Deskriptive Statistik

Maße der zentralen Tendenz und Streuung

Daniela Palleschi

Mi. den 06.12.2023

Inhaltsverzeichnis

Le	ernziele	2
1	Lektüre	2
2	Einrichten	2
3	Umgebung löschen 3.1 Pakete 3.2 Daten laden	
4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4 4 5 6 6 7
5		11 11
6	6.1 .by =	12 12

7	Das Quartett von Anscombe7.1 DatasaurRus	13 14	
8	Hausufgaben	15	
Session Info			

Lernziele

Heute werden wir lernen...

- über Maße der zentralen Tendenz (Mittelwert, Median, Modus)
- über Streuungsmaße (Bereich, Standardabweichung)
- wie man die Funktion summarise() von dplyr benutzt
- wie man Zusammenfassungen .by Gruppe erstellt

1 Lektüre

Die erforderliche Lektüre für dieses Thema sind:

- 1. Kap. 3, Abschnitte 3.4-3.9 (*Descriptive statistics, models, and distributions*) in Winter (2019) (online verfügbar für Studierende/Beschäftigte der HU Berlin über das HU Grimm Zentrum.
- 2. Abschnitt 4.5 (Groups) in Kap. 4 (Data Transformation) in Wickham et al. (2023).

2 Einrichten

3 Umgebung löschen

- Starten Sie ein neues Skript immer mit einer leeren R-Umgebung
 - keine Objekte in der Umgebung gespeichert
 - keine Pakete geladen
- Klicken Sie auf Session > Restart R, um mit einer neuen Umgebung zu beginnen
 - oder das Tastaturkürzel Cmd/Ctrl+Strg+0

3.1 Pakete

3.2 Daten laden

- zwei Datensätze heute:
 - groesse_geburtstag_ws2324.csv: ein leicht veränderter groesse_geburtstag-Datensatz von Winter Semester 2023/2024
 - languageR_english.csv: komprimierte Version des english-Datensatzes aus dem languageR-Paket
- wenn Sie diese Daten noch nicht haben, laden Sie sie von Moodle herunter

```
df_groesse <- read_csv(here("daten", "groesse_geburtstag_ws2324.csv"))</pre>
```

4 Deskriptive Statistik

- beschreibt quantitativ die zentrale Tendenz, Variabilität und Verteilung von Daten
 - auch zusammenfassende Statistik genannt
- z.B. Wertebereich (Minimum, Maximum), der Mittelwert und die Standardabweichung

4.1 Anzahl der Beobachtungen (n)

- ist keine Statistik, aber eine wichtige Information
 - mehr Daten (höher n) = mehr Beweise
 - weniger Daten (niedriger n) = möglicherweise nicht verallgemeinerbar auf die breitere Population

• nrow(): liefert die Anzahl der Beobachtungen in einem Datensatz

```
nrow(df_groesse)
```

[1] 9

• length(): die Anzahl der Beobachtungen in einem Vektor oder einer Variablen

```
length(df_groesse$groesse)
```

[1] 9

4.2 Maße der zentralen Tendenz (Lagemaße)

- beschreiben quantitativ die Mitte unserer Daten
 - der Mittelwert, der Median und der Modus

4.2.1 Mittelwert (μ)

• der Mittelwert oder Durchschnitt: die Summe aller Werte geteilt durch die Anzahl der Werte (wie in Gleichung 1)

$$\mu = \frac{Summe\ der\ Werte}{n} \tag{1}$$

- können wir die Ergebnisse einer Gleichung als Objekt speichern
 - oder mehrere Werte als Vektor (eine Liste von Werten der gleichen Klasse)

```
# save heights as a vector
heights <- c(171, 168, 182, 190, 170, 163, 164, 167, 189)
```

• könnten wir dann die Funktionen sum() und length() verwenden, um den Mittelwert zu berechnen

```
# divide the sum of heights by the n of heights
sum(heights)/length(heights)
```

[1] 173.7778

• or simply use the mean() function.

```
# or use the mean() function
mean(heights)
```

[1] 173.7778

• Wir können die Funktion mean() auch auf eine Variable in einem Datenrahmen anwenden, indem wir den Operator \$ verwenden (datenrahmen\$variable).

mean(df_groesse\$groesse)

[1] 173.6667

4.2.2 Median

- der Wert in der Mitte des Datensatzes
- Wenn Sie Ihre Daten in der Reihenfolge ihrer Werte anordnen, liegt die Hälfte der Daten unter dem Median, die andere Hälfte darüber.

