MSLIB Fortran 90

CS

Nomenclature: M-MU-0-115-CIS

Edition: 05 Date: 15/02/2005 Révision: 00 Date: 15/02/2005

Volume R

les Repères fondamentaux

Rédigé par :	le:	
Guylaine PRAT avec la participation de: Véronique LÉPINE	CS (SI/Espace/FDS)	
Validé par :	le:	
Guylaine PRAT Anne MAZZIETTI-ERSA (ingénieur qualité)	CS (SI/Espace/FDS) CS (SI/Espace)	
Pour application :	le:	
Franck REINQUIN Hervé MADIEU	CNES (DCT/SB/OI)	

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-115-CIS** Edition : 05 Date: 15/02/2005 Révision : 00 Date: 15/02/2005

Page: i.1

DIFFUSION INTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

DIFFUSION EXTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-115-CIS**Edition : 05 Date: 15/02/2005
Révision : 00 Date: 15/02/2005

Page: i.2

BORDEREAU D'INDEXATION

CONFIDENTIALITE : NC			MOTS-CLES:	
TITRE: Volume R	TITRE : Volume R - les Repères fondamentaux			
AUTEUR : Guylaine	e PRAT avec la p	participation de: Vé	ronique LÉPINE	
RESUME:				
	mble les notices	d'utilisation des ro	utines du thème "les I	Repères fondamentaux".
SITUATION DU DO	CUMENT : Créati	on		
	1.10			
VOLUME:	PAGES : 142	PLANCHES:	FIGURES:	LANGUES: F
CONTRAT: Marche	£ 779/Cnes/2001	/8929 BC45000098	360	
SYSTEME HOTE : F	SYSTEME HOTE: Frame6/MSLIB			

MSLIB Fortran 90

Nomenclature : **M-MU-0-115-CIS** Edition : 05 Date: 15/02/2005 Révision : 00 Date: 15/02/2005

Page: i.3

MODIFICATION

ETAT DOCUMENT					PAGES REVISEES
ED.	REV.	DATE	REFERENCE ORIGINE (pour chaque édition)	ETAT PAGE *	NUMERO DES PAGES
01	00	13/11/98	M-MU-0-115-CIS Rédacteur : V. Lépine avec la participation de G. Prat		Création
02	00	01/02/00	M-MU-0-115-CIS Rédacteur : S. Vresk avec la participation de G. Prat		Modification de toutes les pages
03	00	03/03/03	M-MU-0-115-CIS Rédacteur : G. Prat avec la participation de B. Revelin		Modification de toutes les pages
04	00	05/12/03	M-MU-0-115-CIS Rédacteur : B. Revelin, V. Lépine avec la participation de G. Prat	I M I	Ajout des pages liées aux nouvelles routines pour la MSLIB90 V5.0 Évolution de 16 routines (ajout du jacobien) Complétion de l'introduc- tion du thème (explications; graphes)
05	00	15/02/05	M-MU-0-118-CIS Rédacteur: G. Prat avec la participation de V. Lépine	I	Ajout des pages liées aux nouvelles routines pour la MSLIB90 V6.2 Complétion de l'introduction du thème (explications; graphes)

^{*} I = Inséré

Sommaire

en	tation du thème R:page I
	otations
1	Les échelles des temps
2	Définitions page 5
	2.1 Définition des plans
	2.2 Points vernaux
	2.3 Obliquités
	2.4 Pôles célestes
	2.5 Temps sidéraux
	2.6 Époques de référence
	2.7 Théorie de la précession
	2.8 Théorie de la nutation
3	Définitions des repères fondamentaux page 9
	3.1 Repère écliptique moyen de la date
	3.2 Repère écliptique vrai de la date
	3.3 Repère équatorial (ou céleste) moyen de la date
	3.4 Repère équatorial (ou céleste) vrai de la date
	3.5 Repère de Veis de la date
	3.6 Repère terrestre vrai de la date
	3.7 Repère terrestre de référence
	3.8 Repère EME2000 page 10
	3.9 Repère R (repère plan)page 10
	3.10 Repère équatorial planétaire UAI page 10
	3.11 Repère planétocentrique (vrai) page 10
	3.12 Repère planétocentrique inertiel du type «H0-n» page 11
	3.13 Repère Body Body Rotating (BBR) ou "de type Lagrange" page 11

4	Utilisation des routines du thème
	4.1 Transformation pour le vecteur position seulement
	4.2 Transformations pour les vecteurs position et vitesse
	4.3 Modèles UAI des coordonnées du pôle et du temps sidéral des planètes page 14
	4.4 Calcul du temps sidéral moyen
	4.5 Calcul du temps sidéral de Veis (modifié de Veis)
	4.6 Calcul du temps sidéral vrai
	4.7 Calcul des paramètres de nutation et de la matrice de nutation page 15
5	Documents de référence du thème

Liste des routines du thème R : voir pages suivantes du sommaire.

Liste des routines du thème R:

EcliJ2000_J2000 :	page 17
EquaMoy_EquaVrai:	page 20
EquaMoy_J2000:	page 24
EquaUAI_J2000 :	page 28
EquaUAI_PlanetVrai:	page 32
EquaVrai_EquaMoy: "Passage du repère équatorial vrai à la date t au repère équatorial moyen à la même date t".	page 36
EquaVrai_TerVrai:	page 40
EquaVrai_veis:	page 44
J2000_BBR:	page 48
J2000_EcliJ2000 :	page 51
J2000_EquaMoy:	page 54

"Passage du repère EME2000 au repère équatorial planétaire UAI à la date t."	age 38
mr_J2000_TerVrai:	age 62
mr_J2000_veis:	age 66
mr_mat_J2000_BBR:	age 70
mr_mat_nuta:	age 73
mr_nuta:	age 76
mr_obli_moy:	age 79
mr_PlaIner_PlaVrai:	age 82
mr_PlanetVrai_EquaUAI:	age 86
mr_PlaVrai_PlaIner:	age 90
mr_rep_fon:	age 94

"Passage du repère terrestre de référence au repère terrestre vrai à la date t".	99
mr_TerVrai_EquaVrai:	102
mr_TerVrai_J2000:	106
mr_TerVrai_TerRef:	110
mr_TerVrai_veis:	113
mr_tsid_aoki :	116
mr_tsid_veis:	118
mr_tsid_vrai:	120
mr_veis_EquaVrai:	123
mr_veis_J2000 :	127
mr_veis_TerVrai :	131

Présentation du thème R

Le thème "*les Repères fondamentaux*" regroupe un grand nombre de routines permettant d'effectuer des changements de repères.

Cette introduction propose un résumé des différentes conventions, définitions et notations qui concernent les théories mises en jeu par ces routines, ainsi que les représentations schématiques des transformations disponibles.

Pour concevoir ce résumé, nous nous sommes basés, autant que possible, sur le document de référence [**DR1**] du Bureau Des Longitudes. Afin d'obtenir de plus amples précisions, il convient de s'y reporter.

Nota: la liste des notations, notions et autres termes présents ici n'est pas exhaustive.

Notations

O Centre de masse de la Terre

CTP (Conventional Terrestrial

Pole) ou P_T

Pôle terrestre conventionnel (pôle Nord géographique)

CEP (Celestial Ephemeris

Pole) ou P_v

Pôle céleste vrai de la date

 P_m Pôle céleste moyen

 P_e Pôle de l'écliptique

 G_V Origine des longitudes vraies (intersection entre le méridien de

Greenwich de la date et l'équateur vrai de la date)

 γ_V ou γ_V Point vernal vrai ou équinoxe vrai de la date

 γ_M ou γ_m Point vernal moyen ou équinoxe moyen de la date

 $\hat{\gamma}$ Equinoxe de Veis de la date

 ε_A ou ε Obliquité moyenne

 ε_V ou ε Obliquité vraie

 $\Delta \varepsilon$ ou $\Omega + d\Omega$ Nutation en obliquité

 $\Delta \psi$ ou N + dN Nutation en longitude

 π_A , Π_A , P_A paramètres ou variables de précession écliptique

 ζ_A, z_A, θ_A paramètres ou variables de précession équatoriale

GMT temps sidéral vrai

GMST temps sidéral moyen

GMT temps sidéral modifié de Veis

u, v coordonnées du pôle CEP dans le repère R

UT1 ou TU1 ou UT Temps Universel

TAI Temps Atomique International

UTC ou TUC Temps Universel Coordonné

TE Temps des Ephémérides

Index

 \mathbf{L}

Lieske 7, 8, 15

 \mathbf{V}

Veis *15*

 \mathbf{W}

Wahr 8, 15

1 Les échelles des temps

UT1 ou TU1 : c'est le temps universel. Lié à la rotation de la Terre, il n'est pas uniforme à cause des inégalités de la rotation de la Terre. En pratique, c'est le temps civil de Greenwich.

TAI : c'est le temps atomique international. Il est défini à partir d'horloges atomiques très précises et est donc uniforme.

UTC ou TUC : c'est le temps universel coordonné. C'est une échelle qui posséde les qualités d'uniformité du temps atomique par morceaux mais qui, grâce à des sauts de secondes appropriés, permet de maintenir en phase la rotation de la Terre et les horloges atomiques. En somme, le temps TUC est une approximation du temps universel lue sur un garde temps meilleur que la rotation de la Terre.

$$TAI - UTC = n$$
 secondes (n est un entier)
$$UTI - UTC \le 0.9 \text{ s}$$

TE : c'est le temps des éphémérides qui est une échelle basée sur la révolution de la Terre autour du soleil.

$$TE = TAI + 32,184 \text{ s}$$

TT, TCB, TBD : ce sont des échelles de temps très proches de l'échelle de temps TE. Dans la MSLIB, nous faisons comme si ces échelles étaient confondues (pour plus d'informations voir le document [**DR1**]).

2 Définitions

2.1 Définition des plans

Il faut tout d'abord préciser que dans le thème R, on considère les plans écliptiques au sens rotationnel et non au sens inertiel.

Equateur vrai de la date : il est défini comme le plan perpendiculaire à l'axe instantané de rotation de la Terre.

Equateur moyen de la date : il se déduit de l'équateur vrai de la date par une transformation fournie par la théorie de la nutation. On passe de l'équateur moyen de la date à l'équateur moyen d'une autre date par une transformation fournie par la théorie de la précession.

Ecliptique (**dynamique**) **moyen de la date** : il est défini comme le plan perpendiculaire au moment cinétique moyen du barycentre Terre-Lune dans son mouvement héliocentrique lorsque la vitesse est calculée dans un système de coordonnées tournant défini par l'écliptique moyen de la date et par l'équinoxe moyen de la date.

Equateur planétaire de la date : il est défini comme le plan perpendiculaire à l'axe instantané de rotation de la planète considérée.

2.2 Points vernaux

Equinoxe (dynamique) vrai γ_V : on définit l'équinoxe vrai de la date comme l'intersection entre l'écliptique (dynamique) moyen de la date et l'équateur vrai de la même date.

Equinoxe (**dynamique**) **moyen** γ_M : on définit l'équinoxe de la date comme l'intersection entre l'écliptique (dynamique) moyen de la date et l'équateur moyen de la même date.

Equinoxe de Veis $\hat{\gamma}$: c'est un point de l'équateur vrai de la date tel que l'angle entre l'équinoxe vrai de la date et lui-même est égal à la différence entre le temps sidéral vrai et le temps sidéral modifié de Veis ($GMT - G\hat{M}T$).

2.3 Obliquités

Obliquité moyenne : c'est l'inclinaison de l'écliptique moyen sur l'équateur moyen à une date donnée.

Obliquité vraie : c'est l'inclinaison de l'écliptique moyen sur l'équateur vrai à une date donnée.

2.4 Pôles célestes

Pôle terrestre conventionnel (CTP): c'est le pôle Nord géographique.

Pôle céleste vrai (**CEP**) : c'est le point de l'hémisphère Nord par lequel passe l'axe instantané de rotation de la Terre.

Pôle céleste moyen P_m : c'est la position qu'occuperait le pôle céleste vrai si on supprimait la nutation.

Pôle de l'écliptique P_e : c'est le point de l'hémisphère Nord par lequel passe le moment cinétique moyen du barycentre Terre-Lune.

Pôle planétaire Nord: c'est celui des deux pôles de l'axe instantané de rotation de la planète considérée qui se trouve au Nord du plan invariant du système solaire. Il est défini par la donnée à chaque instant de l'ascension droite et la déclinaison dans le système EME2000.

2.5 Temps sidéraux

Temps sidéral vrai : c'est l'angle dans le plan équatorial vrai entre l'équinoxe vrai et le méridien de Greenwich, tout ceci à la même date.

Temps sidéral moyen : c'est l'angle dans le plan équatorial moyen entre l'équinoxe moyen et le méridien de Greenwich, tout ceci à la même date.

Temps sidéral modifié de Veis : c'est l'angle dans le plan équatorial vrai entre l'équinoxe de Veis et le méridien de Greenwich, tout ceci à la même date.

Temps sidéral planétaire: c'est l'angle dans le plan équatorial de la planète considérée entre le nœud ascendant de l'équateur planétaire (sens direct) sur l'équateur terrestre J2000, et le méridien origine de la planète, tout ceci à la même date.

2.6 Époques de référence

Pour les calculs d'angles de précession, nutation, temps sidéraux, on se réfère toujours à une date à laquelle on connaît la position des différents plans ainsi que les équations de l'évolution de ces plans à partir de cette date.

Il existe plusieurs dates de référence dites époques de référence :

B1900.0: le 31/12/1899 à 19h31min28s temps TE

J1900.0: le 31/12/1899 à 12h temps TE **J1950.0**: le 01/01/1950 à 0h temps TE **J2000.0**: le 01/01/2000 à 12h temps TDB.

Pour plus de précisions, se reporter à la table 1.1 du document [**DR1**].

2.7 Théorie de la précession

La théorie de la précession exprime les déplacements de l'équateur moyen de la date (précession luni-solaire) et de l'ecliptique moyen de la date (précession planétaire) ainsi que les déplacements de l'équinoxe (dynamique) moyen de la date qui en résultent (cf. schéma 1).

Il existe plusieurs théories de précession qui ont été développées au cours du temps.

Une théorie de précession est rapportée à une date de référence. Les temps utilisés sont indifféremment TT, TE ou TDB compte tenu de la précision des théories.

Le modèle de précession proposé dans la MSLIB est celui de *Lieske* dont l'époque de référence est J2000.0.

Les angles ζ_A , z_A et θ_A sont dits paramètres ou variable de précession équatoriale car ils permettent le passage des coordonnées équatoriales moyennes de l'époque σ_F aux coordonnées équatoriales moyennes de l'époque σ_D .

Les angles π_A , Π_A et p_A sont dits paramètres ou variable de précession écliptique car ils permettent le passage des coordonnées écliptiques moyennes de l'époque σ_F aux coordonnées écliptiques moyennes de l'époque σ_D .

2.8 Théorie de la nutation

La théorie de la nutation fournit les paramètres permettant de passer de l'équateur moyen de la date à l'équateur vrai de la date (cf. shéma 2).

Il existe plusieurs théories de la nutation qui ont été développées au cours du temps.

Une théorie de nutation est rapportée à une époque de référence. L'échelle de temps utilisée dans les calculs des paramètres de nutation est le temps TE.

Les angles $\Delta\Psi$, $\Delta\epsilon$ et ϵ_A sont les paramètres nécessaires au passage des coordonnées équatoriales moyennes de l'époque σ_F aux coordonnées équatoriales vraies à la même époque σ_F .

