Electron Correlation in Wavefunction Based Methods

Benjamin G. Levine

How do we improve Hartree-Fock?

What is electron correlation?

- The wavefunction describes the probability distribution of the location of the electron
- Electron correlation is best described in conditional statements: "If electron 1 is here then electron 2 is there"
- In Hartree-Fock electrons of the same spin are correlated (exchange), but electrons of different spins are not

"If electron 1 is on the left..."

"If electron 1 is on the left..."

HF – "then electron 2 is still in the bonding orbital"

"If electron 1 is on the left..."

HF – "then electron 2 is still in the bonding orbital"

Post-HF – "then electron 2 is on the right"

$$\frac{1}{\sqrt{2}} \left| \psi_{bond}^{\alpha} \psi_{bond}^{\beta} \right\rangle - \frac{1}{\sqrt{2}} \left| \psi_{anti}^{\alpha} \psi_{anti}^{\beta} \right\rangle =$$

$$\frac{1}{\sqrt{2}} \left| \varphi_{left}^{\alpha} \varphi_{right}^{\beta} \right\rangle + \frac{1}{\sqrt{2}} \left| \varphi_{right}^{\alpha} \varphi_{left}^{\beta} \right\rangle$$

$$\frac{1}{\sqrt{2}} \left| \psi_{bond}^{\alpha} \psi_{bond}^{\beta} \right\rangle - \frac{1}{\sqrt{2}} \left| \psi_{anti}^{\alpha} \psi_{anti}^{\beta} \right\rangle =$$

$$\frac{1}{\sqrt{2}} \left| \varphi_{left}^{\alpha} \varphi_{right}^{\beta} \right\rangle + \frac{1}{\sqrt{2}} \left| \varphi_{right}^{\alpha} \varphi_{left}^{\beta} \right\rangle$$

Subtracting a doubly excited configuration is like saying "if electron 1 is on one side of the node, electron 2 is more likely on the other side"

For long bond distances

$$\frac{\left\langle \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \middle| \hat{\mathbf{H}} \middle| \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \right\rangle}{\left\langle \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \middle| \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \right\rangle} \approx \frac{\left\langle \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \middle| \hat{\mathbf{H}} \middle| \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \right\rangle}{\left\langle \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \middle| \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \right\rangle}$$

 Nearly degenerate configurations mix strongly

$$\frac{1}{\sqrt{2}} \left| \boldsymbol{\psi}_{bond}^{lpha} \boldsymbol{\psi}_{bond}^{eta}
ight> - \frac{1}{\sqrt{2}} \left| \boldsymbol{\psi}_{anti}^{lpha} \boldsymbol{\psi}_{anti}^{eta}
ight>$$

 This type of correlation is called "static" or "non-dynamics" correlation

$$\frac{1}{\sqrt{2}} \left| \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \right\rangle - \frac{1}{\sqrt{2}} \left| \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \right\rangle$$

A more general wavefunction would be:

$$c_{bond} \left| \psi_{bond}^{\alpha} \psi_{bond}^{\beta} \right\rangle - c_{anti} \left| \psi_{anti}^{\alpha} \psi_{anti}^{\beta} \right\rangle$$

A more general wavefunction would be:

A more general wavefunction would be:

$$c_{bond} \left| \psi_{bond}^{\alpha} \psi_{bond}^{\beta} \right\rangle - c_{anti} \left| \psi_{anti}^{\alpha} \psi_{anti}^{\beta} \right\rangle$$

 The ground state is found by building the H matrix between the above configurations and finding the lowest eigenvalue and eigenvector

$$\mathbf{H} = \begin{bmatrix} \left\langle \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \middle| \hat{\mathbf{H}} \middle| \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \right\rangle & \left\langle \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \middle| \hat{\mathbf{H}} \middle| \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \right\rangle \\ \left\langle \boldsymbol{\psi}_{bond}^{\alpha} \boldsymbol{\psi}_{bond}^{\beta} \middle| \hat{\mathbf{H}} \middle| \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \right\rangle & \left\langle \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \middle| \hat{\mathbf{H}} \middle| \boldsymbol{\psi}_{anti}^{\alpha} \boldsymbol{\psi}_{anti}^{\beta} \right\rangle \end{bmatrix}$$

$$c_{bond} \left| \psi_{bond}^{\alpha} \psi_{bond}^{\beta} \right\rangle - c_{anti} \left| \psi_{anti}^{\alpha} \psi_{anti}^{\beta} \right\rangle$$

