2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)

	,	工口分 14 3	<i>></i>	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	
	、选择题(共 12 小题,每小题	5分,满分	60分)		
1.	(5分)复	数 $(\frac{3-i}{1+i})^2 = ($)			
	A 3- 4i	B 3+4i	С.	3- 4i	D. 3+4i	
2.	(5分)函	数 y= $\frac{1+\ln(x-1)}{2}$ (x	>1)的反函	数是()	
	A. y=e ^{2x-1} -	- 1 (x>0)	В.	y=e ^{2x- 1}	+1 (x>0)	
	C. y=e ^{2x-1} -	- 1 (x∈R)	D.	y=e ^{2x- 1}	+1 (x∈R)	
3.	(5分)若到	变量 x,y 满足约束。	条件{ x ≥ −1 y ≥ x 3x+2y*	,则: ≤ 5	z=2x+y 的最大值为	()
	A. 1	B. 2	С.	3	D. 4	
4.	(5分)如	果等差数列 {a _n } 中	, a ₃ +a ₄ +a ₅ =1	2,那么	$a_1 + a_2 + + a_7 = ($)
			С.		D. 35	
5.	(5分)不	等式 $\frac{x^2-x-6}{x-1}$ >0的]解集为()		
	A. {x x < -	2,或x>3}	В.	{x x<-	2,或1 <x<3}< th=""><th></th></x<3}<>	
	C. {x - 2 <	<x<1,或x>3}</x<1,或x>	D.	{x - 2	<x<1,或 1<x<<="" th=""><th>3}</th></x<1,或>	3}
6.	(5分)将标	标号为 1, 2, 3, 4	,5,6的6	张卡片放	汉入3个不同的信封	寸中, 若
	每个信封放	2张,其中标号为	1,2的卡片	放入同-	一信封,则不同的方	7法共有
	()					
	A. 12 种	B. 18 种	С.	36 种	D. 54 种	
7.	(5分)为	了得到函数 y=sin($(2x-\frac{\pi}{3})$ 的]图象, 』	只需把函数 y=sin($2x+\frac{\pi}{6}$)
	的图象()				
	A. 向左平和	$8\frac{\pi}{4}$ 个长度单位	В.	向右平	ß <u>π</u> 个长度单位	
	C. 向左平和	多 <mark>π</mark> 个长度单位	D.	向右平	移 <u>π</u> 个长度单位 2	
8.	(5分)△₽	ABC 中,点 D 在边,	AB 上,CD 平	分/ACI	B,若CB=ā,CA=b	, =1
	. -2.	제 cn = ()				

	Α.	$\frac{1}{3}\vec{a} + \frac{2}{3}\vec{b}$	B	$\frac{2}{3}$ \vec{a} $+\frac{1}{3}$ \vec{b}	c. $\frac{3}{5}$	a+ <u>4</u> b b	D.	$\frac{4}{5} \stackrel{\rightarrow}{a} + \frac{3}{5} \stackrel{\rightarrow}{b}$
9.	(5分)已知	正四棱锥	S- ABCD 中,:	SA=2√3	,那么当该村	麦锥	的体积最大时,
	它	的高为()					
				√ 3				
10		(5分)若由	曲线 y= x - =	<u>1</u> ² 在点(a, _a	. <u>1</u> 2) 处的	的切线与两个	坐材	示围成的三角形
	的	面积为 18,	则 a=()				
	Α.	64	B. 3	32	C. 16		D.	8
11		(5分)与i	E方体 ABO	$CD-A_1B_1C_1D_1$	的三条棒	麦 AB、CC ₁ 、	A ₁ D ₂	1 所在直线的距
	离	相等的点()					
	Α.	有且只有	1个 B. 7	有且只有2个	C . 有	且只有3个	D.	有无数个
12		(5分)已知	口椭圆 T: -	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > $	>b>0)	的离心率为	√3 2	过右焦点F且
	斜	率为 k (k >	· 0)的直约	线与 T 相交于 ₽	A,B两)	点,若 AF =3 I	īΒ,	则 k =()
	Α.	1	В. л	√ 2	C. √:	3	D.	2
<u> </u>	, ţ	真空题(共	4 小题,每	每小题 5 分,清	ϧ分 20 ∕	分)		
13		(5分)已知	和a 是第二	1.象限的角,ta	n (π+20	α) =- $\frac{4}{3}$, \square	IJ tar	ηα=
14	•	(5分)若	$\left(\chi - \frac{a}{y}\right)^{9}$	的展开式中 x³	的系数	是- 84,则:	a=	·
15		(5分)已知	 抛物线 C:	: y ² =2px (p>	0)的准:	线I,过M((1,	0)且斜率为√3
	的	直线与1相	交于 A,与	万 C 的一个交点	点为 B,	若 AM = MB,贝	[] p=	
16		(5分)已知	球 0 的半	径为 4,圆 M	与圆 N	为该球的两个	个小	圆,AB 为圆 M
	与	圆 N 的公共	弦,AB=4	,若 OM=ON=	3,则两	5圆圆心的距	离 N	/IN=
三	、角	解答题(共	6 小题,清	ϧ分 70 分)				
					一点,B	D=33,sinB=	<u>5</u> ,	$\cos \angle ADC = \frac{3}{5}$

第2页(共24页)

求 AD.

18. (12 分)已知数列 $\{a_n\}$ 的前 n 项和 $S_n=(n^2+n) • 3^n$.

