

Vector Spaces

September 2020

Subspace of a vector space

Definition: Let V be a vector space, and let W be a subset of V. If W is a vector space with respect to the operations in V, then W is called a subspace of V.

For example, the vector space $A = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 3z = 0\}$ is a subspace of \mathbb{R}^3 .

Theorem: Let V be a vector space, with operations + and \cdot , and let W be a subset of V. Then W is a subspace of V if and only if the following conditions hold.

- \bullet W is nonempty;
- If u and v are any vectors in W, then $u + v \in W$ (closure under +);
- If $v \in W$, and $c \in \mathbb{R}$, then $c \cdot v \in W$ (closure under ·).

Note that if W is a vector subspace, then the null vector must belong to W.

Example:

 $A = \{(x, y) \in \mathbb{R}^2 : x - 2y = 0\}$ is a subspace of \mathbb{R}^2 ;

Indeed, $A = \{(2y, y) : y \in \mathbb{R}\}$ and we have:

- $(0,0) \in A$;
- If $u=(2u_2,u_2)$ and $v=(2v_2,v_2)$, then $u+v=(2u_2+2v_2,u_2+v_2)=(2(u_2+v_2),u_2+v_2)\in A;$

• If $u = (2u_2, u_2)$ and $k \in \mathbb{R}$, then

$$ku = (2(ku_2), ku_2) \in A.$$

Example: $S = \left\{ \left[\begin{array}{cc} 2a & b \\ 3a+b & 3b \end{array} \right] : a,b \in \mathbb{R} \right\}$ is a subspace of $M_{2 \times 2}.$

However, the set of polynomials $P_1 = \{a_0 + a_1x + a_2x^2 : a_0 + a_1 - a_2 = 3\}$ is not a subspace of de vector space $P = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2 \in \mathbb{R}\}$. In fact, the null polynomial does not belong to P_1 .

Also $A=\{(x,y)\in\mathbb{R}^2:y=x^2\}$ is not a subspace of \mathbb{R}^2 . In fact, $u=(u_1,u_1^2),v=(v_1,v_1^2)\in A$, but $u+v=(u_1+v_1,u_1^2+v_1^2)$ does not always belong to A. There are vectors $(u_1,u_2),(v_1,v_2)\in\mathbb{R}^2$ such that

$$u_1^2 + v_1^2 \neq (u_1 + v_1)^2$$
.