McNemar's Test in SPSS

Notes

- 1. The author accepts no responsibility for the topicality, correctness, completeness, or quality of the information provided.
- 2. This pdf is part of a YouTube tutorial: https://youtu.be/Xp-6BRkPH1U
- 3. This pdf is for your own personal use only. Please do not distribute further!

What exactly is McNemar's test?

Measure at Time 2

Measure at Time 1

	Outcome 1	Outcome 2
Outcome 1	а	b
Outcome 2	С	d

Is there a change in proportion for the paired data (i.e., paired data: Time 1 and Time 2)?

Hypothesis for McNemar's Test

Time 2

Time 1

	Outcome 1	Outcome 2	
Outcome 1	а	b	a + b
Outcome 2	С	d	c + d
	2 + C	h + d	•

HO: The marginal probabilities for two outcomes are the same.

Ha: The marginal probabilities for two outcomes are not the same.

H0:
$$p_a + p_b = p_a + p_c$$

Ha:
$$p_a + p_b \neq p_a + p_c$$

H0:
$$p_b = p_c$$

H0:
$$p_b = p_c$$

Ha: $p_b \neq p_c$

Test Statistic for McNemar's Test

Time 2

Time 1

	Outcome 1	Outcome 2	
Outcome 1	а	b	a + k
Outcome 2	С	d	c + c
	a + c	b + d	•

H0:
$$p_b = p_c$$

Ha:
$$p_b \neq p_c$$

$$\chi^2 = \frac{(b-c)^2}{b+c} \qquad \qquad \chi^2 = \frac{(b-c-1)^2}{b+c}$$

McNemar's Test Data Example

After Ad

Before Ad

	Not Buy	Buy	
Not Buy	28	22	50
Buy	6	44	50
	34	66	

$$\chi^2 = \frac{(b-c)^2}{b+c}$$

$$\chi^2 = \frac{(22-6-1)^2}{22+6} = 8.036$$

Critial Value:
$$\chi(1)^2 = 3.841$$

$$df = 1$$

McNemar's Test – Report Finding

We conducted a McNemar test and obtained the following results: χ^2 = 8.036, p-value = 0.005. Thus, we reject the null hypothesis, suggesting that the ratios of purchasing and not purchasing the product significantly differ between before and after the advertising.

After Ad

Before Ad

	Not Buy	Buy	
Not Buy	28	22	50
Buy	6	44	50
	34	 66	

Next...

1. Steps of McNemar's Test in SPSS

2. Difference between McNemar's Test vs. Chi-square Independence Test

Difference between McNemar's Test vs. Chi-square Independence Test

McNemar's Test vs. Chi-square Independence Test

After Ad

McNemar's Test

Before Ad

	Not Buy	Buy	
Not Buy	28	22	50
Buy	6	44	50
	34	66	ı

Chi-square Independence Test

Gender

	Not Buying	Buying	
Man	28	22	50
Woman	6	44	50
	34	66	100

Purchase

Notes: The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

McNemar's Test vs. Chi-square Independence Test

Chi-square Independence Test

Gender

	Not Buying	Buying	
Man	28	22	50
Woman	6	44	50
	34	66	100

Purchase

- • H_0 : There is no association between gender and the purchase of the product.
- •H_a: There is an association between gender and the purchase of the product.

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{(28-17)^2}{17} + \frac{(22-33)^2}{33} + \frac{(6-17)^2}{17} + \frac{(44-33)^2}{33} = 21.57$$