AN EXAMPLE ARTICLE*

DIANNE DOE[†], PAUL T. FRANK[‡], AND JANE E. SMITH[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 7 **Key words.** example, LATEX
- 8 **MSC codes.** 68Q25, 68R10, 68U05
- 9 **1. Introduction.** The introduction introduces the context and summarizes the manuscript. It is importantly to clearly state the contributions of this piece of work.

11 For
$$\Omega = (0, 2T)$$
, $1 < \alpha < 2$, suppose $f \in C^{\beta}(\Omega)$, $\beta > 4 - \alpha$, $||f||_{\beta}^{(\alpha/2)} < \infty$

12 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

13 where

2

$$(-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

16 (1.3)

15

18

$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

- 17 and the solution $u \in C^{\alpha/2}(\Omega)$.
 - 2. Regularity.
- 19 Remark 2.1. 1. $C^k(U)$ is the set of all k-times continuously differentiable func 20 tions on open set U.
- 21 2. $C^{\beta}(U)$ is the collection of function f which for any $V \subset U$ $f|_{V} \in C^{\beta}(\bar{V})$.

2223

24 THEOREM 2.2. If $f \in C^{\beta}(\Omega), \beta > 2$ and $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

25 (2.1)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

26 27

THEOREM 2.3 (Regularity up to the boundary [1]).

28 (2.2)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

Funding: This work was funded by the Fog Research Institute under contract no. FRI-454.

^{*}Submitted to the editors DATE.

[†]Imagination Corp., Chicago, IL (ddoe@imag.com, http://www.imag.com/~ddoe/).

 $^{^{\}ddagger}$ Department of Applied Mathematics, Fictional University, Boise, ID (ptfrank@fictional.edu, jesmith@fictional.edu).

COROLLARY 2.4. Let u be a solution of (1.1) on Ω . Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

31 (2.3)
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

The paper is organized as follows. Our main results are in section 4, experimental results are in section 7, and the conclusions follow in section 8.

3. Numeric Format.

34 (3.1)
$$x_{i} = \begin{cases} T\left(\frac{i}{N}\right)^{r}, & 0 \leq i \leq N \\ 2T - T\left(\frac{2N-i}{N}\right)^{r}, & N \leq i \leq 2N \end{cases}$$

35 where $r \geq 1$. And let

36 (3.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space.

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

40 And then, we can approximate u(x) with

$$u_h(x) := \sum_{j=1}^{2N-1} u(x_j)\phi_j(x)$$

42 For convience, we denote

43 (3.5)
$$I_h^{2-\alpha}(x_i) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_i - y|^{1-\alpha} u_h(y) dy$$

44 And now, we can approximate the operator (1.2) at x_i with (3.6)

$$D_{h}^{\alpha'}u_{h}(x_{i}) := D_{h}^{2}I_{h}^{2-\alpha}(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}}I_{h}^{2-\alpha}(x_{i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right)I_{h}^{2-\alpha}(x_{i}) + \frac{1}{h_{i+1}}I_{h}^{2-\alpha}(x_{i+1}) \right)$$

Finally, we approximate the equation (1.1) with

47 (3.7)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = f(x_i), \quad 1 < i < 2N-1$$

The discrete equation (3.7) can be written in matrix form

49 (3.8)
$$AU = F$$

where U is unknown, $F = (f(x_1), \dots, f(x_{2N-1}))$. The matrix A is constructed as follows: Since

(3.9)

$$I_{h}^{2-\alpha}(x_{i}) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u_{h}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x_{i} - y|^{1-\alpha} u(x_{j}) \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} u(x_{j}) \frac{1}{\Gamma(2-\alpha)} \int_{x_{j-1}}^{x_{j+1}} |x_{i} - y|^{1-\alpha} \phi_{j}(y) dy$$

$$= \sum_{j=1}^{2N-1} \frac{u(x_{j})}{\Gamma(4-\alpha)} \left(\frac{|x_{i} - x_{j-1}|^{3-\alpha}}{h_{j}} - \frac{h_{j} + h_{j+1}}{h_{j}h_{j+1}} |x_{i} - x_{j}|^{3-\alpha} + \frac{|x_{i} - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

$$=: \sum_{j=1}^{2N-1} \tilde{a}_{ij} u(x_{j}), \quad 0 \le i \le 2N$$

Then, substitute in (3.6), we have

54 (3.10)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{j=1}^{2N-1} a_{ij} u(x_j)$$

