Drive Connect

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

Successfully built shap

Installing collected packages: slicer, shap
Successfully installed shap-0.39.0 slicer-0.0.7

▼ Libraries Load

```
pip install shap
     Collecting shap
       Downloading <a href="https://files.pythonhosted.org/packages/b9/f4/c5b95cddae15be80f8e58b25edc">https://files.pythonhosted.org/packages/b9/f4/c5b95cddae15be80f8e58b25edc</a>
                                             | 358kB 13.2MB/s
     Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from sh
     Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from sh
     Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from s
     Requirement already satisfied: tqdm>4.25.0 in /usr/local/lib/python3.7/dist-packages (f
     Collecting slicer==0.0.7
       Downloading https://files.pythonhosted.org/packages/78/c2/b3f55dfdb8af9812fdb9baf70ca
     Requirement already satisfied: numba in /usr/local/lib/python3.7/dist-packages (from sh
     Requirement already satisfied: cloudpickle in /usr/local/lib/python3.7/dist-packages (f
     Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-
     Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in /usr/local/lib/python3.7/
     Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (fr
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from
     Building wheels for collected packages: shap
       Building wheel for shap (setup.py) ... done
       Created wheel for shap: filename=shap-0.39.0-cp37-cp37m-linux x86 64.whl size=491627
       Stored in directory: /root/.cache/pip/wheels/15/27/f5/a8ab9da52fd159aae6477b5ede6eaae
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(color_codes=True)
from itertools import combinations
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.model_selection import StratifiedKFold
```

from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import roc_auc_score,auc,roc_curve,accuracy_score
import shap

Data Load

lginal=pd.read_csv(filepath_or_buffer='/content/drive/MyDrive/Colab Notebooks/PayPal/travel i
_original.copy()

df.shape

(63326, 11)

▼ Data Analysis

df.head()

	Agency	Agency Type	Distribution Channel	Product Name	Claim	Duration	Destination	Net Sales	Со
0	СВН	Travel Agency	Offline	Comprehensive Plan	No	186	MALAYSIA	-29.0	
1	СВН	Travel Agency	Offline	Comprehensive Plan	No	186	MALAYSIA	-29.0	
2	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	65	AUSTRALIA	-49.5	
3	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	60	AUSTRALIA	-39.6	
		Travel		Rental Vehicle					
info()								

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63326 entries, 0 to 63325
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Agency	63326 non-null	object
1	Agency Type	63326 non-null	object
2	Distribution Channel	63326 non-null	object
3	Product Name	63326 non-null	object
4	Claim	63326 non-null	object
5	Duration	63326 non-null	int64
6	Destination	63326 non-null	object

```
7 Net Sales 63326 non-null float64
8 Commision (in value) 63326 non-null float64
9 Gender 18219 non-null object
10 Age 63326 non-null int64
```

dtypes: float64(2), int64(2), object(7)

memory usage: 5.3+ MB

Gender feature is having high volume of nulls

 $\label{lem:df.columns-map} $$ df. columns-map(lambda x:'_'.join(x.lower().replace('(','').replace(')','').split(','').replace(',','').replace(',','').split(','').replace(',','').replace(',','').split(','').replace(',','').replace(',','').split($

df.describe(include='all').T

	count	unique	top	freq	mean	std	min	25%	50
agency	63326	16	EPX	35119	NaN	NaN	NaN	NaN	Nal
agency_type	63326	2	Travel Agency	45869	NaN	NaN	NaN	NaN	Nal
distribution_channel	63326	2	Online	62219	NaN	NaN	NaN	NaN	Nal
product_name	63326	26	Cancellation Plan	18630	NaN	NaN	NaN	NaN	Nal
claim	63326	2	No	62399	NaN	NaN	NaN	NaN	Nal
duration	63326	NaN	NaN	NaN	49.3171	101.792	-2	9	2
destination	63326	149	SINGAPORE	13255	NaN	NaN	NaN	NaN	Nal
net_sales	63326	NaN	NaN	NaN	40.702	48.8456	-389	18	26.5
commision_in_value	63326	NaN	NaN	NaN	9.80999	19.8044	0	0	
gender	18219	2	M	9347	NaN	NaN	NaN	NaN	Nal

Observations:

agency: >50% of data is of 'EPX' Agency

agency_type: Majority of data is of Travel Agency

distribution_channel: Data is highly skewed. Almost all of the data is of Online.

product_name: Around 25% of data is Cancellation Product

claim: Highly skewed data. Imbalanced Dataset

duration: Ideally there shouldnt be -ve values in this column. Probably its a data issue. Also data is right skewed.

destination: No observations yet. Need to analyse further.

net_sales: -ve values present and data seems to be right skewed.

