<u>Help</u>

mrajagopal6 ~

Discussion <u>Wiki</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

★ Course / Module 1: Representing, Transforming, and Visualizing... / Solution: Noteboo...

Since Notebook 6 is an optional assignment, we are releasing these sample solutions concurrently.

part0 (Score: 0.0 / 0.0)

1. Test cell (Score: 0.0 / 0.0) 2. Test cell (Score: 0.0 / 0.0) 3. Test cell (Score: 0.0 / 0.0) 4. Test cell (Score: 0.0 / 0.0)

Important note! Before you turn in this lab notebook, make sure everything runs as expected:

- First, restart the kernel -- in the menubar, select Kernel → Restart.
- Then **run all cells** -- in the menubar, select Cell → Run All.

Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE."

Part 0: Mining the web

Perhaps the richest source of openly available data today is the Web (http://www.computerhistory.org/revolution/networking/19/314)! Ir lab, you'll explore some of the basic programming tools you need to scrape web data.

Warnings.

- 1. If you are using one of the cloud-based Jupyter installations to run this notebook, such as Microsoft Azure Notebooks (https://notebooks.azure.com) or Vocareum (https://vocareum.org), it's likely you will encounter problems due to restrictions on access to remote servers.
- 2. Even if you are using a home or local installation of Jupyter, you may encounter problems if you attempt to access a site too many times or too rapidly. That can happen if your internet service provider (ISP) or the target website detect your accesses as "unusual" and reject them. It's easy to imagine accidentally writing an infinite loop that tries to access a page and being seen from the other side as a malicious program. :)

The Requests module

Python's <u>Requests module (http://requests.readthedocs.io/en/latest/user/quickstart/)</u> to download a web page.

For instance, here is a code fragment to download the Georgia Tech (http://www.gatech.edu) home page and print the first 250 charact You might also want to view the source (http://www.computerhope.com/issues/ch000746.htm) of Georgia Tech's home page to get a n formatted view, and compare its output to what you see above.

```
In [1]: import requests
        response = requests.get('http://www.gatech.edu/')
        webpage = response.text # or response.content for raw bytes
        print(webpage[0:250]) # Prints the first hundred characters only
        <!DOCTYPE html>
        <html lang="en" dir="ltr"
          xmlns:content="http://purl.org/rss/1.0/modules/content/"
          xmlns:dc="http://purl.org/dc/terms/"
          xmlns:foaf="http://xmlns.com/foaf/0.1/"
          xmlns:og="http://ogp.me/ns#"
          xmlns:rdfs="http://www.w3.org/2000
```

Exercise 1. Given the contents of the GT home page as above, write a function that returns a list of links (URLs) of the "top stories" on page.

For instance, on Friday, September 9, 2016, here was the front page:

The top stories cycle through in the large image placeholder shown above. We want your function to return the list of URLs behind each the "Full Story" links, highlighted in red. If no URLs can be found, the function should return an empty list.

```
In [2]:
        Student's answer
         import re # Maybe you want to use a regular expression?
         def get gt top stories(webpage text):
             """Given the HTML text for the GT front page, returns a list
             of the URLs of the top stories or an empty list if none are
             found.
             pattern = '''<a class="slide-link" href="(?P<url>[^"]+)"'''
```

```
In [3]: top stories = get gt top stories(webpage)
        print("Links to GT's top stories:", top_stories)
```

return re.findall(pattern, webpage_text)

Links to GT's top stories: ['http://development.gatech.edu/care-and-feeding-student-s ups', 'http://www.rh.gatech.edu/news/595812/engineering-research-center-will-help-exp use-therapies-based-living-cells']

A more complex example

Go to Yelp! (http://www.yelp.com) and look up ramen in Atlanta, GA. Take note of the URL:

Highly recommend this place if you're yearning for great traditional Japanese ramen read more

Atlanta, GA 30318 (470) 355-5621

Westside / Home Park

339 14th St NW

(404) 390-3798

Atlanta, GA 30318

Went here for the first time.. Both me and my friend got the Nagahama Ramen and it was exquisite! Map da

Ramen Best ran local ran エイジェ

2. Wagaya Japanese Restaurant 🗙 🖈 🖈 🔝 235 reviews \$\$ - Japanese, Sushi Bars

Bookmarked Reviewed by 1 friend On the menu: Spicy Curry Ramen

This URL encodes what is known as an HTTP "get" method (or request). It basically means a URL with two parts: a command followed one or more arguments. In this case, the command is everything up to and including the word search; the arguments are the rest, whe individual arguments are separated by the & or #.

