

Bayesian Optimization

Current Research in Data Science

Surrogate Modelling

Acquisition Function

Surrogate Modelling

Acquisition Function

Optimization in AutoML

Situation

Given

Model class \mathcal{H} with parameters Θ and objective function f

Goal

Find parameter values θ minimizing objective function f

Problem

Analytic relationship between **f** and parameters Θ unknown

How to model $f(\Theta)$?

How to choose Θ ?

Solving the Black Box

	Approaches				
	Naive	Traditional	Bayesian		
Parameter Choice	Manual TuningGrid searchRandom search	Nelder-MeadEvolutionaryAlgorithms	 Optimal choice by surrogate modelling 		
Advantages	EasyGood results for known problems	More focus on relevant regionsDerivative-free	Possibly global optimum		
Disadvantages	Inefficient and possibly bad solutionManual eval. doesn't scale well	■ Inefficient	 No finite time bounds for optimum 		

Bayesian Optimization

Approach

Choose next parameter based on previous evaluation results s.t. new parameters will most likely lead to optimal result

- Build a probabilistic surrogate model mapping hyperparameters to a score probability on the objective function
- But: Produces computational overhead (use only if evaluation of objective function is expensive)
 - → In AutoML: Function evaluation equals model training

Formalism - Sequential Model-Based Optimization

Surrogate Modelling

Acquisition Function

Gaussian Process Regression

Gaussian Process is generalization of a Gaussian distribution over a space of functions. It is similarly defined by a **mean function** and a **covariance function**.

GP Definition

$$f \sim GP(\mu,K) \ \ K_{j,k} = K(x_j,x_k)$$

$$\mathbf{k}(x) = (K(x, x_1) \dots K(x, x_i))^T$$

Surrogate Model

$$egin{aligned} p(y|x,D) &= N(y|\hat{\mu},\hat{\sigma}^2) \ y &= (y_1\dots y_i)^T \quad \hat{\mu} = \mathbf{k}(x)^T(K+\sigma_n^2I)^{-1}y \ \hat{\sigma}^2 &= K(x,x) - \mathbf{k}(x)^T(K+\sigma_n^2I)^{-1}\mathbf{k}(x) \end{aligned}$$

Parameter Choice

$$p(y|x,D) \leftarrow FITMODEL(M,D)$$

$$x_i \leftarrow argmax_{x \in X} S(x, p(y|x, D))$$

Interpolating the Objective Function

Posterior after 10 observations

Random Forest Regression

Random Forests involve training a Decision Tree for each training sample, each of which is combined to determine the final output of a **Regression** or **Classification** task.

Surrogate Model

$$p(y|x,D) = N(y|\hat{\mu},\hat{\sigma}^2)$$

$$\hat{\mu} = rac{1}{|B|} \sum_{r \in B} r(x)$$

$$\hat{\sigma}^2 = rac{1}{|B|-1} \sum_{r \in B} (r(x) - \hat{\mu})^2$$

Parameter Choice

$$p(y|x,D) \leftarrow FITMODEL(M,D)$$

$$x_i \leftarrow argmax_{x \in X} S(x, p(y|x, D))$$

Tree Structured Parzen Estimator

The tree-structured Parzen estimator (TPE) models $p(\theta|y)$ by transforming the generative process, replacing a distribution of the configuration prior with a non-parametric density. [4]

Basic idea

Modeling

$$p(heta|y) = \left\{ egin{aligned} l(heta), & ext{if } y < y^* \ g(heta), & else \end{aligned}
ight.$$

- $I(\theta)$ is the density formed using the observations θ . s.t. corresponding loss $f(\theta_i)$ is less than y^*
- $g(\theta)$ using remaining observations
- y^* is some quantile γ of the observed y values, so that $p(y < y*) = \gamma$

TPE vs BO

TPE Modeling

$$p(\theta|y)$$
 $p(y)$

BO Modeling

$$p(y|\theta)$$

Surrogate Modelling

Acquisition Function

Maximizing Stepwise Improvement

Acquisition Function role: evaluation of an expected loss associated with evaluating objective function at a certain point.

