Digitalna vezja UL, FRI

P5 – Strukturalni gradniki

Izbiralnik-Multiplekser (MUX)

- Naslovni vhodi omogočajo izbiro podatkovnega vhoda
- Podatkovni vhodi vrednost 0 ali 1 (signal)
- ➤ Izhod vrednost podatkovnega vhoda izbranega z naslovnimi vhodi
- Delovanje (Funkcija) kombinacija signalov naslovnih vhodov določa izbiro podatkovnega vhoda in ga preslika na izhod

Splošna oznaka: m-naslovni MUX ali 2^m/1 MUX

1-naslovni MUX - delovanje

Preklopno stikalo

A₀=0, izhod y=A, ker je izbran podatkovni vhod I₀

A₀=1, izhod y=B, ker je izbran podatkovni vhod I₁

Podatkovna vhoda: I_1 , I_0 Naslovni vhod: A_0 Izhod: y

1-naslovni MUX - vezje

A_0	I ₁	I ₀	y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$y = \overline{A_0}.I_0 \vee A_0.I_1$$

Primer:

A_0	у
0	I_0
1	I_1

2-naslovni MUX - vezje

A_1	A_0	у
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Podatkovni vhodi: I_3 , I_2 , I_1 , I_0

Naslovna vhoda: A_1, A_0

Izhod:

$$y = \overline{A_1}.\overline{A_0}.I_0 \vee \overline{A_1}.A_0.I_1 \vee A_1.\overline{A_0}.I_2 \vee A_1.A_0.I_3$$

Primer:

3-naslovni MUX

Podatkovni vhodi: I₇, I₆,I₅,I₄,I₃,I₂,I₁,I₀

Naslovni vhodi: A_2, A_1, A_0

Izhod: y

A_2	A ₁	A_0	y
0	0	0	I ₀
0	0	1	I_1
0	1	0	_
0	1	1	
1	0	0	I_4
1	0	1	l ₅
1	1	0	l ₆
1	1	1	I ₇

Primer:

$$y = \overline{A_2}.\overline{A_1}.\overline{A_0}.I_0 \vee \overline{A_2}.\overline{A_1}.A_0.I_1 \vee \overline{A_2}.A_1.\overline{A_0}.I_2 \vee \overline{A_2}.A_1.A_0.I_3 \vee A_2.\overline{A_1}.\overline{A_0}.I_4 \vee A_2.\overline{A_1}.A_0.I_5 \vee A_2.A_1.\overline{A_0}.I_6 \vee A_2.A_1.A_0.I_7$$

- Realizacija funkcije (n=3) s 3-naslovnim MUX-jem
 - Naslovni vhodi- spremenljivke x, y, z
 - Podatkovni vhodi konstanti 0 in 1

A_2	A_1	A ₀		y
Х	у	Ζ	I_{i}	f(x,y,z)
0	0	0	0	$0 = I_0$
0	0	1	1	$1 = I_1$
0	1	0	2	$0 = I_2$
0	1	1	3	$0 = I_3$
1	0	0	4	$0 = I_4$
1	0	1	5	$1 = I_5$
1	1	0	6	$1 = I_6$
1	1	1	7	$1 = I_7$

OPTIMALNA oblika

- ➤ Realizacija funkcije (n=3) z 2-naslovnim MUX-jem:
 - Naslovni vhodi- spremenljivke x, y
 - Podatkovni vhodi spremenljivka z, z negirana in konstanti 0 in 1

A_1	A_0			У
Х	у	Z	I_{i}	f(x,y,z)
0	0	0		0 !
0	0	1	l _o	1 ! z
0	1	0		0 !
0	1	1	I_1	0 ! 0
1	0	0		0!
1	0	1	l ₂	1 ! z
1	1	0		1 !
1	1	1	l ₃	1 ! 1

MINIMALNA oblika

- ➤ Realizacija funkcije (n=3) z 1-naslovnim MUX-jem:
 - Naslovni vhodi- spremenljivka x
 - Podatkovni vhodi spremenljivki y,
 z in negirani y, z, konstanti 0 in 1

A ₀				y
X	У	Z	I_{i}	f(x,y,z)
0	0	0		0 !
0	0	1		1 !z
0	1	0		0!
0	1	1	I _o	1!
1	0	0		1 !
1	0	1		1 ! y
1	1	0		0!
1	1	1		0 !

