РАСЧЁТ ПЛОТНОСТИ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ РЕНТГЕНОГРАФИЧЕСКИМ МЕТОДОМ

1. Введение

Плотность – одно из наиболее важных свойств материалов, характеризующее соотношение между массой и объёмом и в значительной мере определяющее их технологическое применение.

Плотность, определённая для однородных веществ, может рассматриваться как **теоретическая**. Плотностью, близкой к теоретической, обладают, как правило, металлы, жидкости, некоторые полимеры. Для неоднородных веществ применяют понятие **средней плотности**. Теоретическая плотность кристаллических веществ может быть наиболее точно определена с помощью рентгенографического метода. Рассчитанная таким способом плотность называется **рентгенографической**.

Цель работы – изучить методику расчёта плотности кристаллических веществ, используя результаты рентгенографического эксперимента, и рассчитать рентгенографическую плотность заданного кристаллического вещества (металла).

2. Краткая теория

В природе твёрдые тела могут находиться в двух состояниях: кристаллическом и аморфном. В аморфных твёрдых телах частицы (атомы или молекулы) располагаются беспорядочно, произвольным образом. Для кристаллических твёрдых веществ характерным является упорядоченное периодическое расположение атомов, ионов или молекул в пространстве. Металлы, а также их сплавы, находящиеся в твёрдом состоянии, относятся к кристаллическим веществам.

Строение кристаллического вещества графически изображается в виде кристаллической решетки, состоящей из элементарных ячеек. По признаку симметрии элементарные ячейки подразделяются на семь **сингоний**: кубическую, гексагональную, тетрагональную, тригональную, ромбическую, моноклинную и триклинную. Каждая сингония характеризуется определённым соотношением между длинами a, b, c рёбер и углами α, β, γ между ними (см. рисунок 1). Эти величины называются **параметрами элементарной ячейки**.

Для определения рентгенографической плотности кристаллического вещества необходимо знать объём элементарной ячейки кристалла, число атомов в ней, и массу этих атомов.

Объём элементарной ячейки кристаллического вещества определяется исходя из её сингонии и геометрических соображений, и может быть вычислен через параметры элементарной ячейки согласно формуле

$$V_0 = abc\sqrt{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos\alpha \cos\beta \cos\gamma}.$$
 (1)

Рисунок 1. Параметры элементарной ячейки

Большинство металлов образуют решётки трёх типов: объёмноцентрированную кубическую (ОЦК), гранецентрированную кубическую (ГЦК) и гексагональную плотно упакованную (ГПУ). Зная вид кристаллической решётки, можно рассчитать число атомов в элементарной ячейке. На одну элементарную ячейку ОЦК-решётки приходятся два атома: один в центре куба, а другой – в вершине куба. На элементарную ячейку ГЦК-решётки приходятся четыре атома: один из них образуется за счёт атома в вершине куба, а три других – атомы, находящиеся в серединах граней. На элементарную ячейку ГПУ-решётки приходятся шесть атомов.

Рисунок 2. Элементарные ячейки кубической (слева) и гексагональной (справа) сингоний

Значение рассчитанной таким образом рентгенографической плотности кристаллического материала характеризует идеализированную кристаллическую решётку с реальными параметрами. Справочные значения плотности веществ, как правило, будут отличаться от рентгенографической в большую или меньшую сторону.

3. Практическая часть

- 3.1 Порядок расчёта.
- 3.1.1 Получить у преподавателя вариант индивидуального задания в соответствии с пунктом 3.2.
- 3.1.2 Рассчитать рентгенографическую плотность вещества. Число атомов в ячейке определить, исходя из сведений о кристаллической структуре предложенного преподавателем вещества. Объём элементарной ячейки вычислить по формуле (1).
- 3.1.3 Сравнить полученные результаты расчёта со справочными данными, приведёнными в таблице 1 пункта 3.2.

3.2 Перечень кристаллических материалов (металлов) для выполнения индивидуального задания.