(I) 求
$$\lim_{n\to\infty} \frac{a_n}{S_n}$$
; (II) 证明: $\frac{a_1}{1^2} + \frac{a_2}{2^2} + ... + \frac{a_n}{n^2} > 3^n$.

- 19. (12 分)如图,直三棱柱 ABC- A₁B₁C₁ 中,AC=BC,AA₁=AB,D 为 BB₁ 的中点,E 为 AB₁上的一点,AE=3EB₁.
- (I)证明: DE 为异面直线 AB₁ 与 CD 的公垂线;
- (II) 设异面直线 AB_1 与 CD 的夹角为 45° ,求二面角 A_1 AC_1 B_1 的大小.

20. (12 分)如图,由 M 到 N 的电路中有 4 个元件,分别标为 T_1 , T_2 , T_3 , T_4 , 电流能通过 T_1 , T_2 , T_3 的概率都是 P,电流能通过 T_4 的概率是 0.9,电流能否通过各元件相互独立. 已知 T_1 , T_2 , T_3 中至少有一个能通过电流的概率为 0.999

(I) 求P;

第3页(共24页)

(Ⅱ) 求电流能在 M 与 N 之间通过的概率.

21. (12 分)已知斜率为 1 的直线 I 与双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a>0, b>0)相交

于 B、D 两点, 且 BD 的中点为 M(1,3).

- (I) 求 C的离心率;
- (Ⅱ) 设 C 的右顶点为 A,右焦点为 F, | DF | | BF | = 17,证明: 过 A、B、D 三 点的圆与 x 轴相切.

- 22. (12 分)设函数 f(x)=1- e^{-x}.
- (I)证明:当x>-1时, $f(x) > \frac{x}{x+1}$;
- (Ⅱ)设当 $x \ge 0$ 时, $f(x) \le \frac{x}{ax+1}$,求 a 的取值范围.

2010年全国统一高考数学试卷(理科)(大纲版Ⅱ)

参考答案与试题解析

一、选择题(共12小题,每小题5分,满分60分)

1. (5分)复数
$$(\frac{3-i}{1+i})^2 = ($$
)

A. - 3- 4i B. - 3+4i C. 3- 4i

D. 3+4i

【考点】A5:复数的运算.

【专题】11: 计算题.

【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复 数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.

【解答】解:
$$(\frac{3-i}{1+i})^2 = [\frac{(3-i)(1-i)}{2}]^2 = (1-2i)^2 = -3-4i$$
.

故选: A.

【点评】本题主要考查复数的除法和乘方运算,是一个基础题,解题时没有规 律和技巧可寻,只要认真完成,则一定会得分.

2. (5 分) 函数
$$y=\frac{1+\ln(x-1)}{2}(x>1)$$
的反函数是 ()

A. $y=e^{2x-1}-1(x>0)$

B. $y=e^{2x-1}+1 (x>0)$

C. $y=e^{2x-1}-1$ (x∈R)

D. $v=e^{2x-1}+1 \ (x \in R)$

【考点】4H:对数的运算性质:4R:反函数.

【专题】11: 计算题; 16: 压轴题.

【分析】从条件中 $y=\frac{1+\ln(x-1)}{2}(x>1)$ 中反解出 x,再将 x,y 互换即得. 解答 本题首先熟悉反函数的概念,然后根据反函数求解三步骤: 1、换: x、y 换 位,2、解:解出 y,3、标:标出定义域,据此即可求得反函数.

【解答】解:由原函数解得

第5页(共24页)

 $x=e^{2y-1}+1$,

 $f^{-1}(x) = e^{2x-1}+1$

∇x>1, ∴x-1>0;

∴In (x-1) ∈R∴在反函数中 x∈R,

故选: D.

【点评】求反函数,一般应分以下步骤: (1)由已知解析式 y=f(x)反求出 x=Φ(y); (2)交换 x=Φ(y)中 x、y的位置; (3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).

3.
$$(5 分)$$
 若变量 x, y 满足约束条件 $\begin{cases} x \ge -1 \\ y \ge x \end{cases}$, 则 z=2x+y 的最大值为 () $3x+2y \le 5$ A. 1 B. 2 C. 3 D. 4

【考点】7C: 简单线性规划.

【专题】31:数形结合.

【分析】先根据约束条件画出可行域,设 z=2x+y,再利用 z 的几何意义求最值,只需求出直线 z=2x+y 过可行域内的点 B 时,从而得到 m 值即可.

【解答】解:作出可行域,作出目标函数线,

可得直线与 y=x 与 3x+2y=5 的交点为最优解点,

∴即为 B(1, 1),当 x=1, y=1 时 z_{max}=3.

故选: C.

【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.

第6页(共24页)

- 4. (5 分) 如果等差数列 $\{a_n\}$ 中, $a_3+a_4+a_5=12$,那么 $a_1+a_2+...+a_7=$ ()
 - A. 14
- B. 21
- C. 28
- D. 35

【考点】83: 等差数列的性质: 85: 等差数列的前 n 项和.

【分析】由等差数列的性质求解.

【解答】解: a₃+a₄+a₅=3a₄=12, a₄=4,

$$\therefore a_1 + a_2 + \dots + a_7 = \frac{7(a_1 + a_7)}{2} = 7a_4 = 28$$

故选: C.

【点评】本题主要考查等差数列的性质.

