

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة ، لغات أجنبية

المدة: 02 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (06 نقاط)

b=1444 و a=2023 : و محيث a=1444 و العددين الطبيعيين

مين باقي القسمة الإقليدية لكلّ من العددين a و b على 5 (1

5 على $a^3 + b^2 + 2$ على إستنتج باقي القسمة الإقليدية للعدد

b = -1[5] أَي بِينَ أَنَّ: (2)

5 يقبل القسمة على $b^{2024}-1$ يقبل القسمة على 5

 $b^{2n} \equiv 1[5]$ ، n عدد طبیعی (15) استنتج أنّه: من أجل كلّ عدد طبیعی (3

 $a+b^{2n}-bn\equiv 0$ [5] عيّن قيم العدد الطبيعي n التي من أجلها يكون: (ب

التمرين الثاني: (06 نقاط)

 $u_n = 5n - 2$: المتتالية العددية المعرّفة على المتتالية العددية المعرّفة المعرّفة على المتتالية العددية المعرّفة المع

 u_2 9 u_1 , u_0 + u_1 (1)

اً بيّن أنّ المتتالية (u_n) حسابية يُطلب تعيين أساسها. ((2

 (u_n) استنتج اتجاه تغیّر المتتالیة (

بيّن أنّ العدد 2023 حدّ من حدود المتتالية (u_n) ثمّ استنتج رتبته.

 $u_0 + u_1 + \dots + u_{405} = 410263$:تحقِّق أنّ (4

 $v_{10}=48$ و $v_3=13$:حيث: r وأساسها v_0 وأساسها كم و المعرّفة على $v_3=48$ و $v_3=13$ المتتالية الحسابية المعرّفة على $v_1=48$

 v_0 عين r أساس المتتالية (v_n) وحدّها الأول أ

n بدلالة ب v_n بدلالة بعين عبارة الحدّ العام

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة ، لغات أجنبية / بكالوريا 2023

التمرين الثالث: (08 نقاط)

$$f(x) = \frac{1}{3}x^3 - x^2$$
 بـ: \mathbb{R} بالدّالة العددية المعرّفة على f

 $\left(O; \overrightarrow{i}, \overrightarrow{j} \right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f \right)$

$$\lim_{x \to +\infty} f(x)$$
 احسب (1) احسب (1)

$$f'(x) = x(x-2)$$
، x عدد حقیقی عدد من أجل كلّ عدد (2

$$[2;+\infty[\ \ \ \ \ \]-\infty;0]$$
 استنتج أنّ الدالة f متزايدة تماما على كلّ من المجالين f ومتناقصة تماما على المجال f

f شكّل جدول تغيّرات الدالة f

المماس المنحني (
$$C_f$$
) عند النقطة ذات الفاصلة (T) المماس المنحني (T) عند النقطة ذات الفاصلة (T)

$$(T)$$
تحقّق أنّ: $y = -x + \frac{1}{3}$ معادلة لـ

$$f(x) = \frac{1}{3}(x-3)x^2$$
 ، x عدد حقیقی عدد من أجل كلّ عدد (1 (4

$$f(x) = 0$$
 المعادلة \mathbb{R} حلّ في

ج) استنتج إحداثيي نقطتي تقاطع المنحني
$$\left(C_f
ight)$$
 مع حامل محور الفواصل.

$$\left(C_{f}
ight)$$
 وارسم $\left(T
ight)$ وارسم $\left(f(-2)
ight)$ وارسم (5

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة ، لغات أجنبية / بكالوريا 2023

الموضوع الثاني

التمرين الأول: (06 نقاط)

b=2024 و a=1945 : و a=1945 و a=1945 و عتبر العددين الطبيعيين

من باقى القسمة الإقليدية لكلّ من العددين a و b على a

$$a = -1[7]$$
 : بيّن أنّ (ب

روديد 7 متوافقان بترديد a^2 استنتج أنّ العددين a^2

7 يقبل القسمة على
$$a^2 + b^2 - 2$$
 بيّن أنّ العدد

 $a^{2n} \equiv 1$ [7] ، n عدد طبیعی فر (4

 $a^{2n}+bn+1\equiv 0$ [7] عيّن قيم العدد الطبيعي n التي من أجلها يكون:

