PCF8563 I2C 实时时钟 / 日历芯片

1. 概述

PCF8563 是低功耗的 CMOS 实时时钟 / 日历芯片,它提供一个可编程时钟输出,一个中断输出和掉电检测器,所有的地址和数据通过 I^2C 总线接口串行传递。最大总线速度为 400Kbits/s,每次读写数据后,内嵌的字地址寄存器会自动产生增量。

2. 特性

- * 低工作电流: 典型值为 0.25 µ A (VDD=3.0V, Tamb=25℃时)。
- * 世纪标志
- * 大工作电压范围: 1.0~5.5
- * 低休眠电流: 典型值为 0.25 μ A (V_{DD}=3.0V, T_{amb}=25℃)
- * 400KHz 的 I²C 总线接口 (VDD=1.8~5.5V 时)。
- * 可编程时钟输出频率为: 32.768KHz, 1024Hz, 32Hz, 1Hz。
- * 报警和定时器。
- * 掉电检测器。
- * 内部集成的振荡器电容。
- * 片内电源复位功能。
- * I²C 总线从地址:读,0A3H;写,0A2H。
- * 开漏中断引脚。

3. 应用

- 移动电话
- 便携仪器
- 传真机
- 电池电源产品

4. 简明参考数据

表1 简明参考数据

符号	描述	条件	最小值	最大值	单 位
		I²C 总线无效; Tamb =25℃	1. 0	5. 5	V
$V_{ m DD}$	工作电压	I ² C 总线有效; f _{scl} =400kHz T _{amb} =-40∼+85℃	1.8	5. 5	V
		f scl=400kHz		800	μА
	工作电流;	f scl=100kHz	_	200	μА
I_{DD}	定时器和 CLKOUT	f _{SCL} =0Hz; T _{amb} =25°C			
	失效	$V_{DD} = 5 \text{ V}$	_	550	n A
		$V_{DD}=2 V$		450	n A
T_{amb}	工作温度 范围		-40	+85	$^{\circ}$
T_{stg}	储存温度		-65	+150	$^{\circ}\mathbb{C}$

5. 订单信息

表 2 订定单信息

型号		包装	
至 5	名称	描述	版本
PCF8563P	DIP8	塑料双列直插式封装;8 脚(300mil)	SOT97-1
PCF8563T	SO8	小塑料封装; 8 脚; 宽 3.9mm	SOT96-1
PCF8563TS	TSSOP8	小塑料薄型封装; 8 脚; 宽 3.0mm	SOT505-1

6. 方框图

图 1 方框图

7. 管脚配置

7.1 管脚

7.2 管脚描述

表 3 管脚描述

符号	管脚号	描述
OSCI	1	振荡器输入
OSCO	2	振荡器输出
/INT	3	中断输出(开漏;低电平有效)
V_{SS}	4	地
SDA	5	串行数据 I/O
SCL	6	串行时钟输入
CLKOUT	7	时钟输出 (开漏)
V_{DD}	8	正电源

8. 功能描述

PCF8563 有 16 个 8 位寄存器: 一个可自动增量的地址寄存器,一个内置 32.768KHz 的振荡器 (带有一个内部集成的电容),一个分频器 (用于给实时时钟 RTC 提供源时钟),一个可编程时钟输出,一个定时器,一个报警器,一个掉电检测器和一个 400KHz I²C 总线接口。

所有 16 个寄存器设计成可寻址的 8 位并行寄存器,但不是所有位都有用。前两个寄存器(内存地址 00H, 01H) 用于控制寄存器和状态寄存器,内存地址 02H~08H 用于时钟计数器(秒~年计数器),地址 09H~0CH 用于报警寄存器(定义报警条件),地址 0DH 控制 CLKOUT 管脚的输出频率,地址 0EH 和 0FH 分别用于定时器控制寄存器和定时器寄存器。秒、分钟、小时、日、月、年、分钟报警、小时报警、日报警寄存器,编码格式为 BCD,星期和星期报警寄存器不以 BCD 格式编码。

当一个 RTC 寄存器被读时,所有计数器的内容被锁存,因此,在传送条件下, 可以禁止对时钟 / 日历芯片的错读。

8.1 报警功能模式

一个或多个报警寄存器 MSB(AE=Alarm Enable 报警使能位)清 0 时,相应的报警条件有效,这样,一个报警将在每分钟至每星期范围内产生一次。设置报警标志位 AF(控制/状态寄存器 2 的位 3)用于产生中断,AF 只可以用软件清除。

