

Unconstrained Monotonic Calibration of Predictions in Deep Ranking Systems

USTC & Kuaishou Technology

Yimeng Bai, Shunyu Zhang, Yang Zhang, Hu Liu, Wentian Bao, Enyun Yu, Fuli Feng, Wenwu Ou

Outline

- Background
- Methodology
- Experiment
- Conclusion

- What is Calibration
 - ☐ Ranking system learns matching scores for sorting candidates

☐ Accurate absolute values are essential for certain downstream tasks

Advertisement bidding

Expected Revenue (ER) = predicted Click-Through Rate (pCTR) × price

Assume price=10000, pCTR=0.8 \rightarrow ER=8000 pCTR=0.9 \rightarrow ER=9000

 Δ pCTR=0.1 leads to Δ ER=1000 !!!

- How to Do Calibration
 - Learn a **calibrator model** for adjustment

- Calibration metrics for evaluation
 - We need the estimation of ground-truth P(y=1|x)

Aggregate samples with the same ____

Score range (pCTR $\in [0.2, 0.4]$)

Feature value (gender==man)

Expected Calibration Error (ECE)

Field Relative Calibration Error (FRCE)

Multi-Field Relative Calibration Error (MFRCE)

$$ECE = \frac{1}{|\mathcal{D}|} \sum_{k=1}^{M} |\sum_{(\boldsymbol{x}, y, s) \in \mathcal{D}} (s' - y) \cdot \mathbb{I}(s' \in [\frac{k-1}{M}, \frac{k}{M}))|,$$

FRCE =
$$\frac{1}{|\mathcal{D}|} \sum_{k} \frac{|\sum_{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}) \in \mathcal{D}} (\boldsymbol{s}' - \boldsymbol{y}) \cdot \mathbb{I}(\boldsymbol{z} = \boldsymbol{z}_{k})|}{|\sum_{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{s}) \in \mathcal{D}} \boldsymbol{y} \cdot \mathbb{I}(\boldsymbol{z} = \boldsymbol{z}_{k})|},$$

$$\longrightarrow \text{MFRCE} = \frac{1}{N_z} \sum_{z} \text{FRCE}_{z}$$

- Existing Work on Calibration
 - Common process: $s \in [0,1] \xrightarrow{\sigma^{-1}} l \in (-\infty, +\infty) \xrightarrow{l'} l' \in (-\infty, +\infty) \xrightarrow{\sigma^{-1}} s' \in [0,1]$ Original score
 Original logit
 New logit
 New score
 - ☐ Fixed-form order-preserving transformation
 - **□** Simple transformation
 - Platt scaling: learn a logistic regression function $l' = \frac{1}{1 + e^{-(al+b)}}$
 - $f \Box$ Binning: Split samples into different bins based on l; l' = Binning(l) Statistically decide linear coefficients for each bins
 - □ <u>Limited parameter space</u>

Isotonic Line-Plot Scaling

- Existing Work on Calibration
 - DNN-based transformation
 - FAC (WWW'20): add DNN bias l' = Binning(l) + DNN(x)
 - SBCR (KDD'24): learn DNN-based linear coefficients $l' = Binning_{DNN}(l, x)$
 - **D** DESC (KDD'24): learn DNN-based weights of basis functions $l' = w_{\text{DNN}}(x) \cdot \mathcal{B}(l)$
 - □ Limitation
 - Excessive constraints: Most adhere to piece-wise linear
 - Fail in complex scenarios like multi-field calibration
 - Amplify value errors in specific fields within <u>feedback loops</u>
 - Motivation: reduce constraints on the architecture for full potential

 $\mathcal{B}_{i}^{power}(t;h_{i})=x^{h_{i}}$

 $\mathcal{B}_{i}^{log}(t; v_{i}) = \frac{log(1 + v_{i} \cdot t)}{log(1 + v_{i})}$

 $\mathcal{B}_{i}^{scaling}(t;a_{i}) = \sigma(\sigma^{-1}(t) \cdot a_{i}) ,$

- ➤ How to Reduce Constraints
 - □ Core idea
 - ☐ Piece-wise linear = linear + monotonic
 - A more general form: only monotonic
 - How to design monotonicity
 - ☐ UMNN [1] is the answer
 - **Key**: if a function is differentiable, its derivative being single-sign is a necessary and sufficient condition for the function to be monotonic
 - ☐ How: construct a single-sign function and do integral computation

