

Systemy Analagowe i Cyfrowe

LAB nr 4

Stabilizatory napięcia

Autorzy:	Aleksander Łyskawa 275462 Kacper Karkosz 275495
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	pon 13:15-15:30
Prowadzący:	dr inż. Marek Kukawczyński
Data:	16.04.2024

1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie układu i dobór właściwych wartości elementów rezystancyjnych stabilizatora napięcia dla zadanych wartości:

- napięcia wyjściowego $U_z = 6, 5 [V]$
- prądu wyjściowego $I_{z_{max}} = 0, 2 [A]$

a także wykonanie pomiarów podstawowych parametrów tego stabilizatora, wyznaczenie charakterystyk wyjściowych i przejściowych, oraz obliczenie jego rezystancji wyjściowej oraz współczynnika stabilizacji.

W projekcie wykorzystano układ scalony L200. Na Rysunku 1 przedstawiono schemat ideowy stabilizatora napięcia w postaci podstawowej aplikacji tego układu.

Rys. 1: Schemat ideowy stabilizatora napięcia

2 Dobór rezystorów

Napięcie wyjściowe stabilizatora U_z dane jest zależnością:

$$U_z = \left(1 + \frac{R_5}{R_6} \cdot U_{REF}\right), \quad U_{REF} = 2,75 [V],$$

stad:

$$R_5 = \left(\frac{U_z}{U_{REF}} - 1\right) \cdot R_6$$

Zgodnie z instrukcją do ćwiczenia, przyjmuję, że:

$$R_5 + R_6 \le \frac{U_z}{1mA} = \frac{6,5}{1mA} = 6,5 [k\Omega]$$

Zakładam, że $R_6 = 1, 2 [k\Omega]$, wtedy:

$$R_5 = \left(\frac{6,5}{2,75} - 1\right) \cdot 1, 2 = 1,64 \left[k\Omega\right],$$

Co po zaokrągleniu do wartości z szeregu daje:

$$R_5 \approx 1,6 [k\Omega]$$

Dobrane wartości rezystorów R_5 i R_6 spełniają uprzednie założenie:

$$R_5 + R_6 \approx 2,8 [k\Omega] \le 6,5 [k\Omega]$$

Maksymalny prąd wyjściowy w układzie ograniczony jest do wartości:

$$I_{z_{max}} = \frac{U_{sc}}{R_4},$$

skąd obliczam wartość R_4 :

$$R_4 = \frac{U_{sc}}{I_{z_{max}}} = \frac{0,45}{0,2} = 2,25 \,[\Omega]$$

oraz zaokrąglam ją do wartości z szeregu:

$$R_4 \approx 2, 2 [\Omega]$$

2.1 Rzeczywiste wartości rezystorów

Rzeczywiste wartości rezystorów zostały zmierzone przy użyciu multimetru, i wynosiły odpowiednio:

- $R_4 = 2,26 [\Omega]$
- $R_5 = 1,6017 [k\Omega]$
- $R_6 = 1,1913 [k\Omega]$

3 Charakterystyka wyjściowa $I_z = f(U_{wy})$

Rysunki 2 oraz 3 przedstawiają wykresy zależności napięcia wyjściowego U_{wy} od prądu wejściowego I_z dla sparametryzowanych wartości napięć wejściowych równych odpowiednio $U_{we} = 9,5V$ oraz $U_{we} = 30V$. Rysunek 4 przedstawia wykres zależności rezystancji wyjściowej od prądu wyjściowego dla tak samo sparametryzowanych wartości napięć wejściowych. Charakterystyki zostały wykonane na podstawie pomiarów zawartych w tabeli pomiarowej nr 1.

Rys. 2: Wykres zależności napięcia wyjściowego od pradu wyjściowego napięcia wejsciowego $U_{we}=9,5V$

Rys. 3: Wykres zależności napięcia wyjściowego od pradu wyjściowego napięcia wejsciowego $U_{we}=30 {\cal V}$

4 Wykres zależności $R_w = f(I_z)$

Rys. 4: Wykres zależności rezystancji wyjściowej od prądu wyjściowego dla sparametryzowanych wartości napięć wejściowych równych: $U_{we} = 9,5V(pomarańczowy)$, oraz $U_{we} = 30V(niebieski)$

Rezystancję wyjściową stabilizatora dla kolejnych pomiarów napięcia obliczono korzystając ze wzoru:

$$R_w = \frac{\Delta U}{\Delta I}$$

gdzie:

- ΔU różnica zmierzonej wartości napięcia pomiędzy n, a n-1 pomiarem
- ΔI różnica zmierzonej wartości prądu pomiędzy n,an-1 pomiarem

Tab. 1: Pomiary i obliczenia do charakterystyk na rysunkach 2, 3 i 4

I_z [A]	$\Delta I_z[A]$	dla Uwe = $9.5V$			$dla\ Uwe = 30V$			
		U_{wy} [V]	$\Delta U_{wy}[V]$	$R_w[\Omega]$	U_{wy} [V]	$\Delta U_{wy}[V]$	$R_w[\Omega]$	
0,0324	0,032	6,473	-	-	6,518	-	-	
0,0379	0,006	6,473	0,0000	0,000	6,483	-0,035	6,364	
0,0408	0,003	6,473	0,0000	0,000	6,483	0,000	0,000	
0,0426	0,002	6,473	0,0000	0,000	6,483	0,000	0,000	
0,0464	0,004	6,473	0,0000	0,000	6,483	0,000	0,000	
0,0563	0,010	6,473	0,0000	0,000	6,484	0,001	0,025	
0,0618	0,006	6,473	0,0000	0,000	6,484	0,000	0,000	
0,0650	0,003	6,473	0,0000	0,000	6,484	0,000	0,000	
0,0707	0,006	6,472	-0,0010	0,175	6,484	0,000	0,000	
0,0902	0,020	6,472	0,0000	0,000	6,483	-0,001	0,051	
0,1053	0,015	6,470	-0,0020	0,132	6,483	0,000	0,000	
0,1256	0,020	6,469	-0,0010	0,049	6,481	-0,002	0,099	
0,1295	0,004	6,469	0,0000	0,000	6,481	0,000	0,000	
0,1609	0,031	6,468	-0,0010	0,032	6,481	0,000	0,000	
0,1855	0,025	6,467	-0,0010	0,041	6,481	0,000	0,000	
0,1931	0,008	5,697	-0,7700	101,316	5,752	-0,729	95,921	
0,1932	0,000	5,668	-0,0290	290,000	5,751	-0,001	10,000	
0,1934	0,000	4,848	-0,8200	4100,000	4,888	-0,863	4315,000	
0,1935	0,000	3,906	-0,9425	9425,000	3,926	-0,962	9620,000	
0,1944	0,001	2,854	-1,0514	1168,222	2,871	-1,055	1172,667	
0,1945	0,000	1,898	-0,9565	9565,000	1,907	-0,964	9637,000	
0,1951	0,001	0,984	-0,9139	1523,167	0,908	-0,999	1665,667	
0,1956	0,001	0,017	-0,9672	1934,400	0,017	-0,891	1782,000	

5 Charakterystyka przejściowa $U_{wy} = f(U_{we})$

Rysunki 5 i 6 przedstawiają wykresy zależności napięcia wyjściowego U_{wy} od napięcia wejściowego U_{we} dla sparametryzowanych wartości prądu wyjściowego równych odpowiednio I=0, oraz $I=\frac{1}{2}\cdot I_{z_{max}}$. Rysunek 7 przedstawia wykres zależności współczynnika stabilizacji od napięcia wejściowego dla tak samo sparametryzowanych wartości prądu wyjściowego. Charakterystyki zostały wykonane na podstawie pomiarów zawartych w tabeli pomiarowej nr 2 .

Rys. 5: Wykres zależności napięcia wyjściowego od napięcia wejściowego dla prądu wyjściowego o wartości $I_z=0$

Rys. 6: Wykres zależności napięcia wyjściowego od napięcia wejściowego dla prądu wyjściowego o wartości $I_z=\frac{1}{2}\cdot I_{z_{max}}$

6 Wykres zależności $S_u = f(U_{we})$

Rys. 7: Wykres zależności współczynnika stabilizacji od napięcia wejściowego dla sparametryzowanych wartości prądów wyjściowych równych: $I_z=0(pomarańczowy)$ oraz $I_z=\frac{1}{2}\cdot I_{z_{max}}(niebieski)$

Współczynnik stabilizacji układu dla kolejnych pomiarów obliczono korzystając ze wzoru:

$$S_u = \frac{\Delta U_{wy}}{\Delta U_{we}}$$

gdzie:

- ΔU_{we} różnica zmierzonej wartości napięcia wejściowego pomiędzy n, a n-1 pomiarem
- ΔU_{wy} różnica zmierzonej wartości napięcia wyjściowego pomiędzy n, a n-1 pomiarem