A more general form of the CI wavefunction:

$$|\Psi_{CI}\rangle = c_{HF} |\Psi_{HF}\rangle + \sum_{i} c_{i} |\Psi_{i}\rangle$$

A more general form of the CI wavefunction:

$$\left|\Psi_{CI}\right\rangle = c_{HF} \left|\Psi_{HF}\right\rangle + \sum_{i} c_{i} \left|\Psi_{i}\right\rangle$$

The HF determinant

A more general form of the CI wavefunction:

$$\left|\Psi_{CI}\right\rangle = c_{HF} \left|\Psi_{HF}\right\rangle + \sum_{i} c_{i} \left|\Psi_{i}\right\rangle$$
 other excited determinants of our choice

A more general form of the CI wavefunction:

Correlation Example 2: Beryllium

 The beryllium atom is another example of static correlation

$$\frac{\left\langle 1s^{2}2s^{2} \left| \hat{\mathbf{H}} \right| 1s^{2}2s^{2} \right\rangle}{\left\langle 1s^{2}2s^{2} \left| 1s^{2}2s^{2} \right\rangle} \approx \frac{\left\langle 1s^{2}2p_{x}^{2} \left| \hat{\mathbf{H}} \right| 1s^{2}2p_{x}^{2} \right\rangle}{\left\langle 1s^{2}2p_{x}^{2} \left| 1s^{2}2p_{x}^{2} \right\rangle} \approx \frac{\left\langle 1s^{2}2p_{x}^{2} \left| 1s^{2}2p_{x}^{2} \right\rangle}{\left\langle 1s^{2}2p_{y}^{2} \left| \hat{\mathbf{H}} \right| 1s^{2}2p_{z}^{2} \right\rangle} \approx \frac{\left\langle 1s^{2}2p_{x}^{2} \left| \hat{\mathbf{H}} \right| 1s^{2}2p_{z}^{2} \right\rangle}{\left\langle 1s^{2}2p_{y}^{2} \left| 1s^{2}2p_{z}^{2} \right\rangle}$$

Correlation Example 2: Beryllium

$$\frac{\left\langle 1s^{2}2s^{2} \middle| \hat{\mathbf{H}} \middle| 1s^{2}2s^{2} \right\rangle}{\left\langle 1s^{2}2s^{2} \middle| \mathbf{h} \middle| 1s^{2}2s^{2} \right\rangle} \approx \frac{\left\langle 1s^{2}2p_{x}^{2} \middle| \hat{\mathbf{H}} \middle| 1s^{2}2p_{x}^{2} \right\rangle}{\left\langle 1s^{2}2p_{x}^{2} \middle| \mathbf{h} \middle| 1s^{2}2p_{x}^{2} \right\rangle} \approx \frac{\left\langle 1s^{2}2p_{x}^{2} \middle| \mathbf{h} \middle| 1s^{2}2p_{x}^{2} \right\rangle}{\left\langle 1s^{2}2p_{y}^{2} \middle| \mathbf{h} \middle| 1s^{2}2p_{y}^{2} \right\rangle} \approx \frac{\left\langle 1s^{2}2p_{x}^{2} \middle| \mathbf{h} \middle| 1s^{2}2p_{x}^{2} \right\rangle}{\left\langle 1s^{2}2p_{x}^{2} \middle| 1s^{2}2p_{z}^{2} \right\rangle}$$

- Coulomb hole: "if electron 1 is here, electron 2 is probably somewhere else"
- We "dig" the Coulomb hole by adding small contributions from many configurations

