

DIALOG(R) File 351:Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.

012065848 **Image available**

WPI Acc No: 1998-482759/199842

XRXPX Acc No: N98-376613

Multi-colour varnishing arrangement - has flexible movable body moved against flow of varnishing medium to feed colour back into colour supply conductor, and moved towards spray-gun for rinsing

Patent Assignee: INLAC IND-LACKIERANLAGEN GMBH (INLA-N)

Inventor: ESSLINGER S; MARTIN H

Number of Countries: 024 Number of Patents: 003

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 865830	A2	19980923	EP 98104412	A	19980311	199842 B
DE 19709988	A1	19981001	DE 1009988	A	19970311	199845
DE 19709988	C2	20020124	DE 1009988	A	19970311	200209

Priority Applications (No Type Date): DE 1009988 A 19970311

Cited Patents: No-SR.Pub

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
-----------	------	--------	----------	--------------

EP 865830	A2	G	7 B05B-012/14
-----------	----	---	---------------

Designated States (Regional): AL AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI

DE 19709988	A1	B05B-012/00
-------------	----	-------------

DE 19709988	C2	B05B-012/00
-------------	----	-------------

Abstract (Basic): EP 865830 A

The arrangement includes different colours which are provided in circular arranged colour conductors and which are respectively associated with a colour. The arrangement comprises a spray-gun (10), and a colour supply conductor (8) which provides a connection between the colour conductors and the spray-gun. A shifting body (40) is provided for cleaning the colour supply conductor in direction of the flow of the varnishing medium.

A supply arrangement (20) for a flowing medium under pressure is provided at the end of the colour supply conductor facing the spray-gun. The colour located in the colour supply conductor can be fed back against the flow of the varnishing medium. The flexible shifting body can be moved against the flow of the varnishing medium for supporting the feedback of the colour in the colour supply conductor, and is moved again towards the spray-gun for a rinsing of the colour supply conductor.

ADVANTAGE - Provides more effective feedback of colour into supply conductor during cleaning of conductor.

Dwg.2/2

Title Terms: MULTI; COLOUR; VARNISH; ARRANGE; FLEXIBLE; MOVE; BODY; MOVE; FLOW; VARNISH; MEDIUM; FEED; COLOUR; BACK; COLOUR; SUPPLY; CONDUCTOR; MOVE; SPRAY; GUN; RINSE

Derwent Class: P42; X25

International Patent Class (Main): B05B-012/00; B05B-012/14

International Patent Class (Additional): B05B-005/16; B05B-007/24; B05B-015/04

File Segment: EPI; EngPI

Manual Codes (EPI/S-X): X25-K09

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

Offenlegungsschrift

⑯ DE 197 09 988 A 1

⑯ Aktenzeichen: 197 09 988.2
⑯ Anmeldetag: 11. 3. 97
⑯ Offenlegungstag: 1. 10. 98

⑯ Int. Cl. 6:
B 05 B 12/00

B 05 B 12/14
B 05 B 15/04
B 05 B 5/16
B 05 B 7/24

DE 197 09 988 A 1

⑯ Anmelder:

INLAC Industrie - Lackieranlagen GmbH, 74354
Besigheim, DE

⑯ Vertreter:

Dreiss, Fuhlendorf, Steinle & Becker, 70188
Stuttgart

⑯ Erfinder:

Esslinger, Stefan, 71711 Steinheim, DE; Martin,
Herbert, 71384 Weinstadt, DE

⑯ Entgegenhaltungen:

DE 42 23 054 A1
DE 89 11 560 U1
US 52 21 047

JP 07-1 71 451 A in Patent Abstracts of Japan
vom 11.07.95;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Lackiereinrichtung

⑯ Die Erfindung betrifft eine Einrichtung zum Lackieren von Gegenständen mit verschiedenen Farben, die in kreisförmig geführten Farbleitungen, die je einer Farbe zugeordnet sind, zur Verfügung stehen, mit einer Spritzpistole, einer Farbzuführleitung, die eine Lackiermittelverbindung zwischen der kreisförmig geführten Farbleitung und der Spritzpistole bzw. deren Düse herstellt, und gegebenenfalls einem zwischen den kreisförmig geführten Farbleitungen und der Farbzuführleitung vorgesehenen Farbwechsler, durch den jeweils eine Farbleitung mit der Farbzuführleitung verbindbar ist, mit einer (Lösemittel- und einer Luftzuführung) Spülmediumzuführung, über welche die Farbzuführleitung in Lackierflußrichtung spülbar ist, und mit einer Einrichtung zum Rückführen von Farbe aus der Farbzuführleitung in eine jeweilige Farbleitung; um die bei längeren Unterbrechungen oder bei einem Farbwechsel zu verwerfende Farbmenge zu reduzieren, ist die Einrichtung erfindungsgemäß so ausgebildet, daß im Bereich des spritzpistolenseitigen Endes der Farbzuführleitung eine Zuführeinrichtung für ein unter Überdruck stehendes strömbares Medium vorgesehen ist, mit der das Rückführen von Farbe über die Rückföhreinrichtung in die jeweilige Farbleitung unterstützt wird.