"HTTP" stands for "HyperText Transport Protocol," which is a standardized set of communication protocols that allow web *clients*, like your web browser or your Python program, to communicate with web servers.

In this next example, let's see how to build a "get request" with the requests module. It's pretty easy!

```
In [4]: url_command = 'http://yelp.com/search'
        url_args = {'find_desc': "ramen",
                     'find_loc': "atlanta, ga"}
        response = requests.get (url_command, params=url_args)
        print ("==> Downloading from: '%s'" % response.url) # confirm URL
        print ("\n==> Excerpt from this URL:\n\n%s\n" % response.text[0:100])
        ==> Downloading from: 'https://www.yelp.com/search?find_desc=ramen&find_loc=atlanta%:
        a'
        ==> Excerpt from this URL:
        <!DOCTYPE HTML>
        <!--[if lt IE 7 ]> <html xmlns:fb="http://www.facebook.com/2008/fbml" class="ie6 ie
```

Exercise 2. Given a search topic, location, and a rank k, return the name of the k-th item of a Yelp! search. If there is no k-th item, return the name of the k-th item of a Yelp! search. None.

The demo query above only gives you a website with the top 10 items, meaning you could only use it for $k \le 10$. Figure out how to modify it to solve the problem when k > 10.

```
In [5]:
          Student's answer
```

```
def find_yelp_item (topic, location, k):
    """Returns the k-th suggested item from Yelp! in Atlanta for the given topic.""
    import re
    if k < 1: return None
    # Download page
    url command = 'http://yelp.com/search'
    url_args = {'find_desc': topic,
                'find_loc': location,
                'start': k-1
               }
    response = requests.get (url_command, params=url_args)
    if not response: return None
    # Split page into lines
    lines = response.text.split ('\n')
    # Look for the line containing the name of the k-th item
    item_pattern = re.compile ('<span class="indexed-biz-name">{}\..*<span >(?P<iten</pre>
me>.*)</span></a>'.format (k))
    for 1 in lines:
        item_match = item_pattern.search (1)
        if item_match:
            return item_match.group ('item_name')
    # No matches, evidently
    return None
```

```
In [6]:
                                                                                         Score: 0.0 / 0.0
         Grade cell: yelp_atl__test1
         assert find_yelp_item('fried chicken', 'Atlanta, GA', -1) is None # Tests an invalid
         lue for 'k'
```

Search queries on Yelp! don't always return the same answers, since the site is always changing! Also, your results might not match a query you do via your web browser (why not?). As such, you should manually check your answers.

```
In [7]:
                                    Grade cell: yelp_atl__test2
                                                                                                                                                                                                                                                                                                                                                       Score: 0.0 / 0.0
                                     item = find_yelp_item ('fried chicken', 'Atlanta, GA', 1)
                                     print (item)
                                      # The most likely answer on September 19, 2017:
                                     #assert item in ['Gus's World Famous <span class="highlighted">Fried</span> <span cl
                                     ="highlighted">Chicken</span>',
                                                                                                              'Gus's World Famous Fried Chicken']
                                   Gus's World Famous <span class="highlighted">Fried</span> <span class="highlighted">Gus's World Famous <span cl
                                  en</span>
In [8]:
                                   Grade cell: yelp_atl__test3
                                                                                                                                                                                                                                                                                                                                                       Score: 0.0 / 0.
                                     item = find_yelp_item ('fried chicken', 'Atlanta, GA', 5)
                                     print (item)
                                      # The most likely answer on September 19, 2017:
                                     #assert item == 'Richards' Southern Fried
                                   Colonnade Restaurant
```

item = find_yelp_item('fried chicken', 'Atlanta, GA', 17)

