

Uniwersytet Przyrodniczy we Wrocławiu

Data Mining Wykład 7

Maszyna Wektorów Nośnych (SVM)

Maszyna wektorów nośnych

 W przestrzeni danych (ang. measurement space) Ω znajduj ą si ę wektory danych x stanowiące próbkę uczącą D, należące do dwóch klas:

$$D = \{ (\mathbf{x}_i, c_i) | x_i \in \mathbb{R}^p, c_i \in \{1, -1\} \}_{i=1}^{N}$$

- Szukamy klasyfikatora pozwalającego na podział całej przestrzeni Ω na dwa rozłączne obszary odpowiadającej klasom {1,-1} oraz pozwalającego jak najlepiej klasyfikować nowe obiekty x do klas
- Podejście opiera się na znalezieniu tzw. granicy decyzyjnej między klasami → g(x)

Uniwersytet Przyrodniczy we Wrocławiu

Separowalność liniowa

 Dwie klasy są liniowo separowalne, jeśli istnieje hiperpłaszczyzna H postaci g(x)

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

• przyjmująca wartości

$$\begin{cases} g(\mathbf{x}_i) > 0 & \mathbf{x}_i \in 1 \\ g(\mathbf{x}_i) < 0 & \mathbf{x}_i \in -1 \end{cases}$$

• Jak poszukiwać takiej hiperpłaszczyzny granicznej?

Liniowa funkcja separująca
 Funkcja liniowa separująca Wyznacza podział przestrzeni na obszary odpowiadające dwóm klasom decyzyjnym. Oryginalna propozycja Fisher'a, ale tak że inne metody (perceptron, itp) Uogólnienia dla wielu klas.
Uniwersytet Przyrodniczy we Wrocławiu

Support Vector Machine (SVM) - Znajdź liniową hiperplaszczyzn ę (decision boundary) oddzielające obszary przykładów z dwóch różnych klas

Support Vector Machine (SVM)
Inne możliwe rozwiązanie
•
• • •
•
Uniwersytet Przyrodniczy we Wrocławiu

Margines

- Hiperplaszczyzny b_{it} i b_{i2} są otrzymane przez równoległe przesuwanie hiperplaszczyzny granicznej aż do pierwszych punktów z obu kłos.
- Odległość między nimi margines klasyfikatora liniowego
- · Jaki margines wybierać ?

Uniwersytet Przyrodniczy we Wrocławie

Węższe czy szersze marginesy?

- Szerszy margines lepsze własności generalizacji, mniejsza podatność na ew. przeuczenie (overfitting)
- Wąski margines mała zmiana granicy, radykalne zmiany klasyfikacji

Uniwersytet Przyrodniczy we Wrocław

Liniowe SVM hiperpłaszczyzna graniczna

• Vapnik – poszukuj "maximal margin classifier"

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$$

gdzie w i b s ą parametrami modelu

$$y = \begin{cases} 1 & \mathbf{w} \cdot \mathbf{x} + \mathbf{b} > 0 \\ -1 & \mathbf{w} \cdot \mathbf{x} + \mathbf{b} < 0 \end{cases}$$

• Parametry granicy wyznaczaj tak, aby maksymalne marginesy b_{11} i b_{12} były miejscem geometrycznym punktów x spełniających warunki

$$b_{i1} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1$$
$$b_{i2} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1$$

• Margines – odległość między płaszczyznami b_{i1} i b_{i2}

Poszukiwanie parametrów hiperpłaszczyzny $\vec{w} \cdot \vec{x} + b = 0$ $\vec{w} \cdot \vec{x} + b = -1$ Uniwersytet Przygodniczy we Wrocławiu

Linear Support Vector Machines

• Sformułowanie problemu:

$$\min_{\mathbf{w}} = \frac{\|\mathbf{w}\|^2}{2}$$

· Przy warunkach ograniczających

$$y_i(w \cdot x_i + b) \ge 1$$
 $i = 1, 2, ..., N$

 Jest to problem optymalizacji kwadratowej z liniowymi ogr. → uogólnione zadanie optymalizacji rozwiązywany metodą mnożników Lagrange'a (tak aby np. nie dojść do w → 0)

Uniwersytet Przyrodniczy we Wrocławi

Linear Support Vector Machines

Minimalizuj funkcję Lagrange'a:

$$L(w,b,\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i (y_i(\mathbf{w}\mathbf{x}_i + b) - 1)$$