commission_in_value: >50% of data having 0 commission

gender: Too many nulls

age: Seems there is a data issue. age with value 0 is not making sense. And data seems to be bit right skewed. But should be fine for now.

```
# Get skewness of features
df.skew()
     duration
                           23.179617
     net sales
                            3.272373
     commision in value
                            4.032269
                            2.987710
     dtype: float64
numerical feature list=list(df.select dtypes(exclude='object').columns)
categorical feature list=list(df.select dtypes(include='object').columns)
print("Numerical Features: ",numerical_feature_list)
print("Categorical Features: ",categorical_feature_list)
     Numerical Features: ['duration', 'net_sales', 'commision_in_value', 'age']
     Categorical Features: ['agency', 'agency_type', 'distribution_channel', 'product_name'
```

Univariate Analysis

```
# Function for creating histogram and box-plot side by side for continuous variables
# Histogram plot is to help in understanding the distribution of the feature
# Box-plot is to see the data spread across quantiles and also to identify outliers if any
def numerical_feature_plot(feature,lower_whisker,upper_whisker):
   fig, ax=plt.subplots(nrows=2, ncols=2, figsize=(14,8))
   sns.histplot(df[feature],ax=ax[0][0])
   ax[0][0].set_title("Histogram of "+feature)
   ax[0][0].set xlabel('')
    sns.boxplot(y=df[feature],ax=ax[0][1])
   ax[0][1].set title("Boxplot of "+feature)
    sns.histplot(df[feature],ax=ax[1][0])
   ax[1][0].set_title("Excl. Outliers: Histogram of "+feature)
   ax[1][0].set xlim([lower whisker+(lower whisker*0.01),upper whisker+(upper whisker*0.01)]
    sns.boxplot(y=df[feature],ax=ax[1][1])
   ax[1][1].set title("Excl. Outliers: Boxplot of "+feature)
    ax[1][1].set ylim([lower whisker+(lower whisker*0.05),upper whisker+(upper whisker*0.05)]
```

def numerical_feature_analysis(feature):
 feature min=df[feature].min()

```
for i in numerical_feature_list:
    numerical_feature_analysis(i)
```

Feature: duration

Outliers are present in maximum. duration above 119.0 are outliers and total are 5

·

Feature: net_sales

Outliers are present in maximum. net_sales above 93.0 are outliers and total are 5 Outliers are present in minimum. net_sales below -27.0 are outliers and total are

Feature: commision_in_value

Outliers are present in maximum. commision_in_value above 28.88 are outliers and to

Feature: age

Outliers are present in maximum. age above 55.0 are outliers and total are 6123 Outliers are present in minimum. age below 23.0 are outliers and total are 1299

Histogram of duration

Boxplot of duration

5000

4000


```
# Count plot is to help in understanding the distribution of the feature
# % distribution plot helps us to see the % distribution of different categories for a featur
def categorical_feature_plot(feature):
    fig,ax=plt.subplots(nrows=1,ncols=2,figsize=(14,6))
    df[feature].value_counts()[:10].plot(kind='bar',ax=ax[0],rot=90,title="Counts of "+featur
    ax[0].set_xlabel(feature)
    #sns.countplot(df[feature],ax=ax[0],order=df[feature].unique())
    #ax[0].set_title("Counts of "+feature)
    #ax[0].set_xticklabels(df[feature].unique(), rotation=90)
    df[feature].value_counts(normalize=True)[:10].plot(kind='bar',ax=ax[1])
    ax[1].set_title("Distribution of "+feature)
    ax[1].set_xlabel(feature)
    ax[1].set_ylabel("% Distribution")
    ax[1].set_xticklabels(df[feature].value_counts(normalize=True).index[:10], rotation=90)
```

Function for creating count plot and the corresponding percentage distribution plots for ca

```
# Plotting for all categorical features
for i in categorical_feature_list:
    categorical_feature_plot(i)
    print("Feature:"+i+'\n')
    print("No. of unique values:"+ str(df[i].nunique())+"\n")
    print("Distribution: \n")
    print(df[i].value_counts(normalize=True).head(20))
    print("------")
```

```
Feature:agency
```

No. of unique values:16

Distribution:

EPX 0.554575 CWT 0.135489 C2B 0.130547 JZI 0.099943 SSI 0.016676 JWT 0.011828 RAB 0.011449 LWC 0.010880 TST 0.008338 KML 0.006190 ART 0.005227 CCR 0.003064 0.001595 CBH TTW 0.001548 CSR 0.001358 ADM 0.001295 Name: agency, dtype: float64

Feature:agency_type

No. of unique values:2

Distribution:

Travel Agency 0.724331 Airlines 0.275669

Name: agency_type, dtype: float64

Feature:distribution channel

No. of unique values:2

Distribution:

Online 0.982519 0.017481 Offline

Name: distribution_channel, dtype: float64

Feature:product name

No. of unique values:26

Distribution:

