Amendments to the Claims

Please amend Claims 1, 2, 24, 25 and 26. Please add new Claims 27 and 28. The Claim Listing below will replace all prior versions of the Claims in the application.

Claim Listing

What is Claimed is:

 (Currently amended) A method of inhibiting rejection of a transplanted organ, <u>transplanted</u> tissue or <u>transplanted</u> cell in a subject <u>in need thereof</u>, said method comprising the step of administering an effective amount of a compound represented by Formula (I):

$$\begin{array}{c|c}
O & R_2 \\
\downarrow & R_1 & O
\end{array}$$
(I)

or a physiological salt thereof, wherein:

R₁ is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;

 R_2 is an optionally substituted aralkyl group or an alkyl group substituted with $-NR_5R_6$;

R₃ is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group;

 R_4 a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group; and

R₅ and R₆ are independently selected from a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group or R₅ and R₆ taken together with the nitrogen to which they are attached are a non-aromatic heterocyclic group;

wherein each substituted aryl group, substituted alkyl group and substituted aralkyl group are independently C-substituted with-OH, -Br, -Cl, -I, -F, R,

-CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NH₂, -C(=NH)-N(R)₂, -C(=NR)-NH₂, -C(=NR)-NH₂, -C(=NR)-NH₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NH₂, -NH-C(=NR)-NH₂, -NH-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NR₂, -SH, -SO_kR or -NH-C(=NH)-NH₂; and/or wherein each substituted aryl group and substituted aralkyl group are independently substituted at a nitrogen atom, if present, with -R', -N(R')₂, -C(O)R', -CO₂R', -C(O)C(O)R', -C(O)CH₂ C(O)R', -SO₂R', -SO₂N(R')₂, -C(=S)N(R')₂, -C(=NH)-N(R')₂, or -NR'SO₂R'; and

R' is hydrogen, an alkyl group, phenyl, -O(Phenyl), CH₂(Phenyl), heteroaryl or non-aromatic heterocyclic ring;

each R is independently an alkyl, benzyl, or aryl group; or $-N(R)_2$, taken together, forms a non-aromatic heterocyclic group; and k is 0, 1 or 2.

2. (Currently amended) A method of inhibiting chronic rejection of a transplanted organ or transplanted tissue in a subject in need thereof, said method comprising the step of administering an effective amount of a compound represented by Formula (I):

$$\begin{array}{c|c}
O & R_2 \\
\hline
 & N & R_3 \\
\hline
 & R_4 & R_1 & O
\end{array}$$
(I)

or a physiological salt thereof, wherein:

R₁ is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;

R₂ is an optionally substituted aralkyl group or an alkyl group substituted with -NR₅R₆;

R₃ is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group;

R₄ a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group; and

R₅ and R₆ are independently selected from a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group or R₅ and R₆ taken together with the nitrogen to which they are attached are a non-aromatic heterocyclic group;

wherein each substituted aryl group, substituted alkyl group and substituted aralkyl group are independently C-substituted with-OH, -Br, -Cl, -I, -F, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NR)-NHR, -C(=NR)-NHR, -C(=NR)-NHR, -NH-C(=NR)-NHR, -NH-C(=NR)-N(R)₂, -NH-C(=NR)-NHR, -NH-C(=NR)-N(R)₂, -NRH-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₂, -SO₂NR₂, -SH, -SO_kR or -NH-C(=NH)-NH₂; and/or wherein each substituted aryl group and substituted aralkyl group are independently substituted at a nitrogen atom, if present, with -R', -N(R')₂, -C(O)R', -CO₂R', -C(O)C(O)R', -C(O)CH₂ C(O)R', -SO₂R', -SO₂N(R')₂, -C(=S)N(R')₂, -C(=NH)-N(R')₂, or -NR'SO₂R'; and

R' is hydrogen, an alkyl group, phenyl, -O(Phenyl), CH₂(Phenyl), heteroaryl or non-aromatic heterocyclic ring;

each R is independently an alkyl, benzyl, or aryl group; or $-N(R)_2$, taken together, forms a non-aromatic heterocyclic group; and k is 0, 1 or 2.

