

Fraunhofer-Institut für Integrierte Schaltungen IIS

Reinforcement Learning

Exercise 8: Actor-Critic Methods

Nico Meyer

Overview

Exercise Content

Week	Date	Торіс	Material	Who?
0			no exercises	
1	23.04.	MDPs		Nico
2	30.04.	Dynamic Programming		Alex
3	07.05.	OpenAl Gym, PyTorch-Intro		Alex
4	14.05.	TD-Learning		Nico
5	22.05.	Practical Session (zoom@home)	Attention: Lecture Slot!	Nico + Alex
6	28.05.	TD-Control		Nico
7	04.06.	DQN		Nico
8	11.06.	VPG		Alex
9	18.06.	A2C		Nico
10	25.06.	Multi-armed Bandits		Alex
11	02.07.	RND/ICM		Alex
12	09.07.	MCTS		Alex
13	16.07.	BCQ		Nico

Overview

General Picture

Advantage Actor Critic

Brief Recap

Policy-based Reinforcement Learning

Goal: find w that approximates the true Q-function

Goal: find θ that maximizes long term reward

Recap

Policy Gradients

Our goal is to maximize the expected reward:

$$G(\tau) \coloneqq \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t)$$

$$\max_{\theta} \mathbb{E}_{\pi_{\theta}} G(\tau)$$

(where π_{θ} is a parameterized policy, e.g., a neural network)

- But how do we maximize this?
 - → Gradient Ascent! Suppose we know how to calculate the gradient w.r.t. the parameters:

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} G(\tau)$$

Then we can update our parameters θ in the direction of the gradient:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} G(\tau)$$

Policy Gradient often in literature referred to as $\nabla_{\theta} J(\pi_{\theta})$

Reducing Variance

$$\nabla_{\theta} \mathbb{E}_{\pi_{\theta}} G(\tau) \approx \frac{1}{L} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}) - b(s_{t})$$

$$= Q^{\pi}(s_{t}, a_{t})$$

- Monte-Carlo policy gradient is sampled and has high variance
- Idea: we can use a critic that estimates the Q

Introduce critic that estimates Q

• The policy gradient we used so far (without baseline to begin with):

$$\nabla_{\theta} \mathbb{E}_{\pi_{\theta}} G(\tau) \approx \frac{1}{L} \sum_{t=0}^{T} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) G(\tau)$$

$$\approx \frac{1}{L} \sum_{t=0}^{T} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'})$$

$$= Q^{\pi}(s_{t}, a_{t})$$

- \blacktriangleright Use e.g. a neural network to approximate Q: $\phi_k = \arg\min_{\phi} \mathbb{E}_{s_t; a_t, \hat{R}_t \sim \pi_k} \left[\left(Q_{\phi}(s_t, a_t) \hat{R}_t \right)^2 \right]$
- In practice: estimate $v^{\pi}(s_t; \phi)$ explicitly, and then sample

$$q^{\pi}(s_t, a_t) \approx G_t^{(n)}$$
 i.e. $\hat{G}_t^{(1)} = R_t + \gamma v^{\pi}(s_{t+1}; \phi)$

Advantage Actor Critic (A2C)

Introduce a baseline:

$$\nabla_{\theta} \mathbb{E}_{\pi_{\theta}} G(\tau) \approx \frac{1}{L} \sum_{t=0}^{T} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T} \gamma^{t'-t} R(s_{t'}, a_{t'}) - b(s_{t})$$

$$= \frac{1}{L} \sum_{t=0}^{T} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \widehat{G}_{t} - b(s_{t})$$

$$:= A^{\pi}(s_{t}, a_{t})$$

Calculate via MC estimation:

$$A^{\pi}(s_t, a_t) = R(s_t, a_t) - V^{\pi}(s_t)$$

Advantage Actor Critic (A2C)

