CIS560

Obtaining a Good Database Design

1

Creating an Example Database Schema

- •What do we need?
 - Order Number
 - Order Date
 - Customer Name
 - Billing address
 - Product Name
 - SKU
 - Product Category
 - Quantity
 - Unit Price

Good design provides:

- Data integrity
 - Maintains accuracy and consistency of the data
 - · Data is recorded as intended
 - Data is retrieved as intended
 - In other words, helps avoid unintentional changes
- Easier maintenance of data
- Easier maintenance of code
 - SQL AND Application Code
- Better performance...usually
 Not always the case, but makes it more achievable.

KANSAS STATE | Computer Science

3

Bad design...

- Lacks data integrity
- Decreases maintainability
- Performs poorly
- Introduces data anomalies
 - Redundancy With redundant data, what's the truth?
 - Update anomalies
 We have to update multiple places and may miss some.
 - Delete anomalies
 We could unintentionally lose data.

How do we achieve good design?

- Database researchers developed normal forms.
- •If a database is in one of the normal forms, then it is guaranteed to have certain properties.
- •The most important, and most common, are:
 - Third Normal Form (3NF)
 - Boyce-Codd Normal Form (BCNF)
- 3NF and BCNF guarantee to avoid certain types of redundancy.

KANSAS STATE | Computer Science

5

Normal Forms 5 NF 4 NF BCNF 3 NF 2 NF 1 NF WNIVERSITY Computer Science

Normal forms are defined using...

Keys and Functional Dependencies

KANSAS STATE | Computer Science

7

Functional Dependencies

- •They are a form of constraint.
- Finding them is a part of database design.
- Also used in normalizing the relations.
 - 1. Start with some relational schema.
 - 2. Find the functional dependencies.
 - 3. Use them to design a better schema.

Functional Dependencies Defined

• If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must agree on the attributes

$$B_1, B_2, ..., B_m$$

Formally

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Informally

If we know A_1 , A_2 , ..., A_n , then we know B_1 , B_2 , ..., B_m

KANSAS STATE

Computer Science

9

When Does a Functional Dependency (FD) Hold?

Definition: $A_1, ..., A_n \rightarrow B_1, ..., B_m$ holds in relation S if:

$$\forall t, t' \in S, (t.A_1 = t'.A_1 \land ... \land t.A_n = t'.A_n \Longrightarrow t.B_1 = t'.B_1 \land ... \land t.B_m = t'.B_m)$$

if t, t' agree here then t, t' agree here

A FD holds, or does not hold on an instance of a relation:

StudentID	Name	Phone	Dept
0045	Smith	1234	Math
3542	Mike	9876	CIS
1111	Smith	9876	CIS
9999	Mary	1234	Eng

StudentID → Name, Phone, Dept

Dept → Phone

KANSAS STATE

UNIVERSITY

Computer Science

11

Example

A FD holds, or does not hold on an instance:

StudID	Name	Phone	Dept
0045	Smith	1234	Math
3542	Mike	9876 ←	CIS
1111	Smith	9876 -	CIS
9999	Mary	1234	Eng

StudID → Name, Phone, Dept

Dept → Phone

KANSAS STATE | Computer Science

A FD holds, or does not hold on an instance of a relation:

StudID	Name	Phone	Dept
0045	Smith	1234	Math
3542	Mike	9876	CIS
1111	Smith	9876	CIS
9999	Mary	1234	Eng

StudID → Name, Phone, Dept Phone → Dept

Dept → Phone

Computer Science

13

Example

A FD $\underline{\text{holds}}$, or $\underline{\text{does not hold}}$ on an instance:

StudID	Name	Phone	Dept
0045	Smith	1234	Math
3542	Mike	9876 →	CIS
1111	Smith	9876 →	CIS
9999	Mary	1234	Eng

StudID → Name, Phone, Dept

Phone → Dept

Dept → Phone

Computer Science

A FD <u>holds</u>, or <u>does not hold</u> on an instance:

StudID	Name	Phone	Dept
0045	Smith	1234 →	Math
3542	Mike	9876	CIS
1111	Smith	9876	CIS
9999	Mary	1234 →	Eng

StudID → Name, Phone, Dept

Dept → Phone

KANSAS STATE

Computer Science

15

Example

FD's are constraints

- On some instances they hold
- On others they don't

name → color
category → store
color, category → price

Do all the above functional dependencies hold on this instance?

name	category	color	store	price
iPad	Gadget	Silver	Campus store	529
iPhone	Gadget	Silver	Campus store	429

FD's are constraints

- On some instances they hold
- · On others they don't

name → color category → store color, category → price

Do all the above functional dependencies hold on this instance?

name	category	color	store	price
iPad	Gadget	Silver	Campus store	529
iPhone	Gadget	Black	Campus store	429
iPad	Tablet	Silver	Best Buy	569

17

Class Exercise

If all these FDs hold:

name → color
category → store
color, category → price

Then this FD also holds:

name, category \rightarrow price

Anomalies

Anomalies occur when "bad" FDs hold

- ■We know some of the FDs
- ■Need to find all FDs
- ■Then we can look for the bad ones

KANSAS STATE | Computer Science

19

How do we find all Functional Dependencies?

