

Ayudantía 9 - Algoritmos y complejidad

31 de mayo de 2024 Martín Atria, Paula Grune, Caetano Borges

Resumen

1 Algoritmos

Definimos un cerro como una lista consistiendo en una serie estrictamente creciente seguida de una serie estrictamente decreciente. Por ejemplo:

$$[1, 2, 4, 19, 8, 3]$$
$$[-5, 2, 7, 10, 15, 6, 5, 4, 1, 0]$$

son cerros.

- 1. Escriba un algoritmo que utilice una estrategia de dividir y conquistar que reciba como input un cerro, y entregue como output el valor máximo de este.
- 2. Calcule la complejidad de su algoritmo.

Intente crear un algoritmo que sea $O(\log(n))$.

Solución

a.)

Input: un cerro $A = [a_0, \ldots, a_{n-1}]$. Output: el valor máximo de A.

$CerroSearch(A = [a_0, \dots, a_{n-1}])$

```
a \leftarrow 0

b \leftarrow n-1

m \leftarrow \lfloor \frac{a+b}{2} \rfloor

if b == 0 then

return A[0]

else if A[m] > A[m+1] then

return CerroSearch(A[:m+1])

else if A[m] < A[m+1] then

return CerroSearch(A[m+1])

end if
```

b) Contaremos la cantidad de comparaciones de T(n), donde n es el largo del input. Consideraremos el peor caso (que ocurre cuando el arreglo está ordenado). Consideremos la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 1\\ T(\lceil \frac{n}{2}) \rceil) + 3 & n > 1 \end{cases}$$

Supongamos que $n=2^k$, con $k \in \mathbb{N}$. Tenemos que

$$T(n) = T(2^{k}) = T\left(\frac{2^{k}}{2}\right) + 3$$

$$= T(2^{k-1}) + 3$$

$$= (T(2^{k-2}) + 3) + 3$$

$$= T(2^{k-2}) + 2 \cdot 3$$

$$\vdots$$

$$= T(2^{k-i}) + i \cdot 3$$

$$\vdots$$

$$= T(2^{k-i}) + k \cdot 3$$

$$= T(1) + k \cdot 3$$

$$= 3k + 1$$

Volviendo a términos de n, tenemos que $k = \log_2(n)$, por lo que

$$T(n) = 3\log_2(n) + 1$$

De lo que concluímos que $T(n) \in O(\log_2(n) \mid \text{POTENCIA}_2)$.

Además, dado que $\log_2(n)$ es as intóticamente no decreciente, 2-ármonica y T(n) es as intóticamente no decreciente, concluímos que

$$T(n) \in O(\log_2(n)) = O(\log(n))$$

2 Complejidad

Sean $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$ dos funciones cualesquiera. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

- 1. Si $f(n) \in \Theta(g(n))$ entonces mín $\{f(n), g(n)\} \in \Theta(\max \{f(n), g(n)\})$.
- 2. Si $f(n) \in O(g(n))$ entonces $f(n)^{g(n)} \in O(g(n)^{f(n)})$.

Solución

1. Definiendo $h(n) = \min\{f(n), g(n)\}\ y H(n) = \max\{f(n), g(n)\}\ Como f \in \Theta(g)$, existen constantes $c_1, c_2 \in R, n_o \in N$ tal que

$$c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0 \tag{1}$$

Despejando de la parte derecha de la desigualdad

$$\frac{1}{c_2}f(n) \le g(n)\forall n \ge n_0 \tag{2}$$

Tenemos dos escenarios desde $n \ge n_0$:

1. Cuando $f(n) \leq g(n), h(n) = f(n) \wedge H(n) = g(n).$ Usando (1) y la condición de este caso:

$$c_1 g(n) \le f(n) \le 1 \cdot g(n) \text{ para } n \ge n_0 \text{ tq } f(n) \le 1 \cdot g(n)$$
$$\min \left\{ c_1, \frac{1}{c_2} \right\} g(n) \le c_1 g(n) \le f(n) \le 1 \cdot g(n)$$
$$\min \left\{ c_1, \frac{1}{c_2} \right\} H(n) \le h(n) \le 1 \cdot H(n)$$

2. Cuando $g(n) < f(n), h(n) = g(n) \land H(n) = f(n)$ Con (2) queda:

$$\frac{1}{c_2}f(n) \le g(n) \le 1 \cdot f(n) \text{ para } n \ge n_0 \text{ tq } f(n) > g(n)$$

$$\min\left\{c_1, \frac{1}{c_2}\right\} f(n) \le \frac{1}{c_2}f(n) \le g(n) \le 1 \cdot f(n)$$

$$\min\left\{c_1, \frac{1}{c_2}\right\} H(n) \le \frac{1}{c_2}f(n) \le h(n) \le 1 \cdot H(n)$$

Combinando ambos casos:

$$\min \left\{ c_1, \frac{1}{c_2} \right\} H(n) \le h(n) \le 1 \cdot H(n) \quad \forall n \ge n_0$$
$$c_1' H(n) < h(n) < c_2' H(n) \quad \forall n > n_0$$

Con lo cual, $h(n) \in \Theta(H(n))$

2. La afirmación anterior es falsa, se puede demostrar a través de un contraejemplo: Sea f(n) = 2 y g(n) = n. De acuerdo a la jerarquía en notación \mathcal{O} vista en clases se cumple que $f(n) \in \mathcal{O}(g(n))$. Se debe demostrar ahora que $f(n)^{g(n)} \notin \mathcal{O}(g(n)^{f(n)})$: Nuevamente si consideramos la jerarquía en notación \mathcal{O} vista en clases, si $f(n)^{g(n)} = 2^n$ y $g(n)^{f(n)} = n^2$. Entonces no se cumple que $f(n)^{g(n)} \in \mathcal{O}(g(n)^{f(n)})$, lo que es equivalente a $f(n)^{g(n)} \notin \mathcal{O}(g(n)^{f(n)})$. Por demostración a través de contraejemplo queda demostrado que la afirmación no se cumple para dos funciones arbitrarias.

