PATENT COOPERATION TREAT

	From the INTERNATIONAL BUREAU
PCT	To:
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 18 février 2002 (18.02.02)	AWAPATENT AB Box 5117 S-200 71 Malmö SUÈDE
Applicant's or agent's file reference 2002163	IMPORTANT NOTIFICATION
International application No. PCT/SE00/02082	International filing date (day/month/year) 26 octobre 2000 (26.10.00)
The following indications appeared on record concerning: X the applicant X the inventor	the agent the common representative
Name and Address	State of Nationality State of Residence SE SE
TORDSSON, M., Jesper Flöjtvägen 20B S-224 68 Lund Sweden	Telephone No.
	Facsimile No.
	Teleprinter No.
2. The International Bureau hereby notifies the applicant that t	the following change has been recorded concerning:
the person the name X the add	·
Name and Address TORDSSON, M., Jesper	State of Nationality State of Residence SE SE
lliongränden K120 S-224 74 Lund Sweden	Telephone No.
	Facsimile No.
	Teleprinter No.
3. Further observations, if necessary:	
4. A copy of this notification has been sent to:	
X the receiving Office	the designated Offices concerned
the International Searching Authority	X the elected Offices concerned
the International Preliminary Examining Authority	other:
The International Bureau of WIPO	Authorized officer
34, chemin des Colombettes 1211 Geneva 20, Switzerland	Anne KARKACHI
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38

PAT INT COOPERATION TREAT

From the INTERNATIONAL BUREAU **PCT** Commissioner **NOTIFICATION OF ELECTION US** Department of Commerce United States Patent and Trademark (PCT Rule 61.2) Office, PCT 2011 South Clark Place Room CP2/5C24 Arlington, VA 22202 **ETATS-UNIS D'AMERIQUE** Date of mailing (day/month/year) in its capacity as elected Office 12 July 2001 (12.07.01) International application No. Applicant's or agent's file reference PCT/SE00/02082 2002163 International filing date (day/month/year) Priority date (day/month/year) 26 October 2000 (26.10.00) 28 October 1999 (28.10.99) **Applicant** BRODIN, Thomas, N. et al 1. The designated Office is hereby notified of its election made: X in the demand filed with the International Preliminary Examining Authority on: 24 April 2001 (24.04.01) in a notice effecting later election filed with the International Bureau on: 2. The election was not made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

Claudio Borton

Telephone No.: (41-22) 338.83.38

Facsimile No.: (41-22) 740.14.35

International application No. PCT/SE 00/02082

A. CLASS	CLASSIFICATION OF SUBJECT MATTER			
IPC7: C	07K 16/30, C07K 16/14, G01N 33/574 International Patent Classification (IPC) or to both national	, A61K 39/00 onal classification and IPC		
	S SEARCHED			
Minimum do	ocumentation searched (classification system followed by o	classification symbols)		
IPC7: C	07K, G01N, A61K			
Documentati	ion searched other than minimum documentation to the e	extent that such documents are included in	n the fields searched	
SE,DK,F	I,NO classes as above		·	
Electronic da	ata base consulted during the international search (name o	of data base and, where practicable, search	h terms used)	
MEDLINE	, BIOSIS, EMBASE, STRAND			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		•	
Category*	Citation of document, with indication, where appr	opriate, of the relevant passages	Relevant to claim No.	
A	WO 9906834 A2 (IXSYS, INCORPORATE 11 February 1999 (11.02.99), 60, SEQ ID NO:106	ED), see claim 15 and page	1-15	
A	 WO 9404679 A1 (GENENTECH, INC.), (03.03.94), see claim 16 and 		1-15	
A	GB 2305921 A (CAMBRIDGE ANTIBODY LIMITED), 23 April 1997 (23.0 (ii), fig. 19 (ii) and claims	04.97), see fig. 1b	1-15	
A	US 5320942 A (VITO QUARANTA ET A (14.06.94), see columns 7-11	L), 14 June 1994	1-23,38,39	
Furth	her documents are listed in the continuation of Box	C. See patent family anne	х.	
"A" docum	al categories of cited documents: nent defining the general state of the art which is not considered of particular relevance r application or patent but published on or after the international	"T" later document published after the initial date and not in conflict with the applithe principle or theory underlying the "X" document of particular relevance; the	ication but cited to understand invention	
filing		"X" document of particular relevance: the considered novel or cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered.	ered to involve an inventive	
special reason (as specified) Of document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination				
means being obvious to a person shelled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family				
	he actual completion of the international search	Date of mailing of the international	search report	
		2 2 -05- 20	01	
21 Mar	y 2001 and mailing address of the ISA	Authorized officer		
Swedist	h Patent Office	0 10150 : 5		
Box 505	55, S-102 42 STOCKHOLM	Carl-Olof Gustafsson/EÖ		

International application No. PCT/SE00/02082

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inter	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: 38, 39, 52-54 because they relate to subject matter not required to be searched by this Authority, namely:
	see extra sheet *
2. 🔯	Claims Nos.: 1-54 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: see extra sheet **
3.	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	ernational Searching Authority found multiple inventions in this international application, as follows:
see	extra sheet ***
1. 🗆	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🖂	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remar	k on Protest
j	No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July1998)

International application No. PCT/SE00/02082

Box I.1*

Claims 7-9 relate to methods of treatment of the human or animal body by surgery or by therapy/ diagnostic methods practised on the human or animal body/Rule 39.1.(iv). Nevertheless, a search has been executed for these claims. The search has been based on the alleged effects of the compounds/compositions.

Box I.2**

)

Claims 1-54 directly or indirectly refer to compounds (antibody, "target structure" etc.) that "comprise essentially" certain amino acid sequences. E.g. claim 1 also relates to a "fragment" of the claimed antibody "with similar unique binding properties". Neither the wording "comprise essentially", nor "similar unique properties" define features that can be adequately searched as they are not clear and concise. This also concerns claim 17 that refer to a "target structure having substantial homology with" alpha 6 and/or beta 4 integrin chains. According to PCT Rule 6 claims shall relate to

Claim 27 does not refer to structures that can be adequately searched as the sequences are not restricted to a reasonable number of sequences focusing on the part of the structures (the epitope) that enables a binding of an antibody. Compound claims 29-33 (reach through claims) only provide indirect definitions of the compounds and therefore cannot be adequately searched.

Consequently, the search has been restricted to antibodies as defined by SEQ ID NO:2 and related sequences comprising all CDRs. The target structures according to claims 17-23 and 28 have not been searched unless covered by the search for the claimed antibodies. This is due to the lack of a searchable definition of the epitope.

Form PCT/ISA/210 (extra sheet) (July1998)

International application No. PCT/SE00/02082

Box II***

The present application refers to an antibody and a corresponding target structure. The antibody has been sequenced but the antigen has only been defined in general terms by reference to its binding to an alpha-6-beta-4 integrin (a complex structure). No precise definition of the epitope on the antigen has been revealed. Thus, no clear and concise link (common feature) exists between the antibody and the many different antigens covered by claims 24-27.

According to PCT Rule 13.1 and 13.2, the international application shall relate to one invention only or to a group of inventions so linked as to form a single general inventive concept ("requirement of unity of invention"). In order to achieve unity of invention the single general inventive concept must involve a "special technical feature" i.e. a technical feature that is common to the inventions and defines a contribution which each of the claimed inventions, considered as a whole, makes over the prior art.

The claims refer to four groups of inventions:

- Antibody according to claims 1-16 and corresponding antigen/target structure according to claims 17-23.
- 2 Target structure according to claims 24-26 (partially) with the amino acid sequence of alpha 6 integrin according to SEQ ID NO: 3
- Target structure according to claims 24-26 (partially) with the amino acid sequence of alpha 4 integrin according to SEQ ID NO: 4
- 4 Dimers or multimers comprising target structures of 2 and/or 3 as above according to claim 25.
- 5-?? Target structures according to claim 27 with amino acid sequences according to SEQ ID NO: 5-51 or a "molecule complexed to said polypeptide(s)"

Inventions 5-51 cannot be searched as none of the 50 sequences has been linked to any particular feature. Further non-unity is likely to evolve if combinations of the peptides are involved.

Form PCT/IS A/210 (extra sheet) (July1998)

INTERNATIONAL SEARCH REPORT Information on patent family members

30/04/01

International application No. PCT/SE 00/02082

	it document search report		Publication date		Patent family member(s)		Publication date
МО	9906834	A2	11/02/99	AU EP	8691398 1007967		22/02/99 14/06/00
4O	9404679	A1	03/03/94	AU	675916		27/02/97
				AU	2250992		12/01/93
				EP	0590058		06/04/94
				JP		Ţ	22/09/94
				US Ca	6054297 2103059	,	25/04/00 15/12/92
				EP	0940468		08/09/99
				US	5821337		13/10/98
				MO	9222653	• •	23/12/92
				ÄÜ	5083193		15/03/94
GB	2305921	Α	23/04/97	AT	190650	T	15/04/00
				AT		T	15/02/01
				AU	702049		11/02/99
				AU	7140596		30/04/97
				CA	2233042		17/04/97
				DE	69607191		28/09/00
				DE Ep	69611766		00/00/00
				SE	0853661 0853661		22/07/98
	-			EP	0945464		29/09/99
				SE	0945464		23/03/33
				ES	2146020		16/07/00
				GB	9520486		00/00/00
				GB	9601081		00/00/00
				GB	9620920	D	00/00/00
				GR		T	29/09/00
				JP	2000500643		25/01/00
				PT	853661		31/08/00
				WO	9713844	Α	17/04/97
us Us	5320942	Α	14/06/94	CA	1339709	Δ	10/03/98
		••	21, 00, 01	DE	3854821		23/05/96
				DK	88288	-	20/08/88
				EP	0279669		24/08/88
				ΙL	85471		00/00/00
				JP	2792651	В	03/09/98
				JP	63301899		08/12/88
				US	4962048		09/10/90
				US US	5344919 5665864	A	06/09/94 09/09/97

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT 2 FEB 2002

(PCT Article 36 and Rule 70)

901	
of Transmittal of International nination Report (Form PCT/IPEA	/416)
rity date (day/month/year)	
.10.1999	

Applicant's or agent's file reference	FOR FURTHER ACTION		ation of Transmittal of International Examination Report (Form PCT/IPEA/416)
2002163			
International application No.	International filing date (day/mor	ith/year)	Priority date (day/month/year)
PCT/SE00/02082	26.10.2000		28.10.1999
International Patent Classification (IPC) of	r national classification and IPC7		
C07K 16/30, C07K 16/1	4, C07K 33/574, A	61K 39/	′00
Applicant			
Active Biotech AB et	al		
• • • • • • • • • • • • • • • • • • • •	amination report has been prepared applicant according to Article 36	•	rnational Preliminary Examining
2. This REPORT consists of a total	of 7 sheets, including	ng this cover	sheet.
been amended and are the b		ontaining rec	ion, claims and/or drawings which have stifications made before this Authority the PCT).
These annexes consist of a total of	f sheets.		
3. This report contains indications re	elating to the following items:		
I Basis of the report			
II Priority			
III Non-establishment o	f opinion with regard to novelty, in	ventive step	and industrial applicability
IV \(Lack of unity of inve	ention		
1 1 1	under Article 35(2) with regard to ations supporting such statement	novelty, inve	entive step or industrial applicability;
VI Certain documents c	ited		
VII Certain defects in the	e international application		•
VIII Certain observations	on the international application		
<u></u>			
Date of submission of the demand	Date of	completion.	of this report

Date of submission of the demand		Date of completion of this report
24.04.2001		30.01.2002
Name and mailing address of the IPEA/SE		Authorized officer
Patent- och registreringsverket Bom 5055 S-100 42 STOCKHOLM	Telex 17978 PATOREG-S	
Facsimile No. 08-667 72 88		Telephone No. 08-782 25 00

Form PCT/IPEA/409 (cover sheet) (January 1998)

International application No.	
PC £00/02082	

I.	Basi	is of the report
1. \	With	regard to the elements of the international application:*
	\boxtimes	the international application as originally filed
	\Box	the description:
		pages , as originally filed
		pages , filed with the demand
		pages, filed with the letter of
		the claims:
		pages, as originally filed
		pages, as amended (together with any statement) under article 19
		pages, filed with the demand
		pages, filed with the letter of
		the drawings:
		pages, as originally filed pages, filed with the demand
		the sequence listing part of the description: pages , as originally filed
		pages , as originally filed pages , filed with the demand
		pages , filed with the letter of
t	he in	regard to the language, all the elements marked above were available or furnished to this Authority in the language in which ternational application was filed, unless otherwise indicated under this item. elements were available or furnished to this Authority in the following language which is: the language of a translation furnished for the purposes of international search (under Rule 23.1(b)).
	믬	the language of publication of the international application (under Rule 48.3(b)).
	님	the language of publication of the international application (under Rule 48.5(6)). the language of the translation furnished for the purposes of international preliminary examination (under Rules 55.2 and/
	لــا	or 55.3).
		regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international ninary examination was carried out on the basis of the sequence listing:
	\boxtimes	contained in the international application in written form.
	\boxtimes	filed together with the international application in computer readable form.
		furnished subsequently to this Authority in written form.
	\Box	furnished subsequently to this Authority in computer readable form.
		The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished. The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.
4.		The amendments have resulted in the cancellation of:
		the description, pages
		the claims, Nos.
		the drawings, sheet/fig
5.		This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2 (c)).**
*	in th	acement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to is report as "originally filed" and are annexed to this report since they do not contain amendments (Rules 70.16 70.17).
**		replacement sheet containing such amendments must be referred to under item I and annexed to this report.

III. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
The questions whether the claimed invention appears to be novel, to involve an inventive step (to be non obvious), or to be industrially applicable have not been examined in respect of:
the entire international application,
\bigcirc claims Nos. 1-47 (partially) 48-54
because: the said international application, or the said claims Nos. 48-54 relate to the following subject matter which does not require an international preliminary examination (specify):
Claims 38, 39,48-54 See PCT Rule 67.1.(iv).: Methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods.
/
the description, claims or drawings (indicate particular elements below) or said claims Nos. 1-47 are so unclear that no meaningful opinion could be formed (specify):
the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.
no international search report has been established for said claims Nos.
2. A meaningful international preliminary examination cannot be carried out due to the failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions: the written form has not been furnished or does not comply with the standard. the computer readable form has not been furnished or does not comply with the standard.

Supplemental Box

(To be used when the space in any of the preceding boxes is not sufficient)

Continuation of: III

Claims 1-47 directly or indirectly refer to "target structure" etc.) (antibody, that "comprise essentially" selected amino acid sequences. E.g. claim 1 also relates to a "fragment" of the claimed antibody "with similar unique binding properties". Neither the wording "comprise essentially", nor "similar unique properties" define features that could be searched adequately as they are not clear and concise. This also concerns claim 17 that refers to a "target structure having substantial homology with" alpha 6 and/or beta 4 integrin chains. Furthermore, the claims indirectly defines the site on the antigen that binds the antibody.

According to Article 6 PCT claims shall be fully supported by the description. Such support is at hand for the specific antibody according to SEQ ID NO:2 but not for SEQ ID NO:5-51 (claims 24 and 27). Thus claims 24 and 27 do not refer to structures that could be searched adequately as the sequences are not restricted to a reasonable number of sequences. Nor are each sequence defined by e.g. its affinity to an antibody. Compound claims 29-33 (reach through claims) only provide indirect definitions of the compounds and therefore could not be searched.

Consequently, the statements given in the present report are restricted to antibodies as defined by SEQ ID NO:2 and related sequences comprising all CDRs and corresponding target structures according to claims 17-23 and 28 to the extent they have specific affinity for the claimed antibodies.

IV.	Lack of unity of invention
1.	In response to the invitation to restrict or pay additional fees the applicant has:
	restricted the claims.
	paid additional fees.
	paid additional fees under protest.
	neither restricted nor paid additional fees.
2.	This Authority found that the requirement of unity of invention is not complied with and chose, according to Rule 68.1, no to invite the applicant to restrict or pay additional fees.
3.	This Authority considers that the requirement of unity of invention in accordance with rules 13.1, 13.2 and 13.3 is
	complied with.
	not complied with for the following reasons:
	The present application refers to an antibody and a corresponding target structure. The antibody has been sequenced but the antigen has only been defined in general terms by reference to its binding to an alpha-6-beta-4 integrin (a complex structure). No precise definition of the epitope on the antigen has been revealed. Thus, no novel, clear and concise link (common feature) exists between the antibody and the many different antigens covered by claims 24-27. According to PCT Rule 13.1 and 13.2, the international application shall relate to one invention only or to a group of inventions so linked as to form a single general inventive concept ("requirement of unity of invention"). In order to achieve unity of invention the single general inventive concept must involve a "special technical feature" i.e. a technical feature that is common to the inventions and defines a contribution which each of the claimed inventions, considered as a whole, makes over the prior art.
	<i></i>
4.	Consequently, the following parts of the international application were the subject of international preliminary examination in establishing this report:
	all parts.
	the parts relating to claims Nos.

Supplemental Box

(To be used when the space in any of the preceding boxes is not sufficient)

Continuation of: IV

The claims refer to four groups of inventions:

- Antibody according to claims 1-16 and corresponding antigen/target structure according to claims 17-23 and applications thereof according to claims 34, 37, and 40-47 (partially).
- 2 Target structure according to claims 24-26 (partially) with the amino acid sequence of alpha 6 integrin according to SEQ ID NO: 3
- 3. Target structure according to claims 24-26 (partially) with the amino acid sequence of alpha 4 integrin according to SEQ ID NO: 4
- 4. Dimers or multimers comprising target structures of 2 and/or 3 as above according to claim 25.
- 5-??Target structures according to claim 27 and 28-33, 35-37 (partially) with amino acid sequences according to SEQ ID NO: 5-51 or a "molecule complexed to said polypeptide(s)"

v.	Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability;
	citations and explanations supporting such statement

1. Statement

 Novelty (N)
 Claims Claims
 1-23,34,37,40-47 (partially)
 YES NO

 Inventive step (IS)
 Claims Claims
 1-23,34,37,40-47 (partially)
 YES NO

 Industrial applicability (IA)
 Claims Claims
 1-23,34,37,40-47 (partially)
 YES NO

2. Citations and explanations (Rule 70.7)

Documents cited in the International Search Report:

- 1.WO 9906834 A2
- 2.WO 9404679 A1
- 3.GB 2305921 A
- 4.US 5320942 A

The cited documents represent the general state of the art.

