Capítulo 18

El Ortopolo

En este capítulo estudiaremos el concepto del ortopolo de una recta respecto a un triángulo. Para definir ortopolo necesitamos el siguiente teorema (ver el problema 7, pág. 131).

Teorema 18.1 Dados un triángulo $\triangle ABC$ y una recta s, si S_A , S_B y S_C son las proyecciones de los vértices del triángulo en la recta s, entonces las rectas s_A , s_B y s_C perpendiculares a los lados del triángulo que pasan por los puntos S_A , S_B y S_C son concurrentes en un punto S.

Demostración: Las mediatrices de S_BS_C , S_CS_A y S_AS_B pasan por los puntos medios de los lados del triángulo L, M y N respectivamente. Por lo tanto el círculo \mathcal{C}_L (resp. \mathcal{C}_M ; resp \mathcal{C}_N) con centro L (resp. M; resp. N) que pasa por S_B (resp. S_C ; resp. S_A) pasa por S_C (resp. S_A ; resp. S_B). Por lo tanto el eje radical de \mathcal{C}_L y \mathcal{C}_M (resp. \mathcal{C}_M y \mathcal{C}_N ; resp. \mathcal{C}_N y \mathcal{C}_L) es S_A (resp. S_B ; resp. S_C) ya que es perpendicular a S_C 0 pasa por S_C 2; por lo tanto S_C 3 es el centro radical de S_C 4. S_C 5 por lo tanto S_C 6 es el centro radical de S_C 6.

Definición 18.2 Dados un triángulo $\triangle ABC$ y una recta s, el punto S definido en el teorema anterior se llama el ortopolo de s respecto al triángulo $\triangle ABC$.

El siguiente teorema que es una importante extención del teorema 3.70, pág. 3.70.

Teorema 18.3 Dado un cuadrilátero completo, entonces los ortocentros de los triángulos formados por los lados del cuadrilátero tomados tres a tres están en una recta h. Los ortopolos de cada uno de los lados respecto al triángulos formados por los otros tres lados están en la misma recta h.

Demostración: La primera parte no es más que el teorema 3.70. Esto es, los ortocentros H_a , H_c , H_b y H_d están en una recta h.

350 El Ortopolo

Figura 18-1

Sean Y y Z las proyecciones de B' y C' en a y tenemos que B'X y C'Y son las alturas del triángulo $\Delta A'B'C$ y $\Delta A'BC'$. Sean I_a , I_b y I_c los puntos en la recta al infinito definidos por las direcciones perpendiculares a las rectas a, b y c, entonces en la recta Pappus $\begin{Bmatrix} A'YZ \\ I_aI_bI_c \end{Bmatrix}$ están los puntos $H_c = A'I_b \cap YI_a$, $H_b = A'I_c \cap ZI_a$ y $S = YI_c \cap ZI_b$. Por lo tanto $\begin{Bmatrix} A'YZ \\ I_aI_bI_c \end{Bmatrix}$ coincide con h y S es ortopolo de la recta S respecto al S res

Figura 18-2

Nota: La existencio del ortopolo se sigue de la demostración anterior. Necesitaremos el siguiente resultado.

Teorema 18.4 Dados un triángulo $\triangle ABC$ y dos rectas paralelas s y s' con ortopolos S y S' respectivamente, entonces $SS' \perp s$ y SS' es igual a la distancia (con todo y dirección) de s a s'.

Demostración: Claramente $S_AS'_A$ y $S_CS'_C$ son iguales y paralelos. Sea S'' tal $S_AS'_A \parallel SS''$ y $S_AS'_A = SS''$, claramente tenemos los parelogramas $S_AS'_AS''S$ y $S_CS'_CS''S$. Por lo tanto $S'_AS'' \perp a$ y $S'_CS'' \perp c$, esto es S' = S''.