Executive Summary

In this project, a classification analysis and Latent Dirichlet Allocation were used to perform sentiment mining with topic modeling of TuneIn Radio reviews scraped from Google Play. Exploratory data analysis, as well as data visualization, were used to derive valuable insights about the overall sentiment, the sentiment trends over time as well as the sentiment of product features.

The project draws attention to the fact that the overall sentiment of the application TuneIn Radio is positive. Yet, the positivity of the sentiment has been decreasing since 2016.

Further visualization analysis of the sentiment of the LDA topic modeling results showed that among all of the aspects of the application the users are happy with the content aspect the most. The premium subscription service, on the other hand, has the least positive sentiment.

Various recommendations based on the insights about the content of the reviews and the responses of the customer support to the users are made to help prevent customer churn and address the problems discovered.

The evaluation of the tuned multiclass classification models (logistic regression, random forest classifier, convolutional neural network, bidirectional LSTM, XGBoost, and Support Vector Machines) using the undersampled data sample showed that the Support Vector Machines was the best performing model. The metrics of F1, accuracy, recall, and precision are all the highest for this model (at about 70%). All of the models tended to struggle with the neutral class identification the most, while the Support Vector Machines performed the best for the neutral and negative classes. This is important because these two classes of reviews are prioritized for the replies by customer support specialists.

Background of the problem

Sentiment analysis of product reviews is an effective business method of gaining insights about customers' opinions of the product and its features. Reading reviews could become unmanageable if the volume is large. Opinion mining creates an opportunity for a fast analysis of such text data.

A lot of the classification analyses exclude the neutral class. Yet, the sentiment analysis including the neutral class accounts for the neutrality of the sentiment. This is important because if only two sentiment categories are used the assumption that the text could only be either positive or negative is created. This is not always the case because there is a lot of text data that doesn't convey any sentiment. For example, the word "OK" could mean neither good nor bad.

There is text in the neutral class that conveys a mixed sentiment that is especially hard to comprehend for algorithms. For example, "The app is good, but I don't like the absence of my favorite radio station". 75% of the neutral class reviews in this dataset contain the mixed sentiment. These conclusion was made based on the presence of the conjunction "but" in these observations.

Also, the reviews with neutral sentiment tend to contain questions about the product. For example, "When is the next release?". The questions represent useful information as they are often indicators of a potential need for dialogue between a user and the company. As could be seen, there are several semantic representations of the neutral class which makes it complex and hard to predict.

Identifying the aspects of a product and their sentiment is essential for taking the necessary actions to fix the problems or understand what users like.

Tracking the responses to the most relevant reviews is a good strategy to create a strong trustful partnership with the users and prevent customer churn. It can also serve as a metric for customer support effectiveness.

TuneIn Radio provides user-centered content and could retain, and attract more users by monitoring the sentiment trends and addressing the customer concerns by replying to the reviews.

Methods

for reproducibility

OS	Languages	Libraries	Data	Seed
Windows Home	Python(3.7.2.)	pandas, matplotlib,	Scraped from Google Play TuneIn	777
10,64-bit operating system		numpy, imblearn,	Radio on March 16 th 2021. 8	
Transgajan		scikit-learn, spacy,	variables (Appendix Part5).	
		tensorflow, keras,	Imbalanced: positive class – 54,103,	
		nltk	negative – 29,936, neutral – 10,036	

Data understanding with EDA and visualizations

EDA (Appendix. Part 4)

- The information derived from identifying the percentage of missing values for the variable ReplyContent allowed to highlight the trend of the customer support assistance over time. Based on this information and the data from the variable ThubsUpCount a list of review IDs has been created to contact the unhappy users and possibly prevent customer churn.
- Another list with review IDs was created containing the recent questions discovered in the neutral class reviews in order to address any concerns or provide the necessary information to the users.

Visualizing the data.

The following insights were derived based on the visualizations (Appendix Part 1).

