Chapter 1

De-novo design of metal binding moieties using machine learning

1.1 Background

1.2 Methods

1.2.1 Pseudo code

```
Result: Write here the result

foreach whaoei do

| xxx;
end
```

Algorithm 1: How to write algorithms

no.	val	abbrv	full geometry name	instances	percent
1	0	-	-	4086	15%
2	0	IRR	irregular	7530	28%
3	2	TRV	trigonal plane with a vacancy	2209	8%
4	2	LIN	linear	230	1%
5	3	TRI	trigonal plane	214	1%
6	3	SPV	square plane with a vacancy	634	2%
7	3	TEV	tetrahedron with a vacancy	1047	4%
8	4	BVP	trigonal bipyramid with a vacancy (equatorial)	234	1%
9	4	BVA	trigonal bipyramid with a vacancy (axial)	505	2%
10	4	SPL	square plane	537	2%
11	4	PYV	square pyramid with a vacancy (equatorial)	1124	4%
12	4	TET	tetrahedron	1405	5%
13	5	SPY	square pyramid	1247	5%
14	5	TBP	trigonal bipyramid	202	1%
15	5	TPV	trigonal prism with a vacancy	87	0%
16	6	OCT	octahedron	3219	12%
17	6	TPR	trigonal prism	49	0%
18	6	PVP	pentagonal bipyramid with a vacancy (equatorial)	491	2%
19	6	CTF	trigonal prism, square-face monocapped with a vacancy (capped face)	40	0%
20	6	CTN	trigonal prism, square-face monocapped with a vacancy (non-capped edge)	95	0%
21	6	PVA	pentagonal bipyramid with a vacancy (axial)	129	0%
22	6	CON	octahedron face monocapped with a vacancy (non-capped face)	77	0%
23	6	COF	octahedron face monocapped with a vacancy (capped face)	71	0%
24	7	HVP	hexagonal bipyramid with a vacancy (equatorial)	49	0%
25	7	CUV	cube with a vacancy	4	0%
26	7	CTP	trigonal prism square-face monocapped	99	0%
27	7	PBP	pentagonal bipyramid	544	2%
28	7	HVA	hexagonal bipyramid with a vacancy (axial)	2	0%
29	7	COC	octahedron face monocapped	148	1%
30	7	SAV	square antiprism with a vacancy	83	0%
31	8	BTT	trigonal prism triangular-face bicapped	0	0%
32	8	BOC	octahedron trans-bicapped	0	0%
33	8	BTS	trigonal prism square-face bicapped	56	0%
34	8	SQA	square antiprism	79	0%
35	8	CUB	cube	3	0%
36	8	$_{ m HBP}$	hexagonal bipyramid	5	0%
37	9	CSA	square antiprism square-face monocapped	0	0%
38	9	TTP	trigonal prism square-face tricapped	0	0%

