

Segundo examen parcial

Fundamentos de lenguajes de programación

Duración: 2 horas Carlos Andres Delgado S, Ing * 05 de Diciembre 2015

Nombre:_		
Código:		

1. Paso de Parámetros por Referencia [8 pts.]

Cuál es el resultado de evaluar la expresión:

```
let a=1
    b=2
    c=3
    p = \mathbf{proc} (x, y, z, f)
                  begin
                           \mathbf{set} \ x = -(y, x);
                           \mathbf{set}\ y = (f\ z\ x);
                  end
     q = \mathbf{proc} \ (m, n)
                  begin
                           set n = *(m, 5);
                           set m = +(m, 6);
                           +(m,n)
                  end
in
    begin
            \mathbf{set} \ a = (p \ c \ b \ a \ q);
             +(a, c)
```

Si el paso de parámetros es *por referencia?* Dibuje el ambiente en el cual se evalua la expresión.

2. Chequeo de Tipos [10 pts.]

end

Para las siguientes expresiones tipadas, determine su tipo de acuerdo a las reglas de tipamiento para cada variante.

```
let fun_1 = \mathbf{proc} \ (int * (int \to bool) \to (int \to bool) \ g,
                        bool\ t, bool\ s, int\ x, int \rightarrow bool\ h)
                       if and(t, s) then (g x h)
                       else (g * (x, 2) h)
     fun_3 = \mathbf{proc} \ (int \ w)
                       \mathbf{proc} (int a)
                               > (w,a)
in
   let fun_2 = \mathbf{proc} \ (int \ x, int \to bool \ q)
                           if > (x,3) then proc (int z)
                                                        (q z)
                                         else (fun_3 x)
        fun_4 = \mathbf{proc} \ (int \ k)
                           <(+(k, 5), 9)
   in
       (fun_1 \ fun_2 \ m \ true \ j \ fun_4)
```

En un ambiente de tipos inicial $env_0 = [j \rightarrow int, m \rightarrow bool].$

3. Inferencia de Tipos [16 pts.]

En clase se describió el proceso formal de inferencia del tipo de una expresión y su implementación. En este ejercicio se pretende comprobar su asimilación del proceso (no de la implementación).

Para la expresión a continuación y las variables de tipo introducidas describa las ecuaciones de tipo generadas entre ellas. Acto seguido resuelva el sistema para encontrar el tipo de la expresión:

$$\begin{array}{c} \mathbf{let} \ fun_1 = \mathbf{proc} \ (j,k,o) \\ \mathbf{if} \ o \ \mathbf{then} \\ \mathbf{proc} \ (y) \\ \mathbf{if} \ k \ \mathbf{then} \ (j \ y) \\ \mathbf{else} \ (j \ * (y,2)) \\ \mathbf{else} \ \mathbf{proc} \ (w) \\ * (w, \ 3) \end{array}$$

^{*}carlos.andres.delgado@correounivalle.edu.co

	$fun_2 = \mathbf{proc} \ (s,t)$		
	$and(s,\ t)$		
	r = false		
$_{ m in}$			
$\mathbf{let} \ fun_3 = \mathbf{proc} \ (a)$			
	*(a, 2)		
	in		
	$((fun_1 \ fun_3 \ (fun_2 \ true \ r) \ true) \ 4)$		

es: _____

es.	
Expresión o	Variable
Variable ligada	de tipo
fun_1	t_{fun_1}
fun_2	t_{fun_2}
fun_3	t_{fun_3}
r	t_r
j	t_j
k	t_k
0	t_o
S	t_s
t	t_t
a	t_a
у	t_y
W	t_w
if o then	t_1
$\mathbf{proc}\ (y)\ \mathbf{if}\ k\ \mathbf{then}\ (j\ y)\ \dots$	
$\mathbf{proc}\ (y)$	t_2
if k then $(j \ y)$ else $(j \ *(y,2))$ if k then $(j \ y)$ else $(j \ *(y,2))$	
if k then $(j y)$ else $(j * (y, 2))$	t_3
$\mathbf{proc}\ (w)\ *(w,\ 3)$	t_4
*(w, 3)	t_5
(j y)	t_6
(j * (y,2))	t_7
*(y,2)	t_8
and(s, t)	t_9
proc $(a) * (a, 2)$	t_{10}
*(a, 2)	t_{11}
$(fun_2 \ true \ r)$	t_{12}
$(fun_1 \ fun_3 \ (fun_2 \ true \ r) \ true)$	t_{13}
$((fun_1 \ fun_3 \ (fun_2 \ true \ r) \ true) \ 4)$	t_{14}
let $fun_1 \ldots$	t_{15}
let fun_3	t_{16}

