

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro Tecnológico - Departamento de Engenharia Elétrica

Disciplina: Instalações Elétricas I - ELE 3670/ELE 8512 Curso: Eng. Elétrica/ Computação

Professor: Hélio Marcos André Antunes E-mail: helio@ele.ufes.br

Lista de exercícios 2 – Unidade 04

De acordo com a NBR 5410, para qarantir uma coordenação entre condutores e os dispositivos de proteção contra sobrecarga, devem ser considerados os parâmetros, I_2 , I_8 , I_8 , I_8 , I_9 , mostrados na figura acima.

Sendo:

l. - corrente de proteção do circuito

1, - capacidade de condução de corrente dos condutores

I_N – corrente nominal do dispositivo de proteção

l₂ – corrente que assegura efetivamente a atuação do dispositivo de proteção

Observando a ordem dos parâmetros na escala hipotética da figura, para que a proteção dos condutores contra sobrecargas fique assegurada, serão necessárias as seguintes correspondências:

$${\rm (A)} \ {\rm I_N} - 1 \ , \ {\rm I_B} - 2 \ , \ {\rm I_Z} - 3 \ \ , \ \ {\rm I_2} - 4.$$

(C)
$$I_B - 1$$
, $I_N - 2$, $I_Z - 3$, $I_2 - 4$.
(E) $I_B - 1$, $I_2 - 2$, $I_N - 3$, $I_Z - 4$.

$${\sf (B)} \hspace{0.5cm} {\sf I_2-1} \;, \; {\sf I_B-2} \;, \; {\sf I_N-3} \;\;, \;\; {\sf I_2-4}.$$

(D)
$$I_Z - 1$$
, $I_B - 2$, $I_Z - 3$, $I_N - 4$.

2) A figura abaixo apresenta a curva característica de tempo x corrente de três disjuntores termomagnéticos (D1, D2 e D3) regulamentados pela NBR 60898. O Disjuntor D1 está localizando no quadro de medição, já D2 e D3 estão presentes no quadro de distribuição de circuitos da instalação. Dados gerais: D1- I_n =80 A, tripolar (220V) e I_{cs} =3 kA; D2- I_n =25A, bipolar (220V) e I_{cs} =3 kA; D3- I_n =50A, unipolar (127V) e I_{cs} =1,5 kA;

Pergunta-se:

- a) Qual a curva de atuação de D1, D2 e D3?
- b) Havendo um curto-circuito de 500A a jusante de D2, qual será o tempo de atuação do disjuntor?
- c) Se ocorrer um curto-circuito de 320A a jusante de D3, qual será o tempo de atuação do disjuntor? O disjuntor D1 atua?

3) Disjuntores termomagnéticos aplicados a instalações prediais são dispositivos que visam proteger equipamentos e a rede elétrica de acidentes causados por variação da corrente (sobrecarga ou curto-circuito). Considere a seguinte notação:

I_N: corrente nominal do dispositivo de proteção;

I_B: corrente de projeto do circuito;

Iz: capacidade de condução de corrente dos condutores;

I_{int}: capacidade de interrupção do dispositivo de proteção;

 I_{K} : corrente de curto-circuito presumida no ponto de aplicação do dispositivo de proteção.

Assinale a única alternativa INCORRETA, segundo as Normas Brasileiras aplicáveis:

- (A) $I_N \ge I_Z$;
- (B) $I_N \ge I_B$;
- (C) $I_Z \ge I_B$;
- (D) $I_{int} > I_K$;
- (E) $I_{int} \ge I_B$.

I/In

4) Em instalações elétricas de estabelecimentos de saúde recomenda-se, em alguns circuitos, o uso de dispositivo de proteção diferencial residual (DR). Considere que um dispositivo DR foi conectado de acordo com o esquema apresentado na figura a seguir. Assinale a alternativa correta.

- A) O dispositivo está conectado de forma incorreta porque dispositivos DR só podem ser empregados em circuitos monofásicos.
- B) O dispositivo está conectado corretamente.
- C) O dispositivo está conectado de forma incorreta porque dispositivos DR não são adequados para a proteção de circuitos que usam o esquema de aterramento adotado.
- O dispositivo está conectado de forma incorreta porque o neutro da carga não está disponível.
- O dispositivo está conectado de forma incorreta porque o condutor de proteção não deveria passar pelo DR.