55 where

56 (3.11)
$$a_{ij} = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

- 4. Main results. Here we state our main results; the proof is deferred to section 5 and section 6.
- Let's denote $h = \frac{1}{N}$, we have
- Theorem 4.1 (Truncation Error). If $f \in C^2(\Omega)$ and $\alpha \in (1,2)$, and u(x) is a so-
- 61 lution of the equation (1.1), then there exists a constant $C_1, C_2 = C_1(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{C^2(\Omega)}), C_2(T, \alpha, r, \|f\|_{\beta}^{(\alpha/2)}),$
- 62 such that the truncation error of the discrete format satisfies

$$|-\kappa_{\alpha}D_{h}^{\alpha}u_{h}(x_{i}) - f(x_{i})| \leq C_{1}h^{\min\{\frac{r\alpha}{2},2\}}(x_{i}^{-\alpha} + (2T - x_{i})^{-\alpha})$$

$$+ C_{2}h^{2}\begin{cases} |T - x_{i-1}|^{1-\alpha}, & 1 \leq i \leq N\\ |T - x_{i+1}|^{1-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

64 where $C_2 = 0$ if r = 1.

65

THEOREM 4.2 (Convergence). The discrete equation (3.7) has subtion U, and there exists a positive constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies

69 (4.2)
$$\max_{1 \le i \le 2N-1} |U_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

70 That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$.

5. **Proof of Theorem 4.1.** For convience, let's denote

72 (5.1)
$$I^{2-\alpha}(x) = \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha} u(y) dy$$

73 Then, the truncation error of the discrete format can be written as

$$-\kappa_{\alpha}D_{h}^{\alpha}u_{h}(x_{i}) - f(x_{i}) = -\kappa_{\alpha}(D_{h}^{2}I_{h}^{2-\alpha}(x_{i}) - \frac{d^{2}}{dx^{2}}I^{2-\alpha}(x_{i}))$$

$$= -\kappa_{\alpha}D_{h}^{2}(I_{h}^{2-\alpha} - I^{2-\alpha})(x_{i}) - \kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}(x_{i})$$

75 **5.1. Estimate of** $-\kappa_{\alpha}(D_h^2 - \frac{d^2}{dx^2})I^{2-\alpha}(x_i)$.

Theorem 5.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that

77 (5.3)
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha}(x_i) \right| \le Ch^2 (x_i^{-\alpha/2 - 2/r} + (2T - x_i)^{-\alpha/2 - 2/r})$$

78 Proof. Since $f \in C^2(\Omega)$ and

79 (5.4)
$$\frac{d^2}{dx^2}(-\kappa_{\alpha}I^{2-\alpha}(x)) = f(x), \quad x \in \Omega,$$

- 80 we have $I^{2-\alpha} \in C^4(\Omega)$. Therefore, using equation (A.3) of Lemma A.1, for $1 \leq i \leq 1$
- 81 2N 1, we have (5.5)

82
$$-\kappa_{\alpha}(D_h^2 - \frac{d^2}{dx^2})I^{2-\alpha}(x_i) = \frac{h_{i+1} - h_i}{3}f'(x_i) + \frac{1}{4!}\frac{2}{h_i + h_{i+1}}(h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. By Lemma B.2 and Theorem 2.2 we have 1.

84 (5.6)
$$\left| \frac{h_{i+1} - h_i}{3} f'(x_i) \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3} Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N - 1\\ 0, & i = N\\ (2T - x_i)^{-\alpha/2 - 2/r}, & N < i \le 2N - 1 \end{cases}$$

2. See Proof 11, there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$\begin{vmatrix}
\frac{1}{4!} \frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \\
\leq Ch^2 \begin{cases}
x_i^{-\alpha/2 - 2/r}, & 1 \leq i \leq N \\
(2T - x_i)^{-\alpha/2 - 2/r}, & N \leq i \leq 2N - 1
\end{cases}$$

87 Summarizes, we get the result.

5.2. Estimate of R_i . Now, we study the first part of (5.2)

89 (5.8)
$$D_h^2(I^{2-\alpha} - I_h^{2-\alpha})(x_i) = D_h^2(\int_0^{2T} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy)$$

90 For convience, let's denote

91 (5.9)
$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

92 And define

$$R_{i} := D_{h}^{2} (I^{2-\alpha} - I_{h}^{2-\alpha})(x_{i})$$

$$= \frac{2}{h_{i} + h_{i+1}} \sum_{j=1}^{2N} \left(\frac{1}{h_{i}} T_{i-1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

- We have some results about the estimate of R_i
- THEOREM 5.2. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

96 (5.11)
$$R_i \le C(h^{r\alpha/2+r}x_i^{-1-\alpha} + h^2x_i^{-\alpha/2-2/r})$$

97

THEOREM 5.3. For $N/2 \le i \le N$, there exists constant C, C_2 such that

99 (5.12)
$$R_i \le Ch^2 x_i^{-\alpha/2 - 2/r} + C_2 h^2 |T - x_{i-1}|^{1-\alpha}$$