Le modèle de nutation proposé dans la MSLIB est celui de *Wahr* dont l'époque de référence est J2000.0 et qui s'utilise conjointement avec le modèle de précession de *Lieske*.

schéma 2

3 Définitions des repères fondamentaux

3.1 Repère écliptique moyen de la date

- son origine est le centre O de la Terre
- son plan (O, X, Y) est le plan écliptique (moyen) de la date
- l'axe OX passe par l'équinoxe moyen γ_M de la date
- l'axe OZ passe par le pôle de l'écliptique \boldsymbol{P}_e de la date

3.2 Repère écliptique vrai de la date

- son origine est le centre O de la Terre
- son plan (O, X, Y) est le plan écliptique (moyen) de la date
- l'axe OX passe par l'équinoxe vrai γ_V de la date
- l'axe OZ passe par le pôle de l'écliptique \boldsymbol{P}_e de la date

3.3 Repère équatorial (ou céleste) moyen de la date

- son origine est le centre O de la Terre
- son plan (O, X, Y) est le plan équatorial moyen de la date
- l'axe OX passe par l'équinoxe moyen γ_M de la date
- l'axe OZ passe par le pôle céleste moyen P_m de la date

3.4 Repère équatorial (ou céleste) vrai de la date

- son origine est le centre O de la Terre
- son plan (O, X, Y) est le plan équatorial vrai de la date
- l'axe OX passe par l'équinoxe vrai γ_V de la date
- l'axe OZ passe par le pôle céleste vrai CEP de la date

3.5 Repère de Veis de la date

- son origine est le centre O de la Terre
- son plan (O, X, Y) est le plan équatorial vrai de la date
- l'axe OX passe par l'équinoxe de Veis $\hat{\gamma}$ de la date
- l'axe OZ passe par le pôle céleste vrai CEP de la date

Nota : l'équinoxe de Veis $\hat{\gamma}$ de la date est défini en 2.2

3.6 Repère terrestre vrai de la date

- son origine est le centre O de la Terre
- son plan (O, X, Y) est le plan équatorial vrai de la date
- l'axe OX passe par l'origine des longitudes vraies G_V de la date
- l'axe OZ passe par le pôle céleste vrai CEP de la date

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

3.7 Repère terrestre de référence

- son origine est le centre O de la Terre
- son plan (O, X, Y) est celui de l'équateur géographique
- l'axe OX coupe le méridien d'origine des longitudes vraies (Greenwich)
- l'axe OZ passe par le pôle Nord géographique (CTP)

3.8 Repère EME2000

C'est le repère équatorial moyen de l'époque J2000.0, c'est-à-dire le 01/01/2000 à 12h TDB. Il est donc fixe.

Ce repère est également appelé **J2000** dans les routines MSLIB.

3.9 Repère R (repère plan)

- son origine est le pôle Nord géographique,
- son plan (O, X, Y) est tangent à la Terre au pôle Nord géographique,
- l'axe OX est dirigé selon la direction du méridien d'origine (Greenwich), et est orienté positivement vers Greenwich (Londres),
- l'axe OY est dirigé selon la direction perpendiculaire à l'axe OX, et est orienté positivement vers le Canada.

Les coordonnées (u , v) d'un point dans ce repère s'expriment en radians et non en mètres.

3.10 Repère équatorial planétaire UAI

Il n'y a pas, pour l'instant, de notion de précession ou nutation pour les planètes différentes de la Terre, donc pas de notion d'équateur vrai ou moyen.

- son origine est le centre O de la planète considérée,
- son plan (O, X, Y) est celui de l'équateur planétaire,
- l'axe OZ passe par le pôle Nord planétaire,
- l'axe OX est l'intersection entre le plan (O, X, Y) de l'équateur planétaire et le plan XY de l'EME2000.

3.11 Repère planétocentrique (vrai)

Il n'y a pas de notion de mouvement du pôle pour les repères interplanétaires, donc pas de différence entre planétocentrique "vrai" et "de référence".

- son origine est le centre O de la planète considérée,
- son plan (O, X, Y) est celui de l'équateur planétaire,
- l'axe OZ passe par le pôle Nord planétaire,
- l'axe OX est dirigé selon la direction du méridien d'origine de la planète.

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

3.12 Repère planétocentrique inertiel du type «H0-n»

- son origine est le centre O de la planète considérée,
- son plan (O, X, Y) est celui de l'équateur planétaire,
- l'axe OZ passe par le pôle Nord planétaire,
- l'axe OX est dirigé selon la direction du méridien défini par une longitude donnée (d'un pas de tir par exemple), par rapport au méridien d'origine de la planète.

3.13 Repère Body Body Rotating (BBR) ou "de type Lagrange"

Ce repère est défini par deux corps du système solaire Pla1 et Pla2.

- son origine est le centre O de Pla1,
- l'axe OX est donné par le vecteur Pla1-Pla2,
- l'axe OZ est dirigé suivant le moment cinétique de Pla2 par rapport à Pla1,
- l'axe OY complète le trièdre direct OXYZ.

4 Utilisation des routines du thème

Nous vous proposons dans ce paragraphe une représentation schématique des transformations disponibles dans le thème.

4.1 Transformation pour le vecteur position seulement

Cela concerne une routine de changement de repères. Avec la date t_1 pour le repère de départ et la date t_2 pour le repère d'arrivée, on a le schéma suivant :

4.2 Transformations pour les vecteurs position et vitesse

• Pour les 18 routines concernant la Terre, on a le schéma suivant :

• Pour les 8 routines de repères interplanétaires, on a le schéma suivant :

Repère planétocentrique inertiel H0-n

4.3 Modèles UAI des coordonnées du pôle et du temps sidéral des planètes

Les modèles UAI 1994 et 2000 des coordonnées du pôle et temps sidéral sont disponibles dans la MSLIB.

Ces modèles contiennent chacun, pour chaque planète du système solaire :

- ascension droite α_0 et déclinaison δ_0 en fonction du temps du pôle Nord de la planète par rapport au repère EME2000
- la définition du méridien origine, donc le temps sidéral, en fonction du temps.

Ces modèles ne sont pas accessibles directement par l'utilisateur, mais peuvent être utilisés dans les routines suivantes:

- mr_J2000_EquaUAI

- mr_EquaUAI_J2000
- mr_EquaUAI_PlanetVrai
- mr_PlanetVrai_EquaUAI
- mr_PlaVrai_PlaIner
- mr_PlaIner_PlaVrai

4.4 Calcul du temps sidéral moyen

La routine *mr_tsid_aoki* calcule le temps sidéral moyen à une date donnée, c'est-à-dire l'angle inscrit dans le plan équatorial moyen et mesuré entre l'équinoxe moyen à cette date et le méridien de Greenwich à la même date.

4.5 Calcul du temps sidéral de Veis (modifié de Veis)

La routine *mr_tsid_veis* calcule le temps sidéral de *Veis* à une date donnée, c'est-à-dire l'angle inscrit dans le plan équatorial vrai et mesuré entre l'équinoxe de Veis à cette date et le méridien de Greenwich à la même date.

4.6 Calcul du temps sidéral vrai

La routine *mr_tsid_vrai* calcule le temps sidéral vrai à une date donnée, c'est-à-dire l'angle inscrit dans le plan équatorial vrai et mesuré entre l'équinoxe vrai à cette date et le méridien de Greenwich à la même date.

4.7 Calcul des paramètres de nutation et de la matrice de nutation

La routine mr_obli_moy calcule l'obliquité moyenne ε_A à une date donnée et ses dérivées, selon le modèle de Lieske (J2000).

La routine mr_nuta calcule les nutations en longitude et en obliquité $\Delta \psi$ et $\Delta \varepsilon$, ainsi que ses dérivées, à une date donnée suivant le modèle de Wahr (J2000).

La routine mr_mat_nuta calcule la matrice de nutation à partir des trois paramètres ε_A , $\Delta \psi$ et $\Delta \varepsilon$.

5 Documents de référence du thème

• DR1

Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) - novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

• DR2

Report of the IAU / IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000

P.K. Seidelmann, V.K. Abalakin, M. Bursa, M.E. Davies, C. De Bergh, J.H. Lieske, J.Oberst, J.L. Simon, E.M. Standish, P. Stooke, P.C. Thomas

Routine mr_EcliJ2000_J2000

Identification

"Passage du repère écliptique moyen à la date <u>J2000</u> au repère EME<u>2000</u>".

Rôle

Calcul des position-vitesse dans le repère EME 2000 à partir des position-vitesse dans le repère écliptique moyen à la date J2000.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) **pos_EcliJ2000** vecteur position dans le repère écliptique moyen à la date J2000 (m)

• Sorties obligatoires

pm_reel(3) **pos_J2000** vecteur position dans le repère EME2000 (m) tm_code_retour **code_retour**

• Entrées facultatives

pm_reel	[obliquite]	obliquité (rad)
pm_reel(3)	[vit_EcliJ2000]	vecteur vitesse dans le repère écliptique moyen à la date J2000 (m.s ⁻¹)

• Sorties facultatives

pm_reel(3)	[vit_J2000]	vecteur vitesse dans le repère EME2000 (m.s ⁻¹)
pm_reel(6,6)	[jacob]	jacobien de la transformation

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- A défaut de la fourniture de l'obliquité par l'utilisateur, la routine utilise la valeur donnée par le paramètre **pm_obliquite2000** de la MSLIB.
- Le calcul inverse (position-vitesse dans le repère EME 2000 → position-vitesse dans le repère écliptique moyen à J2000) peut être effectué par la routine mr_J2000_EcliJ2000.
- Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) - novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

> et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

(-1801): Compte tenu des sorties optionnelles demandées, il manque pm_err_para_option

des entrées optionnelles.

Exemple en Fortran 90 portable (voir explications dans le volume 3) program REP_FONDAMENTAUX use mslib ! Declarations pour l'appel a mr_EcliJ2000_J2000 real(pm_reel), dimension (3) :: POS_ECLIJ2000, POS_J2000 real(pm_reel), dimension (3) :: VIT_ECLIJ2000,VIT_J2000 type(tm_code_retour) :: CODE RETOUR POS_ECLIJ2000(1) = 7000000._pm_reel POS_ECLIJ2000(2) = 7100000._pm_reel POS_ECLIJ2000(3) = 7400000._pm_reel VIT_ECLIJ2000(1) = 10000._pm_reel VIT_ECLIJ2000(2) = 11000._pm_reel VIT_ECLIJ2000(3) = 12000._pm_reel call mr_EcliJ2000_J2000(POS_ECLIJ2000, POS_J2000, CODE_RETOUR,& vit_EcliJ2000=VIT_ECLIJ2000, vit_J2000=VIT_J2000) ! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (POS_J2000, VIT_J2000, CODE_RETOUR) end program REP_FONDAMENTAUX Résultats attendus: $POS_{J2000(1)} = 0.700 \, 10^{7}$ POS_J2000(2) $=0.357\ 10^{7}$ POS J2000(3) $= 0.961 \ 10^{7}$

CODE_RETOUR% valeur = 0

CODE_RETOUR%routine = 1139

 $= 0.100 \ 10^5$

 $=0.532\ 10^4$

 $=0.154 \ 10^5$

VIT_J2000(1)

VIT_J2000(2)

VIT J2000(3)

Routine mr_EquaMoy_EquaVrai

Identification

"Passage du repère <u>équa</u>torial <u>mov</u>en à la date t au repère <u>équa</u>torial <u>vrai</u> à la même date t".

Rôle

Calcul des position-vitesse dans le repère équatorial vrai à la date *t*, à partir des position-vitesse dans le repère équatorial moyen à la même date *t*, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_EquaMoy_EquaVrai (model, jul1950, delta_tai, pos_EquaMoy, pos_EquaVrai, & code_retour [, vit_EquaMoy, vit_EquaVrai, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_EquaMoy	vecteur position dans le repère équatorial moyen à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaVrai	vecteur position dans le repère équatorial vrai à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3) [vit_EquaMoy] vecteur vitesse dans le repère équatorial moyen à la date t (m.s⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

• Sorties facultatives

pm_reel(3) [$vit_EquaVrai$] vecteur vitesse dans le repère équatorial vrai à la date t (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTAI sera <u>ajouté</u> à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial vrai à la date $t \to \text{position-vitesse}$ dans le repère équatorial moyen à la date t) peut être effectué par la routine $\mathbf{mr}_{\mathbf{Lqua}}\mathbf{Moy}$.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

```
Code retour (voir explications dans le volume 3)
```

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_EquaMoy_EquaVrai
```

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TAI = 25._pm_reel

POS_EQUAMOY(1) = 998536.435_pm_reel POS_EQUAMOY(2) = 486698.519_pm_reel POS_EQUAMOY(3) = 7108858.43_pm_reel VIT_EQUAMOY(1) = 1949.439_pm_reel VIT_EQUAMOY(2) = -7178.045_pm_reel VIT_EQUAMOY(3) = 216.998_pm_reel

! appel a la routine utilisateur d'ecriture des resultats

call WRITE_RESULTATS (POS_EQUAVRAI, VIT_EQUAVRAI, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

POS_EQUAVRAI(1)= 0.998 10⁶ POS_EQUAVRAI(2)= 0.487 10⁶ POS_EQUAVRAI(3)= 0.711 10⁷ VIT_EQUAVRAI(1)= 0.195 10⁴ VIT_EQUAVRAI(2)= -0.718 10⁴ VIT_EQUAVRAI(3)= 0.217 10³

CODE_RETOUR%valeur = 0 CODE_RETOUR%routine = 1136 © CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

Routine mr_EquaMoy_J2000

Identification

"Passage du repère équatorial moyen à la date t au repère équatorial moyen J2000".

Rôle

Calcul des position-vitesse dans le repère équatorial moyen J2000 à partir des position-vitesse dans le repère équatorial moyen à la date t, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_EquaMoy_J2000 (model, jul1950, delta_tai, pos_EquaMoy, pos_J2000, & code_retour [, vit_EquaMoy, vit_J2000, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_EquaMoy	vecteur position dans le repère équatorial moyen à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_J2000	vecteur position dans le repère équatorial moyen J2000 (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel(3)	[vit_EquaMoy]	vecteur vitesse dans le repère équatorial moyen à la
		date t (m.s ⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

• Sorties facultatives

pm_reel(3) [vit_J2000] vecteur vitesse dans le repère équatorial moyen J2000 (m.s⁻¹)

pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTAI sera <u>ajouté</u> à la date t.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial moyen J2000 \rightarrow position-vitesse dans le repère équatorial moyen à la date t) peut être effectué par la routine **mr_J2000_EquaMoy**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

(+1801): Manque de cohérence entre les entrées optionnelles fournies pm_warn_para_option

> et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

(-1801): Compte tenu des sorties optionnelles demandées, il manque pm_err_para_option

des entrées optionnelles.

pm_err_ind _model (-1804): La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

```
use mslib
```

VIT_EQUAMOY(3)

```
! Declarations pour l'appel a mr_EquaMoy_J2000
integer
                                  :: MODEL
type(tm_jour_sec)
                                  :: JUL1950
real(pm_reel)
                                  :: DELTA_TAI
real(pm_reel), dimension (3)
                                  :: POS_EQUAMOY, POS_J2000
real(pm_reel), dimension (3)
                                  :: VIT_EQUAMOY, VIT_J2000
type(tm_code_retour)
                                  :: CODE_RETOUR
MODEL
                  = pm_lieske_wahr
JUL1950%jour
                  = 15002_pm_entier
                  = 180._pm_reel
JUL1950%sec
                  = 25._pm_reel
DELTA_TAI
                  = 998536.436_pm_reel
POS_EQUAMOY(1)
                  = 486698.518_pm_reel
POS_EQUAMOY(2)
                  = 7108858.430_pm_reel
POS_EQUAMOY(3)
VIT_EQUAMOY(1)
                  = 1949.439_pm_reel
VIT_EQUAMOY(2)
                  = -7178.046_pm_reel
```

= 216.998_pm_reel

