形式化方法导引

第 5 章 模型检测 5.1 应用

黄文超

http://staff.ustc.edu.cn/~huangwc/fm.html

1.1. Model Checking | 回顾

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet ${\cal M}$ is some sort of situation or ${\it model}$ of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

回顾: 下一个问题

- 问: 如何统一化定义 Μ 和 φ? 答: 一种方案: Μ 和 φ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

1.1. Model Checking | 回顾

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

1.1. Model Checking | 回顾

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet ${\cal M}$ is some sort of situation or ${\it model}$ of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing ⊨.

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

1.1. Model Checking | 回顾

回顾: 定义: Verification in Logics

Most logics used in the design, specification and verification of computer systems fundamentally deal with a *satisfaction relation*:

$$\mathcal{M} \vDash \phi$$

- ullet $\mathcal M$ is some sort of situation or *model* of a system
- ϕ is a *specification*, a formula of that logic, expressing what should be true in situation \mathcal{M} .
- At the heart of this set-up is that one can often specify and implement algorithms for computing =.

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

1.1. Model Checking | 回顾 | Limitation of first-order logic

反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

反例:一种答案

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No!

1.1. Model Checking | 回顾 | Limitation of higher-order logic

回顾: 另一种答案: Second-order Logic

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

where

$$\begin{split} C_1 &\stackrel{\mathsf{def}}{=} P(x,x) \\ C_2 &\stackrel{\mathsf{def}}{=} P(x,y) \land P(y,z) \to P(x,z) \\ C_3 &\stackrel{\mathsf{def}}{=} P(u,v) \to \bot \\ C_4 &\stackrel{\mathsf{def}}{=} R(x,y) \to P(x,y) \end{split}$$

- 难以理解 ϕ , 难以构建 ϕ
- 如何自动验证?

1.1. Model Checking | 回顾 | Limitation of higher-order logic

回顾: 另一种答案: Second-order Logic

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

where

$$C_1 \stackrel{\mathsf{def}}{=} P(x, x)$$

$$C_2 \stackrel{\mathsf{def}}{=} P(x, y) \land P(y, z) \to P(x, z)$$

$$C_3 \stackrel{\mathsf{def}}{=} P(u, v) \to \bot$$

$$C_4 \stackrel{\mathsf{def}}{=} R(x, y) \to P(x, y)$$

- 难以理解 ϕ , 难以构建 ϕ
- 如何自动验证?

1.1. Model Checking | 回顾 | Limitation of higher-order logic

回顾: 另一种答案: Second-order Logic

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

where

$$\begin{split} C_1 &\stackrel{\mathsf{def}}{=} P(x,x) \\ C_2 &\stackrel{\mathsf{def}}{=} P(x,y) \land P(y,z) \to P(x,z) \\ C_3 &\stackrel{\mathsf{def}}{=} P(u,v) \to \bot \\ C_4 &\stackrel{\mathsf{def}}{=} R(x,y) \to P(x,y) \end{split}$$

- 难以理解 ϕ , 难以构建 ϕ
- 如何自动验证?

1.1. Model Checking | 回顾 | Limitation of higher-order logic

回顾: 另一种答案: Second-order Logic

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

where

$$\begin{split} C_1 &\stackrel{\mathsf{def}}{=} P(x,x) \\ C_2 &\stackrel{\mathsf{def}}{=} P(x,y) \land P(y,z) \to P(x,z) \\ C_3 &\stackrel{\mathsf{def}}{=} P(u,v) \to \bot \\ C_4 &\stackrel{\mathsf{def}}{=} R(x,y) \to P(x,y) \end{split}$$

- 难以理解 ϕ , 难以构建 ϕ
- 如何自动验证?

1.1. Model Checking | 回顾 | Limitation of Logics

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

还有一个大问题:

用 Logics 来直接构建 ${\cal M}$ 的缺点?

- 不够直观
- 怎样自动化?

1.1. Model Checking | 回顾 | Limitation of Logics

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

还有一个大问题:

用 Logics 来直接构建 ${\cal M}$ 的缺点?

- 不够直观
- 怎样自动化?

1.1. Model Checking | 回顾 | Limitation of Logics

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

还有一个大问题:

用 Logics 来直接构建 \mathcal{M} 的缺点?

- 不够直观
- 怎样自动化?

1.1. Model Checking | 回顾 | Limitation of Logics

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

还有一个大问题:

用 Logics 来直接构建 \mathcal{M} 的缺点?

- 不够直观
- 怎样自动化?

1.1. Model Checking | 回顾 | Limitation of Logics

回顾: 下一个问题:

- 问: 如何统一化定义 \mathcal{M} 和 ϕ ? 答: 一种方案: \mathcal{M} 和 ϕ 均用 Logics
 - Propositional logic, First-order logic, Higher-order logic

还有一个大问题:

用 Logics 来直接构建 \mathcal{M} 的缺点?

- 不够直观
- 怎样自动化?

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义ℳ: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义M: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义

 Æ: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义ℳ: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义

 Æ: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义ℳ: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义M: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 本章内容

本章内容: (本节-1. 应用)

- 模型检测 (重新定义问题):
 - 重新定义φ: LTL, CTL, ...
 - 重新定义ℳ: Transition System 等
- NuSMV 语言的使用

- 如何设计算法求解上述问题
 - 利用 SAT 求解工具, 如 BMC
 - 设计新的算法, 如 BDD

1.1. Model Checking | 定义

再往前回顾: 定义: Verifier

A *verifier* for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

再往前回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

Model Checking: (1) $\mathcal{M} \Rightarrow \mathcal{M}, s$ (2) ϕ : classical logic \Rightarrow temporal logic \Leftrightarrow 田 巨面

1.1. Model Checking | 定义

再往前回顾: 定义: Verifier

A $\mathit{verifier}$ for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

再往前回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

Model Checking: (1) $\mathcal{M} \Rightarrow \mathcal{M}, s$ (2) ϕ : classical logic \Rightarrow temporal logic \Rightarrow temporal logic

1.1. Model Checking | 定义

再往前回顾: 定义: Verifier

A *verifier* for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

再往前回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

Model Checking: (1) $\mathcal{M} \Rightarrow \mathcal{M}, s$ (2) ϕ : classical logic \Rightarrow temporal logic \Rightarrow temporal logic

