香港与鼠局

HONG KONG EXAMINATIONS AUTHORITY

一九八六. 年 香 港 中 學 合 考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

附加數學 (試卷一) ADDITIONAL MATHEMATICS I

評 卷 琴 考 MARKING SCHEME

全份內部文件,只與開始且參閱,不得以任何形式開出。 This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

請在學校任教之閱卷員特別留意

本評務參考並非標準答案,故極不 宜務於學生手中,以免引起與台。

那有學生求取此文件時, 關稅員應 嚴予拒絕。關稅員在任何情況下披露 本評稅參考內容,均有選閱稅員守則 及「一九七七年香港考試局法例」。

Special Note for Teacher Markers

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available would constitute misconduct on the part of the marker and is, moreover, in breach of the 1977 Hong Kong Examinations Authority Ordinace.

⊚拆港湾試高 保留版准 Hong Kong Examinations Authority All Rights Reserved 1986

8	6	1	I

ינוא ינות.	ATHS I SOLUTION		%0 T
	SOLUTIONS	MARKS	REMARKS
. d .()	$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - x^3}{\Delta x}$. 1	
	$= \lim_{\Delta x \to 0} \frac{x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x}$	11	For expanding $(x + \Delta x)^3$.
	$= \lim_{\Delta x \to 0} \left[3x^2 + 3x(\Delta x) + (\Delta x)^2 \right] \qquad \dots$. IA	
	= 3x ²	1A -4	Alt. Solution:
The	discriminant = $(\log b)^2 - 4(\log a)(\log b)$. 1A	Differentiating,
For	equal roots, $(\log b)^2 - 4(\log a)(\log b) = 0$	IM	$2x\log a + \log b = 0$ lM
The	roots are non-zero, logb $\neq 0$.	1	Solving with given eqt.
(Acc	ept rejecting logb = 0)	1.4	$(x+2) \log b = 0 \qquad 1A$ $x = -2 \qquad 1A$
	$. \log b = 4 \log a$	1 A	-4loga + logb = 0 1A
	$= \log a^4$ $b = a^4 \dots$	<u>1A</u>	$b = a^4 + 1A$
			Alt. Solution:
3 ¹ ⟨x	$x^2 = 18 - 2 \log x$ = 0	IM	$\frac{4k + 18x - kx^2 = 45}{4k + 18x - kx^2}$
	$x = \frac{9}{k}$	1A	$kx^2 - 18x + 45 - 4k = 0$
	t. Solution:: -18	IA	For equal roots, $(-18)^2-4k(45-4k)=0$ 1M+
f(x	(x) is quadratic, its maximum occurs when $x = \frac{-10}{2(-k)}$ = $\frac{9}{k}$)	$4k^2 - 45k + 81 = 0 1A$
	K		$k = 9 \text{ or } \frac{9}{4} $ 1A
	t. Solution:		
f (?		1M+1A	
.9	$\frac{81}{k} = 45$ or $4k + \frac{81}{k} = 45$	1m	and the second of the
- 'k' - 4k ²	-45k + 81 = 0	1A	
(k ·	$(4k - 9) = 0$ $k = 9 \text{ or } \frac{9}{4}$	<u>IA</u>	For both answers
	4	5	-
			1

SOLUTIONS	MARKS	REMARKS
Differentiating with respect to x	lM	
$2x + x \frac{dy}{dx} + y + 2y \frac{dy}{dx} = 0$	2Λ	
Substituting (2, 1),		
$4 + 2 \frac{dy}{dx} + 1 + 2 \frac{dy}{dx} = 0$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{4}$	11	For point-slope form
Equation of tangent: $\frac{y-1}{x-2} = -\frac{5}{4}$	1M	For point-stope form
5x + 4y - 14 = 0	$\frac{1\lambda}{6}$	
$(\underline{i}+\underline{j}) \cdot [(c+4)\underline{i} + (c-4)\underline{j}] = \underline{i}+\underline{j} (c+4)\underline{i} + (c-4)\underline{j} \cos \theta$) IM	Dot must be shown
$\frac{1}{16}$ = 1	1A+1A	1A for L.S. 1A for R.S.
$c = -\frac{3}{5}\sqrt{c^2 + 16}$		
$c^2 = 9$,	1 1 1	
$c = \pm 3$	134	
After checking,	IM	
g = -3	$\frac{1\lambda}{3}$	
Alt. Solution:		
$\tan \alpha = \frac{1}{c + 4}$ $\tan \beta = \frac{1}{c + 4}$	11	
$\tan(2 - \beta) = \frac{1 - \frac{c - 4}{c + 4}}{1 + \frac{c - 4}{c + 4}}.$	IM	
$tan\theta = \pm \frac{l_1}{c}$		
$\cos\theta = -\frac{3}{5}$	11	
$\tan \theta = -\frac{4}{3}$ $\therefore \frac{l_1}{c} = \pm \frac{4}{3}$		
$c = \pm 3$ $c = \pm 3$	1A	
After checking,	1M	
c = -3	1A	

