कतिक-১

क्तिक

সাধারন আলোচনা ঃ

X ও Y সম্বলিত দ্বিঘাত রাশির সাধারণ সমীকরণ : $Ax^2+By^2+Hxy+Gx+Fy+C=0$

সংঙ্গাঃ একটি চলমান বিন্দুর একটি তলে (xy) এমনভাবে চলে যেন কোন নির্দিষ্ট বিন্দু হতে চলমান বিন্দুর দুরত্ব ও চলমান বিন্দু হতে একটি নির্দিষ্ট রেখার দুরত্বের অনুপাত সবসময় ধ্রুব থাকে। এটা হলো কণিকের বৈশিষ্ট্য।

যেখানে, চলমান বিন্দু: $P\left(x,y\right)$; নির্দিষ্ট বিন্দুঃ উপকেন্দ্র বা ফোকাস , $S\left(x,y\right)$

নির্দিষ্ট সরলরেখারঃ দিকাক্ষ বা নিয়ামক ঃ ax + by + c = 0

ধ্রুব সংখ্যাঃ উৎকেন্দ্রিকতা বা বিকেন্দ্রিকতা, e

কণিকের বৈশিষ্ট্য:

 ${
m e}=0$ হলে, সমীকরণটা বৃত্তের সমীকরণে পরিণত হয়, ${
m A}={
m B}$, ${
m H}=0$

e=1 হলে, সমীকরণটা পরাবৃত্তের সমীকরণে পরিণত হয়, $\mathrm{H}^2-4\mathrm{AB}=0$ হলে

ху- সম্বলিত পদ পূর্ণ বর্গ সৃষ্টি করে ।

 $0 < e < 1 = \,$ হলে, সমীকরণটা উপবৃত্তের সমীকরণে পরিণত হয়, ${
m H}^2 - 4{
m AB} < 0$

 ${
m e}>1$ হলে, সমীরকণটা অধিবৃত্তের সমীকরণের সমীকরণে পরিণত হয়, ${
m H}^2-4{
m AB}>0$

 $e=a\;\sqrt{2}$ হলে, সমীকরণটা আয়তকার অধিবৃত্তের (যেখানে $a>rac{1}{\sqrt{2}}$) সমীকরণে পরিণত হয়।

চলমান বিন্দু p (x,y) এর সঞ্চারপথ (locus)ঃ সংঙ্গানুযায়ী,

 $p\left(x,y\right)$ বিন্দু হতে ফোকাসের দূরত্ব $=e imes p\left(x,y
ight)$ বিন্দু হতে দিকাক্ষ $,\,ax+by+c=0$ এর দূরত্ব

$$\therefore$$
SP = ePM $\Rightarrow \sqrt{(x-x_1)^2 + (y-y_1)^2} = e^{-\frac{ax+by+c}{\sqrt{a^2+b^2}}}$ বৰ্গ করে পাই,

$$(a^2 + b^2) \{(x - x_1)^2 + (y - y_1)^2\} = e^2 (ax + by + c)^2$$

$$\Rightarrow \{a^2(1-e^2)+b^2\} \ x^2 + \{a^2+b^2(1-e)^2\}y^2 - 2e^2abxy - 2x \ [(a^2+b^2)x_1 + ace^2] - 2y \ [(a^2+b^2)y_1 + bce^2] + (x_1^2 + y_1^2) \ (a^2+b^2) - e^2c^2 = 0$$

$$Ax^2 + By^2 + Hxy + Gx + Fy + c = 0$$
 \longrightarrow যে কোন কণিকের সাধারণ সমীকরণ।

Note:

- (i) তুমি অক্ষদ্বয় এবং মূলবিন্দুকে তোমার ইচ্ছামত পরিবর্তন করে সরল সমীকরণ প্রতিপাদন করতে পার।
- (ii) অক্ষ পরিবর্তন করে বিপরীত তত্ত্ব দ্বারা উক্ত সমীকরণ প্রতিপাদন করা যায় যা আমাদের পাঠ্যসূচির অন্তভূক্ত নয়। কিভাবে অক্ষকে পরিবর্তন করা যায় বা ঘুরানো যায় শিখবে। [উচ্চতর দক্ষতার জন্য]

পরাবৃত্তঃ

প্রমিত সমীকরন ঃSP=PM =ZN=a+x

$$\Rightarrow \sqrt{(x-a)^2 + (y-0)^2} = a + x$$

$$\Rightarrow y^2 = (x+a)^2 - (x-a)^2 = 4ax$$

$$\Rightarrow$$
y² = 4ax

অক্ষরেখার সাপেক্ষে প্রতিসম

অক্ষরেখা x- অক্ষের সমান্তরাল]

সুতরাং x- অক্ষের সাপেক্ষে প্রতিসম

অক্ষরেখাকে (α , β) বিন্দুতে স্থানান্তর করে ,

$$(y - \beta)^2 = 4a(x - \alpha)$$

 $* x^2 = 4ay \rightarrow y$ - অক্ষের সাপেক্ষে প্রতিসম

অক্ষরেখাকে (α, β) বিন্দুতে স্থানান্তর করে,

$$(x - \alpha)^2 = 4a(x - \beta)$$

বিভিন্ন আকারের পরাবৃত্ত ঃ

আকার-০২ঃ
$$x^2 = -4ay$$
 যেখানে, $a > 0$, y' - অক্ষের সাপেক্ষে প্রতিসম

আকার-০৩% y = ax² + bx + c → অক্ষরেখা y- অক্ষের সমান্তরাল

$$y = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$$

$$\Rightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{y}{a} + \frac{b^2 - 4ac}{4a^2} = \frac{1}{a} \left[y + \frac{b^2 - 4ac}{4a}\right]$$

 \Rightarrow $X^2=4a'Y$ আকার-০৪ ঃ $x=ay^2+by+c$ oঅক্ষরেখা x- অক্ষের সমান্তরাল

 $\mathbf{SOLVE}: \mathbf{y} = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} \to \mathbf{y}$ অক্ষের সাপেক্ষে প্রতিসম [অক্ষরেখা \mathbf{y} অক্ষের সমান্তরাল]

$$\therefore x^2=4ay$$
 , শীর্ষ $(-2,3)$ বিন্দুতে অবস্থিত তাহলে $(x+2)^2=4a\ (y-3)$ যা $(0,5)$ বিন্দুগামী

$$\Rightarrow 4 = 4a (5-3)$$
: $a = \frac{1}{2}$

$$\therefore (x+2)^2 = 4 \times \frac{1}{2} (y-3) \Rightarrow x^2 + 4x + 4 = 2y - 6 \Rightarrow y = \frac{1}{2} x^2 + 2x + 5$$
 [প্রদত্ত সমীকরণের সাথে সহগ সমীকৃত করে]

:.
$$a = \frac{1}{2}$$
, $b = 2$, $c = 5$ **Ans:**

পরাবৃত্তের সমীকরণ সমীকরণ:

$$(x - x_1)^2 + (y - y_1)^2 = (\frac{lx + my + n}{\sqrt{l^2 + m^2}})^2$$

বৰ্গ করে,
$$m^2x^2-2lmxy+ly^2-2x$$
 $\{(l^2+m^2)\,x_1-ln\}$

$$-2y \{(1^2 + m^2) y_1 + mn \} + (l^2 + m^2) (x_1^2 + y_1^2) - n^2 = 0$$

xy সম্বলিত পদসমূহ একটি পূর্ণ বর্গ $(mx-ly)^2$ সৃষ্টি করে । এটিই পরাবৃত্তের বৈশিষ্ট্য ।

 $(Ax + By)^2 + 2Gx + 2Fy + C = 0
ightarrow$ পরাবৃত্তের সাধারণ সমীকরণ

* (x1, y1) বিন্দুর অবস্থান ঃ

 $y_1{}^2-4ax<\!0$ হলে পরাবৃত্তের ভিতরে

= 0 হলে পরাবৃত্তের উপরে

>0 হলে পরাবৃত্তের বাইরে অবস্থিত হবে।

st পরাবৃত্তঃ ফোকাস (S) এবং দিকাক্ষ (L) হতে সমদুরবর্তী বিন্দুর সঞ্চার পথ।

* পরাবৃত্তের অক্ষঃ যা দিকক্ষের উপর লম্ব এবং ফোকাস বা উপকেন্দ্রগামী

* পরাবৃত্তের শীর্ষ ঃ উপকেন্দ্র (S) ও দিকাক্ষের মধ্যবিন্দু।

Note:

- (i) দিকাক্ষ ও অক্ষের ছেদবিন্দু শীর্ষ বিন্দু এবং উপকেন্দ্রি একই সরলরেখায় অবস্থিত
- (ii) দ্বিকোটি ফোকাস বা উপকেন্দ্রগামী = উপকেন্দ্রিক লম্বের দৈর্ঘ্য = 4a.
- (iii) যদি x < 0 হয় তবে $y^2 = 4ax$ এ y এর কোন বাস্তব মান পাওয়া যায় না যা $y^2 = 4ax$ পরাবৃত্তের উপর অবস্থিত। কিন্তু x এর 0 ব্যতিত যে কোন মানের জন্য y এর দুটি মান পাওয়া যাবে । y অক্ষের ডানদিকে কার্ভটি অসীম পর্যন্ত বিস্তৃত হতে পারে।
- (iv) যখন $x=0,\,y=0$ কার্ভটি মুলবিন্দুগামী হয়। অর্থাৎ শীর্ষ বিন্দুগামী যেখানে কেবল একটি বিন্দু $(0,\,0)$ পাওয়া যায় যা x=0 রেখার সাথে বা শীর্ষে স্পর্শক y অক্ষের সাথে সমাপতিত হয়।
- (v) ধরি , k $(a,\,l)$ প্রথম চতুর্ভাগে $\,y^2=4ax\,$ পরাবৃত্তের উপর উপকেন্দ্রিক লম্বের একটি প্রান্তবিন্দু ।

তাহলে,
$$1^2 = 4a^2.1 = +2a$$
. $\overrightarrow{SK} = 2a$. $\overrightarrow{SK'} = -2a$

.: উপকেন্দ্রিক লম্বের দৈর্ঘ্য $4a = \frac{(\infty x \pi হতে চলমান বিন্দুর দুরত্ব)^2}{ শীর্ষে স্পর্শকের উপর চলমান বিন্দু হতে লম্ব দূরত্ব = 4a.$

$$(vi)\ y^2 = 4ax$$
 পরাবৃত্তের (x_1,y_1) বিন্দুতে স্পর্শকের সমীকরণঃ $y_{y1} = 4a(rac{x+x_1}{2})$ অর্থাৎ $y_{y1} = \ 2a\ (x+x_1)$

অভিলম্বের সমীকরণ:
$$y-y_1=-rac{y_1}{2a}(x-x_1)$$

ঢাল এর সাহায্যেঃ
$$-\frac{y_1}{2a}=m$$
 হতে , $y_1=$ -2am, এবং ${y_1}^2=4ax$, হতে $x_1=am^2$

∴ অভিলম্বের পাদবিন্দু ,
$$(am^2 - 2am)$$

∴ অভিলম্বের আকার ঃ
$$y + 2am = m (x - am^2) \Rightarrow y = mx - 2am - am^2$$

*(x,y) বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় ঃ

ধরি ,
$$P\left(x_{1},\,y_{1}
ight)$$
 ও $Q\left(x_{2}\,,\,y_{2}
ight)\,\,y=4ax$ পরাবৃত্তের উপর দুটি বিন্দু ।

তাহলে,
$$y_1^2 = 4ax_1$$
 এবং $y_2^2 = 4ax_2$

$$y_1^2 - y_2^2 = 4a(x_1 - x_2)$$

$$rac{y_1 - y_2}{x_1 - x_2} = = rac{4a}{y_1 + y_2} o PQ$$
 রেখার ঢাল।

স্পর্শকের ক্ষেত্র ៖ $y_2 o y_1$ ও $x_2 o x_1$ হবে।

$$\therefore$$
 স্পর্শকের সমীকরণ : $y_1-y_1=rac{2a}{y_1}(x-x_1) \Rightarrow yy_1=2a(x+x_1)$

