

FÓRMULAS DE GEOMETRÍA ANALÍTICA

1	CONCEPTOS BÁSICOS Distancia entre dos puntos:	7	Condición para que dos rectas sean paralelas $m_1=m_2$ Condiciones para que dos rectas sean	13 14	ejes) $\frac{x}{a} + \frac{y}{b} = 1$
	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		perpendiculares $m_1 \bullet m_2 = -1 o m_2 = -\frac{1}{m_1}$		$Ax + By + C = 0$ Pendiente de la recta Ordenada de la recta $m = -\frac{A}{B}$ $b = -\frac{C}{B}$
2	División de un segmento en una razón dada: $P(x,y) \Rightarrow x = \frac{x_1 + rx_2}{1 + r},$ $y = \frac{y_1 + ry_2}{1 + r}$	9	Area de un polígono de n lados $A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots \\ x_n & y_n \\ x_1 & y_1 \end{vmatrix} = \frac{1}{2} \begin{bmatrix} +(x_1y_2 + x_2y_3 + \dots + x_ny_1) \\ -(x_2y_1 + x_3y_2 + \dots + x_1y_n) \end{bmatrix}$	15	Cálculo de la distancia de un punto a una recta $d = \frac{ Ax + By + C }{\sqrt{A^2 + B^2}}$
3	Punto medio de un segmento recta $x = \frac{x_1 + x_2}{2},$ $y = \frac{y_1 + y_2}{2}$		ECUACIONES DE LA RECTA		CÓNICAS
4	Pendiente de una recta Dado el ángulo Dado dos puntos $m = \tan \alpha$ $m = \frac{y_2 - y_1}{x_2 - x_1}$	10	Forma ordinaria (pendiente / ordenada) $y = mx + b$	16	Ecuación general de las cónicas $Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$
5	Ángulo de inclinación de una recta $lpha = an^{-1}(m)$	11	Forma punto / pendiente $y - y_1 = m(x - x_1)$	17	Identificación de las cónicas Discriminante: $I = B^2 - 4AC$ Elipse: $B^2 - 4AC < 0$ (negativo) Parábola: $B^2 - 4AC = 0$ (cero) Hipérbola: $B^2 - 4AC > 0$ (positivo)
6	Angulo entre dos rectas dadas sus pendientes $\beta = \tan^{-1} \left(\frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right)$	12	Forma cuando pasa por dos puntos $y - y_1 = \left[\frac{y_2 - y_1}{x_2 - x_1} \right] (x - x_1)$		CIRCUNFERENCIA

18	Datos importantes para obtener la ecuación de la circunferencia:	22	Datos importantes para obtener la ecuación de la parábola:	26	Horizontal (vértice fuera del origen)
	C(h,k) = coordenadas del centro. r = radio		V(h,k) = coordenadas del vértice. p = distancia del vértice al foco. Eje focal = horizontal / vertical		Ecuación $\Rightarrow (y-k)^2 = 4p(x-h)$ Vértice $\Rightarrow V(h,k)$ Foco $\Rightarrow (h+p,k)$ Directriz $\Rightarrow x = h - p$ Lado recto $\Rightarrow LR = 4p $
					Eje focal $\Rightarrow y = k$
19	Ecuación ordinaria con centro en el origen		Horizontal (vértice en el origen) Ecuación $\Rightarrow y^2 = 4px$	27	Forma general de la parábola (caso con eje horizontal)
	$x^2 + y^2 = r^2$		Vértice \Rightarrow V(0,0) Foco \Rightarrow (p,0) Directriz \Rightarrow $x = -p$ Lado recto \Rightarrow $LR = 4p $ Eje focal \Rightarrow $y = 0$		$y^{2} + Dx + Ey + F = 0$ donde: $D = -4p$ $E = -2k$ $F = k^{2} + 4ph$
20	Ecuación ordinaria con centro	24	Vertical	28	_
	fuera del origen		(vértice en el origen) Ecuación $\Rightarrow x^2 = 4py$ Vértice $\Rightarrow V(0,0)$		Forma general de la parábola (caso con eje vertical) $x^2 + Dx + Ey + F = 0$
	$(x-h)^2 + (y-k)^2 = r^2$		Foco \Rightarrow $(0,p)$ Directriz \Rightarrow $y = -p$ Lado recto $\Rightarrow LR = 4p $ Eje focal \Rightarrow $x = 0$		donde: $D = -2h$ $E = -4p$ $F = h^2 + 4pk$
21	Ecuación general o desarrollada	25	Vertical		
	$x^{2} + y^{2} + Dx + Ey + F = 0$ $h = -\frac{D}{2}, k = -\frac{E}{2},$ $r = \frac{\sqrt{D^{2} + E^{2} - 4F}}{2}$ PARÁBOLA		(vértice fuera del origen) Ecuación $\Rightarrow (x-h)^2 = 4p(y-k)$ Vértice $\Rightarrow V(h,k)$ Foco $\Rightarrow (h,k+p)$ Directriz $\Rightarrow y = k-p$ Lado recto $\Rightarrow LR = 4p $ Eje focal $\Rightarrow x = h$		ELIPSE

