MATH 209 : Final Exam Solutions (Winter 2014)

(a)
$$\lim_{X \to 1^{-}} \frac{|x-1|}{|x-1|} =$$

(less than)

if x is close to 1 but smaller than 1, then x-1 is a smaller negative.

so, |x-1| will be positive and x-1 will be "the same number" but inegative.

$$\lim_{x\to 1^-} \frac{|x-1|}{|x-1|} = \boxed{-1}$$

(b)
$$\lim_{X \to -2} \frac{(x+2)^2}{x^2-4} = \lim_{X \to -2} \frac{(x+2)(x+2)}{(x+2)(x-2)} = \lim_{X \to -2} \frac{x+2}{x-2} = \frac{(-2)+2}{(-2)-2} = \frac{0}{0}$$

(c)
$$\lim_{X \to \infty} \frac{(x^2 + 4)}{4 - 25(x^2)} = \lim_{X \to \infty} \frac{(x^2 + 4)}{(x^2 + x^2)} = \lim_{X \to \infty} \frac{1 + 4/x^2}{4/x^2 - 25}$$

$$= \lim_{X \to \infty} \frac{1 + \lim_{X \to \infty} 4/x^2}{(x^2 + x^2)} = \frac{1}{25}$$

$$\lim_{X \to \infty} 4/x^2 - \lim_{X \to \infty} 25$$

(a)
$$y = 5x^{-3} - 2x^{-4}$$

$$\frac{dy}{dx} = \frac{d}{dx} (5x^{-2} - 2x^{-4}) = \frac{d}{dx} (5x^{-7}) - \frac{d}{dx} (2x^{-4})$$

$$= 5(-7) x^{-8} - 2(-4) x^{-5}$$

$$= [-35 x^{-8} + 8 x^{-5}] x$$

$$= [-35 x^{-8} + 8 x^{-5}] x$$

(b)
$$y = \frac{5}{\chi^{1/5}} - \frac{8}{\chi^{3/2}}$$

$$\frac{d}{dx}y = \frac{d}{dx} \left(5 x^{-1/5} - 8 x^{-3/2} \right)$$

$$= \frac{d}{dx} \left(5 x^{-1/5} \right) - \frac{d}{dx} \left(8 x^{-3/2} \right)$$

$$= \frac{5(-\frac{1}{5})}{4x} x^{-1/5} - \frac{8(-\frac{3}{2})}{x^{-1/5}} x^{-3/2}$$

$$= \frac{-1}{\chi^{6/5}} + \frac{12}{\chi^{5/2}} x^{-5/2}$$

$$= \frac{-1}{\chi^{6/5}} + \frac{12}{\chi^{5/2}} x^{-5/2}$$

(c)
$$y = \frac{2x^5 - 4x^3 + 2x}{x^3} = \frac{2x^5}{x^3} - \frac{4x^3}{x^3} + \frac{2x}{x^3} = 2x^2 - 4 + 2x^2$$

$$\frac{d}{dx}y = \frac{d}{dx}\left(2x^2 - 4 + 2x^2\right) = \frac{d}{dx}\left(2x^2\right) - \frac{d}{dx}(4) + \frac{d}{dx}\left(2x^2\right)$$

$$= 2(2)x - 0 + 2(-2)x^{-3} = 4x - 4x^{-3} = 4x - 4x^{-3}$$

(d)
$$y = (1+e^{x}) \ln x$$

 $dy = \frac{d}{dx} ((1+e^{x}) \ln x) = \frac{d}{dx} (1+e^{x}) \cdot \ln x + (1+e^{x}) \cdot \frac{d}{dx} (\ln x)$
 $= e^{x} \cdot \ln x + (1+e^{x}) \cdot \frac{1}{x} = e^{x} \cdot \ln x + \frac{1+e^{x}}{x}$

$$y = \frac{\log_2 x}{1 + x^2}$$

$$\frac{d}{dx}y = \frac{d}{dx} \left(\frac{\log_2 x}{1 + x^2} \right) = \frac{d}{dx} \left(\log_2 x \right) \cdot \left(1 + x^2 \right) - \left(\log_2 x \right) \cdot \frac{d}{dx} \left(1 + x^2 \right)$$

$$= \frac{1}{x \cdot \ln 2} \cdot \left(1 + x^2 \right) + \left(\log_2 x \right) \left(0 + 2x \right)$$