- 3. (Original) The method of Claim 2 wherein R₂ is an optionally substituted heteroaralkyl group or an alkyl group substituted with -NR₅R₆.
- 4. (Original) The method of Claim 3 wherein R₄ is an optionally substituted aryl group, an optionally substituted cycloalkyl group, an optionally substituted C₁-C₄ aralkyl group or an optionally substituted C₁-C₄ cycloalkylalkyl group.
- 5. (Original) The method of Claim 4 wherein R₄ is an optionally substituted phenyl group, an optionally substituted phenyl-C₁-C₄-alkyl group, an optionally substituted diphenyl-C₁-C₄-alkyl group, an optionally substituted C₃-C₈-cycloalkyl-C₁-C₄-alkyl group or an optionally substituted di-(C₃-C₈-cycloalkyl)-C₁-C₄-alkyl group.
- 6. (Original) The method of Claim 5 wherein R₄ is an optionally substituted benzyl, an optionally substituted diphenylmethyl, an optionally substituted 2-phenylethyl, an optionally substituted 1,2-diphenylethyl, an optionally substituted 2,2-diphenylethyl or an optionally substituted 3,3-diphenylpropyl.
- 7. (Original) The method of Claim 3 wherein R_1 is an optionally substituted aryl group or an optionally substituted C_1 - C_4 aralkyl group.
- 8. (Original) The method of Claim 7 wherein R₁ is an optionally substituted phenyl group or an optionally substituted phenyl-C₁-C₄ alkyl group.
- 9. (Original) The method of Claim 3 wherein R₃ is an optionally substituted aryl group or an optionally substituted C₁-C₄ aralkyl group.
- 10. (Original) The method of Claim 9 wherein R₃ is an optionally substituted phenyl, an optionally substituted phenyl-C₁-C₄-alkyl, an optionally substituted diphenyl-C₁-C₄-alkyl, an optionally substituted pyrazolyl, an optionally substituted pyrazolyl-C₁-C₄-alkyl, an optionally substituted indolyl, an optionally substituted indolyl-C₁-C₄-alkyl,

thienylphenyl, thienylphenyl- C_1 - C_4 -alkyl, furanylphenyl, furanylphenyl- C_1 - C_4 -alkyl, an optionally substituted fluorenyl, an optionally substituted fluorenyl- C_1 - C_4 -alkyl, an optionally substituted naphthyl, an optionally substituted quinoxalinyl, an optionally substituted quinoxalinyl- C_1 - C_4 -alkyl, an optionally substituted quinazolinyl, an optionally substituted quinazolinyl- C_1 - C_4 -alkyl, an optionally substituted pyrolyl- C_1 - C_4 -alkyl, an optionally substituted thienyl, an optionally substituted thienyl- C_1 - C_4 -alkyl, an optionally substituted furanyl, an optionally substituted furanyl- C_1 - C_4 -alkyl, an optionally substituted furanyl, an optionally substituted furanyl- C_1 - C_4 -alkyl, an optionally substituted pyridyl or an optionally substituted- C_1 - C_4 -pyridyl.

11. (Previously presented) The method of Claim 10 wherein R₃ is represented by the following structural formula:

$$R_7$$
 X A $(CH_2)_n$ ξ

- 12. (Previously presented) The method of Claim 3 wherein R₃ is an optionally substituted 2-cyclohexylethyl, an optionally substituted 2-cyclopentylethyl, or an optionally substituted C₃-C₈ secondary or tertiary alkyl group.
- 13. (Original) The method of Claim 3 wherein R₂ is an optionally substituted 2-(imidazol-4-yl)ethyl, an optionally substituted 3-(imidazol-4-yl)propyl, an optionally substituted 3-(imidazol-1-yl)propyl, an optionally substituted 2-(morpholin-4-yl)ethyl, an optionally substituted 2-(4-pyrazolyl)ethyl, an optionally substituted 2-N,N-dimethylaminoethyl or an optionally substituted 3-N,N-dimethylaminopropyl.