Cancellation Plan	0.294192
2 way Comprehensive Plan	0.207782
Rental Vehicle Excess Insurance	0.135489
Basic Plan	0.086363
Bronze Plan	0.063939
1 way Comprehensive Plan	0.052601
Value Plan	0.042873

Silver Plan 0.035515 Annual Silver Plan 0.022471 Ticket Protector 0.016676 Travel Cruise Protect 0.008322 Comprehensive Plan 0.005748 Gold Plan 0.005559 24 Protect 0.003900 Single Trip Travel Protect Gold 0.003221 Premier Plan 0.003064 Annual Gold Plan 0.003064 Single Trip Travel Protect Silver 0.002732 Annual Travel Protect Gold 0.001579 Annual Travel Protect Silver 0.001358 Name: product_name, dtype: float64

Feature:claim

No. of unique values:2

Distribution:

0 0.985361 0.014639 1

Name: claim, dtype: float64

Feature:destination

No. of unique values:149

Distribution:

SINGAPORE 0.209314 MALAYSIA 0.093642 THAILAND 0.093074 **CHINA** 0.075735 **AUSTRALIA** 0.058333 **INDONESIA** 0.054512 UNITED STATES 0.039952 **PHILIPPINES** 0.039320 HONG KONG 0.038073 **INDIA** 0.035546 **JAPAN** 0.032546 VIET NAM 0.026356 KOREA, REPUBLIC OF 0.023355 UNITED KINGDOM 0.020671 TAIWAN, PROVINCE OF CHINA 0.017213 MYANMAR 0.012728 BRUNEI DARUSSALAM 0.012317 **NEW ZEALAND** 0.008480 CANADA 0.008338 CAMBODIA 0.007785 Name: destination, dtype: float64 -----

Feature:gender

No. of unique values:2

Distribution:

M 0.513036 F 0.486964

Name: gender, dtype: float64

count freq unique top mean std min 25% 50% 75% 61 8 **JWT** 20 NaN NaN NaN NaN NaN NaN agency 61 2 **Airlines** 56 agency_type NaN NaN NaN NaN NaN NaN distribution_channel 2 Online 61 60 NaN NaN NaN NaN NaN NaN Value 8 25 product_name 61 NaN NaN NaN NaN NaN NaN Plan claim 61 1 No 61 NaN NaN NaN NaN NaN NaN duration 0 0 0 0 0 0 61 NaN NaN NaN **INDIA** 22 destination 61 10 NaN NaN NaN NaN NaN NaN 23.7448 net_sales 61 NaN NaN NaN 23.7012 -14.4 9.77 18 31 commision_in_value NaN NaN NaN 9.53082 9.63885 0 3.6 6.3 12.4 61 38 2 M 26 NaN NaN NaN NaN NaN NaN gender 71.6721 23 age 61 NaN NaN NaN 38.5831 48 49 118

Not able to deduce further

df[df['duration']<0].describe(include='all').T</pre>

	count	unique	top	freq	mean	std	min	25%	50%
agency	5	1	JZI	5	NaN	NaN	NaN	NaN	NaN
agency_type	5	1	Airlines	5	NaN	NaN	NaN	NaN	NaN
distribution_channel	5	1	Online	5	NaN	NaN	NaN	NaN	NaN
product_name	5	1	Basic Plan	5	NaN	NaN	NaN	NaN	NaN
claim	5	1	No	5	NaN	NaN	NaN	NaN	NaN
duration	5	NaN	NaN	NaN	-1.2	0.447214	-2	-1	-1
destination	5	5	BANGLADESH	1	NaN	NaN	NaN	NaN	NaN
net_sales	5	NaN	NaN	NaN	19.6	2.19089	18	18	18
commision_in_value	5	NaN	NaN	NaN	6.86	0.766812	6.3	6.3	6.3
gender	1	1	M	1	NaN	NaN	NaN	NaN	NaN
age	5	NaN	NaN	NaN	118	0	118	118	118

As per above data, below are some observations:

- All 5 negative values are coming from single agency JZI (Online).
- All have taken same product.
- All 5 customers have same age-118.

So considering these, it feels OK to turn them to +ve values. Lets change it for now. But this need to be discussed with business whether there can be -ve values or not.

df[df['net_sales']<=0]</pre>

	agency	agency_type	distribution_channel	<pre>product_name</pre>	claim	duration	desti
0	СВН	Travel Agency	Offline	Comprehensive Plan	No	186	MA
1	СВН	Travel Agency	Offline	Comprehensive Plan	No	186	MA
2	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	65	AUS ⁻
3	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	60	AUS ⁻
4	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	79	
62806	C2B	Airlines	Online	Bronze Plan	No	12	SING
62833	CWT	Travel	Online	Rental Vehicle Excess	No	165	AUS ⁻

By observing the data, it seems all these -ve values should be turned into positives. But its better not to touch them as we dont know the business context and the volume is also significant. Lets leave it as it is for now and proceed further.