- 100 where $C_2 = 0$ if r = 1.
- And for $N < i \le 2N 1$, it is symmetric to the previous case.
- To prove these results, we need some utils. Also for simplicity, we denote

103 (5.13)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

104 then

105 (5.14)
$$R_i = \sum_{i=1}^{2N} S_{ij}$$

- 106 **5.3. Proof of Theorem 5.2.**
- Lemma 5.4. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

109 (5.15)
$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2-2/r}$$

110 Proof. For $\max\{2i+1,i+3\} \leq j \leq N$, by Lemma C.1 and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

112 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

114

Lemma 5.5. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

117 (5.18)
$$\sum_{j=N+1}^{2N} S_{ij} \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

118 Proof. For $1 \le i < N/2$, $N+1 \le j \le 2N-1$, by equation (C.2) and Lemma C.2

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|y - \cdot|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1-\alpha} dy$$

$$\leq Ch^2 T^{-1-\alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

120

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0\\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0\\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0\\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0\\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

122 And by Lemma A.3

123
$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

124 And when $\alpha/2 - 2/r + 1 \ge 0$,

$$h^{r\alpha/2+r} \le h^2$$

126 Summarizes, we get the result.

127 For i = 1, 2.

LEMMA 5.6. By Lemma C.5, Lemma 5.4 and Lemma 5.5 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

130

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2}x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For $3 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i-1}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

134

LEMMA 5.7. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N/2, k = \lceil \frac{i}{2} \rceil$

137 (5.23)
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

138 *Proof.* For $2 \le j \le k-1$, by Lemma C.1 and Lemma C.3

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - u_h(y)) D_h^2 \left(\frac{|\cdot - y|^{1-\alpha}}{\Gamma(2-\alpha)}\right) (x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1-\alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

140 And by Lemma A.3, Lemma C.3

141 (5.25)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

142 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{i}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

144 But

145 (5.27)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

146 So we have

147 (5.28)
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

148 For convience, let's denote

149 (5.29)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

150

THEOREM 5.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N/2, k = \lceil \frac{i}{2} \rceil$,

153 (5.30)
$$I_3 = \sum_{j=k+1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r} := Sorry$$

To estimete V_{ij} , we need some preparations.

155 Lemma 5.9. Denote $y_j^{\theta} = \theta x_{j-1} + (1-\theta)x_j, \theta \in [0,1], \ by \ Lemma \ A.2$

$$T_{ij} = \int_{x_{j-1}}^{x_{j}} (u(y) - u_{h}(y)) \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_{x_{j-1}}^{x_{j}} -\frac{\theta(1-\theta)}{2} h_{j}^{2} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{3} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) dy_{j}^{\theta}$$

$$= \int_{0}^{1} -\frac{\theta(1-\theta)}{2} h_{j}^{3} u''(y_{j}^{\theta}) \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_{j}^{4} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^{2} u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j2}^{\theta})) d\theta$$

157 where $\eta_{j1}^{\theta} \in [x_{j-1}, y_{j}^{\theta}], \eta_{j2}^{\theta} \in [y_{j}^{\theta}, x_{j}].$

Now Let's construct a series of functions to represent T_{ij} .

159 (5.32)
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

160

161 (5.33)
$$y_{j-i}^{\theta}(x) = \theta y_{j-1-i}(x) + (1-\theta)y_{j-i}(x)$$

162

163 (5.34)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

Now, we define

165 (5.35)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

166

167 (5.36)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

168 And now we can rewrite T_{ij}

169 Lemma 5.10. For $2 \le i \le N, 2 \le j \le N$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} (\theta^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j1}^{\theta}) - (1-\theta)^{2} Q_{j-i}^{\theta}(x_{i}) u'''(\eta_{j2}^{\theta})) d\theta$$

171 Immediately, we can see from (5.29) that

172 LEMMA 5.11. For $3 \le i \le N - 1$, $3 \le j \le N - 1$,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j,2}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate V_{ij} , we first estimate $D_h^2 P_{j-i}^{\theta}(x_i)$, but By Lemma A.1,

175 (5.39)
$$D_h^2 P_{j-i}^{\theta}(x_i) = P_{j-i}^{\theta}(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

176 By Leibniz formula, we calculate and estimate the derivations of h_{j-i}^3 , $u''(y_{j-i}^{\theta}(x))$

177 and $\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$ separately.

