Quiz 11 Name: Answer Key

You must show your work to get full credit.

Theorem (Rational Root Test.). Let a, b, c be integers with $a \neq 0$. Then if r = p/q is a rational root of $ax^2 + bx + c = 0$ and r is in lowest terms, then $p \mid c$ and $q \mid a$.

1. For the equation

$$x^2 + 4x - 2 = 0$$

(a) What are the possible rational roots?

Solution. Possible rational roots are: $\pm 1, \pm 2$ From the rational root test above we have that the rational roots are r = p/q where $p \mod 2$ and $q \mid 1$. The only divisors of 2 are ± 1 and ± 1 . Thus $p = \pm 1, \pm 2$. The only divisors of 1 are ± 1 . Therefore the only possibilities for r = p/q are $r = \pm 1$ and $r = \pm 2$.

(b) Prove that the equation $x^2 + 4x - 2 = 0$ has no rational roots.

Solution. Towards a contradiction assume that the equation has a rational root, call it r. By part (a) we have that this means that r = 1, r = -1, r = 2, or r = -2 and so one of these numbers would be a root of the equation. We now get a contradiction by showing that none of these are in fact roots:

$$(1)^{2} + 4(1) - 2 = 3 \neq 0$$
$$(-1)^{2} + 4(-1) - 2 = -5 \neq 0$$
$$(2)^{2} + 4(2) - 2 = 10 \neq 0$$
$$(-2)^{2} + 4(-2) - 2 = -6 \neq 0$$