$\begin{array}{cccc} Numerical \ Methods \ in \ Economics \\ & \text{MIT Press, 1998} \end{array}$

Notes for Lecture 6: Constrained Optimization

March 4, 2020

Optimization Problems

• Canonical problem:

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0,$$

$$h(x) \le 0,$$

- $-f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $-g:\mathbb{R}^n\to\mathbb{R}^m$ is the vector of m equality constraints
- $-h:\mathbb{R}^n\to\mathbb{R}^\ell$ is the vector of ℓ inequality constraints.

• Examples:

- Maximization of consumer utility subject to a budget constraint
- Optimal incentive contracts
- Portfolio optimization
- Life-cycle consumption

• Assumptions

- Always assume f, g, and h are continuous
- Usually assume f, g, and h are C^1
- Often assume f, g, and h are C^3

Linear Programming

• Canonical linear programming problem is

$$\min_{x} a^{\top} x$$

$$s.t. Cx = b,$$

$$x > 0.$$
(1)

- $-Dx \le f$: use slack variables, s, and constraints $Dx + s = f, s \ge 0$.
- $-Dx \ge f$: use $Dx s = f, s \ge 0$, s is vector of surplus variables.
- $-x \ge d$: define y = x d and min over y
- $-x_i$ free: define $x_i = y_i z_i$, add constraints $y_i, z_i \ge 0$, and min over (y_i, z_i) .

• Basic method is the *simplex method*. Figure 4.4 shows example:

$$\min_{x,y} -2x - y$$

$$s.t. \ x + y \le 4, \quad x, y \ge 0,$$

$$x \le 3, \quad y \le 2.$$

- Find some point on boundary of constraints, such as A.
- Step 1: Note which constraints are active at A and points nearby.
- Find feasible directions and choose steepest descent direction.
- Figure 4.4 has two directions: from A: to B and to O, with B better.
- Follow that direction to next vertex on boundary, and go back to step 1.
- Continue until no direction reduces the objective: point H.
- Stops in finite time since there are only a finite set of vertices.

• General History

- Goes back to Dantzig (1951). (The real Good Will Hunting.)
- Worst case time is exponential in number of variables and constraints
- Fast on average time is degree four polynomial in problem size
- Software implementations vary in numerical stability
- Best software: CPLEX and GUROBI

Constrained Nonlinear Optimization General problem:

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0$$

$$h(x) \le 0$$
(4.7.1)

- $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$: objective function with n choices
 - $-g:X\subseteq\mathbb{R}^n\to\mathbb{R}^m$: m equality constraints
 - $-h:X\subseteq\mathbb{R}^n\to\mathbb{R}^\ell$: ℓ inequality constraints
 - -f,g, and h are C^2 on X
- Linear Independence Constraint Qualification (LICQ):
 - The set of constraints that hold with equality at a feasible point $x \in X$ is called the active set A(x). Formally,

$$A(x) = \{i \in I \mid g_i(x) = 0\} \cup E.$$

- The linear independence constraint qualification (LICQ) holds at a point $x \in X$ if the gradients of all active constraints are linearly independent.

• Karush-Kuhn-Tucker (KKT) theorem: if there is a local minimum at x^* then there are multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^\ell$ such that x^* is a *stationary*, or *critical*, point of \mathcal{L} , the *Lagrangian*,

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$$
(4.7.2)

• First-order conditions, $\mathcal{L}_x(x^*, \lambda^*, \mu^*) = 0$, imply that (λ^*, μ^*, x^*) solves

$$f_x + \lambda^{\top} g_x + \mu^{\top} h_x = 0$$

$$\mu_i h^i(x) = 0, \quad i = 1, \dots, \ell$$

$$g(x) = 0$$

$$h(x) \le 0$$

$$\mu \ge 0$$

$$(4.7.3)$$

• If LICQ holds then the multipliers are unique; otherwise, they are called "unbounded".

