Distributed Beamforming in Adversarial Environments

Yagiz Savas and Ufuk Topcu

in collaboration with Abolfazl Hashemi, Abraham P. Vinod, Brian M. Sadler

Wireless Communications in the Presence of Adversaries

Wireless Communications in the Presence of Adversaries

Objective and Structure

Develop a time-varying transmission strategy that enables secure communication

Distributed beamforming

Physical-layer security

Semi-definite programming

Beamforming as a Wireless Communication Technique: Main Idea

Adjust phase and amplitude: $w_i s(t) = \bar{a} e^{j\bar{\phi}}$

Transmit collectively:
$$y(t) = \sum_{i} w_{i} s(t)$$

Beamforming as a Wireless Communication Technique: Main Idea

Received signal-to-interference -plus-noise ratio (SINR)

High SINR implies reliable communication

Beamforming as a Wireless Communication Technique: Benefits

Single robot equipped with an isotropic antenna

- No directionality
- Low SINR

Two robots each equipped with an isotropic antenna

- Improved directionality
- Improved SINR

Secure Communication Problem: An Informal Problem Statement

Related Work

- No adversaries: optimal beamformer can be found analytically [1]
- Adversaries with known locations: convex optimization-based beamformers [2]
- Adversaries with unknown locations: minimize SINR in all directions by broadcasting artificial noise [3]

• Ozarow and Wyner $^{[4]}$ showed in 1984 that if S^K is encoded into X^N , then

$$\mu_i$$
: number of symbols received by adversary a_i

$$\mu_i \le N - K \implies H(S^K | Z^{N,i}) = K$$

Implication: We can let each adversary receive N-K symbols and still establish a secure communication

^[1] Lorenz, R. G. and Boyd, S. P., "Robust minimum variance beamforming", IEEE Transactions on Signal Processing, 2005

^[2] Liao et al, "QoS-Based Transmit Beamforming in the Presence of Eavesdroppers", IEEE Transactions on Signal Processing, 2010

^[3] Goel, S. And Negi, R., "Guaranteeing Secrecy Using Artificial Noise", IEEE Transactions on Wireless Communications, 2008

^[4] Ozarow, L. H. and Wyner, A. D., "Wire-Tap Channel II", AT&T Bell Laboratories technical journal, 1984

Contributions

We approach the problem from a sequential decision-making perspective

The proposed periodic strategy enables the agents to securely communicate with the client in scenarios in which all stationary strategies fail to ensure security

Environment Model

Environment Model

Environment Model

Transmission model

At time $t \in [N]$, the agents transmit the encoded symbol X_t as a continuous signal S_t .

The vector of signals transmitted by the agents is

Transmission model

At time $t \in [N]$, the agents transmit the encoded symbol X_t as a continuous signal S_t .

The vector of signals transmitted by the agents is

What is the effect of artificial noise? [1]

If the agents had infinite transmit power, they would minimize the SINR in all adversary directions simultaneously

Transmission model

At time $t \in [N]$, the agents transmit the encoded symbol X_t as a continuous signal S_t .

The vector of signals transmitted by the agents is

Since the maximum transmit power is P, we have $w_t(i) + \sum_t (i, i) \leq P$.

The known narrowband channel between the agent $i \in [m]$ and a receiver in the direction $\theta \in [-\pi, \pi)$ is denoted by $h_i(\theta) \in \mathbb{C}$.

• Finally, the SINR received from the direction heta is

Tr(M) denotes the trace of the matrix M

Variance of the ambient noise

Ensuring Security with a Periodic Transmission Strategy

The objective is to find a sequence $((\mathbf{w}_1, \Sigma_1), (\mathbf{w}_2, \Sigma_2), ..., (\mathbf{w}_N, \Sigma_N))$ of pairs (\mathbf{w}_t, Σ_t) such that

- (I) The client receives all transmitted symbols X_t
- (II) Each adversary receives at most N-K symbols

STEP 1: Encoding by [N, N - K] linear maximum-distance-separable codes.

