1 More Constructions

Definition 1.1 (Initial Topology). Let $f: \mathcal{X} \to \mathcal{Y}$ a mapping between two sets and \mathcal{Y} is equipped with a topology. Then we declare that $V \subseteq \mathcal{X}$ is open if there is an open set $W \subseteq \mathcal{Y}$ such that $V = f^{-1}(W)$. This topology is called initial topology.

Proof. We need to show that it forms a topology.

- $\varnothing = f^{-1}(\varnothing)$ and $\mathcal{X} = f^{-1}(\mathcal{Y})$.
- For a collection of open set $\{V_{\alpha}\}$, we claim $\bigcup_{\alpha} V_{\alpha} = f^{-1}(\bigcup_{\alpha} W_{\alpha})$. For any $x \in \bigcup_{\alpha} V_{\alpha}$, it must belongs to some V_{α} , therefore $x \in f^{-1}(W_{\alpha}) \subseteq f^{-1}(\bigcup_{\alpha} W_{\alpha})$. For any $x \in f^{-1}(\bigcup_{\alpha} W_{\alpha})$, we know f(x) must belongs to some W_{α} , so $x \in f^{-1}(W_{\alpha}) \subseteq f^{-1}(\bigcup_{\alpha} W_{\alpha})$.
- For two open sets $V_0, V_1 \subseteq \mathcal{X}$, we claim $V_0 \cap V_1 = f^{-1}(W_0 \cap W_1)$. For any $x \in V_0 \cap V_1$, then $f(x) \in W_0$ and $f(x) \in W_1$, so $x \in f^{-1}(W_0 \cap W_1)$. For any $x \in f^{-1}(W_0 \cap W_1)$, we know $f(x) \in W_0 \cap W_1$, therefore $x \in f^{-1}(W_0) = V_0$ and $x \in f^{-1}(W_1) = V_1$, so $x \in V_0 \cap V_1$.

Definition 1.2 (Final Topology). Let $f: \mathcal{X} \to \mathcal{Y}$ a mapping between two sets and \mathcal{X} is equipped with a topology. Then we declare that $W \subseteq \mathcal{Y}$ is open if there is an open set $V \subseteq \mathcal{X}$ such that $V = f^{-1}(W)$. This topology is called final topology

Proof. Similar to the proof of initial topology.

We can see that the induced topology makes the mapping open.

Theorem 1.1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a continuous mapping between topological spaces, then:

- The initial topology on X is weaker than its own topology.
- The final topology on Y is stronger than its own topology.

Recall that V is weaker than W if any open set under V is also an open set under W.

Proof.

- For any open sets V in initial topology of \mathcal{X} , we know there is $W \subseteq \mathcal{Y}$ such that $V = f^{-1}(W)$. Then V is an open set in the original topology cause f is continuous.
- For any open sets W in the original topology of \mathcal{Y} , we know there is $V \subseteq \mathcal{X}$ such that $V = f^{-1}(W)$ since f is continuous, then W is an open set in final topology of \mathcal{Y} .

Theorem 1.2. Let $g: \mathcal{X} \to \mathcal{Y}$ be a continuous map.

- Suppose \mathcal{X} is equipped with the initial topology induced by g. Show that a map $f: \mathcal{W} \to \mathcal{X}$ is continuous iff $g \circ f: \mathcal{W} \to \mathcal{Y}$ is continuous.
- Suppose \mathcal{Y} is equipped with the final topology induced by g. Show that $a \ map \ h : \mathcal{Y} \to \mathcal{Z}$ is continuous iff $h \circ g : \mathcal{X} \to \mathcal{Z}$ is continuous.

Proof. (\Rightarrow)s are trivial, we focus on (\Leftarrow)s.

- For any open set $W \subseteq \mathcal{Y}$, there is an open set $V \subseteq \mathcal{W}$ such that $V = (g \circ f)^{-1}(W)$ and $S \subseteq \mathcal{X}$ such that $S = g^{-1}(W)$. Then $V = (g \circ f)^{-1}(W) = (f^{-1} \circ g^{-1})(W) = f^{-1}(g^{-1}(W)) = f^{-1}(S)$. Also, every open set in \mathcal{X} is induced by an open sets in \mathcal{Y} , so we proved that the inverse image of every open sets in \mathcal{X} is also open in \mathcal{W} , that is, f is continuous.
- For any open set $W \subseteq \mathcal{Z}$, there is an open set $V \subseteq \mathcal{X}$ such that $V = (h \circ g)^{-1}(W)$. Then $V = (h \circ g)^{-1}(W) = g^{-1}(h^{-1}(W))$, and we know $h^{-1}(W)$ is open cause \mathcal{Y} is the final topology induced by g, so there must be an open set which inverse image of g is V, and $h^{-1}(W)$ can do the job. So $h^{-1}(W)$ is an open set, therefore h is continuous.

