COL751 - Lecture 4

1 Computing approximate distance matrix

In this section we will see how to use the ideas from +2 distance preserver from lecture 3 to compute approximate distance matrix M with additive error at most +2.

In order to compute M, we will compute three matrices M_{low} , M_{mid} , M_{high} .

1.1 M_{low}

Let G_{low} be graph in which we add all edges incident to low degree vertices (i.e. vertices of degree at most $n^{1/3}$). We simply run BFS from each possible vertex v in graph G_{low} to compute distance matrix M_{low} .

Lemma 1 Let $x, y \in V$ satisfy that all vertices on an (x, y) shortest path have degree at most $n^{1/3}$. Then $M_{low}[x, y] = dist(x, y, G)$.

The time to compute M_{low} is $O(n \times |E(G_{low})|)$ which is $O(n^{7/3})$.

1.2 M_{high}

We sample a set R of size $8n^{1/3}\log n$ and compute BFS tree rooted at each vertex $r \in R$ in graph G. This provides us distance between all vertex pairs in $R \times V$.

Next, for each $x, y \in V$ set $M_{high}[x, y] = \min_{r \in R} dist(x, r, G) + dist(r, y, G)$.

Lemma 2 Let $x, y \in V$ satisfy that at least one vertex on an (x, y) shortest path has degree larger than $n^{2/3}$. Then $M_{high}[x, y] \leq dist(x, y, G) + 2$.

Proof: Let w be a vertex on (x, y) shortest path having degree larger than $n^{2/3}$. Then in this case with high probability a neighbor of w, say r, will lie in the set R.

We have:

$$M_{high}[x, y] \leq dist(x, r, G) + dist(r, y, G)$$

 $\leq dist(x, w, G) + 1 + dist(w, y, G) + 1$
 $= dist(x, y, G) + 2.$

This proves the claim.

The time to compute M_{high} is $O(n^2|R| + m|R|)$ which is $O(n^{7/3} \log n)$.

$1.3 \quad M_{mid}$

We are left to handle the following class of vertex pairs.

 \mathcal{P} : The set of all pairs $(x, y) \in V \times V$ for which the maximum degree on an (x, y) shortest path lie in the range $[n^{1/3}, n^{2/3}]$.

Let G_{mid} be graph in which we include all edges incident to vertices of degree at most $n^{2/3}$. Observe that the vertex pairs in \mathcal{P} have the corresponding shortest path in graph G_{mid} . Also the number of edges in G_{mid} is at most $n^{5/3}$.

Let R_0 be a uniformly random subset of size $O(n^{2/3} \log n)$. For each vertex v having degree at least $n^{1/3}$, we compute a representative vertex r_v in set $R_0 \cap N(v)$ and add edge (v, r_v) to G_{low} . As at most n edges are added to G_{low} , the number of edges in G_{low} remains $O(n^{4/3})$.

Lemma 3 For each
$$(x,y) \in \mathcal{P}$$
, $\min_{r \in R_0} dist(x,r,G) + dist(r,y,G_{low}) \leqslant dist(x,y,G) + 2$.

Proof: Consider a pair $(x, y) \in \mathcal{P}$. Let Q be an (x, y) shortest path in G, and $w \in Q$ be the vertex farthest from x having degree in the range $[n^{1/3}, n^{2/3}]$. So all the successors of w in Q have degree at most $n^{1/3}$.

Let r_w be a representative neighbor of w lying in set R_0 . Observe that the edge (r_w, w) as well as the subpath Q[w, y] lie in graph G_{low} . We have:

$$\min_{r \in R_0} dist(x, r, G) + dist(r, y, G_{low}) \leq dist(x, r_w, G) + dist(r_w, y, G_{low})$$

$$\leq dist(x, w, G) + 1 + dist(w, y, G_{low}) + 1$$

$$= dist(x, y, G) + 2.$$

This proves the claim.

