Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт
з лабораторної роботи № 3 з дисципліни
«Алгоритми та структури даних-1.
Основи алгоритмізації»
«Дослідження ітераційних циклічних алгоритмів»

Варіант__16__

Виконав студент _	П1-15,_Куманецька_	_Ірина_Вікторівна
Перевірив		

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 16

Постановка задачі

Для заданого $\varepsilon>0$, $y_0=0$, розраховуються $y_k=\frac{y_{k-1}+1}{y_{k-1}+2}$. Знайти перше y_n , для якого $|y_n-y_{n-1}|<\varepsilon$.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення	
Точність	Дійсне	ε	Вхідні дані	
Значення y_{n-1}	Дійсне	y0	Вхідні дані, проміжні дані	
Значення y_n	Дійсне	у	Проміжні дані, кінцеві	
			дані	

При виконанні лабораторної будемо використовувати функцію abs() для розкриття модуля.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Створення та присвоєння значення y0.

Крок 3. Деталізація обчислення початкового значення у.

```
Крок 3. Деталізація обчислення значення у з заданою точністю.
Псевдокод
Крок 1
початок
      введення є
      створення та присвоєння значення у0
      обчислення початкового значення у
      обчислення значення у з заданою точністю
      виведення у
кінець
Крок 2
початок
      введення є
      y0:=0
      обчислення початкового значення у
      обчислення значення у з заданою точністю
      виведення у
кінець
Крок 3
початок
      введення є
```

y0 = 0

$$y \coloneqq \frac{y0+1}{y0+2}$$

обчислення значення у з заданою точністю

виведення у

кінець

Крок 4

початок

введення є

$$y \coloneqq \frac{y0+1}{y0+2}$$

повторити

$$y0 \coloneqq y$$

$$y \coloneqq \frac{y0+1}{y0+2}$$

поки $abs(y-y0) >= \epsilon$

все повторити

виведення у

кінець

Блок-схема

Випробування

Блок	Дія(цикл 1)	Дія(цикл 2)	Дія(цикл 3)	Дія(цикл 4)
	Початок			
1	ε:=0,00001			
2	y0:=0			
3	y:=0,5			
4	y0:=0,5, y:=0,6	y0:=0,6,	y0:=0,61538,	y0:=0,617647,
		y:=0,61538	y:=0,617647	y:=0,6179775
5	true	true	true	true
6				
Блок	Дія(цикл 5)	Дія(цикл 6)		
1				
2				
3				
4	y0:=0,6179775,	y0:=0,61802575,		
	y:=0,61802575	y:=0,618032787		
5	true	false		
6		Виведення у		
		Кінець		

Висновок

Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи ми отримали $y = \frac{y_0+1}{y_0+2}$ з точністю є, розділивши задачу на 4 кроки: визначення основних дій, створення та присвоєння значення y0, деталізація обчислення початкового

значення y, деталізація обчислення значення y з заданою точністю. Алгоритм було побудовано з використанням ітераційного циклу постумови. В процесі випробування було розглянуто значення ε =10⁻⁵ і вирахувано y=0,618032787.