

Introducão aos Códigos Binários

Augusto Silva, Iouliia Sklyarova

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

Introdução aos Sistemas Digitais - AFS, IOU

1

Conceito de Código Binário

- Código conjunto de sequências de n bits, em que cada sequência representa um determinado valor, evento, acção, mensagem, etc
- · Palavra do código uma dada sequência de n bit
- n comprimento do código
- · m número de valores a codificar

$$n \ge \lceil log_2(m) \rceil$$

Introdução aos Sistemas Digitais - AFS, IOU

Exemplo

· Várias estratégias possíveis desde

$$n \ge \lceil log_2(7) \rceil = 3$$

andar	codificação	codificação	codificação
cave	000	000	000001
r/c	001	001	000010
1° andar	010	011	000100
2° andar	011	010	001000
3° andar	100	110	010000
4° andar	101	111	100000

Introdução aos Sistemas Digitais - AFS, IOU

3

Códigos Binary Coded Decimal (BCD)

- · Representação alternativa de quantidades
- Cada algarismo decimal está associado a uma palavra de código
- Usam-se as primeiras 10 palavras da representação em código binário natural das quantidades 0,1,2,...,9
- Comprimento da palavra L é o menor inteiro que satisfaz

 $L \ge log_2 N$

N = 10

L = 4 bits

Introdução aos Sistemas Digitais - AFS, IOU

BCD 8421

- Propriedades
 - Código <u>regular</u>: comprimento de palavra é fixo =
 - Código ponderado: cada uma das palavras resulta duma elaboração analítica da forma

$$x=\sum_{i=0}^3 a_i w_i \quad \ w_i=2^i, \quad \ a_i \in \left\{0,1\right\}$$

- Código <u>descontínuo</u>: palavras consecutivas diferem em mais de um dígito ("bit")
- Não autocomplementar: existem palavras para as quais é violada a condição de autocomplementaridade i.e

$$x = (a_3 a_2 a_1 a_0), \quad (9 - x) \neq (\overline{a}_3 \overline{a}_2 \overline{a}_1 \overline{a}_0)$$

Código não cíclico: 1ª e última palavra não são adjacentes

	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Introdução aos Sistemas Digitais - AFS, IOU

BCD 8421

- · Propriedades
 - Não distingue palavras abaixo e acima de 5 com o "msb"
 - <u>Distância</u> entre 2 palavras de código ou distância de <u>Hamming</u>
 - * n° de posições que diferentes entre duas palavras adjacentes. Neste caso $d_{\it min}$ = 1
 - Redundância R:
 - Sendo N o número de palavras do código e L o comprimento de palavra

$$R = \frac{L - log_2 N}{L}$$

$$R_{BCD8421} = \frac{4 - log_2 10}{4} = 0.17$$

	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8 9	1	0	0	0
9	1	0	0	1

Introdução aos Sistemas Digitais - AFS, IOU

Outros Códigos BCD

- · Exercícios:
- Gere códigos BCD ponderados correspondentes aos seguintes conjuntos de pesos
 - 5211
 - 642-3
 - 5043210

Introdução aos Sistemas Digitais - AFS, IOU

7

Códigos BCD autocomplementares

- Num código decimal binário autocomplementar ponderado o somatório dos seus pesos deverá ser 9
- · Dem
 - Sejam N₁ e N₂ duas palavras complementares dum código decimal binário ponderado de comprimento n tal que

$$N_1 = \sum_{i=0}^{n-1} a_i w_i \quad a_i \in \left\{0,1\right\}$$

$$N_2 = \sum_{i=0}^{n-1} \overline{\alpha}_i w_i$$

- Se o código BCD é autocomplementar então

$$9-N_1=N_2\, \therefore N_1+N_2=9\, \therefore \sum_{i=0}^{n-1} \bigl(a_i+\overline{a}_i\,\bigr)w_i\, \therefore \sum_{i=0}^{n-1} w_i=9$$

