

498

varithms	x og	Q =	0.301	
UR TURN	3			

Use a calculator to approximate $\log \frac{5}{8}$ to four decimal places.

Note that we are finding the logarithm of a fraction.

Press LOG 5 8 ENTER.

$$\log \frac{5}{8} \approx \boxed{-0.204}$$

Use a calculator to approximate $\log \frac{7}{2}$ to four decimal places.

log = 0.5441

EXAMPLE 4

Use a calculator to approximate $10^{2.627}$ to four decimal places.

Press 10^x 2

YOUR TURN 4

Use a calculator to approximate $10^{3.361}$ to four decimal places.

YOUR NOTES Write your questions and additional notes.

499

The Base e and Natural Logarithms on a Calculator

ESSENTIALS

The Number e

$$Euler^{9} \longrightarrow e \approx 2.7182818284...$$

Logarithms base e are called **natural logarithms**, or Napierian logarithms, and are abbreviated "ln." For example, ln 5 means log_e 5.

Examples

• Use a calculator to approximate ln 354 to four decimal places.

Press LN 3 5 4) ENTER.

 $\ln 354 \approx 5.8693$

Use a calculator to approximate $e^{2.012}$ to four decimal places.

Press e^x 2.012) ENTER.

$$e^{2.012} \approx 7.4783$$

GUIDED LEARNING: Textbook	k lnstructor Video
EXAMPLE 1	YOUR TURN 1
Use a calculator to approximate $\ln 6 + 3$ to four decimal places.	Use a calculator to approximate $\ln 7 - 3$ to four decimal places.
Be sure that only the 6 is in the parentheses.	ln7-3=-1.0541
Press LN 6 + 3 ENTER.	1
$\ln 6 + 3 \approx$	1.9459
EXAMPLE 2	YOUR TURN 2
Use a calculator to approximate $e^{-1/2}$ to four decimal places.	Use a calculator to approximate $e^{-10/3}$ to four decimal places.
Press e^x (-) 1 / 2) ENTER. $e^{-1/2} \approx $	$e^{-10/3} = 0.0356$

YOUR NOTES Write your questions and additional notes.

Changing Logarithmic Bases

ESSENTIALS

500

The Change-of-Base Formula

For any logarithmic bases a and b, and any positive number M,

TIALS

the Change-of-Base Formula

The any logarithmic bases
$$a$$
 and b , and any positive number M ,

 $\log_b M = \frac{\log_a M}{\log_a b} = \frac{1}{\log_a b} \log_a M$
 $\log_a M = \log_a M \log$

Example

Find log₅12 using the change-of-base formula. Round to four decimal places.

We use the change-of-base formula with a = 10, b = 5, and M = 12.

$$\log_5 12 = \frac{\log_{10} 12}{\log_{10} 5} \approx \frac{1.079181246}{0.6989700043} \approx 1.5440$$

$\log_{10} 3 = 0.0989/00043$		
GUIDED LEARNING: Textbook	k Instructor Video	
EXAMPLE 1	YOUR TURN 1	
Find $\log_4 0.3$ using the change-of-base formula. Round to four decimal places. Using common logarithms, we have $a = 10$, $b = 4$, and $M = 0.3$. $\log_4 0.3 = \frac{\log_{10} 0.3}{\log_{10} 4}$	Find $\log_3 0.1$ using the change-of-base formula and common logarithms. Round to four decimal places. $\log_3 0.1 = \frac{\log_{10} 0.1}{\log_{10} 3} = \frac{-1}{\log_{10} (3)}$	
$\approx \frac{-0.5228787453}{0.6020599913}$ $\approx \boxed{-0.868}$ EXAMPLE 2	$= \frac{-1}{0.477}$ $= -2.0959$ YOUR TURN 2	
Find $\log_{2.5} 25$ using the change-of-base	Find $\log_{0.15} 15$ using the change-of-base	

formula. Round to four decimal places.

