Tiesiniai atvaizdžiai

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2015 m. sausio 13 d.

Turinys

Tiesinis atvaizdis

Tiesinės atvaizdžio matrica

Tiesinis atvaizdis

Tiesinę erdvę V virš kūno sutarkime žymėti (V,k), jos nulinį elementą – O_V . Sakykime, (V,k) ir (W,k) tiesinės erdvės, O_V , O_W – jų nuliniai elementai.

Apibrėžimas 1

Atvaizdis $f: V \to W$ yra vadinamas **tiesiniu atvaizdžiu**, jei bet kuriems $\alpha \in k$, v, v_1 , $v_2 \in V$,

- 1. $f(v_1 + v_2) = f(v_1) + f(v_2)$;
- 2. $f(\alpha v) = \alpha f(v)$.

Šias sąlygas galima pakeisti viena sąlyga.

Apibrėžimas 2

Atvaizdis $f: V \to W$ yra vadinamas tiesiniu atvaizdžiu, jei bet kuriems $\alpha_1, \alpha_2 \in k$, $v_1, v_2 \in V$,

$$f(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 f(v_1) + \alpha_2 f(v_2).$$

Tiesinis atvaizdis

Visų tiesinių atvaizdžių $f:V\to W$ aibę pažymėkime $L_k(V,W)$ arba $\operatorname{Hom}_k(V,W)$.

Teiginys 3

Tegul (V, k) ir (W, k) – tiesinės erdvės, O_V , O_W – jų nuliniai elementai, $f: V \to W$ – tiesinis atvaizdis. Tada

- 1. $f(O_V) = O_W$;
- 2. Kiekvienam $v \in V$, f(-v) = -f(v).

Irodymas.

1. Remiantis tiesinio atvaizdžio apibrėžimu,

$$f(O_V) = f(O_V + O_V) = f(O_V) + f(O_V) \Rightarrow f(O_V) = O_W.$$

2. Remiantis tiesinio atvaizdžio apibrėžimu,

$$O_W = f(O_V) = f(v + (-v)) = f(v) + f(-v) \Rightarrow f(-v) = -f(v).$$

Tiesinių atvaizdžių suma

Tegul $f,g \in \operatorname{Hom}_k(V,W)$ – tiesiniai atvaizdžiai. Atvaizdis

$$f + g : V \to W, (f + g)(v) = f(v) + g(v), v \in V,$$

vadinamas tiesinių atvaizdžių f ir g suma.

Teiginys 4

Tiesinių atvaizdžių $f, g \in Hom_k(V, W)$, suma f + g taip pat yra tiesinis atvaizdis, t. y. $f + g \in Hom_k(V, W)$.

Irodymas.

Tegul $\alpha_1, \alpha_2 \in k$, v_1 , $v_2 \in V$. Tada

$$(f+g)(\alpha_1v_1 + \alpha_2v_2) = f(\alpha_1v_1 + \alpha_2v_2) + g(\alpha_1v_1 + \alpha_2v_2) =$$

$$= \alpha_1f(v_1) + \alpha_2f(v_2) + \alpha_1g(v_1) + \alpha_2g(v_2) =$$

$$= \alpha_1(f(v_1) + g(v_1)) + \alpha_2(f(v_2) + g(v_2)) =$$

$$= \alpha_1(f+g)(v_1) + \alpha_2(f+g)(v_2).$$

Tiesinio atvaizdžio daugyba iš skaičiaus

Tegul $f \in \operatorname{Hom}_k(V, W)$ – tiesinis atvaizdis, $\mu \in k$. Atvaizdis

$$\mu f: V \to W, \ (\mu f)(v) = \mu f(v), \ v \in V,$$

vadinamas skaičiaus μ ir tiesinio atvaizdžio f sandauga.

Teiginys 5

Skaičiaus $\mu \in k$ ir tiesinio atvaizdžio $f \in Hom_k(V, W)$ sandauga μf taip pat yra tiesinis atvaizdis, t. y. $\mu f \in Hom_k(V, W)$.

Įrodymas.

Sakykime, $\alpha_1, \alpha_2 \in k$, v_1 , $v_2 \in V$. Tada

$$(\mu f)(\alpha_1 v_1 + \alpha_2 v_2) = \mu f(\alpha_1 v_1 + \alpha_2 v_2) =$$

$$= \mu(\alpha_1 f(v_1) + \alpha_2 f(v_2)) = \alpha_1(\mu f)(v_1) + \alpha_2(\mu f)(v_2).$$

Tiesinių atvaizdžių sandauga

Teiginys 6

Jei atvaizdžiai $f:V\to W$ ir $g:W\to Z$ yra tiesiniai, tai atvaizdis $g\circ f:V\to Z$ yra tiesinis.

Įrodymas.

Tegul $\alpha_1, \alpha_2 \in k$, v_1 , $v_2 \in V$. Tada

$$(g \circ f)(\alpha_1 v_1 + \alpha_2 v_2) = g(f(\alpha_1 v_1 + \alpha_2 v_2)) =$$

$$= g(\alpha_1 f(v_1) + \alpha_2 f(v_2)) = \alpha_1 g(f(v_1)) + \alpha_2 g(f(v_2)) =$$

$$= \alpha_1 (g \circ f)(v_1) + \alpha_2 (g \circ f)(v_2).$$

Transformacija

Apibrėžimas 7

Jeigu tiesinės erdvės V ir W sutampa, (V = W, m = n), tai atvaizdis $f: V \to V$ yra vadinamas erdvės V tiesine transformacija.

Pavyzdys 8

Atvaizdis $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x+y,x-y) yra erdvės \mathbb{R}^2 tiesinė transformacija.

Pavyzdys 9

Nagrinėkime tiesinę erdvę

$$\mathbb{R}_2[t] = \{a \in \mathbb{R}[t] : \deg a \leq 2\}.$$

Atvaizdis $f: \mathbb{R}_2[t] \to \mathbb{R}_2[t]$, f(a(t)) = a'(t) yra erdvės $\mathbb{R}_2[t]$ tiesinė transformacija.

Sakykime, (V,k) ir (W,k) – tiesinės erdvės virš kūno k; $f:V\to W$, – tiesinis atvaizdis; $v_1,\,v_2,\,\ldots,\,v_m$ – erdvės V bazė; $w_1,\,w_2,\,\ldots,\,w_n$ – erdvės W bazė; Išreikškime bazinių vektorių $v_1,\,v_2,\,\ldots,\,v_m$ vaizdus erdvės W baziniais vektoriais:

$$f(v_1) = \alpha_{11}w_1 + \alpha_{12}w_2 + \dots + \alpha_{1n}w_n$$

$$f(v_2) = \alpha_{21}w_1 + \alpha_{22}w_2 + \dots + \alpha_{2n}w_n$$

$$\dots$$

$$f(v_m) = \alpha_{m1}w_1 + \alpha_{m2}w_2 + \dots + \alpha_{mn}w_n.$$

Surašę koordinates α_{ij} į $m \times n$ lentelę, gauname **tiesinio** atvaizdžio f matricą nurodytose bazėse:

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{12} & \cdots & \alpha_{1n} \\ \cdots & \cdots & \ddots & \cdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

Žinodami tiesinio atvaizdžio matricą, galime suskaičiuoti bet kurio vektoriaus $v \in V$ vaizdą f(v). Tarkime, kad

$$\mathbf{v} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots \beta_m \mathbf{v}_m,$$

t. y. vektoriaus v koordinatės bazėje v_1, v_2, \ldots, v_m yra $v = (\beta_1, \beta_2, \ldots, \beta_m)$. Tada vektoriaus v vaizdo

$$f(\mathbf{v}) = \gamma_1 \mathbf{w}_1 + \gamma_2 \mathbf{w}_2 + \dots + \gamma_n \mathbf{w}_n$$

koordinatės $(\gamma_1, \gamma_2, \dots, \gamma_n)$ erdvės W bazėje w_1, w_2, \dots, w_n apskaičiuojamos taip:

$$f(v) = vA = (\beta_1, \beta_2, \dots, \beta_m) \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{12} & \cdots & \alpha_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}.$$

Pavyzdys 10

Tiesinis atvaizdis f trimatės erdvės V bazinius vektorius v_1 , v_2 , v_3 atvaizduoja į dvimatę erdvę W:

$$f(v_1) = -w_1 + 4w_2,$$

 $f(v_2) = 5w_1 + 3w_2,$
 $f(v_3) = 2w_1 - 5w_2,$

kur w_1, w_2 – erdvės W bazė. Užrašysime tiesinio atvaizdžio matricą ir suskaičiuosime vektoriaus $v = 7v_1 - 2v_2 - v_3$ vaizdą f(v).

Sprendimas.

Surašę erdvės W bazinių vektorių v_1 , v_2 , v_3 vaizdų koordinates, gauname 3×2 matricą:

$$A = \begin{pmatrix} -1 & 4\\ 5 & 3\\ 2 & -5 \end{pmatrix}$$

Vektoriaus v koordinatės bazėje v_1 , v_2 , v_3 yra v=(7,-2,-1), todėl atlikę matricų daugybos veiksmus, gauname

$$f(v) = vA = (7, -2, -1) \begin{pmatrix} -1 & 4 \\ 5 & 3 \\ 2 & -5 \end{pmatrix} = (-19, 27).$$

Taigi
$$f(v) = -19w_1 + 27w_2$$
.

Pastaba. Tiesinės transformacijos $f:V\to V$ atveju (V=W) vektoriaus v ir jo vaizdo f(v) koordinatės skaičiuojamos toje pačioje erdvės V bazėje, t. y. $w_1=v_1,\ldots,w_n=v_n$.

Pavyzdys 11

Tiesinės transformacijos $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x+y,x-y) matrica standartinėje \mathbb{R}^2 bazėje $e_1 = (1,0)$, $e_2 = (0,1)$ yra

$$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix},$$

nes

$$f(e_1) = (2,1) = 2e_1 + e_2$$

 $f(e_2) = (1,-1) = e_1 - e_2$

Teiginys 12

Tegul v_1, v_2, \ldots, v_n – tiesinės erdvės V virš kūno k bazė, o w_1, w_2, \ldots, w_n – bet kokia erdvės V vektorių šeima. Tada egzistuoja vienintelė erdvės V tiesinė transformacija f, tenkinanti sąlygas

$$f(v_j) = w_j, \quad j = 1, 2, \dots, n.$$
 (1)

Jrodymas

Apibrėžkime atvaizdį $f: V \rightarrow V$: kiekvienam $v = x_1v_1 + \cdots + x_nv_n \in V$,

$$f(v) = f(x_1v_1 + \cdots + x_nv_n) := x_1w_1 + \cdots + x_nw_n.$$

Nesunku įsitikinti, kad atvaizdis f yra erdvės V tiesinė transformacija, tenkinanti (1) sąlygą.

Dabar tarkime, kad $g:V\to V$ – bet kuri kita erdvės V tiesinė transformacija, tenkinanti (1) sąlygą.

Tada kiekvienam $v = x_1v_1 + \cdots + x_nv_n \in V$,

$$f(v) = f(x_1v_1 + \dots + x_nv_n) = x_1w_1 + \dots + x_nw_n = x_1g(v_1) + \dots + x_ng(v_n) = g(x_1v_1 + \dots + x_nv_n) = g(v),$$

t. y. tiesinės transformacijos f ir g sutampa.

Išvada 13

Egzistuoja abipus vienareikšmė atitiktis tarp n-matės tiesinės erdvės V virš kūno k tiesinių transformacijų aibės ir $n \times n$ matricų su koeficientais iš k aibės $M_n(k)$.

Tegul V ir W – baigtinės dimensijos tiesinės erdvės virš kūno k.

Teorema 14

Tiesinio atvaizdžio $f:V\to W$ matricą erdvės V bazėje v_1,\ldots,v_n ir erdvės W bazėje w_1,\ldots,w_m pažymėkime A, matricą erdvės V bazėje v'_1,\ldots,v'_n ir erdvės W bazėje w'_1,\ldots,w'_m-A' . Tada

$$A' = TAR^{-1}$$
,

kur T – perėjimo matrica iš bazės v_1, \ldots, v_n į bazę v_1', \ldots, v_n' , o R – perėjimo matrica iš bazės w_1, \ldots, w_m į bazę w_1', \ldots, w_m' .

Įrodymas

Kadangi T ir R – perėjimo matricos, tai

$$\begin{pmatrix} v_1' \\ \vdots \\ v_n' \end{pmatrix} = T \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \quad \begin{pmatrix} w_1' \\ \vdots \\ w_m' \end{pmatrix} = R \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}. \tag{2}$$

Kadangi A ir A' – atvaizdžio f matricos, tai

$$\begin{pmatrix} f(v_1) \\ \vdots \\ f(v_n) \end{pmatrix} = A \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}, \quad \begin{pmatrix} f(v_1') \\ \vdots \\ f(v_n') \end{pmatrix} = A' \begin{pmatrix} w_1' \\ \vdots \\ w_m' \end{pmatrix}$$
(3)

Iš (2) ir (3) išplaukia

$$\begin{pmatrix} f(v_1') \\ \vdots \\ f(v_n') \end{pmatrix} = T \begin{pmatrix} f(v_1) \\ \vdots \\ f(v_n) \end{pmatrix} = TA \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}$$

Kita vertus, remiantis (2),

$$\begin{pmatrix} f(v_1') \\ \vdots \\ f(v_n') \end{pmatrix} = A' \begin{pmatrix} w_1' \\ \vdots \\ w_m' \end{pmatrix} = A'R \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}.$$

Iš paskutinių dviejų lygybių išplaukia

$$TA \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix} = A'R \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}.$$

Iš čia gauname lygybę TA = A'R, t. y. $A' = TAR^{-1}$.

Išvada 15

Tiesinės erdvės V virš kūno k tiesinės transformacijos $f:V\to V$ matricą A bazėje v_1,\ldots,v_n su tos transformacijos matrica A' bazėje v_1',\ldots,v_n' sieja lygybė

$$A' = TAT^{-1},$$

čia T – perėjimo matrica iš bazės v_1, \ldots, v_n į v'_1, \ldots, v'_n bazę .

Apibrėžimas 16

Matrica $A \in M_n(k)$ vadinama **panašia** į matricą $B \in M_n(k)$ jei egzistuoja tokia neišsigimusi matrica $T \in M_n(k)$, kad $B = TAT^{-1}$.

Pastebėsime, kad

$$B = TAT^{-1} \Rightarrow A = T^{-1}BT$$
,

t. y., jei maica A panaši į matricą B, tai matrica B panaši į matricą A.

Išvada 17

Keičiant tiesinės erdvės bazę, tiesinės transformacijos matrica keičiama į jai panašią matricą.

Išvada 18

Panašių matricų determinantai yra lygūs.

Jrodymas.

Tarkime, kad matrica $A \in M_n(k)$ panaši į matricą $B \in M_n(k)$. Tada egzistuoja tokia neišsigimusi matrica $T \in M_n(k)$, kad $B = TAT^{-1}$. Skaičiuojame determinantą:

$$\det(B) = \det(TAT^{-1}) = \det(T)\det(A)\det(T^{-1}) = \det(T)\det(A)\frac{1}{\det(T)} = \det(A).$$

Teiginys 19

Tegul $A, B \in M_n(k)$, $det(B) \neq 0$. Tada

$$rg(AB) = rg(BA) = rg(A).$$

Išvada 20

Panašių matricų rangai lygūs.

Įrodymas.

Tarkime, kad matrica $A \in M_n(k)$ panaši į matricą $B \in M_n(k)$. Tada egzistuoja tokia neišsigimusi matrica $T \in M_n(k)$, kad $B = TAT^{-1}$. Skaičiuojame rangą:

$$rg(B) = rg(TAT^{-1}) = rg(TA) = rg(A).$$

Paskutinės dvi išvados leidžia apibrėžti tiesinės transformacijos determinanto ir rango sąvokas.

Apibrėžimas 21

Tiesinės transformacijos f determinantu |f| vadinamas jos matricos determinantas. Transformacijos f rangu rg(f) vadinamas jos matricos rangas.

Teiginys 22

Tiesinės erdvės V tiesinių transformacijų sumos matrica bet kokioje šios erdvės bazėje lygi tų transformacijų matricų sumai toje pačioje bazėje.

Įrodymas paliekamas skaitytojui.

Teiginys 23

Tarkime, kad tiesinių transformacijų $f: V \to V$ ir $g: V \to V$ matricos tiesinės erdvės V bazėje v_1, \ldots, v_n yra atitinkamai A ir B. Tada transformacijos $f \circ g$ matrica bazėje v_1, \ldots, v_n yra BA.

Įrodymas paliekamas skaitytojui.

Teiginys 24

Skaičiaus ir tiesinės transformacijos sandaugos matrica bet kokioje bazėje lygi to skaičiaus ir transformacijos matricos toje pačioje bazėje sandaugai.

Įrodymas paliekamas skaitytojui.