北工大电工习题专题-交流电路

4-2 非客观题(48 小题)

1. 已知 t=0 时正弦量的值分别为 u(0)=110V, $i(0)=-5\sqrt{2}$ A。它们的相量图如图示,试图 出正弦量的瞬时表达式及相量。 u(0)=110V u(0)=110V u(0)=110V u(0)=110V

1=110525in13/42 1307)

1-2555in13/4-45°)

252=4775in13/45°)

2-105in1wt-45°)

2-105in1wt-45°)

2. 已知电路中某元件的电压 u 和电流 i 分别为 $u=141\cos(314t+60^{\circ})$ V , $i=7\sin(314t-120^{\circ})$ A。问:(以來件的性质;(2)元件的复阻抗;(3)储存能量的最大值。

明流电电流多数%

电感元件

3. 某感性电路施加一正弦交流电压 $u = 220\sqrt{2} \sin 314t$ V, 有功功率 P = 7.5 kW, 无功功率 Q = 5.5 kvaR。求: (1)电路的功率因数 λ ; (2)若电路为 R, L 并联,R, L 值为多少?

4. 在图示电路中,电源电压 $u=220\sqrt{2}\sin 314t$ V,有功功率 P=8.8k W,无功功率 Q=6.6k VaR。求: 该电路的 R, L 电流i ,电压 u_R , u_L 及功率因数 λ ,并画出相量图 (β , \mathcal{O}_R , \mathcal{O}_R

5. 图 示 电 路 中 , 已 知 $R=30\Omega$, L=382mH , C=40μF , 电 源 电 $u=250\sqrt{2}\sin 314 tV$ 。求电流 i 电压 u_1 ,有功功率 P 和功率因数 λ ,并画出相量图($\frac{P}{r}$, $\frac{C}{r}$)。

6. 左下图示电路中, $u=10\sqrt{2}\sin{(1\ 000t+60^\circ)}$ V , $u_c=5\sqrt{2}\sin{(1\ 000t-30^\circ)}$ V ,容抗 $X_c=10\Omega$ 。求无源二端网络 N 的复阻抗 Z 及有功功率 P,并画出相量图(含电流及各电压)。

7. 在右上图示电路中, $u=100\cos 1\ 000t\ V$, $i=10\cos (1\ 000t+\frac{\pi}{3})$ A 。求: (1) R,C 及电路有功功率 P: (2) 当 $t=\frac{\pi}{1\ 000}$ 时的 u_R 及 u_C 的值及实际方向: (3) 画出含 u_R 为 , u_R 为 的相量图。

8.在左下图示正弦交流电路中,已知: $C=100\mu F$, $u=10\sin(10^3t+60^\circ)V$,

 $u_{\rm C}=5\sin(10^3t-30^\circ)$ V。试求电路的有功功率 P。

9. 在右上图示电路中,已知: $i=0.2\sin(600t+45^\circ)$ A , $R=20\Omega$,感抗 $X_L=20\Omega$,容抗 $X_C=30\Omega$ 。求: (1) L ,C ,u ; (2) 画出相量图(\mathcal{O} , \mathcal{P} , \mathcal{O}_{k} , \mathcal{O}_{k} , \mathcal{O}_{k} , \mathcal{O}_{k})。

10. 在 R , L , C 串 联 电 路 中 , 己 知 电 源 电 压 $u=70.7\sin{(100t+30^{\circ})}$ V , 电 流 $i=1.5\sin{100t}$, 电容 $C=400\mu$ F。试求电路的电阻 R 和电感 L。

11. 阻抗 $Z_1=3+j4\Omega$, $Z_2=6+j8\Omega$ 串联于 $S_2=225\angle 53.1^{\circ}$ V 的电源上工作。求: (1) Z_1 , Z_2 上的电压 u_1 , u_2 ; (2) 有功功率 P, 无功功率 Q 及功率因数 Z, 该电路呈何性质?

 12 . 在图示电路中,已知 $_{i=0.2\sin(600\,t+45^{\circ})}$ A, $_{R=20\Omega}$,感抗 $_{L=20\Omega}$,容抗 $_{C=30\Omega}$ 。求: (1)电压 $_{U}$; (2)电路的有功功率,无功功率,视在功率和功率因数; (3) 此电路呈何性质。

13. 在图示电路中,电流有效值 I=5A, $I_2=3A$, $R=25\Omega$ 。求电路的复阻抗 Z。

14. 在图示电路中, $R=8\Omega$, $X_L=22.2\Omega$, $X_C=3.13\Omega$,总电流相量 6 12 \angle 65.4°。求: (1)电 7 相量 6 , 6 ,(2) 电路的功率因数 7 (3) 该电路呈何性质。

15. 在左下图示电路中,已知 $u=220\sqrt{2}\sin 314t$ V, i_1 支路有功功率 $P_1=100$ W, i_2 支路有功功率 $P_2=40$ W,功率因数 $\lambda_2=0.8$ 。求电路的电流 i_1 总功率 P 及功率因数 λ_1 并画出 28 ,28 ,28 的相量图。

16. 在右上图示电路中,已知 $R_2=30\Omega$, L=0.4H,两支路消耗的有功功率 $P_1=P_2=7.5W$,电源角频率 ω=100Rad/s。 求 R_1 ,i,并画相量图 (Q^2 , P_3 , P_4)。

17. 在图示电路中,已知 $u = 220\sqrt{2}\sin(314t)$ V, i_1 支路有功功率 $P_1 = 100$ W, i_2 支路 $P_2 = 40$ W, 功率因数 $\lambda_2 = 0.8$ 。求电流 i_1 总功率 P 及总功率因数 λ_2 ,并画相量图 (\mathcal{O}_{i_1} 人)。

18. 在图示电路中,已知 $u = 100\sqrt{2}\sin 1\ 000t\ V$, $R=3\Omega$,L=4mH, $C=200\mu F$ 。求电流 i, i₁, i₂及总有功功率 P,并画相量图 $(C^2, \beta, \frac{R}{2}, \frac{R}{2})$ 。

19. 在图示电路中,已知 $u=1000\sqrt{2}$ sing t ; 负载 1, 2 的功率、功率因数分别为 $P_1=10k$ W, $\lambda=0.8$ (容性); $P_2=15k$ W, $\lambda=0.6$ (感性)。(1) 求电流 i_1 , i_2 , i_3 (2) 问全电路呈何性质?(3) 画相量图(含电压及各电流)。

 $L_1 = \frac{1}{3}$ H $L_2 = \frac{5}{6}$ H $C = \frac{1}{3}$ F $R = 2\Omega$, $i = \sin(3t + 45^\circ)$ A。求: (1) 电压 u; (2) 电路有功功率 P; (3) 该电路呈何性质?

