PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10151226 A

(43) Date of publication of application: 09.06.98

(51) Int. CI

A63B 37/00 A63B 37/04 A63B 37/12

(21) Application number: 08329231

(22) Date of filing: 25.11.96

(71) Applicant:

BRIDGESTONE SPORTS CO

LTDDAINIPPON INK & CHEM INC

(72) Inventor:

YAMAGISHI HISASHI HIGUCHI HIROSHI HAYASHI JUNJI

MATSUMURA NOBUHIKO ISHIHARA KUNITOSHI

(54) THREE-PIECE SOLID GOLF BALL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a golf ball capable of obtaining an excellent spinning performance according to the type of a club for hitting, having a soft hitting feeling, excellent controllability and hitting feeling, obtaining a favorable rolling performance, and obtaining these characteristics without deteriorating an excellent fitting distance and durability.

SOLUTION: In a three-piece solid golf ball formed with three-layer structure of a solid core 1, an intermediate layer 2 and a cover 3, the amount of deformation of the solid core 1 under a load of 100kg is 2.5mm or over, the Shore D hardness of the intermediate layer 2 is higher than the Shore D hardness of the cover 3 by 13° or over, and the moment of inertia of the entire ball composed of these three layers is made to be $83gcm^2$ or over.

COPYRIGHT: (C)1998,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-151226

(43)公開日 平成10年(1998)6月9日

(51) Int.Cl. ⁶		體別記号	FΙ		
A 6 3 B	37/00		A63B	37/00	L
	37/04			37/04	
	37/12			37/12	

審査請求 未請求 請求項の数6 FD (全 9 頁)

特願平8-32923 1	(71)出題人 592014104
	プリヂストンスポーツ株式会社
平成8年(1996)11月25日	東京都品川区南大井6丁目22番7号
	(71) 出願人 000002886
	大日本インキ化学工業株式会社
	東京都板橋区坂下3丁目35番58号
•	(72)発明者 山岸 久
	埼玉県秩父市大野原20番地 プリヂストン
	スポーツ株式会社内
	(72)発明者 樋口 博士
	埼玉県秩父市大野原20番地 プリヂストン
	スポーツ株式会社内
	(74)代理人 弁理士 小島 隆司 (外1名)
	般終頁に続く

(54) 【発明の名称】 スリーピースソリッドゴルフボール

(57)【要約】

【課題】 打撃するクラブの種類に応じて優れたスピン性能を得ることができると共に、打感が軟らかく、コントロール性及び打感に優れる上、良好な転がり性を得ることができ、しかもソリッドゴルフボールの特徴である優れた飛距離や耐久性を低下させることなくこれらの特性を得ることができるゴルフボールを得る。

【解決手段】 ソリッドコアと中間層とカバーとの3層 構造からなるスリーピースソリッドゴルフボールにおいて、上記ソリッドコアの100kg荷重負荷時の変形量が2.5mm以上であり、上記中間層のショアD硬度が上記カバーのショアD硬度よりも13度以上高く、かつこれら3層からなるボール全体の慣性モーメントが83gcm²以上であることを特徴とするスリーピースソリッドゴルフボールを提供する。

【特許請求の範囲】

【請求項1】 ソリッドコアと中間層とカバーとの3層 構造からなるスリーピースソリッドゴルフボールにおい て、上記ソリッドコアの100kg荷重負荷時の変形量 が2.5mm以上であり、上記中間層のショアD硬度が 上記カバーのショアD硬度よりも13度以上高く、かつ これら3層からなるボール全体の慣性モーメントが83 g c m²以上であることを特徴とするスリーピースソリ ッドゴルフボール。

【請求項2】 中間層のショアD硬度が60~70であ 10 る請求項1に記載のスリーピースソリッドゴルフボー ル。

【請求項3】 カバーのショアD硬度が35~55であ る請求項1又は2に記載のスリーピースソリッドゴルフ ボール。

【請求項4】 カバーが、熱可塑性ポリウレタンエラス トマーを主材として形成されたものである請求項1~3 のいずれか1項に記載のスリーピースソリッドゴルフボ ール。

【請求項5】 中間層の比重が、ソリッドコア及びカバ 20 -のいずれの比重よりも小さいものである請求項1~4 のいずれか1項に記載のスリーピースソリッドゴルフボ ール。

