Lecture 5: Statistical Inference

Heidi Perry, PhD

Hack University
heidiperryphd@gmail.com

3/8/2016

Overview

- Inference
- Central Limit Theorem
- Confidence Intervals
- 4 Hypothesis testing and p-values

Sampling

- A parameter is a number that describes a population (e.g. μ and σ in normal distribution.) It is impossible to know without measuring the whole population.
- A statistic is a number computed from a sample.
- Statistical inference provides a way to estimate the population parameter from the sample statistics and characterize the uncertainty.

Introduction to Inference

Make a statement about something that is *not observed*, and characterize uncertainty about that statement. Before making an inference:

- Identify and describe the population.
- ② Describe the sampling process.
- Oescribe a model for the population, complete with assumptions.

Example: A simple linear model

$$y = \beta_0 + \beta_1 x + \epsilon$$

x, y are features of population; β_0 , β_1 describe the relationship, ϵ is random, making this a statistical model

Central Limit Theorem

Central Limit Theorem

The mean of a large number (>30) of independent, identically distributed variables will be approximately normal, for all underlying distributions.

Standard Error

Standard error of an estimate

The standard deviation associated with an estimate. It describes the uncertainty associated with the estimate.

Given n independent observations from a population with standard deviation σ , the standard error of the sample mean is:

$$SE = \frac{\sigma}{\sqrt{n}}$$

Since we do not generally have the population standard deviation σ , we use the sample standard deviation s to estimate the standard error.

$$SE \approx \frac{s}{\sqrt{n}}$$

Exercise

 $Foundations\ for\ statistical\ inference\ -\ Sampling\ distributions.$

Confidence Intervals

- A confidence interval gives a range of possible values of a population parameter with a given level of confidence that the parameter is in the range.
- To use the normal distribution in defining a confidence interval, the sample distribution must be nearly normal:
 - The sample observations are independent (a simple random sample consisting of under 10% of the population can be assumed to be independent).
 - The sample size is large (\geq 30 is a good rule of thumb).
 - The population distribution is note strongly skewed (the larger the sample size, the more skew is okay).
- In a confidence interval, $z^* \times SE$ is the margin of error.

Confidence Intervals

95% Confidence Interval: point estimate \pm 1.96 \times *SE* 99% Confidence Interval: point estimate \pm 2.58 \times *SE* Generally, z^* chosen such that the area between $-z^*$ and z^* corresponds to the confidence level.

Graphic 4.10 in [Diez, 2016]

Exercise

Foundations for statistical inference - Confidence intervals

Hypothesis Testing

- Specify the null (H_0) and the alternate (H_A) hypothesis.
- Choose a sample.
- Assess the evidence.
- Draw conclusions.

p-value

p-value provides an estimate of how often the obtained result would occur by chance, if in fact the null hypothesis is true.

A result is statistically significant if it is unlikely to have occurred by chance alone.

Significance Level of a Test

- 1 The cut-off of what we consider to be "unlikely".
- **2** Commonly chosen to be $\alpha = 0.05$.
- **1** If p-value $< \alpha$, we reject the null hypothesis and accept the alternate hypothesis. If p-value $> \alpha$, we fail to reject the null hypothesis.

Truth

Exercise

Inference for numerical data

References

David Diez, Christopher Barr, & Mine Çetinkaya-Rundel (2015) OpenIntro Statistics, OpenIntro

Recommended Reading

OpenIntro Statistics, Chapters 4-6 Data Science from Scratch, Chapter 7 Art of Data Science, Chapter 6

Articles about p-values and p-hacking:

Statisticians Found One Thing They Can Agree On: Its Time To Stop Misusing P-Values Statisticians issue warning over misuse of P values I Fooled Millions into Thinking Chocolate Helps Weight Loss. Here's How.

You can't trust what you read about nutrition

Science Isn't Broken

Not Even Scientists Can Easily Explain P-values