Devoir facultatif n° 2

Procédé d'extrapolation de Richardson

Dans tout ce problème, lorsque ce n'est pas précisé, les notations d'analyse asymptotique seront exprimées au voisinage de 0.

On considère une fonction $A:\mathbb{R}\to\mathbb{R}$ admettant un développement limité à tout ordre en 0.

Ainsi, pour tout $k \in \mathbb{N}$, il existe des réels a_0, \ldots, a_k vérifiant

$$A(t) = a_0 + a_1 t + \dots + a_k t^k + o(t^k) = \sum_{i=0}^k a_i t^i + o(t^k).$$

On se fixe enfin un réel r > 1 et l'on définit par récurrence $A_0 = A$ et, pour tout $n \in \mathbb{N}^*$ et $t \in \mathbb{R}$,

$$A_n(t) = \frac{r^n A_{n-1}(t) - A_{n-1}(rt)}{r^n - 1}.$$

- 1) Questions préliminaires. On répondra en détail à ces questions.
 - a) Soit $\rho \in \mathbb{R}^*$, $s \in \mathbb{N}$, $\varphi : \mathbb{R} \to \mathbb{R}$ vérifiant $\varphi(t) = o((\rho t)^s)$. Montrer, en le détaillant, que $\varphi(t) = o(t^s)$.
 - b) Soit $k \in \mathbb{N}^*$ et $\varphi : \mathbb{R} \to \mathbb{R}$ vérifiant $\varphi(t) = O(t^k)$. Déterminer la limite en 0 de $t \mapsto \frac{\varphi(t)}{t^{k-1}}$.
- **2)** Soit $k, n \in \mathbb{N}$ vérifiant k > n.
 - a) Montrer que la fonction A admet une limite en 0, et la déterminer.
 - b) Montrer qu'il existe un réel $a_{1,2}$, que l'on déterminera, tel que le développement limité de A_1 à l'ordre k et en 0 soit

$$A_1(t) = a_0 + a_{1,2}t^2 + \dots + o(t^k).$$

c) En déduire qu'il existe un réel $a_{n,n+1}$, que l'on ne demande pas de déterminer, tel que le développement limité de A_n à l'ordre k et en 0 soit

$$A_n(t) = a_0 + a_{n,n+1}t^{n+1} + \dots + o(t^k).$$

d) Soit $t_0 \in \mathbb{R}$ fixé. Montrer que la suite $(A(r^{-m}t_0))_{m \in \mathbb{N}}$ converge.

Dans la suite de ce problème, on suppose que pour $t_0 \neq 0$ et r > 1 fixé, on sait calculer les premiers termes de la suite $A(t_0)$, $A(r^{-1}t_0)$,..., $A(r^{-m}t_0)$.

Le procédé de Richardson consiste à extrapoler ces valeurs pour obtenir, grâce à un procédé d'accélération de convergence, la valeur de a_0 .

Pour tout $p \in \mathbb{N}$ et tout $1 \leq q \leq p$, on note

$$A_{p,0} = A_0(r^{-p}t_0)$$
 et $A_{p,q} = A_q(r^{-p}t_0)$.

- **3) a)** Montrer que $A_{p,0} = a_0 + O(r^{-p})$.
 - b) Déterminer un réel $\alpha(p,q)>0$, que l'on explicitera, tel que

$$A_{p,q} \underset{p \to +\infty}{=} a_0 + O(r^{-\alpha(p,q)}).$$

c) Montrer que, pour tout $p \ge 1$,

$$A_{p,1} = \frac{rA_{p,0} - A_{p-1,0}}{r-1}.$$

d) Montrer que, pour tout $1 \le q \le p$,

$$A_{p,q} = \frac{r^q A_{p,q-1} - A_{p-1,q-1}}{r^q - 1} = A_{p,q-1} + \frac{A_{p,q-1} - A_{p-1,q-1}}{r^q - 1}.$$

En pratique, on représente ces valeurs $A_{p,q}$ dans le tableau triangulaire suivant.

$$A_{0,0}$$
 $A_{1,0}$ $A_{1,1}$
 $A_{2,0}$ $A_{2,1}$ $A_{2,2}$
 \vdots \vdots \vdots \ddots
 $A_{m,0}$ $A_{m,1}$ $A_{m,2}$ \dots $A_{m,m}$

4) Déterminer la plus petite valeur et la plus grande valeur de $\alpha(p,q)$ pour $0 \le q \le p \le m$. Lorsque $m \to +\infty$, de laquelle des valeurs $A_{p,q}$ du tableau peut-on attendre la meilleure approximation de a_0 (on pourra utiliser 1)b) pour justifier la réponse)? On écrira cette valeur sous la forme $a_0 + O(r^{-\sigma(m)})$ lorsque $m \to +\infty$ et on précisera la valeur

de l'entier $\sigma(m) > 0$. On considère une fonction $g \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et l'on note

$$q(\alpha + h) = c_0 + c_1 h + \dots + c_{2k} h^{2k} + O(h^{2k+1})$$

son développement limité à l'ordre 2k au voisinage de α .

Pour $h \neq 0$, on note

$$G(h) = \frac{g(\alpha + h) - g(\alpha - h)}{2h}.$$

- 5) a) Exprimer les coefficients c_p pour $0 \le p \le 2k$, en fonction de g et de ses dérivées successives.
 - **b)** Montrer que la fonction G est paire.
 - c) Montrer que G se prolonge par continuité en 0 par une valeur que l'on déterminera. On note \widetilde{G} la fonction G prolongée en 0 par cette valeur.
 - d) Exprimer à l'aide des coefficients c_p le développement limité de \widetilde{G} à l'ordre 2k-1 au voisinage de 0.

Pour t réel positif, on considère dorénavant que

$$A(t) = \widetilde{G}(\sqrt{t}).$$

- **6) a)** On choisit h > 0 et on considère la suite de valeurs G(h), $G\left(\frac{h}{2}\right)$, ..., $G\left(\frac{h}{2^m}\right)$. Déterminer un réel $t_0 > 0$ et un réel r > 1 tels que cette suite de valeurs soit $A(t_0)$, $A(r^{-1}t_0)$, ..., $A(r^{-m}t_0)$.
 - b) Quelle est la limite ℓ de $(A_{p,0})_{p\in\mathbb{N}}$? On exprimera ℓ à l'aide de la fonction g et de α .
- 7) On pose $g: x \mapsto \ln(x)$, $\alpha = 3$ et h = 0, 8. Écrire une suite d'instructions en langage Python qui calcule, en utilisant l'algorithme précédent, la meilleure approximation de ℓ parmi les $A_{p,q}$ pour $0 \le q \le p \le 3$.