Examenul național de bacalaureat 2024 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 10

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

0022	SCHIECT CE I	
1.	Rația progresiei este $q = \frac{b_2}{b_1} = 2$	3 p
	$b_3 = b_2 \cdot q = 16$	2 p
2.	f(a) = 7a + 2, pentru orice număr real a	2p
	7a+2=9, de unde obținem $a=1$	3 p
3.	2x+3=3x+1	3p
	x=2, care convine	2p
4.	$\frac{25}{100} \cdot x = 50$, unde x este prețul obiectului înainte de scumpire	3p
	x = 200 de lei	2p
5.	M(4,4)	2p
	BM = 4, $CM = 4$, deci $BM = CM$	3 p
6.	$AC = \sqrt{BC^2 - AB^2} = 5$ $P_{\Delta ABC} = AB + BC + AC = 30$	3p
	$P_{\Delta ABC} = AB + BC + AC = 30$	2p

SUBIECTUL al II-lea (30 de pu		
1.	$1 \circ 1 = \frac{1}{1} + \frac{1}{1} + 1 =$	3р
	=1+1+1=3	2 p
2.	$x \circ x = \frac{2}{x} + 1$, pentru orice $x \in M$	3p
	$\frac{2}{x}+1=2$, de unde obținem $x=2$, care convine	2p
3.	$y \circ x = \frac{1}{y} + \frac{1}{x} + 1 = \frac{1}{x} + \frac{1}{y} + 1 =$	3р
	$= x \circ y$, pentru orice $x \in M$ și $y \in M$, deci legea de compoziție ,, \circ " este comutativă	2 p
4.	$x \circ \frac{1}{x} = \frac{x^2 + x + 1}{x}$, pentru orice $x \in M$	2p
	$\frac{x^2+x+1}{x}=3$, deci $x^2-2x+1=0$, de unde obținem $x=1$, care convine	3р
5.	$(n+1) \circ (n+1) = \frac{2}{n+1} + 1$, pentru orice număr natural n	2p
	$(n+1)\circ(n+1)$ este număr natural dacă $n+1$ este divizor natural al lui 2, de unde obținem	3р
	n=0 și $n=1$, care convin	J. J.

6.	$(\log_2 x) \circ (\log_x 2) = \frac{1}{\log_2 x} + \frac{1}{\log_x 2} + 1, \text{ pentru orice } x \in (1, +\infty)$	2p
	$\frac{1}{\log_2 x} + \frac{1}{\log_x 2} + 1 = \frac{7}{2} \text{ si, cum } \frac{1}{\log_x 2} = \log_2 x \text{, obținem } \log_2 x = 2 \text{ sau } \log_2 x = \frac{1}{2} \text{, de unde rezultă } x = 4 \text{ sau } x = \sqrt{2} \text{, care convin}$	3 p

(30 de puncte) SUBIECTUL al III-lea

	· · · · · · · · · · · · · · · · · · ·	
1.	$A(6) = \begin{pmatrix} 8 & 2 \\ 2 & 0 \end{pmatrix} \Rightarrow \det(A(6)) = \begin{vmatrix} 8 & 2 \\ 2 & 0 \end{vmatrix} = 8 \cdot 0 - 2 \cdot 2 =$	3 p
	=0-4=-4	2 p
2.		3 p
	$=19\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 19I_2$	2p
3.	$A(a) + A(-a) = \begin{pmatrix} a+2 & 2 \\ 2 & a-6 \end{pmatrix} + \begin{pmatrix} -a+2 & 2 \\ 2 & -a-6 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 4 & -12 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix} 2 & 2 \\ 2 & -6 \end{pmatrix} = 2A(0), \text{ pentru orice număr real } a$	2p
4.	$\det(A(a)) = \begin{vmatrix} a+2 & 2 \\ 2 & a-6 \end{vmatrix} = a^2 - 4a - 16, \text{ pentru orice număr real } a$	3 p
	$a^2 - 4a - 16 = -20$, de unde obținem $a = 2$	2p
5.	$A(a^2) - A(a) = \begin{pmatrix} a^2 - a & 0 \\ 0 & a^2 - a \end{pmatrix}$, pentru orice număr real a	2p
	$ \begin{pmatrix} a^2 - a & 0 \\ 0 & a^2 - a \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \text{ de unde obținem } a = -1 \text{ sau } a = 2 $	3 p
6.	$A(-1) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+2y \\ 2x-7y \end{pmatrix}, \text{ unde } x \text{ si } y \text{ sunt numere reale}$	2p
		3 p