MPO-injective PEPS 1.

MPO 代数のデータ

定義 1.1. Projector matrix product operators

 $B\in \mathrm{L}(\mathcal{W})\otimes \mathrm{L}(\mathcal{V}), \Delta\in \mathrm{L}(\mathcal{W})$ によって表される以下の MPO $P_L\in \mathrm{L}(\mathcal{V})^{\otimes L}$ を

$$P_L = \mathrm{Tr}[\Delta \, \overbrace{B \cdots B}^L] = \sum_{\{i\},\{j\}} \mathrm{Tr}[\Delta B^{i_1 j_2} \cdots B^{i_L j_L}] |i_1, \ldots, i_L\rangle \langle j_1, \ldots, j_L| \ \ (1.1)$$

ただし行列の積はWについてとった。 P_L は射影であるとし、 Δ を挿入する位置 に依存しないとする。さらに、以下のブロック対角化が成り立つとする。

$$\mathcal{W} = \bigoplus_{a=1}^{\mathcal{N}} \mathcal{W}_a, \tag{1.2}$$

$$B^{ij} = \bigoplus_{a=1}^{\mathcal{N}} B_a^{ij} \quad B_a^{ij} \in \mathcal{L}(\mathcal{W}), \tag{1.3}$$

$$B^{ij} = \bigoplus_{a=1}^{\mathcal{N}} B_a^{ij} \quad B_a^{ij} \in \mathcal{L}(\mathcal{W}),$$

$$\Delta = \bigoplus_{a=1}^{\mathcal{N}} w_a \mathbb{1}_a, \quad w_a \in \mathbb{C}.$$

$$(1.3)$$

ここで B_a は injective なテンソルであるとする。すなわち、 $\operatorname{Span}\{B_a^{ij}\}_{i,j}=$ $\mathbf{L}(\mathcal{W}_a)$ である。さらに転送行列の最大固有値が 1 になるように規格化されている とする。 P_L が Δ の位置に依らないことと、 B_a の injectivity から Δ に対するブ ロック行列は $\mathbb{1}_a$ の定数倍に限られることに注意する。このような P_L を projector matrix product operator (PMPO) と呼ぶ。

定理 1.1. Fusion tensor

Bを PMPO を構成するテンソルとし、 $\{B_a\}_{a=1}^{\mathcal{N}}$ を injective なブロックとする。 また $O_a^L \coloneqq \mathrm{Tr}[\overline{B_a \cdots B_a}]$ とおき、 $\{O_a^L\}_{a=1}^{\mathcal{N}}$ がなす行列代数が閉じているとする。 このとき、 $X^c_{ab,\mu}: \mathcal{W}_c o \mathcal{W}_a \otimes \mathcal{W}_b, \; \mu=1,\dots,N^c_{ab}$ が存在して

$$X_{ab,\mu}^{+c} \left(\sum_{j} B_{a}^{ij} \otimes B_{b}^{jk} \right) X_{ab,\mu}^{c} = B_{c}^{ik}. \tag{1.5}$$

が成り立つ。テンソル $X_{ab,\mu}^c$ を fusion tensor と呼ぶ。

Proof. $O_a^LO_b^L$ に対する標準形の存在からゲージ変換および非対角ブロックの削除によって

$$B_a^{ij} \otimes B_b^{jk} \mapsto \bigoplus_{c=1}^{\mathcal{N}} \bigoplus_{\mu=1}^{N_{ab}^c} \lambda_{ab,\mu}^c B_c^{ik}, \quad \lambda_{ab,\mu}^c \in \mathbb{C}$$
 (1.6)

と表せる。ここから

$$O_{a}^{L}O_{b}^{L} = \sum_{c,\mu} (\lambda_{ab,\mu}^{c})^{L}O_{c}^{L} \tag{1.7}$$

である。よって

$$P_{L} = P_{L}^{2} = \sum_{a,b} w_{a} w_{b} O_{a}^{L} O_{b}^{L} = \sum_{a,b,c,\mu} (\lambda_{ab,\mu}^{c})^{L} w_{a} w_{b} O_{c}^{L} \tag{1.8}$$

である。 P_L が任意の L において射影であることから $\lambda^c_{ab,\mu}=1$ が分かる。よって $\mathcal{W}_a\otimes\mathcal{W}_b$ と各ブロック \mathcal{W}_c の間の変換 $X^c_{ab,\mu},X^{+c}_{ab,\mu}$ が存在して $(\ref{eq:continuous})$ が成り立つ。 \square