• The KKT conditions are

$$\nabla_x L(x^*, \lambda^*) = 0 \text{ i.e.} \nabla f(x^*) = \sum_{i \in E \cup I} \lambda_i^* \nabla g_i(x^*)$$
$$g_i(x^*) = 0, \forall i \in E$$
$$g_i(x^*) \ge 0, \forall i \in I$$
$$\lambda_i^* \ge 0, \forall i \in I$$
$$\lambda_i^* g_i(x^*) = 0, \forall i \in E \cup I$$

- \bullet At a solution, x, all equality constraints must hold.
- Some inequality constraints will be active, that is, equal zero. For each solution x, define the active set of constraints

$$A(x) = E \cup \{i \in I | g_i(x) = 0\}$$

• Given x^* and $A(x^*)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla g_i(x^*)|i\in A(x^*)\}$ is linearly independent.

A Kuhn-Tucker Approach

- Idea: try all possible Kuhn-Tucker systems and pick best
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$.
 - For a subset $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem, corresponding to a combination of binding and nonbinding inequality constraints

$$g(x) = 0$$

$$h^{i}(x) = 0, \quad i \in \mathcal{P},$$

$$\mu^{i} = 0, \quad i \in \mathcal{J} - \mathcal{P},$$

$$f_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0.$$

$$(4.7.4)$$

- Solve (or attempt to do so) each \mathcal{P} -problem
- Choose the best solution among those \mathcal{P} -problems with solutions consistent with all constraints.
- We can do better in general.

Penalty Function Approach

- Many constrained optimization methods use a *penalty function* approach:
 - Replace constrained problem with related unconstrained problem.
 - Permit anything, but make it "painful" to violate constraints.
- Penalty function: for canonical problem

$$\min_{x} f(x)
s.t. \quad g(x) = a,
h(x) \le b.$$
(4.7.5)

construct the penalty function problem

$$\min_{x} f(x) + \frac{1}{2}P\left(\sum_{i} \left(g^{i}(x) - a_{i}\right)^{2} + \sum_{j} \left(\max\left[0, h^{j}(x) - b_{j}\right]\right)^{2}\right)$$
(4.7.6)

where P > 0 is the penalty parameter.

- Denote the penalized objective in (4.7.6) F(x; P, a, b).
- Include a and b as parameters of F(x; P, a, b).
- If P is "infinite," then (4.7.5) and (4.7.6) are identical.
- Hopefully, for large P, their solutions will be close.

- Problem: for large P, the Hessian of F, F_{xx} , is ill-conditioned at x away from the solution.
- Solution: solve a sequence of problems.
 - Solve $\min_x F(x; P_1, a, b)$ with a small choice of P_1 to get x^1 .
 - Then execute the iteration

$$x^{k+1} \in \arg\min_{x} F(x; P_{k+1}, a, b)$$
 (4.7.7)

where we use x^k as initial guess in iteration k + 1, and $F_{xx}(x^k; P_{k+1}, a, b)$ as the initial Hessian guess (which is hopefully not too ill-conditioned)

- Shadow prices in (4.7.5) and (4.7.7):
 - Shadow price of a_i in (4.7.6) is $F_{a_i} = P(g^i(x) a_i)$.
 - Shadow price of b_j in (4.7.6) is F_{b_j} ; $P(h^j(x) b_j)$ if binding, 0 otherwise.
- Theorem: Penalty method works with convergence of x and shadow prices as P_k diverges (under mild conditions)

• Simple example

- Consumer buys good y (price is 1) and good z (price is 2) with income 5.
- Utility is $u(y, z) = \sqrt{yz}$.
- Optimal consumption problem is

$$\max_{y,z} \sqrt{yz}$$

$$s.t. \ y + 2z \le 5.$$

$$(4.7.8)$$

with solution $(y^*, z^*) = (5/2, 5/4), \lambda^* = 8^{-1/2}$.

- Penalty function is

$$u(y,z) - \frac{1}{2}P(\max[0, y + 2z - 5])^2$$

- Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7
Penalty function method applied to (4.7.8)

		•	- - \	/
k	P_k	$(y,z)-(y^*,z^*)$	Constraint violation	λ error
0	10	(8.8(-3), .015)	1.0(-1)	-5.9(-3)
1	10^{2}	(8.8(-4), 1.5(-3))	1.0(-2)	-5.5(-4)
2	10^{3}	(5.5(-5), 1.7(-4))	1.0(-3)	2.1(-2)
3	10^{4}	(-2.5(-4), 1.7(-4))	1.0(-4)	1.7(-4)
4	10^{5}	(-2.8(-4), 1.7(-4))	1.0(-5)	2.3(-4)

