SEQUENCE LISTING

RECEIVED

JUN 1 3 2001

TECH CENTER 1600/2900

```
<110> THE
             IPPS RESEARCH INSTITUTE
     BARBAS III, Carlos
     GOTTESFELD, Joel
```

```
WRIGHT, Peter
<120> ZINC FINGER PROTEIN DERIVATIVES AND METHODS THEREFOR
<130> SCRIP1160-4
<140> US 09/500,700
<141> 2000-02-09
<150> US 08/863,813
<151> 1997-05-27
<150> US 08/676,318
<151> 1996-12-30
<150> PCT/US95/00829
<151> 1995-01-18
<150> US 08/312,604
<151> 1994-09-28
<150> US 08/183,119
<151> 1994-01-18
<160> 71
<170> PatentIn version 3.0
```

<210> 1 <211> 32 <212> PRT <213> Xenopus

<221> VARIANT <222> (1)..(1)

<223> Xaa is Tyr or Phe

<220>

<220>

<221> VARIANT <222> (2)..(2)

<223> Xaa is any Amino Acid

<220>

<221> VARIANT

<222> (4)..(7)

<223> Xaa is any Amino Acid

<220>

<221> VARIANT

<222> (9)..(11)

<223> Xaa is any Amino Acid

```
<220>
<221> VARIANT
      (13)..(17)
<222>
<223> Xaa is any Amino Acid
<220>
<221> VARIANT <222> (19)..(19)
<223> Xaa is any Amino Acid
<220>
<221> VARIANT
      (22)..(25)
<222>
<223> Xaa is anu Amino Acid
<220>
<221> VARIANT
<222>
      (27)..(32)
<223> Xaa is any Amino Acid
<220>
<221> VARIANT <222> (6)..(6)
<223> Xaa may be missing
<220>
<221> VARIANT
<222> (7)..(7)
<223> Xaa may be missing
<220>
<221> VARIANT
<222> (25)..(25)
<223> Xaa may be missing
<220>
<221> VARIANT
<222> (29)..(29)
<223> Xaa may be missing
<220>
<221> VARIANT
<222> (30)..(30)
<223> Xaa may be missing
<220>
<221> VARIANT
<222> (31)..(31)
<223> Xaa may be missing
```

```
<220>
<221>
       VARIANT
<222>
       (32)..(32)
<223> Xaa may be missing
<400> 1
Xaa Xaa Cys Xaa Xaa Xaa Cys Xaa Xaa Aaa Phe Xaa Xaa Xaa Xaa
Xaa Leu Xaa Xaa His Xaa Xaa Xaa His Xaa Xaa Xaa Xaa Xaa
                                25
<210>
<211>
       36
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      Primer for amplification of pZif89
<400> 2
atgaaactgc tcgagcccta tgcttgccct gtcgag
                                                                      36
<210> 3
<211>
      45
<212> DNA
<213> Artificial sequence
<220>
<223>
     Primer for amplification of pZif89
<400> 3
gaggaggagg agactagtgt ccttctgtct taaatggatt ttggt
                                                                      45
<210>
<211> 273
<212> DNA
<213> Mouse
<220>
<221> CDS
<222> (1)..(273)
<400> 4
ctc gag ccc tat gct tgc cct gtc gag tcc tgc gat cgc cgc ttt tct
                                                                      48
Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser
ege teg gat gag ett ace ege cat ate ege ate eae aca gge eag aag
                                                                      96
Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys
ccc ttc cag tgt cga ata tgc atg cgt aac ttc agt cgt agt gac cac
                                                                     144
Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His
ctt acc acc cac atc cgc acc cac aca ggc gag aag cct ttt gcc tgt
                                                                     192
```

```
Leu Thr Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys
                        55
gac att tgt ggg agg aag ttt gcc agg agt gat gaa cgc aag agg cat
                                                                      240
Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His
                    70
acc aaa atc cat tta aga cag aag gac act agt
                                                                      273
Thr Lys Ile His Leu Arg Gln Lys Asp Thr Ser
                85
<210> 5
<211> 91
<212> PRT
<213> Mouse
<400> 5
Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser
Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys
Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His
Leu Thr Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys
                        55
Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His
                                        75
Thr Lys Ile His Leu Arg Gln Lys Asp Thr Ser
               85
<210> 6
<211> 22
<212> DNA
<213> Artificial sequence
<220>
<223> FTX3 primer
<400> 6
gcaattaacc ctcactaaag gg
                                                                       22
<210> 7
<211> 21
<212> DNA
<213> Artificial sequence
```

