Math 207C Homework #2

Ian Gallagher

April 17, 2025

Problem 1

Holmes # 1.8, 1.9, 1.16

(1.8) Find the first two terms in the expansion for the following functions:

(a)
$$f = \int_0^{\pi/4} \frac{dx}{\varepsilon^2 + \sin^2 x}$$
.

(b)
$$f = \int_0^1 \frac{\cos(\varepsilon x)}{\varepsilon + x} dx$$
.

(c)
$$f = \int_0^1 \frac{dx}{\varepsilon + x(x-1)}$$
.

(1.9) This problem derives an asymptotic approximation for the Stieltjes function, defined as

$$S(\varepsilon) = \int_0^\infty \frac{e^{-t}}{1 + \varepsilon t} dt.$$

- (a) Find the first three terms in the expansion of the integrand for small ε and explain why this requires that $t \ll 1/\varepsilon$.
- (b) Split the integral into the sum of an integral over $0 < t < \delta$ and one over $\delta < t < \infty$, where $1 \ll \delta \ll 1/\varepsilon$. Explain why the second integral is bounded by $e^{-\delta}$, and use your expansion in part (a) to find an approximation for the first integral. From this derive the following approximation:

$$S(\varepsilon) \sim 1 - \varepsilon + 2\varepsilon^2 + \cdots$$

(1.16) This problem derives asymptotic approximations for the complete elliptic integral, defined as

$$K(x) = \int_0^{\pi/2} \frac{ds}{\sqrt{1 - x \sin^2 s}}.$$

It is assumed that 0 < x < 1.

(a) Show that, for x close to zero,

$$K \sim \frac{\pi}{2} \left(1 + \frac{1}{4}x \right).$$

(b) Show that, for x close to one,

$$K \sim -\frac{1}{2}\ln(1-x).$$

(c) Show that, for x close to one,

$$K \sim -\frac{1}{2} \left[1 + \frac{1}{4} (1 - x) \right] \ln(1 - x).$$

1

Math 207C Homework Ian Gallagher

Problem 2

Use integration by parts to find asymptotic expansion for large x of the following integrals:

(i)
$$\int_{1}^{\infty} e^{-xt}/t^n dt$$
, $n \in \mathbb{N}$.

(ii)
$$\int_0^1 e^{ixt} t^{-1/2} dt$$
.

Problem 3

This exercise examines Laplace's method carefully as applied to

$$I_n(x) = \int_0^{\pi} e^{x \cos t} \cos(nt) dt, \quad x \to \infty.$$

(i) Show that

$$I(x) \sim \int_0^{\epsilon} e^{x \cos t} \cos(nt) dt$$

for any fixed $\epsilon > 0$.

(ii) Prove that

$$\int_0^{\epsilon} e^{x \cos t} \cos(nt) dt \sim \int_0^{\epsilon} e^{x(1-t^2)} dt, \quad \epsilon > 0$$

by breaking up the range of integration $[0,\epsilon)$ into $[0,x^{-\alpha}]$ and $[x^{-\alpha},\epsilon]$ with $\alpha\in(1/4,1/2)$ and showing

$$\cos(nt)e^{x\cos t} \sim e^{x(1-t^2/2)}$$
 uniformly for all $t \in [0, x^{-\alpha}]$,

as $x \to \infty$ (Hint: $1 - t^2/2 \le \cos t \le 1 - t^2/2 + t^4/4!$) and the integration range $[x^{-\alpha}, \epsilon]$ has an exponentially smaller contribution to the integral.

(iii) What's wrong with the result if you approximate $\cos t$ by 1 and $\cos(nt)$ by 1 for $t \in [0, \epsilon]$?