DM n°2 – Algèbre 1

Hugo Salou Dept. Informatique

28 novembre 2024

Exercice 1.

1. L'idée est de montrer que les polynômes racines non réelles d'un polynôme réel sont deux à deux conjuguées, et qu'elles (une racine et sa racine conjuguée) ont même multiplicité. Fixons une racine α_i non réelle, et posons $P = \sum_{j=0}^n p_j X^j$ la décomposition de P en monômes. Alors, on a $\sum_{j=0}^n p_j \alpha_i^j = 0$ et donc, en passant au conjugué, $\sum_{j=0}^n \bar{p}_j \bar{\alpha}_i^j = \bar{0}$. Et, comme les coefficients sont réels, on en déduit que $\sum_{j=0}^n p_j \bar{\alpha}_i^j = 0$ et donc $\bar{\alpha}_i$ est aussi une racine de P. Ceci fonctionne quel que soit le polynôme P. Ensuite, en posant $P = (X - \alpha_i)(X - \bar{\alpha}_i)Q$, on peut appliquer un même raisonnement sur Q. D'où, par récurrence décroissante sur la multiplicité m_i , on a que α_i et $\bar{\alpha}_i$ ont même multiplicité.

Ceci justifie que

$$J^* = \{ i \in [1, d] \mid \bar{\alpha}_i = \alpha_j \text{ avec } j \in J \}$$

et

$$J = \{ i \in [1, d] \mid \bar{\alpha}_i = \alpha_j \text{ avec } j \in J^* \}.$$

Ainsi, pour R et S deux polynômes de $\mathbb{R}_{n-1}[X]$,

$$\phi(R,S) = \underbrace{\sum_{i \in I} m_i R(\alpha_i) S(\alpha_i)}_{i \in I} + \sum_{i \in J \cup J^*} m_i R(\alpha_i) S(\alpha_i)$$

$$= \sum_{i \in I} m_i R(\alpha_i) S(\alpha_i) + \sum_{i \in J} m_i \left(R(\alpha_i) S(\alpha_i) + R(\bar{\alpha}_i) S(\bar{\alpha}_i) \right)$$

$$= \sum_{i \in I} m_i R(\alpha_i) S(\alpha_i) + \sum_{i \in J} m_i \underbrace{\left(R(\alpha_i) S(\alpha_i) + \overline{R(\alpha_i) S(\alpha_i)} \right)}_{2\text{Re}\left(R(\alpha_i) S(\alpha_i) \right) \in \mathbb{R}}.$$

D'où on a bien $\phi: E \times E \to \mathbb{R}$. - 2/17 - 2. a) Tout polynôme P de $\mathbb{C}[X]$ se décompose, de manière unique, en deux polynômes à coefficients réels P_1, P_2 tels que $P = P_1 + iP_2$. (On décompose chaque coefficient en partie réelle/imaginaire et on crée ainsi P_1 et P_2 .) On note ainsi $\operatorname{Re}(P) = P_1$ et $\operatorname{Im}(P) = P_2$. Ainsi, on définit les applications

$$\Phi: \begin{vmatrix} H_1 & \longrightarrow & H_2 \\ f & \longmapsto & \begin{vmatrix} \mathbb{C}_{n-1}[X] & \to & \mathbb{C} \\ P = P_1 + iP_2 & \mapsto & f(P_1) + if(P_2), \end{vmatrix}$$

et

$$\Psi: \left| \begin{array}{ccc} H_2 & \longrightarrow & H_1 \\ f & \longmapsto & \left| \begin{array}{ccc} \mathbb{R}_{n-1}[X] & \to & \mathbb{C} \\ P & \mapsto & f(P). \end{array} \right. \right.$$

Vérifions la C-linéarité de ces deux applications, puis qu'elles sont l'inverse l'une de l'autre.

 \triangleright Si $f, g \in H_1$ et $\lambda, \mu \in \mathbb{C}$, alors, pour tout $P \in \mathbb{C}_{n-1}[X]$, où $P = P_1 + iP_2$ avec $P_1, P_2 \in \mathbb{R}_{n-1}[X]$, on a

$$\begin{aligned} \Phi(\lambda f + \mu g)(P) &= (\lambda f + \mu g)(P_1) + i(\lambda f + \mu g)(P_2) \\ &= \lambda (f(P_1) + i f(P_2)) + \mu (g(P_1) + i g(P_2)) \\ &= \lambda \Phi(f)(P) + \mu \Phi(g)(P). \end{aligned}$$

Ceci étant vrai quel que soit P, on en déduit que Φ est \mathbb{C} -linéaire.

