Overview & Fundamental Structures / Algorithms

Prof. dr. ir. Frederik Vercauteren

COSIC, ESAT, KU Leuven Computer Algebra for Cryptography (B-KUL-H0E74A)

2022-2023

Overview of course

Fundamental concepts

Basic algorithms

Overview of course

Fundamental concepts

Basic algorithms

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Contact details

Lecturer:

- ► Wouter Castryck (ESAT B01.10)
 - wouter.castryck@esat.kuleuven.be

Teaching assistants:

- ► Thomas Decru (ESAT B01.15)
 - ▶ thomas.decru@esat.kuleuven.be
- ▶ Jiayi Kang (ESAT B01.21)
 - jiayi.kang@esat.kuleuven.be

Please post scientific questions on:

ightharpoonup Toledo ightharpoonup Course Documents ightharpoonup Forum for discussions and questions

Overview of course

Computer algebra

- Manipulating objects from
 - finite structures, e.g., finite fields \mathbb{F}_q , finite groups, ...
 - ightharpoonup discrete or enumerable structures, e.g., \mathbb{Z} , \mathbb{Q} , $\mathbb{F}_q[x]$, lattices, . . .

that can be represented **exactly**.

Overview of course 5 / 48

Computer algebra

- Manipulating objects from
 - finite structures, e.g., finite fields \mathbb{F}_q , finite groups, ...
 - ightharpoonup discrete or enumerable structures, e.g., \mathbb{Z} , \mathbb{Q} , $\mathbb{F}_q[x]$, lattices, ...

that can be represented **exactly**.

- Often no notion of continuity: algorithms from numerical analysis may not apply.
- Typically: want exact solutions, obtained via symbolic manipulations.
- Sometimes: work with approximations, e.g.,
 - evaluate

$$\mathbb{Z}_{\geq 1} \to \mathbb{Z}_{\geq 1} : n \mapsto \lfloor \sqrt{n} \rfloor$$

by computing \sqrt{n} to sufficient precision using Newton iteration and round,

ightharpoonup compute number of solutions to f(x,y)=0 over \mathbb{F}_q using p-adic approximation,

but end result is always exact.

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

Overview of course 5 / 48

Cryptography

- History: data confidentiality
- Nowadays: growing set of tools for secure communication, such as
 - data confidentiality and data integrity,
 - authentication and non-repudiation,
 - computing with encrypted data,
 - **.** . . .

Overview of course 6 / 48

Cryptography

- History: data confidentiality
- Nowadays: growing set of tools for secure communication, such as
 - data confidentiality and data integrity,
 - authentication and non-repudiation,
 - computing with encrypted data,
 - **.** . . .
- ► Key distinction:
 - Symmetric-key cryptography:
 - both parties share a secret key that is used to encrypt/decrypt & authenticate messages between them,
 - Public-key cryptography (= asymmetric cryptography):
 - each party has a key pair: a public key which is used to encrypt to the owner of the key, and a private key which is used to decrypt,
 - compare with letterbox: public key is letterbox, private key is key that opens its lock,
 - digital signatures: public key owner proves knowledge of corresponding private key

Overview of course 6 / 48

Cryptanalysis

- ► The security level of a cryptosystem:
 - system is λ -bit secure if best attacks require 2^{λ} bit operations,
 - common security levels: 80-bit (phased out), 112-bit and 128-bit.
- This is determined by **cryptanalysis**:
 - analyze theoretical time complexity (and also space complexity) of best attacks,
 - run them on small instances and extrapolate.
- Algorithms from computer algebra are fundamental in cryptanalysis
 - many cryptosystems were/are broken by the algorithms in this course,
 - continuous improvement leads to revised security estimates and parameters.

4 D > 4 B > 4 B > 4 B > 900

Overview of course 7 / 4

- Quantum computers: work with qubits instead of bits.
- ► Can be in superposition of basic states, e.g. $\alpha |0\rangle + \beta |1\rangle$.

Overview of course

- Quantum computers: work with qubits instead of bits.
- ► Can be in superposition of basic states, e.g. $\alpha |0\rangle + \beta |1\rangle$.
- ▶ Shor's algorithm breaks all conventional public-key cryptography:
 - RSA (by solving factorization problem),
 - ▶ DSA, ECDSA, EdDSA (by solving the discrete logarithm problem).

Overview of course 8 / 48

- Quantum computers: work with qubits instead of bits.
- ► Can be in superposition of basic states, e.g. $\alpha |0\rangle + \beta |1\rangle$.
- ▶ Shor's algorithm breaks all conventional public-key cryptography:
 - RSA (by solving factorization problem),
 - DSA, ECDSA, EdDSA (by solving the discrete logarithm problem).
- ► For the time being: theoretical device
 - November 2022: IBM announces 433-qubit quantum computer,
 - breaking RSA-2048 may require millions of qubits.

Overview of course 8 / 48

- Quantum computers: work with qubits instead of bits.
- ► Can be in superposition of basic states, e.g. $\alpha |0\rangle + \beta |1\rangle$.
- ▶ Shor's algorithm breaks all conventional public-key cryptography:
 - RSA (by solving factorization problem),
 - DSA, ECDSA, EdDSA (by solving the discrete logarithm problem).
- ► For the time being: theoretical device
 - November 2022: IBM announces 433-qubit quantum computer,
 - breaking RSA-2048 may require millions of qubits.
- ► NIST post-quantum cryptography standardization effort:
 - first standards in July 2022:
 - CRYSTALS-Kyber (key encapsulation),
 - ► CRYSTALS-Dilithium, Falcon, SPHINCS+ (digital signatures),
 - more schemes in pipeline + renewed call for digital signatures (June 2023).

