ANEXOS

Universidad	Universidad del Valle	obstáculos	Rev.:
del Valle	Robot móvil para recorrer un camino con		000
ESPECIF	Título: Documento : ESPECIFICACIÓN DE REQUERIMIENTOS FUNCIONALES ERF-001		

	REVISIÓN HISTÓRICA			
Rev.	Rev. Descripción del Cambio Autor Fecha			
001	Construcción del documento	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21	

Ref #	Funciones	Categoría
1.0	El robot móvil debe ser capaz de detectar los diferentes obstáculos en el camino, usando dos sensores de ultrasonido con referencia HC-SR04	E
2.0	El robot móvil debe ser capaz de detectar la línea negra, usando 2 sensores ópticos infrarrojos TCRT5000	E
3.0	El robot móvil debe ser capaz de regular la velocidad de las ruedas, para controlar el giro por medio del módulo L298N	E
4.0	El robot debe ser capaz de mantenerse dentro de la trayectoria y detenerse una vez llega a un final de carrera señalado en la pista.	E
5.0	El robot debe ser capaz de evadir los obstáculos rodeándolos.	E

Anexo 1. Requerimientos Funcionales del Robot móvil para recorrer un camino con obstáculos

Universidad del Valle Robot móvil para recorrer un camino con obstáculos Título: Documento:		Rev.: 000	
Título: ESPECIFICACIÓN DE REQUERIMIENTOS NO FUNCIONALES		Documento : ERF-001	Página : 1 de 1

	REVISIÓN HISTÓRICA			
Rev.	Rev. Descripción del Cambio Autor Fecha			
001	Construcción del documento	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21	

Ref #	Descripción	Categoría
1.0	Para la realización de este proyecto se usará el Atmel Studio 7.0 – IDE ARDUINO	E
2.0	Se usará un microcontrolador Atmega328	E
3.0	Para la realización del esquema físico y conexiones se usará Proteus 8	О

Anexo 2. Requerimientos No Funcionales del Robot móvil para recorrer un camino con obstáculos

	Universidad del Valle		Rev.:
Robot móvil para recorrer un camino con obstáculos Universidad del Valle		000	
	Título:	Documento :	
CASO DE USO CUR-001			Página :
Requerimiento funcional 1. El robot móvil debe ser capaz de detectar los diferentes obstáculos en el camino, usando dos sensores de ultrasonido (uno enfrente y otro a un lado) con referencia HC-SR04		1 de 1	

	REVISIÓN HISTÓRICA			
Rev.	Descripción del Cambio	Autor	Fecha	
001	Construcción de caso uso	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21	

INFORMACIÓN GENERAL	
Actores:	Robot (HW) y el firmware (SW)
Propósito:	El robot debe ser capaz de detectar los obstáculos para evitar choques, a través de dos sensores ultrasónicos (uno en frente y otro a un lado) con referencia HC-SR04
Resumen:	Cuando el robot móvil detecte un obstáculo, por medio de los sensores de ultrasonido, se enviará las señales al microcontrolador para que la procese y almacene en una variable de software.
Tipo:	Real

Curso Normal de los Eventos			
Acción del Robot	Respuesta del Firmware		
	1. Configurar los puertos de entrada y salida para		
	configurar los sensores de ultrasonido		
	2. Configurar los timers para el procesamiento de la señal		
3. Los dos sensores ultrasónicos			
envían señales eléctricas al puerto de			
entrada y salida			
	4. Se mide el tiempo que permanece activo el ancho de		
	pulso por medio de un timer.		
	5. Se calcula la distancia entre el obstáculo y el robot por		
	medio del tiempo medido.		
	6. Se compara la distancia calculada con una de referencia		
	para determinar la presencia o no de un obstáculo.		
	7. Se almacena la información de la presencia del obstáculo		
	a través de una variable de software.		

Anexo 3.1. Caso de uso para el Requerimiento funcional 1

Universidad del Valle Robot móvil para recorrer un camino con obstáculos Universidad del Valle		Rev.: 000	
	Título:	Documento:	
CASO DE USO CUR-001			Página :
Requerimiento funcional 2. El robot móvil debe ser capaz de detectar la línea negra, usando 2 sensores ópticos infrarrojos TCRT5000		1 de 1	

	REVISIÓN HISTÓRICA			
Rev.	Descripción del Cambio	Autor	Fecha	
001	Construcción de caso uso	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21	

INFORMACIÓN GENERAL	
Actores:	Robot, firmware.
Propósito:	El robot móvil debe ser capaz de detectar la línea negra, usando 2 sensores ópticos infrarrojos TCRT5000
Resumen:	Lo que se busca es que el robot móvil sea capaz de reconocer la trayectoria a seguir, la cual es una línea negra por medio de 2 sensores ópticos infrarrojos.
Tipo:	Real

Curso Normal de los Eventos		
Acción del robot	Respuesta del firmware	
	 Configurar los puertos de entrada y salida para configurar los dos sensores ópticos infrarrojos. 	
 Los dos receptores infrarrojos envían una señal eléctrica al puerto de entrada y salida. 		
	 Se almacena el estado binario de las dos señales recibidas desde los receptores infrarrojos. 	
	 Se notifica el evento (línea negra detectada o no) a través de una variable en el software. 	