Rental Vehicle

df[df['duration'].between(120,400)]

	agency	agency_type	distribution_channel	product_name	claim	duration	desti
0	СВН	Travel Agency	Offline	Comprehensive Plan	No	186	MA
1	СВН	Travel Agency	Offline	Comprehensive Plan	No	186	MA
9	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	186	AUS
20	CWT	Travel Agency	Online	Rental Vehicle Excess Insurance	No	136	N(

df[df['duration']>300]['product_name'].value_counts()

Cancellation Plan	18630
2 way Comprehensive Plan	13158
Rental Vehicle Excess Insurance	8580
Basic Plan	5469
Bronze Plan	4049
1 way Comprehensive Plan	3331
Value Plan	2715
Silver Plan	2249
Annual Silver Plan	1423
Ticket Protector	1056
Travel Cruise Protect	527
Comprehensive Plan	364
Gold Plan	352
24 Protect	247
Single Trip Travel Protect Gold	204
Premier Plan	194
Annual Gold Plan	194
Single Trip Travel Protect Silver	173
Annual Travel Protect Gold	100
Annual Travel Protect Silver	86
Individual Comprehensive Plan	74
Single Trip Travel Protect Platinum	73
Annual Travel Protect Platinum	53
Spouse or Parents Comprehensive Plan	15
Child Comprehensive Plan	9
Travel Cruise Protect Family	1
Name: product_name, dtype: int64	

By looking at the product_name, Annual Gold Plan seems to contain all the features of Annual Silver Plan and some additional benefits. But by looking at the purchase counts, its clear that customers are not attracted to those additional benefits and hence they are buying only Annual Silver Plan. Probably business can do further research on it and can either decrease the Annual Gold Plan Price or increase/change the benefits.

artart agractor 127201 broader lame 1. varac contra()

```
Ticket Protector 14
Name: product_name, dtype: int64
```

Customers who are taking insurance for more than 10 years are opting for Ticket Protector Product.

```
np.sort(df['destination'].unique())
```

```
array(['ALBANIA', 'ANGOLA', 'ARGENTINA', 'ARMENIA', 'AUSTRALIA',
       'AUSTRIA', 'AZERBAIJAN', 'BAHRAIN', 'BANGLADESH', 'BARBADOS',
       'BELARUS', 'BELGIUM', 'BENIN', 'BERMUDA', 'BHUTAN', 'BOLIVIA',
       'BOSNIA AND HERZEGOVINA', 'BOTSWANA', 'BRAZIL',
       'BRUNEI DARUSSALAM', 'BULGARIA', 'CAMBODIA', 'CAMEROON', 'CANADA',
       'CAYMAN ISLANDS', 'CHILE', 'CHINA', 'COLOMBIA', 'COSTA RICA',
       'CROATIA', 'CYPRUS', 'CZECH REPUBLIC', 'DENMARK',
       'DOMINICAN REPUBLIC', 'ECUADOR', 'EGYPT', 'ESTONIA', 'ETHIOPIA',
       'FAROE ISLANDS', 'FIJI', 'FINLAND', 'FRANCE', 'FRENCH POLYNESIA',
       'GEORGIA', 'GERMANY', 'GHANA', 'GREECE', 'GUADELOUPE', 'GUAM',
       'GUATEMALA', 'GUINEA', 'GUINEA-BISSAU', 'GUYANA', 'HONG KONG',
       'HUNGARY', 'ICELAND', 'INDIA', 'INDONESIA',
       'IRAN, ISLAMIC REPUBLIC OF', 'IRELAND', 'ISRAEL', 'ITALY',
       'JAMAICA', 'JAPAN', 'JORDAN', 'KAZAKHSTAN', 'KENYA',
       "KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF", 'KOREA, REPUBLIC OF',
       'KUWAIT', 'KYRGYZSTAN', "LAO PEOPLE'S DEMOCRATIC REPUBLIC",
       'LATVIA', 'LEBANON', 'LIBYAN ARAB JAMAHIRIYA', 'LITHUANIA',
       'LUXEMBOURG', 'MACAO',
       'MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF', 'MALAYSIA',
       'MALDIVES', 'MALI', 'MALTA', 'MAURITIUS', 'MEXICO',
       'MOLDOVA, REPUBLIC OF', 'MONGOLIA', 'MOROCCO', 'MYANMAR',
       'NAMIBIA', 'NEPAL', 'NETHERLANDS', 'NEW CALEDONIA', 'NEW ZEALAND',
       'NIGERIA', 'NORTHERN MARIANA ISLANDS', 'NORWAY', 'OMAN',
       'PAKISTAN', 'PANAMA', 'PAPUA NEW GUINEA', 'PERU', 'PHILIPPINES',
       'POLAND', 'PORTUGAL', 'PUERTO RICO', 'QATAR',
       'REPUBLIC OF MONTENEGRO', 'REUNION', 'ROMANIA',
       'RUSSIAN FEDERATION', 'RWANDA', 'SAMOA', 'SAUDI ARABIA', 'SENEGAL',
       'SERBIA', 'SEYCHELLES', 'SIERRA LEONE', 'SINGAPORE', 'SLOVENIA',
       'SOLOMON ISLANDS', 'SOUTH AFRICA', 'SPAIN', 'SRI LANKA', 'SWEDEN',
       'SWITZERLAND', 'TAIWAN, PROVINCE OF CHINA', 'TAJIKISTAN',
       'TANZANIA, UNITED REPUBLIC OF', 'THAILAND', 'TIBET',
       'TRINIDAD AND TOBAGO', 'TUNISIA', 'TURKEY', 'TURKMENISTAN',
       'TURKS AND CAICOS ISLANDS', 'UGANDA', 'UKRAINE',
       'UNITED ARAB EMIRATES', 'UNITED KINGDOM', 'UNITED STATES',
       'URUGUAY', 'UZBEKISTAN', 'VANUATU', 'VENEZUELA', 'VIET NAM',
       'VIRGIN ISLANDS, U.S.', 'ZAMBIA', 'ZIMBABWE'], dtype=object)
```