- selecting the point with the **lowest expected loss**
- inexpensive to evaluate, unlike the original optimization problem

Most common Acquisition Function

Expected Improvement (EI)

$$EI(heta) = \mathbb{E}[max_{ heta}(0, f(heta) - f(\hat{ heta})] \ heta_{new} = argmax_{ heta}EI(heta)$$

There exists a closed form solution under certain assumptions

El evaluation tradeoff

- Exploitation
 Good approximate global optima are likely to
 - be near points with high expected quality
- Exploration
 Evaluation of high uncertainty areas extends knowledge about possible optima

Solving El for different Surrogates

Optimize Acquisition Function

Tree Parzen Estimator

Bayesian Optimization and Random Forest

$$EI_{y^*}(heta) = \int_{-\infty}^{y^*} (y^* - y) p(y| heta) dy$$

$$EI_{y^*}(heta) = \!\!\int_{-\infty}^{y^*} \! (y^*-y) rac{p(heta|y)p(y)}{p(heta)} dy \quad p(y| heta) = N(y|\hat{\mu},\hat{\sigma}^2)H = (heta_i,f(heta_i))_{i=1}^n$$

$$EI_{y^*}(heta) \propto (\gamma + rac{g(heta)}{l(heta)}(1-\gamma))^{-1} \hspace{1cm} y^* = min\{f(heta_i), 1 \leq i \leq n\}$$

$$heta^{new} = argmax_{ heta} rac{g(heta)}{l(heta)}$$

$$heta^{new} = argmax_{ heta}EI_{y^*}(heta)$$

Alternative Acquisition Functions

Used in case of **exotic problems**, where assumptions of EI are violated, e.g. Noisy evaluations.^[1]

Alternatives Knowledge Gradient **Entropy Search** Predictive Entropy Search utilizes derivative seeks the point that seeks the same point, but uses a reformulation of information: for each causes the largest sample of x being decrease in entropy the entropy reduction observed the function objective based on mutual information value and all partial derivatives are used

Surrogate Modelling

Acquisition Function

Optimization frameworks

Python libraries

- Hyperopt-sklearn
- Hyperopt
 - Random Search
 - Tree of Parzen Estimators
- Scikit-optimize
 - Still under development
 - Methods for (SMBO)
 - Decision trees
 - Gradient boosted trees
 - Bayesian Optimization
- Scipy.optimize
 - Gradient-based optimization algorithms

R libraries

- mlr (machine learning in R)
 - Supervised methods
 - Sampling
 - Hyperparameter tuning using:
 - iterated F-racing (irace)
 - SMBO
- mlrMBO
 - Model-based optimization with mlr.
- MIBayesOpt
 - Bayesian Optimization based on Gaussian Processes with
 - SVM, Random forest
 - XGboost

Scikit-optimize

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for SMBO.

Scikit-optimize functionality

Optimization algorithms

- Random search by uniform sampling
- Decision trees
- Gradient boosted trees
- Bayesian optimization using GP

Other useful API

- Visualization of objective, evaluations, convergence results
- Visualization up to many dimensions

Hyperopt-sklearn

Hyperopt-sklearn is designed for model selection among machine learning algorithms in scikit-learn.

	Hyperopt-sklearn func	arn functionality	
Search algorithms			
Random Search		MinN	
Tree of Parzen Estimators		Norn	
Annealing		Onel	

Classifiers

Gaussian Process Tree

SVC

Tree

- Knn
- Random forest
- Decision tree

MaxScalar

Preprocessing

- malizer
- OneHotEncoder
- StandardScalar
- **TfidfVectorizer**
- PCA

Hyperopt-sklearn - Comparison

Performance on different datasets in comparison with alternative approaches^[2]:

MNIST		20 Newsgroups		Convex Shapes	
Approach	Accuracy	Approach	F-Score	Approach	Accuracy
CNN	99.8%	Class-Feature-Centroid	0.928	hyperopt-sklearn	88.7%
hyperopt-sklearn	98.7%	hyperopt-sklearn	0.856	hp-deep-belief-net	84.6%
libSVM grid search	98.6%	SVMTorch	0.848	deep-belief-net-3	81.4%
Boosted trees	98.5%	LibSVM	0.843	167/2	-4-8-8

Questions

Thanks for your attention!

- [1] Frazier, P. (2018): A Tutorial on Bayesian Optimization
- [2] Komer et al. (2014): Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn
- [3] Bischl (2018): Lecture Material on Predictive Modelling
- [4] Bergstra et al. (2011): Algorithms for Hyper-Parameter Optimization
- [5] Dewancker et al. (2019): Bayesian Optimization Primer

