

A.
$$\cos \alpha = \frac{7\sqrt{2}}{10}$$
 oraz $\alpha > 12^{\circ}$
B. $\cos \alpha = \frac{5\sqrt{2}}{7}$ oraz $\alpha > 12^{\circ}$

B.
$$\cos \alpha = \frac{5\sqrt{2}}{7}$$
 oraz $\alpha > 12^{\circ}$

C.
$$\cos \alpha = \frac{7\sqrt{2}}{10}$$
 oraz $\alpha < 78^{\circ}$

D.
$$\cos \alpha = \frac{5\sqrt{2}}{7}$$
 oraz $\alpha < 78^{\circ}$

17.20. W trójkącie prostokątnym ABC boki |AB| = 5, |BC| = 7, $|AC| = 2\sqrt{6}$, a najmniejszy kat ostry oznaczono jako ρ . Wówczas miara kąta ρ , wyrażona w stopniach, spełnia warunek:

A.
$$40^{\circ} < \rho < 41^{\circ}$$

B.
$$41^{\circ} < \rho < 43^{\circ}$$

A.
$$40^{\circ} < \rho < 41^{\circ}$$
 B. $41^{\circ} < \rho < 43^{\circ}$ C. $43^{\circ} < \rho < 45^{\circ}$ D. $45^{\circ} < \rho < 48^{\circ}$

D.
$$45^{\circ} < \rho < 48^{\circ}$$

17.21. Pole trójkąta prostokątnego równoramiennego jest równe 20. Suma długości obu przyprostokatnych tego trójkata jest równa:

B.
$$2\sqrt{10}$$

C.
$$4\sqrt{10}$$

17.22. Przyprostokątne trójkąta prostokątnego są równe. Pole tego trójkąta wynosi 100. Wynika stąd, że długość przyprostokątnej tego trójkąta jest równa:

A.
$$10\sqrt{2}$$

C.
$$20\sqrt{10}$$

D.
$$20\sqrt{5}$$

17.23. Pole trójkąta prostokątnego jest równe 32, zaś każda z jego przyprostokątnych ma jednakową długość a. Wtedy

A.
$$a = 2\sqrt{2}$$

B.
$$a = 4$$

B.
$$a = 4$$
 C. $a = 4\sqrt{2}$

D.
$$a = 8$$

17.24. Jeśli trójkąt prostokątny równoramienny ma pole 128, to suma długości jego przyprostokatnych jest równa:

B.
$$16\sqrt{2}$$
 C. 16

D.
$$8\sqrt{2}$$

17.25. Trójkąt prostokątny równoramienny ma pole 12. Przyprostokątna trójkąta jest równa:

A.
$$2\sqrt{2}$$

B.
$$\sqrt{6}$$

C.
$$2\sqrt{6}$$

D.
$$6\sqrt{2}$$

17.26. Najdłuższy bok trójkąta prostokątnego równoramiennego jest równy $10\sqrt{6}$. Pole tego trójkata jest równe:

A.
$$100\sqrt{3}$$

B.
$$50\sqrt{3}$$

17.27. W trójkącie prostokątnym przyprostokątne mają jednakową długość, a przeciwprostokątna jest równa 4. Pole tego trójkąta jest równe:

17.28. Z trzech odcinków: a, 8, a, zbudowano trójkąt prostokątny o polu P. Wtedy

A.
$$a = 2\sqrt{2} \, i P = 4$$

B.
$$a = 4\sqrt{2}$$
 i $P = 16$

A.
$$a = 2\sqrt{2}$$
 i $P = 4$ B. $a = 4\sqrt{2}$ i $P = 16$ C. $a = 2\sqrt{2}$ i $P = 16$ D. $a = 4\sqrt{2}$ i $P = 4$

D.
$$a = 4\sqrt{2} \, i P = 4$$

17.29. Dany jest trójkąt prostokątny równoramienny o przeciwprostokątnej $4\sqrt{3}$. Pole tego trójkąta jest równe:

A.
$$2\sqrt{6}$$

B.
$$4\sqrt{6}$$