Neural CAPTCHA Recognition System

Why Neural OCR?

Classical OCR Limitations:

- Handcrafted features (edge maps, stroke patterns)
- · Fail on font variations
- · Cannot handle noise or distortions
- · No adaptation to conditional rendering

Neural Approach Advantages:

- · Learn features automatically
- · Generalize across fonts
- · Handle noise robustly
- Adapt to complex patterns

Next

Four Core Tasks

1. Dataset Generation

- ✓ Synthesized 3,000 CAPTCHA images
- ✓ Three difficulty levels

2. Classification

- √ 100-word vocabulary
- ✓ CNN architectures

3. Text Extraction

- ✓ Variable-length OCR
- ✓ Seq2seq with attention

4. Conditional Rendering

- ✓ Color-based transformations
- ✓ Reversed text challenge

Three Complexity Levels

Dataset	Images	Characteristics	Difficulty Score
Easy	1,000	Fixed font, white background	0.253
Hard	1,000	6 fonts, noise, distortions	0.780
Bonus	1,000	Conditional: green=normal, red=reversed	0.869

Key Innovation:

- Quantitative difficulty scoring system
- Systematic complexity progression
- Complete metadata tracking for analysis

Easy Dataset Examples

Clean, Readable CAPTCHAs

Background: White (255,255,255) Font: DejaVu Sans (28-32pt) Noise: None Distortion: None

Performance Achieved:

Classification: 95.5% accuracy

• OCR: 90.5% exact match

• CER: 0.041

Hard Dataset Examples

Complex, Noisy CAPTCHAs

Backgrounds: Variable (200-255 RGB) Fonts: 6 families (DejaVu, Liberation) Noise: Gaussian (σ=0.02), Salt-pepper Distortions: Rotation ±5°, Shear ±0.2

Performance Achieved:

Classification: 4.5% accuracy

• OCR: 4% exact match

CER: 0.846

Conditional Rendering Challenge

The Rule:

- Green Background: Display text normally
- Red Background: Display text reversed
- Critical: Label remains unchanged!

Example:

Background	Display	Label
Green	"hello"	"h <mark>ello</mark> "
Red	"olleh"	"hello"

Performance: 11% exact match

Architecture - Classification

CNN Design Choices

LightweightCNN (Easy Dataset):

```
Conv(3\rightarrow32) \rightarrow Conv(32\rightarrow64) \rightarrow Conv(64\rightarrow128) AdaptivePool \rightarrow FC(512) \rightarrow FC(256) \rightarrow FC(100)
```

ImprovedCNN (Hard/Bonus):

ResBlock(64→128) → ResBlock(128→256) → ResBlock(256→512) SpatialAttention → GlobalPool → Classifier

Key Innovation: Residual connections + Spatial attention mechanism

Architecture - Text Extraction

Sequence-to-Sequence Model

Encoder (CNN):

 $Conv1(3\rightarrow64) \rightarrow Pool Conv2(64\rightarrow128) \rightarrow Pool Conv3(128\rightarrow256) Conv4(256\rightarrow512) AdaptivePool(4,16)$

Decoder (LSTM + Attention):

Embedding(vocab→256) LSTM(256+context→512) Attention(Bahdanau) Output(512→vocab)

Training Strategy

Hyperparameter Selection

Parameter	Value	Justification
Learning Rate	1e-3	Standard for Adam optimizer
Batch Size	32	Memory/stability balance
Optimizer	Adam	Adaptive learning rates
Scheduler	ReduceLROnPlateau	Automatic adjustment
Dropout	0.3-0.5	Based on dataset complexity

Total Training Time: ~8 hours on single GPU

Performance Across Tasks

Classification (100-word vocabulary):

Dataset	Accuracy	Training Time
Easy	95.5%	10s
Hard	4.5%	169s
Bonus	5.0%	170s

Text Extraction (OCR):