$$= \frac{1}{x \cdot (1 + x^2)^2}$$

$$= \frac{1}{x \cdot (1 + x^2) \ln 2} + \frac{2x \log_2 x}{(1 + x^2)^2}$$

(f)
$$y = 2 \ln (x^2 - 3x + 4)$$

$$\frac{d}{dx} y = \frac{d}{dx} \left(2 \ln (x^2 - 3x + 4) \right) = 2 \frac{d}{dx} \left(\ln (x^2 - 3x + 4) \right)$$

$$= 2 \left[\frac{1}{x^2 - 3x + 4} \cdot \frac{d}{dx} (x^2 - 3x + 4) \right]$$

$$= \frac{2}{x^2 - 3x + 4} \left(2x - 3 + 0 \right) = \frac{4x - 6}{x^2 - 3x + 4}$$

$$(3) \leq xe^{y} - y = x^{2} - 2 \qquad \text{Assume } y \text{ is a function of } z$$

$$= \frac{d}{dx} \left(xe^{y(x)} - y(x) \right) = \frac{d}{dx} \left(x^{2} - 2 \right)$$

$$= \frac{d}{dx} \left(xe^{y(x)} \right) - \frac{d}{dx} \left(y(x) \right) = \frac{d}{dx} \left(x^{2} \right) - \frac{d}{dx} (z)$$

$$= \frac{d}{dx} \left(xe^{y(x)} \right) - \frac{d}{dx} \left(y(x) \right) = \frac{d}{dx} \left(x^{2} \right) - \frac{d}{dx} (z)$$

$$= \frac{d}{dx} \left(xe^{y(x)} \right) - \frac{d}{dx} \left(x^{2} \right) - \frac{d}{dx} (z)$$

$$= \frac{d}{dx} \left(xe^{y(x)} \right) - \frac{d}{dx} \left(xe^{y} - 1 \right) = 2x - 0$$

$$= \frac{d}{dx} \left(xe^{y(x)} - y(x) \right) = 2x - e^{y}$$

$$= \frac{d}{dx} \left(xe^{y(x)} - y(x) \right) = \frac{d}{dx} \left(xe^{y(x)} - \frac{d}{dx} (z) \right)$$

$$= \frac{d}{dx} \left(xe^{y(x)} - y(x) \right) = \frac{d}{dx} \left(xe^{y(x)} - \frac{d}{dx} (z) \right)$$

$$= \frac{d}{dx} \left(xe^{y(x)} - y(x) \right) = \frac{d}{dx} \left(xe^{y(x)} - \frac{d}{dx} (z) \right)$$

$$= \frac{d}{dx} \left(xe^{y(x)} - y(x) \right) = \frac{d}{dx} \left(xe^{y(x)} - \frac{d}{dx} (z) \right)$$

$$= \frac{d}{dx} \left(xe^{y(x)} - \frac{d}{dx} (xe^{y(x)} - \frac{d}{dx} (z) \right)$$

$$= \frac{d}{dx} \left(xe^{y(x)} - \frac{d}{dx} (xe^{y(x)} - \frac{d$$

$$(4)$$
 $x = f(p) = 9500 - 250 p , $f'(p) = -250$$

$$\chi = f(p) = 9500 - 250p = 250(38 - p)$$

Note: Since
$$x \gg 0$$
 and $p \gg 0$, $38-p \gg 0$

$$p \leq 38$$

let's find the pelasticity of demand:

$$E(p) = -p \cdot f'(p)$$

$$= -p \left(-250\right) = \frac{p}{38-p}$$

if
$$p=15$$
, then $\pm(15)=\frac{-15}{38-(15)}=\frac{-15}{23}\approx -0.6521...$

since the elasticity of demand is softween 0 of 15,000 then the demand is inclusive

(b) Since the demand is incolastic, a price increase will increase revenue

4 a price decrease will decrease revenue.

$$f'(x) = \frac{d}{dx} f(x) = \frac{1}{1 - x^2} \quad \text{we product Rule}$$

$$= \frac{d}{dx} (X^4) \cdot (X^{-6})^2 + (X^4) \cdot \frac{d}{dx} (X^{-6})^2$$

$$= 4x^3 \cdot (X^{-6})^2 + x^4 \cdot 2(X^{-6}) \cdot (1)$$

$$= 4x^3 (X^{-6})^2 + 2x^4 (X^{-6})$$

$$= 2x^3 (X^{-6}) (2(X^{-6}) + x)$$

$$= 2x^3 (X^{-6}) (3x^{-12}) = 2x^3 \cdot (X^{-6}) \cdot 3(X^{-4}) = 6x^3 \cdot (X^{-6}) (X^{-4})$$

$$\frac{f'(x) = 0}{6x^{3}(x-6)(x-4)} = 0$$

$$|x=0| |x=4|$$

so, the critical values of F

are
$$X=0$$
 $X=4$
 $X=6$

Intervals	(-w, o)	(0,4)	(4.6)	(6,00)
(Test value) in the interval)	-1	1	5	7
f'(x)	f(-1) = -210 (NEgative)	f'(1) = 90 (POSITIVE)	f'(s) = -750	f'(7)= 6174 (positive)
t(x)	decreasing	increasing	decreasing	increasing

Note (when
$$f'(x)$$
 is positive, $f(x)$ is increasing.)