Anexo 3.2. Caso de uso para el Requerimiento funcional 2

Universidad del Valle Robot móvil para recorrer un camino con obstáculos Universidad del Valle		Rev.: 000	
	Título:	Documento:	
	CASO DE USO	CUR-001	Página :
Requerimiento funcional 3 El robot móvil debe ser capaz de regular la velocidad de las ruedas, para controlar el giro por medio del módulo L298N			1 de 1

	REVISIÓN HISTÓRICA			
Rev.	Rev. Descripción del Cambio Autor Fecha			
001	Construcción de caso uso	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21	

INFORMACIÓN GENERAL	
Actores:	Robot, firmware.
Propósito:	El robot debe regular la velocidad de cada una de las ruedas para controlar la velocidad del robot y su giro.
Resumen:	Se espera que a partir de los cambios que puedan existir en la trayectoria marcada y los obstáculos el robot cambie la velocidad en cada rueda para girar.
Tipo:	Real

	Curso Normal de los Eventos
	Respuesta del firmware
1.	Se lee el valor de la variable de software (Dirección: Derecha, Izquierda, Adelante, Parar) dado por las funciones que procesan el estado del robot (caso de uso real 4 y 5).

Si el valor de la variable dirección es Parar, entonces:

	Curso Normal de los Eventos
	Respuesta del firmware
1.	Configurar los puertos de entrada y salida para enviar la señal de control a los motores.
2.	Se envía un cero en cada una de las entradas del módulo L298N para que los motores se detengan.

Si el valor de la variable dirección es Avanzar, entonces:

	Curso Normal de los Eventos
	Respuesta del firmware
1.	Configurar los puertos de entrada y salida para
	enviar la señal de control a los motores.
2.	Se envía dos unos y dos ceros (en el orden
	correspondiente) en las entradas del módulo L298N
	para que los motores giren ambos en sentidos
	contrarios, para que así el robot avance.

Si el valor de la variable dirección es Derecha, entonces:

Curso Normal de los Eventos Respuesta del firmware

- 1. Configurar los puertos de entrada y salida para enviar la señal de control a los motores.
- 2. Se envía dos unos y dos ceros (en el orden correspondiente) en las entradas del módulo L298N para que los motores giren ambos en el mismo sentido, para que así el robot gire hacia la derecha.

Si el valor de la variable dirección es izquierda, entonces:

Curso Normal de los Eventos Respuesta del firmware

- 1. Configurar los puertos de entrada y salida para enviar la señal de control a los motores.
- 2. Se envía dos unos y dos ceros (en el orden correspondiente) en las entradas del módulo L298N para que los motores giren ambos en el mismo sentido, para que así el robot gire a la izquierda.

Anexo 3.3. Caso de uso para el Requerimiento funcional 3

Universidad del Valle Robot móvil para recorrer un camino con obstáculos Universidad del Valle		Rev.: 000	
	Título:	Documento:	
	CASO DE USO	CUR-001	Página :
Requerimiento funcional 4. El robot debe ser capaz de mantenerse dentro de la trayectoria y detenerse una vez llega a un final de carrera señalado en la pista.			1 de 1

	REVISIÓN HISTÓRICA			
Rev.	Rev. Descripción del Cambio Autor Fecha			
001	Construcción de caso uso	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21	

INFORMACIÓN GENERAL	
Actores:	firmware.
Propósito:	El robot debe ser capaz de seguir la línea negra detectada y avanzar
Resumen:	Lo que se busca es que el robot móvil sea capaz de reconocer la trayectoria a seguir, la cual es una línea negra por medio de 2 sensores ópticos infrarrojos.
Tipo:	Real

	Curso Normal de los Eventos
	Respuesta del firmware
1.	Se lee el valor de las variables de software que almacenan el estado de los sensores izquierdo y derecho: 00, 01, 10, 11.

