MATH3841

Session 2, 2012

Review Notes on Multivariate Distributions

William T.M. Dunsmuir

$July\ 9,\ 2013$

Contents

1	Joint Distribution and Density Functions	2
2	Independence	2
3	Conditional Distributions.	3
4	Expected Values.	3
5	Means and Covariances for Random Vectors	4
6	The Multivariate Normal Distribution.	5
	6.1 The general multivariate normal density	5
	6.2 The Bivariate Normal Density	5
	6.3 Standardised Bivariate Normal Density	6
	6.4 Properties of the General Multivariate Normal Distribution	S
	These notes will be relied on for basic facts about joint distributions of ran	ıdom
va	ariables as well as properties of the multivariate normal distribution essentia	ıl foı
MATH5845.		

1 Joint Distribution and Density Functions

An *n*-dimensional random vector

$$X = (X_1, \dots, X_n)'$$

has joint distribution function

$$F(x_1, \ldots, x_n) = P(X_1 \le x_1, \ldots, X_n \le x_n)$$

for all real numbers x_1, \ldots, x_n .

The joint distribution of any sub-vector can be obtained by setting $x_i = \infty$ for the other random variables not in the sub-vector. For example, the distribution of X_1 is given by

$$F_{X_1}(x_1) = F(x_1, \infty, \dots, \infty)$$

and the joint distribution of (X_i, X_j) by

$$F_{X_i,X_j}(x_i,x_j) = F(\infty,\ldots,\infty,x_i,\infty,\ldots,\infty,x_j,\infty,\ldots,\infty).$$

A random vector is said to be continuous if its distribution function can be written in terms of a non-negative density function $f(\cdot, ..., \cdot)$ as

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_n} \ldots \int_{-\infty}^{x_1} f(y_1,\ldots,y_n) dy_1 \ldots dy_n$$

where

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(y_1, \dots, y_n) dy_1 \dots dy_n = 1.$$

Note that we can derive the density by differentiating the distribution function

$$f(x_1,\ldots,x_n) = \frac{\partial F(x_1,\ldots,x_n)}{\partial x_1\cdots\partial x_n}.$$

2 Independence

The random variables $X_1, \ldots X_n$ are said to be independent if

$$P(X_1 \le x_1, \dots, X_n \le x_n) = P(X_1 \le x_1) \cdots P(X_n \le x_n)$$

for all real numbers x_1, \ldots, x_n . This is equivalent to

$$F(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdots F_{X_n}(x_n)$$

or

$$f(x_1,\ldots,x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

3 Conditional Distributions.

Let $X = (X_1, ..., X_n)'$ and $Y = (Y_1, ..., Y_m)'$ be two random vectors with joint density $f_{X,Y}$. The conditional density of Y given X = x is

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

Note that if X and Y are independent

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

so that $f_{Y|X}(y|x) = f_Y(y)$ in which case knowledge of X = x does not alter the probabilities assigned to outcomes for Y. Conversely, if $f_{Y|X}(y|x) = f_Y(y)$ then X and Y are independent. Similarly properties hold in terms of the distribution functions.

4 Expected Values.

Let g(X) be a function of the random vector X. The expected value is

$$E(g(X)) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \dots dx_n$$
$$= \int_{-\infty}^{\infty} g(x) f(x) dx.$$

The mean $\mu = E(X)$ of a random variable corresponds to setting g(X) = X while the variance $\sigma^2 = \text{var}(X) = E(X - \mu)^2$ corresponds to setting $g(X) = (X - \mu)^2$. The linearity property of expectation is

$$E(aX + b) = aE(X) + b.$$

Note also that

$$var(aX + b) = a^2 var(X).$$

5 Means and Covariances for Random Vectors

The mean vector is

$$\mu_X = E(X) = (E(X_1), \dots, E(X_n))'$$

and the covariance between X_i and X_j is

$$cov(X_i, X_j) = E(X_i - \mu_i)(X_j - \mu_j).$$

The correlation is

$$corr(X_i, X_j) = \frac{cov(X_i, X_j)}{\sqrt{var(X_i) var(X_j)}}.$$

For two random vectors X and Y the covariance matrix between them is

$$\Sigma_{XY} = \text{cov}(X, Y) = E(X - EX)(Y - EY)' = E(XY') - (EX)(EY)'$$

with (i, j) element

$$(\Sigma_{XY})_{ij} = \operatorname{cov}(X_i, Y_j).$$

When Y = X, cov(X, Y) reduces to the covariance matrix of the random vector X. Note that if X and Y are independent then the covariance between them is the null matrix. The converse is not true in general but is true for the multivariate normal distribution - see below.

