Computer Vision

Feature Extraction

(Corner and interest point detection, Local variant feature detectors and descriptors)

Contents

- Corner and interest point detection
- Local variant feature detectors and descriptors

Why Feature Descriptor?

- Edges can be used to differentiate cat and dog
- Easy to classify cat and dog

- Shape and edges are known
- Can differentiate the two images
- Can not be used to match two objects
- Feature descriptor is a representation of the image
- It contains important information about the image

Object Detection

Detects and match features which are descriptive and unique

- Apply thresholding to convert it to binary
- Compare geometric properties and recognize the objects
- Also recognize position and orientation

- More complex
- Still, can apply thresholding
- And recognize letter and identify license plates

Object Detection

Template

Image

Find key point (interest points) and match them to recognize objects

- Find template in image
- Template may not exactly be same as the object to be detected in image
- Objects in image may be
 - Rotated
 - scaled
 - occluded
- To detect such object create several templates with different rotations and scales
- Technique would be computationally expensive
- Use key points to reduce complexity

Feature descriptors

- Interest points can be particular elements like unique points, edges, or corners
- Define local patches surrounding interest points
- Extract feature descriptors for each key point
- Match descriptors in images to find correspondence for image matching and other applications

Local and Global Descriptors

Local and Global Descriptors

- Global Descriptors
 - Describe the image as a whole
 - Contour representations, Shape descriptors, Texture features
 - DoG, HOG, histograms of optical flow (HOF) etc are few examples
 - Limitations: difficult to detect objects with occlusions, profile variations
- Local Descriptors
 - Describes a patch within an image
 - Use multiple local descriptors to match an object
 - More accurate than global
 - Provides more robustness against occlusions and profile variations
 - SIFT, SURF, LBP, BRISK, MSER, and FREAK are examples

Overview of Local Features Matching

Overview of Local Features Matching

Overview of Local Features Matching

Steps for Local Features Matching

- Determine distance between local descriptors of two interest points
- Match the local descriptors between images
- If matched, determine correspondence between two patches
- Apply same correspondence to other interest points

How to define interest point?

- There may be a change of one or more image properties (color, texture, intensity etc)
- Interest points should be robust to these changes
- Corner point is an example of interest point

Interest point Detection and Applications

- Stereo image matching
 - Choose corner interest points on both images
 - Apply image matching between left and right image for stereo correspondence

Interest point Detection and Applications

- Join two images to get a bigger image
 - Choose interest point (corner point)
 - Use correspondence between interest points for image alignment

Panorama Stitching

Characteristics of good features of interest points

- Repeatability
 - Find same feature in multiple images irrespective of geometric and photometric transformations
- Saliency
 - Each feature is distinct/unique
- Compactness
 - fewer features than number of image pixels which represent entire image

Characteristics of good features

- Efficiency
 - Computationally faster for real time applications
- Locality
 - Occupy small area of image
 - Robust to clutter and occlusion
- Covariant
 - Should be detected in corresponding locations despite geometric and photometric variations

Patches of images for matching

- Select a patch in one image
- Match it with a patch in the other image

Patch should have unique shape in the image

Patch Matching

- Corners are unique points in images
- Locate patch around corners and map it to image feature

Corner Point

- Corner points are special case of interest points
- Corner
 - Is the intersection of two or more edge segments
 - Well localized or have a well-defined location in the image space
 - Maintain their stability against scaling and rotation
 - Can compute the interest points accurately
 - Offers effective detection

Corner Point

- Window with a fixed size is chosen to detect the corner
- If window is shifted,

Flat portion: No change in pixel intensities in all directions

Edge: No change in pixel intensities along edge direction

Corner: Significant change in pixel intensities in all directions

Difference in pixel intensities in window can be used to identify corners

image

.

