# Протокол ІРуб

Сети и системы телекоммуникаций

## Mecto в моделях OSI и TCP/IP

Модель OSI

Прикладной

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Модель ТСР/ІР

Прикладной

Транспортный

Интернет

Сетевых интерфейсов

# Место в стеке протоколов ТСР/ІР



## Цели создания IPv6

#### Нехватка адресов IPv4:

- Длина адреса IPv4 4 байта
- Максимальное количество адресов IPv4 4,3 млрд.
- В 2011 был выдан последний блок адресов IPv4 класса А (маска /8)

#### Временные решения:

- Технология трансляции сетевых адресов (NAT)
- Бесклассовая междоменная маршрутизация (Classless Inter-Domain Routing, CIDR)

#### Протокол IPv6:

- Длина адреса IPv6 16 байт
- Количество адресов IPv6 3,4 \* 10<sup>38</sup>

# Цели создания IPv6

#### Дополнительные цели разработки IPv6:

- Упрощение протокола для ускорения работы маршрутизаторов
- Обеспечение безопасности

#### Дата создания IPv6:

- 1990 проблемная группа проектирования
   Интернета IETF начала работу над новой версией протокола IP
- 1995 Первый вариант стандарта IPv6 в документе RFC 1883
- 1998 Принят действующий стандарт IPv6 RFC 2460

# Формат заголовка IPv6

| 4 бита<br>Номер<br>версии                    | 8 бит<br>Класс трафика | 20 бит<br>Метка потока          |                                              |
|----------------------------------------------|------------------------|---------------------------------|----------------------------------------------|
| 16 бит<br>Длина полезной нагрузки            |                        | 8 бит<br>Следующий<br>заголовок | 8 бит Максимальное число транзитных участков |
| 16 байт<br>IPv6-адрес отправителя            |                        |                                 |                                              |
| 16 байт<br>IPv6-адрес получателя             |                        |                                 |                                              |
| Дополнительные заголовки<br>(не обязательно) |                        |                                 |                                              |

## Дополнительные заголовки IPv6

Параметры маршрутизации

Параметры получателя

Маршрутизация

Фрагментация

Аутентификация (IP Authentication Header, RFC 2402)

Шифрование (IP Encapsulating Security Payload, RFC 2406)

#### Влияние IPv6 на IPv4

#### Качество обслуживания:

• Поле «Тип сервиса» в заголовке IPv4 было заменено на «Класс трафика», как в IPv6

#### Безопасность:

• Аутентификация и шифрование были перенесены в IPv4 в виде технологии IPSec (IP Security)

## Внедрение IPv6

#### Протоколы IPv6 и IPv4 не совместимы друг с другом

- Необходима замена оборудования и ПО, заметная для пользователей
- Протоколы будут сосуществовать долгое время

#### Механизмы реализации:

- Двойной стек
- Туннелирование

#### IPv6 World Launch:

- 6 июня 2012 г.
- Cisco, D-Link, Google, Facebook, Microsoft и др.
- http://www.worldipv6launch.org



# Использование IPv6 по данным Google



https://www.google.com/intl/en/ipv6/statistics.html

#### Итоги

#### Протокол IPv6:

- Решение проблемы нехватки IP-адресов
- Ускорение работы маршрутизаторов
- Обеспечение безопасности

#### Изменения в IPv6:

- Длина IP-адреса 16 байт
- Отказ от расчета контрольных сумм и фрагментации на маршрутизаторах
- Заголовки для аутентификации и шифрования

#### Проблема IPv6:

• Несовместимость с IPv4, необходима полная замена