SD3004

电能计量 IC

特点

- 高精度电能计量,计量精度满足一级电表 使用要求:
- 提供电压有效值和电流有效值;
- 可以计算有功功率、功率因数;
- 可以计算交流电频率;
- 提供高频校验脉冲输出,用于校表;
- 可以对电量进行累计计算;
- 24×4 的 LCD 驱动电路,可切换为 I/O, 支持 LED 驱动;
- 带 RTC,可以提供秒信号输出。
- 带 UART 和 I2C 接口。
- 程序存储器为 2K*16 OTP,可以在线烧录;数据存储器 128BYTES。
- 工作电压: 计量部分 4.5-5.5V, 其他部分 2.4-5.5V;

描述

本产品是 LCD/LED 显示的电能计量的 SOC 解决方案,可以极大的降低电表或者计量插座等产品的设计复杂度,降低成本。

订购信息

LQFP64-10×10-0.5 封装。

管脚图和管脚描述

图 1. 管脚图

表 1. 管脚描述

64 Pin管脚名称描述1P53/F1驱动电机的输出,跟 P53 复用2P52/F2驱动电机的输出,跟 P52 复用	
2 P52/F2 驱动电机的输出,跟 P52 复用	
3-18 P20/SEG0/DOUT-P37/SEG15 LCD SEG15-SEG0。SEG7-0 跟 PORT27-PORT20 复	夏用;SEG0 还
跟 OTP 烧录的数据输出端复用;	
SEG15-8 跟 PORT37-PORT30 复用	
19-26 P10/INT0/SCK-P17/PPG16 I/O P17-P10。P10 复用 INT0,中断沿可选;也跟。	OTP 烧录的时
钟输入脚复用;	
P11 复用 INT1,中断沿可选;也跟 OTP 烧录的数据	
P12 复用 I2C 时钟端 SCL; P13 复用 I2C 数据端 S	
P14 复用 UART 的数据发送 TXD; P15 复用 UAR	T 的数据接收
RXD; P16 复用 8 位的 PPG 输出;	
P17 复用 16 位的 PPG 输出	
27 GND 数字地	
28 VDD 数字电源	
29VPPOTP 编程电源脚	
30~37 P40/SEG16-P47/SEG23 LCD SEG16-23,跟 PORT40-PORT47 复用	
38~41 COM0-COM3 LCD 的 COM 端,跟 PORT54-P57 复用	
42 V1P 电流通道正向输入	
43 V1N 电流通道反向输入	
44 V2N 电压通道反向输入	
45 V2P 电压通道正向输入	
46AVDD计量部分模拟电源	
47AGND计量部分模拟地	
48VREF电压基准输出	
29 NC 空脚,可接地或电源	
50 NRST 复位信号,低电平复位	
51 REVP 反向指示信号,高电平指示反向信号	
52 XIN 3.58MHZ 晶振输入	
53 XOUT 3.58MHZ 晶振输出	
54 XTIN 32.768K 振荡输入	
55 XTOUT 32.768K 振荡输出	
56 NC 空脚,可接地或电源	
57 CF 高频脉冲输出	
58 GND 数字地	
59 VDD 数字电源	
60 NC 空脚,可接地或电源	
61 VBIAS LCD 显示的调整电阻	
62 NC 空脚,可接地或电源	
63 PLLC PLL 外接电容	
64 NC 空脚,可接地或电源	

典型应用图

图 2. 典型应用图

电气特性

表 2. 电气参数(VDD=5V,AVDD=5V)

符号	参数名称	最小值	典型值	最大值	单位	条件/备注
PLLOSC	工作频率1		3.604		MHZ	锁相环时钟工作
OSC32K	工作频率 2		32.768		KHZ	外部晶振时钟
HOSC	工作频率 3		3.58		MHZ	外部高频晶振时钟
RC32K	工作频率 4	16			KHZ	内部 RC 振荡
FOSC	工作时钟		3.58		MHZ	工作频率1到4或者他们的分
						频时钟
VDD		2.4		5.25	V	数字电源
AVDD		4.75	5	5.25	V	模拟电源
IDD1	工作电流 1		5		mA	工作频率 3.58MHZ,MCU 工
						作, 计量部分工作, 液晶显示,
IDD2	工作电流 2		15	30	uA	采用 32K/2 时钟工作, MCU
						进入 SLEEP 状态,LCD 维持
						显示,计量部分不工作
IDD3	工作电流 3			1	uA	只有 32K 时钟工作
VIL	输入低电压			0.3VDD		PT2/PT3/PT4/PT5
				0.2VDD		PT1
				0.2VDD		NRST
VIH	输入高电压			0.7VDD		PT2/PT3/PT4/PT5
				0.8VDD		PT1
				0.8VDD		NRST
Rpu	上拉电阻	50K		100K	欧姆	PT1/NRST
VOL	输出低电平			0.3VDD	V	
VOH	输出高电平	0.7VDD			V	
VPP	编程电压	11.75	12	12.25	V	
VREF	基准电压范围	2.3	2.5	2.7	V	
T_VREF	基准随温度变化温漂		30	60	PPM/度	-40 度到+85 度
I_ACCU	电压/电流通道的测		0.5	1	%full	
	量精度				scale	
RANGE2	通道2输入信号范围			650	mV	
RANGE1	通道1输入信号范围			450	mV	

一、 功能说明

1. 存储空间说明

- 程序存储空间: 2K*16 OTP, 地址空间: 000H-7FFH
- 数据存储空间: 128*8SRAM, 地址空间: 100H-17FH
- 特殊功能寄存器地址空间: F58H-FFFH
- 堆栈空间: 6级