Definition 1.3 (Quotient Topology). Let be an equivalence relation on a topology space \mathcal{X} . The set $[x] = \{y \in \mathcal{X} \mid x \sim y\}$ is called the equivalence class of x. Then the final topology on \mathcal{X}/\sim induced by f(x) = [x] is called quotient topology. The set \mathcal{X}/\sim equipped with a quotient topology is called quotient space.

Theorem 1.3. Let $f: \mathcal{K} \to \mathcal{Y}$ be a continuous map. Suppose \mathcal{K} is compact and \mathcal{Y} is Hausdorff, show that f is closed.

Proof. For any closed set S in K, we know S is compact since K is compact, then f(S) is also compact in Y cause f is continuous. Then f(S) is closed cause Y is Hausdorff.

Definition 1.4. Let \mathcal{X} be a topological space and G be a group. Suppose $-\cdot -: G \times \mathcal{X} \to \mathcal{X}$ is a mapping such that:

- 1. For any $x \in \mathcal{X}$, $1 \cdot x = x$. 1 is the identity of G.
- 2. For any $g, h \in G$ and $x \in \mathcal{X}$, $g \cdot (h \cdot x) = (g \cdot h) \cdot x$.
- 3. For any $g \in \mathcal{G}$, the map $x \mapsto g \cdot x$ is continuous.

Then we say G acts on \mathcal{X} , or \mathcal{X} is a G-space. In this case, the set $G \cdot x = \{g \cdot x \mid \forall g \in G\}$ is called the G-orbit of x.

Theorem 1.4. Suppose that a group G acts on a topological space \mathcal{X} . Show that for any $g \in G$, the map $x \mapsto g \cdot x$ defines a homeomorphism $\mathcal{X} \to \mathcal{X}$.

Proof. We first show that $f(x) = g \cdot x$ is bijective. (Injective) If f(a) = f(b) for some $a, b \in \mathcal{X}$, then $g \cdot a = g \cdot b$ and then $g^{-1} \cdot g \cdot a = g^{-1} \cdot g \cdot b$, which is eventually a = b. (Surjective) For any $x \in \mathcal{X}$, we have $g^{-1} \cdot x \in \mathcal{X}$ that $f(g^{-1} \cdot x) = g \cdot g^{-1} \cdot x = x$. By definition, we know f is continuous, we need to show that f^{-1} is continuous. It is easy to see that $f^{-1}(x) = g^{-1} \cdot x$, which is continuous by definition. So f is a homeomorphism.

Definition 1.5. Suppose that a group G acts on a topological space \mathcal{X} . Define $x \sim y$ if there is $g \in G$ such that $y = g \cdot x$. We can show that \sim is an equivalence relation, and \mathcal{X}/\sim can be also denoted by \mathcal{X}/G . Note that $[x] = G \cdot x$, the orbit of x, therefore \mathcal{X}/G is also called orbit space.

Proof. We will show that \sim is an equivalence relation.

- (Reflexivity) $x = 1 \cdot x$
- (Symmetry) If $x \sim y$, then $y = g \cdot x$, we have $x = g^{-1} \cdot g \cdot x = g^{-1} \cdot y$, that is, $y \sim x$.
- (Transitivity) if $x \sim y$ and $y \sim z$, then $y = g \cdot x$ and $z = h \cdot y$, we have $z = (h \cdot g) \cdot x$, that is, $z \sim x$.

Theorem 1.5. Suppose a group G acts on a topological space \mathcal{X} , and f: $\mathcal{X} \to \mathcal{X}/G$ is the quotient map.

- Show that f is open.
- Show that f is closed if G is finite.

Proof.

- We can see that $f^{-1}(f(V))$ for any open set V is the set that contains points that equivalence to the points in V, that is, $G \cdot V$, it is easy to see that $G \cdot V = \bigcup_{g \in G} g \cdot V$ is open set, since every $g \cdot V$ is open while $g \cdot -$ is a homeomorphism by Theorem 1.4. Therefore, f(V) has to be open cause $f^{-1}(f(V))$ is open.
- Similar to the previous answer, the finite condition is used when we are trying to obtain a union of some closed sets.