- 5. (5 分) 不等式 $\frac{x^2-x-6}{x-1}$ >0 的解集为 ()

 - A. $\{x | x < 2, \text{ if } x > 3\}$ B. $\{x | x < 2, \text{ if } 1 < x < 3\}$

 - C. $\{x \mid -2 < x < 1, \exists x > 3\}$ D. $\{x \mid -2 < x < 1, \exists x < 3\}$

【考点】73:一元二次不等式及其应用.

【专题】11: 计算题.

【分析】解 $\frac{f(x)}{g(x)}$ >0,可转化成 $f(x) \cdot g(x) > 0$,再利用根轴法进行求解.

【解答】解:
$$\frac{x^2-x-6}{x-1} > 0 \Leftrightarrow \frac{(x-3)(x+2)}{(x-1)} > 0 \Leftrightarrow (x-3)(x+2)(x-1) > 0$$

利用数轴穿根法解得-2 < x < 1 或 x > 3,

故选: C.

【点评】本试题主要考查分式不等式与高次不等式的解法,属于不等式的基础 题.

6. (5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若 每个信封放 2 张, 其中标号为 1, 2 的卡片放入同一信封, 则不同的方法共有 ()

第7页(共24页)

【考点】D9:排列、组合及简单计数问题.

【专题】11: 计算题.

【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不 同的选法,再从剩下的 4 个数中选两个放一个信封有 C₄2,余下放入最后一个 信封,根据分步计数原理得到结果.

【解答】解: 由题意知,本题是一个分步计数问题,

:先从 3 个信封中选一个放 1, 2, 有 $\mathbb{C}_3^{1}=3$ 种不同的选法; 根据分组公式, 其他

四封信放入两个信封,每个信封两个有 $\frac{C_4^2 \cdot C_2^2}{A_n^2} \cdot A_2^2 = 6$ 种放法,

∴共有 3×6×1=18.

故选: B.

【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的 关键是注意到第二步从剩下的 4 个数中选两个放到一个信封中,这里包含两 个步骤, 先平均分组, 再排列.

7. (5 分)为了得到函数 y=sin($2x-\frac{\pi}{3}$)的图象,只需把函数 y=sin($2x+\frac{\pi}{6}$) 的图象(

A. 向左平移 $\frac{\pi}{4}$ 个长度单位 B. 向右平移 $\frac{\pi}{4}$ 个长度单位

C. 向左平移 $\frac{\pi}{2}$ 个长度单位 D. 向右平移 $\frac{\pi}{2}$ 个长度单位

【考点】HJ: 函数 $y=Asin(\omega x+\phi)$ 的图象变换.

【专题】1: 常规题型.

【分析】先将2提出来,再由左加右减的原则进行平移即可.

【解答】解: y=sin $(2x+\frac{\pi}{6})$ =sin2 $(x+\frac{\pi}{12})$, y=sin $(2x-\frac{\pi}{3})$ =sin2 $(x-\frac{\pi}{6})$

所以将 y=sin($2x+\frac{\pi}{6}$)的图象向右平移 $\frac{\pi}{4}$ 个长度单位得到 y=sin($2x-\frac{\pi}{3}$)的 图象,

故选: B.

【点评】本试题主要考查三角函数图象的平移, 平移都是对单个的 x 来说的,

- 8. (5 分) △ABC 中,点 D 在边 AB 上,CD 平分 ∠ACB,若 $\overrightarrow{CB} = \overrightarrow{a}$, $\overrightarrow{CA} = \overrightarrow{b}$, $|\overrightarrow{a}| = 1$
 - , | b | =2, 则 c = ()

- A. $\frac{1}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}$ B. $\frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{b}$ C. $\frac{3}{5}\overrightarrow{a} + \frac{4}{5}\overrightarrow{b}$ D. $\frac{4}{5}\overrightarrow{a} + \frac{3}{5}\overrightarrow{b}$

【考点】9B: 向量加减混合运算.

【分析】由△ABC中,点 D 在边 AB 上,CD 平分∠ACB,根据三角形内角平分线 定理,我们易得到 $\frac{BD}{AD} = \frac{BC}{AC} = \frac{1}{2}$,我们将 $\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$ 后,将各向量用 \overrightarrow{a} , \overrightarrow{b} 表示, 即可得到答案.

【解答】解::CD 为角平分线,

- $\frac{BD}{AD} = \frac{BC}{AC} = \frac{1}{2}$
- $\overrightarrow{AB} = \overrightarrow{CB} \overrightarrow{CA} = \overrightarrow{a} \overrightarrow{b}$
- $\therefore \overrightarrow{AD} = \frac{2}{3} \overrightarrow{AB} = \frac{2}{3} \overrightarrow{a} \frac{2}{3} \overrightarrow{b},$
- $\overrightarrow{\cdot} \cdot \overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD} = \overrightarrow{b} + \frac{2}{3} \overrightarrow{a} \frac{2}{3} \overrightarrow{b} = \frac{2}{3} \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}$

故选: B.

【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定 理,即若 AD 为三角形 ABC 的内角 A 的角平分线,则 AB: AC=BD: CD

- 9. (5分)已知正四棱锥 S-ABCD中,SA=2√3,那么当该棱锥的体积最大时, 它的高为()

 - A. 1 B. $\sqrt{3}$ C. 2
- D. 3

第9页(共24页)

【考点】LF: 棱柱、棱锥、棱台的体积.