2. 寄存器说明

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LCDCOM(F58H)					COM	COM	COM	COM
,					[3]	[2]	[1]	[0]
LCDCON(F59H)	LCDE				CS1	CS0		
	N							
LCDSE0(F5AH)	SE[7]	SE[6]	SE[5]	SE[4]	SE[3]	SE[2]	SE[1]	SE[0]
LCDSE1(F5BH)	SE[15]	SE[14]	SE[13]	SE[12]	SE[11]	SE[10]	SE[9]	SE[8]
LCDSE2(F5CH)	SE[23]	SE[22]	SE[21]	SE[20]	SE[19]	SE[18]	SE[17]	SE[16]
CIC_OUTU(F5DH)								
CIC_OUTH(F5EH)								
CIC_OUTL(F5FH)								
LCDDATA0(F60H)	S01C3	S01C2	S01C1	S01C0	S00C3	S00C2	S00C1	S00C0
LCDDATA1(F61H)	S03C3	S03C2	S03C1	S03C0	S02C3	S02C2	S02C1	S02C0
LCDDATA2(F62H)	S05C3	S05C2	S05C1	S05C0	S04C3	S04C2	S04C1	S04C0
TMR1U(F63H)								
RD_TMR1U(F64H)								
CCPR1U(F65H)								
LCDDATA6(F66H)	S07C3	S07C2	S07C1	S07C0	S06C3	S06C2	S06C1	S06C0
LCDDATA7(F67H)	S09C3	S09C2	S09C1	S09C0	S08C3	S08C2	S08C1	S08C0
LCDDATA8(F68H)	S11C3	S11C2	S11C1	S11C0	S10C3	S10C2	S10C1	S10C0
PPG2H_H(F69H)								
PPG2H_L(F6AH)								
SSPADD(F6BH)								
SSPBUF(F6CH)								
SSPCON1(F6DH)								
SSPCON2(F6EH)								

2011/5

	1							_ -
SSPSTAT(F6FH)								
PPG2CON(F70H)								
LCDDATA12	S13C3	S13C2	S13C1	S13C0	S12C3	S12C2	S12C1	S12C0
(F71H)								
LCDDATA13	S15C3	S15C2	S15C1	S15C0	S14C3	S14C2	S14C1	S14C0
(F72H)	01702	61762	01701	01700	01.602	01602	01601	01600
LCDDATA14	S17C3	S17C2	S17C1	S17C0	S16C3	S16C2	S16C1	S16C0
(F73H) PPG_CON(F74H)								
PPG_SETH(F75H)								
PPG_SETL(F76H)								
LCDDATA18	S19C3	S19C2	S19C1	S19C0	S18C3	S18C2	S18C1	S18C0
(F77H)	31903	31902	31901	31900	31603	31602	31601	31600
LCDDATA19	S21C3	S21C2	S21C1	S21C0	S20C3	S20C2	S20C1	S20C0
(F78H)	52100	52102	22101	32100	32000	22002	32001	52000
LCDDATA20	S23C3	S23C2	S23C1	S23C0	S22C3	S22C2	S22C1	S22C0
(F79H)								
RCSTA(F7BH)								
RCREG(F7CH)								
TXSTA(F7DH)								
TXREG(F7EH)								
SPBRG(F7FH)								
PT1(F80H)								
PT2(F81H)								
PT3(F82H)								
PT4(F83H)								
PT5(F84H)								
PT1PU(F85H)								
PPG2L_H(F86H)								
PPG2L_L(F87H)								
PT1EN(F89H)								
PT2EN(F8AH)								
PT3EN(F8BH)								
PT4EN(F8CH)								
PT5EN(F8DH)								
LAT1(F92H)								
LAT2(F93H)								
LAT3(F94H)								
LAT4(F95H)								
LAT5(F96H)								

								_
OSCTUNE(F9BH)	RCOS	CRYO	OSC_	SEL_	EN3X	EN2X	PLLEN	
	CEN	SCEN	EN	ST				
PIR(F9EH)			SSPIF	TMR0I	SECIF		INT1IF	INT0IF
				F				
PIE2(FA0H)			RCIE	TXIE	BCLIE	LVDIE	TMR1	CCPIE
							IE	
PIR2(FA1H)			RCIF	TXIF	BCLIF	LVDIF	TMR1 IF	CCPIF
VOL_RESULTU(F								
A9H)								
CURRENT_RESUL								
TU(FAAH)								
COUNTER_CON(F				REVP	UP_OV	DOWN	UP_EN	DOWN
ABH)						_OV		_EN
COUNT_UP_H(FA								
CH)								
COUNT_UP_L(FA								
DH)								
COUNT_DOWN_H								
(FAEH)								
COUNT_DOWN_L								
(FAFH)								
RD_TMR0L(FB1H)								
RD_TMR1H(FB2H)								
RD_TMR1L(FB3H)								
SECONDS(FBAH)								
MINUTES(FBBH)								
HOURS(FBCH)								
CCPR1L(FBEH)								
CCPR1H(FBFH)								
ADCON(FC0H)	SCF	AC_D	SHUT_	CF_FA	S1	S0	G1	G0
		С	DOWN	ST				
ADC_CON2(FC1H)	BITSE	ADC_E	MUL_	MUL_	AC_D	BITSE	SEL_C	SEL_C
	L1	N	SEL1	SEL0	C	L0	HANN	HANN
							EL1	EL0
RLT_ADJ0(FC2H)								
RLT_ADJ1(FC3H)								
RLT_ADJ2(FC4H)								
RLT_ADJ3(FC5H)								
RLT_ADJ4(FC6H)								
ADD_COUNT0(FC	C[7]	C[6]	C[5]	C[4]	C[3]	C[2]	C[1]	C[0]
7H)	C[/]			C[+]		C[2]		ر در در
/11)					<u> </u>	<u> </u>		

