24 Mg(16 O, α n γ) **2007De14,2005DeZZ**

2007De14,2005DeZZ: A 70-MeV 16 O beam was produced by the XTU-Tandem accelerator at the Legnaro National Laboratory, Italy. The arget was a 400 μ g/cm 2 self-supporting target of 24 Mg. γ ray from fusion evaporation reactions of 24 Mg(16 O, α n γ) 35 Ar and 24 Mg(16 O, α p γ) 35 Cl were detected using the GASP spectrometer, which consists of an array of 40 Compton-suppressed HPGe detectors and a multiplicity filter of 80 BGO scintillators of 80 BGO scintillators. The GASP spectrometer is operated in conjunction with the 4π charged-particle detector ISIS and a neutron ring of 6 BC501A scintillators. The events were collected when at least two Ge detectors and one BGO scintillator were fired in coincidence. Measured E γ , I γ , $\gamma\gamma$, α n γ -coin, α p γ -coin, γ (θ), $\gamma\gamma$ (θ)(ADO). Deduced levels, J, π , and transition multipolarities from γ -ray ADO ratios. Comparisons with Shell-model calculations show the multipole Coulomb interaction and the electromagnetic spin-orbit interactioncontribute to the observed mirror energy differences.

35 Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0						8212.1 <i>10</i>	
1750.8 5	$5/2^{+}$	4358.6 8	$9/2^{-}$	5765.3 8	$13/2^{-}$	9905.5 [#] 21	$19/2^{-}$
2603.0 7	$7/2^{+}$	5383.7 [#] 7	$11/2^{-}$	8109.2 [#] <i>14</i>	$15/2^{-}$	12276.5 [#] 33	$23/2^{-}$

[†] From a least-squares fit to γ -ray energies.

$\gamma(^{35}Ar)$

 $R_{ADO}=[I\gamma(34^\circ)+I\gamma(146^\circ)]/2I\gamma(90^\circ)$. Expected values are $R_{ADO}\approx1.3$ for stretched quadrupole ($\Delta J=2$) and $A_{DO}\approx0.8$ for stretched dipole ($\Delta J=1$) transitions.

\mathbb{E}_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	Comments
381.5 <i>3</i>	29 3	5765.3	13/2-	5383.7 11/2-	D	R _{ADO} =0.81 10.
593.7 2	11 2	3196.7	$7/2^{-}$	2603.0 7/2+		
851.8 9	8 2	2603.0	7/2+	1750.8 5/2+		
1025.2 4	6 2	5383.7	$11/2^{-}$	4358.6 9/2-		
1162.0 8	15 <i>3</i>	4358.6	$9/2^{-}$	3196.7 7/2-	(D)	$R_{ADO} = 0.95 \ 25.$
1254.6 8	15 5	5613.2	$(11/2^{-})$	4358.6 9/2-		
1406.9 7	5 1	5765.3	$13/2^{-}$	4358.6 9/2-	(Q)	$R_{ADO} = 1.3 7.$
1446.1 <i>6</i>	67 5	3196.7	$7/2^{-}$	$1750.8 5/2^+$	D	$R_{ADO} = 0.87 \ 19.$
1693.3 27	15 <i>3</i>	9905.5	$19/2^{-}$	8212.1 15/2	Q	$R_{ADO} = 1.41 \ 23.$
1750.8 <i>5</i>	100 9	1750.8	5/2+	$0.0 \ 3/2^{+}$		R _{ADO} =1.46 24.
1756.3 <i>14</i>	17 9	4358.6	9/2-	2603.0 7/2+		
1796.3 25	10 <i>3</i>	9905.5	$19/2^{-}$	8109.2 15/2	Q	$R_{ADO}=1.8 \ 3.$
2186.8 <i>4</i>	49 <i>3</i>	5383.7	$11/2^{-}$	3196.7 7/2-	Q	$R_{ADO} = 1.31 \ 15.$
2342.6 28	8 2	8109.2	$15/2^{-}$	5765.3 13/2		
2370.9 25	15 5	12276.5	$23/2^{-}$	9905.5 19/2-	Q	$R_{ADO}=1.8 4.$
2446.6 <i>16</i>	6 2	8212.1	$15/2^{-}$	5765.3 13/2		
2602.6 <i>15</i>	60 <i>6</i>	2603.0	7/2+	$0.0 \ 3/2^{+}$	Q	$R_{ADO} = 1.37 \ 20.$
2725.7 <i>14</i>	4 1	8109.2	$15/2^{-}$	5383.7 11/2		
2828.3 7	28 5	8212.1	$15/2^{-}$	5383.7 11/2-	Q	$R_{ADO}=1.7$ 6.
3197 6	16 <i>3</i>	3196.7	$7/2^{-}$	$0.0 \ 3/2^{+}$	Q	$R_{ADO}=1.7 8.$

 $^{^{\}ddagger}$ As given in 2007De14 based on known assignments of low-lying levels and mirror levels in 35 Cl and the measured $\gamma\gamma(\theta)$ (ADO) ratios. When considered in the Adopted Levels, the firm assignments here are placed within parentheses if there are no other strong arguments to support these firm assignments.

[#] Band(A): Band based on $f_{7/2}$ orbital.

24 Mg(16 O, α n γ) 2007De14,2005DeZZ

Band(A): Band based on $f_{7/2}$ orbital

