AUTOMATIC DESIGN

CSE 668 FINAL PRESENTATION

Aditya Singh Rathore Harish Ganesan

INTRODUCTION

• The best robot for every task -> one that performs the task using minimal resources.

The design problem is interconnection between the design problems according to graph structure.

BACKGROUND: PARTIALLY-ORDERED SETS

High level: A poset is a set with a reflexive, anti-symmetric and transitive relation. ≤

• A design problem is a relation between the required inputs (functionalities) and outputs (resources).

- $dp = \{F, R, I, exec, eval\}$, where
- F is a poset of functionalities,
- R is poset of resources,
- I is a set of implementations.

BACKGROUND: MINIMAL SOLUTION

• Antichains is subset of a partially ordered sets such that any two distinct elements in the subset are incomparable.

 A design problem is "monotone" if increasing the recourses available or decreasing the functionality required, will never decrease the number of feasible solutions.

GOALS FROM LAST TIME

- The goals were:
- Running the code supplied in the MCDPL software to fully understand the inputs/outputs and working of the software.
- Take a subset of parts from Pololu and build a small library for ground-based robots.

OVERVIEW OF MCDPL SOFTWARE

GROUND BASED ROBOTS

These robots are increasingly used for disaster prone area, exploration, lab environments etc.

SMALL-SCALE LIBRARY

Parts	Typel	Type2	Туре3	Type4	Туре5	Function- ality provided	Resources required
Battery	NiMh	NiH2	LiPo	LCO	NiCad	Capacity	Mass, Cost
Motor <5 Motors with varying parameters>						Torque, Speed	Power, Mass, Cost
Chassis	4 Wheel Drive Basic	4 Wheel Drive ATV	Nomad 4 Wheel Drive off-road chassis			Payload, Velocity	Torque, Speed, Mass, Cost
Robotic Arm	UArm	UArmPro	Dobot	PhantomX	PhantomX Reactor	Workspac e, Payload, Precision	Power, Mass, Cost

SYSTEM DESIGN

ITERATIONS

• Kleene Ascent: Is used to start from the bottom and compute till the least fixed

point.

TRADE-OFF CURVE

RESULTS

Mass: 2.3 kg
Cost: 700 \$

NiH2

Wheel Drive Basic

Motorl

Mass: 2.003 kg

Cost: 706 \$

4 Wheel Drive Basic

CONCLUSION

- We have created a small library with parts to build Ground Based Robots
- Now, we can obtain the optimal solution given a set of constraints on the "provides" of the robot
- Future enhancements could be to add new models for robots.
- The size of the catalogue of parts could also be increased
- Overall, this method can be used not only to design robots, but any design problem could eventually be tackled in this manner.
- The code will be posted on Github!

THANK YOU!