DSC680 Project3: Beast Cancer Survival Prediction

Assignment 10.1

Name: Madhuri Basava

Date: 08/02/2024

```
In [1]: # pip install xgboost imbalanced-learn scikit-optimize sweetviz
In [2]: # Import the necessary libraries
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.model_selection import GridSearchCV
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import roc_curve, roc_auc_score, confusion_matrix, accuracy_sc
        import sweetviz as sv
        from sklearn.model_selection import train_test_split
        from xgboost import XGBClassifier
        from sklearn.metrics import classification report, confusion matrix, accuracy score
        from sklearn.preprocessing import LabelEncoder
        from sklearn.feature_selection import mutual_info_classif
        from scipy import stats as ss
        from scipy.stats import chi2_contingency
        from sklearn.preprocessing import OneHotEncoder
        from imblearn.over sampling import SMOTE
        # Ignore warnings
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
In [3]: # Load the Breast Cancer dataset into the data frame
        breast_cancer_df = pd.read_csv('BRCA.csv')
        breast cancer df
```

_		'	-
\cap		1.2	
U	uч	10	Ι.

	Patient_ID	Age	Gender	Protein1	Protein2	Protein3	Protein4	Tumour_Stage	Histology
0	TCGA-D8- A1XD	36.0	FEMALE	0.080353	0.42638	0.54715	0.273680	III	Infiltrating Ductal Carcinoma
1	TCGA-EW- A1OX	43.0	FEMALE	-0.420320	0.57807	0.61447	-0.031505	II	Mucinous Carcinoma
2	TCGA-A8- A079	69.0	FEMALE	0.213980	1.31140	-0.32747	-0.234260	Ш	Infiltrating Ductal Carcinoma
3	TCGA-D8- A1XR	56.0	FEMALE	0.345090	-0.21147	-0.19304	0.124270	II	Infiltrating Ductal Carcinoma
4	TCGA-BH- A0BF	56.0	FEMALE	0.221550	1.90680	0.52045	-0.311990	II	Infiltrating Ductal Carcinoma
•••									
336	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
337	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
338	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
339	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
340	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

341 rows × 16 columns

In [4]: # Display the information to understand the dataset
breast_cancer_df.info()

```
<class 'pandas.core.frame.DataFrame'>
           RangeIndex: 341 entries, 0 to 340
           Data columns (total 16 columns):
                                        Non-Null Count Dtype
            # Column
           --- -----
                                          -----
            0 Patient_ID
                                         334 non-null object
           1 Age 334 non-null float64
2 Gender 334 non-null object
3 Protein1 334 non-null float64
4 Protein2 334 non-null float64
5 Protein3 334 non-null float64
6 Protein4 334 non-null float64
7 Tumour_Stage 334 non-null object
8 Histology 334 non-null object
9 ER status 334 non-null object
10 PR status 334 non-null object
11 HER2 status 334 non-null object
12 Surgery_type 334 non-null object
13 Date_of_Surgery 334 non-null object
14 Date of Last Visit 317 non-null object
            1 Age
                                          334 non-null float64
            14 Date_of_Last_Visit 317 non-null object
            15 Patient_Status 321 non-null object
           dtypes: float64(5), object(11)
           memory usage: 42.8+ KB
In [5]: # Check for any missing values
           breast_cancer_df.isna().sum()
Out[5]: Patient_ID
                                         7
                                         7
           Age
                                         7
           Gender
                                        7
           Protein1
                                        7
           Protein2
           Protein3
                                         7
           Protein4
                                        7
           Tumour_Stage
                                         7
           Histology
                                       7
                                        7
           ER status
           PR status
                                       7
          HER2 status
                                       7
                                         7
           Surgery_type
           Date_of_Surgery
                                       7
           Date_of_Last_Visit
                                        24
           Patient_Status
                                        20
           dtype: int64
In [6]: # Drop the missing values
           # breast_cancer_df.dropna(how='all', inplace=True)
           # breast_cancer_df.dropna(subset='Patient_Status', inplace = True)
           # Filter rows with at least one NaN value
           breast_cancer_df = breast_cancer_df.dropna()
           breast_cancer_df.info()
```