```
call mr_EquaMoy_J2000( MODEL, JUL1950, DELTA_TAI, POS_EQUAMOY, &
                       POS_J2000, CODE_RETOUR,
                                                                 &
                       vit_EquaMoy=VIT_EQUAMOY,
                                                                 &
                       vit_J2000=VIT_J2000 )
```

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_J2000, VIT_J2000, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

 $\begin{array}{lll} POS_J2000(1) & = 0.991 \ 10^6 \\ POS_J2000(2) & = 0.489 \ 10^6 \\ POS_J2000(3) & = 0.711 \ 10^7 \\ VIT_J2000(1) & = 0.196 \ 10^4 \\ VIT_J2000(2) & = -0.717 \ 10^4 \\ VIT_J2000(3) & = 0.219 \ 10^3 \end{array}$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1105

Routine mr_EquaUAI_J2000

Identification

"Passage du repère <u>équa</u>torial planétaire <u>UAI</u> à la date t au repère EME<u>2000</u>."

Rôle

Calcul des position-vitesse à la date *t* d'un astre dans le repère EME2000 à partir des position-vitesse dans le repère équatorial planétaire UAI, selon un modèle prédéfini ou utilisateur. Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_EquaUAI_J2000 (planete, modeleUAI, jul1950, pos_EquaUAI, pos_J2000, code_retour & [, asc_droite, declinaison, vit_EquaUAI, vit_J2000, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	planete	planète
integer	modeleUAI	modèle UAI définissant le pôle de rotation de la planète
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel(3)	pos_EquaUAI	vecteur position dans le repère équatorial planétaire UAI (m)

• Sorties obligatoires

pm_reel(3)	pos_J2000	vecteur position dans le repère EME2000 (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel	[asc_droite]	ascension droite α_0 du pôle dans EME2000 (rad)
pm_reel	[declinaison]	déclinaison δ_0 du pôle dans EME2000 (rad)
pm_reel(3)	[vit_EquaUAI]	vecteur vitesse dans le repère équatorial planétaire UAI (m.s ⁻¹)

• Sorties facultatives

pm_reel(3) [vit_J2000] vecteur vitesse dans le repère EME2000 (m.s⁻¹)
pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'argument planete doit avoir été initialisé par l'appelant à l'un des paramètres suivants de la MSLIB: pm_pla_mercure, pm_pla_venus, pm_pla_terre, pm_pla_mars, pm_pla_jupiter, pm_pla_saturne, pm_pla_uranus, pm_pla_neptune, pm_pla_pluton.
- La date *t* est exprimée dans l'échelle de temps TE (= TCB = TDB pour la MSLIB).
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.
- L'indicateur du modèle de l'axe de rotation de l'astre, **modeleUAI**, doit avoir été initialisé par l'appelant à **pm_UAI_autre_modele** ou **pm_UAI1994** ou **pm_UAI2000** de la MSLIB.
- L'initialisation du modèle de l'axe de rotation de l'astre, **modeleUAI**, à **pm_UAI_autre_modele** implique l'initialisation par l'appelant des entrées optionnelles **asc_droite** et **declinaison** qui définissent le modèle utilisateur.

Notes d'utilisation

- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position dans le repère EME2000 → position dans le repère équatorial planétaire UAI) peut être effectué par la routine mr_J2000_EquaUAI.
- Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

```
Code retour
```

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind_model (-1804): La valeur donnée pour l'indicateur du modèle est incorrecte.

pm_err_planete (-1809) : La valeur donnée pour l'indicateur de l'astre/planète est

incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_EquaUAI_J2000
```

integer :: PLANETE, MODELEUAI

type(tm_jour_sec) :: JUL1950

real(pm_reel), dimension (3)
real(pm_reel), dimension (3)
real(pm_reel)
real(pm_reel)
:: POS_EQUAUAI,POS_J2000
:: VIT_EQUAUAI,VIT_J2000
:: ASC_DROITE,DECLINAISON

type(tm_code_retour) :: CODE_RETOUR

PLANETE = pm_pla_mars

MODELEUAI = pm_UAI_autre_modele

 $JUL1950\%jour = 17000_pm_entier$

JUL1950%sec = 0._pm_reel

POS_EQUAUAI(1) = 7000000._pm_reel POS_EQUAUAI(2) = 7400000._pm_reel POS_EQUAUAI(3) = 7600000._pm_reel

ASC_DROITE = 5.544644575208396_pm_reel DECLINAISON = 0.9230716282559961_pm_reel

VIT_EQUAUAI(1) = 900._pm_reel
VIT_EQUAUAI(2) = 100._pm_reel
VIT_EQUAUAI(3) = 1100._pm_reel

call mr_EquaUAI_J2000(PLANETE, MODELEUAI, JUL1950, POS_EQUAUAI,& POS_J2000, CODE_RETOUR, &

asc_droite=ASC_DROITE,
declinaison=DECLINAISON,
vit_EcliJ2000=VIT_EQUAUAI,
vit_J2000=VIT_J2000)

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_J2000, VIT_J2000, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

 $\begin{array}{lll} POS_J2000(1) &= 0.374 \ 10^7 \\ POS_J2000(2) &= 0.606 \ 10^7 \\ POS_J2000(3) &= 0.105 \ 10^8 \\ VIT_J2000(1) &= 0.104 \ 10^4 \\ VIT_J2000(2) &= 0.272 \ 10^3 \\ VIT_J2000(3) &= 0.938 \ 10^3 \end{array}$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1141

Routine mr_EquaUAI_PlanetVrai

Identification

"Passage du repère <u>équa</u>torial planétaire <u>UAI</u> au repère <u>planét</u>ocentrique <u>vrai</u> à la date t<u>.</u>"

Rôle

Calcul à la date *t* des position-vitesse dans le repère planétocentrique vrai à partir des position-vitesse dans le repère équatorial planétaire UAI, selon un modèle prédéfini ou utilisateur. Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_EquaUAI_PlanetVrai (planete, modeleUAI, jul1950, pos_EquaUAI, pos_PlanetVrai, & code_retour [, tsid, deriv_tsid, vit_EquaUAI, vit_PlanetVrai, & jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	planete	planète
integer	modeleUAI	modèle UAI définissant le méridien origine (temps sidéral et sa dérivée)
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel(3)	pos_EquaUAI	vecteur position dans le repère équatorial planétaire UAI (m)

• Sorties obligatoires

pm_reel(3)	pos_PlanetVrai	vecteur position dans le repère planétocentrique vrai (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel	[tsid]	temps sidéral (rad)
pm_reel	[deriv_tsid]	dérivée du temps sidéral (rad.s ⁻¹)
pm_reel(3)	[vit_EquaUAI]	vecteur vitesse dans le repère équatorial planétaire UAI (m.s ⁻¹)

• Sorties facultatives

pm_reel(3) [vit_PlanetVrai] vecteur vitesse dans le repère planétocentrique vrai (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'argument **planete** doit avoir été initialisé par l'appelant à l'un des paramètres suivants de la MSLIB: **pm_pla_mercure**, **pm_pla_venus**, **pm_pla_terre**, **pm_pla_mars**, **pm_pla_jupiter**, **pm_pla_saturne**, **pm_pla_uranus**, **pm_pla_neptune**, **pm_pla_pluton**.
- La date t est exprimée dans l'échelle de temps TE (= TCB = TDB pour la MSLIB).
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.
- L'indicateur du modèle de l'axe de rotation de l'astre, **modeleUAI**, doit avoir été initialisé par l'appelant à **pm_UAI_autre_modele** ou **pm_UAI1994** ou **pm_UAI2000** de la MSLIB.
- L'initialisation du modèle du méridien origine, **modeleUAI**, à **pm_UAI_autre_modele** implique l'initialisation par l'appelant des entrées optionnelles **tsid** et **deriv_tsid** qui définissent le modèle utilisateur.

Notes d'utilisation

- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position dans le repère planétocentrique vrai → position dans le repère équatorial planétaire UAI) peut être effectué par la routine mr_PlanetVrai_EquaUAI.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

```
Code retour
```

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque des entrées optionnelles.

pm_err_ind_model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

pm_err_planete (-1809) : La valeur donnée pour l'indicateur de l'astre/planète est

incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

```
use mslib
```

```
! Declarations pour l'appel a mr_EquaUAI_PlanetVrai
integer
                                  :: PLANETE, MODELEUAI
type(tm_jour_sec)
                                  :: JUL1950
real(pm_reel), dimension (3)
                                  :: POS_EQUAUAI, POS_PLANETVRAI
real(pm_reel), dimension (3)
                                  :: VIT_EQUAUAI, VIT_PLANETVRAI
real(pm_reel)
                                  :: ASC_DROITE, DECLINAISON
                                  :: CODE_RETOUR
type(tm_code_retour)
PLANETE
                  = pm_pla_mars
MODELEUAI
                  = pm_UAI_autre_modele
JUL1950%jour
                  = 17000_pm_entier
JUL1950%sec
                  = 0._pm_reel
POS_EQUAUAI(1)
                  = 7000000._pm_reel
POS_EQUAUAI(2)
                  = 7400000._pm_reel
POS_EQUAUAI(3)
                  = 7600000._pm_reel
TSID
                  = 190.47_pm_reel*pm_deg_rad
DERIV_TSID
                  = 360.9856235_pm_reel*pm_deg_rad/86400.pm_reel
                  = 900._pm_reel
VIT_EQUAUAI(1)
                  = 100._pm_reel
VIT_EQUAUAI(2)
VIT_EQUAUAI(3)
                  = 1100._pm_reel
call mr_EquaUAI_PlanetVrai(PLANETE, MODELEUAI, JUL1950,
                                                                 &
                            POS_EQUAUAI, POS_PLANETVRAI,
                                                                 &
```

CODE_RETOUR,

&

tsid=TSID, deriv_tsid=DERIV_TSID, &
vit_PlanetVrai=VIT_PLANETVRAI)

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_PLANETVRAI, VIT_PLANETVRAI,
CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

POS_PLANETVRAI(1)= -0.823 10⁷ POS_PLANETVRAI(2)= -0.600 10⁷ POS_PLANETVRAI(3)= 0.760 10⁷ VIT_PLANETVRAI(1)= -0.134 10⁴ VIT_PLANETVRAI(2)= 0.665 10³ VIT_PLANETVRAI(3)= 0.110 10⁴

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1144

Routine mr_EquaVrai_EquaMoy

Identification

"Passage du repère <u>équa</u>torial <u>vrai</u> à la date t au repère <u>équa</u>torial <u>mov</u>en à la même date t".

Rôle

Calcul des position-vitesse dans le repère équatorial moyen à la date t, à partir des position-vitesse dans le repère équatorial vrai à la même date t, selon un modèle de précession et un modèle de nutation.

Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel (voir explications dans le volume 3)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date $t(s)$
pm_reel(3)	pos_EquaVrai	vecteur position dans le repère équatorial vrai à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaMoy	vecteur position dans le repère équatorial moyen à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3) [$vit_EquaVrai$] vecteur vitesse dans le repère équatorial vrai à la date t (m.s⁻¹)

Sorties facultatives

pm_reel(3) [vit_EquaMoy] vecteur vitesse dans le repère équatorial moyen à la date t (m.s⁻¹)

pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTAI sera <u>ajouté</u> à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial moyen à la date $t \to \text{position-vitesse}$ dans le repère équatorial vrai à la date t) peut être effectué par la routine $\mathbf{mr}_{\mathbf{LquaMoy}_{\mathbf{LquaVrai}}}$.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

```
Code retour
```

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_EquaVrai_EquaMoy
```

real(pm_reel), dimension (3) :: POS_EQUAVRAI, POS_EQUAMOY
real(pm_reel), dimension (3) :: VIT_EQUAVRAI, VIT_EQUAMOY

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TAI = 25._pm_reel

POS_EQUAVRAI(1) = 998274.333_pm_reel
POS_EQUAVRAI(2) = 486631.710_pm_reel
POS_EQUAVRAI(3) = 7108899.82_pm_reel
VIT_EQUAVRAI(1) = 1949.959_pm_reel
VIT_EQUAVRAI(2) = -7177.907_pm_reel
VIT_EQUAVRAI(3) = 216.918_pm_reel

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_EQUAMOY, VIT_EQUAMOY, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

POS_EQUAMOY(1)= 0.999 10⁶
POS_EQUAMOY(2)= 0.487 10⁶
POS_EQUAMOY(3)= 0.711 10⁷
VIT_EQUAMOY(1)= 0.195 10⁴
VIT_EQUAMOY(2)= -0.718 10⁴
VIT_EQUAMOY(3)= 0.217 10³

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1135

Routine mr_EquaVrai_TerVrai

Identification

"Passage du repère <u>équa</u>torial <u>vrai</u> à la date t au repère <u>ter</u>restre <u>vrai</u> à la même date t".

Rôle

Calcul des position-vitesse dans le repère terrestre vrai à la date *t*, à partir des position-vitesse dans le repère équatorial vrai à la même date *t*, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_EquaVrai_TerVrai (model, jul1950, delta_tu1, delta_tai, pos_EquaVrai, pos_TerVrai, & code_retour [, vit_EquaVrai, vit_TerVrai, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date $t(s)$
pm_reel(3)	pos_EquaVrai	vecteur position dans le repère équatorial vrai à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_TerVrai	vecteur position dans le repère terrestre vrai à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3) [$vit_EquaVrai$] vecteur vitesse dans le repère équatorial vrai à la date t (m.s⁻¹)

Sorties facultatives

pm_reel(3) [vit_TerVrai] vecteur vitesse dans le repère terrestre vrai à la date t (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère terrestre vrai à la date $t \to \text{position-vitesse}$ dans le repère équatorial vrai à la date t) peut être effectué par la routine $\mathbf{mr_TerVrai_EquaVrai}$.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_EquaVrai_TerVrai
```

integer
type(tm_jour_sec)
real(pm_reel)
real(pm_reel)
:: MODEL
:: JUL1950
:: DELTA_TU1
real(pm_reel)
:: DELTA_TAI

real(pm_reel), dimension (3) :: POS_EQUAVRAI,POS_TERVRAI
real(pm_reel), dimension (3) :: VIT_EQUAVRAI,VIT_TERVRAI

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TU1 = .5_pm_reel

VIT_EQUAVRAI(1) = 1949.698_pm_reel VIT_EQUAVRAI(2) = -7177.978_pm_reel VIT_EQUAVRAI(3) = 216.918_pm_reel

```
call mr_EquaVrai_TerVrai( MODEL, JUL1950, DELTA_TU1,DELTA_TAI, & POS_EQUAVRAI, POS_TERVRAI, CODE_RETOUR, & vit_EquaVrai=VIT_EQUAVRAI, & vit_TerVrai=VIT_TERVRAI )

! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS ( POS_TERVRAI, VIT_TERVRAI, CODE_RETOUR )

end program REP_FONDAMENTAUX

Résultats attendus:
POS_TERVRAI(1)=-0.222 106
POS_TERVRAI(2)=-0.109 107
```

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1129

POS_TERVRAI(3)= 0.711 10⁷ VIT_TERVRAI(1)= -0.696 10⁴ VIT_TERVRAI(2)= 0.284 10⁴ VIT_TERVRAI(3)= 0.217 10³

Routine mr_EquaVrai_veis

Identification

"Passage du repère <u>équa</u>torial <u>vrai</u> à la date t au repère de <u>Veis</u> à la même date t".

