

Math for Machine Learning

Linear algebra - Week 1

Systems of linear equations
Singular and non-singular matrices
Determinants
Rank of a matrix
Row reduction
Null space

System of Linear Equations

Machine learning motivation

Neural networks - image recognition

Image recognition in a busy street in New York.

Image recognition: Getting the computer to see images and recognize what is on them.

System of Linear Equations

System of sentences

System 1

System 1

System 2

System 1

Complete

System 2

System 1

The dog is black
The cat is orange

Complete

System 2

Redundant

System 1

The dog is **black**The cat is **orange**

Complete

System 2

Redundant

System 3

Contradictory

System 1

The dog is black
The cat is orange

Complete

System 2

Redundant

Singular

System 3

Contradictory

Singular

System 1

The dog is **black**The cat is **orange**

System 2

The dog is black
The dog is black

System 3

The dog is **black**The dog is white

Complete

Non-singular

Redundant

Singular

Contradictory

Singular

System 1

The dog is **black**The cat is **orange**The bird is **red**

System 2

System 3

System 1

System 2
The dog is black

The dog is **black**The bird is **red**

System 3

The dog is black
The dog is black
The dog is black

System 4

Complete

Non-singular

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

Redundant

Singular

System 3

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

Redundant

Singular

System 3

Redundant

Singular

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

The dog is black
The dog is black
The bird is red

Redundant

Singular

System 3

The dog is black
The dog is black
The dog is black

Redundant

Singular

System 4

Contradictory

Singular

Quiz: Systems of sentences

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Problem 1:

What color is the bird?

Problem 2:

Is this system singular or non-singular?

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

• Between the dog and the cat, one is orange.

Solution 1:

Given this system:

• Between the dog, the cat, and the bird, one is red.

• Between the dog and the cat, one is orange.

• The dog is black.

Solution 1:

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.

• The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

Between the dog, the cat, and the bird, one is red.

- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

Solution: Systems of information

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

The bird is red.

Solution: Systems of information

Given this system:

- Between the dog, the cat, and the bird, one is red.
- Between the dog and the cat, one is orange.
- The dog is black.

Solution 1:

The bird is red.

It is non-singular. 🞢 🧮 🔏

System of Linear Equations

System of equations

Sentences → Equations

Sentences

Between the dog and the cat, one is black.

Sentences → Equations

Sentences

Between the dog and the cat, one is black.

Sentences with numbers

The price of an apple and a banana is \$10.

Sentences → Equations

Sentences

Between the dog and the cat, one is black.

and a banana is \$10.

Sentences with numbers

The price of an apple

$$a + b = 10$$

Equations

Quiz: Systems of equations 1

You go two days in a row and collect this information:

- Day 1: You bought an apple and a banana and they cost \$10.
- Day 2: You bought an apple and two bananas and they cost \$12.

Question: How much does each fruit cost?

• Day 1: You bought an apple and a banana and they cost \$10.

• Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

• Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

• Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

Quiz: Systems of equations 2

You go two days in a row and collect this information:

- Day 1: You bought an apple and a banana and they cost \$10.
- Day 2: You bought two apples and two bananas and they cost \$20.

Question: How much does each fruit cost?

• Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$20.

8 2

5 5

Day 1: You bought an apple and a banana and they cost \$10.

- 8 2
- 5 5
- 8.3 1.7

• Day 1: You bought an apple and a banana and they cost \$10.

- 8 2
- 5 5
- 8.3 1.7
- 0 10

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$20.

Same thing!!!

Quiz: Systems of equations 3

You go two days in a row and collect this information:

- Day 1: You bought an apple and a banana and they cost \$10.
- Day 2: You bought two apples and two bananas and they cost \$24.

Question: How much does each fruit cost?

• Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

Day 1: You bought an apple and a banana and they cost \$10.

• Day 2: You bought two apples and two bananas and they cost \$24.

Contradiction!

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$24.

Contradiction!

No solutions!