- 14. (Original) The method of Claim 3 wherein:
 - a) R₁ is an optionally substituted aryl group or an optionally substituted C₁-C₄ aralkyl group;
 - b) R₃ is an optionally substituted aryl group or an optionally substituted C₁-C₄ aralkyl group; and
 - c) R_4 is an optionally substituted aryl group, an optionally substituted cycloalkyl group, an optionally substituted C_1 - C_4 aralkyl group or an optionally substituted C_1 - C_4 cycloalkylalkyl group.
- 15. (Original) The method of Claim 3 wherein:
 - a) R₁ is an optionally substituted phenyl group or an optionally substituted phenyl-C₁-C₄ alkyl group;
 - b) R₃ a substituted or unsubstituted phenyl, phenyl-C₁-C₄-alkyl, diphenyl-C₁-C₄-alkyl, pyrazolyl, pyrazolyl-C₁-C₄-alkyl, indolyl, indolyl-C₁-C₄-alkyl, thienylphenyl, thienylphenyl-C₁-C₄-alkyl, fluorenyl, fluorenyl-C₁-C₄-alkyl, naphthyl, naphthyl-C₁-C₄-alkyl, quinoxalinyl, quinoxalinyl-C₁-C₄-alkyl, an optionally substituted quinazolinyl, an optionally substituted quinazolinyl-C₁-C₄-alkyl, thienyl-C₁-C₄-alkyl, furanyl or furanyl-C₁-C₄-alkyl; and
 - c) R₄ is an optionally substituted phenyl group, an optionally substituted phenyl-C₁-C₄-alkyl group, an optionally substituted diphenyl-C₁-C₄-alkyl group, an optionally substituted C₃-C₈-cycloalkyl-C₁-C₄-alkyl group or an optionally substituted di-(C₃-C₈-cycloalkyl)-C₁-C₄-alkyl group.
- 16. (Original) The method of Claim 15 wherein R_2 is an optionally substituted imadazolyl- C_1 - C_4 -alkyl group or a C_1 - C_4 alkyl group substituted with -NR₅R₆.
- 17. (Previously presented) The method of Claim 16 wherein R₃ is represented by the following structural formula:

$$R_7$$
 X $(CH_2)_n$ ξ

wherein Ring A substituted or unsubstituted; R₇ is an optionally substituted phenyl, furanyl, thienyl or pyridyl group; n is an integer from 1-4; and X is a bond, CH₂, OCH₂, CH₂OC(O), CO, OC(O), C(O)O, O, S, SO or SO₂.

18. (Original) The method of Claim 17 wherein R₄ is 2,2-diphenylethyl, 2-phenylethyl, benzyl, diphenylmethyl, 1,2-diphenylethyl, 3,3-diphenylpropyl, benzyl, or 2-pyridylethyl, each optionally substituted with -OH, halogen, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NR)-NH₂, -C(=NR)-NHR, -C(=NR)-NH₂, -NH-C(=NH)-NHR, -NH-C(=NH)-N(R)₂, -NH-C(=NR)-NHR, -NH-C(=NR)-NHR, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-N(R)₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₃, -SO₂N(R)₂, -SH or -SO₄R;

each R is independently C₁-C₄ alkyl or phenyl optionally substituted with amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl; and

k is zero, one or two.

19. (Original) The method of Claim 18 wherein R₁ is a phenyl group or phenyl-C₁-C₄ alkyl group each optionally substituted with R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OH, halogen, -OR, -O-COR, -CON, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NH₂,

