Ab initio description of nuclear reactions with applications to astrophysics

Sofia Quaglioni

Reactions 'R' Us

Big Bang

Solar Fusion

Helium Burning

We need reliable theory to accurately evaluate S-factors at stellar energies

Astrophysical S-factor: nuclear contribution
$$\sigma(E) = \underbrace{\frac{S(E)}{E}} \exp\left(-\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2E/m}}\right)$$

$$\text{`Coulomb' contribution (tunneling)}$$

$$\underbrace{\frac{Uncertainty}{24}}_{23}$$

$$\underbrace{\frac{Solar energies}{20}}_{19}$$

$$\underbrace{\frac{S(E)}{E}}_{19}$$

$$\underbrace{\frac{S(E)}{E}}$$

 $S_{17}(0) = 20.8 \pm (0.7)_{\text{exp}} \pm (1.4)_{\text{th}} \text{ eV-b}$

We combine nuclear forces derived within chiral effective field theory with ab initio methods

No Core Shell Model with continuum (NCSMC)

Unified ab initio many-body approach to structure and reactions

We combine nuclear forces derived within chiral effective field theory with ab initio methods

Can use multiple chiral models, truncation errors to quantify uncertainties

Chiral NN+3N forces describe expt. 7 Be(p, γ) 8 B S-factor with varying success for energies up to 2.5 MeV

Can extract universal correlation functions leveraging calculations with different interactions ...

... combine them with experimental data to arrive at an improved evaluation of $S_{17}(0)$

Now employing NN+3N forces to compute 3 He(α,γ) 7 Be, perform analogous ab initio informed evaluation

The NCSMC also successfully applied to BBN reactions (yielding again significantly reduced uncertainties)

Smart formalism, GPUs also enabled description of ⁴He + ⁴He scattering, first stage of helium burning

Smart formalism, GPUs also enabled description of ⁴He + ⁴He scattering, first stage of helium burning

Ab initio reaction theory can also aid in improving evaluation of neutron standard cross sections

Calculation adjusted to reproduce reaction cross section yields improved predictions for angular distributions

Stay tuned for NCSMC predictions with chiral NN+3N forces

For heavier systems, few-body reaction models are more effective

$$H_{3B} = V_{np} + V_{nA} + V_{pA} + V_{pA}$$

Can we bridge the gap between ab initio calculations and few-body models of nuclear reactions?

In test ground ⁴He(g.s)+d system, omission of 3-body force causes ~600 keV underbinding for the ⁶Li ground state ...

Simultaneous interaction & two-nucleon exchange

... ~400 keV shift to higher energy of 3⁺ ⁴He-d resonance

Simultaneous interaction & two-nucleon exchange

NCSMC extended to describe exotic 11 Be β p emission, supports large branching ratio due to narrow $\frac{11}{2}$ + resonance

The ab initio structure and reactions team

Predictive ab initio calculations are enabling substantially reduced uncertainties for astrophysical rates

New evaluation protocol combines:

- Ab initio calculations with chiral NN+3N forces
- Expt. data both at low and higher energies

Progress also on other fronts:

- Predictions of neutron standard cross sections
- Ab initio informed few-body reaction models
- Predictions of beta-delayed particle emission

Structure, scattering and reactions obtained with unified treatment of bound and unbound states

$$\Psi = \sum_{\lambda} c_{\lambda} | \nabla \rangle + \sum_{\nu} \int dr u_{\nu}(r) | \nabla \rangle$$

No Core Shell Model with continuum (NCSMC)

Structure, scattering and reactions obtained with unified treatment of bound and unbound states

$$\Psi = \sum_{\lambda} c_{\lambda} | \nabla \rangle + \sum_{\nu} \int dr u_{\nu}(r) | \nabla \rangle$$

Static solutions for aggregate system, describe all nucleons close together

Structure, scattering and reactions obtained with unified treatment of bound and unbound states

$$\Psi = \sum_{\lambda} c_{\lambda} | \nabla + \sum_{\nu} \int dr u_{\nu}(r) | \nabla \rangle$$

Continuous microscopic cluster states, describe separated projectiles & targets

Phenomenological correction obtained by treating NCSM eigenenergy as an adjustable parameter

All other characteristics of the S-matrix still predicted from ab initio theory.