স্পর্শকের উপর লম্ব রেখাই অভিলম্বের \therefore অভিলম্বের ঢাল $=rac{y_1}{2a}\left(x-x_1
ight)\Rightarrow 2ay-2ay_1=-xy_1+x_1y_1$

$$\Rightarrow$$
 2ay + xy₁ = 2ay₁ + x₁y₁

অথবা, স্পশর্কের ঢাল $=\frac{\mathrm{d}y}{\mathrm{d}x}$ [ক্যালকুলাস এর সাহায্যে]

$$2y \frac{dy}{dx} = 4a : \frac{dy}{dx} = \frac{2a}{y} : (\frac{dy}{dx})_{(x_1,y_1)} = \frac{2a}{y_1}$$

 $EXAMPLE - 02: y^2 = 4ax$ পরাবৃত্ত (1, 2) বিন্দুগামী হলে (5, 6) বিন্দুতে পরাবৃত্তে একটি স্পর্শক ও অভিলম্বের সমীকরণ নির্ণয় কর।

SOLVE: $2^2=4a\times 1\Rightarrow a=1$ ় পরাবৃত্তটি ঃ $y^2=4x$; স্পর্শকের ঢাল : $(\frac{dy}{dx})_{(5,6)}=?$

$$2y \frac{dy}{dx} = 4 \implies \frac{dy}{dx} = \frac{2}{y} \implies (\frac{dy}{dx})_{(5,6)} = \frac{2}{6} = \frac{1}{3}$$

$$\therefore$$
 স্পশ্রকের সমীকরণ ঃ $y-6=\frac{1}{3}$ $(x-5)\Rightarrow 3y-18=x-5\Rightarrow x-3y+13=0$

অভিলম্বের সমীকরণ :
$$y-6=-3~(x-5) \Rightarrow 3x+y-21=0$$

 $*\ y=mx+c$ রেখাটি $y^2=4ax$ পরাবৃত্তের স্পর্শক বৃত্তয়ার শর্ত ঃ

$$(mx + c)^2 = 4ax \Rightarrow m^2x^2 + 2 (mc - 2a) x + c^2 = 0$$

যা x এর দ্বিঘাত সমীকরণ যার দুটি মূল x_1 ও x_2 একই হলে স্পর্শবিন্দু পাওয়া যাবেু । সেক্ষেত্রে নিশ্চয়কের মান শূন্য হবে।

$$\therefore 4(mc - 2a)^2 - 4m^2c^2 = 0 \Rightarrow c = \frac{a}{m}$$

স্পর্শ বিন্দুর ভূজ,
$$x = -\frac{mc-2a}{m^2} = -\frac{m \times \frac{a}{m} - 2a}{m^2} = -\frac{a-2a}{m^2} = \frac{a}{m^2}$$

$$y=\ m imesrac{a}{m^2}+rac{a}{m}=rac{2a}{m}$$
. . . স্পার্শ বিন্দু ৪ $(rac{a}{m^2},rac{2a}{m})$

 $ax^2+bx+c=0$ সমীকরণের বাহুদ্বয় সমান হলে স্পর্শ কিছু পাওয়া যাবে যার ভূজ, $x=rac{-b}{2a}$ কারণ $x_1=x_2=x$ এবং $x_1+x_2=rac{-b}{2a}$

আকার A (x,y)	শীর্ষ A (x,y)	ফোকাস বা উপকেন্দ্র S (x, y)	অক্ষের সমীকরণ $ax + bx + c = 0$	দিকাক্ষের সমীকরণ $a^1x + b^1y \\ + c^1 = 0$	শীর্ষে স্পর্শক $a^1x + b^1y + c^1 = 0$	উপকেন্দ্রিক লম্বের দৈর্ঘ্য (L)	উপকেন্দ্রিক লম্বের সমীকরণ $a_1{}^1 \ x + b_1{}^1 \ y \\ + c_1{}^1 = 0$	প্রতিসমতা	উপবৃত্তের প্রমিত সমীকরণ ঃ [0 <e <1]<="" th=""></e>
$y^2 = 4ax$	x = 0, y = 0 A (0,0)	x = a, $y = 0$ $S(a,0)$	y = 0 (x-অক্ষ)	x = -a y -অক্ষের সমান্তরাল	x = 0 (y—অক্ষ)	4a	x = a [y অক্ষের সমান্তরাল]	x অক্ষের প্রতিসম অক্ষরেখা x অক্ষ	
$x^2 = 4ay$	x = 0, y = 0 A (0,0)	y = a, $x = 0$ $s(0,a)$	x = 0 (y অক্ষ)	y = —a x -অক্ষের সমান্তরাল	y = o (x-অক্ষ)	4a	y = a [x অক্ষের সমান্তরাল]	y অক্ষের প্রতিসম অক্ষরেখা y অক্ষ	
$y^2 = -4ax$	x = 0, y = 0 A (0,0)	x = -a, $y = 0$ $s(-a,0)$	y = 0 (x-অক্ষ)	x = -a y অক্ষের সমান্তরাল	x = 0 (y—অক্ষ)	4a	x =— a [y অক্ষের সমান্তরাল]	x— অক্ষের প্রতিসম অক্ষরেখা x— অক্ষ	
$x^2 = -4ax$	x = 0, y = 0 A (0,0)	y = -a, $x = 0$ $s(0, -a)$	x = 0 (y-অক্ষ)	y = a [x -অক্ষের সমান্তরাল]	y = 0 (x—অক্ষ)	4a	y =— a [x অক্ষের সমান্তরাল]	y— অক্ষের প্রতিসম অক্ষরেখা y— অক্ষ	
	M' Z'($\frac{-a}{e}$,0	1,0) S'(-	ae,0)	C(0,0)	P(x,y) $S(ae,0)$	A(a,0)	$\frac{Z\left(\frac{a}{e},0\right)}{X}$	

অক্ষরেখা উভয় অক্ষের সাপেক্ষে প্রতিসম ঃ বৃহৎ অক্ষ ঃ x — অক্ষ , ক্ষুদ্র অক্ষ ঃ y— অক্ষ

P(x,y) বিন্দু হতে S এর দুরত্ব $= e \times p(x,y)$ বিন্দু হতে অনুরূপ দিকাক্ষের দুরুত্ব।

$$SP = e.PM \Rightarrow SP^2 = e^2 \times PM^2 : (x - ae)^2 + y^2 = e^2 \times (x - a/e)^2$$

$$x^{2} - 2aex + a^{2}e^{2} + y^{2} = e^{2} \left[x^{2} - \frac{2ax}{e} + \frac{a^{2}}{e^{2}} \right] = x^{2} (1 - e^{2}) + y^{2} = a^{2} - a^{2}e^{2}$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$
 : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, এখানে, $b^2 = a^2 - a^2e^2 \Rightarrow e = \sqrt{\frac{a^2-b^2}{a^2}} = \sqrt{1-\frac{b^2}{a^2}} = \frac{1}{a}\sqrt{a^2-b^2}$

 ${f Note:}$ (i) y=0 হলে, $x=\pm a$ অর্থাৎ A (a,0) ও A' (-a,0) উপবৃত্তের দুটি শীর্ষ ।

(ii) $y^2 = b^2 \ (1 - \frac{x^2}{a^2})$ উপবৃত্তে $x^2 > a^2$ হলে কোন বাস্তব মান পাওয়া যাবে না যা উপরোক্ত সমীকরনটিকে সিদ্ধ করে। [অর্থাৎ x > a বা x < -a] x = a এর ডান পাশে বা x = -a এর বাম পাশে কোন বিন্দু পাওয়া যাবে না যা উপবৃত্তটিকে সিদ্ধ করে।

[যখন বৃহৎ অক্ষ a কারণ a < b হতে পারে না]

- (iii) $x^2=a^2$ $(1-\frac{y^2}{b^2})$ উপবৃত্তে $y^2>b^2$ এর জন্য অর্থাৎ y>b ও y<-b এর জন্য x এর কোন বাস্তব মান পাওয়া যাবে না যা y=b এর উপরে বা y=-b এর নীচে অবস্থিত এবং উপবৃত্তিকৈ সিদ্ধ করে ।
- (iv) যখন x=+a বা $x=-a,\;y^2=0$ তখন x=a ও x=-a যথাক্রমে উক্ত উপবৃত্তে বৃহৎ অক্ষের প্রান্তবিন্দুতে দুটি স্পর্শক হবে।
- (v) যখন $y=+\,b$ বা $y=-\,b,\;\;x^2=0$ তখন y=b ও y=-b যথাক্রমে উক্ত উপবৃত্তে ক্ষুদ্র অক্ষের প্রান্তবিন্দতে দুটি স্পর্শক হবে।

$$(vi)$$
 একটি বিন্দুর উপকেন্দ্রিক দূরত্ব ঃ $\overrightarrow{SP}=\overrightarrow{ePM}=e\left(rac{a}{e}-x
ight)=a-ae$

$$\overrightarrow{S'P} = \overrightarrow{ePM'} = e\left(\frac{a}{e} + x\right) = a + ae$$
 , $\overrightarrow{SP} + \overrightarrow{S'P} = 2a$ ্যা একটি ধ্রব সংখ্যা ।

সিদ্ধান্ত:

- (a) উপবৃত্তটি $x=\pm a$ ও $y=\pm b$ এর মধ্যে সীমাবদ্ধ।
- (b) উপবৃত্তটির দিতীয় আর একটি ফোকাস বা উপকেন্দ্র $S_1(-ae,\!o)$ এবং অনুরূপদিকাক্ষ $L'\left(x=\!-a/e\right)$ আছে।

$$|\overline{E'C}| = |CE| = \frac{a}{e}$$
, The equation of L' is $x = -a/e$

উপবৃত্তটির কেন্দ্র (0,0) এর পরির্বতে (α,β) হলে ,

$$rac{(x-lpha)^2}{A^2}+rac{(y-eta)^2}{B^2}\,=1$$
 (যেখানে, $\,A^2>B^2\,$ হলে বৃহৎ অক্ষ $x-$ আক্ষের সমান্তরাল ।

$$\frac{(x-lpha)^2}{B^2}+\frac{(y-eta)^2}{A^2}~=~1$$
(যেখানে, $~B^2>A^2$ হলে বৃহৎ অক্ষ $y-$ আক্ষের সমান্তরাল।

উপবৃত্তের সাধারণ সমীকরন ঃ
$$\sqrt{(x-lpha)^2+\left(y-eta^2
ight)}=e^{rac{(ax+by+c)}{\sqrt{a^2+b^2}}}$$

যেখানে , উপকেন্দ্র $S\left(\alpha,\beta\right)$ ও অনুরূপ দিকাক্ষ ៖ ax+by+c=0 , উৎকেন্দ্রিকত $=e\left[0< e<1\right]$

পূর্বে আলোচনা করা হয়েছে। $e>1\;$ হলে অধিবৃত্তের সমীকরণ সাধারণ সমীকরণে পরিণত হবে।

$$* rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$
 উপবৃত্তে (x_1, y_1) বিন্দুতে স্পর্শকের সমীকরণ $: rac{xx_1}{a^2} + rac{yy_1}{b^2} = 1$. ঢাল $m = -rac{b^2x_1}{a^2y_1}$.

$$* rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$
 উপবৃত্তে $(x_1 \ , \ y_1)$ বিন্দুতে অভিলম্বের সমীকরণ: $y-y_1 = rac{b^2 x_1}{a^2 y_1} (\ x-x_1)$

$$*y=mx+c$$
 রেখা $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ উপবৃত্তের স্পর্শক হওয়ার শর্তঃ $c=\pm\sqrt{a^2m^2+b^2}$

ম্পার্শ বিন্দু ঃ
$$(\frac{-a^2m}{\sqrt{a^2m^2+b^2}}, \frac{b^2}{\sqrt{a^2m^2+b^2}})$$
 এবং $(\frac{a^2m}{\sqrt{a^2m^2+b^2}}, \frac{-b^2}{\sqrt{a^2m^2+b^2}})$.