4.2.2.1 Median in R

• können wir die Funktion sort() verwenden und zählen, welches der mittlere Wert ist:

```
sort(df_groesse$groesse)
```

- [1] 163 164 167 167 170 171 182 189 190
 - alternativ könnte man auch einfach die Funktion median() verwenden

median(df_groesse\$groesse)

[1] 170

4.2.3 Modus

- der Wert, der am häufigsten in einem Datensatz vorkommt
- keine R-Funktion zur Bestimmung des Modus
 - aber wir können ihn visualisieren, z.B. mit einem Histogramm oder einem Dichteplot

4.3 Streuungsmaße

- beschreiben die Streuung von Datenpunkten
 - sagen uns etwas darüber, wie die Daten insgesamt verteilt sind

4.3.1 Bereich

• kann sich auf den höchsten (Maximum) und den niedrigsten (Minimum) Wert beziehen					
– oder die Differenz zwischen höchstem und niedrigstem Wert					
• max() und min(): gibt den höchsten und den niedrigsten Wert aus					
max(heights)					
[1] 190					
min(heights)					
[1] 163					
• oder die Funktion range() verwenden					
• oder die Funktion lange() verwenden					
range(heights)					
[1] 163 190					
• Die Differenz zwischen diesen Werten erhält man, indem man den Minimalwert vom					
Maximalwert subtrahiert					
<pre>max(heights) - min(heights)</pre>					
max(noighob) min(noighob)					
[1] 07					
[1] 27					
• In einem Histogramm oder Dichteplot: die niedrigsten und höchsten Werte auf der x-Achse					
Attion					

4.3.2 Standardabweichung (sd oder σ)

- ein Maß für die Streuung der Daten im Verhältnis zum Mittelwert
 - eine niedrige Standardabweichung bedeutet, dass die Daten um den Mittelwert herum gruppiert sind (d.h. es gibt eine geringere Streuung)
 - eine hohe Standardabweichung bedeutet, dass die Daten stärker gestreut sind
- Die Standardabweichung wird sehr oft angegeben, wenn der Mittelwert angegeben wird.
- Standardabweichung (sd) = die Quadratwurzel (\sqrt oder sqrt() in R) der Summe der quadrierten Wertabweichungen vom Mittelwert ($(x-\mu)^2$) geteilt durch die Anzahl der Beobachtungen minus 1 (n-1)
 - gegeben in Gleichung 2

$$\sigma = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_N - \mu)^2}{N - 1}}$$
 (2)

• das sieht einschüchternd aus, aber wir können die Standardabweichung in R mit der Funktion sd() berechnen

sd(heights)

[1] 10.46157

- wir können die Standardabweichung von Hand berechnen, wenn wir wissen:
 - den Wert der einzelnen Beobachtungen
 - den Mittelwert dieser Werte
 - die Anzahl der Beobachtungen

$$\sigma_{heights} = \sqrt{\frac{(height_1 - \mu)^2 + (height_2 - \mu)^2 + ...(heights_N - \mu)^2}{N - 1}} \tag{3}$$

• In einem Vektor mit 3 Beobachtungen (3, 5, 9) sind unsere Werte (x) zum Beispiel folgende:

values
$$<-c(3,5,16)$$
 values

[1] 3 5 16

• Wenn wir diese zu Gleichung 2 hinzufügen, erhalten wir Gleichung 4

$$\sigma_{values} = \sqrt{\frac{(3-\mu)^2 + (5-\mu)^2 + (16-\mu)^2}{N-1}}$$
 (4)

• unser Mittelwert (μ) ist:

mean(values)

[1] 8

• Wenn wir diese zu Gleichung 4 hinzufügen, erhalten wir Gleichung 5.

$$\sigma_{values} = \sqrt{\frac{(3-8)^2 + (5-8)^2 + (16-8)^2}{N-1}}$$
 (5)

• die Anzahl der Beobachtungen (n) ist:

length(values)

[1] 3

• Wenn wir diese zu Gleichung 5 hinzufügen, erhalten wir Gleichung 6

$$\sigma_{values} = \sqrt{\frac{(3-8)^2 + (5-8)^2 + (16-8)^2}{3-1}}$$
 (6)

• Wenn wir die restlichen Operationen durchführen, erhalten wir die Gleichungen 8 bis 2:

$$\sigma_{values} = \sqrt{\frac{(-5)^2 + (-3)^2 + (8)^2}{3 - 1}} \tag{7}$$

(8)

$$=\sqrt{\frac{25+9+64}{3-1}}\tag{9}$$

$$=\sqrt{\frac{98}{2}}\tag{10}$$

$$=\sqrt{49}\tag{11}$$

$$=7\tag{12}$$

• unsere Arbeit überprüfen:

sd(values)

