Target: extracting CEO names, company names and percentages.

Pipeline:

1.Preprocess

Sentence Segmentation:

In this step, I just add all raw materials up into one file and then use Python NItk package to finish the sentence segmentation. All relevant codes are in the sentence_seg.py. Output of this step is output.txt

REUTERS/China DailyHSBC China PMI fell to 50.5 in December, from 50.8 the previous

A reading below 50 indicates contraction.
But this was right in line with expectations for 50.5, which was the flash PMI print.
"The moderation of December's final HSBC China Manufacturing PMI was mainly due to slower output growth," said Hongbin Qu, HSBC chief economist China, in a press

release. "However, the final PMI sustained the fifth above-50 reading in a row thanks to a steady increase of new orders.

The recovering momentum since August 2013 is continuing into 2014, in our view. With inflation still benign, we expect the current monetary and fiscal policy to remain in place to support growth."

We got China's official PMI data on Tuesday, which showed manufacturing fall to 51,

from 51.4 in November.
The slowdown in credit growth is said to have weighed on Chinese manufacturing.
Here's the trajectory of Chinese manufacturing: HSBC/Markit Economics FREE AppDownload

Netflix users and investors may have a hard time remembering that the company still mails out DVDs in small red packages, or the public relations disaster in 2011 that had subscribers leaving in droves.

After sinking millions into original content and developing hit shows such as "House of Cards," Netflix became the past year's best performer on the S&P 500. Netflix stock increased nearly 300 percent this past year, and now investors must decide whether the media company's outperformance can carry into 2014. Raymond James' Aaron Kessler told CNBC on Tuesday that the stock's current levels trading at around \$365 on Tuesday-has priced in much of the company's upcoming good news.

. As you can see, each sentence is delimited by return.

Word Tokenization & Stopwords Removal:

Strategy adopted here is to tokenize words by space and set up a set of stopword with the help of nltk.corpus. After this step, all words are tokenized and stopwords are removed. You can review word_token.py for the source code. And output of this step is output_stopwords.txt.

.. ..

REUTERS/China DailyHSBC China PMI fell 50.5 December, 50.8 previous month. A reading 50 indicates contraction. But right line expectations 50.5, flash PMI print. "The moderation December's final HSBC China Manufacturing PMI mainly due slower output growth," said Hongbin Qu, HSBC chief economist China, press release. "However, final PMI sustained fifth above-50 reading row thanks steady increase new orders. The recovering momentum since August 2013 continuing 2014, view. With inflation still benign, expect current monetary fiscal policy remain place support growth." We got

All stop words have been removed and words are separated by space.

The next step is about stemming. The algorithm I used is porter in nltk python package. You can review the code in Stemming_.py.
And result is output of stem.txt.

REUTERS/China DailyHSBC China PMI fell Decemb previou month read indic contract But right line expect flash PMI print The moder Decemb final HSBC China Manufactur PMI mainli due slower output growth said Hongbin HSBC chief economist China press releas Howev final PMI sustain fifth above-50 read row thank steadi increas new order The recov momentum sinc August 2013 continu 2014 view With inflat still benign expect current monetari fiscal polici remain place support growth got China offici PMI data Tuesday show manufactur fall Novemb The slowdown credit growth said weigh Chines manufactur Here trajectori Chines manufactur HSBC/Markit Econom FREE AppDownload Netflix user investor may hard time rememb compani still mail DVD small red packag public relat disast 2011 subscrib leav drove After sink million origin content develop hit show Hous Card Netflix becam past year best perform S& 500 Netflix stock increas nearli 300 percent past year investor must decid whether media compani

4. Extracting percentage:

Since the percentages in the raw materials can be easily defined by regular expression. All details could be find in percentage.py. And the pattern about how to extract percentage could also be found there. Output of percentage could be find in output of percent.txt.

