Data Mining -Business Report

Rohan R. Khade

Table of Contents

Chapter	1.	Problem 1: Clustering						
	1.1	Problem Statement						
	1.2	Introduc	ction					
		1.2.1			ssary initial steps, and exploratory data ate, and multivariate analysis)	5 -		
			1.2.1.1	Univariate Ana	alysis	7 -		
			1.2.1.2	Bivariate Anal	ysis	14 -		
		1.2.2	Do you think	scaling is nece	ssary for clustering in this case? Justify	18 -		
		1.2.3		Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them				
		1.2.4	Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalized clusters.					
		1.2.5		•	the clusters defined. Recommend different fferent clusters.	22 -		
Chapter 2.		CAR	Γ-RF-ANN	NN				
	2.1 2.2	Problen	n Statement			24 -		
		Introduc	uction					
		2.2.1		Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and Multivariate analysis)				
			2.2.1.1	Univariate Ana	alysis	26 -		
			2.2.1.2	Bivariate and	Multivariate Analysis	34 -		
		2.2.2			test and train, build classification model ficial Neural Network	38 -		
		2.2.3	Predictions ROC curve	on Train and Tea and get ROC_A	nent and Check the performance of st sets using Accuracy, Confusion Matrix, Plot UC score, classification reports for each	44		
			2.2.3.1	2.2.3.1.1	Classification Report			
					·			
				2.2.3.1.2	Confusion Matrix	42 -		
			2.2.3.2	Random Fore	st	43 -		
				2.2.3.2.1	Classification Report	44 -		
				2.2.3.2.2	Confusion Matrix	44 -		
			2.2.3.3	Artificial Neura	al Network	45 -		
				2.2.3.3.1	Classification Report	46 -		

		2.2.3.3.2 Confusion Matrix	46 -
	2.2.4	Final Model: Compare all the models and write an inference which model is best/optimized	47 -
	2.2.5	Inference: Based on the whole Analysis, what are the business insights and recommendations	48 -
List	of Table	S	
Table 1	Dataframe:	bank (with head function)	5 -
Table 2	Dataframe:	bank (with describe function)	6 -
Table 3	Scaled data	aset: bank_scaled (with head function)	18 -
Table 4	Scaled data	aset with clusters: bank_scaled (with head function)	19 -
Table 5		aset with seven variables: final_bank (Frequency table)	
Table 6	Dataframe:	df (with head function)	24 -
Table 7		df (with describe with include all function)	
Table 8	Comparativ	ve Analysis for Three Models	47 -
	·		
List	of Figur	es	
Figure 1.	Dataset inf	ormation	6 -
Figure 2.	Spending of	data series: Description & graphical representation	7 -
Figure 3.	Advance pa	ayments data series: Description & graphical representation	8 -
Figure 4.	Probability	of full payment data series: Description & graphical representation	9 -
Figure 5.	Current ba	lance data series: Description & graphical representation	10 -
Figure 6.	Credit limit	data series: Description & graphical representation	11 -
Figure 7.	Minimum p	ayment amount data series: Description & graphical representation	12 -
Figure 8.	Maximum s	spent in single shopping data series: Description & graphical representation	13 -
Figure 9.	Skewness	of the present seven variables	14 -
Figure 10.	Pairplot		14 -
Figure 11.	Heatmap		15 -
Figure 12.	Box plot wi	th outliers	16 -
Figure 13.	Box plot po	ost outlier treatment	17 -
Figure 14.	Dendrogra	m with average linkage method (without truncating)	18 -
Figure 15.	Dendrogra	m with average linkage method (post truncating)	19 -

