代数学2,第5回の内容の理解度チェックの解答

2025/5/26 担当:那須

[1] 環RとRのイデアルαとbの和α+bと積abを

$$\mathfrak{a} + \mathfrak{b} = \{ a + b \mid a \in \mathfrak{a}, b \in \mathfrak{b} \},$$

$$\mathfrak{a} \cdot \mathfrak{b} = \{ a_1 b_1 + \dots + a_n b_n \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b} \}$$

によって定義する. $R = \mathbb{Z}$ のとき, 以下の \mathfrak{a} と \mathfrak{b} に対し, $\mathfrak{a} + \mathfrak{b}$, \mathfrak{ab} , $\mathfrak{a} \cap \mathfrak{b}$ を求めよ.

- (1) $\mathfrak{a} = (2), \mathfrak{b} = (3)$
- (2) $\mathfrak{a} = (4), \mathfrak{b} = (6)$
- (3) $\mathfrak{a} = (x), \mathfrak{b} = (y), (x, y \in \mathbb{Z}_{>0}, x, y は互いに素)$
- (4) $\mathfrak{a} = (x), \ \mathfrak{b} = (y), \ (x, y \in \mathbb{Z}_{>0})$

(解答)

(1) $\mathfrak{a} + \mathfrak{b} = (2) + (3) = \{2x + 3y \mid x, y \in \mathbb{Z}\}$ が成り立つ. $2 \cdot 2 + 3 \cdot (-1) = 1$ より $1 \in \mathfrak{a} + \mathfrak{b}$. したがって $\mathfrak{a} + \mathfrak{b} = (1) = \mathbb{Z}$ となる. 一方, $\mathfrak{ab} = (2)(3) = (6)$ であり,

$$\mathfrak{a} \cap \mathfrak{b} = \{x \in \mathbb{Z} \mid x \text{ は 2 の倍数かつ 3 の倍数}\}$$

$$= \{x \in \mathbb{Z} \mid x \text{ は 6 の倍数}\}$$

$$= (6)$$

- (2) $\mathfrak{a} + \mathfrak{b} = (4) + (6) = (2)$, $\mathfrak{ab} = (4)(6) = (24)$, $\mathfrak{a} \cap \mathfrak{b} = (4) \cap (6) = (12)$.
- (3) $\mathfrak{a} + \mathfrak{b} = (x) + (y) = (1), \ \mathfrak{ab} = (x)(y) = (xy), \ \mathfrak{a} \cap \mathfrak{b} = (x) \cap (y) = (xy).$
- (4) $\mathfrak{a} + \mathfrak{b} = (x) + (y) = (\gcd\{x,y\}), \ \mathfrak{ab} = (x)(y) = (xy), \ \mathfrak{a} \cap \mathfrak{b} = (x) \cap (y) = (\ker\{x,y\}).$ (ただし $\gcd\{x,y\}$ および $\ker\{x,y\}$ は x,y のそれぞれ最大公約数と最小公倍数を表す.)

[2] 環Rとそのイデアル \mathfrak{a} , \mathfrak{b} に対し, $\mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}$ が成り立つことを示せ.

(**解答**) $z \in \mathfrak{ab}$ とすると, $z = x_1y_1 + \cdots + x_ny_n$ を満たす $x_i \in \mathfrak{a}$, $y_i \in \mathfrak{b}$ (i = 1, 2, ..., n) が存在する. 任意の i に対し, $x_i \in \mathfrak{a}$ より $x_iy_i \in \mathfrak{a}$, 同様に $y_i \in \mathfrak{b}$ より $x_iy_i \in \mathfrak{b}$. したがって $x_iy_i \in \mathfrak{a} \cap \mathfrak{b}$ を得る. $\mathfrak{a} \cap \mathfrak{b}$ はイデアルであるので, R の和について閉じており, $z \in \mathfrak{a} \cap \mathfrak{b}$ となる.

- $\boxed{3}$ 環 R とそのイデアル \mathfrak{p} に対し、次が成り立つことを示せ、
 - (1) p は R の素イデアル \iff 剰余環 R/\mathfrak{p} は整域
 - (2) (0) は R の素イデアル \iff 環 R は整域

(解答)

(1) \mathfrak{p} を R の素イデアルとする. $(a+\mathfrak{p})(b+\mathfrak{p}) = ab+\mathfrak{p}$ と $c \in R$ に対し $c+\mathfrak{p} = \mathfrak{p} \Longleftrightarrow c \in \mathfrak{p}$ が 成り立つことから、

$$a + \mathfrak{p} \neq \mathfrak{p}$$
 かつ $b + \mathfrak{p} \neq \mathfrak{p}$ ならば $(a + \mathfrak{p})(b + \mathfrak{p}) \neq \mathfrak{p}$

が成り立ち, R/\mathfrak{p} は整域となる.

逆に R/\mathfrak{p} が整域とする. $a,b \in R$ に対し, $ab \in \mathfrak{p}$ ならば $(a+\mathfrak{p})(b+\mathfrak{p}) = \mathfrak{p}$ となり, $a+\mathfrak{p} = \mathfrak{p}$ または $b+\mathfrak{p} = \mathfrak{p}$ が成り立つ. したがって, このとき $a \in \mathfrak{p}$ または $b \in \mathfrak{p}$ が成り立ち, \mathfrak{p} は素イデアルである.

(2) $\mathfrak{p} = (0)$ とおき, 前の問題で示した同値性を用いると主張を得る.

 $\boxed{4}$ $R = \mathbb{Z}$ とし, $x \in \mathbb{Z}$, $\mathfrak{a} = (x)$ とする. x が素数のとき \mathfrak{a} は極大イデアルであることを示せ. また x = 0 のとき \mathfrak{a} は極大イデアルではないが. 素イデアルであることを示せ.

(**解答**) x = p (p は素数) のとき, $R/\mathfrak{a} = \mathbb{Z}/p\mathbb{Z}$ は体である. したがって \mathfrak{a} は極大イデアルである. 一方 x = 0 のとき, $R/\mathfrak{a} \simeq R = \mathbb{Z}$ となる. \mathbb{Z} は整域であるが, 体ではないため, \mathfrak{a} は素イデアルであって, 極大イデアルでない.

[5] 体のイデアルは零イデアル (0) と R のみであることを示せ、また環 R が単位元 1 をもつとき、R の イデアルが (0) と R のみならば、R は体であることを示せ、

(**解答**) R を体とし、 \mathfrak{a} を R のイデアルとする. $\mathfrak{a} \neq 0$ ならば、 $x \neq 0$ となる $x \in \mathbf{a}$ が存在する. R は体なので a には乗法逆元 $a^{-1} \in F^{\times}$ が存在し、 $1 \in a^{-1} \cdot a \in \mathfrak{a}$ つまり $\mathfrak{a} = (1) = R$ となる.

逆に R のイデアル $\mathfrak a$ が (0) と (1) のみであるとする. R の任意の元 $a \in R$ に対し, a で生成される イデアル $\mathfrak a = (a)$ を考える. R のイデアルは (0) と (1) のみなので, $\mathfrak a = (0)$ または $\mathfrak a = (1)$ が成り立つ. 前者は a = 0,後者は a が単元であることを意味するため, $a \in R \setminus \{0\}$ ならば, a は単元であることがわかる.

^{1※}この講義に関する情報はホームページを参照. https://hirokazunasu.github.io/2025/alg2.html