10/31/2016 hw4sol

HW4 due 11:30a Mon Oct 31

1. Bases and matrix representations

Let L:V o W be a linear function where $\dim V=n<\infty$ and $\dim W=m<\infty$, and let $r=\operatorname{rank} L$.

a. Find bases for V and W with respect to which the matrix representation of L is:

$$egin{bmatrix} I_{r imes r} & 0_{r imes (n-r)} \ 0_{(m-r) imes r} & 0_{(m-r) imes (n-r)} \end{bmatrix}$$

Let $\{v_\ell\}_{\ell=1}^n$ be a basis for V for which $\operatorname{null}(L)=\operatorname{span}\{v_\ell\}_{r+1}^n$, and set $w_\ell=L(v_\ell)$ for each $\ell\in\{1,\ldots,r\}$.

The collection $\{w_\ell\}_{\ell=1}^r$ are linearly independent (if this were not the case, it is straightforward to show using an argument we used several times in class that the vectors $\{v_\ell\}_{\ell=1}^r$ are linearly dependent, which is a contradiction).

Furthermore, it is straightforward to show that the collection $\{w_\ell\}_{\ell=1}^r$ span $\mathrm{range}(L)$ by construction.

Let $\{w_\ell\}_{\ell=r+1}^m$ be such that $\{w_\ell\}_{\ell=1}^m$ is a basis for W.

The matrix representation for L in the basis chosen for V and W is the desired matrix.

b. Find a vector space U and a linear function $\tilde{L}:U\to U$ such that, no matter which basis you choose for U, the matrix representation of \tilde{L} does not have the form from (a.).

Let $U=\mathbb{R}$ and $\tilde{L}:U\to U$ be defined $\forall u\in U:\tilde{L}(u)=\alpha u,\,\alpha\notin\{-1,0,1\}$. Given any $\mu\neq 0$, the matrix representation for \tilde{L} in the basis $\{\mu\}$ is $\alpha\mu^{-1}\mu=\alpha$, which does not have the form from (a.).

10/31/2016 hw4sol

2. Eigenvalues, eigenvectors, eigenbases

Let $A \in \mathbb{R}^{n imes n}$ be a given matrix.

Suppose that, for each $\ell \in \{1,\ldots,k\}$, there exists $\lambda_\ell \in \mathbb{C}$ and $v_\ell \in \mathbb{R}^n$ such that $v_\ell \neq 0$ and $Av_\ell = \lambda_\ell v_\ell$ (i.e. λ_ℓ is an eigenvalue for A with eigenvector v_ℓ).

a. If the eigenvalues $\{\lambda_\ell\}_{\ell=1}^k$ are distinct (i.e. $\lambda_i=\lambda_j\iff i=j$), show that the eigenvectors $\{v_\ell\}_{\ell=1}^k$ are linearly independent. (*Hint: use induction.*)

We proved the base case in class, that two eigenvectors associated with distinct eigenvalues are linearly independent.

Now suppose for $m\in\mathbb{N}$ such that $1\leq k< m$ that $\{v_\ell\}_{\ell=1}^m$ are linearly independent but $\{v_\ell\}_{\ell=1}^{m+1}$ is not linearly independent so that $\exists \alpha\in\mathbb{C}^{m+1}$, $\alpha\neq 0$, such that $\sum_{\ell=1}^{m+1}\alpha_\ell v_\ell=0$.

Then
$$L\left(\sum_{\ell=1}^{m+1} lpha_\ell v_\ell
ight) = \sum_{\ell=1}^{m+1} lpha_\ell \lambda_\ell v_\ell = 0$$
, but also $\sum_{\ell=1}^{m+1} lpha_\ell \lambda_{m+1} v_\ell = 0$.

Subtracting these two equations, we conclude $\sum_{\ell=1}^{m+1} \alpha_\ell (\lambda_{m+1} - \lambda_\ell) v_\ell$. But since $\lambda_{m+1} \neq \lambda_\ell$ for any $\ell \in \{1,\ldots,m\}$, this contradicts linear independence of $\{v_\ell\}_{\ell=1}^k$.

We conclude that $\{v_\ell\}_{\ell=1}^{m+1}$ is linearly independent, so by induction we conclude that $\{v_\ell\}_{\ell=1}^k$ is linearly independent.

Now let L:U o U be linear and $\dim U=n$.

Suppose that $\lambda\in\mathbb{C}$ and $W=\{w_\ell\}_{\ell=1}^n$ is a basis for U such that $Lw_1=\lambda w_1$ and $Lw_k=\lambda w_k+w_{k-1}$ for all $k\in\{2,\dots,n\}$.

b. Obtain the matrix representation of L with respect to the basis W.

$$\begin{bmatrix} \lambda & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \lambda & 1 \\ \cdots & \cdots & \cdots & \cdots & 0 & \lambda \end{bmatrix}$$

10/31/2016 hw4sol

3. Spectral mapping theorem

Let $\operatorname{spec} A=\{\lambda_1,\dots,\lambda_n\}$ denote the spectrum of $A\in\mathbb{C}^{n\times n}$ (i.e. the set of eigenvalues of A).

Theorem If $f:\mathbb{C} \to \mathbb{C}$ is analytic, then spec $f(A) = \{f(\lambda_1), \dots, f(\lambda_n)\}$.

a. Prove or provide a counterexample: if $\lambda_1
eq \lambda_2$, then $f(\lambda_1)
eq f(\lambda_2)$.

If f is not injective, then it can easily happen that $f(\lambda_1)=f(\lambda_2)$. Consider, for instance, the zero function: $\forall z\in\mathbb{C}: f(z)=0$

b. Prove or provide a counterexample: if A is invertible, then f(A) is invertible.

If f sends an eigenvalue of A to zero, then f(A) will not be invertible. Consider, for instance, the zero function: $\forall z \in \mathbb{C}: f(z) = 0$