<class 'pandas.core.frame.DataFrame'>

Index: 317 entries, 0 to 333
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Patient_ID	317 non-null	object
1	Age	317 non-null	float64
2	Gender	317 non-null	object
3	Protein1	317 non-null	float64
4	Protein2	317 non-null	float64
5	Protein3	317 non-null	float64
6	Protein4	317 non-null	float64
7	Tumour_Stage	317 non-null	object
8	Histology	317 non-null	object
9	ER status	317 non-null	object
10	PR status	317 non-null	object
11	HER2 status	317 non-null	object
12	Surgery_type	317 non-null	object
13	Date_of_Surgery	317 non-null	object
14	Date_of_Last_Visit	317 non-null	object
15	Patient_Status	317 non-null	object
4+,,,,	oc. £100+64/5\ obio	c+/11\	

dtypes: float64(5), object(11)

memory usage: 42.1+ KB

In [7]: breast_cancer_df

_			-
()	11	17	
\cup	ич	/	

	Patient_ID	Age	Gender	Protein1	Protein2	Protein3	Protein4	Tumour_Stage	Histology
0	TCGA-D8- A1XD	36.0	FEMALE	0.080353	0.42638	0.54715	0.273680	III	Infiltrating Ductal Carcinoma
1	TCGA-EW- A1OX	43.0	FEMALE	-0.420320	0.57807	0.61447	-0.031505	II	Mucinous Carcinoma
2	TCGA-A8- A079	69.0	FEMALE	0.213980	1.31140	-0.32747	-0.234260	III	Infiltrating Ductal Carcinoma
3	TCGA-D8- A1XR	56.0	FEMALE	0.345090	-0.21147	-0.19304	0.124270	II	Infiltrating Ductal Carcinoma
4	TCGA-BH- A0BF	56.0	FEMALE	0.221550	1.90680	0.52045	-0.311990	II	Infiltrating Ductal Carcinoma
•••									
329	TCGA-AN- A04A	36.0	FEMALE	0.231800	0.61804	-0.55779	-0.517350	III	Infiltrating Ductal Carcinoma
330	TCGA-A8- A085	44.0	MALE	0.732720	1.11170	-0.26952	-0.354920	II	Infiltrating Lobular Carcinoma
331	TCGA-A1- A0SG	61.0	FEMALE	-0.719470	2.54850	-0.15024	0.339680	II	Infiltrating Ductal Carcinoma
332	TCGA-A2- A0EU	79.0	FEMALE	0.479400	2.05590	-0.53136	-0.188480	I	Infiltrating Ductal Carcinoma
333	TCGA-B6- A40B	76.0	FEMALE	-0.244270	0.92556	-0.41823	-0.067848	1	Infiltrating Ductal Carcinoma

317 rows × 16 columns

In [8]: # Check if there are duplicate rows in the data set
breast_cancer_df.duplicated().sum()

Out[8]: 0

Exploratory Data Analysis

In [9]: breast_cancer_df.describe()

	Age	Protein1	Protein2	Protein3	Protein4
count	317.000000	317.000000	317.000000	317.000000	317.000000
mean	58.725552	-0.027232	0.949557	-0.095104	0.006713
std	12.827374	0.543858	0.906153	0.589027	0.625965
min	29.000000	-2.144600	-0.978730	-1.627400	-2.025500
25%	49.000000	-0.350600	0.368840	-0.531360	-0.382240
50%	58.000000	0.005649	0.997130	-0.193040	0.038522
75%	67.000000	0.336260	1.612000	0.251210	0.436250
max	90.000000	1.593600	3.402200	2.193400	1.629900

Out[9]:

```
In [10]: # Target distribution

# Set the figure size and create a count plot
plt.figure(figsize=(8, 6))
ax = sns.countplot(x=breast_cancer_df['Patient_Status'], palette='PuRd')

# Add Labels to each bar in the plot
for p in ax.patches:
    ax.text(p.get_x()+p.get_width()/2, p.get_height()+3, f'{p.get_height()}', ha="c"
plt.show()
```


