Autómatas Finitos

Problemas

Ejercicio 8 – Parte 1

• Números naturales: N={0, 1, 2,}

Ejercicio 8 – Parte 1

• Números naturales y enteros Z={....-2, -1, 0, +1, +2 ...}

Ejercicio 8 – Parte 1

Ejercicio 8 — Parte 1 • Números decimales representados en notación decimal

Ejercicio 8 – Parte 1

 Números decimales representados en notación científica (potencia de 10, distinta de 0)

Ejercicio 7 – Parte 2

 Comprobar si son equivalentes, obteniendo en mínimo para cada uno (y viendo si son ISOMORFOS)

• Q/E0 = {{q4,q8}}, {q1,q2,q3,q5,q6,q7}} = C1, C2 OJO, Q8 es inaccesible y habría que quitarlo. Aparece tachado en la solución.

		0	1
/Sq1		q2	q5
q2		q2	q3
q3		q4	q5
*q4)	q2	q3
q5		q6	q5
q6		q6	q7
97		q4 q6	q5
*q8		q6	q7

- Q/E0 = {C1={q4,q8}, C2={q1,q2,q3,q5,q6,q7}} OJO, Q8 es inaccesible y
 habría que quitarlo. Aparece tachado en la solución.
- Q/E1={C1= $\{q4,q8\}$, C2= $\{q1,q2,q5,q6\}$, C3= $\{q3,q7\}$ }

			Q/E1	
	0	1	0	1
->q1	q2	q5	C2	C2
q2	q2	q3	C2	C2
q3	q4	q5	C1	C2
*q4	q2	q3	C2	C2
q5	q6	q5	C2	C2
q6	q6	q7	C2	C2
q7	q4	q5	c1	C2
*q8	q6	q7	C2	C2

- Q/E0 = {C1={q4,q8}, C2={q1,q2,q3,q5,q6,q7}} OJO, Q8 es inaccesible y habría que quitarlo. Aparece tachado en la solución.
- Q/E1={C1= $\{q4,q8\}$, C2= $\{q1,q2,q5,q6\}$, C3= $\{q3,q7\}$ }
- Q/E2 = {C1={q4,q8},C2= {q1,q5}, C3={q2,q6}, C4={q3,q7}

			Q/	Q/E1		E2
	0	1	0	1	0	1
->q1	q2	q5	C2	C2	C2	C2
q2	q2	q3	C2	C2	C2	C3
q3	q4	q5	C1	C2	c1	C2
*q4	q2	q3	C2	C2	C2	C3
q5	q6	q5	C2	C2	C2	C2
q6	q6	q7	C2	C2	C2	C3
q7	q4	q5	c1	C2	c1	C2
*q8	q6	q7	C2	C2	C2	C3

- Q/E0 = {C1={q4,q8}, C2={q1,q2,q3,q5,q6,q7}} OJO, Q8 es inaccesible y
 habría que quitarlo. Aparece tachado en la solución.
- Q/E1={C1= $\{q4,q8\}$, C2= $\{q1,q2,q5,q6\}$, C3= $\{q3,q7\}$ }
- Q/E2 = {C1={q4,q8},C2= {q1,q5}, C3={q2,q6}, C4={q3,q7}
- **Q/E3 = Q/E2 = Q/E** = {C1={q4,q8},C2= {q1,q5}, C3={q2,q6}, C4={q3,q7}

			Q/E1		Q/E2		Q/E3	
	0	1	0	1	0	1	0	1
->q1	q2	q5	C2	C2	C2	C2	C3	C2
q2	q2	q3	C2	C2	C2	C3	C3	C4
q3	q4	q5	C1	C2	c1	C2	c1	C2
*q4	q2	q3	C2	C2	C2	C3	C3	C4
q5	q6	q5	C2	C2	C2	C2	C3	C2
q6	q6	q7	C2	C2	C2	C3	C3	C4
q7	q4	q5	c1	C2	c1	C2	c1	C2
*q8	q6	q7	C2	C2	C2	C3	C3	C4

Ejercicio 7 – Parte 2

Los mínimos equivalentes son isomorfos:

Ejercicio 3 – Parte 2

Para cada afirmación indique si es verdadera o falsa, para todas ellas especifique la justificación.