অধিবৃত্ত (Hyperbola) ঃ

সংঙ্গানুযায়ী ঃ

$$SP = e PM :: SP^2 = e^2 \cdot PM^2$$

$$\therefore (x-ae)^2 + (y-0)^2 = e^2 (x-a/e)^2 = x^2 - 2xae + a^2e^2 + y^2 = x^2e^2 - 2xae + a^2$$

$$\xrightarrow{x^2} \quad y^2 \quad 1 \quad x^2 \quad y^2 \quad 1$$

$$\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1 : : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

যেখানে,
$$b^2 = a^2 \, (e^2 \, - 1) \Longrightarrow e = \sqrt{1 + \frac{a^2}{b^2}} \, = \frac{1}{a} \sqrt{a^2 + b^2}.$$

আড় অক্ষের দৈর্ঘ্য , $2a=\ AA'$, অনুবন্ধী অক্ষের দৈর্ঘ্য ,2b=BB'

Note:

 $(i) \ e^2 > 1$ এর জন্য $\ a^2 \ (e^2 - 1)$ রাশিটি ধনাত্মক $\ a^2 \ (e^2 - 1) \ = b^2$ [যা একটি ধনাত্মক সংখ্যা]

 $e^2>$, = or < 2 এর জন্য , $b^2>$, =, $<\!a^2\>$ হতে পারে।

 $(ii)\;A:(a,0)\;$ ও A':(-a,0) দুটি শীর্ষ বিন্দুতে উক্ত পরাবৃত্ত ছেদ করেছে।

 $(iii)\ x=0$ বসিয়ে পাই , $\ y^2=-b^2\Rightarrow y=\sqrt{-b^2}$ যা কাল্পনিক সংখ্যা $\ b\in R$ হলে , y এর এমন কোন পাওয়া যাবে না যা অধিবৃত্তর উপস্থ কোন বিন্দু ।

(iv) - a < x < a এর মধ্যে y এর কোন মান পাওয়া যাবে না। অর্থাৎ কার্ভের কোন অংশ A ও A' এর মধ্যে থাকতে পারে না । অর্থাৎ x > a or x > -a এর মধ্যে y এর অসংখ্য মান পাওয়া যাবে যার জন্য কার্ভিটি উভয় দিকে অসীম পর্যন্ত বিস্তৃত হতে পারে।

$$|\overline{E'C}| = |\overline{CE}| = {a \choose c}$$
; L_1 এর সমীকরণ : $x = {-a \choose e}$.

$$(v)\ P$$
 এর দ্বি-কোটি $=$ উপকেন্দ্রিক লম্বের দৈর্ঘ্য $=rac{2b^2}{a}$

(viii) একটি বিন্দুর বিন্দুর উপকেন্দ্রিক দুরত্ব ঃ \overline{SP} , $\overline{S'P}$

$$\overline{SP} = e. \overline{PM} = e(x - a/c) = ax - a$$

$$\overline{S'P} = e. \overline{PM'} = e(a/c + x) = a + ax.$$

 \overline{SP} ও \overline{SP} কে প্রায়ই উপকেন্দ্রিক ব্যাসার্ধ বলে [p এর]

$$\overline{S'P} - \overline{SP} = 2a$$
 হতে প্রমাণ করা যায়, $\frac{x^2}{y^2} - \frac{y^2}{c^2 - a^2} = 1$ $c > a$, $c^2 - a^2 = b^2$ যা ধনাত্বক

$$\therefore \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1, \ e = \frac{c}{a}.$$

(iii) অন্য আকার

(a)
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
 এখানে, আড় অক্ষঃ y অক্ষ

(b) সাধারণ সমীকরণ : $Ax^2 - By^2 = \pm 1$ (A, B > O) (+)ve sign হলে ফোকাস বা উপকেন্দ্র x অক্ষের উপর অবস্থিত এবং এর অক্ষদ্বয় $x \otimes y$ অক্ষ এবং কেন্দ্র মূলবিন্দু]

$$(c) \, rac{(x-h)^2}{a^2} - rac{(y-k)^2}{b^2} = 1$$
 যেখানে আড় অক্ষ y অক্ষের সমান্তরাল

$$rac{(y-k)^2}{a^2} - rac{(x-h)^2}{b^2} = 1$$
 যেখানে আড় অক্ষ x অক্ষের সমান্তরাল

Note: সবক্ষেত্রে আড় অক্ষের দৈর্ঘ্য = 2a units.

অনুবন্ধী অক্ষের দৈর্ঘ্য = 2b units.

(d) $x^2-y^2=\pm a^2$ আকারে অধিবৃত্তকে সমবাহু বা আয়াতকার অধিবৃত্ত বলে।

যায় উৎকেন্দ্রিকতা সকল ক্ষেত্রে $\sqrt{2}$, অর্থাৎ , $\mathrm{e}^-=\mathrm{a}\sqrt{2}$ ।

$$*\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$$
 অধিবৃত্তে $(x_1,\,y_1)$ বিন্দুতে স্পার্শকের সমীকরণ $:\frac{xx_1}{a^2}+\frac{yy_1}{b^2}=1$ ঢাল $:m=\frac{b^2x_1}{a^2y_1}$

এবং উক্ত বিন্দুতে অভিলম্বের সমীকরণ:
$$y-y_1=-rac{b^2x_1}{a^2y_1}\,(x-x_1)$$

$$*$$
 $\mathrm{mx}+\mathrm{c}$ রেখা $\frac{\mathrm{y}^2}{\mathrm{a}^2}-\frac{\mathrm{x}^2}{\mathrm{b}^2}=1$ পরাবৃত্তের স্পর্শক হওয়ার শর্ত ঃ

$$c=\pm \sqrt{a^2m^2+b^2} \ \ \ \text{জ্পাৰ্ক বিন্দু } \ \ (\frac{-a^2m}{\sqrt{a^2m^2+b^2}} \ , \frac{-b^2}{\sqrt{a^2m^2+b^2}}) \ \ \text{এবং } \ (\frac{a^2m}{\sqrt{a^2m^2+b^2}}, \frac{b}{\sqrt{a^2m^2+b}}).$$

*অসীমতট (Asymptotes): অধিবৃত্তের প্রমিত সমীকরণ: $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ হতে আমরা লিখতে পারি ,

$$\Rightarrow$$
 (bx + ay) (bx - ay) = a^2b^2

bx - ay = 0 রেখা ও বক্ররেখাকে একই অক্ষে আকাঁলে দেখা যাবে কেন্দ্র থেকে দুরত্ব বৃদ্ধির সাথে সাথে অর্থাৎ x এর বৃদ্ধির সাথে সাথে অধিবৃত্তটি রেখাটির খুবই নিকটবর্তী হচ্ছে কিন্তু রেখাটিকে স্পর্শ করতে পারছে না ।

ধরি, $P(x_1, y_1)$ প্রথম অথবা তৃতীয় চতুর্থভাগে A অধিবৃত্তের উপরস্থ একটি বিন্দু রেখাটি হতে বিন্দুর দুরুত্ব,

 $d=\left|rac{bx_1-ay_1}{\sqrt{a^2+b^2}}
ight|$ যেহেতু P অধিবৃত্তের উপরস্থ বিন্দু সুতরাং বিন্দুটি অবশ্যই অধিবৃত্তকে সিদ্ধ করবে । I

$$\therefore b^2 x_1^2 - a^2 y_1^2 = a^2 b^2 \Longrightarrow bx_1 - ay_1 = \frac{a^2 b^2}{bx_1 + ay_1}$$

$$\therefore d = \left| rac{a^2b^2}{\sqrt{a^2+b^2}}.rac{1}{bx_1+ay_1}
ight|$$
 স্পষ্টত d কখনও শূন্য হতে পারে না ;

যদি P বিন্দু কেন্দ্র হতে দুরে সরতে থাকে যাতে

x ও y উভয়ই অসীমভাবে বৃদ্ধি পায় তবে d শূন্যের খুবই নিকটবর্তী হবে। অর্থাৎ এক্ষেত্রে , $d \to 0$.

bx + ay = 0 রেখার জন্যও একই ফল পাওয়া যায় যখন $p(x_1, y_1)$ বিন্দুটি দ্বিতীয় ও চুতর্থ চতুর্ভাগে অর্ধিবৃত্তের উপরস্থ কোন বিন্দু] সুতরাং $y = \pm \frac{b}{a}x$ রেখা দুটি $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ অধিবৃত্তের দুটি অসীমতট।

অসীমতট হলো আয়তক্ষেত্রে কর্ণ বরাবর দুটি সরলরেখা

শর্ত ঃ আয়তক্ষেত্রের কেন্দ্র ও অধিবৃত্তের কেন্দ্র একই বিন্দু এবং আয়তক্ষেত্র বাহুগুলো অধিবৃত্তের অক্ষের সমান্তরাল এবং সমান।

Note: আয়তকার অধিবৃত্তের জন্য অসীমতট দুটি পরস্পর লম্ব।

*অসীমতট ্রর সমীকরণ দেয়া আছে। অধিবৃত্তের সমীকরণ নির্ণয় করতে হবে।

সূত্র ঃ (bx+ay) (bx-ay) + k = 0 অধিবৃত্তটি (x_1,y_1) বিন্দুগামী হলে, k নির্ণয় কর।

POINTS	ELLIPSE (উপবৃত্ত): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$; $a > b$ e <	$HYPERBOLA$ (অধিবৃত্ত): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; (a > b)$
1.কেন্দ্র : C	1. (0,0)	1. (0,0)
2. উপকেন্দ্র : S or S'	2. (±ae,o) S: (ae,0), S' (-ae, 0)	2. (±ae,0) S: (ae,0) S' (-ae, 0)
3. দিকাক্ষের সমীকরণ,MZ	$3. x = \pm \frac{a}{e}$	3. $x = \pm \frac{a}{e}$
4. উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও সমীকরণ	4. $\frac{2b^2}{a}$; $x = \pm ae$	4. $\frac{2b^2}{a}$; $x = \pm ae$
5. বৃহৎ অক্ষের সমীকরণ.	5. y = 0	5. y = 0 (আড় অক্ষ)
6. ক্ষুদ্র অক্ষের সমীকরণ;	6. $x = 0$	$6.~\mathrm{x}=0~$ (অনুবন্ধী অক্ষ)
7. উৎকেন্দ্রিকতা	7. $e = \sqrt{1 - \frac{b^2}{a^2}}$	7. $e = \sqrt{1 + \frac{b^2}{a^2}}$
8. যে অঞ্চলে কার্ভ পাওয়া যায় না।	8. $x > a$ or $x < -a$	8a < x < a
9. প্রধান সম্পর্ক:	9. $\overline{CS} = e. \overline{CA}$; $\overline{CA} = e. \overline{CE}$ $\overline{CS. \overline{CE}} = \overline{CA}^2$	9. $\overline{CS} = e. \overline{CA}$; $\overline{CA} = e. \overline{CE}$ $\overline{CS. CE} = \overline{CA}^2$
10. অন্য আকার	10 (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a ² > b ² . y অক্ষ→ বৃহৎ	$10.$ (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a^2 > b^2$. $y-$ অক্ষ আড় অক্ষ.
	$(b) \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \ a^2 > b^2$ কেন্দ্রঃ (h,k)	$(b) \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$, কেন্দ্রঃ (h, k) $work : x - h = X \Rightarrow x = X + h$.
	work: $x - h = X : x = X + h$. y - k = Y : y = Y + k.	$y - k = Y \Rightarrow y = Y + k.$

प्रतावृ

TYPE: 01

পরাবৃত্তের প্রমিত সমীকরন সমাধান সম্পর্কিত সমস্যাবলী

 $\mathbf{EXAMPLE} - \mathbf{01} \colon \mathbf{y}^2 = 9\mathbf{x}$ পরাবৃত্তের শীর্ষবিন্দু , উপকেন্দ্র , উপকেন্দ্রক লম্বের দৈর্ঘ্য , নিয়ামকের সমীকরণ নির্ণয় কর ।

SOLVE : প্রদত্ত পরাবৃত্তের সমীকরণ , $y^2=9x$ এর সাথে পরাবৃত্তের প্রমিত সমীকরণ , $y^2=4ax$ এর তুলনা করে পাই , $4a=9\Rightarrow a=rac{9}{4}$

শীর্ষবিন্দু :x = 0, y = 0 : শীর্ষবিন্দু(0,0)(Ans)

উপকেন্দ্র :(a,0), $a=\frac{9}{4}$, :উকেন্দ্রের স্থানাংক $\left(\frac{9}{4},0\right)$ (Ans)

