On Vanishing Sums of Roots of Unity in Polynomial Calculus and Sum-of Squares

Ilario Bonacina

UPC Barcelona Tech

June 30 2022, Workshop "Complexity Theory with a Human Face"

Polynomial Calculus over \mathbb{C} ($PC_{\mathbb{C}}$)

Y set of n variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

from P derive 1 = 0 using the inference rules

$$\frac{p=0}{qp=0} \qquad \frac{p=0}{p+q=0}$$

Complexity measures

Degree: max degree of a polynomial

Size: number of monomials

Two natural encodings for CSPs

Fourier variable $z^{\kappa} = 1$

$$z \in \{1, \zeta, \zeta^2, ..., \zeta^{\kappa-1}\}$$

where ζ is a primitive κ -th root of unity

Boolean variable $x^2 = x$

$$x \in \{0,1\}$$

$$z = x_0 + x_1 \zeta + \dots + \zeta^{\kappa - 1} x_{\kappa - 1}$$

Together with the constraints

$$x_0 + \dots + x_{\kappa-1} = 1$$

and $x_0^2 = x_0, \dots, x_{k-1}^2 = x_{k-1}$

Given G = (V, E) a graph. Is G 3-colorable?

Boolean encoding

 x_{vc} "the vertex v gets color c"

$$\begin{cases} x_{v0} + x_{v1} + x_{v2} = 1 \\ x_{v0}^2 = x_{v0} \quad x_{v1}^2 = x_{v1} \quad x_{v2}^2 = x_{v2} \end{cases} \quad \forall v \in G \qquad \begin{cases} z_v^3 = 1 \\ z_v^3 = 1 \end{cases}$$

$$x_{v0}x_{w0} = 0$$

$$x_{v1}x_{w1} = 0$$

$$x_{v2}x_{w2} = 0$$

Fourier encoding

 z_{v} "the color given to vertex v"

$$\begin{cases} x_{v2}^2 = x_{v2} \end{cases} \quad \forall v \in G \qquad \begin{cases} z_v^3 = 1 \\ x_{v0}x_{w0} = 0 \\ x_{v1}x_{w1} = 0 \\ x_{v2}x_{w2} = 0 \end{cases} \quad \forall \{v, w\} \in E \quad \begin{cases} z_v^2 + z_v z_w + z_w^2 = 0 \\ x_v = 0 \end{cases}$$

Remarks on $PC_{\mathbb{C}}$

THM. Degree D lower bounds in $PC_{\mathbb{C}}$, over **Boolean** variables

imply size
$$\exp\left(\frac{(D-d)^2}{n}\right)$$
 lower bounds [IPS'99]

No such result could exist over the Fourier variables.

PC over Fourier variables was also studied in [BGIP'01], but only for degree

Sum-of-Squares

$$Y$$
 set of n variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{R}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1^2 + \dots + s_\ell^2 = -1$$

Complexity measures

Degree: $\max\{\deg(q_i p_i), \deg(s_j^2) : i \in [m], j \in [\ell]\}$

Size: number of monomials in the proof

Proof Techniques

$$\{p_1=0, \dots, p_m=0\}$$

does not have $SOS_{\mathbb{R}}$

refutations of degree $\leq D$

Over Boolean variables,

Degree D lower bounds in

 $SOS_{\mathbb{R}}$ imply size

 $\exp((D-d)^2/n)$ lower

bounds [AH'19]

 \exists Pseudo-expectation $\mathbb{E}:\mathbb{R}[Y]_{< D} \to \mathbb{R}$ s.t.

- $-\mathbb{E}(1) = 1$
- E linear
- $\mathbb{E}(q_j p_j) = 0 \text{ for all } q_j \text{ s.t } \deg(q_j p_j) \le D$
- $E(s^2) \ge 0 \text{ for all } s \text{ s.t. } \deg(s^2) \le D$

Over {±1} variables,

Degree D lower bounds imply size

 $\exp((D-d)^2/n)$ for a different set of

polynomials [S'20]

Sum-of-"Squares" over \mathbb{C} ($SOS_{\mathbb{C}}$)

Y set of variables, $P=\left\{p_1=0,\ \dots\ ,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

on Fourier variables $z^{\kappa} = 1$: s^* is the conjugate of s after substituting z^j with $z^{\kappa-j}$

Complexity measures

Degree: $\max\{\deg(q_i p_i), \deg(s_j s_j^*) : i \in [m], j \in [\ell]\}$

Size: number of monomials in the proof

Examples

EX1.
$$P = \{ \sum_{j \in [n]} x_j = \underline{i}, x_1^2 = x_1, ..., x_n^2 = x_n \}$$

$$-(\sum_{j} x_j + \underline{i})(\sum_{j} x_j - \underline{i}) + (\sum_{j} x_j)^2 = -1$$

EX2.
$$P = \{ \sum_{j \in [n]} z_j = 1, \sum_{j \in [n]} z_j^{\kappa - 1} = -1, z_1^{\kappa} = 1, \dots, z_n^{\kappa} = 1 \}$$

$$(\sum_{j} z_j^{\kappa - 1} - 1) - (\sum_{j} z_j + 1)(\sum_{j} z_j^{\kappa - 1}) + \sum_{j} z_j \sum_{j} z_j^{\kappa - 1} = -1$$

Some remarks on $SOS_{\mathbb{C}}$

PROP. $SOS_{\mathbb{C}}$ over the Boolean/Fourier encoding p-simulates $PC_{\mathbb{C}}$

over the same encoding.

