Estimation of High-Dimensional Mean Regression in Absence of Symmetry and Light-tail Assumptions

Yuyan Wang

joint work with Jianqing Fan, Quefeng Li Princeton University

Sep 8, 2015

Overview

- Introduction & Motivation
- RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- 4 Discussion

Overview

- Introduction & Motivation
- RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- 4 Discussion

Problems Arising from High-dimensional Data

Figure 1: Microarrays

Problems Arising from High-dimensional Data

Figure 1: Microarrays

Figure 2: Asymmetric & Heavy-tailed Data

- High-dimensionality: $p \gg n$
- Abnormal tails: asymmetric and heavy-tailed

Motivation: Heavy-tailed and asymmetric data

$\mathbf{E}[Y|X]$?

Linear regression in a high-dimensional setting (Large n, large p, $p \gg n$):

- L_2 -loss + Penalty: Lasso [Tibshirani, 1996], SCAD [Fan and Li, 2001], MCP [Zhang, 2010]
- need light-tail assumptions

Motivation: Heavy-tailed and asymmetric data

$\mathbf{E}[Y|X]$?

Linear regression in a high-dimensional setting (Large n, large p, $p \gg n$):

- L_2 -loss + Penalty: Lasso [Tibshirani, 1996], SCAD [Fan and Li, 2001], MCP [Zhang, 2010]
- need light-tail assumptions

Robust methods for heavy-tailed data:

- ullet robust loss: L_1 -loss, Huber loss [Huber, 1964], Catoni loss [Catoni, 2012] etc.
- LAD [Wang, 2013]; AR-Lasso [Fan, Fan and Barut, 2014]
- need symmetry assumptions

Motivation: Heavy-tailed and asymmetric data

$\mathbf{E}[Y|X]$?

Linear regression in a high-dimensional setting (Large n, large p, $p \gg n$):

- L_2 -loss + Penalty: Lasso [Tibshirani, 1996], SCAD [Fan and Li, 2001], MCP [Zhang, 2010]
- need light-tail assumptions

Robust methods for heavy-tailed data:

- ullet robust loss: L_1 -loss, Huber loss [Huber, 1964], Catoni loss [Catoni, 2012] etc.
- LAD [Wang, 2013]; AR-Lasso [Fan, Fan and Barut, 2014]
- need symmetry assumptions

Heavy-tailed and asymmetric? Robustly estimate mean?

Overview

- 1 Introduction & Motivation
- RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- 4 Discussion

Model Setup

We consider the linear regression model

$$y_i = \mathbf{x}_i \boldsymbol{\beta}^* + \epsilon_i, \ i = 1, \dots, n \tag{1}$$

- $\{x_i\}_{i=1}^n$ i.i.d \mathbb{R}^p , $\mathrm{E}(x_i) = \mathbf{0}$;
- $\{\epsilon_i\}_{i=1}^n$ i.i.d $E(\epsilon_i) = 0$;
- $p \gg n$, $\log(p) = o(n)$
- $\bullet \sum_{j=1}^{p} \|\beta_{j}^{*}\|_{1}^{p} \leq R_{q}, q \in [0,1)$

Goal: Estimate the mean effect of y conditioning on x, which is β^* .

Robust Surrogate Loss: Huber Loss with varying parameter

$$\ell_{\alpha}(x) = \begin{cases} 2\alpha^{-1}|x| - \alpha^{-2} & \text{if } |x| > \alpha^{-1}; \\ x^2 & \text{if } |x| \leq \alpha^{-1}. \end{cases}$$

$$\ell_{\alpha}(x) \to x^2$$
 as $\alpha \to 0$ and $\ell_{\alpha}(x) \to |x|$ as $\alpha \to \infty$.

X ← □ ▶ ← □

Our proposed robust estimator: RA-Lasso

We propose the **RA-Lasso** estimator:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_{\alpha} (y_{i} - \boldsymbol{x}_{i}^{T} \boldsymbol{\beta})}_{\text{Huber loss}} + \lambda_{n} \underbrace{\sum_{j=1}^{p} |\beta_{j}|}_{\text{penalty}}. \tag{2}$$

• $\hat{\beta}$ is an estimator of $\beta_{\alpha}^* = \operatorname{argmin}_{\beta} \mathbb{E} \ell_{\alpha} (y - \mathbf{x}^T \beta)$ for any fixed α .

