

Curso: Engenharia de Computação / Ciência da Computação

PROFA. POLYANA SANTOS FONSECA NASCIMENTO

Disciplina: Lógica Digital

SIMPLIFICAÇÃO DE CIRCUITOS LÓGICOS

Regras da Álgebra de Boole ou Álgebra Booleana ou Álgebra das Proposições em notação eletrônica:

Notag	ão Lógica	Notação Eletrônica			
Nome	Regra	Nome	Regra		
Dupla negação	~~P ⇔ P	Postulados da Complementação	$\overline{\overline{A}} = A$		
Idempotência	$\mathbf{p}_{\mathcal{M}}\mathbf{p} \rightleftarrows \mathbf{p}$		0 + 0 = 0 1 + 1 = 1		
Identidade	P ∨ ~P ⇔ T T ∨ P ⇔ T C ∨ P ⇔ P	Postulados da Adição	$A + \overline{A} = 1$ $1 + A = 1$ $0 + A = A$		
Idempotência	$P \wedge P \Leftrightarrow P$		0.0 = 0 $1.1 = 1$		
Identidade	$\begin{array}{c} P \wedge \sim P \Leftrightarrow C \\ C \wedge P \Leftrightarrow C \\ T \wedge P \Leftrightarrow P \end{array}$	Postulados da Multiplicação	$A. \bar{A} = 0$ 0. A = 0 1. A = A		
Comutativa	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A + B = B + A $A. B = B. A$		
Associativa	Associativa $ \begin{array}{c} P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R \\ P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R \end{array} $		A + (B + C) = (A + B) + C A.(B.C) = (A.B).C		
Distributiva	$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$	Distributiva	A.(B + C) = A.B + A.C A + B.C = (A + B).(A + C)		
Dogras do Do Morgan	\sim (P \wedge Q) \Leftrightarrow \sim P \vee \sim Q	Primeiro Teorema de De Morgan	$\left(\overline{A.B}\right) = \overline{A} + \overline{B}$		
Regras de De Morgan	\sim (P \vee Q) \Leftrightarrow \sim P \wedge \sim Q	Segundo Teorema de De Morgan	$\left(\overline{A+B}\right) = \overline{A}.\overline{B}$		
Absorção	$\begin{array}{c} P \vee (P \wedge Q) \Leftrightarrow P \\ P \wedge (P \vee Q) \Leftrightarrow P \end{array}$		A + A.B = A $A. (A + B) = A$		
-	$\begin{array}{c} P \vee (\simP \wedge Q) \Leftrightarrow P \vee Q \\ P \wedge (\simP \vee Q) \Leftrightarrow P \wedge Q \end{array}$	Identidades Auxiliares	$A + \overline{A}.B = A + B$ $A.(\overline{A} + B) = A.B$		

<u>Diagramas de Veitch-Karnaugh</u>:

DIAGRAMA PARA 2 VARIÁVEIS:

DIAGRAMA PARA 3 VARIÁVEIS:

DIAGRAMA PARA 4 VARIÁVEIS:

	\overline{B}	В
\overline{A}		
A		

EXERCÍCIOS

1. Simplifique cada expressão utilizando a Álgebra de Boole:

a.
$$S = AB\overline{C} + \overline{A}\overline{B}C + ABC + \overline{A}BC + \overline{A}B\overline{C}$$

b.
$$S = AB\overline{C}D + \overline{A}\overline{B}C\overline{D} + AB\overline{C}\overline{D} + AB\overline{C}\overline{D} + ABC\overline{D} + ABC\overline{D} + ABCD$$

c.
$$S = \left[\overline{\left(\overline{B} + \overline{C} + \overline{D} \right) \cdot \left(\overline{A} + B + C \right) + C} \right] + \overline{A} \, \overline{B} \, C + \overline{B} \cdot \left(\overline{A} + C \right)$$

