## Problem Set 7 Solutions

This problem will replicate analyses reported in Bifulco, Rubenstein, and Sohn (2017).<sup>1</sup> That study used a synthetic control design to estimate the impact of Say Yes to Education (a promise scholarship program in Syracuse, New York, which provided free college tuition to any student who graduated from a public high school in Syracuse) on total district enrollment and graduation rates. The program was implemented in 2008.

There are two separate datasets on Github containing panels of enrollment and graduation data for school districts in New York State:

```
use https://github.com/spcorcor18/LPO-8852/raw/main/data/nys_data_enroll.dta, clear use https://github.com/spcorcor18/LPO-8852/raw/main/data/nys_data_grad.dta, clear
```

Most of the variables in these datasets should be self-explanatory from their variable names and labels (although I'm not 100% sure how target\_donor and small\_index are defined, as they don't appear to align with the paper's selection of potential donor districts).

The authors used two potential donor pools. The comprehensive donor pool included all 275 (non-Syracuse) districts, while the restricted donor pool included 22 districts categorized as "City-Large," "City-Midsize," or "City-Small." (Note these counts are a little smaller for the graduation rate panel, which also has fewer years). NYC is excluded from the dataset.

Using the synth2 synthetic control package in Stata, replicate the findings in this paper by reporting the elements listed below. Note you do not need to run all 6 alternative specifications of the pre-treatment years as they do in the paper (Table 1). Rather, just use their Specification (2), which uses outcomes from the first, middle, and last year of the pre-treatment period. Also include the pre-treatment average percent of district students eligible for free or reduced price lunch, percent Black, and percent Hispanic in this procedure. Run these twice, first using the comprehensive donor pool, and then again using the restricted donor pool (where  $target\_donor==1$ ).

Taken together, you will have four sets of results: two outcomes (enrollment and graduation rates) × two potential donor pools. Brownie points to those who combine results in a pleasing-to-read format.

Include these things in your results, and be sure to submit your do-file:

<sup>&</sup>lt;sup>1</sup>Thank you to Bob Bifulco and Hosung Song for providing the data used in their paper.

- (a) The weights assigned to donor districts, as in Tables 2 and 5. Write a few sentences summarizing the resulting weighting used. Do they correspond to the weights reported in the paper? (10 points)
- (b) The main synthetic control graph showing trends in Syracuse and its synthetic control, as in Figures 2 and 3. Briefly summarize what you see. (10 points)
- (c) The treatment effect ("gap") version of the graphs in (b) showing the difference in mean outcomes between Syracuse and its synthetic control by year (these were not shown in the paper). (5 points)
- (d) Point estimates of the treatment effect by year (2008, 2009, 2010, and 2011), as in Tables 3 and 6. Note the graduation rate data only include 3 post-treatment years. (5 points)
- (e) The graph showing the gap in mean outcomes between Syracuse and its synthetic control overlaid on the placebo gaps. Briefly summarize what you see. (10 points)
- (f) p-values from the placebo-based inference. Explain in words where these come from, and how they should be interpreted. (Note, you only need to provide a written explanation for one set of results, not every one). (10 points)
- (g) The "leave-one-out" (loo) robustness test. Interpret the results. (5 points)

Notes: see the in-class exercise do-file for help, and it would (of course) help to refer to the original Bifulco et al paper. Be attentive to which district ID represents the Syracuse school district—it is not consistent across the two datasets.

#### MY SOLUTIONS:

## General comments about the replication and synth commands:

- See the attached log file for all syntax and results (other than figures).
- I learned through trial and error that the results replicate best when using the provided target\_donor flag for the restricted donor pool. This variable is not consistent with how the paper describes the restricted donor pool, at least as I read it. They say their restricted pool includes districts described as "small cities" by the NYS Association of Small City Districts, but according to their website, there are 57 of those. The target donor flag identifies only 22 districts other than Syracuse, and not all of these are coded as "small cities." The paper does note that there are 22 districts in their restricted donor pool, which is consistent with target\_donor.
- The synth commands seem to be sensitive to the use of variable labels. I tried to use the provided district names as labels, but kept running into error messages. Concerned that the district name was too long, I created a new version that truncated it to 12 characters. This sometimes worked, but occasionally resulted in error messages with synth2. At the end of the day, I left off the district names and just used the ID numbers to determined which units received positive weights.
- In my .do file I included the option frame(filename) with synth2, which saves the results to another Stata data frame under the name you specify. This frame can be saved as a Stata datafile, which you can use later to create your own tables and figures, if you prefer not to use the canned ones.

## Weights (part a):

• The synthetic control weights for the two outcomes and donor pools are shown in Table 1 below. For both the full and restricted donor pools, the cities receiving positive weights are almost identical to those in the paper's Tables 2 and 5. See my Table 2 below for comparison. For enrollment, Rochester gets the largest weight, in both the full (0.363) and restricted (0.392) donor pools. Beyond Rochester, there are differences in the districts receiving positive weights by donor pool, although Buffalo appears in both. For graduation rates, Buffalo gets the largest weight, in both the full (0.477) and restricted (0.789) donor pools. Beyond Buffalo, there are differences in the districts receiving positive weights by donor pool, although Niagara Falls appears in both. In the graduation rate case with the full donor pool, my weights matched the paper exactly.

## Main SCM and treatment effects graphs (parts b-c):

• The lefthand figures in Figures 1 (enrollment) and 4 (graduation) below show the time path for Syracuse and its synthetic control. These look very similar to the figures in the paper.

• The righthand figures in Figures 2 (enrollment) and 5 (graduation) below show the estimated treatment effect in each year (i.e., the gap between Syracuse and its synthetic control). Figures of this type were not provided in the original paper. Rather, they reported their treatment effect estimates in Tables 3 and 6. For enrollment, a positive treatment effect appears to emerge after 2008. For graduation, if anything the treatment effect appears to be negative.

## Treatment effects (part d):

- Estimated treatment effects by year were collected into Table 1 below.
- Enrollment: the estimated treatment effects by year (2008-2011) are quite close to those in the paper's Table 3 for Specification 2. Small differences are due to small differences in selected weights. Taking an average over the four post-treatment years, the enrollment effect appears to be about 530-730 students.
- Graduation: the estimated treatment effects by year (2008-2010) are quite close to those in the paper's Table 6 for Specification 2. Small differences are due to small differences in selected weights. Nearly all point estimates are *negative*, which is unexpected. However, the authors determined that the synthetic control for graduation was less reliable, due to the noise in this measure.

## Placebo graphs (part e):

- Figures 2 (enrollment) and 5 (graduation) below show the estimated treatment effect by year for Syracuse based on the original synthetic control (the bold line). The gray lines represent placebo effects: they are the result of running the synth command for every other district as if it were the treated district. (Syracuse is removed from the donor pool for these placebo cases). In these graphs, compare Syracuse to the other placebo districts in the post-treatment period. Are its treatment effects larger than most of the others? If so, these effects are unlikely to have arisen by chance. (The placebo districts give you some idea of what the estimates would be in the absence of any effect). Note I limited these figures to placebos where the pre-"treatment" fit was not too poor, by including the option cutoff(5) in the placebo() option. This option leaves out the placebo cases where the pre-treatment MSPE was 5 or more times larger than that of Syracuse. The log file includes a note on which districts were excluded. There were 2 and 3 excluded districts for the enrollment full and restricted donor pools, respectively, based on this criteria. The number of excluded districts from Figure 5 for graduation was higher, due to the comparatively bad fit for this outcome.
- The full donor pool graphs are more difficult to read than the restricted donor pool, given the large number of donors. It is hard to judge visually, but Syracuse does look like an outlier in the enrollment Figure 2. The graduation result (Figure 5) is much less conclusive.

## *p*-values (part f):

- Right-tail p-values for each treatment effect estimate are reported in Table 1 below. These are based on placebo inference: they represent the proportion of placebo districts that have a larger treatment effect estimate in that year. A small p-value suggests that the observed treatment effect was unusually large and unlikely to have arisen by chance. Most of the p-values in Table 1 are above the usual significance levels, although many point estimates for enrollment are significant when using the full donor pool. To take one example, the p-value for 2011 enrollment using the full donor pool is 0.007. This means fewer than 1% of placebo districts saw a treatment effect as large as Syracuse in 2011. According to the synth2 output, these p-values exclude districts with a poor pre-treatment fit if the cutoff option was used (see part e). For more on placebo-based inference with synth2, see Yan and Chen (2023).
- Note the paper reported RMPSE and an "overall" p-value based on the ratio of the post-to-pre RMPSE. The former is reported as part of the synth2 output. The latter does not appear to be calculated by synth2, but synth saves this as a scalar: e(pval\_joint\_post\_std).

## Leave one out robustness tests (part g):

- Figures 3 (enrollment) and 6 (graduation) below show the leave-one-out robustness tests. The faint gray lines on these figures represent iterated synthetic controls where one of the original districts with a positive weight is omitted from the donor pool. The aim here is to see how sensitive the findings are to the exclusion of arbitrary districts from the constructed synthetic control. On balance, for enrollment the results look robust to the original. (At the very least, they are not consistent with a zero treatment effect). The graduation results are much noisier.
- synth2 reports the maximum and minimum treatment effect estimates observed by year using the leave-one-out procedure. These are collected in Table 1 below. In the case of enrollment, the minimum treatment effect is above 500 in all but the first year post-treatment.

Table 1: Treatment effect estimates, SCM weights, p-values, LOO

|                             | K-12   | enrollment | Gradu | ation rates |
|-----------------------------|--------|------------|-------|-------------|
| Specification               | 2      | 2          | 2     | 2           |
| Donor pool                  | Full   | Restricted | Full  | Restricted  |
| Treatment effect estimates: |        |            |       |             |
| 2008                        | 130.7  | 35.5       | -13.3 | -9.4        |
| 2009                        | 725.2  | 566.0      | -6.3  | -1.6        |
| 2010                        | 938.8  | 660.7      | 0.4   | -2.8        |
| 2011                        | 1164.1 | 855.9      |       |             |
| Average                     | 739.7  | 529.5      | -6.4  | -4.6        |
| Synthetic control weights:  |        |            |       |             |
| Rochester (204)             | 0.363  | 0.392      |       |             |
| Hopevale (110)              | 0.239  |            |       |             |
| Smithtown (224)             | 0.179  |            |       |             |
| Buffalo $(25/24)$           | 0.167  | 0.088      | 0.477 | 0.789       |
| Mt Vernon (161)             | 0.051  |            |       |             |
| Niagara Falls (168/143)     |        | 0.240      | 0.168 | 0.090       |
| Utica (247)                 |        | 0.233      |       |             |
| Albany (1)                  |        | 0.048      |       |             |
| Rensselaer (./171)          |        |            | 0.189 |             |
| Greenburgh (./77)           |        |            | 0.166 |             |
| Schenectady (./186)         |        |            |       | 0.085       |
| Hempstead (./88)            |        |            |       | 0.036       |
| p-values (right-tail):      |        |            |       |             |
| 2008                        | 0.142  | 0.500      | 1.000 | 0.950       |
| 2009                        | 0.004  | 0.150      | 0.969 | 0.350       |
| 2010                        | 0.004  | 0.050      | 0.582 | 0.700       |
| 2011                        | 0.007  | 0.100      |       |             |
| LOO (min TE)                |        |            |       |             |
| 2008                        | -56.5  | -59.1      | -12.1 | -9.7        |
| 2009                        | 581.1  | 496.2      | -6.9  | -2.3        |
| 2010                        | 678.1  | 609.7      | -1.0  | -3.7        |
| 2011                        | 889.5  | 603.0      |       |             |
| LOO (max TE)                |        |            |       |             |
| 2008                        | 317.0  | 77.9       | -1.8  | -4.4        |
| 2009                        | 920.2  | 683.4      | -3.6  | -0.1        |
| 2010                        | 1172.3 | 832.1      | 5.2   | -0.8        |
| 2011                        | 1280.1 | 1016.2     |       |             |

Note: district ID numbers in the two datasets are shown in parentheses.