4□ > 4□ > 4 = > 4 = > = 90

Our proposed robust estimator: RA-Lasso

We propose the **RA-Lasso** estimator:

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_{\alpha} (y_{i} - \boldsymbol{x}_{i}^{T} \boldsymbol{\beta})}_{\text{Huber loss}} + \lambda_{n} \underbrace{\sum_{j=1}^{p} |\beta_{j}|}_{\text{penalty}}. \tag{2}$$

- $\hat{\beta}$ is an estimator of $\beta_{\alpha}^* = \operatorname{argmin}_{\beta} \mathbb{E}\ell_{\alpha}(y \mathbf{x}^T \beta)$ for any fixed α .
- We are able to show: $\boldsymbol{\beta}_{\alpha}^* \to \boldsymbol{\beta}^*$ as $\alpha \to 0$.
- By triangular inequality:

$$\underbrace{ \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 }_{\text{statistical error}} \leq \underbrace{ \|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2 }_{\text{approximation error}} + \underbrace{ \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2 }_{\text{estimation error}} \, .$$

←□▶←□▶←□▶←□▶ □ ♥♀

RA-Lasso: Approximation Error

$$\underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2}_{\text{statistical error}} \leq \underbrace{\|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2}_{\text{approximation error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2}_{\text{estimation error}}.$$

◆□ > ◆□ > ◆ = > ◆ = > ○ Q @

Yuyan Wang (Princeton University)

RA-Lasso: Approximation Error

$$\underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2}_{\text{statistical error}} \leq \underbrace{\|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2}_{\text{approximation error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2}_{\text{estimation error}} \,.$$

Theorem 1 (Approximation Error)

Suppose

(C1)
$$\mathrm{E}[\mathrm{E}(|\epsilon|^k|\mathbf{x})] \leq M_k < \infty$$
, for some $k \geq 2$, it holds that

$$\|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2 = O(\alpha^{k-1}).$$

4□ > 4□ > 4 = > 4 = > = 90

RA-Lasso: Estimation Error

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 &\leq \underbrace{\|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2}_{\text{approximation error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2}_{\text{estimation error}}, \\ \hat{\boldsymbol{\beta}} &= \underset{\boldsymbol{\beta}}{\text{argmin}} \ \ \frac{1}{n} \sum_{i=1}^n \ell_{\alpha}(y_i - \boldsymbol{x}_i^T \boldsymbol{\beta}) + \lambda_n \|\boldsymbol{\beta}\|_1, \\ \mathcal{L}_n(\boldsymbol{\beta}) \\ \boldsymbol{\beta}_{\alpha}^* &= \underset{\boldsymbol{\alpha}}{\text{argmin}} \ \mathrm{E}\ell_{\alpha}(\boldsymbol{y} - \boldsymbol{x}'\boldsymbol{\beta}). \end{split}$$

• Estimation error $\|\hat{\beta} - \beta_{\alpha}^*\|_2$: L_2 -error of a high-dim regularized convex M-estimator

4□ > 4ⓓ > 4≧ > 4≧ > ½

RA-Lasso: Estimation Error

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 &\leq \underbrace{\|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2}_{\text{approximation error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2}_{\text{estimation error}}, \\ \hat{\boldsymbol{\beta}} &= \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_{\alpha}(y_i - \mathbf{x}_i^T \boldsymbol{\beta})}_{\mathcal{L}_{n}(\boldsymbol{\beta})} + \lambda_{n} \|\boldsymbol{\beta}\|_1, \\ \mathcal{L}_{n}(\boldsymbol{\beta}) \\ \boldsymbol{\beta}_{\alpha}^* &= \underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \quad \mathrm{E}\ell_{\alpha}(\boldsymbol{\gamma} - \mathbf{x}' \boldsymbol{\beta}). \end{split}$$