21. 在右上图示电路中, $u=318\sqrt{2}\sin{(10~000t)}$ V, $R_1=R_2=1\Omega$,L=0.1mH,C=100μF。求电流 i,总有功功率 P 及功率因数 λ。

22. 在图示电路中,已知: $R_1=5\Omega$, $R_2=3\Omega$, $X_L=X_C=4\Omega$, $P=30\angle30^\circ$ 。求电流 $P=30\angle30^\circ$, 电压 P=30 P=30

24. 在图示电路中,电流有效值 $I_1=I_2=10$ A, $\emptyset=100\angle120^\circ$ V, $\emptyset_1=36.6\angle0^\circ$ V。求 X_L 及总 功率因数 λ 。

25. 在图示电路中, R_1 =5 Ω ,R=20 Ω , X_L =40 Ω , I_1 =9A, I_2 =12A。试求: (1) 电源电压的有效值 U: (2) 电路消耗的功率及电路的功率因数 λ 。

26. 在图示电路中,已知 $Z_3=3+j3\Omega$, $P_4=40\angle -90^{\circ}$ A , $P_5=40\angle 0^{\circ}$ A , $P_5=400\angle -90^{\circ}$ A , $P_5=40\angle 0^{\circ}$ A , $P_5=400\angle -90^{\circ}$ A , $P_5=40\angle 0^{\circ}$ A , $P_5=400\angle -90^{\circ}$ A , $P_5=402\angle -90^{\circ}$ A , $P_5=402\angle -90^{\circ}$ A , $P_5=402\angle -90^{\circ}$ A , $P_5=4$

 $\frac{1}{\omega C}$ = 100 Ω , U_2 =17.3V,若以电压 U_2 为参考正弦量。试求 u 和电路的有功功率 P,并画出关于各电压,电流的相量图。

28.在图示电路中, $R=X_L=X_C=1\Omega$,电路消耗的功率 P=1W。求电压 U 及电路功率因数 λ ,并画出含支路电流及各部分电压的相量图。

29. 求左下图示电路中, 电压源及供出的有功功率。

30. 在右上图示 R, L 串联电路中,已知: $i=2.82\sqrt{2}\sin 314t$ A, $R=60\Omega$,L=0.255H。求: (1) 若在电路两端并联 $C=11.3\mu$ F 的电容,电源供出电流的有效值变化了多少? (2) 并联电容后的功率因数?

31. 某 R , L 串联电路,施加正弦交流电压 $u=220\sqrt{2}\sin 314t$ V ,测得有功功率 P=40W,电阻上电压 $U_R=110V$ 。试求电路的功率因数?若将电路的功率因数提高到 0.85,则应并联多大电容?

32. R , L , C 串 联 电 路 外 加 电 压 $u = 100\sqrt{2} \sin 314t \, \text{V}$ 时 发 生 串 联 谐 振 , 电 $i = \sqrt{2} \sin 314t \, \text{A}$, 且 $U_C = 180 \, \text{V}$ 。求电路元件的参数 R , L , C 。

33. R, L, C 并联电路接于 $U_{\rm S}$ =10V 的正弦交流电源上,已知 R=1k Ω , L=31. 8 ${\rm m}$ C=3. 18 ${\rm \mu}$ F。试求: (1)要使电路产生并联谐振,其谐振频率 $f_{\rm O}$ =?(2)电路谐振时各元件通的电流和总电流的有效值。

34. 在图示电路中,已知 $u = 100\sqrt{2}\sin 314t \, V$,调节电容 C,使电流 i 与电压 u 同相,并得电容电压 $U_C=180V$,电流 I=1A。(1) 求参数 R,L,C; (2) 若 R,L,C Q u 的有效值是不变,但将 u 的频率变为 f=100Hz,求电路中的电流 i 及有功功率 P,此时电路呈何性质的

35. 某 R, L, C 串联电路中,已知: R=50 Ω , C=10 μ F。(1)若电源频率 f=1000Hz 时,电 出现谐振,L=?(2)若电路参数保持不变,求 f₁=500Hz 和 f₂=1500Hz 时电路的复阻抗, 说明该电路各呈何性质?

36. 在图示电路中,R=2. 5k Ω ,C=2 μ F,该电路在 f=1000Hz 时发生谐振,且谐振时的电影 I_0 =0. 1A。: (1) 求 L 及 i_1 , i_2 , i_3 ; (2) 若电源电压有效值不变,但频率 f=500Hz,求电路 功率 P,此时电路呈何性质?

37. 在图示电路中,已知: $u = 200\sqrt{2} \sin 314t \, V$, $R = 25\Omega$, $X_L = 50\Omega$, $X_C = 20\Omega$ 。 (1) 求电流及功率因数 λ : (2) 若电源电压 u 的有效值不变,只调节其频率使电路谐振,其它参数均 α 变,求谐振时电路中的电流 α 及电源的频率 α 。

38. 某厂变电所经配电线向一车间供电,若该车间一相等效负载的电阻 $R_2=10\Omega$,电 $X_2=10.2\Omega$,配电线的 $R_1=0.5$, $X_1=1\Omega$ 。(1) 欲保证车间电压 $U_2=220V$,问电源电压 $U_2=220V$ 等于多少?线路上的电压 $U_1=220V$,问电源电压 $U_2=220V$,问电源电压 $U_2=220V$,问电源电压 $U_2=220V$,问电源电压 $U_2=220V$,问电源电压 $U_2=220V$,问电源电压 $U_2=220V$,问题 $U_2=220V$ 等于多处?

