Case Study

Using the cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC, we will:

- 1. Process data into a analysis-ready matrix of gene alteration events
- 2. Summarize genomic alteration frequencies and analyze differences between males and females

```
nsclc cohort <- create analytic cohort(</pre>
     data synapse =
       nsclc synapse data$NSCLC v2.0,
     stage dx = c("Stage IV"),
     histology = "Adenocarcinoma",
     regimen drugs =
       c("Carboplatin, Pemetrexed Disodium",
          "Cisplatin, Pemetrexed Disodium",
          "Bevacizumab, Carboplatin, Pemetrexed Disodium",
          "Bevacizumab, Cisplatin, Pemetrexed Disodium"),
10
     regimen type = "Exact",
11
     regimen order = 1,
12
     regimen order type = "within cancer",
13
     return summary = TRUE
14
15
```

Characteristic	$N = 241^{^{1}}$
naaccr_sex_cod	е
Female	145 (60%)
Male	96 (40%)
¹ n (%)	

Overview of Genomic Data

We will be processing and analyzing data on:

1) Mutations

```
1 mutations <- nsclc_synapse_data$NSCLC_v2.0$mutations_extended
```

2) Discrete Copy Number Alterations

```
1 cna <- nsclc_synapse_data$NSCLC_v2.0$cna
```

3) Fusions

```
1 fusions <- nsclc_synapse_data$NSCLC_v2.0$fusions
```

Processing Data

i			
i			
i			
i			

i 1. Multiple Samples Per Patient		
i		
i		
\overline{i}		

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- () 2. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies
- (i) 3. Cohort Inclusion

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- () 2. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies
- 3. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- () 2. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies
- 3. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data
- (i) 4. Multi-Institutional Studies Use Several Gene Panels

- 1. Multiple Samples Per Patient
 - We often need to select a single sample per patient for analyses
- 2. Data Formats & Gene Standards Often Inconsistent
 - Column names, data formats and gene names may differ between studies or even within studies
- 3. Cohort Inclusion
 - Samples with no alterations may be dropped when pulling data
- 4. Multi-Institutional Studies Use Several Gene Panels
 - Samples may be sequenced using different panels, therefore the non-overlapping genes have to be annotated as missing

1. Multiple Samples Per Patient

• We often need to select a single sample per patient for analyses

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports
- We can use select_unique_ngs() to select 1 sample per patient

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports
- We can use select_unique_ngs() to select 1 sample per patient
- This function prioritizes characteristics of interest (e.g. sample type)

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

(i)

- We often need to select a single sample per patient for analyses
- Patients can have many NGS reports
- We can use select_unique_ngs() to select 1 sample per patient
- This function prioritizes characteristics of interest (e.g. sample type)
- If patient only has one report, it will be returned regardless of criteria

Argument	Description
data_cohort	Output object of the create_analytic_cohort function.
oncotree_code	Character vector specifying which sample OncoTree codes to keep. See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.
min_max_time	Character specifying if the first or last genomic sample recorded should be kept. Options are 'min' (first) and 'max' (last).

1. Multiple Samples Per Patient

• We often need to select a single sample per patient for analyses

```
1 nrow(nsclc_cohort$cohort_ngs)
```

[1] 262

```
1  nsclc_samp <- select_unique_ngs(
2   data_cohort = nsclc_cohort$cohort_ngs,
3   oncotree_code = "LUAD",
4   sample_type = "Metastasis",
5   min_max_time = "max"
6  )
7
8  nrow(nsclc_samp)</pre>
```

[1] 241

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

• Next we want to get our genomic data in an analysis-friendly format.

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

- Next we want to get our genomic data in an analysis-friendly format.
- create_gene_binary() from {gnomeR} will give us a data frame of *n* patients x *p* alterations.

