데이터사이언스응용 (Capstone design)

김응희

ehkim@sunmoon.ac.kr

Week 02

Working with Real Data

- The best way to learn about machine learning
 - Experiment with real-world data

Category	Repository
	UCI Irvine Machine Learning Repository http://archive.ics.uci.edu/ml
Popular open data	Kaggle datasets https://www.kaggle.com/datasets
repositories	Amazon's AWS datasets https://registry.opendata.aws/
	공공데이터포털 https://www.data.go.kr/
	http://dataportals.org
Meta portals	http://opendatamonitor.eu
	http://quandl.com
Othora	https://homl.info/9
Others	https://reddit.com/r/datasets

Kaggle dataset

https://www.kaggle.com/datasets

공공데이터포털

https://www.data.go.kr/

End-to-End Machine Learning Project

- 0. Look at the big picture.
- 1. Get the data.
- 2. Discover and visualize the data to gain insights.
- 3. Prepare the data for Machine Learning algorithms.
- 4. Select a model and train it.
- 5. Fine-tune your model.
- 6. Present your solution
- 7. Launch, monitor, and maintain your system.

End-to-End Machine Learning Project

No.	Action	Package/library		
0	Look at the big picture	_		
1	Get the data	tarfile, urllib, pandas		
2	Discover and visualize the data to gain insights	pandas, matplotlib		
3	Prepare the data for Machine Learning algorithms			
4	Select a model and train it	pandas,		
5	Fine-tune your model	scikit-learn, numpy		
6	Present your solution			
7	Launch, monitor and maintain your system	joblib, flask		

Get ready

• Run Anaconda Navigator > JupyterLab > New Notebook

Get ready

End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture	_	
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms	pandas, scikit-learn, numpy	
4	Select a model and train it		
5	Fine-tune your model		
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

You are a recently hired data scientist.

- 1st task
 - Goal: building a model of housing prices in California
 - Data: California census data
 - population, median income, ..., median housing price for each block group (district)
 - 20,640 districts

- Make it clear!
 - How does the company expect to use and benefit from your model?

- Make it clear!
 - How does the company expect to use and benefit from your model?

- Make it clear!
 - How does the company expect to use and benefit from your model?

Supervised Learning	Unsupervised Learning		Reinforcement Learning		
Classification	Regression		Something else		
Univariate regression		Multivariate regression			
Batch learning		(Online learning		

- Common machine learning notations
 - -m: the number of instances in the dataset
 - $-x^{(i)}$: a vector of all the feature values (excluding the label) of the i^{th} instance
 - $-y^{(i)}$: the label (answer) of the i^{th} instance

- Common machine learning notations
 - -m: the number of instances in the dataset
 - $-x^{(i)}$: a vector of all the feature values (excluding the label) of the i^{th} instance
 - $-y^{(i)}$: the label (answer) of the i^{th} instance

$$x^{(1)} = \begin{pmatrix} -122.23 \\ 37.88 \\ 41 \\ 880 \\ \dots \end{pmatrix} \qquad y^{(1)} = 452,600$$

$$y^{(1)} = 452,600$$

- Common machine learning notations
 - -m: the number of instances in the dataset
 - $-x^{(i)}$: a vector of all the feature values (excluding the label) of the i^{th} instance
 - $-y^{(i)}$: the label (answer) of the i^{th} instance
 - -X: a matrix containing all the feature values (excluding labels) of all instances
 - i^{th} row of X is the transpose of $x^{(i)}$, denoted $(x^{(i)})^T$

- Common machine learning notations
 - -m: the number of instances in the dataset
 - $-x^{(i)}$: a vector of all the feature values (excluding the label) of the i^{th} instance
 - $-y^{(i)}$: the label (answer) of the i^{th} instance
 - -X: a matrix containing all the feature values (excluding labels) of all instances
 - i^{th} row of X is the transpose of $x^{(i)}$, denoted $(x^{(i)})^T$

- Common machine learning notations
 - -m: the number of instances in the dataset
 - $-x^{(i)}$: a vector of all the feature values (excluding the label) of the i^{th} instance
 - $-y^{(i)}$: the label (answer) of the i^{th} instance
 - -X: a matrix containing all the feature values (excluding labels) of all instances
 - i^{th} row of \boldsymbol{X} is the transpose of $\boldsymbol{x}^{(i)}$, denoted $(\boldsymbol{x}^{(i)})^T$
 - -h: your hypothesis (prediction function/model)
 - $h(\mathbf{x}^{(i)}) = \hat{y}^{(i)}$: the predicted value by h for the i^{th} instance
 - $\hat{y}^{(i)} y^{(i)}$: the prediction error

