		5			. 6^	Phto		
	Agente E	evolve tramite	azione	a" in a	gente l	<u>-</u>		
-	0 1							
	$((\lor ())$			1151	いけつ	MP A	se trans A possiamo d	è possibile, ledurre transB
				(rzns	1 1019	R		
	5.	Calculus	of com	unicatin	g syste	ems		
Act	- In:	sieme di tutte	e le poss	sibili azid	oni			
a,	2 4	Act	2.3	h`ov	6	(027)	MP,	
				įΛγ				
{ ()	UPC	() ()=	ov if	(1)	11 21 U	3		
SINT	537,							
	2 5		16	IIE	1 [RI		
		TI		11 '_		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Sbusi	p (8							
5 · E	action	prefixing/con	catenaz	zione				
l 'agente	a F (con a	∈ Act) prima €	seque l	l'azione '	"a" e no	oi si compo	rta come ili	n agente F
	corrispond					3. 3. 33		
Lassionic	Comspone	Jence e.	5. E	_6_	F			
	_				+			
→ → +	Choic	e/scelta						
		avviene sceg e l'agente sce		in manie	era non	predeterm	inata) E o F	e poi
50.1.50.0								
	<u> </u>	5 (C)					PI	
					-		C 9	
	+							<u> </u>

E esegue a e F la coazione !a E||F si incronizzano su questa azione e la loro azione viene chiamata tau

Graficamente rappresentabile come grafo diretto, bipartito, pesato bbf 2 bbf b rus drsgrapls N_ (P,T,F,W) Tinsiem, Finitite, PATED Flow: FE (PXT) V (TX wpijnt. w = F = W+ HI rsbb lust raise incha N= CP, T, Pre, Post> Tinsiem, Finititic, PATED Pup, Post & MIPIXITI oppus 2 Funtioni: $-Dost - Dost (t,p) = Dost (t,p) \in F$

DN syst pm	graficamente rappresentazi	rappresentabile ag ione della PN	ggiungendo una et	chettatura alla
Pasato sul consetto di	Marking ()		1 0 10	
Basato sul concetto di	VIAIKIIIY (/W	ner King h	PIP IY J	
m E M	(Lettor		ad ogni posto P un	valore N+
P/T hot s	~ 5T P~			
	C = 2	N, mo>	mo marcat.	nz i 11772 b
			_	
Evolution d	Ý VN P	17 NOT 543	5 Ph	
1 Enoblin	9 ·			
t 6159/b	15 5	n iff h	> Pro[P	,
		at) m se tutti il n°	di token in input e	>= del peso degli
archi che collegar	10 input-transi	zione		
2 Fina.				Drough which
4 11000				(P (-) p voltage
Ce tolot	27 (111 0	COLONAS L. C
Jb C Spyl	2/3 GZ 1/	o t b o	sielter	0,000
M -t	/n	M = h	+ ([], =	
lo scatto toglie tan	ti token dai no	sti collegati in inpu	t a t quanto è il ne	so deali archi che
		modo ai posti in o		so acgir arem ene
3 Fim+ 2	(P JLON O	(gs (2)		
σ =t ₁	t _k €	T +	h 171	\$ hk
	σ			
scriviamo lh	D k			
La prof Sturp.	\$ = [\frac{1}{2} \]	t ₁ ,, t _K] ₄	4 7.	
Scar, 200 In the	Sp 3	[hn,, (nk]	- 4. 6[1,	Dhi-1 thi