DE 197 09 988 A 1

Beschreibung

Die Erfindung betrifft eine Einrichtung zum Lackieren von Gegenständen mit verschiedenen Farben, die in kreisförmig geführten Farbleitungen, welche je einer Farbe zugeordnet sind, zur Verfügung stehen, mit einer Spritzpistole, einer Farbzuführleitung, die eine Lackiermittelverbindung zwischen der kreisförmig geführten Farbleitung und der Spritzpistole bzw. deren Düse herstellt, und ggf. einem zwischen den kreisförmig geführten Farbleitungen und der Farbzuführleitung vorgesehenen Farbwechsler, durch den jeweils eine Farbleitung mit der Farbzuführleitung verbindbar ist, mit einer Spülmediumzuführung, über welche die Farbzuführleitung in Lackierfließrichtung spülbar ist, und mit einer Einrichtung zum Rückführen von Farbe aus der Farbzuführleitung in eine jeweilige Farbleitung.

Beim Betreiben von Lackiereinrichtungen besteht seit jeher das Problem, daß einerseits verschiedene Farben zum Einsatz kommen, so daß entweder voneinander getrennte Systeme benutzt werden müssen, was jedoch aufwendig ist und daher üblicherweise nicht praktiziert wird, oder es müssen die Komponenten bei einem Farbwechsel gereinigt werden. Wenn eine Spritzpistole im letzteren Fall zum Spritzen mehrerer Farben verwendet wird, so muß das gerade in der Farbzuführleitung befindliche Farbvolumen entweder verworfen werden oder wie bei der aus der DE 44 23 643 A1 bekannten Lackiereinrichtung wenigstens teilweise in die Farbleitung zurückgeführt werden. Hierfür wird die Farbrückföhreinrichtung in Form einer Pumpe verwendet. Das gleiche Problem tritt auf, wenn zwar kein Farbwechsel durchgeführt werden soll, die Lackiereinrichtung oder eine zu einer bestimmten Farbart gehörende Spritzpistole und Farbzuführleitung längere Zeit (bereits 4–5 Stunden) nicht benutzt wurden, da hierdurch in der Farbzuführleitung bzw. in der Spritzpistole eine Entmischung bzw. Sedimentation der Farbe stattfindet, so daß dieses Farbvolumen für den Lackievorgang unbrauchbar ist. In den kreisförmig geführten Farbleitungen finden zwar während eines Stillstands der Anlage ebenfalls Sedimentations- bzw. Entmischungsvorgänge der Farbe statt; die Farbe wird jedoch durch das Zirkulieren beim Betrieb der Lackiereinrichtung wieder homogenisiert. Eine derartige Homogenisierung ist jedoch in der stichleitungsartigen Farbzuführleitung zur Spritzpistole nicht möglich.

Der vorliegenden Erfindung liegt ausgehend von der vorbekannten Lackiereinrichtung nach DE 44 23 643 A1 die Aufgabe zugrunde, die Farbrückführung von der stichleitungsartigen Farbzuführleitung zurück zu einer jeweiligen kreisförmig geführten Farbleitung noch effektiver zu gestalten.

Diese Aufgabe wird bei einer Lackiereinrichtung der genannten Art erfindungsgemäß dadurch gelöst, daß im Bereich des spritzpistolenseitigen Endes der Farbzuführleitung eine Zuföhreinrichtung für ein unter Überdruck stehendes strömbar Medium vorgesehen ist, mit der das Rückführen von Farbe über die Rückföhreinrichtung in die jeweilige Farbleitung unterstützt wird.

Es versteht sich, daß die Erfindung gleichermaßen Lackiereinrichtungen mit Handentnahmestellen, also mit handgeführten Spritzpistolen, sowie als Lackierautomaten zu bezeichnende Lackiereinrichtungen erfaßt, bei denen die Spritzpistolen automatisch gesteuert sind.

