RĐ:	Ngày:	PD:	Ngày
Ký tên		Ký tên	
			• • • • • • • • • • • • • • • • • • • •

BK	mii ouối kỳ	Học kỳ/ Năm học 2 2021 - 2022		
TRICE	THI COOLKY	Học kỳ/ Năm học 2 2021 - 2022 Ngày thi 02/05/2022		
TRƯỜNG ĐH BÁCH KHOA	Môn học	Giải tích 2		
- ĐHQG-HCM	Mã môn học	MT1005		
KHOA KHUD	Thời lượng	100 phút Mã đề Mã đề thi: 592		

Ghi chú: - Không được sử dụng tài liệu

- Nộp lại đề thi cùng với bài làm.

Câu 1. Mật độ dân số của tỉnh A tại vị trí có tọa độ (x,y) so với trung tâm hành chính tỉnh là

$$\rho(x,y) = 3\mathrm{e}^{-0.01(x^2+y^2)} (\text{ (ngàn người/km}^2)$$

. Dân số sống trong khu vực bán kính R tính từ trung tâm hành chính được tính bởi công thức

$$P(x,y) = \int \int \limits_{x^2+y^2 \leq R} \rho(x,y) \mathrm{d}x \mathrm{d}y$$
 (ngàn người)

. Tìm dân số (ngàn người) sống trong khu vực có bán kính R=2.

A. $\approx 36.9551..$

B. $\approx 32.2150..$

C. $\approx 37.2150..$

D. $\approx 36.9434..$

 ${f E}$. Các câu khác sai..

Câu 2. Cho S là mặt phía trong của mặt cầu $x^2 + y^2 + z^2 = 1$. Tính

$$\iint\limits_{S} y\sqrt{x^2 + y^2} dydz - x\sqrt{x^2 + y^2} dxdz - zdxdy.$$

A. $\frac{4\pi}{3}$.

B. $\frac{-4\pi}{3}$.

C. 0.

 \mathbf{D} . 2π .

E. Các câu khác sai..

Câu 3. Tính khối lượng của 1 dây mỏng L (hình vẽ bên),

biết L cho bởi phương trình tham số $\begin{cases} x(t)=\cos t,\\ y(t)=\sin t,\\ z(t)=t \end{cases},\ 0\leq t\leq \pi,$ và hàm mật độ $\rho(x,y,z)=x+y+z.$

A.
$$\frac{\sqrt{2}}{2}\pi^2$$
.

B.
$$\sqrt{2}\left(2+\frac{1}{2}\pi^2\right)$$
.

C.
$$\sqrt{2}\pi^2$$
.

D. Các câu khác sai..

E. $\frac{1}{2}\pi^2$.

Câu 11. Khẳng định nào dưới đây là ĐÚNG khi khảo sát sự hội tụ của các chuỗi $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$,
với $a_n = \sqrt{n} \sin\left(\frac{\pi}{\sqrt{2n}}\right), b_n = \frac{(-1)^{n+1}}{2^n}.$
A . $\sum_{n=1}^{\infty} a_n$ phân kỳ theo điều kiện cần của sự hội tụ, $\sum_{n=1}^{\infty} b_n$ hội tụ teo tiêu chuẩn Leibnitz
B . $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ hội tụ theo điều kiện cần của sự hội tụ.
C. $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ phân kỳ theo điều kiện cần của sự hội tụ.
D . $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ hội tụ theo tiêu chuẩn so sánh
E. Các câu khác sai
Câu 12. Tính tích phân $\int_C (y + \cos(\pi x)) d\ell$ với C là đoạn thẳng nối điểm $O(0,0)$ tới điểm $A(4,5)$.
A. $\frac{11\sqrt{21}}{3}$. B. Các câu khác sai C. $\frac{9\sqrt{21}}{4}$. D. $\frac{5\sqrt{41}}{2}$. E. $\frac{11\sqrt{41}}{4}$.
Câu 13. Cho S là phía trên (theo hướng trục Oz) của mặt nón $3z^2 = x^2 + y^2$ và $M(3, -\sqrt{3}, -2) \in S$.
Tìm pháp vector của S tại M .
A . Các câu khác sai B . $k(3, -\sqrt{3}, -6)$, với $k \neq 0$.
C . $k(3, -\sqrt{3}, 6)$, với $k > 0$. D . $k(3, -\sqrt{3}, 6)$, với $k \neq 0$. E . $k(3, -\sqrt{3}, -6)$, với $k > 0$.
Câu 14. Diện tích phần paraboloid $z = x^2 + y^2$ nằm giữa mặt $z = 1$ và $z = 4$, bằng giá trị của tích phân nào dưới đây?
A . $\iint_D (x^2 + y^2) \sqrt{1 + 4x^2 + 4y^2} dxdy$, với D thỏa $x^2 + y^2 \le 4$.
B . $\iint_{\mathbb{R}} (x^2 + y^2) dx dy$, với D thỏa $1 \le x^2 + y^2 \le 4$.
C. $\iint\limits_{D} \mathrm{d}x \mathrm{d}y \sqrt{1 + 4x^2 + 4y^2} \mathrm{d}z, \text{ với } D \text{ thỏa } x^2 + y^2 \leq 4.$
D . $\iint \sqrt{1+4x^2+4y^2} dxdy$, với D thỏa $1 \le x^2+y^2 \le 4$.
E. Các câu khác sai
Câu 15. Tìm thể tích vật thể Ω được giới hạn bởi các mặt $z=x^2,z=2-x^2,y=-1$ và $y=1,$ bỏ
qua đơn vị tính. 8 16 2
A. $\frac{8}{3}$. B. $\frac{16}{3}$. C. $\frac{2}{3}$.
A. $\frac{1}{3}$. B. $\frac{1}{3}$. C. $\frac{1}{3}$. D. Các câu khác sai E. $\frac{4}{3}$.
Câu 16. Phát biểu nào dưới đây ĐÚNG khi khảo sát sự hội tụ của chuỗi $\sum_{n=1}^{+\infty} \left(\frac{5n+2}{8n+11}\right)^{3n}$.

