

# Metodologia Científica

#### Ementa

Orientação para o desenvolvimento de trabalhos acadêmicos e científicos, pesquisas e estudos técnicos que envolvam elementos constituintes da área de tecnologia da informação. Estudo sobre as normas técnicas para elaboração de trabalhos – ABNT. Estudo sobre projeto de pesquisa.



## \* Contribuição para o perfil do egresso

A disciplina de Metodologia da Pesquisa é fundamental na vida acadêmica, pois está associada à construção do conhecimento. Neste sentido, a disciplina atua de forma a auxiliar o(à) acadêmico(a) na reflexão sobre a produção do conhecimento, a partir dos principais aspectos teóricos e metodológicos relacionados a este tipo de produção. A construção do conhecimento requer pesquisa e noções científicas, e por esta razão a metodologia científica se faz presente (e necessária) no âmbito acadêmico, pois presta relevante contribuição nas pesquisas, na elaboração de trabalhos didáticos e trabalhos científicos, ou seja, contribui de forma irrefutável na formação do(a) acadêmico(a). Esta disciplina atua ainda no desenvolvimento do(a) acadêmico(a) egresso, no sentido de capacitá-lo no desenvolvimento de políticas, normas e padrões de utilização de sistemas e equipamentos de informática.



### \* Objetivo de Ensino

Proporcionar aos(às) acadêmicos(as) do curso de Gestão da Tecnologia da Informação o entendimento e assimilação das características sobre a construção do conhecimento no âmbito acadêmico, com o objetivo de compreender os paradigmas metodológicos, seguindo as normas e as técnicas para a elaboração do trabalho científico, auxiliando, assim, na produção dos trabalhos de pesquisa científica.



## Objetivos de Aprendizagem

Desenvolver uma atitude investigativa;

Estabelecer relações entre o conhecimento estudado atualmente com os existentes;

Promover possibilidades para leitura crítica da realidade;

Sistematizar atividades de estudos;

Elaborar trabalhos científicos;

Desenvolver o espírito crítico.



## Habilidades e Competências

Analisar o ambiente e sugerir estratégias e recursos de TI de acordo com as necessidades das organizações, visando a melhoria dos processos, do ambiente de TI, redução de custos e ganho operacional, resultando em vantagem competitiva;

Gerenciar ambientes informatizados e equipes de profissionais de informática, administrando de maneira eficiente recursos de tecnologia da informação para atender as necessidades das organizações;

Identificar oportunidades de negócios e soluções de TI para as organizações;

Analisar, definir, projetar e implantar sistemas de informação, com base em conhecimentos tecnológicos;

Elaborar políticas, normas e padrões de utilização de sistemas, ferramentas e equipamentos de tecnologia da informação;

Definir parâmetros para utilização de sistemas, serviços, banco de dados, e infraestrutura de TI.



#### Conteúdos

#### Unidade I – Conhecimento e Ciência

- 1.1 O processo do conhecimento
- 1.2 Tipos de conhecimento
- 1.3 Classificação das ciências

## Unidade II – Ética em pesquisa

- 2.1 Comitê de ética em pesquisa
- 2.2 Plágio
- 2.3 Pirataria



#### Conteúdos

### Unidade III – Elaboração de trabalhos acadêmicos

- 3.1 Formatação
- 3.2 Tipos de citações
- 3.3 Tipos de referências
- 3.4 Resenha
- 3.5 Artigo Científico
- 3.6 Estrutura do Projeto de Pesquisa e Relatório
- 3.7 Métodos Científicos
- 3.8 Fatos, leis e teorias
- 3.9 Tipos de pesquisa



### Metodologia

Apresentação dos conteúdos acima indicados, em aulas expositivas, com exemplificações dos conceitos abordados, contando com o auxílio de equipamentos audiovisuais. As aulas terão como base livros e textos previamente indicados na bibliografia da disciplina para leitura e contarão, ainda, com exercícios teóricos e/ou práticos com a finalidade de fixação dos conteúdos trabalhados. Cabe ressaltar que sempre que possível a professora buscará trazer metodologias ativas para trabalhar os conteúdos, com o objetivo de tornar o(a) acadêmico(a) mais autônomo(a) sobre o seu conhecimento e aprendizado.