【請求項6】 カバーの比重が1.05以上である請求 項1~5のいずれか1項に記載のスリーピースソリッド ゴルフボール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ソリッドコアと中 間層とカバーとの3層構造からなり、優れたスピン性。 能、打感、コントロール性を有する上、良好な飛距離を 得ることができるスリーピースソリッドゴルフボールに 関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来よ り、ゴルフボールとしては、ソリッドコアにカバーとし て合成ゴムを被覆したソリッドゴルフボールや、リキッ ドセンターに糸ゴムを巻回した糸巻きコアにバラタゴム などの天然ゴムや合成ゴムをカバーとして被覆した糸巻 図ることができると共に耐久性にも優れる合成ゴムをカ バーとしたソリッドゴルフボールが多く出回っている中 で、バラタゴムをカバーに用いた糸巻きゴルフボール (以下、糸巻きバラタボールという) を使用するプロゴ ルファーは依然として多い。

【0003】その理由としては、糸巻きバラタボールが 他の構造のゴルフボールより優れた打感、スピンコント ロール性を有することにあるといえる。即ち、プロゴル ファーは、飛距離に優れるゴルフボールを望むものの、 それをボール選びの第一条件とする場合は少なく、飛距 50 向の力は比較的小さく、スピン量を適度に抑えて比較的

離以上に打感、スピンコントロール性を重視しているこ とにあると考えられる。

2

【0004】そこで、このようなプロゴルファーのニー ズに応えつつ、一般のゴルファーも好適に使用し得るゴ ルフボールを得るべく、飛距離、打感、スピンコントロ ール性のいずれにも優れたソリッドゴルフボールについ て様々な提案がなされている。

【0005】かかる提案としては、例えば、特開平5-4110号公報、同6-31980号公報には、打感に 優れると共に、スピン特性が良好でコントロール性を改 善したツーピースタイプのソリッドゴルフボールが提案 されている。

【0006】また、ソリッドコアとこれを被覆する中間 層及びカバーとからなる3層構造のスリーピースソリッ ドゴルフボールも種々提案されており (例えば特開昭5 8-92372号公報、特開平5-193095号公 報、同6-343718号公報、同7-194735号 公報、同7-194736号公報、同8-82121号 公報等)、打感、コントロール性を向上させることを目 的としたスリーピースソリッドゴルフボールの提案も種 々存在している。

【0007】しかしながら、依然として糸巻きバラタボ ールを用いるプレーヤーは多く、ソリッドゴルフボール は、その打感やスピンコントロール性の点でこれらのプ レーヤーを満足させるには至っていない。特に、スピン コントロール性については、ゴルフボールの性能におい て最も重要な性能の一つであり、ソリッドゴルフボール については、飛距離や打感の特性を劣化させることな く、スピンコントロール性を向上させることが望まれ 30 る。

【0008】ここで、ソリッドゴルフボールのスピン特 性は、カバーを軟らかくすることである程度向上させる ことができるが、このようにカバーを軟らかくすると、 ボールの反発性が劣化して飛距離低下を招くこととな り、ソリッドゴルフボールの特徴である優れた飛び件能 を得ることができなくなる。

【0009】また、ドライバーやロングアイアン等の飛 距離を得るためのゴルフクラブは、ロフト角が小さく、 一方ショートアイアン等のピン(ターゲット)を狙うた きゴルフボール等が市販されているが、飛距離の増大を 40 めのゴルフクラブはロフト角が大きく、飛距離よりも狙 った所にボールを止めることができるように設計されて いる。即ち、ゴルフボールをゴルフクラブで打撃した 際、ゴルフボールにはクラブフェースと直交する方向の 力と、クラブフェースのロフト角に応じてクラブフェー スと平行な力とがかかり、上記直交方向の力はボールの 反発性を引き出すことに寄与し、上配平行方向の力はボ ールをスピンさせることに寄与する。この場合、ロフト 角の小さいドライバーやロングアイアンでの打撃では、 上記直交方向の力が大きく作用すると共に、上記平行方 低い弾道で大きな反発力により、飛距離を得るように設計されており、一方ロフト角の大きなショートアイアンなどの打撃では、上記平行方向の力が大きく作用すると共に、上記直交方向の力は比較的小さく、飛距離よりも大きなスピン量をボールに与えるように設計されている。