We will use natural logarithms, so a = e, b = 2.5, and M = 25.

$$\log_{2.5} 25 = \frac{\log_e 25}{\boxed{}}$$

$$\approx \frac{3.218875825}{0.9162907319}$$

$$\approx \boxed{}$$

formula and natural logarithms. Round to

 $\log_{0.15} 15 = \frac{\ln 15}{\ln 0.15}$ $= \frac{2.7081}{-1.8971} = -1.427$ $\log_{0.0} 10^{3} = 3$ four decimal places.

YOUR NOTES Write your questions and additional notes.

Graphs of Exponential Functions and Logarithmic Functions, Base e

ESSENTIALS

laxe and

Examples

- Graph the following functions and state the domain and range of each.
 - a) $f(x) = e^x + 1$
- b) $f(x) = \ln x 3$
- Use a calculator to approximate function values, plot the points, and connect them with a smooth curve.

х	$f(x) = e^x + 1$
0	2
1	3.7
2	8.4
-1	1.4
-2	1.1

The domain is \mathbb{R} . The range is $(1, \infty)$.

Use a calculator to approximate function values, plot the points, and connect them with a smooth curve.

X	$f(x) = \ln x - 3$
$\frac{1}{2}$	-3.7
1	-3
2	-2.3
3	-1.9
4	-1.6

The domain is $(0, \infty)$. The range is \mathbb{R} .

GUIDED LEARNING:

Textbook

Instructor

Video

EXAMPLE 1

Graph $f(x) = 2e^{x-4}$ and state the domain and range.

Approximate function values, plot the points, and connect them with a smooth curve.

(continued)

YOUR TURN 1

Graph $f(x) = 0.5e^{x-2}$ and state the domain and range.

$$f(a) = 0.5 e^{a-2} = 0.5 \times 1$$

=0.5 (continued)

Section 9.5 | Common Logarithms and Natural Logarithms

x	$f(x) = 2e^{x-4}$
0	0.04
1	0.10
2	0-27
3	0.74
4	2
5	5.4
-1	0.01

The domain is $(-\infty, \infty)$. The range is $(0, \infty)$

Graph $\ln(x-5)$ and state

Domain = $(-\infty, \infty) = |R|$ Range = $(0, \infty)$ YOUR TURN 2

EXAMPLE 2

Graph $f(x) = \ln(x+4)$ and state the domain and range.

Approximate the function values, plot the points, and connect then with a smooth curve.

then with a smooth curve.		
x	$f(x) = \ln(x+4)$	
0	1.4	
5	2.2	
10	2.6	
-1	1.1	
-2	0.7	
-3	0	

Domain =
$$(5,\infty)$$

Range = \mathbb{R}

The domain is $(-4, \infty)$. The range is

YOUR NOTES Write your questions and additional notes.

Practice Exercises

Readiness Check

Classify each of the following statements as true or false.

- 1. The domain of the function $f(x) = \ln(x+1)$ is $(-1, \infty)$. True.
- $\left(-1, \infty\right)$ Range of ex is

2+1>0 =>2>-1

- The range of the function $f(x) = 5e^x$ is $[0, \infty)$. For $0 \le e^x$
- (0900)

- The base of a natural logarithm is 10. False
- 4. The expression $\log_e 5$ is equivalent to $\ln 5$.

Logarithms on a Calculator

Use a calculator to find each of the following to four decimal places.

5. ln 19

6. $\ln \frac{11}{0}$

8. $\log(\frac{12}{13})$

 $10^{-3.415}$

10. $e^{3.2}$

11. $e^{-3.6}$

12.

Changing Logarithmic Bases

Find each of the following logarithms using the change-of-base formula. Round answers to four decimal places.

14. log₃ 16

15. $\log_{0.2} 3$

16. $\log_{\pi} 1000$

Graphs of Exponential Functions and Logarithmic Functions, Base e

Graph and state the domain and range of each function.

17.
$$f(x) = -e^x + 1$$

504

18.
$$f(x) = e^{x+4}$$

19.
$$g(x) = -3 \ln x$$

20.
$$g(x) = \ln(x-2)$$

