أسئلة مؤتمتة في مادة الفيزياء الصف الثالث ثانوي

أسئلة مؤتمتة في مادة الفيزياء

الوحدة الأولى: الحركة و الميكانيك

الدرس الأول: الحركة التوافقية البسيطة (النواس المرن)

١- في الهزازة التوافقية البسيطة عندما يهتز الجسم فإنه يرسم قطعة مستقيمة طولها يساوي:

Α	2X _{max}	В	X _{max}
С	$\frac{X_{\max}}{2}$	D	$\frac{X_{\max}}{4}$
			٢- سعة الإهتزاز في النواس المرن :
Α	x	В	X _{max}
С	$\frac{X_{\max}}{2}$	D	$\frac{X_{\text{max}}}{4}$
طالة سكونية	و تسارع الجاذبية الأرضية g فيستطيل النابض است m	ه جسم کتلته	"-هزازة توافقية بسيطة ثابت صلابة النابض k يعلق بنهايت
			تعطى بالعلاقة : x_0
Α	$x_0 = \frac{m}{k}$	В	$x_0 = \frac{m}{k. g}$
С	$x_0 = \frac{m \cdot g}{k}$	D	$x_0 = \frac{k}{m. g}$
	تعطى عبارة الاستطالة السكونية للنابض بالعلاقة : g	بة الأرضية	T_0 و تسارع الجاذبي عند T_0 و T_0 عاد الماد عند T_0 و تسارع الماد ال
Α	$x_0 = \frac{4\pi^2}{T_0^2 \cdot g}$	В	$x_0 = \frac{T_0^2 \cdot g}{4\pi^2}$
С	$x_0 = \frac{\pi^2}{T_0^2 \cdot g}$	D	$x_0 = \frac{T_0^2 \cdot g}{4}$
			٥- قوة الإرجاع في النواس المرن تعطى بالعلاقة الأتية:
Α	F = kx	В	$F = \frac{k}{x}$

آ- إن قوة الإرجاع في نواس المرن :

Α	تتناسب طردا مع المطال و تخالفه بالإشارة	В	تتناسب طردا مع مربع المطال
С	تتناسب عكسا مع المطال و تخالفه بالإشارة	D	تتناسب عكسا مع مربع المطال

D

F = -kx

٧-المعادلة التفاضلية في النواس المرن .

Α	$(x)_{t}^{"} = \frac{k}{m} x$	В	$(x)_{t}^{"} = -\frac{m}{k} x$
С	$(x)_{t}^{"} = \frac{1}{m} x$	D	$(x)_{t}^{"} = -\frac{k}{m} x$

٨- الشكل العام لتابع المطال في النواس المرن:

Α	$x = X_{max}\cos(w_0t + \varphi)$	В	$x = X_{max}.t$
С	$x = X_{max} \cos \varphi$	D	$x = X_{max}\cos(w_0 + \varphi)$

٩- إن جهة قوة الإرجاع دوما:

Α	نحو +X _{max}	В	-X _{max} نحو
С	نحو وضع التوازن	D	عكس جهة التسارع

. ١٠- تعطى علاقة النبض الخاص في النواس المرن :

А	$w_0 = \frac{k}{m}$	В	$w_0 = \sqrt{\frac{k}{m}}$
С	$w_0 = -\frac{k}{m}$	D	$w_0 = \sqrt{\frac{\overline{m}}{k}}$

: هزازة توافقية بسيطة نبضها الخاص w_0 نجعل $k^{ imes}=2k$ فيصبح النبض الخاص الجديد $k^{ imes}=1$

A	$\overrightarrow{w_0} = w_0$	В	$\overrightarrow{w_0} = 2w_0$
С	$\overrightarrow{w_0} = \sqrt{2}w_0$	D	$\overrightarrow{w_0} = \frac{\overrightarrow{w_0}}{\sqrt{2}}$

m = 2m و m = 2m فيصبح النبض الخاص الجديد : $k = \frac{k}{2}$ و m = 2m فيصبح النبض الخاص الجديد :

Α	$\overrightarrow{w_0} = w_0$	В	$\overrightarrow{w_0} = 2w_0$
С	$\overrightarrow{w_0} = \sqrt{2}w_0$	D	$\overrightarrow{w_0} = \frac{w_0}{2}$

Α	$T_0 = 2\pi \sqrt{\frac{m}{k}}$	В	$T_0 = \sqrt{\frac{m}{k}}$
С	$T_0 = 2\pi \sqrt{\frac{k}{m}}$	D	$T_0 = 2\pi \frac{m}{k}$

: هزازة توافقية بسيطة دورها الخاص T_0 نجعل $\frac{k}{2}=\frac{k}{2}$ و m=2m فيصبح دورها الخاص الجديد k=1

Α	$T_0^{\cdot} = T_0$	В	$T_{0} = \frac{T_{0}}{\sqrt{2}}$
С	$T_0 = \frac{T_0}{2}$	D	$T_0 = 2T_0$

- أ - هزازة توافقية بسيطة دورها الخاص T_0 نجعل $k^{ imes}=2k$ فيصبح دورها الخاص الجديد :

A	$T_0 = T_0$	В	$T_{0} = \frac{T_{0}}{\sqrt{2}}$
С	$T_0 = \frac{T_0}{2}$	D	$T_0 = 2T_0$

: هزازة توافقية بسيطة دورها الخاص T_0 نجعل T_0 نجعل الخاص الجديد T_0

Α	$T_0 = \frac{T_0}{2}$	В	$T_0 = T_0$		
С	$T_0 = 2T_0$	D	$T_{0} = \frac{T_{0}}{\sqrt{2}}$		
$m = 4m$ فيصبح النبض الخاص w_0 نجعل $m = 4m$ فيصبح النبض الخاص الجديد :					

A	$\overrightarrow{w_0} = w_0$	В	$\overrightarrow{w_0} = 2w_0$
С	$\overrightarrow{w_0} = \sqrt{2}w_0$	D	$\overrightarrow{w_0} = \frac{w_0}{2}$

: هزازة توافقية بسيطة دورها الخاص T_0 نجعل $k^*=rac{k}{4}$ فيصبح دورها الخاص الجديد - ۱۸

Α	$T_0 = \frac{T_0}{2}$	В	$T_0 = T_0$
С	$T_0 = 2T_0$	D	$T_{0} = \frac{T_{0}}{\sqrt{2}}$

١٩- الدور الخاص في النواس المرن:

Α	m يتناسب طردا مع الكتلة	В	m يتناسب عكسا مع الكتلة
С	يتناسب طردا مع الجذر التربيعي للكتلة m	D	m يتناسب عكسا مع الجذر التربيعي للكتلة

٠٢- الدور الخاص في النواس المرن:

Α	k يتناسب طردا مع ثابت صلابة النابض	В	k يتناسب طردا مع الجذر التربيعي ثابت صلابة النابض
С	k يتناسب عكسا مع ثابت صلابة النابض	D	k يتناسب عكسا مع الجذر التربيعي ثابت صلابة النابض

٢١- الدور الخاص في النواس المرن :

A	يتناسب طردا مع سعة الإهتزاز	В	يتناسب عكسا مع سعة الإهتزاز
С	يتناسب طردا مع مربع سعة الإهتزاز	D	لا يتعلق بسعة الإهتزاز

 $X^*_{max}=2X_{max}$ نجعل T_0 نجعل $X^*_{max}=2X_{max}$ فيصبح دور ها الخاص الجديد:

Α	$T_0 = \frac{T_0}{2}$	В	$T_0 = 2T_0$
С	$T_0^{} = T_0$	D	$T_{0} = \frac{T_{0}}{\sqrt{2}}$

بر t=0 بفرض في اللحظة t=0 كان الجسم في وضع مطاله الأعظمي الموجب فتكون قيمة الطور الابتدائي t=0

A	$\varphi = 0$	В	$\varphi = \frac{\pi}{2} rad$
С	$\varphi = \frac{\pi}{6} rad$	D	$\varphi = \frac{\pi}{3} rad$

٢٤ - تابع السرعة في النواس المرن :

А	$v = w_0 X_{max} \sin(w_0 t + \varphi)$	В	$v = -w_0 X_{max} \sin(w_0 t + \varphi)$
С	$v = w_0 X_{max} cos(w_0 t + \varphi)$	D	$v = -w_0 \sin(w_0 t + \varphi)$

٢٥ - تكون السرعة عظمي في النواس المرن عند :

A	$+X_{max}$	В	-X _{max}
С	x=0 المرور بوضع التوازن (مركز الإهتزاز) أي	D	کل ماسبق

٢٦- تنعدم السرعة في النواس المرن :

Α	$x = \mp X_{max}$	В	x = 0
С	$x = \frac{X_{max}}{2}$	D	کل ما سبق غیر صحیح

٢٧- تعطى عبارة السرعة العظمى (طويلة) في النواس المرن بالعلاقة:

А	$v_{max} = w_0^2 X_{max}$	В	$v_{max} = w_0 X_{max}$
С	$v_{max} = \frac{w_0}{X_{max}}$	D	$v_{max} = \frac{X_{max}}{w_0}$

دواس مرن سعة الإهتزاز فيه تساوي cm و دوره الخاص π تكون سرعته العظمي (طويلة) تساوي:

Α	$v_{max} = 0.1 \ m. s^{-1}$	В	$v_{max} = 0.1 \ \pi \ m.s^{-1}$
С	$v_{max} = 1 m. s^{-1}$	D	$v_{max} = 10 m. s^{-1}$

٢٩ تابع التسارع في النواس المرن:

Α	$a = w_0^2 x$	В	$a = w_0 X_{max}$
С	$a = -w_0^2 x$	D	$a = -w_0^2 X_{max}$

٣٠- إن التسارع في النواس المرن:

A	يتناسب عكسا مع المطال و يخالفه بالإشارة	В	يتناسب طردا مع المطال و يخالفه بالإشارة
С	يتناسب عكسا مع مربع المطال و يخالفه بالإشارة	D	يتناسب طردا مع مربع المطال و يخالفه بالإشارة

π د نواس مرن سعة الإهتزاز فيه تساوي m 5 و دوره الخاص π يكون التسارع الأعظمي (طويلة) يساوي: π

Α	$a_{max} = 0.2\pi \ m. s^{-2}$	В	$a_{max} = 0.2 m. s^{-2}$
С	$a_{max} = 0.1\pi \ m. s^{-2}$	D	$a_{max} = 0.1 m. s^{-2}$

٣٢ - يكون التسارع أعظمي عندما:

Α	$x = +X_{max}$	В	$x = -X_{max}$
С	$x = \mp X_{max}$	D	کل ما سبق صحیح

٣٣- ينعدم التسارع عندما:

Α	$x = +X_{max}$	В	$x = -X_{max}$
С	x = 0	D	$x = \frac{X_{max}}{3}$

٣٤- تعطى عبارة الطاقة الحركية في النواس المرن:

Α	$E_k = \frac{1}{2}mv^2$	В	$E_k = \frac{1}{2}kv^2$
С	$E_k = \frac{1}{2}mv$	D	$E_k = \frac{1}{2} \mathrm{m}^2 v^2$

٣٥- تعطى عبارة الطاقة الكامنة المرونية في النواس المرن

A	$E_p = \frac{1}{2}kx$	В	$E_p = \frac{1}{2}kx^2$
С	$E_p = kx^2$	D	$E_p = \frac{1}{2}k^2x^2$

٣٦- تعطى عبارة الطاقة الكلية ا في النواس المرن:

A	$E = \frac{1}{2}kX_{max}$	В	$E = \frac{1}{2}k^2X_{max}$
С	$E = \frac{1}{2}kX_{max}^2$	D	$E = kX_{max}^2$

٣٧- تنعدم الطاقة الحركية في النواس المرن عندما:

Α	$x = +X_{max}$	В	$x = -X_{max}$
С	$x = \mp X_{max}$	D	کل ما سبق صحیح

٣٨- تكون الطاقة الحركية عظمي في النواس المرن عندما :

Α	x = 0	В	$x = \frac{X_{max}}{3}$
С	$x = \mp X_{max}$	D	$x = \frac{X_{max}}{2}$

٣٩- تكون الطاقة الكامنة المرونية عظمي في النواس المرن:

Α	$x = \frac{X_{max}}{2}$	В	x = 0
С	$x = \frac{X_{max}}{3}$	D	$x = \mp X_{max}$

· ٤ - تنعدم الطاقة الكامنة المرونية في النواس المرن :

A	$x = \frac{X_{max}}{2}$	В	x = 0
С	$x = \frac{X_{max}}{3}$	D	$x = \mp X_{max}$

ھى :	بسيطة	ة توافقية	ل هزاز	ِ الذي يشكا	عطالة الجسم	لمركز	الحركة	ن طبيعة	٤ - إر	
------	-------	-----------	--------	-------------	-------------	-------	--------	---------	--------	--

	بسيطة هي :	ازة توافقية	٤١ - إن طبيعة الحركة لمركز عطالة الجسم الذي يشكل هز				
Α	مستقيمة متغيرة بانتظام	В	مستقيمة متباطئة بانتظام				
С	مستقيمة متسارعة نحو مركز الإهتزاز	D	مستقيمة منتظمة نحو مركز الإهتزاز				
	المسلمة المرازة التوافقية البسيطة إلى أحد الوضعين الطرفين تنعدم : ٢٥- عند وصول الهزازة التوافقية البسيطة إلى أحد الوضعين الطرفين تنعدم :						
Α	الطاقة الكامنة	В	الطاقة الميكانيكية				
С	قيمة السرعة و التسارع	D	قيمة السرعة والتسارع يكون أعظمي				
	القوى المبددة للطاقة :	لة و بإهمال	 ٤٣ بالاقتراب من مركز الإهتزاز بالهزازة التوافقية البسيط 				
Α	تتحول الطاقة الميكانيكية إلى طاقة حركية	В	تتحول الطاقة الكامنة إلى طاقة حركية و حراربة				
С	تزداد الطاقة الكامنة و تتناقص الطاقة الحركية	D	تزداد الطاقة الحركية وتتناقص الطاقة الكامنة				
	:	ية البسيطة	٤٤- عندما يمر الجسم في مركز التوازن في الهزازة التوافق				
Α	ينعدم التسارع و يقف الجسم	В	تنعدم السرعة ويقف الجسم				
С	تنعدم السرعة و التسارع و يقف الجسم	D	ينعدم التسارع و لا يقف الجسم				
	دام :	الحركة بانع	٥٤-يتوقف الجسم المهتز في الهزازة التوافقية البسيطة عن				
Α	X_{max} السرعة في	В	التسارع عند المرور في مركز الإهتزاز				
С	السرعة و التسارع في مركز الإهتزاز	D	الطاقة الحركية				
m = mو و	$8m$ بدوره الخاص $2 \ S = T_0 = T_0$ إذا استبدانا الكتلة بالكتلة	_{هٔ} کتلته <i>m</i> و	معلق بنهایته جسم k معلق بنهایته جسم -٤٦				
			النابض بنابض آخر ثابت صلابته $k`=2k$ يصبح الدور ا $-$				
Α	$T_0 = 1 s$	В	$T_0 = 2 s$				
С	$T_0 = \frac{1}{2} s$	D	$T_0 = 4 s$				
			٤٧ - واحدة قياس النبض الخاص _W هي :				
Α	rad. s	В	$rad.s^{-1}$				
С	rad.s⁻²	D	rad.s ²				

Α	$\frac{T_0}{2}$	В	$\frac{T_0}{4}$
С	T_0	D	2 T ₀

٤٩ - في النواس المرن الطاقة الميكانيكية عند المرور بوضع التوازن هي:

А	طاقة كامنة مرونية فقط	В	طاقة حركية فقط	
С	طاقة كامنة و طاقة حركية	D	طاقة معدومة	
و في الذياب المدين الداقة المركانكية عند المدين المارفين هي				

٥٠- في النواس المرن الطاقة الميكانيكية عند الوضعين الطرفين هي:

,	Α	طاقة كامنة مرونية فقط	В	طاقة حركية فقط
	c	طاقة كامنة و طاقة حركية	D	طاقة معدومة

 $E_k=E_p$ يكون : النواس المرن عندما

A	$x = X_{max}$	В	$x = \frac{X_{max}}{2}$
С	$x = \frac{X_{max}}{3}$	D	$x = \frac{X_{max}}{\sqrt{2}}$

 $E_k=2 E_p$ يكون: $\Sigma_k=2 E_p$ يكون:

Α	$x = X_{max}$	В	$x = \frac{X_{max}}{2}$
С	$x = \frac{X_{max}}{\sqrt{3}}$	D	$x = \frac{X_{max}}{\sqrt{2}}$

تامرن عندما $E_k=3E_p$ یکون:

Α	$x = X_{max}$	В	$x = \frac{X_{max}}{2}$
С	$x = \frac{X_{max}}{\sqrt{3}}$	D	$x = \frac{X_{max}}{\sqrt{2}}$

دوازة توافقية بسيطة طاقتها الميكانيكية E عند المرور بالنقطة التي مطالها $\chi=rac{X_{max}}{2}$ فإن طاقتها الحركية تساوي :

Α	$E_k = E$	В	$E_k = \frac{3E}{4}$
С	$E_k = \frac{E}{4}$	D	$E_k = \frac{E}{2}$

٥٥- في الحركة الاهتزازية الإنسحابية غير المتخامدة يخضع الجسم لتأثير:

Α	قوة إرجاع فقط	В	عزم إرجاع فقط
С	قوى مبددة للطاقة	D	کل ماسبق

٥٦- يهتز جسم معلق بنابض حيث ينطلق من وضع مطاله الأعظمي الموجب فيستغرق زمن قدره 5 5 ليصل إلى المطال المناظر فيكون دوره الخاص :

A	5 <i>s</i>	В	2.5 s
С	10 s	D	20 s

٥٧ عندما يتحرك الجسم المهتز في النواس المرن بالاتجاه السالب فإن :

A	السرعة موجبة	В	السرعة سالبة
С	السرعة سالبة أو موجبة	D	کل ما سبق

ملاح هزازة توافقية بسيطة نزيح الجسم عن وضع التوازن مسافة χ حيث يترك بدون سرعة ابتدائية في اللحظة t=0 من وضع مطاله الأعظمي الموجب فيهتز الجسم بدور خاص قيمته t=0 فيكون زمن المرور الأول من وضع التوازن يساوي :

Α	$t_1 = 2 s$	В	$t_1 \neq \frac{1}{4} s$
С	$t_1 = 1 s$	D	$t_1 = \frac{1}{2} s$

 \vec{a} : \vec{a} الهزازة التو افقية البسيطة إن جهة شعاع التسارع

Α	بجهة $ec{F}$ دوما	В	بعکس جهة $ec{F}$ دوما
С	$ec{F}$ يعامد	D	کل ما سبق

. تواس مرن دوره الخاص $rac{1}{2}=rac{1}{2}$ و تسارع الجاذبية الأرضية $g=10m.\,s^{-1}$ فتكون الاستطالة السكونية $rac{1}{2}$ تساوي:

Α	0.125 m	В		0.1 m	
С	0.0625m	D		0.4 m	

مسئلة: من ٦٦ إلى ٦٤ حل المسألة الأتية:

يهتز جسم معلق بنابض مرن مهمل الكتلة حلقاته متباعدة شاقوليا بحركة توافقية بسيطة بدور خاص $T_0=1$ و سعة اهتزاز $T_0=1$ و بفرض مبدأ الزمن لحظة مرور الجسم بنقطة مطالها $T_0=1$ و هو يتحرك بالاتجاه السالب :

٦١- النبض الخاص يساوي:

A	$w_0 = \pi rad. s^{-1}$	В	$w_0 = 2\pi rad. s^{-1}$
С	$w_0 = 2 rad. s^{-1}$	D	$w_0 = \frac{1}{2\pi} rad. s^{-1}$

Α	$\varphi = 0$	В	$\varphi = -\frac{\pi}{3}rad$
С	$\varphi = +\frac{\pi}{3} rad$	D	$\varphi = -\frac{\pi}{6} rad$

٦٣- فيكون التابع الزمني للمطال:

A	$x = 12 \times 10^{-2} \cos(2\pi t - \frac{\pi}{3})$	В	$x = 12 \times 10^{-2} \cos(\pi t + \frac{\pi}{3})$
С	$x = 12 \times 10^{-2} \cos(2\pi t - \frac{\pi}{3})$	D	$x = 12 \times 10^{-2} \cos(2\pi t + \frac{\pi}{3})$

ية من الاستطالة السكونية χ_0 تساوي: $g=10m.\,s^{-1}$ تكون قيم الاستطالة السكونية و تساوي: χ_0 تساوي:

А	0.2 m	В	0.5 m
С	0.25 m	D	0.1 m

مسألة: من ٦٥ إلى ٧٢ حل المسألة الأتية:

نشكل هزازة توافقية بسيطة مؤلفة من نابض مرن مهمل الكتلة حلقاته متباعدة ثابت صلابته $k=100\ N.m^{-1}$ يثبت إلى سقف من إحدى نهايتيه و نعلق بنهايته الثانية جسم كتلته $m=1\ kg$

ثم نزيح الجسم عن وضع توازنه شاقوليا نحو لأسفل و ضمن حدود مرونة النابض مسافة قدر ها cm 5 و يترك دون سرعة ابتدائية باللحظة t=0

x_0 قيمة الاستطالة السكونية x_0 تساوي x_0

A	0.1 m	В	1 m
С	0.2 m	D	0.01 m

٦٦- سعة الإهتزاز تساوي :

Α	$X_{max} = 5 m$	В	$X_{max} = 5 \times 10^{-2} m$
С	$X_{max} = 2.5 \times 10^{-2} m$	D	$X_{max} = 5\pi \times 10^{-2} m$

٦٧ - النبض الخاص يساوي :

Α	$w_0 = 1 rad. s^{-1}$	В	$w_0 = \sqrt{10} rad. s^{-1}$
С	$w_0 = 10 \ rad. s^{-1}$	D	$w_0 = 2 rad. s^{-1}$

٦٨- فيكون التابع الزمني للمطال :

Α	$x = 5 \times 10^{-2} \cos(10t + \frac{\pi}{3})$	В	$x = 5\pi \times 10^{-2} \cos(10t)$
С	$x = 2.5 \times 10^{-2} \cos(10t)$	D	$x = 5 \times 10^{-2} \cos(10t)$

٦٩- قيمة السرعة العظمى (طويلة):

A	$v_{max} = 5 m. s^{-1}$	В	$v_{max} = 0.5 \ m. s^{-1}$
С	$v_{max} = 50 m. s^{-1}$	D	$v_{max} = 0.05 \ m.s^{-1}$

t=0 شدة قوة الإرجاع عندماt=0:

Α	F = 5 N	В	F = 50 N
С	F = 0.5 N	D	F = 500 N

t=0 عندما التسارع عندما t=0

Α	$a = -0.5 m. s^{-2}$	В	$a = +0.5 m. s^{-2}$
С	$a = -5 m.s^{-2}$	D	$a = +5 m. s^{-2}$

 $rac{\Delta m}{m}=0.02$ ٢٧- قيمة التغير النسبي المرتكب في قياس الدور اذا قيست الكتلة بتغير نسبي مقدار،

Α	$\frac{\Delta T_0}{T_0} = 0.02$	В	$\frac{\Delta T_0}{T_0} = 0.01$
С	$\frac{\Delta T_0}{T_0} = 0.04$	D	$\frac{\Delta T_0}{T_0} = -0.01$

مسئلة: من ٧٣ إلى ٨١ حل المسألة الأتية:

يتحرك جسم حركة جيبية انسحابية بحيث ينطلق في مبدا الزمن من نقطة مطالها X_{max} فيستغرق x 10 حتى يصل إلى المطال المناظر : x_{max} x_{max} : x_{max}

٧٣ - الدور الخاص يساوي:

Α	$T_0 = 20 \ s$	$T_0 = 10 \ s$
С	$T_0 = 5 s$	$T_0 = 2 s$

٧٤- قيمة سعة الإهتزاز:

Α	$X_{max} = 5 m$	В	$X_{max} = 0.05 m$
С	$X_{max} = 0.2 m$	D	$X_{max} = 0.5 m$

٧٥- فيكون التابع الزمني للمطال:

Α	$x = 0.05\cos(\frac{\pi}{10}t + \frac{\pi}{3})$	В	$x = 0.05\cos(\frac{\pi}{10}t)$
С	$x = 5\cos(\frac{\pi}{10}t)$	D	$x = 0.05\cos(\frac{\pi}{10}t + \frac{\pi}{10})$

٧٦- قيمة السرعة العظمى (طويلة):

Α	$v_{max} = 5\pi \times 10^{-3} m. s^{-1}$	В	$v_{max} = 5\pi \times 10^{-2} \ m. s^{-1}$
С	$v_{max} = 5 \times 10^{-3} \ m. s^{-1}$	D	$v_{max} = \pi \times 10^{-3} \ m.s^{-1}$

$x=-X_{max}$ و قيمة التسارع عندما -۷۷

Α	$a = +0.5 m. s^{-2}$	В	$a = +5 \times 10^{-3} \ m.s^{-2}$
С	$a = -5 \times 10^{-3} \ m.s^{-2}$	D	$a = +5\pi \times 10^{-2} m. s^{-2}$

٧٨ - قيمة ثابت صلابة النابض:

Α	$k = 1N.m^{-1}$	В	$k = 10 \ N. m^{-1}$
С	$k = 100 \ N.m^{-1}$	D	$k = 0.1 \ N.m^{-1}$

$x=2 \ cm$ وقيمة قوة الإرجاع عندما - $\sqrt{9}$

A	$F = -5 \times 10^{-3} N$	В	$F = +2 \times 10^{-3} N$
С	$F = -2 \times 10^{-3} N$	D	$F = +5 \times 10^{-3} N$

٨٠ الطاقة التي يقدمه المجرب ليهتز النواس بالسعة السابقة نفسها

Α	$E = 12.5 \times 10^{-5} J$	В	$E = 12.5 \times 10^{-3} J$
С	$E = 25 \times 10^{-5} J$	D	$E = 10^{-5}J$

x=2 cm الطاقة الحركية عندما-1

А	$E_k = 12.5 \times 10^{-5} J$	В	$E_k = 10.5 \times 10^{-5} J$
С	$E_k = 2 \times 10^{-5} J$	D	$E_k = 10.5 \times 10^{-3} J$

مسألة: من ٨٢ إلى ٩٠ حل المسألة الأتية :

نقطة مادية كتلتها m=1 kg تهتز بحركة توافقية بسيطة على قطعة مستقيمة طولها $2X_{max}=20$ و كمية حركتها العظمى $P_{max}=\frac{\pi}{20}$ kg kg $m.s^{-1}$

٨٢- قيمة النبض الخاص للحركة يساوي:

Α	$w_0 = 10 \ rad.s^{-1}$	В	$w_0 = \frac{2}{\pi} \ rad. s^{-1}$
С	$w_0 = \frac{\pi}{2} \ rad. s^{-1}$	D	$w_0 = \pi rad. s^{-1}$

٨٣- و قيمة الدور الخاص يساوي :

Α	$T_0 = 2 s$	В	$T_0 = 4 \text{ s}$
С	$T_0 = \frac{2}{\pi} s$	D	$T_0 = \pi s$

٨٤- التابع الزمني للمطال:

A	$x = 0.1\cos(\frac{\pi}{2}t + \frac{\pi}{3})$	В	$x = 0.2\cos(\frac{\pi}{2}t)$
С	$x = 0.1\cos(\frac{\pi}{2}t)$	D	$x = 0.1\cos(\frac{2}{\pi}t)$

٨- لحظتي المرور الأول و الثاني من وضع التوازن :

A	$t_1 = 1 s$, $t_2 = 3 s$	В	$t_1 = \frac{1}{4} s$, $t_2 = 3s$
С	$t_1 = 1 s$, $t_2 = \frac{3}{4} s$	D	$t_1 = \frac{1}{4} s$, $t_2 = \frac{3}{4} s$

٨٦- قيمة السرعة لحظة المرور الأول بوضع التوازن:

Α	$v = 5\pi \times 10^{-2} m. s^{-1}$	В	$v = -5\pi \times 10^{-2} \text{m. s}^{-1}$
С	$v = 5\pi m.s^{-1}$	D	$v = -5\pi m. s^{-1}$

٨٧- قيمة الطاقة الميكانيكية:

Α	$E = 1.25 \times 10^{-5} J$	В	$E = 25 \times 10^{-5} J$
С	$E = 1 \times 10^{-3} J$	D	$E = 1.25 \times 10^{-2} J$

الما قيمة الطاقة الحركية في نقطة مطالها $\chi = \frac{X_{max}}{3}$ تساوي:

Α	$E_k = \frac{1}{90} J$	В	$E_k = \frac{1}{900} J$
С	$E_k = \frac{1}{9} J$	D	$E_k = 90 J$

x = 5 سارع عندما x = 5

A	$a = -0.5 m. s^{-2}$	В	$a = +0.125 \ m.s^{-2}$
С	$a = -0.125 m. s^{-2}$	D	$a = -2.5 m. s^{-2}$

٩٠ - قيمة قوة الإرجاع:

Α	F = -0.5 N	В	$F = -0.125 \ N$
С	F = 0.125 N	D	F = -0.25 N

مسألة: من ٩١ إلى ٩٧ حل المسألة الأتية:

هزازة توافقية بسيطة تتألف من نابض مرن مهمل الكتلة حلقاته متباعدة نعلق في نهايته جسم كتلته g 500 و بعد أن يتوازن نزيحه عن وضع التوازن مسافة c 2 c 2 :

٩١ - التابع الزمني للمطال:

Α	$x = 0.06\cos(\pi t)$	В	$x = 1.2\cos(\pi t)$
С	$x = 0.6\cos(\frac{\pi}{2}t + \pi)$	D	$x = 0.3\cos(\pi t)$

Α	$v = -6\pi \times 10^{-1} \text{m. s}^{-1}$	В	$v = -6\pi \times 10^{-2} \text{m. s}^{-1}$
С	$v = 6 \times 10^{-2} \text{m. s}^{-1}$	D	$v = \pi \times 10^{-2} m. s^{-1}$

x = -4 cm قيمة التسارع عندما

A	$a = -0.4 m.s^{-2}$	В	$a = 0.4 m. s^{-2}$
С	$a = 4 m.s^{-2}$	D	$a = 0.4\pi m. s^{-2}$

٩٤ - قيمة ثابت صلابة النابض:

Α	$k = 0.5 \ N.m^{-1}$	В	$k = 5 N. m^{-1}$
С	$k = 50 N. m^{-1}$	D	$k = 5\pi \ N.m^{-1}$

٩٥ - قيمة الطاقة الميكانيكية:

Α	$E = 9 \times 10^{-3} J$	В	$E = 15 \times 10^{-2} J$
С	$E = 9 \times 10^{-5} J$	D	$E = 15 \times 10^{-3} J$

