Projeto Final: Detecção e Remoção de Ecos

Pedro Henrique de A. Gomes, Vitor Mendes Carvalho, UFPE.

I. INTRODUÇÃO

E Sta prática teve como objetivo a implementação de um sinal de áudio com frequencia de 22050 Hz, trazendo o estudo e aplicação de métodos de remoção de ecos e atenuação deles.

II. FUNDAMENTAÇÃO TEÓRICA

Com objetivo de adicionar eco ao som, o áudio lido é tratado como um sinal de entrada x[n] que passará por um sistema LIT com resposta ao impulso dada por h[n] e resultará em um sinal de saída y[n] tal que:

$$y[n] = x[n] * h[n] \tag{1}$$

a convolução de y[n] é dada pela regra da convolução de um sinal com a resposta ao impulso do sistema, como mostrado a seguir:

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$
 (2)

h[n] é dado pela equação:

$$h[n] = \delta[n] - \alpha \delta[n - D] \tag{3}$$

y[n] resulta em:

$$y[n] = x[n] - \alpha x[n - D] \tag{4}$$

assim obtendo um sinal com eco de atraso D e altura sonora dado por Alfa. Para o projeto foi necessário a utilização do Scilab junto com conhecimento de tecnicas de manipulação de sinais e sistemas.

Para a detecção de ecos foi utilizado o método de autocorrelação tal que:

$$\phi_{xx}[m] = \sum_{m = -\infty}^{\infty} x[m + \tau]x[\tau]$$
 (5)

e,

$$\phi_{yy}[m] = \sum_{m=-\infty}^{\infty} y[m+\tau]y[\tau]$$
 (6)

substituindo a eq. (4) na eq. (6) é possivel obter a relação a seguir entre as autocorrelações de x e y:

$$\phi_{yy}(m) = \phi_{xx}(m) - \alpha \phi_{xx}(m-D)$$

$$-\alpha \phi_{xx}(m+D) + \alpha^2 \phi_{xx}(m)$$
(7)

Pode-se calcular o D a partir da autocorrelação de y, pois é observado um pico negativo no tempo de inicio do eco, utilizando a função min(), no scilab, obtemos o índice e o valor do pico negativo, em seguida dividimos o indice pela frequência do sinal, pois o indice esta na frequência amostral. Dado D e alfa diferentes de zero, podemos afirmar a existencia

de um eco em um sinal y[n] apenas pela sua autocorrelação. No caso de D igual a zero, existe apenas um reforço sonoro ao áudio original com base no alfa.

O sistema de eco pode ser invertido utilizando FFT e a propriedade da convolução, garantindo que a convolução no tempo seja o produto na frequência:

$$y[n] = x[n] * h[n] \tag{8}$$

que é equivalente a:

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) \tag{9}$$

pode-se obter X a partir da divisão de Y por H e em seguida realizando a IFFT. Porém essa solução tem limitação, caso haja um sinal de entrada nulo, pode-se ocorrer uma indeterminação, além disso, caso existam valores próximos a zero, a FFT pode aumentar o ruído da função. Um sinal de entrada ideal, seria um sinal com ausência de pontos nulos ou valores próximos de nulo.

III. METODOLOGIA

Foi utilizado um computador para realizar toda estruturação do código, implementação de funções e testes. O Scilab foi utilizado para implementação do sistema de detecção e remoção de ecos.

O Audacity foi utilizado para gravar o áudio com 2 canais e frequência de 22050 Hz.

Figura 1: Som

Após gravar o som, ele é passado como entrada na função waveread, que transforma os picos e vales sonoros em valores entre -1 e 1, em um vetor de tamanho dado pelo tempo do áudio vezes a frequência. Neste caso, trabalharemos com um áudio de aproximadamente 2s, pois, já teremos um vetor de entrada de ordem 5. É interessante ressaltar que após cada operação de convolução o tamanho da saida é 2 vezes relação ao tamanhoho de entrada (visto que trabalharemos com as duas

funções de entrada na mesma ordem de grandeza). Logo, o sinal y[n] terá o dobro de pontos em relação ao sinal x[n], e ao calcularmos as respectivas autocorrelações a mesma ideia se repete.