- 5) Os disjuntores termomagnéticos são utilizados para proteger circuitos ou instalações elétricas e são dotados de dois disparadores: um térmico e um magnético, que devem atuar, respectivamente, quando houver no circuito ou instalação
 - (A) Corrente de curto-circuito e sobrecorrente.
 - (B) Corrente de curto circuito e corrente de fuga.
 - (C) Sobrecorrente e corrente de curto-circuito.
 - (D) Corrente de fuga e sobretensão.
- 6) O uso dos disjuntores termomagnéticos em circuitos elétricos é indispensável, mesmo que existam, nesses circuitos, os dispositivos de proteção à corrente diferencial residual (DR), tendo em vista que sua atuação se dá na presença de:
 - (A) curto-circuito, diferentemente do DR, que atua na presença de sobre-corrente.
 - (B) curto-circuito e sobre-corrente, diferentemente do DR, que atua na presença de corrente de fuga.
 - (C) corrente de fuga e de curto-circuito, diferentemente do DR, que atua na presença de sobre-corrente.
 - (D) corrente de fuga e de sobre-corrente, diferentemente do DR, que atua na presença de curto-circuito.
 - (E) corrente de fuga, diferentemente do DR, que atua na presença de sobre-corrente e de curto-circuito.
- 7) Assinale a alternativa correta.

Conforme a NBR-5410/2004, para dimensionar o condutor de um circuito, dentre outros critérios, deve ser utilizado o critério de curto-circuito. Se o dispositivo de proteção utilizado é disjuntor termomagnético, fabricado segundo a norma NBR-NM-60898, o tempo de disparo do disjuntor em curto circuito é 10 milisegundos.

$$\int_0^t i(t) \cdot dt \le k^2 \cdot S^2 \implies l^2 \cdot t_{dd} \le k^2 \cdot S^2$$

Se o condutor utilizado no circuito tem seção transversal de 4,0 mm², com isolação de PVC, e temperatura de operação 70 $^{\circ}$ C, onde k = 115 e a corrente de curto circuito é 5 kA,

- a. () o tempo limite de atuação do disjuntor é
 8,4 mili-segundos, para garantir a proteção do condutor.
- b. () o tempo limite de atuação do disjuntor é
 8,4 segundos, para garantir a proteção do condutor.
- c. () o tempo limite de atuação do disjuntor é
 10 mili-segundos, para garantir a proteção do condutor.
- d. () o tempo limite de atuação do disjuntor é 10 segundos, para garantir a proteção do condutor.
- e. () e se a corrente nominal do disjuntor é compatível com a capacidade de corrente do condutor, a proteção contra curto-circuito circuito está garantida.

- 8) Em um sistema de partida direta de motor trifásico, com rotor em gaiola, é comum a utilização de um dispositivo limitador de corrente que tem características de um fusível de retardo para corrente de sobrecarga e de um fusível rápido para corrente de curto-circuito. Trata-se de um
 - (A) disjuntor DR.
 - (B) disjuntor termomagnético.
 - (C) fusível tipo cartucho.
 - (D) fusível DIAZED.
 - (E) fusível NH.
- Conforme a NBR-5410/2004 a utilização do dispositivo diferencial residual deve ser utilizada como proteção complementar contra choque elétrico.

Assinale a alternativa correta.

- a. () O interruptor diferencial residual, além de proteger contra choque elétrico, também protege o circuito contra corrente de sobrecarga.
- b. () A corrente nominal mínima do interruptor diferencial residual (IDR), utilizado para proteger mais de um circuito, deve ser maior ou igual à somatória das correntes nominais dos disjuntores protegidos.
- c. () A corrente nominal mínima do interruptor diferencial residual (IDR), utilizado para proteger mais de um circuito, deve ser maior ou igual à corrente nominal do maior disjuntor a ser protegido.
- d. () O interruptor diferencial residual protege contra choque elétrico, e quando ocorre uma falta a terra, o dispositivo diferencial residual secciona automaticamente o circuito.
- e. () Os dispositivos diferenciais residuais podem ser instalados em locais que utilizam o sistema de aterramento IT.
- 10) Os dispositivos de proteção classificam-se quanto ao tipo de proteção, número de pólos e tipos de dispositivos de proteção contra sobrecorrentes. Quanto à classificação relativa ao número de pólos, podemos afirmar que esses dispositivos de proteção apresentam-se nos formatos:
 - a) Monopolares e bipolares.
 - b) Monopolares, bipolares e tripolares.
 - c) Monopolares, bipolares, tripolares e tetrapolares.
 - Monopolares, bipolares, tripolares, tetrapolares pentapolares.