Anolisi Phypistice	
frankship graph p Covership of 62ph.	
Bresser Sul concerto de Copputure.	
M > M A	
MICOPIP M IN MONT POSTO d' N CI SONO + FOXPA	
Algoritho RG	
$1 RG = \int h_0$ inizio con solo la marcatura iniziale	
2 scelgo un nodo (m) non taggato (non visitato) e lo taggo	
$3 \forall t \in M[t>:]$	
- (2/colo m1 (t.c. (n-1m)	
SP Pris MI (-1. MI) O. MI / M	
(212047 MD FIGSIP. APPP UNBOUND.	
SP h' NON Ó PERSPIN IN R6 COMOSO PO	
2971V. 3C.	
500 mos con the la be la chesa t	
Algoritho Coupie bility Graph.	
$1 R6 = \{n_{\delta}\}$ inizio con solo la marcatura iniziale	
2 scelgo un nodo (m) non taggato (non visitato) e lo taggo	
$3 \forall t t \cdot t \cdot m(t)$	
- (s/co/o m) (c. (n-a/n)	
SP PSS M' (-1. MI) O M' / M' / M	
1/2-co 1/2 comp w p non lo wisto por	
- SP h' Non & puesen in RG Cotago P'O	
29711.30	
- 2001 mgs or 2 cos to 1 pc 1 pc 1 pc 1 pc Como t	

LILPUSS P	Merting inventor (di proprieti m)
AM ESS(S)	, 3 m (RS (< N, 12) t. ((So 2 L-1 (- 2 7)
per ogni marcatura i	in RS esiste una marcatura raggiungibile che soddisfa PI
$\forall m \in RS($	S) / In soddisfz M
	tutte le marcature in RS
	Holiston ones (S) SD Contents.
_	SP M non MSpelle IT RETURN FALSE
	TURN (LUP.
	orre 6P(2) Velle 2 rous/2 convertes combonet
P 2 6	2-01 ghi 2-01 (MP CONNettons (PSLL
	olo l'incient F del le scoterninali
4 J	(Nov Court bro Nos Warcapara W (No 20992 ES)
	M T CVE

Analisi de vidertions

RA1. Fusion of series places

RA2. Fusion of series transitions

RB1. Elimination of identical place

RB2. Elimination of identical transition

RC1. Elimination of self-loop place

RC2. Elimination of self-loop transition

Anshiri strutturzh. (Liner zljebnic tepniques)
Lidez e grellz Li uszve L'en Listo
propuretz che Cipnilono sob de N
(K-bandod ness, dezdbot,...)
Esprimenzo le propuretz zll'interno doll en Li sleto per poi
usolvenz comp en Linera.

Ad esempio se voglio mostrare che i posti P1 e P2 sono in mutua esclusione mi basta verificare Che il seguente sistema non ha soluzione:

F21/12P1D
(A,O) sigger of E along chomils and
(on or eT(B), Ac Act pro cvi
E C E 6 MAZIONS SITIONS IN H Dro GREATE DEBRIFESTE
E attraverso sigma evolve in F Leto Fall (B) lingipap dei falliani di E
E== F F F F F F F F F F F F F F F F F F
51-WV 57-046:
Riphan Linhan. RCSXS
- E, K E, , J E, FT E - S-0 E, , J E, E - S-0 E,
Cioè ogni azione di E può essere ripetuta da F andando a finire in un nuovo stato che mantiene la relazione di simulazione
detile 19 F EDMI GILLON (NO F SIAVE E (EFIMF)
SPPSISTON DIP MOTION L- SIAVISTION RPR
BIN WY FORE
VIZ SIMULZMORD IN QVI (D dep LPLETONI Q PE R SMO
Crak bisinulation, Bisinula sporte consideral strange
1h - 2 - h' sp n - 1 - 1 - 1 h

Priviews Pm(s)= { or sw/or[o] = s} Cior l'incient du bstr on bortons gs , ppr brpy h 2 grasson M S = P SP P E L (S.) / Un peth d- p-shlori S = 7 P Sr 7 (S = P) (Pho P-P2/1 S F Y V Y SP SF Y V S F X SEEXP SP 30 + PN (s) to o[D] EP S = [[] U y] S P] o (Pm (s) (. 3720 OC37 = 4 1 VK 05 x 47 O(x] = 9 SEA[qVy] SP YOEPm(s) 3720 OCJ HU 1 YK OSKEJ O(K] FP -sirps(work à strong frings Mr sons esphimbilis Math xi echente il nobello di Knipkp M = (S, R, L, F)

