MASTERY QUIZ DAY 8

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

Solution:

$$-4x_1 - x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 0$$
$$-x_1 + 4x_2 + x_3 = 4$$

E3. Solve the system of equations

$$-3x + y = 2$$
$$-8x + 2y - z = 6$$
$$2y + 3z = -2$$

Solution:

RREF
$$\left(\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The solutions are

$$\left\{ \begin{bmatrix} -1 - \frac{c}{2} \\ -1 - \frac{3c}{2} \\ c \end{bmatrix} \mid c \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} c - 1 \\ 3c - 1 \\ -2c \end{bmatrix} \mid c \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$
$$-x + 2z + 5w = 0$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \\ -1 & 0 & 2 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} a \\ 2a \\ -2a \\ a \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix} \right\}$.

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

Determine if V is a vector space or not.

Solution:

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)
$$(c+d) \odot (x_1, y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$

 $=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2)$

 $=(cx_1-(c-1),cy_1-(c-1))\oplus(dx_1-(d-1),dy_1-(d-1))$

E1: | E3: | E4: | V1: | E2: |