Probabilités de base - DM 1

À rendre en cours le lundi 25 septembre ou en TD le mardi 26 septembre.

Exercice 1. Inverse de loi de Cauchy

Soit X une variable aléatoire suivant la loi de Cauchy C(1) c'est-à-dire de densité $p(x) = \pi^{-1}(1 + x^2)^{-1}$. Déterminer la loi de la variable aléatoire $Y = X^{-1}$.

Exercice 2. Partie entière d'une v.a. exponentielle

Soit X une v.a.r. de loi exponentielle de paramètre $\alpha > 0$. Quelle est la loi de 1 + [X] où [x] désigne la partie entière de x?

Exercice 3. Convergence dominée

On considère la fonction réelle $u(x) = (1 + |x|)^{-1}$.

- 1. Soit X une variable réelle. On considère, pour $s \geq 0$, $\theta(s) = \mathbb{E}[u(sX)]$.
- Montrer que θ est continue sur $[0, +\infty[$, de classe \mathcal{C}^1 sur $]0, +\infty[$. Exprimer $\theta'(s)$ comme une espérance. Déterminer $\lim_{s\to+\infty}\theta(s)$.
- 2. Soient U une variable aléatoire de loi uniforme sur [0,1] et $c \in]0,1[$. On considère la variable aléatoire $X = (U-c)^+$. Calculer, pour la variable X, $\theta(s)$ puis $\lim_{s\to+\infty}\theta(s)$. Est-ce cohérent avec la question précédente?

Exercice 4. Somme aléatoire de v.a. aléatoires

Soient X_0, \ldots, X_n n+1 v.a. réelles indépendantes et identiquement distribuées; soit N une v.a. de loi binomiale $\mathcal{B}(n,p)$ indépendante de X_0, \ldots, X_n . On pose

$$\forall \omega \in \Omega, \qquad Y(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega).$$

Exprimer la fonction caractéristique de Y en fonction de celle de X_1 .

Exercice 5. Variables aléatoires exponentielles indépendantes

Soit X et Y deux variables aléatoires indépendantes et de lois exponentielles de paramètres respectifs λ et μ . On note $Z = \min(X, Y)$.

- 1. Calculer la fonction de répartition de Z et en déduire sa loi.
- 2. Montrer $\mathbb{P}(Z=X)=\lambda/(\lambda+\mu)$.
- 3. Que dire des variables aléatoires Z et $\mathbf{1}_{\{Z=X\}}$?