Exercice

On se propose de résoudre numériquement l'équation $(E_1): f(x) = x^3 + x - 1 = 0$.

- 1. Montrer que l'équation (E_1) admet dans l'intervalle]0,1[une solution réelle unique qu'on notera α .
- 2. L'équation (E_1) est équivalente à l'équation (E_2) : x = g(x), où $g(x) = x^3 + 2x 1$ ou $g(x) = 1 x^3$ ou $g(x) = (1 x)^{\frac{1}{3}}$. Etudier dans chacun de ces trois cas la convergence de la méthode du point fixe pour la recherche de α . Dans le cas où il y a convergence, donner un intervalle I tel que pour tout choix de x_0 dans I, la méthode converge.

Corrigé

$$f(x) = 0$$
 avec $f(x) = x^3 + x - 1$.

- 1. f est continue sur [0,1], $f(0)f(1)=(-1)\times 1<0$. D'après le théorème des valeurs intermédiaire, il existe $\alpha\in]0,1[$ tel que $f(\alpha)=0$. $f'(x)=3x^2+1>0 \Rightarrow f$ est strictement croissante sur]0,1[et par suite α est
- 2. $(E_1) \Leftrightarrow (E_2) : g(x) = x \text{ avec } g(x) = x^3 + 2x 1, g(x) = 1 x^3 \text{ ou } g(x) = \sqrt[3]{1 x}.$
 - (a) Premier Cas : $g(x) = x^3 + 2x 1$. g est deux fois dérivable sur]0,1[et $g'(x) = 3x^2 + 2$ et g''(x) = 6x > 0 sur]0,1[et par conséquent $g'(x) \in]g'(0), g'(1)[=]2,5[$, $\forall x \in]0,1[$. Par conséquent, $|g'(\alpha)| > 1$. Ainsi la méthode du point fixe (des approximations successives) est divergente dans ce cas.
 - (b) Deuxième Cas: $g(x) = 1 x^3$, $g'(x) = -3x^2$, g''(x) = -6x < 0 sur [0, 1].

Pour voir si $|g'(\alpha)| < 1$ ou $|g'(\alpha)| > 1$. Il faut voir si $\alpha \in]0, \frac{1}{\sqrt{3}}[$ ou $,]\frac{1}{\sqrt{3}}, 1[$.

On a

$$g(\frac{1}{\sqrt{3}}) = 1 - \frac{1}{3\sqrt{3}} \neq \frac{1}{\sqrt{3}} \Rightarrow \alpha \neq \frac{1}{\sqrt{3}}.$$
$$f(0)f(\frac{1}{\sqrt{3}}) > 0 \Rightarrow \alpha \notin]0, \frac{1}{\sqrt{3}}[$$

Par conséquent, $g'(\alpha) < -1 \Rightarrow |g'(\alpha)| > 1$. Par suite, la méthode du point fixe est divergente dans ce cas aussi.

(c) Troisième cas : $g(x) = \sqrt[3]{1-x}$. $g'(x) = \frac{-1}{3(1-x)^{\frac{2}{3}}}$ et $g''(x) = \frac{-2}{9(1-x)^{\frac{5}{3}}} < 0$, $\forall x \in]0,1[$.

x	0	$\beta = 1 - \frac{1}{3\sqrt{3}}$	1
g''(x)		_	
g'(x)	$\frac{-1}{3}$	-1	$-\infty$

$$g'(x) = -1 \Leftrightarrow 3(1-x)^{\frac{2}{3}} = 1$$
$$\Leftrightarrow 1 - x = (\frac{1}{3})^{\frac{3}{2}}$$
$$\Leftrightarrow x = 1 - \frac{1}{3\sqrt{3}} \simeq 0.8075$$

Il faut voir si $\alpha \in]0, \beta[$ ou bien $\alpha \in]\beta, 1[$. Pour cela, on calcule $f(\beta)$. On trouve alors que $f(0)f(\beta) < 0 \Rightarrow \alpha \in]0, \beta[$ et par conséquent $|g'(\alpha)| < 1$. Dans ce cas, la proposition 2 du chapitre I, permet de dire qu'il existe un intervalle [a,b] tel que $\alpha \in [a,b], g([a,b]) \subset [a,b]$ avec $[a,b] \subset [0,\beta[$ et $\max_{x \in [a,b]} |g'(x)| < 1$. Pour tout choix de x_0 dans [a,b], la suite définie par

$$\begin{cases} x_0 \\ x_{n+1} = \sqrt[3]{1 - x_n} \end{cases}$$

converge vers α .

Cherchons [a,b]. Pour le trouver, il n'y a pas de méthode particulière. C'est la difficulté de la méthode du point fixe. On prend $a=\frac{1}{\sqrt{3}}$ et $b=\beta$. Comme g est décroissante, on a

$$g(]\frac{1}{\sqrt{3}},\beta[)=]g(\beta),g(\frac{1}{\sqrt{3}})[$$

.

$$g(\frac{1}{\sqrt{3}}) = \sqrt[3]{1 - \frac{1}{\sqrt{3}}} \simeq 0.7504, \quad g(\beta) \simeq 0.577$$

On voit que $g(]\frac{1}{\sqrt{3}}, \beta[) =]0.577, 0.7504[\subset]\frac{1}{\sqrt{3}}, \beta[\subset]0, \beta[\Rightarrow \max_{\frac{1}{\sqrt{3}}, \beta[}|g'(x)| < 1 \text{ Par suite, } \forall x_0 \in]\frac{1}{\sqrt{3}}, \beta[, \text{ la suite définie par }]$

$$\begin{cases} x_0 \\ x_{n+1} = g(x_n) = \sqrt[3]{1 - x_n} \end{cases}$$

converge vers α .