Distributed Systems

ECE428

Lecture 6

Adopted from Spring 2021

Some revision while we wait

• For a process p_i, where events e_i⁰, e_i¹, ... occur:

```
history(p_i) = h_i = \langle e_i^0, e_i^1, ... \rangle

prefix history(p_i^k) = h_i^k = \langle e_i^0, e_i^1, ..., e_i^k \rangle

s_i^k: p_i's state immediately after k^{th} event.
```

• For a set of processes <p₁, p₂, p₃,, p_n>:

```
global history: H = \cup_i (h_i)
a cut C \subseteq H = h_1^{c_1} \cup h_2^{c_2} \cup ... \cup h_n^{c_n}
the frontier of C = \{e_i^{c_i}, i = 1, 2, ... n\}
global state S that corresponds to cut C = \cup_i (s_i^{c_i})
```

- A cut C is consistent if and only if ∀e ∈ C (if f → e then f ∈ C)
 - A global state S is consistent if and only if it corresponds to a consistent cut.

Today's agenda

- Global State
 - Chapter 14.5
 - Goal: reason about how to capture the state across all processes of a distributed system without requiring time synchronization.

Recap: How to capture global state?

- State of each process (and each channel) in the system at a given instant of time.
 - Difficult to capture -- requires precisely synchronized time.
- Relax the problem
 - For a system with n processes $< p_1, p_2, p_3, ..., p_n >$, capture the state of the system after the c_i —th event at process p_i .
 - State corresponding to the cut defined by frontier events {e_ic_i, for i = 1,2, ... n}.
 - We want the state to be consistent.
 - Must correspond to a consistent cut.
 - If event e belongs to the cut, all events that "happened before" e must also belong to the cut.

Recap: Chandy-Lamport Algorithm

- Goal: Record consistent state by identifying a consistent cut.
- System model and assumptions:
 - System of n processes: <p₁, p₂, p₃,, p_n>.
 - There are two uni-directional channels between each process pair: p_i to p_i and p_i to p_i. Channels are FIFO.
 - All messages arrive intact, and are not duplicated.
 - No failures: neither channel nor processes fail.
- Requirements:
 - Snapshot should not interfere with normal application actions, nor require application to stop sending messages.
 - Any process can require global snapshot i.e. initiate the algorithm.

Chandy-Lamport Algorithm Intuition

- First, initiator p_i:
 - records its own state.
 - creates a special marker message.
 - sends the marker to all other process.
 - start recording messages received on other channels.
 - until a marker is received on a channel.
- When a process receives a marker.
 - If marker is received for the first time.
 - records its own state.
 - sends marker on all other channels.
 - start recording messages received on other channels.
 - until a marker is received on a channel.

Chandy-Lamport Algorithm

- First, initiator p_i:
 - records its own state.
 - creates a special marker message.
 - for *j*=1 to *n* except *i*
 - p_i sends a marker message on outgoing channel c_{ij}
 - starts recording the incoming messages on each of the incoming channels at p_i: c_{jj} (for j=1 to n except i).

Chandy-Lamport Algorithm

Whenever a process p_i receives a marker message from p_k on incoming channel c_{ki}

- if this is the first marker p_i is seeing, then
 - p_i records its own state first
 - marks the state of channel c_{ki} as "empty"
 - for j=1 to n except i
 - p_i sends out a marker message on outgoing channel c_{ij}
 - starts recording the incoming messages on each of the incoming channels at p_i: c_{ji} (for j=1 to n except i and k).
- else // already seen a marker message
 - mark the state of channel c_{ki} as all the messages that have arrived on it since recording was turned on for c_{ki}

Chandy-Lamport Algorithm

The algorithm terminates when

- All processes have received a marker
 - To record their own state
- All processes have received a marker on all other (n-1) incoming channels
 - To record the state of all channels

p₁ is initiator:

- Record local state s₁,
- Send out markers

First marker!

- Record own state as s₃
- Mark c₁₃ state as empty
- Start recording on other incoming c₂₃
- Send out markers

Duplicate marker!

Turn on recording on C₁₂

Send out markers

Duplicate!

