AAD - Assignment-3 Problem Set -3 NAGAMIANOHAR 2021/01/28 (Q) 15 17 15 The algorithm fails when the sum of (V) (V2) > (V2) | neighbouring weights is Independ Independon Set 2

Set 1 (S2) greater than the weight of heaviest hode (21) et vivzing be nodes with weights according to the algorithm =) Man-weight (S2) = 17 w(4) = 15 but actual man weight possible = 30 W(V2) = 17 W(V3)=15 again consider the path G(V,G) (V, Yz) Nz, Yu, Yz - are nodes (1-(50)-(1-(100) V₁ V₂ V₃ V₄ V₅ the values inside nodes ove weights assigned to them with the algorithm ans = man (w(\$v_1 / v_3) / w(\$v_2, v_3)) we get = man (1+1+100,50+1) consider the set {v2, vs} =) W({v2, vs}) ans' = 50+100 = 150 Hence, to One both fail at some point 150 > (00 (was > ans

lit path be G(v, c) - with nodes {V11 V2, V3 - - Vn} Observations: To get a maximum et the weight of vie weight independent Set we can either Pick / not-pick the be wi hode of thus we have 2n possibitiles. Man total weight of independent set be But we can use called ans (n) (v, v, vn) an array of ans land and anssig = stores the answer (V1, 1/2-- V1°) (1) first we calculated the max-total-weight zang[n] 3 Then modify the algorithm slightly of to also Store the elements of independent set that Contribute to answer ansch (1) instialized (2 indening) vector (ind ans (n+1,0)) ansion=0; weight array with with the hode ansion=0; ans[1] =W[]] for(i=2; i=n) i++) ans [i] = man (ans[i-1], ans[i-2]+w[i])

Herc ans[?] = ams man (ans[i-1], ans[i-2] +w[i]) don't pick pick = Vi-1 (2) Now add a vist (n+1,0) array vector (C++) =) vist EP3 = 0=) Vi & Independent set (S) VISTER) = 1 =) VP & Independent Now we make charge in for loop as for (= 2) i = n ; i++)} if ((ans[i-2]+w[]]) > ans[i-1]) & Vist[1] = 1) (include Vi)
Vist[1-3 = 0) (exclude Vi-1
if It's picked previously) Tans [i] z man (ans [i-1], ans [i-2]+w[i]) [ans En] - has the final Answer (Quntime's we have single for loop =) O(n)
Here we don't considers neighbours on bls (Vi-) (Vi-) because we consider that q is only till vy for ansiil and as vn doesn't have node after it we break and get final answer

Correctness } Prov-t by Induction ans Ei3 = max (ans Ei-1), ans Ei-2) Given, that He already calculated final values of anssi-17, anssi-23 in the recursion calls Ofor i=1-Base Caser as (4) =) for one node man-weight =) Wi ans [2) = man (ans [1) for 1=1=1 ans[2]= man (ans[1], ans[0]+w[i]) (who here picle vilve and ans Eb320 =) ans [2] = max (W1, W2)= may(ans (1), W2) 2) Assume that the Statement 13 true for nex (RZ) =) ans [k] = @ max (ans [k-1], ans [k-1]+w[k]) (3) Now we prove that the Statement is true for notes?

not picked =) ans [K] =) ans [k+1] [prod =) ans [k-1] + W[M] ans[k+1] = max (ans[k+1], ans[k-1]+w[k+1]) ans[k+1) = man (ans[k+1-1), ans[k+1-2]+w[k+1]) zman (ans[k], ans[k-1]+W[k+1]) Honce, it is true for [nzkel] ? The s.t is true + n EN House, the Algorithm is correct

(b) let araph ((V,E) and nodes be V, V2, -- Vn SIt dividedye (Vi, y) enists It is (V7) y) Now Consider an array ans(n) ans Ei3 = longest path Length from [vp to vn] 5/6 we use dis here. initialise ans (n, - x)) ans [i] = -x Vi then ans En3 = ans Eod = 0 not used dfs (ind at) index) dfs on (i) =) [dfs(1)] Now start a dfs from (V) visited (at) = 1; tempans = (at - 0); for adjacent nodes 1 of Yat ? if (!visited[i])} dfs(i) tempans = man (tempans, ans [13); 'ans[at] = tempans; Here the dfs call goes to the complete depth and when the nodes till the level just below are updated then only we update our tempans enamples temp ans for (at=1) only we update dfs(1) when dfs(z) & dfs(3) return thus we already got updated ans[2], ans[3] values. ans[1] = man (ans[2], ans(3) +1)] is wrect!

