

FILEID**MTHSQRT2

MM	MM	TTTTTTTTTT	HH	HH	SSSSSSSS	QQQQQQ	RRRRRRRR	TTTTTTTT	RRRRRRRR	222222
MM	MM	TTTTTTTTTT	HH	HH	SSSSSSSS	QQQQQQ	RRRRRRRR	TTTTTTTT	RRRRRRRR	222222
MMMM	MMMM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MMMM	MMMM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR
MM	MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR
MM	MM	TT	HHHHHHHHHH	HH	SSSSSS	QQ	RRRRRRRR	TT	RRRRRRRR	22
MM	MM	TT	HHHHHHHHHH	HH	SSSSSS	QQ	RRRRRRRR	TT	RRRRRRRR	22
MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	TT	HH	HH	SS	QQ	RR	RR	RR	RR
MM	MM	TT	HH	HH	SSSSSSSS	QQQQ	RR	RR	RR	2222222222
MM	MM	TT	HH	HH	SSSSSSSS	QQQQ	RR	RR	RR	2222222222?
LL	IIIIII		SSSSSSSS						
LL	IIIIII		SSSSSSSS						
LL	II	SS							
LL	II	SS							
LL	II	SS	SSSSSS						
LL	II	SS	SSSSSS						
LL	II	SS		SS					
LL	II	SS		SS					
LL	II	SS		SS					
LLLLLLLL	IIIIII		SSSSSSSS						
LLLLLLLL	IIIIII		SSSSSSSS						

(2)	52	HISTORY ; Detailed Current Edit History
(3)	79	DECLARATIONS ; Declarative Part of Module
(4)	117	MTH\$SQRTR2 - Standard Single Precision Floating SQRT
(5)	192	MTH\$SQRTR2 - JSB SQRT routine

```
0000 1 .TITLE MTH$SQRTR2 ; Floating Point Square Root routine
0000 2 ; (SQRT)
0000 3 .IDENT /1-015/ ; File: MT-SQRTR2.MAR EDIT: RNM1015
0000 4
0000 5 ****
0000 6 *
0000 7 * COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
0000 8 * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
0000 9 * ALL RIGHTS RESERVED.
0000 10 *
0000 11 * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
0000 12 * ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
0000 13 * INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
0000 14 * COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
0000 15 * OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
0000 16 * TRANSFERRED.
0000 17 *
0000 18 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
0000 19 * AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
0000 20 * CORPORATION.
0000 21 *
0000 22 * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
0000 23 * SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
0000 24 *
0000 25 *
0000 26 ****
0000 27
0000 28
0000 29 .FACILITY: MATH LIBRARY
0000 30 ++
0000 31 .ABSTRACT:
0000 32
0000 33 MTH$SQRTR2 is a special routine which is the same as MTH$SQRTR except
0000 34 a faster non-standard JSB call is used with the argument in R0 and no
0000 35 registers are saved.
0000 36 --
0000 37
0000 38 .VERSION: 01
0000 39
0000 40 .HISTORY:
0000 41 .AUTHOR:
0000 42 Peter Yuo, 15-Oct-76: Version 01
0000 43
0000 44 .MODIFIED BY:
0000 45
0000 46
0000 47 01-1 Peter Yuo, 22-May-77
0000 48 01-2 Peter Yuo, 31-May-77
0000 49
0000 50 :
```