1.1. Model Checking | 定义

再往前回顾: 定义: Verifier

A *verifier* for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

再往前回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

Model Checking: (1) $\mathcal{M} \Rightarrow \mathcal{M}, s$ (2) ϕ : classical logic \Rightarrow temporal logic

1.1. Model Checking | 定义

再往前回顾: 定义: Verifier

A *verifier* for a language A is an algorithm V, where

$$A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

再往前回顾: 验证过程

- (1) 构建模型 w. (2) 设计规约 A. (3) (手动或自动) 构建证明 c
- (4) 使用验证器 V, 输入 c, 输出是否 $w \in A$

Model Checking: (1) $\mathcal{M} \Rightarrow \mathcal{M}, s$ (2) ϕ : classical logic \Rightarrow temporal logic 详见后页

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet ${\cal M}$ is an *appropriate* model of the system under consideration.
- s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc.

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet ${\cal M}$ is an appropriate model of the system under consideration.
- s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc.

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet ${\cal M}$ is an appropriate model of the system under consideration.
- s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc.

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet ${\cal M}$ is an appropriate model of the system under consideration.
- s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet $\mathcal M$ is an *appropriate* model of the system under consideration.
- \bullet s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet ${\cal M}$ is an appropriate model of the system under consideration.
- s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet $\mathcal M$ is an *appropriate* model of the system under consideration.
- \bullet s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet $\mathcal M$ is an *appropriate* model of the system under consideration.
- \bullet s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc.

1.1. Model Checking | 定义

定义: Model checking

Model checking is the process of computing an answer to the question of whether $\mathcal{M}, s \vDash \phi$ holds, where

- ullet $\mathcal M$ is an *appropriate* model of the system under consideration.
- s is a state of that model
- ⊨ is the underlying satisfaction relation
- ullet ϕ is a formula of one of the following *temporal logics*:
 - Linear-time Temporal Logic (LTL)
 - Computation Tree Logic (CTL)
 - etc.

下一个问题: temporal logic? LTL? CTL?

1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (LTL) has following syntax given in BNF:

$$\begin{split} \phi ::= &\top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \\ &\mid (\mathbf{X} \ \phi) \mid (\mathbf{F} \ \phi) \mid (\mathbf{G} \ \phi) \mid (\phi \ \mathbf{U} \ \phi) \mid (\phi \ \mathbf{W} \ \phi) \mid (\phi \ \mathbf{R} \ \phi) \end{split}$$

where p is any propositional atom from some set **Atoms**.

- $\bullet \ (((\digamma \ p) \land (\lnot \ q)) \rightarrow (p \ W \ r)) \equiv \digamma \ p \land \lnot \ q \rightarrow p \ W \ r$
- $(F(p \to (G r)) \lor ((\neg q) U p)) \equiv F(p \to G r) \lor \neg q U p$
- $(p \ W \ (q \ W \ r)) \equiv p \ W \ (q \ W \ r)$
- $\bullet \ ((\mathcal{G}\ (\mathcal{F}\ p)) \to (\mathcal{F}\ (q \lor s))) \equiv \mathcal{G}\ \mathcal{F}\ p \to \mathcal{F}\ (q \lor s) ,$

1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (LTL) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

- $(((F p) \land (G q)) \rightarrow (p W r)) \equiv F p \land G q \rightarrow p W r$
- $(F(p \to (G r)) \lor ((\neg q) U p)) \equiv F(p \to G r) \lor \neg q U p$
- $\bullet \ (p \le (q \le r)) \equiv p \le (q \le r)$

1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (LTL) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

- $\bullet \ (((\mathbf{F}\ p) \land (\mathbf{G}\ q)) \to (p\ \mathbf{W}\ r)) \equiv \mathbf{F}\ p \land \mathbf{G}\ q \to p\ \mathbf{W}\ r$
- (F $(p \to (G r)) \lor ((\neg q) U p)$) \equiv F $(p \to G r) \lor \neg q U p$
- $\bullet \ (p \le (q \le r)) \equiv p \le (q \le r)$

1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (LTL) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

- $(((F p) \land (G q)) \rightarrow (p W r)) \equiv F p \land G q \rightarrow p W r$
- (F $(p \to (G r)) \lor ((\neg q) U p)$) \equiv F $(p \to G r) \lor \neg q U p$
- $(p \ W \ (q \ W \ r)) \equiv p \ W \ (q \ W \ r)$

1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (LTL) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

- $(((F p) \land (G q)) \rightarrow (p W r)) \equiv F p \land G q \rightarrow p W r$
- (F $(p \to (G r)) \lor ((\neg q) U p)$) \equiv F $(p \to G r) \lor \neg q U p$
- $\bullet \ (p \le (q \le r)) \equiv p \le (q \le r)$

1.2 Linear-time temporal Logic (LTL)

定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (LTL) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

- $(((F p) \land (G q)) \rightarrow (p W r)) \equiv F p \land G q \rightarrow p W r$
- (F $(p \to (G r)) \lor ((\neg q) U p)$) \equiv F $(p \to G r) \lor \neg q U p$
- $(p \ W \ (q \ W \ r)) \equiv p \ W \ (q \ W \ r)$
- $\bullet \ ((\mathcal{G}\ (\mathcal{F}\ p)) \to (\mathcal{F}\ (q \lor s))) \equiv \mathcal{G}\ \mathcal{F}\ p \to \mathcal{F}\ (q \lor s)$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义符号

回顾: 定义: finite automator

- Q is a finite set called the states,
- ② Σ is a finite set called the *alphabet*,
- $\delta: Q \times \Sigma \to Q$ is the *transition function*
- $q_0 \in Q$ is the *start state*, and
- $F \subseteq Q$ is the set of *accept states*

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义符号

回顾: 定义: finite automaton

- \bigcirc Q is a finite set called the *states*,
- ② Σ is a finite set called the *alphabet*,
- **3** $\delta: Q \times \Sigma \to Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- $F \subseteq Q$ is the set of accept states

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义符号

回顾: 定义: finite automaton

- Q is a finite set called the states,
- 2 Σ is a finite set called the *alphabet*,
- **3** $\delta: Q \times \Sigma \to Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- **5** $F \subseteq Q$ is the set of *accept states*.

