COM-402 Homework ML Solution

- Exercise 1
- Exercise 2

Exercise 1

pip install phe==1.4.0

Mathematical computation

Let's have a quick look at how things work. In homomorphic encryption,

$$enc(m_1) * enc(m_2) = enc(m_1 + m_2)$$

But if you go to the wikipedia page, you'll see a bunch of other fun properties (mildly simplified for ease of reading):

- $dec\Big(enc(m_1)\cdot g^{m_2}\Big)=m_1+m_2$, a.k.a you can add another plaintext without need to encrypt it $dec\Big(enc(m_1)^{m_2}\Big)=m_1\cdot m_2$, a.k.a same as above, but for multiplication

This is exactly what is used on the server. It holds plaintext weights and bias, that they want to multiply/add to your encrypted vector. To add and multiply by integers, they can do so only using the public key.

phe implementation of precision

As mentioned in the handout, you need to perform the computations on integers. The library phe deals with it in the following manner: multiply it by a constant in base 16 (the size of which will affect the precision and runtime), then do your computation, and then divide again by a constant in base 16. The choice of these constants are the core of this exercise, and will be explained later.

Outline

The big idea here is not too hard:

- 1. Generate your public/secret keys
- 2. Using the public key, encrypt your vector (as per the desired <u>precision</u>)
- 3. Send that
- 4. Receive your encrypted result
- 5. Decrypt it

As a true software engineer, you would want to add tons of checks and features, but we are kinda lazy, and thus will focus on getting things to work.

The code

Everything will happen in a function called query pred, with the following signature:

```
def query_pred(vector: list, keys: tuple = None):
```

The vector is obvious. The keys is either a tuple (public_key, private_key) if already generated, or None, in which case we generate our own keys. The form situation will prove useful in exercise 2.

We also do some imports: phe for Paillier, requests to query the server.

```
from phe import paillier import requests
```

And our final goal is to compare the obtained value to our reference:

Part 1: Generating the keys

As mentioned above, we only generate keys if they are not already provided.

```
if keys is None:
    pubkey, privkey = paillier.generate_paillier_keypair()
    else:
        pubkey, privkey = keys
```

We could specify here the length of 2048 bits for the key, but it is <u>already the default</u>, and so is g.

Part 2: Encrypt your vector

We cannot encrypt a vector at once, we must encrypt each value separately.

Part 3: Send that

A simple requests POST:

Note that we follow the specifications provided in the handout, for the form of the JSON.

Part 4: Receive your encrypted result

If everything is OK, we received a JSON with only one field, enc_prediction:

Part 5: Decrypt it

Now, to the fun part. y_enc is just an integer. We need to indicate to phe how to interpret it. Then, we decrypt it using our private key

```
encrypted = paillier.EncryptedNumber(pubkey, y_enc, EXPONENT)
y = privkey.decrypt(encrypted)
return y
```

Is it over?

Nope. If you followed closely, we omitted the core of the exercise: the constant EXPONENT. This exponent, a power to a base 16, indicates with which precision the number was encoded/encrypted. You may be tempted to say "Well, we wanted a precision of 2^{-16} , which is equal to 16^{-4} so we select EXPONENT=-4.

Down the Paillier rabbit hole

This is very naive of you. Things are not so simple. See, what is supposed to be computed on the server is the following:

```
x_1w_1 + x_2w_2 + \ldots + x_nw_n + b
```

But the x_i are encrypted. So it works "in the Paillier domain". Thanks to properties seen <u>earlier</u>:

$$enc(x_1)^{w_1} \cdot enc(x_2)^{w_2} \cdot \ldots \cdot enc(x_n)^{w_n} \cdot b$$

Now, suppose each x_i , w_i and b are floats. To work with them in a fixed precision, we multiply each of them by a constant, let's call it k. It is defined using our chosen precision (but we don't really care about its actual value). What happens when we do

$$enc(x_1) \cdot enc(x_2) \sim enc(kx_1) \cdot enc(kx_2)$$

this is equivalent to

$$enc(kx_1 + kx_2) = enc(k(x_1 + x_2))$$

Nothing too fancy here. If we simply added the x_i , we could apply your suggestion, and keep the same exponent.

