Efficient Inclusion Checking on Explicit and Semi-Symbolic Tree Automata

Lukáš Holík^{1,2} Ondřej Lengál¹ Jiří Šimáček^{1,3} Tomáš Vojnar¹

¹Brno University of Technology, Czech Republic ²Uppsala University, Sweden ³VERIMAG, UJF/CNRS/INPG, Gières, France

October 13, 2011

Outline

- Tree Automata
- 2 Downward Inclusion Checking
- 3 Semi-Symbolic Encoding of Non-Deterministic TA
- 4 Conclusion

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, ...

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, ...

In formal verification:

encoding of complex data structures

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, . . .

In formal verification:

- encoding of complex data structures
 - e.g., doubly linked lists

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, . . .

In formal verification:

- encoding of complex data structures
 - e.g., doubly linked lists

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, . . .

In formal verification:

- encoding of complex data structures
 - e.g., doubly linked lists

• . . .

- extension of finite automaton to trees:
 - Q . . . set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of final states.

- extension of finite automaton to trees:
 - Q ... set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of final states.

- extension of finite automaton to trees:
 - Q ... set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of final states.

- extension of finite automaton to trees:
 - Q ... set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of final states.

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q ... set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of final states.

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ... formal verification, decision procedures of some logics, ...

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

often large due to determinisation

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - manipulate them without determinisation,

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - manipulate them without determinisation,
 - even for operations such as language inclusion (ARTMC, ...),

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - · manipulate them without determinisation,
 - even for operations such as language inclusion (ARTMC, ...),
- handling large alphabets (MSO, WSkS).

Approximate

Approximate

• downward simulation: $q \leq_D r \implies$

$$\blacktriangleright \forall f \in \Sigma : q \xrightarrow{f} (q_1, \ldots, q_n) \implies r \xrightarrow{f} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \preceq_D r_i$$

Approximate

• downward simulation: $q \leq_D r \implies$ • $\forall f \in \Sigma : q \xrightarrow{f} (q_1, \dots, q_n) \implies r \xrightarrow{f} (r_1, \dots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i$

Approximate

• downward simulation: $q \leq_{\mathcal{D}} r \implies$

$$\blacktriangleright \forall f \in \Sigma : q \xrightarrow{f} (q_1, \ldots, q_n) \implies r \xrightarrow{f} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i$$

(under-approximation: $q \leq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$)

Approximate

• downward simulation: $q \leq_D r \implies$ • $\forall f \in \Sigma : q \xrightarrow{f} (q_1, \dots, q_n) \implies r \xrightarrow{f} (r_1, \dots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i$

upward simulation

Approximate

• downward simulation: $q \leq_D r \implies$

$$\blacktriangleright \forall f \in \Sigma : q \xrightarrow{f} (q_1, \ldots, q_n) \implies r \xrightarrow{f} (r_1, \ldots, r_n), \forall 1 \leq i \leq n : q_i \leq_D r_i$$

- upward simulation
 - not compatible with language inclusion,
 - but can be used to speed up exact checking

Exact: EXPTIME-complete . . .

Exact: EXPTIME-complete ...

■ ... but there are some highly efficient heuristics:

1

2

_

Exact: EXPTIME-complete ...

- ... but there are some highly efficient heuristics:
 - antichains¹

3

¹ M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV'06.

Exact: EXPTIME-complete ...

- ... but there are some highly efficient heuristics:
 - antichains¹
 - antichains combined with simulation^{2,3}

¹ M. De Wulf, L. Doyen, T. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for Checking Universality of FA. CAV'06.

²L. Doyen, J.-F. Raskin. Antichain Algorithms for Finite Automata. TACAS'10.

³ P. Abdulla, Y.-F. Chen, L. Holík, R. Mayr, T. Vojnar. When Simulation Meets Antichains. TACAS'10.

- 1 Bottom-up determinise $A_B \to A_B^D$.
 - Bottom-up DTA and NTA have the same power; not the same for top-down DTA.

- 1 Bottom-up determinise $A_B o A_B^D$.
 - Bottom-up DTA and NTA have the same power; not the same for top-down DTA.
- **2** Complement $A_B^D o \overline{A_B^D}$.

- 1 Bottom-up determinise $A_B o A_B^D$.
 - Bottom-up DTA and NTA have the same power; not the same for top-down DTA.
- **2** Complement $A_B^D o \overline{A_B^D}$.
- 3 Check $A_S \cap \overline{A_R^D} = \emptyset$.

