3 Sufficient Statistics

1.Sufficiency Principle An experimenter uses the information in a sample X_1, X_2, \ldots, X_n to make inferences about an unknown parameter θ . If n is large, then the observed sample x_1, x_2, \ldots, x_n is a long list of numbers that may be hard to interpret. An experimenter might wish to summarize the information in a sample by determining a few key features of the sample values. This is usually done by computing statistics, functions of the sample. Any statistic, $T(\mathbf{X})$, defines a form of data reduction or data summary. An experimenter who uses only the observed value of the statistic, $T(\mathbf{x})$, rather the entire observed sample, \mathbf{x} , will treat as equal two samples, \mathbf{x} and \mathbf{y} , that satisfy $T(\mathbf{x}) = T(\mathbf{y})$ even though actual sample values may be different in some ways.

A sufficient statistic of a parameter θ is a statistic that, in a certain sense, captures all the information about θ contained in a sample. Any additional information in a sample besides the value of the sufficient statistic, does not contain any more information about θ . These considerations lead to the data reduction technique known as the Sufficiency principle.

Sufficiency Principle: If $T(\mathbf{X})$ is a sufficient statistic for θ , then any inference about θ should depend on the sample \mathbf{X} only through $T(\mathbf{X})$. That is, if \mathbf{x} and \mathbf{y} are two sample points, such that $T(\mathbf{x}) = T(\mathbf{y})$, then the inference about θ should be the same whether

X = **x** or **X** = **y** is observed. **Project Example 2.** Example 18 the earlier courses in statistics we relied on our intuition to define the statistics we used for estimation and hypothesis testing. For example, in a sequence of Bernoulli trials in each of which there is a probability θ of success we used $\sum_{i=1}^{n} x_i$ as the base for our estimate in Sand in the statistic $P(\mathbf{X}) = \sum_{i=1}^{n} X_i$ (number of X_i s that equal 1), was sufficient for our purposes. We now give this votion a general mathematical formulation.

Suppose that we are given a value of $T(\mathbf{X}) = \sum_{i=1}^{n} X_i = t$. If we know the value t, can

Suppose that we are given a value of $T(\mathbf{X}) = \sum_{i=1}^{n} X_i = t$. If we know the value t, can we gain any further information about θ by looking at other functions of X_1, X_2, \ldots, X_n ? One way to answer this question is by looking at the conditional distribution of X_1, X_2, \ldots, X_n given $T(\mathbf{X}) = t$:

$$\Pr(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n | T(\mathbf{X}) = t) = \frac{\theta^t (1 - \theta)^{n - t}}{\binom{n}{t} \theta^t (1 - \theta)^{n - t}} = \frac{1}{\binom{n}{t}}.$$

Thus, the conditional probability is independent of θ , that is, once $\sum_{i=1}^{n} X_i$ is known, no other function of X_1, X_2, \ldots, X_n will shed additional light on the possible value of θ .

- **3. Definition.** A statistic $T(\mathbf{X})$ is a **sufficient statistic** for θ if the conditional distribution of the sample X_1, X_2, \ldots, X_n given the value of $T(\mathbf{X})$ does not depend on θ .
- **4. Factorization criterion.** Let $f(\mathbf{x}, \theta)$ denote the joint p.d.f/p.f. of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for the parameter θ if and only if we can write $f(\mathbf{x}, \theta) = h(T(\mathbf{x}), \theta)c(\mathbf{x})$ for appropriate functions h and c of the indicated variables that is, c does not depend on θ . [Recall that this includes the statement that the set of values \mathbf{x} where $c(\mathbf{x}) \neq 0$ does not depend on θ .]
- **5. Examples.** Let $X_1, X_2..., X_n$ be i.i.d. (a) $N(\mu, \sigma^2)$ r.v.s, where σ is known; (b) $M(\theta)$; (c) $U(0, \theta)$.

