We presuppose a universe Λ of labels. For subsets $A \subseteq \Lambda$, we use A^{ϵ} to denote $A \cup \{\epsilon\}$, where $\epsilon \notin \Lambda$ is a special symbol signifying the empty string.

Definition 1 (transducer). Let $A, C \subseteq A$ be sets of actions. An A to Ctransducer is a tuple $S = \langle Q, Q^{S}, Q^{F}, \iota, T \rangle$ where

- Q is a set of states;
- $\begin{array}{l} Q^{\mathsf{S}} \subseteq Q \text{ is the subset of steady states;} \\ -Q^{\mathsf{F}} \subseteq Q^{\mathsf{S}} \text{ is the subset of final states;} \end{array}$
- $-\iota \in Q^{\mathsf{S}}$ is the initial state;
- $-T \subseteq (Q \setminus Q^{\mathsf{F}}) \times A \times C^* \times Q$ is a transition relation, such that $(q, a, \sigma, q'), (q', b, \rho, q'') \in Q$ T with $q' \notin Q^{S}$ implies a = b.

A transducer is

- large-step if $Q^{S} = Q$,
- small-step if $(q, a, \sigma, q') \in T$ implies $\sigma \in C^{\epsilon}$,
- pure if $(q, a, \sigma, q') \in T$ implies $\sigma \in C$, and
- a transition system if $Q^{S} = Q$ and $C = \emptyset$ (hence $(q, a, \sigma, q') \in T$ implies $\sigma = \epsilon$).

A state that is not steady is called *transient*; we use $Q^{\mathsf{T}} = Q \setminus Q^{\mathsf{S}}$ to denote the set of transient states. If S is large-step then we use $q \stackrel{a}{\Longrightarrow} q'$ to denote $(q, a, \sigma, q') \in T$, whereas if S is small-step we use $q \xrightarrow{a} q'$; in both cases, if $\sigma = \epsilon$ we typically leave it out altogether. Finally, we write $q \bullet$ to denote $q \in Q^{S}$, $q \circ$ to denote $q \in Q^{\mathsf{T}}$ and $q \uparrow$ to denote $q \in Q^{\mathsf{F}}$.

An A-to-C transducer S establishes a relation between abstract actions (in A) and (sequences) of concrete actions (in C). The general intuition behind a transition (q, a, σ, q') with $q, q' \in Q^{S}$ is that this causes a sequence of actions σ to occur, while posing to the environment that a has occurred. If either q or q' is transient, however, then σ is only part of the execution of a; the entire sequence of concrete actions that constitutes a can be found by concatenating sequences of transitions starting and ending at steady states. That is, if S is a small-step transducer, then there is a corresponding large-step transducer \bar{S} with the state set $\bar{Q} = Q^{\mathsf{S}}$, final states $\bar{Q}^{\mathsf{F}} = Q^{\mathsf{F}}$, initial state $\bar{\iota} = \iota$, and \bar{T} generated by

$$\frac{q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{c_2} \cdots \xrightarrow{a} q_n}{q_1 \xrightarrow{c_1 \cdots c_n} q_n} q_0, q_n \bullet \qquad q_1, \dots, q_{n-1} \circ$$

The effect of transducers is essentially established by their composition, S_1 :: S_2 , where S_i for i=1,2 are A_i -to- C_i transducers with $C_1=A_2$. The result is an A_1 -to- C_2 transducer defined by the following rules. If the S_i are largestep, then $S_1 :: S_2$ is also a large-step transducer, defined by state set Q = $\{q_1:: q_2 \mid q_1 \in Q_1, q_2 \in Q_2\}$, steady states, $Q^S = \emptyset$, initial state $\iota = \iota_1:: \iota_2$, and Q^{F} and T generated by

$$\frac{q_1 \xrightarrow{\underline{a}} q'_1 \qquad q_2 \xrightarrow{\underline{c_1}} \cdots \xrightarrow{\underline{c_n}} q'_2}{q_1 :: q_2 \xrightarrow{\underline{a}} q'_1 :: q'_2} \qquad q_1 \uparrow q_2 \uparrow q_1 :: q_2 \uparrow$$

For small-step transducers, the composition is similar, but also needs a rule for stability:

$$\frac{q_1 \xrightarrow{a} q_1' \quad q_2 \xrightarrow{c} q_2'}{q_1 :: q_2 \xrightarrow{a} q_1' :: q_2'} \qquad \frac{q_1 \xrightarrow{a} q_1'}{q_1 :: q_2 \xrightarrow{a} q_1' :: q_2} \qquad \frac{q_1 \bullet \quad q_2 \bullet}{q_1 :: q_2 \bullet} \qquad \frac{q_1 \uparrow \quad q_2 \uparrow}{q_1 :: q_2 \uparrow}$$

This brings us to our first result:

Proposition 1. If S_1, S_2 are small-step A_i -to- C_i -transducers with $C_2 = A_1$, then $\bar{S}_1 :: \bar{S}_2 = \overline{S_1 :: S_2}$.