Решения на домашна работа 3 по Алгебра 1

Задача 1. Спрямо базис $e = (e_1, e_2)$ на линейно пространство U над полето \mathbb{Q} на рационалните числа и базис $f = (f_1, f_2, f_3)$ на линейно пространство V над \mathbb{Q} са дадени линейните изображения

$$\phi: U \longrightarrow V$$

$$\phi(x_1e_1 + x_2e_2) = (x_1 + 2x_2)f_1 + (-x_1 + x_2)f_2 + (2x_1 + x_2)f_3, \quad \forall x_1e_1 + x_2e_2 \in U$$

u

$$\psi: V \longrightarrow U,$$

$$\psi(y_1f_1 + y_2f_2 + y_3f_3) = (y_1 - y_2 + 2y_3)e_1 + (2y_1 + y_2 + y_3)e_2, \quad \forall y_1f_1 + y_2f_2 + y_3f_3.$$

Да се намерят:

- (i) матрицата на линейния оператор $\psi \phi: U \to U$ спрямо базиса $e = (e_1, e_2);$
- (ii) матрицата на линейния оператор $\phi \psi : V \to V$ спрямо базиса $f = (f_1, f_2, f_3);$
- (iii) матрицата на линейното изображение $\psi \phi \psi : V \to U$ спрямо базиса $f = (f_1, f_2, f_3)$ на V и базиса $e = (e_1, e_2)$ на U.

Решение: (i) Матрицата на линейното изображение $\phi:U\to V$ спрямо базиса e на U и базиса f на V е

$$\mathcal{A}_{\phi}=\left(egin{array}{cc}1&2\-1&1\2&1\end{array}
ight).$$

По-точно, за $x_1=1,\ x_2=0$ получаваме $\phi(e_1)=f_1-f_2+2f_3$ и разполагаме координатите на този вектор спрямо базиса f в първия стълб на \mathcal{A}_{ϕ} . Аналогично, за $x_1=0,\ x_2=1$ пресмятаме, че $\phi(e_2)=2f_1+f_2+f_3$ и разполагаме координатите на този вектор спрямо f във втория стълб на \mathcal{A}_{ϕ} . Съгласно $\psi(f_1)=e_1+2e_2,\ \psi(f_2)=-e_1+e_2,\ \psi(f_3)=2e_1+e_2,\$ матрицата на ψ спрямо базиса f на V и базиса e на U е

$$\mathcal{A}_{\psi} = \left(egin{array}{ccc} 1 & -1 & 2 \ 2 & 1 & 1 \end{array}
ight).$$

Следователно матрицата на линейния оператор $\psi \phi: U \to U$ спрямо базиса e на U е

$$\mathcal{A}_{\psi\phi} = \mathcal{A}_{\psi}\mathcal{A}_{\phi} = \left(egin{array}{ccc} 1 & -1 & 2 \ 2 & 1 & 1 \end{array}
ight) \left(egin{array}{ccc} 1 & 2 \ -1 & 1 \ 2 & 1 \end{array}
ight) = \left(egin{array}{ccc} 6 & 3 \ 3 & 6 \end{array}
ight).$$

(ii) Матрицата на линейния оператор $\phi \psi: V \to V$ спрямо базиса f на V е

$$\mathcal{A}_{\phi\psi} = \mathcal{A}_{\phi}\mathcal{A}_{\psi} = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 4 \\ 1 & 2 & -1 \\ 4 & -1 & 5 \end{pmatrix}.$$

(iii) Матрицата на линейното изображение $\psi \phi \psi : V \to U$ спрямо базиса f на V и базиса e на U е

$$\mathcal{A}_{\psi\phi\psi} = \mathcal{A}_{\psi\phi}\mathcal{A}_{\psi} = \begin{pmatrix} 6 & 3 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 12 & -3 & 15 \\ 15 & 3 & 12 \end{pmatrix}.$$

Задача 2. Линейният оператор $\varphi: V \to V$ в пространството V над полето \mathbb{R} на реалните числа действа върху базис e_1, e_2, e_3 на V по правилото

$$\varphi(e_1) = -e_2, \quad \varphi(e_2) = e_3, \quad \varphi(e_3) = -e_1.$$

- (i) Да се докаже, че $\varphi^3 = \mathrm{Id}_V$ за тъждествения линеен оператор $\mathrm{Id}_V : V \to V$, $\mathrm{Id}_V(v) = v$, $\forall v \in V$.
- (ii) Да се провери, че $e_1 e_2 e_3$ е собствен вектор на φ^n за всяко естествено число $n \in \mathbb{N}$ и да се намери съответната собствена стойност $\lambda_n \in \mathbb{R}$ на φ^n .