【0010】従って、単にスピン量を増加させればよいのではなく、ドライバーやロングアイアンで打撃した場合には、スピン量が適度に抑えられ、スピンによるボールのふけ上がり(必要以上に高い弾道になること)によ 10って飛距離が低下したり、風の影響を受けるようなことがなく、かつショートアイアンなどのターゲットを狙うクラブで打撃した場合には、十分なスピン量が得られ、比較的高い弾道でボール落下後のラン(転がり)も少なく、優れたコントロール性が得られることが要求される。また、打撃時に与えられたスピン量が飛翔中も良好に保持されることも飛距離の増大やスピンコントロール性を十分に発揮させる上で重要である。

【0011】更に、パッティングにおいては、ボールを 飛翔させる通常のショットとは異なり、ボールをグリー 20 ン上で転がすこととなるためグリーン上のアンジュレーションによってボールの軌道が変化しやすい。この場 合、パッティングは通常ホールを直接狙うものであるため、その善し悪しがスコアメイクに直接影響し、このため、良好な転がり性を有し、パッティング時に微妙なアンジュレーションに影響されることなく高い直進性を得ることができるゴルフボールが望まれる。

【0012】本発明は、上記事情に鑑みなされたもので、打撃するクラブの種類に応じて優れたスピン性能を得ることができると共に、打感が軟らかく、コントロール性及び打感に優れる上、良好な転がり性を得ることができ、しかもソリッドゴルフボールの特徴である優れた飛距離や耐久性を低下させることなくこれらの特性を得ることができるゴルフボールを提供することを目的とする。

[0013]

【課題を解決するための手段及び発明の実施の形態】本発明者は上記目的を達成するため鋭意検討を行った結果、ソリッドコアと中間層とカバーとの3層構造からなるスリーピースソリッドゴルフボールにおいて、ソリッ 40ドコアを100kg荷重負荷時の変形量が2.5mm以上となるように調製すると共に、上記中間層のショアD硬度を上記カバーのショアD硬度よりも13度以上高くし、かつこれら3層からなるボール全体の慣性モーメントが83gcm²以上とすることにより、飛距離や耐久性を低下させることなく、軟らかい打感で、クラブの種類に応じて良好なスピン世能を発揮し得、飛距離、耐久性、打感及びスピンコントロール性に優れる高性能のゴルフボールが得られ、しかもこのゴルフボールは転がり性にも優れ、グリーン上で微妙なアンジュレーションに50

左右されることのない良好な直進性が得られることを知 見した。

【0014】即ち、このゴルフボールは、軟らかい上記 カバーによりスピンコントロール性を向上させたもので あるが、この場合、このゴルフボールにあっては、上記 硬い中間層によって軟カバーによる反発性の低下を十二 分に補って良好な反発性を得ることができるものであ る。また、本発明のゴルフボールは上記ソリッドコアを 100kg荷重負荷時の変形量が2.5mm以上となる ように軟らかく形成したことにより、この軟コアと上記 軟カバーとを組み合わせた軟構造によってドライバーや ロングアイアンなどのロフト角の小さいクラブで打撃し た際のスピン量を適度に抑えることができ、ふけ上がら ずフラットで風の影響を受けにくい弾道が得られ、上記 良好な反発性と相俟って良好な飛距離が得られるもので ある。更に、このゴルフボールは、慣性モーメントを8 3gcm²以上と比較的大きくしたことにより、飛翔中 のスピン保持力に優れ、ドライバーやロングアイアンで のショットでは落ち際までスピン量が減少しすぎること なく、弾道に最後の伸びを与えて飛距離の増大を図るこ とができると共に、ショートアイアンでのショットでは 落下後のランを少なくしてスピンコントロール性を十分 に発揮することができる上、転がり性にも優れ、パッテ イング時にはグリーン上の微妙なアンジュレーションに 左右されることのない高い直進性を得ることができるも のである。

【0015】従って、本発明は、ソリッドコアと中間層とカバーとの3層構造からなるスリーピースソリッドゴルフボールにおいて、上記ソリッドコアの100kg荷重負荷時の変形量が2.5mm以上であり、上記中間層のショアD硬度が上記カバーのショアD硬度よりも13度以上高く、かつこれら3層からなるボール全体の慣性モーメントが83gcm²以上であることを特徴とするスリーピースソリッドゴルフボールを提供する。

