Trabajo Estadística Bayesiana

Eugenio Guzmán* Alejandra Molina[†] Jaquelin Morillo[‡] Diego Ramirez[§] Francisco Villarroel[¶]

2022-08-26

Introducción

HOLA ESTE ES UN TRABAJO MUY BACán

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Driff Diffution model

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Explicación del experimento

Se observó el comportamiento de veinte personas mientras participaban en un juego de ruleta. Su tarea era apostar por uno de los dos colores (naranjo o celeste). Cada uno de los colores se identifica con la probabilidad de obtener un premio determinado. Algunas ruletas cuentan con un área gris (máscara) que oculta el verdadero color de la sección (ambigüedad).

#Modelación

^{*}ejguzmanl@udd.cl

[†]alejandramm@gmail.com

 $^{^{\}ddagger} jaquelin.morillo@gmail.com$

[§]diegoramirez.al34@gmail.com

[¶]fvillarroelr@udd.cl

$$y_i \sim wiener(\alpha, \beta, \tau, \delta_i)$$

 $\delta_i = f(p, o)$
 $\alpha \sim unif$
 $\beta \sim unif$
 $\tau \sim unif$
 $b \sim norm(\mu, \sigma)$

$$y_i \sim wiener(\alpha, \beta, \tau, \delta)$$

 $\delta_i = unif$
 $\alpha \sim unif$
 $\beta \sim unif$
 $\tau \sim unif$

Resultados - Modelos y tablas sumarias

Modelo 1

$$Y_{(ij)} \sim \text{Wiener } (\alpha_{(ij)}, \beta_{(ij)}, \tau_{(ij)}, \delta_{(ij)})$$

Este modelo supone una distribucion Wiener dependiente de los parámetros alfa, beta, tay y delta en función de los sujetos estudiados y los *trials*.

Table 1: Media de los parámetros modelados

Modelo 1						
Parámetro	A	В	C	D	E	
α	0.76461	0.9084	0.92244	0.93057	0.95987	
eta	0.46303	0.51041	0.49342	0.5304	0.54067	
au	0.0045092	0.0081149	0.001054	0.017666	0.016152	
δ	0.66599	0.085327	0.36738	-0.13167	0.26716	

Modelo 2

$$Y_{(ij)} \sim \text{Wiener}(\alpha_{(ij)}, \beta_{(ij)}, \tau_{(ij)} \delta_{(p_{ij}, o_{ij})})$$

Al igual que el modelo 1 se contemplan los mismos parámetros, con la excepción que el parámetro delta depende linealmente de la probabilidad y del premio normalizado

[chantar toda la wea de graficos y tablas acá]

Table 2: Media de los parámetros modelados

Modelo 2							
Parámetro	A	В	С	D	E		
α	0.88527	0.9671	0.96805	0.95355	0.9938		
eta	0.45883	0.502	0.49792	0.52661	0.53689		
au	0.0021536	0.0061823	0.00085613	0.016333	0.015132		
b_0	11.642	6.8589	5.3276	3.0593	2.7807		
b_1	-13.817	-7.7817	-5.7075	-2.9145	-1.3458		
b_2	-8.503	-5.3981	-4.3687	-3.2749	-4.0697		

Modelo 3

$$Y_{(ij)} \sim \text{Wiener}(\alpha_{(ij)}, \beta_{(ij)}, \tau_{(ij)}, \delta_{(p_{ij}, o_{ij})})$$

En esta weá p y o dependen cuadráticamente [chantar toda la wea de graficos y tablas acá]

Table 3: Media de los parámetros modelados

Modelo 3							
Parámetro	A	В	C	D	E		
α	0.88881	0.96849	0.97048	0.95588	0.9952		
eta	0.45816	0.50246	0.49924	0.5284	0.53707		
au	0.0021119	0.0061697	0.0010137	0.016375	0.015178		
b_0	10.486	6.9346	4.8691	1.8444	2.3766		
b_1	-10.635	-7.3161	-2.0708	-0.16917	1.3034		
b_2	-5.3338	-6.343	-6.2612	0.36938	-5.0773		
b_3	-3.264	-0.47105	-3.4009	-2.7109	-2.5218		
b_4	-3.2369	0.94515	2.0646	-3.6848	1.1816		

Modelo 4

$$Y_{(ij)} \sim \text{Wiener}(\alpha_{(ij)}, \beta_{(ij)}, \tau_{(ij)}, \delta_{(p_{ij})})$$

sólo p depende cuadráticamente

Table 4: Media de los parámetros modelados

Modelo 4							
Parámetro	A	В	С	D	E		
α	0.83153	0.93395	0.94481	0.93427	0.96406		
eta	0.46895	0.50739	0.49798	0.52976	0.53892		
au	0.0029797	0.0070839	0.0011369	0.017322	0.015736		
b_0	2.5307	2.1188	0.92531	0.34464	-0.76552		
b_1	1.7668	-4.2162	2.2647	-0.33574	5.1825		
b_3	-8.9003	0.55325	-5.3849	-0.91345	-4.9913		

Modelo 5

$$Y_{(ij)} \sim \text{Wiener}(\alpha_{(ij)}, \beta_{(ij)}, \tau_{(ij)}, \delta_{(o_{ij})})$$

Sólo O depende cuadráticamente

[chantar toda la wea de graficos y tablas acá]

Table 5: Media de los parámetros modelados

Modelo 5							
Parámetro	A	В	С	D	E		
α	0.76539	0.90863	0.92702	0.9406	0.9907		
eta	0.46397	0.51086	0.49501	0.53197	0.53686		
au	0.0044623	0.0079759	0.0012098	0.017156	0.015165		
b_0	0.3456	0.21885	1.6944	-0.073462	2.3286		
b_2	0.70658	-0.45442	-5.3103	2.6437	-6.063		
b_4	-0.037301	0.27331	4.1839	-4.4153	2.5567		

Resultados - análisis de parámetros comparados por modelo

Alfa Modelo 1

alfa modelo 2

Alfa Modelo 3

Alfa modelo 4

Alfa modelo 5

Betas

Beta0

No hay beta3 (???)

Tau modelo 1

Tau

Tau Modelo 2

Tau modelo 3

Tau modelo 4

${\bf Tau\ modelo\ 5}$

Delta

Delta modelo 1

[chantar toda la wea de graficos y tablas acá]

Ajuste de modelo DIC y lOO

Table 6: Resultados DIC

	Mascaras					
Modelo	A	В	С	D	E	
1	-1367	-31	-76	25	-20	
2	-2367	-168	-176	-16	-71	
3	-2390	-166	-176	-19	-69	
4	-1977	-92	-126	21	-22	
5	-1369	-29	-82	7	-65	

1

Comentarios finales