CP8201/CPS815 Advanced Algorithms

Assignment 5

Rohaan Ahmed

PhD Student
Department of Computer Science
rohaan.ahmed@ryerson.ca

December 10, 2020

Instructor: Dr. Javad (Jake) Doliskani December 10, 2020

1. 3-SAT \leq_P 5-SAT and 5-SAT \leq_P 3-SAT

1.1 3-SAT \leq_P 5-SAT

We will prove that 3-SAT \leq_P 5-SAT in two parts:

- 1. 4-SAT \leq_P 5-SAT
- 2. $3\text{-SAT} \leq_P 4\text{-SAT}$

1.1.1 4-SAT \leq_P 5-SAT

An instance of the 4-SAT problem over variables x_1, x_2, \ldots, x_n is given by the formula:

$$f_4 = c_1 \wedge c_2 \wedge c_3 \wedge \ldots \wedge c_k$$

Where each c_i is a disjunctive clause of exactly 4 literals for all i = 1, ..., k:

$$c_i = a \lor b \lor c \lor d$$

where a, b, c, d are distinct literals from $\{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots, x_n, \overline{x_n}\}$

Let's introduce a new variable, α , and add it to each clause, such that:

$$c_{i+} = a \lor b \lor c \lor d \lor \alpha$$

$$c_{i-} = a \vee b \vee c \vee d \vee \overline{\alpha}$$

Now, it follows from logic that:

- If c_i can be satisfied by some truth assignment, then $(c_{i+} \wedge c_{i-})$ is satisfied by the same assignment, plus $\alpha = 0$ or $\alpha = 1$.
- If $(c_{i+} \wedge c_{i-})$ can be satisfied by some truth assignment, the same assignment must satisfy c_i regardless of α since one of α or $\overline{\alpha}$ must be false.

Now, construct an instance of 5-SAT over variables $x_1, x_2, \ldots, x_n, \alpha$:

$$f_5 = c_{1+} \wedge c_{1-} \wedge c_{2+} \wedge c_{2-} \wedge c_{3+} \wedge c_{3-} \wedge \ldots \wedge c_{k+} \wedge c_{k-}$$

Then it follows that:

- If f_4 can be satisfied by some truth assignment, then f_5 is satisfied by the same assignment, plus $\alpha = 0$.
- If f_5 can be satisfied by some truth assignment, the same assignment must satisfy f_4 regardless of α .

1.1.2 3-SAT ≤*P* 4-SAT

We can prove that 3-SAT \leq_P 4-SAT using the exact same procedure as the one described above to prove 4-SAT \leq_P 5-SAT.

Let f_3 be the formula for a 3-SAT problem over variables x_1, x_2, \ldots, x_n :

$$f_3 = c_1 \wedge c_2 \wedge c_3 \wedge \ldots \wedge c_k$$

Where each c_i is a disjunctive clause of exactly 3 literals for all i = 1, ..., k:

$$c_i = a \lor b \lor c$$

Introduce α such that:

$$c_{i+} = a \lor b \lor c \lor \alpha$$
$$c_{i-} = a \lor b \lor c \lor \overline{\alpha}$$

Construct 4-SAT over variables x_1, x_2, \ldots, x_n :

$$f_4 = c_{1+} \wedge c_{1-} \wedge c_{2+} \wedge c_{2-} \wedge c_{3+} \wedge c_{3-} \wedge \ldots \wedge c_{k+} \wedge c_{k-}$$

Then it follows that:

- If f_3 can be satisfied by some truth assignment, then f_4 is satisfied by the same assignment, plus $\alpha = 0$.
- If f_4 can be satisfied by some truth assignment, the same assignment must satisfy f_3 regardless of α .

Result

The above proves the 3-SAT can be reduced to 5-SAT in polynomial time, i.e., 3-SAT \leq_P 5-SAT.