The invention, as defined in claims 1-23 and 37, 40-47 by reference to an antibody with SEQ ID NO 2 and the corresponding "target structure" having the ability to bind specifically to the antibody or fragments thereof with essentially the same specificity, is not disclosed by any of these documents.

The cited prior art does not give any indication that would lead a person skilled in the art to the claimed antibody and target structure. Therefore, the claimed invention is not obvious to a person skilled in the art.

Accordingly, the antibody its derivatives and corresponding target structure, to the extent they are directly or indirectly defined in claims 1-23 and 34, 37, 40-47 by reference to SEQ ID NO:2 are novel and are considered to involve an inventive step. The invention is industrially applicable.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 May 2001 (03.05.2001)

PCT

(10) International Publication Number WO 01/30854 A2

(51) International Patent Classification7: G01N 33/574, A61K 39/00

C07K 16/30,

KEARNEY, Phillip, P. [AU/SE]; Kulgränden 15C, S-226 49 Lund (SE). NILSON, Bo, H., K. [SE/SE]; Sölvegatan 11, S-223 62 Lund (SE).

(21) International Application Number: PCT/SE00/02082

(74) Agent: AWAPATENT AB; Box 5117, S-200 71 Malmö (SE).

(22) International Filing Date: 26 October 2000 (26.10.2000)

English

(25) Filing Language:

(26) Publication Language:

English

(30) Priority Data:

9903895-2

28 October 1999 (28.10.1999)

(71) Applicant (for all designated States except US): ACTIVE

BIOTECH AB [SE/SE]; Box 724, S-220 07 Lund (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODIN, Thomas, N. [SE/SE]; Lidängsgatan 10, S-252 71 Råå (SE). KARL-STRÖM, Pia, J. [SE/SE]; Fjelievägen 10A, S-227 36 Lund (SE). OHLSSON, Lennart, G. [SE/SE]; Rudeboksvägen 898, S-226 55 Lund (SE). TORDSSON, M., Jesper [SE/SE]; Flöjtvägen 20B, S-224 68 Lund (SE).

(81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KR (utility model), KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: NOVEL COMPOUNDS

(57) Abstract: An antibody, or a derivate or a fragment thereof, having a binding structure for a target structure is described. The antibody is displayed in, and on the cell surface of, human gastrointestinal epithelial tumour cells and in a subpopulation of normal human gastrointestinal epithelial cells. Said binding structure comprises the complementarity determining region (CDR) sequences in the light chain comprising essentially the amino acids number 23-33 (CDR1), 49-55 (CDR2), 88-98 (CDR3) of the amino acid sequence shown in SEQ ID NO:2, and the CDR sequences in the heavy chain comprising essentially the amino acids number 158-162 (CDR1), 177-193 (CDR2), 226-238 (CDR3) of the amino acid sequence shown in SEQ ID NO:2, or other binding structures with similar unique binding properties. There is also described a target structure displayed in, or on the surface of tumour cells, vaccine compositions, pharmaceutical compositions as well as methods related to human malignant diseases.

O 01/30854 A2

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

NOVEL COMPOUNDS

The present invention is related to an antibody, or a derivate, or a fragment thereof, having a binding structure for a target structure displayed in, and on the cell surface of, human gastrointestinal epithelial tumour cells and in a subpopulation of normal human gastrointestinal epithelial cells; and to a target structure displayed in, or on the surface of tumour cells; vaccine compositions; pharmaceutical compositions; as well as methods related to human malignant diseases.

10 BACKGROUND OF THE INVENTION

15

20

25

30

Surgery is the primary treatment of colorectal cancer leading to five-year survival rates of 90 to 40 percent depending on the state of tumour progression from Dukes Stage A to C. Conventional adjuvant therapy that includes radiation therapy and chemotherapy has been able to reduce the death rates further by approximately 30 percent (1). Despite these achievements cancer of the colon and rectum is one of the major causes of death in human cancer. Immunological therapy has been extensively attempted. However, colon cancer has generally been resistant to immunotherapy and is considered to be of low immunogenicity. Patients with colon cancer neither respond to IL-2 treatment or adoptive transfer of in vitro cultured tumour infiltrating lymphocytes otherwise active in patients with immunogenic malignancies such as melanoma. Most encouraging however, Riethmüller et al. reported a 32 percent decreased seven-year death rate for Dukes Stage C colorectal cancer treated after primary tumour resection with a naked murine mAb directed to a tumour and normal epithelial associated antigen (Ep-CAM) (2), indicating that other immunotherapeutic modalities could be effective.

A significant improvement of adjuvant immunotherapy and of the treatment of more advanced stages of cancer

5

25

30

35

2

should require a more potent effector mechanism than provided by a naked mAb. In principle, an increased potency should require an increased tumour selectivity of the targeting antibody.

The limited number of colon cancer associated antigens defined today have been discovered using hybridoma produced murine mAbs resulting from xenogenic immunisations with human tumours (3).

The use of large phage display libraries for the identification of novel tumour-associated antigens can be 10 expected to significantly speed up the process of finding target molecules useful for tumour immunotherapy and diagnosis. Such identification of target molecules could be accomplished by the selection and screening of 15 antibody phage libraries on cultured tumour cells and tissue sections to generate specific reagents defining in vitro and in vivo expressed antigens (4). The phage display technology has been established as an efficient tool to generate monoclonal antibody reagents to various purified antigens, and the construction and successful 20 selection outcome from immune, naive and synthetic antibody phage libraries have been described in several studies (5).

Non-immune libraries are favourable with respect to their general applicability, making unique libraries for every single target unnecessary. On the other hand, sufficiently large and high quality non-immune libraries are difficult to construct and a target discovery process using these libraries should require efficient subtractive selection methods when based on complex antigens.

A phage library of a more moderate size has now been constructed from a near human primate immunised with complex human antigens. This represents an approach that takes advantage of an in vivo pre-selected repertoire. Such libraries should be enriched for specificities to tumour specific epitopes in a reduced background reactivity to xenogeneic antigens (6). Furthermore, as

3

compared to the mouse, primate antibodies demonstrating close sequence homology with human antibodies should not be immunogenic in man (7).

Novel primate antibodies from a phage library that define selectively expressed colon cancer associated antigens have now been identified. The therapeutic potential, demonstrated by T cell mediated killing of cultured colon cancer cells coated with two of these antibodies fused to engineered superantigens, is comparable with superantigens fused to murine Fab fragment specific for colon cancer associated antigens such as EP-CAM, for which there has previously been established the therapeutic capacity in experimental systems (8).

There is also provided a method for efficient positive and subtractive cell selection of phage antibodies that should facilitate future identification of novel phenotype specific antigens including tumour associated antigens using antibodies from large phage libraries.

BRIEF SUMMARY OF THE INVENTION

10

The present invention is related in a first aspect to an antibody, or a derivative or a fragment thereof, having a binding structure for a target structure 25 displayed in, and on the cell surface of, human gastrointestinal epithelial tumour cells and in a subpopulation of normal human gastrointestinal epithelial cells, said binding structure comprising the complementarity determining region (CDR) sequences in the light 30 chain comprising essentially the amino acids number 23-33 (CDR1), 49-55 (CDR2), 88-98 (CDR3) of the amino acid sequence shown in SEQ ID NO:2, and the CDR sequences in the heavy chain comprising essentially the amino acids number 158-162 (CDR1), 177-193 (CDR2), 226-238 (CDR3) of 35 the amino acid sequence shown in NO: 2, or other binding structures with similar unique binding properties.

10

20

30

4

In one embodiment the antibody is phage selected. In another embodiment the sequences are of Macaca fascicularis origin. A further embodiment of the invention is a derivative of said antibody, which derivative is of human origin. The sequences preferably have an identity of at least 84% to corresponding sequences of human origin. Preferably, the antibody has low immunogenicity or non-immunogenicity in humans.

In a further embodiment, the antibody has been derivatised by genetically linking to other polypeptides, and/or by chemical conjugation to organic or non-organic chemical molecules, and/or by di-, oligo- or multimerisation.

In still a further embodiment, said antibody is

genetically linked or chemically conjugated to cytotoxic
polypeptides or to cytotoxic organic or non-organic
chemical molecules.

In a further embodiment, said antibody is genetically linked or chemically conjugated to biologically active molecules.

In still a further embodiment, said antibody is genetically linked or chemically conjugated to immune activating molecules.

In another embodiment, said antibody has been changed to increase or decrease the avidity and/or affinity thereof.

In still another embodiment, said antibody has been changed to increase the production yield thereof.

In a further embodiement, said antibody has been changed to influence the pharmacokinetic properties thereof.

In still a further embodiment, said antibody has been changed to give new pharmacokinetic properties thereto.

In a further embodiment, said antibody is labeled and the binding thereof is inhibited by an unlabeled form of said antibody and not by other binding structures, and

5

not inhibiting the binding of other binding structures having other specificities.

A further embodiment is an antibody, the binding structure of which recognizes a non-reduced form of $\alpha 6\beta 4$ integrin.

In another aspect the invention relates to a target structure displayed in, or on the surface of, tumour cells, said target structure

a) having the ability of being specifically blocked by and to specifically block the binding structure of an antibody as defined in any one of claims 1-14, and other binding structures with similar binding specificities,

10

15

20

25

30

35

- b) being displayed in, and on the surface of, human gastrointestinal epithelial cells,
- c) having substantial homology with $\alpha 6$ and/or $\beta 4$ integrin chains or variants thereof, representing a shared or unique epitope,
- d) being highly expressed on the surface of tumour cells, and
 - e) being a target for cytotoxic effector mechanisms.

By substantial homology in this context is meant homology in those parts of the target structure which are relevant for the binding of the antibody.

In one embodiment of said target structure, the binding structure is labeled and the binding thereof is inhibited by an unlabeled form of said binding structure and not by other binding structures, and not inhibiting the binding of other binding structures having other binding specificies.

In a further embodiment of said target structure said binding structure comprises one or more of the complementarity determining region (CDR) sequences comprising essentially the amino acids number 23-33, 49-55, 88-98, 158-162, 177-193, 226-238 of the amino acid sequence shown in SEQ ID NO:2, or other binding structures with similar unique binding properties.

5

10

25

30

35

6

In still a further embodiment of said target structure said binding structure is an antibody, which antibody in a further embodiment comprises the variable region of a light chain comprising essentially the amino acids number 1-109 of the amino acid sequence shown in SEQ ID NO:2, and the variable region of a heavy chain comprising essentially the amino acids number 128-249 of the amino acid sequence shown in SEQ ID NO: 2.

Said target structure is in a further embodiment expressed homogenously in human colonic epithelial cells and less in pancreatic duct and bile duct cells.

In still a further embodiment, the expression of said target structure is correlated to gastrointestinal epithelial differentiation.

In another embodiment, said target structure comprises the amino acid sequence of $\alpha 6\beta 4$ integrin, of which the $\alpha 6$ part is shown in SEQ ID NO: 3 and the $\beta 4$ part is shown in SEQ ID NO: 4. Another embodiment of the target structure comprises homo- or heteromonomers or homo- or heteromultimers of said $\alpha 6\beta 4$ integrin and/or of said one or more fragments and/or variants and/or subunits thereof. Preferably, said target structure has an apparent molecular weight in its non-reduced form of from 90 to 140 kDa, most preferred fro 80 to 160 kDa.

In still further embodiments the target structure compirses a peptide or polypeptide(s) comprising essentially any one of the amino acid sequences shown in SEQ ID NOs: 5-51, or comprises a molecule complexed to said polypeptide(s).

In the case of a target structure comprising amino acid sequences from the $\alpha 6\beta 4$ integrin, said target structure may in a further embodiment be recognised, exclusively or not, in its non-reduced form by the binding structure comprised by the antibody as defined above.

The invention relates in a further aspect to a substance which binds to the target structure as defined

7

above, which substance is an organic chemnical molecule or a peptide. In one embodiment, said substance is an anti-idiotype of said target structure. Said anti-idiotype may be specifically blocked by and specifically block a binding structure having similar binding specificity for said target structure.

In a still further aspect, the invention relates to a substance that blocks the function of the target structure as defined above, which substance is an organic molecule or a peptide.

In another aspect, the invention relates to a binding structure which recognises a target structure as defined above and which is of an organic chemical nature.

In a further aspect, the invention relates to a pharmaceutical compositin comprising as an active principle an antibody as defined above, or a target structure as defined above, or a substance as defined above.

10

15

20

25

30

35

In still a further aspect, the invention is related to a vaccine composition comprising as an active principle abn antibody as defined above, or a target structure as defined above, or a substance as defined above.

In a further aspect, the invention is related to a method of therapy for treating conditions based on an anti-angiotenic mechanism, whereby an antibody as defined above, or a target structure as defined above, or a substance as defined above, is administered to a human subject.

In another aspect, the invention is related to a method of treating human metastatic diseases, wherein an antibody as defined above is administered to a human subject.

In a further aspect the invention is related to a method of in vitro histopathological diagnosis and prognosis of human malignant disease, whereby a sample is

8

contacted with an antibody as defined above and an indicator.

Embodiments of said method comprise tumour typing, tumour screening, tumour diagnosis and prognosis, and monitoring premalignant conditions.

In still a further aspect, the invention is related to a method for in vitro diagnosis and prognosis of human malignant disease, whereby concentrations in bodily fluids of an antigen comprising a target structure, as defined above, or an anti-idiotype of said target structure, as defined above, is assayed.

A further aspect of the invention is related to a method for in vitro diagnosis and prognosis of human malignant disease, whereby concentrations in bodily fluids of an antibody as defined above is assayed.

10

15

20

25

30

35

A still further aspect of the invention is related to a method for in vitro diagnosis and prognosis of human malignant disease, whereby concentrations in bodily fluids of a complex of a) an antigen comprising a target structure, as defined above, or an anti-idiotype of said target structure, as defined above, and b) an antibody, as defined above, is assayed.

In a still further aspect, the invention is related to a method for in vivo diagnosis and prognosis of human malignant disease, whereby the localisation of an antibody, as defined above, to tumour deposits in a human subject is determined. Said antibody is preferably administered to the subject before the determination. In one embodiment said antibody is accumulated in tumour deposits. In a further embodiment, said method is quantitative.

Another aspect of the invention is related to a method for therapy of human malignant disease, whereby an antibody, as defined above, is administered to a human subject. In one embodiment of this method said antibody has been changed by being genetically linked to molecules giving the combined molecule changed pharmacokinetic

properties. In another embodiment said antibody has been changed by being derivatised.

DETAILED DESCRIPTION OF THE INVENTION

The identification of novel tumour associated antigens (TAAs) is pivotal for the progression in the fields of tumour immunotherapy and diagnosis. In relation to the present invention, there was first developed, based on flow cytometric evaluation and use of a minilibrary composed of specific antibody clones linked to different antibiotic resistance markers, methods for positive and subtractive selection of phage antibodies employing intact cells as the antigen source. An scFv phage library (2.7×10⁷) was constructed from a primate (Macaca fascicularis) immunised with pooled human colon carcinomas. This library was selected for three rounds by binding to Colo205 colon adenocarcinoma cells, and proteolytic elution followed by phage amplification.

Several antibodies reactive with colon carcinomas and with restricted reactivity with a few epithelial normal tissues were identified by immunohistochemistry. One clone, A3 scFv, recognised an epitope that was homogeneously expressed in 11/11 of colon and 4/4 pancreatic carcinomas studied and normal tissue expression restricted to subtypes of epithelia in the gastrointestinal tract. The A3 scFv had an apparent overall affinity about 100-fold higher than an A3 Fab, indicating binding of scFv homodimers. The cell surface density of the A3 epitope, calculated on the basis of Fab binding, was exceptionally high, approaching 3 million per cell.

Efficient T cell mediated killing of colon cancer cells coated with A3 scFv fused to the low MHC class II binding superantigen mutant SEA(D227A) is also demonstrated. The identified A3 molecule thus represents a TAA with properties that suggests its use for immunotherapy of colon and pancreatic cancer.

10

DISCUSSION

5

10

15

20

25

30

35

In relation to the present invention, efficient protocols for phage selection to be used for the identification of cell phenotype specific antibody fragments from large phage libraries was developed. The target specificities for the applications as exemplified were for colon tumour associated antigens.

First the frequency of pIII-scFv fusion protein surface display in the phage population using the herein presented phagemid construct for phage propagation was analysed. A higher level of C215 scFv display was achieved as compared to previous reports. This should favour subtractive selection efficiency, but also increases the probability of avidity selection of low affinity antibodies from libraries.

Specificity of C215 scFv phage binding to colon adenocarcinoma Colo205 cells was clearly demonstrated. Bound phage could be efficiently eluted by use of the protease Genenase that specifically cleaves a target sequence between the phage protein III and the scFv antibody leaving the cells intact after elution. This non-chemical elution method should equally efficiently elute phage antibodies irrespectively of their binding affinity and only phage bound by scFv interactions, adding to the specificity of the process.

The enrichment achieved after three selection rounds on Colo205 cells (500 000x) using this selection protocol was similar to that reported by other investigators for selections on complex antigens.

After verifying the performance of the various methodological steps the combined technology was applied to library selections using Colo205 cells.

The library was constructed from a near human species immunised with human tumours. The antibody pool generated this way would potentially include affinity matured antibodies to tumour specific antigens in a limited background of xeno reactivities to widespread

11

normal human tissue antigens (6). The antibodies identified recognised tumour and tissue differentiation antigens with restricted normal tissue distribution. All of the selected antibodies identified as colon cancer tissue reactive in the primary screening also reacted with viable Colo205 cells in flow cytometry. This restriction to cell surface specificities should reflect the selection process and not the composition of the library, since a suspension of a mixture of tumour tissue components was used for the immunisation.

