Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

ОТЧЁТ по лабораторной работе №42

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА И БАТАРЕИ КОНДЕНСАТОРОВ

Выполнил студент группы
Преподаватель кафедры физики
Отметка о защите

Лабораторная работа № 42

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА И БАТАРЕИ КОНДЕНСАТОРОВ

Цель работы — определить электроёмкости конденсаторов и батареи конденсаторов, соединённых последовательно и параллельно.

Приборы и принадлежности: конденсатор известной ёмкости, конденсаторы неизвестной ёмкости, микровеберметр, вольтметр, потенциометр, источник питания, выключатель.

Общие положения

Конденсатор – система из двух проводников, разделённых слоем диэлектрика. Электроёмкость конденсатора равна отношению заряда q к разности потенциалов $\phi_1 - \phi_2$ между обкладками. Обозначим $\phi_1 - \phi_2 = U$, тогда

$$C = \frac{q}{U}. (1)$$

Электроёмкость конденсаторов зависит от их размеров и формы, электрических свойств диэлектрика и практически не зависит от окружающих тел. В случае плоского конденсатора электроёмкость определяется выражением:

$$C = \frac{\varepsilon \varepsilon_0 S}{d},\tag{2}$$

где ε — диэлектрическая проницаемость среды, ε_0 =8,85·10⁻¹² Ф/м — электрическая постоянная, S — площадь пластин, d — расстояние между пластинами.

Конденсаторы можно соединять в батарею. При последовательном соединении ёмкость батареи рассчитывается по формуле:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}.$$
 (3)

При параллельном соединении ёмкость батареи рассчитывается по формуле:

$$C = C_1 + C_2 + C_3 + \dots + C_n. (4)$$

Описание экспериментальной установки

Для определения ёмкости конденсатора в данной работе используется установка, электрическая схема которой приведена на рис. 1. Она включает в себя: R – потенциометр, V – вольтметр, $Cl = C_0$ – конденсатор известной ёмкости, Sl – переключатель, позволяющий подключать конденсатор к источнику Gl (при зарядке конденсатора) или, при его разрядке, к измерительному прибору (микровеберметру), Kl – ключ цепи источника питания, $C_{\rm x}$ – конденсаторы неизвестной ёмкости (на схеме не указаны, ими замещают конденсатор Cl).

Если с помощью потенциометра установить определённое напряжение и зарядить конденсатор, а затем переключить конденсатор на микровеберметр, то

конденсатор разрядится через него. При разрядке конденсатора через микровеберметр протекает кратковременный ток.

Разрядим через микровеберметр конденсатор известной ёмкости C_0 , заряженный до известного напряжения U_0 . Заряд конденсатора равен:

$$q_0 = C_0 U_0.$$

Показания микровеберметра пропорциональны величине заряда:

$$q_0 = B n_0, (5)$$

где B – постоянная прибора (коэффициент пропорциональности);

 n_0 – показание микровеберметра. Из (5) определим постоянную прибора:

$$B = \frac{C_0 U_0}{n_0} \,. \tag{6}$$

Зная значение прибора, можно определить ёмкость любого конденсатора по формуле

$$C = \frac{Bn}{U} \tag{7}$$

где U – напряжение на конденсаторе, n – показание микровеберметра.

Подготовка к работе

(ответы представить в письменном виде)

- 1. В чём состоит цель работы?
- 2. Какие величины в работе измеряются непосредственно?
- 3. Для чего в работе используется эталонный конденсатор?
- 4. Нарисуйте схему последовательного и параллельного соединения конденсаторов.

Выполнение работы

Задание 1. Определение постоянной прибора

1. Подготовить микровеберметр к работе. Для этого установить ручки управления в следующие положения: $R_{\text{внеш}}$ =0; переключатель пределов — 1; калибровка — отжата.

- 2. Подключить микровеберметр к клеммам переключателя S1 (рис. 1).
- 3. Включить микровеберметр в сеть.
- 4. Записать значение ёмкости эталонного конденсатора C_0 . Подключить его к клеммам переключателя SI.
- 5. Замкнуть выключатель KI и, передвигая контакт потенциометра, установить указанное преподавателем напряжение U_0 .
- 6. Установить переключатель SI в положение, при котором конденсатор заряжается. Нажать кнопку «Пуск» на передней панели микровеберметра и не позже чем через 2 сек перекинуть переключатель SI в положение для разрядки конденсатора. Снять показание n_0 . Опыт следует повторить не менее пяти раз.

Задание 2. Определение ёмкости конденсатора

- 1. Заменить конденсатор C_0 конденсатором неизвестной ёмкости C_{1x} .
- 2. Установить напряжение U, указанное преподавателем.
- 3. Провести измерения согласно пункту 6 задания 1, снимая показания n.
- 4. Аналогично провести измерения для второго конденсатора C_{2x} .

Задание 3. Измерение ёмкости параллельно и последовательно соединенных конденсаторов

- 1. Включить в цепь (рис.1) два конденсатора, соединённых последовательно.
- 2. Провести измерения согласно пункту 6 задания 1, снимая показания n.
- 3. Включить в цепь (рис.1) два конденсатора, соединённых параллельно.
- 4. Провести измерения согласно пункту 6 задания 1, снимая показания n.

Оформление отчёта

1. Расчёты

- 1. Рассчитать постоянную установки B по формуле (6) для каждого опыта. Найти среднее значение постоянной.
- 2. Рассчитать ёмкости первого и второго конденсаторов по формуле (7) для каждого опыта.
- 3. Найти среднее значение ёмкости каждого конденсатора.
- 4. Рассчитать ёмкость батареи для каждого опыта по формуле (7).
- 5. Найти среднее значение ёмкости каждой батареи конденсаторов.

2. Защита работы

(ответы представить в письменном виде)

- 1. Что представляет собой конденсатор? Дайте определение электроёмкости конденсатора. В каких единицах она измеряется?
- 2. От чего зависит электроёмкость конденсатора?
- 3. Как рассчитывается электроёмкость батареи последовательно и параллельно соединённых конденсаторов? Используя средние значения ёмкостей конденсаторов C_{1x} и C_{2x} , найденные в п. 6 задания 2, рассчитать ёмкости батареи при последовательном соединении, параллельном соединении. Сравнить полученные значения с экспериментальными результатами задания 3.

ПРОТОКОЛ

измерений к лабораторной работе №42

Выполнил(а)						Группа			
Электроёмкость эталонного конденсатора $C_0 =$									
Определение цены деления приборов									
№ п/п	Прибор		Предел подключения с указанием единицы измерения			Число делений н шкале	а с указа	Цена деления с указанием единицы измерения	
1	Воль	ьтметр	•				•		
Задание 1									
№ п/п			U_0 , B			по, дел	R (MI	B , (мк $\Phi \cdot B$)/дел	
1			00, D			то, дел	<i>D</i> , (WI	к Ф В јі дел	
2									
	3								
4									
5									
среднее									
Задание 2									
$\mathcal{N}_{\underline{0}}$!	1-й конденсатор				2-й конденсатор			
п/г	U, B		п, дел	C , мк Φ		U, B	n , дел C , мк Φ		
1									
2									
3									
4									
5									
среднее									
Задание 3									
$N_{\overline{0}}$	Последовательное соединение				ние	Параллельное соединение			
п/г	I	U, B	U, В n , дел C , м		икФ	U, B	п, дел	С, мкФ	
1									
2									
3									
4									
5									
среді	нее								
Дата Подпись преподавателя									