- The overall sentiment of the product based on the rating is mostly positive.
- The best overall opinion of the product was expressed in 2016 with a slow decline of the positive sentiment afterwards.
- The sentiment slightly increased for March in Q1, 2021.
- All of the aspects of TuneIn Radio (Content, Subscription, Technical features, and Streaming) have an overall mostly positive sentiment.
- Content is the aspect of TuneIn Radio that users are most happy with.
- Subscription is the aspect of TuneIn Radio that has the least positive sentiment.
- In comparison to 2018, there has been progress in addressing the concerns of users by replying to their reviews.
- UK is the most frequent word in the negative reviews for Q1, 2021 which indicates potential problems with the product offered for the UK-based users.
- MSNBC and BBC are also frequently mentioned in the negative reviews which could indicate that checking the streaming quality for these particular channels might be needed.
- The frequent use of "30 seconds" in negative reviews could potentially indicate a problem 30 seconds into the start of streaming.

- The frequently used phrase "7 days" might indicate that users are unhappy with the 7-day trial.

Data Preparation:

Missing values	removed for the "content" variable when working on the topic modeling and a
	classification model creation.
Engineered time	Variables "year", "month" and "day" were engineered from the variable "at".
variables	
New categorical	"lemmatize" was created after preprocessing the variable "content" for the topic
(text) variables	modeling with LDA. "clean_text" was created after preprocessing the variable
	"content" for the classification modeling.

Imbalanced data handling techniques (tested with Logistic Regression).

RandonOverSampler S	SMOTE	Undersampled	Imbalanced
precision: 62.34% (+/- 0.47%) prec recall: 68.57% (+/- 0.51%) reca	uracy: 82.48% (+/- 0.91%) cision: 60.71% (+/- 0.46%) sll: 67.12% (+/- 0.78%) score: 62.52% (+/- 0.77%)	accuracy: 70.04% (+/- 0.47%) precision: 69.58% (+/- 0.46%) recall: 70.04% (+/- 0.47%) fl score: 69.71% (+/- 0.47%)	accuracy: 89.73% (+/- 0.09%) precision: 69.19% (+/- 0.62%) recall: 60.55% (+/- 0.28%) f1 score: 60.92% (+/- 0.33%)

Even though the accuracies are higher for the oversampled data samples and the imbalanced data, their macro averaged F1 scores are smaller than that of the undersampled data due to the fact that they struggle with the neutral class identification.

Another important metric is the F1 score of the neutral class for different types of data samples:

Imbalanced	Oversampled with SMOTE	Oversampled with	Undersampled
F1 for the neutral is	F1 for the neutral is ~23%	RandomeOverSampler	F1 for the neutral
~10%		F1 for the neutral is ~25%	is ~57%

More information in Appendix Part3

Note: Neutral class results were extracted from the cross-validated logistic regression model. The final choice for the data used for the classification problem was the undersampled data due to the decision to use the data where the identification of the neutral class is also possible to learn at an acceptable level. *Vectorizing data*

CountVectorizer	a choice for the topic modeling with LDA.
TfidfVectorizer	Logistic Regression, Support Vector Machine, XGBoost, Random Forest

Global Vectors	used for the CNN and bidirectional calssifiersLSTM neural network
embeddings (GloVe)	classifier with Keras.

Modeling and Evaluation

Topic modeling with LDA:

f1 score: 69.94% (+/- 0.45%)

The model with the clearly identified topics.

Number of topics = 4

Identified topics mapped to the product aspects:

- **Streaming** (Topic 0). The helpful keywords: *stream, listen, buffer, connection, play, stop.*
- **Subscription** (Topic 1). The useful keywords: *service*, *subscription*, *trial*, *year*, *month*, *money*, *sport*, *premium*, *account*, *charge*, *refund*
- **Content** (Topic 2). The informative keywords: *music*, *world*, *channel*, *country*, *variety*, *news*, *selection*, *podcast*, *choice*, *song*, *talk*, *access*.
- **Technical aspects** (Topic 3). The helpful keywords: *features, screen, battery, button, notification, alarm, background*