0000 52 .SBTTL HISTORY ; Detailed Current Edit History
0000 53
0000 54
0000 55 : ALGORITHMIC DIFFERENCES FROM FP-11/C ROUTINE: none
0000 56
0000 57 : Edit History for Version 01 of MTH\$SQRTR
0000 58
0000 59 : 01-1 Code saving after code review
0000 60 : 01-2 ROTT shift in garbage into highest bit. Use ASHL instead.
0000 61 : ADDL instruction after ADJUST has been changed into ADDW to prevent
0000 62 : overflow if R1<31:16> = FFFF and R0<31:16> = FFFF
0000 63 : 01-3 Finish error handling 10-June-1977
0000 64 : 01-5 MTH\$SError changed to MTH\$SSignal.
0000 65 : MTH... changed to MTH.....
0000 66 : Changed error handling mechanism. Put error result in R0 before
0000 67 : calling MTH\$SSignal in order to allow user modify error result.
0000 68 : 01-6 Return -0.0 on negative arg. TNH 20-Dec-77
0000 69 : 01-7 Edit in Rich Lary's code bums. JSB routine is now _R2. JMT 19-Jan-78
0000 70 : 01-9 Move .ENTRY symbol to module header. TNH 14-Aug-78
0000 71 : 1-010 - Put version number in standard format: three digit edit
0000 72 : numbers. Also, update the copyright notice. JBS 16-NOV-78
0000 73 : 1-011 - Change MTH_SQURONNEG to MTH\$K_SQURONNEG. JBS 07-DEC-78
0000 74 : 1-012 - Add " to the PSECT directive. JBS 22-DEC-78
0000 75 : 1-013 - Declare externals. SBL 17-May-1979
0000 76 : 1-014 - Move MTH\$SQRTR_R2 to separate module. JAW 26-Sep-1979.
0000 77 : 1-015 - Change external references to G^. RNH 06-Oct-81

0000 79 .SBttl DECLARATIONS ; Declarative Part of Module
0000 80
0000 81
0000 82 : INCLUDE FILES:
0000 83
0000 84
0000 85
0000 86 : EXTERNAL SYMBOLS:
0000 87
0000 88 .DSABL GBL
0000 89 .EXTRN MTH\$K_SQURONEG
0000 90 .EXTRN MTH\$\$SIGNAL
0000 91
0000 92 : EQUATED SYMBOLS:
0000 93
0000 94 : MACROS: none
0000 95
0000 96 : PSECT DECLARATIONS:
0000 97
0000 98 00000000 .PSECT _MTH\$CODE PIC,SHR,LONG,EXE,NOWRT
0000 99 ; program section for math routines
0000 100
0000 101
0000 102 : OWN STORAGE: none
0000 103
0000 104 : CONSTANTS:
0000 105
0000 106
0000 107 : Constants A and B chosen for k = odd
0000 108
13CD5FD4 0000 109 LF_ODD_A_E63 = ^X13CD5FD4
3C4A2018 0000 110 LF_ODD_B_EM63 = ^X3C4A2018
0000 111
0000 112 : Constants A and B chosen for k = even
0000 113
F61A4015 0000 114 LF_EVEN_A = ^XF61A4015
4B231FD7 0000 115 LF_EVEN_B_EM64 = ^X4B231FD7

```

0000 117 .SBTTL MTH$SQRTR2 - Standard Single Precision Floating SQRT
0000 118
0000 119
0000 120 :++
0000 121 : FUNCTIONAL DESCRIPTION:
0000 122 :
0000 123 : SQRT - single precision floating point function
0000 124 :
0000 125 : SQRT(X) is computed using the following approximation technique:
0000 126 :
0000 127 : If X <= 0 , error. Let X = |X|.
0000 128 :
0000 129 : Let X = 2**K * F where F is the fractional part.
0000 130 :
0000 131 : If K = even, X = 2**2P * F,
0000 132 :           SQRT(X) = 2**P * SQRT(F), 1/2 <= F < 1
0000 133 :
0000 134 : If K = odd, X = 2**2P+1 * F = 2**2P+2 * (F/2),
0000 135 :           SQRT(X) = 2**P+1 * SQRT(F/2), 1/4 <= F/2 < 1/2.
0000 136 :
0000 137 : Let F' = A+F + B,
0000 138 :           A = 0.453730314(octal),
0000 139 :           B = 0.327226214(octal), for K = even.
0000 140 :           = A*(F/2) + B,
0000 141 :           A = 0.650117146(octal),
0000 142 :           B = 0.230170444(octal), for K = odd.
0000 143 : and
0000 144 :   K' = P,      for K = even
0000 145 :   = P + 1    for K = odd.
0000 146 :
0000 147 : Let Y0 = 2**K' * F' as a straight line approximation within the
0000 148 : given interval using coefficients A and B which minimize the
0000 149 : absolute error at the midpoint and endpoint.
0000 150 :
0000 151 : Starting with Y0, two Newton-Raphson iterations are performed.
0000 152 :
0000 153 : Y[n+1] = (1/2) * ( Y[n] + X/Y[n] )
0000 154 :
0000 155 : The relative error is < 10**-8.
0000 156 :
0000 157 : CALLING SEQUENCE:
0000 158 :
0000 159 : sqrt.wf.v = MTH$SQRTR2(x.rf.r)
0000 160 :
0000 161 : INPUT PARAMETERS:
0000 162 :
0000 163 : LONG = 4                      ; define longword multiplier
0000 164 : x = 1 * LONG                 ; Contents of x is the argument
0000 165 :
0000 166 : IMPLICIT INPUTS:    none
0000 167 :
0000 168 : OUTPUT PARAMETERS:
0000 169 :
0000 170 : VALUE: floating square root of the argument
0000 171 :
0000 172 : IMPLICIT OUTPUTS:   none
0000 173 :

