Computing Minimal Unsatisfiable Subsets of Clause Sets

Author: Shahriar Robbani Supervision: Erika Ábrahám

Theory of Hybrid Systems - Informatik 2 - RWTH-Aachen

Satisfiability Checking Seminar, Winter-16/17

Outline

- Propositional Logic Formula
- Minimal Unsatisfiable Subsets and Minimal Correction Subsets
- Duality of Minimal Unsatisfiable and Correction Subset
- Algorithms for Computing all Minimal Unsatisfiable Subsets

FlowChart

$$\varphi := (x \lor \neg x) \land (\neg x \lor y)$$
$$:= (T \lor F) \land (F \lor T)$$
$$:= T \longrightarrow \mathsf{SAT}$$

$$\varphi := (x \lor \neg x) \land (\neg x \lor y)$$

$$:= (T \lor F) \land (F \lor T)$$

$$:= T \longrightarrow \mathsf{SAT}$$

$$\varphi := (x) \land (\neg x) \land (\neg x \lor y) \land (\neg x \lor \neg y)$$

$$:= (T) \land (F) \land (F \lor T) \land (F \lor F)$$

$$:= F \longrightarrow \mathsf{UNSAT}$$

```
\varphi := (x \vee \neg x) \wedge (\neg x \vee y)
:= (T \vee F) \wedge (F \vee T)
:= T \longrightarrow SAT
\varphi := (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)
:= (T) \wedge (F) \wedge (F \vee T) \wedge (F \vee F)
:= F \longrightarrow UNSAT
unsatisfiable subset = \{ \{(x), (\neg x), (\neg x \vee \neg y) \} \}
```

```
\varphi := (x \vee \neg x) \wedge (\neg x \vee y)
   := (T \vee F) \wedge (F \vee T)
   := T \longrightarrow SAT
 \varphi := (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)
   := (T) \wedge (F) \wedge (F \vee T) \wedge (F \vee F)
   := F \longrightarrow \mathsf{UNSAT}
         unsatisfiable subset = \{\{(x), (\neg x), (\neg x \lor \neg y)\}\}
                                                      \{(x), (\neg x \lor y), (\neg x \lor \neg y)\}
```

```
\varphi := (x \vee \neg x) \wedge (\neg x \vee y)
   := (T \vee F) \wedge (F \vee T)
   := T \longrightarrow SAT
 \varphi := (x) \land (\neg x) \land (\neg x \lor y) \land (\neg x \lor \neg y)
   := (T) \wedge (F) \wedge (F \vee T) \wedge (F \vee F)
   := F \longrightarrow \mathsf{UNSAT}
         unsatisfiable subset = \{\{(x), (\neg x), (\neg x \lor \neg y)\}\}
                                                     \{(x), (\neg x \lor y), (\neg x \lor \neg y)\}
                                                     \{(x), (\neg x)\}
```

Minimal Unsatisfiable Subsets and Minimal Correction Subsets

Minimal Unsatisfiable Subset (MUnsat):

(x)	(¬ <i>x</i>)	$(\neg x \lor y)$	$(\neg x \lor \neg y)$	MUnsat	MinimumUnsat
4	4			4	4
4	4		4		
4		4	4	4	

$$\varphi = \underbrace{(x)}_{C_1} \wedge \underbrace{(\neg x)}_{C_2} \wedge \underbrace{(\neg x \vee y)}_{C_3} \wedge \underbrace{(\neg x \vee \neg y)}_{C_4}$$

Minimal Unsatisfiable Subsets and Minimal Correction Subsets

Minimal Unsatisfiable Subset (MUnsat):

(x)	(¬ <i>x</i>)	$(\neg x \lor y)$	$(\neg x \lor \neg y)$	MUnsat	MinimumUnsat
4	4			4	4
4	4		4		
4		4	4	4	

Minimal Correction Subset (MCorr):

(x)	(¬ <i>x</i>)	$(\neg x \lor y)$	$(\neg x \lor \neg y)$
\checkmark			
	✓	✓	
	√		√

$$\varphi = \underbrace{(x)}_{C_1} \wedge \underbrace{(\neg x)}_{C_2} \wedge \underbrace{(\neg x \vee y)}_{C_3} \wedge \underbrace{(\neg x \vee \neg y)}_{C_4}$$

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$

Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$

• Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
```

Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$

Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$

Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$

• Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
```

Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$

Hitting Set: $H = \{\{w, z\}, \{x, y\}, \{x\}, \dots\}$

Minimal Hitting Set: $MinH = \{\{w, y\}, \{w, z\}, \{x\}\}$

• Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
Collection Set: \Omega = \{\{w, x\}, \{x, y, z\}\}
Hitting Set: H = \{\{w, z\}, \{x, y\}, \{x\}, \dots\}
Minimal Hitting Set: MinH = \{\{w, y\}, \{w, z\}, \{x\}\}
```

• Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
Collection Set: \Omega = \{\{w, x\}, \{x, y, z\}\}
Hitting Set: H = \{\{w, z\}, \{x, y\}, \{x\}, \dots\}
Minimal Hitting Set: MinH = \{\{w, y\}, \{w, z\}, \{x\}\}
```

• Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
```

Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$

Hitting Set: $H = \{\{w, z\}, \{x, y\}, \{x\}, \dots\}$

Minimal Hitting Set: $MinH = \{\{w, y\}, \{w, z\}, \{x\}\}$

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$ Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$ Hitting Set: $H = \{\{w, z\}, \{x, y\}, \{x\}, \ldots\}$ Minimal Hitting Set: $MinH = \{\{w, y\}, \{w, z\}, \{x\}\}$

Minimal hitting sets of the set of MCorr:

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$ Collection Set: $\Omega = \{\{w, x\}, \{x, y, z\}\}$ Hitting Set: $H = \{\{w, z\}, \{x, y\}, \{x\}, \ldots\}$ Minimal Hitting Set: $MinH = \{\{w, y\}, \{w, z\}, \{x\}\}$

Minimal hitting sets of the set of MCorr:

FlowChart

Algorithm: Computing all MCorrs

Augment CNF with clause selector variables

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi' = (\neg w_1 \vee x) \wedge (\neg w_2 \vee \neg x) \wedge (\neg w_3 \vee \neg x \vee y) \wedge (\neg w_4 \vee \neg x \vee \neg y)$$

Algorithm: Computing all MCorrs

Augment CNF with clause selector variables

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi' = (\neg w_1 \vee x) \wedge (\neg w_2 \vee \neg x) \wedge (\neg w_3 \vee \neg x \vee y) \wedge (\neg w_4 \vee \neg x \vee \neg y)$$

All MCorrs are found incrementally

$$\varphi' = (\neg \mathsf{false} \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

Algorithm: Computing all MCorrs

Augment CNF with clause selector variables

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi' = (\neg w_1 \vee x) \wedge (\neg w_2 \vee \neg x) \wedge (\neg w_3 \vee \neg x \vee y) \wedge (\neg w_4 \vee \neg x \vee \neg y)$$

All MCorrs are found incrementally

$$\varphi' = (\neg \mathsf{false} \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

3 Add blocking clauses to block old solutions

$$\varphi' = \varphi' \wedge \mathbf{w}_1$$

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

Add clause-selector variables.

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

- Add clause-selector variables.
- Add AtMost constraint.

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution : w_1 is **false**. Add blocking clause and a MCorr.

MCorrs

 $\{(x)\}$

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution : w_1 is **false**. Add blocking clause and a MCorr.
- No further solutions, increment AtMost.

MCorrs

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1) \land (w_2 \lor w_3)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution : w₁ is false. Add blocking clause and a MCorr.
- No further solutions, increment AtMost.
- \odot Second solution : w_2 and w_3 are false. Add blocking clause and another MCorrs.

MCorrs

- $\{(x)\}$

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1) \land (w_2 \lor w_3) \land (w_2 \lor w_4)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution : w₁ is false. Add blocking clause and a MCorr.
- No further solutions, increment AtMost.
- Second solution: w₂ and w₃ are false. Add blocking clause and another MCorrs.
- Third solution: w₂ and w₄ are false. Add blocking clause and another MCorrs.

MCorrs

- $\{(x)\}$
- 1(*)}

Example: Computing all MCorrs

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1) \land (w_2 \lor w_3) \land (w_2 \lor w_4)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution: w₁ is false. Add blocking clause and a MCorr.
- No further solutions, increment AtMost
- Second solution: w₂ and w₃ are false. Add blocking clause and another MCorrs.
- Third solution: w₂ and w₄ are false. Add blocking clause and another MCorrs.
- No further solutions, even without AtMost constraint.

MCorrs

- $\{(x)\}$

FlowChart

$$\begin{tabular}{ll} MCorr=\{\emptyset\} \\ & & \downarrow \\ MCorr=\{\ \{C_1\},\ \{C_2,C_3\},\ \{C_2,C_4\}\ \} \\ \end{tabular}$$

Outlook

- Perform better than the existing algorithms
- Application:
 - A design debugging / fault diagnosis system
 - Reveal system

Reference

- Mark H. Liffiton, Karem A. Sakallah, *Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints*. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109-2121.
- Alexander Nadel, Vadim Ryvchin, Ofer Strichman *Ultimately Incremental SAT*. https://ie.technion.ac.il/~ofers/publications/sat14.pdf