- Overall Framework
 - Monotonic Calibrator Architecture
 - ☐ UMNN to ensure monotonicity
 - Rescaling based on features
 - □ Calibration-aware Learning Strategy
 - BCELoss
 - ☐ Common setting in previous work
 - □ SCLoss (Smooth Calibration Loss)
 - ☐ Specifically designed to emphasize calibration aspect

Monotonic Calibrator Architecture

UMNN

$$h(t, \mathbf{x}) = 1 + \text{ELU}(\text{MLP}([t; \mathbf{x}])),$$

Original logit

- MLP with positive outputs h(t, x) = 1 + ELU(MLP([t; x])), Compute integral based on specific algorithm $U(s, x) = \int_{t=0}^{t=\sigma^{-1}(s)} h(t, x) dt + \beta.$ Monotonicity is ensured by $\frac{d}{ds}U(s, x) = h(\sigma^{-1}(s), x) \cdot (\sigma^{-1}(s))' > 0,$

Rescaling

Features x are fed into a distinct MLP module

$$g_{\phi}(s, \mathbf{x}) = \sigma(e^{w(\mathbf{x})} \cdot U(s, \mathbf{x}) + b(\mathbf{x})).$$

- Compute a feature-specific rescaling factor w(x) and bias term b(x)
- Enhance the overall network learnability and preserve monotonicity
- Apply Sigmoid to transform logit to score

- Calibration-aware Learning Strategy
 - □ SCLoss
 - Computation
 - ☐ Discretize the interval into *N* equal-width bins
 - ☐ Group samples by bins calibrated predictions fall into
 - ☐ Compute the squared differences per bin
 - ☐ Take a weighted average based on the group size
 - Moving average technique
 - Smooth by keeping a fraction of values from the previous batch
 - **Overall Loss** $\mathcal{L}(\mathcal{B}) = BCELoss(\mathcal{B}) + \lambda \cdot SCLoss(\mathcal{B}),$

SCLoss(
$$\mathcal{B}$$
) = $\frac{1}{|\mathcal{B}|} \sum_{k=1}^{N} |G_k| (\bar{y}_k - \bar{s}'_k)^2$,

$$G_k = \{(x, y, s) \in \mathcal{B} \mid \frac{k-1}{N} \le s' < \frac{k}{N}\},$$

$$\bar{y}_k \leftarrow \tau \cdot \bar{y}_k + (1 - \tau) \cdot \frac{1}{|G_k|} \sum_{(\boldsymbol{x}, y, s) \in G_k} y,$$
$$\bar{s}'_k \leftarrow \tau \cdot \bar{s}'_k + (1 - \tau) \cdot \frac{1}{|G_k|} \sum_{(\boldsymbol{x}, y, s) \in G_k} s',$$

Offline Experiment Setting

- □ Dataset
 - □ CTR dataset: Avazu, AliCCP
- Evaluation
 - ☐ Ranking: AUC, GAUC
 - □ Calibration (main focus): ECE, FRCE, MFRCE
- □ Baseline
 - ☐ Simple: Uncalib, HistBin, IsoReg, SIR, Platt, Gauss
 - DNN-based: FAC, SBCR, DESC
- □ Pipline
 - ☐ Train a DeepFM model, then train a calibrator model to calibrate predictions

➤ Offline Experiment Result

Method	Avazu						AliCCP					
	AUC↑	GAUC↑	ECE↓	FRCE↓	MFRCE\(\)		AUC↑	GAUC↑	ECE↓	FRCE↓	MFRCE↓	
Uncalib	0.7413	0.6544	0.0413	0.4207	0.3484		0.6348	0.5782	0.0202	1.4824	0.7291	
HistBin [41]	0.7309	0.6368	0.0090	0.2701	0.2035		0.5239	0.5068	0.0076	1.2112	0.3909	
IsoReg [42]	0.7413	0.6544	0.0088	0.2313	0.1655		0.6348	0.5782	0.0078	1.0168	0.3555	
SIR [13]	0.7413	0.6544	0.0083	0.2147	0.1478		0.6348	0.5782	0.0080	1.0751	0.3721	
Platt [33]	0.7413	0.6544	0.0109	0.2294	0.1606		0.6348	0.5782	0.0078	1.0179	0.3560	
Gauss [26]	0.7413	0.6544	0.0095	0.2346	0.1640		0.6348	0.5782	0.0078	1.0180	0.3561	
FAC [30]	0.7515	0.6649	0.0042	0.1473	0.0974		0.6358	0.5791	0.0065	0.9758	0.3186	
SBCR [44]	0.7516	0.6651	0.0051	0.1416	0.0994		0.6362	0.5797	0.0063	0.9536	0.3096	
DESC [40]	0.7514	0.6637	0.0074	0.1549	0.1086		0.6364	0.5802	0.0067	0.9697	0.3200	
UMC (ours)	0.7521	0.6654	0.0033	0.1172	0.0837		0.6367	0.5801	0.0058	0.9422	0.2951	

- 1. Calib > Uncalib: calibration is necessary for ranking models
- 2. **DNN-based > Simple**: enhanced model capacity
- 3. UMC > baselines: expressive calibrator & calibration-aware learning

> Ablation Experiment Result

Table 3: Results of the ablation study for UMC on Avazu.