(ロ) (型) (支) (支) (支) (支) (マスクート

Overview of course 8 / 48

Overview of course

- 9 lectures and 10 exercise sessions,
- ▶ 1. Introduction and fundamental algorithms, structures
 - 2. Multivariate polynomials, ideals and Gröbner bases
 - 3. Cryptographic applications of Gröbner bases: multivariate cryptography
 - 4. Lattices, hard problems SVP & CVP, lattice reduction
 - 5. Cryptographic applications of lattices: knapsack problems, Coppersmith's algorithm
 - 6. The Learning with Errors problem: cryptographic applications
 - 7. Fast multiplication and division: evaluation/interpolation approach, Karatsuba, Toom-Cook, DFT & FFT
 - 8. Polynomials: fast evaluation & interpolation, factorization (square-free, distinct degree, equal degree), Berlekamp's algorithm
 - 9. Primality testing, factorization algorithms, index calculus, applications to RSA

Overview of course

Exercise sessions

- ▶ 10 sessions in PC lab using computer algebra package MAGMA
- ► If you added your MAC address in Google Sheets:
 - follow installation instructions on Toledo,
 - if you forgot to do this, please add your MAC address and send notification e-mail.
- Quick experiments can be carried out in the MAGMA calculator.
- 2 introductory sessions + 4 sessions per project
- 2 available time slots
 - ▶ this week: on Thursday at 8am and at 4pm in room 01.52,
 - later weeks: to be finalized soon (see Toledo and official timetable).

Overview of course

Evaluation

- ▶ **Goal:** solve 2 projects on applications of computer algebra in cryptography.
- ► Each project results in MAGMA code and a written report (of max. 5 pages, excluding references).
- Report should be concise (no need to repeat the project description, focus on the solution & experiments).
- Oral exam = discussion about the 2 projects.
- Each project is 35% of marks and oral exam 30%.

4 D > 4 A > 4 B > 4 B > B Overview of course 11 / 48

Tips and tricks

- ► Follow the specified API (types and number of arguments of inputs and ouputs must match).
- ▶ Read the submission instructions (it will be one .m file and one .pdf file).
- ► Know the difference between collaboration and plagiarism (sharing ideas is fine and even encouraged, but no copying of code or report contents).
- ► Test-run your own implementation!
- Overall goal: to independently solve problems by having access to all possible resources; the solution to the problems is not sketched during lectures.
- ▶ Know when you need to think vs. when you need to Google.

Overview of course

12 / 48

Overview of course

Fundamental concepts

Basic algorithms

"Big Oh" and "little oh" notation

- Express the complexity of an algorithm up to a constant factor
- ▶ Given two functions $f,g: \mathbb{R} \to \mathbb{R}$ we say that $f \in \mathcal{O}(g)$ if there exist positive constants C and D such that

$$|f(x)| \le C|g(x)|$$
 for all $x > D$

- ▶ Sometimes also write $f = \mathcal{O}(g)$
- igwedge ignores logarithmic factors, e.g. $\mathcal{O}(\log n) \in \widetilde{\mathcal{O}}(1)$

"Big Oh" and "little oh" notation

- Express the complexity of an algorithm up to a constant factor
- ▶ Given two functions $f,g: \mathbb{R} \to \mathbb{R}$ we say that $f \in \mathcal{O}(g)$ if there exist positive constants C and D such that

$$|f(x)| \le C|g(x)|$$
 for all $x > D$

- ▶ Sometimes also write $f = \mathcal{O}(g)$
- $lackbox{}\widetilde{\mathcal{O}}$ ignores logarithmic factors, e.g. $\mathcal{O}(\log n) \in \widetilde{\mathcal{O}}(1)$
- ▶ Given two functions $f, g : \mathbb{R} \to \mathbb{R}$ we say that $f \in o(g)$ if **for all positive** C, there exists some D such that

$$|f(x)| < C|g(x)|$$
 for all $x > D$

"Big Oh" classes of functions

Notation	Name
$\mathcal{O}(1)$	constant
$\mathcal{O}(\log n)$	logarithmic
$\mathcal{O}((\log n)^c)$	polylogarithmic
$\mathcal{O}(n)$	linear
$\mathcal{O}(n^2)$	quadratic
$\mathcal{O}(n^c)$	polynomial
$\mathcal{O}(c^n)$	exponential

► Complexity of algorithm is given in the size of the input

"Big Oh" classes of functions

Notation	Name
$\mathcal{O}(1)$	constant
$\mathcal{O}(\log n)$	logarithmic
$\mathcal{O}((\log n)^c)$	polylogarithmic
$\mathcal{O}(n)$	linear
$\mathcal{O}(n^2)$	quadratic
$\mathcal{O}(n^c)$	polynomial
$\mathcal{O}(c^n)$	exponential

- Complexity of algorithm is given in the size of the input
- **Sub-exponential** *L*-notation (with $n = \log N$):

$$L_N(a,b) = \exp\left((b+o(1))\log(N)^a\log\log(N)^{(1-a)}\right)$$

- ► $L_N(0, b) = (\log N)^{b+o(1)}$ (polynomial in input size) ► $L_N(1, b) = N^{b+o(1)}$ (exponential in input size)

"Big Oh" classes of functions

Notation	Name
	Ivallie
$\mathcal{O}(1)$	constant
$\mathcal{O}(\log n)$	logarithmic
$\mathcal{O}((\log n)^c)$	polylogarithmic
$\mathcal{O}(n)$	linear
$\mathcal{O}(n^2)$	quadratic
$\mathcal{O}(n^c)$	polynomial
$\mathcal{O}(c^n)$	exponential

- Complexity of algorithm is given in the size of the input
- **Sub-exponential** *L*-notation (with $n = \log N$):

$$L_N(a,b) = \exp\left((b+o(1))\log(N)^a\log\log(N)^{(1-a)}\right)$$

- ► $L_N(0, b) = (\log N)^{b+o(1)}$ (polynomial in input size) ► $L_N(1, b) = N^{b+o(1)}$ (exponential in input size)
- **Exercise:** for all $\epsilon \in (0, \frac{1}{2}]$ there exists b > 0 such that $\sqrt{n^{\sqrt{n}}} \in L_N(\frac{1}{2} + \epsilon, b)$.

