К4 Рекуррентные соотношения

28 октября 2024 г. 12:03

Определение и примеры

- \star Рекуррентное соотношение (от одной переменной) уравнение, задающее функцию натурального аргумента n через ее значения при меньших n
 - \star функция натурального аргумента и последовательность это одно и то же
- ullet Условно-формальная запись: f(0) = c, $f(n) = F(n, f(0), \dots, f(n-1))$
 - * натуральный ряд удобно начинать с 0
 - * недостаток записи: F имеет переменное число аргументов (это не функция)
 - * чаще всего удается представить F как функцию

Примеры рекуррентных соотношений:

- f(0) = b, $f(n) = q \cdot f(n-1)$
- * геометрическая прогрессия со знаменателем q
- f(0) = 1, $f(n) = n \cdot f(n-1)$
- f(0) = 0, $f(n) = f(n-1) + n^2$ • $\sum_{k=1}^{n} k^2$
- f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)
- * числа Фибоначчи f(0) = 1, f(1) = 2, f(n) = f(n-1) + f(n-2)
- * они же, но со сдвигом
 f(0) = 1/2, $f(n) = (1 + \sqrt{8})f(n-1)(1 f(n-1))$
- * частный случай логистической функции (https://en.wikipedia.org/wiki/Logistic_map)
- f(0)=k, $f(n)=egin{cases} 3\cdot f(n-1)+1, & f(n-1) \text{ нечетно} \\ f(n-1)/2, & f(n-1) \text{ четно} \end{cases}$
 - * утверждение о том, что $\forall k \in \mathbb{N} \exists n \in \mathbb{N} : f(n) = 1$ известная открытая проблема («возможно, математика еще не готова к таким задачам» Пал Эрдёш)

Использование рекуррентных соотношений

Можно выделить два основных типа задач на рекуррентные соотношения

- lacktriangle Дана (неконструктивно) функция f, требуется научиться ее вычислять
 - пример: f(n) есть число отношений эквивалентности на n-элементном множестве
 - * сюда же относится метод динамического программирования
- ullet Дана (рекуррентно) функция f, требуется найти замкнутую формулу для вычисления f(n)
 - это называется решить рекуррентное соотношение
 - можно решить его, угадав формулу и доказав ее по индукции
 - для некоторых классов рекуррентных соотношений существуют универсальные методы решения

Ханойская башня: постановка

Постановка задачи:

- имеются три стержня и п дисков, все диски разного диаметра
- в начальной конфигурации все диски образуют пирамиду на стержне 1
- в конечной конфигурации все диски образуют пирамиду на стержне 3
- ход состоит в перемещении одного диска с одного стержня на другой
 - остальные диски во время хода сдвигать нельзя
 - диск нельзя положить поверх диска меньшего размера
- найти минимальное число ходов H(n), требуемое для перехода из начальной конфигурации в конечную
- Ход можно записывать как упорядоченную пару стержней
 - например, 2 → 3
- \bullet Очевидно, H(0) = 0, H(1) = 1
- H(2) = 3:
 - ullet 1
 ightarrow 2, 1
 ightarrow 3, 2
 ightarrow 3 требуемая последовательность ходов
- Найдем рекуррентное соотношение для $H(n) \Longrightarrow$

Ханойская башня: рекуррентное соотношение

- Пусть M(n,i,j) кратчайшая последовательность ходов, перемещающая n дисков со стержня i на стержень j
- $\Rightarrow H(n) = |M(n,1,3)|$
 - | | обозначает длину последовательности
 - |M(n,i,j)| = |M(n,1,3)| для любых i,j
- \bigstar Последовательность $M(n-1,1,2), 1 \to 3, M(n-1,2,3)$ переводит начальную конфигурацию дисков в конечную
- $\Rightarrow H(n) \leqslant 2H(n-1)+1$
 - 2H(n-1)+1 ходов достаточно
- M(n,1,3) включает ход, перемещающий самый большой (n-й) диск
- * *п*-й диск можно переместить только в момент, когда он единственный на своем стержне, а один из оставшихся стержней пуст
- \Rightarrow второй из оставшихся содержит пирамиду из n-1 диска
- \Rightarrow До первого перемещения n-го диска должно пройти не менее H(n-1) шагов
- ullet После последнего перемещения n-го диска тоже не менее H(n-1) шагов
- $\Rightarrow H(n) \geqslant 2H(n-1)+1$
- \bigstar Мы доказали рекуррентное соотношение H(n)=2H(n-1)+1