8.2 定时器

8位的倒计数器(地址 0FH)由定时器控制寄存器(地址 0EH,参见表 25)控制,定时器控制寄存器用于设定定时器的频率(4096,64,1,或 1/60Hz),以及设定定时器有效或无效。定时器从软件设置的 8 位二进制数倒计数,每次倒计数结束,定时器设置标志位TF(参见表 7),定时器标志位TF,可以用软件清除,TF用于产生一个中断(/INT),每个倒计数周期产生一个脉冲作为中断信号。TI/TP(参见表 7)控制中断产生的条件。当读定时器时,返回当前倒计数的数值。

8.3 CLKOUT 输出

管脚 CLKOUT 可以输出可编程的方波。CLKOUT 频率寄存器 (地址 0DH; 参见表 23) 决定方波的频率, CLKOUT 可以输出 32.768KHz(缺省值), 1024, 32, 1Hz 的方波。CLKOUT 为开漏输出管脚,通电时有效,无效时为高阻抗。

8.4 复位

PCF8563 包含一个片内复位电路, 当振荡器停止工作时, 复位电路开始工作。在复位

状态下, I^2C 总线初始化,寄存器 TF、VL、TD1、TD0、TESTC、AE 被置逻辑 1 ,其它的 寄存器和地址指针被清 0 。

8.5 掉电检测器和时钟监控

PCF8563 内嵌掉电检测器,当 V_{DD} 低于 V_{low} 时,位 VL(Voltage Low,秒寄存器的位 7)被置 1,用于指明可能产生不准确的时钟 / 日历信息,VL 标志位只可以用软件清除.当 V_{DD} 慢速降低(例如以电池供电)达到 V_{low} 时,标志位 VL 被设置,这时可能会产生中断。

图 4: 掉电检测

8.6 寄存器结构

表 4: 寄存器概况

标明"一"的位无效,标明"0"的位应置逻辑0。

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00Н	控制/状态寄存器1	TEST	0	ST0P	0	TESTC	0	0	0
01H	控制/状态寄存器 2	0	0	0	TI/TP	AF	TF	AIE	TIE
ODH	CLKOUT 频率寄存器	FE	_	_	_	_	_	FD1	FD0
0EH	定时器控制寄存器	TE	-	_	_	_	_	TD1	TD0
0FH	定时器倒计数数值 寄存器	定时器倒计数数值							

表 5: BCD 格式寄存器概况

标明"一"的位无效

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
02h	秒	VL		00	\sim 59BCD	码格式数	数		
03h	分钟	-		00	∼59BCD	码格式数	数		
04h	小时	_	_		00~	59BCD 码	格式数	(
05h	日	_	_		01~	31BCD 码	格式数	(
06h	星期	_	-	_	_	-		0~6	
07h	月/世纪	С	-	-	01~1	2 BCD 码	格式数		
08h	年			00~99	BCD 码	格式数			
09h	分钟报警	AE		00	~59 BC	D 码格式	数		
0Ah	小时报警	AE	- 00~23 BCD 码格式数						
OBH	日报警	AE	- 01~31 BCD 码格式数						
ОСН	星期报警	AE	_	_	_	_		0~6	•

8. 6. 1 控制 / 状态寄存器 1

表 6: 控制 / 状态寄存器 1 位描述 (地址 00H)

Bit	符号	描述
		TEST1=0;普通模式
7	TEST1	TEST1=1;EXT_CLK 测试模式
		参见 8.7 节
		STOP=0;芯片时钟运行
5	ST0P	STOP=1;所有芯片分频器异步置逻辑0;
		芯片时钟停止运行,
		(CLKOUT 在 32.768kHz 时可用)
		TESTC=0;电源复位功能失效
3	TESTC	(普通模式时置逻辑 0)
		TESTC=1; 电源复位功能有效
6, 4, 2, 1, 0	0	缺省值置逻辑 0

8. 6. 2 控制 / 状态寄存器 2

表7:控制/状态寄存器2位描述(地址01H)