【0016】以下、本発明につき更に詳しく説明する。 本発明のゴルフボールは、図1に示すように、ソリッド コア1とカバー3との間に中間層2を設けたスリービー スソリッドゴルフボールである。

【0017】ここで、各層につき詳述すると、まず、ゴルフボールの中心核を構成する上記ソリッドコア1は、上述したように、100kg荷重負荷時の変形量が2.5mm以上となるように調製するものであり、好ましくは2.8mm以上となるように調製するものである。この場合、コア1の100kg荷重負荷時の変形量が2.5mm未満であると、ドライバーやロングアイアンでのショット時にスピンがかかり過ぎてボールがふけ上がってしまう場合があり、また、これらのクラブでショットした際の打感が硬くなってしまう場合がある。

ルフボールが得られ、しかもこのゴルフボールは転がり 【0018】なお、このソリッドコア1の直径は、特に 性にも優れ、グリーン上で微妙なアンジュレーションに 50 制限されるものではないが、通常33~38mm、特に

34~37mmになるように形成する。 直径が33mm より小さいと反発性が低下し、また38mmより大きい と、中間層2又はカバー3を薄くする必要が生じて耐久 性劣化等の不都合を招く場合がある。

【0019】このソリッドコアは公知の方法によって製 造することができ、基材ゴムに共架橋剤、過酸化物を配 合した公知のゴム組成物を加熱・加圧・成型して形成す ることができる。

【0020】この場合、基材ゴムとしては、従来からソ エンゴム或いはポリプタジエンゴムとポリイソプレンゴ ムとの混合物などを使用することができるが、特に、高 反発性を得るためにシス構造を90%以上有する1,4 ーポリブタジエンゴムを用いることが好ましい。

【0021】共架橋剤としては、従来ソリッドゴルフボ ールには、メタクリル酸、アクリル酸等の不飽和脂肪酸 の亜鉛塩、マグネシウム塩やトリメチルプロパントリメ タクリレート等のエステル化合物が使用されており、本 発明においてもこれらを用いることができるが、特に反 発性の高さからアクリル酸亜鉛が好適に使用し得る。こ 20 れら共架橋剤の配合量は、上記基材ゴム100重量部に 対し15~35重量部とすることが好ましい。

【0022】過酸化物としては、種々選定し得るが、特 にジクミルパーオキサイド或いはジクミルパーオキサイ ドと1, 1-ビス(t-ブチルパーオキシ)3,3,5 トリメチルシクロヘキサンとの混合物が好適である。 その配合量は、基材ゴム100軍量部に対し、0.5~ 1重量部とすることが好ましい。

【0023】また、上記ゴム組成物には、更に必要に応 じ、老化防止剤や比重調整用の充填剤として酸化亜鉛や 30 硫酸バリウムなどを配合することができる。

【0024】次に、上記中間層2は、ショアD硬度が上 記カバー3よりも13度以上高いものである。 具体的に は特に制限されるものではないが、ショアD硬度が60 ~70、特に61~68で、上記カバー3のショアD硬 度よりも13~40度、特に13~30度高いものであ ることが好ましい。この中間層2は、比較的硬い層とす ることにより後述する軟らかいカバー3による反発性の 低下を補うものであり、ショアD硬度が低過ぎると、ボ ールの反発性が低下して飛距離の低下を招くこととな る。

【0025】なお、この中間層2の厚さは特に制限され るものではないが、通常1. 4~4 mm、特に1. 3~ 2. 6 mmに形成することが好ましい。

【0026】この中間層2は、上記のように軟らかく形 成するカバー3の反発性低下を補うためのもので比較的 硬く、かつ反発性に優れた材質で形成され、特に制限さ れるものではないが、具体的には、ハイミラン170 6,1605 (三井・デュポンポリケミカル社製)、サ げられ、これらの中でも特にハイミラン1706、ハイ ミラン1605を単独又は1:1のブレンド物として好 ましく用いることができる。なお、この中間層には、上 記アイオノマー樹脂に加えて重量調整剤として酸化亜 鉛、硫酸バリウム等の無機質充填剤を添加して比重の調 整を行うことができ、また二酸化チタン(顔料)等の添 加剤を添加してもよい。

