Chapter: 17. TRIGONOMETRIC EQUATIONS

Exercise: 17

Question: 1

Find the principa

Solution:

To Find: Principal solution.

[NOTE: The solutions of a trigonometry equation for which $0 \le x < 2\pi$ is called principal solution]

(i) Given: $\sin x = \frac{\sqrt{3}}{2}$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in I$

By using above formula, we have

$$\sin x = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \implies x = n\pi + \frac{\pi}{3} (-1)^n$$

Put
$$n = 0 \Longrightarrow x = 0 \times \pi + \frac{\pi}{3}(-1)^0 \Longrightarrow x = \frac{\pi}{3}$$

Put n= 1
$$\Rightarrow$$
 x = 1× π + $\frac{\pi}{3}$ (-1)¹ \Rightarrow x = 1 × π + $\frac{\pi}{3}$ (-1)¹ \Rightarrow x = π - $\frac{\pi}{3}$ = $\frac{2\pi}{3}$

So principal solution is $x = \frac{\pi}{3}$ and $\frac{2\pi}{3}$

(ii) Given: $\cos x = \frac{1}{2}$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos x = \frac{1}{2} = \cos \frac{\pi}{3} \implies \theta = 2n\pi \pm \alpha, n \in I$$

Put
$$n=0 \Rightarrow x = 2n\pi \pm \frac{\pi}{3} \Rightarrow x = \frac{\pi}{3}$$

Put
$$n=1 \Longrightarrow x=2\pi\pm\frac{\pi}{3} \Longrightarrow x=\frac{5\pi}{3}, \frac{7\pi}{3} \Longrightarrow x=\frac{5\pi}{3}, \frac{7\pi}{3}$$

 $\left[\frac{7\pi}{3}\right] > 2\pi$ So it is not include in principal solution]

So principal solution is $x = \frac{\pi}{3}$ and $\frac{5\pi}{3}$

(iii) Given: $\tan x = \sqrt{3}$

Formula used: $tan\theta = tan\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

$$\tan x = \sqrt{3} = \tan \frac{\pi}{3} \implies x = n\pi + \alpha, n \in I$$

Put
$$n = 0 \implies x = n\pi + \frac{\pi}{3} \implies x = \frac{\pi}{3}$$

Put n= 1
$$\Rightarrow$$
 x = $\pi + \frac{\pi}{3}$ \Rightarrow x = $\frac{4\pi}{3}$ \Rightarrow x = $\frac{4\pi}{3}$

So principal solution is $x = \frac{\pi}{3}$ and $\frac{4\pi}{3}$

(iv) Given:
$$\cot x = \sqrt{3}$$

We know that $tan\theta \times cot\theta = 1$

So cotx =
$$\sqrt{3}$$
 \implies tanx = $\frac{1}{\sqrt{3}}$

The formula used: $tan\theta = tan\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

By using the above formula, we have

$$\tan x = \frac{1}{\sqrt{3}} = \tan \frac{\pi}{6} \implies \theta = n\pi + \alpha, n \in I$$

Put
$$n = 0 \implies x = n\pi + \frac{\pi}{6} \implies x = \frac{\pi}{6}$$

Put n= 1
$$\Rightarrow$$
 x = $\pi + \frac{\pi}{6} \Rightarrow$ x = $\frac{7\pi}{6}$

So principal solution is
$$x = \frac{\pi}{6}$$
 and $\frac{7\pi}{6}$

(v) Given:
$$\csc x = 2$$

We know that $\csc\theta \times \sin\theta = 1$

So
$$\sin x = \frac{1}{2}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in$

By using above formula, we have

$$\sin x = \frac{1}{2} = \sin \frac{\pi}{6} \implies \theta = n\pi + \frac{\pi}{6} (-1)^n$$

Put n=
$$0 \Rightarrow \theta = 0 \times \pi + \frac{\pi}{6}(-1)^0 \Rightarrow \theta = \frac{\pi}{6}$$

Put n= 1
$$\Rightarrow \theta = 1 \times \pi + \frac{\pi}{6}(-1)^1 \Rightarrow \theta = 1 \times \pi + \frac{\pi}{6}(-1)^1 \Rightarrow \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

So principal solution is $x = \frac{\pi}{6}$ and $\frac{5\pi}{6}$

(vi) Given:
$$\sec x = \frac{2}{\sqrt{3}}$$

We know that $\sec\theta \times \cos\theta = 1$

So
$$\cos x = \frac{\sqrt{3}}{2}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

$$\cos x = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6} \implies x = 2n\pi \pm \alpha, n \in I$$

Put
$$n = 0 \implies x = 2n\pi \pm \frac{\pi}{6} \implies x = \frac{\pi}{6}$$

Put
$$n=1 \Rightarrow x=2\pi \pm \frac{\pi}{6} \Rightarrow x=\frac{11\pi}{6}, \frac{13\pi}{6} \Rightarrow x=\frac{11\pi}{6}, \frac{13\pi}{6}$$

 $\left[\frac{13\pi}{6}\right] > 2\pi$ So it is not include in principal solution]

So principal solution is $x = \frac{\pi}{6}$ and $\frac{11\pi}{6}$

Question: 2

Find the principa

Solution:

To Find: Principal solution.