1.3 Results

1.3.1 First Glance

	HIS	CYS	ASP	GLU	MET	НОН	LYS	TYR	THR	GLN	ARG	VAL	PRO	TRP	ILE	PHE	GlY	ALA	LEU	SER	ASN
Li	4.26	0	12.8	8.51	0	10.6	8.51	2.13	10.6	4.26	2.13	2.13	0	2.13	2.13	0	0	Li	8.51	8.51	8.51
Na	3.42	0.72	14.5	12.3	1.11	16	2.83	3.73	6.07	4.01	3.63	3.03	1.49	0.59	2.26	1.8	0	Na	3.55	8.36	6.71
K	3.4	0.82	12.6	10.2	0.94	11	4.1	3.98	6.09	3.86	3.51	4.22	0.82	0.94	3.4	1.64	0	K	6.91	7.85	6.79
Rb	0	2.7	5.41	10.8	0	8.11	5.41	10.8	10.8	2.7	10.8	0	0	2.7	0	0	0	Rb	8.11	8.11	8.11
Cs	5.5	1.83	10.1	5.5	0	29.4	1.83	2.75	3.67	1.83	2.75	2.75	3.67	2.75	1.83	0	0	Cs	6.42	7.34	3.67
Mg	5.61	0.3	15.8	10.9	0.47	34.7	3.04	1.47	3.78	3.13	4.23	1.4	1.3	0.41	0.91	0.91	0	Mg	1.43	4.17	3.73
Ca	2.33	0.39	33.3	19.9	0.56	11.8	1.88	1.21	3.51	3.06	1.77	1.12	1.35	0.34	0.93	0.95	0	Ca	1.82	4.57	6.82
Sr	2.35	0	31.8	15.3	0	16.5	1.18	0	2.35	4.71	2.35	3.53	1.18	0	1.18	1.18	0	Sr	0	4.71	8.24
$_{\mathrm{Ba}}$	4.62	0	30.8	15.4	0	7.69	0	0	7.69	4.62	3.08	0	1.54	0	1.54	0	0	Ba	3.08	6.15	10.8
Mn	24.6	2.57	28.4	19.9	0	10.6	1.21	0.6	2.11	1.36	0.76	0.3	0.3	0	0.3	0.3	0	Mn	0.6	3.17	2.72
Fe	65.3	6.34	4.93	6.87	4.05	6.34	0.7	3.17	0.18	0.35	0	0	0.35	0	0	0	0	Fe	0	0.35	1.06
Co	43.9	3.8	17	16.7	1.46	9.94	0.29	0.59	1.17	0.59	0.59	0.29	0	0.29	0.59	0.29	0	Co	0.29	1.17	0.59
Ni	62.2	2	10.5	8.95	1.74	7.34	0.53	0	0.27	0.4	0.4	0.13	0.27	0.53	0.27	0	0	Ni	0.27	1.6	1.47
Cu	57.7	4.53	7.85	10.9	5.44	4.23	0.91	1.51	0.6	0.3	0.91	0.3	0	0	0.3	0	0	Cu	0.3	2.72	0.3
Zn	30.8	21.5	17.3	21.5	0.37	3.79	0.92	0.26	0.24	0.72	0.31	0.13	0.04	0.04	0.04	0.09	0	$_{ m Zn}$	0.15	0.59	0.68
Pd	30.4	8.7	13	17.4	0	0	13	0	0	0	4.35	4.35	0	0	0	0	0	Pd	0	8.7	0
$^{\rm Cd}$	20.4	2.87	26.4	33.4	0.47	7.74	1.34	0.33	0.87	1	0.73	0.07	0.2	0.07	0.07	0	0	$^{\mathrm{Cd}}$	0.6	1.2	1.74
Pb	6.94	12.5	33.3	34.7	0	4.17	1.39	1.39	0	1.39	1.39	0	0	0	1.39	0	0	Pb	0	0	0
Al	0	0	25	25	0	0	0	0	25	25	0	0	0	0	0	0	0	Al	0	0	0
Ga	0	50	0	0	25	0	0	25	0	0	0	0	0	0	0	0	0	Ga	0	0	0
In	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	In	0	0	0
Sn	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sn	0	0	0
Pt	18.6	6.83	0.62	3.11	39.8	11.8	12.4	0	0.62	1.24	2.48	0	0	0	0	0	0	Pt	0.62	0	1.24
Ag	22.9	14.3	2.86	5.71	40	2.86	0	2.86	0	0	0	2.86	2.86	0	0	0	0	Ag	0	2.86	0
Hg	10.9	65.2	1.37	1.56	2.73	2.15	0.78	1.95	1.17	0.59	1.37	0.78	0	0.59	0.59	0.78	0	Hg	1.37	2.34	1.95
W	25	50	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	W	0	0	0
Au	21.1	42.1	4.39	2.63	3.51	7.02	3.51	1.75	0.88	3.51	2.63	0	0.88	0.88	0	0	0	Au	0	0.88	3.51
Cr	66.7	0	33.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Cr	0	0	0

