Лабораторная работа №5

Модели нелинейного программирования

Цель работы: найти локальные, глобальные и условные экстремумы, и дать решение задачам.

В задачах 1-3 найти локальный экстремум следующих функций:

Задача 1

Постановка задачи

$$Z = x^3 + y^3 + 3xy$$

Решение

Найдем частные производные:

$$\begin{cases} Z_x = 3x^2 + 3y \\ Z_y = 3y^2 + 3x \end{cases}$$

Приравниваем к нулю

$$\begin{cases} 3x^2 + 3y = 0 \\ 3y^2 + 3x = 0 \end{cases} \Rightarrow \begin{cases} y = -x^2 \\ 3x^4 + 3x = 0 \end{cases}$$

$$3x^4+3x=0 \Rightarrow x_1=0, x_2=-1$$

При
$$x_1 = 0 \Rightarrow y = 0$$

При
$$x_2 = -1 => y = -1$$

Имеем две стационарные точки $X^1 = (0;0); X^2 = (-1;-1)$

Найдем частные производные второго порядка:

$$\begin{cases} Z_x^{"} = 6x \\ Z_{xy}^{"} = 3 \\ Z_{yx}^{"} = 3 \\ Z_y^{"} = 6y \end{cases}$$

Вычислим значение частных производных второго порядка в критических точках, составляем определители и применяем достаточные условия экстремума:

$$X^1 = (0;0)$$
; $a_{11} = 0$, $a_{12} = 3$, $a_{21} = 3$, $a_{12} = 0$

$$\Delta = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} = -9$$

$$\Delta < 0$$

$$X^2 = (-1;-1); a_{11} = -6, a_{12} = 3, a_{21} = 3, a_{12} = -6$$

$$\Delta = \begin{vmatrix} -6 & 3 \\ 3 & -6 \end{vmatrix} = 27$$

$$\Delta > 0$$
 и $a_{11} < 0$

Ответ: в точке $X^2 = (-1;-1)$ имеется максимум Z(-1;-1) = 1

Задача 2

Постановка задачи

$$Z = x^3y^2 (12 - x - y), x > 0, y > 0$$

Решение

$$\begin{cases} Z_x = 3x^2y^2(12 - x - y) - x^3y^2 \\ Z_y = 2x^3y(12 - x - y) - x^3y^2 \end{cases}$$
$$\begin{cases} 3x^2y^2(12 - x - y) - x^3y^2 = 0 \\ 2x^3y(12 - x - y) - x^3y^2 = 0 \end{cases}$$

Решая систему уравнений, получим корни:

$$X^1 = (0;8); X^2 = (6;4); X^3 = (0;12); X^4 = (9;0); X^5 = (12;0)$$

$$\begin{cases} Z_{x}^{"} = -6x^{2}y^{2} + 6xy^{2}(-x - y + 12) \\ Z_{xy}^{"} = -2x^{3}y - 3x^{2}y^{2} + 6x^{3}y(-x - y + 12) \\ Z_{yx}^{"} = -2x^{3}y - 3x^{2}y^{2} + 6x^{3}y(-x - y + 12) \\ Z_{y}^{"} = -4x^{3}y + 2x^{3}(-x - y + 12) \end{cases}$$

При них
$$X^1 = (0;8)$$
; $X^3 = (0;12)$; $X^4 = (9;0)$; $X^5 = (12;0)$

$$\Lambda = 0$$

$$X^2 = (6;4)$$
); $a_{11} = -2304$, $a_{12} = -1728$, $a_{21} = -1728$, $a_{12} = -2592$

$$\Delta = \begin{vmatrix} -2304 & -1728 \\ -1728 & -2592 \end{vmatrix} = 2985984$$

$$\Delta > 0$$
 и $a_{11} < 0$

Ответ: в точке $X^2 = (6;6)$ имеется максимум Z(6;4) = 6912

Задача 3

Постановка задачи

$$Z = x^2 + xy + y^2 + x - y + 1$$

Решение

$$\begin{cases} Z_x = 2x + y + 1 \\ Z_y = x + 2y - 1 \end{cases}$$
$$\begin{cases} 2x + y + 1 = 0 \\ x + 2y - 1 = 0 \end{cases}$$
$$X^1 = (-1;1)$$

$$A = Z_{xx}(-1; 1) = 2$$

$$B = Z_{yy}(-1; 1) = 2$$

$$C = Z_{xy}(-1; 1) = 1$$

Так как AC - $B^2 = 3 > 0$ и A > 0 , то в точке $X^1(-1; 1)$ имеется минимум Z(-1; 1) = 0

Ответ: в точке $X^{1}(-1; 1)$ имеется минимум Z(-1; 1) = 0

В задачах 4-6 найти глобальный экстремум функции Z в области решений системы неравенств (или неравенства). Дать геометрическое решение.

Задача 4

Постановка задачи

$$Z = 3x_1 + x_2$$

$$\begin{cases} x_1^2 + x_2^2 \le 40 \\ x_1^2 + x_2^2 \ge 4 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение

Решение ОДР ограничено окружностями $x_1^2 + x_2^2 = 40$, $x_1^2 + x_2^2 = 4$, а также осями координат.