Correlation Example 3: Helium Atom

Correlation Example 3: Helium Atom

Dynamic Correlation

- Correlation that requires a lot of high energy configurations to describe accurately is called "dynamics" correlation
- The Coulomb hole is one example

Correlation Example 4: Van der Waals forces

 Van der Waals (London dispersion) forces are another common example

Correlation Example 4: Van der Waals forces

- Van der Waals (London dispersion) forces are another common example
 - "If electron 1 is on the right side of atom A then electron 2 is probably on the right side of atom B"

Correlation Example 4: Van der Waals forces

- Van der Waals (London dispersion) forces are another common example
 - "If electron 1 is on the right side of atom A then electron 2 is probably on the right side of atom B"

Correlation Summary

- Correlation can be described in conditional statements about the locations of electrons: "if electron 1 is here, electron 1 is probably there"
- Static correlation results when a small number of configurations are nearly degenerate
- Dynamics correlation requires a large number of high energy configurations to describe

Wavefunction based treatments of correlation

Classification of Correlated Methods

- Single Reference Methods (CI, CC, MP)
 - Start from the HF determinant and add correlation
 - Typically used when HF is already a decent approximation (no static correlation)
- Multireference (Multiconfigurational) methods (MCSCF, CASSCF, CASPT2, MRCI)
 - Include static correlation though the addition of a small number of configurations

- Expand the wavefunction in a "manyelectron" basis of configurations
- Typically, CI wavefunctions start from the HF reference configuration

$$\left|\Psi_{CI}\right\rangle = c_{HF} \left|\Psi_{HF}\right\rangle + \sum_{r,a} c_a^r \left|\Psi_a^r\right\rangle + \sum_{r < s,a < b} c_{ab}^{rs} \left|\Psi_{ab}^{rs}\right\rangle + \dots$$

- Expand the wavefunction in a "manyelectron" basis of configurations
- Typically, CI wavefunctions start from the HF reference configuration

$$\left|\Psi_{CI}\right\rangle = c_{HF} \left|\Psi_{HF}\right\rangle + \sum_{r,a} c_a^r \left|\Psi_a^r\right\rangle + \sum_{r < s,a < b} c_{ab}^{rs} \left|\Psi_{ab}^{rs}\right\rangle + \dots$$

$$a,b... \text{ denote HF}$$
occupied orbitals

- Expand the wavefunction in a "manyelectron" basis of configurations
- Typically, CI wavefunctions start from the HF reference configuration

- Expand the wavefunction in a "manyelectron" basis of configurations
- Typically, CI wavefunctions start from the HF reference configuration

$$\left|\Psi_{^{HF}}
ight
angle$$

- 4 —
- 3 —
- 2 <u>† ↓</u>
- 1 1 1

$$\begin{vmatrix} \Psi_{HF} \rangle & \begin{vmatrix} \Psi_{2}^{3} \rangle \\ 4 & \underline{} \\ 3 & \underline{} \\ 2 & \underline{} \\ 1 & \underline{} \\$$

$$\begin{vmatrix} \Psi_{HF} \rangle & \begin{vmatrix} \Psi_{2}^{3} \rangle & \begin{vmatrix} \Psi_{2}^{3} \rangle \\ \Psi_{2}^{3} \end{vmatrix} \rangle$$

$$\begin{vmatrix} \Psi_{HF} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle & \frac{\Psi_{2}^{3}}{2} \end{vmatrix}$$

$$\begin{vmatrix} \Psi_{HF} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle & \frac{\Psi_{2}^{3}}{2} \end{vmatrix}$$

$$\begin{vmatrix} \Psi_{HF} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle$$

$$\begin{vmatrix} \Psi_{HF} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle$$

