Double ML & Heterogeneous Treatment Effects

Assignment 4

Zaheer Abbas

2025-07-02

Table of contents

1	Loading Dataset	1
2	ATE of Notification Sent via Double ML (Partial-Linear Model)	2
3	ATE of Notification Sent via Double ML (AIPW Model)	3
4	Verification with DoubleMI package	4
5	Heterogeneous Treatment Effects of Notification Sent	6
6	HTE Evaluation	8
7	Optimal Policy Learning	10

1 Loading Dataset

print(dataset.head(6))

	age	gender	region	sessions_pe	r_day	$past_{-}$	engagement	device_type	: \
0	54	Male	Asia		3		34.831284	i08	}
1	18	Male	US		5		77.758422	iOS	}
2	42	Male	US		1		53.025246	iOS	}
3	27	Female	US		2		19.752821	Android	l
4	53	Female	US		1		79.309742	iOS	}
5	35	Female	EU		7		71.962521	Android	l
	app_	version	notifi	cation_sent	pop_uj	p_rem	notificati	ion_opened	engagement
0		1		1		0		0	14.924706
1		2		^					
_				Ü		0		0	5.229459
2		1		1		0 1		0 1	5.229459 27.129607
3		1		1 0		0 1 1		0 1 1	
3		1 1 2		1 0 0		0 1 1 0		0 1 1 1	27.129607

2 ATE of Notification Sent via Double ML (Partial-Linear Model)

```
# Final OLS regression: y_resid ~ t_resid
model = sm.OLS(y_resid_all, t_resid_all_with_const)
results = model.fit()

# Print the ATE estimate
print("Estimated ATE (DML):", results.params[1])
print("Standard Error:", results.bse[1])
print(results.summary())
```

Estimated ATE (DML): 8.739531269869078 Standard Error: 0.16458490838508583

OLS Regression Results

Dep. Variable: R-squared: 0.220 Model: 0.220 OLS Adj. R-squared: Method: Least Squares F-statistic: 2820. Date: Wed, 02 Jul 2025 Prob (F-statistic): 0.00 14:46:24 Log-Likelihood: Time: -34722.

No. Observat Df Residuals Df Model: Covariance T	:		000 AIC: 998 BIC: 1			6.945e+04 6.946e+04
=======	coef	std err	t	P> t	[0.025	0.975]
const x1	0.0192 8.7395	0.078 0.165	0.247 53.100	0.805 0.000	-0.134 8.417	0.172 9.062

 Omnibus:
 7.281
 Durbin-Watson:
 2.010

 Prob(Omnibus):
 0.026
 Jarque-Bera (JB):
 6.782

 Skew:
 0.030
 Prob(JB):
 0.0337

 Kurtosis:
 2.887 Cond. No.
 2.11

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly speci

3 ATE of Notification Sent via Double ML (AIPW Model)

```
# Compute AIPW scores
aipw_scores = (
    T * (Y - mu1_preds) / e_preds + mu1_preds
    - (1 - T) * (Y - mu0_preds) / (1 - e_preds) - mu0_preds
)

# Estimate ATE and standard error
ate = np.mean(aipw_scores)
se = np.std(aipw_scores) / np.sqrt(len(aipw_scores))

print(f"Estimated ATE (AIPW): {ate:.4f}")
print(f"Standard Error: {se:.4f}")
```

Estimated ATE (AIPW): 8.6743

Standard Error: 0.2725

4 Verification with DoubleMI package

```
# Create and fit DoubleMLPLR model
dml plr obj = dml.DoubleMLPLR(obj dml data, ml 1, ml m)
dml plr obj.fit()
# Print results
print(dml plr obj.summary)
                             std err
                                              t P>|t|
                                                          2.5 %
                                                                  97.5 %
                      coef
notification sent 8.764015 0.166246 52.717287 0.0 8.43818 9.08985
# DoubleMLIRM model
dml_irm_obj = dml.DoubleMLIRM(obj_dml_data, ml_g=ml_g_cloned, ml_m=ml_m_cloned)
dml irm obj.fit()
# Print results
print(dml_irm_obj.summary)
                      coef
                             std err
                                             t P>|t|
                                                           2.5 %
                                                                    97.5 %
notification_sent 8.722585 0.164558 53.006115 0.0 8.400057 9.045113
methods= ["Manual PLM", "Manual AIPW", "DoubleMl PLR", "DoubleML IRW"]
estimates = [manual_plm_ate, manual_aipw_ate, dml_plr_ate, dml_irm_ate]
#plot
plt.figure(figsize=(8,5))
plt.bar(methods, estimates, color=['orange', 'green', 'blue', 'purple'])
plt.ylabel('ATE Estimate')
plt.title('Comparison of ATE Estimates from Different Methods')
plt.show()
```


