latex-math Macros

compiled: 2021-10-18

Latex macros like **\frac{#1}{#2}** with arguments are displayed as $\frac{\#1}{\#2}.$

Note that macro declarations may only span a single line to be displayed correctly in the below tables.

Contents

basic-math	2
basic-ml	3
ml-bagging	6
ml-boosting	6
ml-eval	7
ml-feature-sel	8
ml-gp	9
ml-hpo	9
ml-interpretable	10
ml-nn	10
ml-rf	11
ml-survival	11
ml-svm	12
ml-trees	12
probmodel	12

basic-math

3.6	77	
Macro	Notation	Comment
/N	N	N, naturals
\Z	\mathbb{Z}	Z, integers
\Q	Q	Q, rationals
\R	\mathbb{R}	R, reals
\C	\mathbb{C}	C, complex
\continuous	\mathcal{C}	C, space of continuous functions
\M	\mathcal{M}	machine numbers
\epsm	ϵ_m	maximum error
\setzo	$\{0, 1\}$	set $0, 1$
\star{p}	$\{-1, +1\}$	
\unitint	[0, 1]	unit interval
\xt	$ ilde{x}$	x tilde
\argmax	argmax	argmax
\argmin	$rg \min$	argmin
\argminlim	$rg \min$	argmax with limits
\argmaxlim	argmax	argmin with limits
\sign	sign	sign, signum
\I	\mathbb{I}	I, indicator
\order	\mathcal{O}	O, order
\fp	$\frac{\partial \cdot}{\partial \cdot}$	partial derivative
\pd	$\frac{\partial}{\partial \cdot}$	partial derivative
\sumin	$\sum_{n=1}^{\infty}$	summation from i=1 to n
(SullIII	$\underset{i=1}{\overset{\angle}{\smile}}$	summation from 1–1 to fi
\sumim	$ \begin{array}{l} \mathcal{O} \\ \frac{\partial \cdot}{\partial i} \\ \frac{\partial \cdot}{\partial i} \\ \frac{\partial \cdot}{\partial i} \\ \frac{\partial \cdot}{\partial i} \\ \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{m} \sum_{j=1}$	summation from i=1 to m
(Dumin	$\stackrel{\textstyle \smile}{i=1}$	
\sumjp	\sum_{p}	summation from j=1 to p
,	$\sum_{j=1}^{2}$	sammation from J 1 to p
\sumik	\sum_{k}^{k}	summation from i=1 to k
/Suilitk	$\underset{i=1}{\overset{\mathcal{L}}{\smile}}$	summation from 1—1 to k
\sumkg	$\sum_{i=1}^{g}$	summation from k=1 to g
(Bulling)	$\stackrel{\textstyle \diagup}{k=1}$	Summation from k=1 to g
\sumjg	$\sum_{i=1}^{g}$	summation from j=1 to g
(pam)g	$\sum_{j=1}^{2}$	summation from j=1 to g
\meanin	$\frac{1}{n} \sum_{i=1}^{n}$	mean from i=1 to n
/meanin		mean from i=1 to fi
\meankg	$\frac{1}{2} \sum_{g}^{g}$	mean from k=1 to g
/mcankg	$g \underset{k=1}{\overset{\frown}{\smile}}$	mean nom k=1 to g
\prodin	\prod^{n}	product from i=1 to n
(PI ouiii	i=1	product from 1 1 to fr
\prodkg	\prod^g	product from k=1 to g
(broams	k=1	product from k=1 to g
\prodjp	$\prod_{p}^{k=1}$	product from j=1 to p
(prodjp	j=1	product from j 1 to p
\one	1	1, unitvector
\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle \cdot, \cdot \rangle$	<.,.>, scalarproduct
\mat	(\cdot)	short pmatrix command

\Amat	${f A}$	matrix A
\Deltab	$oldsymbol{\Delta}$	error term for vectors
\ P	${\mathbb P}$	P, probability
\E	${ m I}\!{ m E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	$\mathcal N$	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	\sim	is distributed as

