7 内分泌系のしくみと働き

1. 神経系と内分泌系

生体の恒常性は神経系と、内分泌系(ホルモン)によって調節される。

- ① 神経系による調節 神経線維の電気信号による素早い伝導とシナプスでの伝達
- ② 内分泌による調節 化学伝達物質によるゆっくりした伝達 (ホルモン)

1) 分泌様式

2. 内分泌とホルモン

1) ホルモンとは

- ① 化学的情報伝達物質として微量で効果を発揮する。
- ② ホルモンは特定の内分泌腺や細胞から血中に分泌される。
- ③ ホルモンは標的細胞の**受容体**と結合して作用を発現させる。

2) 内分泌器官には

人体の内分泌器官	下垂体前葉と後葉、甲状腺、上皮小体、副腎皮質と副腎髄質、 膵臓ランゲルハンス島、卵巣、精巣
特定の細胞から分泌	消化管ホルモン・視床下部ホルモン、エリスロポエチン

3) ホルモンには分泌のタイプがある。

① 内分泌 (ホルモン)	血管内に伝達物質を分泌	通常の内分泌器官
② 神経内分泌	軸索内輸送により血管内に分泌	下垂体後葉ホルモン
③ 傍分泌(パラクリン)	細胞の近くに分泌(細胞間伝達)	サイトカイン

4) ホルモンの化学構造からみた種類には

ホルモンの種類 分泌器官とホルモン名	
① ペプチドホルモン	視床下部放出ホルモン、下垂体前葉ホルモン、
© 7771N// CV	上皮小体ホルモン、インスリン、グルカゴンなど
② ステロイドホルモン	卵巣ホルモン、精巣ホルモン、副腎皮質コルチコイド
② ステロイトホルモン	活性型ビタミン D
③ アミノ酸誘導体	1) カテコールアミン
	 2) 甲状腺ホルモン

5) ホルモンは受容体に結合して作用する。

・ホルモンは標的器官の受容体とのみ結合することができる。

平安休の種類	細胞膜受容体	細胞内受容体以外の親水性ホルモン
受容体の種類	細胞内受容体	ステロイド、甲状腺ホルモンなどの脂溶性ホルモン

3. 視床下部

自律神経の最高中枢	体温•摂食•飲水•糖質代謝•性本能
下垂体前葉放出・抑制ホルモン	下垂体前葉ホルモンの分泌を調節
下垂体後葉ホルモン	視床下部から下垂体後葉ホルモンを分泌

1) 視床下部から分泌されるホルモン(244(図))

- (1) 視床下部から分泌されるホルモンは 神経内分泌である。下垂体前葉に作用し てホルモンの分泌を調節するホルモンと 後葉で分泌されるホルモンがある。
 - 1. 成長ホルモン放出ホルモン
 - 2. 成長ホルモン抑制ホルモン(ソマトスタチン)
 - 3. プロラクチン抑制ホルモン(ドパミン)
 - 4. 甲状腺刺激ホルモン放出ホルモン
 - 5. 副腎皮質刺激ホルモン放出ホルモン
 - 6. 性腺刺激ホルモン放出ホルモン
- (2) 下垂体後葉ホルモン (2種類)
- 1. バソプレシン
- 2. オキシトシン

4. 下垂体(脳下垂体)

1) 下垂体から分泌されるホルモン

間脳の視床下部に位置する約 $0.5\sim0.8$ gの内分泌腺で蝶形骨のhルコ鞍におさまる。

下垂体は腺性下垂体(前葉)と神経性下垂体(後葉)に分かれる。両者とも外胚葉発生。

	直接作用	
	① 成長ホルモン(GH)	
	② プロラクチン(PRL) ∫	
	③ 副腎皮質刺激ホルモン(ACTH) \	
前葉ホルモン	④ 甲状腺刺激ホルモン (TSH) │	
	⑤ 性腺刺激ホルモン	
	a. 卵胞刺激ホルモン(FSH)	
	b. 黄体形成ホルモン(LH)	
中間部	① メラトニン(MSH:インテルメジン)メラニン細胞刺激ホルモン	
<i>44</i> ★ ↓ .	① バソプレソン(抗利尿ホルモン ADH)	
後葉ホルモン	② オキシトシン(子宮収縮ホルモン、射乳ホルモン)	