1.2 5-SAT \leq_P 3-SAT

An instance of the 5-SAT problem over variables x_1, x_2, \ldots, x_n is given by the formula:

$$f_5 = c_1 \wedge c_2 \wedge \ldots \wedge c_k$$

Where:

and
$$c_i = a \lor b \lor c \lor d \lor e$$

and a, b, c, d, e are distinct literals from $\{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots, x_n, \overline{x_n}\}$

Introduce variables β_1 and β_2 and form a new clause z_i corresponding to each c_i as follows:

$$Z_i = (a \lor b \lor \beta_1) \land (\overline{\beta}_1 \lor c \lor \beta_2) \land (\overline{\beta}_2 \lor d \lor e)$$

The specific construction of Z_i of the form above satisfies the following statements (proven in Q3, can also be verified using a truth table in this case):

- If c_i is TRUE for some assignment of $x_1, x_2, ..., x_n$, then Z_i is satisfied by the same assignment for some values for β_1 and β_2 .
- If c_i is FALSE for some assignment of $x_1, x_2, ..., x_n$, then Z_i will be FALSE for the same assignment, regardless of the values set for β_1 and β_2 .

Now, we construct a 3-SAT problem over the variables x_1, x_2, \ldots, x_n using z_i :

$$f_3 = z_1 \wedge z_2 \wedge \ldots \wedge z_k$$

It then follows that:

- If f_5 is TRUE for some assignment of $x_1, x_2, ..., x_n$, then f_3 is satisfied by the same assignment for some values for β_1 and β_2 .
- If f_5 is FALSE for some assignment of $x_1, x_2, ..., x_n$, then f_3 will be FALSE for the same assignment, regardless of β_1 and β_2 .

Result

The above proves the 5-SAT can be reduced to 3-SAT in polynomial time, i.e., 5-SAT \leq_P 3-SAT.

2. Find 3-Coloring using the 3-Coloring Decision Problem Oracle

Let G = (V, E) be a graph with vertices $V = \{v_1, v_2, \dots, v_n\}$ and edges $E = \{v_1v_2, v_2v_3, v_1v_3, \dots\}$

Step 1:

Check if G is 3-colourable by calling the Oracle O. IF not, no 3-coloring exists: Output: "no 3-coloring" ELSE, continue to Step 2.

Step 2:

Add new vertices $V \leftarrow r, g, b$ and add the edges $E \leftarrow rb, bg, br$ to the graph and call it G_0 . By this construction, G_0 is 3-colorable, and in any 3-coloring of G_0 , the three new vertices must receive different colours (we can also call them R, G, B).

We now inductively create G_i from G_{i-1} for $i = \{1, 2, ..., n\}$, using each vertex, v_i , in G:

- Set $G_i = G_{i-1} + \{rv_i, gv_i\}$. This is the new graph made by adding edges rv_i and gv_i to G_{i-1} . IF this graph is 3-colourable: v_i must be B (v_i is adjacent to both R and G).
- ELSE, set $G_i = G_{i-1} + \{gv_i, bv_i\}$. IF this graph is 3-colourable: v_i must be R.
- ELSE, set $G_i = G_{i-1} + \{bv_i, rv_i\}$. Since G_{i-1} was 3-colourable and v_i is not B or R, v_i must be G.

The above procedure visits each vertex of the graph and calls the Oracle, O, at most twice to determine if the new combined graph is still 3-colorable. Therefore, the algorithm above calls O a total of (2n+1) times to obtain the 3-coloring of the entire n-vertex graph G.

3. 3-SAT $\leq_P \ell$ -SAT, and ℓ -SAT $\leq_P 3$ -SAT

We will prove this using 3 cases:

- 1. $\ell = 1$
- 2. $\ell = 2$
- 3. $\ell > 3$

3.1. 1-SAT $(\ell = 1)$

In this case, each c_i has one literal, $l = x_i$ or $l = \overline{x_i}$, such that:

$$c_i = l$$

Introduce two new variables, z_1, z_2 and clause Z_i such that:

$$Z_i = (l \lor z_1 \lor z_2) \land (l \lor \overline{z_1} \lor z_2) \land (l \lor z_1 \lor \overline{z_2}) \land (l \lor \overline{z_1} \lor \overline{z_2})$$

It can be proven, using a truth table, that $Z_i = c_i = l$. Thus, the 1-SAT problem is satisfiable iff the 3-SAT problem is satisfiable.

