Weird and wonderful observations fitting the Poisson distribution

$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

L. von Bortkewitsch, Das Gesetz der kleinen Zahlen, 1898

 $Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$

as a consequence of being kicked by an equine

L. von Bortkewitsch, Das Gesetz der kleinen Zahlen, 1898

 $Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$

as a consequence of being kicked by an equine

L. von Bortkewitsch, Das Gesetz der kleinen Zahlen, 1898

Period of 20 years (1875–1894), 14 army corps

corps-years: $N = 14 \times 20 = 280$

deaths = 196

 $Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$

as a consequence of being kicked by an equine

L. von Bortkewitsch, Das Gesetz der kleinen Zahlen, 1898

Period of 20 years (1875–1894), 14 army corps

corps-years: $N = 14 \times 20 = 280$

deaths = 196

$$\lambda = 196/280 = 0.7$$

 $Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$

as a consequence of being kicked by an equine

L. von Bortkewitsch, Das Gesetz der kleinen Zahlen, 1898

Period of 20 years (1875–1894), 14 army corps

corps-years: $N = 14 \times 20 = 280$

deaths = 196

$\lambda =$	196/280	= 0.7
	,, 0, 200	

# deaths per corps-year, k	observed frequency	Poisson frequency N x Po(k; λ)
0	144	139
	91	97
2	32	34
3	11	8
4	2	
5	0	0