GLM

Advanced regression

Chuvakin Sergey

«School of Advanced Studies»

January 13, 2021

Outline

- Assumptions
- ► Normal distribution
- types
- ▶ link function
- ► logit
- estimators
- probit (normal distribution)
- interpretation

Assumptions

- Linearity of data
- Sample should be randomly selected for population
- X matrix should not be correlated within
- X marrix should not be correlated with error
- Variance of error should be constant
- Normality of Y

Normall Distribution

Types

Idea

Link functions

- Identity
- ▶ log (logit)
- probit
- poisson
- negative binomial
- ▶ etc

Logit

This type of regression suits for binary varaible.

$$Y = log(\frac{p}{1 - p}) \tag{1}$$

Coef output not an absolute straightforward number to interpret it's a chance.

Chance is a probability relation. 1 means that there is equal probability for success and for fail.

Logit

Estimator

MLE - Maximul likelihood Estimator more suits to logit and other GLM

likelihood =
$$\hat{y} * y + (1-\hat{y}) * (1-y)$$
 (2)

$$log-likelihood = log(\hat{y}) * y + log(1-\hat{y}) * (1-y)$$
(3)

maximize:
$$\sum_{i}^{n} log(\hat{y}_i) * y_i + log(1-\hat{y}_i) * (1-y_i)$$
 (4)

minimize:
$$\sum_{i}^{n} - (log(\hat{y}_{i}) * y_{i} + log(1 - \hat{y}_{i}) * (1 - y_{i}))$$
 (5)

Probit

Probit - absolutely the same as logit, but instread of sigmoid generates normal distribution. It hardly could be interpreted as easily as logit, so it's the reason why it so unpopular.

Poisson

Usually used for count data. But it's not dealing with zeros.

Negative Binomial

Negative binomial is a mix of poisson and Gamma distribution.

Output

```
Call:
alm(formula = Survived ~ Sex + Pclass, family = "binomial", data = df)
Deviance Residuals:
           10 Median 30
   Min
                                  Max
-2.2030 -0.7036 -0.4519 0.6719 2.1599
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.2946 0.2974 11.077 <2e-16 ***
Sexmale
         Pclass
      -0.9606 0.1061 -9.057 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1186.7 on 890 degrees of freedom
Residual deviance: 827.2 on 888 degrees of freedom
AIC: 833.2
Number of Fisher Scoring iterations: 4
```

Output

```
\``\{r\}
\logit \%-\% \coef \%-\% \exp
\``\|
\(\text{(Intercept)} \text{Sexmale Pclass} \\ 26.9677456 \text{ 0.0711192 } \text{ 0.3826812}
```