Schwarz Lemma. Let $f: \{z \in \mathbb{C}: |z| < 1\} \to \mathbb{C}$ be holomorphic and $|f(z)| \le 1$ for all z, f(0) = 0. Then, $|f(z)| \le |z|, |f'(0)| \le 1$. If for some $z_0 \ne 0, |f(z_0)| = |z_0|$ or if |f'(0)| = 1, then f(z) = cz for some $c \in \mathbb{C}$ with |c| = 1.

Proof. Consider the function g(z) defined to be f(z)/z when $z \neq 0$ and f'(0) when z = 0 with $g : \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$. Then, since z is holomorphic and when $z \neq 0$, it follows that g is holomorphic. By the removable singularities theorem (a corollary to Morrera's theorem), we have that since g is holomorphic on $D_1(0)$ and not on the single point $0 \in D_1(0)$, thus, we get that g is holomorphic on all of $D_1(0)$. Since g is holomorphic (therefore continuous) on $D_1(0)$, then it is continuous on the compact set $D_r(0)$ where 0 < r < 1. Then, g is uniformly continuous and bounded on $D_r(0)$. Then, by the maximum modulus principle, the supremum of g is attained on the boundary, so $\sup_{|z| \le r} |g(z)| = \sup_{|z| = r} |g(z)| = \sup_{|z| = r} \frac{|f(z)|}{|z|} \le \frac{1}{r}$. Thus, it follows that $|f(z)| \le r|z|$ for all $z \in \overline{D_r(0)}$ and since r < 1 we have that r|z| < |z|, and so, |f(z)| < |z| and so |f(z)| < |z|. By the definition of g, we also get that $|f'(0)| \le 1$. Now, we prove the second sentence of the theorem. By assumption, $|g(z_0)| = 1$ for some nonzero $z_0 \in D_1(0)$. By the chain of inequalities 4 lines above, it follows that that supremum of |g| is attained inside $D_1(0)$, since $0 < |z_0| < 1$, so by the second sentence of the maximum modulus principle, g is constant, so put g = c on $D_1(0)$ with |c| = 1, by the chain of inequalities mentioned in the beginning of this sentence. Thus, on $D_1(0)$, $\frac{f(z)}{z} = c$, so f(z) = czwith |c| = 1, as mentioned previously.