Ортогонални и унитарни матрици и оператори.

Определение 1. Матрица $A \in M_{n \times n}(\mathbb{R})$ (съответно, $A \in M_{n \times n}(\mathbb{C})$) е ортогонална (съответно унитарна), ако $A\overline{A}^t = E_n$.

Ако $A=(a_1,\ldots,a_n)$ има вектор-редове $a_1,\ldots,a_n\in M_{1\times n}(\mathbb{R})$ (съответно, $a_1,\ldots,a_n\in M_{1\times n}(\mathbb{C})$), то

$$A\overline{A}^t = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} (\overline{a_1}^t, \dots, \overline{a_n}^t) = \begin{pmatrix} a_1\overline{a_1}^t & \dots & a_1\overline{a_n}^t \\ \dots & \dots & \dots \\ a_n\overline{a_1}^t & \dots & a_n\overline{a_n}^t \end{pmatrix} = E_n$$

точно когато a_1, \ldots, a_n са координатите на ортонормирана система вектори спрямо ортонормиран базис. Ясно е, че матрица A е ортогонална (унитарна) тогава и само тогава, когато е обратима и $A^{-1} = \overline{A}^t$. Това е равносилно на $\overline{A}^t A = E_n$. Ако $A = (c_1, \ldots, c_n)$ има вектор стълбове $c_i \in M_{n \times 1}(\mathbb{R})$ (съответно, $c_i \in M_{n \times 1}(\mathbb{C})$), то

$$E_n = \begin{pmatrix} \overline{c_1}^t \\ \dots \\ \overline{c_n}^t \end{pmatrix} (c_1, \dots, c_n) = \begin{pmatrix} \overline{c_1}^t c_1 & \dots & \overline{c_1}^t c_n \\ \dots & \dots & \dots \\ \overline{c_n}^t c_1 & \dots & \overline{c_n}^t c_n \end{pmatrix}$$

показва, че матрица A е ортогонална (унитарна) точно когато вектор-стълбовете на A представляват ортонормирана система вектори спрямо ортонормиран базис. Еквивалентно, A е ортогонална (унитарна) тогава и само тогава, когато е матрица на прехода от ортонормиран базис към ортонормиран базис.

Лема 2. (i) Ако $A, B \in M_{n \times n}(\mathbb{R})$ (съответно, $A, B \in M_{n \times n}(\mathbb{C})$) са ортогонални (съответно, унитарни) матрици, то произведението $AB \in M_{n \times n}(\mathbb{R})$ (съответно, $AB \in M_{n \times n}(\mathbb{C})$) е ортогонална (съответно, унитарна) матрица.

(ii) Ако $A \in M_{n \times n}(\mathbb{R})$ (съответно, $A \in M_{n \times n}(\mathbb{C})$) е ортогонална (съответно, унитарна) матрица, то $|\det(A)| = 1$.

 \mathcal{A} оказателство. (i) От $A\overline{A}^t=E_n$ и $B\overline{B}^t=E_n$ следва

$$(AB)\overline{(AB)}^t = (AB)(\overline{B}^t \overline{A}^t) = A(B\overline{B}^t)\overline{A}^t = AE_n \overline{A}^t = A\overline{A}^t = E_n.$$

Следователно произведението AB на ортогонални (унитарни) матрици A и B от един и същи ред е ортогонална (унитарна) матрица.

(ii) Прилагаме Теоремата за умножение на детерминанти към $A\overline{A}^t=E_n$ и получаваме

$$1 = \det(E_n) = \det(A\overline{A}^t) = \det(A)\det(\overline{A}^t) = \det(A)\det(\overline{A}^t) = \det(A)\det(\overline{A}^t) = \det(A)\det(\overline{A}^t) = \det(A)\det(A)\det(\overline{A}^t) = \det(A)\det(A)\det(A)$$

Равенството $\overline{\det(A)} = \det(\overline{A})$ следва от $\overline{z_1z_2} = \overline{z_1z_2}$ и $\overline{z_1+z_2} = \overline{z_1} + \overline{z_2}$ за произволни комплексни числа $z_1, z_2 \in \mathbb{C}$.