6

【0027】 更に、上記カバー3は、ショアD硬度が上 記中間層2よりも13度以上低いものである。 具体的に リッドゴルフボールのコアに用いられているポリブタジ 10 は、特に制限されるものではないが、ショアD硬度が3 5~55、特に37~53で、上記中間層2よりも13 ~40度、特に13~30度低いものであることが好ま しい。このカバー3は軟らかい層とすることによりスピ ン特性を向上させるものであり、ショアD硬度が高過ぎ るとスピン特性が低下して良好なスピンコントロール性 が得られなくなり、本発明の目的を達成することができ なくなる。また、このカバー3と上記中間層2との硬度 差が13度未満であると、スピン特性と反発性とを両立 することができなくなる。

> 【0028】なお、このカバー3の厚さは特に制限され るものではないが、通常1~3mm、特に1.3~2. 5mmに形成することができる。

【0029】このカバー3は公知の材料を使用して形成 することができ、主材として例えば、アイオノマー樹 脂、熱可塑性ポリウレタンエラストマー、ポリエステル エラストマー、ポリアミドエラストマーなどを単独で、 或いはこれらの樹脂にウレタン系樹脂、エチレン一酢酸 ビニル共重合体等を混合した樹脂混合物を用いることが できるが、本発明においては、軟らかく、しかも耐擦過 傷性に優れることから熱可塑性ポリウレタンエラストマ ーを用いることが好ましく、特にこの熱可塑性ポリウレ タンエラストマーを単独で使用することが好ましい。こ の熱可塑性ポリウレタンエラストマーとしては、パンデ ックス(大日本インキ化学工業(株)製)等を挙げるこ とができる。

【0030】ここで、本発明のゴルフボールを構成する 上記ソリッドコア1、上記中間層2、上記カバー3の比 重は、特に制限されるものではなく適宜設定することが できるが、特に本発明においては、上記中間層2の比重 40 が上記ソリッドコア1及び上記カバー3のいずれの比重 よりも小さいものであることが好ましく、具体的には、 特に制限されるものではないが、ソリッドコア1の比重 は1.1~1.3、特に1.11~1.27、中間層2 の比重は0.93~1、特に0.95~0.99、カバ -3の比重は1.05~1.3、特に1.1~1.25 であることが好ましい。

【0031】本発明のゴルフボールは、上記ソリッドコ ア1と中間層2とカバー3とからなる3層構造のソリッ ドゴルフボールであり、かつこれが3層からなるボール ーリン(デュポン社製)等のアイオノマー樹脂などが挙 50 全体の慣性モーメントが83gcm²以上となるように

閲製したものである。

【0032】ここで、憤性モーメントについて詳述する と、慣性モーメントは、カバー硬度との相関で適正範囲 が変化する。つまり、カバーが硬いと大きくする必要が あり、軟らかいと硬いカバー程大きくする必要がない。 それは、カバーが軟らかいとインパクト時の摩擦力が大 きいためスピンが掛かりやすく、逆にカバーが硬いと鰹 擦力が小さいためスピンが掛かりにくくなるためで、硬 いカバーを用い、低いスピン量で打ち出されたボール は、慣性モーメントが小さいとスピンが早く減衰してし 10 まい、落ちる際に失速し、逆に、軟らかいカバーを用 い、高いスピン量で打ち出されたボールは、慣性モーメ ントが大きすぎると、スピン減衰が小さいために、飛翔 中必要以上のスピンによって、ふけ上がり気味になり、 いずれも飛距離が低下する傾向になる。

【0033】従って、上述のように軟らかいカバーと軟 らかいコアとを組み合わせた軟構造により、ドライバー やロングアイアンでのショット時におけるスピン量を適 度に抑えるように構成した本発明のゴルフボールにあっ ては、飛翔中のスピン保持力を高めて、落ち際まで良好 20 なスピン量を維持することにより、最後まで伸びのある*