Es wird also erfindungsgemäß vorgeschlagen, die Farbrückführung durch Einleitung eines strömbar Mediums, bei dem es sich vorzugsweise um ein Gas, wie Druckluft, oder aber auch um ein flüssiges Lösungsmittel handeln kann, zu unterstützen. Das flüssige Medium wirkt dabei wie ein Stempeldruck auf die in der Zuführleitung stehende

Farbe und gewährleistet eine dreißig bis fünfzig Prozent effektivere Rückführung der Farbe. Es wurde nämlich festgestellt, daß der allein von der bekannten Farbrückföhreinrichtung in Form einer Zahnradpumpe auf die Farbzuführleitung ausgeübte Ansaugdruck mit der Entfernung von der Pumpe stark abnimmt und daß an den Wandungen der Leitung Farbe haften bleibt, die nicht zurückgeführt wird, sondern bei einem anschließenden Spülvorgang zusammen mit dem Spülmedium verworfen wird. Dadurch daß beim Rückführen von Farbe das unter Überdruck stehende strömbar Medium in Rückföhrrichtung in die Farbzuführleitung eingeleitet wird, konnten Farbrückgewinnungsraten von achtzig Prozent und darüber erreicht werden.

Da die Zuföhreinrichtung für das strömbar Medium eine T-Verbindung mit der Farbzuführleitung bildet, ergibt sich wiederum eine an sich unerwünschte Stichleitung. Es wird daher vorgeschlagen, daß die Zuföhreinrichtung ein Ventil umfaßt, welches auf seiner Farbseite im Wesentlichen totraumfrei an die Farbzuführleitung anschließt.

In weiterer Ausbildung des Erfindungsgedankens von besonderer Bedeutung und Wichtigkeit ist zum weiteren Unterstützen der Farbrückführung in der jeweiligen Farbzuführleitung ein flexibler, nachgiebig verformbarer Verdrängerkörper vorgesehen, der von dem über die Zuföhreinrichtung einströmenden Medium in der Farbzuführleitung in Rückföhrrichtung bewegbar und beim anschließenden Spülen der Farbzuführleitung wieder in Richtung zur Spritzpistole zurückbewegbar ist. Durch diese weitere erfindungsgemäße Maßnahme kann die Rückgewinnungsrate auf 95% und mehr gesteigert werden, da durch das Bewegen des nachgiebigen Verdrängerkörpers in Rückföhrrichtung die Leitungsinnenwandung quasi abgewischt wird. Der Durchmesser des Verdrängerkörpers entspricht im unverformten Zustand im Wesentlichen dem Leitungsinnendurchmesser oder ist etwas größer als dieser. Beim Zurückbewegen des Verdrängerkörpers in Richtung zur Spritzpistole wird dieser Wischvorgang nochmals wiederholt.

Während eines Lackievorgangs befindet sich der Verdrängerkörper in einer Ruhelage, vorzugsweise in einer Formausnehmung in der Farbzuführleitung im Bereich des totraumfreien Ventilanschlusses der Zuführleitung. Sobald das Ventil der Zuföhreinrichtung für das strömbar Medium geöffnet wird, wird der Verdrängerkörper aus der Formausnehmung unter der Wirkung des unter Überdruck stehenden strömbar Mediums in die lichte Querschnittsfläche der Farbzuführleitung gedrückt und in Rückföhrrichtung bewegt.

Nach einer bevorzugten Ausführungsform ist in Farbrückföhrrichtung vor der Farbrückföhreinrichtung eine Stopeinrichtung für den Verdrängerkörper vorgesehen, welche eine Art Anschlag bzw. Begrenzung für den Verdrängerkörper bildet. Die Stopeinrichtung ist in besonders einfacher und daher vorteilhafter Weise vorzugsweise von einer Querschnittsverengung in der Farbzuführleitung gebildet.

Nach einem weiteren bevorzugten Erfindungsgedanken ist im Bereich der Stopeinrichtung, insbesondere in Rückföhrrichtung vor der Stopeinrichtung ein Sensor zum Erkennen des Verdrängerkörpers vorgesehen. Dieser Sensor wirkt mit einer Steuerung der Lackieranlage zusammen. Wenn der Sensor erkennt, daß der Verdrängerkörper in seiner Endlage im Bereich der Stopeinrichtung angelangt ist, so ist der Rückföhrvorgang beendet und ein Spülvorgang der Farbzuführleitung kann eingeleitet werden.