When $f'(x)$ is negative, $f(x)$ is decreasing.)

(d) From increasing to decreasing: local maxima
$$\Rightarrow$$
 at $x=4$
From decreasing to increasing: local minima \Rightarrow at $x=0$ and $x=6$

Recall: For the interval (a,b):

- .) g(x) is concave upward if g(x) is increasing (ie. if g"(x) is positive)
- .) g(x) is concave downward if g'(x) is decreasing (ie. if g''(x) is negative)

$$g'(x) = \frac{d}{dx}g(x) = \frac{d}{dx}\left(\ln(x^{2}-2x+10)\right)$$

$$= \frac{1}{\chi^{2}-2x+10} \cdot \frac{d}{dx}\left(x^{2}-2x+10\right)$$

$$= \frac{1}{\chi^{2}-2x+10} \cdot (2x-2) \Rightarrow g'(x) = \frac{2x-2}{\chi^{2}-2x+10}$$

$$g''(x) = \frac{d}{dx}g'(x) = \frac{d}{dx}\left(\frac{2x-2}{x^2-2x+10}\right)$$

$$= \frac{d}{dx}(2x-2)\cdot(x^2-2x+10) - (2x-2)\cdot\frac{d}{dx}(x^2-2x+10)$$

$$= \frac{2(x^2-2x+10) - (2x-2)\cdot(2x-2)}{(x^2-2x+10)^2}$$

$$= \frac{2(x^2-2x+10) - (2x-2)\cdot(2x-2)}{(x^2-2x+10)^2}$$

$$= \frac{2}{x^2-2x+10} - \frac{(2x-2)^2}{(x^2-2x+10)^2}$$

(a) concave upward $\Rightarrow g''(x) > 0$

Find the control value of
$$g(x)$$
 (ie. where $g''(x) = 0$)
$$g''(x) = \frac{2(x^2 - 2x + 10) - (2x - 2)^2}{(x^2 - 2x + 10)^2} = 0 \quad \text{if} \quad 2(x^2 - 2x + 10) - (2x - 2)^2 = 0 \\ (x^2 - 2x + 10)^2 \quad 2x^2 - 4x + 20 - (4x^2 - 8x + 4) = 0 \\ -2x^2 + 4x + 16 = 0$$

Me Tilling

 \rightarrow

July -2x2+4x+16=0

Guse quadratic formula to find the zeros of

$$2a = -6 \pm \sqrt{b^{2} - 4ac} = -(4) \pm \sqrt{4} + \sqrt{4} + \sqrt{2} + \sqrt$$

(1,00)

g so the critical values of g'(x) are: x=-2, 4

(Note: The denominator $(x^2-2x+10)$ of g'(x) is never zero) for any value of x since its discriminant is negative.

Interval	(-00, -2)	(-2, 4)	(4.00)
(Testivalue in interval)	-3	0	L
g"(x)	9"(-3) = -14 625 (Negative)	$g''(0) = \frac{4}{25}$ (positive)	$g''(6) = \frac{8}{289}$ (negative)
g'(x)	decreasing	increasing	decreasing
g(x)	Concave	concave	concave downward.

- (a) so, the interval where g(x) is concave upward: (-2,4)
- (b) The interval where g(x) is consave downward: (-80,-2) U(4,00)
- (c) Recall: Infection point(s): a point(s) on the graph of a function where the concavity changes

according to the table on (a), points are: [x=-2] [x=4]

 $f(x) = x^4 - 8x^2 + 16$ on [-3, 4]

 \rightarrow Find the critical value of f(x) (ie. f(x)=0)

$$f'(x) = \frac{d}{dx}f(x) = \frac{d}{dx}(x^4 - 8x^2 + 16) = 4x^3 - 16x = 4x(x^2 - 4) = 4x(x+2)(x-2)$$

