MAT195S CALCULUS II

Midterm Test #2

25 March 2014 9:10 am - 10:55 am

Closed Book, no aid sheets, no calculators

Instructors: P. Athavale and J. W. Davis

Family Name:	JW Dowrs	ante-service with
Given Name:	Solutions.	
Student #:		

FOR MARKER USE ONLY							
Question	Marks	Earned					
1	12						
2	10						
3	10						
4	10						
5	12						
6	6						
7	10						
TOTAL	70	/ 65					

Tutorial Section:	 		 		
TA Name:					

1) Test the series for convergence or divergence:

a)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

c)
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{4n}}$$

(12 marks)

a)
$$\frac{k!}{k^{k}} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (k-1) \cdot k}{k \cdot k \cdot k \cdot k \cdot k \cdot \dots \cdot k \cdot k} \angle \frac{1}{k} \cdot \frac{2}{k!} \cdot \frac{1 \cdot 1 \cdot 1 \cdot \dots \cdot 1}{k!} \angle \frac{2}{k^{2}}$$

now & 2 converges (p-series, p >1)

: 2 k! converges by comparison test

$$=7 \int_{-2}^{1} |x| = |nx(-\frac{1}{2}x^{-3/2}) + x^{-\frac{3}{2}} = \frac{|-\frac{1}{2}|nx}{|x|^{3/2}}$$

:. \(\frac{1}{2} \) (-1) \(\frac{1}{1} \) is convergent by Alternating series test

c) root test:
$$(a_n)^{l_n} = \frac{n!}{n!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot (n-4)!}{n \cdot n \cdot n \cdot n}$$

$$= \left(\left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \left(1 - \frac{3}{n} \right) \cdot \left(n - 4 \right) \right)$$

- 2) Suppose that the series $\sum a_n$ is conditionally convergent.
 - a) Prove that $\sum n^2 a_n$ is divergent. (Hint: use a proof by contradiction.)
 - b) Knowing that Σa_n is conditionally convergent is not sufficient to determine whether Σna_n is convergent. Show this by giving an example of a conditionally convergent series such that Σna_n converges, and an example where Σna_n diverges.

(10 marks)

a) Assume that $\leq n^2 a_n$ is convergent. $\therefore n^2 |a_n| \longrightarrow \infty$ as $n \to \infty$ (test for divergence) \therefore for n > N, $n^2 |a_n| \in \mathcal{E}$ for some N.

But $2\frac{\epsilon}{nr}$ is convergent (p-series, p>1) which means that $2 |a_{m}|$ must also be convergent, which is a contradiction of the initial statement that $2 a_{m}$ is conditionally convergent. \Rightarrow :: $2 n^{2}a_{m}$ must be divergent.

b) i) consider $a_n = (-1)^n \cdot \frac{1}{n}$ which is conditionally convergent $\Rightarrow \sum_{i=1}^{n} \frac{1}{n} = \sum_{i=1}^{n}$

ii) consider $b_n = (-1)^n \frac{1}{n \ln n}$ which is also conditionally convergent $\Rightarrow 2 \frac{1}{n \ln n}$ diverges by integral test: $\int_{2}^{\infty} \frac{dx}{x \ln x} = \left[\ln \ln x \right]_{2}^{\infty} \Rightarrow \infty$ $\Rightarrow 2 \frac{(-1)^n}{n \ln n}$ converges by alt series test: $\frac{1}{(n+1)\ln(n+1)} = \frac{1}{n \ln n} = n \ln n$

=> & nbn = 2 (-1) 1/2 ; L/nn / /nn / /nn ->0

: convergent by alt series test.

3) Determine from first principles the Taylor series for the function $f(x) = \frac{1}{x^2}$ about x = 1, and determine the interval of convergence, including the status of the end points.

(10 marks)

$$f(x) = \frac{1}{x^2}$$

$$f'(x) = -2x^{-3}$$

$$f''(x) = 2.3x^{-4}$$

$$f''''(x) = -2.3.4x^{-5}$$

$$f''''(x) = -4!$$

Ratio test:
$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+2)(x-1)^{n+1}}{(n+1)(x-1)^n}\right| = \frac{n+2}{n+1}|x-1|$$

$$\therefore \text{ require } |x-1| < 1 \implies R = 1$$

at
$$2c=2$$
: $\frac{0}{2}(-1)^{n}(n+1)(1)^{n} \longrightarrow \infty$; an $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$

$$\chi=0: \begin{cases} 0 \\ = 0 \end{cases}$$
 (n+1) $(-1)^k \longrightarrow 0$; an $\neq 0$

- 4) a) Give an ϵ - δ definition of uniform continuity of a function f defined for real numbers (essentially a statement of the "small-span theorem").
 - b) Using the ϵ - δ definition, prove that $f(x) = \cos x$ is uniformly continuous on \mathbb{R} . HINT: Use the mean value theorem.