定義 1.2. Zipper condition

(??) から直ちに以下が成り立つ。

$$\left(\sum_{i} B_a^{ij} \otimes B_b^{jk}\right) X_{ab,\mu}^c = X_{ab,\mu}^c B_c^{ik}, \tag{1.9}$$

$$X_{ab,\mu}^{+c} \left(\sum_{j} B_a^{ij} \otimes B_b^{jk} \right) = B_c^{ik} X_{ab,\mu}^{+c}$$
 (1.10)

これを以下に図示する。

$$c \qquad \mu \qquad b \qquad = \qquad c \qquad \mu \qquad b \qquad (1.12)$$

この式を zipper condition と呼ぶ。ただし $X^c_{ab,\mu}$ については多重度の添字 μ だけ 図示した。

定義 1.3. Fusion rule

行列代数 $\{O_a^L\}_{a=1}^{\mathcal{N}}$ は

$$O_{a}^{L}O_{b}^{L} = \sum_{c} N_{ab}^{c}O_{c}^{L}, \quad N_{ab}^{c} \in \mathbb{Z}_{\geq 0}$$
 (1.13)

によって定まる。これを fusion rule と呼ぶ。また $a=1,\dots,\mathcal{N}$ を fusion channel と呼び、 N_{ab}^c を fusion 係数と呼ぶ。fusion 係数は $\sum_j B_a^{ij} \otimes B_b^{jk}$ を injective なブロックに分解したときの多重度によって与えられる。

Remark 1.1.

PMPO $P_L = \sum_a w_a O_a^L$ と fusion 係数 N_{ab}^c に対し、以下が成り立つ。

$$\sum_{a.b=1}^{N} N_{ab}^{c} w_{a} w_{b} = w_{c}$$
 (1.14)

Proof. $P_L^2 = P_L$ から

$$P_L^2 = \sum_{a,b} w_a w_b O_a O_b = \sum_{a,b,c} N_{ab}^c w_a w_b O_c = \sum_c w_c O_c = P_L. \tag{1.15}$$

定義 1.4. Duality

 P_L が Hermitian であることを課す。このとき fusion channel a に対して \bar{B}_a が injective であることから fusion channel a^* が一意に存在し、

$$\bar{w}_a = w_{a^*}, \quad O_a^{L\,\dagger} = O_{a^*}^L \eqno(1.16)$$

となる。また

$$N_{ab}^{c} = N_{b^*a^*}^{c^*} (1.17)$$

となる。 $(a^*)^*=a$ であり、 a^* を a に双対な fusion channel と呼ぶ。

定義 1.5. Frobenius Schur indicator

fusion channel a, a^* は以下のゲージ変換によって結ばれる。

$$\bar{B}_a^{ji} = Z_a^{-1} B_{a^*}^{ij} Z_a \tag{1.18}$$

ここで Z_a は

$$Z_a \bar{Z}_{a^*} = \bar{Z}_{a^*} Z_a = \varkappa_a \mathbb{1}, \quad \varkappa_a = \begin{cases} 1 & (a \neq a^*) \\ \pm 1 & (a = a^*) \end{cases} \tag{1.19}$$

を満たす。 \varkappa_a を Frobenius–Schur indicator と呼ぶ。

Proof. $O_a^{L^\dagger}=O_{a^*}^L$ の両辺を標準形で表すと、標準形の一意性からゲージ変換 $Z_a:\mathcal{W}_a o\mathcal{W}_{a^*}$ と $\theta\in\mathbb{R}$ が存在して

$$\bar{B}_a^{ji} = e^{i\theta} Z_a^{-1} B_{a^*}^{ij} Z_a \tag{1.20}$$

となる。 $(\ref{eq:continuity})$ が L に依らずに成り立つことから $\theta=0$ としてよい。これを 2 回用いると、

$$B_a^{ji} = \bar{Z}_a^{-1} \bar{B}_{a^*}^{ij} \bar{Z}_a = \bar{Z}_a^{-1} Z_{a^*}^{-1} B_a^{ji} Z_{a^*} \bar{Z}_a$$
 (1.21)

