Chapter 1

Basic Principles of Digital Systems

Analog vs. Digital

☐ Analog:

A way of representing a physical quantity by a proportional continuous voltage or current.

☐ Digital:

A way of representing a physical quantity in discrete voltage steps.

Analog Electronics

☐ Values are continuously variable between defined values.

☐ Can have any value within a defined range.

Analog Electronics

Voltage

Sound amplitude

a. Original audio source

b. Analog reproduction (shows distortion)

Measured at microphone output

Voltage

c. Digital reproduction (simplified)

Digital audio system

: Precise intervals

: converted to binary number

Digital Electronics

- □Values can vary only by distinct(與其他不同的), or discrete(不連接的), steps.
- □Can only have two values.

1.2 Digital Logic Levels

- □Logic HIGH is the higher voltage and represented by binary digit '1'.
- □Logic LOW is the lower voltage and represented by binary digit '0'.

Digital Logic Levels

1.3 Binary Number System

 \square Uses two digits, 0 and 1.

□ Represents any number by using the positional notation.

Positional Notation

- ☐ The value of a digit depends on its placement within a number.
- □ In base 10, the positional values are (starting to the left of the decimal)
 - $1 (10^0), 10 (10^1), 100 (10^2), 1000 (10^3), etc.$
- □ In base 2, the positional values are $1(2^0)$, $2(2^1)$, $4(2^2)$, $8(2^3)$, etc.

Decimal Equivalence of Binary Numbers

$$1101 = (1 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= (1 \times 8) + (1 \times 4) + (0 \times 2) + (1 \times 1)$$

$$= 8 + 4 + 0 + 1$$

$$= 13$$

Bit

- □Shorthand for binary digit, a logic 0 or 1.
- ☐ The most significant bit (MSB) is the leftmost bit of a binary number.
- ☐ The least significant bit (LSB) is the rightmost bit of a binary number.

Binary Inputs

- ☐ Digital circuits operate by accepting logic levels (0,1) at their inputs.
- \Box The corresponding outputs logic level will change (0,1).

Truth Table (真值表)

- ☐ A list of output logic levels corresponding to all possible input combinations.
- \square The number of input combinations is 2^n , where n is the number of inputs.
- \square A logic circuit with 3 inputs will have 2^3 or 8 possible input conditions.
- ☐ For this logic circuit there would also be 8 possible output conditions.

Constructing a Binary Sequence For a Truth Table – 1

- ☐Two methods:
 - Learn to count in binary
 - > Follow a simple repetitive pattern
- ☐ Memorize the binary numbers from 0000 to 1111 and their decimal equivalents (0 to 15).

☐ Use the weighted values of binary bits.

Binary Sequence for a Truth Table - 1

Logic Level			Bin	ary Va	alue	Decimal Equivalent
\boldsymbol{A}	В	C	\boldsymbol{A}	В	C	
L	L	L	0	0	0	0
L	L	Н	0	0	1	1
L	Н	L	0	1	0	2
L	H	Н	0	1	1	3
Н	L	L	1	0	0	4
Н	L	Н	1	0	1	5
H	Н	L	1	1	0	6
Н	Н	Н	1	1	1	7

Follow a Simple Repetitive Pattern

□ The LSB of any binary number alternates between 0 and 1 with every line.

☐ The next bit alternates every two lines.

☐ The next bit alternates every four lines, and so on.

Follow a Simple Repetitive Pattern (Cont'd)

3 Input Truth Table						
Decimal Value	Binary Value					
Base 10	2^2	2^{1}	20			
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			

Example 1.2: 4-Input Digital Circuit

 $\Box 2^4 = 16$ possible input conditions.

Example 1.2: 4-Input Digital Circuit (Cont'd)

\boldsymbol{A}	В	C	D	Decimal	$oldsymbol{A}$	В	C	D	Decimal (Cont)
0	0	0	0	0	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

Binary Weights

2^7	2^6	2^5	24	2^3	2^2	21	2^0
128	64	32	16	8	4	2	1

Decimal-to-Binary Conversion (十進位-二進位轉換)

☐Two methods:

- ➤ Sum of powers(次方) of 2
- Repeated division by 2

Sum of Powers of 2

□Step 1:

- ➤ Determine the largest power of 2 less than or equal to the number to be converted.
- ➤ Place a 1 in that positional location.

\square Step 2:

- ➤ Subtract the number found in Step 1 from the number to be converted.
- For the new number, determine if the next lowest power of 2 is less than or equal to that number.

Sum of Powers of 2

\square Step 3:

- ➤ If the new power of two from Step 2 is larger, place a 0 in that positional location.
- ➤ If the new value is less than or equal, place a 1 in that positional location.

\square Step 4:

- > Repeat Steps 2 and 3 until there is nothing left to subtract.
- > All remaining bits are set to 0.

Repeated Division by 2

\square Step 1:

- Take the number to be converted, and divide it by 2.
- > The remainder(餘) (0 or 1) is the LSB of the binary value.

\square Step 2:

- ➤ Divide the quotient (商) from Step 1 by 2.
- The remainder (0 or 1) is the next most significant bit.

□Step 3:

- Continue to execute Step 2 until the quotient is 0.
- The last remainder is the MSB.

Fractional (小數) Binary Numbers

□Radix point (小數點):

➤ The generalized form of a decimal point(十進位小數點).

The dividing line between positive and negative powers for positional multipliers.

□Binary point (二進位小數點):

The radix point for binary numbers.

Fractional Binary Values

The value immediately to the right of the binary point is $2^{-1} = 0.5$.

The next value to the right is $2^{-2} = 0.25$.

The next value to the right is $2^{-3} = 0.125$, and so on.