SOLUTIONS		MARKS	REMARKS
$\frac{1}{2} - 1 = 3-3 $ $\frac{1}{3} - 2 = 1$ $2 + i \text{ and } 2 - i$	Circle Radius & centre Line \(\perp \text{x-axis}\) Line passes through (2,0)	1 1A 1A 1A	Alt.Sol. for last part: z - 2 = 1 $(x - 2)^2 + y^2 = 1$ z - 1 = z - 3 x = 2 $y = \pm 1$
5			2+i and 2-i 1A+1A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1A 1M 1A	
(b) $x < 0$, $x > \frac{3}{x} + 2$ $x^2 < 3 + 2x$		2A 1M	

SOLUTIONS	MARKS	REMARKS
$\frac{1}{20} = a + 2b$	1A 1A	If vector sign omitted, or division of vectors, pp-1.
$ \frac{\partial C}{\partial C} = \frac{\partial C}{\partial C} - \frac{\partial C}{\partial B} $ $ = \frac{a}{b} + 2b - \frac{b}{b} $	11	
$= \underline{a} + \underline{b}$ $\overrightarrow{OQ} = \overrightarrow{OB} + \overrightarrow{BQ} = \overrightarrow{OB} + \frac{1}{3}\overrightarrow{BC}$		
$OQ = OB + BQ = OB + \frac{1}{3}O$ = $\frac{b}{3} + \frac{1}{3}(\frac{a}{4} + \frac{b}{3})$	1M	
$= \frac{1}{3} \frac{a}{4} + \frac{4}{3} \frac{b}{2}$	$\frac{1A}{5}$	
$) \overrightarrow{OR} = \overrightarrow{hOQ} + (1 - \overrightarrow{h})\overrightarrow{OP} $	1 1M	Alt. Solution: $\overrightarrow{OR} = \overrightarrow{OP} + \overrightarrow{PR}$ $= \overrightarrow{OP} + \overrightarrow{hPQ}$
$= h(\frac{1}{3} \underline{a} + \frac{4}{3} \underline{b}) + (1-h)\frac{1}{2} \underline{a}$ $= (\frac{1}{2} - \frac{h}{6}) \underline{a} + \frac{4h}{3} \underline{b}$	1A	$= \overrightarrow{OP} + h(\overrightarrow{OQ} - \overrightarrow{OP}) $ $= \frac{1}{2}\underline{a} + \mathcal{R}\left[\left(\frac{1}{3}\mathbf{a} + \frac{4}{3}\mathbf{b}\right) - \frac{1}{2}\mathbf{a}\right] 1M$ $= \left(\frac{1}{2} - \frac{h}{6}\right)\underline{a} + \frac{4h}{3}\underline{b} $ 1A
$\overrightarrow{OR} = \overrightarrow{KOC}$	1.4	$\overrightarrow{OC} = \underline{a} + 2\underline{b}$
= k <u>a</u> + 2k <u>b</u>		$\frac{4h/3}{2} = \frac{\frac{1}{2} - h/6}{1}$ 2M+17
$\frac{1}{2} - \frac{h}{6} = h$ $\frac{4h}{2} = 2k$	2M+1	$h = 3/5 \cdots$
Solving, $h = \frac{3}{5}$	1 A	$\overrightarrow{OR} = 2/5 \ \underline{a} + 4/5 \ \underline{b}$ = $2/5(\underline{a} + 2\underline{b})$ 1
$k = \frac{2}{5} \dots$	1A	$= 2/5 \overrightarrow{OC}$
1		∴ k = 2/5 1
$ \begin{array}{rcl} $	14	A
$\overrightarrow{PT} = \overrightarrow{OT} - \overrightarrow{OP}$ $= \lambda \underline{b} - \frac{1}{2} \underline{a}$. 1	Λ
$\frac{4}{3} = \frac{\frac{1}{6}}{\frac{1}{2}}$	- 2M+	-1A Let $\overline{PT}^* = \mu \overline{PQ}$
$\lambda = \frac{1}{2}$ $\lambda = 4$	•	$= \frac{4}{3}\mu \underline{b} - \frac{\mu}{6} \underline{a}$ $= \frac{1}{2} = \frac{\mu}{6} \qquad)$ $\lambda = \frac{4}{3}\mu \qquad)$
		$\lambda = \frac{4}{3}\mu \qquad)$ Solving $\mu = 3$ $\lambda = 4$

