AIRLINE ANALYSIS USING SQL

Business Problem:

The aviation company faces a challenge in enhancing its overall business performance by optimizing various aspects of its operations.

The main challenges include:

- 1. Optimizing the fleet composition based on passenger preferences and operational efficiency,
- 2. Implementing targeted marketing strategies to enhance customer engagement and loyalty,
- 3. Planning and executing operational expansions, particularly in identifying potential hub airports for improved connectivity.
- 4. Strategically identifying peak revenue seasons for effective promotional planning.

The airline aims to leverage data-driven insights to make informed decisions in these areas, ultimately improving customer satisfaction, maximizing revenue, and positioning itself for sustained growth in the competitive aviation market.

Objectives for the Project:

1. Customer Segmentation and Preferences:

- Understand customer demographics and travel preferences.
- Identify patterns in gender and travel class preferences.

2. Airport Optimization:

- Determine the busiest departure airports.
- Identify potential hub airports for operational planning.
- Analyze destination airports for arrival patterns.

3. Route Optimization:

- Identify the longest and shortest flight routes for strategic planning.
- Categorize routes into short, intermediate, and long distances.

4. Revenue Management:

- Optimize pricing strategies based on historical ticket sales and customer preferences.
- Identify the most profitable travel classes.
- Analyze yearly revenue trends and monthly variations.

5. Customer Booking Insights:

- Identify customers with the highest number of ticket bookings.
- Determine passengers traveling by specific classes for targeted services.
- Implement a function to specify if complimentary services are provided for specific travel classes.

The analysis and insights provided through SQL queries form the basis for informed decision-making in addressing the identified challenges and achieving the set objectives.

About the Dataset:

There are four tables in the "aviation" database namely: `passengersonflight`, `customer`, `routes`, and `ticketdetails`.

Below is a summary of each table:

1. passengersonflight Table:

- Columns: passenger id, flight id, customer id, route id, travel class, seat number.
- Foreign Key Constraints:
 - o `fk` on `customer id` referencing `customer(customer id)`.
 - o `fk2` on `route id` referencing `routes(route id)`.

2. customer Table:

- Columns: customer id, first name, last name, email, phone number.
- Primary Key Constraint: `pk` on `customer id`.

3. routes Table:

- Columns: route id, departure airport, arrival airport, distance, duration.
- Primary Key Constraint: `pk1` on `route id`.

	route_id	flight_num	origin_airport	destination_airport	aircraft_id	distance_miles
•	1	1111	EWR	HNL	767-301ER	4962
	2	1112	HNL	EWR	767-301ER	4962
	3	1113	EWR	LHR	A321	3466
	4	1114	JFK	LAX	767-301ER	2475
	5	1115	LAX	JFK	767-301ER	2475
	6	1116	HNL	LAX	767-301ER	2556
	7	1117	LAX	ORD	A321	1745
	8	1118	ORD	EWR	A321	719
	9	1119	DEN	LAX	ERJ142	862
	10	1120	HNL	DEN	A321	3365
	12	1122	ABI	ADK	767-301ER	4300
	13	1123	ADK	BQN	A321	2232
	14	1124	BQN	CAK	A321	2445
	15	1125	CAK	ANI	767-301ER	2000
	16	1126	ALB	APN	A321	1700
	17	1127	APN	BLV	767-301ER	1900
	18	1128	ANI	BGR	ERJ142	2450
	19	1129	ATW	AVL	A321	2222
	20	1130	AVL	BOI	767-301ER	3134
	21	1131	BFL	BET	A321	2425

4. ticketdetails Table:

- Columns: ticket id, customer id, flight id, ticket price, purchase date.
- Foreign Key Constraint: `fk1` on `customer id` referencing `customer(customer id)`.

These tables are interconnected through foreign key relationships, allowing for the analysis of passenger data, customer details, flight routes, and ticket information for the aviation company's business problem and objectives.

Queries along with screenshot of the output and inferences are as follows:

create database aviation;

use aviation;

alter table customer add constraint pk primary key(customer_id);

alter table routes add constraint pk1 primary key(route id);

alter table passengersonflight add constraint fk foreign key(customer_id) references customer(customer_id);

alter table ticketdetails add constraint fk1 foreign key(customer_id) references customer(customer_id);

alter table passengersonflight add constraint fk2 foreign key(route_id) references routes(route_id);

The ER Diagram:

Lets first identify the types of aircraft we have and how many passengers are travelling.

