Exercício Extras de Implementação- Cálculo Numérico - 2022.2

Rafael Alves

Universidade Federal do ABC - CMCC

1. (Parte da Nota O1) Neste exercício, você deverá implementar os métodos para o cálculo de zeros de função vistos em aula: Bissecção e Newton (Bônus: implemente também o método das secantes.). As implementações devem ser aplicadas ao problema abaixo e comparadas de acordo, no mínimo, com o número de iterações e o tempo de execução, por meio de uma tabela. Para isso, alguns parâmetros de entrada do problema devem variar: mude a tolerância (10⁻⁴, 10⁻⁵, ..., 10⁻⁸, por exemplo); mude o ponto (intervalo) inicial. É obrigatório que as implementações apresentem 2 critérios de parada, em que um deles seja o número máximo de iterações.

 $(Problema^{\ 1})$ Problemas que envolvam a quantia necessária para o pagamento de uma hipoteca empregam a seguinte fórmula:

$$A = \frac{P}{i}[1 - (1+i)^{-n}],$$

em que A é o valor da hipoteca, P é o valor de cada pagamento e i é a taxa de juros por período para n períodos de pagamento. Suponha que uma quantia de $R\$1d_1d_2000,00$ em 30 anos pela hipoteca de uma casa e que o mutuário possa pagar até $R\$1d_100,00$ por mês pela casa. Qual deve ser a taxa de juros máxima para que ele possa pagar a hipoteca?

Obs1: d_1 e d_2 são os dois últimos dígitos não nulos de seu RA. Por exemplo, se seu RA é 11202012340, $d_1 = 3$ e $d_2 = 4$. Obs2: repare que n é a quantidade de pagamentos!

2. (Parte da Nota O2) ² A vazão de água em uma tubulação está relacionada ao diâmetro e à inclinação da tubulação. Concluiu-se que essa relação é da forma

$$V = a_0 D^{a_1} I^{a_2},$$

em que V é a vazão em m^3/s , I é a inclinação e D o diâmetro em m. A partir dos dados experimentais explicitados na tabela a seguir, determine as constantes a_0 , a_1 e a_2 a partir do Método dos Mínimos Quadrados e estime a vazão para alguns valores não tabelados.

# Experimento	Diâmetro (m)	Inclinação (rad)	Vazão (m^3/s)
1	1	0.001	1.4
2	2	0.001	8.3
3	3	0.001	24.2
4	1	0.01	4.7
5	2	0.01	28.9
6	3	0.01	84.0
7	1	0.05	11.1
8	2	0.05	69.0
9	3	0.05	200.0

(Exercício Extra) Neste exercício, implemente o método de Gauss-Seidel (Bônus 1: modifique o método para que "rode" Jacobi) para resolução de sistemas lineares de forma a verificar se que há garantia de convergência em relação aos critérios de linhas e colunas (Bônus 2: verifique também para Sassenfeld;). Ou seja, a implementação deve conter uma função que avalie se a matriz de coeficientes satisfaz ao menos algum critério. O método deve ser aplicado aos sistemas $A_i x = b_i$ como eles estão, sem mudança nas estruturas. Mude as aproximações iniciais (teste $x^0 = \mathbf{0}$ em todos, por exemplo) e analise a convergência de acordo com o fato de haver ou não garantia de convergência para o sistema. É obrigatório que a implementação apresente 2 critérios de parada, em que um deles seja o número máximo de iterações. (Dica: teste a implementação em problemas pequenos, como os

¹Adaptado de Análise Numérica, R. Burden, D. Faires, A. Burden, Cengage, 2015.

² Adaptado de Cálculo Numérico, N.M.B. Franco, Pearson, 2006.

dados em aula.)