 $_{39.}$ 已知 $_R$, $_L$ 串联电路的有功功率 $_P=8.8 \,\mathrm{kW}$, 无功功率 $_Q=6.6 \,\mathrm{kvaR}$, 电流 $_{i=70.7 \,\mathrm{sin}}(314 \,t+30^{\circ})$ A。求: (1)电源电压 $_{u:}$ (2)电路的电阻 $_R$, 感抗 $_{X_L}$ 及功率因 $_{X_L}$

40. 在图示电路中, $Z_1=1-j\Omega$, $Z_2=2+j3\Omega$, $Z_3=3+j6\Omega$, $S_{s1}=100 \angle 60$ °V, $S_{s2}=100 \angle 0$ °V。 求该电路的电流 S_s ,有功功率 S_s ,无功功率 S_s ,视在功率 S_s 及功率因数 S_s 。

41. 图示为一正弦电路,已知电源频率为 50Hz, $\it R$ =100 $\it \Omega$,电流有效值 $\it I_C$ =2A, $\it I_L$ =1. 41A, 若电路的总功率因数为 1。求 $\it L$ 和 $\it C$ 。

42. 图示为两复阻抗并联交流电路,已知 $Z_1=2+j3\Omega$, $Z_2=3+j6\Omega$, $Z_3=3+j6\Omega$ $Z_3=3+j\Omega$ Z_3

43. 在右图示电路中,已知 $u=220\sqrt{2}$ sin 314t V,P=10kW, $\lambda=0.6$ 。 求: (1)R, L, i; (2) 欲使该电路的功率因数提高到 0.95,应并联 3大的电容 C? (3) 求并联电容 C后的总电流有效值 I'。

44. 在 R, L 串联电路中,已知 $u = 100\sqrt{2}\sin 314t$ V, $i = 20\sqrt{2}\sin (314t - 53.1°)$ A。求. (1) R, L 电路的有功功率 P, 功率因数 λ ; (2) 若 R, L 改为并联而 u 不变,求总电流i',有功功率 P' 及功率因数 λ' 。

45. 在右图示正弦交流电路中,电压有效值 U=150V, $U_2=100V$,电流有效值 I=10A,电路的有功功率 P=900W,电阻 $R_2=6\Omega$ 。求电阻 R_1 ,感抗 X_{L1} 及 X_{L2} 。

46. 在图示电路中, R_2 =48 Ω , X_L =36 Ω , R_1 , R_2 所消耗的有功功率 P_1 = P_2 =1.5W。求 R_1 及电流源的电流有效值 I_S 。

47. 在图示电路中, $R=12\Omega$, $X_{L1}=16\Omega$,电流 i 的有效值 I=15A,开关 S 闭合后总电流变为 I=20A。求感抗 X_{L2} 。

48. 欲用额定容量 $S_N=10kVA$,电压 $u=220\sqrt{2}\sin 314tV$ 的正弦交流电源,给 P=8kW, $\lambda=0.6$ 的感性负载供电。问:(1)该电源供出的电流是否超过其额定电流?(2)欲将功率因数提高到 0.95,应并联多大的电容?(3)并联电容后,电源供出的电流是多少?此时是否超过其额定电流?

4.1单项选择题答案:

4-2 非客观题答案:

1. (1) t=0 Bf. u(0)=110V, RJ $110=U_{\rm m}\sin 30^{\circ}$, $U_{\rm m}=220V$

(2) t=0 时,
$$i(0) = -5\sqrt{2}$$
 A. 即 $-5\sqrt{2} = L \sin(-45^\circ)$ $I_{m} = 10A$ $i = 10\sin(\omega t - 45^\circ)$ A

相量
$$= \frac{10}{\sqrt{2}} \angle -45 = 5\sqrt{2} \angle -45$$

2. (1) $u=141\cos(314t+60^{\circ})=141\sin(314t+150^{\circ})V$

u与i相位差 @=150°-(-120°)=270° 电流超前电压360°-270°=90°,此元件为纯电容元件

(2) 复阻抗
$$Z = \frac{141 \angle 150^{\circ}}{7 \angle -120^{\circ}} \approx 20 \angle 270^{\circ} = 20 \angle -90^{\circ} = -520$$
 Ω

(3)
$$W_{\mathbf{n}} = \frac{1}{2}CU_{\mathbf{n}}^2 = \frac{1}{2} \times \frac{1}{X_C \cdot \omega}U_{\mathbf{n}}^2 = \frac{1}{2} \times 141^2 \times \frac{1}{314 \times 20} \approx 1.58 \text{ J}$$

3. (1)
$$\tan \varphi = \frac{Q}{P} = 0.73$$
 $\varphi = 36.25^{\circ} \lambda = \cos \varphi = \frac{P}{S} = 0.81$

$$(2)^{R} = \frac{U^{2}}{P} = \frac{220^{2}}{7.5 \times 10^{3}} = 6.45\Omega \ X_{L} = \frac{U^{2}}{Q} = \frac{220^{2}}{5.5 \times 10^{3}} = 8.8\Omega \ L = \frac{X_{L}}{\varpi} = \frac{8.8}{314} = 28 \text{ mH}$$