SELECT aircraft_id, sum(no_of_tickets) as 'total ticket'
FROM aviation.ticketdetails
group by aircraft_id
order by 'total ticket' DESC;

From the above we can see that there are 4 types of aircraft:

- 1. Airbus A321- a commercial aircraft
- 2. Boeing 767-301ER- a commercial aircraft
- 3. Embraer ERJ142 a regional jet (capacity 42)
- 4. Bombardier CRJ900 -a regional jet (capactity-80-90)
- And Maximum passengers are travelling with Boeing 767-301ER i.e out of 50 passengers, 18
 passengers travelled through Boeing.
 - Identifying the Customer Segmentation and Preferences:
 - Understanding the demographics of customers and their travel preferences.
 - o Identifying patterns in gender and travel class preferences.

Inferences Drawn:

- Out of 50 passengers, 30 are male(60%) and 20 female(40%).
- The count is highest for Male customers in the Business class, suggesting that more males booked tickets in the Business class compared to other classes.

Airport Optimization:

o Determing the busiest Airport

1. Departure Airport

SELECT origin_airport, COUNT(*) as departure_count FROM routes GROUP BY origin_airport ORDER BY departure_count DESC;

Inferences Drawn:

1. Busiest Origin Airports:

- HNL (Honolulu International Airport): It appears to be the busiest origin airport with 3 departures, suggesting a high demand for flights departing from Honolulu.
- EWR (Newark Liberty International Airport): It has 2 departures, indicating a relatively busy airport for flight departures.

• LAX (Los Angeles International Airport): Similarly, LAX has 2 departures, showing significant departure activity.

2. Limited Departures from Some Airports:

- Several airports, including JFK, ORD, DEN, ABI, ADK, BQN, CAK, ALB, APN, ANI, ATW, AVL, BFL, BGR, BLV, BJI, RDM, BET, and others, have only 1 departure each.
- This may indicate that these airports have relatively lower departure frequencies in the given dataset.

3. Potential Hub Airports:

• HNL, with the highest departure count, might be a significant hub or a popular starting point for flights in the context of this dataset.

2. Destination Airport

select destination_airport, count(*) as frequency from routes group by destination_airport order by frequency DESC;

Inferences Drawn:

1. Most Common Destination Airports:

- LAX (Los Angeles International Airport): It is the most frequently occurring destination airport with 4 flights in the dataset, indicating a high demand for flights arriving at Los Angeles.
- EWR (Newark Liberty International Airport): EWR follows closely with 3 flights as the destination, suggesting significant arrival activity.

***** # Route Optimization - Longest and Shortest Routes

SELECT route_id, origin_airport, destination_airport, distance_miles FROM routes

GROUP BY route_id, origin_airport, destination_airport, distance_miles ORDER BY distance_miles DESC;

Inferences Drawn:

1. Longest Routes:

- The routes with the highest distances are at the top, such as route_id 43 from CBM to BOI with 8989 miles and route_id 46 from CDV to HNL with 8668 miles.
- These long-distance routes might involve intercontinental flights.

2. Shorter Routes:

- Some routes have shorter distances, like route_id 32 from CLD to CHI (246 miles), route_id 28 from BOS to CDC (246 miles), and route_id 27 from BOI to CLD (578 miles).
- Shorter routes are typically domestic flights or flights within a continent.

Revenue Management:

- Optimizing pricing strategies based on historical ticket sales and customer preferences.
- Identifying the most profitable travel classes.

SELECT class_id, COUNT(*) as tickets_sold, AVG(Price_per_ticket) as avg_ticket_price, SUM(Price_per_ticket) as total_revenue

FROM ticketdetails
GROUP BY class_id
order by total_revenue DESC;

Inferences Drawn:

1. Ticket Sales by Class:

- "Economy" class has the highest number of ticket sales (14), indicating that it is a popular choice among passengers.
- "Economy Plus", "First Class" and "Bussiness" classes have 10 and 13 ticket sales, respectively, suggesting a moderate level of demand.

2. Total Revenue:

- "Bussiness" class generates the highest total revenue (\$6034), primarily due to its higher average ticket prices.
- "First Class" follows with a total revenue of \$4885.
- "Economy Plus" generates \$2460 in total revenue, while "Economy" generates \$1990.

3. Pricing Strategy Considerations:

- The higher average ticket prices in premium classes ("Bussiness" and "First Class") contribute significantly to the overall revenue. Consider maintaining or optimizing pricing strategies for these classes to maximize revenue.
- "Economy" class, while having a lower average ticket price, contributes to a substantial number of ticket sales. Adjusting pricing or promotions in this class may attract more budget-conscious passengers.