2) 下垂体前葉ホルモン(245)

(1)成長ホルモン(GH)と働き

骨成長を促進	骨端線に作用して骨を伸ばす。甲状腺ホルモンも骨代謝に関わる。		
成長、発達	乳幼児、小児、青年期で成長促進・成人では 代謝 に作用する.		
	GH は肝臓に作用して $\underline{\textbf{IGF-I}}$ (ソマトメジン)を分泌して成長促進		
	思春期女子のエストロゲン分泌は GH 分泌を促進(女子の早期成長)		
同化作用	タンパク合成と筋肉増加、血糖上昇作用		
概日リズム	24 時間周期がある。 小児では徐波ノンレム睡眠で分泌が増加		

成長ホルモンの分泌障害

過剰分泌			分泌欠乏
思春期前	巨人症(2m 以上の身長)	.i. ID #0	ᆥᆛᄼᅧᄛᇽᇬᇄᆉ
成長後	末端巨大症(四肢肥大と肥厚)	小児期	小人症(身長 1.2m 以下)

過剰分泌の原因の多くは良性の GH 産生腺腫

(2) プロラクチン (PRL) と働き

a. 乳汁生成と分泌	出産で急激に増加し乳汁を生成し分泌する。 妊娠中プロラクチン	
a. 孔// 王成乙分泌	分泌は抑制される。 射乳はオキシトシンの作用	
b. 排卵抑制	授乳期は排卵が抑制される。	

プロラクチンの分泌障害

- ・過剰分泌(良性腺腫:プロラクチノーマ)により、男性:性欲低下、女性:無月経
- ・PIH (プロラクチン抑制ホルモン:ドパミン) により、分泌が抑制される。
- ・ハロベリドール (ドパミン阻害薬) は覚せい剤拮抗作用がある**向精神薬**でプロラクチン 分泌を促進するので、男性でも乳腺が発達し (肝障害の作用)、乳汁が産生される。

(3) 甲状腺刺激ホルモン(TSH)

甲状腺を刺激して甲状腺ホルモンを分泌促進するホルモン。

(4) 副腎皮質刺激ホルモン (ACTH)

- ・ACTH は主に副腎皮質の束状帯、網状帯を刺激してホルモンを分泌させる。
- ・メラニン細胞を刺激して色素沈着 (MSH と同じ作用) を起こす (アジソン病)

(5) 性腺刺激ホルモン(ゴナドトロピン分泌細胞)

a. 卵胞刺激ホルモン(FSH)

女性への作用	卵胞を発育促進 して卵胞ホルモン(エストロゲン)を分泌促進
	排卵直前ではエストロゲンが上昇し LH が上昇し 排卵を誘発 する。
男性への作用	精子形成*(アンドロゲン結合タンパクを生成して、精子形成
	に関わる) * セルトリ細胞で育成される。

b. 黄体形成ホルモン(LH)

女性への作用	排卵、黄体を刺激 して黄体ホルモン(プロゲステロン)を分泌促進
男性への作用	精巣の精細管間細胞のライディッヒ細胞に働き テストステロン 分泌。

3) 下垂体後葉ホルモン(246)

	働 き
	分泌刺激は 乳児の乳頭 吸引刺激、 分娩時の膣伸展刺激
オキシトシン	妊娠末期の 子宮収縮 と 陣痛 を起こす(正のフィードバック)
	分娩後の 射乳 (乳腺腺房の 筋上皮細胞の収縮 に作用)
	分泌刺激は血漿浸透圧の上昇 (脱水)
	腎臓で水の再吸収促進 (尿の濃縮作用)、体内の水分保持作用
バソプレシン	・分泌過剰で血管収縮により高血圧
	・分泌減少(後葉の損傷など)で尿量は増加(尿崩症 :100/日)
	口渇、多飲 治療:デスモプレシン点鼻薬