Sequential Quadratic Programming Method

• Special methods are available when we have a quadratic objective and linear constraints

$$\min_{x} (x - a)^{\top} A (x - a)$$

$$s.t. \quad b (x - s) = 0$$

$$c (x - q) \le 0$$

- Extensions of linear programming
- Excellent software includes CPLEX and GUROBI

- Sequential Quadratic Programming Method
 - Solution is stationary point of Lagrangian

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$$

- Suppose that the current guesses are (x^k, λ^k, μ^k) .
- Let step size s^{k+1} solve approximating quadratic problem

$$\min_{s} \mathcal{L}_{x}(x^{k}, \lambda^{k}, \mu^{k})(x^{k} - s) + (x^{k} - s)^{\top} \mathcal{L}_{xx}(x^{k}, \lambda^{k}, \mu^{k})(x^{k} - s)$$
s.t. $g(x^{k}) + g_{x}(x^{k})(x^{k} - s) = 0$

$$h(x^{k}) + h_{x}(x^{k})(x^{k} - s) \leq 0$$

- The next iterate is $x^{k+1} = x^k + \phi s^{k+1}$ for some ϕ
 - * Could use linesearch to choose ϕ
 - * λ^k and μ^k are also updated but we do not describe the detail here.
- Proceed through a sequence of quadratic problems.
- SQP method inherits many properties of Newton's method
 - * rapid local convergence
 - * can use quasi-Newton to approximate Hessian.

Domain Problems

• Suppose $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$, $g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $h: X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$, and we want to solve

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0$$

$$h(x) \le 0$$
(4.7.1)

• The penalty function approach produces an unconstrained problem

$$\max_{x \in \mathbb{R}^n} F(x; P, a, b)$$

- Problem: F(x; P, a, b) may not be defined for all x.
- Example: Consumer demand problem

$$\max_{y,z} u(y,z)$$
s.t. $p \ y + q \ z \le I$.

- Penalty method

$$\max_{y,z} \ u(y,z) - \frac{1}{2} P(\max[0, \ p \ y + q \ z - I])^2$$

- Problem: $u\left(y,z\right)$ will not be defined for all y and z, such as

$$u(y, z) = \log y + \log z$$

$$u(y, z) = y^{1/3} z^{1/4}$$

$$u(y, z) = \left(y^{1/6} + z^{1/6}\right)^{7/2}$$

- Penalty method may crash when computer tries to evaluate $u\left(y,z\right)!$

• Solutions

- Strategy 1: Transform variables
 - * If functions are defined only for $x_i > 0$, then reformulate in terms of $z_i = \log x_i$
 - * For example, let $\widetilde{y} = \log y$, $\widetilde{z} = \log z$, and solve

$$\max_{\widetilde{y},\widetilde{z}} \ u(e^{\widetilde{y}},e^{\widetilde{z}}) - \frac{1}{2} P(\max[0, \ p \ e^{\widetilde{y}} + q \ e^{\widetilde{z}} - I])^2$$

- * Problem: log transformation may not preserve shape; e.g., concave function of x may not be concave in $\log x$
- Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see discussion above)
- Strategy 3: Express the domain where functions are defined in terms of inequality constraints that are enforced by the algorithm at every step.
 - * E.g., if utility function is $\log(x) + \log(y)$, then add constraints $x \ge \delta, y \ge \delta$ for some very small $\delta > 0$ (use, for example, $\delta \approx 10^{-6}$; don't use $\delta = 0$ since roundoff error may still allow negative x or y)
 - * In general, you can avoid domain problems if you express the domain in terms of linear constraints.
 - * If the domain is defined by nonlinear functions, then create new variables that can describe the domain in linear terms.

Active Set Approach

• Problems:

- Kuhn-Tucker approach has too many combinations to check
 - * some choices of \mathcal{P} may have no solution
 - * there may be multiple local solutions to others.
- Sequential quadratic method can be slow if there are too many constraints.
- Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind at solution.