A. Chuỗi hội tụ theo điều kiện cần vì $\lim_{n\to\infty}\left(\frac{5n+2}{8n+11}\right)^{3n}=0.$

- **B**. Chuỗi hội tụ theo tiêu chuẩn Cauchy vì $C_n = \left(\frac{5n+2}{8n+11}\right)^3 < 1$.
- **C**. Chuỗi hội tụ theo tiêu chuẩn Cauchy vì $C = \frac{5}{9} < 1$.
- **D**. Chuỗi hội tụ theo tiêu chuẩn Cauchy vì $C = \left(\frac{5}{8}\right)^3 < 1$.
- E. Các câu khác sai..

Câu 17. Cho chuỗi số $\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n+1} + \frac{\sin \frac{n\pi}{2}}{3^n} \right]$. Giá trị của tổng riêng S_3 là

A. -0.1070.

B. -0.2158.

C. Các câu khác sai..

D. -0.1204.

 \mathbf{E} . -0.3128.

 Câu 18. Cho Ω là miền giới hạn bởi $z=x^2+y^2,\ z=-1+2(x^2+y^2),\ y\leq 0,$ và $I = \iiint \sqrt{x^2 + y^2} dx dy dz$. Công thức nào dưới đây có giá trị bằng I?

- **A.** $\int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} dr \int_{-1+2r}^{r} dz$. **B.** $\int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} dr \int_{-1+2r^{2}}^{r^{2}} dz$. **C.** $\int_{-\pi}^{0} d\varphi \int_{0}^{1} r dr \int_{-1+2r^{2}}^{r^{2}} dz$.
- $\mathbf{D.} \int_{0}^{1} \mathrm{d}\varphi \int_{0}^{1} r^{2} \mathrm{d}r \int_{0}^{r^{2}} \mathrm{d}z.$

E. Các câu khác sai..

Câu 19. Lực $\overrightarrow{F}(x,y) = (x^2 + y)\overrightarrow{i} + (4x - \cos y)\overrightarrow{j}$ làm di chuyển một chất điểm ngược chiều kim đồng hồ vòng quanh hình vuông có các đỉnh là $(0,0),\ (5,0),\ (5,5),\ (0,5)$. Tính công do \overrightarrow{F} tạo ra khi chất điểm đi được 1 vòng (Bỏ qua đơn vị tính).

- A. Các câu khác sai..
- **B**. -25.

 \mathbf{C} . -50.

D. 75.

E. 25.

Các câu khác sai.

Câu 20. Hình chiếu của vật thể giới hạn bởi $-1 + \frac{\sqrt{x^2 + y^2}}{2} \le z \le \sqrt{4 - x^2 - y^2}$ lên mặt phẳng Oxy là

- **A**. Hình tròn $x^2 + y^2 \le 2$.
- **B**. Hình tròn $x^2 + y^2 \le 3$.
- C. Hình tròn $x^2 + y^2 \le 4$.