But behold: what happens for

$$enc(x_i)^{w_i} \sim enc(kx_i)^{kw_i}$$

Some more math:

$$enc(kx_i)^{kw_i} \equiv \left((1+n)^{kx_i}r_i^n\right)^{kw_i} \mod n^2 \equiv (1+n)^{kx_i\cdot kw_i}r_i^{n\cdot kw_i} \mod n^2$$

We have 2 parts here. On the right

$$r_i^{n\cdot kw_i} \mod n^2 \simeq r_j^n$$

Because it will simply create another random value, which does not change the scheme. And on the left:

$$(1+n)^{kx_i\cdot kw_i} = (1+n)^{k^2x_iw_i}$$

This represents a new number, that is now scaled by a constant k^2 . Hence, we need to provide an exponent that is the *square* of the previous one, in order for things to scale accordingly. Remember, also, we provided the *precision* earlier as a floating value (2^{-16}), but now we need to provide an *exponent* of a base 16. Which means, we need to find x such that $(2^{-16})^2 = 16^x$. Some quick maths later, we find x = -8.

Exercise 2: [attack] Prediction-as-a-Service Model Stealing

We have (at least) two ways of attacking the model. Either by going weight by weight, or solving a linear equation.

How to

Weight-by-weight approach

The idea is simple. If we discard the concept of encryption, the model simply is

$$y = x_1 \cdot w_1 + x_2 \cdot w_2 + \ldots + x_n \cdot w_n + b$$

If we suppose there is no "noise" (voluntary or not), we can simply do the following:

- Provide the vector $[0,0,0,\ldots,0]$. We will receive $y=0\cdot w_1+\ldots+0\cdot w_n+b=b$. Cool, we have the bias
- Then, once we have it, we send unitary vectors: $[1,0,0,0,\ldots,0]$, then $[0,1,0,0,\ldots,0]$. You get the idea.
- We will receive, in return, the value $1 \cdot w_1 + 0 \cdot w_2 + \ldots + 0 \cdot w_n + b = w_1 + b$
- From that, we simply deduct the bias we obtained earlier, which yields the value w_1 (or others, according to which vector we sent).

So we only need to send one query for the vector, then one query by weight. Cool!

The method above is easy, but *could* be detected. In fact, the *very basic protection* the handout speaks about, ensure there are at least 3 different ciphers. So you couldn't encrypt a 1, encrypt a 0, and send the cipher for the 0 multiple times. But lucky us, Paillier helps us here. Because encrypting includes a random value r, by encrypting the same value multiple times, we won't encounter (a lot of) duplicates. So we're safe here.

Linear equation

Another cool method is by solving a linear equation. After all, this is what is used to compute the result, so why not use it to decompose the model?

We have, in vectors form,

$$\mathbf{x} \cdot \mathbf{w}^{\top} + b = y \simeq \tilde{\mathbf{x}} \cdot \tilde{\mathbf{w}}^{\top} = y$$

Where $\tilde{\mathbf{x}}$ is \mathbf{x} with an additional 1 and $\tilde{\mathbf{w}}$ is the weight vector, with one more component being the bias.

If we did one query, and had one result, we have an equation with 11 unknown. But as $\tilde{\mathbf{w}}$ is fixed, we can simply make 11 different queries, and solve it!

That's basically it. We do 11 queries, get 11 values in return. Then we have a matrix 11x11 (remember the additional column of 1s for the bias), so we can solve it easily with any math library.

Let's code!

In both solutions below, we will use the method $query_pred$ we coded earlier. We input a vector, a pair of keys, and we get a deciphered y in return.

Weight-by-weight

The code is relatively straightforward.

```
# only create keys once
keys = paillier.generate_paillier_keypair()

print("Attacking bias") # pass only 0s
bias = query_pred([0]*10, keys)

weights = []
for i in range(10):
    print("Attacking weight {}".format(i), end="\r")
    # create vector [0,0,..,1,..,0,0]
    vector = np.zeros(10)
    vector[i] = 1
    # receive w_1 + b, deduce bias
    y = query_pred(vector, keys) - bias
    weights.append(y) # save the bias
# tada, you have the bias and weights!
print("\nWeights: {}\nbias: {}".format(weights, bias))
```

Linear equation

This one needs to use numpy:

```
keys = paillier.generate_paillier_keypair()
X, y = [], []
```

```
for i in range(11):
    print("Iteration", i)
    # random vector of size 10
    vector = np.random.random_sample(10)
    y.append(query_pred(vector, keys))
    # save it as [x1, x2,x3,...,xn, 1], for the bias
    X.append(np.append(vector, 1))
#numpy-ize the results
X = np.array(X)
y = np.array(y)
#solve it
sol = np.linalg.solve(X, y)
#weights are the first N terms, bias is the last one
weights = sol[:-1], bias = sol[-1]
print("\nWeights: {}\nbias: {}".format(weights, bias))
```