Let Y and X be linearly related as Y = a + BX where a is a vector and B is a matrix (all with conforming dimensions). Then

$$\mu_Y = E(Y) = a + BE(X) = a + B\mu_X$$

and

$$\Sigma_{YY} = B\Sigma_{XX}B'.$$

Note also that any covariance matrix Σ is non-negative definite, that is $b'\Sigma b \geq 0$ for any vector b. The proof of this follows from the last identity. Let Y = b'X where X has covariance matrix Σ . Then

$$0 \le \operatorname{var}(Y) = b' \Sigma b.$$

6 The Multivariate Normal Distribution.

6.1 The general multivariate normal density

The random vector X has the multivariate normal distribution with mean μ and non-singular covariance matrix Σ if

$$f_X(x) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right\}.$$

Notation: $X \sim N(\mu, \Sigma)$.

6.2 The Bivariate Normal Density

As special case is the bivariate normal density from which most of the required insight about the multivariate normal is obtained. Let $X = (X_1, X_2)'$ and

$$\Sigma = \left[egin{array}{ccc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight]$$

with inverse

$$\Sigma^{-1} = \frac{1}{1 - \rho^2} \begin{bmatrix} \sigma_1^{-2} & -\rho \sigma_1^{-1} \sigma_2^{-1} \\ -\rho \sigma_1^{-1} \sigma_2^{-1} & \sigma_2^{-2} \end{bmatrix}$$

and $det(\Sigma) = \sigma_1^2 \sigma_2^2 (1 - \rho^2)$. Substitution in the general multivariate normal density gives

$$f_X(x) = \frac{1}{2\pi [\sigma_1^2 \sigma_2^2 (1 - \rho^2)]^{1/2}} \exp\left\{-\frac{1}{2} Q(x_1, x_2; \sigma_1, \sigma_2, \rho)\right\}$$

with quadratic form

$$Q(x_1, x_2; \sigma_1, \sigma_2, \rho) = \frac{1}{(1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right].$$

Some important facts about the bivariate normal are:

1. The contours of equal density are ellipses

$$\{(x_1, x_2) : Q(x_1, x_2; \sigma_1, \sigma_2, \rho) = k\}$$

for any constant $k \geq 0$.

2. When the correlation $\rho = 0$ the two random variables X_1 and X_2 are independent. This can easily be concluded from the form of $Q(x_1, x_2; \sigma_1, \sigma_2, \rho = 0)$. Hence for the bivariate normal distribution, independence is equivalent to uncorrelatedness.

6.3 Standardised Bivariate Normal Density

Consider a special case of the bivariate normal density for the two standardised random variables

$$U = \frac{X_1 - \mu_1}{\sigma_1}, \quad V = \frac{X_2 - \mu_2}{\sigma_2}$$

have joint normal density with

$$\mu_U = \mu_V = 0$$

$$\sigma_U^2 = \sigma_V^2 = 1$$

so that

$$f_{U,V}(u,v) = \frac{1}{2\pi(1-\rho^2)^{1/2}} \exp\left(-\frac{1}{2(1-\rho^2)}[u^2 + v^2 - 2\rho uv]\right). \tag{1}$$

Recall, for any pair of continuous random variables, the conditional density of V|U=u is

$$f_{V|U}(v|u) = \frac{f_{U,V}(u,v)}{f_U(u)}$$

so that the joint density can be expressed as

$$f_{U,V}(u,v) = f_U(u)f_{V|U}(v|u).$$
 (2)

Hence if we can find a factorization of the bivariate normal density (1) in the form (2) then we have derived the marginal density of U and the conditional density of V|U=u.

The key to the factorization is the completion of the square in the exponent as

follows

$$\frac{u^2 + v^2 - 2\rho uv}{1 - \rho^2} = \frac{(u^2 - \rho^2 u^2) + (v^2 - 2\rho uv + \rho^2 u^2)}{1 - \rho^2}$$
$$= \frac{u^2 (1 - \rho^2) + (v - \rho u)^2}{1 - \rho^2}$$
$$= u^2 + \frac{(v - \rho u)^2}{1 - \rho^2}.$$

Substituting this into the exponent in equation (1) we get

$$f_{U,V}(u,v) = \frac{1}{2\pi(1-\rho^2)^{1/2}} \exp\left(-\frac{1}{2}u^2 - \frac{1}{2}\frac{(v-\rho u)^2}{1-\rho^2}\right)$$
$$= \left[\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)\right] \left[\frac{1}{\sqrt{2\pi}(1-\rho^2)^{1/2}} \exp\left(-\frac{1}{2}\frac{(v-\rho u)^2}{1-\rho^2}\right)\right].$$

