北京工业大学 2014-2015 学年第二学期 《 高等数学(工)-II》期末考试试卷 A 卷

考试说明:

考试方式: 闭卷。考试时间 95 分钟。考试日期: 2015 年 6 月 23 日。 **承诺:**

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:		学·	号:				班	号:		
注: 本试卷共	 									
的统一草稿纸。) (©	/\ <u>-</u>) ()	11/4/24	100 /1 /	2 10/11/2	27/10	/13 (2) /	1 /4 []

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	_	11	111	总成绩
满分	40	50	10	
得分				

得 分	评阅人	 一、填空题 (本大题共 10 道小题, 每题 4 分, 共 40
		、
		分)

- 1. 微分方程 $(x^2 + 1)dy + 2xydx = 0$ 的通解为 . .
- 2. 由方程 $x^3 + y^3 yz = 1$ 所确定的函数 z = z(x, y) 在 (1,1,1) 点的全微分 dz =_______.
- 3. 数项级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\mathbf{k} + \ln n}{n^2}$ (\mathbf{k} 为常数) 的敛散性是______

(若收敛,需指出是绝对收敛还是条件收敛)

4. 函数
$$f(x) = \frac{1}{4-x^2}$$
 的麦克劳林级数为______.

6. 设曲线
$$L$$
 是平面上任意一条封闭曲线,若 $\iint_L y dx - ax dy \equiv 0$,则常数 a 的值

为 ______.
7. 设曲面
$$\Sigma: z = \sqrt{x^2 + y^2}$$
 (0 $\leq z \leq$ 1),则曲面积分 $\iint_{\Sigma} \sqrt{x^2 + y^2 + z^2} dS =$ ______.

8 曲面
$$2xy - e^z + z = 3$$
 的在点 (2,1,0) 处的切平面方程为______

9. 设
$$f(x)$$
 是以 2π 为周期的函数,且 $f(x) = \begin{cases} -1, & -\pi < x \le 0; \\ 2x - 1, & 0 < x \le \pi; \end{cases}$ $S(x)$ 是 $f(x)$

的傅立叶级数的和函数,则 $S(5\pi)=$ _____.

10. 设空间区域
$$\Omega$$
由曲面 $z=2-\sqrt{x^2+y^2}$ 与平面 $z=0$ 围成,其体积为_____.

二、计算题(本大题共5道小题,每题10分,共50分)

得 分	评阅人	11. 求函数 $f(x, y) = 2xy + x^2 + 2y^2 - 1$ 的极值
		11. $A \boxtimes X \int (x, y) - 2xy + x + 2y - 1 \text{ if } A \boxtimes B$

设 $z = f(e^x, x - y)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x} = \frac{\partial^2 z}{\partial x \partial y} = .$

解:

得 分	评阅人

12. 计算曲线积分

$$I = \int_{C} (2xe^{y} + 1)dx + x^{2}(e^{y} + 1)dy$$

其中 L 为沿着 $x^2 + y^2 = 4$ 上从点 A(2,0) 到点 B(-2,0) 的上半圆弧.

解:

得 分	评阅人

」 13. 计算曲面积分 $I = \iint_{\Sigma} y dy dz - 2x dz dx + z^2 dx dy$, 其中 Σ 是锥 $\mathbf{m} z = \sqrt{x^2 + y^2}$ 与平面 z = 2 之间部分的下侧.

解:

得 分	评阅人

14. 求微分方程 $y'' - 5y' + 6y = xe^{2x}$ 的通解.

得 分	评阅人

15. 求: (1) 幂级数 $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$ 的收敛域及和函数.

(2) 级数
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)\cdot 2^n}$$
的和.

解:

三、证明题(本大题共2道小题,每题5分,共10分)

得 分	评阅人

16. 设 $u(x,y) = f(x+2y) + \int_0^{x-2y} g(t)dt$, 其中 f 和 g 二阶可导, 试证明: $4\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial v^2}$

得 分	评阅人

17. 已知函数 y = y(x)满足等式 y' = x + y, 且 y(0) = 1,

试讨论级数

$$\sum_{n=1}^{\infty} \left[y(\frac{1}{n}) - 1 - \frac{1}{n} \right]$$

的收敛性。