第四章 导数

难题选解

例 1 是否存在实轴上的可微函数f(x)满足条件 $f(f(x)) = -x^3 + x^2 + 1$? 说明理由.

解 不存在实轴上的可微函数f(x)满足条件 $f(f(x)) = -x^3 + x^2 + 1$. 反证. 若存在实轴上的可微函数f(x)满足条件 $f(f(x)) = -x^3 + x^2 + 1$, 则

$$f'(f(x)) \cdot f'(x) = -3x^2 + 2x.$$

因为 $x^* = 1$ 是 $f(f(x)) = -x^3 + x^2 + 1$ 的唯一不动点,所以由第一章A组第30题知 $x^* = 1$ 也是f(x)的唯一不动点,从而f(1) = 1. 在上面的等式中令x = 1,得 $[f'(1)]^2 = -1$,矛盾!

例 2 证明: 勒让德(Legendre)多项式

$$P_l(x) = \frac{1}{2^{l} l!} [(x^2 - 1)^l]^{(l)} \quad (l = 0, 1, 2, ...)$$

满足

$$(1 - x^2)P_l''(x) - 2xP_l'(x) + l(l+1)P_l(x) = 0.$$

证 设 $y = (x^2 - 1)^l$,则 $y' = l(x^2 - 1)^{l-1} \cdot 2x$,故有

$$(x^2 - 1)y' - 2lxy = 0.$$

上式两边求l+1阶导数,由Leibniz公式可得

$$(x^{2}-1)y^{(l+2)} + 2(l+1)xy^{(l+1)} + (l+1)ly^{(l)} - 2l\left[xy^{(l+1)} + (l+1)y^{(l)}\right] = 0,$$

即

$$(x^{2}-1)y^{(l+2)} + 2xy^{(l+1)} - l(l+1)y^{(l)} = 0.$$

又因为 $P_l(x) = \frac{1}{2^l l!} y^{(l)}$,所以 $P_l'(x) = \frac{1}{2^l l!} y^{(l+1)}$, $P_l''(x) = \frac{1}{2^l l!} y^{(l+2)}$,从而有

$$(1 - x2)P''l(x) - 2xP'l(x) + l(l+1)Pl(x) = 0.$$

例 3 设 $\lambda_1^k + \lambda_2^k + \dots + \lambda_n^k > 0$, 其中 $k = 1, 2, \dots$,

$$f(x) = \frac{1}{(1 - \lambda_1 x)(1 - \lambda_2 x) \cdots (1 - \lambda_n x)},$$

求证: $f^{(k)}(0) > 0, k = 1, 2, \cdots$

证 函数f(x)在0点的充分小邻域内恒大于0,令 $g(x)=(\ln f(x))'=\sum\limits_{j=1}^{n}\frac{\lambda_{j}}{1-\lambda_{j}x}$,则由 $(\ln f(x))'=\frac{f'(x)}{f(x)}$ 知f'(x)=f(x)g(x).对任意自然数i,都有 $g^{(i)}(x)=i!\cdot\sum\limits_{j=1}^{n}\frac{\lambda_{j}^{i+1}}{(1-\lambda_{j}x)^{i+1}}$,从而 $g^{(i)}(0)=i!\cdot\sum\limits_{j=1}^{n}\lambda_{j}^{i+1}>0$.下面用数学归纳法来证 $f^{(k)}(0)>0$, $k=1,2,\cdots$.当k=11时, $f'(0)=\sum\limits_{j=1}^{n}\lambda_{j}>0$.设f'(0),f''(0), \cdots , $f^{(k-1)}(0)$ 都大于0,由Leibniz公式得

$$f^{(k)}(x) = [f'(x)]^{(k-1)} = [f(x)g(x)]^{(k-1)} = \sum_{i=0}^{k-1} C_{k-1}^i f^{(i)}(x)g^{(k-1-i)}(x),$$

故 $f^{(k)}(0) = \sum_{i=0}^{k-1} C_{k-1}^i f^{(i)}(0) g^{(k-1-i)}(0) > 0$. 因此,根据数学归纳法知对任意正整数k,都有 $f^{(k)}(0) > 0$.

例 4 设f(x)在 $(-\infty, +\infty)$ 上两次连续可导且对任意x, h,都有

$$f(x+h) - f(x) = hf'\left(x + \frac{h}{2}\right),\,$$

求证 $f(x) = ax^2 + bx + c$, 其中a, b, c都是常数.

