# Chapter 7: Computations lifted to a functor context II Part 1: Examples of monads and semimonads

Sergei Winitzki

Academy by the Bay

2018-02-10

## Computations within a functor context: Semimonads

Intuitions behind adding more "generator arrows"

#### Example:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} f(i, j, k)$$

Using Scala's for/yield syntax ("functor block")

- map replaces the last left arrow, flatMap replaces other left arrows
  - ▶ When the functor is *also* filterable, we can use "if" as well
- Standard library defines flatMap() as equivalent of map() o flatten
  - (1 to n).flatMap(j  $\Rightarrow$  ...) is (1 to n).map(j  $\Rightarrow$  ...).flatten
- flatten:  $F[F[A]] \Rightarrow F[A]$  can be expressed through flatMap as well:
  - ▶ (xss: Seq[Seq[A]]).flatten = xss.flatMap { (xs: Seq[A])  $\Rightarrow$  xs }
- Functors having flatMap/flatten are "flattenable" or semimonads
  - Most of them also have method pure: A ⇒ F[A] and so are monads

## What is flatMap doing with the data in a collection?

Consider this schematic code using Seq as the container type:

Computations are repeated for all i, for all j, etc., from each collection

- All collections must have the same container type
  - ► Each *generator line* finally computes a container of the same type
  - ▶ The total number of resulting data items is  $\leq m * n * p$
  - ▶ All the resulting data items must fit within *the same* container type!
  - ▶ The set of *container capacity counts* must be closed under multiplication
- What container types have this property?
  - ► Seq, NonEmptyList can hold any number of elements ≥ min. count
  - ▶ Option, Either, Try, Future can hold 0 or 1 elements ("pass/fail")
  - ▶ "Tree-like" containers, e.g. can hold only 3, 6, 9, 12, ... elements
  - "Non-standard" containers:  $F^A \equiv \text{String} \Rightarrow A$ ;  $F^A \equiv (A \Rightarrow \text{Int}) \Rightarrow \text{Int}$

# Working with list-like monads

Seq, NonEmptyList, Iterator, Stream

Typical tasks for "list-like" monads:

- Create a list of all combinations or all permutations of a sequence
- Traverse a "solution tree" with DFS and filter out incorrect solutions
  - ► Can use eager (Seq) or lazy (Iterator, Stream) evaluation strategies
  - Usually, list-like containers have many additional methods
    - ★ append, prepend, concat, fill, fold, scan, etc.

- All permutations of Seq("a", "b", "c")
- 2 All subsets of Set("a", "b", "c")
- 3 All subsequences of length 3 out of the sequence (1 to m)
- 4 All solutions of the "8 queens" problem
- **5** Generalize examples 1-3 to support arbitrary length n instead of 3
- Generalize example 4 to solve *n*-queens problem
- Transform Boolean formulas between CNF and DNF.

# Intuitions for pass/fail monads

Option, Either, Try, Future

- Container  $F^A$  can hold n = 1 or n = 0 values of type A
- Such containers will have methods to create "pass" and "fail" values

# Schematic example of a functor block program using the $\mathtt{Try}$ functor:

```
val result: Try[A] = for { // computations in the Try functor
  x ← Try(...) // first computation; may fail
  y = f(x) // no possibility of failure in this line
  if p(y) // the entire expression will fail if this is false
  z ← Try(g(x, y)) // may fail here
  r ← Try(...) // may fail here as well
} yield r // r is of type A, so result is of type Try[A]
```

- Computations may yield a result (n = 1), or may fail (n = 0)
- The functor block chains several such computations sequentially
  - Computations are sequential even if using the Future functor!
  - ▶ Once any computation fails, the entire functor block fails (0 \* n = 0)
  - Only if all computations succeed, the functor block returns one value
  - Filtering can also make the entire expression fail
- "Flat" functor block replaces a chain of nested if/else or match/case

# Working with pass/fail monads

#### Typical tasks for pass/fail monads:

- Perform a linear sequence of computations that may fail
- Avoid crashing on failure, instead return an error value

- Read values of Java properties, checking that they all exist
- Obtain values from Future computations in sequence
- Make arithmetic safe by returning error messages in Either
- Fail less: allow up to 2 computations out of n to throw an exception
- **5** Generalize example 3 to support up to k failures instead of 2

## Working with tree-like monads

#### Typical tasks for tree-like monads:

- Traverse a syntax tree, substitute subexpressions
- ???

- Implement variable substitution for a simple arithmetic language
- ???

# Single-value monads (non-standard containers)

Reader, Writer, Eval, Cont, State

- Container holds exactly 1 value, together with a "context"
- Usually, methods exist to insert a value and to work with the "context"

#### Typical tasks for single-value monads:

- Collecting extra information about computations along the way
- Chaining computations with a nonstandard evaluation strategy

- Dependency injection with the Reader monad
- Perform computations and log information about each step
- 3 Perform lazy or memoized computations in a sequence
- 4 A chain of asynchronous operations
- A sequence of steps that update state while returning results

#### Semimonad laws I: The intuitions

What properties of functor block programs do we expect to have?