4.
$$M_1$$
: $S = \sqrt{P^2 + Q^2} = \sqrt{8800^2 + 6600^2} = 11000 \text{ VA}$

(84) 脾害非+ (43) 恋单-報申案方+

$$I = \frac{S}{U} = \frac{11\,000}{220} = 50\,\text{A} \qquad P = IR. \qquad R = \frac{P}{I} = \frac{8\,800}{50^2} = 3.52\,\Omega \, Q = I\,\text{ad.},$$

$$L = \frac{Q}{I\,\text{ad}} = \frac{6\,600}{50^2 \times 314} = 8.4 \times 10^{-3}\,\text{H} = 8.4\,\text{mH} \quad A = \cos\varphi = \frac{8\,800}{11\,000} = 0.8, \quad \varphi = 36.9$$

$$U_R = IR = 50 \times 3.52 = 176 \text{ V}$$

$$U_L = I\omega L = 50 \times 314 \times 0.008 \ 4 = 132 \ \text{V}$$

 $i = 50\sqrt{2} \sin 314 \approx 36.9$)A

 $u_t = 176\sqrt{2} \sin(314 + 36.9) V u_t = 132\sqrt{2} \sin(314 + 53.1) V$

$$X_{L} = \varpi L = 314 \times 0.382 = 120\Omega$$

$$X_{C} = \frac{1}{\varpi C} = \frac{10^{6}}{314 \times 40} = 80\Omega$$

$$|Z| = \sqrt{30^{2} + (120 - 80)^{2}} = 50\Omega$$

$$I = \frac{U}{|Z|} = \frac{250}{50} = 5A$$

$$\tan \varpi = \frac{X}{2} = \frac{40}{2}$$

$$\tan \varphi = \frac{X}{R} = \frac{40}{30}$$
 $\varphi = 53.1^{\circ}$ $i = 5\sqrt{2} \sin (314t - 53.1^{\circ}) A$

$$\mathcal{O}_1^R = \mathcal{R}(R + jX_L) = 5\angle -53.1^{\circ}(30 + j120)$$

= 618.5\angle 22.86° V

$$u_1 = 618.5\sqrt{2} \sin (314t + 22.86^\circ) \text{ V},$$

 $P = I^2 R = 5^2 \times 30 = 750 \text{ W} \qquad \lambda = \cos 53.1^\circ = 0.6$

6.
$$\partial_{x}^{2} = \partial_{x}^{2} - \partial_{x}^{2} = 10\angle 60^{\circ} - 5\angle - 30^{\circ} = 11.2\angle 86.5^{\circ} \text{ V}$$

$$\int_{x}^{2} \frac{\partial_{x}^{2}}{-jX_{c}} = \frac{5\angle - 30^{\circ}}{10\angle - 90^{\circ}} = 0.5\angle 60^{\circ} \text{ A}$$

$$Z_{\pi} = \frac{\mathcal{L}_{\pi}^{\&}}{\&} = \frac{11.2 \angle 86.5^{\circ}}{0.5 \angle 60^{\circ}} = 22.4 \angle 26.5^{\circ} = 20 + 10 \Omega$$

$$P = I^2 R = 0.5^2 \times 20 = 5 W$$

7. (1)
$$Z = \frac{78}{R} = 5 - j8.66\Omega$$
 $R = 5\Omega$ $C = \frac{1}{1.000 \times 8.66} = 115.5 \mu F$

$$P = UI\cos \varphi = 250W$$

(2)
$$u_R(\frac{\pi}{1\ 000}) = 50\cos(1\ 000 \times \frac{\pi}{1\ 000} + 60^\circ) = -25V$$

$$u_c(\frac{\pi}{1\ 000}) = 86.6\cos(1\ 000 \times \frac{\pi}{1\ 000} - \frac{\pi}{6}) = -75V$$

 $t = \frac{\pi}{1000}$ s 时, u_R , u_C 的实际方向与正方向相反

(3) 相量图

$$X_{C} = \frac{1}{\varpi C} = 10 \Omega \quad \hat{P} = \frac{U_{Cm}^{0}}{-j X_{C}} = 0.5 \angle 60^{\circ} A \quad P = UI \lambda = \frac{10}{\sqrt{2}} \times \frac{0.5}{\sqrt{2}} \cos(60^{\circ} - 60^{\circ}) = 2.5 W$$

9. (1)
$$u_x = i \times R = 4 \sin(600 t + 45^\circ) \text{V}$$
 $u_t = 6 \sin(600 t - 45^\circ) \text{V}$ $u_t = 4 \sin(600 t + 135^\circ) \text{V}$

$$u_r = 4 \sin(600 t + 135) V$$

$$U_{\rm m} = \sqrt{U_{\rm Am}^2 + (U_{\rm Lm} - U_{\rm Cm})^2} = \sqrt{4^2 + (4 - 6)^2} = 4.47 \,\rm V$$

$$\varphi = \tan^{-1} \frac{(X_I - X_C)}{R} = \tan^{-1} \frac{(20 - 30)}{20} = -26.57^{\circ}$$

$$u=4.47 \sin(600 t+18.43^{\circ})$$
 $L=\frac{X_L}{\omega}=\frac{20}{600}=33\times10^{-3} \text{ H}=33 \text{mH}$

$$C = \frac{1}{\omega X_c} = \frac{1}{600 \times 30} = 55.6 \times 10^{-6} \text{ F} = 55.6$$
 μF

10.
$$|Z| = \frac{70.7}{1.5} = 47.13\Omega$$
 $R = |Z|\cos 30^\circ = 47.13 \times \frac{\sqrt{3}}{2} = 40.82\Omega$

$$X = |Z| \sin 30^\circ = 47.13 \times \frac{1}{2} = 23.57 \Omega X_C = \frac{1}{\varpi C} = \frac{1}{100 \times 400 \times 10^{-6}} = 25 \Omega$$

$$QX = X_L - X_C : X_L = X + X_C = 23.57 + 25 = 48.57\Omega$$

$$L = \frac{X_L}{a} = \frac{48.57}{100} = 486 \text{ m H}$$

$$U_2^8 = RZ_2 = 15\angle 0^\circ \times (6 + j8) = 150\angle 53.1^\circ \text{V}$$

$$u_1 = 75\sqrt{2}\sin(\omega t + 53.1^\circ)V$$
 $u_2 = 150\sqrt{2}\sin(\omega t + 53.1^\circ)V$

(2)
$$\lambda = \frac{P}{S} = \cos \varphi = \cos 53.1^{\circ} = 0.6$$
 $P = UI\lambda = 225 \times 15 \times 0.6 = 2.025 \text{W}$

