Κεφάλαιο 6

Διανυσματικοί Χώροι

Στο προηγούμενο κεφάλαιο μελετήσαμε τους χώρους \mathbb{R}^n . Στο παρόν κεφάλαιο θα ασχοληθούμε με πιο γενικούς χώρους που έχουν παρόμοιες ιδιότητες με τον \mathbb{R}^n και ο σκοπό μας είναι να κατανοήσουμε τις ιδιότητες αυτές στο γενικό πλαίσιο. Θα δώσουμε ιδιαίτερη έμφαση στην έννοια του συνόλου γεννητόρων ενός διανυσματικού χώρου.

B	AΣIKEΣ ENNOIEΣ	2
	ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ	2
	Ορισμός 1 (διανυσματικός χώρος)	2
	Παραδείγματα	3
	Ορισμός 2 (υπόχωρος)	4
	Παραδείγματα	
	Ορισμός 3 (άθροισμα και τομή υποχώρων)	
	Παράδειγμα	5
	ΓΡΑΜΜΙΚΟΙ ΣΥΝΔΥΑΣΜΟΙ	
	Ορισμός 4 (γραμμικός συνδυασμός στοιχείων)	
	Παράδειγμα	
	Ορισμός 5 (διανυσματικός χώρος που παράγεται από ένα σύνολο)	
	Παραδείγματα	
	ΧΩΡΟΙ ΜΕ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ	
	Ορισμός 6 (χώρος με εσωτερικό γινόμενο)	
	Παραδείγματα	
	Ορισμός 7	8
_		
Θ	ΕΜΕΛΙΩΛΕΙΣ ΓΝΩΣΕΙΣ	
	ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ	
	Πρόταση 1	
	Πρόταση 2 (κριτήριο υποχώρου)	
	Επισήμανση	
	Παράδειγμα	
	Πρόταση 3 (τομή και άθροισμα υποχώρων)	
	ΓΡΑΜΜΙΚΟΙ ΣΥΝΔΥΑΣΜΟΙ	
	Πρόταση 4 (γραμμική θήκη συνόλου)	
	Πρόταση 5	
	Πρόταση 6	
	ΧΩΡΟΙ ΜΕ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ	
	Θεώρημα 7	10
۸,	ΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ	10
Δ	Άσκηση 1	
	Άσκηση 2	
	Άσκηση 3	
	Άσκηση 4	
	Άσκηση 5	
	Άσκηση 6	
	Άσκηση 7	
	Άσκηση 8	
	Άσκηση 9	
	Άσκηση 10	
	Ασκηση 11	
	110KI OI 11	1 /

Άσκηση 12	
ΑΣΚΗΣΕΙΣ	19
Άσκηση 1	
Άσκηση 2	
Άσκηση 3	20
Άσκηση 4	20
Άσκηση 5	20
Άσκηση 6	
Άσκηση 7	
Άσκηση 8	
Άσκηση 9	
Άσκηση 10	

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Στα επόμενα με $\mathbb F$ συμβολίζουμε το σύνολο $\mathbb R$ ή το $\mathbb C$.

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

Το σύνολο \mathbb{R}^n μαζί με την πρόσθεση διανυσμάτων και το γινόμενο αριθμού με διάνυσμα αποτελεί ένα 'πρότυπο' για τον επόμενο ορισμό.

Ορισμός 1 (διανυσματικός χώρος)

 $Eνας \mathbb{F} - διανυσματικός χώρος είναι ένα μη κενό σύνολο <math>V$ εφοδιασμένο με δύο απεικονίσεις

$$V \times V \ni (v, v') \mapsto v + v' \in V$$
 ('πρόσθεση')
$$K \times V \ni (a, v) \mapsto av \in V$$
 ('αριθμητικός πολλαπλασιασμός')

που ικανοποιούν τις ιδιότητες

- 1. (v+v')+v''=v+(v'+v'') για κάθε $v,v',v''\in V$.
- 2. v + v' = v' + v για κάθε $v, v' \in V$.
- 3. Υπάρχει στοιχείο $0_V \in V$ που έχει την ιδιότητα $0_V + v = v + 0_V = v$ για κάθε $v \in V$. Το 0_V ονομάζεται 'μηδενικό στοιχείο' του V.
- 4. Για κάθε $v \in V$ υπάρχει στοιχείο $-v \in V$ με την ιδιότητα v + (-v) = (-v) + v $= 0_V.$
- 5. 1v = v για κάθε $v \in V$.
- 6. a(v+v') = av + av' για κάθε $a \in \mathbb{F}, v \in V, v' \in V$.
- 7. (a+b)v = av + bv για κάθε $a,b \in \mathbb{F}, v \in V$.
- 8. (ab)v = (a(bv)) για κάθε $a,b \in \mathbb{F}, v \in V$.

Σημείωση Αποδεικνύεται ότι το θ_V της ιδιότητας 3 είναι μοναδικό. Ονομάζεται δε το 'μηδενικό στοιχείο' του V. Επίσης, για κάθε $v \in V$, το -v της ιδιότητας 4 είναι μοναδικό και ονομάζεται το αντίθετο του v.

Παραδείγματα

- 1. Το σύνολο \mathbb{R}^n των διατεταγμένων n- άδων πραγματικών αριθμών με πρόσθεση που ορίζεται από $(u_1,...,u_n)+(v_1,...,v_n)=(u_1+v_1,...,u_n+v_n)$ και αριθμητικό πολλαπλασιασμό που ορίζεται από $a(u_1,...,u_n)=(au_1,...,au_n)$ είναι ένας \mathbb{R} διανυσματικός χώρος. Το μηδενικό στοιχείο είναι το $0_{\mathbb{R}^n}=(0,...,0)$ και το αντίθετο του $(u_1,...,u_n)$ είναι το $-(u_1,...,u_n)=(-u_1,...,-u_n)$.
- 2. Κατά παρόμοιο τρόπο το \mathbb{C}^n καθίσταται \mathbb{C} διανυσματικός χώρος.
- 3. Το σύνολο $M_{m\times n}(\mathbb{R})$ των $m\times n$ πραγματικών πινάκων είναι ένας \mathbb{R} διανυσματικός χώρος με πρόσθεση τη συνήθη πρόσθεση πινάκων και αριθμητικό πολλαπλασιασμό τον πολλαπλασιασμό πίνακα με αριθμό. Το μηδενικό στοιχείο είναι ο μηδενικός πίνακας και το αντίθετο του $A=\left(a_{ij}\right)$ είναι το $-A=\left(-a_{ij}\right)$.
- 4. Κατά ανάλογο τρόπο, το σύνολο $M_{m \times n} \left(\mathbb{C} \right)$ των $m \times n$ μιγαδικών πινάκων είναι ένας \mathbb{C} διανυσματικός χώρος.
- 5. Έστω $A \in M_{m \times n}(\mathbb{R})$. Το σύνολο των λύσεων του ομογενούς συστήματος $AX = 0 \text{ είναι ένας } \mathbb{R} \text{διανυσματικός χώρος ως προς την πρόσθεση και}$ τον αριθμητικό πολλαπλασιασμό του Παραδείγματος 3.
- 6. Το σύνολο $\mathbb{R}[x]$ όλων των πολυωνύμων με πραγματικούς συντελεστές είναι ένας \mathbb{R} διανυσματικός χώρος ως προς τις συνήθεις πράξεις της πρόσθεσης πολυωνύμων και του πολλαπλασιασμού πολυωνύμου με αριθμό.

