UNIVERSIDADE DE AVEIRO Departamento de Matemática

Matemática Discreta

Exame Final 20 de Junho de 2012

Responda de uma forma cuidada a cada uma das questões.

(2 horas e 30 minutos)

Um exemplo de resolução: deve ser entendido como (mais) um elemento de estudo.

- 1- Considere as seguintes afirmações:
 - "Todo o aluno da Universidade de Aveiro que estuda com afinco passa a Matemática Discreta";
 - 2. "O João é um aluno da Universidade de Aveiro";
 - 3. "O João estuda com afinco".
- (1,5)a) Exprima as afirmações anteriores como fbf's do cálculo de predicados.

Resolução: Considere-se o universo como o conjunto das pessoas. Definam-se

a variável x,

a constante João

os predicados (unários)

UA(x): 'x é aluno da UA'

E(x): 'x estuda com afinco'

MD(x): 'x passa a matemática discreta'

Tem-se

- 1. $\forall x \left((UA(x) \land E(x)) \Rightarrow MD(x) \right)$
- 2. UA(João)
- 3. E(João)
- (1,5)**b)** Mostre, usando o Princípio da Resolução, que o João passa a Matemática Discreta. **Resolução**:

De 1. obtém-se, $\forall x \neg (UA(x) \land E(x)) \lor MD(x) \equiv \forall x \neg UA(x) \lor \neg E(x) \lor MD(x)$, donde resulta a cláusula

$$C_1: \neg UA(x) \lor \neg E(x) \lor MD(x)$$

De 2. e 3., obtém-se de imediato, as cláusulas, C_2 : UA(João) e C_3 : E(João).

Queremos provar (TESE), $T : MD(Jo\tilde{a}o)$.

De acordo com o Princípio da Resolução devemos mostrar que o conjunto de cláusulas

$$S = \{C_1, C_2, C_3, \neg T\}$$

é inconsistente. Obtém-se, sucessivamente,

 C_4 : $\neg E(Jo\tilde{a}o) \lor MD(Jo\tilde{a}o)$ (resultante de $C_1\sigma$ e C_2 com $\sigma = \{Jo\tilde{a}o/x\}$)

 C_5 : MD(João) (resultante de C_4 e C_3)

 C_6 : \diamondsuit (resultante de C_5 e $\neg T$).

- **2-** Denote o conjunto das partes de um conjunto X por $\mathcal{P}(X)$, considere os conjuntos A e B e demonstre cada uma das seguintes proposições.
- (1,5)**a**) $A \subseteq B \Leftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$

Resolução Observe-se que há duas implicações a demonstrar:

- (⇒) Suponhamos que $A \subseteq B$. Queremos provar que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Seja $X \in \mathcal{P}(A)$. Então $X \subseteq A$, consequentemente $X \subseteq B$ (porque $A \subseteq B$, por hipótese), pelo que $X \in \mathcal{P}(B)$. Logo $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- (\Leftarrow) Suponhamos que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Queremos provar que $A \subseteq B$. Seja $x \in A$. Então,

$$\{x\} \subseteq A \Rightarrow \{x\} \in \mathcal{P}(A)$$

$$\Rightarrow \{x\} \in \mathcal{P}(B) \text{(por hipótese)}$$

$$\Rightarrow \{x\} \subseteq B$$

$$\Rightarrow x \in B,$$

logo $A \subseteq B$.

 $(1,5)\mathbf{b}) \ \mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B).$

Resolução Para provar a igualdade dos dois conjuntos provaremos a dupla inclusão.

- (i) Uma vez que $A \cap B \subseteq A$ e $A \cap B \subseteq B$, então (de acordo com o resultado da alínea anterior) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A)$ e $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(B)$. Logo, $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (ii) Por outro lado, se $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$, então $X \subseteq A$ e $X \subseteq B$. Logo $X \subseteq A \cap B$, pelo que $X \in \mathcal{P}(A \cap B)$. Consequentemente, $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
- De (i) e (ii) obtém-se o resultado.
- **3-** Um grupo de 12 amigos vai ao cinema e compra 12 bilhetes que correspondem a lugares seguidos.
 - (1)a) Sabendo que dos 12 amigos 6 são homens e 6 são mulheres, de quantas maneiras possíveis os 12 amigos se podem sentar de modo que não fiquem dois homens seguidos?

Resolução:

- $7\binom{6}{5}5!6!$ (6! é o número de permutações dos seis rapazes, 5! é o numero de permutações das 5 raparigas escolhidas para ficarem a separar os 6 rapazes, $\binom{6}{5}$ é o número de escolhas das 5 raparigas que separam os rapazes, 7 é numero de possibilidades de colocação da rapariga que sobra em cada uma das escolhas (no princípio, no fim, ou juntamente com outra rapariga colocada entre dois rapazes).
- (1)b) Sabendo que do grupo de amigos fazem parte um casal de namorados e um casal com três filhos, de quantas maneiras os 12 amigos se podem sentar de modo que o casal de namorados fique junto e que os 3 filhos do casal fiquem sentados entre o pai e a mãe?