					_			<u> </u>
ADD_COUNT1(FC							C[9]	C[8]
8H)								
VOL_RESULTH								
(FC9H)								
VOL_RESULTL								
(FCAH)								
CURRENT_RESUL								
TH (FCBH)								
CURRENT_RESUL								
TL(FCCH)								
T1CON(FCDH)	CAP_S	CAP_S	T1PS	T1PS			CAP_	TMR1_
	EL[1]	EL[0]	[1]	[0]			EN	EN
TMR1L(FCEH)								
TMR1H(FCFH)								
WDTCON(FD1H)						WDTSEL[1:0]		WDTE
								N
LVDCON(FD2H)	FEN			LVDRE	LVD_4	LVD_2		LVD2O
				SET_E	V	O2V		2V_EN
				N				
OSCCON(FD3H)		IRCF2	IRCF1	IRCF0		IDLEN	CLK_SI	EL[1: 0]
T0CON(FD5H)	TMR0_					T0PS[2:0)]	
	EN							
TMR0L(FD6H)								
STATUS (FD8H)	UN_IN	PD	TO			ZERO	DC	С
	S							
BSR(FE0H)					BSR[3:0]]	•	•
INTCON2(FF1H)							INTED	INTED
							GE1	GE1
INTCON (FF2H)	GIE		SSPIE	TMR0I	SECIE		INT1IE	INT0IE
				Е				

3. 中断模块

中断地址为 0008H, 只有一个中断优先级, 中断标志位需要软件清零。 中断控制寄存器

INTCON	GIE	 SSPIE	TMR0	SECIE	 INT1I	INT0IE
			ΙE		Е	

- GIE: 中断总使能控制,高电平有效
- SSPIE: I2C 中断使能控制,高电平有效
- TMR0IE: TIMER0 中断使能控制,高电平有效
- SECIE: 0.5 秒中断使能,高电平有效

● INT1IE: 外部中断 1 使能,高电平有效

● INT0IE: 外部中断 0 使能, 高电平有效

边沿选择寄存器

INTCON2							INTEDGE1	INTEDGE1
---------	--	--	--	--	--	--	----------	----------

- INTEDGE1:外部中断 1 沿选择,高电平选择上跳沿,低电平选择下跳沿
- INTEDGE0:外部中断 0 沿选择,高电平选择上跳沿,低电平选择下跳沿

中断标志位寄存器

PIR			SSPIF	TMR0IF	SECIF		INT1IF	INT0IF
-----	--	--	-------	--------	-------	--	--------	--------

- SSPIF: I2C 中断标志位,为高电平表示有中断产生,具体参考 I2C 模块中 SSPSTAT 寄存器的 BF 位
- TMR0IF: TIMER0 中断标志位,为高电平表示有中断产生
- SECIF: 0.5 秒中断标志位,为高电平表示有中断产生
- INTIIF:外部中断1中断标志位,为高电平表示有中断产生
- INTOIF:外部中断 0 中断标志位,为高电平表示有中断产生

中断使能寄存器2

- RCIE: UART 接收中断使能,高电平有效
- TXIE: UART 发送中断使能,高电平有效
- BCLIE: I2C 多主机模式总线冲突中断使能,高电平有效
- LVDIE: 4.0V 低压检测中断使能,高电平有效
- TMR1IE: TIMER1 中断使能,高电平有效
- CCPIE: CAPTURE 中断使能,高电平有效

中断标志位寄存器 2

PIR2		RCIF	TXIF	BCLIF	INT2IF	TMR1IF	CCPIF
------	--	------	------	-------	--------	--------	-------

- RCIF: UART 接收中断标志位,为高电平表示有中断产生
- TXIF: UART 发送中断标志位,为高电平表示有中断产生
- BCLIF: I2C 多主机模式总线冲突中断中断标志位,为高电平表示有中断产生
- LVDIF: 4.0V 低压检测中断中断标志位,为高电平表示有中断产生
- TMR1IF: TIMER1 中断中断标志位,为高电平表示有中断产生
- CCPIF: CAPTURE 中断中断标志位,为高电平表示有中断产生

4. 计量模块

计量模块是一个高精度的单相有功功率计量电路,具有空载防潜动功能;而且提供交流电压,电流信号,可以通过软件计算出有效值。

寄存器	BIT7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADCON	SCF	AC_DC	SHUT_D	CF_FA	S 1	S0	G1	G0
			OWN	ST				
DEFAULT	0	1	0	0	1	1	1	1

SHUT_DOWN: "1", 关计量模块

2011/5

CF_FAST:测试信号,使用默认值。

AC_DC: 电流通道交直流选择,"1"选择交流 G1~G0: 电流通道(V1P、V1N)的增益选择位;

G1~G0	通道 V1 增益	通道 V1 最大差动输入
00	1	±450mv
01	2	±230mv
10	8	±60mv
11	16	±30mv

SCF、S1、S0、CF的关系见下表:

SCF	S1	S0	CF(Hz)
1	0	0	128×Freq
0	0	0	64×Freq
1	0	1	64×Freq
0	0	1	32×Freq
1	1	0	32×Freq
0	1	0	16×Freq
1	1	1	16×Freq
0	1	1	2048×Freq

其中 Freq 的频率跟电流通道的输入电压有效值、电压通道输入电压有效值、电流通道 PGA 增益、工作时钟频率成正比;跟基准电压 $V_{\mathbb{RF}}$ 的平方成反比。

原理框图如下:

寄存器说明:

寄存器	BIT7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADC_CON2	BITSEL1	ADC_	MUL_	MUL_	AC_D	BITSE	SEL_	SEL_
		EN	SEL1	SEL0	C	L0	CHAN	CHAN
							NEL1	NEL0
DEFAULT	1	1	1	1	1	1	1	0

SEL_CHANNEL1, SEL_CHANNEL0: 电压、电流通道选择,具体见下表

SEL_CHANNEL1,	
SEL_CHANNEL0	
0X	选择电流通道进行平方和计算
10	
10	选择电压通道进行平方和计算

ADC_EN: 电压, 电流平方和计算使能, "1" 使能

AC_DC: 电压通道交直流选择,"1"选择交流

MUL_SEL1, MUL_SEL0:选择进入累计和电路的位数,可以根据电流通道输入信号的大小选择合适的数据,从而实现最大的测量精度。

MUL_SEL1,MUL_SEL0	
00	最低 30 位数据
01	次低 30 位数据
10	次高 30 位数据
11	最高 30 位数据

BITSEL1, BITSEL0: 用来选择进入平方乘积运算电路的数据,可以根据电流通道输入信号的大小选择合适的数据,从而实现最大的测量精度。

BITSEL1,BITSEL0	
00	最低 16 位数据
01	次低 16 位数据
10	次高 16 位数据
11	最高 16 位数据

累加结果寄存器

寄存器	BIT7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RLT_ADJ0	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD
	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
RLT_ADJ1	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD
	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]
RLT_ADJ2	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD
	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]
RLT_ADJ3	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD
	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]
RLT_ADJ4	ADD	ADD[3	ADD[3	ADD	ADD	ADD	ADD	ADD
	[39]	8]	7]	[36]	[35]	[34]	[33]	[32]

累计次数寄存器

寄存器	BIT7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ADD_COUNT0	C[7]	C[6]	C[5]	C[4]	C[3]	C[2]	C[1]	C[0]
ADD_COUNT1							C[9]	C[8]

默认值: 022H

电压,电流瞬时值寄存器:根据 SEL_CHANNEL1, SEL_CHANNEL0 的选择决定读取电压还是电流的瞬时值,只读

寄存器	BIT7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CIC_OUTU								
CIC_OUTH								
CIC_OUTL								

5. 电量计数器

有 2 个 16 位的计数器,分别对电能计量电路的正反向电能脉冲计数,当计数器溢出时, 有标志位产生。

寄存器定义如下:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
COUNTER_CON				REVP	UP_OV	DOWN_OV	UP_EN	DOWN_
								EN
COUNT_UP_H								
COUNT_UP_L								
COUNT_DOWN_H								
COUNT_DOWN_L								

REVP: 反向功率标志位,高有效;只读

UP_OV: 正向电能脉冲计数溢出标志,高有效;软件可清零。

DOWN OV: 反向电能脉冲计数溢出标志,高有效;软件可清零。

UP_EN:正向电能脉冲计数器使能位,高有效,低电平复位计数器,缺省为 0。 DOWN_EN:反向电能脉冲计数器使能位,高有效,低电平复位计数器,缺省为

0.

6. LCD/LED 控制/驱动

该 LCD 驱动模块提供 24*4 的 SEG, 1/4 DUTY, 1/3BIAS, SEG/COM 驱动输出和 IO 端口共用。

寄存器说明

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LCDCON	LCDEN				CS1	CS0		

● CS1.CS0: 缺省为00

该两位用于选择 LCD 驱动模块的内部时钟:

CS1,CS0 = (0, 0): OSC32K/64.

= (0, 1): RC32K/32. = (1, 0): OSC32K/32 = (1, 1): FOSC/8192

● LCDEN: 缺省为 0

该位为 LCD 驱动模块的使能信号,"0":不工作;"1":工作。

SEG 选择寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LCDSE2(F5C)	SE							
	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]
LCDSE1(F5B)	SE							
	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]
LCDSE0(F5A)	SE[7]	SE[6]	SE[5]	SE[4]	SE[3]	SE[2]	SE[1]	SE[0]

[&]quot;1", 使能管脚的 SEG 功能, 禁止 I/O 功能

COM 选择寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LCDCOM(F58H)					COM[3]	COM[2]	COM[1]	COM[0]

[&]quot;1"使能管脚的 COM 功能,禁止 I/O 功能

SEG 数据寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LCDDATA0(F60)	S01C3	S01C2	S01C1	S01C0	S00C3	S00C2	S00C1	S00C0
LCDDATA1(F61)	S03C3	S03C2	S03C1	S03C0	S02C3	S02C2	S02C1	S02C0
LCDDATA2(F62)	S05C3	S05C2	S05C1	S05C0	S04C3	S04C2	S04C1	S04C0
LCDDATA6(F66)	S07C3	S07C2	S07C1	S07C0	S06C3	S06C2	S06C1	S06C0
LCDDATA7(F67)	S09C3	S09C2	S09C1	S09C0	S08C3	S08C2	S08C1	S08C0
LCDDATA8(F68)	S11C3	S11C2	S11C1	S11C0	S10C3	S10C2	S10C1	S10C0
LCDDATA12(F71)	S13C3	S13C2	S13C1	S13C0	S12C3	S12C2	S12C1	S12C0
LCDDATA13(F72)	S15C3	S15C2	S15C1	S15C0	S14C3	S14C2	S14C1	S14C0
LCDDATA14(F73)	S17C3	S17C2	S17C1	S17C0	S16C3	S16C2	S16C1	S16C0
LCDDATA18(F77)	S19C3	S19C2	S19C1	S19C0	S18C3	S18C2	S18C1	S18C0
LCDDATA19(F78)	S21C3	S21C2	S21C1	S21C0	S20C3	S20C2	S20C1	S20C0
LCDDATA20(F79)	S23C3	S23C2	S23C1	S23C0	S22C3	S22C2	S22C1	S22C0

