Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

16 de novembro de 2011

1 Resultados Preliminares

Vamos chamar o conjunto das matrizes $m \times n$ cujas entradas são números complexos de $\mathcal{M}_{mn}(\mathbb{C})$. Para uma matriz $A = (a_{ij}) \in \mathcal{M}_{mn}(\mathbb{C})$, definimos o **conjugado da matriz** A, denotado por \overline{A} como sendo a matriz $B = (b_{ij}) \in \mathcal{M}_{mn}(\mathbb{C})$ dada por $b_{ij} = \overline{a}_{ij}$, em que, se $a_{ij} = a_{ij} + i\beta_{ij}$, então $\overline{a}_{ij} = a_{ij} - i\beta_{ij}$.

Para as matrizes de $\mathcal{M}_{mn}(\mathbb{C})$ além das propriedades que são válidas para matrizes com entradas que são números reais, são válidas as seguintes propriedades, cuja demonstração deixamos a cargo do leitor:

(p) Se $A \in \mathcal{M}_{mp}(\mathbb{C})$ e $B \in \mathcal{M}_{pn}(\mathbb{C})$, então

$$\overline{AB} = \overline{A} \, \overline{B}.$$

(q) Se $A \in \mathcal{M}_{mn}(\mathbb{C})$ e $\alpha \in \mathbb{C}$, então

$$\overline{\alpha A} = \overline{\alpha} \overline{B}$$
.

Definição 1. Para cada inteiro positivo n, o **espaço (vetorial)** \mathbb{C}^n é definido pelo conjunto de todas as n-uplas ordenadas $X = (x_1, \dots, x_n)$ de números reais.

Definição 2. (a) Definimos o **produto escalar ou interno** de dois vetores $X = (x_1, ..., x_n) \in \mathbb{C}^n$ e $Y = (y_1, ..., y_n) \in \mathbb{C}^n$ por

$$X \cdot Y = x_1 \overline{y}_1 + x_2 \overline{y}_2 + \ldots + x_n \overline{y}_n = \sum_{i=1}^n x_i \overline{y}_i.$$

(b) Definimos a **norma** de um vetor $X = (x_1, ..., x_n) \in \mathbb{C}^n$ por

$$||X|| = \sqrt{X \cdot X} = \sqrt{|x_1|^2 + \ldots + |x_n|^2} = \sqrt{\sum_{i=1}^n |x_i|^2}.$$

Escrevendo os vetores como matrizes colunas, o produto interno de dois vetores

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \text{e} \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

pertencentes a \mathbb{C}^n pode ser escrito em termos do produto de matrizes como

$$X \cdot Y = X^t \overline{Y}$$
.

São válidas as seguintes propriedades para o produto escalar e a norma de vetores de \mathbb{C}^n que são análogas àquelas que são válidas para vetores de \mathbb{R}^n .

Proposição 1. Se X, Y e Z são vetores de \mathbb{C}^n e $\alpha \in \mathbb{C}$, então

- (a) $X \cdot Y = \overline{Y \cdot X}$;
- (b) $(X + Y) \cdot Z = X \cdot Z + Y \cdot Z e X \cdot (Y + Z) = X \cdot Y + X \cdot Z$ (distributividade em relação à soma);
- (c) $(\alpha X) \cdot Y = \alpha (X \cdot Y) e X \cdot (\alpha Y) = \overline{\alpha} (X \cdot Y);$
- (d) $X \cdot X = ||X||^2 \ge 0$ e ||X|| = 0 se, e somente se, $X = \overline{0}$;
- (e) $||\alpha X|| = |\alpha| ||X||$;
- (f) $|X \cdot Y| \le ||X||||Y||$ (designaldade de Cauchy-Schwarz);
- (g) $||X + Y|| \le ||X|| + ||Y||$ (designaldade triangular).

Demonstração. Sejam $X, Y, Z \in \mathbb{C}^n$ e $\alpha \in \mathbb{C}$. Usando o fato de que se os vetores são escritos como matrizes colunas, então o produto escalar pode ser escrito como o produto de matrizes, $X \cdot Y = X^t \overline{Y}$, e as propriedades da álgebra matricial, temos que

(a)
$$X \cdot Y = x_1 \overline{y}_1 + x_2 \overline{y}_2 + \ldots + x_n \overline{y}_n = \overline{y_1 \overline{x}_1 + \cdots + y_n \overline{x}_n} = \overline{Y \cdot X}$$
.

