Escuela Rafael Díaz Serdán

Ciencias y Tecnología: Física 2° de Secundaria (2022-2023)

Examen de la Unidad 3

Prof.: Julio César Melchor Pinto

Nombre del alumno:

Soluciones propuestas

Fecha:

Instrucciones:

Lee con atención cada pregunta y realiza lo que se te pide. Desarrolla tus respuestas en el espacio determinado para cada solución. De ser necesario, utiliza una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la solución propuesta.

Reglas:

Al comenzar este examen, aceptas las siguientes reglas:

- × No se permite salir del salón de clases.
- X No se permite intercambiar o prestar ningún tipo de material.
- X No se permite el uso de celular o cualquier otro dispositivo.
- X No se permite el uso de apuntes, libros, notas o formularios.
- X No se permite **mirar** el examen de otros alumnos.
- × No se permite la comunicación oral o escrita con otros alumnos.

Si no consideraste alguna de estas reglas, comunícalo a tu profesor.

Aprendizajes a evaluar:

- Describe la generación, diversidad y comportamiento de las ondas electromagnéticas como resultado de la interacción entre electricidad y magnetismo.
- Describe cómo se lleva a cabo la exploración de los cuerpos celestes por medio de la detección de las ondas electromagnéticas que emiten.
- Describe algunos avances en las características y composición del Universo (estrellas, galaxias y otros sistemas).
- 🙎 Describe las características y dinámica del Sistema Solar.
- Identifica algunos aspectos sobre la evolución del Universo.

Calificación:

Pregunta	1	2	3	4	5
Puntos	10	4	20	6	10
Obtenidos					
Pregunta	6	7	8	9	Total
Puntos	20	10	10	10	100
Obtenidos					

Frecuencia y longitud de onda

La frecuencia f de una onda electromagnética es:

$$f = \frac{\nu}{\lambda}$$
 y $\lambda = \frac{\nu}{f}$ (1)

donde ν es la velocidad de propagación de la onda ($\nu=3\times10^8~{\rm m/s})$ y λ la longitud de onda.

Energía de un fotón

La energía E asociada a dicha onda es:

$$E = h \times f \tag{2}$$

donde h se conoce como constante de Planck $(h = 6.626 \times 10^{-34} \text{ Js}).$

- 1 [_ de 10 pts] Relaciona cada grupo de galaxias con su descripción.
 - 1a) Grupo formado por la Vía Láctea y unas 30
 1c) Grupo de galaxias cuyos tamaños típicos son de 2 galaxias más.

 □
 a 3 Mpc.
 - (1b) Grupo formado por la Vía Láctea y otras 14
 galaxias gigantes que integra una estructura en
 forma de anillo.
 - Grupo formado por cúmulos de galaxias.

☐ Supercúmulo

☐ Cúmulos de galaxias

☐ Concilio de Gigantes

☐ Grupo local

- 2 | de 4 pts | Elige la respuesta correcta.
 - 2a La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.
- (2b) Indica que el Universo se expande.

- A. Ley de Hook
- B. Ley de Faraday
- C. Ley de Hubble
- D. Ley de Moore

- A. El corrimiento al azul de la luz que emiten las galaxias.
- B. El corrimiento al rojo de la luz que emiten las galaxias.
- C. Todas las galaxias se alejan de la Vía Láctea.
- D. La Teoría de la Relatividad General
- (3) [_de 20 pts] Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia $(1/s)$	Energía (J)
Rayos gamma	1.2×10^{-11}	2.5×10^{19}	1.6565×10^{-14}
Luz visible	3×10^{-7}	1×10^{15}	6.262×10^{-19}
Ondas de radio	1.5 $\times 10^5$	2×10^3	1.3252×10^{-31}

Solución:

Rayos gamma:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1.2 \times 10^{-11}} = 2.5 \times 10^{19} \text{ 1/s} \qquad E = h \times f = 6.626 \times 10^{-34} \times 2.5 \times 10^{19} = 1.6565 \times 10^{-14} \text{ J}$$

Luz visible:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{15}} = 3 \times 10^{-7} \text{ m} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{15} = 6.262 \times 10^{-19} \text{ J}$$

Ondas de radio:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{2 \times 10^3} = 1.5 \times 10^5 \text{ m} \qquad E = h \times f = 6.626 \times 10^{-34} \times 2 \times 10^3 = 1.3252 \times 10^{-31} \text{ J}$$

- 4 [_de 6 pts] Elige la respuesta correcta.
 - (4a) Células receptoras de luz capaces de percibir colores, pero para que funcionen es necesario que haya suficiente luz.
 - A. Bastones
 - B. Esferas
 - C. Conos
 - D. Rizos
 - 4b Perturbación eléctrica que se genera cuando una neurona recibe un estímulo.
 - A. Impulso eléctrico
 - B. Impulso nervioso
 - C. Impulso magnético
 - D. Impulso atómico
 - (4c) Pulso eléctrico que se propaga a través de la neurona.
 - A. Potencial de acción
 - B. Potencial eléctrico
 - C. Potencial magnético
 - D. Energía potencial
- 5 [_de 10 pts] Señala si son verdaderas o falsas las siguientes afirmaciones.
 - (5a) Cuando se viaja de norte a sur, o viceversa, la altura aparente de las estrellas cambia.
 - A. Verdadero
 - B. Falso
 - (5b) La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - A. Verdadero
 - B. Falso
 - (5c) La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - A. Verdadero
 - B. Falso
 - (5d) En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - A. Verdadero
 - B. Falso
 - (5e) El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - A. Verdadero
 - B. Falso

$$d = vi$$

6a ¿A cuántos metros equivale un parsec?