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义符号

回顾: 定义: finite automaton

- Q is a finite set called the states,
- 2 Σ is a finite set called the *alphabet*,
- **3** $\delta: Q \times \Sigma \to Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- **1** $F \subseteq Q$ is the set of *accept states*.

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- ullet ightarrow: a transition relation.
 - every $s \in S$ has some $s' \in S$ with $s \to s'$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$

•
$$S = \{s_0, s_1, s_2\}$$

- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- ullet S: a set of states
- ullet \rightarrow : a transition relation.
 - every $s \in S$ has some $s' \in S$ with $s \to s'$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$

•
$$S = \{s_0, s_1, s_2\}$$

- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- →: a transition relation.
 - every $s \in S$ has some $s' \in S$ with $s \to s'$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$

- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- →: a transition relation.
 - $\begin{tabular}{ll} \bullet & \mbox{every } s \in S \mbox{ has some } s' \in S \mbox{ with } \\ s \rightarrow s' \end{tabular}$
- L: a label function.
 - $L: S \to \mathcal{P}(Atoms)$

•
$$L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- →: a transition relation.
 - every $s \in S$ has some $s' \in S$ with $s \to s'$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$
- $S = \{s_0, s_1, s_2\}$
- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- ullet \rightarrow : a transition relation.
 - $\bullet \ \, \text{every} \,\, s \in S \,\, \text{has some} \,\, s' \in S \,\, \text{with} \\ s \to s' \,\,$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$
- $S = \{s_0, s_1, s_2\}$
- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- ullet \rightarrow : a transition relation.
 - every $s \in S$ has some $s' \in S$ with $s \to s'$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$
- $S = \{s_0, s_1, s_2\}$
- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

问题: 定义 (理解) 新的符号? 如: X, F, G, U, W, R

思路: 先定义一种最简化的模型, 然后利用这个模型来定义新符号

定义: Transition system

- S: a set of states
- ullet \rightarrow : a transition relation.
 - $\bullet \ \, \text{every} \,\, s \in S \,\, \text{has some} \,\, s' \in S \,\, \text{with} \\ s \to s'$
- L: a label function.
 - $L: S \to \mathcal{P}(\text{Atoms})$
- $S = \{s_0, s_1, s_2\}$
- transitions: $s_0 \rightarrow s_1$, $s_0 \rightarrow s_2$, $s_1 \rightarrow s_0$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$

1.2 Linear-time temporal Logic (LTL) | Semantics

定义: path

A path in a model $\mathcal{M}=(S,\to,L)$ is an infinite sequence of states s_1,s_2,s_3,\ldots in S such that, for each $i\geq 1,s_i\to s_{i+1}$. We write the path as $s_1\to s_2\to\ldots$

定义: π'

Consider the path $\pi = s_1 \rightarrow s_2 \rightarrow \dots$

• It represents a possible future of our system: first it is in state s_1 , then it is in state s_2 , and so on.

We write π^i for the *suffix* starting at s_i , e.g., $s_3 \rightarrow s_4 \rightarrow \dots$

1.2 Linear-time temporal Logic (LTL) | Semantics

定义: path

A path in a model $\mathcal{M}=(S,\to,L)$ is an infinite sequence of states s_1,s_2,s_3,\ldots in S such that, for each $i\geq 1,s_i\to s_{i+1}$. We write the path as $s_1\to s_2\to\ldots$

定义: πⁱ

Consider the path $\pi = s_1 \rightarrow s_2 \rightarrow \dots$

• It represents a possible future of our system: first it is in state s_1 , then it is in state s_2 , and so on.

We write π^i for the *suffix* starting at s_i , e.g., $s_3 \rightarrow s_4 \rightarrow \dots$

1.2 Linear-time temporal Logic (LTL) | Semantics

定义: Semantic of LTL (for $\pi \vDash \phi$)

Let $\mathcal{M}=(S,\to,L)$ be a model and $\pi=s_1\to s_2\to\dots$ be a path in $\mathcal{M}.$ Whether π satisfies an LTL formula is defined by the satisfaction relation \models as follows:

- \bullet $\pi \models \top$
- \bullet $\pi \vDash p \text{ iff } p \in L(s_1)$

- $\bullet \quad \pi \vDash \phi_1 \lor \phi_2 \text{ iff } \pi \vDash \phi_1 \text{ or } \pi \vDash \phi_2$
- \bullet $\pi \vDash \phi_1 \rightarrow \phi_2$ iff $\pi \vDash \phi_2$ whenever $\pi \vDash \phi_1$

1.2 Linear-time temporal Logic (LTL) | Semantics

定义: Semantic of LTL (for $\pi \vDash \phi$)

Let $\mathcal{M}=(S,\to,L)$ be a model and $\pi=s_1\to s_2\to\dots$ be a path in $\mathcal{M}.$ Whether π satisfies an LTL formula is defined by the satisfaction relation \models as follows:

- \bullet $\pi \models G \phi \text{ iff for all } i \geq 1, \pi^i \models \phi$
- \bullet $\pi \models F \phi$ iff there is some $i \ge 1$ such that $\pi^i \models \phi$

1.2 Linear-time temporal Logic (LTL) | Semantics

3.
$$\pi \vDash p \text{ iff } p \in L(s_1)$$

For example, $\pi \vDash p$:

8.
$$\pi \models X \phi \text{ iff } \pi^2 \models \phi$$

For example, $\pi \models X p$:

1.2 Linear-time temporal Logic (LTL) | Semantics

3.
$$\pi \vDash p \text{ iff } p \in L(s_1)$$

For example, $\pi \vDash p$:

8.
$$\pi \models X \phi \text{ iff } \pi^2 \models \phi$$

For example, $\pi \vDash X p$:

1.2 Linear-time temporal Logic (LTL) | Semantics

9. $\pi \models G \phi$ iff for all $i \ge 1, \pi^i \models \phi$

For example, $\pi \vDash G p$:

10. $\pi \models F \phi$ iff there is some $i \ge 1$ such that $\pi^i \models \phi$

For example, $\pi \models F p$

1.2 Linear-time temporal Logic (LTL) | Semantics

9. $\pi \models G \phi$ iff for all $i \geq 1, \pi^i \models \phi$

For example, $\pi \vDash G p$:

10. $\pi \models F \phi$ iff there is some $i \ge 1$ such that $\pi^i \models \phi$

For example, $\pi \models F p$:

1.2 Linear-time temporal Logic (LTL) | Semantics

11. $\pi \vDash \phi$ U ψ iff there is some $i \ge 1$ such that $\pi^i \vDash \psi$ and for all $j=1,\ldots,i-1$ we have $\pi^j \vDash \phi$

For example, $\pi \vDash p \cup q$:

12. $\pi \vDash \phi \le \psi$ iff either there is some $i \ge 1$ such that $\pi^i \vDash \psi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \vDash \phi$; or for $k \ge 1$ we have $\pi^k \vDash \phi$ For example, $\pi \vDash p \le q$:

1.2 Linear-time temporal Logic (LTL) | Semantics

11. $\pi \vDash \phi$ U ψ iff there is some $i \ge 1$ such that $\pi^i \vDash \psi$ and for all $j=1,\ldots,i-1$ we have $\pi^j \vDash \phi$

For example, $\pi \vDash p \cup q$:

12. $\pi \vDash \phi \ \mathrm{W} \ \psi$ iff either there is some $i \geq 1$ such that $\pi^i \vDash \psi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \vDash \phi$; or for $k \geq 1$ we have $\pi^k \vDash \phi$ For example, $\pi \vDash p \ \mathrm{W} \ q$:

1.2 Linear-time temporal Logic (LTL) | Semantics

11. $\pi \vDash \phi \ \mathrm{R} \ \psi$ iff either there is some $i \geq 1$ such that $\pi^i \vDash \phi$ and for all $j = 1, \ldots, i$, we have $\pi^j \vDash \psi$, or for all $k \geq 1$ we have $\pi^k \vDash \psi$

性质: $\phi R \psi \equiv \neg (\neg \phi U \neg \psi)$

For example, $\pi \vDash q \ \mathrm{R} \ p$:

1.2 Linear-time temporal Logic (LTL) | Semantics

11. $\pi \vDash \phi \ \mathrm{R} \ \psi$ iff either there is some $i \geq 1$ such that $\pi^i \vDash \phi$ and for all $j = 1, \ldots, i$, we have $\pi^j \vDash \psi$, or for all $k \geq 1$ we have $\pi^k \vDash \psi$

For example, $\pi \vDash q \ \mathrm{R} \ p$:

性质: $\phi R \psi \equiv \neg (\neg \phi U \neg \psi)$

1.2 Linear-time temporal Logic (LTL) | Semantics

回顾定义: Semantic of LTL (for $\pi \vDash \phi$)

Let $\mathcal{M}=(S,\to,L)$ be a model and $\pi=s_1\to s_2\to\dots$ be a path in $\mathcal{M}.$ Whether π satisfies an LTL formula is defined by the satisfaction relation \vDash as follows:

...

定义: Semantic of LTL (for $\mathcal{M}, s \models \phi$)

Suppose $\mathcal{M}=(S,\to,L)$ is a model, $s\in S$, and ϕ an LTL formula. We write $\mathcal{M},s\vDash\phi$ if, for every execution path π of \mathcal{M} starting at s, we have $\pi\vDash\phi$.

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \vDash G \ F \ r \to G \ F \ p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \vDash G \ F \ r \to G \ F \ p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \vDash G \ F \ r \to G \ F \ p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \vDash G \ F \ r \to G \ F \ p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \models \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \models \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \vDash G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \models \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \vDash G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash X \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash X \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

•
$$\mathcal{M}, s_0 \vDash p \land q$$
 holds

- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash X \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G r \text{ holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \vDash G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \rightarrow s_2 \rightarrow s_2 \rightarrow s_2 \rightarrow \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p \text{ does not hold}$

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash X \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \vDash G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \vDash F (\neg q \land r) \to F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p \text{ does not hold}$

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash X \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \vDash F (\neg q \land r) \to F G r$
- Which π satisfies $\pi \models G F p$?
 - $\pi_1 = s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \rightarrow \dots$ Yes
 - $\pi_2 = s_0 \rightarrow s_2 \rightarrow s_2 \rightarrow s_2 \rightarrow \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r \text{ holds}$
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \vDash F (\neg q \land r) \to F G r$
- Which π satisfies $\pi \models G F p$?
 - $\pi_1 = s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \rightarrow \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \mathrel{\mathrm{F}} p \to G \mathrel{\mathrm{F}} r$ holds
- $\mathcal{M}, s_0 \vDash G \mathrel{\mathrm{F}} r \to G \mathrel{\mathrm{F}} p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \vDash G \ F \ p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash X \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \vDash F (\neg q \land r) \to F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

•
$$\mathcal{M}, s_0 \vDash p \land q \text{ holds}$$

- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G \vdash p$?
 - $\pi_1 = s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \rightarrow \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \models G \vdash p \rightarrow G \vdash r \mid holds$
- $\mathcal{M}, s_0 \models G \vdash r \rightarrow G \vdash p \text{ does not hold}$

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \models F (\neg q \land r) \rightarrow F G r$
- Which π satisfies $\pi \models G F p$?
 - $\pi_1 = s_0 \rightarrow s_1 \rightarrow s_0 \rightarrow s_1 \rightarrow \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \vDash G \ F \ r \to G \ F \ p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \vDash F (\neg q \land r) \to F G r$
- Which π satisfies $\pi \models G F p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \rightarrow G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ r$ holds
- $\mathcal{M}, s_0 \vDash \mathbf{X} \ (q \land r)$ does not hold
- $\mathcal{M}, s_0 \vDash G \neg (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash G \ r \ \mathsf{holds}$
- For any state s of \mathcal{M} , we have $\mathcal{M}, s \vDash F (\neg q \land r) \to F G r$
- Which π satisfies $\pi \models G F p$?
 - $\pi_1 = s_0 \to s_1 \to s_0 \to s_1 \to \dots$ Yes
 - $\pi_2 = s_0 \to s_2 \to s_2 \to s_2 \to \dots$ No
- $\mathcal{M}, s_0 \vDash G \vdash p \to G \vdash r$ holds
- $\mathcal{M}, s_0 \models G F r \rightarrow G F p$ does not hold