Na disciplina de Metodologia será realizado o evento Happy Hour Metodológico. Evento que os acadêmicos, divididos em grupos, irão conduzir; com convidados que eles irão escolher para falar sobre o campo de TI; e sobre o qual deverão elaborar um projeto justificando suas escolhas e pertinência (com tema, objetivos geral e específico, justificativas, referencial teórico sobre a área que será abordada, metodologia, análise e conclusões).



## \* Articulação com outras disciplinas

A disciplina de metodologia se articula com todas as demais disciplinas do curso, uma vez que toda a produção de conhecimento científico passa por ela. Esta disciplina auxilia tanto na produção do conhecimento, quanto na sua normatização e, com isso, divulgação. Assim, o saber adquirido pode ser compartilhado com a sociedade acadêmica.



## \* Avaliação

### AV1 (peso 10)

Participação efetiva do aluno em sala de aula, realização das atividades em sala de aula, pontualidade na entrega dos trabalhos (1 ponto)

Desenvolvimento de um projeto sobre a atividade Happy Hour Metodológico (4 pontos) – Serão observados os seguintes aspectos: (1) tema; (2) problema de pesquisa; (3) objetivo geral; (4) objetivos específicos; (5) justificativa; (6) metodologia; (7) análise e discussão dos resultados; (8) conclusões.

Elaboração de artigo (peso 5) – Serão observados os seguintes aspectos: (1) pontualidade na entrega; (2) coerência e sequência lógicas das ideias; (3) coerência gramatical e norma culta da língua portuguesa; (4) normas da ABNT ou normas internas da FAI (combinadas em sala de aula).

O desenvolvimento da parte teórica do artigo corresponde à APS, que será encaminhada dia 03/06 e deverá ser entregue dia 08/06.



## \* Avaliação

AV2: Prova (peso 10) – em caso de cola, a nota atribuída será 0 (zero), sem possibilidade do(a) acadêmico (a) recuperar esta nota. O(a) acadêmico(a) só poderá entregar a prova após uma hora de seu início.

Média (AV1+AV2)/2



- ❖ Os trabalhos entregues com atraso terão desconto na nota: 10% para uma semana de atraso; 20% para duas semanas de atraso; 30% para três semanas de atraso; 50% para mais de três semanas de atraso.
- Os trabalhos escritos entregues devem observar:
  - a qualidade e os fundamentos das ideias, a sequência lógica do tema, a riqueza e clareza da argumentação, a profundidade dos pontos de vista;
  - as normas da ABNT/normas interna FAI, a coerência textual e as regras gramaticais de português;



- ❖ Quanto à apresentação de trabalhos, a apresentação oral será avaliada individualmente, com especial atenção ao domínio do acadêmico sobre o tema em questão; à postura, atitude, desenvoltura e clareza ao longo da apresentação; à capacidade de argumentação e persuasão, à criatividade na apresentação.
- ❖ Trabalhos e provas que apresentarem qualquer sinal de cópia receberão nota zero, não havendo chance de recuperar o trabalho/prova em questão.
- ❖ Não será permitido o uso de celulares durante o período de aula. Salvo em casos que o(a) acadêmico(a) comunicar a necessidade.
- Quando houver necessidade, o uso da internet será liberado pela professora.



- Quando houver necessidade, o uso da internet será liberado pela professora.
- As provas serão corrigidas pela professora e devolvidas aos(às) acadêmicos(as) em um prazo máximo de 7 dias. Os trabalhos acadêmicos serão corrigidos e devolvidos aos(às) acadêmicos(as) em um prazo máximo de 30 dias.
- Nas provas:
- O(a) acadêmico(a) deverá permanecer em prova no mínimo por uma hora, ou seja, não será permitida a saída da sala antes de completar uma hora de prova.
- Ao final da prova, os três últimos acadêmicos devem se esperar, para saírem juntos da sala, após o último dentre eles terminar a prova.