Gender is not a useful feature in this case as there are only a few male patients

```
In [12]: breast_cancer_df['Age'].hist(bins = 50, grid = False, color='pink')
   plt.xlabel(xlabel = "Age")
   plt.ylabel(ylabel = "Count")
   plt.title("Age Distribution of BRCA Patients")
```

Out[12]: Text(0.5, 1.0, 'Age Distribution of BRCA Patients')

Age is normally distributed, with slight right skewness and most of population is around 45-65 years old.

```
IQR = Q3 - Q1
         # Identify outliers for each numerical column
         outliers = {}
         for column in numerical_columns:
             lower_bound = Q1[column] - 1.5 * IQR[column]
             upper_bound = Q3[column] + 1.5 * IQR[column]
             outliers[column] = breast_cancer_df[(breast_cancer_df[column] < lower_bound) |</pre>
         # Count the number of outliers for each numerical column
         outlier_counts = {col: len(outliers[col]) for col in numerical_columns}
         # Display the number of outliers for each numerical column
         outlier_counts
Out[14]: {'Age': 0, 'Protein1': 7, 'Protein2': 0, 'Protein3': 5, 'Protein4': 4}
In [15]: # Remove observations with outliers from the dataframe
         for col in numerical_columns:
             breast_cancer_df = breast_cancer_df[(breast_cancer_df[col] >= Q1[col] - 1.5 * I
In [16]: # Evaluate the Spearman correlation between numerical columns
         correlation_matrix = breast_cancer_df[numerical_columns].corr(method='spearman')
         # Plot the correlation matrix as a heatmap
         plt.figure(figsize=(10, 8))
         sns.heatmap(correlation_matrix, annot=True, vmin = -2, vmax = 2, cmap='PuRd')
         plt.title('Correlation Matrix')
         plt.show()
```


Correlation Matrix

```
X = breast_cancer_df[numerical_columns]
y = breast_cancer_df['Patient_Status']
# Encode the target variable
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)

In [18]: # Drop the Age column from the dataframe
breast_cancer_df = breast_cancer_df.drop('Age', axis=1)
In [19]: breast_cancer_df
```

_		Га	_	-
Oι	14-1	- 1	a	
\cup \cup	1 し		ン	

	Patient_ID	Gender	Protein1	Protein2	Protein3	Protein4	Tumour_Stage	Histology	stat
0	TCGA-D8- A1XD	FEMALE	0.080353	0.42638	0.54715	0.273680	III	Infiltrating Ductal Carcinoma	Posit
1	TCGA-EW- A1OX	FEMALE	-0.420320	0.57807	0.61447	-0.031505	II	Mucinous Carcinoma	Posit
2	TCGA-A8- A079	FEMALE	0.213980	1.31140	-0.32747	-0.234260	Ш	Infiltrating Ductal Carcinoma	Posit
3	TCGA-D8- A1XR	FEMALE	0.345090	-0.21147	-0.19304	0.124270	II	Infiltrating Ductal Carcinoma	Posit
4	TCGA-BH- A0BF	FEMALE	0.221550	1.90680	0.52045	-0.311990	II	Infiltrating Ductal Carcinoma	Posit
•••									
329	TCGA-AN- A04A	FEMALE	0.231800	0.61804	-0.55779	-0.517350	III	Infiltrating Ductal Carcinoma	Posit
330	TCGA-A8- A085	MALE	0.732720	1.11170	-0.26952	-0.354920	II	Infiltrating Lobular Carcinoma	Posit
331	TCGA-A1- A0SG	FEMALE	-0.719470	2.54850	-0.15024	0.339680	II	Infiltrating Ductal Carcinoma	Posit
332	TCGA-A2- A0EU	FEMALE	0.479400	2.05590	-0.53136	-0.188480	I	Infiltrating Ductal Carcinoma	Posit
333	TCGA-B6- A40B	FEMALE	-0.244270	0.92556	-0.41823	-0.067848	1	Infiltrating Ductal Carcinoma	Posit

