WHAT IS CLAIMED IS:

1	1. An error correction method for correcting an error event generated at one or
2	more locations in received data by using a cyclic code, said error correction method
3	comprising the steps of:
4	carrying out an exclusive-addition process of remainder data obtained as a
5	result of dividing said received data by a generating function to remainder data obtained as a
6	result of dividing data including an error event virtually generated in said received data by a
7	generating function in order to find remainder data generated after a tentative-correction
8	process for said virtually generated error event; and
9	correcting said error event of said tentative-correction process and an error
10	event generated at a second location in said received data when said error event generated at
11	said second location can be detected on the basis of said remainder data generated after said
12	tentative-correction process.
_	2. An error correction method comprising the steps of:
1	carrying out a cyclic-replacement process on remainder data obtained as a
,2	result of dividing received data by a generating function in order to check whether or not a 1-
3	event error is an event of an error to be corrected when generation of said 1-event error in said
4	
5	received data is detected on the basis of said remainder data;
6	if said 1-event error is determined to be an event of an error to be corrected,
7	correcting said 1-event error in said received data on the basis of the number of times said
8	cyclic-replacement process has been carried out and on the basis of said error event;
. 9	if said 1-event error is determined to be an event of an uncorrectable error,
10	carrying out an exclusive-addition process of remainder data obtained as a result of dividing
11	said received data by a generating function to remainder data obtained as a result of dividing
12	data including an error event virtually generated in said received data by a generating function
13	in order to find remainder data generated after a tentative-correction process for said virtually
14	generated error event; and
15	correcting said error event of said tentative-correction process and an error
16	event generated at a second location in said received data when said error event generated at

17	said second location can be detected on the basis of said remainder data generated after said
18	tentative-correction process.
1	3. An error correction method according to claim 1 or 2, wherein a range of
2	said tentative-correction process is specified by using reliability information obtained in a
3	process to demodulate said received data.
1	4. An error correction circuit comprising:
2	a 1-event-error correction circuit for correcting a 1-event error of post-
.3	demodulation reproduced data; and
4	a 2-event-error correction circuit for receiving an output of said 1-event-error
5	correction circuit and correcting a 2-event error, which cannot be corrected by said 1-event-
6	error correction circuit.
1	5. An error correction circuit comprising:
2	a first linear feedback shift register for carrying out a cyclic-replacement
3	process on remainder data obtained as a result of dividing received data by a generating
4	function;
5	a second linear feedback shift register for receiving input data obtained as a
6	result of said cyclic-replacement process carried out on remainder data obtained as a result of
7	dividing data including an error event virtually generated in said received data by a generating
8	function and for carrying out a cyclic-replacement process on said input data;
9	a multi-stage register for receiving data output by said second linear feedback
10	shift register and sequentially transferring said data from stage to stage;
11	a plurality of exclusive-addition circuits for carrying out an exclusive-addition
12	process of remainder data output by said first linear feedback shift register to each of outputs
13	of said multi-stage register in order to virtually perform a tentative-correction process on said
14	received data;
15	a plurality of third linear feedback shift registers each used for receiving each
16	of said outputs of said exclusive-addition circuits and carrying out a cyclic-replacement
17	process on said received outputs;
18	an error detection circuit for:

•	receiving remainder data obtained as a result of said cyclic-replacement
19	process carried out by said first linear feedback shift register and checking said
20	remainder data in order to determine whether or not a detected error can be corrected
21	
22	as a 1-event error; if said detected error is determined to be correctable as a 1-event error,
23	if said detected error is determined to be considered.
24	outputting a first error correction signal based on the number of times said cyclic-
25	replacement process required for detection of said detected error has been carried out
26	and based on an error event of said detected error in order to input remainder data
27	obtained as a result of said cyclic-replacement process carried out by said third linear
28	feedback shift registers and checking said remainder data in order to determine
29	whether or not said detected error is an error event to be corrected; and
30	if said detected error is determined to be an error event to be corrected,
31	outputting a second error correction signal based on the number of times said cyclic-
32	replacement process required for detection of said detected error has been carried out
33	description of the completing said tentative-correction process, and
34	are arror correction circuit for receiving said received date and, when said most
35	and second error correction signals are received from said error detection circuit, correcting
36	said received data.
37	
38	6. An error correction circuit according to claim 5, wherein a range of said
1	6. An error correction circuit according to claim 5, which is a second linear feedback shift register and said
2	tentative-correction process carried out by said second linear feedback shift register and said
3	multi-stage register is specified by using reliability information obtained in a process to
4	demodulate said received data.
	7. An information-recording/reproduction apparatus comprising:
1	anding medium.
. 2	a head for recording data onto said recording medium and reproducing data
3	•
4	from said recording medium; a read/write channel for modulating data supplied to said head to be recorded
5	by said head and demodulating a reproduced signal read out by said head;
6	by said head and demodulating a reproduced signal some

