My notes while reading:

An Introduction To Computational Learning Theory

Mohammed D. Belgoumri

April 23, 2022

Contents

\mathbf{T}^{i}	Γ itle page							
Li	of figures 2 of code snippets 3							
Li	ist of code snippets	3						
1	1 The Probably Approximately Correct Learning Model							
	1.1 A Rectangle Learning Game	. 4						
	1.2 A General Model	7						

List of Figures

1.1	The target rectangle $\mathcal R$ along with a labeled sample of points	5
1.2	The tightest fit rectangle for the example of Figure 1.1	6

List of Code Snippets

1.1	Α	python	impl	lementation	of	the	described	strategy					

Chapter 1

The Probably Approximately Correct Learning Model

1.1 A Rectangle Learning Game

The objective of this game is to learn an unknown target (axis-aligned) rectangle $\mathcal{R} = [a, b] \times [c, d] \subset \mathbb{R}^2$.

The player can gain information about \mathcal{R} only by chosing random points according to some distribution \mathcal{D} , and asking the game whether they are inside \mathcal{R} . By convention, points inside \mathcal{R} are considered positive.

Figure 1.1 shows an example of a possible target rectangle \mathcal{R} along with some points labeled using it.

The player's goal is to find a hypothesis rectangle \mathcal{R}' that "approximates" \mathcal{R} "as closely as possible". To measure the quality of this approximation, we will consider the region $\mathcal{R}\Delta\mathcal{R}'$ of points that \mathcal{R} and \mathcal{R}' label differently. More precisely, we will consider the probability $\mathbb{P}(\mathcal{R}\Delta\mathcal{R}')$ of falling with this region according to \mathcal{D} and try to minimize this quantity.

Since \mathcal{R} is unknown in practice, \mathcal{R}' is evaluated by sampling a number of points from \mathcal{D} , labeling them using \mathcal{R}' and comparing to their true labels by asking the game. We then take the number of falsely labeled points devided by the total of chosen points as an estimation of $\mathbb{P}(\mathcal{R}\Delta\mathcal{R}')$. Note that this score is the same as 1- accuracy.

Figure 1.1: The target rectangle \mathcal{R} along with a labeled sample of points

A simple strategy for the player is to sample a sufficiently large number m of points form \mathcal{D} and request their labels, then chose as hypothesis \mathcal{R}' the smallest rectangle containing all positive examples and no negative ones¹. If all m points are negative, we chose $\mathcal{R}' = \emptyset$. Figure 1.2 ilustrates this strategy for one example, and Code Snippet 1.1 shows a python implementation.

```
def fit_rectangle(X, y, ec='black', alpha=.1) -> Rectangle:
    """

Fit a rectangle to the given data.
    """

h_min = X[y].min(axis=0)
    h_max = X[y].max(axis=0)
    return Rectangle(h_min, *(h_max - h_min), edgecolor=ec, alpha=alpha)
```

Code Snippet 1.1: A python implementation of the described strategy

We will now prove that this strategy works, more specifically, we will show the following theorem:

Theorem 1.1.

Let \mathcal{D} be a distribution over \mathbb{R}^2 , \mathcal{R} a rectangle, and $\varepsilon, \delta > 0$ be positive real

¹Note that such at least one rectangle with this property is garenteed to exist, because \mathcal{R} is one such a rectangle

Figure 1.2: The tightest fit rectangle for the example of Figure 1.1

numbers. There exisits an integer $m \in \mathbb{N}$, such that the hypothesis rectangle \mathcal{R}' generated by m sampled points has with probability $\geq 1 - \delta$ an error $\leq \varepsilon$.

Proof.

Consider a distribution \mathcal{D} , a rectangle $\mathcal{R} = [a, b] \times [c, d]$, a hypothesis rectangle $\mathcal{R}' = [a', b'] \times [c', d']$ constructed using the startegy we described, and positive real numbers $\varepsilon, \delta > 0$.

Note that \mathcal{R}' cannot have false positives. In fact, $\mathcal{R}' \subset \mathcal{R}$ and therefore $\mathcal{R}' \Delta \mathcal{R} = \mathcal{R} \backslash \mathcal{R}'$. This region can be expressed as the union of four rectangles:

$$\mathcal{R} \backslash \mathcal{R}' = \begin{array}{ccc} [a,a'] \times [c',d'] & \cup \\ [a,b] \times [c,c'] & \cup \\ [b',b] \times [c',d'] & \cup \\ [a,b] \times [d,d'] \end{array}$$

We denote the union of four rectangles respectively by L, B, R, T. It immediately follows that:

$$\mathbb{P}(\mathcal{R}\backslash\mathcal{R}') = \mathbb{P}(L\cup B\cup R\cup T) \leq \mathbb{P}(L) + \mathbb{P}(B) + \mathbb{P}(R) + \mathbb{P}(T)$$

Consequently, to show that $\mathbb{P}(\mathcal{R}\backslash\mathcal{R}') \leq \varepsilon$, it suffices to show that $\mathbb{P}(X) \leq \frac{\varepsilon}{4}$ for all $X \in \{L, B, R, T\}$.

1.2 A General Model