ΠΡΟΤΑΣΙΑΚΟΙ ΤΥΠΟΙ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

ΚΑΝΟΝΙΚΗ ΔΙΑΖΕΥΚΤΙΚΗ ΜΟΡΦΗ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Πίνακας Αλήθειας Λογικών Συνδέσμων:

ϕ	Ψ	$\neg \phi$	$\phi \lor \psi$	$\phi \wedge \psi$	$\phi \rightarrow \psi$	$\phi \leftrightarrow \psi$
A	A	Ψ	A	A	A	A
A	Ψ	Ψ	A	Ψ	Ψ	Ψ
Ψ	A	A	A	Ψ	A	Ψ
Ψ	Ψ	A	Ψ	Ψ	A	A

Ταυτολογία: είναι τύπος που είναι Α για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \wedge \neg p \rightarrow q$ είναι ταυτολογία

ση:	p	q	$(p \land \neg p) \rightarrow q$
	A	A	$(A \land \neg A) \rightarrow A = \Psi \rightarrow A = A$
	A	Ψ	$(A \land \neg A) \rightarrow \Psi = \Psi \rightarrow \Psi = A$
			$(\Psi \land \neg \Psi) \rightarrow A = \Psi \rightarrow A = A$
	Ψ	Ψ	$(\Psi \land \neg \Psi) \rightarrow \Psi = \Psi \rightarrow \Psi = A$

Γνωστες Ταυτολογίες είναι οι μορφές τύπων:

- **φ** V ¬**φ** όπου φ οποιοσδήποτε προτασιακός τύπος
- $\varphi \rightarrow \psi$ όπου φ=Αντίφαση (Μορφή $\Psi \rightarrow \cdots$) ή ψ=Ταυτολογία
- $φ \rightarrow φ$ όπου φ οποιοσδήποτε προτασιακός τύπος
- $φ \leftrightarrow φ$ όπου φ οποιοσδήποτε προτασιακός τύπος
- Όλες οι μορφές τύπων νόμων της προτασιακής λογικής
- Όλες οι μορφές τύπων συντακτικών αντικατάσεων στα αξιωματικά σχήματα του προτασιακού λογισμού

Προτεραιότητα λογικών συνδέσμων:

(1) ¬ **(2)** ∨, ∧ **(3)** →, ↔

Αντίφαση: είναι τύπος που είναι Ψ για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \land \neg (q \rightarrow p)$ είναι αντίφαση

p	q	$p \land \neg (q \rightarrow p)$
A	A	$A \land \neg (A \rightarrow A) = A \land \neg A = \Psi$
A	Ψ	$A \land \neg (\Psi \rightarrow A) = A \land \neg A = \Psi$
Ψ	A	$\Psi \land \neg (A \rightarrow \Psi) = \Psi \land \neg \Psi = \Psi$
Ψ	Ψ	$\Psi \land \neg (\Psi \rightarrow \Psi) = \Psi \land \neg A = \Psi$

Γνωστές Αντιφάσεις είναι οι μορφές τύπων

- $\phi \land \neg \phi$ όπου ϕ οποιοσδήποτε προτασιακός τύπος
- $\varphi \to \psi$ όπου φ=Ταυτολογία και ψ=Αντίφαση (Μορφή $\mathbf{A} \to \mathbf{\Psi}$)
- $\neg \varphi$ όπου Φ =Ταυτολογία
- $\varphi \leftrightarrow \neg \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος

<u>Ικανοποιήσιμος:</u> είναι τύπος που είναι Α σε τουλάχιστον μία αποτίμηση

Παράδειγμα: Ο τύπος p o (p o q) είναι ικανοποιήσιμος

າ:	р	а	$p \to (p \to q)$
	P	4	$P \rightarrow (P \rightarrow q)$
	A	A	$p \rightarrow (p \rightarrow q) = A \rightarrow (A \rightarrow A) = A \rightarrow A = A$
	A	Ψ	$p \rightarrow (p \rightarrow q) = A \rightarrow (A \rightarrow \Psi) = A \rightarrow \Psi = \Psi$
	Ψ	A	$p \to (p \to q) = \Psi \to (\Psi \to A) = \Psi \to A = A$
	Ψ	Ψ	$p \rightarrow (p \rightarrow q) = \Psi \rightarrow (\Psi \rightarrow \Psi) = \Psi \rightarrow A = A$