basic-ml

Macro	Notation	Comment
\Xspace	\mathcal{X}	X, input space
\Yspace	${\cal Y}$	Y, output space
\nset	$\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
/xv	x	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)
\yv	\mathbf{y}	vector y (bold)
\xy	(\mathbf{x},y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^T$	(x1,, xp)
\Xmat	X	Design matrix
\allDatasets	\mathbb{D}	The set of all datasets
\D	${\cal D}$	D, data
\obsi	$(\mathbf{x}^{(\cdot)}, y^{(\cdot)})$	observation $(x^{(i)}, y^{(i)})$
\Dset	$(\mathbf{x}^{(\cdot)}, y^{(\cdot)})$ $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$	$\{(x1,y1)\},, (xn,yn)\}, data$
\Dn	$\widetilde{\mathcal{D}}_n$	D_n, data of size n
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\defAllDatasetsn	$(\mathcal{X} imes\mathcal{Y})^n$	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n$	Def. of the set of all datasets
\xdat	$egin{aligned} igcup_{n \in \mathbb{N}} (\mathcal{X} imes \mathcal{Y})^n \ ig\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}ig\} \ ig(y^{(1)}, \dots, y^{(n)}ig)^T \ \mathbf{x}^{(\cdot)} \end{aligned}$	$\{x1,, xn\}$, input data
\yvec	$\left(y^{(1)},\ldots,y^{(n)}\right)^T$	(y1,, yn), vector of outcomes
\xi	$\mathbf{x}^{(\cdot)}$	x^i, i-th observed value of x
\yi	$y^{(\cdot)}$	y^i, i-th observed value of y
\xyi	$\left(\mathbf{x}^{(\cdot)},y^{(\cdot)} ight)$	(x^i, y^i), i-th observation
\xivec	$\left(x_1^{(i)},\ldots,x_p^{(i)}\right)^T$	(x1 ⁻ i,, xp ⁻ i), i-th observation vector
\xj	\mathbf{x}_i	x_j, j-th feature
\xjvec	$\begin{pmatrix} \mathbf{x}_j \\ \left(x_j^{(1)}, \dots, x_j^{(n)}\right)^T \end{pmatrix}$	(x^1_j,, x^n_j), j-th feature vector

```
D train, training set
\Dtrain
                                        \mathcal{D}_{\mathrm{train}}
\Dtest
                                        \mathcal{D}_{	ext{test}}
                                                                                      D test, test set
\phiv
                                        \phi
                                                                                      Basis transformation function phi
                                        \phi^{(i)}
\phixi
                                                                                      Basis transformation of xi: phi^i := phi(xi)
                                        \lambda
\lamv
                                                                                      lambda vector, hyperconfiguration vector
                                        Λ
                                                                                      Lambda, space of all hoos
\Lam
                                        \left(\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n\right)\times\mathbf{\Lambda}
                                                                                      Set of all datasets times the hyperparameter space
\preimageInducer
\preimageInducerShort
                                        \mathbb{D} \times \mathbf{\Lambda}
                                                                                      Set of all datasets times the hyperparameter space
\inducer
                                        \mathcal{I}
                                                                                      Inducer, inducing algorithm, learning algorithm
\ftrue
                                        f_{\rm true}
                                                                                      True underlying function (if a statistical model is assumed)
\ftruex
                                                                                      True underlying function (if a statistical model is assumed)
                                        f_{\rm true}(\mathbf{x})
                                        f(\mathbf{x})
                                                                                      f(x), continuous prediction function
\fx
                                                                                      hypothesis space where f is from
                                        \mathcal{H}
\Hspace
                                                                                      f i(x), discriminant component function
\fix
                                        f_i(\mathbf{x})
\fjx
                                        f_i(\mathbf{x})
                                                                                      f_{j}(x), discriminant component function
\fkx
                                        f_k(\mathbf{x})
                                                                                      f_k(x), discriminant component function
                                                                                      f(x), discriminant component function
\fgx
                                        f_g(\mathbf{x})
                                                                                      f hat, estimated prediction function
\fh
                                        \hat{f}(\mathbf{x})
\fxh
                                                                                      fhat(x)
\fxt
                                        f(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                      f(x \mid theta)
                                        f\left(\mathbf{x}^{(i)}\right)
\fxi
                                                                                      f(x^{(i)})
                                        \hat{f}\left(\mathbf{x}^{(i)}\right)
\fxih
                                                                                      f(x^(i))
                                        f(\mathbf{x}^{(i)'}|\boldsymbol{\theta})
\fxit
                                                                                      f(x^{(i)} | theta)
\fhD
                                        \hat{f}_{\mathcal{D}}
                                                                                      fhat D, estimate of f based on D
\fhDtrain
                                        f_{\mathcal{D}_{\mathrm{train}}}
                                                                                      fhat Dtrain, estimate of f based on D
\fhDnlambda
                                                                                      model learned on Dn with hp lambda
                                        f_{\mathcal{D}_n, \lambda}
                                                                                      model learned on D with hp lambda
\fhDlambda
                                        f_{\mathcal{D}, \boldsymbol{\lambda}}
\fhDnlambdastar
                                        f_{\mathcal{D}_n, \boldsymbol{\lambda}^*}
                                                                                      model learned on Dn with optimal hp lambda
\fhDlambdastar
                                        f_{\mathcal{D},\boldsymbol{\lambda}^*}
                                                                                      model learned on D with optimal hp lambda
\hx
                                        h(\mathbf{x})
                                                                                      h(x), discrete prediction function