Ханойская башня: замкнутая формула

Теорема

$$H(n)=2^n-1.$$

Доказательство:

- рекуррентное соотношение H(n)=2H(n-1)+1. H(0)=0 определяет единственную функцию
- докажем по индукции, что это функция $2^n 1$:
- база: $H(0) = 0 = 2^0 1$
- war: $H(n) = 2H(n-1) + 1 = 2 \cdot (2^{n-1} 1) + 1 = 2^n 1$

Схема проведенного исследования функции H(n):

неконструктивное определение

- ⇒ рекуррентное соотношение
- ⇒ замкнутая формула

101 10 121 121 2 Dan

Интеграл Эйлера

Вычислим $E(n)=\int\limits_{-\infty}^{\infty}x^{n}e^{-x}dx$, где $n\in\mathbb{N}$

$$E(0) = \int_{0}^{\infty} e^{-x} dx = -e^{-x}|_{0}^{\infty} = 0 - (-1) = 1$$

K E(n) применим интегрирование по частям:

$$E(n) = \int_{0}^{\infty} x^{n} e^{-x} dx = \begin{bmatrix} u = x^{n} & du = nx^{n-1} dx \\ dv = e^{-x} dx & v = -e^{-x} \end{bmatrix} =$$

$$x^{n} (-e^{-x})|_{0}^{\infty} - \int_{0}^{\infty} nx^{n-1} (-e^{-x}) dx = 0 + n \int_{0}^{\infty} x^{n-1} e^{-x} dx = nE(n-1)$$

- \bigstar E(n) задается рекуррентным соотношением $E(n)=nE(n-1),\ E(0)=1$
- $\Rightarrow E(n) = n!$
- \bigstar Для вывода формулы Стирлинга $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ оценивают интеграл Эйлера, т.е. площадь под графиком функции $f_n(x) = x^n e^{-x}$

Интервальное расписание

Фрилансер зарабатывает деньги выполнением заказов и хочет максимизировать свой доход. Одна из возможных математических постановок -

Задача об интервальном расписании:

- даны k заказов, которые можно выполнить
- ullet і-й заказ это тройка (b_i,e_i,c_i) , где $b_i,e_i,c_i\in\mathbb{N}$, $b_i\leqslant e_i$
- ullet выполнение i-го заказа займет интервал времени $[b_i..e_i]$ и принесет доход c_i
- * какой максимальный доход можно получить, выполняя заказы, если в каждый момент времени можно выполнять не более одного заказа?
- * Метод динамического программирования позволяет найти и оптимальный список заказов, но мы ограничимся вычислением дохода
- Будем считать, что список заказов бесконечен и упорядочен по возрастанию
 - ullet последовательности $\{b_i\}_1^\infty, \{e_i\}_1^\infty, \{c_i\}_1^\infty$ параметры задачи
- Пусть f(n) максимальный доход с первых n заказов
 - \bullet положим f(0) = 0
- ullet Через p_i обозначим наибольший номер k такой, что $e_k < b_i$
 - p_i = 0, если такого k не существует
- \star если выполнен i-й заказ, то перед ним выполнен заказ с номером $\leqslant p_i$
- $\star f(n) = \max\{f(n-1), f(p_n) + c_n\}$
 - \star можем вычислить f(n) при любых допустимых значениях параметров