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

- Next we want to get our genomic data in an analysis-friendly format.
- create_gene_binary() from {gnomeR} will give us a data frame of n patients x p alterations.
- Alteration columns are denoted by the **gene name** if mutation (e.g. TP53) or **gene name** + .Amp, .fus, .Del (TP53 Del) for other alterations types.

sample_id	CREBBP	GLI2	KRAS	MAP3K1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

- Next we want to get our genomic data in an analysis-friendly format.
- create_gene_binary() from {gnomeR} will give us a data frame of *n* patients x *p* alterations.
- Alteration columns are denoted by the **gene name** if mutation (e.g. TP53) or **gene name** + .Amp, .fus, .Del (TP53. Del) for other alterations types.
- Each cell will have 0 if no alteration, 1 if altered, or NA if that gene was not tested in that patient.

sample_id	CREBBP	GLI2	KRAS	МАРЗК1	PIK3C2B	PBRM1	MYC.Del
GENIE-DFCI-004022-1313	0	0	0	0	0	NA	0
GENIE-DFCI-000013-8840	0	0	1	0	0	0	0
GENIE-DFCI-000136-6004	0	0	1	0	0	0	0
GENIE-DFCI-000215-8010	0	0	0	0	0	0	0
GENIE-DFCI-000381-9526	0	0	0	0	0	0	0

2. Data Formats & Gene Standards Often Inconsistent

• Column names, data formats and gene names may differ between studies or even within studies!

{gnomeR} functions are designed to work with standard alteration data formats used in common platforms like cBioPortal.

GENIE CNA and fusion data are slightly different than this standard, therefore we need to reformat it using:

- gnomeR::reformat_fusions()
- gnomeR::pivot_cna_longer()

Format fusions to follow the cBioPortal standard:

Before:

1 fusions		
Hugo_Symbol	Tumor_Sample_Barcode	Fusion
TP53	GENIE-MSK-P-0004827-T01-IM5	TP53-intragenic
XPO1	GENIE-MSK-P-0004827-T01-IM5	XPO1-USP34 fusion
USP34	GENIE-MSK-P-0004827-T01-IM5	XPO1-USP34 fusion

After:

1 reformat_fusion(fusions)							
sample_id	site_1_hugo_symbol	site_2_hugo_symbol	fusion				
GENIE-MSK-P- 0004827-T01-IM5	TP53	NA	TP53				
GENIE-MSK-P- 0004827-T01-IM5	USP34	XPO1	USP34- XPO1				

Format CNA to follow the cBioPortal standard:

Before:

After:

1 gnomeR::pivot_cna_longer(cna)					
hugo_symbol	sample_id	alteration			
APC	GENIE-DFCI-003908-234520	gain			
ARID1B	GENIE-DFCI-003908-234520	loss			
BCL2	GENIE-DFCI-003908-234520	loss			
BCL6	GENIE-DFCI-002183-6917	gain			
CARD11	GENIE-DFCI-002183-6917	gain			

```
1 mutations <- nsclc_synapse_data$NSCLC_v2.0$mutations_extended
2 cna <- nsclc_synapse_data$NSCLC_v2.0$cna
3 fusions <- nsclc_synapse_data$NSCLC_v2.0$fusions</pre>
```

```
1 reformat_fusions <- gnomeR::reformat_fusion(fusions)
2
3 nrow(reformat_fusions)</pre>
```

[1] 538

```
1 reformat_cna <- gnomeR::pivot_cna_longer(cna)
2
3 nrow(reformat_cna)</pre>
```

[1] 38163

Basic code:

```
1 gnomeR::create_gene_binary(
2 mutation = mutations,
3 cna = reformat_cna,
4 fusion = reformat_fusions)
```

Data is now in standardized format and can be processed using {gnomeR}
 create_gene_binary()

Basic code:

```
gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions)
```

- Data is now in standardized format and can be processed using {gnomeR}
 create_gene_binary()
- We will add additional arguments to create_gene_binary() to help address remaining data processing issues