Κανονική Διαζευκτική Μορφή:

Ένας τύπος είναι σε κανονική διαζευκτική μορφή (ΚΔΜ), αν είναι της μορφής:

$$\psi_1 \lor \psi_2 \lor ... \lor \psi_n$$

όπου κάθε ψ, είναι της μορφής:

$$X_b \wedge X_b \wedge ... \wedge X_b$$

Και τα χ; είναι μεταβλητές ή αρνήσεις προτασιακών μεταβλητών

Βήματα κατασκευής κανονικής διαζευκτικής μορφής

- Κατασκευάζουμε τον πίνακα αλήθειας του τύπου.
- Εκφράζουμε σαν σύζευξη (and) κάθε γραμμή που αληθεύει. Στην σύζευξη θέτουμε p αν $\alpha(p) = A$ και $\neg p \ \alpha v \ \alpha(p) = \Psi.$
- Ο τύπος είναι η διάζευξη (or) όλων των συζεύξεων.

Παράδειγμα: Να βρεθεί η Κ.Δ.Μ. του τύπου: $p \rightarrow \neg(q \rightarrow r)$

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

p	q	r	$p \to \neg (q \to r)$
A	A	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow A) = A \rightarrow \Psi = \Psi$
A	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow \Psi) = A \rightarrow A = A$
A	Ψ	A	$p \to \neg (q \to r) = A \to \neg (\Psi \to A) = A \to \Psi = \Psi$
A	Ψ	Ψ	$p \to \neg (q \to r) = A \to \neg (\Psi \to \Psi) = A \to \Psi = \Psi$
Ψ	A	A	$p \to \neg (q \to r) = \Psi \to \neg (A \to A) = \Psi \to \Psi = A$
Ψ	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow \Psi) = \Psi \rightarrow A = A$
Ψ	Ψ	A	$p \to \neg (q \to r) = \Psi \to \neg (\Psi \to A) = \Psi \to \Psi = A$
Ψ	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow \Psi) = \Psi \rightarrow \Psi = A$

- H 2^η γραμμή: $p \wedge q \wedge \neg r$
- H 5^η γραμμή: $\neg p \land q \land r$
- H 6^η γραμμή: $\neg p \land q \land \neg r$
- H 7^{η} γραμμή: $\neg p \land \neg q \land r$
- H 8η γραμμή: $\neg p \land \neg q \land \neg r$

Άρα η Κανονική Διαζευκτική Μορφή του τύπου είναι:

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$

ΣΥΝΟΛΟ ΠΡΟΤΑΣΙΑΚΩΝ ΤΥΠΩΝ

Ένα σύνολο τύπων Τ θα λέμε ότι είναι ικανοποιήσιμο αν υπάρχει αποτίμηση που κάνει όλους τους τύπους αληθείς ταυτόχρονα

Πιο τυπικά αν υπάρχει αποτίμηση α : $\alpha(\phi)=A \ \forall \phi \in T$

Παράδειγμα: Να μελετηθεί αν το σύνολο τύπων

$$T = \{p \to q, p \lor \neg q\}$$

είναι ικανοποίησιμο:

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων του συνόλου τύπων:

1)	q	$p \rightarrow q$	$p \vee \neg q$
A		A	A	A
A		Ψ	Ψ	A
Ч	Ţ	A	A	Ψ
Ч	J	Ψ	A	A

Παρατηρούμε ότι στην αποτίμηση p=A,q=A αληθεύουν όλοι οι τύποι του συνόλου τύπων, άρα είναι ικανοποίησιμο

Το ισοδύναμο στον προτασιακό λογισμό είναι το συνεπές σύνολο ΙΚΑΝΟΠΟΙΗΣΙΜΟ = ΣΥΝΕΠΕΣ

(με βάση τα θεωρήματα εγκυρότητας – πληρότητας)

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Ένα σύνολο τύπων Τ θα λέμε ότι είναι μη ικανοποιήσιμο αν δεν

υπάρχει αποτίμηση που κάνει όλους τους τύπους αληθείς ταυτόχρονα ...δηλαδή δεν είναι ικανοποίησιμο!