Multivariate Analysis

```
# Before starting analyis, its better to encode Target feature from YES/NO to 1/0 # This would help in doing the analysis better.
```

```
df['claim']=df['claim'].map({'Yes':1,'No':0})
```

```
# For continuous variables, Correlation with Heatmap serves as starting point plt.figure(figsize=(10,8)) sns.heatmap(df.corr(),annot=True)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f1ab3ceaa10>

target='claim'

```
def feature_target_plot(feature):
    #plt.figure(figsize=(12,12))
    nbins=df[feature]
    if feature in numerical_feature_list:
        g=sns.FacetGrid(data=df,col=target,height=5, aspect =1.5)
        g.map(plt.hist,feature)
        g.set_xticklabels(rotation=90)
    else:
        g=sns.FacetGrid(data=df,col=target,height=5, aspect =1.5)
        g.map(sns.countplot,feature,order=df[feature].value_counts().index[:10])
        g.set_xticklabels(rotation=90)
```

for i in df.columns:

if i!=target:
 feature_target_plot(i)


```
20
                                                                                             250
                                         200
                                                250
                                                      200
                                                                                       200
                           commision_in_value
                                                                         commision_in_value
                             claim = 0
                                                                           claim = 1
      8000
      6000
      4000
      2000
def feature_target_analysis(feature,count):
    if feature!=target:
         plt.figure(count, figsize=(8,6))
         if i in numerical_feature_list:
             nbins=(df[feature].max()-abs(df[feature].min()))/(np.std(df[feature]))
             new_feature=feature+'_Band'
             df[new_feature]=pd.qcut(x=df[feature],q=4,duplicates='drop')
             feature=new_feature
             feature_band_list.append(new_feature)
             sns.pointplot(x=feature,y=target,data=df[[target,feature]].groupby(by=feature,as_
             plt.xticks(rotation=90)
         else:
             sns.pointplot(x=feature,y=target,data=df[[target,feature]].groupby(by=feature,as_
             plt.xticks(rotation=90)
```

df[[target, 'agency']].groupby(by='agency',as_index=False).mean().sort_values(by='claim',ascer

	agency	claim
2	C2B	0.066167
11	LWC	0.052250
15	TTW	0.040816
10	KML	0.020408
4	CCR	0.015464
5	CSR	0.011628
6	CWT	0.010023
3	СВН	0.009901
13	SSI	0.006629
7	EPX	0.005553

```
feature_band_list=[]
count=0
for i in categorical_feature_list+numerical_feature_list:
```

count=count+1
feature_target_analysis(i,count)

feature_band_list

['duration_Band', 'net_sales_Band', 'commision_in_value_Band', 'age_Band']

Removing the Band features created for analysis and understanding of data
df.drop(feature_band_list,inplace=True,axis=1)

df[df['claim']==1].describe(include='all').T

		count	unique	top	freq	mean	std	min	25%
	agency	927	15	C2B	547	NaN	NaN	NaN	NaN
	agency_type	927	2	Airlines	591	NaN	NaN	NaN	NaN
	distribution_channel	927	2	Online	910	NaN	NaN	NaN	NaN
	product_name	927	23	Bronze Plan	210	NaN	NaN	NaN	NaN
	claim	927	NaN	NaN	NaN	1	0	1	1
	duration	927	NaN	NaN	NaN	110.789	141.375	1	15
	destination	927	41	SINGAPORE	562	NaN	NaN	NaN	NaN
	net_sales	927	NaN	NaN	NaN	94.3744	93.1749	-37	29
	commision_in_value	927	NaN	NaN	NaN	25.8464	32.4823	0	4.25
	gender	639	2	F	346	NaN	NaN	NaN	NaN
Observations:									
	duration Rand	927	4	(53.U,	375	NaN	NaN	NaN	NaN
agency:									
		-		· / 1		-	-	-	-

df['age_bin'].value_counts()

2 32618

3 13363

0 11772

1 5573

Name: age_bin, dtype: int64

