

PREDICTIVE ANALYSIS FOR DECISION MAKING

WEEK 10 MODELLING TIME VARYING VOLATILITY

Dr Issam Malki School of Finance and Accounting Westminster Business School

March 2021

AIMS AND OBJECTIVES

- Linear models and stationary structure of the data do not explain common features in financial time series:
 - · Leptokurtic distributions
 - Volatility clustering and volatility pooling.
 - · Leverage effects
- Recall the model

$$y_t = \beta_1 + \beta_2 x_{2t} + ... + \beta_k x_{kt} + u_t$$

 $u_t \sim N(0, \sigma^2).$

FINANCIAL TIME SERIES- STYLIZED FACTS
CLUSTERS OF VARIANCES

SP500_RETURNS
.04 .03 .02 .01 .01 -02 -03 -04
2013 2014 2015 2016 2017

FINANCIAL	TIME	SERIES-	STYLIZED	FACTS
I EPTOR	ZURTIC I	DISTRIBUTIO	N. KURTOSIS	>3

FINANCIAL TIME SERIES- STYLIZED FACTS
RESIDUALS ARE STILL PERSISTENT (ONLY INTERCEPT)

FINANCIAL TIME SERIES- STYLIZED FACTS RESIDUALS ARE STILL PERSISTENT (ARMA(1,1))

FINANCIAL TIME SERIES- STYLIZED FACTS CONSTANT RISK (VARIANCE)

APPROACHES TO MODELLING VOLATILITY ARCH AND GARCH MODELS

• The structure of the variance need to be modified

Example:

$$y_t = \beta_1 + \beta_2 x_{2t} + \dots + \beta_k x_{kt} + u_t, \ u_t \sim N(0, \sigma_t^2)$$

- The variance need to be modelled using a suitable structure
- Engle (1982) proposed an Autoregressive Conditional Heteroskedastic structure
 - ARCH models
 - Capture an autoregressive relationship in the model
 - Has similar approach to AR models

APPROACHES TO MODELLING VOLATILITY ARCH AND GARCH MODELS

•	The	ARCH(1)
---	-----	--------	---

$$\begin{split} \sigma_t^2 &= \alpha_0 + \alpha_1 u_{t-1}^2 \\ \alpha_0 &> 0, \, \alpha_1 \geq 0 \end{split}$$

• The ARCH (q)

$$\begin{split} \sigma_t^2 &= \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 \\ &\alpha_0 {>} 0, \, \alpha_1, \dots, \alpha_q \geq 0 \end{split}$$

- Note:
 - The condition $\alpha_0 > 0$ implies we have a non-zero variance
 - The condition $\alpha_1,\ldots,\alpha_q\geq 0$ implies that serial the autoregressive terms can be zero but cannot be negative.
 - The coefficients α_1,\dots,α_q capture the effect of past risk or volatility (called ARCH effects)
 - If the ARCH effects are jointly significant, then we have conditional
 - heteroscedasticity that is time varying.
 - Thus, before we model volatility, we need first to test for the presence of ARCH $_{\circ}$ effect.

TECTNIC	EOD	TITE	ADCU	EFFECT

- 1. First, run any postulated linear regression of the form given in the equation above, e.g. $y_t = \beta_1 + \beta_2 x_{2t} + \dots + \beta_k x_{kt} + u_t$ saving the residuals, \hat{u}_t
- 2. Then square the residuals, and regress them on \boldsymbol{q} own lags to test for ARCH of order q, i.e. run the regression $\hat{u}_{t}^{2} = \gamma_{0} + \gamma_{1}\hat{u}_{t-1}^{2} + \gamma_{2}\hat{u}_{t-2}^{2} + ... + \gamma_{q}\hat{u}_{t-q}^{2} + v_{t}$

where v_t is iid. Obtain R^2 from this regression

- 3. The test statistic is defined as TR^2 (the number of observations multiplied by the coefficient of multiple correlation) from the last regression, and is distributed as a
- 4. The null and alternative hypotheses are

- H₀: $\gamma_1 = 0$ and $\gamma_2 = 0$ and $\gamma_3 = 0$ and ... and $\gamma_q = 0$ H₁: $\gamma_1 \neq 0$ or $\gamma_2 \neq 0$ or $\gamma_3 \neq 0$ or ... or $\gamma_q \neq 0$. 5. Reject the null of 'no ARCH effect' if the statistic exceeds the critical value.

10

TESTING FOR THE ARCH EFFECT **ISSUES**

- How do we decide on q?
- \bullet The required value of q might be very large
- Non-negativity constraints might be violated.
 - When we estimate an ARCH model, we require $\alpha_i > 0 \ \forall i=1,2,...,q$ (since variance cannot be negative)

A natural extension of an ARCH(q) model which gets around some of these problems is a GARCH model.