证
$$au f(x+h) - f(x) = hf'\left(x + \frac{h}{2}\right)$$
中令 $x = 0$,得到
$$f(h) - f(0) = hf'\left(\frac{h}{2}\right).$$

 $f(x+h) - f(x) = hf'\left(x + \frac{h}{2}\right)$ 两边对h求导,得

$$f'(x+h) = f'\left(x + \frac{h}{2}\right) + hf''\left(x + \frac{h}{2}\right)\frac{1}{2},$$

上式中令 $x = -\frac{h}{2}$,得

$$f'\left(\frac{h}{2}\right) = f'(0) + \frac{f''(0)}{2}h.$$

所以综合上面的结果,有

$$f(h) = f(0) + hf'\left(\frac{h}{2}\right) = f(0) + f'(0)h + \frac{f''(0)}{2}h^2.$$

补充题4

(A)

- 1. 设f(x)在(a,b)可导,且对任意 $x,y \in (a,b)$,有 $|f(x)-f(y)| \leq M|x-y|$.证明对任意 $x \in (a,b)$, 有 $|f'(x)| \leqslant M$.
- 2. 设函数f(x)在 $(-\infty, +\infty)$ 上有定义,在点0处可导,对任意实数x,都有f(2x) = 2f(x),证 明:对任意实数x,都有f(x) = f'(0)x.
- - (2) f(x)在点 $x_0 = 1$ 处可导.
- 4. 设a > 0, 求极限 $\lim_{n \to \infty} \left(1 + \frac{a}{n^2} \right) \left(1 + \frac{2a}{n^2} \right) \cdots \left(1 + \frac{na}{n^2} \right)$.
- 5. 设y = f(x)是由参数方程 $x = 3t^2$, $y = 3t t^3$, t > 0确定的函数,求 $36(y \sqrt{3x})y'' x$;
- 7. 求方程 $xy \ln y = 1$ 确定的隐函数的二阶导数 $\frac{d^2y}{dx^2}$;
- 8. 设 $f(x) = \frac{x^{2016}}{x^2 1}$, 求 $f^{(2016)}(x)$;
- 9. 设 $y = \frac{x^2 + x + 1}{2}$,求 $y^{(10)}$;
- 10. 设 $\alpha > 0$,

$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

- (1) 函数 f(x)在 $(-\infty, +\infty)$ 上连续可导,求 α 的取值范围;
- (2) f'''(0)存在,求 α 的取值范围.

(B)

- 1. 是否存在实轴上的可微函数f(x)满足条件 $f(f(x)) = x^2 3x + 3$? 证明你的结论.
- 2. 设函数f(x)在(a,b)上连续,对任意 $x \in (a,b)$,有

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h} = 0.$$

证明:集合 $\{x \in (a,b)|f$ 在点x处可导 $\}$ 在(a,b)中稠密.

- 3. 是否存在函数f(x)以 $\{\frac{1}{n}|n=1,2,\cdots\}$ 为第二类间断点而在[-2,2]的其它点上都可微? 若将可微改为二次可微而其它条件不变,结论又如何? 说明理由.
- 4. 设 $f(x) = \sqrt{x^2 1}$, 证明: 对任意正整数n, 当n是奇数时, $f^{(n)}(x)$ 在 $(1, +\infty)$ 上恒大于0, 当n是偶数时, $f^{(n)}(x)$ 在 $(1, +\infty)$ 上恒小于0.
- 5. (行列式的求导法则) 设

$$f(x) = \begin{vmatrix} u_{11}(x) & u_{12}(x) & \cdots & u_{1k}(x) \\ u_{21}(x) & u_{22}(x) & \cdots & u_{2k}(x) \\ \vdots & \vdots & \vdots & \vdots \\ u_{k1}(x) & u_{k2}(x) & \cdots & u_{kk}(x) \end{vmatrix}$$

 $(其中<math>u_{ij}(x)$ 为n次可微函数),证明

$$= \sum_{r_1+r_2+\ldots+r_k=n} \frac{n!}{r_1!r_2!\cdots r_k!} \cdot \begin{vmatrix} u_{11}^{(r_1)}(x) & u_{12}^{(r_1)}(x) & \cdots & u_{1k}^{(r_1)}(x) \\ u_{21}^{(r_2)}(x) & u_{22}^{(r_2)}(x) & \cdots & u_{2k}^{(r_2)}(x) \\ \vdots & \vdots & \vdots & \vdots \\ u_{k1}^{(r_k)}(x) & u_{k2}^{(r_k)}(x) & \cdots & u_{kk}^{(r_k)}(x) \end{vmatrix}$$

 $(其中<math>r_1, r_2, \ldots, r_k$ 为非负整数).