- Estimation error $\|\hat{\boldsymbol{\beta}} \boldsymbol{\beta}_{\alpha}^*\|_2$: L_2 -error of a high-dim regularized convex M-estimator
- Restricted Strong Convexity (RSC) [Negahban, et al., 2012]:

$$\delta \mathcal{L}_n(\boldsymbol{\Delta}, \boldsymbol{\beta}_{\alpha}^*) \geq \kappa_{\mathcal{L}} \|\boldsymbol{\Delta}\|_2^2 - \tau_{\mathcal{L}}^2$$
, for all $\boldsymbol{\Delta} \in \mathbb{C}_{\alpha}$.

where $\delta \mathcal{L}_n(\boldsymbol{\Delta}, \boldsymbol{\beta}_{\alpha}^*) = \mathcal{L}_n(\boldsymbol{\beta}_{\alpha}^* + \boldsymbol{\Delta}) - \mathcal{L}_n(\boldsymbol{\beta}_{\alpha}^*) - [\nabla \mathcal{L}_n(\boldsymbol{\beta}_{\alpha}^*)]^T \boldsymbol{\Delta}$.

Main Result

Theorem 2 (Estimation Error)

By choosing
$$\lambda_n = O(\sqrt{\frac{\log p}{n}})$$
 and $\alpha \ge c\lambda_n$,
$$\|\hat{\beta} - \beta_{\alpha}^*\|_2 = O(\sqrt{R_a}[(\log p)/n]^{1/2 - q/4}).$$

$$\underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2}_{\text{statistical error}} \leq \underbrace{\|\boldsymbol{\beta}_{\alpha}^* - \boldsymbol{\beta}^*\|_2}_{\text{approximation error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^*\|_2}_{\text{estimation error}}.$$

Theorem 3 (Statistical Error)

$$\|\hat{\boldsymbol{\beta}} - {\boldsymbol{\beta}}^*\|_2 = O(\alpha^{k-1}) + O(\sqrt{R_q}[(\log p)/n]^{1/2-q/4}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ りゅ○

Overview

- 1 Introduction & Motivation
- RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- 4 Discussion

Computational Error

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell_{\alpha} (y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta})}_{\mathcal{L}_{n}(\boldsymbol{\beta})} + \lambda_{n} \|\boldsymbol{\beta}\|_{1}.$$

The gradient descent algorithm to solve the problem: At the t-th iteration,

$$\hat{\boldsymbol{\beta}}^{t+1} = \underset{\|\boldsymbol{\beta}\|_1 \leq \rho}{\operatorname{argmin}} \ \underbrace{\mathcal{L}_n(\hat{\boldsymbol{\beta}}^t) + [\nabla \mathcal{L}_n(\hat{\boldsymbol{\beta}}^t)]^T (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^t) + \frac{\gamma_u}{2} \|\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^t\|_2^2 + \lambda_n \|\boldsymbol{\beta}\|_1}_{2},$$

local quadratic approximation

• Optimization error: $\hat{\beta}^t - \hat{\beta}$

4□ > 4□ > 4 = > 4 = > = 90

Geometric convergence of $\hat{oldsymbol{eta}}^t - \hat{oldsymbol{eta}}$

Theorem 4

We have

$$\|\hat{\boldsymbol{\beta}}^{t} - \hat{\boldsymbol{\beta}}\|_{2}^{2} = O\left(\underbrace{R_{q}\left(\frac{\log p}{n}\right)^{1-(q/2)}}_{o(1)}\left[\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{\alpha}^{*}\|_{2}^{2} + R_{q}\left(\frac{\log p}{n}\right)^{1-(q/2)}\right]\right),$$

w.h.p. after sufficient iterations.

$$\begin{split} \|\hat{\boldsymbol{\beta}}^t - \boldsymbol{\beta}^*\|_2 &\leq \underbrace{\|\hat{\boldsymbol{\beta}}^t - \hat{\boldsymbol{\beta}}\|_2}_{\text{computational error}} + \underbrace{\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_\alpha^*\|_2}_{\text{estimation error}} + \underbrace{\|\boldsymbol{\beta}_\alpha^* - \boldsymbol{\beta}^*\|_2}_{\text{approximation error}} \\ &= O(\sqrt{R_q}[(\log p)/n]^{1/2 - q/4}) \Rightarrow \hat{\boldsymbol{\beta}}^t \text{ is as good as } \hat{\boldsymbol{\beta}}. \end{split}$$

4 □ ▶ < 擅 ▶ < 혈 ▶ < 혈 ▶ < 혈 ▶ < 혈 ▶

Overview

- 1 Introduction & Motivation
- RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- 4 Discussion

Under the 1-dim scenario,

$$y_i = \mu + \epsilon_i, \ i = 1, \dots, n \tag{3}$$

• Estimate μ using the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i$? We can do better!