Now the first factor is the standard normal N(0,1) density. The second factor is a density of a $N(\rho u, (1-\rho^2))$ random variable. We can therefore identify the first factor as the marginal density for U,

$$f_U(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)$$

and the second factor as the conditional density for V|U=u,

$$f_{V|U}(v|u) = \frac{1}{\sqrt{2\pi}(1-\rho^2)^{1/2}} \exp\left(-\frac{1}{2}\frac{(v-\rho u)^2}{1-\rho^2}\right).$$

This proves that the marginal density for U, the standard normal density, and that the conditional density for V|U=u is normal with (conditional) mean

$$E(V|U=u) = \rho u$$

and (conditional) variance

$$Var(V|U=u) = 1 - \rho^2.$$

In summary

$$U \sim N(0, 1)$$

and

$$V|u \sim N(\rho u, 1 - \rho^2).$$

Notes:

1. The parameter ρ is the correlation between U and V as is easily derived as follows

$$\operatorname{corr}(U, V) = \frac{\operatorname{cov}(U, V)}{\sqrt{\operatorname{var}(U)\operatorname{var}(V)}}$$

$$= \operatorname{cov}(U, V), \quad (\text{since } U \text{ and } V \text{ have unit variance})$$

$$= \int \int uv f_{U,V}(u, v) dv du$$

$$= \int \int uv f_{U}(u) f_{V|U}(v|u) dv du$$

$$= \int u f_{U}(u) \left[\int v f_{V|U}(v|u) dv \right] du$$

But $\int v f_{V|U}(v|u) dv$ is the mean value for a random variable with the $N(\rho u, 1 - \rho^2)$ density. Hence $\int v f_{V|U}(v|u) dv = \rho u$. Substituting this in the double integral we get

$$\operatorname{corr}(U, V) = \int u f_U(u) [\rho u] du$$
$$= \rho \int u^2 f_U(u) du.$$

But $\int u^2 f_U(u) du$ is $E(U^2)$ where $U \sim N(0,1)$ and hence $\int u^2 f_U(u) du = 1$ leading to

$$corr(U, V) = \rho.$$

This proves that for the bivariate normal density given by equation (1) the parameter ρ is the correlation between U and V.

2. When $\rho = 0$ the conditional density simplifies to

$$f_{V|U}(v|u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}v^2\right) = f_V(v)$$

so that U, V are independent. You can also verify independence directly by considering what happens in expression (1) when $\rho = 0$. That is

$$f_{U,V}(u,v) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u^2 + v^2)\right)$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}v^2\right)$$
$$= f_U(u) f_V(v).$$

- 3. For both positive and negative $\rho \neq 0$, $Var(V|U=u) = 1 \rho^2 < 1$ so that use of U=u information to predict V using the conditional mean $E(V|U=u) = \rho u$ will lead to lower conditional variance for this prediction of V. That is when U and V are not independent, conditioning on one improves precision of prediction of the other.
- 4. As $|\rho| \to 1$ so that correlation get large in absolute value, note that the conditional variance $Var(V|U=u) \to 0$ so that once U=u is known V is known with certainty to be equal to u.

6.4 Properties of the General Multivariate Normal Distribution.

Some important facts about the general multivariate normal distribution are:

- 1. Any subvector of a multivariate normal vector has a multivariate normal distribution.
- 2. If $X \sim N(\mu, \Sigma)$, B is an $m \times n$ matrix of real numbers and a is a real $m \times 1$ vector then

$$Y = a + BX \sim N(a + B\mu_X, B\Sigma B').$$

3. In particular, any linear combination b'X has a univariate normal distribution. In general, consider a multivariate normal random vector $X \sim N(\mu, \Sigma)$. Partition as

$$X = \begin{bmatrix} X^{(1)} \\ X^{(2)} \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu^{(1)} \\ \mu^{(2)} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

where $\mu^{(j)} = E(X^{(j)})$ and $\Sigma_{ij} = E(X^{(i)} - \mu^{(j)})(X^{(j)} - \mu^{(j)})'$. Then

- 1. $X^{(1)}$ and $X^{(2)}$ are independent if and only if $\Sigma_{12} = 0$.
- 2. The conditional distribution of $X^{(1)}$ given $X^{(2)} = x^{(2)}$ is multivariate normal with conditional mean vector

$$E(X^{(1)}|X^{(2)} = x^{(2)}) = \mu^{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(x^{(2)} - \mu^{(2)})$$

and covariance matrix

$$\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$$

This is a very important result.