Y derivative

X derivative

image

image

X derivative

Y derivative

Corner detector

- Locate interest points where the surrounding neighborhood shows edges in more than one direction
- These points are image corners
- Change in intensity is tested for the shift (u,v) of a window

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

- For nearly constant patches, change of intensity, E(u,v) is almost 0
- For different patches, E(u,v) is large
 - Then it is corner point

Corner detector

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

E(u,v) for window at the corner point

E(u,v) for window at each point of image

Maximum value: black, Minimum value: white

Corner detector

Maximum value: black, Minimum value: white

- E(u,v) for
 - Corner has maximum value
 - Edges has relatively low value
 - Patches have minimum value
- Entire process of calculation is computationally expensive, especially for large images
- Harris corner detector is computationally less expensive

Harris Corner Detector

• For small shifts, (u,v), E(u,v) can be approximated as

$$E(u, v) = [u, v]M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum_{x, y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

I_x and I_y are derivatives in x and y directions in window (patch)

Harris Corner Detector

- Apply prewitt or sobel operator to determine gradients, I_x and I_y
- For perfect vertical edge, $I_v = 0$ and for perfect horizontal edge, $I_x = 0$
- For flat regions, I_x and I_y are zero

Prewitt operator

1	0	-1
1	0	-1
1	0	-1

To generate I_x

1	1	1
0	0	0
-1	-1	-1

To generate I_v

Harris Corner Detector

 λ_1 and λ_2 are large

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- λ_1 and λ_2 are Eigen values of M
- λ_1 corresponds to major axis and λ_2 corresponds to minor axis

If λ_1 and λ_2 are large, point at the center of window is ascorner

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Gradients of points in window

Point at the center of window is on the edge

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Gradients of points in window

Point at the center of window is in flat portion of image

Eigen values of M can identify corner, edge and flat patch

Eigen Values for Corner Point Detection

Eigen Values for Corner Point Detection

- One eigenvalue is significantly high
 - derivative with respect to one direction is much stronger than the other
 - pixel lies on an edge
- Both eigenvalues are small
 - pixel intensities do not change in any direction
 - pixel lies on a flat region
- Both eigenvalues are large
 - pixel intensities largely change in both x and y direction
 - pixel lies at the corner

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Computation of eigen value is costly
- Instead, compute corner response,
 - R = det{M} k (trace {M})² Where Det{M} = $\lambda_1 x \lambda_2$ and Trace{M} = $\lambda_1 + \lambda_2$
 - Or, Det{M} = $I_x^2 I_y^2 - I_{xy}^2$ Trace{M}= $I_x^2 + I_y^2$
- Empirically determined value of k is 0.04 0.06
- R is +ve and large for corner points
- R is —ve and large magnitude for edge
- |R| is small for flat region

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

Image

window

1	0	-1
2	0	-2
1	0	-1

Sobel mask for I_x

1	2	1
0	0	0
-1	-2	-1

Sobel mask for I_y

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

Image

1	0	-1
2	0	-2
1	0	-1

Sobel mask for I_x

1	2	1
0	0	0
-1	-2	-1

Sobel mask for I_y

0	0	0	0	0
0	-20	10	0	0
0	-10	30	0	0
0	0	40	0	0
0	0	0	0	0

0	0	0	0	0
0	-20	-10	0	0
0	10	30	40	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	-20	10	0	0
0	-10	30	0	0
0	0	40	0	0
0	0	0	0	0
l _x				

0	0	0	0	0	
0	-20	-10	0	0	
0	10	30	40	0	
0	0	0	0	0	
0	0	0	0	0	
l _y					

$M = \sum w(x, y)$	I_x^2	$I_{x}I_{y}$
$M = \sum_{x,y} w(x,y)$	$I_{x}I_{y}$	$\begin{bmatrix} I_x I_y \\ I_y^2 \end{bmatrix}$

0	0	0	0	0
0	400	100	0	0
0	100	900	0	0
0	0	1600	0	0
0	0	0	0	0

0	0	0	0	0
0	400	100	0	0
0	100	900	1600	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	400	-100	0	0
0	-100	900	0	0
0	0	0	0	0
0	0	0	0	0

 I_x^2 (square of each element of I_x)

 I_y^2 (square of each element of I_y)

 $I_x I_y$ (multiplication of each element of I_x and I_y

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

0	0	0	0	0	
0	400	100	0	0	
0	100	900	0	0	
0	0	1600	0	0	
0	0	0	0	0	
1 2					

	0	0	0	0	0
	0	400	100	0	0
	0	100	900	1600	0
	0	0	0	0	0
	0	0	0	0	0
•			. 2		

0	0	0	0	0
0	400	-100	0	0
0	-100	900	0	0
0	0	0	0	0
0	0	0	0	0

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$\sum I_x^2 = 3100 \qquad \sum I_y^2 = 3100$$