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 It is impossible to get to a state where started holds, but ready does not hold:

$$G\neg(\text{started} \land \neg \text{ready})$$

• For any state, if a *request* (of some resource) occurs, then it will eventually be *acknowledged*:

$$G (requested \rightarrow F acknowledged)$$

 A certain process is *enabled* infinitely often on every computation path:

G F enable

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 It is impossible to get to a state where started holds, but ready does not hold:

$$G\neg(started \land \neg ready)$$

 For any state, if a request (of some resource) occurs, then it will eventually be acknowledged:

$$G (requested \rightarrow F acknowledged)$$

 A certain process is *enabled* infinitely often on every computation path:

G F enable

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 It is impossible to get to a state where started holds, but ready does not hold:

$$G\neg(started \land \neg ready)$$

 For any state, if a request (of some resource) occurs, then it will eventually be acknowledged:

$$G (requested \rightarrow F acknowledged)$$

 A certain process is *enabled* infinitely often on every computation path:

G F enable

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 It is impossible to get to a state where started holds, but ready does not hold:

$$G\neg(started \land \neg ready)$$

 For any state, if a request (of some resource) occurs, then it will eventually be acknowledged:

$$G (requested \rightarrow F acknowledged)$$

 A certain process is *enabled* infinitely often on every computation path:

G F enabled

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 Whatever happens, a certain process will eventually be permanently deadlocked:

F G deadlock

• If the process is enabled infinitely often, then it runs infinitely often:

 $G F enabled \rightarrow G F running$

• An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor:

 $G (floor2 \land directionup \land ButtonPressed5 \rightarrow (directionup \ U \ floor5))$

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 Whatever happens, a certain process will eventually be permanently deadlocked:

F G deadlock

• If the process is enabled infinitely often, then it runs infinitely often:

 $G F enabled \rightarrow G F running$

• An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor:

 $G (floor2 \land directionup \land ButtonPressed5 \rightarrow (directionup \ U \ floor5))$

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 Whatever happens, a certain process will eventually be permanently deadlocked:

F G deadlock

• If the process is enabled infinitely often, then it runs infinitely often:

 $G F enabled \rightarrow G F running$

 An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor:

 $G (floor2 \land directionup \land ButtonPressed5 \rightarrow (directionup \ U \ floor5))$

1.2 LTL | Practical patterns of Specification

问题: 怎样将 LTL 用于常见的 Specification 的设计?

答: 看如下案例

 Whatever happens, a certain process will eventually be permanently deadlocked:

F G deadlock

If the process is enabled infinitely often, then it runs infinitely often:

 $G F enabled \rightarrow G F running$

 An upwards travelling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor:

 $G \ (floor2 \land directionup \land ButtonPressed5 \rightarrow (directionup \ U \ floor5))$

1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?

答: 看如下案例

- From any state it is possible to get to a restart state
 - i.e., there is a path from all states to a state satisfying restart
- The lift can remain idle on the third floor with its doors closed
 - i.e., from the state in which it is on the third floor, there is a path along which it stays there

LTL can't express these because it *cannot* directly assert the *existence* of paths.

怎么办?

1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?

答: 看如下案例

- From any state it is possible to get to a restart state
 - i.e., there is a path from all states to a state satisfying restart
- The lift can remain idle on the third floor with its doors closed
 - i.e., from the state in which it is on the third floor, there is a path along which it stays there

LTL can't express these because it *cannot* directly assert the *existence* of paths.

怎么办?

1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?

答: 看如下案例

- From any state it is possible to get to a restart state
 - i.e., there is a path from all states to a state satisfying restart
- The lift can remain idle on the third floor with its doors closed
 - i.e., from the state in which it is on the third floor, there is a path along which it stays there

LTL can't express these because it *cannot* directly assert the *existence* of paths.

怎么办?

1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?

答: 看如下案例

- From any state it is possible to get to a restart state
 - i.e., there is a path from all states to a state satisfying restart
- The lift can remain idle on the third floor with its doors closed
 - i.e., from the state in which it is on the third floor, there is a path along which it stays there

LTL can't express these because it *cannot* directly assert the *existence* of paths.

怎么办?

1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?

答: 看如下案例

- From any state it is possible to get to a restart state
 - i.e., there is a path from all states to a state satisfying restart
- The lift can remain idle on the third floor with its doors closed
 - i.e., from the state in which it is on the third floor, there is a path along which it stays there

LTL can't express these because it *cannot* directly assert the *existence* of paths.

怎么办?

1.2 LTL | Practical patterns of Specification

新的问题: 哪些 Specification不能用 LTL 来设计?

答: 看如下案例

- From any state it is possible to get to a restart state
 - i.e., there is a path from all states to a state satisfying restart
- The lift can remain idle on the third floor with its doors closed
 - i.e., from the state in which it is on the third floor, there is a path along which it stays there

LTL can't express these because it *cannot* directly assert the *existence* of paths.

怎么办?

1.2 LTL | Equivalences

$$\neg(\phi \land \psi) \equiv \neg \phi \lor \neg \psi \qquad \neg(\phi \lor \psi) \equiv \neg \phi \land \neg \psi
\neg G \phi \equiv F \neg \phi \qquad \neg F \phi \equiv G \neg \phi \qquad \neg X \phi \equiv X \neg \phi
\neg(\phi U \psi) \equiv \neg \phi R \neg \psi \qquad \neg(\phi R \psi) \equiv \neg \phi U \neg \psi
F (\phi \lor \psi) \equiv F \phi \lor F \psi \qquad G (\phi \land \psi) \equiv G \phi \land G \psi
F \phi \equiv \top U \phi \qquad G \phi \equiv \bot R \phi
\phi U \psi \equiv \phi W \psi \land F \psi \qquad \phi W \psi \equiv \phi U \psi \lor G \psi
\phi W \psi \equiv \psi R (\phi \lor \psi) \qquad \phi R \psi \equiv \psi W (\phi \land \psi)$$

1.3 Computation Tree Logic (CTL)

回顾: 定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (*LTL*) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

定义: Computation Tree Logic (CTL)

Computation Tree logic (CTL) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (AX \phi) \mid (EX \phi) \mid (AF \phi) \mid (EF \phi) \mid (AG \phi) \mid (EG \phi)$$
$$\mid A[\phi \cup \phi] \mid E[\phi \cup \phi]$$

where p is any propositional atom from some set **Atoms**.

