APMLA: assignment 1 Block II

Caterina De Bacco and Nicolò Ruggeri

Exercise 1: Inverse SK model

Consider the *inverse* SK model: given a set of M data samples $\mathbf{s}_1, \dots, \mathbf{s}_M$, estimate the values of \mathbf{J} and \mathbf{h} that better explains the observed data, where each sample is drawn forma a Boltzmann distribution with Hamiltonian:

$$H(\mathbf{s}) = -\sum_{i \neq j} J_{ij} s_i s_j - \sum_i h_i s_i \quad . \tag{1}$$

We now want to sample configurations of N variables from the corresponding Boltzmann distribution for a particular realization of the couplings and comparing the empirical mean of the magnetizations with the one inferred using TAP and MF.

For sampling, we use the Monte-Carlo-Markov-Chain (MCMC) Metropolis-Hastings algorithm as we learned for the Curie Weiss model in tutorial 7.

(a) Derive equations for estimating the parameters h_i^{TAP} and J_{ij}^{TAP} analogous to what we have done in the lectures for MF. Consider only the case $i \neq j$.

The equation for the J should be equivalent to the following expression with matrices:

$$\mathbf{C} = \beta \mathbf{P} (1 + \mathbf{J} \mathbf{C} - \beta \mathbf{S} \mathbf{C} + 2\beta \mathbf{M} \mathbf{C})$$

which uses the matrix M and the diagonal matrices P and S with entries:

$$P_{ii} = 1 - m_i^2 (2)$$

$$S_{ii} = \sum_{k} J_{ik}^2 (1 - m_k^2) \tag{3}$$

$$M_{ik} = m_i J_{ik}^2 m_k \tag{4}$$

Consider only one of the 2 solutions of the quadratic equation for J_{ij} (the one with the + sign). Assume that $J_{ii}=0$, $\forall i=1,\ldots,N$, i.e. when writing sums like $\sum_{j=1}^N J_{ij}s_j$ this is equivalent to $\sum_{j\neq i}J_{ij}s_j$.

Hint: use the linear response theorem $C_{ij} := \langle s_i s_j \rangle_D - \langle s_i \rangle_D \langle s_j \rangle_D = \frac{\partial \langle s_i \rangle_D}{\partial h_i}$.

- (b) Fill up the *jupyter* notebook uploaded on github with the skeleton of a code to test TAP and MF in this inference task. Throughout the following exercises we assume $\beta = 1$.
 - this inference task. Throughout the following exercises we assume $\beta=1$. i) Extract a "ground-truth" set of parameters $h_i^{GT} \sim \mathcal{N}(0,0.01)$ and $J_{ij}^{GT} \sim \mathcal{N}(0,J_0/N)$ with $J_0=1$.
 - ii) Generate M=10000 samples of a system of N=10,20,50,100 (if you can try also larger N, but for $N\sim1000$ the code runs real slow) random variables extracted using the above ground-truth. For the MCMC sampler, consider a burn-in period $T_{eq}=100N$ i.e. number of MCMC steps performed before the first sample is returned (each step is a flip of one single variable). Select samples every $d_{sample}=10N$, so that samples are not correlated.
 - samples every $d_{sample} = 10N$, so that samples are not correlated. iii) Infer \mathbf{h}^{model} , \mathbf{J}^{model} for model being MF and TAP using the equations derived in the lectures and in (a).

- (c) Repeat this for other values of $J_0 = 0.1, 2$, i.e. tuning the coupling strength.
- (d) Generate scatter plots with J_{ij}^{model} vs J_{ij}^{GT} , similar for h_i^{model} vs h_i^{GT} (one plot for each of the 3 values of J_0). Plot all the different realizations in N on the same scatter plot, distinguishing them by marker type. At the end we have a total of 12 plots (one per model, one per parameter J or h, one per value of J_0 .
- (e) Calculate RMSE between inferred and ground-truth values of the parameters.
- (f) Generate plots with RMSE as a function of N for the 3 different J_0 values (using different markers' type). We have a total of 2 plots, one per parameter J or h.
- (g) Plot \bar{J} and \bar{h} as a function of N, where \bar{J} is the average over the i,j. Similar for \bar{h} . In this plot there should be 3 different curves: one for the ground-truth, one for MF and one for the TAP. There is a total of 6 plots, two per J_0 .
- (h) Same plot but for the variances $\bar{h^2} \bar{h}^2$ and $\bar{J^2} \bar{J}^2$.
- (i) Comment on the main results you observe.