

流量计设计资料

Revsion V1.5		
□ 日期: 25.04.11		

1. 标定操作

1.1 手动标定操作

前3位标定选项值,后3位进入标定口令,固定为235。

电阻标定与小数点无关,程序固定2位小数,流量计单位小数点自动处理。

1.1.1 长按 M 键进入 6 位密码模式,各位含义如下

• 第 1 位: 标定类型

。 0: 压力

。 1: 电阻[Ω]

。 2: 压差

。 3: 高度[m]

。 4: 流量[m³/h]

• 第 2 位: 小数点, 取值 [3,4,5]

• 第 3 位: 单位 (标定类型为压力时)

∘ 0: Mpa

∘ 1: Kpa

1.1.2 短按 M 键可查看历史标定参数,若需修改

- 按 S 键, 光标闪烁时可按 S 键移动光标, J 键调整。
- 按 M 键保存, 长按 M 键退出标定模式。
- 光标闪烁时若不修改,长按 S 键退出标定模式,按 M键退出会保存单位和小数点。

1.1.3 流量计手动标定

输入密码 400235,数据宽度 8 位为浮点输入,格式为自左向右 1 位符号位(S)、1 位小数点位(D)、6 位数值位(XXXXXXX)。符号位判断:0 为正数,非 0 为负数。

1.1.4 标定参数列表

序号	名称	格式	单位	说明
0	频率分段点数	SDXXXXXX		
1	仪表计算系数 a	SDXXXXXX		$k = af^4 + bf^3 + cf^2 + df + e$
2	仪表计算系数 b	SDXXXXXX		
3	仪表计算系数 c	SDXXXXXX		
4	仪表计算系数 d	SDXXXXXX		
5	仪表计算系数 e	SDXXXXXX		
6	仪表系数	SDXXXXXX	p/L	
7	参考 DN	SDXXXXXX	mm	
8	参考 MaxQ	SDXXXXXX	m³/h	
9	仪表运行系数选项	0000000X		[0: 频率分段系数区间值, 3: 频率分段系数插值, 1: 频率计算系数, 2: 平均系数]
10	频率输出选择	0000000X		校准后: 0,原始频率: 1
11	频率点 0 值	SDXXXXXX	Hz (精度 0.1Hz)	频率 <= 频率点 0 的值,取频率点 0 的系数
12	频率点 0 系数	SDXXXXXX		
13	频率点 1 值	SDXXXXXX		频率点 0 的值 < 频率 <= 频率点 1 的值,取频率点 1 的系数
14	频率点 1 系数	SDXXXXXX		
15	频率点 2 值	SDXXXXXX		

序号	名称	格式	单位	说明
16	频率点 2 系数	SDXXXXXX		
17	频率点3值	SDXXXXXX		
18	频率点3系数	SDXXXXXX		
19	频率点 4 值	SDXXXXXX		
20	频率点 4 系数	SDXXXXXX		
21	频率点 5 值	SDXXXXXX		
22	频率点 5 系数	SDXXXXXX		
23	频率点 6 值	SDXXXXXX		
24	频率点 6 系数	SDXXXXXX		
25	频率点7值	SDXXXXXX		
26	频率点7系数	SDXXXXXX		
27	频率点8值	SDXXXXXX		
28	频率点8系数	SDXXXXXX		
29	频率点 9 值	SDXXXXXX		
30	频率点 9 系数	SDXXXXXX		
31	频率点 10 值	SDXXXXXX		
32	频率点 10 系数	SDXXXXXX		
33	频率点 11 值	SDXXXXXX		
34	频率点 11 系数	SDXXXXXX		
35	频率点 12 值	SDXXXXXX		
36	频率点 12 系数	SDXXXXXX		
37	频率点 13 值	SDXXXXXX		

序号	名称	格式	单位	说明
38	频率点 13 系数	SDXXXXXX		
39	频率点 14 值	SDXXXXXX		
40	频率点 14 系数	SDXXXXXX		
41	频率点 15 值	SDXXXXXX		
42	频率点 15 系数	SDXXXXXX		
43	频率点 16 值	SDXXXXXX		
44	频率点 16 系数	SDXXXXXX		
45	频率点 17 值	SDXXXXXX		
46	频率点 17 系数	SDXXXXXX		
47	频率点 18 值	SDXXXXXX		
48	频率点 18 系数	SDXXXXXX		
49	频率点 19 值	SDXXXXXX		
50	频率点 19 系数	SDXXXXXX		

1.2 modbus标定协议

无特殊申明以下数据类型为整形大端,浮点数则为 IEEE754,数据均为 16 进制。

1.2.1 读当前通道脉冲累计值

• **写请求**: addr 03H 30 10 00 02 2byte(crc)