- -NH-C(=NH)-NHR, -NH-C(=NH)-N(R)₂, -NH-C(=NR)-NH₂, -NH-C(=NR)-NHR, -NH-C(=NR)-N(R)₂, -NRH-C(=NH)-NH₂, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NHR, -NR⁻C(=NR)-N(R)₂, -SO₂NH₂, -SO₂NHR, -SO₂N(R)₂, -SH or -SO_kR.
- 20. (Original) The method of Claim 19 wherein R₁ is a phenyl group or phenyl-C₁-C₂ alkyl group, each optionally substituted with C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, CN, C₁-C₄-alkylthiol, C₁-C₄-haloalkyl or phenoxy; R₄ is 2,2-diphenylethyl, 2-phenylethyl, benzyl, diphenylmethyl, 1,2-diphenylethyl, 3,3-diphenylpropyl, benzyl, or 2-pyridylethyl, each optionally substituted with C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, CN, C₁-C₄-alkylthiol, C₁-C₄-haloalkyl or phenoxy; R₇ is an optionally substituted phenyl group; n is 1; and X is CO.
- 21. (Original) The method of Claim 20 wherein Ring A is unsubstituted and R₇ is a phenyl group optionally substituted with R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OH, halogen, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-N(R)₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NHR, -NH-C(=NH)-NHR, -NH-C(=NH)-NHR, -NH-C(=NH)-NHR, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NH)-N(R)₂, -SO₂NH₂, -SO₂NH₂, -SO₂NH₃, -SO₂N(R)₂, -SH or -SO_kR.
- 22. (Original) The method of Claim 21 wherein R_7 is a phenyl group.
- 23. (Original) The method of Claim 22 wherein R_2 is 2-(imidazol-4-yl)ethyl.
- 24. (Currently amended) A method of inhibiting rejection of a transplanted organ, transplanted tissue or transplanted cell in a subject in need thereof, said method

comprising the step of administering an effective amount of a compound represented by the following structural formula:

or a pharmaceutically acceptable salt thereof.

25. (Currently amended) A method of inhibiting chronic rejection of a transplanted organ or transplanted tissue in a subject in need thereof, said method comprising the step of administering an effective amount of a compound represented by the following structural formula:

(II).

or a pharmaceutically acceptable salt thereof.

26. (Currently amended) A method of inhibiting rejection of a transplanted organ, transplanted tissue or transplanted cell in a subject in need thereof, said method comprising the step of administering an effective amount of a compound represented by the following structural formula:

$$R_{14}$$
 R_{14}
 R_{14}
 R_{11}
 R_{12}
 R_{13}

or a physiologically acceptable salt thereof, wherein:

R₁₁ is -H, a substituted or unsubstituted aryl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted heteroaryl or a substituted or unsubstituted heteroaralkyl;

 R_{12} is alkyl substituted with $NR_{15}R_{16}$, a substituted or unsubstituted aryl, a substituted or unsubstituted heteroaralkyl, or a substituted or unsubstituted heterocycloalkylalkyl;

R₁₃ is a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, a substituted or unsubstituted aralkyl, a substituted or unsubstituted cycloalkylalkyl, a substituted or unsubstituted heteroaryl, a substituted or unsubstituted heteroaralkyl, a substituted or unsubstituted benzophenonyl, or a substituted or unsubstituted cycloalkylalkyl; and

each R₁₄ is independently, -H, a substituted or unsubstituted alkyl, a substituted or unsubstituted aryl, substituted or unsubstituted aralkyl or a substituted or unsubstituted heteroaralkyl;

 R_{15} and R_{16} are independently selected from H, a substituted or unsubstituted alkyl, a substituted or unsubstituted cycloalkyl, a substituted or unsubstituted aryl or unsubstituted aralkyl or R_{13} and R_{14} together with the nitrogen to which they are attached are a heterocycloalkyl;

wherein each substituted aryl group, substituted alkyl group and substituted aralkyl group are independently C-substituted with-OH, -Br, -Cl, -I, -F, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR, -N(R)₂, -COOR, -CHO, -CONH₂, -CONHR, -CON(R)₂, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, -NRCON(R)₂, -C(=NH)-NH₂, -C(=NH)-NHR, -C(=NH)-NH₂, -C(=NR)-NH₂, -C(=NR)-NH₂, -NH-C(=NH)-NH₂, -NH-C(=NH)-NH₂,

-NH-C(=NH)-N(R)₂, -NH-C(=NR)-NH₂, -NH-C(=NR)-NHR, -NH-C(=NR)-N(R)₂, -NRH-C(=NH)-NH₂, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NH₂,