\hxv
                                        h(\mathbf{x})
                                                                                      h(x), discrete prediction function with x (vector) as input
                                        \hat{h}
\hh
                                                                                      h hat
                                        \hat{h}(\mathbf{x})
\hxh
                                                                                      hhat(x)
                                        h(\mathbf{x}|\boldsymbol{\theta})
                                                                                      h(x \mid theta)
\hxt
\hxi
                                        h\left(\mathbf{x}^{(i)}\right)
                                                                                      h(x^{(i)})
                                        h(\mathbf{x}^{(i)'}|\boldsymbol{\theta})
\hxit
                                                                                      h(x^{(i)} \mid theta)
\yh
                                        \hat{y}
                                                                                      yhat for prediction of target
                                        \hat{y}^{(i)}
\yih
                                                                                      yhat<sup>(i)</sup> for prediction of ith targiet
                                        \hat{\theta}
                                                                                      theta hat
\thetah
                                        \boldsymbol{\theta}
\thetab
                                                                                      theta vector
                                        \hat{\theta}
                                                                                      theta vector hat
\thetabh
                                        \boldsymbol{\theta}^{[t]}
\thetat
                                                                                      theta<sup>*</sup>[t] in optimization
                                        \boldsymbol{\theta}^{[t+1]}
\thetatn
                                                                                      theta[t+1] in optimization
                                        \boldsymbol{\theta}^T \mathbf{x}
                                                                                      linear combination with theta
\thxh
                                        \hat{	heta}_{\mathcal{D}_n, oldsymbol{\lambda}}
                                                                                      theta learned on Dn with hp lambda
\thetahDnlambda
\thetahDlambda
                                        \hat{m{	heta}}_{\mathcal{D},m{\lambda}}
                                                                                      theta learned on D with hp lambda
\pdf
                                                                                      р
                                                                                      p(x)
                                        p(\mathbf{x})
\pdfx
                                        \pi(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                      pi(x|theta), pdf of x given theta
\pixt
                                        \pi \left( \mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)
\pixit
                                                                                      pi(x^i|theta), pdf of x given theta
                                        \pi\left(\mathbf{x}^{(i)}\right)
                                                                                      pi(x^i), pdf of i-th x
\pixii
\pdfxy
                                        p(\mathbf{x}, y)
                                                                                      p(x, y)
```

```
\pdfxvt
                                           p(\mathbf{x}, y \mid \boldsymbol{\theta})
                                                                                              p(x, y \mid theta)
                                           p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)
                                                                                              p(x^{(i)}, y^{(i)} \mid theta)
\pdfxyit
\pdfxyk
                                           p(\mathbf{x}|y=k)
                                                                                              p(x \mid y = k)
                                                                                              p(x \mid y = j)
                                           p(\mathbf{x}|y=j)
\pdfxyj
\lpdfxyk
                                           \log p(\mathbf{x}|y=k)
                                                                                              \log p(x \mid y = k)
                                           p\left(\mathbf{x}^{(i)}|y=k\right)
                                                                                              p(x^i \mid y = k)
\pdfxiyk
                                                                                              pi_k, prior
\pik
                                            \pi_k
\lpik
                                           \log \pi_k
                                                                                              log pi k, log of the prior
                                                                                              Prior probability of parameter theta
\pit
                                            \pi(\boldsymbol{\theta})
                                            \mathbb{P}(y = 1 \mid \mathbf{x})
                                                                                              P(y = 1 \mid x), post. prob for y=1
\post
                                            \pi(\mathbf{x})
                                                                                              pi(x), P(y = 1 | x)
\pix
                                            \mathbb{P}(y = k \mid \mathbf{x})
                                                                                              P(y = k \mid y), post. prob for y=k
\postk
                                                                                              pi_k(x), P(y = k \mid x)
\pikx
                                            \pi_k(\mathbf{x})
\pikxt
                                            \pi_k(\mathbf{x} \mid \boldsymbol{\theta})
                                                                                              pi_k(x \mid theta), P(y = k \mid x, theta)
\pijx
                                            \pi_i(\mathbf{x})
                                                                                              pi_j(x), P(y = j \mid x)
                                                                                              pi_g(x), P(y = g \mid x)
\pigx
                                            \pi_q(\mathbf{x})
                                            p(y \mid \mathbf{x}, \boldsymbol{\theta})
                                                                                              p(y \mid x, theta)
