

Fundamentos de computadores

Tema 1. INTRODUCCIÓN A LOS COMPUTADORES

Objetivos

- Conocer los términos básicos de la asignatura
- Ofrecer una perspectiva histórica de los computadores
- Describir las unidades funcionales básicas de un computador
- Introducir los sistemas de representación básicos.

Bibliografía

- Introducción a los Computadores.
 - J. Sahuquillo y otros. Ed. SP-UPV, 1997 (ref. 97.491).
- Fundamentos de los computadores
 - P. de Miguel Miguel Anasagasti, (Ed. Thomson-Paraninfo, 9^a edición)
- Digital design : principles and practices
 - John F. Wakerly (Ed. Upper Saddle River : Pearson Prentice Hall, 2006)

Apartado de Contenidos en Poliformat

- Poliformat, sección "Recursos"
 - Ejercicios sin solución.
 - Ejercicios solucionados.
 - Página web:
 - » conversión binario decimal.
 - Exámenes de años anteriores.

- Poliformat, sección "Contenidos"
 - Módulo 2: Sistemas de numeración.
 - » Incluye teoría y ejercicios

Índice

- Introducción
- Historia y evolución
- Arquitectura Von Neumann
- Unidades funcionales del computador
- Sistemas de representación básicos

Introducción

- Informática → INFORmación + autoMÁTICA
- Computador → Máquina de programa almacenado
- Programa → Secuencia de instrucciones que se ejecuta de forma secuencial

Introducción

- Hardware → Conjunto de elementos tangibles (mecánicos o eléctricos)
- Software → Conjunto de elementos intangibles (sistema operativo, programas)
- Unidad Funcional del Computador →
 Circuito que realiza una tarea específica
- Bit → Unidad mínima (binaria) de información (0 ó 1)
- Byte → Unidad de información formada por 8 bits (2⁸ = 256 combinaciones)

Índice

- Introducción
- Historia y evolución
- Arquitectura Von Neumann
- Unidades funcionales del computador
- Sistemas de representación básicos

- El primer dispositivo considerado un computador programable fue diseñado por Charles Babbage en 1816.
 - Su máquina analítica era un dispositivo mecánico que usaba tarjetas perforadas para la introducción de programas y datos
 - Nunca se construyó en su totalidad.

- La historia del computador moderno durante el siglo XX gira alrededor de la introducción y posterior evolución del interruptor electrónico (*electronic switch*)
 - Es un dispositivo que controla el paso de una corriente eléctrica en función de una señal eléctrica externa
 - Permite la implementación de operaciones lógicas sencillas que se combinan para construir un computador

 Ejemplo: Bajo que condiciones se encenderán las bombillas?

FCO

Generaciones

- Primera generación (1940-1956)
 - Válvulas de vacío
 - Alto consumo y disipación de calor
 - Baja fiabilidad
- Segunda generación (1956-1963)
 - Transistor
 - Grandes mejoras en consumo, disipación y fiabilidad
 - Reduce costes e inicia el camino de la miniaturización
- Tercera generación (1964-1971)
 - Circuitos integrados (chips) con múltiples transistores
 - Minicomputadores
- Cuarta generación (1971-presente)
 - Microprocesador
 - Alta escala de integración
 - Computador personal

ENIAC 1^a gen.

IBM 608 2^a gen.

PDP-11 3^a gen.

Apple II 4^a gen.

- Generaciones
 - Quinta generación (1981-1991)
 - El gobierno japonés lanza el programa "quinta generación" junto a 6 empresas privadas, con objetivo de desarrollar un computador con "inteligencia humana".
 - Respuesta a lenguaje natural
 - Capacidad de aprendizaje y organización autónoma.
 - Lenguaje máquina basado en programación lógica (tipo PROLOG)
 - Resultado: fracaso.
 - Se concluye que hace falta mejoras tecnológicas por descubrir para obtener unas buenas prestaciones en sistemas de este tipo.