| 50% 1.9% 0.9% 30% 15.3% 25.7% 19.3% 16.8% 10% 10% 3.5% 10% 19% 10% 128% 80% 0.9% 1.0% 1.0% 10% 4.8% 4.8% 2.3% 2.3% 2.6% 2.6% 2% 5.9% 1.8% 1.4% 0.3% 5.4% 1.7% 2.2% 1.8% 3.1% 11.9% 0.96% 0.85% 77% 100% 40% ~10% 40% -55% 50% 10% 0.6% 5.9% 0.9% 1.7% 16% 1.9% 16.6% 6.4% 13.4% 10% 3.6% 1.4% 7.8% 1.6% 1.5% 8.7% 5.6% 10.8% 15.7% 9.3% 10% 11% 53% 65% 7.1% 4.8% .75% 57.3% 56.5% 63.6% 1.0% 0.5% 0.4% 0.7% 15% 700% 10% 90% 10% 45% 400% 800% 6.3% 1.5% 80% 30% 15-20% 20% 1.5% 3.0% 16% 30-40% 30% 4.1% 7.7% 5.7% 8.4% 1.7% 4.3% 6.3% 1.5% 1.7% 3.1% 37% 25% 20% 20% 30% 4.1% 7.7% 7.9% 7.0% 21.5% 30% 2.6% 0.8% 0.9% 60% 30% 28% 55% 30% 1.2% 40%

POS tagging:

In order to train the binary classifier to pick out all words which might be candidates of CEO names and companies' name. I have to finish the POS tagging first. Because all names are identified by tag = NNP. Nltk packages are used here to do the tagging job and we get a relatively nice result.

REUTERS/China_NNP DailyHSBC__NNP China__NNP PMI__NNP fell__VBD Decemb__NNP previou__JJ month__NN read__VBD indic__JJ contract__NN But__CC right__JJ line__NN expect__VBP flash__NN PMI__NNP print__NN The__DT moder__NN Decemb__NNP final__JJ HSBC__NNP China__NNP Manufactur__NNP PMI__NNP mainli__NN due__JJ slower__JJR output__NN growth__NN said__VBD Hongbin__NNP HSBC__NNP chief__JJ economist__NN China__NNP press__NN releas__NN Howev__NNP final__JJ PMI__NNP sustain__NN fifth__JJ above-50__JJ read__NN row__NN thank__VBD steadi__JJ increas__JJ new__JJ order__NN The__DT recov__NN momentum__NN sinc__NN August__NNP 2013__CD continu__NN 2014__CD view__NN With__IN inflat__NN still__RB benign__JJ expect__VBP current__JJ monetari__JJ fiscal__JJ polici__NN remain__VBP place__JJ support__NN growth__NN got__VBP manufactur__JJ fall__NN Novemb__NNP The__DT slowdown__NN credit__NN growth__NN

6. Training SVM classifier:

The reason why I choose SVM over Logistic regression is that I am not sure weather we can used a linear hyper plane to distinguish candidates from non-candidates. Considering the relatively slow convergence speed of Neural Network, SVM is the ideal supervised learning algorithm.

2. Feature selection of binary classifier.

a). I used 1/3 observations of raw data set as training set. It is not hard to find out patterns in ceo.csv and companies.csv. All CEO first names start with a uppercase letter and finished with a lowercase letter. The attributions of First Upper Letter and First Lower Letter are reasonable to build. Also, the family name of CEO also follow the pattern. And hence Second Upper Letter and Second

Lower Letter are also chosen as attributes. Also the length of name is also an important attribute. And POS attribute equals one if POS == NNP and 0 otherwise. I code every bigram up as a single observation, if the first word start with uppercase letter, column FirstUpperLetter is 1, otherwise 0. Column SecondUpperLetter, FirstLowLetter, FirstUpperLetter follow same rules. Count the length of bigram as an another attribute. With respect to label of the training set. I set up a dictionary of CEO name according to ceo.csv. Observation which has same name in that dictionary will be labels as 1. Otherwise 0.

b). Similar rules of Company name classifier are also adopted. But since there might be three of four words, I added ThirdUpper Letter and FourthUpperLetter. The accuracies of both model are high. Because of lot label_zero samples.

0.9841804379	54 precision	recall	f1-score	support
0 1	0.99 0.00	0.99 0.00	0.99 0.00	894656 4800
avg / total	0.99	0.98	0.99	899456
a 0729010060 <i>4</i>				

0.9738919969	4 precision	recall	f1-score	support	
0 1	0.98 0.00	0.99 0.00	0.99 0.00	885402 14054	
avg / total	0.97	0.97	0.97	899456	

3. Dictionary trick.

Well, I review the results coming from the classifier. Unfortunately, my two classifiers failed to distinguish CEO name from Company name. Both classifiers just wrap them up. Therefore, I came up with an idea to solve this problem. I set up two dictionaries, one is about CEO name and another one is about company. And every time when I examine results from classifiers, I look up in those dictionaries. If it is the key of CEO dictionary, I assigned this observation to CEO names, otherwise companies' names. And the results are really good, you can check it at output_of_ceo.txt and output_of_company.txt.

