

Data-driven Strategies for Trading Renewable Energy Production

Miguel A. Muñoz
University of Malaga
miguelangeljmd@uma.es

Juan Miguel Morales

University of Malaga juan.morales@uma.es

Salvador Pineda

University of Malaga spineda@uma.es

Introduction

Renewable energy in power systems

How much energy should the producer offer in the market to maximize profits?

Introduction Opportunity cost

Dual Pricing System

$$\psi^{UP} \neq \psi^{DW}$$

Deviation

$$Cost := \psi^{UP} (E^D - E)^+ + \psi^{DW} (E - E^D)^+$$

Newsvedor model!

Introduction Renewable trader context

Models Novel approaches to improve SAA

SAA method:

nod:

$$NV_{SAA} := \min_{E^D} \frac{1}{N} \sum_{i=1}^{N} \psi^{UP} (E^D - E_i)^+ + \psi^{DW} (E_i - E^D)^+$$

Novel approaches to improve SAA with features:

$$NV_{SAA} = \min \mathbb{E}(Cost)$$

a) Linear decision rule:

$$NV_{Big_{NV}} = \min_{E^{D}} \frac{1}{N} \sum_{i=1}^{N} \psi^{UP} (E^{D}(x) - E_{i})^{+} + \psi^{DW} (E_{i} - E^{D}(x))^{+}$$

b) Machine Learning + Optimization techniques:

$$NV_{ML+OPT} = \min_{E^D} \frac{1}{N} \sum_{i=1}^{N} w_{x,i} \left[\psi^{UP} (E^D - E_i)^+ + \psi^{DW} (E - E^D)^+ \right]$$

- G. Ban and C. Rudin, "The Big Data Newsvendor: Practical Insights from Machine Learning", 2015. Forthcoming in Operations Research.
- D. Bertsimas and N. Kallus, "From Predictive to Prescriptive Analytics", b) 2014.

Case Study Introduction

Bidding zone thought as aggregation of (onshore) wind farms privately owned

Bidding zones in Europe

European Network of Transmission System Operators for Electricity

Case Study Spatial correlation

 $plot_i(DK1, X_i)$

Spatial Correlation

Case Study Data

Wind

* Case 0 is not feed into the algorithms
Wind

Not a forecast

forecasts

- wind p.p. on-shore day-ahead
- wind p.p. off-shore day-ahead
- Solar p.p. day-ahead
- Generation forecast
- Total Load forecast
- Categorical features

p.p.: power production

- Categorical features
 - Month of the year
 - Day of the month
 - Day of the week
 - Hour of the day

	Day of the week							
	x_{d1}	x_{d2}	x_{d3}	x_{d4}	x_{d5}	x_{d6}	x_{d7}	
Monday	1	0	0	0	0	0	0	
Tuesday	0	1	0	0	0	0	0	

Case 0 offering a good prediction

Average cost of benchmark methods (no features):

SAA: 1738.80 Case 0: 542.91 (€/h)

Average improvement with respect to Case 0:

	C1	C2	C 3	C4
a) Big_NV	-1.22%	-1.16%	3.37%	4.58%
b) ML+OPT	-0.16%	1.35%	2.81%	4.78%

Spatial features helps!

Spatial features

THANK YOU

Data-driven Strategies for Trading Renewable Energy Production

Miguel A. Muñoz University of Malaga miguelangeljmd@uma.es

Juan Miguel Morales University of Malaga juan.morales@uma.es Salvador Pineda University of Malaga speulam@uma.es

