

"CanSat Azerbaijan 2023" müsabiqəsi

Layihələndirmə Sənədi (LS)

3112 Gargantua

Təqdimatın mündəricatı

Başlıq	Səhifə	Təqdimatçı
İlk Səhifə	<u>1</u>	-
Təqdimatın mündəricatı	<u>2-4</u>	Emil Dostəliyev
Komandanın strukturu haqqında məlumat	<u>5</u>	Emil Dostəliyev
Abreviaturalar	<u>6</u>	Leyla Allahverdiyeva
Missiyanın Ümumi Təsviri Bölməsi	<u>7</u>	Qiyas Sadıqov
Missiyanın ümumi təsviri	<u>8</u>	Emil Dostəliyev
Struktur Dizaynı Bölməsi	<u>9</u>	Şöhrət Ağazadə
Modelin mexaniki tərtibatı	<u>10-13</u>	Emil Dostəliyev
Enməyə Nəzarət Bölməsi	<u>14</u>	Qiyas Sadıqov
Enmə prosesinin hesabatı	<u>15</u>	Şöhrət Ağazadə
Sensorlar Bölməsi	<u>16</u>	Qiyas Sadıqov
Hündürlüyün təyin olunması	<u>17</u>	Leyla Allahverdiyeva
Enmə sürətinin təyin olunması	<u>18</u>	Emil Dostəliyev
GPS qəbuledici	<u>19</u>	Şöhrət Ağazadə
Kamera Modulu	<u>20-21</u>	Emil Dostəliyev

Təqdimatın mündəricatı

Başlıq	Səhifə	Təqdimatçı
Kommunikasiya və Verilənlərin İdarəedilməsi (KVİ) Bölməsi	<u>22</u>	Qiyas Sadıqov
KVİ bölməsinə ümumi baxış	<u>23</u>	Qiyas Sadıqov
İdarəedici qurğu və yaddaş bölgüsü	<u>24</u>	Şöhrət Ağazadə
Modelin antenası	<u>25</u>	Emil Dostəliyev
Radiomodul və onun ilkin konfiqurasiyası	<u>26</u>	Qiyas Sadıqov
Telemetriya formatı	<u>27</u>	Qiyas Sadıqov
Elektrik-Güc Bölməsi	<u>28</u>	Leyla Allahverdiyeva
Elektrik dövrənin ümumi quruluşu	<u>29-30</u>	Emil Dostəliyev
Enerji tutumunun hesablanması	<u>31-32</u>	Qiyas Sadıqov
Modelin Kütlə Hesabatı (MKH) Bölməsi	<u>33</u>	Şöhrət Ağazadə
Kütlə hesabatı	<u>34</u>	Leyla Allahverdiyeva
Uçuş Proqramının (UP) Dizaynı Bölməsi	<u>35</u>	Emil Dostəliyev
UP – na ümumi baxış	<u>36-40</u>	Şöhrət Ağazadə

Təqdimatın mündəricatı

Başlıq	Səhifə	Təqdimatçı
Yerüstü İdarəetmə Sisteminin (YİS) Dizaynı Bölməsi	<u>41</u>	Qiyas Sadıqov
YİS – nin dizaynı	42-43	Emil Dostəliyev
YİS – nin antenası	<u>44</u>	Leyla Allahverdiyeva
YİS – nin proqramı	<u>45-46</u>	Şöhrət Ağazadə
Əlavə tapşırığın izahı	<u>47</u>	Qiyas Sadıqov
Planlaşdırma və Maliyyə Bölməsi	<u>48</u>	Qiyas Sadıqov
Planlaşdırma	<u>49</u>	Qiyas Sadıqov
Maliyyə	<u>50</u>	Leyla Allahverdiyeva
SON	<u>51</u>	-