- Common machine learning notations
 - -m: the number of instances in the dataset
 - $-x^{(i)}$: a vector of all the feature values (excluding the label) of the i^{th} instance
 - $-y^{(i)}$: the label (answer) of the i^{th} instance
 - -X: a matrix containing all the feature values (excluding labels) of all instances
 - i^{th} row of X is the transpose of $x^{(i)}$, denoted $(x^{(i)})^T$
 - -h: your hypothesis (prediction function/model)
 - $h(\mathbf{x}^{(i)}) = \hat{y}^{(i)}$: the predicted value by h for the i^{th} instance
 - $\hat{y}^{(i)} y^{(i)}$: the prediction error

$$- RMSE(X, h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2}$$

• Root Mean Square Error

$$- \text{MAE}(X, h) = \frac{1}{m} \sum_{i=1}^{m} |h(x^{(i)}) - y^{(i)}|$$

Mean Absolute Error

End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture	_	
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms	pandas, scikit-learn, numpy	
4	Select a model and train it		
5	Fine-tune your model		
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

California census data

California census data

California census data

1.1 Download and uncompress data

```
[1]:
     import tarfile
     from six.moves import urllib
     url = "https://drive.google.com/uc?export=download&id=1Fy1B40ElYBh3h7eAHIKKGP1TDBKcWCy3"
     path = "housing.tgz"
     urllib.request.urlretrieve(url, path)
     file = tarfile.open(path)
     file.extractall()
     file.close()
                                                             : Copy a network object denoted by a URL
            urllib
                                                 urlretrieve
                            request
                                                              to a local file
                            error
                            parse
                            open : Return a TarFile Object
            tarfile
                            extractall: Extract (Uncompress) all members
```

1.1 Download and uncompress data

1.2 Read data

```
import tarfile
from six.moves import urllib

url = "https://drive.google.com/uc?export=download&id=1Fy1B40E
path = "housing.tgz"

urllib.request.urlretrieve(url, path)
file = tarfile.open(path)
file.extractall()
file.close()
```



```
import pandas as pd

data = pd.read_csv("housing.csv")

data.head()
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms
0	-122.23	37.88	41.0	880.0	129.0
1	-122.22	37.86	21.0	7099.0	1106.0
2	-122.24	37.85	52.0	1467.0	190.0
3	-122.25	37.85	52.0	1274.0	235.0
4	-122.25	37.85	52.0	1627.0	280.0

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                20640 non-null float64
latitude
                 20640 non-null float64
housing median age 20640 non-null float64
total rooms
            20640 non-null float64
total_bedrooms
                 20433 non-null float64
population
               20640 non-null float64
households
                20640 non-null float64
median income
              20640 non-null float64
median_house_value 20640 non-null float64
ocean proximity 20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                     20640 non-null float64
latitude
                   20640 non-null float64
housing median age 20640 non-null float64
                     20640 non-null float64
total rooms
                     20433 non-null float64
total bedrooms
                                              Missing values
                   20640 non-null float64
population
households
                     20640 non-null float64
median income
                  20640 non-null float64
median_house_value 20640 non-null float64
ocean_proximity
                     20640 non-null object
                                              Categorical values
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

```
data["ocean_proximity"].value_counts()

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64
```

```
import matplotlib.pyplot as plt

data.hist(bins=50, figsize=(20, 15))
plt.show()
```


End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture	_	
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms		
4	Select a model and train it	pandas, scikit-learn, numpy	
5	Fine-tune your model		
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms
0	-122.23	37.88	41.0	880.0	129.0
1	-122.22	37.86	21.0	7099.0	1106.0
2	-122.24	37.85	52.0	1467.0	190.0
3	-122.25	37.85	52.0	1274.0	235.0
4	-122.25	37.85	52.0	1627.0	280.0

data.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)

<matplotlib.axes._subplots.AxesSubplot at 0x2976a0c31c8>

2.2 Look for Correlation

```
corr matrix = data.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
              0.688075
median income
total rooms
                0.134153
housing_median_age 0.105623
households
            0.065843
total bedrooms 0.049686
population -0.024650
longitude
         -0.045967
latitude
           -0.144160
Name: median house value, dtype: float64
```

• Correlation: how tightly the instances are clustered about a straight line.

