Physics 77

Introduction to Computational Techniques in Physics Spring 2020

Numerical Differentiation Heather Gray, Amin Jazaeri, Yury Kolomensky

See also Python workbook Lecture08a.ipynb

Numerical Differentiation

Definition:

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Approximation:

$$\frac{df(x)}{dx} = \frac{\Delta f(x)}{\Delta x}$$
$$\Delta^{n} f(x) = \Delta [\Delta^{n-1} f(x)]$$

Numerical Differentiation

 The nth difference of a polynomial of degree n is a constant (a_nn!hⁿ), and the (n+1)th difference is zero.

A Typical Finite Difference Table for $f(x) = x^2$

Xi	f(xi)	Δf(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$
2	f(2)=4			
		$\Delta f(2)=5$		
3	f(3)=9		$\Delta^2 \mathbf{f}(2) = 2$	
		$\Delta f(3)=7$		$\Delta^{3}f(2)=0$
4	f(4)=16		$\Delta^2 \mathbf{f}(3) = 2$	
		$\Delta f(4)=9$		$\Delta^{3}f(3)=0$
5	f(5)=25		$\Delta^2 \mathbf{f}(4) = 2$	
		$\Delta f(5)=11$		
6	f(6)=36			

$$f(x_0 + kh) = f(x_0) + khf'(x_0) + \frac{(kh)^2 f''(x_0)}{2!} + \frac{(kh)^3 f'''(x_0)}{3!} + \dots + \frac{(kh)^n f^n(x_0)}{n!}$$
Solve for $f'(x)$

$$\frac{f(x_0 + kh) - f(x_0)}{kh} = f'(x_0) + \frac{(kh)f''(x_0)}{2!} + \frac{(kh)^2 f'''(x_0)}{3!} + \dots + \frac{(kh)^{n-1} f^n(x_0)}{n!}$$
For $k = -1$,
$$\frac{f(x_0) - f(x_0 - h)}{h} = f'(x_0) + O(h) \text{ (backward difference)}$$

$$f(x_0 + kh) = f(x_0) + khf'(x_0) + \frac{(kh)^2 f''(x_0)}{2!} + \frac{(kh)^3 f'''(x_0)}{3!} + \dots + \frac{(kh)^n f^n(x_0)}{n!}$$
Solve for $f'(x)$

$$\frac{f(x_0 + kh) - f(x_0)}{kh} = f'(x_0) + \frac{(kh)f''(x_0)}{2!} + \frac{(kh)^2 f'''(x_0)}{3!} + \dots + \frac{(kh)^{n-1} f^n(x_0)}{n!}$$
For $k = 1$,
$$\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + O(h) \text{ (forward difference)}$$

Subtract the two above equations, and set k = 1:

$$\frac{f(x_0+h)-f(x_0-h)}{2h} = f'(x_0) + O(h^2)$$
(central difference)

add the two above equations:

$$\frac{f(x_0+h)+f(x_0-h)-2f(x)}{(2h)^2}=f''(x_0)+O(h)$$

Higher Order Approximations

1st order
$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h}$$

2nd order $f'(x) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$
1st order $f''(x) = \frac{f(x_0 + h) + f(x_0 - h) - 2f(x)}{(2h)^2}$
2nd order $f''(x) = \frac{-f(x + 3h) + 4f(x + 2h) - 5f(x + h) + 2f(x)}{(h)^2}$

Example: Evaporation Rates

Table: Saturation Vapor Pressure (e_s) in mm Hg as a Function of Temperature (T) in

$T(^{\circ}C)$	e_s (mm Hg)	
20	17.53	
21	18.65	
22	19.82	
23	21.05	
24	22.37	
25	23.75	

The slope of the saturation vapor pressure curve at 22°C (3 methods):

forward
$$\frac{de_s}{dT} = \frac{e_s(23) - e_s(22)}{23 - 22} = \frac{21.05 - 19.82}{1} = 1.23 \text{ mm Hg/°C}$$
backward
$$\frac{de_s}{dT} = \frac{e_s(22) - e_s(21)}{22 - 21} = \frac{19.82 - 18.65}{1} = 1.17 \text{ mm Hg/°C}$$
two-step
$$\frac{de_s}{dT} = \frac{e_s(23) - e_s(21)}{23 - 21} = \frac{21.05 - 18.65}{2} = 1.20 \text{ mm Hg/°C}$$

The true value is 1.20 mm Hg/°C, so the twostep method provides the most accurate estimate.

See also examples in Python workbook Lecture07a.ipynb