	Prowad	Marek Polewski Cessna 150m Ozący: Maciej Lasek Grupa: ML6
	Projekt 6	
	Osiągi samolotu	
Data oddania projektu		OCENA:
•••••		

Spis treści

1	Wyznaczanie podstawowych osiśagów samolotu	1
2	Metoda mocy	2
	Zasięg i długotwałość lotu	
4	Wnioski	F

1 Wyznaczanie podstawowych osiśagów samolotu

Model obliczeniowy używany do obliczeń podstawowych osiągów samolotu zależy od zakresu prędkości eksploatacyjnych samolotu. Dla samolotów szybkich, których osiągana liczba Macha jest większa niż 0.7, metoda obliczeniowa uwzględnić musi wpływ ściśliwości powietrza na charakterystyki aerodynamiczne Cx i Cz. Również dla samolotów wolniejszych o stosunkowo dużej mocy, obliczenia muszą być przeprowadzone dokładniejszą metodą. O wyborze mniej lub bardziej dokładnej metody obliczeniowej można zdecydować obliczając tzw. współczynnik obciążenia mocy q_n :

$$q_n = \frac{m_{max}}{N_{max}} = \frac{726}{74} = 9.8108 \frac{kg}{kW}$$

Wartość współczynnika q_n jest większa od $6\frac{kg}{kW}$ więc można stosować metodę mocy bez mniejszych błędów.

2 Metoda mocy

Następnie wyznaczam odpowiednie wartości korzystając ze wzorów zamieszczonych poniżej.

- Prędkość lotu poziomego: $V = \sqrt{\frac{2mg}{\rho S} \cdot \frac{1}{C_z}}$
- Moc niezbędna do lotu poziomego $N_n = mg\sqrt{\frac{2mg}{\rho S} \cdot \frac{1}{E}}$
- Prędkość wznoszenia $w = \frac{N_r N_n}{mg}$
- Kąt toru lotu $\gamma = \arcsin \frac{w}{V}$

Wszystkie obliczenia zostały wykonane dla m = 700 kg.

Znając pułap teoretyczny wyliczam czas wznoszenia na podsawie wzoru:

$$t_h = \frac{h_t}{w_{max}} \log \frac{1}{1 - \frac{h}{h_t}}$$

Rys. 1: Prędkość wznoszenia

Rys. 2: Maksymalne prędkości wznoszenia

Rys. 3: Kąt wznoszenia

	height	V_{min}	V_{max}	V_{γ}	w_{max}	γ
0	0	24.417	48.669	22.796	5.459	0.24
1	0.5	25.016	47.718	23.355	4.794	0.205
2	1	25.639	47.236	23.937	4.145	0.172
3	1.5	26.602	46.706	24.836	3.225	0.129
4	2	26.944	46.411	25.155	2.921	0.115
5	2.5	27.025	45.667	25.23	2.634	0.103
6	3	28.361	45.335	26.477	2.088	0.077
7	3.5	29.091	43.193	27.159	1.523	0.054
8	4	29.862	40.01	28.784	0.966	0.033
9	4.5	30.837	34.64	29.725	0.314	0.01
10	5	31.501	30.224	31.418	-0.097	-0.003
11	5.5	32.37	23.623	32.285	-0.602	-0.019

TAB. 1: Wartości do wykresu ofertowego

Rys. 4: Wykres ofertowy

3 Zasięg i długotwałość lotu

Zgodnie z zaleceniami z instrukcji, wszystkie obliczenia prowadzę dla wysokości h = 0 km.

- Masa całkowita m = 700kg
- Moc nominalna $N_n = 68kW$
- Jednoskowe zużycie paliwa $b_j = 0.348 \frac{kg}{kWh}$
- Gęstość powietrza na h = 0 km ρ = 1.225 $\frac{kg}{m^3}$
- $\Lambda_e = 4.8449$
- $S = 15m^2$
- $Cx_o = 0.05$

Na podstawie wzorów z instrukcji:

$$\Delta m_p = q_e \cdot t \cdot N_n = 0.348 \cdot 0.75 \cdot 68 = 17.748kg$$

$$m_p = m_f - \Delta m_p = 77 - 17.748 = 59.252kg$$

$$m_{obl} = m - 0.5 \cdot m_p = 700 - 0.5 \cdot 59.252 = 690,374kg$$

$$T = 1000 \frac{\eta_s}{g q_e V} \sqrt{\frac{\Lambda_e \pi}{C x_o}} \left(\arctan \frac{2m_o g}{A} - \arctan \frac{2m_k g}{A} \right)$$

$$L = 3.6TV \qquad A = \rho S V^2 \sqrt{C x_o \Lambda_e \pi}$$

Rys. 5: Zasięg i długotrwałość lotu

4 Wnioski

Na podstawie danych z projektu 1, można wywnioskować że obliczenia zostały wykonane poprawnie, ponieważ wyniki pokrywają z tymi zamieszczonymi w [2]

	cx	V	A	η_s	Czas lotu [h]	Zasięg [km]
0	0.05	66.937	71823.63	0.851	1.307	314.94
1	0.058	51.134	41913.2	0.821	2.656	488.974
2	0.066	40.751	26619.3	0.761	4.279	627.692
3	0.074	34.402	18971.26	0.703	5.5	681.1
4	0.082	30.931	15335.88	0.664	6.074	676.379
5	0.09	29.388	13844.33	0.645	6.261	662.37
6	0.098	29.016	13496.41	0.64	6.297	657.739
7	0.106	29.231	13696.67	0.643	6.276	660.473
8	0.114	29.601	14046.03	0.647	6.238	664.803
9	0.122	29.834	14267.92	0.65	6.213	667.273
10	0.129	29.755	14191.83	0.649	6.222	666.45
11	0.137	29.288	13750.02	0.643	6.271	661.17
12	0.145	28.442	12966.89	0.632	6.344	649.572
13	0.153	27.288	11936.17	0.616	6.407	629.428
14	0.161	25.944	10789.92	0.596	6.42	599.602
15	0.169	24.558	9667.226	0.575	6.355	561.825
16	0.177	23.283	8689.881	0.555	6.22	521.395
17	0.185	22.269	7949.193	0.538	6.061	485.866
18	0.193	21.636	7503.735	0.527	5.937	462.456
19	0.201	21.461	7383.134	0.523	5.9	455.858

TAB. 2: Zasięg i długotrwałość lotu dla różnych parametrów

Bibliografia

 $\label{thm:condition} Przewodnik po zadaniach domowych z mechaniki lotu - Charakterystyki zasięgu i długotrwałości lotu https://www.cpaviation.com/images/downloads/CESSNA150POH.pdf$

https://www.manualslib.com/manual/1476191/Continental-Motors-O-200-D.html?page=52manual Współczynnik na podstawie

Na podstawie przykładu ze strony 722 General Aviation Aircraft