D. Hình tròn $x^2 + y^2 \le 1$.

E. Các câu khác sai..

MSSV: Họ và tên SV: Trang 4/6 – Mã đề thi: 592

PHẦN II: PHẦN TRẢ LỜI NGẮN

Thời gian: 50 phút

Gọi a là tổng 3 chữ số cuối của Mã Số Sinh Viên, dặt M là 2 cộng với số dư khi chia a cho 4.

$$\mathbf{M} = \dots$$

Câu 1: Một hố có dạng paraboloid tròn xoay, bán kính mặt hố là 2 (m). Với bán kính thiết diện $0 \le r \le 2$ (m), độ sâu tương ứng là $h = 4 - r^2$ (m) (xem hình vẽ).

(a) Nếu xem mặt đất là mặt phẳng (Oxy), phương trình mặt xung quanh của hố có dạng z=f(x,y), xác định công thức của f.

(b) Xác định bán kính r ở độ sâu $h = 4 - \frac{M}{2}$

(c) Viết một tích phân bội ba với các cận trong tọa độ trụ để tính thể tích V của phần hố từ đáy đến độ sâu h trong câu (b).

(d) Tính V.

(d) Tìm khối lượng cát cần thiết để lấp phần hố trong câu (c), biết khối lượng riêng của cát là $1.2~(tấn/m^3)$.

Câu 2: Cho cung AB trong mặt phẳng Oyz. Gọi S là mặt phía trong khi quay cung AB quanh trục Oz.

(a) Tìm pháp vector đơn vị của mặt S tại điểm M(x,y,z) bất kì trên S.

 $\overrightarrow{n}(x,y,z) = \dots$

(b) Viết $I = \iint_{S} x dy dz + y dz dx + z dx dy$

dưới dạng một tích phân mặt loại 1 trên

Câu 3: Cho 2 chuỗi số

- (1) $\sum_{n=1}^{\infty} \left[\frac{1}{2^n} + \frac{(-1)^n}{n^3} \right],$
- (2) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}.$

(a)	Chứng minh chuỗi (1) hội tụ.
(b)	Gọi S_1 , S_2 lần lượt là tổng chuỗi (1) và (2) theo thứ tự, tính tổng $S_1 + S_2$. $S_1 + S_2 = \dots$
	$\mathcal{D}_1 + \mathcal{D}_2 = \dots$
	HÉT

RĐ:	Ngày:	PD:	Ngày
Ký tên		Ký tên	

BK	THI CUỐI KỲ				2021 - 2022
BK	THI COOLKY	Ngày thi	02/05/2022		
TRƯỜNG ĐH BÁCH KHOA	Môn học	Giải tích	2		
- ĐHQG-HCM	Mã môn học	MT1005			
KHOA KHUD	Thời lượng	100 phút	Mã đề	M	ã đề thi: 679

Ghi chú: - Không được sử dụng tài liệu

- Nộp lại đề thi cùng với bài làm.

Câu 1. Diện tích phần paraboloid $z=x^2+y^2$ nằm giữa mặt z=1 và z=4, bằng giá trị của tích phân nào dưới đây?

A.
$$\iint\limits_{D} \sqrt{1+4x^2+4y^2} \mathrm{d}x \mathrm{d}y, \text{ với } D \text{ thỏa } 1 \leq x^2+y^2 \leq 4.$$

B.
$$\iint_D (x^2 + y^2) \sqrt{1 + 4x^2 + 4y^2} dxdy$$
, với D thỏa $x^2 + y^2 \le 4$.

C.
$$\iint_D \mathrm{d}x \mathrm{d}y \sqrt{1 + 4x^2 + 4y^2} \mathrm{d}z, \text{ với } D \text{ thỏa } x^2 + y^2 \le 4.$$

D.
$$\iint_D (x^2 + y^2) dx dy$$
, với D thỏa $1 \le x^2 + y^2 \le 4$.

E. Các câu khác sai..

Câu 2. Khẳng định nào dưới đây là ĐÚNG khi khảo sát sự hội tụ của các chuỗi $\sum_{i=1}^{n} a_n$ và $\sum_{i=1}^{n} b_n$,

với
$$a_n = \sqrt{n} \sin\left(\frac{\pi}{\sqrt{2n}}\right), b_n = \frac{(-1)^{n+1}}{2^n}.$$

A.
$$\sum_{n=1}^{\infty} a_n$$
 và $\sum_{n=1}^{\infty} b_n$ hội tụ theo tiêu chuẩn so sánh..

B.
$$\sum_{n=1}^{\infty} a_n$$
 và $\sum_{n=1}^{\infty} b_n$ phân kỳ theo điều kiện cần của sự hội tụ.

C.
$$\sum_{n=1}^{\infty} a_n$$
 phân kỳ theo điều kiện cần của sự hội tụ, $\sum_{n=1}^{\infty} b_n$ hội tụ teo tiêu chuẩn Leibnitz..