The steps to compute matrix M_{mid} are as follows:

1. We first compute distances between all the vertex pairs in $R_0 \times V$ in graph G_{mid} in $O(|R_0| \times n^{5/3}) = O(n^{7/3} \log n)$ time.

- 2. For each $x \in V$, we compute an auxiliary graph H_x from G_{low} by adding for each $r \in R_0$ an edge (x, r) of weight dist(x, r, G) to graph G_{low} . Clearly the number of edges in H_x is bounded by $O(n^{4/3})$.
- 3. Finally for each vertex $x \in V$, we compute a shortest path T_x rooted at x in graph H_x in $O(n^{4/3} \log n)$ time and set

$$M_{mid}[x, y] = dist(x, y, H_x),$$

for $y \in V$.

Clearly M_{mid} is in worst case an overestimation to distances in graph G. Further, by Lemma 3 it follows that for pair $(x, y) \in \mathcal{P}$, $M_{mid}[x, y] \leq dist(x, y, G) + 2$.

On setting M as $\min(M_{low}, M_{mid}, M_{high})$ we get the following theorem.

Theorem 4 (Dor, Halperin, Zwick (FOCS 1996)) For any n vertex unweighted undirected graph G = (V, E) we can construct in $O(n^{7/3} \log n)$ time an approximate distance matrix M satisfying

$$dist(x, y, G) \leq M[x, y] \leq dist(x, y, G) + 2,$$

for every $x, y \in V$.

2 Hardness of distance approximation

We next prove that computing a +1 approximation to all-pairs distances in n vertex undirected graphs takes at least $\Omega(n^{\omega})$ time, where ω is constant of matrix multiplication.

Theorem 5 The problem of computing a distance matrix with a +1 additive error in an n vertex undirected graph is as hard as Boolean matrix multiplication and thus takes $\Omega(n^{\omega})$ time.

Proof: Let A, B be two $n \times n$ Boolean matrices. Consider the following graph G:

- 1. The vertex set of G consists of three disjoint sets $X = (x_1, \ldots, x_n), Y = (y_1, \ldots, y_n),$ and $Z = (z_1, \ldots, z_n).$
- 2. For each $i, j, k \leq n$, (x_i, y_j) is an edge in G if and only if $A_{ij} = 1$, and (y_j, z_k) is an edge if and only if $B_{jk} = 1$.

Observe that for any i, k in the range [1, n],

- 1. $dist(x_i, z_k)$ is even as $(Y, X \cup Z)$ is a bi-partition of G.
- 2. $dist(x_i, z_k, G) = 2$ if and only if $(AB)_{ik} > 0$.

Thus, if \hat{M} is a +1 approximate distance matrix then for any i, k in the range [1, n], $\hat{M}(x_i, z_k, G) \leq 3$ if and only if $(AB)_{ik} > 0$. This proves that computing \hat{M} is as hard as Boolean matrix multiplication.

The above result can be generalized to directed graphs for arbitrary stretch.

Theorem 6 The problem of computing a distance matrix with any finite stretch in an n vertex directed graph is as hard as Boolean matrix multiplication and thus takes $\Omega(n^{\omega})$ time.

Proof: Let A, B be two $n \times n$ Boolean matrices. We construct a graph G similar to Lemma 5 construction with the variation that edges are directed from X to Y, and from Y to Z. Observe that for any i, k in the range [1, n], $dist(x_i, z_k, G)$ is finite if and only if $(AB)_{ik} > 0$. This proves that obtaining any finite approximation to distances in directed graphs is as hard as Boolean matrix multiplication.

