Precalculus

Equations formed by setting trigonometric sum equal to 0

Todor Miley

2019

2019

Proposition (Product to sum formulas)

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

Proof.

Proposition (Product to sum formulas)

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

 Product to sum formulas are used when integrating (a topic to be studied later/in another course).

Proposition (Sum to product formulas)

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Recall the formula
$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

Example

Find all solutions in the interval $[0, 2\pi)$.

$$\sin(2x) + \sin(5x) = 0 \mid \text{use f-la}$$

$$2\sin\left(\frac{2x+5x}{2}\right)\cos\left(\frac{2x-5x}{2}\right) = 0$$

$$2\sin\left(\frac{7}{2}x\right)\cos\left(-\frac{3}{2}x\right) = 0 \mid \cos$$

$$2\sin\left(\frac{7}{2}x\right)\cos\left(\frac{3}{2}x\right) = 0$$

Recall the formula
$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

Example

Find all solutions in the interval $[0, 2\pi)$.

$$\sin(2x) + \sin(5x) = 0 \mid \text{use f-la}$$

$$2\sin\left(\frac{7}{2}x\right)\cos\left(\frac{3}{2}x\right) = 0$$

$$\sin\left(\frac{7}{2}x\right) = 0$$

$$\sin\left(\frac{7}{2}x\right) = 0$$

$$\frac{7}{2}x = k\pi$$

$$x = \frac{2k\pi}{7}$$

$$x = \frac{2k\pi}{7}$$

$$x = \frac{2k\pi}{7}, 0, \frac{2\pi}{7}, \frac{4\pi}{7}, \frac{6\pi}{7}, \frac{8\pi}{7}, \frac{10\pi}{7}, \frac{12\pi}{7}, \frac{14\pi}{7}, \dots$$
or

$$\cos\left(\frac{3}{2}x\right) = 0$$

$$\frac{3}{2}x = \frac{\pi}{2} + k\pi = \frac{(2k+1)\pi}{2} \qquad k - \text{integer}$$

$$x = \frac{(2k+1)\pi}{3}$$

$$x = \frac{7\pi}{3}, \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \dots$$

Recall the formula
$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

Example

Find all solutions in the interval $[0, 2\pi)$.

$$\sin(2x) + \sin(5x) = 0 \mid \text{use f-la}$$

$$2\sin\left(\frac{7}{2}x\right)\cos\left(\frac{3}{2}x\right) = 0$$

$$x = \sqrt{\frac{-2\pi}{7}}, 0, \frac{2\pi}{7}, \frac{4\pi}{7}, \frac{6\pi}{7}, \frac{8\pi}{7}, \frac{10\pi}{7}, \frac{12\pi}{7}, \frac{14\pi}{7}, \dots$$
or
$$x = \sqrt{\frac{\pi}{3}}, \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \dots$$

$$y = \sin(2x) + \sin(5x)$$

$$y = \sin(2x) + \sin(5x)$$

$$y = \sin(2x) + \sin(5x)$$