

Data Cleaning Part 1 Geocoding

Kelly Pierce, Scalable Computational Intelligence

kpierce@tacc.utexas.edu

Predict phase workflow

Predict phase workflow

Predict phase workflow

TACC

Agenda

- PAP data matrix overview
 - a. Predict data
 - b. Align data
- 2. Child welfare data processing
 - a. unit of analysis
 - b. geocoding (in brief)
 - c. other processing details
- 3. R environment setup
- 4. Debrief and plan next session

PAP data matrix overview

Predict-Align-Prevent Data Matrix

Predict phase

- child welfare
- risk factors
- protective factors
- o crime
- violations

Align phase (reviewed in more detail at later training)

- child welfare
- adult protection
- public health and vital statistics (injuries, cause of death)
- o crime
- violations
- service data

Predict data - child welfare

	Child physical abuse					
	Child sexual abuse					
	Child neglect					
	Neglectful supervision					
	Medical neglect					
	Physical neglect					
	Emotional abuse					
are	Abandonment					
Child welfare	Child sex trafficking and/or exploitation					
2	Child maltreatment fatality					
Ch.	Child death while in state care (foster, kinship, institutional), any cause					
	Removals into foster care (by subtype, if possible)					
	Removals into kinship care					
	Removals into institutional care					
	Alternative response					
	Maltreatment recurrence					
	Location of foster homes (available and filled)					
	Location of kinship homes (available and filled)					

Predict data - risk factors

Restaurants with liquor licenses (bars) Car repair shops Car washes Convenience stores Risk Factors Gas stations Laundromats Liquor stores (Payday) loan businesses Nail/hair salons Pawn shops Motels Bus stops

Predict data - protective factors

Churches and other faith organizations **Pharmacies** licensed child care providers Community centers Crisis shelters **Grocery stores** Food pantries **Protective Factors** Stores accepting WIC card Stores accepting SNAP card Schools Police stations Fire stations Medical clinics Women's health clinics (LARCs) Dental clinics **Parks** Playgrounds Homeless shelters

Predict data - crime

Crime	Aggravated assault
	Domestic violence
	Runaways
	Prostitution-related charges
	Gang violence
	Robberies/Larceny
	Drug/Narcotic violations
	Animal cruelty
	Animal aggression

Predict data - violations

Animal
Health hazard
Property maintenance
Waste violation
Substandard building
Vehicle

Predict data sources

- Child welfare from NJ SPIRIT System
- Risk and protective factors from Infogroup (now Data Axle) and public sources
- Crime data
 - NJ State Police
 - Millville Police Department
 - Vineland Police Department
 - City of Bridgeton
- Violation data
 - City of Millville

Child welfare data processing: unit of analysis

 Traditional PAP analysis: all child welfare service (CWS) and child protective service <u>referrals per child</u>, including calls with and without findings

Child welfare - data columns

- EncryptID
- Intake.Type
- Intake.Service
- Intake.RcvdDate
- Intake.Algtn.Rqst
- Intake.ChildAge
- Intake.IncdTime
- Intake.Outcome

- Intake.Incident.Address1
- Intake.Incident.Address2
- Intake.Incident.City
- Intake.Incident.St
- Intake.Incident.HomeAddress1
- Intake.Incident.HomeAddress2
- Intake.Incident.HomeCity
- Intake.IncidentHome.St

- Intake.Removal
- Intake.RemovalPlmt.Type
- Intake.RemovalPlmt.Address1
- Intake.RemovalPlmt.Address2
- Intake.RemovalPlmt.City
- Intake.RemovalPlmt.St
- Intake.Recurrence
- Intake.ReporterType

- Traditional PAP analysis: all child welfare service (CWS) and child protective service <u>referrals per child</u>, including calls with and without findings
- Data do not contain unique person or call identifiers
 - Assume that each unique combination of home address, child age, and intake date represents a single referral for a single child
 - This does not account for multiple allegations per child made on the same call