Modular arithmetic

- Fundamental to cryptography, coding theory, . . .
- ▶ Given modulus $N \in \mathbb{Z}_{>0}$, consider the finite ring $\mathbb{Z}/N\mathbb{Z}$ (some write \mathbb{Z}_N)
- ightharpoonup Each element of $\mathbb{Z}/N\mathbb{Z}$ is an equivalence class of the form

$$k + N\mathbb{Z}$$
.

- $ightharpoonup k_1 \equiv k_2 \mod N$ means: $k_1 \in k_2 + N\mathbb{Z}$.
- Example: $11^8 \equiv (-2)^8 \equiv (-2)^4 \cdot (-2)^4 \equiv 16 \cdot 16 \equiv 3 \cdot 3 \equiv 9 \mod 13$.

Modular arithmetic

- Fundamental to cryptography, coding theory, . . .
- ▶ Given modulus $N \in \mathbb{Z}_{>0}$, consider the finite ring $\mathbb{Z}/N\mathbb{Z}$ (some write \mathbb{Z}_N)
- ightharpoonup Each element of $\mathbb{Z}/N\mathbb{Z}$ is an equivalence class of the form

$$k + N\mathbb{Z}$$
.

- $ightharpoonup k_1 \equiv k_2 \mod N \text{ means: } k_1 \in k_2 + N\mathbb{Z}.$
- Example: $11^8 \equiv (-2)^8 \equiv (-2)^4 \cdot (-2)^4 \equiv 16 \cdot 16 \equiv 3 \cdot 3 \equiv 9 \mod 13$.
- ► Two common choices to represent a class:
 - ▶ Smallest non-negative integer in class, i.e., unique representant in $\{0, 1, 2, \dots, N-1\}$
 - ▶ Smallest integer (in absolute value) in class, i.e., in $\{-\lfloor (N-1)/2 \rfloor, \ldots, \lfloor N/2 \rfloor\}$
 - ► After addition/multiplication, require a reduction to find representative of class
 - Lazy reduction: do several computations first (typically additions) before reducing
- ► MAGMA: Z13 := Integers(13); a := Z13 ! 11; a^8;

Modular inverse

▶ Multiplicative inverse: given element $a \in \mathbb{Z}/N\mathbb{Z}$, does an $x \in \mathbb{Z}/N\mathbb{Z}$ exist with

$$a \cdot x \equiv 1 \mod N$$
?

- Answer: yes if and only if gcd(a, N) = 1
- \triangleright XGCD algorithm on input a, N can be used to compute x if it exists
- ightharpoonup MAGMA: d, x, y := XGCD(a, N); // d = a*x + N*y
- For N=p a prime, each $a\not\equiv 0$ mod p has multiplicative inverse, so the ring $\mathbb{Z}/p\mathbb{Z}$ becomes a field and is denoted \mathbb{F}_p , or sometimes $\mathsf{GF}(p)$
- ► MAGMA: Fp := GF(31); a := Fp ! 7; x := a^-1; Fp := GF(NextPrime(10^100)); a := Fp ! 11; x := a^-1;

Multiplicative group

▶ All elements in $\mathbb{Z}/N\mathbb{Z}$ that are invertible, form a group for multiplication

$$(\mathbb{Z}/N\mathbb{Z})^* = \{a \in \mathbb{Z}/N\mathbb{Z} \mid \gcd(a, N) = 1\}$$

lts number of elements is denoted $\varphi(N)$ (Euler-phi, Euler's totient function)

Multiplicative group

 \triangleright All elements in $\mathbb{Z}/N\mathbb{Z}$ that are invertible, form a group for multiplication

$$(\mathbb{Z}/N\mathbb{Z})^* = \{a \in \mathbb{Z}/N\mathbb{Z} \mid \gcd(a, N) = 1\}$$

- lts number of elements is denoted $\varphi(N)$ (Euler-phi, Euler's totient function)
- Examples:
 - For N = p, a prime, we have $\varphi(p) = p 1$
 - For $N = p \cdot q$, a product of two different primes, we have $\varphi(p \cdot q) = (p-1)(q-1)$ For $N = p^k$, a power of a prime, we have $\varphi(p^k) = (p-1)p^{k-1}$

 - ▶ Totally general: $N = \prod_{i=1}^{s} p_i^{e_i}$ we have

$$\varphi(N) = \prod_{i=1}^{s} (p_i - 1)p_i^{e_i - 1}$$

MAGMA: phiN := EulerPhi(N);

Order - Theorem of Lagrange

- ▶ The order of an element $a \in (\mathbb{Z}/N\mathbb{Z})^*$ is the smallest $r \in \mathbb{Z}_{>0}$ with $a^r \equiv 1 \mod N$
- ▶ Each element $a \in (\mathbb{Z}/N\mathbb{Z})^*$ generates a subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$:

$$\langle a \rangle = \{a, a^2, \dots, a^r = 1\}$$

- ► MAGMA: Z31 := Integers(31); o := Order(Z31 ! 7);
- ▶ Lagrange: the order of $a \in (\mathbb{Z}/N\mathbb{Z})^*$ divides $\varphi(N) = \#(\mathbb{Z}/N\mathbb{Z})^*$