التمرين الثاني: (06 نقاط)

 $u_2+u_3=60$ و q=2 :وأساسها q وأساسها q على \mathbb{N} بحدّها الأول المتتالية الهندسية المعرّفة على u_0

$$u_0 = 5$$
 بیّن أنّ: (1

2) عيّن قيمة الحدّ الذي رتبته 7

n بدلالة u_n بدلالة عين عبارة الحدّ العام (أ (3

$$u_{n+1} - u_n = 5 \times 2^n$$
 ، n عدد طبیعی عدد من أجل كل عدد عدد طبیعی

بستنتج أنّ (u_n) متزايدة تماما.

$$u_0 + u_1 + \dots + u_n = 5 \times 2^{n+1} - 5$$
 ، n عدد طبیعي (4

التمرين الثالث: (08 نقاط)

 $g(x) = -x^3 + 3x + 2$ بـ: \mathbb{R} بـن المعرّفة على g

 $\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_g
ight)$

 $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ احسب (1

 $[1;+\infty[$ و $]-\infty;-1]$ استنتج أنّ الدّالة g متناقصة تماما على كلّ من المجالين [-1;1] ومتزايدة تماما على المجال [-1;1]

ج) شكّل جدول تغيّرات الدّالة g

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة ، لغات أجنبية / بكالوريا 2023

$$g(x) = (2-x)(x+1)^2$$
 ، x عدد حقیقی عدد من أجل كل عدد عند من أجل كا عدد عدد عقیق (أ (3

$$g(x) = 0$$
 المعادلة \mathbb{R} حلّ في

ج) عيّن إحداثيات نقط تقاطع المنحنى
$$\left(C_{g}
ight)$$
 مع حاملي محوري الإحداثيات.

$$0$$
 المماس للمنحني $\left(C_{g}
ight)$ عند النقطة ذات الفاصلة (T) (4

$$(T)$$
تحقّق أنّ: $y = 3x + 2$ معادلة لـ

$$\left(C_{g}
ight)$$
 ورسم $\left(T
ight)$ وارسم $\left(g(2), g(-2), g(-2)\right)$ احسب (5

ä	العلام		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		التمرين الأول (06 نقاط)	
		اً) باقي القسمة الإقليدية للعدد a على 5 هو a	1
3.5	2	باقي القسمة الإقليدية للعدد b على 5 هو 4	
3.3		$a^3 + b^2 + 2$ على 5 هو 0 باقي القسمة الإقليدية للعدد	
	3x0.5	$a^3 + b^2 + 2 = 0[5]$, $b^2 = 1[5]$ $a^3 = 2[5]$	
		$b \equiv -1$ [5] تبیان أن (أ	2
1.5	0.5	$b \equiv -1[5]$ إذن $b \equiv 4[5]$	
1.3	2×0.5	$b^{2024}-1$ يقبل القسمة على 5 بـ التحقّق أنّ العدد	
		$b^{2024} - 1 = 0[5] \cdot b^{2024} = (-1)^{2024}[5] \cdot b = -1[5]$	
		$b^{2n}\equiv 1$ [5] ، n عدد طبیعي (أ	3
1	0.5	$b^{2n} \equiv 1[5]$ ومنه $b \equiv -1[5]$	
1		$a+b^{2n}-b$ $n\equiv 0$ [5] :ب) تعيين قيم العدد الطبيعي n التي من أجلها يكون	
	2x0.25	و k عدد طبیعي $n=5k+1$ ، $n+4\equiv 0$ [5]	
	1	التمرين الثاني (06 نقاط)	
1.5	3x0.5	$u_2 = 8$, $u_1 = 3$, $u_0 = -2$	1
	2×0.5	r تبيان أنّ (u_n) حسابية وتعيين أساسها r	2
1.5		$r = 5 \text{o} u_{n+1} - u_n = 5$	
	0.5	(u_n) استنتاج اتجاه تغیّر المتتالیة (u_n)	
		إذن (u_n) متزايدة تماما $r=5$	

