ML Week

Features and Modeling

Jeff Abrahamson

23-24 novembre 2016

Vector spaces

Vector spaces

Features are dimensions

Feature extraction

Feature engineering

Feature extraction

Feature engineering

Synthetic features

Feature Engineering

- Brainstorm
- 2 Pick some
- Make them
- 4 Evaluate
- 6 Repeat

Value	Count	Percent
Mr.	517	58.025%
Miss.	185	20.763%
Mrs.	125	14.029%
Master.	40	4.489%
Dr.	7	0.786%
Rev.	6	0.673%
Sir.	5	0.561%
Col.	2	0.224%
Jonkheer.	1	0.112%
Lady.	1	0.112%
the Countess.	1	0.112%
Ms.	1	0.112%

Jellybooks

Jellybooks

One of K =one-hot encoding

Text features

Bag of words

- Corpus (documents)
- Vocabulary (set of unique words)
- Words

Text features

Bag of words

- Order doesn't matter
- Stop words
- Stemming (racinisation, désuffixation)
- Lemmatisation (transformer en lemme)

Image features

- Corners, edges (rotation invariant, but scaling can hide)
- More complex: scale space or RNN
- Point matching is easy

Image features

Problems

- Illumination
- Scale
- Rotation
- Skew (perspective)
- Data size (matrices not sparse)

Questions?

ml-week.com/1