```
- Range: -1 and +1
```

2.2 Look for Correlation

<matplotlib.axes._subplots.AxesSubplot at 0x1fe07479470>

Attribute (Feature)						
longitude						
latitude						
housing_median_age						
total_rooms						
total_bedrooms						
population						
households						
median_income						
median_house_value						
ocean_proximity						

Attribute (Feature)						
longitude						
latitude						
housing_median_age						
total_rooms						
total_bedrooms						
population						
households						
median_income						
median_house_value						
ocean_proximity						
$rooms_per_household = \frac{total_bedrooms}{households}$						
$bedrooms_per_room == \frac{total_bedrooms}{total_rooms}$						

Original data		Extend	ed data	
 		+	rooms_per_ household	bedrooms_per_ room

```
data["rooms_per_household"] = data["total_rooms"]/data["households"]
data["bedrooms_per_room"] = data["total_bedrooms"]/data["total_rooms"]
data.head()
```

ne	median_house_value	ocean_proximity	rooms_per_household	bedrooms_per_room
52	452600.0	NEAR BAY	6.984127	0.146591
14	358500.0	NEAR BAY	6.238137	0.155797
74	352100.0	NEAR BAY	8.288136	0.129516
31	341300.0	NEAR BAY	5.817352	0.184458
62	342200.0	NEAR BAY	6.281853	0.172096
4				•

```
corr matrix = data.corr()
corr matrix["median house value"].sort values(ascending=False)
median house value
                    1.000000
median income
               0.688075
rooms_per_household 0.151948
total_rooms
                    0.134153
housing_median_age 0.105623
households
                   0.065843
total bedrooms
                 0.049686
population
                 -0.024650
longitude
                   -0.045967
latitude
              -0.144160
bedrooms_per_room -0.255880
Name: median_house_value, dtype: float64
```

End-to-End Machine Learning Project

No.	Action	Package/library
0	Look at the big picture	_
1	Get the data	tarfile, urllib, pandas
2	Discover and visualize the data to gain insights	pandas, matplotlib
3	Prepare the data for Machine Learning algorithms	
4	Select a model and train it	pandas,
5	Fine-tune your model	scikit-learn
6	Present your solution	
7	Launch, monitor and maintain your system	joblib, flask

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 12 columns):
# Column
                      Non-Null Count Dtype
                     20640 non-null float64
    longitude
    latitude
              20640 non-null float64
    housing_median_age 20640 non-null float64
3 total rooms 20640 non-null float64
4 total bedrooms 20433 non-null float64
                  20640 non-null float64
5 population
    households 20640 non-null float64
    median_income 20640 non-null float64
    median_house value 20640 non-null float64
    ocean_proximity 20640 non-null object
                                             Categorical values
10 rooms per household 20640 non-null float64
    bedrooms per room
                      20433 non-null float64
dtypes: float64(11), object(1)
memory usage: 1.9+ MB
```

Transformation #1

ocean_proximity		ocean_proximity
<1H OCEAN		0
NEAR OCEAN	?	1
INLAND		2
NEAR BAY		3
ISLAND		4

Transformation #2

ocean_proximity			ocea	an_proxir	nity	
<1H OCEAN	<1H OCEAN	1	0	0	0	0
NEAR OCEAN	NEAR OCEAN	0	1	0	0	0
INLAND	INLAND	0	0	1	0	0
NEAR BAY	NEAR BAY	0	0	0	1	0
ISLAND	ISLAND	0	0	0	0	1

One hot encoding

```
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
ocean = data[["ocean_proximity"]]
ocean = encoder.fit_transform(ocean)
```

ocean_proximity

0	NEAR BAY
1	NEAR BAY
2	NEAR BAY
3	NEAR BAY
4	NEAR BAY
20635	INLAND
20636	INLAND
20637	INLAND
20638	INLAND
20639	INLAND

0	0	0	1	0					
0	0	0	1	0					
0	0	0	1	0					
0	0	0	1	0					
0	0	0	1	0					
0	1	0	0	0					
0	1	0	0	0					
0	1	0	0	0					
0	1	0	0	0					
0	1	0	0	0					
				47					

	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
0	0.0	0.0	0.0	1.0	0.0
1	0.0	0.0	0.0	1.0	0.0
2	0.0	0.0	0.0	1.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0
20635	0.0	1.0	0.0	0.0	0.0
20636	0.0	1.0	0.0	0.0	0.0
20637	0.0	1.0	0.0	0.0	0.0
20638	0.0	1.0	0.0	0.0	0.0
20639	0.0	1.0	0.0	0.0	0.0

	<u> </u>								
	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN				
0	•••	•••	•••	•••	•••				
1		•••		•••					
2		•••	•••						
3		•••		•••					

ocean

DataFrame

		•••	 <1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
	0		 		•••	•••	
data	1		 		•••		
DataFrame	2		 				