$$\sum I_{x}I_{y}=1100$$

$$M = \begin{bmatrix} 3100 & 1100 \\ 1100 & 3100 \end{bmatrix}$$

Determinant of M

= 3100x3100 - 1100x1100

= 9610000 - 12100

=8400000

Trace of M

= 3100 +3100

= 6200

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

Image

$$M = \begin{bmatrix} 3100 & 1100 \\ 1100 & 3100 \end{bmatrix}$$

Determinant of M =8400000

Trace of M = 6200

0	0	0	0	0
0				0
0		R =		0
		6862400		
0				0
0	0	0	0	0

$$R = det\{M\} - k (trace \{M\})^2, k = 0.04$$

$$R = 8400000 - 0.04 (6200)^2$$
$$= 6862400$$

- For threshold = 3000000
- R > threshold
- Therefore, point at the center of window is a corner point

0	0	0	0	0
0	0	0	0	0
10	10	10	10	10
0	0	0	0	0
0	0	0	0	0

Image

1	0	-1
2	0	-2
1	0	-1

Sobel mask for $\rm I_x$

1	2	1
0	0	0
-1	-2	-1

Sobel mask for I_v

0	0	0	0	0
0	0	0	0	0
10	10	10	10	10
0	0	0	0	0
0	0	0	0	0

Image

1	0	-1
2	0	-2
1	0	-1

Sobel mask for I_x

1	2	1
0	0	0
-1	-2	-1

Sobel mask for I_y

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	-40	-40	-40	0
0	0	0	0	0
0	40	40	40	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
l _x				

0	0	0	0	0
0	-40	-40	-40	0
0	0	0	0	0
0	40	40	40	0
0	0	0	0	0
		l _y		

$M = \sum_{i} w(x_i, x_i)$	I_{χ}^2	$I_{x}I_{y}$
$M = \sum_{x,y} w(x,y)$	$I_{x}I_{y}$	$\begin{bmatrix} I_x I_y \\ I_y^2 \end{bmatrix}$

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	1600	1600	1600	0
0	0	0	0	0
0	1600	1600	1600	0
0	0	0	0	0
		. 2	·	

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
10	10	10	10	10
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1.2				

0	0	0	0	0
0	1600	1600	1600	0
0	0	0	0	0
0	1600	1600	1600	0
0	0	0	0	0
		1.2		•

			_	
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$\sum I_x^2 = 0 \qquad \sum I_y^2 = 9600$$

$$\sum I_x I_y = 0$$

$$M = \begin{bmatrix} 0 & 0 \\ 0 & 9600 \end{bmatrix}$$

Determinant of M
=
$$0x(9600)-0$$

=0

0	0	0	0	0
0	0	0	0	0
10	10	10	10	10
0	0	0	0	0
0	0	0	0	0

Image

$$M = \begin{bmatrix} 0 & 0 \\ 0 & 9600 \end{bmatrix}$$

Determinant of M = 0

Trace of M = 9600

0	0	0	0	0
0				0
0		-3686400		0
0				0
0	0	0	0	0

Corner Response at the center of window, R

$$R = det\{M\} - k (trace \{M\})^2$$

Where k is 0.04 - 0.06

$$R = 0 - 0.04 (9600)^2$$
$$= -3686400$$

- For threshold = -3000000
- R is negative and < negative threshold
- Therefore, point at the center of window is edge point

Image

R < -10000 for edges

R > 10000 for corners

For -10,000 < R< 10000 Neither edges nor corners

- By default, uniform window is used
- If uniform window is chosen as the window function, Harris detector is not rotation invariant

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- By default, uniform window is used
- If uniform window is chosen as the window function, Harris detector is not rotation invariant

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Option 1: uniform window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

- By default, uniform window is used
- If uniform window is chosen as the window function,
 Harris detector is not rotation invariant

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Option 1: uniform window

Option 2: Smooth with Gaussian

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

- By default, uniform window is used
- If uniform window is chosen as the window function,
 Harris detector is not rotation invariant

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Option 1: uniform window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

- By default, uniform window is used
- If uniform window is chosen as the window function, Harris detector is not rotation invariant

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Option 1: uniform window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

Option 2: Smooth with Gaussian

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Multiply I_x^2 , I_y^2 and $I_x I_y$ by

Gaussian window

Gaussian provides weighted sum Result is rotation invariant

Ex: Harris Corner Detector (with Gaussian Window)

