Example 1

Prove that the vectors $\vec{a} = \{5; 15\}$ and $\vec{b} = \{3; -1\}$ are orthogonal.

Example 2

Are the vectors \vec{a} = {4; -3} and \vec{b} = {5; 8} orthogonal?

Example 3

Find the value of n where the vectors $a = \{3; 2\}$ and $b = \{n; 4\}$ are orthogonal.

Example 4

Prove that the vectors $a = \{4; 2; -1\} u b = \{2; -2; 4\}$ is orthogonal.

Example 5

Are the vectors $a = \{-5, 2, 4\}$ and $b = \{10, 7, 1\}$ orthogonal?

Answer 1

Calculate the dot product of these vectors:

 $\vec{a} \cdot \vec{b} = 5 \cdot 3 + 15 \cdot (-1) = 15 - 15 = 0$, since the dot product is zero, the vectors \vec{a} and \vec{b} are orthogonal.

Answer 2

Calculate the dot product of these vectors:

 $\vec{a} \cdot \vec{b} = 4 \cdot 5 + (-3) \cdot 8 = 20 - 24 = -4$, since the dot product is not zero, the vectors \vec{a} and \vec{b} are not orthogonal.

Answer 3

Calculate the dot product of these vectors:

$$\vec{a} \cdot \vec{b} = 3 \cdot n + 4 \cdot 2 = 3n + 8$$

$$2n + 8 = 0$$

$$2n = -8$$

n = -4, vectors \vec{a} and \vec{b} are orthogonal when n = -4.

Answer 4

Calculate the dot product of these vectors:

$$\vec{a} \cdot \vec{b} = 4 \cdot 2 + 2 \cdot (-2) + (-1) \cdot 4 = 8 - 4 - 4 = 0$$

since the dot product is zero, the vectors \vec{a} and \vec{b} are orthogonal.

Answer 5

Calculate the dot product of these vectors:

 $\vec{a} \cdot \vec{b} = (-5) \cdot 10 + 2 \cdot 7 + 4 \cdot 1 = -50 + 14 + 4 = -32$, since the dot product is not zero, the vectors \vec{a} and \vec{b} are not orthogonal.