## Physiklabor für Anfänger\*innen Ferienpraktikum im Sommersemester 2018

### Versuch 70: Linsen und Linsensysteme

(durchgeführt am 28.09.2018 bei Daniel Bartel) Andréz Gockel, Patrick Münnich 4. Oktober 2018

### Inhaltsverzeichnis

| 1                | Ziel des Versuchs                                                            | 3                |  |  |  |
|------------------|------------------------------------------------------------------------------|------------------|--|--|--|
| 2                | Teil 1    2.1 Theorie     2.2 Aufbau     2.3 Durchführung     2.4 Auswertung | 3<br>3<br>3<br>3 |  |  |  |
| 3                | Teil 2    3.1 Theorie     3.2 Aufbau     3.3 Durchführung     3.4 Auswertung | 3<br>3<br>3<br>3 |  |  |  |
| 4                | Teil 3    4.1 Theorie     4.2 Aufbau     4.3 Durchführung     4.4 Auswertung | 4<br>4<br>4<br>5 |  |  |  |
| 5                | Teil 4    5.1 Theorie     5.2 Aufbau     5.3 Durchführung     5.4 Auswertung | 6<br>6<br>6<br>6 |  |  |  |
| 6                | Diskussion                                                                   |                  |  |  |  |
| 7                | Anhang: Tabellen und Diagramme                                               |                  |  |  |  |
| $\mathbf{T}_{i}$ | abellenverzeichnis                                                           | 7                |  |  |  |

## Abbildungsverzeichnis

| 69  | $1+1/\beta$ gegen $g'$ dargestellt | 5 |
|-----|------------------------------------|---|
| 420 | $1 + \beta$ gegen $b'$ dargestellt | 6 |

#### 1 Ziel des Versuchs

XXXX

- 2 Teil 1
- 2.1 Theorie

XXXX

- 2.2 Aufbau
- 2.3 Durchführung

XXXX

#### 2.4 Auswertung

In diesem Teil wollen wir einfach 1/b gegen 1/g auftragen. Die geschätzten Fehler werden als Fehlerbalken eingezeichnet. Zum Vergleich werden noch Geraden addiert, welche für die Linse mit  $f = 80 \,\mathrm{mm}$  mit

 $\frac{g}{f}$ 

berechnet wurde und für die Linsensysteme mit jeweils  $f_1=80\,\mathrm{mm}$  und  $f_2=150\,\mathrm{mm}$  bzw.  $f_1=80\,\mathrm{mm}$  und  $f_2=200\,\mathrm{mm}$  mit

$$\frac{1}{f_1} + \frac{1}{f_2} - \frac{1}{q}$$

bestimmt. Die resultierende Graphik kann im Anhang als Abbildung?? gefunden werden.

- 3 Teil 2
- 3.1 Theorie

XXXX

- 3.2 Aufbau
- 3.3 Durchführung

XXXX

#### 3.4 Auswertung

In diesem Teil wollen wir einfach mit unseren Messwerten und der Formel (??) zuerst unsere Werte für (s, e):

- $\bullet \ e(80\,\mathrm{mm}) : [35.0 + / -0.424264068711928523.3 + / -0.424264068711928518.9 + / -0.424264068711928554.39999 \\ -0.424264068711928544.500000000000001 + / -0.4242640687119285]$
- $s(80 \,\mathrm{mm}): [55.0 + / -0.519615242270663244.5999999999994 + / -0.519615242270663241.2 + / -0.519615242270663273.2 + / -0.519615242270663263.8 + / -0.5196152422706632]$

- e(80, 150 mm) : [51.0 + /-0.424264068711928543.3 + /-0.424264068711928540.84999999999999 + /-0.424264068711928546.6 + /-0.424264068711928554.3 + /-0.4242640687119285]
- $s(80, 150 \,\mathrm{mm}) : [63.8 + /-0.519615242270663256.5 + /-0.519615242270663254.2 + /-0.519615242270663259.5 /-0.519615242270663267.1 + /-0.5196152422706632]$
- $s(80, -200 \,\mathrm{mm}) : [63.8 + /-0.519615242270663257.3 + /-0.519615242270663267.5 + /-0.519615242270663273 /-0.519615242270663256.3 + /-0.5196152422706632]$

