1. Problems in Chapter 4

- 1.1. If x is an even integer, then x^2 is even.
 - \bullet x = 2a
 - $x^2 = 4a^2 = 2(2a^2)$
- 1.2. If x is odd, then x^3 is odd.
 - x = 2a + 1
 - $x^3 = (2a+1)^3 = 8a^3 + 3*4a^2 + 3*2a + 1 = 2(4a^3 + 6a^2 + 3a) + 1$
- 1.3. If a is odd, then $a^2 + 3a + 5$ is odd.
 - a = 2b + 1
 - $a^2 + 3a + 5 = (2b+1)^2 + 3(2b+1) + 5 = 4b^2 + 1 + 4b + 6b + 8 = 2(2b^2 + 5b + 4) + 1$
- 1.4. If x, y odd, then xy is odd.
 - x = 2a + 1
 - y = 2b + 1
 - xy = (2a+1)(2b+1) = 4ab + 2a + 2b + 1 = 2(2ab+a+b) + 1
- 1.5. If x is even xy is even.
 - \bullet x=2a
 - xy = 2ay
- 1.6. If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.
 - b = ax
 - \bullet c = ay
 - \bullet b+c=ax+ay=a(x+y)
- 1.7. **If** $a \mid b$ **then** $a^2 \mid b^2$.
 - \bullet b = ax
 - $b^2 = a^2 x^2$
- 1.8. If $5 \mid 2a$ then $5 \mid a$.
 - 2a = 5x
 - Note that a, 2a and 5x are integers
 - Also, a = 5x/2, so 5x/2 is an integer.
 - This is only possible if x = 2q for some q. We can then write a = 5q.
- 1.9. If $7 \mid 4a$ then $7 \mid a$.
 - 4a = 7x
 - Since a, 4a, 7x are integers, it must be a = 7x/4 an integer too.
 - This is only possible if x = 4q for some integer q. We can then write a = 7q.
- 1.10. If $a \mid b$ then $a \mid (3b^3 b^2 + 5b)$.
 - \bullet b = ax
 - $3b^2 b^2 + 5b = b(3b^2 b + 5) = ax(3b^2 b + 5)$
- 1.11. If $a \mid b$ and $c \mid d$, then $ac \mid bd$.
 - b = ax
 - d = cy
 - bd = (ax)(cy) = (ac)(xy)

- 1.12. If $x \in \mathbb{R}$ and 0 < x < 4, then $\frac{4}{x(4-x)} \ge 1$.
 - (1) First attempt, try to find stuff about the function $f(x) = \frac{4}{x(4-x)}$

 - $f(x) = \frac{4}{x(4-x)} = \frac{4}{4x-x^2} = 4(4x-x^2)^{-1}$ $f'(x) = -4(4x-x^2)^{-2}(4-2x) = -8\frac{2-x}{x^2(4-x)^2}$
 - f'(x) = 0 at x = 2
 - Between 0 and 2, the function is decreasing (f'(x) < 0). It is increasing between 2 and 4.
 - The minimum is at x=2. f(2)=1.
 - (2) Second attempt: Start from the bottom.

x > 0	
4 - x > 0	
:	
$4 \ge x(4-x)$	parabola $x(4-x)$ has a max at $x=2$
$\frac{4}{x(4-x)} \ge 1$	cause both $x > 0$ and $4 - x > 0$, inequality does not change

So this one gives me a better idea. Start by considering the parabola y = f(x) = x(4-x). Draw it, note that the function is positive in the interval 0 < x < 4. It also have a maximum at x = 2, and f(2) = 4.

- 1.13. Suppose $x, y \in \mathbb{R}$. If $x^2 + 5y = y^2 + 5x$, then x = y or x + y = 5.
 - (1) First attempt:
 - $x^2 + 5y = y^2 + 5x$
 - $x^2 5x = y^2 5y$
 - x(x-5) = y(y-5)
 - Careful now! Think $4 \cdot 6 = 2 \cdot 12$.
 - If x=0, then y(y-5)=0, which gives y=0 or y=5. (in this case, y=0 gives x=y. If y=5, then note that x+y=5)
 - But after that I am stuck... Maybe the last expression is not so useful after all. Let's try to combine the 5's instead
 - (2) Second attempt:
 - $x^2 y^2 = 5x 5y$
 - (x-y)(x+y) = 5(x-y)
 - I like this one more. We could eliminate x-y from that equation, provided $x-y\neq 0$. In this case, we would have x + y = 5.
 - In case we cannot eliminate it, it is x-y=0, which is precisely the condition x=y.
- 1.14. If $n \in \mathbb{Z}$, then $5n^2 + 3n + 7$ is odd.
 - Case 1) n = 2a: $5n^2 + 3n + 7 = 5(2a)^2 + 6a + 7 = 20a^2 + 6a + 7 = 2(10a^2 + 3a + 3) + 1$
 - Case 2) n = 2a + 1: $5n^2 + 3n + 7 = 5(2a + 1)^2 + 3(2a + 1) + 7 = 5(4a^2 + 1 + 4a) + 6a + 10 = 20a^2 + 26a + 15 = 2(10a^2 + 13a + 7) + 1$
- 1.15. If $n \in \mathbb{Z}$, then $n^2 + 3n + 4$ is even.
 - Case 1) n = 2a: $n^2 + 3n + 4 = (2a)^2 + 3(2a) + 4$ even
 - Case 2) n = 2a + 1: $(2a + 1)^2 + 3(2a + 1) + 4 = 4a^2 + 1 + 4a + 6a + 3 + 4 = 4a^2 + 10a + 8$ even
- 1.16. If two integers have the same parity, then their sum is even.
 - Case 1) n = 2a, m = 2b: n + m = 2a + 2b even
 - Case 2) n = 2a + 1, m = 2b + 1: n + m = 2a + 1 + 2b + 1 = 2(a + b) + 2
- 1.17. If two integers have opposite parity, then their product is even.
 - WLOG n = 2a, m = 2b + 1
 - $n \cdot m = 2a(2b+1) = 4ab + 2a$ even