SOLUTIONS	MARKS	REMARKS
		If mixed units, pp-1.
$208 \times = \frac{1}{72}$	2А	
$x = 2n\pi \pm \frac{\pi}{4}$ or (n)(360°) ± 45°	1A_	
(n is an integer)	3	
$z = r(\cos\theta + i \sin\theta)$		
$z^{m} = r^{m}(\cos m\theta + i \sin m\theta)$	1A	± 1
$\overline{z} = r[(\cos(-\theta) + i \sin(-\theta))]$	I IA	
$\left(\frac{1}{2}\right)^{m} = r^{m} \left[\cos(-m\theta) + i \sin(-m\theta)\right]$		
= $r^{m}(\cos m\theta - i \sin m\theta)$	1A	
$z^{m} + (\overline{z})^{m} = 2r^{m} \cos m\theta$	1	
, ,		
$(ii) z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i$	1.4	
$= (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) \qquad \vdots \qquad \vdots$	1 1 1 1	
$(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i)^m + (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i)^m = \sqrt{2}$		
$2\cos\frac{m\pi}{4} = \sqrt{2} \qquad \dots$	1M	
$\cos \frac{\pi \pi}{4} = \frac{\frac{1}{\sqrt{2}}}{\sqrt{2}}$		
$\frac{m\pi}{4} = 2n\pi \pm \frac{\pi}{4}$	1M	
$m = 8n \pm 1$	1.A	
$m = 1$ or $m = 8n\pm 1$ where n is a positive	<u> 1A</u>	
integer.		
$(1 + i)^p - (1 - i)^p = 0$		Alt. Solution:
$\left(\begin{array}{cc} \frac{1+i}{1-i} \right)^p = 1 \dots \dots$	IA	$\left(\frac{1-i}{1+i}\right)^{p}=1$
$\left[\frac{(1+i)^2}{2}\right]^p = 1 \qquad \dots$	1A	$\left[\frac{(1-i)^2}{2}\right]^p = 1$
$\mathbf{t}^{\mathbf{p}} = 1 \dots$	1.A	$(-i)^p = 1$
p = 4n, n is a +ve integer	1A	p = 4n ,
p = 4n, $n = 18$ a +ve integer (Accept $p = 4$, 8, 12,)		n is a +ve integer
(Hoock of L		
	an i an	
•	ļ	

MATHS I SOLUTION RESTRICTED 内部文件

SOLUTIONS	MARKS	REMARKS
(i)		
Alt. Solution:		
$(1+i)^p - (1-i)^p = 0$		
$1 + i = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) \qquad \dots$	1A	
$(1 + i)^p - (1 - i)^p$		
$= 2(\sqrt{2})^{p} \operatorname{isin} \frac{p\pi}{4} \dots$	1.A	
= 0		
$\sin \frac{\mathbf{p}}{4} = 0 \qquad \dots$	11	
$\frac{p!r}{4} = n \pi r$		
p = 4n, n is a +ve integer	I A	
(ii) $\frac{(1+i)^{4k+1}}{(1-i)^{4k-1}} = (\frac{1+i}{1-i})^{4k} (1+i)(1-i) \dots$	124114	,
$\frac{1}{(1-i)^{4k-1}} = (\frac{1-i}{1-i})^{-k} (1+i)(1-i) \dots$ $= 1-i^{2} \dots$	1M+1A	
	1.4	
	$\frac{1A}{3}$	
Alt. Solution		
$\frac{(1+i)^{4k+1}}{} = \frac{(1+i)^{8k}}{}$	lM+lA	
$(1-i)^{4k-1}$ 2^{4k-1}		
$= \frac{(\sqrt{2})^{8k} (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})^{8k}}{2^{4k-1}}$		
$= \frac{2^{4k}}{2^{4k-1}} (\cos 2k\pi + i \sin 2k\pi) \dots$	IA	
2 ^{4K-1}		
= 2	1 A	