Q=UIsin Q=225×15×0.8=2 700 Var 改超前 B, 该电路呈感性

(1)
$$Z = R + j(X_1 - X_2) = 20 + j(20 - 30)$$

12. $= 22.36 \angle - 26.57^{\circ} \Omega$

(2)
$$P = I^2 R = (\frac{0.2}{\sqrt{2}})^2 \times 20 = 0.4 \text{ W}$$
 $Q = I^2 X = (\frac{0.2}{\sqrt{2}})^2 \times (-10) = -0.2 \text{ Var}$
 $S = UI = \frac{4.47}{\sqrt{2}} \times \frac{0.2}{\sqrt{2}} = 0.447 \text{ VA}$ $\lambda = \frac{P}{S} = \cos \varphi = \cos(-26.57^\circ) = 0.89$

(3) 电路呈容性

13.
$$I_1 = \sqrt{I^2 - I_2^2} = 4 \text{ A}$$
 \Re : $\Re = 4 \angle 0^{\circ} \text{ A}$ $\Im = \Re R = 100 \angle 0^{\circ} \text{ V}$

$$R = 5 \angle \arctan \frac{3}{4} = 5 \angle 36.9^{\circ} \text{A} \quad Z = \frac{78}{R} = 20 \angle -36.9^{\circ} \Omega$$

(1)
$$Z_{LC} = \frac{-j^2 X_L X_C}{j X_L - j X_C} = -j3.64 \Omega$$
 $\frac{2}{N} = \frac{2}{N} \times \frac{Z_{LC}}{R + Z_{LC}} = 5 \angle 0^{\circ} A$

$$b_{x}^{2} = \frac{b_{x}^{2}}{\sqrt{3}} = 40 \angle 0^{\circ} V$$
 $b_{x}^{2} = \frac{b_{x}^{2}}{\sqrt{3}} = 1.8 \angle -90^{\circ} A$ $b_{x}^{2} = \frac{b_{x}^{2}}{\sqrt{3}} = 12.7 \angle 90^{\circ} A$

(2)
$$\lambda = \frac{P}{S} = \cos \varphi = \cos 65.4^{\circ} = 0.42$$

(3) Q:超前于以(即电源电压以), .. 电路呈容性

$$I_1 = \frac{P_1}{U} = \frac{100}{220} = 0.45 \text{A} \ I_2 = \frac{P_2}{U \lambda_2} = \frac{40}{220 \times 0.8} = 0.23 \text{A}$$

$$g = 36.9$$
 $g = 0.23 \angle 36.9$ A $g = 0.45 + 0.23 \angle 36.9$ = 0.45 + 0.18 + $g = 0.65 \angle 12.5$ A

$$_{j=0.65}\sqrt{2} \sin(314 t + 12.5^{\circ})$$
A $_{A} = \cos 12.5^{\circ} = 0.976$
 $_{p=V} I \cos \varphi = 220 \times 0.65 \cos 12.5^{\circ} = 139.61$ W

$$P_2 = I_2^2 R_2$$
 $I_2 = \sqrt{\frac{P_2}{R_2}} = 0.5 \text{A}$ $\text{ig.} \quad \text{ig.} \quad \text{ig.} \quad \text{ig.} \quad \text{ig.}$

(2) 相量图见左下图

$$I_1 = \frac{P_1}{U} = \frac{100}{220} = 0.45 \text{A} \ I_2 = \frac{P}{U \lambda_2} = \frac{40}{220 \times 0.8} = 0.23 \text{A}$$
 $\varphi_2 = 36.9^{\circ}$

$$P = P_1 + P_2 = 0.45 \angle 0^\circ + 0.23 \angle -36.9^\circ = 0.65 \angle -12.5^\circ A$$

$$i = 0.65\sqrt{2}\sin(314t - 12.5^{\circ})$$
 A $\lambda = \cos 12.5^{\circ} = 0.98$ $P = P_1 + P_2 = 100 + 40 = 140$ W

相量图见右上图

$$Z_1 = -j\frac{1}{\omega C} = -j5\Omega$$
 $Z_2 = R + j\omega L = (3 + j4)\Omega$ $R = \frac{U^2}{Z_1} = 20 \angle 90^\circ A$

$$\frac{R_2}{R_1} = 20 \angle -53.1^{\circ} \text{ A}$$
 $R = \frac{R_1}{R_1} + \frac{R_2}{R_2} = (12 + j4) \text{ A}$ $i_1 = 20\sqrt{2} \sin(1.000t + 90^{\circ}) \text{ A}$

$$i_2 = 20\sqrt{2}\sin(1.000t - 53.1^\circ)$$
 A $i = 12.65\sqrt{2}\sin(1.000t + 18.4^\circ)$ A

$$P = UI \lambda = 1.2 \text{kW}$$

19. (1)
$$I = \frac{P_1}{U \lambda_1} = \frac{10000}{1000 \times 0.8} = 12.5 \text{A}$$
 $\varphi_1 = 36.9^{\circ}$

$$I_2 = \frac{P_2}{U \lambda_2} = \frac{15000}{1000 \times 0.6} = 25 \text{A}$$
 $Q_2 = 53.1^{\circ}$ $Q_3 = 53.1^{\circ}$ $Q_4 = 53.1^{\circ}$

 $i = 12.5\sqrt{2} \sin(\omega t + 36.9^{\circ}) A$ $i = 25\sqrt{2} \sin(\omega t - 53.1^{\circ}) A$ $i = 28\sqrt{2} \sin(\omega t - 26.6^{\circ}) A$

(2)全电路呈感性

(3) 相量图:

(1)
$$Z = jX_{I1} + \frac{(R - jX_C)jX_D}{(R - jX_C) + jX_{I2}} = 2.83 \angle 45^{\circ} \Omega$$

$$\mathcal{O}_{\mathbf{m}}^{k} = R Z = 2.83 \angle 90^{\circ} \text{ V } u = 2.83 \sin (3t + 90^{\circ}) \text{ V}$$

(2) P=UI A=1W (3) u 导前 i 45, 电路 星感性

$$Z = R_{i} + j\omega L + \frac{-jR_{i}/\omega C}{R_{i} - j/\omega C} = 1.59 \angle 18.4^{\circ}\Omega$$
21.