7. 系统时钟说明

有 32.768K 晶振/3.58MHz 晶振/32K RC 振荡/PLL 3.604MHZ 时钟,可以选择作为系统时钟。

时钟使能信号寄存器

2011/5

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCTUNE(F9BH)	RCOSCE	CRYO	OSC_	SEL_S	EN3X	EN2X	PLLE	
	N	SCEN	EN	T			N	
reset	1	1	1	1	0	1	1	

RCOSCEN:内部 32K RC 振荡时钟使能位,高有效

CRYOSCEN: 高频晶振时钟使能位,高有效 OSC_EN: OSC32k 时钟使能位,高有效

SEL_ST, EN3X, EN2X: OSC32k 时钟电流能力选择,全"1"时电流最大。

PLLEN: PLL 时钟使能信号,高有效

系统时钟控制寄存器:

寄存器	bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
OSCCON		IRCF2	IRCF1	IRCF0		IDLEN	CLK_SE	CLK_SE
							L[1]	L[0]
Reset		0	0	0		0	1	1

系统时钟选择控制

CLK_SEL[0]	时钟选择
0	HOSC
1	MCU 工作时钟(根据
	IRCF2-0 选择)
CLK_SEL[1]	
1	RC32K/2
0	根据 CLK_SEL[0]选择时
	钟

IDLEN: 空闲使能位:

"1"执行 sleep 指令后进入空闲模式,这个模式下所有的时钟源都关闭 "0"执行 sleep 指令后进入睡眠模式,MCU 停止工作,仍然有振荡。

IRCF2-0	时钟选择
000	OSC32K
001	PLLOSC/4
010	PLLOSC /2
011	PLLOSC
100	HOSC/4
101	HOSC/2
110	RC32K
111	OSC32K/2

备注: 所有的时钟切换应该通过 RC32K/2 (CLK_SEL[1]) 进行。

WDT 控制寄存器

WDTCON(FD1H)	 	 	 WDTSEL[1:0]	WDTEN
DEFAULT			00	0

● WDTEN: WDT 使能信号,高电平使能

● WDTSEL[1:0]: WDT 时间选择寄存器

WDTSEL[1:0]	溢出频率
00	RC32K /16384
01	RC32K /32768
10	RC32K /49152
11	RC32K /65536

8. 2.0V/2.2V/4.0V 低压检测电路

具有 4.0V/2.2V/2.0V 三路低压检测功能:

4.0V 电压检测用于对 AVDD 电压的检测, AVDD 电压低于 4.0V 会发出中断, MCU 会根据该中断信号保存数据,关计量部分 A/D;

2.2V 电压检测用于对 VDD 电压的检测,检测到 VDD 电压低到 2.2V 时,会置位相应标志位;

2.0V 电压检测用于对 VDD 电压的检测,检测到 VDD 电压低到 2.0V 时复位 MCU。

低压检测控制寄存器:

寄存器	Bit7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
LVDCON	FEN			LVDRESET_EN	LVD_4V	LVD_2O2V		LVD2O2V_EN
default	0			1				0

- LVD_4V: 4.0V 低压检测标志位, "0": AVDD 电压低于 4.0V;
- LVD 2O2V: 2.2V 低压检测标志位, "0": DVDD 电压低于 2.2V;
- LVD2O2V_EN: 2.2V 低压检测使能位,"1"工作,默认低电平;
- LVDRESET_EN: 低压检测复位使能,"1"工作;系统电源电压跌至 2.0V,系统 复位,默认是高电平;
- FEN: F1, F2 的输出使能, 为高电平时, PORT53, PORT52 端口的输出信号为 F1, F2。

9. 8 位定时器 T0

寄存器定义如下:

寄存器	Bit7	Bit	Bit5	Bit4	Bit3	BIT2	BIT1	BIT0
		6						
T0CON	TMR0_EN						T0PS[2:0]	
TMR0L								
RD_TMR0L								

- TMR0_CON: 定时器 0 控制寄存器;
 - **♣** TMR0 EN: TIMER0 使能位,高有效,缺省为 0;
 - **▲** T0PS[2:0]: TIMER0 时钟选择:

000	FOSC/4
001	FOSC/32
010	FOSC/128
011	FOSC/1024
100	FOSC/8192
101	OSC32K /2
110	OSC32K
111	RC32K

- TMR0L: 计数预设值寄存器,当定时器 0 从 TMR0L 的预设值自加 1 计数到等于 FFH 时,TIMER0 产生定时溢出中断。
- RD_TM0L:读计数器 T0 的当前计数值。

10. 16 位定时器/计数器 T1

该计数器为16位计数器,同时支持捕捉功能。

寄存器定义如下:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	BIT2	BIT1	BIT0		
T1CON	CAP_S	CAP_S	T1PS[1]	T1PS[0]			CAP	TMR1_		
	EL[1]	EL[0]					_EN	EN		
TMR1H		计数器预设值高 8 位								
TMR1L			计数	女器预设值 滴	8 位					
RD_TMR1H										
RD_TMR1L										

- TMR1_CON: 定时器 1 控制寄存器;
- TMR1_EN: TIMER1 使能位, 高有效, 缺省为 0;
- T1PS[1:0]: TIMER1 时钟选择;

T1PS[1:0]	时钟选择
00	FOSC/4
01	OSC32K
10	FOSC/256
11	RC32K

- TMR1H/ TMR1L: 计数预设值寄存器,当定时器 1 从 TMR1H/TMR1L 的预设 16 位值自加 1 计数到等于 FFFFH 时,TIMER1 产生定时溢出中断。
- CAP_EN: CF 捕捉使能信号,高有效,默认 0