• **响应**: addr 03H 04 4byte脉冲累计值 2byte(crc) XXXXXXXXXX

1.2.2 读当前通道瞬时频率值

当前通道瞬时频率值为 1 位定点小数,是 10S 滑动平均值。

• **写请求**: addr 03H 30 11 00 01 2byte(crc)

• **响应**: addr 03H 02 2byte瞬时频率值 2byte(crc) XXXX.X

1.2.3 写频率分段参数

写频率的分段点数,频率分段点和对应的仪表系数,频率值为 1 位定点小数,频率分段数最多 20 个。

・写请

求

: addr 11H 30 01 00 xx len 2B频率分段数,分段点0对应2B频率值&4B(float)仪表系数...2byte(crc)

• 响应: addr 11H 30 01 00 xx 2byte(crc)

1.2.4 写频率计算仪表系数多项式参数

频率计算仪表系数多项式为 $k(x)=ax^4+bx^3+cx^2+dx^1+e$, x 为频率, 1 位定点小数。

• **写请求**: addr 11H 30 02 00 0A 14H 4B(float)参数a...4B(float)参数e 2byte(crc)

• 响应: addr 11H 30 02 00 xx 2byte(crc)

1.2.5 写仪表平均系数

• **写请求**: addr 11H 30 03 00 02 04 4B(float)仪表系数 2byte(crc)

• **响应**: addr 11H 30 03 00 xx 2byte(crc)

1.2.6 写仪表系数算法寄存器

算法选择值:[分段:0,频率计算:1,平均系数:2,插值计算:3]

• **写请求**: addr 11H 30 04 00 01 02 2B算法值 2byte(crc)

• **响应**: addr 11H 30 04 00 xx 2byte(crc)

1.2.7 写最大参考流量

最大参考流量用于内部参考计算,单位 0.1m³/h。

• **写请求**: addr 11H 30 05 00 01 02 2B最大参考流量 2byte(crc)

• 响应: addr 11H 30 05 00 xx 2byte(crc)

1.2.8 写仪表口径

仪表口径单位为 XXXX.Xmm。

• **写请求**: addr 11H 30 06 00 01 02 2byte仪表口径 2byte(crc)

• 响应: addr 11H 30 06 00 xx 2byte(crc)

1.2.9 写频率选择

频率选择值:[0:补偿后频率,1:原始频率]

• **写请求**: addr 11H 30 07 00 01 02 2byte频率选择 2byte(crc)

• 响应: addr 11H 30 07 00 xx 2byte(crc)

2. 厂商参数设置

前3位口令固定为327,后3位输入口令237。

opt	param	数据输入格式	说明
0	流量系数	XX.XXXX	
1	电流系数	XX.XXX	
2	pt 温度修正	XX.XXX	
3	压力修正	XX.XXXX	
4	定位功能	XXXXXX	无定位: 0, GPS: 1, LBS: 2
5	小信号切除(频率)	XXXXX.X	hz
6	平均流量滤波时间	XXXXXX	取值[0-9],实际表示[1-10]秒 推荐值[0,1,4,9]
7	电流2点校准的4mA实际输出值	XXX.XXX	参数修改时切换至理论4mA输出
8	电流2点校准的20mA实际输出值	XXX.XXX	参数修改时切换至理论20mA输出

3. 用户参数设置

前 3 位口令固定为 111, 后 3 位输入口令 237。

opt	param	数据输入格式	说明
0	单位选择		(0: m³/h, 1: L/m, 2: Kg/h, 3: L/h, 4: T/h, 5: Kg/m, 6: m³/m, 7: T/m)
1	电流下限		4 毫安对应流量值,单位 m³/h
2	电流上限		20 毫安对应流量值,单位 m³/h
3	电流方向		正向输出: 0, 反向输出: 非 0
4	当量脉冲	XXX.XXX	单位: L
5	脉冲宽度	XXXXX.X	单位: ms <= 1000.0ms
6	密度值	XXXX.XX	kg/m³
7	RS485 站号	XXXXXX	
8	波特率	XXXXXX	1200: 0, 2400: 1, 4800: 2, 9600: 3, 19200: 4
9	Lora 频段	XXXXXX	485000kHz
10	Lora 网络地址		
11	Lora 节点高 16 位地址		
12	Lora 节点低 16 位地址		
13	CAT IP 地址高位		
14	CAT IP 地址低位		
15	CAT 端口		
16	CAT 发送间隔		min
17	系统日期	XX.XX.XX	YYMMDD
18	系统时间	XX.XX.XX	HHMMSS

