

Discrete Representation of Long-Range Brain Network Dynamics via Generative Modelling

SungJun Cho¹, Rukuang Huang¹, Chetan Gohil¹, Oiwi Parker-Jones², Mark W. Woolrich¹ ¹Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, United Kingdom ²Oxford Robotics Institute, Department of Engineering Science, University of Oxford, United Kingdom Contact: sungjun.cho@ndcn.ox.ac.uk

1. Introduction

Motivation

Accurately estimating functional brain networks from electrophysiological data has become a core neuroscientific challenge.

Limitation

While Hidden Markov Models (HMM)^[1] and deep learning methods^[2] are widely used, they either neglect long-range temporal dependencies or sacrifice interpretability by encoding brain network dynamics into a continuous latent space.

Objective

To address these limitations, we introduce **Dynamic Network States** (DyNeStE), a novel generative model that learns categorical representtations of network dynamics.

2. Data & Methods: Dynamic Network States (DyNeStE) Model

Dataset

- Nottingham MEGUK^[3]
- Resting-state
- Eyes-open
- CTF MEG system

Subjects (n=65)

- Healthy subjects
 - 18 to 60+ years old

Dynamic Modelling

- Categorical VAE with a Gumbel-Softmax distribution^[4,5]
- Amortised Bayesian inference Learnable categorical prior

3. DyNeStE can learn long-range temporal dependencies from simulated data

Long-range temporal patterns captured by learnable prior in DyNeStE

- Inferred parameters
 - DyNeStE can accurately infer categorical state activations and state covariance matrices.
- Lifetime distributions
 - State lifetime distributions generated by DyNeStE reproduce long-range temporal dependencies, while those generated by HMM do not.

4. DyNeStE can provide plausible dynamic resting-state network descriptions

12-state dynamic resting-state networks (RSNs) inferred by DyNeStE

DyNeStE produces categorical and mutually exclusive RSNs that are comparable to the canonical RSNs inferred by the HMM.

5. DyNeStE models categorical network dynamics

State activations inferred by DyNeStE are categorical and are analogous to HMM network dynamics.

6. DyNeStE captures long-range dependencies in real data

Fano factors demonstrate DyNeStE's capacity to model long-range temporal dependencies.

significance between inferred significance between sampled

7. Discussion & Conclusion

Key Takeaways

- We introduce DyNeStE, a novel model for representing dynamic brain networks as discrete states capable of capturing long-range temporal dependencies.
- Our model:
 - Provides interpretable dynamic network descriptions comparable to HMMs.
 - Effectively captures long-term dependencies in both simulated and empirical data.
- Our results indicate that DyNeStE can be a viable alternative to traditional HMM approaches, offering enhanced insights into neural mechanisms and neuroimaging analysis.

8. References

- [1] Vidaurre D et al. (2018). Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nature Communications, 9(1):2987.
- [2] Gohil C et al. (2022). Mixtures of large-scale dynamic functional brain network modes. Neurolmage, 263:119595.
- [3] The MEG UK dataset. https://meguk.ac.uk/database/.
- [4] Jang E et al. (2017). Categorical Reparameterization with Gumbel-Softmax. ICLR 2017.
- [5] Maddison CJ et al. (2017). The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. ICLR 2017.

For the open-source software for DyNeStE and HMM, please visit OSL Dynamics Toolbox (https://osl-dynamics.readthedocs.io/en/latest/).