System 1

- a + b = 10
- a + 2b = 12

System 1

System 2

•
$$a + b = 10$$

System 1

System 2

•
$$a + b = 10$$

System 3

•
$$a + b = 10$$

System 1

Unique solution:

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

$$b = 2$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

$$b = 2 \quad 3$$

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

Singular

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

Singular

System 3

No solution

System 1

•
$$a + 2b = 12$$

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

Infinite solutions

Redundant

Singular

System 3

No solution

Contradictory

System 1

Unique solution:

$$\rightarrow$$
 b = 2

Complete

Non-singular

System 2

•
$$a + b = 10$$

Infinite solutions

Redundant

Singular

System 3

No solution

Contradictory

Singular

Linear Non-linear

Linear

a + b = 10

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$

Numbers

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

$$\sin(a) + b^5 = 15$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

$$\sin(a) + b^5 = 15$$

$$2^a - 3^b = 0$$

Linear

$$a + b = 10$$

$$2a + 3b = 15$$

$$3.4a - 48.99b + 2c = 122.5$$
Numbers

$$a^2 + b^2 = 10$$

$$\sin(a) + b^5 = 15$$

$$2^a - 3^b = 0$$

$$ab^2 + \frac{b}{a} - \frac{3}{b} - \log(c) = 4^a$$

System of Linear Equations

System of equations as lines

$$a + b = 10$$

$\underset{\scriptscriptstyle{(-4,14)}}{\mathsf{Linear}} \, \underset{\scriptscriptstyle{b}}{\mathsf{equation}} \to \mathsf{line}$

Linear equation \rightarrow line

Linear equation \rightarrow line

Linear equation \rightarrow line

Linear equation → line (0,10) a + b = 10(10,0)

Linear equation → line (0,10) a + b = 10(10,0)

Linear equation → line (0,12)(0,10)2a + 2b = 24a + b = 10(10,0)(12,0)

Linear equation → line (0,12)(0,10)2a + 2b = 24a + b = 10(10,0)(12,0)

- a + b = 10
- a + 2b = 12

System 1

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

a 🎽

•
$$2a + 2b = 24$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

System 3

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

a 🍎

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + b = 10$$

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System 1

•
$$a + 2b = 12$$

System 2

•
$$a + b = 10$$

•
$$2a + 2b = 20$$

•
$$a + b = 10$$

•
$$2a + 2b = 24$$

System 1

•
$$a + 2b = 12$$

System 2

- a + b = 10
- 2a + 2b = 20

•
$$a + b = 10$$

System 1

- a + b = 10
- a + 2b = 12

System 2

- a + b = 10
- 2a + 2b = 20

- a + b = 10
- 2a + 2b = 24

Quiz

Problem 1

Which of the following plots corresponds to the system of equations:

- 3a + 2b = 8
- 2a b = 3

a)

b)

c)

d)

Problem 2

Is this system singular or non-singular?

Problem 2

System of Linear Equations

A geometric notion of singularity

System 1

•
$$a + b = 10$$

System 2

•
$$a + b = 10$$

•
$$a + b = 10$$

System of Linear Equations

Singular vs nonsingular matrices

System 1

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

System 1

•
$$a + 2b = 0$$

•
$$a + b = 0$$

•
$$2a + 2b = 0$$

System 1

•
$$a + 2b = 0$$

•
$$a + b = 0$$

System 1

1 1 1 2

Non-singular system

(Unique solution)

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 2

Singular system

(Infinitely many solutions)

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 2

Singular system

Singular matrix

(Infinitely many solutions)