Das Erkennen des Verdrängerkörpers ist vorzugsweise berührungslos durchführbar, was durch einen induktiv oder kapazitiv arbeitenden Sensor erreicht werden kann. Im ersten Fall umfaßt der Verdrängerkörper einen induktiv detektierbaren Signalkörper, wie z. B. einen metallischen, insbe-

sondere kugelförmigen Kern.

Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus den beigefügten Ansprüchen und der zeichnerischen Darstellung und nachfolgenden Beschreibung einer bevorzugten Ausführungsform der erfindungsge-mäßen Lackiereinrichtung. In der Zeichnung zeigt:

Fig. 1 eine schematische Darstellung einer erfindungsge-mäßen Lackiereinrichtung und mit einem Farbversorgungsraum kommunizierenden Farbleitungen;

Fig. 2 eine teilweise im Schnitt dargestellte Spritzpistole der erfindungsgemäßen Lackiereinrichtung.

Fig. 1 zeigt in schematischer Darstellung eine Einrich-tung zum Lackieren von Gegenständen mit verschiedenen Farben. Die Farben werden über kreisförmig geführte Farbleitungen 2 die von einem lediglich angedeuteten Farbver-sorgungsraum 4 ausgehen und wieder zu diesem zurückfüh-ren, zu der Lackiereinrichtung herangeführt. Die Lackie-reinrichtung umfaßt einen Farbwechsler 6, der mit jeder der Farbleitungen 2 wahlweise verbindbar ist. Vom Farbwechsler 6 ausgehend ist eine Farbzuführleitung 8 vorgesehen, welche eine Lackiermittelverbindung zwischen dem Farbwechsler 6 und einer Sprühpistole 10 bzw. einer Düse 12 der Sprühpistole 10 herstellt. Des Weiteren sind verschiedene Druckluftzuführungen vorgesehen, wobei eine Druckluftlei-tung 14 in den Farbwechsler 6 mündet und eine weitere Druckluftleitung 16 zur Spritzpistole 10 führt und die soge-nannte Spritzluft zum Verdüsen oder Verstäuben der Farbe im Sprühbetrieb der Spritzpistole 10 zuführt. Des Weiteren erstreckt sich eine Druckluftleitung 18 als Teil einer Zuführ-einrichtung 20 für ein unter Überdruck stehendes strömbares Medium (Druckluft) zu der Farbzuführleitung 8 und mündet über ein Ventil 21 in der Farbzuführleitung 8.

Im Lackierbetrieb ist eines der Absperrventile zwischen einer jeweiligen Farbleitung 2 und dem Farbwechsler 6 ge-öffnet, so daß der in der kreisförmig geführten Farbleitung herrschende Druck sich über den Farbwechsler 6 in die Zuführleitung 8 ausbreitet. Da dieser Druck zum Betreiben der Spritzpistole hinreichend ist braucht keine weitere Pumpe eingesetzt zu werden und eine in der Farbzuführleitung vor-gesehene Zahnradpumpe 22 wird über eine Bypassleitung 24 umgangen in der Farbzuführleitung 8 ist der Zahnrad-pumpe 22 in Lackierflußrichtung nachfolgend ein pneumat-isch ansteuerbarer Farbdruckregler 26 vorgesehen, der über ein elektrisch betätigtes 3/2-Wegeventil oder Proportional-ventil 28 angesteuert wird und zum Konstanthalten eines vorgebbaren auf die jeweils verwandte Farbe abgestimmten Drucks dient. Der Farbdruckregler 26 ist ferner so ausgebil-det, daß er in zwei Durchflußrichtungen durchströmbar ist.

Im Lackierbetrieb wird also Farbe unter einem vorgebba-ren Zuführdruck über die Zuführleitung 8 zur Spritzpistole 16 gefördert und dort mittels über die Druckluftleitung 16 herangeführter Pressluft durch die Düse 12 zerstäubt.