5. 甲状腺

気管上部の前面に位置し 左右2葉と峡部からなる。 重さ約20gで内分泌器 官として最も大きい。甲状 腺ホルモンと傍濾胞細胞 からカルシトニンが分泌される。

気管 甲状腺

濾胞上皮

1)甲状腺ホルモンの働き(242)

① サイロキシン(T4)約90%

脱ヨード化されて T3 になる

② トリヨードサイロニン(T3)約10%

甲状腺ホルモンの活性は T3 が高い

- ・基礎代謝を促進(分泌過剰でタンパク、糖質、 脂肪の分解促進)、熱産生・酸素消費増加
- ・肝臓の LDL 受容体増加による脂肪酸合成と消費が促進し、コレステロール値が低下する。
- ・血糖値を上げる(消化管からの糖吸収促進)
- •心機能亢進(心拍数、心拍出量增大)、交感神経增強作用(及)受容体親和性促進)
- ・発育と成熟(胎児期の骨格と神経系の分化成熟:分泌不足がクレチン病-精神遅滞、小人症)

分泌刺激 TSH と血中濃度低下・寒冷、興奮、妊娠で促進

(1) 甲状腺機能異常(成人の1~2%が罹患)

	甲状腺機能亢進症	甲状腺機能低下症
主な疾患名	バセドウ病 、亜急性甲状腺炎	慢性甲状性炎(橋本病)
好発年齢	20~40 歳代の女性	45~65 歳代の女性
	メルゼブルグ三徴候	低体温、寒がり、徐脈、低血圧
	① 甲状腺腫	浮腫(酸性粘液多糖類による圧痕を残さ
را ار کی	② 頻脈	ない non-pitting edema)、便秘
症状	③ 眼球突出	
	体重減少 、高血圧、発汗過多、	
	下痢、体温上昇、 骨吸収と破壊	T3、T4 低下、TSH 上昇
	T3、T4 上昇、TSH 低下	抗サイログロブリン抗体陽性
検査	 抗 TSH 受容体抗体 TRAb 陽性	抗甲状腺ペルオキシダーゼ抗体(TPO)
	血中コレステロール低下(脂質が	血中コレステロール上昇(脂質が消費され
	エネルギー源として消費される)	ない、肝で分解(胆汁酸へ変換)されない)

2) カルシトニン(CT)

- (1) 甲状腺濾胞間細胞(**傍濾胞細胞**: C細胞) から分泌
 - ・食後の血中 Ca 増加によって分泌され、血中 Ca 濃度を下げる
 - ・骨へのリン酸 Ca の沈着を促進させ、血中 Ca イオンを低下
 - ・エストロゲンは破骨細胞の骨吸収を抑制 → 閉経後の分泌低下で骨粗鬆症を招く
 - ・エストロゲン減少はカルシトニンを抑制する。カルシトニンは破骨細胞を抑制。

(2) カルシウムの働き

- a. 血液凝固反応
- b. 分 泌
- c. 筋収縮
- d. 神経興奮

6. 上皮小体(副甲状腺)(243)

1)パラソルモン(PTH)の働き

- a. 破骨細胞に働いて骨をの溶解し、血中 Ca 上昇
- b. 尿細管での Ca 再吸収促進、リン酸再吸収抑制
- c. カルシトニンと拮抗的に作用
- d. 分泌不足はテタニーを起こす。筋の興奮性亢進
- e. 分泌過剰は骨がもろくなる。骨粗鬆症を生じる

甲状腺の裏に左右 2 対計 4 個ある。 1 3

(1) パラソルモンの分泌異常

	上皮小体機能亢進症	上皮小体機能低下症
主な疾患	原発性上皮小体機能亢進症 (腺腫)	二次性機能低下症(甲状腺術後)
症状	悪心、嘔吐多尿、多飲、尿路結石	テタニー
検 査	高 Ca 血症、尿中 Ca 増加、低 P 血症	低 Ca 血症、高 P 血症

