Ekaterina Lobacheva

Full Bayesian inference

2021

Bayesian ML models

Training stage:

$$p\left(\theta \mid X_{tr}, Y_{tr}\right) = \frac{p\left(Y_{tr} \mid X_{tr}, \theta\right) p(\theta)}{\int p\left(Y_{tr} \mid X_{tr}, \theta\right) p(\theta) d\theta}$$

Testing stage:

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta$$

When the integrals are tractable?

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \longrightarrow p(\theta \mid x) \in \mathcal{A}(\alpha')$$

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \longrightarrow p(\theta \mid x) \in \mathcal{A}(\alpha')$$

Intuition:

$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{\int p(x \mid \theta)p(\theta)d\theta}$$

Conjugate distributions

Distribution $p(\theta)$ and $p(x \mid \theta)$ are conjugate iff $p(\theta \mid x)$ belongs to the same parametric family as $p(\theta)$:

$$p(\theta) \in \mathcal{A}(\alpha), \quad p(x \mid \theta) \in \mathcal{B}(\theta) \longrightarrow p(\theta \mid x) \in \mathcal{A}(\alpha')$$

Intuition:

$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{\int p(x \mid \theta)p(\theta)d\theta} \leftarrow \text{conjugate}$$

- Denominator is tractable since any distribution in ${\cal A}$ is normalized
- All we need is to compute α'

Full Bayesian inference

Training stage:

$$p\left(\theta \mid X_{tr}, Y_{tr}\right) = \frac{p\left(Y_{tr} \mid X_{tr}, \theta\right) p(\theta)}{\int p\left(Y_{tr} \mid X_{tr}, \theta\right) p(\theta) d\theta}$$

Testing stage:

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta$$

Integrals are tractable if prior and likelihood are conjugate

Full Bayesian inference

- Easy to use analytical formulas for training and testing stages
- Strong assumptions on the model conjugacy of prior and likelihood
 - → Choose conjugate prior
 - → Only simple models (not flexible enough for most of the cases)

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X = (x_1, \dots, x_n), \quad x \in \{0, 1\}$

Head (H)

Tail (T)

Probabilistic model:

$$p(x,\theta) = p(x \mid \theta)p(\theta)$$

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X = (x_1, \dots, x_n), \quad x \in \{0, 1\}$

Head (H)

Tail (T)

Probabilistic model:

$$p(x,\theta) = p(x \mid \theta)p(\theta)$$

Likelihood: $Bern(x \mid \theta) = \theta^x (1 - \theta)^{1-x}$

- We have a coin which may be fair or not
- The task is to estimate a probability θ of landing heads up
- Data: $X = (x_1, \dots, x_n), \quad x \in \{0, 1\}$

Head (H)

Tail (T)

Probabilistic model:

Likelihood: $Bern(x \mid \theta) = \theta^x (1 - \theta)^{1-x}$

 $p(x,\theta) = p(x \mid \theta)p(\theta)$

Prior: ???

How to choose a prior?

- Correct domain: $\theta \in [0, 1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

How to choose a prior?

- Correct domain: $\theta \in [0, 1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Beta distribution matches all requirements:

$$Beta(\theta \mid a, b) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$$

Beta distribution

How to choose a prior?

- Correct domain: $\theta \in [0, 1]$
- Include prior knowledge: a coin is most likely fair
- Inference complexity: use conjugate prior

Beta distribution matches all requirements:

$$Beta(\theta \mid a, b) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$$

Beta distribution

^{*} May be also used for the case of most likely unfair coin

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^{x} (1 - \theta)^{1-x}$$
 $p(\theta) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$

Idea — check that prior and posterior lay in the same parametric family:

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^{x} (1 - \theta)^{1-x}$$
 $p(\theta) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$

Idea — check that prior and posterior lay in the same parametric family:

$$p(\theta) = C\theta^C (1 - \theta)^C$$

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^{x} (1 - \theta)^{1-x}$$
 $p(\theta) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$

Idea — check that prior and posterior lay in the same parametric family:

$$p(\theta) = C\theta^{C} (1 - \theta)^{C}$$

$$p(\theta \mid x) = \frac{1}{C} p(x \mid \theta) p(\theta) = \frac{1}{C} \theta^{x} (1 - \theta)^{1 - x} \frac{1}{B(a, b)} \theta^{a - 1} (1 - \theta)^{b - 1} =$$

$$= C\theta^{C} (1 - \theta)^{C}$$

Let's check that our likelihood and prior are conjugate:

$$p(x \mid \theta) = \theta^x (1 - \theta)^{1-x}$$
 $p(\theta) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$

Idea — check that prior and posterior lay in the same parametric family:

$$p(\theta) = C\theta^C (1-\theta)^C \text{ conjugacy}$$

$$p(\theta \mid x) = \frac{1}{C} p(x \mid \theta) p(\theta) = \frac{1}{C} \theta^x (1-\theta)^{1-x} \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1} =$$

$$= C\theta^C (1-\theta)^C \text{ conjugacy}$$

Bayesian inference after receiving data $X = (x_1, \dots, x_n)$:

$$p(\theta \mid X) = \frac{1}{Z}p(X \mid \theta)p(\theta) = \frac{1}{Z} \left[\prod_{i=1}^{n} p(x_i \mid \theta) \right] p(\theta) =$$

