Day 1, exercise 4: Vigilance

Richel Bilderbeek

December 22, 2014

Abstract

This article is created within the CAS program Maxima and shows how to do algebraic manipuations and graphical plotting. The output is in \LaTeX format.

1 Introduction

When an organism has found the time and suitable location to forage, it faces a trade-off: looking down to search for prey, or looking up, to search for predators. Using simple equations, the optimum strategy for a solitary individual is calculated.

2 Exercise

First, we write down all equations (for definitions see table 1 on page 1).

symbol	description
v	fraction of foraging time invested in being watchful
S(v)	survival probability
F(v)	foraging efficiency
W(v)	fitness

Table 1: Definitions

$$S(v) = v$$

$$F(v) = 1.0 - v^2$$

$$W(v) = -v^2 + v + 1.0$$

The fitness function plotted is plotted in figure 1 on page 2.

Figure 1: Fitness function

To calculate the maximum or minimum, set the derivate to zero and solve it: \cdot

$$\frac{d}{dv}W(v) = 1 - 2v = 0$$
$$v = \frac{1}{2}$$

Thus, the optimal vigilance level v equals:

$$\frac{1}{2}$$

This optimal vigilance level results in a fitness of:

$$W\left(\frac{1}{2}\right) = 1.25$$

To find out if it is a fitness minimum or maximum, calculate the second derivative and find out its value at the minimum or maximum:

$$\frac{d^2}{dv^2}W(v) = -2$$

Thus, this value being below zero, it is a maximum.

A Script file

```
#!/bin/bash
maxima_input_file="Day1_4_vigilance.txt"
tex_output_file="Day1_4_vigilance_output.tex"

if [ -e $tex_output_file ]
then
   rm $tex_output_file
fi

maxima -b $maxima_input_file
pdflatex $tex_output_file
#Do this twice, so pdflatex can fill in the references
pdflatex $tex_output_file
```