 $M = \frac{AX(B^2 - C^2)}{AX(B^2 - C^2)}$

M: 慣性モーメント

A:定数1.12

B:ボールの固有振動数

C:取付治具のみでの固有振動数

D:校正おもりでの固有振動数

E:無荷重での固有振動数

【0037】以上のように、本発明のゴルフボールは、 上記ソリッドコア1、中間層2、カバー3の各層の硬度 を適正化すると共に、これら3層からなるボール全体の **慣性モーメントを適正化することにより、ドライバーや** ロングアイアンで打撃した際には、良好な反発性、適度 に抑えられたスピン量によるふけ上がりの無い弾道、及 び良好なスピン保持力による伸びのある弾道によって、 飛距離の増大が図れ、ショートアイアンやピッチングウ ェッジで打撃した場合には、スピン特性によってよく止 まるコントロール性に優れた打球を得ることができ、ピ 40 法を採用し得る。 ンをデッドに狙うことができる上、グリーン上でパッテ イングを行う場合には、優れた転がり性によって、アン ジュレーションに左右されにくい良好な直進性が得ら れ、しかもいずれのショット及びパッティングにおいて も軟らかい良好な打感が得られ、ラウンド中のあらゆる 場面において、優れた性能を発揮し得るものである。

【0038】本発明のゴルフボールには、通常のゴルフ ボールと同様に多数のディンプルを表面に形成すること ができる。この場合、ディンブルの配列態様は、特に制 限されるものではなく、正8面体配列、正12面体配

*弾道を得、これにより飛距離の増大を図るため、高い慣 性モーメントとする必要があり、ボールの慣性モーメン トを83gcm²以上、好ましくは83.5~85.5 g c m²、より好ましくは84~85、3 g c m²とする ものである。よって、慣性モーメントが $83gcm^2$ 未 満である場合は、スピン保持力が十分でなく、伸びのあ る弾道が得られずに飛距離の低下を招くこととなる。 【0034】また、このように傾性モーメントを大きく することにより、パッティング時におけるグリーン上で の転がり性が向上し、グリーン上の微妙なアンジュレー

8

ションに左右されることなく、高い直進性が得られるも のである。

【0035】なお、慣性モーメントの測定方法は、公知 の方法にて行うことができるが、具体的には慣性モーメ ント測定器(INERTIA DYNAMICS IN C社製)にて固有振動数Xを測定し、その測定値Xを下 記式(1)に導入することにより算出することができ **ర**.

[0036]

【数1】

... (1)

列、正20面体配列等の公知の配列を採用することがで き、更にディンブルの配列によりボール表面に描かれる 模様もスクウェアー形、ヘキサゴン形、ペンタゴン形、 トライアングル形等の種々の模様とすることができる。 なお、ディンプル個数は360~450個、特に372 30 ~432個とすることが好ましく、ディンプルは直径、 深さ等が相違する2種またはそれ以上の多種類のものと することができるが、直径は通常 2. 2~4. 3 mm、 深さ0. 1~0. 24 mmの範囲であることが好まし

【0039】また、本発明のゴルフボールでは、ボール 重量、直径等のボール性状については、ゴルフ規則に従 い適宜設定することができ、また製造方法も制限され ず、ソリッドコア1、中間層2及びカバー3の各層をコ ンプレッション成形、射出成形などで形成する公知の方

[0040]

【発明の効果】本発明のスリーピースソリッドゴルフボ ールは、ソリッドコア、中間層及びカバーからなる各層 の硬さの関係を適正化すると共に、これら3層からなる ボール全体の慣性モーメントを適正化したことにより、 ドライバーやロングアイアンなどでフルショットした際 の飛距離を低下させることなく、ショートアイアンなど を用いたアプローチショットでのスピン特性を向上させ て優れたコントロール性を得ることができ、しかもグリ 50 ーン上での転がり性に優れ良好な直進性が得られ、かつ

9

打撃による擦過傷ができにくい、優れた耐久性をも得る ことが可能である。

[0041]

