DTE 2 © 25

Combining Finite Element Methods and Neural Networks to Solve Elliptic Problems on 2D Geometries

Hélène Barucq², Michel Duprez¹, Florian Faucher², Emmanuel Franck³, **Frédérique Lecourtier**¹, Vanessa Lleras^{1,4}, Victor Michel-Dansac³ and Nicolas Victorion²

> ¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team Makutu, Inria, TotalEnergies, Pau, France ³Project-Team MACARON, Inria, Strasbourg, France ⁴IMAG, University of Montpellier, Montpellier, France

February 20, 2025

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

accurate quick + parameterized

Parametric linear elliptic PDE : For one or several $m{\mu} \in \mathcal{M}$, find $u:\Omega \to \mathbb{R}$ such that

$$\mathcal{L}(u; \mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}), \tag{P}$$

where $\boldsymbol{\mathcal{L}}$ is the parametric differential operator defined by

$$\mathcal{L}(\cdot; \mathbf{x}, \boldsymbol{\mu}) : u \mapsto R(\mathbf{x}, \boldsymbol{\mu})u + C(\boldsymbol{\mu}) \cdot \nabla u - \frac{1}{\mathsf{Pe}} \nabla \cdot (D(\mathbf{x}, \boldsymbol{\mu}) \nabla u),$$

and some Dirichlet, Neumann or Robin BC (which can also depend on μ).

Ω	Spatial domain	ا ء	District based side
d	Spatial dimension	J	Right-hand side
$\mathbf{x} = (x_1, \dots, x_d)$	Spatial coordinates	R	Reaction coefficient
$\frac{\lambda - (\lambda_1, \dots, \lambda_d)}{\lambda_d}$	Parameter space	С	Convection coefficient
JV l	'	D	Diffusion matrix
р	Number of parameters	Pe	Péclet number
$\boldsymbol{\mu} = (\mu_1, \dots, \mu_p)$	Parameter vector		. ceret namber

Pipeline of the Enriched FEM

Correction: Enriched continuous Lagrange finite element approximation spaces using the PINN prediction.

Physics-Informed Neural Networks

Standard PINNs¹ (Weak BC): Find the optimal weights θ^{\star} that satisfy

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \omega_b J_b(\theta) \right), \tag{P_{\theta}}$$

with the residual loss function and the boundary loss function defined by

$$J_r(\theta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} \left(u_{\theta}(\mathbf{x}, \boldsymbol{\mu}); \mathbf{x}, \boldsymbol{\mu} \right) - f(\mathbf{x}, \boldsymbol{\mu}) \right|^2 d\mathbf{x} d\boldsymbol{\mu},$$

$$J_b(\theta) = \int_{\mathcal{M}} \int_{\partial \Omega} \left| u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) - g(\mathbf{x}, \boldsymbol{\mu}) \right|^2 d\mathbf{x} d\boldsymbol{\mu},$$

where u_{θ} is a neural network, g=0 is the Dirichlet BC. In (\mathcal{P}_{θ}) , the weights ω_r and ω_b (hyperparameters) are used to balance the different terms of the loss function.

Monte-Carlo method: Discretize the cost functions by random process.

¹[Raissi et al., 2019]

Physics-Informed Neural Networks

Improved PINNs¹ (Strong BC): Find the optimal weights θ^* that satisfy

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\omega_r J_r(\theta) + \underline{\omega_b} J_{\overline{b}}(\theta) \right),$$

with $\omega_r = 1$ and the residual loss function defined by

$$J_r(heta) = \int_{\mathcal{M}} \int_{\Omega} \left| \mathcal{L} ig(u_{ heta}(\mathbf{x}, oldsymbol{\mu}); \mathbf{x}, oldsymbol{\mu} ig) - f(\mathbf{x}, oldsymbol{\mu})
ight|^2 d\mathbf{x} doldsymbol{\mu}, \ rac{\partial \Omega}{\partial \Omega} = \{ arphi = 0 \}$$

where u_{θ} is a neural network defined by

$$u_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = \varphi(\mathbf{x})w_{\theta}(\mathbf{x}, \boldsymbol{\mu}) + g(\mathbf{x}, \boldsymbol{\mu}),$$

 $\varphi > 0$

with φ a level-set function, w_{θ} a NN and g=0 the Dirichlet BC. Thus, the Dirichlet BC is imposed exactly in the PINN : $u_{\theta}=g$ on $\partial\Omega$.

Monte-Carlo method: Discretize the residual cost function by random process.

¹[Lagaris et al., 1998; Franck et al., 2024]

Finite Element Method¹

Variational Problem:

Find
$$u_h \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(u_h, v_h) = I(v_h)$, (\mathcal{P}_h)

with *h* the characteristic mesh size, *a* and *l* the bilinear and linear forms given by

$$a(u_h,v_h) = \frac{1}{\text{Pe}} \int_{\Omega} D \nabla u_h \cdot \nabla v_h + \int_{\Omega} R \, u_h \, v_h + \int_{\Omega} v_h \, C \cdot \nabla u_h, \quad \textit{I}(v_h) = \int_{\Omega} f v_h,$$

and V_h the finite element space of dimension N_h defined by

$$V_h = \left\{ v_h \in C^0(\Omega), \ \forall K \in \mathcal{T}_h, \ v_h|_K \in \mathbb{P}_k, v_h|_{\partial\Omega} = 0 \right\},$$

where \mathbb{P}_k is the space of polynomials of degree at most k.

Find
$$U \in \mathbb{R}^{N_h}$$
 such that $AU = b$ with

$$A = (a(\phi_i, \phi_j))_{1 \le i, j \le N_h}$$
 and $b = (I(\phi_j))_{1 \le j \le N_h}$.

$$\mathcal{T}_h = \{K_1, \dots, K_{N_e}\}$$
(N_e : number of elements)

¹[Ern and Guermond, 2004]

How improve PINN prediction with FEM?

Additive approach

Variational Problem : Let $u_{\theta} \in H^{k+1}(\Omega) \cap H^1_0(\Omega)$.

Find
$$p_h^+ \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(p_h^+, v_h) = I(v_h) - a(u_\theta, v_h)$, (\mathcal{P}_h^+)

with the enriched trial space V_h^+ defined by

$$V_h^+ = \left\{ u_h^+ = u_\theta + \rho_h^+, \quad \rho_h^+ \in V_h^0 \right\}.$$

Impose BC : If our problem satisfies u=g on $\partial\Omega$, then ρ_h^+ has to satisfy

$$p_h^+ = g - u_\theta \quad \text{on } \partial\Omega,$$

with u_{θ} the PINN prior (weak BC).

Considering the strong BC, $p_h^+=0$ on $\partial\Omega$.

Convergence analysis

Let α and γ respectively the coercivity and continuity constants of a. Let u the solution of (\mathcal{P}) .

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote $u_h \in V_h$ the solution of (\mathcal{P}_h) with V_h the standard trial space. For all $1 \leq q \leq k$,

$$||u-u_h||_{L^2} \leqslant C \frac{\gamma^2}{\alpha} h^{q+1} |u|_{H^{q+1}}.$$

Theorem 2: Convergence analysis of the enriched FEM [Barucq et al., 2025]

We denote $u_h^+ \in V_h^+$ the solution of (\mathcal{P}_h^+) with V_h^+ the enriched trial space. For all $1 \leqslant q \leqslant k$,

$$\|u-u_h^+\|_{L^2} \leqslant \frac{|u-u_\theta|_{H^{q+1}}}{|u|_{H^{q+1}}} \left(C\frac{\gamma^2}{\alpha}h^{q+1}|u|_{H^{q+1}}\right).$$

The same type of estimates holds for the H^1 norm.

Numerical results - 2D Poisson problem

2D Poisson problem on Square

Problem statement: We consider the Poisson problem in 2D with homogeneous Dirichlet boundary conditions:

$$\begin{cases} -\Delta u = f, & \text{in } \Omega \times \mathcal{M}, \\ u = 0, & \text{on } \partial\Omega \times \mathcal{M}, \end{cases}$$
 (P)

with $\Omega=[-0.5\pi,0.5\pi]^2$ and $\mathcal{M}=[-0.5,0.5]^2$ ($\emph{p}=2$ parameters). We define the right-hand side \emph{f} such that the solution is given by

$$u(\mathbf{x}, \boldsymbol{\mu}) = \exp\left(-\frac{(\mathbf{x} - \mu_1)^2 + (\mathbf{y} - \mu_2)^2}{2}\right)\sin(2\mathbf{x})\sin(2\mathbf{y}),$$

with $\mathbf{x}=(\mathbf{x},\mathbf{y})\in\Omega$ and some parameters $\boldsymbol{\mu}=(\mu_1,\mu_2)\in\mathcal{M}.$

PINN training: TODO

Grille N^2

Numerical results

Error estimates: 1 given parameter.

$$\boldsymbol{\mu}^{(1)} = (0.05, 0.22)$$

Numerical results

Error estimates: 1 given parameter.

$$\boldsymbol{\mu}^{(1)} = (0.05, 0.22)$$

Gains achieved : $n_p = 50$ parameters.

$$\mathcal{S} = \left\{oldsymbol{\mu}^{(1)}, \dots, oldsymbol{\mu}^{(n_{oldsymbol{
ho}})}
ight\}$$

Gains in L^2 rel error of our method w.r.t. FEM

k	min	max	mean
1	134.32	377.36	269.39
2	67.02	164.65	134.85
3	39.52	72.65	61.55

$$N = 20$$

Gain:
$$||u - u_h||_{L^2} / ||u - u_h^+||_{L^2}$$

Numerical results

Error estimates: 1 given parameter.

$$\boldsymbol{\mu}^{(1)} = (0.05, 0.22)$$

Numerical costs of the two approaches:

N required to reach the same error e.

		Ν	
k	е	FEM	Add
1	$1 \cdot 10^{-3}$	119	8
	$1 \cdot 10^{-4}$	379	24
2	$1 \cdot 10^{-4}$	42	8
	$1 \cdot 10^{-5}$	89	17
3	$\overline{1 \cdot 10^{-5}}$	28	10
	$1 \cdot 10^{-6}$	48	18

Numerical results - 2D anysotropic Elliptic problem

2D anysotropic Elliptic problem

TODO

Conclusion

Conclusion

TODO

References

- Hélène Barucq, Michel Duprez, Florian Faucher, Emmanuel Franck, Frédérique Lecourtier, Vanessa Lleras, Victor Michel-Dansac, and Nicolas Victorion. Enriching continuous lagrange finite element approximation spaces using neural networks. 2025.
- A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer New York, 2004. doi: 10.1007/978-1-4757-4355-5.
- E. Franck, V. Michel-Dansac, and L. Navoret. Approximately well-balanced Discontinuous Galerkin methods using bases enriched with Physics-Informed Neural Networks. *J. Comput. Phys.*, 512:113144, 2024. ISSN 0021-9991. doi: 10.1016/j.jcp.2024.113144.
- I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. *IEEE Trans. Neural Netw.*, 9(5):987–1000, 1998. ISSN 1045-9227. doi: 10.1109/72.712178.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378:686–707, 2019. doi: 10.1016/i.jcp.2018.10.045.

Appendix

Appendix 1: Standard FEM

Appendix 1: General Idea

TODO

