AutoML for Neural Network Robustness Verification

Matthias König | ADA Workshop on AutoAl

09.12.2022

Neural networks are vulnerable to adversarial examples

Neural networks are vulnerable to adversarial examples

Some examples... and possible consequences...

Verifying a deep neural network

Neural network verification can be expensive

Incomplete vs. complete verification

Neural network verification can be expensive

Incomplete vs. complete verification

There exist several approaches to verify a network

Some examples...

There exist several approaches to verify a network

Some examples...

General workflow of a MIP-based verifier

General workflow of a MIP-based verifier

Main idea: Automated configuration of MIP solvers

Main idea: Automated configuration of MIP solvers

Workflow of our proposed solution

Our approach outperforms state-of-the-art approaches

Our approach outperforms state-of-the-art approaches

Conclusions

- Automated algorithm configuration and portfolio construction techniques can strongly improve the performance of neural network verification algorithms
- More specifically, we achieved substantial improvements over SOTA methods employed at default, in terms of CPU running time, timeouts and adversarial error bounds
- Future work involves automated selection and extension to further hyperparameters

[König, Hoos, van Rijn. Speeding Up Neural Network Robustness Verification via Algorithm Configuration and an Optimised Mixed Integer Linear Programming Solver Portfolio. *Machine Learning*. 2022.]

Does the observed heterogeneity of MIP-encoded verification problem instances generalise to other types of verification problem instances?

Critical assessment of neural network verifiers

[König, Bosman, Hoos, van Rijn. Critically Assessing the State of the Art in CPU-based Local Robustness Verification. Workshop on Artificial Intelligence Safety @AAAI. 2023]

Critical assessment of neural network verifiers

[König, Bosman, Hoos, van Rijn. Critically Assessing the State of the Art in CPU-based Local Robustness Verification. Workshop on Artificial Intelligence Safety @AAAI. 2023]

Vision: Auto-Verify for neural network verification

