Warm Up

Use first principles to find the derivative of $y = b^x$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{b^{(x+h)} - b^{x}}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{b^{x}(b^{h} - 1)}{h}$$

$$\frac{dy}{dx} = \int_{h \to 0}^{x} \lim_{h \to 0} \frac{b^{h} - 1}{h}$$

Find the derivative of $f(x) = 2^x$. $f'(x) = 2^x \lim_{h \to 0} \left(\frac{2^h - 1}{h} \right)$.

	$2^{h}-1$	
h	h	
3	3 = 2.331	
2	3: 1.5	
1	+= 1	
0.5	0.82843	
0.2	n 7434 9	
0.1	0.7171346	
0.01	0.69556	
0.001	0.69339	
0.0001	v. 69317	
$\therefore f'(x) = 0.693 \left(2^{4}\right)$		

$$\therefore f'(x) = 0.693 \left(2^{4}\right)$$

Find the derivative of $f(x) = 3^x$. $f'(x) = 3^x \lim_{h \to 0} \left(\frac{3^h - 1}{h} \right) \approx 1.0 \gamma \left(3^{k} \right)$

h	$\frac{3^h-1}{h}$
1	2
0.1	1.16123
0.01	1.104669
0.001	1.16123 1.104669 1.099213
0.0001	1.098672

What b will have
$$\lim_{h\to 0} \left(\frac{b^h - 1}{h} \right) = 1$$
, so that $f'(x) = b^x$.

ь	$\frac{b^{.0001}-1}{.0001}$
2.5	0.916
2.75	1.0116
2.7	0.9933 1.00068 0.9988
272	1.00068
2.715	<i>0</i> .
P.	1

 $\frac{de^{x}}{dx} = e^{x}$

Example #1

Differentiate

a)
$$y = 5e^x$$

$$\frac{dy}{dx} = 5e^x$$

b)
$$y = e^{-x}$$

b)
$$y = e^{-x}$$
 c) $y = xe^{x}$ d) $y = e^{x^{2}}$

$$\frac{dy}{dx} = -e^{-x}$$

$$\frac{dy}{dx} = e^{x}(Hx)$$

$$y'' = e^{x}(Hx) + e^{x}$$

$$= e^{x}(Hx+1)$$

$$= e^{x}(x+2)$$