Duplicate! c₂₁ = <message G-D >

c₂₁ = <message G-D >

 c_{21} = <message G-D >

Algorithm has terminated!

$$c_{23} = <>$$

 c_{21} = <message G-D >

Frontier for the resulting cut: {B, G, H}

Channel state for the cut: Only c₂₁ has a pending message.

Global snapshots pieces can be collected at a central location.

- Any run of the Chandy-Lamport Global Snapshot algorithm creates a consistent cut.
- Let e_i and e_j be events occurring at p_i and p_j, respectively such that
 - $e_i \rightarrow e_j$ (e_i happens before e_i)
- •The snapshot algorithm ensures that if e_i is in the cut then e_i is also in the cut.
- That is: if e_j → < p_j records its state>, then
 it must be true that e_i → <p_i records its state>.

- Given e_i → e_j. If e_j → < p_j records its state>, then it must be true that e_i → <p_i records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- Given e_i → e_j. If e_j → < p_j records its state>, then it must be true that e_i → <p_i records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- Given e_i → e_j. If e_j → < p_j records its state>, then it must be true that e_i → <p_i records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- Given e_i → e_j. If e_j → < p_j records its state>, then it must be true that e_i → <p_i records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$

- Given e_i → e_j. If e_j → < p_j records its state>, then it must be true that e_i → <p_i records its state>.
- By contradiction, suppose $e_j \rightarrow < p_j$ records its state>, and $< p_i$ records its state> $\rightarrow e_i$
- Consider the path of app messages (through other processes) that go from e_i to e_i.
- Due to FIFO ordering, markers on each link in above path will precede regular app messages.
- Thus, since <p_i records its state> → e_i, it must be true that p_i received a marker before e_i.
- Thus e_i is not in the cut => contradiction.

Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
 - Safety and Liveness.

Chandy-Lamport Algorithm: Usefulness

- Consistent global snapshots are useful for detecting global system properties:
 - Safety
 - Liveness

More notations and definitions

- history(p_i) = h_i = $< e_i^0, e_i^1, ... >$
- global history: $H = \bigcup_i (h_i)$
- A run is a total ordering of events in H that is consistent with each h_i's ordering.
- A linearization is a run consistent with happensbefore (→) relation in H.

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 > Causal order$

Run: $< e_1^0, e_1^1, e_1^2, e_1^3, e_2^0, e_2^1 e_2^2 >$ Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 > Causal order$

Run: $< e_1^0, e_1^1, e_1^2, e_1^3, e_2^0, e_2^1 e_2^2 >$ Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 > Causal order$

$$< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 > Causal order$

- < e_1^0 , e_1^1 , e_2^0 , e_2^1 , e_1^2 , e_2^2 , $e_1^3>$: Linearization
- $< e_1^0, e_2^1, e_2^0, e_1^1, e_1^2, e_2^2, e_1^3 >$: Not even a run

More notations and definitions

- history(p_i) = h_i = $< e_i^0, e_i^1, ... >$
- global history: $H = \bigcup_i (h_i)$
- A run is a total ordering of events in H that is consistent with each h_i's ordering.
- A linearization is a run consistent with happensbefore (→) relation in H.
- Linearizations pass through consistent global states.

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 > Causal order$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order at <math>p_2$: $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1^2$ and p_2^2 e_1^3

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order at <math>p_2$: $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , e_1^3

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order$ at p_2 : $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order$

Order at p_1 : $< e_1^0$, e_1^1 , e_1^2 , $e_1^3 > Order at <math>p_2$: $< e_2^0$, e_2^1 , $e_2^2 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^2 , $e_1^3 > Causal order across <math>p_1$ and p_2 : $< e_1^0$, e_1^1 , e_2^0 , e_2^1 , e_2^1

Linearization: $< e_1^0, e_1^1, e_1^2, e_2^0, e_2^1 e_2^2, e_1^3 >$ Linearization $< e_1^0, e_1^1, e_2^0, e_2^1, e_1^2, e_2^2, e_1^3 >$

More notations and definitions

- Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i, if there is a linearization that passes through S_i and then through S_k.
- The distributed system evolves as a series of transitions between global states S₀, S₁,

Many linearizations:

- < p0, p1, p2, q0, q1, q2>
- < p0, q0, p1, q1, p2, q2>
- <q0, p0, p1, q1, p2, q2 >
- <q0, p0, p1, p2, q1,q2 >
- •

