$$a = gb + r \Rightarrow gcd(a,b) = gcd(b,r)$$

Main Idea: We know #10 and #20 hold for d=gcd(a,b). Using that, We WTS #10 and #20 hold for d=gcd(br).

Proof of #10: WTS db and dr

$$d = \gcd(a_1b) \quad \underset{from \ d=\gcd(a_1b)}{using} *10$$

$$\Rightarrow \left[d \mid a \quad \land \quad d \mid b \right]$$

$$\Rightarrow$$
 a = Sd \land b = td

$$\Rightarrow$$
 r = $a - gb$

$$\Rightarrow r = Sd - q (td)$$

$$\Rightarrow$$
 r = (S-gt) d

(4) Proof of #20: WTS (d'b ~ a'|r) ⇒ (d'|d)

$$a = 9b + r$$

$$\Rightarrow \alpha = g(ud') + (vd')$$

$$d = \gcd(a_1b)$$
, so $(d'|b \wedge d'a) \Rightarrow (d'|d)$

using #20