Armstrong's Rules

Armstrong's Rules (1/3)

Splitting rule and Combining rule

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Is equivalent to

$$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{1}$$

$$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{2}$$

$$....$$

$$A_{1}, A_{2}, ..., A_{n} \rightarrow B_{m}$$

21

Armstrong's Rules (2/3)

Trivial Rule

$$A_1, A_2, ..., A_n \rightarrow A_i$$

where i = 1, 2, ..., n

In other words:

A, B, C
$$\rightarrow$$
 A

A, B, C
$$\rightarrow$$
 B

A, B, C
$$\rightarrow$$
 C

Armstrong's Rules (3/3)

Transitive Closure Rule

If
$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

and
$$B_1, B_2, ..., B_m \rightarrow C_1, C_2, ..., C_p$$

then
$$A_1, A_2, ..., A_n \rightarrow C_1, C_2, ..., C_p$$

23

Example

Start from the following FDs:

1. name \rightarrow color

2. category → store

Infer the following FDs:

3. color, category → price

Inferred FD	Which Rule did we apply ?
4. name, category → name	Trivial Rule
5. name, category → color	Transitivity on 4, 1
6. name, category → category	Trivial Rule
7. name, category → color, category	Split/combine on 5, 6
8. name, category → price	Transitivity on 7, 3

THIS IS TOO HARD!

Let's see an easier way.

25

Closure of a Set of Attributes

```
Given a set of attributes A_1, ..., A_n
```

the **closure** $\{A_1, ..., A_n\}^+$ = the set of attributes B such that $A_1, ..., A_n \rightarrow B$

Example:

```
name → color
category → store
color, category → price
```

What are the closures?

```
name+ = {name, color}
{name, category}+ = {name, category, color, store, price}
color+ = {color}
```

Closure Algorithm

```
X = \{A_1, ..., A_n\}.
```

Repeat until X doesn't change:

```
if B_1, ..., B_n \rightarrow C is a FD and B_1, ..., B_n are all in X then add C to X.
```

Example:

```
name → color
category → store
color, category → price
```

```
{name, category}<sup>+</sup> = 
{ name, category, color, store, price }
```

27

Closure Algorithm

```
X = \{A_1, ..., A_n\}.
```

Repeat until X doesn't change:

```
if B_1, ..., B_n \rightarrow C is a FD and B_1, ..., B_n are all in X then add C to X.
```

Example:

```
name → color
category → store
color, category → price
```

```
{name, category}<sup>+</sup> = 
{ name, category, color, store, price }
```

Hence: name, category → color, store, price

Class Exercise

$$R(A,B,C,D,E,F)$$

$$A, B \rightarrow C$$

$$A, D \rightarrow E$$

$$B \rightarrow D$$

$$A, F \rightarrow B$$

```
Compute \{A, B\}^+  X = \{A, B, C, D, E \}
Compute \{A, F\}^+  X = \{A, F, B, C, D, E \}
```

29

Why Do We Need Closure?

- •With closure we can find all Functional Dependencies
- •You can check if X → A
 - •Compute X⁺
 - •Check if $A \in X^+$

Class Exercise

31

Using Closure to Infer ALL FDs

Relation: R(A, B, C, D)

Functional Dependencies:

 $A, B \rightarrow C$ $A, D \rightarrow B$ $B \rightarrow D$

Step 1: Compute X^+ , for every X:

 $A^{+}=A$, $B^{+}=BD$, $C^{+}=C$, $D^{+}=D$ $AB^{+}=ABCD$, $AC^{+}=AC$, $AD^{+}=ABCD$, $BC^{+}=BCD$, $BD^{+}=BD$, $CD^{+}=CD$ $ABC^{+}=ABD^{+}=ACD^{+}=ABCD$ (no need to compute – why?) $BCD^{+}=BCD$, $ABCD^{+}=ABCD$

Step 2: Find all FD's $X \rightarrow Y$, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

 $B \rightarrow D$, $AB \rightarrow CD$, $AD \rightarrow BC$, $BC \rightarrow D$, $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$