7	a 1-event-error correction circuit for outputting data to be recorded obtained as
8	a result of adding a cyclic code to data to be recorded onto said recording medium to said
9	read/write channel and for correcting a 1-event error of reproduced data demodulated by said
10	read/write channel;
11	a 2-event-error correction circuit for receiving an output of said 1-event-error
12	correction circuit and correcting a 2-event error that cannot be corrected by said 1-event-error
13	correction circuit;
14	a control circuit for receiving an output of said 2-event-error correction circuit
15	and controlling a transfer of said output of said 2-event-error correction circuit to a host
16	apparatus as reproduced data; and
17	a processor for controlling said recording medium, said head, said read/write
18	channel, said 1-event-error correction circuit, said 2-event-error correction circuit and said
19	control circuit.
20 1	8. An information-recording/reproduction apparatus comprising:
2	a recording medium;
3	a head for recording data onto said recording medium and reproducing data
4	from said recording medium;
5	a read/write channel for modulating data supplied to said head to be recorded
6	by said head and demodulating a reproduced signal read out by said head;
7	a first linear feedback shift register for providing said read/write channel with
8	recording data obtained as a result of adding a cyclic code to data to be recorded onto said
9	recording medium and for carrying out a cyclic-replacement process on remainder data
10	obtained as a result of dividing reproduced data, which is received from said read/write
11	channel after being demodulated by said read/write channel, by a generating function;
12	a second linear feedback shift register for receiving input data obtained as a
13	result of said cyclic-replacement process carried out on remainder data obtained as a result of
14	dividing data including an error event virtually generated in said reproduced data by a
15	generating function and for carrying out a cyclic-replacement process on said input data;
16	a multi-stage register for receiving data output by said second linear feedback
17	shift register and sequentially transferring said data from stage to stage;

18	a plurality of exclusive-addition circuits for carrying out an exclusive-addition
	process of remainder data output by said first linear feedback shift register to each of outputs
19	of said multi-stage register in order to virtually perform a tentative-correction process on said
20	
21	received data; a plurality of third linear feedback shift registers each used for receiving each
22	of said outputs of said exclusive-addition circuits and carrying out a cyclic-replacement
23	process on said received outputs;
24	an error detection circuit for:
25	receiving remainder data obtained as a result of said cyclic-replacement
26	process carried out by said first linear feedback shift register and checking said
27	remainder data in order to determine whether or not a detected error can be corrected
28	
29	as a 1-event error; if said detected error is determined to be correctable as a 1-event error,
30	outputting a first error correction signal based on the number of times said cyclic-
31	replacement process required for detection of said detected error has been carried out
32	and based on an error event of said detected error in order to input remainder data
33	and based on an error event of said detected error in order to import the said third linear
34	obtained as a result of said cyclic-replacement process carried out by said third linear
35	feedback shift registers and checking said remainder data in order to determine
36	whether or not said detected error is an error event to be corrected; and
37	if said detected error is determined to be an error event to be corrected,
38	outputting a second error correction signal based on the number of times said cyclic-
39	replacement process required for detection of said detected error has been carried out
40	and based on an error event completing said tentative-correction process;
41	an error correction circuit for correcting said reproduced data when said first
42	and second error correction signals are received from said error detection circuit;
43	a control circuit for receiving an output of said error correction circuit and
44	controlling a transfer of said output of said error correction circuit to a host apparatus as
45	reproduced data; and
46	a processor for controlling said recording medium, said head, said read/write
47	channel, said first linear feedback shift register, said second linear feedback shift register, said

- multi-stage register, said exclusive-addition circuits, said third linear feedback shift registers, said error detection circuit, said error correction circuit and said control circuit.
 - 9. An information-recording/reproduction apparatus according to claim 8,
 wherein a range of said tentative-correction process carried out by said second linear feedback
 shift register and said multi-stage register is specified by using reliability information
 obtained in a process to demodulate said received data.