Introduction

We assume that the definitions of the following are known.

- 1. T_n , the nth Chebyshev polynomial of the first kind.
- 2. U_n , the nth Chebyshev polynomial of the second kind.
- 3. f_n , the nth Fibonacci number.

Problem Sheet 2

1. Show that

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x).$$

when $n \ge 2$ and $T_0(x) = 1, T_1(x) = x$.

- 2. Show that
 - (a) $T_n(1) = 1$ and
 - (b) $T_n(-1) = (-1)^n$.
- 3. Show that
 - (a) $U_n(1) = n + 1$.
 - (b) $U_n(-1) = (-1)^n (n+1)$
- 4. Show that

$$\frac{1}{\iota^n}U_n(\iota/2) = f_{n+1}.$$

5. Show that if $m, n \ge 1$,

$$T_{m+n}(x) = T_m(x)U_n(x) - T_{m-1}(x)U_{n-1}(x).$$

6. Similar to the tiling combinatorial model for $U_n(x)$, get a combinatorial model for the polynomial $T_n(x)$.