Определение 3. Линеен оператор $\varphi: V \to V$ в евклидово (унитарно) пространство V е ортогонален (съответно, унитарен), ако

$$\langle \varphi(u), \varphi(v) \rangle = \langle u, v \rangle$$
 sa $\forall u, v \in V$.

Твърдение 4. Линеен оператор $\varphi: V \to V$ в евклидово пространство V е ортогонален тогава и само тогава, когато запазва дължините на векторите $\forall v \in V$ и ъглите между ненулевите вектори, т.е.

$$\langle \varphi(v), \varphi(v) \rangle = \langle v, v \rangle \quad \text{sa} \quad \forall v \in V \quad u \frac{\langle \varphi(u), \varphi(v) \rangle}{||\varphi(u)||||\varphi(v)||} = \frac{\langle u, v \rangle}{||u||||v||} \quad \text{sa} \quad \forall u, v \in V \setminus \{\overrightarrow{\mathcal{O}}\}.$$

Доказателство. Нека $\varphi: V \to V$ е ортогонален (унитарен) оператор в евклидово (унитарно) пространство V. Тогава за всеки вектор $v \in V$ е в сила $\langle \varphi(v), \varphi(v) \rangle = \langle v, v \rangle$, откъдето

$$||\varphi(v)|| = \sqrt{\langle \varphi(v), \varphi(v) \rangle}^{\geq 0} = \sqrt{\langle v, v \rangle}^{\geq 0} = ||v||.$$

За произволни ненулеви вектори $u,v\in V\setminus\{\overrightarrow{\mathcal{O}}\}$, да означим с $\varphi\in[0,\pi]$ ъгъла между u и v, а с $\psi\in[0,\pi]$ ъгъла между $\varphi(u)$ и $\varphi(v)$. Тогава

$$\cos(\psi) = \frac{\langle \varphi(u), \varphi(v) \rangle}{||\varphi(u)||||\varphi(v)||} = \frac{\langle u, v \rangle}{||u||||v||} = \cos(\varphi),$$

откъдето $\psi = \varphi$.

Обратно, нека $\varphi: V \to V$ е линеен оператор, запазващ дължините на векторите и ъглите между ненулевите вектори. За произволен вектор $v \in V$ е изпълнено

$$\varphi(\varphi(\overrightarrow{\mathcal{O}}), \varphi(v)) = \langle \overrightarrow{\mathcal{O}}, \varphi(v) \rangle = 0 \langle \overrightarrow{\mathcal{O}}, v \rangle.$$

Аналогично,

$$\langle \varphi(u), \overrightarrow{\mathcal{O}} \rangle = \langle \varphi(u), \overrightarrow{\mathcal{O}} \rangle = 0 = \langle u, \overrightarrow{\mathcal{O}} \rangle$$

за произволен вектор $u \in V$. Отсега нататък предполагаме, че $u, v \in V \setminus \{\overrightarrow{\mathcal{O}}\}$. Означаваме с $\varphi \in [0, \pi]$ ъгъла между u и v, който по предположение е равен на ъгъла между $\varphi(u)$ и $\varphi(v)$. Тогава

$$\langle \varphi(u), \varphi(v) \rangle = \cos(\psi) ||\varphi(u)|| ||\varphi(v)|| = \cos(\varphi) ||u|| ||v|| = \langle u, v \rangle,$$

съгласно $||\varphi(u)|| = ||u||$ и $||\varphi(v)|| = ||v||$. Това доказва, че ако линеен оператор $\varphi: V \to V$ в евклидово (унитарно) пространство V запазва дължините на векторите и ъглите между ненулевите вектори, то φ е ортогонален (унитарен).

