Border Gateway Protocol

CSE 118: Computer Networks
George Varghese

Computing routes from UCLA to the world as opposed to computing routes within UCLA

Many slides courtesy Alex Snoeren

IP's Abstract View of World

Classless New World: Prefixes

IP Addresses and Prefixes

- 32 bytes written as A.B.C.D, where A, B, C, D are integers from 1 to 255 representing one byte
- For example, an EE server in CMU can be
 128.2.1.155, first byte is 10000000 (remove dots)
- A Prefix is represented by slash or wildcard notation,
 For example CMU is 128.2/16 which means that all IP addresses in CMU start with 10000000 0000 0010 *
- Another way to encode prefixes is with a mask.
 Represent a /16 with a bit mask starting with 16 1's followed by 16 0's. Can AND with mask to find prefix

CS 118: BGP

Get Started by DHCP and ARP

So far: Route Computation within an Autonomous System (AS)

Link State, or Distance Vector used within AS between routes to compute routes

BGP: Routing between ASes

Why Interdomain Routing: Policy

Why not one happy melting pot of a network:

- Multiple providers (see IP evolution) implies need for independence and independent policies.
- Different metrics, trust patterns, different charging policies (hot potato, cold potato), different administrative and legal requirements (e.g., ARPANET only for government business, Canadian traffic stays within Canada).
- Not very well developed. Basic conflict between abstraction and hierarchies (for scaling) and ability to specify arbitrary policies.

Possible Polices

- Never use Routing Domain X for any destination.
- Never use domains X and Y.
- Don't use X to get to a destination in domain Y.
- Use X only as a last resort.
- Minimize number of domains in path.
- Government messages can traverse the ARPANET but not others.

BGP Overview

- Border Gateway Protocol (BGP)
 - The canonical path vector protocol
 - How routing gets done on the Internet today
- BGP operation
 - Basic BGP and differences from Distance vector
 - BGP features (Local Pref, MED, Community)
 - Issues with BGP
- BGP Alternatives

Border Gateway Protocol

- Interdomain routing protocol for the Internet
 - Prefix-based path-vector protocol
 - Policy-based routing based on AS Paths
 - Evolved during the past 28 years
 - 1989: BGP-1 [RFC 1105], replacement for EGP
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995: BGP-4 [RFC 1771], support for CIDR
 - 2006 : BGP-4 [RFC 4271], update

Basic BGP Operation

CS 118: Border Gateway Protocol

Step-by-Step

- A node learns multiple paths to destination
 - Stores all of the routes in a routing table
 - Applies policy to select a single active route
 - ... and may advertise the route to its neighbors
- Incremental updates unlike distance vector
 - Announcement
 - » Upon selecting a new active route, add own node id to path
 - » ... and (optionally) advertise to each neighbor
 - Withdrawal
 - » If the active route is no longer available
 - » ... send a withdrawal message to the neighbors

A Simple BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., "7018 88")
 - Next-hop IP address (e.g., 12.127.0.121)

Data Packets flow in opposite direction from BGP updates

- Notice how Next Hop Info from last slide is crucial to build forwarding table at each route used to choose next hop
- Have to do ARP as well to get MAC address of next hop

Distance Vector versus BGP

- Only way in distance vector to tune routes is via cost
- In BGP, one can "control" routes in more complex ways

Distance Vector, within an AS, only attribute is cost, Always Pick & propagate shortest

Path Vector, between ASes, Multiple attributes, Complex Choices settable in config files

(some) BGP Attributes

- AS path: ASs the announcement traversed
- Next-hop: where the route was heard from
- Origin: Route came from IGP or EGP
- Local pref: Statically configured ranking of routes within AS
- Multi Exit Discriminator: preference for where to exit network
- Community: opaque data used to tag routes that are to be treated equivalently.

BGP Decision Process

- Default decision for route selection
 - Highest local pref, shortest AS path, lowest MED, prefer eBGP over iBGP, lowest IGP cost, router id
- Many policies built on default decision process, but...
 - Possible to create arbitrary policies in principle
 - Limited only by power of vendor-specific routing language

Example: Local Pref

Example: Short AS Path

AS Paths vs. Router Paths

CS 118: Border Gateway Protocol

More intricate feature: MEDs

- Way to do load balancing by passing a hint to next AS
- Request Harvard send traffic to Princeton sciences via R2

Doing MEDs in Cisco router config at Princeton exit

neighbor R1 route-map setMED-R1 out neighbor R2 route-map setMED-R2 out

```
access-list 1 permit 128.112.12.0 255.255.255.0 // sciences access-list 2 permit 128.112.18.0 255.255.255.0 // arts

route-map setMED-R1 ... match ip address 1 set metric 100 // for R1 send science prefix with lower MED priority route-map setMED-R1 ... match ip address 2 set metric 200 // for R1 send arts prefix with higher MED priority

route-map setMED-R2 ... match ip address 1 set metric 200 // for R2 send science prefix with higher MED priority route-map setMED-R2 ... match ip address 2 set metric 100 // for R2 send arts prefix with lower MED priority
```

CS 118 – BGP

Feature 2: community

- Way to tag multiple routes with same tag value
- Then remote routers can act on tag (e.g., filter)

Feature 3: Aggregation

25

CSE 1118: BGP

BGP Has Lots of Problems

Instability

- Route flapping (network x.y/z goes down... tell everyone)
- Not guaranteed to converge, NP-hard to tell if it does

Scalability still a problem

- >1,000,000 network prefixes in default-free table today
- Tension: Want to manage traffic to very specific networks (eg. multihomed content providers) but also want aggregation

Performance

Non-optimal, doesn't balance load across paths

Business Relationships

- Neighboring ASes have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay
- Common business relationships
 - Customer-provider
 - » E.g., Princeton is a customer of USLEC
 - » E.g., MIT is a customer of Level3
 - Peer-peer
 - » E.g., UUNET is a peer of Sprint
 - » E.g., Harvard is a peer of Harvard Business School

Multi-Homing

- Customers may have more than one provider
 - Extra reliability, survive single ISP failure
 - Financial leverage through competition
 - Better performance by selecting better path
 - Gaming the 95th-percentile billing model

Beyond BGP

- SDN inspired approaches like Google's Espresso
- Link state versions of BGP (IDRP, Radia proposal)

CS 118: BGP

Google Gives Last Mile a Shot of "Espresso"

Google border routers talk BGP to the outside world but send all BGP announcements to a service that also has latency information from Google Apps and so picks better routers to the external Internet

Conclusions

- Link State and Distance vector are used to route within a Domain/AS/ISP/Enterprise
- BGP is used to compute routes between ASes
- Basically like distance vector gossip except you add not just a total cost but list of all Ass in path so far.
- AS Path helps policy because any router can choose to drop based on AS's in path.
- AS Path also helps prevent loops without a hop count
- BGP has issues and there are alternatives to BGP

CS 118: BGP 31