《线性回归》 —线性回归(2)

杨 瑛

清华大学 数学科学系 Email: yangying@mail.tsinghua.edu.cn

Tel: 62796887

2019.03.14

主要内容:线性模型(2)

- 多重线性模型的LSE和MLE
 - 多重线性模型的LSE
 - 协方差矩阵
 - 不对单个变量回归的原因
 - 线性模型参数的LSE
 - 线性模型参数的MLE

数据结构和模型

- ♠ 设($\mathbf{Y}_i, \mathbf{X}_i$), $1 \le i \le n$, 是n的独立同分布的观测数据, \mathbf{Y}_i 是响应变量, $\mathbf{X}_i = (X_{i1}, \dots, X_{ip})^T$ 是 $p \times 1$ 的协变量。
- ♠ 对于这些数据,建立多重线性回归模型:

$$\mathbf{Y}_{i} = \beta_{0} + \mathbf{X}_{i}^{T} \beta + \epsilon_{i}$$

$$= \beta_{0} + \sum_{k=1}^{p} X_{ik} \beta_{k} + \epsilon_{i}, 1 \leq i \leq n,$$

$$\tag{1}$$

其中 β_0 和 β 是未知参数(向量), ϵ_i 是不可观测的随机误差。通常假定:

$$\checkmark$$
 (C1) $E[\epsilon_i] = 0;$

$$\checkmark$$
 (C2) Var(ϵ_i) = σ^2 , σ^2 > 0是未知的;

$$\checkmark$$
 (C3) Cov $(\epsilon_i, \epsilon_i) = 0, 1 \le i \ne j \le n$.

数据结构和模型(续)

♠ 为了紧凑期间,假定 $X_{i1} \equiv 1$,则模型(1)可以改写为:

$$\mathbf{Y}_i = \mathbf{X}_i^T \beta + \epsilon_i, 1 \le i \le n, \tag{2}$$

其中 β 是 $p \times 1$ 的未知参数向量, ϵ_i 是不可观测的随机误差。

▲ 模型(2)还可以写为更为紧凑的矩阵形式:

$$\mathbf{Y} = \mathbf{X}\theta + \epsilon,\tag{3}$$

其中**Y**是 $n \times 1$ 的列向量,**X**是 $n \times p$ 的矩阵, θ 是 $p \times 1$ 的列向量, ϵ 是 $n \times 1$ 的随机误差向量。

数据结构和模型(续)

riangle 当假定随机误差 $(\epsilon_1, \cdots, \epsilon_n) \sim N(\mathbf{0}, \Sigma)$ 时,模型(3)通常写为:

$$\mathbf{Y} = \mathbf{X}\theta + \epsilon, \epsilon \sim N(\mathbf{0}, \Sigma), \tag{4}$$

其中**Y**是 $n \times 1$ 的列向量,**X**是 $n \times p$ 的矩阵, θ 是 $p \times 1$ 的列向量, ϵ 是 $n \times 1$ 的随机误差向量,**0**是所有元素为0的 $n \times 1$ 向量, Σ 是 $n \times n$ 的正定矩阵。

协方差矩阵的作用:

- ♠ Σ 用来刻画随机误差的相关性。特别地,如果随机误差是iid的 $N(0,\sigma^2)$ 随机变量时, $\Sigma = \sigma^2 I_n, I_n E_n \times n$ 的单位阵。
- ♠ Σ还有其它选择,例如,
 - $\checkmark \quad \Sigma = \operatorname{diag}(\sigma_1^2, \cdots, \sigma_n^2);$
 - ✓ Σ 的主对角线元素是 σ^2 , 次对角线的元素是 ρ (0 < ρ < 1), 其余元素皆为0;
 - ✓ Σ 的主对角线的元素都是 σ^2 , 第j次对角线的元素是 ρ^j (0 < ρ < 1), j = 1, · · · , n − 1.
- ♠ 尝试理解不同协方差矩阵的含义。

多重回归与简单回归 不对单个变量回归的原因:

- ▲ 当有一个响应变量,多个协变量时,是做多个简单回归还是做多重回归?
- ♠ 下面的一个人造的例子要说明为什么多重回归不能简单地被 几个简单的回归过程所代替。

Example

假设有两个协变量 x_1, x_2 , 它们的观察结果如下:

x_1	0	1	2	3	0	1	2	3
<i>x</i> ₂					1	2	3	4
у	1	2	3	4	-1	0	1	2

v与x1和x2的关系时怎样的?