\pdfygxt
                                           p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})
                                                                                              p(y^i | x^i, theta)
\pdfyigxit
                                                                                              \log p(y \mid x, \text{ theta})
\lpdfygxt
                                           \log p(y \mid \mathbf{x}, \boldsymbol{\theta})
\lpdfyigxit
                                           \log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
                                                                                              log p(y^i |x^i, theta)
                                           \hat{\pi}(\mathbf{x})
                                                                                              pi(x) hat, P(y = 1 \mid x) hat
\pixh
                                                                                              pi k(x) hat, P(y = k \mid x) hat
                                            \hat{\pi}_k(\mathbf{x})
\pikxh
                                            \hat{\pi}(\mathbf{x}^{(i)})
\pixih
                                                                                              pi(x^{(i)}) with hat
                                           \hat{\pi}_k(\mathbf{x}^{(i)})
                                                                                              pi k(x^{(i)}) with hat
\pikxih
                                                                                              residual, stochastic
\eps
                                            \epsilon^{(i)}
\epsi
                                                                                              epsilon<sup>i</sup>, residual, stochastic
\epsh
                                            \hat{\epsilon}
                                                                                              residual, estimated
                                            yf(\mathbf{x})
                                                                                              y f(x), margin
\yf
                                            y^{(i)}f\left(\mathbf{x}^{(i)}\right)
                                                                                              y^i f(x^i), margin
\yfi
                                            \hat{\Sigma}
\Sigmah
                                                                                              estimated covariance matrix
                                           \hat{\Sigma}_j
\Sigmahj
                                                                                              estimated covariance matrix for the j-th class
\Lyf
                                            L(y, f)
                                                                                              L(y, f), loss function
                                            L(y, f(\mathbf{x}))
                                                                                              L(y, f(x)), loss function
\Lxy
                                            L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)
                                                                                              loss of observation
\Lxyi
                                            L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                              loss with f parameterized
\Lxyt
                                            L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
\Lxyit
                                                                                              loss of observation with f parameterized
                                            L(y^{(i)}, f(\tilde{\boldsymbol{x}}^{(i)} \mid \boldsymbol{\theta}))
                                                                                              loss of observation with f parameterized
\Lxym
                                            L(y, \pi(\mathbf{x}))
                                                                                              loss in classification
\Lpixy
                                            L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)
                                                                                              loss of observation in classification
\Lpixyi
                                            L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))
                                                                                              loss with pi parameterized
\Lpixyt
                                            L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)
\Lpixyit
                                                                                              loss of observation with pi parameterized
                                            L(y, h(\mathbf{x}))
                                                                                              L(y, h(x)), loss function on discrete classes
\Lhxy
\Lr
                                            L(r)
                                                                                              L(r), loss defined on residual (reg) / margin (classif)
                                            \mathcal{R}
                                                                                              R. risk
\risk
\riskf
                                            \mathcal{R}(f)
                                                                                              R(f), risk
                                            \mathcal{R}(\boldsymbol{\theta})
\riskt
                                                                                              R(theta), risk
\riske
                                            \mathcal{R}_{\mathrm{emp}}
                                                                                              R_emp, empirical risk w/o factor 1 / n
                                           \bar{\mathcal{R}}_{\mathrm{emp}}
\riskeb
                                                                                              R_emp, empirical risk w/ factor 1 / n
\riskef
                                            \mathcal{R}_{\mathrm{emp}}(f)
                                                                                              R = emp(f)
\risket
                                            \mathcal{R}_{\mathrm{emp}}(\boldsymbol{\theta})
                                                                                              R emp(theta)
                                            \mathcal{R}_{	ext{reg}}
\riskr
                                                                                              R_reg, regularized risk
\riskrt
                                            \mathcal{R}_{\mathrm{reg}}(\boldsymbol{\theta})
                                                                                              R_reg(theta)
\riskrf
                                            \mathcal{R}_{reg}(f)
                                                                                              R_reg(f)
```