Order - Theorem of Lagrange

- ▶ The order of an element $a \in (\mathbb{Z}/N\mathbb{Z})^*$ is the smallest $r \in \mathbb{Z}_{>0}$ with $a^r \equiv 1 \mod N$
- ▶ Each element $a \in (\mathbb{Z}/N\mathbb{Z})^*$ generates a subgroup of $(\mathbb{Z}/N\mathbb{Z})^*$:

$$\langle a \rangle = \{a, a^2, \dots, a^r = 1\}$$

- ► MAGMA: Z31 := Integers(31); o := Order(Z31 ! 7);
- ▶ Lagrange: the order of $a \in (\mathbb{Z}/N\mathbb{Z})^*$ divides $\varphi(N) = \#(\mathbb{Z}/N\mathbb{Z})^*$
- Consequence: Euler's congruence

if
$$gcd(a, N) = 1$$
, then $a^{\varphi(N)} \equiv 1 \mod N$

► Special case: Fermat's Little Theorem (FLT)

if p is prime then $\forall a \in \mathbb{Z} : a^p \equiv a \mod p$.

Univariate polynomial rings

▶ Given a field F, e.g., $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$, we consider the polynomial ring

$$F[x] = \left\{ \left. a(x) = \sum_{i=0}^{n} a_i x^i \, \right| \, n \in \mathbb{Z}_{\geq 0}, a_i \in F \right\}$$

- ▶ Can assume $a_n \neq 0$: then *n* is called the **degree** and a_n the **leading coefficient**.
- ▶ If $a_n = 1$, then a(x) is called **monic**.

Univariate polynomial rings

▶ Given a field F, e.g., $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$, we consider the polynomial ring

$$F[x] = \left\{ \left. a(x) = \sum_{i=0}^n a_i x^i \, \right| \, n \in \mathbb{Z}_{\geq 0}, a_i \in F \, \right\}$$

- ▶ Can assume $a_n \neq 0$: then *n* is called the **degree** and a_n the **leading coefficient**.
- ▶ If $a_n = 1$, then a(x) is called **monic**.
- Addition is simply $c(x) = a(x) + b(x) = \sum_{i=0}^{\max\{n,m\}} (a_i + b_i)x^i$
- ▶ Multiplication is $c(x) = \sum_{i=0}^{n+m} c_i x^i$ with

$$c_i = \sum_{\substack{0 \le j \le n, 0 \le k \le m, \\ i+k=i}} a_j \cdot b_k$$

Note: on \mathbb{F}_p the functions $x \mapsto x$ and $x \mapsto x^p$ are the same (FLT), yet $x, x^p \in \mathbb{F}_p[x]$ are distinct **polynomials**.

Modular arithmetic in polynomial rings

- ▶ Similar construction to $\mathbb{Z}/N\mathbb{Z}$, but now starting from F[x]
- Let f(x) be polynomial of degree n, then can consider quotient ring F[x]/(f(x)), now every element is an equivalence class of the form

$$g(x) + f(x)F[x] = g(x) + (f(x)).$$

Example: $x^2 = (x+1)(x-1) + 1 \equiv 1 \mod x - 1$.

Modular arithmetic in polynomial rings

- ▶ Similar construction to $\mathbb{Z}/N\mathbb{Z}$, but now starting from F[x]
- Let f(x) be polynomial of degree n, then can consider quotient ring F[x]/(f(x)), now every element is an equivalence class of the form

$$g(x) + f(x)F[x] = g(x) + (f(x)).$$

- Example: $x^2 = (x+1)(x-1) + 1 \equiv 1 \mod x 1$.
- ▶ F[x] is a Euclidean ring, i.e., we can write each polynomial $g(x) \in F[x]$ as

$$g(x) = q(x) \cdot f(x) + r(x)$$
 with degree of $r(x) < n$

▶ Each equivalence class in F[x]/(f(x)) thus has a representative of the form

$$\sum_{i=0}^{m} g_i x^i \quad \text{with } m < n.$$

Modular inverse in F[x]/(f(x))

▶ Element $g(x) \in F[x]/(f(x))$ has modular inverse $h(x) \in F[x]/(f(x))$ if

$$g(x) \cdot h(x) = 1 \mod f(x)$$

- Modular inverse exists if and only if gcd(g(x), f(x)) = 1.
- Magma: R<x> := PolynomialRing(Rationals()); f := x^5 1;
 Rmodf<x> := quo<R | f>; (x-1)^-1;
 > Runtime error in '^': Argument is not invertible
- ightharpoonup XGCD algorithm can be used to compute h(x)
- ▶ Corollary: if f(x) is irreducible, then F[x]/(f(x)) is a field

Modular inverse in F[x]/(f(x))

▶ Element $g(x) \in F[x]/(f(x))$ has modular inverse $h(x) \in F[x]/(f(x))$ if

$$g(x) \cdot h(x) = 1 \mod f(x)$$

- Modular inverse exists if and only if gcd(g(x), f(x)) = 1.
- Magma: R<x> := PolynomialRing(Rationals()); f := x^5 1;
 Rmodf<x> := quo<R | f>; (x-1)^-1;
 > Runtime error in '^': Argument is not invertible
- \triangleright XGCD algorithm can be used to compute h(x)
- ▶ Corollary: if f(x) is irreducible, then F[x]/(f(x)) is a field
- ▶ **Theorem** For every prime p and every $n \ge 1$, there exists an irreducible polynomial f(x) of degree n in $\mathbb{F}_p[x]$
- ▶ Obtain $\mathbb{F}_q = \mathbb{F}_p[x]/(f(x))$ finite field with $q = p^n$ elements