Most likely correct answer as of September 19, 2017:

print(item)

Grade cell: yelp_atl__test4

#assert item == 'Sway'

Buttermilk Kitchen

```
part1 (Score: 0.0 / 0.0)
```

- 1. Written response (Score: 0.0 / 0.0)
- 2. Test cell (Score: 0.0 / 0.0)

In [9]:

3. Test cell (Score: 0.0 / 0.0)

Important note! Before you turn in this lab notebook, make sure everything runs as expected:

- First, **restart the kernel** -- in the menubar, select Kernel → Restart.
- Then run all cells -- in the menubar, select Cell → Run All.

Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE."

Part 1: Tools to process HTML

In Part 0, you downloaded real web pages and manipulated them using "conventional" string processing tools, like str () functions or r expressions ().

However, web pages are stored in HTML (hypertext markup language ()), which is a highly structured format. As such, it makes sense to specialized tools to understand and process its structure. That's the subject of this notebook.

Score: 0.0 / 0.0

Parsing HTML: The Beautiful Soup module

One such package to help process HTML is Beautiful Soup (https://www.crummy.com/software/BeautifulSoup/). The following is a quice tutorial on how to use it.

Any HTML document may be modeled as an object in computer science known as a tree (https://en.wikipedia.org/wiki/Tree (data stru-

HTML as a tree

HTML is one instance of the Document Object Model (DOM).

There are different ways to define trees, but for our purposes, the following will be sufficient.

Consider a tree is a collection of *nodes*, which are the labeled boxes in the figure, and *edges*, which are the line segments connecting r with the following special structure.

- The node at the top is called the root. Here, the root is labeled html and abstractly represents the entire HTML document.
- Regard each edge as always "pointing" from the node at its top end to the node at its bottom end. For any edge, the node at its to end is the parent and the node at the bottom end is a child. Like real families, a parent can be a child. For example, the node labele head is the child of html and the parent of meta, title, and style.
- The descendant of a node x is any node y for which there is a path from x going down to y. For example, the node labeled 6x spa is a descendant of the node body. All nodes are descendants of the root.
- Any node with *no* descendants is a *leaf*.
- Any node that is neither a root nor a leaf is an internal node.
- There are no cycles. A cycle would be a loop. For instance, if you were to add an edge between the two lower rightmost nodes labeled, strong and strong, that would create a loop and the object would no longer be a tree.

For whatever reason, computer scientists usually view trees upside down (https://www.quora.com/Why-are-trees-incomputer-science-generally-drawn-upside-down-from-how-trees-are-in-real-life), with the "root" at the top and the "leaves" at the bottom.

The Beautiful Soup package gives you a data structure for traversing this tree. For instance, consider an HTML file with the contents be shown both as code and pictorially.

```
some_page = """
In [1]:
       <html>
         <body>
           First paragraph.
           Second paragraph, which links to the <a href="http://www.gatech.edu">Georgia</a>
        website</a>.
           Third paragraph.
         </body>
       </html>
       print(some_page)
       < ht.ml>
         <body>
           First paragraph.
```

```
Second paragraph, which links to the <a href="http://www.gatech.edu">Georgia '</a>
website</a>.
   Third paragraph.
  </body>
</html>
```


Exercise 0. Besides HTML files, what else have we seen in this class that could be represented by a tree? Briefly and roughly explain v and how.

```
Score: 0.0 / 0.0
Student's answer
```

Answer. One thing that has a natural tree representation is a Python program! For example, can you draw the following program as a

```
def scan_lines(text, pattern):
   matches = []
    for line in text.split('\n'):
        if re.search(pattern, text) is not None:
            matches.append(True)
        else:
            matches.append(False)
    return matches
```

Using Beautiful Soup

import re

Here is how you might use Beautiful Soup to inspect the structure of some_page.

