Álgebra A

Folha 1 de exercícios

csaba@mat.ufmg.br

- 1. Demonstre as seguintes afirmações por indução:
 - (1) $1+4+9+\cdots+n^2=n(n+1)(2n+1)/6$;

 - (2) $1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = n(n+1)(n+2)/3;$ (3) $(1^5 + 2^5 + 3^5 + \dots + n^5) + (1^7 + 2^7 + \dots + n^7) = 2[n(n+1)/2]^4.$
- 2. Seja a_1, a_2, a_3, \ldots uma progressão aritmética com diferença comum d. Usando indução, demonstre

 - (1) $a_n = a_1 + (n-1)d;$ (2) $a_1 + a_2 + \dots + a_n = n(a_1 + a_n)/2.$
- 3. Seja a_1, a_2, a_3, \ldots uma progressão geométrica de razão $q \neq 1$. Usando indução, demonstre que

 - (1) $a_n = a_1 q^{n-1}$; (2) $a_1 + a_2 + \dots + a_n = a_1 (q^n 1)/(q 1)$.
- **4.** Seja $A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$ onde $\alpha \in \mathbb{R}$. Determine uma possível fórmula para A^n $(n \in \mathbb{N})$ e demonstre-a por
- 5. Para $n,\ p\in\mathbb{N},$ defina $\binom{n}{p}=n!/(p!(n-p)!)$. Demonstre por indução que
 - $(1) \binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p};$ (2)

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$
 para todo $a, b \in \mathbb{R}$;

- **6.** Seja $a \in \mathbb{Z}$. Mostre que na divisão de a^2 por 8, os restos possíveis são 0, 1, ou 4.
- 7. Determine os inteiros positivos que divididos por 17 deixam um resto igual ao quadrado do quociente.

1

- 8. Sejam $a, b, c \in \mathbb{Z}$. Demonstre as seguintes afirmações ou dê contraexemplo:
 - (1) se $ac \mid bc$, então $a \mid b$;
 - (2) se $a \mid b \in a \mid c$, então $a \mid (b-c)$;
 - (3) se $c \mid (a+b)$, então $c \mid a$ ou $c \mid b$;
 - (4) se $a \mid b$, então $a \mid xb$ para todo $x \in \mathbb{Z}$.
- **9.** Mostre que se $a \mid (2x-3y)$ e $a \mid (4x-5y)$ então $a \mid y$ para todo $a, x, y \in \mathbb{Z}$.
- 10. Sejam $a, b, n \in \mathbb{Z}$ tal que $n \geq 2$. Mostre que as seguintes afirmações são equivalentes:
 - (1) $n \mid (a-b);$
 - (2) os restos de a e b, quando divididos por n, são iguais.