Proof idea. A minor variation of

Berkholtz's argument [B'18].

PROP. For polynomials with real coefficients and Boolean encoding,

 $SOS_{\mathbb{C}}$ is equivalent to $SOS_{\mathbb{R}}$

Proof idea. The real part of the $SOS_{\mathbb{C}}$

refutation is a valid $SOS_{\mathbb{R}}$ refutation.

Knapsack

$$\mathsf{Kn}_{\overrightarrow{c},r} = \left\{ \sum_{i=1}^n c_i x_i = r \;, \quad x_1^2 = x_1 \;, \qquad \dots \;, x_n^2 = x_n \right\} \; \text{with} \; c_1, \dots c_n, r \in \mathbb{C}$$

(Interesting special case c_1 , ..., $c_n = 1$)

 $\mathsf{Kn}_{\overrightarrow{c},r}$ is always hard to refute in $PC_{\mathbb{C}}$: degree $\Omega(n)$ and size $2^{\Omega(n)}$ [IPS'99]

In $SOS_{\mathbb{C}}$ the hardness of $Kn_{1,r}$ depends on r:

- $r \in \mathbb{R}$ the hardness is the same as for $SOS_{\mathbb{R}}$: degree $\geq \min\{n, 2\min\{r, n-r\} + 3\}$ [G'01]
- -For $r \notin \mathbb{R}$ it is easy in $SOS_{\mathbb{C}}$

Sums of Roots of Unity

$$SRU_n^{\kappa,r} = \left\{ \sum_{i \in [n]} z_i = r, \quad z_1^{\kappa} = 1, \quad \dots, z_n^{\kappa} = 1 \right\} \text{ with } r \in \mathbb{C}$$

(Interesting special case r = 0)

If κ not a power of a prime,

 $SRU_n^{\kappa,0}$ for n large enough is always satisfiable. [LL'01]

If $\kappa = p^m$ for some prime p,

 $SRU_n^{\kappa,0}$ is satisfiable if and only if p divides n.

Ex. $PC_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,r}$ require degree $\Omega(n)$.

(Hint: focus on just two of the roots and via a linear transformation reduce to knapsack)

Hardness of $SRU_n^{\kappa,r}$

κ prime

$$\zeta$$
 primitive κ th root of unity

$$\zeta$$
 primitive κ th root of unity $r=r_1+\zeta r_2$ with $r_1,r_2\in\mathbb{R}$

THM. (Degree lower bound)

If
$$\kappa D \leq \min\{r_1+r_2+(\kappa-1)n+\kappa,\ n-r_1-r_2+\kappa\}$$
, then $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,r}$ require degree at least D

COR. $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,0}$ require degree $\Omega(n/\kappa)$

THM. (Size lower bound)

If $n \gg \kappa$, $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,0}$ require size $2^{\Omega(n)}$

Degree lower bounds of $SRU_n^{\kappa,r}$ in $SOS_{\mathbb{C}}$

The reduction to knapsack does not work for $SOS_{\mathbb{C}}$, instead

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$
- Construct a candidate pseudo-expectation E (only one choice under symmetry)
- Interpret E as the evaluation of a symmetric polynomial S_{E}
- Use Bleckherman's theorem (adapted to $\mathbb C$) to prove properties of S_E
- E is a pseudo-expectation

Size lower bound of $SRU_n^{\kappa,r}$ in $SOS_{\mathbb{C}}$

- The technique is a non-trivial adaptation of Sokolov's gadgets from $\{\pm 1\}$ variables to generic Fourier variables. [S'20]
- A degree-D $SOS_{\mathbb{C}}$ lower bound for P, implies a monomial size lower

bound for
$$P \circ g$$
 of the form $\exp\left(\frac{(D-d)^2}{\kappa^{\kappa}n}\right)$

- The gadget could be taken as a sum of variables and hence transforms instances of SRU into itself.

Open problems

For what \overrightarrow{c} , r the knapsack $\operatorname{Kn}_{\overrightarrow{c},r}$ is hard for $SOS_{\mathbb{R}}$?

Find new techniques to prove size lower bounds in $SOS_{\mathbb{C}}$ for encodings based on non-binomial ideals, e.g. for the $\{1,2\}$ -encoding.

Prove degree/size lower bounds in $SOS_{\mathbb C}$ for 3-Coloring on an Erdos-Renyi random graph and with the Fourier encoding. Known worst case degree lower bounds in $PC_{\mathbb C}$ [LN'17]

Does $SOS_{\mathbb{C}}$ over the $\{\pm 1\}$ -encoding p-simulate resolution?