11)

Considere o dispositivo abaixo e algumas de suas especificações:

Bipolar

IΔN = 30 mA (alta sensibilidade)

In = 25 A

Trata-se de um

- (A) disjuntor diferencial residual.
- (B) disjuntor termomagnético.
- (C) fusível DIAZED.
- (D) fusível NEOZED.
- (E) fusível NH.
- 12) Considere as situações seguintes:
 - Circuitos elétricos que sirvam a pontos situados em locais contendo banheira ou chuveiro, exceto os circuitos que alimentem aparelhos de iluminação posicionados a uma altura igual ou superior a 2,50 m.
 - Circuitos elétricos que alimentem tomadas de corrente situadas em áreas externas à edificação.
 - III. Circuitos elétricos de tomadas de corrente situadas em áreas internas que possam vir a alimentar equipamentos no exterior.
 - IV. Circuitos elétricos de tomadas de corrente de cozinhas, copas-cozinhas, lavanderias, áreas de serviço, garagens e, no geral, a todo local interno molhado em uso normal ou sujeito a lavagens, exceto as tomadas de corrente claramente destinadas a alimentar refrigeradores e congeladores e que não fiquem diretamente acessíveis.

A NBR 5410 recomenda que, qualquer que seja o sistema de aterramento, esses circuitos devem ter proteção complementar contra contatos diretos por

A NBR 5410 recomenda que, qualquer que seja o sistema de aterramento, esses circuitos devem ter proteção complementar contra contatos diretos por

- (A) fusíveis NEOZED.
- (B) fusíveis DIAZED.
- (C) disjuntores termomagnéticos.
- (D) dispositivos DR de baixa sensibilidade.
- (E) dispositivos DR de alta sensibilidade.
- 13) Suponha que em um certo circuito monofásico de um hospital está instalado um dispositivo de proteção por corrente diferencial residual (DR). A figura a seguir apresenta uma montagem para a verificação da operação do dispositivo DR. Seja I_{aN} a corrente nominal do dispositivo DR. Iniciando-se com a resistência R_P em seu valor máximo e reduzindo-a até que o dispositivo DR opere, foi medido o valor de I_a no momento da operação. O dispositivo oferece proteção adequada se:

- A) $I_{\Delta} < I_{\Delta N}$.
- B) $I_{\Delta} > 2I_{\Delta N}$
- C) $I_{\Delta} > I_{\Delta N}$
- D) $I_{\Delta} > 2I_{\Delta N}$
- E) $I_{\Delta} = 2I_{\Delta N}$
- 14) Dimensionar o disjuntor termomagnético para o circuito 2 da figura a seguir, sabendo que ele é constituído de condutores unipolares de cobre com isolação de PVC, está instalado em eletroduto de PVC embutido em alvenaria (30° C- B1) e a corrente presumida de curto-circuito no ponto de instalação (QDC) do referido dispositivo de proteção é de 1 kA.

Tabela 10.10 - Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C, e D (Tabela 36 da NBR 5410:2004).

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperatura de referência do ambiente: 30° C(ar), 20° C(solo)

Seções Nominais mm²	Métodos de Referência Indicados na Tabela 10.8													
	A1		A2		B1		B2		С		D			
	Número de Condutores Carregados													
	2	3	2_	3	2	3	2	3	2	3	2	3		
(1)	<u>(2)</u>	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11	(12)	(13)		
	Cobre													
0,5	7	7	7	7	9	8	9	8	10	9	12	10		
0,75	9	9	9	9	11	10	11	10	13	11	15	12		
1	11	10	11	10	14	12	13	12	15	14	18	15		
1.5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18		
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24		
4	26	24	25	23	32	28	30	27	36	32	38	31		
6	34	31	32	29	41	36	38	34	46	41	47	39		
10	46	42	43	39	57	50	52	46	63	57	63	52		
16	61	56	57	52	76	68	69	62	85	76	81	67		

Ref.	Forma de agrupamento dos condutores	Número de circuitos ou de cabos multipolares											
		1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥20
1	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38