Rôle

Calcul des position-vitesse dans le repère de Veis à la date *t* à partir des position-vitesse dans le repère équatorial vrai à la même date *t*, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_EquaVrai_veis (model, jul1950, delta_tu1, delta_tai, pos_EquaVrai, pos_veis, & code_retour [, vit_EquaVrai, vit_veis, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date $t(s)$
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date $t(s)$
pm_reel(3)	pos_EquaVrai	vecteur position dans le repère équatorial vrai à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_veis	vecteur position dans le repère de Veis à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3)	[vit_EquaVrai]	vecteur vitesse dans le repère équatorial vrai à la
_	_	date t (m.s ⁻¹)

• Sorties facultatives

pm_reel(3) [vit_veis] vecteur vitesse dans le repère de Veis à la date t (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère de Veis à la date $t \to$ position-vitesse dans le repère équatorial vrai à la date t) peut être effectué par la routine **mr_veis_EquaVrai**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_EquaVrai_veis
```

real(pm_reel), dimension (3) :: POS_EQUAVRAI,POS_VEIS
real(pm_reel), dimension (3) :: VIT_EQUAVRAI,VIT_VEIS

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr
JUL1950%jour = 15002_pm_entier
JUL1950%sec = 180._pm_reel
DELTA_TU1 = .5_pm_reel
DELTA_TAI = 25._pm_reel

POS_EQUAVRAI(1) = 998292.076_pm_reel POS_EQUAVRAI(2) = 486595.311_pm_reel POS_EQUAVRAI(3) = 7108899.815_pm_reel VIT_EQUAVRAI(1) = 1949.698_pm_reel VIT_EQUAVRAI(2) = -7177.978_pm_reel VIT_EQUAVRAI(3) = 216.918_pm_reel

end program REP_FONDAMENTAUX

Résultats attendus:

 $POS_VEIS(1) = 0.100 10^7$ $POS_VEIS(2) = 0.477 10^6$ $POS_VEIS(3) = 0.711 10^7$ $VIT_VEIS(1) = 0.188 10^4$ $VIT_VEIS(2) = -0.720 10^4$ $VIT_VEIS(3) = 0.217 10^3$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1108

Routine mr_J2000_BBR

Identification

"Passage du repère équatorial moyen <u>J2000</u> (EME2000) au repère Body Body Rotating (<u>BBR</u>)".

Rôle

Calcul des position-vitesse dans le repère Body Body Rotating (BBR) à partir des position-vitesse dans le repère équatorial moyen J2000 (EME2000).

Le repère BBR est défini à partir de deux corps Pla_1 et Pla_2 , dont les positions et vitesses sont donnés dans l'EME2000.

Séquence d'appel

(voir explications dans le volume 3)

call mr_J2000_BBR (pos_J2000, pos_Pla1, vit_Pla1, pos_Pla2, vit_Pla2, pos_BBR, code_retour [, vit_J2000, vit_BBR])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3)	pos_J2000	vecteur position dans le repère EME2000 (m)
pm_reel(3)	pos_Pla1	vecteur position du corps <i>Pla_I</i> dans EME2000 (m)
pm_reel(3)	vit_Pla1	vecteur vitesse du corps Pla_I dans EME2000 (m.s ⁻¹)
pm_reel(3)	pos_Pla2	vecteur position du corps Pla ₂ dans EME2000 (m)
pm_reel(3)	vit_Pla2	vecteur vitesse du corps Pla_2 dans EME2000 (m.s ⁻¹)

• Sorties obligatoires

pm_reel(3)	pos_BBR	vecteur position dans le repère BBR (m)	
tm code retour	code retour		

• Entrées facultatives

pm_reel(3)	vit J2000]	vecteur vitesse dans le repère EME2000 ($(m.s^{-1})$
p111_1001(5)	, <u>, , , , , , , , , , , , , , , , , , </u>	(Cotton (Teesse dams to repere Eline	,

• Sorties facultatives

pm_reel(3)	[vit_BBR]	vecteur vitesse dans le repère BBR (m.s ⁻¹)
------------	-------------	---

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

• La matrice de passage utilisée dans cette routine est disponible directement via la routine mr mat J2000 BBR.

Références documentaires

• Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_err_meme_planete (-1512): Les planètes sont confondues, le repère BBR est donc

indéfini.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

> et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

Pour tout autre code retour, se reporter à l'annexe 2 du volume 3 "Caractéristiques principales et conventions d'utilisation de la MSLIB Fortran 90; M-MU-0-103-CIS".

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

pour des exemples d'appel en fortran 90: se reporter à la documentation utilisateur MSLIB Fortran 90

Entrées:

```
pos J2000(1)
               = 0.310E+07_pm_reel
pos_J2000(2)
               = - 0.108E+08_pm_reel
               = - 0.322E+07_pm_reel
pos_J2000(3)
               = 0.801E+04 pm reel
vit J2000(1)
               = 0.187E + 04 pm reel
vit J2000(2)
vit_J2000(3)
               = 0.861E+03_pm_reel
(Soleil)
pos_Pla1(1)
               = 0._pm_reel
pos_Pla1(2)
               = 0._pm_reel
pos Pla1(3)
               = 0. pm reel
vit_Pla1(1)
               = 0._pm_reel
               = 0._pm_reel
vit_Pla1(2)
vit_Pla1(3)
               = 0._pm_reel
(Terre)
pos_Pla2(1)
               = 1699060.467_pm_reel
pos_Pla2(2)
               = - 139483418.078_pm_reel
pos_Pla2(3)
               = - 60472571.701_pm_reel
vit_Pla2(1)
               = 29.316099_pm_reel
vit_Pla2(2)
               = 0.205773_pm_reel
               = 0.087897_pm_reel
vit_Pla2(3)
```

Résultats attendus:

```
\begin{array}{lll} pos\_BBR(1) & = 0.112 \ 10^8 \\ pos\_BBR(2) & = 0.297 \ 10^7 \\ pos\_BBR(3) & = 0.134 \ 10^7 \\ vit\_BBR(1) & = -0.197 \ 10^4 \\ vit\_BBR(2) & = 0.803 \ 10^4 \\ vit\_BBR(3) & = 0.465 \ 10^2 \end{array}
```

code_retour%valeur=0

Routine mr_J2000_EcliJ2000

Identification

"Passage du repère EME**2000** au repère <u>écli</u>ptique moyen à la date <u>J2000</u>".

Rôle

Calcul des position-vitesse dans le repère écliptique moyen à la date J2000 à partir des position-vitesse dans le repère EME2000.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) pos_J2000 vecteur position dans le repère EME2000 (m)

• Sorties obligatoires

pm_reel(3) **pos_EcliJ2000** vecteur position dans le repère écliptique moyen à la

date J2000 (m)

tm_code_retour code_retour

• Entrées facultatives

pm_reel [obliquite] obliquité (rad)

pm_reel(3) [vit_J2000] vecteur vitesse dans le repère EME2000 (m.s⁻¹)

• Sorties facultatives

pm_reel(3) [vit_EcliJ2000] vecteur vitesse dans le repère écliptique moyen à la date

 $J2000 (m.s^{-1})$

pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- A défaut de la fourniture de l'obliquité par l'utilisateur, la routine utilise la valeur donnée par le paramètre **pm_obliquite2000** de la MSLIB.
- Le calcul inverse (position-vitesse dans le repère écliptique moyen à J2000→ position-vitesse dans le repère EME2000) peut être effectué par la routine mr_EcliJ2000_J2000.
- Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour | (voir explicatio

(voir explications dans le volume 3)

pm OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

Exemple en Fortran 90 portable

CODE_RETOUR% valeur

CODE_RETOUR%routine = 1138

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  ! Declarations pour l'appel a mr_J2000_EcliJ2000
  real(pm reel), dimension (3) :: POS J2000, POS ECLIJ2000
  real(pm_reel), dimension (3) :: VIT_J2000, VIT_ECLIJ2000
  type(tm_code_retour)
                                    :: CODE_RETOUR
  POS J2000(1)
                    = 7000000. pm reel
  POS_J2000(2)
                    = 7100000._pm_reel
  POS_J2000(3)
                    = 7400000._pm_reel
  VIT J2000(1)
                    = 10000. pm reel
                   = 11000._pm_reel
  VIT_J2000(2)
  VIT_J2000(3)
                    = 12000._pm_reel
  call mr_J2000_EcliJ2000( POS_J2000, POS_ECLIJ2000, CODE_RETOUR,&
                           vit_J2000=VIT_J2000,
                           vit_EcliJ2000=VIT_ECLIJ2000 )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS( POS_ECLIJ2000, VIT_ECLIJ2000, CODE_RETOUR )
end program REP_FONDAMENTAUX
Résultats attendus:
POS_EQUAMOY(1) = 0.700 \ 10^7
POS_EQUAMOY(2) = 0.946 \, 10^{7}
POS EQUAMOY(3) = 0.396 \ 10^7
VIT\_EQUAMOY(1) = 0.100 10^5
VIT_EQUAMOY(2) = 0.149 10^5
VIT_EQUAMOY(3) = 0.663 10^4
```

Routine mr_J2000_EquaMoy

Identification

"Passage du repère équatorial moyen **J2000** au repère équatorial moyen à la date t".

Rôle

Calcul des position-vitesse dans le repère équatorial moyen à la date t à partir des position-vitesse dans le repère équatorial moyen J2000, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_J2000_EquaMoy (model, jul1950, delta_tai, pos_J2000, pos_EquaMoy, code_retour [, vit_J2000, vit_EquaMoy, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_J2000	vecteur position dans le repère équatorial moyen J2000 (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaMoy	vecteur position dans le repère équatorial moyen à la date t (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel(3)	[vit_J2000]	vecteur vitesse dans le repère équatorial moyen J2000 (m.s ⁻¹)
		(m.s.)

• Sorties facultatives

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTAI sera *ajouté* à la date t.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial moyen à la date $t \rightarrow$ position-vitesse dans le repère équatorial moyen J2000) peut être effectué par la routine **mr_EquaMoy_J2000**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

```
Code retour (voir explications dans le volume 3)
```

(von expireurous dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_J2000_EquaMoy integer :: MODEL
```

type(tm_jour_sec) :: JUL1950 real(pm_reel) :: DELTA_TAI

real(pm_reel), dimension (3) :: POS_J2000,POS_EQUAMOY
real(pm_reel), dimension (3) :: VIT_J2000,VIT_EQUAMOY

type(tm_code_retour) :: CODE_RETOUR

```
MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TAI = 25._pm_reel
```

POS_J2000(1) = 991396.024_pm_reel POS_J2000(2) = 488684.594_pm_reel POS_J2000(3) = 7109721.509_pm_reel VIT_J2000(1) = 1963.575_pm_reel VIT_J2000(2) = -7174.140_pm_reel VIT_J2000(3) = 218.695_pm_reel

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_EQUAMOY, VIT_EQUAMOY, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

 $\overline{\text{POS_EQUAMOY}}(1) = 0.999 \ 10^6$ $\overline{\text{POS_EQUAMOY}}(2) = 0.487 \ 10^6$ $\overline{\text{POS_EQUAMOY}}(3) = 0.711 \ 10^7$ $\overline{\text{VIT_EQUAMOY}}(1) = 0.195 \ 10^4$ $\overline{\text{VIT_EQUAMOY}}(2) = -0.718 \ 10^4$ $\overline{\text{VIT_EQUAMOY}}(3) = 0.217 \ 10^3$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1106

Routine mr_J2000_EquaUAI

Identification

"Passage du repère EME**2000** au repère équatorial planétaire UAI à la date t."

Rôle

Calcul à la date *t* des position-vitesse dans le repère équatorial planétaire UAI d'un astre à partir des position-vitesse dans le repère EME2000, selon un modèle prédéfini ou utilisateur. Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_J2000_EquaUAI (planete, modelUAI, jul1950, pos_J2000, pos_EquaUAI, code_retour & [, asc_droite, declinaison, vit_J2000, vit_EquaUAI, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	planete	planète
integer	modeleUAI	modèle UAI définissant le pôle de rotation de l'astre
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel(3)	pos_J2000	vecteur position dans le repère EME2000 (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaUAI	vecteur position dans le repère équatorial planétaire UAI (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel	[asc_droite]	ascension droite α_0 du pôle dans EME2000 (rad)
pm_reel	[declinaison]	déclinaison δ_0 du pôle dans EME2000 (rad)
pm_reel(3)	[vit_J2000]	vecteur vitesse dans le repère EME2000 (m.s ⁻¹)

Sorties facultatives

pm_reel(3) [vit_EquaUAI] vecteur vitesse dans le repère équatorial planétaire UAI (m.s⁻¹)

pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'argument **planete** doit avoir été initialisé par l'appelant à l'un des paramètres suivants de la MSLIB: **pm_pla_mercure**, **pm_pla_venus**, **pm_pla_terre**, **pm_pla_mars**, **pm_pla_jupiter**, **pm_pla_saturne**, **pm_pla_uranus**, **pm_pla_neptune**, **pm_pla_pluton**.
- La date t est exprimée dans l'échelle de temps TE (= TCB = TDB pour la MSLIB).
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.
- L'indicateur du modèle de l'axe de rotation de l'astre, **modeleUAI**, doit avoir été initialisé par l'appelant à **pm_UAI_autre_modele** ou **pm_UAI1994** ou **pm_UAI2000** de la MSLIB.
- L'initialisation du modèle de l'axe de rotation de l'astre, **modeleUAI**, à **pm_UAI_autre_modele** implique l'initialisation par l'appelant des entrées optionnelles **asc_droite** et **declinaison** qui définissent le modèle utilisateur.

Notes d'utilisation

- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial planétaire UAI \rightarrow position-vitesse dans le repère EME2000) peut être effectué par la routine **mr_EquaUAI_J2000**.
- Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

(0): Retour normal. pm_OK (+1801): Manque de cohérence entre les entrées optionnelles fournies pm_warn_para_option et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel. (-1801): Compte tenu des sorties optionnelles demandées, il manque pm_err_para_option des entrées optionnelles. pm_err_ind _model (-1804): La valeur donnée pour l'indicateur du modèle est incorrecte. pm err planete (-1809) : La valeur donnée pour l'indicateur de l'astre/planète est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

```
use mslib
! Declarations pour l'appel a mr_J2000_EquaUAI
integer
                                  :: PLANETE, MODELUAI
type(tm_jour_sec)
                                  :: JUL1950
real(pm_reel)
                                  :: ASC_DROITE, DECLINAISON
real(pm_reel), dimension (3)
                                  :: POS_J2000, POS_EQUAUAI
real(pm_reel), dimension (3)
                                  :: VIT_J2000, VIT_EQUAUAI
type(tm_code_retour)
                                  :: CODE_RETOUR
PLANETE
                  = pm_pla_mars
MODELUAI
                  = pm_UAI_autre_modele
JUL1950%jour
                  = 17000_pm_entier
JUL1950%sec
                  = 0._pm_reel
ASC_DROITE
                  = 5.544644575208396_pm_reel
DECLINAISON
                  = 0.9230716282559961_pm_reel
POS J2000(1)
                  = 7000000._pm_reel
                  = 7200000._pm_reel
POS_J2000(2)
POS_J2000(3)
                  = 7400000._pm_reel
VIT J2000(1)
                  = 900._pm_reel
```

```
= 100._pm_reel
  VIT_J2000(2)
  VIT_J2000(3)
                   = 1100._pm_reel
  call mr_J2000_EquaUAI( PLANETE, MODELUAI, JUL1950,
                                                                  &
                          POS_J2000, POS_EQUAUAI, CODE_RETOUR,
                                                                  &
                          asc_droite=ASC_DROITE,declinaison=
                                                                  &
                          DECLINAISON, vit_J2000=VIT_J2000,
                                                                  &
                          vit_EquaUAI=VIT_EQUAUAI )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS ( POS_EQUAUAI, VIT_EQUAUAI, CODE_RETOUR )
end program REP_FONDAMENTAUX
```

Résultats attendus:

 $POS_EQUAUAI(1) = 0.100 10^{8}$ $POS_EQUAUAI(2) = 0.420 10^{7}$ $POS_EQUAUAI(3) = 0.610 10^{7}$ $VIT_EQUAUAI(1) = 0.680 10^{3}$ $VIT_EQUAUAI(2) = 0.187 10^{3}$ $VIT_EQUAUAI(3) = 0.124 10^{4}$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1140

Routine mr_J2000_TerVrai

Identification

"Passage du repère équatorial moyen <u>J2000</u> au repère de <u>ter</u>restre <u>vrai</u> à la date t".

Rôle

Calcul des position-vitesse dans le repère terrestre vrai à la date t à partir des position-vitesse dans le repère équatorial moyen J2000, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_J2000_TerVrai (model, jul1950, delta_tu1, delta_tai, pos_J2000, pos_TerVrai, & code_retour [, vit_J2000, vit_TerVrai, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_J2000	vecteur position dans le repère équatorial moyen J2000 (m)

• Sorties obligatoires

pm_reel(3)	pos_TerVrai	vecteur position dans le repère terrestre vrai à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3)	[vit_J2000]	vecteur vitesse dans le repère équatorial moyen J2000
-		$(m.s^{-1})$

Sorties facultatives

pm_reel(3) [$vit_TerVrai$] vecteur vitesse dans le repère terrestre vrai à la date t (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère terrestre vrai à la date $t \to \text{position-vitesse}$ dans le repère équatorial moyen J2000) peut être effectué par la routine **mr_TerVrai_J2000**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

 pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_J2000_TerVrai
```

real(pm_reel), dimension (3) :: POS_J2000,POS_TERVRAI
real(pm_reel), dimension (3) :: VIT_J2000,VIT_TERVRAI

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TU1 = .5_pm_reel

DELTA_TAI = 25._pm_reel

POS_J2000(1) = 991396_024_pm_re

POS_J2000(1) = 991396.024_pm_reel POS_J2000(2) = 488684.594_pm_reel POS_J2000(3) = 7109721.509_pm_reel VIT_J2000(1) = 1963.575_pm_reel VIT_J2000(2) = -7174.14_pm_reel VIT_J2000(3) = 218.695_pm_reel

Résultats attendus:

POS_TERVRAI(1)= -0.222 10⁶ POS_TERVRAI(2)= -0.109 10⁷ POS_TERVRAI(3)= 0.711 10⁷ VIT_TERVRAI(1)= -0.696 10⁴ VIT_TERVRAI(2)= 0.28410⁴ VIT_TERVRAI(3)= 0.217 10³

Routine mr_J2000_veis

Identification

"Passage du repère équatorial moyen <u>J2000</u> au repère de <u>Veis</u> à la date t".