$x = 2 \ cm$ عندما الطاقة الكامنة المرونية عندما -97

A	$E_p = 4 \times 10^{-3} J$	В	$E_p = 2 \times 10^{-3} J$
С	$E_p = 1 \times 10^{-3} J$	D	$E_p = 1 \times 10^{-5} J$

$x=2 \ cm$ و قيمة الطاقة الحركية عندما -9 $x=2 \ cm$

Α	$E_k = 7 \times 10^{-5} J$	В	$E_k = 11 \times 10^{-3} J$
С	$E_k = 7 \times 10^{-3} J$	D	$E_k = 8 \times 10^{-3} J$

مسألة: من ٩٨ إلى ١٠٢ حل المسألة الأتية:

نشكل هزازة توافقية بسيطة مؤلفة من نابض مرن مهمل الكتلة حلقاته متباعدة ثابت صلابته $k=10\ N.m^{-1}$ مثبت من إحدى نهايته إلى نقطة ثابتة و يحمل في نهايته الثانية جسم كتلته $m=0.1\ kg$ فإذا علمت ان مبدأ الزمن لحظة مرور الجسم في مركز التوازن و هو يتحرك بالاتجاه السالب بسرعة $v=-3\ m.\ s^{-1}$:

٩٨ - النبض الخاص للحركة يساوي:

Α	$w_0 = 10 \ rad. s^{-1}$	В	$w_0 = \pi rad. s^{-1}$
С	$w_0 = 100 \ rad.s^{-1}$	D	$w_0 = 1 rad. s^{-1}$

٩٩ قيمة الطور الابتدائي :

Α	$\varphi = 0$	В	$\phi=\pirad$
С	$\varphi = \frac{\pi}{2}$	D	$\varphi = \frac{3\pi}{2}$

١٠٠ - قيمة سعة الإهتزاز:

A	$X_{max} = 0.5 m$	В	$X_{max} = 0.3 m$
С	$X_{max} = 0.2 m$	D	$X_{max} = 0.03 m$

١٠١- التابع الزمني لمطال الحركة:

Α	$x = 0.5\cos(10 t + \frac{\pi}{2})$	В	$x = 0.3\cos(10t + \pi)$
С	$x = 0.2\cos(10\ t)$	D	$x = 0.3\cos(10t + \frac{\pi}{2})$

x=10~cm شدة قوة الإرجاع عندما الم

Α	F = 1 N	В	F = 0.1 N
С	F=2N	D	F = 10 N

مسألة : من ١٠٣ إلى ١١٠ حل المسألة الأتية :

تتألف هزازة توافقية بسيطة من نابض مرن شاقولي مهمل الكتلة حلقاته متباعدة ثابت صلابة النابض $k=10N.m^{-1}$ مثبت من احد طرفيه و يحمل في طرفه الاخر جسما كتلته m و يعطى التابع الزمني للمطال : $x=0.1\cos(\pi t+\frac{\pi}{2})$

١٠٣ - قيمة سعة الإهتزاز:

Α	$X_{max} = 20 cm$	В	$X_{max} = 0.1 cm$
С	$X_{max} = 1 cm$	D	$X_{max} = 10 cm$

٤ - ١ - قيمة النبض الخاص :

Α	$\omega_0 = \pi rad. s^{-1}$	В	$\omega_0 = 2\pi rad. s^{-1}$
С	$\omega_0 = 2 rad. s^{-1}$	D	$\omega_0 = \frac{\pi}{2} rad. s^{-1}$

١٠٥ - قيمة الطور الابتدائية :

Α	$arphi=2\pirad$	В	arphi=0
С	$\varphi = \frac{\pi}{2} rad$	D	$\varphi=\pi rad$

١٠٦ - قيمة الدور الخاص :

Α	$T_0 = \pi s$	В	$T_0 = 2 s$
С	$T_0 = 4 s$	D	$T_0 = 2\pi s$

Α	m = 0.2 kg	В	$m = 0.1 \ kg$
С	m = 1 kg	D	$m = 10 \ kg$

١٠٨ - قيمة الطاقة الميكانيكية

A	$E = 5 \times 10^{-3} J$	В	$E = 5 \times 10^{-2} J$
С	$E = 5 \times 10^{-1} J$	D	$E = 10^{-2} J$

$x = 6 \ cm$ عندما الطاقة الكامنة عندما - ١٠٩

Α	$E_p = 1.8 \times 10^{-2} J$	В	$E_p = 1.8 \times 10^{-3} J$
С	$E_p = 125 \times 10^{-2} J$	D	$E_p = 1.25 \times 10^{-1} J$

$x = 6 \ cm$ فيمة السرعة عندما - ١١٠

A	$v = 8\pi \times 10^{-3} m. s^{-1}$	В	$v = 8\pi \times 10^{-2} m. s^{-1}$
С	$v = 8 \times 10^{-2} \text{m.s}^{-1}$	D	$v = \pi \times 10^{-2} m. s^{-1}$

مسألة: من ١١١ إلى ١١٤ حل المسألة الأتية:

 $x=0.05\,\cos(rac{\pi}{2}t+\pi)$: نواس مرن يتألف من جسم معلق بنابض مرن تابعه الزمني

١١١- قيمة سعة الإهتزان:

A	$X_{max} = -0.1 \ m$	В	$X_{max} = -0.05 m$
С	$X_{max} = 0.2 m$	D	$X_{max} = 0.05 m$

٢ ١١- الدور الخاص يساوي :

Α	$T_0 = 2 s$	В	$T_0 = 4 s$
С	$T_0 = 4\pi s$	D	$T_0 = 2\pi \ s$

١١٣- قيمة الطور الابتدائي :

Α	$\varphi = 2\pi rad$	В	$\varphi=0 rad$
С	$\varphi=\pi rad$	D	$\varphi = \frac{\pi}{2} rad$

؟ ١١- موضع الجسم في اللحظة (t = 0)

Α	x = 0.1 m	В	x = -0.05 m
С	x = -0.2 m	D	x = 0.05 m

ا - بفرض في اللحظة t=0 كان الجسم في وضع مطاله الأعظمي السالب فتكون قيمة الطور الابتدائي:

Α	$\varphi = 0$	В	$\varphi = \frac{\pi}{2} rad$
С	$arphi=\pirad$	D	$\varphi = \frac{\pi}{3} rad$

117- بفرض في اللحظة t=0 لحظة مرور الجسم من وضع مطاله يساوي $x=\frac{X_{max}}{2}$ و هو يتحرك بالاتجاه السالب فتكون قيمة الطور الابتدائي :

A	$\varphi = 0$	В	$\varphi = \frac{\pi}{2} rad$
С	$\varphi=\pirad$	D	$\varphi = \frac{\pi}{3} rad$

الحظة t=0 لحظة مرور الجسم من وضع التوازن و هو يتحرك بالاتجاه السالب فتكون قيمة الطور الابتدائي: t=0

A	$\varphi = 0$	В	$\varphi = \frac{\pi}{2} rad$
С	$\varphi = \pi rad$	D	$\varphi = \frac{\pi}{3} rad$

المنابع المن

Α	$T_0 = 2 s$	В	$T_0 = 4 s$
С	$T_0 = 4\pi s$	D	$T_0 = \pi s$

<u>-11</u>9

حل أسئلة الدرس:

			<u>. O</u>	<u> </u>
C -0	Β - ٤	C - T	В - ۲	A - 1
B - 1 •	C - 9	A- <i>\</i>	D -Y	7- A
B -10	D -1 £	A-17	D -17	C -11
D - Y •	C -19	C -14	D -1Y	C -17
C - 40	B -45	A - 7 °	C - 7 7	D - 11
В - ٣٠	C - 19	A -YA	B -YV	77- A
В - 40	Α - ٣٤	C -44	D -41	B - 41
B - £ •	D -44	A -٣٨	D -٣٧	C -41
C - 50	D - £ £	D - 58	D - £ Y	C - £ 1
A - 0 •	B - ٤٩	A - £ A	B - έΥ	D - £7
A -00	B -0 £	B -0°	C -07	D -01
C -1.	A -09	D -eV	B -ov	C -07
07- A	C -15	D -77	C -17	B -71

A -Y•	B -19	D -JV	C -17	B -77
B -Yo	B-YÉ	A -YT	B -YY	C -Y1
A - ^ •	C-Nd	D -YA	B -YY	7Y- A
A -Ao	C-NÉ	В -үд	C -V	B - ^1
B -9.	C-Vd	A -^^	D -W	В - Л
A -90	B -9 £	B -98	BLAY	A -91
B -1	C -99	A -9A	D -9Y	C -97
C -1.0	A -1 • £	D -1.4	A -1.7	D-1.1
B -11.	A -1.9	B -1.4	C -1.Y	B -1.7
	B -11 £	C-114	B-117	D-111

(الأستاذ خالر (الأبرش

,

الدرس الثاني الاهتزازات الجيبية الدورانية (نواس الفتل)

В

 $\Gamma = -K\theta$

 $\omega = \omega_0 \theta_{max} sin(\omega_0 t + \varphi)$

 $\omega = -\omega_0 \theta_{max} sin(\omega_0 t + \varphi)$

١- تعطى علاقة عزم الإرجاع في نواس الفتل بالعلاقة:

 $\Gamma = +K\theta$

С	$\Gamma = -\frac{K}{\theta}$	D	$\Gamma = -K^2\theta$			
المعادلة التفاضلية في نواس الفتل :						
Α	$(\theta)_{t}^{"} = +\frac{K}{I_{\Delta}}\theta$	В	$(\theta)_{t}^{"} = -\frac{K}{I_{\Delta}}$			
С	$(\theta)_{t} = -\frac{I_{\Delta}}{K}\theta$	D	$(\theta)_{t}^{"} = -\frac{K}{I_{\Delta}}\theta$			
			- تابع المطال الزاوي في نواس الفتل :			
Α	$\theta = \theta_{max} \cos(\omega_0 + \varphi)$	В	$\theta = \theta_{max} \cos(\omega_0 t + \varphi)$			
С	$\theta = \theta_{max}\omega_0\cos(\omega_0 t + \varphi)$	D	$\theta = \cos(\omega_0 t + \varphi)$			
			- تابع السرعة الزاوية في نواس الفتل :			

$\omega = \sin(\omega_0 t + \varphi)$			
- تابع التسار ع الزاوي في نواس الفتل ·	٥		

 $\omega = \theta_{max} sin(\omega_0 t + \varphi)$

$\mathbf{C} = -\omega^2 \cos(\omega_t t + \omega_t)$ $\mathbf{D} = \alpha - \theta \cos(\omega_t t + \omega_t)$	Α	$\alpha = \omega_0^2 \theta_{max} cos(\omega_0 t + \varphi)$	В	$\alpha = -\omega_0^2 \theta_{max} cos(\omega_0 t + \varphi)$
$u = w_0 \cos(w_0 t + \phi)$ $u = v_{max} \cos(w_0 t + \phi)$	С	$\alpha = -\omega_0^2 cos(\omega_0 t + \varphi)$	D	$\alpha = -\theta_{max}cos(\omega_0 t + \varphi)$

D

٦- علاقة السرعة الزاوية (العظمى):

Α	$\omega = \omega_0 \theta$	В	$\omega = \omega_0^2 \theta_{max}$
С	$\omega = \omega_0 + \theta_{max}$	D	$\omega = \omega_0 \theta_{max}$

٧- علاقة التسارع الزاوي الأعظمي (طويلة):

Α	$\alpha = \omega_0^2 \theta_{max}$	В	$\alpha = -\omega_0^2 \theta_{max}$
С	$\alpha = \omega_0 \theta_{max}$	D	$lpha=\omega_0^2 heta$

٨- تعطى عبارة النبض الخاص في نواس الفتل:

A	$\omega_0 = \sqrt{\frac{k}{I_\Delta}}$	В	$\omega_0 = 2\pi \sqrt{\frac{I_\Delta}{k}}$
С	$\omega_0 = rac{k}{I_\Delta}$	D	$\omega_0 = \sqrt{rac{I_\Delta}{k}}$

٩-علاقة الدور الخاص في نواس الفتل:

A	$T_0 = 2\pi \frac{k}{I_{\Delta}}$	В	$T_0 = 2\pi \sqrt{\frac{I_{\Delta}}{k}}$	
С	$T_0 = \frac{k}{I_{\Delta}}$	D	$T_0 = 2\pi \sqrt{\frac{k}{I_\Delta}}$	
ا - نواس فتل دوره الخاص $T_0=2$ و سعته الزاوية $\theta_{max}=\pi\ rad$ يكون تسارعه الزاوي الأعظمي (طويلة) يساوي:				

Α	$\alpha_{max} = 10 \; \pi rad. s^{-2}$	В	$\alpha_{max} = 2\pi rad. s^{-2}$
С	$\alpha_{max} = 20 rad. s^{-2}$	D	$\alpha_{max} = 0.2\pi rad. s^{-2}$

ا $heta_{max} = \pi \; rad$ تكون سرعته الزاوية $heta_{max} = \pi \; rad$ تكون سرعته الزاوية العظمى (طويلة) تساوي :

A	$\omega_{max} = 10\pi \ rad. s^{-1}$	В	$\omega_{max} = 10 rad. s^{-1}$
С	$\omega_{max} = \pi rad. s^{-1}$	D	$\omega_{max} = 20 \ rad. s^{-1}$

 $T_0 = 2$ نزيد كتلته العطالية أربعة أمثال ما كانت عليه يصبح الدور الخاص الجديد: $T_0 = 2$

Α	$T_0 = 4 s$	$T_0 = 2 s$
С	$T_0 = \frac{1}{2} s$	$T_0 = 1 s$

: يصبح الدور الجديد k = 4k يصبح الدور الجديد $T_0 = 1\,s$ يصبح الدور الجديد

A	$T_0 = \frac{1}{2} s$	В	$T_0 = 1 s$
С	$T_0 = 2 s$	D	$T_0 = 4 s$

ال المستقط الخاص ω_0 نزيد كتلته العطالية أربعة أمثال ما كانت عليه يصبح النبض الخاص الجديد : ω_0 1٤- نواس فتل نبضه الخاص الخاص الجديد :

Α	$\omega_0 = 2\omega_0$	В	$\omega_0 = 4\omega_0$
С	$\omega_0 = 2\omega_0$	D	$\omega_0 = \frac{\omega_0}{2}$

k`=3k نواس فتل نبضه الخاص ω_0 نستبدل سلك الفتل بسلك آخر ثابت فتله ω_0

Α	$\omega_0 = \sqrt{3}\omega_0$	В	$\omega_0 = 3\omega_0$
С	$\omega_0 = \frac{\omega_0}{3}$	D	$\omega_0 = \frac{\omega_0}{\sqrt{3}}$

7 - نواس فتل دوره الخاص T_0 نجعل طول سلك الفتل نصف ما كان عليه فيصبح الدور الجديد:

A	$T_0 = \sqrt{2}T_0$	В	$T_0 = 2T_0$
С	$T_0 = \frac{T_0}{2}$	D	$T_{0} = \frac{T_{0}}{\sqrt{2}}$

۱۷ - نواس فتل دوره الخاص T_0 نجعل طول سلك الفتل ربع ما كان عليه فيصبح الدور الجديد :

A	$T_0 = 4T_0$	В	$T_0 = 2T_0$
С	$T_0 = \frac{T_0}{2}$	D	$T_0 = \frac{T_0}{4}$

١٨- نواس فتل دوره الخاص T_0 نجعل طول سلك الفتل ثلث ما كان عليه فيصبح الدور الجديد T_0

Α	$T_0 = \frac{T_0}{3}$	В	$T_0 = \sqrt{3}T_0$
С	$T_0 = 3T_0$	D	$T_0 = \frac{T_0}{\sqrt{3}}$

ا من الله المناص الخاص ω_0 نجعل طول سلك الفتل ثلث ما كان عليه فيصبح النبض الجديد : ω_0

A	$\omega_0 = \frac{\omega_0}{3}$	В	$\omega_0 = \sqrt{3}\omega_0$
С	$\omega_0 = 3\omega_0$	D	$\omega_0 = \frac{\omega_0}{\sqrt{3}}$

٠٠- نواس فتل نبضه الخاص ω_0 نجعل طول سلك الفتل ربع ما كان عليه فيصبح النبض الجديد:

Α	$\omega_0 = \frac{\omega_0}{4}$	В	$\omega_0 = 2\omega_0$
С	$\dot{\omega_0} = 4\omega_0$	D	$\omega_0 = \frac{\omega_0}{2}$

ا المجديد ω_0 نجعل طول سلك الفتل نصف ما كان عليه فيصبح النبض الجديد ω_0

Α	$\omega_0 = \frac{\omega_0}{2}$	В	$\omega_0 = \sqrt{2}\omega_0$
С	$\omega_0 = \frac{\omega_0}{\sqrt{2}}$	D	$\omega_0 = 2\omega_0$

٢٢- نواس فتل دوره الخاص T_0 نقسم طول السلك إلى قسمين متساوين و نعلق الساق بالقسمين معا من الأعلى و من الأسفل فيكون الدور الخاص الجديد

Α	$T_0 = \frac{T_0}{2}$	В	$T_0 = 2T_0$
С	$T_0 = 4T_0$	D	$T_0 = \frac{T_0}{4}$

٢٣- تعطى علاقة الطاقة الكامنة في النواس الفتل:

Α	$E_p = K\theta^2$	В	$E_p = \frac{1}{2} K\theta^2$
С	$E_p = \frac{1}{2} K \theta$	D	$E_p = \frac{1}{2} K \theta_{max}^2$

٢٤- تعطى علاقة الطاقة الحركية في النواس الفتل:

Α	$E_k = \frac{1}{2} I_{\Delta} \omega$	В	$E_k = \frac{1}{2}m.v^2$
С	$E_k = \frac{1}{2} I_\Delta \omega^2$	D	$E_k = \frac{1}{2} I_\Delta \omega^2$

٢٥ - تعطى علاقة الطاقة الميكانيكية في النواس الفتل:

Α	$E = K\theta_{max}^2$	В	$E = \frac{1}{2}k\theta^2$
С	$E = \frac{1}{2}K^2\theta_{max}^2$	D	$E = \frac{1}{2}K\theta_{max}^2$

٢٦- عند المرور بمركز الإهتزاز تنعدم الطاقة :

A	الكامنة	В	الحركية
С	الحركية و الكامنة	D	الميكانيكية

٢٧ عند الوضعين الطرفين (المطالين الأعظمين) تنعدم الطاقة:

Α	الكامنة	В	الحركية
С	الحركية و الكامنة	D	الميكانيكية

٢٨- الطاقة الحركية تكون عظمى عندما:

Α	$\theta = \pm \theta_{max}$	В	$\theta = 0$
С	$\theta = \frac{\theta_{max}}{3}$	D	$\theta = \frac{\theta_{max}}{2}$

____________ ٢٩ــ الطاقة الكامنة المرونية تكون عظمى عندما :

Α	$\theta = \pm \theta_{max}$	В	$\theta = 0$
С	$\theta = \frac{\theta_{max}}{3}$	D	$\theta = \frac{\theta_{max}}{2}$

برات فتل ثابت فتل سلك التعليق $I_\Delta=4 imes 10^{-3} kg.m^2$ و عزم عطالة الساق $I_\Delta=4 imes 10^{-3} kg.m^2$ فيكون نبضه الخاص:

Α	$\omega_0 = 2\pi rad. s^{-1}$	В	$\omega_0 = \pi rad. s^{-1}$
С	$\omega_0 = \frac{\pi}{2} rad. s^{-1}$	D	$\omega_0 = 2 \ rad. s^{-1}$

يكون دوره $I_\Delta=4 imes10^{-3}kg.m^2$ و عزم عطالة الساق $I_\Delta=4 imes10^{-3}m.N.rad^{-1}$ يكون دوره الخاص يساوى :

Α	$T_0 = 2 s$	В	$T_0 = 2\sqrt{2}s$
С	$T_0 = \sqrt{2} s$	D	$T_0 = \frac{1}{2} s$

 $T_0=\sqrt{2}\;s$ يكون نبضه الخاص يساوي: $T_0=\sqrt{2}\;s$ يكون نبضه الخاص يساوي:

Α	$\omega_0 = \sqrt{2} \pi \ rad.s^{-1}$	В	$\omega_0 = 2\pi rad. s^{-1}$
С	$\omega_0 = \frac{\pi}{\sqrt{2}} rad. s^{-1}$	D	$\omega_0 = \pi \ rad. s^{-1}$

: نواس فتل دوره الخاص T_0 نضاعف سعة الاهتزاز يصبح الدور الجديد T_0

Α	$T_0 = 2T_0$	В	$T_0 = T_0$
С	$T_0 = \frac{T_0}{\sqrt{2}}$	D	$T_0 = \frac{T_0}{2}$

 w_0 نواس فتل نبضه الخاص w_0 نضاعف سعة الاهتزاز يصبح النبض الجديد $\overline{}$

A	$\omega_0 = \frac{\omega_0}{2}$	В	$\omega_0 = 2\omega_0$
С	$\omega_0 = \frac{\omega_0}{\sqrt{2}}$	D	$\dot{\omega_0} = \omega_0$

٣٥- نواس فتل يتألف من ساق متجانسة تعلق من منتصفها بسلك فتل ثابت فتله $k=10^{-2}m.N.rad^{-1}$ و بعد أن يتوازن نزيحه عن وضع توازنه بسعة زاوية $heta_{max}=rac{\pi}{2}$ فتكون قيمة الطاقة الميكانيكية لهذا النواس :

Α	E = 80 J	В	$E = \frac{1}{80}J$
С	$E = \frac{\pi}{80} J$	D	$E = \frac{1}{800} J$

تكون طاقة الحركية للنواس عندما $rac{\pi}{4}= heta$ تساوي : heta

A	$E_k = \frac{5}{320}J$	В	$E_k = \frac{1}{320}J$
С	$E_k = \frac{1}{80}J$	D	$E_k = \frac{3}{320}J$

 $T_{01}=2T_{02}$ على ساقين متماثلتين بسلكي فتل متماثلين و لكن مختلفين بالطول طول الأول l_1 و طول السلك الثاني l_2 فاذا كان $T_{01}=2T_{02}$ فتكون العلاقة بين طولى السلكين :

Α	$l_1 = 4l_2$	В	$l_1 = 2l_2$
С	$l_1 = \frac{l_2}{4}$	D	$l_1 = \frac{l_2}{2}$

مسئلة: من ٣٨ إلى ٤٣ حل المسألة الأتية:

 $heta=60^\circ$ ساق متجانسة طولها t=40~cm معلقة بسلك فتل شاقولي من منتصفها ندير الساق عن وضع التوازن في مستو أفقى بزاوية براوية براوية بدون سرعة ابتدائية في اللحظة t=0 فتهتز بحركة جيبية دورانية دورها الخاص $T_0=2s$ فاذا علمت أن عزم عطالة الساق بالنسبة لسلك الفتل $I_{\Delta/c}=2\times10^{-3}~kg.m^2$

٣٨- التابع الزمني للمطال الزاوي:

Α	$\theta = \pi \cos(\pi t)$	В	$\theta = \frac{\pi}{3} \cos(2\pi t + \frac{\pi}{3})$
С	$\theta = \frac{\pi}{3} \cos(\pi t + \frac{\pi}{3})$	D	$\theta = \frac{\pi}{3} \cos(\pi t)$

٣٩- قيمة السرعة الزاوية للساق لحظة مرورها الثاني بوضع التوازن:

Α	$\omega = \frac{10}{3} \ rad. s^{-1}$	В	$\omega = -\frac{10}{3} \ rad. s^{-1}$
С	$\omega = \frac{\pi}{3} \ rad. s^{-1}$	D	$\omega = -10 \ rad. s^{-1}$

٠٤- قيمة التسارع الزاوي للساق عندما تصنع زاوية $heta = 30^\circ$ مع وضع توازنها :

Α	$\alpha = -10\frac{\pi}{3} \ rad. s^{-2}$	В	$\alpha = 5\frac{\pi}{3} \ rad. s^{-2}$
С	$\alpha = -5\frac{\pi}{3} \ rad. s^{-2}$	D	$\alpha = 10 \frac{\pi}{3} rad. s^{-2}$

ا $m_1=m_2=75~g$ فيكون الدور الخاص في هذه الحالة $m_1=m_2=75~g$ فيكون الدور الخاص في هذه الحالة :

Α	$T_0 = 2 s$	В	$T_0 = 2\sqrt{2} s$
С	$T_0 = 1 s$	D	$T_0 = 4 s$

Α	$k = 10^{-3} m. N. rad^{-1}$	В	$k = 10^{-2} m. N. rad^{-1}$
С	$k = 2 \times 10^{-2} m. N. rad^{-1}$	D	$k = 2 \times 10^{-3} \text{m.N.} rad^{-1}$

٤٣- نقسم سلك الفتل إلى قسمين متساويين و نعلق الساق بالنصفين معاً من الأعلى و من الأسفل فيكون الدور الخاص بدون كتل :

A	$T_0^{"}=4s$	В	$T_0^{\circ} = 1 s$
С	$T_0^{\circ} = 2\sqrt{2} s$	D	$T_0^{\circ} = 2 s$

مسألة: من ٤٤ إلى ٥٠ حل المسألة الأتية:

يتألف نواس فتل من قرص متجانس كتلته m=2 kg نصف قطره m=4 cm معلق من مركزه بسلك فتل شاقولي ثابت فتله يساوي m=2 k ندير القرص في مستو أفقي زاوية m=1 عن وضع توازنه و نتركه دون سرعة ابتدائية في $k=16\times 10^{-3}$ m. $k=16\times 10^{-3}$ اللحظة $k=16\times 10^{-3}$ معللة القرص حول محور عمودي على مستويه ومار من مركزه m=1 m

٤٤ - الدور الخاص يساوي:

Α	$T_0 = 2\pi \ s$	В	$T_0 = 2 s$
С	$T_0 = \sqrt{2} s$	D	$T_0 = 1s$

٥٤ -التابع الزمني للمطال الزاوي:

Α	$\theta = \frac{\pi}{4} \cos(2\pi t + \frac{\pi}{2})$	В	$\theta = \pi \cos(\pi t + \pi)$
С	$\theta = \frac{\pi}{4} \cos(\pi t)$	D	$\theta = \pi \cos(2\pi t + \pi)$

٤٦ - السرعة الزاوية العظمى (طويلة) تساوي:

А	$\omega_{max} = \frac{\pi}{4} \ rad. s^{-1}$	В	$\omega_{max} = \frac{10}{3} \ rad. s^{-1}$
С	$\omega_{max} = \frac{10 \pi}{4} rad. s^{-1}$	D	$\omega_{max} = 2.5 \ rad. s^{-1}$

$heta=- heta_{max}$ التسارع الزاوي عندما عندما

Α	$\alpha = 5\pi \ rad.s^{-2}$	В	$\alpha = 5\frac{\pi}{2} \ rad. s^{-2}$
С	$\alpha = \frac{\pi}{8} \ rad. s^{-2}$	D	$\alpha = -5\frac{\pi}{8} \ rad. s^{-2}$

٤٨ - الطاقة الميكانيكية تساوى:

A	$E = \frac{1}{\pi} \times 10^{-3} J$	В	$E = 5\pi \times 10^{-3} J$
С	$E = 5 \times 10^{-3} J$	D	$E = 2 \times 10^{-2} J$

$\theta = \frac{\pi}{8}$ و قيمة الطاقة الكامنة عندما

A	$E_p = 1 \times 10^{-3} J$	В	$E_p = 12.5 \times 10^{-3} J$
С	$E_p = 2 \times 10^{-3} J$	D	$E_p = 1.25 \times 10^{-3} J$

٥٠- في السؤال ٤٩ قيمة الطاقة الحركية:

Α	$E_k = 2 \times 10^{-3} J$	В	$E_k = 12.5 \times 10^{-3} J$
С	$E_k = 3.75 \times 10^{-2} J$	D	$E_k = 3.75 \times 10^{-3} J$

مسألة: من ٥١ إلى ٥٤ حل المسألة الأتية:

ساق متجانسة مهملة الكتلة طولها l نثبت في كل من طرفيها كتلة نقطية حيث $m_1=m_2=125~g$ و نعلق الجملة من منتصفها إلى سلك فتل ثابت فتله $l=m_1=m_2=10$ لمن التولف الجملة نواس فتل ، نزيح الساق عن وضع توازنها في مستو أفقي بزاوية فتل ثابت فتله $l=m_1=m_2=10$ و تترك بدون سرعة ابتدائية لحظة بدء الزمن فتهتز بحركة جيبية دورانية دورها الخاص $l=m_1=10$ و تترك بدون سرعة ابتدائية لحظة بدء الزمن فتهتز بحركة جيبية دورانية دورها الخاص l=10

٥١- التابع الزمني للمطال الزاوي :

Α	$\theta = \frac{\pi}{3}\cos(4\pi t)$	В	$\theta = \frac{\pi}{3}\cos(2.5t)$
С	$\theta = \frac{\pi}{4} \cos(\frac{4\pi}{5}t)$	D	$\theta = \frac{\pi}{3}\cos(\frac{4\pi}{5}t + \frac{\pi}{3})$

A	$\omega = 8 rad. s^{-1}$	В	$\omega = \frac{10\pi}{3} \ rad. s^{-1}$
С	$\omega = 5 rad. s^{-1}$	D	$\omega = -2 \ rad. s^{-1}$

$\overline{\theta=- heta_{max}}$ التسارع الزاوي عندماheta=- heta

Α	$\alpha = \frac{\pi}{8} \ rad. s^{-2}$	В	$\alpha = \frac{8\pi}{5} \ rad. s^{-2}$
С	$\alpha = \frac{16\pi}{8} \ rad. s^{-2}$	D	$\alpha = \frac{16\pi}{5} \ rad. s^{-2}$

٥٤ - فيكون طول الساق يساوي:

Α	l=2 m	В	l=1 m
С	l = 0.2 m	D	l = 0.5 m

مسألة: من ٥٥ إلى ٩٥ حل المسألة الأتية:

ساق متجانسة مهملة الكتلة طولها l=0.2~m تعلق من منتصفها بسلك فتل ثابت فتله $k=0.1~m.N.rad^{-1}$ و نثبت في طرفيها كتلتين متساويتين $m_1=m_2=0.2~kg$ ندير الساق عن وضع توازنها بزاوية $m_1=m_2=0.2~kg$ و نتركها دون سرعة ابتدائية في اللحظة

: لتهتز بحركة جيبية دورانية t=0

٥٥ - الدور الخاص يساوي:

Α	$T_0 = \frac{5}{2\pi} s$	В	$T_0 = 2\pi s$
С	$T_0 = \frac{2\pi}{5} s$	D	$T_0 = \frac{4\pi}{5} s$

٥- التابع الزمني للمطال الزاوي :

A	$\theta = \frac{\pi}{3}\cos(\frac{4\pi}{5}t + \frac{\pi}{3})$	В	$\theta = \frac{\pi}{6} \cos(\frac{2\pi}{5}t)$
С	$\theta = \frac{\pi}{6}\cos(5t + \frac{\pi}{3})$	D	$\theta = \frac{\pi}{6}\cos(5t)$