- Actualidad: en la bibliografía se dejan de clasificar los computadores por generaciones.
- La tecnología va avanzando siguiendo las siguientes líneas:
 - Computación cuántica, basada en las propiedades físicas de los átomos.
 - Procesadores multinúcleo
 - Grandes sistemas multicomputadores, exascale
 - Procesamiento distribuído y paralelo, computación en nube y grid
 - Computación y comunicaciones ubícuas (Internet, dispositivos móviles, redes sociales, telemedicina, etc.)
 - Aplicaciones de la inteligencia artificial (redes neuronales, sistemas expertos, sistemas de reconocimiento de voz, robótica, etc.)

Índice

- Introducción
- Historia y evolución
- Arquitectura Von Neumann
- Unidades funcionales del computador
- Sistemas de representación básicos

Arquitectura Von Neumann

- Es la base de la inmensa mayoría de computadores actuales
 - La memoria principal almacena instrucciones y datos
 - La unidad central de proceso ejecuta instrucciones
 - La ejecución de una instrucción puede tener como consecuencia la lectura y/o escritura en memoria principal o el acceso al sistema de entrada/salida

Índice

- Introducción
- Historia y evolución
- Arquitectura Von Neumann
- Unidades funcionales del computador
- Sistemas de representación básicos

Unidades funcionales del computador

- Unidad Central de Proceso (UCP o CPU)
 - Es el componente que interpreta las instrucciones y procesa los datos contenidos en los programas
- Memoria Principal
 - Dispositivo de almacenamiento (permite lectura y escritura)
 - En general, el procesador accede a la memoria principal como si esta fuera un vector indexado por direcciones

Unidades funcionales del computador

FCO

- Sistema de Entrada/Salida
 - Permite la comunicación de la UCP con el exterior

Periféricos

Unidades funcionales del computador

FCO

Periféricos

- De entrada: Ratón, teclado, lápiz, pantalla táctil ...
- De salida: Pantalla, altavoz, impresora ...
- De almacenamiento: Disco duro, DVD, memoria flash ...
- De comunicación: Modem, red wireless, ethernet ...

UCP vs periféricos

- Diferentes tecnologías
- Diferentes tasas de transferencia de información
- Diversidad de modos de operación (ej: R,W,RW) y funcionamiento
- Diferentes formatos de representación de datos

Interfaz o controlador

- Dispositivo hardware/software que permite la comunicación entre la UCP y el periférico
- Soluciona las diferencias entre la UCP y el periférico

Índice

- Introducción
- Historia y evolución
- Arquitectura Von Neumann
- Unidades funcionales del computador
- Sistemas de representación básicos

- Sistema de numeración
 - Conjunto de signos, reglas y convenciones que permiten expresar cantidades verbal y gráficamente
 - Ejemplo. Decimal, binario
- Base de un sistema de numeración
 - Número de símbolos distintos que se emplean. Cada uno de estos símbolos se denomina dígito
 - Ejemplo. Decimal (10 signos), binario (2 signos)
- Sistema de numeración posicional
 - Un número viene definido por una cadena de dígitos, donde cada uno de ellos está afectado por un factor de escala.
 - Aquél en el que el orden de los símbolos es importante
 - En decimal, 32 ≠ 23

- En el sistema binario,
 - Base = 2, Dígitos = 0 y 1 (denominados bits)
 - Una cantidad N se representa mediante una secuencia de bits
 - Ejemplo. N = 1 0 1 1₂
 MSB LSB
 (Most Significant Bit) (Least Significant Bit)
- En el sistema decimal,
 - Base = 10, Dígitos = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Ejem: 34_{10}
- En el sistema hexadecimal,
 - Base = 16, Dígitos = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 Ejem: 4A₁₆
- En el sistema octal,
 - Base = 8, Dígitos = 0, 1, 2, 3, 4, 5, 6, 7 Ejem: 450₈

sistema binario \rightarrow sistema decimal

- Para calcular la cantidad representada en decimal, se desarrolla el polinomio de potencias de la base
 - Ejemplo. N = 1011_2 = $1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = 8 + 0 + 2 + 1 = <math>11_{10}$
 - Ejemplo. R = $10,11_2 = 1x2^1 + 1x2^{-1} + 1x2^{-2} = 2 + 0,5 + 0,25 = 2,75_{10}$

sistema hexadecimal → sistema decimal

- El desarrollo de potencias de la base se puede utilizar para obtener la equivalencia decimal de cualquier cantidad representada en cualquier base (no sólo binario)
 - $N = 4A_{16} = 4x16^{1} + Ax16^{0} = 4x16^{1} + 10x16^{0} = 74_{10}$