	•••	 <1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_ house_value		
0		 •••	•••			•••			
1		 				•••	•••		-
2		 					•••		Dat
3		 					•••	-	
		 						-	

$Slice \rightarrow Drop \rightarrow Drop \rightarrow Concatenate \rightarrow Concatenate$

	•••	 <1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_ house_value	
0		 •••	•••	•••	•••	•••		
1		 					•••	data
2		 						DataFrame
3		 						_
		 		•••	•••			-

$Slice \rightarrow Drop \rightarrow Drop \rightarrow Concatenate \rightarrow Concatenate$

<pre>value = data[["median_house_value"]] value</pre>

	median_house_value
0	452600.0
1	358500.0
2	352100.0
3	341300.0
4	342200.0
•••	
20635	78100.0
20636	77100.0
20637	92300.0
20638	84700.0
20639	89400.0

Slice → Drop → Concatenate → Concatenate

data.drop(["median_house_value", "ocean_proximity"], axis=1, inplace=True)
data

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.23	37.88	41.0	880.0	129.0	322.0
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
2	-122.24	37.85	52.0	1467.0	190.0	496.0
3	-122.25	37.85	52.0	1274.0	235.0	558.0
4	-122.25	37.85	52.0	1627.0	280.0	565.0
20635	-121.09	39.48	25.0	1665.0	374.0	845.0
20636	-121.21	39.49	18.0	697.0	150.0	356.0
20637	-121.22	39.43	17.0	2254.0	485.0	1007.0
20638	-121.32	39.43	18.0	1860.0	409.0	741.0
20639	-121.24	39.37	16.0	2785.0	616.0	1387.0

$Slice \rightarrow Drop \rightarrow Drop \rightarrow Concatenate \rightarrow Concatenate$

data = pd.concat([data, ocean, value], axis=1)
data

bedrooms_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_house_value
0.146591	0.0	0.0	0.0	1.0	0.0	452600.0
0.155797	0.0	0.0	0.0	1.0	0.0	358500.0
0.129516	0.0	0.0	0.0	1.0	0.0	352100.0
0.184458	0.0	0.0	0.0	1.0	0.0	341300.0
0.172096	0.0	0.0	0.0	1.0	0.0	342200.0
***			•••			
0.224625	0.0	1.0	0.0	0.0	0.0	78100.0
0.215208	0.0	1.0	0.0	0.0	0.0	77100.0
0.215173	0.0	1.0	0.0	0.0	0.0	92300.0
0.219892	0.0	1.0	0.0	0.0	0.0	84700.0
0.221185	0.0	1.0	0.0	0.0	0.0	89400.0

bedrooms_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_house_value
0.146591	0.0	0.0	0.0	1.0	0.0	452600.0
0.155797	0.0	0.0	0.0	1.0	0.0	358500.0
0.129516	0.0	0.0	0.0	1.0	0.0	352100.0
0.184458	0.0	0.0	0.0	1.0	0.0	341300.0
0.172096	0.0	0.0	0.0	1.0	0.0	342200.0
0.224625	0.0	1.0	0.0	0.0	0.0	78100.0
0.215208	0.0	1.0	0.0	0.0	0.0	77100.0
0.215173	0.0	1.0	0.0	0.0	0.0	92300.0
0.219892	0.0	1.0	0.0	0.0	0.0	84700.0
0.221185	0.0	1.0	0.0	0.0	0.0	89400.0

Continuous (not categorical)

```
data["median_house_value"].plot(kind="hist", bins=50)
```

<matplotlib.axes._subplots.AxesSubplot at 0x29769c66608>


```
data["median_house_value"].plot(kind="hist", bins=50)
```

<matplotlib.axes._subplots.AxesSubplot at 0x29769c66608>

sehold	bedrooms_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_house_value	group
984127	0.146591	0.0	0.0	0.0	1.0	0.0	452600.0	group_5
238137	0.155797	0.0	0.0	0.0	1.0	0.0	358500.0	group_4
288136	0.129516	0.0	0.0	0.0	1.0	0.0	352100.0	group_4
317352	0.184458	0.0	0.0	0.0	1.0	0.0	341300.0	group_4
281853	0.172096	0.0	0.0	0.0	1.0	0.0	342200.0	group_4
	m						m	
045455	0.224625	0.0	1.0	0.0	0.0	0.0	78100.0	group_1
114035	0.215208	0.0	1.0	0.0	0.0	0.0	77100.0	group_1
205543	0.215173	0.0	1.0	0.0	0.0	0.0	92300.0	group_1
329513	0.219892	0.0	1.0	0.0	0.0	0.0	84700.0	group_1
254717	0.221185	0.0	1.0	0.0	0.0	0.0	89400.0	group_1


```
from sklearn.model selection import train test split
train, test = train test split(data,
                             test size=0.2,
                             stratify=data["group"],
                             random_state=0)
train["group"].value_counts() / len(train)
group 2 0.400799
group_3 0.236131
group_1 0.177204
group 4 0.101381
group 5 0.084484
Name: group, dtype: float64
test["group"].value_counts() / len(test)
group 2 0.400921
group 3 0.235950
group_1 0.177326
group_4 0.101260
group 5 0.084545
Name: group, dtype: float64
```