Si el valor de la variable es 00, entonces:

Curso Normal de los Eventos							
Respuesta del firmware							
1. Se cambia el valor de la variable dirección a "Parar"							
Si el valor de la variable es 01, entonces:							

	Curso Normal de los Eventos								
Respuesta del firmware									
		cambia iuierda"	el	valor	de	la	variable	dirección	а

Si el valor de la variable es 10, entonces:

	Curso Normal de los Eventos									
	Respuesta del firmware									
1.		cambia recha"	el	valor	de	la	variable	dirección	а	

Si el valor de la variable es 11, entonces:

Curso Normal de los Eventos									
Respuesta del firmware									
1.	Se	cambia	el	valor	de	la	variable	dirección	а
	"Av	anzar"							

Anexo 3.4. Caso de uso para el Requerimiento funcional 4

	Universidad del Valle		Rev.:
Universidad del Valle	Robot móvil para recorrer un camino con	000	
	Título:	Documento :	
	CASO DE USO	CUR-001	Página :
	niento funcional 5 El robot móvil debe ser capaz los obstáculos rodeandolos		1 de 1

	REVISIÓN HISTÓRICA										
Rev.	Descripción del Cambio	Autor	Fecha								
001	Construcción de caso uso	Carlos Fernando Quintero, Jhonier Andrés Vargas, Joan Velasco	2021-11-21								

INFORMACIÓN GENERAL	
Actores:	firmware.
Propósito:	El robot debe girar y avanzar para rodear un obstáculo que detecte
Resumen:	Se espera que a partir de los cambios que puedan existir en la trayectoria marcada y los obstáculos el robot cambie la velocidad en cada rueda para girar.
Tipo:	Real

	Curso Normal de los Eventos									
	Respuesta del firmware									
1.	Se lee el valor de las variables de software que almacen la presencia del obstáculo (Enfrente, A_un_lado, Enfrente_y_A_un_Lado, Ninguno).									
2.	Se define e inicializa una variable Estado_robot en "0" (dentro de la linea).									

Nota: Los conceptos "Enfrente", "A un lado", "Enfrente y a un lado" y "Ninguno" se refieren:

- Enfrente: Significa que hay presencia de un objeto detectado por el sensor frontal del robot.
- A un lado: Significa que hay presencia de un objeto detectado por solo el sensor lateral del robot.
- Enfrente y a un lado: Significa que hay presencia de un objeto detectado por el sensor frontal y lateral del robot.
- Ninguno: Significa que el sensor frontal y lateral no detectan ningún objeto.

Para cuando Estado_robot= 0

Si la variable de presencia de obstáculo es "Enfrente", entonces:

Curso Normal de los Eventos										
Respuesta del firmware										
1.	Se	cambia	el	valor	de	la	variable	dirección	а	
	"Izo	quierda"								

Si la variable de presencia de obstáculo es "A_un_lado", entonces:

	Curso Normal de los Eventos										
	Respuesta del firmware										
1.	Se cambia el valor de la variable Estado_robot a "1"										

Para cuando Estado_robot=1

Si la variable de presencia de obstáculo es "Enfrente", entonces:

Curso Normal de los Eventos									
Respuesta del firmware									
1.	Se	cambia	el	valor	de	la	variable	dirección	а
	"de	recha"							

Si la variable de presencia de obstáculo es "A_un_lado", entonces:

Curso Normal de los Eventos											
Respuesta del firmware											
1.	Se	cambia	el	valor	de	la	variable	dirección	а		
	"Av	anzar"									

Si la variable de presencia de obstáculo es "Enfrente_y_A_un_lado", entonces:

Curso Normal de los Eventos													
Respuesta del firmware													
	1.	Se	cambia	el	valor	de	la	variable	dirección	а			
	"Izquierda"												

la variable de presencia de obstáculo es "Ninguno" y la variable estado_robot es 1, entonces:

Curso Normal de los Eventos												
Respuesta del firmware												
Se cambia el valor de la varia "derecha"								dirección	а			

	Curso Normal de los Eventos											
Respuesta del firmware												
1.	Se	lee	el	valor	de	la	variable	de	software	que		
	almacena el estado de los sensores infrarrojos.											

Si la variable de estado de los sensores es "00", "01" o "10", entonces:

Curso Normal de los Eventos													
	Respuesta del firmware												
	1.		cambia quierda"	el	valor	de	la	variable	dirección	а			
	2. Se cambia el valor de la variable estado_robot a "0"												

Anexo 3.5. Caso de uso para el Requerimiento funcional 5

Anexo 4.1. Diagrama secuencial para el Requerimiento funcional 1

Anexo 4.2. Diagrama secuencial para el Requerimiento funcional 2

Anexo 4.3. Diagrama secuencial para el Requerimiento funcional 3

Anexo 4.4. Diagrama secuencial para el Requerimiento funcional 4

Anexo 4.5. Diagrama secuencial para el Requerimiento funcional 5