Wenn ein Farbwechsel durchgeführt werden soll oder der Lackievorgang längere Zeit unterbrochen werden soll, wird die Spritzpistole 10 in eine Pistolenhalterung 30 eingehängt. Die Pistolenhalterung 30 umfaßt einen Endschalter 32, wel-cher an eine nicht dargestellte Steuerung das Signal "Pistole in Halterung" meldet. In dieser Position ist die Spritzpistole 10 im Wirkungsbereich einer mit der Steuerung zusammen-wirkenden Abzugsvorrichtung 34. Wenn die Steuerung das Signal "Pistole in Halterung" erhält, so wird die Bypasslei-tung 24 bei der Zahnradpumpe 22 geschlossen, und die Zahnradpumpe 22 wird als Farbrückführleinrichtung 36 so angetrieben, daß sie in Richtung auf den Farbwechsler 6 fördert. Nun wird über ein Wegeventil 38 in der Druckluftlei-tung 18 Druckluft auf ein Ventil 21 gegeben. Bei dem Ventil 21 handelt es sich um ein Membranventil, das bei Anliegen eines Drucks über die Druckluftleitung 18 entgegen der

Kraft einer Feder öffnet, so daß eine Druckmittelverbindung zur Farbzuführleitung 8 hergestellt wird. Hierbei wird ein aus der Fig. 2 ersichtlicher nachgiebig verformbarer Ver-drängerkörper 40 von der Druckluft beaufschlagt und in der Farbzuführleitung 8 in Rückführrichtung, d. h. in Richtung auf den Farbwechsler 6 bewegt. Der Verdrängerkörper 40 wirkt dabei gewissermaßen als Stempel und drückt die in der Farbzuführleitung 8 stehende Farbsäule zur Ansaugeite der Zahnradpumpe 22. Die Zahnradpumpe 22 fördert die Farbe dann entgegen dem in den kreisförmigen Farbleitun-gen 2 anstehenden Druck in die jeweilige Farbleitung 2 zu-rück. Dabei gleitet der Verdrängerkörper 40 gegen die In-nenseite der Farbzuführleitung 8 und putzt diese gewisser-maßen aus. Der Verdrängerkörper 40 schlägt schließlich ge-gen eine Stopeinrichtung 42 in Form einer Verengung 44 in der Farbzuführleitung 8 an. Unmittelbar vor der Verengung 44 ist ein Sensor 46 zum Erkennen des Verdrängerkörpers 40 vorgesehen. Der Sensor 46 arbeitet induktiv und meldet, wenn er vom Verdrängerkörper 40 passiert wird, ein dem-entsprechendes Signal an die Steuerung. Daraufhin wird der Rückfuhrvorgang beendet. Nahezu die gesamte Farbe, die sich zwischen dem Ventil 21 und dem Farbdruckregler 26 bzw. der Stopeinrichtung 42 für den Verdrängerkörper 40 befindet, wurde zur Wiederverwertung zurückgeführt. Es wird nun durch abwechselndes, mehrmaliges Öffnen eines Ventils in einer noch nicht erwähnten Lösungsmittelleitung 48 und in der eingangs erwähnten Druckluftleitung 14 ein Spülvorgang durchgeführt. Das Gemisch aus Druckluft und Lösungsmittel wird in den Farbwechsler 6 eingeleitet und spült in Lackierflußrichtung die Zahnradpumpe 22 sowie die Bypassleitung 24 und gelangt über den Farbdruckregler 26 zu der Stopeinrichtung 42 und beaufschlagt und befördert den Verdrängerkörper 40 wieder zurück in Richtung auf die Spritzpistole 10. Beim Einleiten dieses Spülvorgangs wird durch den "1. Schuß" Lösungsmittel oder Druckluft der Ver-drängerkörper 40 in die in Fig. 2 dargestellte Lage zurück-gebracht. Während des Spülvorgangs ist über die zuvor erwähnte Abzugsvorrichtung 34 der Abzug der Spritzpistole 10 betätigt, so daß das Lösungsmittel/Luftgemisch über die Düse 12 in die Pistolenhalterung 30 gelangen und von dort einer gesonderten Entsorgung zugeführt werden kann. Nach Beendigung des Spülvorgangs kann durch Öffnen eines an-deren Absperrventils eine andere Farbleitung 2 mit dem Farbwechsler 6 bzw. der Farbzuführleitung 8 verbunden werden.