29	Datos importantes para obtener la ecuación de la elipse:	32	Forma ordinaria en el origen (eje mayor - vertical)	35	Forma general de la elipse (caso horizontal)
	C(h,k) = coordenadas del centro. a = longitud del semieje mayor.		Ecuación $\Rightarrow \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$		$Ax^{2} + Cy^{2} + Dx + Ey + F = 0$ donde:
	b = longitud del semieje menor. Eje mayor = Horizontal / Vertical		Centro \Rightarrow C(0,0)		$A = b^2$ $C = a^2$
			$V_{mayor}(0, \pm a)$ $V_{menor}(\pm b, 0)$		$D = -2b^2h$
			Focos $\Rightarrow F(0, \pm c)$		$E = -2a^{2}k$ $F = b^{2}h^{2} + a^{2}k^{2} - a^{2}b^{2}$
30	Ecuaciones importantes de la elipse	33	Forma ordinaria fuera del origen (eje mayor - horizontal)	36	Forma general de la elipse (caso vertical)
	c = distancia del centro al foco. $c = \sqrt{a^2 - b^2}$		Ecuación $\Rightarrow \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$		$Ax^2 + Cy^2 + Dx + Ey + F = 0$ donde:
	LR = Lado recto		Centro \Rightarrow $C(h,k)$		$A = a^2$
	$LR = \frac{2b^2}{a}$		Vertices $\Rightarrow V_{mayor}(h \pm a, k)$ $V_{menor}(h, k \pm b)$		$C = b^2$ $D = -2a^2h$
	e = excentricidad (e < 1)		Focos $\Rightarrow F(h \pm c, k)$		$E = -2b^{2}k$ $F = a^{2}h^{2} + b^{2}k^{2} - a^{2}b^{2}$
	$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$				
31	Forma ordinaria en el origen (eje mayor - horizontal)	34	Forma ordinaria fuera del origen (eje mayor – vertical)		
	Ecuación $\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		Ecuación $\Rightarrow \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$		
	Centro \Rightarrow C(0,0)		Centro \Rightarrow $C(h,k)$		HIPÉRBOLA
K	$V \text{értices} \Rightarrow V_{mayor}(\pm a, 0) \\ V_{menor}(0, \pm b)$		$V \text{\'ertices} \Rightarrow \frac{V_{mayor}(h, k \pm a)}{V_{menor}(h \pm b, k)}$		
	Focos $\Rightarrow F(\pm c,0)$		Focos $\Rightarrow F(h, k \pm c)$		

37	Datos importantes para obtener la ecuación de la hipérbola:	40	Forma ordinaria en el origen (eje focal - vertical)	43	Forma general de la hipérbola (caso horizontal)
	C(h,k) = coordenadas del centro. a = long. del semieje transverso.		Ecuación $\Rightarrow \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$		$Ax^2 + Cy^2 + Dx + Ey + F = 0$
	b = long. del semieje conjugado.		Centro \Rightarrow C(0,0)		donde:
	Eje Focal = Horizontal / Vertical		$\frac{y}{a} + \frac{x}{b} = 0$ Asíntotas $\Rightarrow \begin{cases} y & x \\ y & x \end{cases}$		$A = b^2$ $C = -a^2$
			$\frac{y}{a} - \frac{x}{b} = 0$		$D = -2b^2h$ $E = 2a^2k$
			Focos \Rightarrow $F(0,\pm c)$		$F = b^2 h^2 - a^2 k^2 - a^2 b^2$
38	Ecuaciones importantes de la hipérbola	41	Forma ordinaria fuera del origen (eje focal - horizontal)		Forma general de la hipérbola (caso vertical)
	c = distancia del centro al foco.		Ecuación $\Rightarrow \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$		$Ax^2 + Cy^2 + Dx + Ey + F = 0$
	$c = \sqrt{a^2 + b^2}$		$a^2 \qquad b^2$ Centro \Rightarrow C(h,k)		donde:
	LR = Lado recto				$A = -a^2$
	$LR = \frac{2b^2}{a}$,	Asíntotas $\Rightarrow \frac{x-h}{a} + \frac{y-k}{b} = 0$ $\frac{x-h}{a} - \frac{y-k}{b} = 0$		$C = b^2$ $D = 2a^2h$
	e = excentricidad (e > 1)		$\frac{x}{a} - \frac{y}{b} = 0$		$E = -2b^2k$
	$e = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a}$		Focos \Rightarrow $F(h \pm c,k)$		$F = b^2 k^2 - a^2 h^2 - a^2 b^2$
39	Forma ordinaria en el origen (eje focal - horizontal)	42	Forma ordinaria fuera del origen (eje focal - vertical)		
	Ecuación $\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$		Ecuación $\Rightarrow \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$		
	Centro \Rightarrow C(0,0)		Centro \Rightarrow $C(h,k)$		
	Asintotas $\Rightarrow \frac{x}{a} + \frac{y}{b} = 0$ $\frac{x}{a} - \frac{y}{b} = 0$		Asíntotas $\Rightarrow \frac{y-k}{a} + \frac{x-h}{b} = 0$ $\frac{y-k}{a} - \frac{x-h}{b} = 0$		
	Focos $\Rightarrow F(\pm c,0)$		Focos \Rightarrow $F(h, k \pm c)$		