

LY Alexandre – CHAU Julien

Robot Mindstorm

Objectif du projet

- Programmer un robot pour qu'il puisse suivre une ligne de couleur distincte, qu'importe la forme du circuit.
- Problématique simple mais avec la liberté à beaucoup d'outils d'optimisation (vitesse, qualité du mouvement, correction d'erreurs ...).
- Technologie à usage domestique ou industrielle : transport de produits, de personnes.

Examples d'utilisation

Robots automatisés de transport dans les entrepôts de Amazon (CBS News 2021)

Architecture du projet

Problèmatiques

- Préparation: installation logicielle, montage du robot
- Apprentissage des couleurs: lire et stocker les couleurs perçues par le capteur
- Suivre une ligne: faire tourner les roues avec le moteur et les données des couleurs précédentes.
- Optimisations: PID, mouvement fluide, limiter les erreurs.

Compétences/ Outils utilisés

Java comme langage de programmation.

Librairie LeJOS: firmware de programmation pour la brique EV3.

Git.

Gestion du projet

- Comment le travail a été réparti entre les membres du groupe ?
- Comment avez-vous testé le projet ?

Circuit pour les tests

PID

Proportional-integral-derivative mechanism.

Un algorithme de correction d'erreurs très utilisé dans l'industrie.

Principes

Proportional

https://www.inpharmix.com/jps/PID_Controller_For_ Lego_Mindstorms_Robots.html

Pseudocode

```
Kp - proportional gain
Ki - integral gain
Kd - derivative gain
dt - loop interval
Tp - target speed
previous error := 0
integral := 0
loop:
   error := setpoint - measured value
   proportional := error;
   integral := integral + error × dt
   derivative := (error - previous_error)
   output := Kp × proportional + Ki × integral
+ Kd × derivative
   car.setSpeed(Tp+output, Tp-output)
   car.move()
   previous_error := error
   goto loop
```


Difficultés

- PID difficile à configurer (valeur de constantes).
- Retrouver la ligne.

Retrouver la ligne

Conclusion

- Qu'avons-nous appris ?
 - Programmer un robot.
 - Utiliser et traiter les données d'un capteur.
 - Travail en groupe.
 - Traitement des couleurs.

- Des améliorations ?
 - Optimiser et rendre le robot plus compétitif.
 - Réfléchir à une méthode de correction d'erreurs plus efficace.