Lecture XII

Approximating the Invariant Distribution

Gianluca Violante

New York University

Quantitative Macroeconomics

SS Equilibrium in the Aiyagari model

FIGURE IIb
Steady-State Determination

SS Equilibrium of the Aiyagari model

Fixed point algorithm over the interest rate (or K).

- 1. Fix an initial guess for the interest rate $r^0 \in \left(-\delta, \frac{1}{\beta} 1\right)$. r^0 is our first candidate for the equilibrium (the superscript denotes the iteration number).
- 2. Given r^0 , solve the dynamic programming problem of the agent to obtain $a' = g(a, y; r^0)$. We described several solution methods.
- 3. Given the decision rule for assets next period $g(a,y;r^0)$ and the Markov transition over productivity shocks $\Gamma(y',y)$, we can construct the transition function $Q(r^0)$ and, by successive iterations, we obtain the fixed point distribution $\Lambda(r^0)$, conditional on the candidate interest rate r^0 .

SS Equilibrium of the Aiyagari model

4. Compute the aggregate demand of capital $K\left(r^{0}\right)$ from the optimal choice of the firm who takes r^{0} as given, i.e.

$$K(r^0) = F_k^{-1}(r^0 + \delta)$$

5. Compute the integral:

$$A(r^{0}) = \int_{A \times Y} g(a, y; r^{0}) d\Lambda(a, y; r^{0})$$

which gives the aggregate supply of assets. This can be easily done by using the invariant distribution obtained in step 3.

SS Equilibrium of the Aiyagari model

- 6. Compare $K\left(r^{0}\right)$ with $A\left(r^{0}\right)$ to verify whether the asset market clearing condition holds.
- 7. Use a nonlinear equation solver in your outer loop to update from r^0 to r^1 and go back to step 1.
- 8. Keep iterating until you reach convergence of the interest rate, i.e., until, at iteration n:

$$|r^{n+1} - r^n| < \varepsilon$$

Calculating the invariant distribution

- Continuum of households makes the wealth distribution a continuous function and therefore an infinite-dimensional object in the state space. Need approximation.
- Small errors in computing the invariant distribution, particularly in models with aggregate shocks, can accumulate and lead to significant errors in the equilibrium values of aggregate variables.
- Five approaches:
 - 1. piecewise linear approximation of invariant distribution function
 - 2. discretization of the invariant density function
 - 3. eigenvector method
 - 4. simulation of an artificial panel
 - 5. approximating the cdf by an exponential function [not today]

Preliminaries

- Let \mathcal{Y} be the grid of y and Γ be its J-state Markov chain with $\Gamma_{ij} = \Pr\{y' = y_j | y = y_i\}$
- We think of separate asset distributions conditional on each value of $y \in \mathcal{Y}$, i.e.

$$\Lambda(a^*, y^*) = \Pr\{a \le a^*, y = y^*\}$$

• The invariant distribution function satisfies the law of motion:

$$\Lambda\left(a',y'\right) = \sum_{y \in \mathcal{Y}} \Gamma\left(y',y\right) \Lambda\left(g^{-1}\left(a',y\right),y\right) \quad \text{ for all } \left(a',y'\right)$$

where $g^{-1}(a',y)$ is the inverse of the saving decision rule with respect to its first argument a. Clearly, we are using the monotonicity of g.

- This method involves approximating Λ by a weighted sum of piecewise-linear functions and iterating on the law of motion above
- The approximation of Λ must be shape-preserving since it would not make sense if Λ decreased over some range of a. This makes piecewise linear basis functions a better choice than say Chebyshev polynomials or cubic splines.
- Other approximations that preserve shape, such as shape-preserving splines could potentially also be appropriate
- First we need a grid \mathcal{A} of interpolation nodes in the interval $[\underline{a}, \overline{a}]$. This grid needs to be a lot finer than the grid used for computing the decision rule. Does not have to be an evenly spaced grid. Let N be the size of this grid.

• Choose an initial distribution Λ^0 over the grid $\mathcal{A} \times \mathcal{Y}$. One choice is, for example, for every pair $(a_k, y_j) \in \mathcal{A} \times \mathcal{Y}$

$$\Lambda^{0}(a_{k}, y_{j}) = \frac{a_{k} - \underline{a}}{\overline{a} - \underline{a}} \Gamma_{j}^{*}$$

as if the two variables were independent and the distribution over assets a were uniform.

• Update the distribution on grid points as follows. For every pair $(a_k, y_j) \in \mathcal{A} \times \mathcal{Y}$

$$\Lambda^{1}\left(a_{k}, y_{j}\right) = \sum_{y_{i} \in \mathcal{Y}} \Gamma_{ij} \Lambda^{0}\left(g^{-1}\left(a_{k}, y_{i}\right), y_{i}\right)$$

Note: (i) need to compute g^{-1} and (ii) g^{-1} not on \mathcal{A}

• How do we solve for $a = g^{-1}(a_k, y_i)$? Recall: you also have the consumption decision rule on the original grid used for policy functions (obtained residually from the budget constraint). Then, since $a_k = g(a, y_i)$

$$c\left(a, y_i\right) + a_k = Ra + y_i$$

and we can calculate a through a nonlinear solver given a piece-wise linear representation of $c\left(a,y_{i}\right)$.