```

0000 174 : COMPLETION CODES: none
0000 175 :
0000 176 : SIDE EFFECTS:
0000 177 :
0000 178 : Signals: MTH\$_SQUROONEG if X < 0.0 with reserved operand in R0 (copied to
0000 179 : the signal mechanism vector CHFSL_MCH_R0/R1 by LIB\$SIGNAL).
0000 180 : Associated message is: "SQUARE ROOT OF NEGATIVE VALUE". Result is reserved
0000 181 : operand -0.0 unless a user supplied (or any) error handler changes CHFSL_MCH_R0/R1
0000 182 :
0000 183 : NOTE: This procedure disables floating point underflow, enables integer
0000 184 : overflow, causes no floating overflow or other arithmetic traps, and
0000 185 : preserves enables across the call.
0000 186 :
0000 187 :---
0000 188 :
0000 189 :
0000 190 :

```

; Floating Point Square Root routine      D 1
; MTH$SQRT_R2 - JSB SQRT routine          16-SEP-1984 01:51:35 VAX/VMS Macro V04-00
;                                         6-SEP-1984 11:27:15 [MTHRTL.SRC]MTH$SQRT.R2.MAR;1 Page 6 (5)

0000 192 .SBTTL MTH$SQRT_R2 - JSB SQRT routine
0000 193
0000 194 : JSB SQRT - used by the standard, and directly.
0000 195
0000 196 : CALLING SEQUENCE:
0000 197   save anything in R0:R2
0000 198   MOVF    R0           ; input in R0
0000 199   JSB     MTH$SQRT_R2
0000 200   return with result in R0
0000 201
0000 202 : Note: This routine is written to avoid any integer overflows, floating overflows,
0000 203 : floating underflows or divide by 0 conditions, whether enabled or not.
0000 204
0000 205 : REGISTERS USED:
0000 206   R0 - Floating argument then result
0000 207   R1 - X saved for use during iteration
0000 208   R2 - scratch
0000 209
0000 210 MTH$SQRT_R2:: : JSB routine for SQRT
51 50 50 0000 211 MOVF R0, R1 : test sign of X and save it in R1.
55 55 15 0003 212 BLEQ ZERO_NEG : branch to ZERO_NEG if X <= 0
0005
0005 213 :
0005 214 : X > 0
0005 215 :
0005 216 POS: CLRL -(SP) : make room for 2nd half of
0007 217
0007 218 MOVZWL R0, R2 : isolate low 16 bits (sign, exp,>fract) in R
52 50 3C 0007 219 CLRB R2 : R2 now has sign and left 7 exp bits
52 52 94 000A 220 BICW R2, R0 : clear sign and left 7 exp bits
50 52 AA 000C 221 TSTB R0 : check low bit of exp
50 50 95 000F 222 BGEQ EVEN : and branch if 1
10 18 0011 223 MULF #LF_ODD_A_E63, R0 : add 64 (half of bias) to (exponent-2)
50 13CD5FD4 8F 44 0013 224 ADDF #LF_ODD_B_EM63, R0 : and start approximation calc
001A 225 BRB ADJUST : R0 = (first approx) * 2**-64
50 3C4A2018 8F 40 001A 226
13 11 0021 227
0023
0023 228 EVEN: ADDW #^X2000, R0 : exp is 0 - make it 64 (2**-64) for legalit
50 50 2000 8F A0 0023 229 MULF #LF_EVEN_A, R0
F61A4015 8F 44 0028 230 ADDF #LF_EVEN_B_EM64, R0 : R0 = (first approx) * 2**-64
50 4B231FD7 8F 40 002F 231 ROTL #31, R2, R2 : divide R2 (exp+bias) by 2,
0036 232 ADDW R2, R0 : giving (exp/2**64)
52 52 1F 9C 0036 233 ADJUST: ADDW R2, R0 : insert exp/2 in first approx and
003A 234
003A 235
003D 236
003D 237
003D 238 : re-bias it.
003D 239 : first iteration - single precision is sufficient
003D 240 :
52 51 50 47 003D 241 DIVF3 R0, R1, R2 : R2 = X/Y0
50 52 40 0041 242 ADDF R2, R0 : R0 = Y0 + X/Y0
50 0080 8F A2 0044 243 SUBW #^X80, R0 : R0 = Y1 = (1/2)(Y0 + X/Y0)
0049 244
0049 245
0049 246 : second iteration, do in double precision to get truncated( rather than
0049 247 : rounded) result.
0049 248