- In  $x \leftarrow c$ , the value of x will go over items held in container c
- Manipulating items in container is followed by a generator:

```
x \leftarrow cont1
                                                                v \leftarrow cont1
      y = f(x)
                                                                         .map(x \Rightarrow f(x))
                                                                z \leftarrow cont2(y)
      z \leftarrow cont2(y)
cont1.flatMap(x \Rightarrow cont2(f(x))) = cont1.map(f).flatMap(y \Rightarrow cont2(y))
```

Manipulating items in container is preceded by a generator:

```
x \leftarrow cont1
                                                       x \leftarrow cont1
      y \leftarrow cont2(x)
                                                       z \leftarrow cont2(x)
      z = f(v)
                                                                  .map(f)
cont1.flatMap(cont2).map(f) = cont1.flatMap(x \Rightarrow cont2(x).map(f))
```

• After  $x \leftarrow c$ , further computations will use all those x

```
x \leftarrow cont
                                                              y \leftarrow for \{ x \leftarrow cont \}
y \leftarrow p(x)
                                                                                 yy \leftarrow p(x) } yield yy
z \leftarrow cont2(y)
                                                              z \leftarrow cont2(v)
```

 $cont.flatMap(x \Rightarrow p(x).flatMap(cont2)) = cont.flatMap(p).flatMap(cont2)$ 

#### Semimonad laws II: The laws for flatMap

To use the concise notation, denote flatMap by flm A semimonad  $S^A$  has  $flm^{[S,A,B]}: (A \Rightarrow S^B) \Rightarrow S^A \Rightarrow S^B$  with 3 laws:

$$\begin{array}{c|c}
\operatorname{flm} f^{A \Rightarrow B} & S^{B} & \operatorname{flm} g^{B \Rightarrow S^{C}} \\
S^{A} & & & & & & & & & & \\
\operatorname{flm} (f^{A \Rightarrow B} \circ g^{B \Rightarrow S^{C}}) & & & & & & & \\
\end{array}$$

2  $\operatorname{flm}\left(f^{A\Rightarrow S^B}\circ\operatorname{fmap}g^{B\Rightarrow C}\right)=\operatorname{flm}f\circ\operatorname{fmap}g$  (naturality in B)

$$S^{A} \xrightarrow{\text{flm } f^{A \Rightarrow S^{B}}} S^{B} \xrightarrow{\text{fmap } g^{B \Rightarrow C}} S^{C}$$

$$flm (f^{A \Rightarrow S^{B}} \circ fmap g^{B \Rightarrow C})$$

Is there a shorter formulation of the laws?

#### Semimonad laws III: The laws for flatten

The methods flatten (denoted by ftn) and flatMap are equivalent:

$$\operatorname{ftn}^{[S,A]}: S^{S^A} \Rightarrow S^A = \operatorname{flm}^{[S,S^A,A]}(m^{S^A} \Rightarrow m)$$

$$\operatorname{flm}(f^{A \Rightarrow S^B}) = \operatorname{fmap} f \circ \operatorname{ftn}$$

$$S^A \xrightarrow{\operatorname{flm}(f^{A \Rightarrow S^B})} S^{S^B}$$

It turns out that flatten has only 2 laws:



2 fmap  $(ftn^{[S]}) \circ ftn^{[S]} = ftn^{[S^S]} \circ ftn^{[S]}$  (associativity)



# Semimonad laws III: Deriving the laws for flatten

Denote for brevity  $q_{\uparrow} \equiv \operatorname{fmap}^{[S]} q$  for any function qExpress flm  $f = f_{\uparrow} \circ \text{ftn}$  and substitute that into flm's 3 laws:

- flm  $(f \circ g) = f_{\uparrow} \circ \text{flm } g \text{ gives } (f \circ g)_{\uparrow} \circ \text{ftn} = f_{\uparrow} \circ g_{\uparrow} \circ \text{ftn}$ - this law holds automatically due to functor composition law
- ②  $\mathsf{flm}\,(f\circ g_\uparrow)=\mathsf{flm}\,f\circ g_\uparrow \;\mathsf{gives}\;(f\circ h)_\uparrow\circ\mathsf{ftn}=f_\uparrow\circ\mathsf{ftn}\circ h;$ using the functor composition law, we reduce this to  $h_{\uparrow} \circ \text{ftn} = \text{ftn} \circ h$ - this is the naturality law for flatten
- §  $flm(f \circ flm g) = flm f \circ flm g$  with functor composition law gives  $f_{\uparrow} \circ g_{\uparrow \uparrow} \circ \text{ftn}_{\uparrow} \circ \text{ftn} = f_{\uparrow} \circ \text{ftn} \circ g_{\uparrow} \circ \text{ftn}$ ; using ftn's naturality and omitting the common factor  $f_{\uparrow} \circ g_{\uparrow\uparrow}$ , we get ftn's associativity:  $ftn_{\uparrow} \circ ftn = ftn \circ ftn$ 
  - flatten has the simplest type signature and the fewest laws
  - It is usually easy to check naturality!
    - ▶ Parametricity theorem: Any fully parametric code for a function of type  $F^A \Rightarrow G^A$  implements a natural transformation  $F \rightsquigarrow G$
  - Checking flatten's associativity needs more work

