

Upravljanje elektromotornim pogonima 2009/2010

Prof.dr.sc. Nedjeljko Perić

Zavod za automatiku i računalno inženjerstvo Fakultet elektrotehnike i računarstva

Primjer 2.1 – Istosmjerni motor

Primjer 2.1

Za istosmjerni motor s nezavisnom i konstantnom uzbudom (nadomjesna shema prikazana na slici P-2.1-1) potrebno je odrediti:

- a) prijelaznu funkciju brzine vrtnje s obzirom na napon armaturnog kruga $U_{\scriptscriptstyle g}$
- b) prijelaznu funkciju brzine vrtnje s obzirom na moment tereta M_{t}
- c) prijelaznu funkciju struje armature s obzirom na napon armaturnog kruga U_a
- d) prijelaznu funkciju struje armature s obzirom na moment tereta M_{ij}

P-2.1-1 Nadomjesna shema istosmjernog motora s nezavisnom uzbudom

Parametri istosmjernog motora dani su u tablici:

$P_n = 11 \text{ kW}$	nazivna vrijednost snage
$U_{an} = 440 \text{ V}$	nazivna vrijednost napona armature
$I_{an} = 30 \text{ A}$	nazivna vrijednost struje armature
$U_{un} = 220 \text{ V}$	nazivna vrijednost napona uzbude
$I_{an} = 1.25 \text{ A}$	nazivna vrijednost struje uzbude
$n_n = 3000 \text{ o/min} \Rightarrow \Omega_n = 3000 \frac{2\pi}{60} = 314 \text{ rad/s}$	nazivna vrijednost brzine vrtnje
$R_a = 0.53 \Omega$	otpor armature motora
$L_a = 22.4 \text{ mH}$	induktivitet armature motora
$J = 0.378 \text{ kgm}^2$	ukupni moment inercije rotirajućih masa
K = 1.40 Vs	konstrukcijska konstanta motora

$T_a = \frac{L_a}{R_a} = 42 \text{ ms}$	armaturna vremenska konstanta
$T_m = \frac{JR_a}{K^2} = 102 \text{ ms}$	elektromehanička vremenska konstanta

Rješenje primjera 2.1

Slika P-2.1-2. Strukturni blokovski prikaz istosmjernog motora s konstantnom i nezavisnom uzbudom

Prema slici P-2.1-2 dobije se:

$$\frac{\Omega(s)}{U_a(s)} = \frac{1}{K} \frac{1}{1 + T_m s + T_a T_m s^2}, \text{ (uz } M_t(s) = 0)$$
 (P2.1-1)

$$\frac{\Omega(s)}{M_{t}(s)} = -\frac{1}{K_{a}K^{2}} \frac{1 + T_{a}s}{1 + T_{m}s + T_{a}T_{m}s^{2}}, \text{ (uz } U_{a}(s) = 0)$$
 (P2.1-2)

Slika P-2.1-3.

Ako se promatra struja armature kao regulirana veličina onda je:

$$I_a(s) = \frac{K_a T_m s}{1 + T_m s + T_a T_m s^2} U_a(s), \text{ (uz } M_t(s) = 0)$$
 (P2.1-3)

$$I_a(s) = \frac{1}{K} \frac{1}{1 + T_m s + T_a T_m s^2} M_t(s), \text{ (uz } U_a(s) = 0)$$
 (P2.1-4)

Slika P-2.1-4.

Karakteristična jednadžba istosmjernog motora kao sustava s konstantnom i nezavisnom uzbudom glasi:

$$1 + T_m s + T_a T_m s^2 = 0. (P2.1-5)$$

Upravljanje elektromotornim pogonima :: Primjer 2.1 – Istosmjerni motor

Copyright: Nedjeljko Perić

Usporedbom koeficijenata karakteristične jednadžbe općeg oblika prijenosne funkcije s koeficijentima karakteristične jednadžbe istosmjernog motora dobije se:

$$\omega_n = \frac{1}{\sqrt{T_a T_m}} \tag{P2.1-6}$$

$$\zeta = \frac{1}{2} \sqrt{\frac{T_m}{T_a}} \tag{P2.1-7}$$

Rješenjem karakteristične jednadžbe istosmjernog motora (P2.1-5) dobiju se polovi:

$$s_{p1,p2} = -\frac{1}{2T_a} \pm \frac{\sqrt{1 - 4\frac{T_a}{T_m}}}{2T_a}$$
 (P2.1-8)

Odavde se vidi da će polovi biti realni ako je ispunjen uvjet: $T_m \ge 4T_a$.

a) Prijelazna funkcija brzine vrtnje s obzirom na napon armaturnog kruga $U_{\scriptscriptstyle a}$

$$\frac{\Omega(s)}{U_a(s)} = \frac{1}{K} \frac{1}{1 + T_m s + T_a T_m s^2}$$

Za $U_a(t) = 10 S(t) V$ dobije se prijelazna funkcija:

$$\Omega_0 = \dots$$
 [rad/s]

b) Prijelazna funkcija brzine vrtnje s obzirom na moment tereta M,

$$\frac{\Omega(s)}{M_t(s)} = -\frac{1}{K_a K^2} \frac{1 + T_a s}{1 + T_m s + T_a T_m s^2}$$

Skokovita promjena momenta dogodi se u $t_1 = 1$ s i to $M_t(t) = 21S(t - t_1)$ Nm (odgovara 50% nazivnog momenta motora $M_{mn} = KI_{an} = 42$ Nm)

 $\Delta\Omega = \dots [rad/s]$

Slika P-2.1-6.

c) Prijelazna funkcija struje armature s obzirom na napon armaturnog kruga U_a

$$I_a(s) = \frac{K_a T_m s}{1 + T_m s + T_a T_m s^2} U_a(s)$$

Za $U_a(t) = 10 S(t)$ V dobije se prijelazna funkcija:

$$i_{am} =[A]$$

Slika P-2.1-7.

d) Prijelazna funkcija struje armature s obzirom na moment tereta M,

$$\frac{I_a(s)}{M_t(s)} = \frac{1}{K} \frac{1}{1 + T_m s + T_a T_m s^2}$$

Skokovita promjena momenta dogodi se u $t_1 = 1$ s i to $M_t(t) = 21S(t - t_1)$ Nm (odgovara 50% nazivnog momenta motora $M_{mn} = KI_{an} = 42$ Nm)

Slika P-2.1-8.