

Support Vector Machines

1

G V V Sharma*

1

CONTENTS

1 Reflection	
--------------	--

- **2 Optimization Problem** 1
- 3 Solver 2
- 4 KKT Solution 2
- **5 SVM** 3

Abstract—This manual provides an introduction to SVM.

1 Reflection

1.1 Find the distance of $\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ from the line

$$(3 \quad 4)\mathbf{x} + 5 = 0 \tag{1.1}$$

1.2 Show that the distance of the point \mathbf{x}_1 from the line

$$\mathbf{n}^T \mathbf{x} + c = 0, \quad ||\mathbf{n}|| = 1 \tag{1.2}$$

is

$$M = \left| \mathbf{n}^T \mathbf{x}_1 + c \right| \tag{1.3}$$

- 1.3 Find the reflection $\mathbf{x_2}$ of $\mathbf{x_1}$.
- 1.4 Define

$$f(\mathbf{x}) = \mathbf{n}^T \mathbf{x} + c \tag{1.4}$$

1.5 Compute $f(\mathbf{x_1})$ and $f(\mathbf{x_2})$. Comment.

2 Optimization Problem

2.1 Suppose $(\mathbf{x_1}, y_1)$ and $(\mathbf{x_2}, y_2)$ are i/o data for a system where $y_1, y_2 \in \{1, -1\}$. If you want to find \mathbf{n}, c from the given dataset, how will

formulate the equivalent optimization problem? **Solution:** Consider the optimization problem

$$\max_{\mathbf{n},c} M \tag{2.1}$$

s.t
$$y_1\left(\mathbf{x}_1^T\mathbf{n} + c\right) \ge M$$
 (2.2)

$$y_2\left(\mathbf{x}_2^T\mathbf{n} + c\right) \ge M \tag{2.3}$$

$$\|\mathbf{n}\| = 1 \tag{2.4}$$

2.2 The *signum* function is defined as

$$\operatorname{sgn}(z) = \begin{cases} 1 & z > 0 \\ 0 & z = 0 \\ -1 & z < 0 \end{cases}$$
 (2.5)

Show that

$$\operatorname{sgn}(\mathbf{x}^T\mathbf{n} + c) = \operatorname{sgn}(\mathbf{x}^T\mathbf{w} + d) \tag{2.6}$$

where

$$\mathbf{w} = \frac{\mathbf{n}}{M}, d = \frac{c}{M}, M > 0 \tag{2.7}$$

2.3 Show that (2.1)-(2.4) can be reformulated as

$$\min_{\mathbf{w},d} \frac{1}{2} \|\mathbf{w}\|^2 \tag{2.8}$$

s.t
$$y_i \left(\mathbf{x}_i^T \mathbf{w} + d \right) \ge 1$$
 (2.9)

Solution: From (2.7),

$$\mathbf{w} = \frac{\mathbf{n}}{M} \implies \|\mathbf{w}\| = \frac{\|\mathbf{n}\|}{M} \qquad (2.10)$$

$$\implies M = \frac{1}{\|\mathbf{w}\|} : \|n\| = 1 \tag{2.11}$$

Thus,

$$\max_{\mathbf{n},c} M = \max_{\mathbf{w},d} \frac{1}{\|\mathbf{w}\|} = \min_{\mathbf{w},d} \|\mathbf{w}\|. \tag{2.12}$$

Also, (2.2)-(2.3) become

$$y_i \left(\mathbf{x}_i^T \mathbf{w} + d \right) \ge 1 \tag{2.13}$$

^{*} The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

3 Solver

3.1 Solve (2.8) using $\frac{cvxpy}{cvxopt}$ for $\mathbf{x}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $y_1 = 1$ and $\mathbf{x}_2 = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}$, $y_2 = -1$.