10

15

20

25

30

35

In a similar previous study extra- and intracellular specificities were identified in an anti-melanoma library produced the same way and selected using tissue sections as the antigen source (4). Tissue sections of resected human colorectal tumours and normal colon (mounted in the same well) were used for the primary screening using immunohistochemistry to assure the clinical relevance of the selected specificities, to increase the efficiency and to obtain more qualitative information as compared to flow cytometric screening.

The selected antibodies could be classified into four antibody specificity groups, distinguished by their reactivity patterns to epithelia in different organs (see Example 1, Table 1). Among these specificity groups, A3 scFv identified the most tumour selective antigen. This A3 TAA was highly, homogeneously and frequently expressed in samples of primary and metastatic colon cancer and of pancreatic cancer. Furthermore, its cell surface expression level as determined with the A3 Fab fusion protein (3 millions epitopes/cell) was exceptionally high and permissive for cell surface mediated cytotoxic effects.

Few, if any, of the frequently expressed human tumour antigens defined are tumour specific, but are commonly related to tissue differentiation such as A3 and the Ep-CAM. However, upregulated expression of these antigens in tumours should provide a basis for a

12

therapeutically active dose window. The availability from the circulation of normal tissue compartments expressing the antigen may also be more restricted due to limited capillary permeability and their site of expression in the body (e.g. the exposure of the apical side of gut epithelial cells to circulating antibodies should be very limited).

The clinical experience with the pan-epithelial EpCAM reactive 17-1A mAb supports the feasibility to

identify an effective non-toxic antibody dose. The
restricted expression in epithelia of all of the selected
scFv clones in this work, indicate that these clones in
principal could be evaluated as candidates for immunotherapeutic applications analogously to the 17-1A, e.g.

as full-length mAbs. However, a particular advantage for
the A3 TAA as compared to the Ep-CAM is the lack of
expression in most normal epithelia such as of the lung
and kidney, although the expression in the colon is
similar.

The tissue distribution to subtypes of normal epithelia is supported by the selective expression in subtypes of carcinomas originating from the gastrointestinal tract (see Example 2, Table 2).

20

25

30

35

Several of the previously well-known colon cancer associated antigens (CEA, CA50, CA19-9, CA242, Tag-72)(3) are expressed equally or more restrictedly in normal tissues as compared to the A3 epitope. However, in contrast to the A3 and the C215 Ep-CAM they are more heterogeneously expressed in tumours.

Use of antibodies to the Ep-CAM has demonstrated good clinical results including a survival advantage for colorectal cancer patients in an adjuvant setting (2). With the objective to induce tumour responses even in more advanced stage patients, the introduction of potent effector molecules in conjunction with this antibody will challenge the "normal tissue resistance" seen in the treatment with the naked 17-1A mAb. Preclinically, this

could be studied in model systems using toxin-conjugated antibodies specific to the murine version of this antigen or animals transgenic for human colon cancer associated antigens.

Previously, antibody immunotoxins have been successfully used to cure mice in models with metastatically growing tumours expressing xeno (human) tumour antigens not expressed in mouse tissues (10). However, the TAAs used are truly tumour specific and the models do not reflect the potential for normal tissue targeted toxicity.

In previous studies we have reported the potential of superantigens as immunostimulatory toxins for tumour immunotherapy (8). Antibody mediated targeting of superantigens attracted large numbers of cytotoxic and cytokine-producing T cells to the tumour site. The superantigen SEA(D227A), mutated for low MHC class II binding affinity, was genetically linked to tumour targeting antibodies. This "tumour-selective" agent was applied to recruit T cells independent of MHC expression in the tumour, thus short-cutting the problems of MHC down regulation and polymorphism that represent significant obstacles for other active immunotherapeutic approaches.

The mini-library of the established "tumour-selective", 1F scFv phage, the "broadly-reactive" C215 phage and the non-specific D1.3 phage antibody clones was an essential tool for the development of protocols for efficient subtractive cell selection. A requirement for this selection principle is that the negative selection is followed by positive selection before phage rescue and amplification, due to the high frequency of non-displaying phage particles. Alternatively, non-displaying phage can be made non-infective by selective proteolysis (G. Winter, pers. comm.). Such a technique may allow the generation of "inert libraries", i.e. libraries that have been extensively negatively preselected (e.g. towards a

14

cell in a resting state or a transfectable parental cell).

In conclusion, the "non-wanted" model phage specificity could selectively be subtracted from the phage population by a factor of approx. 100 for each selection round. Future subtractive selections using the developed protocol in combination with the use of large non-immune phage libraries for identification of differentially expressed cell surface antigens will demonstrate whether such an approach prove to be superior 10 to the strategy we used in this study, i.e. positive selection using an in vivo pre-selected immune repertoire, including restrictions and biases such as immunodominance (4). The low affinity and high epitope density demonstrated for the A3 Fab binding to tumour 15 cells as compared to the A3 scFv fusion protein suggests formation of scFv multimers that interact with epitopes that cluster on cell surfaces. Higher affinity monovalent variants of A3 Fab or alternatively, stable divalent constructs such as full-length A3 Fv grafted mAbs 20 compatible with the putative low immunogenicity of A3 should be developed. Such constructs would be suitable for targeting of appropriate effector molecules to this highly expressed gastro-intestinal tumour associated antigen. 25

The invention is further illustrated in the following nonlimiting experimental part of the description.

EXMPERIMENTAL PART

Materials and Methods

30 Animals

35

Cynomolgus Macaque (Macaca fascicularis) monkeys were kept and immunised at the Swedish Institute for Infectious Decease Control (SIIDC), Stockholm. Water and food were always available ad libitum. Four monkeys were immunised subcutaneously with 2 ml of a crude suspension of colon cancer tissues in 10 % normal cynomolgus serum in PBS. Booster doses were given day 21, 35, and 49.

15

Antibody responses were demonstrated in two monkeys where the antigen had been admixed with alum adjuvant. All animals were kept according to Swedish legislation and the experiments were approved by the local ethical committees.

Tissues and cells

5

10

15

20

25

Human tumours and normal tissue samples were obtained from Lund University Hospital and Malmö General Hospital, Sweden. The human colorectal cell line Colo205, the human B cell lymphoma cell line Raji and the murine B16 melanoma cell line were from the American Tissue Culture Collection (ATCC, Rockville, MD). The mouse melanoma B16-C215⁺ cells transfected with the expression vector pKGE839 containing the Ep-CAM-1 gene (C215) has been described previously (9).

The human cells were cultured in RPMI 1640 medium (Gibco, Middlesex, UK) supplemented with 10% heat inactivated foetal bovine serum (Gibco) and 0.1 mg/ml gentamycin sulphate (Biological Industries, Kibbutz Beit Haemek, Israel). The mouse cells were cultured in medium additionally supplemented with 1 mM glutamine (Hyclone, Cramlington, UK), 5×10^{-5} M β -mercaptoethanol (ICN, Costa Mesa, CA), 0.2 % NaHCO3 (Seromed Biochrome, Berlin, Germany), 1×10^{-2} M HEPES (HyClone, UT) and 1×10^{-3} M sodium pyrovate (HyClone). The cells were repeatedly tested for Mycoplasma contamination with Gene-Probe Mycoplasma T. C. test (San Diego, CA).

Phagemid vector and phage library construction

Total spleen RNA was extracted from one of the
responding monkeys using an RNA isolation kit from
Promega (Mannheim, Germany) and cDNA was amplified using
an RNA PCR kit from PE Biosystems (Stockholm, Sweden).
The primers for cDNA synthesis of lambda light chain and
heavy chain genes and for the assembly of these genes to
scFv genes have been reported previously (4). The scFv
cDNA was ligated into a phagemid vector (4) in fusion
with the residues 249-406 of the M13 gene III. The scFv-

16

gIII gene was expressed from a *phoA* promoter and the resulting protein was directed by the *E. coli* heat stable toxin II signal peptide.

Repeated electroporations of 7 μ g library vector with scFv gene inserts resulted in a total of 2.7×10^7 primary transformed E. coli TG-1 growing as colonies on minimal agar plates. The colonies were scraped from the plates and grown in 2xYT at 150 rpm and 37°C for 1h. The culture was superinfected with M13K07 helper phage (Promega) in 50 times excess. Ampicillin to a concentration of 100 mg/l was added and the culture grown for a further hour. After addition of kanamycin to a concentration of 70 mg/l, the culture was grown for 15 h at 30°C and 250 rpm. The phage particles were harvested from the culture supernatant using two repeated PEG/NaCl precipitations. The precipitated phage was resolved in PBS 1% BSA.

Western blot analysis

5

10

A two-fold dilution series of scFv-C215 phage particles (from an undiluted stock of PEG-precip-20 itated/concentrated phage) was applied to separation on a reducing 12% polyacrylamide gel with 1% SDS and 2% β mercaptoethanol. The proteins were transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA) by electrophoresis. The membrane was blocked with 5% low-fat 25 milk (Semper AB, Stockholm, Sweden) and then incubated with a rabbit antiserum against a protein III derived peptide sequence, AEGDDPAKAAFNSLQASATEC, conjugated to keyhole limpet hemocyanin. Secondary horse radish peroxidase (HRP) conjugated goat-anti-rabbit antibodies (Bio-Rad) were incubated for 30 min. Between all steps the membrane was washed 3 times during 5 min in PBS/ 0.5% Tween 20. The membrane was incubated in substrate (Amersham Pharmacia Biotech, Little Chalfon Buckinghamshire, UK) for one min. A light sensitive film (ECL hyperfilm, Amersham) was exposed to the membrane and developed for 0.5-5 min.

17

Similarly, to analyse the integrity of purified Fab (A3, including cynomolgus CH1 and Clambda domains), scFv-and Fab (including murine CH1 and Ckappa)-SEA(D227A) fusion proteins (produced as described previously (9)), 12% SDS-PAGEs were performed. The membranes with transferred proteins were incubated with purified polyclonal rabbit anti-SEA antibodies followed by the reagent steps described above.

Model and library phage selection on cells

10

15

20

25

30

35

Phage suspensions of the lambda light chain library (or of model phage), 10^{12} in 100 μ l PBS/1% BSA, were incubated with 3 million Colo205 cells for 1h on ice. The cells were washed 3 times including a 10-min incubation using 2 ml PBS/1% BSA for each wash. The phage were eluted by adding 50 μ l of 33 μ g/ml Genenase to the cell pellet and incubated for 15 min. Genenase, which is a subtilisin BPN' mutant, S24C/H64A/E156S/G169A/Y217L, was kindly provided by Dr. Poul Carter (San Francisco, CA). After centrifugation the supernatant was transferred to a new tube and 250 μ l 1% BSA in PBS was added. To rescue and amplify the selected library (and the model phage particles in the multi-pass experiment), the eluted phage particles were allowed to infect 1 ml, E. coli DH5aF $(OD_{600 \text{ nm}} = 1.0)$. The infected bacterial culture was diluted 100 times with 2xYT supplemented with the proper antibiotic and cultured until an OD >1.0 (up to two days).

Finally, to produce soluble scFv the amber suppressor strain HB2151 of *E. coli* was infected with the selected library from the second and third round. After growth on agar plates containing ampicillin, single colonies were cultured in 96 Micro well plates in 2×YT medium supplemented with ampicillin at 30°C for 17 h. After centrifugation, removal of the supernatant to which an equal volume of PBS/1%BSA was added, individual scFvs were analysed for immunoreactivity to sections of human tumours and normal tissues. Briefly, the C-terminal tag,

18

ATPAKSE, was detected using a rabbit antiserum followed by biotinylated goat anti-rabbit antibodies (DAKO A/S, Copenhagen, Denmark) and StreptABComplex HRP (DAKO A/S) (see "Immunohistochemistry").

5 Immunohistochemistry

10

15

20

25

30

35

Frozen cryosections (8 μ m) were air-dried on slides, fixed in acetone at -20°C for 10 min and rehydrated in 20% foetal bovine serum in PBS (FBS). Endogenous biotin was blocked with avidin (diluted 1/6) for 15 min and then with biotin (diluted 1/6) for 15 min (Vector Laboratories, Burlingame, CA). Affinity purified and biotinylated rabbit anti-SEA antibodies, 5 $\mu g/ml$, were incubated for 30 min followed by StreptABComplex HRP (DAKO A/S, Copenhagen, Denmark), 1/110 diluted in 50 mM Tris pH 7.6 for 30 min. Between all steps the sections were washed 3 times in TBS. The staining reaction was developed for 8 min in 0.5 mg/ml 3,3 -diaminobenzidine tetrahydrochloride (Sigma) dissolved in Tris pH 7.6 with 0.01 percent H_2O_2 . After 10 min counterstaining in 0.5% methyl green, the slides were rinsed for 10 min in tap water and gradually dehydrated in 70-99% ethanol and xylene before mounting in DPX medium (Sigma). Flow cytometry

The Colo205 colon cancer cells were dissociated with 0.02% w/v EDTA and washed with PBS. To follow the development of an antibody response in the monkeys the cells were incubated consecutively with diluted serum, for 1h at 4°C, biotinylated rabbit anti-human IgG antibodies (Southern Biotechnology Ass. Inc., Al, USA) for 30 min, and finally with avidin-PE (Becton Dickinson, Mountain View, CA) for 30 min.

The binding of model phage to the cells was analysed using rabbit-anti-M13 antibodies (produced by immunisation of rabbits with M13 particles) and FITC conjugated donkey anti-rabbit antibodies (Amersham Pharmacia Biotech). The binding of antibodies fused to SEA(D227A) was detected using biotinylated rabbit anti-

19

SEA antibodies and avidin-PE. All reagents were diluted in PBS/1% BSA. The cells were washed twice with PBS/1% BSA after incubations with reagents and three times including 10 min incubations after binding of phage particles.

Flow cytometric analysis was performed using a FACSort flow cytometer (Becton Dickinson).

Affinity determination on cultured cells

A3 scFv-SEA(D227A), A3 Fab-SEA(D227A) and 1F scFv

10 SEA(D227A) fusion proteins, 80 μg of each protein, were labelled with iodine as described by Bolton and Hunter to a specific activity of 10-15 μCi/μg. Colo205 cells and Raji cells, 30 000/sample were incubated with the iodinated fusion protein at 100 μl/tube in a two-fold dilution series in 1% BSA for 1h and then washed three times in PBS before measuring bound activity. The concentration of added and bound fusion protein was used for Scatchard analysis. The background binding to the Raji cells was subtracted to calculate the specific binding to the Colo205 cells.

Cytotoxicity assay

The T cell dependent cytotoxicity of the superantigen fusion protein (superantigen antibody dependent cellular cytotoxicity, SADCC) was measured in a standard 4 h chromium-release assay employing ⁵¹Cr-labelled Colo205 cells as target cells and human T cells as effector cells (9). The percent specific lysis was calculated as:

30 100 x <u>cpm experimental release - cpm background release</u> cpm total release - cpm background release

EXAMPLE 1

25

35

Generation of tumour binding monoclonal cynomolgus antibodies

Cynomolgus monkeys, *Macaca fascicularis* (four individuals) were repeatedly immunised with a suspension

20

of human colon carcinomas four times every other week. The gradual development of an antibody response in the monkeys was followed by flow cytometric staining of cultured colorectal cells, Colo205, using dilution series of the preimmune and immune sera. An IgG antibody response was elicited only when alum precipitated tumour tissue suspensions were used (two individuals).

The monkey with the highest binding level of immune to preimmune serum antibodies was used for the construction of a large combinatorial scFv phage library of approximately 2.7x107 (estimated from the number of primary transformants). The primate phage library was selected using Colo205 cells. The total phage yield (eluted/added number of phage counted as colony forming units, CFU) from three consecutive selection rounds increased gradually from 1.9×10^{-7} , 1.4×10^{-5} , to 1.2×10^{-3} . Five percent (12/246) of the monoclonal soluble scFv:s produced from the phage library after the third round of selection were demonstrated to bind to sections of a human colorectal cancer tissue and to intact Colo205 cells by flow cytometry. All of the selected antibodies demonstrated individually unique nucleic acid sequences according to Hinf I restriction patterns analysed by 1% agarose gel electrophoresis.

10

15

20

25

35

The antibody genes were amplified by polymerase chain reaction using 5 μ l of bacterial cultures and primers complementary to regions 5'and 3' to the scFv gene in the phagemid vector (regions in the phoA promoter and in the M13 gene III).

30 The selected scFv demonstrate individually unique reactivity with epithelia in normal tissues

The colorectal cancer reactive scFv's were classified into specificity groups based on their immunohistochemical reactivity pattern with normal tissues (Table 1). The antibodies studied in detail were A3 scFv (and A3 scFv-SEA(D227A)), A10 scFv, 3D scFv and 1D scFv. The representative antibodies could be

21

distinguished from each other by their fine specificity to epithelia in different organs and by their binding to leukocytes. The 1D scFv strongly reacted with gut epithelia and was the only antibody that reacted with cells of polymorph nuclear granulocyte morphology. The 1D scFv also differed from the other antibodies by staining the luminal surface of kidney tubuli and collecting ducts whereas the A10 scFv reacted homogeneously (non-polarly) with these epithelial cells and 3D scFv and A3 scFv were negative. 1D, A10 and 3D, but not A3 scFv also reacted with macrophage-like cells in the lung.

10

15

20

25

30

A fifth group of antibodies, not extensively evaluated and thus not included in Table 1, reacted with colon epithelia, leukocytes and Kuppfer cells in the liver. The A3 scFv stands out as demonstrating the most restricted reactivity with the panel of normal tissues used. The most prominent normal tissue reactivity of the A3 was staining of normal colon epithelium. Weak staining were also detected in small ducts of the pancreas and bile ducts of the liver and of substructures in small bowel epithelia. The surface epithelium of one of the two stomach samples was strongly stained by the A3 antibody.

The reactivity pattern of the A3 scFv was confirmed using the fusion protein A3 scFv-SEA(D227A). This format permitted the use of polyclonal rabbit anti-SEA antibodies for immunohistochemical detection, which is a more sensitive detection system demonstrating lower background and tissue crossreactivity as compared to the use of secondary antibodies to the peptide tag, ATPAKSE, at the C-terminus of the scFvs.