• We don't need the "group" feature any longer → Drop it

```
train = train.drop("group", axis=1)
train
```

s_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_house_value
0.193681	1.0	0.0	0.0	0.0	0.0	210200.0
0.291627	1.0	0.0	0.0	0.0	0.0	343800.0
0.236520	0.0	0.0	0.0	0.0	1.0	159400.0
0.186665	0.0	1.0	0.0	0.0	0.0	145000.0
0.222914	0.0	1.0	0.0	0.0	0.0	86700.0
						111
0.222484	0.0	0.0	0.0	0.0	1.0	333800.0
0.177977	0.0	1.0	0.0	0.0	0.0	94900.0
0.274680	1.0	0.0	0.0	0.0	0.0	312500.0
0.120746	0.0	0.0	0.0	1.0	0.0	441400.0
0.922414	1.0	0.0	0.0	0.0	0.0	112500.0

• We don't need the "group" feature any longer → Drop it

```
test = test.drop("group", axis=1)
test
```

s_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN	median_house_value
0.187652	1.0	0.0	0.0	0.0	0.0	226800.0
0.196163	0.0	1.0	0.0	0.0	0.0	164000.0
NaN	1.0	0.0	0.0	0.0	0.0	122200.0
0.304348	0.0	1.0	0.0	0.0	0.0	110400.0
0.204733	0.0	1.0	0.0	0.0	0.0	150000.0
0.210106	0.0	1.0	0.0	0.0	0.0	39200.0
0.270597	0.0	1.0	0.0	0.0	0.0	141400.0
0.191644	0.0	1.0	0.0	0.0	0.0	87500.0
0.179072	1.0	0.0	0.0	0.0	0.0	223300.0
0.208522	0.0	1.0	0.0	0.0	0.0	106700.0

3.2 Create training and test set

- Common machine learning notations
 - -x: a vector (district) of all the feature values (excluding the label)
 - -y: the label (answer) of x

$$x = \begin{pmatrix} -118.36 \\ 33.92 \\ 46 \\ 1,231 \\ \dots \end{pmatrix}$$

$$y = 226,800$$

3.2 Create training and test set

• For training data

```
train_y = train[["median_house_value"]]
train_y
```

	median_house_value
6229	210200.0
5406	343800.0
14033	159400.0
2236	145000.0
1898	86700.0
17097	333800.0
12834	94900.0
8836	312500.0
1580	441400.0
4552	112500.0

```
train.drop("median_house_value", axis=1, inplace=True)
train_X = train
train_X
```

_household	bedrooms_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
5.495177	0.193681	1.0	0.0	0.0	0.0	0.0
3.791971	0.291627	1.0	0.0	0.0	0.0	0.0
4.388013	0.236520	0.0	0.0	0.0	0.0	1.0
6.156938	0.186665	0.0	1.0	0.0	0.0	0.0
5.474950	0.222914	0.0	1.0	0.0	0.0	0.0
5.005359	0.222484	0.0	0.0	0.0	0.0	1.0
5.628829	0.177977	0.0	1.0	0.0	0.0	0.0
3.879433	0.274680	1.0	0.0	0.0	0.0	0.0
8.106101	0.120746	0.0	0.0	0.0	1.0	0.0
1.260870	0.922414	1.0	0.0	0.0	0.0	0.0

3.2 Create training and test set

• For test data

```
test_y = test[["median_house_value"]]
test_y
```

	median_house_value
8429	226800.0
20117	164000.0
4767	122200.0
16192	110400.0
12909	150000.0
2475	39200.0
12704	141400.0
1096	87500.0
17715	223300.0
13779	106700.0

```
test.drop("median_house_value", axis=1, inplace=True)
test_X = test
test_X
```

bedrooms_per_room	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
0.187652	1.0	0.0	0.0	0.0	0.0
0.196163	0.0	1.0	0.0	0.0	0.0
NaN	1.0	0.0	0.0	0.0	0.0
0.304348	0.0	1.0	0.0	0.0	0.0
0.204733	0.0	1.0	0.0	0.0	0.0
0.210106	0.0	1.0	0.0	0.0	0.0
0.270597	0.0	1.0	0.0	0.0	0.0
0.191644	0.0	1.0	0.0	0.0	0.0
0.179072	1.0	0.0	0.0	0.0	0.0
0.208522	0.0	1.0	0.0	0.0	0.0