$$i = \frac{b^{2}}{Z} = 200 \angle -18.4$$
 $i = 200 \sqrt{2} \sin(10000 t - 18.4)$ A

$$\lambda = \cos 18.4^{\circ} = 0.95$$
, $P = UI\lambda = 60.42 \text{kW}$

$$R_2 = R_2 + jX_1 = 50 \angle 83^\circ A$$
22.

$$\int_{R_{\perp}}^{R_{\perp}} \frac{-jX_{c}}{(R_{2}+jX_{L})-jX_{c}} = 40\angle -60^{\circ} \text{ A}$$

$$\int_{R_{\perp}}^{R_{\perp}} \frac{-jX_{c}}{(R_{2}+jX_{L})-jX_{c}} = 40\angle -60^{\circ} \text{ A}$$

$$\int_{R_{\perp}}^{R_{\perp}} \frac{-jX_{c}}{(R_{2}+jX_{L})-jX_{c}} = 332.8\angle 8.7^{\circ} \text{ V}$$

$$_{1 = \cos(8.7^{\circ} - 30^{\circ})} = 0.93 P = UI\lambda = 9.3kW$$

83. 电容两端电压 及通过的电流 是正方向如图中所设

$$g_C^2 = f(R_2 + jX_L) = 200 \angle -6.9^{\circ} \text{ V}$$
 $f_C^2 = \frac{g_C^2}{-jX_C} = 50 \angle 83.1^{\circ} \text{ A}$

$$R = R + R_c = 30 \angle 30^\circ \text{ A}$$
 $R = R_s R_1 + R_c = 332.5 \angle 8.8^\circ \text{ V}$

$$P = I_s^2 R_1 + I^2 R_2 = 9.3 \text{kW}$$

24.
$$R = 10 \angle 0^{\circ} A$$
 $R = 10 \angle 90^{\circ} A$; $R = R + R = 10 \sqrt{2} \angle 45^{\circ} A$

$$\vec{v}_{L} = \vec{v} - \vec{v}_{L}^{0} = 86.6 \sqrt{2} \angle 135^{\circ} \text{ V}$$
; $X_{L} = \frac{U_{L}}{I} = 8.66 \Omega$; $\lambda = \cos(120^{\circ} - 45^{\circ}) = 0.26$

$$b = \frac{2}{3}R_1 + \frac{2}{3}(R + jX_1) = 714.8 \angle 9.66^{\circ} V$$
 $U = 714.8 V$

(2)
$$\lambda = \cos(9.66^{\circ} + 53.1^{\circ}) = 0.46$$

$$P = UI\lambda = 4.93$$
kW

$$Z_1 = \frac{\overline{\mathcal{B}}_2}{R_1} = 8 + j6\Omega$$
 $Z_2 = \frac{\overline{\mathcal{B}}_2}{R_2} = 6 - j8\Omega$
 $R_3 = R_1 + R_2 = 40 - j40 \text{ A}$

$$\sqrt[3]{3} = \sqrt[8]{2}_3 = 240 \angle 0^\circ \text{ V}$$
 $\sqrt[3]{4} = \sqrt[8]{2} + \sqrt[8]{3} = 576.9 \angle -33.7^\circ \text{ V}$

$$P_3 = l^2 \times R - 9.6 \text{ kW}$$
 $A_1 = \cos 45^\circ = 0.70^\circ$

27. (1) 电路的相量模型如图示

$$R_1^0 = \frac{\overline{C}_2^0}{R_2} = 0.1 \angle 0^\circ \text{ A}$$

$$b_1^{0} = b_1^{0} + b_2^{0} = 30 \angle 30^{\circ} V$$
 $b_2^{0} = b_1^{0} + b_2^{0} = 30 \angle 30^{\circ} V$

$$u=30\sqrt{2} \sin(\omega t+30^{\circ})V$$

$$P = UI\lambda = UI\cos \varphi = 5.19 \text{ W}$$

(2) 相量图:

各支路电流和各部分电压相量正方向如右上图中所标示:

$$U_R = \sqrt{RP} = 1 \text{V}$$
 $\text{if } \mathcal{B}_R = 1 \angle 0^{\circ} \text{V}$ M

$$\not F = \not F_R + \not F_Z = 1 \angle 0^\circ + 1 \angle - 90^\circ = \sqrt{2} \angle - 45^\circ A$$

$$\mathcal{B} = \mathcal{A}(-jX_c) + \mathcal{B}_{\mathcal{A}} = \sqrt{2}\angle -135^\circ + 1\angle 0^\circ = 1\angle -90^\circ \text{ V}$$

$$\lambda = \cos \varphi = \cos(-90^\circ - (-45^\circ)) = 0.707$$

相量图(根据所设参量而确定,答案不唯一)

29.
$$Z = 25 + j20/(10 - - j30) = 60.38 \angle 41.63^{\circ} \Omega$$

$$R = \frac{B^2}{Z} = 3.97 \angle -41.63 \text{ A}$$
 $P = U I \lambda = 240 \times 3.97 \times \cos 41.63 = 712.17 \text{ W}$

$$P = U I\lambda = 240 \times 3.97 \times \cos 41.63 = 712.17 \text{W}$$

30. (1)
$$X_L = \omega L = 80 \Omega$$
 $U = R(R + j X_L) = 282 \angle 53.1^{\circ} \text{ V}_3$

 $\beta = \beta + \beta_C = 2.82 \angle 0^\circ + 1 \angle 143.1^\circ = 2.11 \angle 16.5^\circ A$ $\Delta I = 2.82 - 2.11 = 0.71 A$

g电流比原电路降低 0.71 A (2) A' = cos(53.1° - 16.5°) = 0.8

31. (1) 电路如图:

$$\lambda = \cos \varphi = \frac{U_R}{U} = \frac{110}{220} = 0.5$$

(2) $Q \cos \varphi = 0.5$ $\tan \varphi = 1.73$

 $\lambda' = \cos \varphi' = 0.85$ $\tan \varphi' = 0.62$

$$C = \frac{P}{\sigma U^2} (\tan \varphi - \tan \varphi') = \frac{40}{314 \times 220^2} (1.73 - 0.62) = 2.93 \times 10^{-6} \text{ F} = 2.93 \text{ m}$$

$$R = \frac{U}{I} = \frac{100}{1} = 100 \,\Omega$$

$$R = \frac{U}{I} = \frac{100}{1} = 100\Omega \qquad X_L = X_C = \frac{U_C}{I} = \frac{180}{1} = 180\Omega \qquad L = \frac{X_L}{\varpi} = 5.73 \times 10^{-1} \,\text{H}$$

$$C = \frac{1}{\omega X_C} = 17.6$$

33. 电路如图所示:

(1)
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 500 \,\text{Hz}$$

(2) 电路谐振时, $X_L = 2\pi f_0 L = 100\Omega$

$$I_c = I_L = \frac{U_s}{X_L} = 0.1 A$$
 $I = I_R = \frac{U_s}{R} = 0.01 A$

$$I = I_R = \frac{U_S}{R} = 0.01 A$$

$$R = \frac{U}{I} = 100 \, \Omega$$

$$X_C = \frac{U_C}{I} = 180 \, \Omega$$

34. (1)
$$U = U_R$$
 $R = \frac{U}{I} = 100\Omega$ $X_C = \frac{U_C}{I} = 180\Omega$ $C = \frac{1}{\varpi X_C} = 17.7 \,\mu\text{F}$

$$X_L = X_C$$
 $L = \frac{X_L}{\varpi} = 0.573 \,\mathrm{H}$

(2)
$$f = 100 \,\text{Hz}$$
 By: $X_L = 360 \,\Omega$ $X_C = 90 \,\Omega$ $Z = R + J(X_L - X_C) = 261.52.6$

(2)
$$f = 100 \text{ Hz pt}$$
: $X_L = 360 \Omega$ $X_C = 90 \Omega$ $Z = R + j(X_L - X_C) = 287.9 \angle 69.7 \Omega$

$$I = \frac{U}{|x|} = 0.35 \text{ A}$$
 $J = 0.36\sqrt{2} = \ln(628 + 69.7) \text{ A}$ $P = UI \lambda = UI \cos \phi = 12.14 \text{ W}$

此时电路呈感性

35. (1)
$$L = \frac{1}{(2\pi f_0)^2 C} = 2.54 \times 10^{-3} \text{ H} = 2.54 \text{ mH}$$

(2)
$$\frac{1}{2} \int_{\Gamma} = 500 \text{ Hz M}$$
, $E_1 = 50 + j(2\pi f_1 L - \frac{1}{2\pi f_1 C}) = 50 + j(7.96 - 31.85) = 50 - j23.89\Omega$

电路星容性。

当点=1500Hz 时,
$$Z_2 = 50 + j(7.96 \times 3 - \frac{31.85}{3}) = 50 + j13.28\Omega$$
,电路呈感性

36. (1) 请报时
$$I_1 = I_0 = \frac{U}{R}$$
 $U = RI_0 = 250 \text{V}$ $L = \frac{1}{(2\pi f_0)^2} = 0.0127 \text{H}$

$$R_1 = \frac{tR}{100L} = 3.13\angle -90^{\circ} A$$
 $R_2 = -R_2 = 3.13\angle 90^{\circ} A$

$$i_1 = 0.1\sqrt{2} \sin(6.280t + 0^\circ) A$$
 $i_2 = 3.13\sqrt{2} \sin(6.280t - 90^\circ) A$

$$t_3 = 3.13\sqrt{2} \sin(6.280t + 90^\circ) \text{A}$$

(2)
$$f = 500 \,\mathrm{Hz}$$
 时, $X_c > X_L$ $I_L > I_c$,电路呈感性, $P = I_1^2 \,R = 25 \,\mathrm{W}$

37. (1)
$$R_k = \frac{\partial^k}{R} = 8\angle 0^\circ A$$
 $R_l = \frac{\partial^k}{jX_l} = 4\angle -90^\circ A$ $R_c = \frac{\partial^k}{-jX_c} = 10\angle 90^\circ A$

$$k = k + k + k = 10 \angle 36.9^{\circ} A$$
 $i = 10\sqrt{2} \sin(314t + 36.9^{\circ}) A$ $\lambda = \cos \phi = 0.6$

(2)
$$I_0 = \frac{U}{R} = 8A$$
 $L = \frac{X_s}{a} = 0.159 \text{H}$ $C = \frac{1}{a \cdot X_c} = 159 \times 10^{-6} \text{ F} = 159 \text{ µF}$

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 31.7 \,\mathrm{Hz}$$

38. (1)
$$W = 220 \angle 0^{\circ} V$$
, $R = \frac{U_{1}^{0}}{R_{2} + j X_{2}} = \frac{220 \angle 0^{\circ}}{10 + j 10.2} = 15.4 \angle -45.6^{\circ} A$
 $W_{1} = R(R_{1} + j X_{1}) = 17.2 \angle 17.8^{\circ} V$ $W = W_{1}^{0} + W_{2}^{0} = 236 \angle 1.27^{\circ} V$ $U = 236 V$ $U_{1} = 17.2 \angle 17.8 V$

(2)
$$P_2 = I^2 R_2 = 2.37 \times 10^3 \text{ W} = 2.37 \text{ kW}$$

$$P_1 = I^2 R_1 = 118.6 \text{W}$$

39. (1)
$$S = \sqrt{P^2 + Q^2} - 11 \times 10^3 \text{ VA} = 11 \text{kVA}$$
 $U = \frac{S}{I} = 220 \text{ V}$ $\lambda = \frac{P}{S} = 0.8$

$$q=36.9^{\circ}$$
 $u=220\sqrt{2}\sin(314t+66.9^{\circ})V$

(2)
$$R = \frac{P}{I^2} = 3.52 \Omega$$
 $X_L = \frac{Q}{I_2} = 2.64 \Omega$ (3) $\lambda = 0.8$

