Realizace prototypu

Konstrukce a realizace elektronických obvodů

Michal Brejcha brejcmic@fel.cvut.cz

ČVUT v Praze, FEL

Praha, 2018

Obsah

- 1 Návrh
 - Nepájivé pole
 - Prototypová deska s prokovy
 - Prototypová deska s pásky
- 2 Součástky
- 3 Prezetace zadání

Téma

- 1 Návrh
 - Nepájivé pole
 - Prototypová deska s prokovy
 - Prototypová deska s pásky
- 2 Součástky
- 3 Prezetace zadání

Nepájivé pole - breadboard

Nepájivé pole - realizace prototypu

Prototypová deska s prokovy

Prototypová deska s prokovy (pady) - perfboard

Prototypová deska s prokovy (pady) - realizace prototypu

Prototypová deska s pásky

Prototypová deska s pásky - stripboard

Prototypová deska s pásky - realizace prototypu

Prototypová deska s pásky - návrh

Téma

- 1 Návrh
 - Nepájivé pole
 - Prototypová deska s prokovy
 - Prototypová deska s pásky
- 2 Součástky
- 3 Prezetace zadání

Pasivní prvky

■ Rezistory:

- odpor,
- ztrátový výkon,
- tolerance.

■ Kondenzátory:

- kapacita,
- jmenovité napětí,
- materiál (teplotní závislost),
- ztrátový činitel,
- frekvenční rozsah použití.

■ Tlumivky, cívky:

- indukčnost,
- činitel jakosti (parazitní odpor),
- jmenovitý proud,
- frekvenční rozsah použití.

Pouzdra rezistorů

Značení keramických kondenzátorů, třída 2

X 7 R

SPODNÍ HRANICE TEPLOTY

TEPLOTA	ZNAČENÍ
-55 °C	X
-30 °C	Y
+10 °C	Z

HORNÍ HRANICE TEPLOTY

TEPLOTA	ZNAČENÍ
+45 °C	2
+65 °C	4
+85 °C	5
+105 °C	6
+125 °C	7

ZMĚNA KAPACITY

ZMĚNA KAP.	ZNAČENÍ	
± 1 %	Α	
± 1.5 %	В	
± 2.2 %	С	
± 3.3 %	D	
± 4.7 %	E	
± 7.5 %	F	
± 10 %	Р	
± 15 %	R	
± 22 %	S	
+ 22 % / - 33 %	Т	
+ 22 % / - 56 %	U	
+ 22 % / - 82 %	V	

Příklad - spojování prvků

- Dva rezistory $R_1 = 15\Omega$, $R_2 = 150\Omega$ jsou spojeny paralelně, na kterém je vyšší výkonová ztráta?
- Dva rezistory $R_1 = 15\Omega$, $R_2 = 150\Omega$ jsou spojeny sériově, na kterém je vyšší výkonová ztráta?
- Dva kondenzátory $C_1 = 1nF$, $R_2 = 10nF$ jsou spojeny sériově, na kterém je vyšší napětí?

Aktivní prvky

■ Diody:

- propustný proud,
- závěrné napětí,
- prahové napětí,
- doba závěrného zotavení,
- kapacita.

■ Integrované obvody:

- napájecí napětí,
- charakteristiky vstupů: napětí, proud, impedance,
- charakteristiky výstupů: napětí, proud, typ zátěže, spínací časy...

Tranzistory:

- proud kolektorem (drainem),
- napětí mezi kolektor-emitor (drain-source),
- zesilovací činitel (převodní admitance),
- ztrátový výkon,
- frekvenční rozsah použití.

Příklad - spojování prvků

- Rezistor $R_1 = 1,1k\Omega$ a dioda 1N4007 jsou spojeny seriově a připjeny ke zdroji napětí 12 V. Jaký proud teče obvodem?
- Jaký rezistor se má zvolit do série k LED BL-BD0141 při napájecím napětí 5 V pro zvolený proud 10 mA?
- Jaký rezistor se má zvolit do série k LED BL-BD0141 při napájecím napětí 10 V se střídou 50% pro zvolený proud 10 mA?
- Jaký rezistor se má zvolit do série s bází tranzistoru BC546B, tak aby spolehlivě sepnul (saturace) kolektorovou zátěž o velikosti R = 100Ω v zapojení SE při napájecím napětí 5 V?

Téma

- 1 Návrh
 - Nepájivé pole
 - Prototypová deska s prokovy
 - Prototypová deska s pásky
- 2 Součástky
- 3 Prezetace zadání

Hlavolam - automatický zámek

Hlavolam - důležité části

- Arduino NANO: arduino,
- posuvné registry 74HC595 a 74HC165, návody: registry,
- podsvícená tlačítka: spinac,
- stabilizátor napětí 5 V, kvůli napájení ze sběrnice zdroje 12 V: 7805,
- chladič pro stabilizátor: chladič,
- relé pro sepnutí obvodu zámku: relé,
- bez krabičky provedení do panelu na 4 distanční sloupky.

Hlavolam - co budu ověřovat nebo optimalizovat?

- celkovou logickou funkci obvodu program,
- vstupní rozsah napájecích napětí 9 24 V kvůli oteplení stabilizátoru,
- čitelnost světelných tlačítek v různých světelných podmínkách,
- zákmity na tlačítkách, dobu reakce mezi stiskem a rozsvícením,
- činnost kontaktu relé s elektronickým zámkem (možná přepětí apod.)