ELEC 221 Lecture 10 Introducing the Fourier transform

Thursday 10 October 2024

Announcements

- Midterm postmortem
- No tutorial on Monday (Thanksgiving holiday)
- Quiz 5 on Tuesday (based on today's material)

Last time (recap)

We've seen the Fourier series representation of **periodic** signals:

Last time (recap)

CT synthesis equation:

CT analysis equation:

A periodic signal is composed of complex exponential signals with integer multiples of the fundamental frequency only (harmonics).

Last time (recap)

In tutorial assignment 2, we saw signals that weren't periodic:

But, we were still doing something with Fourier analysis:

fourier_spectrum = np.fft.rfft(case_data)

Today

Learning outcomes:

- Distinguish between the CT Fourier series and Fourier transform
- Compute the Fourier spectrum of a CT signal
- Describe how the Fourier transform relates impulse and frequency response of a system

The Fourier transform

The Fou	ırier transform	generalizes	the Fourier	series to	aperiodic
signals.	It involves all p	ossible frequ	uencies.		

Fourier series:

Fourier transform:

How do we get here?

Previously, we looked at a 2π -periodic square wave:

We derived its Fourier series representation

Let's generalize this. Consider the following square wave:

Image credit: Oppenheim chapter 4.1

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$$

Let's compute its Fourier coefficients.

$$c_k = \frac{1}{T} \int_{\mathcal{T}} x(t) e^{-jk\omega t}$$

Start with c_0 :

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| < T/2 \end{cases}$$

Now the c_k :

What does this function look like?

Rearrange and express as a function of k:

Let's plot this: set $T_1=1$, and $T=2\pi$, so $\omega=\frac{2\pi}{T}=1$.

These are samples of the function

at integer values of k.

Let's consider this instead as a function of frequency, $\tilde{\omega} = k\omega$:

The Fourier coefficients are samples of this function at *integer* multiples of fundamental frequency, $\tilde{\omega}=k\omega$, where $\omega=2\pi/T$.

Suppose T grows, but T_1 stays the same:

Initially the spacing of samples is integer multiples of $\omega=2\pi/T$.

Image credit: Oppenheim chapter 4.1

As T grows, $\omega=2\pi/T$ becomes smaller and smaller, so the integer multiples of it get closer and closer together.

Eventually, ω becomes so small that instead of

we may as well just consider the sum over integer multiples as a continuous integral over all possible ω :

...but what does this have to do with non-periodic signals?

Given any aperiodic signal x(t), we can always "pretend" it's periodic by constructing a **periodic extension**, $\tilde{x}(t)$ with period T.

Image credit: Oppenheim chapter 4.1

We can express $\tilde{x}(t)$ as a Fourier series (where $\omega = 2\pi/T$):

What happens to the coefficients?

Let's define

so that

We can put this back in our Fourier series:

Consider what happens when $T \to \infty$...

1. $\tilde{x}(t)$ will look just like x(t) for large enough T

2. ω will get smaller and smaller

The Fourier transform

Inverse Fourier transform (synthesis equation):

Fourier transform (analysis equation, or Fourier spectrum):

Note: Sometimes the $1/2\pi$ prefactor appears on the spectrum, or sometimes both versions have $1/\sqrt{2\pi}$.

Compute the Fourier spectrum of:

$$x(t) = egin{cases} \cos(\pi t), & |t| \leq 1 \ 0, & |t| > 1 \end{cases}$$

$$x(t) = egin{cases} \cos(\pi t), & |t| \leq 1 \ 0, & |t| > 1 \end{cases}$$

Start from the definition:

$$X(j\omega)$$
 $\frac{1}{2} \int_{-1}^{1} e^{j(\pi-\omega)t} dt + \frac{1}{2} \int_{-1}^{1} e^{-j(\pi+\omega)t} dt$

$$X(j\omega) = \frac{\sin(\omega)}{\pi - \omega} - \frac{\sin(\omega)}{\pi + \omega}$$

Fourier transform and impulse response

You've actually already seen the Fourier transform before...

Write a signal as a combination of shifted, weighted impulses:

Put this in an LTI system with impulse response h(t):

Fourier transform and impulse response

$$x(t) \rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

When the signal in question is a complex exponential,

Fourier transform and impulse response

The system function $H(j\omega)$, or frequency response

is the Fourier transform of the impulse response!

We can use the inverse Fourier transform to obtain the impulse response from the frequency response:

Recap

Learning outcomes:

- Distinguish between the CT Fourier series and Fourier transform
- Compute the Fourier spectrum of a CT signal
- Describe how the Fourier transform relates impulse and frequency response of a system

For next time

Content:

- Fourier transform for periodic signals
- Properties of the CT Fourier *transform*
- Time/frequency duality

Action items:

1. Quiz 5 Tuesday

Recommended reading:

- From today's class: Oppenheim 4.0-4.1
- Suggested problems: 4.1, 4.2a, 4.21abei, 4.22abde
- For next class: Oppenheim 4.2-4.4