standard form (we call it (**)) for (x) where $F(x) := F_0 + x_1 F_1 + x_2 F_2 + \dots + x_n f_n$ and fo, F1, F2, ..., Fn E Sm (see · [ast three pages]

of Lea. 7)

Lec. 12 (11/01/2022)

So the fearible/constraint set $\chi := \{ \underline{x} \in \mathbb{R}^n \mid F(\underline{x}) > 0 \}$ (Speetvaluedron) Brief outline to go from (**) to (*): Split vector $\underline{x} \in \mathbb{R}^n$ into its positive and negative parts: $\frac{x}{x} = \frac{x}{x} - \frac{x}{x} - \frac{x}{x} + \frac{x}{x} = \frac{x}$ Introduce "slack" variable X (matrix) to Convert inequality constraints to equalify: write: F(x) = x > 0

win
$$\subseteq \mathbb{Z}^+ - \subseteq \mathbb{Z}^-$$

 $\times^+, \times^-, \times$

8.t. $\subseteq \mathbb{Z}^+ - \subseteq \mathbb{Z}^-$

S.t.
$$\sum_{i=1}^{m} F_{i} \times_{i}^{+} - \sum_{i=1}^{m} F_{i} \times_{i}^{-} - X$$

$$= -F_{0}$$

•
$$\times \times \circ$$
• $\times \times \circ$
• $\times \times \circ$
• $\times \times \circ$
• (ellowentwise)

Then, let diag(xt) liag(x-) in form (x) Now write Ax, bx in terms of E, F., ---, Fr (exercise) Examples of convex optimization problems and their reduction to standard form

Example: Chebysher center of a polyhedron.

Criven a polyhedron $P = \{x \in \mathbb{R}^n \mid a^T : x \in b_i\}$ Find $B := \{ \frac{x}{2} + \frac{y}{2} | || \frac{y}{2} \leq r \}$

ball with center $x \in \mathbb{R}^n$ and radius r

s.t. B is the largest ball in P.

max Objective function f(xe, r) = r Our decision variable (xe, r) ERXR++ $\frac{\tau}{i} \times \leq b_i \quad \forall \quad \times \in \mathcal{O}$

$$= \underbrace{a_i^T(z_e + u)}_{1} | \underbrace{u}_{2} \leq r_{3}^{2}$$

$$= \underbrace{a_i^T z_e}_{1} + r | \underbrace{a_i | |_{2}}_{2} \leq b_i$$

Hi=1,...,m Kij > b; then the ball spills out

next og.

max r $(\frac{x}{2}, \frac{x}{2}) \in \mathbb{R}^{3} \times \mathbb{R}_{++}$ 8.t. <u>at</u> x_e + r || a_i||₂ \le b_i, + i=1,..., m This is linear in (xe, r) EIR" × Ry+ - · · L P 1

pieenvise affine function minimize a Example. min $\max(\underline{a};\underline{x}+b;)$ $\underline{x} \in \mathbb{R}^n$ i=1,...,mpiecewise affine rick: Standard Convex problem: Epigraph / form: min $f_0(x)$, $x \in \mathbb{R}^n$ min (z,t) $f'(\bar{x}) - f \leq 0$ s.t. $f:(x) \leq 0, i=1,...,m$ **尽七**. f; (x) <0, i=1,...,m h; (x)=0, j=1,-,p h; (x) = 0, j=1,.., p

In epigraph form, our piecewise affirme minimization problem (which rate agree, is a convex problem) becomes:

min
$$t$$
 (x,t)
 $s.t.$
 $max(a; x+b;) \leq t$
 $i=1,...,m$

le and la involving Problems norms <u>e</u>, min × ERM

Example showing LP reduction: min $||^{2x+3y-1}||$ $(x) \in \mathbb{R}^2$ $||^{2x+3y-1}|$ $= \min \left\{ ||^{2x+3y-1}|| + ||y|| \right\}$ (0) (x) $(y) \in \mathbb{R}^2$ Trick! Let $t_1 > 0$, $t_2 > 0$ min $(t_1 + t_2)$ 8.t. $|2x + 3y - 1| \le t$, |4| < t8.t.-t, < 2x +3y-15t, and $|y| \leq t_2$ (IP:n standard), - t2 < y < t2

Same story: $x \in \mathbb{R}^n$ $A \times - b$ min $(\underline{x},\underline{t})$ <u>×</u> - b く t $-(Az-b) \leq t$ t, t2, ~, tn > 0

 $= min max { [2x+3y-1], [4]}$ $(y) \in \mathbb{R}^2$ Let t>0 be such that 2x +39 - 1 | 5 t and $|y| \leq t$, t > 0next bg.

$$\sum_{x \in \mathbb{R}^n} ||A^{\underline{z}} - \underline{b}||_{a}$$

is all ones

Exercise:
$$\begin{cases} \min & \|Az - b\|_{1} \\ \frac{x}{x} \in \mathbb{R}^{n} \\ s, t . \| \|x\|_{\infty} \leq 1 \end{cases}$$

$$\begin{cases} \min & 1^{T} \underline{y} \\ (\frac{x}{x}, \underline{y}) \\ s, t . -\underline{y} \leq A \underline{x} - b \leq +\underline{y} \\ -\underline{1} \leq \underline{x} \leq +\underline{1} \end{cases}$$

Exercise:

The polyhedra
$$P_1 = \{x \in \mathbb{R}^n \mid A_1 x \leq b\}$$

$$P_2 = \{x \in \mathbb{R}^n \mid A_2 x \leq b^2\}$$

$$P_2 = \{x \in \mathbb{R}^n \mid A_2 x \leq b^2\}$$

Examples of QP: (Compute distance

between

min
$$\|x_1 - x_2\|_2$$
 (x_1, x_2)

min
$$x_1, x_2 \in \mathbb{R}^7$$
 $x_1, x_2 \in \mathbb{R}^7$
 $A_1 \times A_2 \times A_2$
 $A_2 \times A_2 \times A_2$
 $A_2 \times A_2 \times A_2$