Παράδειγμα: Να μελετηθεί αν το σύνολο τύπων

$$T = \{q \to p, p \land \neg q, p \leftrightarrow q\}$$

είναι ικανοποίησιμο:

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων του συνόλου τύπων:

p	q	$q \rightarrow p$	$p \land \neg q$	$p \leftrightarrow q$
A	A	A	Ψ	A
A	Ψ	A	A	Ψ
Ψ	A	Ψ	Ψ	Ψ
Ψ	Ψ	A	Ψ	A

Παρατηρούμε ότι δεν υπάρχει αποτίμηση που να κάνει όλους τους τύπους Α ταυτόχρονα, άρα είναι ένα μη ικανοποιήσιμο σύνολο τύπων.

Το ισοδύναμο στον προτασιακό λογισμό είναι το αντιφατικό σύνολο

ΜΗ ΙΚΑΝΟΠΟΙΗΣΙΜΟ = ΑΝΤΙΦΑΤΙΚΟ (με βάση τα θεωρήματα εγκυρότητας – πληρότητας)

ΤΑΥΤΟΛΟΓΙΚΗ ΣΥΝΕΠΑΓΩΓΗ $T \models \phi$

Έστω Σύνολο Τύπων Τ και τύπος φ. Θα λέμε ότι :

- το σύνολο τύπων Τ <u>ταυτολογικά συνεπάγεται</u> τον τύπο φ
- Ο φ είναι σημασιολογική συνέπεια του Τ
- και συμβολίζουμε με $T \vDash \varphi$

αν και μόνο αν

T ικανοποιείται και ο φ

για κάθε αποτίμηση που ικανοποιούνται οι τύποι του

Αν ο φείναι ταυτολογία ισχύει η ταυτολογική συνεπαγωγή

- Αν το Τ είναι αντιφατικό ισχύει η ταυτολογική συνεπαγωγή
- Εξετάζουμε με βάση τον ορισμό. Βρίσκουμε τις αποτιμήσεις που 2. ικανοποιούνται οι τύποι του Τ (όλοι ταυτόχρονα). Σε αυτές πρέπει να αληθεύει και ο φ για να ισχύει η ταυτ.συνεπαγωγή.

Παράδειγμα 1: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή

$$\{p \to \neg q, q \lor p, \neg p \leftrightarrow q\} \vDash \neg p \to q$$

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων:

p	q	$p \rightarrow \neg q$	$q \lor p$	$\neg p \leftrightarrow q$		$\neg p \rightarrow q$
A	A	Ψ	A	Ψ		A
A	Ψ	A	A	A	\rightarrow	A
Ψ	A	A	A	A	\rightarrow	A
Ψ	Ψ	A	Ψ	Ψ		Ψ

Στις αποτιμήσεις που ικανοποιείται το σύνολο τύπων, ό τύπος φ είναι αληθής, άρα ισχύει η ταυτολογική συνεπαγωγή.

Ω συμβολισμός: ⊨ φΘα σημαίνει ότι ο τύπος φ αληθεύει ανεξαρτήτως υποθέσεων

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

που σημαίνει ότι ο τύπος **φ είναι ταυτολογία**.($\emptyset \models \varphi$)

Ο συμβολισμός: $oldsymbol{\phi} \equiv oldsymbol{\psi}$

- Θα σημαίνει ότι οι τύποι φ και ψ είναι ταυτολογικά ισοδύναμοι
- Ορίζεται ως: φ ⊨ ψ και ψ ⊨ φ

Θα ισχύει ότι $\phi \equiv \psi$ αν οι ϕ , ψ έχουν τον ίδιο πίνακα αλήθειας

Πιο εποπτικά:

- ... ⊨ A. Ψ ⊨ ...
- Εφαρμογή του ορισμού

Παράδειγμα 2: Να μελετηθεί αν ισχύει η ταυτολογική συνεπαγωγή

$$\{p \to \neg q, q \lor p, \neg p \leftrightarrow q\} \vDash p \to q$$

Λύση: Κατασκευάζουμε τον πίνακα αλήθειας των τύπων:

Στην 2^{η} αποτίμηση (p=A, q=Ψ) ικανοποιούνται οι τύποι του T, αλλά δεν ικανοποιείται ο φ. Άρα δεν ισχύει η ταυτολογική συνεπαγωγή.