Ορισμός 2 (υπόχωρος)

Εστω V ένας \mathbb{F} – διανυσματικός χώρος και $U \subseteq V$. Θα λέμε ότι το U είναι ένας \mathbb{F} – υπόχωρος του V αν το U είναι ένας \mathbb{F} – διανυσματικός χώρος ως προς την ίδια πρόσθεση και τον ίδιο αριθμητικό πολλαπλασιασμό του V.

Σημείωση Συχνά λέμε απλά υπόχωρος αντί \mathbb{F} – υπόχωρος, όπως και διανυσματικός χώρος (δ.χ.) αντί \mathbb{F} – διανυσματικός χώρος, όταν δεν υπάρχει περίπτωση σύγχυσης σχετικά με το \mathbb{F} .

Παραδείγματα

1. Τα σύνολα $\{(x,0)\in\mathbb{R}^2\}$, $\{(0,y)\in\mathbb{R}^2\}$, $\{(x,x)\in\mathbb{R}^2\}$ είναι υπόχωροι του \mathbb{R}^2 . Το σύνολο $U=\{(x,1)\in\mathbb{R}^2\}$ δεν είναι υπόχωρος του \mathbb{R}^2 . Πράγματι, αν προσθέσουμε δυο στοιχεία του (x,1)+(x',1)=(x+x',2) βρίσκουμε ένα στοιχείο που δεν ανήκει στο U. Δηλαδή η πρόσθεση διανυσμάτων δεν μας δίνει μια απεικόνιση της μορφής $U\times U\to U$. Γεωμετρικά, οι προηγούμενοι υπόχωροι του επιπέδου παρίστανται από τον άξονα των x, στον άξονα των y, και την ευθεία y=x αντίστοιχα. Η διακεκομμένη ευθεία αντιστοιχεί στο σύνολο U.

- 2. Έστω n ένας θετικός ακέραιος. Το σύνολο $\mathbb{R}_n[x]$ των πολυωνύμων βαθμού $\leq n$ είναι υπόχωρος του διανυσματικού χώρου $\mathbb{R}[x]$ των πολυωνύμων.
- 3. Το σύνολο $D_n(\mathbb{R})$ των $n \times n$ πραγματικών διαγωνίων πινάκων είναι υπόχωρος του $M_n(\mathbb{R})$.

Ορισμός 3 (άθροισμα και τομή υποχώρων)

Έστω U,W δυό υπόχωροι ενός δ.χ. V. Τότε τα σύνολα

$$U + W = \{u + w \in V \mid u \in U, w \in W\}$$

$$U \cap W = \{v \in V \mid v \in U \text{ } \kappa \alpha \iota v \in W\}$$

είναι υπόχωροι του V, που ονομάζονται αντίστοιχα το **άθροισμα** και η **τομή** των U και W. Στην ειδική περίπτωση που έχουμε $U \cap W = \{0_V\}$, τότε το άθροισμα U + W λέγεται ευθύ άθροισμα και συμβολίζεται με $U \oplus W$.

Παράδειγμα

Έστω $V=\mathbb{R}^2$, και οι υπόχωροι $U=\{(x,0)\in\mathbb{R}^2\}$, $W=\{(0,y)\in\mathbb{R}^2\}$. Τότε $U+W=\mathbb{R}^2$. Πράγματι, είναι σαφές ότι $U+W\subseteq\mathbb{R}^2$. Το τυχαίο στοιχείο του \mathbb{R}^2 γράφεται $(x,y)=(x,0)+(0,y)\in U+W$. Άρα ισχύει και $\mathbb{R}^2\subseteq U+W$. Συνεπώς έχουμε $U+W=\mathbb{R}^2$. Επειδή έχουμε τη σχέση $U\cap W=\{(0,0)\}$, το άθροισμα U+W είναι ευθύ. Τελικά έχουμε $\mathbb{R}^2=U\oplus W$. Γεωμετρικά, το \mathbb{R}^2 είναι το ευθύ άθροισμα των δυο συνήθων αξόνων.

Με παρόμοιο τρόπο αποδεικνύεται ότι $\mathbb{R}^2=U\oplus W'$, όπου $W'=\left\{(x,x)\in\mathbb{R}^2\right\}.$

Γεωμετρικά, το \mathbb{R}^2 είναι το ευθύ άθροισμα των δύο εικονιζόμενων ευθειών. Προσοχή Παρατηρούμε ότι έχουμε $U \oplus W = U \oplus W'$, αλλά $W \neq W'$.

ΓΡΑΜΜΙΚΟΙ ΣΥΝΔΥΑΣΜΟΙ

Aν $v_1,...,v_n$ είναι στοιχεία ενός $\mathbb{F}-\delta$.χ. V, τότε όλα τα στοιχεία της μορφής $a_1v_1+...+a_nv_n$, όπου $a_1,...,a_n\in\mathbb{F}$, περιέχονται στο V. Δίνουμε τον εξής ορισμό.

Ορισμός 4 (γραμμικός συνδυασμός στοιχείων)

Εστω X ένα υποσύνολο ενός \mathbb{F} – διανυσματικού χώρου V. Κάθε στοιχείο του V της μορφής $a_1x_1+...+a_nx_n$, όπου $a_1,...,a_n\in\mathbb{F},x_1,...,x_n\in X$ λέγεται ένας \mathbb{F} – γραμμικός συνδυασμός των στοιχείων του X. Το σύνολο των \mathbb{F} – γραμμικών συνδυασμών των στοιχείων του X ονομάζεται \mathbb{F} – γραμμική θήκη του X και συμβολίζεται με $\langle X \rangle$ ή L(X). Στην ειδική περίπτωση που το X είναι κενό, δεχόμαστε ότι $L(X)=\{0_V\}$.