- Not all referrals are established are substantiated
- Secondary analysis uses same aggregation, but includes only established and substantiated referrals

```
child_referrals <- welfare_data %>%
    filter(Intake.Outcome %in% c('Established', 'Substantiated') %>%
    group_by(Intake.RcvdDate, Intake.ChildAge, Intake.Incident.Address) %>%
    summarise(incident_count=n())
```

combination of all address columns

Intake counts by outcome, 2017-2019

Child welfare data processing: geocoding

Address geocoding

US Census Bureau geocoding service

- library tidycensus is an R interface for the US Census Bureau geocoding API
- only address data are transmitted
- queries are made using HTTPS
- geocoding workflow is performed on TACC compute nodes mounting our secure data

tidycensus in action

```
> tibble(address='2401 Speedway Austin TX') %>% geocode(address=address, method='census', verbose=TRUE)
Number of Unique Addresses: 1
Passing 1 address to the US Census single address geocoder
Number of Unique Addresses: 1
Querying API URL: https://geocoding.geo.census.gov/geocoder/locations/onelineaddress
Passing the following parameters to the API:
address: "2401 Speedway Austin TX"
format : "json"
benchmark : "Public_AR_Current"
vintage : "Current_Current"
HTTP Status Code: 200
Query completed in: 0.5 seconds
                   # A tibble: 1 \times 3
 address lat long
 <chr>
                    <dbl> <dbl>
 2401 Speedway Austin TX 30.3 -97.7
```

US Census Bureau geocoding service

Finding Locations Using Option

Column	Column Name	Column Description				
1	Record ID Number	ID from original address list				
2	Input Address	Address from original address list				
3	TIGER Address Range Match Indicator	Results indicating whether or not there was a match for the address (Match, tie, no match)				
4	TIGER Match Type	Results indicating if the match is exact or not (Exact, non-exact)				
5	TIGER Output Address	Address the original address matches to				
6	Interpolated Longitude, Latitude	Interpolated longitude and latitude for the address				
7	TIGER Line ID	Unique ID for the edge the address falls on in the MAF/TIGER database				
8	TIGER Line ID Side	Side of the street address in on (L for left and R for right)				

Extract addresses for geocoding

- rename columns for easier reading
- include missing data
- add indicator value for address type
- remove duplicate addresses

Address	Addr2	City	State	Addr_Type	Zip.Code
	NA	Camden	NJ	Incident_Address	NA
	NA	Fairview	NJ	Incident_Address	NA
		Rahway	NJ	Incident_Address	NA
		Union City	NJ	Incident_Address	NA
	NA	Roebling	NJ	Incident_Address	NA
	NA	Englewood	NJ	Incident_Address	NA
	NA	Hackettstow	NJ	Incident_Address	NA

Batch geocode 10k records at a time

 latitude, longitude and optionally other geography columns added to input data

lat	long	match_indicator	match_type	matched_address	tiger_line_id	tiger_side	state_fips	county_fips	census_tract	census_block
Ma		Match	Exact	, CAMDEN, NJ, 08102	134341019	R	34	7	600800	3006
		Match	Exact	, FAIRVIEW, NJ, 07022	64391388	L	34	3	18102	1003
		Match	Exact	, RAHWAY, NJ, 07065	641796222	Ľ	34	39	35800	1011
		Match	Exact	, UNION CITY, NJ, 07087	59597873	L	34	17	17600	2000
		Match	Exact	, ROEBLING, NJ, 08554	134034148	L	34	5	701303	4003
		Match	Exact	, ENGLEWOOD, NJ, 07631	64375574	L	34	3	15500	2000
		Match	Exact	, HACKETTSTOWN, NJ, 07840	98091541	L	34	41	31302	1045

60% match rate, including incomplete

addresses

Child welfare processing summary

- 1. Concatenate the files from DCF (2017, 2018 and 2019 delivered as separate excel files)
- 2. Extract the address columns into a new dataframe, rename, and save for geocoding
- 3. Run the geocoding in batches (10k records at a time)
- 4. Concatenate the resulting files
- 5. Join geocoded addresses back to full child welfare dataset
- 6. Aggregate geocoded records into
 - a. referrals per child
 - b. referrals per child with substantiated or established outcome

Concatenate files, extract year

```
excel_sheets('NJ-Data/state_data/17-tacc.xlsx')
excel_sheets('NJ-Data/state_data/18-tacc.xlsx')
excel_sheets('NJ-Data/state_data/19-tacc.xlsx')
nj17 <- read_excel('NJ-Data/state_data/17-tacc.xlsx', guess_max=70000)
nj18 <- read_excel('NJ-Data/state_data/18-tacc.xlsx', guess_max=70000)
nj19 <- read_excel('NJ-Data/state_data/19-tacc.xlsx', guess_max=70000)
all_nj <- rbind(nj17, nj18, nj19)
```

