1. (20 points) Let A and B be any sets. Show that if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B. (Remark: $\mathcal{P}(A)$ is the power set of A, i.e., the set of all subsets of A)

Since we know $A \subseteq A$, we know $A \in \mathcal{P}(A)$ Since $\mathcal{P}(A) = \mathcal{P}(B)$. We know that $A \in \mathcal{P}(B)$. Therefore. $A \subseteq B$. (1)

Reason in exactly the same way we can deduce that $B \equiv A$ (3)

Now combining (1) and (2) yields the result

2. (20 points) Construct a bijection from $A=(0,1)\cup[2,3)\cup(4,5]$ to $B=(6,7)\cup[8,+\infty)$.

$$A \rightarrow B: X \mapsto X+b$$

Reasons: (1) for $X \in (0,1)$ in A $X+h \in (b,7)$ in B

(2) for
$$x \in [2,3) \cup (4,5]$$

 $x+b \in [8,+\infty)$ in B

So X HX X+b is a bijection from A to B

3. (20 points) Prove or disprove $|\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}| = |\mathbb{R}|$. Considering the functions g(x,y) = f(x,y) - f(-a,-b)and $h(\theta) = (\cos\theta, \sin\theta)$. the latter maps any angle to a point on unit circle Consider goh. This is a continuous function from [0,22] to R. By definition of g, it follows that goh(0)=-goh(2) By the Intermediate Value Theorem, there is a point $\theta \in [0, 17]$ where $g \circ h(\theta) = 0$ At that point, by definition of g and h,

At that point, by definition of g and h, we have $f(h(\theta)) = f(h(\theta))$. Since h is nonzero on $[0,2\pi]$, this proves that $\{(x,y) \in \mathbb{R}^2: x^2 \in y^2 = 1\} \rightarrow \mathbb{R}$ is not injective. So it is not bijective as well So $|\{(x,y) \in \mathbb{R}^2: x^2 + y^2 = 1\}| \neq |\mathbb{R}|$

4. (20 points) Prove or disprove $|\{(a_1, a_2, a_3, ...) : a_i \in \{1, 2, 3\} \text{ for all } i = 1, 2, 3, ...\}| = |\mathbb{Z}^+|$.

Suppose $A = \{(a_1, a_2, a_2, ...) : a_i \in \{1, 2, 3\} \text{ for all } i = 1, 2, 3, ...\}$ if $i = 1 \in \mathbb{Z}^+$ then $A = \{1\}$ or $\{1\}$ or $\{3\}$ or $\{3\}$ or $\{1, 2\}$ or $\{3\}$ or $\{1, 2\}$ or $\{3\}$ or $\{1, 3\}$ or $\{2, 3\}$ if $i \geq 3 \in \mathbb{Z}^+$ since $a_i \in \{1, 2, 3\}$ for all i = 1, 2, 3, ...we know its elements can be arranged as a sequence which is composed by $\{1, 2, 3\}$ So A is countably infinite

thus $|A| = |\mathbb{Z}^+|$ Namely $|\{(a_1, a_2, a_3, ...) : a_i \in \{1, 2, 3\} \}$ for all $i = 1, 2, 3, ..., 2 = |\mathbb{Z}^+|$

5. (20 points) Find a countably infinite number of subsets of \mathbb{Z}^+ , say $A_1, A_2, \ldots \subseteq \mathbb{Z}^+$ such that the following requirements are simultaneously satisfied:

•
$$|A_i| = |\mathbb{Z}^+|$$
 for all $i = 1, 2, ...;$

•
$$A_i \cap A_j = \emptyset$$
 for all $i \neq j$;

$$\bullet \cup_{i=1}^{\infty} A_i = \mathbb{Z}^+.$$

$$A_1 = \{X_{11}, X_{12}, X_{13}, \dots, X_{1n}, \dots\}$$

$$A_1 = \{X_{11}, X_{12}, X_{13}, \dots, X_{1n}, \dots\}$$

$$A_1 = \{ \chi_{21}, \chi_{21}, \chi_{23}, \dots, \chi_{2n}, \dots \}$$

$$A_{m} = \left\{ X_{m_{1}}, X_{m_{2}}, X_{m_{3}}, \dots, X_{mn_{n}}, \dots \right\}$$

$$S = \{2^k \cdot 3^n, n, k \in \mathbb{N}\}$$

let
$$f: S \to \bigcup_{i=1}^{\infty} A_i$$
 defined by $f(2^k \cdot 3^n) = X_{kn}$