Sequential Circuits (Circuits as Memory)

Sequential Circuits

- •Most digital systems like digital watches, digital phones, digital computers, digital traffic light controllers and so on require memory elements
- Memory elements are digital circuits that can store and retrieve data in the form of 1's and 0's.
- The output of the systems with memory depends not only on present inputs but also on what has happened in the past.
- •SR latch is an example of memory circuits that can store one bit of information

General Digital System

Cont.....Sequential circuit

•These circuits form a sequential circuit, because the output of the circuit is also used as input to the circuit.

Sequential circuit

The output is a function of the input values and the existing state of the circuit.

We describe the circuit operations using

- Boolean expressions
- Logic diagrams
- Truth tables

Sequential Circuits

synchronizes when current state changes happen keeps system well-behaved makes it easier to design and build large systems

General flip-flop symbol and definition of its two possible output states

Output states

Q = 1, $\overline{Q} = 0$: called HIGH or 1 state; also called SET state

Q = 0, $\overline{Q} = 1$: called LOW or 0 state; also called CLEAR or RESET state (b)

NAND Gate Latch

- The NAND gate latch or simply latch is a basic FF.
- The inputs are set and clear (reset)
- The inputs are active low, that is, the output will change when the input is pulsed low.
- When the latch is set

$$Q = 1$$
 and $\overline{Q} = 0$

When the latch is clear or reset

$$Q = 0$$
 and $\overline{Q} = 1$

A NAND latch is an example of a bistable device

Figure A NAND latch has two possible resting states when SET = RESET = 1.

	NAND				
0 0 1	0	1			
0	1	1			
1	0	1			
1	1	0			

Setting the NAND Flip-Flop

	NAND				
0	0	1			
0	1	1			
1	\cap	1			
1	1	0			
	,	•			

Figure Pulsing the SET input to the 0 state when (a) Q = 0 prior to SET pulse; (b) Q = 1 prior to SET pulse. Note that, in both cases, Q ends up HIGH.

Resetting the NAND Flip-Flop

Figure Pulsing the RESET input to the LOW state when (a) Q = 0 prior to RESET pulse; (b) Q = 1 prior to RESET pulse. In each case, Q ends up LOW.

Function table of a NAND latch

Set	Reset	Output
1	1	No change
0	1	Q = 1
1	0	Q = 0
0	0	Invalid*

*Produces $Q = \overline{Q} = 1$.

(b)

NAND Gate Latch Summary

- Summary of the NAND latch:
- SET = RESET = 1. Normal resting state, outputs remain in state prior to input.
- SET = 0, RESET = 1. Q will go high and remain high even if the SET input goes high.
- SET = 1, RESET = 0. Q will go low and remain low even if the RESET input goes high.
- SET = RESET = 0. Output is unpredictable because the latch is being set and reset at the same time.

Other Representations of a NAND latch

NOR Gate Latch

- The NOR latch is similar to the NAND latch except that the outputs are reversed.
- The SET and RESET inputs are active high, that is, the output will change when the input is pulsed high.
- In order to ensure that a FF begins operation at a known level, a pulse may be applied to the SET or RESET inputs when a device is powered up.

Figure (a) NOR gate latch; (b) function table; (c) simplified block symbol.

Determine Q for a NOR latch given the inputs below

Digital Pulses

- The transition from low to high on a positive pulse is called rise time (t_r) .
 - Rise time is measured between the 10% and 90% points on the leading edge of the voltage waveform.
- The transition from high to low on a positive pulse is called fall time (t_f) .
 - Fall time is measured between the 90% and 10% points on the trailing edge of the voltage waveform.

Clock Signals and Clocked Flip-Flops

- Asynchronous system outputs can change state at any time the input(s) change.
- Synchronous system output can change state only at a specific time in the clock cycle.
 - The clock signal is a rectangular pulse train or square wave.
 - Positive going transition (PGT) when clock pulse goes from 0 to 1.
 - Negative going transition (NGT) when clock pulse goes from 1 to 0.
 - Transitions are also called edges.

Clock Signals and Clocked Flip-Flops

- Clocked FFs change state on one or the other clock transitions.
- Some common characteristics:
 - Clock inputs are labeled CLK, CK, or CP.
 - A small triangle at the CLK input indicates that the input is activated with a PGT.
 - A bubble and a triangle indicates that the CLK input is activated with a NGT.
 - Control inputs have an effect on the output only at the active clock transition (NGT or PGT). These are also called synchronous control inputs.
 - The control inputs get the FF outputs ready to change, but the change is not triggered until the CLK edge.