\riskrth	$\hat{\mathcal{R}}_{ ext{reg}}(oldsymbol{ heta})$	$hat R_reg(theta)$	
\risketh	$\hat{\mathcal{R}}_{ ext{emp}}(oldsymbol{ heta})$	hat R_emp(theta)	
\LL	${\cal L}$	L, likelihood	
\LLt	$\mathcal{L}(oldsymbol{ heta})$	L(theta), likelihood	
\logl	ℓ	l, log-likelihood	
\loglt	$\ell(oldsymbol{ heta})$	l(theta), log-likelihood	
\LS	${\mathfrak L}$???????????	
\TS	\mathfrak{T}	????????????	
\errtrain	$\operatorname{err}_{\operatorname{train}}$	training error	
\errtest	$\mathrm{err}_{\mathrm{test}}$	training error	
\errexp	$\overline{\mathrm{err}_{\mathrm{test}}}$	training error	

ml-bagging

Macro	Notation	Comment
\bl	$b^{[\cdot]}(\mathbf{x})$	baselearner with argument for m
\blm	$b^{[m]}(\mathbf{x})$	baselearner without argument for m
\blmh	$\hat{b}^{[m]}(\mathbf{x})$	estimated base learner
\fM	$f^{[M]}(\mathbf{x})$	ensembled predictor
\fMh	$\hat{f}^{[M]}(\mathbf{x})$	estimated ensembled predictor
\ambifM	$\Delta\left(f^{[M]}(\mathbf{x})\right)$	ambiguity/instability of ensemble

Back to contents

ml-boosting

Macro	Notation	Comment
\fm	$f^{[m]}$	prediction in iteration m
\fmh	$\hat{f}^{[m]}$	prediction in iteration m
\fmd	$f^{[m-1]}$	prediction m-1
\fmdh	$\hat{f}^{[m-1]}$	prediction m-1
\bmm	$b^{[m]}$	basemodel m
\bmmh	$\hat{b}^{[m]}$	basemodel m with hat
\betam	$\beta^{[m]}$	weight of basemodel m
\betamh	$\hat{eta}^{[m]}$	weight of basemodel m with hat
\betai	$eta^{[\cdot]}$	weight of basemodel with argument for m
\errm	$err^{[m]}$	weighted in-sample misclassification rate
\wm	$w^{[m]}$	weight vector of basemodel m

\wmi \thetam \thetamh \rmm \rmi \Rtm \Tm	$w^{[m](i)} \ heta^{[m]} \ \hat{ heta}^{[m]} \ \hat{ au}^{[m]} \ ilde{r}^{[m]} \ ilde{r}^{[m](i)} \ R^{[m]}_t \ T^{[m]}$	weight of obs i of basemodel m parameters of basemodel m parameters of basemodel m with hat pseudo residuals pseudo residuals terminal-region
<pre>\ctm \ctmt \ctmt \fxk \Lp \Ldp \Ldp \Lpleft</pre>	$egin{array}{c} c_t^{[m]} \\ \hat{c}_t^{[m]} \\ \hat{c}_t^{[m]} \\ f_k(x) \\ L' \\ L'' \\ L'_{\mathrm{left}} \end{array}$	mean, terminal-regions mean, terminal-regions with hat mean, terminal-regions $f_{-}k(x)$