 \triangleright Si $f, g \in H_2$ et $\lambda, \mu \in C$, alors, quel que soit le polynôme $P \in \mathbb{R}_{n-1}[X]$, on a que

$$\Psi(\lambda f + \mu g)(P) = (\lambda f + \mu g)(P)$$
$$= \lambda f(P) + \mu g(P)$$
$$= \lambda \Psi(f)(P) + \mu \Psi(g)(P),$$

d'où la \mathbb{C} -linéarité de Ψ .

 \triangleright Si $f \in H_1$, alors pour tout $P \in \mathbb{R}_{n-1}[X]$,

$$\Psi(\Phi(f))(P) = \Phi(f)(P) = f(P) + if(0) = f(P),$$

par R-linéarité de f. D'où $\Psi \circ \Phi = \mathrm{id}_{H_1}$ – 3/17 –

 \triangleright Si $f \in H_2$, alors pour tout $P = P_1 + iP_2 \in \mathbb{C}_{n-1}[X]$,

$$\Phi(\Psi(f))(P) = \Psi(f)(P_1) + i\Psi(f)(P_2)$$

= $f(P_1) + if(P_2)$
= $f(P)$,

par C-linéarité de f. D'où $\Phi \circ \Psi = \mathrm{id}_{H_2}$.

On en conclut que Φ est un isomorphisme de H_1 à H_2 .

Pour montrer que les formes $(ev_{\alpha_i})_{i \in [\![1,d]\!]}$ sont linéairement indépendantes dans H_1 , on vérifie (de manière équivalente, par isomorphisme) que $(\Phi(ev_{\alpha_i}))_{i \in [\![1,d]\!]}$ sont linéairement indépendantes dans H_2 . Or, pour tout $i \in [\![1,d]\!]$, et tout polynôme $P = P_1 + iP_2 \in \mathbb{C}_{n-1}[X]$, on a

$$\Phi(\operatorname{ev}_{\alpha_i})(P) = P_1(\alpha_i) + iP_2(\alpha_i) = \widetilde{\operatorname{ev}}_{\alpha_i}(P),$$

où $\widetilde{\operatorname{ev}}_x: \mathbb{C}_{n-1}[X] \to \mathbb{C}$ est la fonction d'évaluation d'un polynôme complexe en x. Et, on sait que les $(\widetilde{\operatorname{ev}}_{\alpha_i})_{i \in \llbracket 1, d \rrbracket}$ sont linéairement indépendantes dans H_2 car les $(\alpha_i)_{i \in \llbracket 1, d \rrbracket}$ sont distinctes. On en déduit que les $(\operatorname{ev}_{\alpha_i})_{i \in \llbracket 1, d \rrbracket}$ sont linéairement indépendantes dans H_1 .

- b) On a trois cas à traiter. Soit $Q \in \mathbb{R}_{n-1}[X]$, avec la décomposition en monômes $Q = \sum_{k=0}^{n} q_k X^k$, où les q_k sont nuls pour $k > \deg Q$.
 - \triangleright Soit $i \in I$. Alors, $\operatorname{ev}_{\alpha_i}(Q) = Q(\alpha_i) \in \mathbb{R}$ car $\alpha_i \in \mathbb{R}$.
 - \triangleright Soit $i \in J$. Alors,

$$\operatorname{ev}_{\alpha_i}(Q) + \operatorname{ev}_{\bar{\alpha}_i}(Q) = \sum_{k=0}^n q_k \underbrace{(\alpha_i^k + \bar{\alpha}_i^k)}_{2\operatorname{Re}(\alpha_i^k)} \in \mathbb{R}.$$

 \triangleright Soit $i \in J^*$. Alors,

$$i(ev_{\alpha_i} - ev_{\bar{\alpha}_i})(Q) = \sum_{k=0}^n q_k i \underbrace{(\alpha_i^k - \bar{\alpha}_i^k)}_{2i \operatorname{Im}(\alpha_i^k) \in i\mathbb{R}} \in \mathbb{R}.$$

$$- \frac{1}{17} -$$

Dans chacun des cas, on a montré que ϕ_i est à valeurs réelles.