<220>

```
<223> BZF3 primer
<400> 7
ggcaaacttc ctcccacaaa t
                                                                     21
<210> 8
<211> 60
<212> DNA
<213> Artificial sequence
<220>
<223> ZF36K primer
<220>
<221> misc_feature
<222>
      (22)..(41)
<223> n is any nucleotide
<400> 8
atttgtggga ggaagtttgc cnnkagtnnk nnknnknnkn nkcataccaa aatccattta
                                                                     60
<210> 9
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> R3B primer
<400> 9
ttgatattca caaacgaatg g
                                                                     21
<210> 10
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> ZFNsiB primer
<400> 10
catgcatatt cgacactgga a
                                                                     21
<210> 11
<211> 66
<212> DNA
<213> Artificial sequence
<220>
<223> ZF2r6F primer
<220>
<221> misc_feature
<222> (28)..(44)
<223> n is any nucleotide
```

```
cagtgtcgaa tatgcatgcg taacttcnnk nnknnknnkn nknnkaccac ccacatccgc
                                                                      60
                                                                      66
<210>
      12
<211>
<212>
      DNA
<213> Artificial sequence
<220>
<223> ZFI6rb primer
<220>
<221> misc_feature
<222>
      (26)..(45)
<223> n is any nucleotide
<400> 12
ctggcctgtg tggatgcgga tatgmnnmnn mnnmnnmnnc gamnnagaaa agcggcgatc
                                                                      60
gcagga
                                                                      66
<210>
      13
<211>
      24
<212> DNA
<213> Artificial sequence
<220>
<223> ZFIF primer
<400> 13
catatccgca tccacacagg ccag
                                                                      24
<210> 14
<211> 8
<212> PRT
<213> Artificial sequence
<223> Modified sequence of finger 1 of zif268
<400> 14
Arg Ser Asp Glu Leu Thr Arg His
<210> 15
<211>
      6
<212>
      PRT
<213> Artificial sequence
<220>
<223> Modified sequence of finger 2 of zif268
<400> 15
```

```
Ser Arg Ser Asp His Leu
<210> 16
<211> 34
<212> DNA
<213> Artificial sequence
<223> Hairpin oligonucleotide of a phage library containig phages
<400> 16
cgtaaatggg cgcccttttg ggcgcccatt tacg
                                                                     34
<210> 17
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Binding sequence of zif268 finger 3
<400> 17
Arg Ser Asp Glu Arg Lys Arg His
<210> 18
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Binding sequence of zif268 finger 3
<400> 18
Trp Ser Ile Pro Val Leu Leu His
<210> 19
<211> 8
<212> PRT
<213> Artificial sequence
<223> Binding sequence of zif268 finger 3
<400> 19
Trp Ser Leu Leu Pro Val Leu His
               5
<210> 20
<211> 8
<212> PRT
<213> Artificial sequence
<220>
```

```
<223> Binding sequence of zif268 finger 3
<400> 20
Phe Ser Phe Leu Leu Pro Leu His
<210> 21
<211>
<212>
      PRT
<213> Artificial sequence
<220>
<223> Binding sequence of zif268 finger 3
<400> 21
Leu Ser Thr Trp Arg Gly Trp His
<210> 22
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Binding sequence of zif268 finger 3
<400> 22
Thr Ser Ile Gln Leu Pro Tyr His
<210> 23
<211> 61
<212> DNA
<213> Homo sapiens
<400> 23
tgatctcaga agccaagcag ggtcgggcct ggttagtact tggatgggag accgcctggg
                                                                     60
a
                                                                     61
<210> 24
<211> 26
<212> PRT
<213> Homo sapiens
<400> 24
Tyr Ile Cys Ser Phe Ala Asp Cys Gly Ala Ala Tyr Asn Lys Asn Trp
Lys Leu Gln Ala His Leu Cys Lys His Thr
<210> 25
<211> 26
<212> PRT
<213> Homo sapiens
```

```
<400> 25
Phe Pro Cys Lys Glu Glu Gly Cys Glu Lys Gly Phe Thr Ser Leu His
His Leu Thr Arg His Ser Leu Thr His Thr
<210> 26
<211> 26
<212> PRT
<213> Homo sapiens
<400> 26
Phe Thr Cys Asp Ser Asp Gly Cys Asp Leu Arg Phe Thr Thr Lys Ala
Asn Met Lys Lys His Phe Asn Arg Phe His
           20
<210> 27
<211> 13
<212> DNA
<213> Homo sapiens
<400> 27
tggatgggag acc
                                                                     13
<210> 28
<211> 8
<212> PRT
<213> Artificial sequence
<220>
<223> Binding sequence of zif268 finger 3
<400> 28
Arg Ser Asp Glu Arg Lys Arg His
<210> 29
<211> 21
<212> DNA
<213> Artificial sequence
<223> Primer for amplification of fragments of zif268
<400> 29
gtccataaga ttagcggatc c
                                                                     21
<210> 30
<211> 21
<212> DNA
```