Firstly, we have

```
Lemma 5.12. There exists a constant C = C(T,r) such that For 3 \le i \le N
179
      1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\}, \ \xi \in [x_{i-1}, x_{i+1}],
```

181 (5.40)
$$h_{i-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_j$$

182 (5.41)
$$(h_{i-i}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_j$$

183 (5.42)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

184 The proof of this theorem see Lemma C.6 and Lemma C.7

Second, 185

LEMMA 5.13. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 186

187
$$3 \le i \le N - 1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\}, \xi \in [x_{i-1}, x_{i+1}],$$

188 (5.43)
$$u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$$

189 (5.44)
$$(u''(y_{j-i}^{\theta}(\xi)))' \le Cx_i^{\alpha/2-3}$$

190 (5.45)
$$(u''(y_{j-i}^{\theta}(\xi)))'' \le Cx_i^{\alpha/2-4}$$

The proof of this theorem see Proof 18 191

And Finally, we have 192

Lemma 5.14. There exists a constant $C = C(T, \alpha, r)$ such that For $3 \leq i \leq r$ 193

194
$$N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\}, \xi \in [x_{i-1}, x_{i+1}],$$

195 (5.46)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{j}^{\theta} - x_{i}|^{1-\alpha}$$

196 (5.47)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-1}$$

197 (5.48)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

198 where
$$y_j^{\theta} = \theta x_{j-1} + (1-\theta)x_j$$

The proof of this theorem see Proof 19 199

200

LEMMA 5.15. For $3 \le i \le N-1$, $\lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\}$, 201

202 (5.49)
$$D_h^2 P_{j-i}^{\theta}(x_i) \le$$

203 Proof.

204

LEMMA 5.16. There exists a constant $C = C(T, \alpha, r, f)$ such that for $3 \le i < 1$ 205 $N, k = \lceil \frac{i}{2} \rceil, k + 1 \le j \le \min\{2i - 1, N - 1\},\$ 206

$$V_{ij} < Sorry$$

Proof. 208

- 209 **6. Proof of Theorem 4.2.**
- 7. Experimental results.
- 8. Conclusions. Some conclusions here.
- 212 Appendix A. Approximate of difference quotients.
- LEMMA A.1. If g(x) is twice differentiable continous function on open set Ω , there exists $\xi \in [x_{i-1}, x_{i+1}]$ such that

$$D_h^2 g(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g(x_i) + \frac{1}{h_i} g(x_{i-1}) \right)$$

$$= g''(\xi), \quad \xi \in [x_{i-1}, x_{i+1}]$$

(A.2)
$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''(y) (y - x_{i-1}) dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''(y) (x_{i+1} - y) dy \right)$$

218 And if $g(x) \in C^4(\Omega)$, then

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3} g'''(x_{i}) + \frac{1}{4!} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} g''''(\eta_{1}) + h_{i+1}^{3} g''''(\eta_{2}))$$

220 where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}].$ Proof.

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in [x_{i-1}, x_i]$$

222
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in [x_i, x_{i+1}]$$

Substitute them in the left side of (A.1), we have

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= \frac{h_{i}}{h_{i} + h_{i+1}} g''(\xi_{1}) + \frac{h_{i+1}}{h_{i} + h_{i+1}} g''(\xi_{2})$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

227 For the second equation, similarly

$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \int_{x_{i-1}}^{x_i} g''(y)(y - x_{i-1})dy$$

229
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \int_{x_i}^{x_{i+1}} g''(y)(x_{i+1} - y)dy$$

And the last equation can be obtained by 230

231
$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \frac{h_i^4}{4!} g''''(\eta_1)$$
232
$$g(x_{i+1}) = g(x_i) + h_{i+1} g'(x_i) + \frac{h_{i+1}^2}{2} g''(x_i) + \frac{h_{i+1}^3}{3!} g'''(x_i) + \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

where $\eta_1 \in [x_{i-1}, x_i], \eta_2 \in [x_i, x_{i+1}]$. Expecially, 233

$$\frac{h_i^4}{4!}g''''(\eta_1) = \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$\frac{h_{i+1}^4}{4!}g''''(\eta_2) = \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

Substitute them to the left side of (A.3), we can get the result. 235

LEMMA A.2. If $y \in [x_{j-1}, x_j]$, denote $y = \theta x_{j-1} + (1 - \theta)x_j, \theta \in [0, 1]$, 236

237 (A.5)
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

238 (A.6)

239
$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2}h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!}h_j^3(\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

where $\eta_1 \in [x_{j-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_j].$ 240

Proof. By Taylor expansion, we have 241

$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in [x_{j-1}, y_j^{\theta}]$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in [y_j^{\theta}, x_j]$$

Thus 244

$$u(y_j^{\theta}) - u_h(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2(\theta u''(\xi_1) + (1 - \theta)u''(\xi_2))$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 u''(\xi), \quad \xi \in [\xi_1, \xi_2]$$

The second equation is similar, 246

$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta) h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

where $\eta_1 \in [x_{i-1}, y_i^{\theta}], \eta_2 \in [y_i^{\theta}, x_i]$. Thus

$$u(y_{j}^{\theta}) - u_{h}(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(y_{j}^{\theta}) + \frac{\theta(1 - \theta)}{3!}h_{j}^{3}(\theta^{2}u'''(\eta_{1}) - (1 - \theta)^{2}u'''(\eta_{2}))$$

251 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - u_h(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

253 If $x \in [0, x_1]$, with Corollary 2.4, we have

$$|u(x) - u_h(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

255 Similarly, if $x \in [x_{2N-1}, 1]$, we have

256 (A.9)
$$|u(x) - u_h(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

257 Appendix B. Inequality.

Lemma B.1.