Классификация рекуррентных соотношений

- ullet Рекуррентное соотношение k-го порядка: $f(n) = F(n, f(n-1), \ldots, f(n-k))$
 - \star здесь F- «нормальная» (k+1)-местная функция
 - \star для задания функции таким соотношением нужно k начальных значений $f(0),\ldots,f(k-1)$

- числа Фибоначчи соотношение второго порядка
- факториал, логистическая функция, ханойская башня первого порядка
- не являются соотношениями k-го порядка
- соотношение из задачи про интервальные расписания (рп может быть любым)
- \bullet соотношения вида $f(n) = f(\lfloor n/2 \rfloor) + f(\lceil n/2 \rceil) + n$
 - * возникают при оценке сложности рекурсивных алгоритмов
- ullet Рекуррентное соотношение $f(n) = F(n,f(n-1),\ldots,f(n-k))$ называется
 - * линейным, если $F = F(x_1, \dots, x_k)$ линейная функция с коэффициентами, зависящими от параметра n т.е. $f(n) = a_1(n)f(n-1) + \dots + a_k(n)f(n-k) + a(n)$
 - \star линейным однородным, если a(n) = 0
 - * линейным с постоянными коэффициентами, если все a_i(n) константы

a(n) может не быть константой Примеры:

- логистическая функция $f(n) = r \cdot f(n-1)(1-f(n-1))$: нелинейное факториал $f(n) = n \cdot f(n-1)$:
- линейное однородное с переменными коэффициентами ханойская башня $f(n) = 2 \cdot f(n-1) + 1$:
- - линейное неоднородное с постоянными коэффициентами числа Фибоначчи f(n) = f(n-1) + f(n-2):
- - линейное однородное с постоянными коэффициентами

Решение линейных рекуррентных соотношений первого порядка

Запишем соотношение первого порядка в виде f(n+1) = a(n)f(n) + b(n), f(0) = a \star при a(n) = n + 1 и b(n) = 0 получается факториал

Теорема

$$f(n) = a \cdot \prod_{i=0}^{n-1} a(i) + \sum_{j=0}^{n-1} \left(b(j) \prod_{k=j+1}^{n-1} a(k) \right). \tag{1}$$

Доказательство:

Положим
$$g(n) = \frac{f(n)}{\prod_{i=1}^{n-1} f(i)}, g(0) = f(0) = a$$

Положим $g(n)=rac{f(n)}{\prod_{i=0}^{n-1}a(i)},\ g(0)=f(0)=a$ Запишем f(n+1)-a(n)f(n)=b(n) и поделим обе части на $\prod_{i=0}^na(i)$:

$$\frac{f(n+1) - a(n)f(n)}{\prod_{i=0}^{n} a(i)} = \frac{b(n)}{\prod_{i=0}^{n} a(i)} \Rightarrow \frac{f(n+1)}{\prod_{i=0}^{n} a(i)} - \frac{f(n)}{\prod_{i=0}^{n-1} a(i)} = \frac{b(n)}{\prod_{i=0}^{n} a(i)}$$
$$\Rightarrow g(n+1) - g(n) = \frac{b(n)}{\prod_{i=0}^{n} a(i)}$$

Подставляя последнее равенство в $g(n)-g(0)=\sum_{j=0}^{n-1}(g(j+1)-g(j))$, получим

$$g(n)=a+\sum_{j=0}^{n-1}rac{b(j)}{\prod_{k=0}^{j}a^{j}(k)},$$
 откуда следует (1)

Определение и примеры

Линейное однородное рекуррентное соотношение с постоянными коэффициентами (ЛОРСПК) имеет вид

$$f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$$

Если все коэффициенты a_1, \ldots, a_k принадлежат кольцу \mathbb{K} , то $f: \mathbb{N} \to \mathbb{K}$

Примеры ЛОРСПК:

- $f(n) = q \cdot f(n-1)$
 - * геометрическая прогрессия со знаменателем q и первым членом f(0)
- f(n) = f(n-1) + f(n-2)
 - \star числа Фибоначчи при $f(0)=0,\,f(1)=1$
- f(n) = f(n-1) + f(n-2) + f(n-3)
 - \star числа Трибоначчи при f(0)=0, f(1)=1, f(2)=2
- f(n) = 2f(n-1) f(n-3) + f(n-4)
 - \star при f(0)=4, f(1)=7, f(2)=13, f(3)=24 число маршрутов длины n в графе

Постановка задачи

- Частным решением соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ называется любая функция f, удовлетворяющая этому соотношению
- Общим решением соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ называется множество всех его частных решений
 - « обычно под «решением» подразумеваем частное решение, т.е. функцию, а не множество
 - \star любое ЛОРСПК имеет тривиальное решение f(n)=0
 - st каждое частное решение определяется начальными значениями f(j), $j=0,\ldots,k{-}1$
 - общее решение зависит от того, над каким кольцом/полем рассматривается соотношение
 - по умолчанию, мы рассматриваем соотношения над полем $\mathbb R$

Задача: дано ЛОРСПК $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$, найти его общее решение

- \bigstar Общее решение ЛОРСПК является подмножеством линейного пространства \mathbb{R}^∞ всех последовательностей действительных чисел
 - с операциями сложения последовательностей и умножения последовательности на число
- \star Пространство \mathbb{R}^∞ бесконечномерно: его базисы счетны
 - $\mathbb{R}^\infty=\langle\{ec{e}_i\}_0^\infty\rangle$, где $ec{e}_i=(0,\dots,0,1,0,\dots,0,\dots)$ последовательность, в которой на i-м месте стоит 1, а остальные элементы нули

Общее решение как подпространство

Лемма о подпространстве решений

Общее решение рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ с коэффициентами из $\mathbb R$ является k-мерным подпространством в $\mathbb R^{\infty}$.

```
Доказательство: пусть S — общее решение S — подпространство: 
* подмножество линейного пространства является подпространством тогда и только тогда, когда оно замкнуто относительно операций 
• пусть f_1(n), f_2(n) — решения, \alpha \in \mathbb{R}; тогда f_1(n) + f_2(n) = a_1(f_1(n-1) + f_2(n-1)) + \cdots + a_k(f_1(n-k) + f_2(n-k)) f_1(n) + f_2(n) — решение \alpha f_1(n) = a_1(\alpha f_1(n-1)) + \cdots + a_k(\alpha f_1(n-k)) \alpha f_1(n) — решение \dim(S) = k:
• рассмотрим решения e_i(n) с начальными условиями e_i(j) = [i=j], i, j = 0, \dots, k-1 
* множество \{e_i(n)\}_0^{k-1} линейно независимо, так как имеет ранг k:
• e_0 = (1, 0, \cdots 0, e_0(k), e_0(k+1), \cdots) • e_1 = (0, 1, \cdots 0, e_1(k), e_1(k+1), \cdots) 
• e_1 = (0, 1, \cdots 0, e_1(k), e_1(k+1), \cdots) 
• f(n) = f(0)e_0(n) + f(1)e_1(n) + \cdots + f(k-1)e_{k-1}(n) для любого решения 
\Rightarrow \{e_i(n)\}_0^{k-1} — базис S \Rightarrow dim(S) = k
```

Общее решение — первый подход

```
Лемма о подпространстве решений позволяет «решить» соотношение f(n) = a_1 f(n-1) + \cdots + a_k f(n-k), записав общее решение в виде f(n) = C_0 e_0(n) + \ldots + C_{k-1} e_{k-1}(n), C_0, \ldots, C_{k-1} \in \mathbb{R} \star В чем дефект такого «решения»?
```

- \star Оно не избавляет от рекурсии: функции $e_i(n)$ заданы тем же самым рекуррентным соотношением, что и функция f(n)
- Чтобы избавиться от рекурсии, нужно найти другой базис общего решения, состоящий из функций, значения которых можно вычислять нерекурсивно (например, экспоненциальных и полиномиальных функций)

Многочлен $\chi(x)=x^k-a_1x^{k-1}-\ldots-a_{k-1}x-a_k$ называется характеристическим многочленом рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$

Лемма о частных решениях

Пусть $\lambda \neq 0$. Функция $f(n) = \lambda^n$ является решением рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ тогда и только тогда, когда λ — корень $\chi(x)$.