1	2×0.5	تبيان أنّ 2023 حدّ من حدود المتتالية (u_n) ثمّ استنتاج رتبته	3
		$u_n = 5n-2$ تكافئ $n = 405$ تكافئ $u_n = 5n-2$	
1	• • •	$u_0^{} + u_1^{} + \cdots + u_{405}^{} = 410263$ التحقّق أنّ	4
	2x0.5	$u_0 + u_1 + \dots + u_{405} = 410263$ $u_0 + u_1 + \dots + u_{405} = \frac{406}{2} (-2 + 2023)$	
	250.25	v_0 أساس المتتالية (v_n) وحدّها الأول أ	5
1	2x0.25	$v_0 = -2$ $p = 5$	
	0.5	$v_n = 5n-2$ بارة الحدّ العام v_n بدلالة v_n	
		التمرين الثالث (08 نقاط)	
1	2X0.5	$\lim_{x \to +\infty} f(x) = +\infty \text{o} \lim_{x \to -\infty} f(x) = -\infty$	1
	0.75	$f'(x) = x^2 - 2x$ ، x عدد حقیقی x ،	2
	0.25	f'(x) = x(x-2) ، x عدد حقیقی من أجل کل عدد حقیقی	
	0.5	$x \to 0$ 2 +∞ $f'(x)$ + - 0 +	
	0.5	$[2;+\infty[$ الدالمة f متزايدة تماما على كلّ من المجالين $[0;+\infty[$ و	
3		ومتناقصة تماما على المجال [0; 2]	
		$x - \infty$ 0 2 + ∞	
	1	$f'(x)$ + $-$ 0 + $ f(0)$ $\pi^{+\infty}$	
	1	$f(x) = \int_{-\infty}^{+\infty} f(0) dx$	
		(T) التحقّق أنّ: $y = -x + \frac{1}{3}$ معادلة لـ	3
1		1	
	2×0.5	$y = -x + \frac{1}{3}$ و منه $y = f'(1)(x-1) + f(1)$	
1.5	0.5	$f(x) = \frac{1}{3}(x-3)x^2$ ، x عدد حقیقي و التحقّق أنّه: من أجل كلّ عدد حقیقي (أ	4
	0.5	$f(x)=0$ المعادلة \mathbb{R} المعادلة	
	0.5	x=3 تكافئ $x=0$ تكافئ $f(x)=0$	
	2X0.25	$(3;0)$ مع حامل محور الفواصل هما $(0;0)$ و راداثیي نقطتي تقاطع (C_f) مع حامل محور الفواصل	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

العلامة					
مجموع	مجزأة		عناصر الإجابة (الموضوع الثاني)		
	التمرين الأول (06 نقاط)				
			من العددين a و b على 7 أ) تعيين باقي القسمة الإقليدية لكلّ من العددين	1	
	1		6 باقي القسمة الإقليدية للعدد a على a هو		
2.5	1		باقي القسمة الإقليدية للعدد b على 7 هو 1		
			$a \equiv -1[7]$: تبیان أنّ (ب		
	0.5		$a \equiv -1$ [7] اذن $a \equiv 6 - 7$ [7] لدينا $a \equiv 6$ ومنه $a \equiv 6$		
			2 استنتاج أنّ العددين a^2 و b^2 متوافقان بترديد	2	
1.5	240 77		$b^2 = 1[7]$ و $a^2 = 1[7]$		
	2X0.75		U = I[/] $u = I[/]$		
			7 تبيان أنّ العدد a^2+b^2-2 يقبل القسمة على	3	
0.5	0.5		$a^2 + b^2 - 2 \equiv 0[7]$		
	0.3				
	0.5		$a^{2n} \equiv \mathbb{I}[7]$ ، n عدد طبیعي عدد أ	4	
			$a^{2n}\equiv 1$ [7] ، n لدينا $a\equiv -1$ [7] اذن من أجل كلّ عدد طبيعي $a\equiv -1$		
1.5		a^{2n}	$+bn+1\equiv 0$ [7] با تعيين قيم العدد الطبيعي n التي من أجلها يكون:		
1.5			$1+ \ n+1\equiv 0$ تكافئ $a^{2n}+bn+1\equiv 0$		
	0.5		$n\equiv 5\lceil 7 ceil$ تكافئ		
	0.5		ومنه $n=7k+5$ حیث k عدد طبیعی		
	التمرين الثاني (06 نقاط)				
			$u_0=5$: تبيان أنّ	1	
1	0.5		$u_0 q^2 + u_0 q^3 = 60$ تكافئ $u_2 + u_3 = 60$		
	0.5		$u_0=5$ و منه $2u_0=60$		
			, , ,		