Let's start by taking the contents of the page above (some_page) and asking Beautiful Soup to process it. Let's store the result in obje named soup, and then explore its contents:

```
In [2]: from bs4 import BeautifulSoup
        soup = BeautifulSoup(some_page, "lxml")
        print('1. soup ==', soup) # Print the HTML contents
        print(' n2. soup.html ==', soup.html) # Root of the tree
        print('\n3. soup.html.body ==', soup.html.body) # A child tag
        print('\n4. soup.html.body.p ==', soup.html.body.p) # Another child tag
        print('\n5. soup.html.body.contents ==', type(soup.html.body.contents), '::', soup.h
        ody.contents)
        1. soup == <html>
        <body>
        First paragraph.
        Second paragraph, which links to the <a href="http://www.gatech.edu">Georgia Tech
        ite</a>.
```

```
Solution: Notebook 6 | Module 1: Representing, Transforming, and Visualizing Data | FA20: Computing for Data Analysis | edX
Third paragraph.
</body>
</html>
2. soup.html == <html>
<body>
First paragraph.
Second paragraph, which links to the <a href="http://www.gatech.edu">Georgia Tech
ite</a>.
Third paragraph.
</body>
</html>
3. soup.html.body == <body>
First paragraph.
Second paragraph, which links to the <a href="http://www.gatech.edu">Georgia Tech
ite</a>.
Third paragraph.
</body>
```

., '\n', Third paragraph., '\n']

Observe that the . notation allows us to reference HTML tags---that is, the stuff enclosed in angle brackets in the original HTML, e.g., >a href="html">>a href="html">>a href="html">a href="html">>a href

5. soup.html.body.contents == <class 'list'> :: ['\n', First paragraph., '\n' Second paragraph, which links to the Georgia Tech wel

4. soup.html.body.p == First paragraph.

subtags. Evidently, soup.html.body.contents contains these, as a list, which we know how to manipulate.

```
In [3]: # Enumerate all tags within the <body> ... </body> tag:
        for i, elem in enumerate (soup.html.body.contents):
            print ("[{:4d}]".format (i), type (elem), '\n\t==>', "'{}'".format (elem))
        # Reference one of these, element 3:
        elem3 = soup.html.body.contents[3]
        print(elem3.contents)
            0] <class 'bs4.element.NavigableString'>
               ==> '
           1] <class 'bs4.element.Tag'>
                ==> 'First paragraph.'
           2] <class 'bs4.element.NavigableString'>
               ==> '
           3] <class 'bs4.element.Tag'>
        [
                ==> 'Second paragraph, which links to the <a href="http://www.gatech.edu":
        gia Tech website</a>.'
            4] <class 'bs4.element.NavigableString'>
               ==> '
           5] <class 'bs4.element.Tag'>
               ==> 'Third paragraph.'
            6] <class 'bs4.element.NavigableString'>
        [
```

Exercise 1. Write a statement that navigates to the tag representing the GT website link. Store this resulting tag object in a variable cal link.

bsite, '.']

In [4]:

['Second paragraph, which links to the ', Georgia Te

```
Student's answer
         link = soup.html.body.contents[3].contents[1]
         print(link)
         <a href="http://www.gatech.edu">Georgia Tech website</a>
In [5]:
         Grade cell: ex5_test
                                                                                      Score: 0.0 / 0.0
         # Checks your link. Can you understand what it is doing?
         import bs4
         assert type(link) is bs4.element.Tag
         assert link.name == 'a'
         assert link['href'] == 'http://www.gatech.edu'
         assert link.contents == ['Georgia Tech website']
```