←□ → ←□ → ← = → ← = → へ○

Under the 1-dim scenario,

$$y_i = \mu + \epsilon_i, \ i = 1, \dots, n \tag{3}$$

- Estimate μ using the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i$? We can do better!
- The RA-mean estimator $\hat{\mu}_{\alpha}$ of μ is the solution of

$$\sum_{i=1}^{n} \psi[\alpha(y_i - \mu)] = 0, \tag{4}$$

where $\psi(x)$ is the **influence function** ("derivative") of Huber loss.

4□ > 4□ > 4 = > 4 = > = 90

Under the 1-dim scenario,

$$y_i = \mu + \epsilon_i, \ i = 1, \dots, n \tag{3}$$

- Estimate μ using the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i$? We can do better!
- The RA-mean estimator $\hat{\mu}_{\alpha}$ of μ is the solution of

$$\sum_{i=1}^{n} \psi[\alpha(y_i - \mu)] = 0, \tag{4}$$

where $\psi(x)$ is the **influence function** ("derivative") of Huber loss.

• We claim: $\hat{\mu}_{\alpha}$ is **better** than $\hat{\mu}!$

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ り へ ○

Theorem 5 (Exponential Type of Concentration of $\hat{\mu}_{lpha}$)

Assume
$$var(y_i) = \sigma^2 < \infty$$
. Then,

$$P(|\hat{\mu}_{\alpha} - \mu| \geq t) \leq 2 \exp(-\frac{nt^2}{16\sigma^2}).$$

Theorem 5 (Exponential Type of Concentration of $\hat{\mu}_{lpha}$)

Assume $var(y_i) = \sigma^2 < \infty$. Then,

$$P(|\hat{\mu}_{\alpha} - \mu| \ge t) \le 2 \exp(-\frac{nt^2}{16\sigma^2}).$$

Remark

- $\hat{\mu}_{\alpha}$: fast convergence with **only** 2nd moment assumption \implies can deal with heavy-tail and asymmetry;
- µ̂: needs sub-Gaussian assumption for fast convergence
 ⇒ requires data to be light-tailed

◆□▶◆□▶◆壹▶◆壹▶ 壹 めぬ♡

Robust Estimation of Covariance Matrices

- Observe $m{X}_1,\ldots,m{X}_n$ i.i.d $\sim m{X} \in \mathbb{R}^p, \mathbb{E}(m{X}) = m{0}$
- Goal: Estimate $\Sigma = \text{cov}(\boldsymbol{X})$
- Sample Cov: $\hat{\Sigma} = (\hat{\sigma}_{ij})$, where $\hat{\sigma}_{ij} = \frac{1}{n} \sum_{k=1}^{n} X_{ki} X_{kj}$ requires sub-Gaussianity of \boldsymbol{X} for uniform convergence of $\hat{\Sigma}$ to Σ .

Robust Estimation of Covariance Matrices

- Observe $m{X}_1,\ldots,m{X}_n$ i.i.d $\sim m{X} \in \mathbb{R}^p, \mathbb{E}(m{X}) = m{0}$
- Goal: Estimate $\Sigma = \text{cov}(\boldsymbol{X})$
- Sample Cov: $\hat{\Sigma} = (\hat{\sigma}_{ij})$, where $\hat{\sigma}_{ij} = \frac{1}{n} \sum_{k=1}^{n} X_{ki} X_{kj}$ requires sub-Gaussianity of \boldsymbol{X} for uniform convergence of $\hat{\Sigma}$ to Σ .
- RA-covariance estimator: $\hat{\Sigma}^{(\alpha)} = (\hat{\sigma}_{ij}^{(\alpha)})$ where $\hat{\sigma}_{ij}^{(\alpha)}$ is the solution of

$$\sum_{k=1}^{n} \psi[\alpha(X_{ki}X_{kj} - \sigma_{ij})] = 0,$$

only requires $\mathbb{E}(X_i^4) < \infty$.