Introdução aos Sistemas Digitais - AFS, IOU

Exemplos

	5	2	1	1
	Э	2		1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
-	0	1	0	1
4 5	0	1	0	1
	1		0	0
6	1	0	1	0
7	1	1	0	0
8	1	1	1	0
9	1	1	1	1

	4	2		1
0	0	0 0 0 0	0	0
1	0	0	0	1
2 3	0	0	1	0
3	0	0	1	1
4 5	0			0
5	1	0	0	1
6	1	1	0	0
7	1	1	0	1
8	1	1	1	0
9	1	1	1	1

	6	4	2	-3
0	0	0	0	0
1	0	1	0	1
2	0	0	1	0
3	0	1	1	1
4	0	1	0	0
5	1	0	1	1
6	1	0	0	0
7	1	1	0	1
8	1	0	1	0
9	1	1	1	1

	8	7	-4	-2
0	0	0	0	0
1	0	1	1	1
2	1	0	1	1
3	0	1	1	0
4	1	0	1	0
5	0	1	0	1
6	1	0	0	0
7	0	1	0	0
8	1	0	0	0
9	1	1	1	1

- · Nota:
 - A partir por ex., do esquema de pesos 5211, é possível elaborar um código ponderado cujo somatório dos pesos é 9 mas que não seja autocomplementar

Introdução aos Sistemas Digitais - AFS, IOU

9

Outros códigos autocomplementares

algarismo	2421	Excess-3	1-out-of-10
decimal	(AIKEN)	(X53)	1-001-01-10
0	0000	0011	000000001
1	0001	0100	000000010
2	0010	0101	000000100
3	0011	0110	000001000
4	0100	0111	0000010000
5	1011	1000	0000100000
6	1100	1001	0001000000
7	1101	1010	0010000000
8	1110	1011	0100000000
9	1111	1100	1000000000

Introdução aos Sistemas Digitais - AFS, IOU

Relações Código Binário - Código Gray

Binary2Gray

- Adicionar à palavra do código binário um bit à esquerda e atribuir-lhe o valor 'O'.
- Numerar todos os bits do código binário da direita para a esquerda.
- Atribuir valor '1' ao bit *i* do código de Gray se os bits *i* e *i*+1 da palavra binária são diferentes.
- Atribuir valor 'O' ao bit *i* do código de Gray se os bits *i* e *i*+1 da palavra binária são iguais

Exercício

- Converta para Gray 1111, 1000

Introdução aos Sistemas Digitais - AFS, IOU

13

Relações Código Binário - Código Gray

Gray2Binary

- Numerar todos os bits do código de Gray da esquerda para a
- Atribuir o valor do bit 1 do código de Gray ao bit 1 do código binário.
- Bit i (i=2,3,...,n) do código binário é igual à soma exclusiva (XOR) do bit i-1 do código binário e do bit i do código de Gray.

Exercício

- Converta para Binário 1000, 1100

Introdução aos Sistemas Digitais - AFS, IOU

Códigos Alfanuméricos

ASCII - American Standard Code for Information Interchange

Introdução aos Sistemas Digitais - AFS, IOU

Erros em Sistemas Digitais

- Um erro em sistemas digitais é a corrupção de dados do valor correto para um valor diferente. Erros podem ocorrer tanto em sistemas de transmissão de informação digital (ruído) como em sistemas de armazenamento (memória, discos rígidos).
- Erro singular só um bit de dados é corrompido
- Erros múltiplos 2 ou mais bits de dados são corrompidos
- Erros múltiplos são normalmente menos prováveis que erros singulares

Introdução aos Sistemas Digitais - AFS, IOU

17

Detecção de Erros

- Um código permite deteção de erros se a corrupção de uma palavra resulta numa nova palavra que não faz parte do código.
- Um sistema que permite deteção de erros só gera, transmite e guarda palavras de código válidas.
 - Se uma sequência de bits é uma palavra válida de código, é assumido que está correta.
 - Se uma sequência de bits é uma palavra não válida de código, é assumido que está errada.