Classification models (all of the models can be found in Appendix Part 2)

negative neutral positive precision: [0.69274538 0.61061453 0.78090692]	The best performing model (Support Vector Machines with the
recall: [0.73123123 0.54704705 0.81881882] f1 score: [0.71146822 0.57708553 0.79941363]	decision function shape set to "ovo").
negative neutral positive precision: [0.67945076 0.60652174 0.81341822]	The evaluation of several tuned multiclass classification
recall: [0.71821822 0.55855856 0.83133133] f1 score: [0.69829684 0.58155289 0.82227723]	models (logistic regression, CNN, bidirectional LSTM,
negative neutral positive precision: [0.70458984 0.62042175 0.79104478]	Random Forest, XGBoost, Support Vector Machines) showed
recall: [0.72222222 0.55955956 0.84884885] f1 score: [0.71329708 0.58842105 0.81892805]	that the Support Vector Machines was the best performing
negative neutral positive precision: [0.6979217 0.60964912 0.78772013]	model. The metrics of F1, accuracy, recall, and precision are
recall: [0.72272272 0.55655656 0.82832833] f1 score: [0.71010573 0.5818943 0.80751403]	all the highest for this model (at about 70%). All of the models
negative neutral positive precision: [0.67655109 0.61007357 0.79312039]	tended to struggle with the neutral class identification while
recall: [0.74224224 0.53953954 0.80780781] f1 score: [0.70787589 0.57264276 0.80039673]	the Support Vector Machines identified the negative and
accuracy: 70.22% (+/- 0.46%) precision: 69.83% (+/- 0.42%) recall: 70.22% (+/- 0.46%)	neutral reviews the most correctly. This is important because

these two classes of reviews are prioritized for the replies by customer support specialists.

	algorithm	percentage_correct
0	svm	80
1	human	80
2	logistic regression	67
3	random forest	67
4	xgboost	60
5	convnet	60
6	LSTM	53
7	Vader	33

I decided to test the performance and see how the predictions made by all of the algorithms differ from the ones that I make. I tested my own sentiment identification (column human), the built models, and the Vader model on the small data set of 15 balanced observations. It looks like our best model classified the sentiment of these observations as well as I did. Note: The sentiment analysis is a complex problem even for humans. It could be very subjective. Humans tend to agree overall on about 80% of the sentiment (Barba, P.).

Questions that have been answered with the help of the sentiment analysis with topic modeling:

Questions	Answers			
1.What is the overall sentiment analysis behind the reviews of TuneIn Radio?	The users' overall opinion of the brand is positive.			
2. Has the users' opinion of the product improved over time?	The users' opinion of the product has varied over time. The most positive sentiment was expressed in 2016 with a slow but not drastic decrease afterwards.			
3. What is the opinion of the product based on the recent data: Q1 2021?	The sentiment is mostly positive with March 2021 having the highest percentage of positive reviews.			
4. What aspects of the product are seen as most negative?	The subscription service is the least liked aspect of TuneIn Radio.			
5. What aspects of the product are liked by the users the most?	The content aspect of TuneIn Radio is the aspect that meets the listeners' expectation the most.			
6. Can we predict the product sentiment from different types of	The best performing model (Support Vector Machines) with the both the F1 score and the accuracy of about 70% was able to classify the text data into the three classes at an acceptable level since on			

sources with opinions about	average even humans tend to agree on the sentiment classification
TuneIn Radio?	only about 80% of the time (Barba, P.).
Tunem Radio:	only about 80% of the time (Barba, 1.).
7. Is the company addressing the	The overall responses to the negative reviews have increased
concerns of the users?	compared to the lower number in 2018
8. Are there particular opinions	Most of the reviews that are considered relevant by other customers
that many of the customers can	have been addressed. A list of 5 relevant unanswered review IDs has
relate to? Have the concerns been	been created to help prevent customer churn.
addressed?	
9. Has the data proved to be	Even though the data set is imbalanced, I was able to answer all of
useful for the proposed analysis?	the questions originally asked and create a classifier with an F1,
	accuracy, precision, and recall scores of about 70%.
10. What are the main challenges	The main challenges of the project were the imbalanced data set and
of the project?	creating a model that would predict the complex neutral class well.
11. Did the methods prove to be	The EDA, visualizations, data preprocessing, topic modeling with
effective?	LDA and a classification model contributed to the successful
checuve:	completion of the project.
	completion of the project.
12. Are there any	The recommendations for the support team:
recommendations that could be	
made?	address all of the problems and concerns identified with the help of
	EDA and visualization analysis. Respond and answer the questions
	of the users whose reviews were selected for the customer support
	response strategy.
	Suggestion for the improvement of the project:
	-Explore the concept of mixed sentiment in the neutral reviews
	(sentences with the conjunction "but") to possibly extract separate
	kinds of sentiment contained in one review. This should allow to
	keep the neutral reviews with true neutral sentiment and avoid a mix
	1

of positive and negative sentiment in the neutral class. The accuracy
for the neutral class could be improved by using this strategy.