$A_1 =$	1 2.4586 9.2123 0 7.5789 0 0 0 0 0 4.1449 0 0	8.9864 9.8359 7.3596 0 6.7871 0 0 6.5048 0 0.0383 0 0	0 8.8209 2.5 0 0 0 0 0.4042 1.0633 0 0 0 2.9381	7.6000 1.5 1.1217 0 0 6.1627 0 0 0 0	0 0 0 0 0.8 0 0 0 3.5453 0 0 0 0 2.2517	0 1.3188 0 0 0 3.6 3.3328 0 0 7.1529 0 0 0 0	0 0 0 1.0323 0 8.6979 0.5 0 3.4388 0 3.4263 0 0	$egin{array}{c} 0 \\ 0 \\ 0 \\ 6.8427 \\ 7.4000 \\ 0 \\ 2.4 \\ 0 \\ 0 \\ 1.6083 \\ \end{array}$	0 0 0 9.0283 0 1	6.4491 0 0 6.8348 0 9.3675 0.8 0.6999 0	0 9.1 7.6862 0 0 8.5 2.1879 8.2 0.7705 5.7749 0 2.7691 5.8 0 0 5.1808 0.3 0 4.3	993 0 152 8.9973 0 0 0 834 0.9767 143 0 0 4.6118 0 5.9511 0 6.8086 0 0 450 5.5722 5 6.5148 596 2.6 251 0	5.9505 0 7 8.3102 0 8 0 6 0.7454 6 0 7 0	0 0 0 0 0 0 0 5.4945 0 0 0 0.2818 0 3.3141	
$A_2 = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	10.0000 2.4586 9.2123 0 7.5789 0 0 0 0 0 4.1449 0	8.9864 18.8359 7.3596 0 6.7871 0 0 6.5048 0 0.0383 0 0	0 8.8209 11.5000 0 0 0 0 0.44042 1.0633 0 0 0 2.9381	7.6000 10.5000 1.1217 0 0 6.1627	0 0 0 9.8000 0 0 3.5453 0 0 0 0 2.2517	0 1.3188 0 0 0 12.6000 3.3328 0 7.1529 0 0 0	0 0 0 1.0323 0 8.6975 9.5000 0 3.4388 0 0 0 0	6.8427 7.4000 0 0 11.4000 8 0	0 9.028 0 10.000 0 6.032 4.807	1 0 2.146 6.449 0 0 3 6.834 0 00 9.367 9.800 8 0.699	$\begin{array}{ccc} 1 & & 0 & \\ & & 0 & \\ & & 2.1879 & \\ 8 & & 0 & \\ & & 0.7705 & \\ 5 & & 6.7749 & \\ 0 & & 0 & \\ \end{array}$	$\begin{array}{c} 4.4993 \\ 9.1152 \\ 0 \\ 0 \\ 0 \\ 8.5834 \\ 8.2143 \\ 0 \\ 0 \\ 0 \\ 0 \\ 5.8450 \\ 14.0000 \\ 0.3596 \\ 4.3251 \\ 0 \\ \end{array}$	0 8.9973 0 0 0.9767 0 4.6118 5.9515 6.8086 0 5.5727 6.5148 11.6000 0	0 0 5.9505 0 8.3102 0 0 0.7454 0 0 0 0 12.1200	0 0 0 0 0 0 0 0 0 5.4945 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
$A_3 =$	0 0 0 0 0 0 0 0 0.4420 0 0	$egin{array}{c} 1.0000 & 0 & 0 & 0 \\ 0.8691 & 0 & 0 & 0.4480 \\ 1.6776 & 0.4784 & 0 & 0.2047 \\ 0.7220 & 0 & 0 & 1.9585 \\ \hline \end{array}$	0.0628 0 8.4300 1.8677 0 0 0.0048 1.1288 0 0 0 0 0 0.6915 1.1943 0	6.0440 0 0 1 1.9729 0.0304 0 0 0	0 0 1.7333 0.0020 0.0000 0 0.10548 0 0.19210 0 0.11324 0 0	$\begin{matrix} 0\\0\\1.3587\\0\\0\\0\\-7.2560\\0\\0\\0.8595\\0\\0.4465\\0\\0.6931\\0\end{matrix}$	0 0 1.4310 0 0 0 12.4000 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 -8.5000 0 0 0 0 0 0 0 1.8936 1.8936 1.6662	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.298' 0 0 0 1.980' 0 0 0 0 4.180' 0.914' 0.100' 0.710' 0	0 0 0 1.9404 1.3758 0 0 0.6201 0 7 6.4000 4 0	$\begin{array}{c} 1.7183 \\ 0 \\ 1.2092 \\ 0 \\ 1.9344 \\ 0 \\ 0 \\ 1.7051 \\ 0.7181 \\ 1.4177 \\ 0 \\ -2.9000 \\ 0 \\ 0.4669 \\ 0 \end{array}$	$\begin{matrix} 0\\0\\0\\0\\0\\0\\1.3356\\0\\0\\1.1306\\0.2744\\1.0702\\1.5240\\-5.2600\\0\\0\\\end{matrix}$	0.0162 0 0 0 1.0780 0.4838 0 0 0.4415 0 0 7.1800	$ \begin{bmatrix} 0 \\ 0.5272 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.9345 \\ 0.0568 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2.6000 \end{bmatrix} $
				$b_1 =$	\[\begin{array}{c} 89.81 \\ 303.4 \\ 251.14 \\ 77.71 \\ 316.44 \\ 264.3 \\ 233.0 \\ 222.5 \\ 321.7 \\ 54.10 \\ 271.2 \\ 250.6 \\ 118.9 \\ 106.8 \\ 58.52 \end{array} \]	11 7 7 7 7 7 7 7 7 7	$b_2 =$	98.812 321.411 278.151 113.717 361.422 318.324 296.053 294.549 402.731 144.107 370.266 358.673 235.987 232.840 193.526	, b;	1.0 13.7 20.6 40.9 -7.1 13.7 -19. -7.4 41.6 60.6 -6.9 14.8	7435 7590 8805 7391 6747 6419 9063 3511				

Entrega

A entrega deverá ocorrer pelo Moodle. Devem ser entregues, de preferência, um arquivo por exercício, em formato pdf, contendo: o problema, as implementações * , o problema resolvido e a(s) tabela(s) de comparação, de forma organizada.

(*) Os códigos podem estar contidos diretamente no arquivo pdf, de forma organizada e SEM SER UM PRINT da tela. Copie e cole os códigos no editor de texto que utilizar. Outra forma de envio dos códigos é anexá-los em arquivos separados. Nesse caso, é importante que o pdf contenha as devidas correspondências com os arquivos.

 ${\bf A}$ escolha de linguagem é livre.

Os trabalhos podem ser feitos em grupos de até 3 pessoas. Exceções, entrem em contato com o docente.