Séries temporelles par réseaux de neurones

récurrents

Module 8

Objectifs '

- savoir appliquer les réseaux de neurones aux séquences
- comprendre les contraintes et avantages des réseaux récurrents dans le cadre des séries temporelles

Problème à résoudre

Traiter une séquence d'inputs :

- séquence d'appels dans le cas GFI
- séquence de mots dans une phrase
- séquence de traces dans un log
- séquence d'actions sur une page web
- séquence de mesures en géologie / océanographie / météorologie
- ...

Première solution : padding

Idée

- utilisation d'un réseau standard
- taille d'input fixée à la taille maximale des séquences d'input
- padding des séquences plus petites avec des inputs neutres

Problèmes

- très couteux en mémoire et temps de calcul.
- l'entraînement des poids n'est pas optimal. Pourquoi?

Deuxième solution : fenêtre glissante

Idée

- taille d'input fixe
- parcours de la séquence en décalant une fenêtre de la taille de l'input

Problème

Modélisation des dépendances longues extrêmement simpliste, parfois non apprise. Comment peut-on les modéliser, même simplement?

Troisième solution : réseaux récurrents

- taille d'input variable
- utilisation d'un même réseau pour chaque élément de l'input, séquentiellement

Réseau récurrent enroulé

Pour l'élement i d'une séquence de n inputs :

$$h_i = \mathsf{RNN}(x_i, h_{i-1})$$

Réseau récurrent déroulé

Réseau déroulé très proche d'un réseau standard mais :

- poids partagés par les neurones correspondants des différentes étapes temporelles.
- connections horizontales (calcul pas à pas).

Adaptation de la rétropropagation des gradients

- aucune adaptation nécessaire. Le modèle standard fonctionne.
- seule différence : poids du réseau déroulé modifiés autant de fois qu'il y a d'étapes temporelles.
- de manière équivalente : poids du réseau déroulé modifiés par la somme des modifications des étapes temporelles (règle de chainage).

Où trouver des RNNs implémentés

- keras (de loin le plus facile)
- tensorflow

Première conclusion

Une adaptation simple des réseaux de neurones permet de manipuler des séquences d'input

Problème principal

Modèle simple dysfonctionnel en pratique : les gradients ne permettent pas l'apprentissage de dépendances longues :

Solution: LSTM

Ajouter un mécanisme de mémoire et de portes pour protéger le flot d'information (et de gradient) :

Approche appelée Long Short-Term Memory Networks.

Cellule LSTM

Des portes sont multipliées à l'input et à l'ouput pour limiter leur impact sur le flot d'information au strict nécessaire.

LSTM: étape 1/4

Conserver ou non les informations en mémoire :

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

LSTM: étape 2/4

Prendre en compte ou non l'input :

$$\begin{split} i_t &= \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right) \\ \tilde{C}_t &= \tanh \left(W_C \cdot [ht - 1, x_t] + b_C \right) \end{split}$$

LSTM: étape 3/4

Mettre à jour l'état caché :

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM: étape 4/4

Contrôler si l'on produit ou non une valeur de sortie :

$$\begin{aligned} o_t &= \sigma \big(\mathit{W}_o \cdot [\mathit{h}_{t-1}, \mathit{x}_t] + \mathit{b}_o \big) \\ h_t &= o_t * \mathsf{tanh} \big(\mathit{C}_t \big) \end{aligned}$$

Extension: judas

Variante : GRU

 $\mathsf{update}\;\mathsf{gate}: z_t = \!\!\sigma(W_z \cdot [h_{t-1}, x_t])$

reset gate : $r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$

input candidat : $\tilde{h}_t = \tanh(W \cdot [r_t * h_{t-1}, x_t])$

mise à jour de l'état : $h_t = (1-z_t)*h_{t-1} + z_t*\tilde{h}_t$

Deuxième conclusion

- les modèles modernes permettent avec des mécanismes simples de gérer les dépendances longues
- les séquences sont donc des citoyens de premier ordre dans les modèles de machine learning

