

Chapitre 1 – Signaux déterministes continus

- 1. Classification des signaux
- 2. Représentation temps-fréquence
- Transformation de Fourier
- 4. Filtrage fréquentiel
- Filtrage temporel
- 6. Conclusion

Qu'est ce qu'un signal?

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Dans le dictionnaire Larousse :

vient du latin signum : signe ; variation d'une grandeur physique de nature quelconque porteuse d'information.

C'est une représentation physique de l'information

Un signal peut être de nature très varié

sonore

optique

électrique

2

Qu'est ce qu'un signal?

 <u>Dans le cours</u>, il s'agira de l'évolution (souvent temporelle) d'une quantité (souvent une tension ou un courant électrique).

Flux de particules cosmiques mesuré par la sonde Voyager 1

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

3

Quelles différences entre ces signaux?

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Modulation d'amplitude

Gaussian-modulated sinusoidal pulse

4

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Caractéristiques des signaux

Aléatoire / déterministe

Périodique / non périodique

Continu/discret

Energie finie / Puissance finie

5

Signal aléatoire (ou stochastique)

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Signal imprévisible à l'avance Signal qui ne peut être décrit par une expression analytique Signal susceptible de porter une information

Ex : Signal de parole d'une transmission téléphonique, tirage du loto.

6

Signal déterministe (ou certain)

Signal dont les états futurs peuvent être déterminés Signal qui peut être décrit par un modèle mathématique

Ex : Note de musique, fréquence porteuse d'un téléphone.

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Modulation d'amplitude

Gaussian-modulated sinusoidal pulse

8

Périodiques – non périodiques

Signaux continus – signaux discrets

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Signal à temps continu

Signal à temps discret

Signal à valeur continues

T_e: période d'échantillonnage (s)

 $F_e = 1 / T_e$: fréquence d'échantillonnage (Hz)

9

Signaux continus – signaux discrets

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Signal continu

Signal discret

Aujourd'hui, la majorité du traitement du signal est numérique et utilise donc des signaux discrets

Classification énergétique

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Définition de l'énergie d'un signal x(t)

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt$$

L'énergie est toujours positive Unité : Joule

Classification énergétique

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Définition de la puissance moyenne d'un signal x(t)

$$P_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{T} |x(t)|^{2} dt$$

La puissance est toujours positive Unité : Joule/s = Watt

Pour le cas particulier des signaux périodiques, il suffit de faire le calcul sur une seule période T :

$$P_T = \frac{1}{T} \int_{-T/2}^{+T/2} |x(t)|^2 dt$$

Classification énergétique

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

- Signal à énergie finie $E_x < +\infty$
 - Englobe les signaux de durée finie (rencontrés en pratique)
 - Signal de puissance nulle

Etude de ces signaux par analyse de Fourier

- Signal à puissance finie $P_x < +\infty$
 - Englobe les signaux périodiques
 - Signal d'énergie infinie
 - Pour les signaux périodiques, le calcul de P se fait sur une période

Représentation temps/fréquence

- I. Signaux déterministes continus
- Classification
- Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

- Représentation temporelle (forme d'onde)
 - Variation de l'amplitude du signal en fonction du temps
 - Renferme toutes les informations contenues dans le signal
 - Permet de montrer l'instant d'émission ou la durée des évènements

- Représentation fréquentielle (spectre)
 - Variation de l'amplitude du signal en fonction de la fréquence
 - Renferme toutes les informations contenues dans le signal
 - Permet de montrer les composantes fréquentielles du signal.

Transformée de Fourier - TF

I. Signaux déterministes continus

Définition

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

15

Transformée de Fourier - TF

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Définition

Soit x(t) une fonction de $\mathbb{R} \to \mathbb{C}$. La transformée de Fourier de x(t) est définie lorsqu'elle existe par :

$$X(f) = \text{TF}[x(t)] = \int_{\mathbb{R}} x(t)e^{-2\pi i ft}dt$$
$$X(f) = A(f) + iB(f) = |X(f)|e^{i\varphi(f)}$$

Condition d'existence : x(t) sommable, c'est-à-dire, fonction à énergie finie (elle tend vers 0 en $\pm \infty$ et possède une amplitude bornée.

Toute fonction existant physiquement admet une transformée de Fourier.

16

Exemple de TF

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Transformation de Fourier d'une fonction rectangulaire

Soit x(t) une fonction rectangle définie par :

$$x(t) = rectT(t/T) = 1, \forall t \in [-T/2, T/2]$$

0, ailleurs.