un cammmino sigma è F-fair se passa infinitamente spesso per almeno uno stato di ognuno degli insiemi Fi in F Il model checking di CTL è un algoritmo che risolve il seguente problema: dato modello M e formula psi, quali sono gli stati s per cui (M,s) soddisfa psi? L'algoritmo è un semplice algoritmo iterativo che parte da una sottoformula di psi di lunghezza 1, vede in quali stati è valida, induttivamente prende la formula di lunghezza 2 e via così fino a riottenere psi Questo può essere fatto grazie alla definizione ricorsiva delle sottoformule in CTL $Sub(p) = \{ p \}$ $Sub(\neg \phi) = Sub(\phi) \cup \{ \neg \phi \}$ $Sub(\phi \lor \psi) = Sub(\phi) \cup Sub(\psi) \cup \{\phi \lor \psi\}$ $Sub(\mathsf{EX}\,\phi) = Sub(\phi) \cup \{\,\mathsf{EX}\,\phi\,\}$ $Sub(\mathsf{E}[\phi \mathsf{U}\psi]) = Sub(\phi) \cup Sub(\psi) \cup \{\mathsf{E}[\phi \mathsf{U}\psi]\}\$ $Sub(A [\phi U \psi]) = Sub(\phi) \cup Sub(\psi) \cup \{ A [\phi U \psi] \}.$ C9L# 5 2 to Formules Ø: = 2 | 70 | 0 1 0 | E 4 | A 8

peth Formules V: = 2 | 4 4 | X 4 | 4 U 4 CTL* deriva dall'interpretazione di LTL sul modello di CTL (definire la semantica in termini di Branching model) In tal maniera possiamo quindi suddividere le formule in "formule di stato" e "formule di path" LTL non presenta formule di path mentre CTL permette l'uso di formule di stato solo dopo CTL fomles. SORIP Formus Long 12 CTLX peta formaci y = - y | x g | g U g in CTL* posso inserire path formulas di path formulas

TTS time (resultion 5/57Pm II TTS di A, scritto M(A) è così definito: M(A) = (S, So, -) S= { (1, v) { L, V(c) | r= inv(l) } tutti gli stati la cui valutazione soddisfa gli invarianti (cioè tutti gli stati permessi) $50 = (10, \sqrt{0})$ (or $\sqrt{0}(\lambda) = 0$ $\forall \lambda \in C$ lo stato iniziale, con tutti i clock a zero le rastino - dofin te de 2 regolo 1 transport discrete 2/1) SP _P = (D, 1) E E (PSSTP 12-10) - N = Drs-9 (6) - n' = rPSPT clocks(P) in v' , n' t= inv(1) 2 t +2,11,7,000 (dplzy) < l, 1) -d = < l, 1 + 2> SP 2 < M+ 4 d < d , n + d = inv(l) lot time propse (om 13 judio en gesquer 95 nu let 4 un blable, ELPS PS Fim. GSLUNN DSFU 20 50 50 50 50 50 6 1 € W [Lables pro D(0') D(0,0)=0 $\Delta(0,0)=0$ $\Delta(0,0)=0$ $\Delta(0,i+1)=\Delta(0,i)=\begin{cases}0 & \text{if } t \in \mathbb{N} \\ 0 & \text{if } t \in \mathbb{N} \end{cases}$ $\Delta(0,i+1)=\Delta(0,i)=\begin{cases}0 & \text{if } t \in \mathbb{N} \\ 0 & \text{if } t \in \mathbb{N} \end{cases}$ Sons istallage SP Lin D(o, i) = 00 il contino o tempo dipropento

Un path è detto zeno se non è tempo divergente (cioè tempo convergente), un automa è detto zeno se da ogni stato può partire un cammino zeno. (cioè non va mai in timelock (deadlock))

(-oth upland 2 C+L 2 pante ch P Zin P Zin P Charles de formate charles 7179 P+PP+P (dPn) 6. PV: (ziny) vzv in s sp p vzv in s , stato in (m.) clock 7 mas Patto Partire. Esprisio E [\$ V < 7] Arbus Janip G. (bubo derbus