Other navigation tools

This lab includes a static copy of the Yelp! results for a search of "universities" in ATL. Let's start by downloading this file.

```
In [6]: # Run me: Code to download sample HTML file
        import requests
        import os
        import hashlib
        yelp htm = 'yelp atl unies.html'
        yelp htm checksum = 'a940e7cd0c8c408a5dd2098a87303afe'
        if os.path.exists('.voc'):
            data url = 'https://cse6040.gatech.edu/datasets/yelp-example-uni/{}'.format(yelp
        else:
            data_url = 'https://github.com/cse6040/labs-fa17/raw/master/datasets/{}'.format()
        htm)
        if not os.path.exists(yelp htm):
            print("Downloading: {} ...".format(data_url))
            r = requests.get(data_url)
            with open(yelp htm, 'w', encoding=r.encoding) as f:
                f.write(r.text)
        with open(yelp_htm, 'r') as f:
            yelp_html = f.read().encode(encoding='utf-8')
            checksum = hashlib.md5(yelp_html).hexdigest()
            assert checksum == yelp_htm_checksum, "Downloaded file has incorrect checksum!"
        print("'{}' is ready!".format(yelp_htm))
        'yelp_atl_unies.html' is ready!
```

Next, inspect and run this code, which prints the top (number one) result.

```
In [7]: uni_html_text = open (yelp_htm, 'r').read()
        uni_soup = BeautifulSoup(uni_html_text, "lxml")
        print("The number 1 ATL university according to Yelp!:")
        uni_1 = uni_soup.html.body \
            .contents[7] \
            .contents[9] \
            .contents[3] \
            .contents[1] \
            .contents[3] \
            .contents[1] \
            .contents[1] \
            .contents[7] \
            .contents[3] \
            .contents[5] \
            .contents[1] \
            .contents[1] \
            .contents[1] \
            .contents[1] \
            .contents[3] \
            .contents[1] \
            .contents[1] \
            .contents[1] \
            .contents[0] \
            .contents[0]
        print(uni 1)
        The number 1 ATL university according to Yelp!:
```

We hope it is self-evident that the above method to navigate to a particular tag or element is not terribly productive or robust, particular there are small modifications to the HTML.

Here is an alternative. Inspect the raw HTML and observe that every non-ad search result appears in a tag of the form,

Georgia Institute of Technology

```
<span class="indexed-biz-name">1.
                                           <a class="biz-name js-analytics-click" data-analytics-l</pre>
bel="biz-name" href="/biz/georgia-institute-of-technology-atlanta-2" data-hovercard-id="gBX8UvhOw"
dD5tGJeU-hxg" ><span >Georgia Institute of Technology</span></a>
</span>
```

Beautiful Soup gives us a way to search for specific tags.

```
In [8]: indexed unies = uni soup.find all(attrs={'class': 'indexed-biz-name'})
        print("*** First 5 of {} results ***\n\n{}".format(len(indexed unies), indexed unies)
```

```
*** First 5 of 30 results ***
[<span class="indexed-biz-name">1.
                                            <a class="biz-name js-analytics-click" dat</pre>
alytics-label="biz-name" data-hovercard-id="gBX8UvhOwtdD5tGJeU-hxg" href="/biz/georg:
stitute-of-technology-atlanta-2"><span>Georgia Institute of Technology</span></a>
</span>, <span class="indexed-biz-name">2.
                                                    <a class="biz-name js-analytics-c."</pre>
data-analytics-label="biz-name" data-hovercard-id="13oCD5wffSr2ypav9MpCsQ" href="/bi:
```

, 3. <a class="biz-name js-analytics-c."</pre> data-analytics-label="biz-name" data-hovercard-id="jAebE830x0lPCNsJoQII4A" href="/bi: lman-college-atlanta">Spelman College

ry-university-atlanta-2">Emory University</spa

, 4. Oglethorpe University</sp

, 5. <a class="biz-name js-analytics-c"</pre> data-analytics-label="biz-name" data-hovercard-id="o5tSSq2nJA-vseLTEDW9UA" href="/bi: rgia-state-university-atlanta-3">Georgia State Unive:]

Exercise 2. Based on the above, write a function that, given a Yelp! search results page such as uni_soup above, returns the name of number 1 indexed search result.

