Nolan J. Coble

Website: nolanjcoble.com Email: ncoble@terpmail.umd.edu

LinkedIn: nolan-coble

EDUCATION

University of Maryland, College Park

College Park, MD

Applied Mathematics PhD Student, Application Area: Quantum Information

2020-Current

SUNY Brockport

Brockport, NY

B.S. in Mathematics and Physics, GPA: 4.00

2016-2020

- Thesis: "Spectral properties of quaternionic unit gain cycles"

EXPERIENCE

University of Maryland

College Park, MD

Summer 2020

Summer Graduate Researcher

Advisor: Dr. Matthew Coudron

- Project title: Computing output weights for constant-depth, 3D-geometrically-local quantum circuits to within polynomial additive error. See [2] below for preprint.

University of Maryland

College Park, MD

Summer 2019

Training and Research Experiences in Nonlinear Dynamics (TREND) REU Advisors: Dr. Michelle Girvan, Dr. Ed Ott, Dr. Thomas Antonsen

- Project title: Predicting Network Dynamics with a Parallel Machine Learning Approach
- Developed a parallel reservoir computing method to predict the dynamics of Kuramoto oscillator systems, which
 are novel network-coupled systems that exhibit complex dynamics even at relatively low dimensions.
- Wrote the object-oriented code in MATLAB which ran the prediction method
- Analyzed the performance of the predictions and made improvements to our proposed method to further increase prediction accuracy.

University of Rochester

Rochester, NY

Photonics REU

Summer 2018

Advisor: Dr. Benjamin Miller

- Project title: Finite-Element Modeling of Waveguide Structures Using COMSOL® Multiphysics

Publications

- [1] F. Belardo, M. Brunetti, N. J. Coble, N. Reff, and H. Skogman, "Spectra of quaternion unit gain graphs", In Preparation, 2020.
- [2] N. J. Coble and M. Coudron, "Quasi-polynomial time approximation of output probabilities of constant-depth, geometrically-local quantum circuits", 2020. arXiv: 2012.05460.
- [3] N. J. Coble* and N. Yu, "A reservoir computing scheme for multi-class classification", in *Proceedings of the 2020 ACM Southeast Conference*, ser. ACM SE '20, Tampa, FL, USA: Association for Computing Machinery, 2020, pp. 87–93, ISBN: 9781450371056.

^{*-}main contributor

Relevant Coursework

- Computer Science: Intro to Quantum Information Processing*, Quantum Algorithms*, Artificial Intelligence, Theory of Computation, Algorithms and Data Structures
- Mathematics: Algebra I* and II*, Analysis I*, Modern Algebra I and II, Coding Theory, Advanced Calculus I and II, Complex Analysis*, Topology, Advanced Differential Equations
- Physics: Quantum Mechanics, Advanced Theoretical Physics, Electricity & Magnetism, Classical Mechanics *-to be completed through Spring 2021 at UMD, other courses completed at SUNY Brockport

LANGUAGES TEACHING

- MATLAB, Python, Java: Intermediate
- Graduate Teaching Assistant for Precalculus at University of Maryland
- Bash, LabView, COMSOL RF Module: Beginner
- Math Tutor at SUNY Brockport

INDEPENDENT PROJECTS

• Title: Developing a novel classifier using reservoir computing methods

Using the method for recurrent neural networks known as reservoir computing (RC), I developed a simple multi-class classification technique which was comparable in performance to other novel approaches such as decision tree, naïve Bayesian, and a 3 layer neural network. Before this work, literature only existed for binary classification using RC. This project developed an altered method which increased performance while also expanding to multi-class problems. I developed the object-oriented method in Python. See [3] on first page for conference publication.

SCHOLARSHIPS AND AWARDS

• University of Maryland Dean's Fellowship	2020
• SUNY Chancellor's Award for Student Excellence	2020
• School of Arts and Sciences Outstanding Undergraduate Award	2020
• Brockport Honors College Scholar Award	2020
• Robert E. Hall Memorial Scholarship for Mathematics	2020
• Department of Computer Science Undergraduate Research Award	2020
• Belva A. Waite Memorial Scholarship	2019, 2016
• Interdisciplinary Award in Mathematics	2018
• Harvard House Award	2018
• Brockport Physics, Mathematics, and Computer Science Award	2018, 2017
• Dean's Citation for Diversity, University of Rochester	2018