Week 9: Caenorhabditis elegans

Reading:

- Read lab manual chapter 9
 - Pages 244-273, 278-280

Today's Taxa

Domain Eukarya

Lineage Opisthokonta

Phylum Annelida

Phylum Nemotoda

Both:

- Have bilateral symmetry
- Are protostomes
- Are triploblastic
- Have tube-like digestive tract with mouth AND anus
- Have a body cavity

Body cavities

- Coelom = body cavity
- Acoelomate: no body cavity (ex. Platyhelminthes)
- Psuedocoelomate: cavity is between mesoderm and endoderm (ex. Nemotoda, Rotifera)
- Coelomate: have a true coelom; cavity is surrounded by mesoderm (ex. Annelida)

9.R.2 Three body forms. Drawings J. Dole

- Coelom is separated by septa
- Closed circulatory system
- Three classes we will learn about:

- Class 'Polychaeta' (marine segmented worms)
- Class Oligochaeta (earthworms and relatives)
- Class Hirudinea (leeches)

- Coelom is separated by **septa**
- Closed circulatory system
- Three classes we will learn about:

- Class 'Polychaeta' (marine segmented worms)
- Class Oligochaeta (earthworms and relatives)
- Class Hirudinea (leeches)

- Coelom is separated by **septa**
- Closed circulatory system
- Three classes we will learn about:

- Class 'Polychaeta' (marine segmented worms)
- Class Oligochaeta (earthworms and relatives)
- Class Hirudinea (leeches)

- Coelom is separated by **septa**
- Closed circulatory system
- Three classes we will learn about:

- Class 'Polychaeta' (marine segmented worms)
- Class Oligochaeta (earthworms and relatives)
- Class Hirudinea (leeches)

Class 'Polychaeta'

- Mostly marine
- Largest class of Annelids
- Some free-living, some sedentary
- Ex: Nereis
- Pygidium: rear segment
- Parapodia: flat structure on each side of body segment
- Setae/chaetae: bristles projecting from parapodia; u for movement and sometime respiration!

Class Oligochaeta

- Earthworms and relatives
- No parapodia
- Few setae
- Hermaphroditic
- Ecologically important

Earthworm cross section

Class Hirudinea

- Live in marine, freshwater, and terrestrial habitats
- Majority are predatory, not parasitic
- Do not have setae
- Medicinal leech: *Hirudo medicinalis*
- Hirudin: anticoagulant from leeches; used during surgeries

Phylum Nematoda

- Free-living + parasitic
 varieties
- Most have separate male and female sexes
 - Some have hermaphrodites and males
- Many are detritivores
- Ecdysozoa:
 - Grouping of organisms characterized by <u>ecdysis</u> (shedding of exoskeleton)

Ascaris

- Intestinal parasites of mammals
- How are they spread?

Other Nematodes (not on exam)

- Necator americanus
 - Hookworms

https://www.pbs.org/wgbh/nova/article/how-a-worm-gave-the-south-a-bad-name/

- Enterobius vermicularis
 - Pinworms
- Filaria worms
 - Cause elephantiasis
- Trichinella spiralis
 - Trichina worms
 - Cause trichinosis
 - Spread to humans via larvae in uncooked pork

Time for an experiment!

C. elegans on drugs

C. elegans on drugs

- Homo sapiens and C. elegans share a common ancestor
- This ancestor would have:
 - Been triploblastic
 - Had tube-like digestive tract
 - Had a head-end and tail-end
 - Had a central nervous system
- We know the effects of certain drugs on humans
 - Alcohol: slows down
 - Caffeine: speeds up
- Will these drugs have a similar effect on C. elegans?
- If so, it is likely that these drugs would have had the same effect on our common ancestor?

C. elegans on drugs

- Watch "C. elegans experiment with Robyn" video to see experimental process
- Access data through "Analysis of *C. elegans* on drugs lab report" assignment, and complete lab report assignment
- Watch "Stats lecture with Shaun: Confidence Intervals" for stats help

Dissection rules

- If you are within a foot of the dissection, you must be wearing goggles.
- Dissection waste MUST be disposed of properly:
 - Used gloves in green bucket
 - Contaminated paper towels in red bucket
 - Earthworm waste goes in white bucket
 - Liquid waste goes in other white bucket (read labels!)
 - NO PINS in waste buckets
- Clean up:
 - Borrowed tools must be rinsed, dried, and returned
 - Trays must be rinsed and returned to shelf, staggered.

Failure to follow this rules will result in loss of participation points (possibly for the entire class)

Earthworm dissection

- Know:
 - Mouth
 - Brain
 - Pharynx
 - Hearts
 - Dorsal blood vessel
 - Seminal receptacle
 - Seminal vesicle
 - Crop
 - Gizzard
 - Intestine
 - Anus

9.F.2 Earthworm. Redrawn from Dolphin

Chapter 9 specimens

- Earthworm dissection
- Earthworm cross section
- Nereis external anatomy
- Leech observation
- Sedentary polychaete observation
- Female and male Ascaris cross section

Thanks for watching!

