Chapter 1: Calculus on Euclidean Space

Ran Xie

January 3, 2022

1 Dot Product

1.1

(a)
$$v \cdot w = 1(-1) + 2(0) + (-1)3 = -4$$

(b)
$$v \times w = 2(3)U_1 - (3-1)U_2 + (2)U_3 = 6U_1 - 2U_2 + 2U_3$$

(c)
$$v/||v|| = \frac{1}{\sqrt{6}}(1,2,-1)$$
. and $w/||w|| = \frac{1}{\sqrt{10}}(-1,0,3)$

(d)
$$||v \times w|| = \sqrt{36 + 4 + 4} = \sqrt{44}$$

(e)
$$\cos \theta = \frac{v \cdot w}{||v||||w||} = \frac{-4}{\sqrt{6}\sqrt{10}} = -\frac{2}{\sqrt{15}}$$

1.2

(a)
$$d(p,q) = 0 \Leftrightarrow ||p-q|| = 0 \Leftrightarrow p-q = 0 \Leftrightarrow q = p$$

(b)
$$d(p,q) = ||p-q|| = |-1|||q-p| = d(q,p)$$

(c)
$$d(p,q) + d(q,r) = ||p-q|| + ||q-r|| \ge ||p-q+q-r|| = ||p-r||$$

1.3

 $v = xe_1 + ye_2 + ze_3$. Then

$$\begin{pmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \\ -2/\sqrt{8} & 0 & 2/\sqrt{8} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ -1 \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \\ -2/\sqrt{8} & 0 & 2/\sqrt{8} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}^{-1} \begin{pmatrix} 6 \\ 1 \\ -1 \end{pmatrix}$$

1.4

(a)

$$u \cdot (v \times w) = (u_1 U_1 + u_2 U_2 + u_3 U_3) \cdot \begin{vmatrix} U_1 & U_2 & U_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$= (u_1 U_1 + u_2 U_2 + u_3 U_3) \cdot (D_1 U_1 - D_2 U_2 + D_3 U_3)$$

$$= D_1 u_1 - D_2 u_2 + D_3 u_3$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

- (b) By (a), the product is equal to the determinant, the 3 vectors are independent iff the determinant is non zero.
- (c) By (a), the product is equal to the determinant, swapping any two vectors is equivalent to swapping the rows in the determinant which in turn changes the sign.
- (d) This is equivalent to swapping the rows even numbers of times so the sign of the determinant is unchanged.

1.5

(a) Suppose v and w are linearly dependent, then $v \times w = a(w \times w) = 0$.

Now suppose $v \times w = 0$, then for any vector u, $\dot{u}(v \times w) = \det(u, v, w) = 0$. This means for any u, u, v, w are linearly dependent. Since \Re^3 requires 3 vectors to span the space, there exists u such

that u is not linearly dependent with v and w yet the determinant of the three is 0. Therefore v, w are linearly dependent.

(b) Since $v \times w = ||v|| ||w|| \sin \theta$, by basic geometry, $||w|| \sin \theta$ is the height of the parallelogram and the ||v|| is the base of it. Therefore cross product is the area of the parallelogram formed by w, v.

1.6

Consider a matrix E, where its rows are denoted as e_1, e_2, e_3 . Then

$$E^{T}E = \begin{pmatrix} e_{1} \cdot e_{1} & e_{1} \cdot e_{2} & e_{1} \cdot e_{3} \\ e_{2} \cdot e_{1} & e_{2} \cdot e_{2} & e_{1} \cdot e_{3} \\ e_{3} \cdot e_{1} & e_{1} \cdot e_{2} & e_{3} \cdot e_{3} \end{pmatrix}$$

. If E is orthogonal matrix, then the product above is the identity matrix which means the e_1, e_2, e_3 will need to satisfy the definition of a frame. If we take determinant on both side

$$\det\{E^T E\} = (\det E)^2 = 1$$

. Therefore $\det E = \pm 1$.

1.7

Take $v_1 = (v \cdot u)u$ to be the projection along u. Then $v = v_1 + v_2$ where v_2 is defined by $v - v_1$. We just need to check their dot product.

$$v_1 \cdot v_2 = v_1 \cdot (v - v_1) = v_1 \cdot v - ||v_1||^2 = (v \cdot u)u \cdot v - ||(v \cdot u)u||^2 = (v \cdot u)^2 (1 - ||u||^2) = 0$$

Since u is unit vector.