```

		0049	249	;;:	CLRL	R2		
		0049	250	;;:	DIVD	R0, R1		
		0049	251				: lower part (X) = 0	
		0049	252				: divide Y1 into X with low-order	
		0049	253				: 32 bits of Y1 garbage. This doesn't	
							: effect accuracy, since Y1 inaccurate	
							: anyway.	
		51	51	DD	0049	254		: convert x and place on stack
		51	51	D4	004B	255		: clear low part of Y1
		50	50	67	004D	256		: divide Y1 into X
		51	51	40	0051	257		: R0 = Y1 + higher part(X/Y1)
		50	0080	8F	A2	0054		: R0 = SQ (X) = (T/2) (Y1 + X/Y1)
				05	0059	259	SQRTX: RSB	: return, .) = result
						005A		
						260		
						005A	: X <= 0	
						261		
						005A	:	
						262		
						005A	ZERO_NEG:	
						263		
		FD	13	005A	264	BEQL	SQRTX	: return with R0 = result = 0
		6E	DD	005C	265	PUSHL	(SP)	: return PC from JSB routine
		7E	00	8F	9A	005E	266	: condition value
		01	OF	78	0062	267	MOVZBL #MTH\$K_SQURONEG, -(SP)	: R0 = result = reserved operand -0.0
						0066	ASHL #15, #T, R0	: R0 goes to signal mechanism vector
						0066		: (CHFSL_MCH_R0/R1) so error handler
						0066		: can modify the result.
						0066		: signal error and use real user's PC
		00000000'GF	02	FB	0066	271	CALLS #2, G^MTH\$SSIGNAL	: independent of CALL vs JSB
						006D		: return - R0 restored from CHFSL_MCH_R0/R1
				05	006D	273	RSB	
						006E		
						006E	.END	

MTH\$QRTR2 ; Floating Point Square Root routine^{G 1}
VAX-11 Macro Run Statistics 16-SEP-1984 01:51:35 VAX/VMS Macro V04-00
MACRO/ENABLE=SUPPRESSION/DISABLE=(GLOBAL,TRACEBACK)/LIS=LISS:MTHSQRTR2/OBJ=OBJ\$:MTHSQRTR2 MSRC\$:MTHJACKET/UPDATE=(ENHS:MTHJACKET)+MS
6-SEP-1984 11:27:15 [MTHRTL.SRC]MTHSQRTR2.MAR;1 Page 9 (5)

0263 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

0264 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