- Bottom-up determinise $A_B \to A_B^D$. (exponential explosion!)
 - Bottom-up DTA and NTA have the same power; not the same for top-down DTA.
- **2** Complement $A_B^D o \overline{A_B^D}$.
- 3 Check $A_S \cap \overline{A_B^D} = \emptyset$.

Upward Inclusion Checking

On-the-fly approach:

Upward Inclusion Checking

On-the-fly approach:

11 Traverse A_S and A_B in parallel, bottom-up.

Upward Inclusion Checking

On-the-fly approach:

- 11 Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset W of pairs (q, P), where $q \in Q_S$, $P \subseteq Q_B$.

- 11 Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset W of pairs (q, P), where $q \in Q_S, P \subseteq Q_B$.
- **3** Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
 - where $(q_1, P_1), \dots, (q_n, P_n) \in W$.

- 11 Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset W of pairs (q, P), where $q \in Q_S, P \subseteq Q_B$.
- **3** Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
 - where $(q_1, P_1), \dots, (q_n, P_n) \in W$.
- d ∀ f ∈ Σ, generate (s, T), s.t. $(q_1, ..., q_n) \xrightarrow{f} s$, $(P_1, ..., P_n) \xrightarrow{f} T$.

- 1 Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset W of pairs (q, P), where $q \in Q_S, P \subseteq Q_B$.
- **3** Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
 - where $(q_1, P_1), \dots, (q_n, P_n) \in W$.
- d ∀ f ∈ Σ, generate (s, T), s.t. $(q_1, ..., q_n) \xrightarrow{f} s$, $(P_1, ..., P_n) \xrightarrow{f} T$.
- If you encounter (f, R), where $f \in F_S$, $R \cap F_B = \emptyset$, return false.

- 11 Traverse A_S and A_B in parallel, bottom-up.
- 2 Maintain a workset W of pairs (q, P), where $q \in Q_S, P \subseteq Q_B$.
- **3** Generate tuples (q_1, \ldots, q_n) and (P_1, \ldots, P_n) ,
 - where $(q_1, P_1), \dots, (q_n, P_n) \in W$.
- d ∀ f ∈ Σ, generate (s, T), s.t. $(q_1, ..., q_n) \xrightarrow{f} s$, $(P_1, ..., P_n) \xrightarrow{f} T$.
- If you encounter (f, R), where $f \in F_S$, $R \cap F_B = \emptyset$, return false.
- 6 If no new pairs are found, return true.

Optimisations:

Optimisations:

use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):

Optimisations:

- use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):
 - if $S \subseteq S'$ and both (q, S) and (q, S') are in workset W,
 - remove (q, S') from workset W.

Optimisations:

- use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):
 - if $S \subseteq S'$ and both (q, S) and (q, S') are in workset W,
 - remove (q, S') from workset W.

Optimisations:

- use antichains: maintain only such pairs which are sufficient to encounter a counterexample (if it exists):
 - if $S \subseteq S'$ and both (q, S) and (q, S') are in workset W,
 - remove (q, S') from workset W.

2 use simulation to furter prune the searched space.

Advantages:

Advantages:

■ Straightforward extension of the antichain algorithm for FA. ②

Advantages:

■ Straightforward extension of the antichain algorithm for FA. ②

Advantages:

■ Straightforward extension of the antichain algorithm for FA. ②

Disadvantages:

■ Generating tuples is expensive. ②

Advantages:

■ Straightforward extension of the antichain algorithm for FA. ②

- Generating tuples is expensive. ②
- The counterexample may be at root ... takes long to get there. ②

Advantages:

■ Straightforward extension of the antichain algorithm for FA. ②

- Generating tuples is expensive. ②
- The counterexample may be at root . . . takes long to get there. ②
- Upward simulation → hard to compute and too strong. ②

Advantages:

■ Straightforward extension of the antichain algorithm for FA. ②

- Generating tuples is expensive. ②
- The counterexample may be at root . . . takes long to get there. ②
- Upward simulation \rightarrow hard to compute and too strong. \odot
- Not compatible with downward simulation (easy & rich). ②

Downward Inclusion Checking

Downward Inclusion Checking

■ inspired by XML Schema containment checking⁴,

Downward Inclusion Checking

- inspired by XML Schema containment checking⁴,
- does not follow the classic schema of inclusion algorithms,

^{4.} Hosoya, J. Vouillon, B. C. Pierce. Regular Expression Types for XML. ACM Trans. Program. Lang. Sys., 27, 2005.

Downward Inclusion Checking

- inspired by XML Schema containment checking⁴,
- does not follow the classic schema of inclusion algorithms,
- uses antichains and downward simulation.