Komandanın strukturu haqqında məlumat

Abreviaturalar

Abreviatura	İstfadə olunan versiya	Açıqlama
GPS	NEO-6MV2	Global Positioning System (Qlobal Mövqe təyinetmə Sistemi)
ESP	ESP8266-12E	Controller (Kontroller)
gyroscope	MPU9250	Mobile Processing Uni (sürətləndirici maqnit sahə modulu)
MSM	MG90S	Micro Servo Motor
Sensor	MS5611	High precision pressure sensor module (Təzyiq sensoru)
Kamera	OV2735	OmniVision technologies sensor (Görüntü sensoru)
X-modul	XBee Pro 52C	Wireless Communication Module (Xəbərləşmə modulu)
mikro SD kart	mikro SD kart 4GB	Secure Digital Memory Card (Yaddaş kartı)
Buzzer	Buzzer-5V	Sound sensor (Səs siqnalı)
VS	XL-6009	Gərginlik tənzimləyici
Batareya	ORİON-18650	Batareya
SDKM	SD kart modulu	SD kart modulu
gimball	DİY	Kameranı tutmaq/hərəkətə gətirmək üçün qurğu

Missiyanın Ümumi Təsviri Bölməsi

Missiyanın ümumi təsviri

Missiyanın bütün addımlarını - uçuşdan əvvəlki, uçuş ərzindəki və uçuşdan sonrakı əməliyyatları vizual qaydada təsvir edilmişdir.

Struktur Dizaynı Bölməsi

Enməyə Nəzarət Bölməsi

Enmə prosesinin hesabatı

Enmə prosesində diametri 80sm olan diarəvi paraşütdən istidadə olunacaqdır. Paraşütün enmə sürətini hesablamaq üçün düstur:

$$v = \sqrt{(2mg / \rho SC)}$$

Burada

- m kütlədir. m = m(p) + m(mp) = 50gram +450gram = 500 gram = 0.5kq.
- S sahədir. Paraşütün sahəsi. S = πr^2 = 0.16 $m^2 \pi$. (π =3.14) ==> 0.5024m.
- $g = 9.81 \text{ m/san}^2$
- ρ havanın sıxlığıdır. p = 1.225kq/m³
- C paraşüt hava müqavimət əmsalıdır. Seçdiyimiz paraşüt üçün qiyməti
 2.2'dir.

Hesablama:

 $v = \sqrt{(2mg / \rho SC)} = \sqrt{((2 \times 0.5 \times 9.81)/(1.225 \times 0.5024 \times 2.2))} \approx 7$ m/san olacaqdır.

Yəni təxnimən bu sürətlə eniş ediləcəkdir.

Sensorlar Bölməsi

Hündürlüyün təyin olunması

Ad	Ölçmə aralığı	Dəqiqlik	Ölçüləri	Gərginlik	Amper
NEO-6M	Hər 0.5 saniyədə	10 metrədən az	23mm x 30mm	3.3V	45mA

Hündürlük hesablamaq

Hündürlüyü təyin etmək üçün GPS modulundan istifadə ediləcək.

İstifadə ediləcək GPS modulu NEO-6M'dir.


```
TinyGPSPlus gps;
   while (ss.available() > 0) {
       if (qps.encode(ss.read())) {
           float a = gps.altitude.meters();
           Serial.print("Yüksəklik: ");
           Serial.print(a);
           Serial.println(" m");
```


Enmə sürətinin təyin olunması

Ad	Ölçmə aralığı	Dəqiqlik	Ölçüləri	Gərginlik	Amper
NEO-6M	Hər 0.5 saniyədə	10 metrədən az	23mm x 30mm	3.3V	45mA

Enmə sürətini hesablamaq

Enmə sürətini etmək üçün GPS modulundan istifadə ediləcək. İstifadə ediləcək GPS modulu NEO 6M'dir.


```
#include <SoftwareSerial.h>
TinyGPSPlus gps;
   ss.begin(9600);
   while (ss.available() > 0) {
       if (gps.encode(ss.read())) {
           float a = gps.altitude.meters();
           Serial.print("Yüksəklik: ");
           Serial.print(a);
           Serial.println(" m");
```


GPS qəbuledici

Ad	Ölçmə aralığı	Dəqiqlik	Ölçüləri	Gərginlik	Amper
NEO-6M	Hər 0.5 saniyədə	10 metrədən az	23mm x 30mm	3.3V	45mA