Pour montrer que $(\phi_i)_{i \in [1,d]}$ est \mathbb{R} -libre, soient $\lambda_1, \ldots, \lambda_d$ des <u>réels</u> tels que

$$\lambda_1 \phi_1 + \cdots + \lambda_d \phi_d = 0,$$

d'où

$$(\star): \quad 0 = \sum_{i \in I} \lambda_i \operatorname{ev}_{\alpha_i} + \sum_{j \in J} (\lambda_j - \mathrm{i}\lambda_{j^*}) \operatorname{ev}_{\alpha_j} + \sum_{j^* \in J^*} (\lambda_j + \mathrm{i}\lambda_{j^*}) \operatorname{ev}_{\alpha_{j^*}},$$

où l'on note j^* l'unique élément de J^* tel que $\alpha_{j^*} = \bar{\alpha}_j$ (et inversement pour j à partir de $j^* \in J^*$). On évalue (\star)

- \triangleright en α_i pour $i \in I$, ce qui donne $\lambda_i = 0$ pour tout $i \in I$;
- ▷ en α_j pour $j \in J$, ce qui donne $\lambda_j = i\lambda_{j^*}$ quel que soit l'entier $j \in J$, ceci implique donc que $\lambda_j = \lambda_{j^*} = 0$ pour tout $j \in J$ car $\lambda_j \in \mathbb{R}$;

On en conclut que

- \triangleright pour $i \in I$, $\lambda_i = 0$;
- \triangleright pour $j \in J$, $\lambda_i = 0$;
- \triangleright pour $j^* \in J^* = \{j^* \mid j \in J\}, \ \lambda_{j^*} = 0.$

On en conclut que la famille $(\phi_i)_{i \in [\![1,d]\!]}$ est \mathbb{R} -libre.

3. Pour $R \in E$, on a

$$q(R) = \phi(R, R) = \sum_{i \in I} m_i \phi_i(R)^2 + \sum_{j \in J} m_j (\phi_j(R)^2 - \phi_{j^*}(R)^2),$$
(0.1)

car

$$\phi_i(R)^2 = \begin{cases} \operatorname{ev}_{\alpha_i}(R)^2 & \text{si } i \in I \\ \operatorname{ev}_{\alpha_i}(R)^2 + \operatorname{ev}_{\alpha_{i^*}}(R)^2 + 2\operatorname{ev}_{\alpha_i}(R)\operatorname{ev}_{\alpha_{i^*}}(R) & \text{si } i \in J \\ -\operatorname{ev}_{\alpha_i}(R)^2 - \operatorname{ev}_{\alpha_{i^*}}(R)^2 + 2\operatorname{ev}_{\alpha_i}(R)\operatorname{ev}_{\alpha_{i^*}}(R) & \text{si } i \in J^*. \end{cases}$$

On applique ensuite le théorème d'inertie de Sylvester (car on est dans un \mathbb{R} -espace vectoriel E isomorphe à \mathbb{R}^n) : la décomposition 0.1 à l'aide de la famille libre $(m_i\phi_i)_{i\in \llbracket 1,d\rrbracket}$ (car pas de

racine à multiplicité nulle) nous donne que la signature (r,s) de ϕ est (#I + #J, #J). Finalement, on sait par dénombrement que $r+s = \#(I \sqcup J \sqcup J^*) = d$ est le nombre de racines distinctes de P et $r-s = \#((I \sqcup J) \setminus J) = \#I$ est le nombre de racines réelles de P.

Exercice 2.

On notera k le corps de caractéristique supérieure à 2, et E le k-espace vectoriel de dimension finie.

1. Comme q et q' sont proportionnelles et toutes deux non dégénérées, il existe $\lambda \in \mathbb{k}^{\times}$ tel que $q = \lambda q'$. Soit $x \in E$. On a l'équivalence suivante :

$$x \in \mathcal{C}_q \iff q(x) = 0$$

 $\iff \lambda q'(x) = 0$
 $\iff q'(x) = 0 \text{ car } \lambda \neq 0$
 $\iff x \in \mathcal{C}_{q'}.$

On a donc $\mathscr{C}_q = \mathscr{C}_{q'}$.