٧٥- السرعة الزاوية العظمى (طويلة) تساوي :

Α	$\omega_{max} = 5\pi rad. s^{-1}$	В	$\omega_{max} = \frac{\pi}{6} \ rad. s^{-1}$
С	$\omega_{max} = 5 rad. s^{-1}$	D	$\omega_{max} = \frac{5\pi}{6} \ rad. s^{-1}$

٨٥-التسارع الزاوي الأعظمي (طويلة) يساوي:

Α	$\alpha_{max} = 25\pi \ rad.s^{-2}$	В	$\alpha_{max} = \frac{25\pi}{6} \ rad. s^{-2}$
С	$\alpha_{max} = 25 rad. s^{-2}$	D	$\alpha_{max} = \pi \; rad. s^{-2}$

٥٥- قيمة الطاقة الميكانيكية

Α	$E = \frac{1}{360} J$	В	$E = \frac{1}{720} J$
С	$E = \frac{1}{36} J$	D	$E = \frac{1}{72} J$

مسألة: من ٦٠ إلى ٦٥ حل المسألة الأتية:

يتألف نواس فتل من قرص متجانس قطره (40~cm) معلق من منتصفه بسلك فتل شاقولي فإذا علمت أن عزم عطالة القرص حول محور دوران عمود على مستويه و مار من مركز عطالته $(0.02~kg.m^2)$ و دوره الخاص $T_0=2~s$: $I_{\Delta/c}=\frac{1}{2}mr^2$. $I_{\Delta/c}=\frac{1}{2}mr^2$

Α	m = 1kg	В	m = 2kg
С	m = 0.5kg	D	m = 0.1kg

٦ - قيمة ثابت فتل سلك التعليق

Α	$k = 10^{-3} m. N. rad^{-1}$	В	$k = 10^{-2} m.N.rad^{-1}$
С	$k = 2 \times 10^{-1} m. N. rad^{-1}$	D	$k = 2 \times 10^{-3} \text{m.N.} rad^{-1}$

٦٢- بفرض مبدأ الزمن هو اللحظة التي ترك فيها القرص دون سرعة ابتدائية بعد ان يدير القرص بمقدار نصف دورة عن وضع توازنه بالاتجاه الموجب فيكون تابع المطال الزاوي :

A	$\theta = \pi \cos(2\pi t + \frac{\pi}{3})$	В	$\theta = \pi \cos(\pi t + \frac{\pi}{3})$
С	$\theta = 2\pi \cos(\pi t)$	D	$\theta = \pi \cos(\pi t)$

٦٣- السرعة الزاوية للقرص لحظة المرور الأول بوضع التوازن:

Α	$\omega = 1 rad. s^{-1}$	В	$\omega = -\pi rad. s^{-1}$
С	$\omega = -10 \ rad. s^{-1}$	D	$\omega = 2\pi rad. s^{-1}$

: $heta=-rac{\pi}{2}\;rad$ التسارع الزاوي للقرص عندما ٦٤-

Α	$\alpha = \frac{5\pi}{2} \ rad. s^{-2}$	В	$\alpha = \pi \ rad. s^{-2}$
С	$\alpha = \frac{\pi}{8} \ rad. \ s^{-2}$	D	$\alpha = 5\pi \ rad. s^{-2}$

Α	$E_k = 2 \times 10^{-2} J$	В	$E_k = 2J$
С	$E_k = 10^{-1} J$	D	$E_k = 1 J$

				حل الأسئلة:
B -0	C - £	В -۳	D -Y	A - 1
A -1.	В -9	A -^	A -Y	D -7
A -10	D -1 £	A -1"	A - 1 Y	B -11
В-۲.	B -19	D -1A	C - 1 Y	D -17
D - 40	D - Y £	B -44	A -YY	B - 11
C - 4.	P7- A	B-4V	B - 77	A -77
В -40	D - ٣٤	В -٣٣	A - 47	B -٣1
C - ٤ •	A -49	D -4V	A - ٣٧	D -٣٦
C - 50	B - £ £	B - 5 T	C - £ Y	D - £1
D -0.	D - ٤9	C - 5 A	B - £ Y	D - £7
C -00	C -0 £	В -04	D -07	C -01
A -7•	D -09	B -01	D -01	D -07
D - 70	D -15	C -7"	77- D	C -71

الدرس الثالث: الاهتزازات التوافقية النواس الثقلي غير المتخامد غير (النواس الثقلي مركب - بسيط)

١- إن حركة النواس الثقلي حركة جيبية دورانية عندما:

Α	حالة السعات الكبيرة فقط	В	في حال أي سعة زاوية
С	في حال السعات المتوسطة	D	في حال السعات الزاوية الصغيرة فقط

$(heta)_{t}^{mgd}=-rac{mgd}{I_{\Delta}}\;sin$ عادلة التفاضلية: التفاضلية: $-rac{mgd}{I_{\Delta}}$

Α	الإشارة السالبة	В	sinθ
С	m	D	d

$(heta)_t^{``} = -rac{mgd}{I_\Delta}\, heta$ الحل الجيبي للمعادلة: $heta_\Delta^{-}$

Α	$\theta = \theta_{max} \cos(\omega_0 + \varphi)$	В	$\theta = -\theta_{max}\cos(\omega_0 t + \varphi)$
С	$\theta = \theta_{max} \cos(t + \varphi)$	D	$\theta = \theta_{max} \cos(\omega_0 t + \varphi)$

٤ - في حال السعات الصغيرة تكون علاقة النبض الخاص للحركة في النواس الثقلي المركب:

А	$\omega_0 = \frac{mgd}{I_{\Delta}}$	В	$\omega_0 = -\sqrt{rac{mgd}{I_\Delta}}$
С	$\omega_0 = \sqrt{rac{mgd}{I_\Delta}}$	D	$\omega_0 = \sqrt{rac{I_\Delta}{mgd}}$

٥- في حال السعات الصغيرة تكون علاقة الدور الخاص للحركة في النواس الثقلي المركب:

A	$T_0 = 2\pi \sqrt{\frac{I_{\Delta}}{mgd}}$	В	$T_0 = 2\pi \sqrt{\frac{mgd}{I_{\Delta}}}$
С	$T_0 = \sqrt{\frac{I_\Delta}{mgd}}$	D	$T_0 = rac{I_\Delta}{mgd}$

٦- نواس ثقلي يدق الثانية بسعة صغيرة نزيد من كتلته العطالية حتى أربع امثال فيصبح الدور الخاص الجديد :

Α	$T_0 = 2s$	В	$T_0^{\cdot} = 4s$
С	$T_0 = 8s$	D	$T_0 = 1s$

٧- نواس ثقلي مركب يتألف من ساق متجانسة طولها 1كتلتها m تهتز حول محور دوران عمودي عليها و مار من طرفها العلوي فيكون بعد محور الدوران عن مركز العطالة يساوي :

A	$d = \frac{l}{4}$	В	d = l
С	$d = \frac{l}{2}$	D	$d = \frac{l}{3}$

. في السؤال ۷ اذا كانت $I_{\Delta/c}=rac{1}{12}\,ml^2$ يكون عزم العطالة حول محور الدوران $I_{\Delta/c}=rac{1}{12}\,ml^2$

Α	$I_{\Delta} = \frac{1}{2} \ ml^2$	В	$I_{\Delta} = \frac{1}{3} m l^2$
С	$I_{\Delta} = \frac{1}{4} \ ml^2$	D	$I_{\Delta} = \frac{1}{12} \ ml^2$

m=0.5 هودي عليها و مار من منتصفها نثبت في طرفه m=0.5 هي البيت في طرفه m=0.5 هي البيت في طرفه السفلي كتلة نقطية m=0.25 هيكون بعد مركز عطالة الجملة عن محور الدوران يساوي :

А	$d = \frac{1}{2}m$	В	$d = \frac{1}{4}m$
С	$d = \frac{1}{3}m$	D	$d = \frac{1}{6}m$

اً - ساق متجانسة طولها l كتلتها m تهتز حول محور دوران عمودي عليها و مار من منتصفها نثبت في طرفه السفلي كتلة نقطية m = m فيكون بعد مركز عطالة الجملة عن محور الدوران يساوي :

A	$d = \frac{l}{2}$	В	$d = \frac{l}{4}$
С	$d = \frac{2l}{3}$	D	$d = \frac{l}{3}$

اً - ساق متجانسة مهملة الكتلة طولها m=1 تهتز حول محور دوران عمودي عليها و مار من منتصفها نثبت في طرفها السفلي كتلة $m_1=1$ نقطية $m_2=1.2~kg$ فيكون بعد مركز عطالة الجملة عن محور الدوران يساوي :

A	$d = \frac{1}{8}m$	В	$d = \frac{1}{6}m$
С	$d = \frac{1}{4}m$	D	$d = \frac{1}{2}m$

١٦ - في السؤال ١١ يكون عزم عطالة الجملة يساوي :

Α	$I_{\Delta} = 0.2 \ kg. m^2$	В	$I_{\Delta} = 0.4 kg. m^2$
С	$I_{\Delta} = 0.1 kg. m^2$	D	$I_{\Delta}=4~kg.m^2$

٣ في السؤالين ١١ و ١٢ يكون الدور الخاص للنواس في حال السعات الصغيرة يساوي:

Α	$T_0 = 2 s$	В	$T_0 = 1 s$
С	$T_0 = 3 s$	D	$T_0 = \frac{1}{2} s$

ا بنواس ثقلي دوره الخاص في حال السعات الصغيرة $T_0=2$ فيكون دوره الخاص عندما $heta_{max}=0.4~rad$ يساوي :

Α	$T_0 = 2 s$	В	$T_0 = 20.1 \ s$
С	$T_0 = 20.2 s$	D	$T_0 = 2.02 \ s$

١٥- نواس ثقلي دوره الخاص في حال السعات الصغيرة $T_0=1$ فيكون دوره الخاص عندما $heta_{max}=0.4~rad$ يساوي :

A	$T_0 = 1.01 \ s$	В	$T_0 = 1.1 \ s$
С	$T_0 = 10.1 \ s$	D	$T_0 = 1.02 \text{ s}$

وران عمودي على مستويه و مار من محيطه فيكون بعد مركز	نصف قطره $ au$ يهتز حول محور د	واس ثقلي يتألف من قرص متجانس	۱۱- ن
		الجملة عن محور الدوران يساوي:	عطالة

A	$d = \frac{r}{3}$	В	d = r
С	d = 2r	D	$d = \frac{r}{2}$

١٧- علاقة الدور الخاص للنواس الثقلي البسيط:

A	$T_0 = 2\pi \sqrt{\frac{2l}{g}}$	В	$T_0 = 2\pi \sqrt{\frac{g}{l}}$
С	$T_0 = \sqrt{\frac{g}{l}}$	D	$T_0 = 2\pi \sqrt{\frac{l}{g}}$

١٨ - نواس ثقلي (ميقاتيه) يدق الثانية على سطح البحر نصعد به إلى قمة جبل فإن دوره الخاص :

A	يتناقص	В	يبقى يدق الثانية
С	يزداد	D	ينعدم

19 - نواس ثقلي (ميقاتيه) يدق الثانية على سطح البحر نصعد به إلى قمة جبل فإن الميقاتية :

A	تبقى تدق الثانية	В	تقدم
С	تتوقف	D	تؤخر

ا المعان الصغيرة يساوي $l=2\ m$ فإن دوره الخاص في حال السعات الصغيرة يساوي l=1

Α	$T_0 = \sqrt{2} s$	В	$T_0 = 2\sqrt{2} s$
С	$T_0 = 2\pi\sqrt{2}s$	D	$T_0 = 2 s$

ا l=1 في حال السعات الصغيرة يساوي: l=1 فإن دوره الخاص في حال السعات الصغيرة يساوي:

A	$T_0 = 1 s$	В	$T_0 = 2\sqrt{2} \ s$
С	$T_0 = 2 s$	D	$T_0 = 2\pi s$

ر المعات الصغيرة يساوي: $l=4\ m$ و المعات الصغيرة يساوي: $l=4\ m$

Α	$T_0 = 4 s$	В	$T_0 = 2 s$
С	$T_0 = 4\sqrt{2}s$	D	$T_0 = \sqrt{2} s$

 $l=rac{l}{l}$ - نواس ثقلي بسيط طول خيطه m المنعات الصغيرة يساوي: $l=rac{1}{4}$

A	$T_0 = 1 s$	В	$T_0 = \frac{1}{4} s$
С	$T_0 = 2 s$	D	$T_0 = \frac{1}{2} s$

٢٤ - نواس ثقلي بسيط طول خيطه $m = rac{1}{8}$ فإن دوره الخاص في حال السعات الصغيرة يساوي :

Α	$T_0 = \frac{1}{4} s$	В	$T_0 = \frac{1}{2} s$
С	$T_0 = \frac{1}{8} s$	D	$T_0 = \frac{1}{\sqrt{2}} s$

٢٥- نواس ثقلي يدق الثانية بسعة صغيرة نزيد من كتلته العطالية حتى أربع امثال فيصبح نبضه الخاص الجديد :

Α	$\omega_0 = 2\pi rad. s^{-1}$	В	$\omega_0 = \pi rad. s^{-1}$
С	$\omega_0 = \frac{2}{\pi} rad. s^{-1}$	D	$\omega_0 = 2 \ rad. s^{-1}$

T7- نواس ثقلي مركب دوره الخاص في حال السعات الصغيرة $T_0=2$ يكون طول النواس الثقلي البسيط المواقت له :

Α	l=2 m	В	l=4 m
С	l=1 m	D	$l = \frac{1}{2} m$

T - نواس ثقلي مركب دوره الخاص في حال السعات الصغيرة $T_0 = 2\sqrt{2}$ يكون طول النواس الثقلي البسيط المواقت له :

Α	l=4 m	В	l=2 m
С	l = 1 m	D	$l = \frac{1}{2} m$

Α	نواس مرن	В	نواس مرن و فتل
С	نواس فتل	D	نواس ثقلي

٢٩ نقطة مادية تهتز بتأثير قوة ثقلها على بعد ثابت من محور دوران ثابت :

Α	نواس مرن و فتل	В	نواس ثقلي بسيط
С	نواس مرن	D	نواس فتل

مسألة: من ٣٠ إلى ٣٧ حل المسألة الأتية:

 $(I_{\Delta/c}=rac{1}{12}ml^2)$ تهتز حول محور دوران مار من طرفها العلوي حيث $l=rac{3}{8}$ m ساق متجانسة طولها

٣٠- فيكون بعد مركز عطالة الجملة عن محور الدوران بدلالة طول الساق يساوي :

Α	$d = \frac{l}{4}$	В	$d = \frac{l}{2}$
С	d = l	D	$d = \frac{l}{3}$

Α	$I_{\Delta} = \frac{1}{3} m l^2$	В	$I_{\Delta} = \frac{1}{12}ml^2$
С	$I_{\Delta} = \frac{1}{6}ml^2$	D	$I_{\Delta} = \frac{1}{4} m l^2$

٣٢ علاقة الدور الخاص في حالة السعات الصغيرة بدلالة طول الساق:

А	$T_0 = 2\pi \sqrt{\frac{2l}{g}}$	В	$T_0 = 2\pi \sqrt{\frac{l}{g}}$
С	$T_0 = 2\pi \sqrt{\frac{l}{3g}}$	D	$T_0 = 2\pi \sqrt{\frac{2l}{3g}}$

٣٣- الدور الخاص في حال السعات الصغيرة يساوي:

Α	$T_0 = 1 s$	В	$T_0 = 4 s$
С	$T_0 = 2 s$	D	$T_0 = \frac{1}{2} s$

٣٤- طول النواس الثقلي البسيط المواقت

A	l=1 m	В	$l = \frac{1}{2} m$
С	l=2 m	D	$l = \frac{1}{4} m$

 $\theta_{max}=60^\circ$ نزيح النواس عن وضع التوازن الشاقولي زاوية $\theta_{max}=60^\circ$ و يترك دون سرعة ابتدائية :تكون علاقة السرعة الزاوية للنواس لحظة مروره بوضع التوازن الشاقولي :

А	$\omega = \sqrt{\frac{3g(1 - \cos\theta_{\text{max}})}{2l}}$	В	$\omega = \sqrt{\frac{2g(1 - \cos\theta_{\text{max}})}{3l}}$
С	$\omega = \sqrt{\frac{(1 - \cos\theta_{\text{max}})}{l}}$	D	$\omega = \sqrt{\frac{3g(1 - \cos\theta_{\text{max}})}{l}}$

٣٦- قيمة السرعة الزاوية في السؤال ٣٥:

Α	$\omega = 2\pi \text{ rad. } s^{-1}$	В	$\omega = \pi \text{rad.} s^{-1}$
С	$\omega = 2 \text{ rad. } s^{-1}$	D	$\omega = 10 \text{ rad. } s^{-1}$

٣٧ـ فتكون قيمة السرعة الخطية لمركز العطالة عند المرور بوضع التوازن الشاقولي : `

Α	$v_c = \frac{\pi}{4} \ m. s^{-1}$	В	$v_c = \frac{3\pi}{2} \ m.s^{-1}$
С	$v_c = \frac{3\pi}{8} \ m.s^{-1}$	D	$v_c = \frac{3}{4} m. s^{-1}$

مسألة: من ٣٨ إلى ٤٥ حل المسألة الأتية:

ساق متجانسة طولها (l=1m) كتلتها (m=3 kg) تهتز حول محور دوران مار من منتصفها نثبت في نهايتها السفلية كتلة نقطية $I_{\Delta/c}$ حيث عزم عطالة الساق حول محور دوران مار من منتصفها $I_{\Delta/c}$ حيث عزم عطالة الساق حول محور دوران مار من منتصفها $I_{\Delta/c}$

٣٨ - فيكون بعد مركز عطالة الجملة عن محور الدوران:

А	$d = \frac{1}{2}m$	В	$d = \frac{1}{4}m$
С	$d = \frac{1}{3}m$	D	$d = \frac{1}{8}m$

٣٩- قيمة عزم عطالة الجملة:

A	$I_{\Delta} = \frac{1}{2} kg. m^2$	В	$I_{\Delta}=1kg.m^2$
С	$I_{\Delta} = \frac{1}{8} kg. m^2$	D	$I_{\Delta} = \frac{1}{4} kg. m^2$

· ٤ - قيمة الدور الخاص في حال السعات الصغيرة :

A	$T_0 = \frac{1}{2} s$	В	$T_0 = 1 s$
С	$T_0 = 2 s$	D	$T_0 = 4 s$

يساوي : $heta_{max} = 0.4~rad$ يساوي :

А	$T_0 = 2.02 \ s$	В	$T_0 = 2 s$
С	$T_0 = 2.1 s$	D	$T_0 = 20.1 \text{ s}$

٤٢- نزيح النواس عن وضع التوازن الشاقولي زاوية $\theta_{max}=60^\circ$ و يترك دون سرعة ابتدائية :تكون السرعة الزاوية للنواس لحظة مروره بوضع التوازن الشاقولي :

А	$\omega = 10 \text{ rad. } s^{-1}$	В	$\omega = \pi \text{ rad. } s^{-1}$
С	$\omega = \sqrt{\pi} \text{ rad. } s^{-1}$	D	$\omega = 2\pi \mathrm{rad.} s^{-1}$

٣- السرعة الخطية لمركز العطالة عند لمرور بالشاقول:

Α	$v_c = \frac{\pi}{2} \ m.s^{-1}$	В	$v_c = \frac{\pi}{4} \ m. s^{-1}$
С	$v_c = \frac{\pi}{8} \ m. s^{-1}$	D	$v_c = \frac{3\pi}{4} \ m.s^{-1}$

٤٤- السرعة الخطية للكتلة m` عند لمرور بالشاقول :

Α	$v_{m'} = \frac{\pi}{2} m.s^{-1}$	В	$v_{m} = \frac{3\pi}{2} m.s^{-1}$
С	$v_{m} = \frac{\pi}{4} m.s^{-1}$	D	$v_{m'} = \frac{\pi}{8} \ m. s^{-1}$

٥٤ ـ قيمة العزم الحركي لمركز العطالة عند المرور بالشاقول:

А	$L = \frac{\pi}{3} kg.m^2 \text{rad.} s^{-1}$	В	$L = \frac{\pi}{2} kg.m^2 \text{rad.} s^{-1}$
С	$L = \frac{\pi}{4} kg.m^2 \text{rad.} s^{-1}$	D	$L = \frac{\pi}{8} kg.m^2 \text{ rad. } s^{-1}$

مسئلة: من ٤٦ إلى ٥٠ حل المسألة الأتية:

 $(m^{`}=m)$ تهتز حول محور دوران مار من منتصفها نثبت في نهايتها السفلية كتلة نقطية (m) تهتز حول محور دوران مار من منتصفها $I_{\Delta/c}$ عطالة الساق حول محور دوران مار من منتصفها $I_{\Delta/c}$ عالله الساق حول محور دوران مار من منتصفها

٤٦- فيكون بعد مركز عطالة الجملة عن محور الدوران بدلالة طول الساق يساوي:

A	$d = \frac{l}{2}$	В	$d = \frac{l}{3}$
С	$d = \frac{l}{8}$	D	$d = \frac{l}{4}$

٤٧ علاقة عزم العطالة حول محور الدوران:

Α	$I_{\Delta} = \frac{1}{2}ml^2$	В	$I_{\Delta}=ml^2$
С	$I_{\Delta} = \frac{1}{3}ml^2$	D	$I_{\Delta} = \frac{1}{4}ml^2$

٤٨ - قيمة الدور الخاص في حال السعات الصغيرة:

A	$T_0 = \frac{1}{2} s$	В	$T_0 = \frac{1}{4}s$
С	$T_0 = 2 s$	D	$T_0 = 1 s$

٩٤ ـ طول النواس الثقلي البسيط المواقت :

Α	$l = \frac{1}{4} m$	В	$l = \frac{1}{2} m$
С	l = 1 m	D	$l = \frac{1}{3} m$

heta نزيح النواس عن وضع التوازن الشاقولي زاوية كبيرة $heta_{max}$ و يترك دون سرعة ابتدائية :تكون السرعة الزاوية للنواس لحظة مروره بوضع التوازن الشاقولي $2\pi \, {
m rad.} \, s^{-1}$ فتكون قيمة الزاوية :

Α	$\theta_{max} = \frac{\pi}{6} rad$	В	$\theta_{max} = \frac{\pi}{4} rad$
С	$\theta_{max} = \frac{\pi}{3} rad$	D	$\theta_{max} = \frac{\pi}{2} rad$

مسئلة : من ٥١ إلى ٥٧ حل المسألة الأتية :

 $m_1=0.2\;kg$ ساق متجانسة مهملة الكتلة طولها l=1m تهتز حول محور دوران مار من منتصفها نثبت في نهايتها العلوية كتلة نقطية $m_2=0.6\;kg$: $m_2=0.6\;kg$

٥١- فيكون بعد مركز عطالة الجملة عن محور الدوران:

Α	$d = \frac{1}{2}m$	В	$d = \frac{1}{8}m$
С	$d = \frac{1}{3}m$	D	$d = \frac{1}{4}m$

٥٢- قيمة عزم عطالة الجملة:

Α	$I_{\Delta} = 0.2kg.m^2$	В	$I_{\Delta} = 0.5kg.m^2$
С	$I_{\Delta} = 0.4kg.m^2$	D	$I_{\Delta} = 0.25kg.m^2$

٥٣- قيمة الدور الخاص في حال السعات الصغيرة:

A	$T_0 = \frac{1}{2} s$	В	$T_0 = 2 s$
С	$T_0 = 4 s$	D	$T_0 = 1 s$

٥٤ - طول النواس النقلي البسيط المواقت:

Α	$l = \frac{1}{2} m$	В	$l = \frac{1}{4} m$
С	l=1 m	D	l=2 m

ه- نزيح النواس عن وضع التوازن الشاقولي زاوية $heta_{max}=60^\circ$ و يترك دون سرعة ابتدائية :تكون السرعة الزاوية للنواس لحظة مروره بوضع التوازن الشاقولي :

Α	$\omega = \pi \text{rad.} s^{-1}$	В	$\omega = 2\pi \text{rad.} s^{-2}$	L
С	$\omega = 10 \text{ rad. } s^{-1}$	D	$\omega = 20 \text{ rad. } s^{-1}$	L

٥٦- السرعة الخطية لمركز العطالة عند لمرور بالشاقول:

Α	$v_c = \frac{\pi}{2} \ m. s^{-1}$	В	$v_c = \frac{\pi}{3} \ m. s^{-1}$
С	$v_c = \pi m.s^{-1}$	D	$v_c = \frac{\pi}{4} \ m. s^{-1}$

السرعة الخطية للكتلة m_1 عند لمرور بالشاقول: $^{\circ}$

Α	$v_{m1} = \frac{\pi}{2} m. s^{-1}$	В	$v_{m1} = \frac{\pi}{4} \ m. s^{-1}$
С	$v_{m1} = \frac{\pi}{6} \ m.s^{-1}$	D	$v_{m1} = \frac{\pi}{3} \ m. s^{-1}$

مسألة : من ٥٨ إلى ٦٣ حل المسألة الأتية :

 $I_{\Delta/c}=rac{1}{2}mr^2$ قرص متجانس نصف قطره m کتلته m یهتز حول محور دوران عمودي علی مستویه و مار من محیطه حیث $r=rac{2}{3}m$ قرص متجانس نصف قطره $r=rac{2}{3}m$ عبد مرکز العطالة عن محور الدوران بدلالة نصف القطر :

Α	d = 2r	В	d = r
С	$d = \frac{r}{2}$	D	$d = \frac{r}{4}$

٥٩- علاقة عزم العطالة حول محور الدوران:

А	$I_{\Delta} = \frac{1}{2} mr^2$	В	$I_{\Delta} = \frac{2}{3} mr^2$
С	$I_{\Delta} = \frac{3}{2} mr^2$	D	$I_{\Delta} = \frac{3}{4} mr^2$

٠٠- علاقة الدور الخاص في حال السعات الصغيرة بدلالة نصف القطر:

Α	$T_0 = \sqrt{\frac{2r}{3g}}$	В	$T_0 = 2\pi \sqrt{\frac{3r}{2g}}$
С	$T_0 = 2\sqrt{\frac{2r}{3g}}$	D	$T_0 = 2\pi \sqrt{\frac{2r}{3g}}$

٦١- قيمة الدور الخاص في حال السعات الصغيرة :

Α	$T_0 = 2 s$	В	$T_0 = 2\pi s$
С	$T_0 = \frac{\pi}{2}$	D	$T_0 = \pi$

7 - نزيح النواس عن وضع التوازن الشاقولي زاوية °heta = heta = heta و يترك دون سرعة ابتدائية :تكون السرعة الزاوية للنواس لحظة مروره بوضع التوازن الشاقولي :

Α	$\omega = 10 \text{ rad. } s^{-1}$	В	$\omega = 2\pi \text{rad.} s^{-1}$
С	$\omega = 20 \text{ rad. } s^{-1}$	D	$\omega = \pi \text{ rad. } s^{-1}$

آب قيمة السرعة الخطية لمركز العطالة عند المرور بوضع التوازن الشاقولي :

A	$v_c = \frac{\pi}{2} \ m. s^{-1}$	В	$v_c = \frac{2\pi}{3} \ m.s^{-1}$
С	$v_c = \frac{3\pi}{2} \ m. s^{-1}$	D	$v_c = \frac{\pi}{3} \ m.s^{-1}$

مسئلة: من ٦٤ إلى ٦٩ حل المسألة الأتية:

قرص متجانس نصف قطره m وعزم عطالة القرص حول محور دوران عمودي على مستويه و مار من منتصفه ونثبت كتلة تقع على محيطه حيث m و عزم عطالة القرص حول محور دوران مار من منتصفه m2=m وعزم عطالة القرص حول محور دوران مار من منتصفه m2

٢٤- بعد مركز العطالة عن محور الدوران بدلالة نصف القطر:

Α	d = 2r	В	d = r
С	$d = \frac{r}{2}$	D	$d = \frac{r}{4}$

٥٥- علاقة عزم العطالة حول محور الدوران:

Α	$I_{\Delta} = \frac{1}{2} mr^2$	В	$I_{\Delta} = \frac{2}{3} mr^2$
С	$I_{\Delta} = \frac{3}{2} mr^2$	D	$I_{\Delta} = \frac{3}{4} mr^2$

٦- علاقة الدور الخاص في حال السعات الصغيرة بدلالة نصف القطر:

А	$T_0 = 2\pi \sqrt{\frac{3r}{2g}}$	В	$T_0 = 2\pi \sqrt{\frac{2r}{3g}}$
С	$T_0 = 2\sqrt{\frac{2r}{3g}}$	D	$T_0 = \sqrt{\frac{2r}{3g}}$

٦٧ - قيمة الدور الخاص في حال السعات الصغيرة:

Α	$T_0 = 2\pi s$	В	$T_0 = 1 s$
С	$T_0 = 2 s$	D	$T_0 = \pi$

ما النواس عن وضع التوازن الشاقولي زاوية كبيرة θ_{max} و يترك دون سرعة ابتدائية تكون السرعة الخطية للكتلة m` لحظة الخطة المتلة m`مروره بوضع التوازن الشاقولي $\frac{\pi}{3}$ rad. s^{-1} فتكون قيمة السرعة الزاوية لمركز العطالة عند المرور بوضع التوازن الشاقولي:

Α	$\omega = 2\pi \text{ rad. } s^{-1}$	В	$\omega = \pi \operatorname{rad} s^{-1}$
С	$\omega = 5 \text{ rad.} s^{-1}$	D	$\omega = 10 \text{ rad.} s^{-1}$

θ_{max} وتكون قيمة الزاوية $heta_{max}$:

Α	$\theta_{max} = \frac{\pi}{2} rad$	В	$\theta_{max} = \frac{\pi}{4} rad$
С	$\theta_{max} = \frac{\pi}{6} rad$	D	$\theta_{max} = \frac{\pi}{3} rad$

مسألة: من ٧٠ إلى ٧٨ حل المسألة الأتية:

m=0.1~kg نواس ثقلي بسيط يتألف من خيط مهمل الكتلة طوله l=1~m يثبت من الاعلى و نعلق بنهايته كرة صغيرة كتلتها و بعد ان تتوازن نزیح کرة النواس زاویة $\frac{\pi}{3} \, rad = \frac{\pi}{3} \, rad$ و یترك بدون سرعة ابتدائیة : - v- علاقة السرعة الخطیة لكرة النواس لحظة المرور بوضع التوازن الشاقولي :

Α	$v = \sqrt{gl(1 - \cos\theta_{max})}$	В	$v = \sqrt{2gl(1 - cos\theta_{max})}$
С	$v = \sqrt{2g(1 - \cos\theta_{max})}$	D	$v = 2gl(1 - cos\theta_{max})$
			- 1 - 7 1 - 11 7 - 11

