Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner

 $Sommersemester\ 2010$ Lösungen der Mittelklausur 11. Juni 2010

Diskrete	Wahrsc	heinlic	${f hkeit}$	${f stheorie}$
	, , ctrrr > c.			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

	Dis	kr	ete	e W	/ah	rsch	ein	lich	kei	tsthe	eorie	
Nam	ne		Vorname			Studiengang		Matrikelnummer				
							\square B	☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ WirtInf.				
Hörsa	aal	_		Re	eihe		Sitzplatz			Unterschrift		
Code:												
Bitte seDie ArbAlle An seiten)	chreiber peitszei utworte der bet penrech	n Sie t be n sin reffe	e nice eträg nd in ende ngen	Feldecht m et 120 n die en Au mac	r in I it Ble Min gehe fgabe hen.	eistift auten. ftete A en einz Der S	ouchs oder Angab zutrag Schmi	taben in rot e auf gen. A	aus uer/gr den j	üner Fa eweilig m Schn	en Seiter nierblattl	oen Sie! n (bzw. Rück- bogen könner lls abgegeber
Hörsaal verl Vorzeitig ab Besondere E	gegebe		en:			bi	is		/	von .	b	is
	A	1	A2	A3	A4	A5	Σ	Kor	rekto	<u>r</u>		
Erstkorrekt	ur											
Zweitkorrekt	tur									_		

Aufgabe 1 (8 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Wir werfen 2 faire Würfel. Die erhaltenen Augenzahlen seien a und b. Dann sind die Ereignisse a = b und |a b| = 1 gleichwahrscheinlich.
- 2. 3 disjunkte Ereignisse sind stets unabhängig.
- 3. Sei $X : \Omega \to \mathbb{R}$ eine diskrete Zufallsvariable. Falls $\mathbb{E}[X^2] = 0$, dann gilt $X(\omega) = 0$ für alle $\omega \in \Omega$.
- 4. Es gibt keine Poisson-verteilte Zufallsvariable mit dem Erwartungswert 0.
- 5. Sei X eine diskrete Zufallsvariable, die nur Werte aus \mathbb{N}_0 annimmt. Dann gilt $1 \leq \Pr[X = 0] + \mathbb{E}[X]$.
- 6. Es gibt keine Zufallsvariable X mit wahrscheinlichkeitserzeugender Funktion $G_X(s) = \frac{1}{1-s}$.
- 7. Sei $G_X(s) = \frac{1+s}{2}$ die wahrscheinlichkeitserzeugende Funktion einer Zufallsvariablen X. Dann gilt $\Pr[X=2]=0$.
- 8. Zur Funktion $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = 1 |x| für $-1 \le x \le 1$ und f(x) = 0 für alle übrigen $x \in \mathbb{R}$ gibt es eine stetige Zufallsvariable X, so dass $f = f_X$ gilt.

Lösungsvorschlag

Für die richtige Antwort und für die richtige Begründung gibt es jeweils einen $\frac{1}{2}$ Punkt.

- 1. Falsch!
- 2. Falsch! Sie sind abhängig, falls sie nicht leer sind.
- 3. Falsch!
- 4. Falsch! Für $\lambda = 0$ gilt $\sum_{i=0}^{\infty} \frac{e^{-\lambda} \lambda^i}{i!} = 1$.
- 5. Wahr! Folgt aus $\Pr[X \ge 1] \le \mathbb{E}[X]$ mit Markov-Ungleichung.
- 6. Wahr! Sie Summe der Koeffizienten von s^k in $G_X(s) = \sum_{k=0}^{\infty} s^k$ ist nicht gleich 1.
- 7. Wahr! Der Koeffizient von s^2 ist 0.
- 8. Wahr! Integration über ganz $\mathbb R$ liefert den Wert 1.

Aufgabe 2 (8 Punkte)

Sei $W = \langle \Omega, \Pr \rangle$ ein diskreter Wahrscheinlichkeitsraum. Für Ereignisse E bezeichnen wir $\Omega \setminus E$ mit \overline{E} .

