Report for Knapsack solution

by Google OR-Tools

Thanh Phu Bui

Faculty of Software Engineering, University of Information Technology 19522018@gm.uit.edu.vn

 30^{th} April 2022

1 Knapsack problem

The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.

The problem often arises in resource allocation where the decision makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.

1.1 Problem

You and 4 scientists are researching the radioactive properties of different combinations of elements to find a new clean energy source for the planet. While the radioactive levels in the elements and mixtures are low, you decided that you want to hike out to a remote lab to ensure the safety of the civilian population. Each of you has 1 element packing bag that has the ability to hold 50 pounds (lbs) of weight and a volume capacity of 50 cubic inches. In addition, you and the group can only be exposed to maximum radioactivity of 25 rads, therefore, each bag can only have a maximum of 5 rads to ensure safety that no one's bag has too much radiation and is hurting the carrier. Each element has a certain level of value (utils) and the goal of the team is to pick the best combination of items that maximize your team's utility while still safely packing the 5 bags. How should the 5 bags be packed with the given item? (The words "Bag" and "Knapsack" are interchangeable)

Value	48	30	42	36	22	43	18	24	36	29	30	25	19	41	34	32	27	24	18
Weight (lbs)	10	30	12	22	12	20	9	9	18	20	25	18	7	16	24	21	21	32	9
Volume (in³)	15	20	18	20	5	12	7	7	24	30	25	20	5	25	19	24	19	14	30
Radioactivity (rads)	3	1	2	3	1	2	0	2	2	1	2	3	4	3	2	3	1	1	3

Figure 1: Parameters for each of the items.

1.2 Google OR-Tools

OR-Tools is an open source software suite for optimization, tuned for tackling the world's toughest problems in vehicle routing, flows, integer and linear programming, and constraint programming.

I used the knapsack solving tool from Google OR-Tools. Since this is a closed source, then I have fewer things to privately customize. I custom it to stops if there is no optimal solution after 3 minutes.

2 Solving Knapsack with OR-Tools

I use the file s005.kp for all of test cases.

2.1 Uncorrelated

	No	The maximum weight	Total weight	Total value	Time	Conclusion
ĺ	50	11922	11921	19780	0.001	Optimal
	100	28462	28455	42224	0.0004	Optimal
İ	200	47601	47601	86024	0.0006	Optimal
	500	120137	120129	202400	0.0021	Optimal
	1000	243749	243745	403106	0.0043	Optimal

${\bf 2.2}\quad {\bf Weakly Correlated}$

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	12719	12715	14125	0.0004	Optimal
100	24642	24637	27933	0.0006	Optimal
200	53104	53102	57753	0.001	Optimal
500	123199	123199	135595	0.0017	Optimal
1000	243336	243336	268214	0.0032	Optimal

${\bf 2.3}\quad {\bf Strongly Correlated}$

	No	The maximum weight	Total weight	Total value	Time	Conclusion
Ī	50	12719	12719	16219	0.029	Optimal
	100	24642	24642	31842	0.0039	Optimal
	200	53104	53104	66904	0.04	Optimal
	500	123199	122984	158184	180.03	Non Optimal
İ	1000	243336	243169	313969	205.09	Non Optimal

2.4 InverseStronglyCorrelated

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	15194	15194	13594	21.538	Optimal
100	29592	29592	26592	0.016	Optimal
200	63005	62977	56477	12.935	Optimal
500	147951	147951	132251	27.083	Optimal
1000	292841	292748	261648	186.66	Non Optimal

${\bf 2.5}\quad {\bf AlmostStronglyCorrelated}$

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	12719	12719	16204	18.063	Optimal
100	24642	24641	31891	0.0028	Optimal
200	53104	53104	66890	0.0024	Optimal
500	123199	123134	158328	180.01	Non Optimal
1000	243336	243315	314138	203.40	Non Optimal

2.6 SubsetSum

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	12719	12719	12719	22.383	Optimal
100	24642	24642	24642	0.001	Optimal
200	53104	53104	53104	0.0008	Optimal
500	123199	123199	123199	0.0012	Optimal
1000	243336	243336	243336	0.003	Optimal