Basic code:

```
gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions)
```

Cohort Inclusion

3. Cohort Inclusion

• Samples with no alterations may be dropped when pulling raw genomic data

```
gnomeR::create_gene_binary(
mutation = mutations,

cna = reformat_cna,
fusion = reformat_fusions
samples = nsclc_samp$cpt_genie_sample_id)
```

The samples argument will ensure all study IDs have a row in resulting analysis data, even if they are not present in genomic files

Not All Patients Tested on Same Panel

(i)

4. Multi-Institutional Studies Use Several Gene Panels

• Samples may be sequenced using different panels therefore the non overlapping genes have to be annotated as missing

```
gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions,
samples = nsclc_samp$cpt_genie_sample_id,
specify_panel = nsclc_panels)
```

The specify_panels argument can insert NAs when we know that gene was not tested for a specific set of patients.

Not All Patients Tested on Same Panel

To use specify_panels, we first need to create a data frame indicating which patient IDs were sequenced on which panels.

sample_id	panel_id
GENIE-DFCI-000013-8840	DFCI-ONCOPANEL-2
GENIE-DFCI-000136-6004	DFCI-ONCOPANEL-2
GENIE-DFCI-000215-8010	DFCI-ONCOPANEL-2
GENIE-DFCI-000381-9526	DFCI-ONCOPANEL-2
GENIE-DFCI-000410-10003	DFCI-ONCOPANEL-2
GENIE-DFCI-000583-11175	DFCI-ONCOPANEL-2

Not All Patients Tested on Same Panel

Without Panel Annotation

```
binmat1 <- gnomeR::create_gene_binary(
  mutation = mutations,
  cna = reformat_cna,
  fusion = reformat_fusions,
  samples = nsclc_samp$cpt_genie_sample_id,
  specify_panel = "no")</pre>
```

sample_id	panel_id	GLI2	KRAS	PIK3C2B	PBRM1
GENIE-DFCI-004022- 1313	DFCI- ONCOPANEL-1	0	0	0	0
GENIE-DFCI-000013- 8840	DFCI- ONCOPANEL-2	0	1	0	0
GENIE-MSK-P-0002725- T01-IM3	MSK-IMPACT341	0	1	0	0
GENIE-MSK-P-0017722- T02-IM6	MSK-IMPACT468	0	0	0	0

With Panel Annotation

```
binmat2 <- gnomeR::create_gene_binary(
mutation = mutations,

cna = reformat_cna,
fusion = reformat_fusions,
samples = nsclc_samp$cpt_genie_sample_id,
specify_panel = nsclc_panels)</pre>
```

sample_id	panel_id	GLI2	KRAS	PIK3C2B	PBRM1
GENIE-DFCI-004022- 1313	DFCI- ONCOPANEL-1	0	0	0	NA
GENIE-DFCI-000013- 8840	DFCI- ONCOPANEL-2	0	1	0	0
GENIE-MSK-P-0002725- T01-IM3	MSK-IMPACT341	NA	1	NA	0
GENIE-MSK-P-0017722- T02-IM6	MSK-IMPACT468	NA	0	NA	0

Ensure Gene Names Are Consistent Across Studies

(i) 2. Data Formats & Gene Standards Often Inconsistent

• Column names, data formats and gene names may differ between studies or even within studies.

```
1 no_recode <- gnomeR::create_gene_binary(
2    samples = nsclc_samp$cpt_genie_sample_id,
3    mutation = mutations,
4    cna = reformat_cna,
5    fusion = reformat_fusions,
6    specify_panel = nsclc_panels,
7    recode_aliases = "no")</pre>
```

```
recode <- gnomeR::create_gene_binary(
samples = nsclc_samp$cpt_genie_sample_id,
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions,
specify_panel = nsclc_panels,
recode_aliases = "impact")</pre>
```

```
1 setdiff(names(no_recode), names(recode)) %>% head()
```

[1] "MRE11A" "RFWD2" "H3F3A" "FAM46C" "HIST1H3D" "WHSC1L1"

Process Data: Final Dataset

Let's run create_gene_binary() with the samples, specify_panel and recode_aliases arguments.