Introdução aos Sistemas Digitais - AFS, IOU

Códigos de Paridade

- É possível detetar todos os erros singulares se a distância mínima entre todas os possíveis pares de palavras de código ≥ 2
- Para construir um código de 2^n palavras que deteta erros singulares são precisos pelo menos n+1 bits
- Exercício
 - Modifique o código BCD8421 de modo que se tenha paridade ímpar

Introdução aos Sistemas Digitais - AFS, IOU

19

Detecção e correcção de erros

· Distância de Hamming

Distância de Hamming = 4

- Conceito de Distância de Hamming (DH) é fundamental
 - M: distância de Hamming mínima (DH_{min})
 - D: nº de erros detectáveis
 - C: n° de erros corrigíveis

$$M = 2C + D + 1$$

Introdução aos Sistemas Digitais - AFS, IOU

Exemplos

$$D = 1$$
, $C = 0$, $M = 2$

Bit de paridade

	Р	8	4	2	1
0	0	0	0	0	0
1	1	0	0	0	1
2	1	0	0	1	0
3	0	0	0	1	1
4	1	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	1	0	1	1	1
8	1	1	0	0	0
9	0	1	0	0	1

Códigos m de n

	2 em 5						
	0	1	2	4	7		
0	0	0	0	1	1		
1	1	1	0	0	0		
2	1	0	1	0	0		
3	0	1	1	0	0		
4	1	0	0	1	0		
5	0	1	0	1	0		
6	0	0	1	1	0		
7	1	0	0	0	1		
8	0	1	0	0	1		
9	0	0	1	0	1		

1 em 2 + 1 em 5

		Biquinário							
	5	0	4	3	2	1	0		
0	0	1	0	0	0	0	1		
1	0	1	0	0	0	1	0		
2	0	1	0	0	1	0	0		
3	0	1	0	1	0	0	0		
4	0	1	1	0	0	0	0		
5	1	0	0	0	0	0	1		
6	1	0	0	0	0	1	0		
7	1	0	0	0	1	0	0		
8	1	0	0	1	0	0	0		
9	1	0	1	0	0	0	0		

"Quase" ponderado

Ponderado

Introdução aos Sistemas Digitais - AFS, IOU

21

Códigos de Hamming

- Detecção e correcção de erros
 - *m* bits de informação são entrelaçados com *p* bits de paridade colocados em posições chave na palavra de código composta
 - Sendo m o nº de bits de informação então p deverá ser o menor inteiro tal que

$$2^p >= m + p + 1$$

- Os bits de paridade são colocados nas posições 1, 2, 4, 8, 16,..., da palavra codificada. Os bits de informação são colocados nas posições "vagas" 3, 5, 6, 7, 9, 10,...
- O valor de cada bit de paridade depende especificamente de alguns bits de informação. Um bit de paridade verifica as posições, incluindo a própria, contendo um "1" no mesmo local da sua representação

Introdução aos Sistemas Digitais - AFS, IOU

Exemplo: Correcção de 1 erro

· 4 bits de informação

$$- p > = log_2(m + p + 1)$$

- p = 3

Tabela de dependências

P1	P2	М3	P4	M5	M6	M7
			Χ	Χ	Χ	Χ
	Χ	Χ			Χ	Χ
Χ		Χ		Χ		Χ

Codificação dos bits de paridade

$$P_1 = M_3 \oplus M_5 \oplus M_7$$

$$P_2 = M_3 \oplus M_6 \oplus M_7$$

$$P_4 = M_5 \oplus M_6 \oplus M_7$$

Na descodificação calculam-se os sindromas

$$S_0 = P_1 \oplus M_3 \oplus M_5 \oplus M_7$$

$$S_1 = P_2 \oplus M_3 \oplus M_6 \oplus M_7$$

$$S_2 = P_4 \oplus M_5 \oplus M_6 \oplus M_7$$

Exemplo

$$S_0 = 1 \oplus 0 \oplus 0 \oplus 0 \neq 1$$

$$S_1 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$S_2 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

erro na posição 3

Introdução aos Sistemas Digitais - AFS, IOU