

Speakers: Siri Kallhovd (UiB),
Espen Robertsen (UiT), and
Erik Hjerde (UiT)
Moderator: Alexandra Gade (NCMM, UiO)

Computing Resources

In this session, we will learn:

- what High-Performance Computing (HPC) is
- how to get access to HPC systems provided by Sigma2 for Norwegian research
- how to find other local computing resources available at your university

HPC Systems

Sigmaz owns the HPC Systems Saga, Fram and Betzy and NRIS operates the systems. NRIS is a collaboration of the four BOTT universities and Sigmaz to pool competencies, resources and services.

Apply for resources: https://www.sigma2.no/high-performance-computing

Saga

System: HPE Apollo 2000

Number of cores: 16064

Number of nodes: 364 + 8 bigmem + 8 GPU nodes

Max floating point performance, double: 0.65 Petaflop/s

Total memory: 97.5 TiB

Total disk capacity: 5.3 PB (++)

Network: FDR IB (56 Gbit)

File System: BeeGFS, HPE 4150

Software modules

Need for an isolated environment on a shared HPC resource

(Scientific) software should not be installed in the global PATH

Need some way of bringing software in and out of your environment

Many different solutions to this:

Lmod (modules) + EasyBuild (installation)

Virtualenv + pip

Conda

Singularity containers

We use Lmod + EasyBuild for the scientific software stack on all our HPC machines (Fram, Saga and Betzy)

Users can use any of the above to manage their own software stack on our machines

EasyBuild

EasyBuild can be used as wrapper around different ways of installing software

Targeting HPC systems

Automation: less prone for human errors

Reproducibility: rebuild software stack, (usually) portable to other systems

Performance: (usually) build from source for particular hardware

Very pedantic with versioning and dependencies

EasyBuild is tightly connected to the module system and automatically generates module files after installation

Slurm jobs optimize the usage of HPC systems

Job scripts specify:

memory: Asking for too much can mean that you block idle CPUs and get charged for them

cores: Asking for too few can lead to underused nodes or longer run time

time: Asking for too little cuts the job

General local computing resources

NREC (Norwegian Research and Education Cloud, nrec.no)

-operated by UiB and UiO, the platform is built on OpenStack, users can create virtual machines

Fox: local HPC machine at UiO

Idun: local HPC machine at NTNU

Galaxy Introduction to Galaxy

Learning Objectives

At the end of this session, you will be able to:

- start exploring the Norwegian Galaxy instance: <u>usegalaxy.no</u>
- test 2000 analysis tools
- disseminate information to other users about this service

Galaxy platform - browser accessible workbench for scientific computing

usegalaxy.* – Federation of free public Galaxy servers

- Common core set of tools and reference genomes
- Open to anyone to use
- Backed by significant computational resources
- Support from multiple national infrastructure providers
- Galaxy Training Network

usegalaxy.no – The Norwegian national Galaxy server

- Provide ~2000 bioinformatic tools and workflows
- Open to all Norwegian user and collaborators
- Directly connected to the NeLS storage
- Backed by significant computational resources
- End-user training and support through ELIXIR Norway support desk

ELIXIR Norway - analysis connected with storage

usegalaxy.no – The basics

- Important features:
- Tool menu with ~2000 tools sorted in sections
- Current disk usage (default is 200 GB total personal disk space)
- Server alerts
- Quick start guide
- Contact support
- Q&A forum

Tool menu

Main window

Your account and saved data

- Important features:
- Tool menu with ~2000 tools sorted in sections
- Current disk usage (default is 200 GB total personal disk space)
- Server alerts
- Quick start guide
- Contact support
- Q&A forum

Shared data

- Data shared by other users or ELIXIR-NO with all users of usegalaxy.no
- E.g. workflows and complete histories
- You can import shared data to you user
- Instructions how to use ELIXIR-NO supported workflows are also here

Shared data: workflows

- List of all workflows that are shared with all usegalaxy.no users
- You can import shared data to your user
- By selecting any workflow you can run data analysis, import into your user or save it on another computer

