1001011101111000001

0011011000111111010100

第六章 传输层

UDP

20100110100010ZO 1011110001110

User Datagram Protocol (6.4)P417

- □ UDP 是一个无连接的(connectionless)的传输层协议
- □ UDP传输数据段,无须建立连接
- □ UDP 在 RFC 768中描述
- □ 很多C/S应用(如: DNS),都使用UDP发送一个请求, 然后 对方应答

为什么需要 UDP

UDP数据段头

- □ UDP 数据段包括8字节(8-Byte)的头部和数据两个部分
- □ 其中的长度域表示的长度包括头部和数据总共的长度
- □ 校验和(checksum)是可选的,如果不计算校验和,则该域 置为 0
- □ UDP比IP好的地方在于它可以使用源端口和目的端口

端口(port)定义

□ 16位, 共有 2¹⁶ 个端口

▶端口范围: 0~65535

<1023	用于公共应用(保留,全局分配,
	用于标准服务器), IANA分配
1024~49151	用户端口,注册端口
>49152	动态端口,私人端口

RFC 6335

端口(port)定义

- □ 自由端口(Free port)
 - ▶本地分配
 - ▶动态的随机端口

UDP 保留端口

UDP 校验和

校验和

10011001 00010011 00001000 01101000 1<mark>0101011 00000011</mark> 0<mark>0001110 00001011</mark> 00000000 00010001 0<mark>0000000 00001111</mark> 0<mark>0000100 00111111</mark> 0<mark>0000000 00001101</mark> 00000000 00001111 00000000 00000000 0<mark>1010100 01000101</mark> <mark>0</mark>1010011 01010100 <mark>0</mark>1001001 01001110 01000111 00000000 数据和填充0

153.19 8.104 171.3 14.11 0和17 15 1087 13 15 校验和 数据 数据 数据

按二进制反码求和 将得出的结果求反:

0010110 11101011 01101001 00010100 求和得出的结果 校验和

TCP/UDP伪头部(pseudo header)

注意

- □ 如果收方的校验和为全1, 传输无错
- □ 二进制反码求和
 - > 从低位到高位逐列计算
 - ▶0和0相加是0,0和1相加是1,1和1相加是0,但产生进位
 - ▶最高位相加产生进位,该位为1
- □ 检错能力较弱,但简单快速
- □ 使用协议地址,破坏了分层原则

小结: UDP

提供端点标识, 端到端的数据传输

不提供差错检测和可靠传输,但简洁高效

例

F <u>i</u> lter:	udp		▼ Expression Clear	App <u>l</u> y		
No	Time	Source	Destination	Protocol	Info	
	81 40.334302	111.161.88.30	192.168.1.102	OICQ	OICQ Protocol	
	82 40.558564	111.161.88.30	192.168.1.102	OICQ	OICQ Protocol	
	83 41.027405	192.168.1.102	211.66.86.115	SNMP	get-request 1.	
	84 44.189050	111.161.88.30	192.168.1.102	OICQ	OICQ Protocol	
	85 48.600584	192.168.1.102 202.38.193.33	202.38.193.33	DNS	Standard query	
1	86 48.604147		192.168.1.102	DNS	Standard query	
1	. _{O5} ⊕ Frame 85	(89 bytes on wire, 89				
- 1	0.7	II, Src: 6c:71:d9:6f	-			
1	08 ⊞ Internet	Protocol, Src: 192.1	58.1.102 (192.168.1	L.102), D	st: 202.38.193.3	
1	09 ⊟ User Data	gram Protocol, Src Po	ort: 65476 (65476)	, Dst Por	t: domain (53)	
	10 11 Source	port: 65476 (65476)				
		•	3			
	13 DC3 + Fra	ame 107 (81 bytes on wir				
		nernet II, Src: 6c:71:d9	:6f:33:3e (6c:71:d9:6	f:33:3e),	Dst: 9c:21:6a:63:a4	4:72 (9c:21:
1		ernet Protocol, Src: 19				111.161.88.
	- Domai - Use	er Datagram Protocol, Sr	c Port: terabase (400	0), Dst Po	ort: irdmi (8000)	
		Source port: terabase (4				
	IRE	Destination port: irdmi	-			
		ength: 47	(0000)			
	1_	:ength. 47 :hecksum: Oxa9a9 [valida	tion disabled			
		Q - IM software, popula				
		lag: Oicq packet (0x02)				
		rag: orcq packet (0x02) /ersion: 0x350b				
			(20)			
		Command: Get friend onli	ne (39)			
	9	Sequence: 19822				

小结

- □ UDP是传输层的一个轻量级协议,提供高效的端到端的数据段传输。
- □ UDP数据段包括头部和载荷两部分,头部有8 个字节, 共4个字段。
- □ UDP不提供数据传输的可靠保证。

思考题

- □ 为什么需要UDP?
- □ UDP的段格式是怎样的?
- □ UDP提供的服务是可靠的吗?
- □ UDP提供的服务可以用什么样的词来描述?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!