Large-Scale Adversarial Training for Vision-and-Language Representation Learning

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, Jingjing Liu 6/18/2020

Image-Text Pre-training

Tremendous progress has been made

UNITER is still state of the art in many tasks back to early 2020

Recap on UNITER

Pre-training a large-scale Transformer for universal V+L representation learning

What's Next?

- Aggressive finetuning often falls into the overfitting trap in existing multimodal pre-training methods
- Adversarial training (FreeLB) has shown great potential in improving the generalization ability of BERT
- Beyond FreeLB:
 - How about pre-training?
 - How about image modality?
 - How about AT algorithm itself?

Preliminary: What's Adversarial Attack?

Neural Networks are prone to label-preserving adversarial examples

Computer Vision:

+ 0.005 x

"airliner"

Natural Language Processing:

Original: What is the oncorhynchus also called? **A:** chum salmon

Changed: What's the oncorhynchus

also called? A: keta

(b) Example for $(WP is \rightarrow WP's)$

Original: How long is the Rhine?

A: 1,230 km

Changed: How long is the Rhine??

A: more than 1,050,000

(c) Example for $(? \rightarrow ??)$

^[1] Explaining and harnessing adversarial examples. *arXiv:1412.6572*

^[2] Semantically equivalent adversarial rules for debugging nlp models. ACL (2018)

Preliminary: What's Adversarial Training (AT)?

A min-max game to harness adversarial examples

$$\min_{\theta} \mathbb{E}_{(x,y)\sim\widehat{\mathcal{D}}}\left[\max_{\delta\in S} \mathcal{L}(x+\delta,y;\theta)\right]$$

- Use adversarial examples as additional training samples
 - On one hand, we try to find perturbations that maximize the empirical risk
 - On the other hand, the model tries to make correct predictions on adversarial examples
- What doesn't kill you makes you stronger!

What's Our Recipe?

- Ingredient #1: Adversarial pre-training + finetuning
- Ingredient #2: Perturbations in the embedding space
- Ingredient #3: Enhanced adversarial training algorithm

#1: Adversarial Pre-training + Finetuning

Pre-training and finetuning are inherently corelated

- MLM during pre-training (masking out an object):
 [CLS] A [MASK] lying on the grass next to a frisbee [SEP]
- VQA during finetuning (asking about an object):
 What animal is lying on the grass?

Pre-training and finetuning share the same mathematical formulation

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}}[L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y})].$$

#2: Perturbations in the Embedding Space

- For image, robustness is often at odds with generalization
 - Generalization: Accuracy on clean data
 - Robustness: Accuracy on adversarial examples

 Our hypothesis: this trade-off is due to image perturbation in the pixel space, or the CNN architecture design

#2: Perturbations in the Embedding Space

- For text, generating actual adversarial examples is difficult
 - An adversarial example should *preserve the semantics* as context is important

```
Original: He has a natural gift for writing scripts.
```

Adversarial: He has a natural talent for writing scripts.

- Use back-translation scores to filter out invalid adversaries: <u>expensive</u>
- Searching for semantically equivalent adversarial rules: <u>heuristic</u>
- Since we only care about the end results of adversarial training, we add perturbations in the embedding space directly

Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$$

Cross-entropy loss on clean data:

$$\mathcal{L}_{std}(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y})$$

A [MASK] lying on the grass next to a frisbee

Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$$

Cross-entropy loss on adversarial embeddings:

$$\mathcal{R}_{at}(\boldsymbol{\theta}) = \max_{||\boldsymbol{\delta}_{img}|| \le \epsilon} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + \max_{||\boldsymbol{\delta}_{txt}|| \le \epsilon} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \boldsymbol{y})$$

A [MASK] lying on the grass next to a frisbee

Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \right]$$

KL-divergence loss for fine-grained adversarial regularization

$$egin{aligned} \mathcal{R}_{kl}(m{ heta}) &= \max_{||m{\delta}_{img}|| \leq \epsilon} L_{kl}(f_{m{ heta}}(m{x}_{img} + m{\delta}_{img}, m{x}_{txt}), f_{m{ heta}}(m{x}_{img}, m{x}_{txt})) \ &+ \max_{||m{\delta}_{txt}|| \leq \epsilon} L_{kl}(f_{m{ heta}}(m{x}_{img}, m{x}_{txt} + m{\delta}_{txt}), f_{m{ heta}}(m{x}_{img}, m{x}_{txt})) \,, \end{aligned}$$
 where $L_{kl}(p,q) = \mathrm{KL}(p||q) + \mathrm{KL}(q||p)$