Bit	符号	描述
7,6,5	0	缺省值置逻辑 0
4	TI/TF	TI/TP=0:当 TF 有效时 INT 有效 (取决于 TIE 的状态) TI/TP=1:INT 脉冲有效,参见表 8 (取决于 TIE 的状态) 注意: 若 AF 和 AIE 都有效时,则 INT 一直有效
3	AF	当报警发生时, AF 被置逻辑 1; 在定时器倒计数结束时,
2	TF	TF 被置逻辑 1,它们在被软件重写前一直保持原有值,若定时器和报警中断都请求时,中断源由 AF 和 TF 决定,若要使清除一个标志位而防止另一标志位被重写,应运用逻辑指令 AND,标志位 AF 和 TF 值描述参见表 9。
1	AIE	标志位 AIE 和 TIE 决定一个中断的请求有效或无效,当
0	TIE	AF 或 TF 中一个为"1"时中断是 AIE 和 TIE 都置"1"时的逻辑或。 AE=0:报警中断无效;AIE=1:报警中断有效 TIE=0:定时器中断无效;TIE=1:定时器中断有效

表 8: /INT 操作(bit TI/TP=1)

源时钟(Hz)	/INT	周期
10VH1 1 (115)	n=1	n>1
4096	1/8192	1/4096
64	1/128	1/64
1	1/64	1/64
1/60	1/64	1/64

注 1. TF 和/INT 同时有效

注 2. n 为倒计数定时器的数值, 当 n=0 时定时器停止工作。

表 9: AF和TF值描述

R/W	Bit: AF		Bit: TF		
10/ 11	值	描述	值	描述	
Dood 法	0	报警标志无效	0	定时器标志无效	
Read 读	1	报警标志有效	1	定时器标志有效	
White F	0	报警标志被清除	0	定时器标志被清除	
Write 写	1	报警标志保持不变	1	定时器标志保持不变	

8.6.3 秒、分钟和小时寄存器

表 10: 秒/VL 寄存器位描述 (地址 02H)

Bit	符号	描述
7	VL	VL=0:保证准确的时钟/日历数据 VL=1:不保证准确的时钟/日历数据
6~0	〈秒〉	代表 BCD 格式的当前秒数值,值为 00~99 例如:〈秒〉=1011001,代表 59 秒

表 11: 分钟寄存器位描述 (地址 03H)

Bit	符号	描述
7	1	无效
6~0	〈分钟〉	代表 BCD 格式的当前分钟数值,值为 00~59

表 12: 小时寄存器位描述(地址 04H)

Bit	符号	描述
7~6	1	无效
5~0	〈小时〉	代表 BCD 格式的当前小时数值,值为 00~23

8.6.4 日、星期、月/世纪和年寄存器

表 13: 日寄存器位描述(地址 05H)

Bit	符号	描述
7~6	_	无效
5~0	<日>	代表 BCD 格式的当前日数值,值为 01~31。当年计数器的值是闰年时,PCF8563 自动给二月增加一个值,使其成为 29 天

表 14: 星期寄存器位描述(地址 06H)

	• • • • • • • • • • • • • • • • • • • •				
Bit	符号	描述			
7~3	_	无效			
2~0	<星期>	代表当前星期数值 0~6,参见表 15, 这些位也可由用户重新分配			

表 15: 星期分配表

日 (Day)	Bit2	Bit1	Bit0
星期日	0	0	0
星期一	0	0	1
星期二	0	1	0
星期三	0	1	1
星期四	1	0	0
星期五	1	0	1
星期六	1	1	0

表 16: 月/世纪寄存器位描述(地址 07H)

Bit	符号	描述
7	С	世纪位; C=0 指定世纪数为 20××, C=1 指定世纪数为 19××, "××"为年寄存器
		中的值,参见表 18。当年寄存器中的值由 99 变为 00 时,世纪位会改变。
6~5		无用
0.43		九用
4~0	<月>	代表 BCD 格式的当前月份,值为 01~12; 参见表 17。

表 17: 月分配表

月份	Bit4	Bit3	Bit2	Bit1	Bit0
一月	0	0	0	0	1
二月	0	0	0	1	0
三月	0	0	0	1	1
四月	0	0	1	0	0
五月	0	0	1	0	1
六月	0	0	1	1	0
七月	0	0	1	1	1
八月	0	1	0	0	0
九月	0	1	0	0	1
十月	1	0	0	0	0
十一月	1	0	0	0	1
十二月	1	0	0	1	0

