University of Bremen Institute of Environmental Physics (IUP)

Constraining uncertainties in multi-model projections of future climate with observations

Dissertation

Author:
Manuel Schlund

Supervisors: Prof. Dr. Veronika Eyring Prof. Dr. Pierre Gentine

This thesis is submitted for the degree Doktor der Naturwissenschaften (Dr. rer. nat.)

March 2021

Abstract (English version)

Abstract (German version)

Contents

Li	ist of Figures	ix
Li	st of Tables	xi
1.	Introduction	1
	1.1. Structure of the thesis	1
2.	Scientific Background	3
	2.1. Earth System Models: Simulations and Analysis	3
	2.1.1. Numerical Climate Modeling	3
	2.1.2. CMIP	5
	2.1.3. Sources of Uncertainties in Climate Model Projections	8
	2.2. The Global Carbon Cycle	8
	2.3. Techniques to reduce Uncertainties in Climate Model Projections	8
3.	Improving Routine Climate Model Evaluation	9
4.	Assessment of Policy-relevant Climate Metrics in CMIP6	11
5.	Evaluation of Emergent Constraints on the Equilibrium Climate Sensitivity in CMIP6	13
6.	Constraining Uncertainties in future Gross Primary Productivity with Machine Learning	15
7.	Summary and Outlook	17

Appen	dix	19
A.	TBA	19
	A.1. test	19
В.	TBA	20
List of	Acronyms	21
Integra	ated Author's References	23
Refere	nces	25
Declara	ation of Authorship	31

List of Figures

2.1.	Historical evolution of coupled climate models over the last 45	
	years. In early days, these models were so-called Atmosphere-	
	Ocean General Circulation Models (AOGCMs) and only included	
	three components: the atmosphere, the land surface and the	
	ocean. Over the time, the individual components grew in com-	
	plexity and included a wider range of processes (illustrated by	
	the growing cylinders). Eventually, more and more components	
	(aerosols, carbon cycle, etc.) were added to the coupled system,	
	forming the modern Earth System Models (ESMs). Taken from	
	Cubasch et al. (2013)	4
2.2.	Schematic of the experiment design of Phase 6 of the Coupled	
	Model Intercomparison Project (CMIP6). The center of the circle	
	illustrates the four DECK (Diagnostic, Evaluation, and Charac-	
	terisation of Klima) experiments and the CMIP6 historical simu-	
	lation. The circular sectors show additional science themes that	
	can be explored through the 21 CMIP6-Endorsed Model Inter-	
	comparison Projects (MIPs). Taken from Simpkins (2017)	7

List of Tables

1.	The effects of treatments X and Y on the four groups studied	20
2.	Logarithmic frequency ratios c of certain intervals in the equal	
	temperament (ET) and the just intonation (JI). x cents correspond	
	to a frequency ratio of $2^{x/1200}$	20

1. Introduction

1.1. Structure of the thesis

Parts of this thesis are published in multiple peer-reviewed publications (two first-author studies and six co-author studies). If applicable, this is clearly stated at the beginning of each chapter. Chapter 2 introduces the scientific background for this thesis. This includes relevant literature that is used as a baseline for this thesis. Chapter 3 gives an overview over the contributions made to the Earth System Model Evaluation Tool (ESMValTool), an open-source software for the analysis of ESMs. These contributions helped improving the routine evaluation of ESMs which is useful for the whole scientific community and lead to co-authorship in four peer-reviewed studies (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020; Weigel et al., 2020). Chapter 4 covers the assessment of policy-relevant climate metrics like the Equilibrium Climate Sensitivity (ECS) and the Transient Climate Response (TCR) in the latest generation of ESMs. This work is already published in two scientific publications (Bock et al., 2020; Meehl et al., 2020). Since the ECS and TCR are considerably higher in this new climate model generation, chapter 5 describes the assessment of emergent constraints (a technique to reduce uncertainties in climate model projections, see section 2.3 on page 8) on the ECS for these ESMs. The contents of this chapter are published in *Earth System Dynamics* (Schlund, Lauer, et al., 2020). Chapter 6 focuses on a new method to reduce climate model uncertainties based on Machine Learning (ML). As an example, the method is applied to the photosynthesis rate at the end of the 21st century, which is already published in the Journal of Geophysical Research: Biogeosciences (Schlund, Eyring, et al., 2020). Finally, chapter 7 provides a summary of the results of this thesis and gives an outlook of possible future works.

