2021年春线性代数(双语)考试原题

一. 概念题。

1. 判新题 (10分)

Mark each statement True or False.

- (1) Every matrix is row equivalent to a unique matrix in echelon form. ()
- (2) A 3×3 matrix A with 3 linearly dependent eigenvectors is invertible. ()
- (3) If A is a $n \times n$ matrix, then $\det(5A) = 5n \det(A)$. ()
- (4) The set of all linear combinations of $\alpha_1, \alpha_2, \dots, \alpha_n$ is a vector space. ()
- (5) If the matrix A contains a row of zeros, then 0 is an eigenvalue of A. ()
- (6) A matrix A is orthogonally diagonalizable if and only if A is symmetric. ()
- (7) If a matrix A is diagonalizable, then the columns of A are linearly dependent. ()
- (8) If none of the vectors in the set $S=\{\alpha_1,\alpha_2,\alpha_3\}$ is a linear combination of the other vectors, then S is linearly independent. ()
- (9) Rank $A = \dim(\operatorname{Nul} A)$. ()
- (10) Two eigenvectors corresponding to the distinct eigenvalues are always linearly independent. ()

判断题	1	2	3	4	5	6	7	8	9	10
答案										

2. 填空题 (共 5 小题, 每题 3 分, 共 15 分)

(1)
$$m{A}$$
 和 $m{B}$ 都是 $m \times n$ 的矩阵, 且 $m > n, r(m{A}) = \mathrm{r}(m{B}) = n$ 。 小冼说: $\mathrm{Col}(m{A}) = \mathrm{Col}(m{B})$ 。 小邢说: $\mathrm{Row}(m{A}) = \mathrm{Row}(m{B})$ 。 小代说: $\mathrm{Row}\left(m{A}^{\mathrm{T}}\right) = \mathrm{Row}\left(m{B}^{\mathrm{T}}\right)$ 。 小舒说: $\mathrm{Nul}\left(m{A}^{T}\right) = \mathrm{Nul}\left(m{B}^{T}\right)$ 。 则回答正确的是_____(只有一位)。

- (2) $A \to 3 \times 3$ 矩阵, 其特征值为 1, 2, 3 。则 |A| =_____.
- (3) 已知 α_i 和 β_j 都是 4 维列向量,且行列式 $|\alpha_1,\alpha_2,\alpha_3,\beta_1|=m, |\alpha_1,\alpha_2,\beta_2,\alpha_3|=n$ 。则行列式 $|\alpha_3,\alpha_2,\alpha_1,\beta_1+\beta_2|=$ _____.

$$(4) 若向量 $\begin{bmatrix} 0 \\ k \\ k^2 \end{bmatrix}$ 能由 $\begin{bmatrix} 1+k \\ 1 \\ 1 \end{bmatrix}$ 、 $\begin{bmatrix} 1 \\ 1+k \\ 1 \end{bmatrix}$ 、 $\begin{bmatrix} 1 \\ 1 \\ 1+k \end{bmatrix}$ 唯一线性表示, 则 k 应满足的条件为$$

	Γ1	0	1	
(5) 已知 0 是矩阵	0	2	0	的特征值, 则 $a=$ 。该矩阵的另外两个特征值是 和
		0		

填空题	1	2	3	4	5(1)	5(2)	5(3)
答案							

二. 计算题 (45分)

1. 解线性方程组。

$$x_1 - 2x_2 - x_3 + 3x_4 = 0$$

 $-2x_1 + 4x_2 + 5x_3 - 5x_4 = 3$
 $3x_1 - 6x_2 - 6x_3 + 8x_4 = 2$

2.
$$A=egin{bmatrix}2&1&1\1&2&1\1&1&2\end{bmatrix}$$
 , 计算 $m{A}$ 的逆矩阵。

3.
$$A = egin{bmatrix} 1/6 & 1/2 & 1/3 \ 1/2 & 1/4 & 1/4 \ 1/3 & 1/4 & 5/12 \end{bmatrix}$$
, 计算 $m{A}$ 的特征多项式。

4. 计算矩阵
$$A=egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$$
 的 QR 分解。

5. 已知
$$a_1=\begin{bmatrix}1\\-3\end{bmatrix}, a_2=\begin{bmatrix}-2\\4\end{bmatrix}, b_1=\begin{bmatrix}-9\\1\end{bmatrix}, b_2=\begin{bmatrix}-5\\-1\end{bmatrix}$$
 以以 ${m a}_1$ 、 ${m a}_2$ 构成基 A,以 ${m b}_1$ 、 ${m b}_2$ 构成基 B。现有向量 $x=\begin{bmatrix}1\\1\end{bmatrix}$ 。

计算 $m{x}$ 在基 A 之下的坐标向量 $[m{x}]_{
m A}$, $m{x}$ 在基 B 之下的坐标向量 $[m{x}]_{
m B}$,坐标变换矩阵 $m{P}_{
m A\leftarrow B}$,验证 $[m{x}]_{
m A}=m{P}_{
m A\leftarrow B}[m{x}]_{
m B}$ 。

三. 综合题 (30 分)。

1. 已知
$$u_1=\begin{bmatrix}1\\0\\0\end{bmatrix},\quad u_2=\begin{bmatrix}0\\1\\1\end{bmatrix},\quad v_1=\begin{bmatrix}0\\1\\0\end{bmatrix},\quad v_2=\begin{bmatrix}1\\0\\1\end{bmatrix}.$$
计算 $\operatorname{Span}\left\{oldsymbol{u}_1,oldsymbol{u}_2\right\}\cap\operatorname{Span}\left\{oldsymbol{v}_1,oldsymbol{v}_2\right\}$.

- 2. 设二次多项式 (二次型) $Q(x)=3x_1^2+6x_2^2+3x_3^2-4x_1x_2+8x_1x_3+4x_2x_3$ 。 (1)写出 Q(x) 的矩阵表达。
 - (2)找一个矩阵 $oldsymbol{P}$,做变量替换 $oldsymbol{x} = oldsymbol{P}_{oldsymbol{y}}$,使得到的新的二次多项式中不含有交义项。
 - (3) 二次多项式 Q(x) 是正定的 (半正定的),负定的 (半负定的),还是不定的?

四. 附加题 (10分)

说明: 共有2道附加题,选择其中一道解答。本人选择第___题。

- (1) $m{A}$ 和 $m{B}$ 分别是 m imes n 和 n imes p 矩阵, 证明: $r(m{A}m{B}) + n \geq r(m{A}) + r(m{B})$ 。
- (2) 设 $m{Q}$ 是一个正定对称矩阵, $\lambda_1,\lambda_2,\ldots,\lambda_n$ 是它的 n 个特征值, 满足 $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ 。证明对于任意的 n 维列向量 $m{x}$, 都有 $\frac{(\mathbf{x}^T\mathbf{x})^2}{(\mathbf{x}^T\mathbf{Q}\mathbf{x})(\mathbf{x}^T\mathbf{Q}^{-1}\mathbf{x})} \geq \frac{4\lambda_n\lambda_1}{(\lambda_1+\lambda_n)^2}$.