Until now...


```
train X.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16512 entries, 6229 to 4552
Data columns (total 15 columns):
    Column
                        Non-Null Count Dtype
    longitude 16512 non-null float64
    latitude
                       16512 non-null float64
    housing_median_age 16512 non-null float64
    total rooms
                    16512 non-null float64
    total bedrooms 16349 non-null float64
    population
                     16512 non-null float64
    households
                       16512 non-null float64
                                                   Missing values
    median income
                     16512 non-null float64
                                                  (N/A: Not Available)
    rooms per household 16512 non-null float64
    bedrooms per room
                        16349 non-null float64
10 <1H OCEAN
                        16512 non-null float64
                        16512 non-null float64
11 INLAND
                        16512 non-null float64
12 ISLAND
13 NEAR BAY
                       16512 non-null float64
14 NEAR OCEAN
                       16512 non-null float64
dtypes: float64(15)
memory usage: 2.0 MB
```

	 total_bedrooms	
0	 	
1		
2	 	
3	 	

1. Get rid of the corresponding districts

2. Get rid of the whole attribute (feature)

3. Set the values to some value

		total_bedrooms	•••
0			
1			
1	•••		•••
2			
3			

	 total_b	drooms	
0			
1			
2			
3		•••	
		•••	

	 total_bedrooms	•••
0	 	
1	 some value	
2	 	
3	 	

	•••	total_bedrooms	•••
0	•••		•••
1	•••	zero/mean/ median /etc.	
2	•••		•••
3	•••		•••
	•••		•••

For training data

dtypes: float64(15)

```
median = train X["total bedrooms"].median()
train X["total bedrooms"].fillna(median, inplace=True)
train_X["bedrooms_per_room"].fillna(train_X["total_bedrooms"]/train_X["total_rooms"], inplace=True)
train X.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16512 entries, 6229 to 4552
Data columns (total 15 columns):
    Column
                       Non-Null Count Dtype
#
    longitude 16512 non-null float64
    latitude
                  16512 non-null float64
1
    housing_median_age 16512 non-null float64
                 16512 non-null float64
3
    total rooms
    total bedrooms 16512 non-null float64
    population
                    16512 non-null float64
5
    households
                     16512 non-null float64
    median income 16512 non-null float64
    rooms per household 16512 non-null float64
    bedrooms per room
                      16512 non-null float64
   <1H OCEAN
                    16512 non-null float64
10
                      16512 non-null float64
11
   INLAND
                   16512 non-null float64
   ISLAND
    NEAR BAY 16512 non-null float64
                      16512 non-null float64
   NEAR OCEAN
```

For test data

```
test X["total bedrooms"].fillna(median, inplace=True)
test X["bedrooms per room"].fillna(test X["total bedrooms"]/test X["total rooms"], inplace=True)
test X.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4128 entries, 8429 to 13779
Data columns (total 15 columns):
                        Non-Null Count Dtype
 #
    Column
   longitude
                      4128 non-null float64
  latitude
                       4128 non-null float64
    housing_median_age 4128 non-null float64
    total rooms
                        4128 non-null float64
    total bedrooms
                        4128 non-null float64
                        4128 non-null float64
    population
    households
                        4128 non-null float64
    median income
                        4128 non-null float64
    rooms per household 4128 non-null float64
                        4128 non-null float64
    bedrooms per room
                        4128 non-null float64
 10 <1H OCEAN</p>
                        4128 non-null float64
11 INLAND
                       4128 non-null float64
12 ISLAND
                       4128 non-null float64
13 NEAR BAY
                        4128 non-null float64
14 NEAR OCEAN
dtypes: float64(15)
```

End-to-End Machine Learning Project

	No.	Action	Package/library		
s <mark>ing</mark> ning	0	Look at the big picture —			
Data preprocessing for machine learning	1	Get the data	tarfile, urllib, pandas		
prep achin	2	Discover and visualize the data to gain insights	pandas, matplotlib		
Data for ma	3	Prepare the data for Machine Learning algorithms			
	4	Select a model and train it	pandas, scikit-learn,		
	5	Fine-tune your model	numpy		
	6	Present your solution			
	7	Launch, monitor and maintain your system	joblib, flask		

End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture	_	
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms		
4	Select a model and train it	pandas, scikit-learn, numpy	
5	Fine-tune your model		
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

Three ML methods we gonna use today..