Παράδειγμα

Έστω $V=\mathbb{R}^3$ και $X=\left\{(2,1,1),(1,-1,1)\right\}$. Τότε το $\left\langle X\right\rangle$ αποτελείται από όλα τα στοιχεία της μορφής a(2,1,1)+b(1,-1,1) με $a,b\in\mathbb{R}$. Ας εξετάσουμε αν το (3,3,1) ανήκει στο $\left\langle X\right\rangle$. Ερωτάμε, δηλαδή, αν υπάρχουν a,b τέτοια ώστε

$$a(2,1,1) + b(1,-1,1) = (3,3,1)$$

Η εξίσωση αυτή ισοδυναμεί με το σύστημα

$$2a + b = 3$$

$$a-b=3$$

$$a + b = 1$$
.

Το σύστημα αυτό έχει λύση (a=2,b=-1) και κατά συνέπεια αληθεύει ότι το (3,3,1) ανήκει στο $\langle X \rangle$.

Γεωμετρικά, το παράδειγμα αυτό λέει ότι το διάνυσμα (3,3,1) ανήκει στο επίπεδο που ορίζουν τα (2,1,1),(1,-1,1).

Ορισμός 5 (διανυσματικός χώρος που παράγεται από ένα σύνολο)

Εστω X ένα υποσύνολο ενός διανυσματικού χώρου V. Θα λέμε ότι το X παράγει το V πάνω από το \mathbb{F} (ή ότι το V παράγεται από ο X πάνω από το \mathbb{F} ή ότι το X είναι σύνολο γεννητόρων του V πάνω από το \mathbb{F}) αν ισχύει $V = \langle X \rangle$, δηλαδή αν κάθε στοιχείο του V είναι \mathbb{F} – γραμμικός συνδυασμός στοιχείων του X.

Συχνά παραλείπουμε την αναφορά στο $\mathbb F$ από τον παραπάνω ορισμό και μιλάμε, για παράδειγμα, για σύνολο γεννητόρων του V όταν είναι σαφές ποιο είναι το $\mathbb F$.

Παραδείγματα

- Από το Κεφάλαιο 5 θυμόμαστε ότι κάθε βάση του \mathbb{R}^n παράγει το \mathbb{R}^n .
- Ο διανυσματικός χώρος $U = \{(x,x) \in \mathbb{R}^2\}$ παράγεται από το $X = \{(1,1)\}$. Επίσης το U παράγεται από κάθε σύνολο της μορφής $\{(a,a)\}$, όπου $a \neq 0$.
- Ο δ.χ. $M_2(\mathbb{R})$ παράγεται από τα $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, αφού το τυχαίο στοιχείο $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ του $M_2(\mathbb{R})$ γράφεται $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
- Επειδή κάθε πολυώνυμο βαθμού ≤ 2 γράφεται στη μορφή $ax^2 + bx + c$, συμπεραίνουμε ότι ο δ.χ. $\mathbb{R}_2[x]$ παράγεται από τα $1, x, x^2$.

ΧΩΡΟΙ ΜΕ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

Στο προηγούμενο κεφάλαιο είδαμε ότι στο \mathbb{R}^n υπάρχει το σύνηθες εσωτερικό γινόμενο μέσω του οποίου εκφράζονται οι γεωμετρικές έννοιες του μήκους και της καθετότητας.

Ορισμός 6 (χώρος με εσωτερικό γινόμενο)

Εστω V ένας \mathbb{F} – διανυσματικός χώρος. Μια απεικόνιση $\langle \ \rangle: V \times V \to \mathbb{F}$ λέγεται εσωτερικό γινόμενο στο V αν ισχύουν οι επόμενες ιδιότητες.

1.
$$\langle au_1 + bu_2, v \rangle = a \langle u_1, v \rangle + b \langle u_2, v \rangle$$

2.
$$\langle u, v \rangle = \overline{\langle v, u \rangle}$$

3.
$$\langle u, u \rangle \ge 0$$

4.
$$\langle u, u \rangle = 0 \Leftrightarrow u = 0$$

για κάθε $a,b \in \mathbb{F}, u, u_1, u_2, v \in V$.

Παραδείγματα

- Στο \mathbb{R}^n , το $\langle x,y\rangle = x_1y_1 + ... + x_ny_n$, όπου $x = (x_1,...,x_n), y = (y_1,...,y_n)$, ορίζει ένα εσωτερικό γινόμενο.
- Στο \mathbb{C}^n , το $\langle x,y\rangle = x_1\overline{y_1} + ... + x_n\overline{y_n}$, όπου $x = (x_1,...,x_n), y = (y_1,...,y_n)$, ορίζει ένα εσωτερικό γινόμενο.
- Έστω V ο \mathbb{R} δ.χ. των συνεχών απεικονίσεων [0,1] $\to \mathbb{R}$. Θέτοντας $\left\langle f,g\right\rangle = \int\limits_0^1 f(x)g(x)dx \;\; \pi$ αίρνουμε ένα εσωτερικό γινόμενο στο V.

Ορισμός 7

Εστω V ένας δ.χ. με εσωτερικό γινόμενο $\langle \ \rangle$.

- Το **μήκο**ς ενός $v \in V$ είναι ο πραγματικός αριθμός $\sqrt{\langle v, v \rangle}$ και συμβολίζεται με |v|. Ένα $v \in V$ λέγεται **μοναδιαίο** αν |v| = 1.
- Δυο στοιχεία $u, v \in V$ λέγονται **κάθετα** αν $\langle u, v \rangle = 0$.

ΘΕΜΕΛΙΩΔΕΙΣ ΓΝΩΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

Πρόταση 1

 $Εστω \ V$ ένας $\mathbb{F} - \delta.χ$. και $v \in V$, $a \in \mathbb{F}$. Τότε ισχύουν τα εξής

- 1. $a0_v = 0_v$
- $2. \quad 0v = 0_V$
- 3. $\alpha v \ \alpha v = 0_V$, the $\alpha = 0$ if $v = 0_V$
- 4. (-a)v = a(-v) = -(av).

