Übungen zur Vorlesung Formale Spezifikation und Verifikation

Blatt 4

Aufgabe 4-1 Gegeben sei das Transitionssystem mit Zustandsmenge $S = \{0, 1, 2\}$ und folgender Transitionsrelation.

Die Zustände dieses Systems können durch die Belegungen zweier Variablen x_0, x_1 kodiert werden: Zustand 0 wird repräsentiert durch $x_0 = x_1 = false$, Zustand 1 durch $x_0 = false \wedge x_1 = true$ und Zustand 2 durch $x_0 = true \wedge x_1 = false$.

- a) Geben Sie ein BDD sanity an, das die Menge aller Zustände S repräsentiert (Variablenordnung: $x_0 < x_1$).
- b) Geben Sie ein BDD next an, das die möglichen Zustandsübergänge repräsentiert. Verwenden Sie Variablen x'_0 und x'_1 für Folgezustände sowie die Variablenordnung $x_0 < x'_0 < x_1 < x'_1$.
- c) Angenommen für ein unbekanntes Transitionssystem (S, \to) sind die BDDs sanity und next gegeben. Weiterhin ist ein BDD b gegeben, das eine Menge B von Zuständen repräsentiert. Wie kann man dann ein BDD für die Menge $\{s \in S \mid \exists s' \in B. s \to s'\}$ der Vorgänger von B berechnen?

Aufgabe 4-2 Gegeben sei folgendes Transitionssystem mit Zustandsmenge $\{s_0, s_1, s_2, s_3, s_4, s_5\}$.

In jedem Zustand sind die dort gültigen aussagenlogischen Variablen aufgeführt, so dass die Abbildung eine Interpretation \mathcal{I} definiert.

Geben Sie für folgende Formeln ϕ die Menge aller Zustände s an, für die $s \models_{\mathcal{I}} \phi$ gilt.

a) $p \Rightarrow r$

d) AFq

g) $A[(p \lor q) U (EG \neg q)]$

b) AF t

e) EG p

c) EF q

f) AG (AF $(p \lor t)$)

Aufgabe 4-3 Entscheiden Sie für die folgenden Paare von CTL-Formeln, ob diese äquivalent sind. Geben Sie für nichtäquivalente Formlen eine Interpretation und einen Zustand an, auf dem nur eine der beiden Formeln wahr ist.

a) \top und AG $p \Rightarrow EG p$

e) $EF p \wedge EG q$ und $EF (p \wedge EG q)$

b) $\neg AG p$ und $EG \neg p$

f) AF $p \wedge$ AG q und AF $(p \wedge$ AG q)

c) EF $p \wedge$ EF q und EF $(p \wedge q)$

g) $E[p U q] \wedge E[q U r]$ und E[p U r]

d) AF $p \vee$ AF q und AF $(p \vee q)$

h) A[p U q] und $q \vee (p \wedge AX A[p U q])$

Aufgabe 4-4 Gegeben seinen folgende beide Interpretationen \mathcal{I}_0 und \mathcal{I}_1 .

Die beiden Zustände s_0 und s_1 können durch eine CTL-Formel unterschieden werden. Geben Sie eine CTL-Formel ϕ , so dass $s_0 \models_{\mathcal{I}_0} \phi$ gilt, nicht aber $s_1 \models_{\mathcal{I}_1} \phi$.

Abgabe: Sie können Ihre Lösungen bis Mittwoch, den 18.5., um 16:00 Uhr über UniWorX abgeben.