AULAI Calculo 3A 2020.2

Capítulo 16: Cálculo Vitorial

16.1 Campo de vitores

Recorde

um vetos possui: · tamanho

· dvugāo

· sentido

e enfinitos xepxesentantes

Myricas

Um campo de vetores i uma aplicação que associa um ponto (x,y) (ou (x,y,z)) a um vitos

$$F: \mathbb{R}^2 \to \mathbb{R}^2 \quad \text{funções componentes}$$

$$(x,y) \longmapsto F(x,y) = P(x,y)i + Q(x,y)j$$

Um estogo de um campo de vitous é uma sorma de representas o campo e conseste em:

> · desenhas o segmento orientado que supresenta o vetor F(x,y) começando no ponto (x,y)

· como e impossivel pages para todos os pontos, jazemos para pontos xepresentativos e tentamos observar alguma xecoxêncio.

Exemplo Faça um estogo da campo de vetous F(x,y) = -yi+xJ

Solução

tabela de pontos representativos

(x,vj)	F(x,y)	
(0,0)	(0,0)	
(0, 4)	(0, 3)	
(0,3)	(-1,0)	
(2,2)	(-1,0)	

Desembon no plano o vetos F(x,y) comezando em (x,y) (reparado)

F(1,1)

(1,1) (-1,1)

funtando

Note que o vetos posição (x,y) :

é perpendiculas a F(x,y) :

$$\langle (x,y), (-y,x) \rangle = -xy + xy = 0$$
.

Exemplos de campos de vetous são:

- · campo de velocidades:
 - Lo escoamento de um fluido em cada ponto (partícula) age um uetos velocidade
- · campo de Forgas

em cada ponto age uma jorça

- · campo gravetacional
- · campo eletrico

Exemplo No exemplo anterior,

Se F(x,y) = -y(+ x) e' um

campo de velocidades e uma

particula e solta nesse campo.

Chual a trapitorio da particula?

Saluções

· Recorde que o vetor velocidade · o velor tangente a curva (que mais se parec com ela) · intuitivamente pelo desenho

podemos dezes que vai fazer uma cucular.

Algebricamente

supa x(+) = (x(+), y(+)) uma cucua

tal que em cada pento da curva o vetos velocidade comede com o campo F, esto e

$$\Rightarrow (x) \begin{cases} x^2(t) = y(t) \\ y^2(t) = x(t) \end{cases}$$

(Notique x(+)=xcost

y(t) = x sent

satisfas *

equações parami-

* x depende da poseção enecial da particula

Exemplo: Represente o campo de vetores

$$F(x,y) = x\overline{j}$$

Solução

Tabela de pontos representativos

(x,y)	(0,%)	- viter witicais (ducçõe)
(6,0)	(0,0)	- o tamanho depende de x
		- o sentido depende
(0,4)	(0'7)	do sinal de x
(1,1)	(0,1)	
(-1,0)	(0,-1)	
		1 1

, stremous

Se Fe'um campo de velocidades quala trajetária tragada por um partículo 2

- · induti vamente : sutas verticais
- · algebricamente:

Aya x(t) = (x(t), y(t)) talque

$$x'(t) = F(x(t))$$

$$(x^2(+),y^2(+)) = (0,x(+))$$

$$x^{2}(t) = 0 -0 x(t) = 0$$

$$y^{2}(t) = x(t) -0 y(t) = ct + K$$

$$(4) = 0 -0 x(t) = 0$$

$$y^{2}(t) = x(t) -0 x(t) = 0$$

$$y^{2}(t) = 0 -0 x(t) = 0$$

Exemplo Represente o campo

Solução

Tabela de pontos:

(~,4)	F(x,4)	-D	mesmo		
(0,0)	(0,0)		posiço	io	
(3,0)	(4,6)				
(0,1)	(6,0)				
(1,1)	(4,4)				
			/		
			/		
				,	>
	/ ,				
				V V	
	· /		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

Lymicão

Dada uma junção escalar ç (x,y)

$$\Delta t(x,n) := \left(\frac{3x}{3t}(x,n) \cdot \frac{3n}{3t}(x,n) \right)$$

é dito campo gradiente de g

Exemplo letermine o campo gradunte da xunção $f(x,y) = x^2y - y^3$.

Solução:

$$\nabla_{f}(x,y) = \left(2xy, x^2 - 3y^2\right)$$

=
$$2xyi + (x^2-3y^2)J$$