Table 2: SCM weights reported in the original paper

|                         | K-12 enrollment Graduation rates |            |       |            |
|-------------------------|----------------------------------|------------|-------|------------|
| Specification           | 2                                | 2          | 2     | 2          |
| Donor pool              | Full                             | Restricted | Full  | Restricted |
|                         |                                  |            |       |            |
| Rochester (204)         | 0.341                            | 0.406      |       |            |
| Hopevale (110)          | 0.197                            |            |       |            |
| Smithtown (224)         | 0.156                            |            |       |            |
| Buffalo $(25/24)$       | 0.174                            | 0.078      | 0.477 | 0.800      |
| Mt Vernon (161)         | 0.061                            |            |       |            |
| Niagara Falls (168/143) |                                  | 0.288      | 0.168 | 0.101      |
| Utica (247)             | 0.069                            | 0.207      |       |            |
| Albany (1)              |                                  | 0.021      |       |            |
| Rensselaer $(./171)$    |                                  |            | 0.189 |            |
| Greenburgh $(./77)$     |                                  |            | 0.166 |            |
| Schenectady $(./186)$   |                                  |            |       | 0.078      |
| Hempstead (./88)        |                                  |            |       | 0.021      |

Note: district ID numbers in the two datasets are shown in parentheses.

Figure 1: Mean enrollment and treatment effects, Syracuse school district and synthetic control



Note: Say Yes to Education implemented in 2008. Top panels: full donor pool. Bottom panels: restricted donor pool.

Figure 2: Mean enrollment treatment effects: Syracuse vs. placebos



Note: Say Yes to Education implemented in 2008. Left panel: full donor pool. Right panel: restricted donor pool. Placebo cases where the pre-treatment MSPE was 5 or more times larger than that of Syracuse were excluded from this figure.

K-12 enrollment Leave-one-out Robustness Test 23000 -22000 no\_enroll\_k12 21000 --- Synthetic Synthetic (LOO) 20000 19000 18000 1995 2000 2005 2010 year (1999-2011) Leave-one-out Robustness Test 23000 22000 no\_enroll\_k12 21000 Synthetic (LOO) --- Synthetic 20000 19000 1995 2000 2005 2010

Figure 3: Enrolllment leave-one-out robustness test

Note: Say Yes to Education implemented in 2008. Top panel: full donor pool. Bottom panel: restricted donor pool.

year (1999-2011)

Figure 4: Mean graduation rate and treatment effects, Syracuse school district and synthetic control  ${\bf r}$ 



Note: Say Yes to Education implemented in 2008. Top panels: full donor pool. Bottom panels: restricted donor pool.

Graduation rate Treatment Effects: Actual vs. Placebo In-space Placebo Test In-space Placebo Test 20 20 treatment/placebo effects on grad treatment/placebo effects on grad 10 10 0 Treatment Effect Treatment Effect Placebo Effect Placebo Effect -10 -20 -30 -30 2000 2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010 year (2001-2010) year (2001-2010)

Figure 5: Graduation rate treatment effects: Syracuse vs. placebos

Note: Say Yes to Education implemented in 2008. Left panel: full donor pool. Right panel: restricted donor pool. Placebo cases where the pre-treatment MSPE was 5 or more times larger than that of Syracuse were excluded from this figure.

Figure 6: Graduation rates: leave-one-out robustness test



Note: Say Yes to Education implemented in 2008. Top panel: full donor pool. Bottom panel: restricted donor pool.

```
. // *******************
. // Bifulco, Rubenstein, and Sohn (2017) replication - Problem Set 7
. // Enrollment data
. // ********************
. // **********
. // Setup
. // ***********
       use https://github.com/spcorcor18/LPO-8852/raw/main/data/nys data enroll.dt
> a, clear
        // There are 276 school districts x 14 years = 3864 observations
        // Syracuse is id==238
        tabulate year, miss
     vear |
              Freq. Percent
(1999-2011) |
     1998 | 276 7.14 7.14
1999 | 276 7.14 14.29
2000 | 276 7.14 21.43
2001 | 276 7.14 28.57
2002 | 276 7.14 35.71
     42.86
50.00
57.14
                                 64.29
                                 71.43
78.57
                                 85.71
                                  92.86
                               92.80
100.00
    Total | 3,864 100.00
        unique district
Number of unique values of district name is 276
Number of records is 3864
       unique id
Number of unique values of id is 276
Number of records is 3864
        tabulate id if substr(district, 1, 4) == "SYRA"
group (distr |
 ict name) | Freq. Percent
                                  Cum.
     238 | 14 100.00 100.00
    Total | 14 100.00
```

```
// District name is too long to use as labels with synth command. I
             // created a truncated version and ensured this didn't vary over time
             // within id (below). However, synth produced an error when looping over
             // the placebo districts ("invalid numlist has too many elements") that
             // seems to resolve when I don't use this district label. Still seeking
             // a way to bring in district name labels.
             by id: gen temp=district name if n==1
(3,588 missing values generated)
             egen district name2=mode(temp), by(id)
             gen district2=proper(substr(district name2,1,12))
             *labmask id, values(district2)
             drop temp district_name2
             xtset id year
Panel variable: id (strongly balanced)
 Time variable: year, 1998 to 2011
Delta: 1 year
            // ulocal07 codes 11, 12, and 13 are large, midsize, and small cities
             tabulate uloca107
 local type |
   code (7 |
categories) |
                  Freq. Percent Cum.
  - numeric |

    11 |
    14
    0.36
    0.36

    12 |
    28
    0.72
    1.09

    13 |
    280
    7.25
    8.33

    21 |
    3,206
    82.97
    91.30

    22 |
    168
    4.35
    95.65

    23 |
    140
    3.62
    99.28

    32 |
    28
    0.72
    100.00

       Total | 3,864 100.00
             tabulate local07
    locale type |
        code (7 |
 categories) -
                            Freq.
                                         Percent
                                                              Cum.
         string |
City-Large | 14 0.36 0.36
City-Midsize | 28 0.72 1.09
City-Small | 280 7.25 8.33
Suburb-Large | 3,206 82.97 91.30
Suburb-Midsize | 168 4.35 95.65
Suburb-Small | 140 3.62 99.28
Town-Distant | 28 0.72 100.00
```

Total | 3,864 100.00

#### tabulate local07 if year==1998

| locale type  <br>code (7  <br>categories) -  <br>string                                              | Freq.                                | Percent                                               | Cum.                                                      |
|------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|
| City-Large   City-Midsize   City-Small   Suburb-Large   Suburb-Midsize   Suburb-Small   Town-Distant | 1<br>2<br>20<br>229<br>12<br>10<br>2 | 0.36<br>0.72<br>7.25<br>82.97<br>4.35<br>3.62<br>0.72 | 0.36<br>1.09<br>8.33<br>91.30<br>95.65<br>99.28<br>100.00 |
| Total                                                                                                | 276                                  | 100.00                                                | <b>_</b>                                                  |

```
// Note: use the dataset's target_donor flag, though not 100% clear
// how it is defined. The paper says the restricted donor pool includes
// Rochester, Buffalo, Yonkers, and the districts the NYS Association of
// Small City School Districts Defines as "small city" districts. Their
// n=22 total, but the NYSA says there are 57 small city dists.
// https://www.nyssba.org/clientuploads/nsbmx/forms/small_city_districts.pd
> f
// target_donor does not seem to line up with large/middle/small cities
// as it includes seom suburban and town districts
```

tabulate year target\_donor

| year<br>(1999-2011<br>)                                                                                      | <pre>  target_donor   0</pre>                        | 1                                                                               | Total                                                              |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011 | 253<br>253<br>253<br>253<br>253<br>253<br>253<br>253 | 23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>2 | 276<br>276<br>276<br>276<br>276<br>276<br>276<br>276<br>276<br>276 |
| Total                                                                                                        | +<br>  3,542                                         | 322                                                                             | 3,864                                                              |

tabulate year local07 if target donor==1

| year  <br>(1999-2011  <br>) | loc<br>City-La | ale type co<br>City-Mi | de (7 categ<br>City-Sm | ories) – st<br>Suburb | ring<br>Suburb | Total |
|-----------------------------|----------------|------------------------|------------------------|-----------------------|----------------|-------|
| 1998                        | 1              | 2                      | 7                      | 10                    | 1              | 1 23  |
| 1999 i                      | 1              | 2                      | 7                      | 10                    | 1              | j 23  |
| 2000                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2001                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2002                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2003                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2004                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2005                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2006                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2007                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2008                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2009                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2010                        | 1              | 2                      | 7                      | 10                    | 1              | 23    |
| 2011                        | 1              | 2                      | 7                      | 1.0                   | 1              | 1 23  |

| Total | 1.4 | 2.8 | 98 | 140 | 14 | 322 |
|-------|-----|-----|----|-----|----|-----|

| year<br>(1999-2011<br>)                                                                                      | locale type code (7 categories ) - string Town-Di                       | Total                                                      |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|
| 1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 23<br>  23<br>  23<br>  23<br>  23<br>  23<br>  23<br>  23 |
| Total                                                                                                        | 28                                                                      | 322                                                        |

tabulate year small\_index

| year<br>(1999-2011<br>)                                                                                      | small_index<br>  0                                                 | 1                                                                               | Total                                                              |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011 | 246<br>246<br>246<br>246<br>246<br>246<br>246<br>246<br>246<br>246 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>3 | 276<br>276<br>276<br>276<br>276<br>276<br>276<br>276<br>276<br>276 |
| Total                                                                                                        | +<br>  3,444                                                       | 420                                                                             | +<br>  3,864                                                       |

```
. // Note: placebo cases take a while to run, given the size of the full
. // donor pool
.
. synth2 no_enroll_k12 no_enroll_k12(1998) no_enroll_k12(2002) ///
> no_enroll_k12(2007) p_lunch p_black p_hispanic, ///
> trunit(238) trperiod(2008) mspeperiod(1998(1)2007) ///
> preperiod(1998(1)2007) postperiod(2008(1)2011) xperiod(1998(1)2007)
> ///
> placebo(unit cutoff(5)) loo savegraph(spec2, replace) frame(espec2)
Fitting results in the pretreatment periods:

Treated Unit : 238 Treatment Time : 2008

Number of Control Units = 275 Root Mean Squared Error = 308.48246
Number of Covariates = 6 R-squared = 0.92184
```

# Covariate balance in the pretreatment periods:

| > -<br>Covariate                    | V.wei   | ght Treated   | Syntheti   | c Control | Average   | Control |
|-------------------------------------|---------|---------------|------------|-----------|-----------|---------|
| >                                   |         |               | Value      | Bias      | Value     | Bias    |
| >                                   |         |               |            |           |           |         |
| > -<br>no_enroll_k12(1998)  <br>> % | 0.25    | 32 23009.0000 | 22994.9470 | -0.06%    | 4117.3709 | -82.11  |
| no_enroll_k12(2002)                 | 0.45    | 93 21796.0000 | 21782.8160 | -0.06%    | 4258.1818 | -80.46  |
| no_enroll_k12(2007)                 | 0.28    | 75 19759.0000 | 19746.5740 | -0.06%    | 4153.2691 | -78.98  |
| p_lunch   > %                       | 0.00    | 0.6089        | 0.6029     | -0.98%    | 0.1645    | -72.98  |
| p_black   > %                       | 0.00    | 0.4750        | 0.4560     | -3.99%    | 0.1115    | -76.52  |
| p_hispanic   > %                    | 0.00    | 0.0776        | 0.1157     | 49.19%    | 0.0884    | 14.04   |
|                                     | <b></b> |               |            |           |           | <b></b> |

Note: "V.weight" is the optimal covariate weight in the diagonal of V matrix. "Synthetic Control" is the weighted average of donor units with optimal weights.

"Average Control" is the simple average of all control units with equal weights.

#### Optimal Unit Weights:

| Unit                           |  | U.weight                                       |
|--------------------------------|--|------------------------------------------------|
| 204<br>110<br>224<br>25<br>161 |  | 0.3630<br>0.2390<br>0.1790<br>0.1670<br>0.0510 |

Note: The unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 225 226 227 228 229 230 231 232 233 234 235 236 237 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 in the donor pool get a weight of 0.