(b)
$$(X+Y) \cdot Z = (X+Y)^t \overline{Z} = X^t \overline{Z} + Y^t \overline{Z} = X \cdot Z + Y \cdot Z e$$

 $X \cdot (Y+Z) = X^t (\overline{Y+Z}) = X^t \overline{Y} + X^t \overline{Z} = X \cdot Y + X \cdot Z.$

(c)
$$\alpha(X \cdot Y) = \alpha(X^t \overline{Y}) = (\alpha X^t) \overline{Y} = (\alpha X)^t \overline{Y} = (\alpha X) \cdot Y e$$

 $\alpha(X \cdot Y) = \alpha(X^t \overline{Y}) = X^t (\alpha \overline{Y}) = X^t (\overline{\alpha} \overline{Y}) = X \cdot (\overline{\alpha} Y)$

- (d) $X \cdot X$ é uma soma de quadrados, por isso é sempre maior ou igual a zero e é zero se, e somente se, todas as parcelas são iguais a zero.
- (e) $||\alpha X||^2 = |\alpha x_1|^2 + \dots + |\alpha x_n|^2 = |\alpha|^2(|x_1|^2 + \dots + |x_n|^2) = |\alpha|^2||X||^2$. Tomando a raiz quadrada, segue-se o resultado.
- (f) A norma de $X-\lambda Y$ é maior ou igual a zero, para qualquer λ complexo. Assim, $0\leq ||X-\lambda Y||^2=(X-\lambda Y)\cdot (X-\lambda Y)=||X||^2-\lambda Y\cdot X-\overline{\lambda}X\cdot Y+|\lambda|^2||Y||^2,$ para qualquer λ complexo. Tomando $\lambda=\frac{X\cdot Y}{||Y||^2}$ obtemos

$$0 \leq ||X||^2 - \frac{X \cdot Y}{||Y||^2} Y \cdot X - \frac{Y \cdot X}{||Y||^2} X \cdot Y + \frac{|X \cdot Y|^2}{||Y||^4} ||Y||^2 = ||X||^2 - \frac{|X \cdot Y|^2}{||Y||^2}$$

Logo, $|X \cdot Y| < ||X|| \, ||Y||.$

(g) Pelo item anterior temos que

$$||X + Y||^{2} = (X + Y) \cdot (X + Y) = ||X||^{2} + X \cdot Y + Y \cdot X + ||Y||^{2}$$

$$\leq ||X||^{2} + 2\Re(X \cdot Y) + ||Y||^{2}$$

$$\leq ||X||^{2} + 2||X \cdot Y| + ||Y||^{2}$$

$$\leq ||X||^{2} + 2||X||||Y|| + ||Y||^{2} = (||X|| + ||Y||)^{2}.$$

Tomando a raiz quadrada, segue-se o resultado.

Com o resultado anterior, podemos estender a definição de bases ortogonais e ortonormais para o espaço \mathbb{C}^n e provar, exatamente da mesma forma que é provado o resultado análogo para o \mathbb{R}^n (ver por exemplo [2]), o Teorema que garante que todo subespaço \mathbb{C}^n tem uma base ortonormal.

Teorema 2 (Gram-Schmidt). Seja $\{V_1, \ldots, V_k\}$ uma base de um subespaço \mathbb{W} de \mathbb{C}^n . Então, existe uma base $\{U_1, \ldots, U_k\}$ de \mathbb{W} que é ortonormal e tal que o subespaço gerado por U_1, \ldots, U_j é igual ao subespaço gerado por V_1, \ldots, V_j para $j = 1, \ldots, k$.

2 Resultados Principais

Teorema 3 (Schur). Se A é uma matriz $n \times n$ com entradas que são números complexos, então existe uma matriz unitária P (isto é, $\overline{P}^t = P^{-1}$) e uma matriz triangular superior T tal que

$$A = PT\overline{P}^t$$
.

Demonstração. O resultado é obvio se n=1. Vamos supor que o resultado seja verdadeiro para matrizes $(n-1)\times (n-1)$ e vamos provar que ele é verdadeiro para matrizes $n\times n$. Como todo polinômio com coeficientes complexos tem uma raiz, a matriz A tem um autovalor $\lambda_1\in\mathbb{C}$. Isto significa que existem autovetores associados a λ_1 . Seja V_1 um autovetor de norma igual a 1 associado a λ_1 . Sejam V_2,\ldots,V_n vetores tais que $\{V_1,\ldots,V_n\}$ é uma base ortonormal de \mathbb{C}^n (isto pode ser conseguido aplicando-se o processo de ortogonalização de Gram-Schmidt a uma base de \mathbb{C}^n que contenha V_1 .) Seja $P_1=[V_1\ldots V_n]$. Como $AV_1=\lambda_1V_1$ e AV_2,\ldots,AV_n são combinações lineares de V_1,\ldots,V_n , temos que

$$AP_1 = [AV_1 \dots AV_n] = [V_1 \dots V_n]M = P_1M,$$
 (1)

em que
$$M=\begin{bmatrix} \lambda_1 & M_2 \\ \hline 0 & \\ \vdots & B \\ 0 \end{bmatrix}$$
. Como estamos supondo o resultado verda-

deiro para matrizes $(n-1) \times (n-1)$, então existe uma matriz unitária \tilde{P}_2 e uma matriz triangular superior T_2 , ambas $(n-1) \times (n-1)$, tais que $B = \tilde{P}_2 T_2 \overline{\tilde{P}}_2^t$. Seja

$$AP = (AP_1)P_2 = P_1MP_2 = P_1 \begin{bmatrix} \lambda_1 & M_2\tilde{P}_2 \\ 0 & \vdots & B\tilde{P}_2 \\ 0 & & \end{bmatrix}$$

