# Hito 3: Análisis de sentimiento en Tweets relacionados con Covid-19

Nicolás Herrera - Yesenia Marulanda - Franco Migliorelli Samuel Sánchez - Sebastián Urbina Grupo 11

> 06 de Enero de 2021 CC5206 - Introducción a la Minería de Datos

### **AGENDA**

- Introduccion
- 2. Preguntas/hipotesis
- 3. Metodologia.
- 4. Experimentos y resultados.
  - 4.1. Análisis exploratorio de los datos.
  - 4.2. Preprocesamiento.
  - 4.3. Vectorización de comentarios.
  - 4.4. Predicción sobre un nuevo dataset.
- Analisis futuros.

## 1. Introducción

Motivación

### 1. INTRODUCCIÓN



tweets diarios en primer trimestre 2020

<sup>\*</sup> Twitter suma 166 millones de usuarios durante el Coronavirus. (2020, 3 junio). REBOLD, Data-Driven Marketing & Communication. https://letsrebold.com/es/blog/twitter-suma-166-millones-de-usuarios-frente-al-coronavirus/#:%7E:text=Asimismo%2C%20Twitter%20comunic%C3%B3%20en%20la,el%20primer%20trimestre%20de%202019.

### 1. INTRODUCCIÓN



Información en tiempo real



Diferentes localidades



Percepciones sobre temas específicos



Aplicación herramienta minería de datos

### **Importancia**

- Demostrar que los algoritmos computacionales pueden clasificar subjetivamente al lenguaje natural.
- Demostrar que la clasificación automática puede estar muy cerca de una clasificación manual.

### 1. INTRODUCCIÓN

### **Objetivos**

- Identificar cómo se relaciona el sentimiento identificado con el contexto país.
- Identificar palabras que son clave a la hora de categorizar el sentimiento.
- Establecer algoritmos para predecir sentimientos de forma sistematizada.
- Entrenar modelos de clasificación en base a tweets usando un dataset de entrenamiento y un dataset de evaluación.

# 2. Hipótesis y preguntas Objetivos del proyecto.

### Preguntas/hipotesis

- 1. ¿El sentimiento general sobre el COVID-19 varía por la localidad registrada?
- 2. Dada las características del COVID-19 y sus consecuencias, más del 50% de los tweets están asociados a un sentimiento negativo o extremadamente negativo.
- 3. ¿Existe una variación en el sentimiento de los comentarios al avanzar los días? ¿Cómo se relaciona con la evolución de nuevos casos?
- 4. Los sentimientos de una nueva base de datos pueden ser definidos apartir de un clasificador entrenado con una base de datos previa.

# 3. Metodologia Propuesta experimental.

### 3. Metodología



# 4. Experimentos y resultados. Desarrollando el análisis.

# **4.1. Exploración de datos**Conociendo y analizando BBDD

44955 tweets relacionados con el tema COVID 19.

- Atributos
  - Fecha de publicación (2 de marzo 14 de abril)
  - Identificador de usuario
  - Localización del usuario (opcional)
    - Ciudad, País, Estado
  - Sentimiento asignado al Tweet (manual)

### Países y ciudades con más tweets asociados



- ~20% no registra localidad.
- Datos agregados a nivel de ciudad y/o países

### Evolución de sentimientos en Twitter Mar - Abr 2020



- Preponderancia "Positive" y "Negative"
- "Extremely Negative" menos común

### Evolución de sentimientos y casos nuevos de Covid.



### Evolución de sentimientos y casos nuevos de Covid.





### Palabras más usadas en Twitter sobre COVID-19 Mar - Abr 2020







Negative + Extremely
Negative

**Neutral** 

Positive + Extremely Positive

# 4.2. Preprocesamiento Limpieza.

### 4.2. Preprocesamiento de datos

- Remoción de notaciones propias de Twitter (#, RT y @)
- Remoción de palabras "vacías" del lenguaje (conectores, etc.)
- Consideración de Bigramas (nombres compuestos por dos palabras) (gensim).
- Eliminación de URLs e hipervínculos (www, com, etc)

## 4.2. Vectorización Creación de columnas

### 4.2. Vectorización

### **Embedding Words (Word2Vec)**

- Red neuronal con una capa oculta
- Predecir cada palabra cercana de cada término de un texto
- Obtener los pesos de la capa oculta
- Reducción de dimensionalidad:
   N\_tweets x 200
- Accuracy = 0.65 (SVM)

### TF-IDF

- TF = Frequency/total number of words in the document
- IDF = log(total number of documents/(Number of documents in which the word is present+1))
- Medida de importancia de la palabra
- N\_tweets x 10758
- Accuracy = 0.79 (SVM)

### 4.4. Predicción Aplicación del modelo al nuevo dataset.

### 4.4. Predicción

Información del nuevo dataset.

