PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 4: Motion along a straight line (1D motion)

Chapter 2: Motion along a straight line

- We can use units to describe the motion of objects in a quantitative way:
 - position, velocity, acceleration

Point particle approximation: Assume all parts of the object move in the same way.

Learning goals for today

- Fundamental concepts of 1D motion:
 - ✓ Scalar vs. Vector
 - ✓ Distance and displacement
 - ✓ Speed and velocity
 ✓ Acceleration

Scalars vs. vectors

Scalars

- Scalars: A quantity without a direction
- Scalars can be described by:

Vectors

- Vectors: A quantity with magnitude (size) and direction:
 - Magnitude = abs number + units
 - Direction: pointing from start point to end point
 - First, define the axis (i.e., positive direction)
 - ► Second, use the sign to indicate the direction (at least for 1D vectors)

 + same as any axis

- Examples:

Ex. 5 m Vec. Magnitude Vec. 2 5 m Direction: The Axis

Vec. | GS: 5 m

Vel 2 as 1 - 5 m

Clicker question 1: Vector or scalar?

• The displacement from CSUF to the California Science center is 24.91 miles to the northwest, and the distance from CSUF to the California Science center via the I-105 rout is 34.6 Miles. Which of the following is true?

Displacement is a vector, distance is a scalar.

Both displacement and distance are vectors.

Displacement is the distance and the direction.

1. Travel distance and displacement

Distance

- Travel distance, d = length of path traveled (SI unit: m)
 - Scalar = number + units
 - Travel distance depends on path

East:
$$d = 8 \mid km$$

West: $dw = d_{HP} + d_{PS}$

$$= 97 km + 48 km$$

$$= 145 km$$

9

Clicker question 2: U-turn on Nutwood ave

• A car drives 0.3 miles west toward campus. Then the car makes a u-turn and drives 0.2 miles east. The axis is defined as to the east. What distance did the car travel?

Displacement — A vector

- **Displacement:** Straight-line distance + direction.
 - Magnitude = straight-line distance from start point to end point (SI unit: m)
 - **Direction** = from start point to end point

- Depends only on start, end point (not depend on path): $\Delta \vec{x} = \vec{x}_f \vec{x}_i$ Position = displacement from chosen point ("origin") thanks

(b) Displacement (magnitude and direction)

Clicker question 3: U-turn on Nutwood ave

A car drives 0.3 miles west toward campus. Then the car makes a u-turn and drives 0.2 miles
east. The axis is defined as to the east. What is the the car's displacement?

Clicker question 4: U-turn on Nutwood ave

$$\Delta \chi = -0$$
, mi

A car drives 0.3 miles west toward campus. Then the car makes a u-turn and drives 0.2 miles
east. The axis is defined as to the east. What is the magnitude of the car's displacement?

0.1 miles

-0.1 miles

0.2 miles

0.5 miles

Demo 1

2. Speed and velocity

Speed

Speedometer: measure (instantaneous) speed

distance travelly

0472519

Odometer =

measure distance

- Speed: Distance per unit time
- Average speed:
 - A scalar
 - SI unit: m/s

 $\overline{s} = \frac{d}{\Delta t} = \frac{d}{t - t_0}$ final time to

• Instantaneous speed: $\bar{s} \to s$ as $\Delta t \to 0$ $S = \lim_{\Delta t \to 0} \Delta t$

s =speed at a particular instant of time

Clicker question 5

The distance around a baseball diamond is 110 m. A runner runs the bases in

The runner's average speed is...

10.0 s.

11.0 m/s, clockwise

11.0 m/s, counterclockwise.

 $0.00 \, \text{m/s}$

Calculus mini-review

$$if f(t) = t^n$$

$$\frac{d}{dt}(t^n) = nt^{n-1}$$

$$\frac{d}{dt}(t^3 - 3) = 3t^2$$

• Definite integral: $\int_{a}^{b} t^{n} dt = \frac{t^{n+1}}{n+1} |_{a}^{b}$

Velocity

- Velocity: Displacement per unit time
- Velocity is a **vector**: magnitude and direction
 - Average velocity (SI unit: m/s), $\overrightarrow{\vec{v}}$:

Ave.
$$\frac{\vec{v}}{\vec{v}} = \frac{\Delta \vec{x}}{\Delta t} = \frac{\vec{x} - \vec{x}_0}{t - t_0}$$
time time time

- Instantaneous velocity, \vec{v} :

$$\vec{v} \rightarrow \vec{v} \text{ as } \Delta t \rightarrow 0$$

$$\vec{v} = \frac{d\vec{x}}{dt}$$
19

Direction and magnitude

t is the time derivative of disp.

Clicker question 6

• The distance around a baseball diamond is 110 m. A runner runs the bases in 10.0 s.

The runner's average velocity is ...

11.0 m/s, clockwise

11.0 m/s, counterclockwise.

11.0 m/s

0.00 m/s

Demo 2

Demo 2: Simulation

3. Acceleration

Acceleration: a

- Definition: Rate of change of velocity.
- Acceleration is a **vector** Average acceleration: $\bar{a} = \frac{\Delta v}{\Delta t} = \frac{change in velocity}{|velocity|}$ (SI unit: m/s/s = m/s²)

 $\frac{\Delta v}{\Delta t} = \frac{v v_0}{|velocity|}$ $\frac{t}{t} = \frac{v}{t} t_0$ $\frac{t}{t} = \frac{t}{t} t_0$

 - Direction points toward change in velocity.
 - Instantaneous acceleration: $\bar{a} \rightarrow a \text{ as } \Delta t \rightarrow 0$ a = accel. at a particular instant of time

Derivative of
$$\vec{v}$$
 w.r.t.
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{x}}{dt^2}$$
 time.

Clicker question 7

 $\frac{1}{1} = \frac{1}{1}$

 Consider the following five graphs (note the axes carefully). Which of these represent(s) motion at a constant speed?

Demo 2 continued: Simulation

- Set up the acceleration to an arbitrary constant
- What happens to the position and velocity?

Clicker question 8

Which of the following five coordinate versus time graphs represents the motion of an object whose speed is increasing?

More examples of 1D motion

Example 1

• At time t_0 =0s, a race car had a speed of 33 m/s in the positive x direction, and t =5.4 s later its speed was 74 m/s in the opposite direction. Please find the average acceleration.

Demo: 1D motion with constant acceleration

- Visit:
 https://phet.colorado.edu/en/simulation/moving-man
- Work in groups of 2-3 people
- Step 1:
 - Click Charts
- Step 2:
 - Set up the initial position and velocity
 - Set up the acceleration
 - Observe the displacement, velocity and acceleration.

Plots of motion

displacement from x=0 m

Next time:

1D motion with a constant acceleration