٧١- قيمة السرعة الخطية تساوي :

А	$v = 1m.s^{-1}$	В	$v = 10 \ m. s^{-1}$
С	$v = 20 \ m.s^{-1}$	D	$v = \pi m.s^{-1}$

Α	$T = m(g - \frac{v^2}{l})$	В	$T = m(g + \frac{v^2}{l})$
С	$T = (g + \frac{v^2}{l})$	D	$T = m(g + \frac{v}{l})$

٧٢ - وقيمة التوتر في السؤال ٧٢ تساوي :

A	T = 10N	В	T = 1N
С	T = 3N	D	T=2N

: ساوي: $heta_{max}=rac{\pi}{3}\;rad$ يساوي: $heta_{max}=rac{\pi}{3}\;rad$ يساوي:

A	$W = \frac{1}{2} J$	В	W = 1J
С	$W = \pi J$	D	W = 2J

مع الشاقول: التسارع المماسي عندما يصنع الخيط زاوية heta مع الشاقول: heta

A	$a_T = g \sin \theta$	В	$a_T = sin\theta$
С	$a_T = 2g \sin \theta$	D	$a_T = 3g \sin\theta$

hicksim hicksim: hicksim hicks

Α	$a_T = 10m.s^{-2}$	В	$a_T = 5m.s^{-2}$
С	$a_T = 2m.s^{-2}$	D	$a_T = 1m.s^{-2}$

Α	$\alpha = 5 \ rad. s^{-2}$	В	$\alpha = 1 \ rad. s^{-2}$
С	$\alpha = 10 \ rad. s^{-2}$	D	$\alpha = \pi rad. s^{-2}$

 $heta_{max} = 0.4~rad$ الدور الخاص عندما $heta_{max} = 0.4~rad$

Α	$T_0 = 2.01 \ s$	В	$T_0 = 2 s$
С	$T_0 = 2.02 \ s$	D	$T_0 = 1.02 \ s$

مسألة: من ٧٩ إلى ٨٣ حل المسألة الأتية:

نعلق كرة صغيرة نعدها نقطة مادية كتلتها m=0.5 kg بخيط مهمل الكتلة لا يمتط طوله l=1.6 m لتؤلف نواس ثقلي بسيط ثم نزيح الكرة إلى مستوى أفقي يرتفع h=0.8 m عن المستوي الفقي المار منها و هي في موضع توازنها الشاقولي ليصنع خيط النواس مع الشاقول زاوية θ_{max} و نتركها دون سرعة ابتدائية و g=10 $m.s^{-2}$:

٧٩- علاقة السرعة الخطية عند مرورها بالشاقول:

Α	$v = \sqrt{2gl}$	В	$v = \sqrt{2gh}$
С	$v = \sqrt{2mgh}$	D	v = 2gh

٨٠ و قيمة السرعة تساوي:

Α	$v = 4m.s^{-1}$	В	$v = 2m.s^{-1}$
С	$v = 8m.s^{-1}$	D	$v = 1m.s^{-1}$

$\overline{ heta_{max}}$ الزاوية $\overline{ heta_{max}}$

A	$\theta_{max} = \frac{\pi}{6} \text{ rad}$	В	$\theta_{max} = \frac{\pi}{2}$ rad
С	$\theta_{max} = \frac{\pi}{3} \text{ rad}$	D	$\theta_{max} = \frac{\pi}{4} \operatorname{rad}$

٨٢- قيمة شدة توتر الخيط عند المرور بالشاقول :

А	T=2N	В	T = 1N
С	T=4N	D	T = 10N

Α	$T_0 = \frac{\pi}{5} s$	В	$T_0 = \frac{4\pi}{5} s$
С	$T_0 = 2 s$	D	$T_0 = 1 s$

الإجابة:

A -°	C - £	D -٣	B - Y	D - 1
В -1•	D -9	В - А	C-Y	7- A
A -10	D -1 £	A-17	B -17	C -11
В - ۲ •	D-19	C -14	D-1Y	B -17
B -40	D - Y £	A - ۲۳	A - ۲۲	C - Y 1
В - ٣•	B - 79	D - ۲۸	B -YY	C - 41
D -40	D-45	A - 44	D -41	A - "1
C - ٤ ·	A -٣9	D - 47	C -41	A -٣٦
B - 50	A - £ £	C - £ m	B - £ Y	A - £ 1
C -0.	A - ٤9	D - £ A	C - £ Y	D - £7
A -00	C -0 £	В -07	A -0Y	D -01
В - ٦٠	C-09	B -ov	A - ° Y	D -07
C-70	C -15	B -77	D -77	A -71
B - Y •	D -19	A-TA	B -17	A -77
A - Yo	A -Y £	D - ٧٣	В -٧٢	D -Y1
A - ^ •	В - ٧٩	C -AV	A -YY	В -٧٦
		В - ۸۳	D -Y	C -V)

الدرس الرابع: قوة مقاومة الهواء

١- إن قوة مقاومة الهواء تنتج عن نوعين من القوى هما :

_	- 1		1			
Α	قوة ثقل و قوة كهربائية	В	قوة احتكاك و قوة ضغط			
С	قوة ضغط و قوة ثقل	D	قوة احتكاك و قوة لزوجة			
			١- إن قوة الاحتكاك في الهواء تنتج عن :			
A	ثقل الهواء	В	ضغط الهواء			
С	لزوجة الهواء	D	لزوجة الماء			
			٢- إن قوة الاحتكاك في الهواء تنتج في حال :			
A	السرعات لصغيرة	В	السرعات الكبيرة			
С	السرعات الوسطى	D	السرعة المعدومة			
		جسم و نهای	عن ــــــــــــــــــــــــــــــــــــ			
A	تفاوت درجة الحرارة	В	البعد			
С	لزوجة الهواء	D	تفاوت الضغط			
	a- إن قوى الضغط في مقاومة الهواء تنتج في حال :					
Α	السرعات المتوسطة و الكبيرة	В	السرعات الصغيرة			
С	السرعات الكبيرة فقط	D	السرعات المتوسطة فقط			
			- العوامل التي تتعلق بها قوة مقاومة الهواء :			
A	السطح الظاهري للجسم	В	الكتلة الحجمية للهواء			
С	شكل الجسم	D	کل ما سبق			
			١- إن قوة مقاومة الهواء :			
A	تتناسب عكسا مع السرعات المتوسطة	В	تتناسب طردا مع السرعات المتوسطة			
С	تتناسب طردا مع مربع السرعات المتوسطة	D	تتناسب عكسا مع مربع السرعات المتوسطة			
	رــــــــــــــــــــــــــــــــــــ					
A	تتناسب طردا مع مربع السطح الظاهري للجسم	В	تتناسب طردا مع السطح الظاهري للجسم			
С	تتناسب عكسا مع السطح الظاهري للجسم	D	تتناسب عكسا مع مربع السطح الظاهري للجسم			
	IL	II				

٩- إن قوة مقاومة الهواء:

			- إلى قوة معاومة الهواع .		
А	تتناسب طردا مع الكتلة الحجمية للهواء	В	تتعلق بشكل الجسم		
С	تتناسب طردا مع مربع السرعات المتوسطة	D	کل ما سبق		
	لسرعة الحدية يكون :	، قبل بلوغ ا	١- إن ترك جسم ليسقط في هواء ساكن من ارتفاع مناسب		
Α	$w > F_r$	В	$w = F_r$		
С	a = 0	D	$w < F_r$		
	لسرعة الحدية تكون طبيعة الحركة مستقيمة:	، قبل بلوغ ا	 ان ترك جسم ليسقط في هواء ساكن من ارتفاع مناسب 		
Α	متباطئة بانتظام	В	متسارعة بانتظام		
С	منتظمة	D	متسارعة		
	لسرعة الحدية تكون طبيعة الحركة مستقيمة:	، قبل بلوغ ا	١- إن ترك جسم ليسقط في هواء ساكن من ارتفاع مناسب		
Α	متسارعة بانتظام	В	يتناقص فيه التسارع		
С	متباطئة بانتظام	D	منتظمة		
	السرعة الحدية تكون طبيعة الحركة مستقيمة:	، عند بلوغ ا	١٠- إن ترك جسم ليسقط في هواء ساكن من ارتفاع مناسب		
Α	منتظمة	В	متسارعة بانتظام		
С	متباطئة بانتظام	D	متسارعة		
	لسرعة الحدية تكون:	، عند بلوغ ا	 ان ترك جسم ليسقط في هواء ساكن من ارتفاع مناسب 		
Α	a < 0	В	$w < F_r$		
С	$w = F_r$	D	$w > F_r$		
	ناسب :	ن ارتفاع م	 ١٠- إن علاقة السرعة الحدية لجسم يسقط في هواء ساكن ه 		
Α	$v_t = \sqrt{\frac{m g}{k \rho s}}$	В	$v_t = \sqrt{\frac{2 m g}{k \rho s}}$		
С	$v_t = \sqrt{\frac{2m}{k\rhos}}$	D	$v_t = \sqrt{\frac{2 g}{k \rho s}}$		
	١- إن علاقة قوة مقاومة الهواء:				
Α	$F_r = \frac{1}{2}k\rho s v^2$	В	$F_r = \frac{1}{2}kv^2$		
С	$F_r = \frac{1}{2}k\rho s v^2$ $F_r = \frac{1}{2}k\rho s v$	D	$F_r = \frac{1}{2}kv^2$ $F_r = \frac{1}{2}\rho sv^2$		

الحدية : $ho_{
m s}$ كتلتها الحجمية $ho_{
m s}$ تسقط في هواء ساكن من ارتفاع مناسب تكون علاقة سرعتها الحدية :

А	$v_t = \sqrt{\frac{3 k \rho}{8 r \rho_s g}}$	В	$v_t = \sqrt{\frac{r \rho_s g}{3 k \rho}}$
С	$v_t = \sqrt{\frac{8 r \rho_s g}{3 \rho}}$	D	$v_t = \sqrt{\frac{8 r \rho_s g}{3 k \rho}}$

: کرتان من نفس النوع تسقطان من ارتفاع مناسب في هواء ساکن حیث $r_2 = 4r_1$ یکون $r_2 = 4r_1$ یکون

Α	$v_{t2} = 4v_{t1}$	В	$v_{t2} = 2 v_{t1}$
С	$v_{t2} = \frac{1}{2}v_{t1}$	D	$v_{t2} = \frac{1}{4}v_{t1}$

٩- كرتان لهما نفس نصف القطر من نوعين مختلفين $ho_{s2}=9
ho_{s1}$ تسقطان في هواء ساكن من ارتفاع مناسب فيكون :

Α	$v_{t2} = \frac{1}{3}v_{t1}$	В	$v_{t2} = \frac{1}{9}v_{t1}$
С	$v_{t2} = 3 v_{t1}$	D	$v_{t2} = 9 v_{t1}$

٠٠- تسقط كرتان من النوع نفسه مختلفتين بالحجم من ارتفاع مناسب في هواء ساكن فإنه:

A	الكرة الأكبر حجما تصل أولا إلى الأرض	В	تصل الكرتان معا إلى الأرض
С	لكرة الأصغر حجما تصل أولا إلى الأرض	D	يصبح للكرتان السرعة الحدية نفسها

٢٦- كرتان لهما نفس نصف القطر الأولى من الرصاص و الثانية من الخشب تسقطان في هواء ساكن من ارتفاع مناسب فإن :

A	كرة الرصاص تصل إلى الأرض أولا		В	كرة الخشب تصل إلى الأرض أولا
С	تصل الكرتان معا	D	D	يصبح للكرتان السرعة الحدية نفسها

مسألة: من ٢٢ إلى ٢٥ حل المسألة الأتية:

تبلغ قيمة السرعة الحدية لمظلي و مظلته مفتوحة $v_t=4~m.~s^{-1}$ حيث $v_t=0.8~s$ و كتلة المظلي و مظلته مفتوحة $m_2=20~kg$ و كتلة المظلي $m_1=80~kg$

٢٢- علاقة نصف قطر المظلة بفرض أنها نصف كرة:

А	$r = \sqrt{\frac{m \cdot g}{0.8 \ v_t^2}}$	В	$r = \sqrt{\frac{m.g}{0.8\piv_t^2}}$
С	$r = \sqrt{\frac{0.8 \pi v_t^2}{m g}}$	D	$r = \frac{m \cdot g}{0.8 \pi v_t^2}$

٢٣ - قيمة نصف قطر المظلة:

A	r=2 m	В	r = 25 m
С	r = 10 m	D	r = 5 m

٢٤- العلاقة المحددة لقوة توتر مجمل الحبال عند بلوغ السرعة الحدية:

Α	$T = \sqrt{m_1 g}$	В	$T=2m_1 g$
С	$T = \frac{1}{m_1 g}$	D	$T=m_1 g$

٢٥ - قيمة قوة توتر الحبال:

Α	$T = 4\sqrt{5} N$	В	$T = 160 \ N$
С	$T = 800 \ N$	D	T = 100 N

مسألة: من ٢٦ إلى ٢٥ حل المسألة الأتية:

تسقط كرة من الألمنيوم نصف قطرها r=2~cm كتلتها $m=\pi~g$ بدون سرعة ابتدائية في هواء ساكن من ارتفاع مناسب حيث

 $g = 10 \text{ m. s}^{-2} F_r = 0.25 \text{s } v^2$

٢٦- السرعة الحدية للكرة تعطى بالعلاقة الأتية:

A	$v_t = \sqrt{\frac{m \ g}{\pi r^2}}$	В	$v_t = \sqrt{\frac{4 m g}{\pi r^2}}$
С	$v_t = \frac{4 m g}{\pi r^2}$	D	$v_t = \sqrt{\frac{\pi r^2}{4 m g}}$

٢٧- قيمة السرعة الحدية :

Α	$v_t = 10 m.s^{-1}$	В	$v_t = 1 m. s^{-1}$
С	$v_t = \sqrt{10} m.s^{-1}$	D	$v_t = 20 m.s^{-1}$

$v=5~m.\,s^{-1}$ قيمة التسارع عندما تكون السرعة - $v=5~m.\,s^{-1}$

Α	$a = 10 m. s^{-2}$	В	$a = 2.5 m. s^{-2}$
С	$a = 7.5 \ m.s^{-2}$	D	$a = 5 m. s^{-2}$

7- - في السؤال السابق تكون محصلة القوى تساوي:

Α	$7.5\pi \times 10^{-3}N$	В	$7.5\pi N$
С	$7.5\pi \times 10^{-8}N$	D	$7.5 \times 10^{-3} N$

: $ho_s = 3 \; g.cm^{-3}$ اذا كانت الكرة مصمتة لها نفس نصف القطر و كتلتها الحجمية -٣٠

Α	$v_t = 40\sqrt{2} m. s^{-1}$	В	$v_t = 4\sqrt{2} m. s^{-1}$
С	$v_t = 20\sqrt{2} m. s^{-1}$	D	$v_t = 32 m. s^{-1}$

•	سئلة	الأ	حل
		_ ′	$\overline{}$

			_	
A -°	D - £	A - "	C - Y	B - 1
A -1 ·	D -9	В -Л	C -Y	D -7
B -10	C -1 £	A -14	B -17	D -11
A - 7 •	C -19	B-1V	D -1Y	A -17
C - 40	D - 7 £	D - 7 m	B -44	A - 7 1
A - 4.	A - 49	C - 4 V	A-TV	B - 41

الأستاذ خالد الأبرش

الدرس الخامس: ميكانيك السوائل

١- هو جزء من السائل ابعاده أصغر من ابعاد السائل و أكبر من ابعاد جزيئات السائل:

Α	جسيم السائل	В	قطعة من الخشب
С	کل ماسبق	D	حجر في السائل

h علاقة ضغط السائل في نقطة تقع داخله على عمق h

A	p = hg	В	$p = \rho h^2 g$
С	p = ho hg	D	$p = \rho mhg$

٣- و علاقة الضغط الكلى :

А	$P_{total} = P_0 + \rho mhg$	В	$P_{total} = P_0 + \rho h$
С	$P_{total} = P_0 + hg$	D	$P_{total} = P_0 + \rho hg$

٤ - واحدة الضغط في الجملة الدولية:

Α	نيوتن N	В	Pa باسكال
С	m.N	D	$kg.m^2$

٥- إن ضغط السائل في نقطة تقع داخله يتعلق بـ:

Α	شكل الإناء	В	دافعة أرخميدس
С	عمق النقطة	D	کل ما سبق

٦- اذا غمر جسم بشكل كلي أو بشكل جزئي في سائل لا يذوب فيه ولا يتفاعل معه فإن السائل يؤثر عليه بقوة تنفعه نحو الأعلى

Α	قانون باسكال	В	قانون أرخميدس
С	قانون لنز	D	قانون فاراداي

٧- لديك الشكل الجانبي : نلاحظ أن السائل يندفع من جدران الإناء باتجاه عمودي على
 الجدران فتزداد سرعة اندفاعه بزيادة البعد الشاقولي عن سطح السائل في الإناء بسبب

A	زبادة الضغط	В	نقصان الضغط
С	نقصان الكتلة الحجمية	D	زبادة الكتلة الحجمية

٨- جسم معدني ينقص وزنه 2 N عندما يغمر في الماء، وينقص وزنه N 1.8 عندما يغمر في سائل آخر، فإذا علمت أنّ الكتلة الحجميّة للماء

ية الكتابة الحجمية للسائل الآخر. $ho = 1g.\,cm^{-3}$

Α	$\rho = 1 g.cm^{-3}$	В	ρ = 3.6 g.cm ⁻³
С	$\rho = 0.9 \ g.cm^{-3}$	D	$\rho = 1.8 \ g.cm^{-3}$

٩- ينص قانون ------ : إن أي تغير في ضغط سائل ساكن و محصور في إناء ينتقل بكامله إلى جميع نقاط السائل و إلى جدران الوعاء الذي يوجد فيه .

Α	لورنز	В	أرخميدس
С	فولط	D	باسكال

٠ ١- في رافعة السيارات يكون:

Α	$P_1 = P_2$		$P_1 = 0$
С	$P_{1} < P_{2}$	D	$P_1 > P_2$

١١- جسم ثقله في الهواء 8N و عندما يغمر في الماء يصبح ثقله الظاهري 6N فتكون قيمة دافعة أرخميدس تساوي :

A	$B = \frac{4}{3} N$	В	B=2N
С	B=48N	D	B=14N

ار المحمد المواء 15N يغمر في السائل فينقص ثقله بمقدار 5N فتكون قيمة دافعة أرخميدس تساوي : 15N

Α	B=3N	В	B=20N
С	B=10N	D	B=5 N

٣٠- جسم ثقله في الهواء 15N يغمر في السائل فينقص ثقله بمقدار 5N فيكون ثقله الظاهري في السائل يساوي :

А	$w_{app} = 5 N$	В	$w_{app} = 10 N$
С	$w_{app} = 20 N$	D	$w_{app} = 3 N$

 $g=10~m.~\mathrm{s}^{-2}$ حيث $g=10~m.~\mathrm{s}^{-2}$ فتكون قيمة دافعة أرخميدس تساوي:

Α	B=2N	В	B=20N
С	B = 2000 N	D	B = 0.2 N

ho=1وي السؤال ۱۶ اذا كانت الكتلة الحجمية للماء ho=1وho=1يكون حجم الجسم يساوي :

Α	$V = 2 \times 10^{-3} m^3$	В	$V = 2 \times 10^{-2} m^3$
С	$V = 2 \times 10^{-4} m^3$	D	$V=2m^3$

17- تطفو قطعة من الخشب حجمها $V=1200cm^3$ على سطح الماء حيث الكتلة الحجمية للماء $ho=1g.cm^{-3}$ و الكتلة الحجمية للخشب $ho=0.8~g.cm^{-3}$ فيكون حجم الجزء غير المغمور يساوى :

	:	ور يساوي	لخشب $ ho = 0.8~g.cm^{-3}$ فيكون حجم الجزء غير المغم
А	$V^{``} = 20 cm^3$	В	$V^{``} = 200 cm^3$
С	$V^{``} = 240 cm^3$	D	$V^{``} = 180 cm^3$
			١٧- من ميزات السائل المثالي :
Α	له لزوجة و غير قابل للضغط	В	عديم اللزوجة وغيرقابل للضغط
С	له لزوجة و قابل للضغط	D	عديم اللزوجة و قابل للضغط
А	قابل للضغط	В	جربانه دوراني
С	جربانه غير مستقر	D	جربانه غير دوراني
			٩ - معادلة الاستمرارية:
	S_1 V_2		

$\frac{v_1}{v_2} = \frac{v_2}{v_2}$	D	کل ما سیق
s_2 s_1		

[·] ٢- خزان حجمه L 800 استغرق s 400 لملئه فيكون معدل التدفق الحجمي :

Α	$Q = 5 \times 10^{-3} m^3. s^{-1}$	В	$Q = 2m^3.s^{-1}$
С	$Q = 2 \times 10^{-3} m^3. s^{-1}$	D	$Q = 5 \times 10^{-4} m^3. s^{-1}$

٢١- خزان حجمه 1800L استغرق 6 دقائق لملئه فيكون معدل التدفق الحجمى :

А	$Q = 5 \times 10^{-3} m^3. s^{-1}$	В	$Q = 200m^3.s^{-1}$
С	$Q = 2 \times 10^{-3} m^3. s^{-1}$	D	$Q = 5 \times 10^{-4} m^3. s^{-1}$

بره خران حجمه $2m^3$ یملئ بالماء بمعدل تدفق حجمي $m^3.s^{-1}$ $q=2 imes 10^{-3}$ فیستغرق زمن قدره $q=2 imes 10^{-3}$

Α	$t = 10^{-3} s$	В	t = 1000 s
С	t = 2000 s	D	t = 100 s

 $ilde{1}$ انبوب مساحة مقطعه s_1 سرعة تدفق السائل فيه v_1 نجعل مساحة المقطع ربع ما كان عليه فتصبح سرعة تدفق السائل:

Α	$v_2 = 4v_1$	В	$v_2 = 2v_1$
С	$v_2 = \frac{1}{4}v_1$	D	$v_2 = v_1$

: و معدل تدفق السائل فيه $q=2 imes 10^{-3}\,m^3.s^{-1}$ و معدل تدفق السائل فيه $s=5\,cm^2$ فتكون سرعة تدفق السائل فيه q=1

Α	$v = 2 m.s^{-1}$	В	$v = 40 \ m.s^{-1}$
С	$v = 4 m.s^{-1}$	D	$v = 0.4 m. s^{-1}$

لماء عندم انبوب مساحة مقطعه $s=10~cm^2$ لملء خزان حجمه t=500~s فاستغرق زمن قدره t=500~s فيكون سرعة تدفق الماء - ٢٥ من الانبوب تساوي:

A	$v = 2 m.s^{-1}$	В	$v = 5 m. s^{-1}$
С	$v = 3 m. s^{-1}$	D	$v = 3 \times 10^3 m.s^{-1}$

السائل : v_1 انبوب مساحة مقطعه s_1 سرعة تدفق السائل فيه v_1 نجعل مساحة المقطع ثلث ما كان عليه فتصبح سرعة تدفق السائل:

A	$v_2 = \frac{1}{2}v_1$	В	$v_2 = 3v_1$
С	$v_2 = v_1$	D	$v_2 = \frac{1}{3}v_1$

 $ilde{r}$ نبوب مساحة مقطعه s_1 سرعة تدفق السائل فيه v_1 نجعل مساحة المقطع ضعف ما كان عليه فتصبح سرعة تدفق السائل:

Α	$v_2 = v_1$	В		$v_2 = 3v_1$
С	$v_2 = \frac{1}{2} v_1$	D		$v_2 = 2v_1$

٢٨ - يعبر عن معادلة برنولي بالعلاقة :

А	$P + \frac{1}{2} \rho v^2 + \rho gz = const$	В	$P + \rho v^2 + \rho gz = const$
С	$P + \frac{1}{2} \rho v^2 + \rho gz = 0$	D	$P + \frac{1}{2} \rho v^2 + \rho gz = 1$
			$z_{1}=z_{2}$ نصيح معادلة ير نولي $z_{2}=z_{3}$

Α	$P_1 + P_2 = \frac{\rho}{2}(v_2^2 - v_1^2)$	В	$P_1 - P_2 = \frac{\rho}{2} (v_2^2 - v_1^2)$
С	$P_1 - P_2 = \frac{\rho}{2} (v_2^2 + v_1^2)$	D	$P_1 - P_2 = \frac{1}{2}(v_2^2 - v_1^2)$

٣٠ ـ حسب برنولي فإن ضغط السائل:

Α	يبقى ثابت عند ازدياد سرعته	В	يزداد عندما تزداد سرعته
С	ينقص عند نقصان سرعته	D	ينقص عند ازدياد سرعته

Α	$v = \sqrt{gz}$	В	v = 2 gz
С	$v = \sqrt{2gz}$	D	$v = \sqrt{2z}$

من ٣٢ إلى ٣٤ حل المسألة الأتية:

تقوم مضخة برفع الماء من خزان أرضي عبر انبوب مساحة مقطعه $(s_1=10~cm^2)$ إلى خزان يقع على سطح بناء يرتفع مسافة $(Q=0.005m^3.s^{-1})$ و مساحة مقطع الأنبوب الذي يصب في الخزان العلوي $(s_2=5cm^2)$ معدل الضخ الحجمي ($(Q=0.005m^3.s^{-1})$

٣٢ - سرعة الماء عند دخوله الأنبوب تساوي:

A	10 m.s ⁻¹	В	$5 m. s^{-1}$
С	$1 m.s^{-1}$	D	$0.5 \ m.s^{-1}$

٣٣- سرعة خروج الماء من فتحة الأنبوب

Α	$0.1 \ m.s^{-1}$	В	10 m.s ^{−1}
С	$1 m. s^{-1}$	D	5 m.s ⁻¹

 $ho_{
m cl} = 1000~kg.m^{-3}$ و $g=10~m.~s^{-2}$ و $P_2=1 imes 10^5~Pa$ و $P_2=1000~kg.m^{-3}$ و

A	$P_1 = 337500 \ Pa$	В	$P_1 = 137500 \ Pa$
С	$P_1 = 237500 \ Pa$	D	$P_1 = 37500 \ Pa$

الاجابة:

C -0	Β - ξ	D - ٣	C - 7	A -1
A - 1 ·	D - 9	C-V	A-Y	В - ٦
C -10	A -1 £	B-17	D-17	B -11
C - Y •	D-19	D-14	B - 1 Y	C -17
C - 40	C - 4 ξ	A-77	B - 77	A-Y1
D - 4.	B- ۲9	A-7A	C - 7 V	B - 41
	A - 45	B -٣٣	B - 47	C - T1

الوحدة الثانية: الكهرباء و المغناطيسية

الدرس الأول: تأثير الحقل المغناطيسي في التيار الكهربائي

١ - علاقة التدفق المغناطيسي:

			ـــــــ الساحي المستحدث المستحدث المستحدث المستحدد المستح				
А	$\Phi = NBScos\alpha$	В	$\Phi = \frac{1}{2} NBS cos \alpha$				
С	$\Phi = 2NBScos\alpha$	D	$\Phi = NScos\alpha$				
	-دة التدفق المغناطيسي :						
A	V.A فولط أمبير	В	A أمبير				
С	Web ويبر	D	V فولط				
	قل و الناظم :	ن شعاع الد	- يكون التدفق المغناطيسي أعظمي عندما تكون الزاوية بي				
А	$\alpha = \frac{\pi}{2} rad$	В	$\alpha = \frac{\pi}{3} rad$				
С	$\alpha = 0 rad$	D	$\alpha = \frac{\pi}{4} rad$				
	اظم :	الحقل و الذ	- ينعدم التدفق المغناطيسي عندما تكون الزاوية بين شعاع				
А	$\alpha = \frac{\pi}{2} rad$	В	$\alpha = \frac{\pi}{3} rad$				
С	$\alpha = 0 rad$	D	$\alpha = \frac{\pi}{4} rad$				
	9		- إن جهة القوة الكهرطيسية تتغير بتغير :				
A	جهة التيار الكهربائي	В	جهة شعاع الحقل المغناطيسي				
С	A+B	D	طول الناقل				
			- العبارة الشعاعية للقوة الكهرطيسية :				
Α	$\vec{F} = I\vec{l} \wedge \vec{I}\vec{B}$	В	$\vec{F} = I\vec{l} \wedge \vec{B}$				
С	$ec{F}=ec{l}\wedgeec{B}$	D	$\vec{F} = I \wedge \vec{B}$				
			 العوامل المؤثرة بالقوة الكهرطيسية قوة (لابلاس) 				
A	شدة التيار الكهربائي	В	شدة الحقل المغناطيسي				
С	طول الجزء من الناقل الخاضع للحقل المغناطيسي	D	کل ما سبق				
			- إن القوة الكهرطيسية قوة (لابلاس)				
Α	تتناسب طردا مع مربع شدة التيار	В	تتناسب طردا مع شدة التيار				
С	تتناسب عكسا مع شدة التيار	D	تتناسب طردا مع الجذر التربيعي لشدة التيار				

٩- إن القوة الكهرطيسية قوة (لابلاس)

A	تتناسب عكسا مع شدة الحقل المغناطيسي	В	تتناسب عكسا مع مربع شدة الحقل المغناطيسي
С	تتناسب طردا مع مربع شدة الحقل المغناطيسي	D	تتناسب طردا مع شدة الحقل المغناطيسي

١٠- إن القوة الكهرطيسية قوة (لابلاس)

A	تتناسب طردا مع طول الجزء من الناقل الخاضع للحقل المغناطيسي	В	تتناسب عكسا مع طول الجزء من الناقل الخاضع للحقل المغناطيسي
С	تتناسب طردا مع مربع طول الجزء من الناقل الخاضع للحقل المغناطيسي	D	تتناسب طردا مع الجذر التربيعي طول الجزء من الناقل الخاضع للحقل المغناطيسي

ا ١٠ تكون القوة الكهرطيسية عظمى عندما تكون الزاوية بين شعاع الحقل و الناقل :

A	$\theta=\pi$	В	$\theta = 0$
С	$\theta = \frac{\pi}{2}$	D	$\theta = \frac{\pi}{3}$

٢١- تنعدم القوة الكهرطيسية عظمى عندما تكون الزاوية بين شعاع الحقل و الناقل :

Α	$\theta = \frac{\pi}{2}$	В	$\theta = \frac{\pi}{3}$
С	$\theta = \frac{\pi}{6}$	D	$\theta = 0$

1°7 - إن حامل القوة الكهرطيسية يكون :

Α	يوازي المستوي المحدد بشعاع الحقل و الناقل	В	ينطبق المستوي المحدد بشعاع الحقل و الناقل
С	يعامد المستوي المحدد بشعاع الحقل و الناقل	D	کل ما سبق

