Písomný test 1 z AZA, skupina A, dňa 22.III.2016

Meno a priezvisko:

1. Zistite, či platia nasledujúce tvrdenia. Svoje tvrdenie dokážte!

a)
$$3^{\log_3 n} = O(4^{\log_5 n})$$

b) $3^n = O(2^n)$

b)
$$3^n = O(2^n)$$

c)
$$\log_5 n = O(\log_4 n)$$

d)
$$n^2 = \Omega(n^{\log_2 3})$$

2. Vypočítajte explicitne x_n z rekurentnej rovnice:

$$x_n = 2x_{n-1} + n$$
, kde $x_0 = 0$

3. Vypočítajte explicitne a_n z rekurentnej rovnice:

$$a_{n+1} = 3a_n - 2a_{n-1}$$
, $n \ge 1$, $a_0 = 1$, $a_1 = 10$

4. Vypočítajte:
$$\sum_{m>2}^{\infty} \frac{m^2 - 3m - 2}{m!}$$
.

5. Použitím Master Theorem určte asymptoticky tesné hranice pre nasledujúce rekurencie:

a)
$$T(n) = 8T(\frac{n}{2}) + e^{3\ln n}$$

b)
$$T(n) = 5T(\frac{n}{2}) + \frac{n^3}{\log n}$$

6. Predpokladajme, že podprogram ZZ(.), ktorého vstupom je binárne číslo x majúce n-bitovú reprezentáciu, má čas výpočtu $O(n^3)$. Uvažujme nasledujúcu časť kódu:

A: while x>1: B: while x>1: call
$$ZZ(x)$$
 $x=x/2$ B: $x=x-1$

Predpokladajme, že delenie dvomi potrebuje čas O(n) a podobne aj odčítanie jednotky potrebuje čas O(n).

- a. Nájdite čo najtesnejšiu hranicu pomocou O-notácie (ako funkciu n) na počet opakovaní cyklu while v prípade A.
- b. Nájdite čo najtesnejšiu hranicu celkového času výpočtu pomocou O-notácie (ako funkciu n) v prípade A.
- c. Nájdite čo najtesnejšiu hranicu pomocou O-notácie (ako funkciu n) na počet opakovaní cyklu while v prípade B.
- d. Nájdite čo najtesnejšiu hranicu celkového času výpočtu vyjadrenú pomocou Onotácie (ako funkciu n) v prípade B.
- 7. Vyjadrite (ako funkciu k) koľko hviezdičiek presne vypíše nasledujúci kód pre dané $n=2^k$, $k \in N$?

- 8. Máte si vybrať jeden z troch algoritmov:
 - Algoritmus A rieši problém veľkosti n tak, že ho rozdelí na päť problémov polovičnej veľkosti, rekurzívne vyrieši každý z nich a riešenia skombinuje v čase O(n).
 - Algoritmus B rieši problémy veľkosti n rekurzívne riešením dvoch problémov veľkosti (n-1)a potom ich riešenia skombinuje v konštantnom čase.
 - Algoritmus C rieši problémy veľkosti n rekurzívne riešením deviatich podproblémov veľkosti n/3 a potom ich riešenia skombinuje v čase $O(n^2)$.

Vyjadrite čas ich výpočtu pomocou θ a napíšte, ktorý z nich by ste si vybrali.

Meno a priezvisko:

1. Zistite, či platia nasledujúce tvrdenia. Svoje tvrdenie dokážte!

a.
$$4^n = O(3^n)$$

a.
$$4^n = O(3^n)$$

b. $n^2 = O(n^{\log_3 4})$

c.
$$\log_2 n = O(\log_3 n)$$

c.
$$\log_2 n = O(\log_3 n)$$

d. $2^{\log_2 n} = O(2^{\log_3 n})$

2. Vypočítajte explicitne x_n z rekurentnej rovnice:

$$x_n = 3x_{n-1} + n$$
, kde $x_0 = 0$

3. Vypočítajte explicitne x_n z rekurentnej rovnice:

$$x_{n+1} = 3x_n - 2x_{n-1}$$
, $n \ge 1$, $x_0 = 1$, $x_1 = 3$

4. Vypočítajte:
$$\sum_{k>2}^{\infty} \frac{k^2 + 3k - 6}{k!}$$
.

5. Použitím Master Theorem určte asymptoticky tesné hranice pre nasledujúce rekurencie:

a)
$$T(n) = 27T(\frac{n}{3}) + e^{3\ln n}$$

b)
$$T(n) = 5T(\frac{n}{2}) + \frac{n^3}{\log n}$$

6. Predpokladajme, že podprogram PP(.), ktorého vstupom je binárne číslo x, má čas výpočtu $O(n^2)$, kde n je počet bitov čísla x. Uvažujme nasledujúcu časť kódu:

Predpokladajme, že delenie dvomi potrebuje čas O(n) a podobne aj odčítanie jednotky potrebuje čas O(n).

- a. Nájdite čo najtesnejšiu hranicu pomocou O-notácie (ako funkciu n) na počet opakovaní cyklu while v prípade A.
- b. Nájdite čo najtesnejšiu hranicu celkového času výpočtu pomocou O-notácie (ako funkciu n) v prípade A.
- c. Nájdite čo najtesnejšiu hranicu pomocou O-notácie (ako funkciu n)a počet opakovaní cyklu while v prípade B.
- d. Nájdite čo najtesnejšiu hranicu celkového času výpočtu vyjadrené pomocou Onotácie (ako funkciu n) v prípade B.
- 7. Vyjadrite (ako funkciu k) koľko hviezdičiek presne vypíše nasledujúci kód pre dané $n=3^k$, $k \in N$?

- 8. Máte si vybrať jeden z troch algoritmov:
 - Algoritmus A rieši problém veľkosti n tak, že ho rozdelí na 4 problémy veľkosti n/3rekurzívne vyrieši každý z nich a riešenia skombinuje v lineárnom čase O(n).
 - Algoritmus B rieši problémy veľkosti n rekurzívne riešením dvoch problémov veľkosti (n-1)a potom ich riešenia skombinuje v konštantnom čase.
 - Algoritmus C rieši problémy veľkosti n rekurzívne riešením štyroch podproblémov veľkosti $\frac{n}{2}$ a potom ich riešenia skombinuje v čase $O(n^2)$.

Vyjadrite čas ich výpočtu pomocou θ notácie a napíšte, ktorý z nich by ste si vybrali.