- Generalised Autoregressive Conditional Heteroskedastic model
- It has been shown that $ARCH(\infty)$ is equivalent to GARCH(1,1)
- GARCH (1,1) has two parts: the ARCH effect and GARCH effect.

11

EXAMPLE 2: ARCH MODEL

EXAMPLE 1: ARCH MODEL

	Constant Mean	- ARCH Model Results	
	Constant real	Anter House Negates	
Dep. Variable:	Adi Close	R-squared:	-0.000
Mean Model:		Adj. R-squared:	-0.000
Vol Model:		Log-Likelihood:	-7803.64
Distribution:	Norma	L AIC:	15613.3
Method:	Maximum Likelihoo	BIC:	15632.9
		No. Observations:	5030
Date:	Wed, Mar 24 202:	l Df Residuals:	5027
Time:	00:57:3	Df Model:	3
	Mea	n Model	
	coef std err	t P> t	95.0% Conf. Int.
mu	0.0403 1.798e-02	2.240 2.508e-02 [5.	038e-03,7.553e-02]
	Volatili	ty Model	
	coef std err	t P> t 95	.0% Conf. Int.
omega	1.0059 5.585e-02		
alpha[1]	0.3323 5.381e-02	6.176 6.564e-10 [0.227, 0.438]

ESTIMATING THE ARCH MODEL VOLATILITY

THE GARCH MODEL

- Combines the ARCH and GARCH effect
 - The general form

$$\begin{split} \sigma_t^2 &= \alpha_0 + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2 + v_t \\ \alpha_0 &> 0 \text{ and } \alpha_1, \beta_1 \geq 0 \end{split}$$

- The ARCH effect α_1 : measures the magnitude of the shock.
- The GARCH effect β_1 : measures the persistence of the shock.

EXAMPLE 2: GARCH MODEL

	Const	ant Mean - G	ARCH	Model	Results		
Dep. Variable:		Adj Cl			uared:		-0.00
Mean Model:		Constant M	ean		R-squared		-0.00
Vol Model:		GAI	RCH	Log-	Likelihood		-6936.7
Distribution:		Non	nal	AIC:			13881.
Method:	Max	imum Likelih	bod	BIC:			13907.
				No.	Observation	ns:	503
Date:	W	led, Mar 24 20	921	Df R	esiduals:		502
Time:		00:57	:30	Df M	odel:		
		Me	ean M	lodel			
	coef	std err		t	P> t	95.0%	Conf. Int.
mu	0.0564	1.149e-02			0 202- 07	F2 204- 02	7 007- 021
mu	0.0504			y Mod		[3.384e-02	,/.88/e-02]
		VOIA		y Mou			
	coef	std err		t	p\ +	OE 09	Conf. Int.
		3 CU EII			-> -	93.0/	com. inc.
							2 550- 021
omega	0.0175	4.683e-03					
omega alpha[1]		4.683e-03 1.301e-02					

ESTIMATING THE GARCH MODEL VOLATILITY

THE THRESHOLD GARCH MODEL TGARCH/ GJR MODEL

• Due to Glosten, Jaganathan and Runkle

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1} u_{t-1}^{2} + \beta \sigma_{t-1}^{2} + \gamma u_{t-1}^{2} I_{t-1}$$

where $I_{t-1} = 1$ if $u_{t-1} < 0$ = 0 otherwise

- For a leverage effect, we would see $\gamma > 0$.
- We require $\alpha_1 + \gamma \ge 0$ and $\alpha_1 \ge 0$ for non-negativity.

EXAMPLE 3: TGARCH MODEL

	Constant M	lean - TARCH,	ZARCH Mod	el Results	
Dep. Variab	le:	Adj C	lose R-s	quared:	-0.000
Mean Model:		Constant I	Mean Adj	. R-squared	-0.000
Vol Model:		TARCH/Z	ARCH Log	-Likelihood	-6799.18
Distributio	n:	No	rmal AIC	:	13608.4
Method:	Max	imum Likeli	hood BIC	:	13641.0
			No.	Observation	ns: 5030
Date:	W	led, Mar 24	2021 Df	Residuals:	5025
Time:		01:20	0:35 Df	Model:	5
			Mean Mode	1	
	coef	std err	t	P> t	95.0% Conf. Int.
mu	0.0143	1.091e-02	1.311	0.190	[-7.080e-03,3.570e-02]
		Vo.	latility M	odel	
	coef	std err	t	P> t	95.0% Conf. Int.
omega	0.0258	4.100e-03	6.299	2.986e-10	[1.779e-02,3.386e-02]
alpha[1]	3.0844e-09	9.156e-03	3.369e-07	1.000	[-1.794e-02,1.794e-02]
gamma[1]	0.1707	1.601e-02	10.664	1.499e-26	[0.139, 0.202]
beta[1]	0.9098	9.672e-03	94.066	0.000	[0.891, 0.929]

ESTIMATING THE TGARCH MODEL VOLATILITY

THANK YOU

7