GPS qəbuledici

İstifadə ediləcək GPS modulu NEO-6M'dir.


```
#include <SoftwareSerial.h>
#include <TinyGPS++.h>
 inyGPSPlus gps;
void loop() {
       if (gps.encode(neoóm.read())) {
            if (gps.speed.isUpdated()) {
                float speed = gps.speed.kmph();
               Serial.print(speed);
               Serial.println(" m/san");
```


Kamera modulu

Ad	Ayırdetmə dəqiqliyi	Rəng	Ölçüləri	Gərginlik	Amper
OV2735	2 MP	RGB	38mm x 38mm	5V	200mA

Kamera modulu olaraq OV2735 istifadə ediləcəkdir. Videonun emalı modulun üzərindəki prosessorlar həyata keçiriləcəkdir.

Çərçivə sürəti

1920 x 1080 @ 30FPS 1440 x 1080 @ 30FPS 1280 x 720 @ 30FPS

Kamera modulu

Görüntünün 50/50 əldə olunma prosesi gimball vasitəsilə həyata keçiriləcəkdir. İstifadə olunacaq gyroscop sensoru vasitəsilə gyroscop'un x, y, z üzrə hərəkətlərinə uyğun şəkildə kamera da hərəkət edəcəkdir.

Kommunikasiya və Verilənlərin İdarəedilməsi (KVİ) Bölməsi

KVİ bölməsinə ümumi baxış

ESP8266-12E – mikro kontroller məlumatların emalı və SD karta yazılması.

Xbee Pro S2C – məlumatın alınması, ötürülməsi.

SD kart modulu – məlumatların SD karta yazılması, oxunması.

SD kart – məlumatın saxlanması.

İdarəedici qurğu və yaddaş bölgüsü

ESP8266 yaddaş olaraq 4GB SD kart işlədiləcək. Hər saniyə SD karta yeni bir .csv faylı yazılacaq.

Ad	Sürət	Yaddaş
ESP8266	160mHz	4MB

id,date,time,speed,tempherature,mg90s,ov2735,sd
1,01.03.2023,13.52,7,34,0,1,0
2,01.03.2023,13.53,6,33,0,0,1

Name	Date modified	Туре	Size
cansat_az_data-1.csv	3/3/2023 2:17 PM	Microsoft Excel C,	1 KB
cansat_az_data-2.csv	3/3/2023 2:17 PM	Microsoft Excel C	1 KB
cansat_az_data-3.csv	3/3/2023 2:17 PM	Microsoft Excel C	1 KB

Modelin antenası

Model peykdə XBee modulunun 4dbi'lıq antenasından istifadə edəcəyik. Bunun sayəsində digər XBee modulu ilə rahatlıqla əlaqə saxlamaq mümkün olacaq. Antenanın yis'də əl ilə tutulacağını nəzərdə tuturuq.

Radiomodul və onun ilkin konfiqurasiyası

Xbee radiomodulu olaraq Pro S2C modelindən istifadə edəcəyik. Bu modulun məqsədi ortalama sürətli bir alıb şəkildə məlumat ötürməyə imkan verir.

Telemetriya formatı

Göndəriləcək telemetriya məlumatları .csv formatında göndəriləcəkdir. Bu format MS Excel və Google sheet vasitəsilə də görülə bilir.

Name	Date modified	Туре	Size
cansat_az_data-1.csv	3/3/2023 2:17 PM	Microsoft Excel C	1 KB
cansat_az_data-2.csv	3/3/2023 2:17 PM	Microsoft Excel C	1 KB
cansat_az_data-3.csv	3/3/2023 2:17 PM	Microsoft Excel C	1 KB

Elektrik-Güc Bölməsi

Elektrik dövrənin ümumi quruluşu

Elektrik dövrəsi

Elektrik dövrənin ümumi quruluşu

MPU9250 – meyilliliyi təyin etmək üçün x, y, z oxları üzrə istiqamətini, yerini öyrənmək üçün istifadə olunur.

MS5611 – temperaturu və təzyiqi ölçmək üçün istifadə olunur.

