

(1)
$$Vin = 0$$

 M_1, g_1 off
 M_2, g_2 on \rightarrow lout $w!u$ be charged.

Vout (high) =
$$V_P - V_{Sd}$$
 (sat) - V_{BE} (on)
= $5 - 0.2 - 0.5$
= $4.3v$

Scanned by CamScanner

$$= V_{P} - 2V_{BE}(on) - V_{Sd}(sat) - V_{ds}(sat)$$

$$= V_{P} - 2V_{BE}(on) - 2V_{Sd}(sot) \qquad [V_{Sd}(sat) = V_{ds}(sat)]$$

$$= 5 - 2 \times 0.5 - 2 \times 0.2$$

So. Output voltage swing: 3.62

3.60

1 Noise Mergin:

$$PMOS$$
 $Vsg = Vs - Vg = Vp - [Vp - Vsd(sat) - VsE(6n)]$
 $= Vp = Vsd(sat) + VsE(0n)$
 $= 0.2 + 0.5 = 0.7$