Elementary Linear Algebra - MATH 2250 - Day 22

Name:

- 1. Find the eigenvalues and the eigenvectors of a triangular matrix: Once with distinct eigenvalues and once with equal eigenvalues.
- 2. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find the eigenvalues of A and their corresponding eigenvectors. Call these eigenvalues λ_1 and λ_2 , and the corresponding eigenvectors v_1 and v_2 .

$$\lambda_1 = 2 \longrightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix} = V_1$$

$$\lambda_2 = 0 \longrightarrow \begin{bmatrix} 1 \\ -1 \end{bmatrix} = V_2$$

Let
$$S = \begin{bmatrix} v_1 & v_2 \\ v_1 & v_2 \end{bmatrix}$$
. Evaluate AS .
$$AS = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & O \\ 2 & O \end{bmatrix}$$

Let $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2)$. Evaluate $S\Lambda$.

$$S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix}$$

Evaluate S^{-1} .

$$S^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Evaluate $S^{-1}AS$.

$$S^{-1}AS = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = \Lambda$$

Evaluate $S\Lambda S^{-1}$.

$$SAS^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = A$$

Find the echelon form of A, and multiply its pivots.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \rightarrow 1 \cdot 0 = 0$$

Multiply the eigenvalues of A, and compare it with the product of the pivots.

Is it true that the pivots of A are the same as eigenvalues of A?

3. Using the same matrix A as in problem 2 , recall that $A = S\Lambda S^{-1}$. Evaluate A^{2} , A^{3} , and A^{4} . What are the eigenvalues of A^{2} , A^{3} , A^{4} ?

$$A^{2} = (S \wedge S^{-1})(S \wedge S^{-1}) = S (\Lambda^{2}) S^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} = \cdots$$

$$A^{3} = S \wedge^{3} S^{-1} = \cdots$$

$$A^{2} = S \wedge^{4} S^{-1} = \cdots$$

4. What are the eigenvalues of $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Is the matrix diagonalizable? What is the diagonlized A?

5. What are the eigenvalues of
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
. $1, 1, 1$

What are the algebraic multiplicities of the eigenvalues of A? 1 has alg. mult. 3. $x^{3} = 0 \rightarrow x = 1$ (3 times)

What are the geometric multiplicities of the eigenvalues of A?

$$A-I = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow N(A-I)$$

$$R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow N: \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Is the matrix diagonalizable? Why?

No! because the e-vectors are not lin. ind.

6. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
. Find λ and x such that $Ax = \lambda x$.

$$\lambda = 1, \quad
\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \longrightarrow
\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow
N = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\lambda = 2, \quad
\begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow
\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow
N = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\lambda = 3, \quad
\begin{bmatrix} -2 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow
N = \begin{bmatrix} 3/2 \\ 2 \\ 0 & 0 \end{bmatrix} \longrightarrow
X = \begin{bmatrix} 3/2 \\ 2 \\ 0 & 0 \end{bmatrix}$$

$$\lambda = 3, \quad
\begin{bmatrix} -2 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}
\longrightarrow
N = \begin{bmatrix} 3/2 \\ 2 \\ 0 & 0 \end{bmatrix}
\longrightarrow
X = \begin{bmatrix} 3/2 \\ 2 \\ 0 & 0 \end{bmatrix}$$

Switch two rows of A to get B. Is it true that $Bx = \lambda x$?

$$B = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}, \quad B \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}. \quad NO!$$

What are all the eigenvalues of B?

- 7. If the all the eigenvalues of $A_{n\times n}$ are distinct, then the eigenvectors of A are they form a $N_n \times n$ for \mathbb{R}^n . That is, every vector $v \in \mathbb{R}^n$ can be written as a finear combination of the eigenvectors of A.
- 8. Is it true that if A is diagonalizable, then the eigenvalues of A are distinct? Check it for the identity matrix.

9. If A diagonalizable, is it true that the diagonalized A is the same as rref(A)? Give an example.

Nopel. A=
$$\begin{bmatrix} 10\\ 02 \end{bmatrix}$$
, $\text{ref}(A)=\begin{bmatrix} 10\\ 01 \end{bmatrix}$

10. Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.