258 (B.1)
$$h_i \le rT^{1/r}h \begin{cases} x_i^{1-1/r}, & 1 \le i \le N \\ (2T - x_{i-1})^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

259

260 (B.2)
$$h_i \ge rT^{1/r}h \begin{cases} x_{i-1}^{1-1/r}, & 1 \le i \le N \\ (2T - x_i)^{1-1/r}, & N < i \le 2N - 1 \end{cases}$$

261 Proof. For $1 \le i \le N$,

$$h_{i} = T\left(\left(\frac{i}{N}\right)^{r} - \left(\frac{i-1}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{i}{N}\right)^{r-1} = rT^{1/r}hx_{i}^{1-1/r}$$

263264

$$h_i \ge rT\frac{1}{N} \left(\frac{i-1}{N}\right)^{r-1} = rT^{1/r}hx_{i-1}^{1-1/r}$$

265 For N < i < 2N,

$$h_{i} = T\left(\left(\frac{2N - i + 1}{N}\right)^{r} - \left(\frac{2N - i}{N}\right)^{r}\right)$$

$$\leq rT\frac{1}{N}\left(\frac{2N - i + 1}{N}\right)^{r - 1} = rT^{1/r}h(2T - x_{i-1})^{1 - 1/r}$$

267

$$h_i \ge rT \frac{1}{N} \left(\frac{2N-i}{N}\right)^{r-1} = rT^{1/r}h(2T - x_i)^{1-1/r}$$

LEMMA B.2. There is a constant $C=2^{|r-2|}r(r-1)T^{2/r}$ such that for all $i\in\{1,2,\cdots,2N-1\}$

(B.3)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

Proof.

$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

274 For i = 1,

275
$$h_2 - h_1 = T(2^r - 2) \left(\frac{1}{N}\right)^r = (2^r - 2)T^{2/r}h^2x_1^{1 - 2/r}$$

276 For $2 \le i \le N - 1$,

277
$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2}, \quad \eta \in \left[\frac{i-1}{N}, \frac{i+1}{N}\right]$$

278 If $r \in [1, 2]$,

279

$$h_{i+1} - h_i = r(r-1)T N^{-2} \eta^{r-2} \le r(r-1)T h^2 \left(\frac{i-1}{N}\right)^{r-2}$$

$$\le r(r-1)T h^2 2^{2-r} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{2-r} r(r-1)T^{2/r} h^2 x_i^{1-2/r}$$

280 else if r > 2,

$$h_{i+1} - h_i = r(r-1)T \ N^{-2}\eta^{r-2} \le r(r-1)T \ h^2 \left(\frac{i+1}{N}\right)^{r-2}$$

$$\le r(r-1)T \ h^2 2^{r-2} \left(\frac{i}{N}\right)^{r-2}$$

$$= 2^{r-2}r(r-1)T^{2/r}h^2 x_i^{1-2/r}$$

282 Since

$$2^{r} - 2 \le 2^{|r-2|} r(r-1), \quad r \ge 1$$

284 we have

285
$$h_{i+1} - h_i \le 2^{|r-2|} r(r-1) T^{2/r} h^2 x_i^{1-2/r}, \quad 1 \le i \le N-1$$

For i = N, $h_{N+1} - h_N = 0$. For $N < i \le 2N - 1$, it's central symmetric to the first

287 half of the proof, which is

288
$$h_i - h_{i+1} \le 2^{|r-2|} r(r-1) T^{2/r} h^2 (2T - x_i)^{1-2/r}$$

289 Summarizes the inequalities, we can get

290 (B.4)
$$|h_{i+1} - h_i| \le 2^{|r-2|} r(r-1) T^{2/r} h^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