<213> Artificial sequence

```
<220>
<223>
      Primer for amplification of fragments of zif268
gtgagcgagg aagcggaaga g
                                                                      21
<210>
       31
<211>
<212>
      DNA
<213> Artificial sequence
<220>
<223> zif268 consensus binding site
<400> 31
cctgcgtggg cgcccttttg ggcgcccacg cagg
                                                                      34
<210> 32
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Linker peptide
<220>
<221> VARIANT
<222>
      (4)..(4)
<223> Xaa is Lys or Pro
<400> 32
Thr Gly Glu Xaa
<210> 33
<211> 462
<212> DNA
<213> Mouse
<220>
<221> CDS
<222>
      (1)..(459)
<400> 33
atg etc gag etc ecc tat get tge ect gte gag tec tge gat ege ege
                                                                      48
Met Leu Glu Leu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg
ttt tct cgc tcg gat gag ctt acc cgc cat atc cgc atc cac aca ggc
                                                                      96
Phe Ser Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly
cag aag ccc ttc cag tgt cga ata tgc atg cgt aac ttc agt cgt agt
                                                                     144
Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser
gac cac ctt acc acc cac atc cgc acc cac aca ggc gag aag cct ttt
                                                                     192
```

	His 50	Leu	Thr	Thr	His	Ile 55	Arg	Thr	His	Thr	Gly 60	Glu	Lys	Pro	Phe	
							aag Lys									240
							ggr Xaa	_	_			_				288
							aaa Lys									336
							aac Asn 120									384
							cac His									432
							gct Ala		taa							462
<210 <210 <210	l> 1	34 L53 PRT														
<213	3 > 1	louse	3													
		ouse	Э													
<213 <400)> 3	34		Pro 5	Tyr	Ala	Cys	Pro	Val 10	Glu	Ser	Cys	Asp	Arg 15	Arg	
<213 <400 Met 1)> 3 Leu	34 Glu	Leu	5			Cys Thr		10					15		
<213 <400 Met 1 Phe	Leu Ser	34 Glu Arg	Leu Ser 20	5 Asp	Glu	Leu		Arg 25	10 His	Ile	Arg	Ile	His 30	15 Thr	Gly	
<213 <400 Met 1 Phe Gln	Leu Ser Lys	Glu Arg Pro 35	Leu Ser 20	5 Asp Gln	Glu Cys	Leu Arg	Thr	Arg 25 Cys	10 His Met	Ile Arg	Arg Asn	Ile Phe 45	His 30 Ser	Thr	Gly	
<213 <400 Met 1 Phe Gln Asp	Leu Ser Lys	Glu Arg Pro 35	Leu Ser 20 Phe	5 Asp Gln Thr	Glu Cys His	Leu Arg Ile 55	Thr Ile 40	Arg 25 Cys	10 His Met	Ile Arg Thr	Arg Asn Gly 60	Ile Phe 45 Glu	His 30 Ser	Thr Arg	Gly Ser Phe	
<213 <400 Met 1 Phe Gln Asp	Leu Ser Lys His 50	Glu Arg Pro 35 Leu Asp	Leu Ser 20 Phe Thr	Asp Gln Thr	Glu Cys His Gly 70	Leu Arg Ile 55	Thr Ile 40 Arg	Arg 25 Cys Thr	10 His Met His	Ile Arg Thr Arg 75	Arg Asn Gly 60 Ser	Ile Phe 45 Glu Asp	His 30 Ser Lys	Thr Arg Pro	Gly Ser Phe Lys 80	