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

0	0	0	0
400	100	0	0
100	900	0	0
0	1600	0	0
0	0	0	0
	400 100 0	400 100 100 900 0 1600	400 100 0 100 900 0 0 1600 0 0 0 0

0	0	0	0	0
0	400	100	0	0
0	100	900	1600	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	400	-100	0	0
0	-100	900	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	1	2	1	0
0	2	4	2	0
0	1	2	1	0
0	0	0	0	0

0	0	0	0	0
0	400	200	0	0
0	200	3600	0	0
0	0	3200	0	0
0	0	0	0	0

0	0	0	0	0		
0	400	200	0	0		
0	200	3600	3200	0		
0	0	0	0	0		
0	0	0	0	0		
CL 2						

0	0	0	0	0
0	400	-200	0	0
0	-200	3600	0	0
0	0	0	0	0
0	0	0	0	0
	•			

Gaussian Window, G

 GI_x^2

 Gl_v^2

 GI_xI_y

Ex: Harris Corner Detector (with Gaussian Window)

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

0	0	0	0	0
0	400	200	0	0
0	200	3600	0	0
0	0	3200	0	0
0	0	0	0	0

0	0	0	0	0	
0	400	200	0	0	
0	200	3600	3200	0	
0	0	0	0	0	
0	0	0	0	0	
	Gl_v^2				

0	0	0	0	0
0	400	-200	0	0
0	-200	3600	0	0
0	0	0	0	0
0	0	0	0	0

 Gl_xl_v

$$Gl_x^2$$

$$M = \sum_{x,y} G(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \sum_{x,y} G(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \qquad \sum_{x,y} GI_x^2 = 400 + 200 + 200 + 3600 + 3200 \\ \sum_{x,y} GI_y^2 = 400 + 200 + 200 + 3600 + 3200$$

$$\sum_{x} GI_{x} I_{y} = 400 - 200 - 200 + 3600$$

Ex: Harris Corner Detector (with Gaussian Window)

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

0	0	0	0	0
0	400	200	0	0
0	200	3600	0	0
0	0	3200	0	0
0	0	0	0	0

0	0	0	0	0	
0	400	200	0	0	
0	200	3600	3200	0	
0	0	0	0	0	
0	0	0	0	0	
	Gl_v^2				

0	0	0	0	0
0	400	-200	0	0
0	-200	3600	0	0
0	0	0	0	0
0	0	0	0	0

$$Gl_x^2$$

$$\sum GI_{x}^{2} = 400 + 200 + 200 + 3600 + 3200$$

$$\sum_{x} GI_y^2 = 400 + 200 + 200 + 3600 + 3200$$

$$\sum GI_x I_y = 400 - 200 - 200 + 3600$$

$$\mathsf{M} = \begin{bmatrix} GI_{\chi}^2 & GI_{\chi}I_{y} \\ GI_{\chi}I_{y} & GI_{y}^2 \end{bmatrix}$$

$$R = det\{M\} - k (trace \{M\})^2$$

$$R =$$

Pixel intensity Black: -ve, Grey: 0, White: +ve

 Image derivatives

Pixel intensity Black: -ve, Grey: 0, White: +ve

2. Square of derivatives

Gaussian filter g(σ_i)

Image 1

Image after rotation and variation in illumination

Image 1 Image 2

70

Image

Image after rotation and variation in illumination

Corner response, R

Blue for low or negative R Red for positive R

Corner response, R

Points with large value of R (R> threshold)

Harris Corner Detector

• After thresholding on R, we get clusters of corner points not a single point

Non Maximal Suppression

- Slide a window of size k over the cluster
- At each position, if pixel at the center of window is maximum, label it as a corner and retain it
- Else label it as not corner and suppress it

Non Maximal Suppression

- Slide a window of size k over the cluster
- At each position, if pixel at the center of window is maximum, label it as a corner and retain it
- Else label it as not corner and suppress it

Non Maximal Suppression

- Slide a window of size k over the cluster
- At each position, if pixel at the center of window is maximum, label it as a corner and retain it
- Else label it as not corner and suppress it

Harris Corner Detector

Hessian Corner Detector

- Harris and Hessian detectors are similar
- Herris detector uses first moment and corner response function R for corner detection
- Hessian detector uses Second moment and determinant to detect corners
- Hessian detector provides good performance in terms of computation time and accuracy
- Given a pixel, the Hessian of pixel is

$$H = \sum W(x, y) \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

- $H = \sum W(x,y) \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$ I_{xx} and I_{yy} are second order derivative in x and y direction respectively
 I_{xy} is first order derivative in x direction (I_x) and then
 - derivative of I_v in y direction