 $\mathcal{A}_{\mathcal{S}}$

 $\mathcal{A}_{\mathcal{B}}$

$$\mathcal{L}(q) \subseteq \mathcal{L}(u)$$
 if and only if

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq (\mathcal{L}(v) \times \mathcal{L}(v)) \cup (\mathcal{L}(w) \times \mathcal{L}(w))$$
(language inclusion of tuples!)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma} \dots$ all trees over Σ)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G\times H=(G\times \mathcal{U})\cap (\mathcal{U}\times H)$$
 (let $\mathcal{U}=T_{\Sigma}\dots$ all trees over Σ)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G\times H=(G\times \mathcal{U})\cap (\mathcal{U}\times H)$$
 (let $\mathcal{U}=T_\Sigma\dots$ all trees over Σ)

Using distributive laws, this becomes

$$\begin{array}{ccccc} ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \end{array}$$

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

$$\begin{array}{ccccc} ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \end{array}$$

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

... is equal to checking

$$\begin{array}{cccc} ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\ ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots \end{array}$$

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

$$\begin{array}{cccccc} ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \end{array}$$

... is equal to checking

$$\begin{array}{cccc} ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\ ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots \end{array}$$

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

$$\begin{array}{cccccc} ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \cap \\ ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) & \cap & ((T_{\Sigma} \times \mathcal{L}(v_2)) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \end{array}$$

... is equal to checking

$$\begin{array}{cccc} ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\ ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots \end{array}$$

Each clause can be checked separately ...

... which is again checking inclusion of union of tuples, but now ...

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

... is equal to checking

$$\begin{array}{cccc} ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) \land \\ ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \land \dots \end{array}$$

- \ldots which is again checking inclusion of union of tuples, but now \ldots
- ... each tuple has a non- T_{Σ} language on a single position.

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

... is equal to checking

$$\begin{array}{cccc} ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) \wedge \\ ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \wedge \dots \end{array}$$

- ... which is again checking inclusion of union of tuples, but now ...
- \dots each tuple has a non- T_{Σ} language on a single position.
- \Rightarrow Checking language inclusion can be done component-wise. \Rightarrow

$$\mathcal{L}(r) \times \mathcal{L}(s) \subseteq$$

... is equal to checking

$$\begin{array}{cccc} ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (\mathcal{L}(w_1) \times T_{\Sigma})) \wedge \\ ((\mathcal{L}(r) \times \mathcal{L}(s)) & \subseteq & (\mathcal{L}(v_1) \times T_{\Sigma}) & \cup & (T_{\Sigma} \times \mathcal{L}(w_2))) \wedge \dots \end{array}$$

- ... which is again checking inclusion of union of tuples, but now ...
- \dots each tuple has a non- T_{Σ} language on a single position.
- \Rightarrow Checking language inclusion can be done component-wise. \Rightarrow

$$\iff ((\mathcal{L}(r) \subseteq \mathcal{L}(\{v_1, w_1\})) \quad \lor \quad (\mathcal{L}(s) \subseteq \mathcal{T}_{\Sigma})) \quad \land \\ ((\mathcal{L}(r) \subseteq \mathcal{L}(v_1)) \qquad \lor \quad (\mathcal{L}(s) \subseteq \mathcal{L}(w_2)) \quad \land \dots$$

Basic Downward Inclusion Checking Algorithm

■ DFS, maintain a workset W of product states (q_S, P_B) .

Basic Downward Inclusion Checking Algorithm

- DFS, maintain a workset W of product states (q_S, P_B) .
- Start the algorithm from (f, F_B) for each $f \in F_S$.

- DFS, maintain a workset W of product states (q_S, P_B) .
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:

- DFS, maintain a workset W of product states (q_S, P_B) .
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
 - for all clauses . . .

- DFS, maintain a workset W of product states (q_S, P_B) .
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
 - for all clauses . . .
 - exists a position such that inclusion holds.

- DFS, maintain a workset W of product states (q_S, P_B) .
- Start the algorithm from (f, F_B) for each $f \in F_S$.
- Alternating structure:
 - for all clauses . . .
 - exists a position such that inclusion holds.
- Sooner or later, the DFS either
 - reaches a leaf, or
 - reaches a pair (q_S, P_B) which is already in W.

Optimisations:

It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subseteq \mathcal{L}(P_B)$ has been shown and prune the search.

Optimisations:

- It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subseteq \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, NN can be maintained as an antichain w.r.t. ⊇
 - when $S \subseteq S'$, why store both (q, S) and (q, S')?
 - when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.

Optimisations:

- It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subseteq \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, NN can be maintained as an antichain w.r.t. ⊇
 - when $S \subseteq S'$, why store both (q, S) and (q, S')?
 - when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.
- **3** Moreover, NN can be maintained w.r.t. downward simulation \leq_D .