• Given $a = g^{-1}(a_k, y_i)$, we need a linear interpolation of Λ^0 since Λ^0 is only defined on the grid.

• For an $a \in [a_n, a_{n+1}]$, we define:

$$\Lambda^{0}(a, y_{i}) = \Lambda^{0}(a_{n}, y_{i}) + \frac{\Lambda^{0}(a_{n+1}, y_{i}) - \Lambda^{0}(a_{n}, y_{i})}{a_{n+1} - a_{n}}(a - a_{n})$$

• Compare $\Lambda^{1}\left(a_{k},y_{j}\right)$ to $\Lambda^{0}\left(a_{k},y_{j}\right)$, for example with the supnorm

$$\max_{j,k} |\Lambda^{1}(a_{k}, y_{j}) - \Lambda^{0}(a_{k}, y_{j})| < \varepsilon$$

and stop when your tolerance level ε is reached

How do we compute the aggregate supply of capital

$$A = \sum_{y_i \in \mathcal{Y}} \int_A a d\Lambda(a, y_i)$$

• We assume the distribution of assets is uniform within the element $[a_n, a_{n+1}]$ and therefore

$$\int_{a_{n}}^{a_{n+1}} ad\Lambda(a, y_{i}) = \int_{a_{n}}^{a_{n+1}} a \left[\frac{\Lambda(a_{n+1}, y_{i}) - \Lambda(a_{n}, y_{i})}{a_{n+1} - a_{n}} \right] da$$

$$= \frac{\Lambda(a_{n+1}, y_{i}) - \Lambda(a_{n}, y_{i})}{a_{n+1} - a_{n}} \left[\frac{a^{2}}{2} \right]_{a_{n}}^{a_{n+1}}$$

$$= \frac{\Lambda(a_{n+1}, y_{i}) - \Lambda(a_{n}, y_{i})}{2} (a_{n+1} + a_{n})$$

• Then:

$$A = \sum_{y_i \in \mathcal{Y}} \sum_{n=1}^{N-1} \frac{\Lambda(a_{n+1}, y_i) - \Lambda(a_n, y_i)}{2} (a_{n+1} + a_n) + \Lambda(\underline{a}, y_i) \underline{a}$$

where we account for the fact that there may be a mass point at the borrowing constraint.

Discretization of the invariant density function

- A simpler approach involves finding an approximation to the invariant density function $\lambda\left(a,y\right)$
- We will approximate the density by a probability distribution function defined over a discretized version of the state space.
 Once again the grid should be finer than the one used to compute the optimal savings rule.
- Choose initial density functions $\lambda^0\left(a_k,y_i\right)$. For example

$$\lambda^{0}\left(a_{k},y_{i}\right)=\left\{\begin{array}{ll}0&\text{if }k>1\text{ and }i>1\\1&\text{if }k=1\text{ and }i=1\end{array}\right.$$

i.e., all the mass is at the borrowing limit and at the lowest realization of the income shock

Discretization of the invariant density function

• For every (a_k, y_j) on the grid:

$$\lambda^{1}\left(a_{k}, y_{j}\right) = \sum_{y_{i} \in \mathcal{Y}} \Gamma_{ij} \sum_{m \in \mathcal{M}_{i}} \frac{a_{k+1} - g\left(a_{m}, y_{i}\right)}{a_{k+1} - a_{k}} \lambda^{0}\left(a_{m}, y_{i}\right)$$

$$\lambda^{1}\left(a_{k+1}, y_{j}\right) = \sum_{y_{i} \in \mathcal{Y}} \Gamma_{ij} \sum_{m \in \mathcal{M}_{i}} \frac{g\left(a_{m}, y_{i}\right) - a_{k}}{a_{k+1} - a_{k}} \lambda^{0}\left(a_{m}, y_{i}\right)$$

where

$$\mathcal{M}_i = \{ m = 1, ..., N | a_k \le g(a_m, y_i) \le a_{k+1} \}$$

Discretization of the invariant density function

 We can think of this way of handling the discrete approximation to the density function as forcing the agents in the economy to play a lottery.

- Lottery: with the probability of going to a_k given that your optimal policy is to save $a' = g\left(a_m, y_i\right) \in [a_k, a_{k+1}]$ is given by $\frac{a_{k+1} g(a_m, y_i)}{a_{k+1} a_k} \text{ and with probability } 1 \frac{a_{k+1} g(a_m, y_i)}{a_{k+1} a_k} \text{ you go to } a_{k+1}.$
- Then, once you have found λ , the aggregate supply of capital is computed as:

$$A = \sum_{y_i \in \mathcal{Y}} \sum_{a_k \in \mathcal{A}} a_k \lambda \left(a_k, y_j \right)$$

Eigenvector method

• Let A be a square matrix. If there is a vector $v \neq 0$ in \mathbb{R}^n such that:

$$vA = ev$$

for some scalar e, then e is called the eigenvalue of A with corresponding (left) eigenvector v.

