

Foundations of LLM Mastery: Fine-tuning with multi GPUs

25 February 2025 ONLINE

How to use a supercomputer

SLURM Job Scheduler

Speaker: Martin Pfister

HPC / Al Team, EuroCC Austria

EuroCC

Fully funded EU project

- EuroCC is EU and nationally funded (50/50) international initiative aimed to support the uptake of AI and High-Performance Computing (HPC) in Europe
- Set up of 32 National Competence Centres (NCCs) across Europe
- EuroCC Austria is one of them
- Service Provider for AI, HPC and HPDA

EuroCC Austria's Services

CONSULTING - TRAINING - INFRASTRUCTURE

The Vienna Scientific Cluster

VSC-4 (2019)

790 CPU nodes

- 2x Intel Skylake Platinum CPUs
- 2x 24 cores per CPU
- 96 GB of memory per node

VSC-5 (2022)

770 CPU nodes

- 2x AMD EPYC Milan
- 2x 64 cores per CPU
- 512 GB of memory per node

60 GPU nodes 2x NVIDIA A100,

40 GB memory per GPU

40 GPU nodes 2x NVIDIA A40

48 GB memory per GPU

Need More Compute Power?

LUMI

- #8 in Top500
- Linpack: 380 PFlop/s
- AMD EPYC CPUs
- AMD Instinct MI250X GPUs (128 GB)
 https://www.lumi-supercomputer.eu/

Leonardo

- #9 in Top500
- Linpack: 240 PFlos/p
- Intel Xeon CPUs
- NVIDIA A100 GPUs (64GB)

https://leonardo-supercomputer.cineca.eu/

Supercomputers in Europe

EuroHPC JU systems

Apply for access to EuroHPC supercomputers

Different access modes:

- Benchmark Access
- Development Access
- ,
- Extreme Scale Access

https://eurohpc-ju.europa.eu/

Supercomputers in Europe

- VSC5 (60 nodes with 2 Nvidia A100 40 GB)
- LEONARDO (3456 nodes with 4 Nvidia A100 64 GB)
- LUMI-G (2978 nodes with 4 AMD MI250x 128 GB)
- MUSICA (~200 nodes with 4 Nvidia H100 96 GB)

https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en

Typical Setup of a Supercomputer

Leonardo job script (1 GPU)

```
#!/bin/bash
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbq
                                 # High priority QOS. Remove line for normal priority.
#SBATCH --nodes=1
                                 # Number of nodes
#SBATCH --ntasks-per-node=1
                                 # Number of `srun` tasks executed per node
#SBATCH --qpus-per-task=1
                                 # Number of GPUs (up to 4 on Leonardo)
#SBATCH --mem=120GB
                                 # Fair share on Leonardo: 120GB * gpus-per-task
#SBATCH --cpus-per-task=8
                                 # Fair share on Leonardo: 8 * gpus-per-task
#SBATCH --time=0:30:00
                                 # Time limit in HH:MM:SS, up to 0:30:00 for boost_qos_dbq
```

<whatever command should be executed on the compute node>

Leonardo job script (1 GPU)

```
#!/bin/bash
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbg
                                 # High priority QOS. Remove line for normal priority.
#SBATCH --nodes=1
                                 # Number of nodes
#SBATCH --ntasks-per-node=1
                                 # Number of `srun` tasks executed per node
                                 # Number of GPUs (up to 4 on Leonardo)
#SBATCH --qpus-per-task=1
#SBATCH --mem=120GB
                                 # Fair share on Leonardo: 120GB * gpus-per-task
#SBATCH --cpus-per-task=8
                                 # Fair share on Leonardo: 8 * gpus-per-task
#SBATCH --time=0:30:00
                                 # Time limit in HH:MM:SS, up to 0:30:00 for boost_qos_dbq
                                 # Start in a clean environment
module purge
module load anaconda3
                                 # Load conda
eval "$(conda shell.bash hook)" # Initialize conda
conda activate /leonardo/pub/userexternal/mpfister/conda_env_martin24
python3 script.py
```


Leonardo job script (2 GPU)

```
#!/bin/bash
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbq
                                 # High priority QOS. Remove line for normal priority.
#SBATCH --nodes=1
                                 # Number of nodes
#SBATCH --ntasks-per-node=1
                                 # Number of `srun` tasks executed per node
                                 # Number of GPUs (up to 4 on Leonardo)
#SBATCH --qpus-per-task=2
#SBATCH --mem=240GB
                                 # Fair share on Leonardo: 120GB * gpus-per-task
#SBATCH --cpus-per-task=16
                                 # Fair share on Leonardo: 8 * gpus-per-task
#SBATCH --time=0:30:00
                                 # Time limit in HH:MM:SS, up to 0:30:00 for boost_qos_dbq
                                 # Start in a clean environment
module purge
module load anaconda3
                                 # Load conda
eval "$(conda shell.bash hook)" # Initialize conda
conda activate /leonardo/pub/userexternal/mpfister/conda_env_martin24
python3 script.py
```


Leonardo job script (4 GPU)

```
#!/bin/bash
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbq
                                 # High priority QOS. Remove line for normal priority.
#SBATCH --nodes=1
                                 # Number of nodes
#SBATCH --ntasks-per-node=1
                                 # Number of `srun` tasks executed per node
                                 # Number of GPUs (up to 4 on Leonardo)
#SBATCH --gpus-per-task=4
#SBATCH --mem=480GB
                                 # Fair share on Leonardo: 120GB * gpus-per-task
#SBATCH --cpus-per-task=32
                                 # Fair share on Leonardo: 8 * gpus-per-task
#SBATCH --time=0:30:00
                                 # Time limit in HH:MM:SS, up to 0:30:00 for boost_qos_dbq
                                 # Start in a clean environment
module purge
module load anaconda3
                                 # Load conda
eval "$(conda shell.bash hook)" # Initialize conda
conda activate /leonardo/pub/userexternal/mpfister/conda_env_martin24
python3 script.py
```


Leonardo job script (2 nodes with 4 GPUs each)

```
#!/bin/bash
#SBATCH --partition=boost_usr_prod
#SBATCH --qos=boost_qos_dbq
                                 # High priority QOS. Remove line for normal priority.
#SBATCH --nodes=2
                                 # Number of nodes
#SBATCH --ntasks-per-node=1
                                 # Number of `srun` tasks executed per node
                                 # Number of GPUs (up to 4 on Leonardo)
#SBATCH --gpus-per-task=4
#SBATCH --mem=480GB
                                 # Fair share on Leonardo: 120GB * gpus-per-task
#SBATCH --cpus-per-task=32
                                 # Fair share on Leonardo: 8 * gpus-per-task
#SBATCH --time=0:30:00
                                 # Time limit in HH:MM:SS, up to 0:30:00 for boost_qos_dbq
                                 # Start in a clean environment
module purge
module load anaconda3
                                 # Load conda
eval "$(conda shell.bash hook)" # Initialize conda
conda activate /leonardo/pub/userexternal/mpfister/conda_env_martin24
srun python3 script.py
                                 # Or replace python3 with torchrun or accelerate launch
```


Useful SLURM commands

```
# Submit a job:
$ sbatch job.sh
# Check submitted jobs:
$ squeue --me
# Look at the output from a job:
$ cat slurm-<job_id>.out
# or follow the output as the job runs:
$ tail -c +0 -f slurm-<job_id>.out
# Cancel job:
$ scance1 <job_id>
# Get a shell at a node while a job is running:
$ ssh <compute_node_name>
# or:
$ srun --overlap --pty -jobid=<job_id> bash
```