The cats library has a FlatMap type class, defining flatten via flatMap

# Semimonad laws IV: Checking the laws of flatten

- Implement flatten for these functors and check the laws (see code):
  - ▶ Option monad:  $F^A \equiv 1 + A$ ; ftn:  $1 + (1 + A) \Rightarrow 1 + A$
  - ▶ Either monad:  $F^A \equiv Z + A$ ; ftn :  $Z + (Z + A) \Rightarrow Z + A$
  - ▶ List monad:  $F^A \equiv \text{List}^A$ ; ftn : List List  $\Rightarrow \text{List}^A$
  - ▶ Writer monad:  $F^A \equiv A \times W$ ; ftn :  $(A \times W) \times W \Rightarrow A \times W$
  - ▶ Reader monad:  $F^A \equiv R \Rightarrow A$ ; ftn :  $(R \Rightarrow (R \Rightarrow A)) \Rightarrow R \Rightarrow A$
  - ▶ State:  $F^A \equiv S \Rightarrow A \times S$ ; ftn :  $(S \Rightarrow (S \Rightarrow A \times S) \times S) \Rightarrow S \Rightarrow A \times S$
  - ► Continuation monad:  $F^A \equiv (A \Rightarrow R) \Rightarrow R$ ; ftn :  $((((A \Rightarrow R) \Rightarrow R) \Rightarrow R) \Rightarrow (A \Rightarrow R) \Rightarrow R$
- Code implementing these flatten functions is fully parametric in A
  - Naturality of these functions follows from parametricity theorem
- Associativity needs to be checked for each monad!
- Example of a useful semimonad that is *not* a full monad:
  - $F^A \equiv A \times V \times W; \text{ ftn } ((a \times v_1 \times w_1) \times v_2 \times w_2) = a \times v_1 \times w_2$
- Examples of non-associative (i.e. wrong) implementations of flatten:
  - $F^A \equiv A \times W \times W; \text{ ftn } ((a \times v_1 \times v_2) \times w_1 \times w_2) = a \times w_2 \times w_1$
  - $ightharpoonup F^A \equiv \operatorname{List}^A$ , but flatten concatenates the nested lists in reverse order

#### Exercises I

- Confucius gave wisdom on each of the 7 days of a week. Sometimes the wise proverbs were hard to remember. If Confucius forgets what he said on a given day, he also forgets what he said on all the previous days of the week. Is this setup described by a filterable functor?
- Define evenFilter(p) on an IndexedSeg[T] such that a value x: T is retained if p(x)=true and only if the sequence has an even number of elements y for which p(y)=false. Does this define a filterable functor?

Implement filter for these functors if possible (law checking optional):

- 3  $F^A \equiv Int + String \times A \times A \times A$
- final case class Q[A, Z](id: Long, user1: Option[(A, Z)], user2: Option[(A, Z)]) – with respect to the type parameter A
- **5**  $F^A = \text{MyTree}^A$  defined recursively as  $F^A \equiv 1 + A \times F^A \times F^A$
- final case class R[A](x: Int, y: Int, z: A, data: List[A]), where the standard functor List already has withFilter defined
- Show that  $C^A \equiv A + A \times A \Rightarrow 1 + Z$  is a filterable contrafunctor

## Filterable functors: The laws in depth I

Is there a shorter formulation of the laws that is easier to remember?

- Intuition: When p(x) = false, replace x: A by 1: Unit in F[A]
  - ▶ (1) How to replace x by 1 in F[A] without breaking the types?
  - ▶ (2) How to transform the resulting type back to F[A]?
- We could do (1) if instead of  $F^A$  we had  $F^{1+A}$  i.e. F[Option[A]]
  - ▶ Now use filter to replace A by 1 in each item of type 1 + A
  - ▶ Get  $F^{1+A}$  from  $F^A$  using inflate :  $F^A \Rightarrow F^{1+A} = \text{fmap} (\text{Some}^{A \Rightarrow 1+A})$
  - ► Filter  $F^{1+A} \Rightarrow F^{1+A}$  using fmap  $(x^{1+A} \Rightarrow \text{filter}_{Opt}(p^{A \Rightarrow Boolean})(x))$

filter 
$$p: F^A \xrightarrow{\text{inflate}} F^{1+A} \xrightarrow{\text{fmap(filter}_{Opt}p)} F^{1+A} \xrightarrow{\text{deflate}} F^A$$

- Doing (2) means defining a function deflate: F[Option[A]] ⇒ F[A] ▶ standard library already has flatten[T]: Seq[Option[T]] ⇒ Seq[T]
- Simplify fmap(Some<sup> $A\Rightarrow 1+A$ </sup>)  $\circ$  fmap (filter<sub>Opt</sub>p) = fmap (bop (p)) where we
- defined bop(p):  $(A \Rightarrow 1 + A) \equiv x \Rightarrow Some(x)$ .filter(p)
- In this way, express filter through deflate (see example code)
  - filter  $p = \text{fmap}(\text{bop } p) \circ \text{deflate.} \text{Notation: bop } p \text{ is bop } (p)$ , like  $\cos x$ filter  $p: F^A \xrightarrow{\text{fmap}(\text{bop } p)} F^{1+A} \xrightarrow{\text{deflate}} F^A$