١٤ - تعطى القوة الكهرطيسية بالعلاقة:

Α	$F = IlB \sin\theta$	В	$F = 2IlB \sin\theta$
С	$F = \frac{1}{2}IlB \sin\theta$	D	$F = IlB \cos\theta$

ه - عند مضاعفة الحقل المغناطيسي $(B^{ imes}=2B)$ فإن القوة الكهر طيسية \cdot

Α	$F^{\circ} = F$	В	$F^{}=2F$
С	$F^{\circ} = \frac{F}{2}$	D	$F` = \sqrt{F}$

ا الحور الكهر I'=2I عند مضاعفة شدة التيار I'=2I فإن القوة الكهر طيسية I'

Α	$F=\frac{F}{2}$	В	$F^{} = \sqrt{F}$
С	F`=F	D	$F^{}=2F$

۱۷ - عند مضاعفة الحقل المغناطيسي $(B^*=2B)$ و جعل التيار الكهربائي ربع ما كان عليه $(I^*=rac{I}{4})$ فإن القوة الكهرطيسية :

Α	$F = \frac{F}{2}$	В	$F^{} = \sqrt{F}$
С	F`=F	D	$F^{}=2F$

المغناطيسي ($l^*=2l$) فإن القوة الكهرطيسية : l^*

Α	$F^{} = \sqrt{F}$	В	$F = \frac{F}{2}$
С	F`=F	D	$F^{\cdot} = 2F$

 9 ا- في تجربة السكتين الأفقيتين طول الساق الخاضعة للحقل يساوي (10 cm) نمرر فيها تيار شدته (1 20 1 ما هي قيمة شدة الحقل المغناطيسي المؤثر شاقوليا بحيث تكون القوة الكهرطيسية تساوي (1 10 10 10 10 10

Α	$B=0.1\ T$	В	B = 0.01 T
С	B = 0.2 T	D	B = 1 T

A	$W = 2I. \Delta \Phi$	В	$W = \frac{\Delta \Phi}{I}$
С	$W = I. \Delta \Phi$	D	$W = \frac{I}{\Delta \Phi}$

١٦ اذا أثر حقل مغناطيسي في دارة كهربائية مغلقة انتقات بحيث يزداد التدفق المغناطيسي الذي يجتازها من وجهها الجنوبي و تستقر في وضع يكون التدفق فيه أعظمي :

A	قانون باسكال	В	قانون فاراداي
С	نظرية مكسويل	D	نظرية التدفق الأعظمي

٢٢- تنص نظرية مكسويل: اذا انتقلت دارة كهربائية أو جزء من دارة كهربائية مغلقة في منطقة حقل مغناطيسي فإن عمل القوة الكهرطيسية المحسبة للانتقال تساوي

Α	جداء شدة التيار في تزايد التدفق المغناطيسي	В	جداء شدة التيار في تناقص التدفق المغناطيسي
С	جداء شدة التيار في تزايد الحقل المغناطيسي	D	جداء شدة الحقل المغناطيسي في تزايد التدفق المغناطيسي

٢٣- تعطى علاقة عزم المزدوجة الكهرطيسية:

Α	$\Gamma = NISB \cos \alpha$	В	$\Gamma = NISB \sin \alpha$
С	$\Gamma = 2NISB \sin\alpha$	D	$\Gamma = \frac{\text{NB sin}\alpha}{IS}$

علاقة زاوية الانحراف heta في المقياس الغلفاني بفرض أنها صغيرة:

A	θ = $\frac{k}{NSB}$	В	$\theta^{} = \frac{NSB}{K}I$
С	$\theta = \frac{NB}{K}I$	D	$\theta = \frac{NSB}{K}$

ما علاقة زاوية الانحراف heta في المقياس الغلفاني بفرض أنها صغيرة: heta

Α	$\theta^{\wedge} = G. I$	В	θ = $\frac{G}{I}$
С	θ ` = $\frac{I}{G}$	D	θ = $G + I$

٢٦- علاقة ثابت المقياس الغلفاني

Α	$G = \frac{k}{NSB}$	В	$G = \frac{k B}{NS}$
С	$G = \frac{k s}{NB}$	D	$G = \frac{NSB}{K}$

٢٧- ويعطى ثابت المقياس الغلفاني بالعلاقة

Α	$G = \theta$ `. I	В	$G = \frac{\theta^*}{I}$
С	$G = \theta^* + I$	D	$G = \theta$ ` $-I$

. ٢٨- واحدة ثابت المقياس الغلفاني :

Α	A.rad	В	$A.rad^{-1}$
С	$rad.A^{-1}$	D	rad^{-1}

٢٩ عند زيادة حساسية المقياس 10 مرات يجب أن يكون ثابت الفتل :

А	k` = 10 k	В	$k = \sqrt{10} k$
С	$k' = \frac{k}{10}$	D	$k = \frac{10}{k}$

· ٣٠ العبارة الشعاعية للقوة المغناطيسية قوة لورنز:

Α	$\vec{F} = I\vec{l} \wedge \vec{B}$	В	$\vec{F} = q\vec{v} \wedge \vec{B}$
С	$ec{F}=q\wedge ec{B}$	D	$ec{F} = ec{v} \wedge ec{B}$

ا العلاقة الرياضية للقوة المغناطيسية (قوة لورنز):

	$F = qvB \sin(\overrightarrow{v}, B)$	В	$F = \frac{1}{2} qvB \sin(\overrightarrow{v}, B)$
С	$F = Ilb \sin \theta$	D	$F = 2qvB\sin(\overrightarrow{v}, \overrightarrow{B})$

٣٢ - نقطة تأثير قوة لورنز:

A	الشحنة الساكنة	В	الشحنة المتحركة
С	تقع خارج منطقة الحقل	D	کل ما سبق

A	شعاع الحقل الكهربائي و شعاع السرعة	В	شعاع الحقل الكهربائي و شعاع الحقل المغناطيسي
С	شعاع الحقل المغناطيسي و شعاع السرعة	D	کل ما سبق

٣٤ - تكون قوة لورنز عظمى عندما:

Α	$ec{B}/\!/ec{v}$	В	$ec{B}\perpec{v}$
С	q > 0	D	q < 0

٣٥- تنعدم قوة لورنز عندما:

А	$ec{B}/\!/ec{v}$	В	$\vec{B} \perp \vec{v}$
С	q > 0	D	q < 0

٣٦- الشحنة الكهربائية عندما تتحرك تكافئ تيار شدته تعطى بالعلاقة :

Α	$I = q + \Delta t$	В	$I = q - \Delta t$
С	$I = \frac{q}{\Delta t}$	D	$I = \frac{\Delta t}{q}$

٣٧- المبدأ الذي يعتمد عليه دو لاب بارلو هو تحول الطاقة الكهربائية إلى :

Α	نووية	В	حرارية
С	كيميائية	D	حركية

من ٣٨ إلى ٤١ حل المسألة الأتية:

دو لاب بارلو نصف قطره (r=20~cm) نمرر فيه تيار شدته (I=4~A) و نخضع نصفه السفلي لحقل مغناطيسي منتظم أفقي شدته $(B=5 imes10^{-3}~T)$

٣٨ - شدة القوة الكهرطيسية المؤثرة على الدولاب:

Α	$F = 4 \times 10^{-3} N$	В	$F = 4 \times 10^{-4} N$
С	$F = 5 \times 10^{-3} N$	D	$F = 8 \times 10^{-3} N$

9- عزم القوة الكهر طيسية يساوي:

Α	$\Gamma = 4 \times 10^{-5} \ m.N$	В	$\Gamma = 4 \times 10^{-4} m.N$
С	$\Gamma = 8 \times 10^{-2} m.N$	D	$\Gamma = F = 5 \times 10^{-2} m.N$

$\frac{5}{4}$ الاستطاعة الميكانيكية الناتجة عن دوران الدولاب بسرعة زاوية تقابل $\frac{5}{\pi}$:

Α	$P = 4 \times 10^{-4} watt$	В	$P = 4 \times 10^{-3} watt$
С	$P = 4 \times 10^{-5} watt$	D	$P = 8 \times 10^{-4} watt$

1 ٤ - قيمة عمل القوة الكهرطيسية بعد زمن 4 s

A	$W = 10^{-5} J$	В	$W = 16 \times 10^{-3} J$
С	$W = 4 \times 10^{-5} J$	D	$W = 10^{-4} J$

Α	$F = 5 \times 10^{-3} N$	В	$F = 5 \times 10^{-1} N$
С	F = 5 N	D	F = 50 N

من ٤٣ إلى ٤٧ حل المسألة الأتية:

لدينا إطار مربع الشكل طول ضلعه cm 10 يحوي لفة 100 من سلك نحاسي معزول نعلقه بسلك رفيع عديم الفتل وفق محوره الشاقولي و نخضعه لحقل مغناطيسي منتظم خطوطه أفقية توازي مستوي الإطار شدته 10^{-2} ثم نمرر في الإطار تيار شدته 10^{-2}

٤٣- تكون القوة الكهرطيسية المؤثرة في كل من الضلعين الشاقولين لحظة امرار التيار

A	F = 1 N	В	$F = 10^{-3} N$
С	$F = 10^{-2} N$	D	$F = 10^{-1} N$

٤٤- عزم المزدوجة الكهرطيسية المؤثرة في الإطار لحظة امرار التيار

A	$\Gamma = 10^{-3} \ m.N$	В	$\Gamma = 10^{-1} m.N$
С	$\Gamma = 4 \times 10^{-3} \ m.N$	D	$\Gamma = 10^{-2} m.N$

٥٤- عمل المزدوجة الكهرطيسية عندما يدور الإطار من الوضع السابق إلى وضع توازن مستقر:

Α	$W = 10^{-3} J$	В	$W = 4 \times 10^{-3} J$
С	$W = 10^{-1} J$	D	$W = 10^{-2} J$

و يتوازن $\theta^* = 0.02 \ rad$ فيدور الإطار زاوية $I = 2 \ m.A$ و يتوازن و نلك عندما يكون ثابت فتل سلك التعليق يساوي :

Α	$k = 10^{-3} m. N rad^{-1}$	В	$k = 10^{-4} m. N rad^{-1}$
С	$k = 10^{-2} m. N rad^{-1}$	D	$k = 10^{-5} m. N rad^{-1}$

٤٧ - في السؤال السابق يكون ثابت المقياس الغلفاني يساوي:

Α	$G = 100 rad. A^{-1}$	В	$G = 1 rad. A^{-1}$
С	$G = 10 rad. A^{-1}$	D	$G = 10^{-1} rad. A^{-1}$

منت q=2nc شحنة كهربائية تتحرك بسرعة $v=20km.s^{-1}$ في منطقة حق مغناطيسي منتظم شدته $B=10^{-4}$ حيث شعاع السرعة ناظمي على شعاع الحقل المغناطيسي فتكون قيمة القوة المغناطيسية (قوة لورنز على الشحنة) تساوي :

A	$F = 10^{-6} N$	В	$F = 4 \times 10^{-12} N$
С	$F = 4 \times 10^{-9} N$	D	$F = 4 \times 10^{-6} N$

لأسئلة	1.1-
و سسه	س ر

В -^	D -Y	B -7	C -0	Α - ξ	C -4	C - Y	A - 1
D -17	B -10	A -1 2	C -12	D -17	C - 11	A -1 ·	D - 9
B - Y £	B - 44	A - 77	D - 71	C - Y •	A-19	D - 1 \	A - 1 Y
B - 47	A - T1	В - ۳ •	C - ۲9	C - 4 V	B-TY	D - ۲٦	A - 40
B - ٤ •	B - 49	۵ - ۳۸	D -٣٧	C -٣٦	A -40	B- 4 £	C - 44
C - £ A	C - £ Y	A - £7	C - 20	Β - ξ ξ	A - £ T	A - £ Y	B - £1

الأستاذ: خالد الأبرش

الدرس الثاني التحريض الكهرطيسي

١- يتولد تيار كهربائي متحرض في دارة مغلقة عندما:

Α	يتغير التدفق المغناطيسي الذي يجتازها	В	يتغير درجة الحرارة			
С	يتغير الزمن		يتغير ثابت المقياس الغلفاني			
ر النص السابق هو نص قانون : - النص السابق هو نص قانون :						
Α	لوشاتولييه	В	لورنز			
С	لنز	D	فاراداي			
	ر أدى لحدوثه .	السبب الذي	٢- تكون جهة التيار المتحرض بحيث تولد أفعال			
A	توافق	В	تعدم			
С	تعاكس	D	کل ما سبق			
	,		٤ - النص السابق هو نص قانون :			
Α	لنز	В	فاراداي			
С	لورنز	D	مكسويل			
	تحرض	جهة تدفق ه	$_{0}$ - اذا كان تغير التدفق المحرض متزايد $_{0}>\Delta$: تكون			
A	بجهة تدفق محرض	В	تعامد جهة تدفق محرض			
С	بعكس اتجاه تدفق محرض	D	کل ما سبق			
	متحرض	ن جهة تدفق	- اذا كان تغير التدفق المحرض متناقص $\Phi < \Delta$: تكور			
A	بجهة تدفق محرض	В	تعامد جهة تدفق محرض			
С	بعكس اتجاه تدفق محرض	D	کل ما سبق			
	رشيعة بحيث يشير الإبهام إلى	يمنى عل الو	 ٧- يتم تحديد جهة التيار المتحرض بجهة التفاف أصابع يد 			
Α	بعكس جهة التدفق المتحرض	В	جهة التدفق المحرض دوما			
С	جهة التدفق المتحرض	D	کل ما سبق			
			· القوة المحركة الكهربائية المتحرضة :			
A	تتناسب طردا مع تغير التدفق الذي يجتاز الدارة	В	تتناسب عكسا مع تغير التدفق الذي يجتاز الدارة			
С	تتناسب طردا مع مربع تغير التدفق الذي يجتاز الدارة	D	كل ما سبق			

٩- القوة المحركة الكهربائية المتحرضة:

Α	تتناسب عكسا مع زمن تغير التدفق	В	تتناسب طردا مع زمن تغير التدفق
С	تتناسب طردا مع مربع زمن تغير التدفق	D	کل ما سبق

١٠- تعطى علاقة القوة المحركة الكهربائية المتحرضة:

Α	$\varepsilon = \frac{\Delta \Phi}{\Delta t}$	В	$\varepsilon = -\Delta t. \Delta \Phi$
С	$\varepsilon = -rac{\Delta t}{\Delta \Phi}$	D	$\varepsilon = -rac{\Delta \Phi}{\Delta t}$

. 1 - الإشارة السالبة في قانون القوة المحركة الكهربائية المتحرضة تدل على قانون :

Α	لنز	В	مكسويل
С	لورنز	D	فولط

١- في تجربة السكتين الكهرطيسية نستبدل المولد بمقياس غلفاني و نحرك الساق بسرعة في منطقة الحقل المغناطيسي نلاحظ انحراف مؤشر مقياس يدل ذلك على :

Α	مرور تيار كهربائي متحرض	В		وجود حقل مغناطيسي
С	وجود مقاومة	D		ثقل الساق

١٣ - في التجربة السابقة تكون جهة التيار الكهربائي المتحرض:

Α	بجهة شعاع السرعة	В	بجهة قوة لورنز
С	بجهة الحقل المغناطيسي	D	بعكس جهة قوة لورنز

٤ - في التجربة السابقة تعطى علاقة القوة لمحركة الكهربائية المتحرضة .

Α	$\varepsilon = \frac{Bl}{v}$	В	$\varepsilon = \frac{Blv}{\Delta t}$
С	$\varepsilon = Blv$	D	$\varepsilon = Blv\Delta t$

١٥- في التجربة السابقة تعطي علاق التيار الكهربائي المتحرض:

Α	$i = \frac{Blv}{R}$	В	i = Blv
С	$i = \frac{Blv}{\Delta t}$	D	$i = Blv\Delta t$

٦٦- في تجربة الساق المتحركة في منطقة حقل مغناطيسي حالة دارة مفتوحة يتوقف تراكم الشحنات على طرفي الساق عندما:

A	لورنز $F=$ کهربائیة F	В	لورنز $F=rac{1}{2}$ کہرہائیہ F
С	لورنز $F=2 imes$ کهربائیة F	D	لورنز $ imes F=3$ کهربائیة F

١٧ - في السؤال السابق علاقة فرق الكمون بين طرفي الساق:

 $\varepsilon = NBS\omega \sin(2\omega Nt)$

 $\varepsilon = N\omega \sin(\omega t)$

Α	$U_{ab} = \frac{Blv}{R}$	В	$U_{ab} = BlvR$		
С	$U_{ab} = \frac{1}{2}Blv$	D	$U_{ab} = Blv$		
	ر شدته أمبير واحد :	بمر فيها تيا	١- ذاتية دارة مغلقة يجتازها تدفق قدره واحد ويبر عندما بــــــــــــــــــــــــــــــــــــ		
Α	باسكال	В	فولط		
С	الهنوي	D	واط		
			١- علاقة ذاتية الوشيعة :		
А	$L = 4\pi \times 10^{-7} \frac{N^2 S}{l}$	В	$L = 4\pi \times 10^{-7} N^2 S$		
С	$L = 4\pi \times 10^{-7} \frac{N^2 S}{R}$	D	$L = 4\pi \times 10^{-7} \frac{N^2 S}{i}$		
٢- علاقة القوة المحركة الكهربائية المتحرضة الذاتية :					
Α	$arepsilon_{$ اتية $}=Lrac{di}{dt}$	В	$arepsilon_{2$ ذاتية $=-Lrac{dt}{di}$		
С	$arepsilon_{\epsilon_{ m lijs}} = -Lrac{di}{dt}$	D	$arepsilon_{\epsilon_{$ اتية $}=-Ldi$		
			١- الطاقة الكهرطيسية المختزنة في الوشيعة:		
Α	$E_L \equiv LI^2$	В	$E_L = \frac{1}{2} LI^2$		
С	$E_L = LI^2$ $E_L = \frac{1}{2} LI$	D	$E_L = \frac{1}{2} L^2 I^2$		
			١- الطاقة الكهرطيسية المختزنة في الوشيعة:		
Α	$E_L = \Phi I$	В	$E_L = \frac{1}{2} RI$		
С	$E_L = \frac{1}{2} \Phi I^2$	D	$E_L = \frac{1}{2} \Phi I$		
	ِ المتناوب :	مولد التيار	١- علاقة القوة المحركة الكهربائية المتحرضة العظمى في		
А	$arepsilon_{max} = NBS\omega$	В	$\varepsilon_{max} = NBS\omega^2$		
С	$ \varepsilon_{max} = 2NBS\omega $	D	$\varepsilon_{max} = 3NBS\omega$		
		ر المتناوب	١- تابع القوة المحركة الكهربائية المتحرضة في مولد التيا		
d T					

В

D

 $\varepsilon = NBS\omega \sin(2\omega t)$

 $\varepsilon = NBS\omega \sin(\omega t)$

C

 $(B=0.5\ T)$ عدور ملف كهربائي بسرعة ثابتة بمعدل $\left(\frac{30}{\pi}\right)$ دورة في الثانية ضمن حقل تحريض مغناطيسي شدته $(B=0.5\ T)$ و مساحة الملف $(S=0.08\ m^2)$ و مساحة الملف $(S=0.08\ m^2)$

Α	$\varepsilon_{max} = 240 \ volt$	В	$\varepsilon_{max} = 24 \ volt$
С	$\varepsilon_{max} = 200 \ volt$	D	$\varepsilon_{max} = \frac{120}{\pi} \ volt$

 $(L=10^{-2}~H)$ تكون القوة المحركة الكهربائية التحريضية الذاتية تساوي : $(L=10^{-2}~H)$ تكون القوة المحركة الكهربائية التحريضية الذاتية تساوي : $(L=10^{-2}~H)$

Α	$ \varepsilon_{\text{eigs}} = 3 \times 10^{-2} volt $	В	$arepsilon_{ m i} = 2 imes 10^{-2} \ volt$
С	$arepsilon_{ar{a}_{ar{a},ar{a},ar{a}}}=2\ volt$	D	$arepsilon_{ m a_{ m inj}}=10^{-2}\ volt$

 $(B=0.01\ T)$ فإن الكمون بين طرفيها ($l=50\ cm$) نحركها بسرعة $(m.\ s^{-1})$ في منطقة حقل مغناطيسي منتظم شدته ($l=50\ cm$) فإن فرق الكمون بين طرفيها يساوي :

Α	$U_{ab} = 10^{-1} volt$	В	$U_{ab} = 2 \times 10^{-3} \ volt$
С	$U_{ab} = 10^{-3} \ volt$	D	$U_{ab} = 10^{+3} volt$

منطقة $(2 m. s^{-1})$ بسرعة (20 cm) بسرعة ($m. s^{-1}$) في منطقة حين تجربة السكتين الكهرطيسية نستبدل المولد بمقياس غلفاني و نحرك الساق التي طولها (B = 0.05 T) بسرعة وقل منطقة حقل مغناطيسي منتظم شدته (B = 0.05 T) فإن قيمة القوة المحركة الكهربائية المتحرضة تساوي:

Α	$\varepsilon = 2 \times 10^{-2} \ volt$	В	$\varepsilon = 2 \times 10^{+2} \ volt$
С	$\varepsilon = 2 \ volt$	D	$\varepsilon = 5 \times 10^{-2} \ volt$

 \overline{P} وشيعة تتألف من (1000) لفة قطرها الوسطي (m)) يتصل طرفاها ببعضهما و نضع الوشيعة في منطقة حقل مغناطيسي منتظم شدته $(B=0.01\ T)$ حيث شعاع الحقل يوازي محور الوشيعة :

تكون قيمة القوة المحركة الكهربائية المتحرضة عند مضاعفة الحقل المغناطيسي بانتظام خلال (0.5 s):

Α	$\varepsilon = -5 \times 10^{-2} \ volt$	В	$\varepsilon = -5\pi \times 10^{-2} \ volt$
С	$\varepsilon = 10^{-2} \ volt$	D	$\varepsilon = 2\pi \times 10^{-1} volt$

٣٠- وشيعة تتألف من (1000) لفة قطرها الوسطي (4 cm) يتصل طرفاها ببعضهما و نضع الوشيعة في منطقة حقل مغناطيسي منتظم شدته (B = 0.05 T) حيث شعاع الحقل يوازي محور الوشيعة :

تكون قيمة القوة المحركة الكهربائية المتحرضة عندما نحرك الوشيعة فجأة خلال (s. 5.0) ليصبح محورها يعامد شعاع الحقل:

Α	$\varepsilon = 2\pi \times 10^{-1} \ volt$	В	$\varepsilon = 16\pi \times 10^{-2} \ volt$
С	$\varepsilon = 4\pi \times 10^{-2} \ volt$	D	$\varepsilon = -4 \times 10^{-2} \ volt$

من ٣١ إلى ٣٢ حل المسألة:

 $(1 \ mm)$ وشيعة طولها $(l=1 \ m)$ و قطر مقطع سلكها واحدة نصف قطرها وسيعة طولها والماء الماء الماء الماء والماء الماء الماء

٣١ - قيمة ذاتية الوشيعة :

Α	$L = 16\pi \times 10^{-5} H$	В	$L = 4\pi \times 10^{-4} H$
С	$L = 64 \times 10^{-4} H$	D	$L = 64 \times 10^{-2} H$

i=3-t قيمة القوة المحركة الكهربائية المتحرضة الذاتية عند مرور تيار في الوشيعة شدته t=3-t

A	$ \varepsilon_{\text{alija}} = -64 \times 10^{-4} volt $	В	$ \varepsilon_{\text{a,this}} = 64 \times 10^{-4} volt $
С	$ \varepsilon_{\text{inj}} = 16\pi \times 10^{-5} volt $	D	$ \varepsilon_{\text{attis}} = 192 \times 10^{-4} volt $

من ٣٣ إلى ٣٤ حل المسألة الأتية

وشيعة طولها (l=10 كهربائي شدته (l=10 نمرر فيها تيار كهربائي شدته (l=10 نمر l=10 نمر

٣٣ - شدة الحقل المغناطيسي المتولد في مركز الوشيعة:

Α	$B = 10^{-2} T$	В		$B = 4 \times 10^{-2} T$
С	$B = 10^{-4} T$	D		$B = 4 \times 10^{-4} T$

 72 - نلف حول القسم المتوسط من الوشيعة ملف يحوي (لفة 100) معزولة نصف قطره (5~cm)و نصل طرفيه بمقياس غلفاني بحيث تكون المقاومة الكلية للدارة الجديدة ($10~\Omega$) تتناقص فيها الشدة بانتظام

Α	i = 5 A	В	$i = 10^{-4} A$
С	$i = 5\pi \times 10^{-4} A$	D	$i = -5\pi \times 10^{-4} A$

من ٣٥ إلى حل المسألة الأتية:

في تجربة السكتين الكهرطيسية يبلغ طول الساق النحاسية المستندة عموديا عليها $(l=50\ cm)$ و كتلتها $(m=20\ g)$ حيث $(g=10\ m.s^{-1})$

٣٥- قيمة القوة الكهرطيسية التي تساوي ثقل الساق عند امرار تيار كهربائي شدته (10*A*):

Α	$F = 2 \times 10^{-1} N$	В	F = 200 N
С	F=2N	D	$F = 2 \times 10^{-2} N$

٣٦- شدة الحقل المغناطيسي تساوي:

A	B=4T	В	$B = 4 \times 10^{-2} T$
С	$B = 4 \times 10^{-4} T$	D	$B = 2 \times 10^{-3} T$

. "كالساق بسر عة $(v=0.5~m.~s^{-1})$ لمدة $\Delta t=1~s$ يكون عمل القوة الكهر طيسية t=1.5~m.

A	W = 1J	В	$W = 5 \times 10^{-1} J$
С	$W = 10^{-1}J$	D	$W = 10^{-2} J$

٣٨- نستبدل المولد بمقياس غلفاني و نحرك الساق بسرعة $(2 m. s^{-1})$ في منطقة الحقل المغناطيسي السابق فإن قيمة القوة المحركة الكهربائية المتحرضة تساوي :

Α	$\varepsilon = 4 \times 10^{-4} \ volt$	В	$\varepsilon = 4 \times 10^{-2} \ volt$
С	$\varepsilon = 4 \ volt$	D	$\varepsilon = 2 \times 10^{-3} volt$

 $(R=4\Omega)$ شدة التيار المتحرض حيث مقاومة الدارة الكلية

Α	$i = 10^{-2} A$	В	$i = 2 \times 10^{-3} A$
С	$i = 4 \times 10^{-2} A$	D	$i = 16 \times 10^{-2} A$

Α	$P = 4 \times 10^{-4} watt$	В		$P = 10^{-4} watt$
С	$P = 4 \times 10^{-2} watt$	D		$P = 16 \times 10^{-6} watt$

١٤ - قيمة القوة الكهرطيسية :

Α	$F = 32 \times 10^{-4} N$	В	$F = 2 \times 10^{-4} N$
С	$F = 2 \times 10^{-6} N$	D	$F = 4 \times 10^{-2} N$

حل الأسئلة:

A -^	C -Y	A - 7	C -0	A - É	C -4	D - Y	A - 1
A - 17	A-10	C -1 £	D-18	A - 1 T	A-11	D-1.	A -9
C - Y £	A - ۲۳	D - 47	B - ۲1	C - Y •	A -19	C -17	D -1Y
В -٣٢	C-T1	C -۳۰	B - 4 9	A -YA	C - 4 A	В -۲٦	A - 40
Α - ٤ •	A - 49	B - ٣٨	C - 47	B -٣٦	A -40	C - 4 5	A - 44
							R- ξ \

الأستاذ خالد الأبرش

الدرس الثالث: الدار ات المهتزة و التيار ات عالية التواتر

١- في الدارة المهتزة إن الاهتزازات الحاصلة هي اهتزازات خاصة (حرة) متخامدة لأنها:

	, -	<u> </u>			
Α	تتلقى طاقة من المولد	В	لا تتلقى طاقة من الوشيعة		
С	لا تتلقى طاقة من المقاومة	D	لا تتلقى طاقة من المولد		
		عن :	- الاهتزازات للإلكترونات الجرة في الدارة المهتزة تنتج -		
Α	تغيرات دورية في التواتر	В	تغيرات دورية في التيار فقط		
С	تغيرات دورية في التوتر فقط	D	تغيرات دورية في التوتر و التيار		
		•	- تتبدد الطاقة تدريجيا في الدارة المهتزة بسبب :		
Α	المقاومة الصغيرة	В	المقاومة الكبيرة		
С	المقاومة المهملة	D	کل ما سبق		
		يغ :	- في الدارة المهتزة عندما تكون المقاومة كبيرة يكون التفر		
Α	غير متخامد	В	لا دوري متخامد باتجاه واحد		
С	لا دوري متخامد بالاتجاهين	D	دوري متخامد بالاتجاهين		
	9	قريغ :	- في الدارة المهتزة عندما تكون المقاومة صغيرة يكون الذ		
Α	غير متخامد	В	لا دوري متخامد باتجاه واحد		
С	متناوب دوري متخامد بالاتجاهين	D	کل ما سبق		
	سائعة يكون التفريغ :	لطاقة الط	 في الدارة المهتزة المثالية عند إهمال المقاومة أو تعويض 		
Α	متناوب جيبي سعة الاهتزاز فيه ثابتة	В	دوري متخامد باتجاه واحد		
С	متناوب دوري متخامد بالاتجاهين	D	کل ما سبق		
	المعادلة التفاضلية في الدارة المهتزة المثالية (L,C) :				
Α	$(q)_{t}^{"} = -\frac{1}{LC}$	В	$(q)_{t}^{"} = -\frac{L}{C} q$		
С	$(q)_{t}^{"} = -\frac{1}{LC}$ $(q)_{t}^{"} = -LCq$	D	$(q)_{t}^{\circ} = -\frac{L}{C} q$ $(q)_{t}^{\circ} = -\frac{1}{LC} q$		
l'					

المعادلة الحيبي (تابع الشحنة اللحظية) للمعادلة التفاضلية في الدارة المهتزة المثالية المثالي

A	$q = Cos(\omega_0 t + \varphi)$	В	$q = q_{max} Cos(\varphi)$
С	$q = q_{max} Cos(\omega_0 t + \varphi)$	D	$q = q_{max} Cos(\omega_0 + \varphi)$

٩- عبارة الدور الخاص في الدارة المهتزة:

Α	$T_0 = \frac{1}{2\pi\sqrt{L.c}}$	В	$T_0 = 2\pi\sqrt{L.C}$
С	$T_0 = \frac{1}{\sqrt{L.c}}$	D	$T_0 = \sqrt{L.C}$

٠١- عبارة النبض الخاص في الدارة المهتزة:

Α	$\omega_0 = \sqrt{L.C}$	В	$\omega_0 = 2\pi\sqrt{L.C}$
С	$\omega_0 = \frac{1}{\sqrt{L.C}}$	D	$\omega_0 = \frac{1}{2\pi\sqrt{L.c}}$

