BIDS and its tools, MRIQC and fMRIPrep

Yann Leprince

NeuroSpin / UNIACT

14 February 2023

What is BIDS?

bids.neuroimaging.io

- A standard for organizing neuroimaging and behavioral data
- Facilitate data reuse and sharing
- Compatible with many analysis tools

Seminal paper

Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data 3, 160044 (2016).

Heavily inspired by the format used by the OpenNeuro repository (formerly known as OpenfMRI).

Raw data, derived data, source data

Raw data

BIDS is primarily for **raw data** (*minimally* pre-processed data: file format conversion, anonymization)

Derived data

Derivatives of the raw data must be kept separate from the raw data.

Source data

Examples: DICOM files, E-Prime files...

Recommended file structure:

Overview of the directory structure

```
sub-control01/← One directory for each subject
    anat/← One directory for each data type
         sub-control01 T1w.nii.gz
         sub-control01_T1w.json
         sub-control01_T2w.nii.gz
         sub - control01_T2w.json
    dwi/
         sub-control01_dwi.nii.gz
         sub-control01 dwi.bval
         sub-control01_dwi.bvec
    fmap/
         sub-control01_phasediff.nii.gz
         sub-control01_phasediff.ison
         sub - control01_magnitude1.nii.gz
code/
    deface.py
participants.tsv — Describes properties of participants (age, sex, handedness...)
dataset_description. json← Dataset-level metadata (name, licence, authors...)
README
CHANGES
```

Principles of file naming

```
sub-ed110159_task-localizer_run-02_bold.nii.gz
```

The name of a data file is a concatenation of:

- 1. a chain of <a href="text-va
- 2. a *suffix* that usually designates the modality
 Other examples: _T1w, _T2w, _bold, _dwi, _defacemask
- 3. an extension that identifies the file format

General rule

Every file in a BIDS dataset must be identified uniquely by its name alone, i.e. even when taken out of its containing directory.

- The ordering of entities is fixed by the standard
- For each file type, entities can be required, optional, or disallowed

Multi-session data

In the case of multi-session (longitudinal) data, a *session* directory level is added, and the ses-<label> entity becomes required:

```
sub - control01/
    ses-predrug/
        func/
             sub-control01_ses-predrug_task-nback_bold.nii.gz
             sub-control01_ses-predrug_task-nback_bold.json
             sub-control01_ses-predrug_task-nback_events.tsv
             sub-control01_ses-predrug_task-nback_sbref.nii.gz
        sub - control 01 _ ses-predrug _ scans. tsv
    ses-postdrug/
        func/
             sub - control01_ses-postdrug_task - nback_bold.nii.gz
             sub-control01_ses-postdrug_task-nback_bold.json
             sub-control01_ses-postdrug_task-nback_events.tsv
             sub - control01_ses-postdrug_task - nback_sbref.nii.gz
        sub-control01_ses-postdrug_scans.tsv
    sub-control01 sessions.tsv \ Describe key variables that change between sessions (age...)
```

File formats

BIDS mandates the use of a few file formats:

- ► NIfTI for images (.nii.gz is recommended)
- ► TSV (tab-separated values) for tabular data
 - participants.tsv contains the list of subjects and their characteristics (age, sex, etc.)
 - ► _events.tsv for functional stimuli, responses, etc.
 - ▶ _physio.tsv.gz for cardiac, respiratory recordings, etc.
- ► JSON (JavaScript Object Notation) for key-value metadata

```
Metadata is stored in sidecar JSON files, for example:
```

```
sub - control01_T1w.nii.gz
sub - control01_T1w.json
```

```
{
   "Modality": "MR",
   "MagneticFieldStrength": 3,
   "ManufacturersModelName": "Prisma_fit",
   "InstitutionName": "NeuroSpin",
   "EchoTime": 0.00305,
   "RepetitionTime": 2.3,
   "InversionTime": 0.9,
   "FlipAngle": 9,
   "PartialFourier": 0.875,
```

Data types

These data types are currently specified by BIDS:

- ▶ anat
- ▶ dwi
- ► fmap
- func
- ▶ perf
- ► eeg
- ► ieeg
- ► meg
- ▶ pet
- beh
- . . .
- micr

For each of these data types, required and optional files are specified in the standard.

