Odmocniny

RNDr. M. Jenisová

ODMOCNINA

Druhou odmocninou z nezáporného čísla a je také nezáporné číslo b, pre ktoré platí $b^2=a$.

$$(\sqrt[2]{a} = \sqrt{a} = b \qquad b^2 = a)$$

Pre každé $n \in N$ je n —tou odmocninou z nezáporného čísla a také nezáporné číslo b, pre ktoré platí $b^n = a$.

zapisujeme:
$$\sqrt[n]{a} = b$$

- \nearrow a je základ odmocniny (odmocnenec)
- \blacksquare n je exponent odmocniny (odmocniteľ)

PRETO:

•
$$\sqrt{4} = 2$$
 a nie $\sqrt{4} = \pm 2$
• $\sqrt{x^2} = |x|$ $\sqrt{(x-y)^2} = |x-y|$

POZOR: Nie je definovaná n —tá odmocnina zo záporného čísla.

Výsledky odmocniny sú len kladné čísla alebo nula (nezáporné čísla).

pre prípustné a,b,m, n,s platí: $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a} \cdot b$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$(\sqrt[n]{a})^{s} = \sqrt[n]{a^{s}}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[m]{a}} = \sqrt[n-m]{a}$$

$$\sqrt[np]{a^{mp}} = \sqrt[n]{a^{m}}$$

POZOR:

$$(a + b)^2 \neq a^2 + b^2$$

$$\sqrt[n]{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}$$