2. On commence par calculer, pour $\alpha \in \mathbb{k}$,

$$q(\alpha u + v) = \alpha^2 q(u) + q(v) + 2\alpha \varphi(u, v).$$

- a) On procède en deux temps.
 - \triangleright Premièrement, on suppose $v \in \mathscr{C}_q$ et on montre ainsi l'inclusion $D_{u,v} \subseteq \mathscr{C}_q$. En effet, pour tout $\alpha \in \mathbb{k}$, on a

$$q(\alpha u + v) = q(v) + 2\alpha \varphi(u, v) = 0,$$

$$v \in \mathcal{C}_q$$

d'où $\alpha u + v \in \mathscr{C}_q$.

 \triangleright Deuxièmement, on suppose $v \notin \mathscr{C}_q$ et, par l'absurde, soit $\alpha u + v \in \mathscr{C}_q \cap D_{u,v}$. Alors,

$$q(v) = q(\alpha u + v) + 2\alpha \varphi(u, v) = 0 + 0$$

et donc $v \in \mathcal{C}_q$; **absurde**. D'où, $\mathcal{C}_q \cap D_{u,v} = \emptyset$ si $v \notin \mathcal{C}_q$.

b) On procède par équivalence. Soit $\alpha \in \mathbb{k}$.

$$\alpha u + v \in \mathcal{C}_q \iff q(\alpha u + v) = 0 \iff q(v) = -2\alpha \varphi(u, v).$$

Or, $2\varphi(u, v)$ est non nul car : $\operatorname{car}(\mathbb{k}) > 2$ et $v \notin H_u$. D'où,

$$\alpha u + v \in \mathscr{C}_q \iff \alpha = -\frac{q(v)}{2\varphi(u,v)} =: \alpha^*.$$

Ceci implique que $D_{u,v} \cap \mathscr{C}_q$ est réduit au point $\alpha^* u + v$.

3. a) Le raisonnement de la question 2 peut également s'appliquer à q' en remplaçant \mathscr{C}_q par $\mathscr{C}_{q'}$ et H_u par $H_{u'}$. On a l'équivalence suivante :

 $v \in H_u \iff \mathcal{C}_q \cap D_{u,v}$ n'est pas réduit à un seul point $\iff \mathcal{C}_{q'} \cap D_{u,v} \text{ n'est pas réduit à un seul point}$ $\iff v \in H'_u.$

Dans cette équivalence, on utilise le fait que $D_{u,v}$ n'est pas réduit à un seul point. On en conclut $H_u = H'_u$. Mais, par définition d'hyperplan orthogonal à u, on a

$$\ker \varphi(u,\cdot) = H_u = H'_u = \ker \varphi'(u,\cdot).$$

Ceci implique que $\varphi(u,\cdot)$ et $\varphi'(u,\cdot)$ sont proportionnelles et ainsi il existe $\lambda_u \in \mathbb{k}^{\times}$ (non nul pour garantir l'égalité des noyaux) tel que

$$\varphi'(u,\cdot) = \lambda_u \, \varphi(u,\cdot).$$

b) Supposons $v \notin H_u$. D'une part, par l'égalité des cônes, on sait que $\mathscr{C}_q \cap D_{u,v} = \mathscr{C}_{q'} \cap D_{u,v}$. D'autre part, par la question 2b, ces deux intersections sont réduites à un seul point. Il y a donc égalité de ces deux points :

$$v - \frac{q(v)}{2\varphi(u,v)}u = v - \frac{q'(v)}{2\varphi'(u,v)}u.$$

D'où, car $u \neq \{0\}$,

$$\varphi(u, v) q(v) = \lambda_u \varphi(u, v) q'(v),$$

et parce que $u \notin H_u$, on peut simplifier par $\varphi(u, v)$. On en déduit $q'(v) = \lambda_u q(v)$

4. a) Supposons $v + w \in H_u$ et montrons que l'on a nécessairement $v + 2w \notin H_u$. Ainsi, $\varphi(u, v + w) = 0$ et alors,

$$\varphi(u, v + 2w) = \varphi(u, v + w) + \varphi(u, w) = \varphi(u, w) \neq 0,$$
(*)

où (*) est vérifié car $w \notin H_u$. D'où, $v + 2w \neq 0$.

b) On applique l'identité de polarisation en utilisant la question 3b.

