1.2 Initial-Value Problems a lesson for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

January 8, 2019

for textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

main purpose of DEs

• the main purpose of differential equations (DEs) in science and engineering:

DEs are models which are capable of prediction

two things are needed to make a prediction:

precise description
 of rate of change
 knowledge
 of current state
 differential equation
 initial conditions

sections 1.1 and 1.2 introduce these two things

prediction models

- all professionals are skeptics about using math for predictions
- DEs do not "know the future"
- ... but they are *models* which are *capable* of prediction
- next two slides are examples

don't worry: about understanding the specific equations on the next two slides

an amazingly-accurate real prediction model

- Newton's theory of gravitation gives remarkably-accurate predictions of planets, satellites, and space probes
- the DEs at right are Newton's model of many particles interacting by gravity
- ...a system of coupled, nonlinear, 2nd-order ODEs for the position r_i of each object with mass m_i
- adding corrections for relativity makes these predictions practically perfect

$$\frac{d^2\mathbf{r}_i}{dt^2} = G \sum_{j \neq i} \frac{m_i m_j}{|\mathbf{r}_j - \mathbf{r}_i|^3} (\mathbf{r}_j - \mathbf{r}_i)$$

 ${\tt en.wikipedia.org/wiki/Equations_of_motion}$

a pretty-good real prediction model

- weather prediction uses
 Euler's fluid model of the atmosphere
- ...a system of PDEs; equations at right
- predictions have been refined by comparing prediction to what actually happened
- ... now we get about 6 days of good/helpful predictions

Euler equation(s) (conservation form, for thermodynamic fluids)

$$egin{aligned} rac{\partial}{\partial t}egin{pmatrix}
ho\ oldsymbol{\mathrm{j}}\ S \end{pmatrix} +
abla \cdot egin{pmatrix}oldsymbol{\mathrm{j}}\ rac{1}{
ho} oldsymbol{\mathrm{j}} \otimes oldsymbol{\mathrm{j}} + p oldsymbol{\mathrm{I}}\ S rac{oldsymbol{\mathrm{j}}}{
ho} \end{pmatrix} = egin{pmatrix}0\ oldsymbol{\mathrm{f}}\ 0 \end{pmatrix} \end{aligned}$$

en.wikipedia.org/wiki/ Euler_equations_(fluid_dynamics)

don't worry: this course is about ODEs and not systems of PDEs

what kind of student are you?

- did you skip the last few slides because you want to know how to do the homework problems quicker?
- I observe that
 - better students choose to be curious and interested
 - better students have at least some tentative trust that teachers are seeking an easy path through the whole subject
- in any case, there *will* be homework about DE models in section 1.3 ... coming soon

• example: here is the single most important ODE:

$$y' = y$$

- it is first-order and linear
- just by thinking you can write down all of its solutions:

$$y(x) =$$

• please graph and label several particular solutions:

example 1, cont.

➤ X

- initial conditions "pick out" one prediction (solution) from all the solutions of a differential equation
- for example, fill in the table:

ODE IVP	solution
y'=y,y(0)=3	y(x) =
y' = y, y(3) = -1	y(x) =
y' = y, y(-1) = 1	y(x) =

• graph them:

as we will show later,

$$y(x) = c_1 \sin(3x) + c_2 \cos(3x)$$

is the general solution of (= all of the solutions of)

$$y'' + 9y = 0$$

example. solve this 2nd-order linear ODE IVP:

$$y'' + 9y = 0$$
, $y(0) = 2$, $y'(0) = -1$

• example. now solve this 2nd-order linear ODE IVP:

$$y'' + 9y = 0$$
, $y(2) = -3$, $y'(2) = 0$

• example. now solve this problem:

$$y'' + 9y = 0$$
, $y(0) = 0$, $y(1) = 3$

- the above has boundary conditions at x = 0 and x = 1
 - o not an IVP
 - o potentially problematic; for example, y'' + 9y = 0, y(0) = 0, $y(\pi/3) = 3$ has *no* solutions

general IVP

- in Math 302 we will stick to initial conditions
 - not boundary conditions
- the general form of an initial-value problem for an ordinary differential equation (ODE IVP):

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

$$y(x_0) = y_0$$

$$y'(x_0) = y_1$$

$$\vdots$$

$$y^{(n-1)}(x_0) = y_{n-1}$$

this is equation (1) at the start of section 1.2

main idea

- as suggested earlier, the main idea is that an ODE IVP is a model capable of prediction
 - law of how things change (= the DE) plus the current state (= the initial values)
- to have a prediction, two questions need "yes" answers:
 - does a solution of the ODE IVP exist?
 - 2 is there only one solution of ODE IVP?
- people often say "is the solution unique?" for the second question

theorem about main idea

- for nicely-behaved first-order ODE IVPs, the answer to both questions is "yes"!
 - "nicely-behaved" means that the differential equation is continuous enough
- consider the first-order ODE IVP

$$(*)$$
 $y' = f(x, y), y(x_0) = y_0$

Theorem (1.2.1)

Let R be a rectangle in the xy plane that contains (x_0, y_0) in the interior. Suppose that f(x, y) in (*) is continuous and the $\frac{\partial f}{\partial y}(x, y)$ is also continuous. Then there is exactly one solution to ODE IVP, but it may only be defined for a short part of the x-axis around x_0 , i.e. on an open interval $(x_0 - h, x_0 + h)$.

an example

- the last slide was "mathy"; an example helps give meaning
- example. verify that both y(x) = 0 and $y(x) = cx^{3/2}$, for some nonzero c, solve the ODE IVP

$$y' = y^{1/3}, \quad y(0) = 0$$

- in the above example $\frac{\partial f}{\partial v} = \frac{1}{3}y^{-2/3}$
 - \circ it is not continuous on any rectangle around (0,0)
- the theorem on the last slide is true but this example shows you do need f(x, y) to be nice

conclusion

the main idea of section 1.2 is in this slogan:

if you add initial condition(s) to a differential equation then you can get a single solution, which can be used to predict

- Theorem 1.2.1 says this is actually true of first-order ODE IVPs (y' = f(x, y)) with a single initial value $(y(x_0) = y_0)$ as long as the function f is nice
- important notes:
 - o to use the language of prediction, we would call $x < x_0$ the "past" and $x > x_0$ the "future"
 - for nth-order ODEs (second-order, third-order, etc.) the Theorem does not directly apply, but we expect to need n numbers to give adequate initial conditions/values

expectations

expectations: to learn this material, just watching this video is *not* enough; also

- read section 1.2 in the textbook
- do the WebAssign exercises for section 1.2
- think about these ideas
- see this page for more on Theorem 1.2.1:
 en.wikipedia.org/wiki/Picard-Lindelöf_theorem