Πρόταση 2 (κριτήριο υποχώρου)

Εστω V ένας διανυσματικός χώρος και U ένα υποσύνολο του V. Τότε το U είναι υπόχωρος του V αν και μόνο αν ισχύουν τα κάτωθι.

- 1. $U \neq \emptyset$
- 2. $u, u' \in U \Rightarrow u + u' \in U$ (το U είναι 'κλειστό ως προς την πρόσθεση')
- 3. $a \in \mathbb{F}, u \in U \Rightarrow au \in U$ (το U είναι 'κλειστό ως προς τον πολλαπλασιασμό')

Επισήμανση

Τονίζουμε ότι κάθε υπόχωρος του V περιέχει το μηδενικό στοιχείο 0_V του V.

Παράδειγμα

Το $U = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + 3z = 0\}$ είναι υπόχωρος του \mathbb{R}^3 . Πράγματι,

- 1. το U είναι μη κενό
- 2. αν $(x, y, z), (x', y', z') \in U$, τότε

$$2x - y + 3z = 0
2x' - y' + 3z' = 0$$
 \Rightarrow $\Rightarrow 2(x + x') - (y + y') + 3(z + z') = 0 \Rightarrow$ $(x + x', y + y', z + z') \in U$

3. αν $(x, y, z) \in U$ και $a \in \mathbb{R}$, τότε

$$2x - y + 3z = 0 \Rightarrow 2(ax) - (ay) + 3(az) = 0 \Rightarrow$$
$$(ax, ay, az) \in U.$$

Αντίθετα, το $\{(x,y,z) \in \mathbb{R}^3 \mid 2x-y+3z=1\}$ δεν είναι υπόχωρος του \mathbb{R}^3 γιατί δεν περιέχει το (0,0,0).

Γεωμετρικά, οι υπόχωροι του

- \mathbb{R} είναι το \mathbb{R} και το $\{0\}$
- \mathbb{R}^2 είναι το \mathbb{R}^2 , το $\{(0,0)\}$ και κάθε ευθεία που περνά από την αρχή των αξόνων
- \mathbb{R}^3 είναι το \mathbb{R}^3 , το $\{(0,0,0)\}$, κάθε ευθεία που περνά από την αρχή των αξόνων και κάθε επίπεδο που περνά από την αρχή των αξόνων.

Πρόταση 3 (τομή και άθροισμα υποχώρων)

Έστω U, W δυο υπόχωροι του V. Τότε τα σύνολα

$$U + W = \{u + w \in V \mid u \in U, w \in W\}$$

$$U \cap W = \{v \in V \mid v \in U \text{ } \kappa \alpha \iota v \in W\}$$

είναι υπόχωροι του V.

ΓΡΑΜΜΙΚΟΙ ΣΥΝΔΥΑΣΜΟΙ

Πρόταση 4 (γραμμική θήκη συνόλου)

Εστω X ένα υποσύνολο ενός δ.χ. V. Τότε η γραμμική θήκη $\langle X \rangle$ είναι ένας υπόχωρος του V.

Πρόταση 5

Εστω V ένας δ.χ., U ένας υπόχωρος του V και X ένα υποσύνολο του V. Τότε έχουμε $\langle X \rangle \subseteq U \Leftrightarrow X \subseteq U$.

Πρόταση 6

Εστω U,W δυο υπόχωροι του δ.χ. V. Τότε το άθροισμα U+W είναι ευθύ αν και μόνο αν κάθε $v \in U+W$ γράφεται μοναδικά στη μορφή v=u+w, όπου $u \in U,w \in W$.

ΧΩΡΟΙ ΜΕ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

Θεώρημα 7

Εστω V ένας δ.χ. με εσωτερικό γινόμενο $\langle \ \rangle$ και $u,v\in V,a\in \mathbb{F}$. Τότε

- $1. \quad |av| = |a||v|$
- 2. $|v| > 0 \ \alpha v \ v \neq 0$.
- 3. $|\langle u, v \rangle| \le |u||v|$ (ανισότητα Cauchy-Schwarz)
- 4. $|u+v| \le |u|+|v|$ (τριγωνική ανισότητα).

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Ασκηση 1

Εξετάστε ποια από τα παρακάτω υποσύνολα του \mathbb{R}^3 είναι υπόχωροι του \mathbb{R}^3 .

- 1) $\{(x, y, z) \mid 2x + 3y + z = 1\}$
- 2) $\{(x, y, z) | x \ge 0\}$
- 3) $\{(x, y, z) \mid 2x + 3y + z = 0\}$
- 4) $\{(x, y, z) \mid 2x + 5y + z = -3x + 2y + z = 0\}$

Λύση

- 1) Το $\{(x,y,z) \mid 2x+3y+z=1\}$ δεν περιέχει το (0,0,0) και συνεπώς δεν είναι υπόχωρος του \mathbb{R}^3 σύμφωνα με την επισήμανση.
- 2) Ενώ $(1,0,0) \in \{(x,y,z) \mid x \ge 0\}$, έχουμε $-(1,0,0) = (-1,0,0) \notin \{(x,y,z) \mid x \ge 0\}$. Δηλαδή το $\{(x,y,z) \mid x \ge 0\}$ δεν είναι κλειστό ως προς τον πολλαπλασιασμό και άρα δεν είναι υπόχωρος σύμφωνα με την <u>Πρόταση 2</u>.
- 3) Το $U = \{(x,y,z) \mid 2x+3y+z=0\}$ είναι υπόχωρος του \mathbb{R}^3 σύμφωνα με την $\frac{\text{Πρόταση 2}}{(x,y,z),(x',y',z')} \in U \text{ και } \lambda \in \mathbb{R}, \text{ τότε}$
 - $(x, y, z) + (x', y', z') = (x + x', y + y', z + z') \in U$

αφού

$$2(x+x')+3(y+y')+(z+z')=(2x+3y+z)+(2x'+3y'+z')=0+0=0$$

και

• $\lambda(x, y, z) = (\lambda x, \lambda y, \lambda z) \in U$

αφού

$$2(\lambda x) + 3(\lambda y) + \lambda z = \lambda(2x + 3y + z) = 0.$$

4) Το $\{(x,y,z) | 2x + 5y + z = -3x + 2y + z = 0\}$ είναι υπόχωρος και η απόδειξη είναι όπως στο 3).

