ÁLGE	BRA (27) (Cs	Exactas-Inge	niería				E 2011 TEMA 4
APEL	LIDO:			NOM	BRES:	- 6565	77 / 8 / 9 /	J:
Bien	Mai	N C	NOTA		INSCRIPTO E	N: Días		rio
					Sede		Aula	mestre:
Para	a aprob	ar el exc	imen es neces	ario te	ener por lo men	os & res	pueste	y más respuestas
					ada ejercicio n			correcta.
	(1	0 -2)	(2 3	1)		L.: (9	A Train was a last	<u> </u>
1. Si A	1 = 1	2 4	$v B = \begin{bmatrix} 0 & -1 \end{bmatrix}$	0 .	entonces det(A3	B^{-1}) es	igual a	
	0	1 2	2 . 1	3	Altillo	con	igual a	
-1	`	ĺ	□ -32	.:i .	2			
2. Sea	$A = \begin{pmatrix} a \\ 2 \end{pmatrix}$	-1). E	l conjunto de	los a	≅ R tales que e	l sistem	a $A^2x = 2Ax$ es i	ndeterminado es
	,	/			$ \square : \mathbb{R} - \{-2\}$			
3. Sean	$B = \{$	$\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3$		$\mathbf{v}_2; \mathbf{v}_t$	$-\mathbf{v}_2+\mathbf{v}_3;\mathbf{w}$ b	ases de	R3. Si las coord	enadas de v ₁ en bas
			nces w es		outege, in the			<i>3</i>
w =	$= \mathbf{v}_{_{1}}$	w	$v = 2\mathbf{v}_1 + 2\mathbf{v}_2 =$	Y ₃	$\mathbf{v}_1 + 2$	$2\mathbf{v}_2$		v ₃ ·
4. Dado	os $\mathbf{v} = 0$	(2,4,3)	$\mathbf{w} = (1, 0, 0)$	un ve	ctor unitario pe	rpendic	ular a v y a w es	
(0,	1,0)		$(0,\frac{3}{5},-\frac{4}{5})$		(0,-3,4)			*
5. Sean	П:4-	-2y+2z	$=4 \text{ y } \mathbb{L}:\lambda(2$,1,0)+	(0,3,-1). Si F	e L , e	ntonces $d(P,\Pi)$	es igual a
12			1		4/3		4	
6. Sean	$\mathbb{S} = \{x$	$x \in \mathbb{R}^4 / 2$	$x_1 + x_2 - x_3 + 3$	$3x_4 = 0$	$\{\mathbf{y} \mid \mathbb{T} = \{\mathbf{x} \in \mathbb{R}\}$	$\frac{4}{x_1} / x_1 + 2$	$2x_4 = x_2 - x_3 - x_4$	$=0$. Si \mathbb{W} es un
								sión de W es igual
2			3		☐ 4		f. seem	
7. Sea	$f: \mathbb{R}^3$	$\rightarrow \mathbb{R}^3$ la t	.1. tal que $f(1)$,0,0):	=(2,0,0), f(1,1)	1,0) = (-	-1,-1,0) y $f(1,1,$	-1) = (3,3,-3).
			autovalor 3 e	S				
(0,	-1,0)		(3,0,0)		(2,2,-2)		[] (-3, -3, 0)	
			1800000		$\left(1, \ldots, k^2, \ldots\right)$	es art i	a 11.124 / .	
