MUGISHA GAD

REG NO: 224007786

DATA STRUCTURE ASSIGNMENT ABOUT STACK AND QUEUE

A.BASIC

1.Operation: Push/Pop (LIFO) — In a stack, the last item added is the first removed. In the MTN MoMo app, when you fill payment details step-by-step, pressing back removes the last step. Q1: How does this show the LIFO nature of stacks?

- Push: Each step of filling payment details is added to the stack as you go.
- Pop: Pressing "Back" removes the last step entered first.
- This demonstrates LIFO (Last-In-First-Out): the most recent action is undone before earlier ones.
- 2.Operation: Pop (Undo) Pop removes the top item. In UR Canvas, when you navigate course modules, pressing back undoes the last step. Q2: Why is this action similar to popping from a stack?
- In a stack (LIFO), the last item added is the first to be removed.
- On UR Canvas, pressing Back removes the most recent module or step from your current view.
- This matches pop behavior: the last action is undone first, just like popping the top of a stack.

B. APPLICATION

- 3. Operation: Push (Add to stack) New actions are added to the stack top. In BK Mobile Banking, transactions are added to history. Q3: How could a stack enable the undo function when correcting mistakes?
- Each transaction or action is pushed onto a stack as it occurs.
- To undo a mistake, the app pops the top action from the stack, reverting it.
- This LIFO behavior ensures that the most recent action is undone first, making corrections efficient and accurate.
- 4.Operation: Balanced Parentheses Check (Stack-based matching) Push opening bracket, pop when matching closing bracket is found. In Irembo registration forms, data entry fields must be correctly matched. Q4: How can stacks ensure forms are correctly balanced?
- Opening brackets/fields are pushed onto the stack as the user fills the form.
- When a closing bracket/field is encountered, the stack pops the last opening item and checks for a match.
- If the stack is empty at the end and all matches were correct, the form is balanced.
- This prevents mismatched or missing fields, ensuring proper form structure.

c. LOGICAL

5. Operation: Push and Pop sequence. A student records tasks in a stack: Push("CBE notes"), Push("Math revision"), Push("Debate"), Pop(), Push("Group assignment") Q5: Which task is next (top of stack)?

• The top of the stack is "Group assignment".

- 6. Operation: Undo with multiple Pops. During ICT exams, a student undoes 3 recent actions. Q6: Which answers remain in the stack after undoing?
 - Only the earlier actions that were not undone remain in the stack.

D. ADVANCED THINKING

- 7. Operation: Pop to backtrack. In RwandAir booking, a passenger goes back step-by-step in the form. O7: How does a stack enable this retracing process?
- Each step the passenger completes is pushed onto a stack.
- When the passenger clicks "Back," the last step is popped from the stack, returning them to the previous step.
- This LIFO behavior allows step-by-step retracing in the reverse order of completion, making navigation intuitive.
- 8. Operation: Push words, then Pop to reverse. To reverse "Umwana ni umutware", push each word and then pop. Q8: Show how a stack algorithm reverses the proverb.

Step 1: Push each word onto the stack

- Push("Umwana") → Stack: Umwana
- $Push("ni") \rightarrow Stack: ni, Umwana$
- Push("umutware") → Stack: umutware, ni, Umwana

Step 2: Pop words to reverse

- $Pop \rightarrow "umutware"$
- $Pop \rightarrow "ni"$
- $Pop \rightarrow "Umwana"$
- 9. Operation: DFS using a stack. A student searches shelves in Kigali Public Library (deep search). Q9: Why does a stack suit this case better than a queue?
 - DFS (Depth-First Search) explores deep paths first before backtracking.
 - A stack (LIFO) naturally allows backtracking: the last shelf visited is the first to revisit when a dead end is reached.
 - A queue (FIFO) would explore all shelves at the current level first, which is breadth-first and not suitable for deep searching.

10.Operation: Push/Pop for navigation. In BK Mobile app, moving through transaction history uses push and pop. Q10: Suggest a feature using stacks for transaction navigation.

• Feature idea: "Back/Forward" in transaction history

Push: When a user opens a new transaction, it is pushed onto the stack.

