CS224n: NLP with Deep Learning

Lecture 6: Language Models and Recurrent Neural Networks

Language Modelling

Definition

· Language Modelling = Predict what word comes next

Given a sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$ compute probability distribution of $x^{(t+1)}$:

$$P(x^{(t+1)}|x^{(t)},\dots,x^{(1)})$$

- $x^{(t+1)}$ can be any word in a predefined vocabulary of words

n-gram Language Model

Collect statistics of how often different n-gams occur:
 We just count them in a large corpus of text

$$P(w|students\ opened\ their) = rac{count(students\ opened\ their\ w)}{count(students\ opened\ their)}$$

Problems

Sparsity problem 1

• "students opened their w" has never occured before If a specific n-gram equals 0, it will never be predicted

Solution

ightarrow add a small smoothing term δ to the count of every word, so that they all at least have a small probability

Sparsity problem 2

· "students opened their" has never occured before

Solution: backoff!

- → Go back to "opened their" to predict the next word
 - These sparsity problems get worse and worse with \emph{n} increasing: thus, we have to keep n < 5

Storage problems

• We have to store counts for a lot of different n-grams

A Neural Language Model

A fixed-window neural Language Model

output distribution

$$\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h} + \boldsymbol{b}_2) \in \mathbb{R}^{|V|}$$

hidden laver

$$\boldsymbol{h} = f(\boldsymbol{W}\boldsymbol{e} + \boldsymbol{b}_1)$$

concatenated word embeddings

$$e = [e^{(1)}; e^{(2)}; e^{(3)}; e^{(4)}]$$

words / one-hot vectors $oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, oldsymbol{x}^{(3)}, oldsymbol{x}^{(4)}$

- The weights of all the input words are all completely separated from each other:
 we learn the same things 4 times, instead of having each word reinforcing our learning
- There should be a lot of commonality in how we treat our way embeddings: processing 1st position shouldn't be too different from 3rd position
- → We NEED an architecture that can process any length input

Recurrent Neural Networks (RNN)

Architecture

Recurrent Neural Networks (RNN)

A family of neural architectures

Core idea: Apply the same weights W repeatedly

- Each hidden state is computed using both:
 - the previous hidden state
 - the input at that step
- Timestamp = hidden state (synonym)

Core idea

ullet We apply the **same** weights matrix W at every step

- Our outputs \hat{y} can be optionnally computed, for each step, or for a few steps only (depending on our goal)
- The embeddings could be dowloaded, and then fixed, or also fine-tuned, or also learned from scratch
- ullet We learn both W_e and W_h

Advantages

- · RNN can process any length of inputs
- ullet When computing step t, we are using information from many steps ago
- Model size is fixed (doesn't depend on the size of input)
- · The inputs are processed symmetrically, as the same weights are applied at each step

Disadvantages

- Computation is **slow**, as it is sequential
- In practice, information from many steps back is hard to access

Training a RNN Language Model

- For every step, compute the output distribution
- Compute the loss function on step t:

 Cross-entropy loss between this predicted probability distribution, and the true next word
- Compute the overall loss by averaging all these losses, on every word of the training set

Problem

Computing loss and gradients on whole corpus is too expensive!

Solution

- → Use a shorter sequence: a sentence, or a document for example
 - Use Stochastic Gradient Descent:

only compute loss for a few sentences, and then update

Backprop

• The gradient with respect to a repeated weight is the sum of the gradient, for each time step it appears

Backpropagation for RNNs

Question: What's the derivative of $J^{(t)}(\theta)$ w.r.t. the repeated weight matrix W_h ?

$$\begin{array}{cc} \underline{\text{Answer:}} & \frac{\partial J^{(t)}}{\partial \boldsymbol{W_h}} = \sum_{i=1}^t \frac{\partial J^{(t)}}{\partial \boldsymbol{W_h}} \bigg|_{(i)} \end{array}$$

"The gradient w.r.t. a repeated weight is the sum of the gradient w.r.t. each time it appears"

• These gradients should be calculated cumulatively, by using the previous one

Backpropagation for RNNs

Answer: Backpropagate over timesteps *i=t,...,*0, summing gradients as you go. This algorithm is called "backpropagation through time"

Generating text with a RNN

35

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to generate text by repeated sampling. Sampled output is next step's input.

A few funny examples

- Obama: Solemn tone, but incoherent text
- Harry Potter:
 The tone is well done again, but not too much sense either
- Recipe: Inability to remember what's happening overall

/!\ Warning:

Need to stay skeptical, as these clickbaity articles have probably been hand-picked by humans for being the funniest ones (or even modified by humans to be funny!)

Evaluating Language Models

- · Inverse probability of corpus, according to our Language Model
- We have to normalize it by the number of words, as otherwise the Perplexity would grow larger and larger with the corpus size

Evaluating Language Models

The standard evaluation metric for Language Models is perplexity.

$$\text{perplexity} = \prod_{t=1}^T \left(\frac{1}{P_{\text{LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})} \right)^{1/T} \underbrace{\qquad \qquad \text{Normalized by number of words}}_{}$$

Inverse probability of corpus, according to Language Model

• This is equal to the exponential of the cross-entropy loss $J(\theta)$:

$$= \prod_{t=1}^{T} \left(\frac{1}{\hat{y}_{x_{t+1}}^{(t)}} \right)^{1/T} = \exp \left(\frac{1}{T} \sum_{t=1}^{T} -\log \hat{y}_{x_{t+1}}^{(t)} \right) = \exp(J(\theta))$$

Lower perplexity is better!

$$Perplexity = rac{1}{P(corpus)}$$

Importance of Language Modelling

- Language Modelling is a benchmark task, which is used to measure our automatic understanding of language
- Language Modelling is a subcomponent of many NLP tasks:
 - Generating text
 - Estimating probability of text

Why should we care about Language Modeling?

- Language Modeling is a benchmark task that helps us measure our progress on understanding language
- Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text:
 - · Predictive typing
 - · Speech recognition
 - · Handwriting recognition
 - Spelling/grammar correction
 - · Authorship identification
 - Machine translation
 - Summarization
 - Dialogue
 - etc.

Recap

Recap

- Language Model: A system that predicts the next word
- Recurrent Neural Network: A family of neural networks that:
 - Take sequential input of any length
 - Apply the same weights on each step
 - Can optionally produce output on each step
- Recurrent Neural Network ≠ Language Model
- · We've shown that RNNs are a great way to build a LM.
- But RNNs are useful for much more!

RNN Uses

Tagging

- Part-of-speech Tagging (POS)
- Named Entity Recognition (NER)

RNNs can be used for tagging

e.g. part-of-speech tagging, named entity recognition

Sentence Classification

· Sentiment classification

RNNs can be used for sentence classification

e.g. sentiment classification

RNNs can be used as an encoder module

e.g. guestion answering, machine translation, many other tasks!

Represent the question:
 The hidden states that we get using the RNN on the question represent the question

Generating Text

RNN-LMs can be used to generate text

e.g. speech recognition, machine translation, summarization

This is an example of a *conditional language model*. We'll see Machine Translation in much more detail later.

- We have a Language Model, which is conditioned on some kind of input
- → It is a **conditional** language model

Other specific RNNs

More specific RNN architectures:

- GRU
- LSTM
- Multi-layer RNN