```
df[df['claim']=='Yes']['agency'].value_counts()
```

C2B 547 **EPX** 195 CWT 86 LWC 36 JZI 31 KML 8 SSI 7 JWT TTW 4 CCR 3 TST 2 ART 1 1 RAB 1 CBH CSR 1

Name: agency, dtype: int64

agency

claim	<pre>product_name</pre>	
No	Annual Gold Plan	173
	Annual Silver Plan	1266
	Bronze Plan	3839
	Gold Plan	334
	Silver Plan	2108
Yes	Annual Gold Plan	21
	Annual Silver Plan	157
	Bronze Plan	210
	Gold Plan	18
	Silver Plan	141

```
numerical_feature_list
```

```
['duration', 'net_sales', 'commision_in_value', 'age']
```

df

	in	<pre>gender_commision_in_value_std</pre>	gender_age_mean	gender_age_median	gender_age_max	ge
	.0	24.874254	42.940825	38	118	
	.0	24.874254	42.940825	38	118	
	.0	16.009914	38.024985	36	118	
	.0	16.009914	38.024985	36	118	
	.0	16.009914	38.024985	36	118	
	.0	25.045656	46.536322	42	118	
•	agency	vs agency_type:				
	.0	25.045656	46.536322	42	118	
	df['age	ency_type'].nunique()				

2

```
df['agency_agency_type_nunique'].value_counts()
```

1 63326

Name: agency_agency_type_nunique, dtype: int64

Agency Type for each Agency is either Travel Agency or Airline but not both.

count sum mean

 agency_type

 Airlines
 17457
 591
 0.033855

 Travel Agency
 45869
 336
 0.007325

df[['agency','agency_type','claim',]].groupby(by=['agency','agency_type']).agg({'claim':['cou

claim

count sum mean

agency	agency_type			
ADM	Travel Agency	82	0	0.000000
ART	Airlines	331	1	0.003021
C2B	Airlines	8267	547	0.066167
СВН	Travel Agency	101	1	0.009901
CCR	Travel Agency	194	3	0.015464
CSR	Travel Agency	86	1	0.011628
CWT	Travel Agency	8580	86	0.010023
EPX	Travel Agency	35119	195	0.005553
JWT	Airlines	749	4	0.005340
JZI	Airlines	6329	31	0.004898
KML	Travel Agency	392	8	0.020408
LWC	Travel Agency	689	36	0.052250
RAB	Airlines	725	1	0.001379
SSI	Airlines	1056	7	0.006629
TST	Travel Agency	528	2	0.003788
TT\M	Traval Agancy	QΩ	1	N N/NR16

- 6.6% of insurances are claimed when taken through C2B(Airline)
- Rest other airlines are having lower claim ratio.
- Claims through LWC and TTM are around 5% and 4% respectively. Though the volumes are less right now, this need to be monitored.
- ▼ agency vs distribution_channel:

```
df['distribution_channel'].nunique()
```

2

```
df['agency_distribution_channel_nunique'].value_counts()
```

5253210794

Name: agency_distribution_channel_nunique, dtype: int64

```
df[df['agency_distribution_channel_nunique']==1]['agency'].nunique()
9
```

Out of 26 agencies, only 9 agencies are having only either Online or Offline servies. Rest other 17 agencies have both servies.

```
df[df['claim']==1]['distribution_channel'].agg()

Online 910
Offline 17
Name: distribution_channel, dtype: int64
```

agency vs product_name:

```
df['product_name'].nunique()
```

26

```
df['agency_product_name_nunique'].value_counts()
```

```
3 41546
1 11110
5 8267
2 1714
6 689
```

Name: agency_product_name_nunique, dtype: int64

```
def is_agency_cross_product_sell():
    cross_products=dict()
    for i in df['product_name'].unique():
        if df[df['product_name']==i]['agency'].nunique()>1:
            cross_products[i]= list(df[df['product_name']==i]['agency'].unique())
    return cross_products
```

```
is_agency_cross_product_sell()
{'Comprehensive Plan': ['CBH', 'CSR', 'CCR'],
```