(i) Given:
$$\sin x = \frac{-1}{2}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in I$

By using above formula, we have

$$\sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin(\pi + \frac{\pi}{6}) = \sin\frac{7\pi}{6} \Longrightarrow x = n\pi + \frac{7\pi}{6}(-1)^n$$

Put
$$n = 0 \implies x = 0 \times \pi + \frac{7\pi}{6} (-1)^0 \implies x = \frac{7\pi}{6}$$

Put n= 1
$$\Longrightarrow$$
 x = 1 \times π + $\frac{7\pi}{6}$ (-1)¹ \Longrightarrow x = 1 \times π + $\frac{7\pi}{6}$ (-1)¹ \Longrightarrow x = π - $\frac{7\pi}{6}$ = - $\frac{\pi}{6}$

[NOTE:
$$-\frac{\pi}{6} = \frac{11\pi}{6}$$
]

So principal solution is $x = \frac{7\pi}{6}$ and $\frac{11\pi}{6}$

(ii) Given:
$$\sqrt{2}\cos x + 1 = 0 \implies \cos x = \frac{-1}{\sqrt{2}}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos x = \frac{-1}{\sqrt{2}} = \cos \frac{3\pi}{4} \implies x = 2n\pi \pm \alpha, n \in I$$

Put n= 0
$$\Rightarrow$$
 x = 2 × 0 × $\pi \pm \frac{3\pi}{4} \Rightarrow$ x = $\frac{3\pi}{4}$

Put
$$n=1 \Longrightarrow x=2\pi\pm\frac{3\pi}{4} \Longrightarrow x=\frac{5\pi}{4}$$
, $\frac{11\pi}{4} \Longrightarrow x=\frac{5\pi}{4}$, $\frac{11\pi}{4}$

$$\left[\frac{11\pi}{4}\right] > 2\pi$$
 So it is not include in principal solution]

So principal solution is $x = \frac{3\pi}{4}$ and $\frac{5\pi}{4}$

(iii) Given: tan x = -1

Formula used: $\tan \theta = \tan \alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

$$\tan x = -1 = \tan \frac{3\pi}{4} \implies x = n\pi + \alpha, n \in I$$

Put
$$n = 0 \implies x = n\pi + \frac{3\pi}{4} \implies x = \frac{3\pi}{4}$$

Put
$$n=1 \Rightarrow x = \pi + \frac{3\pi}{4} \Rightarrow x = \frac{7\pi}{4} \Rightarrow x = \frac{7\pi}{4}$$

So principal solution is $x = \frac{3\pi}{4}$ and $\frac{7\pi}{4}$

(iv) Given:
$$\sqrt{3} \csc x + 2 = 0 \implies \csc x = \frac{-2}{\sqrt{3}}$$

We know that $\csc\theta \times \sin\theta = 1$

So
$$\sin x = \frac{-\sqrt{3}}{2}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in$

By using above formula, we have

$$\sin x = \frac{-\sqrt{3}}{2} = \sin \frac{4\pi}{3} \implies \theta = n\pi + \frac{4\pi}{3}(-1)^n$$

Put n= 0
$$\Longrightarrow$$
 x = 0× π + $\frac{4\pi}{3}$ (-1)⁰ \Longrightarrow x = $\frac{4\pi}{3}$

Put n= 1
$$\Rightarrow$$
 x = 1 \times π + $\frac{4\pi}{3}$ (-1)¹ \Rightarrow x = 1 \times π + $\frac{4\pi}{3}$ (-1)¹ \Rightarrow x = π - $\frac{4\pi}{3}$ = $\frac{-\pi}{3}$

[NOTE:
$$\frac{-\pi}{3} = \frac{5\pi}{3}$$
]

So principal solution is $x = \frac{4\pi}{3}$ and $\frac{5\pi}{3}$

(v) Given:
$$\tan x = -\sqrt{3}$$

Formula used: $tan\theta = tan\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\tan x = -\sqrt{3} = \tan \frac{2\pi}{3} \implies x = n\pi + \alpha, n \in I$$

Put
$$n = 0 \implies x = n\pi + \frac{2\pi}{3} \implies x = \frac{2\pi}{3}$$

Put n= 1
$$\Rightarrow$$
 x = $\pi + \frac{2\pi}{3}$ \Rightarrow x = $\frac{5\pi}{3}$