Data Mining - Business Report

Figure 16.	Value counts by clusters	19 -
Figure 17.	Elbow graph	21 -
Figure 18.	Silhouette samples (with head function)	21 -
Figure 19.	Dataset information	25 -
Figure 20.	Age data series: Description & graphical representation	26 -
Figure 21.	Commision data series: Description & graphical representation	28 -
Figure 22.	Duration data series: Description & graphical representation	29 -
Figure 23.	Sales data series: Description & graphical representation	30 -
Figure 24.	Agency code data series: Description & graphical representation	31 -
Figure 25.	Claimed data series: Description & graphical representation	31 -
Figure 26.	Channel data series: Description & graphical representation	32 -
Figure 27.	Destination data series: Description & graphical representation	32 -
Figure 28.	Type data series: Description & graphical representation	33 -
Figure 29.	Product name data series: Description & graphical representation	33 -
Figure 30.	Pairplot (Claimed variable as hue)	34 -
Figure 31.	Agency code: Swarmplot	35 -
Figure 32.	Channel: Swarmplot	35 -
Figure 33.	Product Name: Swarmplot	36 -
Figure 34.	Type: Swarmplot	36 -
Figure 35.	Destination: Swarmplot	37 -
Figure 36.	Importance Matrix	38 -
Figure 37.	Decision Tree	39 -
Figure 38.	Train label ROC curve	41 -
Figure 39.	Test label ROC curve	41 -
Figure 40.	Train label ROC curve	43 -
Figure 41.	Test label ROC curve	43 -
Figure 42.	Train label ROC curve	45 -
Figure 43.	Test label ROC curve	45 -

Chapter 1. Problem 1: Clustering

1.1 Problem Statement

A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarizes the activities of users during the past few months. You are given the task to identify the segments based on credit card usage.

1.2 Introduction

The dataset has 210 rows and 7 colums. The columns of the dataset include spending, advance payments, probability of full payment, current balance, credit limit, minimum (min) payment amount (amt), and maximum (max) spent in single shopping. The dataset provides a list of customers surveyed to understand the best promotional offer that can be offered by the bank to them.

1.2.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and multivariate analysis).

Table 1 Dataframe: bank (with head function)

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
0	19.94	16.92	0.8752	6.675	3.763	3.252	6.550
1	15.99	14.89	0.9064	5.363	3.582	3.336	5.144
2	18.95	16.42	0.8829	6.248	3.755	3.368	6.148
3	10.83	12.96	0.8099	5.278	2.641	5.182	5.185
4	17.99	15.86	0.8992	5.890	3.694	2.068	5.837
5	12.70	13.41	0.8874	5.183	3.091	8.456	5.000
6	12.02	13.33	0.8503	5.350	2.810	4.271	5.308
7	13.74	14.05	0.8744	5.482	3.114	2.932	4.825
8	18.17	16.26	0.8637	6.271	3.512	2.853	6.273
9	11.23	12.88	0.8511	5.140	2.795	4.325	5.003

Table 2 Dataframe: bank (with describe function)

	count	mean	std	min	25%	50%	75%	max
spending	210.0	14.847524	2.909699	10.5900	12.27000	14.35500	17.305000	21.1800
advance_payments	210.0	14.559286	1.305959	12.4100	13.45000	14.32000	15.715000	17.2500
probability_of_full_payment	210.0	0.870999	0.023629	0.8081	0.85690	0.87345	0.887775	0.9183
current_balance	210.0	5.628533	0.443063	4.8990	5.26225	5.52350	5.979750	6.6750
credit_limit	210.0	3.258605	0.377714	2.6300	2.94400	3.23700	3.561750	4.0330
min_payment_amt	210.0	3.700201	1.503557	0.7651	2.56150	3.59900	4.768750	8.4560
max_spent_in_single_shopping	210.0	5.408071	0.491480	4.5190	5.04500	5.22300	5.877000	6.5500

Figure 1. Dataset information

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	spending	210 non-null	float64
1	advance_payments	210 non-null	float64
2	<pre>probability_of_full_payment</pre>	210 non-null	float64
3	current_balance	210 non-null	float64
4	credit_limit	210 non-null	float64
5	min_payment_amt	210 non-null	float64
6	<pre>max_spent_in_single_shopping</pre>	210 non-null	float64
dtype	es: float64(7)		

memory usage: 11.6 KB

The dataset has no null values as the total number of rows are 210 and all the data types are in float form. However, when we look at the columns, we can assume that as there are no columns to uniquely identify the customers, all 210 entries are unique entries and no duplicates.

