Approche fonctionnelle de la couverture

Dans ce TP, on cherche à déterminer la stratégie de couverture d'une option sans calculer son delta à chaque date de rebalancement par une méthode approchée.

Soit un modèle de Black-Scholes à d actifs

$$dS_t^{\ell} = S_t^{\ell}(rdt + \sigma^{\ell}L^{\ell}dW_t),$$

où W est un mouvement brownien standard dans \mathbb{R}^d , L^ℓ désigne la ligne ℓ de la matrice L définie par $LL^T = \Gamma$, où Γ est la matrice de corrélation entre les différents sous-jacents. Soit \mathcal{F} la filtration naturelle de W. On remarquera que \mathcal{F} est également la filtration naturelle de S.

Considérons une option européenne de maturité T et de payoff Z_T , supposé \mathcal{F}_T -adapté. Soit V la valeur d'un portefeuille auto-finançant répliquant Z_T . Notons \mathbb{H} l'ensemble des martingales de carré intégrable. On sait que $(e^{-rt} V_t)_{0 \le t \le T}$ est une martingale et réalise donc l'optimum dans le problème de minimisation

$$\inf_{M \in \mathbb{H}} \mathbb{E}\left[\left| e^{-rT} Z_T - M_T \right|^2 \right] \tag{1}$$

puisque $V_T = Z_T$.

On note \tilde{S} la valeur actualisée de S, $\tilde{S}_t = e^{-rt} S_t$ pour tout $t \in [0, T]$. Soit $0 = t_0 < \cdots < t_N = T$ la grille des dates de rebalancement du portefeuille approché que l'on souhaite mettre en œuvre. Il est alors naturel de considérer le sous-espace \mathbb{H}_N des transformées de martingale discrètes de \tilde{S} sur cette grille

$$\mathbb{H}_{N} = \left\{ M \in \mathbb{H} : \Delta M_{i} = \varphi_{i}(S_{t_{i-1}}) \cdot \Delta \tilde{S}_{i}, \, \varphi_{i} : \mathbb{R}^{d} \to \mathbb{R}^{d} \text{ t.q. } \mathbb{E}[\left|\varphi_{i}(S_{t_{i-1}})\right|^{2}] < \infty, \forall 1 \leq i \leq N \right\}$$

où l'opérateur Δ est défini par $\Delta X_i = X_{t_i} - X_{t_{i-1}}$ pour $i \in \{1, \dots, N\}$. On approche le problème (1) par

$$\inf_{M \in \mathbb{H}_N} \mathbb{E}\left[\left|e^{-rT} Z_T - M_T\right|^2\right] \tag{2}$$

L'espace \mathbb{H}_N correspond à l'ensemble des stratégies de couverture à temps discret utilisant uniquement les actifs S. Nous allons maintenant restreindre l'ensemble des fonctions φ que l'on va considérer par la suite.

Considérons une famille de fonctions $u_1, \ldots, u_P : \mathbb{R}^d \to \mathbb{R}$ telles que pour tout $i \in \{1, \ldots, N\}$, et tout $p \in \{1, \ldots, P\}$, $\mathbb{E}[|u_p(S_{t_{i-1}})|^2] < \infty$. Soit \mathcal{U} l'espace produit vectoriel engendré par les fonctions u_1, \ldots, u_P et $\mathcal{U}^{\otimes d}$ l'espace produit des fonctions à valeurs dans \mathbb{R}^d dont chaque composante est un élément de \mathcal{U} , $\mathcal{U}^{\otimes d} = \prod_{\ell=1}^d \mathcal{U}$. On introduit le sous-espace $\mathbb{H}_{N,\mathcal{U}}$ de \mathbb{H}_N défini par

$$\mathbb{H}_{N,\mathcal{U}} = \left\{ M \in \mathbb{H} : \Delta M_i = \varphi_i(S_{t_{i-1}}) \cdot \Delta \tilde{S}_i, \, \varphi_i \in \mathcal{U}^{\otimes d}, \forall i \in \{1, \dots, N\} \right\}.$$

Remarquons qu'un élément $\varphi \in \mathcal{U}$ s'écrit de manière unique sous la forme $\varphi = \sum_{p=1}^{P} \alpha_p u_p = \alpha \cdot U$ avec $\alpha \in \mathbb{R}^P$ et $U = (u_1, \dots, u_P)^T$. De même une martingale $M \in \mathcal{U}_{N,\mathcal{U}}$ vérifie pour tout $i \in \{1, \dots, N\}$

$$\Delta M_i = \sum_{\ell=1}^d \left(\sum_{p=1}^P \alpha_{i,\ell,p} u_p^{\ell}(S_{t_{i-1}}) \right) \Delta \tilde{S}_i^{\ell} = \sum_{\ell=1}^d \left(\alpha_{i,\ell} \cdot U^{\ell}(S_{t_{i-1}}) \right) \Delta \tilde{S}_i^{\ell}$$