#### Prediction results in the posttreatment periods:

|                                    | Actual Outcome                                       | Synthetic Outcome                                    | Treatment Effect                              |
|------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|
| 2008  <br>2009  <br>2010  <br>2011 | 19693.0000<br>20076.0000<br>19961.0000<br>19713.0000 | 19562.2598<br>19350.8125<br>19022.2402<br>18548.8555 | 130.7402<br>725.1875<br>938.7598<br>1164.1445 |
| Mean                               | 19860.7500                                           | 19121.0420                                           | 739.7080                                      |

Note: The average treatment effect over the posttreatment period is 739.7080.

```
Implementing placebo test using fake treatment unit 1...10...100...101...102...103...
> 104...105...106...107...108...109...11...110...111...112...113...114...115...116...
> 117...118...119...12...120...121...122...123...124...125...126...127...128...129...
> 13...130...131...132...133...134...135...136...137...138...139...14...140...141...1
> 42...143...144...145...146...147...148...149...15...150...151...152...153...154...1
  55...156...157...158...159...16...160...161...162...163...164...165...166...167...1
  68...169...17...170...171...172...173...174...175...176...177...178...179...18...18
  3...194...195...196...197...198...199...2...20...200...201...202...203...204...205.
  ..206...207...208...209...21...210...211...212...213...214...215...216...217...218.
  ..219...22...220...221...222...223...224...225...226...227...228...229...23...230..
  .231...232...233...234...235...236...237...239...24...240...241...242...243...244...
  .245...246...247...248...249...25...250...251...252...253...254...255...256...257..
 .258...259...26...260...261...262...263...264...265...266...267...268...269...27...
270...271...272...273...274...275...276...28...29...3...30...31...32...33...34...35
  \dots 36 \dots 37 \dots 38 \dots 39 \dots 4 \dots 40 \dots 41 \dots 42 \dots 43 \dots 44 \dots 45 \dots 46 \dots 47 \dots 48 \dots 49 \dots 5 \dots 50
  ...51...52...53...54...55...56...57...58...59...6...60...61...62...63...64...65...6
 6\dots 67\dots 68\dots 69\dots 7\dots 70\dots 71\dots 72\dots 73\dots 74\dots 75\dots 76\dots 77\dots 78\dots 79\dots 8\dots 80\dots 8
 1...82...83...84...85...86...87...88...89...9...90...91...92...93...94...95...96...
> 97...98...99...
```

#### In-space placebo test results using fake treatment units:

| Unit       | Pre MSPE                       | Post MSPE                        | Post/Pre MSPE                 | Pre MSPE of Fake Unit/   |
|------------|--------------------------------|----------------------------------|-------------------------------|--------------------------|
|            |                                |                                  |                               | Pre MSPE of Treated Unit |
| 238        | 9.52e+04                       | 6.95e+05                         | 7.3020                        | 1.0000                   |
| 1          | 7.34e+04                       | 5.84e+04                         | 0.7957                        | 0.7713                   |
| 10         | 7.34e+04<br>3289.5608          | 2.94e+04                         | 8.9264                        | 0.0346                   |
|            | 1.02e+04                       | 3935.4399                        | 0.3862                        | 0.1071                   |
|            | 1088.8965                      | 1.30e+04<br>1.47e+05<br>2.26e+04 | 11.9099                       | 0.0114                   |
|            | 5.46e+04                       | 1.47e+05                         | 2.6830                        | 0.5739                   |
|            | 2022.2628                      | 2.26e+04                         | 11.1/41                       | 0.0213                   |
|            | 4812.0347                      | 1241.1132                        | 0.2579                        | 0.0506                   |
|            | 995.6233                       | 2941.0968                        | 0.2579<br>2.9540              | 0.0105                   |
|            | 452.2944                       | 2972.5255                        | 6.5721<br>10.2735             | 0.0048                   |
|            | 2449.0048                      | 2.52e+04<br>1.47e+04             | 10.2735                       | 0.0257                   |
|            | 963.9097                       | 1.47e+04                         | 15.2616                       | 0.0101                   |
|            | 4403.5189                      | 2.44e+04                         | 5.5371                        | 0.0463                   |
|            | 93.9865                        | 1.20e+04                         | 15.2616<br>5.5371<br>127.3149 | 0.0010                   |
|            | 43.4062                        | 3017.2808                        | 69.312/                       | 0.0005                   |
|            | 1274.9310                      | 7.92e+04                         | 62.1574                       | 0.0134                   |
|            | 1900.8423                      | 3.42e+04                         | 18.0096                       | 0.0200                   |
|            | 1724.7334                      | 9384.4314                        | 5.4411                        | 0.0181                   |
|            | 1748.0376                      | 6185.2362                        | 3.5384                        | 0.0184                   |
|            | 946.1330                       | 5.12e+04                         | 54.1496                       | 0.0099                   |
|            | 470.9372                       | 1604.3244                        | 3.4067                        | 0.0049                   |
|            | 478.2048                       | 1458.6787                        | 3.0503                        | 0.0050                   |
|            | 2098.5712                      | 1592.9394                        | 0.7591                        | 0.0221                   |
|            | 1010.4029                      | 6938.3575                        | 6.8669                        | 0.0106                   |
|            | 4495.2873<br>  3250.9683       | 8312.7052                        | 1.8492                        | 0.0472                   |
| 120<br>121 |                                | 5274.3985                        | 1.6224                        | 0.0342                   |
|            | 1248.1143                      | 748.7775<br>1020.9324            | 0.5999<br>3.0359              | 0.0131<br>0.0035         |
|            | 336.284 <i> </i><br>  847.1957 | 2803.2187                        | 3.3088                        | 0.0035                   |
|            | 263.1422                       |                                  | 6.2708                        | 0.0089                   |
|            | 1.21e+04                       | 1.81e+04                         | 1.4961                        | 0.0028                   |
|            | 882.6451                       | 7379.8243                        | 8.3610                        | 0.1269                   |
| 126        |                                | 8930.2298                        | 0.2963                        | 0.0093                   |
| 12/        | J.U16+04                       | 0930.2298                        | 0.2903                        | 0.3107                   |

| 130   5223.5685       5721.1986       1.0953         131   1506.1601       1145.5226       0.7606         132   1077.1355       1737.1980       1.6128         133   2733.5250       3.05e+04       11.1581         134   2166.1003       993.4409       0.4586         135   1.03e+04       2858.9627       0.2780         136   346.6684       2668.9457       7.6988         137   1.94e+04       1440.2910       0.0744         138   650.0141       9168.4651       14.1050         139   4913.5081       3461.8004       0.7045         14   2049.2743       4270.3374       2.0838         140   6427.9328       1.73e+04       2.6942         141   247.2231       4639.1155       18.7649         142   169.2261       430.6886       2.5450         143   1913.3900       5054.2692       2.6415         144   858.3910       8275.8966       9.6412         145   2735.9088       3297.6790       1.2053         146   2444.7583       3.71e+04       15.1816         147   730.1927       1847.1996       2.5297         148   224.9879       1018.6355       4.5275         149   528.9086       541.1730       1.0232 | 0.0113 0.0287 0.0228 0.1081 0.0036 0.2034 0.0068 0.0516 0.0215 0.0675 0.0026 0.0018 0.0201 0.0090 0.0288 0.0257 0.0027 0.0024 0.0056 0.0152 0.0026 0.0018 0.0056 0.0152 0.0026                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 132   1077.1355       1737.1980       1.6128         133   2733.5250       3.05e+04       11.1581         134   2166.1003       993.4409       0.4586         135   1.03e+04       2858.9627       0.2780         136   346.6684       2668.9457       7.6988         137   1.94e+04       1440.2910       0.0744         138   650.0141       9168.4651       14.1050         139   4913.5081       3461.8004       0.7045         14   2049.2743       4270.3374       2.0838         140   6427.9328       1.73e+04       2.6942         141   247.2231       4639.1155       18.7649         142   169.2261       430.6886       2.5450         143   1913.3900       5054.2692       2.6415         144   858.3910       8275.8966       9.6412         145   2735.9088       3297.6790       1.2053         146   2444.7583       3.71e+04       15.1816         147   730.1927       1847.1996       2.5297         148   224.9879       1018.6355       4.5275         149   528.9086       541.1730       1.0232         15   1450.4860       2.03e+04       13.9956         150   2147.7714       6993.9445       3.2564  | 0.0113 0.0287 0.0228 0.1081 0.0036 0.2034 0.0068 0.0516 0.0215 0.0675 0.0026 0.0018 0.0201 0.0090 0.0288 0.0257 0.0077 0.0024 0.0056 0.0152 0.0226 0.0010 0.0180 0.0541 0.0379 0.0106 0.0210 0.0045 0.0022 0.0067 0.0125 0.0152 0.0226 0.0010 0.0045 0.0022 0.0067 0.0125 0.0152 0.04449 0.0045 0.0022 0.0067 0.0125 0.0152 0.4449 0.0045 0.0022 0.0067 0.0125 0.0152 0.4449 0.0045 0.0021 0.0045 0.0028 0.3087 0.4575 0.0050 0.0427 0.0689 0.0071 0.1055 0.0021 0.0048 0.0024 |
| 180   6795.7935     5794.4557     0.8527       181   46.5107     1.20e+04     258.7698       182   5650.9544     7008.7140     1.2403       183   2060.1643     4.81e+04     23.3287       184   7188.3732     9627.3550     1.3393       185   883.8177     4.11e+04     46.5194       186   1.05e+04     3220.4672     0.3075       187   844.1954     8.98e+04     106.4317       188   323.7296     8435.3104     26.0567       189   269.5049     3506.1144     13.0095       19   3.94e+05     1.67e+05     0.4238       190   1177.3951     3132.8723     2.6609       191   1230.1198     1163.8073     0.9461       192   721.6069     1851.9999     2.5665                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0714<br>0.0005<br>0.0594<br>0.0216<br>0.0755<br>0.0093<br>0.1101<br>0.0089<br>0.0034<br>0.0028<br>4.1400<br>0.0124<br>0.0129                                                                                                                                                                                                                                                                                                                                                 |

| 202<br>203<br>204<br>205<br>206<br>207<br>208<br>209<br>21<br>210<br>211<br>212<br>213<br>214<br>215<br>216<br>217<br>218<br>22<br>220<br>221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>23<br>23<br>23<br>23<br>24<br>25<br>25<br>26<br>27<br>27<br>28<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 44.5947   5333.6063   359.8004   5401.6530   2493.9239   1.88e-404   601.3629   372.6404   3467.4073   1792.0515   30.1590   360.8923   2.30e+04   525.2007   6120.1696   940.8141   1.92e+04   525.2007   6120.1696   940.8141   1.92e+04   525.2007   6120.1696   940.8141   1.92e+04   578.0847   174.6051   2.26e+04   3587.9006   3926.0979   973.6978   830.6585   3.0336+04   631.8711   2147.2707   678.6154   4857.1263   1.09e+04   3512.0880   1.62e+04   910.3022   3836.0337   7612.8414   1000.2299   771.5604   910.3022 | 9809.3422 4651.6188 2.68e+04 6891.5164 3.00e+04 866.8969 1.34e+04 1.53e+04 298.1989 8617.4899 6091.3469 1064.2227 5.13e+04 6.79e+06 8711.3225 700.9804 2.78e+04 3384.3174 5675.3613 1.89e+04 1.26e+04 1.26e+04 1.26e+04 1.26e+04 1.26e+04 1.26e+04 1.33e+05 3936.4281 3009.1736 1.58e+05 1.62e+04 1050.4108 1.01e+05 529.8264 1050.4108 1.01e+05 529.8264 1.98e+06 2342.6188 2644.3925 223.9986 1604.2230 5.28e+04 116e+04 7363.9903 4145.8035 2.00e+05 1.39e+04 1.16e+04 7363.9903 4145.8035 2.00e+04 8718.1611 1.85e+04 1.16e+04 7363.9903 4145.8035 2.00e+04 8718.1611 1.85e+04 1.16e+04 7363.9903 4145.8035 2.00e+05 3241.1054 380.4446 3.71e+05 506.4040 317.8830 5.91e+04 | 132.4522 104.3087 5.0307 19.1537 5.5520 0.3476 0.7128 25.4469 0.8002 2.4853 3.3991 35.2870 142.1529 2.9522 12.2292 0.1539 1.3584 6.4439 0.9273 20.0435 0.1131 53.5294 72.1021 2.6443 6.6881 5.2173 4.9050 15.9573 6.8154 6.2298 1.4278 1.4823 0.2991 6.2161 7.1118 2169.7296 0.6107 0.3474 0.2239 2.0792 4.6458 17.7723 1.4741 3.2695 12.4278 4.9703 3.9932 4.9176 8.5738 2.1401 2.8853 3.9142 2.4705 84.2632 5.8291 10.4180 0.1223 17.1892 9.5539 0.3970 0.0102 4.1272 0.3180 29.6650 0.1899 92.5422 | 0.0008 0.0005 0.0560 0.0560 0.0038 0.0568 0.0262 0.1972 0.0063 0.0039 0.0364 0.0188 0.0003 0.0038 24.1667 0.0075 0.0479 0.2148 0.0055 0.0643 0.0099 0.2018 0.0061 0.0061 0.0061 0.0061 0.0077 0.0413 0.0102 0.0087 0.3188 0.0066 0.0226 0.0071 0.0510 0.1146 0.0369 0.1700 0.0082 0.0096 0.0403 0.0800 0.0105 0.0081 0.1195 0.0054 0.0096 0.0403 0.0800 0.0105 0.0081 0.1195 0.0054 0.0057 0.0255 0.0117 0.0245 0.0194 0.0089 0.2451 0.0010 0.0013 0.0105 0.01075 0.02461 0.0010 0.0013 0.01075 0.02461 0.0010 0.0013 0.01075 0.02461 0.0010 0.0013 0.0105 0.0036 0.0101 384.0343 0.0013 0.0105 0.0209 0.0364 0.0082 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 252<br>253                                                                                                                                                                                                                                                                                                                                                              | 1993.0031<br>  3466.2919<br>  778.9146<br>  2488.1918<br>  375.9471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.91e+04<br>658.3244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.6650<br>0.1899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0209<br>0.0364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 050   | 157 6000  | 7 70 .04  | 402.0564          | 0.0017 |
|-------|-----------|-----------|-------------------|--------|
| 259   | 814.7800  | 7.79e+04  | 493.8564          | 0.0017 |
| 26    |           | 2756.4064 | 3.3830            | 0.0086 |
| 260   |           | 2758.5885 | 0.8060            | 0.0360 |
| 261   |           | 2.17e+04  | 35.4534           | 0.0064 |
| 262   | 2544.5195 | 2485.3694 | 0.9768            | 0.0267 |
| 263   |           | 5216.8790 | 4.1528            | 0.0132 |
| 264   |           | 1.02e+04  | 14.7224           | 0.0073 |
| 265   | 1448.3639 | 2385.1521 | 1.6468            | 0.0152 |
| 266   |           | 4525.3808 | 1.3153            | 0.0362 |
| 267   |           | 4.19e+04  | 7.6295            | 0.0577 |
| 268   |           | 7259.6269 | 2.7093            | 0.0282 |
| 269   |           | 1.36e+04  | 28.7491           | 0.0050 |
| 269   |           | 1705.8867 | 4.7998            | 0.0030 |
| 270   |           | 1.04e+04  | 3.9229            | 0.0278 |
| 271   |           | 1630.7928 | 0.5123            | 0.0335 |
| 272   | 1.73e+04  | 2.09e+05  | 12.0935           | 0.1814 |
| 273   | 3172.1355 | 3803.0335 | 0.6704            | 0.0596 |
| 274   |           | 4653.5855 | 1.4670            | 0.0333 |
| 275   |           | 1221.6416 | 5.5159            | 0.0023 |
| 276   |           | 8.56e+05  | 4.5600            | 1.9737 |
| 28    | 267.1407  | 3756.7635 | 14.0629           | 0.0028 |
| 29    |           | 3.35e+04  | 19.8867           | 0.0177 |
| 3     |           | 6059.5830 | 2.3769            | 0.0268 |
| 30 j  | 2.91e+04  | 9117.1993 | 0.3129            | 0.3062 |
| 31    |           | 1.31e+04  | 50.5649           | 0.0027 |
| 32    |           | 1.17e+04  | 8.6784            | 0.0141 |
| 33    | 869.2778  | 6237.1023 | 7.1750            | 0.0091 |
| 34    |           | 3.01e+04  | 64.4199           | 0.0049 |
| 35 j  | 871.3832  | 423.6305  | 0.4862            | 0.0092 |
| 36    |           | 2.53e+04  | 59.4568           | 0.0045 |
| 37    |           | 7.85e+04  | 20.5026           | 0.0402 |
| 38    | 542.8456  | 1268.3297 | 2.3364<br>50.4232 | 0.0057 |
| 39    | 543.0690  | 2.74e+04  | 2.9334            | 0.0057 |
| 4     | 1.00e+04  | 2.95e+04  |                   | 0.1056 |
| 40    | 4485.7955 | 2.58e+04  | 5.7606            | 0.0471 |
| 41    | 466.0344  | 2076.2843 | 4.4552            | 0.0049 |
| 42    | 1663.0048 | 1.05e+04  | 6.3015            | 0.0175 |
| 43    | 1.47e+04  | 5609.2130 | 4.3656            | 0.0135 |
| 44    |           | 1.36e+04  | 0.9265            | 0.1542 |
| 45    |           | 1.74e+04  | 16.4389           | 0.0111 |
| 46    |           | 100.9503  | 0.1976            | 0.0054 |
| 47    | 4669.8657 | 1.11e+04  | 2.3731            | 0.0491 |
| 48    |           | 744.5903  | 1.7992            | 0.0043 |
| 49    |           | 444.7481  | 1.0475            | 0.0045 |
| 5 j   |           | 4244.8645 | 8.7184            | 0.0051 |
| 50 j  |           | 3219.4748 | 2.5114            | 0.0135 |
| 51 i  | 531.7993  | 2196.0328 | 4.1294            | 0.0056 |
| 52    | 2773.2931 | 1270.7940 | 0.4582            | 0.0291 |
| 53    | 1310.3418 | 1.20e+04  | 9.1277            | 0.0138 |
| 54    | 5687.6934 | 3695.1513 | 0.6497            | 0.0598 |
| 55    | 8963.3497 | 5841.2586 | 0.6517            | 0.0942 |
| 56    | 1161.0785 | 1.17e+04  | 10.1127           | 0.0122 |
| 57    | 374.9402  | 8330.8115 | 22.2190           | 0.0039 |
| 58    | 2.51e+04  | 1.79e+05  | 7.1236            | 0.2635 |
| 59 j  | 696.0212  | 5.22e+04  | 75.0318           | 0.0073 |
| 6     | 1139.0913 | 1.32e+04  | 11.6043           | 0.0120 |
| 60    | 344.8514  | 5.38e+04  | 156.0898          | 0.0036 |
| 61    | 425.0555  | 3206.0645 | 7.5427            | 0.0045 |
| 62    | 1813.1251 | 1.79e+05  | 98.4739           | 0.0191 |
| 63    | 1291.9545 | 328.0782  | 0.2539            | 0.0136 |
| 64    | 509.6977  | 208.1130  | 0.4083            | 0.0054 |
| 65    | 5044.6254 | 5916.2700 | 1.1728            | 0.0530 |
| 66    | 1048.6817 | 721.0511  | 0.6876            | 0.0110 |
| 67    |           | 4.05e+04  | 20.8236           | 0.0204 |
| 68    | 398.9367  | 1755.7370 | 4.4010            | 0.0042 |
| 69    | 374.9162  | 1478.7276 | 3.9442            | 0.0039 |
| 7     | 2818.6771 | 3.15e+04  | 11.1785           | 0.0296 |
| 70    | 5518.0293 | 9256.3314 | 1.6775            | 0.0580 |
| 71    |           | 1.34e+04  | 21.8424           | 0.0065 |
| 72    |           | 5021.5427 | 5.0336            | 0.0105 |
| 73    |           | 6726.5244 | 20.9350           | 0.0034 |
| 74    |           | 1051.8623 | 3.0100            | 0.0037 |
| . = 1 |           |           |                   |        |

| 75   748.2909 7980.6065 76   1.40e+04 1.37e+04 77   3634.8526 3.02e+04 78   363.6679 154.7377 79   2220.2923 1.04e+04 8   6076.8395 8427.7266 80   2151.0796 6.42e+04 81   2294.4521 1.13e+04 82   392.7501 4097.5682 83   349.6981 2.17e+04 84   1493.9385 8.06e+04 85   2.40e+04 2.91e+05 86   50.7979 389.5157 87   1479.2613 1154.5090 88   507.0087 1.36e+04 89   2685.3328 1290.1812 9   688.5169 1.32e+04 90   573.9534 1.39e+04 91   274.2629 226.9333 92   2949.5578 1339.3762 93   1.13e+04 4.96e+04 94   1018.5682 1602.6746 95   3489.4053 2.31e+04 96   1920.0275 3222.9861 97   923.9815 4650.1149 98   397.5576 8.07e+04 99   1101.2113 3.43e+04 | 0.9792<br>8.3094<br>0.4255<br>4.6772<br>1.3869<br>29.8314<br>4.9268<br>10.4330<br>61.9810<br>53.9615<br>12.1457<br>7.6680<br>0.7805<br>26.8935<br>0.4805<br>19.1700<br>24.2613<br>0.8274<br>0.4541<br>4.3963<br>1.5735<br>6.6153<br>1.6786<br>5.0327<br>202.8846<br>31.1324 | 0.1470<br>0.0382<br>0.0038<br>0.0233<br>0.0639<br>0.0226<br>0.0241<br>0.0041<br>0.0037<br>0.0157<br>0.2519<br>0.0005<br>0.0155<br>0.0053<br>0.0282<br>0.0072<br>0.0060<br>0.0029<br>0.0310<br>0.1186<br>0.0107<br>0.0367<br>0.0202<br>0.0097 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Note: (1) Using all control units, the probability of obtaining a post/pretreatment MSPE ratio as large as 238's is 0.3804.

- (2) Excluding control units with pretreatment MSPE 5 times larger than the treated unit, the probability of obtaining a post/pretreatment MSPE ratio as large as 238's is 0.3832.
- (3) The pointwise p-values below are computed by excluding control units with pretreatment MSPE 5 times larger than the treated unit.
- (4) There are total 2 units with pretreatment MSPE 5 times larger than the treated unit, including 204 25.

In-space placebo test results using fake treatment units (continued, cutoff = 5):

| Time | Treatment Effect |        | of Treatment<br>Right-sided |        |
|------|------------------|--------|-----------------------------|--------|
| 2008 | 130.7402         | 0.1788 | 0.1423                      | 0.8613 |
| 2009 | 725.1875         | 0.0036 | 0.0036                      | 1.0000 |
| 2010 | 938.7598         | 0.0073 | 0.0036                      | 1.0000 |
| 2011 | 1164.1445        | 0.0146 | 0.0073                      | 0.9964 |

Note: (1) The two-sided p-value of the treatment effect for a particular period is defined as the frequency that the absolute values of the placebo effects are greater than or equal to the absolute value of treatment effect.

- (2) The right-sided (left-sided) p-value of the treatment effect for a particular period is defined as the frequency that the placebo effects are greater (smaller) than or equal to the treatment effect.
- (3) If the estimated treatment effect is positive, then the right-sided p-value is recommended; whereas the left-sided p-value is recommended if the estimated treatment effect is negative.

Implementing leave-one-out robustness test that excludes one control unit with a nonz > ero weight 204...110...224...25...161...

Leave-one-out robustness test results in the posttreatment period:

| Time                 |                                                      | come<br>Synthetic                                    | Min                                                  | utcome (LOO)<br>Max                                  |
|----------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 2008<br>2009<br>2010 | 19693.0000<br>20076.0000<br>19961.0000<br>19713.0000 | 19562.2598<br>19350.8125<br>19022.2402<br>18548.8555 | 19375.9785<br>19155.7852<br>18788.7012<br>18432.8828 | 19749.5000<br>19494.8594<br>19282.9258<br>18823.4629 |

Note: The last two columns report the minimum and maximum synthetic outcomes when one control unit with a nonzero weight is excluded at a time.

| Time | Treatment Effect | Treatment Eff<br>Min | ect (LOO)<br>Max |
|------|------------------|----------------------|------------------|
| 2008 | 130.7402         | -56.5000             | 317.0215         |
| 2009 | 725.1875         | 581.1406             | 920.2148         |
| 2010 | 938.7598         | 678.0742             | 1172.2988        |
| 2011 | 1164.1445        | 889.5371             | 1280.1172        |

Note: The last two columns report the minimum and maximum treatment effects when one control unit with a nonzero weight is excluded at a time.

```
file spec2 bias.gph saved
file spec2_weight_vars.gph saved
file spec2_weight_unit.gph saved
file spec2_pred.gph saved
file spec2_eff.gph saved
file spec2_eff_pboUnit.gph saved
file spec2_ratio_pboUnit.gph saved
file spec2_pvalTwo_pboUnit.gph saved
file spec2_pvalRight_pboUnit.gph saved
file spec2_pvalRight_pboUnit.gph saved
file spec2_pvalLeft_pboUnit.gph saved
file spec2_pred_loo.gph saved
file spec2_eff_loo.gph saved
Finished.
. // *******************
preserve
            keep if target donor==1
(3,542 observations deleted)
            synth2 no enroll k12 no enroll k12(1998) no enroll k12(2002) ///
                      no_enroll_k12(2007) p_lunch p_black p_hispanic, /// trunit(238) trperiod(2008) mspeperiod(1998(1)2007) ///
>
                      preperiod(1998(1)2007) postperiod(2008(1)2011) xperiod(1998(1)2007)
   ///
>
                      placebo(unit cutoff(5)) loo savegraph(spec2r, replace) frame(espec2
Fitting results in the pretreatment periods:
                    : 238 Treatment Time : 2008
 Treated Unit
```

Number of Control Units = 22 Root Mean Squared Error = 229.55695 Number of Covariates = 6 R-squared = 0.95576

#### Covariate balance in the pretreatment periods:

| <pre>&gt; -     Covariate &gt; </pre> | V.weight | Treated    | Synthetic<br>Value | Control<br>Bias | Average<br>Value | Control<br>Bias |
|---------------------------------------|----------|------------|--------------------|-----------------|------------------|-----------------|
| > - no enroll k12(1998)               | 0.2588   | 23009.0000 | 23014.0100         | 0 028           | 10497.2273       | -54.38          |
| > %                                   | 0.2300   | 23009.0000 | 23014.0100         | 0.02%           | 10497.2273       | -54.50          |
| no_enroll_k12(2002)  <br>> %          | 0.4474   | 21796.0000 | 21801.6100         | 0.03%           | 10459.3182       | -52.01          |
| no_enroll_k12(2007)                   | 0.2937   | 19759.0000 | 19766.0960         | 0.04%           | 9519.4091        | -51.82          |
| p_lunch   > %                         | 0.0000   | 0.6089     | 0.5931             | -2.59%          | 0.5279           | -13.30          |
| p_black                               | 0.0000   | 0.4750     | 0.4687             | -1.32%          | 0.4471           | -5.86           |
| <pre>&gt; %</pre>                     | 0.0000   | 0.0776     | 0.1221             | 57.43%          | 0.2318           | 198.94          |

> -

Note: "V.weight" is the optimal covariate weight in the diagonal of V matrix. "Synthetic Control" is the weighted average of donor units with optimal weights.

"Average Control" is the simple average of all control units with equal weights.

#### Optimal Unit Weights:

| Unit                    | 1 | U.weight                                       |
|-------------------------|---|------------------------------------------------|
| 204<br>168<br>247<br>25 |   | 0.3920<br>0.2400<br>0.2330<br>0.0880<br>0.0480 |

Note: The unit 4 19 30 50 58 102 112 154 161 167 198 207 218 241 267 274 276 in the donor pool get a weight of 0.

### Prediction results in the posttreatment periods:

| Time                               | Actual Outcome                                       | Synthetic Outcome                                    | Treatment Effect                            |
|------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------|
| 2008  <br>2009  <br>2010  <br>2011 | 19693.0000<br>20076.0000<br>19961.0000<br>19713.0000 | 19657.4941<br>19510.0137<br>19300.3457<br>18857.0996 | 35.5059<br>565.9863<br>660.6543<br>855.9004 |
| Mean                               | 19860.7500                                           | 19331.2383                                           | 529.5117                                    |

Note: The average treatment effect over the posttreatment period is 529.5117.

Implementing placebo test using fake treatment unit 1...102...112...154...161...167..
> .168...19...198...204...207...218...241...247...25...267...274...276...30...4...50.
> ..58...

#### In-space placebo test results using fake treatment units:

| Unit | Pre MSPE  | Post MSPE | Post/Pre MSPE | Pre MSPE of Fake Unit/<br>Pre MSPE of Treated Unit |
|------|-----------|-----------|---------------|----------------------------------------------------|
| 238  | 5.27e+04  | 3.73e+05  | 7.0718        | 1.0000                                             |
| 1    | 6.49e+04  | 5.27e+04  | 0.8127        | 1.2313                                             |
| 102  | 5.57e+04  | 1.82e+05  | 3.2595        | 1.0578                                             |
| 112  | 7807.4552 | 6.59e+04  | 8.4422        | 0.1482                                             |
| 154  | 4533.9273 | 1.77e+04  | 3.8980        | 0.0860                                             |
| 161  | 2.30e+04  | 6.01e+05  | 26.1582       | 0.4361                                             |
| 167  | 1.00e+05  | 5.26e+05  | 5.2487        | 1.9035                                             |
| 168  | 3.94e+04  | 1.05e+04  | 0.2672        | 0.7483                                             |

| 19  | 7.13e+05  | 2.30e+05  | 0.3219  | 13.5342  |
|-----|-----------|-----------|---------|----------|
| 198 | 2617.2128 | 2.20e+05  | 84.1605 | 0.0497   |
| 204 | 2.30e+06  | 6.57e+06  | 2.8536  | 43.6656  |
| 207 | 1.75e+04  | 8028.9462 | 0.4593  | 0.3318   |
| 218 | 8.48e+04  | 3.91e+05  | 4.6024  | 1.6102   |
| 241 | 1.84e+04  | 5.24e+04  | 2.8548  | 0.3484   |
| 247 | 2.71e+04  | 1.92e+05  | 7.1061  | 0.5139   |
| 25  | 3.65e+07  | 3.71e+05  | 0.0102  | 693.5058 |
| 267 | 2714.1546 | 2.37e+05  | 87.4914 | 0.0515   |
| 274 | 1.05e+04  | 3723.7911 | 0.3538  | 0.1997   |
| 276 | 1.88e+05  | 8.81e+05  | 4.6819  | 3.5700   |
| 30  | 1.66e+04  | 1.08e+04  | 0.6517  | 0.3142   |
| 4   | 1.07e+04  | 6760.9592 | 0.6335  | 0.2025   |
| 50  | 1.47e+04  | 1971.5488 | 0.1339  | 0.2794   |
| 58  | 1.35e+04  | 1.49e+05  | 11.0567 | 0.2564   |

Note: (1) Using all control units, the probability of obtaining a post/pretreatment MSPE ratio as large as 238's is 0.3043.

- (2) Excluding control units with pretreatment MSPE 5 times larger than the treated unit, the probability of obtaining a post/pretreatment MSPE ratio as large as 238's is 0.3500.
- (3) The pointwise p-values below are computed by excluding control units with pretreatment MSPE 5 times larger than the treated unit.

  (4) There are total 3 units with pretreatment MSPE 5 times larger than the
- treated unit, including 19 204 25.

In-space placebo test results using fake treatment units (continued, cutoff = 5):

| Time | Treatment Effect | p-value<br>Two-sided | of Treatment<br>Right-sided | Effect<br>Left-sided |
|------|------------------|----------------------|-----------------------------|----------------------|
| 2008 | 35.5059          | 0.9500               | 0.5000                      | 0.5500               |
| 2009 | 565.9863         | 0.2000               | 0.1500                      | 0.9000               |
| 2010 | 660.6543         | 0.1500               | 0.0500                      | 1.0000               |
| 2011 | 855.9004         | 0.2000               | 0.1000                      | 0.9500               |

Note: (1) The two-sided p-value of the treatment effect for a particular period is defined as the frequency that the absolute values of the placebo effects are greater than or equal to the absolute value of treatment effect.

- (2) The right-sided (left-sided) p-value of the treatment effect for a particular period is defined as the frequency that the placebo effects are greater (smaller) than or equal to the treatment effect.
- (3) If the estimated treatment effect is positive, then the right-sided p-value is recommended; whereas the left-sided p-value is recommended if the estimated treatment effect is negative.

Implementing leave-one-out robustness test that excludes one control unit with a nonz > ero weight 204...168...247...25...1...

Leave-one-out robustness test results in the posttreatment period:

| Time | Actual     | come<br>Synthetic | Min        | outcome (LOO)<br>Max |
|------|------------|-------------------|------------|----------------------|
| 2008 | 19693.0000 | 19657.4941        | 19615.1191 | 19752.1172           |
| 2009 | 20076.0000 | 19510.0137        | 19392.5820 | 19579.7520           |
| 2010 | 19961.0000 | 19300.3457        | 19128.8828 | 19351.2988           |
| 2011 | 19713.0000 | 18857.0996        | 18696.8379 | 19110.0410           |

Note: The last two columns report the minimum and maximum synthetic outcomes when one control unit with a nonzero weight is excluded at a time.

```
Time | Treatment Effect Treatment Effect (LOO)
                                  Min
                                             77.8809
 2008 I
                    35.5059
                                  -59.1172
                                                683.4180
                  565.9863
                                  496.2480
 2009 |
                  660.6543
855.9004
                               609.7012
602.9590
                                                 832.1172
 2010 |
                                             1016.1621
2011 |
Note: The last two columns report the minimum and maximum treatment effects when
      one control unit with a nonzero weight is excluded at a time.
file spec2r_bias.gph saved
file spec2r_weight_vars.gph saved file spec2r_weight_unit.gph saved
file spec2r_pred.gph saved
file spec2r_eff.gph saved
file spec2r_eff_pboUnit.gph saved
file spec2r_ratio_pboUnit.gph saved
file spec2r_pvalTwo_pboUnit.gph saved
file spec2r_pvalRight_pboUnit.gph saved
file spec2r_pvalLeft_pboUnit.gph saved
file spec2r_pred_loo.gph saved file spec2r_eff_loo.gph saved
Finished.
          restore
. // *******************
. // Specification 2 - GRAPHS (enrollment)
// enrollment: main SCM and gaps graphs
          graph combine spec2 pred.gph spec2 eff.gph spec2r pred.gph spec2r eff.gph,
> ///
                   cols(2) altshrink xsize(10) ysize(8) title("K-12 enrollment", size(s
> mall)) ///
                   subtitle("Levels and Treatment Effects", size(vsmall))
          graph export ecomb1.png, as(png) replace
file ecomb1.png saved as PNG format
           // enrollment: SCM vs placebo graphs
          graph combine spec2_eff_pboUnit.gph spec2r_eff_pboUnit.gph, ///
                   rows(1) alt\overline{s}hri\overline{n}k xsize(8) ysize(4\overline{)} ti\overline{t}le("K-12 enrollment", size(sm
> all)) ///
                   subtitle("Treatment Effects: Actual vs. Placebo", size(vsmall))
           graph export ecomb2.png, as(png) replace
file ecomb2.png saved as PNG format
           // enrollment: p-value graphs
          graph combine spec2 pvalRight pboUnit.gph spec2r pvalRight pboUnit.gph, ///
                   rows(1) altshrink xsize(8) ysize(4) title("K-12 enrollment", size(sm
```

subtitle("p-values by year", size(vsmall))

> all)) ///

```
file ecomb3.png saved as PNG format
       // enrollment: LOO graphs
       > all))
       graph export ecomb4.png, as(png) replace
file ecomb4.png saved as PNG format
. // Graduation data
. // **********
. // Setup
       use https://github.com/spcorcor18/LPO-8852/raw/main/data/nys data grad.dta,
> clear
       // There are 237 school districts x 10 years = 2370 observations
       // Syracuse is id==205
       table year
          | Frequency
year (2001-2010) |
 2001
                    237
 2002
                    237
 2003
                    237
 2004
                   237
 2005
                   237
 2006
                    237
                   237
 2007
                   237
 2008
                   237
 2009
 2010
                    237
 Total
                 2,370
       unique district
Number of unique values of district name is 237
Number of records is 2370
       unique id
Number of unique values of id is 237
Number of records is 2370
       tabulate id if substr(district, 1, 4) == "SYRA"
group(distr |
             Freq. Percent Cum.
ict name) |
205 | 10 100.00 100.00
    Total |
                10 100.00
```

graph export ecomb3.png, as(png) replace

```
// District name is too long to use as labels with synth command. I
             // created a truncated version and ensured this didn't vary over time
             // within id (below). However, synth produced an error when looping over
             // the placebo districts ("invalid numlist has too many elements") that
             // seems to resolve when I don't use this district label. Still seeking
             // a way to bring in district name labels.
             by id: gen temp=district name if n==1
(2,133 missing values generated)
             egen district name2=mode(temp), by(id)
             gen district2=proper(substr(district name2,1,12))
             *labmask id, values(district2)
             drop temp district_name2
             xtset id year
Panel variable: id (strongly balanced)
Time variable: year, 2001 to 2010
Delta: 1 unit
            // ulocal07 codes 11, 12, and 13 are large, midsize, and small cities
            tabulate uloca107
local type |
   code (7 |
categories) |
                  Freq. Percent Cum.
 - numeric |

    11 |
    10
    0.42
    0.42

    12 |
    20
    0.84
    1.27

    13 |
    190
    8.02
    9.28

    21 |
    1,910
    80.59
    89.87

    22 |
    120
    5.06
    94.94

    23 |
    100
    4.22
    99.16

    32 |
    20
    0.84
    100.00

      Total | 2,370 100.00
            tabulate local07
   locale type |
       code (7 |
 categories) -
                           Freq.
                                         Percent
                                                              Cum.
        string |
  City-Large | 10 0.42 0.42 City-Midsize | 20 0.84 1.27 City-Small | 190 8.02 9.28 Suburb-Large | 1,910 80.59 89.87 aburb-Midsize | 120 5.06 94.94 Suburb-Small | 100 4.22 99.16 Town-Distant | 20 0.84 100.00
Suburb-Midsize |
```

Total | 2,370 100.00

// Note: use the dataset's target\_donor flag, though not 100% clear // how it is defined. See earlier note.

tabulate year target\_donor

| year<br>(2001-2010                                                   | <br>  target                                                       | _donor                                             |                                                                    |
|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| )                                                                    | 0                                                                  | _ 1                                                | Total                                                              |
| 2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009 | 214<br>  214<br>  214<br>  214<br>  214<br>  214<br>  214<br>  214 | 23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23 | 237<br>  237<br>  237<br>  237<br>  237<br>  237<br>  237<br>  237 |
| 2010                                                                 | 214                                                                | 23                                                 | 237                                                                |
| Total                                                                | 2,140                                                              | 230                                                | 2,370                                                              |

. tabulate year small\_index

| year<br>(2001-2010<br>)                                                      | <br>  smal<br>  0                                                  | l_index 1                                    | Total                                                                       |
|------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|
| 2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010 | 208<br>  208<br>  208<br>  208<br>  208<br>  208<br>  208<br>  208 | 29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 237<br>  237<br>  237<br>  237<br>  237<br>  237<br>  237<br>  237<br>  237 |
| Total                                                                        | 2,080                                                              |                                              | 2,370                                                                       |

| Treated Unit                                    | :   | 205      | Treatment Time                       | :   | 2008               |
|-------------------------------------------------|-----|----------|--------------------------------------|-----|--------------------|
| Number of Control Units<br>Number of Covariates | = = | 236<br>6 | Root Mean Squared Error<br>R-squared | = = | 2.84058<br>0.82321 |

#### Covariate balance in the pretreatment periods:

| Covariate                                                             | V.weight | Treated | Synthetic<br>Value | Control<br>Bias | Average<br>Value | Control<br>Bias |
|-----------------------------------------------------------------------|----------|---------|--------------------|-----------------|------------------|-----------------|
| grad(2001)   grad(2004)   grad(2007)   p_lunch   p_black   p_hispanic | 0.2689   | 58.0000 | 58.0450            | 0.08%           | 87.9364          | 51.61%          |
|                                                                       | 0.3062   | 65.0000 | 64.9020            | -0.15%          | 86.3184          | 32.80%          |
|                                                                       | 0.4071   | 52.1912 | 52.2290            | 0.07%           | 84.4661          | 61.84%          |
|                                                                       | 0.0103   | 0.6195  | 0.5975             | -3.55%          | 0.1540           | -75.15%         |
|                                                                       | 0.0039   | 0.4892  | 0.4511             | -7.79%          | 0.1029           | -78.96%         |
|                                                                       | 0.0035   | 0.0867  | 0.1184             | 36.46%          | 0.0886           | 2.16%           |

Note: "V.weight" is the optimal covariate weight in the diagonal of V matrix. "Synthetic Control" is the weighted average of donor units with optimal weights.

"Average Control" is the simple average of all control units with equal weights.

#### Optimal Unit Weights:

| Unit | U.weight |
|------|----------|
| 24   | 0.4770   |
| 171  | 0.1890   |
| 143  | 0.1680   |
| 77   | 0.1660   |

Note: The unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 in the donor pool get a weight of 0.

#### Prediction results in the posttreatment periods:

| Time                     | Actual Outcome                | Synthetic Outcome             | Treatment Effect              |
|--------------------------|-------------------------------|-------------------------------|-------------------------------|
| 2008  <br>2009  <br>2010 | 49.1492<br>50.6684<br>52.9588 | 62.4229<br>56.9542<br>52.5918 | -13.2737<br>-6.2859<br>0.3669 |
| Mean                     | 50.9254                       | 57.3230                       | -6.3975                       |

Note: The average treatment effect over the posttreatment period is -6.3975.

| Unit  <br>+<br>205  <br>1  <br>100  <br>101  <br>102  <br>103  <br>104  <br>105  <br>106  <br>107  <br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0689<br>13.3555<br>18.1318<br>3.0680<br>3.9480<br>7.4905<br>4.6906                                                                                                                                                                                                                                                                                                                                                                                                           | 71.9457<br>123.3675<br>9.1885<br>16.0486<br>14.8335<br>1.6711<br>5.9279                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.9164<br>9.2372<br>0.5068<br>5.2309<br>3.7572<br>0.2231<br>1.2638<br>2.7676<br>0.1871                                                              | Pre MSPE of Fake Unit/ Pre MSPE of Treated Unit  1.0000 1.6552 2.2471 0.3802 0.4893 0.9283 0.5813 0.1281                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 205  <br>1  <br>10  <br>100  <br>101  <br>102  <br>103  <br>104  <br>105  <br>106  <br>107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0689<br>13.3555<br>18.1318<br>3.0680<br>3.9480<br>7.4905<br>4.6906                                                                                                                                                                                                                                                                                                                                                                                                           | 71.9457<br>123.3675<br>9.1885<br>16.0486<br>14.8335<br>1.6711<br>5.9279                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.9164<br>9.2372<br>0.5068<br>5.2309<br>3.7572<br>0.2231<br>1.2638<br>2.7676<br>0.1871                                                              | 1.0000<br>1.6552<br>2.2471<br>0.3802<br>0.4893<br>0.9283<br>0.5813<br>0.1281                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 109   11   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   13   130   131   132   133   134   135   136   137   138   139   14   140   141   142   143   144   145   146   147   148   149   155   153   154   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155   155 | 1.2885<br>21.1923<br>10.4601<br>3.9167<br>19.0157<br>2.6745<br>10.9444<br>21.1619<br>6.6063<br>12.2106<br>17.5009<br>2.7219<br>1.5120<br>21.4827<br>5.2251<br>0.3587<br>1.3363<br>5.1780<br>5.9181<br>2.0315<br>2.1040<br>8.3256<br>17.1338<br>4.9362<br>0.7600<br>29.2532<br>6.0516<br>2.4951<br>7.0272<br>9.1420<br>18.3012<br>7.8823<br>63.6855<br>2.1832<br>1.2741<br>6.3213<br>13.8790<br>3.3190<br>9.6279<br>5.7200<br>6.4974<br>16.6664<br>2.9328<br>12.3356<br>37.6264 | 30.6055<br>87.9076<br>96.5512<br>1.0419<br>3.5800<br>2.1696<br>14.5513<br>15.1748<br>77.7202<br>32.8828<br>15.9757<br>8.5970<br>7.5702<br>19.4897<br>1.9452<br>2.5668<br>2.1308<br>4.0628<br>0.9840<br>1.1396<br>10.1618<br>88.7024<br>1.4336<br>34.0381<br>10.7395<br>1.8101<br>40.5283<br>17.5480<br>3.6266<br>7.6752<br>8.9948<br>23.8777<br>42.1207<br>9.0696<br>1.0624<br>4.9226<br>1.1468<br>7.3641<br>34.1944<br>7.2304<br>2.4314<br>2.3334<br>8.2400<br>0.8002<br>45.8498<br>97.2451 | 1.3047<br>5.3437<br>0.1424<br>0.4866<br>3.8636<br>0.1814<br>0.5306<br>10.3027<br>0.7510<br>0.4251<br>0.3591<br>4.9436<br>0.2729<br>3.7169<br>2.5845 | Pre MSPE of Treated Unit  1.0000 1.6552 2.2471 0.3802 0.4893 0.9283 0.5813 0.1281 0.5333 2.0986 0.0309 2.3443 0.4095 0.2264 1.8644 2.4721 0.4424 0.1597 2.6264 1.2963 0.4854 2.3567 0.3315 1.3564 2.3567 0.3315 1.3564 2.6227 0.8187 1.5133 2.1689 0.3373 0.1874 2.6624 0.6476 0.0445 0.1656 0.6417 0.7335 0.2518 0.2608 1.0114 0.2882 2.1234 0.6118 0.0942 3.6254 0.7500 0.3092 0.8709 1.1330 2.2681 0.9769 7.8927 0.2706 0.1757 0.7834 1.7201 0.4113 1.1932 0.7089 0.8052 0.2066 0.3635 1.5288 4.6632 |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3356<br>37.6264<br>8.2537<br>18.2266                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.8498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7169                                                                                                                                              | 1.5288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 159   160   161   162   163   164   165   167   168   177   172   173   174   175   178   179   180   181 | 58.6390<br>11.7274<br>0.4811<br>1.9985<br>1.3582<br>5.1756<br>15.5606 | 1.5622<br>67.8831<br>7.0539<br>0.1728<br>1.8043<br>0.8650<br>2.3964<br>63.3508<br>5.6250<br>4.2974<br>3.8790<br>1.3058<br>0.6909<br>9.4428<br>43.1008<br>63.8701<br>0.3249<br>1.8292<br>190.6131<br>0.4497<br>3.4096<br>10.3421<br>5.3493<br>32.66636<br>7.8284<br>1.3586 | 0.6964 1.1576 0.6015 0.3592 0.9028 0.6369 0.4630 4.0712 0.5538 1.0398 0.1114 0.5868 0.5806 2.3537 0.3964 8.3640 0.0670 0.3843 34.3687 0.1354 0.7705 2.5218 2.3994 16.0339 1.9109 1.0428 | 0.2780 7.2673 1.4534 0.0596 0.2477 0.1683 0.6414 1.9285 1.2588 0.5122 4.3155 0.2758 0.1475 0.4972 13.4754 0.9464 0.6005 0.5899 0.6873 0.4116 0.5484 0.5083 0.2763 0.2525 0.5077 0.1615 |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 181                                                                                                       | 1.3028                                                                | 1.3586                                                                                                                                                                                                                                                                    | 1.0428                                                                                                                                                                                  | 0.1615                                                                                                                                                                                 |
| 182                                                                                                       | 7.6443                                                                | 1.5860                                                                                                                                                                                                                                                                    | 0.2075                                                                                                                                                                                  | 0.9474                                                                                                                                                                                 |
| 183                                                                                                       | 14.5732                                                               | 8.3060                                                                                                                                                                                                                                                                    | 0.5699                                                                                                                                                                                  | 1.8061                                                                                                                                                                                 |
| 184                                                                                                       | 5.2568                                                                | 0.5338                                                                                                                                                                                                                                                                    | 0.1015                                                                                                                                                                                  | 0.6515                                                                                                                                                                                 |
| 185                                                                                                       | 0.5900                                                                | 1.4727                                                                                                                                                                                                                                                                    | 2.4963                                                                                                                                                                                  | 0.0731                                                                                                                                                                                 |
| 186  <br>187  <br>188                                                                                     | 14.9063                                                               | 22.2141<br>1.6363<br>13.2510                                                                                                                                                                                                                                              | 1.4490<br>0.1098                                                                                                                                                                        | 1.8999<br>1.8474<br>3.9573                                                                                                                                                             |
| 189  <br>189  <br>19                                                                                      | 31.9310<br>6.7716<br>1.0816                                           | 3.9415<br>1.3651                                                                                                                                                                                                                                                          | 0.4150<br>0.5821<br>1.2622                                                                                                                                                              | 0.8392<br>0.1340                                                                                                                                                                       |
| 190  <br>191                                                                                              | 1.0504                                                                | 16.7484<br>1.2400                                                                                                                                                                                                                                                         | 15.9444<br>0.1386                                                                                                                                                                       | 0.1302                                                                                                                                                                                 |
| 192                                                                                                       | 2.1432                                                                | 3.7572                                                                                                                                                                                                                                                                    | 1.7531                                                                                                                                                                                  | 1.1091<br>0.2656                                                                                                                                                                       |
| 193                                                                                                       | 2.5733                                                                | 24.3386                                                                                                                                                                                                                                                                   | 2.3910                                                                                                                                                                                  | 1.2615                                                                                                                                                                                 |
| 194                                                                                                       |                                                                       | 5.3732                                                                                                                                                                                                                                                                    | 2.0880                                                                                                                                                                                  | 0.3189                                                                                                                                                                                 |
| 195                                                                                                       | 20.7657                                                               | 3.8305                                                                                                                                                                                                                                                                    | 1.6065                                                                                                                                                                                  | 0.2955                                                                                                                                                                                 |
| 196                                                                                                       |                                                                       | 7.2499                                                                                                                                                                                                                                                                    | 0.3491                                                                                                                                                                                  | 2.5736                                                                                                                                                                                 |
| 197                                                                                                       | 16.4572                                                               | 7.8765                                                                                                                                                                                                                                                                    | 0.4786                                                                                                                                                                                  | 2.0396                                                                                                                                                                                 |
| 198                                                                                                       | 11.4713                                                               | 4.2211                                                                                                                                                                                                                                                                    | 0.3680                                                                                                                                                                                  | 1.4217                                                                                                                                                                                 |
| 199 i                                                                                                     | 8.6194                                                                | 3.5822                                                                                                                                                                                                                                                                    | 0.4156                                                                                                                                                                                  | 1.0682                                                                                                                                                                                 |
| 2 i                                                                                                       | 4.2414                                                                | 22.8023                                                                                                                                                                                                                                                                   | 5.3761                                                                                                                                                                                  | 0.5257                                                                                                                                                                                 |
| 20                                                                                                        | 0.2754                                                                | 0.3077                                                                                                                                                                                                                                                                    | 1.1171                                                                                                                                                                                  | 0.0341                                                                                                                                                                                 |
| 200                                                                                                       | 6.4160                                                                | 4.1114                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         | 0.7952                                                                                                                                                                                 |
| 201 i                                                                                                     | 7.6217                                                                | 5.8088                                                                                                                                                                                                                                                                    | 0.7621                                                                                                                                                                                  | 0.9446                                                                                                                                                                                 |
| 202                                                                                                       | 7.2356                                                                | 39.6924                                                                                                                                                                                                                                                                   | 6.5199                                                                                                                                                                                  | 0.7545                                                                                                                                                                                 |
| 203                                                                                                       |                                                                       | 20.1942                                                                                                                                                                                                                                                                   | 2.7909                                                                                                                                                                                  | 0.8967                                                                                                                                                                                 |
| 204                                                                                                       | 0.1652                                                                | 2.0518                                                                                                                                                                                                                                                                    | 12.4171                                                                                                                                                                                 | 0.0205                                                                                                                                                                                 |
| 206                                                                                                       | 8.2351                                                                | 9.9383                                                                                                                                                                                                                                                                    | 1.2068                                                                                                                                                                                  | 1.0206                                                                                                                                                                                 |
| 207                                                                                                       | 17.8965                                                               | 9.1935                                                                                                                                                                                                                                                                    | 0.5137                                                                                                                                                                                  | 2.2180                                                                                                                                                                                 |
| 208                                                                                                       | 21.7785                                                               | 33.1549                                                                                                                                                                                                                                                                   | 1.5224                                                                                                                                                                                  | 2.6991                                                                                                                                                                                 |
| 209                                                                                                       | 10.9774                                                               | 22.8891                                                                                                                                                                                                                                                                   | 2.0851                                                                                                                                                                                  | 1.3605                                                                                                                                                                                 |
| 21                                                                                                        | 4.9410                                                                | 0.8169                                                                                                                                                                                                                                                                    | 0.1653                                                                                                                                                                                  | 0.6124                                                                                                                                                                                 |
| 210                                                                                                       | 32.7164                                                               | 6.9568                                                                                                                                                                                                                                                                    | 0.2126                                                                                                                                                                                  | 4.0546                                                                                                                                                                                 |
| 211                                                                                                       | 4.7763                                                                | 1.4127                                                                                                                                                                                                                                                                    | 0.2958                                                                                                                                                                                  | 0.5919                                                                                                                                                                                 |
| 212                                                                                                       | 14.6432                                                               | 9.6636<br>7.2591                                                                                                                                                                                                                                                          | 0.6599<br>1.9301                                                                                                                                                                        | 1.8148<br>0.4661                                                                                                                                                                       |
| 214                                                                                                       | 1.0226                                                                | 3.4843                                                                                                                                                                                                                                                                    | 3.4071                                                                                                                                                                                  | 0.1267                                                                                                                                                                                 |
| 215                                                                                                       | 6.1259                                                                | 6.6671                                                                                                                                                                                                                                                                    | 1.0883                                                                                                                                                                                  | 0.7592                                                                                                                                                                                 |
| 216                                                                                                       | 3.9226                                                                | 23.3272                                                                                                                                                                                                                                                                   | 5.9469                                                                                                                                                                                  | 0.4861                                                                                                                                                                                 |
| 217                                                                                                       | 10.3624                                                               | 7.3796                                                                                                                                                                                                                                                                    | 0.7122                                                                                                                                                                                  | 1.2842                                                                                                                                                                                 |
| 218                                                                                                       | 5.2993                                                                | 1.4739                                                                                                                                                                                                                                                                    | 0.2781                                                                                                                                                                                  | 0.6568                                                                                                                                                                                 |
| 219                                                                                                       | 1.2692                                                                | 7.8536                                                                                                                                                                                                                                                                    | 6.1876                                                                                                                                                                                  | 0.1573                                                                                                                                                                                 |
| 22                                                                                                        | 0.6067                                                                | 1.1066                                                                                                                                                                                                                                                                    | 1.8240                                                                                                                                                                                  | 0.0752                                                                                                                                                                                 |
| 220                                                                                                       | 2.1586                                                                | 0.7854                                                                                                                                                                                                                                                                    | 0.3638                                                                                                                                                                                  | 0.2675                                                                                                                                                                                 |
| 221                                                                                                       | 48.6364                                                               | 106.9444                                                                                                                                                                                                                                                                  | 2.1989                                                                                                                                                                                  | 6.0276                                                                                                                                                                                 |
| 222                                                                                                       | 1.0364                                                                | 2.5949                                                                                                                                                                                                                                                                    | 2.5037<br>0.1072                                                                                                                                                                        | 0.1284<br>0.5039                                                                                                                                                                       |
| - '                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                        |

| 22567893012334567495012322222222222222222222222222222222222 | 5.8341<br>0.5044<br>0.4490<br>42.2603<br>1.2636<br>8.2882<br>4.8999<br>13.0884<br>3.0383<br>2.3238<br>0.9703<br>29.8214<br>5.3921<br>7.6573<br>3.4499<br>0.9406<br>11.5992<br>6.5287<br>40.0871<br>3.8434<br>1.9120<br>6.9948<br>0.4784<br>10.1916<br>8.0334<br>2.8446<br>0.6369<br>13.9058<br>4.9733<br>9.9270<br>4.6493<br>3.9322<br>2.0100<br>5.2237<br>14.8057<br>5.8237<br>10.8429<br>3.7942<br>5.1594<br>8.1331<br>9.9257<br>4.5481<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137<br>36.0793<br>6.571<br>2.2137 | 1.8800<br>8.9848<br>5.4294<br>3.6052<br>2.4700<br>41.8837<br>17.8934<br>4.0912<br>2.264854<br>11.4805<br>4.1341<br>8.8545<br>57.5734<br>62.0950<br>12.93675<br>4.8612<br>5.0320<br>29.5287<br>5.52885<br>1.29472<br>16.7189<br>52.6993<br>9.1062<br>9.5095<br>2.2414<br>17.2969<br>8.4426<br>20.0761<br>0.8086<br>12.1660<br>8.7228<br>19.3646<br>8.4426<br>20.0761<br>6.4853<br>8.49472<br>16.69075<br>1.9827<br>34.5880<br>7.4853<br>8.6107<br>9.85461<br>41.55588<br>0.1811<br>26.6004<br>12.1660<br>8.7228<br>19.366107<br>9.85461<br>41.55880<br>7.4853<br>8.6107<br>9.85461<br>41.55880<br>7.4853<br>8.6107<br>9.85466<br>0.6483<br>5.01811<br>26.6004<br>15.9827<br>34.5880<br>7.4853<br>8.6107<br>9.85466<br>0.6483<br>5.5165<br>6.0396<br>5.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.4853<br>8.6107<br>9.85466<br>0.6483<br>5.5165<br>6.0396<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.4853<br>8.6107<br>9.85466<br>0.6483<br>5.5165<br>6.0396<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.5165<br>6.2231<br>3.2053<br>5.4853<br>8.6107<br>9.85466<br>0.6483<br>5.5165<br>6.0396<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.2231<br>3.2053<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4835<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.4836<br>6.483 | 0.2955<br>0.9869<br>0.9306<br>7.1476<br>5.5012<br>0.9911<br>14.1602<br>0.4936<br>0.4632<br>1.2595<br>3.7785<br>1.7790<br>9.1250<br>1.9306<br>11.5158<br>1.6899<br>0.5993<br>5.1683<br>0.4338<br>4.5229<br>0.1377<br>1.6362<br>0.6427<br>2.1369<br>34.9442<br>5.1709<br>1.1335<br>3.3431<br>3.5194<br>1.2439<br>1.0867<br>8.7078<br>4.3181<br>0.2056<br>6.0527<br>1.6699<br>1.3081<br>0.4947<br>0.4352<br>11.4769<br>8.0550<br>0.0223<br>2.6799<br>3.7307<br>0.8956<br>0.9587<br>1.1244<br>0.3774<br>1.3739<br>3.8630<br>0.0503<br>3.4532<br>7.6210<br>0.0791<br>0.6669<br>3.4022<br>0.4858<br>0.77250<br>6.7944<br>0.3578<br>0.5469<br>1.5058<br>0.7620<br>1.2318<br>9.3236<br>2.7822<br>1.9208 | 0.7885 1.1282 0.7230 0.0625 0.0556 5.2374 0.1566 1.0272 0.6073 1.6221 0.3766 0.2880 0.1203 3.6959 0.6683 0.9490 0.4276 0.1166 1.4375 0.8091 4.9681 0.4763 0.2370 0.8669 0.0593 1.2631 0.9956 0.3525 0.0789 1.7234 0.6164 1.2303 0.5762 0.4873 0.2491 0.6474 1.83438 0.4702 0.6394 1.0080 1.2301 0.5637 0.2744 4.4714 0.8250 2.8276 0.8890 0.7574 1.5963 0.1980 0.7574 1.5963 0.1980 0.7577 1.8477 3.8318 0.4460 0.1000 0.9526 19.4411 4.2965 0.3983 0.0287 0.1954 0.2173 1.3163 |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 68<br>69<br>7                                               | 0.2314<br>1.5766<br>1.7535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2851<br>14.6998<br>4.8786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2318<br>9.3236<br>2.7822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0287<br>0.1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 76 | 89.8029  | 16.9502  | 0.1887  | 11.1295 |
|----|----------|----------|---------|---------|
| 77 | 242.9787 | 629.4935 | 2.5907  | 30.1131 |
| 78 | 2.1776   | 0.2588   | 0.1188  | 0.2699  |
| 79 | 0.1249   | 3.8047   | 30.4599 | 0.0155  |
| 8  | 3.5175   | 4.3890   | 1.2478  | 0.4359  |
| 80 | 4.9067   | 19.3325  | 3.9400  | 0.6081  |
| 81 | 8.3463   | 30.7327  | 3.6822  | 1.0344  |
| 82 | 3.7777   | 18.9541  | 5.0174  | 0.4682  |
| 83 | 3.1101   | 13.6201  | 4.3793  | 0.3854  |
| 84 | 0.7991   | 25.2754  | 31.6296 | 0.0990  |
| 85 | 1.6205   | 3.5256   | 2.1756  | 0.2008  |
| 86 | 3.8552   | 21.9965  | 5.7056  | 0.4778  |
| 87 | 361.3500 | 925.2058 | 2.5604  | 44.7832 |
| 88 | 24.0684  | 217.3640 | 9.0311  | 2.9829  |
| 89 | 3.7630   | 1.7776   | 0.4724  | 0.4664  |
| 9  | 6.7023   | 2.8736   | 0.4288  | 0.8306  |
| 90 | 3.8017   | 2.5760   | 0.6776  | 0.4712  |
| 91 | 1.6452   | 5.7801   | 3.5134  | 0.2039  |
| 92 | 12.6483  | 10.6170  | 0.8394  | 1.5675  |
| 93 | 14.3280  | 12.2273  | 0.8534  | 1.7757  |
| 94 | 1.1826   | 0.8165   | 0.6904  | 0.1466  |
| 95 | 18.7863  | 35.2889  | 1.8784  | 2.3282  |
| 96 | 1.1669   | 6.5227   | 5.5899  | 0.1446  |
| 97 | 2.1255   | 49.1908  | 23.1426 | 0.2634  |
| 98 | 19.5923  | 6.4929   | 0.3314  | 2.4281  |
| 99 | 5.7615   | 8.1877   | 1.4211  | 0.7140  |

Note: (1) Using all control units, the probability of obtaining a post/pretreatment MSPE ratio as large as 205's is 0.0928.

- (2) Excluding control units with pretreatment MSPE 5 times larger than the treated unit, the probability of obtaining a post/pretreatment MSPE ratio as large as 205's is 0.0978.
- (3) The pointwise p-values below are computed by excluding control units with pretreatment MSPE 5 times larger than the treated unit.
- (4) There are total 12 units with pretreatment MSPE 5 times larger than the treated unit, including 143 16 171 221 229 59 65 71 75 76 77 87.

In-space placebo test results using fake treatment units (continued, cutoff = 5):

Time | Treatment Effect p-value of Treatment Effect Two-sided Right-sided Left-sided 

 2008 |
 -13.2737
 0.0044
 1.0000
 0.0044

 2009 |
 -6.2859
 0.0667
 0.9689
 0.0356

 2010 |
 0.3669
 0.8844
 0.5822
 0.4222

0.3669

Note: (1) The two-sided p-value of the treatment effect for a particular period is defined as the frequency that the absolute values of the placebo effects are greater than or equal to the absolute value of treatment effect.

- (2) The right-sided (left-sided) p-value of the treatment effect for a particular period is defined as the frequency that the placebo effects are greater (smaller) than or equal to the treatment effect.
- (3) If the estimated treatment effect is positive, then the right-sided p-value is recommended; whereas the left-sided p-value is recommended if the estimated treatment effect is negative.

Implementing leave-one-out robustness test that excludes one control unit with a nonz > ero weight 24...171...143...77...

Leave-one-out robustness test results in the posttreatment period:

| Time | Out<br>Actual | come<br>Synthetic | Synthetic ( | Outcome (LOO)<br>Max |
|------|---------------|-------------------|-------------|----------------------|
| 2008 | 49.1492       | 62.4229           | 50.9983     | 61.2375              |
| 2009 | 50.6684       | 56.9542           | 54.2866     | 57.5187              |
| 2010 | 52.9588       | 52.5918           | 47.7861     | 53.9745              |

Note: The last two columns report the minimum and maximum synthetic outcomes when one control unit with a nonzero weight is excluded at a time.

```
Time | Treatment Effect Treatment Effect (LOO) | Min Max | M
```

Note: The last two columns report the minimum and maximum treatment effects when one control unit with a nonzero weight is excluded at a time.

```
file gspec2_bias.gph saved
file gspec2_weight_vars.gph saved
file gspec2_weight_unit.gph saved
file gspec2_pred.gph saved
file gspec2_eff.gph saved
file gspec2_eff_pboUnit.gph saved
file gspec2_ratio_pboUnit.gph saved
file gspec2_pvalTwo_pboUnit.gph saved
file gspec2_pvalRight_pboUnit.gph saved
file gspec2_pvalLeft_pboUnit.gph saved
file gspec2_pvalLeft_pboUnit.gph saved
file gspec2_pred_loo.gph saved
file gspec2_eff_loo.gph saved
```

Finished.

. keep if target\_donor==1
(2,140 observations deleted)

```
synth2 grad grad(2001) grad(2004) grad(2007) ///
p_lunch p_black p_hispanic, ///
trunit(205) trperiod(2008) mspeperiod(2001(1)2007) ///
preperiod(2001(1)2007) postperiod(2008(1)2010) xperiod(2001(1)2007)
///
placebo(unit cutoff(5)) loo savegraph(gspec2r, replace) frame(gspec > 2)
```

Fitting results in the pretreatment periods:

| Treated Unit                                    | :   | 205     | Treatment Time                    | : | 2008               |
|-------------------------------------------------|-----|---------|-----------------------------------|---|--------------------|
| Number of Control Units<br>Number of Covariates | = = | 22<br>6 | Root Mean Squared Error R-squared |   | 2.79198<br>0.77148 |

### Covariate balance in the pretreatment periods:

| Covariate  | V.weight | Treated | Synthetic<br>Value | Control<br>Bias | Average<br>Value | Control<br>Bias |
|------------|----------|---------|--------------------|-----------------|------------------|-----------------|
| grad(2001) | 0.3926   | 58.0000 | 60.3280            | 4.01%           | 68.0455          | 17.32%          |
| grad(2004) | 0.2755   | 65.0000 | 62.4640            | -3.90%          | 65.0976          | 0.15%           |
| grad(2007) | 0.2301   | 52.1912 | 54.0214            | 3.51%           | 62.4187          | 19.60%          |
| p_lunch    | 0.0206   | 0.6195  | 0.6335             | 2.25%           | 0.5325           | -14.04%         |
| p_black    | 0.0388   | 0.4892  | 0.5095             | 4.15%           | 0.4433           | -9.39%          |
| p_hispanic | 0.0424   | 0.0867  | 0.1296             | 49.37%          | 0.2491           | 187.17%         |

Note: "V.weight" is the optimal covariate weight in the diagonal of V matrix. "Synthetic Control" is the weighted average of donor units with optimal weights.

<sup>&</sup>quot;Average Control" is the simple average of all control units with equal weights.

#### Optimal Unit Weights:

| Unit                 | U.weight                   |
|----------------------|----------------------------|
| 24  <br>143  <br>186 | 0.7890<br>0.0900<br>0.0850 |
| 88                   | 0.0360                     |

Note: The unit 1 4 18 29 49 53 96 132 137 142 168 172 175 208 212 229 236 237 in the donor pool get a weight of 0.

Prediction results in the posttreatment periods:

| Time                     |         | Synthetic Outcome             | Treatment Effect              |
|--------------------------|---------|-------------------------------|-------------------------------|
| 2008  <br>2009  <br>2010 | 49.1492 | 58.5313<br>52.2702<br>55.7528 | -9.3821<br>-1.6019<br>-2.7940 |
| Mean                     | 50.9254 | 55.5181                       | -4.5927                       |

Note: The average treatment effect over the posttreatment period is -4.5927.

Implementing placebo test using fake treatment unit 1...132...137...142...143...168.. > .172...175...18...186...208...212...229...236...237...24...29...4...49...53...88... > 96...

In-space placebo test results using fake treatment units:

| Unit                                                                                                            | Pre MSPE                                                                                                                                                                                                                                                     | Post MSPE                                                                                                                                           | Post/Pre MSPE                                                                                                                                                                                | Pre MSPE of Fake Unit/<br>Pre MSPE of Treated Unit                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 205<br>1<br>132<br>137<br>142<br>143<br>168<br>172<br>175<br>18<br>186<br>208<br>212<br>229<br>236<br>237<br>24 | <br>  7.7952<br>  12.4765<br>  11.4181<br>  18.4562<br>  3.8418<br>  85.8124<br>  22.9402<br>  16.6597<br>  7.4269<br>  6.3373<br>  9.2592<br>  14.0266<br>  3.8706<br>  60.1010<br>  48.7676<br>  1.4982<br>  7.6759<br>  25.4157<br>  15.8451<br>  15.8451 | 32.7990 91.1745 92.0430 35.9332 23.6301 7.0922 3.6142 49.3690 168.1188 41.5463 1.6855 7.8685 4.6361 132.2106 44.6184 98.4435 15.9684 6.2014 48.5448 | 4.2076<br>7.3077<br>8.0611<br>1.9469<br>6.1508<br>0.0826<br>0.1576<br>2.9634<br>22.6365<br>6.5559<br>0.1820<br>0.5610<br>1.1978<br>2.1998<br>0.9149<br>65.7098<br>2.0803<br>0.2440<br>3.0637 | 1.0000<br>1.6005<br>1.4648<br>2.3676<br>0.4928<br>11.0084<br>2.9429<br>2.1372<br>0.9528<br>0.8130<br>1.1878<br>1.7994<br>0.4965<br>7.7100<br>6.2561<br>0.1922<br>0.9847<br>3.2604<br>2.0327 |
| 49<br>53<br>88<br>96                                                                                            | 38.9096<br>  14.8148<br>  25.2921<br>  10.4346                                                                                                                                                                                                               | 34.9508<br>12.4224<br>350.1243<br>22.0084                                                                                                           | 0.8983<br>0.8385<br>13.8432<br>2.1092                                                                                                                                                        | 4.9915<br>1.9005<br>3.2446<br>1.3386                                                                                                                                                        |

Note: (1) Using all control units, the probability of obtaining a post/pretreatment MSPE ratio as large as 205's is 0.3478.

<sup>(2)</sup> Excluding control units with pretreatment MSPE 5 times larger than the treated unit, the probability of obtaining a post/pretreatment MSPE ratio as large as 205's is 0.4000.

<sup>(3)</sup> The pointwise p-values below are computed by excluding control units with pretreatment MSPE 5 times larger than the treated unit.

(4) There are total 3 units with pretreatment MSPE 5 times larger than the

treated unit, including 143 229 236.

In-space placebo test results using fake treatment units (continued, cutoff = 5):

| Time | Treatment Effect |        | of Treatment<br>Right-sided |        |
|------|------------------|--------|-----------------------------|--------|
| 2008 | -9.3821          | 0.2000 | 0.9500                      | 0.1000 |
| 2009 | -1.6019          | 0.9500 | 0.3500                      | 0.7000 |
| 2010 | -2.7940          | 0.6500 | 0.7000                      | 0.3500 |

Note: (1) The two-sided p-value of the treatment effect for a particular period is defined as the frequency that the absolute values of the placebo effects are greater than or equal to the absolute value of treatment effect.

- (2) The right-sided (left-sided) p-value of the treatment effect for a particular period is defined as the frequency that the placebo effects are greater (smaller) than or equal to the treatment effect.
- (3) If the estimated treatment effect is positive, then the right-sided p-value is recommended; whereas the left-sided p-value is recommended if the estimated treatment effect is negative.

Implementing leave-one-out robustness test that excludes one control unit with a nonz > ero weight 24...143...186...88...

Leave-one-out robustness test results in the posttreatment period:

| Time | Actual  | come<br>Synthetic | Synthetic Ou<br>Min | tcome (LOO)<br>Max |
|------|---------|-------------------|---------------------|--------------------|
| 2008 | 49.1492 | 58.5313           | 53.5667             | 58.8621            |
| 2009 | 50.6684 | 52.2702           | 50.7567             | 53.0035            |
| 2010 | 52.9588 | 55.7528           | 53.7653             | 56.6365            |

Note: The last two columns report the minimum and maximum synthetic outcomes when one control unit with a nonzero weight is excluded at a time.

| Time | Treatment Effect | Treatment Effect<br>Min | (LOO)<br>Max |
|------|------------------|-------------------------|--------------|
| 2008 | -9.3821          | -9.7128                 | -4.4175      |
| 2009 | -1.6019          | -2.3352                 | -0.0884      |
| 2010 | -2.7940          | -3.6778                 | -0.8066      |

Note: The last two columns report the minimum and maximum treatment effects when one control unit with a nonzero weight is excluded at a time.

- file gspec2r bias.gph saved
- file gspec2r\_weight\_vars.gph saved file gspec2r\_weight\_unit.gph saved file gspec2r\_pred.gph saved

- file gspec2r eff.gph saved
- file gspec2r\_eff\_pboUnit.gph saved file gspec2r\_ratio\_pboUnit.gph saved

- file gspec2r\_pvalTwo\_pboUnit.gph saved file gspec2r\_pvalRight\_pboUnit.gph saved file gspec2r\_pvalLeft\_pboUnit.gph saved file gspec2r\_pvalLeft\_pboUnit.gph saved file gspec2r\_pvalLeft\_pboUnit.gph saved
- file gspec2r\_eff\_loo.gph saved

Finished.

```
restore
. // ********************
// enrollment: main SCM and gaps graphs
         graph combine gspec2 pred.gph gspec2 eff.gph gspec2r pred.gph gspec2r eff.g
                 cols(2) altshrink xsize(10) ysize(8) title("Graduation rate", size(s
> mall)) ///
                 subtitle("Levels and Treatment Effects", size(vsmall))
. graph export gcombl.png, as(png) replace file gcombl.png saved as PNG format \,
         // enrollment: SCM vs placebo graphs
         graph combine gspec2_eff_pboUnit.gph gspec2r_eff_pboUnit.gph, ///
                 rows(1) altshrink xsize(8) ysize(4) title("Graduation rate", size(sm
> all)) ///
                 subtitle("Treatment Effects: Actual vs. Placebo", size(vsmall))
         graph export gcomb2.png, as(png) replace
file gcomb2.png saved as PNG format
         // enrollment: p-value graphs
         graph combine gspec2_pvalRight_pboUnit.gph gspec2r_pvalRight_pboUnit.gph, /
                 rows(1) altshrink xsize(8) ysize(4) title("Graduation rate", size(sm
> all)) ///
                subtitle("p-values by year", size(vsmall))
         graph export gcomb3.png, as(png) replace
file gcomb3.png saved as PNG format
         // enrollment: LOO graphs
         graph combine gspec2 pred loo.gph gspec2r pred loo.gph, ///
                cols(1) altshrink xsize(8) ysize(6) title("Graduation rate", size(sm
> all))
         graph export gcomb4.png, as(png) replace
file gcomb4.png saved as PNG format
. // Close log and convert to PDF
         capture log close
```