Resolução:

2×2×3!7! (0 casal juntamente com os 3 filhos e o casal de namorados contam, cada um deles, como um amigo e estes dois amigos vão ser permutados juntamente com os restantes 5 amigos, 2 é número de possibilidades de colocação do casal de namorados e 2 é também o número de possibilidades de colocação do casal com filhos, 3! é o número de permutações dos 3 filhos, 7! é o número de permutações dos sete amigos incluindo os que representam o casal de namorados e o casal com três filhos.

(2)4- Determine o coeficiente de xy^6z^{-2} na expansão de $(2x+y^2-1/z)^6$.

Resolução:

Pela fórmula multinomial

$$(2x+y^2-1/z)^6 = \sum_{t_1+t_2+t_3=6} {6 \choose t_1, t_2, t_3} (2x)^{t_1} (y^2)^{t_2} (-z^{-1})^{t_3}$$
$$= \sum_{t_1+t_2+t_3=6} {6 \choose t_1, t_2, t_3} 2^{t_1} (-1)^{t_3} x^{t_1} y^{2t_2} z^{-t_3}$$

Logo, para $t_1 = 1$, $t_2 = 3$ e $t_3 = 2$, vem $\binom{6}{1,3,2}2(-1)^2 = \frac{6!}{1!3!2!}2 = 6 \times 5 \times 4 = 120$.

5- Sabe-se que o determinante D_n da matriz tridiagonal de ordem n

$$A_n = \begin{pmatrix} 1+a^2 & a & 0 & \cdots & 0 & 0\\ a & 1+a^2 & a & \cdots & 0 & 0\\ 0 & a & 1+a^2 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 1+a^2 & a\\ 0 & 0 & 0 & \cdots & a & 1+a^2 \end{pmatrix},$$

onde $a \in \mathbb{R}$, pode ser obtido pela relação de recorrência $D_n = (1 + a^2)D_{n-1} - a^2D_{n-2}$, considerando $D_0 = 1$ e $D_1 = 1 + a^2$.

- (1,5)a) Sabendo que $a^2 \neq 1$, resolva esta equação de recorrência indicando uma fórmula não recursiva para D_n .
- (1,5)b) Sabendo que $a^2 = 1$, determine uma expressão não recursiva para D_n .

Resolução:

A equação característica $x^2 - (1 + a^2)x + a^2 = 0$ da relação de recorrência considerada, tem como raízes 1 e a^2 .

(a) Se $a^2 \neq 1$, então $D_n = C_1 + C_2(a^2)^n$ e a partir das condições iniciais, conclui-se que $D_0 = 1 = C_1 + C_2$ e $D_1 = 1 + a^2 = C_1 + a^2C_2$. Como consequência, $C_1 = \frac{1}{1-a^2}$ e $C_2 = \frac{-a^2}{1-a^2}$ e, finalmente, obtém-se:

$$D_n = \frac{1}{1 - a^2} - \frac{a^2}{1 - a^2} (a^2)^n = \frac{1 - a^{2(n+1)}}{1 - a^2}, n \ge 0.$$

- (b) Se $a^2=1$, então $D_n=C_1+nC_2$ e a partir das condições iniciais, conclui-se que $D_0=1=C_1$ e $D_1=2=1+C_2$, pelo que $C_2=1$. Como consequência obtém-se $D_n=1+n$.
- (3)6- Considerando a árvore T cuja matriz de adjacência é

e os vértices estão marcados pelos números $1, \ldots, 9$, determine o código de Prüfer de T.

Resolução:

i	1	2	3	4	5	6	7
s_i	1	2	3	4	6	5	7
t_i	3	3	5	5	5	8	8

Código de Prüfer da árvore T: (3, 3, 5, 5, 5, 8, 8).

7- Uma rede rodoviária entre 6 povoações A,B,C,D,E e F é constituída por 8 estradas tal como se descreve a seguir:

- entre A e B com 30 Km
- entre B e E com 20 Km
- entre E e F com 40 Km
- entre A e C com 22 Km
- entre C e E com 12 Km
- entre D e F com 18 Km
- entre A e D com 30 Km
- entre C e D com 36 Km.

(1)a) Represente esta rede rodoviária por um grafo com pesos nas arestas.

Resolução:

(3) a) Aplique o algoritmo de Dijkstra ao grafo para determinar o caminho mais curto entre a povoação D e a povoação B e a respetiva distância.

Resolução:

Apresentação da tabela que descreve a aplicação do algoritmo de Dijkstra.

D	A	B	C	E	F
(0,-)	$(\infty, -)$				
	(30, D)	$(\infty, -)$	(36, D)	$(\infty, -)$	(18, D)
	(30, D)	$(\infty, -)$	(36, D)	(58, F)	
		(60, A)	(36, D)	(58, F)	
		(60, A)		(48,C)	
		(60,A)			

O caminho mais curto entre a povoação D e B é DAB e a distância é 60 km.

4