

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фин на манта на на на начин	
ΨAKJIDIEI	Фундаментальные науки	
	_	
КАФЕДРА	Прикладная математика	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

КУСОЧНО-ПАРАБОЛИЧЕСКИЙ МЕТОД НА ЛОКАЛЬНОМ ШАБЛОНЕ ДЛЯ РЕШЕНИЯ ЛИНЕЙНОГО УРАВНЕНИЯ ПЕРЕНОСА

Студент	ФН2-62Б		А.И. Токарев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководите	ель курсовой работы		В. В. Лукин
		(Подпись, дата)	(И.О. Фамилия)

2022 г.

Содержание

Введение 3

Введение

Одним из используемых вычислительных методов решения гиперболических уравнений является кусочно-параболический метод (с англ. Piecewise-Parabolic Method, PPM), разработанный для моделирования течения жидкостей и газов и применяемый в астрофизике [1]. Он обладает порядком аппроксимации $O(\tau^2 + h^3)$. Несмотря на великолепную точность, данный метод имеет несколько существенных недостатков: возникновение ощутимых осцилляций на разрывных решениях; некомпактность шаблона, что усложняет проведение параллельных расчетов и определение граничных условий.

Целью данной курсовой работы является анализ варианта метода PPM – кусочно-параболического метода на локальном шаблоне (PPML) [2]. Его основное отличие заключается в том, что граничные точки парабол внутри разностых ячеек определяются с предыдущего временного слоя по методу характеристик, что позволяет точно описывать разрывные решения и избегать накопления лишней диссипации.

В качестве анализа будет приведено сравнение на примерах одномерных задач точности методов PPM и PPML, а также поведение решений на границах, в которых происходят разрывы.

1. Постановка задачи

Рассмотрим линейное уравнение переноса [3]:

$$\frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0. {1}$$

Характеристикой уравнения $(\ref{eq:condition})$ является множество точек (x,t), удовлетворяющее уравнению:

$$\frac{dx}{dt} = a, (2)$$

то есть множество x - at = b.

Вдоль характеристики выполняется следующее равенство:

$$\frac{dy}{dt} = 0.$$

Как результат, получаем аналитическое решение уравнения (??) в виде:

$$y(x,t) = y_0(x-at), (3)$$

где y_0 — начальный профиль.

Уравнение переноса – простейший пример, применяемый для проверки алгоритма на корректность [3]. В задачах газодинамики оператор переноса является составной частью, поэтому любой численный метод для таких моделей обязан проходить проверку простейшим уравнением.

Рассмотрим задачу Коши (начальная задача) для уравнения (??) – поиск решения уравнения переноса на множестве $-\infty < x < +\infty$, t > 0, принимающее заданное значение в начальный момент времени $y(x,0) = y_0(x)$ [3]:

$$\begin{cases} \frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0, & x \in (-\infty, +\infty), \quad t > 0, \\ y(x, 0) = y_0(x). \end{cases}$$
(4)

Определим сетку $\Omega_h = \{x_i = l_1 + ih, i = 1 \dots n, h = \frac{l_2 - l_1}{n-1}\}$ — множество узлов, где $[l_1, l_2]$ — отрезок, на котором определена сетка; n — число узлов; h — шаг. Определим y(x) ее разностным аналогом $y_i = y(x_i)$ на этой сетке. Значения y_i будем соотносить с узлами сетки, а $y_{i+\frac{1}{2}} = y_i^R$ и $y_{i-\frac{1}{2}} = y_i^L$ — с половинными узлами.