- 1.18. Suppose x and y are positive real numbers. If x < y, then $x^2 < y^2$.
 - This one is cool to start from the bottom
 - x > 0 and $y > 0 \implies x + y > 0$
 - $x < y \implies x y < 0$
 - (x y)(x + y) < 0• $x^2 y^2 < 0$

 - $x^2 < y^2$
- 1.19. Suppose a, b, c are integers. If $a^2 \mid b$ and $b^3 \mid c$, then $a^6 \mid c$.
 - $\bullet \ a^2 \mid b \implies b = a^2 x$

 - $b^3 \mid c \implies c = b^3 y$ $c = b^3 y = (a^2 x)^3 y = a^6 x^3 y$
- 1.20. If a is an integer and $a^2 \mid a$, then $a \in \{-1, 0, 1\}$.
 - $a^2 \mid a \implies a = a^2 x \ (x \text{ integer!})$
 - If $a \neq 0$, we can divide both sides to get 1/a = x is an integer. It can only be a = -1 or a = 1
 - a = 0 is the other option.
- 1.21. **TODO** If p is prime and k is an integer for which 0 < k < p, then $p \mid {p \choose k}$.
 - \bullet p is prime
 - 0 < k < p
 - $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is an integer.
- 1.22. If $n \in \mathbb{N}$, then $n^2 = 2\binom{n}{2} + \binom{n}{1}$.

 - This only makes sense for $n \ge 2$ in my book. $2\binom{n}{2} + \binom{n}{1} = \frac{2n!}{2(n-2)!} + n = n(n-1) + n = n^2 n + n$
- 1.23. **TODO** If $n \in \mathbb{N}$, then $\binom{2n}{n}$ is even.

$$\binom{2n}{n} = \frac{(2n)!}{n!n!}$$

$$= \frac{2n \cdot (2n-1) \cdot (2n-2) \cdot \dots \cdot (n+1)}{n!}$$

$$= \frac{2n(2n-2)(2n-4) \cdot \dots \cdot (2n-(2n+2)) \cdot \text{stuff}}{n!}$$

- 1.24. **TODO** If $n \in \mathbb{N}$ and $n \geq 2$, then the numbers $n! + 2, n! + 3, \dots, n! + n$ are all composite.
- 1.25. **TODO** If $a, b, c \in \mathbb{N}$ and $c \leq b \leq a$, then $\binom{a}{b}\binom{b}{c} = \binom{a}{b-c}\binom{a-b+c}{c}$.
- 1.26. DONE Every odd integer is a difference of two squares.
 - n = 2a + 1

 - $n = x^2 y^2$
 - Can we use somehow that $(a b)(a b) = a^2 b^2$?
 - 2x + 1 = (a b)(a + b)
 - This should have an easy solution (do the system) to get 2a = n + 1, or a = (n + 1)/2, and thus b = (n-1)/2.

n	2n-1	$a^2 - b^2$	(a-b)(a+b)	a+b	a-b
1	1	$1^2 - 0^2$		1	1
2	3	$2^2 - 1^2$	(2-1)(2+1)	3	1
3	5	$3^2 - 2^2$	(3-2)(3+2)	5	1
4	7	$4^2 - 3^2$	(4-3)(4+3)	7	1
5	9	$5^2 - 4^2$	(5-4)(5+4)	9	1
6	11	$6^2 - 5^2$	(6-5)(6+5)	11	1
7	13	$7^2 - 6^2$	(7-6)(7+6)	13	1 1

- 1.27. DONE Suppose $a, b \in \mathbb{N}$ If gcd(a, b) > 1, then $b \mid a$ or b is not prime.
 - $gcd(a, b) \neq 1$ suggests that a and b have at least one common divisor.
 - If b is not prime, then there is nothing to prove (it is one of the conclusions!)
 - ullet If b is prime, then the only possible divisor for both a and b has to be precisely b.
- 1.28. If $a, b, c \in \mathbb{N}$, then $c \gcd(a, b) \leq \gcd(ca, cb)$.
 - gcd(a, b) is the largest divisor of both a and b.
 - In particular, gcd(a, b) is **a** divisor of both a and b
 - In this case, $c \cdot \gcd(a, b)$ is a divisor of both ca and cb.
 - $c \cdot \gcd(a, b) \le \gcd(ca, cb)$ because $\gcd(ca, cb)$ is **the** largest divisor of both ca and cb.