CS 726: Homework #4

Posted: 03/08/2020, due: 03/27/2020 by 5pm on Canvas

Please typeset or write your solutions neatly! If we cannot read it, we cannot grade it.

Note: You can use the results we have proved in class – no need to prove them again.

- **Q 1.** Let $f: \mathbb{R}^n \to \mathbb{R}$ be an L-smooth function and let $\mathcal{X} \subseteq \mathbb{R}^n$ be a closed, convex, and nonempty set. Recall the definition of the gradient mapping: $G_{\eta}(\mathbf{x}) = \eta(\mathbf{x} P_{\mathcal{X}}(\mathbf{x} \frac{1}{\eta}\nabla f(\mathbf{x})))$, where $P_{\mathcal{X}}(\cdot)$ denotes the Euclidean projection onto \mathcal{X} . Prove that $G_{\eta}(\cdot)$ is $(2\eta + L)$ -Lipschitz continuous. [20pts]
- **Q 2.** Consider a constrained minimization problem $\min_{\mathbf{u} \in \mathcal{X}} f(\mathbf{x})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is L-smooth and $\mathcal{X} \subseteq \mathbb{R}^n$ is a hyper-rectangle: $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^n : x_i \in [a_i, b_i], \forall i \in \{1, 2, \dots, n\}\}$, where $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ are vectors that satisfy $\forall i \in \{1, \dots, n\} : a_i < b_i$.
 - (i) What is $P_{\mathcal{X}}(\mathbf{x})$? Write it in closed form. [10pts]
 - (ii) Define $\Delta_i(\mathbf{x}) := \nabla_i f(\mathbf{x}) \mathbf{e}_i$, where \mathbf{e}_i is the i^{th} standard basis vector (except for its i^{th} coordinate, all coordinates are equal to zero; the i^{th} coordinate equals one). Define:

$$T(\mathbf{x}, i) := \underset{\mathbf{u} \in \mathcal{X}}{\operatorname{argmin}} \left\{ \langle \Delta_i(\mathbf{x}), \mathbf{u} - \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{u} - \mathbf{x}\|_2^2 \right\}.$$

Express the gradient mapping $G_L(\mathbf{x})$ as a function of L, \mathbf{x} , and $T(\mathbf{x}, i)$, $i \in \{1, ..., n\}$. [10pts]

(iii) Consider the following method that starts from some initial point $\mathbf{x}_0 \in \mathcal{X}$ and updates its iterates \mathbf{x}_k for $k \geq 0$ as:

$$i_k^* = \underset{1 \le i \le n}{\operatorname{argmax}} |(G_L(\mathbf{x}_k))_i|$$
$$\mathbf{x}_{k+1} = T(\mathbf{x}_k, i_k^*).$$

Prove the following sufficient descent property for this algorithm:

$$(\exists \alpha > 0)(\forall k \ge 0): f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{\alpha}{2} ||G_L(\mathbf{x}_k)||_2^2.$$

What is the largest α for which this property holds? What can you say about convergence of this method if f is bounded below by some \bar{f} ? [10pts]

Q 3. Consider a constrained minimization problem $\min_{\mathbf{u} \in \mathcal{X}} f(\mathbf{x})$, where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and M-Lipschitz, and $\mathcal{X} \subseteq \mathbb{R}^n$ is closed, convex, and nonempty. Assume that there exists $\mathbf{x}^* \in \mathcal{X}$ that minimizes f. Recall from the class that we use $\mathbf{g}_{\mathbf{x}}$ to denote an arbitrary subgradient of f at $\mathbf{x} \in \mathcal{X}$. Distances within the set \mathcal{X} are measured using some norm $\|\cdot\|$ (e.g., an ℓ_p norm for $p \geq 1$). Norm that is dual to $\|\cdot\|$ is denoted by $\|\cdot\|_*$ and is defined by: $\|\mathbf{z}\|_* = \max_{\mathbf{u}: \|\mathbf{u}\| \leq 1} \langle \mathbf{z}, \mathbf{u} \rangle$. By the definition of a dual norm, you can immediately deduce that:

$$(\forall \mathbf{u}, \mathbf{z}) : \langle \mathbf{u}, \mathbf{z} \rangle < \|\mathbf{u}\| \|\mathbf{z}\|_{*}.$$

Note also that since f is M-Lipschitz w.r.t. the norm $\|\cdot\|$, we have, $\forall x, y$ and all $g_x \in \partial f(x)$:

$$|f(\mathbf{x}) - f(\mathbf{y})| \le M \|\mathbf{x} - \mathbf{y}\|$$
 and $\|\mathbf{g}_{\mathbf{x}}\|_* \le M$.

In this part, you will analyze the convergence of the Mirror Descent algorithm, defined by:

$$\mathbf{x}_{k+1} = \underset{\mathbf{u} \in \mathcal{X}}{\operatorname{argmin}} \{ a_k \langle \mathbf{g}_{\mathbf{x}_k}, \mathbf{u} - \mathbf{x}_k \rangle + D_{\psi}(\mathbf{u}, \mathbf{x}_k) \}, \tag{MD}$$

where, as in previous assignments, $D_{\psi}(\mathbf{x}, \mathbf{y})$ denotes the Bregman divergence between \mathbf{x} and \mathbf{y} w.r.t. a continuously-differentiable function ψ .

Assume that ψ is 1-strongly convex w.r.t. $\|\cdot\|$, namely:

$$(\forall \mathbf{x}, \mathbf{y}): \quad \psi(\mathbf{y}) \ge \psi(\mathbf{x}) + \langle \nabla \psi(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|^2.$$

(i) Using the first-order optimality in the definition of \mathbf{x}_{k+1} and the three-point identity of Bregman divergences we proved in HW #2, show that:

$$(\forall \mathbf{u} \in \mathcal{X}): \quad a_k \langle \nabla f(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{u} \rangle \le D_{\psi}(\mathbf{x}^*, \mathbf{x}_k) - D_{\psi}(\mathbf{x}^*, \mathbf{x}_{k+1}) - D_{\psi}(\mathbf{x}_{k+1}, \mathbf{x}_k). \tag{15pts}$$

(ii) Use Part (i) to prove that:

$$a_k \left\langle \nabla f(\mathbf{x}_k), \mathbf{x}_k - \mathbf{x}^* \right\rangle \le \frac{a_k^2 M^2}{2} + D_{\psi}(\mathbf{x}^*, \mathbf{x}_k) - D_{\psi}(\mathbf{x}^*, \mathbf{x}_{k+1}). \tag{15pts}$$

(iii) Use Part (ii) to prove that, $\forall k \geq 0$:

$$f(\mathbf{x}_k^{\text{out}}) - f(\mathbf{x}^*) \le \frac{D_{\psi}(\mathbf{x}^*, \mathbf{x}_0) + \frac{M^2}{2} \sum_{i=0}^k a_i^2}{A_k},$$

where
$$\mathbf{x}_k^{\text{out}} = \frac{\sum_{i=0}^k a_i \mathbf{x}_i}{A_k}$$
. [10pts]

(iv) Discuss how you would choose $\{a_i\}_{i=0}^k$ for (MD) to converge as fast as possible, and provide the convergence bound (a bound on $f(\mathbf{x}_k^{\text{out}}) - f(\mathbf{x}^*)$) for your choice(s) of $\{a_i\}_{i=0}^k$. [10pts]