【专题】11: 计算题; 16: 压轴题.

【分析】设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.

【解答】解: 设底面边长为 a,则高 h= $\sqrt{SA^2-(\frac{\sqrt{2}a}{2})^2}=\sqrt{12-\frac{a^2}{2}}$,所以体积 $V=\frac{1}{3}a^2h=\frac{1}{3}\sqrt{12a^4-\frac{1}{2}a^6}$,

设 y=12a⁴- $\frac{1}{2}$ a⁶,则 y′=48a³- 3a⁵,当 y 取最值时,y′=48a³- 3a⁵=0,解得 a=0 或 a=4 时,当 a=4 时,体积最大,

此时
$$h=\sqrt{12-\frac{a^2}{2}}=2$$
,

故选: C.

【点评】本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.

10. (5 分) 若曲线 $y = \frac{-\frac{1}{2}}{x}$ 在点(a, $\frac{-\frac{1}{2}}{2}$)处的切线与两个坐标围成的三角形的面积为 **18**,则 a=(

A. 64

B. 32

C. 16

D. 8

【考点】6H: 利用导数研究曲线上某点切线方程.

【专题】31:数形结合.

【分析】欲求参数 a 值,必须求出在点(a, a 2)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在 x=a 处的导函数值,再结合导数的几何意义即可求出切线的斜率得到切线的方程,最后求出与坐标轴的交点坐标结合三角形的面积公式. 从而问题解决.

【解答】解:
$$y'=-\frac{1}{2}x^{-\frac{3}{2}}$$
, : $k=-\frac{1}{2}a^{-\frac{3}{2}}$,

切线方程是 y- $a^{-\frac{1}{2}} = \frac{1}{2} a^{-\frac{3}{2}} (x-a)$,

$$\Rightarrow$$
 x=0, y= $\frac{3}{2}$ a $^{-\frac{1}{2}}$, \Rightarrow y=0, x=3a,

∴三角形的面积是 $s=\frac{1}{2} \cdot 3a \cdot \frac{3}{2} \cdot \frac{-\frac{1}{2}}{a} = 18$,

解得 a=64.

故选: A.

【点评】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的 面积公式,考查考生的计算能力.

11. (5 分)与正方体 $ABCD-A_1B_1C_1D_1$ 的三条棱 AB、 CC_1 、 A_1D_1 所在直线的距离相等的点(

A. 有且只有1个 B. 有且只有2个 C. 有且只有3个 D. 有无数个

【考点】LO:空间中直线与直线之间的位置关系.

【专题】16: 压轴题.

【分析】由于点 $D \setminus B_1$ 显然满足要求,猜想 B_1D 上任一点都满足要求,然后想办法证明结论.

【解答】解:在正方体 $ABCD-A_1B_1C_1D_1$ 上建立如图所示空间直角坐标系,

并设该正方体的棱长为 1,连接 B₁D,并在 B₁D 上任取一点 P,

因为 $\overrightarrow{DB_1}$ =(1, 1, 1),

所以设 P (a, a, a), 其中 0≤a≤1.

作 PE上平面 A_1D , 垂足为 E, 再作 EF \bot A_1D_1 , 垂足为 F,

则 PF 是点 P 到直线 A₁D₁ 的距离.

所以 PF=
$$\sqrt{a^2+(1-a)^2}$$
;

同理点 P 到直线 AB、CC₁ 的距离也是 $\sqrt{a^2 + (1-a)^2}$.

所以 B₁D 上任一点与正方体 ABCD- A₁B₁C₁D₁ 的三条棱 AB、CC₁、A₁D₁ 所在直线 第 **11** 页 (共 **24** 页)

的距离都相等,

所以与正方体 $ABCD-A_1B_1C_1D_1$ 的三条棱 AB、 CC_1 、 A_1D_1 所在直线的距离相等的点有无数个.

故选: D.

【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.

12. (5分) 已知椭圆 T: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b>0) 的离心率为 $\frac{\sqrt{3}}{2}$, 过右焦点 F且 斜率为 k (k>0) 的直线与 T 相交于 A,B 两点,若 $\overline{AF} = 3\overline{FB}$,则 k=() A. 1 B. $\sqrt{2}$ C. $\sqrt{3}$ D. 2

【考点】KH: 直线与圆锥曲线的综合.

【专题】11: 计算题; 16: 压轴题.

【分析】设 A(x_1 , y_1),B(x_2 , y_2),根据 $\overrightarrow{AF} = 3\overrightarrow{FB}$ 求得 y_1 和 y_2 关系根据离心率设a=2t, $c=\sqrt{3}$ t,b=t,代入椭圆方程与直线方程联立,消去 x,根据韦达定理表示出 y_1+y_2 和 y_1y_2 ,进而根据 y_1 和 y_2 关系求得 k.

【解答】解: $A(x_1, y_1)$, $B(x_2, y_2)$,

 $\therefore \overrightarrow{AF} = 3\overrightarrow{FB}, \quad \therefore y_1 = -3y_2,$

$$\therefore_{e=\frac{\sqrt{3}}{2}}$$
, 设a=2t, c= $\sqrt{3}$ t, b=t,

 $\therefore x^2 + 4y^2 - 4t^2 = 0 1$,

设直线 AB 方程为 $x=sy+\sqrt{3}t$,代入①中消去 x,可得 $(s^2+4)y^2+2\sqrt{3}sty-t^2=0$,

第12页(共24页)

解得
$$s^2 = \frac{1}{2}$$
, $k = \sqrt{2}$

故选: B.