Доказательство:

• при
$$\lambda \neq 0$$
 $\lambda^n = a_1 \lambda^{n-1} + \dots + a_k \lambda^{n-k} \Leftrightarrow \lambda^k = a_1 \lambda^{k-1} + \dots + a_k \Leftrightarrow \lambda$ — корень $\chi(x)$ \Box

★ Неважно, над каким полем рассматривать рекуррентное соотношение: если его рассматривать над С, комплексные корни характеристического многочлена также дадут решения

Независимость экспоненциальных функций

Лемма о независимости

Пусть $\lambda_1,\dots,\lambda_s$ — различные корни характеристического многочлена рекуррентного соотношения $f(n)=a_1f(n-1)+\dots+a_kf(n-k)$. Тогда множество функций $\{\lambda_1^n,\dots,\lambda_s^n\}$ линейно независимо.

Доказательство:

- выпишем функции $\lambda_1^n,\dots,\lambda_s^n$: $\lambda_1^n = (1,\lambda_1,\dots\lambda_1^{s-1},\lambda_1^s,\dots)$ $\lambda_2^n = (1,\lambda_2,\dots\lambda_2^{s-1},\lambda_2^s,\dots)$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ $\lambda_s^n = (1,\lambda_s,\dots\lambda_s^{s-1},\lambda_s^s,\dots)$
- \star в первых s столбцах видим матрицу Вандермонда, определитель которой равен 0 только если $\lambda_i=\lambda_i$ для некоторых $i\neq j$
- ⇒ в нашем случае определитель ≠ 0 ⇒ множество линейно независимо

Теорема об общем решении (случай простых корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет k различных корней $\lambda_1,\ldots,\lambda_k\in\mathbb{R}$. Тогда общее решение этого соотношения имеет вид $f(n)=C_1\lambda_1^n+\ldots+C_k\lambda_k^n$, где константы C_1,\ldots,C_k пробегают множество \mathbb{R} .

Доказательство следует из лемм о подпространстве решений, о частном решении и о независимости

- \star Можно заменить в формулировке теоремы $\mathbb R$ на $\mathbb C$; получим общее решение того же самого ЛОРСПК, только рассматриваемого как соотношение над $\mathbb C$
- \star Если нужно получить общее решение над \mathbb{R} , а среди k различных корней характеристического многочлена есть комплексные, нужно заметить, что
 - ⋆ комплексные корни многочленов над ℝ попарно сопряжены
 - \star если числа λ_1 и λ_2 сопряжены, то λ_1^n и λ_2^n сопряжены для любого n
 - \star если λ_1 и λ_2 сопряжены, то комплексные функции λ_1^n и λ_2^n порождают в \mathbb{C}^∞ то же самое подпространство, что и вещественные функции $\lambda_1^n + \lambda_2^n$ и $\imath(\lambda_1^n \lambda_2^n)$
 - \Rightarrow каждую пару комплексно сопряженных функций λ_1^n и λ_2^n заменим в базисе на $\lambda_1^n + \lambda_2^n$ и $\imath(\lambda_1^n \lambda_2^n)$, получая базис из вещественных функций

Общее решение

Теорема об общем решении (для произвольных корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ имеет s различных корней $\lambda_1, \ldots, \lambda_s \in \mathbb{C}$ с кратностями m_1, \ldots, m_s соответственно, $m_1 + \cdots + m_s = k$. Тогда общее решение этого соотношения над \mathbb{C} имеет вид

$$f(n) = (C_1 + \ldots + C_{m_1} n^{m_1-1}) \lambda_1^n + \ldots + (C_{m_1+\ldots+m_{s-1}+1} + \ldots + C_k n^{m_s-1}) \lambda_s^n,$$

где константы C_1, \ldots, C_k пробегают множество \mathbb{C} .