3 Complejidad + inducción

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ 4 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 \log_2(n) & \text{si } n > 1 \end{cases}$$

Demuestre usando inducción que $T(n) \in O(n^2(\log n)^2)$. Puede que los siguientes valores le resulten útiles:

$$\log_2(3) \approx 1,6 \quad \log_2(5) \approx 2,3 \quad \log_2(6) \approx 2,6 \quad \log_2(7) \approx 2,8$$

Solución

Por definición de O asintótica, tenemos que $g \in O(f)$ si y solo si

$$(\exists c \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N}) (\forall n \ge n_0) (g(n) \le c \cdot f(n))$$

Demostraremos por inducción que $T(n) \in O(n^2(\log n)^2)$. Usaremos logaritmo en base 2, pues es el que aparece en la ecuación de recurrencia. Debemos encontrar $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que para todo $n \geq n_0$ se cumpla que

$$T(n) < c \cdot n^2 \left(\log_2(n)\right)^2$$

Para esto, vamos a inspeccionar los primeros valores de $T(\cdot)$, y de esta forma trataremos de inferir ambas constantes. Reemplazando en la ecuación de recurrencia, y comparando con los valores de $n^2 (\log_2(n))^2$, tenemos que:

$$T(1) = 1 \qquad \qquad \nleq 1^2(\log_2(1))^2 = 0$$

$$T(2) = 4 \cdot T(1) + 2^2 \cdot \log_2(2) = 4 + 4 \cdot 1 = 8 \qquad \qquad \nleq 2^2(\log_2(2))^2 = 4$$

$$T(3) = 4 \cdot T(1) + 3^2 \cdot \log_2(3) \approx 4 + 9 \cdot 1.6 = 18.4 \qquad \qquad \leq 3^2(\log_2(3))^2 \approx 22.6$$

$$T(4) = 4 \cdot T(2) + 4^2 \cdot \log_2(4) = 4 \cdot 8 + 16 \cdot 2 = 64 \qquad \qquad \leq 4^2(\log_2(4))^2 = 64$$

$$T(5) = 4 \cdot T(2) + 5^2 \cdot \log_2(5) \approx 4 \cdot 8 + 25 \cdot 2.3 = 89.5 \qquad \qquad \leq 5^2(\log_2(5))^2 \approx 134$$

$$T(6) = 4 \cdot T(3) + 6^2 \cdot \log_2(6) \approx 4 \cdot 18.4 + 36 \cdot 2.6 = 167.2 \qquad \qquad \leq 6^2(\log_2(6))^2 \approx 240$$

Teniendo estos valores en cuenta, podemos observar que para $n \ge 3$ se cumple que si c = 1 entonces $T(n) \le c \cdot n^2 (\log_2(n))^2$. Demostraremos entonces, por inducción fuerte, que

$$T(n) \le n^2 (\log_2(n))^2 \quad \forall n \ge 3$$

BI: Como la propiedad no se cumple para T(1) y T(2), todos los casos que involucren estos subcasos en la ecuación de recurrencia serán casos base. Dado lo anterior, los casos bases son $n \in \{3,4,5\}$ (cuando n = 6 se usa T(3), que ya sería un caso base; por lo tanto, n = 6 no es un caso base). Como vimos antes, para $n \in \{3,4,5\}$ se cumple la propiedad.

HI: Suponemos que para todo $k \in \{3, ..., n-1\}$ se cumple la propiedad.

TI: Por demostrar que $T(n) \le n^2 (\log_2(n))^2$, para $n \ge 6$.

$$T(n) = 4 \cdot T(\lfloor \frac{n}{2} \rfloor) + n^2 \log_2(n) \qquad \text{como } 3 \leq \lfloor \frac{n}{2} \rfloor < n \text{ aplicamos la HI}$$

$$\leq 4 \cdot \lfloor \frac{n}{2} \rfloor^2 \cdot (\log_2 \lfloor \frac{n}{2} \rfloor)^2 + n^2 \log_2(n)$$

$$\leq 4 \cdot (\frac{n}{2})^2 \cdot (\log_2(\frac{n}{2})^2 + n^2 \log_2(n)$$

$$= n^2 (\log_2(\frac{n}{2}))^2 + n^2 \log_2(n)$$

$$= n^2 ((\log_2(\frac{n}{2}))^2 + \log_2(n))$$

$$= n^2 ((\log_2(n) - \log_2(2))^2 + \log_2(n))$$

$$= n^2 ((\log_2(n) - 1)^2 + \log_2(n))$$

$$= n^2 ((\log_2(n))^2 - 2\log_2(n) + 1 + \log_2(n))$$

$$= n^2 ((\log_2(n))^2 - \log_2(n) + 1) \qquad \text{como } n \geq 3, -\log_2(n) + 1 \leq 0$$

$$\leq n^2 (\log_2(n))^2$$

Con esto hemos demostrado que para todo $n \ge 3$ se cumple que $T(n) \le n^2(\log_2(n))^2$, por lo que $T(n) \in O(n^2(\log_2(n))^2)$.

<u>Observación</u>: este ejercicio también se podía demostrar utilizando otro c y su n_0 correspondiente, pero el procedimiento de la inducción es análogo al caso anterior. Lo importante es fijar el c y el n_0 antes de empezar la inducción.