Lecture 7: Policy Gradient

Lecture 7: Policy Gradient

David Silver

Outline

- 1 Introduction
- 2 Finite Difference Policy Gradient
- 3 Monte-Carlo Policy Gradient
- 4 Actor-Critic Policy Gradient

Policy-Based Reinforcement Learning

• In the last lecture we approximated the value or action-value function using parameters θ ,

$$V_{ heta}(s) pprox V^{\pi}(s) \ Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$$

- A policy was generated directly from the value function
 - **e**.g. using ϵ -greedy
- In this lecture we will directly parametrise the policy

$$\pi_{\theta}(s, a) = \mathbb{P}[a \mid s, \theta]$$

■ We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

Advantages of Policy-Based RL

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Example: Rock-Paper-Scissors

- Two-player game of rock-paper-scissors
 - Scissors beats paper
 - Rock beats scissors
 - Paper beats rock
- Consider policies for iterated rock-paper-scissors
 - A deterministic policy is easily exploited
 - A uniform random policy is optimal (i.e. Nash equilibrium)

Example: Aliased Gridworld (1)

- The agent cannot differentiate the grey states
- Consider features of the following form (for all N, E, S, W)

$$\phi(s,a) = \mathbf{1}(\text{wall to N}, a = \text{move E})$$

■ Compare value-based RL, using an approximate value function

$$Q_{\theta}(s,a) = f(\phi(s,a),\theta)$$

■ To policy-based RL, using a parametrised policy

$$\pi_{\theta}(s, a) = g(\phi(s, a), \theta)$$

Example: Aliased Gridworld (2)

- Under aliasing, an optimal deterministic policy will either
 - move W in both grey states (shown by red arrows)
 - move E in both grey states
- Either way, it can get stuck and *never* reach the money
- Value-based RL learns a near-deterministic policy
 - e.g. greedy or ϵ -greedy
- So it will traverse the corridor for a long time

Example: Aliased Gridworld (3)

 An optimal stochastic policy will randomly move E or W in grey states

$$\pi_{ heta}(\text{wall to N and S, move E}) = 0.5$$
 $\pi_{ heta}(\text{wall to N and S, move W}) = 0.5$

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- In episodic environments we can use the start value

$$J_1(heta) = V^{\pi_ heta}(s_1) = \mathbb{E}_{\pi_ heta}\left[v_1
ight]$$

In continuing environments we can use the average value

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

Or the average reward per time-step

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

• where $d^{\pi_{\theta}}(s)$ is stationary distribution of Markov chain for π_{θ}

Policy Optimisation

- Policy based reinforcement learning is an optimisation problem
- Find θ that maximises $J(\theta)$
- Some approaches do not use gradient
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
- Greater efficiency often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on gradient descent, many extensions possible
- And on methods that exploit sequential structure

Policy Gradient

- Let $J(\theta)$ be any policy objective function
- Policy gradient algorithms search for a local maximum in $J(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ

$$\Delta \theta = \alpha \nabla_{\theta} J(\theta)$$

■ Where $\nabla_{\theta} J(\theta)$ is the policy gradient

$$abla_{ heta} J(heta) = egin{pmatrix} rac{\partial J(heta)}{\partial heta_1} \ dots \ rac{\partial J(heta)}{\partial heta_n} \end{pmatrix}$$

lacksquare and lpha is a step-size parameter

Score Function

- We now compute the policy gradient *analytically*
- **A**ssume policy π_{θ} is differentiable whenever it is non-zero
- lacksquare and we know the gradient $\nabla_{\theta}\pi_{\theta}(s,a)$
- Likelihood ratios exploit the following identity

$$egin{aligned}
abla_{ heta}\pi_{ heta}(s, a) &= \pi_{ heta}(s, a) rac{
abla_{ heta}\pi_{ heta}(s, a)}{\pi_{ heta}(s, a)} \ &= \pi_{ heta}(s, a)
abla_{ heta} \log \pi_{ heta}(s, a) \end{aligned}$$

■ The score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$

Softmax Policy

- We will use a softmax policy as a running example
- Weight actions using linear combination of features $\phi(s, a)^{\top} \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_{ heta}(s,a) \propto e^{\phi(s,a)^{ op} heta}$$

The score function is

$$abla_{ heta} \log \pi_{ heta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{ heta}} \left[\phi(s, \cdot)
ight]$$

Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features $\mu(s) = \phi(s)^{\top}\theta$
- Variance may be fixed σ^2 , or can also parametrised
- Policy is Gaussian, $a \sim \mathcal{N}(\mu(s), \sigma^2)$
- The score function is

$$abla_{ heta} \log \pi_{ heta}(s,a) = rac{(a-\mu(s))\phi(s)}{\sigma^2}$$

One-Step MDPs

- Consider a simple class of one-step MDPs
 - Starting in state $s \sim d(s)$
 - Terminating after one time-step with reward $r = \mathcal{R}_{s.a}$
- Use likelihood ratios to compute the policy gradient