Ser	Glu	Leu 115	Ala	Ser	Thr	Arg	Asn 120	Met	Leu	Arg	Glu	Gln 125	Val	Ala	Gln	
Leu	Lys 130	Gln	Lys	Val	Met	Asn 135	His	Ala	Ser	Gly	Gln 140	Ala	Gly	Gln	Tyr	
Pro 145	Tyr	Asp	Val	Pro	Asp 150	Tyr	Ala	Ser								
<210 <211 <211 <213	1 > 4 2 > 1	35 462 DNA Mouse	e													
<220 <221 <222	1> (CDS (1).	. (45	9)						•						
<400 atg Met 1	ctc	35 gag Glu	ctc Leu	ccc Pro 5	tat Tyr	gct Ala	tgc Cys	cct Pro	gtc Val 10	gag Glu	tcc Ser	tgc Cys	gat Asp	cgc Arg 15	cgc Arg	48
														aca Thr		96
														cgt Arg		144
														cct Pro		192
														cgc Arg		240
														ggt Gly 95		288
														gaa Glu		336
														gaa Glu		384
														cag Gln		432

ccg tac gac gtt ccg gac tac gct tct taa

Pro Tyr Asp Val Pro Asp Tyr Ala Ser 145 150

<210> 36

<211> 153

<212> PRT

<213> Mouse

<400> 36

Phe Ser Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly 20 25 30

Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser 35 40 45

Asp His Leu Thr Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe 50 55 60

Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys 65 70 75 80

Arg His Thr Lys Ile His Thr Gly Gln Lys Pro Thr Ser Gly Gly Gly 90 95

Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys
100 105 110

Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys 115 120 125

Leu Glu Phe Ile Leu Ala Ala His Ala Ser Gly Gln Ala Gly Gln Tyr 130 135 140

Pro Tyr Asp Val Pro Asp Tyr Ala Ser 145 150

<210> 37

<211> 19

<212> DNA

<213> Artificial sequence

:220>

<223> Single stranded leucine zipper domain of zif268-Jun

<220>

<221> misc_feature

```
<222>
      (10)..(10)
<223> n is any nucleotide. n can be any number of nucleotides
<400> 37
cgcccacgcn gcgtgggcg
                                                                       19
<210>
       38
<211>
       28
<212> DNA
<213> Artificial sequence
<220>
<223>
      Single-stranded leucine zipper domain of zif268-Fos
<220>
<221>
      misc_feature
<222>
       (10)..(10)
<223> n is any nucleotide. n can be any number of nucleotides
<400> 38
cgcccacgcn gcggcggcgg cggcggcg
                                                                      28
<210>
      39
<211>
      76
<212>
      PRT
<213> Artificial sequence
<220>
<223> Construction of C7 zinc finger
<220>
<221> VARIANT
<222>
      (76)..(76)
<223> Xaa is Tyr-Ala-Cys-Pro-Val-Glu-Ser-Cys-Asp-Arg-Arg-Phe-Ser-Lys-Se
      r-Ala-Asp-Leu-Lys-His-Ile-Arg-His-Thr-Gly-Glu-Lys-Pro-Met-Lys-Leu
       -Leu-Glu-Pro-repeated 10 times; residue 76=340 Amino Acids; some
      . Xaa's may be missing
<400> 39
Met Lys Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arq
Arg Phe Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg His Thr Gly
            20
Glu Lys Pro Met Lys Leu Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser
Cys Asp Arg Arg Phe Ser Lys Ser Ala Asp Leu Lys His Ile Arg His
    50
Thr Gly Glu Lys Pro Met Lys Leu Leu Glu Pro Xaa
<210> 40
```

```
<211>
<212> DNA
<213> Artificial sequence
<220>
<223> Oligonucleotide hairpin