	1	T	
1	2x0.5	$u_6=320$ ، u_6 هو a_6 الحدّ الذي رتبته a_6 هو	2
3		n بدلالة u_n بدلالة (أ) بعيين عبارة الحدّ العام	3
	2×0.5	$u_n = 5 \times 2^n \cdot u_n = u_0 q^n$	
	1	$u_{n+1}-u_n=5 imes 2^n$ ، n عدد طبیعي عدد طبیعي بنیان أنّه: من أجل كلّ عدد طبیعي	
	1	استنتاج أنّ (u_n) متزايدة تماما (u_n)	
		من أجل كلّ عدد طبيعي n ، $n > 5 imes 2$ اذن (u_n) متزايدة تماما.	
1		$u_0+u_1+\cdots+u_n=5 imes 2^{n+1}-5$ ، n تبیان أنّه: من أجل كلّ عدد طبیعي	4
1	2x0.5	$u_0 + u_1 + \dots + u_n = 5 \times 2^{n+1} - 5$ $u_0 + u_1 + \dots + u_n = u_0 \frac{q^{n+1} - 1}{q - 1}$	
		التمرين الثالث (08 نقاط)	
1	2x0.5	$\lim_{x \to +\infty} g(x) = -\infty \lim_{x \to -\infty} g(x) = +\infty$	1
	2x0.5	$g'(x) = -3(x-1)(x+1)$ و $g'(x) = -3x^2 + 3$ ، ک عدد حقیقی $g'(x) = -3x^2 + 3$ و أجل كل عدد حقیقي	2
	0.5	و '(x) إشارة	
	0. 7	$[1;+\infty[$ و $]-\infty;-1]$ الدّالة g متناقصة تماما على كلّ من المجالين	
3	0.5	[-1;1] ومتزايدة تماما على المجال ومتزايدة تماما على المجال	
3	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0.5	$g(x) = (2-x)(x+1)^2$ ، x عدد حقیقی عدد حقیقی (أ) التحقّق أنّه: من أجل كلّ عدد حقیقی	3
1.75	0.5	$g(x)=0$ المعادلة $\mathbb R$ المعادلة	
		x=2 او $x=-1$ کافئ $g(x)=0$	
	3x0.25	ج) تعيين إحداثيات نقط تقاطع المنحنى $\left(C_{g} ight)$ مع حاملي محوري الإحداثيات.	,
		(0;2) (-1;0) (2;0)	
-			

	T		
1		(T)التحقّق أنّ: $y=3x+2$ معادلة لـ $y=3x+2$	4
	2x0.5	y = 3x + 2 و منه $y = g'(0)(x - 0) + g(0)$	
	2x0.25	g(2) = 0, $g(-2) = 4$	5
	0.25	Tرسم T	
	0.5	(T) (T) (C_g)	
		$ (C_g)$	
1.25			
		-2 -1/ 3	
		-2	
		-3	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيد التام بسلم التنقيط