Таблица 1

таолица	Название		10		П
№ варианта	вещества, атомная масса	Сингония	Кристаллическая решётка	Параметры	Плотность, $\kappa \Gamma / M^3$
1	2	3	4	5	6
1	Ванадий (V), 50,94 а.е.м.	Кубическая	ОЦК	a = 3,024 Å	6 110
	Золото (Au), 196,97 а.е.м.	Кубическая	ГЦК	a = 4,078 Å	19 300
	α-Скандий (Sc _α), 44,96 а.е.м.	Гексагональная	ГПУ	a = 3,309 Å c = 5,268 Å	2 990
	Хром (Сr), 52,90 а.е.м.	Кубическая	ОЦК	a = 2,885 Å	7 190
2	Свинец (Рb), 207,20 а.е.м.	Кубическая	ГЦК	a = 4,950 Å	11 340
	Рений (Re), 186,21 а.е.м.	Гексагональная	ГПУ	a = 2,761 Å c = 4,456 Å	21 020
	α-Железо (Fe _α), 55,85 а.е.м.	Кубическая	ОЦК	a = 2,866 Å	7 870
3	Алюминий (Al), 26,98 а.е.м.	Кубическая	ГЦК	a = 4,041 Å	2 700
	Цинк (Zn), 65,39 a.e.м.	Гексагональная	ГПУ	a = 2,665 Å c = 4,947 Å	7 130
	Молибден (Мо), 95,94 а.е.м.	Кубическая	ОЦК	a = 3,147 Å	10 220
4	Никель (Ni), 58,69 а.е.м.	Кубическая	ГЦК	a = 3,524 Å	8 900
	α-Титан (Ti _α), 47,88 a.e.м.	Гексагональная	ГПУ	a = 2,951 Å c = 4,697 Å	4 540
	Ниобий (Nb), 92,91 а.е.м.	Кубическая	ОЦК	a = 3,301 Å	8 570
5	Серебро (Ag), 107,87 а.е.м.	Кубическая	ГЦК	a = 4,086 Å	10 500
	Магний (Mg), 24,31 а.е.м.	Гексагональная	ГПУ	a = 3,103 Å c = 5,200 Å	1 740
6	Тантал (Та), 180,95 а.е.м.	Кубическая	ОЦК	a = 3,310 Å	16 650
	Медь (Cu), 63,55 a.e.м.	Кубическая	ГЦК	a = 3,615 Å	8 920
	Кобальт (Со), 58,93 а.е.м.	Гексагональная	ГПУ	a = 2,505 Å c = 4,089 Å	8 900
7	Вольфрам (W), 183,84 а.е.м.	Кубическая	ОЦК	a = 3,160 Å	19 250
	Платина (Pt), 195,08 а.е.м.	Кубическая	ГЦК	a = 3,924 Å	21 450
	Иттрий (Y), 88,91 а.е.м.	Гексагональная	ГПУ	a = 3,647 Å c = 5,731 Å	4 470