When
$$f'(x) = 0 ? 4x - 16x$$

$$f(x) = 4x (x+2)(x-2) = 0$$

$$\begin{bmatrix} x=0 \end{bmatrix}$$
 $\begin{bmatrix} x=-2 \end{bmatrix}$ all the interval $\begin{bmatrix} -3,4 \end{bmatrix}$

max point

at x = 0

min point

at x=2

f'(x)	-2.5 f'(-25) = -2.5	f'(-1)=12	f'(1) = -12	f'(3)=60
	(negative	(positive)	(negative)	(positive)
t(x)	decreasing	increasing	decreasing	increasing

Recall, reabsolute extrema are the largest and smallest the function will ever be.

min point

at x = -2

Look at the critical points of the endpoints of the given interval:

$$f(-2) = 0$$
 $f(-3) = 25$

$$t(0) = 10$$

$$f(4) = 144$$

$$F(z) = 0$$

In this case, absolute maxima of flx) is 144 at X=4 (endpoint) absolute minima of fcx) is 0 at X=-2 f X=2 (critical points)

(a)
$$\int_{-5}^{5} (10 - 7x + x^{2}) dx = 10x - \frac{7}{2}x^{2} + \frac{1}{3}x^{3} \Big|_{-5}^{5}$$

$$= \left(10(5) - \frac{7}{2}(5)^{2} + \frac{1}{3}(5)^{3}\right) - \left(10(-5) - \frac{7}{2}(-5)^{2} + \frac{1}{3}(-5)^{3}\right)$$

$$= \left(50 - \frac{175}{2} + \frac{125}{3}\right) - \left(-50 - \frac{175}{2} - \frac{125}{3}\right)$$

$$= 100 + \frac{250}{3} = \frac{300}{3} + \frac{250}{3} = \frac{550}{3} \approx 183.333$$

$$e^{-2x^2} = e^{t}$$

$$|detu-t \pm -2x^2| d \Rightarrow e^{-2x^2} = e^{t}$$

$$|detu-t \pm -2x^2| d \Rightarrow |e^{-2x^2} = e^{t}$$

$$|detu-t \pm -2x^2| d \Rightarrow |e^{-2x^2} = e^{t}$$

$$|detu-t \pm -2x^2| d \Rightarrow |e^{-2x^2} = e^{t}$$

$$\int x e^{-2x^2} dx = \int \frac{1}{4} e^t dt = -\frac{1}{4} \int e^t dt = -\frac{1}{4} e^t$$

Since
$$t = -2x^2$$
, $-\frac{1}{4}e^t = -\frac{1}{4}e^{-2x^2}$

So
$$\int_{0}^{1} x e^{-2x^{2}} dx = \left(-\frac{1}{4} e^{-2x^{2}}\right) \Big|_{0}^{1} = \left(-\frac{1}{4} e^{-2(0)^{2}}\right) - \left(-\frac{1}{4} e^{-2(0)^{2}}\right)$$
$$= -\frac{1}{4} e^{-2} + \frac{1}{4} e^{0}$$

$$=\frac{1}{4}e^{2}+\frac{1}{4}\approx 0.216$$

$$(5) \int_{0}^{3} \frac{x}{(1+x^{2})^{2}} dx$$

let
$$t = 1 + x^2$$
 $\Rightarrow \frac{1}{(1+x^2)^2} = \frac{1}{t^2}$

$$dt = 2xdx \Rightarrow xdx = \frac{1}{2}dt$$

$$\int_{0}^{3} \frac{x}{(4x^{2})^{2}} dx = \frac{1}{2} \int_{0}^{10} \frac{1}{t^{2}} dt = \frac{1}{2} \int_{0}^{10} t^{-2} dt = \frac{1}{2} \left(-\frac{1}{2} \right) \Big|_{0}^{10} = -\frac{11}{2t} \Big|_{0}^{10}$$

$$= \left(-\frac{1}{2(10)} \right) - \left(-\frac{1}{2(4)} \right) = \frac{1}{20} + \frac{1}{2} = \frac{1}{20}$$

$$= \frac{-1}{20} + \frac{10}{20} = \frac{9}{20}$$

$$\approx 0.450$$

(a)
$$\int \frac{x^2 e^x - 2x}{x^2} dx$$

= $\int \frac{x^2 e^x}{x^2} dx - \int \frac{2x}{x^2} dx = \int e^x dx - 2 \int \frac{1}{x} dx = \left[e^x - 2 \ln x + C \right]$

(b)
$$\int \frac{x}{\sqrt{x+r}} dx$$
 let $t = x+s = x + s = x + s = x + s$ let $t = x+s = x + s =$

$$\int \frac{t^{-5}}{t^{3/2}} dt = \int t^{3/2} dt - 5 \int t^{3/2} = \frac{2}{3} t^{3/2} - 5(2t^{3/2})$$

$$= \frac{2}{3} t^{3/2} - 10 t^{3/2} = 2t^{3/2} \left(\frac{1}{3} t - 5 \right)$$