2011/5

● CAP_SEL[1:0]: 选择捕捉的信号。

CAP_SEL[1:0]	信号选择
00	CF
01	CIC_OUTU 符号位
10	P10
11	

捕捉寄存器: 在 CF 上升沿捕捉到的 16 位数据,只读

寄存器				
CCPR1L(FBEH)				
CCPR1H(FBFH)				

11. RTC

时钟为 OSC32K, 可以对秒信号计数。提供 0.5 秒中断输出。

寄存器:

名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	复位值
SECONDS		S40	S20	S10	S8	S4	S2	S 1	-xxxxxx

SECONDS

秒寄存器, BCD 码表示,从 00 到 59。当该寄存器为 0101 1001 时,表明为 59

12. I2C 通信接口

状态寄存器:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPSTAT			D/A	Р	S	R/W		BF
R/W			R	R	R	R		R

- D/A: 数据/ 地址指示位
- 1= 表明接收或发送的最后字节是数据
- 0= 表明接收或发送的最后字节是地址
- P: 停止位检测标志
- 1= 表示最近检测到停止位
- 0= 表示未检测到停止位
- 注: 在复位时和SSPEN 清零时,该位清零。
- S: 启动位检测标志
- 1= 表示最后检测到启动位
- 0= 表示未检测到启动位
- 注: 在复位时和SSPEN 清零时,该位清零。
- R/W:读/写至少位

在从机模式下:

- 1= 读数据
- 0= 写数据

在主控模式下:

- 1= 正在进行发送
- 0= 未进行发送

● BF: 缓冲器满状态位

在发送模式下:

1= 接收完成, SSPBUF 满

0= 接收没有完成, SSPBUF 空

在接收模式下:

1= 数据正在发送(不包括ACK 位和停止位), SSPBUF 满

0= 数据发送完毕(不包括ACK 位和停止位), SSPBUF 空

控制寄存器:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPCON1	WCOL	SSPO	SSPE	CKP	SSPM	SSPM	SSPM	SSPM
		V	Ν		3	2	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RESET	0	0	0	1	0	0	0	0

● WCOL: 写冲突检测标志位

在主控发送模式下:

1= 当I2C 不满足开始发送数据的条件时有数据要写入SSPBUF 寄存器(该位必须用软件清零)

0= 未发生冲突

在从机发送模式下:

1= 正在发送前一个字时又有数据写入SSPBUF 寄存器(该位必须用软件清零)

0= 未发生冲突

在接收模式(主控或从机模式)下: 该位忽略

SSPOV: 接收溢出标志位

在接收模式下:

1= 当SSPBUF 寄存器中仍保存前一个字节时收到了下一个字节(该位必须用软件清零)

0= 没有溢出

在发送模式下:该位忽略

- SSPEN: I2C接口使能位
- 1= 使能I2C接口,并配置SDA 和SCL 引脚为串行口引脚
- 0= 禁止I2C接口口,并配置这些引脚为I/O 口引脚

注: 当该位为1 而使能时,必须正确配置SDA 和SCL 引脚为输入引脚或输出引脚。

● CKP: SCK 释放控制位

在从机模式下:

1= 释放时钟

0= 保持时钟线为低电平,用于保证数据的建立时间

在主控模式下: 在此模式下未使用

● SSPM3:SSPM0:同步串行口模式选择位

1000=I2C 主控模式,时钟=FOSC / (4 * (SSPADD+1))

2011/5

0110=I2C 从机模式, 7 位地址

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPCON2	GCEN	ACKS	ACKD	ACKE	RCEN	PEN	RSEN	SEN
		TAT	Т	N				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RESET	0	0	0	0	0	0	0	0

- GCEN: 全局呼叫使能位(仅从机模式)
- 1= 接收到全局呼叫地址(0000h)时使能中断
- 0= 禁止全局呼叫地址
- ACKSTAT: 应答状态位(仅主控发送模式)
- 1= 没有收到来自从机的应答
- 0= 收到来自从机的应答
- ACKDT:应答数据位(仅主控接收模式)
- 1= 不应答
- 0= 应答
- 注: 用户在接收结束时启动一个应答序列,同时发送该值。
- ACKEN: 应答序列使能位(仅主控接收模式)
- 1= 在SDA 和SCL 引脚启动应答序列,发送ACKDT 数据位,由硬件自动清零。
- 0= 应答序列不使用
- RCEN: 接收使能位(仅主控模式)
- 1= 使能I2C 接收模式
- 0= 接收空闲
- PEN: 停止条件使能位(仅主控模式)
- 1= 在SDA 和SCL 引脚启动停止条件,由硬件自动清零。
- 0= 停止条件空闲
- RSEN: 重复启动条件使能位(仅主控模式)
- 1= 在SDA 和SCL 引脚启动重复启动条件,由硬件自动清零。
- 0= 重复启动条件空闲
- SEN: 启动条件使能(仅主控模式)

在主控模式下:

- 1= 在SDA 和SCL 引脚启动启动条件,由硬件自动清零。
- 0= 启动条件空闲

注: 对于ACKEN、RCEN、PEN、RSEN 和SEN 位: 如果 I2C 模块不在空闲模式,不将该位置1,也禁止对SSPBUF 进行写操作。

串行接收/ 发送缓冲器

1 14 27 12 2 2 2 2 2 1 1 1 1	•									
寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SSPBUF										
R/W		R/W								
RESET				UUUU-l	JUUU					

地址寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SSPADD								
R/W				R/V	٧			
RESET				0000-0	0000			

13. USART 通信接口

接收设置寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D
R/W	R/W	R/W	R/W	R/W		R	R	R
RESET	0	0	0	0		0	0	U