1	2	3	4	5	6
	Литий (Li), 6,94 а.е.м.	Кубическая	ОЦК	a = 3,490 Å	530
8	Родий (Rh), 102,91 а.е.м.	Кубическая	ГЦК	a = 3,803 Å	12 410
	Цирконий (Zr), 91,22 а.е.м.	Гексагональная	ГПУ	a = 3,231 Å c = 5,148 Å	6 510
9	Натрий (Na), 22,99 а.е.м.	Кубическая	ОЦК	a = 4,282 Å	970
	Палладий (Pd), 106,42 а.е.м.	Кубическая	ГЦК	a = 3,890 Å	12 020
	Технеций (Те), 97,91 а.е.м.	Гексагональная	ГПУ	a = 2,737 Å c = 4,391 Å	11 500
	Калий (K), 39,10 а.е.м.	Кубическая	ОЦК	a = 5,332 Å	860
10	Иридий (Ir), 192,22 а.е.м.	Кубическая	ГЦК	a = 3,840 Å	22 650
	Рутений (Ru), 101,07 а.е.м.	Гексагональная	ГПУ	a = 2,706 Å c = 4,282 Å	12 410
	Рубидий (Rb), 85,47 а.е.м.	Кубическая	ОЦК	a = 5,710 Å	1 530
11	Церий (Се), 140,12 а.е.м.	Кубическая	ГЦК	a = 5,160 Å	6 760
	Кадмий (Cd), 112,41 а.е.м.	Гексагональная	ГПУ	a = 2,979 Å c = 5,618 Å	8 650
12	Цезий (Cs), 132,91 а.е.м.	Кубическая	ОЦК	a = 6,140 Å	1 870
	Кальций (Ca), 40,08 а.е.м.	Кубическая	ГЦК	a = 5,580 Å	1 550
	Осмий (Os), 190,23 а.е.м.	Гексагональная	ГПУ	a = 2,734 Å c = 4,317 Å	22 590
	Барий (Ва), 137,33 а.е.м.	Кубическая	ОЦК	a = 5,020 Å	3 500
13	Стронций (Sr), 87,62 a.e.м.	Кубическая	ГЦК	a = 6,080 Å	2 540
	Гафний (Hf), 178,49 а.е.м.	Гексагональная	ГПУ	a = 3,196 Å c = 5,054 Å	13 310
	Радий (Ra), 226,03 a.e.м.	Кубическая	ОЦК	a = 5,148 Å	5 500
14	Иттербий (Yb), 173,05 а.е.м.	Кубическая	ГЦК	a = 5,490 Å	6 970
	Бериллий (Be), 9,01 а.е.м.	Гексагональная	ГПУ	a = 2,286 Å c = 3,584 Å	1 850
15	Европий (Eu), 151,96 а.е.м.	Кубическая	ОЦК	<i>a</i> = 4,501 Å	5 240
	Актиний (Ac), 227,03 а.е.м.	Кубическая	ГЦК	a = 5,670 Å	10 070
	Таллий (Tl), 204,38 а.е.м.	Гексагональная	ГПУ	a = 3,456 Å c = 5,525 Å	11 850
16	β-Титан (Ti _β), 47,87 a.e.м.	Кубическая	ОЦК	a = 3,269 Å	4 320
	Торий (Th), 232,04 а.е.м.	Кубическая	ГЦК	a = 5,080 Å	11 780
	Празеодим (Pr), 140,91 а.е.м.	Гексагональная	ГПУ	a = 3,673 Å c = 11,840 Å	6 770

Требования к оформлению отчёта

Результаты выполнения студентом лабораторной работы представляются преподавателю в виде письменного отчёта, выполненного на листе формата А4 или близкого к нему формата. В отчёте обязательно указываются фамилия и инициалы студента, выполнившего работу, дата выполнения работы, номер лабораторной работы, её название, цель, а также полностью указываются те исходные данные, которые были предоставлены преподавателем для выполнения работы, в том числе зарисовывается вид элементарной ячейки кристалла, для которого будут проводиться расчёты. Далее в произвольной форме записывается весь ход вычислений и расчётов, а также полученный конечный результат. Отчёт о лабораторной работе обязательно завершается выводом, который делается на основании полученных студентом результатов вычислений и сравнения этих результатов с табличными значениями соответствующих характеристик вещества. Отчёт сдаётся преподавателю для проверки, и может быть не принят и отправлен на доработку в случае наличия ошибок, неполноты представленных промежуточных вычислений и т.п. После принятия отчёта преподавателем студент обязан пройти процедуру защиты выполненной им лабораторной работы, для того, чтобы она считалась зачтённой. По итогам проверки отчёта и защиты работы преподавателем выставляется оценка по работе, которая будет учитываться при вычислении итоговой оценки по данному спецкурсу.

Пример оформления отчёта

2016		(Ф.И.О.)
	Лабораторная работа №	
	(название работы)	
Цель:		
Вариант № Исходные данные:	1)	
	Рисунок №	
Вычисления		
Результат		
Вывод		