Fig. 2 zeigt die Spritzpistole 10, wobei die Zuführ-einrich-tung 20 für die Druckluft geschnitten dargestellt ist. Die Druckluftleitung 18 mündet in eine Querbohrung 50, die in einem metallischen Block 52 ausgebildet ist und mit einem Druckraum 54 des Ventils 20 verbunden ist. Wenn das in Fig. 1 dargestellte Wegeventil 38 geöffnet wird, so steht Druckluft unter ca. 6 bis 8 Bar im Druckraum 54 an. Hier-durch wird eine umfangsseitig eingespannte Membran 56 entgegen einer Federvorspannung 58 ausgelenkt. Hierdurch wird eine mit der Membran 56 verbundene Ventilnadel 60 von ihrem Dichtsitz 62 abgehoben, so daß eine Strömungs-verbindung zwischen dem Druckraum 54 und der Farbzuführleitung 8 hergestellt wird. Der Dichtsitz 62 begrenzt eine Öffnung, die totraumfrei in einer Formausnehmung 64 der Farbzuführleitung 8 mündet. Diese Formausnehmung 64 bildet zugleich eine Ruheposition für den Verdrängerkö-rper 40. Wenn also – wie soeben beschrieben – die Ventilna-del 60 vom Dichtsitz 62 abgehoben wird, so wird der Ver-drängerkörper 40 aus der Formausnehmung 64 heraus in die Farbzuführleitung 8 gedrückt und wandert darin bis zu der Stopeinrichtung 42, wobei der Verdrängerkörper 40 die in der Farbzuführleitung 8 befindliche Farbsäule zur Ansaug-seite der Zahnradpumpe 22 vor sich herschiebt.

Beim Spülen der Zuführleitung 8 ist das Wegeventil 38 und damit das Ventil 21 geschlossen. Das Spülgemisch strömt dann an dem wieder in die Formausnehmung 64 gedrückten Verdrängerkörper 40 vorbei und entweicht durch die Düse 12 der Spritzpistole 10 in die Pistolenhalterung 30. 5

beitet.

10. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Verdrängerkörper (40) einen induktiv detektierbaren Signalkörper umfaßt.

Patentansprüche

1. Einrichtung zum Lackieren von Gegenständen mit verschiedenen Farben, die in kreisförmig geführten Farbleitungen (2), die je einer Farbe zugeordnet sind, zur Verfügung stehen, mit einer Spritzpistole (10), einer Farbzuführleitung (8), die eine Lackiermittelverbindung zwischen der kreisförmig geführten Farbleitung (2) und der Spritzpistole (10) bzw. deren Düse 10
(12) herstellt, und gegebenenfalls einem zwischen den kreisförmig geführten Farbleitungen (2) und der Farbzuführleitung (8) vorgesehenen Farbwechsler (6), durch den jeweils eine Farbleitung (2) mit der Farbzuführleitung (8) verbindbar ist, mit einer Spülmediumzuführung (48, 14), über welche die Farbzuführleitung (8) in Lackierflußrichtung spülbar ist, und mit einer Einrichtung (22, 36) zum Rückführen von Farbe aus der Farbzuführleitung (8) in eine jeweilige Farbleitung (2), dadurch gekennzeichnet, daß im Bereich des spritzpistolenseitigen Endes der Farbzuführleitung (8) eine Zuführeinrichtung (20) für ein unter Überdruck stehendes strömbares Medium vorgesehen ist, mit der das Rückführen von Farbe über die Rückföhreinrichtung (22, 36) in die jeweilige Farbleitung (2) unterstützt wird. 15
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Zuführeinrichtung (20) ein Ventil (21) umfaßt, welches auf der Farbseite im wesentlichen totraumfrei an die Farbzuführleitung (8) anschließt. 20
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zum weiteren Unterstützen des Farbrückführung in der Farbzuführleitung (8) ein flexibler, nachgiebig verformbarer Verdrängerkörper (40) vorgesehen ist, der von dem über die Zuführeinrichtung (20) einströmenden Medium in der Farbzuführleitung (8) in Rückführrichtung bewegbar und beim anschließenden Spülen der Farbzuführleitung (8) wieder in Richtung zur Spritzpistole (10) zurückbewegbar ist. 25
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Verdrängerkörper (40) beim Lackieren in einer Formausnehmung (64) in der Farbzuführleitung (8) im Bereich des totraumfreien Ventilan schlusses der Zuführleitung vorgesehen ist. 30
5. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in Rückföhrrichtung vor der Farbrückföhreinrichtung (22, 36) eine Stopeinrichtung (42) für den Verdrängerkörper (40) vorgesehen ist. 35
6. Einrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Stopeinrichtung (42) von einer Querschnittsverengung (44) in der Farbzuführleitung (8) gebildet ist. 40
7. Einrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß im Bereich der Stopeinrichtung (42) bzw. in Rückföhrrichtung vor der Stopeinrichtung (42) ein Sensor (46) zum Erkennen des Verdrängerkörpers vorgesehen ist. 45
8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, daß das Erkennen des Verdrängerkörpers (40) berührungslos durchführbar ist. 50
9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Sensor 46 induktiv oder kapazitiv ar-

Hierzu 2 Seite(n) Zeichnungen