Therefore, 1-SAT \leq_P 3-SAT. There is no known way of performing reduction in the opposite direction: 3-SAT \leq_P 1-SAT.

3.2. 2-SAT $(\ell = 2)$

In this case, each c_i has two literals, l_1, l_2 , such that:

$$c_i = (l_1 \vee l_2)$$

Introduce a new variable, z_1 and clause Z_i such that:

$$Z_i = (l_1 \vee l_2 \vee z_1) \wedge (l_1 \vee l_2 \vee \overline{z_1})$$

It can be proven, using a truth table, that $Z_i = c_i$. Thus, the 2-SAT problem is satisfiable iff the 3-SAT problem is satisfiable.

Therefore, 2-SAT \leq_P 3-SAT. There is no known way of performing reduction in the opposite direction: 3-SAT \leq_P 2-SAT.

3.3. ℓ -SAT ($\ell > 3$)

We will show this in two steps:

- 1. ℓ -SAT $\leq_P 3$ -SAT
- 2. 3-SAT $\leq_P \ell$ -SAT

3.3.1. ℓ -SAT \leq_P 3-SAT

In this case, each c_i has k > 3 literals, l_1, l_2, \ldots, l_k (we use $k = \ell$ to avoid confusion), such that:

$$c_i = (l_1 \vee l_2 \vee \ldots \vee l_k)$$

and f_{ℓ} is an ℓ -SAT problem of the form:

$$f_{\ell} = c_1 \wedge c_2 \wedge \ldots \wedge c_k$$

Introduce (k-3) new variables, $z_1, z_2, \ldots, z_{k-3}$ and k clauses Z_i to form a 3-SAT problem:

$$f_3 = Z_1 \wedge Z_2 \wedge \ldots \wedge Z_k$$

where:

$$Z_i = (l_1 \lor l_2 \lor z_1) \land (l_3 \lor \overline{z_1} \lor z_2) \land (l_4 \lor \overline{z_2} \lor z_3) \land \ldots \land (l_{k-2} \lor \overline{z_{k-4}} \lor z_{k-3}) \land (l_{k-1} \lor l_k \lor \overline{z_{k-3}})$$

Unlike 1-SAT and 2-SAT, $c_i \neq Z_i$ for ℓ -SAT with $\ell > 3$. Therefore, we need to show that doing this replacement does not affect whether the formula is satisfiable.

Proof: f_3 is Satisfiable when f_ℓ is Satisfiable:

Suppose that f_{ℓ} is satisfiable. Select an assignment A of truth values to f_{ℓ} 's variables that makes $f_{\ell} = \text{TRUE}$.

Since assignment A makes $f_{\ell} = \text{TRUE}$, it must make at least one of the literals in each clause c_i true. Let that literal be l_i .

For the corresponding Z_i , set $z_j = \text{TRUE}$ for j = 1, 2, ..., (i - 2) and set $z_j = \text{FALSE}$ for j = (i - 1), ..., (k - 3). Then, since $l_i = \text{TRUE}$, the corresponding clause Z_i will also be TRUE.

Similarly, every clause Z_i in f_3 can be satisfied using the truth assignment A of the corresponding c_i in f_ℓ , plus some values for $z_1, z_2, ..., z_{k-3}$.

We can illustrate this with an example:

Example:

Suppose l_4 = TRUE for some clause c_i in a 7-SAT problem (i.e., i = 4, k = 7):

$$c_i = (l_1 \vee l_2 \vee l_3 \vee l_4 \vee l_5 \vee l_6 \vee l_7)$$

Reduce the above to a 3-SAT problem using the the method written above by setting:

$$z_1 = z_2 = \text{TRUE}$$

$$z_3 = z_4 = \text{FALSE}$$

We then get the corresponding clause Z_i :

$$Z_i = (l_1 \lor l_2 \lor \text{TRUE}) \land (\text{FALSE} \lor l_3 \lor \text{TRUE}) \land$$

$$(\text{FALSE} \lor l_4 \lor \text{FALSE})$$

$$\land (\text{TRUE} \lor l_5 \lor \text{FALSE}) \land (\text{TRUE} \lor l_6 \lor l_7)$$

Since l_4 is TRUE, the sub-clause in **blue** is TRUE, and therefore, Z_i is TRUE.