Sa transformée de Fourier existe et s'écrit :

$$X(f) = \frac{\sin(\pi fT)}{\pi f} = T \operatorname{sinc}(\pi fT)$$

Où la fonction sinc est définie par : sinc(x) = sin(x)/x

Démonstration :

Exemple de TF

Transformation de Fourier d'une fonction rectangulaire

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

18

Classification

Filtrage Freq

Filtrage Temp

Conclusion

Définition

La transformée de Fourier inverse est définie par :

$$x(t) = \overline{TF}[X(f)] = \int_{\mathbb{R}} X(f)e^{2\pi i ft} df$$

Remarques

- La transformée de Fourier est un opérateur **dual** : $\nabla(t) \leftrightarrow \vartheta(f) \mid \vartheta(t) \leftrightarrow \nabla(f)$ Par exemple la TF inverse d'un rectangle est un sinus cardinal dans l'espace temps.
- Signal de support étroit -> Spectre de support large et inversement. L'exemple précédent illustre ce phénomène (si T est petit, le spectre devient plus large),
- L'unité de X(f) est celle de x(t) que multiplie le temps : si x(t) en V alors X(f) est en V.s

Fréquences négatives

Des fréquences négatives apparaissent dans la représentation spectrale car la TF parcours les espaces de $+\infty$ à $-\infty$

Physiquement seul les fréquences positives ont un sens mais il est important de représenter les fréquences négatives (voir chapitre analyse spectrale),

Propriétés de la TF

 $X(f) = \operatorname{TF}[x(t)] = \int_{\mathbb{R}} x(t)e^{-2\pi i ft}dt \mid x(t) = \overline{\operatorname{TF}}[X(f)] = \int_{\mathbb{R}} X(f)e^{2\pi i ft}df$

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

$$\forall \alpha_1 \ et \ \alpha_2 \in \mathbb{C},$$
 Linéarité
$$TF[\alpha_1 x_1(t) + \alpha_2 x_2(t)] = \alpha_1 TF[x_1(t)] + \alpha_2 TF[x_2(t)]$$

Transposition TF[x(-t)] = X(-f)

Conjugaison $TF[x^*(t)] = X^*(-f)$

Translation $TF[x(t-t_0)] = e^{-2\pi j f t_0} X(f)$

Modulation $TF[x(t)e^{2\pi jf_0t}] = X(f - f_0)$

Dilatation/ Contraction $TF[x(at)] = \frac{1}{|a|}X\left(\frac{f}{a}\right)$

Dérivation / t $TF[x'(t)] = (2\pi j f)X(f)$

Dérivation /f $X'(f) = TF[(-2\pi jt)x(t)]$

20

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Translation (théorème du retard)

$$TF[x(t-t_0)] = e^{-2\pi j f t_0} X(f)$$

Un décalage dans le temps du signal ne modifie pas le module de son spectre. Il engendre un déphasage fréquentiel.

Démonstration

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Modulation

$$TF[x(t)e^{2\pi jf_0t}] = X(f - f_0)$$

La multiplication d'un signal par une harmonique pure de fréquence f_0 translate le spectre du signal de f_0 : principe de la modulation d'amplitude.

Démonstration

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Modulation : exemple

$$x_1(t) = \sin(2\pi f_0 t) \text{ avec } f_0 = 10 \text{ Hz}$$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

 $(1) 2\pi i f t + (0, c) 2\pi i f t = c$

Modulation : exemple

$$x_1(t).e^{2\pi j f_1 t} = \sin(2\pi f_0 t).e^{2\pi j f_1 t}$$
 avec $f_1 = 100$ Hz

$$TF[x_1(t).e^{2\pi jf_1t}] = X_1(f - f_1)$$

24

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

 $x(t) + a^{2\pi i f_1 t} - \sin(2\pi f_1 t) + a^{2\pi i f_1 t} = 0$

Modulation : exemple

$$x_1(t) * e^{2\pi j f_1 t} = \sin(2\pi f_0 t) * e^{2\pi j f_1 t}$$
 avec $f_1 = 100$ Hz

$$TF[x_1(t) * e^{2\pi j f_1 t}] = X_1(f - f_1)$$

25

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Système linéaire et invariant dans le temps (LIT)

$$\forall \alpha_1 \ et \ \alpha_2 \in \mathbb{C},$$
 Linéarité
$$LIT[\alpha_1 x_1(t) + \alpha_2 x_2(t)] = \alpha_1 LIT[x_1(t)] + \alpha_2 LIT[x_2(t)]$$

Stationnarité $y(t) = LIT[x(t)] \rightarrow y(t - t_0) = LIT[x(t - t_0)]$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Soit x(t), un signal d'excitation et h(t), un filtre.

L'opération de filtrage h correspond à atténuer ou extraire certaines composantes fréquentielles de x.

h(t) est appelé **réponse impulsionnelle** du filtre. Elle le caractérise complètement.

h(t) est obtenue en excitant le filtre par une distribution de Dirac,

27

Spectre idéaux des 4 principaux types de filtrage

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

28

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Causalité et déphasage

Pour qu'un filtre soit causale, il faut que h(t) soit causale. L'effet ne doit pas précéder la cause => $h(t) \in [0, +\infty[$ En conséquence, h(t) n'est ni paire ni impaire.

$$h(t) = \text{hpaire}(t) + \text{himpair}(t)$$

$$\Rightarrow H(f) = TF[h(t)] = Re(H(f)) + j. Im(H(f))$$

Un filtre physiquement réalisable déphase obligatoirement!