1.2.1.1 Univariate Analysis

Figure 2. Spending data series: Description & graphical representation

Description of spending count 210.000000 mean 14.847524 2.909699 std min 10.590000 25% 12.270000 50% 14.355000 75% 17.305000 21.180000 max Name: spending, dtype: float64 Distribution of spending

Figure 3. Advance payments data series: Description & graphical representation

Description of advance_payments

count 210.000000 14.559286 mean std 1.305959 min 12.410000 25% 13.450000 50% 14.320000 75% 15.715000 17.250000 max

Name: advance_payments, dtype: float64 Distribution of advance_payments

Figure 4. Probability of full payment data series: Description & graphical representation

Description of probability_of_full_payment

210.000000 count 0.870999 mean std 0.023629 0.808100 min 25% 0.856900 50% 0.873450 75% 0.887775 max 0.918300

Name: probability_of_full_payment, dtype: float64 Distribution of probability_of_full_payment

Figure 5. Current balance data series: Description & graphical representation

Description of current_balance count 210.000000 mean 5.628533 0.443063 std min 4.899000 25% 5.262250 50% 5.523500 75% 5.979750 6.675000 max Name: current_balance, dtype: float64 Distribution of current_balance

Figure 6. Credit limit data series: Description & graphical representation

Description of credit_limit

count 210.000000 3.258605 mean std 0.377714 min 2.630000 25% 2.944000 50% 3.237000 75% 3.561750 max 4.033000

Name: credit_limit, dtype: float64 Distribution of credit_limit

Figure 7. Minimum payment amount data series: Description & graphical representation

Description of min_payment_amt

count	210.000000						
mean	3.700201						
std	1.503557						
min	0.765100						
25%	2.561500						
50%	3.599000						
75%	4.768750						
max	8.456000						
Nama.	min navment amt	dtvno.	float64	Distribution	of min	navmont	amt

Name: min_payment_amt, dtype: float64 Distribution of min_payment_amt

Figure 8. Maximum spent in single shopping data series: Description & graphical representation

Description of max_spent_in_single_shopping

count 210.000000

mean 5.408071

std 0.491480

min 4.519000

25% 5.045000

50% 5.223000

75% 5.877000

max 6.550000

 ${\tt Name: max_spent_in_single_shopping, dtype: float64\ Distribution\ of\ max_spent_in_single_shopping}$

Figure 9. Skewness of the present seven variables

<pre>max_spent_in_single_shopping</pre>	0.561897
current_balance	0.525482
min_payment_amt	0.401667
spending	0.399889
advance_payments	0.386573
credit_limit	0.134378
<pre>probability_of_full_payment</pre>	-0.537954
dtype: float64	

1.2.1.2Bivariate Analysis

Figure 10. Pairplot

Figure 11. Heatmap

Analyzing the pairplot and heatmap, we can deduce that spending variable is directly related with advance payments, current balance, credit limit, and maximum spent in single shopping. Higher spending customers have higher current balance, advance payments, credit limit, and spending per single shopping. Furthermore, there is a strong correlation between current balance and maximum spent in single shopping & advance payments.

There is also a high correlation between credit limit and advance payments & spending. There is a weaker correlation between minimum payment amount and all the other variables, which can also be understood as there is higher correlation when it comes to spending and maximum spending in single shopping & current balance. There is also weaker correlation between probability of full payment and current balance.

Figure 12. Box plot with outliers

We can see of the seven variables included as part of the dataset, there are minimal outliers for two variables. However, we need to treat them for better accuracy in the clustering model.

Figure 13. Box plot post outlier treatment

We have taken 5, 25, 75 percentile of the column to treat the outliers. We have calculated IQR range and minimum threshold while calculating the lower bound and upper bound values to treat the outliers on the left of the lower whisker and right of the upper whisker respectively.

