Folyamatábra

Mi a folyamatábra?

- A folyamatábra nem más, mint algoritmusok grafikus megjelenítése.
- Az egyes elemi lépéseket alakzatok segítségével jelenítjük meg, majd ezeket nyilakkal kötjük össze, amelyek meghatározzák az egyes tevékenységek végrehatásának sorrendjét.
- A különböző jellegű tevékenységekhez különböző alakzatok tartoznak.

Start- és Vége szimbólum

- Ezek az ellipszis alakzatok határozzák meg azt, hogy hol kell elkezdenünk az algoritmus végrehajtását, illetve azt, hogy mikor értük el a lépéssorozat végét.
- A Start szimbólumból maximum egy lehet egy folyamatábrában.
 - Csak egyetlen kifelé irányuló nyíl indulhat ki belőle és befelé irányuló nyíl nem kapcsolódhat hozzá.
- A Vége szimbólumból több is szerepelhet egy folyamatábrában, mindig elegendő pontosan egy végjel.
 - Egy vagy több nyíl is mutathat irányába, viszont nem indulhat ki belőle egy sem.

Elemi tevékenység

- Egy téglalap alakzatban szereplő egyszerű és egyértelmű lépés
- Az alábbi ábrán szereplő tevékenység például egy értékadás, ami azt jelenti, hogy az X nevű mennyiség (más néven változó) értéke legyen innentől kezdve 1.
- Egy vagy több bemenő nyíl és pontosan egy kimenő nyíl tartozhat hozzá.

Input- és Output szimbólum

- A legtöbb algoritmusnak szüksége van valamiféle bemeneti adatra.
- Ezt általában a felhasználó a végrehajtás során fogja csak megadni és ezt az értéket fogja az algoritmus felhasználni
- A kapott érték mindig eltárolásra kerül az alakzatban megadott nevű mennyiségben.
- Máskor az algoritmus egy eredményt szolgáltat, közölni szeretne valamit a felhasználóval.
- A szövegkonstansok mindig macskakörömben szerepelnek
- Ezekből a szimbólumokból csak egy nyíl mutathat kifelé.

Feltétel szimbólum

- Egy csúcsára állított rombuszban egy állítás szerepelhet.
- Az állítás egy logikai kifejezés, amely vagy igaz, vagy hamis kell kegyen.
- Miután kiértékeltük ezt a feltételt, két lehetőség közül választhatunk.
- Ha igaz, akkor az igaz nyíl felé megyünk tovább
- Ha hamis, akkor a hamis címkével ellátott nyíl mentén kell tovább haladnunk.

Beágyazás szimbólum

- Előfordul, hogy egy folyamatábrában alkalmaznunk kell egy alapvetően több lépésből álló utasítássorozatot.
- Ha azt már korábban definiáltuk, leírtuk, de most nem szeretnénk ezt újra megtenni, akkor használhatjuk a dupla oldalú téglalap alakzatot a beágyazás szimbólumaként.
- Bizonyos elemek esetén tehát előfordulhat, hogy több mint egy befelé mutató nyíl kapcsolódik hozzájuk. Ilyen esetben használhatjuk azt a jelölést, amikor az alakzat felé tartó nyilak egy pontban találkoznak és innen már csak egyetlen nyíl halad tovább az adott alakzat felé.

Az algoritmus alapszerkezetei folyamatábra esetén

Egy hétköznapi példa

- •Adjuk meg azt a lépéssorozatot, amely egy nyilvános, érmés telefonkészülék használatát mutatja be. Tételezzük fel, hogy a fülkében vagyunk, ismerjük a felhívandó telefonszámot és vannak megfelelő érméink. Első körben azt gondolhatjuk, hogy a feladat egyszerű:
- 1. Vedd fel a kagylót!
- 2. Dobd be az érmét!
- 3. Tárcsázd a számot!
- 4. Beszélj!
- 5. Tedd le a kagylót!

Változók

- •A változó egy mennyiség értékének tárolására szolgáló névvel rendelkező objektum.
- •Ezzel a névvel tudunk hivatkozni az eltárolt értékre.
- •A név általában (bizonyos korlátokat figyelembe véve) szinte tetszőleges lehet.
 - •Gyakorlati szempontból az a praktikus, ha a név utal a tárolt mennyiség mivoltára. (clean code)
- •értékadás művelet: tömeg=16
- •23 = távolság <- ROSSZ
- konstans érték is lehet

Példa

• Mennyi a tömege 8 darab olyan arany tömbnek, amelyek mindegyike téglatest alakú és ennek a téglatestnek az oldalhosszúságai rendre 5cm, 10cm és 20 cm? (Az arany sűrűsége 19,2g köbcentiméterenként.)