Άσκηση 2

Ποια από τα παρακάτω υποσύνολα του $M_2(\mathbb{R})$ είναι υπόχωροι του $M_2(\mathbb{R})$;

- 1) $U = \{A \mid \det A = 1\}$
- 2) $V = \{A \mid \det A = 0\}$

3)
$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a + d = 0 \right\}$$

Λύση

- 1) Το U δεν είναι υπόχωρος του $M_2(\mathbb{R})$ γιατί δεν περιέχει το μηδενικό πίνακα.
- 2) Το V δεν είναι υπόχωρος του $M_2(\mathbb{R})$. Πράγματι, ενώ $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \in V$, παρατηρούμε ότι $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \not\in V$, γιατί $\det\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = 1 \neq 0$.

Δηλαδή το V δεν είναι κλειστό ως προς την πρόσθεση .

3) Το W είναι υπόχωρος του $M_2(\mathbb{R})$ γιατί είναι βέβαια μη κενό και

1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in W \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} a+x & b+y \\ c+z & d+w \end{pmatrix} \in W$,
 $\alpha \varphi \circ \circ (a+x) + (d+w) = (a+d) + (x+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+w) = 0 + 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) = 0 = 0$, $\kappa \alpha \circ (a+x) + (d+x) + (d+x) = 0$, $\kappa \alpha \circ (a+x) + (d+x) + (d+x) + (d+x) + (d+x) + (d+x) + (d+x)$

Άσκηση 3

Θεωρούμε τον υπόχωρο $U = \langle (1,1,2), (2,1,1) \rangle$ του \mathbb{R}^3 . Να βρεθούν τα a ώστε $(1,-1,a) \in U$.

Λύση

Εφαρμόζουμε τον Ορισμό 5. Έχουμε

$$(1,-1,a) \in \left\langle (1,1,2),(2,1,1) \right\rangle \Leftrightarrow$$
υπάρχουν λ,μ με $(1,-1,a) = \lambda(1,1,2) + \mu(2,1,1) \Leftrightarrow$

$$(1,-1,a) = (\lambda+2\mu,\lambda+\mu,2\lambda+\mu) \Leftrightarrow$$

$$\lambda+2\mu=1$$
το σύστημα $\lambda+\mu=-1$ έχει λύση .
$$2\lambda+\mu=a$$

Μετά από τρεις στοιχειώδεις μετασχηματισμούς γραμμών, ο επαυξημένος πίνακας

του συστήματος αυτού παίρνει τη μορφή $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & a+4 \end{pmatrix}.$ Συμπεραίνουμε ότι για

 $a \neq -4$ δεν υπάρχει λύση, ενώ για a = -4 υπάρχει λύση. Συνεπώς το ζητούμενο είναι a = -4.

Ασκηση 4

- 1) Εζετάστε αν το (3,9,-4,-2) είναι γραμμικός συνδυασμός των (1,-2,0,3),(2,3,0,-1),(2,-1,2,1).
- 2) Εξετάστε αν ισχύει $\langle (1,2,-1),(2,4,1) \rangle = \langle (3,6,0),(-1,-2,2) \rangle$.

Λύση

1) Εξετάζουμε αν υπάρχουν $x,y,z \in \mathbb{R}$ με

$$(3,9,-4,-2) = \lambda(1,-2,0,3) + \mu(2,3,0,-1) + \nu(2,-1,2,1).$$

Το ισοδύναμο σύστημα που προκύπτει είναι

$$\lambda + 2\mu + 2\nu = 3$$
$$-2\lambda + 3\mu - \nu = 9$$
$$2\nu = -4$$
$$3\lambda - \mu + \nu = -2.$$

Λύνοντάς το κατά τα γνωστά βλέπουμε ότι έχει λύση (και μάλιστα μοναδική $\lambda=1, \mu=3, \nu=-2 \).$

2) Για συντομία έστω $U = \langle (1,2,-1),(2,4,1) \rangle$, $V = \langle (3,6,0),(-1,-2,2) \rangle$. Αρκεί να δείξουμε ότι

$$U \subseteq V$$
 kai $V \subseteq U$.

Εφαρμόζοντας δυο φορές την Πρόταση 5, αρκεί να δείξουμε ότι

$$(1,2,-1),(2,4,1) \in V$$

kai
 $(3,6,0),(-1,-2,2) \in U$

Θα πρέπει να εξετάσουμε αν καθένα από τα (1,2,-1),(2,4,1) είναι γραμμικός συνδυασμός των (3,6,0),(-1,-2,-2) και αν καθένα από τα (3,6,0),(-1,-2,2) είναι γραμμικός συνδυασμός των (1,2,-1),(2,4,1). Με τη διαδικασία του προηγούμενου υποερωτήματος βρίσκουμε ότι

$$(1,2,-1) = \frac{1}{6}(3,6,0) - \frac{1}{2}(-1,-2,2)$$

$$(2,4,1) = \frac{5}{6}(3,6,0) + \frac{1}{2}(-1,-2,2)$$

$$(3,6,0) = (1,2,-1) + (2,4,1)$$

$$(-1,-2,2) = -\frac{5}{3}(1,2,-1) + \frac{1}{3}(2,4,1).$$

Aρα
$$\langle (1,2,-1),(2,4,1)\rangle = \langle (3,6,0),(-1,-2,2)\rangle$$
.

Σημείωση: Δεν ήταν απαραίτητο να βρούμε τους συγκεκριμένους γραμμικούς συνδυασμούς, αλλά μόνο ότι υπάρχουν, ή ισοδύναμα ότι καθένα από τα 4 συστήματα έχει λύση.

Ασκηση 5

Για ποια α το (a,2,-1) ανήκει στον υπόχωρο του \mathbb{R}^3 που παράγεται από τα διανύσματα u=(1,3,1), v=(2,1,1);

Λύση

Είναι σαφές ότι τα u και v είναι γραμμικά ανεξάρτητα . Συνεπώς το (a,2,-1) ανήκει στον εν λόγω υπόχωρο αν και μόνο αν τα διανύσματα (a,2,-1), u, v είναι γραμμικά εξαρτημένα, δηλαδή αν και μόνο αν

$$\det \begin{pmatrix} a & 1 & 2 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = 0,$$

 $\alpha \pi$ ' όπου βρίσκουμε $a = -\frac{7}{2}$

Άσκηση 6

Αποδείζτε την Πρόταση 3.

Λύση

Ας δείξουμε πρώτα ότι το U + W είναι υπόχωρος του V.

