Matlab Practicum S & S Woensd. 3 Juli 2019

 $\underline{\text{https://electronics.stackexchange.com/questions/318293/impulse-response-of-a-series-rlc-circuit}$

De Impulse-Response van de spanning over de Condensator van een RLC-kring wordt gegeven door:

$$v_c(t) = \left(\frac{1}{LC} - \left(\frac{R^2}{4L^2}\right)\right)^{-\frac{1}{2}} \cdot \exp\left(-\left(\frac{R}{2L}\right)t\right) \cdot \sin\left(\left(\frac{1}{LC} - \left(\frac{R^2}{4L^2}\right)\right)^{+\frac{1}{2}} \cdot t\right)$$

$$v_{s}(t) = \delta(t) \longrightarrow \begin{array}{c} R & \downarrow \\ \\ \\ - & \\ \end{array}$$

We willen $\underline{\acute{e}\acute{e}n}$ Matlab programma met $\underline{\acute{e}\acute{e}n}$ plot met 3 grafieken van $v_c(t)$ op het interval [0,12] seconden voor de volgende scenario's:

	$R(in \Omega)$	L(in H)	C(in F)	
,	1.0	0.1	1.0	kritisch gedempt
b)	0.5	1.0	0.5	(onder)gedempte trilling
C)	0.5	1.0	0.1	(onder) gedempte trilling m/ hogere freq.

0 -----