40.
$$Z = Z_1 + Z_2 + Z_3 = 6 + \frac{1}{2} = 10 \angle 53.1\Omega$$

$$= \frac{B_{S1}^2 - B_{S2}^2}{Z} = 10 \angle 66.9^{\circ} A$$

$$P = I^2 R = 10^2 \times 6 = 600 \text{ W}$$
 $Q = I^2 X = 10^2 \times 8 = 800 \text{ Var}$

$$S = \sqrt{P^2 + Q^2} = 1\ 000\ \text{VA}$$
 $\lambda = \cos(120^\circ - 66.9^\circ) = 0.6$

由相量图可得:
$$I_R = \sqrt{I_C^2 - I_L^2} = 1.41$$
A $U_R = I_R R = 141$ V

$$\sigma L = \frac{U_R}{I_L} = 100\Omega \qquad L = 318 \,\text{mH}$$

$$U_c = U = U_R \cos(-45^\circ) = 100 \,\mathrm{V}$$

$$X_c = \frac{U_c}{I_c} = 50\Omega$$
 $C = \frac{1}{\varpi X_c} = 63.7$ μF

$$S_2 = \frac{U^2}{\sqrt{3^2 + 6^2}} = \frac{U^2}{6.7}$$
 $S_1 = \frac{U^2}{\sqrt{2^2 + 3^2}} = \frac{U^2}{3.6}$ $\frac{S_1}{S_2} = 1.86$

$$\mathbb{E}S_1 = 1.86S_2 = 2.77 \times 10^3 \text{ VA} = 2.77 \text{ kVA}$$

$$P_1 = S_1 \cos \varphi_1 = 2.77 \cos(\arctan \frac{3}{2}) = 1.54 \text{ kW}$$

43. (1)
$$I = \frac{P}{U \lambda} = 75.76 \text{ A}$$
 $R = \frac{P}{I^2} = 1.74 \Omega$

$$|Z| = \frac{U}{I} = 2.9 \Omega$$
 $X = \sqrt{Z^2 - R^2} = 2.32 \Omega$ $L = \frac{X}{\varpi} = 7.4 \text{ mH}$ $\varphi = \arctan \frac{X}{R} = 53.1^{\circ}$
 $i = 75.76 \sqrt{2} \sin(314 t - 53.1^{\circ}) \text{ A}$

85

(2)
$$C = \frac{P}{\varpi U^2} (\tan \varphi - \tan \varphi') = 658 \mu F$$
 (3) $I' = \frac{P}{U \lambda'} - 10.11$

44. (1)
$$|Z| = \frac{U}{I} = \frac{100}{20} = 5\Omega$$
 $\varphi = 53.1^{\circ}$ $R = |Z|\cos\varphi = 3\Omega$

$$X_{L} = |Z| \sin \varphi = 4 \Omega$$
 $L = \frac{X_{L}}{\varphi} = 12.7 \text{ mH}$ $P = I^{2}R = 1200 \text{ W}$ $\lambda = \cos 53.1^{\circ} = 0.6$

(2)
$$R = R_k + R_k = \frac{100}{3} + \frac{100}{j4} = 41.67 \angle -36.9^{\circ} A$$

$$A' = \cos 36.9^{\circ} = 0.8$$

$$i' = 41.67\sqrt{2}\sin(314t - 36.9^{\circ})$$
 A

$$\begin{array}{c}
\stackrel{i'}{\longrightarrow} \\
\downarrow \\
u \\
\downarrow \\
R
\end{array}$$

$$\downarrow L$$

$$P' = \frac{U^2}{R} = \frac{100^2}{3} = 3.33 \times 10^3 \text{ W} = 3.33 \text{ kW}$$

45.
$$P = I^2(R_1 + R_2)$$
 $R_1 = \frac{P}{I^2} - R_2 = \frac{900}{10^2} - 6 = 3\Omega$ $Q |Z_2| = \frac{U_2}{I} = \frac{100}{10} = 10\Omega$

$$:: X_{L2} = \sqrt{|Z_2|^2 - R_2^2} = \sqrt{100 - 36} = 8Ω P = UI \lambda \lambda = \frac{900}{150 \times 10} = 0.6$$
 感性

$$\varphi = 53.1^{\circ}$$
 $\frac{X_{L1} + X_{L2}}{R_1 + R_2} = \tan 53.1^{\circ} = 1.33$ $X_{L1} = 1.33 \times (3+6) - 8 = 3.97 \Omega$

46. 电路相量模型及各支路电流方向如下图:

$$I_{2} = \sqrt{\frac{P_{2}}{R_{2}}} = 0.177 \,\text{A}$$

$$U_{R1} = I_{2} \sqrt{R_{2}^{2} + X_{L}^{2}} = 10.6 \,\text{V}$$

$$I_{1} = \frac{U_{R1}^{2}}{R_{1}} = 75 \,\Omega$$

$$R_2 = 0.177 \angle -36.9$$
° A $R_3 = R_1 + R_2 = 0.303 \angle -20.5$ ° A $I_s = 0.303$ A

47.
$$|Z_1| = \sqrt{R^2 + X_{Z1}^2} = 20\Omega$$
 $U = I|Z_1| = 300$ V 开关闭合后: $|Z_2| = \frac{U}{I} = 15\Omega$ $X' = \sqrt{|Z_2|^2 - R^2} = 9\Omega$ $X' = \frac{X_{L1}X_{L2}}{X_{L1} + X_{L2}}$

$$\chi_D = 20.6\Omega$$

$$I = \frac{P}{U\lambda} = \frac{8 \times 10^3}{220 \times 0.6} = 60.6 \text{ A}$$
 $I_N = \frac{10 \times 10^3}{220} = 45.45 \text{ A}$

供出的电流超过其额定电流

(2) 若 A' = 0.95 tan Ø = 0.33, 根据已知条件 tan Ø=1.33

$$C = \frac{P}{\varphi U^2} (\tan \varphi - \tan \varphi') = \frac{8 \times 10^3}{314 \times 220^2} (1.33 - 0.33) = 526 \,\mu\text{F}$$

③ 并联电容后电源供出的电流

$$I' = \frac{P}{U \lambda'} = \frac{8 \times 10^3}{220 \times 0.95} = 38.28 \text{ A}$$
 $I' < I_N = 45.45 \text{A}$