First we create nsclc_panels:

```
1 nsclc_panels <- data.frame(
2 sample_id = nsclc_samp$cpt_genie_sample_id,
3 panel_id = nsclc_samp$cpt_seq_assay_id) %>%
4 mutate(panel_id = ifelse(!is.na(panel_id),
5 panel_id, "no"))
```

Then run create_gene_binary():

```
gene_binary <- gnomeR::create_gene_binary(
mutation = mutations,
cna = reformat_cna,
fusion = reformat_fusions,
samples = nsclc_samp$cpt_genie_sample_id,
specify_panel = nsclc_panels,
recode_aliases = "impact")</pre>
```


Analyzing Data

1. Multiple Testing and False Positives

• Many hypothesis tests done simultaneously can lead to high rate of false positive findings.

1. Multiple Testing and False Positives

- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.

1. Multiple Testing and False Positives

- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.
- Choose a threshold (e.g. 1% or 5 %) *a prior* to limit number of hypothesis tests and consider reporting a q-value (adjusted for multiple testing).

1. Multiple Testing and False Positives

- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.
- Choose a threshold (e.g. 1% or 5 %) *a prior* to limit number of hypothesis tests and consider reporting a q-value (adjusted for multiple testing).

2. Limited Power To Detect Clinical Associations When Sparse Alterations

- (i)
- 1. Multiple Testing and False Positives
- Many hypothesis tests done simultaneously can lead to high rate of false positive findings.
- Very low prevalence genes are often not very informative.
- Choose a threshold (e.g. 1% or 5 %) *a prior* to limit number of hypothesis tests and consider reporting a q-value (adjusted for multiple testing).
- 2. Limited Power To Detect Clinical Associations When Sparse Alterations
 - If biologically meaningful, you may want to summarize on gene or pathway level

Case Study

Case Study

• We will use the processed binary data frame data (gene_binary) to summarize genomic alterations overall in the cohort, and by sex.

Case Study

• We will use the processed binary data frame data (gene_binary) to summarize genomic alterations overall in the cohort, and by sex.

• First, we need to join clinical data on sex to genomic data

Add Clinical Variable To Data

```
# get patient IDs and sample IDs
 2 patient index <- nsclc cohort$cohort ngs %>%
      select(record id, cpt genie sample id)
   # Join sex data to patient ID index
 6 select clinical <- nsclc cohort$cohort pt char %>%
     select(record id, naaccr sex code) %>%
     left join(patient index)
 9
10 # Join all to gene binary data
   gene binary <- gene binary %>%
12
     left join(select clinical,
               by = c("sample id"= "cpt genie sample id")) %>%
13
14
     select(-record id)
15
   gene binary <- gene binary %>%
16
17
     select(sample id, naaccr sex code, everything())
18
19
   gene binary %>%
     select(naaccr sex code) %>%
20
21
     tbl summary()
```


Characteristic	N = 241 ¹
naaccr_sex_code	
Female	145 (60%)
Male	96 (40%)
¹ n (%)	

Subset By a Prevalence Threshold

```
1. Multiple Testing and False Positives
```

- Use subset_by_frequency(t) to subset genes above a given threshold
- t indicates a prevalence threshold between 0 (t = 0) and 100% (t = 1)
- other_vars retains the clinical variable of interest in the resulting data set

Subset By 40% Threshold

```
1 ncol(gene_binary)
```

[1] 1403

```
1 nsclc_subset <- gene_binary %>%
2 subset_by_frequency(t = .4, other_vars = naaccr_sex_code)
3
4 ncol(nsclc_subset)
```

[1] 6

Subset by a Panel

Use subset_by_panel() to subset genes in a given targeted panel.

```
1 ncol(gene_binary)

[1] 1403

1 nsclc_subset_panel <- gene_binary %>%
2 subset_by_panel(panel_id = 'IMPACT300', other_vars = naaccr_sex_code)
3
4 ncol(nsclc_subset_panel)
```