Пример: если характеристический многочлен имеет корни $\lambda_1=3$ кратности 1, $\lambda_{2,3}=\pm 2\imath$ кратности 2, $\lambda_4=1$ кратности 3, то общее решение выглядит как

$$f(n) = C_1 3^n + (C_2 + C_3 n)(2i)^n + (C_4 + C_5 n)(-2i)^n + (C_6 + C_7 n + C_8 n^2)$$

★ Для перехода к общему решению над R при наличии комплексных корней надо воспользоваться их сопряженностью (см. предыдущий фрагмент)

вместо $(2i)^n$ и $(-2i)^n$ нужно взять вещественные функции

- $(2i)^n + (-2i)^n = [n \text{ четное}] \cdot (-1)^{\frac{n}{2}} \cdot 2^{n+1}$
- $i((2i)^n (-2i)^n) = [n \text{ нечетное}] \cdot (-1)^{\frac{n+1}{2}} \cdot 2^{n+1}$
- ! не забывайте скобку Иверсона!

Больше частных решений

Вторая лемма о частных решениях

Пусть характеристический многочлен $\chi(x)$ рекуррентного соотношения $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$ имеет корень λ кратности не менее m+1. Тогда функция $f(n) = n^m \lambda^n$ является решением данного соотношения.

Доказательство:

- При m=0 доказано ранее (лемма о частных решениях); далее m>0
 - \star λ является корнем первых m производных многочлена $\chi(x)$
 - * умножение многочлена на x не меняет кратности его ненулевых корней
 - \star если многочлены $p_1(x)$ и $p_2(x)$ имеют общий корень λ кратности m_1 и m_2 соответственно, то у $p_1(n) \pm p_2(n)$ есть корень λ кратности $\min\{m_1, m_2\}$
- ⇒ λ является корнем многочленов

 - $\mathbf{0}$ $x^n a_1 x^{n-1} \dots a_k x^{n-k}$ $\mathbf{0}$ $x^{n+1} a_1 x^n \dots a_k x^{n-k+1}$ $\mathbf{0}$ $(n+1)x^n a_1 n x^{n-1} \dots a_k (n-k+1)x^{n-k}$ (производная многочлена 2) $\mathbf{0}$ $n x^n a_1 (n-1)x^{n-1} \dots a_k (n-k)x^{n-k}$ (вычли 1 из 3)
- \star λ обращает многочлен 4 в ноль $\Rightarrow n\lambda^n$ решение нашего соотношения
- * умножим многочлен 4 на x, возьмем производную и вычтем многочлен 4: $n^2x^n - a_1(n-1)^2x^{n-1} - \ldots - a_k(n-k)^2x^{n-k}$
 - \Rightarrow $n^2 \lambda^n$ решение нашего соотношения
- ullet Повторяя m раз, получаем решения $n\lambda^n, n^2\lambda^n, \ldots, n^m\lambda^n$

Жордановы матрицы

- - \star $J[i,i]=\lambda$ для всех i и некоторого $\lambda\in\mathbb{C};$ J[i,i+1]=1; J[i,j]=0 иначе
- ullet Жорданова матрица это блочно-диагональная матрица J=

где все матрицы J_i — жордановы клетки (возможно, разных размеров)

- \star Теорема Жордана: для любой матрицы $A \in \mathbb{C}^{k imes k}$ существует такая обратимая матрица T, что матрица $J = TAT^{-1}$ — жорданова
- \star Равенство $A = T^{-1}JT$ можно использовать для возведения A в степень: $A^n = (T^{-1}JT)^n = T^{-1}J^nT$
- ⇒ Достаточно уметь возводить в степень жордановы матрицы

