Defined Terms 131

CHAPTER SUMMARY

Among the most important library types are vector and string. A string is a variable-length sequence of characters, and a vector is a container of objects of a single type.

Iterators allow indirect access to objects stored in a container. Iterators are used to access and navigate between the elements in strings and vectors.

Arrays and pointers to array elements provide low-level analogs to the vector and string libraries. In general, the library classes should be used in preference to low-level array and pointer alternatives built into the language.

DEFINED TERMS

begin Member of string and vector that returns an iterator to the first element. Also, free-standing library function that takes an array and returns a pointer to the first element in the array.

buffer overflow Serious programming bug that results when we use an index that is out-of-range for a container, such as a string, vector, or an array.

C-style strings Null-terminated character array. String literals are C-style strings. C-style strings are inherently error-prone.

class template A blueprint from which specific clas types can be created. To use a class template, we must specify additional information. For example, to define a vector, we specify the element type: vector<int> holds ints.

compiler extension Feature that is added to the language by a particular compiler. Programs that rely on compiler extensions cannot be moved easily to other compilers.

container A type whose objects hold a collection of objects of a given type. vector is a container type.

copy initialization Form of initialization that uses an =. The newly created object is a copy of the given initializer.

difference_type A signed integral type defined by vector and string that can hold the distance between any two iterators.

direct initialization Form of initialization that does not include an =.

empty Member of string and vector. Returns bool, which is true if size is zero, false otherwise.

end Member of string and vector that returns an off-the-end iterator. Also, free-standing library function that takes an array and returns a pointer one past the last element in the array.

getline Function defined in the string header that takes an istream and a string. The function reads the stream up to the next newline, storing what it read into the string, and returns the istream. The newline is read and discarded.

index Value used in the subscript operator to denote the element to retrieve from a string, vector, or array.

instantiation Compiler process that generates a specific template class or function.

iterator A type used to access and navigate among the elements of a container.

iterator arithmetic Operations on vector or string iterators: Adding or subtracting an integral value and an iterator yields an iterator that many elements ahead of or behind the original iterator. Subtracting one iterator from another yields the distance between them. Iterators must refer to elements in, or off-the-end of the same container.

132 Defined Terms

null-terminated string String whose last character is followed by the null character $(' \setminus 0')$.

off-the-end iterator The iterator returned by end that refers to a nonexistent element one past the end of a container.

pointer arithmetic The arithmetic operations that can be applied to pointers. Pointers to arrays support the same operations as iterator arithmetic.

ptrdiff_t Machine-dependent signed integral type defined in the cstddef header that is large enough to hold the difference between two pointers into the largest possible array.

push_back Member of vector. Appends elements to the back of a vector.

range for Control statement that iterates through a specified collection of values.

size Member of string and vector. Returns the number of characters or elements, respectively. Returns a value of the size_type for the type.

size_t Machine-dependent unsigned integral type defined in the cstddef header that is large enough to hold the size of the largest possible array.

size_type Name of types defined by the string and vector classes that are capable of containing the size of any string or vector, respectively. Library classes that define size_type define it as an unsigned type.

string Library type that represents a sequence of characters.

using declarations Make a name from a namespace accessible directly.

using namespace::name;

makes *name* accessible without the *name-space*:: prefix.

value initialization Initialization in which built-in types are initialized to zero and class types are initialized by the class's default constructor. Objects of a class type can be value initialized only if the class has a default constructor. Used to initialize a container's elements when a size, but not an element initializer, is specified. Elements are initialized as a copy of this compilergenerated value.

vector Library type that holds a collection of elements of a specified type.

- **++ operator** The iterator types and pointers define the increment operator to "add one" by moving the iterator to refer to the next element.
- [] **operator** Subscript operator. obj[i] yields the element at position i from the container object obj. Indices count from zero—the first element is element 0 and the last is the element indexed by obj.size()
- 1. Subscript returns an object. If p is a pointer and n an integer, p[n] is a synonym for $\star (p+n)$.
- -> **operator** Arrow operator. Combines the operations of dereference and dot operators: a->b is a synonym for (*a).b.
- << operator The string library type defines an output operator. The string operator prints the characters in a string.
- >> **operator** The string library type defines an input operator. The string operator reads whitespace-delimited chunks of characters, storing what is read into the right-hand (string) operand.
- ! operator Logical NOT operator. Returns the inverse of the bool value of its operand. Result is true if operand is false and vice versa.
- **&& operator** Logical AND operator. Result is true if both operands are true. The right-hand operand is evaluated *only* if the left-hand operand is true.
- || **operator** Logical OR operator. Yields true if either operand is true. The right-hand operand is evaluated *only* if the left-hand operand is false.