Τεχνικές Βελτιστοποίησης

 $\begin{array}{l} I\Omega \text{Annh} \text{S-}\Pi \text{Anafi} \text{Oth} \\ M \text{Hothtothiah} \end{array}$

AEM: 8872

Θέμα 1

Γραφική παράσταση της συνάρτησης

$$f(x,y) = x^3 \cdot e^{-x^2 - y^4}$$

Γραφική παράσταση της συνάρτησης

$$g(x,y) = x^4 + y^2 - 0.2sin(2\pi x) - 0.3cos(2\pi y)$$

ο κώδικας των γραφικών παραστάσ ϵ ων υπάρχ ϵ ι στο αρχ ϵ ίο $plot_functions.m$

Θέμα 2

Ζητούμενα

Στο πρώτο θέμα μας ζητείται να υλοποιήσουμε και να εφαρμόσουμε τη μέθοδο μέγιστης καθόδου (steepest descent) για να ελαχιστοποιήσουμε τις συναρτήσεις f και g παίρνοντας τα αρχικά σημεία i) (0,0), ii) (-1,-1), iii) (1,1). Το βήμα γ_{κ} θα επιλεγεί:

- σταθερό της επιλογής μας
- μεταβλητό τέτοιο ώστε σε κάθε επανάληψη να ελαχιστοποιείται η $f(x_k+g_k\cdot d_k)$
- βάσει του κανόνα Armijo

Περιγραφή αλγορίθμου

Θεωρούμε το πρόβλημα ελαχιστοποίησης μιας συνάρτησης τουλάχιστον δυο φορές παραγωγίσιμης f, στην ιδέα της επαναληπτικής διαδικασίας η οποία έχει ως εξής: Ξεκινάμε από το σημείο x_0 και παράγουμε διαδοχικά τα διανύσματα $x_1, x_2, ...$ ώστε

$$f(x_{k+1}) < f(x_k)$$
 $k = 0, 1, 2, ...$

Ο αλγόριθμος υλοποιεί την ιδέα της επαναληπτικής καθόδου που μας οδηγεί σε ολοένα και βελτιωμένες τιμές της f, προς την ελαχιστοποίηση της.

Σταθερό γάμμα

Θέτουμε ένα σταθερό $\boxed{\gamma_f=0.7}$ της επιλογής μας για την συνάρτηση f. Εντός του αλγορίθμου κάνουμε τους απαραίτητους ελέγχους για να δούμε αν η επιλογή μας αυτή θα συγκλίνει σε κάποιο αποτέλεσμα. Όταν η τιμή του γ είναι πολύ μικρή τότε τα βήματα των επαναλήψεων για την εύρεση ελαχίστου αυξάνουν σημαντικά. Απο την άλλη η επιλογή ενος μεγάλου γ για το σύστημα προκαλεί αστάθεια καθώς με μεγάλο βήμα ο αλγόριθμος αδυνατεί να βρει τον ελάχιστο. Επίσης για την ακρίβεια e, δηλαδή πόσο κοντά θα είμαστε στο ελάχιστο επιλέξαμε αρκούντος μικρή τιμή $\boxed{e=10^{-4}}$

Πιο αναλυτικά, στο ελάχιστο η παράγωγος είναι μηδέν οπότε για να προσεγγίσουμε το ελάχιστο και να βρισκόμαστε κοντά του πρέπει η παράγωγος να είναι πολύ μικρή-σχεδόν μηδέν. Οπότε ξεκινώντας για γάμα 0.7 έχουμε τις εξής γραφικές για την μέθοδο μέγιστης καθόδου.

Αρχικό σημείο (0,0) για την συνάρτηση f

Για αρχικό σημείο (0,0) η παράγωγος της f είναι μηδέν οπότε ο αλγόριθμος τερματίζεται πρόωρα και συνεπώς εγκλωβιζόμαστε στο σημείο f(x,y)=0.

Αρχικό σημείο (-1,-1) για την συνάρτηση f

Για αρχικό σημείο (-1,-1) μετά απο 277 επαναλήψεις καταλήγουμε στο σημείο (-1.22,-0.03) για δοσμένη ακρίβεια $e{=}10^{-4}$ με τιμή $f(x{,}y){=}{-}0.409$ που είναι το ολικό ελάχιστο

Αρχικό σημείο (1,1) για την συνάρτηση f

Για αρχικό σημείο (1,1) μετά απο 680 επαναλήψεις καταλήγουμε σε τοπικό ελάχιστο (0.85,1.83) για δοσμένη ακρίβεια $e=10^{-4}$ με τιμή $f(x,y)=4\cdot 10^{-6}$. Αποτέλεσμα λογικό αφού με τόσο μικρό βήμα είναι αδύνατον να βρεθούμε στην απέναντι περιοχή του ολικού ελάχιστου χωρίς να εγκλωβιστούμε.

