Regular Set

Regular Expressions. - Syntax to define regular sets.

Finite state Automote - Computational model for processing regular sets.

Syntax specification for a PL.

<arilla -exp> := < vor> | < const > |

<orith-exp> <aritt-op> <arith-exp>.

<arit-op>::= + | - | * | /

< const > ::= 0 | 1 | 21 -- | 8 | 9

<p

 $A = \{a^n b^n | n \ge 0\}, - not regular.$ a = [b =]

A = {an bn | n≥o}. - not regular.

Recursive definition

- $\cdot \in A$
- · if weA then a wb EA.

Context Free Languages.

Context Free Grammors.

 $G = (N, \mathcal{Z}, P, S)$.

N-finite Set (non-terminal Symbols).

Z- finite set (terminal Symbols). INN= of

P-finite Subset of NX (NUZ)* [productions]

SEN (Start Symbol).

Notation. A,B,C-non-terminals. a,b,C- terminal symbols

«,B, 8 - Strings over (NUE)*

Context Free Grammars.

$$G = (N, \mathcal{Z}, P, S)$$
.

N-finite Set (non-terminal Symbols).

Z- finite set (terminal Symbols). INN= 0

 $P - finite Subset of NX (NUZ)^* [productions]$ $P \subseteq NX (NUZ)^* \qquad \{(A, \alpha_1), (A_1 \alpha_2), (A_1 \alpha_3)\} \subseteq P$ $A \rightarrow \alpha_1 |\alpha_2| \alpha_3.$ $S \in N \quad (Start S_1 mbol).$

Suppose &, B = (NUE)* B is derivable from a in one Step $\angle \xrightarrow{1} \beta$ if β can be obtained

from & by replacing some occurrence of a hon-termind A in & wilk & where A->8 EP.

if 3 d,, d2 ∈ (NUE), 3 A → 8 ∈ P s.t

 $\alpha = \alpha_1 / A \alpha_2$ and $\beta = \alpha_1 / 8 \alpha_2$ $d_1 \cdot 3 d_2 = \beta$

d = 3 B - one step derivation

 $\stackrel{*}{\hookrightarrow}$: reflexive transitive closure of the relation $\stackrel{1}{\hookrightarrow}$.

 $2 \stackrel{\text{H}}{\hookrightarrow} \beta$ if $3 \stackrel{\text{H}}{\hookrightarrow} 3 \stackrel{\text{H}}{\hookrightarrow} 3$ and $3 \stackrel{\text{H}}{\hookrightarrow} \beta$. $2 \stackrel{\text{H}}{\hookrightarrow} \beta$ if $2 \stackrel{\text{H}}{\hookrightarrow} \beta$ for some $n \ge 0$.

Language generated by Gr.

$$L(G) = \{x \in \mathcal{E}^* \mid 5 \xrightarrow{x} x\}$$

 $B \subseteq \mathcal{E}^*$ is a context free language (CFL) if B = L(G) for some CFG G.

 $Z = \{a^{n}b^{n} \mid n \geq 0\} - is a CFL.$ CFG. $G = (N, \geq, P, S)$ $N = \{5\}$, $\leq = \{a, b\}$. $P = \{S \rightarrow aSb, S \rightarrow \epsilon\}$.

L(G) = Z

 a^3b^3 : $5 \xrightarrow{4} a5b \xrightarrow{5} aa5bb$ $\xrightarrow{5} aaa5bbb \xrightarrow{1} aaabbb$.

By induction on n: Show that $S \xrightarrow{n+1} a^n b^n$ \Rightarrow all strings of the form $a^n b^n \in L(G)$.

Conversly, the only strings in L(G) are of the form $a^n b^n - 1$ induction on the length of the derivation