ΝΟΜΟΙ ΠΡΟΤΑΣΙΑΚΗΣ ΛΟΓΙΚΗΣ

Οι Νόμοι της Προτασιακής Λογικής:

- Είναι ταυτολογίες.
- Τους χρησιμοποιούμε για να μετατρέψουμε έναν τύπο σε έναν ισοδύναμό του.

	Όνομα Νόμου	Διατύπωση
1	Αντιμεταθετικότητα	$\varphi \lor \psi \leftrightarrow \psi \lor \varphi$ $\varphi \land \psi \leftrightarrow \psi \land \varphi$
2	Προσεταιριστικότητα	$\varphi \wedge (\psi \wedge \chi) \leftrightarrow (\varphi \wedge \psi) \wedge \chi$ $\varphi \vee (\psi \vee \chi) \leftrightarrow (\varphi \vee \psi) \vee \chi$
3	Επιμεριστικότητα	$\varphi \lor (\psi \land \chi) \leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \chi)$ $\varphi \land (\psi \lor \chi) \leftrightarrow (\varphi \land \psi) \lor (\varphi \land \chi)$
4	Διπλή Άρνηση	$\neg\neg\varphi\leftrightarrow\varphi$
5	Άρνηση Συνεπαγωγής	$\neg(\varphi \rightarrow \psi) \leftrightarrow \varphi \land \neg \psi$
6	De Morgan	$\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$
7	Αντιθετοαναστροφή	$(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$
8	Εξαγωγή	$(\varphi \to (\psi \to \chi)) \leftrightarrow (\varphi \land \psi \to \chi)$
9	1 ^{ος} νόμος αντικατάστασης	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
10	2 ^{ος} νόμος αντικατάστασης	$(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$
11	Αποκλεισμός Τρίτου	$\varphi \lor \neg \varphi$

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

ΠΑΡΑΔΕΙΓΜΑ: Να βρεθεί ταυτολογικά ισοδύναμος τύπος του τύπου:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

που χρησιμοποιεί μόνο τους σύνδεσμους {¬, →}

Λύση: Στον τύπο:

$$(p_1 \land \neg p_2) \rightarrow \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο άρνησης συνεπαγωγής:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (p_1 \lor p_2)$$

Εφαρμόζω το νόμο διπλής άρνησης:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (\neg \neg p_1 \lor p_2)$$

Εφαρμόζω το 1° νόμο αντικατάστασης:

$$\neg (p_1 \rightarrow p_2) \rightarrow \neg (\neg p_1 \rightarrow p_2)$$

Χρήσιμος για την χρήση των τύπων μπορεί να φανεί ο παρακάτω

Μετατροπή συνδέσμων	Χρήση του νόμου	Νόμος
Από → σε V και αντίστροφα	1 ^{ος} νόμος αντικατάστασης	$(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
Από → σε Λ και αντίστροφα	Νόμος άρνησης συνεπαγωγής	$\neg(\varphi \rightarrow \psi) \leftrightarrow \varphi \land \neg \psi$
Από V σε Λ και αντίστροφα	Νόμοι De Morgan	$\neg(\varphi \lor \psi) \leftrightarrow \neg\varphi \land \neg\psi$ $\neg(\varphi \land \psi) \leftrightarrow \neg\varphi \lor \neg\psi$
Από ↔ σε Λ, →και αντίστροφα	2 ^{ος} νόμος αντικατάστασης	$(\varphi \leftrightarrow \psi) \leftrightarrow ((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

ΕΠΑΓΩΓΗ ΣΤΗΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΤΩΝ ΤΥΠΩΝ

ΠΡΟΤΑΣΗ(φ): που θέλουμε να αποδείξουμε ότι ισχύει <u>για</u> κάθε προτασιακό τύπο