উপকেন্দিক লম্বের দৈর্ঘ্য = $\left|4a\right| = \left|4 \times \frac{9}{4}\right| = 9$ (Ans)

নিয়ামকের সমীকরণ : $x = -a \Rightarrow x = -\frac{9}{4} \Rightarrow 4x = -9 \Rightarrow 4x + 9 = 0$ (Ans)

 $\mathbf{EXAMPLE} - \mathbf{02} \colon \mathbf{x}^2 = -12\mathbf{y}$ পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্র , উপকেন্দ্রিক লম্বের দৈর্ঘ্য , নিয়ামকের সমীকরণ নির্ণয় কর ।

 ${f SOLVE:}\ x^2=-12y$ প্রদত্ত পরাবৃত্তের সাথে পরাবৃত্তের প্রমিত সমীকরণ $x^2=-4ay$ এর তুলনা করে পাই,

 $4a = 12, \Rightarrow a = \frac{12}{4}, \quad \therefore a = 3$

শীর্ষবিন্দু: (0,0); x = 0, $-y = 0 \Rightarrow y = 0$ ়শীর্ষবিন্দু (0,0)(Ans)

উপকেন্দ্র :(0, -a) = (0, -3)(Ans)

উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $|4a| = |4 \times 3| = 12$ (Ans)

নিয়ামকের সমীকরণ $: y = a \Rightarrow y = 3 \Rightarrow y - 3 = 0$ (Ans)

 $EXAMPLE - 03: (y-1)^2 = 4(x-2)$ পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্র , উপকেন্দ্রিক লম্বের দৈর্ঘ্য , নিয়ামকের সমীকরণ নির্ণয় কর।

SOLVE: প্রদত্ত সমীকরণ, $(y-1)^2=4(x-2)$ এর সাথে পরাবৃত্তের প্রমিত সমীকরণ, $Y^2=4aX$ এর তুলনা করে পাই, Y=y-1, X=x-2

 $4a = 4 \Rightarrow a = 1$ $\therefore a = 1$,

শীর্যবিন্দু : $X=0 \Rightarrow x-2=0 \Rightarrow x=2$, $Y=0 \Rightarrow y-1=0 \Rightarrow y=1$: শীর্যবিন্দু : $(2,\ 1)(Ans)$

উপকেন্দ্র :(a,0) ; $X=a\Rightarrow x-2=1\Rightarrow x=3, Y=0\Rightarrow y-1=0\Rightarrow y=1$

∴ উপকেন্দ্র (3, 1)(Ans)

উপকেন্দ্রিক লম্বের দৈর্ঘ্য $= |4a| = |4 \times 1| = 4$

নিয়ামকের সমীকরণ : $X = -a \Rightarrow x - 2 = -1 \Rightarrow x = 1 \Rightarrow x - 1 = 0$ (Ans)

 $EXAMPLE - 04:5x^2 + 30x + 2y + 59 = 0$ পরাবৃত্তের শীর্ষবিন্দু, ফোকাস, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, এর অক্ষরেখা , নিয়ামকরেখার সমীকরণ, উপকেন্দ্রিক লম্বের প্রান্তবিন্দু দুটি ,শীর্ষে স্পর্শকের সমীকরণ এবং উপকেন্দ্রিক দূরত্ব নির্ণয় কর।

SOLVE : প্রদত্ত পরাবৃত্তের সমীকরণ, $5x^2 + 30x + 2y + 59 = 0 \Rightarrow 5\left(x^2 + 6x + \frac{5}{2}y + \frac{59}{5}\right) = 0$

$$5 \neq 0 : x^2 + 6x + \frac{2}{5}y + \frac{59}{5} = 0 \Rightarrow x^2 + 2 \cdot x \cdot 3 + 3^2 - 3^2 + \frac{2}{5}y + \frac{59}{5} = 0$$

$$\Rightarrow (x+3)^2 = \frac{-2}{5}y + 9 - \frac{59}{5} \Rightarrow (x+3)^2 = -\frac{2}{5}y + \frac{45-59}{5} \Rightarrow (x+3)^2 = -\frac{2}{5}y - \frac{14}{5}$$

$$\Rightarrow (x+3)^2 = -\frac{2}{5}(y+7)$$

পরাবৃত্তের প্রমিত সমীকরণ , $\, X^2 = -4aY \,$ এর তুলনা করে পাই , $\, X = x + 3 \,$, $\, Y = (y + 7) \,$

$$4a = \frac{2}{5} \Rightarrow a = \frac{1}{10}$$

(i) শীর্ষবিন্দু :
$$X=0$$
, $\Rightarrow x+3=0$ $\Rightarrow x=-3$, $Y=0$, $\Rightarrow Y+7=0$ $\Rightarrow y=-7$

∴শীর্ষবিন্দু:(-3, -7)

(ii)ফোকাস বা উপকেন্দ্র :Y =
$$-a$$
, \Rightarrow y + 7 = $\frac{-1}{10}$ \Rightarrow y = $-7 - \frac{1}{10}$ \Rightarrow y = $-\frac{70+1}{10}$ \therefore y = $\frac{-71}{10}$

$$X = 0 \Rightarrow x + 3 = 0 \Rightarrow x = -3$$

 \therefore ফোকাস বা উপকেন্দ্রের স্থানাঙ্ক $=\left(-3,-\frac{71}{10}\right)$

(iv)উকেন্দ্রিক লম্বের দৈর্ঘ্য = $|4a| = \left|\frac{2}{5}\right| = \frac{2}{5}$

(v)অক্ষরেখার সমীকরণ, x + 3 = 0

(vi) নিয়ামকের সমীকরণ,Y = a,
$$\Rightarrow$$
 y + 7 = $\frac{1}{10}$ \Rightarrow 10y + 70 = 1 \Rightarrow 10y + 69 = 0

(vii) উপকেন্দ্রিক লম্বের প্রান্তবিন্দু দুটি
$$(\pm 2a, a)$$
, $x = \pm 2a \Rightarrow x + 3 = \pm 2 \times \frac{1}{10} \Rightarrow x + 3 = \pm \frac{1}{5}$

$$(+)$$
 verifies, $x + 3 = \frac{1}{5} \Rightarrow x = -3 + \frac{1}{5} = \frac{-15+1}{5} = \frac{-14}{5}$

$$(-)$$
 veনিয়ে, $x + 3 = -\frac{1}{5} \Rightarrow x = -3 - \frac{1}{5} = \frac{-15 - 1}{5} = \frac{-16}{5}$

$$Y = a \Rightarrow y + 7 = \frac{-1}{10} \Rightarrow y = -7 - \frac{1}{10} = -\frac{70+1}{10} = -\frac{71}{10}$$

∴উপকেন্দ্রিক লম্বের প্রান্তেবিন্দুদ্বয় $\left(\frac{-14}{5}, \frac{-71}{10}\right)$, $\left(\frac{-16}{5}, \frac{-71}{10}\right)$

(viii) শীর্ষে স্পর্শকের সমীকরণ : X অক্ষের সমান্তরাল এবং X অক্ষ হতে -7 একক দূরে। $\therefore y=-7\Rightarrow y+7=0$

(ix) উভয় অক্ষের সমীকরণ, $X=0\Rightarrow x+3=0$, Y=0, $\Rightarrow y+7=0$

পরাবৃত্তটির x অক্ষের সমীকরণ, x+3=0এবং y অক্ষের সমীকরণ,x+7=0

$$(x)$$
 উপকেন্দ্রিক দূরত্ব = $\left|-\frac{71}{10}\right| - \left|\frac{-69}{10}\right| = \frac{2}{10} = \frac{1}{5} \left[\because 10y + 69 = 0 \quad \because y = -\frac{10}{69} \right]$

EXERCISE – 01: $y^2 = 4y + 4x - 8$ পরাবৃত্তের শীর্ষবিন্দু, উপকেন্দ্র , উপকেন্দ্রিক লম্বের দৈর্ঘ্য , নিয়ামকের সমীকরণ নির্ণয় কর। (1,2); (2,2); 4; x=0. (Ans)

EXERCISE – 02: $y^2 = 4px$ পরাবৃত্তটি (3, -2) বিন্দুদিয়ে অতিক্রম করলে তার উপকেন্দ্রিক লম্বের দৈর্ঘ্য, উপকেন্দ্রের স্থানাঙ্ক এবং নিয়ামক রেখার সমীকরণ নির্ণয় কর । 4/3, (1/3,0), 3x + 1 = 0 (Ans)

EXERCISE -03: $5x^2 + 15x - 10y - 4 = 0$ পরাবৃত্তের শীর্ষ, অক্ষরেখা ও নিয়ামকরেখার সমীকরণ নির্ণয় কর।

$$\left(\frac{3}{2}, \frac{-61}{40}\right)$$
; $2x + 3 = 0$; $40y + 81 = 0$ (Ans)

EXERCISE – 04: $3y^2-10x-12y-18=0$ পরাবৃত্তির শীর্ষ, উপকেন্দ্র, অক্ষরেখা ও নিয়ামকরেখার সমীকরণ নির্ণয় কর। $(-3,2),\left(-\frac{13}{6},2\right),y-2=0,6x+23=0$ (Ans)

TYPE: 02

পরাবৃত্ত সনাক্তকরন বা পরাবৃত্তের সমীকরন নির্ণয় সংক্রান্ত গনিতিক সমস্যা ঃ

EXAMPLE - 01: (-1,1) উপকেন্দ্র এবং x+y+1=0 নিয়ামকরেখা বিশিষ্ট পরাবৃত্তের (Parabola) সমীকরণ নির্ণয় কর । উক্ত পরাবৃত্তির অক্ষের সমীকরণ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য নির্ণয় কর ।

 ${f SOLVE}$: দেওয়া আছে, উপকেন্দ্রের স্থানাংক (-1,1)

এবং নিয়ামক রেখার সমীকরণ, $x+y+1=0 \Rightarrow x+y=-1 \Rightarrow \frac{x}{-1}+\frac{y}{-1}=1$

মনেকরি, নির্ণেয় পরাবৃত্তের উপরস্থ কোন বিন্দু P(x,y).

পরাবৃত্তের সঙ্গানুসারে উপকেন্দ্র (s) হতে পরাবৃত্তের উপর বিন্দুP(x,y) এর দূরত্ব =P(x,y) বিন্দু হতে নিয়ামকMZM' এর দূরত্ব, $\sqrt{\{x-(-1)\}^2+(y-1)^2}=|rac{x+y+1}{\sqrt{1^2+1^2}}|$

$$\Rightarrow (x+1)^2 + (y-1)^2 = \left(\frac{x+y+1}{\sqrt{2}}\right)^2$$
 বর্গ করে]

$$\Rightarrow x^2 + 2x + 1 + y^2 - 2y + 1 = \frac{x^2 + y^2 + 1 + 2xy + 2y + 2x}{2}$$

$$\Rightarrow$$
 2x² + 4x + 2 + 2y² - 4y + 2 = x² + y² + 2xy + 2x + 2y + 1

$$\Rightarrow x^2 + y^2 - 2xy + 2x - 6y + 3 = 0 \Rightarrow (x - y)^2 + 2x - 6y + 3 = 0$$

[Not: xyসম্বলিত পদ পূর্ণ বর্গ সৃষ্টি করে বলে উক্ত P(x,y) বিন্দুর চলমান পথ একটি পরাবৃত্ত হবে]

অক্ষরেখা: অক্ষরেখা নিয়ামক রেখার উপর লম্ব এবং উপকেন্দ্রগামী। নিয়ামকের উপর লম্বরেখার সমীকরণ,

$$x-y+k=0$$
 যা $(-1,1)$ বিন্দুগামী $1 : -1-1+k=0 \Rightarrow k=2$

 \therefore অক্ষরেখার সমীকরণ, x-y+2=0

উপকেন্দ্রিক লম্বের দৈর্ঘ্য: উপকেন্দ্রিক লম্বের সমীকরণ যা নিয়ামক রেখার সমান্তরাল এবং উপকেন্দ্রগামী।