Solution: From the given information, the constraints in (2.8) become

$$\begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{w} + d \ge 1 \tag{3.1}$$

$$(0.8 -0.6)$$
w + $d \le -1$ (3.2)

The following code results in

$$\mathbf{w}_{opt} = (0.6 \ 0.8), d_{opt} = 1, ||\mathbf{w}_{opt}||^2 = 1 \ (3.3)$$

import cvxpy as cp

w = cp.Variable(2)
d = cp.Variable()

probconst = ([2*w[0]+w[1]+d>=1,0.8*w [0]-0.6*w[1]+d<=-1]) probobj = cp.Minimize(0.5*cp.square(cp. norm(w)))

prob = cp.Problem(probobj,probconst)
prob.solve()

print (prob.value)
print (w.value)
print (d.value)

3.2 Provide a graphical representation for (2.8) **Solution:** The following code plots Fig. 3.2. The constraint lines in (3.1)-(3.2) are plotted for d = 0, 0.5 and 1. The circles $\|\mathbf{w}\|^2 = r^2$ are plotted for r = 1, 2 and 3. The smalles circle that satisfies the constraints is obtained when d = 1

wget https://raw.githubusercontent.com/ gadepall/EE1390/master/manuals/svm/ codes/svm_graph.py

4 KKT Solution

4.1 Show that the Lagrangian for (2.8) can be expressed as

$$L_{p}(\mathbf{w}, \boldsymbol{\alpha}, d) = \frac{1}{2} \|\mathbf{w}\|^{2}$$
$$-\boldsymbol{\alpha}^{T} \left(\begin{pmatrix} y_{1} \mathbf{x}_{1} & y_{2} \mathbf{x}_{2} \end{pmatrix}^{T} \mathbf{w} + d \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right)$$
(4.1)

Fig. 3.2

where

$$\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \tag{4.2}$$

are the Lagrange multipliers.

Solution: The Lagrangian is given by,

$$L_{p}(\mathbf{w}, \boldsymbol{\alpha}, d) = \frac{1}{2} \|\mathbf{w}\|^{2}$$
$$- \sum_{i=1}^{2} \alpha_{i} \left\{ y_{i} \left(\mathbf{x}_{i}^{T} \mathbf{w} + d \right) - 1 \right\}$$
(4.3)

which can be simplified to obtain (4.1)

4.2 Show that the stationarity condtion with respect to **w** yields

$$(\mathbf{I} - (y_1 \mathbf{x}_1 \quad y_2 \mathbf{x}_2) \quad \mathbf{0}) \begin{pmatrix} \mathbf{w} \\ \alpha \\ d \end{pmatrix} = 0$$
 (4.4)

Solution: From the stationarity condition

$$\nabla_{\mathbf{w}} L_{p}(\mathbf{w}, \boldsymbol{\alpha}, d) = 0 \tag{4.5}$$

or,
$$\mathbf{w} - (y_1 \mathbf{x}_1 \quad y_2 \mathbf{x}_2) \alpha = 0$$
 (4.6)

resulting in (4.4).

4.3 Show that the stationarity condition with respect to α yields

$$\left(\begin{pmatrix} y_1 \mathbf{x}_1 & y_2 \mathbf{x}_2 \end{pmatrix}^T \quad \mathbf{0} \quad \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) \begin{pmatrix} \mathbf{w} \\ \boldsymbol{\alpha} \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad (4.7)$$

Solution:

$$\nabla_{\alpha} L_p(\mathbf{w}, \alpha, d) = 0 \quad (4.8)$$

$$\implies (y_1 \mathbf{x}_1 \quad y_2 \mathbf{x}_2)^T \mathbf{w} + d \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 \quad (4.9)$$

after simplification resulting in (4.7)

4.4 Find the stationarity condition with respect to *d*.

Solution:

$$\nabla_d L_p(\mathbf{w}, \boldsymbol{\alpha}, d) = 0 \tag{4.10}$$

$$\implies (y_1 \ y_2)\alpha = 0 \qquad (4.11)$$

or,
$$\begin{pmatrix} \mathbf{0} & y_1 & y_2 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{w} \\ \boldsymbol{\alpha} \\ d \end{pmatrix} = 0$$
 (4.12)

4.5 Obtain a matrix equation for **w** and *d*. **Solution:** (4.4) (4.7) and (4.12) can be stacked into a single matrix equation as

$$\begin{pmatrix}
\mathbf{I} & -(y_1\mathbf{x}_1 & y_2\mathbf{x}_2) & \mathbf{0} \\
(y_1\mathbf{x}_1 & y_2\mathbf{x}_2)^T & \mathbf{0} & \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} \mathbf{w} \\ \boldsymbol{\alpha} \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \\
(4.13)$$

