```
In [77]: #import libraries
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import scipy.stats as stat
         import pylab as pl
         import statistics as st
         import math
In [78]: #assign data
         dataset=[1,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28]
                                                                                         #assı
         dataset
Out[78]: [1,
           5,
           6,
           7,
           8,
           9,
           10,
           12,
           13,
           14,
           15,
           16,
           18,
           19,
           20,
           21,
           22,
           23,
           24,
           25,
           26,
           27,
           28]
In [79]:
         sample_data=[1,5,6,7,8,9,10,12,13,14]
                                    #we take subdata from dataset that is called sample dat
         sample_data
```

Out[79]: [1, 5, 6, 7, 8, 9, 10, 12, 13, 14]

In [80]: plt.hist(dataset) #continuous histogram


```
In [81]: dataset1=[1,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,60,80,16
          dataset1
Out[81]: [1,
           6,
           7,
           8,
           9,
           10,
           12,
           13,
           14,
           15,
           16,
           18,
           19,
           20,
           21,
           22,
           23,
           24,
           25,
           26,
           27,
           28,
           60,
           80,
           100]
```

In [82]: plt.hist(dataset1) #discrete histogram Out[82]: (array([7., 8., 8., 0., 0., 1., 0., 1., 0., 1.]),


```
In [83]: dataset=[1,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28]
In [84]: #mean of dataset
         print(np.mean(dataset))
         print(st.mean(dataset))
         16.043478260869566
         16.043478260869566
In [85]: #median of dataset
         print(np.median(dataset))
         print(st.median(dataset))
         16.0
         16
In [86]: #mode of dataset
         st.mode(dataset)
Out[86]: 1
In [87]: dataset=[1,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,100]
In [88]:
          sns.boxplot(dataset)
                                      # boxplot hepls finding the outliers in data
         C:\Users\ASUS\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarn
         ing: Pass the following variable as a keyword arg: x. From version 0.12, the on
```

C:\Users\ASUS\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarn ing: Pass the following variable as a keyword arg: x. From version 0.12, the on ly valid positional argument will be `data`, and passing other arguments withou t an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[88]: <AxesSubplot:>

Five Number summary for finding the outliers

measure of dispersion

```
In [93]: st.variance(dataset) # return sample varience of the data
Out[93]: 352.606884057971
In [94]: st.pvariance(dataset) # return population varience of data population varience
Out[94]: 337.9149305555554
In [95]: np.var(dataset,axis=0) # population varience
Out[95]: 337.9149305555556
In [96]: math.sqrt(st.pvariance(dataset)) # return the standard deviation
Out[96]: 18.382462581372376
```

```
In [97]: # population varience
def variance(data):
    n=len(data)
    #mean of data
    mean=sum(data)/n
    #varience of data
    deviation=[(x-mean)**2 for x in data]
    var=sum(deviation)/n
    return var
variance(dataset)
```

Out[97]: 337.91493055555554

Histogram & PDF

```
In [98]: sns.histplot(dataset,kde=True) #compute a kernel density estimate to smooth the d
Out[98]: <AxesSubplot:ylabel='Count'>
```


Working with 'Titanic' dataset

In [99]: df=sns.load_dataset('titanic') #load titanic data
df

Out[99]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
886	0	2	male	27.0	0	0	13.0000	S	Second	man	True
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	True

891 rows × 15 columns

In [100]: df.isnull().sum().sum() #null values in df

Out[100]: 869

In [101]: df1=df.dropna() #drop na values from the data (but it is not a proper way i just
df1

Out[101]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
6	0	1	male	54.0	0	0	51.8625	S	First	man	True
10	1	3	female	4.0	1	1	16.7000	S	Third	child	False
11	1	1	female	58.0	0	0	26.5500	S	First	woman	False
871	1	1	female	47.0	1	1	52.5542	S	First	woman	False
872	0	1	male	33.0	0	0	5.0000	S	First	man	True
879	1	1	female	56.0	0	1	83.1583	С	First	woman	False
887	1	1	female	19.0	0	0	30.0000	S	First	woman	False
889	1	1	male	26.0	0	0	30.0000	С	First	man	True

182 rows × 15 columns

In [102]: df1.isnull().sum().sum()