1. Wir beobachten Ereignisse A und B und wissen, dass A mit Wahrscheinlichkeit $\Pr[A] = \frac{1}{10}$ eintritt. Die bedingte Wahrscheinlichkeit, dass B eintritt, wenn A bzw. \overline{A} eingetreten ist, sei $\Pr[B|A] = \frac{5}{9}$ bzw. $\Pr[B|\overline{A}] = \frac{1}{9}$.

Berechnen Sie $\Pr[A \cup B]$, d. h. die Wahrscheinlichkeit, dass A oder B eintritt, als Bruchzahl!

2. Seien C und X Ereignisse aus W mit den bedingten Wahrscheinlichkeiten $\Pr[C|X] = \frac{2}{9}$, $\Pr[X|C] = \frac{1}{10}$ und $\Pr[C|\overline{X}] = \frac{2}{3}$. Berechnen Sie $\Pr[X]$.

Lösungsvorschlag

1. Satz der totalen Wahrscheinlichkeit:

$$Pr[B] = Pr[B|A] \cdot Pr[A] + Pr[B|\overline{A}] \cdot Pr[\overline{A}]$$

$$= \frac{5}{9} \cdot \frac{1}{10} + \frac{1}{9} \cdot \frac{9}{10}$$

$$= \frac{7}{45}.$$
(1 P.)
$$(\frac{1}{2} P.)$$

Siebformel:

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

$$= \frac{1}{10} + \frac{7}{45} - \frac{1}{18}$$

$$= \frac{1}{5}.$$
(1 P.)
$$(\frac{1}{2} P.)$$

2. Satz von Bayes:

$$\Pr[X|C] = \frac{\Pr[C|X] \cdot \Pr[X]}{\Pr[C|X] \cdot \Pr[X] + \Pr[C|\overline{X}] \cdot \Pr[\overline{X}]}$$
(2 P.)

Einsetzen:

$$\frac{1}{10} = \frac{\frac{2}{9} \cdot \Pr[X]}{\frac{2}{9} \cdot \Pr[X] + \frac{2}{3} \cdot (1 - \Pr[X])}$$
(1 P.)

Auflösung nach Pr[X]:

$$\Pr[X] = \frac{1}{4}. \tag{2 P.}$$

Aufgabe 3 (8 Punkte)

Sei $W = \langle \Omega, \Pr \rangle$ mit $\Omega = [1, 60] \subseteq \mathbb{N}$, so dass alle Ergebnisse aus Ω gleichwahrscheinlich sind. Seien X_1 und X_2 Indikatorvariablen über W, deren Verteilung durch die folgenden Ereignisse gegeben ist:

$$A := X_1^{-1}(1) = [1, 15]$$
 und $B := X_2^{-1}(1) = [13, 24]$.

- 1. Zeigen Sie, dass die Variablen X_1 und X_2 unabhängig sind.
- 2. Geben Sie eine Indikatorvariable X_3 mit $\Pr[X_3=1]=\frac{1}{3}$ an, so dass die Variablen $X_1,\,X_2,\,X_3$ unabhängig sind.
- 3. Sei $X=X_1+X_2+X_3$ mit X_3 wie vorausgehend. Berechnen Sie $\Pr[X=1]$.