Challenges and limitations of the project

One of the main challenges of this project was handling the imbalanced dataset which resulted into a smaller size sample for the final classification modeling stage. Another challenge was getting an acceptable classification results for the neutral class due to the complexity of this class.

The main limitations of the project included the complexity of the language such as interpretation and handling of the following linguistic phenomena: sarcasm, irony, hyperbole, and ambiguity that can decrease the accuracy and performance for any text data analysis.

Conclusion

Sentiment analysis is a complex problem. Partially due to the complexity of the language structure and semantics, and also due to the fact that opinion mining is very subjective. Humans tend to agree on the sentiment only about 80% of the time (Barba.P.). Taking this into consideration, I can say that the best performing model built in this project with the metrics of accuracy, F1, recall and precision at about 70% is a satisfactory outcome. This result implies that 70% of the time the expected predictions of the sentiment would be correct.

Topic modeling with Latent Dirichlet Allocation used in this analysis resulted in creating 4 clear aspects of TuneIn Radio application: content, subscription, technical features, and streaming which helped expand the analysis by deriving valuable insights about each of these topics.

The project allowed to create an overall picture of the sentiment of TuneIn Radio (mostly positive), as well as the sentiment of its main features and aspects, analyze the performance of the customer support (mostly high), and identify the review IDs and questions that still need to be addressed to prevent customer churn. These findings are useful and could serve as the base of a new business or customer support strategy for product improvement.

References

- 1. TuneIn Radio. Retrieved from https://play.google.com/store/apps/details?hl=en&id=tunein.player
- 2. Google-Play-Scraper. Retrieved from https://pypi.org/project/google-play-scraper/

- 3. Alotaibi, Sh. 2018. Customer Satisfaction Measurement Using Sentiment Analysis. Retrieved from https://www.researchgate.net/publication/323536432 Customer Satisfaction Measurement using Sentiment Analysis
- 4. Oheix, J. 2018. Detecting Bad Customer Reviews with NLP. Retrieved from https://towardsdatascience.com/detecting-bad-customer-reviews-with-nlp-d8b36134dc7e
- 5. Galeshchuk, S. 2019. Working with Twitter Data in Python. Retrieved from https://medium.com/analytics-vidhya/working-with-twitter-data-b0aa5419532
- 6. Arshad, S. 2019. Sentiment Analysis/ Text Classification Using CNN (Convolutional Neural Network). Retrieved from https://towardsdatascience.com/cnn-sentiment-analysis-1d16b7c5a0e7
- 7. Timaraju, A. and Khanna, V. Sentiment Analysis on Movie Reviews using Recursive and Recurrent Neural NetworkArchitectures. Retrieved from https://cs224d.stanford.edu/reports/TimmarajuAditya.pdf
- 8. V.S. Anoop and S. Asharaf. 2020. Aspect-Oriented Sentiment Analysis: A Topic Modeling-Powered Approach. Extracted from https://www.degruyter.com/document/doi/10.1515/jisys-2018-0299/html
- 9. Rana, T.A. and Cheah, Y. Aspect extraction in sentiment analysis: comparative analysis and survey. Retrieved from

https://www.researchgate.net/publication/296567757_Aspect_extraction_in_sentiment_analysis_comparative_analysis_and_survey