となる。よって B_a の injectivity から $Z_{a^*}\bar{Z}_a=\gamma_a\mathbb{1}=\bar{Z}_aZ_{a^*}$ と表せる。ここで γ_a は 複素数であり $\bar{\gamma}_{a^*}=\gamma_a$ を満たす。 $a\neq a^*$ の場合、 Z_a を定数倍して再定義することで $\gamma_a=\gamma_{a^*}=1$ とできる。 $a=a^*$ の場合、 $Z_a\bar{Z}_a=\bar{Z}_aZ_a$ から γ_a は実数に限られる。 Z_a を定数倍して再定義することで必ず $\gamma_a=\pm 1=:$ \varkappa_a にできる。ただし符号を変えることはできない。

補題 1.1. 結合則 (associativity)

 $(O_a^LO_b^L)O_c^L = O_a^L(O_b^LO_c^L)$ から fusion 係数は以下の結合則を満たす。

$$\sum_{e} N_{ab}^{e} N_{ec}^{d} = \sum_{f} N_{af}^{d} N_{bc}^{f}. \tag{1.22}$$

定義 1.6. F 行列

F 行列 $(F_d^{abc})_{e\mu\nu}^{f\lambda\sigma}$ が存在して以下が成り立つ。

$$(X^{e}_{ab,\mu} \otimes \mathbb{1}_{c}) X^{d}_{ec,\nu} = \sum_{f=1}^{\mathcal{N}} \sum_{\lambda=1}^{N^{f}_{bc}} \sum_{\sigma=1}^{N^{d}_{af}} (F^{abc}_{d})^{f\lambda\sigma}_{e\mu\nu} (\mathbb{1}_{a} \otimes X^{f}_{bc,\lambda}) X^{d}_{af,\sigma}. \quad (1.23)$$

Proof. zipper condition を 2 通りの順序で用いることで以下の等式が成り立つ。

$$\sum_{de\mu\nu} b \xrightarrow{X_{\mu}} d \xrightarrow{X_{\nu}} d \xrightarrow{X_{\nu}} b = \sum_{df\sigma\lambda} b \xrightarrow{X_{\lambda}} f \xrightarrow{X_{\sigma}} d \xrightarrow{X_{\lambda}} b . \tag{1.24}$$

両辺に右から fusion テンソルを掛けると

よって $B_d, B_{d'}$ の injectivity から

よって右辺の 2 個目の因子を $(F_d^{abc})_{e\mu\nu}^{f\lambda\sigma}\mathbb{1}_d$ と書くことができ、 $(\ref{eq:condition})$ が示される。 $\qquad \square$

定義 1.7. Pentagon equation

$$\sum_{h,\sigma\lambda\omega}(F_g^{abc})_{h\sigma\lambda}^{f\mu\nu}(F_e^{ahd})_{i\omega\kappa}^{g\lambda\rho}(F_i^{bcd})_{j\lambda\delta}^{h\sigma\omega} = \sum_{\sigma}(F_e^{fcd})_{j\gamma\sigma}^{g\nu\rho}(F_e^{abj})_{i\delta\kappa}^{f\mu\sigma}. \quad (1.27)$$

Proof.

Remark 1.2.

$$N_{ab}^{c} = N_{bc^{*}}^{a^{*}} = N_{c^{*}a}^{b^{*}} = N_{b^{*}a^{*}}^{c^{*}} = N_{cb^{*}}^{a} = N_{a^{*}c}^{b}.$$
 (1.29)

5

1.1 Unitarity

定義 1.8. Pivotal property

$$a^{*} = \sum_{\nu} (A_{ab}^{c})_{\mu\nu} \xrightarrow{b}_{\nu} a \tag{1.30}$$

ここで A^c_{ab} は $(A^c_{ab})^\dagger A^c_{ab}=\frac{w_c}{w_b}$ 1 を満たす行列である。また b の足を曲げることで同様に ${A'}^c_{ab}$ が定義される。

補題 1.2.

ここで $C^c_{ab} = A^c_{a^*b} \bar{A'}^b_{a^*c^*} A^{a^*}_{b^*c^*}$ である。

定理 1.2. Pulling through equation

$$a = a$$
 (1.32)

Proof.

$$\sum_{bc\mu} w_b \xrightarrow{\mu} c \qquad b \qquad = \sum_{bc\nu} w_c \xrightarrow{c} \qquad b \qquad (1.33)$$