

Probabilistic Slide-support Manipulation Planning in Clutter

Shusei Nagato¹, Tomohiro Motoda^{1,2}Takao Nishi¹, Petit Damien¹, Takuya Kiyokawa¹, Weiwei Wan¹, and Kensuke Harada¹,²

1. Osaka Univ., 2. AIST

Introduction

Safely/efficiently pick items without any contact or risk of collapse?

- Bimanual: The robot slides the target while supporting a surrounding object
- Efficiency: Number of motion sequence is minimized

Penalties:

Increase in the transition

Collect Data/ Transitions

In this study, neural networks are used to predict the transitions. Using a simulator(PhysX, Nvidia), we will create stacked states and collect data.

Grasp

Results

Avoid risk of object moving/cluttering

from top

△ Iteratively pick up × Other objects move

	Success rates	Moving amount (mm)	Action steps
Ours (w/o Slide, Support)	8/10 (80%)	_	3.1
Ours (w/o Support)	5/10 (50%)	129.7	_
Ours	7/10 (70%)	65.6	2.7

Summary

- Proposal of a method to extract objects from clutter using bimanual actions
- The feasibility of our Slide-support
- Minimize the number of operations