STEP 2: Transmission by the periodic strategy

$$((\mathbf{w}_1, \Sigma_1), (\mathbf{w}_2, \Sigma_2), \dots, (\mathbf{w}_L, \Sigma_L), (\mathbf{w}_1, \Sigma_1), (\mathbf{w}_2, \Sigma_2), \dots, (\mathbf{w}_L, \Sigma_L), \dots, (\mathbf{w}_1, \Sigma_1), (\mathbf{w}_2, \Sigma_2), \dots, (\mathbf{w}_L, \Sigma_L))$$
 First cycle Second cycle
$$K\text{-th cycle}$$

$$\begin{aligned} & \min_{\mathbf{w}_k \in \mathbb{C}^m, \Sigma_k \geqslant 0} & Tr(\Sigma_k) + \|\mathbf{w}_k\|_2^2 & \text{Minimize total transmit power} \\ & \text{subject to:} & SINR_k(\theta_c) \geq \gamma_c & \text{Client's SINR constraint} \\ & \forall \theta \in I_k, & SINR_k(\theta) \leq \gamma_a & \text{Adversary a_k's SINR constraint} \\ & \forall i \in [m], & \mathbf{w}_k(i) + \Sigma_k(i,i) \leq P & \text{Agents' power constraints} \end{aligned}$$

Semi-infinite nonconvex optimization problem

Source of nonconvexity

Semi-infinite convex optimization problem

$$\begin{aligned} & \underset{\mathbf{W}_{k} \geq 0, \Sigma_{k} \geq 0}{\min} \quad Tr(\Sigma_{k}) + Tr(\mathbf{W}_{k}) \\ & s.t. \quad Tr(\mathbf{H}(\theta_{c})\mathbf{W}_{k}) \geq \gamma_{c} \bigg(Tr(\mathbf{H}(\theta_{c})\Sigma_{k}) + \sigma_{k}^{2} \bigg) \\ & \forall \theta \in I_{k}, \quad Tr(\mathbf{H}(\theta)\mathbf{W}_{k}) \leq \gamma_{a} \bigg(Tr(\mathbf{H}(\theta)\Sigma_{k}) + \sigma_{k}^{2} \bigg) \\ & \forall i \in [m], \quad \mathbf{W}_{k}(i,i) + \Sigma_{k}(i,i) \leq P \\ & \qquad \qquad rank(\mathbf{W}_{k}) = 1 \end{aligned}$$

Result: The convex relaxation is exact

Semi-infinite convex optimization problem

 $\min_{\mathbf{W}_k \geqslant 0, \Sigma_k \geqslant 0} Tr(\Sigma_k) + Tr(\mathbf{W}_k)$ Source of infiniteness $s.t. Tr(\mathbf{H}(\theta_c)\mathbf{W}_k) \geq \gamma_c \Big(Tr(\mathbf{H}(\theta_c)\Sigma_k) + \sigma_k^2\Big)$ $\forall \theta \in I_k, Tr(\mathbf{H}(\theta)\mathbf{W}_k) \leq \gamma_a \Big(Tr(\mathbf{H}(\theta)\Sigma_k) + \sigma_k^2\Big)$ $\forall i \in [m], \ \mathbf{W}_k(i,i) + \Sigma_k(i,i) \leq P$

Finite convex optimization problem

Randomly sample $B \in \mathbb{N}$ points from the set I_k

$$\begin{aligned} & \underset{\mathbf{W}_{k} \geq 0, \Sigma_{k} \geq 0}{\min} \quad Tr(\Sigma_{k}) + Tr(\mathbf{W}_{k}) \\ & s.t. \quad Tr(\mathbf{H}(\theta_{c})\mathbf{W}_{k}) \geq \gamma_{c} \Big(Tr(\mathbf{H}(\theta_{c})\Sigma_{k}) + \sigma_{k}^{2} \Big) \\ & \forall \theta \in \Theta_{B}, \quad Tr(\mathbf{H}(\theta)\mathbf{W}_{k}) \leq \gamma_{a} \Big(Tr(\mathbf{H}(\theta)\Sigma_{k}) + \sigma_{k}^{2} \Big) \\ & \forall i \in [m], \quad \mathbf{W}_{k}(i,i) + \Sigma_{k}(i,i) \leq P \end{aligned}$$

Result [1]: The following statement is true with probability $1 - \beta_2$:

If $B \ge (2\log_e(\beta_2^{-1}) + 16m^2)/\beta_1$, the problems are equivalent with probability $1 - \beta_1$.

A Numerical Example

A Numerical Example

First time step:

Second time step:

Third time step:

Conclusions

Distributed beamforming

Physical-layer security

Semi-definite programming

Thank you for listening

E-mail: yagiz.savas@utexas.edu