 Not only label-preserving, but the confidence level of the prediction between clean data and adversarial examples should also be close

Enable AT for large-scale training and promote diverse adversaries

```
Algorithm 1 "Free" Multi-modal Adversarial Training used in VILLA.
```

```
Require: Training samples \mathcal{D} = \{(x_{imq}, x_{txt}, y)\}, perturbation bound \epsilon, learning rate \tau, ascent
           steps K, ascent step size \alpha
   1: Initialize \theta
  2: for epoch = 1 \dots N_{ep} do
                     for minibatch B \subset X do
                               \boldsymbol{\delta}_0 \leftarrow \frac{1}{\sqrt{N_s}} U(-\epsilon, \epsilon), \ \boldsymbol{g}_0 \leftarrow 0
                               for t = 1 \dots K do
                                         Accumulate gradient of parameters m{	heta} given m{\delta}_{img,t-1} and m{\delta}_{txt,t-1}
  6:
                                          g_t \leftarrow g_{t-1} + \frac{1}{K} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \in B} [\nabla_{\boldsymbol{\theta}} (\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \mathcal{R}_{kl}(\boldsymbol{\theta}))]
Update the perturbation \boldsymbol{\delta}_{img} and \boldsymbol{\delta}_{txt} via gradient ascend
  8:
                                                       	ilde{oldsymbol{y}} = f_{oldsymbol{	heta}}(oldsymbol{x}_{ima}, oldsymbol{x}_{txt})
                                                       \boldsymbol{g}_{img} \leftarrow \nabla_{\boldsymbol{\delta}_{img}} \left[ L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \tilde{\boldsymbol{y}}) \right]
10:
                                                       \boldsymbol{\delta}_{img,t} \leftarrow \Pi_{\|\boldsymbol{\delta}_{img}\|_F \leq \epsilon} (\boldsymbol{\delta}_{img,t-1} + \alpha \cdot \boldsymbol{g}_{img} / \|\boldsymbol{g}_{img}\|_F)
11:
                                                       oldsymbol{g}_{txt} \leftarrow 
abla_{oldsymbol{t}_{xt}} \left[ L(f_{oldsymbol{	heta}}(oldsymbol{x}_{img}, oldsymbol{x}_{txt} + oldsymbol{\delta}_{txt}), oldsymbol{y}) + L_{kl}(f_{oldsymbol{	heta}}(oldsymbol{x}_{img}, oldsymbol{x}_{txt} + oldsymbol{\delta}_{txt}), oldsymbol{	ilde{y}}) \right]
12:
                                                       [\boldsymbol{\delta}_{txt,t} \leftarrow \Pi_{\|\boldsymbol{\delta}_{txt}\|_F \leq \epsilon} (\boldsymbol{\delta}_{txt,t-1} + \alpha \cdot \boldsymbol{g}_{txt} / \|\boldsymbol{g}_{txt}\|_F)]
13:
14:
                               end for
                               oldsymbol{	heta} \leftarrow oldsymbol{	heta} - 	au oldsymbol{g}_K
15:
                     end for
16:
17: end for
```

Accumulate the parameter gradient for "free"

Perturbation update via PGD (Projected Gradient Descent)

Parameter update via SGD (Stochastic Gradient Descent)

Results (VQA, VCR, NLVR2, SNLI-VE)

- Established new state of the art on all the tasks considered
- Gain: +0.85 on VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE

Method	V(QA		VCR		NL	VR^2	SNLI-VE	
iviounou.	test-dev	test-std	$Q \rightarrow A$	$QA \rightarrow R$	$Q \rightarrow AR$	dev	test-P	val	test
ViLBERT	70.55	70.92	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	-	-	-	_
VisualBERT	70.80	71.00	70.8 (71.6)	73.2 (73.2)	52.2 (52.4)	67.4	67.0	-	-
LXMERT	72.42	72.54	-	_	-	74.90	74.50	-	-
Unicoder-VL	-	-	72.6 (73.4)	74.5 (74.4)	54.4 (54.9)	-	-	-	-
12-in-1	73.15	-	-	-	-	-	78.87	-	76.95
VL-BERT _{BASE}	71.16	-	73.8 (-)	74.4 (-)	55.2 (-)	-	-	-	-
Oscar _{BASE}	73.16	73.44	-	-	-	78.07	78.36	-	-
UNITER _{BASE}	72.70	72.91	74.56 (75.0)	77.03 (77.2)	57.76 (58.2)	77.18	77.85	78.59	78.28
$VILLA_{BASE}$	73.59	73.67	75.54 (76.4)	78.78 (79.1)	59.75 (60.6)	78.39	79.30	79.47	79.03
VL-BERT _{LARGE}	71.79	72.22	75.5 (75.8)	77.9 (78.4)	58.9 (59.7)	-	-	-	_
Oscar _{LARGE}	73.61	73.82	-	-		79.12	80.37	-	
UNITER _{LARGE}	73.82	74.02	77.22 (77.3)	80.49 (80.8)	62.59 (62.8)	79.12	79.98	79.39	79.38
VILLA _{LARGE}	74.69	74.87	78.45 (78.9)	82.57 (82.8)	65.18 (65.7)	79.76	81.47	80.18	80.02