নিয়ামক রেখার সমান্তরাল রেখার সমীকরণ, x+y+k=0 যা (-1,1) বিন্দুগামী।

সুতরাং,
$$-1+1+k=0 \Rightarrow k=0$$

 \therefore উপকেন্দ্রিক লম্বের সমীকরণ : $\mathbf{x}+\mathbf{y}=\mathbf{0}\Rightarrow\mathbf{y}=-\mathbf{x}\dots\dots(\mathbf{i})$

y = -x পরাবৃত্তের সমীকরণে বসিয়ে পাই, $\{x - (-x)\}^2 + 2x - 6(-x) + 3 = 0$

$$\Rightarrow$$
 $(2x)^2 + 2x + 6x + 3 = 0 $\Rightarrow 4x^2 + 8x + 3 = 0 \Rightarrow 4x^2 + 6x + 2x + 3 = 0$$

$$\Rightarrow 2x(2x+3) + 1(2x+3) = 0 \Rightarrow (2x+3)(2x+1) = 0$$

হয়,
$$2x+3=0\Rightarrow 2x=-3\Rightarrow x=\frac{-3}{2}$$
 ;অথবা, $2x+1=0\Rightarrow 2x=-1\Rightarrow x=-\frac{1}{2}$

$$(i)$$
নং সমীকরণে $x=-rac{3}{2}$ বসিয়ে পাই, $y=-x=-\left(-rac{3}{2}
ight)=rac{3}{2}$: উপকেন্দ্রিক লম্বের একটি প্রান্তবিন্দু $\left(-rac{3}{2},rac{3}{2}
ight)$

আবার ,(i)নং সমীকরণে $x=-rac{1}{2}$ বসিয়ে পাই , $y=-x=-\left(-rac{1}{2}
ight)=rac{1}{2}$ \therefore উপকেন্দ্রিক লম্বের অপর প্রান্তবিন্দু $\left(-rac{1}{2},rac{1}{2}
ight)$

$$\therefore$$
উপকেন্দ্রিক লম্বের দৈর্ঘ্য $=\sqrt{\left(-rac{1}{2}+rac{3}{2}
ight)^2+\left(rac{1}{2}-rac{3}{2}
ight)^2}=\sqrt{1^2+1^2}=\sqrt{2}$ একক.

∴নির্ণেয় পরাবৃত্তের সমীকরণ, $(x-y)^2+2x-6y+3=0$

অক্ষরেখার সমীকরণ, x-y+2=0 উপকেন্দ্রিক লম্বের দৈর্ঘ্য , $\sqrt{2}(\mathrm{Ans})$

EXAMPLE - 02: (3,4) উপকেন্দ্র ও (0,0) শীর্ষবিশিষ্ট পরাবৃত্তের নিয়ামকরেখার সমীকরণ নির্ণয় কর।

 ${f SOLVE}$: দেওয়া আছে, পরাবৃত্তের উপকেন্দ্রের স্থানাংক, ${f S}$ (3,4) এবং শীর্ষবিন্দু , ${f A}$ (0,0)

আমরা জানি . নিয়ামকরেখা অক্ষরেখার উপর লম্ব এবং অক্ষরেখা উপকেন্দ্র ও শীর্ষবিন্দুর সংযোজক সরলরেখা।

শীর্ষবিন্দু , অক্ষরেখা ও নিয়ামক রেখার ছেদবিন্দু ও উপকেন্দ্রের সংযোজক রেখাকে সমদ্বিখভিত করে।

ধরি, অক্ষরেখা ও নিয়ামক রেখার ছেদবিন্দু (α,β)

তাহলে শর্তানুসারে,
$$\frac{\alpha+3}{2}=0 \Rightarrow \alpha+3=0 \Rightarrow \alpha=-3$$

এবং
$$\frac{\beta+4}{2}=0\Rightarrow \beta+4=0\Rightarrow \beta=-4$$

ধরি , নিয়ামক রেখার ঢাল
$$= m_2$$
,অক্ষরেখার ঢাল m_1 হলে, $m_1 = \frac{4-0}{3-0} = \frac{4}{3}$

শর্তানুসারে ,
$$m_1 imes m_2 = -1 \ \Rightarrow m_2 imes rac{4}{3} = \ -1 \Rightarrow m_2 = -rac{3}{4}$$

তাহলে, নিয়ামকরেখা (-3,-4)বিন্দুগামী এবং $-\frac{3}{4}$ ঢাল বিশিষ্ট সরলরেখা।

সুতরাং, নিয়ামকরেখার সমীকরণ,
$$y-(-4)=-\frac{3}{4}\{x-(-3)\}\Rightarrow y+4=-\frac{3}{4}(x+3)$$

$$\Rightarrow 4y + 16 = -3x - 9 \Rightarrow 3x + 4y + 25 = 0$$

 \therefore নির্ণেয় নিয়ামক রেখার সমীকরণ , 3x+4y+25=0

EXAMPLE - 03: একটি পরাবৃত্তের সমীকরণ নির্ণয় করা যার উপকেন্দ্র মূলবিন্দুতে অবস্থিত এবং x-y+1=0 রেখাটি পরাবৃত্তকে এর শীর্ষবিন্দুতে স্পর্শ করে।

$$\Rightarrow$$
 x - y = -1 $\Rightarrow \frac{x}{-1} + \frac{y}{1} = 0$

উপকেন্দ্র S(0,0) হতে শীর্ষে স্পর্শকের উপর অংকিত লম্বের দৈর্ঘ্য , $AS=\left|rac{0-0+1}{\sqrt{1^2+(-1)^2}}
ight|=rac{1}{\sqrt{2}}$

তাহলে অক্ষরেখা ও নিয়ামক রেখার ছেদবিন্দুর দূরত্ব, $ZS=2 imes AS=2 imes rac{1}{\sqrt{2}}=\sqrt{2}$

$$\mathbf{x}-\mathbf{y}+\mathbf{1}=\mathbf{0}\Rightarrow\mathbf{y}=\mathbf{x}+\mathbf{1}$$
 সুতরাং, রেখারি ঢাল $=\mathbf{1}$

অক্ষরেখা এর উপর লম্বরেখা যার ঢাল =-1

ধরি, -1 ঢাল বিশিষ্ট রেখার উপর(0 , 0)বিন্দু হতে $\sqrt{2}$ এর দুরের বিন্দু স্থানাংক (x^1,y^1)

$$\tan\theta = -1 \quad \div \sin\theta = \frac{1}{\sqrt{2}} \quad \div \cos\theta = \frac{-1}{\sqrt{2}} \quad \div \frac{x^1 - 0}{\cos\theta} = \sqrt{2} \Rightarrow x^1 = \sqrt{2} \left(\frac{-1}{\sqrt{2}}\right) = -1$$

$$\frac{y^1-0}{\sin\theta}=\sqrt{2}$$
 \therefore $y^1=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1$ \therefore Z বিন্দুর স্থানাংক $(-1,1)$

(-1,1)বিন্দুগামী এবং 1ঢাল বিশিষ্ট রেখাই নিয়ামকরেখা যার সমীকরন, $y-1=1(x+1) \Rightarrow y-1=x+1 \Rightarrow x-y+2=0$

ধরি, নির্ণেয় পরাবৃত্তের উপরস্থ চলমান বিন্দু P(x,y)

সংজ্ঞানুসারে,
$$SP = PM \Rightarrow \sqrt{(x-0)^2 + (y-0)^2} = \left| \frac{x-y+2}{1^2+(-1)^2} \right|$$

$$\Rightarrow \left(\sqrt{x^2 + y^2}\right)^2 = \left(\left|\frac{x - y - 2}{\sqrt{2}}\right|\right)^2 \Rightarrow x^2 + y^2 = \frac{x^2 + y^2 + 4 - 2xy - 4y + 4x}{2}$$

$$\Rightarrow 2x^2 + 2y^2 = x^2 + y^2 - 2xy + 4x - 4y + 4 \Rightarrow x^2 + y^2 + 2xy - 4x + 4y - 4 = 0$$

$$\Rightarrow (x+y)^2 - 4x + 4y - 4 = 0$$
 যা নির্ণেয় পরাবৃত্তের সমীকরণ।(Ans)

.একটি পরাবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্র মূলবিন্দুতে অবস্থিত এবং x-y+1=0 রেখাটি পরাবৃত্তকে এর শীর্ষবিন্দুতে স্পর্শ করে। $(x+y)^2-4x+4y-4=0$ (Ans.)

EXERCISE – 01: এরূপ পরাবৃত্তের সমীকরণ নির্ণয় কর, যার উপকেন্দ্র(-8,-2)এবং নিয়ামকরেখার সমীকরণ 2x-y=9. $[(x+2y)^2+116x+2y+259=0 \text{ (Ans)}]$

EXERCISE – 02: (1,1) উপকেন্দ্র ও 3x + 4y = 1 নিয়ামকরেখা বিশিষ্ট পরাবৃত্তের সমীকরণ নির্ণয় কর। এর অক্ষেরও সমীকরণ নির্ণয় কর। $(4x - 3y)^2 - 44x - 42y + 49 = 0$, 3y - 4x + 1 = 0 (Ans)

EXERCISE – 03: একটি পরাবৃত্তের উপকেন্দ্র (0,0)শীর্ষবিন্দু(-2,-1)। তার নিয়ামকরেখার সমীকরণ নির্ণয় কর।

$$2x + y + 10 = 0$$
 (Ans)

EXERCISE – 04: একটি প্যারাবোলার নিয়ামকরেখা 2x + y = 0এবং শীর্ষ (3, -1) । প্যারাবোলাটির সমীকরণ নির্ণয় কর। $x^2 + 4y^2 - 4xy - 50x + 125 = 0$ (Ans)

TYPE: 03

পরাবৃত্তের ফোকাস দূরত্ব সংক্রান্ত গনিতিক সমস্যা ঃ

 $EXAMPLE-01: y^2=8x$ পরাবৃত্তের উপরিষ্থিত কোনো বিন্দুর ফোকাস দূরত্ব 8 ; ঐ বিন্দুর স্থানাঙ্ক নির্ণয় কর।

SOLVE: পরাবৃত্তটিকে $y^2 = 4ax$ এর সাথে মিলিয়ে পাই, $4a = 8 \Rightarrow a = 2$,

প্রশ্নতে , $x + a = 8 \Rightarrow x = 6$

 $y^2 = 8.6 = 48; \ y = \sqrt{48} = \pm 4\sqrt{3}$ অতএব, নির্ণেয় বিন্দুটির স্থানাঙ্ক $(6, \pm 4\sqrt{3})$

 $EXAMPLE - 02: y^2 = 16x$ পরাবৃত্তের উপরিষ্থিত কোনো বিন্দুর উপকেন্দ্রিক দূরত্ব $6: \emptyset$ বিন্দুর স্থানাংক নির্ণয় কর।

 $SOLVE: y^2 + 16x$ এর সাথে পরবৃত্তের প্রমিত সমীকরণ $y^2 = 4ax$ এর প্রদত্ত পরাবৃত্ত তুলনা করে পাই,

 $4a = 16 \Rightarrow a = 4$,

আমরা জানি, উপকেন্দ্রিক দূরত্ব= নিয়ামক রেখা হতে উকেন্দ্রের দূরত্ব = x+a=x+4

প্রামতে, $x + 4 = 6 \Rightarrow x = 6 - 4$: x = 2

 $y^2 = 16x$ পরাবৃত্তে x = 2 বসিয়ে পাই, $y^2 = 16 \times 2 \Rightarrow y^2 = 32 \Rightarrow y^2 = \left(4\sqrt{2}\right)^2$ $\therefore y = \pm 4\sqrt{2}$

∴নির্ণেয় বিন্দুর স্থানংক $(2, \pm 4\sqrt{2})$ (Ans)

EXERCISE – 04 : $y^2 = 8x$ পরাবৃত্তের উপরস্থ কোনো বিন্দুর ফোকাস দূরত্ব 6 ; ঐ বিন্দুর স্থানাঙ্ক নির্ণয়

কর। $(4, \pm 4\sqrt{2})$ (Ans)

EXERCISE – 04: $y^2 = 9x$ পরাবৃত্তের উপরিষ্থিত P বিন্দুর কোটি 12 হলে, ঐ বিন্দুর উপকেন্দ্রিক দূরত্ব নির্ণয়

কর। $18\frac{1}{4}$ (Ans)

EXAMPLE - 03: $y = ax^2 + bx + c$ প্যারাবোলটির শীর্ষ (-2,3) বিন্দুতে অবস্থিত এবং তা (0,5) বিন্দু দিয়ে অতিক্রম

