

Approximations to the solution of the Kushner-Stratonovich equation for the stochastic chemostat

Augusto Magalhães ^a, Muhammad Emzir ^b, Francesco Corona ^a

a Process control and automation, Department of Chemical and Metallurgical Engineering, Aalto University, Finland b Control and Instrumentation Engineering Department, King Fahd University of Petroleum and Minerals, Saudi Arabia

 F_{in} : influent flow rate

 F_{out} : outgoing flow rate

V: volume of the vessel

 s_{in} : incoming flow of substrate

b: outgoing concentration of biomass

s: outgoing concentration of substrate

Figure 1: schematic for the chemostat.

$$F_{in} = F_{out} = F$$
: flow rate $[Lh^{-1}]$ $D = F/V$: dilution rate $[h^{-1}]$ $\mu(\cdot)$: specific growth function

$$D = F/V$$
: dilution rate $[h^{-1}]$

$$d\begin{bmatrix}b(t)\\s(t)\end{bmatrix} = \begin{bmatrix}(\mu(b(t),s(t)) - D)b(t)\\D(s_{in} - s(t)) - \kappa\mu(b(t),s(t))b(t)\end{bmatrix}dt,$$

with $b(0) = b_0$, $s(0) = s_0$.

$$d\begin{bmatrix}b(t)\\s(t)\end{bmatrix} = \begin{bmatrix}(\mu(b(t),s(t)) - D)b(t)\\D(s_{in} - s(t)) - \kappa\mu(b(t),s(t))b(t)\end{bmatrix}dt,$$

$$x(t)$$

$$f(t,x(t))$$

with $x(0) = (b(0), s(0))^{T}$.

$$d\begin{bmatrix}b(t)\\s(t)\end{bmatrix} = \begin{bmatrix}(\mu(b(t),s(t)) - D)b(t)\\D(s_{in} - s(t)) - \kappa\mu(b(t),s(t))b(t)\end{bmatrix}dt,$$

$$x(t)$$

$$f(t,x(t))$$

with $x(0) = (b(0), s(0))^{T}$.

Figure 2: phase portrait for the deterministic model.

The stochastic chemostat

$$d\begin{bmatrix}b(t)\\s(t)\end{bmatrix} = \begin{bmatrix}(\mu(b(t),s(t)) - D)b(t)\\D(s_{in} - s(t)) - \kappa\mu(b(t),s(t))b(t)\end{bmatrix}dt + \begin{bmatrix}\omega_b b(t) & 0\\0 & \omega_s s(t)\end{bmatrix}d\begin{bmatrix}B_t^b\\B_t^s\end{bmatrix},$$

$$X_t \qquad f(t,X_t) \qquad g(t,X_t) \qquad B_t^x$$

with initial condition X_0 .

Figure 3: trajectories from the stochastic model.

The Kolmogorov Forward Equation

Also known as the Fokker-Planck equation

Evolution of the probability distribution of the signal $\{X_t\}$:

$$\frac{\partial}{\partial t}p(t,x) = -\sum_{d_x=1}^{D_x} \frac{\partial}{\partial x_{d_x}} [f_{d_x}(t,x)p(t,x)] + \sum_{d_x=1}^{D_x} \sum_{d_x'=1}^{D_x} \frac{\partial^2}{\partial x_{d_x}\partial x_{d_x'}} [G_{d_xd_x'}(t,x)p(t,x)],$$

with diffusion terms
$$G_{d_xd_x'}(t,x) = \frac{1}{2}\sum_{m=1}^M g_{d_xm}(t,x)g_{d_x'm}(t,x),$$

and initial condition p(0, x).

The Kolmogorov Forward Equation

Also known as the Fokker-Planck equation

Evolution of the probability distribution of the signal $\{X_t\}$:

Change in probability

Advection

Diffusion

$$\frac{\partial}{\partial t}p(t,x) = -\sum_{d_x=1}^{D_x} \frac{\partial}{\partial x_{d_x}} [f_{d_x}(t,x)p(t,x)] + \sum_{d_x=1}^{D_x} \sum_{d_x'=1}^{D_x} \frac{\partial^2}{\partial x_{d_x}\partial x_{d_x'}} [G_{d_xd_x'}(t,x)p(t,x)],$$

with diffusion terms
$$G_{d_xd_x'}(t,x) = \frac{1}{2}\sum_{m=1}^M g_{d_xm}(t,x)g_{d_x'm}(t,x),$$

and initial condition p(0, x).

Figure 4: solution to the Fokker-Planck equation.

Figure 4: solution to the Fokker-Planck equation.

Figure 4: solution to the Fokker-Planck equation.

Figure 4: solution to the Fokker-Planck equation.

Figure 4: solution to the Fokker-Planck equation.

Figure 4: solution to the Fokker-Planck equation.