System of Linear Equations

Linear dependence and independence

Non-singular

•
$$a + 2b = 0$$

Singular system

Non-singular

•
$$a + 2b = 0$$

Singular system

Second equation is a multiple of the first one

Non-singular

•
$$a + 2b = 0$$

Singular system

first one

a multiple of the

Second equation is

Second row is a multiple of the first row

Non-singular

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Rows are linearly dependent

Non-singular

No equation is a multiple of the other one

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Non-singular

No equation is a multiple of the other one

No row is a multiple of the other one

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Non-singular

No equation is a multiple of the other one

No row is a multiple of the other one

Rows are linearly independent

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

System of Linear Equations

The determinant

Non-singular matrix

Non-singular matrix

Non-singular matrix

Singular matrix

1 1

Non-singular matrix

Singular matrix

1 1 x 2 =

Non-singular matrix

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

Singular matrix

1 1 x 2 = 2 2

Non-singular matrix

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

1 1

Singular matrix

Non-singular matrix

1 1 x? =

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

1 1 x? = 1 2

Singular matrix

1 1 x2 = 2 2

Non-singular matrix

1 1 x? = 1 2

Rows linearly independent

Singular matrix

1 1 x2 = 2 2

Matrix is singular if

a b *k = c d

ak = c

$$ak = c$$

$$bk = d$$

$$ak = c$$

$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ak = c$$
$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ad = bc$$

$$ak = c$$

$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ad = bc$$

$$ad - bc = 0$$

Matrix is singular if

$$ak = c$$
$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

$$ad = bc$$

Determinant ad - bc =

$$Determinant = ad - bc$$

$$ak = c$$
$$bk = d$$

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

С

b

$$ad = bc$$

$$ad - bc = 0$$

$$ak = c$$

$$bk = d$$

$$Determinant = ad - bc$$

a d

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

b

(=

d

$$ad = bc$$

$$ad - bc = 0$$

$$ak = c$$
$$bk = d$$

$$\mathbf{Determinant} = ad - bc$$

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

d

$$ad = bc$$

$$ad - bc = 0$$

$$ak = c$$
$$bk = d$$

Determinant = ad - bc

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

d

$$ad = bc$$

$$ad - bc = 0$$

Non-singular matrix

Non-singular matrix

Determinant

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Non-singular matrix

Determinant

$$1 \cdot 2 - 1 \cdot 1 = 1$$

Singular matrix

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Determinant and singularity

ad - bc

Determinant and singularity

Quiz: Determinant

Problem 1: Find the determinant of the following matrices

Matrix 1

5	1
-1	3

Matrix 2

2	-1
-6	3

Problem 2: Are these matrices singular or non-singular?

Solutions: Determinant

Matrix 1: det =
$$5 \cdot 3 - 1 \cdot (-1) = 15 + 1 = 16$$

5	1
-1	3

Non-singular

Matrix 2: det =
$$2 \cdot 3 - (-1) \cdot (-6) = 6 - 6 = 0$$

Singular

System of Linear Equations

System of equations (3x3)

Quiz: Systems of equations

Problem 1: You're trying to figure out the price of apples, bananas, and cherries at the store. You go three days in a row, and bring this information.

- Day 1: You bought an apple, a banana, and a cherry, and paid \$10.
- Day 2: You bought an apple, two bananas, and a cherry, and paid \$15.
- **Day 3:** You bought an apple, a banana, and two cherries, and paid \$12. How much does each fruit cost?

System of equations 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System of equations 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

Solution

Quiz: More systems of equations

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2	2
----------	---

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

$$+3c = 20$$

Infinitely many sols.

$$c = 5$$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

a + b + 3c = 20

Infinitely many sols.

$$c = 5$$

 $a + b = 5$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

From 1st and 2nd: c = 5From 2nd and 3rd: c = 3

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

From 1st and 2nd: c = 5From 2nd and 3rd: c = 3

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

Infinitely many solutions

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

Infinitely many sols.

$$c = 5$$

a + b = 5
(0,5,5), (1,4,5), (2,3,5), ...

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

No solutions

From 1st and 2nd:

$$c = 5$$

From 2nd and 3rd:
 $c = 3$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

Infinitely many solutions

Any 3 numbers that add to 10 work. (0,0,10), (2,7,1), ...