2)カルシウム代謝に関係するホルモン

	血中C a ²⁺ 濃度	働き	
+11 8 .	Ca ²⁺ 低下作用	尿へ Ca ²⁺ 排出	
カルシトニン	Ca ⁻ Tel PTF/H	骨へ Ca ²⁺ 沈着	
パラソルモン	Ca ²⁺ 上昇作用	骨溶解と腎から Ca ²⁺ を吸収	
ビタミンD3	Ca ²⁺ 上昇作用	腸から Ca ²⁺ を吸収	

8. 膵ランゲルハンス島とホルモン (247)

a. A(a)細胞 好酸性細胞 20% グルカゴン

b. B(月)細胞 主細胞 70% インスリン

c. D(る)細胞 10% ソマトスタチン

1) インスリン

(1) インスリンの作用

分泌刺激	食後の血糖値上昇で分泌促進(副交感神経がラ島に作用してインスリン分泌)、
刀形似料的	2 時間後正常に戻る。血糖値が正常に戻れば分泌は低下する。
	a. 肝・筋・脂肪細胞に作用してグルコース・ 脂肪酸・アミノ酸を取り込む。
	インスリンがないと細胞はグルコースを利用することができない。
働き	脳はインスリンがなくても糖利用が可能。
	b. グルコースをグリコーゲンに合成して肝臓や筋に貯蔵する。
	c. グルコースを脂肪に合成し、脂肪細胞に貯蔵する。

ランゲルハンス島

(2) 糖尿病

I型糖尿病:小児・若年者型は絶対的インスリン不足が原因

Ⅱ型糖尿病:成人型はインスリンの感受性の低下と分泌不足が原因

糖尿病の症状

口渇・多飲 ~ 高血糖で血漿浸透圧が高いため喉が渇く。

多尿~ 尿細管中に糖が多いために浸透圧が高くなり水の再吸収

ができない。(浸透圧利尿を生じるため)

糖尿病はケトアシドーシス(代謝性アシドーシス)を起こす。

2) グルカゴン

(1) グルカゴンの作用

- a. 肝臓のグリコーゲンをグルコースにして血中に放出
- b. 血糖値上昇作用 (グルカゴンはインスリンの存在下で協同的に作用)
- c. アミノ酸からグルコースを作る (糖新生)
- d. 脂肪分解とケトン体生成

(2) グルカゴンの分泌刺激

血糖値の低下で分泌促進血糖値の上昇で分泌低下

(3) 血糖値を上昇させるホルモン

- a. 糖質コルチコイド
- b. アドレナリン
- c. 成長ホルモン
- d. グルカゴン

9. 副腎皮質の構造とホルモン (186)

(1) 副腎の構造

副腎皮質(90%)	副腎皮質刺激ホルモンにより分泌
副腎髄質(10%)	交感神経刺激により分泌

(2) 副腎皮質の3層構造と分泌するホルモン

a. 球状層(10%)電解質コルチコイド	アルドステロン	レニン(AGII)の支配
b. 東状層(75%)糖質コルチコイド	コルチゾール・コルチゾン	ACTH の支配
c. 網状層(15%)男性ホルモン	アンドロゲン	ACTH の支配

1) 電解質コルチコイド

(1)) アルドステロンの分泌と働き

分泌刺激	脱水、血圧低下、腎血流量の低下、AGII、高 K 血症		
アルドステロンの作用	腎で Na+再吸収と K+排出、H+ 排出 (体液量の調節、血圧維持)		

(2) アルドステロンの分泌異常

	Na ⁺ を再吸収できない・・・・ 低 Na 血症
a. アルドステロンの分泌低下	K+を捨てられない・・・・・・高 K 血症
(アジソン病)	H ⁺ 排出低下・・・・・・アシドーシス
b. アルドステロンの分泌過剰	Na ⁺ 再吸収過剰······高 Na 血症
原因)1. 原発性アルドステロン症	K*排泄過剰······低 K 血症
2. クッシング症候群	H ⁺ 排出過剰・・・・・・・アルカローシス

2) **糖質コルチコイド**(GC)