Rôle

Calcul des position-vitesse dans le repère de Veis à la date *t* à partir des position-vitesse dans le repère équatorial moyen J2000, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_J2000_veis (model, jul1950, delta_tu1, delta_tai, pos_J2000, pos_veis, code_retour [, vit_J2000, vit_veis, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart $\Delta TU1$ entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_J2000	vecteur position dans le repère équatorial moyen J2000 (m)

• Sorties obligatoires

pm_reel(3)	pos_veis	vecteur position dans le repère de Veis à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3)	[vit_J2000]	vecteur vitesse dans le repère équatorial moyen J2000
•		$(m.s^{-1})$

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

• Sorties facultatives

pm_reel(3) [vit_veis] vecteur vitesse dans le repère de Veis à la date t (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera ajouté à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère de Veis à la date $t \to$ position-vitesse dans le repère équatorial moyen J2000) peut être effectué par la routine **mr_veis_J2000**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

 pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_J2000_veis
```

real(pm_reel), dimension (3) :: POS_J2000,POS_VEIS
real(pm_reel), dimension (3) :: VIT_J2000,VIT_VEIS

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TU1 = .5_pm_reel

DELTA_TAI = 25._pm_reel

POS_J2000(1) = 991396.024_pm_reel POS_J2000(2) = 488684.594_pm_reel POS_J2000(3) = 7109721.509_pm_reel VIT_J2000(1) = 1963.575_pm_reel VIT_J2000(2) = -7174.14_pm_reel VIT_J2000(3) = 218.695_pm_reel end program REP_FONDAMENTAUX

Résultats attendus:

 $\begin{array}{lll} POS_VEIS(1) & = 0.100 \ 10^7 \\ POS_VEIS(2) & = 0.477 \ 10^6 \\ POS_VEIS(3) & = 0.711 \ 10^7 \\ VIT_VEIS(1) & = 0.188 \ 10^4 \\ VIT_VEIS(2) & = -0.720 \ 10^4 \\ VIT_VEIS(3) & = 0.217 \ 10^3 \end{array}$

Routine mr_mat_J2000_BBR

Identification

"Calcul de la <u>mat</u>rice de passage du repère équatorial moyen <u>J2000</u> (EME2000) au repère Body Body Rotating (<u>BBR</u>)".

Rôle

Calcul de la matrice de passage du repère équatorial moyen J2000 (EME2000) au repère Body Body Rotating (BBR), à partir des position-vitesse dans le repère équatorial moyen J2000 (EME2000) des corps *Pla*₁ et *Pla*₂ définissant le repère BBR.

Séquence d'appel

(voir explications dans le volume 3)

call mr_mat_J2000_BBR (pos_Pla1, vit_Pla1, pos_Pla2, vit_Pla2, mat, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3)	pos_Pla1	vecteur position du corps Pla_I dans EME2000 (m)
pm_reel(3)	vit_Pla1	vecteur vitesse du corps Pla_1 dans EME2000 (m.s ⁻¹)
pm_reel(3)	pos_Pla2	vecteur position du corps Pla_2 dans EME2000 (m)
pm reel(3)	vit Pla2	vecteur vitesse du corps <i>Pla</i> ₂ dans EME2000 (m.s ⁻¹)

• Sorties obligatoires

pm_reel(6,6)	mat	matrice de passage
tm_code_retour	code_retour	

Conditions sur les arguments

Sans objet.

Notes d'utilisation

• Cette routine fournit la matrice de passage utilisée au niveau de la routine mr_J2000_BBR.

Références documentaires

 Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_err_meme_planete (-1512) : Les planètes sont confondues, le repère BBR est donc

indéfini.

Pour tout autre code retour, se reporter à l'*annexe 2* du volume 3 "*Caractéristiques principales et conventions d'utilisation de la MSLIB Fortran 90*; M-MU-0-103-CIS".

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

pour des exemples d'appel en fortran 90: se reporter à la documentation utilisateur MSLIB Fortran 90

Entrées:

```
(Soleil)
pos_Pla1(1)
               = 0._pm_reel
pos_Pla1(2)
               = 0._pm_reel
               = 0._pm_reel
pos_Pla1(3)
vit_Pla1(1)
               = 0._pm_reel
               = 0._pm_reel
vit_Pla1(2)
vit_Pla1(3)
               = 0._pm_reel
(Terre)
               = 1699060.467_pm_reel
pos_Pla2(1)
pos_Pla2(2)
               = - 139483418.078_pm_reel
pos_Pla2(3)
               = - 60472571.701_pm_reel
vit_Pla2(1)
               = 29.316099_pm_reel
               = 0.205773_pm_reel
vit_Pla2(2)
vit_Pla2(3)
               = 0.087897_pm_reel
```

Résultats attendus:

$$\text{MAT} = \begin{bmatrix} 0.112 \ 10^{-1} \ -0.917 & -0.398 & 0.000 & 0.000 & 0.000 \\ 0.100 \ 10^{1} & 0.103 \ 10^{-1} & 0.441 \ 10^{-2} & 0.000 & 0.000 & 0.000 \\ 0.412 \ 10^{-4} \ -0.398 & 0.917 & 0.000 & 0.000 & 0.000 \\ 0.193 \ 10^{-6} & 0.198 \ 10^{-8} & 0.850 \ 10^{-9} & 0.112 \ 10^{-1} \ -0.917 & -0.398 \\ -0.215 \ 10^{-8} & 0.177 \ 10^{-6} & 0.767 \ 10^{-7} & 0.100 \ 10^{1} & 0.103 \ 10^{-1} & 0.441 \ 10^{-2} \\ 0.000 & 0.000 & 0.000 & 0.412 \ 10^{-4} \ -0.398 & 0.917 \end{bmatrix}$$

code_retour% valeur = 0

Routine mr_mat_nuta

Identification

"Calcul de la <u>mat</u>rice de <u>nuta</u>tion pour le passage du repère équatorial moyen au repère équatorial vrai pour la même époque".

Rôle

Calcul de la matrice de passage N du repère équatorial moyen à une époque $t(\overline{E}_t)$ au repère équatorial vrai à la même époque (E_t) .

$$E_t = N \cdot \overline{E}_t$$

Séquence d'appel

(voir explications dans le volume 3)

call mr_mat_nuta (nuta, obli_moy, mat_nuta, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_nuta nutations en longitude (N+dN) et en obliquité $(\Omega + d\Omega)$

(rad)

pm_reel **obli_moy** obliquité moyenne $\bar{\epsilon}$ (rad)

• Sorties obligatoires

pm_reel(3,3) mat_nuta matrice de nutation N

tm_code_retour code_retour

Conditions sur les arguments

Sans objet.

Notes d'utilisation

• Il est possible d'obtenir (N+dN) et $(\Omega + d\Omega)$ par la routine **mr_nuta**, et $\bar{\epsilon}$ par la routine **mr_obli_moy**.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour (voir explications dans le volume 3)

pm_OK (0): Retour normal.

JUL1950%jour = 13180_pm_entier
JUL1950%sec = 36000._pm_reel

! Le code retour de mr_nuta est = 0

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
```

```
use mslib
```

```
! Declarations pour l'appel a mr_nuta
integer
                                 :: MODEL_NUTA
type(tm_jour_sec)
                                 :: JUL1950
type(tm_nuta)
                                 :: NUTA
! Declarations pour l'appel a mr_obli_moy
integer
                                 :: MODEL_PREC
real(pm_reel)
                                 :: OBLI_MOY
! Declaration pour l'appel a mr_mat_nuta
real(pm_reel), dimension(3,3) :: MAT_NUTA
type(tm_code_retour)
                                 :: CODE_RETOUR
MODEL_NUTA = pm_wahr
```

call mr_nuta(MODEL_NUTA, JUL1950, NUTA, CODE_RETOUR)

MODEL_PREC = pm_lieske

call mr_obli_moy(MODEL_PREC, JUL1950, OBLI_MOY, CODE_RETOUR)
! Le code retour de mr_obli_moy est = 0

call mr_mat_nuta (NUTA, OBLI_MOY, MAT_NUTA, CODE_RETOUR)
! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (MAT_NUTA, CODE_RETOUR)
end program REP_FONDAMENTAUX

Résultats attendus:

MAT_NUTA =
$$\begin{bmatrix} 1.0 & 0.371 \ 10^{-4} & 0.161 \ 10^{-4} \\ -0.371 \ 10^{-4} & 1.0 & -0.368 \ 10^{-4} \\ -0.161 \ 10^{-4} & 0.368 \ 10^{-4} & 1.0 \end{bmatrix}$$

Routine mr_nuta

Identification

"Calcul des <u>nuta</u>tions en longitude et en obliquité".

Rôle

Calcul des nutations en longitude (N+dN) et en obliquité $(\Omega+d\Omega)$ à une date donnée suivant un modèle de nutation. A ce jour, seul le modèle de Wahr (J2000) est disponible. Le calcul des dérivées premières ((N+dN)') et $(\Omega+d\Omega)'$) et secondes ((N+dN)'') et $(\Omega+d\Omega)''$) des nutations est facultatif.

Séquence d'appel

(voir explications dans le volume 3)

call mr_nuta (model_nuta, jul1950, nuta, code_retour [, delta_tai, deriv1_nuta, deriv2_nuta])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer model_nuta modèle de nutation

tm_jour_sec jul1950 date julienne 1950 t (jours, s)

• Sorties obligatoires

tm_nuta nuta nutations en longitude N+dN et en obliquité $\Omega + d\Omega$

(rad, rad)

tm code retour code retour

• Entrées facultatives

pm_reel [delta_tai] écart ΔTAI entre l'échelle de temps TAI et l'échelle de

temps utilisée pour exprimer la date t (s)

• Sorties facultatives

tm_nuta [deriv1_nuta] dérivées premières (N + dN)' et $(\Omega + d\Omega)'$ des nutations

en longitude et en obliquité (rad.s⁻¹, rad.s⁻¹)

tm_nuta [deriv2_nuta] dérivées secondes (N + dN)" et $(\Omega + d\Omega)$ " des nutations

en longitude et en obliquité (rad.s⁻², rad.s⁻²)

Conditions sur les arguments

• Sans objet.

Notes d'utilisation

- L'indicateur du modèle **model_nuta** doit avoir été initialisé par l'appelant à la valeur du paramètre MSLIB **pm wahr**.
- L'écart de datation ΔTAI , s'il est présent, sera <u>ajouté</u> à la date t. S'il est absent, sa valeur par défaut est zéro.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_err_ind_nuta (-1802) : La valeur donnée pour l'indicateur du modèle de nutation est

incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
```

```
use mslib
```

real(pm_reel) :: DELTA_TAI
type(tm_nuta) :: DERIV1_NUTA
type(tm_nuta) :: DERIV2_NUTA

```
MODEL_NUTA = pm_wahr
JUL1950%jour = 13180_pm_entier
JUL1950%sec = 36000._pm_reel
```

DELTA_TAI = 0._pm_reel

! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (NUTA, DERIV1_NUTA, DERIV2_NUTA, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

NUTA%long = $-.404 \ 10^{-4}$ NUTA%obli = $.368 \ 10^{-4}$

DERIV1_NUTA%long = $-.200 \ 10^{-11}$ DERIV1_NUTA%obli = $-.141 \ 10^{-11}$

DERIV2_NUTA%long = $.360 \ 10^{-16}$ DERIV2_NUTA%obli = $-.101 \ 10^{-16}$

Routine mr_obli_moy

Identification

"Calcul de l'obliquité moyenne".

Rôle

Calcul de l'obliquité moyenne $\bar{\epsilon}$ à une date donnée, selon un modèle de précession. A ce jour, seul le modèle de Lieske (J2000) est disponible.

Le calcul des dérivées premières et secondes ($\bar{\epsilon}$ ' et $\bar{\epsilon}$ ") est facultatif.

Séquence d'appel

(voir explications dans le volume 3)

call mr_obli_moy (model_prec, jul1950, obli_moy, code_retour [, delta_tai, deriv1_obli, deriv2_obli])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer modèle de précession

tm_jour_sec jul1950 date julienne 1950 t (jours, s)

• Sorties obligatoires

pm_reel **obli_moy** obliquité moyenne $\bar{\epsilon}$ (rad)

tm_code_retour code_retour

• Entrées facultatives

pm_reel [$delta_tai$] écart ΔTAI entre l'échelle de temps TAI et l'échelle de

temps utilisée pour exprimer la date t (s)

• Sorties facultatives

pm_reel [**deriv1_obli**] dérivée première $\bar{\epsilon}'$ de l'obliquité moyenne (rad.s⁻¹)

pm_reel [deriv2_obli] dérivée seconde ε" de l'obliquité moyenne (rad.s⁻²)

Conditions sur les arguments

• Sans objet.

Notes d'utilisation

- L'indicateur du modèle **model_prec** doit avoir été initialisé par l'appelant au paramètre MSLIB **pm_lieske**.
- L'écart de datation ΔTAI , s'il est présent, sera <u>ajouté</u> à la date t. S'il est absent, sa valeur par défaut est zéro.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_err_ind_prec (-1803) : La valeur donnée pour l'indicateur du modèle de précession

est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