• Recall that the definition of invariant pdf for a Markov transition matrix Q is λ^* that satisfies:

$$\lambda^* Q = \lambda^*$$

thus an invariant distribution is the eigenvector of the matrix Q associated to eigenvalue 1.

 How do we guarantee this eigenvector is unique and how do we find it in that case?

Eigenvector method

- Perron-Frobenius Theorem: Let Q be a transition matrix of an homogeneous ergodic Markov chain. Then Q has a unique dominant eigenvalue e=1 such that:
 - its associated eigenvector has all positive entries
 - ightharpoonup all other eigenvalues are smaller than e in absolute value
 - ightharpoonup Q has no other eigenvector with all non-negative entries
- This eigenvector (renormalized so that it sums to one) is the unique invariant distribution

Eigenvector methods

- How do we construct Q?
- Let Q(a', y'; a, y) be the $JN \times JN$ transition matrix from state (a, y) into (a', y'). Since the evolution of y' is independent of a:

$$Q(a', y'; a, y) = Q_a(a'; a, y) \otimes \Gamma(y', y)$$

where, if a' = g(a, y) is such that $a_{k+1} \le a' < a_k$, then we define:

$$Q_{a}(a_{k}; a, y) = \frac{a_{k+1} - g(a, y)}{a_{k+1} - a_{k}}$$

$$Q_{a}(a_{k+1}; a, y) = \frac{g(a, y) - a_{k}}{a_{k+1} - a_{k}}$$

... same lottery we used before for the density

Eigenvector methods

- In practice: the Q function is very large and very sparse and there are many eigenvalues very close to one
- The corresponding eigenvectors generally have negative components that are inappropriate for the density function.
- Idea: perturb the zero entries of Q by adding a perturbation constant η and renormalizing the rows of Q.
- Then find the unique non-negative eigenvector associated with the unit root of the matrix. The stationary density can be obtained by normalizing this eigenvector to add to one.
- How do we select η ? Authors suggest

$$\eta \leq \frac{\min Q}{2N}$$
 or even smaller

Monte-Carlo simulation

- One must generate a large sample of households and track them over time.
- Monte Carlo simulation is memory and time consuming: not recommended for low dimensional problems.
- Valuable method however when the dimension of the problem is large since it is not subject to the curse of dimensionality that plagues all other methods.
- Choose a sample size I. Typically, $I \ge 10,000$
- At t=0, initialize states by (i) draws from Γ^* and (ii) some value for $a_i^0=a^*$, for all agents, e.g., steady-state capital of the representative agent (divided by I)

Monte-Carlo simulation

 Update asset holdings each individual i in the sample by using the decision rule:

$$a_i^1 = g\left(a_i^0, y_i^1\right)$$

where y_i^1 is drawn from $\Gamma\left(y_i^1,y_i^0\right)$.

• Use a random number generator for the uniform distribution in [0,1]. Suppose the draw from the uniform is u. Then $y_i^1=y_{j^*}$ where j^* is the smallest index for gridpoints on $\mathcal Y$ such that:

$$u \le \sum_{j=1}^{j^*} \Gamma\left(y_j, y_i^0\right)$$

• Because of randomness, the fraction of households with income values y will never be exactly equal to $\Gamma^*(y)$.

Monte-Carlo simulation

• Correction: you can make an adjustment where you (i) check for which values of y you have an excess relative to the stationary share $\Gamma^*(y)$ and reassign the status of individuals with other realizations of y (for which you have less than the stationary share) appropriately.

- At every t compute the vector M^t of statistics of the wealth distribution (e.g., mean, variance, IQR, etc...).
- Stop if M^t and M^{t-1} are close enough.
- Then A is just the mean of wealth holding in the final sample.

Speed vs stability of the algorithm

- Two tricks that make the algorithm a lot more stable, albeit slower
 - 1. Don't use gradient methods to solve for r^* in the outer loop. Use bisection. Given r^0 , to obtain the new candidate r^1 bisect between r^0 and $\left[F_K(A\left(r^0\right))-\delta\right]$

$$r^{1} = \frac{1}{2} \left\{ r^{0} + \left[F_{K}(A(r^{0})) - \delta \right] \right\}$$

which are, by construction, on opposite sides of the steady-state interest rate r^* . Even better, use "dampening" in updating:

$$r^{1} = \omega r^{0} + (1 - \omega) \left[F_{K}(A(r^{0})) - \delta \right]$$

with weight $\omega = 0.8 - 0.9$ for example.

Speed vs stability of the algorithm

2. When you resolve the household problem for a new value of the interest rate r^{n+1} , do not initialize the decision rule from the one corresponding to r^n obtained in the previous loop. Always start from the same guess to avoid propagation error in wealth distribution. Slower, but safer.