Evolution of the BIDS standard

BIDS is an evolving standard, developed in the spirit of an open-source project.

BEPs: BIDS Enhancement Proposals

bids.neuroimaging.io/get_involved

Examples:

- ► BEP001: Quantitative MRI (integrated in v1.5.0)
- ► BEP012: Functional preprocessing derivatives
- BEP022: Magnetic resonance spectroscopy

The current version of the standard is v1.8.0, released 29 October 2022.

- ► Minor release will contain backwards-compatible changes;
- Potentially disruptive changes will be implemented in a future 2.0 version of BIDS.

bids-validator

bids-standard.github.io/bids-validator/

```
😑 😑 yl243478@is234203:.../bids_dataset
yl243478@is234203:.../bids_dataset $ bids-validator
bids-validator@1.5.3
       35 Files, 217,99MB
                                                          FLAIR
       4 - Subjects
                                                          T1w
       2 - Sessions
v1243478@is234203:.../bids_dataset $
```

Installed on NeuroSpin workstations

Creating a BIDS dataset

Data are transmitted by the scanners in DICOM format, and need to be converted to BIDS.

- neurospin_to_bids is specifically adapted for importing data acquired on the NeuroSpin platform (3 T, 7 T, soon 11,7 T, also MEG)
 - ► Accessible on NeuroSpin workstations as neurospin_to_bids
 - github.com/neurospin/neurospin_to_bids
 - ▶ Define the list of subjects and sequences to import in a participants_to_import.tsv file
- ► External tools are also available e.g. dcm2bids
 - unfmontreal.github.io/Dcm2Bids/
- ► Both tools use dcm2niix for the DICOM-to-Nifti conversion and the extraction of JSON metadata

BIDS tools for data analysis

Some tools were designed from the start to work with BIDS-formatted data:

- ► MRIQC: quality control of MRI acquisitions (structural and BOLD)
- ► fMRIPrep: preprocessing pipeline for fMRI

 ${\tt BIDS-Apps\ are\ containerized\ versions\ of\ other\ processing\ pipelines:\ bids-apps.neuroimaging.io}$

2120 / Appe are commanionized versions of our	
BIDS-Apps/freesurfer	version v6.0.1-6.1
BIDS-Apps/ndmg	version v0.1.0
BIDS-Apps/BROCCOLI	version v1.0.1
BIDS-Apps/FibreDensityAndCrosssection	version v0.0.1
BIDS-Apps/SPM	version v0.0.20
poldracklab/mriqc	version v0.15.3
BIDS-Apps/QAP	version v0.0.1
BIDS-Apps/CPAC	version v1.0.1a_22
BIDS-Apps/hyperalignment	version v0.0.5
BIDS-Apps/mindboggle	version v0.0.4-1
BIDS-Apps/MRtrix3_connectome	version v0.4.2
BIDS-Apps/rs_signal_extract	version v0.1
RIDS_Apps/22	version v0.2.0

General principles of Quality Control (QC)

Evaluation of the quality of raw images

- Visual inspection
 - fundamentally important for knowing one's data
 - the eye is sensitive to certain types of defects, not others
 - exhaustive inspection is too time-consuming
 - ⇒ sampling (random or guided)
- Visualization tools
 - Speed up visual inspection
 - Highlight defects to make them visible to the eye
- Detection tools
 - Detection of "suspicious" data to be visually inspected

Evaluation of the quality of data processing

- Very dependent on the kind of processing
- General idea: inspect intermediate results in order

Storage of quality control results

Quality control table:

- One line per subject / session / image
- ► Result column: e.g. **0** for "pass", **1** for "exclude"
- Comments column for keeping notes

Efforts have been made to standardize the storage of QC results at the level of NeuroSpin (Édouard Duchesnay, Antoine Grigis, Josselin Houenou).

If you do a QC, you need to save it in the /derivatives folder with a filename format as follows:

modality_date_qc.tsv

modality: cat12-version_vbm, rawdata, morphologist, quasi-raw....

The date field is optional, you need it if you have several versions of your QC.

MRIQC

MRIQC is a tool that helps with quality control of raw data:

- structural MRI (T1w, T2w)
- functional MRI (bold)

Original paper

Esteban, O. et al.

MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLOS ONE 12, e0184661 (2017). DOI: 10.1371/journal.pone.0184661.