, gdzie parametry α ≥0 mnożniki Lagrange'a

Przy przekształceniach wykorzystuje się ograniczenia Karush-Kuhn-Tucker na mnożniki:

$$\alpha_i \ge 0$$

 $\alpha_i[y_i(w \cdot x_i + b) - 1] = 0$

- W konsekwencji α_i są niezerowe wyłącznie dla wektorów nośnych ${f x}$, pozostałe są zerowe

Linear Support Vector Machines – Duality Solution

Przy ograniczeniach:

$$\alpha_i \ge 0, \ \forall i \ \sum_{i=1}^N \alpha_i y_i = 0$$

Rozwiązanie (α>0 dla i∈SV):

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

Hiperpłaszczyzna decyzyjna:

$$\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b = 0$$

Uniwersytet Przyrodniczy we Wrocławiu

LSVM - Klasyfikacja

Klasyfikacja – funkcja decyzyjna

$$f(x) = sign(\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \cdot \mathbf{x} + b)$$

- O ostatecznej postaci hiperpłaszczyzny decydują wyłącznie wektory nośne ($\alpha_i > 0$)
- Im większa wartość $\boldsymbol{\alpha}_i$ tym większy wpływ wektora na granicę decyzyjną
- Klasyfikacja zależy od iloczynu skalarnego nowego ${\bf x}$ z wektorami nośnymi ${\bf x}_{\rm i}$ ze zbioru uczącego
- Pewne założenie metody starać się zbudować klasyfikator liniowy używając możliwie minimalną liczbę wektorów z danych treningowych (wektory nośne)

Uniwersytet Przyrodniczy we Wrocławii

Niepełna liniowa separowalność

• Co robić z LSVM gdy dane nie s ą w pełni liniowo separowalne?

Zmienne osłabiające - interpretacja

- Zmienne §≥0 (ang. Soft Margin) dobiera się dla każdego przykładu uczącego. Jej wartość zmniejsza margines separacji. (rodzaj "zwisu" punktu poza hiperpłaszczyzną nośną)
- Jeżeli $0 \le \xi_i \le 1$, to punkt danych (x_i,d_i) leży wewnątrz strefy separacji, ale po właściwej stronie
- Jeżeli ξ_i>1, punkt po niewłaściwej stronie hiperpłaszczyzny i wystąpi błąd klasyfikacji
- · Modyfikacja wymagań dla wektorów nośnych

$$b_{i1} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1 - \xi$$
$$b_{i2} \quad \mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1 + \varsigma$$

Uniwersytet Przyrodniczy we Wrocławiu

Nonlinear Support Vector Machines

Co zrobić gdy próby uczące powinny być nieliniowo separowalne?

12
10
8
x* 0

Kernel Trick

- Transformacja do wysoce wielowymiarowej przestrzeni tzw. Kernel Trick
- Kernel Trick metoda mapowania obserwacji z pewnego zbioru S na przestrzeń unitarną V bez konieczności tworzenia explicite samego mapowania w nadziei, ze nabiorą one tam sensownej struktury liniowej.

Uniwersytet Przyrodniczy we Wrocławii

Kernel Trick - Przykład

- Kernelem nazywamy funkcję K(x, y), która dla x, y ∈ S jest iloczynem skalarnym w pewnej przestrzeni V .
- Przykładowo mając mapowanie:
 A . G . N

 $\phi:S\to V$

• Kernelem jest po prostu:

 $K(x,y) = \langle \phi(x), \phi(y) \rangle_V$

 $K(x,y)=(x\cdot y)^2, x,y\in R^2$ $\phi(x)=(x_1^2,\sqrt{2}x_1x_2,x_2^2)$

Uniwersytet Przyrodniczy we Wrocławi

Dlaczego Kernel Trick

- Dlaczego po prostu nie skonstruować mapowania i pracować na przestrzeni V zamiast S?
 - 1. Złożoność obliczeniowa
 - 2. O wiele trudniej znaleźć dobre mapowanie niż dobry kernel
 - 3. Możliwość pracy na nieskończenie wymiarowych przestrzeniach.

Najczęściej używane 'Kernele'

• Kernel wielomianowy: $K(x,y) = (x \cdot y + 1)^p$

• Kernel Gaussowski: $K(x,y) = e^{-\|x-y\|^2/2\sigma^2}$

• Kernel sigmoidalny: $K(x,y) = tanh(\kappa x \cdot y - \delta)$

• Kernel minimum (przecięcia histogramów):

 $K(x,y) = \sum_{i} \min(x_i, y_i)$

• Kernel logarytmiczny: $K(x,y) = -\log(||x-y||^d + 1)$

 Budowanie kerneli: suma, iloczyn, iloczyn przez stałą dodatnią