Решение: (i) Линейният оператор φ^3 се определя еднозначно от образите на базиса e_1, e_2, e_3 на V. От

$$\varphi^{3}(e_{1}) = \varphi^{2}(\varphi(e_{1})) = \varphi^{2}(-e_{2}) = -\varphi^{2}(e_{2}) = -\varphi(\varphi(e_{2})) = -\varphi(e_{3}) = -(-e_{1}) = e_{1} = \operatorname{Id}_{V}(e_{1}),$$

$$\varphi^{3}(e_{2}) = \varphi^{2}(\varphi(e_{2})) = \varphi^{2}(e_{3}) = \varphi(\varphi(e_{3})) = \varphi(-e_{1}) = -\varphi(e_{1}) = -(-e_{2}) = e_{2} = \operatorname{Id}_{V}(e_{2}),$$

$$\varphi^{3}(e_{3}) = \varphi^{2}(\varphi(e_{3})) = \varphi^{2}(-e_{1}) = -\varphi^{2}(e_{1}) = -\varphi(\varphi(e_{1})) = -\varphi(-e_{2}) = \varphi(e_{2}) = e_{3} = \operatorname{Id}_{V}(e_{3})$$

следва

$$\varphi^{3}(x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3}) = x_{1}\varphi^{3}(e_{1}) + x_{2}\varphi^{3}(e_{2}) + x_{3}\varphi^{3}(e_{3}) =$$

$$= x_{1}\operatorname{Id}_{V}(e_{1}) + x_{2}\operatorname{Id}_{V}(e_{2}) + x_{3}\operatorname{Id}_{V}(e_{3}) = \operatorname{Id}_{V}(x_{1}e_{1} + x_{2}e_{2} + x_{3}e_{3})$$

за всички $x_1, x_2, x_3 \in \mathbb{R}$ и $\varphi^3 = \mathrm{Id}_V$.

(іі) Непосредствено пресмятаме, че

$$\varphi(e_1 - e_2 - e_3) = \varphi(e_1) - \varphi(e_2) - \varphi(e_3) = (-e_2) - e_3 - (-e_1) = e_1 - e_2 - e_3.$$

Следователно $e_1-e_2-e_3$ е собствен вектор на φ , отговарящ на собствена стойност $\lambda_1=1$. За произволно естествено $n\in\mathbb{N}$ имаме

$$\varphi^{n}(e_1 - e_2 - e_3) = \varphi^{n-1}(\varphi(e_1 - e_2 - e_3)) = \varphi^{n-1}(e_1 - e_2 - e_3).$$

В резултат,

$$\varphi^{n}(e_{1} - e_{2} - e_{3}) = \varphi^{n-1}(e_{1} - e_{2} - e_{3}) = \varphi^{n-2}(e_{1} - e_{2} - e_{3}) = \dots =$$

$$= \varphi^{2}(e_{1} - e_{2} - e_{3}) = \varphi(e_{1} - e_{2} - e_{3}) = e_{1} - e_{2} - e_{3}$$

и $e_1 - e_2 - e_3$ е собствен вектор на φ^n , отговарящ на собствената стойност $\lambda_n = 1$.

Задача 3. Спрямо някакъв базис на линейно пространство V над полето $\mathbb C$ на комплексните числа, линейният оператор $\phi:V\to V$ има матрица

$$A = \begin{pmatrix} -10 & 9 & 18 \\ -12 & 11 & 24 \\ 3 & -3 & -7 \end{pmatrix}.$$

 $\ \ \, \mathcal{A} a\ ce$ намери базис на V, в който матрицата D на ϕ е диагонална, както и тази матрица D.