Figure 4: solution to the Fokker-Planck equation.

$$\dot{Q}(t) = V\mu(b(t), s(t))b(t) + \varepsilon$$

Figure 5: measurements corrupted by noise.

$$dX_t = f(t, X_t)dt + g(t, X_t)dB_t^x,$$

$$Y_t = h(t, X_t) + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0, k^2(t))$$

Figure 5: measurements corrupted by noise.

$$dX_t = f(t, X_t)dt + g(t, X_t)dB_t^x,$$

$$Y_t = h(t, X_t) + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0, k^2(t))$$

Figure 5: measurements corrupted by noise.

Goal: find the distribution of the signal $\{X_t\}$ given some information F_{τ}^y from measurements, for $\tau \leq t$,

i.e.
$$p_t := p(t, x | F_{\tau}^y)$$
.

Kushner (1964, 1967) and Stratonovich (1968)

$$\frac{\partial}{\partial t} p_t = -\sum_{d_x=1}^{D_x} \frac{\partial}{\partial x_{d_x}} [f_{d_x}(t, x) p_t] + \sum_{d_x=1}^{D_x} \sum_{d_x'=1}^{D_x} \frac{\partial^2}{\partial x_{d_x} \partial x_{d_x'}} [G_{d_x d_x'}(t, x) p_t]$$

$$+ \quad p_t \times (h(t,x) - \mathbb{E}_t[h(t,x)])^\top (k^2(t))^{-1} \times (dY_t - \mathbb{E}_t[h(t,x)]dt)$$

$$p_t := p(t, x | F_{\tau}^{y})$$

$$dX_t = f(t, X_t)dt + g(t, X_t)dB_t^{x}$$

$$Y_t = h(t, X_t) + \varepsilon$$

Kushner (1964, 1967) and Stratonovich (1968)

Partial derivatives in a D_{x} -dimensional grid

$$\frac{\partial}{\partial t} p_t = -\sum_{d_x=1}^{D_x} \frac{\partial}{\partial x_{d_x}} [f_{d_x}(t, x) p_t] + \sum_{d_x=1}^{D_x} \sum_{d_x'=1}^{D_x} \frac{\partial^2}{\partial x_{d_x} \partial x_{d_x'}} [G_{d_x d_x'}(t, x) p_t]$$

+
$$p_t \times (h(t, x) - \mathbb{E}_t[h(t, x)])^{\mathsf{T}}(k^2(t))^{-1} \times (dY_t - \mathbb{E}_t[h(t, x)]dt)$$

$$p_t := p(t, x | F_{\tau}^y)$$

$$dX_t = f(t, X_t)dt + g(t, X_t)dB_t^x$$

$$Y_t = h(t, X_t) + \varepsilon$$

Kushner (1964, 1967) and Stratonovich (1968)

 $dX_t = f(t, X_t)dt + g(t, X_t)dB_t^x$

 $Y_t = h(t, X_t) + \varepsilon$

Kushner (1964, 1967) and Stratonovich (1968)

 $Y_t = h(t, X_t) + \varepsilon$

Kushner (1964, 1967) and Stratonovich (1968)

This is a nonlinear stochastic partial integral differential equation!

$$p_t := p(t, x | F_{\tau}^y)$$

$$dX_t = f(t, X_t)dt + g(t, X_t)dB_t^x$$

$$Y_t = h(t, X_t) + \varepsilon$$

Figure 6: approximated solution to the Kushner-Stratonovich equation.

Figure 6: approximated solution to the Kushner-Stratonovich equation.

Stochastic model for the chemostat

Stochastic model for the chemostat

Prior knowledge (Fokker-Planck equation)

Stochastic model for the chemostat

Prior knowledge (Fokker-Planck equation)

Stochastic model for the measurements

Stochastic model for the chemostat

Prior knowledge (Fokker-Planck equation)

Stochastic model for the measurements

Refined knowledge (Kushner-Stratonovich equation)

Stochastic model for the chemostat

Prior knowledge (Fokker-Planck equation)

Stochastic model for the measurements

Refined knowledge (Kushner-Stratonovich equation)

Outlook

How to obtain a solution to the Kushner-Stratonovich equation?

- Methods for Partial Differential Equations (PDEs)
- Sequential Monte Carlo (SMC) methods

Stochastic model for the chemostat

Prior knowledge (Fokker-Planck equation)

Stochastic model for the measurements

Refined knowledge (Kushner-Stratonovich equation)

Outlook

How to obtain a solution to the Kushner-Stratonovich equation?

- Methods for Partial Differential Equations (PDEs)
- Sequential Monte Carlo (SMC) methods

Statistical properties of some SMC methods

Outlook

Stochastic model for the chemostat

Prior knowledge (Fokker-Planck equation)

Stochastic model for the measurements

Refined knowledge (Kushner-Stratonovich equation)

How to obtain a solution to the Kushner-Stratonovich equation?

- Methods for Partial Differential Equations (PDEs)
- Sequential Monte Carlo (SMC) methods

Statistical properties of some SMC methods