```
use mslib
```

```
integer
type(tm_jour_sec)
real(pm_reel)
:: MODEL_PREC

:: JUL1950
:: OBLI_MOY
:: CODE_RETOUR
:: DELTA_TAI
:: DERIV1_OBLI
:: DERIV2_OBLI
```

```
MODEL_PREC = pm_lieske

JUL1950%jour = 13180_pm_entier

JUL1950%sec = 36000._pm_reel

DELTA_TAI = 0._pm_reel
```

end program REP_FONDAMENTAUX

Résultats attendus:

OBLI_MOY = .409 DERIV1_OBLI= -.719 10⁻¹³ DERIV2_OBLI= -.131 10⁻²⁶

Routine mr_PlaIner_PlaVrai

Identification

"Passage du repère **<u>pla</u>**nétocentrique <u>iner</u>tiel du type «H0-n» à n=0 au repère <u>**pla**</u>nétocentrique <u>**vrai**</u>".

Rôle

Calcul des position-vitesse dans le repère planétocentrique vrai à partir des position-vitesse dans le repère planétocentrique inertiel du type «H0-n» (à n=0 secondes), selon un modèle prédéfini ou utilisateur.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	planete	planète
integer	modeleUAI	modèle UAI définissant la dérivée du temps sidéral (vitesse de rotation) de la planète
pm_reel	long	longitude de l'axe X du repère (positive vers l'Est) (rad)
pm_reel(3)	pos_PlaIner	vecteur position dans le repère planétocentrique inertiel (m)

• Sorties obligatoires

pm_reel(3)	pos_PlaVrai	vecteur position dans le repère planétocentrique vrai (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel	[vit_rot]	vitesse de rotation de la planète (rad.s ⁻¹)
tm_jour_sec	[jul1950]	date pour le modèle de temps sidéral si la planète considérée est Neptune (jours, s)
pm_reel(3)	[vit_PlaIner]	vecteur vitesse dans le repère planétocentrique inertiel (m.s ⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

• Sorties facultatives

pm_reel(3) [vit_PlaVrai] vecteur vitesse dans le repère planétocentrique vrai (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'argument planete (non testé) doit avoir été initialisé par l'appelant à l'un des paramètres suivants de la MSLIB: pm_pla_mercure, pm_pla_venus, pm_pla_terre, pm_pla_mars, pm_pla_jupiter, pm_pla_saturne, pm_pla_uranus, pm_pla_neptune, pm_pla_pluton.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.
- L'indicateur du modèle de vitesse de rotation de la planète, **modeleUAI**, doit avoir été initialisé par l'appelant à **pm_UAI_autre_modele** ou **pm_UAI1994** ou **pm_UAI2000** de la MSLIB. Dans ce cas, et si la planète considérée est Neptune, il faut également fournir en option la date *t*.
- L'initialisation du modèle de vitesse de rotation de la planète, **modeleUAI**, à **pm_UAI_autre_modele** implique l'initialisation par l'appelant de l'entrée optionnelle **vit_rot** qui définit le modèle utilisateur.

Notes d'utilisation

- Le calcul inverse (position dans le repère planétocentrique vrai → position dans le repère planétocentrique inertiel du type «H0-n») peut être effectué par la routine mr_PlaVrai_PlaIner.
- La longitude est comptée positivement vers l'Est, à l'instar de la Terre. On ne respecte donc pas ici les conventions UAI suivant les planètes. L'utilisateur devra donc veiller à modifier la valeur entrée s'il veut respecter ces conventions.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal. (+1801): Manque de cohérence entre les entrées optionnelles fournies pm_warn_para_option et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel. (-1801): Compte tenu des sorties optionnelles demandées, il manque pm_err_para_option des entrées optionnelles. pm_err_ind_model (-1804): La valeur donnée pour l'indicateur du modèle est incorrecte. pm_err_planete (-1809) : La valeur donnée pour l'indicateur de l'astre/planète est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  ! Declarations pour l'appel a mr_PlaIner_PlaVrai
  integer
                                     :: PLANETE, MODELEUAI
  real(pm_reel)
                                     :: LONG
  real(pm_reel), dimension (3)
                                     :: POS_PLAINER, POS_PLAVRAI
  real(pm_reel), dimension (3)
                                     :: VIT_PLAINER, VIT_PLAVRAI
  real(pm_reel)
                                     :: VIT_ROT
  type(tm_code_retour)
                                     :: CODE_RETOUR
  PLANETE
                    = pm_pla_mars
  MODELEUAI
                    = pm_UAI_autre_modele
                    = 0.3_pm_entier
  LONG
  POS_PLAINER(1)
                    = 7000000._pm_reel
  POS_PLAINER(2)
                    = 7400000._pm_reel
  POS_PLAINER(3)
                    = 7600000._pm_reel
  VIT ROT
                    = 350.89198226_pm_reel*pm_deg_rad/86400._pm_reel
  VIT_PLAINER(1)
                    = 900._pm_reel
  VIT_PLAINER(2)
                    = 100._pm_reel
  VIT PLAINER(3)
                    = 1100._pm_reel
```

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_PLAVRAI, VIT_PLAVRAI, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

POS_PLAVRAI(1)= 0.450 10⁷ POS_PLAVRAI(2)= 0.914 10⁷ POS_PLAVRAI(3)= 0.760 10⁷ VIT_PLAVRAI(1)= 0.148 10⁴ VIT_PLAVRAI(2)= 0.425 10² VIT_PLAVRAI(3)= 0.110 10⁴

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

Routine mr_PlanetVrai_EquaUAI

Identification

"Passage du repère **planét**ocentrique **vrai** au repère **équa**torial planétaire **UAI** à la date t."

Rôle

Calcul à la date *t* des position-vitesse dans le repère équatorial planétaire UAI à partir des position-vitesse dans le repère planétocentrique vrai, selon un modèle prédéfini ou utilisateur. Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_PlanetVrai_EquaUAI (planete, modelUAI, jul1950, pos_PlanetVrai, pos_EquaUAI, & code_retour [, tsid, deriv_tsid, vit_PlanetVrai, vit_EquaUAI, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	planete	planète
integer	modeleUAI	modèle UAI définissant le méridien origine (temps sidéral et sa dérivée)
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel(3)	pos_PlanetVrai	vecteur position dans le repère planétocentrique vrai (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaUAI	vecteur position dans le repère équatorial planétaire UAI (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel	[tsid]	temps sidéral (rad)
pm_reel	[deriv_tsid]	dérivée du temps sidéral (rad.s ⁻¹)
pm_reel(3)	[vit_PlanetVrai]	vecteur vitesse dans le repère planétocentrique vrai (m.s ⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

• Sorties facultatives

pm_reel(3) [vit_EquaUAI] vecteur vitesse dans le repère équatorial planétaire UAI (m.s⁻¹)
pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'argument planete doit avoir été initialisé par l'appelant à l'un des paramètres suivants de la MSLIB: pm_pla_mercure, pm_pla_venus, pm_pla_terre, pm_pla_mars, pm_pla_jupiter, pm_pla_saturne, pm_pla_uranus, pm_pla_neptune, pm_pla_pluton.
- La date t est exprimée dans l'échelle de temps TE (= TCB = TDB pour la MSLIB).
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.
- L'indicateur du modèle de l'axe de rotation de l'astre, **modeleUAI**, doit avoir été initialisé par l'appelant à **pm_UAI_autre_modele** ou **pm_UAI1994** ou **pm_UAI2000** de la MSLIB.
- L'initialisation du modèle du méridien origine, **modeleUAI**, à **pm_UAI_autre_modele** implique l'initialisation par l'appelant des entrées optionnelles **tsid** et **deriv_tsid** qui définissent le modèle utilisateur.

Notes d'utilisation

- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial planétaire UAI → position-vitesse dans le repère planétocentrique vrai) peut être effectué par la routine mr_EquaUAI_PlanetVrai.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal. (+1801): Manque de cohérence entre les entrées optionnelles fournies pm_warn_para_option et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel. pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque des entrées optionnelles. pm_err_ind _model (-1804): La valeur donnée pour l'indicateur du modèle est incorrecte. pm_err_planete (-1809) : La valeur donnée pour l'indicateur de l'astre/planète est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

:: PLANETE, MODELUAI

:: JUL1950

! Declarations pour l'appel a mr_PlanetVrai_EquaUAI

program REP_FONDAMENTAUX

type(tm_jour_sec)

```
use mslib
```

integer

```
real(pm_reel)
                                  :: TSID, DERIV_TSID
real(pm_reel), dimension (3)
                                  :: POS_PLANETVRAI, POS_EQUAUAI
real(pm_reel), dimension (3)
                                  :: VIT PLANETVRAI, VIT EQUAUAI
type(tm_code_retour)
                                  :: CODE_RETOUR
PLANETE
                  = pm pla mars
                  = pm_UAI_autre_modele
MODELUAI
JUL1950%jour
                  = 17000_pm_entier
JUL1950%sec
                  = 0._pm_reel
                  = 190.47_pm_reel*pm_deg_rad
TSID
                  = 360.9856235_pm_reel*pm_deg_rad/86400._pm_reel
DERIV_TSID
POS_J2000(1)
                  = 7000000._pm_reel
POS_J2000(2)
                  = 7200000._pm_reel
                  = 7400000._pm_reel
POS_J2000(3)
VIT_J2000(1)
                  = 900._pm_reel
                  = 100._pm_reel
VIT_J2000(2)
VIT_J2000(3)
                  = 1100._pm_reel
```

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

Résultats attendus:

POS_EQUAUAI(1) $= -0.558 \ 10^7$ POS_EQUAUAI(2) $= -0.835 \ 10^7$ POS_EQUAUAI(3) $= 0.740 \ 10^7$ VIT_EQUAUAI(1) $= -0.258 \ 10^3$ VIT_EQUAUAI(2) $= -0.668 \ 10^3$ VIT_EQUAUAI(3) $= 0.110 \ 10^4$

Routine mr_PlaVrai_PlaIner

Identification

"Passage du repère **<u>pla</u>**nétocentrique <u>**vrai**</u> au repère <u>**pla**</u>nétocentrique <u>**iner**</u>tiel du type «H0-n» à n=0".

Rôle

Calcul des position-vitesse dans le repère planétocentrique inertiel du type «H0-n» (à n=0 secondes) à partir des position-vitesse dans le repère planétocentrique vrai, selon un modèle prédéfini ou utilisateur.

Le jacobien de la transformation est calculé en option.

Séquence d'appel (*y*

(voir explications dans le volume 3)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	planete	planète
integer	modeleUAI	modèle UAI définissant la dérivée du temps sidéral (vitesse de rotation) de la planète
pm_reel	long	longitude de l'axe X du repère (positive vers l'Est) (rad)
pm_reel(3)	pos_PlaVrai	vecteur position dans le repère planétocentrique vrai (m)

• Sorties obligatoires

pm_reel(3)	pos_PlaIner	vecteur position dans le repère planétocentrique inertiel (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel	[vit_rot]	vitesse de rotation de la planète (rad.s ⁻¹)
tm_jour_sec	[jul1950]	date pour le modèle de temps sidéral si la planète considérée est Neptune (jours, s)
pm_reel(3)	[vit_PlaVrai]	vecteur vitesse dans le repère planétocentrique vrai (m.s ⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

• Sorties facultatives

pm_reel(3) [vit_PlaIner] vecteur vitesse dans le repère planétocentrique inertiel (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'argument **planete** (non testé) doit avoir été initialisé par l'appelant à l'un des paramètres suivants de la MSLIB: **pm_pla_mercure**, **pm_pla_venus**, **pm_pla_terre**, **pm_pla_mars**, **pm_pla_jupiter**, **pm_pla_saturne**, **pm_pla_uranus**, **pm_pla_neptune**, **pm_pla_pluton**.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.
- L'indicateur du modèle de vitesse de rotation de la planète, **modeleUAI**, doit avoir été initialisé par l'appelant à **pm_UAI_autre_modele** ou **pm_UAI1994** ou **pm_UAI2000** de la MSLIB. Dans ce cas, et si la planète considérée est Neptune, il faut également fournir en option la date *t*.
- L'initialisation du modèle de vitesse de rotation de la planète, **modeleUAI**, à **pm_UAI_autre_modele** implique l'initialisation par l'appelant de l'entrée optionnelle **vit_rot** qui définit le modèle utilisateur.

Notes d'utilisation

- Le calcul inverse (position dans le repère planétocentrique inertiel du type «H0-n» → position dans le repère planétocentrique vrai) peut être effectué par la routine **mr_PlaIner_PlaVrai**.
- La longitude est comptée positivement vers l'Est, à l'instar de la Terre. On ne respecte donc pas ici les conventions UAI suivant les planètes. L'utilisateur devra donc veiller à modifier la valeur entrée s'il veut respecter ces conventions.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

&

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind_model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

pm_err_planete (-1809) : La valeur donnée pour l'indicateur de l'astre/planète est

incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

VIT PLAINER(1)

```
use mslib
! Declarations pour l'appel a mr_PlaVrai_PlaIner
integer
                                  :: PLANETE, MODELEUAI
real(pm_reel)
                                  :: LONG
                                  :: POS_PLAVRAI,POS_PLAINER
real(pm_reel), dimension (3)
real(pm_reel), dimension (3)
                                  :: VIT_PLAVRAI, VIT_PLAINER
real(pm_reel)
                                  :: VIT_ROT
                                  :: CODE_RETOUR
type(tm_code_retour)
PLANETE
                  = pm_pla_mars
MODELEUAI
                  = pm_UAI_autre_modele
LONG
                  = 0.3_pm_entier
POS_PLAINER(1)
                  = 7000000._pm_reel
POS_PLAINER(2)
                  = 7400000._pm_reel
                  = 7600000._pm_reel
POS PLAINER(3)
VIT_ROT
                  = 350.89198226_pm_reel*pm_deg_rad
                    /86400._pm_reel
```

= 900. pm reel

```
= 100._pm_reel
  VIT_PLAINER(2)
  VIT_PLAINER(3)
                      = 1100._pm_reel
  call mr_PlaVrai_PlaIner(PLANETE, MODELEUAI, LONG,
                                                                         &
                              POS_PLAVRAI, POS_PLAINER,
                                                                         &
                              CODE_RETOUR, vit_rot=VIT_ROT,
                                                                         &
                              vit_PlaIner=VIT_PLAINER)
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS ( POS_PLAINER, VIT_PLAINER, CODE_RETOUR )
end program REP_FONDAMENTAUX
Résultats attendus:
POS_PLAINER(1) = 0.887 \ 10^7
POS_PLAINER(2) = 0.500 \ 10^7
POS_PLAINER(3) = 0.760 \ 10^7
VIT_PLAINER(1) = 0.535 \ 10^3
VIT_PLAINER(2) = 0.459 \ 10^3
VIT_PLAINER(3) = 0.110 \ 10^4
```

Routine mr_rep_fon

Identification

"Calcul de la matrice de passage entre deux **rep**ères **fon**damentaux (écliptique ou équatorial; moyen ou vrai)".

Rôle

Calcul de la matrice de passage du repère {équatorial ou écliptique} {moyen ou vrai} à une époque t_I au repère {équatorial ou écliptique} {moyen ou vrai} à une époque t_2 , selon un modèle de précession et un modèle de nutation. A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_rep_fon (trsf, model, jul1950_t1, jul1950_t2, mat_pass, code_retour [, delta_tai])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	trsf	indicateur de la transformation
integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950_t1	époque d'origine t_I (jours, s)
tm_jour_sec	jul1950_t2	époque de destination t_2 (jours, s)

• Sorties obligatoires

$pm_reel(3,3)$	mat_pass	matrice de passage entre les deux repères définis par trsf
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel	[delta_tai]	écart ΔTAI entre l'échelle de temps TAI et l'échelle de
		temps utilisée pour exprimer les dates t_1 et t_2 (s)

Conditions sur les arguments

• Sans objet.