- Na hora da entrega da prova o(a) acadêmico(a) deverá assinar uma ata de prova, com o horário de sua saída. Quando a professora devolver as provas e trabalhos escritos, o(a) acadêmico(a) também deverá assinar a ata de entrega de prova/de trabalho.
- A prova é individual e sem consulta. Em caso de cola, a nota atribuída ao(à) aluno(a) será 0 (zero) na avaliação, sem chances de refazê-la.
- Cabe ressaltar que as ferramentas facebook e whatsapp não são ferramentas oficiais da instituição. Portanto, não serão aceitos trabalhos, recados e outros materiais por essas ferramentas. Salvo casos em que ficar acordado em sala de aula, entre professora e alunos presentes, que será aceito o uso dessas ferramentas.
- Para contato extraclasse, os(as) acadêmicos(as) terão acesso à professora via email institucional: carline.gti@seifai.edu.br



## ❖ Bibliografia Básica

DMITRUK, Hilda Beatriz. **Cadernos metodológicos**: Diretrizes do trabalho científico. 7ª ed. Chapecó: Argos, 2009.

GIL, Antonio Carlos. **Como elaborar projetos de pesquisa**. 5ª ed. São Paulo: Atlas S.A., 2010.

MARCONI, Marina de Andrade; LAKATOS, Eva Maria. **Metodologia do trabalho científico:** Procedimentos básicos; Pesquisa bibliográfica, projeto e relatório; publicações e trabalhos científicos. 7ª ed. São Paulo: Atlas S.A., 2012.



## ❖ Bibliografia Complementar

ANDRADE, Maria M. de. **Introdução a metodologia do trabalho científico**: elaboração de trabalhos de graduação. São Paulo: Atlas, 2003.

ARRUDA, Glacy C. D. **Metodologia Científica**: projetos de pesquisa. Curitiba: Camarões, 2008.

CERVO, Amado L. **Metodologia Científica**. 3 ed. São Paulo: MacGraw-Hill, 1996.

CORRÊA, Fernanda Zanin Mota; RAMPAZZO, Sônia Elisete.

**Desmitificando a metodologia científica**: Guia prático de produção de trabalhos acadêmicos. Erechim: Habilis, 2008.

CARVALHO, Maria C. M. de (org). **Construindo o saber**: metodologia científica. 9 ed. São Paulo: 2003.

FISCHER, Julianne; SILVA, Everaldo; TAFNER, Elisabeth Penzlien.

Metodologia do trabalho acadêmico. 2ª ed. Curitiba: Juruá, 2009.

KARKOTLI, Gilson (org.). **Metodologia**: construção de uma proposta científica. Curitiba: Camões, 2008.



## ❖ Bibliografia Complementar

KARKOTLI, Gilson (org.). **Metodologia**: construção de uma proposta científica. Curitiba: Camões, 2008.

KOCHE, José Carlos. **Fundamentos de metodologia científica:** Teoria da ciência e iniciação à pesquisa. 29<sup>a</sup> ed. Petrópolis: Vozes, 2011. LAKATOS, Eva M.; MARCONI, Marina de A. **Metodologia científica**.

São Paulo: Atlas, 1992.

LAKATOS, Eva M.; MARCONI, Marina de A. **Metodologia científica**: ciência e conhecimento científico; métodos científicos; teoria, hipóteses e variáveis; metodologia jurídica. 5 ed. São Paulo: Atlas, 2008. MARCONI, Marina de Andrade; LAKATOS, Eva Maria. **Fundamentos de metodologia científica**. 7ª ed. São Paulo: Atlas S.A., 2010. RAMPAZZO, Sônia E.; CORREA, Fernanda Z. M. **Desmistificando a metodologia científica**. **Erechim**: Habilis, 2008.



## ❖ Bibliografia Complementar

SEVERINO, Antonio Joaquim. **Metodologia do trabalho científico**. ed. 23<sup>a</sup>. São Paulo: Cortez, 2007.

TAFNER, Malcon A.; Silva, Antônio C.; WEIDUSCHAT, Íris. Metodologia do trabalho acadêmico. Curitiba: Asselvi, 2007.

Manual de TCC do curso de GTI



## O que é ciência?

- Quando falamos em ciência, estamos falando de análise, questionamentos, explicações, respostas sobre determinado assunto.
- Ciência-disciplina constituída e ensinada.
- Ciência-processo construída em constante elaboração e revisão.
- Classificação das ciências
- Ciências formais: constituída não por seres ou fatos, mas signos e abstrações.
- Ciências factuais: constituídas por seres e fatos para comprovar ou refutar uma hipótese.



O conceito de **ciência** está relacionado ao conhecimento: (1) de forma mais ampla, no sentido de **tomar conhecimento**; e (2) ao seu sentido mais restrito, ou seja, pela aprendizagem de um fato/fenômeno, por meio da demonstração das **causas que constituem e/ou determinam** aquele **fato/fenômeno**.