179108 tweets relacionados con el tema COVID 19.

- Atributos
  - Fecha de publicación (24 de julio 30 de agosto)
  - Identificador de usuario
  - Localización del usuario (opcional)
    - Ciudad, País, Estado

### 4.4. Predicción

### Resultados de clasificación.

| Predicción de sentimiento | Cantidad de Tweets | % sobre total de Tweets |
|---------------------------|--------------------|-------------------------|
| Positivo                  | 76.488             | 42,7%                   |
| Negativo                  | 55.622             | 31%                     |
| Neutral                   | 46.998             | 26,2%                   |

### 4.4. Predicción

### Sentimientos predichos a través del tiempo.



### 4.4. Predicción.

### 50 palabras más frecuentes.



**Sentimiento Negativo** 



**Sentimiento Positivo** 

### 4.4. Predicción.

### Comparación de resultados.

| Predicción de sentimiento | % sobre total de<br>Tweets (2 de marzo<br>- 14 de abril) | % sobre total de<br>Tweets (24 de julio<br>- 30 de agosto) |
|---------------------------|----------------------------------------------------------|------------------------------------------------------------|
| Positivo                  | 43.6%                                                    | 42,7%                                                      |
| Negativo                  | 37.9%                                                    | 31%                                                        |
| Neutral                   | 18.5%                                                    | 26,2%                                                      |

Considerar poca representatividad de los tweets

 Aparente disminución de comentarios negativos y aumento de comentarios neutrales.

# 5. Direcciones futuras

### 5. Direcciones futuras.

 Investigar más métodos para clasificar el lenguaje natural y comparar sus métricas con las métricas de los métodos enseñados en el curso.

### Diferenciación de la extensión del tweet por sentimiento registrado



- Promedio general 200 palabras
- Hashtag incorporado en el tweet





### Palabras más usadas en Twitter sobre COVID-19 Mar - Abr 2020







Negative + Extremely
Negative

Neutral

Positive + Extremely Positive



# 3. Hipótesis y preguntas Posibles objetivos del proyecto

### Preguntas planteadas

- 1. ¿Los sentimientos mayormente expresados en los Tweets tienen relación con el contexto social del lugar desde donde son publicados?
- 2. Dada las características del COVID-19 y sus consecuencias, ¿más del 50% de los tweets están asociados a un sentimiento negativo o extremadamente negativo?.
- ¿Podemos formular un clasificador que se pueda generalizaren base a los datos que tenemos?

### Preguntas planteadas

- 4. ¿El sentimiento de los comentarios se ha visto modificado con respecto al tiempo transcurrido? ¿a antes del Covid?
- 5. ¿Se puede asociar un sentimiento a una palabra dependiendo de las otras palabras mencionadas en un tweet?

# 4. Próximos avances

### Lo que nos falta

- 1. Tratar y agrupar localizaciones
- Tratar palabras muy largas (hashtags)
- 3. Entrenar algoritmos de clasificación
- 4. Profundizar NLP

### Metodología

- Tokenización
- Stop words + actualización de caracteres especiales
- Un string para cada tweet con datos "limpios"
- Se consideran Bigramas
- **OPCIÓN 1:** Creación de embeddings (explicar qué son y para qué sirven, permite identificar palabras más parecidas)
- Entrenamiento con embeddings
- Testeo de modelo con:
  - Multinomial Naive Bayes
  - KNN
  - SVM Lineal
- **OPCIÓN 2:** TF-ID
- Entrenamiento con matriz TF-ID
- Testeo de modelo con:
- Comparación de resultados del modelo (bajo accuracy), se elige el mejor para predecir (SVM y TF-ID)
- Predicción con otro data set