ml-eval

Macro	Notation	Comment
\ntest	$n_{ m test}$	size of the test set
\ntrain	$n_{ m train}$	size of the train set
\ntesti	$n_{ m test,}$.	size of the i-th test set
\ntraini	$n_{ m train,}$.	size of the i-th train set
\Jtrain	$J_{ m train}$	index vector associated to the train data
\Jtest	$J_{ m test}$	index vector associated to the test data
\Jtraini	$J_{ m train,\cdot}$	index vector associated to the i-th train dataset
\Jtesti	$J_{ m test,\cdot}$	index vector associated to the i-th test dataset
\Dtraini	$\mathcal{D}_{ ext{train},\cdot}$	D_train,i, i-th training set
\Dtesti	$\mathcal{D}_{ ext{test},\cdot}$	D_test,i, i-th test set
\JSpace	$\{1,\ldots,n\}$	space of train indices of size m_train
\JtrainSpace	$\{1,\ldots,n\}^{n_{\mathrm{train}}}$	space of train indices of size m_train
\JtestSpace	$\{1,\ldots,n\}^{n_{\mathrm{test}}}$	space of train indices of size m_test
\yJ	\mathbf{y} .	output vector associated to index J
\yJDef	$\begin{pmatrix} y^{(J^{(1)})}, \dots, y^{(J^{(m)})} \end{pmatrix}$	def of the output vector associated to index J
\JJ	Ì	cali-J, set of all splits
\JJset	$((J_{\text{train},1}, J_{\text{test},1}), \dots, (J_{\text{train},B}, J_{\text{test},B}))$	$(Jtrain_1,Jtest_1) \dots (Jtrain_B,Jtest_B)$
\GE	GE	GE
\GEh	$\widehat{ ext{GE}}$	GE-hat
\GEfull	$\mathrm{GE}(\mathcal{I}, \boldsymbol{\lambda}, \cdot, \rho)$	GE(I, lam, ?, rho)
\GEhholdout	$\widehat{\operatorname{GE}}_{J_{\operatorname{train}},J_{\operatorname{test}}}(\mathcal{I},oldsymbol{\lambda}, J_{\operatorname{train}} , ho)$	$GE-hat_{I}(Jtrain,Jtest) (I, lam, J , rho)$
\GEhholdouti	$\widehat{\operatorname{GE}}_{J_{\operatorname{train},\cdot},J_{\operatorname{test},\cdot}}(\mathcal{I},oldsymbol{\lambda}, J_{\operatorname{train},\cdot} , ho)$	GE-hat_{Jtrain_i,Jtest_i} (I, lam, Jtrain_i , rho)
\GEhlam	$\widehat{\operatorname{GE}}(oldsymbol{\lambda})$	GE-hat(lam)
\GEhlamsubIJrho	$\widehat{\operatorname{GE}}_{\mathcal{I},\mathcal{J}, ho}(oldsymbol{\lambda})$	GE-hat_I,J,rho(lam)
\GEhresa	$\widehat{\operatorname{GE}}(\mathcal{I},\mathcal{J}, ho,oldsymbol{\lambda})$	GE-hat_I,J,rho(lam)
\GErhoDef	$\lim_{n_{ ext{test}} o \infty} \mathbb{E}\left[ho\left(\mathbf{y}_{J_{ ext{test}}}, extbf{\emph{F}}_{J_{ ext{test}}, \mathcal{I}(\mathcal{D}_{ ext{train}}, oldsymbol{\lambda})} ight) ight]$	GE formal def

\agr	agr	aggregate function
\GEf	$\operatorname{GE}\left(\hat{f} ight)$	Generalization error of a fitted model
\GEind	$GE_n(\mathcal{I}_{L,O})$	Generalization error of a fitted model
\GEnf	$GE_n\left(\hat{f}.\right)$	Generalization error GE
\GEhat	$\widehat{ ext{GE}}$	Estimated train error
\GED	$\mathrm{GE}_{\mathcal{D}}$	Generalization error GE
\EGEn	EGE_n	expected GE
\EDn	$\mathbb{E}_{ D =n}$	expectation wrt data of size n
\rhoL	$ ho_L$	perf. measure derived from pointwise loss function L
\F	$oldsymbol{F}$	matrix of prediction scores
\Fi	$oldsymbol{F}^{(\cdot)}$	i'th row vector of the prediction scores matrix
\FJ	F.	predscore mat index vector J
\FJf	$oldsymbol{F}_{J,f}$	predscore mat index vector J and model f
\FJtestfh	$F_{J_{ ext{test}},\hat{f}}$	predscore mat index vector Jtest and model f hat
\FJ testftrain	$F_{J_{ ext{test}},\mathcal{I}(\mathcal{D}_{ ext{train}},oldsymbol{\lambda})}$	predscore mat index vector Jtest and model f
\FJtestftraini	$oldsymbol{F}_{J_{ ext{test},\cdot},\mathcal{I}(\mathcal{D}_{ ext{train},\cdot},oldsymbol{\lambda})}$	predscore mat i-th index vector Jtest and model f
\FJfDef	$egin{aligned} oldsymbol{F}_{J_{ ext{test},\cdot},\mathcal{I}(\mathcal{D}_{ ext{train},\cdot},oldsymbol{\lambda})} \ \left(f(\mathbf{x}^{(J^{(1)})}),\ldots,f(\mathbf{x}^{(J^{(m)})}) ight) \ igcup_{m\in\mathbb{N}}(\mathcal{Y}^m imes\mathbb{R}^{m imes g}) \end{aligned}$	def of predscore mat index vector J and model f
\preimageRho	$\bigcup_{m\in\mathbb{N}} \left(\mathcal{Y}^m \times \mathbb{R}^{m \times g} \right)$	Set of all datasets times the hyperparameter space
\np	n_{+}	no. of positive instances
\nn	n_{-}	no. of negative instances
\rn	π	proportion negative instances
\rp	π_+	proportion negative instances
\tp	#TP	true pos
\fap	#FP	false pos (fp taken for partial derivs)
\tn	#TN	true neg
\fan	#FN	false neg