করে। a, b, cএর মান নির্ণয় কর।

SOLVE: প্রদত্ত পরাবৃত্ত, $y = ax^2 + 6x + c$

পরাবৃত্তটি $({\bf x}-{\bf x}_1)^2=4a\ ({\bf y}-{\bf y}_1)$ আকারের ফলে তা ${\bf y}$ অক্ষের সমান্তরাল রেখার সাপেক্ষে প্রতিসম।

(-2,3)শীর্ষ বিশিষ্ট y অক্ষের সমান্তরাল অক্ষরেখার সাপেক্ষে পরাবৃত্তটির সমীকরণ,

 $(x+2)^2=4a\ (y-3)$ যা (0,5) বিন্দুগামী, সুতরাং, $(0+2)^2=4a\ (5-3)\Rightarrow 4=4a\times 2\Rightarrow 4a=2$

(i)নং পরাবৃত্তটির সমীকরণ, $(x+2)^2=2(y-3)\Rightarrow x^2+4x+4=2(y-3)$

 $\Rightarrow \frac{1}{2}x^2 + 2x + 2 = y - 3 \Rightarrow y = \frac{1}{2}x^2 + 2x + 5$; নির্ণেয় পরাবৃত্ত ও প্রদত্ত পরাবৃত্ত দুটিকে পরস্পর তুলনা করে পাই, $a = \frac{1}{2}x^2 + 2x + 2 = y - 3$

 $\frac{1}{2}$, b = 2, c = 5 (Ans)

[বি: দ্র : প্রদত্ত পরাবৃত্তকে প্রমিত আকারে পরিণত করে অংকটি সমাধান করা যাবে।]

উদকৃস্ত

TYPE: 01

উপবৃত্তের প্রমিত সমীকরন সমাধান সম্পর্কিত সমস্যাবলী

EXAMPLE - 01: $4x^2 + 5y^2 - 16x + 10y + 1 = 0$ উপবৃত্তের উপকেন্দ্র দুইটি, উপকেন্দ্রিক লম্বের দৈর্ঘ্য, উৎকেন্দ্রিকতা এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।

SOLVE :প্রদত্ত উপবৃত্তের সমীকরণ, $4x^2 + 5y^2 - 16x + 10y + 1 = 0 \Rightarrow 4x^2 - 16x + 5y^2 + 10y + 1 = 0$

$$\Rightarrow 4(x^2 - 4x) + 5(y^2 + 2y) + 1 = 0 \Rightarrow 4(x^2 - 4x + 4) + 5(y^2 + 2y + 1) - 4 \times 4 - 5 \times 1 + 1 = 0$$

$$\Rightarrow 4(x-2)^2 + 5(y+1)^2 - 20 = 0 \Rightarrow 4(x-2)^2 + 5(y+1)^2 = 20$$

$$\Rightarrow \frac{(x-2)^2}{5} + \frac{(y+1)^2}{4} = 1 \dots (i)$$

(i)নং সমীকরণের সাথে উপবৃত্তের প্রমিত সমীকরণ, $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$ এর তুলনা করে পাই, $a^2 = 5 \Rightarrow a = \sqrt{5}$

$$b^2 = 4 \Rightarrow b = 2$$
এবং $X = x - 2$, $Y = y + 1$

উপকেন্দ্রের স্থানাংক : S(ae, o), S'(-ac, 0)

$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{4}{5}} = \sqrt{\frac{5-4}{5}} = \frac{1}{\sqrt{5}} : ae = \sqrt{5} \times \frac{1}{\sqrt{5}} = 1$$

$$\therefore$$
 X = ae = 1 \Rightarrow x - 2 = 1 \Rightarrow x = 3 এবং Y = 0 \Rightarrow y + 1 = 0 \Rightarrow y = -1

$$\therefore$$
 S (3,-1) আবার,-ae = -1 \Rightarrow X = -ae \Rightarrow x - 2 = -1 \Rightarrow x = 1,

$$Y = 0 \Rightarrow y + 1 = 0 \Rightarrow y = -1 :: S'(1, -1)$$

উপকেন্দ্রিক লম্বের দৈর্ঘ্য
$$=$$
 $\frac{2b^2}{a}$ $=$ $\frac{2\times 4}{\sqrt{5}}$ $=$ $\frac{8}{\sqrt{5}}$; উৎকেন্দ্রিকতা , e $=$ $\frac{1}{\sqrt{5}}$

নিয়ামক রেখার সমীকরণ :
$$X=\pm a/e \Rightarrow x-2=\pm \frac{\sqrt{5}}{\frac{1}{\sqrt{5}}} \Rightarrow x-2=\pm 5$$

$$(+)$$
ve নিয়ে, $x-2=5\Rightarrow x-7=0$; $(-)$ veনিয়ে, $x-2=-5\Rightarrow x+3=0$

$$\therefore$$
নিয়ামক রেখা দুটি, $x-7=0,x+3=0$ \div উপকেন্দ্র $:(3,-1),\ (1,-1)$

উপকেন্দ্রিক লম্বের দৈর্ঘ্য
$$\,:\! \frac{8}{\sqrt{5}}\!,$$
উৎকেন্দ্রিকতা $\,:\! \frac{1}{\sqrt{5}},$ নিয়ামকরেখা দুটি $:x-7=0$, $x+3=0$

EXAMPLE-02: p এর মান কত হলে, $4x^2+py^2=80$ উপবৃত্তটি $(0,\pm 4)$ বিন্দু দিয়ে যাবে ? উপবৃত্তটির উপকেন্দ্রদ্বয়ের স্থানাঙ্ক ও অক্ষদ্বয়ের দৈর্ঘ্য নির্ণয় কর।

SOLVE: প্রদত্ত উপবৃত্তের সমীকরণ, $4x^2 + py^2 = 80 (i)$

(i)নং উপবৃত্তটি
$$(0,\pm 4)$$
 বিন্দুগামী বলে, $4\times 0+p(\pm 4)^2=80\Rightarrow 16p=80\Rightarrow p=\frac{80}{16}$ $\therefore p=5$ (Ans)

$$\therefore$$
 p এর মান (i)নং এ বসিয়ে পাই, $4x^2 + 5y^2 = 80 \Rightarrow \frac{x^2}{20} + \frac{y^2}{10} = 1$

উপবৃত্তের প্রমিত সমীকরণ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই, $a^2 = 20 \Rightarrow a = \sqrt{20} = \sqrt{5 \times 4} = 2\sqrt{5}$

$$b^2 = 16 \Rightarrow b = \sqrt{16} = 4$$
, $a > b$ $\therefore e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{20}} = \sqrt{\frac{20 - 16}{20}} = \sqrt{\frac{4}{20}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}}$

উপকেন্দ্রের স্থানাংক্ষ:
$$(\pm ae, 0) = (\pm 2\sqrt{5} \times \frac{1}{\sqrt{5}}, 0) = (\pm 2, 0)$$
(Ans)

অক্ষদুটি যথাক্রমে 2a এবং 2b অর্থাৎ, $2\times 2\sqrt{5}$ এবং 2×4 বা , $4\sqrt{5}$ এবং8

বৃহৎ অক্ষ, $2a = 4\sqrt{5}$, ক্ষুদ্র অক্ষ, 2b = 8 (Ans)

 $EXAMPLE - 03:9x^2 + 25y^2 = 225$ উপবৃত্তের উৎকেন্দ্রিকতা, উপকেন্দ্র, উপকেন্দ্রিক লম্বের দৈর্ঘ্য ও সমীকরণ এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।

 ${f SOLVE}$: প্রদত্ত উপবৃত্তের সমীকরণ, $9x^2 + 25y^2 = 225$

$$\Rightarrow rac{x^2}{25} + rac{y^2}{9} = 1$$
[225 দারা উভয় পক্ষকে ভাগ করে।]... ... (i)

(i) নং সমীকরণকে, উপবৃত্তের প্রমিত সমীকরণ, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই, $a^2 = 25 \Rightarrow a = 5$, $b^2 = 9 \Rightarrow b = 3$

উৎকেন্দ্রিকতা,
$$e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{25-9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$$

উপকেন্দ্র :($\pm ae$, 0); $x = \pm ae \Rightarrow x = \pm 5 \times \frac{4}{5} \therefore x = \pm 4$, y = 0

 \therefore উপকেন্দ্রের স্থানাংকঃ $(\pm 4,0)$

উপকেন্দ্রিক লম্বের দৈর্ঘ্য
$$=$$
 $\frac{2b^2}{a}$ $=$ $\frac{2\times 9}{5}$ $=$ $\frac{18}{5}$

উপকেন্দ্রিক লম্বের সমীকরণ ঃ $x=\pm ae=5 imes rac{4}{5}=\pm 4$ $\therefore x=\pm 4$

$$(+)$$
 ve নিয়ে, $x = 4 \Rightarrow x - 4 = 0$; $(-)$ ve নিয়ে, $x = -4 \Rightarrow x + 4 = 0$

নিয়ামক রেখার সমীকরণ : $x=\pm \frac{a}{e}=\pm 5 \times \left(\frac{1}{4/5}\right)=\pm \frac{25}{4}$. বা $4x=\pm 25$

(+)veনিয়ে, $4x = 25 \Rightarrow 4x - 25 = 0$

(-)ve নিয়ে $, 4x = -25 \Rightarrow 4x + 25 = 0$

EXERCISE – 01 : $\frac{x^2}{p} + \frac{y^2}{5^2} = 1$ উপবৃত্তটি (6,4)বিন্দু দিয়ে অতিক্রম করে। p- এর মান, উপবৃত্তের উৎকেন্দ্রিকতা এবং উপকেন্দ্রের স্থানাঙ্ক নির্ণয় কর। $100, \frac{\sqrt{3}}{2}; \left(\pm 5\sqrt{3}, 0\right)$ (Ans:)

EXERCISE – 02 : এর মান কত হলে, $px^2+4y^2=1$ উপবৃত্তটি $(\pm 1,0)$ বিন্দু দিয়ে যাবে ?

উপবৃত্তটির উৎকেন্দ্রিকতা ও অক্ষ দুইটির দৈর্ঘ্য নির্ণয় কর। p=1,উৎকেন্দ্রিকতা, $\frac{1}{2}\sqrt{3};2;1$ (Ans)

EXERCISE – 03 :দেখাও যে $,2x^2+y^2-8x-2y+1=0$ সমীকরণটি একটি উপবৃত্ত নির্দেশ করে। ইহার উৎকেন্দ্রিকতা এবং উপকেন্দ্র দুইটির স্থানাঙ্ক নির্ণয় কর। $e=\frac{1}{\sqrt{2}},(2,3),(2,-1)($ Ans)

EXERCISE – 04 $:2x^2 + 3y^2 = 1$ উপবৃত্তের উপকেন্দ্রিক লম্বের দৈর্ঘ্য এবং উপকেন্দ্র দুইটির স্থানাংক নির্ণয় কর।

 $\frac{2}{3}\sqrt{2}$, $\left(\pm\frac{1}{\sqrt{6}}$, $0\right)$ (Ans:)

TYPE: 02

উপবৃত্ত সনাক্তকরন বা উপবৃত্তের সমীকরন নির্ণয় সংক্রান্ত গনিতিক সমস্যা

 $\mathbf{EXAMPLE}$ -01: উপকেন্দ্র (-1,1) , উৎকেন্দ্রিকতা $\left(\frac{1}{2}\right)$ এবং নিয়ামকরেখা $\mathbf{x}-\mathbf{y}+3=0$ হলে , উপবৃত্তটির সমীকরণ নির্ণয় কর।

 ${f SOLVE}$: দেওয়া আছে, নির্ণেয় উপবৃত্তের উপকেন্দ্র (-1,1) উৎকেন্দিকতা , ${f e}=rac{1}{2}$