【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.

二、填空题(共4小题,每小题5分,满分20分)

13. (5 分)已知 a 是第二象限的角,tan(π+2α)=
$$-\frac{4}{3}$$
,则 tanα= $-\frac{1}{2}$.

【考点】GO: 运用诱导公式化简求值; GS: 二倍角的三角函数.

【专题】11: 计算题.

【分析】根据诱导公式 $\tan (\pi + \alpha) = \tan \alpha$ 得到 $\tan 2\alpha$,然后利用公式 $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha + \tan \beta}$ 求出 $\tan \alpha$,因为 α 为第二象限的角,判断取值即可.

【解答】解:由 tan $(\pi+2a) = -\frac{4}{3}$ 得 tan2a= $-\frac{4}{3}$,又 tan2a= $-\frac{2 \tan a}{1 - \tan^2 a} = -\frac{4}{3}$,

解得 tana= $-\frac{1}{2}$ 或 tana=2,

又 a 是第二象限的角,所以 tana= $-\frac{1}{2}$.

故答案为: $\frac{1}{2}$.

【点评】本试题主要考查三角函数的诱导公式、正切的二倍角公式和解方程, 考查考生的计算能力.

14. (5分) 若 $(x-\frac{a}{x})^9$ 的展开式中 x^3 的系数是-84,则 $a=\underline{1}$.

【考点】DA: 二项式定理.

【专题】11: 计算题.

【分析】利用二项展开式的通项公式求出第 r+1 项,令 x 的指数为 3 得展开式中第13 页(共 24 页)

x3的系数,列出方程解得.

【解答】解: $(x-\frac{a}{x})^9$ 展开式的通项为 $T_{r+1}=C_9^r x^{9-r} (-\frac{a}{x})^r = (-a)^r C_9^r x^{9-2r}$ 令 9-2r=3 得 r=3

∴展开式中 x³ 的系数是 C₀³ (- a) ³=- 84a³=- 84,

∴a=1.

故答案为1

【点评】本试题主要考查二项展开式的通项公式和求指定项系数的方法.

15. (5 分) 已知抛物线 C: $y^2=2px$ (p>0) 的准线 I, 过 M (1, 0) 且斜率为√3 的直线与 I 相交于 A, 与 C 的一个交点为 B, 若 M= MB, 则 $p=_2$ _.

【考点】K8: 抛物线的性质.

【专题】11: 计算题: 16: 压轴题.

【分析】设直线 AB 的方程与抛物线方程联立消去 y 得 $3x^2+(-6-2p)$ x+3=0,

进而根据 AM = MB, 可知 M 为 A、B 的中点,

可得 p 的关系式,解方程即可求得 p.

【解答】解:设直线 AB: $y=\sqrt{3}x-\sqrt{3}$,代入 $y^2=2px$ 得 $3x^2+(-6-2p)x+3=0$,

又: AM = MB, 即 M 为 A、B 的中点,

$$x_B+(-\frac{p}{2})=2$$
, $x_B=2+\frac{p}{2}$,

得 p²+4P- 12=0,

解得 p=2, p=- 6 (舍去)

故答案为: 2

【点评】本题考查了抛物线的几何性质. 属基础题.

16. (5 分)已知球 O 的半径为 4,圆 M 与圆 N 为该球的两个小圆,AB 为圆 M 与圆 N 的公共弦,AB=4,若 OM=ON=3,则两圆圆心的距离 MN=__3__.

第14页(共24页)

【考点】JE: 直线和圆的方程的应用; ND: 球的性质.

【专题】11: 计算题; 16: 压轴题.

【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形 MNO 中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.

【解答】解法一: "ON=3, 球半径为4,

- ∴小圆 N 的半径为 $\sqrt{7}$,
- ∵小圆 N 中弦长 AB=4, 作 NE 垂直于 AB,
- ∴NE= $\sqrt{3}$,同理可得 $ME=\sqrt{3}$,在直角三角形 ONE 中,
- ∴NE= $\sqrt{3}$, ON=3,
- $\therefore \angle EON = \frac{\pi}{6}$
- $\therefore \angle MON = \frac{\pi}{3}$
- ∴MN=3.

故填: 3.

解法二: 如下图: 设 AB 的中点为 C,则 OC 与 MN 必相交于 MN 中点为 E,因为 OM=ON=3,

故小圆半径 NB 为 $\sqrt{4^2-3^2}=\sqrt{7}$

C 为 AB 中点,故 CB=2;所以 NC= $\sqrt{7^2-2^2}=\sqrt{3}$,

: \triangle ONC 为直角三角形,NE 为 \triangle ONC 斜边上的高,OC= $\sqrt{4^2-2^2}$ = $\sqrt{12}$ = $2\sqrt{3}$

∴MN=2EN=2•CN•
$$\frac{ON}{CO}$$
=2× $\sqrt{3}$ × $\frac{3}{2\sqrt{3}}$ =3

\$\text{\$\text{\$\frac{1}{2}\sqrt{3}\$}\$}\$
\$\text{\$\frac{1}{2}\sqrt{3}\$}\$

故填: 3.

【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.