1.2.2 Do you think scaling is necessary for clustering in this case? Justify

Yes, scaling of the dataset is necessary as each column has been provided in different units i.e. in 100s, 1000s, and 10,000s. Spending, advance payment, and credit limit may get more weightage as compared to other variables. We need to bring them in the relative same range. So, we have used z score method to scale the data which is provided below:

spending advance payments probability_of_full_payment current_balance credit_limit min_payment_amt max_spent_in_single_shopping 1.754355 1.811968 0.171955 2.367533 1.338579 -0.294861 2.328998 0.393582 0.253840 1.528129 -0.600744 0.858236 -0.236880 -0.538582 1.413300 1.428192 0.506652 1.401485 1.317348 -0.214791 1.509107 -1.384034-1.227533-1.970322 -0.793049 -1.639017 1.037338 -0.454961 1.082581 0.998364 1.215165 0.591544 1.155464 -1.112128 0.874813

Table 3 Scaled dataset: bank scaled (with head function)

1.2.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

We have considered two methods for clustering including wardlink and average. However, we will continue with average hierarchical clustering as wardlink method instead of measuring the distance directly, it analyzes the variance of clusters whereas in average clustering the distance between two clusters is defined as the average of distances between all pairs of objects, where each pair is made up of one object from each group.

Figure 14. Dendrogram with average linkage method (without truncating)

Figure 15. Dendrogram with average linkage method (post truncating)

We have clustered the scaled data set in 3 clusters using maxclust criterion. Three clusters seems to be most optimum number for clustering using average linkage method in a new column called clusters included as part of new dataframe called cluster_bank.

Table 4 Scaled dataset with clusters: bank_scaled (with head function)

	spending	advance_payments	probability_oi_iuii_payiiieiit	current_balance	crean_iiiiii	mm_payment_amt	max_spent_m_smgle_snopping	Clusters
0	19.94	16.92	0.875200	6.675	3.763	3.252	6.550	1
1	15.99	14.89	0.906400	5.363	3.582	3.336	5.144	2
2	18.95	16.42	0.882900	6.248	3.755	3.368	6.148	1
3	10.83	12.96	0.825915	5.278	2.641	5.182	5.185	3
4	17.99	15.86	0.899200	5.890	3.694	2.068	5.837	1

Figure 16. Value counts by clusters

1 75 2 63

3 72

Name: clusters, dtype: int64

We have also formed a new dataframe called final_bank, wherein we can analyze clustering on basis of seven columns given in the dataset as given below:

Table 5 Cluster dataset with seven variables: final bank (Frequency table)

clusters				_				
1	18.129200	16.058000	0.881595	6.135747	3.648120	3.650200	5.987040	75
2	14.167302	14.186190	0.882776	5.451381	3.236794	2.377956	5.048698	63
3	12.024306	13.324583	0.850371	5.255194	2.871944	4.847925	5.119431	72

spending advance_payments probability_of_full_payment current_balance credit_limit min_payment_amt max_spent_in_single_shopping Freq

By analyzing the dataset by both the clustering methods, we can understand three clusters helps us examine the spending patterns of 210 customers included as part of the dataset. We have effectively divided the variables in three clusters to analyze the results further. The three group cluster solution gives a pattern based on high/ medium/ low spending with maximum spent in single shopping and probability of full payment.

1.2.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalized clusters.

After we apply K Means clustering with:

One cluster: We get an output of 1469.99

Two clusters: We get an output of 659.13

Three clusters: We get an output of 429.41

After applying K Means clustering for more than three clusters, there is a minimum drop, which makes the optimum number of cluster to be three. We have provided an output for 10 clusters below:

```
[1469.9999999999998,
659.1308122335327,
429.4139632109118,
370.26944971303885,
322.1752568424512,
290.6666199436945,
261.9694459859648,
240.78498586728637,
219.69480575660603,
206.56204967535638]
```

It is evident that post three clusters, the drop in the means is minimal. We can also see it in below elbow graph, wherein we can see an elbow like shape forming after third point. In addition, the three clusters cover over 75% of the data as shown in the below graph:

Figure 17. Elbow graph

The silhouette score for the dataset is used for measuring the mean of the silhouette coefficient for each sample belonging to different clusters.which is 0.47906, wherein silhouette sample provides the Silhouette scores for each sample of different clusters which is integrated with the scaled dataset below:

Figure 18. Silhouette samples (with head function)

spending	advance_payments	probability_or_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_snopping	Clus_kmeans	sii_wiath
1.754355	1.811968	0.171955	2.367533	1.338579	-0.294861	2.328998	1	0.581663
0.393582	0.253840	1.528129	-0.600744	0.858236	-0.236880	-0.538582	0	0.383562
1.413300	1.428192	0.506652	1.401485	1.317348	-0.214791	1.509107	1	0.647782
-1.384034	-1.227533	-1.970322	-0.793049	-1.639017	1.037338	-0.454961	2	0.620992
1.082581	0.998364	1.215165	0.591544	1.155464	-1.112128	0.874813	1	0.393615

1.2.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

clusters	1	2	3
spending	18.129200	14.167302	12.024306
advance_payments	16.058000	14.186190	13.324583
probability_of_full_payment	0.881595	0.882776	0.850371
current_balance	6.135747	5.451381	5.255194
credit_limit	3.648120	3.236794	2.871944
min_payment_amt	3.650200	2.377956	4.847925
max_spent_in_single_shopping	5.987040	5.048698	5.119431
Freq	75.000000	63.000000	72.000000

We can segment the customers Based on their spending into:

- High spenders
- · Medium spenders
- Low spenders

As spending is directly related with the credit limit, advance payments, current balance, and maximum spent in single shopping,

The bank can provide the following promotional strategies to its customers:

- As high spenders have higher repayment capacity and are fairly regular, their credit limit can be increased
- Also, their spent per single shopping is high so they can be given appropriate discounts at regular intervals may be through a points based system
- High and medium spenders can be offered loans, based on their account types, they can
 be offered other facilities such as premium credit cards, current account holders can be
 given better overdraft or other related services

- The bank can provide promotional offers that will basically increasing customer spending which will in return benefit the bank itself
- The bank can provide referral benefits to the high and medium spenders which will reduce the acquisition cost of a new customer
- The bank can tie-up with ecommerce platforms from different industries such as travel & tourism, food & groceries delivery, popular food chains & cafes, retail stores such as clothing, luxury goods, electronics, etc. and cab services
- To ensure timely payments, bank can provide reward points to low spenders for early payments to improve their spending habits and shift them into medium spenders category

Chapter 2. CART-RF-ANN

2.1 Problem Statement

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

2.2 Introduction

The dataset has 3000 rows and 10 colums. The columns of the dataset include age, agency code, type, claimed, commission, channel, duration, sales, product name, and destination. The dataset provides a list of insures several variables to understand the claim patterns for tour insurance.

2.2.1 Read the data, do the necessary initial steps, and exploratory data analysis (Univariate, Bi-variate, and Multivariate analysis).

Table 6 Dataframe: df (with head function)

	Age	Agency_Code	Type	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	ASIA
1	36	EPX	Travel Agency	No	0.00	Online	34	20.00	Customised Plan	ASIA
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	Americas
3	36	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	ASIA
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	ASIA
5	45	JZI	Airlines	Yes	15.75	Online	8	45.00	Bronze Plan	ASIA
6	61	CWT	Travel Agency	No	35.64	Online	30	59.40	Customised Plan	Americas
7	36	EPX	Travel Agency	No	0.00	Online	16	80.00	Cancellation Plan	ASIA
8	36	EPX	Travel Agency	No	0.00	Online	19	14.00	Cancellation Plan	ASIA
9	36	EPX	Travel Agency	No	0.00	Online	42	43.00	Cancellation Plan	ASIA

Table 7 Dataframe: df (with describe with include all function)

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Age	3000.0	NaN	NaN	NaN	38.091	10.463518	8.0	32.0	36.0	42.0	84.0
Agency_Code	3000	4	EPX	1365	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Туре	3000	2	Travel Agency	1837	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Claimed	3000	2	No	2076	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Commision	3000.0	NaN	NaN	NaN	14.529203	25.481455	0.0	0.0	4.63	17.235	210.21
Channel	3000	2	Online	2954	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Duration	3000.0	NaN	NaN	NaN	70.001333	134.053313	-1.0	11.0	26.5	63.0	4580.0
Sales	3000.0	NaN	NaN	NaN	60.249913	70.733954	0.0	20.0	33.0	69.0	539.0
Product Name	3000	5	Customised Plan	1136	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Destination	3000	3	ASIA	2465	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Figure 19. Dataset information

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):

