Unit V: Computer Arithmetic Techniques

The Arithmetic and Logic Unit, Multiplication of positive numbers, Signed operand multiplication, Booths algorithm, Integer division, Floating point representation – IEEE standard.

Multiplication

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

Multiplication Example (unsigned) (long hand)

- 1011 Multiplicand (11 dec)
- x <u>1101</u> Multiplier (13 dec)
- 1011 Partial products
- 00000 Note: if multiplier bit is 1 copy
- 1011*00* multiplicand (place value)
- 1011*000* otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

Flowchart for Unsigned Binary Multiplication

Execution of Example

C 0	A 0000	Q 1101	M 1011	Initial	Values
0	1011	1101	1011	Add	First
	0101	1110	1011	Shift	Cycle
0	0010	1111	1011	Shift }	Second Cycle
0	1101	1111	1011	Add	Third
	0110	1111	1011	Shift	Cycle
1	0001	1111	1011	Add	Fourth
	1000	1111	1011	Shift	Cycle

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - —Convert to positive if required
 - —Multiply as above
 - —If signs were different, negate answer
- Solution 2
 - —Booth's algorithm

Booth's Algorithm

- 3*7
- First setup the columns and initial values.

```
A Q Q-1 M Comment 00000 00011 0 00111 Init values
```

- This case 3 is in Q and M is 7.
 - —But could put 7 in Q and M as 3

First cycle: Now look at Q₀ and Q₋₁

With a 10, we Sub (A=A-M), then shift (always to the right)

```
A Q Q-1 M Comment 000000 00011 0 00111 Init values First 11001 0001 1 00111 Sub (A=A-M) First Cycle
```

- Second cycle: looking at Q₀ and Q₋₁
 - With a 11, we only shift.

2nd cycle Result

```
Comment
                      00111 Init values
00000
                      00111 Sub (A=A-M)
11001
       00011
                                             First
11100
       10001
                 1
                      00111
                             Shift
                                             Cycle
                                            Second Cycle
       01000
                      00111
                             Shift
11110
```

- Third cycle, Q₀ and Q₋₁ have 01
 - —So we will Add (A=A+M), then shift

• 3nd cycle Result

A 00000	Q 00011	Q-1 0	M 00111	Comment Init values		
11001	00011	0	00111	Sub (A=A-M)	First	
11100	10001	1	00111	Shift	Cycle	
11110	01000	1	00111	Shift	Second Cycle	
00101 00010	01000 1010 <u>0</u>	1 0		Add (A=A+M) Shift	Third Cycle	

- 4th cycle, Q₀ and Q₋₁ have 00
 - —So we only shift

4nd cycle Result

A 00000	Q 00011	Q-1 0	M 00111	Comment Init values		
11001	00011	0		Sub (A=A-M)	First	
11100	10001	1	00111	Shift	Cycle	
11110	01000	1	00111	Shift	Second Cycle	
00101 00010	01000 10100	1		Add (A=A+M) Shift	Third Cycle	
00001	01010	0	00111	Shift	Fourth Cycle	

5th cycle, Q₀ and Q₋₁ have 00
 —So we only shift

5th cycle Result

A 00000	Q 00011	Q-1 0	M 00111	Comment Init values		
11001	00011	0	00111	Sub (A=A-M)	First	
11100	10001	1	00111	Shift	Cycle	
11110	01000	1	00111	Shift	Second Cycle	
00101 00010	01000 10100	1 0		Add (A=A+M) Shift	Third Cycle	
00001	01010	0	00111	Shift	Fourth Cycle	
00000	10101	4 0	00111	Shift	Fifth Cycle	

Since we are working in 5 bits, we only repeat 5 times

A 00000	Q 00011	Q-1 0	M 00111	Co Init values	mment
11001	00011	0	00111	Sub (A=A-M)	First
11100	10001	1	00111	Shift	Cycle
11110	01000	1	00111	Shift	Second Cycle
00101 00010	01000 10100	1 0		Add (A=A+M) Shift	Third Cycle
00001	01010	0	00111	Shift	Fourth Cycle
00000	10101	0	00111	Shift	Fifth Cycle

Result is A and Q so 0000010101 which is 21.

Note: The sign bit is the last bit in A.

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Unsigned Binary Division

Signed Division

- 1. Load divisor into M and the dividend into A, Q registers. Dividend must be 2n-bit twos complement number
 - -0111 (7) becomes 00000111
 - -1001 (-7) becomes 11111001
- 2. Shift A, Q left 1 bit position
- 3. If M and A have the same signs, A←A –M else A←A+M

- 4. Step 3 is successful if sign of A is the same as before step 3 and at the end of step 3
 - A. if successful or (A=0 AND Q=0) then set $Q0 \leftarrow 1$
 - B. if unsuccessful and $(A \neq 0 \text{ OR } Q \neq 0)$ then restore the previous value of A
- 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
- 6. The reminder is in A. If the signs are of Divisor and dividend were the same, the quotient is in Q, otherwise the correct quotient is the twos complement of Q.

Examples of division (signed)

А	Q	M=0011	Α	Q	M=0011
0000	0111	Initial Value	1111	1001	Initial Value
0000	1110	shift	1111	0010	shift
1101		subtract	0010		Add
0000	1110	restore	1111	0010	Restore
0001	1100	shift	1110	0100	Shift
1110		subtract	0001		Add
0001	1100	restore	1110	0100	Restore
0011	1000	shift	1100	1000	Shift
0000		subtract	1111		Add
0000	1001	set Q0 = 1	1111	1001	Q0 =1
0001	0010	Shift	1111	0010	Shift
1110		subtract	0010		Add
0001	0010	restore	1111	0010	Restore

(a) 7/3

#