三、解答题(共6小题,满分70分)

17. (10 分) \triangle ABC 中,D 为边 BC 上的一点,BD=33, $\sin B = \frac{5}{13}$, $\cos \angle ADC = \frac{3}{5}$,求 AD.

【考点】GG: 同角三角函数间的基本关系; HP: 正弦定理.

【分析】先由 $\cos \angle ADC = \frac{3}{5}$ 确定角 ADC 的范围,因为 $\angle BAD = \angle ADC - B$ 所以可求其正弦值,最后由正弦定理可得答案.

【解答】解:由 $\cos \angle ADC = \frac{3}{5} > 0$,则 $\angle ADC < \frac{\pi}{2}$,

又由知 B< \angle ADC 可得 B< $\frac{\pi}{2}$,

由 $\sin B = \frac{5}{13}$,可得 $\cos B = \frac{12}{13}$,

又由 $\cos \angle ADC = \frac{3}{5}$,可得 $\sin \angle ADC = \frac{4}{5}$.

从 面 \sin \angle BAD= \sin (\angle ADC- B) $=\sin$ \angle ADC \cos B- \cos \angle ADC \sin B= $\frac{4}{5} \times \frac{12}{13} - \frac{3}{5} \times \frac{5}{13} = \frac{33}{65}$.

由正弦定理得—AD = BD sin∠BAD

第 16 页 (共 24 页)

【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在 17 或 18 题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.

18. (12 分)已知数列 {a_n} 的前 n 项和 S_n=(n²+n)●3ⁿ.

(I) 求
$$\lim_{n\to\infty} \frac{a_n}{S_n}$$
; (II) 证明: $\frac{a_1}{1^2} + \frac{a_2}{2^2} + ... + \frac{a_n}{n^2} > 3^n$.

【考点】6F: 极限及其运算; R6: 不等式的证明.

【专题】11: 计算题: 14: 证明题.

【分析】(1)由题意知 $\lim_{n\to\infty} \frac{a_n}{S_n} = \lim_{n\to\infty} \frac{S_n - S_{n-1}}{S_n} = \lim_{n\to\infty} (1 - \frac{S_{n-1}}{S_n}) = 1 - \lim_{n\to\infty} \frac{S_{n-1}}{S_n}$,由此可知答案.

(2) 由题意知,
$$\frac{a_1}{1^2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{n^2} = \frac{S_1}{1^2} + \frac{S_2 - S_1}{2^2} + \dots + \frac{S_n - S_{n-1}}{n^2}$$

$$= (\frac{1}{1^2} - \frac{1}{2^2}) \quad S_1 + (\frac{1}{2^2} - \frac{1}{3^2}) \quad S_2 + \dots + (\frac{1}{(n-1)^2} - \frac{1}{n^2}) \quad S_{n-1} + \frac{1}{n^2} S_n > \frac{1}{n^2} S_n, \text{ 由此}$$
可知,当 $n \ge 1$ 时, $\frac{a_1}{1^2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{n^2} > 3^n$.

解答】解: (1)
$$\lim_{n\to\infty} \frac{a_n}{S_n} = \lim_{n\to\infty} \frac{S_n - S_{n-1}}{S_n} = \lim_{n\to\infty} (1 - \frac{S_{n-1}}{S_n}) = 1 - \lim_{n\to\infty} \frac{S_{n-1}}{S_n}$$

$$\lim_{n\to\infty} \frac{S_{n-1}}{S_n} = \lim_{n\to\infty} \frac{n-1}{n+1} \cdot \frac{1}{3} = \frac{1}{3}, \quad \text{MU} \lim_{n\to\infty} \frac{a_n}{S_n} = \frac{2}{3};$$

(2) 当 n=1 时,
$$\frac{a_1}{1^2} = S_1 = 6 > 3$$
;

当 n>1 时,
$$\frac{a_1}{1^2} + \frac{a_2}{2^2} + \dots + \frac{a_n - S_1}{n^2 - 1^2} + \frac{S_2 - S_1}{2^2} + \dots + \frac{S_n - S_{n-1}}{n^2}$$

$$= (\frac{1}{1^2} - \frac{1}{2^2}) S_1 + (\frac{1}{2^2} - \frac{1}{3^2}) S_2 + \dots + (\frac{1}{(n-1)^2} - \frac{1}{n^2}) S_{n-1} + \frac{1}{n^2} S_n > \frac{1}{n^2} S_n = \frac{n^2 + n}{n^2} \cdot 3^n > 3^n$$

所以,
$$n \ge 1$$
 时, $\frac{a_1}{1^2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{n^2} \ge 3^n$.

【点评】本题考查数列的极限问题,解题时要注意公式的灵活运用.

- 19. (12 分)如图,直三棱柱 ABC− A₁B₁C₁ 中,AC=BC,AA₁=AB,D 为 BB₁ 的中点,E 为 AB₁上的一点,AE=3EB₁.
 - (I)证明: DE 为异面直线 AB₁与 CD 的公垂线;
- (II) 设异面直线 AB_1 与 CD 的夹角为 45° ,求二面角 A_1 AC_1 B_1 的大小.

【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.

【专题】11: 计算题: 14: 证明题.

