

NHẬP MÔN MẠCH SỐ

CHƯƠNG 5: MẠCH TỔ HỢP – CÁC MẠCH KHÁC

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer)/ Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

- Cách hiện thực LUT (Look-up table)
 - Sử dụng MUX để chọn một giá trị (hằng số) từ 1 LUT

Ví dụ: Thiết kế mạch XOR sử dụng MUX

a	b	f
0	0	0
0	1	1
1	0	1
1	1	0

- Giải pháp ở slide trước không hiệu quả vì phải sử dụng MUX 4-to-1
- Nhân xét:

Ví dụ: Hiện thực mạch với bảng sự thật sau bằng một MUX và các cổng khác

A	В	X
0	0	1
0	1	1
1	0	0
1	1	1

XOR 3 ngô vào có thể hiện thực bằng 2 MUX 2-to-1

		100	2.0
X	y	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Ví dụ: Hiện thực mạch với bảng sự thật sau bằng một MUX và các cổng logic khác

A	В	igcap C	X
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Bất kì hàm Boolean $f(w_1, w_2, ..., w_n)$ có thể được viết dưới dạng:

$$f(w_1, w_2, ..., w_n) = \overline{w_1} * f(0, w_2, ..., w_n) + w_1 * f(1, w_2, ..., w_n)$$

Ví dụ 1:

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$$

Phân tích hàm này theo biến $\mathbf{w_1}$:

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + \overline{w_1}(w_2w_3)$$

$$f \text{ khi } w_1 = 1$$

$$f \text{ khi } w_1 = 0$$

■ Ví du 2:

X	У	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

Chọn x làm biến mở rộng

$$f=x'(y'z'+y'z+yz)+x(y'z'+y'z)$$

$$f=x'(y'+z)+x(y')$$

■ Ví du 3:

X	y	Z	f	f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z
0	0	0	1	
0	0	1	1	Chọn z làm biến mở rộng
0	1	0	0	
	1		1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

■ Bài tập 1:

□ Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

☐ Yêu cầu: c và d là các ngõ vào điều khiển của MUX 4-ra-1

■ Bài tập 1:

□ Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

- ☐ Yêu cầu: c và d là các ngõ vào điều khiển của MUX 4-ra-1
- ☐ Yêu cầu: b và c là các ngõ vào điều khiển của MUX 4-ra-1

■ Bài tập 2:

□ Dùng MUX 4-to-1 và các cổng luận lý cần thiết để hiện thực hàm sau:

$$F(a, b, c, d) = SOP(1, 3, 5, 6, 8, 11, 15)$$

☐ Yêu cầu: b và c là các ngõ vào điều khiển của MUX 4-to-1

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer)/ Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

Mạch tạo/kiểm tra Parity bit

- Chức năng: Kiểm tra chuỗi bit dữ liệu truyền đúng hay sai tại đầu thu
- Phương pháp:
 - ☐ Tại đầu phát: một Parity bit được tạo ra từ chuỗi dữ liệu muốn truyền đi, sau đó Parity bit này được chèn vào cuối chuỗi bit dữ liệu này.
 - ☐ Tại đầu thu: Kiểm tra Parity bit để xác nhận choỗi dữ liệu nhận được có bị sai hay không

Mạch tạo/kiểm tra Parity bit

■ Hai loại Parity bit:

- □Bit chẵn (Even parity bit Be): Be = 1 khi tổng số bit 1 trong chuỗi bit (kể cả Be) là số chẵn.
- □Bit lẻ (Odd parity bit Bo): Bo = 1 khi tổng số bit 1 trong chuỗi bit (kể cả Bo) là số lẻ

Nhắc lại: Cổng logic XOR, XNOR

\blacksquare XOR = Exclusive OR

■Ngõ ra bằng 1 khi số ngõ vào bằng 1 là lẻ

$$\square X = A \oplus B$$

XOR	XNOR
_	$\overline{}$

Α	В	A⊕B	A	⊕B
0	0	0		1
0	1	1		0
1	0	1		0
1	1	0		1

■ XNOR = Exclusive NOR

□Ngõ ra bằng 1 khi số ngõ vào bằng 1 là chẵn

$$\square X = \overline{A \oplus B}$$

$$\begin{array}{c}
A & \bullet \\
B & \bullet
\end{array}$$

Mạch tạo Parity bit

Tạo Even Parity bit

A2	A1	A0	Be
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

■ Tạo Odd Parity bit

A2	A1	A0	Bo
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Be =
$$f(A2,A1,A0)$$
?

Mạch kiểm tra Even Parity bit

Bảng sư thật:

-									
A2	A1	A0	Be	fe	A2	A1	A0	Be	fe
0	0	0	0	0	1	0	0	0	1
0	0	0	1	1	1	0	0	1	0
0	0	1	0	1	1	0	1	0	0
0	0	1	1	0	1	0	1	1	1
0	1	0	0	1	1	1	0	0	0
0	1	0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0

$$\Box$$
 fe = 1 \rightarrow

Transmission failed

fe =
$$f(A2,A1,A0,Be)$$
?

Mạch kiểm tra Odd Parity bit

Bảng sự thật:

A2	A1	A0	Bo	fo	A2	A1	A0	Bo	fo
0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	1	0	0	1	1
0	0	1	0	0	1	0	1	0	1
0	0	1	1	1	1	0	1	1	0
0	1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	0	1	0
0	1	1	0	1	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

$$\Box$$
 fo = 1 \rightarrow

Transmission failed

fo =
$$f(A2,A1,A0,B0)$$
?

Nội dung

- Mạch giải mã (Decoder)/ Mạch mã hoá (Encoder)
- Mạch dồn kênh (Multiplexer)/ Mạch chia kênh (Demultiplexer)
- Thiết kế mạch logic sử dụng Mux
- Mạch tạo Parity/ Mạch kiểm tra Parity
- Mạch so sánh (Comparator)

Mạch so sánh (Comperator)

- Mạch so sánh 2 số
 - Xuất ra 1 nếu chúng bằng nhau
 - Xuất ra 0 nếu chúng khác nhau
- Dựa trên cổng **XOR**, trả về 0 nếu ngõ vào giống nhau và 1 nếu chúng khác nhau

• Dựa trên cống **XNOR**, trả về 1 nếu ngõ vào giống nhau và 0 nếu chúng khác nhau

Mạch so sánh 1 bit

a	b	gt	eq	1t
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Mạch so sánh 4 bit

Mạch so sánh 4 bit

Mạch so sánh 4 bit

Mạch so sánh 4-bit

■ 74x85 là mạch so sánh tiêu chuẩn với những đặc tính sau:

if
$$(A>B)$$
 1t=0, eq=0, gt=1

Chý ý: 3 ngõ vào l, e và g được sử dụng khi ghép nối để tạo mạch so sánh với số bit nhiều hơn

■ Thiết kế mạch tìm số lớn nhất, số nhỏ nhất trong 4 số 4-bit sử dụng mạch so sánh và MUXs

Tóm tắt nội dung chương học

- Qua Phần 3 Chương 5, sinh viên cần nắm những nội dung chính sau:
 - ☐ Một số giải pháp thiết kế mạch số sử dụng mạch chọn kênh, mạch giải mã
 - ☐ Chức năng, ứng dụng và thiết kế của mạch có độ ưu tiên
 - ☐ Chức năng, ứng dụng và thiết kế của mạch tạo và kiểm tra Parity chẵn, lẻ.
 - □ Chức năng, ứng dụng và thiết kế của mạch tạo và kiểm tra Parity chẵn, lẻ.
 - Chức năng, ứng dụng và thiết kế của mạch so sánh

Any question?