Calculate via TD error:

$$A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

= $r + \gamma \cdot v^{\pi}(s'_t) - v^{\pi}(s_t)$

Or multi-step TD error: "Generalized Advantage Estimation (GAE)"

$$\hat{A}_{t}^{(1)} \coloneqq \delta_{t}^{V} \qquad = -V(s_{t}) + r_{t} + \gamma V(s_{t+1})$$

$$\hat{A}_{t}^{(2)} \coloneqq \delta_{t}^{V} + \gamma \delta_{t+1}^{V} \qquad = -V(s_{t}) + r_{t} + \gamma V(s_{t+1}) + \gamma^{2} V(s_{t+2})$$

$$\vdots$$

$$\hat{A}_{t}^{(k)} \coloneqq \sum_{l=0}^{k-1} \gamma^{l} \delta_{t+l}^{V} \qquad = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V(s_{t+k})$$

$$\hat{A}_{t}^{(\infty)} = \sum_{l=0}^{\infty} \gamma^{l} \delta_{t+l}^{V} = -V(s_{t}) + \sum_{l=0}^{\infty} \gamma^{l} + r_{t+l}$$

Less variance, more bias than MC

Exercise Sheet 8

Advantage Actor Critic (A2C)

Better Control of Improvement Steps

Potential problems with gradient-based updates

- Note: the advantage function (which is a noisy estimate) may not be accurate
 - Too large steps may lead to a disaster (even *if* the gradient is *correct*)
 - Too small steps are also bad
- Mathematical formulization:
 - First-order derivatives approximate the (parameter) surface to be flat
 - But if the surface exhibits high curvature it gets dangerous
 - Projection: small changes in parameter space might lead to large changes in policy space!
- Parameters θ get updated to areas too far out of the range from where previous data was collected
- Regularize updates to the policy parameters such that the policy does not change too much

Images taken from https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9 and http://www.taiwanoffthebeatentrack.com/2012/08/23/mount-hua-华山-the-most-dangerous-hike-in-the-world/

Better Control of Improvement Steps

Natural Policy Gradients

- First-order derivatives approximate the (parameter) surface to be flat
- But if the surface exhibits high curvature it gets dangerous
- > Small changes in parameter space might lead to large changes in policy space!

What we essentially do

(optimization perspective on 1st order gradient descent)

$$\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta)$$
, subject to $\|\theta' - \theta\|^2 \le \epsilon$

(a) 'Vanilla' policy gradients 0.5 0.4 0.3 0.0 0.1 0.0 0.0 -2 -1.5 -1.0 -0.5 0.0 Controller gain $\theta_1 = k$

What we want to do

(incorporate 2nd order information)

$$\theta' \leftarrow \arg \max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta)$$
, subject to $\|\theta' - \theta\|_F^2 \le \epsilon$
 $\Rightarrow \theta \leftarrow \theta + \alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$ with e.g. KL-divergence

TRPO tries to approximated

inverse of Fisher information

(i.e. Hessian)

(b) Natural policy gradients

Peters et al.: Natural Actor-Critic. 2018

Better Control of Improvement Steps

Proximal Policy Optimization (PPO)

- The main motivation behind PPO is the same as for TRPO:
 - Make the biggest possible improvement step
 - Do not step too far such that the performance accidentally collapses
- PPO addresses the shortcomings of TRPO:
 - PPO uses 1st order methods with a few tricks
 - Significantly simpler to implement
 - Shows similar performance to TRPO (empirically)

removes the incentive for moving r_t outside of the interval $[1-\epsilon, 1+\epsilon]$

<u>PPO-Clip:</u> The PPO objective we want to maximize is given by

$$= g\left(\epsilon, \hat{A}_t(s, a)\right)$$

$$g(\epsilon, \hat{A}_t) = \begin{cases} (1+\epsilon)A, & \text{if } A \ge 0\\ (1-\epsilon)A, & \text{if } A < 0 \end{cases}$$

vant to maximize is given by
$$=g\left(\epsilon,\hat{A}_t(s,a)\right) \qquad g\left(\epsilon,\hat{A}_t\right) = \begin{cases} (1+\epsilon)A, \text{ if } A \geq 0 \\ (1-\epsilon)A, \text{ if } A < 0 \end{cases}$$

$$L(\theta) = \widehat{\mathbb{E}}_t \Big[\min \Big(r_t(\theta) \hat{A}_t \Big| \operatorname{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_t \Big) \Big]$$

where ϵ is a hyperparameter (i.e., 0.1 or 0.2) that defines how far π_{new} may go away from π_{old}

> the final objective is a lower bound (i.e., a pessimistic bound) on the unclipped objective

Fraunhofer-Institut für Integrierte Schaltungen IIS

Thank you for your attention!