## Filterable functors: Using deflate

- So far we have expressed filter through deflate
- We can also express deflate through filter (assuming law 4 holds):

deflate: 
$$F^{1+A} \xrightarrow{\text{filter(.nonEmpty)}} F^{1+A} \xrightarrow{\text{fmap(.get)}} F^A$$
def deflate[F[\_],A](foa: F[Option[A]]): F[A] =
foa.filter(\_.nonEmpty).map(\_.get) // \_.get is  $0 + x^A \Rightarrow x^A$ 
// for F = Seq, this would be foa.collect { case Some(x)  $\Rightarrow$  x }
// for arbitrary functor F we need to use the partial function, \_.get

- This means deflate and filter are computationally equivalent
  - ► We could specify filterable functors by implementing deflate
    - ★ The implementation of filter would then be derived by library
- Use deflate to verify that some functors are certainly not filterable:
  - $F^A = A + A \times A$ . Write  $F^{1+A} = 1 + A + (1+A) \times (1+A)$ 
    - **★** cannot map  $F^{1+A} \Rightarrow F^A$  because we do not have  $1 \to A$
  - ►  $F^A = \text{Int} \Rightarrow A$ . Write  $F^{1+A} = \text{Int} \Rightarrow 1 + A$ 
    - \* type signature of deflate would be (Int  $\Rightarrow 1 + A$ )  $\Rightarrow$  Int  $\Rightarrow A$
    - **★** cannot map  $F^{1+A} \Rightarrow F^A$  because we do not have  $1 + A \rightarrow A$
- deflate is easier to implement and to reason about

## \* Filterable functors: The laws in depth II

- We were able to define deflate only by assuming that law 4 holds
- Now, law 4 is satisfied automatically if filter is defined via deflate!
  - ▶ Denote  $\psi_p^{F^A \Rightarrow F^{1+A}} \equiv \text{fmap (bop } p)$  for brevity, then filter  $p = \psi_p \circ \text{deflate}$
  - ▶ Law 4 then becomes:  $\psi_p \circ \text{deflate} \circ \text{fmap } f^{A \Rightarrow B} = \psi_p \circ \text{deflate} \circ \text{fmap } f_{|p|}$



- We would like to interchange deflate and fmap in both sides
  - ▶ We need a *naturality* law; let's express law 1 through deflate:

fmap 
$$f^{A\Rightarrow B}\circ\psi_{p}\circ \mathsf{deflate}^{F,B}=\psi_{f\circ p}\circ \mathsf{deflate}^{F,A}\circ \mathsf{fmap}\ f^{A\Rightarrow B}$$



Can we simplify fmap  $f \circ \psi_p = \text{fmap } f \circ \text{fmap (bop } p) = \text{fmap } (f \circ \text{bop } p)$ ?

## \* Filterable functors: The laws in depth III

• Have property:  $f^{A\Rightarrow B} \circ \text{bop}(p^{B\Rightarrow \text{Boolean}}) = \text{bop}(f \circ p) \circ \text{fmap}^{\text{Opt}} f$  (see code)

$$A \xrightarrow{f^{A \Rightarrow B}} B \xrightarrow{\text{bop } p} 1 + B$$

$$1 + A \xrightarrow{\text{fmap}^{Opt}_f} B$$

We can now rewrite Law 1 as

 $fmap(bop(f \circ p)) \circ fmap(fmap^{Opt}f) \circ deflate = fmap(bop(f \circ p)) \circ deflate \circ fmapf$ 

Remove common prefix fmap  $(bop (f \circ p)) \circ ...$  from both sides:

 $fmap(fmap^{Opt}f^{A\Rightarrow B}) \circ deflate^{F,B} = deflate^{F,A} \circ fmap f^{A\Rightarrow B} - law 1 for deflate$ 



- deflate:  $F^{1+A} \Rightarrow F^A$  is a natural transformation (has naturality law)
  - Example:  $F^A = 1 + A \times A$
  - $F^{1+A} = 1 + (1+A) \times (1+A) = 1 + 1 \times 1 + A \times 1 + 1 \times A + A \times A$
- natural transformations map containers  $G^A \Rightarrow H^A$  by rearranging data in them

# \* Filterable functors: The laws in depth IV

• The naturality law for deflate:

$$\mathsf{fmap}\,(\mathsf{fmap}^{\mathsf{Opt}}f^{A\Rightarrow B})\circ\mathsf{deflate}^{F,B}=\mathsf{deflate}^{F,A}\circ\mathsf{fmap}\,f^{A\Rightarrow B}$$
 Law 4 expressed via  $\mathsf{deflate}$ :



$$\psi_{P} \circ \mathsf{deflate}^{F,A} \circ \mathsf{fmap} \ f^{A \Rightarrow B} = \psi_{P} \circ \mathsf{deflate}^{F,A} \circ \mathsf{fmap} \ f_{|P}$$