So principal solution is
$$x = \frac{2\pi}{3}$$
 and $\frac{5\pi}{3}$

(vi) Given:
$$\sqrt{3} \sec x + 2 = 0 \implies \sec x = \frac{-2}{\sqrt{3}}$$

We know that $\sec\theta \times \cos\theta = 1$

So
$$\cos x = \frac{-\sqrt{3}}{2}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

$$\cos x = \frac{\sqrt{3}}{2} = \cos \frac{5\pi}{6} \implies x = 2n\pi \pm \alpha, n \in I$$

Put
$$n = 0 \implies x = 2n_{\pi} \pm \frac{5\pi}{6} \implies x = \frac{5\pi}{6}$$

Put
$$n=1 \Rightarrow x=2\pi \pm \frac{5\pi}{6} \Rightarrow x=\frac{7\pi}{6}, \frac{17\pi}{6} \Rightarrow x=\frac{7\pi}{6}, \frac{17\pi}{6}$$

 $\left[\frac{17\pi}{6}\right] > 2\pi$ So it is not include in principal solution]

So principal solution is $x = \frac{5\pi}{6}$ and $\frac{7\pi}{6}$

Question: 3

Find the general

Solution:

To Find: General solution.

[NOTE: A solution of a trigonometry equation generalized by means of periodicity, is known as general solution]

(i) Given: $\sin 3x = 0$

Formula used: $\sin\theta = 0 \implies \theta = n\pi$, $n \in I$

By using above formula, we have

$$\sin 3x = 0 \Rightarrow 3x = n\pi \Rightarrow x = \frac{n\pi}{3}$$
 where $n \in I$

So general solution is $x = \frac{n\pi}{3}$ where $n \in I$

(ii) Given: $\sin \frac{3x}{2} = 0$

Formula used: $\sin\theta = 0 \implies \theta = n\pi$, $n \in I$

By using above formula, we have

$$\sin \frac{3x}{2} = 0 \Rightarrow \frac{3x}{2} = n\pi \Rightarrow x = \frac{2n\pi}{3}$$
 where $n \in I$

So general solution is $x = \frac{2n\pi}{3}$ where $n \in I$

(iii) Given: $\sin\left(x + \frac{\pi}{5}\right) = 0$

Formula used: $\sin\theta = 0 \implies \theta = n\pi$, $n \in I$

By using the above formula, we have

$$\sin\left(x + \frac{\pi}{5}\right) = 0 \implies x + \frac{\pi}{5} = n\pi \implies x = n\pi - \frac{\pi}{5}$$
 where $n \in I$

So general solution is $x = n\pi - \frac{\pi}{5}$ where $n \in I$

(iv) Given: $\cos 2x = 0$

Formula used: $\cos\theta = 0 \implies \theta = (2n+1)\frac{\pi}{2}$, $n \in I$

$$\cos 2x = 0 \Rightarrow 2x = (2n+1)\frac{\pi}{2} \Rightarrow x = (2n+1)\frac{\pi}{4}$$
 where $n \in I$

So general solution is $x = (2n+1)\frac{\pi}{4}$ where $n \in I$

(v) Given:
$$\cos \frac{5x}{2} = 0$$

Formula used: $\cos\theta = 0 \implies \theta = (2n+1)\frac{\pi}{2}$, $n \in I$

By using the above formula, we have

$$\cos \frac{5x}{2} = 0 \Longrightarrow \frac{5x}{2} = (2n+1)\frac{\pi}{2} \Longrightarrow x = (2n+1)\frac{\pi}{5} \text{ where } n \in I$$

So general solution is $x = (2n+1)\frac{\pi}{5}$ where $n \in I$

(vi) Given:
$$\cos\left(x + \frac{\pi}{10}\right) = 0$$

Formula used: $\cos\theta = 0 \implies \theta = (2n+1)\frac{\pi}{2}$, $n \in I$

By using the above formula, we have

$$\cos\left(x+\frac{\pi}{10}\right)=0 \Rightarrow x+\frac{\pi}{10}=(2n+1)\frac{\pi}{2} \Rightarrow x=(2n+1)\frac{\pi}{2}\cdot\frac{\pi}{10} \Rightarrow x=n\pi+\frac{2\pi}{5} \text{ where } n\in I$$

So general solution is $x = n\pi + \frac{2\pi}{5}$ where $n \in I$

(vii) Given:
$$\tan 2x = 0$$

Formula used: $tan\theta = 0 \implies \theta = n\pi$, $n \in I$

By using above formula, we have

$$\tan 2x = 0 \Rightarrow 2x = n\pi \Rightarrow x = \frac{n\pi}{2}$$
 where $n \in I$