- 10. Zhang, M. Employer Reviews using Topic Modeling. Retrieved from https://mickzhang.com/employer-reviews-using-topic-modeling/
- 11. Williams, L. 2020. Sentiment Analysis: Aspect-based opinion mining. Retrieved from https://towardsdatascience.com/%EF%B8%8F-sentiment-analysis-aspect-based-opinion-mining-72a75e8c8a6d
- 12. Pennington, J., Socher, R., Manning, Ch. 2014. GloVe: Global Vectors for Word Representation. Retrieved from https://nlp.stanford.edu/pubs/glove.pdf
- 13. Bhattacharyya, S. 2020. Classification Using Long-Short Memory and GloVe. Retrieved from https://medium.com/analytics-vidhya/classification-using-long-short-term-memory-glove-global-vectors-for-word-representation-254d02d5e158

 $14.\ Kim,\ R.\ 2018.\ Yet\ Another\ Twitter\ Sentiment\ Analysis\ Part\ 1-Tackling\ Class\ Imbalance.\ Retrieved$ $from\ \underline{https://towardsdatascience.com/yet-another-twitter-sentiment-analysis-part-1-tackling-class-imbalance-4d7a7f717d44}$

15. Barba, P. Sentiment Accuracy: Explaining the baseline. How to test it. https://www.lexalytics.com/lexablog/sentiment-accuracy-baseline-testing

Appendix. Part 1

Visualization Image

Pie chart

DISTRIBUTION OF OVERALL SENTIMENT

Grouped bar graph

Grouped bar graph

Grouped bar graph

OVERALL DISTRIBUTION OF SENTIMENT BY ASPECT

aspects

Multiple lines graph

NEGATIVE REVIEWS BY ASPECT OVER TIME

Aspects

Grouped bar graph

DISTRIBUTION OF SENTIMENT BY ASPECT, Q1 2021

aspects

Line graph

RESPONSE TO NEGATIVE REVIEWS OVER TIME

Bar graph

DISTRIBUTION OF REPLIES FOR Q1, 2021

Word cloud

MOST FREQUENT WORDS IN NEGATIVE REVIEWS, Q1 2021

Appendix. Part2. Results of the models with undersampled data

Bidirectional LSTM		precision	recall	f1-score	support	
21011000101101 22 1111	9 1	0.74 0.60	0.58 0.44	0.65 0.51	2500 2443	
Test set accuracy: 0.672	2 micro avg	0.76 0.71	0.82 0.62	0.79 0.66	2550 7493	
Validation set accurrant 0.675	macro avg weighted avg samples avg	0.70 0.70 0.62	0.61 0.62 0.62	0.65 0.65 0.62	7493 7493 7493	
Validation set accuracy: 0.675						
Training and validation accuracy train_accuracy val_accuracy 0.65 0.50 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Epochs	0.95 - 0.90 - 8 0.85 - 0.80 - 0.75 - 0.70 -	Training		Training Val loss		

