Rok emp 2011

I Između sfernih ljuski polumjera R_1 i R_2 nalazi se naboj volumne gustoće ρ određene iednadžbom:

$$\rho = \begin{cases} 0 & r < R_1 \\ \frac{10^{-6}}{r+1} & R_1 \le r \le R_2 & [\frac{c}{m^3}]. \\ 0 & r > R_2 \end{cases}$$

Zadano je $\varepsilon_{r1} = 4$, $\varepsilon_{r2} = 2$, $R_1 = 1$ cm, $R_2 = 3$ cm, $R_3 = 4.5$ cm, $R_4 = 10$ cm, $R_5 = 14$ cm.

1. Odredite jakost električnog polja u [V/m] u točki udaljenoj za 2cm od središta sfere.

A 512,6 B 248,3 C 864,1 D 971,4 E 392,4 F 648,4

Odredite iznos električne indukcije u [nC/m²] u točki udaljenoj za 4cm od središta sfere.
 A 5,3 B 2,4 C 4,6 D 1,3 E 3,0 F 6,5

 3. Odredite iznos električne polarizacije u [pC/m²] u točki udaljenoj za 13cm od središta sfere.

 A 346 | B 842 | C 251 | D 565 | E 448 | F 691

4. Odredite energiju u [n]] pohranjenu u elektrostatskom polju u dijelu volumena između R_2 i

A 0,91 B 0,22 C 0,77 D 1,23 E 0,57 F 1,84

II Na udaljenosti d=1m od uzemljene metalne ravnine nalazi se prsten zanemarivog poprečnog presjeka, polumjera r=0,5m nabijen nabojem λ = 17 nC/m prema slici.

5. Odredite iznos jakosti električnog polja u [V/m] u točki A u središtu prstena.

Α	188,4	В	220,6	C	54,8	D	154,4	E	74,4	F	109,6
---	-------	---	-------	---	------	---	-------	---	------	---	-------

6. Odredite iznos jakosti električnog polja u [V/m] u točki B na osi prstena na udaljenosti $0.5 \, \mathrm{m}$ od ravnine prema slici.

Α	476,1	В	1510,3	С	861,0	D	617,5	E	1201,4	F	300,8
---	-------	---	--------	---	-------	---	-------	---	--------	---	-------

 Odredite iznos rada u [J] koji je potrebno utrošiti da se proton iz beskonačnosti dovede u točku A.

A	1,16*10-16	В	9,42*10-17	C	2,11*10-16	D	3,42*10-16	E	5,74*10-16	F	6,44*10-17
	8. Odred	ite V	× E u [V/m	2] u	točki B.						

III Granica <u>dielektrika</u> i slobodnog prostora određena je jednadžbom x+2y+z=12 m. U području u kojem se nalazi ishodište, relativne dielektričnosti $\varepsilon_r=4$, zadana je jakost električnog polja $E_1=2a_x+5a_z$ [V/m].

9. Odredite jakost električnog polja u [V/m] u slobodnom prostoru u smjeru osi x, E2x-

Δ	-4,5	B	65	0	5.0	D	7.0	E	-6.0	F	55	
	7,0	10	0,5	1 0	3,0		7,0		-0,0		٠,,,	

10. Odredite jakost električnog polja u [V/m] u slobodnom prostoru u smjeru osi y, E_{2y} .

A	8,0	В	7,0	C	9,0	D	5,0	E	6,0	F	4,0	

11. Odredite jakost električnog polja u [V/m] u slobodnom prostoru u smjeru osi z, E_{2z}

HH.													
	Α	-10,0	В	-8,5	С	8,5	D	-7,0	E	10,0	F	7,0	

12. Odredite iznos integrala $\oint E \cdot dl$ u [V] po krivulji oblika trokuta određenog točkama $(0;0;0) \rightarrow (0;8m;0;0) \rightarrow (0;0;8;0) \rightarrow (0;0;0)$.

 $IV \quad U \ cilindričnom \ koordinat nom \ sustavu \ raspodjela \ naboja \ u \ slobodnom \ prostoru \ zadana \ je \ s:$

$$\rho = \begin{cases} 0 & r < 0.5 \text{m} \\ \frac{10^{-9}}{r^4} & 0.5 \text{m} \le r \le 1 \text{m} \\ \frac{10^{-9}}{r^3} & 1 \text{m} \le r \le 2 \text{m} \end{cases} \begin{bmatrix} \frac{\text{C}}{\text{m}^3} \end{bmatrix}$$

Točka referentnog potencijala nalazi se na polumjeru 10m, $\varphi(r=10\text{m})=0$.

13. Odredite potencijal u točki (3m;0;0) u [V].

Α	390,4	В	272,0	C	124,1	D	331,2	E	191,4	F	226,5

14. Odredite jakost električnog polja u [V/m] u točki (1,4m;0;0).

Δ	75.4	B	218.6	C	1173	D	193.4	F	144 1	F	163,3
1	, 5, 4		210,0	-	11,,0		100,4	-			100,0

15. Odredite jakost električnog polja u [V/m] u točki (0,7m;0;0).

_													
	Α	71,3	В	186,3	C	99,2	D	115,0	E	158,1	F	221,7	7

16. Odredite potencijal u ishodištu (0;0;0) u [V].

V Pozitivni točkasti naboj Q mase m= 10^{-12} kg upada početnom brzinom $v=a_x-a_y$ mprema slici u područje između ploča pločastog kondenzatora unutar kojeg vlada homogeno električno polje iznosa $E=2\frac{\rm V}{\rm m}$. Zadano je: d=0,01m, h=0,2m, Q=1nC. Gravitacijsku silu zanemariti.

17. Odredite iznos brzine u [m/s] na izlazu iz kondenzatora.

98	50-50C (1240-CA)		75-13-5-13-5-13-5-1				S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
Α	10	В	32	С	24	D	19	E	29	F	14	

18. Odredite minimalnu koordinatu u [mm] u smjeru osi y, y_{min} koju će naboj doseći.

A	-0,25	В	-0,33	С	-0,20	D	-0,16	E	-0,44	F	-0,39

19. Odredite trenutak u [ms] u kojem je dosegnuta minimalna koordinata y = y_{min} .

A	0,99	В	0,20	С	0,40	D	0,67	E	0,33	F	0,50

20. Odredite y koordinatu naboja pri izlazu iz kondenzatora u [cm].

Α	8,0	В	9,0	C	6,5	D	10,0	E	11,5	F	3,5	
---	-----	---	-----	---	-----	---	------	---	------	---	-----	--