

Quad Low-Offset, Low-Power Operational Amplifier

OP-400

FEATURES

	Over -55°C to +125°C	1.2μV/°C Max
•	Low Supply Current (Per Amplifier)	725μA Max
•	High Open-Loop Gain	5000V/mV Min
•	Input Bias Current	3nA Max
•	Low Noise Voltage Density	11nV/ $\sqrt{\rm Hz}$ at 1kHz
•	Stable With Large Capacitive Loads.	10nF Typ
•	Pin Compatible to OP-11, LM148, HA	4741, RM4156, and
	LT1014 With Improved Performance	

Low Input Offset Voltage150µV Max

Available in Die Form

ORDERING INFORMATION [†]

Low Offset Voltage Drift,

T. = +25°C		PACKAGE						
V _{OS} MAX (mV)	CERDIP 14-PIN	PLASTIC	LCC 28-CONTACT	OPERATING TEMPERATURE RANGE				
150	OP400AY*	_	OP400ATC/883	MIL				
150	OP400EY	_	_	IND				
230	OP400FY	_	_	IND				
300	_	OP400GP	_	COM				
300	_	OP400GS ^{††}	_	COM				
300	_	OP400HP	_	XIND				
300		OP400HS ^{††}	_	XIND				

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.
- †† For availability and burn-in information on SO and PLCC packages, contact your local sales office.

GENERAL DESCRIPTION

The OP-400 is the first monolithic quad operational amplifier that features OP-77 type performance. Precision performance no longer has to be sacrificed to obtain the space and cost savings offered by quad amplifiers.

The OP-400 features an extremely low input offset voltage or less than $150\mu V$ with a drift of under $1.2\mu V/^{\circ}C$, guaranteed

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC (One of four amplifiers is shown.)

over the full military temperature range. Open-loop gain of the OP-400 is over 5,000,000 into a 10k Ω load; input bias current is under 3nA; CMR is above 120dB and PSRR below 1.8 μ V/V. On-chip zener-zap trimming is used to achieve the low input offset voltage of the OP-400 and eliminates the need for offset nulling. (The OP-400 conforms to the industry-standard quad pinout which does not have null terminals.)

The OP-400 features low power consumption, drawing less than $725\mu A$ per amplifier. The total current drawn by this quad amplifier is less than that of a single OP-07, yet the OP-400 offers significant improvements over this industry-standard op amp. Voltage noise density of the OP-400 is a low $11nV/\sqrt{Hz}$ at 10Hz which is half that of most competitive devices.

The OP-400 is pin compatible with the OP-11, LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems using these devices. The OP-400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical.

Supply Voltage	±20V
Differential Input Voltage	±30V
Input Voltage	
Output Short-Circuit Duration	Continuous
Storage Temperature Range	
P, TC, Y-Package	65°C to +150°C

Lead Temperature Range (Soldering 60 sec	
Junction Temperature (T _j) Operating Temperature Range	65°C to +150°C
Operating Temperature Range	
OP-400A	. –55°C to +125°C
OP-400E, OP-400F	25°C to +85°C
OP-400G	0°C to +70°C
OP-400H	40°C to +85°C

PACKAGE TYPE	⊖ _{jA} (Note 1)	e _{jc}	UNITS
14-Pin Hermetic DIP (Y)	94	10	°C/W
14-Pin Plastic DIP (P)	76	33	°C/W
28-Contact LCC (TC)	70	28	°C/W
16-Pin SOL (S)	88	23	°C/W

NOTES:

- O
 is specified for worst case mounting conditions, i.e., O
 is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; O
 is specified for device soldered to printed circuit board for SO package.
- Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25$ °C, unless otherwise noted.

			0	P-400A	/E	(P-400	F	0	P-4000	3/H	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}		_	40	150	_	60	230	_	80	300	μV
Long Term Input Voltage Stability			_	0.1	_	_	0.1	_	_	0.1	_	μV/mo
Input Offset Current	Ios	V _{CM} = 0V	_	0.1	1.0	_	0.1	2.0	_	0.1	3.5	nA
Input Bias Current	I _B	V _{CM} = 0V	_	0.75	3.0	_	0.75	6.0	-	0.75	7.0	nA
Input Noise Voltage	e _{n p-p}	0.1Hz to 10Hz		0.5	_	_	0.5	_	_	0.5	_	μV _{p-p}
Input Noise Voltage Density	en	$f_{O} = 10Hz$ $f_{O} = 1000Hz$ (Note 1)	_	22 11	36 18	_	22 11	36 18	_	22 11	_	nV/√ Hz
Input Noise Current	i _{n p-p}	0.1Hz to 10Hz	_	15	_	_	15	_	_	15		pA _{p-p}
Input Noise Current Density	ìn	f _O ≃ 10Hz	_	0.6	_	_	0.6		_	0.6	_	pA/√ Hz
Input Resistance Differential Mode	R _{IN}		_	10	_	_	10	_	_	10	_	MΩ
Input Resistance Common Mode	R _{INCM}		_	200	_	_	200	_	_	200	_	GΩ
Large Signal Voltage Gain	A _{VO}	$V_O = \pm 10V R_L = 10k\Omega$ $R_L = 2k\Omega$	5000 2000	12000 3500	_	3000 1500	7000 3000	_	3000 1500	7000 3000	_	V/mV