Твърдение 5. Да се докаже, че следните условия са еквивалентни за линеен оператор $\varphi: V \to V$ в крайномерно евклидово (унитарно) пространство V:

- (i) операторът φ е ортогонален (унитарен);
- (ii) $\langle \varphi(b_i), \varphi(b_j) \rangle = \langle b_i, b_j \rangle$ за всички вектори b_i, b_j от произволен базис b_1, \dots, b_n на V:

(iii)
$$\langle \varphi(e_i), \varphi(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{i,j} = \begin{cases} 1 & \text{sa } 1 \le i = j \le n, \\ 0 & \text{sa } 1 \le i \ne j \le n \end{cases}$$

за всички вектори e_i, e_j от произволен ортонормиран базис e_1, \ldots, e_n на V, т.е. φ трансформира произволен ортонормиран базис e_1, \ldots, e_n на V в ортонормиран базис $\varphi(e_1), \ldots, \varphi(e_n)$ на V;

(iv) матрицата A на φ спрямо ортонормиран базис e_1, \ldots, e_n на V е ортогонална (yнитарна).

В частност, всеки ортогонален (унитарен) оператор $\varphi: V \to V$ в крайномерно евклидово (унитарно) пространство V е обратим.

Доказателство. Ясно е, че $(i) \Rightarrow (ii) \Rightarrow (iii)$.

За еквивалентността на (iii) и (iv), нека e_1, \ldots, e_n е ортонормиран базис на V и A е матрицата на $\varphi: V \to V$ спрямо този базис. В такъв случай, A е ортогонална (унитарна) тогава и само тогава, когато вектор-стълбовете на A образуват ортонормирана система вектори, зададени с координатите си спрямо ортонормиран базис. По определение, матрицата A на $\varphi: V \to V$ спрямо ортонормирания базис e_1, \ldots, e_n на V е състои по стълбове от кородинатите на $\varphi(e_1), \ldots, \varphi(e_n)$ спрямо e_1, \ldots, e_n . Затова A е ортогонална (унитарна) точно когато φ трансформира ортонормиран базис e_1, \ldots, e_n на V в ортонормиран базис $\varphi(e_1), \ldots, \varphi(e_n)$ на V.

 $(iii)\Rightarrow (i)$ Ако линеен оператор $\varphi:V\to V$ трансформира ортонормиран базис e_1,\ldots,e_n на V в ортонормиран базис $\varphi(e_1),\ldots,\varphi(e_n)$ на V, то за произволни вектори $u=\sum\limits_{i=1}^n x_ie_i$ и $v=\sum\limits_{j=1}^n y_je_j$ от V е в сила

$$\begin{split} \langle \varphi(u), \varphi(v) \rangle &= \langle \varphi\left(\sum_{i=1}^n x_i e_i\right), \varphi\left(\sum_{j=1}^n y_j e_j\right) \rangle = \langle \sum_{i=1}^n x_i \varphi(e_i), \sum_{j=1}^n y_j \varphi(e_j) \rangle = \\ &= \sum_{i=1}^n \sum_{j=1}^n x_i \overline{y_j} \langle \varphi(e_i), \varphi(e_j) \rangle = \sum_{i=1}^n \sum_{j=1}^n x_i \overline{y_j} \langle e_i, e_j \rangle = \langle \sum_{i=1}^n x_i e_i, \sum_{j=1}^n y_j e_j \rangle = \langle u, v \rangle, \end{split}$$

съгласно

$$\langle \varphi(e_i), \varphi(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{i,j} = \begin{cases} 1 & \text{sa } 1 \le i = j \le n, \\ 0 & \text{sa } 1 \le i \ne j \le n. \end{cases}$$

В частност, ако $\varphi:V\to V$ е ортогонален (унитарен) оператор в крайномерно евклидово (унитарно) пространство V, то матрицата A на φ спрямо ортонормиран базис e_1,\ldots,e_n е ортогонална (унитарна). Съгласно Лема 2 (ii), $|\det(A)|=1$. В частност, $\det(A)\neq 0$ и матрицата A е обратима. Това е достатъчно за обратимостта на оператора $\varphi:V\to V$.

Твърдение 6. Ако $\varphi: V \to V$ е ортогонален (унитарен) оператор в евклидово (унитарно) пространство V, то:

- (i) собствените стойности $\lambda \in \mathbb{C}$ на φ са с модул $|\lambda| = 1$;
- (ii) собствени вектори u,v на φ , отговарящи на различни собствени стойности $\lambda,\mu\in\mathbb{C}$ са ортогонални.