Степени жордановых матриц

Лемма о степени жордановой клетки

Пусть J — жорданова клетка размера t с числом λ . Тогда $J^n[i,j]=\binom{n}{j-i}\lambda^{n+i-j}$. (Полагаем $\binom{n}{x}=0$ при x<0 и x>n.)

$$\star$$
 Лемма утверждает, что $J^n = egin{bmatrix} \lambda^n & n\lambda^{n-1} & \binom{n}{2}\lambda^{n-2} & \dots & \binom{n}{t-1}\lambda^{n-t+1} \\ 0 & \lambda^n & n\lambda^{n-1} & \dots & \binom{n}{t-2}\lambda^{n-t+2} \\ 0 & 0 & \lambda^n & \dots & \binom{n}{t-3}\lambda^{n-t+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \lambda^n \end{bmatrix}$

Доказательство по индукции: база (n=1) очевидна; шаг индукции:

$$J^{n+1}[i,j] = \sum_{k=1}^{t} J^{n}[i,k] \cdot J[k,j] = J^{n}[i,j-1] + J^{n}[i,j] \cdot \lambda = \begin{pmatrix} n \\ j-1-i \end{pmatrix} \lambda^{n+i-j+1} + \binom{n}{j-i} \lambda^{n+i-j+1} = \binom{n+1}{j-i} \lambda^{n+1+i-j} \quad \Box$$

J-1-iJ у — J-IJ Следствие: Для жордановой матрицы выполняется $J^n=egin{bmatrix} J_1^n & 0 \\ J_2^n \\ \vdots \\ 0 & J_T^n \end{bmatrix}$

Общее решение

Теорема об общем решении (для произвольных корней)

Пусть характеристический многочлен рекуррентного соотношения $f(n)=a_1f(n-1)+\cdots+a_kf(n-k)$ имеет s различных корней $\lambda_1,\ldots,\lambda_s\in\mathbb{C}$ с кратностями m_1,\ldots,m_s соответственно, $m_1+\cdots+m_s=k$. Тогда общее решение этого соотношения над \mathbb{C} имеет вид

$$f(n) = (C_1 + \ldots + C_{m_1} n^{m_1-1}) \lambda_1^n + \ldots + (C_{m_1+\ldots+m_{s-1}+1} + \ldots + C_k n^{m_s-1}) \lambda_s^n,$$

где константы C_1, \ldots, C_k пробегают множество \mathbb{C} .

- По второй лемме о частных решениях мы знаем k специальных решений вида $n^j \lambda_i^n$, где $i=1,\ldots,s$; $j=0,\ldots,m_i-1$
- Теорема утверждает, что эти решения образуют базис пространства решений
 которое имеет размерность k
- Доказать линейную независимость специальных решений, как в случае простых корней, не получится
- Чтобы доказать теорему, мы покажем методами линейной алгебры, что любое решение является линейной комбинацией специальных решений

Переход к системе линейных уравнений

Для компактности записи, пусть $f_n = f(n)$; запишем систему линейных уравнений

$$\begin{cases}
f_n &= a_1 f_{n-1} + \ldots + a_k f_{n-k} \\
f_{n-1} &= f_{n-1} \\
\cdots &= \cdots \\
f_{n-k+1} &= f_{n-k+1}
\end{cases}$$

в матричном виде:

$$\begin{bmatrix} f_n \\ f_{n-1} \\ f_{n-2} \\ \vdots \\ f_{n-k+1} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_{k-1} & a_k \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \begin{bmatrix} f_{n-1} \\ f_{n-2} \\ f_{n-3} \\ \vdots \\ f_{n-k} \end{bmatrix}$$