⁽a) Results on VQA, VCR, NLVR², and SNLI-VE.

Results (ITR, RE)

• Gain: +1.52/+0.60 on Flickr30k IR & TR (R@1), and +0.99 on RE

Method			RefC	OCO+			RefCOCO					
	val	testA	testB	val^d	$testA^d$	$testB^d$	val	testA	testB	val^d	$testA^d$	$testB^d$
ViLBERT	-	-	-	72.34	78.52	62.61	-	-	-	-	-	-
VL-BERT _{BASE}	79.88	82.40	75.01	71.60	77.72	60.99	-	-	-	-	-	-
UNITER _{BASE}	83.66	86.19	78.89	75.31	81.30	65.58	91.64	92.26	90.46	81.24	86.48	73.94
VILLA _{BASE}	84.26	86.95	79.22	76.05	81.65	65.70	91.93	92.79	91.38	81.65	87.40	74.48
VL-BERT _{LARGE}	80.31	83.62	75.45	72.59	78.57	62.30	-	_	_	_	_	-
UNITER _{LARGE}	84.25	86.34	79.75	75.90	81.45	66.70	91.84	92.65	91.19	81.41	87.04	74.17
VILLA _{LARGE}	84.40	86.22	80.00	76.17	81.54	66.84	92.58	92.96	91.62	82.39	87.48	74.84

(b) Results on RefCOCO+ and RefCOCO. The superscript d denotes evaluation using detected proposals.

Method		RefCOCOg				lickr30k	IR	Flickr30k TR		
1.1001100	val	test	val^d	$test^d$	R@1	R@5	R@10	R@1	R@5	R@10
Vilbert	-	-	-	-	58.20	84.90	91.52	-	-	-
Unicoder-VL	-	-	-	-	71.50	90.90	94.90	86.20	96.30	99.00
UNITER _{BASE}	86.52	86.52	74.31	74.51	72.52	92.36	96.08	85.90	97.10	98.80
$VILLA_{BASE}$	88.13	88.03	75.90	75.93	74.74	92.86	95.82	86.60	97.90	99.20
UNITER _{LARGE} VILLA _{LARGE}	87.85 88.42	87.73 88.97	74.86 76.18	75.77 76.71	75.56 76.26	94.08 94.24	96.76 96.84	87.30 87.90	98.00 97.50	99.20 98.80

⁽c) Results on RefCOCOg and Flickr30k Image Retrieval (IR) and Text Retrieval (TR).

A Closer Look at VQA

A Closer Look at VCR

41 entries in total on the leaderboard

/hy is [person4][] pointing a person1[]?	
a) He is telling [person3] that [person1 the pancakes.	ordered
b) He just told a joke.	
:) He is feeling accusatory towards [person1].
d) He is giving [person1] directions. Pationale: I think so because	
a) [person1] has the pancakes in front of hi	m.
b) [person4] is taking everyone's order and	asked for
clarification.	
clarification. [person3[] is looking at the pancakes both [person2[] are smiling slightly.	n she and

Rank	Model	Q- >A	QA- >R	Q- >AR
	Human Performance University of Washington	91.0	93.0	85.0
	(Zellers et al. '18)			
September 30, 2019	UNITER-large (ensemble) MS D365 AI https://arxiv.org/abs/1909.1174	79.8	83.4	66.8
2 May 22, 2020	VILLA-large (single model) MS D365 AI https://arxiv.org/pdf/2006.0619 5.pdf)	78.9	82.8	65.7
3 September 23, 2019	UNITER-large (single model) MS D365 AI https://arxiv.org/abs/1909.1174	77.3	80.8	62.8
4 May 22, 2020	VILLA-base (single model) MS D365 AI https://arxiv.org/pdf/2006.0619 5.pdf)	76.4	79.1	60.6
5 April 23, 2020	KVL-BERT Beijing Institute of Technology	76.4	78.6	60.3
6 August 9,2019	ViLBERT (ensemble of 10 models) Georgia Tech & Facebook Al Research	76.4	78.0	59.8