- Βάση Επαγωγής: Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή ρ, δηλαδή ότι ισχύει η ΠΡΟΤΑΣΗ(p)
 - Κάνουμε απόδειξη ότι ισχύει η πρόταση για μια προτασιακή μεταβλητή.
- Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ,ψ, δηλαδή ότι ισχύουν ΠΡΟΤΑΣΗ(φ), ΠΡΟΤΑΣΗ(ψ)
- Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι

 Π POTAΣH($\neg \varphi$), Π POTAΣH($\varphi \lor \psi$). ΠΡΟΤΑΣΗ(φ ∧ ψ), ΠΡΟΤΑΣΗ(φ → ψ) $ΠΡΟΤΑΣΗ(φ \leftrightarrow ψ)$

Ορισμός: Ένα σύνολο συνδέσμων θα λέγεται πλήρες σύνολο συνδέσμων (ή επαρκές σύνολο συνδέσμων) ανν κάθε προτασιακός τύπος μπορεί να μετατραπεί σε έναν ισοδύναμό που χρησιμοποιεί μόνο συνδέσμους από το σύνολο.

- Εμπειρικά για να είναι ένα σύνολο συνδέσμων πλήρες, απαιτείται να υπάρχει σε αυτό το ¬ και τουλάχιστον ένας ακόμη διμελής σύνδεσμος.
- Για να δείξω ότι ένα σύνολο συνδέσμων είναι πλήρες κάνω επαγωγή στην πολυπλοκότητα των τύπων:
- Για να δείξω ότι ένα σύνολο συνδέσμων ΔΕΝ είναι πλήρες κατασκευάζω έναν τύπο που δεν μπορεί να εκφραστεί χρησιμοποιώντας τους συνδέσμους του συνόλου.

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

ΠΑΡΑΔΕΙΓΜΑ: Δείξτε ότι κάθε προτασιακός τύπος έχει ίδιο αριθμο αριστερών και δεξιών παρενθέσεων.

Βάση Επαγωγής: Δείχνουμε ότι ισχύει για μία προτασιακή μεταβλητή p, δηλαδή ότι ο τύπος p έχει ίσες αριστερές και δεξιές παρενθέσεις

• Απόδειξη: Ο τύπος p έχει 0 αριστερές και 0 δεξιές παρενθέσεις. Συνεπώς ισχύει.

Επαγωγική Υπόθεση: Υποθέτουμε ότι ισχύει για δύο τύπους φ , ψ , δηλαδή ότι ισχύει $L_{\varphi} = R_{\varphi}$ και $L_{\psi} = R_{\psi}$. (Συμβολίζουμε με L_x το πλήθος των αριστερών παρενθέσεων του τύπου x, και με R_x το πλήθος των δεξιών παρενθέσεων του τύπου x)

Επαγωγικό Βήμα: Δείχνουμε ότι ισχύει για τους τύπους $(\neg \varphi)$, $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ δηλαδή ότι:

- <u>Ο τύπος (¬φ)</u> έχει ίσο αριθμό αριστερών και δεξιών παρενθέσεων. Πράγματι ο τύπος $(\neg \varphi)$ έχει $L_{\varphi} + 1$ αριστερές παρενθέσεις και $R_{\omega}+1$ δεξιές παρενθέσεις. Από επαγωγική υπόθεση έχω $L_{\omega} = R_{\omega}$ άρα και $L_{\infty} + 1 = R_{\infty} + 1$
- Ο τύπος (φ ∨ ψ) έχει ίσο αριθμό αριστερών και δεξιών παρενθέσεων. Πράνματι ο τύπος (φ ∨ ψ) έχει $L_{\omega} + L_{tb} + 1$ αριστερές παρενθέσεις και $R_{\omega} + R_{tb} + 1$ δεξιές παρενθέσεις. Από επαγωγική υπόθεση έχω $L_{\varphi}=R_{\varphi}$ και $L_{\psi}=R_{\psi}$, άρα και $L_{\varphi}+L_{\psi}+1$ = $R_{\varphi} + R_{\psi} + 1$.
- Η απόδειξη για τους τύπους $(\varphi \wedge \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$ είναι όμοια με την $(\phi \lor \psi)$.

