Chedly Zouche 2020 - 2021

Data Analysis

lw = Sum(m.d²(Point, Centre du gravité du classe auquel il appartient))
 lb = m.Sum(m.Nb_points_classe*d²(Centre de gravité classe, centre de gravité global))
 l(G) = Sum(m.d²(point, centre de gravité global)

Matrice de ward : gamma(Mi,Mj) = (mi*mj / mi+mj) * d²(Mi,Mj)

Modèle Linéaire Simple

Exemple (suite):

i (ind.)	y i (revenu)	x; (âge)	y, - y	$X_i - \overline{X}$	$(\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{y}_i - \overline{\mathbf{y}})$	$(X_i - X)^2$
1	52125.0	48.1	193.9	5.0	978.6	25.5
2	50955.9	38.7	-975.3	-4.4	4245.4	18.9
3	53382.9	48.6	1451.7	5.6	8061.1	30.8
4	51286.9	37.5	-644.3	-5.5	3570.3	30.7
5	55243.6	54.7	3312.5	11.6	38434.3	134.6
6	53384.7	40.7	1453.5	-2.4	-3481.4	5.7
7	53488.2	50.1	1557.1	7.1	10982.0	49.7
8	54134.1	45.9	2202.9	2.9	6281.9	8.1
9	52706.4	55.9	775.2	12.9	9975.6	165.6
10	42144.3	25.1	-9786.9	-18.0	176033.4	323.5
11	52665.2	36.9	734.1	-6.1	-4503.3	37.6
12	51656.7	34.5	-274.5	-8.6	2350.7	73.3
Moyenne	51931.2	43.1	0	0	21077.4	75.4
Somme	623174.0	516.8	0	0	252928.4	904.3

$$\hat{\boldsymbol{\beta}}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{252928.4}{904.3} = \underline{279.7}$$

$$\hat{\boldsymbol{\beta}}_{0} = 51931.2 - 279.7 * 43.1 \approx \underline{39885}$$

Beta1_chapeau = cov/var(x)

Beta0_chapeau = y_bar - beta1_chapea*x_bar

Y_chapeau = beta0_chapeau + beta1_chapeau * x

Variance = $1/n * somme (x - xbar)^2$

Cov = 1/n * somme (x-xbar)(y-ybar)

Coef Corr = cov/racine(variance) * racine(variance)

Chedly Zouche 2020 - 2021

Calcul SCR:

<i>i</i> (ind.)	y i (revenu)	x; (âge)	$\hat{y}_i = 39885 + 279.7 \star x_i$	$y_i - \hat{y}_i$	$(\mathbf{y}_i - \hat{\mathbf{y}}_i)^2$
1	52125.0	48.1	53343.0	-1218.0	1483550.6
2	50955.9	38.7	50713.7	242.2	58695.3
3	53382.9	48.6	53484.3	-101.4	10274.8
4	51286.9	37.5	50381.1	905.8	820405.6
5	55243.6	54.7	55176.5	67.1	4507.4
6	53384.7	40.7	51261.3	2123.5	4509068.6
7	53488.2	50.1	53903.9	-415.6	172735.6
8	54134.1	45.9	52728.7	1405.4	1975015.2
9	52706.4	55.9	55530.2	-2823.8	7973726.7
10	42144.3	25.1	46900.3	-4756.1	22620189.0
11	52665.2	36.9	50215.3	2450.0	6002285.9
12	51656.7	34.5	49535.7	2121.0	4498484.4
Moyenne	51931.2	43.1	51931.2	0	4177409.1
Somme	623174.0	516.8	623174.0	0	50128909.0

On note l'expression suivante : $\mathbf{R}^2 = \frac{\mathbf{SCE}}{\mathbf{SCT}}$ Avec

$$SCT = \sum_{t=1}^{n} (y_t - \overline{y})^2 = m_{YY} \qquad SCE = \sum_{t=1}^{n} (\hat{y}_t - \overline{y})^2 = \hat{\beta}_t^2 m_{XX} \qquad SCR = \sum_{t=1}^{n} \hat{\varepsilon}_t^2 = m_{YY} - \hat{\beta}_1^2 m_{XX}$$

Décomposition de la variance
$$\sum_{i} (y_{i} - \overline{y})^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \sum_{i} (\hat{y}_{i} - \overline{y})^{2}$$
$$SCT = SCR + SCE$$

SCT : somme des carrés totaux

SCE : somme des carrés expliqués par le modèle

SCR : somme des carrés résiduels, non expliqués par le modèle

Chedly Zouche 2020 - 2021

IV - Validation du modèle : coefficient de détermination R²

Coefficient de détermination.

Exprime la part de variabilité de Y expliquée par le modèle.

 $R^2 = \frac{SCE}{SCT}$

 $R^2 \rightarrow 1$, le modèle est excellent $R^2 \rightarrow 0$, le modèle ne sert à rien

$$R^2 = I - \frac{SCR}{SCT}$$

SCE représente la variation expliquée.

SCR représente la variation inexpliquée due aux variables omises dans le modèle.

Si R2=0,9; on dit que 90% de la variation de X est expliquée par la variation de Y.

Si R²=0,1 ; la variation de X contribue à hauteur de 10% dans l'explication de la variation de Y. Par conséquent, la variable explicative ne suffit pas à elle seule à expliquer la variable expliquée. On doit dans ce cas introduire d'autres variables dans le modèle sans pour autant rejeter automatiquement la variable X. Ce qu'on appelle modèle linéaire multiple

16

Modèle linéaire multiple :