CPU Architecture

Task 1 report

ALU Design with VHDL

תוכן עניינים

3	הגדרת תכנון המערכת
5	תיאור הרכיבים
6	תיאור הבדיקות
11	File based simulation of DUT

הגדרת תכנון המערכת

התבקשנו לכתוב תיאור חומרה למערכת הבאה:

מורכב מ: ALU בסיסי, עם רגיסטרים בכניסה וביציאה שלו. ה-ALU מורכב מ

- 1. יחידה אריתמטית המבצעת פעולות מתמטיות.
- . יחידת הוזה shift המבצעת פעולות הוזה שונות.
- .shift unit-בין האריתמטית ל-Selector בין היחידה האריתמטית ל-3

Cin-ניט סPCODE באורך ברירת מחדל אל B,A באורך ברירת פורך אורך פור המערכת מקבלת שני Input המערכת מקבלת שני התואמת ל-PCODE לרגיסטר RES המורכב משני רגיסטרים באורך ומוציאה את תוצאות הפעולה התואמת ל-OPCODE לרגיסטר (LOW ו-HIGH).

דרישות נוספות:

- השכבה העליונה של ה-ALU צריכה להיות
- שניתנו עם המשימה. top יש להשתמש בקבצים oux_package
- יש להשתמש במודול אחד של כפל ומודול אחד של חיבור-חיסור בלבד.
 - . נדרש לכתוב Test Bench למערכת כולה.

תרשים המערכת:

Figure 1: Overall DUT structure

Figure 2: ALU structure

מיבורים:

. ערוצי הכניסה בעלי n ביטים כל אחד – $A,\,B$

.(carry) כניסה של ביט נוסף -Cin

: בחירת הפעולה שתתבצע על הכניסות הנקבעת באופן הבא -OPCODE

Instruction	Opcode	pcode Operation Note		
ADD	00001	RES(HI,LO) = A + B	As in lab1 requirement (see FAQ file)	
SUB	00010	RES(HI,LO) = A - B	As in lab1 requirement (see FAQ file)	
ADDC	00011	RES(HI,LO) = A + B + Cin	As in lab1 requirement (see FAQ file)	
MULT	00100	RES(HI,LO) = A*B	Multiply two integer unsigned numbers	
			(Result is N*2 bits)	
MAC	00101	ACC= ACC+A*B	Multiply Accumulate (MAC is internal N*2	
		RES(HI,LO) = ACC	bits register) integer unsigned numbers	
MAC_RST	00110	MAC=0	Reset MAC	
MAX	00111	RES(0,LO) = Max(A,B)	maximum between A and B	
MIN	01000	RES(0,LO) = Min(A,B)	A,B) minimum between A and B	
AND	01001	RES(0,LO) = AND (A,B) Bitwise operation		
OR	01010	RES(0,LO) = OR(A,B)	Bitwise operation	
XOR	01011	RES(0,LO) = XOR(A,B)	Bitwise operation	
RLA	01100	RES(0,LO) = rotation result	Rotate left A arithmetically B(20) times	
RLC	01101	RES(0,LO) = rotation result	Rotate left A through carry B(20) times	
RRA	01110	RES(0,LO) = rotation result	Rotate right A arithmetically B(20) times	
RRC	01111	RES(0,LO) = rotation result	Rotate right A through carry B(20) times	

Table 1 : ALU Op Codes

. ערוצי ביטים n ביטים כל אחד. - Hi, Low

ביטים האחרונה Carry ו-Zero של ביטים ביטים ביטים ביטים - Status של הפעולה שהתבצעה:

Status	Condition	Indicator
Flag Name		(status ₁ , status ₀) ₂
С	Last OP produces carry	01
Z	Last OP result is zero	10
	Last OP produces both (C&Z)	11
	else	00

Table 2 : Status Bus

תיאור הרכיבים

לפי הגדרת המשימה הגדרנו את המודולים ותתי המודולים הבאים (מסודרים לפי היררכיית השכבות):

aux_package	top				
	ALU				
	Selector	Shift_Unit		Arithmetic_Logic_Unit	
		RRA	RLA	Adder_Substructor	
		Yblock	Yblock	FA	
		MUX2	MUX2	IA	

הערות – לגבי המודולים ממעבדה 1:

• מודול ה- Yblock כתוב בצורה גנרית ומתאר שכבה אחת ברכיב ה-shifter (כמתואר בדרישות המעבדה הראשונה) כלומר עמודה כזו:

.2 \rightarrow 1 מתאר מרבב MUX2 מחדול ה-FA מתאר רכיב Full Adder מתאר לשני מודול -

תיאור הלוגיקה של המודולים בעמוד הבא

תיאור הבדיקות

File based simulation of DUT

כתבנו מודול tb היוצר מקובץ ה-input.txt סימולציה למערכת.

בקובץ ה-input הכנסנו תרחישים לכל הפקודות השונות אותן המערכת צריכה לבצע (כל הopcodeים), וכן מקרי קצה.

כלומר הוא מכיל ערכים לכל הקלטים של המערכת. כמו כן המודול tb כותב את הפלטים לקובץ output.txt.

:wave form ניתוח תוצאות הסימולציה בתצוגת

:XOR ,OR ,AND ,MIN ,MAX ,MULT ,ADDC ,SUB ,ADD בדיקת הפעולות

:MAC, MAC_RST בדיקת הפעולות

:RLA, RRA, RRC, RLC בדיקת הפעולות