${\bf 2.7}\quad Uncorrelated With Similar Weights$

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	2476436	2401442	19503	0.006	Optimal
100	4953340	4902512	39025	0.004	Optimal
200	9905740	9904796	79002	0.0009	Optimal
500	24764470	24711907	186275	180.01	Non Optimal
1000	49529307	49523855	369485	18.84	Optimal

2.8 SpannerUncorrelated

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	9808	9808	7728	2.89	Optimal
100	21063	21022	16562	189.78	Non Optimal
200	41847	41847	32977	307.73	Non Optimal
500	104142	104125	82075	272.35	Non Optimal
1000	210868	210827	166173	180.07	Non Optimal

2.9 SpannerWeaklyCorrelated

	No	The maximum weight	Total weight	Total value	Time	Conclusion
	50	7688	7683	18104	58.44	Optimal
1	100	16528	16527	38960	178.73	Non Optimal
2	200	32786	32763	77262	244.88	Non Optimal
	500	81588	81539	192286	235.01	Non Optimal
1	000	165198	165155	389470	252.18	Non Optimal

2.10 SpannerStronglyCorrelated

ſ	No	The maximum weight	Total weight	Total value	Time	Conclusion
ſ	50	7814	7813	21313	58.29	Optimal
İ	100	16600	16592	44492	180.10	Non Optimal
	200	32802	32761	90261	276.70	Non Optimal
	500	81687	81672	225472	240.44	Non Optimal
	1000	165436	165430	457030	246.09	Non Optimal

${\bf 2.11}\quad {\bf Multiple Strongly Correlated}$

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	12714	12713	20813	35.28	Optimal
100	16600	16592	44492	0.011	Optimal
200	53100	53100	84200	180.00	Non Optimal
500	123198	123198	201698	201.78	Non Optimal
1000	243336	243336	399336	23.65	Optimal

2.12 ProfitCeiling

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	12719	12718	12708	0.071	Optimal
100	24642	24640	24627	1.51	Optimal
200	53104	53103	53082	180.53	Non Optimal
500	123199	123199	123153	142.92	Optimal
1000	243336	243334	243240	201.31	Non Optimal

2.13 Circle

No	The maximum weight	Total weight	Total value	Time	Conclusion
50	12719	12719	268001	36.63	Optimal
100	24642	24642	519231	0.066	Optimal
200	53104	53104	1118954	176.77	Non Optimal
500	123199	123199	2595920	96.24	Optimal
1000	243336	243336	5127320	180.52	Non Optimal

2.14 Conclusion

Results from 13 sets of test cases:

The easy one consists of three groups:

1. **Uncorrelated** and **WeaklyCorrelated** there is no relationship or only a very week relationship between the weight of each item and its value.

2. SpannerStronglyCorrelated has the weight of each item which is equal with its value.

The most difficult group is:

- 1. **SpannerUncorrelated**: In these instances there is no correlation between the profit and weight of an item. Such instances illustrate those situations where it is reasonable to assume that the profit does not depend on the weight. Uncorrelated instances are generally easy to solve, as there is a large variation between the profits and weights, making it easy to fathom numerous variables by upper bound tests or by dominance relations.
- 2. SpannerWeaklyCorrelated: Spanner weakly correlated instances have a very high correlation between the profit and weight of an item. Typically the profit differs from the weight by only a few percent. Such instances are perhaps the most realistic in management, as it is well-known that the return of an investment is generally proportional to the sum invested within some small variations.
- 3. SpannerStronglyCorrelated: The strongly correlated instances are hard to solve for two reasons:
 - (a) The instances are ill-conditioned in the sense that there is a large gap between the continuous and integer solution of the problem.
 - (b) Sorting the items according to decreasing efficiencies correspond to a sorting according to the weights. Thus for any small interval of the ordered items (i.e. a "core") there ' is a limited variation in the weights, making it difficult to satisfy the capacity constraint with equality.

Today we looked out how to solve the multiple knapsack problems with multiple constraints. When dealing with problems that can be framed linearly, **Google OR Tools** is an excellent resource that offers a wide range of different solvers.