MODELIZACIÓN DE PATRONES NEURONALES A PARTIR DE SEÑALES EEG

"Reservoir Computing Echo State Network"

José Javier Gutiérrez Gil jogugil@alumni.uv.es

VNIVERSITAT Grau en Ciència de Dades

DÖVALÈNCIA Escola Tècnica Superior d'Enginyeria (ETSE-UV)

Tabla de contenidos

- 3. MyRC (ESN)
- 4. Resultados
- 5. Conclusiones y Discusión

Introducción: Estado del arte

Tendencia temporal en investigaciones sobre el procesamiento y uso del EEG.

Research Area	Record Count (% of 65,195)
Neurosciences Neurology	51,641 (79,210%)
Computer Science	33.204 (50.930 %)
Engineering	32,400 (49.697%)
Radiology Nuclear Medicine Medical Imaging	31,437 (48.220%)
Mathematical Computational Biology	27.990 (42.933 %)
Behavioral Sciences	23.667 (36.302 %)
Communication	22,608 (34.678%)
Psychology	21,867 (33.541%)
Mathematics	20,288 (31.119%)
Science Technology Other Topics	12.882 (19.759%)
Physiology	6.735 (10.331%)
Psychiatry	6.269 (9.616 %)
Pediatrics	6,099 (9.355 %)
Ophthalmology	5,694 (8,734%)
Instruments Instrumentation	4.895 (7.508%)
Automation Control Systems	4,438 (6.807%)

Área de conocimiento

Investigaciones última década sobre el procesamiento EEG con RC-ESN

Dominio de la investigación

Introducción: EEG - RC ESN

Diagrama principal del proceso de desarrollo de RC ESN para señales EEG

Señales EEG: Datos sintéticos

Enfoque Basado en Bandas de Frecuencia

Deta Superior Shutterstick

Procesos estocásticos

Combinación
Ondas
Cerebrales

Adición de un
proceso
Autorregresivo

Adición de ur proceso de Gauss

Agregar ruido gaussiano

Incorporación de Patrones Específicos de Edad

Diferencia Amplitud y Frecuencia en onda Beta

Dinámica Temporal : Autorregresivo

20 Sujetos jovenes Adultos20 Sujetos Mayores

n_subjects_per_group = 20 n_samples_per_subject = 1000 n_channels = 10

Señales EEG: Datos reales

MyRC (ESN): API-Framework

MyRC (ESN): Config-API

Hiperparámetro	Relación
Cantidad de Neuronas en el Reservorio (N)	$x(t) \in R_N$
Conectividad del Reservorio	$W_{\mathrm{res}}yW_{\mathrm{f}b}$
Radio espectral	ρ (rho): Magnitud máxima de los valores propios de la matriz de pesos de la capa interna del RC
Función de Activación	f (·) controla la no linealidad de las dinámicas del reservorio
Fuga (α) (leak):	Tasa a la que la actividad de las neuronas en el reservorio decaen con el tiempo.
Ruido (σ)	componente estocástica en las ecuaciones de estado de las neuronas
Dimensión PCA	Redución número neuronas en el estado del RC
Ouput RC	Salida del RC (last, mean, ridge)

RESULTADOS: RECONS - PRED (I)

Resultados: No supervisado (Gr)

Matriz similitud RC similarity matrix 0.450 0.475 0.480 -0.425 0.400 -0.375 -0.350

Matriz de similitud de datos reales preprocesados y con eliminación de artefactos

Gráficos de Recurrencia

Potencial de memoria

Mean Young Adults: 8.13
Mean Older Adults: 5.52
T-statistic: 2.09
P-value: 0.0428
A p-value less than 0.05 indicates a significant difference between the means of the two groups.

Resultados: No supervisado (K-means)

Métricas agrupación datos reales con eliminación artefactos mediante Kmeans (0:Grupo jóvenes adultos; 1: Grupo Mayores)

Predicted labels

Matriz confusion datos reales con eliminación artefactos (0-Grupo jóvenes adultos:
(0:Grupo jóvenes adultos; 1: Grupo Mayores)

Resultados: Supervisado

Exactitud 0.79

0: Jóvenes adultos 1: Adultos mayores

Readaout:lin (Regresión ridge)

Readaout:mlp (Multi-Layer Perceptron Classifier)

Conclusiones

Beneficios

☐ Robustez ante ruido.
Obtención dinámica temporal series temporales.
No se necesita obtención de características(Temporales/Frecuenciales).
☐ Menor capacidad computo
☐ Facilidad de implementación

Desventajas

☐ Gran sensibilidad ante valores hiperparámetros.
 ☐ Dependencia al tipo de dato y a las características de los mismos.

Discusión: RC-ESN y EEG

- □ Desafíos en la integración de datos multidimensionales
- □ Caracterización de la actividad cerebral según la edad
- ☐ Impacto del envejecimiento en la funcionalidad cognitiva

- ☐ Perspectivas futuras y desarrollo del framework
- ☐ Implicaciones clínicas y potencial terapéutico
- ☐ Consideraciones sobre la variabilidad y reproducibilidad del modelo

Discusión: Trabajo futuro

D Estudio extensivo basado en los resultados y teorías de neurocioneia sobre la

_	distinción entre jóvenes adultos y mayores
	Búsqueda automática de hiperparámetros óptimos del Reservoir Computing ESN
	Importancia de hiperparámetros en la resolución del problema neurocientífico
	Pruebas con la implementación de DeepMyRC para la resolución de este problema u otros similares
	Técnicas de extracción características del estado interno del RC-ESN como entrada al readout.
	Utilización de la implementación del API del RC para la resolución de otro tipo de problemas asociados al procesado de señales EEG

Bibliografía

- [1] H. Jaeger, "The" echo state" approach to analysing and training recurrent neural networks-with an erratum note'," Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, vol. 148, 01 2001
- [2] G. Tanaka, T. Yamane, J.-B. H´eroux, R. Nakane, N. Kanazawa, S. Takeda, and A. Hirose, "Recent advances in physical reservoir computing: A review," Neural Networks, vol. 115, pp. 100–123, 201
- [3] M. Luko sevi cius and H. Jaeger, "Reservoir computing approaches to recurrent neural network training," Computer science review, vol. 3, no. 3, pp. 127–149, 2009.
- [4] L. Lin, C. Jin, Z. Fu, B. Zhang, G. Bin, and S. Wu, "Predictinghealthy older adult's brain age based on structural connectivity networks using artificial neural networks," Computer Methods and Programs in Biomedicine, vol. 125, 12 2015
- [5] A. B. Arrieta, S. Gil-Lopez, I. L. na, M. N. Bilbao, and J. D. Ser, "On the post-hoc explainability of deep echo state networks for timeseries forecasting, image and video classification," in Proceedings of the International Conference on Deep Learning Applications. Location, Country: TECNALIA, Basque Research and Technology Alliance (BRTA), University of the Basque Country (UPV/EHU), 2024
- [6] C. L. Webber Jr and J. P. Zbilut "Recurrence quantification analysis of nonlinear dynamical systems," Tutorials in contemporary nonlinearmethods for the behavioral sciences, vol. 94, no. 2005, pp. 26–94, 200
- [7] Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Design of deep echo state networks, Neural Networks, Volume 108, 2018, Pages 33-47, ISSN 0893-6080, https://doi.org/10.1016/j.neunet.2018.08.002.(https://www.sciencedirect.com/science/article/pii/S0893608018302223)
- [8] Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Deep reservoir computing: A critical experimental analysis, Neurocomputing, Volume 268, 2017, Pages 87-99, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2016.12.089. (https://www.sciencedirect.com/science/article/pii/S0925231217307567)