Diagramme de Bode

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

 Soit H(f) la fonction de transfert d'un système quelconque. Le diagramme de Bode est la représentation en gain et en phase de H(f) :

Module de H(f) : gain

$$|H(f)| = \sqrt{H(f) \cdot H^*(f)}$$

Gain en décibel

$$G_{dB} = 20 \cdot log(|H(f)|)$$

Argument de H(f): phase

$$arg(H(f)) = arctan\left\{\frac{Im(H(f))}{Re(H(f))}\right\}$$

$$c = a + jb$$

Exemple:

$$|c| = \sqrt{a^2 + b^2}$$

$$arg(c) = arctan\left(\frac{b}{a}\right)$$

30

Filtre passe-bas du 1er ordre

$$H(f) = \frac{1}{1 + j\frac{f}{f_0}}$$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

31

Filtre passe-haut du 1er ordre

$$H(f) = \frac{j\frac{f}{f_0}}{1 + j\frac{f}{f_0}}$$

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

32

Filtre passe-bas du 2ème ordre

$$H(f) = \frac{1}{1 + j2m\frac{f}{f_0} - \left(\frac{f}{f_0}\right)^2}$$

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

33

Filtre passe-haut du 2ème ordre

$$H(f) = \frac{-\left(\frac{f}{f_0}\right)^2}{1 + j2m\frac{f}{f_0} - \left(\frac{f}{f_0}\right)^2}$$

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

34

Filtre passe-bande du 2ème ordre
$$H(f) = \frac{j2m\frac{f}{f_0}}{1+j2m\frac{f}{f_0}-\left(\frac{f}{f_0}\right)^2}$$
I. Signaux déterministes continus
Classification
Espace t-f
TF
Filtrage Freq
Filtrage Temp
Conclusion
$$Q: facteur de qualité Q = f_0/\Delta f$$

$$Q: facteur de qualité Q = f_0/\Delta f$$

$$Q: facteur de qualité Q = f_0/\Delta f$$
Normalized frequency (fif_0) (

Filtre coupe-bande du 2ème ordre

$$H(f) = \frac{1 - \left(\frac{f}{f_0}\right)^2}{1 + j2m\frac{f}{f_0} - \left(\frac{f}{f_0}\right)^2}$$

Filtrage Temp

36

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Apodisation: Multiplieur temporel – convolueur fréquentiel

Remarque : il n'existe pas de filtre temporel ne modifiant pas le spectre du signal d'entrée (seul solution le Dirac en fréquence)

Application : En pratique les signaux ne sont jamais utilisés intégralement mais sur une tranche temporelle.

L'opération se traduit par une multiplication avec une fenêtre :

$$x(t,T) = x(t) \cdot rectT(t/T)$$
 $X(f,T) = X(f) * (Tsinc(\pi fT))$

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Calculez et tracez le spectre d'un signal cosinusoïdale de fréquence 1 kHz observé à l'aide d'un oscilloscope sur une durée de 10 ms.

Exemple: fenêtre rectangulaire

38

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Calculez et tracez le spectre du signal suivant observé à l'aide d'un oscilloscope sur une durée de 10 ms :

Exemple: fenêtre rectangulaire

$$\cos(2\pi \cdot 1e3 \cdot t) + 0.2\cos(2\pi \cdot 1.15e3 \cdot t)$$

Apodisation (Filtrage temporel)

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

40

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Comme nous venons de le voir, le fait de ne prendre qu'une partie du signal à un effet sur le spectre :

L'apodisation que l'on fait le plus souvent est fait avec une fenêtre rectangle mais il existe un grand nombre de fenêtre

41

Apodisation (Filtrage temporel)

I. Signaux
déterministes
continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

Type de fenêtre	Atténuation en dB entre lobe principal et premier lobe secondaire	Largeur du lobe principal
Rectangulaire	13	$2F_e/_N$
Bartlett	26	$4F_e/_N$
Hanning	31	$4F_e/_N$
Hamming	41	$4F_e/_N$ $6F_e/_N$
Blackman	57	$6F_e/_N$
Nuttall	95	$8F_e/_N$

Compromis à faire entre lobe secondaire et largeur du lobe principal. Le choix de la fenêtre dépend du signal à observer

Signaux des fréquences très proches

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

43

Signaux avec de grandes différences d'amplitude

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

44

I. Signaux déterministes continus

Classification

Espace t-f

TF

Filtrage Freq

Filtrage Temp

Conclusion

A retenir

Représentations en temps : signaux Représentations en fréquence : spectre

Représentation:

- Différentes
- Complémentaires
- Sans perte d'énergie! (th. de Parseval)

Passage de l'une à l'autre représentation :

- Transformée de Fourier
- Opérateur réversible