2. Scientific Background

This chapter introduces the scientific background of this thesis. First, basic concepts of climate model simulations and associated uncertainties are introduced. Next, the fundamental biogeochemical processes of the global carbon cycle and important metrics describing climate change are presented. Finally, state-of-the art techniques used reduce uncertainties in projections of the future climate are shown. These methods form the basis for the new techniques developed in this thesis.

2.1. Earth System Models: Simulations and Analysis

2.1.1. Numerical Climate Modeling

In contrast to other fields of science, researching the future evolution of the Earth's climate cannot be purely done by performing experiments in a laboratory. Due to the immense complexity of the Earth system (including physical, biological and chemical processes on various temporal and spatial scales and their mutual interactions), we do not have access to a tiny replica of the Earth that we can analyze when exposed to different external conditions (Flato, 2011). While observing the current state of the Earth System is (relatively) straightforward, gaining evidence about the future evolution of the climate by only considering present-day observations is rather difficult.

A possible way out is given by numerical climate models, which offer the possibility to simulate the Earth's climate on a computer. The first numerical climate models came up in the 1960s and were based on weather prediction models (Flato, 2011). Early models from the 1970s simulated only the physical components of the climate system: atmosphere, land surface, ocean and sea

Figure 2.1.: Historical evolution of coupled climate models over the last 45 years. In early days, these models were so-called Atmosphere-Ocean General Circulation Models (AOGCMs) and only included three components: the atmosphere, the land surface and the ocean. Over the time, the individual components grew in complexity and included a wider range of processes (illustrated by the growing cylinders). Eventually, more and more components (aerosols, carbon cycle, etc.) were added to the coupled system, forming the modern Earth System Models (ESMs). Taken from Cubasch et al. (2013).

ice (see figure 2.1). The basis of these so-called Atmosphere-Ocean General Circulation Models (AOGCMs) (Flato et al., 2013) is the numerical solving of the differential equations describing the exchange of energy and matter between these physical components.

Over the course of the years, climate models became more and more complex by including a wider range of processes within the components, but also by introducing new components to the coupled system. Examples of these are aerosols, the carbon cycle, a dynamic vegetation, atmospheric chemistry and land ice (see figure 2.1). AOGCMs coupled to these additional components are called Earth System Models (ESMs), which are the current state-of-the-art models that

allow the most sophisticated simulations of the Earth's climate. In contrast to AOGCMs, ESMs enable the simulation of biological and chemical processes in addition to the dynamics of the physical components of the Earth system. Especially in the context of anthropogenic climate change, these additional processes are of uttermost importance for realistic climate model simulations, since the anthropogenic interference with the Earth system directly influences the various biogeochemical cycles of the Earth. For example, the emission of the most prominent Greenhouse Gas (GHG), carbon dioxide (CO₂), immediately impacts the global carbon cycle by inserting additional carbon into the system (for details see section 2.2). Further examples include land use changes like the deforestation of tropical rainforests, which also directly influences several biogeochemical cycles (e.g. carbon cycle, nitrogen cycle, phosphorus cycle, etc.) by altering respective sinks and sources.

Due to the complex interactions between the different components of the Earth system, these changes in the biogeochemical processes also affect the physical properties of the climate system. For example, due to the global carbon cycle, only about 50% of the emitted CO_2 by humankind remains in the atmosphere (Friedlingstein et al., 2019). The residual part is absorbed by the two main carbon sinks of the planet, the terrestrial biosphere and the ocean. Since only atmospheric CO_2 can act as GHG by introducing an additional radiative forcing to the Earth System leading to increasing surface temperatures, this uptake of CO_2 by the carbon cycle slows down global warming.