Data	COTUMIS (COCA	r ie coiumis).			
#	Column	Non-Null Count	Dtype		
0	Age	3000 non-null	int64		
1	Agency_Code	3000 non-null	object		
2	Туре	3000 non-null	object		
3	Claimed	3000 non-null	object		
4	Commision	3000 non-null	float64		
5	Channel	3000 non-null	object		
6	Duration	3000 non-null	int64		
7	Sales	3000 non-null	float64		
8	Product Name	3000 non-null	object		
9	Destination	3000 non-null	object		
dtypes: float64(2), int64(2), object(6)					
memory usage: 234.5+ KB					

The dataset has no null values as the total number of rows are 3000 and the data types are in float, integer, or object form. We have also tried to identify the duplicates and we have gotten 139 duplicate entries. However, when we look at the columns, we can assume that as there are no columns to uniquely identify the customers, all 3000 entries are unique entries and not duplicates.

2.2.1.1 Univariate Analysis

For continuous variables:

To analyze each of the relevant columns, we have given a value counts function with outputs below:

Agency_Code EPX 1365 C2B 924 CWT 472 JZI 239 Name: Agency_Code, dtype: int64	Type Travel Agency 1837 Airlines 1163 Name: Type, dtype: int64
Claimed No 2076 Yes 924 Name: Claimed, dtype: int64	Channel Online 2954 Offline 46 Name: Channel, dtype: int64
Product Name Customised Plan 1136 Cancellation Plan 678 Bronze Plan 650 Silver Plan 427 Gold Plan 109 Name: Product Name, dtype: int64	Destination ASIA 2465 Americas 320 EUROPE 215 Name: Destination, dtype: int64

Figure 20. Age data series: Description & graphical representation

Descr	iption of Age
count	3000.000000
mean	38.091000
std	10.463518
min	8.000000
25%	32.000000
50%	36.000000
75%	42.000000
max	84.000000
Name:	Age, dtype: float64 Distribution of Age

Figure 21. Commision data series: Description & graphical representation

Description of Commision

3000.000000 count mean 14.529203 std 25.481455 min 0.000000 25% 0.000000 50% 4.630000 75% 17.235000 max 210.210000

Name: Commision, dtype: float64 Distribution of Commision

Figure 22. Duration data series: Description & graphical representation

Description of Duration

count 3000.000000 70.001333 mean std 134.053313 min -1.000000 25% 11.000000 50% 26.500000 75% 63.000000 4580.000000 max

Name: Duration, dtype: float64 Distribution of Duration

Figure 23. Sales data series: Description & graphical representation

Description of Sales count 3000.000000 mean 60.249913 std 70.733954 min 0.000000 25% 20.000000 50% 33.000000 75% 69.000000 539.000000 max

Name: Sales, dtype: float64 Distribution of Sales

For object type variables:

Figure 24. Agency code data series: Description & graphical representation

Figure 25. Claimed data series: Description & graphical representation

We can clearly see that EPX accounted for highest share with C2B and CWT accounting for second and third largest share in terms of agency codes. However, we can see that more than 50% of the of the customers haven't made any claims.

Figure 26. Channel data series: Description & graphical representation

Over 85% of the customers bought their tour insurance policies online and most of them were travelling to Asia as their final destination. Around 500 to 600 customers were travelling to either America or Europe.

Figure 28. Type data series: Description & graphical representation

Just over 61% of the travellers got their insurance policies from travel agency itself instead of airlines. Furthermore, a major chunk of the customers bought a customized plan and a small number of customers bought gold plan which we can assume must be mostly costly one.