$$\begin{vmatrix} \Psi_{HF} \rangle & \frac{\Psi_{2}^{3}}{2} \rangle$$

The CI H matrix will look like this

The CI H matrix will look like this

The CI H matrix will look like this

$$\begin{vmatrix} \langle \Psi_{HF} | \hat{\mathbf{H}} | \Psi_{HF} \rangle & \mathbf{0} & \langle \Psi_{HF} | \hat{\mathbf{H}} | D \rangle & \mathbf{0} & \mathbf{0} \\ & \langle S | \hat{\mathbf{H}} | S \rangle & \langle S | \hat{\mathbf{H}} | D \rangle & \langle S | \hat{\mathbf{H}} | T \rangle & \mathbf{0} \\ & \langle D | \hat{\mathbf{H}} | D \rangle & \langle D | \hat{\mathbf{H}} | T \rangle & \langle D | \hat{\mathbf{H}} | Q \rangle \\ & & \langle T | \hat{\mathbf{H}} | T \rangle & \langle T | \hat{\mathbf{H}} | Q \rangle \\ & & & \langle Q | \hat{\mathbf{H}} | Q \rangle \end{bmatrix}$$

$$\hat{H}_{elec} = -\frac{1}{2} \sum_{elec} \nabla^2(\mathbf{r}) + \sum_{nuc} \sum_{nuc} \frac{q_I q_J}{r_{IJ}} - \sum_{nuc} \sum_{elec} \frac{q_I}{r_{Ij}} + \sum_{elec} \sum_{elec} \frac{1}{r_{ij}}$$

The CI H matrix will look like this

$$\begin{bmatrix} \left\langle \Psi_{HF} \middle| \hat{\mathbf{H}} \middle| \Psi_{HF} \right\rangle & \mathbf{0} & \left\langle \Psi_{HF} \middle| \hat{\mathbf{H}} \middle| D \right\rangle & \mathbf{0} & \mathbf{0} \\ & \left\langle S \middle| \hat{\mathbf{H}} \middle| S \right\rangle & \left\langle S \middle| \hat{\mathbf{H}} \middle| D \right\rangle & \left\langle S \middle| \hat{\mathbf{H}} \middle| T \right\rangle & \mathbf{0} \\ & \left\langle D \middle| \hat{\mathbf{H}} \middle| D \right\rangle & \left\langle D \middle| \hat{\mathbf{H}} \middle| T \right\rangle & \left\langle D \middle| \hat{\mathbf{H}} \middle| Q \right\rangle \\ & & \left\langle T \middle| \hat{\mathbf{H}} \middle| T \right\rangle & \left\langle T \middle| \hat{\mathbf{H}} \middle| Q \right\rangle \\ & & \left\langle Q \middle| \hat{\mathbf{H}} \middle| Q \right\rangle \end{bmatrix}$$

H is a 2-electron operator, therefore configurations differing by more than 2 electrons do in interact

The CI H matrix will look like this

Brillouin's theorem – the HF determinant does not interact with singly excited configurations

H is a 2-electron operator, therefore configurations differing by more than 2 electrons do in interact

Common varieties of CI

- $-CID |\Psi_{HF}\rangle, |\Psi_{ab}^{rs}\rangle$
- CISD $|\Psi_{HF}\rangle$, $|\Psi_{a}^{r}\rangle$, $|\Psi_{ab}^{rs}\rangle$
- CISDT $|\Psi_{HF}\rangle$, $|\Psi_{a}^{r}\rangle$, $|\Psi_{ab}^{rs}\rangle$, $|\Psi_{abc}^{rst}\rangle$
- CISDTQ...
- Full CI (FCI) All possible configurations

Common varieties of CI

$$\begin{array}{c|c} -\operatorname{CID} - & |\Psi_{HF}\rangle, & |\Psi_{ab}^{rs}\rangle \\ -\operatorname{CISD} - & |\Psi_{HF}\rangle, & |\Psi_{a}^{r}\rangle, & |\Psi_{ab}^{rs}\rangle \\ -\operatorname{CISDT} - & |\Psi_{HF}\rangle, & |\Psi_{a}^{r}\rangle, & |\Psi_{ab}^{rs}\rangle, & |\Psi_{abc}^{rst}\rangle \\ -\operatorname{CISDTQ} \dots \end{array}$$