Table 1 Immunohistochemical reactivity to normal human tissues of soluble scFv fragments from the selected colorectal cancer phage library scFv clone designation

Tissue / sub-structure	n*	A3 **	Alo	3D	1D
Esophagus / epithelial tissue	1	0	ND	ND	ND
/ non-epithelial tissue		0	ND	ND	ND
Colon / epithelium	5	++	+	+	++
/ non-epithelial tissue		0	0	0	granulocytes ++
Small bowel / villi epithelium	2	(+)	heterogenously +	+	heterogenously (+)
/ basal glandulae		+	+	+	++
/ non-epithelial tissue		0	0	0	0
Ventricle / surface epithelium	2	0, ++	0	0, +	++
/ glandular epithelium		0	+, ++	0	++
/ non-epithelial tissue		0	0	0	0
Pancreas / acini	1	0	(+)	+	++
/ small ducts		(+)	(+)	+	++
/ large ducts		0	(+)	+	++
/ non-epithelial tissue		0	0	0	0
/ endocrine		0	0	0	0
Liver / hepatocytes	2	0	ND	ND	ND
/ Kuppfer cells		0	ND	ND	ND
/ bile ducts		(+)	ND	ND	ND
Kidney / proximal tubuli	1	0	+	0	luminal surface ++
/ distal tubuli		0	+	0	luminal surface ++
/ collecting ducts		0	•	0	luminal surface ++
/ glomeruli		0	0	o .	0
/ non-epithelial tissue		0	0	0	0
Bladder / epithelial tissue	1	0	ND	ND	ND
/ non-epithelial tissue		0	ND	ND	ND
Prostate / epithelial tissue	1 .	0	++	. +	and secreted material ++
/ non-epithelial tissue		0	0	0	0
Lung / bronchial epithelium	1	0	(+)	(+)	0
/ alveolar epithelium		0	(+)	(+)	0
/ non-epithelial tissue		0	macrophages +	macrophages +	granulocytes ++, macrophages +
CNS / gray matter	1	0	ND	ND	ND
/ white matter		0	ND	ND	ND
Skeletal muscle	1	0	ND	ND	ND

Notes to Table 1

- 0 = negative, (+) = weak, + = moderate, ++ = strong, ND =
 not determined
- * Number of tissue samples examined
- 5 ** The reactivity of A3 scFv has been confirmed with the A3 scFv SEA(D227A) fusion protein

EXAMPLE 2

The A3 tumour-associated antigen is homogeneously and

frequently expressed in colorectal and pancreatic tumours

The A3 scFv-SEA(D227A) fusion protein was used for immunohistochemical staining of various tumours of epithelial origin (Table 2 and Figure 1). The fusion protein homogeneously and strongly stained 11/11 samples of primary colon cancer tissues and 4/4 metastatic colon cancer samples resected from the ovary, a lymph node and the liver. Pancreatic cancer tumours, 4/4 samples, were equally strongly positive. In contrast, tissue samples of gastric, prostate, breast and non-small cell lung

carcinomas were negative.

Table 2 Tumor tissue reactivity of A3 scFv SEA(D227A)

Tumor tissue	n	Reactivity
Colon cancer, primary tumors	11	All tumor cells are strongly and homogenously stained
Colon cancer metastasis in lymph node, liver and ovary	4	As above
Pancreas cancer	4	As above
Ventricle cancer	2	Negative
Prostate cancer	2	Negative
Breast cancer	2	Negative
Lung carcinoma (non-small cell)	2	Negative
Malignant melanoma	2	Negative

25

24

EXAMPLE 3

The A3 TAA is highly expressed on the surface of colon cancer cells

The results from several Scatchard plots for affinity determination, based on the binding of the fusion proteins A3 scFv-SEA(D227A), A3 Fab and 1F scFv-SEA(D227A) (1F was classified to the A3 specificity group) to Colo205 cells, are summarised in Table 3. Specific binding was calculated by subtraction of nonspecific binding to human B cell lymphoma Raji cells, a 10 cell line not expressing the A3 and 1F TAAs, from the binding to Colo205 cells. Linear regression was used to calculate the slope and the intercept of the extrapolated line in the Scatchard plot. The A3 scFv-SEA(D227A) fusion protein saturated approximately 10-fold less binding sites per cell as compared to the A3 Fab (approx. 3 million sites per cell) fusion protein, indicating that divalent (multivalent) binding was involved for the scFv. This is supported by the more than 100-fold higher overall affinity (3.6-5.5 nM) for the A3 scFv fusion protein as compared to the A3 Fab (580-780 nM).

A single experiment performed using the 1F scFv-SEA(D227A) fusion protein, demonstrated similar binding affinity and saturation of binding sites as the A3 scFv-SEA(D227A) fusion protein.

Table 3 Scatchard analysis of iodinated fusion proteins binding to Colo205 cells

Fu	sion protein	n*	Kd (nM)	million sites /cell
A 3	Fab-SEA (D227A)	2	580-780	3.0-3.9
A 3	scFv-SEA (D227A)	3	3.6-5.5	0.11-0.39
1F	scFv-SEA (D227A)	1	4.2	0.18

^{*} Number of experiments performed

25

30

35

EXAMPLE 4

A3 and 1F scFv-SEA(D227A) mediate T cell lysis of Colo205 cells

The capacity of the two fusion proteins A3 and 1F scFv-SEA(D227A) to mediate superantigen antibody 5 dependent cellular cytotoxicity (SADCC) towards Colo205 cells was investigated and compared with the positive control C215 Fab-SEA(D227A) and negative control D1.3 scFv-SEA(D227A) fusion proteins. The A3 scFv-SEA(D227A) fusion protein titration approached a plateau 10 for maximal lysis which was similar, approx. 50 percent in this 4 h assay, to that demonstrated for the C215 Fab-SEA(D227A) fusion protein, although at a ten-fold higher concentration (Figure 2). The 1F scFv-SEA(D227A) mediated a similar level of cytotoxicity at a slightly higher

The negative control D1.3 scFv SEA(D227A) fusion protein did not mediate any cytotoxicity. EXAMPLE 5

concentration as compared to the A3 scFv-SEA(D227A).

Purification of a tumour associated antigen that is 20 recognised by the colon cancer reactive antibody A3.

A tumour extract was made out of xenografted tumour cell line Colo205. The extract was applied to a precolumn coupled with C215Fab-SEAm9, and a column coupled with A3scFv-SEAm9. The columns were in series, during the application of sample but separated prior to elution under alkaline conditions.

A single peak was detected during elution by UV spectroscopy (Figure 3). This eluted fraction from the latter A3-column was collected, neutralised, concentrated, and then analysed by SDS-PAGE under nonreducing conditions (Figure 4). Two bands visible by silver staining (labelled I and II in Figure 4) of apparent molecular weight of approximately 90-140 kDa were cut out and examined by standard peptid mapping methodologies. These two bands corresponds to bands detected by A3 in Western Blot, see example 8. From band

I 47 separate tryptic peptide masses were obtained (see SEQ ID NO: 3, Table 4, and Fig 5 for the sequnces and corresponing mass weights) which completely matched to different tryptic peptide masses. as determined by MALDI-TOF) of the human $\alpha 6$ integrin or $\beta 4$ integrin (see SEQ ID NOs: 5-51 and 3-4, respectively, and Fig 3A and B, respectively, where in Fig 3A the underlinings correspond to the peptides appearing in Fig 3B/SEQ ID NOs: 5-51). From band II 22 separate tryptic peptide masses were obtained which completely matched to different tryptic peptide masses of $\beta 4$ integrin (data not shown). The data show that the $\alpha 6\beta 4$ integrin heterodimer is specifically isolated with the A3-affinity column.

15 Table 4 Peptides/polypeptides derived from human $\alpha 6 \beta 4$ integrin and masses thereof

Sequence	Sequence	Measured	Calculated
No.	304	Mass	Mass
5	LLLVGAPR	838.568	838.551
6	ANRTGGLYSCDITARGPCTR	2226.131	2226.050
7	VVTCAHRYEK	1262.637	1262.631
8	RQHVNTK	882.524	882.490
9	CYVLSQNLR	1152.618	1152.583
10	FGSCQQGVAATFTK	1501.706	1501.710
11	DFHYIVFGAPGTYNWK	1914.881	1914.917
12	DEITFVSGAPR	1191.625	1191.600
13	ANHSGAVVLLK	1108.600	1108.647
14	DGWQDIVIGAPQYFDR	1879.865	1879.897
15	DGEVGGAVYVYMNQQGR	1842.811	1842.844
16	WNNVKPIR	1026.608	1026.584
17	NIGDINQDGYPDIAVGAPYDDLGK	2520.213	2520.189
18	GISPYFGYSIAGNMDLDR	1975.913	1975.922
19	NSYPDVAVGSLSDSVTIFR	2026.992	2027.008
20	SRPVINIQK	1054.644	1054.637
21	LRPIPITASVEIQEPSSR	1993.066	1993.108
22	VNSLPEVLPILNSDEPK	1863.920	1864.006
23	TAHIDVHFLK	1180.665	1180.647
24	FSYLPIQK	995.601	995.556
25	DIALEITVTNSPSNPR	1726.866	1726.897
26	SEDEVGSLIEYEFR	1672.764	1672.770
27	VESKGLEKVTCEPQK	1731.866	1731.895

10

15

27

	The article of the state of the	1644.792	1644.866
28	REITEKQIDDNRK		869.452
29	FSLFAER	869.476	
30	YQTLNCSVNVNCVNIR	1954.003	1953.927
31	LNYLDILMR	1150.644	1150.629
32	AFIDVTAAAENIR	1390.739	1390.733
33	LPNAGTQVR	955.523	955.532
34	VSVPQTDMRPEK	1386.727	1386.705
35	EPWPNSDPPFSFK	1547.730	1547.717
36	NVISLTEDVDEFR	1536.744	1536.754
37	TQDYPSVPTLVR	1375.718	1375.722
38	RGEVGIYQVQLR	1417.801	1417.791
39	ALEHVDGTHVCQLPEDQK	2075.965	2075.981
40	GNIHLKPSFSDGLK	1512.749	1512.817
41	MDAGIICDVCTCELQK	1928.901	1928.822
42	YEGQFCEYDNFQCPR	2012.795	2012.790
43	SCVQCQAWGTGEKKGR	1879.865	1879.890
44	DEDDDCTYSYTMEGDGAPGPNSTVL	3103.229	3103.278
	VHK		
45	QEVEENLNEVYR	1521.779	1521.718
46	VAPGYYTLTADQDAR	1640.779	1640.791
47	VPLFIRPEDDDEK	1572.778	1572.790
48	DVVSFEQPEFSVSR	1625.758	1625.781
49	LLELQEVDSLLR	1427.760	1427.810
50	VCAYGAQGEGPYSSLVSCR	2060.883	2060.916
51	VLVDNPKNR	1054.644	1054.600
	V 344 1 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	<u> </u>	

Materials and Methods.

Solubilisation of Tumour Tissue

Human colon cancer tissue expressing the A3 antigen was provided by hospitals in Sweden and stored frozen at -70°C in the tissue bank at ABR. Frozen colon cancer tissues were sliced with a scalpel and transferred into a tube containing cold isotonic sucrose buffer (0.25M sucrose, 10mM KCl, 1.5M MgCl₂, 50mM Tris-HCl pH 7.4 at 25°C) containing 1% (v/v) Nonidet P-40 (NP-40) and protease inhibitors (CompletetTMProtease Inhibitor Cocktail Tablet, Boehringer Mannheim). Tissue was homogenised with an Ultra-Turrax homogeniser and were left to solubilise at 0°C. The solubilised preparation was centrifuged at 11,000 rpm (Hettich centrifuge Universal 30 RF rotor), to remove cell debris. The supernatant was further centrifuged at 108,000g at 4°C

(Beckman Ultracentrifuge Ti-60 rotor), and finally filtered through a 0.2 μm Minisart plus filter (Sartoriuis AG Gottingen Germany).

Affinity Purification of tissue antigens

A3scFv-SEAm9 was coupled to a NHS-activated HiTrap column (Pharmacia Biotech Uppsala Sweden), according to the manufacturer's recommendations. The control and precolumn were coupled with C215Fab-SEAm9, and the control, pre-column and column were set up in series. All columns were washed with pre-wash buffer (20mM Tris HCl pH7.5 at 4°C containing 0.2% NP 40). The extract was loaded onto the column at 0.1ml/min, and the flow through was recirculated. The columns were then washed with start buffer. Bound antigen was eluted in a pH gradient of diethylamine starting at pH 7.5 up to 11.0. 2.5 ml of eluant was collected and concentrated down to 75 µl. purification was performed at 4°C using an AKTA FPLC system (Amersham Pharmacia Biotech Uppsala Sweden). Eluted protein was analysed by SDS PAGE and silver staining. Individual bands were excised, digested with trypsin and the masses of the peptide were determined using a MALDI-TOF instrument by Protana A/S (Odense, Denmark). The peptide masses were then compared in a computer search with all tryptic peptide masses for each protein in the SWISSPROT database, a service provided by Protana A/S (Odense Denmark).

EXAMPLE 6

5

10

15

20

25

30

35

A3scFv-SEAm9 detects a novel $\alpha6\beta4$ integrin epitope Commercial antibodies to human $\alpha6$ integrin and $\beta4$ integrin were compared to A3 on normal and malignant colon sections. The reactivity, shown in Figure 6, demonstrates that A3 is restricted to the colon epithelium (Fig 6[i]), and malignant cell in the tumour (Fig 6 [ii]). Commercial antibody NKI-GoH3 to $\alpha6$ integrin, also reacted with normal colon (Fig 6 [iii]) and colon cancer (Figure 6 [iv]). Reaction was seen in epithelial cells of colon and malignant cells (arrows)

20

25

30

35

but also in blood vessels (BV), some stromal components (s) and in muscularis mucosae (mm). The reaction observed with commercial ASC-3 anti- $\beta4$ integrin antibody was similar to that noted with anti- $\alpha6$ antibody but weaker, in both normal colon (v) and colon cancer (vi). Materials and Methods Antibody

A3 scFv was selected from the M fascicularis library. The VH and VL genes from this were released by restriction enzyme digestion and fused to the Staphylococcal Enterotoxin AE chimeric mutant (D227A) to generate the A3scFv-SEAm9. This demonstrated very low levels of non-specific binding and allowed sensitive detection by secondary antibodies. ASC-3 anti-human- β 4 integrin antibody and NKI-GoH3 anti-human- α 6 integrin antibody were from Becton Dickinson (Copenhagen, Denmark) Immunohistochemistry

Tumour and normal tissue samples were obtained from the Department of Surgery Lund Hospital. These were rate-frozen in iso-pentane, which had been pre-cooled in liquid nitrogen. Samples were stored at -70°C until sectioned. After cryosectioning the sections were air dried over night, fixed in cold acetone and blocked with avidin/biotin (Vector Burlingame CA). Primary antibody was then added to the section for one hour.

The secondary antibodies were incubated for 30 minutes followed by streptavidin-biotin/HRP (Dakopatts Copenhagen Denmark) for a further 30 minutes. Extensive washing was perfromed between all these steps with 50mM Tris pH 7.6, 0.15M NaCl. Diaminobenzidine (DAB) was used as chromogen and the sections were counterstained in 0.5% methyl green. Controls included a non-tissue reactive Fab and SEA-D227A or no primary antibody. All antibodies were used at a final concentration of 5 μ g/ml. Results were expressed as negative, weak, moderate or strong staining.

EXAMPLE 7

The A3 Tumour Associated Antigen reacted with $\alpha 6$ and $\beta 4$ integrin antibodies in a capture ELISA

30

Crude tumor extract or A3 antigen purified by A3affinity chromatography (see example 5) was analysed by a 5 capture ELISA. Commercial antibodiy ASC-3 specific for beta 4 integrin were used as capture antibody, to which different dilutions of crude tumor extract was applied. This was then chased with A3scFv-SEAm9. Bound A3scFv-SEAm9 was then detected with anti-SEA-HRP (Fig 7A). In 10 Figure 7B the commercial anti-α6 integrin antibody NKI-GoH3 was used to capture different dilutions of the concentrated A3-affinity purified eluate. In a similar way as in Figure 7A the captured proteins were chased with A3scFv-SEAm9 and detected with anti-SEA-HRP. In both 15 experiments a concentration dependent signal was detected. These results confirm the specificity of A3 to α6β4 intergin heterodimer, which was also shown to be specifically isolated from the A3-affinity column in 20 example 5.

Material and Methods

Commercial antibodies NKI-GoH3 or ASC-3 (Becton Dickinson Copenhagen Denmark) 100 μ l, were used to coat the well of an E.I.A./R.I.A.-plate (Costar) in 0.05 M NaHCO3, pH 9.6. The reaction was allowed to continue 25 overnight at 4°C, after which the plates were washed 4 times in DPBS + 0.05 % Tween 20. Wells were then blocked with 200 μ l 3 % non-fat milk powder in DPBS + 0.05 % Tween 20, for 1-2 h at room temperature (RT) with shaking. Wells were again washed as above and 100 μ l 30 antigen extract diluted in 3 % non-fat milk powder in DPBS + 0.05 % Tween 20, was applied for 2 h at RT with shaking. Wells were again washed (4 x DPBS + 0.05 % Tween 20) after which 100 μ l of the primary antibody diluted in 3 % non-fat milk powder in DPBS + 0.05 % Tween 20 was 35 incuabted for 2 h at RT with shaking. Wells were washed again as above and 100 μ l of the secondary antibody

diluted in 3 % non-fat milkpowder in DPBS + 0.05 % Tween 20 was added to each well for 1 h at RT with shaking. Wells were again washed as above and colour developed by the addition of 100 μ l peroxidase substrate (Sigma Fast OPD Peroxidase Substrate Tablet Set P-9187). The reaction was allowed to continue for 30 min at RT, in the dark and shaking before the reaction was stopped by the addition of 50 μ l 3 M $\rm H_2SO_4$. The absorbance was read at 490 nm.