[1] 7

5 Deskriptive Statistiken mit R

- das Paket dplyr aus dem tidyverse hat einige hilfreiche Funktionen, um zusammenfassende Statistiken zu erstellen
- Lassen Sie uns nun den df_eng-Datensatz verwenden, um diese dplyr-Verben kennenzulernen

5.1 dplyr::summarise

- Die Funktion summarise() (dplyr) berechnet Zusammenfassungen von Daten
 - aber wir müssen ihr sagen, was sie berechnen soll, und für welche Variable(n)
- die Funktion n() zum Beispiel liefert die Anzahl der Beobachtungen (nur wenn sie innerhalb von summarise() oder mutate() verwendet wird)

- wir können auch mehrere Berechnungen auf einmal durchführen
 - Ermitteln wir auch den Mittelwert und die Standardabweichung der lexikalischen Entscheidungsaufgabe (rt_lexdec, in Millisekunden)

11

```
• Fehlende Werte
   • Berechnungen sind bei fehlenden Werten nicht möglich
       - die Variable rt_naming hat einen fehlenden Wert
       - die Funktion mean() funktioniert nicht mit fehlenden Werten
df_eng |>
  summarise(mean_naming = mean(rt_naming))
# A tibble: 1 x 1
  mean_naming
        <dbl>
1
            NA
   • können wir sie mit dem Verb drop_na() entfernen
df_eng |>
  drop_na() |>
  summarise(mean_naming = mean(rt_naming))
# A tibble: 1 x 1
  mean_naming
        <dbl>
          566.
```

6 Variablen gruppieren

- Wir wollen normalerweise bestimmte Gruppen vergleichen.
 - z. B. den Vergleich von "Groesse" zwischen L1-Sprechergruppen

$6.1 \cdot by =$

• das Argument .by = in summarise() berechnet unsere Berechnungen für Gruppen innerhalb einer kategorialen Variable

```
df_eng |>
drop_na() |>
summarise(mean_lexdec = mean(rt_lexdec),
```

```
sd_lexdec = sd(rt_lexdec),
4
               N = n(),
5
               .by = age_subject) |>
6
     arrange(mean_lexdec)
  # A tibble: 2 x 4
    age_subject mean_lexdec sd_lexdec
                                            N
     <chr>
                       <dbl>
                                  <dbl> <int>
                        630.
                                   69.1 2283
   1 young
```

96.2 2284

6.2 Gruppieren nach mehreren Variablen

2 old

- wir können auch nach mehreren Variablen gruppieren
 - dafür brauchen wir Verkettung (c())

787.

```
df_eng |>
  drop_na() |>
  summarise(mean_lexdec = mean(rt_lexdec),

  sd_lexdec = sd(rt_lexdec),

  N = n(),
  .by = c(age_subject, word_category)) |>
  arrange(age_subject)
```

```
# A tibble: 4 x 5
  age_subject word_category mean_lexdec sd_lexdec
  <chr>
              <chr>
                                              <dbl> <int>
                                   <dbl>
1 old
                                    790.
                                              101.
                                                     1452
2 old
              V
                                    780.
                                               86.5
                                                      832
3 young
                                    633.
                                               70.8 1451
              N
              V
                                    623.
                                               65.7
                                                      832
4 young
```

7 Das Quartett von Anscombe

• Francis Anscombe konstruierte 1973 4 Datensätze, um zu veranschaulichen, wie wichtig es ist, Daten zu visualisieren, bevor man sie analysiert und ein Modell erstellt

• Diese vier Diagramme stellen 4 Datensätze dar, die alle einen nahezu identischen Mittelwert und eine Standardabweichung, aber sehr unterschiedliche Verteilungen aufweisen

Tabelle 1: Summary stats of Anscombe's quratet datasets

dataset	mean_x	mean_y
Dataset 1	9	7.5
Dataset 2	9	7.5
Dataset 3	9	7.5
Dataset 4	9	7.5

7.1 DatasaurRus

- datasauRus-Paket (Davies et al., 2022) enthält einige weitere Datensätze, die ähnliche Mittelwerte und Standardabweichung, aber unterschiedliche Verteilungen haben
 - angegeben in Tabelle 2

pacman::p_load("datasauRus")