[1] 220

Summarize Alterations with tbl_genomic()

- tbl_genomic() is a wrapper function for gtsummary::tbl_summary() specifically designed for presenting genomic data
- You can use any {gtsummary} function on top of tbl_genomic() to customize the table (e.g. bold_labels())

Summarize Alterations with tbl_genomic

Create a simple tbl_genomic object, then bold the labels.

```
1 nsclc_subset %>%
2 select(-naaccr_sex_code) %>%
3 tbl_genomic() %>%
4 bold_labels()
```

Characteristic	N = 241 ¹
TP53	124 (51%)
GBA.Amp	17 (46%)
Unknown	204
KRAS	98 (41%)
JAZF1.Amp	15 (41%)
Unknown	204
¹ n (%)	

Summarize Genes with tbl_genomic()

You may want to analyze on the gene level instead of the alteration level.

Use summarize_by_gene() first, then pass to tbl_genomic():

```
\triangle
```

Note: summarize_by_gene() should come before passing to subset_by_frequency()

```
1 tbl gene <- gene binary %>%
    select(-naaccr sex code) %>%
    summarize by gene() %>%
    subset by frequency(t = .4) %>%
   tbl genomic()
  tbl gene
```

Characteristic	N = 241 ¹
TP53	135 (56%)
GBA	17 (46%)
Unknown	204
PTK2B	17 (46%)
Unknown	204
KRAS	107 (44%)
WRN	38 (41%)
Unknown	149
JAZF1	15 (41%)
Unknown	204
¹ n (%)	

Summarize Oncogenic Pathways

- (i)
- 2. Limited Power To Detect Clinical Associations When Sparse Alterations
- If biologically meaningful, you may want to summarize on Alteration, Gene or Pathway Level

Often we want to analyze alterations on the pathway level.

Summarize Oncogenic Pathways

- (i) 2. Limited Power To Detect Clinical Associations When Sparse Alterations
 - If biologically meaningful, you may want to summarize on Alteration, Gene or Pathway Level

{gnomeR} offers several default pathways that can be added with add_pathways()

```
1 paths <- gnomeR::pathways %>% names()
2 paths
```

- [1] "RTK/RAS" "Nrf2" "PI3K" "TGFB" "p53"
- [6] "Wnt" "Myc" "Cell cycle" "Hippo" "Notch"

Summarize Oncogenic Pathways

You can also add a custom pathway:

```
path_df <- gene_binary %>%
add_pathways(custom_pathways = c("SPOP.mut", "FOXA1.mut"))

path_df %>% select("pathway_custom") %>%
tbl_summary()
```

```
Characteristic N = 241^{\circ}
pathway_custom 2 (0.8%)
```

Note: You must specify .mut, .Amp, .Del for alterations custom_pathways

Summarize Alteration Pathways

```
path df <- gene binary %>%
  select(-naaccr_sex_code) %>%
  add_pathways()
path df %>%
  select(contains("pathway")) %>%
  tbl summary() %>%
  bold labels()
```


Summarize Alteration Pathways

```
path df <- gene binary %>%
  select(-naaccr_sex_code) %>%
  add_pathways()
path df %>%
  select(contains("pathway")) %>%
  tbl summary() %>%
  bold labels()
```

Characteristic	N = 241 ¹
pathway_RTK/RAS	217 (90%)
pathway_Nrf2	48 (20%)
pathway_PI3K	114 (47%)
pathway_TGFB	34 (14%)
pathway_p53	181 (75%)
pathway_Wnt	51 (21%)
pathway_Myc	70 (29%)
pathway_Cell cycle	90 (37%)
pathway_Hippo	31 (13%)
pathway_Notch	72 (30%)
¹ n (%)	

We can easily compare frequencies by sex using the by argument:

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3    t = .4,
4    other_vars = naaccr_sex_code) %>%
5    tbl_genomic(by = naaccr_sex_code) %>%
6    bold_labels()
7
8 tbl_gene
```

We can easily compare frequencies by sex using the by argument:

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3         t = .4,
4         other_vars = naaccr_sex_code) %>%
5         tbl_genomic(by = naaccr_sex_code) %>%
6         bold_labels()
7
8 tbl_gene
```

Characteristic	Overall , $N = 241^{1}$	Female , N = 145^{1}	Male , $N = 96^{1}$
TP53	124 (51%)	72 (50%)	52 (54%)
GBA.Amp	17 (46%)	8 (36%)	9 (60%)
Unknown	204	123	81
KRAS	98 (41%)	66 (46%)	32 (33%)
JAZF1.Amp	15 (41%)	9 (41%)	6 (40%)
Unknown	204	123	81
¹ n (%)			

(i)

1. Multiple Testing and False Positives

We can use {gtsummary}'s add_p() and add_q() for hypothesis testing

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3         t = .4,
4         other_vars = naaccr_sex_code) %>%
5    tbl_genomic(
6         by = naaccr_sex_code) %>%
7         bold_labels() %>%
8         add_p() %>%
9         add_q()
10
11 tbl_gene
```

Characteristic	Overall, $N = 241^{1}$	Female, $N = 145^{\circ}$	Male , $N = 96^{1}$	p-value ²	q-value ³
TP53	124 (51%)	72 (50%)	52 (54%)	0.5	0.7
GBA.Amp	17 (46%)	8 (36%)	9 (60%)	0.2	0.3
Unknown	204	123	81		
KRAS	98 (41%)	66 (46%)	32 (33%)	0.059	0.2
JAZF1.Amp	15 (41%)	9 (41%)	6 (40%)	>0.9	>0.9
Unknown	204	123	81		

¹ n (%)

² Pearson's Chi-squared test

³ False discovery rate correction for multiple testing

```
1 tbl_gene <- gene_binary %>%
2    subset_by_frequency(
3         t = .4,
4         other_vars = naaccr_sex_code) %>%
5         tbl_genomic(by = naaccr_sex_code) %>%
6         bold_labels() %>%
7         add_p() %>%
8         add_q()
9
10 tbl_gene
```

Characteristic	Overall, $N = 241^{7}$	Female, $N = 145^{1}$	Male , N = 96 ¹	p-value ²	q-value ³
TP53	124 (51%)	72 (50%)	52 (54%)	0.5	0.7
GBA.Amp	17 (46%)	8 (36%)	9 (60%)	0.2	0.3
Unknown	204	123	81		
KRAS	98 (41%)	66 (46%)	32 (33%)	0.059	0.2
JAZF1.Amp	15 (41%)	9 (41%)	6 (40%)	>0.9	>0.9
Unknown	204	123	81		

¹ n (%)

² Pearson's Chi-squared test

³ False discovery rate correction for multiple testing

Visualize Data

1 gnomeR::ggcomut(nsclc_cohort\$cohort_mutations_extended)

Visualize Data

1 gnomeR::ggtopgenes(nsclc_cohort\$cohort_mutations_extended)

Additional Items & Next Steps

- Additional visualizations and color palettes useful for genomic data are available in {gnomeR} package
- Some data may require additional data checks. See {gnomeR vignette} for helpful tips on data QA.
- It may be appropriate to **oncoKB annotate** your data and only analyze oncogenic mutations (see **oncoKB.org** for more information).
- Some projects may utilize CNA Segmentation data. See {gnomeR documentation} for more information on available tools.

Conclusion

- The {genieBPC} & {gnomeR} R packages offer a reproducible pipeline to create cohorts for clinico-genomics analyses
- {genieBPC} streamlines data access and clinical data processing from multiple clinical data files of varying structure to create analytic cohorts
- {gnomeR} facilitates annotation and analysis of complicated genomic data.

Thank You!

Thanks to Hannah Fuchs for contributions to slides and contributing {gnomeR} & {genieBPC} authors: Michael Curry, Hannah Fuchs, Axel Martin, Arshi Arora