2.1.2. CMIP

Due to the complex nature of the Earth system itself, numerical models of it consist of hundreds of thousands of lines of computer code. Thus, a standardization to a certain degree is crucial for the various research groups developing ESMs all around the world in order to obtain comparable output and to facilitate analysis. For this reason, the Working Group on Coupled Modelling (WGCM) of the World Climate Research Programme (WCRP) initiated the Coupled Model Intercomparison Project (CMIP) in 1995, with the objective to "better understand past, present and future climate changes arising from natural, unforced variability or

in response to changes in radiative forcing in a multi-model context" (WCRP, 2020). One major element of CMIP is to establish common standards, coordination, infrastructure, and documentation in order to facilitate the distribution of climate model output (Eyring et al., 2016).

A further main aspect is to provide a set of standardized experiments for global climate model simulations. To participate in the latest phase of CMIP, CMIP6, climate models need to run a *historical* simulation of the period 1850–2014 and the so-called Diagnostic, Evaluation, and Characterisation of Klima (DECK) experiments, which include a pre-industrial control run (*piControl*), a historical Atmospheric Model Intercomparison Project (MIP) simulation (*amip*), a simulation forced with an abrupt quadrupling of CO₂ (*abrupt-4xCO2*) and a simulation forced with a 1% per year increase of the atmospheric CO₂ concentration (*1pctCO2*) (Eyring et al., 2016). This is shown in the center of figure 2.2, which illustrates the experimental design of CMIP6.

To increase diversity and answer more scientific questions, CMIP6 models can participate in the so-called CMIP6-Endorsed MIPs, of which CMIP6 offers 21 (see circular sectors in figure 2.2). Some MIPs offer additional experiments to explore specific aspects of the Earth system, like the Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) which focuses on the carbon cycle (Jones et al., 2016) or the Cloud Feedback Model Intercomparison Project (CFMIP) which focuses on the evaluation of cloud feedbacks (Webb et al., 2017). Other MIPs allow the assessment of future climate change. An example is the Scenario Model Intercomparison Project (ScenarioMIP), which provides common experiments that simulate different possible futures (O'Neill et al., 2016). These experiments are based on the so-called Shared Socioeconomic Pathways (SSPs), a set of alternative pathways of future societal development (O'Neill et al., 2017; O'Neill et al., 2013). For each experiment, a set of emissions and land use changes is calculated from the SSPs (Riahi et al., 2017) which are then used to force the global climate models. For ScenarioMIP, five different SSPs are considered, ranging from SSP1 (sustainability) to SSP5 (fossil-fuel development). Each SSP is combined with a climate outcome (measured as radiative forcing in the year 2100) based on a particular forcing pathway that Integrated Assessment Modelss (IAMs) have shown to be feasible. For exam-

Figure 2.2.: Schematic of the experiment design of Phase 6 of the Coupled Model Intercomparison Project (CMIP6). The center of the circle illustrates the four DECK (Diagnostic, Evaluation, and Characterisation of Klima) experiments and the CMIP6 historical simulation. The circular sectors show additional science themes that can be explored through the 21 CMIP6-Endorsed Model Intercomparison Projects (MIPs). Taken from Simpkins (2017).

ple, SSP5-8.5 represents a scenario based on a fossil-fuel development with a radiative forcing of 8.5 Wm⁻² in 2100 while SSP1-2.6 represents a sustainable future with a radiative forcing of 2.6 Wm⁻² in the year 2100. The two other main scenarios (called "Tier 1" experiments in ScenarioMIP) are the SSP2-4.5 and SSP3-7.0 scenarios. In contrast to the ScenarioMIP experiments, the corresponding CMIP5 counterparts (Taylor et al., 2012), the so-called Representative Concentration Pathway (RCP), only used the radiative forcing in 2100 as only dimension to describe the possible futures (e.g. RCP8.5, RCP4.5, RCP2.6, etc.).

In this thesis, climate model data from the two most recent CMIP generations is used, CMIP5 and CMIP6. More detailed information about the specific variables and experiments analyzed is given in the corresponding chapters.

