1

Assignment: - 2

AI1110: Probability and Random Variables Indian Institute of Technology, Hyderabad

CS22BTECH11001

Aayush Adlakha 29 April, 2023

Exemplar 11.16.3.11 The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, Pr(AB) = .07). Determine

- (a) Pr(A)
- (b) Pr(BC')
- (c) Pr(A + B)
- (d) Pr(AB')
- (e) Pr(BC)
- (f) Probability of exactly one of the three occurs.

Solution.

(a) Clearly,

$$Pr(A) = 0.13 + 0.07 \tag{1}$$

= 0.20

(b) Clearly,

$$Pr(B) = 0.10 + 0.07 + 0.15$$
 (3)

= 0.32(4)

Also,

$$A = A(B + B') = AB + AB' \tag{5}$$

$$[:: B + B' = 1] \tag{6}$$

$$Pr(A) = Pr(AB) + Pr(AB')$$
 (7)

$$[:BB'=0] \tag{7}$$

Using (7)

$$Pr(BC') = Pr(B) - Pr(BC)$$
 (8)

$$= 0.32 - 0.15 \tag{9}$$

$$= 0.17$$
 (10)

(c) From Axioms of Probability

$$Pr(A + B) = Pr(A) + Pr(B) - Pr(AB)$$
 (11)

$$= 0.20 + 0.32 - 0.07 \tag{12}$$

$$= 0.45$$
 (13)

(d) Using (7)

$$Pr(AB') = Pr(A) - Pr(AB)$$
 (14)

$$= 0.20 - 0.07 \tag{15}$$

$$= 0.13$$
 (16)

(e) Clearly,

(2)

$$Pr(BC) = 0.15$$
 (17)

(f) Let X be the event that exactly one of A, B or C occur.

Let Y be the event that at least one of A, B or C occur.

Let Z be the event that at least two of A, B or

C occur.

Using (11)

$$Pr((A + B) + C) = Pr(A + B) + Pr(C)$$
 (18)

$$-\Pr\left(C(A+B)\right)$$

$$Pr(Y) = Pr(A + B) + Pr(C) \quad (19)$$

$$-\Pr(AC + BC)$$

(20)

Applying (11) again,

$$Pr(Y) = Pr(A) + Pr(B) + Pr(C)$$

$$- Pr(AB) - Pr(BC) - Pr(AC)$$

$$+ Pr(ACBC)$$
(21)

$$Pr(Y) = Pr(A) + Pr(B) + Pr(C)$$

$$- Pr(AB) - Pr(BC) - Pr(AC)$$

$$+ Pr(ABC)$$
(22)

$$[: CC = C] \tag{23}$$

$$Pr(Y) = Pr(A) + Pr(B) + Pr(C)$$

$$- Pr(AB) - Pr(BC) - Pr(AC)$$
(24)

[:
$$ABC = 0$$
] (25)
= $0.20 + 0.32 + 0.43 - 0.07 - 0.15$

$$= 0.73$$
 (27)

(26)

Applying (22)

$$Pr(Z) = Pr(AB) + Pr(BC) + Pr(AC)$$

$$- Pr(ABBC) - Pr(BCAC)$$

$$- Pr(ACAB) + Pr(ABBCAC)$$
(28)

$$Pr(Z) = Pr(AB) + Pr(BC) + Pr(AC)$$

$$-2 Pr(ABC)$$
(29)

$$= Pr(AB) + Pr(BC) + Pr(AC)$$
 (30)

$$[::ABC=0] \tag{31}$$

$$= 0.07 + 0.15 \tag{32}$$

$$=0.22$$
 (33)

We know that, all three events never occur simultaneously.

Therefore,

Z represents occurrence of exactly 2 of A,B and C.

X represents occurrence of exactly 1 of A,B and C.

Y can therefore be written as,

$$Pr(Y) = Pr(X) + Pr(Z)$$
 (34)

Upon rearranging

$$Pr(X) = Pr(Y) - Pr(Z)$$
 (35)

$$= 0.73 - 0.22 \tag{36}$$

$$= 0.51$$
 (37)