and for nodes like (m) ans [n] = -00 thus

it doesn't attect our answer

but for when we reach (m) ans [n] = 0

then we reach (in) ans [i] = -00 edge (in)

then ans [i] = man (0+1,-0)

ans (i) = man (0+1,-0)

Runtimer O(V+E) - ("! dfs)
correctnessir

Two first See that there are No-Cycles in the Graph G(V,G) as(given) =) I an edge e = (V;V;) iff icj Now

Now consider we start making a path from vi and form edges vi vi and then vi IVa (ick) and so on --- (ici) we observe that there are No-Edges going back to there previous nodes as

fighter-- =) izjzkz-. In

thus Vk can never go to any node before

thus similarly + nodes.

Hence, we never get a cycle

Proof by Induction?
that the
of Vat say vis we first tind rans (is's
less des (i)
by resursively calling (tempons = and)
thus when we avaluate man (anscat) ans costs
by recursively calling dfs(i) (tempons = ans(at)) thus when we avaluate man (ans(at), ans (i)+1)); Sit — ans(at) = man (ans(at), ans (i)+1)); sit — ans(at) = man (ans(at), ans (i)+1));
we would have already got a correct value of ans [1].
Non
Base case + [n2] (No adjacent nodes
=) ans [1] = mark No eages
ans[1]+1)
$[n^2]$ ans $[2]$ = man($[2]$ an edge (v_1, v_2)).
ansl's
ans[2] = 1 (only 3 an ear (4)2) Assume that Sit is true for nizk (1 we consider (1/2) Assume that Sit is true for nizk (1 we consider (1/2) Assume that Sit is true for nizk (1 we consider (1/2) Assume that Sit is true for nizk (1 we consider (1/2) Assume that Sit is true for nizk
of the max (ans [k), ans [i3+1); vi of Vk
1210)
Now for n= +11
ans Lkall
By algo r ans (16-13 — ans (16-13 (64) ans (5)3+1 (3> 16-1)
an (k-1)
(anslight)
150 NON 121
erom Or O - 1 S.t. 3 true # non nz 1
Houses the Alegorithm is Cornect
Herres We Aplan

ut ans(n) = Array that store
ans(n) = minimum cost's for all indices i. slt ans [i] = minimum cost for the { S1, S2 .-- Si}

for a given St to chose company A/B

=) we have 2 choices A/B

if (A) is chosen =) we need not check if there is any block of u taken before that whether stiss, sti Si-3, Si-2, Sibelong to a block of 4/not thus we get [ans[i-1) + r.s. (for A)] ans [i] 100 10 (200

if (B) is chosen. =) Si E B =) there should be 3 S; EB configuous with Here we consider only till Si =) the Si are Si-3, Si-2, Si-1 Should EB Now consider a case for ans[i-1], Si-3, Si-2 & B and Sint A then to get ans $[i] = ans [i-1] - n.s_{i-1}$ $-2^{i}C + y^{*}C$ (s_{i-3}, s_{i-2})

for this we have to use an array vist(n) and vist(i) = 0 =) SiEA (it dynamically 2th vist (i) = 1 =) SiEB (updated with i)

ans [i] = ans [i-13+4°C

501 if (vist [i] == 0) then ans [i] -= 7.5j] else anscij -= S) je { i-3, and update vist[j] values. instead we can directly consider ansli-u) and add yic ansli] = [ansli-4] fy"c]-0 [anslo]=0] for 1=1,1=2,1=3 ans[i] = ans[i-1]+r.s; Now from O, O (: can't chose B - Not 4 continuous we have ans [i] = man (ans [i-1] +r,s;, ans [i-4] + 4°c) chose A chose B.

return ans [n] (it tolon)=) (vist Ei)=0) (vist Ei]=1)

Run Time & each ans Ei] is calculated in O(1) thus (-n=) (n) Correctness proof by Induction's cost = 1 n = 1 = 1 n =O Base Cuse? Since there is no continguous if weeks for n=3 we can only take company A St=) ans[i] = mgn (ans[i-1)+hsi, ans[i-u]+y.c)

2) Assume St is true + n = le =) ans [k] = man (ans [k-1]+8.5k, ans [k-u]+4.c); 3 Now prove s.t to tr n2 k+1 ans[k+1] = mpm (ans[k+1-1] +8.5k+1) ans[k+1-4]+4.c) = man (ans[k] +8.5k+1) ans[k-3]+4.c)] Now by algorithm