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r]$$

$$= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) r]$$

Policy Gradient Theorem

- The policy gradient theorem generalises the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward r with long-term value $Q^{\pi}(s,a)$
- Policy gradient theorem applies to start state objective, average reward and average value objective

Theorem

For any differentiable policy $\pi_{\theta}(s,a)$, for any of the policy objective functions $J=J_1,J_{avR},$ or $\frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \; Q^{\pi_{ heta}}(s, a)
ight]$$

Monte-Carlo Policy Gradient (REINFORCE)

- Update parameters by stochastic gradient ascent
- Using policy gradient theorem
- lacksquare Using return v_t as an unbiased sample of $Q^{\pi_{ heta}}(s_t,a_t)$

$$\Delta\theta_t = \alpha\nabla_\theta \log \pi_\theta(s_t, a_t)v_t$$

function REINFORCE

```
Initialise \theta arbitrarily for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t end for end for return \theta end function
```

Puck World Example

- Continuous actions exert small force on puck
- Puck is rewarded for getting close to target
- Target location is reset every 30 seconds
- Policy is trained using variant of Monte-Carlo policy gradient

Reducing Variance Using a Critic

- Monte-Carlo policy gradient still has high variance
- We use a critic to estimate the action-value function,

$$Q_w(s,a) \approx Q^{\pi_{\theta}}(s,a)$$

- Actor-critic algorithms maintain two sets of parameters Critic Updates action-value function parameters wActor Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$abla_{ heta} J(heta) pprox \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \ Q_w(s, a)
ight]
onumber$$

$$\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) \ Q_w(s, a)
onumber
onumber$$

Estimating the Action-Value Function

- The critic is solving a familiar problem: policy evaluation
- How good is policy π_{θ} for current parameters θ ?
- This problem was explored in previous two lectures, e.g.
 - Monte-Carlo policy evaluation
 - Temporal-Difference learning
 - TD(λ)
- Could also use e.g. least-squares policy evaluation

Action-Value Actor-Critic

- Simple actor-critic algorithm based on action-value critic
- Using linear value fn approx. $Q_w(s, a) = \phi(s, a)^{\top} w$

Critic Updates w by linear TD(0)

Actor Updates θ by policy gradient

```
function QAC
```

Initialise s, θ

Sample $a \sim \pi_{\theta}$

for each step do

Sample reward $r = \mathcal{R}_s^a$; sample transition $s' \sim \mathcal{P}_{s,\cdot}^a$. Sample action $a' \sim \pi_{\theta}(s', a')$

 $\delta = r + \gamma Q_w(s', a') - Q_w(s, a)$

$$o = r + \gamma Q_w(s, a) - Q_w(s, a)$$

$$\theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a)$$

$$w \leftarrow w + \beta \delta \phi(s, a)$$

$$a \leftarrow a', s \leftarrow s'$$

end for end function

Bias in Actor-Critic Algorithms

- Approximating the policy gradient introduces bias
- A biased policy gradient may not find the right solution
 - e.g. if $Q_w(s, a)$ uses aliased features, can we solve gridworld example?
- Luckily, if we choose value function approximation carefully
- Then we can avoid introducing any bias
- i.e. We can still follow the exact policy gradient

Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

1 Value function approximator is compatible to the policy

$$abla_w Q_w(s,a) =
abla_\theta \log \pi_\theta(s,a)$$

2 Value function parameters w minimise the mean-squared error

$$arepsilon = \mathbb{E}_{\pi_{ heta}}\left[\left(Q^{\pi_{ heta}}(s, a) - Q_{w}(s, a)
ight)^{2}
ight]$$

Then the policy gradient is exact,

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) \; Q_{w}(s, a) \right]$$

Proof of Compatible Function Approximation Theorem

If w is chosen to minimise mean-squared error, gradient of ε w.r.t. w must be zero,

$$\nabla_{w}\varepsilon = 0$$

$$\mathbb{E}_{\pi_{\theta}} \left[(Q^{\theta}(s, a) - Q_{w}(s, a)) \nabla_{w} Q_{w}(s, a) \right] = 0$$

$$\mathbb{E}_{\pi_{\theta}} \left[(Q^{\theta}(s, a) - Q_{w}(s, a)) \nabla_{\theta} \log \pi_{\theta}(s, a) \right] = 0$$

$$\mathbb{E}_{\pi_{\theta}} \left[Q^{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right] = \mathbb{E}_{\pi_{\theta}} \left[Q_{w}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right]$$

So $Q_w(s, a)$ can be substituted directly into the policy gradient,

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s, a) Q_w(s, a) \right]$$

Reducing Variance Using a Baseline

- We subtract a baseline function B(s) from the policy gradient
- This can reduce variance, without changing expectation

$$\mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) B(s) \right] = \sum_{s \in \mathcal{S}} d^{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) B(s)$$
$$= \sum_{s \in \mathcal{S}} d^{\pi_{\theta}} B(s) \nabla_{\theta} \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a)$$
$$= 0$$