```
{'Comprehensive Plan': ['CBH', 'CSR', 'CCR'],
  'Premier Plan': ['KML', 'CCR', 'ADM', 'CSR', 'JZI', 'CBH'],
  'Value Plan': ['JZI', 'JWT', 'RAB', 'KML', 'ART', 'ADM']}
```

Observations:

- Each Agency sells upto a max of 6 products out of total 26 products. Majority agencies sell only 3 products.
- Out of 26 products, only 3 products are sold across by multiple agencies.
- ▼ agency vs duration:

df['duration_bins'].nunique()

2

','agen	cy_fe','agency	_duration_mean',	<pre>'agency_duration_r</pre>	median','agency_du	uration_min','agency_d
---------	----------------	------------------	-------------------------------	--------------------	------------------------

	agency_fe	agency_duration_mean	agency_duration_median	agency_duration_min a	
agency					
ADM	0.001295	54.914634	41.5	3	
ART	0.005227	30.359517	14.0	1	
C2B	0.130547	95.219910	21.0	0	
СВН	0.001595	91.950495	64.0	5	
CCR	0.003064	62.809278	45.0	2	
CSR	0.001358	79.895349	58.0	5	
CWT	0.135489	41.450350	24.0	0	
EPX	0.554575	39.158860	22.0	0	
JWT	0.011828	29.371162	16.0	0	
JZI	0.099943	34.156423	20.0	-2	
KML	0.006190	40.426020	27.0	2	
LWC	0.010880	150.252540	29.0	0	
RAB	0.011449	23.870345	11.0	0	
SSI	0.016676	122.757576	42.0	0	
TST	0.008338	40.594697	33.0	3	
TTW	0.001548	369.316327	365.0	364	

• All Products sold by TTW Agency are taken for around a year.

- Products sold by SSI are having higher variation in duration. Thats probably because of Ticket
 Protector Product taken by some customers for more than 10 years.
- Products sold by C2B are also having higher variation and its because of Annual Silver Plan
- agency vs destination:

```
df['destination'].nunique()

149
```

df[['agency','agency_destination','agency_destination_nunique','agency_destination_count']].

	agency_destination	n agency_destination_nunique agency_destination_	
agency			
ADM	0.000821	13	82
ART	0.001627	23	331
C2B	0.130547	1	8267
СВН	0.000805	3	101
CCR	0.001737	3	194
CSR	0.000790	4	86
CWT	0.039605	74	8580
EPX	0.059486	138	35119
JWT	0.011828	1	749
JZI	0.018160	68	6329
KML	0.003727	21	392
LWC	0.003142	45	689
RAB	0.011212	7	725
SSI	0.016676	1	1056
TST	0.004406	2	528
TTW	0.001153	6	98

- C2B Agency booked insurance for customers going to singapore only.
- agency vs net_sales:

```
['agency_net_sales_mean',
    'agency_net_sales_median',
    'agency_net_sales_max',
    'agency_net_sales_min',
    'agency_net_sales_std']

[i for i in df.columns if 'claim' in i]
```

:y_fe','agency_claim_mean']+[i for i in df.columns if 'agency_net_sales' in i]].groupby(by='agency_net_sales' in i]]

agency_fe agency_claim_mean agency_net_sales_mean agency_net_sales_median a

agency **ADM** 0.001295 0.000000 53.256098 75.00 **ART** 0.005227 0.003021 28.691601 23.00 C₂B 0.130547 0.066167 78.865811 35.50 **CBH** 0.001595 0.009901 27.168317 29.00 **CCR** 0.003064 0.015464 30.654639 29.00 **CSR** 29.00 0.001358 0.011628 32.802326 **CWT** 0.010023 43.040769 0.135489 39.60 **EPX** 0.554575 0.005553 32.564993 22.00 **JWT** 0.011828 0.005340 53.012016 39.00 JZI 0.099943 32.338442 26.00 0.004898 **KML** 0.006190 0.020408 55.448980 38.00 **LWC** 0.010880 0.052250 111.510813 47.00 **RAB** 0.011449 0.001379 17.817931 15.00 SSI 0.016676 0.006629 6.365208 4.23 29.318182 **TST** 0.008338 0.003788 30.00 **TTW** 0.001548 0.040816 93.204082 97.00

- Claims seem to be higher for agencies which have Average net sales mean
- net_sales in TTW agency is high and consistent with mean and median very close.
- But these stats will significantly vary if -ve values are turned out to be +ves.
- agency vs commision_in_value:

agency_fe agency_commision_in_value_mean agency_commision_in_value_median approximation_in_value_median approximation_in_value_median approximation_in_value_mean agency_commision_in_value_mean approximation_in_value_mean appro

df[['agency','agency_fe']+[i for i in df.columns if 'agency_commision_in_value' in i]].groupt

	0 /_ 0	, ,	`
agency			
ADM	0.001295	38.254878	34.390
ART	0.005227	10.553927	8.490
C2B	0.130547	20.533124	9.750
СВН	0.001595	10.030693	9.570
CCR	0.003064	10.313351	9.570
CSR	0.001358	10.824767	9.570
CWT	0.135489	32.380615	23.760
EPX	0.554575	0.000000	0.000
JWT	0.011828	21.640053	15.600
JZI	0.099943	11.766669	9.100
KML	0.006190	21.812194	14.440
LWC	0.010880	74.265791	31.530
RAB	0.011449	7.226483	6.000
SSI	0.016676	1.784886	1.185
TST	0.008338	10.523201	10.500
TTW	0.001548	0.000000	0.000

- EPX agency sells more than 50% of total insurances. The probable reason being the commission value is Zero indicating that EPX sells insurance without taking any commission. May be thats the reason, insurance company has given authorization to sell 2 most sold products to EPX
- Even TTW is providing insurance with zero comission.
- agency vs gender:

```
df['agency_gender_nunique'].value_counts()
```

- 1 36175
- 3 17518
- 2 9633

Name: agency_gender_nunique, dtype: int64

```
df['gender'].unique()
    array(['F', 'X', 'M'], dtype=object)

df[['agency','gender','product_name']].groupby(by=['agency','gender']).count()
```

product_name

agency	gender	
ADM	F	16
	M	17
	X	49
ART	F	96
	M	230
	X	5
C2B	F	4594
	M	3673
СВН	F	71
	M	30
CCR	F	143
	M	50

df.groupby(by=['agency','claim'])['product_name'].count()

agency	claim	
ADM	0	82
ART	0	330
	1	1
C2B	0	7720
	1	547
CBH	0	100
	1	1
CCR	0	191
	1	3
CSR	0	85
	1	1
CWT	0	8494
	1	86
EPX	0	34924
	1	195
JWT	0	745
	1	4
JZI	0	6298
	1	31
KML	0	384
	1	8
LWC	0	653
	1	36
RAB	0	724
	1	1
SSI	0	1049
	1	7
TST	0	526
	1	2

TTW 0 94 1 4

Name: product_name, dtype: int64

▼ agency vs age:

df[['agency','agency_fe']+[i for i in df.columns if 'agency_age_' in i]].groupby(by='agency')

	agency_fe	agency_age_mean	agency_age_median	agency_age_max	agency_age_min
agency					
ADM	0.001295	23.804878	22.0	118	21
ART	0.005227	60.314199	48.0	118	22
C2B	0.130547	37.749244	34.0	88	1
СВН	0.001595	57.128713	65.0	87	8
CCR	0.003064	67.572165	67.0	118	5
CSR	0.001358	57.511628	63.5	84	8
CWT	0.135489	40.291841	38.0	118	21
EPX	0.554575	36.933740	36.0	118	7
JWT	0.011828	118.000000	118.0	118	118
JZI	0.099943	44.603571	44.0	118	1
KML	0.006190	47.918367	48.0	61	19
LWC	0.010880	39.992743	37.0	84	12
RAB	0.011449	42.689655	40.0	84	15
SSI	0.016676	49.193182	48.0	118	48
TST	0.008338	50.467803	54.0	88	0
TTW	0.001548	40.642857	40.5	65	3

Random

```
d=df.groupby(by=['agency','product_name']).agg({'agency_type':'count','claim':['sum','mean']}
d.columns = ['d' + '_'.join(c).strip('_') for c in d.columns]
d
```

agency	product_name			
ADM	Premier Plan	46	0	0.000000
	Value Plan	36	0	0.000000
ART	24 Protect	247	0	0.000000
	Value Plan	84	1	0.011905
C2B	Annual Gold Plan	194	21	0.108247
	Annual Silver Plan	1423	157	0.110330
	Bronze Plan	4049	210	0.051865
	Gold Plan	352	18	0.051136
	Silver Plan	2249	141	0.062695
СВН	Comprehensive Plan	99	1	0.010101
	Premier Plan	2	0	0.000000
CCR	Comprehensive Plan	181	3	0.016575
	Premier Plan	13	0	0.000000
CSR	Comprehensive Plan	84	1	0.011905
	Premier Plan	2	0	0.000000
CWT	Rental Vehicle Excess Insurance	8580	86	0.010023
EPX	1 way Comprehensive Plan	3331	9	0.002702
	2 way Comprehensive Plan	13158	142	0.010792
	Cancellation Plan	18630	44	0.002362
JWT	Value Plan	749	4	0.005340
JZI	Basic Plan	5469	23	0.004206
	Premier Plan	6	0	0.000000
	Value Plan	854	8	0.009368
KML	Premier Plan	125	3	0.024000
	Value Plan	267	5	0.018727
LWC	Annual Travel Protect Gold	100	10	0.100000
	Annual Travel Protect Platinum	53	3	0.056604
	Annual Travel Protect Silver	86	4	0.046512
	Single Trip Travel Protect Gold	204	10	0.049020
	Single Trip Travel Protect Platinum	73	5	0.068493