Linear regression

Decision tree regression

Random forest regression

4.1 Training and Evaluating on the Training Set

```
from sklearn.linear_model import LinearRegression
linear = LinearRegression()
linear.fit(train_X, train_y)
```

Linear regression

```
LinearRegression(copy_X=True, fit_intercept=True, n_job s=None, normalize=False)
```

```
from sklearn.metrics import mean_squared_error
import numpy as np

predictions = linear.predict(train_X)
mse = mean_squared_error(train_y, predictions)
rmse = np.sqrt(mse)
answer_mean = train_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

32.92999142716399%

4.1 Training and Evaluating on the Training Set

Decision tree regression

```
from sklearn.tree import DecisionTreeRegressor

tree = DecisionTreeRegressor()
tree.fit(train_X, train_y)
```

```
predictions = tree.predict(train_X)
mse = mean_squared_error(train_y, predictions)
rmse = np.sqrt(mse)
answer_mean = train_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

4.1 Training and Evaluating on the Training Set

Linear regression

Decision tree regression

Random forest regression

Under fitting

Over fitting

4.2 Evaluating on the Test Set

```
predictions = linear.predict(test_X)
mse = mean_squared_error(test_y, predictions)
rmse = np.sqrt(mse)
answer_mean = test_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

33.387643759619735%

```
predictions = tree.predict(test_X)
mse = mean_squared_error(test_y, predictions)
rmse = np.sqrt(mse)
answer_mean = test_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

33.33372756965135%

4.3 Evaluating on the Training and Test Set using Random forest regression

Linear regression

Decision tree regression

Random forest regression

4.3 Evaluating on the Training and Test Set using Random forest regression

4.3 Evaluating on the Training and Test Set using Random forest regression

```
predictions = forest.predict(train_X)
mse = mean_squared_error(train_y, predictions)
rmse = np.sqrt(mse)
answer_mean = train_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

12.12961140719765%

```
predictions = forest.predict(test_X)
mse = mean_squared_error(test_y, predictions)
rmse = np.sqrt(mse)
answer_mean = test_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

26.17531878445498%

Comparison

	Linear regression	Decision tree regression	Random forest regression
RMSE on training set	32.9%	0%	12.1%
RMSE on test set	33.3%	33.3%	26.1%

End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture		
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms		
4	Select a model and train it	pandas,	
5	Fine-tune your model	scikit-learn, numpy	
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

The ideal scenario

The ideal scenario

Grid Search with Cross Validation

Your fine-tuned model

Your fine-tuned model

```
predictions = forest.predict(train_X)
mse = mean_squared_error(train_y, predictions)
rmse = np.sqrt(mse)
answer_mean = train_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

9.421054753574424%

```
predictions = forest.predict(test_X)
mse = mean_squared_error(test_y, predictions)
rmse = np.sqrt(mse)
answer_mean = test_y["median_house_value"].mean()
print(str(rmse/answer_mean*100) + "%")
```

23.886510037964545%

Your fine-tune model

	Linear regression	Decision tree regression	Random forest regression	Fine-tuned model
RMSE on training set	32.9%	0%	12.1%	9.4%
RMSE on test set	33.3%	33.3%	26.1%	23.8%

End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture		
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms		
4	Select a model and train it	pandas, scikit-learn, numpy	
5	Fine-tune your model		
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

Feature importance

```
importances = forest.feature importances
features = train X.columns.values
sorted(zip(importances, features), reverse=True)
[(0.47763306801959393, 'median income'),
 (0.14667781030892643, 'INLAND'),
 (0.09675169156214641, 'longitude'),
 (0.08728313888933595, 'latitude'),
 (0.047588373717733196, 'housing median age'),
 (0.03244868607116767, 'bedrooms per room'),
 (0.028850969908527545, 'rooms per household'),
 (0.024088508967163785, 'population'),
 (0.01855807032696892, 'total_rooms'),
 (0.015667964018780612, 'total bedrooms'),
 (0.01431359816365993, 'households'),
 (0.006327717669091209, 'NEAR OCEAN'),
 (0.0026947420610949524, '<1H OCEAN'),
 (0.001037627384628986, 'NEAR BAY'),
 (7.8032931180394e-05, 'ISLAND')]
```

End-to-End Machine Learning Project

No.	Action	Package/library	
0	Look at the big picture	_	
1	Get the data	tarfile, urllib, pandas	
2	Discover and visualize the data to gain insights	pandas, matplotlib	
3	Prepare the data for Machine Learning algorithms		
4	Select a model and train it	pandas, scikit-learn, numpy	
5	Fine-tune your model		
6	Present your solution		
7	Launch, monitor and maintain your system	joblib, flask	

Save & load your model

기계 학습 모델 구축 → 많은 자원 소모

- 데이터 수집 및 분석
- 적합한 기계 학습 방법론 선택
 - Linear regression, decision tree, random forest, perceptron, neural network, etc.
- 다양한 hyper parameter 설정
 - Num. of layers, activation function, learning rate, etc.

노력의 산물 Data Learning Model

프로그래밍 언어의 장벽

지적 재산권(보안)

APIs & REST APIs

Application Programming Interface

Application Programming Interface

• A way to let software components to talk to each other

API 경험이 있나요?

API 경험이 있나요?

• Swing (Java)