301 rows × 15 columns

```
In [20]: # Plot Scatter plot on Tumor Stage vs Surgery Type
A = breast_cancer_df[breast_cancer_df.Patient_Status == "Alive"]
D = breast_cancer_df[breast_cancer_df.Patient_Status == "Dead"]

#T= breast_cancer_df[breast_cancer_df.Tumour_Stage =="III"]

plt.title("Alive vs Dead")
plt.xlabel("Tumour Stage")
plt.ylabel("Surgery Type")
plt.scatter(A.Tumour_Stage, A.Surgery_type, color = "Green", label = "Alive", alpha plt.scatter(D.Tumour_Stage, D.Surgery_type, color = "Red", label = "Dead", alpha =
```


From the above graph, we can see that for Tumor Stage 3, Lumpectomy can be performed to help the patient.

Bar plot of HER2 status

Bar plot of Surgery type


```
In [23]:
         # Drop the columns because they have one or almost unique value
         breast_cancer_df=breast_cancer_df.drop(columns=['ER status','PR status','Gender'])
         # Extract again the categorical columns
         categorical_columns = breast_cancer_df.select_dtypes(include=['object']).columns
```

Surgery_type

```
In [24]: # Calculate the contingency table between columns
         categorical_columns = ['Tumour_Stage', 'Histology', 'HER2 status', 'Surgery_type']
         for col in categorical_columns:
             contingency_table = pd.crosstab(breast_cancer_df[col], breast_cancer_df['Patien
             print(f'Contingency Table for {col}:')
             print(contingency_table)
             print('\n')
```

Contingency Table for Tumour_Stage:
Patient_Status Alive Dead
Tumour_Stage
I 51 9
II 135 33
III 56 17

Contingency Table for Histology:

Patient_Status	Alive	Dead
Histology		
Infiltrating Ductal Carcinoma	169	42
Infiltrating Lobular Carcinoma	65	14
Mucinous Carcinoma	8	3

Contingency Table for HER2 status:

Patient_Status Alive Dead

HER2 status

Negative 218 55 Positive 24 4

Contingency Table for Surgery_type:

Patient_Status	Alive	Dead
Surgery_type		
Lumpectomy	55	8
Modified Radical Mastectomy	68	16
Other	68	23
Simple Mastectomy	51	12

```
In [25]: # Encode the categorical columns with one hot encoding except for Date of Surgery,
         # Select the categorical columns to encode
         categorical_columns_encode = ['Tumour_Stage', 'Histology', 'HER2 status', 'Surgery_
         # Create a OneHotEncoder object
         encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=False, dtype=int)
         # Apply encoding to the specified columns
         encoded_features = encoder.fit_transform(breast_cancer_df[categorical_columns_encod
         # Create a DataFrame with the encoded features
         encoded_df = pd.DataFrame(encoded_features, columns=encoder.get_feature_names_out(c
         # Remove the original columns and add the encoded ones
         df_encoded = breast_cancer_df.drop(columns=categorical_columns_encode).reset_index(
         df_encoded = pd.concat([df_encoded, encoded_df], axis=1)
         # Encode the target variable Patient Status with LabelEncoder
         df_encoded['Patient_Status'] = label_encoder.fit_transform(df_encoded['Patient Stat
         df = df_encoded
In [26]: #Introduce the variable Difference_Days and divide the date of surgery and date of
         # Change the data type of the 'Date_of_Surgery' and 'Date_of_Last_Visit' columns to
         df['Date_of_Surgery'] = pd.to_datetime(df['Date_of_Surgery'])
         df['Date_of_Last_Visit'] = pd.to_datetime(df['Date_of_Last_Visit'])
         # Calculate the difference in days between the date of last visit and the date of s
         df['Difference_Days'] = (df['Date_of_Last_Visit'] - df['Date_of_Surgery']).dt.days
         # Extract the day, month, and year from the 'Date_of_Surgery' and 'Date_of_Last_Vis
         df["Month_of_Surgery"] = df["Date_of_Surgery"].apply(lambda x : x.month)
         df["Day_of_Surgery"] = df["Date_of_Surgery"].apply(lambda x : x.day)
         df["Year_of_Surgery"] = df["Date_of_Surgery"].apply(lambda x : x.year)
         df["Month_of_Last_visit"] = df["Date_of_Last_Visit"].apply(lambda x : x.month)
         df["Day_of_Last_visit"] = df["Date_of_Last_Visit"].apply(lambda x : x.day)
         df["Year_of_Last_visit"] = df["Date_of_Last_Visit"].apply(lambda x : x.year)
         # Drop the 'Date_of_Surgery' and 'Date_of_Last_Visit' columns and change the displa
         df = df.drop(['Date_of_Surgery', 'Date_of_Last_Visit'], axis=1)
         df['Patient_Status'] = df.pop('Patient_Status')
```

