THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 6

Name:	CHI	AN CHO K	ct. On	CW	Stud	ent No.:	(1551)	15546	1. 1.
Class: _	k i	MATHI	510 61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 13.1 - 3.1				
in bl	academ e to bre	nic work, a eaches of s	nd of th such pol	ne disciplin	ary gui gulatio	delines ar ns, as cor esty/	nd proced ntained in	as on hones ures applic the websi	a-
- S	Signature					(f/(0/2021)			
• P F P P P • P	lease go ailure to lease wi encil. oints wi	to the class comply write your a	s indicatill resultanswers awarded	t in a 2-pc	register int dec ack or l rs with some s	red course duction of blue pen, sufficient elected qu	of the fina NOT any justificati	y other col	or or a
				1	1 1		Me, 1		
For int	ernal us	e only:							,
	2	3 3 3	1 1 1			Ç			
	4			٦					

1. Let
$$f(x) = \sqrt[3]{x}$$
. $= \chi^{\frac{1}{3}}$

- (a) Find the equation of the tangent of f(x) at x = 1000. Express your answer in form of y = mx + c.
- (b) Using the fact that

$$y = L(x) = mx + c$$

is close to f(x) around the point x = 1000, give an approximation of $\sqrt[3]{999}$.

(a)
$$f'(x) = \frac{1}{3} x^{-\frac{2}{3}}$$

$$f'(000) = \frac{1}{3}(000)^{\frac{3}{3}} = \frac{1}{300}$$

$$= (2)$$

$$y = \frac{1}{3\omega} x + \frac{1}{3}$$

$$\approx \frac{1}{3\infty} (999) + \frac{1}{3}$$

(b) Let
$$a = 20$$
, $b = 21$,

we have: $\frac{21-20}{21} < \ln 21 - \ln 20 < \frac{2(-20)}{20}$

2. (a) Let
$$0 < a < b$$
. Show that

$$\frac{b-a}{b} < \ln b - \ln a < \frac{b-a}{a}.$$

$$\frac{1}{21} < \ln 1.05 < \frac{1}{20}.$$

thun
$$C \in (a,b)$$
 st. $f'(c) = \frac{f(b) - f(a)}{b - a}$

(onsider
$$f(x) = lnx$$
 on $[a,b]$
 $f(x) = \frac{1}{x}$ on $[a,b]$ where $0 < a < b$.

We have the value c where:
$$\frac{1}{c} = \frac{\text{lub-lna}}{6-a}$$

$$c = \frac{b-a}{\text{lnb-lna}}$$

$$a < \frac{b-a}{\ln a - \ln b} < b$$

$$\frac{a}{b-a} < \frac{1}{\ln a - \ln b} < \frac{b}{b-a}$$

$$\frac{b-a}{b} < \ln a - \ln b < \frac{b-a}{a}$$

(b) Let
$$b = 1$$
, $a = 0$; We have

$$\frac{1}{2} < \frac{\tan^{-1} 1 - \tan^{-1} 0}{2} < \frac{4}{4}$$

Part B
$$2 < 4 (\tan^{-1} (1) - \tan^{-1} (0)) < 4$$
3. (a) Let $0 \le a < b$. Show that $2 < \frac{1}{1+b^2} < \frac{\tan^{-1} b - \tan^{-1} a}{b-a} < \frac{1}{1+a^2}$.

(b) Using the result obtained in part (a), show that $2 < \frac{\pi}{2} < 4$.

then we have
$$C \in (a,b)$$
 s.t. $\alpha f'(a) = \frac{f(b) - f(a)}{b-a}$

&
$$f'(\chi) = \frac{1}{1+\chi^2}$$
 on (a,b) where $0 \le a \le b$

... We have the value
$$c: \frac{1}{1+c^2} = \frac{\tan^{-1}b - \tan^{-1}a}{b-a}$$

$$\frac{1}{b} < \frac{1}{c} < \frac{1}{a}$$

$$\frac{1}{b^{2}} < \frac{1}{c^{2}} < \frac{1}{a^{2}}$$

$$\frac{1}{1+b^{2}} < \frac{1}{1+a^{2}} < \frac{1}{1+a^{2}}$$

$$\frac{1}{1+b^{2}} < \frac{1}{a} < \frac{1}{a} < \frac{1}{1+a^{2}}$$

$$f'(x) = \frac{x-2}{(4-x)^{-\frac{3}{2}}} \qquad f''(x) = \frac{(4x-x^2) - \frac{3}{2}(4x-x^2)^{\frac{1}{2}}(4-2x)}{(4x-12x^2)^{-\frac{3}{2}}}$$

4. Let
$$f(x) = \frac{1}{\sqrt{4x - x^2}}$$
.

(a) Prove that

$$(4x - x^2)f'(x) = (x - 2)f(x)$$

(b) Prove that for any positive integer n,

$$(4x - x^2)f^{(n+1)}(x) = (2n+1)(x-2)f^{(n)}(x) + n^2f^{(n-1)}(x),$$
 where $f^{(0)}(x) = f(x)$.

(a)
$$f'(x) = \frac{-\frac{1}{2}(4x-x^{2})^{-\frac{1}{2}}(4-2x)}{4x-x^{2}}$$

$$= \frac{x-2}{(4x-x^{2})^{-\frac{1}{2}}}$$

$$= \frac{x-2}{(4x-x^{2})} f'(x) = \frac{(x-1)(4x-x^{2})^{(-\frac{1}{2})}}{(4x-x^{2})^{(-\frac{1}{2})}}$$

$$= \frac{x-2}{\sqrt{4x-x^{2}}}$$

$$= (x-2) f(x)$$

(b) By General Leibniz Rule:

$$(fg)^{n} = \sum_{k=0}^{n} (u) f(n-k) g(k)$$

$$\text{let } g(x) = 4x - x^{2} & f(x) = f'(x)$$

$$g'(x) = 4 - 2x$$

$$g''(x) = -2$$

$$g'''(x) = 0$$

$$g(n|x) \stackrel{!}{=} 0$$

$$\begin{aligned}
f(g)^{N} &= \sum_{k=0}^{N} {n \choose k} &= M f^{(n-k)} g^{(n)} \\
f(g)^{N} &= f^{(n)} + n f^{(n-1)} g^{(n)} + {n \choose 2} f^{(n-2)} g^{(2)} \\
&+ {n \choose 3} f^{(n-3)} g^{(3)} \\
&+ o \quad \text{Cowhen } n \geq 3
\end{aligned}$$

$$\begin{aligned}
&= f^{(n)} + n f^{(n-1)} (4-1) \\
&+ (-1) f^{(n-2)} - n f^{(n-1)} \\
&+ (-1) f^{(n-2)} - n f^{(n-1)} \\
&= f^{(n)} + n f^{(n)} \\
&= f^{(n)} + n f^{($$

 \equiv

1-24

We-fo

.