【実施例】以下、実施例と比較例を示し、本発明を具体 的に説明するが、本発明は下記実施例に制限されるもの ではない。

【0042】 [実施例、比較例] 表1に示した配合組成 (単位は全て重量部) のゴム組成物を混練し加硫して、 表3に示した性状のソリッドコアを得、このソリッドコ アに表3に示した性状の中間層及びカバーを表2に示し 10 定値Xを下記式 (1) に導入することにより算出した。 たいずれかの組成物を用いて射出成形により被覆形成 し、スリーピースソリッドゴルフボール(実施例1~ 5、比較例1、2)を得た。なお、比較例3の糸巻きゴ*

$$M = \frac{AX(B^2 - C^2)}{(D^2 - E^2)}$$

M: 慣件モーメント

A:定数1.12

B:ボールの固有振動数

C:取付直治具のみでの固有振動数

D:校正おもりでの固有振動数

E:無荷重での固有振動数

【0046】飛び性能

ツルー・テンパー (True Temper) 社製のス ウィングロボットを用い、ドライバー(#W1)を用い てヘッドスピード50m/sec(HS50)でショッ トした時のスピン、キャリー、トータル飛距離を測定し た。

【0047】 スピン性能

上記と同様のスウィングロボットにて、サンドウェッジ 30 3名のプロゴルファーにより、パター (#PT) を用い (#SW) を用いてヘッドスピード25m/sec (H S25) でショットした時のスピン量、ランの距離を測 定した。

【0048】 フィーリング

3名のプロゴルファーにより、ドライバーを用いてヘッ ドスピード約45m/sec (HS45) でショットし た場合と、パターを用いてヘッドスピード約5m/se

10 *ルフボールは、市販品(ブリヂストンスポーツ社製、T HE REXTAR) を用いた。

【0043】得られた各ゴルフボールについて、下記方 法により、慣性モーメント、飛び性能、スピン性能、打 感、耐久性、グリーン上での転がり性を評価した。 結果 を表3に示す。

【0044】慣性モーメント

慣性モーメント測定器(INERTIA DYNAMI CS INC社製)にて固有振動数Xを測定し、その測

[0045]

【数2】

... (1)

c(HS5)でショットした場合との打感を下記基準に より評価した。

〇: 非常に軟らかい

20 Δ:普通

X:硬い

【0049】擦過傷

上記スウィングロボットにて、ピッチングウェッジ(# PW) を用いてヘッドスピード33m/sec (HS3 3)でショット時の打点部の傷つき具合を下記基準で目 視により評価した。

〇: 傷がない又は傷はあるが全く気にならない

×: 傷が目立つ

【0050】グリーン上での転がり性

てグリーン上で実打した際のボールの転がり具合を下記 基準により評価した。

〇: 直進性があり転がりに伸びがある

×:直線性に欠け伸びがない

[0051]

【表1】

		1	2	8	4	5	6	7
コア配合	シスー1.4 ーポリ プタジエンゴム	100	100	100	100	100	100	100
	アクリル酸亜鉛	29	27	29.5	25	23	84	85
	散 化 亜 鉛	5	5	5	5	5	5	5
	健康パリウム	11.3	12.2	11.1	19.1	16.6	19.5	25.3
	老化防止剂	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	ジクミルパーオ キサイド	0.9	0.9	0.9	0.9	0.9	0.0	0.9
加硫条件	担度(℃)	160	160	160	160	160	160	160
条件	時 間 (min)	20	20	20	20	20	20	20

[0052]

* * 【表2】

		A	В	С	D	E	F	G
	パンデックスT-7890				100			
	パンデックス EX7895			100				
	ペンデックスT-7298					100		
樹	ハイミラン1557						30	50
NP	ハイミラン1706	50						
種	ハイミラン1705		50					
類	ハイミラン1601							50
	ハイミラン1605	50	50					
	サーリン8120						50	
	サーリン9320						20	
養頭	二酸化チタン	5.13	5.18	5.18	5.18	5.13	5.13	5.13
1000 に 対する	ステアリン酸マグネシ ウム	1.22	1.22	1.22	1.22	1.22	1.22	1.22
©	群音	0.83	0.83	0.83	0.33	0.83	0.33	0.83