- Solution: refine K-T with a *good sequence* of subproblems, ignoring constraints that you think won't be active at the solution.
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$
 - for $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem

$$\min_{x} f(x)
s.t. \ g(x) = 0, \qquad (\mathcal{P})
h^{i}(x) \leq 0, \quad i \in \mathcal{P}.$$
(4.7.10)

- Choose an initial set of constraints, \mathcal{P} , and solve (4.7.10- \mathcal{P})If that solution satisfies all constraints, then you are done.
- Otherwise
 - * Add constraints which are violated by most recent guess
 - * Periodically drop constraints in \mathcal{P} which fail to bind
 - * Increase penalty parameters
 - * Repeat
- The simplex method for linear programing is really an active set method.

Interior-Point methods

• Consider

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$

s.t. $Ax = b$
$$x \ge 0$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and A is an $m \times n$ matrix.

• Karush-Kuhn-Tucker conditions for this optimization problem are as follows.

$$A^{\top}\lambda + s = c \tag{2}$$

$$Ax = b \tag{3}$$

$$x_i s_i = 0, \quad i = 1, 2, \dots, n$$
 (4)

$$x \ge 0 \tag{5}$$

$$s \ge 0 \tag{6}$$

- Interior-point methods solve a sequence of perturbed problems.
 - Consider the following perturbation of the KKT conditions.

$$A^{\top}\lambda + s = c \tag{7}$$

$$Ax = b \tag{8}$$

$$x_i s_i = \mu, \quad i = 1, 2, \dots, n \tag{9}$$

$$x > 0 \tag{10}$$

$$s > 0 \tag{11}$$

- The complementarity condition (4) is replaced by (9) for some positive scalar $\mu > 0$.
- Assuming that a solution $(x^{(0)}, \lambda^{(0)}, s^{(0)})$ to this system is given for some initial value of $\mu^{(0)} > 0$, interior-point methods decrease the parameter μ and thereby generate a sequence of points $(x^{(k)}, \lambda^{(k)}, s^{(k)})$ that satisfy the non-negativity constraints on the variables strictly, $x^{(k)} > 0$ and $s^{(k)} > 0$.
- As μ is decreased to zero, a point satisfying the original first-order conditions is reached.
- The set of solutions to the perturbed system,

$$C = \{x(\mu), \lambda(\mu), s(\mu) \mid \mu > 0\}$$

is called the central path.

• Implementations must handle many details

- It is often difficult to find a feasible starting point $(x^{(0)}, \lambda^{(0)}, s^{(0)})$ of the perturbed system.
- Good initial guesses generally do not work! IPOPT will use good initial guesses.
- We need to solve (7) (9) in each iteration and maintain 10 and 11.
- Newton's method can be used but better is to use path-following to maintain the inequalities.

The Logarithmic Barrier Method

• Consider

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) \ge 0 \quad i \in I$

• Combine the objective function and constraints to define a penalty function

$$P(x; \mu) = f(x) - \mu \sum_{i \in I} \ln g_i(x),$$

- $-\mu > 0$ is called the barrier parameter
- $-\sum_{i\in I} \ln g_i(x)$ is called a logarithmic barrier function.
- Each $-\ln g_i(x)$ term tends to infinity as x approaches the boundary of $g_i(x) \geq 0$ from the interior of the feasible region.
- As μ converges to zero, the optimal solution $x^*(\mu)$ path of $\min_{x \in \mathbb{R}^n} P(x; \mu)$ converges to the optimal solution of the original problem.

• First-order conditions are

$$\nabla_x P(x; \mu) = \nabla f(x) - \sum_{i \in I} \frac{\mu}{g_i(x)} \nabla g_i(x) = 0.$$

• Now define for all $i \in I$

$$\nu_i(\mu) := \frac{\mu}{g_i(x)} .$$

- Note that since $\mu > 0$ by definition we have that $\nu_i(\mu) > 0$.
- Thus, at a stationary point of the penalty function the following conditions hold.

$$\nabla f(x) - \sum_{i \in I} \nu_i \nabla g_i(x) = 0$$

$$g_i(x) - s_i = 0 \quad \text{for all } i \in I$$

$$\nu_i s_i = \mu \quad \text{for all } i \in I$$

$$\nu_i > 0 \quad \text{for all } i \in I$$

$$s_i > 0 \quad \text{for all } i \in I$$