So general solution is $x = \frac{n\pi}{2}$ where $n \in I$

(viii) Given:
$$\tan\left(3x + \frac{\pi}{6}\right) = 0$$

Formula used: $tan\theta = 0 \implies \theta = n\pi$, $n \in I$

By using above formula, we have

$$\tan\left(3x + \frac{\pi}{6}\right) = 0 \implies 3x + \frac{\pi}{6} = n\pi \implies 3x = n\pi - \frac{\pi}{6} \implies x = \frac{n\pi}{3} - \frac{\pi}{18} \text{ where } n \in I$$

So general solution is $x = \frac{n\pi}{3} - \frac{\pi}{18}$ where $n \in I$

(ix) Given:
$$\tan\left(2x - \frac{\pi}{4}\right) = 0$$

Formula used: $tan\theta = 0 \implies \theta = n\pi$, $n \in I$

By using above formula, we have

$$\tan\left(2x-\frac{\pi}{4}\right)=0 \Rightarrow 2x-\frac{\pi}{4}=n\pi \Rightarrow 2x=n\pi-\frac{\pi}{4} \Rightarrow x=\frac{n\pi}{2}+\frac{\pi}{8} \text{ where } n\in I$$

So general solution is $x = \frac{n\pi}{2} + \frac{\pi}{8}$ where $n \in I$

Question: 4

Find the general

Solution:

To Find: General solution.

(i) Given:
$$\sin x = \frac{\sqrt{3}}{2}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in I$

By using above formula, we have

$$\sin x = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3} \implies x = n_{\pi} + (-1)^{n} \cdot \frac{\pi}{3}$$

So general solution is $x = n_{\pi} + (-1)^n \cdot \frac{\pi}{3}$ where $n \in I$

(ii) Given:
$$\cos x = 1$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos x = 1 = \cos(0^{\circ}) \Longrightarrow x = 2n\pi$$
, $n \in I$

So general solution is $x = 2n\pi$ where $n \in I$

(iii) Given:
$$\sec x = \sqrt{2}$$

We know that $\sec\theta \times \cos\theta = 1$

So
$$\cos x = \frac{1}{\sqrt{2}}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos x = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} \implies x = 2n\pi \pm \frac{\pi}{4}$$
, $n \in I$

So general solution is $x = 2n\pi \pm \frac{\pi}{4}$ where $n \in I$

Question: 5

Find the general

Solution:

To Find: General solution.

(i) Given:
$$\cos x = \frac{-1}{2}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos x = \frac{-1}{2} = -\cos(\frac{\pi}{3}) = \cos(\pi - \frac{\pi}{3}) = \cos(\frac{2\pi}{3}) \Longrightarrow x = 2n\pi \pm \frac{2\pi}{3}, n \in I$$

So general solution is $x = 2n\pi \pm \frac{2\pi}{3}$ where $n \in I$

(ii) Given:
$$\csc x = -\sqrt{2}$$

We know that $\csc\theta \times \sin\theta = 1$

So
$$\sin x = \frac{-1}{\sqrt{2}}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in$

By using above formula, we have

$$\sin x = \frac{-1}{\sqrt{2}} = \sin \frac{5\pi}{4} \implies x = n\pi + (-1)^n \cdot \frac{5\pi}{4}$$

So general solution is $x = n\pi + (-1)^n \cdot \frac{5\pi}{4}$ where $n \in I$

(iii) Given: tan x = -1

Formula used: $tan\theta = tan\alpha \implies \theta = n\pi + \alpha$, $n \in I$

By using above formula, we have

$$\tan x = -1 = \tan \frac{3\pi}{4} \Longrightarrow x = n_{\pi} + \frac{3\pi}{4}, n \in I$$

So the general solution is $x = n_{\pi} + \frac{3\pi}{4}$ where $n \in I$

Question: 6

Find the general

Solution:

To Find: General solution.

(i) Given:
$$\sin 2x = \frac{1}{2}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in I$

By using above formula, we have

$$\sin 2x = \frac{1}{2} = \sin \frac{\pi}{6} \implies 2x = n\pi + (-1)^n \cdot \frac{\pi}{6} \implies x = \frac{n\pi}{2} + (-1)^n \cdot \frac{\pi}{12}, n \in I$$

So general solution is $x = \frac{n\pi}{2} + (-1)^n \cdot \frac{\pi}{12}$ where $n \in I$

(ii) Given:
$$\cos 3x = \frac{1}{\sqrt{2}}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos 3x = \frac{1}{\sqrt{2}} = \cos(\frac{\pi}{4}) \Longrightarrow 3x = 2n\pi \pm \frac{\pi}{4} \Longrightarrow x = \frac{2n\pi}{3} \pm \frac{\pi}{12}, n \in I$$

So the general solution is $x = \frac{2n\pi}{3} \pm \frac{\pi}{12}$ where $n \in I$

(iii) Given:
$$\tan \frac{2x}{3} = \sqrt{3}$$

Formula used: $\tan \theta = \tan \alpha \implies \theta = n\pi + \alpha$, $n \in I$

$$\tan \frac{2x}{3} = \sqrt{3} = \tan \frac{\pi}{3} \implies \frac{2x}{3} = n\pi + \frac{\pi}{3} \implies x = \frac{3n\pi}{2} + \frac{\pi}{2}$$
, $n \in I$

So general solution is $x = (3n+1)\frac{\pi}{2}$, where $n \in I$

Question: 7

Find the general

Solution:

To Find: General solution.

