TD Statistique

Exercice 1

Un produit coûte 1 000 euros, il augmente de 10% par an pendant 3 ans.

- 1. Quelle est l'augmentation globale au bout de 3 ans?
- 2. Comment retrouver l'augmentation moyenne annuelle, puis mensuelle, à partir de l'augmentation de 33,1% sur trois ans ?

Exercice 2

On emprunte un capital de 100 000 euros que l'on rembourse au bout de 4 ans, en une seul fois, avec le montant des intérêts. Les taux d'intérêts sont les suivants :

Année	1	2	3	4
Taux d'intérêt	8 %	10 %	12 %	14 %

À la fin de chaque période d'un an, les intérêts sont capitalisés, c'est-à-dire qu'ils s'ajoutent au capital dû.

- 1. Quel est le montant des intérêts à payer au bout des 4 ans ?
- 2. Quel est le taux d'intérêt moyenne annuel pratiqué?

Exercice 3

Après un concours, on réalise une étude statistique sur les notes à l'épreuve de mathématiques.

Elles se répartissent de la façon suivante :

HITCH NO I	_ T				,												
Note	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	tota l
Nb d'élèves	1	2	1	3	3	6	6	7	4	4	1	3	2	0	1	1	45

On note $X = (x_i)_{0 < i < 17.}$

- 1. Représenter cette série statistique avec un diagramme adapté.
- 2. Calculer l'espérance, la variance, l'écart type la médiane et le mode.

Exercice 4

On réalise une étude statistique sur les moyennes finales obtenues au concours de l'exercice 3. Elles se répartissent de la façon suivante :

Moyennes	[2, 6[[6, 8[[8, 9[[9, 10[[10, 11[[11, 12[[12, 16[total
Nb d'élèves	9	13	8	7	5	2	1	45

On note $Y = (y_i)_{0 < i < 8}$ cette série statistique.

- 1. Tracer un histogramme de cette série statistique (Numworks et Excel).
- 2. Calculer l'espérance, la variance et l'écart-type des moyennes au concours.
- 3. Déterminer les quartiles et la (ou les) classe(s) modale(s) de cette série statistique.

Exercice 5

Une entreprise réalise une étude statistique sur l'évolution de son chiffre d'affaires lors de ses huit premières année d'existence.

Ils se répartissent de la façon suivante :

Année(s) d'existence	1	2	3	4	5	6	7	8
CA en M€	3	7	10	18	21	35	53	82

On note $X = (x_i)_{0 < i < 9}$ la variable année(s) d'existence et $Y = (y_i)_{0 < i < 9}$ la variable chiffre d'affaires.

- 1. Représenter graphiquement ce nuage de points.
- 2. Calculer l'espérance, la variance, les écarts type et la covariance.
- 3. Déterminer l'équation de la droite de régression de Y en X.
- 4. Calculer le coefficient de corrélation.
- 5. Cet ajustement est-il acceptable?
- 6. Quel chiffre d'affaires auquel on peut s'attendre la dixième année?
- 7. Au bout de combien d'années le chiffre d'affaires dépassera 100M€?

Exercice 6

Le staff médical d'une entreprise fait des statistiques sur le taux de cholestérol de ses employés. Les observations sur 100 employés tires au sort sont les suivantes.

Taux de cholestérol en cg (centre classe)	120	160	200	240	280	320
Effectif d'employés	9	22	25	21	16	7

- 1. Calculer la moyenne m_e et l'écart-type σ_e sur l'échantillon.
- 2. Estimer la moyenne et l'écart-type pour le taux de cholestérol dans toute l'entreprise.
- 3. Déterminer un intervalle de confiance pour la moyenne.

Exercice 7

On suppose que la durée de vie d'une ampoule, en heures, suit est une variable X qui suit la loi normale d'écart-type 400.

Les durées de vie de 12 ampoules prise au hasard dans un lot sont :

2311	1981	3110	1647	2112	2580
2122	1513	2221	2307	2418	2054

Déterminer un intervalle de confiance pour la durée de vie moyenne, en heures, d'une ampoule au niveau de 95%.

Exercice 8

On considère les deux variables aléatoires quantitatives X et Y telles que :

$$E(X)=2,$$

$$E(X^2)=13,$$

$$E(Y) = 5$$
, $E(Y^2) = 29$ et

$$E(XY) = 4.$$

- 1. Calculer la covariance Cov(X, Y) et le coefficient r de corrélation linéaire entre X et Y.
- 2. Que peut-on en déduire?
- 3. Déterminer l'équation de la droite de régression de Y en X.
- 4. Que peut-on en déduire ?
- 5. Calculer V(X-2Y).

Exercice 9

On considère dans cet exercice les résultats d'une promotion de 70 étudiants du département Informatique au semestre 1 (variable X) et au semestre 2 (variable Y).

On dispose des informations suivantes:

Somme notes semestre 1 = 841.8

Somme notes semestre 2 = 706,0

Somme $X^2 = 10284,0$

Somme $Y^2 = 7432,0$

Somme produit XY = 8665,6

- 1. Calculer la covariance Cov(X, Y) ainsi que le coefficient r de corrélation linéaire entre les variables X et Y.
- 2. Que peut-on en déduire?
- 3. Déterminer l'équation de la droite de régression D de Y en X.
- 4. Quelle serait la note d'un étudiant qui aurait obtenu 11 de moyenne au premier semestre ?

Exercice 10

On considère les mesures suivantes de deux variables X et Y.

X	1	2	3	4	5	6	7	8	9	10
Y	3	2,5	4	3	5,5	5	4,5	6,5	6	7

- 1. Tracer le nuage de points correspondant à ces observations (Numworks et Excel).
- **2.** Calculer \overline{y} , \overline{x} , V(X) et V(Y).
- 3. Calculer la covariance Cov(X, Y) et le coefficient r de corrélation linéaire entre X et Y.
- 4. Déterminer l'équation de la droite de régression D_1 de Y en X.

Exercice 11

Pour des emplois analogues, diverses entreprises proposent des salaires notés x_i . On a vu se présenter pour ces emplois le nombre de candidats noté y_i .

$oldsymbol{x}_i$	2200	2250	2300	2350	2400
${oldsymbol{\mathcal{Y}}}_i$	10	13	17	19	21

- 1. Représenter graphiquement cette série statistique par un nuage de points (x_i, y_j) .
- 2. Rechercher l'équation de la droite des moindres carrés et représenter cette droite sur le graphique précédent. Arrondir à 0,001 près.
- 3. Estimer le nombre de candidats qui se seraient présentés si on avait proposé un salaire de 2270 €

Exercice 12

Un même produit est vendu, conditionné sous différentes formes et différents volumes. Le tableau suivant indique pour chaque type d'emballage le volume x_i et le prix y_i du produit :

$x_i en cm^3$	100	150	200	300	500
$y_i en \in$	7	8	9,5	13	20

- 1. Représenter graphiquement ce tableau (Numworks et Excel).
- 2. Par la méthode des moindres carrés, déterminer l'équation de la droite d'ajustement linéaire de y en x.

Exercice 13

Le tableau suivant indique les variations du chiffre d'affaires y_i d'une entreprise commerciale selon les frais de publicité x_i (x_i et y_i en milliers d'euro).

x_i	2,5	2,8	3,1	3,4	3,7	4
${oldsymbol{\mathcal{Y}}}_i$	52	59	60	65	70	72

- 1. Construire le nuage de points représentant cette série.
- 2. Déterminer l'équation de la droite des moindres carrés.