Niveau: TC L3 2017–2018 Mlle AARIZOU M.

Examen de fin de semestre RIL

Durée: 01h30

Questions de cours

Répondre par vrai ou faux aux propositions suivantes en corrigeant les fausses propositions :

- 1. Le CRC permet de crypter la trame afin d'éviter qu'elle soit interceptée par des pirates informatiques.
- 2. Le protocole Ethernet est un protocole de couche 2 dans le modèle OSI.
- 3. L'algorithme CSMA/CD permet d'éviter les collisions dans un réseau local.
- 4. Les couches du modèle OSI sont : C. Application, C. Présentation, C. Session, C. Transport, C. Réseau, C. Liaison de données, C. Physique.
- 5. L'adresse MAC est une adresse physique unique attribuée aux interfaces réseaux contrairement aux adresse IPs qui peuvent être dupliquées au sein du même réseau

Exercice 1

Le protocole ARP (Address Resolution Protocol) est un protocole de couche 3 qui permet de faire la correspondance entre l'adresse MAC et l'adresse IP d'un hôte distant. Son fonctionnement se résume à diffuser une requête ARP (ARP request) pour connaître les adresses d'une machine distante. La machine en question va ensuite répondre à l'émetteur par une réponse ARP (ARP response) qui contient ses informations.

Soit le scénario suivant :

Une machine **Poste 1** (adresse MAC : 2c :33 :7a :fd :57 :d7, adresse **IP** : 192.168.8.100) tente de communiquer avec une machine distante **Poste 2** (adresse MAC :00 :08 :22 :e0 :d8 :fb, adresse **IP** : 192.168.8.114) dans un réseau local. Pour cela elle doit mettre à jour sa table ARP :

- 1. Poste 1 va diffuser une requête ARP à toutes les machines du réseau LAN.
- 2. Poste 2 va envoyer à Poste 1 une réponse ARP

Compléter les deux trames Ethernet (couches 2 et 3) de la requête ARP et de la réponse ARP qui seront transmises durant ce scénario en utilisant les trois tableaux suivants :

Entête ARP

matériel	protocole	lg adr phy	lg adr prot	opération	MAC source	IP source	MAC dest	IP dest
2 Octets	2 Octets	1 Octet	1 Octet	2 Octets	6 octets	4 octets	6 octets	4 octets

Entête Ethernet

MAC destination	MAC source	Type	Data	FCS
6 Octets	6 Octets	2 Octets	46-1500 Octets	4 Octets

Champs Type de Ethernet

EtherType	Protocole
0x0800	IPv4
0x0806	ARP
0x86DD	IPv6

Requête ARP

00 00 00 00 00 00 c0 a8 08 72

Réponse ARP

_ _ _ _ _ _ _ _ _ _ _

Université des Sciences et de la Technologie d'Oran – Mohamed Boudiaf Faculté de Génie Electrique – Département d'Electronique **Niveau:** TC L3 2017–2018 Mlle AARIZOU M.

Exercice 2

Soient les deux adresses IP (avec masque) suivantes :

- -136.54.87.180/25
- 27.45.14.100 masque :255.192.0.0
- 1. Donner l'adresse réseau de chacune des deux adresses, puis donner l'adresse de la première machine et l'adresse du diffusion de ces réseaux.
- 2. L'adresse 27.45.15.100 appartient-elle au deuxième réseau? Qu'en est-il de l'adresse 27.109.14.100? Justifier.

Exercice 3

Soit le réseau 132.47.0.0/16. On veut découper ce réseau en 8 sous-réseaux.

- 1. Combien de bits sont nécessaires pour cela?
- 2. Quel est le nouveau masque obtenu?
- 3. Donner les nouvelles adresses réseau des quatre premiers sous-réseaux définis.
- 4. Donner la plage d'adresse ainsi que l'adresse de diffusion du sous-réseau numéro 3 et du sous-réseau numéro 4.