I::::	negative neutral positive
Logistic Regression Classifier	precision: [0.695966941 0.6059584 0.77281279] recall: [0.72672673 0.53953954 0.82232232] f1 score: [0.71054563 0.5708234 0.79679922]
	negative neutral positive precision: [0.68218915 0.60796074 0.80163698] recall: [0.71121121 0.55805806 0.83333333] f1 score: [0.69639794 0.58194154 0.81717791]
	negative neutral positive precision: [0.70686275 0.62359551 0.78196872] recall: [0.72172172 0.55555556 0.85085085] f1 score: [0.71421496 0.58761249 0.81495686]
	negative neutral positive precision: [0.69990272 0.61033908 0.77559607] recall: [0.72022022 0.54954955 0.83033033] f1 score: [0.70991613 0.57835133 0.80203046]
	negative neutral positive precision: [0.67877095 0.60906516 0.78375781] recall: [0.72972973 0.53803804 0.81631632] f1 score: [0.70332851 0.57135264 0.79970581]
	accuracy: 70.02% (+/- 0.51%) precision: 69.57% (+/- 0.49%) recall: 70.02% (+/- 0.51%) f1 score: 69.70% (+/- 0.50%)
Random Forest	negative neutral positive precision: [0.64451115 0.6146978 0.74478694] recall: [0.75225225 0.44794795 0.82232232] f1 score: [0.69422633 0.51823972 0.78163654]
	negative neutral positive precision: [0.63169257 0.59708416 0.76625173] recall: [0.73223223 0.45095095 0.83183183] fl score: [0.67825684 0.51382948 0.79769618]
	negative neutral positive precision: [0.66104784 0.61357702 0.73665637] recall: [0.72622623 0.47047047 0.83583584] f1 score: [0.69210589 0.5325779 0.78311841]
	negative neutral positive precision: [0.64064489 0.61821975 0.74670305] recall: [0.7575576 0.44494494 0.82182182] f1 score: [0.6934558 0.51746217 0.78246366]
	negative neutral positive precision: [0.63540346 0.6 0.74687065] recall: [0.75275275 0.44144144 0.80630631] f1 score: [0.68911798 0.50865052 0.77545126]
	accuracy: 67.29% (+/- 0.35%) precision: 66.65% (+/- 0.34%) recall: 67.29% (+/- 0.35%) f1 score: 66.39% (+/- 0.37%)
XGBoost	negative neutral positive precision: [0.69832402 0.61599031 0.72030329] recall: [0.68818819 0.50900901 0.85585586] f1 score: [0.69321906 0.55741299 0.78225069]
	negative neutral positive precision: [0.67103984 0.61907692 0.7425357] recall: [0.69119119 0.5035035 0.85885886] f1 score: [0.68096647 0.55534088 0.7964725]
	negative neutral positive precision: [0.69210664 0.60493827 0.72394958] recall: [0.66266266 0.51501502 0.86236236] f1 score: [0.67706469 0.55636659 0.78711741]
	negative neutral positive precision: [0.68392505 0.60733614 0.73122015] recall: [0.69419419 0.50550551 0.84284284] f1 score: [0.68902136 0.55176181 0.7830737]
	negative neutral positive precision: [0.68117359 0.61236987 0.72711572] recall: [0.6971972 0.5005005 0.84284284] f1 score: [0.68909226 0.55081245 0.78071395]
	accuracy: 68.20% (+/- 0.20%) precision: 67.54% (+/- 0.20%) recall: 68.20% (+/- 0.20%) f1 score: 67.54% (+/- 0.19%)

```
Support Vector Machines
                                                                   negative
                                                                              neutral
                                                                                           positive
                                                     precision: [0.69274538 0.61061453 0.78090692]
                                                     recall: [0.73123123 0.54704705 0.81881882]
f1 score: [0.71146822 0.57708553 0.79941363]
                                                     -----
                                                                  negative neutral
                                                                                           positive
                                                     precision: [0.67945076 0.60652174 0.81341822]
                                                     recall: [0.71821822 0.55855856 0.83133133]
f1 score: [0.69829684 0.58155289 0.82227723]
                                                     -----
                                                                  negative neutral
                                                     precision: [0.70458984 0.62042175 0.79104478]
                                                     recall: [0.72222222 0.55955956 0.84884885]
f1 score: [0.71329708 0.58842105 0.81892805]
                                                     _____
                                                                 negative neutral positive
                                                     precision: [0.6979217  0.60964912  0.78772013]
                                                     recall: [0.72272272 0.55655656 0.82832833]
f1 score: [0.71010573 0.5818943 0.80751403]
                                                     -----
                                                                 negative neutral positive
                                                     precision: [0.67655109 0.61007357 0.79312039]
                                                     recall: [0.74224224 0.53953954 0.80780781]
f1 score: [0.70787589 0.57264276 0.80039673]
                                                     accuracy: 70.22% (+/- 0.46%)
                                                     precision: 69.83% (+/- 0.42%)
                                                     recall: 70.22% (+/- 0.46%)
                                                     f1 score: 69.94% (+/- 0.45%)
```

Part 3. Sample performance tested with the Logistic Regression.

