Braided Tensor Categories

Contegory, C-linear, abelian

Home(XY) is a f.d. C-V.S.

· direct sums of

One composition is C-bilinear objects exist

· Kernel/Cokenel exist

· Every bijection is iso

Tensor Category C together with

(1) $C \times C \longrightarrow C$ bifunctor (additive) $(X,Y) \longmapsto X \circ Y$

(2) Unit object 1e E

Page 1

(3) Associativity Constraint a

a is a northern trans of functors $\otimes \cdot (\otimes, id) = \otimes (id, \otimes)$

* left & right unit constraints $l_x: 1 \circ x \xrightarrow{\sim} x$ $r_x: X \circ 1 \xrightarrow{\sim} x$ natural in X.

Axioms Pentagon Axiom: $\forall X_1, X_2, X_3, X_4 \in \mathcal{I}$

$$(X_{1} \otimes X_{2}) \otimes (X_{3} \otimes X_{4})$$

$$((X_{1} \otimes X_{2}) \otimes X_{3}) \otimes X_{4}$$

$$((X_{1} \otimes X_{2}) \otimes X_{3}) \otimes X_{4}$$

$$((X_{2} \otimes (X_{3} \otimes X_{4}))$$

$$(X_{3} \otimes X_{4}) \otimes (X_{3} \otimes X_{4})$$

$$(X_{4} \otimes X_{2}) \otimes X_{3}) \otimes X_{4}$$

$$(X_{5} \otimes X_{2}) \otimes (X_{5} \otimes X_{4})$$

$$(X_{5} \otimes X_{5}) \otimes (X_{5} \otimes X_{5})$$

Page 2

$$(X_{1},x_{2},x_{3}) \otimes X_{4}$$

$$(X_{1},x_{2},x_{3}) \otimes X_{4} \longrightarrow X_{1} \otimes (X_{2} \otimes X_{3}) \otimes X_{4})$$

$$(X_{1},x_{2},x_{3},x_{4}) \otimes (X_{2} \otimes X_{3}) \otimes X_{4})$$

a vs unit

$$(X \otimes 1) \otimes y \xrightarrow{\alpha_{x_{A,Y}}} X \otimes (1 \otimes y)$$

$$\downarrow_{\gamma_{x} \otimes id_{y}} X \otimes y$$

$$\downarrow_{id_{x} \otimes l_{y}} X \otimes y$$

When
$$C = Rep_{fd}(A)$$

- Need an algebra hom $\Delta: A \longrightarrow A \otimes A$ (coproduct)
- Need an algebra hom $(\text{defines } 1_e)$ $E : A \longrightarrow C$ (counit)
- · Need $\Phi \in A \otimes A \otimes A$ (defines assoc.)

 invertible (associator)

These give:

$$A \subset V_1, V_2 \qquad \pi_j : A \longrightarrow E_{nd}(V_j)$$

$$A \stackrel{?}{\sim} V_1 \otimes V_2$$
 by $A \longrightarrow \mathcal{E}_n d(V_1 \otimes V_2)$

$$a \longmapsto \pi_1 \otimes \pi_2 (\Delta(a))$$

$$1_{\mathcal{C}} = \mathbb{C} \supset A$$
 Via $\mathcal{E}: A \longrightarrow \mathbb{C} = \mathcal{E}_{nd_{\mathcal{C}}}(\mathcal{C})$