10 EXAMPLE 8

15

20

25

30

Western Blot analysis of the A3 tumour antigen A3-affinity purified tumour antigen extracts were separated by SDS-PAGE and transferred to membranes for Western blot analysis. Extracts were applied directly or heated to 100°C for 5 minutes or heated to 100°C for 5 minutes but in the presence of mercaptoethanol (BME) (Figure 8). The membranes were then probed with A3scFv-SEAm9 and anti-SEA-HRP or anti-human-α6 integrin or anti-human- $\beta4$ integrin antibodies. The anti- $\beta4$ integrin antibody did not react with any protein on the membrane (Fig 8[ii]). The anti-human- α 6 integrin reacted with a major specie with apparent molecular weight between 90 - 140 kDa in the A3-affinity purified tumour antigen extract (Figure 8[iii]). The same species was also detected by A3scFv-SEAm9, which also was detected after heating but was much weaker under reduced conditions (with BME present) (Figure 8[i]). The major band detected in the 90 - 140 kDa interval corresponds to

Materials and Methods

integrin.

ASC-3 anti-human-β4 integrin antibody and NKI-GoH3 antihuman-α6 integrin antibody were from Becton Dickinson (Copenhagen, Denmark). Samples were resolved by SDS-PAGE in 0.25M tris-glycine pH 8.9 and 0.1%SDS at 100V through the upper gel, then 170V through the resolving gel.

the bands in example 5, that were analysed by peptide

mapping and were found to contain $\alpha 6$ integrin and $\beta 4$

Molecular weight standards (Biorad broad Range, Biorad) were included on all gels. Resolved samples were transferred to nitrocellulose (Biorad) in transfer buffer (10 mM Tris base, 2M glycine, 40% (v/v) methanol) at 100V for 1 hour. Membranes were blocked with 5% (w/v) BSA/TBS 5 for at least 2 hours at 4°C, then incubated with the appropriate antibody diluted in 5% BSA/TBS/0.2% azide. This reaction was allowed to proceed for at least 2 hours at RT, after which the membrane was washed extensively in TBST-T. Bound antibody was detected by incubation of 10 membranes for 1 hour with HRP conjugated antibody diluted in TSB-T containing 5% milk powder. Membranes were then incubated with enhanced chemiluminescence (ECL) detection reagents (Renaissance NEN Life Science Products, Boston MA) for 1 minute and exposed to film for up to 1 hour. 15

25

33

REFERENCES

- 1. DeCosse JJ, Tsioulias GJ, Jacobson JS. Colorectal cancer: detection, treatment, and rehabilitation. CA Cancer J Clin 1994; 44: 27-42.
- 2. Riethmuller G, et al. Monoclonal antibody therapy for resected Dukes' C colorectal cancer: seven-year outcome of a multicenter randomized trial. *J Clin Oncol* 1998; 16: 1788-1794.
- 3. Kuhn JA, Thomas G. Monoclonal antibodies and colorectal carcinoma: a clinical review of diagnostic applications. Cancer Invest 1994; 12: 314-323.
 - 4. Tordsson J, et al. Efficient selection of scFv antibody phage by adsorption to in situ expressed antigens in tissue sections. J Immunol Methods 1997; 210: 11-23.
 - 5. Aujame L, Geoffroy F, Sodoyer R. High affinity human antibodies by phage display. *Hum Antibodies* 1997; 8: 155-168.
- 6. Clark RK, Trainer DL, Bailey DS, Greig RG
 Immunohistochemical analysis of antiserum from rhesus
 monkeys immunized with human colon carcinoma. Cancer Res
 1989; 49: 3656-3661.
 - 7. Lewis AP, et al. Cloning and sequence analysis of kappa and gamma cynomolgus monkey immunoglobulin cDNAs.

 Dev Comp Immunol 1993; 17: 549-560.
 - 8. Brodin TN, et al. Man-made superantigens: Tumor-selective agents for T-cell-based therapy. Adv Drug Deliv Rev 1998; 31: 131-142.
- 9. Dohlsten M, et al. Monoclonal antibody30 superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci U S A 1994; 91: 8945-8949.
- 10. Liu C, et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc 35 Natl Acad Sci USA 1996; 93: 8618-8623.

15

20

35

LEGENDS TO FIGURES

Figure 1 The A3 tumour-associated antigen is homogeneously expressed in primary and metastatic tumours

Immunohistochemical staining of frozen and acetone fixed sections of human tumour tissues using A3 scFv-SEA(D227A) and C215 Fab-SEA(D227A) at 70 nM. The A3 scFv fusion protein reacted strongly and homogeneously with both primary colon and pancreatic carcinoma resected from tumour patients. A representative staining of a primary colon cancer is shown for C215 Fab-SEA(D227A) in (A) and for A3 scFv-SEA(D227A) in (B). Staining by A3 scFv-SEA(D227A) of a colon cancer liver metastasis is shown in (C) and of a primary pancreatic cancer in (D).

Figure 2 A3 scFv-SEA(D227A) coated Colo205 tumour cells

are efficiently killed by T cells.

Superantigen antibody dependent cellular cytotoxicity (SADCC) towards Colo205 cells mediated by A3 scFv-SEA(D227A) reached the same maximal cytotoxicity as the anti-Ep-CAM fusion protein C215 Fab-SEA(D227A), although at a ten-fold higher concentration. The absence of cytotoxicity mediated by the D1.3 scFv-SEA(D227A) demonstrates the need of a tumour targeting antibody moiety in the fusion protein.

Figure 3

25 Immunoaffinity chromatography of tumor extract on a A3scFv-SEAm9 coupled column. Protein bound to A3 coupled columns was washed extensively then eluted as described in Materials and Methods in Example 5. The eluted fractions were examined by UV spectroscopy (arrow) and a single peak identified. The sample was eluted with a pH gradient as indicated by an x.

Figure 4

A3 antigen preparation was separated on a non-reduced SDS PAGE and silver-stained. Previous Western analysis had defined a molecular weight range in which the A3 antigen was believed to reside. The bands evident

15

25

30

within this region (Labelled I and II) were excised for peptide mapping analysis

Figure 5A and 5B

Epithelial integrin $\alpha6\beta4$: complete primary structure of $\alpha 6$ and variant forms of $\beta 4$ (precursor) (Tamura et al J Cell Biol 111:1593-1604 (1990)). The matched peptides shown in SEQ ID NOs: 5-51 are underlined in the sequences of human $\alpha 6$ (Fig 5A) integrin and $\beta 4$ (precursor) (Fig 5B) integrin as published.

Figure 6 10

Immunohistochemistry of normal and malignant colon using A3scFv and commercial anti-human $\alpha6$ and $\beta4$ integrin monoclonal antibodies.

Figure 7A and 7B

Capture ELISA. In fig 7A monoclonal antibody ASC-3 specific for $\beta4$ integrin was used as capture antibody, to which different dilutions of crude tumor extract was applied. In fig 7B the anti-α6 integrin monoclonal antibody NKI-GoH3 was used to capture different dilutions of the concentrated A3-affinity purified eluate. In both fig 20 7A and 7B the captured integrin antigen was then successfully detected with A3scFv-SEAm9.

Figure 8A and 8B

Western blot analysis of the eluate from the A3affinity column. The primary antibodies used are (i) and (ii) A3scFv-SEAm9, (iii) ASC-3 anti-human-β4 integrin antibody and (iv) NKI-GoH3 anti-human-α6 integrin antibody. Lane A - the eluate was applied directly, lane B - the eluate was heated to 100°C for 5 minutes, and lane C - the eluate was heated to 100°C for 5 minutes but in the presence of mercaptoethanol. Positions of molecular weight standards are indicated.

WO 01/30854

1. An antibody! Or a derivative or a fragment 36 thereof, having a binding structure tor a target of, human the cell surface of, human the cells and in a structure displayed in, and on the cells and in a structure displayed in, and tumour cells and in a structure displayed in, and cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in, and on the cells and in a structure displayed in the cells and the cells are cells are cells are cells are cells and the cells are cel thereof, dignalared in and on the cell surface. gastrointestinal epithelial tumour cells and in a epithelial tumou Scructure displayed in, and on the cell surface of and in a and on the cells and in a tumour cells and in a gastrointestinal epithelial human gastrointestinal epithelial epithelial human gastrointestinal epithelial epith Cells, sald pinding structure comprising the amino acids number complementarity determining region the amino acids number complementarity complementarity determining region (CDR) sequences in the amino acids number the amino the amino the amino the amino of the amino (CDR3) of the am Sunyupuration of mormal numan gastrolinestinal the cells! light chain comprising essentially the amino acids number of the amino 23-33 (CDR1), 49-55 (CDR2), ID NO:2, and the CDR amino acids in the heavy chain community the heavy chain chai acid sequence snown in the heavy chain comprising essentially the amino of the heavy chain (norm) 177-193 (norm) 226-238 (norm) 177-193 (norm) in the heavy chain comprising essentially the amino acids (CDR3) of 177-193 (CDR2) in SEO ID NO:2. or other number 158-162 (CDR1); shown in SEO ID NO:2. number 158-162 (CDR1), shown in sEQ ID NO:2, or other the amino acid sequence with aimilar unimue hinding hinding tne amino acia sequence snown in smilar unique binding binding binding ercles.

2. An antibody according to claim 1, which is phage 20 the antibody according to claim 1, wherein the ances are of macaca rascicularis origin.

A. A derivative of an antibody according to claim 1. sequences are of Macaca fascicularis origin. a is of numan origin.

S. An antibody according to claim 1, wherein the 5. An antibody according to claim 1, wherein the correspondsequences have an identity of at least 84% to correspond sequences of himan origin. properties. aguences or numan origin. to claim 1, which has low according to claim 1, humans
6. An antibody according to claim 1, humans
1, nonenicirir or non-imminorenicirir in humans selected. which is of human origin. nogenicity or non-immunogenicity in numans. has been to claim i which immunogenicity or non-immunogenicity in humans. 20 1. An antibody according to claim 1, which has been to other polypeptides, and or hy chemical conjugation to organic or non-organic derivatised by genetical conjugation to organic or non-organic and or hy chemical conjugation to organic or non-organic or no-organic or no-organic or no-organic or no-organic or no-organic ing sequences of human origin. derivatised by genetically linking to other polypeptides, or non-organic or non-organic and or by chemical and lor by and lor by molecules and lor by chemical and lor by chemical and lor by chemical and lor by and lor by the molecules and lor by and or by chemical conjugation to organic or some chemical molecules, and or by dir, oligo-or chemical molecules, and oligo-or chemi 25 8. An antipody according to chemically conjugated to cytotoxic serically linked or chemically conjugated to cytotoxic 30 multimerisation.

35

20

25

35

polypeptides or to cytotoxic organic or non-organic chemical molecules.

- 9. An antibody according to claim 1, which is genetically linked or chemically conjugated to biologically active molecules.
- 10. An antibody according to claim 1, which is genetically linked or chemically conjugated to immune activating molecules.
- 11. An antibody according to claim 1, which has been 10 changed to increase or decrease the avidity and/or affinity thereof.
 - 12. An antibody according to claim 1, which has been changed to increase the production yield thereof.
- 13. An antibody according to claim 1, which has been 15 changed to influence the pharmacokinetic properties thereof.
 - 14. An antibody according to claim 1, which has been changed to give new pharmacokinetic properties thereto.
 - 15. An antibody according to claim 1, which is labeled and the binding thereof is inhibited by an unlabeled form of said antibody and not by other binding structures, and not inhibiting the binding of other binding structures having other binding specificities.
 - 16. An antibody according to claim 1, wherein said binding structure recognises a non-reduced form of $\alpha 6\beta 4$ integrin.
 - 17. A target structure displayed in, or on the surface of, tumour cells, said target structure
- a) having the ability of being specifically blocked 30 by and to specifically block the binding structure of an antibody as defined in any one of claims 1-14, and other binding structures with similar binding properties,
 - b) being displayed in, and on the surface of, human gastrointestinal epithelial cells,
 - c) having substantial homology with $\alpha 6$ and/or $\beta 4$ integrin chains or variants thereof, representing a shared or unique epitope,

- d) being highly expressed on the surface of tumour cells, and
 - e) being a target for cytotoxic effector mechanisms.
- 18. A target structure according to claim 17,

 wherein the binding structure is labeled and the binding thereof is inhibited by an unlabeled form of said binding structure and not by other binding structures, and not inhibiting the binding of other binding structures having other binding specificities.
- 19. A target structure according to claim 17, wherein said binding structure comprises one or more of the complementarity determining region (CDR) sequences comprising essentially the amino acids number 23-33, 49-55, 88-98, 158-162, 177-193, 226-238 of the amino acid sequence shown in SEQ ID NO:2, or other binding structures with similar unique binding properties.
 - 20. A target sturcture according to claim 17, wherein said binding structure is an antibody.
- 21. A target structure according to claim 20,
 20 wherein said antibody comprises the variable region of a
 light chain comprising essentially the amino acids number
 1-109 of the amino acid sequence shown in SEQ ID NO:2,
 and the variable region of a heavy chain comprising
 essentially the amino acids number 128-249 of the amino
 25 acid sequence shown in SEQ ID NO: 2.
 - 22. A target structure according to any one of claims 17-21, which is expressed homogenously in human colonic epithelial cells and less in pancreatic duct and bile duct cells.
- 23. A target structure according to any one of claims 17-22, the expression of which is correlated to gastrointestinal epithelial differentiation.

35

24. A target structure according to any one of claims 17-23, which comprises essentially the amino acid sequence of α6 integrin shown in SEQ ID NO: 3 and/or of β4 integrin shown in SEQ ID NO: 4, and/or one or more

fragments, and/or variants or splice variants, and or subunits, thereof.

- 25. A target structure according to claim 24, which comprises homo- or hetero-monomers or homo- or hetero-multimers of said $\alpha 6\beta 4$ integrin and/or of said one or more fragments and/or variants and/or subunits thereof.
- 26. A target structure according to claim 24, which has an apparent molecular weight in its non-reduced form of from 90 to 140 kDa, most preferred from 80 to 160 kDa.
- 27. A target structure according to claim 24, which comprises a peptide or polypeptide(s) comprising essentially any one of the amino acid sequences shown in SEQ ID NOs: 5-51, or comprises a molecule complexed to said polypeptide(s).
- 28. A target structure according to any one of claims 24-27 recognised, exclusively or not, in its non-reduced form by the binding structure comprised by the antibody as defined in any one of claims 1-16.

20

35

- 29. A substance which binds to the target structure as defined in any one of claims 17-28, which substance is an organic chemical molecule or a peptide.
 - 30. A substance, which is an anti-idiotype of a binding structure to said target structure as defined in anyone of claims 17-28.
- 31. A substance according to claim 30, which antiidiotype is specifically blocked by and specifically blocks a binding structure having binding specificity for said target structure.
- 32. A substance which blocks the function of the target structure as defined in any one of claims 17-28, which substance is an organic chemical molecule or a peptide.
 - 33. A binding structure which recognizes a target structure as defined in any one of claims 17-28, and which is of an organic chemical nature.

WO 01/30854

40

PCT/SE00/02082

34. A pharmaceutical composition comprising as an active principle an antibody as defined in any one of claims 1-16.

- 35. A pharmaceutical composition comprising as an active principle a target structure as defined in any one of claims 17-28.
 - 36. A pharmaceutical composition comprising as an active principle a substance as defined in any one of claims 29-32.
- 10 37. A vaccin composition comprising as an active principle an antibody as defined in any one of claims 1-16, or a target structure as defined in any one of claims 17-28, or a substance as defined in any one of claims 29-32.
- 15 38. A method of therapy for treating conditions based on an anti-angiogenic mechanism, whereby an antibody as defined in any one of claims 1-16, or a target structure as defined in any one of claims 17-28, or a substance as defined in any one of claims 29-32, is administered to a human subject.
 - 39. A method of treating human metastatic diseases, wherein an antibody as defined in any one of claims 1-16 is administered to a human subject.
- 40. A method of in vitro histopathological diagnosis and prognosis of human malignant desease, whereby a sample is contacted with an antibody as defined in any one of claims 1-17 and an indicator.
 - 41. A method according to claim 40, which method comprises tumour typing.
- 30 42. A method according to claim 40, which method comprises tumour screening.
 - 43. A method according to claim 40, which method comprises tumour diagnosis and prognosis.
 - 44. A method according to claim 40, which method comprises monitoring premalignant conditions.

35

45. A method for in vitro diagnosis and prognosis of human malignant disease, whereby concentrations in bodily

41

fluids of an antigen comprising a target structure, as defined in any one of claims 17-28,

- 46. A method for in vitro diagnosis and prognosis of human malignant disease, whereby concentrations in bodily fluids of an antibody as defined in any one of claims 1-16 is assayed.
- 47. A method for in vitro diagnosis and prognosis of human malignant disease, whereby concentrations in bodily fluids of a complex of a) an antigen comprising a target structure, as defined in any one of claims 17-28, or a structure, as defined in any one of claims 29-32, is assayed, and b) an antibody, as defined in any one of claims 1-16, is assayed.