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25$ °C, unless otherwise noted. (Continued)

			OP-400A/E		(OP-400F		OP-400G/H				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Voltage Range	IVR	Note 3	±12	±13	_	<u>±</u> 12	±13	_	±12	±13	_	V
Common Mode Rejection	CMR	V _{CM} = ±12V	120	140	_	115	140	_	110	135		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	_	0.1	1.8	_	0.1	3.2		0.2	5.6	μV/V
Output Voltage		$R_1 = 10k\Omega$	±12	±12.6	_	±12	±12.6	_	±12	±12.6	_	
Swing	$V_{\rm O}$	$R_L = 2k\Omega$	±11	\pm 12.2		±11	± 12.2	_	±11	± 12.2		V
Supply Current Per Amplifier	I _{SY}	No Load	_	600	725	_	600	725	_	600	725	μΑ
Slew Rate	SR		0.1	0.15	_	0.1	0.15	_	0.1	0.15	_	V/µs
Gain Bandwidth Product	GBWP	A _V = +1	_	500	_	_	500	_	_	500	_	kHz
Channel Separation	CS	$V_{O} = 20V_{p-p}$ $f_{O} = 10Hz \text{ (Note 2)}$	123	135	_	123	135	_	123	135	-	dB
Input Capacitance	C _{IN}		_	3.2			3.2	_	_	3.2	-	pF
Capacitive Load Stability		$A_V = +1$ No Oscillations	_	10	_	_	10	_		10	_	nF

NOTES:

- 1. Sample tested.
- 2. Guaranteed but not 100% tested.
- 3. Guaranteed by CMR test.

$\textbf{ELECTRICAL CHARACTERISTICS} \text{ at } V_S = \pm 15 V, -55 ^{\circ} C \leq T_A \leq 125 ^{\circ} C \text{ for OP-400A, unless otherwise noted.}$

PARAMETER	SYMBOL	CONDITIONS	MIN	OP-400A	MAX	UNITS
Input Offset Voltage	V _{OS}			70	270	μV
Average Input Offset Voltage Drift	TCV _{OS}		_	0.3	1.2	μV/°C
Input Offset Current	Ios	V _{CM} = 0V		0.1	2.5	nA
Input Bias Current	I _B	V _{CM} = 0V	_	1.3	5.0	nA
Large Signal Voltage Gain	A _{VO}	$V_O = \pm 10V R_L - 10k\Omega$ $R_L = 2k\Omega$	3000 1000	9000 2300	<u>-</u>	V/mV
Input Voltage Range	IVR	Note 1	± 12	± 12.5	_	V
Common Mode Rejection	CMR	V _{CM} - ± 12V	115	130	_	dB
Power Supply Rejection Ratio	PSRR	V _S - + 3V to ± 18V	_	0.2	3.2	μV/V
Output Voltage Swing	Vo	$R_L = 10k\Omega$ $R_L - 2k\Omega$	± 12 ± 11	± 12.4 ± 12	_	V
Supply Current Per Amplifier	I _{SY}	No Load		600	775	μΑ
Capacitive Load Stability		A _V = +1 No Oscillations	_	8	_	nF

NOTE:

1. Guaranteed by CMR test.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $-25^{\circ}C \le T_A \le \pm 85^{\circ}C$ for OP-400E/F, $0^{\circ}C \le T_A \le +70^{\circ}C$ for OP-400G, $-40^{\circ}C \le T_A \le +85^{\circ}C$ for OP-400H, unless otherwise noted.

				OP-400	E		OP-400)F	0	P-4000	3/H	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	v _{os}		-	60	220	_	80	350	_	110	400	μV
Average Input Offset Voltage Drift	TCVos		_	0.3	1.2	_	0.3	2.0	_	0.6	2.5	μV/°C
Input Offset Current	l _{os}	V _{C M} ≠ 0V E, F, G Grades H Grade	- -	0.1	2.5 _	- -	0.1	3.5 -		0.2 0.2	6.0 12.0	nA
Input Bias Current	I _B	V _{CM} = 0V E, F, G Grades H Grade	_ _	0.9	5.0	-	0.9	10.0	- -	1.0	12.0 20.0	nA
Large-Signal Voltage Gain	A _{vo}	$V_{O} = \pm 10V$ $R_{L} = 10k\Omega$ $R_{L} = 2k\Omega$	3000 1500	10000 2700	- -	2000 1000	5000 2000	-	2000 1000	5000 2000	- -	V/mV
Input Voltage Range	IVR	(Note 1)	±12	±12.5	-	±12	±12.5	-	±12	±12.5	-	٧
Common-Mode Rejection	CMR	V _{CM} =±12V	115	135		110	135	_	105	130	_	dB
Power Supply Rejection Ratio	PSRR	V _S = ±3V to ±18V	-	0.15	3.2	_	0.15	5.6	_	0.3	10.0	μV/V
Output Voltage Swing	v _o	$R_{L} = 10k\Omega$ $R_{L} = 2k\Omega$	±12 ±11	±12.4 ±12		±12 ±11	±12.4 ±12	-	±12 ±11	±12.6 ±12.2	-	V
Supply Current Per Amplifier	Isy	No Load		600	775	_	600	775	-	600	775	μА
Capacitive Load Stability		A _V = +1 No Oscillations	_	10	_	_	10	-	-	10	_	nF

NOTE:

OP-400

Guaranteed by CMR test.