নিয়ামকরেখা , MZ : x - y + 3 = 0

ধরি, নির্ণেয় উপবৃত্তের উপরস্থ চলমান বিন্দু P(x,y) তাহলে উপবৃত্তের সংজ্ঞানুসারে আমরা জানি, $SP=e.\ PM$

$$\Rightarrow \sqrt{\{x-(-1)\}^2+(y-1)^2} = \frac{1}{2} \left| \frac{x-y+3}{\sqrt{1^2+(-1)^2}} \right| \Rightarrow (x+1)^2+(y-1)^2 = \left\{ \frac{1}{2} \left(\frac{x-y+3}{\sqrt{2}} \right) \right\}^2$$

$$\Rightarrow x^2 + 2x + 1 + y^2 - 2y + 1 = \frac{1}{8}(x^2 + y^2 + 9 - 2xy - 6y + 6x)$$

$$\Rightarrow 8x^2 + 16x + 8y^2 - 16y + 16 = x^2 + y^2 - 2xy + 6x - 6y + 9$$

$$\Rightarrow 7x^2 + 7y^2 + 2xy + 10x - 10y + 7 = 0$$

যা নির্ণেয় উপবৃত্তের সমীকরণ। (Ans)

EXAMPLE - 02: একটি উপবৃত্তের উৎকেন্দ্রিকতা $\frac{4}{5}$ এবং তা $\left(\frac{10}{3}, \sqrt{5}\right)$ বিন্দু দিয়ে গমন করে। উপবৃত্তটির সমীকরণ নির্ণয় কর।

 SOLVE : নির্ণেয় উপবৃত্তের উৎকেন্দ্রিকতা, $e=rac{4}{5}$

ধরি , নির্ণেয় উপবৃত্তটি :
$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
এবং $a>b$ (i)

[প্রশ্নে উপবৃত্তটি কোন অক্ষের সাপেক্ষে প্রতিসম উল্লেখ না থাকলে তোমরা ধরে নিবে উভয় অক্ষের সাপেক্ষে প্রতিসম]

প্রশ্নমতে
$$e = \frac{4}{5} \Rightarrow \sqrt{1 - \frac{b^2}{a^2}} = \frac{4}{5} \Rightarrow 1 - \frac{b^2}{a^2} = \frac{16}{25} \Rightarrow \frac{b^2}{a^2} = 1 - \frac{16}{25} \Rightarrow \frac{b^2}{a^2} = \frac{25 - 16}{25} \Rightarrow \frac{b^2}{a^2} = \frac{9}{25}$$

$$\Rightarrow \frac{b}{a} = \sqrt{\frac{9}{25}} = \frac{3}{5} \dots \dots (ii)$$

আবার (i) নং উপবৃত্তটি $\left(\frac{10}{3},\sqrt{5}\right)$ বিন্দুগামী বলে $,\frac{\left(\frac{10}{3}\right)^2}{a^2}+\frac{\left(\sqrt{5}\right)^2}{b^2}=1$

$$\Rightarrow \frac{100}{9a^2} + \frac{5}{b^2} = 1 \Rightarrow \frac{100}{9a^2} + \frac{5}{\frac{9}{2}a^2} = 1 \Rightarrow \frac{1}{a^2} \left(\frac{100}{9} + \frac{25}{9} \right) = 1$$

$$\Rightarrow \frac{1}{a^2} \left(\frac{100 + 125}{9} \right) = 1 \Rightarrow \frac{1}{a^2} \left(\frac{225}{9} \right) = 1 \Rightarrow a^2 = \frac{225}{9} \Rightarrow a = \frac{15}{3} = 5$$

$$(ii)$$
নং সমীকরণে a এর মান বসিয়ে পাই, $\frac{b}{a} = \frac{5}{3} \Rightarrow b = \frac{3}{5} a = \frac{3}{5} \times 5 = 3$

(i)নং সমীকরণে a=5 ও b=3 বসিয়ে পাই , ∴িনর্ণেয় উপবৃত্তের সমীকরণ $\frac{x^2}{5^2}+\frac{y^2}{3^2}=1$

$$\Rightarrow \frac{x^2}{25} + \frac{y^2}{9} = 1 \Rightarrow 9x^2 + 25y^2 = 225 \quad (Ans)$$

 $\mathbf{EXAMPLE} - \mathbf{03}$: কোনো একটি উপবৃত্ত $\frac{x}{7} + \frac{y}{2} = 1$ রেখাকে x- অক্ষের উপর এবং $\frac{x}{3} + \frac{y}{5} = 1$ রেখাকে y- অক্ষের উপর ছেদ করে। তার সমীকরণ, উপকেন্দ্রদ্বয়ের স্থানাঙ্ক নির্ণয় কর।

উপবৃত্তটি $\frac{x}{7}+\frac{y}{2}=1$ রেখাকে x-অক্ষের উপর ছেদ করে। সুতরাং ছেদবিন্দুর কোটি , y=0

$$\therefore \frac{x}{7} + \frac{0}{2} = 1$$
 বা , $x = 7$, \therefore ছেদবিন্দুর স্থানাম্ক $(7,0)$;

আবার, উপবৃত্তটি $\frac{x}{3}+\frac{y}{5}=1$ রেখাকে y- অক্ষের উপর ছেদ করে। সুতরাং x=0 বসিয়ে ছেদবিন্দুর ছ্যানাঙ্ক পাই (0,5) অতএব, উপবৃত্তটি (7,0) ও (0,5) বিন্দু দিয়ে অতিক্রম করে।

$$\therefore \frac{49}{a^2} + \frac{0}{b^2} = 1$$
ৰা, $a^2 = 49$ এবং $\frac{0}{a^2} + \frac{25}{b^2} = 1$ ৰা, $b^2 = 25$

∴নির্ণেয় উপবৃত্তের সমীকরণ, $\frac{x^2}{49} + \frac{y^2}{25} = 1$

উৎকেন্দ্রিকতা,
$$\mathrm{e}=\sqrt{1-\frac{\mathrm{b}^2}{\mathrm{a}^2}}=\sqrt{1-\frac{25}{49}}=\sqrt{\frac{24}{49}}=\frac{2\sqrt{6}}{7}$$
 [\because a $>$ b, e $>$ 0

 \therefore উপকেন্দ্রয় (\pm ae, 0), বা (\pm 7. $\frac{2\sqrt{6}}{7}$, 0)বা (\pm 2 $\sqrt{6}$, 0).

EXAMPLE - 04 : উপবৃত্তের অক্ষদ্বয়কে ও অক্ষ ধরে একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্রের স্থানাংক $(0, \pm 8)$ এবং উৎকেন্দ্রিকতা= $\frac{8}{3}$.

 ${f SOLVE}$: দেওয়া আছে, নির্ণেয় উপবৃত্তের উপকেন্দ্রের স্থানাংক $(0,\pm 8)$ এবং উৎকেন্দ্রিকতা , ${f e}=rac{8}{9}$

ধরি , নির্ণেয় উপবৃত্তের সমীকরণ , $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad b>a$

উপকেন্দ্র দুটি, S (0, be) ও S'(0, -be)

প্রশ্নতে, be
$$= 8 \Rightarrow b \times \frac{8}{9} = 8 \Rightarrow b = 8 \times \frac{9}{8} \Rightarrow b = 9 \Rightarrow b^2 = 81$$

আবার,
$$e = \frac{8}{9} \Rightarrow \sqrt{1 - \frac{a^2}{b^2}} = \frac{8}{9} \Rightarrow 1 - \frac{a^2}{b^2} = \frac{64}{81} \Rightarrow \frac{a^2}{b^2} = 1 - \frac{64}{81}$$

$$\Rightarrow \frac{b^2}{a^2} = \frac{81 - 64}{81} = \frac{17}{81} \Rightarrow a^2 = \frac{17}{81} \times b^2 = \frac{17}{81} \times 9^2 = \frac{17}{81} \times 81 = 17.$$

∴নির্ণেয় উপবৃত্তের সমীকরণ $,\frac{x^2}{17} + \frac{y^2}{81} = 1$ (Ans)

EXERCISE – 01 : একটি উপবৃত্তের সমীকরণ নির্ণয় কর , যার উপকেন্দ্রের স্থানাঙ্ক (1,-1) নিয়ামকরেখার সমীকরণ x-y+2=0 এবং উৎকেন্দ্রিকতা $\frac{1}{\sqrt{2}}$ উপবৃত্তির উপকেন্দ্রিক লম্বের দৈর্ঘ্যও নির্ণয় কর । $3x^2+3y^2+2xy+12x+12y+4=0\,, 4 \text{ (Ans:)}$

EXERCISE – 02 : একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার অক্ষদ্বয় স্থানাংকের অক্ষদ্বয়ের উপর অবস্থিত এবং (2,2)ও

(3,1)বিন্দুদ্বয় দিয়ে যায়। উৎকেন্দ্রিকতাও নির্ণয় কর। $3x^2+5y^2=32$, $\sqrt{\frac{2}{5}}$ (Ans:)

EXERCISE – 03 : একটি উপবৃত্তের সমীকরণ নির্ণয় কর , যার উপকেন্দ্র(2,1)উৎকেন্দ্রিকতা $\frac{1}{\sqrt{3}}$ এবং নিয়ামক রেখার সমীকরণ 2x + y = 3. (Ans): $11x^2 + 14y^2 - 4xy - 48x - 24y + 66 = 0$

TYPE: 03

EXAMPLE - 04: একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার ক্ষুদ্র অক্ষ দুটি ফোকাসের মধ্যবর্তী দূরত্বের সমান এবং যার উপকেন্দ্রিক দূরত্ব 10 একক ।

SOLVE :
$$2b = 2ae$$
 এবং $\frac{2b^2}{a} = 10$, $\frac{b}{a} = e = \sqrt{1 - \frac{b^2}{a^2}} \Rightarrow 2\frac{b^2}{a^2} = 1$

$$\Rightarrow$$
 b = a/2 = $\frac{2 \times a/2}{a}$ = 10 \therefore a = 10, b = $5\sqrt{2}$, $\frac{x^2}{100} + \frac{y^2}{50} = 1$

অধিবৃত

TYPE: 01

অধিবৃত্তের সমীকরন হতে বিভিন্ন রাশি ও সমীকরন নির্ণয় বিষয়ক সমস্যাবলী ঃ

 $\mathbf{EXAMPLE}$ - $\mathbf{01}: \mathbf{x}^2 - 3\mathbf{y}^2 - 2\mathbf{x} = 8$ অধিবৃত্তের অক্ষের দৈর্ঘ্য , উৎকেন্দ্রিকতা এবং কেন্দ্রর স্থানাংক নির্ণয় কর।

 ${f SOLVE}$: প্রদত্ত অধিবৃত্তের সমীকরণ , $x^2-3y^2-2x=8\Rightarrow x^2-2x+1-3y^2=8+1$

$$\Rightarrow (x-1)^2 - 3y^2 = 9 \Rightarrow \frac{(x-1)^2}{9} - \frac{y^2}{3} = 1 \dots \dots \dots \dots (i)$$

(i)নং অধিবৃত্তকে অধিবৃত্তের প্রমিত সমীকরণ $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই,

$$X = x - 1, Y = y, a^2 = 9 \Rightarrow a = 3, b^2 = 3 \Rightarrow b = \sqrt{3}$$

কেন্দ্র :
$$X = 0$$
, $\Rightarrow x - 1 = 0 \Rightarrow x = 1$

$$Y=0\Rightarrow y=0$$
 : কেন্দ্র $(1,0)$ [$x-$ অক্ষের উপর]

উপকেন্দ্ৰ :(±ae, 0)

উৎকেন্দ্রিকতা ,e =
$$\sqrt{1+rac{b^2}{a^2}}=\sqrt{rac{a^2+b^2}{a^2}}=\sqrt{rac{9+3}{9}}=\sqrt{rac{12}{9}}=rac{2}{\sqrt{3}}$$

$$X = \pm ae \Rightarrow x - 1 = \pm 3 \times \frac{2}{\sqrt{3}}$$

$$\Rightarrow$$
 x $-$ 1 $=$ $\pm 2\sqrt{3}$ \Rightarrow x $=$ 1 $\pm 2\sqrt{3}$ এবং Y $=$ 0 \Rightarrow y $=$ 0 উপকেন্দ্র $\left(1\pm 2\sqrt{3},0\right)$

শীর্ষবিন্দু : $(\pm a, 0)$ অর্থাৎ, $X = \pm a \Rightarrow x - 1 = \pm 3$

(+)veনিয়ে, $x - 1 = 3 \Rightarrow x = 4$; (-)veনিয়ে, $x - 1 = -3 \Rightarrow x = -2$