4.6 Find the optimal values of \mathbf{w} and d.

5 SVM

5.1 If α_i be the Lagrange multiplier, obtain the Lagrange primal function for (2.8).

Solution: The desired function is given by

$$L_p(\mathbf{w}, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \alpha_i \left\{ y_i \left(\mathbf{x}_i^T \mathbf{w} + d - 1 \right) \right\}$$
(5.1)

5.2 Show that stationarity condition yields

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}_i \tag{5.2}$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i \tag{5.3}$$

Solution: From the stationarity condition,

$$\nabla_{\mathbf{w}} L_p(\mathbf{w}, d, \alpha_i) = \frac{\partial L_p(\mathbf{w}, \alpha_i)}{\partial \mathbf{w}} = 0$$
 (5.4)

$$\implies \mathbf{w}^T - \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i^T = 0 \qquad (5.5)$$

or,
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
 (5.6)

and

$$\nabla_{d}L_{p}\left(\mathbf{w},d,\alpha_{i}\right) = \frac{\partial L_{p}\left(\mathbf{w},\alpha_{i}\right)}{\partial d} = 0 \qquad (5.7)$$

$$\implies \sum_{i=1}^{N} \alpha_i y_i = 0 \qquad (5.8)$$

5.3 Substitute (5.2)-(5.3) in the primal function to obtain the Lagrangian (Wolfe) dual objective function L_D .

Solution: Substituting (5.2) in (5.1),

$$L_{D}(\alpha_{i}) = \frac{1}{2} \left\| \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \right\|^{2} - \sum_{i=1}^{N} \alpha_{i} \left\{ y_{i} \left(\mathbf{x}_{i}^{T} \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} + d - 1 \right) \right\}$$
(5.9)

in

5.4 Repeat the above exercises for

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
 (5.10)

$$s.t \xi_i \ge 0 (5.11)$$

$$y_i \mathbf{x}_i^T \mathbf{w} \ge 1 - \xi_i \tag{5.12}$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}_i \tag{5.13}$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i \tag{5.14}$$

$$\alpha_i = C - \mu_i \tag{5.15}$$

5.5 Show that the KKT conditions are

$$\alpha_i \left[y_i \left(\mathbf{x}_i^T \mathbf{w} \right) - (1 - \xi_i) \right] = 0$$
 (5.16)

$$\mu_i \xi_i = 0 \tag{5.17}$$

$$y_i \left(\mathbf{x}_i^T \mathbf{w} \right) - (1 - \xi_i) = 0 \tag{5.18}$$

5.6

$$P = \{ \mathbf{x} : f(\mathbf{x}) = \mathbf{n}^T \mathbf{x} + c = 0 \}, \quad ||\mathbf{n}|| = 1$$
(5.19)

be a hyperplane where \mathbf{n} is a unit normal vector to the plane.

5.7 Let

$$P = \left\{ \mathbf{x} : f(\mathbf{x}) = \mathbf{n}^T \mathbf{x} + c = 0 \right\}, \quad ||\mathbf{n}|| = 1$$
(5.20)

be a hyperplane where \mathbf{n} is a unit normal vector to the plane.

5.8 Consider the quadratic programming problem

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
 (5.21)

$$s.t \, \xi_i \ge 0 \tag{5.22}$$

$$y_i\left(\mathbf{x}_i^T\mathbf{w}\right) \ge 1 - \xi_i$$
 (5.23)

- 5.9 If α_i, μ_i be the Lagrange multipliers, obtain the Lagrange primal function.
- 5.10 Show that stationarity condition yields

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{w}_i \tag{5.24}$$

$$0 = \sum_{i=1}^{N} \alpha_i y_i \tag{5.25}$$

$$\alpha_i = C - \mu_i \tag{5.26}$$

5.11 Show that the KKT conditions are

$$\alpha_i \left[y_i \left(\mathbf{x}_i^T \mathbf{w} \right) - (1 - \xi_i) \right] = 0$$
 (5.27)

$$\mu_i \xi_i = 0 \tag{5.28}$$

$$\mu_i \xi_i = 0 \qquad (5.28)$$
$$y_i \left(\mathbf{x}_i^T \mathbf{w} \right) - (1 - \xi_i) = 0 \qquad (5.29)$$

5.12 Substitute (5.2)-(5.3) in the primal function to obtain the Lagrangian (Wolfe) dual objective function L_D .