Определив решения y_i в момент времени t_j , можно вычислить \hat{y}_i на следующем временном слое t_{j+1} , применив интегро-интерполяционный метод к уравнению переноса в прямоугольнике $\left[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}\right]\times [t_j,t_{j+1}]$:

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int_{t_j}^{t_{j+1}} \frac{\partial y(x,t)}{\partial t} dt dx + \int_{t_j}^{t_{j+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} a \frac{\partial y(x,t)}{\partial x} dx dt = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int_{t_j}^{t_{j+1}} 0 dt dx = 0.$$

Рассмотрим интегралы в левой части по отдельности:

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int_{t_{j}}^{t_{j+1}} \frac{\partial y(x,t)}{\partial t} dt dx = \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \left[y(x,t_{j+1}) - y(x,t_{j}) \right] dx = h \left[\frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j+1}) dx - \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j}) dx \right] = h(\overline{y}(x_{i},t_{j+1}) - \overline{y}(x_{i},t_{j})) = h(\hat{y}_{i} - y_{i}).$$

Воспользуемся особенностью переноса значений по характеристикам для интеграла, подинтегральная функция которого является потоком (рис. ??):

$$\int_{t_{j}}^{t_{j+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} a \frac{\partial y(x,t)}{\partial x} dx dt = \int_{t_{j}}^{t_{j+1}} a \left(y(x_{i+\frac{1}{2}},t) - y(y_{x-\frac{1}{2}},t) \right) dt = \int_{x_{i+\frac{1}{2}}-a\tau}^{x_{i+\frac{1}{2}}} ay(x,t_{j}) dt - \int_{x_{i-\frac{1}{2}}-a\tau}^{x_{i-\frac{1}{2}}} ay(x,t_{j}) dt = a\tau \left(a\overline{y}_{i+\frac{1}{2}} - a\overline{y}_{i-\frac{1}{2}} \right).$$

Объединяя оба интеграла получаем:

$$h(\hat{y}_i - y_i) + a\tau \left(a\overline{y}_{i + \frac{1}{2}} - a\overline{y}_{i - \frac{1}{2}}\right) = 0 \implies \hat{y}_i = y_i - \frac{a\tau}{h} \left(a\overline{y}_{i + \frac{1}{2}} - a\overline{y}_{i - \frac{1}{2}}\right). \tag{5}$$

Таким образом, используя формулу (??), мы можем переносить средние значения ячеек.

Рис. 1. Интегрирование потока по пространству, вместо времени

2. Методы решения

Основная идея рассматриваемых методов заключается в аппроксимации функции y(x) параболой (рис. $\ref{eq:condition}$) на отрезках вида $[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]$ [1]:

$$y(x) = y_i^L + \xi(\Delta y_i + y_i^{(6)}(1 - \xi)), \quad \xi = (x - x_{i - \frac{1}{2}})h^{-1}, \quad \Delta y_i = y_i^R - y_i^L,$$

$$y_i^{(6)} = 6\left[y_i - \frac{1}{2}(y_i^R + y_i^L)\right], \quad x \in [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}].$$
(6)

Выражение (??) является квадратурной формулой для соотнешния:

$$y(x_i) = \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(\chi) d\chi.$$

Значение функции y(x) на границах при условиях гладкости и отсутствия экстремумов принадлежит отрезкам:

$$y_{i-\frac{1}{2}} \in [y_{i-1}, y_i], \qquad y_{i+\frac{1}{2}} \in [y_i, y_{i+1}].$$
 (7)

Рис. 2. Парабола внутри разностной ячейки

2.1. Кусочно-параболический метод. РРМ

Первым шагом ищем значение $y_{i+\frac{1}{2}}$ интерполяционной процедурой четвертого порядка, в результате получаем значения:

$$y_i^R = y_{i+1}^L = y_{i+\frac{1}{2}} = \frac{1}{2}(y_i + y_{i+1}) - \frac{1}{6}(\delta y_{i+1} - \delta y_i),$$

где

$$\delta y_i = \frac{1}{2}(y_{i+1} + y_{i-1}).$$

Чтобы обеспечить монотонность решения и выполнить условие $(\ref{eq:constraint})$, значения δy_i нужно заменить на

$$\delta_m y_i = \begin{cases} \min(|\delta y_i|, \ 2|y_i - y_{i-1}|, \ 2|y_{i+1} - y_i|) \cdot \operatorname{sign}(\delta y_i), & (y_{i+1} - y_i)(y_i - y_{i-1}) > 0, \\ 0, & (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0. \end{cases}$$