Inkrementálás és dekrementálás

- Az értékadás egy speciális esete az, amikor a változó új értéke függ a régitől.
- Például ha az x változó értékét meg szeretnénk növelni eggyel, akkor a következőt kell írnunk
- Ezt inkrementálás-nak nevezzük.

$$\bullet X = X + 1$$

• Ezt dekrementálás-nak nevezzük.

$$X = X - 1$$

szám	segéd	fakt
?	?	?
5	?	?
5	?	1
5	0	1
5	1	1
5	1	1
5	2	1
5	2	2
5	3	2
5	3	6
5	4	6
5	4	24
5	5	24
5	5	120

szám	fakt
?	?
5	?
5	1
5	5
4	5
4	20
3	20
3	60
2	60
2	120
1	120

Operátorok

- Az egyes értékekkel (például konstansokkal, változókkal) különböző műveleteket hajthatunk végre. (összeadás, kivonás)
- Ezeket a műveleteket **operátor**-okkal jelöljük, az értékeket, amelyeken a műveletet végrehajtjuk pedig **operandus**-oknak nevezzük.
- Egyes operátoroknak egy, másoknak kettő (esetleg több) operandusa is lehet. Egyes esetekben az operandusszám ismerete is szükséges ahhoz, hogy tudjuk egy operátor milyen műveletet is takar.
- Szemléltessük ezt egy példával! Az x = -34 értékadás során a operátor egy operandussal rendelkezik (ez a 34). Ebben az esetben az operátor az érték mínusz egyszeresének meghatározására szolgál (előjelváltás). Ezzel szemben az y = 9-5 értékadásban szereplő operátornak két operandusa is van, a művelet során pedig ezek különbségét határozzuk meg (kivonás).

- Az operátorok és operandusok valamint esetleges kerek zárójelek kombinációjával ún.
 kifejezéseket hozhatunk létre.
- A kifejezés-kiértékelés során egyértelműen meg kell tudnunk határozni minden kifejezés értékét. Egyszerűbb esetekben ez nem jelent gondot.
- a 3+4+5 kifejezés értéke 12.
- azonban a 3+4*5 -> zárójelezés

Példa

- Szeretnénk egy tízes számrendszerben megadott (decimális) nem negatív, egész számot kettes számrendszerbe (bináris formába) átváltani.
 - 1. Írd fel az átváltani kívánt decimális számot és húzz a jobb oldalánál lefelé egy hosszú vonalat!
 - 2. Oszd el a vonal bal oldalán lévő számot kettővel és a hányados egész részét írd az előbbi szám alá a vonal bal oldalára!
 - 3. Az osztás maradékát írd le a kapott egész hányados mellé a vonal jobb oldalára!
 - 4. Amennyiben a legutóbbi osztás során kapott hányados egész része nem 0, akkor folytasd a 2. lépéssel!
 - 5. Különben a vonal jobb oldalán elhelyezkedő számjegyeket (0 vagy 1) alulról felfelé írd egymás mellé! Ez a kívánt bináris szám.

 $237_{10} = 11101101_2$

Logikai kifejezések

Operátor	Alternatív jelölés	Mikor igaz az eredmény?	Ellentét operátor
=	==	Igaz, ha a két operandusa azonos értékű.	≠
≠	!=,<>	Igaz, ha a két operandus eltérő értékű.	=
>		Igaz, ha az első operandus értéke nagyobb, mint a másodiké.	≤
≥	>=	Igaz, ha az első operandus értéke nagyobb, mint a másodiké vagy egyenlő a két érték.	<
<		Igaz, ha az első operandus értéke kisebb, mint a másodiké.	2
≤	<=	Igaz, ha az első operandus értéke kisebb, mint a másodiké vagy egyenlő a két érték.	>

Logikai kapuk

ÉS	Hamis	Igaz
Hamis	Hamis	Hamis
Igaz	Hamis	Igaz

VAGY	Hamis	Igaz
Hamis	Hamis	Igaz
Igaz	Igaz	Igaz

XOR	Hamis	Igaz
Hamis	Hamis	Igaz
Igaz	Igaz	Hamis

Hiba

Szójegyzék

ciklusmag	Az ciklusban megismétlendő utasítások sorozata.
dekrementálás	Egy változó értékének eggyel való csökkentése.
értékadás	Egy elemi lépés, mely során (új) értéket rendelünk egy változóhoz. Megváltoztathatjuk vele egy változó értékét.
feltétel	Egy elágazás vagy egy ciklus esetén a végrehajtás menetét befolyásoló logikai kifejezés.
folyamatábra	Egy grafikus algoritmus megjelenítési technika, melyben a különböző jellegű tevékenységek eltérő alakzatokban vannak megjelenítve és ezeket nyilakkal kötjük össze a végrehajtás menetének meghatározása céljából.

inkrementálás	Egy olyan értékadás, mely során egy változó értéke a korábbi értékhez képest eggyel nő.
kifejezés	Operátorokból, operandusokból és zárójelekből álló formula, képlet.
konstans	Egy a program szövegébe "égetett" érték, mely csak a program átírásával változtatható meg. Egy változó értékét többek között egy konstans, azaz literál segítségével is megadhatjuk. Például: x=96, ebben az esetben a 96 egy konstans.
logikai kifejezés	Olyan kifejezés, melynek az értéke vagy igaz vagy hamis. Többnyire feltételekben szerepel ilyen kifejezés.
operandus	Egy érték, amelyen egy műveletet végrehajtunk.
operátor	Egy művelet megadására, megjelenítésére szolgál. Például az osztás műveletét a / (perjel) operátor jelzi.
változó	Egy névvel ellátott mennyiség, melynek értékére az adott névvel hivatkozhatunk és ez az érték az értékadás során is megváltoztatható.