

ARE YOU READY?

Four jobs must be processed on a single machine. The time required to process each job and the date the job is due are shown in the table.

Job	Days required to complete Job	Due date
1	6	End of day 8
2	4	End of day 4
3	5	End of day 12
4	8	End of day 16

SCENARIO

The delay of a job is the number of days after the due date that a job is completed (if a job is completed on time or early, the job's delay is zero).

In what order should the jobs be processed to minimise the total delay of the four jobs?

Formulating the IP

Decision variables:

$$x_{ij} = if \ job \ i \ is \ completed \ in \ position \ j \ (1) \ or \ not \ (0) \ where \ i=j=1,2,3,4$$

• Sign restrictions:

$$xij = 0 \text{ or } 1$$

Job 3

Four jobs must be processed on a single machine. The time required to process each job and the date the job is due are shown in the table.

	Job	Days required to complete Job	Due date	
	1	6	End of day 8	
	2	4	End of day 4	
	3	5	End of day 12	
On time	4 End of day 5	On time End of day 13	Not End of day 16 Not On time of time	f day 23
3 = 5 days requ	uired Jo	b 4 = 8 days required Job 2 = 4	days required Job 1 = 6 days requ	iired

Problem 1	Problem 2	Problem 3	Problem 4
x14	x24	x34	x44
Time required= 6+4+5+8= 23 days			
Overdue= 23-8= 15 days	Overdue= 23-4= 19 days	Overdue= 23-12= 11 days	Overdue= 23-16= 7 days *

Position 4 -> x44

Problem 4.1	Problem 4.2	Problem 4.3
x44 & x13	x44 & x23	x44 & x33
Time required= 6+4+5= 15 days	Time required= 6+4+5= 15 days	Time required= 6+4+5= 15 days
Overdue= 15-8= 7 days	Overdue= 15-4= 11 days	Overdue= 15-12= 3 days
Total overdue = 7+7=14 days	Total overdue = 7+11=18 days	Total overdue = 7+3=10 days *

Position 4 -> x44
Position 3 -> x33
Position 2

Problem 4.3.1

x44 & x33 & x12

Time required= 6+4= 10 days

Overdue= 10-8= 2 days

Total overdue = 10+2=12 days *

Problem 4.3.2

x44 & x33 & x22

Time required= 6+4= 10 days

Overdue= 10-4= 6 days

Total overdue = 10+6=16 days

Position 4 -> x44

Position 3 -> x33

Position 2 -> x12

Position 1

Problem 4.3.1.1

x44 & x33 & x12 & x21

Time required= 4 days

Overdue= 4-4= 0 days

Total overdue = 12+0= 12 days *

Candidate A

As soon as you have a candidate (all jobs were placed), you need to back track level by level until the last position that were checked first. If you find a total overdue amount <= the total overdue amount of the candidate, you will branch from that sub problem to see if you will get something better or an alternative solution. If the sub-problem was branched, you ignore it. If the total overdue amount is > the total overdue amount of the candidate, it will not possibly improve so eliminate that sub-problem with the **current** candidate.

Position 4 -> x44
Position 3 -> x33
Position 2

Problem 4.3.1

x44 & x33 & x12

Time required= 6+4= 10 days

Overdue= 10-8= 2 days

Total overdue = 10+2=12 days *

Problem 4.3.2

x44 & x33 & x22

Time required= 6+4= 10 days

Overdue= 10-4= 6 days

Total overdue = 10+6=16 days

Eliminated by Candidate A

Position 4 -> x44

Problem 4.1	Problem 4.2	Problem 4.3
x44 & x13	x44 & x23	x44 & x33
Time required= 6+4+5= 15 days	Time required= 6+4+5= 15 days	Time required= 6+4+5= 15 days
Overdue= 15-8= 7 days	Overdue= 15-4= 11 days	Overdue= 15-12= 3 days
Total overdue = 7+7=14 days	Total overdue = 7+11=18 days	Total overdue = 7+3=10 days *
Eliminated by Candidate A	Eliminated by Candidate A	

Problem 1	Problem 2	Problem 3	Problem 4
x14	x24	x34	x44
Time required= 6+4+5+8= 23 days			
Overdue= 23-8= 15 days	Overdue= 23-4= 19 days	Overdue= 23-12= 11 days*	Overdue= 23-16= 7 days *
Eliminated by Candidate A	Eliminated by Candidate A		

Position 4 -> x34

Problem 3.1	Problem 3.2	Problem 3.3
x34 & x13	x34 & x23	x34 & x43
Time required= 6+4+8= 18 days	Time required= 6+4+8= 18 days	Time required= 6+4+8= 18 days
Overdue= 18-8= 10 days	Overdue= 18-4= 14 days	Overdue= 18-16= 2 days
Total overdue= 11+10= 21 days	Total overdue= 11+14= 25 days	Total overdue= 11+2= 13 days
Eliminated by Candidate A	Eliminated by Candidate A	Eliminated by Candidate A

Position 4 -> x44

Position 3 -> x33

Position 2 -> x12

Position 1 -> x21

Problem 4.3.1.1

x44 & x33 & x12 & x21

Time required= 4 days

Overdue= 4-4= 0 days

Total overdue = 12+0= 12 days *

Candidate A

Exercises

Four jobs must be processed on a single machine. The time required performing each job and the due date of each job are shown in the table.

Job	Time to perform job (Minutes)	Due date of job
1	7	End of minute 14
2	5	End of minute 13
3	9	End of minute 18
4	11	End of minute 15

Solve the formulated Integer Programming Model using the Branch & Bound Machine Scheduling Algorithm.

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

Ekurhuleni Campus 45A Long Street **Kempton Park**

Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,