Clocked S-R Flip-Flop

• The SET-RESET (or SET-CLEAR) FF will change states at the positive going or negative going clock edge.

	Inputs			Output		
	S	С	CLK	Q		
Ī	0	0	1	Q ₀ (no change)		
	1	0	1	1		
	0	1	1	0		
	1	1	1	Ambiguous		

Q₀ is output level prior to [↑]of CLK. ↓ of CLK produces no change in Q.

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

(b) Function table

- Occasionally, desirable to avoid latch changes
- C = 0 disables all latch state changes
- Control signal enables data change when C = 1
- Right side of circuit same as ordinary S-R latch.

Fig. SR Latch with Control Input

Clocked SR Flip-Flop

Triggers on

negative edge

Figure (a) Clocked S-R flipflop that responds only to the positive-going edge of a clock pulse; (b) function table; (c) typical waveforms.

	inputs	5	Output
S	R	CLK	Q
0	0	1	Q ₀ (no change)
1	0		1
0	1		0
1	1	<u> </u>	Ambiguous

 Q_0 is output level prior to \uparrow of CLK. ↓ of CLK produces no change in Q.

(b)

Figure Clocked S-R flip-flop that triggers only on negative-going transitions.

Output

Ambiguous

Inputs

S R CLK

Clocked J-K Flip-Flop

- Operates like the S-R FF. J is set, K is clear.
- When J and K are both high the output is toggled from whatever state it is in to the opposite state.
- May be positive going or negative going clock trigger.
- Has the ability to do everything the S-R FF does, plus operate in toggle mode.

Clocked JK Flip-Flop

J	K	CLK	Q
0	0	1	Q ₀ (no change)
1	0	 	1
0	1	 	0
1	1	\	Q ₀ (toggles)

Figure (a) Clocked J-K flip-flop that responds only to the positive edge of the clock; (b) waveforms.

J-K Flip-flop

The 4 modes of operation are: hold, set, reset, toggle

J	K	Q	Q'	Mode
0	0	Q	Q'	Hold
1	0	1	0	Sets
О	1	О	1	Resets
1	1	Q'	Q	Toggle

JK contains an internal **Active Low SR latch**.

Mode of Operation: Hold

Hold: no change in Q

J	K	Q	Q'	Orig. Q	Orig. Q'
0	0	0	1	0	1

Mode of Operation: Set

Set: Q = 1.

J	K	Q	Q'	Orig. Q	Orig. Q'
1	0	1	0	0	1

Mode of Operation: Reset

Reset: Q = 0.

J	K	Q	Q'	Orig. Q	Orig. Q'
0	1	0	1	1	0

Mode of Operation: Toggle

Toggle: Q = Q'.

J	K	Q	Q'	Orig. Q	Orig. Q'
1	1	1	0	0	1

Mode of Operation: Toggle again

Toggle: Q = Q'.

J	K	Q	Q'	Orig. Q	Orig. Q'
1	1	О	1	1	О

Clocked D Flip-Flop

- One data input.
- The output changes to the value of the input at either the positive going or negative going clock trigger.
- May be implemented with a J-K FF by tying the J input to the K input through an inverter.
- · Useful for parallel data transfer.

Asynchronous Inputs

- Inputs that depend on the clock are synchronous.
- Most clocked FFs have asynchronous inputs that do not depend on the clock.
- The labels PRE and CLR are used for asynchronous inputs.
- Active low asynchronous inputs will have a bar over the labels and inversion bubbles.
- If the asynchronous inputs are not used they will be tied to their inactive state.

Clocked J-K flip-flop with asynchronous inputs

J	K	Clk	PRE	CLR	Q
0	0	+	1	1	Q (no change)
0	1	+	1	1	0 (Synch reset)
1	0	+	1	1	1 (Synch set)
1	1	+	1	1	Q (Synch toggle)
X	Х	Х	1	1	Q (no change)
X	Х	Х	1	0	0 (asynch clear)
X	Х	х	0	1	1 (asynch preset)
X	Х	Х	0	0	(Invalid)

Flip-Flop Synchronization

- Most systems are primarily synchronous in operation, in that changes depend on the clock.
- Asynchronous and synchronous operations are often combined.
- The random nature of asynchronous inputs can result in unpredictable results.

The signal *A* has no effect until negative edge of clock.

Edge-triggered flip-flop can Synchronize Circuit

Master-Slave D Flip Flop

- Consider two latches combined together
- Only one C value active at a time
- Output changes on falling edge of the clock

Fig. Master-Slave D Flip-Flop

- Stores a value on the positive edge of C
- Input changes at other times have no effect on output

Positive edge triggered

D gets latched to Q on the rising edge of the clock.