Derived from QAP Quality Assessment Protocol of the PCP project (Preprocessed Connectomes Project).

- Extraction of (Image Quality Metrics, IQMs)
- Individual visual reports and group reports

Quality metrics of anatomical images

- ▶ noise-based metrics (CJV, CNR, SNR, SNRd, Qi2)
- ▶ information-theoretic metrics (EFC, FBER)
- metrics targeting specific artefacts (INU, Qi1, wm2max)
- other metrics (FWHM, rpve, icvs, overlap)

Quality metrics of functional images

- metrics of spacial information (EFC, FBER, SNR)
- metrics of temporal information (DVARS, gcor, tSNR)
- metrics targeting specific artefacts (FD, gsr)
- other metrics (aor, agi, dummy)

The MRIQC group report MRIQC: group bold report

Summary

- Date and time: 2018-06-12, 16:18.
- MRIQC version: 0.11.0+3.g836bf07.dirty.

mrigception

- A way of comparing your dataset against a crowdsourced collection of anonymized metrics submitted by MRIQC users
- ▶ https://github.com/elizabethbeard/mriqception

Carpetplot (a.k.a. staticplot. gravplot. voxplot...)

Original paper

Power, J. D. A simple but useful way to assess fMRI scan qualities. NeuroImage 154, 150–158 (2017). DOI: 10.1016/j.neuroimage. 2016.08.009

How to run MRIQC

- The recommended way of running MRIQC is to use the container image (a.k.a. Docker image) through Singularity
- ► The image is fetched with:

```
export SINGULARITY_TMPDIR=/volatile/tmp/...
export SINGULARITY_CACHEDIR=/volatile/tmp/...
singularity pull docker://nipreps/mriqc:22.0.6
```

▶ singularity pull needs a large amount of disk space (typically $\approx 10 - -30 \, \text{GB}$) and the default temporary directory /tmp is too small

How to run MRIQC

- ▶ BIDS-Apps such as MRIQC run in a container that is isolated from your system
- Arguments before mriqc_*.sif are for Singularity
- Arguments that follow mriqc_*.sif are for MRIOC
- Directories must be bound into the container:
 - --bind <host_path>:<container_path>:[ro|rw]

How to run MRIQC

- mriqc does not clean up its temporary files: the disk can be filled quickly
- ▶ mriqc can sometimes crash, in that case the remaining images will not be processed ⇒ write a batch script to launch one instance on each subject, using --participant-label, --session-id, and/or --modalities
- mriqc can sometimes become stuck in an infinite loop: use the timeout command (processing takes ≈ 15 min per image so the 2h timeout includes a safety margin)

The fMRIPrep pipeline

Recommended way to run fMRIPrep

```
singularity run --cleanenv \
    --bind /i2bm/local/freesurfer/license.txt:/freesurfer-license.txt:ro \
    --bind /path/to/rawdata:/rawdata:ro \
    --bind /path/to/derivatives/fmriprep-22.1.1:/out:rw \
    --bind /volatile/tmp/fmriprep:/tmpdir:rw \
    /volatile/opt/fmriprep_22.1.1.sif --skip_bids_validation \
    --work-dir=/tmpdir --clean-workdir --fs-license-file=/freesurfer-license.txt \
    /rawdata /out participant
```

Resources

- ▶ BIDS Specification: see bids.neuroimaging.io
- ▶ BIDS Validator: bids-standard.github.io/bids-validator/
- github.com/neurospin/neurospin_to_bids
- unfmontreal.github.io/Dcm2Bids/
- mriqc.org
- https://github.com/elizabethbeard/mriqception
- fmriprep.org

Hands-on session

Option 1: get MRIQC to run under Singularity

- Your own dataset in BIDS format
- ▶ We can provide a test dataset, an extract from the IBC dataset (Individual Brain Charting)
- Please do not saturate the Wi-Fi with singularity pull, we can distribute the containers on USB sticks

Option 2: exploring a real-world MRIQC Group report

- Group report of the ABIDE dataset: mriqc.s3.amazonaws.com/abide/bold_group.html
- Look at the definition and values of the different Image Quality Metrics, notice which on eare most sensitive to different artefacts
- ► Go to mriqc.org for the documentation of Image Quality Metrics (IQMs)