- a) Las sentencias reconocidas por un Autómata Finito Determinista no podrán ser de una longitud superior a una dada.
- b) Las transiciones necesarias para que una sentencia sea reconocida por un Autómata pueden ser infinitas.
- c) Un Autómata Finito Determinista puede reconocer la palabra vacía.
- d) Un AFD sólo puede reconocer un número limitado de sentencias.
- e) Sea n el número de estados del autómata (|Q|=n). Un Autómata Finito donde |Q|=n sólo reconocerá palabras de longitud menor o igual que n, i.e. x Σ^* , /x/ $\leq n$.

Ejercicio 3 – Parte 2

Para cada afirmación indique si es verdadera o falsa, para todas ellas especifique la justificación.

- f) Puede suceder que todos los estados de un autómata finito sean finales
- g) Si en el proceso de cálculo del conjunto cociente de un AFD de 5 estados hemos obtenido Q/E3, podemos afirmar que Q/E3= Q/E
- h) Los Autómatas AFD1 y AFD2 son equivalentes entre sí.
- i) El lenguaje que reconocería un AFD (con todos sus estados conexos) si todos sus estados, excepto el inicial, fuesen finales es Σ +
- j) El lenguaje que reconocería un AFD (con todos sus estados conexos) si todos sus estados, incluido el inicial, fuesen finales Σ^*

Ejercicio 4 - Parte 3

Indica el grafo de un Autómata Finito No Determinista, con sólo el número de estados indicados que reconozca cada uno de los siguientes lenguajes. El alfabeto es siempre {0,1}.

- El lenguaje {0} con sólo 2 estados.
- Lenguaje de cadenas acabadas en 01 con sólo 3 estados.
- El lenguaje 0^m1ⁿ0^p (m ≥ 0,n ≥ 0, p ≥1) *con sólo tres estados*.

Ejercicio 4. • El lenguaje de cadenas acabadas en 01 <u>con 3 estados</u> AFND AFD

Ejercicio 4.

• El lenguaje $0^m 1^n 0^p$ ($m \ge 0, n \ge 0, p \ge 1$) <u>con sólo tres estados</u>.

Ejercicio 5 - Parte 3

Dado el siguiente autómata finito, marque las afirmaciones que considere correctas

- a) Q/E0 estaría formado por las clases de equivalencia C1={P, a, b, c, d} y C2={Q5}
- b) Q/E1 estaría formado por clases de equivalencia C1={P, a, b, c} y C2={d, Q5}. Sería C1={P, a, b, c} , C2={Q5} y C3 = {d}
- c) Q/E3 estaría formado por clases de equivalencia C1={P, c, d}, C2={d, Q5}, C3={a.b}
- d) Q/E4 estaría formado por las clases de equivalencia indicadas en c.
- e) Es necesario calcular Q/E0, Q/E1, Q/E2, Q/E3 y Q/E4 para determinar si las anteriores son verdaderas o falsas

Dado el lenguaje (01)ⁿ con n≥0, marque el autómata que reconoce el lenguaje indicado. Además, obtenga el AFD mínimo equivalente del autómata seleccionado.

- a) AF=[$\{0,1\}$, $\{A,B,C,F\}$, f, A, $\{F\}$] f(A,0)=B, f(A, λ)= λ , f(C,0)=B, f(B,1)=C, f(B,1)= λ
- b) $AF=[\{0,1\}, \{A,B,C,F\}, f, A, \{F\}]]$ $f(A,0)=B, f(A,\lambda)=F, f(C,0)=B, f(B,1)=C, f(B,1)=F$
- c) AF=[$\{0,1\}$, $\{A,B,C,F\}$, f, A, $\{F\}$] f(A, B)=0, f(A,F)= λ , f(C,B)=0, f(B,C)=1, f(B,F)=1
- d) $AF=[\{0,1\}, \{A,B,C,F\}, f, A, \{F\}]]$ $f(B,0)=A, f(F,\lambda)=A, f(B,0)=C, f(C,1)=B, f(F,1)=B$

Ejercicio 6 - Parte 3

b) $AF=[\{0,1\}, \{A,B,C,F\}, f, A, \{F\}]]$ $f(A,0)=B, f(A,\lambda)=F, f(C,0)=B, f(B,1)=C, f(B,1)=F$

	0	1	λ
\rightarrow A	В		F
В		C, F	
С	В		
* F			

b) AF=[$\{0,1\}$, $\{A,B,C,F\}$, f, A, $\{F\}$] f(A,0)=B, $f(A,\lambda)=F$, f(C,0)=B, f(B,1)=C, f(B,1)=F

	0	1	λ
\rightarrow A	В		F
В		C, F	
C	В		
* F			

$$T *= \begin{pmatrix} (A,A) & (A,F) \\ (B,B) & \\ (C,C) & \\ (F,F) & \end{pmatrix}$$

