Trabajo Práctico N°4: Aprendizaje no supervisado

Grupo 10

Problema -Dataset

Problema -Estandarización

	Country	Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
0	Austria	83871	41600	3.5	79.91	0.80	0.03	4.2
1	Belgium	30528	37800	3.5	79.65	1.30	0.06	7.2
2	Bulgaria	110879	13800	4.2	73.84	2.60	-0.80	9.6
3	Croatia	56594	18000	2.3	75.99	2.39	-0.09	17.7
4	Czech Republic	78867	27100	1.9	77.38	1.15	-0.13	8.5

Dataset original

	Country	Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
0	Austria	-0.507835	0.683900	0.114447	0.570778	-1.024347	-0.176789	-1.245527
1	Belgium	-0.835987	0.417061	0.114447	0.487756	-0.388952	-0.115927	-0.592442
2	Bulgaria	-0.341689	-1.268238	0.624255	-1.367473	1.263074	-1.860631	-0.069973
3	Croatia	-0.675636	-0.973310	-0.759511	-0.680942	0.996208	-0.420236	1.693357
4	Czech Republic	-0.538618	-0.334301	-1.050830	-0.237093	-0.579571	-0.501385	-0.309438

Dataset estandarizado

Problema -Estandarización

Problema - Primera componente

segunda

Red de Kohonen

Red de Kohonen -Implementación

- -Radio inicial y número de iteraciones en función del tamaño de red.
- -Inicialización de pesos con valores de entrada
- -Radio disminuye tras cierta cantidad de iteraciones hasta el mínimo.
- $-\eta$ adaptativo en función de las iteraciones (1/it), decreciente.
- -Tamaño grilla 5x5.

Red de Kohonen

Matriz U: red 5x5

Matriz U: red 6x6

Red de Kohonen

Matriz U red 2x2 con hits finales

Matriz U y hits finales

-3.478434956704641 Luxembourg -3.2815861288159915 Switzerland -2.1065108336056704 Norway -1.8400534050753625 Netherlands -1.808917610939201 Ireland -1.583719702463114 Iceland -1.081747661209592 Austria -0.9551907971097199 Denmark -0.8851053096517608 Sweden -0.853223962394838 Italy -0.681094068633844 Belgium -0.5923936529244829 Germany -0.34081935066733804 United Kingdom -0.2105631563634406 Finland -0.1672094937905111 Czech Republic -0.16376695684389816 Spain 0.06754337538258412 Slovenia 0.5264933349515386 Portugal 0.7829659710814719 Slovakia 1.0004719569396427 Greece 1.2701488485858352 Croatia 1.3968983127833716 Hungary 1.4717738276291152 Poland 1.530099909952709 Lithuania 2.3060594085931676 Latvia 2.487735218104109 Estonia 2.609878816420479 Bulgaria 4.580268066769382 Ukraine

Red de Kohonen -Conclusiones

- En general, países con valores similares caen en la misma neurona (ej Irlanda e Islandia).
- Se pudo agrupar a los países con neuronas vecinas, asimilando el ordenamiento de la primera componente.
- Algunos países con valores similares quedan más alejados, (ej. Bélgica e Italia) posiblemente por la manera de inicializar los pesos.

-El tamaño de la red puede obtenerse a través de prueba y error, para minimizar la distancia promedio pero mantener agrupaciones.

Regla de Oja -Implementación

- -Datos estandarizados
- -η definido dentro de 0.0001 y 0.001
- Inicialización de los pesos uniforme dentro de [0,1]

PCA según la librería sklearn

Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
0.124874	-0.500506	0.406518	-0.482873	0.188112	-0.475704	0.271656

Regla de Oja, con 1000 epochs y η =0.0001

Area	GDP	Inflation	Life.expect	Military	Pop.growth	Unemployment
-0.128375	0.499834	-0.409759	0.483279	-0.185001	0.474607	-0.269718

Error medio, según los epochs con η =0.001

Error medio, según los epochs con η =0.0001

Error medio, según los epochs con η =0.0001 (en escala log)

Regla de Oja -Conclusiones

- Utilizando la Regla de Oja, se logró llegar a una aproximación muy similar al cálculo de la primera componente.
- Es necesario estandarizar los datos para obtener una buena aproximación de la PC, utilizando librerías y también en el caso de la red neuronal.

-Conjunto de 4 letras de tamaño 5x5

-Elección de conjunto en base a la ortogonalidad

$$\sum_{A=1}^{N-1} \sum_{B=A+1}^{N} |A \cdot B|$$

-Conjunto Z-M-F-O

-Ortogonalidad: 14

-20% ruido

-Conjunto C-Q-O-D

-Ortogonalidad: 90

-20% ruido

- -Estados espúreos
- -Conjunto Z-M-F-O
- -60% ruido

Red de Hopfield -Conclusiones

- Con estados más o menos ortogonales, la red funciona correctamente.
- Añadir una mayor cantidad de ruido produce atracción a patrones espúreos.
- La ortogonalidad de los patrones puede afectar el resultado obtenido, o generar asociaciones incorrectas.
- Dependendiendo de la distribución del ruido, aún con bajo porcentaje podría asociarse incorrectamente el patrón o llegar a un espúreo.