Линии уровня целевой функции — $3x_1 + x_2 = C$

При С = 0 целевая функция не входит в ОДР.

При С>0 линия сдвигается ближе к ОДР

Линия уровня покидает ОДР в точке X^* пересечения окружности $x_1^2 + x_2^2 = 40$ и прямой $3x_1 + x_2 = 20$

Решая систему уравнений, получим $x_1=6,\,x_2=2,\,X^*=(6;\,2).$ Поэтому $z_{max}=20$

Задача 5

Постановка задачи

$$Z = x_1^2 + 2x_2 - 3$$
$$\begin{cases} x_1^2 + x_2^2 \le 10\\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

Решение

Решение ОДР ограничено окружностью $x_1^2 + x_2^2 = 10$, а также осями координат.

Линии уровня целевой функции - $x_1^2 + 2x_2 - 3 = C$

При С=0 основание параболы проходит через точку (0; 1,5). Ветви направлены вниз.

При C>0 парабола смещается вверх и покидает ОДР в точке X* пересечения окружности $x_1^2 + x_2^2 = 10$ и параболы $x_1^2 + 2x_2 - 3 = 8$

Решая систему уравнений, получим положительный ответ $x_1=3,\,x_2=1,\,X^*=(3;\,1).$ Поэтому $z_{max}=8$

Задача 6

Постановка задачи

$$Z = x_1 x_2$$

$$\begin{cases} 2x_1 + x_2 \le 8 \\ 0 \le x_1 \le 3 \end{cases}$$

Решение

Решение ОДР ограничено прямой $2x_1 + x_2 = 8$, прямой $x_1 = 3$ и осью x_2 .

Линии уровня целевой функции - $x_1 x_2 = C$

При C=0 линия уровня совпадает с осью x_1

При C>0 линия уровня становится гиперболой и покидает ОДР в точке X^{1*} пересечения прямой $2x_1+x_2=8$ и гиперболы $x_1x_2=8$, и в точке X^{2*} пересечения прямой $x_1=3$ и гиперболы $x_1x_2=8$.

Решая систему уравнений, получим $X^{1*}=(2;4), X^{2*}=(3;2,\!(6))$. Поэтому $z_{max}=8$

В задачах 7-9 найти условный экстремум с помощью метода Лагранжа:

Залача 7

Постановка задачи

$$Z = x_1 x_2 \text{ при } x_1^2 + x_2^2 = 2$$

Решение

Составим функцию Лагранжа: $L(x_1, x_2, \lambda) = x_1x_2 + \lambda(x_1^2 + x_2^2 - 2)$

Найдем частные производные этой функции по x_1 , x_2 , λ { $L'x_1=2x_1\lambda+x_2$ $L'x_2=x_1+2x_2\lambda$ $L'\lambda=x_1^2+x_2^2-2$

Приравняв частные производные нулю, получим систему: $\{2x_1\lambda+x_2=0\ x_1+2x_2\lambda=0\ x_1^2+x_2^2=2$

Решая систему уравнений, получим стационарные точки $X^1 = (-1; -1), X^2 = (1; 1), X^3 = (-1; 1), X^4 = (1; -1)$

 $z_{\text{Hau}6}=1$, $z_{\text{Hau}M}=-1$

Залача 8

Постановка задачи

$$Z = x_1 + x_2$$
 при $\frac{1}{x_1} + \frac{1}{x_2} = 1$

Решение

Составим функцию Лагранжа: $L(x_1, x_2, \lambda) = x_1 + x_2 + \lambda(1x_1 + 1x_2 - 1)$

Найдем частные производные этой функции по x_1 , x_2 , λ { $L'_{x_1}=1-\lambda x_1^2 L'_{x_2}=1-\lambda x_2^2 L'_{\lambda}=1x_1+1x_2-1$

Приравняв частные производные нулю, получим систему: $\{1-\lambda x_1^2=0\ 1-\lambda x_2^2=0\ 1x_1+1x_2=1$

Решая систему уравнений, получим стационарную точку $X^1 = (2; 2)$

z=4

Задача 9

Постановка задачи

$$Z = x_1^3 + x_2^3$$
 при $\mathbf{x}_1 + \mathbf{x}_2 = 2$, $x_1 \ge 0$, $x_2 \ge 0$

Решение

Составим функцию Лагранжа: $L(x_1, x_2, \lambda) = x_1^3 + x_2^3 + \lambda(x_1 + x_2 - 2)$

Найдем частные производные этой функции по x_1 , x_2 , λ { $L'_{x_1}=3x_1^2+\lambda$ $L'_{x_2}=3x_2^2+\lambda$ $L'_{\lambda}=x_1+x_2-2$

Приравняв частные производные нулю, получим систему: $\{3x_1^2 + \lambda = 0\ 3x_2^2 + \lambda = 0\ x_1 + x_2 = 2\ x_1 \ge 0\ x_2 \ge 0$

Решая систему уравнений, получим стационарную точку $X^1 = (1; 1)$

z = 2

Вывод: В ходе лабораторной работы были решены предложенные задания по нахождению экстремумов разными методами.