এবংy = 0 :শীর্ষবিন্দু দুটি(4,0), (-2,0)

নিয়ামক রেখার সমীকরণ : $X=\pm a/e \Rightarrow x-1=\pm \left(3\frac{1}{2/\sqrt{3}}\right) \Rightarrow x-1=\pm \frac{3\sqrt{3}}{2} \Rightarrow 2x-2=\pm 3\sqrt{3}$

$$(+)$$
veনিয়ে, $2x - 2 = 3\sqrt{3} \Rightarrow 2x - 2 - 3\sqrt{3} = 0$

$$(-)$$
veনিয়ে, $2x - 2 = -3\sqrt{3} \Rightarrow 2x - 2 + 3\sqrt{3} = 0$

$$\therefore$$
 নিয়ামকরেখা দুটো, $2x - 2 - 3\sqrt{3} = 0$, $2x - 2 + 3\sqrt{3} = 0$

উপকেন্দ্রিক লম্বদ্বয়ের সমীকরণ : $X=\pm ae\Rightarrow x-1=\pm 3 imes rac{2}{\sqrt{3}}\Rightarrow x-1=\pm 2\sqrt{3}$

$$(+)$$
ve, $x - 1 = 2\sqrt{3} \Rightarrow x - 1 - 2\sqrt{3} = 0$

$$(-)$$
ve, $x - 1 = -2\sqrt{3} \Rightarrow x - 1 + 2\sqrt{3} = 0$

 \therefore উপকেন্দ্রিক লম্ব দুটি , $\mathrm{x}-1-2\sqrt{3}=0$, $\mathrm{x}-1+2\sqrt{3}=0$; উৎকেন্দ্রিকতা , $\mathrm{e}=\frac{2}{\sqrt{3}}$,

প্রধান বা আড় অক্ষের দৈর্ঘ্য $=2a=2\times 3=6$

অনুবন্ধী অক্ষের দৈর্ঘ্য $=2b=2 imes\sqrt{3}=2\sqrt{3}$

উপকেন্দ্রিক লম্বের দৈর্ঘ্য $=rac{2b^2}{a}=rac{2 imes 3}{3}=2$

প্রধান অক্ষের সমীকরণ, $Y=0\Rightarrow y=0$

এবং অনুবন্ধী অক্ষের সমীকরণ, $X=0 \Rightarrow x-1=0$ (Ans)

 $EXAMPLE - 02: \frac{(x+1)^2}{4} - \frac{(y-2)^2}{5} = 1$ অধিবৃত্তের কেন্দ্র, শীর্ষবিন্দু, উৎকেন্দ্রিকতা, ফোকস বা উপকেন্দ্র, দিকাক্ষের সমীকরন, উপকেন্দ্রিক লম্বের সমীকরন ও দৈর্ঘ্য নির্ণয় কর।

SOLVE : $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$ আকারের অধিবৃত্ত । যেখানে, X = x + 1 ও Y = y - 2 , $a = 2, b = \sqrt{5}$

কেন্দ্র : $X=0\Rightarrow x+1=0\Rightarrow x=-1$, $Y=0\Rightarrow y-2=0\Rightarrow y=2$: কেন্দ্র ϵ (-1 , 2)

শীৰ' $\epsilon(\pm a,0)=(\pm 2,0)$: ϵ

শীর্ষ (3,2) ও (-5,2) , উৎকেন্দ্রিকতা ঃ
$$e=\sqrt{\frac{a^2+b^2}{a^2}}=\sqrt{\frac{4+5}{4}}=\frac{3}{2}$$

ফোকাস বা উপকেন্দ্র ঃ $(\pm ae, 0) = (\pm 2 \times \frac{3}{2}, 0) = (\pm 3, 0)$

 \therefore x + 1 = ± 3 \Rightarrow x = 2, - 4 এবং y - 2 = 0 \therefore y = 2, \therefore ফোকাসদ্বয় (2,2) ও (-4, 2)

দিকাক্ষের সমীকরন ঃ $X = \pm a/e \Rightarrow x + 1 = \pm \frac{4}{3} \Rightarrow 3x + 3 = \pm 4 \Rightarrow 3x = 1$ এবং 3x = -7

উপকেন্দ্রিক লম্বের সমীরকন ঃ $X=\pm ae,\ x+1=3$, এবং x=2

উপকেন্দ্রিক লম্বের দৈর্ঘ্য = $\frac{2b^2}{a}$ = $\frac{2\times 5}{2}$ = 5 একক।

EXERCISE – 01 : $\frac{(x-1)^2}{9} - \frac{(y-2)^2}{7} = 1$ অধিবৃত্তের ফোকাস ও দিকাক্ষের সমীকরন নির্ণয় কর।

Ans: (3, 2), (-5, 2), দিকাক্ষ ঃ 4x = 5, এবং 4x + 13 = 0

EXERCISE – 02 : $\frac{x^2}{9} - \frac{y^2}{16} = 1$ অধিবৃত্তের উপকেন্দ্রদ্বয় এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।

 $(\pm 5, 0), 5x = \pm 9$ (Ans)

EXERCISE – 03: $16x^2 - 25y^2 = 400$ অধিবৃত্তের কেন্দ্র , শীর্ষবিন্দু ,উপকেন্দ্র এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।

(0,0); $(\pm 5,0)$, $(\pm \frac{\sqrt{41}}{5},0)$, $x = \pm \frac{25}{\sqrt{41}}$ (Ans)

EXERCISE – 04: $y^2-x^2=4$ অধিবৃত্তের কেন্দ্র , শীর্ষবিন্দু ,উপকেন্দ্র এবং নিয়ামকরেখার সমীকরণ নির্ণয় কর।

 $(0,0), (0,\pm 2), (0,\pm 2\sqrt{2},); y = \pm \sqrt{2}$ (Ans)

EXERCISE – 05 : $x^2 - 2y^2 - 2x + 8y - 1 = 0$ অধিবৃত্তের ফোকাস ও দিকাক্ষের সমীকরন নির্ণয় কর। **Ans**: ফোকাস : $(1, 2 \pm 3\sqrt{3})$, দিকাক্ষের সমীরকন ঃ $y = 2 \pm \sqrt{3}$

TYPE: 02

অধিবৃত্ত সনাক্তকরন বা অধিবৃত্তের সমীকরন নির্ণয় সংক্রান্ত গনিতিক সমস্যা

 $\mathbf{EXAMPLE}$ - $\mathbf{01}$: .দেখাও যে, $\mathbf{x}^2 - 8\mathbf{y}^2 = 2$ অধিবৃত্তের নিয়ামক রেখার সমীকরণ $3\mathbf{x} = \pm 4$ এবং উপকেন্দ্রিক লম্বের দৈর্ঘ্য $\frac{1}{\sqrt{2}}$.

SOLVE : প্রদত্ত অধিবৃত্তের প্রমিত সমীকরণ, $x^2 - 8y^2 = 2 \Rightarrow \frac{x^2}{2} - \frac{y^2}{\frac{1}{4}} = 1 \dots \dots \dots$ (i)

(i)নং অধিবৃত্তকে অধিবৃত্তদয় প্রতিম সমীকরণ, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ এর সাথে তুলনা করে পাই X = x, Y = y

$$a^2 = 2 \Rightarrow a = \sqrt{2}$$
; $b^2 = \frac{1}{4} \Rightarrow b = \frac{1}{2}[a > b]$

উৎকেন্দ্রিকতা,
$$e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{\frac{2 + \frac{1}{4}}{2}} = \sqrt{\frac{9}{8}} = \frac{3}{2\sqrt{2}}$$

নিয়ামকরেখার সমীকরণ,
$$X=\pm\frac{a}{e} \Rightarrow x=\pm\sqrt{2}\times\left(\frac{1}{\frac{3}{2\sqrt{2}}}\right) \Rightarrow x=\pm\sqrt{2}\times\frac{2\sqrt{2}}{3} \Rightarrow 3x=\pm4$$
 (Showed)

উপকেন্দ্রিক লম্বের দৈর্ঘ্যে = $\frac{2b^2}{a} = \frac{2 \times \frac{1}{4}}{\sqrt{2}} = \frac{1}{2\sqrt{2}}$ (Showed)

EXAMPLE - 02: একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার উপকেন্দ্রদ্বয়(4, 2), (8, 2) এবং উপকেন্দ্রিকতা 2.

SOLVE: নির্ণয় অধিবৃত্তের উপকেন্দ্র দুটি (4,2) ও (8,2) লক্ষকর, উপকেন্দ্র দুটিতে কোটি দুটি একই সুতরাং, এর অক্ষরেখা x অক্ষের সমান্তরাল কেন্দ্র স্থানাংক $\left(\frac{4+8}{2},\frac{2+2}{2}\right)=(6,2)$

উপকেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব, $2ae=8-4\Rightarrow 2a\times 2=4\Rightarrow a=1$

আবার,
$$e = \sqrt{1 + \frac{b^2}{a^2}} \Rightarrow 2 = \sqrt{\frac{a^2 + b^2}{a^2}} \Rightarrow 4 = \frac{a^2 + b^2}{a^2} \Rightarrow a^2 + b^2 = 4a^2$$

$$\Rightarrow$$
 $b^2 = 4a^2 - a^2 \Rightarrow b^2 = 3a^2 \Rightarrow b^2 = 3.1^2 : b = 3 : নির্ণেয় অধিবৃত্তের সমীকরণ, $\frac{(x-6)^2}{1} - \frac{(y-2)^2}{3} = 1$$

EXAMPLE - 02: 10. অধিবৃত্তের অক্ষ দুইটিকে স্থানাংকের অক্ষ ধরে এমন একটি অধিবৃত্তের সমীকরণ নির্ণয় কর যার অনুবন্ধী অক্ষের দৈঘ্য 24 এবং উপকেন্দ্রের স্থানাংক $(0, \pm 13)$.

 ${f SOLVE}$: মনে করি, অধিবৃত্তটির সমীকরণ, ${y^2\over a^2}-{x^2\over b^2}=1$

এখানে, আড় অক্ষের দৈর্ঘ্য= 2a; অনুবন্ধী অক্ষের দৈর্ঘ্য = 2b

প্রশ্নতে,
$$2b = 24 \Rightarrow b = \frac{24}{2} \Rightarrow b = 12 \Rightarrow b^2 = 144$$

আবার,
$$2be = 13 - (-13) \Rightarrow 2 \times 12 \times e = 26 \Rightarrow e = \frac{26}{24} = \frac{13}{12} \Rightarrow \sqrt{1 + \frac{b^2}{a^2}} = \frac{13}{12}$$

$$\Rightarrow 1 + \frac{a^2}{b^2} = \left(\frac{13}{12}\right)^2 \Rightarrow \frac{a^2}{b^2} = \frac{169}{144} - 1 = \frac{25}{144}$$
 (আমরা জানি, $e = \sqrt{1 + \frac{a^2}{b^2}}$ যখন, $b > a$)

$$\Rightarrow \frac{a^2}{b^2} = \frac{169 - 144}{144} \Rightarrow \frac{a^2}{b^2} = \frac{25}{144} \Rightarrow \frac{a^2}{12^2} = \frac{25}{144} \Rightarrow a^2 = \frac{25}{144} \times 144 \Rightarrow a^2 = 25$$

 \therefore নির্ণয় অধিবৃত্তের সমীকরণ , $\frac{y^2}{25} - \frac{x^2}{144} = 1$

EXERCISE – 01 : একটি অধিবৃত্তের উপকেন্দ্র দুইটির দূরত্ব 16 এবং উৎকেন্দ্রিকতা $\sqrt{2}$ অধিবৃত্তির অক্ষ দুটির স্থানাংকের দুই অক্ষ বরাবর হলে এর সমীকরণ নির্ণয় কর। $x^2-y^2=32$ (Ans)

EXERCISE – 02 : একটি অধিবৃত্তের সমীকরণ নির্ণয় কর , যার উৎকেন্দ্রিকতা $\sqrt{5}$; উপকেন্দ্র (1,-8) এবং নিয়ামকরেখার সমীকরণ 3x-4y=10. $(Ans)4x^2+11y^2-24xy-50x-225=0$