Доказателство. (i) Съгласно определението за ортогонален (унитарен) оператор φ , приложено към собствен вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ на φ , отговарящ на собствена стойност λ имаме

$$|\lambda|^2||v||^2=\lambda\overline{\lambda}\langle v,v\rangle=\langle \lambda v,\lambda v\rangle=\langle \varphi(v),\varphi(v)\rangle=\langle v,v\rangle=||v||^2.$$

Следователно $(|\lambda|^2-1)||v||^2=0$ с $||v||^2\in\mathbb{R}^{>0}$, откъдето $|\lambda|^2=1$ и $|\lambda|=1$.

(ii) Определението за ортогонален (унитарен) оператор φ , приложено към u и v дава

$$\lambda \overline{\mu} \langle u, v \rangle = \langle \lambda u, \mu v \rangle = \langle \varphi(u), \varphi(v) \rangle = \langle u, v \rangle.$$

Следователно $(\lambda \overline{\mu} - 1)\langle u, v \rangle = 0$ с $\lambda \overline{\mu} \neq \mu \overline{\mu} = 1$ изисква $\langle u, v \rangle = 0$ и собствените вектори u, v на φ , отговарящи на различни собствени стойности λ, μ са ортогонални.

Твърдение 7. Нека $\varphi: V \to V$ е ортогонален (унитарен) оператор в евклидово (унитарно) пространство V, а U е крайномерно φ -инвариантно подпространство на V. Тогава ортогоналното допълнение U^{\perp} на U е φ -инвариантно подпространство на V.

В частност, ако e_1, \ldots, e_k е ортонормиран базис на U и e_{k+1}, \ldots, e_n е ортонормиран базис на U^{\perp} , то $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ е ортонормиран базис на V, спрямо който матрицата на φ е от вида

$$\left(\begin{array}{cc} A_1 & \mathbb{O}_{k\times(n-k)} \\ \mathbb{O}_{(n-k)\times k} & A_2 \end{array}\right),\,$$

където A_1 е матрицата на $\varphi:U\to U$ спрямо базиса $e_1,\ldots,e_k,$ а A_2 е матрицата на $\varphi:U^\perp\to U^\perp$ спрямо базиса e_{k+1},\ldots,e_n на $U^\perp.$

Доказателство. За произволен вектор $v \in U^{\perp}$ твърдим, че $\varphi(v) \in U^{\perp}$. Съгласно обратимостта на $\varphi : U \to U$, за всеки вектор $u \in U$ съществува еднозначно определен вектор $u_1 := \varphi^{-1}(u) \in U$, така че $\varphi(u_1) = u$. В резултат,

$$\langle u, \varphi(v) \rangle = \langle \varphi(u_1), \varphi(v) \rangle = \langle u_1, v \rangle = 0,$$

съгласно ортогоналността на $\varphi: V \to V$ и $\varphi(v) \in U^{\perp}$.

Обединението $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на ортонормиран базис e_1, \ldots, e_k на U и ортонормиран базис e_{k+1}, \ldots, e_n на U^\perp е ортонормиран базис на $U \oplus U^\perp = V$, съгласно $\langle u, v \rangle = 0$ за произволни $u \in U$ и $v \in U^\perp$. Инвариантността на U и U^\perp относно φ обяснява вида на матрицата на φ спрямо базиса $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на V.

Твърдение 8. За произволен унитарен оператор $\varphi: V \to V$ в п-мерно унитарно пространство V съществува ортонормиран базис на V, в който матрицата D на φ е диагонална.