(i) Given: $\sec 3x = -2$

We know that $\sec\theta \times \cos\theta = 1$

So
$$\cos 3x = \frac{-1}{2}$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\cos 3x = \frac{-1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\frac{2\pi}{3} \implies 3x = 2n\pi \pm \frac{2\pi}{3} \implies x = \frac{2n\pi}{3} \pm \frac{2\pi}{9}, n \in I$$

So the general solution is $x = \frac{2n\pi}{3} \pm \frac{2\pi}{9}$, where $n \in I$

(ii) Given: $\cot 4x = -1$

We know that $\tan\theta \times \cot\theta = 1$

So $\tan 4x = -1$

Formula used: $tan\theta = tan\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

By using above formula, we have

$$\tan 4x = -1 = \tan \frac{3\pi}{4} \implies 4x = n\pi + \frac{3\pi}{4} \implies x = \frac{n\pi}{4} + \frac{3\pi}{16}, n \in I$$

So general solution is $x = (4n+3)\frac{\pi}{16}$, where $n \in I$

(iii) Given: cosec
$$3x = \frac{-2}{\sqrt{3}}$$

We know that $\csc\theta \times \sin\theta = 1$

So
$$\sin 3x = \frac{-\sqrt{3}}{2}$$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n \cdot \alpha$, $n \in I$

By using above formula, we have

$$\sin 3x = \frac{-\sqrt{3}}{2} = \sin \frac{4\pi}{3} \implies 3x = n\pi + (-1)^n \cdot \frac{4\pi}{3} \implies x = \frac{n\pi}{3} + (-1)^n \cdot \frac{4\pi}{9}, n \in I$$

So general solution is $x = \frac{n\pi}{3} + (-1)^n \cdot \frac{4\pi}{9}$, where $n \in I$

Question: 8

Find the general

Solution:

To Find: General solution.

(i) Given: $4\cos^2 x = 1 \implies \cos^2 x = \left(\frac{1}{4}\right)$

$$\cos^2 x = \cos^2 \frac{\pi}{3}$$

Formula used: $\cos^2\theta = \cos^2\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

By using the above formula, we have

$$x = n\pi \pm \frac{\pi}{3}$$
, $n \in I$

So the general solution is $x = n\pi \pm \frac{\pi}{3}$ where $n \in I$

(ii) Given: $4\sin^2 x - 3 = 0 \implies \sin^2 x = \frac{3}{4} = \sin^2 \frac{\pi}{3}$

$$\therefore \sin^2 x = \sin^2 \frac{\pi}{3}$$

Formula used: $\sin^2\theta = \sin^2\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

By using the above formula, we have

$$x = n\pi \pm \frac{\pi}{3}$$
, $n \in I$

So the general solution is $x = n\pi \pm \frac{\pi}{3}$ where $n \in I$

(ii) Given: $\tan^2 x = 1 \Rightarrow \tan^2 x = \tan^2 \frac{\pi}{4}$

$$\tan^2 x = \tan^2 \frac{\pi}{4}$$

The formula used: $\tan^2\theta = \tan^2\alpha \implies \theta = n\pi \pm \alpha$, $n \in I$

By using the above formula, we have

$$\mathbf{x} = \mathbf{n}\pi \ \pm \frac{\pi}{4}$$
 , $\mathbf{n} \in I$

So the general solution is $x = n\pi \pm \frac{\pi}{4}$ where $n \in I$

Question: 9

Find the general

Solution:

To Find: General solution.

