

Einführung in die Informatik (I-TS), Technische Grundlagen der Inf. (AI)

WS 16/17

Hochschule RheinMain Prof. Dr. Heinz Werntges

Zur Entstehung dieser Veranstaltung

- Bis WS 02/03: Prof. Dr. Kröger
 - Gesamtkonzeption
 - umfangreiches Folienmaterial
 - Praktikum und Übungen
- WS 03/04: Prof. Dr. Gergeleit
 - Übernahme der Lehrveranstaltung
 - Material i.w. erhalten
- WS 04/05 WS 05/06: Prof. Dr. Werntges
 - Übernahme der Lehrveranstaltung, Anpassung an Bachelor-St.
 - Aktualisierungen und Ergänzungen
 - Umstellung auf neue deutsche Rechtschreibung
 - Folienanimationen, Kurztests, Unix/Linux-Anleitungen

Zur Entstehung dieser Veranstaltung

- WS 07/08 SS 09: Prof. Dr. Behrens
 - Viel eigenes Material
 - Inhaltlich etwas andere Akzente
- Ab WS 09/10: Prof. Dr. Werntges
 - Fortsetzung des Konzepts aus WS 05/06
 - Übernahme einiger Neuerungen von Prof. Behrens
- Ab WS 16/17: Prof. Dr. Werntges
 - Fortsetzung des Konzepts aus WS 11
 - Auslagerung einiger technischer Teile in "Grundlagen der digitalen Elektronik" (I-TS)
 - AI: "Einführung in die Informatik" statt "Technische Grundlagen…"
 - Vorgriff auf die für nächstes Jahr vorgesehene neue Prüfungsordnung

Organisatorischer Vorspann

- 1. Lernziele
- 2. Organisation der Veranstaltung
- 3. Inhaltlicher Überblick
- 4. Bewertung und Leistungsnachweis
- 5. Materialien

1. Lernziele

 Grundlegende Modelle, Methoden, Verfahren und Techniken kennen lernen, die bei der Konstruktion moderner informationstechnischer Systeme in Hardware und Software Verwendung finden

(Lehrform: Vorlesung und Übungen)

- Fragen stellen können
- Antworten verstehen können
- Weiteres Wissen selbständig erarbeiten können
- Selbständige Lösung von Aufgaben zur Festigung und Vertiefung des in der Vorlesung behandelten Stoffs
- Vorbereitung auf die Klausur

1. Lernziele

- Grundlegende Arbeitstechniken im Umgang mit Rechnern erlernen (Lehrform: Praktikum)
 - "Überleben" am UNIX-Rechner
 - "Überleben" im Internet
- Die Lehrveranstaltungen des Studienplans einordnen können.
- Nicht zuletzt: Spaß am Informatik-Studium bekommen!

2. Organisation der Veranstaltung

- Vorlesung (LV 1121; AI: LV 1231):
 - 2-stündig
 - gemeinsam für alle BA-Studierenden im 1. Semester (LV 1121)
- Ablauf einer Vorlesung (Beispiel)
 - Zunächst Hauptteil, ca. 60 Minuten
 - Unterbrechung durch Kurztest + Auswertung, 5-10 Min.
 - Fortsetzung des Hauptteils und/oder Praktikumsergänzungen

Organisation der Veranstaltung (2)

Praktikum:

- 2-stündig
- Gruppen zu ca. 15 Personen
- Betreuung durch den Dozenten oder Lehrbeauftragte
 - (I-TS: M. Thoss, Al: Th. Knoll, S. Reichmann, H. Werntges)
- Anfangs: Ausgabe der Vorübung in der Vorlesung
 - Ab Blatt 1: <u>Selbständiges</u> Kopieren und Ausdrucken
- 1. Abschnitt (7 Übungen + Vorübung): Praktikum am Rechner
- 2. Abschnitt (5 Übungen + Fragestunde): Papierübungen
 - Übungsleiter geben Antworten auf Verständnisfragen zur Vorlesung und zu den Übungsaufgaben
 - Vorbereitung zu Hause
 - Vorrechnen durch Studierende
 - gemeinsame Diskussion von Lösungen

Organisation der Veranstaltung (3)

Übungsgruppen:

- feste Übungsgruppe für jeden Studierenden (wurde während des Belegungsverfahrens zugeordnet)
- im Semester kein Wechsel möglich
- Vormerkliste: <u>Verteilung auf die Gruppen im Anschluss an diese LV</u>

Sonstige Betreuung:

- Freies Üben: Di nachmittags in allen Rechnerräumen
- Meine Sprechstunde: Do 13:15 14 Uhr und nach der Vorlesung
- E-Mail: heinz.werntges@hs-rm.de
- Webpage der Veranstaltung: In Stud.IP
 (http://studip.hs-rm.de/, dann Lehrveranstaltung auswählen)
- Dateien auf dem Fileserver:

/home/staff/werntges/lv/einf-inf/

3. Inhaltlicher Überblick

Gliederung der Vorlesung:

- Einführung, Geschichte der Informatik, Informatik & Gesellschaft
- 2. Grundbegriffe
- 3. Repräsentierung von Information in Rechensystemen
- 4. Grundlagen der Codierung
- 5. Schaltnetze, Schaltwerke, Boolesche Algebra
- 6. Architektur von Rechensystemen
- 7. Gerätekunde

Inhaltlicher Überblick (2)

Praktikum:

- "Überleben" am Unix-Rechner
 - Dokumentationen und Hilfesysteme: SelfLinux; man, info
 - Umgang mit dem Dateisystem und andere wichtige Kommandos
 - Editoren (vi)
 - Kommandointerpreter (shell)
 - Beispiel: Linux (wie zu Hause)
- "Überleben" im Internet
 - Informationsbeschaffung: WWW, URLs, Browser, Suchmaschinen
 - Kommunizieren: E-Mail, news
 - Netzwerk-Dienstprogramme (ftp, telnet; ssh, sftp)
 - Erstellen von einfachen HTML5-Dokumenten

Termine im WS 2016

(Stand: 13.10.16)

Datum (Mi)	Vorlesung	Praktikum/Übung
19.10.16	Organisatorisches, Einführung	Vorübungen
26.10.16	Geschichte der Informatik	P: Dateisystem
2.11.16	Informatik und Gesellschaft	P: Der Editor vi
9.11.16	Grundbegriffe	P: Utilities, Pipes
16.11.16	Repräsentierung v. Information (1)	P: ssh, Mail, (s)ftp
23.11.16	Repräsentierung (2)	P: Raspi I/O, Dig. out, A/D
30.11.16	Repräsentierung (3), Linux	Ü: Geschichte der Inf.
7.12.16	Codierung (1), XHTML/5	Ü: Algorithmus, Zahlendarst.
14.12.16	Codierung (2)	P: HTML5
21.12.16	Schaltnetze/werke, Boolesche Alg.	Ü: Repräsent., Codierungen
24.12.16 - 6.1.17	Nein (Weihnachtspause)	
11.01.17	Architektur (1)	Ü: Codierungen
18.01.17	Architektur (2)	Ü: Codierungen
25.01.17	Gerätekunde	P: Halbaddierer
1.02.17	Puffer / Fragestunde, Wiederholung	Wh, Fragestunde / Reserve
Ab 6.02.17	Prüfungswochen	

4. Bewertung und Leistungsnachweis

- LV 1121: Der Veranstaltung ist eine <u>Prüfungs</u>leistung im Sinne der Prüfungsordnung zugeordnet.
 - Bewertung: Abschlussklausur; bestanden bei ≥ 50% der Punkte
 - Max. 3 Versuche!
- LV 1122: Der Veranstaltung ist eine <u>Studien</u>leistung im Sinne der Prüfungsordnung zugeordnet.
 - Anwesenheitspflicht im Praktikum (> 75 % ≈ 10 Termine) ist notwendige Voraussetzung
 - Bewertung durch Leistung im Praktikum im Verlaufe des Semesters
 - Unix-Teil: Alle Aufgabenzettel werden bepunktet
 - Theorie-Teil: Bepunktung für Vorrechnen. Jede(r) kommt mindestens dreimal an die Reihe (Lose) und sollte stets alle Aufgaben vorbereiten!
 - Für beide Teile gilt: Regelmäßige und selbständige Bearbeitung ist wichtiger als Fehlerfreiheit.
 - Notenvergabe über Gesamtpunktzahl, bestanden bei ≥ 50%.

Bewertung und Leistungsnachweis

Rat:

Erbringen Sie stets Ihre Leistungsnachweise so früh wie möglich! Bedenken Sie ferner, dass Sie auch mal krank werden könnten und dennoch die 75%-Regel einhalten müssen. Verpassen Sie daher keinen Praktikumstermin ohne wichtigen Grund.

Bewertung und Leistungsnachweis

Kurztests

- In einigen Vorlesungen werden Kurztests (ca. 5 min.) durchgeführt
- Schriftlich zu bearbeiten, gegenseitige Kontrolle/Korrektur
- Lösungen später im Web verfügbar
- Ohne Wertung zur Selbstkontrolle des Kenntnisstands und zur Aktivierung nach längeren Vorlesungseinheiten

Alte Klausuren, Probeklausur?