Hinweis: $[1, n] = \{i \in \mathbb{N} : 1 \le i \le n\}.$

Lösungsvorschlag

1.
$$\Pr[A] = \frac{1}{4}, \Pr[B] = \frac{1}{5}.$$
 (1 P.)

$$\Pr[A \cap B] = \Pr[[13, 15]] = \frac{1}{20} = \frac{1}{4} \cdot \frac{1}{5} = \Pr[A] \cdot \Pr[B] \,, \tag{\frac{1}{2} P.}$$

$$\Pr[A \cap \overline{B}] = \Pr[[1, 12]] = \frac{1}{5} = \frac{1}{4} \cdot \frac{4}{5} = \Pr[A] \cdot \Pr[\overline{B}], \qquad (\frac{1}{2} \text{ P.})$$

$$\Pr[\overline{A} \cap B] = \Pr[[16, 24]] = \frac{3}{20} = \frac{3}{4} \cdot \frac{1}{5} = \Pr[\overline{A}] \cdot \Pr[B], \qquad (\frac{1}{2} \text{ P.})$$

$$\Pr[\overline{A} \cap \overline{B}] = \Pr[[25, 60]] = \frac{3}{5} = \frac{3}{4} \cdot \frac{4}{5} = \Pr[\overline{A}] \cdot \Pr[\overline{B}].$$
 (\frac{1}{2} P.)

2. Man nehme aus allen 4 Mengen $A \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$ und $\overline{A} \cap \overline{B}$ ein Drittel der Elemente, (1 P.)

z. B.
$$C = [9, 13] \cup [22, 36],$$
 (1 P.)

und setze
$$X_3^{-1}(1) = C$$
. (1 P.)

3. Mit $\Pr[A] = \frac{1}{4}$, $\Pr[B] = \frac{1}{5}$, $\Pr[C] = \frac{1}{3}$ gilt wegen totaler Wahrscheinlichkeit zusammen mit Unabhängigkeit der Variablen

(1 P.)

$$\begin{split} \Pr[X=1] &= \Pr[A \cap \overline{B} \cap \overline{C}] + \Pr[\overline{A} \cap B \cap \overline{C}] + \Pr[\overline{A} \cap \overline{B} \cap C] \\ &= \frac{1}{4} \cdot \frac{4}{5} \cdot \frac{2}{3} + \frac{3}{4} \cdot \frac{1}{5} \cdot \frac{2}{3} + \frac{3}{4} \cdot \frac{4}{5} \cdot \frac{1}{3} \\ &= \frac{26}{60} \,. \end{split}$$

(1 P.)

Aufgabe 4 (8 Punkte)

Sei $X:\Omega\to\mathbb{R}$ eine geometrisch verteilte Zufallsvariable mit Erfolgswahrscheinlichkeit p. Sei $Y(\omega) = (X(\omega) \mod 2)$ für alle $\omega \in \Omega$.

- 1. Geben Sie W_X und W_Y an.
- 2. Beweisen Sie

$$\Pr[Y=0] = \frac{1-p}{2-p}.$$

3. Bestimmen Sie die Dichtefunktion f_Y für $p = \frac{1}{3}$.

Lösungsvorschlag

Wir erhalten

1.
$$W_X = \mathbb{N}$$
. $(\frac{1}{2} P.)$

$$W_Y = \{x \mod 2; x \in \mathbb{N}\} = \{0, 1\}.$$
 $(\frac{1}{2} P.)$

2.

$$\Pr[Y=0] = \sum_{i \in \{2k; k \in \mathbb{N}\}}^{\infty} p(1-p)^{i-1}$$
(1 P.)

$$= p(1-p) \cdot \sum_{k=0}^{\infty} (1-p)^{2k}$$

$$= p(1-p) \cdot \sum_{k=0}^{\infty} [(1-p)^{2}]^{k}$$

$$= p(1-p) \cdot \frac{1}{1-(1-p)^{2}}$$
(1 P.)

$$= p(1-p) \cdot \sum_{k=0}^{55} [(1-p)^2]^k$$
 (1 P.)

$$= p(1-p) \cdot \frac{1}{1 - (1-p)^2}$$

$$= \frac{1-p}{2-p}.$$
(1 P.)

3. Es gilt
$$\Pr[Y=0] + \Pr[Y=1] = 1$$
 (1 P.) und damit $\Pr[Y=0] = \frac{2}{5}$, $\Pr[Y=1] = \frac{3}{5}$.

$$f_Y(i) = \begin{cases} \frac{2}{5} : i = 0\\ \frac{3}{5} : i = 1\\ 0 : \text{sonst} \end{cases}$$

(2 P.)

