7,3 Parametrized Surfaces Lecalis parameterization of a curve C=R" is an Nector function ro [a,b] - Rn such that comments on the curve C for c(t) gives points on the curve C for a = t = by c(a) is the starting point, c(b) is the ending point. (b) Definition \ A paraneterization of a surface SEIR" is a vector function I: D-1R" such that 1 (u,v) gives points on the surface S for each (u,v) & D, where D is a region in IR2. S S

For each point (x_i, y_i, z) in the surface S_i $Z = f(x_i, y_i), so (x_i, y_i, z) = Q(x_i, y_i, f(x_i, y_i)) = I(x_i, y_i).$

If we want the part of $z=f(x_{iy})$ where $x^2+y^2 \leq 1$, then use $D(x_{iy})=(x_{iy},f(x_{iy}))$ with the same bounds:

Recall:
The line passing through PER and parallel to $Y \in \mathbb{R}^n$ has parameterization Y = P + t Y.

(Example 1) Show that the plane passing through $P \in \mathbb{R}^3$ and normal to the vector $a \times b$ has a parameterization $\mathcal{J}(u,v) = P + ua + vb$.

Consider the point D(u,v) for a fixed $(u,v) \in \mathbb{R}^2$.

The I(u,v)-P=(P+ua+vb)-(P)=ua+vb

For any
$$(r, \theta)$$
, $(a \times b) = u_a \cdot (a \times b) + v_b \cdot (a \times b)$

$$= 0 + 0$$

$$= 0.$$
Thus $\Phi(u_{1}v)$ is an He place ordered to $a \times b$.

(Example 7) Show that the cone $z = \sqrt{x^2 + y^2}$ has a parameterization $\Phi(r, \theta) = (r\cos\theta, r\sin\theta, \sigma)$ for $r \ge 0$, $0 \le \theta \le 2\pi$.

Note that $\Phi(r, \theta) = (r\cos\theta, r\sin\theta, \sigma)$ for $r \ge 0$, $r\cos\theta = \sqrt{x^2 + y^2}$ and $\sqrt{x^2 + y^2} = \sqrt{x^2 \cos^2\theta + r^2 \sin^2\theta}$

$$= \sqrt{x^2 + y^2}.$$

Thus $z = \sqrt{x^2 + y^2}$.

Surfaces with a simple cylindrical or spherical coordinate equation can usually be easily parameterizing using the coresponding transformation.

$$Z = \sqrt{x^{2}+y^{2}}$$

$$Z = \sqrt{x^{2}+y^{2}}$$

$$D = \sqrt{y}$$

1 parameterizes the surface 5: Tangent @ D(u0) This target plane has parameterization: $\Gamma(\vec{n}) = \Gamma(\vec{n}') = \overline{\Gamma}(\vec{n}') + \overline{\eta}(\vec{n}') + \gamma \frac{\eta}{\eta}(\vec{n}') + \gamma \frac{\eta}{\eta}(\vec{n}')$ Recall the partial derivative matrix à = [30, n + 30 v] = u du (yo) + v 80 (y) $= \underline{\mathcal{D}}(\underline{u}_{o}) + \underline{\mathcal{D}}\underline{\mathcal{D}}(\underline{u}_{o}) \underline{u}$

(Example 3) Find a parameterization of the plane tangent to surface defined by

$$\mathcal{I}(u,v) = (u\cos v, u\sin v, u^2 + v^2)$$
at the point $(1,0,1)$ o

Mote
$$Vote$$

$$I(u,0) = (u,0,u^2)$$

$$I(1,0) = (1,0,1)$$

$$\frac{\partial \overline{L}}{\partial u} = (\cos v, \sin v, 2u)$$

$$\frac{\partial \overline{L}}{\partial u} = (\cos 0, \sin 0, 2(1))$$

$$= (1, 0, 2)$$

$$= (-u \sin v, u \cos v, 2v)$$

$$\frac{\partial \overline{L}}{\partial v} = (0, 1, 0)$$

Then
$$L(u,v) = \mathcal{Q}(u_0) + u \frac{\partial \mathcal{Z}}{\partial u}(u_0) + v \frac{\partial \mathcal{Z}}{\partial v}(u_0)$$

$$= (1,0,1) + u (1,0,2) + v (0,1,0)$$

$$L(u,v) = (1+u,v,1+2u)$$

(Example) Give the above target place in terms of x, y, to

The normal vector to the plane is

$$\frac{\partial \mathbf{I}}{\partial u}(\mathbf{u}_{0}) \times \frac{\partial \mathbf{I}}{\partial v}(\mathbf{u}_{0}) = (1,0,2) \times (0,1,0)$$

$$= \det \begin{pmatrix} \hat{1} & \hat{3} & \hat{k} \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= (-7,0,1)$$
The equation of a plane is

$$A(x-x_{0}) + B(y-y_{0}) + C(z-z_{0}) = 0$$

$$-2(x-1)+0(y-0)+1(z-1)=0$$

$$-2x+2+z-1=0$$

$$-2x+z=-1$$

(Example) Find a parameter ization for the sphere centered at the origh with sphere centered at the print the plane radius 3. Then describe the plane favore to it at the point (1-7,2)

$$\underline{P}(\emptyset, \theta) = \underline{S}(3, \theta, \emptyset)$$

$$= (3 \sin \theta \cos \theta, 3 \sin \theta \sin \theta, 3 \cos \theta)$$

$$O \le \emptyset \subseteq \pi$$

$$O \le \theta \le 2\pi$$