An introduction for mixture modelling for unsupervised clustering Mini-tutorial

Nicole M White

Australian Centre for Health Services Innovation (AusHSI) Queensland University of Technology

July 1, 2021

- Pinite mixture models
- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **6** Model fitting and inference
- 6 References

- 2 Finite mixture models
- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

Chapman & Hall/CRC Handbooks of Modern Statistical Methods Handbook of **Mixture Analysis** Edited by Sylvia Frühwirth-Schnatter Gilles Celeux Christian P. Robert CRC Press

A motivating example

Distribution of body mass index (BMI) for 10,000 participants.

Distribution of body mass index (BMI) for 10,000 participants.

Distribution of body mass index (BMI) for 10,000 participants

Unsupervised clustering \leftrightarrow Identifying subgroups

Example clustering methods:

- Hierarchical clustering
- K-means
- Mixture models

Itodo add figure to demonstrate cluster separation here ;e.g. k-means]

Examples of clustering using mixture models

Figure 3: Experimental data, Sheep CT (Alston & Mengersen [ref])

Examples of clustering using mixture models

Spike sorting

Overview

- Show unsorted datasets from book chapter
- Show mixture solution with spikes in different colours

Mixture model ingredients

Overview

Data are drawn from a convex combination of components For K groups/clusters:

$$p(y) = \eta_1 p(y|\theta_1) + \ldots + \eta_K p(y|\theta_K)$$
$$= \sum_{k=1}^K \eta_k p(y|\theta_k)$$

- $\eta = (\eta_1, \dots, \eta_K)$: Mixture weights; $\sum_{k=1}^K \eta_k = 1$
- $p(y|\theta_k)$: k^{th} Mixture component; same parametric family

A simple 2-component mixture model

$$y_i \sim \eta_1 \mathcal{N}\left(\mu_1, 1\right) + \eta_2 \mathcal{N}\left(\mu_2, 1\right)$$

General formulation:

$$p(y_i) = \sum_{k=1}^K \eta_k p(y_i | \boldsymbol{\theta}_k)$$

Latent class analysis (*J* items)

$$p(y_i|\boldsymbol{\theta}_k) = \prod_{j=1}^J p(y_{ij}|\theta_{jk})$$

General formulation:

$$p(y_i) = \sum_{k=1}^K \eta_k p(y_i | \boldsymbol{\theta}_k)$$

Hidden Markov models

[TODO]

0000000000000 0000

General formulation:

$$p(y_i) = \sum_{k=1}^K \eta_k p(y_i | \boldsymbol{\theta}_k)$$

• Latent class regression: $\eta_k \to \eta_k(x_i)$

$$\eta_{k}(\mathbf{x}_{i}) = \frac{\exp\left(\mathbf{x}_{i}^{T}\beta_{k}\right)}{\sum_{l=1}^{K}\exp\left(\mathbf{x}_{i}^{T}\beta_{l}\right)}$$
$$\beta_{K} = 0$$

Mixture model examples

Focus of mini-tutorial: cross-sectional, continuous data

- Finite mixture model
- Dirichlet Process mixture model
- Profile regression

Bayesian approaches to inference: Markov chain Monte Carlo (MCMC)

0000000000000 •000

- Pinite mixture models
- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

Assume a fixed number of components KEach data point has a probability of belonging to each

Estimating a Finite Mixture Model

Aim is to learn $\eta_{1,...,K}$ and $\theta_{1,...,K}$ Both are conditional on kIntroduce a latent variable. z

- One per observation: y_i, z_i
- Each z_i is discrete: $1, \ldots, K$ with $Pr(z_i = k) = \eta_k$ [check thesis
- y_i belongs to cluster k iff $z_i = k$

$$Pr(z_i = k|y_i, \cdot) = \frac{p(y_i|\theta_k, z_i = k)Pr(z_i = k)}{\sum_{l=1}^{K} p(y_i|\theta_l, z_i = l)Pr(z_i = l)}$$

- 3 Dirichlet Process Mixture models
 - Stick breaking process
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

- 3 Dirichlet Process Mixture models Stick breaking process
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

- 3 Dirichlet Process Mixture models Stick breaking process Polya Urn
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

- 3 Dirichlet Process Mixture models Stick breaking process Chinese Restaurant Process
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

- 2 Finite mixture models
- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **6** Model fitting and inference Choosing K

- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **6** Model fitting and inference R implementation Choosing K

- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **6** Model fitting and inference Inferring likely clusterings Choosing K

- Label switching conumdrum
- Unswitching vs. xxx

- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **6** Model fitting and inference Choosing K

Frame Title

- AIC, BIC
- variants of DIC

- 2 Finite mixture models
- 3 Dirichlet Process Mixture models
- 4 Profile regression
- **5** Model fitting and inference
- 6 References

Thanks!

https://www.latexstudio.net/archives/4051.html