Решение: Характеристичният полином на ϕ е

$$f_{\phi}(x) = f_{A}(x) = \det(A - xE_{3}) = \begin{vmatrix} -10 - x & 9 & 18 \\ -12 & 11 - x & 24 \\ 3 & -3 & -7 - x \end{vmatrix} = \begin{vmatrix} -1 - x & 0 & -3 - 3x \\ -12 & 11 - x & 24 \\ 3 & -3 & -7 - x \end{vmatrix} = -(x+1) \begin{vmatrix} 1 & 0 & 3 \\ -12 & 11 - x & 24 \\ 3 & -3 & -7 - x \end{vmatrix}$$

след умножение на третия ред по 3 и прибавяне към първия ред, последвано от изнасяне на общ множител -1-x от първия ред. Умножаваме първия стълб по (-3), прибавяме към третия стълб и получаваме

$$f_{\phi}(x) = -(x+1) \begin{vmatrix} 1 & 0 & 0 \\ -12 & 11 - x & 60 \\ 3 & -3 & -16 - x \end{vmatrix} = -(x+1) \begin{vmatrix} 11 - x & 60 \\ -3 & -16 - x \end{vmatrix} =$$

$$= -(x+1)[(x-11)(x+16) + 180] = -(x+1)(x^2 + 5x + 4) = -(x+1)(x+1)(x+4) = (x+1)^2(x+4)$$

след развитие по първия ред. Следователно характеристичните корени на ϕ са $\lambda_1 = \lambda_2 = -1 \in \mathbb{C}$, $\lambda_3 = -4 \in \mathbb{C}$ и съвпадат със собствените стойности на ϕ .

Собствените вектори на ϕ , отговарящи на собствената стойност $\lambda_1 = \lambda_2 = -1$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_1 E_3 = A + E_3 = \begin{pmatrix} -9 & 9 & 18 \\ -12 & 12 & 24 \\ 3 & -3 & -6 \end{pmatrix}.$$

Получената хомогена система линейни уравнения се свежда към $x_1 - x_2 - 2x_3 = 0$ и има решение

$$x_1 = x_2 + 2x_3$$
 за произволни $x_2, x_3 \in \mathbb{C}$.

Избираме $x_2=1, x_3=0$ и получаваме собствения вектор $v_1=(1,1,0)$. За $x_2=0, x_3=1$ получаваме собствения вектор $v_2=(2,0,1)$, който заедно с v_1 образува базис на собственото подпространство, отговарящо на собствената стойност $\lambda_1=\lambda_2=-1$.

Собствените вектори на ϕ , отговарящи на собствената стойност $\lambda_3 = -4$ са ненулевите решения на хомогенната система линейни уравнения с матрица от коефициенти

$$A - \lambda_3 E_3 = A + 4E_3 = \begin{pmatrix} -6 & 9 & 18 \\ -12 & 15 & 24 \\ 3 & -3 & -3 \end{pmatrix}.$$

Делим всички елементи на 3 и получаваме

$$\left(\begin{array}{ccc}
-2 & 3 & 6 \\
-4 & 5 & 8 \\
1 & -1 & -1
\end{array}\right).$$

Умножаваме третия ред по 2 и прибавяме към първия ред. Умножаваме третия ред по 4, прибавяме към втория ред и свеждаме към

$$\left(\begin{array}{ccc} 0 & 1 & 4 \\ 0 & 1 & 4 \\ 1 & -1 & -1 \end{array}\right).$$

Изпускаме първия ред поради неговото съвпадение с втория ред. Прибавяме втория ред към третия и получаваме

$$\left(\begin{array}{ccc} 0 & 1 & 4 \\ 1 & 0 & 3 \end{array}\right).$$

Хомогенната система линейни уравнения с горната матрица от коефициенти има решение

$$x_1 = -3x_3, \quad x_2 = -4x_3$$
 за произволно $x_3 = \in \mathbb{C}$.

За $x_3=1$ получаваме собствения вектор $v_3=(-3,-4,1)$ на ϕ , отговарящ на собствената стойност $\lambda_3=-4$.

