In [6]: # Import necessary libraries

import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report

In [7]: | titanic_data=pd.read_csv("C:\\Users\\Dell\\Downloads\\Titanic-Dataset.csv")

In [8]: titanic_data

Out[8]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 12 columns

```
In [9]: # Data Cleaning
         # Fill missing Age values with the median age
         titanic_data['Age'].fillna(titanic_data['Age'].median(), inplace=True)
In [10]: # Fill missing Embarked values with the most common port ('S')
         titanic data['Embarked'].fillna(titanic data['Embarked'].mode()[0], inplace=True)
In [11]: # Drop the Cabin column since it has many missing values
         titanic_data.drop('Cabin', axis=1, inplace=True)
In [12]: # Check for missing values after cleaning
         print("Missing values in each column after cleaning:")
         print(titanic_data.isnull().sum())
         Missing values in each column after cleaning:
         PassengerId
         Survived
                        0
         Pclass
                        0
         Name
                        0
                        0
         Sex
         Age
                        0
         SibSp
         Parch
         Ticket
         Fare
         Embarked
         dtype: int64
In [13]: # Exploratory Analysis
         # Visualize survival rate by gender
         sns.barplot(x='Sex', y='Survived', data=titanic_data)
         plt.title('Survival Rate by Gender')
```


plt.show()


```
In [14]: # Visualize survival rate by passenger class
sns.barplot(x='Pclass', y='Survived', data=titanic_data)
plt.title('Survival Rate by Passenger Class')
plt.show()
```



```
Pclass
In [15]: # Convert categorical variables ('Sex' and 'Embarked') to dummy variables
         titanic_data = pd.get_dummies(titanic_data, columns=['Sex', 'Embarked'], drop_first=True
In [16]: # Define features (X) and target (y)
         X = titanic_data.drop(['PassengerId', 'Name', 'Ticket', 'Survived'], axis=1)
         y = titanic_data['Survived']
In [17]: # Split the data into training and testing sets (80% training, 20% testing)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
In [18]: # Create and train the Logistic Regression model
         model = LogisticRegression(max iter=200)
         model.fit(X_train, y_train)
Out[18]:
                 LogisticRegression
          LogisticRegression(max_iter=200)
In [19]: # Make predictions on the test set
         y_pred = model.predict(X_test)
In [20]: # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         print(f'Accuracy: {accuracy * 100:.2f}%')
         Accuracy: 81.01%
```

```
In [21]: # Display the classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))
```

Classification Report: precision recall f1-score support 0.83 0.86 0.84 105 1 0.79 0.74 0.76 74 accuracy 0.81 179 macro avg 0.81 0.80 0.80 179 weighted avg 0.81 0.81 0.81 179

```
In [ ]:
```