Yearly Revenue Trend:

Inferences Drawn:

- 1. Revenue Growth:
 - There is an apparent increase in revenue from 2018 to 2019, and further growth from 2019 to 2020.
 - This indicates positive business performance and increasing ticket sales over the years.

Year-wise Monthy Revenue

SELECT YEAR(STR_TO_DATE(p_date, '%m/%d/%Y')) AS year,

MONTHNAME(STR_TO_DATE(p_date, '%m/%d/%Y')) AS month,

SUM(Price_per_ticket * no_of_tickets) AS monthly_revenue

FROM ticketdetails

GROUP BY year, month

ORDER BY year DESC, monthly_revenue DESC;

Inferences Drawn:

1. 2020 Monthly Revenue Analysis:

- The highest monthly revenue in 2020 is observed in March (980), followed by November (930) and July (860).
- December has the lowest monthly revenue in 2020 (675).

2. 2019 Monthly Revenue Analysis:

- January stands out as the month with the highest revenue in 2019 (1690), followed by March (499) and July (480).
- September and February have the lowest monthly revenues in 2019 (150 and 120, respectively).

3. 2018 Monthly Revenue Analysis:

- April has the highest monthly revenue in 2018 (510), followed by December, July, and November (all with 430).
- February and September have the lowest monthly revenues in 2018 (100 and 130, respectively).

4. Seasonal Trends:

• March and November seem to be strong months across all years.

5. Business Planning:

- We can plan marketing and promotional activities during high-revenue months.
 For instance,
- March and November may be months to focus on promotions or events.

6. Identifying Challenges:

 Low-revenue months can be explored to identify challenges or opportunities for improvement. For example, if certain months consistently have lower revenue, it might be worth investigating potential causes.

Now, lets extract few information for further analysis using concepts of Window function, Roll up function, Stored Procedure etc.

Number of tickets booked by Passengers

select c2.customer_id, CONCAT(c2.first_name,' ',c2.last_name) AS 'NAME', COUNT(t2.no_of_tickets) AS "TicketsBooked" from customer c2
JOIN ticketdetails t2 USING(customer_id)
GROUP BY c2.customer_id, NAME order by TicketsBooked desc;

Inferences Drawn:

- Roger Walson, Joyce Paul, and Aaron Kim have booked the maximum number of tickets (3 each).
- Businesses could consider identifying customers with consistent high-ticket bookings for potential VIP programs or special offers to encourage continued engagement.

Lets identify the customers who have travelled by Economy Plus class using Group By and Having clause on the passengers_on_flights table.

select c4.customer_id, CONCAT(c4.first_name,' ',c4.last_name) as Passenger_name from customer c4

JOIN passengersonflight p4 USING(customer_id)

GROUP BY c4.customer_id, Passenger_name

HAVING SUM(p4.class_id="Bussiness")>0;

Inference Drawn:

• 11 passengers were travelling by Business class. So, the airline could consider providing complementary services in order to retain the passengers.

Lets find the maximum ticket price for each class using window functions on the ticket_details table.

select *,

MAX(Price_per_ticket) OVER (partition by class_id) AS MAX_TICKET_PRICE from ticketdetails;