Out[102]: 0

In [103]: | sns.histplot(df['fare'],kde=True)

Out[103]: <AxesSubplot:xlabel='fare', ylabel='Count'>


```
In [104]: plt.figure(figsize=(25,10))
sns.histplot(df,kde=True)
```

Out[104]: <AxesSubplot:ylabel='Count'>

Creat a Normal distribution dataset

```
In [105]: nd=np.random.normal(1,0.5,1000) # mean 1, std .5, no of values=1000
In [106]: sns.histplot(nd,kde=True) # normal distribution plot
```

Out[106]: <AxesSubplot:ylabel='Count'>

In [107]: sns.histplot(np.exp(nd),kde=True) # normal distribution convert into Lognormal d

Out[107]: <AxesSubplot:ylabel='Count'>

In [108]: Ind=np.exp(nd)

In [109]: sns.histplot(np.log(lnd),kde=True) # Lognormal distribution convert into normal

Out[109]: <AxesSubplot:ylabel='Count'>


```
In [110]:
           lognormal=np.random.lognormal(3,1,1000)
           lognormal
Out[110]: array([168.17548703,
                                  13.98748008,
                                                 51.32728738,
                                                                73.18942197,
                   57.48266454,
                                  14.58882744,
                                                 13.87588109,
                                                                65.896135
                   25.66974415,
                                  18.36995074,
                                                  3.8086528 ,
                                                                45.73099284,
                                                 86.09491279,
                                                                24.17870402,
                    7.50359618,
                                  29.14710172,
                                  51.89195558,
                                                  9.48085055,
                                                                 7.38463552,
                    2.77031697,
                    7.20306459,
                                  25.17440957,
                                                  3.83354238,
                                                                18.20555149,
                  105.98556152,
                                   8.66259106,
                                                  5.57219628,
                                                                96.26762843,
                   32.1306059 ,
                                  19.12632027,
                                                  2.27340206,
                                                                19.63750687,
                   56.13573289,
                                  33.14933314,
                                                 12.76617396,
                                                                18.89787364,
                   20.36378223,
                                  16.41396739,
                                                 42.18144945,
                                                                15.07208784,
                    5.51760352,
                                  11.07452805,
                                                 92.4952617,
                                                                 2.54104879,
                                                 24.53207257,
                   14.88131009,
                                  44.30041446,
                                                                26.70667758,
                   11.93441954,
                                  19.34112019,
                                                 11.38285639,
                                                                43.77676396,
                   46.60764095,
                                   8.04247876,
                                                 23.17308025,
                                                                37.95588495,
                   10.06108008,
                                  76.17423547,
                                                 19.49917879,
                                                                14.18369886,
                   29.25436297,
                                  19.72418037,
                                                 12.40843897,
                                                                 9.73369037,
                   54.13134426,
                                  11.13254916,
                                                 21.70062796,
                                                                 9.47195042,
                   18.67291943,
                                   7.76936176,
                                                 28.30137542,
                                                                 8.83329392,
                    4.59510078,
                                   7.90930383,
                                                 48.152169
                                                                24.05553359
           sns.histplot(lognormal,kde=True)
                                                # lognormal distribution
Out[111]: <AxesSubplot:ylabel='Count'>
```


person & spearman rank correlation

```
In [112]: df=sns.load_dataset('iris')
df
```

Out[112]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [113]: df.isnull().sum()
```

```
Out[113]: sepal_length 0 sepal_width 0 petal_length 0 petal_width 0 species 0 dtype: int64
```

```
In [114]: df.corr() # finding correlation ( positive value define the same direction and
```

Out[114]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

In [115]: df.cov() # finding covariance

Out[115]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	0.685694	-0.042434	1.274315	0.516271
sepal_width	-0.042434	0.189979	-0.329656	-0.121639
petal_length	1.274315	-0.329656	3.116278	1.295609
petal_width	0.516271	-0.121639	1.295609	0.581006

pair plot

In [117]: sns.pairplot(df,hue="species")

Out[117]: <seaborn.axisgrid.PairGrid at 0x286613fc820>


```
In [118]: print('Thank you')
          Thank you
In [ ]:
```