Use naturality to interchange deflate and fmap in both sides of law 4:

```
\psi_p \circ \mathsf{fmap}(\mathsf{fmap}^{\mathsf{Opt}} f) \circ \mathsf{deflate}^{F,B} = \psi_p \circ \mathsf{fmap}(\mathsf{fmap}^{\mathsf{Opt}} f_{|p}) \circ \mathsf{deflate}^{F,B}
                           [omit deflate<sup>F,B</sup> from both sides; expand \psi_p]
                                    bop p \circ \operatorname{fmap}^{\operatorname{Opt}} f = \operatorname{bop} p \circ \operatorname{fmap}^{\operatorname{Opt}} f_{|p|} - check this by hand:
```

```
x \Rightarrow Some(x).filter(p).map(f)
x \Rightarrow Some(x).filter(p).map { x if p(x) <math>\Rightarrow f(x) }
```

• These functions are equivalent because law 4 holds for Option

## Filterable functors: The laws in depth V

Maybe  $\psi_p \circ \text{deflate}$  is easier to handle than deflate? Let us define

$$\begin{array}{c} \mathsf{fmapOpt}^{F,A,B}(f^{A\Rightarrow 1+B}): F^A \Rightarrow F^B = \mathsf{fmap}\ f \circ \mathsf{deflate}^{F,B} \\ \\ f^{\mathsf{fmap}\ f^{A\Rightarrow 1+B}} F^{1+B} & \overset{\mathsf{deflate}^{F,B}}{\longrightarrow} F^B \end{array}$$

- fmapOpt and deflate are equivalent: deflate  $^{F,A} = \text{fmapOpt}^{F,1+A,A}(\text{id}^{1+A\Rightarrow 1+A})$
- Express laws 1 3 in terms of fmapOpt: do they get simpler?
  - ► Express filter through fmapOpt: filter  $p = \text{fmapOpt}^{F,A,A}$  (bop p)
  - ▶ Consider the expression needed for law 2:  $x \Rightarrow p_1(x) \land p_2(x)$
  - ▶ bop  $(x \Rightarrow p_1(x) \land p_2(x)) = x^A \Rightarrow (bop p_1)(x)$ .flatMap  $(bop p_2)$  see code
    - ★ Denote this computation by ⋄<sub>Opt</sub> and write

$$q_1^{A\Rightarrow 1+B}\diamond_{\mathsf{Opt}}q_2^{B\Rightarrow 1+C}\equiv x^A\Rightarrow q_1(x).\mathsf{flatMap}\left(q_2
ight)$$

- ▶ Similar to composition of functions, except the types are  $A \Rightarrow 1 + B$ 
  - ★ This is a particular case of **Kleisli composition**; the general case:  $\diamond_M: (A \Rightarrow M^B) \Rightarrow (B \Rightarrow M^C) \Rightarrow (A \Rightarrow M^C)$ ; we set  $M^A \equiv 1 + A$
  - **★** The **Kleisli identity** function:  $id_{\diamond_{\mathbf{Ont}}}^{A\Rightarrow 1+A} \equiv x^{A} \Rightarrow \mathsf{Some}(x)$
  - ★ Kleisli composition ⋄<sub>Opt</sub> is associative and respects the Kleisli identity!
  - \* fmapOpt lifts a Kleisliopt function  $f^{A\Rightarrow 1+B}$  into the functor F

# Filterable functors: The laws in depth VI

Simplifying down to two laws

- Only two laws are necessary for fmapOpt!
- Identity law (covers old law 3):

$$\mathsf{fmapOpt}\left(\mathsf{id}_{\diamond_{\mathbf{Opt}}}^{A\Rightarrow 1+A}\right) = \mathsf{id}^{F^A\Rightarrow F^A}$$

Composition law (covers old laws 1 and 2):

$$\mathsf{fmapOpt}\,(f^{A\Rightarrow 1+B}) \circ \mathsf{fmapOpt}\,(g^{B\Rightarrow 1+\mathcal{C}}) = \mathsf{fmapOpt}\,(f \diamond_{\mathsf{Opt}} g)$$



- The two laws for fmapOpt are very similar to the two functor laws
  - ▶ Both of them use more complicated types than the old laws
  - Conceptually, the new laws are simpler (lift  $f^{A\Rightarrow 1+B}$  into  $F^A\Rightarrow F^B$ )

# \* Filterable functors: The laws in depth VII

Showing that old laws 1-3 follow from the identity and composition laws for fmapOpt

• Old law 3 is *equivalent* to the identity law for fmapOpt:

$$\mathsf{filter}\,(x^A\Rightarrow\mathsf{true})=\mathsf{fmap}\,(x^A\Rightarrow\mathsf{0}+x)\circ\mathsf{deflate}=\mathsf{fmapOpt}\,(\mathsf{id}_{\diamond_{\mathbf{Opt}}})=\mathsf{id}^{F^A\Rightarrow F^A}$$