NEO-6M – hündürlüyü, təcili, sürəti ölçmək üçün istifadə olunur.

OV2735 – kamera görüntünün çəkilməsi və emalı.

XL6009 – voltaj kontroller.

Buzzer – sistemin işlədiyinin siqnalını vermək üçün istifadə olunur.

XBee Pro S2C – informasiyanı ötürmək / almaq üçün istifadə olunur.

Enerji tutumunun hesablanması

Dövrədə istifadə olunacaq elemetlərin hər birinin istifadə etdiyi gücü tapmaq üçün I×U düsturundan istifadə edəcəyik və alınan nəticəni toplayaraq istifadə olunan gücü hesablayacağıq.

Nəticə ≈2.5 Watt edir. Yəni seçdiyimiz batareya bu iş üçün çox uyğundur. Seçdiyimiz batareya:

Ad	ORION 18650
Voltaj	3.7 V
Texnologiya	Litium ION
Ömrü	Şarj oluna bilən
Tutum	3500 mAh

Enerji tutumunun hesablanması

KOMPONENT	ÖLÇÜ	GÜC
Neo-6m	23mm x 30mm	3.3V 45 mA
Ms5611	22 x 17 mm	3.3V 1.4mA
Mpu9250	22 x 17 mm	3.3V 370mA
OV2735 USB Kamera Modulu	38mm x 38mm	5V 200mA
Mg90s	22.8 x 12.2 x 28.5	4.8V - 6.0V 2.7mA
Batareya (orion rechargeable - 18650)	18 x 65 mm	3.7V 3500mAh
Voltaj controller XL6009	43x21mm	5-32 V 18mA

Modelin Kütlə Hesabatı (MKH) Bölməsi

Kütlə hesabatı

Komponent	Kütləsi
NEO-6M	16 qr
ESP8266-12E	10 qr
MPU9250	2 qr
MG90S	14 qr
MS5611	0.9 qr
OV2735	14 qr
XBee Pro 52C	20 qr
mikro SD kart 4GB	2 qr
Buzzer-5V	2 qr
XL-6009	12 qr
ORİON-18650	50 qr
mikro SD kart modulu	2 qr
сәмі	130.9 qr

Bütün struktur elementlərinin kütləsi: 130.9 qr + 319.1 qr = 450 qr

Model peykin səmaya buraxılmağa tam hazır vəziyyətdə (enmə sistemi ilə birlikdə) ümumi kütləsi: **500 qr**

Uçuş Proqramının (UP) Dizaynı Bölməsi

UP – na ümumi baxış

C/C++ dillərindən istifadə olunur.

Mühit olaraq, VS Code/VS və Arduino IDE'dən istifadə olunur.

Uçus proqramının işi, başlanğıcdan etibarən yer stansiyasına, Neo-6m, Mpu9250 kimi sensorlardan aldığı məlumatı göndərməkdir. Uçus proqramı hər saniyə XBee modulu vasitəsilə məlumatları yer stansiyasına csv formatında göstərəcəkdir. Daha sonra yer stansiyasına gələn telemetriya faylı kompüterə ötürüləcək və proqram vasitəsilə model peykdən gələn informasiyanın təsvirini 2D formatda qrafiklər, cədvəllər, və s. vasitəsilə göstəriləcəkdir.

Uçuş zamanı sıfırlanma vaş verərsə, uçuş proqramı başladığı an, model peykin üzərinə quraşdırılmış sd kartı yoxlayacaq və sonra qaldığı yerdən davam edəcəkdir.

Yerüstü İdarəetmə Sisteminin (YİS) Dizaynı Bölməsi

YİS – nin dizaynı

YİS – nin dizaynı

- YİS'də sadəcə iki komponentdən ESP8266 və XBee pro S2C'dən istifadə olunacağı üçün uzun müddət qida mənbəyi olmadan, batareya ilə işləyə bilər. Orta hesablamaya görə bu iki komponent, birlikdə 246mA güc tükədəcəkdir. Bu da istifadə edəcəyimiz batareya ilə 14 saata yaxın bir vaxt ərzində işləyəcəyi mənasına gəlir. 3500/246≈14.2 saat
- İsinməyə qarşı tədbir olaraq peltier cooler'dan istifadə edəcəyik.
 Bunun üçün kiçik soyuducu sistem düzəldəciyik.
- Kompüterin avtoyeniləmə funksiyası əvvəlcədən deaktiv ediləcəkdir.
- HDMI istifadə olunacaq. Görüntü keyfiyyəti və sürət baxımından daha yaxşıdır.