	HIS	CYS	ASP	GLU	MET	НОН	LYS	TYR	THR	GLN	ARG	VAL	PRO	TRP	ILE	PHE	GlY	ALA	LEU	SER	ASN
Li	1.00	-	1.18	1.10	-	1.92	1.00	1.00	1.00	1.25	1.00	1.00	-	1.00	1.00	1.00	-	1.50	1.00	1.00	1.00
Na	1.09	1.09	1.17	1.12	1.04	2.16	1.02	1.08	1.11	1.09	1.03	1.07	1.06	1.03	1.06	1.03	-	1.05	1.03	1.10	1.12
K	1.06	1.03	1.18	1.17	1.00	1.77	1.06	1.14	1.14	1.44	1.03	1.07	1.03	1.00	1.09	1.02	-	1.11	1.10	1.15	1.21
Rb	-	1.00	1.00	1.80	-	1.67	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-	-	1.00	1.00	1.00	1.00
Cs	1.17	1.00	1.07	1.29	-	1.43	1.00	1.00	1.25	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-	1.00	1.00	1.00	1.00
Mg	1.20	1.14	1.30	1.13	1.00	3.05	1.02	1.03	1.07	1.05	1.03	1.05	1.05	1.05	1.04	1.02	-	1.09	1.05	1.09	1.11
Ca	1.14	1.03	1.52	1.20	1.05	2.55	1.06	1.00	1.13	1.13	1.06	1.03	1.06	1.03	1.03	1.00	-	1.06	1.07	1.09	1.14
Sr	1.00	-	1.41	1.21	-	2.45	1.00	1.00	1.14	1.29	1.00	1.00	1.00	-	1.00	1.00	-	1.00	1.00	1.08	1.25
$_{\mathrm{Ba}}$	2.50	-	1.13	1.00	1.00	1.91	-	1.00	1.13	1.25	1.00	1.00	1.00	-	1.00	-	-	1.33	1.00	1.00	1.09
Mn	1.51	1.21	1.37	1.22	1.00	2.31	1.00	1.00	1.03	1.09	1.00	1.00	1.00	1.00	1.09	1.00	-	1.00	1.00	1.11	1.04
Fe	1.71	2.05	1.09	1.36	1.04	2.12	1.00	1.23	1.00	1.11	1.00	-	1.00	-	1.00	1.00	-	1.00	-	1.33	1.30
Co	1.53	1.59	1.21	1.20	1.00	2.29	1.00	1.00	1.00	1.00	2.00	1.00	-	1.00	1.00	1.00	-	1.00	1.00	1.18	1.00
Ni	1.59	1.46	1.17	1.15	1.06	2.21	1.00	1.00	1.00	1.00	1.14	1.00	1.00	1.25	1.50	1.00	-	1.00	1.00	1.12	1.14
Cu	1.63	1.39	1.14	1.13	1.64	1.56	1.00	1.36	1.00	1.00	1.00	1.00	-	-			-	1.00	1.00	1.00	1.25
Zn	1.39	2.87	1.17	1.18	1.00	1.74	1.03	1.03	1.03	1.00	1.07	1.00	1.00	1.00	1.13	1.00	-	1.00	1.09	1.02	1.09
Pd	1.00	1.00	1.67	1.00	1.00	1.44	1.20	-	-	1.00	1.00	1.00	-	-	-	-	-	-	-	1.00	-
Cd	1.20	1.75	1.13	1.19	1.00	1.98	1.00	1.20	1.09	1.00	1.05	1.00	1.00	1.00			-	1.00	1.00	1.07	1.00
Pb	1.14	1.50	1.54	1.18	-	1.42	1.00	1.00	1.00	1.00	1.00	1.00	-	-	1.00	1.00	-	1.00	1.00	-	1.00
Al	1.00	-	1.50	2.00	-	1.00	-	2.00	1.00	1.00	-	-	-	-	-	-	-	-	-	1.00	-
Ga	-	4.00	-	-	1.00	-	-	1.00	-	-			-		-	-	-	-	-	-	-
In	1.00	-	-	-	-	-	-	1.00	-	-	-	-	-	-	-	-	-	-	-	-	-
Sn	-	1.25	1.00	-	-	2.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pt	1.00	1.36	1.00	1.00	1.05	1.79	1.00	-	1.00	1.00	1.00	-	-	-	-	-	-	1.00	1.00	-	1.00
Ag		1.83	1.33	1.00	2.05	1.00	-	1.00	-	1.00	1.00	1.00	1.00	-	-	-	-	-	-	1.00	-
Hg		1.13	1.12	1.06	1.06	1.28	1.00	1.00	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00	-	1.00	1.00		1.00
W		1.00	1.00	1.00	-	1.00	1.00	-	-	-	-	-	-	-	-	-	-	-	-	1.00	-
Au	1.12	1.06	1.29	1.00	1.25	1.25	1.00	1.00	1.00	1.00	1.00	-	1.00	1.00	-		-	1.00	-	1.00	1.25
Cr	1.00	-	2.00	1.00	-	1.00	-	-	1.00	-	-	-	-	-	1.00	-	-	-	-	-	-