- Από τον ορισμό έχουμε $U + W \neq \emptyset$ (αφού $0_V = 0_V + 0_V \in U + W$).
- Έστω $u_1 + w_1, u_2 + w_2 \in U + W$ με $u_i \in U, w_i \in W$. Τότε $(u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W.$ Δηλαδή το U + W είναι κλειστό ως προς την πρόσθεση.
- Έστω $a \in \mathbb{F}$. Τότε $a(u_1 + w_1) = (au_1) + (aw_1) \in U + W$. Δηλαδή το U + W είναι κλειστό ως προς τον αριθμητικό πολλαπλασιασμό. Άρα το U + W είναι υπόχωρος του V.

Ας δούμε τώρα την τομή.

• Έχουμε $0_v \in U, 0_v \in W$ και άρα $0_v \in U \cap W$, δηλαδή το $U \cap W$ είναι μη κενό.

- Έστω $x, y \in U \cap W$. Τότε $x, y \in U \Rightarrow x + y \in U$ γιατί το U είναι υπόχωρος. Όμοια $x + y \in W$. Άρα $x + y \in U \cap W$.
- Έστω $a \in \mathbb{F}$. Επειδή το U είναι υπόχωρος και $x \in U$, έχουμε $ax \in U$. Όμοια $ax \in W$. Άρα τελικά $ax \in U \cap W$. Άρα το $U \cap W$ είναι υπόχωρος του V.

Ασκηση 7

Θεωρούμε το σύνολο των $n\times n$ συμμετρικών πινάκων $S=\left\{A\in M_n\left(\mathbb{F}\right)\middle|A^t=A\right\}$ και το σύνολο των $n\times n$ αντισυμμετρικών πινάκων $T=\left\{A\in M_n\left(\mathbb{F}\right)\middle|A^t=-A\right\}$. Αποδείζτε ότι τα S,T είναι υπόχωροι του $M_n\left(\mathbb{F}\right)$ και ότι $S\oplus T=M_n\left(\mathbb{F}\right)$.

Λύση

Παρατηρούμε ότι $0 \in S$ και άρα το S είναι μη κενό. Έστω $A, B \in S$. Τότε $(A+B)^t = A^t + B^t = A + B$, δηλαδή $A+B \in S$. Έστω $a \in \mathbb{F}$. Τότε $(aA)^t = aA^t = aA$, δηλαδή $aA \in S$. Σύμφωνα με την Πρόταση 2, το S είναι υπόχωρος του $M_n(\mathbb{F})$. Με παρόμοιο τρόπο αποδεικνύεται ότι και το T είναι υπόχωρος του $M_n(\mathbb{F})$.

Για να δείξουμε ότι $S \oplus T = M_n(\mathbb{F})$, αρκεί να δείξουμε (βλ. Ορισμό 3) ότι

- 1. $S+T=M_n(\mathbb{F})$ και
- 2. $S \cap T = \{0\}$.
- 1. Επειδή $S+T\subseteq M_n\left(\mathbb{F}\right)$, αρκεί να δείξουμε ότι $M_n\left(\mathbb{F}\right)\subseteq S+T$. Δηλαδή αρκεί να δείξουμε ότι κάθε πίνακας είναι άθροισμα ενός συμμετρικού και ενός αντισυμμετρικού πίνακα. Έστω $A\in M_n\left(\mathbb{F}\right)$. Έχουμε $A=\frac{A+A^t}{2}+\frac{A-A^t}{2}$. Παρατηρούμε ότι $\frac{A+A^t}{2}\in S$, αφού $\left(\frac{A+A^t}{2}\right)^t=\frac{A^t+\left(A^t\right)^t}{2}=\frac{A+A^t}{2}$. Με παρόμοιο τρόπο έχουμε $\frac{A-A^t}{2}\in T$. Άρα $A\in S+T$ οπότε $M_n\left(\mathbb{F}\right)\subseteq S+T$.
- 2. Έστω $A \in S \cap T$. Τότε $A \in S$, $A \in T \Rightarrow A^t = A$, $A^t = -A \Rightarrow 2A = 0 \Rightarrow A = 0$. Άρα $S \cap T = \{0\}$.

Ασκηση 8

Αποδείζτε ότι κάθε μη μηδενικός πίνακας του υπόχωρου $U = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle$ του

 $M_2(\mathbb{R})$ είναι αντιστρέψιμος.

Λύση

Κάθε στοιχείο του
$$U$$
 είναι της μορφής $a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a,b \in \mathbb{R}.$

Έχουμε
$$\det \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a^2 + b^2$$
 και $a^2 + b^2 = 0 \Leftrightarrow a = b = 0$.

Ασκηση 9

Αποδείζτε ότι ο δ.χ. $\mathbb{R}_3[x]$ των πολυωνύμων βαθμού ≤ 3 παράγεται από το σύνολο $\left\{1,1+x,\left(1+x\right)^2,\left(1+x\right)^3\right\}$.

Λύση

Έχουμε $\mathbb{R}_3[x] = \langle 1, x, x^2, x^3 \rangle$. Αρκεί να δείξουμε ότι

$$\langle 1, 1+x, (1+x)^2, (1+x)^3 \rangle = \langle 1, x, x^2, x^3 \rangle$$

και για το σκοπό αυτό αρκεί να δείξουμε τις δυο σχέσεις

1)
$$1,1+x,(1+x)^2,(1+x)^3 \in \langle 1,x,x^2,x^3 \rangle$$

2)
$$1, x, x^2, x^3 \in \langle 1, 1+x, (1+x)^2, (1+x)^3 \rangle$$

Έχουμε

$$1 \in \langle 1, x, x^{2}, x^{3} \rangle$$

$$1 + x \in \langle 1, x, x^{2}, x^{3} \rangle$$

$$(1 + x)^{2} = 1 + 2x + x^{2} \in \langle 1, x, x^{2}, x^{3} \rangle$$

$$(1 + x)^{3} = 1 + 3x + 3x^{2} + x^{3} \in \langle 1, x, x^{2}, x^{3} \rangle$$

και άρα ισχύει η σχέση 1). Επίσης ισχύει και η σχέση 2) γιατί

$$1 \in \left\langle 1, 1+x, (1+x)^{2}, (1+x)^{3} \right\rangle$$

$$x = (1+x) - 1 \in \left\langle 1, 1+x, (1+x)^{2}, (1+x)^{3} \right\rangle$$

$$x^{2} = (1+x)^{2} - 2x - 1 \in \left\langle 1, 1+x, (1+x)^{2}, (1+x)^{3} \right\rangle$$

$$x^{3} = (1+x)^{3} - 3x^{2} - 3x - 1 \in \left\langle 1, 1+x, (1+x)^{2}, (1+x)^{3} \right\rangle.$$