ΤΟ ΑΞΙΩΜΑΤΙΚΟ ΣΥΣΤΗΜΑ ΤΟΥ Π.Λ.

Ο ΠΛ (προτασιακός λογισμός) είναι το αξιωματικό

- Έχει ως αξιώματα (αξιωματικά σχήματα) τα: ΑΣ1, ΑΣ2. ΑΣ3
- Και ως αποδεικτικό κανόνα τον Modus Ponens (M.P.)

Σε αυτό το αξιωματικό σύστημα μελετάμε αν ισχύουν:

- Τυπική Συνεπαγωγή T ⊢ φ
- όταν ισχύουν οι υποθέσεις του Τ αν εξάγεται με διαδοχικές εφαρμογές του ΜΡ ο τύπος φ
- Τυπικό Θεώρημα ⊢ φ δηλαδή αν εξάγεται ο τύπος φ με διαδοχικές εφαρμογές ΜΡ

Στις τυπικές αποδείξεις επιτρέπεται να χρησιμοποιήσουμε:

1) ΥΠΟΘΕΣΕΙΣ του συνόλου τύπων

2)ΑΞΙΩΜΑΤΙΚΑ ΣΧΗΜΑΤΑ και Συντακτικές αντικ/σεις σε αυτα: $(\psi \rightarrow \phi)$ $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$

ΑΣ2: ΑΣ3: $(\neg \varphi \rightarrow \neg \psi) \rightarrow ((\neg \varphi \rightarrow \psi) \rightarrow \varphi)$

3) MODUS PONENS

Αν ισχύει Φ Και ισχύει Φ→Ψ

Τότε ισχύει Ψ (από Modus Ponens)

4) ΤΥΠΙΚΑ ΘΕΩΡΗΜΑΤΑ

Έχουμε αποδείξεις για: $\vdash \varphi \rightarrow \varphi$

 $\vdash \varphi \rightarrow \neg \neg \varphi$ 5) ΤΥΠΙΚΕΣ ΣΥΝΕΠΑΓΩΓΕΣ Εφόσον δίνονται από την εκφώνηση

 $\vdash \neg \neg \phi \rightarrow \phi$

ΠΡΟΣ ΤΑ ΕΜΠΡΟΣ ΣΥΛΛΟΓΙΣΤΙΚΗ: Να αποδειχθεί ότι

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

 $\{ \varphi \rightarrow (\psi \rightarrow \chi), \varphi \rightarrow \psi \} \vdash \varphi \rightarrow \chi$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow (\psi \rightarrow \chi)$ Υπόθεση
- $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) A\Sigma 2$
- $(\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)$ MP1,2
- 4. $\phi \rightarrow \psi \quad Yπόθεση$
- 5. $\phi \rightarrow \chi$ MP4,3

ΠΡΟΣ ΤΑ ΠΙΣΩ ΣΥΛΛΟΓΙΣΤΙΚΗ:

Να αποδειχθεί ότι

$$\neg \phi \vdash (\neg \psi \rightarrow \phi) \rightarrow \psi$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. ¬ φ Υπόθεση
- $\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi) \Sigma A \sigma \tau o A \Sigma 1 \acute{o} \pi o \psi \div \neg \phi, \psi \div \neg \psi$
- $\neg \psi \rightarrow \neg \phi$ MP1,2
- 4. $(\neg \psi \rightarrow \neg \varphi) \rightarrow ((\neg \psi \rightarrow \varphi) \rightarrow \psi)$ ΣΑ στο ΑΣ3 όπου φ : ψ , ψ : φ
- 5. $(\neg \psi \rightarrow \phi) \rightarrow \psi$ MP3,4

ΤΥΠΙΚΟ ΘΕΩΡΗΜΑ:

Να αποδειχθεί ότι

$$\vdash (\varphi \rightarrow \chi) \rightarrow (\varphi \rightarrow \varphi)$$

ΛΥΣΗ:

Η τυπική απόδειξη είναι:

- 1. $\phi \rightarrow (\chi \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου ψ: χ
- 2. $(\phi \rightarrow (\chi \rightarrow \phi)) \rightarrow ((\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi)) \Sigma A \sigma \tau \sigma A \Sigma 2 \acute{\sigma} \pi \sigma \upsilon \psi : \chi$
- $(\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \phi) MP1.2$

ΘΕΩΡΗΜΑΤΑ ΤΟΥ ΠΡΟΤΑΣΙΑΚΟΥ ΛΟΓΙΣΜΟΥ

Θεώρημα (Απαγωγής): Aν $T \cup \{\varphi\} \vdash \psi$ τότε $T \vdash \varphi \rightarrow \psi$

Aν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: $T \cup \{\phi\}$ ⊢ ψ Τότε από το θεώρημα απαγωγής «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: T ⊢ φ → ψ

Αντίστροφη χρήση:

Για να δείξουμε ότι: $T \vdash \varphi \rightarrow \psi$

Από το θεώρημα Απαγωγής αρκεί να δείξουμε ότι: $T \cup \{\varphi\} \vdash \psi$

Θεώρημα (Αντιθετοαναστροφής):

Αν $T \cup \{ \varphi \}$ είναι αντιφατικό τότε $\mathsf{T} \vdash \neg \varphi$

Θεώρημα (Εις Άτοπο Απαγωγής):

Aν
$$T \cup \{ \varphi \} \vdash \psi$$
 τότε $\mathsf{T} \vdash \varphi \rightarrow \mathsf{\psi}$

Ευθεία χρήση:

Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι: $T \cup \{\varphi\}$ είναι

Τότε από το θεώρημα απαγωγής σε άτοπο «έπεται» (ή «προκύπτει άμεσα») ότι ισχύει: $T \vdash \neg \varphi$

Αντίστροφη χρήση:

Για να δείξουμε ότι: $T \vdash \neg \varphi$

Από το θεώρημα απαγωγής σε άτοπο αρκεί να δείξουμε ότι: $T ∪ {φ}$ είναι αντιφατικό.

Αντιφατικό Σύνολο Τύπων :

Ένα σύνολο τύπων Τ καλείται αντιφατικό αν υπάρχει ένας τύπος ψ τέτοιος ώστε να ισχύει:

 $T \vdash \psi \kappa \alpha \iota T \vdash \neg \psi$

Συνεπές σύνολο τύπων:

Σύνολο τύπων που δεν είναι αντιφατικό

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

ΑΣΚΗΣΗ: Να αποδείξετε ότι: $\vdash ((\psi \rightarrow \neg \psi) \rightarrow \neg \chi) \rightarrow (\chi \rightarrow \neg (\psi \rightarrow \neg \psi))$

Απάντηση:

Από το θεώρημα Απαγωγής αρκεί να δείξω:

 $(\psi \rightarrow \neg \psi) \rightarrow \neg \chi \vdash \chi \rightarrow \neg (\psi \rightarrow \neg \psi)$ Από το θεώρημα Απαγωγής αρκεί να δείξω:

 $\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \chi\} \vdash \neg (\psi \rightarrow \neg \psi)$

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω:

 $\{(\psi \rightarrow \neg \psi) \rightarrow \neg \chi, \psi \rightarrow \neg \psi\} \vdash \neg \chi$

που έχει τυπική απόδειξη:

- 1. ψ → ¬ψ Υπόθεση
- 2. $(\psi \rightarrow \neg \psi) \rightarrow \neg \chi$ Υπόθεση
- ¬χ MP1,2

ΑΣΚΗΣΗ: Να αποδείξετε ότι:

$$\{\chi \to \neg \psi, \, \varphi\} \vdash \chi \to \neg (\varphi \to \psi)$$

Απάντηση:

Από το θεώρημα απαγωγής αρκεί να δείξουμε ότι:

 $\{\chi \rightarrow \neg \psi, \, \varphi, \, \chi\} \mid \neg (\varphi \rightarrow \psi)$

Από το θ.απαγωγής σε άτοπο αρκεί να δείξουμε ότι το σύνολο τύπων: T={ $\chi \rightarrow \neg \psi$, φ , χ , $\varphi \rightarrow \psi$ } είναι αντιφατικό.