По този начин пресметнахме, че спрямо базиса

$$v_1 = (1, 1, 0), \quad v_2 = (2, 0, 1), \quad v_3 = (-3, -4, 1)$$

на V линейният оператор $\phi:V\to V$ има диагонална матрица

$$D = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{array} \right).$$

За да проверим получените резултати пресмятаме, че

$$Av_1^t = \begin{pmatrix} -10 & 9 & 18 \\ -12 & 11 & 24 \\ 3 & -3 & -7 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} = -v_1^t,$$

$$Av_2^t = \begin{pmatrix} -10 & 9 & 18 \\ -12 & 11 & 24 \\ 3 & -3 & -7 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix} = -v_2^t,$$

$$Av_3^t = \begin{pmatrix} -10 & 9 & 18 \\ -12 & 11 & 24 \\ 3 & -3 & -7 \end{pmatrix} \begin{pmatrix} -3 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 12 \\ 16 \\ -4 \end{pmatrix} = -4v_3^t.$$

Задача 4. Спрямо ортонормиран базис на евклидовото пространство \mathbb{R}^4 са дадени ортогоналните проекции $u_1=(1,-1,2,1),\ u_2=(1,1,1,-2)$ на векотори $v_1,v_2\in\mathbb{R}^4$ върху двумерно подпространство U на \mathbb{R}^4 . Да се намерят ортогонални базиси на U и на ортогоналното допълнение U^\perp на U, както и ортогоналната проекция $u\in U$ и перпендикулярът $h\in U^\perp$ от вектора v=(5,-1,1,-1) към U.

Решение: Векторите u_1 , u_2 са дадени с координатите си спрямо ортонормиран базис, така че ортогоналното допълнение на U е пространството от решения на хомогенната система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{c} u_1 \\ u_2 \end{array}\right) = \left(\begin{array}{cccc} 1 & -1 & 2 & 1 \\ 1 & 1 & 1 & -2 \end{array}\right).$$

Изваждаме първия ред от втория и свеждаме към

$$\left(\begin{array}{cccc} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & -3 \end{array}\right).$$

Умножавме втория ред по 2, прибавяме към първия ред и получаваме

$$\left(\begin{array}{cccc} 1 & 3 & 0 & -5 \\ 0 & 2 & -1 & -3 \end{array}\right).$$

Съответната хомогенна система линейни уравнения има решение

$$x_1 = -3x_2 + 5x_4$$
, $x_3 = 2x_2 - 3x_4$ за произволни $x_2, x_4 \in \mathbb{R}$.

За $x_2=1, x_4=0$ получаваме вектора $h_1=(-3,1,2,0)\in U^\perp$. Търсим такъм ненулев вектор $h_2\in U^\perp$, който е ортогонален на h_1 . Координатите на h_2 са ненулево решение на хомогенната система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{cccc}
1 & 3 & 0 & -5 \\
0 & 2 & -1 & -3 \\
-3 & 1 & 2 & 0
\end{array}\right).$$

Умножаваме първия ред по 3 и прибавяме към третия ред, за да сведем към

$$\left(\begin{array}{cccc}
1 & 3 & 0 & -5 \\
0 & 2 & -1 & -3 \\
0 & 10 & 2 & -15
\end{array}\right).$$

Умножаваме втория ред по (-5), прибавяме към третия ред и получаваме

$$\left(\begin{array}{cccc}
1 & 3 & 0 & -5 \\
0 & 2 & -1 & -3 \\
0 & 0 & 7 & 0
\end{array}\right).$$

Делим третия ред на 7. Прибавяме така получения трети ред към втория и свеждаме към

$$\left(\begin{array}{cccc}
1 & 3 & 0 & -5 \\
0 & 2 & 0 & -3 \\
0 & 0 & 1 & 0
\end{array}\right).$$

Делим втория ред на 2. Умножаваме така получения втори ред по (-3), прибавяме към първия ред и получаваме

$$\left(\begin{array}{cccc} 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & -\frac{3}{2} \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Съответната хомогенна система линейни уравнения има решение

$$x_1 = \frac{1}{2}x_4, \quad x_2 = \frac{3}{2}x_4, \quad x_3 = 0$$
 за произволно $x_4 \in \mathbb{R}$.