(1)糖質コルチコイドの作用

コルチゾルの作用	働 き ()内は過剰分泌、長期投与の副作用	
【 免疫抑制作用 】	リンパ球抑制、抗体生成抑制、(易感染性)	
	ヒスタミン分泌抑制	
【 抗炎症作用 】	好中球遊走抑制、発熱物質の PGE2、IL 産生抑制	
血糖上昇	血糖上昇作用、(高血糖:糖尿病)、	
	(糖新生:アミノ酸と脂肪から糖を生成)	
脂質代謝	(満月様顔貌、水牛様肩、中心性肥満、皮膚線条)	
アルドステロン作用	(高血圧、高 Na 血症、低 K 血症)	
骨形成抑制	(骨粗鬆症)	
アンドロゲン作用	(多毛、にきび、赤ら顔)	

(2) 副腎皮質ホルモンの分泌異常

	① クッシング症候群		異所性 ACTH 産生腫瘍(肺小細胞癌)、 副腎皮質腺腫	
	② クッシング病		下垂体腺腫が原因で ACTH 過剰分泌	
機能亢進症	③ ステロイドの長期服用		投薬	
	満月様顔貌·中心性肥満、 高血圧(85%)、頻脈、高血糖による糖尿			
	症状	病、免疫力低下、易	B感染性、低 K 血症・骨吸収の増大(ビタミン D	
		作用抑制により 骨粗鬆症)、消化管潰瘍、男性化、、皮膚の希薄化		
	①アジソン病		自己免疫疾患や 結核 によって皮質の破壊(9	
			0%以上が破壊される)で起きる。	
48 AK //C	②副腎クリーゼ(急激)		感染や出血により急激な皮質機能低下を	
機能低下症			起こした危機的な状態。	
	症状		ラニン細胞刺激による 色素沈着、低血圧(アルドス	
			主徴候),低 Na 血症、高 K 血症、低血糖	

3) 副腎皮質の性ホルモン

(1) 男性ホルモンの強さ 精巣のテストステロン > 副腎皮質のアンドロゲン

アンドロゲン 男性ホルモン (女性の男性ホルモンを分泌)

10. 副腎髄質ホルモン

(1) 髄質ホルモンの種類(カテコールアミン)

- ① ノルアドレナリン NA20% 脳·交感神経・副腎髄質で合成
- ② アドレナリン AD80% 副腎髄質で合成される
- ③ ドーパミン

(2) 髄質ホルモンの作用

	受容体	働き	
	<i>β</i> 1作用	心拍数增加 •拍出量增加 •血圧上昇	
アドレナリン	β2作用	気管支平滑筋拡張 (気管支拡張薬)	
(エピネフリン)		冠状動脈拡張	
		血糖値上昇作用、肝グリコーゲン分解促進	
		インスリン分泌抑制	
	α1 作用	血管収縮による最大血圧、最低血圧を上昇	
ノルアドレナリン		抹消血管収縮はアドレナリンより強い。全身の血圧	
		上昇作用が強い。グリコーゲン分解作用はない	

(3) 髄質ホルモンの分泌刺激(交感神経に支配される)

分泌刺激 交感神経刺激(ストレス・運動・寒冷・出血・低血圧・低血糖・恐れ・怒り・痛み)

(4) 血圧を上昇させるホルモン

ホルモン	分泌臓器	分泌刺激	働き
レニン	腎臓	腎血流量低下	血圧を上昇させる。
バソプレシン	下垂体後葉	血漿浸透圧上昇	集合管で水の再吸収促進
アドレナリン	副腎髄質	ストレス	心臓の収縮を速める
コルチゾル	副腎皮質	クッシング	アルドステロン作用
アルドステロン	副腎皮質	$\operatorname{AG} \Pi$	Na 再吸収、K 排出、血圧上昇
甲状腺ホルモン	甲状腺	バセドウ	交感神経増強

11. 消化管ホルモン (ポリペプチドホルモン)

消化管粘膜の特定の細胞から分泌され、消化液の分泌・運動を調節

1)消化管ホルモンの種類と働き

消化管ホルモン	分泌場所	働き
ガストリン	胃幽門粘膜G細胞から分泌	胃液分泌促進・胃の運動促進
セクレチン	十二指腸粘膜S細胞	膵液の分泌促進・ 胆囊収縮
		胃液分泌、胃の運動抑制
		膵酵素の分泌・胆嚢収縮
コレシストキニン	十二指腸粘膜細胞M細胞	胃液分泌、胃の運動抑制
		脂質の接触刺激