Και ακολουθούν οι τυπικές αποδείξεις: ΤΗ ψ και ΤΗ --ψ

Θεώρημα (Εγκυρότητας): Αν $T \vdash \varphi$ τότε $T \vDash \varphi$

(ευθεία χρήση) Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι $T \vdash \varphi$. Τότε από το θεώρημα εγκυρότητας «έπεται» ότι ισχύει: $T \models \varphi$ <u>(αντίστροφη χρήση)</u> Για να δείξουμε ότι: T ⊨ φ. Από το θεώρημα

εγκυρότητας αρκεί να δείξουμε ότι: $T \vdash \varphi$ <u>Θεώρημα (Πληρότητας):</u> Av $T \vDash \varphi$ τότε $T \vdash \varphi$

- (ευθεία χρήση) Αν γνωρίζουμε (π.χ. από την εκφώνηση) ότι $T ⊨ \varphi$. Τότε από το θεώρημα πληρότητας «έπεται» ότι ισχύει: $T \vdash \varphi$
- (αντίστροφη χρήση) Για να δείξουμε ότι: $T \vdash \varphi$. Από το θεώρημα πληρότητας αρκεί να δείξουμε ότι: $T \models \varphi$

ΑΠΟΔΕΙΞΕΙΣ ΤΥΠΙΚΩΝ ΘΕΩΡΗΜΑΤΩΝ

ΠΡΟΤΑΣΙΑΚΟΣ ΛΟΓΙΣΜΟΣ www.psounis.gr

 $\vdash \phi \rightarrow \phi$

Απόδειξη 1 (χωρίς Θεωρήματα Προτασιακού Λογισμού) Η τυπική απόδειξη είναι:

 $\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου $\phi:\phi, \psi:\phi \rightarrow \phi$ 2.

 $(\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$ SA σ to AS2 $\acute{\sigma}$ tou ϕ : ϕ , ψ : $\phi \rightarrow \phi$, χ : ϕ

3. $(\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi) \text{ MP1,2}$

 $\phi \rightarrow (\phi \rightarrow \phi)$ ΣΑ στο ΑΣ1 όπου ϕ : ψ , ψ : ϕ

ф→ф МР3,4

Απόδειξη 2 (με Θεωρήματα Προτασιακού Λογισμού)

Από το θεώρημα απαγωγής αρκεί να δείξω:

που έχει τυπική απόδειξη:

1. φ Υπόθεση

$\vdash \phi \to \neg \neg \phi$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

φ Η ¬¬φ

Από το θεώρημα Αντιθετοαναστροφής αρκεί να δείξω: $\neg \varphi \vdash \neg \varphi$

που έχει τυπική απόδειξη:

¬φ Υπόθεση

$\textbf{F} \neg \neg \ \phi \rightarrow \phi$

Από το θεώρημα Απαγωγής αρκεί να δείξω:

¬¬φ ⊢φ

που έχει τυπική απόδειξη:

¬¬φ Υπόθεση

 $\neg \neg \phi \rightarrow (\neg \phi \rightarrow \neg \neg \phi)$ ΣΑ στο ΑΣ1 όπου ϕ : $\neg \neg \phi$, ψ : $\neg \phi$ 2.

 $\neg \phi \rightarrow \neg \neg \phi$ MP1,2 3.

4. $(\neg \phi \rightarrow \neg \neg \phi) \rightarrow ((\neg \phi \rightarrow \neg \phi) \rightarrow \phi)$ ΣΑ στο ΑΣ3 όπου ϕ : $\neg \phi$, ψ : ϕ

 $(\neg \phi \rightarrow \neg \phi) \rightarrow \phi$ MP3,4

 $\neg \phi \rightarrow \neg \phi$ ΣΑ στο Τυπικό Θεώρημα $\vdash \phi \rightarrow \phi$ όπου ϕ : $\neg \phi$ 6.

φ MP6,5

Και παραθέτουμε την τυπική απόδειξη του τυπικού θεωρήματος $\vdash \phi \rightarrow \phi$