
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=1; day=9; hr=14; min=14; sec=43; ms=379;]

Validated By CRFValidator v 1.0.3

Application No: 10567168 Version No: 1.0

Input Set:

Output Set:

Started: 2007-12-20 20:45:34.671 **Finished:** 2007-12-20 20:45:37.241

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 570 ms

Total Warnings: 25
Total Errors: 0

No. of SeqIDs Defined: 25
Actual SeqID Count: 25

Error code		Error Description									
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)

Input Set:

Output Set:

Started: 2007-12-20 20:45:34.671 **Finished:** 2007-12-20 20:45:37.241

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 570 ms

Total Warnings: 25

Total Errors: 0

No. of SeqIDs Defined: 25

Actual SeqID Count: 25

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	National Institute of Advanced Industrial Science and Technology TAKAGI, Yasuomi								
<120>	A method for efficient preparation of dumbell-shaped DNA								
<130>	10084.0003								
<140>	10567168								
<141>	2007-12-20								
<150>	PCT/JP04/11449								
<151>	2004-08-09								
<150>									
<151>	2003-08-08								
<160>	25								
<170>	PatentIn version 3.4								
<210>	1								
<211>	245								
<212>	DNA								
<213>	Artificial								
<220>									
<223>	synthetic DNA								
<400>	1								
aaggtc	gggc aggaagaggg cctattttcc atgattcctt catatttgca tatacgatac	60							
aaggcto	gtta gagagataat tagaattaat ttgactgtaa acacaaagat attagtacaa	120							
aatacgt	tgac gtagaaagta ataatttett gggtagtttg cagttttaaa attatgtttt	180							
aaaatgo	gact atcatatget tacegtaact tgaaagtatt tegatttett ggetttatat	240							
atctt		245							
<210>	2								
<211>	104								
<212>	DNA								
<213>	Artificial								
<220>									
<223>	synthetic DNA								
<400>	2								
	tgca tgtcgctatg tgttctggga aatcaccata aacgtgaaat gtctttggat	60							
ttaaa:	atct tataagttet gtatgagage acagategat cece	104							

```
<210> 3
<211> 86
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 3
accepting t toogtagtest agtestimate accepting a accepting accepting accepting to accept accepting accepting to accept accepting acceptin
                                                                                                                                                                                                                                                                                                              60
ttcgaaaccg ggcactacaa aaacca
                                                                                                                                                                                                                                                                                                              86
<210> 4
<211> 14
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (3)..(3)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (7)..(8)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (11)..(11)
<223> n is a, c, g, or t
<400> 4
ggntggnngg ntgg
                                                                                                                                                                                                                                                                                                              14
<210> 5
<211> 15
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (3)..(3)
```

<223> n is a, c, g, or t

```
<220>
<221> misc_feature
<222> (7)..(9)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (12)..(12)
<223> n is a, c, g, or t
<400> 5
                                                                    15
ggntggnnng gntgg
<210> 6
<211> 16
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (3)..(3)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (7)..(10)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (13)..(13)
<223> n is a, c, g, or t
<400> 6
                                                                    16
ggntggnnnn ggntgg
<210> 7
<211> 17
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<220>
<221> misc_feature
<222> (3)..(3)
<223> n is a, c, g, or t
```

