Universidade Federal de Minas Gerais Programa de Pós-Graduação em Ciência da Computação Exame de Qualificação 1º Estágio 2º Semestre de 2014

Área: Teoria: Estrutura de Dados, Projeto e Análise de Algoritmos, Técnicas de Programação, Pesquisa e Ordenação

Em 12/08/2014, 10:00 horas

Prova individual sem consulta com duração de 2 horas

Observações:

- 1. A prova deve ser resolvida no próprio caderno de questões.
- 2. As questões desta prova estão nas páginas seguintes, as quais estão numeradas de 1 a 12.
- 3. Faz parte da prova a interpretação das questões. Caso você ache que falta algum detalhe nos enunciados ou nos esclarecimentos, você deverá fazer as suposições que achar necessárias e escrever essas suposições juntamente com as respostas.
- 4. Todas as respostas devem ser justificadas.
- 5. Somente serão corrigidas respostas legíveis.
- 6. Não se esqueça de escrever seu nome abaixo.

1

2

3

4

5

Desejamos a você uma boa prova!

A COPEQ

Atenção: Esta prova contém um total de 6 (seis) questões, das quais você deve fazer 4 (quatro).
Marque abaixo as questões que devem ser consideradas para avaliação:

6

(selecione até quatro)

Nome: _			
Agginatura			

Prove que as propriedades abaixo sobre as notações assintóticas são verdadeiras ou falsas, usando para isso as suas definições e/ou contraexemplos.

- a) ω é transitiva.
- b) o é reflexiva.
- c) O é simétrica.
- d) Θ é simétrica.

Dado um vetor com n números inteiros deseja-se reorganizar os elementos de forma que todos os números negativos precedam os não negativos e os zeros fiquem entre eles. Desenvolva um algoritmo que reorganize esse vetor com ordem de complexidade $\Theta(n)$. Forneça um exemplo para ilustrar seu algoritmo.

Detalles importantes:

- 1. A reorganização deve ser *in-place*, ou seja, não é permitido usar vetores, listas, etc, para armazenar os elementos temporariamente. Apenas algumas variáveis auxiliares inteiras podem ser utilizadas.
- 2. A reorganização deve ser feita por comparação de chaves métodos de contagem não podem ser usados.

Sejam p_1 e p_2 duas permutações de um conjunto de n chaves $S = \{s_1, s_2, \ldots, s_n\}$ e T_1 e T_2 as duas árvores binárias de pesquisa geradas a partir de p_1 e p_2 , respectivamente. Cada árvore é gerada a partir da inserção sequencial das chaves de sua permutação iniciando pela chave mais à esquerda.

Para cada afirmação abaixo, diga se é verdadeira ou falsa, provando ou fornecendo um contraexemplo:

- a) $T_1 \neq T_2$ se e somente se $p_1 \neq p_2$.
- b) As ordens de impressão das chaves de T_1 e T_2 obtidas por um caminhamento central (também chamado de caminhamento in-order) podem ser distintas.
- c) É sempre possível saber em tempo logarítmico se um elemento $s_i \in S$ está na árvore T_1 .
- d) Seja h_1 a altura da árvore T_1 . A complexidade de tempo para se encontrar a chave sucessora de uma chave s_i qualquer em T_1 é $O(h_1)$. (No caso, chave sucessora é a chave seguinte à s_i quando elas estão ordenadas crescentemente)

Você quer viajar de carro de s para t e já decidiu a rota: você vai seguir uma rodovia que passa pelas cidades u_1, u_2, \ldots, u_n . Você sabe a distância entre duas cidades vizinhas em sua rota, e sabe também que o tanque do seu carro permite que você viaje no máximo k quilômetros sem reabastecer. Seu objetivo é gastar o menor valor possível em combustível durante a viagem.

Como o preço do combustível varia consideravelmente de uma cidade para outra, você consultou online o preço do combustível na cidade u_i , definido por $p(u_i)$. Para simplificar, assuma que os preços são expressos em reais por quilômetro, ou seja, quanto custa para comprar combustível suficiente para rodar por um quilômetro.

Assuma que você sai de s com o tanque cheio. Dados os preços $p(u_i)$ pesquisados, planeje sua viagem de forma que você chegue a t gastando o mínimo possível em combustível.

a) Dado o exemplo ilustrado na tabela abaixo, e assumindo que um tanque cheio roda no máximo 20 quilômetros, encontre o preço mínimo possível de gastos com combustível para chegar de s a t.

Cidade	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	t
$Preço/p(u_i)$	3	5	2	1	5	4	9	9	4	1
Distância	7	10	3	3	16	9	18	17	5	4

b) Descreva um algoritmo de programação dinâmica que resolva este problema. O algoritmo deve ser polinomial em n e k. (Dica: expresse o preço do combustível para chegar a t saindo de u_i , usando uma quantidade de combustível c, como uma função de custo que leva em conta o vértice u_j , onde j > i.)

Considere um grafo não direcionado G=(V,E) com pesos não-negativos distintos para todas as arestas, i.e., $w_e \geq 0$ para toda $e \in E$. Assuma que você já tenha computados a árvore geradora mínima de G e o caminho mínimo para todos os nós a partir de um nó particular $s \in V$.

Suponha agora que todos os pesos das arestas de G sejam acrescidos de 1, com os novos pesos sendo $w'_e = w_e + 1$, gerando G'.

- a) Para o novo grafo G', a árvore geradora mínima é modificada? Dê um exemplo mostrando que isso acontece ou prove que isso não ocorre.
- b) Os caminhos mínimos já calculados são modificados em G'? Dê um exemplo mostrando que isso acontece ou prove os caminhos não são modificados.

Prove que o problema de se determinar se um grafo não direcionado G = (V, E) tem um clique de tamanho $k, k \leq |V|$, é NP-Completo.

(Dica: uma possível redução pode ser feita a partir do problema 3-CNF-SAT descrito abaixo).

O problema da satisfazibilidade de fórmulas booleanas em forma normal 3-conjuntiva (3-CNF-SAT) é um caso especial do problema da satisfazibilidade (SAT) no qual as fórmulas booleanas estão na forma CNF. Mais formalmente, um literal em uma fórmula booleana é a ocorrência de uma variável ou sua negação. Uma fórmula booleana está em forma normal conjuntiva (CNF) se é expressa como uma conjunção (AND) de cláusulas, cada uma das quais é uma disunção (OR) de um ou mais literais. Uma fórmula booleana está em forma normal 3-conjuntiva (3-CNF) se cada cláusula tem exatamente 3 literais distintos, como o exemplo a seguir:

$$(x_1 \lor \neg x_3 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

O 3-CNF-SAT pergunta se uma determinada fórmula nesse formato é satisfazível. Sabe-se que esse problema é NP-Completo.