- * 1 いずれも大日本インキ化学工業(株)製の熱可塑 性ポリウレタンエラストマー
- *2 三井・デュポンポリケミカル社製

*3 米国デュポン社製 【0053】

【表3】

r			安施門 -					比較例		
			1	2	3	4	5	1	2	3
	27 No.		1	2	3	4	5	6	7	
	21	(g)	26.83	26.83	26.83	29.18	27.20	80.70	27.84	±
7	100	(mm)	35.5	85.5	85.5	36.5	86.5	36.5	85.0	
	10 0,0	(mm) *1	3.30	8.80	8.20	4.20	4.60	2.40	2.20	
	坦	<u> </u>	1.145	1.145	1.145	1.148	1.161	1.208	1.240	
	材料	}	A	A	A	В	A	A	A	
	材料	RELEC ⁴²	66	6 5	6 6	63	6 5	6 5	86	圧版の未参与で
中区	#	t (g)	33.66	83.66	33.66	36.26	38.28	87.78	35.62	
	100	(mm) **	38.75	38.76	38.75	89.7	89.7	89.7	88.75	ロバラタボール
	比重	1	0.97	0.97	0.97	0.97	0.97	0.97	0.97	
	厚e	(mm)	1.63	1.83	1.63	1.60	2.10	1.60	1.88	
カバ	材料	·	С	D	E	С	C	F	G	
1	*/ *	视度	46	40	50	48	48	48	60	
#	₩.	硬度差		25	15	17	19	17	5	
煌	比加	比較		1.20	1.20	1.20	1.20	0.97	0.97	
1 '	厚き (mm)		1.98	1.98	1.98	1.50	1.50	1.50	1.98	
40	181	t (g)	45.3	45.3	45.3	45.3	45.3	45.3	45.8	45.3
ù	州	(mm)	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7
領性	ŧ€-	メント (gcm²)	84.8	84.8	84.8	84.3	84 .1	81.8	81.0	75.8
~"	ドス	スピン (rpm)	2830	2800	2900	2750	2700	2920	3000	3240
50m	F /6	キャリー (m)	235.5	235.0	236.5	237.8	237.5	234.5	235.0	232.5
# V		トータル (m)	251.2	252.0	252.5	253.1	254.0	251.0	251.0	244.3
22	F	スピン (npm)	8300	8530	7750	7950	7880	<i>7</i> 740	6970	8020
25m # 5	w	ラン (血)	1.0	0.4	1.5	1.2	1.4	22	4.0	1.8
21	HS45 # W1		0	0	0	0	0	0	×	0
1 y	HS	#PT	0	0	0	0	0	0	×	٥
搬通册#PW HS33		0	0	0	·O	0	×	0	×	
グリーン上での転がり性 #PT		0	0	0	0	0	×	×	×	

- *1 100kg荷重負荷時の変形量
- *2 ショアD硬度
- *3 コアに中間層を被覆形成した球体の直径
- *4 ブリヂストンスポーツ社製 THE REXTE

ルは、飛距離、スピンコントロール性、フィーリング、 耐擦過傷性及び転がり性のいずれにも優れるものである ことが確認された。これに対し、比較例1のゴルフボー ルは、コア硬度が高く、かつ慣性モーメントが小さいた めにスピン性能が不十分で#SWによる打撃時のランが 多く、またパッティング時のグリーン上での転がり性

(直進性) にも劣り、しかも耐擦過傷性も不十分で耐久 性にも劣るものである。また、比較例2のゴルフボール は、カバー硬度が高すぎ、中間層とカバーとの硬度差が 小さい上、慣性モーメントも不十分であるためにスピン 50 1 ソリッドコア

特性に劣り、多くのスピン量を必要としない#W1打撃 時に多くのスピン量が得られているわりに、多くのスピ ン量を必要とする#SW打撃時のスピン量が少なく#S W打撃時のランが多くなっている。また、パッティング 時のグリーン上での転がり性(直進性)にも劣るもので 【0054】表3に示したように、本発明のゴルフボー 40 ある。更に、比較例3の糸巻きゴルフボールは、#W1 でのスピン量が多すぎ、しかも慣性モーメントも小さい ので、弾道がふけ上がり気味になる上、最後の伸びにも 欠けるため飛距離が劣り、かつパッティング時のグリー ン上での転がり性にも劣り、更に擦過傷がつきやすく耐 久性にも劣るものである。

【図面の簡単な説明】

【図1】本発明のスリーピースソリッドゴルフボールの 一実施例を示す概略断面図である。

【符号の説明】

15

2 中間層

3 カバー

[図1]

フロントページの続き

(72) 発明者 林 淳二

埼玉県秩父市大野原20番地 ブリヂストン スポーツ株式会社内 (72)発明者 松村 信彦

大阪府泉大津市条南町4-17-305

16

(72)発明者 石原 邦俊

大阪府泉大津市尾井千原町3-6-503