ml-feature-sel

Macro	Notation	Comment
\xjNull	x_{j_0}	
\xjEins	x_{j_1}	
\xl	\mathbf{x}_l	
\pushcode		

ml-gp

Macro	Notation	Comment
\gp	$\mathcal{GP}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$	Gaussian Process Definition
\mvec	m	Gaussian process mean vector
$\$ \Kmat	K	estimated base learner
\kstarx	$\mathbf{k}_*(x)$	cov of new obs with x
\ls	ℓ	length-scale

Back to contents

ml-hpo

Macro	Notation	Comment
\Ilam	$\mathcal{I}_{oldsymbol{\lambda}}$	I_lambda
\lami	$oldsymbol{\lambda}^{(\cdot)}$	lambda i
\clam	$c(oldsymbol{\lambda})$	c(lambda)
\clamh	$c(\hat{oldsymbol{\lambda}})$	c(lambda-hat)
\lams	λ^*	Theoretical min of c
\lamh	$oldsymbol{\lambda}^* \ \hat{oldsymbol{\lambda}} \ ilde{oldsymbol{\Lambda}}$	returned lambda of HPO
\LamS		search space
\label{lamp}	λ^+	proposed lambda
\clamp	$c(\boldsymbol{\lambda}^+)$	c of proposed lambda
\archive	$\mathcal A$	archive at time step t
\archivet	$\mathcal{A}^{[\cdot]}$	archive at time step t
\tuner	${\mathcal T}$	tuner
\tunerfull	$\mathcal{T}_{\mathcal{I}, ilde{\mathbf{\Lambda}}, ho,\mathcal{J}}$	tuner with inducer, search space, performance measure and resampling strategy
\chlam	$c(\lambda)$	post mean of SM
\shlam	$\hat{\sigma}(oldsymbol{\lambda})$	post sd of SM
\vhlam	$\hat{\sigma^2}(oldsymbol{\lambda})$	post var of SM
\ulam	$u(\boldsymbol{\lambda})$	acquisition function
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	λ^*	Minimum of the black box function Psi
\metadata	$\left\{\left(oldsymbol{\lambda}^{(i)}, \Psi^{[i]} ight) ight\}$	Metadata for the Gaussian process
\lamvec	$\left(\lambda^{[1]},\dots,\lambda^{[m_{\mathrm{init}}]} ight)$	Vector of different inputs
\minit	$m_{ m init}$	Size of the initial design
\lambu	$\lambda_{ m budget}$	single lambda_budget komponent HP
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ m fid}$	single lambda_budget komponent HP
\lamfidl	$\lambda_{ m fid}^{ m low} \ \lambda_{ m fid}^{ m upp}$	single lambda_budget komponent HP
\lamfidu	$\lambda_{ m fid}^{ m upp}$	single lambda_budget komponent HP
\etahb	$\eta_{ m HB}$	HB multiplier eta
\costs	C	costs
\Celite	$oldsymbol{ heta}^*$	elite configurations
\instances	\mathcal{I}	sequence of instances
\budget	\mathcal{B}	computational budget

ml-interpretable

Macro	Notation	Comment
\fj	f_j	marginal function f_j, depending on feature j
\fnj	f_{-j}	marginal function $f_{-}\{-j\}$, depending on all features but j
\fS	f_S	marginal function f_S depending on feature set S
\fC		marginal function f_C depending on feature set C
\fhj	\hat{f}_j	marginal function fh_j, depending on feature j
\fhnj	\hat{f}_{-i}	marginal function fh_{-j}, depending on all features but
\fhS	$egin{array}{l} f_C \ \hat{f}_j \ \hat{f}_{-j} \ \hat{f}_S \ \hat{f}_C \end{array}$	marginal function fh_S depending on feature set S
\fhC	\hat{f}_C	marginal function fh_C depending on feature set C
\XSmat	\mathbf{X}_S	Design matrix subset
\XCmat	\mathbf{X}_C	Design matrix subset
\Xnj	\mathbf{X}_{-j}	Design matrix subset $-j = \{1,, j-1, j+1,, p\}$
\Scupj	$S \cup \{j\}$	coalition S but without player j
\Scupk	$S \cup \{k\}$	coalition S but without player k
\SsubP	$S \subseteq P$	coalition S subset of P
\SsubPnoj	$S \subseteq P \setminus \{j\}$	coalition S subset of P without player j
•	$S \subseteq P \setminus \{j,k\}$	coalition S subset of P without player k
\phiij	$\hat{\phi}_{j}^{(i)}$ \mathcal{G}	Shapley value for feature j and observation i
\Gspace	\mathcal{G}^{J}	Hypothesis space for surrogate model
\neigh	$\phi_{\mathbf{x}}$	Proximity measure
\zv	\mathbf{z}	Sampled datapoints for surrogate
\Zspace	${\mathcal Z}$	Space of sampled datapoints
\Gower	d_G	Gower distance