C = 2C و وشيعة ذاتيتها C دورها الخاص T_0 نستبدل المكثفة بمكثفة آخرى سعتها C و وشيعة ذاتيتها C دورها الخاص T_0 نستبدل المكثفة بمكثفة آخرى سعتها C و وشيعة بوشيعة بوشيعة آخرى ذاتيتها $C = \frac{L}{2}$ يصبح الدور الخاص الجديد :

Α	$T_0 = 2T_0$	В	$T_0^{} = T_0$
С	$T_0 = \sqrt{2}T_0$	D	$T_0' = \frac{T_0}{2}$

C = 2C و تتألف دارة مهتزة من مكثفة مشحونة سعنها C و وشيعة ذاتيتها L دورها الخاص T_0 نستبدل المكثفة بمكثفة آخرى سعتها C = 2C و وشيعة بوشيعة آخرى ذاتيتها L = 2L يصبح الدور الخاص الجديد :

A	$T_0 = 2T_0$	В	$T_0 = T_0$
С	$T_0 = \sqrt{2}T_0$	D	$T_0 = \frac{T_0}{2}$

C = 2C سعتها C = 2C سعتها C = C و وشيعة ذاتيتها C = C سعتها C = C نستبدل المكثفة بمكثفة آخرى سعتها C = C يصبح الدور الخاص الجديد :

Α	$T_0 = 2T_0$	В	$T_0 = T_0$
С	$T_0 = \sqrt{2}T_0$	D	$T_0 = \frac{T_0}{2}$

L = 2L و وشيعة ذاتيتها L دورها الخاص T_0 نستبدل الوشيعة بوشيعة آخرى ذاتيتها C و وشيعة ذاتيتها C دورها الخاص الجديد C نستبدل الوشيعة بوشيعة آخرى ذاتيتها C يصبح الدور الخاص الجديد C

Α	$T_0 = 2T_0$	В	$T_0^{} = \sqrt{2}T_0$
С	$T_0^{} = T_0$	D	$T_0 = \frac{T_0}{2}$

 $C^{\hat{}}=2C$ سعتها $C^{\hat{}}=2C$ سعتها $C^{\hat{}}=2C$ بيضها الخاص $C^{\hat{}}=2C$ ستبدل المكثفة أخرى سعتها $C^{\hat{}}=2C$ سعتها $C^{\hat{}}=2C$ و وشيعة بوشيعة أخرى ذاتيتها $C^{\hat{}}=2C$ يصبح نبضها الخاص الجديد :

Α	$\omega_0 = \omega_0$	В	$\omega_0 = \sqrt{2}\omega_0$
С	$\omega_0 = 2\omega_0$	D	$\omega_0 = \frac{\omega_0}{\sqrt{2}}$

$L^{`}=2L$ الخاص ω_{0} نستبدل الوشيعة بوشيعة آخرى ذاتيتها	و وشيعة ذاتيتها L نبضها	$\it C$ مكثفة مشحونة سعتها	١٦ - تتألف دارة مهتزة من
			بصيح نبضها الخاص الجديد

Α	$\omega_0 = \omega_0$	В	$\omega_0 = \frac{\omega_0}{\sqrt{2}}$
С	$\omega_0 = 2\omega_0$	D	$\omega_0 = \sqrt{2}\omega_0$

C = 2C نتألف دارة مهتزة من مكثفة مشحونة سعتها C و وشيعة ذاتيتها C نبضها الخاص ω_0 نستبدل المكثفة بمكثفة آخرى سعتها ω_0 يصبح نبضها الخاص الجديد نبط

Α	$\omega_0 = \omega_0$	В	$\omega_0 = 2\omega_0$
С	$\omega_0 = \sqrt{2}\omega_0$	D	$\omega_0 = \frac{\omega_0}{\sqrt{2}}$

Α	$\varphi = 0$	В	$\varphi = +\frac{\pi}{4} \ rad$
С	$\varphi = +\frac{\pi}{2} rad$	D	$\varphi = \pi rad$

٩ - في الدارة المهتزة عندما تكون شحنة المكثفة عظمي تكون شدة التيار المار في الوشيعة :

Α	عظمی	В	أكبر من الصفر
С	معدومة	D	کل ما سبق

Α	عظمى	В	اصغرمن الصفر
С	معدومة	D	کل ما سبق

٢١- في الدارة المهتزة إن تابع شدة التيار اللحظية على ------ بالنسبة لتابع الشحنة اللحظية :

Α	ترابع متأخر	В	تعاكس
С	توافق	D	ترابع متقدم

٢٢- عبارة الطاقة الكهربائية المختزنة في المكثفة :

Α	$E_c = \frac{1}{2} \ q.U$	В	$E_c = \frac{1}{2} C. U^2$
С	$E_c = \frac{1}{2} \frac{q^2}{C}$	D	کل ما سبق

٢٣- عبارة الطاقة الكهرطيسية المختزنة في الوشيعة

A	$E_L = \frac{1}{2}Li^2$	В	$E_L = \frac{1}{2}Li$
С	$E_L = \frac{1}{2} L^2 i^2$	D	$E_L = Li^2$

٢٤ - عبارة الطاقة في الدارة المهتزة:

A	$E = \frac{q_{max}^2}{C}$	В	$E = \frac{1}{2} \frac{q_{max}^2}{C}$
С	$E = \frac{1}{2} \frac{C}{q_{max}^2}$	D	$E = \frac{1}{2} Cq_{max}^2$

٥٠- عبارة الطاقة في الدارة المهتزة :

A	$E = LI_{max}^2$	В	$E = \frac{1}{2}LI_{max}^2$
С	$E = \frac{1}{2} \frac{L}{I_{max}^2}$	D	$E = \frac{L}{I_{max}^2}$

٢٦- إن الوشيعة تبدي ممانعة ----- لتيار عالى التواتر .

A	كبيرة	В	متوسطة
С	صغيرة	D	کل ما سبق

_____ ۲۷- إن المكثفة تبدي ممانعة ----- لتيار عالي تواتر .

Α	كبيرة	В	متوسطة
С	صغيرة	D	كبيرة

٢٨- إن ممانعة المكثفة ----- مع تواتر التيار .

Α	تتناسب طردا	В	تتناسب عكسا
С	لا تتعلق	D	کل ما سبق

A	تتناسب طردا	В	لا تتعلق
С	تتناسب عكسا	D	کل ما سبق

٣٠- تتألف دارة مهتزة من مكثفة مشحونة سعتها C و وشيعة ذاتيتها Lطاقتها E نستبدل الوشيعة بوشيعة آخرى ذاتيتها L=2L يصبح عبارة الطاقة :

Α	$E = \frac{1}{2} L I_{max}^2$	В	$E^{\cdot} = LI_{max}^2$
С	$E' = 2LI_{max}^2$	D	$E^{} = \sqrt{2}LI_{max}^2$

C = 2C تتألف دارة مهتزة من مكثفة مشحونة سعتها C و وشيعة ذاتيتها Dطاقتها E نستبدل المكثفة بمكثفة آخرى سعتها D تصبح عبارة الطاقة الجديدة مع بقاء الكمون ثابت بين طرفي المكثفة :

A	$E^{}=E$	В	$E^{}=2E$
С	$E^{} = \frac{1}{2}E$	D	$E^{}=4E$

: و شیعهٔ طولها $l = 25 \; cm$ و طول سلکها $l = 5 \; m$ ذاتیتها تساوي

Α	$L = 10^{-6} H$	В	$L = 5 \times 10^{-6} H$
С	$L = 10^{-5} H$	D	$L = 10^{-4} H$

من ٣٣ إلى ٣٩ حل المسألة الأتية:

نشحن مكثفة سعتها $U_{max} = 100 \ volt$ بين طرفي وشيعة $U_{max} = 100 \ volt$ بين طرفي وشيعة ذاتيتها $U_{max} = 100 \ volt$ بين طرفي وشيعة ذاتيتها $U_{max} = 10^{-3} \ H$

٣٣ - شحنة المكثفة العظمى تساوي:

Α	$q_{max} = 10^{-4} c$	В	$q_{max} = 10^{-6} c$
С	$q_{max} = 10^{-3} c$	D	$q_{max} = 10^{+2} c$

t=0 الطاقة المختزنة في المكثفة في اللحظة t=0 تساوي:

Α	$E_c = 5 \times 10^{-3} J$	В	$E_c = 5 \times 10^{-2} J$
С	$E_c = 2 \times 10^{-3} J$	D	$E_c = 10^{-3}J$

٣٥- قيمة الدور الخاص:

Α	$T_0 = 2 \times 10^{-3} s$	В	$T_0 = 10^{-4} s$
С	$T_0 = 2 \times 10^{-4} s$	D	$T_0 = 4 \times 10^{-4} s$

٣٦ – قيمة تواتر الإهتزاز:

Α	$f_0 = 2 \times 10^{-4} Hz$	В	$f_0 = 5 \times 10^{+3} Hz$
С	$f_0 = 2 \times 10^{-4} Hz$	D	$f_0 = 2 \times 10^{+3} Hz$

٣٧- النبض الخاص يساوي:

Α	$\omega_0 = 10^{+4} rad. s^{-1}$	В	$\omega_0 = \pi \times 10^{+2} rad. s^{-1}$
С	$\omega_0 = \pi \times 10^{-4} rad. s^{-1}$	D	$\omega_0 = \pi \times 10^{+4} rad. s^{-1}$

٣٨- شدة التيار العظمي:

Α	$I_{max} = 0.1 A$	В	$I_{max} = 10 A$
С	$I_{max} = 2 A$	D	$I_{max} = \pi A$

٣٩- تابع التيار اللحظي:

Α	$i = \pi \cos\left(\pi \times 10^{+4}t + \frac{\pi}{2}\right)$	В	$i = \pi \operatorname{Cos}(10^{+4}t)$
С	$i = 10 \ Cos\left(\pi \times 10^{+4}t + \frac{\pi}{2}\right)$	D	$i = 0.1 \cos\left(\pi t + \frac{\pi}{2}\right)$

من ٤٠ إلى ٤٣ حل المسألة الآتية:

(10~cm) تتألف دارة مهتزة من : مكثفة إذا طبق بين لبوسيها فرق كمون (50~volt) شحن كل من لبوسيها $(0.5~\mu c)$ و وشيعة طولها (10~cm) و طول سلكها (10~cm) مقاومتها مهملة :

٠٤- سعة المكثفة تساوي:

Α	$C = 10^{-8} F$	В	$C = 10^{-4} F$
С	$C = 10^{-6} F$	D	$C = 5 \times 10^{-8} F$

١ ٤ - ذاتية الوشيعة تساوي :

Α	$L = 16 \times 10^{-6} H$	В	$L = 256 \times 10^{-6} H$
С	$L = 10^{-6} H$	D	$L = 16\pi \times 10^{-6} H$

٢٤- تواتر الإهتزاز :

Α	$f_0 = 5 \times 10^{+3} Hz$	В	$f_0 = 5 \times 10^{+4} Hz$
С	$f_0 = 10^{-5} Hz$	D	$f_0 = 10^{+5} Hz$

٣٤- شدة التيار العظمى تساوي :

A	$I_{max} = 0.1 A$	В	$I_{max} = 1 A$
С	$I_{max} = \frac{\pi}{10}A$	D	$I_{max} = 10 A$

الإجابة

C -1.	В - 4	C - V	D -Y	7 - A	C -0	Β - ٤	A - Y	D - 4	D - 1
A - Y •	C-19	C -14	D-IY	B -17	A -10	B -1 £	C -18	A -17	B -11
A-٣.	A - ۲9	B-77	C -44	77- A	B - 40	В - ۲ ٤	A - 44	D -77	D - 71
A - ٤ ·	A - 49	D -47	D - 47	В -٣٦	C -40	B - 2 B - 1 2 B - 7 2 A - 7 2	A - 44	C - 47	B - 41
								D - £ Y	

الدرس الرابع: الاهتزازات الكهربائية القسرية

١- إن التيار الكهربائي المتواصل ينشر حرارة أكثر من التيار المتناوب لذلك :

			<u> </u>					
Α	يمكن نقله لمسافة بعيدة	В	يمكن نقله لمسافات بعيدة و قريبة					
С	لا يمكن نقله إلى مسافة بعيدة	D	کل ما سبق					
ينشأ التيار المتناوب من : 7								
Α	الحركة الاهتزازية للإلكترونات الحرة	В	الحركة الإجمالية للإلكترونات الحرة					
С	حركة الإلكترونات الداخلية	D	کل ما سبق					
			ا- تواتر اهتزازات الإلكترونات الحرة في التيار المتناوب:					
A	لا يساوي تواتر التيار	В	يساوي تواتر التيار					
С	يساوي نصف تواتر التيار	D	کل ما سبق					
			الحركة الاهتزازية للإلكترونات عن :					
A	الحقل الكهربائي المتغير بالقيمة فقط	В	الحقل الكهربائي المتغير بالقيمة و الاتجاه					
С	الحقل الكهربائي المتغير بالجهة فقط	D	کل ما سبق					
			· ينتج تغير الحقل الكهربائي في النيار المتناوب :					
Α	من تغير قيمة و إشارة التوتربين قطبي المنبع	В	من تغير تواتر التيار					
С	من تغير قيمة التوتربين قطبي المنبع فقط	D	کل ما سبق					
		ب أن يتوفر	ـــــــــــــــــــــــــــــــــــــ					
Α	دارة قصيرة	В	تواتر تيار صغير					
С	A+B	D	درجة حرارة ثابتة					
	شأ من :	ِ اللحظية ين	·- إن فرق الطور بين تابع التوتر اللحظي و تابع شدة التيار .					
A	تغير درجة الحرارة	В	تغيرات مكونات الدارة					
С	تغير تواتر التيار	D	کل ما سبق					
			ا- تعطى علاقة التوتر المنتج :					
Α	$U_{eff} = \frac{U_{max}}{\sqrt{2}}$	В	$U_{eff} = \sqrt{2}U_{max}$					
С	$U_{eff} = \frac{U_{max}}{\sqrt{2}}$ $U_{eff} = \frac{U_{max}}{2}$	D	$U_{eff} = U_{max}$					
<u> </u>	<u> </u>	<u> </u>						

٩- تعطى علاقة شدة التيار المنتجة:

Α	$I_{eff} = I_{max}$	В	$I_{eff} = \frac{I_{max}}{2}$
С	$I_{eff} = \frac{I_{max}}{\sqrt{2}}$	D	$I_{eff} = \sqrt{2}I_{max}$
			١- إن مقياس الفولط و الأمبير تدل على القيم :
Α	اللحظية	В	المنتجة
С	العظمى	D	کل ما سبق
			١- التوتر المنتج هو التوتر اللازم :
Α	لتمرير تيار أعظمي	В	لتمرير تيار لحظي
С	لتمرير تيار منتج	D	کل ما سبق
		Y	١- تعطى علاقة الاستطاعة اللحظية ٢
Α	P = u.i	В	P = u - i
С	P = u + i	D	$P = \frac{u}{i}$
		١٠- الاستطاعة اللحظية في التيار المتناوب تتغير به:	
Α	i نغیر i فقط	В	u و i
С	تغيرالضغط	D	u و i تغیر کل من
	: من t هي	ب خلال الز	١- معدل الطاقة الكهربائية المقدمة نتيجة مرور تيار متناو
Α	الاستطاعة اللحظية	В	الاستطاعة المتوسطة المستهلكة
С	الاستطاعة الظاهرية	D	عامل استطاعة الدارة
			١- الاستطاعة الكهربائية المتوسطة تعطى بالعلاقة :
Α	$P_{avg} = U_{eff} + I_{eff}.Cos\varphi$	В	$P_{avg} = U_{eff} - I_{eff}.Cos\varphi$
С	$P_{avg} = U_{eff}.I_{eff}.Cos\varphi$	D	$P_{avg} = \frac{U_{eff}}{I_{eff}.Cos\varphi}$
			١- الاستطاعة الظاهرية تعطى بالعلاقة :
Α	$P_A = U_{eff}.I_{eff}$	В	$P_A = U_{eff} + I_{eff}$
С	$P_A = U_{eff} - I_{eff}$	D	$P_{A} = \frac{U_{eff}}{I_{eff}.Cos\varphi}$
<u>'</u>		,	

١٧ - أكبر قيمة للاستطاعة المتوسطة المستهلكة هي:

Α	الاستطاعة اللحظية	В	الاستطاعة الظاهرية
С	الاستطاعة المتوسطة	D	کل ما سبق

١٨ - واحدة الاستطاعة الظاهرية :

Α	V.A	В	web
С	T	D	volt

 $i=I_{max} Cos(\omega t)$ بين طرفيها : اذا كان تابع التيار اللحظي المار في المقاومة $i=I_{max} Cos(\omega t)$

A	$u_R = U_{\max R} \cos\left(\omega t + \frac{\pi}{2}\right)$	В	$u_R = U_{\text{max } R} Cos(\omega t + \pi)$
С	$u_R = U_{\max R} \cos\left(\omega t - \frac{\pi}{2}\right)$	D	$u_R = U_{\max R} Cos(\omega t)$

· Y-قيمة فرق الطور بين تابع التوتر اللحظي و تابع النيار اللحظي في المقاومة يساوي :

A	$\varphi = 0$	В	$\varphi = -\frac{\pi}{2}$
С	$\varphi = +\frac{\pi}{2}$	D	$\varphi=\pi$

١٦- التوتر المنتج بين طرفي المقاومة يعطي بالعلاقة:

Α	$U_{effR} = \frac{I_{eff}}{R}$	В	$U_{effR} = \frac{R}{I_{eff}}$
С	$U_{effR} = I_{eff.}R$	D	$U_{effR} = I_{eff} + R$

A	الوشيعة مهملة المقاومة	В	المقاومة
С	الوشيعة و لها مقاومة	D	المكثفة

٢٣ المقاومة تستهلك استطاعة حرارية ضائعة بفعل جول الحراري تعطى بالعلاقة

Α	$P_{avg} = U_{eff}.R$	В	$P_{avg} = R.I_{eff}^2$
С	$P_{avg} = R. U_{eff}^2$	D	$P_{avg} = R + I_{eff}^2$

ناكم دارة تيار متناوب تحوي مقاومة صرفة $(R=40~\Omega)$ تابع التيار المتناوب اللحظي المار فيها $i=2\sqrt{2}~Cos100\pi t$ قيمة التوتر المنتج بين طرفيها يساوي :

A	$U_{effR} = 80 \sqrt{2} \ volt$	В	$U_{effR} = 40 \sqrt{2} \ volt$
С	$U_{effR} = 40 \ volt$	D	$U_{effR} = 80 \ volt$

 $i=2\sqrt{2}\; Cos100\pi t$ الاستطاعة المار فيها $i=2\sqrt{2}\; Cos100\pi t$ الاستطاعة المتوسطة المستهلكة فيها :

Α	$P_{avg} = 80 \ watt$	В	$P_{avg} = 160 \ watt$
С	$P_{avg}=0$	D	$P_{avg} = 160\sqrt{2} watt$

 $i=3\sqrt{2}\; Cos100\pi t$ تابع التيار المتناوب اللحظي المار فيها $i=3\sqrt{2}\; Cos100\pi t$ تابع التوتر اللحظي بين طرفيها :

A	$u_R = 30\sqrt{2} Cos 100\pi t$	В	$u_R = 90\sqrt{2} Cos(100\pi t + \frac{\pi}{2})$
С	$u_R = 90\sqrt{2} Cos 100\pi t$	D	$u_R = 90 \ \textit{Cos}100\pi t$

 $i=3\sqrt{2}\; Cos100\pi t$ المنتاج بين طرفيها يساوي: $L=rac{1}{\pi}\; H$ تابع التيار المتناوب اللحظي المار فيها عام فيها يساوي:

Α	$U_{effL} = 300\sqrt{2}\ volt$	В	$U_{effL} = 300 \ volt$
С	$U_{effL} = 30volt$	D	$U_{eff\ L} = 100\ volt$

 $i=3\sqrt{2}\;Cos100\pi t$ تيار متناوب تحوي وشيعة مهملة المقاومة ذاتيتها $L=rac{1}{\pi}\;H$ تابع التيار المتناوب اللحظي المار فيها المقاومة ذاتيتها الاستطاعة المتوسطة المستهلكة فيها تساوي :

Α	$P_{avg}=0$	В	$P_{avg} = 900 \ watt$
С	$P_{avg} = 80 \ watt$	D	$P_{avg} = 300 \ watt$

 $i=2\sqrt{2}\;Cos100\pi t$ المار فيها المقاومة ذاتيتها $L=rac{1}{\pi}\;H$ تابع النيار المتناوب اللحظي المار فيها تابع النيار المتناوب اللحظي بين طرفيها :

Α	$u_L = 200 \sqrt{2} \cos(100\pi t)$	В	$u_L = 20\sqrt{2} \cos\left(100\pi t + \frac{\pi}{2}\right)$
С	$u_L = 200\sqrt{2} \cos\left(100\pi t + \frac{\pi}{2}\right)$	D	$u_L = 300 \sqrt{2} \cos\left(100\pi t + \frac{\pi}{2}\right)$

 $i=2\sqrt{2} \cos 100\pi t$ المتناوب اللحظي المار فيها المتناوب الحظي المار فيها $i=2\sqrt{2} \cos 100\pi t$ قيمة التوتر المتناوب اللحظي المار فيها يساوي :

A	$U_{effC} = 2000 \ volt$	В	$U_{effC} = 40\sqrt{2} \ volt$
С	$U_{effC} = 20\sqrt{2} \ volt$	D	$U_{effC} = 40 \ volt$

 $i=2\sqrt{2}\,\cos 100\pi t$ المتناوب اللحظي المار فيها $C=rac{1}{2000\pi}\,F$ تابع التيار المتناوب اللحظي المار فيها $i=2\sqrt{2}\,\cos 100\pi t$ قيمة الاستطاعة المتوسطة المستهلكة فيها تساوى :

Α	$P_{avg} = 0$	В	$P_{avg} = 80 \ watt$
С	$P_{avg} = 80 \sqrt{2}watt$	D	$P_{avg} = 40 \ watt$

 $i=2\sqrt{2}\;Cos100\pi t$ المتناوب اللحظي المار فيها $C=rac{1}{3000\pi}$ تابع التيار المتناوب اللحظي المار فيها المتناوب تحوي مكثفة سعتها المتناوب اللحظي بين طرفيها :

A	$u_{\mathcal{C}} = 60\sqrt{2} \cos\left(100\pi t - \frac{\pi}{2}\right)$	В	$u_C = 60\sqrt{2} \cos\left(100\pi t + \frac{\pi}{2}\right)$
С	$u_C = 60 \cos\left(100\pi t - \frac{\pi}{2}\right)$	D	$u_C = 40\sqrt{2} Cos(100\pi t)$

٣٣- دارة تيار متناوب تحوي وشيعة مهملة المقاومة تابع التيار اللحظي المار فيها $i=I_{max} \, Cos(\omega t)$ فإن تابع التوتر اللحظي بين ط فيها :

Α	$u_L = U_{\text{max } L} \textit{Cos}(\omega t + \pi)$	В	$u_L = U_{\max L} Cos(\omega t + \frac{\pi}{2})$
С	$u_L = U_{\text{max } L} Cos(\omega t - \frac{\pi}{2})$	D	$u_L = U_{\max L} Cos(\omega t)$

٤٣- ردية الوشيعة تعطر بالعلاقة

A	$X_L = \frac{L}{\omega}$	В	$X_L = L + \omega$
С	$X_L = L\omega$	D	$X_L = L - \omega$

٣٥- التوتر المنتج بين طرفي الوشيعة المهملة المقاومة يعطى بالعلاقة:

А	$U_{effL} = \frac{X_L}{I_{eff}}$	В	$U_{effL} = I_{eff} + X_L$
С	$U_{effL} = I_{eff} - X_L$	D	$U_{eff L} = I_{eff} . X_L$

٣٦- قيمة فرق الطور بين تابع التوتر اللحظي و تابع التيار اللحظي في حال دارة تسلسلية في الوشيعة مهملة المقاومة :

Α	$\varphi = 0$	В	$\varphi = +\frac{\pi}{2}$
С	$\varphi = +\frac{\pi}{4}$	D	$\varphi = -\frac{\pi}{2}$

ري متناوب تحوي مكثفة سعتها C تابع التيار اللحظي المار فيها $i=I_{max}Cos(\omega t)$ فإن تابع التوتر اللحظي بين طرفيها :

A	$u_c = U_{\text{max } C} Cos(\omega t - \frac{\pi}{2})$	В	$u_c = U_{\max C} Cos(\omega t + \frac{\pi}{2})$
С	$u_c = U_{\max C} Cos(\omega t)$	D	$u_c = U_{\max C} \cos(\omega - \frac{\pi}{2})$

A	$X_C = \omega C$	В	$X_C = \frac{C}{\omega}$
С	$X_C = \frac{1}{\omega C}$	D	$X_C = \frac{\omega}{C}$

٣٩- التوتر المنتج بين طرفي المكثفة يعطي بالعلاقة:

Α	$U_{effC} = I_{eff} . X_C$	В	$U_{effC} = I_{eff} + X_C$
С	$U_{effC} = \frac{I_{eff}}{X_C}$	D	$U_{effC} = I_{eff} - X_C$

٤٠ - قيمة فرق الطور بين تابع التوتر اللحظي و تابع التيار اللحظي في حال دارة تسلسلية في المكثفة :

Α	$\varphi = -\frac{\pi}{4} rad$	В	$\varphi = -rac{\pi}{2} \ rad$
С	$\varphi = +\frac{\pi}{2} rad$	D	$\varphi=0$

ا ٤- دارة تيار متناوب (R,L,C) تحوي على التسلسل مقاومة $(R=20~\Omega)$ و وشيعة مهملة المقاومة ذاتيتها (R,L,C) و مكثفة سعتها $(C=\frac{1}{5\pi})$ و تيابع التيار اللحظي المار فيها $i=2\sqrt{2}~cos100\pi t$ فتكون الممانعة الكلية للدارة تساوي :

A	$Z=25\Omega$	В	$Z=35\Omega$
С	$Z=40~\Omega$	D	$Z=65\Omega$

٢٢- في السؤال السابق تكون قيمة التوتر المنتج الكلي تساوي:

A	$U_{eff} = 40 \ volt$	В	$U_{eff} = 80 \ volt$
С	$U_{eff} = 50 \ volt$	D	$U_{eff} = 130 \ volt$

٤٣- دارة تيار متناوب (R,L,C) تحوي على التسلسل مقاومة $(R=30~\Omega)$ و وشيعة مهملة المقاومة ذاتيتها $(L=rac{1}{\pi}~H)$ و مكثفة سعتها (C) وتواتر التيار (T=50~HZ) فتكون الممانعة الكلية للدارة تساوي $(T=50~\Omega)$ عندما سعة المكثفة تساوي :

A	$C = \frac{1}{2500\pi} F$	В	$C = \frac{1}{2000\pi} F$
С	$C = \frac{1}{4000\pi} F$	D	$C = \frac{1}{6000\pi} F$

 $i=2\sqrt{2}\; cos 100\pi t$ في السؤال السابق تابع التوتر اللحظي بين طرفي المقاومة عندما يمر تيار متناوب تابعه اللحظي المحظي بين طرفي المقاومة عندما يمر تيار متناوب تابعه اللحظي

Α	$u_R = 80\sqrt{2} \cos(100 t)$	В	$u_R = 60\sqrt{2} \cos\left(100 t + \frac{\pi}{2}\right)$
С	$u_R = 60\sqrt{2} \cos\left(100 t - \frac{\pi}{2}\right)$	D	$u_R = 60\sqrt{2} \cos(100 t)$

ء - دارة تيار متناوب (R,L,C) تحوي على التسلسل مقاومة $(\Omega \ \Omega)$ ووشيعة مهملة المقاومة ذاتيتها (L) و مكثفة سعتها (R,L,C) و نبض الاهتزاز $(\omega = 100\pi \ rad. \ s^{-1})$ فتكون الممانعة الكلية للدارة تساوي $(Z=50 \ \Omega)$ عندما ذاتية الوشيعة تساوى :

Α	$L = \frac{1}{\pi} H$	В	$L = \frac{3}{5\pi} H$
С	$L = \frac{2}{\pi} H$	D	$L = \frac{2}{5\pi} H$

: $i=3\sqrt{2}\; cos 100\pi t$ في السؤال السابق تابع التوتر اللحظي بين طرفي المكثفة عندما يمر تيار متناوب تابعه اللحظي بين طرفي المكثفة

A	$u_L = 90\sqrt{2} \cos\left(100\pi \ t + \frac{\pi}{2}\right)$	В	$u_L = 60\sqrt{2} \cos\left(100\pi \ t - \frac{\pi}{2}\right)$
С	$u_L = 90\sqrt{2} \cos\left(100 \ \pi t - \frac{\pi}{2}\right)$	D	$u_L = 90\sqrt{2} Cos(100 \pi t)$

: التسلسلية عندما يكون $X_L > X_C$ يقال عن هذه الدارة أنها ذات (R,L,C) عن هذه الدارة أنها ذات

Α	ممانعة حثية (ذاتية)	В	ممانعة سعويه				
С	ممانعة أومية	D	حالة تجاوب (طنين)				
: في دارة (R,L,C) التسلسلية عندما يكون $X_L < X_C$ يقال عن هذه الدارة أنها ذات (R,L,C)							
Α	ممانعة حثية (ذاتية)	В	ممانعة سعويه				
С	ممانعة أومية	D	حالة تجاوب (طنين)				
ا ا ا التسلسلية عندما يكون $X_L=X_C$ يقال عن هذه الدارة أنها : (R,L,C) التسلسلية عندما يكون $X_L=X_C$							
Α	ذات ممانعة حثية (ذاتية)	В	ذات ممانعة سعويه				
С	حالة تجاوب كهربائي (طنين)	D	کل ما سبق				
	علية للدارة تسا <i>وي</i> :	الممانعة الك	$X_L = X_C$ التسلسلية عندما يكون (R,L,C) التسلسلية الدرة المرة				
A	$Z = X_C$	В	$Z = X_L$				
С	$Z = X_C + X_L$	D	Z = R				
: في دارة (R,L,C) التسلسلية عندما يكون $X_L=X_C$ تكون ممانعة الدارة الكلية $X_L=X_C$ التسلسلية عندما يكون							
Α	بأصغر قيمة لها	В	بأكبر قيمة لها				
С	معدومة	D	کل ما سبق				
	التيار المنتجة المارة في الدارة :	تكون شدة	$X_L = X_C$ التسلسلية عندما يكون (R,L,C) ا				
Α	بأصغر قيمة لها	В	بأكبر قيمة لها				
С	معدومة	D	کل ما سبق				
تساوي :	فرق الطور بين تابع التوتر اللحظي و تابع التيار اللحظي	تكون قيمة	$X_L = X_C$ التسلسلية عندما يكون (R,L,C) ا				
Α	$\varphi = +\frac{\pi}{2}$	В	$\varphi = -\frac{\pi}{2}$				
С	$\varphi=0$	D	$arphi=\pi$				
	الاستطاعة المتوسطة المستهلكة بأعظم قيمة لها لأن:	ِ تكون قيمة	$X_L = X_C$ التسلسلية عندما يكون (R,L,C) ا				
Α	شدة التيار المنتجة بأكبر قيمة لها	В	$Cos \ \varphi = 1$				
С	$\varphi = 0$	D	کل ما سبق				
			- شرط التجاوب الكهربائي :				
Α	$X_L = X_C$	В	النبض الخاص للإلكترونات الحرة يساوي نبض التيار				
_							