Workflows

- Your workflows. These are the imported or the workflows you have made
- You can create new workflows here

Import data from your computer or from the web

- Drag and drop, or browse and select file
- Alternatively, paste url for data available on the web
- Specify data type if you know (e.g. Fasta)
- The two imported files will appear as two datasets in your history

Import data from NeLS

- Import data from Personal or Project folders in NeLS
- Redirect to the NeLS portal (require login)
- Files are selectable
- Imported data from NeLS will appear in your history
- Note: the yellow colour of files as this jobs are being processed (green = job complete)

Use galaxy histories to organise data

- The current history is "your current work space"
- The history panel displays datasets in the order in which they were created
- You can make as many histories as you want and switch between them
- Typically, you can have one history for each project or analysis

Galaxy tools

- Tools are available from the Tool menu
- Organised under sub-menus
- Possible to browse and search by name
- You can make your own list of favourite tools

Galaxy tools = command line tools

- Command line tools are wrapped into Galaxy so they become accessible with a GUI
- Some Galaxy tools may have reduced the number of optional parameter settings for the tool
- Example here is the assembly tool called SPAdes

Galaxy tools = command line tools

[default: 16]

[default: 250] directory for temporary files

[default: <output_dir>/tmp]
<int,int,...> comma-separated list of k-mer sizes (must be odd and

tmp-dir

RAM limit for SPAdes in Gb (terminates if exceeded)

Tool output

- It is possible to preview the output (result), view it in the main window or download the dataset
- You can also copy the dataset over to another history

 A workflow in Galaxy is basically a string of tools, where the output from one tool becomes the input for the next

- The "nodules" indicate which output file from one acts as input for the next tool
- Each workflow has a name and version
- Additional text that describe the workflow and tags can be added

- New tools can be added by clicking on the tool in the Tool menu
- The tool will appear in the workflow editor
- Tool parameter settings can be pre-set or made up to the user to set when running the workflow

 The output from another tools can be connected as an input for the new tool

- Select input files
- Tools in the workflow will run successively
- You can view and download the result files

Reproducibility & Transparency

Dataset Information

Tool Exit Code:
Job API ID:

2ade379cb271bcc4 (5499)

Dataset Informa	tion				
Number	37				
Name	DESeq on data 33 and o	data 32: PCA plot			
Created	Friday Dec 4th 8:16:43 2020 UTC		Dataset Information		
Filesize	5.8 KB				
Dbkey	?		Number	37	
Format	png		Name	DESeq on data 33 and data 32: PCA plot	
File contents	contents		Created	Friday Dec 4th 8:16:43 2020 UTC	
History Content API ID	7ba0a550406c9f38 (9272)		Filesize	5.8 KB	
History API ID	39520843fe032123 (438)		Dbkey	?	
UUID	a22dce33-aaf2-4b0b-be3f-8b5241195694		Format	png	
Full Path	14-1-110/000/4-11 0000 4-1		File contents	contents	
	Job Information		History Content API ID	7ba0a550406c9f38 (9272)	
	Galaxy Tool ID:	galaxy-ntnu.bioinfo.no/toolshed_ /uit_deseq2_wrapper/0.0.1 [5]	History API ID	39520843fe032123 (438)	
			UUID	a22dce33-aaf2-4b0b-be3f-8b5241195694	
			Full Path	/data/part0/008/dataset_8860.dat	
	Command Line Rscript /srv/galaxy/var/shed_tools/galaxy-ntnu.bioinfo.no/too				
	Tool Standard Output Loading required package: S4Vectors Loading required package:			uired package: 🛂	
	Tool Standard Error	empty			1

Why use usegalaxy.no?