- **6.** Note. In all the previous examples, the sufficient statistic is a real valued function of the sample. All the information about θ in a sample x is summarised in the single number $T(\mathbf{x})$. Sometimes the information cannot be summarised in a single number and several numbers are required instead. In such cases a sufficient statistic is a vector, say $T(\mathbf{x}) = (T_1(\mathbf{x}), \dots, T_r(\mathbf{x}))$. This situation often occurs when the parameter is also a vector, say, $\theta = (\theta_1, ..., \theta_k)$, and it is usually the case that the sufficient statistic and the vector of parameters are of equal length, that is r = k.
- 7. Example. Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\mu, \sigma^2)$ r.v.s, where both μ and σ^2 are unknown.
- **8. Proposition** Let $X_1, X_2, ..., X_n$ be i.i.d. observations from a p.d.f./p.f. $f(x, \theta)$ that belongs to the exponential family, i.e.,

$$f(x,\theta) = \exp\{\sum_{i=1}^{m} p_i(\theta)K_i(x) + S(x) + q(\theta)\}\$$

for all $\{x: f(x,\theta) \neq 0\}$, where $\theta = (\theta_1,...,\theta_k)$ and the set $\{x: f(x,\theta) \neq 0\}$ does not depend on θ . Then

$$T(\mathbf{X}) = \left(\sum_{j=1}^{n} K_1(X_j), \sum_{j=1}^{n} K_2(X_j), \dots, \sum_{j=1}^{n} K_m(X_j)\right)$$

is a sufficient statistic for θ .

- considered. In any problem, there are many sufficient statistics. It is always true that the complete sample X, is a sufficient statistic.

 (ii) It follows that any one-to-one function of a sufficient statistic is a sufficient statistic.
- (iii) Because of the numerous sufficient statistics in a model, we might ask whether one sufficient statistic is any better than the another. Recall that the purpose of a sufficient statistic is to achieve data reduction without loss of information about the parameter θ ; thus, a statistic that achieves the most data reduction while still retaining all the information about θ might be considered as preferable. The definition of such statistic is formalized below.
- 11. Definition. A sufficient statistic T(X) is called a minimal sufficient statistic, if for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{x})$ is a function of $T'(\mathbf{x})$.
- 12. Example. (Two normal sufficient statistics) In Example 5(a) with $N(\mu, \sigma^2)$ r.v.s and σ^2 known, we concluded that $T(\mathbf{X}) = \sum X_i$ is a sufficient statistic for μ . Instead we could write down factorisation from Example 7 for this problem (σ^2 is a known value now) and correctly conclude that $T'(\mathbf{X}) = (\sum X_i, \sum X_i^2)$ is a sufficient statistic for μ in this problem. Clearly, $T(\mathbf{X})$ achieves a greater data reduction than $T'(\mathbf{X})$; we can write $T(\mathbf{X})$ as a function of $T'(\mathbf{X})$. (Indeed, define v(a,b)=a, then $T(\mathbf{X})=\sum X_i=a$ $v(\sum X_i, \sum X_i^2) = v(T'(\mathbf{X}))$.) Since $T(\mathbf{X})$ and $T'(\mathbf{X})$ are both sufficient statistics, they both contain the same information about μ . Thus the additional information about the value of $\sum X_i^2$ does not add to our knowledge of μ since σ^2 is known. Of course, if σ^2 is unknown, as in Example 7, $T(\mathbf{X}) = \sum X_i$ is not a sufficient statistic and $T'(\mathbf{X})$ contains more information about (μ, σ^2) than does $T(\mathbf{X})$.
- 13. Theorem. (Lehmann-Scheffé criterion) Let $f(\mathbf{x}, \theta)$ be the joint p.d.f/p.f. of a sample **X**. Suppose that there exists a function $T(\mathbf{x})$ such that, for any two sample points \mathbf{x} and

 \mathbf{y} , the ratio $f(\mathbf{x}, \theta)/f(\mathbf{y}, \theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

- **14. Example.** Let $X_1, X_2..., X_n$ be i.i.d. (a) $B(1, \theta)$, (b) $\Gamma(\alpha, \beta)$.
- **15.** Theorem. If T is a sufficient statistic for the parameter θ and $\widehat{\theta}$ is a maximum likelihood estimator of θ , then we may write $\widehat{\theta} = \widehat{\theta}(T)$.

Proof. By the factorization, we have $f(\mathbf{x},\theta) = h(T(\mathbf{x}),\theta)c(\mathbf{x})$ where $c(\mathbf{x})$ is independent of θ . Thus, maximizing $f(\mathbf{x},\theta)$ over θ for fixed \mathbf{x} (and, therefore fixed $T(\mathbf{x})$) is equivalent to maximizing $h(T(\mathbf{x}),\theta)$ and the solution $\widehat{\theta}$ will be a function of T. The corresponding estimator $\widehat{\theta}$ is thus a function of T.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder