Third Semester B.E AY 2019-20

TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES (18MAT31) OUESTION BANK

MODULE 5: Numerical Solution of Ordinary Differential Equations and Calculus of Variations

- 1. Using Runge Kutta method solve $y'' = x (y')^2 y^2$ at x=0.2 with $x_0 = 0$, $y_0 = 1$, $(y')_0 = 0$, h=0.2
- 2. Using Runge Kutta method find the solution at x=0.1 of the D.E $\frac{d^2y}{dx^2} x^2\frac{dy}{dx} 2xy = 1$ with y(0)=1, y'(0)=0, h=0.1. Also find y'(0.1)
- 3. Using Runge Kutta method solve y'' = y + xy' with y(0)=1, y'(0)=0 to find y(0.2) and y'(0.2)
- 4. Apply Milne's predictor-corrector method to compute y(0.4) given the differential equation $\frac{d^2y}{dx^2}=1+\frac{dy}{dx} \text{ and the following table of values. Apply corrector formula once}$

X	0	0.1	0.2	0.3
у	1	1.1103	1.2427	1.3990
y'	1	1.2103	1.4427	1.6990

5. Obtain the solution of 2y'' = 4x + y' at x=1.4 by Milne's method given that

X	1	1.1	1.2	1.3
y	2	2.2156	2.4649	2.7514
y^1	2.3178	2.3178	2.6725	3.0657

Apply the corrector formula once

- 6. Using Milnes predictor-corrector method obtain the solution at the point x = 0.4 of the D.E $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} 6y = 0$ with y(0) = 1, y(0.1) = 1.03995, y(0.2) = 1.138036, y(0.3) = 1.29865, y'(0) = 0.1, y'(0.1) = 0.6955, y'(0.2) = 1.258, y'(0.3) = 1.873. Apply corrector formula once
- 7. Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y^{l}} \right) = 0$
- 8. Find the extremal of the functional $\int_0^\pi \left({y^{_1}}^2 y^2 + 4y cosx \right) dx$, y (0) =0= y (\pi)
- 9. Find the curve on which the functional $\int_0^1 \left[\left(y^{\dagger} \right)^2 + 12xy \right] dx$ with y(0) = 0 and y(1) = 1 can be extremized
- 10. Solve the Euler equation for the functional $\int_{x_0}^{x_1} (1 + x^2 y') y' dx$
- 11. Find the extremal of the functional $\int_{x_1}^{x_2} (y^2 y^2 + 2ysecx) dx$
- 12. Find the extremals of the functional $\int_{x_0}^{x_1} \left(\frac{y^2}{x^3} \right) dx$
- 13. Find the curve on which the functional $\int_0^{\pi/2} (y^{1/2} y^2 + 2xy) dx$ with $y(0) = 0 = y(\pi/2)$ can be extremized
- 14. Find the extremal of the functional $\int_{x_1}^{x_2} (y^2 + y^2 + 2ye^x) dx$
- 15. Find the extremal of the functional $\int_0^{\pi/2} \left(y^2 y^{-2} 2y \sin x \right) dx$ with $y(0) = 0 = y(\pi/2)$
- 16. Prove that geodesics of a plane are straight lines
- 17. A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary

1