Introduction

Digital Image Processing

Image

- Snapshot of light
 - For a specific time
 - For specific directions
- Simulating real world
 - Producing similar visual stimuli
- In two dimensional form
 - Retina is 2D
 - Painting, photography...

- Wikipedia
 - is an artifact that depicts <u>visual perception</u>, such as a <u>photograph</u> or other <u>two-dimensional</u> **picture**, that resembles a subject and thus provides a <u>depiction</u> of it
 - In the context of signal processing, an image is a distributed amplitude of color(s).[1]

- 2D function
 - f(x,y)
 - Given 2D location (x, y)
 - There is some response (intensity) f(x, y)

What is "Digital Image"?

- Image stored in a "digital form" (aka binary form)
 - Represented a sequence of numbers (finite)
- Common "digitization" method
 - Raster (aka Bitmapped) image
 - Vector image

Raster Image

- Finite set of digital values
 - Picture elements (aka pixels)
 - Usually evenly distributed in vertical and horizontal direction
 - Pixels are squares in most cases
- Raster file formats
 - JPEG, PNG, GIF, DNG, and many

Vector Image

Vector Image

Vector Image

- Recent vector images
 - Storing how to draw thing on 2D image plane
 - Lines, polygons, circles, curves, ...
- Typical examples
 - Vector font
 - Data transferred to printer
 - SVG, AI, ...

Advantage & Disadvantage of Digital Image

- Easy reproduction
- Fine detail
 - Natural image
- Easy to access a part
- Easy to modify globally

- Large data
 - Resolution dependent
- Limited resolution
 - Bad for scaling
- Hard to modify locally

figure 1.1 A digital picture produced in 1921 from a coded tape by a telegraph printer with special type faces. (McFarlane.†)

