	uiz 9: Comunicação coletiva em MPI	
	nail do participante (daniel.salis@unifesp.br) foi registrado durante o envio deste ulário.	2
✓	Indique entre as alternativas abaixo uma possível desvantagem de usa a comunicação coletiva. *	r10/10
0	A comunicação coletiva pode dificultar a coordenação de mensagens entre um grande número de processos, podendo causar deadlocks.	
0	A comunicação coletiva é incompatível com a comunicação ponto a ponto.	
•	Chamadas de comunicação coletiva podem resultar em sobrecarga de sincronização.	✓
~	Indique entre as alternativas abaixo qual chamada deve ser usada quando uma sincronização simples através de um comunicador for necessária. *	10/10
0	MPI_REDUCE	
•	MPI_BARRIER	✓
	MPI_BROADCAST	
0	WIFI_DRUADCAS I	

!

✓	Algumas rotinas de comunicação coletiva, como o SCATTER, possuem duas formas de implementação. Pesquise o funcionamento da versão com 'V' e responda: em uma chamada para MPI_SCATTERV, é necessário que todos os dados a serem enviados sejam contíguos no buffer de envio? *	10/10
0	Não, várias seções de dados podem ser enviadas em qualquer mensagem	
•	Não, mas as mensagens individuais devem ser compostas de seções contígua do buffer de envio	s 🗸
0	Sim, o buffer de envio deve ser organizado de forma que todos os dados enviados sejam contíguos antes da chamada para MPI_SCATTERV	dos
✓	Qual das operações abaixo pode ser considerada o inverso da operação SCATTER? *	10/10
•	MPI_GATHER	✓
0	MPI_RECV	
0	MPI_BROADCAST	
0	MPI_REDUCE	

As rotinas de comunicação coletiva costumam ser mais eficientes 10/10 porque elas próprias implementam algoritmos eficientes para a distribuição das mensagens. O esquema abaixo apresenta implementação da rotina BROADCAST usando um algoritmo em "árvore". Responda: considerando um comunicador com 512 processos com uma mensagem relativamente pequena, quantos passos serão necessárias nesse algoritmo (conforme o exemplo abaixo) para transferir a mensagem para todos os processos? *

Solid line: data transfer

Dotted line: carry-over from previous transfer

Amount of data transferred: (N-1)*p

N = number of processes

p = size of message

- 512

✓	Qual dos seguintes tipos de comunicação do MPI suspende a execução do programa até que a comunicação atual seja concluída?	10/10
0	Não bloqueante	
•	Bloqueante	✓
0	Assíncrono	
0	Pronto	
~	A fim de oferecer opções ao programador de ajuste entre confiabilidade e desempenho, o MPI oferece diferentes modos de envios de mensagens, considerando ou não o uso de buffer e de protocolos confiáveis. Pesquise estes modos e responda qual dos métodos a seguir seria utilizado para enviar mensagens com a menor sobrecarga possível? *	10/10
0	Modo Síncrono	
0	Modo Buffer (B - buffered)	
•	Modo Pronto (R - Ready)	✓
0	Não há diferenças entre os mencionados.	

•	/	Assinale as alternativas corretas. *	15/15
	~	A rotina MPI_Sendrecv, utiliza um buffer de sistema para enviar e outro para receber.	✓
		Em um grupo de processos MPI de tamanho N, os processos de rank mais alto recebem prioridade de recursos mais alta.	
		Uma comunicação não-bloqueante com MPI_Isend pode ser acessada imediatamente após o comando MPI_Irecv.	
	✓	Um deadlock em MPI ocorre quando vários processos são logicamente impedidos de aceitar as mensagens uns dos outros.	✓

✓ Suponha que MPI COMM WORLD consiste de três processos (0, 1 e 2) 15/15 e que o seguinte código é executado. Assinale a alternativa que contém os valores corretos de x, y e z em cada processo após a execução do código. * MPI Comm rank (MPI COMM WORLD, &my rank); **int** x, y, z; switch(my rank){ **case** 0: x=0; y=1; z=2; MPI Bcast(&x, 1, MPI INT, 0, MPI COMM WORLD); MPI Send(&y, 1, MPI INT, 2, 43, MPI COMM WORLD); MPI Bcast(&z, 1, MPI INT, 1, MPI COMM WORLD); printf("P0 - x = %d, y = %d, $z = %d\n$ ", x, y, z); break: case 1: x=3; y=4; z=5; MPI Bcast(&x, 1, MPI INT, 0, MPI COMM WORLD); MPI Bcast(&y, 1, MPI INT, 1, MPI COMM WORLD); printf("P1 - $x = %d, y = %d, z = %d\n", x, y, z$); break; case 2: x=6; y=7; z=8; MPI Bcast(&z, 1, MPI INT, 0, MPI COMM WORLD); MPI Recv(&x, 1, MPI INT, 0, 43, MPI COMM WORLD, &status); MPI Bcast(&y, 1, MPI INT, 1, MPI COMM WORLD); printf("P2 - x = %d, y = %d, $z = %d\n$ ", x, y, z); break; } P0: x=0; y=1; z=4; P1: x=0; y=2; z=5; P2: x=1; y=2; z=0; P0: x=0; y=1; z=4; P1: x=0; y=4; z=5; P2: x=1; y=4; z=0; P0: x=0; y=1; z=2; P1: x=3; y=4; z=5; P2: x=6; y=7; z=8; P0: x=0; y=4; z=2; P1: x=0; y=4; z=5; P2: x=1; y=4; z=4;

Este formulário foi criado em Universidade Federal de Sao Paulo.

Google Formulários