- ullet Пусть $ec{f_n} = (f_{n+k-1}, \ldots, f_n)^\perp$, A матрица системы
- \Rightarrow $ec{f}_n = Aec{f}_{n-1}$ для любого $n\geqslant 1$
- $\Rightarrow \vec{f}_n = A^n \vec{f}_0 \ (\vec{f}_0$ вектор начальных значений функции f)
- 🛨 Задача: найти выражение для последней компоненты вектора, являющегося произведением степени известной матрицы на известный вектор
 - ullet степени матрицы A вычисляются через жорданову матрицу $J=TAT^{-1}$

Собираем все вместе

$$\bullet \ \ A = \begin{bmatrix} a_1 & a_2 & \dots & a_{k-1} & a_k \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}, \ \vec{f_n} = A^n \vec{f_0}$$

- - теорема Жордана
- \star На диагонали матрицы J стоят корни $\chi(x)$ числа $\lambda_1(m_1$ раз), . . . , $\lambda_s(m_s$ раз) * лемма о характеристических многочленах + подобие А и Ј
- \star Размер жордановой клетки в J с числом λ_i не превосходит m_i $(i=1,\ldots,s)$
- \star Ненулевые элементы J^n являются произведениями полиномов на экспоненты:
 - по лемме о степенях жордановой матрицы,

$$\binom{n}{j-i}\lambda^{n+i-j}=\frac{\lambda^{i-j}}{(j-i)!}n(n-1)\cdots(n+i-j+1)\lambda^n=p(n)\lambda^n$$

- \star Матрицы T и T^{-1} , как и вектор $\vec{f_0}$, не зависят от n
- \Rightarrow Элементы матрицы $T^{-1}J^nT=A^n$ и вектора $\vec{f}_n=A^n\vec{f}_0$ линейные комбинации произведений вида $p(n)\lambda^n$

Пример =>

Собираем все вместе (2)

Пример: пусть
$$J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{bmatrix}$$
, $T[i,j] = t_{ij}$, $T^{-1}[i,j] = \tau_{ij}$; тогда
$$J^n = \begin{bmatrix} \lambda^n & \frac{\pi}{\lambda} \lambda^n & 0 \\ 0 & \lambda^n & 0 \\ 0 & 0 & \mu^n \end{bmatrix}$$
, $J^n T = \begin{bmatrix} (t_{11} + \frac{t_{21}}{\lambda} n) \lambda^n & (t_{12} + \frac{t_{22}}{\lambda} n) \lambda^n & (t_{13} + \frac{t_{23}}{\lambda} n) \lambda^n \\ t_{21} \lambda^n & t_{22} \lambda^n & t_{23} \lambda^n \\ t_{31} \mu^n & t_{32} \mu^n & t_{33} \mu^n \end{bmatrix}$, $T^{-1}J^n T = \begin{bmatrix} (\tau_{11}t_{11} + \tau_{12}t_{21} + \frac{\tau_{11}t_{21}}{\lambda} n) \lambda^n + \tau_{13}t_{31}\mu^n & (\dots) & (\dots) \\ (\tau_{21}t_{21} + \tau_{22}t_{21} + \frac{\tau_{21}t_{21}}{\lambda} n) \lambda^n + \tau_{23}t_{32}\mu^n & (\dots) & (\dots) \\ (\tau_{31}t_{21} + \tau_{32}t_{21} + \frac{\tau_{31}t_{21}}{\lambda} n) \lambda^n + \tau_{33}t_{33}\mu^n & (\dots) & (\dots) \end{bmatrix}$

- * Любая функция, удовлетворяющая соотношению $f(n) = a_1 f(n-1) + \cdots + a_k f(n-k)$, имеет вид $f(n) = p_1(n) \lambda_1^n + \cdots + p_s(n) \lambda_s^n$. где $p_i(n)$ многочлен степени не выше $m_i 1$, $i = 1, \ldots, s$
- \Rightarrow f(n) является линейной комбинацией специальных решений $\lambda_1^n,\ldots,n^{m_1-1}\lambda_1^n,\ldots,\lambda_s^n,\ldots,n^{m_s-1}\lambda_s^n$,

что и требовалось доказать

101181 31181 3 000

go Koerga!

THYM He