The subgradient method

Acknowledgement: slides are based on Prof. Lieven Vandenberghes.

- subgradient method
- convergence analysis
- \bullet optimal step size when f^{\ast} is known
- alternating projections
- optimality

Subgradient method

to minimize a nondifferentiable convex function f: choose $x^{(0)}$ and repeat

$$x^{(k)} = x^{(k-1)} - t_k g^{(k-1)}, \quad k = 1, 2, \dots$$

 $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

Step size rules

• fixed step: t_k constant

• fixed length: $t_k ||g^{(k-1)}||_2 = ||x^{(k)} - x^{(k-1)}||_2$ is constant

• diminishing: $t_k \to 0$, $\sum_{k=1}^{\infty} t_k = \infty$

Assumptions

- f has finite optimal value f^* , minimizer x^*
- f is convex, $dom f = \mathbf{R}^n$
- f is Lipschitz continuous with constant G > 0:

$$|f(x) - f(y)| \le G||x - y||_2 \qquad \forall x, y$$

this is equivalent to $||g||_2 \leq G$ for all x and $g \in \partial f(x)$ (see next page)

Proof.

• assume $||g||_2 \leq G$ for all subgradients; choose $g_y \in \partial f(y)$, $g_x \in \partial f(x)$:

$$g_x^T(x-y) \ge f(x) - f(y) \ge g_y^T(x-y)$$

by the Cauchy-Schwarz inequality

$$|G||x - y||_2 \ge f(x) - f(y) \ge -G||x - y||_2$$

• assume $||g||_2 > G$ for some $g \in \partial f(x)$; take $y = x + g/||g||_2$:

$$f(y) \ge f(x) + g^{T}(y - x)$$

$$= f(x) + ||g||_{2}$$

$$> f(x) + G$$

Analysis

- the subgradient method is not a descent method
- the key quantity in the analysis is the distance to the optimal set

with
$$x^{+} = x^{(i)}$$
, $x = x^{(i-1)}$, $g = g^{(i-1)}$, $t = t_i$:
$$||x^{+} - x^{\star}||_{2}^{2} = ||x - tg - x^{\star}||_{2}^{2}$$

$$= ||x - x^{\star}||_{2}^{2} - 2tg^{T}(x - x^{\star}) + t^{2}||g||_{2}^{2}$$

$$\leq ||x - x^{\star}||_{2}^{2} - 2t(f(x) - f^{\star}) + t^{2}||g||_{2}^{2}$$

combine inequalities for $i=1,\ldots,k$, and define $f_{\mathrm{best}}^{(k)}=\min_{0\leq i\leq k}f(x^{(i)})$:

$$2(\sum_{i=1}^{k} t_i)(f_{\text{best}}^{(k)} - f^*) \leq \|x^{(0)} - x^*\|_2^2 - \|x^{(k)} - x^*\|_2^2 + \sum_{i=1}^{k} t_i^2 \|g^{(i-1)}\|_2^2$$
$$\leq \|x^{(0)} - x^*\|_2^2 + \sum_{i=1}^{k} t_i^2 \|g^{(i-1)}\|_2^2$$

Fixed step size: $t_i = t$

$$f_{\text{best}}^{(k)} - f^* \le \frac{\|x^{(0)} - x^*\|_2^2}{2kt} + \frac{G^2t}{2}$$

- ullet does not guarantee convergence of $f_{
 m best}^{(k)}$
- for large k, $f_{\mathrm{best}}^{(k)}$ is approximately $G^2t/2$ -suboptimal

Fixed step length: $t_i = s/||g^{(i-1)}||_2$

$$f_{\text{best}}^{(k)} - f^* \le \frac{G||x^{(0)} - x^*||_2^2}{2ks} + \frac{Gs}{2}$$

- does not guarantee convergence of $f_{\mathrm{best}}^{(k)}$
- for large k, $f_{\mathrm{best}}^{(k)}$ is approximately Gs/2-suboptimal

Diminishing step size: $t_i \to 0$, $\sum_{i=1}^{\infty} t_i = \infty$

$$f_{\text{best}}^{(k)} - f^* \le \frac{\|x^{(0)} - x^*\|_2^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$$

can show that $(\sum_{i=1}^k t_i^2)/(\sum_{i=1}^k t_i) \to 0$; hence, $f_{\text{best}}^{(k)}$ converges to f^*

Example: 1-norm minimization

minimize
$$||Ax - b||_1$$

- subgradient is given by $A^T \operatorname{sign}(Ax b)$
- example with $A \in \mathbf{R}^{500 \times 100}$, $b \in \mathbf{R}^{500}$

Fixed steplength $t_k = s/\|g^{(k-1)}\|_2$ for s = 0.1, 0.01, 0.001

Diminishing step size: $t_k = 0.01/\sqrt{k}$ and $t_k = 0.01/k$

Optimal step size for fixed number of iterations

from page 5-5: if $s_i = t_i \|g^{(i-1)}\|_2$ and $\|x^{(0)} - x^*\|_2 \le R$:

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + \sum_{i=1}^k s_i^2}{2\sum_{i=1}^k s_i/G}$$

- $\bullet \;$ for given k, bound is minimized by fixed step length $s_i = s = R/\sqrt{k}$
- resulting bound after k steps is

