University of Toronto at Scarborough Department of Computer and Mathematical Sciences

Linear Programming and Optimazation

MATB61 Winter 2020

Selected answers to the assignment #5

Section 2.2

#2 The optimal solution: z = 22; $x_1 = 2$, $x_2 = 3$.

The simplex algorithm examines the following extreme points:

O(0, 0), A(4, 0), A(4, 0), B(2, 3).

Note that in the initial tableau, last slack variable x_5 could also have been chosen as the departing variable.

#4 The optimal solution: z = 32; $x_1 = 0$, $x_2 = 4$, $x_3 = 0$.

The simplex algorithm examines the following extreme points:

O(0, 0, 0), A(0, 4, 0), A(0, 4, 0).

Note that in the second tableau, the slack variable x_5 could also have been chosen as the departing variable.

#6 The optimal solution: z = 33/2; $x_1 = 3/2$, $x_2 = 3$.

The simplex algorithm examines the following extreme points:

O(0, 0), O(0, 0), A(2, 2), B(3/2, 3).

^	7	٠
×	12	
υ.	١a	

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_5	1	1	1	1	1	0	0	1
	x_6	(5)	-5.5	-2.5	9	0	1	0	0 -
	x_7	.5	-1.5	5	1	0	0	1	0
		-1	7	1	2	0	0	0	0

	,		1						
		x_1	x_2	x_3	x_4	x_5	x_6	$\overline{x_7}$	
	x_5	0	12	6	-17	1	-2	0	1
	x_1	1	-11	-5	18	0	2	0	0
	x_7	0	4	2	-8	0	-1	1	0
		0	-4	-4	20	0	2	0	0

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_5	0	0	0	7	1	1	-3	1
←	$ x_1 $	1	0	(5)	-4	0	75	2.75	0
	x_2	0	1	.5	-2	0	25	.25	0
		0	0	-2	12	0	1	1	0

					↓				
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_5	0	0	0	7	1	1	-3	1
	$x_{3^{\circ}}$	2	0	1	8	0	-1.5	5.5	0
	x_2	-1	1	0	2	0	.5	-2.5	0
÷		4	0	0	-4	0	-2	12	0

	,					1		
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_5	3.5	-3.5	0	0	1	75	5.75	1
 x_3	-2	4	1	0	0	(.5)	-4.5	0
x_4	5	.5	0	1	0	$.\overline{25}$	-1.25	0
	2	2	0	0	0	-1	7	0

	·							
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_5	.5	2.5	1.5	0	1	0	-1	1
x_6	-4	8	2	0	0	1	-9	0
x_4	ੑ.₺,	-1.5	5	1	0	0	1	0
	-2	10	2	0	0	0	$\overline{-2}$	0

	x_1	x_2	x_3	x_4	x_5	x_6	$\overline{x_7}$	
x_5	1	1	1	1	1	0	0	1
x_6	.5	-5.5	-2.5	9	0	1	0	0
x_7	.5	-1.5	5	1	0	0	1	0
	-1	7	1	2	0	0	0	0

(b) In the sequence of tableaux leading to an optimal solution, the variables marked with a B, are chosen by Bland's rule:

Tableau	Entering variable	Departing variable
1	x_1	x ₆ (B)
2	x_2 (B)	x_7
3	x_3	x_1 (B)
4	x_4 (B)	x_2
5	x_6	x_3 (B)
6	x_1 (B)	x_4

Optimal solution: $[0 \ 0 \ 0 \ 1 \ 0 \ 0]^T$; z = 0. (a)

9. (a)

		1							
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_4	.6)	6.4	4.8	1	0	0	0	0
	x_5	.2	-1.8	.6	0	1	0	0	0
	x_6	.4	-1.6	.2	0	0	1	0	0
	x_7	0	1	0	0	0	0	1	1
		4	4	1.8	0	0	0	0	0

			1						
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_1	1	-10.67	. 8	1.67	0	0	0	0
←	x_5	0	33	-1	33	1	0	0	0
	x_6	0	2.67	-3	67	0	1	0	0
	x_7	0	· 1	0	0	0	0	1	1
		0	-4.67	5	.67	0	0	0	0

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_1	1	0	-24	-9	32	0	0	0
	x_2	0	1	-3	-1	3	0	0	0
-	x_6	0	0	. ③	2	8	1	0	0
	x_7	0	0	3	1	-3	0	1	1
		0	0	-9	-4	14	0	0	0

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_1	1	0	0	(6)	-6.4	4.8	0	0
	x_2	0	1	0	.2	-1.8	.6	0	0
	x_3	0	0	1	.4	-1.6	.2	0	0
	x_7	0	0	0	2	1.8	6	1	1
		.0	0	0	4	4	1.8	0	0

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_4	1.67	0	0	1	-10.67	8	0	0
←	x_2	33	1	0	0	33	1	0	0
	x_3	67	0	1	0	2.67	-3	0	0
	x_7	.33	0	0	0	33	1	1	1
		.67	0	0	0	-4.67	5	0	0

