Exercise 1. Let $a_n = n$, then a_n is increasing but not convergent.

Exercise 2. Since $\{a_n\}$ is unbounded,

$$\forall M > 0, \exists n \in \mathbb{N}, |a_n| \ge M$$

Let M=1, then $\exists n_1$, such that $|a_{n_1}| \geq 1$; Let M=2, then we claim that $\exists n_2 > n_1$ such that $|a_{n_2}| \geq 2$. Otherwise, if $\forall n > n_1$ we have $|a_n| \leq 2$. Then setting

$$M = \max\{2, |a_1|, \cdots, |a_{n_1}|\}$$

would yield the boundedness of the sequence $\{a_n\}$, a contradiction.

. . .

Let M = k, then we claim that $\exists n_k > n_{k-1}$ such that $|a_{n_k}| \ge k$. Otherwise we have $\forall n > n_{k-1}$, $|a_n| \le k$. Then setting

$$M = \max\{k, |a_1|, \cdots, |a_{n_{k-1}}|\}$$

would yield the boundedness of the sequence $\{a_n\}$, a contradiction.

Hence we have obtained a subsequence $\{a_{n_k}\}$ such that

$$|a_{n_k}| \geq k$$

holds $\forall k \in \mathbb{N}$. Next we will prove that $\lim_{n\to\infty} a_{n_k} = +\infty$. $\forall G > 0$, Setting K = [G] + 1, then $\forall k > K$,

$$|a_{n_k}| \ge k > K = [G] + 1 \ge G$$

as desired.

Exercise 3. (1) Firstly $\forall n \in \mathbb{N}, \ 0 \in (-\frac{1}{n}, \frac{1}{n})$. On the other side, if $a \in \bigcap_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n})$ and $a \neq 0$. Since $\lim_{n \to \infty} \frac{1}{n} = 0$, we know that $\exists n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{a}{2}$. Hence $a \notin (-\frac{1}{n_0}, \frac{1}{n_0})$, a contradiction.

(2) Similar as (1).

Exercise 4. We know that $a_n = (1 + \frac{1}{n})^n$ is increasing to e. So $e \ge a_2 > a_1 = 2$. Also from the proof of convergence of $a_n = (1 + \frac{1}{n})^n$, we know that

$$a_n < 1 + \frac{1}{2!} + \cdots + \frac{1}{n!} < 3$$

so e < 3.

Exercise 5. (1) By induction we can see that $x_n > 0$ for all $n \in \mathbb{N}$. We claim that x_n is bounded above with an upper bound 2. We know that $x_1 = \sqrt{2} \le 2$. Assume $x_n \le 2$, then

$$x_{n+1} = \sqrt{2 + x_n} \le \sqrt{2 + 2} = 2$$

By the principle of induction, we know that $x_n \leq 2$ holds $\forall n \in \mathbb{N}$. Next we will prove that $\{x_n\}$ is increasing. In fact we have

$$x_{n+1} - x_n = \sqrt{2 + x_n} - x_n$$

$$= \frac{(\sqrt{2 + x_n} - x_n)(\sqrt{2 + x_n} + x_n)}{\sqrt{2 + x_n} + x_n}$$

$$= -\frac{(x_n + 1)(x_n - 2)}{\sqrt{2 + x_n} + x_n} \ge 0$$

So $\lim_{n\to\infty} x_n = x$ exists. Take limit on both sides of $x_{n+1} = \sqrt{2+x_n}$, we have $x = \sqrt{2+x}$. By sign-preserving of convergence, we know $x \ge 0$, so x = 2.

(2) By induction we can prove that $0 < y_n < 1$ for $n \in \mathbb{N}$. Also

$$\frac{y_{n+1}}{y_n} = 2 - y_n > 2 - 1 = 1$$

so $\{y_n\}$ is increasing. Thus $\lim_{n\to\infty} y_n = y$ exists. Take limit on both sides of $y_{n+1} = y_n(2-y_n)$, we have y = y(2-y). Since $y_n \ge y_1 > 0$, $y \ge y_1 > 0$ by the order-preserving property. Thus y = 1.

Exercise 6. (1) We have

$$0 \leq \frac{a \cdot a \cdots a}{1 \cdot 2 \cdots [a]} \cdot \frac{a \cdots a}{([a]+1) \cdots n} < \frac{a^{[a]}}{[a]!} \cdot \frac{a}{n} \to 0$$

as $n \to \infty$. By squeeze theorem, we have

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0$$

(2) We have

$$0 \le \frac{1 \cdot 2 \cdots n}{n \cdot n \cdots n} < \frac{1}{n} \to 0$$

as $n \to \infty$. By squeeze theorem, we have

$$\lim_{n\to\infty}\frac{n!}{n^n}=0$$