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{GR}{\sqrt{k}}$$

 $\bullet \,$ guarantees accuracy $f_{\mathrm{best}}^{(k)} - f^\star \leq \epsilon \text{ in } k = O(1/\epsilon^2)$ iterations

Optimal step size when f^* is known

right-hand side in first inequality of page 5-5 is minimized by

$$t_i = \frac{f(x^{(i-1)}) - f^*}{\|g^{(i-1)}\|_2^2}$$

optimized bound is

$$\frac{\left(f(x^{(i-1)}) - f^{\star}\right)^{2}}{\|g^{(i-1)}\|_{2}^{2}} \le \|x^{(i-1)} - x^{\star}\|_{2}^{2} - \|x^{(i)} - x^{\star}\|_{2}^{2}$$

• applying recursively (with $\|x^{(0)}-x^\star\|_2 \leq R$ and $\|g^{(i)}\|_2 \leq G$) gives

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{GR}{\sqrt{k}}$$

Exercise: find point in intersection of convex sets

find a point in the intersection of m closed convex sets C_1, \ldots, C_m :

minimize
$$f(x) = \max\{f_1(x), ..., f_m(x)\}$$

where $f_j(x) = \inf_{y \in C_j} \|x - y\|_2$ is Euclidean distance of x to C_j

- $f^* = 0$ if the intersection is nonempty
- (from p. 4-14): $g \in \partial f(\hat{x})$ if $g \in \partial f_j(\hat{x})$ and C_j is farthest set from \hat{x}
- (from p. 4-20) subgradient $g \in \partial f_j(\hat{x})$ follows from projection $P_j(\hat{x})$ on C_j :

$$g = 0$$
 (if $\hat{x} \in C_j$), $g = \frac{1}{\|\hat{x} - P_j(\hat{x})\|_2} (\hat{x} - P_j(\hat{x}))$ (if $\hat{x} \notin C_j$)

note that $||g||_2 = 1$ if $\hat{x} \notin C_j$

Subgradient method

- ullet optimal step size (page 5-11) for $f^\star=0$ and $\|g^{(i-1)}\|_2=1$ is $t_i=f(x^{(i-1)})$
- ullet at iteration k, find farthest set C_j (with $f(x^{(k-1)})=f_j(x^{(k-1)})$), and take

$$x^{(k)} = x^{(k-1)} - \frac{f(x^{(k-1)})}{f_j(x^{(k-1)})} (x^{(k-1)} - P_j(x^{(k-1)}))$$
$$= P_j(x^{(k-1)})$$

at each step, we project the current point onto the farthest set

- a version of the *alternating projections* algorithm
- \bullet for m=2, projections alternate onto one set, then the other
- later, we will see faster versions of this that are almost as simple

Optimality of the subgradient method

can the $f_{\mathrm{best}}^{(k)} - f^{\star} \leq GR/\sqrt{k}$ bound on page 5-10 be improved?

Problem class

- f is convex, with a minimizer x^*
- we know a starting point $x^{(0)}$ with $||x^{(0)} x^{\star}||_2 \le R$
- we know the Lipschitz constant G of f on $\{x \mid \|x x^{(0)}\|_2 \leq R\}$
- f is defined by an oracle: given x, oracle returns f(x) and a subgradient

Algorithm class: k iterations of any method that chooses $x^{(i)}$ in

$$x^{(0)} + \operatorname{span}\{g^{(0)}, g^{(1)}, \dots, g^{(i-1)}\}\$$

Test problem and oracle

$$f(x) = \max_{i=1,\dots,k} x_i + \frac{1}{2} ||x||_2^2, \qquad x^{(0)} = 0$$

- solution: $x^\star=-\frac{1}{k}(\underbrace{1,\ldots,1}_k,\underbrace{0,\ldots,0}_{n-k})$ and $f^\star=-\frac{1}{2k}$
- $R = ||x^{(0)} x^*||_2 = 1/\sqrt{k}$ and $G = 1 + 1/\sqrt{k}$
- oracle returns subgradient $e_{\hat{j}} + x$ where $\hat{j} = \min\{j \mid x_j = \max_{i=1,...,k} x_i\}$

Iteration: for $i=0,\ldots,k-1$, entries $x_{i+1}^{(i)},\ldots,x_k^{(i)}$ are zero; therefore

$$f_{\text{best}}^{(k)} - f^* = \min_{i < k} f(x^{(i)}) - f^* \ge -f^* = \frac{GR}{2(1 + \sqrt{k})}$$

Conclusion: $O(1/\sqrt{k})$ bound cannot be improved

Summary: subgradient method

- handles general nondifferentiable convex problem
- often leads to very simple algorithms
- convergence can be very slow
- no good stopping criterion
- \bullet theoretical complexity: $O(1/\epsilon^2)$ iterations to find $\epsilon\text{-suboptimal point}$
- $\bullet\,$ an 'optimal' 1st-order method: $O(1/\epsilon^2)$ bound cannot be improved

References

- S. Boyd, lecture notes and slides for EE364b, Convex Optimization II
- Yu. Nesterov, *Introductory Lectures on Convex Optimization. A Basic Course* (2004)

§3.2.1 with the example on page 5-15 of this lecture