Back to contents

ml-nn

Macro	Notation	Comment
\neurons	z_1,\ldots,z_M	vector of neurons
\hidz	${f z}$	vector of hidden activations
\biasb	b	bias vector
\biasc	c	bias in output
\wtw	\mathbf{w}	weight vector (general)
\Wmat	\mathbf{W}	weight vector (general)
\wtu	u	weight vector of output neuron
\Oreg	$R_{reg}(\theta X,y)$	regularized objective function
\Ounreg	$R_{emp}(\theta X,y)$	unconstrained objective function
\Pen	$\Omega(\theta)$	penalty
\Oregweight	$R_{reg}(w X,y)$	regularized objective function with weight
\Oweight	$R_{emp}(w X,y)$	unconstrained objective function with weight
\Oweighti	$R_{emp}(w_i X,y)$	unconstrained objective function with weight w_i
\Oweightopt	$J(w^* X,y)$	unconstrained objective function withoptimal weight
\Oopt	$\hat{J}(\theta X,y)$	optimal objective function
\Odropout	$J(\theta,\mu X,y)$	dropout objective function

```
L(y, f(\mathbf{x}, \boldsymbol{\theta}))
L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))
L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))
L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta}))
\Loss
\Lmomentumnest
                                                                                  momentum risk
\verb|\Lmomentumtilde|
                                                                                  Nesterov momentum risk
\Lmomentum
\Hess
\nub
                                     L(x, g(f(x)))
\uauto
                                                                                  undercomplete autoencoder objective function
                                     L(x, g(f(\tilde{x})))
\dauto
                                                                                  denoising autoencoder objective function
\deltab
                                     L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta}|\boldsymbol{\theta}))
\Lossdeltai
                                     L(y, f(\mathbf{x} + \boldsymbol{\delta}|\boldsymbol{\theta}))
\Lossdelta
```

ml-rf

Macro	Notation	Comment
\betaM	$\beta^{[M]}$	baselearner with argument for M
\betai	$\beta^{[1]}$	baselearner with argument for 1

Back to contents

ml-survival

Macro	Notation	Comment
\Ti	$T^{(\cdot)}$??
\Ci	$C^{(\cdot)}$??
\oi	$o^{(\cdot)}$??
\ti	$t^{(\cdot)}$??
\deltai	$\delta^{(\cdot)}$	
\Lxdi	$L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$	

ml-svm

Macro	Notation	Comment
\sv	SV	supportvectors
\HS	Φ	H, hilbertspace
\sl	ζ	
\slvec	$(\zeta^{(1)},\zeta^{(n)})$	slack variables (SVM)
\sli	$\dot{\zeta}^{(i)}$	slack variable (SVM)
\alphah	\hat{lpha}	alpha-hat
\alphav	lpha	vector alpha (bold)
\alphavh	$\hat{m{lpha}}$	vector alpha-hat
\phix	$\phi(\mathbf{x})$	$\phi(x)$
\phixt	$\phi(\tilde{\mathbf{x}})$	\phi(x-tilde)

Back to contents

ml-trees

Macro	Notation	Comment
\Np	\mathcal{N}	(Parent) node N
\Npk	\mathcal{N}_k	$node N_k$
\N1	\mathcal{N}_1	Left node N_1
\Nr	\mathcal{N}_2	Right node N_2
\pikN	$\pi_k^{(\mathcal{N})}$ $\hat{\pi}_k^{(\mathcal{N})}$	class probability node N
\pikNh		estimated class probability node N
\pikNlh	$\hat{\pi}^{(\mathcal{N}_1)}$	
\pikNrh	$\hat{\pi}^{(\mathcal{N}_2)}$	

Back to contents

probmodel

Macro	Notation	Comment
\muk	μ_k	