Considera que un año tiene 365 días y que la velocidad de la luz es 3×10^8 m/s.

Solución:

Usando la fórmula d = vt, donde d es la distancia, v es la velocidad y t es el tiempo, la distancia d que hay en un año luz es:

$$\begin{split} d &= vt \\ &= \left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right) \left(1 \text{ año}\right) \\ &= \left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right) \left(1 \text{ año}\right) \cdot \left(\frac{365 \text{ d/s}}{1 \text{ año}}\right) \cdot \left(\frac{24 \text{ hera}}{1 \text{ d/s}}\right) \cdot \left(\frac{60 \text{ pin}}{1 \text{ hera}}\right) \cdot \left(\frac{60 \text{ s}}{1 \text{ pin}}\right) \\ &= 9.46 \times 10^{15} \text{ m} \end{split}$$

Si 1 año luz equivale a 9.46×10^{15} m, entonces 1pc=3.26 años luz $\cdot9.46\times10^{15}$ m = 3.08×10^{16} m

$$t = \frac{d}{v}$$

¿En cuánto tiempo "chocará" con ella?

Considea como el kiloparsec, 1 kpc = 10^3 pc, y el megaparsec, 1 Mpc = 10^6 pc.

Solución:

Sabemos que 1 pc =
$$3.08\times10^{13}$$
 km, entonces

650 kpc = 650×10^3 pc = $650 \times 10^3 \times 3.08 \times 10^{13}$ km = 2.002×10^{19} km Usando la fórmula $t = \frac{d}{v}$, el tiempo t en segundos es:

$$t = \frac{2.002 \times 10^{19} \text{ km}}{350 \text{ km/s}}$$

= $5.72 \times 10^{16} \text{ s}$
= $1,812.5 \text{ millones de años}$

7 [_de 10 pts] Relaciona cada enunciado con su respue	sta.	
7a Es un indicador de su distancia si se conoce cu luminosa es una estrella.	ıán	☐ Radiotelescopios
7b) Nos indica la temperatura de una estrella.		☐ El brillo
7c Telescopios que permiten observar las ondas radio emitidas por algunos cuerpos celestes. 7d Radiación que emiten algunos cuerpos celestes o nos permite obtener nueva afirmación acerca ellos.	□ que	☐ Electromagnética ☐ El color
8 de 10 pts Elige la respuesta correcta.		
(8a) Instrumento gracias al cual es posible observa: A. Microscopio B. Estetoscopio C. Telescopio D. Electroscopio	r cuerpos co	erestes muy rejanos.
8b) Variación aparente de la posición de un objeto	al cambia	r la posición del observador.
 A. Eclipse B. Declinación C. Transformación D. Paralaje 		
8c Aparato que sirve para medir ángulos muy peq	ueños que a	ayudó a medir la distancia a la cual se encuentran
algunos objetos celestes. A. Vernier B. Micrómetro C. Astrolabio D. Transportador	•	
8d Técnica gracias a la cual se puede comparar e	el cambio e	n la posición de una estrella al transcurrir cierto
período de tiempo.		
A. Radiografía		
B. Radiometría		
C. Fotografía		
D. Espectroscopía		

 2° de Secundaria (2022-2023)

- 9 [_del0pts] Elige la respuesta correcta a cada inciso.
 - (9a) Longitud del diámetro del Universo.
 - A. Un millón de años luz.
 - B. Cien mil millones de años luz.
 - C. Un billón de años luz.
 - D. Mil millones de años luz.
 - (9b) Porcentaje de energía oscura que hay en el Universo.
 - **A**. 4.9 %
 - $\mathbf{B}.\ 26.8\,\%$
 - C. 33.3 %
 - D. 68.3 %
 - (9c) Porcentaje de materia oscura que hay en el Universo.
 - **A**. 4.9%
 - B. 26.8 %
 - **C**. 33.3 %
 - **D**. 68.3 %
 - (9d) Porcentaje de materia ordinaria que hay en el Universo.
 - A. 4.9%
 - **B**. 26.8 %
 - **C**. 33.3 %
 - **D**. 68.3 %
 - (9e) Antigüedad estimada del Universo.
 - A. 14,800 millones de años
 - B. 10,800 millones de años
 - C. 15,800 millones de años
 - D. 13,800 millones de años