YİS – nin antenası

Model peyk üçün antena özümüz tərəfindən hazırlanacaqdır. Antenna 50-60cm hündürlüyündə qazanclı antena olacaq. Maksimum kommunikasiya məsafəsi, ortalalama 2.6 km qədər olacaq.

Antenanın YİS'də əl ilə tutulacağını nəzərdə tuturuq.

YİS – nin proqramı

YİS – nin proqramı

Məlumat model peykdən XBee modulu vasitəsilə hər saniyə .csv formatında alacaq və YİS'ə göndərəcək. Göndərilən məlumat yerdəki XBee modulu vasitəsilə qəbul olunub kompüterə göndəriləcəkdir. Video isə fərqli bir şəkildə göndəriləcəkdir. Hər saniyə kamera tərəfində çəkiləcək 30 şəkil, çəkildiyi anda yerə göndəriləcək və ekranda görünəcəkdir.

Reset əmri ilə model peyki sıfırlayacağıq.

```
connecting..
connected
Mpu9250: succes
Ms5611: succes
Neo-6m: succes
Ov2735: succes
Xbee Pro $2C: succes

.reset
resetted
```


Əlavə tapşırığın izahı

Əlavə tapşırıq ümumi prosesə heçbir maneə yaratmamaqdadır. Sadəcə, x, y, z üzrə rahat hərəkət edə bilməsi üçün, daha çox yer tutacaq. 50/50 görüntü əldə etmək üçün istifadə edəcəyimiz gimball özümüz tərəfindən hazırlanacaq. Gimball'ın daxilinə yerləşdiriləcək olan mpu9250 ilə kameranı avtomatik olaraq istənilən vəziyyətə gətirəcəyik.

İstifadə olunacaq komponenlər:

Ad	Say
OV2735	1
MPU9250	1
MG90s	2

Planlaşdırma və Maliyyə Bölməsi

Planlaşdırma

Komandamız əvvəlcədən tərtib etdiyimiz plana əsasən, düzgün bir iş bölgüsü ilə hərəkət etməkdədir. Komandada 3 qrup mövzuddur.

Elektronika

Elektronika ilə əlaqəli olan bütün işlər bu qrupdaki üzvlər tərəfindən həyata keçirilməktədir. Elektronik hissələrin testi, araşdırılması, müəyyən edilməsi, sistemləşdirilməsi və s.

Leyla Allahverdiyeva

Qiyas Sadıqov

Dizayn

Qrafik dizayn ilə əlaqədar proseslər bu qrup tərəfindən həyata keçirilir. Logo'nun hazırlanması, 3D modelləmə kimi proseslər bu qrupa aiddir.

Emil Dostəliyev

Proqramlaşdırma

Uçuş proqramı və gələn telemetriya məlumatlarının təsvirini həyata keçirmək üçün lazım olan bütün proseslər bu qrup tərəfindən reallaşdırılır.

Şöhrət Ağayzadə

Qiyas Sadıqov

Maliyyə

Komponent	Sayı	Qiymət
NEO-6M	1	20 AZN
ESP8266	1	15 AZN
MS5611	1	20 AZN
MPU9250	1	22 AZN
Arduino kamera modulu	1	15.74 AZN
Batareya	2	10 AZN
MG90s	3	26.22 AZN
mikro SD kart modulu	2	2.8 AZN
mikro SD kart	2	16 AZN
Xbee pro S2C	2	178 AZN
Paraşüt	1	20 AZN
Antena	1	25 AZN
сәмі		370.76 AZN

Bütün komponentlər universitetimiz tərəfindən təmin olunacaq.

SON

