Feuille 1

Approximation de problèmes aux limites par différences finies

On considère l'équation différentielle

$$-u''(x) + q(x)u(x) = f(x), \quad x \in]0,1[, \tag{1}$$

où $q \in C^2([0,1])$ désigne une fonction strictement positive et $f \in C^2([0,1])$. On complète (1) par les conditions aux limites

$$u(0) = 0, \quad u(1) = 0.$$
 (2)

On rappelle que (1)-(2) admet une solution unique $u \in C^4([0,1])$.

On considère la méthode des différences finies introduite en cours, qui permet d'approcher u aux points x_i définis par

$$x_i = jh, \quad j = 1, \dots, N,$$

avec h = 1/(N+1). Par la suite $A \in M_N(\mathbb{R})$ désigne la matrice tridiagonale

$$A = \begin{pmatrix} 2 + h^2 q(x_1) & -1 & 0 & \cdots & 0 \\ -1 & 2 + h^2 q(x_2) & -1 & 0 & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & 0 & \ddots & 2 + h^2 q(x_{N-1}) & -1 \\ 0 & \cdots & 0 & -1 & 2 + h^2 q(x_N) \end{pmatrix}.$$
(3)

1- On note $\tilde{U}=(u(x_1),\cdots,u(x_N))^T$ et $F=(f(x_1),\cdots,f(x_N))^T$. Montrer que le vecteur

$$E = \frac{1}{h^2} A\tilde{U} - F \tag{4}$$

vérifie

$$||E||_{\infty} \le \frac{h^2}{12} ||u^{(4)}||_{\infty}.$$
 (5)

On remplace maintenant (1)-(2) par le système linéaire

$$\frac{1}{h^2}AU = F, (6)$$

où $U = (u_1, \dots, u_N)^T$ et u_j représente une approximation de $u(x_j)$. L'estimation (5) montre que *l'erreur de troncature E* tend vers 0 quand $h \to 0$; on dit alors que le schéma (6) est *consistant*. Il s'agit maintenant de démontrer la convergence de U vers \tilde{U} .

2- On considère une matrice $M \in M_N(\mathbb{R})$ à diagonale strictement dominante, i.e. dont les coefficients $m_{i,j}$ vérifient

$$\delta \stackrel{\text{def}}{=} \underset{1 \leq i \leq N}{\text{Min}} \left(|m_{ii}| - \sum_{j \neq i} |m_{ij}| \right) > 0.$$

Montrer que M est inversible et que $||M^{-1}||_{\infty} \leq \delta^{-1}$.

Indications : étant donnés $x \in \mathbb{R}^N$ et y = M x, montrer que $\|y\|_{\infty} \geqslant \delta \|x\|_{\infty}$ en utilisant les inégalités triangulaires $|a+b| \leqslant |a| + |b|$ et $||a| - |b|| \leqslant |a-b|$. On rappelle par ailleurs la définition de la norme matricielle subordonnée

$$|||M^{-1}|||_{\infty} = \sup_{y \in \mathbb{R}^N \setminus \{0\}} \frac{||M^{-1}y||_{\infty}}{||y||_{\infty}}.$$

- **3-** En déduire une estimation de $||A^{-1}||_{\infty}$.
- **4-** Montrer que $||U \tilde{U}||_{\infty} = O(h^2)$ lorsque $h \to 0$. On dit alors que le schéma (6) est *convergent* à *l'ordre* 2 pour la norme $||||_{\infty}$.