INTRODUCCIÓN A LAS REDES DE COMPUTADORAS.

Universidad Nacional de Ingeniería.

Facultad de Electrotecnia y Computación.

Ingeniería en Computación.

V Año - I Semestre.

Año Académico 2018.

INTRODUCCIÓN A LAS REDES DE COMPUTADORAS.

- Redes de Computadoras.
 - Usos.
 - Aspectos de Diseño.
- Definición y Conceptos sobre Redes.
 - Hardware.
 - Software.
- Modelos de Referencia.
 - OSI.
 - TCP/IP.
- > Servicios de

Comunicación de Datos.

- Redes X.25.
- Redes Frame Relay.
- Redes B-ISDN.
- Redes ATM.
- Estandarización de Redes de Computadoras.
- Problemas y Ejercicios,

REDES DE COMPUTADORAS: USOS.

Compañías:

▶ Compartir Recursos

Sin importar localización física

Alta Confiabilidad

Fuentes alternativas

> Ahorrar dinero

PC más baratas

Servidores de Archivo

Modelo Cliente – Servidor

Medio de Comunicación

Cooperación entre grupos

Gente:

- Acceso a Información
 Remota: administración
 bancaria, compras, WWW, etc.
- Comunicación entre personas: redes sociales, streaming, videoconferencias, email, grupos de noticias, etc.
- Entretenimiento
 interactivo: Video por solicitud
 juegos, realidad virtual, etc.

HARDWARE: TECNOLOGÍA DE TRANSMISIÓN

Redes de Difusión.

- Un solo canal de comunicación compartido.
- Envió de información en forma de paquetes con un campo de dirección.
- Posibilidad de enviar paquetes a múltiplos destinos.
- Multidifusión: transmisión a un subconjunto de maquina (Usos de bits indicadores).

Redes Punto a Punto.

- Muchas conexiones entre pares individuales de maquinas.
- Necesita de algoritmos de enrutamiento.
- Un paquete puede visitar maquinas intermedias.
- Múltiples rutas de conexión.
- Más común en redes grandes.

4

HARDWARE: CLASIFICACIÓN DE LAS REDES SEGÚN SU ESCALA.

Distancia entre	
procesadores	
1 m	

Procesadores ubicados en el mismo

1 m	Metro cuadrado
10 m	Cuarto
100 m	Edificio
1 km	Campus
10 km	Ciudad
100 km	País
1,000 km	Continente
10,000 km	Planeta

Ejemplo

Red de área personal

Red de área Local (LAN)

Red de área metropolitana (MAN)

Red de área amplia

Internet

Redes y dispositivos de área local

Las LAN se encuentran diseñadas para:

- Operar dentro de un área geográfica limitada
- Permitir el multiacceso a medios con alto ancho de banda
- Controlar la red de forma privada con administración local
- Proporcionar conectividad continua a los servicios locales
- Conectar dispositivos físicamente adyacentes

Utilizando:

Hub

HARDWARE: REDES DE ÁREA LOCAL (LAN)

- Redes privadas para compartir recursos.
- ✓ Restringidas en tamaño
 - > Tiempo de transmisión limitado y conocido
 - Simplicidad en la administración de la red
- ✓ Tecnología de transmisión es usualmente un cable sencillo al cual están conectadas todas las maquinas
- √ Velocidad de 10 a 100 mbps
- ✓ Experimentan pocos errores
- ✓ LAN mas nuevas pueden operar a velocidades altas

HARDWARE: TOPOLOGÍAS DE LAS REDES DE ÁREA LOCAL (LAN).

Bus:

Anillo:

- ⊗Sistema de difusión.
- Se necesitan reglas para arbitrar el acceso simultaneo a la red.

HARDWARE: REDES DE ÁREA METROPOLITANA (MAN)

- Abarca una ciudad
- Versión mas grande de una LAN

Ejemplo:

Red de televisión por cable disponible en muchas ciudades.

REDES DE ÁREA AMPLIA (WAN)

- Consiste en hosts conectados por una subred de comunicaciones.
- Host son maquinas dedicadas a ejecutar aplicaciones.
- La subred tiene dos elementos: líneas de transmisión y elementos de conmutación. (Enrutador= computadoras de conmutación)
- Casi todas las WAN tienen subredes de punto a punto, de almacenar y reenviar o de paquete conmutado.

Redes y dispositivos de área amplia

Las WAN están diseñadas para:

- Operar en áreas geográficas extensas.
- Permitir el acceso a través de interfaces seriales que operan a velocidades reducidas.
- Suministrar conectividad continua y parcial.
- Conectar dispositivos separados por grandes distancias, e incluso a nivel mundial.

Utilizando:

Router

Modem CSU/DSU

Servidor. de comunicaciones

Switch de ancho de banda de WAN

REDES: WAN.