cctcgccgcc gcgggttttc ccgcgccccc gagg
                                                                       34
<210> 41
<211>
      294
<212>
      DNA
<213> Homo sapiens
<220>
<221> CDS
<222>
      (1)..(294)
<400> 41
atg aaa ctg ctc gag ccc tat gct tgc cct gtc gag tcc tgc gat cgc
Met Lys Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg
ege ttt tet aag teg get gat etg aag ege eat ate ege ate eae aet
                                                                       96
Arg Phe Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg Ile His Thr
            20
ggc gaa aaa ccg tac gcg tgc cct gtc gag tcc tgc gat cgc cgc ttt
                                                                     144
Gly Glu Lys Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe
        35
tct aag tcg gct gat ctg aag cgc cat atc cgc atc cac acc ggg gag
                                                                     192
Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg Ile His Thr Gly Glu
    50
                        55
aag ccc tat gct tgc cct gtc gag tcc tgc gat cgc cgc ttt tct aag
                                                                     240
Lys Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Lys
65
                    70
                                        75
                                                            80
tcg gct gat ctg aag cgc cat atc cgc atc cac acc ggt cag aag ccc
                                                                     288
Ser Ala Asp Leu Lys Arg His Ile Arg Ile His Thr Gly Gln Lys Pro
                85
                                                        95
act act
                                                                     294
Thr Thr
<210> 42
<211>
      98
<212>
      PRT
<213> Homo sapiens
<400> 42
Met Lys Leu Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg
```

Arg Phe Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg Ile His Thr Gly Glu Lys Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg Ile His Thr Gly Glu 50 Lys Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser Lys 75 Ser Ala Asp Leu Lys Arg His Ile Arg Ile His Thr Gly Gln Lys Pro Thr Thr <210> 43 <211> 543 DNA <212> <213> Artificial sequence <220> <223> zif268-zif268 with TGEKP linker <220> <221> CDS <222> (1)..(543) <400> 43 atg etc gag etc ecc tat get tge ect gtc gag tec tge gat egc ege Met Leu Glu Leu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg ttt tet ege teg gat gag ett ace ege cat ate ege ate eae aca gge 96 Phe Ser Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly 20 cag aag ccc ttc cag tgt cga ata tgc atg cgt aac ttc agt cgt agt 144 Gln Lys Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser 35 gac cac ctt acc acc cac atc cgc acc cac aca ggc gag aag cct ttt 192 Asp His Leu Thr Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe 50 55 gcc tgt gac att tgt ggg agg aag ttt gcc agg agt gat gaa cgc aag 240 Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys 65 70 80