Method	AUC↑	GAUC↑	ECE↓	FRCE↓	MFRCE↓
Full UMNN	0.7521	0.6654	0.0033	0.1172	0.0837
w/o Rescaling	0.7508	0.6630	0.0078	0.1558	0.1118
w/o Feature	0.7413	0.6544	0.0080	0.2119	0.1465
w/o UMNN	0.7413	0.6544	0.0095	0.2482	0.1792
Full SCLoss	0.7521	0.6654	0.0033	0.1172	0.0837
w/o Average	0.7508	0.6626	0.0084	0.1613	0.1248
w/o SCLoss	0.7519	0.6651	0.0072	0.1672	0.1154
w/ MSELoss	0.7521	0.6649	0.0061	0.1512	0.0982

Figure 3: Results of adding SCLoss to other neural network-based baseline methods on Avazu.

- UMC w/o Rescaling. This variant removes the rescaling layer of the architecture and relies solely on the UMNN output.
- UMC w/o Feature. This variant eliminates the feature input of the UMNN, resulting in a univariate mapping function.
- UMC w/o UMNN. This variant replaces the UMNN with a piecewise linear model in FAC.
- UMC w/o Average. This variant sets decay rate τ to zero, removing the exponential moving average usage of SCLoss.
- UMC w/o SCLoss. This variant sets balancing wight λ to zero, completely disables the effect of SCLoss.
- UMC w/ MSELoss. This variant replaces SCLoss with MSELoss, aligning the calibrated output with the binary label.

- 1. Designs of UMNN and SCLoss are all effective
- 2. SCLoss can be generally applied to baselines

> Hyper-parameter Experiment Result

Figure 4: Results of the performance of UMC across different values of group number N on Avazu.

Figure 5: Results of the performance of UMC across different values of decay rate τ on Avazu.

$$SCLoss(\mathcal{B}) = \frac{1}{|\mathcal{B}|} \sum_{k=1}^{N} |G_k| (\bar{y}_k - \bar{s}'_k)^2,$$

$$G_k = \{(x, y, s) \in \mathcal{B} \mid \frac{k-1}{N} \le s' < \frac{k}{N} \},$$

Group number *N* in SCLoss

- 1. **Insufficient numbers** diminishes the ability to differentiate among groups
- 2. **Excessive numbers** can lead to bins with sparse data, rendering the computation unreliable

$$\bar{y}_k \leftarrow \tau \cdot \bar{y}_k + (1 - \tau) \cdot \frac{1}{|G_k|} \sum_{(\mathbf{x}, y, s) \in G_k} y,$$

$$\bar{s}'_k \leftarrow \tau \cdot \bar{s}'_k + (1 - \tau) \cdot \frac{1}{|G_k|} \sum_{(\mathbf{x}, y, s) \in G_k} s',$$

- Decay rate τ in SCLoss
- 1. **Too small values** lead to a delayed response to recent batch data
- 2. **Too large value** obscure long-term trends

- ➤ Online Experiment Result
 - □ Kuaishou Video Search System
 - Backbone: QIN [2]
 - ☐ Scale: 5% (20 million users)
 - ☐ Time: one week
 - Method: replace the original predictions of <u>EffectiveView</u>,
 - **LongView, Click** in the fused score

- ☐ Metrics: total watch time (WT) effective video views (VV) and click-through rate (CTR)
- Note: efficient deployment without introducing significant computational overhead

Conclusion

- Calibration in Ranking System
 - ☐ Challenge: excessive calibrator constraints
 - Motivation: reduce constraints for a more general form
 - Methodology
 - Monotonic Calibrator Architecture (UMNN)
 - ☐ Calibration-aware Learning Strategy (SCLoss)
 - ☐ Offline experiment on real-world datasets
 - ☐ Online experiments on Kuaishou video search platform

Thanks 學學

The code has been released at https://github.com/baiyimeng/UMC