Algunas de las tecnologías comunes de las WAN son:

- ▶ Módems
- RDSI (Red digital de servicios integrados)
- DSL (Digital Subscriber Line) (Línea de suscripción digital)
- ▶ Frame relay
- > ATM (Modo de transferencia asíncrona)
- Series de portadoras T (EE.UU y Canada) y E (Europa y America Latina): T1, E1, T3, E3, etc
- SONET (Red óptica síncrona)

Se dividen en tres categorías

- Interconexión de sistemas: es la interconexión de componentes de una computadora que utiliza radio de corto alcance.
- LANs inalámbricas: son sistemas en los que cada computadora tiene un MODEM de radio y una antena mediante los que se puede comunicar con otros sistemas
- WANs inalámbricas: utilizadas en la red de radio para teléfonos celulares:
 - 1ra: analógica y sólo para voz
 - 2da: digital y sólo para voz
 - > 3ra: digital y es tanto para voz como para datos.

REDES INALAMBRICAS.

HARDWARE: INTERREDES.

- Es una colección de redes interconectadas.
- Maquinas llamadas pasarelas (gateway) son usadas para hacer la conexión y realizar la traducción necesaria.
- Una forma común de interred es una colección de LANs conectadas por una WAN

SOFTWARE: JERARQUÍAS DE PROTOCOLOS.

- Muchas redes están organizadas en una serie de capas o niveles.
- Capas en diferentes maquinas al mismo nivel se llama pares.
- Las convenciones para comunicar pares se llama protocolos.
- En la capa 1 esta el medio físico.
- La interfaz define las operaciones y servicios primitivos de la capa inferior a la superior.
- Arquitectura de red: es un conjunto de capas y profocolos, y define reglas para programar o construir hardware para una capa.

SOFTWARE: FLUJO DE INFORMACION.

Encapsulamiento de datos Origen Destino **Aplicación** Aplicación Presentación Presentación Datos Sesión Sesión **Transporte Transporte** Encabezado Datos Red Red de red Fin de Enlace de datos Encabezado Encabezado Datos Enlace de datos trama de trama de red **Física** Física

Ejemplo de encapsulamiento de datos

Comunicaciones par a par

SOFTWARE: CONSIDERACIONES DEL DISEÑO DE CAPAS.

- Direccionamiento para identificar emisores y receptores.
- Reglas de transferencia de datos: simplex, semi-dúplex y dúplex.
- Control de errores.
- Mecanismos para el ordenamiento y unión de los mensajes.
- Evitar que un emisor rápido sature de datos a un receptor lento.
- Resolver la incapacidad de algunos procesos para aceptar mensajes de longitud arbitraria.
- Transferencia en la multiplexión y demultiplexión de múltiples conversaciones en una misma capa.
- Elección de rutas cuando el origen y el destino tiene múltiples trayectorias.

SOFTWARE: SERVICIOS.

- Servicio Orientado a la Conexión: primero se establece la conexión, se usa y después se libera.
- Servicio Sin Conexión: cada mensaje lleva la dirección destino, y cada uno se encamina a través del sistema de forma independiente.
- Servicio de datagrama: un servicio sin conexión no confiable (sin acuse de recibo, sin acknowledge).
- Servicio de Datagrama con Acuse: cuando el mensaje llega al destino un recibo es enviado a la fuente para garantizar la transacción.
- Servicio de Petición y Respuesta: el remitente un datagrama sencillo con una petición, la respuesta contiene la contestación.

MODELOS DE REFERENCIA OSI.

Estandarización internacional de protocolo OSI (interconexión de sistemas abiertos), tiene siete capas bajo los principios:

- Una capa cada nivel diferente de abstracción
- Cada capa debe realizar una función bien definida
- Función de capas según definición de protocolos estandarizados internacionales
- Los limites de las capas deben elegirse a modo de minimizar el flujo de información a través de las interfaces
- La cantidad de capas debe ser suficiente para no tener que agrupar funciones distintas en la misma capa y lo bastante pequeña para que la arquitectura no se vuelva manejable.

22

¿Por qué un modelo de red dividido en capas?

- Aplicación Presentación 5 Sesión Transporte 3 Red Enlace de datos Física
- Reduce la complejidad
- Estandariza las interfaces
- Facilita la técnica modular
- Asegura la interoperabilidad de la tecnología
- Acelera la evolución
- Simplifica la enseñanza y el aprendizaje

MODELOS DE REFERENCIA OSI: CAPA DE FÍSICA.

MODELOS DE REFERENCIA OSI: CAPA DE ENLACE DE DATOS.

- 7 Aplicación
 - 6 Presentación
- 5 Sesión
- 4 Transporte
- 3 Red
- 2 Enlace de datos
- 1 Física

Acceso a los medios

- Permite la transferencia confiable de los datos a través de los medios
- Direccionamiento físico, topología de red, notificación de errores, control de flujo

MODELOS DE REFERENCIA OSI: CAPA DE RED.

