

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

ÁREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES

Licenciatura em Engenharia Informática e Multimédia

Processamento de Imagem e Visão

1º Semestre 2014/2015

Exame de 2ª Época – 18 de Fevereiro de 2015 – Duração: 2H30M

Justifique todas as respostas

- Em relação aos sistemas de aquisição de imagens, descreva um processo que permita adquirir imagens a cores utilizando somente um sensor CCD ou CMOS (matriz de elementos).
- Do ponto de vista de eficiência computacional, diga, justificando, qual o método de interpolação de imagens que utilizaria para alterar a sua resolução.
- 3. Considere as seguintes imagens:

Apresente a imagem resultante da operação aritmética do produto entre *I1* e *I2*. Justifique a resposta. (1)

4. Dada a seguinte imagem:

20	20	20	20	20	20
20	20	20	<u>150</u>	20	20
20	20	20	20	20	20
190	190	<u>190</u>	190	190	190
190	190	190	<u>50</u>	190	190
190	190	190	190	190	190

- a. Aplique uma filtragem de mediana com uma mascara de dimensão 3x3 (opere somente os pixéis com sobreposição total com a máscara).
- b. Qual o tipo de efeito que este tipo de filtragem provoca numa imagem? Tenha em atenção o resultado da alínea anterior em relação aos pixéis assinalados de coordenadas {(2,4); (4,3) e (5,4)} e a comparação com outros métodos de filtragem que têm o mesmo objetivo.

5. Dada a seguinte imagem binária,

		1		
	1	1	1	
	1	1		
	1	1		
•	1	1	1	

a. Calcule a circularidade (1) da região ativa, considerando o perímetro P_8 e a distância euclidiana. (1)

 b. Qual a razão para a existência de outro critério de circularidade aplicado a imagens digitais?

6. Considere o seguinte conjunto de padrões bidimensionais de teste e as funções discriminantes

- a. Classifique o conjunto de teste apresentado. (1)
- Estime a probabilidade de erro do classificador com base neste conjunto de teste,
 sabendo que a probabilidade a priori da classe 1 é metade da classe 2.
- c. Considera que este conjunto de teste é representativo do classificador? Justifique a resposta.
- 7. Aplique o algoritmo de k-médias aos padrões da alínea anterior e conclua quanto ao resultado deste agrupamento face à classificação anteriormente obtida (alínea 6.a). (2)
- 8. Considere a seguinte imagem a cores definida pelas suas componentes RGB.

255	0	
255	0	
D		

0 255

0 0 0 255

- a. Sabendo que I = max(R, G, B), converta esta imagem de RGB para HSI. (1)
- b. Determine um histograma de cor para esta imagem, sabendo que se pretende utilizar2 bits para codificar cada célula do histograma. (1)
- As imagens seguintes foram retiradas de dois instantes de tempo consecutivos de uma sequência de vídeo.

Ī	10	50	90	
	50	90	130	
	90	130	170	

Instante *t-1*

Instante t

Aplicando o algoritmo rápido de Freeman, determine a direção do movimento do pixel central. (2)

Sugestão: Calcule a fase do gradiente para esse pixel utilizando, por exemplo, o filtro de Prewitt.

- 10. Considere uma câmara representada pelo modelo de projeção de perspetiva simples, que tem um sensor com 640 colunas e 480 linhas, conhecem-se os seguintes parâmetros intrínsecos, $k_u=k_v=5$, que o eixo ótico cruza o centro geométrico do sensor e que a lente tem uma distância focal de 15mm.
 - a. Determine qual o pixel que corresponde ao ponto 3D dado por [1000,500,200] (mm),
 representado no referencial da câmara. Comente o resultado obtido.
 - b. Suponha agora que a distância focal é alterada para 10mm. Repita a alínea anterior e
 comente o resultado obtido face à alteração provocada na lente.
- 11. Suponha que pretende desenvolver um sistema automático para deteção de semáforos e reconhecimento do seu estado (vermelho, amarelo ou verde) a colocar num veículo automóvel. Considere que a seguinte figura é um exemplo típico da imagem a processar pela aplicação.

Descreva os principais algoritmos que considera importante para a realização do referido sistema. (2)