(5 1	73-	Lecti	ure	3																	
P100	f by	Case	25																		
۷×.	Prov	e usii	2	defin	ition	of	even	ı in		Univer			工,	Ç	j ev casc	en /	1 k	eve	in -	> jk	even.
		j, k	: (se	intzg	ers.	5 u y	pose	j	eve	n o	r k	c e	jen.	Τ	hen	ω	e	have	-tw	0
		ls.						· ·			^			_							
		e 1:																			`
		= 2 m							Sì	nce	w,	k E	Z	50	jk	folle	5W5	defi	nitle	in	
		ever	·										. 1								
	Case	2:	K	îs	eve	ν,		(51	mil	a V	to a	case	1)								
	Sine	e î	v.	60	th	case	es j	k i	S (even	. w	د ا	rave	pro	ien	the	. 59	atem	ent		
Proof	5t	le m	otes																		
·use	cou	nector	wo	rds	(not	all	mat	h)													
• wri	te	math	w/	sym	bols																
· dec	lare	defin	re	var	iabl	es e	even	ti	tu	ey'r	e i	defin	red	îw	tre	900	estio	n			
	/	Ьу																			
		/ (1																
Proc	f 1	ey C	Contr	a 205	itive																
		g av		•		th	at i	5 (0	sì call	4 0	9 0 100	lent	to	tru	- ov	iai.v.a	1 5	taten	ent		
•	,,,,	0		•				1) -9 Q						•					
		' '	æ		sitives			9 10	10.0					, (11)		()					
·Ren	A VA (.	if					14	an sild	r tr			raposi	n Juj								
		1, 6 E		'																	
2									,			(a + la	- 10)							
		contra	00 ST [7	vc .																	
	0.					'				< 8 -3										0 .	
	proof	Let	- '												,	ve k	inow	a 5	+ au	X 6	£7.
		Then	, (atb:	< 14 a	< 15.	(h)	5 15	wl	nat v	ve u	ranted	. +0	prove	٤.						

ex. $\forall n \in \mathbb{Z}$, if n^2 even $\rightarrow n$ even contrapositive: $\forall n \in \mathbb{Z}$ $n \text{ odd} \rightarrow n^2 \text{ odd}$ proof: Let n be an odd integer. By definition of odd, $n=2k+1$ when $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$. Since $k \in \mathbb{Z}$, $2k^2+2k$ if $k=2k+2+2k$ is odd by of odd.	EI. Let
proof: Let n be an odd integer. By definition of odd, $n=2k+1$ when $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$. Since $k\in\mathbb{Z}$, $2k^2+2k$ if $j=2k^2+2k$, so also $j\in\mathbb{Z}$. Then, $n^2=2j+1$: n^2 is odd by	EI. Let
Then $n^2 = (2k+1)^2 = 4k^2 + 4k+1 = 2(2k^2+2k)+1$. Since $k \in \mathbb{Z}$, $2k^2+2k$ ($j = 2k^2+2k$, so also $j \in \mathbb{Z}$. Then, $n^2 = 2j+1$: n^2 is odd by	EI. Let
j=2k2+2k, so also j EII. Then, n2 = 2j+1 : n2 is odd by -	
	the definition
of ogy	

Discussion Problems

1.1 Negations and contrapositives

Negate the following statements, moving all negations (e.g. "not") onto individual predicates/propositions. You may use shorthand to do intermediate work, but your final answer should be in English. Similarly, construct the contrapositive of each statement.

- (a) If my plant is dead, then I didn't water it or I left it in the dark.
- (b) If vampires exist, then there is a city c such that c is full of vampires and c does not have a blood bank.
- (c) For every martian w, if w is green, then w is tall or w is ticklish.
- (d) For any house h, for any dog d, d does not live at h or h has a supply of dog food.
- (e) For every movie m, if m is a fantasy movie and m is popular, then m has a cute lead actor and m has a big special effects budget.

1.3 Variations on direct proof

Prove the following claim. Your proof should divide into cases based on the sign of |x+7|.

(a) For any integer x, if |x+7| > 8, then |x| > 1.

Prove the following claims by contrapositive. Begin your proof by explicitly writing out the contrapositive. Then use direct proof to prove the contrapositive.

- (b) For all real numbers x and y, if $x + y \ge 2$, then $x \ge 1$ or $y \ge 1$.
- (c) For all integers m and n, if mn is even, then m is even or n is even.
- (d) For all real numbers x, if $x^2 3x + 2 > 0$, then $x \ge 2$ or x < 1.
- (e) For any integers m and n, if 7m + 5n = 147, then m is odd or n is odd.

actor and m has a big special effects budget.									(c) For any integers in and it, if fine 100 = 171, then he is odd of he is odd.												
1.1a)	Neo	ation	: N	ny pl	ant	îs d	ead,	and		watere	4i L	and	lef	+; +;	ìn	ligh	+				
	Cont	raposii	live:	1 f	wate	red n	ny p	ant	and	left	i+ ;	n lie	ht,	then	my	plant	is a	live			
1.10)	7	(4 w	Ema	rtian	, w	green	-> W	tall	V w	tickli	sh)	Ξ :	3 w	Emai	tian	s.t	w gr	reen a	and w	not to	III tirklis h
	Nego	ation:	Th	ere	exist	s a	mar	tian	W	such	tha	t u	, is	gr	een	and	W	ot			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					and																
	Cont	raposit	ive:	For e	every	marti	an u	, if	W	isn't	tall	and	isn't	ticklish	r, fu	en w	isn't	gree	n		
1-3c)																					
					t m							۱ ->	mn	.dd							
		,			n E			ľ							d in	A = 2;	+	1.11.0.00	: 6	77	
	•				where														0		1+1
												-) · • •
					7 1																
					the						MH	(5)	0 ~ ~	wh	m	n od	ch an	1	r od	λ.	
1.3d)					x+2																
			1		∀ χ																
	•				ER.																
	th	L CO	effic	ient	F6	χ^2	is	pos	itive	, tu	eve for	e be	twee	n a	nd i	nclud	ing	the	x-i.	nterce	pfs,
	Z	<u>.</u> 0.	Th	ere fo	re,	χ² -	3x+	2 < 0	00	χ.	=[1,	2),	an	d-	the	state	ment	is	prov	en.	