Tab. 2: Pomiary i obliczenia do charakterystyk na rysunkach 5, 6 i 7

<i>II</i> [I <i>I</i>]	$\Delta U_{we}[V]$	dla I = 0		$dla I = \frac{I_{z_{max}}}{2}$			
$U_{we}[V]$		$U_{wy}[V]$	$\Delta U_{wy}[V]$	$S_u[\frac{V}{V}]$	$U_{wy}[V]$	$\Delta U_{wy}[\tilde{V}]$	$S_u[\frac{V}{V}]$
0,5	0,5	0,000	0,000	0,000	0,000	0,000	0,000
1,0	0,5	0,001	0,001	0,003	0,000	0,000	0,000
1,5	0,5	0,073	0,072	0,143	0,002	0,002	0,003
2,0	0,5	0,196	0,123	0,246	0,004	0,003	0,005
2,5	0,5	0,259	0,064	0,127	0,006	0,002	0,003
3,0	0,5	2,074	1,815	3,630	1,546	1,540	3,081
3,5	0,5	2,625	0,551	1,102	1,996	0,450	0,900
4,0	0,5	3,060	0,435	0,871	2,427	0,431	0,862
4,5	0,5	3,507	0,447	0,893	2,875	0,448	0,896
5,0	0,5	3,974	0,467	0,934	3,348	0,473	0,945
5,5	0,5	4,439	0,465	0,929	3,817	0,469	0,939
6,0	0,5	4,903	0,464	0,928	4,285	0,468	0,936
6,5	0,5	5,232	0,329	0,658	4,757	0,472	0,944
7,0	0,5	5,373	0,141	0,282	5,843	1,086	2,172
7,5	0,5	6,313	0,940	1,880	5,911	0,068	0,136
8,0	0,5	6,473	0,160	0,320	6,106	0,195	0,390
8,5	0,5	6,473	0,000	0,000	6,463	0,357	0,714
9,0	0,5	6,473	0,000	0,000	6,465	0,002	0,004
9,5	0,5	6,473	0,000	0,000	6,466	0,001	0,002
10	0,5	6,474	0,001	0,002	6,466	0,000	0,000
11	1,0	6,475	0,001	0,001	6,468	0,002	0,002
12	1,0	6,476	0,001	0,001	6,469	0,001	0,001
13	1,0	6,476	0,000	0,000	6,470	0,001	0,001
14	1,0	6,478	0,002	0,002	6,470	0,000	0,000
15	1,0	6,478	0,000	0,000	6,471	0,001	0,001
16	1,0	6,479	0,001	0,001	6,472	0,001	0,001
17	1,0	6,479	0,000	0,000	6,472	0,000	0,000
18	1,0	6,480	0,001	0,001	6,474	0,002	0,002
19	1,0	6,480	0,000	0,000	$6,\!475$	0,001	0,001
20	1,0	6,482	0,002	0,002	6,476	0,001	0,001
21	1,0	6,482	0,000	0,000	6,483	0,007	0,007
22	1,0	6,484	0,002	0,002	6,483	0,000	0,000
23	1,0	6,485	0,001	0,001	6,483	0,000	0,000
24	1,0	6,486	0,001	0,001	6,483	0,000	0,000
25	1,0	6,486	0,000	0,000	6,483	0,000	0,000
26	1,0	6,486	0,000	0,000	6,483	0,000	0,000
27	1,0	6,486	0,000	0,000	6,483	0,000	0,000
28	1,0	6,486	0,000	0,000	6,486	0,003	0,003
29	1,0	6,488	0,002	0,002	6,488	0,002	0,002
30	1,0	6,487	-0,001	-0,001	6,489	0,001	0,001

7 Wnioski

- Przebiegi wyznaczonych charakterystyk wyjściowych oraz przejściowych, są niemalże
 identyczne dla dwóch różnych sparametryzowanych wartości napięć wejściowych (dla
 charakterystyki wyjściowej) lub prądów wyjściowych (dla charakterystyki przejściowej). Świadczy to o poprawnym działaniu układu.
- W zakresie liniowej pracy stabilizatora, wartości napięcia U_{wy} utrzymują się na poziomie około 6,5V, aż do momentu osiągnięcia wartości prądu obciążenia na poziomie około 0,2A, co z rozsądną dokładnością spełnia założenia projektowe.
- Gdy wartość prądu wyjściowego zbliża się do założonej wartości maksymalnej 0, 2A, rezystancja wyjściowa układu gwałtownie wzrasta. Jest to widoczne na Rysunku 4.
- Współczynnik stabilizacji przyjmuje największe wartości w zakresie napięć wejściowych od 3V do 9,5V.