1.8

For a parallelepipe formed by u, v, w, the volume is the height, h times the base parallelepine area A, formed by v, w.

h can be found by projecting u onto the unit vector $v \times w/||v \times w||$. So $h = u \cdot v \times w/||v \times w||$. A is simply $||v \times w||$.

Therefore

$$V = hA = u \cdot \frac{v \times w}{||v \times w||} ||v \times w|| = u \cdot (v \times w)$$

1.9

(a) For any point p such that ||p|| < 1. There exists an $\epsilon > 0$ such that $||p|| < 1 - \epsilon$. Then we have an open ball $B_{\epsilon}(p)$. For any q in the open ball,

$$||q|| = ||q - p + p|| \le ||q - p|| + ||p|| < \epsilon + (1 - \epsilon) = 1$$

Therefore the open ball is a proper subset and hence $\{p|||p|| < 1\}$ is open.

(b) $\{p|p_3>0\}=\Re^2\times H^+$. H^+ is open by the same argument from (a). Product of open sets is open in the induced product topology.

1.10

- (a) closed. Sphere boundary points are closed.
- (b) Open. $p_3 \neq = 0$ means $\{p_3 > 0\} \cup \{p_3 < 0\}$. And union of open sets is open from 1.9(b).
- (c) Not open. This set is equal to the set of points on the plane constructed by $p_1 = p_2$ minus the set of points on the line by $p_1 = p_2 = p_3$. For example (1, 1, 2) is a boundary point in the set. So not open.
- (d) Open. Interior of a cylinder.

1.11

(a)

$$v \cdot (\nabla f(p)) = \langle \sum_{i} v_{i} U_{i}, \sum_{i} \partial_{i} f U_{i} \rangle (p)$$

$$= \sum_{i} v_{i} \partial_{i} f(p)$$

$$= v[p]$$

$$= (df)(v)$$

(b) For a unit vector u at $p, u = \frac{v}{||v||}$ for some v. Therefore $u[f] = \langle u, \nabla f \rangle \leq \frac{1}{||v||} |\langle v, \nabla f \rangle| \leq \frac{1}{||v||} ||v|| ||\nabla f|| = ||\nabla f||$ by Cauchy Schwarz inequality. It achieves maximum when $v = \nabla f$ which implies $u = \frac{v}{||v||} = \frac{\nabla f}{||\nabla f||}$

1.12

Since $f^2+g^2=1$, so f'f+g'g=0. The derivative of $U,\,U'=fg'-gf'$. Let $K(t)=(f-\cos U)^2+(g-\sin U)^2$

$$\begin{split} K'/2 &= (f - \cos U)(f' + U' \sin U) + (g - \sin U)(g' - U' \cos U) \\ &= ff' + fU' \sin U - f' \cos U - U' \sin U \cos U + gg' - gU' \cos U - g' \sin U + U' \sin U \cos U \\ &= (ff' + g'g) + fU' \sin U - f' \cos U - gU' \cos U - g' \sin U \\ &= fU' \sin U - f' \cos U - gU' \cos U - g' \sin U \\ &= U'(f \sin U - g \cos U) - (f' \cos U + g' \sin U) \\ &= (fg' - gf')(f \sin U - g \cos U) - (f' \cos U + g' \sin U) \\ &= f^2g' \sin U - fgg' \cos U - gf'f \sin U + g^2f' \cos U - (f' \cos U + g' \sin U) \\ &= f^2g' \sin U + f^2f' \cos U + g^2g' \sin U + g^2f' \cos U - (f' \cos U + g' \sin U) \\ &= f^2(g' \sin U + f' \cos U) + g^2(g' \sin U + f' \cos U) - (g' \sin U + f' \cos U) \\ &= (g' \sin U + f' \cos U)(f^2 + g^2 - 1) \\ &= 0 \end{split}$$

The implies $K(t) = (f - \cos U)^2 + (g - \sin U)^2 = \text{constant}$. Let t = 0, $K(0) = (f(0) - \cos U_0)^2 + (g(0) - \sin U_0)^2 = 0$ since $f(0) = \cos U_0$ and $g(0) = \sin U_0$. Therefore $(f - \cos U)^2 + (g - \sin U)^2 = 0$ for all t. Hence $f = \cos U$ and $g = \sin U$.