Since
$$t = x+5$$
, $2t^{\frac{1}{2}}(\frac{1}{3}t-5) = 2\sqrt{x+5}(\frac{1}{3}(x+5)-5)$
= $2\sqrt{x+5}(\frac{1}{3}x-\frac{10}{3})$

so,
$$\sqrt{\frac{x}{\sqrt{x+5}}} dx = \frac{2}{3} \sqrt{x+5} (x-10) + C$$

(c)
$$\int x^3 (2x^4+5)^5 dx$$

let
$$t = 2x^4 + 5$$
 pso: $\int x^3 (2x^4 + 5)^5 dx =$

$$dt = 8x^3 dx$$

$$= \frac{1}{8} \int t^5 dt = \frac{1}{8} (\frac{1}{6}t^6) + C$$

$$= \frac{1}{48} t^6 + C$$

Since
$$t = 2x^4 + 5$$
,
$$\frac{1}{48}t^6 = \frac{1}{48}(2x^4 + 5)^6 + 0$$

Thus
$$\int_{X} (2x^4+5)^5 dx = \int_{48} (2x^4+5)^6 + C$$

(d)
$$\int \frac{e^{-x}}{(e^{-x}+3)} dx$$

let
$$t = e^{x} + 3$$
 $\Rightarrow 50$ $\int \frac{e^{x}}{(e^{x} + 3)} dx = \int \frac{-1}{t} dt$

$$dt = -e^{x} dx$$

$$= \int \frac{1}{t} dx = -\ln(t) + C$$

$$= -\int \frac{1}{t} dx = -\ln(t) + C$$

since
$$t=e^{x}+3$$
, $-\ln(e^{x}+3)$

Thus,
$$\int \frac{e^{-x}}{(e^{-x}+3)} dx = -\ln(e^{-x}+3) + C$$

10 Area bounded by
$$y = x^3 + 1$$
 f $y = x + 1$

1st. When does
$$f(x) = g(x)$$
?

 $x^{3}+1 = x+1$
 $x^{3}-x=0$
 $x(x^{2}-1)=0$
 $x(x+1)(x-1)=0$

let
$$f(x) = x^3 + 1$$

 $g(x) = x + 1$

Interval	(-0,-1)	(-1,0)	(0,1)	(1,00)
(Test value) in interval)	-2	-0.5	0.5	2
f(X)	f(-2) = -7	f(-0.5)=0.875	f(0.5)= 1.125	f(z) = 9
9(x)	9(-2)= -1	g(-0.5) = 0.5	g(0,5) = 1.5	9(2)=3
tent den	f(x) < g(x)	g(x) < f(x)	f(x) < g(x)	g(x) < f(x)

so, on
$$(-\infty,-1)\cup(0,1)$$
, $f(x)$ is on top of $g(x)$ (ie. $f(x) > g(x)$)
 $(-1,0)\cup(1,\infty)$, $g(x)$ is on top of $f(x)$ (ie. $g(x) > f(x)$)

Then,

Total Area =
$$\int_{0}^{0} (f(x) - g(x)) dx + \int_{0}^{1} (g(x) - f(x)) dx$$

= $\int_{0}^{0} (x^{3}+1) - (x+1) dx + \int_{0}^{1} [x+1] - (x^{3}+1) dx$

= $\int_{0}^{0} (x^{3}-x) dx + \int_{0}^{1} (x-x^{3}) dx$

= $\left(\frac{1}{4}x^{4} - \frac{1}{2}x^{2}\right) dx + \left(\frac{1}{2}x^{2} - \frac{1}{4}x^{4}\right) dx$

= $0 - \left(\frac{1}{4}(-1)^{4} - \frac{1}{2}(-1)^{2}\right) + \left(\frac{1}{2}(1)^{2} - \frac{1}{4}(1)^{4}\right) - 0$

= $-\frac{1}{4} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{1}{2}$

$$A = P.e^{rt}$$
 $Y = ?$
 $t = 100 \text{ years}$
 $A = 2P \sim \text{population doubles}$

[1,1-] Leastin sell of places in

$$2P = P \cdot e^{100r}$$
 $2 = e^{100r}$
 $Ln(2) = Ln(e^{100r})$
 $Ln(2) = 100 \cdot r$
 $\frac{Ln(2)}{100} = r \rightarrow r \approx 0.006981$

so rate of 0.69%