Extract and deduplicate addresses

Geocode

- loop over chunks of the data and save each chunk as it is processed
- wrapping the geocode call in a try/catch block helps guard against occasional bad requests breaking your workflow

Combine geocoded chunks

My strategy (many alternatives possible)

- Identify files with geocoded data by string in filename
- Loop over identified files
 - read file into memory
 - concatenate to already-loaded files
- Save final combined output

Combine geocoded chunks

```
processed <- '/Users/kpierce/PredictAlian/all_backfill/geocoded'</pre>
processed_files <- list.files(processed)</pre>
complete = NULL
for(i in 1:length(processed_files)){
  if(grepl('geocoded_addresses_unique_welfare_addr', processed_files[i])){
    f <- read.csv(file.path(processed, processed_files[i]))</pre>
    if('X' %in% names(f)){
      f <- f %>% select(-X)
    complete <- rbind(complete, f)</pre>
```

Save geocoded data

add a "full_addr" column using the unite() function

```
complete <- complete %>% unite('full_addr', Address, City, State, sep=', ', remove=FALSE)
write.csv(
complete,
'~/PredictAlign/all_backfill/geocoded/geocoded_addresses_unique_welfare_addr_17_18_19_all.csv'
```


Merge with original welfare data

add "full_addr" to original data and use for join

```
all_nj <- all_nj %>%
  unite('full_addr', Intake.Incident.Address, Intake.Incident.City,
        Intake.Incident.State, sep=', ', remove=FALSE)
full_data <- left_join(
  all_nj,
  complete,
  by='full_addr'
write.csv(full_data, '~/PredictAlign/171819_NJ_geocoded_incidents.csv')
```

Extracting intake year from column "Intake.RcvdDate"

 Datetime formats can be parsed with the library lubridate, which takes strings like "2017-02-11 13:33:00" and understands them as Year-Month-Day Hours:Minutes:Seconds

```
geocoded_incidents <- read.csv('~/PredictAlign/171819_NJ_geocoded_incidents.csv')
geocoded_incidents$intake_year <- lubridate::year(geocoded_incidents$Intake.RcvdDate)</pre>
```


Aggregate referrals per child

```
geocoded_incidents <- read.csv('~/PredictAlign/171819_NJ_geocoded_incidents.csv')
geocoded_incidents$intake_year <- lubridate::year(geocoded_incidents$Intake.RcvdDate)</pre>
```


Aggregate referrals per child, established or substantiated

```
geocoded_incidents <- read.csv('~/PredictAlign/171819_NJ_geocoded_incidents.csv')
geocoded_incidents$intake_year <- lubridate::year(geocoded_incidents$Intake.RcvdDate)</pre>
```


R Environment Setup

R Environment

- Operating system + R/R Studio + R packages (libraries)
- Options for managing R Environments
 - install all packages as the system level
 - use an environment virtualization tool
 - use a Docker container

System level package installations

- usually easy just run install.packages (<pkg>) in R interpreter
- troublesome if you have multiple projects that require different package versions
- not portable
- cannot be saved; may limit reproducibility

Environment virtualization

- requires additional software and setup
- links projects to the specific packages (and versions) they require
- more portable virtual environment software allows you to export a list of package requirements
- promotes reproducibility
- common tools
 - Anaconda
 - renv (<u>reproducible environments</u>)

Containers

- requires additional software; possibly more difficult setup
- containers have everything: operating system, R/R Studio and packages
- very portable and very reproducible, provided you can run the container
- Docker containers are widely used
- Rocker project: Docker containers specifically for R

Environments for PAP project

- Don't use system installs take advantage of environment management
- DCF users: attempt to load renv environment for windows (PAP/TACC Training Local Environment Setup)
- Camden Coalition users:
 - use renv if it works (unlikely for Ubuntu)
 - otherwise use rocker/geospatial container (https://hub.docker.com/r/rocker/geospatial)

Hands-on break

DCF users: environment setup

- Camden Coalition: hands on spatial exercise from last training at
 - https://github.com/TACC/data_trainings/blob/main/PAP-TAC C-2022/02-RSpatial/Exercise NJ Hospitals.pdf

Tentative Agenda for 3/3 Training

- Risk and protective data cleaning
- 2. Data integration
 - a. US Census Bureau data
 - b. Rasterizing shapefiles
- 3. [Hands-on]