Dataset	Exact Match	CER	WER
Easy	90.5%	0.041	0.095
Hard	4.0%	0.846	0.960
Bonus	11.0%	0.788	0.890

Key Finding #1

Complexity Barrier

Performance Degradation:

- Easy → Hard: 91% accuracy drop
- Linear complexity increase → Exponential performance decrease

Evidence:

Easy: Train=91%, Val=95% (No overfitting) Hard: Train=66%, Val=4.5% (Severe overfitting) Bonus: Train=97%, Val=5% (Extreme overfitting)

Insight: Current architectures fail to extract invariant features

Key Finding #2

Attention Mechanism Failure

Observation:

Attention weights remain uniform across image regions

Hypothesis:

Noise overwhelms attention's focusing ability

Evidence:

- No performance improvement with attention on hard dataset
- Attention maps show no meaningful patterns
- Model defaults to global features

Implication: Need noise-robust attention mechanisms

Key Finding #3

Conditional Rendering Challenge

Bidirectional Processing Required

Current Limitation:

- Unidirectional LSTM: left-to-right processing
- Reversed text: requires right-to-left understanding

Performance Gap:

- Green (normal): 18% exact match
- Red (reversed): 4% exact match

Solution: Bidirectional LSTM or Transformer architectures

Why Models Struggle

1. Overfitting (Hard/Bonus)

Train: 97.75%, Val: 5%

Memorization vs. generalization

2. Feature Extraction

6 fonts too diverse for CNN

Loss plateaus at epoch 85

3. Sample Inefficiency

800 training samples insufficient

High-dimensional feature space

4. Architecture Mismatch

CNN+LSTM inadequate for conditional logic

Need specialized architectures

Surprising Discoveries

1. Easy CAPTCHAs are Broken

95.5% accuracy with simple CNN

→ Modern CAPTCHAs must use complexity

2. Training Dynamics Anomaly

Catastrophic forgetting in bonus dataset

Model alternates between patterns

3. Error Patterns

Model defaults to high-frequency words

"elephant" → "freedom" (semantic bias)

Evidence-Based Solutions

1. Curriculum Learning

- Start with easy samples
- · Gradually increase difficulty
- Expected: 20-30% improvement

2. Multi-Task Learning

- · Auxiliary task: predict background color
- Helps with conditional logic

3. Transformer Architecture

- Better at long-range dependencies
- · Bidirectional by design

4. Data Augmentation

- · Generate more training samples
- Online augmentation during training

Previous

Resource Optimization

Efficiency Strategies Implemented

Computational:

- Adaptive pooling (reduces dimensions)
- Batch normalization (faster convergence)
- · Early stopping criteria

Memory:

- · Dynamic vocabulary loading
- Gradient accumulation

· Efficient data loaders

Result: Complete pipeline runs on single GPU in ~8 hours

Theoretical Understanding

Architecture Justification:

- CNN: Exploits spatial locality in images
- LSTM: Handles sequential dependencies in text
- Attention: Focuses on relevant regions (theory vs. practice gap)
- Residuals: Maintains gradient flow in deep networks

Loss Function Analysis:

- CrossEntropy vs. CTC trade-offs documented
- · Teacher forcing implications analyzed

Hyperparameter Impact:

- Dropout correlation with dataset complexity (0.3 → 0.5)
- · Learning rate scheduling effectiveness measured

Key Takeaways

✓ Achievements

- Complete CAPTCHA pipeline implementation
- 95.5% accuracy on simple CAPTCHAs
- · Comprehensive failure analysis
- Novel conditional rendering dataset

Insights

- 91% complexity barrier identified
- · Attention mechanisms need noise robustness
- · Conditional logic requires specialized architectures

A Research Value

- Benchmark for CAPTCHA difficulty
- · Evidence of neural OCR limitations
- Actionable improvement strategies

Thank You

Questions & Discussion

Repository: Available with all code and results

Key Metrics:

- 3,000 images generated
- 6 models trained
- 8 hours total training
- 95.5% best accuracy