где $\omega_i = M_i - m_i$ — колебание функции f(x) на сегменте $\{x_i, x_{i+1}\}.$

2181. Найти интегральную сумму S_n для функции f(x) = 1 + x

на сегменте [-1, 4], разбивая его на n равных промежутков и выбирая значения аргумента ξ_i ($i = 0, 1, \ldots, n-1$) в серединах этих промежутков.

2182. Для данных функций f(x) найти нижнюю S_n и верхнюю S_n интегральные суммы на соответствующих сегментах, деля их на n равных частей, если

a)
$$f(x) = x^3$$
 $[-2 \le x \le 3];$

6)
$$f(x) = \sqrt{x} \qquad [0 \leqslant x \leqslant 1];$$

B)
$$f(x) = 2^x$$
 $[0 \le x \le 10]$.

2183. Найти нижнюю интегральную сумму для функции $f(x) = x^4$ на сегменте [1, 2], разбивая этот сегмент на n частей, длины которых образуют геометрическую прогрессию. Чему равен предел этой суммы при $n \to \infty$?

2184. Исходя из определения интеграла, найти

$$\int_{0}^{T} (v_0 + gt) dt,$$

где v_0 и g — постоянны.

Вычислить определенные интегралы, рассматривая их как пределы соответствующих интегральных сумм и производя разбиение промежутка интеграции надлежащим образом:

2185.
$$\int_{-1}^{2} x^{2} dx$$
. 2186. $\int_{0}^{1} a^{x} dx$ $(a>0)$. 2187. $\int_{0}^{\pi/2} \sin x dx$.
2188. $\int_{0}^{x} \cos t dt$. 2189. $\int_{a}^{b} \frac{dx}{x^{2}}$ $(0 < a < b)$.

Указание. Положить $\xi_i = \sqrt{x_i x_{i+1}}$ (i = 0, 1, ..., n).

2190.
$$\int_{0}^{b} x^{m} dx$$
 $(0 < a < b; m \neq -1)$.

Указание. Выбрать точки деления так, чтобы их абсциссы x_i образовывали геометрическую прогрессию.