IIT M-CS1200 : Discrete Math (Mar - Jul 2023)

Release Date: 13-05-2023

Tutorial No: 4 Tutorial Date: 19-05-2023

1. A graph is 2-colorable if each of its vertices can be colored using two colors such that no two adjacent vertices have the same color.

- (a) Define 2-colorable graphs using a function from V(G) to $\{0,1\}$.
- (b) A graph G is *bipartite* if its vertex set admits (has) a partition (A, B) such that each edge has one end in A and the other end in B. Which of the following two graphs are bipartite? Give a partition of the vertex set for those graphs that are bipartite.

- (c) Prove that a graph G is bipartite if and only if it is 2-colorable.
- 2. Prove that: Every simple graph G has a path of length $\delta(G)$ where $\delta(G)$ is the minimum degree among all the vertices of G.
- 3. Prove the following theorem.

Theorem 1 The following are equivalent for a graph G:

- (1) G is a tree.
- (2) For any two vertices u and v, there exists a unique uv-path in G.
- (3) G is connected and for each edge e := uv, G e has at least two connected components such that u and v belong to distinct components of G e.
- 4. Let $a, b \in \mathbb{Z}$. Prove that if a + b is even, then a and b are NOT *consecutive*. ¹
- 5. For each *immediate predecessor relation I* (of some poset) given below, draw the Hasse diagram and write the corresponding poset. Finally, verify whether it is a lattice or not:
 - (a) $I = \{e \triangleleft b, e \triangleleft c, b \triangleleft a, c \triangleleft a, f \triangleleft d, f \triangleleft e\}$ over the set $S := \{a, b, c, d, e, f\}$
 - (b) $I = \{b \triangleleft a, c \triangleleft a, d \triangleleft b, e \triangleleft c, f \triangleleft b, g \triangleleft c, f \triangleleft e, g \triangleleft d, h \triangleleft f, h \triangleleft g\}$ over the set $S := \{a, b, c, d, e, f, g, h\}$.
- 6. For a set S, the *power set* $P(S) := \{A \mid A \subseteq S\}$, i.e., it is the collection of all subsets of S.
 - (a) For $S := \{1, 2, 3, 4\}$, write the set P(S). What is the cardinality of P(S)?
 - (b) Draw the Hasse Diagram for $(P(S), \subseteq)$.
 - (c) Find a "nice" description for the immediate predecessor relation of $(P(S), \subseteq)$? Prove that it is indeed the immediate predecessor relation for $(P(S), \subseteq)$.

¹Two integers a and b are said to be consecutive if |a - b| = 1.

- 7. Recall the *inverse* of a relation, defined in Assignment 1. For a lattice $L := (S, \preceq)$, its *inverse* $L^{-1} := (S, \preceq^{-1})$.
 - (a) Prove that L^{-1} is a lattice.
 - (b) Let $L := (\{1, 2, 4, 6, 12\}, |)$ where $a \mid b$ denotes that a divides b. Prove that L is a lattice. Draw the Hasse diagram for L and L^{-1} .
 - (c) Write the minimal and maximal elements for L, and likewise for L^{-1} .
 - (d) Describe L^{-1} using words/notation.
 - (e) Given a lattice L, what can we say about the Hasse diagrams of L and L^{-1} . (Informal descriptions are allowed)
- 8. For a lattice $L := (S, \preceq)$ and some nonempty subset $T \subseteq S$, we say that (T, \preceq) is a sublattice (of L) if it is a lattice.

Prove that for a lattice L, the following are equivalent:

- (1) L is a chain.
- (2) For any nonempty subset $T \subseteq S$, (T, \preceq) is a sublattice of L.
- (3) For any 2-element subset $T \subseteq S$, (T, \preceq) is a sublattice of L.