D.
$$\sum_{n=1}^{\infty} a_n$$
 và $\sum_{n=1}^{\infty} b_n$ hội tụ theo điều kiện cần của sự hội tụ.

E. Các câu khác sai..

Câu 3. Tìm thể tích vật thể Ω được giới hạn bởi các mặt $z=x^2,\,z=2-x^2,\,y=-1$ và y=1, bỏ qua đơn vị tính.

A.
$$\frac{4}{3}$$
. D. $\frac{2}{3}$.

B.
$$\frac{16}{3}$$
.

D.
$$\frac{2}{3}$$
.

E.
$$\frac{8}{3}$$
.

Câu 4. Hình chiếu của vật thể giới hạn bởi $-1+\frac{\sqrt{x^2+y^2}}{2}\leq z\leq \sqrt{4-x^2-y^2}$ lên mặt phẳng Oxy là

- **A**. Hình tròn $x^2 + y^2 \le 2$.
- **B**. Hình tròn $x^2 + y^2 \le 3$.
- C. Hình tròn $x^2 + y^2 \le 4$.

D. Các câu khác sai..

E. Hình tròn $x^2 + y^2 \le 1$.

Câu 5. Tính khối lượng của 1 dây mỏng L (hình vẽ bên),

A. $\frac{1}{2}\pi^2$.

- **B**. $\sqrt{2}\left(2+\frac{1}{2}\pi^2\right)$.
- **C**. $\sqrt{2}\pi^2$.

D. $\frac{\sqrt{2}}{2}\pi^2$.

E. Các câu khác sai..

Câu 6. Tính tích phân $\int_C (xy + e^x) dx + (3x + \cos y) dy$, trong đó C là biên của hình phẳng giới hạn bởi 2 đường parabol $y = x^2$ và $x = y^2$, lấy ngược chiều kim đồng hồ, ta được kết quả là

A. $-\frac{2}{3}$.

- B. Các câu khác sai..
- C. $\frac{17}{20}$

D. $\frac{17\pi}{20}$

E. $\frac{2}{3}$.

Câu 7. Tập hợp nào dưới đây KHÔNG nằm trong miền hội tụ của chuỗi $\sum_{n=1}^{+\infty} \frac{(x-1)^n}{2^n \sqrt{n}}$

A. (1,2).

B. (-2, -1).

C. (1,3).

D. (-1,2).

E. Các câu khác sai..

Câu 8. Một tấm phẳng (P) không đồng chất có dạng phần mặt phẳng x+y+z=2 bị chắn bởi 3 mặt tọa độ. Tính khối lượng của (P) nếu biết mật độ khối lượng trên (P) là $\rho(x,y,z)=6yz$ (bỏ qua đơn vị tính).

A. $8\sqrt{3}$.

B. $4\sqrt{3}$.

C. $6\sqrt{3}$.

D. Các câu khác sai..

E. $2\sqrt{3}$

Câu 9. Cho S là phía trên (theo hướng trục Oz) của mặt nón $3z^2 = x^2 + y^2$ và $M(3, -\sqrt{3}, -2) \in S$. Tìm pháp vector của S tại M.

- **A**. $k(3, -\sqrt{3}, 6)$, với $k \neq 0$.
- **B**. $k(3, -\sqrt{3}, -6)$, với $k \neq 0$.
- C. $k(3, -\sqrt{3}, -6)$, với k > 0.
- **D**. $k(3, -\sqrt{3}, 6)$, với k > 0.
- E. Các câu khác sai..

Câu 10. Cho chuỗi số $\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n+1} + \frac{\sin \frac{n\pi}{2}}{3^n} \right]$. Giá trị của tổng riêng S_3 là

A. -0.1070.

- B. Các câu khác sai..
- $\mathbf{C} = -0.2158$

$$\mathbf{D}$$
. -0.1204 .

$$\mathbf{E}$$
. -0.3128 .