Notes d'utilisation

- model doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- L'écart de datation ΔTAI, s'il est présent, sera ajouté aux dates en entrée. S'il est absent, sa valeur par défaut est zéro.
- Il n'est pas indispensable que les dates t₁ et t₂ soient normalisées.
 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Selon le calcul souhaité, l'argument **trsf** sera initialisé par l'appelant à la valeur de l'un des paramètres suivants de la MSLIB:

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

```
Code retour (voir explications dans le volume 3)
```

```
pm_OK (0) : Retour normal.

pm_err_ind_model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

pm_err_ind_trsf (-1805) : La valeur donnée pour l'indicateur de la transformation est incorrecte.
```

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

```
! Calcul de la matrice de passage du repere equatorial moyen a t1 au ! repere ecliptique moyen a t2.
```

use mslib

```
TRSF = pm_equa_moy_ecli_moy ! parametre de la MSLIB
MODEL= pm_lieske_wahr ! parametre de la MSLIB
JUL1950_T1%jour = 13180_pm_entier
JUL1950_T1%sec = 36000._pm_reel
JUL1950_T2%jour = 13545_pm_entier
JUL1950_T2%sec = 36000._pm_reel
```

```
! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (MAT_PASS,CODE_RETOUR)
```

end program REP_FONDAMENTAUX

DELTA_TAI = 0._pm_reel

Résultats attendus:

MAT_PASS =
$$\begin{bmatrix} 0.100 & -0.223 & 10^{-3} & -0.971 & 10^{-4} \\ 0.244 & 10^{-3} & 0.917 & 0.398 \\ 0.209 & 10^{-6} & -0.398 & 0.917 \end{bmatrix}$$

Routine mr_TerRef_TerVrai

Identification

"Passage du repère <u>ter</u>restre de <u>réf</u>érence au repère <u>ter</u>restre <u>vrai</u> à la date t".

Rôle

Calcul des position-vitesse dans le repère terrestre vrai à la date *t* à partir des position-vitesse dans le repère terrestre de référence.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_TerRef_TerVrai (U, V, pos_ref, pos_vrai, code_retour [, vit_ref, vit_vrai, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel	U	coordonnée <i>u</i> du pôle vrai à la date <i>t</i> dans le repère R (rad) (voir rubrique " Notes d'utilisation ")
pm_reel	V	coordonnée <i>v</i> du pôle vrai à la date <i>t</i> dans le repère R (rad) (voir rubrique " Notes d'utilisation ")
pm_reel(3)	pos_ref	vecteur position dans le repère terrestre de référence (m)

• Sorties obligatoires

pm_reel(3)	pos_vrai	vecteur position dans le repère terrestre vrai à la date t (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel(3)	[vit_ref]	vecteur vitesse dans le repère terrestre de référence (m.s ⁻¹)
------------	-------------	--

• Sorties facultatives

pm_reel(3)	[vit_vrai]	vecteur vitesse dans le repère terrestre vrai à la date t (m.s ⁻¹)
pm_reel(6,6)	[jacob]	jacobien de la transformation

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est implicite car la position du repère terrestre vrai par rapport au repère terrestre de référence dépend de la date *t*.
- Définition du repère R : se reporter à la présentation du thème (paragraphe 3.9 "Repère R (repère plan)")
- Le calcul inverse (position-vitesse dans le repère terrestre vrai à la date t → position-vitesse dans le repère terrestre de référence) peut être effectué par la routine mr_TerVrai_TerRef.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour (vo

(voir explications dans le volume 3)

pm OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801) : Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

Exemple en Fortran 90 portable (voir explications dans le volume 3) program REP_FONDAMENTAUX use mslib ! Declarations pour l'appel a mr_TerRef_TerVrai real(pm_reel) :: U :: V real(pm reel) real(pm_reel), dimension (3) :: POS_REF,POS_VRAI real(pm_reel), dimension (3) :: VIT_REF, VIT_VRAI type(tm_code_retour) :: CODE RETOUR U $= 1.9e-6_pm_reel$ V = 3.8e-6 pm reelPOS_REF(1) $= -221938.845_pm_reel$ POS_REF(2) $= -7108899.815_pm_reel$ POS REF(3) = -1088165.987 pm reel VIT_REF(1) $= -6960.252_{pm_reel}$ VIT_REF(2) $= -216.918_{pm_reel}$ VIT_REF(3) $= -2840.700_{pm_reel}$ call mr_TerRef_TerVrai(U,V, POS_REF, POS_VRAI, CODE_RETOUR, vit_ref=VIT_REF, vit_vrai=VIT_VRAI) ! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (POS_VRAI, VIT_VRAI, CODE_RETOUR) end program REP_FONDAMENTAUX

Résultats attendus:

```
POS_VRAI(1) = -0.222 10<sup>6</sup>

POS_VRAI(2) = -0.711 10<sup>7</sup>

POS_VRAI(3) = -0.109 10<sup>7</sup>

VIT_VRAI(1) = -0.696 10<sup>4</sup>

VIT_VRAI(2) = -0.217 10<sup>3</sup>

VIT_VRAI(3) = -0.284 10<sup>4</sup>
```

Routine mr_TerVrai_EquaVrai

Identification

"Passage du repère <u>ter</u>restre <u>vrai</u> à la date t au repère <u>équa</u>torial <u>vrai</u> à la même date t".

Rôle

Calcul des position-vitesse dans le repère équatorial vrai à la date *t*, à partir des position-vitesse dans le repère terrestre vrai à la même date *t*, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_TerVrai_EquaVrai (model, jul1950, delta_tu1, delta_tai, pos_TerVrai, pos_EquaVrai, & code_retour [, vit_TerVrai, vit_EquaVrai, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date $t(s)$
pm_reel(3)	pos_TerVrai	vecteur position dans le repère terrestre vrai à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaVrai	vecteur position dans le repère équatorial vrai à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3) [vit_TerVrai] vecteur vitesse dans le repère terrestre vrai à la date t (m.s⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

Sorties facultatives

pm_reel(3) [$vit_EquaVrai$] vecteur vitesse dans le repère équatorial vrai à la date t (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation $\Delta TU1$ sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera ajouté à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial vrai à la date $t \to \text{position-vitesse}$ dans le repère terrestre vrai à la date t) peut être effectué par la routine $\mathbf{mr}_{\mathbf{LquaVrai}_{\mathbf{TerVrai}}}$.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

(-1801): Compte tenu des sorties optionnelles demandées, il manque

fournie inutilement. Vérifier votre séquence d'appel.

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

pm_err_para_option

```
! Declarations pour l'appel a mr_TerVrai_EquaVrai
```

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TU1 = .5_pm_reel

DELTA_TAI = 25._pm_reel

POS_TERVRAI(1) = -221978.5085_pm_reel
POS_TERVRAI(2) = -1088157.8964_pm_reel
POS_TERVRAI(3) = 7108899.815_pm_reel
VIT_TERVRAI(1) = -6960.148_pm_reel
VIT_TERVRAI(2) = 2840.953_pm_reel
VIT_TERVRAI(3) = 216.918_pm_reel

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_EQUAVRAI, VIT_EQUAVRAI, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

POS_EQUAVRAI(1)= 0.998 10⁶ POS_EQUAVRAI(2)= 0.487 10⁶ POS_EQUAVRAI(3)= 0.711 10⁷ VIT_EQUAVRAI(1)= 0.195 10⁴ VIT_EQUAVRAI(2)= -0.718 10⁴ VIT_EQUAVRAI(3)= 0.217 10³

&

Routine mr_TerVrai_J2000

Identification

"Passage du repère <u>ter</u>restre <u>vrai</u> à la date t au repère équatorial moyen <u>J2000</u>".

Rôle

Calcul des position-vitesse dans le repère équatorial moyen J2000 à la date *t* à partir des position-vitesse dans le repère terrestre vrai, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_TerVrai_J2000 (model, jul1950, delta_tu1, delta_tai, pos_TerVrai, pos_J2000, code_retour [, vit_TerVrai, vit_J2000, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart $\Delta TU1$ entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_TerVrai	vecteur position dans le repère terrestre vrai à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_J2000	vecteur position dans le repère équatorial moyen J2000 (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3) [$vit_TerVrai$] vecteur vitesse dans le repère terrestre vrai à la date t (m.s⁻¹)

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

Sorties facultatives

pm_reel(3) [vit_J2000] vecteur vitesse dans le repère équatorial moyen J2000 (m.s⁻¹) pm_reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm lieske wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial moyen J2000 à la date $t \to \text{position-vitesse}$ dans le repère terrestre vrai) peut être effectué par la routine $\mathbf{mr}_{\mathbf{TerVrai}}$ J2000.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_TerVrai_J2000
```

real(pm_reel), dimension (3) :: POS_TERVRAI,POS_J2000
real(pm_reel), dimension (3) :: VIT_TERVRAI,VIT_J2000

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 43200._pm_reel

DELTA_TU1 = .5_pm_reel

DELTA_TAI = 25._pm_reel

POS_TERVRAI(1) = 217012.946_pm_reel
POS_TERVRAI(2) = 1089159.055_pm_reel
POS_TERVRAI(3) = 7108899.815_pm_reel
VIT_TERVRAI(1) = 6973.034_pm_reel
VIT_TERVRAI(2) = -2809.178_pm_reel
VIT_TERVRAI(3) = 216.918_pm_reel

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_J2000, VIT_J2000, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

 $\begin{array}{lll} POS_J2000(1) & = 0.991 \ 10^6 \\ POS_J2000(2) & = 0.489 \ 10^6 \\ POS_J2000(3) & = 0.711 \ 10^7 \\ VIT_J2000(1) & = 0.196 \ 10^4 \\ VIT_J2000(2) & = -0.717 \ 10^4 \\ VIT_J2000(3) & = 0.219 \ 10^3 \end{array}$

Routine mr_TerVrai_TerRef

Identification

"Passage du repère <u>ter</u>restre <u>vrai</u> à la date t au repère <u>ter</u>restre de <u>réf</u>érence".

Rôle

Calcul des position-vitesse dans le repère terrestre de référence à partir des position-vitesse dans le repère terrestre vrai à la date t.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_TerVrai_TerRef (U, V, pos_vrai, pos_ref, code_retour [, vit_vrai, vit_ref, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel	U	(voir rubrique " Notes d'utilisation ")
pm_reel	V	coordonnée <i>v</i> du pôle vrai à la date <i>t</i> dans le repère R (rad) (voir rubrique " Notes d'utilisation ")

pm_reel(3) **pos_vrai** vecteur position dans le repère terrestre vrai à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_ref	vecteur position dans le repère terrestre de référence (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3)	[vit_vrai]	vecteur vitesse dans le repère terrestre vrai à la date t (m.s ⁻¹)
P111_1001(5)	[' ']	rected vitesse dams to repere terrestre viar a la date i (ilis)

• Sorties facultatives

pm_reel(3)	[vit_ref]	vecteur vitesse dans le repère terrestre de référence (m.s ⁻¹)
pm_reel(6.6)	[iacob]	iacobien de la transformation

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est implicite car la position du repère terrestre vrai par rapport au repère terrestre de référence dépend de la date *t*.
- Définition du repère R : se reporter à la présentation du thème (paragraphe 3.9 "Repère R (repère plan)")
- Le calcul inverse (position-vitesse dans le repère terrestre de référence → position-vitesse dans le repère terrestre vrai à la date *t*) peut être effectué par la routine **mr_TerRef_TerVrai**.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour (voir explications dans le volume 3)

pm OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801) : Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  ! Declarations pour l'appel a mr_TerVrai_TerRef
  real(pm_reel)
                                   :: U
  real(pm reel)
                                   :: V
  real(pm_reel), dimension (3)
                                   :: POS VRAI, POS REF
  real(pm_reel), dimension (3)
                                 :: VIT_VRAI, VIT_REF
  type(tm_code_retour)
                                   :: CODE RETOUR
  U
                   = 1.9e-6_pm_reel
  V
                   = 3.8e-6_pm_reel
  POS_VRAI(1)
                   = -221938.845 pm reel
                  = -1088165.987_pm_reel
  POS_VRAI(2)
                  = 7108899.815_pm_reel
  POS_VRAI(3)
  VIT VRAI(1)
                  = -6960.252 pm reel
  VIT_VRAI(2)
                   = -2840.700_{pm_reel}
                   = 216.918_pm_reel
  VIT_VRAI(3)
  call mr_TerVrai_TerRef( U, V, POS_VRAI, POS_REF, CODE_RETOUR, &
                          vit_vrai=VIT_VRAI, vit_ref=VIT_REF )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS ( POS_REF, VIT_REF, CODE_RETOUR )
```

end program REP_FONDAMENTAUX

Résultats attendus:

```
POS_REF(1) = -0.222 10<sup>6</sup>

POS_REF(2) = -0.109 10<sup>7</sup>

POS_REF(3) = 0.711 10<sup>7</sup>

VIT_REF(1) = -0.696 10<sup>4</sup>

VIT_REF(2) = -0.284 10<sup>4</sup>

VIT_REF(3) = 0.217 10<sup>3</sup>
```

Routine mr_TerVrai_veis

Identification

"Passage du repère <u>ter</u>restre <u>vrai</u> à la date t au repère de <u>Veis</u> à la même date t".

Rôle

Calcul des position-vitesse dans le repère de Veis à la date t à partir des position-vitesse dans le repère terrestre vrai à la même date t.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_TerVrai_veis (jul1950, delta_tu1, pos_TerVrai, pos_veis, code_retour [, vit_TerVrai, vit_veis, jacob])

&

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
-------------	---------	---------------------------------

pm_reel **delta_tu1** écart ΔTUI entre l'échelle de temps TU1 et l'échelle de

temps utilisée pour exprimer la date t (s)

pm_reel(3) **pos_TerVrai** vecteur position dans le repère terrestre vrai à la date t (m)

• Sorties obligatoires

pm_reel(3) pos_veis vecteur position dans le repère de	Veis à la date t (m)
---	------------------------

tm_code_retour code_retour

• Entrées facultatives

pm_reel(3) [vit_TerVrai] vecteur vitesse dans le repère terrestre vrai à la date t (m.s⁻¹)

• Sorties facultatives

pm_reel(3) [vit_veis]	vecteur vitesse dans le repère de Veis à la date t (m.s ⁻¹)
-------------------------	---

pm reel(6,6) [jacob] jacobien de la transformation

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera **ajouté** à la date t.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère de Veis à la date *t* → position-vitesse dans le repère terrestre vrai à la date *t*) peut être effectué par la routine **mr_veis_TerVrai**.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801) : Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  ! Declarations pour l'appel a mr_TerVrai_veis
  type(tm_jour_sec)
                                       :: JUL1950
  real(pm_reel)
                                       :: DELTA TU1
  real(pm_reel), dimension (3)
                                       :: POS TERVRAI, POS VEIS
  real(pm_reel), dimension (3)
                                      :: VIT_TERVRAI, VIT_VEIS
  type(tm_code_retour)
                                       :: CODE RETOUR
  JUL1950%jour
                      = 15002_pm_entier
  JUL1950%sec
                     = 43200._pm_reel
  DELTA TU1
                    = .5_{pm}reel
  POS_TERVRAI(1) = 217012.946_pm_reel
POS_TERVRAI(2) = 1089159.055_pm_reel
  POS TERVRAI(3)
                    = 7108899.815 \text{ pm reel}
  VIT_TERVRAI(1) = 6973.034_pm_reel
VIT_TERVRAI(2) = -2809.178_pm_reel
  VIT_TERVRAI(3) = 216.918_pm_reel
  call mr_TerVrai_veis( JUL1950, DELTA_TU1 POS_TERVRAI,
```

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_VEIS, VIT_VEIS, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

 $\begin{array}{ll} \hline POS_VEIS(1) &= 0.100 \ 10^7 \\ POS_VEIS(2) &= 0.477 \ 10^6 \\ POS_VEIS(3) &= 0.711 \ 10^7 \\ VIT_VEIS(1) &= 0.188 \ 10^4 \\ VIT_VEIS(2) &= -0.720 \ 10^4 \\ VIT_VEIS(3) &= 0.217 \ 10^3 \end{array}$

Routine mr_tsid_aoki

Identification

"Calcul du temps sidéral dans le système de référence défini par l'IAU en 1980 (AOKI)".

Rôle

Calcul du temps sidéral moyen dans le système de référence J2000 : Aoki - Merit Standard

Séquence d'appel

(voir explications dans le volume 3)

call mr_tsid_aoki (jul1950, delta_tu1, tsid, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_jour_sec **jul1950** date julienne 1950 t (jours, s)

pm_reel **delta_tu1** écart ΔTUI entre l'échelle de temps TU1 et l'échelle de

temps utilisée pour exprimer la date t (s)

• Sorties obligatoires

pm_reel **tsid** temps sidéral (rad)

tm_code_retour code_retour

Conditions sur les arguments

• Sans objet.

Notes d'utilisation

- L'écart de datation $\Delta TU1$ sera <u>ajouté</u> à la date t.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL : ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour (voir explications dans le volume 3)

pm_OK (0): Retour normal.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  type(tm_jour_sec)
                                     :: JUL1950
  real(pm_reel)
                                     :: DELTA_TU1
  real(pm_reel)
                                     :: TSID
  type(tm_code_retour)
                                     :: CODE_RETOUR
  JUL1950%jour = 1864._pm_entier
  JUL1950%sec = 34560._pm_reel
               = 0._pm_reel
  DELTA_TU1
  call mr_tsid_aoki ( JUL1950, DELTA_TU1, TSID, CODE_RETOUR )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (TSID, CODE_RETOUR)
end program REP_FONDAMENTAUX
Résultats attendus:
```

```
TSID = .492 \ 10^1
```

Routine mr_tsid_veis

Identification

"Calcul du <u>t</u>emps <u>sid</u>éral dans le système de référence <u>Veis</u> (Gamma₅₀ CNES)".