### > O que é ciência?

A grande área do conhecimento está dividida em: conhecimento **popular**; conhecimento **filosófico**; conhecimento **religioso**; conhecimento **científico**.



### Conhecimento popular

É aquele tipo de conhecimento que as pessoas acumulam ao longo da vida, de suas vivências, experiências de vida, relações, e que são passadas através das gerações.

Por exemplo, podemos dizer que o fato de se dar um copo d'água com açúcar para alguém se acalmar é um conhecimento popular.



#### Conhecimento filosófico

O conhecimento filosófico é reconhecido por analisar e questionar os problemas humanos, diferenciando certo e errado, por meio da razão.





### Conhecimento teológico

É aquele conhecimento que tem por base a fé em Deus, a doutrina religiosa, tida por seus seguidores como a sabedoria máxima.



#### Conhecimento científico

O conhecimento científico está associado a laboratórios; instrumentos de pesquisa; trabalho programado, sistemático, acompanhado de metodologia. Ele não tem inspiração mística, artística, religiosa, poética.

Por exemplo, um estudo relatando as práticas (atividades) do contador é considerado conhecimento científico. Por quê? Pois foi realizada uma pesquisa para se chegar a essas atividades. Essa pesquisa envolveu vários questionamentos, do tipo: quais são as atividades exercidas pelo contador?; a qual área da contabilidade pertence cada atividade?; para que servem?; como são utilizadas?; como podem ser melhoradas?; podem ser melhoradas?



#### Conhecimento científico x senso comum

O conhecimento científico está mais além do senso comum, e por isso é mais valorizado, pois consegue dar explicações para os fatos.

O conhecimento científico é crítico, rigoroso, objetivo. O senso é comum não questiona, não analisa, não se utiliza de métodos.



Atenção: Muitas vezes, as pessoas entendem a ciência como a produção de um conhecimento exato, definitivo, imutável. Porém, a ciência é dinâmica, ela nos dá respostas provisórias aos problemas propostos. Isso porque o mundo sempre está em transformação, novas perguntas sobre o mesmo problema podem ser formuladas, novas respostas podem ser encontradas, outros caminhos podem ser descobertos. A ciência não é estática, ela se movimento junto com as transformações do mundo.



#### Sobre conhecer e pensar

- Todos somos dotados das capacidades de conhecer e pensar.
- ⇒ Conhecer é poder





#### ⇒ **Pensar** é existir

⇒ Por que pensar é existir?

Pois quando penso, tenho consciência de mim. Assim, pensar é ter a consciência da existência das coisas e sobre elas.

Ex: Se eu desconheço que o universo existe, ele não existe (para mim). Porém, se eu tenho o conhecimento da sua existência, então posso estudá-lo, pensá-lo, analisá-lo, explorá-lo.





⇒ Por meio das capacidades de conhecer e pensar, damos sentido, razão e finalidade ao mundo que nos cerca.

⇒ O conhecimento se utiliza de três elemento (RUIZ, 2009):

do sujeito, que tem a capacidade de conhecer





do objeto (o nome), aquilo que o sujeito irá conhecer

#### **CADEIRA**

da imagem (a forma), que representa o objeto para o sujeito







- ⇒ Esses três elementos precisam estar em relação para que haja o conhecimento. Se um deles falhar, não haverá conhecimento, haverá um desconhecimento.
- ⇒ O homem sempre buscou o conhecimento daquilo que o cerca, dominando, interpretando, deixando de herança para a geração seguinte.







- 2. Sobre conhecimento sensorial e conhecimento intelectual
- → Conhecimento sensorial: apresenta-se nos seres racionais e irracionais. Apreende-se o fato, a coisa, o indivíduo na sua concretude (RUIZ, 2009)
- ⇒ Conhecimento intelectual: está além da aparência, do fenômeno ou da coisa, ou seja, além das imagens sensoriais. Define novos conceitos, relações, sentidos.







Por exemplo: CADEIRA

O conhecimento sensorial é aquele que nos diz que a cadeira é um objeto que serve para sentar.



O conhecimento intelectual é aquele que relacionamos ao investimento em design, tornando-o um objeto decorativo.

Pode até ser considerada uma obra de arte