Introduction to the BQ77915, three- to five-cell stackable primary protector

Miguel Rios
Willy Massoth

Agenda

- Protector roadmap
- Value proposition
- New vs TI today
- BQ77915 features:
 - Protection
 - Cell balancing algorithm
 - Power modes
 - Hibernation mode
- Example schematics
- Companion devices
- 1 page overview

Advanced protection roadmap

Production Sampling Development Concept

BQ77915: Value proposition

The <u>BQ77915</u> advanced stackable protector is a quick and easy solution for multicell applications. It has the highest accuracy and lowest power among the

competition.

Feature highlight	System benefit
Low power consumption (8µA typ. In normal mode 2µA typ. In hibernate mode)	 Longer shelf-life, better user experience Dedicated hibernate mode for storage and shipping to aid in meeting battery regulations Relaxing external component tolerance to meet power budget (e.g. component leakage/cell quality) Minimal cell group imbalance in stack configuration
Full suite of V/I/T protection functions with best-in-class accuracy	 Simple schematic allowing quick design cycle Including open wire, OT/UT protections to meet higher/new safety requirements
Autonomous smart cell balancing	 Extract maximum battery capacity Supports both internal and external cell balancing FETs for small and large capacity packs
Scalable from 3S to 20S+	 Easy stacking with "copy-paste" schematic to support quick design across wide range of applications
Support random cell connection	Ease of manufacturing/production

BQ77905 vs. **BQ77915**

BQ77915

- Even more protection
- Cell balancing (internal 50mA & external)
- Hibernation mode
- Programmable delay

BQ77905

- Lower power
- Stacking
- Comprehensive protection suite
- Highly accurate measurements
- Low BOM count

BQ77915: Protection

	Parameter					2.1	5	5	
	# Steps	MIN	MAX	STEP	UNITS	Delays	Recovery method	Recovery details	
OV	64	3000	4575	25	mV	0.5, 1, 2, 4.5 sec	Hysteresis	0, 100, 200, 400 mV	
UV	24	1200	3000	100 (< 2.5V), 50 (≥ 2.5V)	mV	1, 2, 4.5, 9 sec	Load removal and hysteresis	0, 200, 400, 800 mV	
OW ⁽¹⁾	4	0	400	0 (disabled), 100, 200, 400	nA	4.5 sec	Restore bad VCx	$VC_X > 500mV$ (typ.)	
OTD ⁽²⁾	2	65	70	5	°C	4.5 sec	Hysteresis	10°C	
OTC ⁽²⁾	2	45	50	5	۰C				
UTD ⁽²⁾	2	-20	-10	10	°C				
UTC ⁽²⁾	2	-5	0	5	۰C				
OCD1	16	10	85	5	mV	10, 20, 45, 90, 180, 350, 700, 1420 ms	Timer auto-release and load removal, timer auto-release only, load removal only	Timer options: 250ms, 500ms	
OCD2	16	20	170	10	mV	5, 10, 20, 45, 90, 180, 350, 700 ms			
SCD	16	40	340	20	mV	400 μs	load removal only		
осс	16	5	80	5	mV	10ms	Timer auto-release and load detection, timer auto-release only, load detection only	200113, 3001115	
V _{OV} -V _{FC}	4	50	200	50	mV		Difference between OV and cell balancing full-charge voltage		
V _{STEP}	4	50	200	50	mV		Difference between cell balancing threshold voltages		

^{(1):} These are not detection thresholds but rather operation configuration

^{(2):} These thresholds are targets based on temperature, but they are dependent on external components that could vary based on customer selection. Circuit is based on 103AT NTC thermistor connected to TS and VSS, and a 10kΩ resistor connected to VTB and TS. Actual thresholds must be determined in mV.