agg cat acc aaa atc cat acc ggg gag aag ccc tat gct tgc cct gtc

Arg His Thr Lys Ile His Thr Gly Glu Lys Pro Tyr Ala Cys Pro Val

90

288

					cgc Arg										cat His	336
	_				ggc Gly	_	_			_	_	_			_	384
					agt Ser											432
					ttt Phe 150											480
					aag Lys											528
_	tct Ser	_		_												543
<210 <210 <210 <210	1> : 2> :	14 181 PRT Artif	ficia	al se	equer	ıce										
<22	0 >															
<22	3 > 2	zif26	68-zi	f268	3 wit	h TO	SEKP	lin	cer							
<223 <40			58-zi	lf268	3 wit	h TO	GEKP	lin	cer							
<40	0 > 4	14			3 wit	•				Glu	Ser	Cys	Asp	Arg 15	Arg	
<40 Met 1	0> 4 Leu	14 Glu	Leu	Pro 5		Ala	Cys	Pro	Val 10			_	_	15	_	
<400 Met 1	D> 4	Glu Arg	Leu Ser 20	Pro 5 Asp	Tyr	Ala Leu	Cys Thr	Pro Arg 25	Val 10 His	Ile	Arg	Ile	His	15 Thr	Gly	
<400 Met 1 Phe Gln	Leu Ser	Glu Arg Pro 35	Leu Ser 20	Pro 5 Asp Gln	Tyr Glu	Ala Leu Arg	Cys Thr Ile 40	Pro Arg 25 Cys	Val 10 His Met	Ile Arg	Arg Asn	Ile Phe	His 30	15 Thr	Gly	
<400 Met 1 Phe Gln	Leu Ser Lys	Glu Arg Pro 35	Leu Ser 20 Phe	Pro 5 Asp Gln	Tyr Glu Cys	Ala Leu Arg Ile 55	Cys Thr Ile 40	Pro Arg 25 Cys	Val 10 His Met	Ile Arg Thr	Arg Asn Gly 60	Ile Phe 45	His 30 Ser	Thr Arg	Gly Ser Phe	
<400 Met 1 Phe Gln Asp	Leu Ser Lys His 50	Glu Arg Pro 35 Leu Asp	Leu Ser 20 Phe Thr	Pro 5 Asp Gln Thr	Tyr Glu Cys His	Ala Leu Arg Ile 55	Cys Thr Ile 40 Arg	Pro Arg 25 Cys Thr	Val 10 His Met His	Ile Arg Thr Arg 75	Arg Asn Gly 60 Ser	Ile Phe 45 Glu Asp	His 30 Ser Lys	Thr Arg Pro	Gly Ser Phe Lys	

```
Ile Arg Ile His Thr Gly Gln Lys Pro Phe Gln Cys Arg Ile Ser Met
        115
Arg Asn Phe Ser Arg Ser Asp His Leu Thr Thr His Ile Arg Thr His
    130
                        135
Thr Gly Glu Lys Pro Phe Ala Cys Asp Ile Cys Gly Arg Lys Phe Ala
                    150
Arg Ser Asp Glu Arg Lys Arg His Thr Lys Ile His Leu Arg Gln Lys
                165
                                    170
Asp Ser Arg Thr Ser
            180
<210> 45
<211>
      46
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for generation of 5' C7
<400>
      45
gaggaggagg agggatccat gctcgagctc ccctatgctt gccctg
                                                                      46
<210> 46
<211> 39
<212> DNA
<213> Artificial sequence
<220>
<223> Primer for generation of 5' C7
<400> 46
gaggaggaga ccggtatgga ttttggtatg cctcttgcg
                                                                      39
<210> 47
<211> 57
<212> DNA
<213> Artificial sequence
<223> Primer for generation of 3' C7
gaggaggaga ccggtgagaa gccctatgct tgccctgtcg agtcctgcga tcgccgc
                                                                 57
<210> 48
<211>
      32
```

<212> DNA

```
<213> Artificial sequence
<220>
<223> Primer for generation of 3' C7
<400> 48
gaggaggaga ctagttctag agtccttctg tc.
                                                                      32
<210> 49
<211>
       38
<212>
      DNA
<213> Artificial sequence
<220>
<223> Primary strand within a duplex region of a probe for C7-C7 site
<400> 49
gatgtatgta gcgtgggcgg cgtgggcgta agtaatgc
                                                                      38
<210> 50
<211>
      38
<212> DNA
<213> Artificial sequence
<220>
<223> Primary strand within a duplex region of a probe for SP1C-C7 site
<400> 50
gatgtatgta gcgtgggcgg gggcggggta agtaatgc
                                                                      38
<210> 51
<211> 38
<212> DNA
<213> Artificial sequence
<220>
<223> Primary strand within a duplex region of a probe for (GCG)6 site
<400> 51
gatgtatgta gcggcggcgg cggcggcgta agtaatgc
                                                                      38
<210> 52
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> Primary strand within a duplex region of a probe for C7 site
<400> 52
                                                                      29
gatgtatgta gcgtgggcgt aagtaatgc
<210> 53
```

