Random Walk, Diffusion and Cluster Growth

Xinyu Wu, Peifan Liu, Connor Hann and Xiaomeng Jia¹

¹Physics Department, Duke University

(Dated: March 20, 2016)

Abstract

In this article,

INTRODUCTION

1. 2D RANDOM WALK

A random walk is a mathematical formalization of a path that consists of a succession of random steps. For one dimensional case, a random walker can move one step in $\pm x$ directions with equal probability at each time step. If we make consider the statistical properties of an ensemble of random walkers, the expected value of the position $\langle x \rangle$ is zero, since the expectation of each step is zero. However, the root-mean-squared distance(RMS) after n steps is:

$$\sqrt{\langle x_n^2 \rangle} = \sqrt{\sum_{i=1}^n \sum_{j=1}^n \langle \Delta x_i \Delta x_j \rangle} = \sqrt{n} \Delta x \tag{1}$$

Here Δx is the step unit corresponding to a time unit Δt and a constant velocity v:

$$\Delta x = v \cdot \Delta t \tag{2}$$

Combined with

$$n = \frac{t}{\Delta t} \tag{3}$$

We can show that the motion is diffusive:

$$\langle x^2(t) \rangle = 2Dt \tag{4}$$

where $D = v \cdot \Delta x/2 = (\Delta x)^2/(2\Delta t)$ is the diffusion constant.

If we generalize the deduction to the 2D case, where the random walkers can move one step in four diections $(\pm x, \pm y)$ with equal probability, we can find that the motion is again diffusive, by evaluating the mean square distance:

$$\langle r^2(t) \rangle = 2Dt \tag{5}$$

Where $D = (\Delta x)^2/(4\Delta t)$.

This argument can be verified numerically using Python. We write a program to simulate a random walker in 2 dimensions, taking steps of unit length in $\pm x$ or $\pm y$ direction on a

discrete square lattice. For up to n=100, by averaging over 10^4 different walks for each n>3, the expected value of the position < x> is zero at all time, and the mean square value $< x^2>$ has a linear relation with n(remember $n=t/\Delta t$ is proportional to t), as can be seen in Fig.1. A typical 2D random walking pattern is show in Fig.2. Since we choose $\Delta t = \Delta x = 1$ here, the diffusion constant is determined using the slope of $< r^2(t)>$ and n(see Fig.3):D=1/4.

FIG. 1: $\langle x(t) \rangle$ and $\langle x^2(t) \rangle$ in 1D random walking, averaging over a 10000 random walker ensemble.

FIG. 2: A tipical 2D random walking pattern, starting from (0,0).

FIG. 3: $< r^2(t) >$ in 2D random walking, averaging over a 10000 random walker ensemble.

2. DIFFUSION EQUATION

3. CLUSTER GROWTH WITH THE DLA MODEL