Доказателство. С индукция по $\dim V = n$, за $\dim V = 1$ всяка матрица $A \in \mathbb{C}$ на φ се счита за диагонална. В общия случай, линейният оператор φ в крайномерно пространство V над \mathbb{C} има 1-мерно φ -инвариантво подпространство U = l(v), породено от собствен вектор $v \in V \setminus \{\overrightarrow{\mathcal{O}}_V\}$ на φ . Ортогоналното допълнение U^\perp на U е (n-1)-мерно φ -инвариантно подпространство. По индукционно предположение съществува ортонормиран базис e_2, \ldots, e_n на U^\perp , в който матрицата

$$D' = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 & 0 \\ 0 & \lambda_3 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

на $\varphi:U^\perp \to U^\perp$ е диагонална. Ако

$$e_1 := \frac{1}{||v||} v \in U,$$

то e_1, e_2, \ldots, e_n е ортонормиран базис на V, съгласно $\langle e_1, e_i \rangle = 0$ за всички $e_i \in U^\perp$, $2 \le i \le n$. Матрицата на $\varphi: V \to V$ спрямо базиса e_1, e_2, \ldots, e_n е

$$D = \begin{pmatrix} \lambda_1 & \mathbb{O}_{1 \times (n-1)} \\ \mathbb{O}_{(n-1) \times 1} & D' \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix},$$

където $\lambda_1 \in \mathbb{C}$ е собствената стойност на v и e_1 .

Следствие 9. За произволна унитарна матрица $A \in M_{n \times n}(\mathbb{C})$ съществува унитарна матрица $T \in M_{n \times n}(\mathbb{C})$, така че $D = T^{-1}AT = \overline{T}^tAT$ е диагонална.

Доказателство. Избираме ортонормиран базис $f=(f_1,\ldots,f_n)$ на унитарно пространство V и разглеждаме оператора $\varphi:V\to V$ с матрица A спрямо базиса f. Тогава φ е унитарен оператор и съществува ортонормиран базис $e=(e_1,\ldots,e_n)$ на V, който матрицата D на φ е диагонална. Матрицата на прехода $T\in M_{n\times n}(\mathbb{C})$ от ортонормирания базис f на V към ортонормирания базис e е унитарна и e0 на e1.

Твърдение 10. (i) Матрицата на ротация ρ на ъгъл α в \mathbb{R}^2 с център (0,0) спрямо ортонормиран базис e_1,e_2 е

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

В частност, произволна ротация ρ на σ гол α е ортогонален линеен оператор, който няма реален характеристичен корен за $\alpha \notin \pi \mathbb{Z}$.

(ii) Произволен ортогонален оператор $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ без реален характеристичен корен е ротация на ъгъл $\alpha \notin \pi \mathbb{Z}$ в \mathbb{R}^2 с матрица

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

спрямо произволен ортонормиран базис e_1, e_2 на \mathbb{R}^2 .

Доказателство. (i) Матрицата $A \in M_{2\times 2}(\mathbb{R})$ на ρ спрямо положително ориентиран ортонормиран базис $e = (e_1, e_2)$ се състои по стълбове от координатите на $\rho(e_1)$ и $\rho(e_2)$ спрямо e. Векторът $\rho(e_1)$ с дължина 1 сключва ъгъл α с Ox^{\rightarrow} , така че

$$\rho(e_1) = \cos(\alpha)e_1 + \sin(\alpha)e_2.$$

По определение, ъгълът между два ненулеви вектора е от интервала $[0,\pi]$. Следователно, ъгълът между перпендикулярните вектори e_1 , e_2 е $\frac{\pi}{2}$ и векторът $\rho(e_2)$ с дължина 1 сключва ъгъл $\alpha + \frac{\pi}{2}$ с Ox^{\rightarrow} . Следователно

$$\rho(e_2) = \cos\left(\alpha + \frac{\pi}{2}\right)e_1 + \sin\left(\alpha + \frac{\pi}{2}\right) = -\sin(\alpha)e_1 + \cos(\alpha)e_2 \quad \text{II}$$

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Матрицата A спрямо ортонормирания базис e_1, e_2 е ортогонална, защото

$$AA^{t} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_{2},$$

съгласно $\cos^2(\alpha) + \sin^2(\alpha) = 1$. Следователно операторът $\rho: \mathbb{R}^2 \to \mathbb{R}^2$ е ортогонален, щом матрицата му A спрямо ортонормиран базис e_1, e_2 е ортогонална. Характеристичният полином на ρ е

$$f_{\rho}(x) = f_A(x) = \begin{vmatrix} \cos(\alpha) - x & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) - x \end{vmatrix} = x^2 - 2\cos(\alpha)x + 1$$

и има дискриминанта $D(f_{\rho}(x)) = 4\cos^2(\alpha) - 4 = -4\sin^2(\alpha)$. За $\alpha \notin \pi \mathbb{Z}$ дискриминантата $D(f_{\rho}(x)) < 0$ е отрицателна и $f_{\rho}(x)$ няма реални корени.

