Large Scale Tests of Vaporous Hydrogen Peroxide (VHP®) for Chemical and Biological Weapons Decontamination

George Wagner, Larry Procell, David Sorrick, Brian MacIver, Abe Turetsky, Jerry Pfarr, Diane Dutt, Mark Brickhouse

Edgewood Chemical Biological Center
Aberdeen Proving Ground, MD 21010
Lew Schwartz, Iain McVey, Paul Wiget, Steris Corp.
David Stark, EAI Corp.

2004 Scientific Conference on Chemical and Biological Defense Research November 17, 2004

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 17 NOV 2004		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Large Scale Tests of Vaporous Hydrogen Peroxide (VHP®) for Chemical				5b. GRANT NUMBER		
and Biological Weapons Decontamination				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Edgewood Chemical Biological Center Aberdeen Proving Ground, MD 21010 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 49, 2004 Scientific C land on 15-17 Nove		_			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 27	RESPUNSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Steris VHP® Test Abstract

Vaporous Hydrogen Peroxide (VHP) has been used for more than a decade to sterilize clean rooms and pharmaceutical processing equipment and, more recently, to decontaminate anthrax-contaminated buildings. Recent studies at ECBC have shown that the addition of low-levels of ammonia gas renders VHP reactive towards GD, converting it to pinacolyl methylphosphonic acid. Thus, with suitable activation via ammonia gas, modified vaporous hydrogen peroxide (mVHP) affords the broad-spectrum decontamination of the chemical weapon (CW) agents VX, GD, and HD.* Studies at ECBC have also shown that mVHP is effective in decontamination of biological weapon (BW) surrogates, though mVHP does not at present appear to be substantially superior to standard VHP for biological decontamination. Potential applications of mVHP for military and civilian decontamination include: buildings, vehicle and aircraft interiors, and sensitive equipment.

Recent large scale tests of mVHP applicability for BW and CW decontamination were carried out in one of the ECBC Engineering Chambers, Building E3726. The study evaluated the use of mVHP to decontaminate BW agent surrogates and live CW agents on representative aircraft interior materials. These studies showed that at treatment levels of 250 ppm VHP and treatment times of 24 hours, residual contact hazard from chemical agents was reduced to the ORD required levels on all test materials, with the exception of decontamination of VX run at relatively low ammonia concentrations. These studies also showed that at treatment levels of 250 ppm VHP and treatment times of 24 hours, off-gas hazard from chemical agents was reduced to the ORD required levels for all test materials, with the exception of VX run at relatively low ammonia concentrations. The effect of ammonia concentration on BW and CW decontamination efficacy is currently under study.

*U.S. and international patents pending.

ECBC Large Chamber Tests

Large Chamber Test Design

- Agents: VX, GD, HD
- Surrogates: DEPPT, TEP, CEPS, MPS
- 2-4 μL agent deposited on test substrate coupon, allowed to age for one hour
- ca. 1000 ft³ size chamber constructed inside larger chamber (E3726)
- Flow rate ~60 CFM
- Ambient Temperatures
- \bullet VHP® generated using 35 % H_2O_2 and two commercial M-1000 (Steris) VHP® Biodecontamination systems
- H_2O_2 injection rate ~75 g/min, to maintain ~ 275 ppm $[H_2O_2]$ (measured)
- NH₃ gas introduced into VHP® stream just prior to its entering the chamber, to maintain ~ 20 ppm [NH₃] (calculated)
- Expose sample for 3, 8, or 24 hours
- Extract substrates using ethyl acetate
- Analyze extract by GC-MS (residual agent/products) (Detection limit ~1 ng)

Large Chamber Test Substrates

- Stainless Steel (blank)
- Glass (control)
- Chemical Agent Resistant Coating (CARC) painted steel (MIL-P-53039A)
- Aluminum 2024 (Spec T3) (uncoated)
- Air Force Topcoat-coated aluminum (MIL-P-85285-PU)
- Butyl rubber-covered cloth (Boeing insulation cover)
- Kapton (Polyimide) (wiring insulation)
- Nylon Webbing (MIL-W-4088, T3, C3)
- Concrete (Structural)

Large Chamber Test Methods

- Contact Hazard = Natural Latex Rubber dental dam is placed in contact with contaminated substrate, held in contact by 1 kg weight for 15 minutes, then extracted with ethyl acetate and analyzed by GC-MS for amount of agent/surrogate transferred
- Residual Hazard = Contaminated substrate, after contact hazard test, is extracted with ethyl acetate and analyzed by GC-MS for amount of agent/surrogate remaining
- Headspace = Air sample taken directly over contaminated substrate plate and collected on solid sorbent tube, analyzed by GC-MS for mass of agent/surrogate captured

Large Chamber Test Results - Typical Concentration Profile

FID Background Data

Joint Portable Decon System ORD Requirements:

HD Contact/Residual Hazard: Required = 3.0 mg/m²

HD Contact/Residual Hazard: Desired = 0.0 mg/m²

- HD Headspace Hazard: Required = $2.3 \times 10^{-2} \text{ mg/m}^3$

- HD Headspace Hazard: Desired = $3.0 \times 10^{-3} \text{ mg/m}^3$

Minimum Detectable Limits for Tests:

Contact/Residual Hazard:
 4.93 x 10⁻⁵ mg/m2

Headspace Hazard:
 8.33 x 10⁻⁵ mg/m³

Concentration x Time Values (ppm-hr)

	24-hour		8-hour	
	VHP	NH ₃	VHP	NH_3
1HD:	956	177	(6-hour	sample)
2HD:	4657	337	2018	140
3HD:	6716	472	2286	165
4HD:	6484	721	2176	382

Contact Hazard Fumigation Data

Headspace Hazard Fumigation Data

Agent Fate Baseline Data Shows ~0.7 mg/m³ HD in headspace after 24 hours weathering; HD in headspace after 24 hr mVHP treatment 3 orders of magnitude lower, ~0.0005 mg/m³

Lab/Wind Tunnel Data

Large Chamber Test Results – HD Reaction Products

FGD Background Data

Joint Portable Decon System ORD Requirements:

GD Contact/Residual Hazard: Required = 1.7 mg/m²

GD Contact/Residual Hazard: Desired = 0.0 mg/m²

- GD Headspace Hazard: Required = $1.3 \times 10^{-3} \text{ mg/m}^3$

GD Headspace Hazard: Desired = 2.0 x 10⁻⁴ mg/m³

Minimum Detectable Limits for Tests:

Contact/Residual Hazard:
 4.93 x 10⁻⁵ mg/m²

Headspace Hazard:
 8.33 x 10⁻⁵ mg/m³

Concentration x Time Values (ppm-hr):

	24-hour		8-ha	8-hour	
	VHP	NH_3	VHP	NH_3	
1GD:	6549	560	2200	223	
2GD:	6545	414	2138	137	
3GD:	6358	379	2117	131	

Contact Hazard Fumigation Data

Headspace Hazard Fumigation Data

Large Chamber Test Results - GD Reaction Products

FVX Background Data

- Joint Portable Decon System ORD Requirements:
 - VX Contact/Residual Hazard: Required = 4.0 x 10⁻² mg/m²
 - VX Contact/Residual Hazard: Desired = 0.0 mg/m²
 - VX Headspace Hazard: Required = 1.7 x 10⁻⁴ mg/m³
 - VX Headspace Hazard: Desired = 2.4 x 10⁻⁵ mg/m³
- Minimum Detectable Limits for Tests:
 - Contact/Residual Hazard:
 4.93 x 10⁻⁵ mg/m2
 - Headspace Hazard:
 3.33 x 10⁻⁵ mg/m³
- Concentration x Time Values (ppm-hr):

	24-hour		8-h	8-hour		
	VHP	NH3	VHP	NH3		
1VX	6352	488	2113	189		
2VX	6182	320	1824	121		
3VX	(Not Col	llected)	2038	103		
4VX	6681	141	2109	47		

Contact Hazard Fumigation Data

Headspace Hazard Fumigation Data

Kill Curves for VHP® and mVHP® vs. Avirulent anthrax

Kill Curves for mVHP® vs. Avirulent anthrax

Thorough Decontamination: BW Decontamination by VHP at Room Scale

Test Results

- Chambers study is the first demonstration of fumigationstyle decontamination of CW agents at the room scale
 - 24-hour mVHP® treatment with 250 ppm VHP® + 20 ppm NH₃ effectively reduces contact hazards of HD, GD, and VX to limits of detection
 - 24-hour mVHP® treatment with 250 ppm VHP + 20 ppm NH₃ reduces vapor hazards of GD and VX to limits of detection
 - 24-hr treatment with 250 ppm mVHP® + 20 ppm NH₃ reduces HD vapor hazard, but detectable amounts remain, especially on porous surfaces
- Porous surfaces may require longer mVHP® treatment times
- mVHP is <u>marginally</u> less effective as an anthrax decontaminant than VHP itself

Building Scale VHP Decontamination

E3220 VHP Decontamination Test Results

- Demonstrated ability to obtain 125, 250 and 450 ppm treatment levels in 50,000 cu. ft. volume for 5 hour treatment cycle
- Used computational modeling to model air flow in rooms and lay out distribution system
- Confirmed model results with VHP sensor readings during readiness trials
- 100% Kill of G. strearothermophilus BI's at 125ppm, 250 ppm and 450 ppm VHP treatment levels

mVHP Decontamination trial at Davis-Monthan AFB, November 2004; 100% BI kill in tests to date

C-141 with External Air Handler and NAM