- Derive old law 2: need to work with  $q_{1,2} \equiv bop(p_{1,2}) : A \Rightarrow 1 + A$ 
  - ▶ The Boolean conjunction  $x \Rightarrow p_1(x) \land p_2(x)$  corresponds to  $q_1 \diamond_{\mathsf{Opt}} q_2$
  - ▶ Apply the composition law to Kleisli functions of types  $A \Rightarrow 1 + A$ :

$$\begin{aligned} & \text{filter } p_1 \circ \text{filter } p_2 = \text{fmapOpt } q_1 \circ \text{fmapOpt } q_2 \\ &= \text{fmapOpt } (q_1 \diamond_{\mathsf{Opt}} q_2) = \text{fmapOpt } (\mathsf{bop} \, (x \Rightarrow p_1(x) \land p_2(x))) \end{aligned}$$

- Derive old law 1:
  - ▶ express filter through fmapOpt; old law 1 becomes fmap  $f \circ \text{fmapOpt} (\text{bop } p) = \text{fmapOpt} (\text{bop} (f \circ p)) \circ \text{fmap } f \text{eq. (*)}$
  - ▶ lift  $f^{A\Rightarrow B}$  to Kleisli<sub>Opt</sub> by defining  $k_f^{A\Rightarrow 1+B} = f \circ \mathrm{id}_{\diamond_{\mathrm{Opt}}}$ ; then we have fmapOpt  $(k_f)$  = fmap  $k_f \circ \mathrm{deflate} = \mathrm{fmap} f \circ \mathrm{fmap} \, \mathrm{id}_{\diamond_{\mathrm{Opt}}} \circ \mathrm{deflate} = \mathrm{fmap} f$
  - rewrite eq. (\*) as fmapOpt  $(k_f \diamond_{\mathsf{Opt}} \mathsf{bop}\, p) = \mathsf{fmapOpt}\, (\mathsf{bop}\, (f \circ p) \diamond_{\mathsf{Opt}} k_f)$
  - ▶ it remains to show that  $k_f \diamond_{\mathsf{Opt}} \mathsf{bop} \, p = \mathsf{bop} \, (f \circ p) \diamond_{\mathsf{Opt}} k_f$
  - ▶ use the properties  $k_f \diamond_{\mathsf{Opt}} q = f \circ q$  and  $q \diamond_{\mathsf{Opt}} k_f = q \circ \mathsf{fmap}^{\mathsf{Opt}} f$ , and  $f \circ \mathsf{bop} p = \mathsf{bop} (f \circ p) \circ \mathsf{fmap}^{\mathsf{Opt}} f$  (property from slide 11)

## Summary: The methods and the laws

Filterable functors can be defined via filter, deflate, or fmapOpt

- All three methods are equivalent but have different roles:
  - ► The easiest to use in program code is filter / withFilter
  - ► The easiest type signature to implement and reason about is deflate
  - Conceptually, the laws are easiest to remember with fmapOpt
- \* The 2 laws for fmapOpt are the 2 functor laws with a Kleisli "twist"
- \* Category theory accommodates this via a generalized definition of functors as liftings between "twisted" types. Compare:
  - fmap :  $(A \Rightarrow B) \Rightarrow F^A \Rightarrow F^B$  ordinary container ("endofunctor")
  - ▶ contrafmap :  $(B \Rightarrow A) \Rightarrow F^A \Rightarrow F^B$  lifting from reversed functions
  - ▶ fmapOpt :  $(A \Rightarrow 1 + B) \Rightarrow F^A \Rightarrow F^B$  lifting from Kleisli<sub>Opt</sub>-functions
- CT gives us some *intuitions* about how to derive better laws:
  - look for type signatures that resemble a generalized sort of "lifting"
  - look for natural transformations and use the naturality law
- However, CT does not directly provide any derivations for the laws
  - you will not find the laws for filter or deflate in any CT book
  - ▶ CT is abstract, only gives hints about possible further directions
    - ★ investigate functors having "liftings" with different type signatures
    - ★ replace Option in the Kleisli<sub>Opt</sub> construction by another functor

#### Structure of filterable functors

How to recognize a filterable functor by its type?

Intuition from deflate: reshuffle data in  $F^A$  after replacing some A's by 1

- "reshuffling" usually means reusing different parts of a disjunction Some constructions of exponential-polynomial filterable functors
  - $F^A = Z$  (constant functor) for a fixed type Z (define fmapOpt f = id)
    - Note:  $F^A = A$  (identity functor) is *not* filterable
  - ②  $F^A \equiv G^A \times H^A$  for any filterable functors  $G^A$  and  $H^A$