D'une part, on suppose $v + w \notin H_u$, pour pouvoir appliquer 3b. On peut utiliser l'identité de polarisation parce que $(\operatorname{car} \mathbb{k}) > 2$. On a

$$\varphi'(v,w) = \frac{1}{2} (q'(v+w) - q'(v) - q'(w))$$

$$= \frac{1}{2} (\lambda_u q(v+w) - \lambda_u q(v) - \lambda_u q(w))$$

$$= \lambda_u \cdot \frac{1}{2} (q(v+w) - q(v) - q(w))$$

$$= \lambda_u \varphi(v,w).$$

Supposons alors $v+2w \notin H_u$ (disjonction de cas 4a). Ainsi,

$$q'(v + 2w) = q'(v) + 4\varphi'(v, w) + 4q'(w),$$

d'où, où l'on remplace $q'(\cdot)$ par $\lambda_u q(\cdot)$ car $v, w, v+2w \notin H_u$, et donc

$$4\varphi'(v,w) = \lambda_u q(v+2w) - \lambda_u q(v) - 4\lambda_u q(w) = 4\lambda_u \varphi(v,w).$$

Et, 4 est inversible car (par l'absurde) $2 \times 2 = 4$ et \mathbb{k} est un anneau intègre et (car k) > 2 donc 2 non nul. D'où, l'égalité $\varphi'(v, w) = \lambda_u \varphi(v, w)$.

5. Soit n+1 la dimension de E. On considère une base $(v_i)_{i \in \llbracket 1,n \rrbracket}$ de H. Complétons cette base en une base de E avec $\mathfrak{B} = (v_i)_{i \in \llbracket 0,n \rrbracket}$, où $v_0 \notin H$. De plus, considérons $\ell : E \to \mathbb{k}$ une forme linéaire telle que $\ker \ell = H$.

Ainsi, on pose $e_i = v_i + v_0$ pour i > 0 et $e_0 = v_0$. La famille, notée $\mathcal{B}' = (e_i)_{i \in [0,n]}$, forme une base de E. De plus, chacun des

vecteurs n'est pas dans H. En effet, pour e_0 , c'est par hypothèse. Et, pour e_i avec $i \geq 1$, on a

$$\ell(e_i) = \underbrace{\ell(v_i)}_{v_i \in \ker \ell} + \ell(v_0) = \ell(v_0) \neq 0$$

car $v_0 \notin H = \ker \ell$. On en conclut que l'on a bien construit une base de E dont aucun vecteur n'est dans H.

Considérons $H := H_u$, et la base obtenue par la construction précédente. Pour tout $i, j \in [0, n]$, on a

$$\varphi'(e_i, e_j) = \lambda_u \, \varphi(e_i, e_j),$$

car $e_i, e_j \notin H$. D'où, par bilinéarité, tout $x, y \in E$, avec la décomposition $x = x_0 e_0 + \cdots + x_n e_n$ et $y = y_0 e_0 + \cdots + y_n e_n$, on a

$$\varphi'(x,y) = \sum_{i,j \in \llbracket 1,n \rrbracket} x_i y_j \varphi'(e_i,e_j) = \lambda_u \sum_{i,j \in \llbracket 0,n \rrbracket} x_i y_j \varphi(e_i,e_j) = \lambda_u \varphi(x,y).$$

On termine avec, quel que soit $x \in E$

$$q'(x) = \varphi'(x, x) = \lambda_u \varphi(x, x) = \lambda_u q(x),$$

où $\lambda_u \in \mathbb{R}^{\times}$ est constant, d'où q et q' sont proportionnelles.

Exercice 3.

On notera \Bbbk le corps de caractéristique supérieure à 2, et E le \Bbbk -espace vectoriel de dimension finie.

- 1. On procède en 4 temps.
 - \triangleright « (i) \Longrightarrow (ii) ». Dans une base $\Re = (e_1, e_2)$ (en l'occurrence, c'est $(\Phi^{-1}((1,0)), \Phi^{-1}((0,1)))$ en notant Φ l'isomorphisme), la matrice de q s'écrit

$$\frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

car

$$\varphi(ue_1+ve_2,we_1+xe_2) = \frac{1}{2}((u+w)(v+x)-uv-wx) = \frac{1}{2}(ux+wv).$$

On pose a=0 puis $\mathcal{B}'=(2e_1,e_2)$, et la matrice s'écrit bien

$$\begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix}$$
.