291 Appendix C. Proofs of some technical details.

292 Additional proof of Theorem 5.1. For $2 \le i \le N-1$,

$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2))$$

$$\leq C \frac{2}{h_i + h_{i+1}} (h_i^3 x_{i-1}^{-2-\alpha/2} + h_{i+1}^3 x_i^{-2-\alpha/2})$$

$$\leq 2C (h_i^2 x_{i-1}^{-2-\alpha/2} + h_{i+1}^2 x_i^{-2-\alpha/2})$$

294 Since Lemma B.1, we have

295
$$h_i \le rT^{1/r}hx_i^{1-1/r}, \quad 1 \le i \le N$$

296
$$h_{i+1} \le rT^{1/r}hx_{i+1}^{1-1/r}, \quad 1 \le i \le N-1$$

297 and

293

298
$$x_{i-1}^{-2-\alpha/2} \le 2^{-r(-2-\alpha/2)} x_i^{-2-\alpha/2} \quad 2 \le i \le N-1$$

$$x_{i+1}^{1-1/r} \le 2^{r-1} x_i^{1-1/r} \quad 1 \le i \le N-1$$

300 So there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

301
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le C h^2 x_i^{-\alpha/2 - 2/r}, \quad 2 \le i \le N - 1$$

302 For i = 1, by (A.4)

$$\frac{1}{4!} \frac{2}{h_1 + h_2} (h_1^3 f''(\eta_1) + h_2^3 f''(\eta_2))$$

$$= \frac{2}{h_1 + h_2} \left(\frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy + \frac{1}{4!} h_2^3 f''(\eta_2) \right)$$

304 We have proved above that

$$\frac{2}{h_1 + h_2} h_2^3 f''(\eta_2) \le C h^2 x_1^{-\alpha/2 - 2/r}$$

and we can get

$$\int_{0}^{x_{1}} f''(y) \frac{y^{3}}{3!} dy \leq C \frac{1}{3!} \int_{0}^{x_{1}} y^{1-\alpha/2} dy$$

$$= C \frac{1}{3!(2-\alpha/2)} x_{1}^{2-\alpha/2}$$

308 **s**o

$$\frac{2}{h_1 + h_2} \frac{1}{h_1} \int_0^{x_1} f''(y) \frac{y^3}{3!} dy = \frac{C2^{1-r}}{3!(2 - \alpha/2)} x_1^{-\alpha/2} = \frac{C2^{1-r}}{3!(2 - \alpha/2)} T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

310 And for i = N, we have

$$\frac{2}{h_N + h_{N+1}} (h_N^3 f''(\eta_1) + h_{N+1}^3 f''(\eta_2))$$

$$= h_N^2 (f''(\eta_1) + f''(\eta_2))$$

$$\leq r^2 T^{2/r} h^2 x_N^{2-2/r} 2C x_{N-1}^{-2-\alpha/2}$$

$$\leq 2r^2 T^{2/r} C 2^{-r(-2-\alpha/2)} h^2 x_N^{-\alpha/2-2/r}$$

312 Finally, $N+1 \le i \le 2N-1$ is symmetric to the first half of the proof, so we can

313 conclude that

314
$$\frac{2}{h_i + h_{i+1}} (h_i^3 f''(\eta_1) + h_{i+1}^3 f''(\eta_2)) \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

LEMMA C.1. There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ for $2 \leq j \leq N$, if

316 $y \in [x_{j-1}, x_j],$

321

317 (C.1)
$$|u(y) - u_h(y)| \le Ch^2 y^{\alpha/2 - 2/r}$$

318 *Proof.* For $2 \le j \le N$, we have

319
$$x_i \le 2^r y, \quad x_{i-1} \ge 2^{-r} y$$

320 And by Lemma A.2, Lemma B.1 and Corollary 2.4, we have

$$u(y) - u_h(y) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in [x_{j-1}, x_j]$$

$$\leq \frac{\|u\|_{\beta+\alpha}^{(-\alpha/2)}}{4} r^2 T^{2/r} h^2 x_j^{2-2/r} x_{j-1}^{\alpha/2-2}$$

$$\leq Ch^2 2^{2r-2} y^{2-2/r} 2^{-r(\alpha/2-2)} y^{\alpha/2-2}$$

$$= C2^{-r\alpha/2+4r-2} h^2 y^{\alpha/2-2/r}$$

symmetricly, for $N < j \le 2N - 1$, we have

323 (C.2)
$$|u(y) - u_h(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA C.2. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$,

325 $\max\{2i+1, i+3\} \le j \le 2N \text{ and } y \in [x_{j-1}, x_j], \text{ we have }$

326 (C.3)
$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

327 *Proof.* Since $y \ge x_{j-1} > x_{i+1}$, by Lemma A.1, if j - 1 > i + 1

$$D_h^2(\frac{|y-\cdot|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|y-\xi|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(y-x_{i+1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq (1-(\frac{2}{3})^r)^{-1-\alpha} \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}$$

LEMMA C.3. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i < N/2, k = 330 \left\lceil \frac{i}{2} \right\rceil$, $1 \le j \le k-1$ and $y \in [x_{j-1}, x_j]$, we have

331 (C.4)
$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) \le C\frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

332 *Proof.* Since $y \le x_j < x_{i-1}$, by Lemma A.1,

$$D_h^2(\frac{|\cdot -y|^{1-\alpha}}{\Gamma(2-\alpha)})(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in [x_{i-1}, x_{i+1}]$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

334

333

Lemma C.4. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} \left| x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha} \right|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

337 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA C.5. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

340 (C.7)
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

341

343

342 (C.8)
$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

Proof.