Finite fields in MAGMA

```
ightharpoonup Fp := GF(31);
R<x> := PolynomialRing(Fp);
\triangleright g := x^3 + x + 3; // IsIrreducible(g); returns true
Fq<w> := ext<Fp | g>;
▶ w<sup>10</sup>;
  > 5*w^2 + 16*w + 27
Roots(g, Fq);
  > [ <3*w^2 + 17*w + 2, 1>, <w, 1>, <28*w^2 + 13*w + 29, 1> ]
▶ w^31:
  > 28*w^2 + 13*w + 29
\mathbf{v}^{(31^2)}:
  > 3*w^2 + 17*w + 2
```

Frobenius

- ▶ Let \mathbb{F}_q be a finite field of **characteristic** p, i.e. $q = p^n$
- ightharpoonup Frobenius = p-th powering
- ▶ Frobenius is additive: for all $a, b \in \mathbb{F}_q$ we have

$$(a+b)^p=a^p+b^p$$

Frobenius

- Let \mathbb{F}_q be a finite field of **characteristic** p, i.e. $q = p^n$
- ightharpoonup Frobenius = p-th powering
- ▶ Frobenius is additive: for all $a, b \in \mathbb{F}_q$ we have

$$(a+b)^p = a^p + b^p$$

▶ FLT (+ Euclidean division): the polynomial $x^p - x$ splits completely over \mathbb{F}_p as

$$x^p - x = \prod_{a \in \mathbb{F}_n} (x - a)$$

▶ Given polynomial $f(x) \in \mathbb{F}_p[x]$, can test if f(x) has root in \mathbb{F}_p simply by computing (see later)

$$gcd(x^p - x, f(x))$$

Comparison

Structure:	\mathbb{Z}	F[x]
Units (invertible):	± 1	non-zero elements in F
Building blocks:	primes <i>p</i>	monic irreducible $f(x)$
Quotient ring:	$\mathbb{Z}/N\mathbb{Z}$	F[x]/(f(x))
Representation:	$[0,\ldots, N-1]$	$\sum_{i=0}^m g_i x^i$ with $g_i \in F, m < n$
Field:	N prime	$\overline{f(x)}$ monic irreducible

Comparison

Structure:	\mathbb{Z}	F[x]
Units (invertible):	± 1	non-zero elements in F
Building blocks:	primes <i>p</i>	monic irreducible $f(x)$
Quotient ring:	$\mathbb{Z}/N\mathbb{Z}$	F[x]/(f(x))
Representation:	$[0,\ldots,{\sf N}-1]$	$\sum_{i=0}^{m} g_i x^i$ with $g_i \in F, m < n$
Field:	N prime	$\overline{f(x)}$ monic irreducible

- Analogy between \mathbb{Z} and F[x] is famous, especially for $F = \mathbb{F}_q$: Prime Number Theorem, Riemann Hypothesis, . . .
- ▶ Usually F[x] is easier (e.g., factorization, see Lecture 8)

Overview of course

Fundamental concepts

Basic algorithms

Representation of integers

- Computers typically use 32-or 64-bit words
- Multiprecision integer: array of such words, together with length and sign bit

$$a = (-1)^s \sum_{0 \le i \le n} a_i \cdot 2^{wi}$$

- \blacktriangleright w: word-size; $s \in \{0, 1\}$: sign bit;
- ▶ $a_i \in \{0, ..., 2^w 1\}$ the digits
- Resembles polynomial arithmetic, but have problem of carries since a_i are normalized:

$$a_i + b_i = c_i + \gamma 2^w$$

▶ Carry $\gamma \in \{0,1\}$ influences the next term c_{i+1}

27 / 48

Modular exponentiation

- ▶ Let R be $\mathbb{Z}/N\mathbb{Z}$ or F[x]/(f(x))
- ▶ Given $a \in R$, often need (huge) powers $a^n \in R$ for $n \in \mathbb{Z}$
- ► **Function** SquareMultiply(a, n)

```
1: Write n in binary as n = 2^k + n_{k-1}2^{k-1} + \ldots + n_0
```

2:
$$b_k \leftarrow a$$

3: **for**
$$i = k - 1, \dots, 0$$
 do

4: if
$$n_i = 1$$
 then

5:
$$b_i \leftarrow b_{i+1}^2 \cdot a$$

7:
$$b_i \leftarrow b_{i+1}^2$$

10: return
$$b_0$$

Modular exponentiation - Application

- ightharpoonup RSA cryptosystem (see later): need to compute $m^e \mod N$
- Computing the inverse modulo p via FLT
- ▶ Recall FLT: if $p \nmid a$, then $a^{p-1} = 1 \mod p$

$$\Rightarrow a^{-1} = a^{p-2} \mod p$$

- Requires $\sim 1.5 \log_2 p$ operations modulo p
- ► Much more general via Lagrange ..., e.g.