 \triangleright « (ii) \Longrightarrow (i) ». Considérons une base $\Re = (e_1, e_2)$ dans laquelle la matrice de q s'écrit

$$\begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix},$$

avec $a \in \mathbb{k}$. Considérons la base $\mathfrak{B}' = (f_1, f_2)$ définie par

$$f_1 = e_1$$
 et $f_2 = e_2 - \frac{a}{2}e_1$.

Dans cette base, on a

- $\varphi(f_1, f_1) = \varphi(e_1, e_1) = 0;$
- $-\varphi(f_2, f_2) = \varphi(e_2, e_2) a\varphi(e_1, e_2) + (a/2)^2\varphi(e_1, e_1) \text{ qui}$ est nul car $\varphi(e_2, e_2) = a$ et $\varphi(e_1, e_2) = 1$;
- $-\varphi(f_1, f_2) = \varphi(e_1, e_2) a\varphi(e_1, e_1)/2 = 1 0 = 1$ et de même par symétrie de φ .

On en conclut que la matrice s'écrit

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,

c'est donc que l'on a bien l'isomorphisme avec (k^2, q') (il suffit de diviser un des vecteurs de la base par 2 pour obtenir le facteur $\frac{1}{2}$).

 \triangleright « (i) \Longrightarrow (iii) ». Comme pour l'implication (i) \Longrightarrow (ii), supposons qu'il existe $\Re = (e_1, e_2)$ dans laquelle la matrice de q s'écrit

$$A = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Considérons une nouvelle base (f_1, f_2) définie par

$$f_1 = e_1 + e_2$$
 et $f_2 = e_1 - e_2$,

où l'on a

$$- \varphi(f_1, f_1) = 2\varphi(e_1, e_2) = 1;$$

$$- \varphi(f_2, f_2) = -2\varphi(e_1, e_2) = -1;$$

$$- \varphi(f_1, f_2) = \varphi(e_1, e_2) - \varphi(e_2, e_1) = 0.$$

Dans cette base, la matrice de q s'écrit donc

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

 \triangleright « (iii) \Longrightarrow (i) ». Soit (e_1, e_2) la base dans laquelle q s'écrit comme la matrice diagonale diag(1, -1). On pose la base (f_1, f_2) définie par

$$f_1 = \frac{e_1 + e_2}{2}$$
 et $f_2 = \frac{e_1 - e_2}{2}$.

On a donc

Hugo Salou – L3 ens lyon

$$- \varphi(f_1, f_1) = 1^2 - 1^2 = 0;$$

$$- \varphi(f_2, f_2) = 1^2 - 1^2 = 0;$$

$$- \varphi(f_1, f_2) = \varphi(e_1, e_1)/2 - \varphi(e_2, e_2)/2 = 2/2 = 1.$$

On obtient donc bien la matrice de la forme

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,

c'est donc que l'on a bien l'isomorphisme avec (k^2, q') (il suffit de diviser un des vecteurs de la base par 2 pour obtenir le facteur $\frac{1}{2}$).

Ceci démontre bien

(ii)
$$\iff$$
 (i) \iff (iii).

- 2. On procède par double implications.
 - \triangleright « \Longrightarrow ». Supposons qu'il existe une base \mathcal{B} , que l'on indice $(e_1, \ldots, e_n, f_1, \ldots, f_n)$, dans laquelle la matrice de q est égale à

$$\begin{pmatrix} 0_n & I_n \\ I_n & 0_n \end{pmatrix}.$$

Définissions les plans par $P_i = \text{Vect}(e_i, f_i)$ pour $i \in [1, n]$. Par construction à partir de la base \mathcal{B} , on a bien

$$E = P_1 \oplus P_2 \oplus \cdots \oplus P_n.$$

Montrons que les plans sont deux-à-deux orthogonaux. Soient $i \neq j$ avec $i, j \in [1, m]$. L'orthogonalité des deux plans P_i et P_j découle du fait que les vecteurs de bases de P_i et ceux de P_j sont deux à deux orthogonaux par l'interprétation matricielle. Les plans sont donc bien deux à deux orthogonaux. Il reste à démontrer que chaque plan vérifie les conditions de la question 1. La matrice de $q_{|P_i}$ dans la base $\mathfrak{B}_i = \{e_i, f_i\}$ de P_i est égale à

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,

ce qui valide la condition (ii). Ceci permet de conclure que q est hyperbolique.

