

Bereich Mathematik und Naturwissenschaften, Fakultät Mathematik, Institut für Algebra

Jun.-Prof. Friedrich Martin Schneider, Dr. Henri Mühle.

Wintersemester 2018/19

9. Übungsblatt zur Vorlesung "Diskrete Strukturen für Informatiker"

Modulare Arithmetik

- V. Die Dezimaldarstellung von $n \in \mathbb{N}$ ist das eindeutig bestimmte Tupel (n_0, n_1, \ldots, n_k) , mit $0 \le n_i \le 9$ für alle i, sodass $n = \sum_{i=0}^k n_i 10^i$ und $n_k \ne 0$ gilt. Die alternierende Quersumme von n ist dann aq $(n) = \sum_{i=0}^k (-1)^i n_i$.
 - (a) Bestimmen Sie aq(924) und aq(2143).
 - (b) Zeigen Sie, dass n genau dann durch elf teilbar ist, wenn aq(n) durch elf teilbar ist.
- Ü49. (a) Berechnen Sie für die folgenden Elemente $x \in \mathbb{Z}_n$ jeweils das multiplikative Inverse modulo n, falls es existiert.

(i)
$$x = 18$$
, $n = 31$, (ii) $x = 60$, $n = 257$, (iii) $x = 511$, $n = 1001$, (iv) $x = 512$, $n = 1001$.

(b) Geben Sie die Lösungsmengen der folgenden Kongruenzen an.

(i)
$$5x \equiv 1 \pmod{7}$$
, (ii) $32x \equiv 14 \pmod{82}$, (iii) $10x \equiv 9 \pmod{25}$.

<u>Hinweis:</u> Es gibt eine Regel zur Modulo-Rechnung, mit deren Hilfe die Kongruenz in (ii) geeignet umgeformt werden kann.

Ü50. Seien $a, b, n \in \mathbb{N}$. Um $a^b \pmod{n}$ zu berechnen, bietet sich der folgende *Square-and-Multiply*-Algorithmus an.

Zuerst berechnet man die *Binärdarstellung* von b, also das eindeutig bestimmte Tupel (b_0, b_1, \ldots, b_k) mit $b_i \in \{0, 1\}$ für alle i, sodass $b = \sum_{i=0}^k b_i 2^i$ und $b_k = 1$ gilt. Anschließend initialisiert man $c_{k+1} = 1$ und führt für i von k bis 0 (absteigend) die Rekursion $c_i = c_{i+1}^2 a^{b_i} \pmod{n}$ aus. Der letzte berechnete Wert c_0 erfüllt dann $c_0 \equiv a^b \pmod{n}$.

- (a) Berechnen Sie mit Hilfe dieses Algorithmus die folgenden Potenzen.
 - (i) $11^{53} \pmod{8}$, (ii) $7^{199} \pmod{11}$, (iii) $37^{25} \pmod{19}$.
- (b) Bestimmen Sie die letzten beiden Ziffern von 2³³³.

- Ü51. Es sei $p \in \mathbb{N}$ eine Primzahl. Die *Logarithmentafel* zu $x \in \mathbb{Z}_p$ ist die Tabelle, die für $i \in \{1, 2, ..., p-1\}$ in der i-ten Zeile die Werte i und $x^i \pmod p$ enthält. Die Zahl x ist *primitiv*, wenn $x^i \not\equiv 1 \pmod p$ für alle $i \in \{1, 2, ..., p-2\}$ gilt.
 - (a) Stellen Sie für 2, 3, und 6 die Logarithmentafeln in \mathbb{Z}_{11} auf, und schlussfolgern Sie, welche dieser Zahlen primitiv sind.
 - (b) Berechnen Sie unter Ausnutzung der Ergebnisse aus (a) die folgenden Werte in \mathbb{Z}_{11} .

(i)
$$2^{35} - 2^{21}$$
, (ii) $\frac{1}{6^5}$, (iii) $\frac{3}{7}$, (iv) 17^{457} , (v) 9^{-1} .

- A52. **Hausaufgabe, bitte vor Beginn der 10. Übung (oder im Lernraum) unter Angabe von Name, Matrikelnummer, Übungsgruppe und Übungsleiter abgeben.** Erzeugen Sie erneut mit Hilfe Ihrer Matrikelnummer die Zahlen x und y wie in Aufgabe A40.
 - (a) Berechnen Sie jeweils das multiplikativ Inverse von *x* und *y* modulo 101, falls es existiert.
 - (b) Berechnen Sie $x^y \mod \varphi(101) \pmod{101}$ mittels Square-and-Multiply.
- H53. Wir betrachten den Ring (\mathbb{Z}_n , +, \cdot), wobei Addition und Multiplikation modulo n ausgeführt werden. Eine Zahl $x \in \mathbb{Z} \setminus \{0\}$ ist ein *Nullteiler*, wenn es $y \in \mathbb{Z}_n \setminus \{0\}$ gibt, sodass $x \cdot y \equiv 0 \pmod{n}$ gilt.
 - (a) Bestimmen Sie alle Nullteiler und Einheiten in $(\mathbb{Z}_n, +, \cdot)$ für die folgenden Werte von n.

(i)
$$n = 4$$
, (ii) $n = 5$, (iii) $n = 15$, (iv) $n = 17$.

- (b) Zeigen Sie, dass jedes von Null verschiedene Element in $(\mathbb{Z}_n, +, \cdot)$ entweder eine Einheit oder ein Nullteiler ist.
- (c) Zeigen Sie, dass es in $(\mathbb{Z}_n, +, \cdot)$ genau dann keine Nullteiler gibt, wenn n = 1 oder n eine Primzahl ist.
- H54. (a) Berechnen Sie Lösungen der Kongruenz $225 + 7 \cdot 3^x \equiv 2992 \pmod{13}$.
 - (b) Zeigen Sie, dass für alle $n \in \mathbb{N}$ die Zahl $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ eine natürliche Zahl ist.