Full CI (FCI) – All possible configurations

Common varieties of CI

$$\begin{array}{c|c} -\operatorname{CID} - & |\Psi_{HF}\rangle, & |\Psi_{ab}^{rs}\rangle \\ -\operatorname{CISD} - & |\Psi_{HF}\rangle, & |\Psi_{a}^{r}\rangle, & |\Psi_{ab}^{rs}\rangle \\ -\operatorname{CISDT} - & |\Psi_{HF}\rangle, & |\Psi_{a}^{r}\rangle, & |\Psi_{ab}^{rs}\rangle, & |\Psi_{abc}^{rst}\rangle \\ -\operatorname{CISDTQ} \dots \end{array}$$

- Full CI (FCI) All possible configurations
 - In a complete basis FCI is the exact solution of the Schrodinger equation
 - The cost of FCI scales factorially with the size of the basis set

The Problems with CI

- CI can be very computationally expensive
- Truncated CI is not size-extensive/sizeconsistent

The Problems with CI

- CI can be very computationally expensive
- Truncated CI is not size-extensive/sizeconsistent

- Size consistency: E(A) + E(B) = E(A+B) in the limit that A and B do not interact
- Size extensivity: E scales linearly with number of electrons

- Size consistency: E(A) + E(B) = E(A+B) in the limit that A and B do not interact
- Size extensivity: E scales linearly with number of electrons

- Size consistency: E(A) + E(B) = E(A+B) in the limit that A and B do not interact
- Size extensivity: E scales linearly with number of electrons

- Size consistency: E(A) + E(B) = E(A+B) in the limit that A and B do not interact
- Size extensivity: E scales linearly with number of electrons

- Size consistency: E(A) + E(B) = E(A+B) in the limit that A and B do not interact
- Size extensivity: E scales linearly with number of electrons

- Solves the size-extensivity problem
- Is more accurate that the equivalent CI
- The computational cost is slightly more than an equivalent CI

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}} |\Psi_{HF}\rangle$$

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}}_{\uparrow} |\Psi_{HF}\rangle$$
Cluster operator

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}}_{\uparrow} |\Psi_{HF}\rangle$$
Cluster operator

$$\hat{\mathbf{T}} = \hat{\mathbf{T}}_1 + \hat{\mathbf{T}}_2 + \hat{\mathbf{T}}_3 + \dots + \hat{\mathbf{T}}_n$$

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}}_{\uparrow} |\Psi_{HF}\rangle$$
Cluster operator

$$\hat{\mathbf{T}} = \hat{\mathbf{T}}_1 + \hat{\mathbf{T}}_2 + \hat{\mathbf{T}}_3 + \dots + \hat{\mathbf{T}}_n$$

$$\hat{\mathbf{T}}_{2} \left| \Psi_{HF} \right\rangle = \sum_{r < s, a < b} t_{ab}^{rs} \left| \Psi_{ab}^{rs} \right\rangle$$

The wavefunction is described by an operator applied to the HF determinant

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}} |\Psi_{HF}\rangle$$
Cluster operator
$$\hat{\mathbf{T}} = \hat{\mathbf{T}}_1 + \hat{\mathbf{T}}_2 + \hat{\mathbf{T}}_3 + ... + \hat{\mathbf{T}}_n$$

$$\hat{\mathbf{T}}_2 |\Psi_{HF}\rangle = \sum_{r < s, a < b} t_{ab}^{rs} |\Psi_{ab}^{rs}\rangle$$
amplitudes

$$|\Psi_{CI}\rangle = N(1+\hat{\mathbf{T}})|\Psi_{HF}\rangle$$

$$\left|\Psi_{CI}\right\rangle = N(1+\hat{\mathbf{T}})\left|\Psi_{HF}\right\rangle$$
Normalization constant