表 18: 年寄存器位描述(地址 08H)

Bit	符号	描述	
7~0	<年>	代表 BCD 格式的当前年数值,	值为 00~99。

8.6.5 报警寄存器

当一个或多个报警寄存器写入合法的分钟、小时、日或星期数值并且它们相应的 AE (Alarm Enable)位为逻辑 0,以及这些数值与当前的分钟、小时、日或星期数值相等,标志位 AF (Alarm Flag)被设置,AF 保存设置值直到被软件清除为止,AF 被清除后,只有在时间增量与报警条件再次相匹配时才可再被设置。报警寄存器在它们相应位 AE 置为逻辑 1 时将被忽略。

表 19: 分钟报警寄存器位描述(地址 09H)

Bit	符号	描述
7	AE	AE=0,分钟报警有效; AE=1,分钟报警无效
6~0	〈分钟报警〉	代表 BCD 格式的分钟报警数值,值为 00~59

表 20: 小时报警寄存器位描述(地址 0AH)

Bit	符号	描述
7AE	AE=0;	小时报警有效; AE=1; 小时报警无效
6~0	〈小时报警〉	代表 BCD 格式的小时报警数值,值为 00~23

表 21: 日报警寄存器位描述(地址 0BH)

Bit	符号	描述
7	AE	AE=0;日报警有效。AE=1;日报警无效。
6~0	〈日报警〉	代表 BCD 格式的日报警数值,值为 00~31

表 22: 星期报警寄存器位描述(地址 0CH)

Bit	符号	描述
7	AE	AE=0;星期报警有效。AE=1;星期报警无效
6~0	〈星期报警〉	代表 BCD 格式的星期报警数值,值为 0~6

8.6.6 CLKOUT 频率寄存器

表 23: CLKOUT 频率寄存器位描述 (地址 ODH)

Bit	符号	描述
7	FE	FE=0; CLKOUT 输出被禁止并设成高阻抗。
		FE=1; CLKOUT 输出有效。
6~2	_	无效
1	FD1	用于控制 CLKOUT 的频率输出管脚(fckout),
0	FD0	参见表 24。

表 24: CLKOUT 频率选择表

FD1	FD0	${ m f}_{ ext{CLKOUT}}$
0	0	32. 768kHz
0	1	1024Hz
1	0	32Hz
1	1	1Hz

8.6.7 倒计数定时器寄存器

定时器寄存器是一个 8 位字节的倒计数定时器,它由定时器控制器中位 TE 决定有效或无效,定时器的时钟也可以由定时器控制器选择,其它定时器功能,如中断产生,由控制 / 状态寄存器 2 控制。为了能精确读回倒计数的数值, I^2C 总线时钟 SCL 的频率应至少为所选定定时器时钟频率的两倍。

表 25: 定时器控制器寄存器位描述 (地址 0EH)

_	######################################						
	Bit	符号	描述				
	7	TE	TE=0; 定时器无效。TE=1; 定时器有效。				
	$6 \sim 2$	_	无用				
	1	TD1	定时器时钟频率选择位,决定倒计数定时				
	0	TD0	器的时钟频率,参见表 26,不用时 TD1 和 TD0 应设为"11"(1/60Hz),以降低电源损耗。				

表 26: 定时器时钟频率选择

TD1	TD0	定时器时钟频率(Hz)
0	0	4096
0	1	64
1	0	1
1	1	1/60

表 27: 定时器倒计数数值寄存器位描述(地址 0FH)

Bit	符号	描述
7~0	〈定时器倒计数数值〉	倒计数数值 "n", 倒计数周期=n/时钟频率

8.7 EXT__CLK 测试模式

测试模式用于在线测试、建立测试模式和控制 RTC 的操作。

测试模式由控制 / 状态寄存器 1 的位 TEST1 设定,这时 CLKOUT 管脚成为输入管脚。 在测试模式状态下,通过 CLKOUT 管脚输入的频率信号代替片内的 64Hz 频率信号,每 64 个上升沿将产生 1 秒的时间增量。