ACV,
$$V_2$$
, V_3 $V_1 = \pi_1 \otimes \pi_2 \otimes \pi_s (\phi)$

$$A \subset V_1, V_2, V_3 = \pi_1 \otimes \pi_2 \otimes \pi_s (\phi)$$

Axions

$$(|\otimes|\otimes\Delta)(\Phi) \cdot (\Delta\otimes(\otimes)(\Phi)$$

$$= (|\otimes\Phi) \cdot (|\otimes\Delta\otimes|)(\Phi) \cdot (\Phi\otimes|)$$

Left/right unit

$$(\varepsilon \otimes) \circ \Delta(\alpha) = \alpha = (1 \otimes \varepsilon) \circ \Delta(\alpha) \quad \forall \alpha \in A.$$

$$\left(\underline{\phi} \text{ v.s. } \underline{\Delta} \right) : \left(| \otimes \underline{\Delta} \right) \left(\underline{\Delta}(\underline{a}) \right) = \underline{\phi} \left(\underline{\Delta} \otimes I \right) \left(\underline{\Delta}(\underline{a}) \right) \underline{\phi}^{-1} \quad \forall \underline{a} \in \underline{A}$$

$$\frac{(assoc. Vs. Unit)}{(assoc. Vs. Unit)} \cdot (|\otimes \mathcal{E} \otimes |)(\bar{\phi}) = |\otimes|.$$

A unital assoc. algebra over
$$C$$
 $(A, \Delta, \varepsilon, \phi)$ is a quasi-bialgebra.
$$(\text{if } \phi = | \otimes | \otimes |, \text{ just bialgebra}).$$

Back to general tensor cutegories

Mac Lane's Coherence Theorem

for $n \in \mathbb{Z}_{22}$, $X_1, ..., X_n \in \mathbb{C}$ and \underline{b} a complete bracketing on n letters, we get $(X_1 \otimes ... \otimes X_n)_{\underline{b}} \in \mathbb{C}$.

let Bn = set of all such b.

Thm Yb, b' & Bn, there is a unique extension of the assoc. Constraint to an iso

$$\left(X^{\otimes} \otimes X^{\mathsf{u}}\right)^{\bar{\mathsf{p}}} \xrightarrow{\sigma^{\bar{\mathsf{q}},\bar{\mathsf{p}}}} \left(X^{\mathsf{u}} \otimes \dots \otimes X^{\mathsf{u}}\right)^{\bar{\mathsf{p}}}$$

 $\underline{N=2}$ id

N=3 original associator a or its inverse.

n=4 There are 2 natural exts. but pentagon axiom says they're equal.

Idea construct a space An (Associate dron)

Vertices = elements of Bn

(1-celly) = associativity

faces = Pentagons (2-cells)

 A_n is connected \Rightarrow existence.

An is simply connected > uniqueness.

Braided Tensor Category: (C, 0, a)

A commutativity constraint on tensor category e

is iso $C_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ (natural in $X \notin Y$).

Satisfying hexagon axioms

 $\mathsf{C}_{\mathsf{V_1} \otimes \mathsf{V_2} \,,\, \mathsf{V_3}}$

 $\forall V_1, V_2, V_3 \in C_1$

And Hexagon2:

If (C, \otimes, c, a) is a braided tensor category and $N \in \mathbb{Z}_{22}$ and $V \in C$, then we automatically have an action of Artin's brail $gp B_n$ in $V_b \otimes n$ $(\forall b \in B_n)$ as follows

brail
$$yp B_n$$
 in $V_{\underline{b}}$ $(\forall \underline{b} \in B_n)$ as fellows $\langle T_1, ..., T_{n-1} | rel^n s \rangle$

Let i ∈ {1, ..., n-1}.

Choose
$$b' \in \mathcal{B}_n$$
 s.t. $b' = \cdots (\chi_i \chi_{i+1}) \cdots$

well-defined by Coherence thin. And satisfy braid relins.

$$\overline{N=3}$$
 $\overline{p}=(\cdot \cdot).$

$$T_{2} \qquad (V \otimes V) \otimes V \xrightarrow{\alpha} V \otimes (V \otimes V)$$

$$\downarrow 1 d \otimes C$$

$$(V \otimes V) \otimes V \xrightarrow{\alpha^{-1}} V \otimes (V \otimes V)$$

$$T_2 = a^{-1} (Id \otimes c) a$$