- chose A =) ans [k] + n. 5 k+1

ans [k+1] - chose B =) ans [k-3] + u.c. thus ans [k+1) = min (ans [k] + Tiskth, ans [k-3] + We) =) St is true for na k+1 Hence s.t is true + nEN, n=1 Hence, the Algorithm is correct

airen, n servers S1,52,53--- Sn & C; -) S! cost's for servers let ans (n) be an array slb 1-indening ans [i] = Required minimum cost for the Servers range (1,i) Now we evaluate ans Ej3+ sum of distances for } to ans Ej3+ sum of distances for } to ans Ej3+ sum of distances for } to = $\min_{1 \le j \le i} \{ans [j] + 0 + i + 2 + 2 + 2 + (i - j - 1)\} + C_i$ = min { ans [i] + i] (2) + Ci no of compliantions Base Conditionir ans [0] =0 for 1c2=0 12c2=2]=2 RunTime = 181 P-1 iterations for each i in range (1, h) =) $O(n^2)$ Correctnissin

proof by Induction in

S.t =) ans[i] = min {ans[i] + i-t_2} + c_1

n=1=1 ans $C(3)=\min_{1 \le 1} \frac{1}{2}$ and $C(3)=\frac{1}{2}$ and $C(3)=\frac{1$ (2) Assume stis true for nek =) ans [k] = min { ans [i] + ki } + Ck 3) Now we prove that the S.T. I frue for 12 ktl =) ans[k+1] = min {ans[j]+ (k+1-)} {}+ (k+1-) {} min cost from any jekt 1 + dis all distances y algorithm and cost of (k+1)th server __ @ ans[kt] = min { ans[j] + ktlj } + Cktl (1), (2) in sit is there for no ket) Homes the St is true of nEN 121 Hence the Algorithm is correct

1076; I have referred to a gruestion that
is similar to this problem - online

(0/5) sink b Algorithmir airen araph 9(v,e) nodes VEV Here we have 2 cases to O Algorithm rejects a. @ Algorithm Accepts 4.

aseir if I a w sit edge(v,w) and d(v) > d(w)+ce (e= cost of edge (v, w) So, now if d(w) is correct (min-cost) then definitely 3 a path from y tot via w and as d(v) > d(w) + (e =) d(v) is interior case 2 h it d(v) = d(w) + ce then make a new graph H slt H has only edges e(v, w) satisfying this condition [dev) = dewitce from Now we apply a DFS on all nodes (VEV)

if we have path from (v) to the then continue

else reject.

Accept - It we get no reject instances.

As. W-KT it down one correct then all edges in shortest path from v to b. E A Hence, we can always reach to from V it d(v) I is correct in H. tet d'(v) be actual distance from v tot in 4 and we should prove that d'Evizder) 4v Now consider d'(v) ∠ d(v) and let there be a path P from to v to t sit Slf V, x, x, t is there and or is the last node holding the condition d'and also as a is the last node from V > 2 thus y will have d'uy) = duy) ("I pis real shortest) Now as my one in p =) d'(n) = d'(y) + ce(n,y) =) d(m)>d'(n) = d'(y)+(e= d(y)+(e This as a contradiction as the algorithm would reject by O(d(v) >d(w)+(e) Thus, d'cv) = dcv) + v Home, proved

(b) We can use dijkstra in this question but we modify negative edge weights so that there is no actual effect but dijktstra can be Now consider for the cost of an edge elnw cè = ce-d(v)+d(w) we see that the new wish are 20 since it c'ezo then d(v) x d(w) + ce which isn't the Now consider apath p from an noell x to th actual cost of P =) C(p) = \(\xi \) (e and new costs =) $c'(p) = \underbrace{\sum c'_e - \sum (e - d(v) + d(w))}_{eep}$ but in the path for node 1, the we have c'(p) = c(p) -d(m)+d(t') (an the other nodes -d(v1)+d(v2) they +d(v2)+d(v3) c'(p) = c(p) -d(n)+d(t') 2 (4)20

-) c(p)=c(p)+(d(b)-d(m)) -0 constant =) Set of min cost paths from n to the under c' is the sange as set under C Honer, holds true given ntot under d' Jones,

@ calculate modiffred wists of modes (Co)

@ Apply diskstra's Algorithm

@ Apply diskstra's Algorithm (3) add d'(t) +d(0x) will not exceed Thus over all the complemity Runtinu & O(mlogn)

NOTEF I took help of Kirinberg Tardos soln guide to solve this problem