التوتر اللحظي و تابع التيار اللحظي تساوي	يكون فرق الطور بين تابع X_L	$< X_{C}$ التسلسلية عندما يكون	۵- في دارة (R, L, C)
--	-------------------------------	--------------------------------	----------------------

Α	$\varphi = -\frac{\pi}{2}$	В	$\varphi > 0$
С	$\varphi = 0$	D	$\varphi < 0$

 $X_{L} > X_{C}$ عندما يكون $X_{L} > X_{C}$ يكون فرق الطور بين تابع التوتر اللحظي و تابع التيار اللحظي تساوي:

Α	$\varphi = -\frac{\pi}{2}$	В	$\varphi > 0$
С	$\varphi = 0$	D	$\varphi < 0$

ا المورد اللحظي في فرع المقاومة : $u=U_{max}\; Cos(\omega t)$ يكون تابع التيار اللحظي في فرع المقاومة : $u=U_{max}\; Cos(\omega t)$

Α	$i_1 = I_{\max 1} Cos(\omega t)$	В	$i_1 = I_{\max 1} Cos\left(\omega t + \frac{\pi}{4}\right)$
С	$i_1 = I_{\max 1} Cos \left(\omega t + \frac{\pi}{2} \right)$	D	$i_1 = I_{\max 1} Cos\left(\omega t - \frac{\pi}{2}\right)$

و- في دارة (R,L,C) التفرعية تابع التوتر اللحظي $Cos(\omega t)$ يكون تابع التيار اللحظي في فرع الوشيعة مهملة المقاومة $u=U_{max}$

A	$i_2 = I_{\max 2} Cos(\omega t)$	В	$i_2 = I_{\max 2} Cos\left(\omega t + \frac{\pi}{2}\right)$
С	$i_2 = I_{\max 2} Cos \left(\omega t - \frac{\pi}{2} \right)$	D	$i_2 = I_{\max 2} Cos \left(\omega t - \frac{\pi}{4}\right)$

بري التفر يا التفرعية تابع التوتر اللحظي $Cos(\omega t)$ يكون تابع التيار اللحظي في فرع المكثفة : $u=U_{max}$

A	$i_3 = I_{\max 3} Cos(\omega t)$	В	$i_3 = I_{\max 3} Cos \left(\omega t + \frac{\pi}{2}\right)$
С	$i_3 = I_{\max 3} Cos \left(\omega t - \frac{\pi}{4} \right)$	D	$i_3 = I_{\max 3} Cos \left(\omega t - \frac{\pi}{2}\right)$

المنطق ا

А	على ترابع متقدم بالطور على تابع التوتر اللحظي	В	على تعاكس متقدم بالطور مع تابع التوتر اللحظي
С	على توافق بالطور مع تابع التوتر اللحظي	D	على ترابع متأخر بالطور على تابع التوتر اللحظي

(R,L,C) التفرعية في فرع الوشيعة المهملة المقاومة إن تابع التيار اللحظي -7

Α	على ترابع متقدم بالطور على تابع التوتر اللحظي	В	على تعاكس متقدم بالطور مع تابع التوتر اللحظي
С	على توافق بالطور على تابع التوتر اللحظي	D	على ترابع متأخر بالطور على تابع التوتر اللحظي

٦٣- في دارة (R,L,C) التفرعية في فرع المكثفة إن تابع التيار اللحظي :

A	على ترابع متقدم بالطور على تابع التوتر اللحظي	В	على تعاكس متقدم بالطور مع تابع التوتر اللحظي
С	على توافق بالطور على تابع التوتر اللحظي	D	على ترابع متأخر بالطور على تابع التوتر اللحظي

و الفرع الثاني يحوي وشيعة $I_{eff~1}=3$ لا دارة تفرعيه تحوي فرعين الأول يحوي مقاومة R=20 Ω يمر فيها تيار متناوب $I_{eff~1}=1$ و الفرع الثاني يحوي وشيعة المقاومة ذاتيتها $I_{eff~2}=1$ يمر فيها تيار متناوب $I_{eff~2}=1$ حيث تواتر التيار $I_{eff~2}=1$ تكون قيمة ذاتية الوشيعة :

A	$L = \frac{3}{5\pi} H$	В	L=60~H
С	$L = \frac{1}{\pi} H$	D	$L = \frac{2}{5\pi} H$

 $I_{eff~1}$ دارة تفرعيه تحوي فرعين الأول يحوي مقاومة Ω Ω R=30 يمر فيها تيار متناوب $I_{eff~1}$ و الفرع الثاني يحوي وشيعة مهملة المقاومة ذاتيتها Δ و رديتها Δ Δ المقاومة ذاتيتها Δ و رديتها Δ المار في المقاومة :

A	$I_{eff\ 1} = 3A$	В	$I_{eff\ 1} = 120A$
С	$I_{eff\ 1} = 4A$	D	$I_{eff\ 1} = 5A$

 $I_{eff\ 1}=6$ دارة تفرعيه تحوي فرعين الأول يحوي مقاومة R يمر فيها تيار متناوب $I_{eff\ 1}=6$ و الفرع الثاني يحوي وشيعة مهملة المقاومة ذاتيتها L و يمر فيها تيار متناوب $I_{eff\ 2}=8$ تكون قيمة التيار المتناوب المار في الدارة :

Α	$I_{eff} = 14 A$	В	$I_{eff} = 2 A$
С	$I_{eff} = 48 A$	D	$I_{eff} = 10A$

٦٧- دارة تفرعيه تحوي فرعين الأول يحوي مقاومة Ω Ω Ω R=30 يمر فيها تيار متناوب $I_{eff~1}=2$ و الفرع الثاني يحوي مكثفة C سعتها C يمر فيها تيار متناوب $I_{eff~2}=3$ تكون قيمة اتساعية المكثفة :

A	$X_C = 60 \Omega$	В	$X_C = 20 \Omega$
С	$X_C = \frac{1}{20} \Omega$	D	$X_C = 40 \Omega$

مآ- دارة تفرعيه تحوي فرعين الأول يحوي مقاومة $R=40~\Omega$ يمر فيها تيار متناوب $I_{eff~1}=2~A$ و الفرع الثاني يحوي مكثفة سعتها f=50~Hz يمر فيها تيار متناوب $I_{eff~2}=1~A$ حيث تواتر التيار $I_{eff~2}=50~Hz$ تكون قيمة سعة المكثفة :

A	$C = \frac{1}{800\pi} F$	В	C = 80 F
С	$C = \frac{1}{8000\pi} F$	D	$C = \frac{1}{4000\pi} F$

آ- دارة تفرعيه تحوي فرعين الأول يحوي مقاومة R يمر فيها تيار متناوب $I_{eff 1} = 12$ و الفرع الثاني يحوي مكثفة و يمر فيها تيار متناوب $I_{eff 2} = 5$ لكون قيمة التيار المتناوب المار في الدارة :

Α	$I_{eff} = 17 A$	В	$I_{eff} = 7 A$
С	$I_{eff} = 14 A$	D	$I_{eff} = 13 A$

من ٧٠ إلى ٧٥ حل المسألة الأتية:

مآخذ تيار متناوب جيبي نصله لدارة تحوي على التسلسل الأجهزة التالية : مقاومة أومية ($R=30~\Omega$) و مكثقة سعتها $i=2\sqrt{2}~Cos(100\pi~t)~A$: فيمر فيها تيار متناوب جيبي تابعه اللحظي

٧٠- شدة التيار المنتجة:

Α	$I_{eff} = 2 A$	В	$I_{eff} = 2\sqrt{2} A$
С	$I_{eff} = 3 A$	D	$I_{eff} = \sqrt{2} A$

٧١- اتساعية المكثفة تساوي:

Α	$X_c = 40\sqrt{2}\Omega$	В	$X_c = \frac{1}{40} \Omega$
С	$X_c = 40 \Omega$	D	$X_c = 40\pi \Omega$

٧٢- قيمة الممانعة الكلية للدارة:

A	$Z = 70 \Omega$	В	$Z = 50 \Omega$
С	$Z=10~\Omega$	D	$Z = 50\sqrt{2}\Omega$

٧٣- تابع التوتر اللحظي بين طرفي المقاومة:

Α	$u_R = 60 \cos(100 \pi t)$	В	$u_R = 60\sqrt{2} \cos\left(100 \pi t - \frac{\pi}{2}\right)$
С	$u_R = 60\sqrt{2} \cos\left(100 \pi t + \frac{\pi}{2}\right)$	D	$u_R = 60\sqrt{2} \operatorname{Cos}(100 \pi t)$

لادرة السابقة بحيث تنفى المقاومة ذاتيتها L على التسلسل إلى الدارة السابقة بحيث تبقى شدة التيار المنتجة نفسها تكون قيمة L

Α	$L = \frac{4}{5\pi} H$	В	L = 80 H
С	$L = \frac{2}{5\pi}H$	D	$L = \frac{1}{5\pi} H$

ر المحتفة سعتها C إلى المكتفة C في الدارة الأخيرة بحيث تجعل تابع التوتر اللحظي على توافق بالطور مع تابع التيار اللحظي C المحتفة سعتها C المحتفة C المحتفة C المحتفد C المح

C^{\cdot} تكون قيمة

А	$C = \frac{1}{4000\pi} F$	В	$C = \frac{1}{8000\pi} F$
С	C = 80 F	D	$C^{\cdot} = 4000\pi F$

من ٧٦ إلى ٨٤ حل المسألة الأتية:

مآخذ تيار متناوب جيبي تواتره (f=50~Hz) و توتره المنتج ($U_{eff}=100~volt$) نصله لدارة تسلسلية تحوي : مقاومة أومية ($L=\frac{3}{5\pi}~H$): فرق الكمون المنتج بين طرفيها $U_{eff~R}=80~volt$ و وشيعة مهملة المقاومة ذاتيتها ($L=\frac{3}{5\pi}~H$):

٧٦ قيمة ردية الوشيعة تساوي:

Α	$X_L = 60 \Omega$	В	$X_L = 30 \Omega$
С	$X_L = \frac{1}{60} \ \Omega$	D	$X_L = 45 \Omega$

. ٧٧- فرق الكمون المنتج بين طرفي الوشيعة :

Α	$U_{effL} = 20volt$	В	$U_{effL} = 180\ volt$
С	$U_{effL} = 60volt$	D	$U_{effL} = 0.8\ volt$

٧٨- تابع التوتر اللحظي بين طرفي الوشيعة :

Α	$u_L = 80\sqrt{2} \cos\left(100\pi t + \frac{\pi}{2}\right)$	$B \qquad u_L = 60\sqrt{2} \cos\left(100\pi t + \frac{\pi}{2}\right)$	
С	$u_L = 60\sqrt{2} \cos\left(100\pi t - \frac{\pi}{2}\right)$	$u_L = 60 \cos\left(100\pi t + \frac{\pi}{2}\right)$	

٧٩- قيمة شدة التيار المنتجة المار في الدارة:

Α	$I_{eff} = 10 A$	В	$I_{eff} = \sqrt{2} A$
С	$I_{eff} = 2 A$	D	$I_{eff} = 1 A$

٨٠ - قيمة المقاومة:

Α	$R = 80\sqrt{2}\Omega$	В	$R=60~\Omega$
С	$R=80~\Omega$	D	$R=40~\Omega$

٨١- الممانعة الكلية للدارة تساوي :

Α	$Z = 100 \Omega$	В	$Z=20\Omega$
С	$Z = 120 \Omega$	D	$Z=10\Omega$

٨٢- عامل استطاعة الدارة يساوي :

Α	$\cos\varphi = \frac{3}{5}$	В	$Cos \varphi = \frac{4}{5}$
С	$Cos \varphi = \frac{5}{4}$	D	$Cos \ \varphi = 1$

 $^{-}$. نضيف مكثفة سعتها $^{-}$ على التسلسل في الدارة السابقة بحيث تجعل الشدة المنتجة للتيار بأكبر قيمة لها فتكون سعة المكثفة $^{-}$

Α	$C = \frac{1}{6000\pi} F$	В	$C = \frac{1}{6000} F$
С	$C = 6000\pi F$	D	$C = \frac{1}{8000\pi} F$

٨٤- و الاستطاعة المتوسطة المستهلكة في الدارة في الحالة السابقة تساوى:

А	$P_{avg} = 80$	В	$P_{avg} = 225$
С	$P_{avg} = 100$	D	$P_{avg} = 125$

من ٨٥ إلى ٩١ حل المسألة الأتية:

نطبق توتر متواصل بين طرفي وشيعة قيمته $(V=12\ volt)$ فيمر تيار متواصل $(I=1\ A)$ و عند تطبيق توتر متناوب جيبي تابعه اللحظي $u=130\ \sqrt{2}\ Cos\ (100\ \pi t)\ volt$:

٨٥ - قيمة مقاومة الوشيعة :

Α	$r = 13 \Omega$	В	$r = 12 \Omega$
С	$r=6\Omega$	D	$r = \frac{1}{12} \Omega$

٨٦- قيمة ممانعة الوشيعة :

Α	$Z_L = 12 \Omega$	В	$Z_L = \frac{1}{13} \Omega$
С	$Z_L = 25 \Omega$	D	$Z_L = 13 \Omega$

٨٧- قيمة ذاتية الوشيعة

Α	$L = \frac{1}{20\pi} H$	В	$L = \frac{1}{5\pi} H$
С	L = 5 H	D	$L = 20\pi H$

٨٨- الاستطاعة المتوسطة المستهلكة في الوشيعة

A	$P_{avg} = 120 \ watt$	В	$P_{avg} = 225 \ watt$
С	$P_{avg} = 1200 \ watt$	D	$P_{avg} = 1440 \ watt$

٨٩- نضيف مكثفة سعتها ٢ إلى الوشيعة السابقة على التسلسل بحيث تبقى شدة التيار المنتجة نفسها تكون قيمة سعة المكثفة :

Α	$C = \frac{1}{500\pi} F$	В	$C = \frac{1}{5000\pi} F$
С	C = 500 F	D	$C = \frac{1}{1000\pi} F$

. • ٩- نضيف مكثفة سعتها ´C إلى المكثفة السابقة بحيث تجعل عامل استطاعة الدارة يساوي الواحد فتكون سعة المكثفة المكافئة

Α	$C_{eq} = \frac{1}{500\pi} F$	В	$C_{eq} = \frac{1}{1000\pi} F$
С	$C_{eq} = 5 F$	D	$C_{eq} = \frac{1}{100\pi} F$

C و قيمة سعة المكثفة Q

Α	$C^{} = \frac{1}{500\pi} F$	В	$C = \frac{1}{1000\pi} F$
С	C = 5 F	D	$C = \frac{1}{100\pi} F$

من ٩٢ إلى ٩٩ حل المسألة الأتية:

مآخذ تيار متناوب جيبي تواتره R=50~Hz نصله لدارة تحوي على التسلسل الأجهزة الأتية : مقاومة $R=20~\Omega$ فرق الكمون المنتج بين طرفيها $U_{eff~L}=80~volt$ و مكثفة سعتها $U_{eff~L}=80~volt$ و مكثفة سعتها : $U_{eff~C}=50~volt$ فرق الكمون المنتج بين طرفيها $U_{eff~C}=50~volt$:

٩٢ - قيمة التوتر المنتج الكلي :

Α	$U_{eff} = 50 \ volt$	В	$U_{eff} = 100 \ volt$
С	$U_{eff} = 120 \ volt$	D	$U_{eff} = 170 \ volt$

٩٠- شدة التيار المنتجة المارة في الدارة:

Α	$I_{eff} = 2\sqrt{2} A$	В	$I_{eff} = 1 A$
С	$I_{eff} = 2 A$	D	$I_{eff} = 4 A$

٩٤ - قيمة ذاتية الوشيعة

A	$L = \frac{5\pi}{2} H$	В	$L = \frac{2}{5\pi} H$
С	L=40H	D	$L = \frac{4}{5\pi} H$

٩٥ - قيمة سعة المكثفة :

Α	$C = \frac{1}{2000\pi} F$	В	$C = 2500\pi F$
С	$C = \frac{1}{250\pi} F$	D	$C = \frac{1}{2500\pi} F$
<u> </u>			

٩٦ - الممانعة الكلية للدارة تساوي:

Α	$Z = 50\Omega$	В	$Z=25\Omega$
С	$Z = 45\Omega$	D	$Z=15\Omega$

٩٧- الاستطاعة المتوسطة المستهلكة في الدارة:

А	$P_{avg} = 80 \ watt$	В	$P_{avg} = 800 \ watt$
С	$P_{avg} = 100 \ watt$	D	$P_{avg} = 40 \ watt$

الواحد عامل استطاعة الدارة يساوي الواحد C إلى المكثفة السابقة فتجعل عامل استطاعة الدارة يساوي الواحد C

فتكون قيمة التيار المنتج في هذه الحالة:

Α	$I_{eff} = 2 A$	В	$I_{eff} = 2\sqrt{2} A$
С	$I_{eff} = 4 A$	D	$I_{eff} = 2.5 A$

A	$C^{} = \frac{1}{1500 \pi} F$	В	$C = \frac{1}{4000 \pi} F$
С	$C^{} = \frac{1}{2500 \pi} F$	D	$C = 1500 \pi F$

من ١٠٠ إلى ١٠٤ حل المسلة الأتية :

 $u=120\sqrt{2}\; Cos(100\,\pi\;t)\; volt$: مآخذ تيار متناوب جيبي ثابع توتره اللحظي

۱۰۰- نصله لفرع يحوي مقاومة أومية صرفة يمر فيها تيار متناوب جيبي شدته المنتجة $I_{eff,1}=4$ فتكون قيمة المقاومة :

A	$R = 30 \Omega$	В	$R = 40 \Omega$
С	$R = 30\sqrt{2}\Omega$	D	$R = 50 \Omega$

А	$i_1 = 4 \operatorname{Cos}(100 \ \pi \ t)$	В	$i_1 = 4\sqrt{2} \cos\left(100 \pi t + \frac{\pi}{2}\right)$
С	$i_1 = 4\sqrt{2} \cos(100 \pi t)$	D	$i_1 = 4\sqrt{2} \cos\left(100 \pi \ t - \frac{\pi}{2}\right)$

ر الم الم أخذ لفرع ثاني يحوي وشيعة مهملة المقاومة ذاتيتها $\frac{2}{5\pi}$ يمر فيها تيار شدته المنتجة:

Α	$I_{eff 2} = 3\sqrt{2} A$	В	$I_{eff2} = 3 A$
С	$I_{eff2} = 4A$	D	$I_{eff2} = 5 A$

٣ - ١ - تابع التيار اللحظى المار في الوشيعة :

Α	$i_2 = 3\sqrt{2} \cos\left(100 \pi t + \frac{\pi}{2}\right)$	В	$i_2 = 3 \cos(100 \pi t)$
С	$i_2 = 3\sqrt{2} \cos\left(100 \pi \ t - \frac{\pi}{2}\right)$	D	$i_2 = 4\sqrt{2} \cos\left(100 \ \pi \ t - \frac{\pi}{2}\right)$

١٠٤ قيمة الإستطاعة المتوسطة المستهلكة في جملة الفرعين:

Α	$P_{avg} = 480 \ watt$	В	$P_{avg} = 120 \ watt$
С	$P_{avg} = 48 \ watt$	D	$P_{avg} = 480\sqrt{2} watt$

من ١٠٥ إلى ١١٠ حل المسألة الأتية:

: مآخذ تيار متناوب جيبي تابعه اللحظي volt volt volt نصوي على التفرع $u=240\sqrt{2}$ $\cos(100\,\pi\,t)$ volt و فرع ثاني يحوي مكثفة يمر فيها تيار متناوب شدته اللحظية $R=30\Omega$ فرع أول مقاومة أومية $R=30\Omega$

١٠٥ - قيمة التوتر المنتج:

A	$U_{eff} = 240\sqrt{2} \ volt$	В	$U_{eff} = 240 \ volt$
С	$U_{eff} = 8 \ volt$	D	$U_{eff} = 80volt$

١٠٦ - قيمة تواتر التيار:

Α	$f = 240 \; Hz$	В	f = 20 Hz
С	$f = 100 \; Hz$	D	f = 50 Hz

المسلم اللحظي المار في المقاومة :

Α	$i_1 = 8 \operatorname{Cos}(100 \ \pi \ t)$	В	$i_1 = 8\sqrt{2} \cos\left(100 \pi t + \frac{\pi}{2}\right)$
С	$i_1 = 8\sqrt{2} \cos(100 \ \pi \ t)$	D	$i_1 = 6\sqrt{2} \cos\left(100 \pi t - \frac{\pi}{2}\right)$

١٠٨ ـ قيمة سعة المكثفة

Α	C = 40 F	В	$C = \frac{1}{4000\pi} F$
С	$C = \frac{1}{2000\pi} F$	D	$C = 4000\pi F$

١٠٩ - قيمة شدة التيار المنتج الكلي المار بالدارة :

A	$I_{eff} = 10 A$	В	$I_{eff} = 8 A$
С	$I_{eff} = 2 A$	D	$I_{eff} = 14 A$

١١٠- الاستطاعة المتوسطة المستهلكة في جملة الفرعين:

Α	$P_{avg} = 4800 \ watt$	В	$P_{avg} = 120 \ watt$
С	$P_{avg} = 1000 \ watt$	D	$P_{avg} = 1920 \ watt$

من ١١١ إلى حل المسألة الأتية:

 $u=100\sqrt{2}\; Cos(100\pi\; t)\; volt$ مآخذ تيار متناوب جيبي تابع توتره اللحظي

نصله لفرع أول يحوي مقاومة Ω 100 Ω و فرع ثاني يحوي على التسلسل مقاومة Ω 50 Ω و مكثفة سعتها Ω يمر فيه تيار منتج شدته $I_{eff~2}=\sqrt{2}~A$

١١١- قيمة التوتر المنتج:

A	$U_{eff} = 100 \ volt$	В	$U_{eff} = 100\sqrt{2} \ volt$
С	$U_{eff} = 200 \ volt$	D	$U_{eff} = 50 \ volt$

R_1 تابع التيار اللحظي المار في المقاومة R_1

Α	$i_1 = 2\sqrt{2}Cos\left(100 \ \pi \ t + \frac{\pi}{2}\right) \ A$	В	$i_1 = 2\sqrt{2}Cos\left(100 \pi t + \frac{\pi}{4}\right) A$
С	$i_1 = 2\sqrt{2}Cos(100\pit)\ A$	D	$i_1 = 2Cos(100\pit)\ A$

١١٣- قيمة ممانعة الفرع الثاني :

Α	$Z_2 = 50 \Omega$	В	$Z_2 = 50\sqrt{2}\Omega$
С	$Z_2 = 100\sqrt{2}\Omega$	D	$Z_2 = 100 \Omega$

٤ ١١- تابع التيار اللحظي المار في الفرع الثاني:

Α	$i_1 = 2 \cos(100 \pi t) A$	В	$i_1 = 2\sqrt{2}Cos\left(100 \ \pi \ t + \frac{\pi}{4}\right) \ A$
С	$i_1 = 2\sqrt{2}Cos\left(100 \ \pi \ t - \frac{\pi}{4}\right) \ A$	D	$i_2 = 2 \cos\left(100 \pi t + \frac{\pi}{4}\right) A$

١١٥ - قيمة سعة المكثفة :

Α	$C = \frac{1}{5000\pi} F$	В	$C = \frac{1}{5000\pi} \sqrt{2} F$
С	$C = 5000\pi F$	D	$C = \frac{1}{2500\pi} F$

١١٦ -تكون قيمة شدة التيار المنتجة الكلية

A	$I_{eff} = 3 A$	В	$I_{eff} = 10 A$
С	$I_{eff} = 4 A$	D	$I_{eff} = \sqrt{10} A$

المسلمة المسلمة المقاومة المقاومة ذاتيتها للمسلم المسلم ا

١١٧- تكون قيمة شدة التيار المنتجة المارة في الوشيعة

A	$I_{eff3} = 3 A$	В	$I_{eff3} = 2 A$
С	$I_{eff3} = 1A$	D	$I_{eff3} = \sqrt{2} A$

١١٨- تكون قيمة ذاتية الوشيعة المضافة :

Α	$L = \frac{1}{\pi} H$	В	$L = \frac{1}{5\pi} H$
С	$L = \frac{2}{5\pi} H$	D	$L = \frac{3}{\pi} H$

١١٩ - تكون قيمة شدة التيار المنتجة الكلية :

Α	$I_{eff} = 4 A$	В	$I_{eff} = 2 A$
С	$I_{eff} = 3 A$	D	$I_{eff} = 5 A$

حل الأسئلة

B - 1 •	C -9	A -A	B -Y	C -7	A -0	В-ξ	В-۳	۲- A	C-1
A - ۲ •	D -19	A - 1 A	B - 17	A -17	C -10	B-15	D -14	A - 17	C -11
D - 4.	C - 4 4	A - ۲ A	B - 44	C - ٢٦	B - 40	D-75	B - 4 m	B - 44	C - 41
B - έ •	A - 49	C -47	A - ٣٧	B -٣٦	D -40	C -TE	B - 44	A - 47	A - 41
D -0+	C - £9	В - ٤٨	A - £Y	C - 27	Β - ٤٥	D- £ £	D - 57	C - 57	A - £1
В -٦٠	C -09	A -0A	B - 0 V	D -01	D -00	D -05	C -04	B -07	A -01
A -Y•	D -79	C-W	B -77	D -זז	C -70	A -75	A -15	D -77	C -71
C -A·	D -Y9	B-YA	C-YY	A - ٧٦	A - Y0	A -YÉ	D - ٧٣	В - ۷۲	C -Y1
A -9 •	D - A9	C -YY	A -AY	D - 47	В - Ло	D -A£	A -۸۳	В - ЛҮ	A - ^1
A -1 · ·	A -99	D -9A	A -9Y	B -97	D -90	B -98	C -98	A -97	B -91
D -11.	A-1.9	B -1+A	C-1.Y	D -1.7	B -1.0	A -1. £	C -1."	B -1.7	C -1.1
	C-119	A -11A	C -111	D-117	A -110	D -112	B -117	C -117	A -111

الدرس الخامس: المحولات

١- جهاز كهربائي يعمل على رفع أو خفض التوتر و التيار المنتجين المتناوبين دون أن يغير من الإستطاعة المنقولة و تواتر التيار:

A	المقاومة	В	الوشيعة
С	المحولة	D	المكثفة
			- تعمل المحولة بـ : ﴿
A	الفعل الكهرضوئي	В	الفعل الكهرحراري
С	حادثة التكهرب بالتأثير	D	حادثة التحريض الكهرطيسي
			- تختلف الوشيعتين بالمحولة بـ :
Α	عدد اللفات	В	مساحة المقطع
С	A+B	D	لون السلك
			- الوشيعة التي نصلها إلى مولد تيار متناوب تدعى:
Α	وشيعة ثانوية	В	وشيعة أولية
С	وشيعة اولية و ثانوية	D	کل ما سبق
			- الوشيعة التي نصلها إلى جهاز كهربائي تدعى :
Α	وشيعة ثانوية	В	وشيعة أولية
С	وشيعة اولية و ثانوية	D	کل ما سبق
		هما :	التيار المتناوب الجيبي I_p و التيار المتناوب الجيبي I_{S} لـ I_{S}
Α	الشدة نفسها	В	التواتر نفسه
С	التوتر نفسه	D	کل ما سبق
		•	- في المحولة المثالية يكون :
A	$P_p = P_s$	В	$P_p > P_s$
С	$P_p < P_s$	D	$P_p = 0$
			- علاقة نسبة التحويل في المحولة (معادلة المحولة) :
A	$\mu = \frac{U_{effs}}{U_{effp}} = \frac{I_{effp}}{I_{effs}} = \frac{N_p}{N_s}$	В	$\mu = \frac{U_{effs}}{U_{effp}} = \frac{I_{effs}}{I_{effp}} = \frac{N_s}{N_p}$
С	$\mu = \frac{U_{eff p}}{U_{eff s}} = \frac{I_{eff p}}{I_{eff s}} = \frac{N_s}{N_p}$	D	$\mu = \frac{U_{effs}}{U_{effp}} = \frac{I_{effp}}{I_{effs}} = \frac{N_s}{N_p}$

٩- تكون المحولة رافعة للتوتر و خافضة للتيار عندما :

A	$\mu > 1$	В	$U_{eff p} < U_{eff s}$
С	$N_p < N_s$	D	کل ما سبق
			١- تكون المحولة رافعة للتوتر و خافضة للتيار عندما:
A	$\mu < 1$	В	$N_p < N_s$
С	$I_{eff p} < I_{eff s}$	D	$U_{eff p} > U_{eff s}$
			١- تكون المحولة خافضة للتوتر رافعة للتيار عندما:
A	$\mu < 1$	В	$U_{eff p} > U_{eff s}$
С	$I_{eff p} < I_{eff s}$	D	کل ما سبق
		V	١- تكون المحولة خافضة للتوتر رافعة للتيار عندما:
Α	$\mu > 1$	В	$U_{eff p} < U_{eff s}$
С	$I_{eff p} < I_{eff s}$	D	$N_p < N_s$
			١- علاقة مردود المحولة :
A	$\eta = \frac{R I_{eff p}}{U_{eff p}}$	В	$\eta = 1 - rac{R I_{eff p}}{U_{eff p}}$
С	$\eta = \frac{R I_{eff p}}{U_{eff p}}$ $\eta = 1 - \frac{R I_{eff p}}{U_{eff s}}$	D	$\eta = 1 - \frac{R I_{eff p}}{U_{eff p}}$ $\eta = 1 + \frac{R I_{eff p}}{U_{eff p}}$
			١- مردود المحولة هو النسبة بين :
A	الإستطاعة المفيدة على الإستطاعة المتولدة	В	الإستطاعة المتولدة على الإستطاعة المفيدة
С	الإستطاعة المتولدة على الإستطاعة الحرارية	D	الإستطاعة المفيدة على الإستطاعة الحرارية
	يتهالفة $N_{\rm s}=450$ تكون نسبة التحويل :	د لفات ثانو	ا - اذا كان عدد لفات أولية محولة لفة $N_p=150$ و عد
A	$\mu = \frac{1}{3}$	В	$\mu = 3$
С	$\mu = 1$	D	$\mu=4$
	$N_s=50$ يتهالفة $N_s=50$ تكون نسبة التحويل	د لفات ثانو ا	ا - اذا كان عدد لفات أولية محولة لفة $N_p=200$ و عد $N_p=1$
A	$\mu = \frac{1}{4}$	В	$\mu = 3$
С	$\mu = 1$	D	$\mu = 4$