В областях немонотонного решения y(x) следует переопределять значения y_i^L, y_i^R . При этом возможны два сценария:

• y_i является локальным экстремумом, тогда на всем отрезке $[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]$ функция y(x) должна быть постоянной, а значит:

$$y_i^L = y_i^R = y_i, \quad (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0;$$
 (8)

• y_i лежит слишком близко к границе – при условии $|\Delta y_i| < |y_i^{(6)}|$ парабола может иметь экстремум внутри разностной ячейки. В этом случае y_i^L и y_i^R должны быть выбраны так, чтобы сдвинуть его к границам:

$$y_i^L = 3y_i - 2y_i^R, \quad \Delta y_i \cdot y_i^{(6)} > (\Delta y_i)^2,$$

$$y_i^R = 3y_i - 2y_i^L, \quad \Delta y_i \cdot y_i^{(6)} < -(\Delta y_i)^2.$$
(9)

После всех проделанных операция функцию y(x) можно считать определенной на сетке Ω_h [1, 2].

Среднее значение данной функции на отрезке $[x_{i+\frac{1}{2}} - \alpha, x_{i+\frac{1}{2}}], (\alpha > 0)$ задается формулой, полученной путем аналитического интегрирования (??):

$$\overline{y}_{i+\frac{1}{2}}^{L}(\alpha) = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}}-\alpha}^{x_{i+\frac{1}{2}}} y(x)dx = y_i^R - \frac{\alpha}{2h} \left[\Delta y_i - \left(1 - \frac{2\alpha}{3h} \right) y_i^{(6)} \right], \tag{10}$$

а на отрезке $[x_{i+\frac{1}{2}}, x_{i+\frac{1}{2}} + \alpha], (\alpha > 0)$:

$$\overline{y}_{i+\frac{1}{2}}^{R} = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}}}^{x_{i+\frac{1}{2}} + \alpha} y(x) dx = y_{i+1}^{L} + \frac{\alpha}{2h} \left[\Delta y_{i+1} + \left(1 - \frac{2\alpha}{3h} \right) y_{i+1}^{(6)} \right].$$
 (11)

2.2. Кусочно-параболический метод на локальном шаблоне. PPML

Интерполяционная процедура четвертого порядка, применяемая для переопределения граничных узлов, сглаживает разрывные решения y(x). Чтобы обойти данное ограничение, можно определять y_i^L и y_i^R с помощью переноса значения на параболе с предыдущего шага по времени вдоль характеристики

линейного уравнения переноса (??). Для ясности будем рассматривать правую границу $y_i^R=y_{i+\frac{1}{2}}$. Для того, чтобы вычислить ее на следующем временном слое $t_{j+1}=t_j+\tau$, необходимо двигаться от точки $x_{i+\frac{1}{2}}$ со значением $y_{i+\frac{1}{2}}$ вдоль характеристики до предыдущего момента времени t_j :

1. a > 0, следовательно

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_i^L(t_j) + \xi(\Delta y_i(t_j) + y_i^{(6)}(t_j)(1-\xi)),$$

$$\xi = 1 - \frac{a\tau}{h},$$
(12)

что соответствует красной точке на рис. ??.

2. a < 0, следовательно

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_{i+1}^L(t_j) + \xi(\Delta y_{i+1}(t_j) + y_{i+1}^{(6)}(t_j)(1-\xi)),$$

$$\xi = -\frac{a\tau}{h},$$

что соответствует синей точке на рис. ??.

Рис. 3. Перенос значений в граничных точках вдоль характеристик в методе PPML

Алгоритм (??) реализован на локальном шаблоне, то есть для получения граничных точкек при переходе на следующий временной слой не нужно использовать информацию с соседних ячеек. Нахождение среднего значения на отрезке (??), (??) и смещение экстремума (??), (??) производятся аналогично [2].

