Solving Simultaneous Equations

- Equation of a line:
 - Slope-intercept: y = mx + c
 - Implicit Equation: Ax + By + C = 0
 - Parametric: Line defined by two points, $P_{\it 0}$ and $P_{\it 1}$

$$P(t) = P_0 + (P_1 - P_0)t$$

$$\bullet x(t) = x_0 + (x_1 - x_0)t$$

$$y(t) = x_0 + (y_1 - y_0)t$$

At $t = 0 \rightarrow P_{(t)} = P_0$, at $t = 1 \rightarrow P_{(t)} = P_1$ and if t is known $P_{(t)} \rightarrow (x_{(t)}, y_{(t)})$

Parametric Lines and Intersections

Position of a point:

 $(P_{(t)} - P_E).N > 0$ means point $P_{(t)}$ is outside

 $(P_{(t)} - P_E).N < 0$ means point $P_{(t)}$ is inside

 $(P_{(t)} - P_E).N = 0$ means point $P_{(t)}$ on the edge ψ

Line Entering or Leaving:

 $(P_1 - P_0).N > 0$ means intersecting line is leaving

 $(P_1 - P_0).N < 0$ means intersecting line is Entering

 $(P_1 - P_0).N = 0$ line is parallel to the edge

- Introduced by Cyrud and Beck in 1978
- Efficiently improved by Liang and Barsky
- Essentially find the parameter t from $P(t) = P_0 + (P_1 P_0)t$
- The conditions
 - (1)Position of a point on the line and
 - (2)Line Entering or Leaving,
- shown in the previous slide are properly utilized in Cyrus-Beak Line Clipping Algorithm.

Intersection:

Line equation: $P_{(t)} = P_0 + t(P_1 - P_0) \dots (1)$

When P(t) intersects boundary

$$(P_{(t)} - P_E) \bullet N = 0 \dots (2)$$

Substitute line in Eq.(2):

$$(P_0 + t(P_1 - P_0) - P_E) \bullet N = 0$$

$$\to (P_0 - P_E) \bullet N + t(P_1 - P_0)) \bullet N = 0$$

[Since $(P_0 - P_E)$ and $(P_1 - P_0)$ are vectors, the above eq. can be written]

Solving for *t*:

$$\rightarrow t = -\frac{(P_0 - P_E) \cdot N}{(P_1 - P_0) \cdot N}$$

$$t = -\frac{(P_0 - P_E) \cdot N}{(P_1 - P_0) \cdot N}$$

- \triangleright The value of t is N dependent,
- For the same line the equation for *t* is different for different edges/boundaries.
- ➤ A list of *t* for all edges are given in the next slide

List of t for all Edges

Edge	Normal	P_E	$(P_0 - P_E).N$	$t = -\frac{N \cdot (P_0 - P_E)}{N \cdot (P_1 - P_0)}$
Left x=Xmin	(-1, 0)	(Xmin, y)	$-(x_0 - X_{min})$	$\frac{(X_{min}-x_0)}{(x_1-x_0)}$
Right x=Xmax	(1, 0)	(Xmax, y)	$(x_0 - X_{max})$	$\frac{(X_{max}-x_0)}{(x_1-x_0)}$
Bottom y=Ymin	(0, -1)	(x, Ymin)	$-(y_0 - Y_{min})$	$\frac{(Y_{min}-y_0)}{(y_1-y_0)}$
Top y=Ymax	(0, 1)	(x, Ymax)	$(y_0 - Y_{max})$	$\frac{(Y_{max} - y_0)}{y_1 - y_0}$

- > Formally, intersections can be classified as
 - $ightharpoonup P_{Ent}$ (potentially entering) if $(P_1 P_0).N < 0$ and
 - $ightharpoonup P_{Leav}$ (potentially leaving) if if $(P_1 P_0).N > 0$.
- > Similarly,
 - $> t = t_E$ (potentially entering) if $(P_1 P_0).N < 0$ and
 - $> t = t_L$ (potentially leaving) if if $(P_1 P_0).N > 0$.
- \triangleright Determine t_E or t_L for all intersections
- Select the line segment that has maximum $t_E(t_{Emax})$ and minimum $t_L(t_{Lmin})$
- ightharpoonup If $t_{Emax} > t_{Lmin}$, then trivially rejected

Algorithm

- Initialize t_{Emax} as 0.0 and t_{Lmin} as 1.0
- Compute t for line intersection with all edges;
- \triangleright Discard all (t < 0) and (t > 1);
- Classify t for each remaining intersection as
 - \triangleright Potentially Entering Line (t_E)
 - Potentially Leaving Line (t₁)
 - \triangleright Find the maximum of t_{Emax} and minimum of t_{Lmin}
- \rightarrow IF($t_{Emax} > t_{Lmin}$):
- Line is outside the window (Rejected)
- Else:
- \triangleright The line is from $P_{(tE)}$ to $P_{(tL)}$

Programming:

```
t_{Emax}, t_{Imin} = 1, 0
for (i edges of clipping window):
    solve N_i \cdot (P_1 - P_0)
    solve N_i \cdot (P_0 - P_i)
    if (N_i \cdot (P_1 - P_0)) == 0: #parallel to the edge
         go to next edge
    else:
        solve t_i
             if(N_i \cdot (P_1 - P_0) > 0): #leaving t_I
                  if(ti < t_{I_{min}}):
                          t_{I,min} = t_i
             else: #entering t<sub>F</sub>
                  if(ti > t_{Fmax}):
                           t_{Emax} = t_i
```

Output: if $(t_{Emax} > t_{Lmin})$: # outside the window return nil; else: return $P_0 = P(t_{Emax})$ and $P_1 = P(t_{Lmin})$ as the true clip intersections or new endpoints afterclipping;

Example:

Determine the coordinate of the end-points after clipping.