1.3 Computation Tree Logic (CTL)

回顾: 定义: Linear-time temporal logic (LTL)

Linear-time temporal logic (*LTL*) has following syntax given in BNF:

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$$
$$\mid (X \phi) \mid (F \phi) \mid (G \phi) \mid (\phi U \phi) \mid (\phi W \phi) \mid (\phi R \phi)$$

where p is any propositional atom from some set **Atoms**.

定义: Computation Tree Logic (CTL)

Computation Tree logic (CTL) has following syntax given in BNF:

$$\begin{split} \phi ::= &\top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \\ &\mid (AX \ \phi) \mid (EX \ \phi) \mid (AF \ \phi) \mid (EF \ \phi) \mid (AG \ \phi) \mid (EG \ \phi) \\ &\mid A[\phi \ U \ \phi] \mid E[\phi \ U \ \phi] \end{split}$$

where p is any propositional atom from some set **Atoms**.

1.3 Computation Tree Logic (CTL) | Semantics

定义: Semantic of CTL (for $\mathcal{M}, s \models \phi$)

Let $\mathcal{M}=(S,\to,L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M},s\vDash\phi$ is defined by structural induction on ϕ

- \bullet $\mathcal{M}, s \models \top$
- \bigcirc $\mathcal{M}, s \nvDash \bot$

- \bullet $\mathcal{M}, s \vDash \phi_1 \rightarrow \phi_2$ iff $\mathcal{M}, s \vDash \phi_2$ whenever $\mathcal{M}, s \vDash \phi_1$

1.3 Computation Tree Logic (CTL) | Semantics

定义: Semantic of CTL (for $\mathcal{M}, s \vDash \phi$)

Let $\mathcal{M}=(S,\to,L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M},s\vDash\phi$ is defined by structural induction on ϕ

- **3** $\mathcal{M}, s \models AX \phi$ iff for all s_1 such that $s \to s_1$ we have $\mathcal{M}, s_1 \models \phi$
- **①** $\mathcal{M}, s \vDash \mathrm{EX} \ \phi$ iff for some s_1 such that $s \to s_1$, we have $\mathcal{M}, s_1 \vDash \phi$
- \emptyset $\mathcal{M}, s \models \mathrm{AG} \ \phi$ iff for all paths $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s_i and for all s_i along the path, we have $\mathcal{M}, s_i \models \phi$
- ① $\mathcal{M}, s \vDash \mathrm{EG} \ \phi$ iff there is a path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s_i and for all s_i along the path, we have $\mathcal{M}, s_i \vDash \phi$
- $\mathcal{M}, s \vDash AF \ \phi \ \text{iff for all paths } s_1 \to s_2 \to s_3 \to \dots$, where s_1 equals s_i and there is some s_i such that $\mathcal{M}, s_i \vDash \phi$
- **3** $\mathcal{M}, s \vDash \mathrm{EF} \ \phi$ iff there is a path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, and there is some s_i such that $\mathcal{M}, s_i \vDash \phi$

1.3 Computation Tree Logic (CTL) | Semantics

定义: Semantic of CTL (for $\mathcal{M}, s \models \phi$)

Let $\mathcal{M}=(S,\to,L)$ be a model for CTL, s in S, ϕ a CTL formula. The relation $\mathcal{M},s\vDash\phi$ is defined by structural induction on ϕ

- \emptyset $\mathcal{M}, s \vDash A[\phi_1 \ \mathrm{U} \ \phi_2]$ iff for all paths $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, that path satisfies $\phi_1 \ \mathrm{U} \ \phi_2$, i.e., there is some s_i along the path, such that $\mathcal{M}, s_i \vDash \phi_2$, and, for each j < i, we have $\mathcal{M}, s_i \vDash \phi_1$
- **⑤** $\mathcal{M}, s \vDash E[\phi_1 \ \mathrm{U} \ \phi_2]$ iff *there is a path* $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, that path satisfies $\phi_1 \ \mathrm{U} \ \phi_2$, i.e., there is some s_i along the path, such that $\mathcal{M}, s_i \vDash \phi_2$, and, for each j < i, we have $\mathcal{M}, s_i \vDash \phi_1$

1.3 Computation Tree Logic (CTL) | Semantics

3.
$$\mathcal{M}, s \vDash p \text{ iff } p \in L(s)$$

$$\mathcal{M}, s_0 \vDash \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash \mathrm{AX} \ \phi \ \mathrm{iff} \ \mathit{for all} \ s_1$ such that $s \to s_1$ we have $\mathcal{M}, s_1 \vDash \phi$

$$\mathcal{M}, s_0 \vDash AX \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash \mathrm{EX} \ \phi \ \mathrm{iff} \ \textit{for some} \ s_1$ such that $s \to s_1$, we have $\mathcal{M}, s_1 \vDash \phi$

$$\mathcal{M}, s_0 \vDash \mathrm{EX} \ \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash \mathrm{AG} \ \phi \ \mathrm{iff} \ \mathit{for all paths} \ s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, and $\mathit{for all} \ s_i$ along the path, we have $\mathcal{M}, s_i \vDash \phi$

$$\mathcal{M}, s_0 \vDash AG \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash \mathrm{EG} \ \phi \ \mathrm{iff} \ \mathit{there is a}$ path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, and for all s_i along the path, we have $\mathcal{M}, s_i \vDash \phi$

$$\mathcal{M}, s_0 \models \mathrm{EG} \ \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash \mathrm{AF} \ \phi \ \mathrm{iff} \ \mathit{for all} \ \mathrm{paths}$ $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, and $\mathit{there is}$ some s_i such that $\mathcal{M}, s_i \vDash \phi$