注意: 进入 EXT_CLK 测试模式时时钟不与片内 64Hz 始终时钟同步,也确定不出预分频的状态。

8.7.1 操作举例

- 1. 进入 EXT CLK 测试模式;设置控制 / 状态寄存器 1 的位 7 (TEST=1)。
- 2. 设置控制 / 状态寄存器 1 的位 5 (STOP=1)。
- 3. 清除控制 / 状态寄存器 1 的位 5 (STOP=0)。
- 4. 设置时间寄存器(秒、分钟、小时、日、星期、月/世纪和年)为期望值。
- 5. 提供32个时钟脉冲给CLKOUT。
- 6. 读时间寄存器观察第一次变化。
- 7. 提供64个时钟脉冲给CLKOUT。
- 8. 读时间寄存器观察第二次变化;需要读时间寄存器的附加增量时,重复步骤7和8。

8.8 电源复位 (POR) 失败模式

POR 的持续时间直接与振荡器的起动时间有关。一种内嵌的长时间起动的电路可使 POR 失效,这样可使设备测试加速。这种模式的设定要求 I^2C 总线管脚 SDA 和 SCL 的信号 波形如图 5 所示,图中所有的时间值为所需的最小值。

当进入失败模式时,芯片立即停止复位,操作通过 I²C 总线进入 EXT__CLK 测试模式。设置位 TESTC 逻辑 0 可消除失败模式,再次进入失败模式只有在设置 TESTC 为逻辑 1 后进行。在普通模式时设置 TESTC 为逻辑 0 没有意义,除非想阻止进入 POR 失败模式。

图 5: POR 失败时序图

8.9 串行接口

PCF8563 的串行接口为 I^2C 总线。

8.9.1 I2C 总线特性

I²C 总线用两条线(SDA 和 SCL)在芯片和模块间传递信息。SDA 为串行数据线,SCL 为串行时钟线,两条线必须用一个上拉电阻与正电源相连,其数据只有在总线不忙时才可传送。

图 7 系统配置参见图 6,产生信号的设备是传送器,接收信号的设备是接收器,控制信号的设备是主设备,受控制信号的设备是从设备。

图 6 I2C 总线系统配置图

8.9.2 起动(START)和停止(STOP)条件

总线不忙时,数据线和时钟线保持高电平。数据线在下降沿而时钟线为高电平时为起动条件(S),数据线在下降沿而时钟线为高电平时为停止条件(P),参见图7。

图 7: I²C 总线的起动(START)和停止(STOP)条件

8.9.3 位传送

每个时钟脉冲传送一个数据位, SDA 线上的数据在时钟脉冲高电平时应保持稳定, 否则 SDA 线上的数据将成为上面提及的控制信号,参见图 8。

图 8 I2C 总线上的位传送

8.9.4 标志位

在起动条件和停止条件之间传送器传送给接收器的数据数量没有限制。每个8位字节后加一个标志位,传送器产生高电平的标志位,这时主设备产生一个附加标志时钟脉冲。

从接收器必须在接收到每个字节后产生一个标志位,主接收器也必须在接收从传送器传送的每个字节后产生一个标志位。在标志位时钟脉冲出现时, SDA 线应保持低电平(应考虑起动和保持时间)。传送器应在从设备接收最后一个字节时变为低电平,使接收器产生标志位,这时主设备可产生停止条件。

图 9 I²C 总线上的标志位

8.9.5 1°C 总线协议

注意:用 I^2C 总线传递数据前,接收的设备应先标明地址,在 I^2C 总线起动后,这个地址与第一个传送字节一起被传送。PCF8563 可以作为一个从接收器或从传送器,这时时钟信号线 SCL 只能是输入信号线,数据信号线 SDA 是一条双向信号线。

PCF8563 从地址参见图 10。

图 10 从地址

时钟/日历芯片读/写周期: 三种 PCF8563 读/写周期中 I²C 总线的配置参见图 11, 12, 13, 图中字地址是四个位的数, 用于指出下一个访问的寄存器, 字地址的高四位无用。

图 11 主传送器到从接收器(写模式)

图 12: 设置字地址后主设备读读数据(写字地址;读数据)

图 13: 主设备读从设备第一个字节数据后的数据(读模式)