System of Linear Equations

Singular vs non-singular matrices

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

Unique solution

System	1
--------	---

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

Unique solution

Infinite solutions

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

System 4

$$a + b + c = 10$$

 $2a + 2b + 2c = 15$
 $3a + 3b + 3c = 20$

Unique solution

Infinite solutions

No solutions

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions

Complete

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant		

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular			

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular		

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular	Singular	

System 1	System 2	System 3	System 4
a + b + c = 10 a + 2b + c = 15 a + b + 2c = 12	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 20	a + b + c = 10 a + b + 2c = 15 a + b + 3c = 18	a + b + c = 10 2a + 2b + 2c = 15 3a + 3b + 3c = 20
Unique solution	Infinite solutions	No solutions	Infinite solutions
Complete	Redundant	Contradictory	Redundant
Non-singular	Singular	Singular	Singular

System 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 20$

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 10$$

 $a + b + 2c = 15$
 $a + b + 3c = 18$

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 10$$

 $2a + 2b + 2c = 20$
 $3a + 3b + 3c = 30$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

$$a = 0$$
$$b = 0$$
$$c = 0$$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Unique solution:

a = 0

b = 0

c = 0

Complete

Non-singular

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

a = 0b = 0c = 0

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Infinite solutions:

$$c = 0$$

 $a + b = 0$
 (i.e., $a = -b$)

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

$$a = 0$$
$$b = 0$$
$$c = 0$$

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Infinite solutions:

$$c = 0$$

 $a + b = 0$
 (i.e., $a = -b$)

Redundant

Singular

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

a = 0b = 0c = 0

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Infinite solutions:

$$c = 0$$

a + b = 0
(i.e., a = -b)

Redundant

Singular

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Infinite solutions:

$$a + b + c = 0$$

(i.e., $c = -a - b$)

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

Unique solution:

$$a = 0$$
$$b = 0$$
$$c = 0$$

Complete

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Infinite solutions:

$$c = 0$$

a + b = 0
(i.e., a = -b)

Redundant

Singular

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

Infinite solutions:

$$a + b + c = 0$$

(i.e., $c = -a - b$)

Redundant

Singular

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

1	1	1
1	1	2
1	1	3

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

1	1	1
1	1	2
1	1	3

Singular

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

System 1

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

Non-singular

System 2

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

System 3

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

Singular

System 4

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

Singular

System of Linear Equations

System of equations as planes (3x3)

$$a + b + c = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$a + b + c = 1$$

$$1 + 0 + 0 = 1$$

$$0 + 1 + 0 = 1$$

$$0 + 0 + 1 = 1$$

$$3a - 5b + 2c = 0$$

$$3a - 5b + 2c = 0$$

$$3a - 5b + 2c = 0$$

$$3(0) + 5(0) + 2(0) = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

System 1

• a + b + c = 0

- a + 2b + c = 0
- a + b + 2c = 0

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

System 2

• a + b + c = 0

- a + b + 2c = 0
- a + b + 3c = 0

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 3c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System 3

• a + b + c = 0

- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

- a + b + c = 0
- 2a + 2b + 2c = 0
- 3a + 3b + 3c = 0

System of Linear Equations

$$a = 1$$

 $b = 2$
 $a + b = 3$

$$a = 1$$

 $b = 2$
 $a + b = 3$

1	0	0
0	1	0
1	1	0

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0	
0	1	0	
1	1	0	

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	0	0
0	1	0
1	1	0

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

$$a + b + c = 0$$

 $2a + 2b + 2c = 0$
 $3a + 3b + 3c = 0$

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

1	1	1
2	2	2
3	3	3

Row
$$1 + Row 2 = Row 3$$

1	1	1
2	2	2
3	3	3

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

1	1	1
2	2	2
3	3	3

Row
$$1 + Row 2 = Row 3$$

Row 3 depends on rows 1 and 2

Rows are linearly dependent

$$a + b + c = 0$$

 $a + b + 2c = 0$
 $a + b + 3c = 0$

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

1	1	1
1	1	2
1	1	3

3

Average of Row 1 and Row 3 is Row 2 Row 2 **depends** on rows 1 and 3 Rows are **linearly dependent**

$$a + b + c = 0$$

 $a + 2b + c = 0$
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

$$a + b + c = 0$$

 $a + 2b + c = 0$ No relations between equations
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

$$a + b + c = 0$$

 $a + 2b + c = 0$ No relations between equations
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