12. ホルモン分泌の調節

1)フィードバックによる調節

視床下部一下垂体系のホルモン調節

(1)負のフィードバック

a. ホルモン濃度が上昇した場合

血中のホルモン濃度が正常より上昇すると、 分泌されたホルモン自身によって上位の視 床下部や下垂体に作用し分泌を抑制する。 その結果ホルモン濃度は正常に保たれる。

b. ホルモン濃度が低下した場合

ホルモン濃度が低下すると、上位への抑制が低下し、ホルモン分泌が正常に戻る。

(2) 正のフィードバック(排卵・分娩)

ホルモン濃度の上昇が別のホルモンの 分泌を促す作用である。**排卵**(LH サージ) や**分娩**(オキシトシン)の引き金となる。

- ① エストロゲン上昇 →視床下部 → 下垂体 → LH 大量分泌 → 卵巣(排卵)
- ② 子宮頸伸展刺激 → 下垂体後葉 → オキシトシン → 子宮平滑筋収縮 → 分娩
- 2) 神経系と内分泌系による分泌調節は関連して内部環境を調節する。

ストレス・激怒・恐怖・危険・大出血・血圧低下・寒冷・低体温・外傷・疼痛

視床下部→自律神経(交感神経)→副腎髄質→アドレナリン分泌ストレス→ 中枢神経系

→ 視床下部 CRH →下垂体 ACTH → 副腎皮質→コルチゾル分泌

- 3) サーカディアンリズム:ホルモンの分泌リズム (概日リズム) による分泌
- ・内外の環境に対応して身体の様々な機能が 24 時間周期で変動する。(日周変動)

概日リズムにより分泌されるホルモンの種類

a. **副腎皮質ホルモン** 早朝と覚醒、日中で高く深夜で低くなる。

b. 成長ホルモン 睡眠時で高い(徐波睡眠 NREM)、思春期高く成人は低い。

c. プロラクチン 睡眠で増加、覚醒で低下、妊娠中は直線的に増加

d. 甲状腺ホルモン 夜間睡眠時高く、昼前に低下

e. メラトニン 暗くなると松果体から分泌され、睡眠を誘発

13. 腎臓から分泌されるホルモン

1) 腎から分泌されるホルモン

レニン 血圧上昇作用

エリスロポエチン 骨髄に作用して赤血球生成(造血)を促す

活性化ビタミン D 腸管から Ca^{2+} 吸収を助ける

(1) レニン

・腎臓の糸球体傍細胞から分泌されるホルモン

分泌刺激: 大出血、血圧低下: 脱水(浸透圧上昇、循環血液量低下)

アンギオテンシン / ーゲン → レニンの作用で → アンギテンシン I

→ ACE 変換酵素 (肺胞血管) **→** アンギオテンシン **I**

アンギオテンシンⅡの作用

アンギオテンシンⅡ **強い血管収縮作用**を持つ、アルドステロンの分泌刺激

* レニンは結果的に血圧を上昇させることになる。(昇圧作用)

(2) エリスロポエチン

分泌刺激: 血液中の酸素分圧の低下・低酸素 → 赤血球を分化増殖させる。

腎性貧血 腎不全があるとエリスロポエチンの分泌不足によって貧血を招く。

(3) 活性化ビタミン D の生成

プロビタミン $D \longrightarrow$ 紫外線照射 \longrightarrow ビタミン $D \longrightarrow$ ビタミン D の水酸化

(肝臓) **→ 腎臓で活性化ビタミン D 生成(エストロゲンの影響を受ける)**

ビタミン D は脂溶性ホルモンである。

腸粘膜での Ca の吸収はビタミン D の作用により促進される。

ビタミン D 欠乏症

a. 小児 くる病 脛骨の変形屈曲と骨格変形

b. 成人 骨軟化症 骨密度低下と骨折・骨痛

- 14. 性ホルモン(234)
- 1) 性ホルモンの種類

① 卵 巣 エストロゲン・プロゲステロン

女性ホルモン

② 精 巣 アンドロゲン(テストステロン)