Ejercicio 6 - Parte 3

b) AF=[$\{0,1\}$, $\{A,B,C,F\}$, f, A, $\{F\}$] $f(A,0)=B, \ f(A,\lambda)=F, \ f(C,0)=B, \ f(B,1)=C, \ f(B,1)=F$

	0	1	λ	λ*	λ*0λ*	λ*1λ*
\rightarrow A	В		F	$\{A,F\}$	{B}	
В		C, F		{B}		{C,F}
C	В			{C}	{B}	
* F				{F}		

$$T *= \begin{pmatrix} (A,A) & (A,F) \\ (B,B) & \\ (C,C) & \\ (F,F) & \end{pmatrix}$$

	0	1	λ	λ*	λ*0λ*	λ*1λ*
\rightarrow A	В		F	$\{A,F\}$	{B}	
В		C, F		{B}		{C,F}
C	В			{C}	{B}	
* F				{F}		

	0	1
$\rightarrow \{A,F\}^*=q0$	{B}	Ø
{B}=q1	Ø	{C, F}
$\emptyset = q2$	Ø	Ø
* {C, F}=q3	{B}	Ø

Ejercicio 6 - Parte 3

• AFD=[$\{0,1\}$, $\{q0,q1,q2,q3\}$, f', q0, $\{q0,q3\}$], con f':

• Q/E0={q0,q3}; {q1,q2}={C1,C2}

	0	1	0	1
$\rightarrow \{A,F\}*=q0$	q1	q2	C2	C2
{ B }=q1	q2	q3	C2	C 1
Ø=q2	q2	q2	C2	C2
* {C, F}=q3	q1	q2	C2	C2

• Q/E1={q0,q3}; {q1};{q2}={C1,C2, C3}

Ejercicio 6 - Parte 3

• Q/E1={q0,q3}; {q1};{q2}={C1,C2, C3}

	0	1	0	1
$\rightarrow \{A,F\} *=q0$	q1	q2	C2	C3
{ B }=q1	q2	q3	C3	C1
Ø=q2	q2	q2	C3	C3
* {C, F}=q3	q1	q2	C2	C3

Q/E2={q0,q3}; {q1};{q2}={C1,C2, C3}
 Q/E2=Q/E1=Q/E0

• AFDmin=[{0,1}, {C1,C2,C3}, f", C1, {C1}], con f":

Ejercicio 7 (I) - Parte 3

Marque las afirmaciones verdaderas. Justifique la respuesta.

- a. Dado un AFND siempre es posible encontrar un AFD que reconozca el mismo lenguaje.
- b. Dos AFD's son equivalentes si sus AF mínimos respectivos son isomorfos.
- c. Todo autómata finito no determinista puede ser transformado en un autómata finito determinista equivalente.
- d. Si un autómata finito no presenta transiciones lambda entonces es determinista.
- e. Un autómata finito, si con distintos símbolos realiza una transición entre dos estados q0 y q1, entonces el autómata es no determinista.
- f. Si en el proceso de cálculo del conjunto cociente de un AFD de 5 estados hemos obtenido Q/E3, podemos afirmar que Q/E3= Q/E.
- g. Los autómatas finitos no deterministas necesariamente realizan transiciones entre estados mediante λ .
- Los autómatas finitos no deterministas no pueden aceptar ninguna palabra, por tanto sólo aceptan el lenguaje vacío.

Ejercicio 7 (II) - Parte 3

Marque las afirmaciones verdaderas. Justifique la respuesta.

- i. f(p,111) = s y f(p,110) = s indican que el autómata finito es no determinista.
- j. f(p,110) = s y f(p,110) = q indican que el autómata finito es no determinista.
- k. Un AFD es conexo si todos los estados son accesibles desde el estado inicial.
- I. Un AFD es conexo si todos los estados son accesibles entre sí.
- m. Dos AFD no conexos que reconocen el mismo lenguaje lo siguen haciendo si eliminamos los estados inaccesibles.
- n. Un AFD no conexo no puede reconocer ningún lenguaje.
- o. Dos AFDs que no son equivalentes pueden ser isomorfos.
- p. Si dos AFDs son isomorfos reconocen el mismo lenguaje.
- q. Si dos AFDs son equivalentes tienen que ser isomorfos.
- r. Dos AFDs son equivalentes si al hacer su suma directa los estados finales están en la misma clase de equivalencia.