Wir können hier die Rechnungen per Hand mit Gaußscher Fehlerfortpflanzung durchführen. Hierzu müssen wir unsere Gleichung einfach nach jeweils e und s partiell ableiten:

$$\frac{\partial f}{\partial s} = \frac{s^2 + e^2}{4s}$$
$$\frac{\partial f}{\partial e} = \frac{-e}{2s}$$

Dies können wir in

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial s}\Delta s\right)^2 + \left(\frac{\partial f}{\partial e}\Delta e\right)^2}$$

einsetzen und berechnen. In diesem Fall sind unsere Ergebnissen jedoch mit dem *uncertainties* Paket in Python berechnet worden. Siehe Anhang: *Rechnungen in Python* (In [12]) Dieses Paket hat die Fähigkeit, Korrelationen zwischen Variablen zu berücksichtigen [1].

Da uns hier die Mittelwerte interessieren, nutzen wir noch

$$\frac{\sum_{i=1}^{n} x_i}{n} \tag{1}$$

für die Berechnung des Mittelwerts und

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (2)

für der Berechnung der Unsicherheit dessen.

Wir erhalten daraus für die Linse mit  $f=80\,\mathrm{mm}$   $\bar{f}=82\pm1.7\,\mathrm{mm}$ , für das System mit  $f_1=80\,\mathrm{mm}$  und  $f_2=150\,\mathrm{mm}$   $\bar{f}=58\pm1.9\,\mathrm{mm}$  und für das Linsensystem mit  $f_1=80\,\mathrm{mm}$  und  $f_2=200\,\mathrm{mm}$   $\bar{f}=123\pm1.4\,\mathrm{mm}$ .

#### 4 Teil 3

#### 4.1 Theorie

XXXX

#### 4.2 Aufbau

#### 4.3 Durchführung

XXXX

#### 4.4 Auswertung

In diesem Teil wollen wir zuerst mit den Formeln (??), (??) und (??) g', b',  $\beta$  und  $\Delta\beta$  bestimmen. Wir erhalten aus unseren Messreihen:

Um dies visuell darzustellen, tragen wir  $1 + 1/\beta$  gegen g' und  $1 + \beta$  gegen b' dar:



Abbildung 69:  $1 + 1/\beta$  gegen g' dargestellt

Aus der linearen Regression können wir  $f_1,\ f_2,\ h_1$  und  $h_2$  bestimmen. Wir erhalten als Werte:  $f_1802000.5762491658548258h_18020011.03475419102985f_2802001.9531933609241h_28020011.639603091057374f_12003.913845161813182h_12008011.49900273595246f_2200803.2411227934990583h_22008011.930724229182056$ 

Zur Klarifizierung fertigen wir noch eine (außer der Linsen) maßstabsgetreue Skizze an:





Abbildung 420:  $1+\beta$ gegen b'dargestellt

- 5 Teil 4
- 5.1 Theorie

XXXX

- 5.2 Aufbau
- 5.3 Durchführung

XXXX

5.4 Auswertung

XXXX

6 Diskussion

XXXX

#### Anhang: Tabellen und Diagramme 7

Tabelle 1: XXXX

|                  | XXXX/XX | XXXX/XX | XXXX/XX |
|------------------|---------|---------|---------|
|                  | 2       | 0.26    | 0.23    |
|                  | 4       | 0.33    | 0.25    |
| Unsicherheiten:  | 5       |         | 0.3     |
| $XXXX: \pm XXXX$ | 6       | 1.25    | 0.83    |
|                  | 8       | 3.9     | 0.83    |
|                  | 9       | 4.75    | 4.6     |
|                  | 10      | 4.7     |         |

# Literatur

- [1] "Correlations between variables are automatically handled, which sets this module apart from many existing error propagation codes." - https://pythonhosted.org/uncertainties/
- [2] Physikalisches Institut der Albert-Ludwigs-Universität Freiburg (Hrsg.) (08/2018): Versuchsanleitungen zum Physiklabor für Anfänger\*innen, Teil 1, Ferienpraktikum im Sommersemester 2018.