$$\begin{aligned} \left| \Psi_{CI} \right\rangle &= N(1 + \hat{\mathbf{T}}) \left| \Psi_{HF} \right\rangle \\ &= \text{e.g. CID:} \\ \hat{\mathbf{T}} &= \hat{\mathbf{T}}_{2} \\ \hat{\mathbf{T}}_{2} \left| \Psi_{HF} \right\rangle &= \sum_{r < s} t_{ab}^{rs} \left| \Psi_{ab}^{rs} \right\rangle \end{aligned}$$

$$\left|\Psi_{CI}\right\rangle = N(1+\hat{\mathbf{T}})\left|\Psi_{HF}\right\rangle$$
e.g. CID:
 $\hat{\mathbf{T}} = \hat{\mathbf{T}}_{2}$
 $\hat{\mathbf{T}}_{2}\left|\Psi_{HF}\right\rangle = \sum_{r < s, a < b} t_{ab}^{rs}\left|\Psi_{ab}^{rs}\right\rangle$
The amplitudes are the CI vector

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}} |\Psi_{HF}\rangle$$

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}} |\Psi_{HF}\rangle$$
Taylor expand the exponential

$$= \left(1 + \hat{\mathbf{T}} + \frac{\hat{\mathbf{T}}^2}{2!} + \frac{\hat{\mathbf{T}}^3}{3!} + \dots\right) |\Psi_{HF}\rangle$$

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}} |\Psi_{HF}\rangle$$
Taylor expand the exponential

$$= \left(1 + \hat{\mathbf{T}} + \frac{\hat{\mathbf{T}}^2}{2!} + \frac{\hat{\mathbf{T}}^3}{3!} + \dots\right) |\Psi_{HF}\rangle$$

$$|\Psi_{CC}\rangle = e^{\hat{\mathbf{T}}} |\Psi_{HF}\rangle$$
Taylor expand the exponential

$$= \left(1 + \hat{\mathbf{T}} + \frac{\hat{\mathbf{T}}^2}{2!} + \frac{\hat{\mathbf{T}}^3}{3!} + \dots\right) |\Psi_{HF}\rangle$$

$$\left|\Psi_{CI}\right\rangle = \left|\Psi_{HF}\right\rangle + \dots + t_{ab}^{rs} \left|\Psi_{ab}^{rs}\right\rangle + t_{cd}^{tu} \left|\Psi_{cd}^{tu}\right\rangle + \dots$$

$$\left|\Psi_{CI}\right\rangle = \left|\Psi_{HF}\right\rangle + \dots + t_{ab}^{rs} \left|\Psi_{ab}^{rs}\right\rangle + t_{cd}^{tu} \left|\Psi_{cd}^{tu}\right\rangle + \dots$$

$$\left|\Psi_{CC}\right\rangle = \left|\Psi_{HF}\right\rangle + \dots + t_{ab}^{rs} \left|\Psi_{ab}^{rs}\right\rangle + t_{cd}^{tu} \left|\Psi_{cd}^{tu}\right\rangle + \dots + t_{ab}^{rs} t_{cd}^{tu} \left|\Psi_{abcd}^{rstu}\right\rangle + \dots$$

Intermediate normalization

$$\langle \Psi_{HF} | e^{\hat{\mathbf{T}}} \Psi_{HF} \rangle = 1$$
 $\langle e^{\hat{\mathbf{T}}} \Psi_{HF} | e^{\hat{\mathbf{T}}} \Psi_{HF} \rangle > 1$

CC energy expression:

$$E = \left\langle \Psi_{HF} \left| \hat{\mathbf{H}} \right| e^{\hat{\mathbf{T}}} \Psi_{HF} \right\rangle \neq \left\langle e^{\hat{\mathbf{T}}} \Psi_{HF} \left| \hat{\mathbf{H}} \right| e^{\hat{\mathbf{T}}} \Psi_{HF} \right\rangle$$

The CC energy is not variational

- CCSD
- CCSDT
- CCSDTQ
- Full CC is exact
- CCSD(T), etc.
- Coupled cluster is size-extensive, but often too computationally expensive to study large systems