9. 极限参数

表 28: 极限参数

符号	描述	最大值	最小值	单位
$V_{\scriptscriptstyle DD}$	供应电压	-0.5	+6. 5	V
$\mathrm{I}_{ ext{ iny DD}}$	供应电流	-50	+50	mA
V_{I}	SCL 和 SDA 输入管脚输入电压	-0.5	+6.5	V
	OSCI 输入管脚输出电压	-0.5	V _{DD} +0.5	V
V_0	CLKOUT 和/INT 输出管脚输出电压	-0.5	+6.5	V
I_{I}	所有输入口的直流输入电流	-10	+10	mA
I_{0}	所有输出口的直流输出电流	-10	+10	mA
P_{tot}	总损耗功率	_	300	MW
$T_{\scriptsize amb}$	工作温度	-40	+85	$^{\circ}$ C
$T_{\tt stg}$	储存温度	-65	+150	$^{\circ}$ C

10. 静态特性

表 29: 静态特性

无特别指明, V_{dd}=1.8~5.5V, V_{ss}=0V; T_{amb}=-40~+85 ℃; f_{osc}=32.768kHz; 石英晶片

$R_s\!\!=\!\!40k\,\Omega\textrm{ ;}C_l\!\!=\!\!8pF_\circ$

s=40k Ω ;C _I =8pF 符 号	描述	条件	最小值	典型值	最大值	单位
电源	1111 VC	4811	44.1 円	八王區	以八田	1 1.7.
204		I²C 总线无效				
	工作电压	T _{amb} =25°C	1. 0[1]	_	5. 5	V
		I ² C 总线有效	110			
$V_{ ext{DD}}$		f_{SCL} =400kHz	1.8[1]	_	5. 5	V
	提供可靠的时钟		V			
	/日历数据时的	$T_{amb} = 25$ °C	V_{LOW}	-	5. 5	V
	工作电压		5-3			
	工作电流;	f_{SCL} =400kHz	[2] _	-	800	μА
	CLKOUT 失效	$f_{\text{SCL}} = 100 \text{kHz}$	-	-	200	μА
	(FE=0)	f _{scl} =0kHz;	[2]			
		$T_{amb} = 25$ °C				
		$V_{DD} = 5V$	_	275	550	nA
${ m I}_{ exttt{DD1}}$		$V_{DD} = 3V$	-	250	500	nA
		$V_{DD} = 2V$	-	225	450	nA
		f _{scl} =0kHz	[2]			
		$V_{DD} = 5V$	_	500	750	nA
		$V_{DD} = 3V$	_	400	650	nA
		$V_{DD} = 2V$	_	400	600	nA
		f _{SCL} =0kHz;	[2]			
		T _{amb} =25°C				
	工作电流;	$V_{DD} = 5V$	-	825	1600	nA
	CLKOUTY 有效 F _{CLKOUT} =32kHz (FE=1)	$V_{DD} = 3V$	-	550	1000	nA
${ m I}_{ m DD2}$		$V_{DD} = 2V$	-	425	800	nA
	(PE-1)	f _{SCL} =0kHz	[2]			
		$V_{DD} = 5V$	-	950	1700	nA
		$V_{DD} = 3V$	-	650	1100	nA
		$V_{DD} = 2V$	-	500	900	nA
输入	T	T		Т	T	T
$V_{\scriptscriptstyle \mathrm{IL}}$	低电平输入电压		V_{SS}	_	0. 3V _{DD}	V
V_{IH}	高电平输入电压		0. 7V _{DD}	-	V_{DD}	V
$I_{ ext{LI}}$	输入漏电流	V _I = V _{DD} 或 V _{SS}	-1	_	+1	μА
Ci	输入电容		[3] —	_	7	pF
输出		T		T	1	T .
$I_{ ext{OL}(ext{SDA})}$	低电平输出电流 管脚 SDA		-3		_	mA
$I_{\text{OL}(/\text{INT})}$	低电平输出电流 管脚/INT	$V_{\rm OL} = 0.4V;$ $V_{\rm DD} = 5V$	-1		-	mA
I _{OL} (CLKOUT)	低电平输出电流 管脚 CLKOUT		-1	_	_	mA
I _{OH} (CLKOUT)	高电平输出电流 管脚 CLKOUT	$V_{OH}=4.6V;$ $V_{DD}=5V$	1	-	_	mA
I_{L0}	输出漏电流	V ₀ = V _{DD} 或 V _{SS}	-1	_	+1	μА
电压检测器			1	1	1	1
$ m V_{LOW}$	掉电检测值	T _{amb} =25°C	-	0.9	1.0	V

- [1] 加电时振荡器可靠起动: V_{DD(最小值, 加电时)}= V_{DD(最小值)} + 0.3V
- [2] 定时器源时钟 = 1/60Hz; SCL 和 SDA = V_{DD}
- [3] 在样品基础上测试

T_{amb} = 25 °C; Timer = 1 minute.