figure 1.2 A digital picture made in 1922 from a tape punched after the signals had crossed the Atlantic twice. (McFarlane.)

```
},_.id{.dgm]Q(]#gdH)QQHG?'113??!^P"^
                                                         "~mUAn7^^!1%XV^'
                 .<$kq;UG]QtHAQE]#)d~]\9H8s,;mmqqa&aau,_
**ak
               1e9d#m9XQD<#KHM#EdYdE\da#UUW%1U#Qr\QWk MN7?Ag,?XV(=i;V%XXP
              -ikXQAZd#8d#kdAFJFJ?\#3#ku4QQaWQQMHHHH9HM8UDGa3?9*<4UXY?~
 ,xadU*
               'U(]Q#(4#P<PTUF,j@ IM]WdQNQPAP,jU~-WQ_JFd1z,t_^?Yg('
':,dQHY^\,x_ -U0#[]DX,jdY}YZJR-Q5wt-.i#aQVdPNU~Sd#Fk-dTZ~;~''Y)`
aa#@~`.jaMY~,a1u,jY\dY\2F,Y/,jQF]C =1?]}VWhdPqW@Ed#@F,jP\Z5aYUwd/?,d
Q#P`=jQP~jdP~aP~a@~jP\dfdTd#Fdk*}?adA21d@FjMFyQ@^jŸ\P\dT_j\Mdz71
#Y'djWT:qWPqd~jdP'jFj2dj[=#RjQ('?qK]P=d#F}WF+jQF9"jY']X' (dP\`k'^
^#}d@~d,j#FiU~q#P JY,jP](WE]WF]C^<kU(dK?##>WAi.WDtkdE
djMF ;QP^jMEi#C^jFqPj@3D.]MM]E<*]9kQ#(4C4EQs3#F JMF .dE 4E](N<r<_Mk
WY^,id@~|dH^iQP^,j~,jWE]~WE=]Q_?^!yUd[]MAJQd###A#&s9Qk_dP
~`.j#Y'.jd#~qQMEq@:]M\]%#E=9#(\Z|JK#k<HM1#U???"Y9P\z,j;P'
d.j#(:,jQ#(:d#(-Q[ WQU"~QG.=T_&%;Q4Q$d9C}D8k=yxkd"1,jQC' -W[ 4F]TL<g?Qgr
YKxMTdMF-W#F.j#KkVU#ryU#bk<QUta#W@5Q9k385WU1x_<g'~3Wk[r]#K `C](4k?%'^
adP'JQ( ]8F:]QE□ 3Q(u}QAk=C]KJQM~a@dHWU]W#esT!ITIi9#G=JNQk 9g(4k?V
QP|J#@t'd@'QJ#t#=]#[(]#Qi<t]CQ#FdQCO@Mt%"Y#QQQAwd42MDme]Wk ]e|](=r
                ]W[:##Q_:4/}#FJ#Q(:5"qax=?9Q#QQ#9A?M#ms9#{<(3][]$r
`=W#F'=]@' =#QK'0]Q[kkH#[%]k]P}W#PSgS1WQQA&-VYMQ#kQ$!9#c]WL.LI;L<]
Md#@rdVd[+ ]Q#r%%]#ts=]WQ_]QW*WD#EariUQ#Q#QQmXU!Y#?#Az3A{98kXI(k2=
.j##~=V}#[ 1]QQ( ']##gU 9#[4#@]WQE]WK=I9@YY99##bxiIN?WQz9bZQC]}*{x=
          []Q#[=d]##b=d]QE]#DW#M5WQFS<?N|1;aQQMQQAxo?HA/NL]G<V41`
          ]WQb-: 'HQQL#]#k?#QQQE]DQEe?t:qd##Q##Q###$s?HQ7#rMrCVT*
               ^<]W##r9#Q(3###(UQ@383P3J##Q@Y!?MQ##QgdHb3G3b]31(
         .]##QL=V 3##A.##$z9Q#5Q#t]L'6dHMMVPHI)WGTYH8{!YH4(9zVVK
Mf=^]Q#['=d]DQ#tM ^'H##<?QQQg9Q]##r4QF?(dUTh;aGqm;QilYV)sVsTq&aark
QT3*4##b=:='####a_==?Q#b Y###x?3Q#L4#f=$.~U.id##MVY!uqQQAqqqQWWQQMn_
Q{= 4##QidU8]#Q#QQ& k9#Q$g"9QQQb9Qk]8Li)kh,jQ@9$wawd##Q###HYN#####8C_
#@(r3#Q#r'r^'9##Q##k%?NQ##AVHQHYI9Qg9AQ<Ik?5dW#QQHYNQ#M91*109?Y??~Ik
#ce*]0##0a = <9##0#0a_?9000UUVmU%?A/#FN9tM"YHMYT???';smd{%?93%TT$,
#K1V?H##00$r000?#####$a ??M@YSUY^' JF#R4(D=r.,aaqWOAmdDV31dx3N3<IO3k
```

- 5 distinct brightness levels
 - Improved in 1929 to 15 levels
 - Developing a film plate
 - Coded picture tape

- First picture of the moon (1960)
 - Took by spacecraft Ranger
 - Computers used to improve the quality of image

- Medical applications (1970)
 - Tomography
 - Processed to Computerized tomography (aka CT)

Electromagnetic energy spectrum

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

Gamma-Ray Imaging

X-Ray imaging

Ultra-violet band

- Visible + Infrared band image
 - Microscopic images

Microwave band imaging

FIGURE 1.16 Spaceborne radar image of mountains in southeast Tibet. (Courtesy of NASA.)

FIGURE 1.18 Images of the Crab Pulsar (in the center of images) covering the electromagnetic spectrum. (Courtesy of NASA.)

Sound & Ultrasonic Wave Imaging

FIGURE 1.19
Cross-sectional image of a seismic model. The arrow points to a hydrocarbon (oil and/or gas) trap. (Courtesy of Dr. Curtis Ober, Sandia National Laboratories.)

What is Digital Image Processing

- Digital image processing focuses on two major tasks
 - Improvement of pictorial information for human interpretation
 - Processing of image data for storage, transmission and representation for autonomous machine perception
- Some argument about where image processing ends and fields such as image analysis and computer vision start

Fundamental Levels in DIP

- Low level
 - Image => image
 - Example: Noise removal, image sharpening
- Mid level
 - Image => Attributes
 - Example: Object recognition & segmentation
- High level
 - Attribute (image) => Understanding
 - Example: Scene understanding, autonomous navigation

Image Acquisition Image Enhancement Image Restoration Morphological Processing Segmentation Object

Representation & Description

Extra Issues

Image compression

Color image processing

Questions?