Pete Wilson Russell Vic Barry Buffett Smith Sechin Woodman Virginia Jan Bernard Rosen Simon Marsh Napier Internet Cooper White Karpeles Pershing McMahon Brown Twitch Jobs Dunn Stein Brand Jordan Lozoya Katzenberg Zuckerberg Draghi Disney Weil Evan Fisher Neither Day Joe Scharf Whitman Rogers Island Hancock Peter Michael Medvedev Safra Networks Roberts Mulally John Nelson Jefferies Sony Art Ann Saunders Wolf Thomas Parker Wynn Sam Schwartz Barra Sullivan Brent Cohen Ullman Rodriguez Spencer Sands Paulson Allen Branson George Sandy Warren Einhorn Case Management From Strianese Duncan Andrew Tesco Kravis Long Ellison Lee Horowitz Greenhaus Wendy Circle Jonathan Jeffries Ross Musk LaSorda Mike Edelman Stade Tepper Rose Frank Holt Khodorkovsky Fink Oberhelman William Dave Office Black Terry Cook Walsh Konheim Meyer Ketchum Jose Benioff Brady Johnson Philippe Steinhafel Baker Bill Hanson David Bezos Yellen Express Stanley Davis Fox Think Block First Reid Taylor Dean Clark Charney McDonald Jeffery Kostin Layton Ballmer Chin Bain Ryan Graham Bass Moore Given Satya Group Gross Robert Mara Nick Dalio Health Brooks Berman Shah Bernstein Horton Realty Davidson Blankfein Hank Chanos Kerry Monday Adelson Byrne Mozilo Jamie Tsai Page

Figure 1 CEO name

Canada Autonomy Sun Residential Delphi Albuquerque Roche Leap Republic Asset Citigroup Today Civeo Dodge Foundation Business Packing Standard Siemens Kellogg Gazprom Western Zhejiang Odyssey Euro Grill Prudential Ventures Benzinga Alaska Yield Yet Tech Lorillard Aviation Fixed Stryker Rand Emerging Nanex Huawei Global Tyco DirecTV SumZero Nasdaq Defense Sands DoubleLine Sandy Chase Bausch Pharma Theranos Andreessen Long State Interest Hillshire Jeffries Korea KPMG Paribas Ford Amazon Hamilton Pepsi WhatsApp America Fort Family Motorola Mountains Freedom Budget Green Cargill Ltd Habit Pimco PetSmart Warner CSX Merrill PepsiCo Chinese Energy Palantir Resorts Associates Motor Home Inc Technology Audi Mountain Group Matrix City Silica Three Nike Cantor Health Hill Perspectives Abbvie Australia Hub Hewlett-Packard Cadillac Express Think Tiger Matters Visa Corp Peak Media Lockheed Land Boeing Intel Oculus Americas Banking American Beverage Time Charter Financial Blizzard Citi Weibo Actavis Point Pacific Grade Barclays Nikkei Nicola Nevada Panasonic Retirement IBM Federal Corporation PayPal Reality Forbes Holding Digital Australian Sinopec AIG Medtronic Agricole Eagle Lloyds Marketing Coke Dell Brewery Wayfair Chaori Dropbox Swatch Athena Rental Industry Philips Television Hedgeye Heineken Nissan Bankers Clorox Macquarie Viacom Mae Corporate Dow Raymond Uber Yukos Apple Valeant Community One Celgene Cisco Bridgewater BHP Trust Priceline Journal Blue Barnes Blackstone Smith Mutual Airbnb Covington Publicis Income White Edelman Smithfield Texas Shell Scientific Verizon Exchange SAC Manitowoc Cup Xerox Brooks Lullemon Tesco World

Figure 2 Company name

4. Conclusion

Although two classifiers share relatively good accuracy. But they still failed to distinguish CEO names from Company names, which means I failed to find attributions which can tell me big difference between those two different kinds of names. However, I still get a fairly food result by looking up a dictionary. I think I should spend more time in finding good attribution. It is very important when it comes to data science.