- Die Klausuren aus dem WS 2005/06 werden bereitgestellt
- Ebenso wird die Probeklausur zum Linux-Teil bereitgestellt
- Musterlösungen werden <u>nicht</u> angeboten erarbeiten und diskutieren Sie das Material gemeinsam!

Bewertung und Leistungsnachweis

Einige Worte zum Zeitaufwand für diese LV

Generell: 1 SWS = 2,5 Std. Zeitaufwand insgesamt

Hier: 4 SWS = 10 Std./Woche,

also 6 Std./Woche zusätzlich zur Anwesenheitspflicht

- Nutzung dieser 6 Stunden pro Woche
 - Vorlesung:
 - <u>Nach</u>bereitung, Nachvollziehen der VL-Beispiele & Kurztests
 - Erarbeitung der nicht gezeigten Folien (!)
 - Praktikum:
 - Vorbereitung auf die Themen des nächsten Praktikums
 - Insb. selbständiges Erarbeiten der angegebenen SelfLinux-Kapitel (!!)
 - Auffrischung des jew. Vorlesungsstoffs
 - Wer nachweislich völlig unvorbereitet erscheint, erhält keinen Anwesenheitsvermerk. → 75%-Regel!
 - Bearbeitung / Fertigstellung der Übungszettel
 - Gegen Ende der LV: Klausurvorbereitungen

5. Materialien

Folien zur Vorlesung

- als PDF-Dateien über Stud.IP erhältlich, Ausdruck am besten zu Hause (z.B. mit Acrobat Reader).
- Aktuelle Einschränkungen wegen der "Wort-VG", §52a Urheber-G.

Lehrbücher zur Vorlesung

- werden für jedes Kapitel gesondert angegeben.
- aufgrund der Stoffauswahl deckt kein Lehrbuch genau den behandelten Stoff ab.

Übungszettel

 sind <u>selbständig rechtzeitig</u> aus dem Dozentenverzeichnis <u>abzuholen</u>, auszudrucken und vorzubereiten / zu bearbeiten.

Materialien (2)

- UNIX-Rechner des Studienbereichs zum freien Üben
 - Linux-Pools, Räume C213, C413; C361, C377
 - nur außerhalb von Lehrveranstaltungen benutzbar, dienstags ab 14.15 Uhr
- UNIX-Handbücher und -Skripte sowie Online-Ressourcen
 - RRZN Hannover, wird von Fachschaft verkauft
 - Skripte verschiedener Hochschulen über den Web-Server des Fachbereichs erhältlich (in PostScript), Ausdruck zu Hause!
 z.B. Skript der Uni Karlsruhe "Einführung in UNIX"
 (W. Alex, 2004, 434 Seiten).
 - zahlreiche Lehrbücher im Handel und in der Bibliothek
 - The Linux Documentation Project (www.tldp.org)
 - SelfLinux (www.selflinux.org) (Tutorial + Referenz, auf Deutsch)

Materialien (3)

Empfohlene Ausstattung f ür zu Hause

- Linux
 - frei verfügbares UNIX für PC-Hardware
 - DVD-Versionen im Handel bzw. kostenlos per Download (z.B. OpenSuSE 13.2, Ubuntu 16.10 oder 16.04 LTS)
 - Für erste Versuche: Knoppix CD-ROM, bootfähig
- Windows
 - wenn Windows, dann bevorzugt Windows ab V. 7
 - mit Acrobat Reader (für .pdf), Ghostview (für .ps),
 Browser (Firefox 48.x oder Microsoft Internet Explorer 11+,
 Packer/Entpacker (z.B. infozip, Winzip, WinRAR), Editoren (vim und ultraedit), Textverarbeitung (z.B. Microsoft Word),
 zusätzlich Cygnus bash und gcc ("Cygwin"-Umgebung).
 - Tipp: Linux als Virtuelle Maschine installieren (VirtualBox, VMWare)
- Apple Mac
 - MacOS beruht bereits auf einer hochentwickelten Unix-Version

Empfehlungen

Persönliche Empfehlungen Ihres Dozenten

- ... für einen Wochenend-Ausflug:
 - Besuch des Heinz-Nixdorf-MuseumsForum in Paderborn
 - größtes Computermuseum der Welt
 - präsentiert 5000 Jahre Geschichte der Informations- und Kommunikationstechniken
 - mehr als 2000 Exponate
 - Virtueller Rundgang: http://www.hnf.de
- .. für ein paar lange Winterabende:
 - Eric S. Raymond: The Cathedral and the Bazaar
 - Open Source-"Philosophie", auch im gesellschaftlichen Kontext
 - auch: Wege zu einem guten Programmierstil
- ... für eine eventuell gemeinsame Exkursion
 - Technikum29 in Kelkheim (www.technikum29.de)