

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Exercise 5

- 2 Let $Y := \{1, 2, 3, 4, \dots, 600\}$. Use the inclusion-exclusion principle to find the number of positive integers Y that are not divisible by 3, 5 or 7.
- $\boxed{3}$ Use the principle of induction to show that for all natural numbers n,

$$4\sum_{i=1}^{n} i(i+2)(i+4) = n(n+1)(n+4)(n+5).$$

- $\boxed{7}$ Use the laws of set theory to show for arbitrary sets A, B, C that:
 - a) If $(A \cup B) \subseteq (A \cap B)$ then A = B.
 - **b)** $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
 - c) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Section 4.1

8 Prove each of the following for all $n \ge 1$ by the Principle of Mathematical induction

a)
$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$
.

- **b)** $1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}$.
- c) $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$.
- 12 **a)** Prove that $(\cos \theta + i \sin \theta)^2 = \cos 2\theta + i \sin 2\theta$ where $i \in \mathbb{C}$ and $i^2 = -1$.
 - **b)** Using induction, prove that for all $n \in \mathbb{Z}^+$,

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta,$$

- c) Verify that $1 + i = \sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$, and compute $(1 + i)^{100}$.
- 16 a) For n = 3 let $X_3 = 1, 2, 3$. Now consider the sum

$$s_3 = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3} = \sum_{\emptyset \neq A \subset X_3} \frac{1}{p_A},$$

where p_A denotes the product of all elements in a non-empty subset A of X_3 . Note that the sum is taken over all the non-empty subsets of X_3 . Evaluate this sum

- **b)** Repeat the calculation in step **a)** for s_2 and s_4 .
- c) Conjecture a general result suggested by the calculations from steps a) and b). Prove your conjecture using the Principle of Mathematical induction.
- To $n \in \mathbb{Z}^+$. We define the *n*'th harmonic number H_n as the sum of the first *n* reciprocals (of the natural integers), $H_n = \sum_{i=1}^n 1/i$.
 - a) For all $n \in \mathbb{N}$ prove that $1 + \frac{n}{2} \leq H_{2^n}$.
 - **b)** Prove that for all $n \in \mathbb{Z}^+$,

$$\sum_{j=1}^{n} j H_j = \left[\frac{n(n+1)}{2} \right] H_{n+1} - \left[\frac{n(n+1)}{4} \right].$$