Pretraining vs. Finetuning

• Both adversarial pre-training and finetuning contribute to performance boost

Method	VQA		VCR (val)	$NLVR^2$	VE	F	lickr30k	IR	RefC	ОСО	Ave.	
	test-dev	$Q \rightarrow A$	$QA{\rightarrow}R$	$Q \rightarrow AR$	test-P	test	R@1	R@5	R@10	$testA^d$	$testB^d$		
UNITER (reimp.)	72.70	74.24	76.93	57.31	77.85	78.28	72.52	92.36	96.08	86.48	73.94	78.06	+0.51
VILLA-pre	73.03	74.76	77.04	57.82	78.44	78.43	73.76	93.02	96.28	87.34	74.35	78.57	+0.82
VILLA-fine	73.29	75.18	78.29	59.08	78.84	78.86	73.46	92.98	96.26	87.17	74.31	78.88	70.02
VILLA	73.59	75.54	78.78	59.75	79.30	79.03	74.74	92.86	95.82	87.40	74.48	79.21	+1.15

VILLA vs. FreeLB

- Adversarial training on image or text modality alone is already effective
 - Most existing work shows that adversarial training for images cannot improve accuracy
- VILLA is consistently better than FreeLB

Method	VQA		VCR (val)					
1/10/11/04	test-dev	$\overline{Q \rightarrow A}$	$QA \rightarrow R$	$Q \rightarrow AR$				
VILLA _{BASE} (txt)	73.50	75.60	78.70	59.67				
VILLA _{BASE} (img)	73.50	75.81	78.43	59.68				
VILLA _{BASE} (both)	73.59	75.54	78.78	59.75				
VILLA _{LARGE} (txt)	74.55	78.08	82.31	64.63				
VILLA _{LARGE} (img)	74.46	78.08	82.28	64.51				
VILLA _{LARGE} (both)	74.69	78.45	82.57	65.18				

Method	VQA		VCR (val)				
Troute a	test-dev	$\overline{Q \rightarrow A}$	$QA \rightarrow R$	$Q \rightarrow AR$			
UNITER _{BASE} (reimp.)	72.70	74.24	76.93	57.31			
UNITER _{BASE} +FreeLB	72.82	75.13	77.90	58.73			
VILLA _{BASE} -fine	73.29	75.49	78.34	59.30			
UNITER _{LARGE} (reimp.)	73.82	76.70	80.61	62.15			
UNITER _{LARGE} +FreeLB	73.87	77.19	81.44	63.24			
VILLA _{LARGE} -fine	74.32	77.75	82.10	63.99			

(b) FreeLB vs. VILLA.

⁽a) Image vs. Text Modality.

Generalizability of VILLA

• VILLA can be applied to any multimodal pre-training methods (e.g., LXMERT)

Method	VQA		G(QΑ	NL	VR^2	Meta-Ave.	•
1.10 1110 0	test-dev	test-std	test-dev	test-std	dev	test-P	112000 11701	
LXMERT	72.42	72.54	60.00	60.33	74.95	74.45	69.12	•
LXMERT (reimp.)	72.50	72.52	59.92	60.28	74.72	74.75	69.12	
VILLA-fine	73.02	73.18	60.98	61.12	75.98	75.73	70.00	+0.88

Adversarial training as a regularizer

Probing Analysis

Probing the attention heads (12 layers, and 12 heads in each layer)

VILLA captures richer visual coreference and visual relation knowledge

Modelsce		Visual	Coreferenc	e (Flickr30k)			Visual Relation (Visual Genome)					
	scene	clothing	animals	instruments	vehicles	on	standing in	wearing	holding	covering	Ave.	
UNITER _{BASE} VILLA _{BASE}	0.151 0.169	0.157 0.185	0.285 0.299	0.244 0.263	0.194 0.202	0.154 0.201	0.107 0.120	0.311 0.353	0.200 0.241	0.151 0.192	0.195 0.223	

Visualization (Text-to-Image Attention)

VILLA learns more accurate and sharper attention maps than UNITER

A group of people are in a dirt mountain, one person is talking on the phone, one is taking a picture and one is jumping in the air.

Takeaway Message

- VILLA is the first known effort that proposes adversarial training for V+L representation learning
- Fast and efficient adversarial pre-training is worth further investigation
- Adversarial machine learning in the context of V+L research is still a relatively unexplored territory

