Interpretable Machine Learning

Interpretable Models 2 GAM & Boosting

Learning goals

- Generalized additive model (GAM)
- Model-based boosting with simple base learners
- Feature effect and importance in model-based boosting

GENERALIZED ADDITIVE MODEL (GAM)

▶ "Hastie and Tibshirani" 1986

Problem: LM not great if features act on outcome non-linearly

GENERALIZED ADDITIVE MODEL (GAM)

▶ "Hastie and Tibshirani" 1986

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp, log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

GENERALIZED ADDITIVE MODEL (GAM)

▶ "Hastie and Tibshirani" 1986

Problem: LM not great if features act on outcome non-linearly

Workaround in LMs / GLMs:

- Feature transformations (e.g., exp, log)
- Including high-order effects
- Categorization of features (i.e., intervals/ buckets of feature values)

Idea of GAMs:

• Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow$ splines

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have smoothness param. to control flexibility (prevent overfitting)
 → Needs to be chosen, e.g., via cross-validation

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

Fit a GAM with smooth splines for four numeric features of bike rental data
→ more flexible and better model fit but less interpretable than LM

	edf	p-value
s(temp)	5.8	0.00
s(hum)	4.0	0.00
s(windspeed)	1.7	0.00
s(days_since_2011)	8.3	0.00

Interpretation

- Interpretation is done visually and relative to average prediction
- Edf: effective degrees of freedom
 → represents degree of smoothness/complexity

▶ "Bühlmann, Hothorn" 2008

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g. univar., with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.g. univar., with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, oldsymbol{ heta}) + b^{[j]}(\mathbf{x}, oldsymbol{ heta}^{\star}) = b^{[j]}(\mathbf{x}, oldsymbol{ heta} + oldsymbol{ heta}^{\star})$$

$$\begin{split} \hat{t}^{[1]} &= \hat{t}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]}) \\ \hat{t}^{[2]} &= \hat{t}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]}) \\ \hat{t}^{[3]} &= \hat{t}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \\ &= \hat{t}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right) \\ &= \hat{t}_0 + \hat{t}_3(\mathbf{x}_3) + \hat{t}_1(\mathbf{x}_1) \end{split}$$

Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM

⇒ Converges to solution of LM

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

- Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- Early stopping allows feature selection & may also prevent overfitting (regularization)

1000 iter. with $\nu = 0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

\Rightarrow	Converges	to	solutio	n of	LM

20 iter. with $\nu=0.1$	Intercept	Weights
days_since_2011	-1210.27	3.3
season	0	WINTER: -276.9 SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
temp	-1118.94	73.2
offset	4504.35	

^{⇒ 3} BLs selected after 20 iter. (feature selection)

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- E.g. iter. 1: days_since_2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

In-bag-risk: 693,505.0 OOB risk (10-fold CV): 705,776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259,326.0

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.)
 "Daniel Schalk et al." 2018
- BLs: linear and centered splines for numeric feat., categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.)
 "Daniel Schalk et al." 2018
- BLs: linear and centered splines for numeric feat., categorical for season

- ⇒ In-bag-risk: 434,686.0 ; OOB risk (10-fold CV): 446,450.0 (previous lin. example with 1000 iter.)
- Feature importance (risk reduction over iter.)
 - \rightsquigarrow days_since_2011 most important
- Total effect for days_since_2011
 - → Combination of partial effects of linear BL and centered spline BL