```
JFrame

+ EXIT_ON_CLOSE: int
- rootPane: JRootPane
...

+ JFrame()
...

+ setTitle(String): void
+ setSize(int, int): void
+ setIconImage(Image): void
+ setVisible(boolean): void
...
```

```
public static void main(String args)
{
    JFrame frame = new JFrame();
    frame.setTitle("Cacluator");
    frame.setVisible(true);
}
```

So an API could be anything in any form.

The only thing that it has to be is that

it has to be a way to communicate with a software component.

Client language	Server language
Python	Python
Python	Java
Java	Python

CRUD	HTTP verb
Create	POST
Read	GET
Update	PUT/PATCH
Delete	DELTE

CRUD	HTTP verb
Create	POST
Read	GET
Update	PUT/PATCH
Delete	DELTE

New notebook

New notebook

Sample api

Download > Move to "Desktop"

Download > Move to "Desktop"

Anaconda prompt 실행 및 바탕화면으로 이동

Jupyter (.ipynb) to Python (.py)

```
Anaconda Prompt (anaconda3)

(base) C:\Users\Users\Users\Ung-HeeKim\cd Desktop

(base) C:\Users\Users\Ung-HeeKim\Desktop\jupyter nbconvert --to script Untitled1.ipynb

[NbConvertApp] Converting notebook Untitled1.ipynb to script

[NbConvertApp] Writing 254 bytes to Untitled1.py

(base) C:\Users\Users\Users\Ung-HeeKim\Desktop\
```


Untitled1.py 실행

REST API 호출

Untitled1.py 수정

```
🗐 *Untitled1.py - Windows 메모장
                                                          X
파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)
#!/usr/bin/env python
# coding: utf-8
# In[]:
from flask import Flask
sample_api = Flask(__name__)
@sample_api.route("/gse/api/sample", methods=["GET"])
def hello_world():
   answer = "<html> <body> <h1> Hi</h1> </body> </html> "
   return answer
if __name__ == "__main__":
   sample_api.run()
            Ln 7, Col 24
                               100%
                                     Windows (CRLF)
                                                     UTF-8
```

Untiled1.py 재실행 CTRL+C → python Untitled1.py

REST API 재호출

매개변수(Parameter) 처리하기

```
*Untitled1.py - Windows 메모장
                                                                \times
파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)
# ln[]:
from flask import Flask
from flask import request
sample_api = Flask(__name__)
@sample_api.route("/gse/api/sample", methods=["GET"])
def hello_world():
   answer = "<html><body><h1>Hi"
   if "name" in request.args:
      answer += " " + request.args["name"]
   answer += "</h1></body></html>"
   return answer
if __name__ == "__main__":
   sample_api.run()
            Ln 23, Col 1
                                     Windows (CRLF)
                                                     UTF-8
                              100%
```

Untitled.py 재실행

REST API 재호출

덧셈 & 뺄셈 REST API 만들기

덧셈 & 뺄셈 REST API 만들기

```
@sample_api.route('/gse/api/sample/', methods=['GET'])
def hello_world( ):
    result = 0
    num_1 = int(request.args["num_1"])
    num_2 = int(request.args["num_2"])
    op = request.args["op"]
    if op == "plus":
        result = num_1 + num_2
    elif op == "minus":
        result = num_1 - num_2
    return str(result)
```

REST API 호출 in Python

REST API 호출 in Java

- Eclipse 실행
- Java project 생성
- kr.ac.sunmoon 패키지 생성
- lib 폴더 생성
- e-강의동 > 데이터사이언스응용 > 02주차 강의자료
 - 3개의 jar 파일 다운로드 및 lib 폴더에 복사 → build path에 추가
 - Test.java 파일 다운로드 및 kr.ac.sunmoon 패키지에 복사 → 실행

REST API 호출 in Java

What if..

What if..

Thank you