CytoData 2018 The Challenge

CytoData Symposium 2018

September 21-25

Gold Sponsor

Bronze Sponsors

Silver Sponsor

Prizes and Hackathon Sponsors

Table of contents - Part I

- 1. Welcome
- 2. Problem description
- 3. Data sets
 - a. Experiments (genetic and chemical)
 - b. Features (CP and DL)
- 4. Ideas for solving the problem
- 5. Metrics

1. Welcome and Schedule

```
Day 1:

☐ 9:00 am - 10:00 am challenge introduction
☐ 10:00 am - 11:00 am hands on session
☐ 11:00 am - 5:00 pm hacking (with lunch break)
☐ 5:00 pm - 5:30 pm discussion and team presentations
☐ 6:00 pm pizza at Area 4
```

Day 2

- 9:00 am 4:00 pm Hacking
- ☐ 4:00 pm 4:30 pm final submission and evaluation
- ☐ 4:30 pm 5:00 pm team presentations and winner announcement

Batch 2 - differences

- microscope
- cells
- perturbations
- time
- Plate layout
- Summer winter?

Batch 2 - differences

- microscope
- cells
- perturbations
- time
- Plate layout
- Summer winter?

- Imaging data is subject to batch effects/undesired artifacts (biology!)
- two batches of microscopy images with the same treatments, but acquired under different technical conditions show differences in the quantitative measurements
- These differences are not due to meaningful biological variations
- Question: how can we remove these difference using computational methods?

- Analyze the profiles of two different batches of data and design computational methods to correct batch effects.
- A successful method will be able to align the information content of both batches
- Goal: transform data so that profiles of the same treatment have similar measurements without distorting the relationships among other treatments

a Detection of batch effects

1. Determine well-averaged feature vectors

	Feature No.						
-	1	2		4	5	6	7
S1	-0.77	0.49	-0.71	-0.99	-0.97	-0.18	-0.94
S2	-0.47	0.75	-0.17	-0.98	-0.72	0.31	-0.82
S3	-0.15	0.75 -0.45 -1.17	-0.43	0.37	0.05	-0.12	0.39
S4	-0.87	-1.17	-0.56	-2.36	-1.45	0.23	-0.74

2. Calculate distance or correlation between samples

$$(S1,S2) = \sqrt{(S1_1 - S2_1)^2 + (S1_2 - S2_2)^2 + \dots + (S1_n - S2_n)^2}$$

3. Create matrix with pairwise distances

	S1	S2	S3	S4
S1	2.27	2.77	S3 0.93	0.00
S2	2.58	2.87	0.00	0.93
S3	3.70	0.00	2.87	2.77
S4	0.00	3.70	2.58	2.27

4. Plot distance matrix for controls across screen to reveal batch effects

High-throughput Imaging using Cell Painting

	Dataset	Perturbation	Treatments	Cell line	Plates	Images	Size (GB)
Day 1	BBBC037 LUAD	genetic	596	A549	16	55,296	802
Day 1	BBBC043 TA-ORF	genetic	196	U2OS	5	11,520	246
Day 2	BBBC022 bioactives	chemical	1,600	U2OS	20	69,120	278
Day 2	BBBC036 CDRP	chemical	2,500	U2OS	55	126,720	561

- CellProfiler data
 - Single cell data as SQL DB
 - Aggregated features on replicate level
 - All features ~1,700
 - Feature selected
 - Feature selected and normalized

DeepProfiler data

- UNet-based nucleus segmentation
- Inception-ResNet V2 features (single cells)
- 1,520 features per channel (5 channels)
- Aggregated features on replicate level

- CellProfiler data
 - Single cell data as SQL DB
 - Aggregated features on replicate level
 - All features ~1,700
 - Feature selected
 - Feature selected and normalized

- DeepProfiler data
 - UNet-based nucleus segmentation
 - Inception-ResNet V2 features (single cells)
 - 1,520 features per channel (5 channels)
 - Aggregated features on replicate level

Step 1: segment nuclei using pre-trained UNet

DeepProfiler image-based profiling using deep learning

Step 1: segment nuclei using pre-trained UNet

Step 2: extract feature using a pre-trained Inception ResNet vs2

- Bounding box 128x128
- Feature extracted in 5 channels independently
- 1,520 features per channel
- Data is provided aggregated to replicate level

Challenge - Access to data sets

- BBBC datasets are hosted on AWS
- AWS Public Dataset Program
- Publicly accessible
 - image data and single cell information:
 - o s3://cytodata/datasets/
- Aggregated features
 - o s3://cytodata/evaluation/
 - Splitted in test and training sets

 Data sets are accessible for the hackathon and go online during October

Challenge - Access to data sets

- BBBC datasets are hosted on AWS
- AWS Public Dataset Program
- Publicly accessible
 - image data and single cell information:
 - o s3://cytodata/datasets/
- Aggregated features
 - o s3://cytodata/evaluation/
 - Splitted in test and training sets