  - $F^A \equiv G^{H^A}$  for any functor  $G^A$  and filterable functor  $H^A$
  - $F^A \equiv 1 + A \times G^A$  for a filterable functor  $G^A$ 
    - Note: pointed types P are isomorphic to 1 + Z for some type Z
      - **★** Example of non-trivial pointed type:  $A \Rightarrow A$
      - **\*** Example of non-pointed type:  $A \Rightarrow B$  when A is different from B
    - So  $F^A \equiv P + A \times G^A$  where P is a pointed type and  $G^A$  is filterable
    - ▶ Also have  $F^A \equiv P + A \times A \times ... \times A \times G^A$  similarly
  - **6**  $F^A \equiv G^A + A \times F^A$  (recursive) for a filterable functor  $G^A$
  - $F^A \equiv G^A \Rightarrow H^A$  if contrafunctor  $G^A$  and functor  $H^A$  both filterable
    - ▶ Note: the functor  $F^A \equiv G^A \Rightarrow A$  is not filterable

# \* Worked examples II: Constructions of filterable functors I

- (2) The fmapOpt laws hold for  $F^A \times G^A$  if they hold for  $F^A$  and  $G^A$ 
  - For  $f^{A\Rightarrow 1+B}$ , get fmapOpt<sub>E</sub> $(f): F^A \Rightarrow F^B$  and fmapOpt<sub>G</sub> $(f): G^A \Rightarrow G^B$
  - Define fmapOpt<sub>F\colored</sub>  $f \equiv p^{F^A} \times q^{G^A} \Rightarrow \text{fmapOpt}_F(f)(p) \times \text{fmapOpt}_G(f)(q)$
  - Identity law:  $f = id_{\Diamond_{Opt}}$ , so fmapOpt<sub>F</sub> f = id and fmapOpt<sub>G</sub> f = id
    - ▶ Hence we get fmapOpt<sub>F+G</sub> $(f)(p \times q) = id(p) \times id(q) = p \times q$
  - Composition law:

$$\begin{split} &(\mathsf{fmapOpt}_{F \times G} \, f_1 \circ \mathsf{fmapOpt}_{F + G} \, f_2)(p \times q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_2) \, (\mathsf{fmapOpt}_F(f_1)(p) \times \mathsf{fmapOpt}_G(f_1)(q)) \\ &= (\mathsf{fmapOpt}_F \, f_1 \circ \mathsf{fmapOpt}_F \, f_2)(p) \times (\mathsf{fmapOpt}_G \, f_1 \circ \mathsf{fmapOpt}_G \, f_2) \, (q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} \, f_2)(p) \times \mathsf{fmapOpt}_G(f_1 \diamond f_2)(q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_1 \diamond_{\mathsf{Opt}} \, f_2)(p \times q) \end{split}$$

- Exactly the same proof as that for functor property for  $F^A \times G^A$ 
  - ▶ this is because fmapOpt corresponds to a generalized functor
- New proofs are necessary only when using non-filterable functors
  - ▶ these are used in constructions 4 6

# \* Worked examples II: Constructions of filterable functors II

- (5) The fmapOpt laws hold for  $F^A \equiv 1 + A \times G^A$  if they hold for  $G^A$ 
  - For  $f^{A\Rightarrow 1+B}$ , get fmapOpt<sub>G</sub> $(f): G^A \Rightarrow G^B$
  - Define fmapOpt<sub>F</sub>(f)(1 +  $a^A \times q^{G^A}$ ) by returning 0 +  $b \times$  fmapOpt<sub>G</sub>(f)(q) if the argument is 0 +  $a \times q$  and f(a) = 0 + b, and returning 1 + 0 otherwise
  - Identity law:  $f = id_{\diamond_{Ont}}$ , so f(a) = 0 + a and fmapOpt<sub>G</sub>f = id
    - ▶ Hence we get fmapOpt<sub>F</sub>(id<sub>Opt</sub>) $(1 + a \times q) = 1 + a \times q$
  - Composition law: need only to check for arguments  $0 + a \times q$ , and only when  $f_1(a) = 0 + b$  and  $f_2(b) = 0 + c$ , in which case  $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 0 + c$ ; then

$$\begin{split} &(\mathsf{fmapOpt}_F \, f_1 \circ \mathsf{fmapOpt}_F \, f_2)(0 + a \times q) \\ &= \mathsf{fmapOpt}_F(f_2) \, (\mathsf{fmapOpt}_F(f_1)(0 + a \times q)) \\ &= \mathsf{fmapOpt}_F(f_2) \, (0 + b \times \mathsf{fmapOpt}_G(f_1)(q)) \\ &= 0 + c \times (\mathsf{fmapOpt}_G \, f_1 \circ \mathsf{fmapOpt}_G \, f_2)(q) \\ &= 0 + c \times \mathsf{fmapOpt}_G(f_1 \diamond_{\mathsf{Opt}} \, f_2)(q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} \, f_2)(0 + a \times q) \end{split}$$