-NR-C(=NR)-NHR, -NR-C(=NR)-N(R)₂, -SO₂NH₂, -SO₂NHR, -SO₂NR₂, -SH, -SO_kR or -NH-C(=NH)-NH₂; and/or

wherein each substituted aryl group and substituted aralkyl group are independently substituted at a nitrogen atom, if present, with -R', $-N(R')_2$, -C(O)R', $-CO_2R'$, -C(O)C(O)R', $-C(O)CH_2$ C(O)R', $-SO_2R'$, $-SO_2N(R')_2$, $-C(=S)N(R')_2$, $-C(=NH)-N(R')_2$, or $-NR'SO_2R'$; and

R' is hydrogen, an alkyl group, phenyl, -O(Phenyl), CH₂(Phenyl), heteroaryl or non-aromatic heterocyclic ring;

each R is independently an alkyl, benzyl, or aryl group; or $-N(R)_2$, taken together, forms a non-aromatic heterocyclic group; and k is 0, 1 or 2.

27. (New) A method of inhibiting acute and chronic rejection of a transplanted organ, transplanted tissue or transplanted cell in a subject in need thereof, said method comprising the step of administering an effective amount of a compound represented by Formula (I):

$$\begin{array}{c|c} O & R_2 \\ \hline \\ HN & R_1 & O \end{array} \hspace{1cm} R_3 \hspace{1cm} (I)$$

or a physiological salt thereof, wherein:

R₁ is a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group;

 R_2 is an optionally substituted aralkyl group or an alkyl group substituted with $-NR_5R_6$;

R₃ is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group;

R₄ a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group; and

R₅ and R₆ are independently selected from a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group or R₅ and R₆ taken together with the nitrogen to which they are attached are a non-aromatic heterocyclic group;

wherein each substituted aryl group, substituted alkyl group and substituted aralkyl group are independently C-substituted with-OH, -Br, -Cl, -I, -F, R, -CH₂R, -OCH₂R, -CH₂OC(O)R, -OR, -O-COR, -COR, -CN, -NO₂, -COOH, -SO₃H, $-NH_2$, -NHR, $-N(R)_2$, -COOR, -CHO, $-CONH_2$, -CONHR, $-CON(R)_2$, -NHCOR, -NRCOR, -NHCONH₂, -NHCONRH, -NHCON(R)₂, -NRCONH₂, -NRCONRH, $-NRCON(R)_2$, $-C(=NH)-NH_2$, -C(=NH)-NHR, $-C(=NH)-N(R)_2$, $-C(=NR)-NH_2$, -C(=NR)-NHR, $-C(=NR)-N(R)_2$, $-NH-C(=NH)-NH_2$, -NH-C(=NH)-NHR, $-NH-C(=NH)-N(R)_2$, $-NH-C(=NR)-NH_2$, -NH-C(=NR)-NHR, $-NH-C(=NR)-N(R)_2$, -NRH-C(=NH)-NH₂, -NR-C(=NH)-NHR, -NR-C(=NH)-N(R)₂, -NR-C(=NR)-NH₂, -NR-C(=NR)-NHR, -NR-C(=NR)-N(R)₂, -SO₂NH₂, -SO₂NHR, -SO₂NR₂, -SH, -SO_kR or -NH-C(=NH)-NH₂; and/or wherein each substituted aryl group and substituted aralkyl group are independently substituted at a nitrogen atom, if present, with -R', $-N(R')_2$, -C(O)R', $-CO_2R'$, -C(O)C(O)R', $-C(O)CH_2$ C(O)R', $-SO_2R'$, $-SO_2N(R')_2$, $-C(=S)N(R')_2$, $-C(=NH)-N(R')_2$, or –NR'SO₂R'; and R' is hydrogen, an alkyl group, phenyl, -O(Phenyl), CH₂(Phenyl), heteroaryl or nonaromatic heterocyclic ring; each R is independently an alkyl, benzyl, or aryl group; or -N(R)2, taken together, forms a non-aromatic heterocyclic group; and k is 0, 1 or 2.

28. (New) A method of inhibiting acute and chronic rejection of a transplanted organ, transplanted tissue or transplanted cell in a subject in need thereof, said method comprising the step of administering an effective amount of a compound represented by the following structural formula:

or a pharmaceutically acceptable salt thereof.