 \triangleright « \iff ». Supposons q hyperbolique. Considérons la décomposition en plans de E

$$E = P_1 \oplus P_2 \oplus \cdots \oplus P_n$$

telle que, les plans sont deux-à-deux orthogonaux et que chaque plan vérifie les conditions de la question 1. On construit une base $\mathfrak{B}_i = \{e_i, f_i\}$ de chacun des plan P_i , puis on pose les deux familles $\mathfrak{B} = \{e_1, \dots, e_n, f_1, \dots, f_n\}$ et $\mathfrak{C} = \{e_1, f_1, e_2, f_2, \dots, e_n, f_n\}$, qui sont deux bases de l'espace E. Par orthogonalité des plans et par la question 1, on sait que dans la base \mathfrak{C} , la matrice de q est diagonale par blocs

$$\operatorname{Mat}_{\mathscr{C}}(q) = \begin{pmatrix} M & 0 & \dots & 0 \\ 0 & M & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M \end{pmatrix}$$

où chaque bloc diagonal vaut

$$M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Par changement de base (il suffit de réorganiser les lignes et les colonnes) de & à B, on obtient :

$$\operatorname{Mat}_{\mathfrak{B}}(q) = \begin{pmatrix} 0_n & \operatorname{I}_n \\ \operatorname{I}_m & 0_n \end{pmatrix}.$$

D'où l'équivalence.

3. a) Soit $x \in S$. Montrons que $x \in S^{\perp}$. Soit $y \in S$, et alors

$$\varphi(x,y) = \frac{1}{2} \left(q(x+y) - q(x) - q(y) \right) = 0,$$

car $S \subseteq \mathcal{C}_q$. On en déduit que $x \in S^{\perp}$ et donc $S \subseteq S^{\perp}$. Ainsi, comme q est non dégénérée et E de dimension finie, on a

$$\dim S^{\perp} = \dim E - \dim S \quad \text{et} \quad \dim S \le \dim S^{\perp},$$
$$- 14/17 -$$

d'où,

$$2(\dim S) \le \dim E$$
.

- b) Soit $x \in S$ et $y \in F$. On a $\varphi(x, y) = 0$ car $x \in S$ et $y \in S^{\perp}$. D'où l'inclusion $S \subseteq F^{\perp}$.
- c) D'une part, on a l'inclusion $\ker \Phi \subseteq G^{\perp}$. En effet, si $\Phi(x)(y) = \varphi(x,y) = 0$ pour tout $y \in G$, alors $x \in G^{\perp}$. Et, on sait que $x \in S \subset S^{\perp}$. Ainsi, pour $a \in G$ et $b \in S$, alors

$$\varphi(x, a+b) = \varphi(x, a) + \varphi(x, b) = 0 + 0 = 0,$$

car $x \in G^{\perp}$ et $x \in S^{\perp}$. D'où, $x \in (G+S)^{\perp} = F^{\perp \perp} = F$ car q non dégénérée en dimension finie. Ainsi $x \in F \cap S = \{0\}$ car somme directe. On en conclu que $\ker \Phi = \{0\}$ l'application est donc injective.

D'autre part, on a égalité des dimensions. En effet, on a

$$\dim F + \dim S = \dim S^{\perp} = \dim E - \dim S,$$

car q non dégénérée en dimension finie et somme directe $F \oplus S = S^{\perp}$. D'où,

$$\dim F = \dim E - 2\dim S.$$

De même, on a

$$\dim G + \dim S = \dim E - \dim F,$$

donc

$$\dim G^* = \dim G$$

$$= \dim E - (\dim E - 2\dim S) - \dim S$$

$$= \dim S.$$

D'où Φ est un isomorphisme.

d) On considère (h_1, \ldots, h_m) une base orthogonale de G. Et, parce que Φ est un isomorphisme et (h_1^*, \ldots, h_m^*) est une base de G^* , on a que $(\Phi^{-1}(h_1^*), \ldots, \Phi^{-1}(h_m^*))$ est une base -15/17

de S. Pour construire une base \mathfrak{B} de $F^{\perp}=G\oplus S$, on considère

$$\mathfrak{B} = (\Phi^{-1}(h_1^*), \dots, \Phi^{-1}(h_m^*), h_1, \dots, h_m).$$

Ainsi, par construction, la matrice de $q_{|F^{\perp}}$ dans ${\mathfrak B}$ est de la forme