FCO

Algunas cantidades comunes

P.P.B.	Binario	Decimal
2-4	0,0001	0,0625
2-3	0,001	0,125
2-2	0,01	0,25
2-1	0,1	0,5
20	1	1
21	10	2
22	100	4
2 ³	1000	8
24	10000	16
2 ⁵	100000	32
2 ⁶	1000000	64
27	10000000	128
28	100000000	256
2 ⁹	1000000000	512
210	10000000000	1024
211	100000000000	2048

P.P.B.	Binario	Decimal
	0	0
20	1	1
2 ¹	10	2
2 ¹ +2 ⁰	11	3
2 ²	100	4
2 ² +2 ⁰	101	5
2 ² +2 ¹	110	6
2 ² +2 ¹ +2 ⁰	111	7
2 ³	1000	8
2 ³ +2 ⁰	1001	9
2 ³ +2 ¹	1010	10
2 ³ +2 ¹ +2 ⁰	1011	11
2 ³ +2 ²	1100	12
23+22+20	1101	13
2 ³ +2 ² +2 ¹	1110	14
2 ³ +2 ² +2 ¹ +2 ⁰	1111	15

FCO

sistema decimal → sistema binario

- Método de las divisiones sucesivas
 - Aplicable a números sin parte fraccionaria
 - Consiste en dividir la cantidad entre la nueva base (b=2). Mientras el cociente sea mayor o igual que la nueva base, dividir de nuevo (esta vez, sólo el cociente).
 - Una vez realizadas todas las divisiones, la secuencia de dígitos es la concatenación del último cociente y los restos de las divisiones anteriores, empezando por la última.
- Ejemplo: Pasar el número 348_{10} a binario $348 \div 2 = 174 \div 2 = 87 \div 2 = 43 \div 2 = 21 \div 2 = 10 \div 2 = 5 \div 2 = 2 \div 2 = 1$ (MSB) (LSB) 0 ← 0 ← 1 ← 1 ← 0 ← 1 ← 0 ← Solución: 348_{10} = 101011100_2
- Este método también es útil para pasar de decimal a cualquier base (no sólo binario), se sustituye el 2 por la base.

sistema decimal → sistema binario

- Método de las divisiones sucesivas
- Este método también es útil para pasar de decimal a cualquier base (no sólo binario), se sustituye el 2 por la base.

Ejemplo: sistema decimal → sistema octal Ahora se divide por la base, 8.

Ejemplo: Pasar el número 348₁₀ a octal

FCO

sistema decimal → sistema binario

- Método de las multiplicaciones sucesivas
 - Aplicable a números que sólo tengan parte <u>fraccionaria</u>
 - Consiste en multiplicar el número por la nueva base (b=2). La parte entera resultante (0 ó 1) será uno de los dígitos de la secuencia
 - Aplicar de nuevo la multiplicación a la parte fraccionaria restante
- Ejemplo: convertir 0,375₁₀ a base 2

```
0,375 x 2 = 0,750 \rightarrow 0 (MSB)
0,750 x 2 = 1,50 \rightarrow 1
0,50 x 2 = 1 \rightarrow 1 (LSB) Solución: 0,375<sub>10</sub> = 0,011<sub>2</sub>
```

- Es posible que una cantidad que se representa con un número finito de dígitos en decimal requiera infinitos dígitos en binario (ejemplo: 0,9)
- Este método también es útil para pasar de decimal a cualquier base (no sólo binario), se sustituye el 2, por la base.