10

20

30

- 48. A method for in vivo diagnosis and prognosis of human malignant disease, whereby the localisation of an antibody, as defined in any one of claims 1-16, to tumour deposits in a human subject is determined.
 - 49. A method according to claim 48, whereby said antibody is administered to the subject before the determination.
 - 50. A method according to claim 48, whereby said antibody is accumulated in tumour deposits.
 - 51. A method according to any one of claims 48-50, which is quantitative.
- 52. A method for therapy of human malignant disease, whereby an antibody, as defined in any one of claims 1-16, is administered to a human subject.
 - 53. A method according to claim 52, whereby said antibody has been changed by being genetically linked to molecules giving the combined molecule changed pharmacokinetic properties.
 - 54. A method according to claim 52, whereby said antibody has been changed by being derivatised.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5A

TA6-Human integrin ALPHA-6A

MAAAGQLCLLYLSAGLLSRLGAAFNLDTREDNVIRKYGDPGSLFGFSLAMHWQLQP EDKRLLLVGAPRGEALPLQRANRTGGLYSCDITARGPCTRIEFDNDADPTSESKEDQ WMGVTVOSOGPGGKVVTCAHRYEKROHVNTKQESRDIFGRCYVLSQNLRIEDDMD GGDWSFCDGRLRGHEKFGSCOOGVAATFTKDFHYIVFGAPGTYNWKGIVRVEQKN NTFFDMNIFEDGPYEVGGETEHDESLVPVPANSYLGFSLDSGKGIVSKDEITFVSGAPR ANHSGAVVLLKRDMKSAHLLPEHIFDGEGLASSFGYDVAVVDLNKDGWODIVIGAP <u>OYFDRDGEVGGAVYVYMNQOGRWNNVKPIR</u>LNGTKDSMFGIAVK<u>NIGDINQDGYP</u> DIAVGAPYDDLGKVFIYHGSANGINTKPTQVLKGISPYFGYSIAGNMDLDRNSYPDV AVGSLSDSVTIFRSRPVINIOKTITVTPNRIDLRQKTACGAPSGICLQVKSCFEYTANPA GYNPSISIVGTLEAEKERRKSGLSSRVQFRNQGSEPKYTQELTLKRQKQKVCMEETL WLQDNIRDKLRPIPITASVEIQEPSSRRRVNSLPEVLPILNSDEPKTAHIDVHFLKEGCG DDNVCNSNLKLEYKFCTREGNQDKFSYLPIOKGVPELVLKDQKDIALEITVTNSPSNP RNPTKDGDDAHEAKLIATFPDTLTYSAYRELRAFPEKQLSCVANQNGSQADCELGNP FKRNSNVTFYLVLSTTEVTFDTPDLDINLKLETTSNQDNLAPITAKAKVVIELLLSVSG VAKPSOVYFGGTVVGEOAMKSEDEVGSLIEYEFRVINLGKPLTNLGTATLNIOWPKEI SNGKWLLYLVKVESKGLEKVTCEPOKEINSLNLTESHNSRKKREITEKOIDDNRKFSL FAERKYOTLNCSVNVNCVNIRCPLRGLDSKASLILRSRLWNSTFLEEYSK<u>LNYLDILM</u> <u>RAFIDVTAAAENIRLPNAGTOVR</u>VTVFPSKTVAQYSGVPWWIILVAILAGILMLALLV FILWKCGFFKRNKKDHYDATYHKAEIHAQPSDKERLTSDA

FIG. 5B

INTEGRIN BETA-4 (PRECURSOR)

MAGPRPSPWARLLLAALISVSLSGTLANRCKKAPVKSCTECVRVDKDCAYCTDEMF RDRRCNTQAELLAAGCQRESIVVMESSFQITEETQIDTTLRRSQMSPQGLRVRLRPGE ERHFELEVFEPLESPVDLYILMDFSNSMSDDLDNLKKMGQNLARVLSQLTSDYTIGFG KFVDKVSVPOTDMRPEKLKEPWPNSDPPFSFKNVISLTEDVDEFRNKLQGERISGNLD APEGGFDAILQTAVCTRDIGWRPDSTHLLVFSTESAFHYEADGANVLAGIMSRNDER CHLDTTGTYTQYRTQDYPSVPTLVRLLAKHNIIPIFAVTNYSYSYYEKLHTYFPVSSLG VLQEDSSNIVELLEEAFNRIRSNLDIRALDSPRGLRTEVTSKMFQKTRTGSFHIRRGEV GIYOVQLRALEHVDGTHVCQLPEDQKGNIHLKPSFSDGLKMDAGIICDVCTCELQKE VRSARCSFNGDFVCGQCVCSEGWSGQTCNCSTGSLSDIQPCLREGEDKPCSGRGECQ CGHCVCYGEGR<u>YEGOFCEYDNFOCPR</u>TSGFLCNDRGRCSMGQCVCEPGWTGPSCDC PLSNATCIDSNGGICNGRGHCECGRCHCHQQSLYTDTICEINYSAIHPGLCEDLRSCVQ CQAWGTGEKKGRTCEECNFKVKMVDELKRAEEVVVRCSFR<u>DEDDDCTYSYTMEGD</u> GAPGPNSTVLVHKKKDCPPGSFWWLIPLLLLLLLLLLLLCWKYCACCKACLALL PCCNRGHMVGFKEDHYMLRENLMASDHLDTPMLRSGNLKGRDVVRWKVTNNMQR PGFATHAASINPTELVPYGLSLRLARLCTENLLKPDTRECAQLRQEVEENLNEVYRQI SGVHKLQQTKFRQQPNAGKKQDHTIVDTVLMAPRSAKPALLKLTEKQVEQRAFHDL KVAPGYYTLTADODARGMVEFOEGVELVDVRVPLFIRPEDDDEKOLLVEAIDVPAG TATLGRRLVNITIIKEOARDVVSFEOPEFSVSRGDOVARIPVIRRVLDGGKSQVSYRTQ DGTAQGNRDYIPVEGELLFQPGEAWKELQVK<u>LLELQEVDSLLR</u>GRQVRRFHVQLSNP KFGAHLGOPHSTTIIIRDPDELDRSFTSOMLSSOPPPHGDLGAPONPNAKAAGSRKIHF NWLPPSGKPMGYRVKYWIQGDSESEAHLLDSKVPSVELTNLYPYCDYEMK<u>VCAYG</u> <u>AQGEGPYSSLVSCR</u>THQEVPSEPGRLAFNVVSSTVTQLSWAEPAETNGEITAYEVCY GLVNDDNRPIGPMKK<u>VLVDNPKNR</u>MLLIENLRESQPYRYTVKARNGAGWGPEREAII NLATOPKRPMSIPIIPDIPIVDAOSGEDYDSFLMYSDDVLRSPSGSORPSVSDDTGCGW KFEPLLGEELDLRRVTWRLPPELIPRLSASSGRSSDAEAPTAPRTTAARAGRAAAVPR SATPGPPGEHLVNGRMDFAFPGSTNSLHRMTTTSAAAYGTHLSPHVPHRVLSTSSTLT RDYNSLTRSEHSHSTTLPRDYSTLTSVSSHGLPPIWEHGRSRLPLSWALGSRSRAQMK GFPPSRGPRDSIILAGRPAAPSWGPDSRLTAGVPDTPTRLVFSALGPTSLRVSWQEPRC ERPLQGYSVEYQLLNGGELHRLNIPNPAQTSVVVEDLLPNHSYVFRVRAQSQEGWGR EREGVITIESOVHPOSPLCPLPGSAFTLSTPSAPGPLVFTALSPDSLQLSWERPRRPNGD IVGYLVTCEMAQGGGPATAFRVDGDSPESRLTVPGLSENVPYKFKVQARTTEGFGPE REGIITIESQDGGPFPQLGSRAGLFQHPLQSEYSSITTTHTSATEPFLVDGPTLGAQHLE AGGSLTRHVTOEFVSRTLTTSGTLSTHMDOOFFOT

FIG. 6

FIG. 7A

FIG. 7B

FIG. 8A (i)

> scFvA3FabSEAm9 (4 μg/ml) αSEA-HRP (1/2000)

10/10

FIG. 8B

SEQUENCE LISTING

<11	0 > A	ctiv	e Bi	otec	h AB											
<12	120> Novel compounds															
<13	<130> 2002163															
	<150> SE 9903895-2 <151> 1999-10-28															
<160	<160> 51															
<170	<170> PatentIn Ver. 2.1															
<213 <213	<210> 1 <211> 747 <212> DNA <213> Macaca fascicularis															
	<221> CDS <222> (1)(747)															
<223	<223> Coding sequence VL (1-109) - modified Huston linker (110-127) - VH (128-249)															
	tct							gca Ala								48
	_		_		_			gac Asp 25	_						_	96
								cag Gln								144
								atc Ile								192
								acc Thr								240
gat Asp	gag Glu	gct Ala	gac Asp	tat Tyr 85	tac Tyr	tgt Cys	aac Asn	tcc Ser	tgg Trp 90	gac Asp	agc Ser	agc Ser	ggt Gly	acc Thr 95	cat His	288
								gtg Val 105								336
								gga Gly								384

gtg cag ttg gtg Val Gln Leu Val 130		y Gly Gly Le			
ctg aga ctc tct Leu Arg Leu Ser 145	tgt gta gcc Cys Val Ala 150	tct ggg to a Ser Gly Se	cc atc ttc agg er Ile Phe Ser 155	Ser Ser Va	t 480 al 50
atg cac tgg gtc Met His Trp Val			s Gly Leu Glu		
gtt att agt gaa Val Ile Ser Glu 180	aat ggg cg Asn Gly Arg	acc att aa g Thr Ile As 185	ac tac gca gad sn Tyr Ala Asp	tct gtg aa Ser Val Ly 190	ıg 576 ⁄s
ggc cga ttc acc Gly Arg Phe Thr 195	atc tcc aga Ile Ser Arg	a gac aac go g Asp Asn Al 200	cc aag aac tca la Lys Asn Sei 209	Leu Phe Le	.g 624 eu
cag atg aac agc Gln Met Asn Ser 210	ctg aca ggo Leu Thr Gly 21	Glu Asp Th	eg gee gte tat ir Ala Val Tyi 220	tac tgt ag Tyr Cys Se	gt 672 er
aga gag ggg gga Arg Glu Gly Gly 225					L y
ccg gga gtc ctg Pro Gly Val Leu	_				747
<210> 2 <211> 249 <212> PRT <213> Macaca fa: <223> Coding sec linker (1:			dified Huston		
<400> 2 Ser Ser Glu Leu 1	Thr Gln Gly		eu Ser Val Ala 10	Leu Gly H	Ls

Ser Ser Ser Glu Leu Thr Gln Gly Pro Ala Leu Ser Val Ala Leu Gly His 15

Thr Val Arg Met 20 Thr Cys Gln Gly Asp Ser Leu Lys Thr Tyr Tyr Ala 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Val Pro Val Leu Val Ile Tyr 45

Gly Asn Asn Tyr Arg Pro Ser Gly Ile Pro Gly Arg Phe Ser Gly Ser Cly Fro Gly Arg Phe Ser Gly Ser Gly Ser Gly Asp Glu Ala Asp Tyr Tyr Cys Asn Ser Trp 90

Pro Val Phe Gly Gly Gly Thr Arg Val Thr Val Leu Gly Gln Ala Asn 110

2

Gly Glu Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Glu 115 120 125

Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser 130 135 140

Leu Arg Leu Ser Cys Val Ala Ser Gly Ser Ile Phe Ser Ser Ser Val
145 150 155 160

Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser 165 170 175

Val Ile Ser Glu Asn Gly Arg Thr Ile Asn Tyr Ala Asp Ser Val Lys 180 185 190

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Phe Leu 195 200 205

Gln Met Asn Ser Leu Thr Gly Glu Asp Thr Ala Val Tyr Tyr Cys Ser 210 215 220

Arg Glu Gly Gly Pro Gly Thr Thr Ser Asn Arg Leu Asp Ala Trp Gly 225 230 235 240

Pro Gly Val Leu Val Thr Val Ser Ser 245

<210> 3

<211> 1073

<212> PRT

<213> Human

<223> TA6-Human integrin alpha-6A

<400> 3

Met Ala Ala Gly Gln Leu Cys Leu Leu Tyr Leu Ser Ala Gly Leu 1 5 10 15

Leu Ser Arg Leu Gly Ala Ala Phe Asn Leu Asp Thr Arg Glu Asp Asn 20 25 30

Val Ile Arg Lys Tyr Gly Asp Pro Gly Ser Leu Phe Gly Phe Ser Leu 35 40 45

Ala Met His Trp Gln Leu Gln Pro Glu Asp Lys Arg Leu Leu Leu Val 50 55 60

Gly Ala Pro Arg Gly Glu Ala Leu Pro Leu Gln Arg Ala Asn Arg Thr
65 70 75 80

Gly Gly Leu Tyr Ser Cys Asp Ile Thr Ala Arg Gly Pro Cys Thr Arg 85 90 95

Ile Glu Phe Asp Asn Asp Ala Asp Pro Thr Ser Glu Ser Lys Glu Asp 100 105 110

Gln Trp Met Gly Val Thr Val Gln Ser Gln Gly Pro Gly Gly Lys Val 115 120 125

Val	Thr 130	Cys	Ala	His	Arg	Tyr 135	Glu	Lys	Arg	Gln	His 140	Val	Asn	Thr	Lys
Gln 145	Glu	Ser	Arg	Asp	Ile 150	Phe	Gly	Arg	Cys	Tyr 155	Val	Leu	Ser	Gln	Asn 160
Leu	Arg	Ile	Glu	Asp 165	Asp	Met	Asp	Gly	Gly 170	Asp	Trp	Ser	Phe	Cys 175	Asp
Gly	Arg	Leu	Arg 180	Gly	His	Glu	Lys	Phe 185	Gly	Ser	Сув	Gln	Gln 190	Gly	Val
Ala	Ala	Thr 195	Phe	Thr	Lys	Asp	Phe 200	His	Tyr	Ile	Val	Phe 205	Gly	Ala	Pro
Gly	Thr 210	Tyr	Asn	Trp	Lys	Gly 215	Ile	Val	Arg	Val	Glu 220	Gln	Lys	Asn	Asn
Thr 225	Phe	Phe	Asp	Met	Asn 230	Ile	Phe	Glu	Asp	Gly 235	Pro	Tyr	Glu	Val	Gly 240
Gly	Glu	Thr	Glu	His 245	Asp	Glu	Ser	Leu	Val 250	Pro	Val	Pro	Ala	Asn 255	Ser
Tyr	Leu	Gly	Phe 260	Ser	Leu	Asp	Ser	Gly 265	Lys	Gly	Ile	Val	Ser 270	Lys	Asp
Glu	Ile	Thr 275	Phe	Val	Ser	Gly	Ala 280	Pro	Arg	Ala	Asn	His 285	Ser	Gly	Ala
Val	Val 290	Leu	Leu	Lys	Arg	Asp 295	Met	Lys	Ser	Ala	His 300	Leu	Leu	Pro	Glu
His 305	Ile	Phe	Asp	Gly	Glu 310	Gly	Leu	Ala	Ser	Ser 315	Phe	Gly	Tyr	Asp	Val 320
Ala	Val	Val	Asp	Leu 325	Asn	Lys	Asp	Gly	Trp 330	Gln	Asp	Ile	Val	Ile 335	Gly
Ala	Pro	Gln	Tyr 340	Phe	qaA	Arg	Asp	Gly 345	Glu	Val	Gly	Gly	Ala 350	Val	Tyr
Val	Tyr	Met 355	Asn	Gln	Gln	Gly	Arg 360	Trp	Asn	Asn	Val	Lys 365	Pro	Ile	Arg
Leu	Asn 370	Gly	Thr	Lys	Asp	Ser 375	Met	Phe	Gly	Ile	Ala 380	Val	Lys	Asn	Ile
Gly 385	Asp	Ile	Asn	Gln	Asp 390	Gly	Tyr	Pro	qaA	Ile 395	Ala	Val	Gly	Ala	Pro 400
Tyr	Asp	Asp	Leu	Gly 405	Lys	Val	Phe	Ile	Tyr 410	His	Gly	Ser	Ala	Asn 415	Gly
Ile	Asn	Thr	Lys 420	Pro	Thr	Gln	Val	Leu 425	Lys	Gly	Ile	Ser	Pro 430	Tyr	Phe
Gly	Tyr	Ser 435	Ile	Ala	Gly	Asn	Met 440	Asp	Leu	Asp	Arg	Asn 445	Ser	Tyr	Pro

Asp	Val 450	Ala	Val	Gly	Ser	Leu 455	Ser	Asp	Ser	Val	Thr 460	Ile	Phe	Arg	Ser
Arg 465	Pro	Val	Ile	Asn	Ile 470	Gln	Lys	Thr	Ile	Thr 475	Val	Thr	Pro	Asn	Arg 480
Ile	Asp	Leu	Arg	Gln 485	Lys	Thr	Ala	Сув	Gly 490	Ala	Pro	Ser	Gly	Ile 495	Cys
Leu	Gln	Val	Lys 500	Ser	Cys	Phe	Glu	Tyr 505	Thr	Ala	Asn	Pro	Ala 510	Gly	Tyr
Asn	Pro	Ser 515	Ile	Ser	Ile	Val	Gly 520	Thr	Leu	Glu	Ala	Glu 525	Lys	Glu	Arg
Arg	Lys 530	Ser	Gly	Leu	Ser	Ser 535	Arg	Val	Gln	Phe	Arg 540	Asn	Gln	Gly	Ser
Glu 545	Pro	Lys	Tyr	Thr	Gln 550	Glu	Leu	Thr	Leu	Lys 555	Arg	Gln	Lys	Gln	Lys 560
Val	Cys	Met	Glu	Glu 565	Thr	Leu	Trp	Leu	Gln 570	Asp	Asn	Ile	Arg	Asp 575	Lys
Leu	Arg	Pro	Ile 580	Pro	Ile	Thr	Ala	Ser 585	Val	Glu	Ile	Gln	Glu 590	Pro	Ser
Ser	Arg	Arg 595	Arg	Val	Asn	Ser	Leu 600	Pro	Glu	Val	Leu	Pro 605	Ile	Leu	Asn
Ser	Asp 610	Glu	Pro	Lys	Thr	Ala 615	His	Ile	Asp	Val	His 620	Phe	Leu	Lys	Glu
Gly 625	Cys	Gly	Asp	Asp	Asn 630	Val	Cys	Asn	Ser	Asn 635	Leu	Lys	Leu	Glu	Tyr 640
Lys	Phe	Cys	Thr	Arg 645	Glu	Gly	Asn	Gln	Asp 650	Lys	Phe	Ser	Tyr	Leu 655	Pro
Ile	Gln	Lys	660	Val	Pro	Glu	Leu	Val 665	Leu	Lys	Asp	Gln	Lys 670	Asp	Ile
Ala	Leu	Glu 675	Ile	Thr	Val	Thr	Asn 680	Ser	Pro	Ser	Asn	Pro 685	Arg	Asn	Pro
Thr	Lys 690	Asp	Gly	Asp	Asp	Ala 695	His	Glu	Ala	ГÀЗ	Leu 700	Ile	Ala	Thr	Phe
Pro 705	qaA	Thr	Leu	Thr	Tyr 710	Ser	Ala	Tyr	Arg	Glu 715	Leu	Arg	Ala	Phe	Pro 720
Glu	Lys	Gln	Leu	Ser 725	Сув	Val	Ala	Asn	Gln 730	Asn	Gly	Ser	Gln	Ala 735	Asp
Сув	Glu	Leu	Gly 740	Asn	Pro	Phe	ГÀв	Arg 745	Asn	Ser	Asn	Val	Thr 750	Phe	Tyr
Leu	Val	Leu 755		Thr	Thr	Glu	Val 760	Thr	Phe	Asp	Thr	Pro 765		Leu	Asp