● SPEN: UART 使能位,"1"使能;

■ RX9: 9 位选择接收使能。"1"选择 9 位接收,"0"选择 8 位接收;

● SREN: 接收使能位

同步模式:"1"选择接收,"0"禁止接收;

异步模式: 无用

● CREN: 连续接收使能位,"1"使能接收,"0"禁止接收

● FERR: 帧出错标志位,高电平标志出错

● OERR: 溢出出错标志位, 高电平标志出错

● RX9D: 接收数据的第9位

接收数据寄存器: 只读

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RCREG								

发送设置寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TXSTA	CSRC	TX9	TXEN	SYNC			TRMT	TX9D
R/W	R/W	R/W	R/W	R/W			R	R/W
RESET	0	0	0	0			1	0

● CSRC: 时钟源选择位,

同步模式:"1"主机模式;"0"从机模式;

异步模式: 无用

● TX9:9位选择发送使能位。"1"选择9位发送,"0"选择8位发送

● TXEN: 发送使能位,高电平使能

● SYNC: UART 模式选择位,"1"同步模式,"0",异步模式

● TRMT: 发送移位寄存器空标志位,高电平为空

● TX9D: 发送数据的第9位(可以通过软件设置作为奇偶校验位)

波特率设置寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SPBRG								

发送数据寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TXREG								

发送数据的设置必须在 SPEN 和 TXEN 设置好后,才能写入值。

14. PPG(可编程脉冲发生器)

14.1 8 位 PPG

控制寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PPG_CON(F74H)	PPG_E						PPG_	PPG_
	N						SEL[1]	SEL[0]
R/W	R/W						R/W	R/W
RESET	0						0	0

- PPG_EN: PPG 使能位,高电平使能
- PPG_SEL[1:0]: 频率选择控制位:

00	FOSC/4
01	OSC32K
10	FOSC/256
11	RC32K

占空比设置寄存器:

高电平时间设置

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PPG_SETH								
(F75H)								

周期时间设置:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PPG_SETL(F76H)								

输出波形周期为(PPG_SETL + 1)个 PPG_SEL[1:0]选择的时钟周期

14.2 16 位 PPG

控制寄存器

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PPG2CON(F70H)	PPG2EN						PPG2	PPG2
							S[1]	S[0]
R/W	R/W						R/W	R/W
RESET	0						0	0

- PPG2EN: PPG2 使能位,高电平使能
- PPG2S[1:0]: 频率选择控制位:

00	FOSC/4
01	OSC32K
10	FOSC
11	RC32K

占空比设置寄存器:

高电平时间设置

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PPG2H_H(F69H)								
PPG2H_L(F6AH)								

周期时间设置:

寄存器	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PPG2L_H(F86H)								
PPG2L_L(F87H)								

输出波形周期为 (PPG2L + 1) 个 PPG2S[1:0] 选择的时钟周期

15. I/O 说明

● PT2/PT3/PT4/PT54-PT57 为 SEG/COM 口,可以复用为 I/O,具体选择 I/O 还是液晶的 SEG/COM 请参考"LCD/LED 驱动/控制"的相关寄存器

PORT2 相关寄存器

PT2(F81H)	P27	P26	P25	P24	P23	P22	P21	P20
DEFAULT	0	0	0	0	0	0	0	0
PT2EN(F8AH)	PT2							
	EN[7]	EN[6]	EN[5]	EN[4]	EN[3]	EN[2]	EN[1]	EN[0]
DEFAULT	0	0	0	0	0	0	0	0
LAT2(F93H)	LAT2							
	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
DEFAULT	0	0	0	0	0	0	0	0

端口输出:写 PT2 或者写 LAT2;

读端口状态:读 PT2;读输出寄存器:读 LAT2

PT2EN: 输入/输出选择,"1",选择输出。

PORT3 相关寄存器

PT3(F82H)	P37	P36	P35	P34	P33	P32	P31	P30
DEFAULT	0	0	0	0	0	0	0	0
PT3EN(F8BH)	PT3							
	EN[7]	EN[6]	EN[5]	EN[4]	EN[3]	EN[2]	EN[1]	EN[0]
DEFAULT	0	0	0	0	0	0	0	0

LAT3(F94H) LAT3 LAT3 LAT3 LAT3 LAT3 LAT3 LAT3 LAT3 [7] [6] [5] [4] [3] [2] [1] [0] **DEFAULT** 0 0

端口输出:写 PT3 或者 LAT3;

读端口状态:读 PT3;读输出寄存器:读 LAT3

PT3EN:输入/输出选择,"1",选择输出。

PORT4 相关寄存器

PT4(F83H)	P47	P46	P45	P44	P43	P42	P41	P40
DEFAULT	0	0	0	0	0	0	0	0
PT4EN(F8CH)	PT4							
	EN[7]	EN[6]	EN[5]	EN[4]	EN[3]	EN[2]	EN[1]	EN[0]
DEFAULT	0	0	0	0	0	0	0	0
LAT4(F95H)	LAT4							
	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
DEFAULT	0	0	0	0	0	0	0	0

端口输出:写 PT4 或者 LAT4;

读端口状态:读 PT4;读输出寄存器:读 LAT4

PT4EN:输入/输出选择,"1",选择输出。

PORT5 相关寄存器

PT5(F84H)	P57	P56	P55	P54	P53	P52	
DEFAULT	0	0	0	0	0	0	
PT5EN(F8DH)	PT5	PT5	PT5	PT5	PT5	PT5	
	EN[7]	EN[6]	EN[5]	EN[4]	EN[3]	EN[2]	
DEFAULT	0	0	0	0	0	0	
LAT5(F96H)	LAT5	LAT5	LAT5	LAT5	LAT5	LAT5	
	[7]	[6]	[5]	[4]	[3]	[2]	
DEFAULT	0	0	0	0	0	0	