$$\mathcal{M}, s_0 \vDash AF \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash \mathrm{EF} \ \phi \ \mathrm{iff} \ \mathit{there is a}$ path $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, and there is some s_i such that $\mathcal{M}, s_i \vDash \phi$

$$\mathcal{M}, s_0 \vDash \mathrm{EF} \ \phi$$

1.3 Computation Tree Logic (CTL) | Semantics

 $\mathcal{M}, s \vDash A[\phi_1 \ U \ \phi_2]$ iff for all paths $s_1 \to s_2 \to s_3 \to \ldots$, where s_1 equals s, that path satisfies $\phi_1 \ U \ \phi_2$, i.e., there is some s_i along the path, such that $\mathcal{M}, s_i \vDash \phi_2$, and, for each j < i, we have $\mathcal{M}, s_i \vDash \phi_1$

$$\mathcal{M}, s_0 \vDash A[\phi_1 \cup \phi_2]$$

1.3 Computation Tree Logic (CTL) | Semantics

$\mathcal{M}, s \vDash E[\phi_1 \cup \phi_2]$ iff there is a path

 $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$, where s_1 equals s, that path satisfies $\phi_1 \cup \phi_2$, i.e., there is some s_i along the path, such that $\mathcal{M}, s_i \vDash \phi_2$, and, for each j < i, we have $\mathcal{M}, s_i \vDash \phi_1$

$$\mathcal{M}, s_0 \vDash E[\phi_1 \cup \phi_2]$$

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF r \text{ holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

1.3 Computation Tree Logic (CTL) | Semantics

• $\mathcal{M}, s_0 \vDash p \land q$ holds

- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF r \text{ holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF r \text{ holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF r \text{ holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG}\ r$ holds
- $\mathcal{M}, s_0 \vDash AF r \text{ holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \models \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg \mathsf{AX} \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg \mathsf{AX} \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \text{EF } (p \land r) \text{ holds}$
- $\mathcal{M}, s_2 \vDash \mathrm{EG}\ r$ holds
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg \mathbf{AX} \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}\ (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}\ (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash \mathrm{EG}\ r$ holds
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}\ (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash \mathrm{EG}\ r$ holds
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}\ (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash \mathrm{EG}\ r$ holds
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q$ holds
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}\ (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash \mathrm{EG} \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \vDash AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

- $\mathcal{M}, s_0 \vDash p \land q \text{ holds}$
- $\mathcal{M}, s_0 \vDash \neg r \text{ holds}$
- $\mathcal{M}, s_0 \vDash \top$ holds
- $\mathcal{M}, s_0 \vDash \mathrm{EX}\ (q \land r)$ holds
- $\mathcal{M}, s_0 \vDash \neg AX \ (q \land r) \ \mathsf{holds}$
- $\mathcal{M}, s_0 \vDash \neg \mathrm{EF}\ (p \land r)$ holds
- $\mathcal{M}, s_2 \vDash \mathrm{EG}\ r$ holds
- $\mathcal{M}, s_0 \vDash AF \ r \ \mathsf{holds}$
- $\mathcal{M}, s_0 \models \mathrm{E}[(p \land q) \ \mathrm{U} \ r]$ holds
- $\mathcal{M}, s_0 \vDash A[p \cup r]$ holds
- $\mathcal{M}, s_0 \models AG \ (p \lor q \lor r \to EF \ EG \ r)$ holds

1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例:

Given a set of states $A=\{s_0,s_1,s_2,s_3\}$, let $R^{\mathcal{M}}$ be the set $\{(s_0,s_1),(s_1,s_0),(s_1,s_1),(s_1,s_2),(s_2,s_0),(s_3,s_0),(s_3,s_2)\}$. We may depict this model as a directed graph in a figure, where an edge (a transition) leads from a node s to a node s' iff $(s,s')\in R^{\mathcal{M}}$.

回顾: 反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

回顾: 反例: 一种答案

$$(u=v) \vee \exists x (R(u,x) \wedge R(x,v)) \vee \exists x_1 \exists x_2 (R(u,x_1) \wedge R(x_1,x_2) \wedge R(x_2,v)) \vee \dots$$

- This is infinite, so it's not a well-formed formula.
- Can we find a well-formed formula with the same meaning? No!

1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

回顾: 另一种答案: Second-order Logic

$$\neg \exists P \forall x \forall y \forall z \ (C_1 \land C_2 \land C_3 \land C_4)$$

where

$$C_1 \stackrel{\text{def}}{=} P(x, x)$$

$$C_2 \stackrel{\text{def}}{=} P(x, y) \land P(y, z) \to P(x, z)$$

$$C_3 \stackrel{\text{def}}{=} P(u, v) \to \bot$$

$$C_4 \stackrel{\text{def}}{=} R(x, y) \to P(x, y)$$

1.3 Computation Tree Logic (CTL) | Semantics

回顾: 反例: How to define Reachability as ϕ

Given nodes n and n' in a directed graph, is there a finite path of transitions from n to n'?

新答案: 使用 CTL

$$\mathcal{M}, n \models \mathrm{EF} \ (s = n')$$

1.3 Computation Tree Logic (CTL) | Equivalences

$$\neg AF \ \phi \equiv EG \ \neg \phi$$

$$\neg EF \ \phi \equiv AG \ \neg \phi$$

$$\neg AX \ \phi \equiv EX \ \neg \phi$$

$$AF \ \phi \equiv A[\top \ U \ \phi]$$

$$EF \ \phi \equiv E[\top \ U \ \phi]$$

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the *existence* of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

How to express it in CTL? AFAG p? No

Another LTL formula?

$$F p \to F q$$

怎么办?

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the *existence* of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

How to express it in CTL? AFAG p? No

Another LTL formula?

$$F p \to F q$$

怎么办?

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the existence of paths.

CTL can express the existence of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

FG p

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the *existence* of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

FG p

How to express it in CTL? AFAG p? No

Another LTL formula?

 $F p \to F q$

怎么办?

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the existence of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

FG p

How to express it in CTL? AFAG p? No

Another LTL formula?