 Câu 11. Cho Ω là miền giới hạn bởi $z=x^2+y^2,\ z=-1+2(x^2+y^2),\ y\leq 0,$ và $I = \iiint \sqrt{x^2 + y^2} dx dy dz$. Công thức nào dưới đây có giá trị bằng I?

$$\mathbf{B.} \int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} dr \int_{-1+2r^{2}}^{r^{2}} dz. \qquad \mathbf{C.} \int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} dr \int_{-1+2r}^{r} dz.$$

C.
$$\int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} dr \int_{1/2\pi}^{r} dz$$

$$\mathbf{D}. \int_{0}^{0} \mathrm{d}\varphi \int_{0}^{1} r \mathrm{d}r \int_{0}^{r^{2}} \mathrm{d}z.$$

$$\mathbf{D.} \int_{-\pi}^{0} \mathrm{d}\varphi \int_{0}^{1} r \mathrm{d}r \int_{-1+2r^2}^{r^2} \mathrm{d}z. \qquad \mathbf{E.} \int_{-\pi}^{0} \mathrm{d}\varphi \int_{0}^{1} r^2 \mathrm{d}r \int_{-1+2r^2}^{r^2} \mathrm{d}z.$$

Câu 12. Bán kính hội tụ của chuỗi $\sum_{n=1}^{+\infty} \frac{5^n n^n}{n!} (x-5)^n$ **A**. $\frac{1}{5}$. **B**. $\frac{5}{e}$.

A.
$$\frac{1}{5}$$

B.
$$\frac{5}{e}$$
.

$$\mathbf{D.} \ \frac{1}{5e}.$$

$$\mathbf{E}$$
. $5e$

Câu 13. Tính tích phân $\int_C xy dx + (2x - 3y) dy$, trong đó C là đường đi gấp khúc bao gồm đoạn thẳng từ (0,0) đến (2,0) và đoạn thẳng từ (2,0) đến (3,1), ta được kết quả là $\mathbf{A}. \frac{10}{3}.$ $\mathbf{B}. \frac{17}{6}.$ $\mathbf{C}. \frac{23}{6}.$

A.
$$\frac{10}{3}$$
.

B.
$$\frac{17}{6}$$
.

C.
$$\frac{23}{6}$$
.

E.
$$\frac{29}{6}$$
.

Câu 14. Tính tích phân $\int_C (y + \cos(\pi x)) d\ell$ với C là đoạn thẳng nối điểm O(0,0) tới điểm A(4,5).

A.
$$\frac{11\sqrt{21}}{3}$$
.

B.
$$\frac{11\sqrt{41}}{4}$$
.
E. $\frac{5\sqrt{41}}{2}$.

C.
$$\frac{9\sqrt{21}}{4}$$
.

E.
$$\frac{5\sqrt{41}}{2}$$
.

Câu 15. Lực $\overrightarrow{F}(x,y) = (x^2 + y)\overrightarrow{i} + (4x - \cos y)\overrightarrow{j}$ làm di chuyển một chất điểm ngược chiều kim đồng hồ vòng quanh hình vuông có các đỉnh là (0,0), (5,0), (5,5), (0,5). Tính công do \overrightarrow{F} tạo ra khi chất điểm đi được 1 vòng (Bỏ qua đơn vị tính).

A.
$$-50$$
.

D. Các câu khác sai..

E.
$$-25$$
.

Câu 16. Phát biểu nào dưới đây ĐÚNG khi khảo sát sự hội tụ của chuỗi $\sum_{n=0}^{+\infty} \left(\frac{5n+2}{8n+11}\right)^{3n}$.

A. Các câu khác sai...

B. Chuỗi hội tụ theo tiêu chuẩn Cauchy vì $C = \frac{5}{8} < 1$.

C. Chuỗi hội tụ theo điều kiện cần vì $\lim_{n\to\infty} \left(\frac{5n+2}{8n+11}\right)^{3n} = 0.$

D. Chuỗi hội tụ theo tiêu chuẩn Cauchy vì $C_n = \left(\frac{5n+2}{8n+11}\right)^3 < 1$.

E. Chuỗi hội tụ theo tiêu chuẩn Cauchy vì $C = \left(\frac{5}{8}\right)^3 < 1$.

Câu 17. Nếu $\lim_{n\to+\infty} 2^n a_n = 3$, tìm phát biểu ĐÚNG về chuỗi $\sum_{n\to+\infty} a_n$.

- **A**. Hội tụ vì $\lim_{n\to\infty} a_n = 0$.
- **B**. Phân kỳ theo tiêu chuẩn Cauchy vì C=2.
- C. Các câu khác sai..
- **D**. Phân kỳ vì cùng bản chất với $\sum_{n=1}^{\infty} 2^n$.
- **E**. Hội tụ theo tiêu chuẩn so sánh khi so sánh với $\sum_{i=1}^{\infty} \frac{1}{2^n}$.