$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

345 So, by Lemma C.4

$$S_{11} \le \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \le C x_1^{-\alpha/2}$$

347
$$S_{12} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

349
$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

351 But

$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

353 For
$$i = 2$$
, Sorry

354

355 LEMMA C.6. There exists a constant C = C(T, r, l) such that For $3 \le i \le N - 356$ $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\}, \ l = 3, 4,$

357 when $\xi \in [x_{i-1}, x_{i+1}],$

358 (C.9)
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

359

360 (C.10)
$$(h_{j-i}^4(\xi))' \le (r-1)Ch^3x_i^{2-3/r}h_j$$

361 *Proof.* From (5.32)

362 (C.11)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

363 (C.12)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

364 for l = 3, 4, by (5.34)

(C.13)
$$(h_{j-i}^{l}(\xi))' = l h_{j-i}^{l-1}(\xi)(y_{j-i}'(\xi) - y_{j-i-1}'(\xi))$$
$$= l h_{j-i}^{l-1}(\xi) \xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi)) \ge 0$$

366 For $\xi \in [x_{i-1}, x_{i+1}]$ and $3 \le \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\}$, using Lemma B.1

$$h_{j-i}(\xi) \le h_{j-i}(x_{i+1}) = h_{j+1}$$

$$\le rT^{1/r} hx_{i+1}^{1-1/r} \le rT^{1/r}2^{r-1} hx_i^{1-1/r}$$

368 And

369 (C.14)
$$2^{-r}x_i \le x_{i-1} \le \xi \le x_{i+1} \le 2^r x_i$$

370 We have

371 (C.15)
$$\xi^{1/r-m} \le 2^{|mr-1|} x_i^{1/r-m}, \quad m = 1, 2$$

372 but

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-1} - (\xi^{1/r} + Z_{j-i-1})^{r-1}$$

$$= (r-1)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-2}, \quad \gamma \in [0,1]$$

$$= (r-1)T^{1/r}hy_{j-i-\gamma}^{1-2/r}(\xi)$$

374 And (C.17)
375
$$4^{-r}x_i \le x_{\lceil \frac{i}{2} \rceil - 1} \le x_{j-2} = y_{j-i-1}(x_{i-1}) \le y_{j-i-\gamma}(\xi) \le y_{j-i}(x_{i+1}) = x_{j+1} \le x_{2i} \le 2^r x_i$$

Therefore,

377 (C.18)
$$y_{j-i-\gamma}^{1-2/r}(\xi) \le 2^{2|r-2|} x_i^{1-2/r}$$

So we can get 378

379 (C.19)
$$y'_{j-i}(\xi) - y'_{j-i-1}(\xi) \le (r-1)C(T,r)hx_i^{-1/r}$$

We get 380

381 (C.20)
$$(h_{i-1}^{l}(\xi))' \leq l(r-1)C h_{i+1}^{l-1} h x_i^{-1/r}$$

And by Lemma B.1, 382

383 (C.21)
$$h_{j+1} \le rTh\left(\frac{j+1}{N}\right)^{r-1} \le rTh2^{r-1}\left(\frac{j-1}{N}\right) = 2^{r-1}h_j$$

385

We can get

384

386

385 (C.22)
$$h_{j+1} \le rT^{1/r}hx_{j+1}^{1-1/r} \le rT^{1/r}hx_{2i}^{1-1/r} \le rT^{1/r}2^{r-1}hx_i^{1-1/r}$$

$$(h_{j-i}^{l}(\xi))' \leq l(r-1)C h_{j} h_{j+1}^{l-2} h x_{i}^{-1/r}$$

$$\leq l(r-1)C h h_{j} (h x_{i}^{1-1/r})^{l-2} x_{i}^{-1/r}$$

$$= (r-1)C h^{l-1} x_{i}^{l-2-(l-1)/r} h_{j}$$

Meanwhile, we can get 388

389 (C.24)
$$h_{j-i}^3(\xi) \le h_{j+1}^3 \le Ch^2 x_i^{2-2/r} h_j$$

390

Lemma C.7. There exists a constant C = C(T, r, l) such that For $3 \le i \le N$ 391 $1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i - 1, N - 1\},\$ 392

when $\xi \in [x_{i-1}, x_{i+1}],$ 393

394 (C.25)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

Proof. From (C.11) 395

$$(h_{j-i}^{3}(\xi))'' = 6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2} + 3h_{j-i}^{2}(\xi)(y''_{j-i}(\xi) - y''_{j-i-1}(\xi))$$