 Data sets are accessible for the hackathon and go online during October

Aggregated features for day 1


```
LUAD-BBBC043-Caicedo

profiles_cp
bbbc043_test.csv
bbbc043_train.csv
bbbc043_test.csv
bbbc043_train.csv

TA-ORF-BBBC037-Rohban
profiles_cp
bbbc037_test.csv
bbbc037_train.csv
profiles_dp
bbbc037_test.csv
bbbc037_test.csv
bbbc037_test.csv
```

Challenge - Access to data sets

https://github.com/cytodata/cytodata-hackathon-2018/blob/master/cytodata-toolkit/datasets.csv

lir	nes (9 slo	c) 1012	Bytes		Raw	Blame	History		
Sea	arch this file								
1	Dataset	Partition	Features	Link					
2	BBBC037	Test	CellProfiler	ttps://s3.amazonaws.com/cytodata/evaluation/TA-ORF-BBBC037-Rohban/profiles_cp/bbbc037_test.csv					
3	BBBC037	Train	CellProfiler	https://s3.amazonaws.com/cytodata/evaluation/TA-ORF-BBBC037-Rohban/profiles_cp/bbbc037_train.csv					
4	BBBC043	Test	CellProfiler	https://s3.amazonaws.com/cytodata/evaluation/LUAD-BBBC043-Caicedo/profiles_cp/bbbc043_test.csv					
5	BBBC043	Train	CellProfiler	https://s3.amazonaws.com/cytodata/evaluation/LUAD-BBBC043-Caicedo/profiles_cp/bbbc043_train.csv					
б	BBBC037	Test	DeepLearning	https://s3.amazonaws.com/cytodata/evaluation/TA-ORF-BBBC037-Rohban/profiles_dp/bbbc037_test.csv					
7	BBBC037	Train	DeepLearning	https://s3.amazonaws.com/cytodata/evaluation/TA-ORF-BBBC037-Rohban/profiles_dp/bbbc037_train.csv					
8	BBBC043	Test	DeepLearning	https://s3.amazonaws.com/cytodata/evaluation/LUAD-BBBC043-Caicedo/profiles_dp/bbbc043_test.csv					
9	BBBC043	Train	DeepLearning	https://s3.amazonaws.com/cytodata/evaluation/LUAD-BBBC043-Caicedo/profiles_dp/bbbc043_train.csv					

How to solve this problem?

Transform feature space by aligning known common data points

How to solve this problem?

Feature normalization

Subspace / manifold alignment

How to solve this problem?

Domain adaptation

Feature encoding with NN

Evaluation metric - Treatment Matching

Treatment matching score:

Fraction of compounds that find the correct treatment in the top K results

Evaluation metric - Mean Average Precision

Consider the problem of document (treatment) retrieval

mean average precision = (0.62 + 0.44)/2 = 0.53

Relevant treatments:

Defined by ground truth biological connections (gene pathway or Mechanism of Action (MoA))

Dataset for Day 1

- Genetic perturbations
- Each database has training treatments and testing treatments
- Replicate level (well) profiles

- Learn models on training data
- Apply models to train AND test data

Submission for Day 1

Connectivity matrix

Similarity

Submission for Day 1

Submission for Day 1 - connectivity or similarity scores

	BBBC037	BBBC043
BBBC037		
BBBC043		

Submission for Day 1 - connectivity or similarity scores

Table of Contents - Part II

1. Resources

- a. GitHub Repo https://github.com/cytodata/cytodata-hackathon-2018
- b. Live demos (R and Python)
 - i. R notebook
 - ii. Python notebook
- c. Submissions: upload system
- d. AWS infrastructure
- e. Slack

2. Teams

- a. Instructions to form a team [3-6 people from different institutions]
- b. Register teams <u>here</u>
- c. AWS access / assign resources [Christopher, @cfriedri]

Team up

We suggest to create team s of up to 6 people from different institutes!

Please sign up your team using this google form:

https://goo.gl/forms/yMzMKzec0MOxNNjq2

AWS infrastructure - EC2 instances

Each team has access to one EC2 instance

- EC2 instance p2.xlarge
 - o 61 GB Memory
 - o 1 GPU
 - 4x CPU cores

NVID	IA-SMI	396.3	7	Driver Version: 396	.37
GPU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap		Volatile Uncorr. ECC GPU-Util Compute M.
0 N/A	Tesla 37C	K80 P8	On 31W / 149W	00000000:00:1E.0 Off 0MiB / 11441MiB	0 0% Default

- Access via ssh and jupyter notebook
- AMI predefined for several deep learning environment

Let us know if you need more resources!

Ready. Set. Go!

CytoData 2018 - Challenge