Άσκηση 10

Να βρεθεί ένα πεπερασμένο σύνολο γεννητόρων του δ.χ. των λύσεων του συστήματος

$$x+2y-5z = 0$$
$$2x-3y+4z = 0$$
$$4x+y-6z = 0.$$

Λύση

Μετά από τους στοιχειώδεις μετασχηματισμούς γραμμών

$$r_2 \rightarrow r_2 - 2r_1, r_3 \rightarrow r_3 - 4r_1, r_3 \rightarrow r_3 - r_2, r_2 \rightarrow \frac{-1}{7}r_2$$
, ο επαυξημένος πίνακας του

συστήματος παίρνει τη μορφή $\begin{pmatrix} 1 & 2 & -5 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$ Εύκολα βλέπουμε ότι οι λύσεις είναι

 $(z,2z,z),z\in\mathbb{R}$. Συνεπώς κάθε λύση είναι της μορφής $z(1,2,1),z\in\mathbb{R}$ και ένα πεπερασμένο σύνολο γεννητόρων του δ.χ. των λύσεων είναι το $\{(1,2,1)\}$.

Άσκηση 11

$$\begin{split} & E \sigma \tau \omega \ u_1 = (1,1,0), u_2 = (0,1,1), v_1 = (2,1,1), v_2 = (1,1,1) \in \mathbb{R}^3 \ \kappa \alpha \iota \\ & U = \left\langle u_1, u_2 \right\rangle, V = \left\langle v_1, v_2 \right\rangle. \ E \xi \epsilon \tau \acute{a} \sigma \tau \epsilon \ av \ \iota \sigma \chi \acute{v} \epsilon \iota \ \mathbb{R}^3 = U \oplus V \ . \end{split}$$

Λύση

Θα δείξουμε ότι $U\cap V\neq\{0\}$, οπότε το άθροισμα U+V δεν είναι ευθύ σύμφωνα με τον Ορισμό 3 και άρα δεν έχουμε $\mathbb{R}^3=U\oplus V$.

Εύκολα επαληθεύουμε ότι τα u_1, u_2 είναι γραμμικά ανεξάρτητα (βλ. Κεφάλαιο5):

$$\begin{split} \lambda u_1 + \mu u_2 &= (0,0,0) \Rightarrow (\lambda,\lambda,0) + (0,\mu,\mu) = (0,0,0) \Rightarrow \\ \lambda &= 0 \\ \lambda + \mu &= 0 \Rightarrow \\ \mu &= 0 \\ \lambda &= \mu = 0. \end{split}$$

Παρατηρούμε ότι κάθε στοιχείο του $U\cap V$ είναι γραμμικός συνδυασμός των u_1,u_2 και γραμμικός συνδυασμός των v_1,v_2 . Θα δείξουμε ότι υπάρχουν $a,b,c,d\in\mathbb{R}$ τέτοιοι ώστε $au_1+bu_2=cv_1+dv_2$, όπου ένας τουλάχιστον από τους a,b είναι μη μηδενικός. Τότε το $w=au_1+bu_2=cv_1+dv_2$ είναι ένα στοιχείο του $U\cap V$ και επιπλέον είναι μη μηδενικό γιατί τα u_1,u_2 είναι γραμμικά ανεξάρτητα.

Έχουμε

$$\begin{aligned} au_1 + bu_2 &= cv_1 + dv_2 \Leftrightarrow \\ a(1,1,0) + b(0,1,1) &= c(2,1,1) + d(1,1,1) \Leftrightarrow \\ \begin{cases} a - 2c - d &= 0 \\ a + b - c - d &= 0 \\ b - c - d &= 0. \end{cases} \end{aligned}$$

Μετά από μερικούς στοιχειώδεις μετασχηματισμούς γραμμών, βρίσκουμε ότι η ανηγμένη κλιμακωτή μορφή του επαυξημένου πίνακα είναι

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 1 & \frac{1}{2}
\end{pmatrix}.$$

Συνεπώς οι λύσεις είναι $(a,b,c,d)=(0,\frac{1}{2}d,-\frac{1}{2}d,d),d\in\mathbb{R}$. Επιλέγοντας d=2 , έχουμε a=0,b=1,c=-1,d=2.

Σημείωση Θα δούμε στο επόμενο κεφάλαιο ότι με τη χρήση της έννοιας της βάσης, απλουστεύονται αρκετές από τις λύσεις των προηγούμενων ασκήσεων.

Άσκηση 12

Για ποιες τιμές του $k \in \mathbb{R}$, η απεικόνιση

$$\langle \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \langle x, y \rangle = x_1 y_1 - 2x_1 y_2 - 2x_2 y_1 + k x_2 y_2,$$

είναι ένα εσωτερικό γινόμενο; Για τις τιμές αυτές να βρεθούν τα μήκη των δ ιανυσμάτων $e_1 = (1,0), e_2 = (0,1)$ και να εξεταστεί αν αυτά είναι κάθετα.

Λύση

Εύκολα επαληθεύεται ότι οι ιδιότητες 1 και 2 στον Ορισμό 6 αληθεύουν για κάθε k. Για την ιδιότητα 3 έχουμε

$$\langle x, x \rangle \ge 0 \Leftrightarrow$$

$$x_1^2 - 2x_1x_2 - 2x_2x_1 + kx_2^2 = x_1^2 - 4x_1x_2 + kx_2^2 \ge 0 \Leftrightarrow$$

$$(x_1^2 - 4x_1x_2 + (2x_2)^2) + kx_2^2 - (2x_2)^2 \ge 0 \Leftrightarrow$$

$$(x_1 - 2x_2)^2 + kx_2^2 - (2x_2)^2 \ge 0 \Leftrightarrow$$

$$kx_2^2 - (2x_2)^2 \ge 0 \Leftrightarrow$$

$$k \ge 4.$$

Έστω $k \ge 4$. Εξετάζουμε την ιδιότητα 4. Είδαμε πριν ότι

$$\langle x, x \rangle = (x_1 - 2x_2)^2 + kx_2^2 - (2x_2)^2.$$

Το δεξιό μέλος είναι μη μηδενικό για κάθε $x \neq (0,0)$ αν και μόνο αν k > 4. Τελικά οι ζητούμενες τιμές του k είναι k > 4.

