Algoritmos Genéticos Capítulo 9

Prof. Ricardo Linden

Outros Métodos de Seleção

- Método usado na seleção de pais pode influenciar bastante o resultado final:
 - Pode-se acelerar ou retardar a ocorrência da convergência genética;
 - Afeta o equilíbrio entre exploration e explotation do seu GA
 - Fica mais ou menos agressivo no aproveitamento das melhores soluções atuais;
 - Se usarmos apenas pais com excelentes avaliações poderemos estar jogando fora bons esquemas presentes nos indivíduos "ruins";
 - Se permitimos muito que os indivíduos com avaliações ruins participem do processo reprodutivo, os esquemas que os tornam ruins não desaparecerão da população

Outros Métodos de Seleção

 Vale a pena considerar outros métodos, para que tenhamos alternativas em nossa caixa de ferramentas.

- Principais métodos usados:
 - Método do Torneio
 - Método De Amostragem Estocástica Uniforme
 - Seleção Local
 - Seleção por ranking
 - Seleção Truncada

Outros Métodos de Seleção

- O processo após a seleção é o mesmo se usássemos o método da roleta viciada.
- GA é uma junção de blocos:
 - Só mudamos o bloco da seleção.
 - O módulo de população, os operadores e todo o resto continuam iguais!

- Selecionamos uma série de indivíduos da população;
- Fazemos com que eles entrem em competição direta pelo direito de ser pai, usando como arma a sua avaliação;
- Tamanho do torneio (k): quantos competidores são selecionados aleatoriamente dentro da população;
 - valor mínimo de k é igual a 2;
 - Se for escolhido o valor igual ao tamanho da população (n) o vencedor será sempre o mesmo.

o Exemplo (k=3):

Indivíduo	Fitness
×1	200
х2	100
х3	9500
х ₄	100
x ₅	100
ж6	10000
х7	1
х8	40

- À esquerda nós temos a população com a avaliação de cada indivíduo;
- À direita, os elementos sorteados para cada torneio e o vencedor do mesmo, marcado com fundo cinza;
- Vencedor se torna o pai selecionado para o operador a ser aplicado.

- Chance do pior indivíduo ser selecionado para participar de uma mutação ou um crossover é ser o único competidor de um torneio;
- Probabilidade = $\frac{1}{\mu^k}$
- k=2 minimiza este problema.
- Quanto maior o tamanho do torneio, maior a dominância do primeiro colocado do ranking
- Resultados deste método diferem muito dos obtidos com o método da roleta viciada.

o Versão estocástica:

- Não seleciona necessariamente, o melhor indivíduo para ser submetido ao operador genético;
- Cada um dos participantes do torneio recebe uma percentagem, proporcional à sua colocação;
- Um sorteio é efetuado para que o efetivo vencedor seja selecionado.
- Pressão seletiva menor
- Não costuma gerar resultados tão bons quanto o método tradicional.
- Método estocástico diminui a componente de exploration.

- Nome original: stochastic universal sampling
- Todos os indivíduos são mapeados para segmentos contíguos de uma linha;
- O tamanho de cada segmento é proporcional ao valor da avaliação do indivíduo que está sendo mapeado;
- Normalizamos os tamanhos (soma igual a 1);
- o Sorteamos um número *i* entre 0 e $\frac{1}{n}$
- o Atribuímos n ponteiros passam a apontar para segmentos de reta, nas posições $i, i + \frac{1}{n}, i + \frac{2}{n}, ..., i + \frac{n-1}{n}$
- Os indivíduos "donos" dos segmentos apontados serão então selecionados;

o Exemplo:

Indivíduo	Fitness
x ₁	200
х2	100
Х3	150
x ₄	100
X _S	150
х ₆	300

Indivíduos sorteados: $x_1, x_2, x_3, x_5, x_6, x_6$

- Cada indivíduo será sorteado um número de vezes muito próximo à verdadeira proporção de sua avaliação para a soma das avaliações de todos os indivíduos;
- Alguns livros preferem colocar as avaliações em uma roleta ao invés de colocá-la em uma reta;
- o Os ponteiros estão separados um do outro por uma distância de $360^{\circ}/_{n}$
- o Ponto de partida do círculo, em graus, fica entre 0 e $360^{\circ}/n$

Exemplo de uso de círculo

Indivíduos sorteados: x1, x1, x3, x4, x5, x6

Seleção Local

- Cada indivíduo existe em um ambiente limitado que contém uma vizinhança:
 - Esta vizinhança pode ser definida arbitrariamente;
 - Suas fronteiras decidem os indivíduos com quem um determinado cromossomo pode interagir.
- Primeira metade dos pais da nova geração é escolhida de forma aleatória:
 - usamos qualquer um dos métodos descritos até agora (roleta viciada, amostragem estocástica uniforme, seleção por ranking ou outra qualquer)
 - depois, os indivíduos que vão reproduzir com estes pais serão escolhidos dentro da vizinhança onde estes pais residem.

Seleção Local

Exemplo de vizinhanças

a) População organizada de forma uni-dimensional

b) População organizada de forma bi-dimensional

Vizinhança:

- possui uma estrutura física
- pode ter qualquer número de dimensões
- uma distância limite até a qual um indivíduo ainda é considerado pertencente a uma vizinhança específica.

- Evita a convergência prematura e a dominância de um superindivíduo.
- Princípio:
 - ordenar todos os elementos de acordo com a sua função de avaliação;
 - usar este ranking como base da seleção;
 - não usar diretamente o valor da avaliação.
- Passo de ordenação é extremamente oneroso em termos de tempo
 - complexidade de O(nlogn) operações
- Uma vez estabelecido o ranking, deve-se fazer o seu mapeamento para uma função de avaliação.

- Feito o mapeamento, usamos qualquer outro método visto anteriormente.
- Como reduz a pressão seletiva, o GA pode demorar um tempo um pouco maior para convergir.

Mapeamento linear:

$$E(i,t) = Min + (Max - Min) * \frac{(rank(i,t) - 1)}{N-1}$$

Onde:

- E(i,t) é o valor do mapeamento que queremos calcular para o indivíduo i da geração t.
- Min é o valor da avaliação que sera atribuído ao indivíduo pior colocado no ranking.
- Max é o valor da avaliação que sera atribuído ao indivíduo melhor colocado no ranking.
- N é o número de indivíduos na população
- Rank(i,t) é o ranking do indivíduo i na população mantida pelo GA na geração t.

Mapeamento exponencial:

$$E(i) = \frac{1 - e^{-i}}{c}$$

- onde:
 - o i é o ranking invertido do indivíduo (do pior para o melhor)
 - o c é uma constante.

Seleção Truncada

- Apenas os melhores x% da população poderão ser escolhidos como pais da próxima geração;
- O valor x é um parâmetro do algoritmo, que pode variar de 1% a 100%;
- Os valores mais usuais para x são aqueles na faixa [10%-50%];
- Causa uma convergência genética mais veloz, e uma rápida perda da diversidade, quando x é um valor pequeno.

Seleção Truncada

- Os indivíduos são ordenados de forma descrescente de acordo com sua avaliação;
- Somente aqueles cujas posições estiverem entre 1 e a posição de corte poderão participar da seleção;
- Ordenação faz com que o algoritmo tenha uma complexidade minima de tempo de O(nlogn);
- Qualquer outro método citado anteriormente pode ser combinado com a seleção truncada.