Aufgabe 5 (8 Punkte)

Die Unfallhäufigkeit auf Autobahnen hängt u. a. von den gefahrenen Geschwindigkeiten ab. Wir betrachten für $10^4 = 10000$ Autos 2 Geschwindigkeitsklassen s und l mit |s| = 1000 und |l| = 9000 Autos. Die Unfallwahrscheinlichkeit in einem bestimmten Streckenabschnitt sei für die Autos der s-Klasse $\frac{11}{1000}$ bzw. der l-Klasse $\frac{1}{1000}$.

Ein Unfall werde für jedes der Autos der s- bzw. l-Klasse mit einer Zufallsvariablen X_i bzw. Y_j mit $i \in [1000]$ bzw. $j \in [9000]$ angezeigt. Die Anzahl der Unfälle insgesamt werde angezeigt durch die Zufallsvariable U.

Wir nehmen sämtliche Unfälle als unabhängig an.

- 1. Berechnen Sie den Erwartungswert $\mathbb{E}[U]$ und die Varianz $\mathrm{Var}[U]$ als Dezimalzahl ggf. auf 2 Nachkommastellen genau.
 - Begründen Sie die Gültigkeit Ihrer Berechnungsschritte!
- 2. Geben Sie mithilfe der Chebyshevschen Ungleichung eine möglichst kleine obere Schranke k für die Wahrscheinlichkeit $\Pr[U \ge 25]$ an, so dass also $\Pr[U \ge 25] \le k$ gilt.
- 3. Geben Sie nun mithilfe der Abschätzung nach Chernoff eine obere Schranke k für $\Pr[U \geq 25]$ an. Stellen Sie k als arithmetischen Ausdruck inklusive Exponential-funktion, aber ohne Variablen dar.

Lösungsvorschlag

2.

1. Seien
$$X = \sum_{i=1}^{1000} X_i$$
 und $Y = \sum_{j=1}^{9000} Y_j$. $(\frac{1}{2} P.)$

$$X$$
 bzw. Y sind binomial
verteilt mit $p_x = \frac{11}{1000}$ bzw. $p_y = \frac{1}{1000}$ $(\frac{1}{2}$ P.)

Es gilt
$$\mathbb{E}[X] = 1000 \cdot p_x = 11$$

bzw.
$$\mathbb{E}[Y] = 9000 \cdot p_y = 9$$
 (1 P.)

und
$$Var[X] = 1000 \cdot p_x(1 - p_x) = 10,879$$

bzw.
$$\operatorname{Var}[Y] = 9000 \cdot p_y (1 - p_y) = 8,991.$$
 (1 P.)

Dann gilt U = X + Y. Wegen Linearität bzw. Unabhängigkeit der Unfälle folgt

$$\mathbb{E}[U] = \mathbb{E}[X] + \mathbb{E}[Y] = 20,$$

$$Var[U] - Var[X] + Var[Y] - 10.88$$
(1.P.

$$Var[U] = Var[X] + Var[Y] = 19,88.$$
 (1 P.)

$$\Pr[U \ge 25] = \Pr[U - 20 \ge 5]
\le \Pr[U - 20 \ge 5] + \Pr[20 - U \ge 5]
= \Pr[|U - 20| \ge 5]
\le \frac{\operatorname{Var}(U)}{5^2} = \frac{19,88}{25} = 0,7952.$$
(2 P.)

3. Seien
$$\delta = \frac{1}{4}$$
 und $\mu = \mathbb{E}[U]$. Dann gilt $(1 + \delta)\mu = 25$. (1 P.)

$$\Pr[U \ge 25] \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}$$

$$= \left(\frac{e^{\frac{1}{4}}}{(1+\frac{1}{4})^{(1+\frac{1}{4})}}\right)^{20}.$$
(1 P.)