图 14 CLKOUT 失效时, Inp与 Vnn的关系图

V_{DD} = 3 V; Timer = 1 minute.

图 16 CLKOUT=32kHz; Inp与 Tamb关系图

图 15 CLKOUT=32kHz; Inp与 Vnp的关系图

 $T_{amb} = 25$ °C; normalized to $V_{DD} = 3$ V.

图 17 频率偏差与 Vin 的关系图

11. 动态特性

表 30: 动态特性

无特别指明, V_{dd} =1.8~5.5V, V_{ss} =0V; T_{amb} =-40~+85℃; f_{OSC} =32.768kHz;石英晶片 R_s =40k Ω ; C_l =8pF。

符号	描述	条件	最小值	典型值	最大值	单位			
振荡器									
C_L	精确负载电容		15	25	35	pF			
$\Delta f_{\text{OSC}}/f_{\text{OSC}}$	振荡器稳定性	$\triangle V_{DD} = 200 \text{mV}$ $T_{amb} = 25 ^{\circ}\text{C}$	_	2×10 ⁻⁷	_				
石英晶体参	石英晶体参数 (fosc=32.768kHz)								
$R_{\rm s}$	串联电阻		_	_	40	kΩ			
C_L	并联电阻		_	10	_	pF			
C_{T}	可调电容		5	_	25	pF			
CLKOUT 输出									
δ_{CLKOUT}	CLKOUT 功能因数		[1] _	50	_	%			
I²C 总线定图									
$\mathbf{f}_{ ext{SCL}}$	SCL 时钟频率		[3] _	-	400	kHz			
t _{HD;STA}	起动条件保持时 间		0.6	_	_	μS			
t _{su;sta}	重复起动条件的 产生时间		0.6	_	_	μS			
$t_{\mathtt{LOW}}$	SCL 低电平时间		1.3	-		μS			
t _{HIGH}	SCL 高电平时间		0.6	-		μS			
$t_{\rm r}$	SCL和SDA上升沿 时间		_	_	0.3	μS			
$t_{ m f}$	SCL和SDA下升沿 时间		_	_	0.3	μS			
Сь	SD总线负载电容		_	-	400	pF			
t _{su;dat}	产生数据时间		100	_	_	ns			
t _{HD;DAT}	保持数据时间		0	_	_	ns			
t _{SU;STO}	停止条件发生时 间		4. 0		_	μS			
tsw	可接受的总线尖 峰宽度		_	_	50	ns			

- [1] 无特别说明 fclkout=32.768kHz
- [2] 所有定时数值在操作电压范围内(T_{amb} 条件下)有效,参考输入电压在 V_{SS} 到 V_{DD} 之间变化时 V_{TL} 和 V_{TH} 的值
- [3] I²C 总线在两个起动或一个起动和停止条件下的访问时间必须小于 1 秒

12. 应用概述

图 19 应用图

12.1 石英晶片频率调整

方法 1: 定值 OSCI 电容——计算所需的电容平均值,用此值的定值电容,通电后在 CLKOUT 管脚上测出的频率应为 32.768kHz,测出的频率值偏差去取决于石英晶片,电容偏差和器件之间的偏差(平均为 $\pm 5 \times 10^6$)。平均偏差可达 5 分钟 / 年

方法 2: OSCI 微调电容——可通过调整 OSCI 管脚的微调电容使振荡器频率达到精确值,这时可测出通电时管脚 CLKOUT 上的 32.768kHz 信号

方法 3: OSCI 输出—直接测量管脚 OSCI 的输出。

13. 包装概况

图 20 SOT96-1

图 21 SOT97-1

图 22 SOT505-1