SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Statistics and Analytics for Engineers Module Code: MS SAE

Course: Year: 2 FT

Page 1 of 4

Qn	Solution	Total
1a	Population: All cars models manufactured in the 1970s and 1980s.	
	Sample: The 74 car models manufactured in the 1970s and 1980s	
	used in the study.	
1b	Mileage: Quantitative, continuous	
	Repair: Qualitative, ordinal	
	Country: Qualitative, nominal	
	Weight: Quantitave, continuous	
	Price: Quantitative, continuous	
1c	Mean mileage: 9.05 km / litre	
	Interquartile range for mileage: 3.08 km / litre	
	Shape of distribution of mileage: Positively skewed / Skewed to the	
	right	
	(Accept: symmetric if because of mean-median comparison)	
	Percentage of car models with company headquartered in US: 70.3%	
	Japan	
	False	
1d	r = -0.823, There is a strong negative linear relationship between	
	mileage and weight.	
1e	Boxplot of Price	
	17500	
	15000 -	
	12500 -	
	** ** ***	
	# . I	
	7500	
	Country Lines par 15	
	Repair 1 Life At 2 Check But Chick But Chick But Chick But S	
	US. There are cars (n=2) with high repair record (5) and low price.	
		35
	(Accept also Japan) similar reason as above.	
2a	(i)P(produced by Factory Y)	
	$=\frac{1490}{7200} = \frac{149}{720} = 0.276$	
	$=\frac{3}{5390}=\frac{3}{539}=0.276$	
		6
		,

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Statistics and Analytics for Engineers Module Code: MS SAE

Course: Year: 2 FT

Page 2 of 4

	(ii)P(a defective transistor produced by Factory Z) =	
	300 - 30 -0.056	
	$\frac{300}{5390} = \frac{30}{539} = 0.056$	
	(iii)P(produced by Factory X or Factory Y) = $\frac{1600+1490}{5390} = \frac{309}{539} = 0.573$	
2b	i. $(0.97)^7 = 0.808$	
	ii. 1-0.808 = 0.192	
	iii. No it's not rare. Chances of at least one fault fuse box is pretty high	
	(19%).	9
3(a)	X is discrete	
3(b)	Binomial distribution is appropriate because	
	1. There is a fixed number of trials in this case, which is the 300	
	blocks manufactured	
	2. All the trials are independent. Getting a block that is not strong	
	enough does not affect the probability of the same outcome	
	when another block is examined.	
	3. Each examination of block ends in either getting a strong block	
	or not a strong block i.e. 2 outcomes only.	
	4. The probability of getting a block that is not strong enough stays	
0()	the same i.e. 4%	
3(c)	$P(X=10) = {}^{300}C_{10}(0.04)^{10}(0.96)^{290} = 0.106$	
	This is not a rare event because the probability exceeds 0.05	
3(d)	$P(X < 10) = P(X \le 10) - P(X = 10)$	
	=0.343-0.106	
	= 0.237	
	OR	15

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Statistics and Analytics for Engineers Module Code: MS SAE

Course: Year: 2 FT

Page 3 of 4

	Summary		
	Input		
	Distribution	Binomial	
	Number of trials	300	
	Event probability	0.04	
	Input value	9	
	Cumulative Probab	pility	
	$x P(X \le x)$		
	9 0.237043		
3(e)	Expected costs = 300×0	$0.04 \times 15 = \$180$	
4a i)	Percentile for Adrian = 6		
		34-th percentile	
	Z- Score for Benedict =	$\frac{190-173}{30}$ = 0.5	
4a ii)		= 0.6915 = 69-th percentile	
10		el of cholesterol compared to Benedict as	
4a iii)	Adrian's percentile is hig	gher.	6
4bi)	Let X be the random val	riable for the time taken by a customer to wait	
	at the stall. $P(10 < X < 13)$		
	,		
	$= P(\frac{10-14}{2.1} < Z < \frac{13-14}{2.1})$		
	= P(-1.90 < Z < -0.48)		
	=0.4713-0.1844		
	= 0.2869		
4b	P(X < x) = 0.975		
ii)	Z- Score = 1.96		9

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Statistics and Analytics for Engineers Module Code: MS SAE

Course: Year: 2 FT

Page 4 of 4

	$\frac{x-\mu}{\sigma} = Z$ $\frac{x-14}{2.1} = 1.96$	
	$\frac{x-14}{2.1} = 1.96$	
	x = 18.116 mins	
	"Anyone who waits for more than 18.116 minutes gets free chicken rice" (Accept also if number is rounded UP)	
5a	Even though the distribution of life of battery is unknown, by Central Limit Theorem, since n is large ($n \ge 30$), then the sampling distribution for sample means is approximately normal. Mean = 11.2	
	Standard error = $\frac{2.1}{\sqrt{36}}$ = 0.35	4
5b	Let X = life of Aye-fone battery	
	$P(\overline{X} \le 10) = P\left(Z \le \frac{10 - 11.2}{0.35}\right)$	
	$\begin{bmatrix} 1 & (11 & 213) & 1 & (21 & 2) & (213 &$	
	$= P(Z \le -3.43)$	
	=0.5-0.4997=0.0003	6
6	1-Sample t: RON	
	Descriptive Statistics	
	N Mean StDev SE Mean 95% CI for μ	
	9 97.0222 2.9457 0.9819 (94.7580, 99.2865)	
	μ: mean of RON	
	(reference only)	
	a) $\hat{\mu} = 97.0$	
	b) Margin of error = $(99.2865-94.7580)/2=2.26$	
	17. 17. 18. 19. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	
	(c) No. Because we can be at about 95% confident that the actual	
	mean RON of petrol in the tank is between 94.7 to 99.3. As RON = 92	40
	is outside this range, it is unlikely that the tank average RON is 92.	10