DICE CHARACTERISTICS

DIE SIZE 0.181 \times 0.123 inch, 22,263 sq. mils (4.60 \times 3.12 mm, 14.35 sq. mm)

1. OUT A	8. OUT C
2IN A	9IN C
3. +IN A	10. +IN C
4. V+	11. V-
5. +IN B	12. + IN D
6IN B	13IN D
7. OUT B	14. OUT D

WAFER TEST LIMITS at $V_S = \pm 15 V$, $T_A = \pm 25 ^{\circ} C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-400GBC	UNITS
Input Offset Voltage	V _{OS}	-	230	μV MAX
Input Offset Current	Ios	V _{CM} = 0V	2	nA MAX
Input Bias Current	I _B	V _{CM} = 0V	6	nA MAX
Large Signal Voltage Gain	A _{VO}	$V_{O} = \pm 10V R_{L} = 10k\Omega$ $R_{L} = 2k\Omega$	3000 1500	V/mV MIN
Input Voltage Range	IVR	Note 1	±12	V MIN
Common Mode Rejection	CMR	V _{CM} = ±12V	115	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	3.2	μV/V MAX
Output Voltage Swing	V _O	$R_L = 10k\Omega$ $R_L = 2k\Omega$	±12 ±11	V MIN
Supply Current Per Amplifier	I _{SY}	No Load	725	μΑ ΜΑΧ

NOTES:

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

^{1.} Guaranteed by CMR test.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

OPEN-LOOP GAIN AND

TYPICAL PERFORMANCE CHARACTERISTICS

SHORT-CIRCUIT CURRENT

VS TIME

TA = 25°C

VS = ±15V

SINKING

SOURCING

1 2 3 4 E

TIME (MINUTES)

LARGE-SIGNAL
TRANSIENT RESPONSE

T_A = 25°C
V_S = ±15V
A_V = +1

SMALL-SIGNAL

NOISE TEST SCHEMATIC

BURN-IN CIRCUIT

APPLICATIONS INFORMATION

The OP-400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP-400.

Total supply current can be reduced by connecting the inputs of an unused amplifier to V-. This turns the amplifier off, lowering the total supply current.

APPLICATIONS

DUAL LOW-POWER INSTRUMENTATION AMPLIFIER

A dual instrumentation amplifier that consumes less than 33mW of power per channel is shown in Figure 1. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115dB (Gain = 1000). Offset voltage drift is typically $0.4\mu\text{V/}^{\circ}\text{C}$ over the military temperature range

which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low-power instrumentation amplifier is a function of gain and is shown below:

GAIN	BANDWIDTH
5	150kHz
10	67kHz
100	7.5kHz
1000	500Hz

The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from -10V to +10V if required.

FIGURE 1: Dual Low-Power Instrumentation Amplifier

FIGURE 2: Bipolar Current Transmitter

BIPOLAR CURRENT TRANSMITTER

In the circuit of Figure 2, which is an extension of the standard three op-amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is $\pm 5 \text{mA}$ with voltage compliance equal to $\pm 10 \text{V}$ when using $\pm 15 \text{V}$ supplies. Output impedance of the current transmitter exceeds $3 M \Omega$ and linearity is better than 16 bits with gain set for a full scale input of $\pm 100 \mu \text{V}$.

DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER

The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at \pm 15V, to a maximum of $24V_{p-p}$. The differential output instrumentation amplifier of Figure 3 can provide an output voltage swing of $48V_{p-p}$ when operated with \pm 15V supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs will swing $24V_{p-p}$ but with opposite polarity, for a total output voltage swing of $48V_{p-p}$. The reference input can be used to set a common-mode output voltage over the range \pm 10V. PSRR of the amplifier is less than $1\mu V/V$ with CMRR (Gain = 1000) better than 115dB. Offset voltage drift is typically $0.4\mu V/^{\circ} C$ over the military temperature range.

FIGURE 3: Differential Output Instrumentation Amplifier

MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE

Figure 4 shows a circuit that provides outputs of 10V, 7.5V, 5V, and 2.5V for use as a system voltage reference. Maximum output current from each reference is 5mA with load regulation under $25\mu\text{V/mA}$. Line regulation is better than $15\mu\text{V/V}$

and output voltage drift is under $20\mu\text{V/°C}$. Output voltage noise from 0.1Hz to 10Hz is typically $75\mu\text{V}_{p-p}$ from the 10V output and proportionately less from the 7.5V, 5V, and 2.5V outputs.

FIGURE 4: Multiple-Output Tracking Voltage Reference