Causal order:

- $p0 \rightarrow p1 \rightarrow p2$
- $q0 \rightarrow q1 \rightarrow q2$
- $p0 \rightarrow p1 \rightarrow q1 \rightarrow q2$

Concurrent:

- p0 || q0
- p1 || q0
- p2 || q0, p2 || q1, p2 || q2

More notations and definitions

- A run is a total ordering of events in H that is consistent with each h_i's ordering.
- A linearization is a run consistent with happensbefore (→) relation in H.
- · Linearizations pass through consistent global states.
- A global state S_k is reachable from global state S_i, if there is a linearization that passes through S_i and then through S_k.
- The distributed system evolves as a series of transitions between global states S₀, S₁,

Global State Predicates

- A global-state-predicate is a property that is true or false for a global state.
 - Is there a deadlock?
 - Has the distributed algorithm terminated?
- Two ways of reasoning about predicates (or system properties) as global state gets transformed by events.
 - Liveness
 - Safety

Liveness

 Liveness = guarantee that something good will happen, eventually

• Examples:

- A distributed computation will terminate.
- "Completeness" in failure detectors: the failure will be detected.
- All processes will eventually decide on a value.
- A global state S₀ satisfies a liveness property P iff:
 - liveness($P(S_0)$) = \forall L∈ linearizations from S_0 , L passes through a S_1 & $P(S_1)$ = true
 - For all linearizations starting from S₀, P is true for some state S₁ reachable from S₀.

If predicate is true only in the marked states, does it satisfy liveness?

Yes

If predicate is true only in the marked states, does it satisfy liveness?

If predicate is true only in the marked states, does it satisfy liveness?

Yes

Liveness

 Liveness = guarantee that something good will happen, eventually

• Examples:

- A distributed computation will terminate.
- "Completeness" in failure detectors: the failure will be detected.
- All processes will eventually decide on a value.
- A global state S₀ satisfies a liveness property P iff:
 - liveness($P(S_0)$) = \forall L∈ linearizations from S_0 , L passes through a S_1 & $P(S_1)$ = true
 - For any linearization starting from S₀, P is true for some state S₁ reachable from S₀.

Safety

 Safety = guarantee that something bad will never happen.

- Examples:
 - There is no deadlock in a distributed transaction system.
 - "Accuracy" in failure detectors: an alive process is not detected as failed.
 - No two processes decide on different values.
- A global state S₀ satisfies a safety property P iff:
 - safety($P(S_0)$) = $\forall S$ reachable from S_0 , P(S) = true.
 - For all states S reachable from S₀, P(S) is true.

Safety Example

If predicate is true only in the marked states, does it satisfy safety?

Safety Example

If predicate is true only in the unmarked states, does it satisfy safety?

Yes

Safety

 Safety = guarantee that something bad will never happen.

- Examples:
 - There is no deadlock in a distributed transaction system.
 - "Accuracy" in failure detectors: an alive process is not detected as failed.
 - No two processes decide on different values.
- A global state S₀ satisfies a safety property P iff:
 - safety($P(S_0)$) = $\forall S$ reachable from S_0 , P(S) = true.
 - For all states S reachable from S₀, P(S) is true.

Technically satisfies liveness, but difficult to capture or reason about.

once true, stays true forever afterwards (for stable liveness)

If predicate is true only in the marked states, is it stable?

If predicate is true only in the marked states, is it stable?

No

If predicate is true only in the marked states, is it stable?

Yes

- once true, stays true forever afterwards (for stable liveness)
- once false, stays false forever afterwards (for stable non-safety)
- Stable liveness examples (once true, always true)
 - Computation has terminated.
- Stable non-safety examples (once false, always false)
 - There is no deadlock.
 - An object is not orphaned.
- All stable global properties can be detected using the Chandy-Lamport algorithm.

Global Snapshot Summary

- The ability to calculate global snapshots in a distributed system is very important.
- But don't want to interrupt running distributed application.
- Chandy-Lamport algorithm calculates global snapshot.
- Obeys causality (creates a consistent cut).
- Can be used to detect global properties.
- Safety vs. Liveness.