SOLUTIONS	MARKS	REMARKS
$f(x) = x^3 + hx^2 + kx + 2$		
$S'(x) = 2x^2 + 2itx + k \dots$	1.A	
= 0	IM	
For 2 distinct turning points,	114	
$(2h)^2 - 4(3)(k) > 0$	lM l	
$h^2 > 3k$	1	
Put $y = 2$ in $y = x^3 + hx^2 + kx + 2$		
$x^3 + hx^2 + kx = 0$	1A	4
$x(x^2 + hx + k) = 0$		
$x^2 + hx + k = 0$ has no real roots	1M	
$h^2 < 4k \qquad \dots$	8	
(i) Sub. $(-2, 0)$ in $f(x) = x^3 + hx^2 + kx + 2$	1.	
-8 + 4h - 2k + 2 = 0	1.4	
$k = 2h - 3 \qquad \dots$	11	
$(ii) 4k \ge h^2 > 3k$	134	
$8h - 12 > h^2 > 6h - 9$	lM	lA For 2 ineq.
$h^2 - 8h + 12 < 0$ and $h^2 - 6h + 9 > 0$	IATIA	IA For 'and'
$(h-2)(h-6) < 0$ and $(h-3)^2 > 0$	TALLA	(Accept omitting 'and' Do not accept 'or'.)
$5 > h > 2$ and $h \neq 3$	I A+lA	go noc wesers
h is an integer		
$\therefore h = 4 \text{ or } 5$		
(iii) For $h = 4$,		
$f'(x) = 3x^2 + 8x + 5 = 0$		
(3x + 5)(x + 1) = 0		
$x = -\frac{5}{3}$ or -1	11	
3		
f''(x) = 6x + 8	IA.	(1.67, 0.148)
$x = -\frac{5}{3}$, $f''(x) < 0$, $\therefore (-\frac{5}{3}, \frac{4}{27})$ is a maximum point	111	(1.07, 0.110)
x = -1 , $f''(x) > 0$, $f''(x) > 0$, $f''(x) > 0$ is a minimum point	11	
ч.	1.4	For shape
	11	For 3 points out of the
/2	IA	1
		6 points (-2, 0), (-5/3, 4/27) (-1, 0), (0, 2)
(- 3 - 3 + 3)		, , , , (0, -)
× ×		

MATHS I SOLUTION RESIDENCE PERSON		REMARKS
SOLUTIONS	MARKS	N. C.
$(1.(a) \ s = 20 \ cos\theta$	1A	
$\frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}\theta} \cdot \frac{\mathrm{d}\theta}{\mathrm{d}t}$	1	
$\frac{dt}{dt} = \frac{d\theta}{d\theta} = \frac{dt}{dt}$	1A	· · · · · · · · · · · · · · · · · · ·
$\frac{ds}{d\theta} = -20 \sin \theta$	IA	
ds		
$\frac{ds}{dt} = 10$:
$\therefore \frac{d\theta}{d\theta} = \frac{10}{-20\sin\theta}$	70	•
	1.A	
$=\frac{-1}{2\sin\theta}$		
When $s = 10$, $\theta = \frac{\pi}{3}$		
	1 A	Unit optional
$\frac{d\theta}{dt} = -\frac{1}{\sqrt{3}} (s^{-1}) \qquad (or -0.577 s^{-1})$	1A 5	
	1 A	
(b) $x = 15\cos\theta$ $y = 5\sin\theta$	11	
, , , , , , , , , , , , , , , , , , , ,	Į A-	
$\frac{\mathbf{x}^2}{15^2} + \frac{\mathbf{y}^2}{5^2} = \{0, \dots, \dots,$	1	
(x, y > 0)	7 4 4	
₹ ↑		
(0,5)	11	Shape
O (15.0) ×		
-	$\frac{1\Lambda}{5}$	Labelling the two end-
		- '
$h = 10 \sin \theta$	1 A	
$\frac{h - l}{h} = \frac{l}{20\cos\theta}$	1M+1A	lm For similar Δ s.
$\frac{10}{1 - \frac{1}{h}} = \frac{20\cos\theta}{20\cos\theta}$		
h 20cosθ		Alt. Solution:
$\frac{2}{\lambda}(\frac{1}{3} + \frac{1}{20\cos\theta}) = 1$		Founting Lengths ' !M
		Correct equation 2A
$ \mathcal{L} = \frac{1}{(\frac{1}{10\sin\theta} + \frac{1}{20\cos\theta})} $	1	
	1	
$= \frac{20\sin\theta\cos\theta}{\sin\theta + 2\cos\theta}$	3-14	
RESTRICTED 內部	XIT	- Manusching and Andreas and A