Imbalanced Undersampled

```
negative neutral positive negative neutral positive precision: [0.76249592 0.36094675 0.92730552] precision: [0.6938873 0.60690045 0.77251407] recall: [0.7811245 0.06106106 0.97311407] recall: [0.72722723 0.53703704 0.82432432] f1 score: [0.7716978 0.10445205 0.9496577 ] f1 score: [0.71016618 0.56983537 0.79757869]
                                                                                                                                                   positive
negative neutral positive negative neutral positive precision: [0.76741536 0.40895522 0.92922254] precall: [0.78898929 0.06856857 0.97454973] recall: [0.77805281 0.11744535 0.95134653] f1 score: [0.69789112 0.58335507 0.81628649]
                                                                                                                                                   positive
 negative neutral positive negative neutral positive precision: [0.76490996 0.37142857 0.92707881] precision: [0.70562347 0.62247191 0.78192716] recall: [0.77476573 0.05855856 0.9756591 ] recall: [0.72222222 0.55455455 0.84884885] f1 score: [0.7698063 0.10116732 0.95074878] f1 score: [0.71382637 0.58655373 0.81401488]
                                                                                                                                                  positive
_____·
negative neutral positive negative neutral positive precision: [0.76269531 0.39057239 0.92806314] precision: [0.70048544 0.61080178 0.77595884] recall: [0.78413655 0.05805806 0.97448447] recall: [0.72222222 0.54904905 0.83033033] f1 score: [0.77326733 0.10108932 0.95070748] f1 score: [0.71118778 0.5782815 0.80222437]
negative neutral positive negative neutral positive precision: [0.76187357 0.38888889 0.92680051] precision: [0.67840593 0.61082621 0.78375781] recall: [0.77857741 0.05605606 0.97454973] recall: [0.73273273 0.53653654 0.81631632] f1 score: [0.77013492 0.09798775 0.95007555] f1 score: [0.70452358 0.57127631 0.79970581]
                                             accuracy: 70.04% (+/- 0.47%)
accuracy: 89.73% (+/- 0.09%)
precision: 69.19% (+/- 0.62%)
                                                                                   precision: 69.58% (+/- 0.46%)
                                                                                    recall: 70.04% (+/- 0.47%)
recall: 60.55% (+/- 0.28%)
                                                                                   f1 score: 69.71% (+/- 0.47%)
f1 score: 60.92% (+/- 0.33%)
```

Oversampled (SMOTE)

Oversampled (RandomOverSapmler)

```
negative neutral positive precision: [0.6961231 0.18380213 0.96324867] recall: [0.78614458 0.3793793 0.86374315] recall: [0.78614458 0.37937938 0.86374315] recall: [0.77325971 0.41891892 0.888971548] f1 score: [0.72321429 0.24763149 0.91078617] f1 score: [0.73912348 0.28054299 0.92790907] recall: [0.9327302 0.1828167 0.96303122] recall: [0.79501339 0.37487487 0.8695184] recall: [0.79501339 0.37487487 0.8695184] recall: [0.78313253 0.4009009 0.8845928] f1 score: [0.74066568 0.24577523 0.91388889] f1 score: [0.7490964 0.26185028 0.92480087] recall: [0.76422356 0.36936937 0.84393761] recall: [0.76422356 0.36936937 0.84393761] recall: [0.7769411 0.37337337 0.89186896] f1 score: [0.7821494 0.20771179 0.89816824] f1 score: [0.7392135 0.25857886 0.92796035] recall: [0.77761044 0.37887888 0.87036674] recall: [0.77761044 0.37887888 0.87036674] recall: [0.77511841 0.17459643 0.9673531] recall: [0.78610879 0.34184184 0.86681023] recall: [0.7785084 0.18277512 0.96706329] recall: [0.73370476 0.22196945 0.91062094] f1 score: [0.74800623 0.38238238 0.88041634] f1 score: [0.73730476 0.22196945 0.91062094] f1 score: [0.74780246 0.24732923 0.92170794] accuracy: 82.48% (+/- 0.91%) recision: 60.71% (+/- 0.46%) recall: 67.12% (+/- 0.77%) f1 score: 64.14% (+/- 0.59%)
```

Part 4. Lists of review IDs identified using EDA for customer churn prevention strategy:

Recent most relevant negative reviews that haven't been addressed:

	reviewId	thumbsUpCount
0	$gp: AOqpTOHswsCtrKwtl_RIJ3C02hMKPUcFfS1K3lypoJ0VBwnJRmvkx0GGNsJkL7EsclHgpwqJyyiLD5a9k0SATgapschapers and the properties of the propertie$	15
1	$gp: A Oqp TOH70 sN3rOvn7lse 6C0 a HR15 hFWLcUQ0GOAWPK60 UllnG8 mHiMbFgGbl2762 Ytatu31i_nA5 oC2 nArwZ6ganarwA1 to the state of the sta$	6
2	gp: A Oqp TOF 5 iCJA 0 oRV4 FRQdm4 Emgl Eao CiiCAd 69 bapqg 2 YSS2 f-ZmfAO 5 Ohk NyUWbcqBGWWz4 NuUcJCR 673 wvyQNyC for the control of the c	6
3	$gp: AOqpTOHkWdjZ4FF371_x1BHo1uAOgZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpTOHkWdjZ4FF371_x1BHo1uAOgZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpTOHkWdjZ4FF371_x1BHo1uAOgZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpTOHkWdjZ4FF371_x1BHo1uAOgZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpTOHkWdjZ4FF371_x1BHo1uAOgZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpTOHkWdjZ4FF371_x1BHo1uAOgZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpTOHkWdjZ4FF371_x1BHo1uAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKcK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKCK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKCK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKCK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKCK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKCK9-9WkXyf35bVUcCsYiwAOqpZjefWAI7utWG1W5iatjt8djy8kWHopQK0_LKCY9WkXyf35bVUcCsYiwAOqpZjefWAI7utW60-1WhopQK0_LKCY9WhopQK0_LKY9Who$	4
4	gp:AOqpTOEePgZwriSFnu07bhMso94ME-AU9nAj7lypZ4RWJnh7cwa0vc12CysNAYA1embg_aieUcql-a6GrSDToQ	2
5	$gp: A Oqp TO HoXfUcB9 js_T2BmknCN imudg 2Tz6qS1gEESZGZgfrrlufpd 4cqnGHx63YvN4u2NAnn26BpDILTCMrT6QABABABABABABABABABABABABABABABABABABAB$	2
6	$gp: A Oqp TOHW js HZ Un 2q 3s fa SM19W in uWM qw 9BZ 1 Oy 9mW 7 0GCV 6KKH_5-eODM jl TQwqPhUZ-Pelt 4cYc 1 Ht JolHH7Q 1 CYCL 1 C$	2

Recent reviews that need answers:

content	reviewld
I JUST, JUST THAT IS, UPDATED THIS APP, MORE T	gp:AOqpTOECtNu9NieZFwsucspCWYtZv0Ffh_mayv8SK81
What happened to the fast forward & rewind but	$gp: A Oqp TOE-a JEAz DnZX szKtMZ rutZkDZKQp_P24BjkMdg$
Too expensive for just radio and boardcasting	gp:AOqpTOGAyuZJ6hoznn845ERWSz_aFnz3J1M6sY6FJ3a
Turns itself on in the car even when I don't w	gp:AOqpTOG9WA78HpgjBdz-HrKrdACkEnVc4gZRIBjotay
It's OK but why the random streaming? - I don'	gp: AOqpTOEZNxpSaolxKGE0LG7qAYtz10w1SMxiluhF6kB
This app is very useful for podcasts and live	gp:AOqpTOH1xZGfwgGHYYFkW-3iyXdYa_u74RQCrpC106c
Why does this app auto start when Bluetooth is	gp: AOqpTOGZSozRUDZOk8QYfL-NBYBdXDQF4FCFVQXOr42
2 major annoyances: - For some reason it promp	gp:AOqpTOG4qr8pWg5-wPZw8dxpVtq4c6CGZO4In5OCKCf
What happened? Bookmarks disappeared and now I	gp:AOqpTOHPZTJUaR2W5rdcJWHkpWUNB4VZ-HxskxQke80
I'm in UK and when I try to listen to my Local	gp:AOqpTOHiatLYnRvpdxwp4tOsi-ffm9HQDyBXJJIOAo3

Codebook

reviewid – unique identifier of a review. Data type: object

content – the text of the review. Data type: object

score – a rating of a review from 1 to 5. Data type: int64

thembsUpCount – the number of thumbs-up that have been given to the review. Data type: int64

reviewCreatedVersion - the reviewed version of the application. Data type: object

at – the date of the review. Data type: datetime64

replyContent – the text of the reply. Data type: object

repliedAt – the date of the reply. Data type: object