- Easy to use
- Connected directly with storage (NeLS)
- Backed by significant computational resources
- Training and support

- Transparent research
- Reproducible research
- Enable easy sharing of data and tools

Quiz questions

Introduction to Galaxy:

- 1. usegalaxy.no is a web platform for:
 - a. Storing life science data
 - b. Analysing life science data
 - c. Developing bioinformatic tools
 - d. Generating data management plans

Useful Resources

- usegalaxy.no
- usegalaxy.eu

Workflow Management Systems

Learning Objectives

At the end of this session, you will be able to:

- Conveniently use tonnes of ready-made Nextflow pipelines to analyse your data in a FAIR manner
- Utilize auxiliary resources such as Biocontainers, Workflowhub and nf-core to find containers and workflows enabling FAIR analyses

What are workflow management systems (WfMS)?

- "Standards for describing computational data-analysis workflows"
- Streamline routine processes for optimal efficiency
- Handles input / output / execution of tools in a DAG-like manner
- Comes in various colors and flavours

What are workflow management systems (WfMS)?

Directed acyclic graphs (DAG) can be used to describe workflows visually

WfMS' enhances the principles of "FAIR"

- WfMS's provide an analysis description in their own right
- Enables portability and reproducibility in different computational environments
- Versioning and container integration ensures uniform data analysis

Most WfMS integrates with containers, which makes Biocontainers.pro very useful!

- 10.6K tools, 45.5K versions, 225.3K containers and packages
- Dockerfile recipes / Conda recipes to automatically build containers in BioContainers.
- Biocontainers Registry is a hosted registry of all BioContainers images that are ready to be used

BioContainers Flow

Workflowhub covers you workflow needs and then some!

Nextflow.io

- Supports Bash, Python, R ...
- Dataflow handled by Groovy (Java super-set, "python for Java")
- Reproducibility
- Lots of "premium" features for free
- https://www.nextflow.io/docs/latest/

```
nextflow.enable.dsl=2
process sayHello {
  input:
    val cheers
  output:
    stdout
  1111111
  echo $cheers
workflow {
  channel.of('Ciao', 'Hello', 'Hola') | sayHello | view
```


nextflow

Some examples of Nextflow usage in ELIXIR

- Mar-databases backend processing
 - Results integrated with and available at portal pages
 - https://gitlab.com/uit-sfb/autoget-nextflow
- FHI-pipeline utilizing TSD
 - Desensitization pipeline for Norwegian covid19-samples affected by GDPR
 - https://qitlab.com/uit-sfb/fhi-desensitize
- Metapipe
 - Metagenomic analysis pipeline developed at UiT (ELIXIR)
 - https://gitlab.com/uit-sfb/metapipe
 - https://mmp2.sfb.uit.no/metapipe/

nextflow

nf-core is a great resource!

- Out-of-the-box high quality, production-ready, curated analysis pipelines built using Nextflow. (66 as of Jun, 2022)
- Maintained and validated releases ensure reproducibility.
- nf-core-tools for convenience (list, launch, create templates etc.)
- Excellent documentation!

nf-core is a great resource!

Nextflow tower

- "Centralized command post"; monitoring, logging & observability of distributed workflows conveniently available in your browser
- Simplifies the deployment of pipelines on any cloud, cluster or laptop.
- Quite expensive, but some essential features are free

Enough talk! Let's play around with nextflow!

If we have time:)

- Quick tour / usage of nf-tower
- Launch nextflow pipeline -with-tower

https://gitlab.com/uit-sfb/autoget-nextflow

```
# Install nextflow
curl -s https://get.nextflow.io | bash
mv nextflow ~/bin/

# Launch the RNAseq pipeline
nextflow run nf-core/rnaseq \
    --input samplesheet.csv \
    --genome GRCh37 \
    -profile docker

# Install nf-core tools
pip install nf-core

# List all nf-core pipelines and show available updates
nf-core list
```


Useful Resources

- Nextflow, https://nextflow.io
- nf-core, https://nf-co.re
- nf-tower, https://tower.nf
- Biocontainers, https://biocontainers.pro
- Marine Metagenomics Portal, https://mmp2.sfb.uit.no
- Metapipe, https://mmp2.sfb.uit.no/metapipe/

Thank you!

Except where otherwise noted, this work is licensed under a

Creative Commons Attribution 4.0 International License