BQ77915 cell balancing mechanism

- Passive balancing
 - Lossy
 - Power dissipated in resistors
 - Done during charge
 - Internal current set by input filter resistors
 - External balancing possible
- Voltage balancing
- Enable signal available

BQ77915 cell balancing

- Duty cycles to measure cells
- Interleaves balancing to avoid adjacent cells

BQ77915 cell balance enable

- Enabled through CBI pull down
 - Primarily for configuration and stacking

Requires current

No balance when idle or discharge

Charging series cells

BQ77915 balance algorithm - below balance

Balance start region

- Cell(s) cross the V_{Start} threshold
 - Thresholds are set:
 - V_{CBTL} at V_{Start}
 - V_{CBTH} at V_{Step} above

Balance with voltage separation

- Cell voltages are widely separated
 - Cell(s) above V_{CBTH}
 - Cell(s) below V_{CBTL}
- Cells above V_{CBTH} balance if:
 - Charge current is present
 - No faults are present

Balance window increment

- When cells are above V_{CBTL}, both thresholds increment by V_{STEP}
 - Balancing may stop

Balance resume

- Balancing resumes if cell voltage separation persists
 - Cell(s) above V_{CBTH}
 - Cell(s) below V_{CBTL}
 - Charge current is present
 - No faults are present

Balance at V_{FC}, full charge

 When V_{CBTH} advances to V_{FC}, all cells above V_{FC} balance

- Cell(s) can be above V_{CBTL}
- Charge current is present
- No faults are present

Balance stop

- When current falls below state comparator hysteresis, balance will stop
 - Level will depend on sense resistor

Balance in OV

Balance in OV stop

- The OV cell balances until
 - Voltage is reduced to below V_{FC} (or OV hysteresis)
 - CBI is disabled
 - Hibernation

21

BQ77915: Cell balancing during stacking

BQ77915: Power modes

Figure 7: Various Operational Modes

BQ77915: Power modes, normal – hibernate

BQ77915: Power mode current

- Supply current does not include load currents
- Supply current will vary with faults and which cell is balancing

Example schematic: 5S (18V)

Example schematic: 10S (36V)

Key companion BMS devices

BQ76200

•High voltage battery pack front-end charge/discharge high-side NFET driver

BQ34z100-G1

Stack-based impedance track fuel gauge

<u>BQ34110</u>

Multi-chemistry CEDV gas gauge for rarely discharged applications

Bolt on gauge/high side driver to transform from a basic standalone protected battery pack to an advanced smart battery system

BQ77915 overview

Advanced stackable protector with cell balancing and hibernate mode

Features

- · 3-5S cells per device
- Supports from 3S to 20S (or more) battery packs through stacking
- Low power consumption (8 μA typ. in normal operation, 2 μA typ. in hibernate)
- Autonomous smart cell balancing
- Numerous protection features:
 - Overvoltage (OV) and undervoltage (UV)
 - Charge overcurrent (OCC)
 - Discharge overcurrent 2 levels (OCD1 & OCD2)
 - · Discharge short circuit (SCD)
 - Over-temperature during charging (OT-C) and discharging (OT-D)
 - Under-temperature during charging (UT-C) and discharging (UT-D)
 - Open wire cell disconnection
 - Programmable overcurrent delay
 - · Built-in self-test function for high reliability
- TI-programmed (EEPROM) contact TI for specific configurations
- 24-pin TSSOP package

Applications

- · Power tools and garden tools
- Handheld vacuum/robotic cleaner/hoverboard
- · Low-end eBike

Benefits

- Simple to use
- Cost-effective for 3S to 20S+ packs due to stackable architecture
- Extract maximum battery capacity by charging higher thanks to great overvoltage accuracy and wider temperature protections in charge and discharge and by featuring smart cell balancing scheme
- Extends storage time with low guiescent current by enabling hibernate mode
- Reduced customer production time due to TI programmed EEPROM

Typical 5-cell application (internal cell balancing)

Cell Balancing without Current Sense

Open Wire detection

- Each input is loaded with low current sink
 - 100, 200, 400 nA or disabled options
- Higher open wire currents will respond faster but typically more appropriate for larger capacity batteries

Thank you