In [9]: Student's answer

```
def get top yelp result(soup):
    """Given a Yelp! search result as a Beautiful Soup page,
   returns the name of the number 1 indexed result.
   bizzes = soup.find all (attrs={'class': 'indexed-biz-name'})
   top biz = bizzes[0]
   rank = top_biz.contents[0].strip ()
   assert rank == '1.'
   return top biz.contents[1].contents[0].contents[0]
```

```
In [10]:
                                                                                         Score: 0.0 / 0.1
          Grade cell: ex6_test
          print(get top yelp result(uni soup))
          assert get_top_yelp_result(uni_soup) == 'Georgia Institute of Technology'
```

Georgia Institute of Technology

This mini-tutorial only scratches the surface of what is possible with Beautiful Soup. As always, refer to the package's documentation

part2 (Score: 0.0 / 0.0)

1. Test cell (Score: 0.0 / 0.0) 2. Test cell (Score: 0.0 / 0.0)

Important note! Before you turn in this lab notebook, make sure everything runs as expected:

- First, restart the kernel -- in the menubar, select Kernel → Restart.
- Then run all cells -- in the menubar, select Cell→Run All.

Make sure you fill in any place that says YOUR CODE HERE or "YOUR ANSWER HERE."

Part 2: Mining the web: Web APIs

We hope the preceding exercise was painful: even with tools to process HTML, it is rough downloading raw HTML and trying to extract information from it!

Can you think of any other reasons why scraping websites for data in this way is not a good idea?

Luckily, many websites provide an application programming interface (API) for querying their data or otherwise accessing their services your programs. For instance, Twitter provides a web API for gathering tweets, Flickr provides one for gathering image data, and Github

accessing information about repository histories.

These kinds of web APIs are much easier to use than, for instance, the preceding technique which scrapes raw web pages and then he parse the resulting HTML. Moreover, there are more scalable in the sense that the web servers can transmit structured data in a less ve form than raw HTML.

As a starting example, here is some code to look at the activity on Github related to the public version of our course's materials.

```
In [1]: import requests
        response = requests.get ('https://api.github.com/repos/cse6040/labs-fa17/events')
        print ("==> .headers:", response.headers, "\n")
```

==> .headers: {'Server': 'GitHub.com', 'X-XSS-Protection': '1; mode=block', 'Access-(ol-Expose-Headers': 'ETag, Link, X-GitHub-OTP, X-RateLimit-Limit, X-RateLimit-Remain: X-RateLimit-Reset, X-OAuth-Scopes, X-Accepted-OAuth-Scopes, X-Poll-Interval', 'Trans: ncoding': 'chunked', 'Content-Encoding': 'gzip', 'Access-Control-Allow-Origin': '*', ict-Transport-Security': 'max-age=31536000; includeSubdomains; preload', 'X-GitHub-Me Type': 'github.v3; format=json', 'X-Runtime-rack': '0.028060', 'X-Content-Type-Option' 'nosniff', 'Status': '200 OK', 'X-Poll-Interval': '60', 'Content-Security-Policy': " lt-src 'none'", 'Content-Type': 'application/json; charset=utf-8', 'Date': 'Wed, 20 ' 017 00:37:31 GMT', 'X-RateLimit-Limit': '60', 'X-GitHub-Request-Id': 'CDDA:3B92:5B22' 97424F:59C1B84B', 'Cache-Control': 'public, max-age=60, s-maxage=60', 'Last-Modified ue, 19 Sep 2017 22:48:55 GMT', 'ETag': 'W/"911dffe660c66d48fac1229afff5fd9b"', 'X-Rat it-Remaining': '56', 'X-Frame-Options': 'deny', 'Vary': 'Accept', 'X-RateLimit-Reset 505871386'}

Note the Content-Type of the response:

```
In [2]: print (response.headers['Content-Type'])
        application/json; charset=utf-8
```

The response is in JSON format, which is an open format for exchanging semi-structured data. (JSON stands for JavaScript Object Notation.) JSON is designed to be human-readable and machine-readable, and maps especially well in Python to nested dictionaries. I take a look.