p_date	customer_id	aircraft_id	class_id	no_of_tickets	a_code	Price_per_ticket	brand	MAX_TICKET_PRICE
3/12/2020	33	CRJ900	Bussiness	1	BOH	490	Bristish Airways	510
4/1/2018	29	ERJ142	Bussiness	1	EME	510	Jet Airways	510
7/7/2020	7	767-301ER	Bussiness	1	BFS	430	Emirates	510
7/7/2019	24	A321	Bussiness	1	CTM	480	Qatar Airways	510
11/1/2018	15	A321	Bussiness	1	BFS	430	Qatar Airways	510
1/25/2019	2	A321	Bussiness	1	YVR	505	Qatar Airways	510
11/11/2020	11	767-301ER	Bussiness	1	AGB	465	Emirates	510
10/22/2019	29	A321	Bussiness	1	PEK	410	Qatar Airways	510
7/1/2018	5	767-301ER	Bussiness	1	BFS	430	Emirates	510
11/8/2020	11	767-301ER	Bussiness	1	AGB	465	Emirates	510
12/26/2018	27	767-301ER	Economy	1	DAL	130	Emirates	190
9/1/2018	2	767-301ER	Economy	1	DAL	130	Emirates	190
12/1/2018	28	ERJ142	Economy	1	BHX	170	Jet Airways	190
5/5/2020	5	ERJ142	Economy	1	CTM	120	Jet Airways	190
2/2/2019	14	ERJ142	Economy	1	CTM	120	Jet Airways	190
12/19/2018	31	767-301ER	Economy	1	DAL	130	Emirates	190
10/10/2020	10	A321	Economy	1	MCO	135	Qatar Airways	190
5/30/2020	5	ERJ142	Economy	1	CTM	120	Jet Airways	190
10/7/2020	46	A321	Economy	1	MCO	135	Qatar Airways	190
6/6/2019	18	767-301ER	Economy	1	YVR	190	Emirates	190
9/21/2019	25	767-301ER	Economy	1	BOH	150	Emirates	190
12/24/2019	14	767-301ER	Economy	1	BHX	170	Emirates	190
2/1/2018	19	767-301ER	Economy	1	AGB	100	Emirates	190
5/1/2018	8	A321	Economy	1	YVR	190	Qatar Airways	190
2/2/2020	22	ERJ142	Economy	1	AGB	220	Jet Airways	295
12/12/2020	19	CRJ900	Economy	1	DEN	225	Bristish Airways	295

Inference Drawn:

1. Price Variation Across Classes:

- Different travel classes ("Economy," "Economy Plus,", "First Class" and "Bussiness") have distinct maximum ticket prices.
- Bussiness Class tickets have the highest maximum price (510), followed by, First Class, Economy Plus and Economy classes.*/

Lets calculate the total price of all tickets booked by a customer across different aircraft IDs using rollup function.

select p5.customer_id,p5.aircraft_id, sum(t5.no_of_tickets * t5.Price_per_ticket) AS "Total Price"

from passengersonflight p5
JOIN ticketdetails t5 using(customer_id)

GROUP BY p5.customer_id,p5.aircraft_id WITH ROLLUP;

Re	sult Grid 📗	♦ Filter Ro	ows:	
	customer_id	aircraft_id	Total Price	
•	1	CRJ900	570	
	1	ERJ142	570	
	1	NULL	1140	
	2	767-301ER	635	
	2	A321	635	
	2	NULL	1270	
	4	767-301ER	1560	
	4	NULL	1560	
	5	767-301ER	670	
	5	ERJ142	1340	
	5	NULL	2010	
	7	767-301ER	430	
	7	NULL	430	
	8	A321	930	
	8	NULL	930	
	9	767-301ER	770	
	9	CRJ900	770	
	9	NULL	1540	
	10	A321	135	
	10	NULL	135	
	11	767-301ER	2450	
	11	ERJ142	1225	
	11	NULL	3675	
	13	A321	395	
	13	NULL	395	
Res	sult 51 ×			

Lets create a stored procedure to get the details of all passengers flying between a range of routes defined in run time.

```
DELIMITER &&

CREATE PROCEDURE getAllDetails(IN start_route int, IN end_route int)

BEGIN

select * from passengersonflight

WHERE route_id BETWEEN start_route AND end_route;

END &&

DELIMITER;

CALL getAllDetails(1,14);
```

Re	sult Grid	Filter Rows:			Export:	Wrap Cel	Content: IA		
	customer_id	aircraft_id	route_id	depart	arrival	seat_num	class_id	travel_date	flight_num
•	18	767-301ER	1	EWR	HNL	13FC	First Class	01-04-2018	1111
	2	767-301ER	4	JFK	LAX	01E	Economy	02-09-2018	1114
	4	767-301ER	4	JFK	LAX	03FC	First Class	30-04-2020	1114
	11	767-301ER	4	JFK	LAX	05B	Bussiness	09-11-2020	1114
	4	767-301ER	5	LAX	JFX	02FC	First Class	06-04-2020	1115
	11	767-301ER	5	LAX	JFX	04B	Bussiness	12-11-2020	1115
	46	A321	8	ORD	EWR	12FC	First Class	08-07-2011	1118
	1	ERJ142	9	DEN	LAX	01EP	Economy Plus	26-12-2019	1119
	29	ERJ142	9	DEN	LAX	11B	Bussiness	03-05-2018	1119
	10	A321	10	HNL	DEN	05E	Economy	11-10-2020	1120
	5	767-301ER	12	ABI	ADK	02B	Bussiness	02-07-2018	1122
	17	A321	13	ABI	ADK	04EP	Economy Plus	03-06-2019	1123
	13	A321	13	ADK	BQN	06FC	First Class	05-01-2019	1123
	15	A321	14	BQN	CAK	06B	Bussiness	02-11-2018	1124
	24	A321	14	BQN	CAK	08B	Bussiness	22-07-2019	1124

