Paradigmas de Resolução de Problemas

Programação Dinâmica: Problema do Troco

Prof. Edson Alves – UnB/FGA

Sumário

- 1. Definição
- 2. Bases canônicas

Definição

Definição

Problema do Troco

Seja $C=\{c_1,c_2,\ldots,c_N\}$ uma sequência ordenada de N inteiros positivos distintos e M um inteiro positivo. O problema do troco consiste em determinar um vetor de inteiros não-negativos $x=\{x_1,x_2,\ldots,x_N\}$ tal que

$$M = \sum_{i=1}^{N} x_i c_i$$

e que a soma

$$S = \sum_{i=1}^{N} x_i$$

seja mínima.

Características do problema do troco

- ullet Os elementos do conjunto C são denominados moedas
- M é o troco
- O problema pode ser definido informalmente como: Qual é o menor número de moedas necessárias para dar o troco M?
- Se $c_1 = 1$, há solução para qualquer M
- ullet Se C é o conjunto de moedas utilizadas no sistema financeiro da maioria dos países, o problema do troco pode ser resolvido por meio de um algoritmo guloso

Algoritmo guloso para o problema do troco

- O algoritmo guloso para o problema do troco escolhe, dentre as moedas, a maior delas que é menor ou igual a M (assuma que esta seja a moeda c_k)
- ullet Em seguida, ele atribui a x_k o valor M/c_k e subtrai de M o valor x_kc_k
- $\bullet\,$ O algoritmo então prossegue até que M se torne igual a zero
- $\bullet\,$ Para todos os valores x_i não atribuídos durante o algoritmo, vale que $x_i=0$

i	c_i	x_i
6	50	
5	25	
4	10	
3	5	
2	2	
1	1	

$$M = 73$$

i	c_i	x_i
6	50	1
5	25	
4	10	
3	5	
2	2	
1	1	

i	c_i	x_i
6	50	1
5	25	0
4	10	
3	5	
2	2	
1	1	

i	c_i	x_i
6	50	1
5	25	0
4	10	2
3	5	
2	2	
1	1	

i	c_i	x_i
6	50	1
5	25	0
4	10	2
3	5	0
2	2	
1	1	

$$M = 3$$

i	c_i	x_i
6	50	1
5	25	0
4	10	2
3	5	0
2	2	1
1	1	

i	c_i	x_i
6	50	1
5	25	0
4	10	2
3	5	0
2	2	1
1	1	1

Implementação do algoritmo guloso para o problema do troco

```
#include <bits/stdc++.h>
3 using namespace std;
5 vector<int> coin_change(int M, const vector<int>& cs)
6 {
      int N = (int) cs.size();
     vector<int> xs(N);
9
     for (int i = N - 1: i >= 0: --i)
10
        xs[i] = M / cs[i]:
12
         M = (xs[i] * cs[i]):
14
      return xs;
16
17 }
```

Implementação do algoritmo guloso para o problema do troco

```
19 int main()
20 {
     vector<int> cs { 1, 2, 5, 10, 25, 50 };
21
      int M;
22
     cin >> M;
24
25
     auto xs = coin_change(M, cs);
26
      for (size_t i = 0; i < cs.size(); ++i)
28
          cout << cs[i] << ": " << xs[i] << '\n':
29
30
      cout << accumulate(xs.begin(), xs.end(), 0) << " moedas\n";</pre>
31
32
      return 0;
33
34 }
```

Incorretude do algoritmo guloso

- O algoritmo guloso para o problema do troco, porém, não produz a solução correta para todas as entradas possíveis
- Por exemplo, se $C=\{1,4,5\}$ e M=8, o algoritmo guloso retornaria 4 moedas: uma de 5 e três de 1
- Contudo, é possível dar um troco de 8 com apenas duas moedas de 4
- Assim, para obter a solução correta para qualquer troco e qualquer conjunto de moedas, é
 preciso utilizar um algoritmo baseado em outro paradigma que não o guloso

Algoritmo de programação dinâmica

- A programação dinâmica pode ser utilizada para desenvolver um algoritmo correto para o problema do troco
- ullet Seja c(m) o mínimo de moedas necessárias para um troco igual a m
- O caso base acontece quando m=0: neste caso, c(0)=0
- As transições acontecem para cada uma das moedas $c_k \leq m$:

$$c(m) = \min\{c(m - c_{k_1}), c(m - c_{k_2}), \dots, c(m - c_{k_r})\} + 1$$

- Isto corresponde a escolher uma moeda (o termo +1) que seja menor ou igual ao troco e computar o troco mínimo para o restante
- ullet Portanto a complexidade do algoritmo é O(MN)