Ελαχιστοποίηση $f(x_k+g_k\cdot d_k)$ Αρχικό σημείο (0,0) για την συνάρτηση f

Για αρχικό σημείο (0,0) η παράγωγος της f είναι μηδέν οπότε ο αλγόριθμος τερματίζεται πρόωρα και συνεπώς εγκλωβιζόμαστε στο σημείο f(x,y)=0.

Αρχικό σημείο (-1,-1) για την συνάρτηση f

Για αρχικό σημείο (-1,-1) μετά απο 33 επαναλήψεις καταλήγουμε στο σημείο (-1.22,-0.03) για δοσμένη ακρίβεια $e=10^{-4}$ με τιμή f(x,y)=-0.409 που είναι το ολικό ελάχιστο

Αρχικό σημείο (1,1) για την συνάρτηση f

Για αρχικό σημείο (1,1) βλέπουμε και από την παραπάνω γραφική ο αλγόριθμος δεν συγκλίνει στο ελάχιστο. Μπορεί το γάμμα να μην είναι σταθερό και να ακολουθεί έναν κανόνα αύξησης (όταν αυτό κρίνεται απαραίτητο) ωστόσο ένας απλός κανόνας δεν φτάνει ώστε να καταφέρουμε την σύγκλιση του αλγορίθμου. Ο εκάστοτε κανόνας, συνήθως για να είναι αποδοτικός, πρέπει να είναι καλά σχεδιασμένος και να βασίζεται σε μαθηματικές σχέσεις και περιορισμούς.

Κανόνας Armijo

Αρχικό σημείο (0,0) για την συνάρτηση f

Για αρχικό σημείο (0,0) η παράγωγος της f είναι μηδέν οπότε ο αλγόριθμος τερματίζεται πρόωρα και συνεπώς εγκλωβιζόμαστε στο σημείο f(x,y)=0.

Αρχικό σημείο (-1,-1) για την συνάρτηση f

Για αρχικό σημείο (-1,-1) μετά απο 389 επαναλήψεις καταλήγουμε στο σημείο (-1.22,-0.03) για δοσμένη ακρίβεια $e=10^{-4}$ με τιμή f(x,y)=-0.409 που είναι το ολικό ελάχιστο

Αρχικό σημείο (1,1) για την συνάρτηση f

Για αρχικό σημείο (1,1) μετά απο 499 επαναλήψεις καταλήγουμε σε τοπικό ελάχιστο (0.87,1.79) για δοσμένη ακρίβεια $e=10^{-4}$ με τιμή $f(x,y)=8.7\cdot 10^{-6}$.

Θέμα 3

Ζητούμενα

Στο πρώτο θέμα μας ζητείται να υλοποιήσουμε και να εφαρμόσουμε τη μέθοδο μέγιστης καθόδου (steepest descent) για να ελαχιστοποιήσουμε τις συναρτήσεις f και g παίρνοντας τα αρχικά σημεία i) (0,0), ii) (-1,-1), iii) (1,1). Το βήμα γ_{κ} θα επιλεγεί:

- σταθερό της επιλογής μας
- μεταβλητό τέτοιο ώστε σε κάθε επανάληψη να ελαχιστοποιείται η $f(x_k+g_k\cdot d_k)$
- βάσει του κανόνα Armijo

Περιγραφή αλγορίθμου

Θεωρούμε το πρόβλημα ελαχιστοποίησης μιας συνάρτησης τουλάχιστον δυο φορές παραγωγίσιμης f, στην ιδέα της επαναληπτικής διαδικασίας η οποία έχει ως εξής: Ξεκινάμε από το σημείο x_0 και παράγουμε διαδοχικά τα διανύσματα $x_1, x_2, ...$ ώστε

$$f(x_{k+1}) < f(x_k)$$
 $k = 0, 1, 2, ...$

Ο αλγόριθμος υλοποιεί την ιδέα της επαναληπτικής καθόδου που μας οδηγεί σε ολοένα και βελτιωμένες τιμές της f, προς την ελαχιστοποίηση της.