Tabelle 2: Zusammenfassende Statistiken der datasauRus-Datensätze

dataset	mean_x	mean_y	std_dev_x st	d_dev_y	corr_x
away	54.27	47.83	16.77	26.94	-()
bullseye	54.27	47.83	16.77	26.94	-0
circle	54.27	47.84	16.76	26.93	-()
dino	54.26	47.83	16.77	26.94	-()
dots	54.26	47.84	16.77	26.93	-0

h_lines	54.26	47.83	16.77	26.94	-0
high_lines	54.27	47.84	16.77	26.94	-0.
slant_down	54.27	47.84	16.77	26.94	-0
slant_up	54.27	47.83	16.77	26.94	-0
star	54.27	47.84	16.77	26.93	-0.
v_lines	54.27	47.84	16.77	26.94	-0.
$wide_lines$	54.27	47.83	16.77	26.94	-0
x_shape	54.26	47.84	16.77	26.93	-0

• aber wenn wir sie aufzeichnen, sehen sie alle sehr unterschiedlich aus (Abbildung 2)!

- Also, immer die Daten aufzeichnen
 - Schauen Sie sich nicht nur die deskriptiven Statistiken an!
- Beides ist sehr wichtig für das Verständnis Ihrer Daten.
- Nächste Woche sehen wir uns an, wie wir unsere zusammenfassenden Statistiken darstellen

Learning objectives

Heute haben wir gelernt...

- über Maße der zentralen Tendenz
- über Streuungsmaße
- wie man die Funktion summarise() von dplyr benutzt
- wie man Zusammenfassungen .by Gruppe erstellt

8 Hausufgaben

Anhang 7: Deskriptive Statistik auf der Website des Kurses.

Anscombe's Quartet

 $y = 0.5x + 3 (r \approx 0.82)$ for all groups

Abbildung 1: Plots of Anscombe's quratet distributions

DatasauRus dataset distributions

Abbildung 2: Plots of datasauRus dataset distributions

Session Info

Erstellt mit R version 4.4.0 (2024-04-24) (Puppy Cup) und RStudioversion 2023.9.0.463 (Desert Sunflower).

sessionInfo()

R version 4.4.0 (2024-04-24) Platform: aarch64-apple-darwin20 Running under: macOS Ventura 13.2.1

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:

[1] stats graphics grDevices datasets utils methods base

other attached packages:

[1] datasauRus_0.1.8 patchwork_1.2.0 janitor_2.2.0 here_1.0.1 [5] lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4 [9] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1 tibble_3.2.1

```
[13] ggplot2_3.5.1 tidyverse_2.0.0
```

loaded via a namespace (and not attached):
[1] utf8 1.2.4 generics 0.1.3 renv 1.0.7 xml2 1.3.6

ΓŢ]	utio_1.2.4	generics_U.1.3	renv_1.0.7	XIII12_1.3.6
[5]	lattice_0.22-6	stringi_1.8.3	hms_1.1.3	digest_0.6.35
[9]	magrittr_2.0.3	evaluate_0.23	grid_4.4.0	timechange_0.3.0
[13]	fastmap_1.1.1	Matrix_1.7-0	rprojroot_2.0.4	jsonlite_1.8.8
[17]	tinytex_0.50	mgcv_1.9-1	fansi_1.0.6	<pre>viridisLite_0.4.2</pre>
[21]	scales_1.3.0	cli_3.6.2	rlang_1.1.3	crayon_1.5.2
[25]	splines_4.4.0	bit64_4.0.5	munsell_0.5.1	withr_3.0.0
[29]	yam1_2.3.8	parallel_4.4.0	tools_4.4.0	tzdb_0.4.0
[33]	colorspace_2.1-0	pacman_0.5.1	kableExtra_1.4.0	vctrs_0.6.5
[37]	R6_2.5.1	lifecycle_1.0.4	snakecase_0.11.1	bit_4.0.5
[41]	vroom_1.6.5	pkgconfig_2.0.3	pillar_1.9.0	gtable_0.3.5
[45]	glue_1.7.0	systemfonts_1.0.6	xfun_0.43	tidyselect_1.2.1
[49]	rstudioapi_0.16.0	knitr_1.46	farver_2.1.1	nlme_3.1-164
[53]	${\tt htmltools_0.5.8.1}$	svglite_2.1.3	labeling_0.4.3	rmarkdown_2.26
[57]	compiler_4.4.0			

Literaturverzeichnis

Davies, R., Locke, S., & D'Agostino McGowan, L. (2022). datasauRus: Datasets from the Datasaurus Dozen. https://CRAN.R-project.org/package=datasauRus

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for Data Science (2. Aufl.). Winter, B. (2019). Statistics for Linguists: An Introduction Using R. In Statistics for Linguists: An Introduction Using R. Routledge. https://doi.org/10.4324/9781315165547