$$= 6h_{j-i}(\xi)\xi^{1/r-1}(y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi))$$

$$+ 3\frac{1-r}{r}h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

Using the inequalities of the proof of Lemma C.6 397

$$6h_{j-i}(\xi)(y'_{j-i}(\xi) - y'_{j-i-1}(\xi))^{2}$$

$$\leq 6h_{j+1}((r-1)Chx_{i}^{-1/r})^{2}$$

$$\leq C(r-1)^{2}h^{2}x_{i}^{-2/r}h_{i}$$

399 For the second partial

$$(C.28) \qquad h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

$$\leq Ch_{j+1}^{2}x_{i}^{1/r-2}((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi))Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi)Z_{1})$$

401 but

$$y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi) = (\xi^{1/r} + Z_{j-i})^{r-2} - (\xi^{1/r} + Z_{j-i-1})^{r-2}$$

$$= (r-2)Z_1(\xi^{1/r} + Z_{j-i-\gamma})^{r-3}$$

$$= (r-2)T^{-r}hy_{j-i-\gamma}^{1-3/r}(\xi)$$

$$\leq C(r-2)hx_i^{1-3/r}$$

403 So we can get

$$h_{j-i}^{2}(\xi)\xi^{1/r-2}(y_{j-i}^{1-2/r}(\xi)Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi)Z_{j-i-1})$$

$$\leq Ch_{j}hx_{i}^{1-1/r}x_{i}^{1/r-2}(C(r-2)hx_{i}^{1-3/r}Z_{j-i} + Cx_{i}^{1-2/r}T^{1/r}h)$$

$$\leq Ch^{2}((r-2)x_{i}^{-3/r}x_{|j-i|}^{1/r} + x_{i}^{-2/r})h_{j}$$

$$\leq Ch^{2}x_{i}^{-2/r}h_{j}$$

405 Summarizes, we have

406 (C.31)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

407 proof of Lemma 5.13. From (5.32)

408 (C.32)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

409 (C.33)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

410 Since

411
$$x_{j-2} \le y_{j-i-1}(x_{i-1}) \le y_{j-i}^{\theta}(\xi) \le y_{j-i-1}^{\theta}(x_{i+1}) \le x_{j+1}$$

412 We have known (C.17)

413 (C.34)
$$u''(y_{j-i}^{\theta}(\xi)) \le C(y_{j-i}^{\theta}(\xi))^{\alpha/2-2} \le Cx_{j-2}^{\alpha/2-2} \le Cx_{\lceil \frac{i}{2} \rceil - 1}^{\alpha/2-2} \le C4^{r(2-\alpha/2)}x_i^{\alpha/2-2}$$

414

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 5.14.

418 (C.37)
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

419 Since $|y_{j-i}(\xi) - \xi|$ is increasing about ξ , we have

$$420 \quad \left(\frac{i-1}{i}\right)^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le \left(\frac{i+1}{i}\right)^r |x_j - x_i|$$

421 Thus, (C.39)

$$422 \quad (\frac{2}{3})^r |y_j^{\theta} - x_i| \le |y_{j-i}^{\theta}(\xi) - \xi| \le (\frac{3}{4})^r (\theta |x_j - x_i| + (1 - \theta)|x_{j-1} - x_i|) = (\frac{3}{4})^r |y_j^{\theta} - x_i|$$

423

424 (C.40)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_i^{\theta} - x_i|^{1-\alpha}$$

425 Next, (C.41)

(C.41)

$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = (1-\alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}|\xi^{1/r-1}(\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi)) - 1|$$

$$\leq C|y_{j}^{\theta} - x_{i}|^{-\alpha}\xi^{1/r-1}|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

427 Similar with (C.39), we have

$$|y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}| \le C|x_j^{1-1/r} - x_i^{1-1/r}|$$

$$\le C|x_j - x_i|x_i^{-1/r}$$

429 So we can get

$$|\theta y_{j-i-1}^{1-1/r}(\xi) + (1-\theta)y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

$$\leq Cx_i^{-1/r}(\theta|x_{j-1} - x_i| + (1-\theta)|x_j - x_i|)$$

$$= Cx_i^{-1/r}|y_j^{\theta} - x_i|$$

431 Combine them, we get

432 (C.44)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_j^{\theta} - x_i|^{-\alpha} x_i^{1/r-1} x_i^{-1/r} |y_j^{\theta} - x_i|$$

$$= C|y_j^{\theta} - x_i|^{1-\alpha} x_i^{-1}$$

Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

435 REFERENCES

436 [1] X. ROS-OTON AND J. SERRA, The dirichlet problem for the fractional laplacian: Regular-437 ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 438 pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www. 439 sciencedirect.com/science/article/pii/S0021782413000895.