For
$$a \in \mathbb{F}_{p^n}$$
, $a \neq 0$: $a^{-1} = a^{p^n - 2}$

- ► Magma:
 - ZN := Integers(101); a := ZN ! 13; b := a^7485718947987324;
- ▶ (Don't!) compare with 13^7485718947987324 mod 101;

Euclidean domain

- Integers and polynomials over a field are examples of a Euclidean domain
- ► Euclidean domain: division with remainder is possible
 - Remainder has "smaller" size than the divisor measured by function $d:R\to\mathbb{N}\cup\{-\infty\}$:

$$\forall a, b \neq 0 \in R, \exists q, r \in R : a = qb + r \quad \text{and } d(r) < d(b)$$

Euclidean domain

- Integers and polynomials over a field are examples of a **Euclidean domain**
- Euclidean domain: division with remainder is possible
 - Remainder has "smaller" size than the divisor measured by function $d: R \to \mathbb{N} \cup \{-\infty\}$:

$$\forall a, b \neq 0 \in R, \exists q, r \in R : a = qb + r \quad \text{and } d(r) < d(b)$$

- Examples:
 - $ightharpoonup R = \mathbb{Z}$, with d(a) = |a|
 - ightharpoonup R = F[x] with F a field, $d(a) = \deg(a)$
 - $R = \mathbb{Z}[\mathbf{i}] = \{a + b\mathbf{i} \mid a, b \in \mathbb{Z}\} \text{ with } d(a + b\mathbf{i}) = a^2 + b^2$

Greatest common divisor / least common multiple

- Let $a, b, c \in R$, then c is a greatest common divisor of a and b if
 - \triangleright c|a and c|b
 - ▶ if d|a and d|b, then d|c for all $d \in R$
- ▶ Elements $a, b \in R$ are **coprime** if and only if any gcd is invertible

31 / 48

Greatest common divisor / least common multiple

- Let $a, b, c \in R$, then c is a greatest common divisor of a and b if
 - \triangleright c|a and c|b
 - ▶ if d|a and d|b, then d|c for all $d \in R$
- \blacktriangleright Elements $a, b \in R$ are **coprime** if and only if any gcd is invertible
- Let $a, b, c \in R$, then c is a least common multiple of a and b if
 - \triangleright a|c and b|c
 - ▶ if a|d and b|d, then c|d for all $d \in R$
- ► MAGMA: GCD(32, 120); LCM(6, 8);
- F3x<x> := PolynomialRing(GF(3)); GCD(x^3 + x^2 + 2x + 2, x^2 + x);
- Zi<i>:= GaussianIntegers();
 LCM(2 + i, 2 i):

Euclidean algorithm

- For a, b in Euclidean domain, denote with $r = a \mod b$ and $q = a \operatorname{div} b$ elements such that a = qb + r and d(r) < d(b)
- ► **Function** Euclid(a, b)
 - 1: $r_0 \leftarrow a$, $r_1 \leftarrow b$
 - 2: $i \leftarrow 1$
 - 3: while $r_i \neq 0$ do
 - 4: $r_{i+1} \leftarrow r_{i-1} \mod r_i, i \leftarrow i+1$
 - 5: end while
 - 6: return r_{i-1}
- In many applications we need an explicit expression of the gcd as a linear combination of the inputs
- ► MAGMA: d, x, y := XGCD(a, b); // d = a*x + b*y

4□ > 4□ > 4 = > 4 = > = 900

Basic algorithms 32 / 48

Euclidean algorithm

► Euclidean algorithm exploits the fact that

$$gcd(a, b) = gcd(a \mod b, b)$$

Consequence: if a is a large expression compared to b, can compute $a \mod b$ on the fly and recover gcd(a, b) without ever writing out a

Euclidean algorithm

Euclidean algorithm exploits the fact that

$$\gcd(a,b) = \gcd(a \bmod b, b)$$

- **Consequence**: if a is a large expression compared to b, can compute a mod b on the fly and recover gcd(a, b) without ever writing out a
- Example:
 - Given polynomial $g(x) \in \mathbb{F}_p[x]$ of degree n and p a large prime
 - ▶ To test if g(x) has roots over \mathbb{F}_p we need to compute

$$gcd(x^p - x, g(x))$$

Using square and multiply, compute $x^p \mod g(x)$ in $\mathcal{O}(\log p)$ operations in $\mathbb{F}_p[x]/(g(x))$, and then GCD algorithm using $\mathcal{O}(n^2)$ operations in \mathbb{F}_p

Extended Euclidean algorithm

- ▶ The extended version maintains the invariant $s_i a + t_i b = r_i$
- ► **Function** Extended Euclid(a, b)

1:
$$r_0 \leftarrow a$$
, $r_1 \leftarrow b$, $s_0 \leftarrow 1$, $s_1 \leftarrow 0$, $t_0 \leftarrow 0$, $t_1 \leftarrow 1$

- $2: i \leftarrow 1$
- 3: while $r_i \neq 0$ do
- 4: $q_i \leftarrow r_{i-1} \operatorname{div} r_i$
- 5: $r_{i+1} \leftarrow r_{i-1} q_i r_i$
- 6: $s_{i+1} \leftarrow s_{i-1} q_i s_i$
- 7: $t_{i+1} \leftarrow t_{i-1} q_i t_i$
- 8: $i \leftarrow i + 1$
- 9: end while
- 10: $k \leftarrow i 1$
- 11: **return** r_k, s_k, t_k

Extended Euclidean algorithm - Complexity

- ▶ For $f, g \in F[x]$ with deg $f = n \ge \deg g = m$, the Extended Euclidean Algorithm requires
 - ▶ at most m+1 inversions and 2mn + O(n) additions and multiplications in F to compute only the r_i and q_i
 - ▶ at most m+1 inversions and 6mn + O(n) additions and multiplications in F to compute all results
 - ► Typically: the degree drops exactly by 1 in every step
 - Note: specified as operations in F. For some F, e.g. $F = \mathbb{Q}$ the coefficients can grow huge.