RESUMEN: sistema decimal → sistema en base b

- Conversión de un número R = e,f₁₀ a una base b
 - Convertir la parte entera (e), con lo que obtendremos una secuencia de dígitos de la base b, $a_n a_{n-1} \dots a_1 a_0$
 - Convertir la parte fraccionaria (f), con lo que obtendremos otra secuencia de dígitos de la base b, a₋₁a₋₂ ... a_{-p}
 - Reunir los dígitos que se han obtenido por separado, manteniendo la posición de la coma entre los dígitos de e y los de f
 - R en base b se escribe a_na_{n-1} ... a₁a₀ , a₋₁a₋₂ ... a_{-p}
- Ejemplo: Convertir 10,375₁₀ a binario
 - $-10_{10} = 1010_2$ y $0.375_{10} = 0.011_2 \rightarrow 10.375_{10} = 1010.011_2$
 - Podemos verificar el resultado sin más que calcular el valor decimal de la secuencia binaria obtenida:

$$1010,011_2 = 2^3 + 2^1 + 2^{-2} + 2^{-3} = 8 + 2 + 0,25 + 0,125 = 10,375_{10}$$

- En informática además del sistema binario, se utilizan también:
 - Octal (base $8 = 2^3$)
 - Cada dígito octal representa un grupo de exactamente 3 bits
 - Dígitos octales: 0, 1, 2, 3, 4, 5, 6, 7
 - Hexadecimal (base $16 = 2^4$)
 - Cada dígito hexadecimal representa un grupo de exactamente 4 bits
 - Dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (=10₁₀), B (=11₁₀), C (=12₁₀), D(=13₁₀), E (=14₁₀), F(=15₁₀)
- Y su uso está extendido por
 - La facilidad de conversión a / desde binario, y
 - Porque permiten representar largas secuencias de bits con pocos dígitos (más fáciles de manejar que las secuencias de bits)

- Cambio de bases binaria, octal, hexadecimal
 - Dado que las bases octal y hexadecimal son potencias de 2 (la base binaria), se puede demostrar que
 - En octal (base 2³) un dígito representa a un grupo de 3 bits
 - En hexadecimal (base 24) un dígito representa a un grupo de 4 bits
 - En ambos casos, el cambio de una representación a otra se realiza utilizando una tabla, agrupando los bits en bloques de 3 ó 4

Octal	Binario	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

Hexadecimal	Binario	Hex.	Binario	
0	0000	8	1000	
1	0001	9	1001	
2	0010	Α	1010	
3	0011	В	1011	
4	0100	С	1100	
5	0101	D	1101	
6	0110	E	1110	
7	0111	F	1111	

sistema binario \rightarrow octal o sistema binario \rightarrow hexadecimal

- Cuando el grupo de 3/4 bits no está completo, se rellena con ceros
 - Ceros a la izquierda si los bits son de la parte entera
 - Ceros a la derecha si los bits son de la parte fraccionaria
- Un grupo de bits nunca puede incluir la coma
 - No se pueden mezclar bits de la parte entera y de la fraccionaria en el mismo grupo
 - Comenzar las agrupaciones alrededor de la coma

```
111000011011,10000001_2 = 111 000 011 011, 100 000 010_2 = 7033,402_8

111000011011,10000001_2 = 1110 0001 1011, 1000 0001_2 = E1B,81_{16}
```


Relleno

sistema octal \rightarrow hexadecimal o sistema hexadecimal \rightarrow octal

Pasando a binario estaríamos en el caso anterior:

```
Relleno
7033,402<sub>8</sub> = 111000011011,10000001<sub>2</sub>
= 111 000 011 011, 100 000 010<sub>2</sub>
= 1110 0001 1011, 1000 0001<sub>2</sub> = E1B,81<sub>16</sub>
```


- Código BCD (Binary Coded Decimal)
 - Método sencillo de codificación de cantidades utilizando dígitos binarios
 - Se utilizan cuatro bits (denominados D, C, B y A), para codificar un dígito decimal
 - Cada dígito decimal se codifica por separado, mediante una tabla
- Ejemplo. Codificar 348_{10} en BCD $3_{10} = 0011_{\rm BCD}, 4_{10} = 0100_{\rm BCD}, 8_{10} = 1000_{\rm BCD}$ $348_{10} = 001101001000_{\rm BCD}$
- Ejemplo. ¿Qué cantidad es 00101001_{BCD} ? $0010_{BCD} = 2_{10}$, $1001_{BCD} = 9_{10}$ $00101001_{BCD} = 29_{10}$

Dígito	Dígito BCD			
decimal	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
2 3 4 5	0	0	1	1
4	0	1	0	0
	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