2.3. Потоки и усредненное значение на отрезке

При возникновении разрыва на границе двух смежных ячеек в точке $x_{i+\frac{1}{2}}$ возникает некоторое усредненное состояние $y^*(x_{i+\frac{1}{2}},t)$. Одномерное уравнение переноса имеет всего одну характеристику, поэтому его решение в момент времени $t=t_{j+1}$ будет определяться:

- 1. При a>0 усреднением по пространствунному интервалу $[x_{i+\frac{1}{2}}-a au,x_{i+\frac{1}{2}}]$ со значением $y^\star(x_{i+\frac{1}{2}},t_{j+1})=\overline{y}_{i+\frac{1}{2}}^L(a au);$
- 2. При a<0 усреднением по интервалу $[x_{i+\frac{1}{2}}\tau,x_{i+\frac{1}{2}}+a\tau]$ со значением $y^{\star}(x_{i+\frac{1}{2}},t_{j+1})=\overline{y}_{i+\frac{1}{2}}^{R}(-a\tau).$

Поток на границе смежных ячеек в задаче Римана определяется по формуле:

$$F_{i+\frac{1}{2}} = \frac{1}{\tau} \int_{t_{j}}^{t_{j+1}} F(y^{\star}(x_{i+\frac{1}{2}}, t)) dt = a^{+} y_{i+\frac{1}{2}}^{L} + a^{-} y_{i+\frac{1}{2}}^{R},$$

$$a^{+} = \max(0, a), \quad a^{-} = \min(a, 0).$$
(13)

3. Анализ и сравнение

Оценивать решение будем по норме ошибки в пространствах C, L_1, L_2 :

$$||z||_C = \max_{\Omega_h \times [0,T]} |z|, \quad z = |y(x,t) - y_h(x,t)|;$$
$$||z||_{L_1} = \int_0^T \int_{\Omega_t} |z| \, dx dt, \quad z = |y(x,t) - y_h(x,t)|;$$

$$||z||_{L_2} = \left(\int_0^T \int_{\Omega_h} z^2 dx dt\right)^{\frac{1}{2}}, \quad z = |y(x,t) - y_h(x,t)|,$$

для методов актуальна сходимость по норме L_2 .

Рассмотрим несколько начальных профилей [3] и проанализируем точность каждого из методов в различных сценариях. Примем l=200, $l_1=10$, $l_2=30$, $l_{11}=\frac{50}{3}$, $l_{22}=\frac{70}{3}$, $l_{12}=20$, T=200, h=1, a=1.

3.1. Анализ точного вычисления граничных и серединных узлов

Рассмотрим, какой прирост точности дает метод PPML при числе Куранта $\sigma=1$. В качестве иллюстрации приведем кусочно-линейный профиль – правый треугольник.

Правый треугольник задается уравнением:

$$\begin{cases} y_0(x) = 0, & x < l_1; \\ y_0(x) = \frac{l_2 - x}{l_2 - l_1}, & x \in [l_1, l_2]; \\ y_0(x) = 0, & x > l_2. \end{cases}$$

На рис. ?? показано численное решение, полученное путем применения метода PPM.

Заметим, что на концах треугольников происходит разрыв решений в ячейках y_i^L , y_i , y_i^R , поэтому, например, вычисление нормы в пространтсве C[a,b]неприменимо для данных методов, потому что ее значение не будет уменьшаться при измельчении шага на кусочно-линейных графиках.

Из таблицы ?? можно сделать вывод о порядке точности метода PPM для профиля "правый треугольник":

В пространстве L_1 : $\psi_h^{(2)} = 4.05 \approx 4$; $\psi_{\tau}^{(2)} = 1.995 \approx 2$.

В пространстве L_2 : $\psi_h^{(2)} = 2.003 \approx 2$; $\psi_{\tau}^{(2)} = 1.41$.

Рис. 4. Правый треугольник для PPM при $\sigma=1$

Таблица 1. Нормы ошибок для правого треугольника в методе РРМ

	h=1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.5125	0.58	0.65	0.506	0.61	0.695	0.503	0.613	0.696
$\ \cdot\ _{L_1}$	1.038	0.519	0.26	0.255	0.13	0.064	0.063	0.0315	0.0158
$\ \cdot\ _{L_2}$	0.622	0.44	0.311	0.309	0.22	0.154	0.154	0.1087	0.077

На рис. ?? показано решение, полученное с применением метода PPML. На концах треугольников параболы в каждой разностной ячейке передают значения гораздо точнее, чем в методе PPM.