<211> 29

<212> DNA

```
<213> Artificial sequence
<220>
<223> Primary strand within a duplex region of a probe for Sp1C site
<400> 53
gatgtatgta ggggcggggt aagtaatgc
                                                                     29
<210> 54
<211>
      29
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 54
                                                                     29
gatgtatgta gcgtgggcgt aagtaatgc
<210> 55
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> EcoRIfootF primer
<400> 55
gaggaggagg aattccgaca tttataatga acgtgaattg c
                                                                     41
<210> 56
<211> 45
<212> DNA
<213> Artificial sequence
<220>
<223> C7-C73>5 primer
<400> 56
tgcgcccacg ccgcccacgc gatgattggg agctttttt gcacg
                                                                     45
<210> 57
<211> 51
<212> DNA
<213> Artificial sequence
<220>
<223> C7-C75>3 primer
<400> 57
tcgcgtgggc ggcgtgggcg caaaaaatta ttatcatgga ttctaaaacg g
                                                                     51
<210> 58
<211> 42
<212> DNA
<213> Artificial sequence
```

```
<220>
<223> NotIfootB primer
<400> 58
gaggaggagg cggccgcagg tagatgagat gtgacgaacg tg
                                                                      42
<210> 59
<211>
      45
<212> DNA
<213> Artificial sequence
<220>
<223> Sp1C-C73>5 primer
<400> 59
tgccccgccc ccgcccacgc gatgattggg agctttttt gcacg
                                                                      45
<210> 60
<211> 51
<212> DNA
<213> Artificial sequence
<220>
<223> Sp1C75>3 primer
<400> 60
tcgcgtgggc ggggggggg caaaaaatta ttatcatgga ttctaaaacg g
                                                                      51
<210> 61
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> Target sequence of six finger protein C7-C7
<400> 61
                                                                      18
gcgtgggcgg cgtgggcg
<210> 62
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> Target sequence of six-finger protein Sp1C-C7
<400> 62
                                                                      18
gcgtgggcgg gggcgggg
<210>
       63
<211>
       34
<212> DNA
<213> Artificial sequence
```

```
<220>
<223> Altered zif268 finger 1 binding site
<400> 63
                                                                     34
cctgcgtggt gtcccttttg ggacacaacg cagg
<210> 64
<211> 34
<212> DNA
<213> Artificial sequence
<220>.
<223> Altered zif268 finger 2 binding site
                                                                     34
cctgcgttgg cgcccttttg ggcgccaacg cagg
<210> 65
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> Altered zif268 finger 3 binding site
<400> 65
                                                                     34
cctctgtggg cgcccttttg ggcgcccaca gagg
<210> 66
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> Linker peptide
<400> 66
Thr Gly Gln Lys Pro
<210> 67
<211>
      5
<212> PRT
<213> Artificial sequence
<220>
<223> Linker peptide
<400> 67
Thr Gly Glu Lys Pro
<210> 68
<211> 18
<212> DNA
<213> Artificial sequence
```

```
<220>
<223> Sp1C-C7 probe
<400> 68
gcgtgggcgg gggcgggg
                                                                     18
<210> 69
<211>
      18
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      (GCG) 6 probe
<400> 69
                                                                     18
gcggcggcgg cggcggcg
<210>
      70
<211>
      6
<212> PRT
<213> Artificial sequence
<220>
<223> SV40 large T antigen
<400> 70
Pro Lys Lys Arg Lys Val
               5
<210> 71
<211> 64
<212> PRT
<213> Artificial sequence
<223> Construction of C7 zinc finger
<400> 71
Met Lys Leu Glu Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg
Arg Phe Ser Lys Ser Ala Asp Leu Lys Arg His Ile Arg His Thr Gly
           20
                               25
Glu Lys Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Phe Ser
Lys Ser Ala Asp Leu Lys His Ile Arg Ile His Thr Gly Glu Lys Pro
```