2.1.3. Sources of Uncertainties in Climate Model Projections

2.2. The Global Carbon Cycle

I like Gross Primary Productivity (GPP)!

2.3. Techniques to reduce Uncertainties in Climate Model Projections

3. Improving Routine Climate Model Evaluation

4. Assessment of Policy-relevant Climate Metrics in CMIP6

5. Evaluation of Emergent Constraints on the Equilibrium Climate Sensitivity in CMIP6

6. Constraining Uncertainties in future Gross Primary Productivity with Machine Learning

7. Summary and Outlook

Appendix

A. TBA

A.1. test

test

hi The Equilibrium Climate Sensitivity (ECS) is really cool. I like it very much! This is e.g. without an "at" and this is it with an "at" e.g. difference? Test space. Real dot!

E.g.blaa. E.g. blaaaa. i.e.blaaaa, i.e. blaa.

These are really cool papers: (Schlund, Lauer, et al., 2020; Schlund, Eyring, et al., 2020)

autocite: (Lauer et al., 2018)

cite: Lauer et al., 2010 (Anav et al., 2015) (Anav et al., 2013) (Allen & Ingram, 2002)

textcite: Lauer et al. (2010)

And this one, too: (Lauer et al., 2020)

This is a reference to the equation: equation (1)

Three authors: (Bao et al., 2020)

Many many authors: (Eyring et al., 2020)

input <iostream>

$$c_{k_1,k_2} := 1200 \log_2 \left(\frac{f_1^{(k_2)}}{f_1^{(k_1)}} \right) \text{ cents.}$$
 (1)

Table 1.: The effects of treatments X and Y on the four groups studied.

Groups	Treatment X	Treatment Y
1	0.2	0.8
2	0.17	0.7
3	0.24	0.75
4	0.68	0.3

Semitones	Interval	c/cents (ET)	c/cents (JI)
0	Perfect unison	0	0
1	Minor second	100	112
2	Major second	200	204
3	Minor third	300	316
4	Major third	400	386
5	Perfect fourth	500	498
6	Augmented fourth	600	590
7	Perfect fifth	700	702
8	Minor sixth	800	814
9	Major sixth	900	884
10	Minor seventh	1000	996
11	Major seventh	1100	1088
12	Perfect octave	1200	1200

Table 2.: Logarithmic frequency ratios c of certain intervals in the equal temperament (ET) and the just intonation (JI). x cents correspond to a frequency ratio of $2^{x/1200}$.

B. TBA

List of Acronyms

AOGCM Atmosphere-Ocean General Circulation Model 4
C4MIP Coupled Climate-Carbon Cycle Model Intercomparison Project 6
CFMIP Cloud Feedback Model Intercomparison Project 6
CMIP Coupled Model Intercomparison Project
CO ₂ carbon dioxide
DECK Diagnostic, Evaluation, and Characterisation of Klima 6
ECS Equilibrium Climate Sensitivity
ESM Earth System Model
ESMValTool Earth System Model Evaluation Tool
GHG Greenhouse Gas
GPP Gross Primary Productivity
IAM Integrated Assessment Models 6
MIP Model Intercomparison Project 6
ML Machine Learning
RCP Representative Concentration Pathway
ScenarioMIP Scenario Model Intercomparison Project 6
SSP Shared Socioeconomic Pathway

TCR Transient Climate Response	1
WCRP World Climate Research Programme	5
WGCM Working Group on Coupled Modelling	5

Integrated Author's References

- Bock, L., Lauer, A., **Schlund**, **M.**, Barreiro, M., Bellouin, N., Jones, C., Meehl, G. A., Predoi, V., Roberts, M. J., & Eyring, V. (2020). Quantifying Progress Across Different CMIP Phases With the ESMValTool. *Journal of Geophysical Research: Atmospheres*, 125(21). https://doi.org/10.1029/2019jd032321
- Eyring, V., Bock, L., Lauer, A., Righi, M., **Schlund**, **M.**, Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., & Zimmermann, K. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. *Geoscientific Model Development*, 13(7), 3383–3438. https://doi.org/10.5194/gmd-13-3383-2020
- Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter, A., Lorenz, R., Pérez-Zanón, N., Righi, M., **Schlund**, **M.**, Senftleben, D., Weigel, K., & Zechlau, S. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 diagnostics for emergent constraints and future projections from Earth system models in CMIP. *Geoscientific Model Development*, 13(9), 4205–4228. https://doi.org/10.5194/gmd-13-4205-2020
- Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., & **Schlund**, **M.** (2020). Context for interpreting equilibrium