Example

图1的左侧: 我们将y的值与协变量 x_1 和 x_2 的对应值作图。随后,我们(在三维空间中)找到了一个平面,它与这8个点完全吻合:

$$y = 2x_1 - x_2, \quad (\hat{\sigma}^2 = 0)$$

Figure: 多重回归与简单回归

Example

这里的系数(2和-1)告诉我们,如果固定其中的一个变量,让另外一个协变量改变一个单位,系数刚好是y的改变量。

我们得出这样的结论: y随着 x_2 的增加而减小,(x_2 越大 \Rightarrow y越小)。

图1的右边: 我们简单地y回归 x_2 ,不包含协变量 x_1 。最小二乘法得到回归直线为:

$$y = \frac{1}{9}x_2 + \frac{4}{3}, \qquad (\hat{\sigma}^2 = 1.72).$$

我们得出这样的结论: x_2 增加时,y也增加(x_2 增加 \Rightarrow y增加)。 在模型中包含或者不包含 x_1 ,回归的结果是有差异的。y依赖 于 x_2 的行为之所以存在这种差异,是因为协变量 x_1 和 x_2 具有很强 的相关性。即,当 x_2 增加时, x_1 也增加。

最小二乘估计

$$\mathbf{Y} = \mathbf{X}\theta + \epsilon, \epsilon \sim N(\mathbf{0}, \Sigma)$$

未知参数向量 θ 可以通过极小化误差平方和来实现,即:

$$\min_{\theta} \|\mathbf{Y} - \mathbf{X}\theta\|^2 = \min_{\theta} (\mathbf{Y} - \mathbf{X}\theta)^T (\mathbf{Y} - \mathbf{X}\theta)$$

 \Longrightarrow

$$(\mathbf{X}^T \mathbf{X})\theta = \mathbf{X}^T \mathbf{Y}. \tag{5}$$

如果 $\mathbf{X}^T\mathbf{X}$ 可逆,则 \Longrightarrow $\hat{\theta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$. 这就是所谓的最小二乘方法【黑板】.

如果 $\mathbf{X}^T\mathbf{X}$ 不可逆,则可以利用矩阵的广义逆得到

$$\Longrightarrow \widehat{\theta} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}.$$

σ^2 的估计:

当 $\Sigma = \sigma^2 I_n$ 时,利用残差平方和可以估计 σ^2 :

$$\widehat{\sigma}^2 = \frac{1}{n-p} \|\mathbf{Y} - \mathbf{X}\widehat{\theta}\|^2$$

是 σ^2 的无偏估计【黑板】.

线性模型参数的LSE

最小二乘估计的几何解释:

【黑板】

线性模型参数的MLE:

♠ 对于模型

$$\mathbf{Y} = \mathbf{X}\theta + \epsilon, \epsilon \sim N(\mathbf{0}, \sigma^2 I_n)$$

未知参数向量 θ 和 σ^2 可以通过MLE来实现。似然函数为:

$$\ell(\theta, \sigma^2 | \mathbf{X}, \mathbf{Y}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\|\mathbf{Y} - \mathbf{X}\theta\|^2 / (2\sigma^2)\right\}$$
$$\Longrightarrow \widehat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}.$$

这是 θ 的MLE【黑板】

σ^2 的MLE:

 σ^2 的MLE为:

$$\widehat{\sigma}^2 = \frac{1}{n} \|\mathbf{Y} - \mathbf{X}\widehat{\theta}\|^2$$

是 σ^2 的MLE【黑板】.

线性模型参数的MLE:

♠ 对于模型

$$\mathbf{Y} = \mathbf{X}\theta + \epsilon, \epsilon \sim N(\mathbf{0}, \Sigma^2)$$

其中, θ 是未知参数向量, Σ 是未知的协方差矩阵。

进一步阅读内容:

关于线性模型参数的LSE和MLE的更多细节,

请仔细阅读:

G. A. F. Seber and A. J. Lee. (2003). Linear Regression Analysis. 2 nd Ed. p.35-57中的内容。

【第六讲结束】