IN THE CLAIMS

۰۰۰ الملشيب

Claim 1 has been amended as follows:

- 1. (Currently amended) A method for acquiring a diffusion-weighted image in diffusion-weighted MRT imaging, comprising the steps of:
 - (a) in a diffusion-weighted measurement, acquiring and storing a non-diffusion-weighted data set from a subject and a diffusion-weighted data set by using a DESS sequence by switching two readout gradients successively for acquiring the non-diffusion-weighted data set, and by switching a bipolar diffusion gradient pulse sequence between two readout gradients for acquiring the diffusion-weighted data set; and
 - (b) calculating a diffusion-weighted MRT image based on the non-diffusion-weighted data set and the diffusion-weighted data set, and based on a value characterizing the diffusion-weighted measurement.
- 2. (Original) A method as claimed in claim 1 comprising employing, as the bipolar diffusion gradient pulse sequence, a positive diffusion gradient pulse with an amplitude G_0 and a negative diffusion gradient pulse with an amplitude G_0 , said positive and negative diffusion gradient pulses having the same pulse width δ and one following directly after the other.
- 3. (Original) A method as claimed in claim 2 wherein step (b) comprises employing a b-value as said value characterizing the diffusion-weighted measurement, and calculating the diffusion-weighted MRT image by forming quotients of a combination of the diffusion-weighted data set and the non-diffusion-

weighted data set, logarithmizing the quotients, and weighting the logarithmized quotients with the b-value.

ا المحالة المح

4. (Original) A method as claimed in claim 3 wherein said diffusion-weighted MRT image is comprised of pixels, and wherein step (a) comprises conducting said diffusion-weighted measurement for a selected nuclear spin type, and wherein step (b) comprises forming the diffusion -weighted MRT image by representing each pixel by an ADC coefficient D_{ADC} determined per pixel from the acquired data sets according to

$$D_{ADC} = \frac{1}{2 * b_{bip}} \ln \frac{S_o^- * S_{Diff}^+}{S_{Diff}^- * S_o^+},$$

wherein S_{θ}^{+} and S_{θ}^{-} represent the data set of the non-diffusion-weighted measurement as FISP echo signals and as PSIF echo signals, respectively, and S_{Diff}^{+} and S_{Diff}^{-} represent the data set of the diffusion-weighted measurement as FISP echo signals and as PSIF echo signals, respectively, and wherein b_{bip} represents the value characterizing the diffusion-weighted measurement according to

$$b_{bip} = \frac{1}{6} \gamma^2 G_o^2 \delta^3$$

wherein γ is the gyromagnetic ratio of the nuclear spin type.

5. (Original) A method as claimed in claim 4 comprising acquiring the FISP echo signals for S_0^+ and S_{Diff}^+ with a bandwidth that is higher than a bandwidth employed for acquiring the PSIF echo signals for S_0^+ and S_{Diff}^+ .

6. (Original) A method as claimed in claim 4 comprising acquiring the FISP echo signals for S_0^+ and S_{Diff}^+ with a bandwidth that is the same bandwidth employed for acquiring the PSIF echo signals for S_{0+} and S_{Diff}^+ and acquiring the FISP echo signals for S_0^+ repeatedly using a multi-gradient echo sequence with averaging over all acquired signals for S_0^+ , and acquiring the FISP signals for S_{Diff}^+ using a multi-gradient echo sequence with averaging over all acquired signals for S_{Diff}^+ .

·

- 7. (Original) A method as claimed in claim 6 comprising employing a quadratic sum method for said averaging of S_0^+ and S_{Diff}^+ .
- 8. (Original) A method as claimed in claim 4 comprising acquiring the data sets S_{Diff}^- , S_{Diff}^+ , S_0^- , S_0^+ using a projection-reconstruction method.

9. (Original) A magnetic resonance imaging apparatus for acquiring a

diffusion-weighted image in diffusion-weighted MRT imaging, comprising:

Ó.

a magnetic resonance scanner adapted to receive a subject, said scanner, in

a diffusion-weighted measurement, acquiring and storing a non-

diffusion-weighted data set and a diffusion-weighted data set from the

subject using a DESS sequence by switching two readout gradients

successively for acquiring the non-diffusion-weighted data set, and by

switching a bipolar diffusion gradient pulse sequence between two

readout gradients for acquiring the diffusion-weighted data set; and

- a processor for calculating a diffusion-weighted MRT image based on the non-diffusion-weighted data set and the diffusion-weighted data set, and based on a value characterizing the diffusion-weighted measurement.
- 10. (Original) An apparatus as claimed in claim 9 wherein said scanner generates, as the bipolar diffusion gradient pulse sequence, a positive diffusion gradient pulse with an amplitude G_0 and a negative diffusion gradient pulse with an amplitude $-G_0$, said positive and negative diffusion pulses having the same pulse width δ and one following directly after the other.
- 11. (Original) An apparatus as claimed in claim 10 wherein said processor employs a b-value as said value characterizing the diffusion-weighted measurement, and calculates the diffusion-weighted MRT image by forming quotients of a combination of the diffusion-weighted data set and the non-diffusion-weighted data set, logarithmizing the quotients, and weighting the logarithmized quotients with the b-value.

12. (Original) An apparatus as claimed in claim 11 wherein said diffusion-weighted MRT image is comprised of pixels, and wherein the scanner conducts said diffusion-weighted measurement for a selected nuclear spin type, and wherein the processor forms the diffusion -weighted MRT image by representing each pixel by an ADC coefficient D_{ADC} determined per pixel from the acquired data sets according to

$$D_{ADC} = \frac{1}{2 * b_{bip}} \ln \frac{S_o^- * S_{Diff}^+}{S_{Diff}^- * S_o^+},$$

wherein S_0^+ and S_0^- represent the data set of the non-diffusion-weighted measurement as FISP echo signals and as PSIF echo signals, respectively, and S_{Diff}^+ and S_{Diff}^- represent the data set of the diffusion-weighted measurement as FISP echo signals and as PSIF echo signals, respectively, and wherein b_{bip} represents the value characterizing the diffusion-weighted measurement according to

$$b_{bip} = \frac{1}{6} \gamma^2 G_0^2 \delta^3$$

wherein γ is the gyromagnetic ratio of the nuclear spin type.

- 13. (Original) An apparatus as claimed in claim 12 wherein the scanner acquires the FISP echo signal for S_0^+ and S_{Diff}^+ with a bandwidth that is higher than a bandwidth employed for acquiring the PSIF echo signals for S_0^+ and S_{Diff}^+ .
- 14. (Original) An apparatus as claimed in claim 12 wherein the scanner acquires the FISP echo signals for S_0^+ and $S_{\textit{Diff}}^+$ with a bandwidth that is the same bandwidth employed for acquiring the PSIF echo signals for S_0^+ and $S_{\textit{Diff}}^+$, and acquiring the FISP echo signals for repeatedly using a multi-gradient echo sequence with the processor averaging over all acquired signals for S_0^+ , and acquires the FISP

signals for $S_{\textit{Diff}}^+$ repeatedly using a multi-gradient echo sequence with the processor averaging over all acquired signals for $S_{\textit{Diff}}^+$.

- 15. (Original) An apparatus as claimed in claim 14 wherein the processor employs a quadratic sum method for said averaging of S_0^+ and S_{Diff}^+ .
- 16. (Original) An apparatus as claimed in claim 12 wherein the processor acquires the data sets $S_{\textit{Diff}}^-$, $S_{\textit{Diff}}^+$, $S_{\textit{0}}^-$, $S_{\textit{0}}^+$ using a projection-reconstruction method.