Για τα ζητούμενα μήκη έχουμε σύμφωνα με τον Ορισμό 7

$$\begin{split} \left| e_1 \right| &= \sqrt{\left\langle e_1, e_1 \right\rangle} = \sqrt{1^2 - 2 \cdot 1 \cdot 0 - 2 \cdot 0 \cdot 1 + k \cdot 0 \cdot 0} = 1, \\ \left| e_2 \right| &= \sqrt{\left\langle e_2, e_2 \right\rangle} = \sqrt{0^2 - 2 \cdot 0 \cdot 1 - 2 \cdot 1 \cdot 0 + k \cdot 1 \cdot 1} = \sqrt{k}. \end{split}$$

Επειδή $\langle e_1,e_2\rangle$ = $1\cdot 0-2\cdot 1\cdot 1-2\cdot 0\cdot 0+k\cdot 0\cdot 1=-2\neq 0$ τα e_1,e_2 δεν είναι κάθετα ως προς το δοσμένο εσωτερικό γινόμενο.

ΑΣΚΗΣΕΙΣ

Ασκηση 1

Ποια από τα επόμενα υποσύνολα του \mathbb{R}^3 είναι υπόχωροι του \mathbb{R}^3 ;

- 1. $\{(x, y, z)|z=1\}$
- 2. $\{(x, y, z) | z = 0\}$
- 3. $\{(x, y, z)|xy=0\}$

Υπόδειξη Το πρώτο δεν περιέχει το μηδενικό στοιχείο. Το τρίτο δεν είναι κλειστό ως προς την πρόσθεση (πχ εξετάστε το (1,0,0)+(0,1,0)). Για το δεύτερο εφαρμόστε την Πρόταση 2.

Άσκηση 2

Εξετάστε ποια από τα επόμενα υποσύνολα του $M_2(\mathbb{R})$ είναι υπόχωροι του $M_2(\mathbb{R})$.

1.
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a = 1 \right\}$$

$$2. \quad \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a \ge 0 \right\}$$

3.
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| 2a + b - c = 0 \right\}$$

Υπόδειξη Το πρώτο δεν περιέχει το μηδενικό στοιχείο, το δεύτερο δεν είναι κλειστό ως προς τον αριθμητικό πολλαπλασιασμό και το τρίτο είναι υπόχωρος.

Άσκηση 3

Αποδείξτε ότι

- 1. το $U = \{(x, y, z) \in \mathbb{R}^3 \mid 3x 2y + z = 0\}$ είναι υπόχωρος του \mathbb{R}^3
- 2. το $V = \big\{ f(x) \in \mathbb{R}[x] \big| f(0) = 0 \big\}$ είναι υπόχωρος του $\mathbb{R}[x]$
- 3. το $W=\left\{A\in M_n\left(\mathbb{F}\right)\middle|AC=CA\right\}$, όπου $C\in M_n\left(\mathbb{F}\right)$, είναι υπόχωρος του $M_n\left(\mathbb{F}\right).$

Υπόδειξη Εφαρμόστε το κριτήριο υποχώρου και στις τρεις περιπτώσιες. Βλ. <u>Λυμένη Ασκηση 1 3</u>) και <u>Λυμένη Άσκηση 2 3</u>).

Άσκηση 4

Έστω $u=(1,1,2), v=(2,1,1)\in\mathbb{R}^3$. Να βρεθούν οι τιμές του $a\in\mathbb{R}$, τέτοιες ώστε $(4,a,5)\in\langle u,v\rangle$.

Υπόδειξη Βλ. Λυμένη Άσκηση 3. Απάντηση a = 3.

Ασκηση 5

Αποδείξτε ότι στο \mathbb{R}^3 έχουμε $\langle (1,0,-1),(2,1,1)\rangle = \langle (1,0,-1),(4,1,-1),(5,2,1)\rangle$

Υπόδειξη Βλ. Λυμένη Άσκηση 4.

Ασκηση 6

Έστω $u, v, w \in V$, όπου V είναι ένας δ.χ. Αποδείξτε ότι $\langle u, v \rangle = \langle u, v, w \rangle \Leftrightarrow w \in \langle u, v \rangle$.

Υπόδειξη Βλ. Ορισμό 4 και Πρόταση 5.

Ασκηση 7

Να υπολογιστεί ένα πεπερασμένο σύνολο γεννητόρων του δ.χ. των λύσεων του συστήματος

$$x-y+z=0$$
$$2x-y=0$$
$$3x-2y+z=0.$$

Υπόδειξη Βλ. Δυμένη Άσκηση 10. Απάντηση $\{(1,2,1)\}$. Επίσης και κάθε $\{(a,2a,a)\}, a \neq 0$, είναι ένα σύνολο γεννητόρων των λύσεων του συστήματος.

Ασκηση 8

Έστω
$$U = \{f(x) \in \mathbb{R}[x] | f(-x) = f(x)\}, \quad W = \{f(x) \in \mathbb{R}[x] | f(-x) = -f(x)\}.$$

Αποδείξτε ότι τα σύνολα αυτά είναι υπόχωροι του $V = \mathbb{R}[x]$ και ότι $V = U \oplus W$.

Υπόδειξη Βλ. Δυμένη Άσκηση 7. Για να αποδείξετε ότι V=U+W , μπορείτε να χρησιμοποιήστε τη σχέση $f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}$.

Άσκηση 9

Έστω V ένας δ.χ. και $X,Y \subseteq V$.

- 1. Αποδείξτε ότι $\langle X \cup Y \rangle = \langle X \rangle + \langle Y \rangle$.
- 2. Δείξτε με παράδειγμα ότι είναι δυνατό να έχουμε $\langle X \cap Y \rangle \neq \langle X \rangle \cap \langle Y \rangle$.

Υπόδειξη Για το 2. έστω $X = \{(1,1)\}, Y = \{(2,2\}.$ Τότε $\langle X \cap Y \rangle = \{(0,0)\}.$

Ασκηση 10

Να βρεθούν οι τιμές του $a\in\mathbb{R}$ ώστε το άθροισμα U+V να είναι ευθύ όπου $U=\left\langle (1,1,1),(1,0,-1)\right\rangle ,V=\left\langle (5,3,a)\right\rangle$

Υπόδειξη Ισοδύναμα, θέλουμε το (5,3,a) να μην είναι γραμμικός συνδυασμός των (1,1,1),(1,0,-1). Συνεχίστε τώρα όπως στη Αυμένη Άσκηση 5. Απάντηση $a \ne 1$.