Lets create a stored procedure that extracts all the details from the routes table where the travelled distance is more than 2000 miles.

```
DELIMITER &&

CREATE PROCEDURE getAllRoutes()

BEGIN

select * from routes

WHERE distance_miles >2000;

END &&

DELIMITER;

CALL getAllRoutes();
```

Re	sult Grid	Filter Rov	VS:	Export:	Wrap Cell Content:		
	route_id	flight_num	origin_airport	destination_airport	aircraft_id	distance_miles	
•	1	1111	EWR	HNL	767-301ER	4962	
	2	1112	HNL	EWR	767-301ER	4962	
	3	1113	EWR	LHR	A321	3466	
	4	1114	JFK	LAX	767-301ER	2475	
	5	1115	LAX	JFK	767-301ER	2475	
	6	1116	HNL	LAX	767-301ER	2556	
	10	1120	HNL	DEN	A321	3365	
	12	1122	ABI	ADK	767-301ER	4300	
	13	1123	ADK	BQN	A321	2232	
	14	1124	BQN	CAK	A321	2445	
	18	1128	ANI	BGR	ERJ142	2450	
	19	1129	ATW	AVL	A321	2222	
	20	1130	AVL	BOI	767-301ER	3134	
	21	1131	BFL	BET	A321	2425	
	23	1133	BLV	BFL	767-301ER	2354	
	25	1135	RDM	BJI	A321	2425	
	34	1144	CRW	COD	A321	2452	
	35	1145	STT	CDB	ERJ142	2121	
	43	1153	CBM	BOI	A321	8989	
	44	1154	COU	CAK	767-301ER	7676	
	46	1156	CDV	HNL	767-301ER	8668	
	48	1158	SCC	DEN	A321	5645	
	49	1159	DEC	ABI	A321	4533	
	50	1160	DRT	ORD	A321	2445	

Lets create a stored procedure that groups the distance travelled by each flight into three categories. The categories are, short distance travel (SDT) for >=0 AND <= 2000 miles, intermediate distance travel (IDT) for >2000 AND <=6500, and long-distance travel (LDT) for >6500.

```
DELIMITER &&

CREATE PROCEDURE getCategories()

BEGIN

select flight_num,distance_miles,

CASE

WHEN distance_miles BETWEEN 0 AND 2000 THEN "Short Distance"

WHEN distance_miles BETWEEN 2001 AND 6500 THEN "Intermediate"

ELSE "Long Distance"

END AS "Category"

from routes;

END &&

DELIMITER;

CALL getCategories();
```


Lets extract ticket purchase date, customer ID, class ID and specify if the complimentary services are provided for the specific class using a stored function in stored procedure on the ticket_details table.

Condition: If the class is Business and Economy Plus, then complimentary services are given as Yes, else it is No

```
DELIMITER &&

CREATE PROCEDURE getComplementaryServiceDetails()

BEGIN

select p_date,customer_id,class_id,

CASE

WHEN class_id = "Bussiness" THEN "YES"

WHEN class_id = "Economy Plus" THEN "YES"

ELSE "NO"

END AS "Complimentary Services"

from ticketdetails;

END &&

DELIMITER;
```

CALL getComplementaryServiceDetails();

CONCLUSION:

In conclusion, the SQL analysis of the aviation company's dataset yielded actionable insights for strategic decision-making.

- For instance, the identification of **Boeing 767-301ER** as the preferred aircraft suggests potential fleet optimization strategies.
- The observation that **male customers predominantly choose Business class** highlights an opportunity for targeted marketing and services tailored to this demographic.
- The exploration of departure and destination airports, such as **HNL**(Honolulu International Airport) and **LAX** (Los Angeles International Airport), provides a basis for operational planning and **potential hub** expansion.
- The examination of revenue by class underscores the significance of premium classes like **Business and First Class in generating higher total revenue**.
- The identification of **peak revenue months like March and November** enables strategic promotional planning.
- The use of stored procedures and functions further streamlines data extraction for ongoing analysis, supporting the aviation company's goal of sustained growth and enhanced customer satisfaction.