- Ile Asn Leu Lys Leu Glu Thr Thr Ser Asn Gln Asp Asn Leu Ala Pro 770 775 780
- Ile Thr Ala Lys Ala Lys Val Val Ile Glu Leu Leu Ser Val Ser 785 790 795 800
- Gly Val Ala Lys Pro Ser Gln Val Tyr Phe Gly Gly Thr Val Val Gly
- Glu Gln Ala Met Lys Ser Glu Asp Glu Val Gly Ser Leu Ile Glu Tyr 820 825 830
- Glu Phe Arg Val Ile Asn Leu Gly Lys Pro Leu Thr Asn Leu Gly Thr 835 840 845
- Ala Thr Leu Asn Ile Gln Trp Pro Lys Glu Ile Ser Asn Gly Lys Trp
- Leu Leu Tyr Leu Val Lys Val Glu Ser Lys Gly Leu Glu Lys Val Thr 865 870 875
- Cys Glu Pro Gln Lys Glu Ile Asn Ser Leu Asn Leu Thr Glu Ser His
- Asn Ser Arg Lys Lys Arg Glu Ile Thr Glu Lys Gln Ile Asp Asp Asn 900 905 910
- Arg Lys Phe Ser Leu Phe Ala Glu Arg Lys Tyr Gln Thr Leu Asn Cys 915 920 925
- Ser Val Asn Val Asn Cys Val Asn Ile Arg Cys Pro Leu Arg Gly Leu 930 935 940
- Asp Ser Lys Ala Ser Leu Ile Leu Arg Ser Arg Leu Trp Asn Ser Thr 945 950 955 960
- Phe Leu Glu Glu Tyr Ser Lys Leu Asn Tyr Leu Asp Ile Leu Met Arg 965 970 975
- Ala Phe Ile Asp Val Thr Ala Ala Ala Glu Asn Ile Arg Leu Pro Asn 980 985 990
- Ala Gly Thr Gln Val Arg Val Thr Val Phe Pro Ser Lys Thr Val Ala 995 1000 1005
- Gln Tyr Ser Gly Val Pro Trp Trp Ile Ile Leu Val Ala Ile Leu Ala 1010 1015 1020
- Gly Ile Leu Met Leu Ala Leu Leu Val Phe Ile Leu Trp Lys Cys Gly 1025 1030 1035 1040
- Phe Phe Lys Arg Asn Lys Lys Asp His Tyr Asp Ala Thr Tyr His Lys
- Ala Glu Ile His Ala Gln Pro Ser Asp Lys Glu Arg Leu Thr Ser Asp 1060 1065 1070

Ala

PCT/SE00/02082 WO 01/30854

<210> 4

<211> 1875

<212> PRT

<213> Human

<223> Integrin beta-4 (precursor)

<400> 4

Met Ala Gly Pro Arg Pro Ser Pro Trp Ala Arg Leu Leu Ala Ala

Leu Ile Ser Val Ser Leu Ser Gly Thr Leu Ala Asn Arg Cys Lys Lys 25

Ala Pro Val Lys Ser Cys Thr Glu Cys Val Arg Val Asp Lys Asp Cys 40

Ala Tyr Cys Thr Asp Glu Met Phe Arg Asp Arg Cys Asn Thr Gln

Ala Glu Leu Leu Ala Ala Gly Cys Gln Arg Glu Ser Ile Val Val Met

Glu Ser Ser Phe Gln Ile Thr Glu Glu Thr Gln Ile Asp Thr Thr Leu

Arg Arg Ser Gln Met Ser Pro Gln Gly Leu Arg Val Arg Leu Arg Pro 105

Gly Glu Glu Arg His Phe Glu Leu Glu Val Phe Glu Pro Leu Glu Ser 120

Pro Val Asp Leu Tyr Ile Leu Met Asp Phe Ser Asn Ser Met Ser Asp 135

Asp Leu Asp Asn Leu Lys Lys Met Gly Gln Asn Leu Ala Arg Val Leu

Ser Gln Leu Thr Ser Asp Tyr Thr Ile Gly Phe Gly Lys Phe Val Asp

Lys Val Ser Val Pro Gln Thr Asp Met Arg Pro Glu Lys Leu Lys Glu 185

Pro Trp Pro Asn Ser Asp Pro Pro Phe Ser Phe Lys Asn Val Ile Ser 200

Leu Thr Glu Asp Val Asp Glu Phe Arg Asn Lys Leu Gln Gly Glu Arg 215 210

Ile Ser Gly Asn Leu Asp Ala Pro Glu Gly Gly Phe Asp Ala Ile Leu 230

Gln Thr Ala Val Cys Thr Arg Asp Ile Gly Trp Arg Pro Asp Ser Thr

His Leu Leu Val Phe Ser Thr Glu Ser Ala Phe His Tyr Glu Ala Asp 265

Gly Ala Asn Val Leu Ala Gly Ile Met Ser Arg Asn Asp Glu Arg Cys 280 275

His Leu Asp Thr Thr Gly Thr Tyr Thr Gln Tyr Arg Thr Gln Asp Tyr 295 Pro Ser Val Pro Thr Leu Val Arg Leu Leu Ala Lys His Asn Ile Ile Pro Ile Phe Ala Val Thr Asn Tyr Ser Tyr Ser Tyr Tyr Glu Lys Leu His Thr Tyr Phe Pro Val Ser Ser Leu Gly Val Leu Gln Glu Asp Ser 345 Ser Asn Ile Val Glu Leu Leu Glu Glu Ala Phe Asn Arg Ile Arg Ser 360 355 Asn Leu Asp Ile Arg Ala Leu Asp Ser Pro Arg Gly Leu Arg Thr Glu 375 Val Thr Ser Lys Met Phe Gln Lys Thr Arg Thr Gly Ser Phe His Ile 390 Arg Arg Gly Glu Val Gly Ile Tyr Gln Val Gln Leu Arg Ala Leu Glu His Val Asp Gly Thr His Val Cys Gln Leu Pro Glu Asp Gln Lys Gly Asn Ile His Leu Lys Pro Ser Phe Ser Asp Gly Leu Lys Met Asp Ala Gly Ile Ile Cys Asp Val Cys Thr Cys Glu Leu Gln Lys Glu Val Arg 455 Ser Ala Arg Cys Ser Phe Asn Gly Asp Phe Val Cys Gly Gln Cys Val Cys Ser Glu Gly Trp Ser Gly Gln Thr Cys Asn Cys Ser Thr Gly Ser Leu Ser Asp Ile Gln Pro Cys Leu Arg Glu Gly Glu Asp Lys Pro Cys Ser Gly Arg Gly Glu Cys Gln Cys Gly His Cys Val Cys Tyr Gly Glu Gly Arg Tyr Glu Gly Gln Phe Cys Glu Tyr Asp Asn Phe Gln Cys Pro 535 Arg Thr Ser Gly Phe Leu Cys Asn Asp Arg Gly Arg Cys Ser Met Gly Gln Cys Val Cys Glu Pro Gly Trp Thr Gly Pro Ser Cys Asp Cys Pro Leu Ser Asn Ala Thr Cys Ile Asp Ser Asn Gly Gly Ile Cys Asn Gly Arg Gly His Cys Glu Cys Gly Arg Cys His Cys His Gln Gln Ser Leu 600

Tyr	Thr 610	Asp	Thr	Ile	Сув	Glu 615	Ile	Asn	Tyr	Ser	Ala 620	Ile	His	Pro	Gly
Leu 625	Cys	Glu	Asp	Leu	Arg 630	Ser	Cys	Val	Gln	Сув 635	Gln	Ala	Trp	Gly	Thr 640
Gly	Glu	Lys	Lys	Gly 645	Arg	Thr	Сув	Glu	Glu 650	Cys	Asn	Phe	Lys	Val 655	Lys
Met	Val	Asp	Glu 660	Leu	Lys	Arg	Ala	Glu 665	Glu	Val	Val	Val	Arg 670	Cys	Ser
Phe	Arg	Asp 675	Glu	Asp	Asp	Asp	Cys 680	Thr	Tyr	Ser	Tyr	Thr 685	Met	Glu	Gly
Asp	Gly 690	Ala	Pro	Gly	Pro	Asn 695	Ser	Thr	Val	Leu	Val 700	His	Lys	Lys	Lys
Asp 705	Cys	Pro	Pro	Gly	Ser 710	Phe	Trp	Trp	Leu	Ile 715	Pro	Leu	Leu	Leu	Leu 720
Leu	Leu	Pro	Leu	Leu 725	Ala	Leu	Leu	Leu	Leu 730	Leu	Cys	Trp	Lys	Tyr 735	Суѕ
Ala	Сув	Сув	Lys 740	Ala	Cys	Leu	Ala	Leu 745	Leu	Pro	Сув	Сув	Asn 750	Arg	Gly
His	Met	Val 755	Gly	Phe	Lys	Glu	Asp 760	His	Tyr	Met	Leu	Arg 765	Glu	Asn	Leu
Met	Ala 770	Ser	Asp	His	Leu	Asp 775	Thr	Pro	Met	Leu	Arg 780	Ser	Gly	Asn	Leu
Lys 785	Gly	Arg	Asp	Val	Val 790	Arg	Trp	Lys	Val	Thr 795	Asn	Asn	Met	Gln	Arg 800
785	_	_	-	Val Thr 805	790					795					800
785 Pro	Gly	Phe	Ala	Thr	790 His	Ala	Ala	Ser	Ile 810	795 Asn	Pro	Thr	Glu	Leu 815	800 Val
785 Pro	Gly Tyr	Phe	Ala Leu 820	Thr 805	790 His Leu	Ala Arg	Ala Leu	Ser Ala 825	Ile 810 Arg	795 Asn Leu	Pro Cys	Thr Thr	Glu Glu 830	Leu 815 Asn	800 Val Leu
785 Pro Pro	Gly Tyr Lys	Phe Gly Pro 835	Ala Leu 820 Asp	Thr 805 Ser	790 His Leu Arg	Ala Arg Glu	Ala Leu Cys 840	Ser Ala 825 Ala	Ile 810 Arg Gln	795 Asn Leu Leu	Pro Cys Arg	Thr Thr Gln 845	Glu Glu 830 Glu	Leu 815 Asn Val	800 Val Leu Glu
785 Pro Pro Leu Glu	Gly Tyr Lys Asn 850	Phe Gly Pro 835 Leu	Ala Leu 820 Asp	Thr 805 Ser	790 His Leu Arg Val	Ala Arg Glu Tyr 855	Ala Leu Cys 840 Arg	Ser Ala 825 Ala Gln	Ile 810 Arg Gln Ile	795 Asn Leu Leu Ser	Pro Cys Arg Gly 860	Thr Thr Gln 845 Val	Glu Glu 830 Glu His	Leu 815 Asn Val	800 Val Leu Glu Leu
785 Pro Pro Leu Glu Gln 865	Gly Tyr Lys Asn 850 Gln	Phe Gly Pro 835 Leu	Ala Leu 820 Asp Asn	Thr 805 Ser Thr	790 His Leu Arg Val Arg 870	Ala Arg Glu Tyr 855 Gln	Ala Leu Cys 840 Arg	Ser Ala 825 Ala Gln Pro	Ile 810 Arg Gln Ile Asn	795 Asn Leu Leu Ser Ala 875	Pro Cys Arg Gly 860	Thr Thr Gln 845 Val	Glu B30 Glu His	Leu 815 Asn Val Lys Gln	800 Val Leu Glu Leu Asp 880
785 Pro Pro Leu Glu Gln 865 His	Gly Tyr Lys Asn 850 Gln Thr	Phe Gly Pro 835 Leu Thr	Ala Leu 820 Asp Asn Lys Val	Thr 805 Ser Thr Glu Phe	790 His Leu Arg Val Arg 870	Ala Arg Glu Tyr 855 Gln Val	Ala Leu Cys 840 Arg Gln Leu	Ser Ala 825 Ala Gln Pro	Ile 810 Arg Gln Ile Asn Ala 890	795 Asn Leu Leu Ser Ala 875 Pro	Pro Cys Arg Gly 860 Gly Arg	Thr Thr Gln 845 Val Lys Ser	Glu 830 Glu His Lys	Leu 815 Asn Val Lys Gln Lys 895	S00 Val Leu Glu Leu Asp S80 Pro

Ala Arg Gly Met Val Glu Phe Gln Glu Gly Val Glu Leu Val Asp Val 930 935 940

- Arg Val Pro Leu Phe Ile Arg Pro Glu Asp Asp Asp Glu Lys Gln Leu 945 950 955 960
- Leu Val Glu Ala Ile Asp Val Pro Ala Gly Thr Ala Thr Leu Gly Arg 965 970 975
- Arg Leu Val Asn Ile Thr Ile Ile Lys Glu Gln Ala Arg Asp Val Val 980 985 990
- Ser Phe Glu Gln Pro Glu Phe Ser Val Ser Arg Gly Asp Gln Val Ala 995 1000 1005
- Arg Ile Pro Val Ile Arg Arg Val Leu Asp Gly Gly Lys Ser Gln Val 1010 1015 1020
- Ser Tyr Arg Thr Gln Asp Gly Thr Ala Gln Gly Asn Arg Asp Tyr Ile 1025 1030 1035 1040
- Pro Val Glu Gly Glu Leu Leu Phe Gln Pro Gly Glu Ala Trp Lys Glu 1045 1050 1055
- Leu Gln Val Lys Leu Leu Glu Leu Gln Glu Val Asp Ser Leu Leu Arg 1060 1065 1070
- Gly Arg Gln Val Arg Arg Phe His Val Gln Leu Ser Asn Pro Lys Phe 1075 1080 1085
- Gly Ala His Leu Gly Gln Pro His Ser Thr Thr Ile Ile Ile Arg Asp 1090 1095 1100
- Pro Asp Glu Leu Asp Arg Ser Phe Thr Ser Gln Met Leu Ser Ser Gln 1105 1110 1115 1120
- Pro Pro Pro His Gly Asp Leu Gly Ala Pro Gln Asn Pro Asn Ala Lys 1125 1130 1135
- Ala Ala Gly Ser Arg Lys Ile His Phe Asn Trp Leu Pro Pro Ser Gly
 1140 1145 1150
- Lys Pro Met Gly Tyr Arg Val Lys Tyr Trp Ile Gln Gly Asp Ser Glu 1155 1160 1165
- Ser Glu Ala His Leu Leu Asp Ser Lys Val Pro Ser Val Glu Leu Thr 1170 1175 1180
- Asn Leu Tyr Pro Tyr Cys Asp Tyr Glu Met Lys Val Cys Ala Tyr Gly 1185 1190 1195 1200
- Ala Gln Gly Glu Gly Pro Tyr Ser Ser Leu Val Ser Cys Arg Thr His 1205 1210 1215
- Gln Glu Val Pro Ser Glu Pro Gly Arg Leu Ala Phe Asn Val Val Ser 1220 1225 1230
- Ser Thr Val Thr Gln Leu Ser Trp Ala Glu Pro Ala Glu Thr Asn Gly 1235 1240 1245

Glu Ile Thr Ala Tyr Glu Val Cys Tyr Gly Leu Val Asn Asp Asp Asn 1250 1255 1260

- Arg Pro Ile Gly Pro Met Lys Lys Val Leu Val Asp Asn Pro Lys Asn 1265 1270 1275 1280
- Arg Met Leu Leu Ile Glu Asn Leu Arg Glu Ser Gln Pro Tyr Arg Tyr 1285 1290 1295
- Thr Val Lys Ala Arg Asn Gly Ala Gly Trp Gly Pro Glu Arg Glu Ala 1300 1305 1310
- Ile Ile Asn Leu Ala Thr Gln Pro Lys Arg Pro Met Ser Ile Pro Ile 1315 1320 1325
- Ile Pro Asp Ile Pro Ile Val Asp Ala Gln Ser Gly Glu Asp Tyr Asp 1330 1335 1340
- Ser Phe Leu Met Tyr Ser Asp Asp Val Leu Arg Ser Pro Ser Gly Ser 1345 1350 1355 1360
- Gln Arg Pro Ser Val Ser Asp Asp Thr Gly Cys Gly Trp Lys Phe. Glu 1365 1370 1375
- Pro Leu Cly Glu Glu Leu Asp Leu Arg Arg Val Thr Trp Arg Leu 1380 1385 1390
- Pro Pro Glu Leu Ile Pro Arg Leu Ser Ala Ser Ser Gly Arg Ser Ser 1395 1400 1405
- Asp Ala Glu Ala Pro Thr Ala Pro Arg Thr Thr Ala Ala Arg Ala Gly 1410 1415 1420
- Arg Ala Ala Ala Val Pro Arg Ser Ala Thr Pro Gly Pro Pro Gly Glu 1425 1430 1435 1440
- His Leu Val Asn Gly Arg Met Asp Phe Ala Phe Pro Gly Ser Thr Asn 1445 1450 1455
- Ser Leu His Arg Met Thr Thr Thr Ser Ala Ala Ala Tyr Gly Thr His . 1460 1465 1470
- Leu Ser Pro His Val Pro His Arg Val Leu Ser Thr Ser Ser Thr Leu 1475 1480 1485
- Thr Arg Asp Tyr Asn Ser Leu Thr Arg Ser Glu His Ser His Ser Thr 1490 1495 1500
- Thr Leu Pro Arg Asp Tyr Ser Thr Leu Thr Ser Val Ser Ser His Gly 1505 1510 1515 1520
- Leu Pro Pro Ile Trp Glu His Gly Arg Ser Arg Leu Pro Leu Ser Trp
 1525 1530 1535
- Ala Leu Gly Ser Arg Ser Arg Ala Gln Met Lys Gly Phe Pro Pro Ser 1540 1545 1550
- Arg Gly Pro Arg Asp Ser Ile Ile Leu Ala Gly Arg Pro Ala Ala Pro 1555 1560 1565

