```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
```

Loading Dataset

data = pd.read_csv('abalone.csv')

data

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

data.head()

Whole Shucked Viscera Shell Sex Length Diameter Height Rings weight weight weight weight

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
d±vn	os: float64(7)	int6/(1) object	(1)

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

```
plt.scatter(data.Height,data.Rings)
plt.xlabel('height')
plt.ylabel('rings')
```

Text(0, 0.5, 'rings')

univarient analysis

sns.kdeplot(data['Rings'], fill=True)

<AxesSubplot: xlabel='Rings', ylabel='Density'>

Bi-Varient analysis

sns.scatterplot(data['Length'])
sns.scatterplot(data["Height"])

<AxesSubplot: ylabel='Length'>

Multi-varient analysis

data.describe(include='all')

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	V
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
unique	3	NaN	NaN	NaN	NaN	NaN	
top	М	NaN	NaN	NaN	NaN	NaN	
freq	1528	NaN	NaN	NaN	NaN	NaN	
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.
4							•

Descriptive stats

data.describe(include='all')

		Sex	Sex Length Diameter			Whole weight	Shucked weight	
	count	2013.000000	2013.000000	2013.000000	2013.000000	2013.000000	2013.000000	
	moan	1 056135	በ 5ንን755	N 406647	በ 1383ንዩ	በ	Ი ᲕᲜᲘᲔᲛᲘ	
missi	ing va l u	es						
	-							
data.	dropna()						

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

```
data = data[(data['Length'] <= 0.8 ) & (data['Length'] >= 0.2)& (data['Rings'])]
```

plt.scatter(x = data['Length'], y = data['Rings'])
plt.grid(True)

plt.scatter(x = data['Diameter'], y = data['Rings'])
plt.grid(True)

plt.scatter(x = data['Height'], y = data['Rings'])
plt.grid(True)

data = data[(data['Height'] >= 0.03) & (data['Height'] <= 0.3)]</pre>

plt.scatter(x = data['Height'], y = data['Rings'])
plt.grid(True)

plt.scatter(x = data['Whole weight'], y = data['Rings'])
plt.grid(True)

plt.scatter(x = data['Whole weight'], y = data['Rings'])
plt.grid(True)

plt.scatter(x = data['Shucked weight'], y = data['Rings'])
plt.grid(True)

data = data [(data['Shucked weight'] <=1)]</pre>

plt.scatter(x = data['Viscera weight'], y = data['Rings'])

plt.grid(True)

data = data [(data['Viscera weight'] <=0.5)]</pre>

plt.scatter(x = data['Viscera weight'], y = data['Rings'])
plt.grid(True)

```
plt.scatter(x = data['Shell weight'], y = data['Rings'])
plt.grid(True)
```



```
data = data [(data['Shell weight'] <=0.5)]</pre>
```

```
plt.scatter(x = data['Shell weight'], y = data['Rings'])
plt.grid(True)
```


Encoding

```
20
```

```
label_encoder = preprocessing.LabelEncoder()
data['Sex'] = label_encoder.fit_transform(data['Sex'])
data['Sex'].unique()
    array([2, 0, 1])
```

data.dtypes

Sex int32 Length float64 Diameter float64 Height float64 Whole weight float64 Shucked weight float64 Viscera weight float64 Shell weight float64 Rings int64 dtype: object

10 +

Splitting

```
x = data
y = data['Rings'] + 1.5
x
```

У

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9

```
16.5
0
1
         8.5
2
        10.5
         8.5
8
        10.5
        . . .
4164
        8.5
4165
        8.5
4167
        10.5
4172
        12.5
4174
        10.5
```

Name: Rings, Length: 2013, dtype: float64

Building model (train & testing)

```
standardScale = StandardScaler()
x = standardScale.fit_transform(x)
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size= 0.25)

regressor = RandomForestRegressor(n_estimators= 500, random_state=0)

regressor.fit(x_train, y_train)
regressor.score(x_train, y_train)*100

99.95402799307415

regressor.fit(x_test, y_test)
regressor.score(x_test, y_test)*100

99.970912084474
```

Colab paid products - Cancel contracts here