Extended Euclidean algorithm - Complexity

- ▶ For $f, g \in F[x]$ with deg $f = n \ge \deg g = m$, the Extended Euclidean Algorithm requires
 - ▶ at most m+1 inversions and 2mn + O(n) additions and multiplications in F to compute only the r_i and q_i
 - ▶ at most m+1 inversions and 6mn + O(n) additions and multiplications in F to compute all results
 - ► Typically: the degree drops exactly by 1 in every step
 - Note: specified as operations in F. For some F, e.g. $F = \mathbb{Q}$ the coefficients can grow huge.
- For $f, g \in \mathbb{Z}$ with $\log_{2^w} f = n \ge \log_{2^w} g = m$, with w the word-size used, the Extended Euclidean Algorithm requires O(nm) word operations
 - **Exercise:** show that the number of steps in the XGCD algorithm is maximal when computing the gcd of two consecutive Fibonacci numbers

Extended Euclidean algorithm - Applications

- ▶ Constructed two quotient rings: $\mathbb{Z}/N\mathbb{Z}$ and F[x]/(f(x))
- Modular inverse:
 - ▶ given $a \in \mathbb{Z}$ find $b \in \mathbb{Z}$ such that $a \cdot b = 1 \mod N$
 - ▶ given $a(x) \in F[x]$ find $b(x) \in F[x]$ such that $a(x) \cdot b(x) = 1 \mod f(x)$
- ▶ Inverse exists iff gcd(a, N) = 1 or gcd(a(x), f(x)) = 1

Extended Euclidean algorithm - Applications

- ▶ Constructed two quotient rings: $\mathbb{Z}/N\mathbb{Z}$ and F[x]/(f(x))
- Modular inverse:
 - ▶ given $a \in \mathbb{Z}$ find $b \in \mathbb{Z}$ such that $a \cdot b = 1 \mod N$
 - ▶ given $a(x) \in F[x]$ find $b(x) \in F[x]$ such that $a(x) \cdot b(x) = 1 \mod f(x)$
- ▶ Inverse exists iff gcd(a, N) = 1 or gcd(a(x), f(x)) = 1
- Extended Euclidean algorithm results in

$$1 = sN + ta$$
 or $1 = s(x)f(x) + t(x)a(x)$

▶ Reducing the above modulo N (or f(x)) shows that we can take

$$t \equiv a^{-1} \mod N$$
 and $t(x) \equiv a(x)^{-1} \mod f(x)$

36 / 48

Chinese Remainder Theorem

- Let $N = p \cdot q$ (e.g. RSA modulus see later)
- ▶ Given $a, b \in [0, ..., N-1]$ can compute

$$(a+b) \mod N, (a-b) \mod N, (a \cdot b) \mod N$$

- ► Chinese remainder theorem: working modulo *N* is equivalent to working modulo *p* and modulo *q*
- ▶ Represent $a \mod N$ as tuple $(a \mod p, a \mod q)$

Chinese Remainder Theorem - Example

Let $n = 15 = 3 \cdot 5$, then every number between 0 and 14 can be represented by unique "coordinates" (mod 3, mod 5):

	0	1	2	3	4
0	0	6	12	3	9
1	10	1	7	13	4
2	5	11	2	8	14

- All elements in the 3 \times 5 matrix are being used. (note gcd(3,5) = 1)
- ► MAGMA: CRT([1, 2], [3, 5]) eq 7;

Chinese Remainder Theorem - Example

Is this always the case?

Example: Let $n = 24 = 4 \cdot 6$, then

	0	1	2	3	4	5
0	0, 12		8, 20		4, 16	
1		1, 13		9, 21		5, 17
2	6, 18		2, 14		10, 22	
3		7, 19		3, 15		11, 23

Note $gcd(4,6) \neq 1$

Theorem

If m_1 and m_2 are coprime, then one can replace the modulus $m_1 \cdot m_2$, by the moduli m_1 , m_2 .

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Theorem

Suppose we want to solve a system of congruences to two coprime moduli m_1, m_2 :

$$X \equiv a_1 \mod m_1$$

$$X \equiv a_2 \mod m_2$$

Then there exists a unique simultaneous solution $\tilde{x} \mod m_1 \cdot m_2$.

Theorem

Suppose we want to solve a system of congruences to two coprime moduli m_1, m_2 :

$$X \equiv a_1 \mod m_1$$

$$X \equiv a_2 \mod m_2$$

Then there exists a unique simultaneous solution $\tilde{x} \mod m_1 \cdot m_2$.

- ▶ Theorem works for any Euclidean ring, so \mathbb{Z} and F[x]

Basic algorithms 40 / 4

▶ Let R be an Euclidean ring, and $m_1, m_2 \in R$ are coprime

$$X \equiv a_1 \bmod m_1$$
$$X \equiv a_2 \bmod m_2$$

First equation equivalent to:

there exists
$$k \in R$$
 : $\tilde{x} = a_1 + k \cdot m_1$

▶ Let R be an Euclidean ring, and $m_1, m_2 \in R$ are coprime

$$X \equiv a_1 \bmod m_1$$
$$X \equiv a_2 \bmod m_2$$

First equation equivalent to:

there exists
$$k \in R$$
 : $\tilde{x} = a_1 + k \cdot m_1$

Second equation then implies:

$$\tilde{x} = a_1 + k \cdot m_1 \equiv a_2 \mod m_2$$

▶ Determines $k \mod m_2$ as $k = (a_2 - a_1) \cdot m_1^{-1} \mod m_2$, so solution is

$$\tilde{x} = a_1 + m_1 \cdot ((a_2 - a_1) \cdot m_1^{-1} \mod m_2)$$

Chinese Remainder Theorem - General case

- ightharpoonup Chinese Remainder Theorem works for r pairwise coprime moduli m_1, \ldots, m_r
- ► The system of equations

$$X \equiv a_1 \mod m_1$$
 $X \equiv a_2 \mod m_2$
 \vdots
 $X \equiv a_r \mod m_r$

has a unique solution \tilde{x} modulo $m = m_1 \cdot m_2 \cdots m_r$.