Ser Trp Gly Pro Asp Ser Arg Leu Thr Ala Gly Val Pro Asp Thr Pro 1570 1575 1580

- Thr Arg Leu Val Phe Ser Ala Leu Gly Pro Thr Ser Leu Arg Val Ser 1585 1590 1595 1600
- Trp Gln Glu Pro Arg Cys Glu Arg Pro Leu Gln Gly Tyr Ser Val Glu 1605 1610 1615
- Tyr Gln Leu Leu Asn Gly Gly Glu Leu His Arg Leu Asn Ile Pro Asn 1620 1625 1630
- Pro Ala Gln Thr Ser Val Val Glu Asp Leu Leu Pro Asn His Ser 1635 1640 1645
- Tyr Val Phe Arg Val Arg Ala Gln Ser Gln Glu Gly Trp Gly Arg Glu 1650 1660
- Arg Glu Gly Val Ile Thr Ile Glu Ser Gln Val His Pro Gln Ser Pro 1665 1670 1675 1680
- Leu Cys Pro Leu Pro Gly Ser Ala Phe Thr Leu Ser Thr Pro Ser Ala 1685 1690 1695
- Pro Gly Pro Leu Val Phe Thr Ala Leu Ser Pro Asp Ser Leu Gln Leu 1700 1705 1710
- Ser Trp Glu Arg Pro Arg Pro Asn Gly Asp Ile Val Gly Tyr Leu 1715 1720 1725
- Val Thr Cys Glu Met Ala Gln Gly Gly Gly Pro Ala Thr Ala Phe Arg 1730 1735 1740
- Val Asp Gly Asp Ser Pro Glu Ser Arg Leu Thr Val Pro Gly Leu Ser 1745 1750 1755 1760
- Glu Asn Val Pro Tyr Lys Phe Lys Val Gln Ala Arg Thr Thr Glu Gly 1765 1770 1775
- Phe Gly Pro Glu Arg Glu Gly Ile Ile Thr Ile Glu Ser Gln Asp Gly 1780 1785 1790
- Gly Pro Phe Pro Gln Leu Gly Ser Arg Ala Gly Leu Phe Gln His Pro 1795 1800 1805
- Leu Gln Ser Glu Tyr Ser Ser Ile Thr Thr His Thr Ser Ala Thr 1810 1815 1820
- Glu Pro Phe Leu Val Asp Gly Pro Thr Leu Gly Ala Gln His Leu Glu 1825 1830 1835 1840
- Ala Gly Gly Ser Leu Thr Arg His Val Thr Gln Glu Phe Val Ser Arg 1845 1850 1855
- Thr Leu Thr Thr Ser Gly Thr Leu Ser Thr His Met Asp Gln Gln Phe 1860 1865 1870

Phe Gln Thr 1875

```
<210> 5
<211> 8
 <212> PRT
 <213> Human
<223> Amino acids 61-68 of SEQ ID NO: 3
<400> 5
Leu Leu Val Gly Ala Pro Arg
<210> 6
<211> 20
<212> PRT
<213> Human
<223> Amino acids 77-96 of SEQ ID NO: 3
<400> 6
Ala Asn Arg Thr Gly Gly Leu Tyr Ser Cys Asp Ile Thr Ala Arg Gly
                                      10
Pro Cys Thr Arg
              20
 <210> 7
 <211> 10
 <212> PRT
 <213> Human
<223> Amino acids 128-137 of SEQ ID NO: 3
 Val Val Thr Cys Ala His Arg Tyr Glu Lys
                  5
 <210> 8
 <211> 7
 <212> PRT
 <213> Human
 <223> Amino acids 138-144 of SEQ ID NO: 3
 <400> 8
 Arg Gln His Val Asn Thr Lys
               5
 <210> 9
 <211> 9
 <212> PRT
 <223> Amino acids 154-162 of SEQ ID NO: 3
 Cys Tyr Val Leu Ser Gln Asn Leu Arg
  1
                   5
```

```
<210> 10
<211> 14
<212> PRT
<213> Human
<223> Amino acids 185-198 of SEQ ID NO: 3
<400> 10
Phe Gly Ser Cys Gln Gln Gly Val Ala Ala Thr Phe Thr Lys
<210> 11
<211> 16
<212> PRT
<213> Human
<223> Amino acids 199-214 of SEQ ID NO: 3
<400> 11
Asp Phe His Tyr Ile Val Phe Gly Ala Pro Gly Thr Tyr Asn Trp Lys
                                    10
<210> 12
<211> 11
<212> PRT
<213> Human
<223> Amino acids 272-282 of SEQ ID NO: 3
<400> 12
Asp Glu Ile Thr Phe Val Ser Gly Ala Pro Arg
<210> 13
<211> 11
<212> PRT
<213> Human
<223> Amino acids 283-293 of SEQ ID NO: 3
<400> 13
Ala Asn His Ser Gly Ala Val Val Leu Leu Lys
      5
<210> 14
<211> 16
<212> PRT
<213> Human
<223> Amino acids 328-343 of SEQ ID NO: 3
<400> 14
Asp Gly Trp Gln Asp Ile Val Ile Gly Ala Pro Gln Tyr Phe Asp Arg
                5
                                    10
1
```

```
<210> 15
<211> 17
<212> PRT
<213> Human
<223> Amino acids 344-360 of SEQ ID NO: 3
Asp Gly Glu Val Gly Gly Ala Val Tyr Val Tyr Met Asn Gln Gly
                                    10
                  5
 1
Arg
<210> 16
<211> 8
<212> PRT
<213> Human
<223> Amino acids 361-368 of SEQ ID NO: 3
 <400> 16
Trp Asn Asn Val Lys Pro Ile Arg
                 5
 1
 <210> 17
 <211> 24
 <212> PRT
 <213> Human
 <223> Amino acids 383-406 of SEQ ID NO: 3
 Asn Ile Gly Asp Ile Asn Gln Asp Gly Tyr Pro Asp Ile Ala Val Gly
                                      10
  1
 Ala Pro Tyr Asp Asp Leu Gly Lys
              20
 <210> 18
 <211> 18
 <212> PRT
 <213> Human
 <223> Amino acids 427-444 of SEQ ID NO: 3
  Gly Ile Ser Pro Tyr Phe Gly Tyr Ser Ile Ala Gly Asn Met Asp Leu
  <400> 18
                                       10
                    5
  1
  Asp Arg
```

```
<210> 19
<211> 19
<212> PRT
<213> Human
<223> Amino acids 445-463 of SEQ ID NO: 3
<400> 19
Asn Ser Tyr Pro Asp Val Ala Val Gly Ser Leu Ser Asp Ser Val Thr
                                  10
1 5
Ile Phe Arg
<210> 20
<211> 9
<212> PRT
<213> Human
<223> Amino acids 464-472 of SEQ ID NO: 3
<400> 20
Ser Arg Pro Val Ile Asn Ile Gln Lys
                5
<210> 21
<211> 18
<212> PRT
<213> Human
<223> Amino acids 577-594 of SEQ ID NO: 3
Leu Arg Pro Ile Pro Ile Thr Ala Ser Val Glu Ile Gln Glu Pro Ser
           5
                                  10
Ser Arg
<210> 22
<211> 17
<212> PRT
<213> Human
<223> Amino acids 597-613 of SEQ ID NO: 3
<400> 22
Val Asn Ser Leu Pro Glu Val Leu Pro Ile Leu Asn Ser Asp Glu Pro
       5
                                   10
Lys
```

```
<210> 23
 <211> 10
 <212> PRT
 <213> Human
<223> Amino acids 614-623 of SEQ ID NO: 3
 <400> 23
 Thr Ala His Ile Asp Val His Phe Leu Lys
                  5
 <210> 24
 <211> 8
 <212> PRT
 <213> Human
 <223> Amino acids 652-659 of SEQ ID NO: 3
 <400> 24
 Phe Ser Tyr Leu Pro Ile Gln Lys
 <210> 25
 <211> 16
 <212> PRT
 <213> Human
 <223> Amino acids 671-686 of SEQ ID NO: 3
 <400> 25
 Asp Ile Ala Leu Glu Ile Thr Val Thr Asn Ser Pro Ser Asn Pro Arg
 <210> 26
 <211> 14
 <212> PRT
 <213> Human
 <223> Amino acids 822-835 of SEQ ID NO: 3
 <400> 26
 Ser Glu Asp Glu Val Gly Ser Leu Ile Glu Tyr Glu Phe Arg
 <210> 27
 <211> 15
 <212> PRT
 <213> Human
 <223> Amino acids 871-885 of SEQ ID NO: 3
 <400> 27
 Val Glu Ser Lys Gly Leu Glu Lys Val Thr Cys Glu Pro Gln Lys
                   5
                                       10
```

```
<210> 28
<211> 13
<212> PRT
<213> Human
<223> Amino acids 902-914 of SEQ ID NO: 3
<400> 28
Arg Glu Ile Thr Glu Lys Gln Ile Asp Asp Asn Arg Lys
<210> 29
<211> 7
<212> PRT
<213> Human
<223> Amino acids 915-921 of SEQ ID NO: 3
<400> 29
Phe Ser Leu Phe Ala Glu Arg
<210> 30
<211> 16
<212> PRT
<213> Human
<223> Amino acids 923-938 of SEQ ID NO: 3
<400> 30
Tyr Gln Thr Leu Asn Cys Ser Val Asn Val Asn Cys Val Asn Ile Arg
                                     10
<210> 31
<211> 9
<212> PRT
<213> Human
<223> Amino acids 968-976 of SEQ ID NO: 3
<400> 31
Leu Asn Tyr Leu Asp Ile Leu Met Arg
<210> 32
<211> 13
<212> PRT
<213> Human
<223> Amino acids 977-989 of SEQ ID NO: 3
<400> 32
Ala Phe Ile Asp Val Thr Ala Ala Ala Glu Asn Ile Arg
                 5
                                      10
```



```
<210> 33
<211> 9
<212> PRT
<213> Human
<223> Amino acids 990-998 of SEQ ID NO: 3
<400> 33
Leu Pro Asn Ala Gly Thr Gln Val Arg
<210> 34
<211> 12
<212> PRT
<213> Human
<223> Amino acids 178-189 of SEQ ID NO: 4
<400> 34
Val Ser Val Pro Gln Thr Asp Met Arg Pro Glu Lys
                  5
<210> 35
 <211> 13
 <212> PRT
 <213> Human
 <223> Amino acids 192-204 of SEQ ID NO: 4
 <400> 35
 Glu Pro Trp Pro Asn Ser Asp Pro Pro Phe Ser Phe Lys
 <210> 36
 <211> 13
 <212> PRT
 <213> Human
 <223> Amino acids 205-217 of SEQ ID NO: 4
 <400> 36
 Asn Val Ile Ser Leu Thr Glu Asp Val Asp Glu Phe Arg
                  5
 <210> 37
 <211> 12
 <212> PRT
 <213> Human
 <223> Amino acids 301-312 of SEQ ID NO: 4
  <400> 37
  Thr Gln Asp Tyr Pro Ser Val Pro Thr Leu Val Arg
                   5
```

```
<210> 38
 <211> 12
 <212> PRT
 <213> Human
 <223> Amino acids 402-413 of SEQ ID NO: 4
 <400> 38
 Arg Gly Glu Val Gly Ile Tyr Gln Val Gln Leu Arg
 <210> 39
<211> 18
 <212> PRT
 <213> Human
 <223> Amino acids 414-431 of SEQ ID NO: 4
 <400> 39
 Ala Leu Glu His Val Asp Gly Thr His Val Cys Gln Leu Pro Glu Asp
 Gln Lys
 <210> 40
 <211> 14
 <212> PRT
 <213> Human
 <223> Amino acids 432-445 of SEQ ID NO: 4
 Gly Asn Ile His Leu Lys Pro Ser Phe Ser Asp Gly Leu Lys
                  5
 <210> 41
 <211> 16
 <212> PRT
 <213> Human
 <223> Amino acids 446-461 of SEQ ID NO: 4
 Met Asp Ala Gly Ile Ile Cys Asp Val Cys Thr Cys Glu Leu Gln Lys
                                       10
                   5
 <210> 42
 <211> 15
 <212> PRT
 <213> Human
 <223> Amino acids 531-545 of SEQ ID NO: 4
 <400> 42
 Tyr Glu Gly Gln Phe Cys Glu Tyr Asp Asn Phe Gln Cys Pro Arg
```

Q

10

5


```
<210> 43
<211> 16
<212> PRT
<213> Human
<223> Amino acids 631-646 of SEQ ID NO: 4
Ser Cys Val Gln Cys Gln Ala Trp Gly Thr Gly Glu Lys Lys Gly Arg
                                    10
                 5
 1
<210> 44
<211> 28
<212> PRT
<213> Human
<223> Amino acids 675-702 of SEQ ID NO: 4
Asp Glu Asp Asp Asp Cys Thr Tyr Ser Tyr Thr Met Glu Gly Asp Gly
                                    10
Ala Pro Gly Pro Asn Ser Thr Val Leu Val His Lys
             20
 <210> 45
 <211> 12
 <212> PRT
 <213> Human
 <223> Amino acids 845-856 of SEQ ID NO: 4
 <400> 45
 Gln Glu Val Glu Glu Asn Leu Asn Glu Val Tyr Arg
                   5
  1
 <210> 46
 <211> 15
 <212> PRT
 <213> Human
 <223> Amino acids 916-930 of SEQ ID NO: 4
  Val Ala Pro Gly Tyr Tyr Thr Leu Thr Ala Asp Gln Asp Ala Arg
  <400> 46
                                     10
                  5
  1
```

```
<210> 47
 <211> 13
 <212> PRT
 <213> Human
 <223> Amino acids 946-958 of SEQ ID NO: 4
 <400> 47
 Val Pro Leu Phe Ile Arg Pro Glu Asp Asp Glu Lys
                 5
<210> 48
 <211> 14
 <212> PRT
 <213> Human
 <223> Amino acids 990-1003 of SEQ ID NO: 4
 <400> 48
 Asp Val Val Ser Phe Glu Gln Pro Glu Phe Ser Val Ser Arg
<210> 49
<211> 12
 <212> PRT
 <213> Human
 <223> Amino acids 1061-1072 of SEQ ID NO: 4
 <400> 49
Leu Leu Glu Leu Gln Glu Val Asp Ser Leu Leu Arg
 <210> 50
 <211> 19
 <212> PRT
 <213> Human
 <223> Amino acids 1196-1214 of SEQ ID NO: 4
 <400> 50
 Val Cys Ala Tyr Gly Ala Gln Gly Glu Gly Pro Tyr Ser Ser Leu Val
                                      10
 Ser Cys Arg
 <210> 51
 <211> 9
 <212> PRT
<213> Human
 <223> Amino acids 1273-1281 of SEQ ID NO: 4
```

Val Leu Val Asp Asn Pro Lys Asn Arg

1

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 3 May 2001 (03.05.2001)

PCT

(10) International Publication Number WO 01/30854 A3

(51) International Patent Classification⁷: C0' 16/14, G01N 33/574, A61K 39/00

C07K 16/30.

(21) International Application Number: PCT/SE00/02082

(22) International Filing Date: 26 October 2000 (26.10.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

9903895-2

28 October 1999 (28.10.1999) SE

(71) Applicant (for all designated States except US): ACTIVE BIOTECH AB [SE/SE]; Box 724, S-220 07 Lund (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODIN, Thomas, N. [SE/SE]; Lidängsgatan 10, S-252 71 Råå (SE). KARL-STRÖM, Pia, J. [SE/SE]; Fjelievägen 10A, S-227 36 Lund (SE). OHLSSON, Lennart, G. [SE/SE]; Rudeboksvägen 898, S-226 55 Lund (SE). TORDSSON, M., Jesper [SE/SE]; Flöjtvägen 20B, S-224 68 Lund (SE). KEARNEY, Phillip, P. [AU/SE]; Kulgränden 15C, S-226 49 Lund (SE). NILSON, Bo, H., K. [SE/SE]; Sölvegatan 11, S-223 62 Lund (SE).

(74) Agent: AWAPATENT AB; Box 5117, S-200 71 Malmö (SE).

(81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, Fl, Fl (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KR (utility model), KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH. GM. KE, LS. MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

-- with international search report

(88) Date of publication of the international search report: 6 December 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANTIBODY TO HUMAN GASTROINTESTINAL EPITHELIAL TUMOR ANTIGEN RELATED TO ALPHA 6 BETA 4 INTEGRIN

(57) Abstract: An antibody, or a derivate or a fragment thereof, having a binding structure for a target structure is described. The antibody is displayed in, and on the cell surface of, human gastrointestinal epithelial tumour cells and in a subpopulation of normal human gastrointestinal epithelial cells. Said binding structure comprises the complementarity determining region (CDR) sequences in the light chain comprising essentially the amino acids number 23-33 (CDR1), 49-55 (CDR2), 88-98 (CDR3) of the amino acid sequence shown in SEQ ID NO:2, and the CDR sequences in the heavy chain comprising essentially the amino acids number 158-162 (CDR1), 177-193 (CDR2), 226-238 (CDR3) of the amino acid sequence shown in SEQ ID NO:2, or other binding structures with similar unique binding properties. There is also described a target structure displayed in, or on the surface of tumour cells, vaccine compositions, pharmaceutical compositions as well as methods related to human malignant diseases.