Rôle

Calcul en radians du temps sidéral ayant pour origine le point gamma γ_{50} qui sert d'origine au système de référence adopté au CNES.

Séquence d'appel

(voir explications dans le volume 3)

call mr_tsid_veis (jul1950, delta_tu1, tsid, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_jour_sec **jul1950** date julienne 1950 t (jours, s)

pm_reel **delta_tu1** écart ΔTUI entre l'échelle de temps TU1 et l'échelle de

temps utilisée pour exprimer la date t (s)

• Sorties obligatoires

pm_reel tsid temps sidéral (rad)

tm_code_retour code_retour

Conditions sur les arguments

• Sans objet.

Notes d'utilisation

- L'écart de datation ΔTUI sera *ajouté* à la date t.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) - novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour (voir explications dans le volume 3)

pm OK (0): Retour normal.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
                                     :: JUL1950
  type(tm_jour_sec)
  real(pm_reel)
                                     :: DELTA_TU1
  real(pm_reel)
                                     :: TSID
  type(tm_code_retour)
                                     :: CODE_RETOUR
  JUL1950%jour = 2000_pm_entier
  JUL1950%sec = 34560._pm_reel
  DELTA_TU1
               = 0._pm_reel
  call mr_tsid_veis ( JUL1950, DELTA_TU1, TSID, CODE_RETOUR )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (TSID, CODE_RETOUR)
end program REP_FONDAMENTAUX
Résultats attendus:
```

TSID = .972

Routine mr_tsid_vrai

Identification

"Calcul du temps sidéral vrai".

Rôle

Calcul en radians du temps sidéral vrai.

Séquence d'appel

(voir explications dans le volume 3)

call mr_tsid_vrai (model, jul1950, delta_tu1, delta_tai, tsid_vrai, code_retour [, deriv_tsid_vrai])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)

• Sorties obligatoires

pm_reel **tsid_vrai** temps sidéral vrai (rad)

tm_code_retour code_retour

• Sorties facultatives

pm_reel [deriv_tsid_vrai] dérivée du temps sidéral vrai (rad.s⁻¹)

Conditions sur les arguments

• L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.

Notes d'utilisation

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera <u>ajouté</u> à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  ! Declarations pour l'appel a mr_tsid_vrai
  integer
                                    :: MODEL
  type(tm_jour_sec)
                                    :: JUL1950
  real(pm_reel)
                                    :: DELTA_TU1
  real(pm_reel)
                                    :: DELTA TAI
                                    :: TSID VRAI
  real(pm_reel)
  real(pm_reel)
                                    :: DERIV_TSID_VRAI
                                    :: CODE RETOUR
  type(tm_code_retour)
  MODEL
                   = pm_lieske_wahr
                  = 15002_pm_entier
  JUL1950%jour
  JUL1950%sec
                  = 180._pm_reel
                   = 0.5_{pm_reel}
  DELTA_TU1
  DELTA_TAI = 25._pm_reel
  call mr_tsid_vrai ( MODEL, JUL1950, DELTA_TU1, DELTA_TAI, &
                      TSID_VRAI, CODE_RETOUR, &
                      deriv_tsid_vrai = DERIV_TSID_VRAI)
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (TSID_VRAI, DERIV_TSID_VRAI, CODE_RETOUR)
end program REP_FONDAMENTAUX
Résultats attendus:
TSID_VRAI
                 = 2.223
DERIV_TSID_VRAI
                 =0.729 \cdot 10^{-4}
CODE_RETOUR\% valeur = 0
CODE RETOUR%routine = 1137
```

&

Routine mr_veis_EquaVrai

Identification

"Passage du repère de **Veis** à la date t au repère **équa**torial **vrai** à la même date t".

Rôle

Calcul des position-vitesse dans le repère équatorial vrai à la date t à partir des position-vitesse dans le repère de veis à la même date t, selon un modèle de précession et un modèle de nutation. Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

call mr_veis_EquaVrai (model, jul1950, delta_tu1, delta_tai, pos_veis, pos_EquaVrai, code_retour [, vit_veis , vit_EquaVrai, jacob])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_veis	vecteur position dans le repère de Veis à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_EquaVrai	vecteur position dans le repère équatorial vrai à la date t (m)
tm_code_retour	code_retour	

• Entrées facultatives

pm_reel(3)	[vit_veis]	vecteur vitesse dans le repère de Veis à la date t
•		$(m.s^{-1})$

© CNES - MSLIB M-MU-0-115-CIS Ed : 05 Rév : 00

Sorties facultatives

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera <u>ajouté</u> à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera ajouté à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial vrai à la date *t* → position-vitesse dans le repère de Veis à la date *t*) peut être effectué par la routine **mr_EquaVrai_veis**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

 pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

fournie inutilement. Verifier votre sequence d'appel.

(-1801) : Compte tenu des sorties optionnelles demandées, il manque des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

```
use mslib
```

pm_err_para_option

type(tm_code_retour) :: CODE_RETOUR

```
MODEL
                  = pm_lieske_wahr
JUL1950%jour
                  = 15002_pm_entier
JUL1950%sec
                  = 180._pm_reel
DELTA_TU1
                  = .5_{pm}reel
DELTA_TAI
                  = 25._pm_reel
                  = 1002754.634_pm_reel
POS_VEIS(1)
POS_VEIS(2)
                  = 477331.342_pm_reel
POS_VEIS(3)
                  = 7108899.815_pm_reel
                  = 1883.154_pm_reel
VIT_VEIS(1)
                  = -7195.722_pm_reel
VIT_VEIS(2)
                  = 216.918_pm_reel
VIT_VEIS(3)
```

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (POS_EQUAVRAI, VIT_EQUAVRAI, CODE_RETOUR)

end program REP_FONDAMENTAUX

Résultats attendus:

POS_EQUAVRAI(1) = $0.998 \ 10^6$ POS_EQUAVRAI(2) = $0.487 \ 10^6$ POS_EQUAVRAI(3) = $0.711 \ 10^7$ VIT_EQUAVRAI(1) = $0.195 \ 10^4$ VIT_EQUAVRAI(2) = $-0.718 \ 10^4$ VIT_EQUAVRAI(3) = $0.217 \ 10^3$

Routine mr_veis_J2000

Identification

"Passage du repère de **Veis** à la date t au repère équatorial moyen **J2000**".

Rôle

Calcul des position-vitesse dans le repère équatorial moyen J2000 à partir des position-vitesse dans le repère de Veis à la date *t*, selon un modèle de précession et un modèle de nutation.

Le jacobien de la transformation est calculé en option.

A ce jour, seuls les modèles de Lieske et de Wahr sont disponibles.

Séquence d'appel

(voir explications dans le volume 3)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

integer	model	indicateur du modèle de précession et de nutation
tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart $\Delta TU1$ entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel	delta_tai	écart ΔTAI entre l'échelle de temps TAI et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_veis	vecteur position dans le repère de Veis à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_J2000	vecteur position dans le repère équatorial moyen J2000 (m)
tm_code_retour	code retour	

• Entrées facultatives

1(0)	F 14 1 3	
pm_reel(3)	[vit_veis]	vecteur vitesse dans le repère de Veis à la date t (m.s ⁻¹)

• Sorties facultatives

pm_reel(3)	[vit_J2000]	vecteur vitesse dans le repère équatorial moyen J2000 (m.s ⁻¹)
pm_reel(6,6)	[jacob]	jacobien de la transformation

Conditions sur les arguments

- L'indicateur du modèle **model** doit avoir été initialisé par l'appelant à la valeur du paramètre **pm_lieske_wahr** de la MSLIB.
- Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera *ajouté* à la date t dans les calculs nécessitant une date en échelle de temps TU1.
- L'écart de datation ΔTAI sera <u>ajouté</u> à la date t dans les calculs nécessitant une date en échelle de temps TAI.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère équatorial moyen J2000 → position-vitesse dans le repère équatorial de Veis à la date t) peut être effectué par la routine **mr J2000 veis**.
- L'époque de référence est :
 - → J2000.0 pour le modèle de précession de Lieske et le modèle de nutation de Wahr. Pour plus de précisions sur l'époque J2000.0, se reporter à la présentation du thème (paragraphe 2.6 "Époques de référence").

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V. Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801): Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

pm_err_ind _model (-1804) : La valeur donnée pour l'indicateur du modèle est incorrecte.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program REP_FONDAMENTAUX

use mslib

```
! Declarations pour l'appel a mr_veis_J2000
```

real(pm_reel), dimension (3) :: POS_VEIS, POS_J2000
real(pm_reel), dimension (3) :: VIT_VEIS, VIT_J2000

type(tm_code_retour) :: CODE_RETOUR

MODEL = pm_lieske_wahr

JUL1950%jour = 15002_pm_entier

JUL1950%sec = 180._pm_reel

DELTA_TU1 = .5_pm_reel

DELTA_TAI = 25._pm_reel

POS_VEIS(1) = 1002737.229_pm_reel
POS_VEIS(2) = 477367.903_pm_reel
POS_VEIS(3) = 7108899.815_pm_reel
VIT_VEIS(1) = 1883.416_pm_reel
VIT_VEIS(2) = -7195.654_pm_reel
VIT_VEIS(3) = 216.918_pm_reel

end program REP_FONDAMENTAUX

Résultats attendus:

 $\begin{array}{lll} POS_J2000(1) & = 0.991 \ 10^6 \\ POS_J2000(2) & = 0.489 \ 10^6 \\ POS_J2000(3) & = 0.711 \ 10^7 \\ VIT_J2000(1) & = 0.196 \ 10^4 \\ VIT_J2000(2) & = -0.717 \ 10^4 \\ VIT_J2000(3) & = 0.219 \ 10^3 \end{array}$

Routine mr_veis_TerVrai

Identification

"Passage du repère de <u>Veis</u> à la date t au repère <u>ter</u>restre <u>vrai</u> à la même date t".

Rôle

Calcul des position-vitesse dans le repère terrestre vrai à la date t à partir des position-vitesse dans le repère de Veis à la même date t.

Le jacobien de la transformation est calculé en option.

Séquence d'appel

(voir explications dans le volume 3)

call mr_veis_TerVrai (jul1950, delta_tu1, pos_veis, pos_TerVrai, code_retour [, vit_veis, vit_TerVrai, jacob])

&

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_jour_sec	jul1950	date julienne 1950 t (jours, s)
pm_reel	delta_tu1	écart ΔTUI entre l'échelle de temps TU1 et l'échelle de temps utilisée pour exprimer la date t (s)
pm_reel(3)	pos_veis	vecteur position dans le repère de Veis à la date t (m)

• Sorties obligatoires

pm_reel(3)	pos_TerVrai	vecteur position dans le repère terrestre vrai à la date t (m)
tm code retour	code retour	

• Entrées facultatives

pm_reel(3)	[vit_veis]	vecteur vitesse dans le repère de Veis à la date t (m.s ⁻¹)
------------	--------------	---

• Sorties facultatives

pm_reel(3)	[vit_TerVrai]	vecteur vitesse dans le repère terrestre vrai à la date t (m.s ⁻¹)
pm_reel(6,6)	[jacob]	jacobien de la transformation

Conditions sur les arguments

• Le calcul (optionnel) de la vitesse en sortie nécessite la donnée de la vitesse en entrée.

Notes d'utilisation

- La date *t* est exprimée dans une échelle de temps quelconque.
- L'écart de datation ΔTUI sera <u>ajouté</u> à la date t.
- Il n'est pas indispensable que la date *t* soit normalisée.

 <u>Définition</u>: une quantité exprimée en jours et secondes est dite normalisée lorsque le nombre de secondes appartient à [0., 86400.[.
- Le calcul inverse (position-vitesse dans le repère terrestre vrai à la date $t \to \text{position-vitesse}$ dans le repère de Veis à la date t) peut être effectué par la routine $\mathbf{mr}_{\mathbf{TerVrai}}$ veis.

Références documentaires

- Algorithmes des routines du thème "les Repères fondamentaux" de la MSLIB; B. Revelin, V.
 Lépine, avec la participation de L. Maisonobe et G. Prat (CS SI); référence MSLIB: M-NT-0-95-CIS.
- Les systèmes de référence utilisés en astronomie; Chapront-Touze-Francou-Morando; Bureau Des Longitudes (BDL) novembre 1994 -.

Références du BDL: ISSN 1243-4272

ISBN 2-910015-05-X

Nomenclature MSLIB: M-NT-0-160-CN

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_warn_para_option (+1801): Manque de cohérence entre les entrées optionnelles fournies

et les sorties optionnelles demandées: - soit il manque une ou plusieurs sorties optionnelles compte tenu des entrées optionnelles fournies, - soit une entrée optionnelle a été fournie inutilement. Vérifier votre séquence d'appel.

pm_err_para_option (-1801) : Compte tenu des sorties optionnelles demandées, il manque

des entrées optionnelles.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program REP_FONDAMENTAUX
  use mslib
  ! Declarations pour l'appel a mr_veis_TerVrai
  type(tm_jour_sec)
                                  :: JUL1950
  real(pm reel)
                                  :: DELTA TU1
  real(pm_reel), dimension (3)
                                  :: POS_VEIS, POS_TERVRAI
  real(pm_reel), dimension (3) :: VIT_VEIS, VIT_TERVRAI
  type(tm code retour)
                                   :: CODE RETOUR
                = 15002_pm_entier
  JUL1950%jour
  JUL1950%sec
                  = 43200._pm_reel
  DELTA TU1
                  = .5 pm reel
  POS_VEIS(1)
                  = 1002754.634_pm_reel
                  = 477331.342_pm_reel
  POS_VEIS(2)
  POS VEIS(3)
                  = 7108899.815 \text{ pm reel}
  VIT_VEIS(1)
                  = 1883.154_pm_reel
                  = -7195.722_pm_reel
  VIT_VEIS(2)
  VIT_VEIS(3) = 216.918_pm_reel
  call mr_veis_TerVrai ( JUL1950, DELTA_TU1, POS_VEIS,
                                                                &
                          POS_TERVRAI, CODE_RETOUR,
                                                                &
                          vit_veis=VIT_VEIS,
                                                                &
                          vit_TerVrai=VIT_TERVRAI )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS ( POS_TERVRAI, VIT_TERVRAI, CODE_RETOUR )
end program REP_FONDAMENTAUX
```

Résultats attendus:

```
POS_TERVRAI(1) = 0.217 	ext{ } 10^6

POS_TERVRAI(2) = 0.109 	ext{ } 10^7

POS_TERVRAI(3) = 0.711 	ext{ } 10^7

VIT_TERVRAI(1) = 0.697 	ext{ } 10^4

VIT_TERVRAI(2) = -0.281 	ext{ } 10^4

VIT_TERVRAI(3) = 0.217 	ext{ } 10^3
```