Câu 18. Mật độ dân số của tỉnh A tại vị trí có tọa độ (x,y) so với trung tâm hành chính tỉnh là

$$\rho(x,y)=3\mathrm{e}^{-0.01(x^2+y^2)}($$
(ngàn người/km²)

. Dân số sống trong khu vực bán kính R tính từ trung tâm hành chính được tính bởi công thức

$$P(x,y) = \iint\limits_{x^2+y^2 < R} \rho(x,y) \mathrm{d}x \mathrm{d}y$$
 (ngàn người)

. Tìm dân số (ngàn người) sống trong khu vực có bán kính R=2.

- **A**. $\approx 36.9551...$
- **B**. $\approx 32.2150..$

 $C. \approx 36.9434...$

D. $\approx 37.2150..$

E. Các câu khác sai..

Câu 19. Trong tọa độ trụ $x = r \cos \varphi, y = r \sin \varphi, z = z$, vật thể Ω được cho bởi $\frac{r}{\sqrt{3}} \le z \le \sqrt{1 - r^2}$. Khi biểu diễn Ω trong tọa độ cầu $x=\rho\sin\theta\cos\varphi, y=\rho\sin\theta\sin\varphi, z=\rho\cos\theta$, miền giá trị của θ

- $\mathbf{A.} \ \ 0 \le \theta \le \frac{\pi}{3}.$ $\mathbf{D.} \ \ \frac{\pi}{6} \le \theta \le \frac{\pi}{2}.$
- $\mathbf{B.} \ \frac{\pi}{3} \le \theta \le \frac{\pi}{2}.$
- C. $0 \le \theta \le \frac{\pi}{6}$.

E. Các câu khác sai..

Câu 20. Cho S là mặt phía trong của mặt cầu $x^2 + y^2 + z^2 = 1$. Tính

$$\iint\limits_{S} y\sqrt{x^2 + y^2} dydz - x\sqrt{x^2 + y^2} dxdz - zdxdy.$$

A. $\frac{4\pi}{3}$.

B. 0.

C. $\frac{-4\pi}{3}$.

D. Các câu khác sai..

 \mathbf{E} . 2π .

PHẦN II: PHẦN TRẢ LỜI NGẮN

Thời gian: 50 phút

Gọi a là tổng 3 chữ số cuối của Mã Số Sinh Viên, dặt M là 2 cộng với số dư khi chia a cho 4.

$$\mathbf{M} = \dots$$

Câu 1: Một hố có dạng paraboloid tròn xoay, bán kính mặt hố là 2 (m). Với bán kính thiết diện $0 \le r \le 2$ (m), độ sâu tương ứng là $h = 4 - r^2$ (m) (xem hình vẽ).

(a) Nếu xem mặt đất là mặt phẳng (Oxy), phương trình mặt xung quanh của hố có dạng z=f(x,y), xác định công thức của f.

- (b) Xác định bán kính r ở độ sâu $h=4-\frac{M}{2}$
- (c) Viết một tích phân bội ba với các cận trong tọa độ trụ để tính thể tích V của phần hố từ đáy đến độ sâu h trong câu (b).

(d) Tính V.

(d) Tìm khối lượng cát cần thiết để lấp phần hố trong câu (c), biết khối lượng riêng của cát là $1.2~(tấn/m^3)$.

Câu 2: Cho cung AB trong mặt phẳng Oyz. Gọi S là mặt phía trong khi quay cung AB quanh trục Oz.

(a) Tìm pháp vector đơn vị của mặt S tại điểm M(x,y,z) bất kì trên S.

 $\overrightarrow{n}(x,y,z) = \dots$

(b) Viết $I = \iint_{S} x dy dz + y dz dx + z dx dy$

dưới dạng một tích phân mặt loại 1 trên S.

(c) Tính I.

Câu 3: Cho 2 chuỗi số

- (1) $\sum_{n=1}^{\infty} \left[\frac{1}{2^n} + \frac{(-1)^n}{n^3} \right],$
- (2) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}.$

(a)	Chứng minh chuỗi (1) hội tụ.
(b)	Gọi S_1 , S_2 lần lượt là tổng chuỗi (1) và (2) theo thứ tự, tính tổng $S_1 + S_2$.
	$S_1 + S_2 = \dots$
	HÉT