This is a "greedy filter": if f(a) is empty, will delete all data in  $G^A$ 

# \* Worked examples II: Constructions of filterable functors III

- (6) The fmapOpt laws hold for  $F^A \equiv G^A + A \times F^A$  if they hold for  $G^A$ 
  - For  $f^{A\Rightarrow 1+B}$ , we have fmapOpt<sub>G</sub>(f):  $G^A \Rightarrow G^B$  and fmapOpt'<sub>F</sub>(f):  $F^A \Rightarrow F^B$  (for use in recursive arguments as the inductive assumption)
  - Define fmapOpt<sub>F</sub>(f)( $q^{G^A} + a^A \times p^{F^A}$ ) by returning  $0 + \text{fmapOpt}'_F(f)(p)$  if f(a) = 1 + 0, and fmapOpt<sub>G</sub>(f)(q) +  $b \times \text{fmapOpt}'_F(f)(p)$  otherwise
  - Identity law:  $id_{\diamond_{\mathbf{Opt}}}(x) \neq 1 + 0$ , so  $fmapOpt_F(id_{\diamond_{\mathbf{Opt}}})(q + a \times p) = q + a \times p$
  - Composition law:
    - $(\mathsf{fmapOpt}_F(f_1) \circ \mathsf{fmapOpt}_F(f_2))(q + a \times p) = \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} f_2)(q + a \times p)$
  - For arguments q+0, the laws for  $G^A$  hold; so assume arguments  $0+a\times p$ . When  $f_1(a)=0+b$  and  $f_2(b)=0+c$ , the proof of the previous example will go through. So we need to consider the two cases  $f_1(a)=1+0$  and  $f_1(a)=0+b$ ,  $f_2(b)=1+0$
  - If  $f_1(a) = 1 + 0$  then  $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 1 + 0$ ; to show  $\mathsf{fmapOpt}_F'(f_2)(\mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_1 \diamond_{\mathsf{Opt}} f_2)(p)$ , use the inductive assumption about  $\mathsf{fmapOpt}_F'$  on p
  - If  $f_1(a) = 0 + b$  and  $f_2(b) = 1 + 0$  then  $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 1 + 0$ ; to show  $\mathsf{fmapOpt}_F(f_2)(0 + b \times \mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_1 \diamond_{\mathsf{Opt}} f_2)(p)$ , rewrite  $\mathsf{fmapOpt}_F(f_2)(0 + b \times \mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_2)(\mathsf{fmapOpt}_F'(f_1)(p))$  and again use the inductive assumption about  $\mathsf{fmapOpt}_F'$  on p

This is a "list-like filter": if f(a) is empty, will recurse into nested  $F^A$  data

# Worked examples II: Constructions of filterable functors IV

Use known filterable constructions to show that

$$F^A \equiv (Int \times String) \Rightarrow (1 + Int \times A + A \times (1 + A) + (Int \Rightarrow 1 + A + A \times A \times String))$$
 is a filterable functor

- Instead of implementing Filterable and verifying laws by hand, we analyze the structure of this data type and use known constructions
- Define some auxiliary functors that are parts of the structure of  $F^A$ ,
  - $ightharpoonup R_1^A = (Int \times String) \Rightarrow A \text{ and } R_2^A = Int \Rightarrow A$
  - $G^A = 1 + \text{Int} \times A + A \times (1 + A)$  and  $H^A = 1 + A + A \times A \times \text{String}$
- Now we can rewrite  $F^A = R_1 [G^A + R_2 [H^A]]$ 
  - $\triangleright$   $G^A$  is filterable by construction 5 because it is of the form  $G^A = 1 + A \times K^A$  with filterable functor  $K^A = 1 + \text{Int} + A$
  - $\triangleright$   $K^A$  is of the form 1+A+X with constant type X, so it is filterable by constructions 1 and 3 with the Option functor 1 + A
  - ▶  $H^A$  is filterable by construction 5 with  $H^A = 1 + A \times (1 + A \times \text{String})$ , while  $1 + A \times String$  is filterable by constructions 5 and 1
- Constructions 3 and 4 show that  $R_1 \left[ G^A + R_2 \left[ H^A \right] \right]$  is filterable Note that there are more than one way of implementing Filterable here

#### \* Exercises II

- Implement a Filterable instance for type F[T] = G[H[T]] assuming that the functor H[T] already has a Filterable instance (construction 4). Verify the laws rigorously (i.e. by calculations, not tests).
- ② For type F[T] = Option[Int ⇒ Option[(T, T)]], implement a Filterable instance. Show that the filterable laws hold by using known filterable constructions (avoiding explicit proofs or tests).
- Implement a Filterable instance for  $F^A \equiv G^A + \operatorname{Int} \times A \times A \times F^A$  (recursive) for a filterable functor  $G^A$ . Verify the laws rigorously.
- **3** Show that  $F^A = 1 + A \times G^A$  is in general *not* filterable if  $G^A$  is an arbitrary (non-filterable) functor; it is enough to give an example.
- Show that  $F^A = 1 + G^A + H^A$  is filterable if  $1 + G^A$  and  $1 + H^A$  are filterable (even when  $G^A$  and  $H^A$  are by themselves not filterable).
- **6** Show that the functor  $F^A = A + (Int \Rightarrow A)$  is not filterable.
- **②** Show that one can define deflate:  $C^{1+A} \Rightarrow C^A$  for any contrafunctor  $C^A$  (not necessarily filterable), similarly to how one can define inflate:  $F^A \Rightarrow F^{1+A}$  for any functor  $F^A$  (not necessarily filterable).