4□ > 4□ > 4 = > 4 = > = 90

Overview

- Introduction & Motivation
- 2 RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- 4 Discussion

Simulation Setup

- $y_i = \mathbf{x}_i^T \boldsymbol{\beta}^* + \epsilon_i$, $\mathbf{x}_i \sim N(0, I_p)$, $\epsilon_i = c^{-1} (\mathbf{x}_i^T \boldsymbol{\beta}^*)^2 \tilde{\epsilon}_i$, i = 1, ..., n
- $n = 100, p = 400, \beta^* = (\underbrace{3, \dots, 3}_{20}, 0, \dots, 0)^T.$
- 5 scenarios of noise distributions

	Light Tail	Heavy Tail	
Symmetric	N(0,1)	2t ₃	
Asymmetric	Mi×N	LogNor, Weibull	

Table 1: categorical summary of the 5 scenarios

- Performance measures: $\|oldsymbol{eta}^* \hat{oldsymbol{eta}}\|_2$, $\|oldsymbol{eta}^* \hat{oldsymbol{eta}}\|_1$
- Compared with: (1) Lasso: L_2 -loss + L_1 -pen; (2) LAD: L_1 -loss + L_1 -pen.

Error Distributions

Simulation Results

	Light Tail	Heavy Tail		
Symmetric	N(0,1)	2t ₃		
Asymmetric	Mi×N	LogNor, Weibull		

Table 2: Noise distributions.

		Lasso	LAD	RA-Lasso
N(0,1)	L ₂ loss	4.60	4.34	4.60
$\mathbf{N}(0,1)$	L_1 loss	27.16	27.14	27.15
2t ₃	L_2 loss	8.08	6.71	6.70
213	L_1 loss	41.16	42.76	38.52
MixN	L ₂ loss	6.26	6.54	6.25
IVIIXIN	L_1 loss	41.26	46.95	39.25
	L ₂ loss	10.86	9.19	8.48
LogNor	L_1 loss	57.52	57.18	53.20
Weibull	L ₂ loss	7.40	8.81	5.53
vveibuii	L_1 loss	40.95	47.82	34.65

RA-Lasso

- A microarray data for the study of the reaction of innate immune system in face of atherosclerosis (Huang et al., 2011).
- The "TLR8" gene under the Toll-like Receptor (TLR) signaling pathway was found to be a key atherosclerosis-associated gene in the original study.
- We regressed "TLR8" gene on another 464 genes from 12 pathways closely related to TLR pathway.
- n = 119 patients were involved.

Figure 3: QQ plots of the residuals from three methods.

Lasso	CRK						
LAD	CSF3	IL10	AKT1	KPNB1	TLR2	GRB2	MAPK1
	DAPK2	TOLLIP	TLR1	TLR3	SHC1	PSMD1	F12
	EPOR	TJP1	GAB2				
Our	CSF3	CD3E	BTK	CLSPN	RELA	AKT1	IRS2
	IL10	MAP2K4	PMAIP1	BCL2L11	AKT3	DUSP10	IRF4
	IFI6	TLR1	PSMB8	KPNB1	IFNG	FADD	TJP1
	CR2	IL2	PSMC2	HSPA8	SHC1	SPI1	IFNA6
	FYN	EPOR	MASP1	PRKCZ	TOLLIP	BAK1	

Table 4: Selected genes by three methods

- Randomly chose 20 subjects as the test set;
- Apply three methods to the rest subjects to obtain the estimated coefficients $\hat{\beta}$;
- Apply $\hat{\beta}$ to the test set to calculate the MSE;
- Repeat random sampling 100 times.

Overview

- Introduction & Motivation
- RA-Lasso estimator
 - Optimal Statistical Error
 - Geometric Convergence of Optimization Error
 - Robust Estimation of Mean
- Numerical Studies
- Discussion

Discussion

Our achievements:

- RA-Lasso which estimates mean and allows asymmetry and heavy-tails;
- Optimal rate of RA-Lasso;
- A computational solution of RA-Lasso that achieves the same optimal rate.
- Robust estimators of mean and covariance matrices.
- Satisfactory finite sample performance of RA-Lasso

Thank you!