4.用户高级参数设置 (累计量设置)

前3位口令固定为000,后3位输入口令,固定为357。

opt	param	数据输入格式	说明
0	total.int	XXXXXXXX	整数部分 m³
1	total.dec	000.XXXXXX	小数部分 m³

5. 用户MODBUS-RTU协议

5.1 协议说明

- 所有浮点数的解析按照 ABCD 的顺序进行解析。
- 所有浮点类型占2寄存器,32位整数占2个寄存器。
- 数据类型为32位的,须用10H连续写入2个寄存器,10H只支持完整的一个数据写入。

5.2 寄存器地址说明

地址	功能说明	类型	意义	读写操作
0x00	温度	浮点数		R
0x02	瞬时流量	浮点数	单位参考瞬时流量单位	R
0x04	流速 m/s	浮点数		R
0X06	频率	浮点数		R
0X08	累计流量整数部分	32位整数		R
0X0A	累计流量小数部分	32位整数	6位定点小数累计流量 = 小数部分 * 0.000001; 累计单位: m³	R
0X0C	瞬时流量单位	浮点数	(0: m³/h, 1: L/min, 2: Kg/h, 3: L/h, 4: T/h, 5: Kg/min, 6: m³/min, 7: t/ min)	R

地址	功能说明	类型	意义	读写操作
0X0E	读取压力	浮点数	单位 Kpa	R
0x10	读取标况流量	浮点数	m³/h	R
0x12	读取累计标况整数	32位整数		R
0x14	读取累计标况小数	32位整数	6位定点小数累计流量 = 小数部分 * 0.000001; 累计单位: m³	R
0X16	电流下限	浮点数	4毫安对应流量值,单位: m³/h	WR
0X18	电流上限	浮点数	20 毫安对应流量值,单位:m³/h	WR
0X20	密度值	32位整数	0.01kg/m³; 水: 输入 100000	WR
0x22	脉冲当量	32位整数	单位: 0.001L	WR
		以下16位寄存器		
0X2d	触发理论4/ 20ma交替输出时长值	16位整数	间隔4秒交替,单位为秒,最长60秒	rw
0X2e	实际4ma输出值	16位整数	单位0.001ma	rw
0X2f	实际20ma输出值	16位整数	单位0.001ma	rw
0X30	流量累计清零	16位整数	写 0000 会清零累积流量数值	WR
0X31	流量单位设置	16位整数	(0: m³/h, 1: L/min, 2: Kg/h, 3: L/h, 4: T/h, 5: Kg/min, 6: m³/min, 7: t/min)	WR
0X32	电流方向	16位整数	0: 正输出; 非 0: 反向输出	WR
0X33	脉冲宽度	16位整数	单位: 0.1ms <=1000.0ms	WR
0X34	485 地址	16位整数	01 - FF	WR
0X35	波特率	16位整数	0: 1200, 1: 2400, 2: 4800, 3: 9600	WR
0X36	流量系数	16位整数	4位定点小数	WR

地址	功能说明	类型	意义	读写操作
0X37	电流系数	16位整数	4位定点小数	WR
0X38	温度修正	16位整数	4位定点小数	WR
0X39	压力修正	16位整数	4位定点小数	WR
0X40	小信号切除频率	整数	单位: 0.1HZ	WR
0X41	平均流量滤波时间	整数	单位: s,取值[0-9], 实际表示[1-10] 推荐值[0, 1, 4, 9]	WR

5.3 错误响应

如果设备不能正确执行上位机命令,则会返回如下格式信息:

地址	功能码	CODE	CRC16 (L)	CRC16 (H)
ADDR	COM + 80H	XX	CRC16 (L)	CRC16 (H)

COM 为接收到的功能码。

CODE xx 的含义:

- 01 功能码错误
- 03 数据错误

6. 故障代码对应说明

错误代码	错误说明
E0000 X	EEPROM 驱动错误
E000 X 0	ADX 驱动错误
E00 X 00	LoRa 模块错误
E0 X 000	
E X 0000	RTC 模块错误

7. 调试模式下显示说明

显示项目	说明	计算公式
原始频率 f	设备从传感器采集到的频率	-
运行时的仪表系数 k	通过设置流量算法选项计算得到	-
补偿后的频率 f_c	根据原始频率和仪表系数等计算得出的补偿值	$f_c = rac{f}{k} imes k_a$
累计频率值	累计的原始频率值	

 k_a 为设置的平均仪表系数。

8. 复位代码说明

复位原因	代码
上电	0
低电压检测(LVD)	1
锁死 (Lockup)	2
复位引脚(ResetPin)	3
看门狗定时器(WDT)	4
软件复位	5
其他	Е