EXAM 2

		Score:	out of 100
	a)	75	
Math 324 - Linear Algebra	Name:		

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 7 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

1.	Circle your answer for each of the following:
	(a) True Palse Every vector space is a subspace of itself.
	(b) True False If V is a vector space and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a collection of vectors in V , then Span(S) is always a subspace of V .
	(c) True False The solution set of a consistent linear system $A\mathbf{x} = 0$ of m equations in n variables is a subspace of \mathbb{R}^n .
	(d) True False The solution set of a consistent linear system $A\mathbf{x} = \mathbf{b}$ of m equations in n variables is a subspace of \mathbb{R}^n .
	(e) True False If V is a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a collection of linearly independent vectors in V , then for any nonzero scalar k , $\{k\mathbf{v}_1, k\mathbf{v}_2, \dots, k\mathbf{v}_k\}$ is also a collection of linearly independent vectors in V .
	(f) True False A set containing a single vector is always linearly independent.
	(g) True False Every dependent set contains the zero vector.
	(h) True False $\text{Row}(A)^{\perp} = \text{Null}(A)$.
	(i) True False $\operatorname{Span}(\{1, x, 1 - x\}) = P_2$.
	(j) True False Let $T:V \to W$ be a linear transformation, then range $(T) = \operatorname{im}(T) = \{T(\mathbf{x}) : \mathbf{x} \in V\}$.
2.	Suppose a 5×9 matrix A has rank 4. Then
	(a) The dimension of the column space of A is
	(b) The dimension of the row space of A is \Box
	(c) The dimension of the null space of A is 5
	(d) The dimension of the null space of A^T is
3.	Show that $W = \{a_1x + a_4x^4 : a_1, a_4 \in \mathbb{R}\}$ forms a subspace of P_4 .
	(i) Õ∈Py is O (the constant polynamial.) SIMIR O = Ox + Ox4 ∈ W.
	(ii) Let a,x + ayx4 EW, KER.
	(ii) Let $a_1x + a_4x^4 = 0$, $k(a_1x + a_4x^4) = (ka_1)x + (ka_4)x^4 \in W$.
	(iii) Let $a_1x + a_4x$, $b_1x + b_4x \in W$ $(a_1x + a_4x^4) + (b_1x + b_4x^4) = (a_1+b_1)x + (a_4+b_4)x^4 \in W$

4. Determine whether or not
$$S = \left\{ \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} \right\}$$
 a basis of \mathbb{R}^3 .

Small Show $A = \begin{bmatrix} 2 & -1 & -1 \\ 0 & -1 \end{bmatrix}$ back

Finally Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

Alt($A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

Alt($A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

Alt($A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

Alt($A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

Alt($A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back

That's, Show $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 & -1 \end{bmatrix}$ back $A = \begin{bmatrix} 3 & -1 & -1 & -1 & -1 & -1 \\ 0 & -1$

- 7. Solve 2 of the following problems. Please put an X through the problem that you do not want graded (otherwise I will grade the first two problems worked
 - (a) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ be a collection of vectors in some vector space V. Suppose $\mathbf{v}_1 + 2\mathbf{v}_2 = \mathbf{v}_3 - \mathbf{v}_4$. Show that S is a set of linearly dependent vectors.

$$V_1+2v_2-v_3+v_4=0$$
.

Constrivial combination of V_1,V_2,V_3,V_4,V_5 (coef. of V_5 is 0)

Hence, S is linearly dependent.

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation, and suppose $T\left(\left|\begin{array}{c}1\\1\end{array}\right|\right) = \left|\begin{array}{c}-2\\0\end{array}\right|$. Let $\mathbf{x} \in \ker(T)$.

Compute
$$T\left(2x - \begin{bmatrix} 1\\1 \end{bmatrix}\right) = T\left(2\overline{x}\right) - T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right)$$

$$= 2T\left(\overline{x}\right) - \begin{bmatrix} -2\\0 \end{bmatrix}$$

$$= 2\begin{bmatrix}0\\0\end{bmatrix} - \begin{bmatrix} -2\\0\end{bmatrix}$$

$$= \begin{bmatrix}0\\1+\begin{bmatrix}2\\0\end{bmatrix}$$

$$= \begin{bmatrix}2\\0\end{bmatrix}$$

(c) Prove that for any matrix A, rank $(A^T) = \operatorname{rank}(A$

(c) Prove that for any matrix
$$A$$
, $\operatorname{rank}(A^T) = \operatorname{rank}(A)$.

|Sol 2|
| $\operatorname{rank}(A) = \operatorname{dim}(\operatorname{col}(A))$ | $\operatorname{rank}(A) = \operatorname{dim}(\operatorname{Rau}(A))$

= $\operatorname{dim}(\operatorname{Rau}(A^T))$ = $\operatorname{rank}(A^T)$ = $\operatorname{rank}(A^T)$