۱۷- اذا كان عدد لفات أولية محولة(لفة $N_p=100$) و عدد لفات ثانويتها لفة $N_s=20$) و التوتر المنتج بين طرفي الثانوية $U_{effs}=40$ volt

Α	$U_{eff p} = 8 volt$	В	$U_{eff p} = 200 volt$
С	$U_{eff p} = 40 \ volt$	D	$U_{eff p} = 240 volt$

۱۸- اذا كان عدد لفات أولية محولة لفة $N_p=200$ و عدد لفات ثانويتها لفة $N_s=600$ و التيار المنتج المار في الثانوية $I_{effs}=4\,A$

A	$I_{eff p} = \frac{4}{3} A$	В	$I_{effp} = 4 A$
С	$I_{effp} = 5 A$	D	$I_{effp} = 12\ A$

۱۹- اذا كان التوتر المنتج بين طرفي الوشيعة الأولية $U_{eff\ p}=120\ volt$ و نسبة التحويل $\mu=2$ يكون التوتر المنتج بين طرفي الثانوية :

Α	$U_{eff\ s} = 120\ volt$	В	$U_{effs} = 60 \ volt$
С	$U_{eff\ s} = 240\ volt$	D	$U_{eff\ s} = 100\ volt$

٢٠- اذا كان التوتر المنتج بين طرفي الوشيعة الثانوية $U_{eff\ s}=180\ volt$ و نسبة التحويل $\mu=3$ يكون التوتر المنتج بين طرفي الأولية :

A	$U_{effp} = 60 \ volt$	В	$U_{eff p} = 180 \ volt$
С	$U_{eff p} = 540 \ volt$	D	$U_{eff\ p} = 200volt$

 $U_{eff\ p}=50\ volt$ و التوتر المنتج بين طرفي الوشيعة الثانوية $U_{eff\ p}=150\ volt$ و التوتر المنتج بين طرفي الأولية $I_{eff\ p}=12\ A$ فيكون شدة التيار المنتج المار في الأولية $I_{eff\ p}=12\ A$ فيكون شدة التيار المنتجة المارة في الثانوية :

A	$I_{eff s} = 12 A$	В	$I_{eff\ s} = 3A$
С	$I_{eff s} = 24 A$	D	$I_{effs} = 4 A$

٢٢- اذا كانت شدة التيار المنتجة المارة في الوشيعة الثانوية $I_{eff\ s}=15\ A$ و نسبة التحويل $\mu=5$ تكون شدة التيار المنتجة المارة في الأولية يساوى:

Α	$I_{effp} = 5A$	В	$I_{eff p} = 45 A$
С	$I_{eff p} = 3 A$	D	$I_{eff p} = 75 A$

حل الأسئلة:

B-77 D-71

الأستاذ خالد الأبرش

(الوحمرة (الثالثة: (الأمواج (المستقرة العرضية الدرس الأول: الأمواج المستقرة العرضية

١- إن سعة اهتزاز بطون الإهتزاز :

A	معدومة	В	عظمی	
С	متغيرة	D	کل ما سبق	
		راز:	٢- تلتقي الموجة الواردة و الموجة المنعكسة في بطن الإهتز	
Α	على توافق دائم	В	على تعاكس دائم	
С	على ترابع متقدم	D	على ترابع متأخر	
		Y	٣- إن سعة اهتزاز عقدة الإهتزاز :	
Α	معدومة	В	عظمی	
С	متغيرة	D	کل ما سبق	
٤- تلتقي الموجة الواردة و الموجة المنعكسة في عقدة الإهتزاز:				
Α	على ترابع متقدم	В	على ترابع متأخر	
С	على توافق دائم	D	على تعاكس دائم	
			٥- يتشكل بين عقدتين اهتزاز متتاليتين:	
Α	نصف مغزل	В	مغزلين	
С	ثلاث مغازل	D	مغزل	
			٦- نقاط المغزل الواحد تهتز فيما بينها :	
Α	على تعاكس دائم	В	على ترابع متأخر	
С	على توافق دائم	D	على ترابع متقدم	
٧- نقاط مغزلين متتالين تهتز فيما بينها :				
Α	على ترابع متقدم	В	على تعاكس دائم	
С	على توافق دائم	D	على ترابع متقدم	

 Λ إن الموجة الواردة و الموجة المنعكسة لهما :

سعة الإهتزاز نفسها

С	سرعة انتشار الإهتزاز نفسها	D	کل ما سبق			
	- فرق الطور بين الموجة الواردة و الموجة المنعكسة عند نهاية مقيدة :					
A	$\varphi=\pi\mathrm{rad}$	В	$\varphi = 0$			
С	$\varphi = \frac{\pi}{2}$ rad	D	$\varphi = \frac{3\pi}{2}$ rad			
	- فرق الطور بين الموجة الواردة و الموجة المنعكسة عند نهاية حرة أو طليقة :					
A	$arphi=\pi\mathrm{rad}$	В	arphi=0			
С	$\varphi = \frac{\pi}{2}$ rad	D	$\varphi = \frac{3\pi}{2}$ rad			
<u> </u>	:	لين تساوي	1 - في الأمواج المستقرة العرضية المسافة بين بطنين متتا			
A	$\frac{\lambda}{4}$	В	λ			
С	2λ	D	$\frac{\lambda}{2}$			
<u> </u>	الله المستقرة العرضية المسافة بين عقدتين متتاليتين تساوي : المسافة المسافة بين عقدتين متتاليتين تساوي :					
A	$\frac{\lambda}{4}$	В	$\frac{\lambda}{2}$			
С	λ	D	2λ			
	تساوي :	ن متتاليتين	· ١١- في الأمواج المستقرة العرضية المسافة بين عقدة و بط			
A	$\frac{\lambda}{4}$	В	λ			
С	2λ	D	$\frac{\lambda}{2}$			
			١- طول المغزل الواحد يساوي :			
A	λ	В	2λ			
С	$\frac{\lambda}{2}$	D	$\frac{\lambda}{4}$			
	على حبل مرن تبعد مسافة χ عن النهاية المقيدة $)$:	ند نقطة n				
Α	$y_{\max(n)} = 2Y_{\max} \left \sin \frac{2\pi}{\lambda} x \right $	В	$y_{\max(n)} = Y_{\max} \left \sin \frac{2\pi}{\lambda} x \right $			
С	$y_{\max(n)} = 2Y_{\max} \left \sin \frac{2\pi}{\lambda} \right $	D	$y_{\max(n)} = 2Y_{max} \sin x $			
A	$y_{\max(n)} = 2Y_{max}$	В	$y_{\max(n)} = Y_{max}$			
С	$y_{\max(n)} = \frac{Y_{max}}{2}$	D	$y_{\max(n)} = 0$			
<u> </u>	<u> </u>	<u> </u>				

В

التواتر نفسه

١٧ - سعة اهتزاز بطن الإهتزاز تساوي:

Α	$y_{\max(n)} = Y_{\max}$	В	$y_{\max(n)} = 2Y_{\max}$
С	$y_{\max(n)} = \frac{Y_{max}}{2}$	D	$y_{\max(n)} = 0$

١٨- علاقة أبعاد عقد الإهتزاز عن النهاية المقيدة

A	$x = \frac{k}{\lambda}$	В	$x = k\frac{2}{\lambda}$
С	$x = k\frac{\lambda}{2}$	D	$x = (2k+1)\frac{\lambda}{4}$

١٩ بعد العقدة الأولى عن النهاية المقيدة يساوي :

А	x = 0	В	$x = \frac{\lambda}{2}$
С	$x = \lambda$	D	$x = 3\frac{\lambda}{2}$

A	x = 0	В	$x = \frac{\lambda}{2}$
С	$x = \lambda$	D	$x = 3\frac{\lambda}{2}$

٢١ - النقاط التي تبعد عن النهاية المقيدة أعداد صحيحة من نصف طول الموجة هي :

Α	عقدة اهتزاز	В	بطن اهتزاز
С	بطن و عقدة	D	کل ما سبق

٢٢- إن عقدة الإهتزاز تبعد عن النهاية المقيدة :

А	أعداد صحيحة من ربع طول الموجة	В	أعداد فردية من نصف طول الموجة
С	أعداد فردية من ربع طول الموجة	D	أعداد صحيحة من نصف طول الموجة

٣٠- علاقة أبعاد بطون الإهتزاز

Α	$x = k\frac{\lambda}{2}$	В	$x = (2k+1)\frac{\lambda}{2}$
С	$x = (2k+1)\frac{\lambda}{4}$	D	$x = (k+1)\frac{\lambda}{4}$

٢٤- بعد بطن الإهتزاز الأول عن النهاية المقيدة يساوي :

A	x = 0	В	$x = \frac{\lambda}{4}$
С	$x = \frac{\lambda}{2}$	D	$x = 3\frac{\lambda}{4}$

Α	$x = 3\frac{\lambda}{4}$	В	$x = 5\frac{\lambda}{4}$
С	$x = \frac{\lambda}{4}$	D	$x = 5\frac{\lambda}{2}$

٢٦- إن بطون الإهتزاز تبعد عن النهاية المقيدة :

أعداد فردية من نصف طول الموجة

أعداد فردية من ربع طول الموجة

٢٧- النقاط التي تبعد عن النهاية المقيدة أعداد فردية من ربع طول الموجة هي :

المربعة المرب

 $l = k\frac{\lambda}{4}$, $f = \frac{k}{f_1}$

C	$l=k\frac{\lambda}{2}$, $f=kf_1$	D	$l = k\lambda$, $f = \frac{f_1}{k}$		
	<u>-</u>	العلاقة بين تواتر الإهتزاز و طول الوتر في حال نهاية			
Α	$f = k \frac{v}{2 l}$	В	$f = k \frac{v}{4 l}$		
С	$f = k \frac{v}{2 l}$ $f = k \frac{2l}{v}$	D	$f = (2k+1)\frac{v}{4l}$		
	-		التواتر الأساسي للوتر في حال نهاية مقيدة:		
A	$f_1 = \frac{v}{4l}$	В	$f_1 = \frac{v}{2l}$		
С	$f_1 = 2lv$	D	$f_1 = \frac{v}{l}$		
) يكون التواتر الأساسي فيه في حال نهاية مقيدة :	v = 20 r	$(l=1 \ m)$ وتر طوله $(l=1 \ m)$ سرعة الإهتزاز فيه		
A	$f_1 = 20 \; Hz$	В	$f_1 = 5 Hz$		
С	$f_1 = 10 \; Hz$	D	$f_1 = 0.1 Hz$		
	وي :	الموجة يسا	وتر طوله ($l=2\ m$) يتشكل فيه أربع مغازل طول		
Α	$\lambda = 2 \text{ m}$	В	$\lambda = 1 \text{ m}$		
С	$\lambda = \frac{1}{2} \text{ m}$	D	$\lambda = 4 \text{ m}$		
	قة):	^ء حرة (طلب	العلاقة بين تواتر الإهتزاز و طول الوتر في حال نهاياً		
Α	$f = k \frac{v}{2 l}$ $f = (2k - 1) \frac{v}{4 l}$	В	$f = (2k - 1)\frac{v}{l}$		
С	$f = (2k - 1)\frac{v}{4l}$	D	$f = (2k - 1)\frac{v}{2l}$		
التواتر الأساسي للوتر في حال نهاية حرة (طليقة):					
Α	$f_1 = 2lv$	В	$f_1 = 4lv$		
С	$f_1 = \frac{v}{2l}$	D	$f_1 = \frac{v}{4l}$		
	⁷¹ 2l		41		

В

D

В

D

В

أعداد صحيحة من نصف طول الموجة

أعداد صحيحة من ربع طول الموجة

عقدة اهتزاز

بطن وعقدة

 $l = k\frac{\lambda}{4} , \qquad f = kf_1$

Α

Α

C

 $l=2\;m$ کما في الشکل: $(l=2\;m)$ کما في الشکل

طول الموجة يساوي:

Α	$\lambda = 4 \text{ m}$	В	$\lambda = 1.6 \text{ m}$
С	$\lambda = 1.2 \mathrm{m}$	D	$\lambda = 3 \mathrm{m}$
	بة :	ال نهاية مقي	 ان سرعة انتشار الاهتزاز على طول حبل مرن في حـــــــــــــــــــــــــــــــــــ

A	تتناسب عكسا مع قوة الشد	В	تتناسب طردا مع قوة الشد
С	تتناسب طردا مع الجذر التربيعي لقوة الشد	D	تتناسب عكسا مع الجذر التربيعي لقوة الشد

٣٧- إن سرعة انتشار الاهتزاز على طول حبل مرن في حال نهاية مقيدة:

A	تتناسب طردا مع الجذر التربيعي للكتلة الخطية	В	تتناسب طردا مع الكتلة الخطية
С	تتناسب عكسا مع الجذر التربيعي للكتلة الخطية	D	تتناسب عكسا مع الكتلة الخطية

A	$v = \sqrt{\frac{F_T}{\mu}}$	В	$v = \sqrt{\frac{\mu}{F_T}}$
С	$v = \frac{F_T}{\mu}$	D	$v = \frac{\mu}{F_T}$

- auوتر مرن يشد بقوة F_T فتكون سرعة الإهتزاز v نضاعف قوة الشد تصبح سرعة انتشار الإهتزاز au

Α	$v^{\cdot} = v$	В	$v = v\sqrt{2}$
С	v = 2v	D	$v = \frac{v}{2}$

٤- العلاقة بين الكتلة الخطية و الكتلة الحجمية للوتر :

C $\mu = \frac{s}{\rho}$ D $\mu = \frac{\rho}{s}$	Α	$\mu = \rho$.s	В	$\mu=2\rho$.s
	С	$\mu = \frac{s}{\rho}$	D	$\mu = \frac{\rho}{s}$

٤١ - علاقة الكتلة الخطية للوتر:

Α	$\mu = m \cdot l$	В	$\mu = \frac{m}{l}$
С	$\mu = \frac{l}{m}$	D	$\mu = 4 \frac{m}{l}$

٢٤- في الأمواج الكهرطيسية المستقرة يكشف عن الحقل الكهربائي بواسطة هوائي مستقبل يوضع بشكل :

A	يوازي الهوائي المرسل	В	يعامد الهوائي المرسل
С	يصنع زاوية $rac{\pi}{3} \ rad$ مع الهوائي المرسل	D	کل ما سبق

٤٣- في الأمواج الكهرطيسية المستقرة يكشف عن الحقل المغناطيسي بواسطة حلقة نحاسية توضع بشكل:

Α	توازي خطوط الحقل المغناطيسي	В	تعامد خطوط الحقل المغناطيسي
С	تصنع زاوية $rac{\pi}{3} \ rad$ مع خطوط الحقل المغناطيسي	D	کل ما سبق

٤٤ - في الأمواج الكهرطيسية المستقرة يتشكل عند الحاجز:

A	مستوي بطن للحقل الكهربائي و مستوي عقدة للحقل المغناطيسي	В	مستوي عقدة للحقل الكهربائي و مستوي عقدة للحقل المغناطيسي
С	مستوي بطن للحقل الكهربائي و مستوي بطن للحقل المغناطيسي	D	مستوي عقدة للحقل الكهربائي و مستوي بطن للحقل المغناطيسي

2 - في تجربة ملد في حال نهاية طليقة يصدر وتر طوله l صوت اساسي طول موجته تساوي $^{\circ}$

Α	$\lambda = 2l$	В	$\lambda = l$
С	$\lambda = 4l$	D	$\lambda = \frac{l}{2}$

٦٤ - في تجربة ملد في حال نهاية مقيدة يصدر وتر طوله ١ صوت اساسي طول موجته تساوي :

Α	$\lambda = 2l$	В	$\lambda = l$
С	$\lambda = 4l$	D	$\lambda = \frac{l}{2}$

علم الخطية لكل قسم: μ كتلته m كتلته الخطية μ نقسمه إلى قسمين متساويين فإن الكتلة الخطية لكل قسم:

A	$\mu = 2 \mu$	В	$\mu = \frac{\mu}{2}$
С	$\mu = 4 \mu$	D	$\mu = \mu$

در مرن يشد بقوة F_T فتكون سرعة الإهتزاز v نضاعف قوة الشد لتصبح أربع أضعاف تصبح سرعة انتشار الإهتزاز : $ilde{\chi}$

A	$\overrightarrow{v} = \frac{v}{2}$	В	v = 2v
С	v = 4v	D	$v' = \frac{v}{4}$

و المربة ملد في حال نهاية مقيدة تتكون أربع مغازل عند استخدام وتر طوله (l=2m) و تواتر الهزازة $(f=435\;Hz)$ تكون سرعة انتشار الإهتزاز تساوي :

Α	$v = 870 \ m.s^{-1}$	В	$v = 220 \ m.s^{-1}$
С	$v = 435 \ m. s^{-1}$	D	$v = 1740 \ m.s^{-1}$

٥٠ إن طول الموجة المستقرة هو :

Α	مثلي المسافة بين بطنين متتالين أو عقدتين متتاليتين	В	المسافة بين بطنين متتالين أو عقدتين متتاليتين
С	نصف المسافة بين بطن و عقدة متتالين	D	نصف المسافة بين بطنين متتالين أو عقدتين متتاليتين

ا v مسرعة انتشار الإهتزاز العرضي على وتر مشدود نجعل طول الوتر نصف ما كان عليه و نحافظ على قوة الشد فتكون السرعة v

Α	v` = 2 v	В	v = v
С	$v = \frac{v}{\sqrt{2}}$	D	$v = \sqrt{2} v$

 $^{\circ}$ - في تجربة ملد في حال نهاية مقيدة يتشكل مغزل واحد على الوتر عندما تكون قوة الشد ($F_T=20~N$) لكي يتشكل فيه مغزلين نغير قوة الشد إلى :

Α	$F_T = 40 N$	В	$F_T = 10 N$
С	$F_T = 80 N$	D	$F_T = 5 N$

من ٥٣ إلى ٥٦ حل المسألة الآتية:

: يهتز بالتجاوب بواسطة هزازة تواترها (f=50~Hz) فيتشكل فيه ثلاث مغازل (m=15~g) فيتشكل فيه ثلاث مغازل

٥٣ - طول الموجة يساوي :

A	$\lambda = 1.5 \ m$	В	$\lambda = 0.5 \ m$
С	$\lambda = 2 m$	D	$\lambda = 1 m$

Α	$\mu = 10 \; kg. m^{-1}$	В	$\mu = 10^{-2} \ kg. m^{-1}$
С	$\mu = 1 \ kg. m^{-1}$	D	$\mu = 10^{-3} \ kg. m^{-1}$

٥٥ ـ سرعة انتشار الإهتزاز في الوتر تساوي:

Α	$v = 5 m. s^{-1}$	В	$v = 25 \ m. s^{-1}$
С	$v = 50 \ m. s^{-1}$	D	$v = 2.5 m. s^{-1}$

٥٦- مقدار فوة الشد المطبقة على الوتر:

A		$F_T = 1$	25 N		В		$F_T = 2$	2.5 <i>N</i>	
С		$F_T = 1$	50 <i>N</i>		D		$F_T=0$.	.25 <i>N</i>	
B - 1 •	A -9	D-A	B -Y	C -٦	D -0	D - ξ	A -٣	A - Y	B - \
C-4.	A -19	C-14	B -17	D-17	A -10	C -12	A -17	B -17	D -11
В - ٣•	A-79	C -4V	B - 44	D-77	B - 40	B - Y £	C -44	D - 44	A - ۲1
Α - ٤٠	B - 49	A - 47	C - 41	C -٣٦	B -40	D - 45	C - 44	B - 47	C - 41
A -0.	C - £9	В - ٤٨	D- £Y	C- £7	A - 50	D - £ £	B - £ ٣	A- £ Y	B - ٤1
				۵- A	C -00	B -0£	D -0T	D -07	B -01

الدرس الثاني: الأمواج المستقرة الطولية

١- في الأمواج المستقرة إن بطن الإهتزاز هو :

Α	عقدة للإمتزاز	В	بطن للضغط				
С	عقدة للضغط	D	کل ما سبق				
· - في الأمواج المستقرة إن عقدة الإهتزاز هي : · · · · · · · · · · · · · · · · · ·							
Α	بطن للإهتزاز	В	بطن للضغط				
С	عقدة للضغط	D	کل ما سبق				
		,	٢- يتشكل في المزمار الذي منبعه ذو لسان:				
Α	بطن للاهتزاز	В	عقدة للضغط				
С	عقدة للاهتزاز	D	کل ما سبق				
ا							
Α	بطن للاهتزاز	В	عقدة للاهتزاز				
С	بطن للضغط	D	كل ما سبق				
٥- مزمار عندما يهتز بالتجاوب يتكون عند نهايته المغلقة :							
Α	عقدة للضغط	В	بطن للاهتزاز				
С	عقدة للاهتزاز	D	کل ما سبق				
		:	 مزمار عندما يهتز بالتجاوب يتكون عند نهايته المفتوحة 				
Α	بطن للضغط	В	بطن للاهتزاز				
С	عقدة للاهتزاز	D	کل ما سبق				
			· ــــــــــــــــــــــــــــــــــــ				
A	عدد فردي من ربع طول الموجة	В	عدد فردي من نصف طول الموجة				
С	عدد صحيح من ربع طول الموجة	D	عدد صحيح من نصف طول الموجة				
A	عدد فردي من ربع طول الموجة	В	عدد فردي من نصف طول الموجة				
С	عدد صحيح من ربع طول الموجة	D	عدد صحيح من نصف طول الموجة				

٩- طول المزمار متشابه الطرفين بدلالة طول الموجة:

A	$L = n \frac{\lambda}{4}$	В	$L = (2n - 1)\frac{\lambda}{2}$
С	$L = n\frac{\lambda}{2}$	D	$L = (2n - 1)\frac{\lambda}{4}$

٠١- طول المزمار مختلف الطرفين بدلالة طول الموجة :

A	$L = n \frac{\lambda}{4}$	В	$L = (2n - 1)\frac{\lambda}{2}$
С	$L=n\frac{\lambda}{2}$	D	$L = (2n - 1)\frac{\lambda}{4}$

١١- علاقة تواتر الإهتزاز الصوتي في المزمار متشابه الطرفين بدلالة طوله:

Α	$f = n \frac{v}{2l}$	В	$f = (2n - 1)\frac{v}{2l}$
С	$f = n \frac{v}{4l}$	D	$f = (2n - 1)\frac{v}{4l}$

١٢- علاقة تواتر الإهتزاز الصوتي في المزمار مختلف الطرفين بدلالة طوله:

Α	$f = n \frac{v}{2l}$	В	$f = (2n - 1)\frac{v}{4l}$
С	$f = n \frac{v}{4l}$	D	$f = (2n - 1)\frac{v}{2l}$

٣ - مزمار متشابه الطرفين تواتر صوته الاساسي الذي يصدره:

A	$f_1 = \frac{v}{4l}$	В	$f_1 = \frac{v}{l}$
С	$f_1 = \frac{v}{2l}$	D	$f_1 = 2\frac{v}{l}$

المسلمة الطرفين تواتر صوته الاساس ي الذي يصدره:

Α	$f_1 = \frac{v}{l}$	В	$f_1 = \frac{v}{4l}$
С	$f_1 = 4\frac{v}{l}$	D	$f_1 = \frac{v}{2l}$

م احزمار متشابه الطرفين طوله l يصدر صوت اساسي مواقت للصوت الاساسي الذي يصدره مزمار آخر مختلف الطرفين طوله l في الشروط نفسها فيكون العلاقة بين طولى المزمارين:

Α	l = l	В	l=4l
С	l=2l	D	$l = \frac{l}{2}$

المرتبع المراي المراين يصدر صوت اساسي تواتره $f_1=300~Hz$ فيكون تواتر الصوت الذي يليه $f_1=300~Hz$

Α	$f_2 = 300 \ Hz$	В	$f_2 = 600 \ Hz$
С	$f_2 = 100 \; Hz$	D	$f_2 = 900 \ Hz$

الذي يليه : $f_1=200~Hz$ فيكون تواتر الصوت الذي يليه : $f_1=200~Hz$

Α	$f_2 = 100 \ Hz$	В	$f_2 = 200 \ Hz$
С	$f_2 = 400 \; Hz$	D	$f_2 = 300 \ Hz$

1 - 1 مزمار متشابه الطرفين طوله ($l=2\,m$) يصدر صوت اساسي يكون طول المزمار المختلف الطرفين الذي يصد صوت اساسي مواقت للمزمار المتشابه الطرفين :

A	l` = 1 m	В	l` = 2 m
С	$l^{}=rac{1}{4}m$	D	$l^{\cdot} = \frac{1}{2} m$

٩ - إن سرعة انتشار الصوت في الهواء أو الغاز:

A	تتناسب طردا مع درجة الحرارة المطلقة	В	تتناسب عكسا مع درجة الحرارة المطلقة
С	تتناسب طردا مع الجذر التربيعي لدرجة الحرارة المطلقة	D	تتناسب عكسا مع الجذر التربيعي لدرجة الحرارة المطلقة

٢٠- إن سرع انتشار الصوت في الغازات

Α	تتناسب عكسا مع كثافة الغاز	В	تتناسب طردا مع كثافة الغاز
С	تتناسب طردا مع الجذر التربيعي لكثافة الغاز	D	تتناسب عكسا مع الجذر التربيعي لكثافة الغاز

(l=1m) يحوي هواء في درجة حرارة معينة حيث سرعة (l=1m) يحوي هواء في درجة حرارة معينة حيث سرعة انتشار الصوت فيه $(v=340\ m.s^{-1})$ يكون عدد اطوال الموجة المتكونة فيه يساوي :

Α	موجة واحدة	В	موجتين
С	ربع موجة	D	نصف موجة

 $v=324\ m.\ s^{-1}$ مزمار ذو فم نهايته مغلقة يحوي الأوكسجين سرعة انتشار الصوت فيه $v=324\ m.\ s^{-1}$

يصدر صوت اساسي تواتره (f=162~Hz) فإن طول المزمار يساوي :

Α	l=1m	В	$l = \frac{1}{2}m$
С	l=2 m	D	$l = \frac{1}{4} m$

 $v=324\ m.\ s^{-1}$ مزمار ذو فم نهايته مغلقة يحوي الأوكسجين سرعة انتشار الصوت فيه $r=324\ m.\ s^{-1}$

يصدر صوت اساسي تواتره ($f = 162 \ Hz$) نستبدل غاز الأوكسجين بغاز الهيدروجين في درجة الحرارة نفسها فتكون سرعة انتشار الصوت حيث (H:1, O:16):

Α	$v = 1296 \ m.s^{-1}$	В	$v = 324 \ m.s^{-1}$
С	$v = 648 \ m.s^{-1}$	D	$v = 162 \ m.s^{-1}$

٢٤ في السؤال السابق ٢٣ يكون تواتر الصوت الصادر:

A	$f^{\cdot} = 162 Hz$	В	f = 81 Hz
С	f = 648 Hz	D	$f^{\cdot} = 324Hz$

مرمار ذو فم نهايته مغلقة تواتر مدروجه الثالث $(v = 400 \ m.s^{-1})$ و سرعة انتشار الصوت فيه $(v = 400 \ m.s^{-1})$ فإن طول المزمار:

Α	l=2 m	В	l = 12 m
С	l=4 m	D	l=3 m

من ٢٦ إلى ٣١ حل المسألة الآتية:

مزمار ذو فم نهايته مفتوحة طوله (l=3 m) يحوي هواء في الدرجة (l=3 m) سرعة انتشار الصوت فيه (l=330 $m.s^{-1}$) و تواتر الصوت (l=330 $m.s^{-1}$) الصوت (l=330

٢٦- طول الموجة المتكونة داخل المزمار:

Α	$\lambda = 3 m$	В	$\lambda = 1 m$
С	$\lambda = 330 m$	D	$\lambda = \frac{1}{3} m$

٢٧ - البعد بين بطنين متتالين:

Α	1 m	В	1.5 m
С	6 m	D	2 m

٢٨ - رتبة الصوت تساوي :

А	n = 1	В	n=2
С	n=3	D	n = 4

Α	$v = 660 \ m.s^{-1}$	В	$v = 990 \ m.s^{-1}$
С	$v = 220 \ m.s^{-1}$	D	$v = 1320 \ m.s^{-1}$

٣٠- و طول الموجة بعد التسخين:

A	$\lambda = 2 m$	В	$\lambda = 6 m$
С	$\lambda^{} = 4 m$	D	$\lambda^{}=1m$

٣١- طول مزمار آخر مختلف الطرفين يحوي الهواء في الدرجة (C°C) تواتر مدروجه الثالث يساوي التواتر السابق

Α	l` = 1 m	В	$l^{\cdot}=3~m$
С	l` = 2.25 m	D	$l^{}=4~m$

من ٣٢ إلى حل المسألة الآتية:

مزمار ذو لسان نهايته مفتوحة يهتز بالتجاوب فيه الهواء و سرعة انتشار الصوت فيه $v=340~m.~s^{-1}$ في درجة حرارة التجربة يتشكل داخله عقدتان فقط البعد بينهما 20~cm :

٣٢ - طول موجة الاهتزاز:

Α	$\lambda = 0.5 \ m$	В	$\lambda = 0.2 m$
С	$\lambda = 0.3 \ m$	D	$\lambda = 0.4 m$

٣٣ - طول المز مار

A	l = 0.2 m	В	l = 0.3 m
С	l = 0.4 m	D	l = 0.5 m

٣٤- تواتر الصوت الصادر:

Α	$f = 150 \; Hz$	В	$f = 850 \; Hz$
С	f = 170 Hz	D	$f = 100 \; Hz$

A	$l^{\cdot} = 0.1 m$	В	l` = 0.2 m
С	l = 0.4 m	D	$l^{\cdot}=0.3~m$

حل الأسئلة:

D -1.	C -9 A -^	D -Y	B -7	C -°	A - £	C -٣	В - ۲	C -1
D -7.	C-19 A-1A	C -14	D -17	C -10	B -18	C -17	B -17	A -11
В - ۳ •	C-9 A-A C-19 A-1A A-49 B-4A	B - 44	77- A	D - 40	C - 7 £	A - 44	B -77	D-71
							D -47	

أهبلً وسحلً بكم في قناة دليل الطالب انضم إلينا ليَصِنُلُكَ كل ماهو مفيد في رحلتك الدراسية

> مناهج دراسية مفاضلات كتب وملخصات أسئلة الدورات والمعيارى ونشر الكورسات المجانية تعريفك بأفرع الجامعات والمنح المتوفرة

صديقك حتى التخرج-

https://t.me/DalilAltaleb