(10 marks)

a) We say that a function f is continuous on R if for any E 70 then exists a 8 70 such that when ever $|x_2-x_i| < \delta$ then $|f(x_1)-f(x_i)| < \epsilon$.

b) Given $|z_2-x_1| \le \delta$ — 7 show $|\cos x_2 - \cos x_1| \ge \epsilon$ Heave value theorem: $f'(z) = \frac{f(b)-f(a)}{b-a}$; $z \in (b,a)$ or $-\sin z = \cos x_2 - \cos x_1$; $z \in (x_1,x_2)$

=7 $|(\omega_1 \chi_2 - (\omega_3 \chi_1))| = |\sin \xi (\chi_2 - \chi_1)|$

Since $|\sin z| \le | = \rangle |\cos x_{z} - \cos x_{z}| \le |x_{z} - x_{z}|$ $\therefore |\cot \delta| = \varepsilon + (\cos x_{z} - \cos x_{z})| \le |x_{z} - x_{z}|$

:. For |x2-x1 < 8 = E then | cos x2 - cos x1 < E

: corse is uniformly continuous

5) Find the Fourier series, ie., evaluate the Fourier coefficients, for the function

$$f(t) = \begin{cases} 1, & -\pi \le t \le -\pi/2 \\ 0, & -\pi/2 < t \le \pi/2 \\ -1, & \pi/2 < t \le \pi \end{cases}$$

Provide a sketch of the function, and a sketch of what you imagine the sum of the first few terms of the series would look like.

(12 marks)

$$a_0 = \frac{2}{2\pi} \int_{\pi}^{\pi} f(t) dt = \frac{1}{\pi} \left[\int_{\pi}^{\pi} \frac{1}{1} dt + \int_{\pi/2}^{\pi} 0 dt + \int_{\pi/2}^{\pi} \frac{1}{1} \left(\frac{\pi}{2} + 0 - \frac{\pi}{2} \right) = 0 \right]$$

$$a_{n} = \frac{2}{2\pi} \int_{\pi}^{\pi} f(t) \cos nt dt - \int_{\pi}^{\pi} \int_{\pi}^{\pi} \cos nt dt - \int_{\pi/2}^{\pi} \cos nt dt - \int_{\pi/2}^{\pi} \int_{\pi}^{\pi} \int_{\pi}^{\pi} \int_{\pi/2}^{\pi} \int_{\pi/2}^{\pi$$

$$b_{N} = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \sin t dt = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}$$

- 6) a) Sketch the parabola $z = 4 x^2$ in the xz plane.
 - b) Sketch the quadric surface $z = 4 x^2 y^2$ in xyz coordinates.
 - c) How are the sketches in parts (a) and (b) related?

(6 marks)

a)

6)

c) The 3-D para boloid in (b) is a rotation of the parahola in (a) about the z-axis.

- 7) a) Let a curve be parameterized by $\vec{r}(t)$. Let $\vec{T}(t)$ denote the unit tangent vector. Show that $\bar{T}'(t)$ is perpendicular to $\bar{T}(t)$.
 - b) The curvature κ is defined as: $\kappa = \frac{\|T'(t)\|}{\|\vec{r}'(t)\|}$

Beginning with $\vec{r}'(t) = \frac{ds}{dt}\vec{T}$, show that $\|\vec{r}' \times \vec{r}''\| = \left(\frac{ds}{dt}\right)^2 \|\vec{T}'\|$, and hence,

$$\kappa = \frac{\left\|\vec{r}'(t) \times \vec{r}''(t)\right\|}{\left\|\vec{r}'(t)\right\|^3}$$

(10 marks)

a)
$$\vec{T} = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$$
 is a unit vector, hence $\vec{T} \cdot \vec{T} = 1$

Differentiating: T.T' + T'.T =0 => T.T' =0

b)
$$\vec{r}'(t) = \frac{ds}{dt} \vec{T}$$
 $\Rightarrow \vec{r}''(t) = \left(\frac{ds}{dt}\right)^t \vec{T} + \frac{ds}{dt} \vec{T}'$
= $\frac{d^2s}{dt^2} \vec{T} + \frac{ds}{dt} \vec{T}'$

Now
$$F' \times F'' = \frac{ds}{dt} + \left(\frac{d^2s}{dt^2} + \left(\frac{ds}{dt}\right) + \frac{ds}{dt}\right) + \left(\frac{ds}{dt}\right) + \left$$

But from pourt (a), TIT': 1/TXF' |= 1/7/1/7/1 sin 0 = 1/5/1

But from point (a),
$$T \perp T' := ||T \times T'|| = ||T' \times F''||$$

: $||F' \times F''|| = \left(\frac{ds}{dt}\right)^2 ||T''|| \implies ||T''|| = \frac{||F' \times F'''||}{|ds/dt|^2} = \frac{||F' \times F'''||}{||F''||^2}$