【分析】(1) 欲证 DE 为异面直线 AB_1 与 CD 的公垂线,即证 DE 与异面直线 AB_1 与 CD 垂直相交即可;

(2) 将 AB_1 平移到 DG,故 \angle CDG 为异面直线 AB_1 与 CD 的夹角,作 $HK \bot AC_1$,K 为垂足,连接 B_1 K,由三垂线定理,得 B_1 K \bot AC_1 ,因此 \angle B_1 KH 为二面角 A_1 AC_1 B_1 的平面角,在三角形 B_1 KH 中求出此角即可.

第18页(共24页)

【解答】解: (1) 连接 A_1B ,记 A_1B 与 AB_1 的交点为 F.

因为面 AA_1BB_1 为正方形,故 $A_1B \perp AB_1$,且 $AF=FB_1$,

又 AE=3EB₁,所以 FE=EB₁,

又D为BB₁的中点,

故 DE//BF, DE_AB₁.

作 CG L AB, G 为垂足,由 AC=BC 知,G 为 AB 中点.

又由底面 ABC 上面 AA₁B₁B. 连接 DG,则 DG // AB₁,

故 DE L DG, 由三垂线定理, 得 DE L CD.

所以 DE 为异面直线 AB₁ 与 CD 的公垂线.

(2) 因为 $DG//AB_1$,故 $\angle CDG$ 为异面直线 AB_1 与 CD 的夹角, $\angle CDG=45$ ° 设 AB=2,则 $AB_1=2\sqrt{2}$, $DG=\sqrt{2}$, $CG=\sqrt{2}$, $AC=\sqrt{3}$.

作 $B_1H \perp A_1C_1$,H 为垂足,因为底面 $A_1B_1C_1 \perp$ 面 AA_1CC_1 ,故 $B_1H \perp$ 面 AA_1C_1C .又作 $HK \perp AC_1$,K 为垂足,连接 B_1K ,由三垂线定理,得 $B_1K \perp AC_1$,因此 $\angle B_1KH$ 为二面角 A_1 — AC_1 — B_1 的平面角.

$$B_1H = \frac{2\sqrt{6}}{3}$$
, $C_1H = \frac{\sqrt{3}}{3}$, $AC_1 = \sqrt{7}$, $HK = \frac{2\sqrt{21}}{21}$

 $tan \angle B_1KH = \sqrt{14}$

∴二面角 A_1 - AC_1 - B_1 的大小为 $arctan\sqrt{14}$.

【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力. 三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段. 通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的"形"到"形"的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.

第19页(共24页)

- 20. (12 分)如图,由 M 到 N 的电路中有 4 个元件,分别标为 T_1 , T_2 , T_3 , T_4 , 电流能通过 T_1 , T_2 , T_3 的概率都是 P,电流能通过 T_4 的概率是 0.9,电流能否通过各元件相互独立. 已知 T_1 , T_2 , T_3 中至少有一个能通过电流的概率为 0.999
- (I) 求P:
- (Ⅱ) 求电流能在 M 与 N 之间通过的概率.

【考点】C5: 互斥事件的概率加法公式; C8: 相互独立事件和相互独立事件的概率乘法公式.

【专题】11: 计算题.

【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将 T1, T2, T3 至少有一个能通过电流用基本事件表示并求出概率即可求得 p.

(II) 根据题意,B表示事件: 电流能在 M 与 N 之间通过,根据电路图,可得 $B=A_4+(1-A_4)A_1A_3+(1-A_4)(1-A_1)A_2A_3$,由互斥事件的概率公式,代 入数据计算可得答案.

【解答】解: (I) 根据题意,记电流能通过 T_i 为事件 A_i , i=1、2、3、4,

A表示事件: T₁, T₂, T₃, 中至少有一个能通过电流,

易得 A_1 , A_2 , A_3 相互独立,且 $\overline{A} = \overline{A}_1 \cdot \overline{A}_2 \overline{\cdot A}_3$,

 $P(\overline{A}) = (1-p)^{3}=1-0.999=0.001,$

计算可得, p=0.9;

(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,

有 $B=A_4+(1-A_4)A_1A_3+(1-A_4)(1-A_1)A_2A_3$

则 P (B) = P (A_4 + (1- A_4) A_1A_3 + (1- A_4) (1- A_1) A_2A_3)

第 20 页 (共 24 页)

 $=0.9+0.1\times0.9\times0.9+0.1\times0.1\times0.9\times0.9$ =0.9891.

【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.

- 21. (12 分)已知斜率为 1 的直线 I 与双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0, b>0)相交 于 B、D 两点, E BD 的中点为 M(1,3).
 - (I) 求 C的离心率;
 - (Ⅱ) 设 C 的右顶点为 A, 右焦点为 F, |DF|•|BF|=17, 证明: 过 A、B、D 三 点的圆与 x 轴相切.
- 【考点】J9: 直线与圆的位置关系; KC: 双曲线的性质; KH: 直线与圆锥曲线的综合.

【专题】11: 计算题; 14: 证明题; 16: 压轴题.

- 【分析】(I)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD 两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出 a,b 的关系式即求得离心率.
- (Ⅱ)利用离心率将条件 | FA | | FB | =17,用含 a 的代数式表示,即可求得 a,则 A 点坐标可得(1,0),由于 A 在 x 轴上所以,只要证明 2AM=BD 即证得.