Pop: Pressing "Back" pops the top transaction, showing the previous one.

• This lets users navigate through transactions in reverse order, just like a LIFO stack.

2. QUEUE A.BASIC

1.Operation: Enqueue (add at rear), Dequeue (remove from front). At a restaurant in Kigali, customers are served in order. Q1: How does this show FIFO behavior?

- Enqueue (add at rear): Customers join the line as they arrive.
- Dequeue (remove from front): Customers at the front are served first.
- This follows FIFO (First-In-First-Out): the first customer to arrive is the first to be served, and later arrivals wait their turn

2. Operation: Dequeue (next item leaves first). In a YouTube playlist, the next video plays automatically. Q2: Why is this like a dequeue operation?

- In a queue, dequeue removes the item at the front.
- In a YouTube playlist, the next video (first in line) plays automatically and is removed from the "towatch" list.
- This is exactly like a dequeue operation: the first item is served and leaves the queue.

B.APPLICATION

3.Operation: Enqueue (job submission). At RRA offices, people waiting to pay taxes form a line. Q3: How is this a real-life queue?

- People join the line as they arrive \rightarrow this is like enqueue.
- The person at the front of the line is served first \rightarrow this is like dequeue.
- The process follows FIFO (First-In-First-Out), making it a real-life example of a queue.

4. Operation: Queue management. In MTN/Airtel service centers, SIM replacement requests are processed in order. Q4: How do queues improve customer service?

- They ensure fairness by serving customers in the order they arrive (FIFO).
- They make service organized and efficient, reducing confusion.
- They help manage waiting times and improve overall customer satisfaction

C.LOGICAL

5.Operation: Sequence of Enqueue/Dequeue. In Equity Bank, operations are: Enqueue("Alice"), Enqueue("Eric"), Enqueue("Chantal"), Dequeue(), Enqueue("Jean") Q5: Who is at the front now?

• The Front of the queue is ERIC

6. Operation: FIFO message handling. RSSB pension applications are handled by arrival order. Q6: Explain how a queue ensures fairness

- A queue follows FIFO (First-In-First-Out), meaning the first person to arrive is the first to be served.
- This prevents cutting in line and ensures everyone is attended in the order they came.
- In RSSB pension applications, this means earlier applicants are processed before later ones, making the system fair for all.

D.ADVANCED THINKING

7. Operation: Different queue types. Examples: • Linear queue = people at a wedding buffet. • Circular queue = buses looping at Nyabugogo. • Deque = boarding a bus from front/rear. Q7: Explain how each maps to real Rwandan life.

• *Linear queue* – People at a wedding buffet

Served one after another from front to back.

Once someone is served, they leave the line, just like in a normal FIFO queue.

• *Circular queue* – Buses looping at Nyabugogo

Buses return to the end of the line after completing a trip.

The line is continuous, so service can repeat without starting over.

• **Deque** (**Double-ended queue**) – Boarding a bus from front/rear

Passengers can enter or leave from both ends, depending on the bus's boarding rules.

Flexible compared to linear queues, suitable for buses with multiple entry points.

8. Operation: Enqueue orders, Dequeue when ready. At a Kigali restaurant, customers order food and are called when ready. Q8: How can queues model this process?

Orders are enqueued as customers place them \rightarrow first order in, first in line to be prepared.

Dequeue when ready \rightarrow the first order placed is the first to be served. This ensures fairness (customers served in order) and organization in the kitchen.

9. Operation: Priority queue. At CHUK hospital, emergencies jump the line. Q9: Why is this a priority queue, not a normal queue?

- In a normal queue (FIFO), patients are served strictly in arrival order.
- At CHUK hospital, emergency cases are served first, even if they arrive later.
- This means service is based on priority (urgency), not arrival time, which is exactly how a priority queue works.

10.Operation: Enqueue/Dequeue matching system. In a moto/e-bike taxi app, riders wait for passengers. Q10: How would queues fairly match drivers and students?

- *Drivers are enqueued as they become available.*
- Passengers are matched with the driver at the front of the queue (first available driver).
- This ensures fairness: drivers who have been waiting longest get rides first, and passengers are served in an organized way.