3 Multiplicative spanners

In last lecture we considered following construction of 3-multiplicative spanners.

```
1 Let H = (V, ∅).
2 Let (e<sub>1</sub>, e<sub>2</sub>,..., e<sub>m</sub>) be the sequence of m = |E| edges in G sorted in increasing order of weight.
3 for i = 1 to m do
4 | Let x, y be endpoints of e.
5 | If unweighted - distance(x, y, G) ≥ 3 then add e<sub>i</sub> to H.
6 end
```

Algorithm 1: 3-multiplicative spanner of weighted graph G

Lemma 7 The graph H computed by algorithm 1 satisfies following claims:

```
1. For any x, y \in V, dist(x, y, H) \leq 3 \cdot dist(x, y, G).
```

2. Each cycle in H has length strictly larger than 4.

This combined with the lemma below proved the construction of 3-multiplicative spanners with $O(n^{1.5})$ edges.

Lemma 8 (Lecture 2) Any graph H with girth 5 or more contains $O(n^{1.5})$ edges.

3.1 Construction of (2k-1) Multiplicative spanners

In order to generalize our construction, we first establish the following lemma providing a bound on the number of edges in a graph with high girth.

Lemma 9 Every n-vertex graph G with girth 2k + 1 or more contains $O(n^{1+1/k})$ edges.

Proof: Let G be any graph with girth at least 2k + 1. We first repeatedly remove all the edges incident to vertices of degree at most $n^{1/k}$. After this procedure if G becomes an empty graph then we are done. Suppose not. Consider any vertex s in the resultant graph G_0 .

Since the girth of G_0 is at least 2k + 1, two vertices x, y at distance at most k - 1 from s will have no common neighbor. Hence, the number of vertices at distance i from s is at least $(n^{1/k})^i$ for every $i \leq k$. So, the number of vertices at distance k from s is at least $(n^{1/k})^k$ which is at least n, leading to contradiction.

Now, we generalize the algorithm and property of constructed H as follows.

Lemma 10 The graph H computed by algorithm 2 satisfies following claims:

```
1. For any x, y \in V, dist(x, y, H) \leq (2k - 1) \cdot dist(x, y, G).
```

2. Each cycle in H has length strictly larger than 2k.

```
    Let H = (V, ∅).
    Let (e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>m</sub>) be the sequence of m = |E| edges in G sorted in increasing order of weight.
    for i = 1 to m do
    Let x, y be endpoints of e.
    If unweighted - distance(x, y, G) ≥ 2k - 1 then add e<sub>i</sub> to H.
    end
```

Algorithm 2: (2k-1)-multiplicative spanner of weighted graph G

Proof: To prove part 1, it suffices to show that for any e = (x, y) not in H, there exists an (x, y) path P in H of weight at most $(2k - 1) \cdot wt(x, y)$. Consider an edge $e_i = (x_i, y_i)$ not lying in H, where $i \in [1, m]$. Further, let H_i be the graph H after i^{th} iteration of for loop in Algorithm 1. As e_i is not in H_i , there would exists an unweighted path of length at most 2k - 1 in H_i , say P. Since all edges in H_i have weight at most $wt(e_i)$, we have that $wt(P) \leq (2k-1) \cdot wt(e_i)$. This proves $dist(x_i, y_i, H_i) \leq dist(x_i, y_i, H) \leq (2k-1) \cdot wt(x_i, y_i)$, for each $i \in [1, m]$.

To prove part 2, assume on contrary there is a cycle C of length at most 2k in H. Let e = (x, y) be an edge of maximum weight in C. Then before adding e we would have added all edges of $C \setminus \{e\}$ to H. In other words, before adding e, there would exists an unweighted path of length at most 2k - 1 in H. This contradicts the assumption that e lies in H.

On combining above two lemmas we get the following theorem.

Theorem 11 (Althöfer et al. (Discrete Comput. Geom. 1993)) For any n vertex m edges weighted undirected graph G we can construct in $O(mn^{1+1/k})$ time a subgraph H with $O(n^{1+1/k})$ edges satisfying

$$dist(x, y, H) \leq (2k-1) dist(x, y, G),$$

for every $x, y \in V$.

Homework Prove that the running time of Algorithm 2 is indeed $O(m \cdot n^{1+1/k})$.