【解答】解: (I)由题设知,I的方程为: y=x+2,代入C的方程,并化简,

得 (b^2-a^2) $x^2-4a^2x-a^2b^2-4a^2=0$,

设 B
$$(x_1, y_1)$$
 , D (x_2, y_2) , 则 $x_1 + x_2 = \frac{4a^2}{b^2 - a^2}$, $x_1 x_2 = \frac{4a^2 + a^2b^2}{b^2 - a^2}$, ①

由 M(1, 3)为 BD 的中点知 $\frac{x_1+x_2}{2}=1$.

故
$$\frac{1}{2} \times \frac{4 a^2}{b^2 - a^2} = 1$$
,即 b²=3a²,②

故
$$c=\sqrt{a^2+b^2}=2a$$

第21页(共24页)

∴C 的离心率 e= c = 2.

(Ⅱ)由①②知, C的方程为: 3x²- y²=3a², A(a, 0), F(2a, 0),

$$x_1 + x_2 = 2$$
, $x_1 x_2 = -\frac{4 + 3a^2}{2}$.

故不妨设 $x_1 \leq -a$, $x_2 \geq a$,

$$|BF| = \sqrt{(x_1-2a)^2 + y_1^2} = a-2x_1$$
, $|FD| = \sqrt{(x_2-2a)^2 + y_2^2} = 2x_2-a$

$$|BF| \bullet |FD| = (a - 2x_1) (2x_2 - a) = -4x_1x_2 + 2a (x_1 + x_2) - a^2 = 5a^2 + 4a + 8.$$

又|BF|•|FD|=17,故 5a²+4a+8=17.

解得
$$a=1$$
,或 $a=-\frac{9}{5}$ (舍去),

故 |BD|=
$$\sqrt{2}$$
 | x₁-x₂| = $\sqrt{2}\sqrt{(x_1+x_2)^{-2}-4x_1x_2}$ =6,

连接 MA,则由 A(1,0),M(1,3)知 | MA | =3,

从而 MA=MB=MD, 且 MA Lx 轴,

因此以 M 为圆心, MA 为半径的圆经过 A、B、D 三点,且在点 A 处与 x 轴相切, 所以过 A、B、D 三点的圆与 x 轴相切.

【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.

- 22. (12分)设函数 f(x)=1-e-x.
- (I)证明: 当x>-1时, $f(x) \ge \frac{x}{x+1}$;
- (Ⅱ)设当 $x \ge 0$ 时, $f(x) \le \frac{x}{ax+1}$,求 a 的取值范围.

第22页(共24页)

【考点】6E: 利用导数研究函数的最值.

【专题】15:综合题;16:压轴题.

【分析】(1)将函数 f(x) 的解析式代入 $f(x) \ge \frac{x}{x+1}$ 整理成 $e^x \ge 1+x$,组成新函数 $g(x) = e^x - x - 1$,然后根据其导函数判断单调性进而可求出函数 g(x) 的最小值 g(0) ,进而 $g(x) \ge g(0)$ 可得证.

【解答】解: (1) 当 x>- 1 时,f (x) $\geq \frac{x}{x+1}$ 当且仅当 $e^x \geq 1+x$

令 g(x)= e^{x} - x- 1,则 g'(x)= e^{x} - 1

当 x≥0 时 g'(x)≥0, g(x)在[0,+∞)是增函数

当 x≤0 时 g'(x)≤0, g(x)在(-∞,0]是减函数

于是 g (x) 在 x=0 处达到最小值,因而当 x∈R 时,g (x) \geq g (0) 时,即 $e^x \geq 1+x$ 所以当 $x \geq -1$ 时,f (x) $\geq \frac{x}{x+1}$

(2) 由题意 x≥0,此时 f(x)≥0

当 a<0 时,若 x>- $\frac{1}{a}$,则 $\frac{x}{ax+1}$ <0,f(x) $\leq \frac{x}{ax+1}$ 不成立;

当 a≥0 时,令 h(x)=axf(x)+f(x)- x,则

 $f(x) \leq \frac{x}{ax+1}$ 当且仅当 $h(x) \leq 0$

因为 $f(x) = 1 - e^{-x}$,所以 h'(x) = af(x) + axf'(x) + f'(x) - 1 = af(x) - axf(x)

x) +ax-f(x)

(i) 当 0 \leq a \leq $\frac{1}{2}$ 时,由(1)知 x \leq (x+1) f (x)

 $h'(x) \leq af(x) - axf(x) + a(x+1) f(x) - f(x)$

第23页(共24页)

$$= (2a-1) f(x) \leq 0,$$

$$h(x)$$
 在[0, + ∞) 是减函数, $h(x) \leqslant h(0)$ =0,即 $f(x) \leqslant \frac{x}{ax+1}$;

(ii) 当 a>
$$\frac{1}{2}$$
时,由 y=x- f (x) =x- 1+e^{- x},

 $y'=1-e^{-x}$, x>0 时,函数 y 递增; x<0,函数 y 递减.

可得 x=0 处函数 y 取得最小值 0, 即有 x≥f(x).

h' (x) =af (x) - axf (x) +ax- f (x)
$$\geq$$
af (x) - axf (x) +af (x) - f (x) = (2a-1-ax) f (x)

当
$$0 < x < \frac{2a-1}{a}$$
 时, $h'(x) > 0$,所以 $h'(x) > 0$,所以 $h(x) > h(0) = 0$,即
$$f(x) > \frac{x}{ax+1}$$

综上,a 的取值范围是 $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$

【点评】本题主要考查导数的应用和利用导数证明不等式,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力;导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生率固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.