Proof: f_{ℓ} is Satisfiable when f_3 is Satisfiable:

Suppose that f_3 is satisfiable. Select values for the variables that make $f_3 = \text{TRUE}$. We need to show that, regardless of the values for $z_1, z_2, ..., z_{k-3}$, each clause c_i in f_ℓ must have one true literal. That is, at least one of $l_1, l_2, ..., l_k$ is TRUE. We will show this is true by using Proof by Contradiction:

Assume $l_1, l_2, ..., l_k$ are all FALSE and $Z_i = \text{TRUE}$ (corresponding to $c_i = \text{TRUE}$). The first subclause of Z_i will then be:

$$(l_1 \lor l_2 \lor z_1) = \text{TRUE}$$

 $\implies z_1 = \text{TRUE}$

The second sub-clause in Z_i will be:

$$(\overline{z_1} \lor l_3 \lor z_2) = \text{TRUE}$$

 $\implies z_2 = \text{TRUE}$

We proceed this way iteratively until the last two sub-clauses:

$$(\overline{z_{k-4}} \vee z_{k-3} \vee l_{k-2}) \wedge (\overline{z_{k-3}} \vee l_{k-1} \vee l_k)$$

Both these sub-clauses cannot be TRUE, since $z_{k-4} = \text{TRUE}$ and $z_{k-3} \neq \overline{z_{k-3}}$. Therefore, our assumption that $l_1, l_2, ..., l_k$ are all FALSE and $Z_i = \text{TRUE}$ cannot be true. In other words, at least one literal in $l_1, l_2, ..., l_k$ must be TRUE for $Z_i = \text{TRUE}$.

Thus, it does not matter what values we assign to $z_1, z_2, ..., z_{k-3}$, if $c_i = \text{TRUE}$, then $Z_i = \text{TRUE}$, and if c_i is FALSE, then $Z_i = \text{FALSE}$

Result

Above, we prove the following:

• If f_{ℓ} is TRUE for some assignment of $x_1, x_2, ..., x_n$, then f_3 is satisfied by the same assignment for some values for $z_1, z_2, ..., z_{k-3}$.

• If f_{ℓ} is FALSE for some assignment of $x_1, x_2, ..., x_n$, then f_3 will be FALSE for the same assignment, regardless of the values of $z_1, z_2, ..., z_{k-3}$.

This is the technique we used in Q1 to show that 5-SAT \leq_P 3-SAT.

3.3.2. 3-SAT $\leq_P \ell$ -SAT

In Q1, we showed that 3-SAT \leq_P 4-SAT and 4-SAT \leq_P 5-SAT, therefore, 3-SAT \leq_P 5-SAT.

Without repeating the proof, it is trivial to show that for l > 3, $(\ell - 1)$ -SAT $\leq_P \ell$ -SAT using the same technique employed in Q1, namely:

- Generate new variable, α
- Break each clause c_i into:

$$c_{i+} = l_1 \lor l_2 \lor \dots \lor l_k \lor \alpha$$

$$c_{i-} = l_1 \lor l_2 \lor \dots \lor l_k \lor \overline{\alpha}$$

• Now c_i can be replaced by c_{i+} and c_{i-}

$$c_i = c_{i+} \wedge c_{i-}$$

Therefore, we can iteratively show that:

$$3\text{-SAT} \leq_P 4\text{-SAT} \leq_P 5\text{-SAT} \leq_P \ldots \leq_P (\ell-1)\text{-SAT} \leq_P \ell\text{-SAT}$$

$$\implies 3\text{-SAT} \leq_P \ell\text{-SAT}$$

Thank you for a great semester, Professor Doliskani!