4.0.1 Interpretation,

All four methods yield very similar ATE estimates, around 8.7 to 8.9, indicating consistency across both manual and automated (DoubleML-based) implementations. This suggests that the estimated treatment effect is robust to the choice of method, providing confidence in the reliability of the causal inference results. # ATE of Notification Opened Via DoubleML

```
dml_iivm_obj = dml.DoubleMLIIVM(obj_dml_data, ml_g, ml_m, ml_r)
dml_iivm_obj.fit()

ate_estimate = dml_iivm_obj.coef[0]
# Display
print("\nATE Estimate:", ate_estimate)

print(dml_iivm_obj.summary)
```

```
ATE Estimate: 8.39439199546623

coef std err t P>|t| 2.5 % \
notification_opened 8.394392 0.847088 9.909707 3.777532e-23 6.73413

97.5 %
notification_opened 10.054654
```

5 Heterogeneous Treatment Effects of Notification Sent

• Estimate group ATEs by gender (M/F) and by tertiles of past engagement.

```
print("\nGATE by Gender:")
print(gate gender)
print("\nGATE by Past Engagement:")
print(gate_engagement)
GATE by Gender:
======= DoubleMLBLP Object =========
----- Fit summary ------
                             t
               coef std err
                                            P>|t|
                                                   [0.025 \
Group Female 10.053458 0.246148 40.843166 0.000000e+00 9.571017
Group_Male 7.358292 0.215963 34.072013 1.916407e-254 6.935012
              0.975
Group Female 10.535899
Group_Male
           7.781571
GATE by Past Engagement:
======= DoubleMLBLP Object ==========
----- Fit summary ------
                     std err t
                                                   [0.025 \
               coef
                                            P>|t|
Group Low 7.324093 0.301686 24.277244 3.410174e-130 6.732800
Group_Medium 8.448609 0.271020 31.173416 2.443172e-213 7.917420
Group High 10.394889 0.278911 37.269595 5.102941e-304 9.848234
```

```
0.975]
Group_Low 7.915385
Group_Medium 8.979797
Group_High 10.941543
```

• R-Learner

RandomForestRegressor()

```
ite_rl = tau_model.predict(X_eval)
eval_data['ite_rl'] = ite_rl
print(eval_data[['ite_rl']].head())
```

```
ite_rl
6252 5.848759
4684 6.275323
1731 0.974028
4742 4.754528
4521 2.290479
```

• DR-Learner model

```
X_eval = pd.get_dummies(eval_data[X_cols], drop_first=True)
X_eval = X_eval.reindex(columns=X_train.columns, fill_value=0)
ite_dr_eval = tau_model.predict(X_eval) # tau_model is DR-Learner model
eval_data['ite_dr'] = ite_dr_eval
print(eval_data[['ite_dr']].head())
```

```
ite_dr
6252 5.848759
4684 6.275323
1731 0.974028
4742 4.754528
4521 2.290479
```

6 HTE Evaluation

LinearRegression()

```
print("BLP coefficient:", blp_model.coef_[0])
print("BLP intercept:", blp_model.intercept_)

plt.scatter(ite_dr_eval, aipw_scores, alpha=0.3)
plt.plot(ite_dr_eval, blp_model.predict(ite_dr_eval.reshape(-1,1)), color='red')
plt.xlabel("Predicted ITE (DR-Learner)")
plt.ylabel("AIPW Score")
plt.title("Best Linear Predictor (BLP) Plot")
plt.show()
```

BLP coefficient: 0.9843571937512781 BLP intercept: 7.944396402807552


```
print("Samples per group:")
print(counts)
```

```
print("\nSorted Group Average Treatment Effects (GATES):")
print(gates)
# Plotting the GATES
plt.figure(figsize=(8, 5))
plt.bar(gates.index.astype(str), gates.values, color='skyblue')
plt.xlabel('Group (Sorted by Predicted ITE)')
plt.ylabel('Average Treatment Effect (ITE - Doubly Robust)')
plt.title('Sorted Group Average Treatment Effect (GATES)')
plt.show()
Samples per group:
group
1
     400
2
     400
3
     400
     400
5
     400
Name: count, dtype: int64
Sorted Group Average Treatment Effects (GATES):
group
  -1.158407
2
     1.832626
     3.261341
4
    4.693296
    9.852490
Name: ite_dr, dtype: float64
```


7 Optimal Policy Learning

```
# Confusion matrix and report
cm = confusion_matrix(eval_data['optimal_treatment'], policy_preds)
print("Confusion Matrix:")
print(cm)

print("\nClassification Report:")
print(classification_report(eval_data['optimal_treatment'], policy_preds, zero_division
# Plot the decision tree
plt.figure(figsize=(10, 7))
plot_tree(policy_tree, feature_names=X_eval.columns, class_names=["No", "Yes"], filled
plt.title("Optimal Treatment Policy Tree")
plt.show()
```

Confusion Matrix:

[[165 64]

[593 1178]]

Classification Report:

	precision	recall	f1-score	support
0	0.22	0.72	0.33	229
1	0.95	0.67	0.78	1771
accuracy			0.67	2000
macro avg weighted avg	0.58	0.69	0.56	2000
	0.86	0.67	0.73	2000

Optimal Treatment Policy Tree