▶ Closed formula is easy to derive as linear combination of the ai

$$\widetilde{x} \equiv \sum_{i=1}^{r} a_i \cdot \frac{m}{m_i} \cdot v_i \mod m$$
 with $v_i \equiv \left(\frac{m}{m_i}\right)^{-1} \mod m_i$

Chinese Remainder Theorem - Applications

- ▶ Speed up RSA (see later): need to compute $c^d \mod N$
 - ▶ Square and multiply, cost is $\sim 1.5 \cdot \log d$ operations modulo N
 - Using CRT in combination with FLT we compute

```
c^{d \mod (p-1)} \mod p and c^{d \mod (q-1)} \mod q
```

- Note $d \mod (p-1)$ is only half the size of d, and modulo p is roughly 4 times faster than modulo N
- Overall: speed-up of factor 3 (taking into account overhead)

Chinese Remainder Theorem - Applications

- \triangleright Speed up RSA (see later): need to compute c^d mod N
 - Square and multiply, cost is $\sim 1.5 \cdot \log d$ operations modulo N
 - Using CRT in combination with FLT we compute

$$c^{d \mod (p-1)} \mod p$$
 and $c^{d \mod (q-1)} \mod q$

- Note d mod (p-1) is only half the size of d, and modulo p is roughly 4 times faster than modulo N
- Overall: speed-up of factor 3 (taking into account overhead)
- \triangleright Computations where output is defined over \mathbb{Z} or \mathbb{O} and has bounded height
 - ▶ Bounded height: coefficients a/b with |a|, |b| < B
 - Execute computation modulo different primes p_i such that $\prod p_i > 2B$ for \mathbb{Z} (or $2B^2$ for \mathbb{O})

4 D > 4 B > 4 B > 4 B > 9 Q C

The RSA Cryptosystem

Rivest, Shamir, Adleman (1978): A method for obtaining digital signatures and public key cryptosystems

Key generation

- Find 2 primes p and q of at least 1024 bits and set $n = p \cdot q$
- Compute Euler-phi

$$\varphi(n)=(p-1)(q-1)$$

- ▶ Choose *e* co-prime to $\varphi(n)$ ($\neq \pm 1$) (why coprime?)
- ightharpoonup Compute $d \equiv e^{-1} \mod \varphi(n)$
- **public key**: (e, n)
- **private key**: (d, n) or (p, q)
- Note: can also use $\lambda(n) = \operatorname{lcm}(p-1, q-1)$ instead of $\varphi(n)$
- ▶ Popular choice, e.g. Belgian eID cards (issued before 2020): $e = 2^{16} + 1$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

The RSA Cryptosystem - Basic (insecure) version

Encryption:

- If Bob wants to encrypt a message for Alice, he does the following:
 - ▶ Obtain Alice's authentic public key (n, e).
 - Represent the message as a number 0 < m < n.

 - Send the ciphertext c to Alice.

Decryption

- Decryption: to recover *m* from *c*, Alice does the following:
 - Use the private key d to recover $m = c^d \mod n$.

Exercise: use CRT to prove that RSA works, explain why $\lambda(n)$ can be used instead of $\varphi(n)$

Basic algorithms 45 / 48

RSA: Security

- Security of RSA is based on the RSA problem:
 - ▶ Given $n = p \cdot q$ a modulus
 - Public exponent *e* coprime to $\varphi(n)$
 - ▶ Integer $y \in \mathbb{Z}/n\mathbb{Z}$
- ▶ RSA Problem (RSAP): compute e-th root x, i.e.

$$x^e \equiv y \mod n$$

▶ Note: RSA problem is easy if we know factors of *n*

46 / 48

RSA: Security

- Security of RSA is based on the RSA problem:
 - ▶ Given $n = p \cdot q$ a modulus
 - Public exponent *e* coprime to $\varphi(n)$
 - ▶ Integer $y \in \mathbb{Z}/n\mathbb{Z}$
- ▶ RSA Problem (RSAP): compute e-th root x, i.e.

$$x^e \equiv y \mod n$$

- ▶ Note: RSA problem is easy if we know factors of *n*
- Practice: use padding scheme such as OAEP to pad the message before applying RSA encryption

< ロ ト ◆ 個 ト ◆ 恵 ト ◆ 恵 ト) 夏 ・ か へ ()

Basic algorithms 46 / 48

RSA: Factorisation records

► Factoring *n* takes $\mathcal{O}(L_n[\frac{1}{3}, 1.922])$ operations

year	# digits	computing effort
1992	110	75 MY
1994	129	5000 MY
1996	130	1000 MY
1999	140	2000 MY
1999	155	8400 MY
2003	174	50000 MY
2005	200	165000 MY
2009	232	4400000 MY
2019	240	2000000 MY
2020	250	6000000 MY

- ► MY = Mips Year = Million Instructions per Second Year, e.g. 3GHz for one year gives 3000MY
- ▶ 250 digits = 829 bits 1024 bit factorisation roughly 200 times harder than 829 bits

Basic algorithms 47 / 48

Recap

- Modular arithmetic in $\mathbb{Z}/N\mathbb{Z}$ and F[x]/(f(x))
- Constructed finite fields \mathbb{F}_{p^n} for each prime p and $n \in \mathbb{N}_0$
- Inverses via XGCD algorithm, and possibly FLT
- Fast exponentiation using square-multiply
- CRT to simplify / speed-up computations
- Additional background information can be found in:
 - https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch2.pdf

4 D > 4 B > 4 B > 4 B > 9 Q P Basic algorithms

48 / 48