CS3230 Tutorial (Approximation Algorithms, week of 10 April)

- 1. Approximation Algorithms (textbook page 450).
 - a. Apply the nearest-neighbor algorithm to the instance defined by the distance matrix below. Start the algorithm at the first city, assuming that the cities are numbered from 1 to 5.

$$\begin{bmatrix} 0 & 14 & 4 & 10 & \infty \\ 14 & 0 & 5 & 8 & 7 \\ 4 & 5 & 0 & 9 & 16 \\ 10 & 8 & 9 & 0 & 32 \\ \infty & 7 & 16 & 32 & 0 \end{bmatrix}$$

- b. Compute the accuracy ratio of this approximate solution.
- 2. Prove that making a shortcut of the kind used by the twice-around-the-tree algorithm cannot increase the tour's length in an Euclidean graph.
- 3. Consider the greedy algorithm for the bin-packing problem, which is called the *first-fit* (*FF*) *algorithm*: place each of the items in the order given into the first bin the item fits in; when there are no such bins, place the item in a new bin and add this bin to the end of the bin list.
 - a. Apply *FF* to the instance:

$$s_1 = 0.4$$
, $s_2 = 0.7$, $s_3 = 0.2$, $s_4 = 0.1$, $s_5 = 0.5$

4. Design a simple 2-approximation algorithm for finding a *minimum vertex cover* (a vertex cover with the smallest number of vertices) in a given graph.