Скорость стремления нормы к нулю (таблица ??) практически идентична методу PPM, однако визуально график больше приближен к точному решению. Оценим порядок точности метода PPML:

В пространстве $L_1: \psi_h^{(2)} \approx 4; \psi_{\tau}^{(2)} \approx 2.$

В пространстве L_2 : $\psi_h^{(2)} \approx 2$; $\psi_{\tau}^{(2)} \approx 1.4$.

Рис. 5. Правый треугольник для PPML при $\sigma=1$

Таблица 2. Нормы ошибок для правого треугольника в методе PPML

	h = 1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.5125	0.5039	0.5544	0.50625	0.502	0.5487	0.5031	0.5001	0.5458
$\ \cdot\ _{L_1}$	1.0375	0.5187	0.2593	0.255	0.1273	0.0637	0.063	0.03154	0.01577
$\ \cdot\ _{L_2}$	0.6228	0.4404	0.3114	0.3087	0.2183	0.1544	0.1537	0.1087	0.0768

3.2. Анализ кусочно-линейного графика при уменьшенном числе Куранта

Рассмотрим $\sigma = 0.8$, в качестве примера рассмотрим профиль "зуб":

$$y_0(x) = \begin{cases} -\frac{2(x-l_1)}{3(l_{11}-l_1)} + 1, & x \in [l_1, l_{11}), \\ \frac{1}{3}, & x \in [l_{11}, l_{22}], \\ \frac{2(x-l_2)}{3(l_2-l_{22})} + 1, & x \in (l_{22}, l_2]. \end{cases}$$

На рис. ?? заметна значительная диссипация и неодинаковые высоты на зубцах.

Тем не менее, несмотря на диссипацию, сходимость по норме L_2 сохраняется (таблица $\ref{eq:constraint}$). Точность метода PPM для профиля "зуб":

В пространстве
$$L_1$$
: $\psi_h^{(2)} \approx 4$; $\psi_{\tau}^{(2)} \approx 2$.

В пространстве
$$L_2$$
: $\psi_h^{(2)} \approx 2$; $\psi_{\tau}^{(2)} \approx 1.4$.

h = 1h = 0.5h = 0.25 $\tau = 1$ $\tau = 0.5$ $\tau = 0.25$ $\tau = 1$ $\tau = 0.5$ $\tau = 0.25$ $\tau = 1$ $\tau = 0.5$ $\tau = 0.25$ 0.525 0.754 0.75010.7494 $\|\cdot\|_C$ 0.840.51250.83750.506250.8352.1 1.05 0.525 0.5125 0.260.130.127 0.0633 0.032 $\|\cdot\|_{L_1}$ 0.63 0.45 0.44 0.311 0.22 0.22 0.154 0.11 $\|\cdot\|_{L_2}$

Таблица 3. Нормы ошибок для профиля "зуб" в методе РРМ

Метод PPML (рис. ??) характеризиуется менее выраженной диссипацией и более ровными "горбами".

Помимо этого, анализ норм ошибок для метода PPML также показывает повышенную точность во всех рассматриваемых пространствах (таблица ??). Точность метода остается такой же, как и во всех предыдущих случаях:

В пространстве
$$L_1$$
: $\psi_h^{(2)} \approx 4$; $\psi_{\tau}^{(2)} \approx 2$.

В пространстве
$$L_2$$
: $\psi_h^{(2)} \approx 2$; $\psi_{\tau}^{(2)} \approx 1.4$.

h = 1h = 0.5h = 0.25 $\tau = 0.5$ $\tau = 0.25$ $\tau = 1$ $\tau = 0.5$ $\tau = 0.25$ $\tau = 1$ $\tau = 0.5$ $\tau = 0.25$ $\tau = 1$ 0.5250.64370.63470.5125 0.6343 0.62620.50625 0.62970.6219 $\|\cdot\|_C$ 1.0490.52490.51250.25630.12650.06330.03164 $\|\cdot\|_{L_1}$ 2.1 0.12810.8950.6330.44780.44030.3113 0.22020.21830.15440.10916 $\| \cdot \|_{L_2}$