Fractional Binary Weights

2-1	2-2	2-3	2-4
1/2	1/4	1/8	1/16
0.5	0.25	0.125	0.0625

Each digit is multiplied by a positional factor that is a negative power of 2. The first four multipliers on either side of the binary point are:

binary point

$$2^3$$
 2^2 2^1 2^0 = 8 = 4 = 2 = 1

$$2^{-1}$$
 2^{-2} 2^{-3} 2^{-4}
= $1/2$ = $1/4$ = $1/8$ = $1/16$

Example 1.5: Binary Fraction

Write the binary fraction 0.101101 as a decimal fraction.

■ Solution

Fractional-Decimal-to-Fractional-Binary Conversion (十進位小數轉二進位小數)

\square Step 1:

- > Multiply the decimal fraction by 2.
- The integer part, 0 or 1, is the first bit to the right of the binary point.

\square Step 2:

➤ Discard the integer part from Step 1 and repeat Step 1 until the fraction repeats or terminates.

Fractional-Decimal-to-Fractional-Binary Conversion (十進位小數轉二進位小數)

Example 1.6 Convert 0.95₁₀ to its binary equivalent

1.4 Hexadecimal Numbers

- ☐Base 16 number system.
- □ Primarily used as a shorthand form of binary numbers.
- □Values range from 0 to F with the letters A to F used to represent the values 10 to 15 respectively.
- **■**Positional multipliers are powers of 16: $16^0 = 1$, $16^1 = 16$, $16^2 = 256$, etc.

Hexadecimal vs. Decimal Numbers

TABLE 1.4 Hex Digits and Their Binary and Decimal Equivalents

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Counting in Hexadecimal

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F 20,21,22,23,24,25,26,27,28,29,2A,2B,2C,2D,2E,2F

30,31,32,33,34,35,36,37,38,39,3A,3B,3C,3D,3E,3F

Example

Example 1.9 Convert 7C6H to decimal.

Decimal-to-Hexadecimal Conversion

(十進位轉十六進位)

☐Two methods:

➤ Sum of Weighted Hexadecimal Digits.

Repeated division by 16.

Decimal-to-Hexadecimal Conversion

□ Sum of weighted hexadecimal digits.

Ex: Convert 135₁₀ to hexadecimal

$$16^{2}$$
 16^{1} 16^{0} 0 8 $135-8*16^{1}=135-128=7$ 0 8 7 $7-7=0$

$$135_{10} = 87_{16}$$

Decimal-to-Hexadecimal Conversion

□ Sum of weighted hexadecimal digits.

Example 1.11: Convert 175₁₀ to hexadecimal

Decimal-to-Hexadecimal Conversion

☐ Repeated division by 16

Example 1.12: Convert 31581₁₀ to hexadecimal

Conversion Between Hexadecimal and Binary (十六進位和二進位之間轉換)

☐ Each hexadecimal digit represents 4 binary bits.

Example: Converting FD69H to Binary

HEX	F	D	6	9
BIN	1111	1101	0110	1001
DEC	15	13	6	9

Conversion Between Hexadecimal and Binary (十六進位和二進位之間轉換)

Example 1.13 Convert 7EF8H to its binary equivalent.

1.5 Periodic Digital Waveforms

- ☐ A periodic digital waveform is a time-varying sequence of logic HIGHs and LOWs that repeat over some period of time.
- ☐ Period (T) is the time required for the pattern to repeat.
- \Box Frequency (f) is the number of times per second a signal repeats and is the reciprocal of period.
- $\Box f = 1/T$

Waveform Definitions

- \square Time HIGH (t_h) is the time a logic signal is in its HIGH state.
- \square Time LOW (t_1) is the time a logic signal is in its LOW state.
- \Box Duty cycle is the ratio of the time a logic signal is HIGH (t_h) to the period (T).

Duty Cycle =
$$t_h/T$$

Example 1.14: Periodic Digital Waveforms

Calculate the time LOW, time HIGH, period, frequency, and percent duty cycle for each of the periodic waveforms

Sol:

Aperiodic Digital Waveforms

An aperiodic digital waveform is a time-varying sequence of logic HIGHs and LOWs that does not repeat.

Example 1.15

A digital circuit generates the following strings of 0s and 1s:

- **a.** 00111111101101011010000110000
- **b.** 001100110011001100110011
- c. 000000001111111111000000001111
- **d.** 1011101110111011101110111011

Question:

The time between two bits is always the same. Sketch the resulting digital waveform for each string of bits. Which waveforms are periodic and which are aperiodic?

Answer: ?

Pulse Waveforms

- □ A pulse is a momentary (短暫的) variation of voltage from one logic level to the opposite level and back again.
- ☐ Amplitude is the voltage magnitude of a pulse.
- ☐ Edge is the part of a pulse representing the transition from one logic level to the other.

Pulse Waveform Characteristics

- ☐ Rising edge is the transition from LOW to HIGH.
- ☐ Falling edge is the transition from HIGH to LOW.

- ☐ Leading edge is the earliest transition.
- ☐ Trailing edge is the latest transition.

Pulse Waveforms

a. Ideal pulse (instantaneous transitions)

b. Nonideal pulse (1)

Pulse Waveform Characteristics

Pulse Waveform Timing

- □ Pulse width (t_w) is the time from the 50% point of the leading edge to the 50% point of the trailing edge.
- ☐ Rise time is the time from 10% to 90% amplitude of the rising edge.
- ☐ Fall time is the time from 90% to 10% amplitude of the falling edge.

Pulse Waveform Timing

Example 1.16

Calculate the pulse width, rise time, and fall time of the pulse

% of full amplitude

Answer: ?

Homework