UCSD Master of Advanced Study Data Science & Engineering Capstone: CalTrans Traffic Analysis

Kevin Dyer John Gill III Conway Wong

Advisor: Yoav Freund

June 10, 2016

Outline

- Business Objective
- Project Execution Overview
 - Data Sources & Acquisition
 - Data Preparation
 - Exploratory Data Analysis
- Analysis and Results
- Demo
- Conclusion
- Future Work

Business Objective

Among traffic congestion in America, California areas ranks among the worst

- 1. Los Angeles
- 2. San Francisco
 - 5. San Jose
 - 14. San Diego
 - 24. Riverside
- 25. Sacramento

Better Insight → **Better Solutions**

What traffic patterns exist?
What factors have most influence on traffic?

Project Execution Overview

Data Source & Acquisition

Data Source & Acquisition

- Caltrans PeMS
 - 5-minute station readings
 - CHP incidents
 - Station Metadata

- ▷ Zillow
 - Monthly Home Value index (ZHVI)
- U.S. Census
 - Population (2010)
 - TIGER/Line Shapefiles

Data Source & Acquisition

Python Web Scraper BeautifulSoup & Mechanize

Manual Download

- Extract
 - Source Locations
 - S3
 - Websites
 - Source Formats
 - CSV
 - Shape Files
 - JSON

- ▶ Transform
 - Missing Fields
 - Bad Data Dropped
 - Time
 - Different Granularity per source
 - Effectivity Dates
 - Sensor Data Pivoted

Station Id	District Id	Year	Day of Year	Day of Week	Total Flow (288)	Avg. Occupancy (288)	Avg. Speed (288)
------------	----------------	------	----------------	----------------	------------------------	----------------------------	---------------------

- Load
 - Data Warehouse Postgres
 - Target Schema Snowflake

- Mean + Standard Deviation
- Top 4 Eigenvectors
- Scatter Density Plot (Total Flow)

- Total Flow measures traffic volume
- Occupancy measures vehicle occupancy across lanes
- Speed measures velocity of vehicles across lanes
- Preliminary analysis:
 - Total flow directly proportional to occupancy
 - Total flow inversely proportional to speed
 - Traffic volume high between the hours of 6AM and 9PM

Analysis and Results

PCA

- Traffic Pattern Modeling and Prediction
- Assessment Criteria: NRMSE

- ▷ 5 eigenvectors
 - Over 90% variance explained
 - Sufficient in modeling total flow

- Execution
 - station+day combination
 - Random samples taken from station+day combinations
 - Projection and Reconstruction using top 5 eigenvectors
- Low NRMSE → Model Total Flow w/ Sufficient Accuracy

Execution

- station+day combination grouped by district+freeway; aggregated across 5 Fwy to obtain 5 Fwy eigenvector
- Random samples taken from station+day combinations from 5 Fwy
- Projection and Reconstruction using 5 Fwy eigenvector
- Reasonable NRMSE → Model Total Flow for a Highway w/ Sufficient Accuracy

KMeans++

- Traffic Pattern Behavior Clustering
- Assessment Criteria: None

- Using CA 2014 as a sample, determine optimal cluster count
 - Identify "elbow" in within-cluster sum of squares plot → about 7 clusters

Elastic Net Regression

- Influential Traffic Factors
- Assessment Criteria: None

Weekday Partition

Weekend Partition

Demo

Analysis

Traffic GIS Visualization

- Display each PeMS traffic station on a map using its latitude/longitude
- Load yearly (2008-2015) traffic volume data sets
- Color-encode traffic stations using its V0 and V1 eigenvector coefficients via a diverging color scheme
- Filter traffic stations by direction, freeway number, or coefficient value
- Find traffic stations by ID and zoom to station
- Reconstruct traffic volume readings of a station for any day

Traffic GIS

Conclusion

Better Insight → **Better Solutions**

What traffic patterns exist?
What factors have most influence on traffic?

Future Work

- Expand External Data Sources → Influential factors
- Modeling and Analysis of other CalTrans PeMS features
 - Occupancy
 - Speed
- Expansion on GIS visualization → Directional Arrows along freeway: North+South, East+West
- Effect distance of CHP incident has on Traffic Flow
- Outlier Detection
 - KMeans Clustering
 - Mahalanobis Distance

Acknowledgements

- Yoav Freund
- Friends
- ▶ Family
 - Girlfriend
 - Fiancee
 - Wife
- Kevin Coakley
- Ilkay Altintas

Questions?

Backup Slides

Data Preparation

ETL Process

Query/Join

- Temporal Data
- Geospatial Data
- Multiway Joins


```
SELECT t.ID, t.Num Lanes, t.Length, t.Urban, t.Density,
       f.Num,
      CASE f.Direction WHEN 'N' THEN 1 WHEN 'E' THEN 3 WHEN 'S' THEN 2 WHEN 'W' THEN 4 ELSE -1 END,
       z.Avg Value,
      CASE WHEN chp.ID IS NULL THEN 'F' ELSE 'T' END,
      CAST(chp.CC CODE AS CHAR(4)), CAST(chp.Description AS CHAR(78)), chp.Duration,
      YearDOYToDate(o.year, o.DOY),
       o.Flow Coef[1], o.Flow Coef[2], o.Flow Coef[3], o.Flow Coef[4], o.Flow Coef[5],
      o.Flow Coef[6], o.Flow Coef[7], o.Flow Coef[8], o.Flow Coef[9], o.Flow Coef[10]
FROM Observations o
        INNER JOIN Traffic Station t ON (o.Station ID=t.ID)
        INNER JOIN ST Type st ON (t.Type ID=st.ID AND st.type='ML')
        INNER JOIN Freeways f ON (f.ID=t.Fwy ID)
        LEFT OUTER JOIN Zillo Home Value z ON
            ((EXTRACT(YEAR FROM z.month)=o.year) AND
             EXTRACT(MONTH FROM z.month) = EXTRACT(MONTH FROM YearDOYToDate(o.year, o.DOY)))
        INNER JOIN County Zip cz ON (t.ZIPCODE=cz.ZIPCODE AND cz.ZIPCODE=z.ZIPCODE)
        LEFT OUTER JOIN CHP INC chp ON (
            CAST(chp.time AS DATE) = Year DOYTo Date(o.year, o.DOY)
            AND chp.Fwy ID=t.Fwy ID
            AND ST Distance(chp.Location, t.Location) < 804.672 -- Half-Mile away
WHERE o.year={y}
ORDER BY 1, 13;
```