No relations between rows

$$a + b + c = 0$$

 $a + 2b + c = 0$ No relations between equations
 $a + b + 2c = 0$

1	1	1
1	2	1
1	1	2

No relations between rows

Rows are linearly independent

Problem: Determine if the following matrices have linearly dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

3Row1 + 2Row2 = Row3

Dependent (singular)

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$3Row1 + 2Row2 = Row3$$

$$Row1 - Row2 = Row3$$

Dependent (singular)

Dependent (singular)

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$3Row1 + 2Row2 = Row3$$

$$Row1 - Row2 = Row3$$

No relations

Dependent (singular)

Dependent (singular)

Independent (Non-singular)

Problem: Determine if the following matrices have linear dependent or independent rows

1	0	1
0	1	0
3	2	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

$$3Row1 + 2Row2 = Row3$$

$$Row1 - Row2 = Row3$$

No relations

$$2Row1 = Row3$$

Dependent (singular)

System of Linear Equations

The determinant (3x3)

Diagonals in a 3x3 matrix

Diagonals in a 3x3 matrix

Determinant

Determinant

Determinant

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

 $+ 1 \cdot 2 \cdot 2$

1	1	1
1	2	1
1	1	2

 $+ 1 \cdot 2 \cdot 2$

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

1	1	1
1	2	1
1	1	2

$$+ 1 \cdot 1 \cdot 1$$

 $-1\cdot 2\cdot 1$

1	1	1
1	2	1
1	1	2

$$+ 1 \cdot 1 \cdot 1$$

$$-1\cdot 2\cdot 1$$

$$-1\cdot 1\cdot 1$$

1	1	1
1	2	1
1	1	2

$$+ 1 \cdot 1 \cdot 1$$

$$-1\cdot 1\cdot 1$$

$$-1\cdot 1\cdot 2$$

1	1	1	1	1	1
1	2	1	2	1	1
1	1	2	4 2	1 1	1
			+ 1 · 2 · 2	+ 1 · 1 · 1	+ 1 · 1 · 1
			1	1	1
				1	1
			1 2	1	1 2 2

1	1	1
1	2	1
1	1	2

$$Det = 4+1+1 \\ -2-1-2$$

1	1	1
1	2	1
1	1	2

Det =
$$4+1+1$$

-2-1-2
= 1

Quiz: Determinants

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Determinant = 0

Singular

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

Determinant = 0

Determinant = 0

Singular

Singular

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$Determinant = 0$$

$$Determinant = 0$$

Singular

Singular

Non-singular

Problem: Find the determinant of the following matrices (from the previous quiz). Verify that those with determinant 0 are precisely the singular matrices.

1	0	1
0	1	0
3	3	3

1	1	1
1	1	2
0	0	-1

1	1	1
0	2	2
0	0	3

1	2	5
0	3	-2
2	4	10

$$Determinant = 0$$

$$Determinant = 0$$

$$Determinant = 0$$

1	1	1
0	2	2
0	0	3

1	1	1
0	2	2
0	0	3

$$+1\cdot 2\cdot 3$$

$$Det = 6+0+0-0-0-0$$

1	1	1
0	2	2
0	0	3

1 2 3

 $+1\cdot 2\cdot 3$

0 + 1·2·0

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	3

2 3

+ 1 · 2 · 3

0

+ 1 · 2 · 0

0

 $+ 1 \cdot 0 \cdot 0$

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	3

Det = 6+0+0-0-0-0

= 6

$$-1\cdot 2\cdot 0$$

1	1	1
0	2	2
0	0	3

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	3

$$Det = 6+0+0-0-0-0$$
$$= 6$$

 $+1\cdot 2\cdot 3$

 $-1 \cdot 0 \cdot 3$

 $+1\cdot 2\cdot 3$

 $-1 \cdot 0 \cdot 3$

$$Det = 6+0+0-0-0-0$$
$$= 6$$

$$Det = 6+0+0-0-0-0$$
$$= 6$$

1	1	1
0	2	2
0	0	0

$$Det = 0+0+0-0-0-0$$

 $-1 \cdot 0 \cdot 0$

 $-1 \cdot 0 \cdot 0$

System of Linear Equations

Conclusion