Model Development

```
In [27]: df = df.drop('Patient_ID', axis=1)
X = df.drop(columns=['Patient_Status'])
y = df['Patient_Status']

# Split dataset into training and test set after feature generation
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta)
```

```
# Check dimensions of the sets
         print(f'Training set size: {X_train.shape[0]}')
         print(f'Test set size: {X test.shape[0]}')
         Training set size: 210
         Test set size: 91
In [28]: # Use SMOTE to balance the training set
         # Create a SMOTE object
         smote = SMOTE(random_state=42)
         # Apply SMOTE to the training set
         X_train_balanced, y_train_balanced = smote.fit_resample(X_train, y_train)
         # Check the dimensions of the balanced training set
         print(f'Balanced training set size: {X_train_balanced.shape[0]}')
         X_train = X_train_balanced
         y_train = y_train_balanced
         Balanced training set size: 338
In [29]: # Function to plot a confusion matrix
         def plot_confusion_matrix(y_true, y_pred, title):
             Plots a confusion matrix using seaborn's heatmap visualization.
             Parameters:
             - y_true: array-like of true labels.
             - y_pred: array-like of predicted labels.
             - title: str, title of the plot.
             This function calculates the confusion matrix from true and predicted labels,
             then visualizes it with annotations and a color map of 'Blues'.
             cm = confusion_matrix(y_true, y_pred) # Calculate confusion matrix
             cmd = ConfusionMatrixDisplay(cm)
             cmd.plot(cmap='PuRd');
             plt.title(title) # Set the title of the plot
             plt.xlabel('Predicted') # Set x-axis Label
             plt.ylabel('Actual') # Set y-axis label
         # Function to plot features importance
         def plot_feature_importance(model, feature_names, title):
             Plots the feature importance for tree-based machine learning models.
             Parameters:
             - model: the trained model object that has the attribute 'feature_importances_'
             - feature_names: list or array of feature names.
             - title: str, title of the plot.
             This function plots the feature importances provided by the model, sorting them
             in descending order and displaying a bar plot.
             importances = model.feature_importances_
```

```
indices = np.argsort(importances)[::-1]
             plt.figure(figsize=(10, 6))
             plt.title(title)
             plt.bar(range(len(importances)), importances[indices], align='center', color='p
             plt.xticks(range(len(importances)), [feature_names[i] for i in indices], rotati
             plt.xlim([-1, len(importances)])
             plt.xlabel('Features')
             plt.ylabel('Importance')
             plt.show()
In [30]: # Define the models to train, in this case, we will use XGBoost
         models = {
             'XGBoost': XGBClassifier(),
             'RandomForest' : RandomForestClassifier(n_estimators=500),
             'DecisionTree' : DecisionTreeClassifier(criterion='gini',max depth=15)
         }
         # Dictionary to store the accuracy for comparison
         model_accuracies = {}
         # Train and evaluate the models
         for name, model in models.items():
             model.fit(X_train, y_train)
             y_pred = model.predict(X_test)
             accuracy = accuracy_score(y_test, y_pred)
             model_accuracies[name] = accuracy # Store the accuracy of each model
             print(f"Model: {name}")
             print("Accuracy:", accuracy)
             print(classification_report(y_test, y_pred))
             # Optional: Feature importance and confusion matrix
             # Ensure these functions are defined or available in your environment
             plot feature_importance(model, X.columns, f'Feature Importances in {name}')
             plot_confusion_matrix(y_test, y_pred, f'Confusion Matrix: {name}')
         # Find the best model based on accuracy
         best_model_name = max(model_accuracies, key=model_accuracies.get)
         best_model = models[best_model_name]
         Model: XGBoost
         Accuracy: 0.7802197802197802
                       precision recall f1-score
                                                       support
                                    0.92
                                                0.87
                    0
                            0.83
                                                            73
                    1
                            0.40
                                    0.22
                                                0.29
                                                            18
                                                0.78
                                                            91
             accuracy
            macro avg
                            0.61
                                    0.57
                                                0.58
                                                            91
         weighted avg
                            0.74
                                    0.78
                                                0.75
                                                            91
```