Таблица 4. Нормы ошибок для профиля "зуб"в методе PPML

3.3. Анализ методов на непрерывном графике

Пусть $\sigma = 0.5$. Сравним методы на примере профиля:

$$y_0(x) = \frac{1}{2} - \frac{1}{2}\cos\left(\frac{2\pi}{l_2 - l_1}(x - l_1)\right).$$

Как и следовало ожидать, несмотря на гладкость профиля, диссипация в случае метода PPM (рис. ??), ровно как и в методе PPML (рис. ??) остается, хотя и менее выраженная.

График сохраняет свою гладкость, однако происходят заметные отклонения от точного решения в окрестностях оснований профилей. Хотя таблицы с погрешностями решений ??, ?? показывают достаточно хороший результат для обоих методов, все же нельзя не отметить, что PPML стабильнее передает точное решение, а также обладает меньшей диссипацией.

Таблица 5. Нормы ошибок для косинуса в методе РРМ

	h=1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.078	0.244	0.242	0.039	0.11	0.156	0.0196	0.044	0.06
$\ \cdot\ _{L_1}$	0.195	0.098	0.048	0.0245	0.012	0.006	0.003	0.0015	0.00077
$\ \cdot\ _{L_2}$	0.028	0.02	0.014	0.005	0.0035	0.00245	0.00089	0.0006	0.00044

Таблица 6. Нормы ошибок для косинуса в методе PPML

	h=1			h = 0.5			h = 0.25		
	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$	$\tau = 1$	$\tau = 0.5$	$\tau = 0.25$
$\ \cdot\ _C$	0.00615	0.0479	0.0576	0.00154	0.0158	0.01859	0.00039	0.00515	0.00599
$\ \cdot\ _{L_1}$	0.19475	0.09738	0.0487	0.02449	0.01225	0.0061	0.00306	0.00153	0.00076
$\ \cdot\ _{L_2}$	0.0277	0.01958	0.01384	0.005	0.00351	0.00248	0.00088	0.00059	0.00044

Заключение 16

Заключение

Рассмотрен кусочно-параболический метод на локальном шаблоне. Выбор в пользу использования решений с предыдущего временного слоя, вместо интерполяционной процедуры, оказался удачным, так как обеспечивает более точное решение и уменьшенную диссипацию. Метод РРМL протестирован на ряде примеров, рассмотренных с различными шагами, числами Куранта и профилями. Точность оценивалась на основе норм разности между точным и численным решениям в пространствах C, L_1, L_2 . В пространствах L_1, L_2 РРМL оказался точнее во всех случаях. Однако в пространстве C результат нельзя интерпретировать однозначно. Но как уже отмечалось, актуальной является сходимость нормы ошибки в L_2 .

Список литературы

- 1. Corella P., Woodward P. The piecewise parabolic method for gas-dynamical simulations // J. Comput. Phys. 1984. P. 174 201.
- 2. М. В. Попов, С. Д. Устюгов. Кусочно-параболический метод на локальном шаблоне для задач газовой динамики // Ж. вычисл. матем. и матем. физ., 2007.- С. 2056-2060.
- 3. Галанин М. П., Савенков Е. Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н. Э. Баумана, 2018. 591 с.
- 4. А. А. Самарский, Ю. П. Попов. Разностные методы решения задач газовой динамики. М.: Наука. Гл. ред. физ. мат. лит., 1992. 424 с.
- 5. А. Г. Куликовский, Н. В. Погорелов, А. Ю. Семенов. Математические вопросы численного решения гиперболических систем уравнений. М.: ФИЗ-МАТЛИТ, 2001. 608 с.

Рис. 6. Зуб для РРМ при $\sigma=0.8$

Рис. 7. Зуб для PPML при $\sigma=0.8$

Рис. 8. Косинус для РРМ при $\sigma=0.5$

Рис. 9. Косинус для PPML при $\sigma=0.5$