We conclude our quick study of affine isometries by proving a result that plays a major role in characterizing the affine isometries. This result may be viewed as a generalization of Chasles's theorem about the direct rigid motions in \mathbb{E}^3 .

Theorem 27.10. Let E be a Euclidean affine space of finite dimension n. For every affine isometry $f: E \to E$, there is a unique affine isometry $g: E \to E$ and a unique translation $t = t_{\tau}$, with $\overrightarrow{f}(\tau) = \tau$ (i.e., $\tau \in \text{Ker}(\overrightarrow{f} - \text{id})$), such that the set $\text{Fix}(g) = \{a \in E \mid g(a) = a\}$ of fixed points of g is a nonempty affine subspace of E of direction

$$\overrightarrow{G} = \operatorname{Ker}(\overrightarrow{f} - \operatorname{id}) = E(1, \overrightarrow{f}),$$

and such that

$$f = t \circ g$$
 and $t \circ g = g \circ t$.

Furthermore, we have the following additional properties:

- (a) f = g and $\tau = 0$ iff f has some fixed point, i.e., iff $Fix(f) \neq \emptyset$.
- (b) If f has no fixed points, i.e., $Fix(f) = \emptyset$, then $dim(Ker(\overrightarrow{f} id)) \ge 1$.

Proof. The proof rests on the following two key facts:

- (1) If we can find some $x \in E$ such that $\overrightarrow{xf(x)} = \tau$ belongs to $\operatorname{Ker}(\overrightarrow{f} \operatorname{id})$, we get the existence of g and τ .
- (2) $\overrightarrow{E} = \operatorname{Ker}(\overrightarrow{f} \operatorname{id}) \oplus \operatorname{Im}(\overrightarrow{f} \operatorname{id})$, and the spaces $\operatorname{Ker}(\overrightarrow{f} \operatorname{id})$ and $\operatorname{Im}(\overrightarrow{f} \operatorname{id})$ are orthogonal. This implies the uniqueness of g and τ .

First, we prove that for every isometry $h \colon \overrightarrow{E} \to \overrightarrow{E}$, $\operatorname{Ker}(h - \operatorname{id})$ and $\operatorname{Im}(h - \operatorname{id})$ are orthogonal and that

$$\overrightarrow{E} = \operatorname{Ker}(h - \operatorname{id}) \oplus \operatorname{Im}(h - \operatorname{id}).$$

Recall that

$$\dim(\overrightarrow{E}) = \dim(\operatorname{Ker}\varphi) + \dim(\operatorname{Im}\varphi),$$

for any linear map $\varphi \colon \overrightarrow{E} \to \overrightarrow{E}$; see Theorem 6.16. To show that we have a direct sum, we prove orthogonality. Let $u \in \operatorname{Ker}(h-\operatorname{id})$, so that h(u)=u, let $v \in \overrightarrow{E}$, and compute

$$u \cdot (h(v) - v) = u \cdot h(v) - u \cdot v = h(u) \cdot h(v) - u \cdot v = 0,$$

since h(u) = u and h is an isometry.

Next, assume that there is some $x \in E$ such that $\overrightarrow{xf(x)} = \tau$ belongs to the space $(\overrightarrow{f} - \operatorname{id})$. If we define $g: E \to E$ such that

$$g = t_{(-\tau)} \circ f,$$