

Факультет компьютерных наук Департамент программной инженерии Отчет по преддипломной практике

Андроид-приложение для оптического распознавания нотной записи и воспроизведения мелодий на виртуальном фортепиано

Место прохождения практики: департамент программной инженерии

Выполнил студент группы БПИ133 образовательной программы 09.03.04 «Программная инженерия» Абдулкадыров А. Р.

Научный руководитель: Доцент департамента программной инженерии Ахметсафина Р. 3.

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

Для игры на пианино необходимо знание музыкальной нотации.

Музыкальная нотация - система фиксации музыки с помощью письменных знаков.

Процесс изучения новой мелодии можно ускорить, если автоматизировать считывание нотной записи и продемонстрировать ее воспроизведение на виртуальном пианино.

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

Знаки альтерации

Размер такта

ОБОСНОВАНИЕ АКТУАЛЬНОСТИ РАБОТЫ

- В отличие от аналогов, программа позволяет наблюдать последовательность нажатий клавиш фортепиано с возможностью самостоятельно повторить воспроизведение мелодии.
- Приложение может быть использовано в качестве вспомогательного инструмента для изучения нотной грамоты.

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель работы

Разработать мобильное Андроид-приложение для сканирования загруженного изображения с нотами и визуальной демонстрации воспроизведения мелодий на виртуальном фортепиано.

Задачи работы

- 1. Изучить нотную грамоту.
- 2. Исследовать подходы оптического компьютерного распознавания нотной записи.
- 3. Выбрать наиболее релевантный метод.
- 4. Выделить этапы обработки изображения.
- 5. Выбрать и изучить библиотеку для компьютерного зрения.
- 6. Выбрать средства реализации.
- 7. Провести расчеты для получения эмпирических данных о музыкальных символах.
- 8. Разработать приложение
 - а. Разработать модуль для распознавания.
 - b. Разработать модуль для распознавания.
- 9. Разработать техническую документацию.

АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Оптическому распознаванию музыкальной записи посвящено немало работ.

Одна из объемных работ «Robust Optical Recognition of Handwritten Musical Scores based on Domain Knowledge» [1] по распознаванию записи была сделана Ana Maria Rebelo.

Практически все работы описывают следующие этапы:

- 1. Подготовка изображения.
- 2. Сегментация.
- 3. Классификация музыкальных символов.
- 4. Реконструкция мелодии из полученных символов.

Подготовка изображения

- Конвертация изображения из RGB в GrayScale.
- Бинаризация

$$value(x,y) = \begin{cases} 0 & if img(x,y) < 128\\ 255 & else \end{cases}$$

Сегментация

1. Определение линий нотного стана.

При требовании наличия строго горизонтальных линий, можно использовать горизонтальную проекцию строк изображения.

Сегментация

2. Удаление линий нотного стана.

Прямое удаление линий повреждает формы нот, что сделает распознавание невозможным.

Наиболее эффективным способом решения проблемы является использование RLE.

Run-length encoding вычисляет количество последовательных черных пикселей в каждом столбце.

if (последовательность пересекает линия стана) & (run < 2 * thickness) **then** удалить пиксели линии в

текущем столбце.

Сегментация. Результат

Основы распознавания: размер, расположение, границы такта, классификатор.

60	[1,6] x [2,59]
N N	[1,42,1] <u>x[</u>]
38	[0,51,3] <u>x[</u> 23,5]
Ī	[] <u>x[</u> 1,92,3]
	[0,6] <u>x</u> [0,41,5]
	[0,82,7] <u>x[</u> 3,58]
2##7 ₹	[0,51,6] <u>x[</u> 1,53,5]

Размеры символов: в долях от высоты пространства между двумя соседними линиями нотного стана.

Результат проделанной работы 1

Результат проделанной работы 2

Результат проделанной работы 3

Результат проделанной работы 4

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

Виртуальное пианино

• Язык программирования: Java

• Инструмент: Android Studio

Распознавание нотной записи

• Язык программирования: Python

• Инструмент: PyCharm

Computer Vision: OpenCV

Взаимодействие

- Jython?
- Сервер?

ОСНОВНЫЕ РЕЗУЛЬТАТЫ практики

Артефакт	Процент выполнения	Комментарий
Модуль по распознаванию записи	65%	Требуются доработки и портирование на Андроид
Модуль виртуального фортепиано	70%	Курсовая 2 курса, требуются новые доработки.
Документация	20%	Наброски, требуются значительные доработки.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] A. M. Rebelo, "Robust Optical Recognition of Handwritten Musical Scores basedon Domain Knowledge," Ph.D. thesis, University of Porto, 2012
- [2] R. Lehman-Borer "E90 Project Report Optical Music Recognition", 2016
- [3] A. Rebelo, A. Capela, J. F. Pinto da Costa, "A Shortest Path Approach for Staff Line Detection", FCUP and INESC, Porto, Portugal, pp. 79 85
- [4] A. Rebelo, A. Capela, J. F. Pinto da Costa, "Staff Detection with Stable Paths", Institute for Systems and Computer Engineering, Porto, Portugal, 2009
- [5] D. Bainbridge and T. Bell, "The challenge of optical music recognition".
- Computers and the Humanities, Department of Computer Science, University of Canterbury, Christchurch, New Zealand, 2001, pp. 95–121.
- [6] T. Nguyen and G. Lee, "A Lightweight and Effective Music Score Recognition on Mobile Phone"
- [7] P. Bellini, I. Bruno, P. Nesi. "An Off-line Optical Music Sheet Recognition," Chapter for "Visual Perception of Music Notation: On-line and Off-line Recognition", Dept. of Systems and Informatics, University of Florence, Florence, Italy.
- [8] C. Witt, Optical Music Recognition Symbol Detection using Contour Traces, Bachelor Thesis, Institute of Computer Science, Berlin, Germany, Feb. 1, 2013
- [9] K. T. Reed, J.R. Parker, "Automatic Computer Recognition of Printed Music," Department of Computer Science, University of Calgary, Calgary, Alberta, Canada.

Спасибо за внимание!

Москва - 2017