端口输出:写PT5或LAT5;

读端口状态:读 PT5;读输出寄存器:读 LAT5

PT5EN:输入/输出选择,"1",选择输出。

● PORT1 为 SCHM 输入 I/O, 带上拉选择

PT1(F80H)	P17	P16	P15	P14	P13	P12	P11	P10
DEFAULT	0	0	0	0	0	0	0	0
PT1EN(F89H)	PT1							
	EN[7]	EN[6]	EN[5]	EN[4]	EN[3]	EN[2]	EN[1]	EN[0]
DEFAULT	0	0	0	0	0	0	0	0
PT1PU(F85H)	PT1							
	PU[7]	PU[6]	PU[5]	PU[4]	PU[3]	PU[2]	PU[1]	PU[0]
DEFAULT	1	1	1	1	1	1	1	1

LAT1(F92H)	LAT1							
	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
DEFAULT	0	0	0	0	0	0	0	0

PORT1 相关寄存器

端口输出:写PT1或者LAT1;

读端口状态:读 PT1; 读输出寄存器:读 PT1 PT1EN:"1",输出使能。 PT1PU:"0",上拉使能。

二、 OTP 烧录说明

OTP 烧录模式: VPP=12.5v, VDD=6.5V

芯片管脚	OTP 烧录管脚
P10	CLK
P11	DIN
SEG0	DOUT
VPP	VPP

三、 指令集

指令	说明	周期	受影响的状态位
ADDWF f, d, a	WREG 与f 相加	1	C, DC, Z,
ADDWFC f, d, a	WREG 与 f 带进位相	1	C, DC, Z,
	加		
ANDWF f, d, a	WREG 和 F 做与运算	1	Z,
CLRF f, a	f 清零	1	Z
COMF f, d, a	f 取反	1	Z,
DECF f, d, a	f 减 1	1	C, DC, Z,
DECFSZ f, d, a	f 减1, 为0 则跳过	1 (2 或3)	无
DCFSNZ f, d, a	f 减1, 非0 则跳过	1 (2 或3)	无
INCF f, d, a	f 加 1	1	C, DC, Z,
INCFSZ f, d, a	f 加1, 为0则跳过	1 (2 或3)	无
INFSNZ f, d, a	f 加1, 非0 则跳过	1 (2 或3)	无
CPFSEQ f, a	将f与WREG做比	1 (2 或3)	无
	较,相等则跳过		
IORWF f, d, a	WREG 和f 做或运算	1	Z,
MOVF f, d, a	移动 f	1	Z,
MOVWF f, a	将 WREG 移入 f	1	无
RLCF f, d, a	对 f 执行带进位的循	1	С, Z,
	环左移		
RLNCF f, d, a	f 循环左移不带进位	1	Z,
RRCF f, d, a	对f执行带进位的循	1	С, Z,
	环右移		
RRNCF f, d, a	f 循环右移不带进位	1	Z,
SETF f, a	将 f 置为全 1	1	无
SUBWF f, d, a	f 减去 WREG	1	C, DC, Z,
SUBWFB f, d, a	f 减去 WREG (带借	1	C, DC, Z,
	位)		
TSTFSZ f, a	测试 f, 为 0 则跳过	1 (2 或3)	无
XORWF f, d, a	WREG 和 f 异或运算	1	Z
BCF f, b, a	将f中的某位清零	1	无
BSF f, b, a	将 f 中的某位置 1	1	无
BTFSC f, b, a	测试 f 中的某位,为	1 (2 或 3)	无
	0 则跳过		
BTFSS f, b, a	测试f中的某位,为	1 (2 或 3)	无
	1 则跳过	_	
BRA n	无条件跳转	2	无
CALL n, s	调用子程序	2	无

CLRWDT	看门狗定时器清零	1	TO, PD				
GOTO n	跳转到地址	2	无				
NOP	空操作	1	无				
RCALL n	相对调用	2	无				
RESET	用软件使器件复位	1	无				
RETFIE s	中断返回使能	2	无				
RETLW k	返回时将立即数送入	2	无				
	WREG						
RETURN s	从子程序返回	2	无				
SLEEP	进入待机模式	1	TO, PD				
ADDLW k	WREG 与立即数相加	1	C, DC, Z,				
ANDLW k	WREG 和立即数进行	1	Ζ,				
	与运算						
IORLW k	WREG 和立即数进行	1	Ζ,				
	或运算						
MOVLB k	将立即数移入	1	无				
	BSR<3:0>						
MOVLW k	将立即数移入 WREG	1	无				
RETLW k	返回时将立即数送入	2	无				
	WREG						
SUBLW k	立即数减去 WREG	1	C, DC, Z,				
XORLW k	WREG 和立即数进行	1	Z				
	异或运算						
TBLRD*	表读 ROM	2	无				
	寄存器间接寻址						
对寄存器 INDF0	对寄存器 INDFO 的操作实际上是以寄存器 FSROH、FSROL 的内容作为地址去操作						

封装规格

图 3. 封装外形图

Dimensions: mm

Symbol	Min.	Nom.	Max.				
A			1.60				
A1	0.05		0.20				
A2	1.35	1.40	1.45				
A3	0.59	0.64	0.69				
b	0.19		0.27				
b1	0.18	0.20	0.23				
С	0.13		0.18				
c1	0.12	0.13	0.14				
D	11.80	12.00	12.20				
D1	9.90	10.00	10.10				
Е	11.80	12.00	12.20				
E1	6.90	7.00	7.10				
e	0.50BSC						
L	0.45		0.75				
L1		1.00BSC					
θ	0		7				