③ 副腎皮質 アンドロゲン(男女とも)

男性ホルモン

(1)卵巣ホルモン

・女性ホルモンは卵巣から分泌される。

	8~9歳ごろから分泌される	
 1. 卵胞ホルモン(エストロゲン)	☆ - ☆ # ☆ # ☆ 用	
	第二次性徵発現	
	15歳頃から分泌される	
2. 黄体ホルモン(プロゲステロン)	子宮内膜腺の分泌促進、着床準備	
	基礎体温上昇	
更年期では両者が低下するが性腺刺激ホルモン(FSH·LH)は上昇		

卵巣の卵胞と卵子

卵胞膜はエストロゲンを分泌

黄体はプロゲステロンを分泌

① 卵胞ホルモン:エストロゲンの作用

- ・排卵誘発(排卵サージ:高濃度のエストロゲンの上昇は正のフィードバックを起こし排卵の誘発を起こす。子宮筋腫、乳癌は(エストロゲン依存性腫瘍)
- ·子宮粘膜増殖(受精卵の着床がない場合は内膜が剥離して月経となる)
- ・頸管粘液は薄い粘液分泌(排卵期:精子を通過しやすくする)
- ・パラトルモンの破骨細胞による骨吸収を抑制 (閉経で骨粗鬆症を起こしやすい)
- ・動脈硬化抑制(閉経で LDL コレステロール↑)→心筋梗塞、ひげ、男性型に変化

② 黄体ホルモン:プロゲステロンの作用

- ・子宮粘膜増殖の停止
- •子宮粘膜を分泌期にする。(妊娠維持)・妊娠中の排卵抑制:性腺刺激ホルモン 放出ホルモン (LHRH) の分泌を抑制・温熱中枢を刺激して基礎体温上昇

着床後の妊娠の持続に作用するホルモン

a. 胎盤絨毛性ゴナドトロピン(hCG) プロゲステロンを分泌し、妊娠を持続させる。b. 黄体ホルモン 排卵抑制

月経周期

① 月経周期は28日リズム

O 11.		
	月経が終ってから排卵までの10日間(卵胞期後期)	
(1) 増殖期	エストロゲンにより子 宮内膜が肥厚 ,卵胞期後期 基礎体温は低温相、	
(卵胞期)	後期で エストロゲン濃度が急上昇 LH サージ が誘発されて排卵となる。	
	月経が終わってから 15日目から28日目頃 (黄体期)	
(2) 分泌期	排卵後2日目から プロゲステロン濃度が上昇 しエストロゲン作用は	
(黄体期)	抑制される。(基礎体温は上昇) 内膜は浮腫状となる。	
	(卵子のベッドが用意される) 排卵後7日目頃は卵子が着床する時期	
	妊娠が成立しないと黄体は退縮し、エストロゲンとプロゲステロン	
(3) 月経期	濃度が低下する。子宮内膜の血流が停止し、機能層は壊死・剥離して	
	血液や粘液とともに子宮外に排出される。(月経)	

2)精巣ホルモン

- ・精子を育成するのはセルトリ細胞
- ・アンドロゲン を分泌するのはライディッヒ細胞

FSH(卵胞刺激ホルモン)の作用 LH(黄体形成ホルモン)の作用

(1) 男性ホルモン分泌細胞

- ・精細管間細胞 ライディッヒ細胞(LH の作用)
- (2) テストステロンの働き
- ① 男性生殖器の成熟(二次性徴)
- ② 精子形成には 高濃度のアンドロゲンが必要

精細管の精子形成 ライディッヒ細胞

15. 松果体 間脳の第三脳室後下端に位置する、神経由来の内分泌器官

メラトニンの分泌は夜間増加し、昼間は減少する。 **メラトニン** 夜間の光刺激の低下により分泌され、体温を低下させ、眠気をもよおす。 され、体温が低下すると、睡眠を生じさせる。