Bayesian inference after receiving data $X = (x_1, \dots, x_n)$:

$$p(\theta \mid X) = \frac{1}{Z} p(X \mid \theta) p(\theta) = \frac{1}{Z} \left[\prod_{i=1}^{n} p(x_i \mid \theta) \right] p(\theta) =$$

$$= \frac{1}{Z} \left[\prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} \right] \frac{1}{B(a, b)} \theta^{a - 1} (1 - \theta)^{b - 1} =$$

Bayesian inference after receiving data $X = (x_1, \dots, x_n)$:

$$p(\theta \mid X) = \frac{1}{Z} p(X \mid \theta) p(\theta) = \frac{1}{Z} \left[\prod_{i=1}^{n} p(x_i \mid \theta) \right] p(\theta) =$$

$$= \frac{1}{Z} \left[\prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} \right] \frac{1}{B(a, b)} \theta^{a - 1} (1 - \theta)^{b - 1} =$$

$$= \frac{1}{Z'} \theta^{a + \sum_{i=1}^{n} x_i - 1} (1 - \theta)^{b + n - \sum_{i=1}^{n} x_i - 1}$$

Bayesian inference after receiving data $X = (x_1, \dots, x_n)$:

$$p(\theta \mid X) = \frac{1}{Z}p(X \mid \theta)p(\theta) = \frac{1}{Z}\left[\prod_{i=1}^n p\left(x_i \mid \theta\right)\right]p(\theta) =$$

$$= \frac{1}{Z}\left[\prod_{i=1}^n \theta^{x_i}(1-\theta)^{1-x_i}\right]\frac{1}{\mathrm{B}(a,b)}\theta^{a-1}(1-\theta)^{b-1} =$$

$$= \frac{1}{Z'}\theta^{a+\sum_{i=1}^n x_i-1}(1-\theta)^{b+n-\sum_{i=1}^n x_i-1} = Beta\left(\theta \mid a',b'\right)$$
New parameters:
$$a' = a + \sum_{i=1}^n x_i \qquad b' = b+n - \sum_{i=1}^n x_i$$

21 / 28

Full Bayesian inference

Training stage:

$$p\left(\theta \mid X_{tr}, Y_{tr}\right) = \frac{p\left(Y_{tr} \mid X_{tr}, \theta\right) p(\theta)}{\int p\left(Y_{tr} \mid X_{tr}, \theta\right) p(\theta) d\theta}$$

Testing stage:

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta$$

Integrals are tractable if prior and likelihood are conjugate

Simplest way — approximate posterior with delta function in θ_{MP} :

$$\theta_{MP} = \arg \max p(\theta \mid X_{tr}, Y_{tr}) = \arg \max p(Y_{tr} \mid X_{tr}, \theta) p(\theta)$$

Simplest way — approximate posterior with delta function in θ_{MP} :

$$\theta_{MP} = \arg \max p(\theta \mid X_{tr}, Y_{tr}) = \arg \max p(Y_{tr} \mid X_{tr}, \theta) p(\theta)$$

On the testing stage:

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta \approx p(y \mid x, \theta_{MP})$$

Simplest way — approximate posterior with delta function in θ_{MP} :

$$\theta_{MP} = \operatorname{arg\,max} p(\theta \mid X_{tr}, Y_{tr}) = \operatorname{arg\,max} p(Y_{tr} \mid X_{tr}, \theta) p(\theta)$$

On the testing stage:

We do not need to calculate the normalisation constant

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta \approx p(y \mid x, \theta_{MP})$$

Simplest way — approximate posterior with delta function in θ_{MP} :

$$\theta_{MP} = \arg \max p(\theta \mid X_{tr}, Y_{tr}) = \arg \max p(Y_{tr} \mid X_{tr}, \theta) p(\theta)$$

On the testing stage:

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta \approx p(y \mid x, \theta_{MP})$$

Simplest way — approximate posterior with delta function in θ_{MP} :

$$\theta_{MP} = \arg \max p(\theta \mid X_{tr}, Y_{tr}) = \arg \max p(Y_{tr} \mid X_{tr}, \theta) p(\theta)$$

On the testing stage:

$$p(y \mid x, X_{tr}, Y_{tr}) = \int p(y \mid x, \theta) p(\theta \mid X_{tr}, Y_{tr}) d\theta \approx p(y \mid x, \theta_{MP})$$

* Not the same as θ_{ML} — here we use prior

Inference methods: summary

Probabilistic model: $p(x, \theta)$ We want to compute: $p(\theta \mid x)$

Approximation		Inference
Exact	$p(\theta \mid x)$	Full Bayesian inference
More advanced techniques		
Delta function	$p(\theta \mid x) \approx \delta(\theta - \theta_{MP})$	MP inference
No prior	$ heta_{ML}$	MLE