- climate sensitivity and transient climate response from the CMIP6 Earth system models. *Science Advances*, *6*(26), eaba1981. https://doi.org/10.1126/sciadv.aba1981
- Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., **Schlund**, **M.**, Vegas-Regidor, J., Bock, L., Brotz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Tomas, S. L., & Zimmermann, K. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0-technical overview. *Geoscientific Model Development*, *13*(3), 1179–1199. https://doi.org/10.5194/gmd-13-1179-2020
- **Schlund**, **M.**, Lauer, A., Gentine, P., Sherwood, S. C., & Eyring, V. (2020). Emergent constraints on Equilibrium Climate Sensitivity in CMIP5: do they hold for CMIP6? *Earth System Dynamics Discussions*, 2020, 1–40. https://doi.org/10.5194/esd-2020-49
- **Schlund**, **M.**, Eyring, V., Camps-Valls, G., Friedlingstein, P., Gentine, P., & Reichstein, M. (2020). Constraining Uncertainty in Projected Gross Primary Production With Machine Learning. *Journal of Geophysical Research: Biogeosciences*, 125(11), e2019JG005619. https://doi.org/10.1029/2019jg005619
- Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., **Schlund**, **M.**, Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., & Eyring, V. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 diagnostics for extreme events, regional and impact evaluation and analysis of Earth system models in CMIP. *Geoscientific Model Development Discussions, in review*, 1–43. https://doi.org/10.5194/gmd-2020-244

References

- Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. *Nature*, 419(6903), 224–+. https://doi.org/10. 1038/nature01092
- Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., & Zhu, Z. (2013). Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. *Journal of Climate*, 26(18), 6801–6843. https://doi.org/10.1175/Jcli-D-12-00417.1
- Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., & Zhao, M. (2015). Spatiotemporal patterns of terrestrial gross primary production: A review. *Reviews of Geophysics*, 53(3), 785–818. https://doi.org/10.1002/2015rg000483
- Bao, Y., Song, Z. Y., & Qiao, F. L. (2020). FIO-ESM Version 2.0: Model Description and Evaluation. *Journal of Geophysical Research-Oceans*, 125(6). https://doi.org/10.1029/2019JC016036
- Bock, L., Lauer, A., **Schlund**, **M.**, Barreiro, M., Bellouin, N., Jones, C., Meehl, G. A., Predoi, V., Roberts, M. J., & Eyring, V. (2020). Quantifying Progress Across Different CMIP Phases With the ESMValTool. *Journal of Geophysical Research: Atmospheres*, 125(21). https://doi.org/10.1029/2019jd032321
- Cubasch, U., Wuebbles, D., Chen, D., Facchini, M. C., Frame, D., Mahowald, N., & Winther, J.-G. (2013). Introduction. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Chapter01_FINAL.pdf
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison

- Project Phase 6 (CMIP6) experimental design and organization. *Geoscientific Model Development*, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- Eyring, V., Bock, L., Lauer, A., Righi, M., **Schlund**, **M.**, Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., & Zimmermann, K. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. *Geoscientific Model Development*, 13(7), 3383–3438. https://doi.org/10.5194/gmd-13-3383-2020
- Flato, G. M. (2011). Earth system models: an overview. *Wiley Interdisciplinary Reviews: Climate Change*, 2(6), 783–800. https://doi.org/10.1002/wcc.148
- Flato, G. M., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of Climate Models. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter09_FINAL.pdf
- Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quere, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschutzer, P., Lauvset, S. K., Lefevre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G.,

- McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S. I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Seferian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., & Zaehle, S. (2019). Global Carbon Budget 2019. *Earth System Science Data*, 11(4), 1783–1838. https://doi.org/10.5194/essd-11-1783-2019
- Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J. T., & Zaehle, S. (2016). C4MIP The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. *Geoscientific Model Development*, 9(8), 2853–2880. https://doi.org/10.5194/gmd-9-2853-2016
- Lauer, A., Hamilton, K., Wang, Y. Q., Phillips, V. T. J., & Bennartz, R. (2010). The Impact of Global Warming on Marine Boundary Layer Clouds over the Eastern Pacific-A Regional Model Study. *Journal of Climate*, 23(21), 5844–5863. https://doi.org/10.1175/2010jcli3666.1
- Lauer, A., Jones, C., Eyring, V., Evaldsson, M., Stefan, H. A., Makela, J., Martin, G., Roehrig, R., & Wang, S. Y. (2018). Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons. *Earth System Dynamics*, *9*(1), 33–67. https://doi.org/10.5194/esd-9-33-2018
- Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter, A., Lorenz, R., Pérez-Zanón, N., Righi, M., **Schlund**, **M.**, Senftleben, D., Weigel, K., & Zechlau, S. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 diagnostics for emergent constraints and future projections from Earth system models in CMIP. *Geoscientific Model Development*, 13(9), 4205–4228. https://doi.org/10.5194/gmd-13-4205-2020
- Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., & **Schlund**, **M.** (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. *Science Advances*, 6(26), eaba1981. https://doi.org/10.1126/sciadv.aba1981

- O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. *Global Environmental Change*, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004
- O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2013). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. *Climatic Change*, 122(3), 387–400. https://doi.org/10.1007/s10584-013-0905-2
- O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. *Geoscientific Model Development*, *9*(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
- Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Silva, L. A. D., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., & Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. *Global Environmental Change*, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
- Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., **Schlund**, **M.**, Vegas-Regidor, J., Bock, L., Brotz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Tomas, S. L., & Zimmermann, K. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0-technical overview. *Geoscientific Model Development*, *13*(3), 1179–1199. https://doi.org/10.5194/gmd-13-1179-2020
- **Schlund**, **M.**, Lauer, A., Gentine, P., Sherwood, S. C., & Eyring, V. (2020). Emergent constraints on Equilibrium Climate Sensitivity in CMIP5: do they

- hold for CMIP6? *Earth System Dynamics Discussions*, 2020, 1–40. https://doi.org/10.5194/esd-2020-49
- **Schlund**, **M.**, Eyring, V., Camps-Valls, G., Friedlingstein, P., Gentine, P., & Reichstein, M. (2020). Constraining Uncertainty in Projected Gross Primary Production With Machine Learning. *Journal of Geophysical Research: Biogeosciences*, 125(11), e2019JG005619. https://doi.org/10.1029/2019jg005619
- Simpkins, G. (2017). Progress in climate modelling. *Nature Climate Change*, 7(10), 684–685. https://doi.org/10.1038/nclimate3398
- Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of Cmip5 and the Experiment Design. *Bulletin of the American Meteorological Society*, *93*(4), 485–498. https://doi.org/10.1175/Bams-D-11-00094.1
- WCRP. (2020, November). WCRP Coupled Model Intercomparison Project (CMIP). https://www.wcrp-climate.org/wgcm-cmip
- Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., & Watanabe, M. (2017). The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. *Geoscientific Model Development*, 10(1), 359–384. https://doi.org/10.5194/gmd-10-359-2017
- Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., **Schlund**, **M.**, Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., & Eyring, V. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 diagnostics for extreme events, regional and impact evaluation and analysis of Earth system models in CMIP. *Geoscientific Model Development Discussions, in review*, 1–43. https://doi.org/10.5194/gmd-2020-244

Declaration of Authorship

I assure that this thesis is a result of my personal work and that no other than the indicated aids have been used for its completion. Furthermore I assure that all quotations and statements that have been inferred literally or in a general manner from published or unpublished writings are marked as such. Beyond this I assure that the work has not been used, neither completely nor in parts, to pass any previous examination.

Oberpfaffenhofen, March 2021	
	Manuel Schlund