Feature Importances in XGBoost

Model: RandomForest

Accuracy: 0.7472527472527473

	precision	recall	f1-score	support
(0.80	0.92	0.85	73
-	0.14	0.06	0.08	18
accuracy	/		0.75	91
macro av		0.49	0.47	91
weighted av	9.67	0.75	0.70	91

Feature Importances in RandomForest

Model: DecisionTree

Accuracy: 0.6703296703296703

		precision	recall	f1-score	support
	0	0.81	0.77	0.79	73
	1	0.23	0.28	0.25	18
accu	racy			0.67	91
macro	avg	0.52	0.52	0.52	91
weighted	avg	0.70	0.67	0.68	91

Confusion Matrix: DecisionTree

Support Vector Classifier

```
In [32]: svc.fit(X_train, y_train)
    y_pred = svc.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    model_accuracies[name] = accuracy # Store the accuracy of each model

print(f"Model: Support Vector Classifier")
    print("Accuracy:", accuracy)
    print(classification_report(y_test, y_pred))

# Ensure these functions are defined or available in your environment
    plot_confusion_matrix(y_test, y_pred, f'Confusion Matrix: Support Vector Classifier
```

```
best_model_name = max(model_accuracies, key=model_accuracies.get)
best_model = models[best_model_name]
```

Model: Support Vector Classifier Accuracy: 0.6153846153846154

	precision	recall	f1-score	support
0	0.78	0.73	0.75	73
1	0.13	0.17	0.15	18
accuracy			0.62	91
macro avg	0.45	0.45	0.45	91
weighted avg	0.65	0.62	0.63	91

Confusion Matrix: Support Vector Classifier

Logistic Regression

```
In [33]: logit = LogisticRegression(max_iter=3500, penalty='elasticnet', solver = 'saga', l1
logit.fit(X_train, y_train)
logit_importances = logit.coef_[0]
logit_feature_importances = pd.Series(index = X_train.columns, data= np.abs(logit_i
logit_feature_importances = logit_feature_importances.sort_values(ascending=True)
logit_feature_importances.plot(kind='barh', title = 'Logisitic Regression Feature I
plt.show()
```



```
In [34]: logit.fit(X_train, y_train)
    y_pred = logit.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    model_accuracies[name] = accuracy # Store the accuracy of each model

print(f"Model: Logistic Regression")
    print("Accuracy:", accuracy)
    print(classification_report(y_test, y_pred))

# Ensure these functions are defined or available in your environment
    plot_confusion_matrix(y_test, y_pred, f'Confusion Matrix: Logistic Regression')

best_model_name = max(model_accuracies, key=model_accuracies.get)
    best_model = models[best_model_name]
```

Model: Logistic Regression Accuracy: 0.6263736263736264

	precision	recall	f1-score	support
0	0.84	0.66	0.74	73
1	0.26	0.50	0.35	18
accuracy			0.63	91
macro avg	0.55	0.58	0.54	91
weighted avg	0.73	0.63	0.66	91

Confusion Matrix: Logistic Regression

In [35]: print("Best Model: ", best_model)

Best Model: XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...)