3DFClib: (Towards) a collection of discrete 3D Frictional Contact (3DFC) problems

3DFClib team

June 28, 2010

Contents

T	Linear discrete problems with Coulomb's friction and unlateral contact	č
	1.1 Reduced discrete problem. 3DFC problem	3
	1.2 Global/local discrete problem. G3DFC problem	3
	1.3 Global Mixed Frictional contact problem (GM3DFC)	4
	1.4 Mixed Frictional contact problem (M3DFC)	4
	1.5 Remarks	Ę
2	2 Measuring errors	5
3	B Detailed implementation	5
	3.1 File format	5
	3.2 Matrix storage	5
	3.3 C implementation	Ę
1	Additional description of the problems	6
4		

Purpose of the document

The goal of this work is to set up a collection of 3D Frictional Contact (3DFC) problems. The collection will provide a standard framework for testing available and new algorithms for solving discrete frictional contact problems.

Notation

Let us denote by the integer n_c the number of contacts. The integer n is the number of degree of freedom of the system and $m = 3n_c$ the number of unknown variables at contacts.

For each contact $\alpha \in \{1, \dots n_c\}$, the local velocity is denoted by $u^{\alpha} \in \mathbb{R}^3$. Its normal part is denoted by $u^{\alpha}_{N} \in \mathbb{R}$ and its tangential part $u_{T} \in \mathbb{R}^2$. One gets

$$u^{\alpha} = \begin{bmatrix} u_{\rm N}^{\alpha} \\ u_{\rm T}^{\alpha} \end{bmatrix} \tag{1}$$

The vector u collects all the local velocity at each contact

$$u = [[u^{\alpha}]^T, \alpha = 1 \dots n_c]^T \tag{2}$$

respectively for the normal part $u_{\rm N}$

$$u_{\rm N} = \left[u_{\rm N}^{\alpha}, \alpha = 1 \dots n_c\right]^T,\tag{3}$$

and its tangential a part as

$$u_{\mathrm{T}} = [[u_{\mathrm{T}}^{\alpha}]^T, \alpha = 1 \dots n_c]^T. \tag{4}$$

for a contact α , the modified local velocity, denoted by \hat{u}^{α} , is defined by

$$\hat{u}^{\alpha} = u^{\alpha} + \begin{bmatrix} \mu \| u_{\mathrm{T}}^{\alpha} \| \\ 0 \\ 0 \end{bmatrix}^{T} \tag{5}$$

The vector \hat{u} collects all the modified local velocity at each contact

$$\hat{u} = [[\hat{u}^{\alpha}]^T, \alpha = 1 \dots n_c]^T \tag{6}$$

For each contact α , the reaction vector $r^{\alpha} \in \mathbb{R}^3$ is also decomposed in its normal part $r_{N}^{\alpha} \in \mathbb{R}$ and the tangential part $r_{\scriptscriptstyle \mathrm{T}} \in \mathbb{R}^2$ as

$$r^{\alpha} = \begin{bmatrix} r_{\rm N}^{\alpha} \\ r_{\rm T}^{\alpha} \end{bmatrix} \tag{7}$$

The Coulomb friction cone for a contact α is defined by

$$C_{\mu^{\alpha}}^{\alpha} = \{ r^{\alpha}, \| r_{\scriptscriptstyle T}^{\alpha} \| \leqslant \mu^{\alpha} | r_{\scriptscriptstyle N}^{\alpha} | \}$$

$$\tag{8}$$

and the set $C_{\mu^{\dot{\alpha}}}^{\alpha,\star}$ is its dual. The set C_{μ} is the cartesian product of Coulomb's friction cone at each contact, that

$$C_{\mu} = \prod_{\alpha = 1 \dots n_c} C_{\mu^{\alpha}}^{\alpha} \tag{9}$$

and C^{\star}_{μ} is dual.

1 Linear discrete problems with Coulomb's friction and unilateral contact

1.1 Reduced discrete problem. 3DFC problem

Definition 1 (Frictional contact problem (3DFC)). Given

- a symmetric semi-positive definite matrix $W \in \mathbb{R}^{m \times m}$
- a vector $q \in \mathbb{R}^m$,
- a vector of coefficients of friction $\mu \in \mathbb{R}^{n_c}$

the 3DFC problem is to find two vectors $u \in \mathbb{R}^m$ and $r \in \mathbb{R}^m$, denoted by $3DFC(W, q, \mu)$ such that

$$\begin{cases}
\hat{u} = Wr + q + \begin{bmatrix} \mu^{\alpha} || u_{T}^{\alpha} || \\ 0 \\ 0 \end{bmatrix}^{T}, \alpha = 1 \dots n_{c} \end{bmatrix}^{T} \\
C_{\mu}^{\star} \ni \hat{u} \perp r \in C_{\mu}
\end{cases} (10)$$