Det(H) =
$$I_{xx}I_{yy} - (I_{xy})^2$$

If det(H) is high then it is a corner point

Ex: Hessian Corner Detector

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

Image

0	0	0
1	-2	1
0	0	0

Mask for Second order derivative, I_{xx} in x direction

0	1	0
0	-2	0
0	1	0

Mask for Second order derivative, I_{yy} in y direction

1	0	-1
2	0	-2
1	0	-1

Mask for first order derivative, I_x in x direction

1	2	1
0	0	0
-1	-2	-1

Mask for first order derivative of I_x in y direction that is I_{xy}

Ex: Hessian Corner Detector

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

Image

0	0	0
1	-2	1
0	0	0

Mask for Second order derivative, I_{xx} in x direction

0	1	0
0	-2	0
0	1	0

Mask for Second order derivative, I_{yy} in y direction

1	0	-1
2	0	-2
1	0	-1

Mask for first order derivative, I_x in x direction

1	2	1
0	0	0
-1	-2	-1

Mask for first order derivative of I_x in y direction that is I_{xy}

0	0	0	0	0
0	-10	0	0	10
0	-20	10	0	0
0	-20	10	0	0
0	10	0	0	0

0	0	0	0	0
0	-10	-20	-20	10
0	0	10	10	0
0	0	0	0	0
0	10	0	0	0

I_{yy}

0	0	0	0	0
0	-20	10	0	0
0	-10	30	0	0
0	0	40	0	0
0	0	0	0	0

0	0	0	0	0
0	-50	-50	-30	10
0	-70	-80	-30	0
0	10	50	30	0
0	10	0	0	0

 I_{xx}

80

Ex: Hessian Corner Detector

0	0	0	0	0
0	10	10	10	10
0	10	0	0	0
0	10	0	0	0
0	10	0	0	0

Image

0	0	0	0	0
0	-10	0	0	0
0	-20	10	0	0
0	-20	10	0	0
0	0	0	0	0

0	0	0	0	0
0	-10	-20	-20	0
0	0	10	10	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	-50	-50	-30	10
0	-70	-80	-30	0
0	10	50	30	0
0	10	0	0	0

Hessian,
$$H = \sum_{xy} \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Hessian, H =
$$\begin{bmatrix} -30 & -220 \\ -220 & -30 \end{bmatrix}$$

$$|Det(H)| = |900-48400|$$

= 47500

- For threshold =15000
- It is a corner point

Harris and Hessian Corner Detectors

- Corner points should be detected at corresponding locations in other image even if image is rotated
- Harris and Hessian detectors are rotation invariant

- Ellipse rotates but shape (Eigen values) remains the same
- Also, corner points should be invariant to photo metric transformation and geometric transformation

Harris and Hessian Corner Detectors

• Photometric/intensity transformation

- For Hessian Detector,
 - Intensity shift (I→ I + b) does not change derivative
 - Therefore R is invariant to shift in intensity
 - If I is scaled $(I \rightarrow a \times I)$
 - Then false point appears after scaling
- Harris detector
 - partially invariant to affine intensity change if intensity change is minor

Harris and Hessian Corner Detectors

• Image scaling in size

- Corner gets magnified and becomes bigger than the size of the window by zooming
- After scaling, corner points are classified as edges
- Harris and Hessian can not detect the corner if image is up scaled
- They are not invariant to scaling

Applications of Interest points

- Image alignment
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval

References

- https://nptel.ac.in/courses/108103174
- https://sbme-tutorials.github.io/2018/cv/notes/6_week6.html
- https://medium.com/data-breach/introduction-to-harris-corner-detector-32a8850b3f6
- https://www.baeldung.com/cs/harris-corner-detection
- https://www.codingninjas.com/codestudio/library/harris-corner-detection
- https://www.google.com/url?sa=t&source=web&rct=j&url=https://www.cs.umd.ed u/class/fall2019/cmsc426-0201/files/12 HarrisCornerDetection.pdf&ved=2ahUKEwj q4fY5br-AhWujgGHeTBCJAQFnoECD8QAQ&usg=AOvVaw0WjY5eRFeu-vCUFu-g6o90
- https://fiveko.com/feature-points-using-harris-corner-detector/