B Maxima file

```
/* Maxima batch file */
/* Load libraries */
load("stringproc")$
/* Input filename */
bash_filename: "Day1_4_vigilance.sh"$
maxima_filename: "Day1_4_vigilance.txt" \$ /* this file */
/* Output filenames */
tex_filename: "Day1_4_vigilance_output.tex"$
pdf_filename:"/home/richel/GitHubs/Maxima/
   Day1_4_vigilance_output.pdf"$
/* Write results to TeX file */
stream: openw(tex_filename)$
printf(stream, "\\documentclass{article}~\%")$
printf(stream, "~%")$
printf(stream, "\\usepackage{listings}~\%")$
printf(stream,"\\usepackage{graphicx}~%")$
printf(stream, "~%")$
printf(stream,"\\title{Day 1, exercise 4: Vigilance}~%")$
printf(stream,"\\author{Richel Bilderbeek}~\%")$
printf(stream, "\\date{\\today}~\%")$
printf(stream, "~%")$
```

```
printf(stream,"\\begin{document}^\%")$
printf(stream, "~%")$
printf(stream," \ \backslash \ maketitle \ ``\%") \$
printf(stream, "~%")$
printf(stream,"\\begin{abstract}~%")$
printf(stream," This article is created within the CAS
   program Maxima~%")$
printf(stream," and shows how to do algebraic manipuations
    and graphical plotting. "%")$
printf(stream, "The output is in \\LaTeX~~ format.~\%")$
printf(stream,"\\end{abstract}~\%")$
printf(stream, "~%")$
printf(stream, "\\section{Introduction}~\")$
printf(stream, "~%")$
printf(stream,"When an organism has found the time and
   suitable location to forage, it faces a trade-off: "%")
printf(stream, "looking down to search for prey, or
   looking up, to search for predators. Using simple "%")$
printf(stream, "equations, the optimum strategy for a
   solitary individual is calculated. "%")$
printf(stream,"~%")$
printf(stream, "\\section{Exercise}~\%")$
printf(stream, "First, we write down all equations "%")$
printf(stream, "(for definitions see table \\ref{table:
   table_definition on page \pageref{table:
   table_definition }).~%")$
printf(stream, "~%")$
printf(stream,"\\begin{table}[here]~%")$
printf(stream,"
                \\centering~\%")\$
printf(stream,"
                 printf(stream,"
                   \\hline~%")$
printf(stream,"
                   symbol & description \\\~%")$
\verb|printf(stream|,"
                   \\ hline~%")$
printf(stream,"
                   $v$ & fraction of foraging time
   invested in being watchful \\\~%")$
printf(stream,"
                   S(v) & survival probability \\\~%")
   $
                   F(v) & foraging efficiency \\\~\")$
printf(stream,"
printf(stream,"
                   W(v) & fitness \\\\\\\\\
printf(stream,"
                   \\hline~\%")$
printf(stream,"
                 printf(stream,"
                 \\caption{Definitions}~\%")$
printf(stream,"
                \\label{table:table_definition}~\%")$
printf(stream,"\\end{table}~\%")$
printf(stream, "~%")$
```

```
Survival(v) := S(v) = v:
printf(stream, tex(Survival(v), false))$
printf(stream, "~%")$
Foraging(v) := F(v) = 1.0 - (v^2);
printf(stream, tex(Foraging(v), false))$
printf(stream, "~%")$
Fitness(v) := W(v) = ', (rhs(Survival(v)) + rhs(Foraging(v)))
printf(stream, tex(Fitness(v), false))$
printf(stream, "~%")$
printf(stream,"The fitness function plotted is plotted in
    figure ~%")$
printf(stream,"\\ref{figure:figure_fitness} on page \\
   pageref{figure:figure_fitness}.\\\~%")$
printf(stream, "~%")$
plot2d(
 rhs(Fitness(v)), [v, 0.0, 1.0],
  [title, "Fitness"],
  [xlabel,"v: fraction of foraging time being vigilant"],
  ylabel, "W(v): fitness"],
  [color, black],
  [pdf_file,pdf_filename]
);
printf(stream,"\\begin{figure}[here]~\%")$
printf(stream,"\\includegraphics[width=1\\textwidth]{")$
printf(stream, pdf_filename)$
printf(stream,"}\\\\\~%")$
printf(stream,"\\end{figure}~\%")$
printf(stream, "~%")$
printf(stream,"To calculate the maximum or minimum, set
   the derivate to zero and solve it: "%")$
FitnessDeriv(v) := diff(W(v), v) = ','(diff(rhs(Fitness(v)))
   , v));
```

```
maximum: solve(rhs(FitnessDeriv(v))=0)[1];
printf(stream, tex(FitnessDeriv(v)=0, false))$
printf(stream, tex(maximum, false))$
printf(stream, "~%")$
printf(stream, "Thus, the optimal vigilance level $v$
          equals:")$
printf(stream, tex(rhs(maximum), false))$
printf(stream, "~%")$
printf(stream," This optimal vigilance level results in a
          fitness of:")$
printf(stream, tex(Fitness(rhs(maximum)), false))$
printf(stream, "~%")$
printf(stream,"To find out if it is a fitness minimum or
         maximum, ~%")$
printf(stream, "calculate the second derivative~%")$
printf(stream," and find out its value at the minimum or
         maximum: ~%")$
printf(stream, "~%")$
FitnessDerivDeriv(v) := diff(W(v), v, 2) = ','(diff(rhs(v), v, 2)) =
         FitnessDeriv(v)),v));
printf(stream, tex(FitnessDerivDeriv(v), false))$
if rhs(FitnessDerivDeriv(v))<0
      printf(stream,"Thus, this value being below zero, it is
                 a maximum.~%")
else
      printf(stream,"Thus, this value being above zero, it is
                 a minimum.~%")
printf(stream, "~\%")$
printf(stream,"\\appendix~%")$
printf(stream,"~%")$
printf(stream, "\\section{Script file}~\%")$
printf(stream, "~%")$
printf(stream," \\ lstinputlisting[language=C++,
         showstringspaces=false, breaklines=true, frame=single]{"
printf(stream, bash_filename)$
printf(stream,"}~%")$
```

```
printf(stream, "~\%")$
printf(stream,"\\section{Maxima file}~\%")$
printf(stream, "~%")$
printf(stream,"\\lstinputlisting[language=C++,
   showstringspaces=false, breaklines=true, frame=single]{"
printf(stream, maxima_filename)$
printf(stream,"}~%")$
printf(stream,"~%")$
printf(stream, "\\section{\\LaTeX~~file}~\%")$
printf(stream,"\tilde{\ }\%")\$
printf(stream,"\\lstinputlisting[language=tex,
   showstringspaces=false, breaklines=true, frame=single]{"
   ) $
printf(stream, tex_filename)$
printf(stream,"}~%")$
printf(stream,"~%")$
printf(stream,"\\end{document}~\%")$
close (stream)$
```

C LATEX file

```
\documentclass{article}
\usepackage{listings}
\usepackage{graphicx}
\title{Day 1, exercise 4: Vigilance}
\author{Richel Bilderbeek}
\date{\today}
\begin{document}

\maketitle
\begin{abstract}
This article is created within the CAS program Maxima and shows how to do algebraic manipuations and graphical plotting.
The output is in \LaTeX^ format.
\end{abstract}
\section{Introduction}
```

```
When an organism has found the time and suitable location
    to forage, it faces a trade-off:
looking down to search for prey, or looking up, to search
    for predators. Using simple
equations, the optimum strategy for a solitary individual
    is calculated.
\section { Exercise }
First, we write down all equations
(for definitions see table \ref{table:table_definition}
   on page \pageref{table:table_definition}).
\begin { table } [ here ]
  \centering
  \ hline
    symbol & description \\
    \ hline
    $v$ & fraction of foraging time invested in being
        watchful \\
    S(v) & survival probability \\
    F(v) & foraging efficiency \
    W(v) & fitness \\
    \ hline
  \end{tabular}
  \caption { Definitions }
  \label{table:table_definition}
\end{table}
SS \setminus left (v \setminus right) = v
\$F \setminus left (v \setminus right) = 1.0 - v^2 \$
SW \left( \mathbf{right} \right) = -v^2 + v + 1.0
The fitness function plotted is plotted in figure
\ref{figure:figure_fitness} on page \pageref{figure:
   figure_fitness \.\\
\begin { figure } [ here ]
\includegraphics [width=1\textwidth] { / home/richel/GitHubs/
   Maxima/Day1_4_vigilance_output.pdf} \
  \caption{Fitness function}
  \label{figure:figure_fitness}
\end{ figure }
```

```
To calculate the maximum or minimum, set the derivate to
    zero and solve it:
\$\{\{d\}\setminus\mathbf{over}\{d\setminus,v\}\}\setminus W\setminus\mathbf{left}(v\setminus\mathbf{right})=1-2\setminus v=0\$
\$v = \{\{1\} \setminus \mathbf{over}\{2\}\} \$\$
Thus, the optimal vigilance level v equals: \{1\} over
    {2}}$$
This optimal vigilance level results in a fitness of:$$W\
    left(\{\{1\} \setminus over\{2\}\} \setminus right) = 1.25$$
To find out if it is a fitness minimum or maximum,
calculate the second derivative
and find out its value at the minimum or maximum:
\$\{\{d^2\}\setminus\mathbf{over}\{d\setminus,v^2\}\}\setminus W\setminus\mathbf{left}(v\setminus\mathbf{right})=-2\$
Thus, this value being below zero, it is a maximum.
\appendix
\section { Script file }
\lstinputlisting[language=C++,showstringspaces=false,
    breaklines=true, frame=single | { Day 1_4_vigilance.sh }
\section {Maxima file }
\lstinputlisting[language=C++,showstringspaces=false,
    breaklines=true, frame=single | { Day 1_4_ vigilance.txt }
\section {\LaTeX~file}
\lstinputlisting[language=tex,showstringspaces=false,
    breaklines=true, frame=single | { Day 1_4_ vigilance_output.
    tex}
\end{document}
```