8. Si <i>f</i>	$f: \mathbb{R}^2 \to$	\mathbb{R}^3 es la	a t.l. tal que A	I(f) =	1 1 1 en	tonces	el conjunto de va	lores de k para los
					(+1 /2k-3)			
,		onomorf	ismo es				N <u>ar</u> egon de la	
	-{-3}		 [−3]		[{3,−3}		[{1}	
). Si-T	= ((1, 2	,1,−1⟩ y	$S = \{ \mathbf{x} \in \mathbb{R}^4 / $	$x_1 + 2x_2$	$x_2 + x_3 - x_4 = 0$, enton	ces T [⊥] ∩S es i	gual a
101		, ,					Пе	The street is

□ () ,								
10. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2 \}$	$\{v_3\}$ base de un e.v. V	$V, S = \langle \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3; k\mathbf{v} \rangle$	$_{2}-2\mathbf{v}_{3}\rangle \mathbf{y} \mathbb{T} = \langle 3\mathbf{v}_{1}-2\mathbf{v}_{2}+k\mathbf{v}_{3}\rangle.$					
El conjunto de los $k \in \mathbb{R}$ para los cuales $\mathbb{S} \oplus \mathbb{T} = \mathbb{V}$ es								
[] {1;2}	$\mathbb{R}-\{1;2\}$	$ \mathbb{R} - \{0;1;2\} $	$\square \mathbb{R} - \{0\}$					
EXAMEN FINAL	- DICIEMBRE 2011	1 -	TEMA 4					
11. Si $B = \{(1, -1, 0)\}$);(-1,1,1);(0,1,0)} y	$f: \mathbb{R}^3 \to \mathbb{R}^3$ es la t.l. ta	I que $M(f) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix}$ entonces					
f(1,1,1) - f(1,0,0)	es igual a							
(1,1,1)	[(-1,1,1)	[] (0,1,0)						
12. Sean $A, B \in \mathbb{R}^m$	$^{\times n}$ tales que $\det(AB) =$	1. Dadas						
	r que $B = A^{-1}$; II: se p I es F y II es F	The state of the s	B sor					
13. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2 \}$	$\{\mathbf{v}_2; \mathbf{v}_3\}$ base de un e.v.	$\mathbb{V} \ \ \mathbf{y} \ f : \mathbb{V} \to \mathbb{V} \ \ \mathbf{la} \ \mathbf{t.l.}$	tal qu					
Una base de Im f	96	Altillo.com						
		$+3\mathbf{v}_{3}; -\mathbf{v}_{1}+8\mathbf{v}_{2}+\mathbf{v}_{3}$	$ [] \{(-1,8,1);(1,-3,2)\} [] \{\mathbf{v}_1;\mathbf{v}_2\} $					
14. Sea $z \in \mathbb{C}$ tal qu	$ue z = 3 \text{ y arg } z = \frac{\pi}{4}.5$	Si $w = -iz^2$ entonces	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
w = 6 y arg w	$=\frac{\pi}{4}$ $\left w = 9 \text{ y arg} \right $	$w = \pi$ $ w = 9$ y a	$\operatorname{rg} w = 0 \boxed{ w = 9 \text{ y arg } w = \frac{\pi}{2}}$					
15. Si i es raíz dob	ble de $P(x) = x^3 - ax^2 +$							
a = i	a = -1	a=0	a=1					
16. Si $f: \mathbb{R}^3 \to \mathbb{R}^3$	es la t.l. tal que $f(1,1,0)$	f(0,-1,0) = (1,1,1), f(0,-1,0)	= $(1,1,1)$ y $f(0,1,3) = (1,1,1)$, $M(f) =$					
$ \begin{bmatrix} 2 & -1 & 2/3 \\ 2 & -1 & 2/3 \\ 2 & -1 & 2/3 \end{bmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} $	$ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} $					
17. Sean $B = \{(1,1,0)\}$	$(0,1,-1); \mathbf{v} \ y \ f : \mathbb{R}^3$	$^3 \to \mathbb{R}^3$ la t.l. tal que M	$I_{EB}(f) = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$					
Si $f(1,3,2) = (10,3)$	$(,-3)$, entonces \mathbf{v} es igu	ıal a						
[(5,-15,10)	(1,-3,2)	(1,3,2)	(5,13,5)					
solución de $Ax = b$ (-1, -1, -1)	que tiene las tres coord [] (5,5,5)	denadas iguales es	homogéneo $Ax = b$, entonces una					
19. Si $f: \mathbb{R}^4 \to \mathbb{R}^4$ entonces $f(1,2,3,4)$	es la t.l. tal que $f(1,1,$	(0,0) = (0,0,1,1), f(0,1)	(1,0) = (0,0,-1,1) y Nu f = Im f					
(0,0,3,0)	(0,0,0,0)	(0,2,1,3)	[] (0,0,0,2)					
20. El conjunto $\{z \in \{z \in \{z\}\}\}$	$\mathbb{C}/ z-i = z+1 $ es is	gual a						

		[] {0}	
			i ph. in angli
FIDMA DEL ALUMNO			