où $\Delta \tilde{S}_i^{\ell}$ est la composante ℓ de l'incrément vectoriel $\Delta \tilde{S}_i$, $U^{\ell} = (u_1^{\ell}, \dots, u_P^{\ell})^T$. Pour des commodités de notation, on identifiera $(\alpha_{i,1}, \dots, \alpha_{i,d}) \in \mathbb{R}^P$ à un élément $\alpha_i \in \mathbb{R}^{d \times P}$. Il est alors naturel de considérer le problème d'optimisation en dimension finie

$$\inf_{\alpha_1,\dots,\alpha_N\in\mathbb{R}^{d\times P}} \mathbb{E}\left[\left|e^{-rT}Z_T - \sum_{i=1}^N \sum_{\ell=1}^d \alpha_{i,\ell} \cdot U^{\ell}(S_{t_{i-1}})\Delta \tilde{S}_i^{\ell}\right|^2\right]. \tag{3}$$

1. Soit une martingale $M \in \mathbb{H}$, montrer que

$$\mathbb{E}\left[\left|Z_{T} e^{-rT} - \sum_{i=1}^{N} \Delta M_{i}\right|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{N} \left|Z_{T} e^{-rT} - \Delta M_{i}\right|^{2}\right] - (N-1)\mathbb{E}[(Z_{T} e^{-rT})^{2}].$$

2. En déduire que trouver $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^{d \times P}$ est solution de (3) si et seulement si $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^{d \times P}$ est solution de

$$\inf_{\alpha_1,\dots,\alpha_N\in\mathbb{R}^{d\times P}} \mathbb{E}\left[\sum_{i=1}^N \left| e^{-rT} Z_T - \sum_{\ell=1}^d \alpha_{i,\ell} \cdot U^{\ell}(S_{t_{i-1}}) \Delta \tilde{S}_i^{\ell} \right|^2 \right].$$

3. Montrer que si pour tout $i \in \{1, ..., N\}$, α_i est solution de

$$\inf_{\alpha_i \in \mathbb{R}^{d \times P}} \mathbb{E} \left[\left| e^{-rT} Z_T - \sum_{\ell=1}^d \alpha_{i,\ell} \cdot U^{\ell}(S_{t_{i-1}}) \Delta \tilde{S}_i^{\ell} \right|^2 \right], \tag{4}$$

alors $\alpha_1, \dots, \alpha_N \in \mathbb{R}^{d \times P}$ est solution de (3).

Dans la suite, on considère une option d'achat en dimension d=1

$$(S_T-K)_{\perp}$$
.

On pourra prendre $S_0 = 100$, $\sigma = 0.2$, T = 2, K = 100. Pour la famille de fonctions u_1, \ldots, u_P , on choisit des fonctions à supports disjoints, constantes sur leur support. Soit M > 0, les fonctions u_p sont définies par $u_p = \mathbf{1}_{\{[-M+2M\frac{p-1}{P}, -M+2M\frac{p}{P}]\}}$. La suite de problèmes (4) se simplifie alors en

$$\inf_{\alpha_i \in \mathbb{R}^{\times P}} \mathbb{E}\left[\left|e^{-rT} Z_T - \alpha_i \cdot U(S_{t_{i-1}}) \Delta \tilde{S}_i\right|^2\right]. \tag{5}$$

En pratique, on introduit une approximation Monte Carlo de ce problème de minimisation. Soit $(S^{(q)}, Z^{(q)})_{q\geq 0}$ des tirages iid selon de la du couple S, Z, on considère le problème approché

$$\inf_{\alpha_i \in \mathbb{R}^{\times P}} \sum_{q=1}^{Q} \left| e^{-rT} Z_T^{(q)} - \alpha_i \cdot U(S_{t_{i-1}}^{(q)}) \Delta \tilde{S}_i^{(q)} \right|^2.$$
 (6)

- 4. Montrer que pour tout $i \in \{1, ..., N\}$, α_i solution de (5) s'exprime comme la solution d'un système linéaire.
- 5. Récupérer le squelette disponible sur gitlab et le compiler. La classe LocalAssetStochasticIntegral implémente la résolution du problème de minimisation (4) en utilisant l'espace de martingale $\mathbb{H}_{N,\mathcal{U}}$ avec des fonctions à support disjoint, constantes sur leur support. Comprendre le code de la fonction ILocalStochasticIntegral::fit.

6. Prendre $Q=10^6$. Tracer un histogramme de l'erreur de couverture pour des pas de rebalancement différents, N=13,26,52,104. Le code se lance avec la commande

functional-hedge --infile dat/call-13.json -n 50000 --pnlfile pnl.txt

Le paramètre -n indique le nombre de simulations de l'erreur de couverture.