Theory of Computation

Homework 2 Due: 2008/11/04

Problem 1. Let $L \subseteq \{0,1\}^*$ belong to $\mathrm{TIME}(2^{(n^{10})})$ and $L' \stackrel{\mathrm{def}}{=} \{x \, 0^{|x|^{100}} \mid x \in L\}$ where $x \, 0^{|x|^{100}}$ denotes the concatenation of x and an $|x|^{100}$ number of 0's. Show that $L' \in \mathrm{TIME}(2^n)$.

Problem 2. Let M be a nondeterministic polynomial-time Turing machine with alphabet set Σ . For each $x \in (\Sigma \setminus \{\sqcup\})^*$, denote by C(M,x) the set of configurations that can be yielded in any number of steps from the initial configuration of M on x. Note that |C(M,x)| is not necessarily 1 because M is nondeterministic. Suppose that A is a deterministic polynomial-time Turing machine that, given any $x \in \{0,1\}^*$, outputs a set S(x) with $C(M,x) \subseteq S(x)$. Show that $L(M) \in \mathbb{P}$.