(ii) Нека $e=(e_1,e_2)$ е ортонормиран базис на \mathbb{R}^2 и

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in M_{2 \times 2}(\mathbb{R})$$

е матрицата на ортогоналния оператор $\varphi:\mathbb{R}^2\to\mathbb{R}^2$ спрямо e. Тогава A е ортогонална матрица, чийто характеристичен полином

$$f_A(x) = \begin{vmatrix} a - x & b \\ c & d - x \end{vmatrix} = (a - x)(d - x) - bc = x^2 - (a + d)x + \det(A) \in \mathbb{R}[x]$$

няма реален корен. Ортогоналната матрица A изпълнява равенството $AA^t=E_2$, така че $1=\det(E_2)=(\det(A))^2$, откъдето $\det(A)=\pm 1$. Понеже доискриминантата

$$D(f_A(x)) = (a+d)^2 - 4\det(A) < 0$$

е отрицателна, имаме $\det(A)>0$, откъдето $\det(A)=1$. Условието за ортогоналност $AA^t=E_2$ е еквивалентно на $A^{-1}=A^t$. Следователно

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = A^{-1} = A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix},$$

откъдето d = a и b = -c. Матрицата

$$A = \left(\begin{array}{cc} a & -c \\ c & a \end{array}\right)$$

е ортогонална точно когато стълбовете на A задават ортонормирана система вектори спрямо ортонормиран базис на \mathbb{R}^2 . В частност, първият стълб е съставен от координатите на единичен вектор спрямо ортонормиран базис, така че $a^2+c^2=1$. Следователно $(a,c)\in\mathbb{R}^2$ са координати на точка от единичната окръжност

$$S^{1} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1\}.$$

Ако радиус-векторът на (a,c) образува ъгъл α с Ox^{\rightarrow} , то $a=\cos(\alpha)$, $c=\sin(\alpha)$ и

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Твърдение 11. За произволен ортогонален оператор $\varphi: V \to V$ в п-мерно евклидово пространство V съществува ортонормиран базис на V, в който матрицата на φ е блочно-диагонална

$$D = \begin{pmatrix} D_1 & \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & D_2 & \dots & \mathbb{O} & \mathbb{O} \\ \dots & \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & D_{k-1} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{O} & D_k \end{pmatrix} \quad c$$

$$D_i = \pm 1 \quad unu \quad D_i = \begin{pmatrix} \cos(\alpha_i) & -\sin(\alpha_i) \\ \sin(\alpha_i) & \cos(\alpha_i) \end{pmatrix} \quad 3a \quad \alpha_i \in [0, 2\pi).$$

Доказателство. С индукция по $n=\dim V$, за $\dim V=1$ няма какво да се доказва. В общия случай, линейният оператор $\varphi:V\to V$ в n-мерно пространство V над $\mathbb R$ има 1-мерно или 2-мерно φ -инвариантно подпространство $U\subset V$. По-точно, ако $\varphi:V\to V$ има реален характеристичен корен $\lambda_1\in\mathbb R$, то $\lambda_1=\pm 1$ е собствена стойност на φ и съществува единичен собствен вектор e_1 на φ , отговарящ на собствената стойност λ_1 , който поражда 1-мерно φ -инвариантно подпространство $U=l(e_1)$. Ако всички характеристични корени на $\varphi:V\to V$ са комплексни нереални числа, то φ има 2-мерно φ -инвариантно подпространство U. Операторът $\varphi:U\to U$ няма реален характеристичен корен и матрицата на $\varphi:U\to U$ спрямо произволен ортонормиран базис e_1,e_2 на U е

$$\left(egin{array}{ccc} \coslpha_1 & -\sinlpha_1 \ \sinlpha_1 & \coslpha_1 \end{array}
ight)$$
 за някое $lpha_1\in[0,2\pi).$