- lacksquare A good baseline is the state value function $B(s) = V^{\pi_{ heta}}(s)$
- So we can rewrite the policy gradient using the advantage function $A^{\pi_{\theta}}(s,a)$

$$egin{aligned} A^{\pi_{ heta}}(s,a) &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \
abla_{ heta} J(heta) &= \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \log \pi_{ heta}(s,a) \ A^{\pi_{ heta}}(s,a)
ight] \end{aligned}$$

Estimating the Advantage Function (1)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V^{\pi_{\theta}}(s)$ and $Q^{\pi_{\theta}}(s,a)$
- Using two function approximators and two parameter vectors,

$$egin{aligned} V_{
u}(s) &pprox V^{\pi_{ heta}}(s) \ Q_{w}(s,a) &pprox Q^{\pi_{ heta}}(s,a) \ A(s,a) &= Q_{w}(s,a) - V_{
u}(s) \end{aligned}$$

And updating both value functions by e.g. TD learning

Estimating the Advantage Function (2)

■ For the true value function $V^{\pi_{\theta}}(s)$, the TD error $\delta^{\pi_{\theta}}$

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$$

is an unbiased estimate of the advantage function

$$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[\delta^{\pi_{ heta}}|s,a
ight] &= \mathbb{E}_{\pi_{ heta}}\left[r + \gamma V^{\pi_{ heta}}(s')|s,a
ight] - V^{\pi_{ heta}}(s) \ &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ &= A^{\pi_{ heta}}(s,a) \end{aligned}$$

So we can use the TD error to compute the policy gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta^{\pi_{\theta}} \right]$$

In practice we can use an approximate TD error

$$\delta_{v} = r + \gamma V_{v}(s') - V_{v}(s)$$

■ This approach only requires one set of critic parameters v

Critics at Different Time-Scales

- Critic can estimate value function $V_{\theta}(s)$ from many targets at different time-scales From last lecture...
 - For MC, the target is the return v_t

$$\Delta\theta = \alpha(\mathbf{v_t} - V_{\theta}(s))\phi(s)$$

• For TD(0), the target is the TD target $r + \gamma V(s')$

$$\Delta\theta = \alpha(\mathbf{r} + \gamma \mathbf{V}(\mathbf{s}') - \mathbf{V}_{\theta}(\mathbf{s}))\phi(\mathbf{s})$$

■ For forward-view TD(λ), the target is the λ -return v_t^{λ}

$$\Delta\theta = \alpha(\mathbf{v_t^{\lambda}} - V_{\theta}(s))\phi(s)$$

For backward-view $TD(\lambda)$, we use eligibility traces

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

$$e_t = \gamma \lambda e_{t-1} + \phi(s_t)$$

$$\Delta \theta = \alpha \delta_t e_t$$

Actors at Different Time-Scales

■ The policy gradient can also be estimated at many time-scales

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ A^{\pi_{\theta}}(s, a) \right]$$

Monte-Carlo policy gradient uses error from complete return

$$\Delta \theta = \alpha(\mathbf{v_t} - V_v(s_t)) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

Actor-critic policy gradient uses the one-step TD error

$$\Delta \theta = \alpha(\mathbf{r} + \gamma V_{\mathbf{v}}(\mathbf{s}_{t+1}) - V_{\mathbf{v}}(\mathbf{s}_t)) \nabla_{\theta} \log \pi_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$$

Policy Gradient with Eligibility Traces

■ Just like forward-view $TD(\lambda)$, we can mix over time-scales

$$\Delta \theta = \alpha(\mathbf{v}_t^{\lambda} - V_v(s_t)) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

- lacksquare where $v_t^\lambda V_{
 u}(s_t)$ is a biased estimate of advantage fn
- Like backward-view $TD(\lambda)$, we can also use eligibility traces
 - By equivalence with TD(λ), substituting $\phi(s) = \nabla_{\theta} \log \pi_{\theta}(s, a)$

$$\delta = r_{t+1} + \gamma V_{v}(s_{t+1}) - V_{v}(s_{t})$$
 $e_{t+1} = \lambda e_{t} + \nabla_{\theta} \log \pi_{\theta}(s, a)$
 $\Delta \theta = \alpha \delta e_{t}$

■ This update can be applied online, to incomplete sequences

Summary of Policy Gradient Algorithms

■ The policy gradient has many equivalent forms

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \textit{v}_{t} \right] & \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \textit{Q}^{\textit{w}}(s, a) \right] & \text{Q Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \textit{A}^{\textit{w}}(s, a) \right] & \text{Advantage Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta \right] & \text{TD Actor-Critic} \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta e \right] & \text{TD}(\lambda) \ \text{Actor-Critic} \\ &G_{\theta}^{-1} \nabla_{\theta} J(\theta) = \textit{w} & \text{Natural Actor-Critic} \end{split}$$

- Each leads a stochastic gradient ascent algorithm
- Critic uses policy evaluation (e.g. MC or TD learning) to estimate $Q^{\pi}(s, a)$, $A^{\pi}(s, a)$ or $V^{\pi}(s)$