Mas, $B\tilde{P}_2 = \tilde{P}_2T_2$ e assim,

$$AP = P_1 \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \tilde{P}_2 & \\ 0 & & & \end{bmatrix} \begin{bmatrix} \frac{\lambda_1}{0} & M_2\tilde{P}_2 \\ 0 & & & \\ \vdots & & T_2 \\ 0 & & & \end{bmatrix} = P_1P_2 \begin{bmatrix} \frac{\lambda_1}{0} & M_2\tilde{P}_2 \\ 0 & & & \\ \vdots & & T_2 \\ 0 & & & \end{bmatrix} = PT,$$

em que
$$T=\begin{bmatrix} \lambda_1 & M_2\tilde{P}_2 \\ \hline 0 & \\ \vdots & T_2 \\ 0 \end{bmatrix}$$
. Multiplicando-se à direita por \overline{P}^t obtemos o resultado

tado.

diagonal D tal que

Teorema 4. Se A é uma matriz normal (isto é, $A\overline{A}^t = \overline{A}^t A$) $n \times n$ com entradas que são números complexos, então existe uma matriz unitária P (isto é, $\overline{P}^t = P^{-1}$) e uma matriz

$$A = PD\overline{P}^t$$
.

Demonstração. O resultado é obvio se n=1. Vamos supor que o resultado seja verdadeiro para matrizes $(n-1) \times (n-1)$ e vamos provar que ele é verdadeiro para matrizes $n \times n$. Como todo polinômio com coeficientes complexos tem uma raiz, então A matriz A tem um autovalor $\lambda_1 \in \mathbb{C}$. Isto significa que existem autovetores associados a λ_1 . Seja V_1 um autovetor de norma igual a 1 associado a λ_1 . Sejam V_2, \ldots, V_n vetores tais que $\{V_1, \ldots, V_n\}$ é uma base ortonormal de \mathbb{C}^n (isto pode ser conseguido aplicando-se o processo de ortogonalização de Gram-Schmidt a uma base de \mathbb{C}^n que contenha V_1 .) Seja $P_1 = [V_1 \dots V_n]$. Como $AV_1 = \lambda_1 V_1$ e AV_2, \dots, AV_n são combinações lineares de V_1, \ldots, V_n , temos que

$$AP_1 = [AV_1 \dots AV_n] = [V_1 \dots V_n]M = P_1M,$$
 (2)

em que
$$M=\left[\begin{array}{c|ccc} \lambda_1 & m_{12} & \dots & m_{1n} \\ \hline 0 & & & \\ \vdots & & B & \\ \end{array}\right]$$
. Multiplicando-se à esquerda (2) por \overline{P}_1^t obte-

 $mos M = \overline{P}_1^t A P_1. Mas,$

$$\overline{M}^t M = (P_1^t \overline{A} \overline{P}_1)^t (\overline{P}_1^t A P_1) = \overline{P}_1^t \overline{A}^t A^t P_1 = \overline{P}_1^t A^t \overline{A}^t P_1 = (\overline{P}_1^t A P_1) (\overline{P}_1^t \overline{A} P_1) = M \overline{M}^t,$$

ou seja, a matriz M é normal.

$$(M\overline{M}^t)_{11} = |\lambda_1|^2 + |m_{12}|^2 + \dots + |m_{1n}|^2,$$

enquanto

$$(\overline{M}^t M)_{11} = |\lambda_1|^2.$$

Portanto,

$$M = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & B & \\ 0 & & & \end{bmatrix}$$

com B uma matriz normal $(n-1) \times (n-1)$. Como estamos supondo o resultado verdadeiro para matrizes $(n-1) \times (n-1)$, então existe uma matriz unitária \tilde{P}_2 ,

$$(n-1)\times(n-1)$$
, tal que $D_2=\overline{\tilde{P}}_2^tB\tilde{P}_2$ é diagonal. Seja $P_2=egin{bmatrix}1&0&\dots&0\\0&&&\\\vdots&&&\tilde{P}_2&\\0&&&\end{bmatrix}$. Seja

 $P = P_1 P_2$. P é unitária (verifique!) e pela equação (2)

$$AP = (AP_1)P_2 = P_1MP_2 = P_1 \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & B\tilde{P}_2 & & \end{bmatrix}$$

Mas, $B\tilde{P}_2 = \tilde{P}_2D_2$ e assim,

$$AP = P_1 P_2 \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & D_2 & \\ 0 & & & \end{bmatrix} = PD,$$

em que
$$D=\left[\begin{array}{c|cc} \lambda_1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & D_2 & \\ 0 & & & \end{array}\right]$$
. Multiplicando-se à direita por \overline{P}^t obtemos o resultado.

Referências

- [1] Michael Artin. Algebra. Prentice Hall, New Jersey, 1991.
- [2] Reginaldo J. Santos. *Um Curso de Geometria Analítica e Álgebra Linear*. Imprensa Universitária da UFMG, Belo Horizonte, 2010.