Algoritmo de programação dinâmica para o problema do troco

```
1 #include <hits/stdc++ h>
₃ using namespace std;
5 const int MAX { 1'010'000 }, oo { 1'000'000'010 };
6 int st[MAX];
s int coin_change(int m, const vector<int>& cs)
9 {
     if (m == 0)
10
          return 0;
     if (st[m] != -1)
          return st[m]:
14
      auto res = oo:
16
      for (auto c : cs)
1.8
          if (c <= m)
              res = min(res, coin_change(m - c, cs) + 1);
20
```

Algoritmo de programação dinâmica para o problema do troco

```
st[m] = res;
22
      return res;
23
24 }
25
26 int main()
27 {
      memset(st, -1, sizeof st);
28
29
      int N, M;
30
      cin >> N >> M:
31
32
      vector<int> cs(N);
33
34
      for (int i = \emptyset; i < N; ++i)
35
           cin >> cs[i];
36
37
      cout << coin_change(M, cs) << '\n';</pre>
38
39
      return 0;
40
41 }
```

Implementação bottom-up

- O estado e as transições apresentadas anteriormente permite uma implementação bottom-up do algoritmo de programação dinâmica para o problema do troco
- ullet O natural seria um laço externo, com o troco m variando de 0 a M, e um laço interno, avaliando as N moedas
- Embora a complexidade permaneça a mesma da implementação *top-down*, esta ordem não é favorável à *cache*, por conta dos diferentes saltos associados às moedas
- É possível melhorar a performance em tempo de execução invertendo os laços: para cada moeda, deve-se avaliar todos os trocos possíveis

Implementação bottom-up para o problema do troco

```
1 #include <bits/stdc++.h>
₃ using namespace std;
5 const int MAX { 1'010'000 }, oo { 1'000'000'010 };
6 int st[MAX];
s int coin_change(int M, const vector<int>& cs)
9 {
      for (int m = 1; m <= M; ++m)
10
          st[m] = oo;
     st[0] = 0;
14
     for (auto c : cs)
15
          for (int m = c: m <= M: ++m)
16
              st[m] = min(st[m], st[m - c] + 1);
1.8
      return st[M];
19
20 }
```

Implementação bottom-up para o problema do troco

```
22 int main()
23 {
      int N, M;
24
      cin >> N >> M;
25
26
      vector<int> cs(N);
27
28
      for (int i = 0; i < N; ++i)
29
           cin >> cs[i];
30
31
      cout << coin_change(M, cs) << '\n';</pre>
32
33
      return 0;
34
35 }
```

Bases canônicas

Definição

- ullet Embora não seja um correto, o algoritmo guloso produz o resultado correto para todos os trocos possíveis para certas bases de moedas C
- Seja G(m) e D(m) o mínimo de moedas para o troco m computados pelo algoritmo guloso e pelo algoritmo de programação dinâmica, respectivamente
- Uma base C é dita canônica se G(m) = D(m) para todos os trocos inteiros não-negativos m
- Qualquer base $C = \{1, c_2\}$ é canônica
- Se C é canônica, o ganho de performance obtido em utilizar o algoritmo guloso é notável (O(N), ao contrário da complexidade O(NM) do algoritmo de programação dinâmica)

Contraexemplos

- ullet Considere uma base $C=\{1,c_2,c_3,\ldots,c_N\}$ não-canônica
- ullet Um contraexemplo m é um inteiro positivo tal que G(m)>D(m)
- Xuan Cai apresenta vários resultados relativos à bases não-canônicas e contraexemplos em seu artigo "Canonical Coin Systems for Change-Making Problems", de 2009
- Dentre eles há um teorema que reduz os possíveis contraexemplos ao intervalo $(c_3+1,c_{N-1}+c_N)$
- Outro resultado provado no artigo é que $C=\{1,c_2,c_3\}$ é não-canônica se, somente se, $0< r< c_2-q$, onde $c_3=qc_2+r$, com $r\in [0,c_2-1]$