За $x_4=2$ получаваме вектора $h_2=(1,3,0,2)\in U^\perp$, който заедно с $h_1=(-3,1,2,0)\in U^\perp$ образува ортогонален базис на U^\perp .

Ненулевите вектори $u_1, u_2 \in U$ са ортогонални, съгласно $\langle u_1, u_2 \rangle = 1.1 + (-1).1 + 2.1 + 1.(-2) = 0$. Следователно u_1, u_2 е ортогонален базис на двумерното подпространство U на \mathbb{R}^4 .

Ортогоналната проекция $u \in U$ и перпендикулярът $h \in U^{\perp}$ от вектора v = (5, -1, 1, -1) към U може да се намерят с помощта на ортогоналния базис u_1, u_2 на U или с помощта на ортогоналния базис h_1, h_2 на U^{\perp} . По-точно, търсим такива $x_1, x_2 \in \mathbb{R}$, за които $u = x_1u_1 + x_2u_2$. За да намерим координатите x_1, x_2 на u спрямо базиса u_1, u_2 на U използваме, че $h = v - x_1u_1 - x_2u_2 \in U^{\perp}$. Това е в сила точно когато

$$0 = \langle v - x_1 u_1 - x_2 u_2, u_1 \rangle = \langle v, u_1 \rangle - x_1 \langle u_1, u_1 \rangle =$$
$$= [5.1 + (-1)(-1) + 1.2 + (-1).1] - x_1[1^2 + (-1)^2 + 2^2 + 1^2] = 7 - 7x_1$$

И

$$0 = \langle v - x_1 u_1 - x_2 u_2, u_2 \rangle = \langle v, u_2 \rangle - x_2 \langle u_2, u_2 \rangle =$$

$$= [5.1 + (-1).1 + 1.1 + (-1).(-2)] - x_2 [1^2 + 1^2 + 1^2 + (-2)^2] = 7 - x_2 - 7x_2$$

Следователно $x_1 = x_2 = 1$, откъдето

$$u = u_1 + u_2 = (1, -1, 2, 1) + (1, 1, 1, -2) = (2, 0, 3, -1)$$

И

$$h = v - u = (5, -1, 1, -1) - (2, 0, 3, -1) = (3, -1, -2, 0).$$

Вместо да търсим координатите x_1, x_2 на ортогоналната проекция $u = x_1u_1 + x_2u_2$ на v върху U, можем да търсим координатите y_1, y_2 на перпендикуляра $h = y_1h_1 + y_2h_2 \in U^{\perp}$ от v = (5, -1, 1, -1) към U. За целта използваме, че $u = v - y_1h_1 - y_2h_2 \in U = \left(U^{\perp}\right)^{\perp} = l(h_1, h_2)^{\perp}$, което е еквивалентно на

$$0 = \langle v - y_1 h_1 - y_2 h_2, h_1 \rangle = \langle v, h_1 \rangle - y_1 \langle h_1, h_1 \rangle =$$
$$= [5.(-3) + (-1).1 + 1.2 + (-1).0] - y_1 [(-3)^2 + 1^2 + 2^2 + 0^2] = -14 - 14y_1$$

И

$$0 = \langle v - y_1 h_1 - y_2 h_2, h_2 \rangle = \langle v, h_2 \rangle - y_2 \langle h_2, h_2 \rangle =$$

$$= [5.1 + (-1).3 + 1.0 + (-1).2] - y_2 [1^2 + 3^2 + 0^2 + 2^2] = 0 - 14y_2 = -14y_2.$$

Следователно $y_1 = -1$, $y_2 = 0$, така че перпендикулярът от v към U е

$$h = y_1 h_1 + y_2 h_2 = -(-3, 1, 2, 0) = (3, -1, -2, 0),$$

а ортогоналната проекция на v върху U е

$$u = v - h = (5, -1, 1, -1) - (3, -1, -2, 0) = (2, 0, 3, -1).$$