Perturbation Theory

from Leninger et. al., J. Chem. Phys., 2000

Perturbation Theory

- MP2 is widely used when an accurate, but reasonably inexpensive description of dynamics correlation is needed
- MP2 is size extensive
- The denominators in the MP expressions can cause problems when static correlation is important
- The MP series does not necessarily converge

Computational Scaling

Method	Cost
FCI	O(N!)
CCSD(T)	$O(N^7)$
CISD, CCSD	$O(N^6)$
MP2	O(N ⁵)
HF	O(N ⁴)

N is the number of basis functions

Single-Reference Summary

- Lots of configurations need to be added to correctly describe dynamic correlation
- CI is simple in concept, but is not sizeextensive
- Coupled cluster achieves size-extensivity and high accuracy, but at a large computational cost
- Moller-Plesset PT is less accurate, but more efficient than coupled cluster

Multireference Methods

 If a singled determinant is insufficient to describe a system we can use a small number of determinants as our simplest description

Multireference Methods

 If a singled determinant is insufficient to describe a system we can use a small number of determinants as our simplest description

Multireference Methods

 If a singled determinant is insufficient to describe a system we can use a small number of determinants as our simplest description

 $\left|\Psi_{{\scriptscriptstyle HF}}
ight
angle$

↑ ↓

† ↓

<u>↑ ↓</u>

↑ ↓

<u>†</u> ‡

$$|\Psi_{CAS}\rangle = \sum_{i=0}^{\binom{N}{M_{\alpha}} * \binom{N}{M_{\beta}}} c_i |\Psi_i\rangle$$

$$|\Psi_{CAS}\rangle = \sum_{i=0}^{\binom{N}{M_{\alpha}}} c_i |\Psi_i\rangle$$
Colvector

Abbreviate: CAS(*M*/*N*)

Active	# of
Space	determinants
CAS(2/2)	4
CAS(4/4)	36
CAS(6/6)	400
CAS(8/8)	4900
CAS(10/10)	63504
CAS(12/12)	853776

Abbreviate: CAS(*M*/*N*)

Active	# of
Space	determinants
CAS(2/2)	4
CAS(4/4)	36
CAS(6/6)	400
CAS(8/8)	4900
CAS(10/10)	63504
CAS(12/12)	853776

Abbreviate: CAS(*M*/*N*)

How do you choose the active space

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

2/2?

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

- How do you choose the active space
 - "Chemical Intuition"
 - Accuracy of results

		π antibonding orbitals			
π bonding orbitals		1	2	3	4
	1	-3.13 eV	-0.96	-0.95	-0.88
	2	-0.69	1.27	0.67	0.69
	3	-0.63	0.71	1.17	1.19
	4	-0.56	0.80	1.41	1.25

Target: .4-.5 eV

Adding Dynamics Correlation

CASPT2

- HF:MP2::CASSCF:CASPT2
- can be very accurate, but is very expensive

MRCI

- CI involving CASSCF determinants and all single and double excitations from them
- can be more accurate, but is even more expensive

Multireference Method Summary

- Multireference methods are ideal for systems with significant static correlation
- CASSCF is not terribly accurate, but correctly describes bond breaking
- CASPT2 and MRCI allow the addition of dynamic correlation to the statically correlated CASSCF wavefunction

Correlation Summary

- Electron correlation takes many forms
 - Static correlation, resulting from near-degeneracy of configurations
 - Bond breaking
 - Transition state
 - Dynamic correlation
 - A Coulomb hole
 - Dispersion
- Dynamics correlation is well described by single reference methods
 - CI rarely used today due to the lack of size-extensivity
 - CC The "gold standard," but expensive
 - MP Less expensive, less accurate than CC

Correlation Summary

- Static correlation can be treated by multireference methods
 - CASSCF has results which depend strongly and unpredictably on the choice of active space
 - CASPT2 and MRCI allow the addition of dynamic correlation

Post-HF Methods in Context

