда $k_1+k_2<3\beta$.

5. Примеры

Примеры динамики системы с разными параметрами были построены в среде MATLAB.

5.1. Пример 1: случай 3

В данном примере $\alpha=0.1, \beta=0.5, k_1=0.5, k_2=1$:

5.2. Пример 2: случай 15

В данном примере $\alpha=0.1, \beta=0.8, k_1=0.5, k_2=1$:

