AMENDMENTS TO THE SPECIFICATION:

Please amend the specification as follows:

Please replace paragraph [0213] of the published specification with the following: [0213] The freeze-dried compositions obtained in Examples 5 to 11 were in the form of a non-powder cake-like lump (freeze-dried cake) after freeze-drying. As shown in Table 2, the freeze-dried compositions obtained in Examples 5-11, which showed a disintegration index of at least 0.15, were easily made into fine particles in the vessel by an air impact arising through an air speed of about 35 m/sec and an air flow rate of about 40 ml/sec, and thus obtained a fine particle fraction having a mass median aerodynamic diameter of 5 microns or less, and hence it was possible to produce preparations suitable for transpulmonary administration. Each freeze-dried composition showed a favorable fine particle fraction. Moreover, it was verified that the freeze-dried composition obtained in Examples 5 to 11 showed high residual activity after freeze-drying and residual activity after high-temperature preservation, and also maintained high IFN-γ activity even in the preparation of a composition and under conditions of high-temperature preservation.

TABLE 2

						Com.	Com.
	Ex. 5	Ex. 6	Ex. 7	Ex. 8	Ex. 9	Ex. 10	Ex. 11
IFN-γ (IU)	100,000	100,000	100,000	1,000,000	1,000,000	1,000,000	1,000,000
Phenylalanine	1.2 mg	1.2 mg	1.2 mg	1 mg	1 mg	1 mg	_
Leucine	0.3 mg		_	0.3 mg			_
Valine		0.3 mg	_		0.3 mg	_	0.8 mg
Isoleucine	_	_	0.3 mg	_	_	0.3 mg	_
Arginine	0.2 mg						
hydrochloride							
Disintegration	0.191	0.190	0.181	0.316	0.293	0.281	0.150
Index							
Mass median	1.537 ± 1.438	1.698 ± 0.542	1.874 ± 1.842	1.278 ± 0.386	1.387 ± 1.591	1.964 ± 1.673	1.597 ± 1.625
aerodynamic							
diameter							
(μm ± SD,							
(DAMMAD)							
Fine particle	67%	64%	67%	85%	82%	78%	70%
fraction	0.70	0.70	0.70	0070	0270		
Residual activity	83%	80%	84%	100%	92%	97%	80%
after freeze-drying	30,0	0070	0170	10070	0270	0.70	0070
Residual activity							
after high-	93%	95%	98%	93%	98%	78%	87%
temperature							
preservation							

Please replace paragraph [0217] of the published specification with the following: [0217] The freeze-dried compositions obtained in Examples 12 to 14 were in the form of a non-powder cake-like lump (freeze-dried cake) after freeze-drying. As shown in Table 3, the freeze-dried compositions obtained in Examples 12 to 14, which showed a disintegration index of at least 0.25, were easily made into fine particles in the vessel by an air impact arising through an air speed of about 35 m/sec and an air flow rate of about 40 ml/sec, and thus obtained fine particle fraction having a mass median aerodynamic diameter of 5 microns or less, and hence it was possible to produce a preparation suitable for transpulmonary administration. Moreover, it was verified that the freeze-dried compositions obtained in Examples 12 to 14 showed high residual activity after freeze-drying and residual activity after high-temperature preservation, and also maintained high IFN-γ activity even in the preparation of a composition and under conditions of high-temperature preservation.

Table 3

	Ex. 12	Ex. 13	Ex. 14
FN-γ	1,000,000 IU	1,000,000 IU	1,000,000 IU
Phenylalanine	0.8 mg	1 mg	1 mg
.eucine		0.3 mg	0.3 mg
.eucine-	0.2 mg	_ *	
henylalanine		_	
vsine	_	0.2 mg	_
Threonine	_		0.2 mg
Arginine	0.2 mg	_	
nydrochloride			
Disintegration index	0.251	0.285	0.327
Mass median	1.578 ± 1.285	1.389 ± 1.427	1.256 ± 1.223
erodynamic	1.070 1 1.200	1.003 1 1.421	1.230 I 1.220
liameter			
μm ± SD, MMDAMMAD)			
Residual	90%	83%	92%
activity	90%	0376	9276
ifter			
reeze-drying			
Residual	92%	85%	89%
ctivity after	9276	03%	09%
igh-temperature			
reservation			

Please replace paragraph [0222] of the published specification with the following: [0222] The freeze-dried composition obtained in Example 15 was in the form of a non-powder cake-like lump (freeze-dried cake) after freeze-drying. As shown in Table 4, the freeze-dried composition obtained in Example 15, which showed a disintegration index at least 0.05, was easily made into fine particles in the vessel by an air impact arising through an air speed of about 89 m/sec and an air flow rate of about 100 ml/sec, and thus obtained fine particle fraction having a mass median aerodynamic diameter of 5 microns or less, and hence it was possible to produce a preparation suitable for transpulmonary administration. Moreover, it was verified that the freeze-dried composition obtained in Example 15 showed high residual activity after freeze-drying and residual activity after high-temperature preservation, and also maintained high IFN-γ activity even in the preparation of a composition and under conditions of high-temperature preservation.

Table 4

	Ex. 15
IFN-γ	1,000,000 IU
Leucyl-valine	1.3 mg
Arginine	0.2 mg
hydrochloride	_
Disintegration	0.053
index	
Mass median	1.983 ± 1.676
aerodynamic	
diameter	
(µm ± SD, MMDAMMAD)	
Residual	89%
activity	
after	
freeze-drying	
Residual	82%
activity after	
high-temperature	
preservation	

Please replace paragraph [0227] of the published specification with the following: [0227] The freeze-dried composition obtained in Example 16 was in the form of a non-powder cake-like lump (freeze-dried cake) after freeze-drying. As shown in Table 5, the freeze-dried composition obtained in Example 16, which showed a disintegration index at least 0.2, was easily made into fine particles in the vessel by an air impact arising through an air speed of about 1 m/sec and an air flow rate of about 17 ml/sec, and thus obtained fine particle fraction having a mass median aerodynamic diameter of 5 microns or less, and hence it was possible to produce a fine particle powder-form preparation suitable for transpulmonary administration. Moreover, it was verified that the freeze-dried composition obtained in Example 16 showed high residual activity after freeze-drying and residual activity after high-temperature preservation, and also maintained high IFN-γ activity even in the preparation of a composition and under conditions of high-temperature preservation.

Table 5

	Ex. 16
IFN-y	1,000,000 IU
Valine	0.5 mg
Arginine	0.2 mg
hydrochloride	
Disintegration	0.205
index	
Mass median	1.610 ± 1.548
aerodynamic	
diameter	
(µm ± SD, MMDAMMAD)	
Residual activity	82%
after freeze-drying	
Residual activity	83%
after	0070
high-temperature	
preservation	