P.9

SOLUTIONS	MARKS	REMARKS
c) $\Lambda = \Lambda rea$ of square = $\int_{-\infty}^{2}$		
$\frac{d\Lambda}{d\Omega} = 2 \frac{d\lambda}{d\theta} \qquad$	lM	
$= 2 \left(\frac{(\sin\theta + 2\cos\theta)20(-\sin^2\theta + \cos^2\theta) - 20\sin\theta\cos\theta(\cos\theta)}{(\sin\theta + 2\cos\theta)^2} \right)$	-2sinθ)	ı
= 0	_1M	
$-\sin^3\theta - 2\cos\theta\sin^2\theta + \sin\theta\cos^2\theta + 2\cos^3\theta - \sin\theta\cos^2\theta + 2\sin^2\theta\cos\theta$	= 0	
Alt. Solution (1):		
$\frac{\mathrm{d}\Lambda}{\mathrm{d}\theta} = 2\hat{x}\frac{\mathrm{d}\hat{x}}{\mathrm{d}\theta}$	IM	
$= 2 \ell \cdot 20 \frac{d}{d\theta} \left[\frac{1}{\cos \theta} + \frac{2}{\sin \theta} \right]$		
$= 40 \left\{ \frac{-1}{\left(\frac{1}{\cos\theta} + \frac{2}{\sin\theta}\right)^2} \right\} \left[\frac{\sin\theta}{\cos^2\theta} - \frac{2\cos\theta}{\sin^2\theta} \right]$	114	
= 0	1 M	
$A = \frac{2}{3}$	 	
$=\frac{400\sin^2\theta\cos^2\theta}{2\cos^2\theta\cos^2\theta}$		
$\frac{dA}{d\theta} = 400 \cdot \frac{(\sin\theta + 2\cos\theta)^2 (2\sin\theta\cos^3\theta - 2\cos\theta\sin^3\theta) - \sin^2\theta\cos^3\theta}{(\sin\theta + 2\cos\theta)^2}$	$\frac{05^2\theta - 2(5)}{9)^4}$	sinθ+2cosθ)(cosθ-2sin
d0 400 (81118) 2003	j im	For quotient rule
= 0	1M	
$= 0$ $(\sin\theta + 2\cos\theta)(\cos^2\theta - \sin^2\theta) - \sin\theta\cos\theta(\cos\theta - 2\sin\theta)$	() = 0	
(32110 23337)		1
$-\sin^3\theta + 2\cos^3\theta = 0 \dots$	2۸	
$tan^3\theta = 2$	1 A	
g = 51.6°	11	51.561°
	10	-
		Expensive of the control of the cont
·	T THE COLUMN TWO IS NOT THE COLUMN TWO IS NO	

MATHS I SOLUTION

SOLUTIONS	MARKS	REMARKS
12.(a) $A = (x - 16)(y - 25)$ $= (x - 16)(\frac{3600}{x} - 25)$ $= 4000 - 25x - \frac{16(3600)}{x}$	1A 1A 2	8 8 9
Alt. Solution: $A = 3600 - 2(8y) - 12(x - 16) - 13(x - 16)$ $= 4000 - 25x - \frac{16(3600)}{x}$	1A IA	13 13 13 14 15 15 15 15 15 15 15
(b) $\frac{dA}{dx} = -25 + \frac{16(3600)}{x^2}$ = 0 $x^2 = \frac{16(3600)}{25}$	lA lM	
$x = \pm 48$ Rejecting $x = -48$, $x = 43 \dots$	1.A	•
Maximum A = 1600 Testing for maximum $\frac{d^2A}{dx^2} = -\frac{2(16)(3600)}{x^3}$	1A	
Explaining why A is largest when x = 48 c)(i) A decreases as x increases		
$\frac{d\Lambda}{dx} < 0$ $-25 + \frac{16(3600)}{x^2} < 0$	1M	
x > 48 or x < -48 (rejected) .: (144 >)x > 48	1 A	Accept x ≥ 48
(ii) If x ≥ 50, ∴ A is decreasing	2	-
Largest value of A occurs when $x = 50$ Largest value of A = $4000 - (25)(50) - \frac{16(3600)}{50}$ = 1598	1A	

	SOLUTIONS	MARKS	REMARKS
2.(d)	$\frac{4}{9} \leqslant \frac{x}{y} \leqslant \frac{9}{16}$		
	$\frac{4}{9} \leqslant \frac{x}{\frac{3600}{x}} \leqslant \frac{9}{16} \qquad \dots$	1A	
	$\frac{4}{9} \leqslant \frac{x^2}{3600} \leqslant \frac{9}{16}$		
	$1600 \le x^2 \le 2025$	1A	
	40 ≤ x ≤ 45	i A	
	For $x < 48$, $\frac{dA}{dx} > 0$		
	A is increasing	2	
•	Largest value of Λ occurs when $x = 45$	1/	
	Largest value of $\Lambda = 4000 - (25)(45) - \frac{16(3600)}{45}$		
	= 1595	$\frac{1A}{7}$	
		,	