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix},$

οù

- $\triangleright d_{i,j} = \varphi(h_i, h_j)$, qui est nul si $i \neq j$ (base orthogonale);
- $a_{i,j} = \varphi(\Phi^{-1}(h_i^*), \Phi^{-1}(h_j^*)) = 0 \text{ car le premier vecteur}$ est dans S et le second est dans $S \subseteq S^{\perp}$;
- $b_{i,j} = \varphi(\Phi^{-1}(h_i^*), h_j) = h_i^*(h_j) = \delta_{i,j} \text{ (où l'on note } \delta_{i,j}$ le symbole de Kronecker);
- \triangleright de même que $b_{i,j}$ pour $c_{j,i}$ par symétrie de φ .

On en déduit que la matrice de $q_{|F^{\perp}}$ dans la base ${\mathfrak B}$ est

$$\begin{pmatrix} 0_m & I_m \\ I_m & D \end{pmatrix}$$
,

où D est une matrice diagonale de taille $m \times m$.

On réalise un raisonnement très similaire à la question 2 mais en utilisant (ii) avec a quelconque (au lieu de a = 0 comme dans la question 2). En effet, on pose, pour tout entier $i \in [1, m]$, le plan $P_i = \text{Vect}(h_i, \Phi^{-1}(h_i^*))$. On sait que la matrice dans chacun de ces plans est

$$\begin{pmatrix} 0 & 1 \\ 1 & d_{i,i} \end{pmatrix},$$

qui vérifie donc les conditions de la question 1. De plus, tous ces plans sont deux à deux orthogonaux par interprétation matricielle de l'orthogonalité des vecteurs de base des deux plans.

On en conclut que $q_{|F^{\perp}}$ est hyperbolique.

- **4.** On va montrer, par récurrence sur m, que si $V \leq E$ de dimension m, alors il existe $G, H \leq V$ tels que $V = G \oplus H$ avec $q_{|H}$ hyperbolique et $q_{|G}$ anisotrope et $G \perp H$ et $H \subseteq \mathscr{C}_q$.
 - \triangleright Pour dim V=0, il suffit de poser $V=\{0\}=G=H$, et on vérifie clairement les résultats demandés sur G et H.
 - Pour dim V > 0, soit $x \in \mathcal{C}_q \cap V \setminus \{0\}$ (si cet ensemble est vide, on démontre le résultat aisément en posant G = V et $H = \{0\} = \mathcal{C}_q \cap V$). Alors, parce que \mathcal{C}_q est un cône, on a l'inclusion $\text{Vect } x \subseteq \mathcal{C}_q$.

On décompose $V = (\operatorname{Vect} x) \stackrel{\perp}{\oplus} V'$ (cette décomposition est possible en complétant (x) en une base de V et par orthogonalisation de Gram-Schmidt (\star)). Par hypothèse de récurrence, il existe $G', H' \leq V'$ orthogonaux tels que la forme $q_{|G'}$ est anisotrope, et la forme $q_{|H'}$ est hyperbolique et $V' = G' \oplus H'$, où l'on a $H' \subseteq \mathscr{C}_q$.

Ainsi, $H' \oplus (\operatorname{Vect} x) \subseteq \mathscr{C}_q$ et c'est un sous-espace vectoriel, on peut donc lui appliquer la question 3. On considère donc un sous-espace vectoriel $H \leq H' \oplus (\operatorname{Vect} x)$ de dimension maximale tel que $q_{|H}$ est hyperbolique (on a noté $H = F^{\perp}$ dans la question 3). Et, on lui considère un supplémentaire orthogonal G dans V (qui existe par l'argument (\star)). Il ne reste qu'à justifier que $q_{|G}$ est anisotrope. Par l'absurde, si $y \in \mathscr{C}_{q_{|G}} \setminus \{0\}$, alors $H \oplus (\operatorname{Vect} y) \leq H' \oplus (\operatorname{Vect} y)$ vérifie que la restriction de q est hyperbolique, mais de dimension plus grande, **absurde!** On en conclut que $q_{|G}$ est anisotrope.

On conclut en utilisant le raisonnement pour V = E.

Fin du DM.