2.2.1.2Bivariate and Multivariate Analysis

Figure 30. Pairplot (Claimed variable as hue)

Figure 31. Agency code: Swarmplot

Figure 32. Channel: Swarmplot

Figure 33. Product Name: Swarmplot

Figure 34. Type: Swarmplot

Figure 35. Destination: Swarmplot

Looking at the swarmplots, we can deduce the following:

- C2B agency code has highest number of sales and highest number of claims as we can see
 a large number of orange dots in the plot
- We can assume that more than 85% of the sales happened from online platform so the customers which claimed against the tour insurance policy are from online channel
- Even though majority of the sales were for customized plan, majority of the claims were from the customers who bought the sliver and gold plan
- We know that just over 62% customers bought policies from travel agency; however, customers insured through airlines claimed much more as compared to its counterpart
- Customers travelling to Asia claimed more as compared to the people travelling to Americas or Europe

2.2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network

Decision Tree

We have creasted two datasets y which comprises the target variable "Claimed" and x wherein we have saved the complete dataset except the target variable. We have split the data into train and test with test size as 0.30 or 30% and random state as 1. We have given the shape function to the train and test data for x and y:

```
X_train (2100, 9)
X_test (900, 9)
train_labels (2100,)
test labels (900,)
```

To understand the best parameters for decision tree with **gini** creiterion and **cross validation index as 3**, while using GridSearchCV, we have given range of parameters such as max depth, min sample leaf, and min sample split for which we got the following output:

```
{'max_depth': 10, 'min_samples_leaf': 50, 'min_samples_split': 150}

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=10, min_samples_leaf=50, min_samples_split=150, random_state=1)
```

Once we have used decision classifier for building a decision tree using the aforementioned parameters, we get the below decision tree. We then look into the **feature importance for x train** data wherein we get an output as **agency code to be highest as 0.599**. Once we have constructed the decision tree, we have calculated the AUC score for trains and test labels. We have also plotted ROC curve for train and test labels as to understand the area covered as shown below:

Figure 36. Importance Matrix

Imp
0.030261
0.599363
0.007416
0.012676
0.000000
0.037945
0.255785
0.056555
0.000000

Figure 37. Decision Tree

Note: As we have a big decision tree, this is just a representation of how it looks and might not be legible.

Random Forest

For constructiong the randon forest, we have used random forest classifier with n_estimator equal to 500. Just like the decision tree, we have created a parameter grid to determine the best parameters for random forest using GridSearchCV as given below:

```
FandomForestClassifier

RandomForestClassifier

{'max_depth': 5,
 'max_features': 5,
 'min_samples_leaf': 6,
 'min_samples_split': 45,
 'n_estimators': 450}
```

Artificial Neural Network (ANN)

We have used standard scalar and transformed the x train and x test data with following output:

X Train:

```
array([[-0.19192502, 0.72815922, 0.80520286, ..., -0.5730663, 0.24642411, -0.43926017],
[-0.19192502, 0.72815922, 0.80520286, ..., -0.26910565, 0.24642411, 1.27851702],
[-0.97188154, -1.28518425, -1.24192306, ..., 1.74601534, 1.83381865, -0.43926017],
...,
[-0.19192502, 0.72815922, 0.80520286, ..., 0.02103862, 0.24642411, -0.43926017],
[ 0.58803151, 1.73483096, -1.24192306, ..., -0.60069909, -1.34097044, -0.43926017],
[ -0.19192502, -1.28518425, -1.24192306, ..., -0.53852532, 1.83381865, -0.43926017]])
```

X Test:

For constructiong artificial neural network, we have used MLP classifier. Just like the decision tree and random forest, we have created a parameter grid to determine the best parameters for artificial neural network using GridSearchCV as given below:

```
MLPClassifier
MLPClassifier(hidden_layer_sizes=200, max_iter=1000, random_state=1, tol=0.01)
```

2.2.3 Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score, classification reports for each model.

2.2.3.1 Decision Tree

Train label AUC score: 0.836

Test label AUC score: 0.794

Figure 38. Train label ROC curve

Figure 39. Test label ROC curve

2.2.3.1.1 Classification Report

Train Label:

	precision	recall	f1-score	support
0	0.81	0.92	0.86	1471
1	0.72	0.50	0.59	629
accuracy			0.79	2100
macro avg	0.77	0.71	0.73	2100
weighted avg	0.78	0.79	0.78	2100

Test Label:

	precision	recall	f1-score	support
0	0.76	0.93	0.83	605
1	0.73	0.38	0.50	295
accuracy			0.75	900
macro avg	0.74	0.66	0.67	900
weighted avg	0.75	0.75	0.72	900

2.2.3.1.2 Confusion Matrix

Train Label:

Test Label:

2.2.3.2Random Forest

Train label AUC score: 0.852

Test label AUC score: 0.820

Figure 40. Train label ROC curve

Figure 41. Test label ROC curve

2.2.3.2.1 Classification Report

Train Label:

	precision	recall	f1-score	support
0	0.84	0.89	0.87	1471
1	0.71	0.60	0.65	629
accuracy			0.81	2100
macro avg	0.77	0.75	0.76	2100
weighted avg	0.80	0.81	0.80	2100

Test Label:

	precision	recall	f1-score	support
0	0.79	0.92	0.85	605
1	0.74	0.49	0.59	295
accuracy			0.78	900
macro avg	0.76	0.71	0.72	900
weighted avg	0.77	0.78	0.76	900

2.2.3.2.2 Confusion Matrix

Train Label:

Test Label:

2.2.3.3 Artificial Neural Network

Train label AUC score: 0.818

Test label AUC score: 0.804

Figure 42. Train label ROC curve

Figure 43. Test label ROC curve

2.2.3.3.1 Classification Report

Train Label:

	precision	recall	f1-score	support
0	0.81	0.89	0.85	1471
1	0.67	0.51	0.57	629
accuracy			0.78	2100
macro avg	0.74	0.70	0.71	2100
weighted avg	0.77	0.78	0.77	2100

Test Label:

	precision	recall	f1-score	support
0	0.77	0.92	0.84	605
1	0.72	0.43	0.54	295
accuracy			0.76	900
macro avg	0.75	0.68	0.69	900
weighted avg	0.75	0.76	0.74	900

2.2.3.3.2 Confusion Matrix

Train Label:

Test Label:

2.2.4 Final Model: Compare all the models and write an inference which model is best/optimized.

Table 8 Comparative Analysis for Three Models

Secret Detect		Decision Tree		Random Forest		ANN	
Scores	Dataset	0	1	0	1	0	1
Train		0.7	79	0.	81	0.	78
Accuracy	Test	0.75		0.78		0.76	
Beeell	Train	0.92	0.50	0.89	0.60	0.89	0.51
Recall	Test	0.93	0.38	0.92	0.49	0.92	0.43
Precision	Train	0.81	0.72	0.84	0.71	0.81	0.67
	Test	0.76	0.73	0.79	0.74	0.77	0.72
F1 Score	Train	0.86	0.59	0.87	0.65	0.85	0.57
r i Score	Test	0.83	0.50	0.85	0.59	0.84	0.54
Train		0.8	36	0.8	352	0.8	318
AUC Score	Test	0.7	94	0.8	320	0.8	304

Note: 0 = No 1 = Yes

Random forest will be the best model for the given dataset.

Explanation: Looking at the aforementioned table, we can see that the random forest model has better accuracy; and better recall, precision, and F1 score for test data. As recall is a ratio between true positives and false negatives, so recall value closer to 1 means depicts better model performance. In addition, as F1 score helps in classification of positives and negatives, higher F1 score means better model performance. As a result, we should consider random forest model for the given dataset.

2.2.5 Inference: Based on the whole Analysis, what are the business insights and recommendations

- We can see from the agency code, JZI has the least amount of sales. The company needs to find out a way to augment the sales from JZI by using promotional strategies and acquiring new customers.
- We can also see that majority of the sales are for customized plans but customers with silver
 and golden plans have higher number of claims. The company needs to find out the reason
 as to why the claims are so high with these customers and strategize to reduce the claim
 amount as silver and golden plans has higher coverage amount.
- We can see majority of the policies are sold through the travel agency; however, the amount
 of claims are high for policies sold by airlines. The company needs to analyze the patterns of
 claims and incidents to understand the reasons for the same.
- Around 10% of the policy sales are through offline channel; however, there is a higher percentage of claims from offline channel. The company needs to analyze the same and understand the pattern for the same.
- The company can see if they can reduce the cost of operations pertaining to the sale of policies
 which can improve the profit. In addition, they company can also reduce the claim cycle period
 which can reduce the number of claims again driving the profits.
- The company can also analyze the type of claims and improve the policy terms which can
 ultimately benefit the insurer and increase the overall profit