Optimization and Applications of Deep Learning algorithms for Super Resolution in MRI

Mattia Ceccarelli

Master Degree in Physics Alma Mater Studiorum - University of Bologna

A.Y. 2019-2020

Supervisor: Prof. Gastone Castellani **Co-Supervisor**: Dott. Nico Curti

Single Image Super Resolution

What is Super Resolution?

Super Resolution:

- Microscopy -> diffraction limit
- **Softwares** -> enhance digital spatial resolution

Standard procedure

- prior-known High Resolution (HR) image;
- down-sample for Low Resolution (LR) counterpart;
- Feed a Neural Network with LR images.

Deep Learning

What is a Neural Network

 Neural Network is a series of non-linear multi-parametric functions.

- Training by examples
- Super Resolution is an image-to-image process

Developed Frameworks

Byron and NumPyNet

■ Tailored around **CPU** usage

Image Quality

Quantitative Evaluation

PSNR - Peak Signal to Noise Ratio

 Measure the quality of lossy reconstructions;

$$PSNR = 20 \cdot \log_{10} \left(\frac{\max(I)}{\sqrt{(MSE)}} \right)$$

where MSE is :

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (I_i - K_i)^2$$

SSIM - Structural SIMilarity index

 It evaluates the structural similarity between two images taking into account visible improvements

$$SSIM(I,K) = \frac{1}{N} \sum_{i=1}^{N} \frac{(2\mu_{x}\mu_{y} + c_{1})(2\sigma_{xy} + c_{2})}{(\mu_{x}^{2} + \mu_{y}^{2} + c_{1})(\sigma_{x}^{2} + \sigma_{y}^{2} + c_{2})}$$

Models

Models Implemented and Tested in Byron

Trained on RGB Natural images -> Transfer Learning

EDSR - Enhanced Deep SR

	Number of
Layer	Parameters
Conv. input	6912
Conv. (32 residual block)	589824
Conv. (pre-shuffle)	589824
Conv. (upsample block)	2359296
Conv output	6912

Average Time on 510 × 339 image: 576.92 s. More than 40 million parameters

WDSR - Wide Deep SR

	Number of
Layer	Parameters
Conv. input 1	864
Conv. 1 (32 residual block)	55296
Conv. 2 (32 residual block)	55296
Conv. (pre-shuffle)	13824
Conv input 2 (pré-shuffle)	3600
Average Time on F10 × 220 im	200: 46 2F c

Average Time on 510×339 image: 46.35 s.

 \sim 3 million parameters

Mattia Ceccarelli

Dataset

MRI pre-processing description

- Public NAMIC dataset of 5 patients -> originals HR
- Gaussian blurring
- Donwscaling (x2 and x4)
- Re-upsamples with NN and Bicubic Algorithm (BC)

Figure: T2-weighted downsamplings

Upsample Comparisons

EDSR and Bicubic x2

T1-weighted:

- Mean trends on patient and angles.
- SR scores are higher than BC counterparts
- The three RGB channels perfoms differently

T2-weighted:

- RGB channels still have different performances
- BC and SR are comparable on most informative parts

Upsample Comparisons

WDSR and Bicubic x4

- Much less variance between channels
- Both SSIM and PSNR shows better performances

Error Localization

EDSR and Bicubic x2

- Pixel-wise absolute difference between reconstructions and originals
- Higher differences located around scalps
- Background \neq 0

Error Localization

EDSR and Bicubic x2 On T1-weighted patients

- Clear distiction between two components
- Heavy background components
- Pixel values are overestimated

Brain Extraction

BET - Brain Extraction Tool

- BET is a standard tool in MRI analysis. Two approaches:
 - 1. Extract masks for originals and reconstructions and compare
 - 2. Use the masks obtained from HR originals to evaluate reconstructions

Brain Extraction

BET - Masks Analysis

- Three masks from originals and reconstructions
- Intersection over Union:

- loU > 0.90
- EDSR comparable results
- WDSR not adapt for BET

Brain Extraction

BET - Background Removal

- The same mask is applied to each reconstruction.
- Removes background and scalp.
- The relative results change:
 - channels much more consistent
 - SR still better than bicubic

Conclusions

- Two new libraries were proposed:
 - NumPyNet Focused on readability and educational purposes;
 - Byron a tool for efficient implementations in CPUs environment;
- Promising results for super-resolution on biomedical images
- NN can generalize well, applying their "knowledge" to new datasets.
- extensions on explainability for DL

Future Developments

Future works may include:

- Extensions of *Transfer Learning* with **training**
- Re-train from scratch
- Analysis after Brain Extraction for all patients and angles

Thanks for your attention