<220>

```
<221> misc_feature
<222> (7)..(11)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (14)..(14)
<223> n is a, c, g, or t
<400> 7
                                                                    17
ggntggnnnn nggntgg
<210> 8
<211> 15
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 8
ggcgttcggg gggta
                                                                    15
<210> 9
<211> 63
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 9
ggctatgtct aggagtgtac ctagaattac atcaagggag atggtgcgct cctggacgta
                                                                    60
                                                                    63
gcc
<210> 10
<211> 53
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 10
                                                                    53
gggtaattgg tagattaagc ggtgtgctgt cccgcttgat ctgccaattg ccc
<210> 11
<211> 43
<212> DNA
<213> Artificial
```

```
<223> synthetic DNA
<400> 11
gggaattcac ctgccggcga gggttttccc agtcacgacg ttg
                                                                    43
<210> 12
<211> 46
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 12
                                                                     46
ggctgcagac ctgccggcca ccgagcggat aacaatttca cacagg
<210> 13
<211> 34
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 13
                                                                     34
ggtgtgtccg cgttggcttt tgccaacgcg gaca
<210> 14
<211> 59
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 14
                                                                    59
cctcggccta tagtgagtcg tattaggcgg gaaccgccta atacgactca ctataggcc
<210> 15
<211> 41
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 15
ttaggagttt tctcctaagc gttttcccag tcacgacgtt g
                                                                     41
<210> 16
<211> 41
```

<212> DNA

```
<213> Artificial
<220>
<223> synthetic DNA
<400> 16
ttaggagttt tctcctaagc gttttcccag tcacgacgtt g
                                                                     41
<210> 17
<211> 41
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 17
ttaggagttt tctcctaagc gttttcccag tcacgacgtt g
                                                                     41
<210> 18
<211> 44
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 18
ttaggtcttt tgacctaagc gagcggataa caatttcaca cagg
                                                                     44
<210> 19
<211> 39
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 19
                                                                     39
gttttcccag tcacgacgtt gaaggtcggg caggaagag
<210> 20
<211> 44
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 20
gagcggataa caatttcaca caggaaaaag gctacgtcca ggag
                                                                     44
```

```
<210> 21
<211> 417
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 21
ttaggagttt tctcctaagc gttttcccag tcacgacgtt gaaggtcggg caggaagagg
                                                                     60
gcctattttc catgattcct tcatatttgc atatacgata caaggctgtt agagagataa
                                                                    120
ttagaattaa tttgactgta aacacaaaga tattagtaca aaatacgtga cgtagaaagt
                                                                    180
aataatttct tgggtagttt gcagttttaa aattatgttt taaaatggac tatcatatgc
                                                                    240
                                                                    300
ttaccgtaac ttgaaagtat ttcgatttct tggctttata tatcttgtgg aaaggacgaa
acaccggcta tgtctaggag tgtacctaga attacatcaa gggagatggt gcgctcctgg
                                                                    360
acgtagcctt tttcctgtgt gaaattgtta tccgctcgct taggtcaaaa gacctaa
                                                                    417
<210> 22
<211> 93
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 22
tttcccatga ttccttcata tttgcatctt accgtaactt gaaagtattt cgatttcttg
                                                                     60
                                                                     93
gctttatata tcttgtggaa aggacgaaac acc
<210> 23
<211> 109
<212> DNA
<213> Artificial
<220>
<223> synthetic DNA
<400> 23
tttcccatga ttccttcata tttgcatata ggactatcat atgcttaccg taacttgaaa
                                                                     60
gtatttcgat ttcttggctt tatatatctt gtggaaagga cgaaacacc
                                                                    109
<210> 24
<211> 58
<212> DNA
<213> Artificial
```

<220> <223>	synt	thetic DNA					
<400>		tgaaacgatt	tgcttcctgt	cacaaatcgt	tcatagette	tactttt	58
goagaa	goca	egaaaogaee	egocoocge	cacaacoge	coucugocco	cgocccc	
<210>	25						
<211>	240						
<212>	DNA						
<213>	Arti	ficial					
<220>							
<223> synthetic DNA							
<400>	25						
tttccca	atga	ttccttcata	tttgcatata	cgatacaagg	ctgttagaga	gataattaga	60
attaatt	ttgc	ctgtaaacac	aaagatatta	gtacaaaata	cgtgacgtag	aaagtaataa	120
tttctt	gggt	agtttgcagt	tttaaaatta	tgttttaaaa	tggactatca	tatgcttacc	180
gtaactt	tgaa	agtatttcga	tttcttggct	ttatatatct	tgtggaaagg	acgaaacacc	240