Radiation

Alejandro Campos

July 30, 2024

Contents

1	Basic definitions	1
2	Blackbody radiation	2

1 Basic definitions

	definition	units
Spectral radiance / Spectral specific intensity	$I_{ u}$	$\left[\frac{J}{s \cdot m^2 \cdot sr \cdot Hz}\right]$
0 th moment	$J_{\nu} = \frac{1}{4\pi} \int_{4\pi} I_{\nu} d\Omega$	$\left[\frac{J}{s \cdot m^2 \cdot Hz}\right]$
1 st moment	$\mathbf{H}_{ u} = rac{1}{4\pi} \int_{A_{-}} I_{ u} \mathbf{\Omega} d\Omega$	$\left[\frac{J}{s \cdot m^2 \cdot Hz}\right]$
2^{nd} moment	$= \frac{\mathbf{F}_{\nu}}{4\pi}$ $= \frac{1}{4\pi} \int_{4\pi} I_{\nu} \mathbf{\Omega} \mathbf{\Omega} d\mathbf{\Omega}$ $= \frac{c}{4\pi} \mathbf{P}_{\nu}$	$\left[\frac{\rm J}{\rm s\cdot m^2\cdot Hz}\right]$
Spectral radiant energy density	$= \frac{c}{4\pi} \mathbf{P}_{\nu}$ $E_{\nu} = \frac{1}{c} \int_{4\pi} I_{\nu} d\Omega$ $= \frac{4\pi}{c} J_{\nu}$	$\left[\frac{\rm J}{\rm m^3 \cdot Hz}\right]$
One-sided spectral radiant energy flux	$S_{\nu}^{\mathbf{A}} = \int_{\mathbf{\Omega} \cdot \mathbf{A} > 0} I_{\nu} \mathbf{\Omega} \cdot \mathbf{A} d\Omega$	$\left[\frac{J}{s \cdot m^2 \cdot Hz}\right]$

Table 1: Radiation quantities. In the above \mathbf{F}_{ν} is the radiation flux and \mathbf{P}_{ν} the radiation pressure tensor.

Consider an infinitesimal amount of energy dE_{ν} which is the energy at location \mathbf{x} and time t with frequencies in the infinitesimal range $d\nu$ about the frequency ν and flowing in the direction of the solid angle $d\Omega$ about the unit vector Ω and passing through an infinitesimal area $d\mathbf{A}$ with unit normal \mathbf{A} . We express this energy in terms of a distribution $I_{\nu} = I_{\nu}(\mathbf{x}, t, \nu, \Omega)$ as follows

$$dE_{\nu} = I_{\nu} dt d\nu d\Omega dA(\mathbf{\Omega} \cdot \mathbf{A}). \tag{1}$$

	total	spectral
Radiance / Specific intensity / 0 th moment	$I = J = \frac{1}{\pi}\sigma T^4$	$I_{\nu} = J_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$
Radiant energy density	$E = \frac{4}{c}\sigma T^4$	$E_{\nu} = \frac{8\pi h \nu^3}{c^3} \frac{1}{\exp(h\nu/kT) - 1}$
One-sided radiant energy flux	$S^{\hat{\mathbf{z}}} = \sigma T^4$	$S_{\nu}^{\hat{\mathbf{z}}} = \frac{2\pi h \nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$

Table 2: Radiation quantities for a blackbody spectrum

 I_{ν} is referred to as the spectral radiance, or spectral specific intensity.

Any quantity dependent on ν can be integrated over all frequencies to obtain a total value. For example, for the spectral radiance/spectral specific intensity, we have

$$I = \int_0^\infty I_\nu \, d\nu. \tag{2}$$

In the above, $I = I(\mathbf{x}, t, \mathbf{\Omega})$ is the radiance, or specific intensity.

Various additional radiation quantities can be defined in terms of I_{ν} , as shown in table 1.

2 Blackbody radiation

For blackbody radiation we have

$$I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/k_B T) - 1}.$$
 (3)

Consider the identity

$$\int_0^\infty \frac{x^3}{\exp(yx) - 1} \, dx = \frac{1}{15} \left(\frac{\pi}{y}\right)^4. \tag{4}$$

Using the above to integrate over all frequencies, we get

$$I = \frac{2h}{c^2} \frac{1}{15} \left(\frac{\pi k_B T}{h} \right)^4. \tag{5}$$

Defining the Stefan-Boltzmann constant as

$$\sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3} = 5.67037 \times 10^{-8} \left[\frac{W}{m^2 K^4} \right], \tag{6}$$

we have

$$I = -\frac{1}{\pi}\sigma T^4. \tag{7}$$

For blackbody radiation I_{ν} is isotropic, that is, it is independent of the direction Ω . Thus $J_{\nu} = I_{\nu}$ and J = I. This then leads to $E_{\nu} = (4\pi/c)I_{\nu}$ and $E = (4\pi/c)I$.

For the one-sided spectral radiant energy flux, we make reference to the diagram for spherical coordinates in fig. 1. Let's assume $\mathbf{A} = \mathbf{z}$ without loss of generality. Then, we have

$$S_{\nu}^{\hat{\mathbf{z}}} = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I_{\nu} \cos \theta \, d\Omega = I_{\nu} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} \cos \theta \sin \theta \, d\theta d\phi = \pi I_{\nu}. \tag{8}$$

Similarly as before, integrating over all frequencies leads to $S^{\hat{\mathbf{z}}} = \pi I$.

The above relationships and others are shown in table 2.

Figure 1: Spherical coordinates from Wikipedia.