1.2 Global/local discrete problem. G3DFC problem

Definition 2 (Global 3DFrictional contact problem (G3DFC)). Given

- a symmetric positive definite matrix $M \in \mathbb{R}^{n \times n}$
- a vector $f \in \mathbb{R}^n$,
- a matrix $H \in \mathbb{R}^{n \times m}$
- a vector $w \in \mathbb{R}^m$,
- a vector of coefficients of friction $\mu \in \mathbb{R}^{n_c}$

the Global 3DFC problem is to find three vectors $v \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and $r \in \mathbb{R}^m$, denoted by $\mathrm{G3DFC}(M,H,f,w,\mu)$ such that

$$\begin{cases} Mv = Hr + f \\ \hat{u} = H^T v + w + \begin{bmatrix} \mu^{\alpha} \| u_T^{\alpha} \| \\ 0 \\ 0 \end{bmatrix}^T, \alpha = 1 \dots n_c \end{bmatrix}^T \\ C_{\mu}^{\star} \ni \hat{u} \perp r \in C_{\mu} \end{cases}$$

$$(11)$$

1.3 Global Mixed Frictional contact problem (GM3DFC)

Definition 3 (Global Mixed Frictional contact problem (GM3DFC)). Given

- a symmetric positive definite matrix $M \in {\rm I\!R}^{n \times n}$
- a vector $f \in \mathbb{R}^n$,
- $a \ matrix \ H \in \mathbb{R}^{n \times m}$
- $a \text{ matrix } G \in \mathbb{R}^{n \times p}$
- a vector $w \in \mathbb{R}^m$,
- a vector $b \in \mathbb{R}^p$,
- a vector of coefficients of friction $\mu \in \mathbb{R}^{n_c}$

the Global Mixed 3DFC problem is to find four vectors $v \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $r \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}^p$ denoted by GM3DFC (M, H, G, w, b, μ) such that

$$\begin{cases}
Mv = Hr + G\lambda + f \\
G^{T}v + b = 0
\end{cases}$$

$$\hat{u} = H^{T}v + w + \begin{bmatrix} \mu \|u_{T}^{\alpha}\| \\ 0 \\ 0 \end{bmatrix}^{T}, \alpha = 1 \dots n_{c} \end{bmatrix}^{T}$$

$$C_{\mu}^{\star} \ni \hat{u} \perp r \in C_{\mu}$$
(12)

1.4 Mixed Frictional contact problem (M3DFC)

Definition 4 (Mixed 3DFrictional contact problem (M3DFC)). Given

- a matrix $W \in \mathbb{R}^{m \times m}$
- $a \text{ matrix } V \in \mathbb{R}^{m \times p}$
- a matrix $S \in \mathbb{R}^{p \times m}$
- a matrix $R \in \mathbb{R}^{p \times p}$
- a vector $q \in \mathbb{R}^m$,
- a vector $s \in \mathbb{R}^p$,
- a vector of coefficients of friction $\mu \in \mathbb{R}^{n_c}$

the Mixed 3DFC problem is to find three vectors $u \in \mathbb{R}^m$, $r \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}^p$ denoted by M3DFC (S, R, V, W, q, s, μ) such that

$$\begin{cases}
Sr + R\lambda + s = 0 \\
\hat{u} = Wr + V\lambda + q + \begin{bmatrix} \mu^{\alpha} \| u_{T}^{\alpha} \| \\ 0 \\ 0 \end{bmatrix}^{T}, \alpha = 1 \dots n_{c} \end{bmatrix}^{T} \\
C_{\mu}^{\star} \ni \hat{u} \perp r \in C_{\mu}
\end{cases}$$
(13)

1.5 Remarks

Note that the previous problems may be an instance of quasi-static problems: the matrix M plays the role of the stiffness matrix and the vector u is a position or a displacement.

2 Measuring errors

3 Detailed implementation

3.1 File format

The proposed file format for storing and managing data is the HDF5 data format http://www.hdfgroup.org/HDF5

The data name should be defined as close as possible to the definition of this document.

3.2 Matrix storage

Three matrix storages are considered:

- 1. dense format
- 2. sparse format: row compressed format
- 3. sparse matrix of 3x3 dense matrices. (sparse block matrix)

The last format could be deduced from the standard sparse format. To be discussed.

3.3 C implementation

A C implementation will be proposed for reading and writing each of 3DFC problems into HDF5 files.

The storage of dense matrices will be in column major mode (FORTRAN mode).

4 Additional description of the problems

The following additional information should be added in a reference document and in the $\overline{\text{HDF5}}$ file

- TITLE : a title for the problem
- DESCRIPTION: The field of application. Short description on how the problem is generated.
- MATRIX_INFO: The sparsity and the conditioning of the matrices.
- MATH_INFO : Existence, uniqueness of solutions.
- ...

The following data can be optionally added in the HDF5 file

- SOLUTION : A reference solution
- INITIAL_GUESS : A initial guess
- ...

5 List of problems