Expresión	Ecuacion(es) de tipo aso-
if o then	ciadas
$\begin{array}{c c} \mathbf{n} & o & \mathbf{nen} \\ \mathbf{proc} & (y) & \mathbf{if} & k & \mathbf{then} & (j & y) \end{array}$	
$\mathbf{proc}(y)$	
if k then $(j \ y)$ else $(j \ * (y, 2))$	
else $(f * (g, 2))$	
if k then (j y)	
$else\ (j\ *(y,2))$	
(j y)	
(J 9)	
(j * (y,2))	
*(y,2)	
$\mathbf{proc}\ (w)\ *(w,\ 3)$	
*(w, 3)	
and(s,t)	
proc (a) *(a, 2)	
F (, (, -)	
*(a, 2)	
$(fun_2 \ true \ r)$	
() 4102 61 46 1)	
$fun_1 fun_3 (fun_2 true r)$	
true)	
$\frac{ }{((fun_1 fun_3 (fun_2 true r)))}$	
true (1)	
, ,	

4. Claridad Operativa POO [16 pts.]

Considere el siguiente programa en nuestro lenguaje OO:

```
class c_1 extends object
      field a
      field b
      method initialize () 0
      method setup (k, l)
               begin
               set a=+(k,3);
               set b=1;
               8
               end
      method m1 (n) send self m2 (+(a,n))
      method m2 (n) *(n, -(a,b))
      method m4 (x, y) send self m1 (-(x,y))
class c_2 extends c_1
      field b
      field c
      method setup (k, l)
               begin
               set b=k;
               set c=-(k, 1);
               super setup(+(b,k), -(1,l));
               send self m3(k)
               end
      method m2 (n) super m2(+(n, c))
      method m3 (n) send self m1(*(n,2))
      method m4 (n, m) + (m, super m4(n, m))
class c_3 extends c_2
      method m2 (n) super m2(n)
      method m4 (n,m) *(+(n,m),b)
let p=proc (o, r, q)
             let r_1 = \text{send o setup}(\mathbf{r}, \mathbf{q})
                in let r_2 = \text{send o m4}(q, r)
                       r_3 = \text{send o m1(r)}
                       in +(r_1, +(r_2,r_3))
   o_1 = \text{new } c_1()
   o_2 = \text{new } c_2()
   o_3 = \text{new } c_3()
   in let x = (p \ o_1 \ 5 \ 2)
          y = (p o_2 4 1)
          z = (p o_3 3 0)
          in send o_2 m4(x, +(y,z))
```

 a) [10 pts.] Complete en la siguiente tabla, los valores asociados a las variables indicadas en cada uno de los momentos de evaluación se nalados:

77 . 11	3 7 1	A1 1 1 '/
Variable	Valor	Al evaluar la expresión
r_1		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p o_1 5 2)$
r_2		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p \ o_1 \ 5 \ 2)$
r_3		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p \ o_1 \ 5 \ 2)$
x		send o_2 m4 $(x, +(y,z))$ del
		cuerpo del let más interno
r_1		$+(r_1,+(r_2,r_3))$ por efecto
		de la aplicación $(p o_2 4 1)$
r_2		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p o_2 4 1)$
r_3		$+(r_1,+(r_2,r_3))$ por efecto
		de la aplicación $(p o_2 4 1)$
y		send o_2 m4 $(x, +(y,z))$ del
		cuerpo del let más interno
r_1		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p o_3 3 0)$
r_2		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p o_3 3 0)$
r_3		$+(r_1, +(r_2, r_3))$ por efecto
		de la aplicación $(p o_3 3 0)$
z		send o_2 m4 $(x, +(y,z))$ del
		cuerpo del let más interno

b) [6 pts.] Dibuje el ambiente en el que se evalua el cuerpo del método m4 en el proceso de evaluación de la expresión send o_2 m4(x, +(y,z)) del cuerpo del let más interno. Cuál es el resultado de evaluar esa expresión?

3