See also this tutorial (http://www.w3schools.com/json/) for a JSON primer. JSON is among the universal formats for sharing data on the web; see, for instance, https://www.sitepoint.com/10-example-json-files/(h example-json-files/).

```
In [3]: import json
        print(type(response.json ()))
        print(json.dumps(response.json()[:3], sort_keys=True, indent=2))
        <class 'list'>
        [
            "actor": {
              "avatar_url": "https://avatars.githubusercontent.com/u/5316640?",
              "display login": "rvuduc",
              "gravatar_id": ""
              "id": 5316640,
              "login": "rvuduc",
              "url": "https://api.github.com/users/rvuduc"
            },
            "created at": "2017-09-19T22:48:55Z",
            "id": "6611692513",
            "org": {
              "avatar_url": "https://avatars.githubusercontent.com/u/31073927?",
              "gravatar id": "
              "id": 31073927,
              "login": "cse6040",
              "url": "https://api.github.com/orgs/cse6040"
            },
              "before": "572167f7d65edd7a7aa12a5dd17d703656678d14",
              "commits": [
                   "author": {
                    "email": "richie@cc.gatech.edu",
                    "name": "Richard (Rich) Vuduc"
                  "distinct": true,
                  "message": "Added Yelp! ATL universities dataset",
                  "sha": "fale95d4c350506b772e56bd41a01479ee3951f2",
                   "url": "https://api.github.com/repos/cse6040/labs-fa17/commits/fale95d4c350
        772e56bd41a01479ee3951f2"
                },
                   "author": {
```

```
"email": "richie@cc.gatech.edu",
            "name": "Richard (Rich) Vuduc"
          "distinct": true,
          "message": "Merge branch 'master' of github.com:cse6040/labs-fa17",
          "sha": "c138fd4aa94c56debe3e640dfd4a1ba53afcdb88",
          "url": "https://api.github.com/repos/cse6040/labs-fa17/commits/c138fd4aa94
be3e640dfd4a1ba53afcdb88"
       }
      ],
      "distinct_size": 2,
      "head": "c138fd4aa94c56debe3e640dfd4a1ba53afcdb88",
      "push_id": 1996190687,
      "ref": "refs/heads/master",
      "size": 2
    },
    "public": true,
    "repo": {
      "id": 100506580,
      "name": "cse6040/labs-fa17",
      "url": "https://api.github.com/repos/cse6040/labs-fa17"
    },
    "type": "PushEvent"
  },
      "avatar_url": "https://avatars.githubusercontent.com/u/5316640?",
      "display_login": "rvuduc",
      "gravatar_id": "",
      "id": 5316640,
      "login": "rvuduc",
      "url": "https://api.github.com/users/rvuduc"
    "created at": "2017-09-19T19:38:11Z",
    "id": "6610937299",
    "org": {
      "avatar_url": "https://avatars.githubusercontent.com/u/31073927?",
      "gravatar id": "",
      "id": 31073927,
      "login": "cse6040",
      "url": "https://api.github.com/orgs/cse6040"
    },
    "payload": {
      "before": "917fffcca44b55042095d5be7de61b65414bad76",
      "commits": [
          "author": {
            "email": "richie@cc.gatech.edu",
            "name": "Richard (Rich) Vuduc"
          "distinct": true,
          "message": "Added Yelp\\! ATL universities raw search results",
          "sha": "572167f7d65edd7a7aa12a5dd17d703656678d14",
          "url": "https://api.github.com/repos/cse6040/labs-fa17/commits/572167f7d65@
7aa12a5dd17d703656678d14"
       }
      ],
      "distinct size": 1,
      "head": "572167f7d65edd7a7aa12a5dd17d703656678d14",
      "push_id": 1995800949,
      "ref": "refs/heads/master",
      "size": 1
    },
    "public": true,
    "repo": {
      "id": 100506580,
      "name": "cse6040/labs-fa17",
      "url": "https://api.github.com/repos/cse6040/labs-fa17"
    "type": "PushEvent"
  },
    "actor": {
      "avatar url": "https://avatars.githubusercontent.com/u/5316640?",
      "display login": "rvuduc",
      "gravatar_id": "",
      "id": 5316640,
      "login": "rvuduc",
      "url": "https://api.github.com/users/rvuduc"
    "created at": "2017-09-14T23:28:12Z",
    "id": "6593207015",
    "org": {
      "avatar_url": "https://avatars.githubusercontent.com/u/31073927?",
      "gravatar_id": "",
      "id": 31073927,
      "login": "cse6040",
      "url": "https://api.github.com/orgs/cse6040"
```

```
"payload": {
      "before": "4365a884df66895ad18e5f41a280cc81797e7923",
      "commits": [
        {
          "author": {
            "email": "richie@cc.gatech.edu",
            "name": "Richard (Rich) Vuduc"
          },
          "distinct": true,
          "message": "Added Lab 5 (regular expressions)",
          "sha": "917fffcca44b55042095d5be7de61b65414bad76",
          "url": "https://api.github.com/repos/cse6040/labs-fa17/commits/917fffcca441
2095d5be7de61b65414bad76"
       }
      ],
      "distinct_size": 1,
      "head": "917fffcca44b55042095d5be7de61b65414bad76",
      "push_id": 1986327053,
      "ref": "refs/heads/master",
      "size": 1
    },
    "public": true,
    "repo": {
      "id": 100506580,
      "name": "cse6040/labs-fa17",
      "url": "https://api.github.com/repos/cse6040/labs-fa17"
   },
    "type": "PushEvent"
 }
]
```