 $F p \to F q$

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the existence of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

FG p

How to express it in CTL? AFAG p? No

Another LTL formula?

 $F p \to F q$

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the *existence* of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

FG p

How to express it in CTL? AFAG p? No

Another LTL formula?

$$F p \rightarrow F q$$

1.3 Computation Tree Logic (CTL) \mid LTL v.s. CTL

回顾: LTL cannot express these because it *cannot* directly assert the *existence* of paths.

• CTL can express the *existence* of paths.

新的问题: Is CTL better than LTL? i.e., Is LTL a subset of CTL?

答案: No

例:

An LTL formula:

FG p

How to express it in CTL? AFAG p? No

Another LTL formula?

$$F p \rightarrow F q$$

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL | CTL*

- A[$(p \cup r) \lor (q \cup r)$]: along all paths, either p is true until r, or q is true until r.
- A[X $p \lor XX p$]: along all paths, p is true in the next state, or the next but one.
- E[G F p]: there is a path along which p is infinitely often true.

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL | CTL*

- A[$(p \cup r) \lor (q \cup r)$]: along all paths, either p is true until r, or q is true until r.
- A[X $p \lor XX p$]: along all paths, p is true in the next state, or the next but one.
- E[G F p]: there is a path along which p is infinitely often true.

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL | CTL*

- A[$(p \cup r) \lor (q \cup r)$]: along all paths, either p is true until r, or q is true until r.
- A[X $p \lor XX p$]: along all paths, p is true in the next state, or the next but one.
- E[G F p]: there is a path along which p is infinitely often true.

1.3 Computation Tree Logic (CTL) | LTL v.s. CTL | CTL*

- A[$(p \cup r) \lor (q \cup r)$]: along all paths, either p is true until r, or q is true until r.
- A[X $p \lor XX p$]: along all paths, p is true in the next state, or the next but one.
- E[G F p]: there is a path along which p is infinitely often true.

1.3 Computation Tree Logic (CTL) | Semantics

定义: CTL*

The syntax of CTL* involves two classes of formulas:

• state formulas, which are evaluated in states:

$$\phi ::== \top \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid A[\alpha] \mid E[\alpha]$$

where p is any atomic formula and α any path formula

• path formulas, which are evaluated along paths:

$$\alpha ::== \phi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha \lor \alpha) \mid (G \land \alpha) \mid (F \land \alpha) \mid (X \land \alpha)$$

1.3 Computation Tree Logic (CTL) | Semantics

1.3 Computation Tree Logic (CTL) | Semantics

Concluding:

- LTL, CTL* can be used to model ϕ , instead of propositional logics, first-order logics, higher-order logics
- \bullet Transition system can be used to model $\mathcal{M},$ instead of logics

剩下的问题

- How to program using LTL, CTL, CTL*, transition system
 - Using NuSMV (见第 1.4 节)
- How to implement algorithms for NuSMV
 - (见第 2 节)

1.3 Computation Tree Logic (CTL) | Semantics

Concluding:

- LTL, CTL* can be used to model ϕ , instead of propositional logics, first-order logics, higher-order logics
- ullet Transition system can be used to model ${\mathcal M}$, instead of logics

剩下的问题

- How to program using LTL, CTL, CTL*, transition system
 - Using NuSMV (见第 1.4 节)
- How to implement algorithms for NuSMV
 - (见第 2 节)

1.3 Computation Tree Logic (CTL) | Semantics

Concluding:

- LTL, CTL* can be used to model ϕ , instead of propositional logics, first-order logics, higher-order logics
- ullet Transition system can be used to model ${\mathcal M}$, instead of logics

剩下的问题

- How to program using LTL, CTL, CTL*, transition system
 - Using NuSMV (见第 1.4 节)
- How to implement algorithms for NuSMV
 - (见第 2 节)

1.3 Computation Tree Logic (CTL) | Semantics

Concluding:

- LTL, CTL* can be used to model ϕ , instead of propositional logics, first-order logics, higher-order logics
- \bullet Transition system can be used to model $\mathcal{M},$ instead of logics

剩下的问题:

- How to program using LTL, CTL, CTL*, transition system
 - Using NuSMV (见第 1.4 节)
- How to implement algorithms for NuSMV
 - (见第 2 节)

1.3 Computation Tree Logic (CTL) | Semantics

Concluding:

- LTL, CTL* can be used to model ϕ , instead of propositional logics, first-order logics, higher-order logics
- \bullet Transition system can be used to model ${\mathcal M},$ instead of logics

剩下的问题:

- How to program using LTL, CTL, CTL*, transition system
 - Using NuSMV (见第 1.4 节)
- How to implement algorithms for NuSMV
 - (见第 2 节)

1.3 Computation Tree Logic (CTL) | Semantics

Concluding:

- LTL, CTL* can be used to model ϕ , instead of propositional logics, first-order logics, higher-order logics
- \bullet Transition system can be used to model $\mathcal{M},$ instead of logics

剩下的问题:

- How to program using LTL, CTL, CTL*, transition system
 - Using NuSMV (见第 1.4 节)
- How to implement algorithms for NuSMV
 - (见第2节)

作业

Figure 3.39. A model \mathcal{M} .

- 2. Consider the system of Figure 3.39. For each of the formulas ϕ :
 - (a) G a
 - (b) a U b
 - (c) $a \cup X (a \wedge \neg b)$
 - (d) $X \neg b \wedge G (\neg a \vee \neg b)$
 - (e) $X(a \wedge b) \wedge F(\neg a \wedge \neg b)$
 - (i) Find a path from the initial state q_3 which satisfies ϕ .
 - (ii) Determine whether $\mathcal{M}, q_3 \vDash \phi$.

作业

Figure 3.41. Another model with four states.

- 8. Consider the model \mathcal{M} in Figure 3.41. Check whether $\mathcal{M}, s_0 \vDash \phi$ and $\mathcal{M}, s_2 \vDash \phi$ hold for the CTL formulas ϕ :
 - (a) AF q
 - (b) AG (EF $(p \lor r)$)
 - (c) $\mathrm{EX}\left(\mathrm{EX}\,r\right)$
 - (d) AG(AFq).