Aplicación Presentación Sesión Transporte Direccionamiento y mejor ruta Red Proporciona conectividad y selección de ruta entre dos sistemas finales Enlace de datos Dominio de enrutamiento Física

MODELOS DE REFERENCIA OSI: CAPA DE TRANSPORTE.

Aplicación Presentación Sesión Conexiones de extremo a extremo **Transporte** Se ocupa de aspectos de transporte entre hosts Red Confiabilidad del transporte de datos · Establecer, mantener, terminar Enlace de datos circuitos virtuales Detección y recuperación de fallas **Física** Control del flujo de información

MODELOS DE REFERENCIA OSI: CAPA DE SESIÓN.

- 7 Aplicación
- 6 Presentación
- 5 Sesión
- 4 Transporte
- 3 Red
- 2 Enlace de datos
- 1 Física

Comunicación entre hosts

 Establece, administra y termina sesiones entre aplicaciones

MODELOS DE REFERENCIA OSI: CAPA DE PRESENTACIÓN.

Aplicación Presentación Representación de datos Garantizar que los datos sean legibles para 5 el sistema receptor Sesión Formato de los datos Estructuras de los datos Transporte Negocia la sintaxis de transferencia de datos para la capa de aplicación RedEnlace de datos **Física**

MODELOS DE REFERENCIA OSI: CAPA DE APLICACIÓN.

Aplicación Presentación Sesión Transporte 3 Red Enlace de datos Física

Procesos de red a aplicaciones

 Proporciona servicios de red a procesos de aplicación (como correo electrónico, transferencia de archivos y emulación de terminales)

MODELOS DE REFERENCIA TCP/IP: OBJETIVOS

Objetivos principales:

- Ampliar los medios de transmisión de la red ARPANET (antecesora de Internet) de líneas telefónicas rentadas a otros sistemas como redes de satélite y radio
- Mantener las conexiones intactas mientras las maquinas de origen y destino funcionen, aun si alguna de las maquinas o de las líneas de transmisión en el trayecto dejara de funcionar en forma repentina
- Proveer una arquitectura flexible donde sea posible llevar a cabo aplicaciones con requerimientos divergentes, abarcando desde la transferencia de archivos hasta la transmisión de discursos en tiempo real.

MODELOS DE REFERENCIA TCP/IP: INTERRED

La capa de interred:

- Es una red de conmutación de paquetes carente de conexiones.
- Los nodos inyectan paquetes en cualquier red y lo hacen viajar de forma independiente a su destino
- Es definido por un formato de paquete y protocolo oficial llamado IP (protocolo de interred)
- o El trabajo de esta capa es estregar paquetes IP a donde se supone que deben ir.

MODELOS DE REFERENCIA TCP/IP: TRANSPORTE

- La capa de transporte: permite que las entidades pares en los nodos de origen y destino lleven a cabo una conversación. Se definieron dos protocolos.
- TCP, protocolo de control de transmisión: protocolo confiable orientado a conexión. Fragmenta los bytes entrantes en mensajes discretos y los pasa la interred. El TCP receptor realiza la operación de ensamblaje de los paquetes. Control de flujo: asegura que un emisor rápido no pueda saturar a un receptor lento.
- UDP, protocolo de datagrama de usuario: protocolo sin conexión, no confiable, para aplicaciones sin la asignación de secuencia y control de flujo del TCP. Aplicaciones: cliente-servidor, donde la entrega pronta es mas importante que la precisa (voz, video)etc..

33

MODELOS DE REFERENCIA TCP/IP: APLICACIÓN

Capa de aplicación: protocolos de alto nivel.

- ► TELNET- terminal virtual,
- > FTP: transferencia de archivos,
- > SMTP: correo electrónico,
- DNS: servicios de nombres de dominio.

MODELO OSI .VS. TCP/IP.

Similitudes:

- Ambos se dividen en capas
- Ambos tienen capas de aplicación, aunque incluyen servicios muy distintos
- Ambos tienen capas de transporte y de red similares
- Se supone que la tecnología es de conmutación de paquetes (no de conmutación de circuitos)
- Los profesionales de networking deben conocer ambos

MODELO OSI .VS. TCP/IP.

Diferencias:

- TCP/IP combina las funciones de la capa de presentación y de sesión en la capa de aplicación.
- TCP/IP combina la capas de enlace de datos y la capa física del modelo OSI en una sola capa.
- TCP/IP parece ser más simple porque tiene menos capas.
- Los protocolos TCP/IP son los estándares en torno a los cuales se desarrolló Internet, de modo que de credibilidad del modelo TCP/IP se debe en gran porte a sus protocolos. En comparación, no se crean redes a partir de protocolos específicos relacionados con OSI, aunque todo el mundo utiliza el modelo OSI como guía.