Ако $k := \dim(U)$, то матрицата $D_1 \in M_{k \times k}(\mathbb{R})$ на $\varphi : U \to U$ спрямо ортонормиран базис e_1, \ldots, e_k на U е блок. Ортогоналното допълнение U^\perp на U е φ -инвариантно подпространство на V с размерност $\dim U^\perp = \dim V - \dim U = n - k < n$. По индукционно предположение съществува ортонормиран базис e_{k+1}, \ldots, e_n на V, в който матрицата на $\varphi : U^\perp \to U^\perp$ е блочно-диагонална

$$D' = \begin{pmatrix} D_2 & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & D_3 & \dots & \mathbb{O} \\ \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & D_k \end{pmatrix}.$$

Обединението на ортонормиран базис e_1, \ldots, e_k на U с ортонормиран базис e_{k+1}, \ldots, e_n на U^{\perp} е ортонормиран базис на V, в който матрицата

$$D = \left(\begin{array}{cc} D_1 & \mathbb{O}_{k \times (n-k)} \\ \mathbb{O}_{(n-k) \times k} & D' \end{array}\right)$$

на φ е блочно-диагонална.

Ако ортогоналният оператор $\varphi: V \to V$ има блочно-диагонална матрица

$$D = \begin{pmatrix} D_1 & \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & D_2 & \dots & \mathbb{O} & \mathbb{O} \\ \dots & \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & D_{k-1} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{O} & D_k \end{pmatrix}$$

спрямо ортонормиран базис e_1, \ldots, e_n на V, то

$$D = \begin{pmatrix} D_1 & \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & E_{r_2} & \dots & \mathbb{O} & \mathbb{O} \\ \dots & \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & E_{r_{k-1}} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{O} & E_{r_k} \end{pmatrix} \dots \begin{pmatrix} E_{r_1} & \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & E_{r_2} & \dots & \mathbb{O} & \mathbb{O} \\ \dots & \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & E_{r_{k-1}} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{O} & D_k \end{pmatrix}.$$

е композиция на отражения относно (n-1)-мерни оси за $D_i=-1$ или на ротации на ъгли α_i с (n-2)-мерни оси за

$$D_i = \begin{pmatrix} \cos \alpha_i & -\sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix}.$$

Следствие 12. За произволна ортогонална матрица $A \in M_{n \times n}(\mathbb{R})$ съществува ортогонална матрица $T \in M_{n \times n}(\mathbb{R})$, така че

$$D = T^{-1}AT = \overline{T}^tAT = \begin{pmatrix} D_1 & \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & D_2 & \dots & \mathbb{O} & \mathbb{O} \\ \dots & \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & D_{k-1} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{O} & D_k \end{pmatrix}$$

е блочно-диагонална с

$$D_i = \pm 1$$
 unu $D_i = \begin{pmatrix} \cos \alpha_i & -\sin \alpha_i \\ \sin \alpha_i & \cos \alpha_i \end{pmatrix}$ sa $\alpha_i \in [0, 2\pi)$.

Доказателство. Избираме ортонормиран базис $f=(f_1,\ldots,f_n)$ на n-мерно евклидово пространство V и разглеждаме оператора $\varphi:V\to V$ с матрица A спрямо e. Тогава φ е ортогонален оператор и съществува ортонормиран базис $e=(e_1,\ldots,e_n)$ на V, в който матрицата на $\varphi:V\to V$ е блочно-диагонална

$$D = \begin{pmatrix} D_1 & \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & D_2 & \dots & \mathbb{O} & \mathbb{O} \\ \dots & \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & D_{k-1} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{O} & D_k \end{pmatrix}.$$

Матрицата на прехода $T \in M_{n \times n}(\mathbb{R})$ от ортонормирания базис f към ортонормирания базис e е ортогонална и $D = T^{-1}AT = \overline{T}^tAT$.