• $q \leq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$

Optimisations:

- It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subseteq \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, NN can be maintained as an antichain w.r.t. ⊇
 - when $S \subseteq S'$, why store both (q, S) and (q, S')?
 - when $\mathcal{L}(q) \not\subseteq \mathcal{L}(\mathcal{S}')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(\mathcal{S})$.
- 3 Moreover, NN can be maintained w.r.t. downward simulation \leq_D .
 - $q \leq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$
- 4 Furthermore, workset can be also maintained w.r.t. \leq_D .

Optimisations:

- It is possible to maintain a cache *NN* of pairs (q_S, P_B) for which $\mathcal{L}(q_S) \not\subseteq \mathcal{L}(P_B)$ has been shown and prune the search.
- 2 Further, NN can be maintained as an antichain w.r.t. ⊇
 - when $S \subseteq S'$, why store both (q, S) and (q, S')?
 - when $\mathcal{L}(q) \not\subseteq \mathcal{L}(S')$, then surely $\mathcal{L}(q) \not\subseteq \mathcal{L}(S)$.
- 3 Moreover, NN can be maintained w.r.t. downward simulation \leq_D .
 - $q \leq_D r \implies \mathcal{L}(q) \subseteq \mathcal{L}(r)$
- 4 Furthermore, workset can be also maintained w.r.t. \leq_D .
- **5** Even further, if $\exists s \in S : q \leq_D s$, then surely $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.

Experiments

Size	50–250	400–600	
Pairs	323	64	
Timeout	20 s	60 s	
Up	31.21%	9.38%	
Up+s	0.00%	0.00%	
Down	53.50%	39.06%	
Down+s	15.29%	51.56%	
Avg up	1.71	0.34	
Avg down	3.55	46.56	
a)			

Size	50–250	400–600
Pairs	323	64
Timeout	20 s	60 s
Up+s	81.82%	20.31 %
Down+s	18.18%	79.69%
Avg up	1.33	9.92
Avg down	3.60	2116.29
b)		

- a) Comparison of methods (w/ simulation computation time).
- b) Comparison of methods (w/o simulation computation time).

Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:

- FV of programs with complex dynamic data structures,
- decision procedures of some logics: WSkS, MSO.

Semi-Symbolic TA

Several FV approaches yield automata with large alphabets:

- FV of programs with complex dynamic data structures,
- decision procedures of some logics: WSkS, MSO.

Current approach:

- use the MONA tree automata package (MTBDD-based)
- But only deterministic automata supported →
 - often runs out of reasonable memory or time.

Dual representation

Multi-terminal binary decision diagrams (MTBDDs)

Dual representation

- Multi-terminal binary decision diagrams (MTBDDs)
- Bottom-up:

■ Top-down:

Bottom-up: inspired by MONA, but has sets of states in leaves. Top-down: sets of state tuples in leaves.

Algorithms for

- union,
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
 - based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Algorithms for

- union,
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
 - based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Experiments:

Algorithms for

- union,
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
 - based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Experiments:

Use of CUDD to implement MTBDDs.

Algorithms for

- union,
- intersection,
- language inclusion checking (both upward and downward),
- downward simulation computation.
 - based on M. Henzinger, T. Henzinger, and P. Kopke's algorithm.

Experiments:

- Use of CUDD to implement MTBDDs.
- \sim 8500 times faster downward inclusion checking than explicit representation for tested automata with large alphabets.

■ An alternative downward approach to checking language inclusion of non-deterministic tree automata proposed, . . .

- An alternative downward approach to checking language inclusion of non-deterministic tree automata proposed, . . .
- ... that makes use of antichains and downward simulation.

- An alternative downward approach to checking language inclusion of non-deterministic tree automata proposed, . . .
- ...that makes use of antichains and downward simulation.
- A new symbolic encoding of non-deterministic tree automata proposed.

■ Optimise the downward inclusion to also cache pairs (q, S), such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.

- Optimise the downward inclusion to also cache pairs (q, S), such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.
- Replace CUDD with a more efficient MTBDD package.

- Optimise the downward inclusion to also cache pairs (q, S), such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.
- Replace CUDD with a more efficient MTBDD package.
- Improve the symbolic downward simulation algorithm.

- Optimise the downward inclusion to also cache pairs (q, S), such that $\mathcal{L}(q) \subseteq \mathcal{L}(S)$.
- Replace CUDD with a more efficient MTBDD package.
- Improve the symbolic downward simulation algorithm.
- Create a tree automata package replacing MONA.

Thank you for your attention.

Questions?