Introduction to Real Analysis – Final Exam

Junwoo Yang

June 17, 2020

Problem 1. (1) Let

$$||f||_{L^{1,w}(\mathbb{R}^d)} = \sup_{\alpha > 0} \alpha \cdot m\left(\left\{x \in \mathbb{R}^d : |f(x)| > \alpha\right\}\right)$$

where m stands for the Lebesgue measure on \mathbb{R}^d . Check that

$$||f||_{L^{1,w}(\mathbb{R}^d)} \le ||f||_{L^{1}(\mathbb{R}^d)}.$$

(2) Give an example of a function g in $(0, \infty)$ such that

$$||g||_{L^{1,w}((0,\infty))} = 1$$
 and $||g||_{L^1((0,\infty))} = +\infty$.

Proof. (1) For any $\alpha > 0$, let $A_{\alpha} = \{x \in \mathbb{R}^d : |f(x)| > \alpha\}$. It's measure is

$$m(A_\alpha) = \int_{A_\alpha} \mathrm{d} m \leq \int_{A_\alpha} \frac{|f(x)|}{\alpha} \, \mathrm{d} x \leq \frac{1}{\alpha} \|f\|_{L^1(\mathbb{R}^d)}.$$

After multiplying by $\sup_{\alpha>0}\alpha$ the result is proved.

$$||f||_{L^{1,w}(\mathbb{R}^d)} = \sup_{\alpha>0} \alpha \cdot m(A_\alpha) \le ||f||_{L^1(\mathbb{R}^d)}.$$

(2) Let
$$g(x) = \frac{1}{x}$$
.

$$\begin{cases} \text{For any } \alpha > 0, \ \alpha m(A_\alpha) = \alpha \cdot \frac{1}{\alpha} = 1 \Rightarrow \|g\|_{L^{1,w}((0,\infty))} = 1. \\ \|g\|_{L^1((0,\infty))} = \int_0^\infty \frac{1}{x} \, \mathrm{d}x = +\infty. \end{cases}$$

Problem 2. (1) Suppose that F is a \mathbb{R} -valued absolutely continuous function on [a, b]. Prove that

$$T_F(a,b) = \int_a^b |F'(t)| \, \mathrm{d}t.$$

(2) Suppose that F is a \mathbb{R} -valued continuous function on [a,b]. Show that

$$T_F(a,b) = \lim_{\varepsilon \to 0+} T_F(a+\varepsilon,b).$$

(3) Determine whether

$$F(x) = (x-1)^{2022} \sin((x-1)^{-2020})$$
 for $x \in [0, 2]$

is of bounded variation on [0, 2] or not.

Proof. (1) Stein, Shakarachi, Chap.3, Prop.4.2

(2)

(3)

Problem 3. (1) For a fixed number $\xi \in (0,1)$, we construct a subset C_{ξ} of \mathbb{R} in the following manner:

- In the first stage of the construction, we remove the middle ξ from [0,1] so that the remaining set is $[0,\frac{1-\xi}{2}] \cup [\frac{1+\xi}{2},1]$.
- In the second stage, we remove the middle ξ^2 from each of $[0, \frac{1-\xi}{2}]$ and $[\frac{1+\xi}{2}, 1]$.
- By repeating this process countably many times, we obtain the set C_{ξ} . Note that $C_{\frac{1}{3}}$ is the Cantor set.

Compute the (strict) Hausdorff dimension of the set C_{ξ} .

- (2) Prove that there exists a subset of \mathbb{R} having Hausdorff dimension γ for any $\gamma \in (0,1)$.
- (3) Compute the Hausdorff dimension and the Minkowski dimension of the compact subset $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ of \mathbb{R} .

Proof. (1) By adopting the argument to obtain the Hausdorff dimension of the Cantor set $C_{\frac{1}{3}}$, we see that the Hausdorff dimension of C_{ξ} is $\frac{\log 2}{\log 2 - \log(1 - \xi)}$. Stein, Shakarchi, Chap.7, Exercise 8.

(2) Let
$$f(\xi) = \frac{\log 2}{\log 2 - \log(1-\xi)}, \xi \in (0,1).$$

$$\begin{cases} f\colon \text{continuous in } (0,1).\\ f\colon \text{monotone decreasing in } (0,1).\\ \lim_{\varepsilon\to 0+} f(\xi) = 1, \ \lim_{\varepsilon\to 1-} f(\xi) = 0. \end{cases}$$

 $\{\mathcal{C}_{\xi}: \xi \in (0,1)\}$ provides subsets of \mathbb{R} having Hausdorff dimension γ for any $\gamma \in (0,1)$.

(3)