IV. ANÁLISE DE RESULTADOS

Autocorrelações de y com variações no alfa e no DTs, para valorres de alfa pequeno e DTs grande pôde se observar:

Figura 2: $\alpha = 0.2eDTs = 0.9$

já para valores de alfa grande e DTs pequeno:

Figura 3: $\alpha = 0.9eDTs = 0.3$

e para valores de Alfa grande e DTs Grande:

Figura 4: $\alpha = 0.9eDTs = 0.9$

Para valores de DTs pequeno e alfa pequeno, o gráfico o gráfico se aproxima do de uma funçao sem ruído. Com base na análise dos gráficos de autocorrelação de Y é possivel notar que quanto maior o DTs, maior a distância do pico invertido no gráfico e quanto maior o alfa, maior o tamanho do pico invertido.

Tabela I: Tabela com limiar de valores audíveis de Alfa e DTs

D*Ts	alfa
0.9	0.04
0.5	0.05
0.4	0.05
0.3	0.06
0.2	0.08
0.1	0.2
0.08	0.3
0.06	0.4
0.07	0.5

Abaixo temos a plotagem dos valores, no qual é possivel observar uma curva auditiva. Para descoberta do alfa, utilizamos a eq.(7) para os valores m=0 e m=D, obtendo as seguintes equações:

$$E_y = E_x - 2\phi_{xx}[D] + \alpha^2 E_x \tag{10}$$

$$\phi_{yy}[D] = \phi_{xx}[D] - \alpha E_x + \alpha^2 \phi_{xx}[D] \tag{11}$$

somando as equações e isolando os termos temos:

$$\phi_{yy}[D] + E_y = \phi_{xx}[D](1 - 2\alpha + \alpha^2) + E_x(1 - \alpha + \alpha^2)$$
 (12)

Apos a descoberta do alfa é possivel determinar o som de entrada, aplicando o sistema inverso.

$$G(z) = \frac{1}{H(z)} \tag{13}$$

A equação inversa pode ser obtida aplicando a transformada Z utilizando a propriedade de deslocamento no tempo e linearidade, a equação é estável, pois como alfa < 1 e |Z| > lalfal, o circulo unitário está contido na RDC, de forma discreta ela pode ser obtida aplicando o modelo:

$$W(N) + \alpha W(N - D) = Y(N) \tag{14}$$

onde a saída de W obedece ao filtro digital de formula:

$$H(z) = \frac{B(z)}{A(z)} = \frac{b + b * \frac{1}{z} + \dots + b * \frac{1}{z^n}}{a + a * \frac{1}{z} + \dots + a * \frac{1}{z^n}}$$
(15)

utilizando a função filtro do Scilab com entrada de:

$$H(z) = \frac{1}{1 - \alpha \frac{1}{z^D}}$$
 (16)

pode-se obter o resultado final do audio sem eco. Caso o sinal possuísse multiploes ecos, primeiramente encontrados os valores de alfa e a distância dos outros picos, obtendo a função inversa por meio da transformada Z, passa-se o sinal pelo filtro digital de forma recursiva.

V. CONCLUSÃO

O eco é um problema bastante comum em redes de telecomunicações, mecanismos de propagação de som e comunicação em geral, pode ser causado por diversos fatores como distância do emissor ao receptor, ou até bate e volta do som emitido, em objetos, gerando atraso e consequentemente ondas em tempos diferentes. A melhor forma de contornar essa situação é utilizando filtros que atenuem essa onda atrasada, que normalmente está a um fator alfa de magnitude em relação ao som normal, devido as perdas durante o atraso no tempo. As tecnicas apresentadas no trabalho tem diversas aplicações no mundo real e a remoção de ecos está presente em quase todos os aparelhos de comunicação.

AGRADECIMENTOS

A todos aqueles que jamais receberão o merecido obrigado, agradecemos.