Exercise 0. It should be self-evident that the JSON response above consists of a sequence of records, which we will refer to as events event is associated with an actor. Write some code to extract a dictionary of all actors, where the key is the actor's login and the value actor's URL.

```
In [4]:
         Student's answer
         def extract_actors (json_github_events):
              """Given JSON records for events in a GitHub repo,
             returns a dictionary of the actors and their URLs.
             11 11 11
             urls = \{\}
             for event in json_github_events:
                  actor = event['actor']['display_login']
                  url = event['actor']['url']
                 urls[actor] = url
             return urls
```

```
In [5]:
         Grade cell: extract_actors_test
                                                                                      Score: 0.0 / 0.0
         actor_urls = extract_actors(response.json ())
         for actor, url in actor_urls.items ():
             print ('{}: {}'.format(actor, url))
             assert url == "https://api.github.com/users/{}".format(actor)
```

rvuduc: https://api.github.com/users/rvuduc Augus-Kong: https://api.github.com/users/Augus-Kong

Exercise 1. Write some code that goes to each actor's URL and determines their name. If an actor URL is invalid, that actor should not appear in the output.

```
In [6]:
         Student's answer
         def lookup_names (actor_urls):
             """Given a dictionary of (actor, url) pairs, looks up the JSON at
             the URL and extracts the user's name (if any). Returns a new
             dictionary of (actor, name) pairs.
             import re
             names = {}
             for actor, url in actor_urls.items ():
                 response = requests.get (url)
                 # Possible error conditions
                 if response is None: continue
                 if re.search ('application/json', response.headers['Content-Type']) is None:
         ntinue
                 if 'name' not in response.json (): continue
```

```
names[actor] = response.json ()['name']
return names
```

```
In [7]:
         Grade cell: get_names_test
                                                                                      Score: 0.0 / 0.1
         actor_names = lookup_names (actor_urls)
         for actor, name in actor_names.items ():
             print ("{}: {}".format (actor, name))
         assert actor_names['rvuduc'] == 'Rich Vuduc (personal account)'
```

rvuduc: Rich Vuduc (personal account) Augus-Kong: XIANGYU KONG

That's the end of this notebook. Processing JSON is fairly straightforward, because it maps very naturally to nested dictionaries in Pyth You might search the web for other sources of JSON data, including this one (https://www.yelp.com/dataset/challenge), and do your or processing!

Previous

Next Up: Topic 7: Tidying Data > $32 \min + 1 \text{ activity}$

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

<u>Donate</u>

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>