Verificação de canonicidade para $N \leq 5$

- Um teorema importante associa as bases com N=3 com todas as demais: se $C=\{1,c_2,c_3\}$ é não-canônica, então a base $C=\{1,c_2,c_3,\ldots,c_N\}$, com $N\geq 4$, também será não-canônica
- É provado também que as bases $C = \{1, c_2, c_3, c_4\}$ são não-canônicas se elas satisfazem exatamente uma das condições abaixo:
 - 1. $C = \{1, c_2, c_3\}$ é não-canônica
 - 2. $G((k+1)c_3) > k+1$, onde $kc_3 < c_4 < (k+1)c_3$
- Bases $C=\{1,c_2,c_3,c_4,c_5\}$ serão não-canônicas se, e somente se, satisfazem exatamente uma das condições abaixo:
 - 1. $C=\{1,c_2,c_3\}$ é não-canônica
 - 2. $C \neq \{1, 2, c_3, c_3 + 1, 2c_3\}$
 - 3. $G((k+1)c_4) > k+1$, com $kc_4 < c_5 < (k+1)c_4$

Algoritmo $O(N^3)$ para verificação de canonicidade

- David Pearson, em seu artigo "A Polynomial-time Algorithm for the Change-Making Problem", de 1994, apresentou um algoritmo $O(N^3)$ para a identificação do menor contraexemplo, se existir
- ullet O algoritmo elenca $O(N^2)$ possíveis candidatos à menor contraexemplo, por meio da observação de uma relação não-trivial entre a solução gulosa $G(c_i-1)$ e o menor contraexemplo possível

Algoritmo $O(N^3)$ para verificação de canonicidade

- Seja $\mu=(m_1,m_2,\ldots,m_N)$ a solução ótima para o menor contraexemplo μ e (x_1,x_2,\ldots,x_N) a solução gulosa para (c_i-1)
- Então existe um j tal que $m_k = x_k$, se $k \in [1, j-1]$, $m_j = x_j + 1$ e $m_r = 0$, se r > j
- ullet Assim, para cada moeda c_i , há N candidatos a j
- A partir da solução gulosa, se constrói a possível solução ótima do menor representante
- Daí se assume que $\mu = \sum_k m_k c_k$
- Se $G(c_i-1)>\sum_k m_k$, então μ será um contraexemplo para a base não-canônica $C=\{c_1,c_2,\ldots,c_N\}$, com $c_1>c_2>\ldots>c_N=1$

Implementação do algoritmo de verificação de canonicidade

```
#include <bits/stdc++.h>
₃ using namespace std;
5 const int oo { 2'000'000'007 };
vector<int> greedy(int x, int N, const vector<int>& xs)
8 {
      vector<int> res(N, 0);
9
10
      for (int i = \emptyset; i < N; ++i)
          auto q = x / xs[i];
          x = a*xs[i]:
14
          res[i] = a:
16
1.8
19
      return res;
20 }
```

Implementação do algoritmo de verificação de canonicidade

```
22 int value(const vector<int>& M, int N, const vector<int>& xs)
23 {
      int res = 0;
24
      for (int i = \emptyset; i < N; ++i)
26
          res += M[i]*xs[i]:
28
      return res:
29
30 }
31
32 int min_counterexample(int N, const vector<int>& xs)
33 {
     if (N <= 2)
34
          return -1:
35
36
      int ans = oo:
37
38
      for (int i = N - 2: i >= 0: --i) {
39
          auto g = greedy(xs[i] - 1, N, xs);
40
          vector<int> M(N, 0):
41
```

Implementação do algoritmo de verificação de canonicidade

```
for (int j = 0; j < N; ++ j)
43
44
              M[j] = g[j] + 1;
45
               auto w = value(M, N, xs);
46
               auto G = greedy(w, N, xs);
47
48
               auto x = accumulate(M.begin(), M.end(), 0);
49
               auto y = accumulate(G.begin(), G.end(), 0);
50
51
               if (x < y)
52
                   ans = min(ans, w);
53
54
              M[j]--;
55
56
57
58
      return ans == oo ? -1 : ans;
59
60 }
```

Referências

- 1. CAI, Xuna. Canonical Coin Systems for Change-Making Problems, 2009.
- CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald; STEIN, Clifford. Introduction to Algorithms, 3rd Edition, MIT Press, 2009.
- 3. HALIM, Steve; HALIM, Felix. Competitive Programming 3, Lulu, 2013.
- 4. LAARKSONEN, Antti. Competitive Programmer's Handbook, 2017.
- 5. **PEARSON**, David. A Polynomial-time Algorithm for the Change-Making Problem, 1994.