

SYMBIOSIS INTERNATIONAL (DEEMED UNIVERSITY)

(Established under section 3 of the UGC Act, 1956)

Re-accredited by NAAC with 'A++' Grade | Awarded Category - I by UGC

Founder: Prof. Dr. S. B. Mujumdar, M. Sc., Ph. D. (Awarded Padma Bhushan and Padma Shri by President of India)

Course Name: Digital Electronics and Logic Design

Course Code: T7997

Faculty: Engineering

Course Credit: 3
Course Level: 1

Sub-Committee (Specialization): Computer Science

Learning Objectives:

The students are able to:

Convert a number from one number system to another and perform arithmetic operations in various types of number system such as binary, octal and hexadecimal etc.

Study different types of logic gates and properties of Boolean algebra

Reduce Boolean expression to the minimum terms using logic design minimization techniques and formulate Sum of Product and Product of Sum.

Design combinational circuits such as half adder, full adder, half subtractor, full subtractor, BCD adder, parity generator/checker, magnitude comparator, multiplexers and de-multiplexers etc.

Explain the concept of synchronous and asynchronous sequential circuits like flip flops,

latches and apply the concepts of flip flops to design registers and counters.

Books Recommended:

Book	Author	Publisher
Digital design, 4th edition	M.M. Mano	PHI
Fundamentals of Digital Logic with VHDL Design, 2nd edition	Stephen Brown, Zvonko Vranesic	McGraw-Hill
Modern Digital Electronics, 3rd Edition	R. P. Jain	Tata McGraw-Hill

Course Outline:

Sr. No.	Торіс	Actual Teaching Hours	Contact Hours Equivale nce
1	Number System:	10	10
	Binary numbers		
	Decimal numbers		
	hexadecimal numbers		
	octal numbers and number conversion		
	signed binary number representation: signed magnitude		
	1's complement and 2's complement representation		
	Arithmetic operations: binary addition		
	binary subtraction using 1's complement and 2's complement		
	binary multiplication and division		
	2's complement arithmetic		
	octal addition		
	Octal subtraction using 8's complement		
	hexadecimal addition		
	Hexadecimal subtraction using 16's complement		
2	Boolean Algebra for logic circuits:	7	7
	Basic Logic variables and logic functions -NOT, AND, NOR, XOR, OR, XNOR, NAND		

1	idealized logic gates and symbols		1
	Truth tables, Basic theorems and properties of Boolean algebra,		
	DeMorgan's rules		
	Axiomatic definition of Boolean algebra		
	basic theorems and properties of boolean algebra		
3	Logic Design Minimization Techniques:	8	8
	Logic minimization		
	representation of truth-table		
	SOP form		
	POS form		
	simplification of logical functions		
	minimization of SOP and POS forms		
	don't care conditions		
	reduction techniques: k-maps up to 4 variables		
4	Combinational Logic:	10	10
	Different types of Codes:- BCD, excess-3, Gray code, binary code		
	and their conversion		
	BCD addition and subtraction		
	circuits: - half- adder		
	full adder		
	half subtractor		
	full subtractor		
	BCD adder using IC7483		
	look ahead and carry		
	parity generator and checker using 74180		
	magnitude comparator using 7485		
	Multiplexers (MUX):- working of MUX		
	implementation of expression using MUX (IC 74153 74151)		
	Demultiplexers (DEMUX):- implementation of expression using		
	DEMUX		
5	decoder (IC 74138) Sequential Logic Circuit Design:	10	10
5	sequential circuits Introduction	10	10
	difference between combinational circuits and sequential circuits		
	flip- flop: SR, JK, D, T		
	preset & clear		
	master and slave flip flops		
	their truth tables and excitation tables		
	conversion from one type to another type of flip flop		
	application of flip-flops: bounce elimination switch		
	registers		
	counters		
	Registers: buffer register;		
	shift register		
	Counters: asynchronous counter		
	synchronous counter		
	ring counters		
	BCD counter		
	johnson counter		
	modulus of the counter		
	Total	45	45
		1 10	

Pre Requisites:

None

Evaluation:

Assignment

Quiz

Examination

Pedagogy:

Design Examples
Classroom teaching

Expert:

Dr. Parag Kulkarni, Professor, Founder, Chief Scientist and CEO, iknowlation Research Labs

Pvt Ltd