(i) Given: $\cos 3x = \cos 2x \Rightarrow \cos 3x - \cos 2x = 0 \Rightarrow -2\sin\frac{(5x)}{2}\sin\frac{(x)}{2} = 0$

[NOTE:
$$\cos C - \cos D = -2\sin\frac{(C+D)}{2}\sin\frac{(C-D)}{2}$$
]

So,
$$\sin \frac{(5x)}{2} = 0$$
 or $\sin \frac{(x)}{2} = 0$

Formula used: $\sin\theta = 0 \implies \theta = n\pi$, $n \in I$

$$\frac{(5x)}{2} = n\pi$$
 or $\frac{(x)}{2} = m\pi$ where n, $m \in I$

$$x=2 \text{ n}\pi/5 \text{ or } x=2m\pi \text{ where n, } m \in I$$

So general solution is x=2 $n\pi/5$ or $x=2m\pi$ where $n, m \in I$

(ii) Given:
$$\cos 5x = \sin 3x \Rightarrow \cos 5x = \cos(\frac{\pi}{2} - 3x)$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$, $n \in I$

By using the above formula, we have

$$5x = 2n\pi + (\frac{\pi}{2} - 3x)$$
 or $5x = 2n\pi - (\frac{\pi}{2} - 3x)$

$$8x = 2n\pi + \frac{\pi}{2}$$
 or $2x = 2n\pi - \frac{\pi}{2}$

$$x = \frac{n\pi}{4} + \frac{\pi}{16}$$
 or $x = n\pi - \frac{\pi}{4}$ where $n \in I$

So general solution is $x = \frac{n\pi}{4} + \frac{\pi}{16}$ or $x = n\pi - \frac{\pi}{4}$ where $n \in I$

(iii) Given:
$$\cos mx = \sin nx \Rightarrow \cos mx = \cos \left(\frac{\pi}{2} - nx\right)$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2k\pi \pm \alpha$, $k \in I$

By using the above formula, we have

$$mx = 2k\pi + (\frac{\pi}{2} - nx)$$
 or $5x = 2k\pi - (\frac{\pi}{2} - nx)$

$$(m+n)x = 2k\pi + \frac{\pi}{2}$$
 or $(m-n)x = 2k\pi - \frac{\pi}{2}$

$$x = \frac{2k\pi}{(m+n)} + \frac{\pi}{2(m+n)}$$
 or $x = \frac{2k\pi}{(m-n)} + \frac{\pi}{2(m-n)}$ where $k \in I$

$$\mathbf{x} = \frac{(4k+1)\pi}{2(\mathbf{m}+\mathbf{n})}$$
 or $\mathbf{x} = \frac{(4k-1)\pi}{2(\mathbf{m}-\mathbf{n})}$ where $\mathbf{k} \in I$

So the general solution is $x=\frac{(4k+1)\pi}{2(m+n)}$ or $x=\frac{(4k-1)\pi}{2(m-n)}$ where $k\in I$

Question: 10

Find the general

Solution:

To Find: General solution.

Given: $\sin x = \tan x \implies \sin x = \sin x \div \cos x$

So $\sin x = 0$ or $\cos x = 1 = \cos(0)$

Formula used: $\sin\theta = 0 \implies \theta = n\pi$, $n \in I$ and $\cos\theta = \cos\alpha \implies \theta = 2k\pi \pm \alpha$, $k \in I$

 $x = n\pi$ or $x = 2k\pi$ where $n, k \in I$

So general solution is $x = n\pi$ or $x = 2k\pi$ where n, $k \in I$

Question: 11

Find the general

Solution:

To Find: General solution.

Given: $4\sin x \cos x + 2\sin x + 2\cos x + 1 = 0 \Longrightarrow 2\sin x(2\cos x + 1) + 2\cos x + 1 = 0$

So
$$(2\cos x + 1)(2\sin x + 1) = 0$$

$$\cos x = \frac{-1}{2} = \cos(\frac{2\pi}{3}) \text{ or } \sin x = \frac{-1}{2} = \sin(\frac{7\pi}{6})$$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$ or $\sin\theta = \sin\alpha \implies \theta = m\pi + (-1)^m\alpha$ where $n,m \in I$

$$x=2n_{\pi}\pm\frac{2\pi}{3}\,\mathrm{or}\;x=m_{\pi}+(\text{-}1)^{m}\;.\frac{7\pi}{6}\,\mathrm{where}\;n,\,m\in I$$

So the general solution is $x=2n_{\pi}\pm\frac{2\pi}{3}$ or $x=m_{\pi}+(-1)^{m}$. $\frac{7\pi}{6}$ where n, $m\in I$

Question: 12

Find the general

Solution:

To Find: General solution.

Given: $\sec^2 2x = 1$ - $\tan 2x \Rightarrow 1 + \tan^2 2x + \tan 2x = 1 \Rightarrow \tan 2x (1 + \tan 2x) = 0$

So, $\tan 2x = 0$ or $\tan 2x = -1 = \tan (\frac{3\pi}{4})$

Formula used: $\tan\theta = 0 \Rightarrow \theta = n\pi$, $n \in I$ and $\tan\theta = \tan\alpha \Rightarrow \theta = k\pi \pm \alpha$, $k \in I$

By using above formula, we have

$$2x = n\pi$$
 or $2x = k\pi \pm \frac{3\pi}{4} \Rightarrow x = \frac{n\pi}{2}$ or $x = \frac{k\pi}{2} \pm \frac{3\pi}{8}$

So the general solution is $x = \frac{n\pi}{2}$ or $x = \frac{k\pi}{2} \pm \frac{3\pi}{8}$ where n, $k \in I$

Question: 13

Find the general

Solution:

To Find: General solution.