							1		
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	
	x_4	-9	32	0	1	0	-24	0	0
	x_5	-1	3	0	0	1	-3	0	0
	x_3	2	-8	1	0	0	(5)	0	0
	x_7	0	ī	0	0	0	0	1	1
		-4	0	0	0	0	-9	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_4	.6	-6.4	4.8	1	0	0	0	0
x_5	.2	-1.8	.6	0	1	0	0	0
x_6	.4	-1.6	.2	0	0	1	0	0
x7	0	1	0	0	0	0	1	1
	4	4	1.8	0	- 0	0	0	0

(b) In the sequence of tableaux leading to an optimal solution, the variables marked with a B, are chosen by Bland's rule:

Tableau	Entering variable	Departing variable
1	x_1 (B)	x4 (B)
2	x_2	x_5 (B)
3	x_3 (B)	x_6
4	x_4 (B)	x_1 (B)
5	x_5	x_2 (B)
6	x_1 (B)	x_3
7	x_2	x_7

Section 2.3

2. (a)

	x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	
x_5	1	3	-1	1	1	0 ·	0	0	5
y_1	1	7	1	0	0	1	1	0	4
y_2	4	2	. 0	1	0	0	0	1	3
	-5	-9	-1	-1	0	1	0	0	-7

(b)

	x_1	x_2	x_3	x_4	x_5	x_6	y_1	y_2	
x_5	1	3	-1	1	1	0	0	0	5
y_1	1	7	1	0	0	-1	1	0	4
y_2	4	* 2	0	1	0	0	0	1	3
	-1 - 5M	-2 - 9M	-M	-1 - M	0	M	0	0	-7M

4. (a)

	x_1	x_2	x_3	x_4	x_5	y_1	y_2	
y_1	3	1	-2	-1	0	1	0	2
y_2	2	4	7	0	-1	0	1	3
	-5	-5	-5	1	1	0	0	-5

(b)

	x_1	x_2	x_3	x_4	x_5	y_1	y_2	
y_1	3	1	-2	-1	0	1	0	2
y_2	2	4	7	0	-1	0	1	3
	-1 - 5M	2 - 5M	7 - 5M	-1 + M	M	0	0	-5M

6. x_6 1/2 1/2 1/2 -1/2 0 $\frac{x_2}{-1/2}$ 1/2 0 1 0 -1/23 x_1 -1/2-25/6-5/610/3 x_5 5/61 1/61/3 x_3 0

8. (a)

	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	x_7	
x_7	-3	0	-2	-1	0	-3/4	1	0
$ x_2 $	0	1	1	3	0	1/2	0	2
x_5	1	0	3	0	1	-1/2	0	4
	0	0	-2	2	0	1/2	0	2

(b)
$$\begin{bmatrix} 0 & \frac{2}{3} & \frac{4}{3} & 0 & 0 & \frac{8}{3} \end{bmatrix}^T$$
; $z = \frac{14}{3}$

10. Use 3 oz of food A and 4 oz of food B; z=\$1.60

12.
$$\begin{bmatrix} 0 & 7 & 0 & 3 \end{bmatrix}^T$$
; $z = 2$

14.
$$\begin{bmatrix} \frac{19}{13} & 0 & \frac{5}{13} & 0 & 0 \end{bmatrix}^T$$
; $z = \frac{43}{13}$

- 16. Chewy should consist of 53 1/3 kg of sunflower seeds and 80 kg of raisins. Crunchy should consist of 46 2/3 kg of sunflower seeds and 31 1/9 kg of peanuts. Nutty should consist of 28 8/9 kg of of peanuts only. Profit is \$157 7/9.
- Make 1000 glazed doughnuts and 400 powdered sugar doughnuts. Profit is \$90.
- 20. No feasible solutions.
- 22. No finite optimal solution.
- 24. Assume that x is a feasible solution to (10), (11), and (12). Then for the ith constraint in (14) we have

$$\sum_{j=1}^{s} a_{ij} x_j + 0 = \sum_{j=1}^{s} a_{ij} x_j = b_i$$

Also, $\begin{bmatrix} \mathbf{x} \\ 0 \end{bmatrix} \ge \begin{bmatrix} \mathbf{0} \\ 0 \end{bmatrix}$ so that $\begin{bmatrix} \mathbf{x} \\ 0 \end{bmatrix}$ is a feasible solution to (13), (14), and (15). Conversely, if $\begin{bmatrix} \mathbf{x} \\ 0 \end{bmatrix}$ is a feasible solution to (13), (14), and

(15), then $x \geq 0$. Furthermore, for the *i*th constraint in (14) we have

$$\sum_{j=1}^{s} a_{ij}x_j + 0 = b_i = \sum_{j=1}^{s} a_{ij}x_j$$

In addition:

- a) $d \le 0$, $e \le 0$ and c < 0.
- b) $d \ge 0$, $e \ge 0$ and $c \ge 0$.
- c) $e \ge 0$, $c \ge 0$, d < 0 and $a \le 0$.
- d) $d \ge 0$, $e \ge 0$ and $c \ge 0$, one of d or e is zero.
- e) $d \ge 0$, e < 0, b > 0 and $c \ge 0$, 1/b < c.
- f) e < 0, e < d, b > 0 and $c \ge 0$, 1/b = c.