d.
$$S = A.[\overline{B.(C+D)} + \overline{A.(B+C)}] + C\overline{D} + A\overline{B}C + AB$$

e.
$$S = (\overline{A \oplus B + \overline{B}C\overline{D}}). \left[\overline{\overline{D} + \overline{B}C + D.(\overline{\overline{A} + B})} \right] + \overline{A}\overline{D}$$

f.
$$S = [(\overline{B + C\overline{D} + \overline{D} + AC}).(A + \overline{B} + \overline{C}) + \overline{B}.(\overline{C + \overline{A}BC + AC})].(A + B)$$

g.
$$S = (\overline{B} + \overline{D}) \cdot \{\overline{B} + C \odot D + \overline{A} \cdot [\overline{BC} + \overline{BC} + A + B \cdot (\overline{C} + \overline{D})]\}$$

$$\mathsf{h.} \quad S = \left(\overline{\overline{A}B + C\overline{D}} + AD\right) \cdot \left\{ \overline{\overline{B} \cdot \left[C \oplus D + \overline{A} \cdot \left(\overline{\overline{B}} + \overline{C}\right) + A\overline{B} \ \overline{C}\right] + \overline{A}} \right\}$$

2. Simplifique cada Sn utilizando o mapa de Veicht-Karnaugh

Α	B S1		S2	
0	0	1	1	
0	1	0	1	
1	0	1	0	
1	1	1	0	

Α	В	C	S1	S2	S3	S4
0	0	0	1	1	0	0
0	0	1	0	1	1	1
0	1	0	1	1	0	1
0	1	1	1	0	0	0
1	0	0	1	1	1	1
1	0	1	1	1	1	0
1	1	0	0	1	1	1
1	1	1	1	0	0	1

Α	В	С	D	S1	S2	S3	S4
0	0	0	0	1	1	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	1	0
0	0	1	1	1	0	0	1
0	1	0	0	1	1	1	1
0	1	0	1	0	1	1	1
0	1	1	0	0	1	1	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	0	1	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	0	1	1	1
1	1	1	0	0	0	0	1
1	1	1	1	1	1	0	1

3. Simplifique as expressões utilizando o mapa de Veight-Karnaugh:

a.
$$S = A\overline{B} \overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + ABC$$

b.
$$S = \overline{B} \, \overline{D} + \overline{A} + A \overline{B} \, \overline{C} D + A \overline{B} C D + \overline{A} \, \overline{C}$$

c.
$$S = ABC + AB + \overline{A}BCD + BD + CD + \overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D}$$

d.
$$S = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + AB\overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + ABCD + A\overline{B} \overline{C} \overline{D} + ABCD + A\overline{B} \overline{C} \overline{D}$$

4. Simplifique cada Sn utilizando o mapa de Veitch-Karnaugh:

l	Α	В	U	S1	S2
	0	0	0	Χ	1
	0	0	1	0	Χ
	0	1	0	1	0
I	0	1	1	Χ	0
	1	0	0	1	0
I	1	0	1	Χ	1
	1	1	0	Χ	Χ
	1	1	1	1	Χ

Α	В	С	D	S1	S2	S3	S4
0	0	0	0	1	Χ	0	Χ
0	0	0	1	Χ	Χ	0	0
0	0	1	0	Χ	1	0	Χ
0	0	1	1	Χ	0	1	1
0	1	0	0	1	Χ	Χ	1
0	1	0	1	0	1	Χ	Χ
0	1	1	0	Χ	0	1	0
0	1	1	1	Χ	1	0	1
1	0	0	0	Χ	1	Χ	0
1	0	0	1	1	0	1	1
1	0	1	0	Χ	Χ	0	0
1	0	1	1	1	1	0	Χ
1	1	0	0	Χ	0	1	1
1	1	0	1	Χ	1	0	1
1	1	1	0	1	1	Χ	1
1	1	1	1	0	Χ	1	Χ