Given: $\tan^3 x - 3\tan x = 0 \Rightarrow \tan x(\tan^2 x - 3) = 0 \Rightarrow \tan x = 0 \text{ or } \tan x = \pm \sqrt{3}$

$$\Rightarrow$$
 tan x = 0 or tanx = tan $(\frac{\pi}{3})$ or tan x = tan $(\frac{2\pi}{3})$

 \Rightarrow Formula used: $\tan\theta=0$ \Rightarrow $\theta=n\pi$, $n\in I$, $\tan\theta=\tan\alpha$ \Rightarrow $\theta=k\pi\pm\alpha$, $k\in I$

So
$$x = n\pi$$
 or $x = k\pi + \frac{\pi}{3}$ or $x = p\pi + \frac{2\pi}{3}$ where n, k, $p \in I$

So general solution is $x = n\pi$ or $x = k\pi + \frac{\pi}{3}$ or $x = p\pi + \frac{2\pi}{3}$ where n, k, $p \in I$

Question: 14

Find the general

Solution:

To Find: General solution.

Given: $\sin x + \sin 3x + \sin 5x = 0 \Rightarrow \sin 3x + 2\sin 3x \cos 2x = 0 \Rightarrow \sin 3x (1 + 2\cos 2x) = 0$

[NOTE: $\sin C + \sin D = 2\sin (C+D)/2 \times \cos (C-D)/2$]

$$\Rightarrow$$
 sin 3x = 0 or cos 2x = $\frac{-1}{2}$ = cos($\frac{2\pi}{3}$)

Formula used: $\sin\theta = 0 \implies \theta = n\pi$, $n \in I$, $\cos\theta = \cos\alpha \implies \theta = 2k\pi \pm \alpha$, $k \in I$

$$\Rightarrow$$
 3x = n π or 2x = 2k π ± $\frac{2\pi}{3}$ \Rightarrow x = $\frac{n\pi}{3}$ or x = k π ± $\frac{\pi}{3}$ where n,k \in I

So general solution is $x = \frac{n\pi}{3}$ or $x = k\pi \pm \frac{\pi}{3}$ where n, k, \in I

Question: 15

Find the general

Solution:

To Find: General solution.

Given: $\sin x \tan x - 1 = \tan x - \sin x \implies \sin x(\tan x + 1) = \tan x + 1$

So $\sin x = 1 = \sin \left(\frac{\pi}{2}\right)$ or $\tan x = -1 = \tan \left(\frac{3\pi}{4}\right)$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in I$ and $\tan\theta = \tan\alpha \implies \theta = k\pi \pm \alpha$, $k \in I$

$$\Rightarrow$$
 x = n π + (-1)ⁿ $\frac{\pi}{2}$ or x = k π $\pm \frac{3\pi}{4}$ where n, k \in I

So general solution is $x = n\pi + (-1)^n \frac{\pi}{2}$ or $x = k\pi \pm \frac{3\pi}{4}$ where n, k, $\in I$

Question: 16

Find the general

Solution:

To Find: General solution.

Given:
$$\cos x + \sin x = 1 \Rightarrow \cos(x - \frac{\pi}{4}) = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4}$$

[divide $\sqrt{2}$ on both sides and $\cos(x-y) = \cos x \cos y - \sin x \sin y$]

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2k\pi \pm \alpha$, $k \in I$

$$\Rightarrow x - \frac{\pi}{4} = 2k\pi \pm \frac{\pi}{4} \Rightarrow x = 2k\pi \pm \frac{\pi}{4} + \frac{\pi}{4} \Rightarrow x = 2k\pi + \frac{\pi}{4} + \frac{\pi}{4} \text{ or } \Rightarrow x = 2k\pi - \frac{\pi}{4} + \frac{\pi}{4}$$

$$\implies$$
 x = 2k π + $\frac{\pi}{2}$ or x = 2k π

So general solution is $x = 2n\pi + \frac{\pi}{2}$ or $x = 2n\pi$ where $n \in I$

Question: 17

Find the general

Solution:

To Find: General solution.