KASKADNA oblika

- ➤ Realizacija funkcije (n=3) z 1-naslovnim MUX-jem in vrati:
 - Naslovni vhodi- spremenljivka x
 - Podatkovni vhodi funkcija f(y,z) in konstanti 0 in 1

			_	_		-
A_0					У	
X	У	Z	I_{i}	f	f(x,y,z)	
0	0	0		0	!	
0	0	1		1	 ! y.z	
0	1	0		0	!	
0	1	1	l _o	0	!	
1	0	0		0	!	
1	0	1		1	! y v z	
1	1	0		1	!	
1	1	1	l I _I	1	!	

Obe funkciji (AND, OR) lahko realiziramo z 2/1 MUX

- ➤ Realizirajmo še preostali funkciji ~y.z in yvz z multiplekserji.
- Obe funkciji (AND, OR) lahko realiziramo z 2/1 MUX.

у	Z	~y.z	yvz
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	1

Demultiplekser (DMUX)

Preklopno stikalo (kombinacija vrednosti na naslovnih (krmilnih) vhodih preslika podatkovni vhod na izbrani izhod):

Vhod (I) $DMUX \\ m/2^m \\ m \\ krmilnih vhodov$

2/4 Demultiplekser

S_1	S_0	03	o_2	o_1	o_0
0	0	0	0	0	I
0	1	0	0	Ι	0
1	0	0	I	0	0
1	1	Ι	0	0	0

Povezava: MUX in DMUX

Kodirnik

- Kodiranje izvede se pretvorba kode z večjim številom bitov v kodo z manjšim številom bitov
- Obstajajo:
 - Osmiški kodirnik
 - BCD (Desetiški kodirnik)
 - Prioritetni kodirnik
 - o ...
- Primer: Desetiški kodirnik

2 ^N vhodi	:	Kodirnik	:	N izhodi
----------------------	---	----------	---	-------------

D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	00	o_1	o_2	03
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

$$\begin{array}{rcl} o_0 & = & D_8 \lor D_9 \\ o_1 & = & D_4 \lor D_5 \lor D_6 \lor D_7 \\ o_2 & = & D_2 \lor D_3 \lor D_6 \lor D_7 \\ o_3 & = & D_1 \lor D_3 \lor D_5 \lor D_7 \lor D_9 \end{array}$$

Dekodirnik

- Preklopno stikalo kombinacija vrednosti na naslovnih vhodih aktivira izbrani izhod in ga postavi na 1.
- Krmilni vhod: Enable
- Obstajajo:
 - ▶ 1/2 Dekodirnik (1/2 DEK)
 - ▶ 2/4 Dekodirnik (2/4 DEK)
 - ▶ 3/8 Dekodirnik (3/8 DEK)

2/4 Dekodirnik (E=I, tabela krmilnih vhodov in izhodov)

S_1	S_0	03	o_2	01	o_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Realizacija funkcije: Kaj moramo dodati na izhode 2/4 dekodirnika?

Primer:

Realizacija logičnih funkcij (Dekodirnik in logična vrata OR) Zapis vsote produktov za funkciji *f* in *g*

$$f = \overline{X}_1 \cdot \overline{X}_2 \cdot \overline{X}_3 \vee X_1 \cdot \overline{X}_2 \cdot \overline{X}_3 \vee X_1 \cdot X_2 \cdot X_3$$

$$g = \overline{X}_1 \cdot \overline{X}_2 \cdot X_3 \vee X_1 \cdot \overline{X}_2 \cdot X_3 \vee X_1 \cdot X_2 \cdot X_3$$

Primer: 4- bitna ALE

▶ Izvedba krmilnega vezja za operacijo ALE (4/1 MUX)

Primer: Hitri ciklični (krožni) pomikalnik

- Kombinacijsko vezje za ciklični pomik ali rotacijo za več mest v levo (CPL) ali desno.
- Rotacija se opravi takoj (zakasnitev signalov skozi vezje)
- Uporabimo ga lahko v ALE (Aritmetično Logična Enota)

Podatek (n=4): 1001

Ciklični pomik za k- mest levo: 📂

k

0 1001 1001 - podatek se ne spremeni
1 1001 0011 - rotacija za 1 mesto levo
2 1001 0110 - rotacija za 2 mesti levo
3 1001 1100 - rotacija za 3 mesta levo

Hitri ciklični (krožni) pomikalnik levo - izvedba

Izbiralnik ali multiplekser (MUX) s 4 – podatkovnimi vhodi

