Geert-Jan Huizing

Phone: +33 6 70 86 38 09 — Email: gjhuizing@gmail.com *PhD in machine learning & computational biology.*

Education
Institut Pasteur & ENS PSL Ph.D. in computational biology
Institut Polytechnique de Paris M2 Data Science (masters' degree)
Télécom Paris Diplôme d'ingénieur (masters' degree) 2017-2020 Data science, machine learning, deep learning, mathematics, computer vision, signal processing
Classe préparatoire Masséna, Nice MPSI-MP ★
Research interests
My ongoing research is at the interface between machine learning , optimal transport , and computational biology . I have focused on the joint analysis of single-cell multiomics and spatial transcriptomics .
Research and professional experience
Single-cell multi-omics integration using Optimal Transport Ph.D. in computational biology 2020-2024 CNRS, Institut Pasteur and ENS PSL, Paris, France
 Proposed a powerful framework to analyze single-cell data through Optimal Transport. Implemented machine learning models to jointly learn from different single-cell omics modalities. Developed open-source Python packages coded in PyTorch and JAX, easy to use for bioinformaticians. Presented my work in major international conferences and peer-reviewed in ISMB 2022 and ICML 2024.
Optimal Transport for single-cell omics M.S. internship
 Proposed a novel way to analyze single-cell omics data using Optimal Transport distances between cells. Implemented my work using PyTorch and benchmarked it against traditional analysis pipelines.
Data visualization at e-health unicorn Doctolib B.S. internship Summer 2018

- Using data visualization tool Periscope, SQL, and Python I created dashboards with team-specific KPIs.
- Worked with a product owner to visualize product adoption among doctors and hospitals and presented my work during a company 'tech talk'.

Teaching experience _____

Mathematics of data science	Teaching assistant	2022
Mathematics of data science	Teaching assistant	2023

Teaching assistant for Gabriel Peyré's course at the ENS PSL. I made pen-and-paper exercises and Python practicals focused on the mathematics of signal processing. Themes include Shannon theory, Fourier theory, inverse problems, and wavelets.

Selected talks

Conferences and workshops

*contributed, †invited

CANUM [†] Learning cell fates landscapes from spatial transcriptomics with Fused Gromov-Wasserstein Ile de Ré (France), 2024
ISMB/ECCB* Paired single-cell multi-omics data integration with Mowgli
ECCB* Optimal Transport improves cell-cell similarity inference in single-cell omics data
ICML* Unsupervised ground metric learning using Wasserstein Singular Vectors
SMPGD * Optimal Transport improves cell-cell similarity inference in single-cell omics data Online, 2022
Tri-Omics Summit [†] Defining cell-types using Optimal Transport
Journée Boris Ephrussi* Paired single-cell multi-omics data integration with Mowgli

Seminars

Institut Curie single-cell seminar Paired single-cell multi-omics data integration with Mowgli Paris (France), 2024
scverse community meeting Paired single-cell multi-omics data integration with MowgliOnline, 2023
AI in Biology and Health Paired single-cell multi-omics data integration with Mowgli
MLSP Unsupervised ground metric learning using Wasserstein Singular Vectors
DDisc Paired single-cell multi-omics data integration with Mowgli
SingleStatOmics Optimal Transport improves cell-cell similarity inference in single-cell omics data Online, 2021

Publications

- **GJ Huizing**, G Peyré, L Cantini, "Learning cell fate landscapes from spatial transcriptomics using Fused Gromov-Wasserstein", bioRxiv, 2024.
- **GJ Huizing**, I M Deutschmann, G Peyré, L Cantini, "Paired single-cell multi-omics data integration with Mowgli", *Nature Communications*, 2023. **Contributed talk and best poster award** at ISMB/ECCB 2023, MLCSB session.
- **GJ Huizing**, L Cantini, G Peyré, "Unsupervised ground metric learning using Wasserstein Singular Vectors", *International Conference on Machine Learning*, 2022.
- **GJ Huizing**, G Peyré, L Cantini, "Optimal transport improves cell-cell similarity inference in single-cell omics data", *Bioinformatics*, 2022.

Open-source contributions _____

Hackathons

Open-source packages

STORIES

github.com/cantinilab/stories

Learn spatially informed differentiation potentials using

Optimal Transport. Built with JAX.

wsingular

github.com/CSDUlm/wsingular Compute different flavors of Wasserstein Singular Vectors, implemented efficiently using PyTorch and POT.

Mowgli

github.com/cantinilab/Mowgli

Perform single-cell multi-omics integration using Optimal Transport. Part of the scverse ecosystem.

OT-scOmics

github.com/cantinilab/OT-scOmics

Compute Optimal Transport as a metric between cells in single-cell omics data. Leverages Pytorch and POT.

Merged pull requests

JKOnet Fix call to deprecated JAX API jkonet/pull/5

SciPy Uniformize documentation of interpolator functions scipy/pull/18413

OTT-JAX Improve the plotting function (ott-jax/ott/pull/280), add a tutorial (ott-jax/ott/pull/282), and improve documentation (ott-jax/ott/pull/288 and ott-jax/ott/pull/270)

Skills _____

Mathematics Matrix calculus, linear algebra, optimization, probability, statistics, variational inference, optimal transport.

Machine Learning Python environment, e.g. NumPy, Scikit-learn, PyTorch, JAX. Classical ML such as linear dimensionality reduction. Deep architectures, including VAEs and Transformers.

Computational biology Experience with analyzing single-cell omics, including gene expression, surface proteins, methylation, and chromatin accessibility. Clustering, visualization, integration, and gene set enrichment using R and Python.

Software development Git, Pytest, GitHub Actions, Readthedocs, Codecov, Poetry, PyPI, SLURM, Hydra, Weights & Biases.

Scientific writing Various Elsevier Researcher Academy certificates. LTEX is my go-to for writing and Inkscape for figures.

Languages French and Dutch (native), English (bilingual, perfect score for TOEIC and TOEFL ITP)

Service ____

Peer review I sub-reviewed for ISMB 2022 and reviewed for ICML 2024.

French Red Cross I volunteer at the French Red Cross and hold a first aid certificate (PSC1).

References _

Available upon request.