Given:
$$\cos x - \sin x = 1 \Rightarrow \cos(x + \frac{\pi}{4}) = \frac{-1}{\sqrt{2}} = \cos \frac{3\pi}{4}$$

[divide $\sqrt{2}$ on both sides and $\cos(x-y) = \cos x \cos y - \sin x \sin y$]

So $\sin x = 0$ or $\cos x = 0$

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2k\pi \pm \alpha$, $k \in I$

$$\Rightarrow x + \frac{\pi}{4} = 2k\pi \pm \frac{3\pi}{4} \Rightarrow x = 2k\pi \pm \frac{3\pi}{4} \cdot \frac{\pi}{4} \Rightarrow x = 2k\pi + \frac{3\pi}{4} \cdot \frac{\pi}{4} \text{ or } \Rightarrow x = 2k\pi - \frac{3\pi}{4} \cdot \frac{\pi}{4}$$

$$\Rightarrow$$
 x = 2k π - π or x = 2k π + $\frac{\pi}{2}$

So general solution is $x = 2n\pi + \frac{\pi}{2}$ or $x = (2n-1)\pi$ where $n \in I$

Question: 18

Find the general

Solution:

To Find: General solution.

Given:
$$\sqrt{3} \cos x + \sin x = 1 \Rightarrow \cos (x - \frac{\pi}{6}) = \frac{1}{2} = \cos(\frac{\pi}{3}) \operatorname{or} \cos(\frac{5\pi}{3})$$

[Divide $\sqrt{2}$ on both sides and $\cos(x-y) = \cos x \cos y - \sin x \sin y$]

Formula used: $\cos\theta = \cos\alpha \implies \theta = 2n\pi \pm \alpha$

By using above formula, we have

$$\Rightarrow x \cdot \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3} \Rightarrow x = 2n\pi \pm \frac{\pi}{3} + \frac{\pi}{6}$$

$$\Rightarrow$$
 x = 2n π + $\frac{\pi}{2}$ or x = 2n π - $\frac{\pi}{6}$ where n \in I

So general solution is $x=2n\pi+\frac{\pi}{2}$ or $x=2n\pi-\frac{\pi}{6}$ where $n\in I$

Question: 19

Find the general

Solution:

To Find: General solution.

Given:
$$2 \tan x - \cot x + 1 = 0 \Rightarrow 2\tan^2 x - 1 + \tan x = 0 \Rightarrow 2\tan^2 x - 1 + 2\tan x - \tan x = 0 \Rightarrow 2\tan^2 x + 1 - (1 + \tan x) = 0$$

$$\Rightarrow$$
 (2tanx-1) (1+ tanx) = 0 \Rightarrow tan x = $\frac{1}{2}$ = tan⁻¹ $\frac{1}{2}$ or tan x = -1 = tan $\frac{3\pi}{4}$

Formula used: $\tan \theta = \tan \alpha \implies \theta = n\pi + \alpha$, $n \in I$

$$x = n_{\pi} + tan^{-1} \frac{1}{2}$$
 or $x = n_{\pi} + \frac{3\pi}{4}$

So the general solution is $x = n_{\pi} + tan^{-1}\frac{1}{2}$ or $x = n_{\pi} + \frac{3\pi}{4}$ where $n \in I$

Question: 20

Find the general

Solution:

To Find: General solution.

Given: $\sin x \tan x - 1 = \tan x - \sin x \Rightarrow \sin x(\tan x + 1) = \tan x + 1$

So
$$\sin x = 1 = \sin(\frac{\pi}{2})$$
 or $\tan x = -1 = \tan(\frac{3\pi}{4})$

Formula used: $\sin\theta = \sin\alpha \implies \theta = n\pi + (-1)^n\alpha$, $n \in I$ and $\tan\theta = \tan\alpha \implies \theta = k\pi + \alpha$, $k \in I$

$$\Rightarrow$$
 x = n π + (-1)ⁿ $\frac{\pi}{2}$ or x = k π + $\frac{3\pi}{4}$ where n, k \in I

So general solution is $x=n\pi+(-1)^n\frac{\pi}{2}$ or $x=k\pi+\frac{3\pi}{4}$ where $n,\,k\in I$

Question: 21

Find the general

Solution:

To Find: General solution.

Given: $\cot x + \tan x = 2 \csc x \Rightarrow \cos^2 x + \sin^2 x = 2 \sin x \csc x \Rightarrow 1 = \sin 2x \csc x$

 \Rightarrow cosec $2x = cosecx <math>\Rightarrow$ $\sin x = \sin 2x \Rightarrow \sin x = 2 \sin x \cos x \Rightarrow \sin x = 0 \text{ or } \cos x = \frac{1}{2} = \cos(\frac{\pi}{3})$

Formula used: $\sin\theta = 0 \Rightarrow \theta = n\pi$, $\cos\theta = \cos\alpha \Rightarrow \theta = 2n\pi \pm \alpha$

By using above formula , we have

$$x = n\pi$$
 or $x = 2m\pi \pm \frac{\pi}{3}$ where n, $m \in I$

So general solution is $x = n\pi$ or $x = 2m\pi \pm \frac{\pi}{3}$ where $n, m \in I$