Interduction of Color Toolbox FGLT: simple, fast, free, effective & diverse for everybody in color calculation (sejentific exchange - no commercial)

® Dr. - Ing. Vinh Trinh – Fachgebiet Lichttechnik – TU Darmstadt - Germany

Wind	dows_Main		-	×
Setting	Calculate Correlation	Calculate Optimization Calculate Colcy Generate ISD Space About		
	Your Alpha			
	0.63			
Run	what you want			
S	stop urgently			

- 1. Motivation
- 2. Installation
- 3. Main mode "Run what you want": to evaluate the color quality of your spectra
- 4. Mode "Calculation correlation": find 2D & 3D correlations as SPSS
- 5. Mode "Calculation Optimization": optimize color quality & synthesis PID for regulators
- 6. Mode "Calculate Color": calculate all color difference, Chroma difference, represent correct test color sample with their true color under different light sources
- 7. Mode "Generate": generate standard spectra, locus of Mac Adam-Ellipse, spectra of semiconductor LED and phosphors
- 8. Mode "ISD Space": read, arrange and save ISD data from spectrometers

1- Metivation

How to evaluate color quality of spectra?

How to evaluate and represent color objects?

How to find correlations like SPSS?

How to have 1-2..MacAdam-Ellipse for desired CCT or xy?

How to read, arrange & save ISD data from spectrometer?

How to optimize the color quality?

How to generate standard light sources with desired CCTs?

How to generate spectra of semiconductor LEDs?

How to generate spectral emission of phosphors?

I can't work with .csv & others, but only Excel or txt?

I need for my research/study - not for commercial.

1- Metivation

Color Toolbox FGLT will help you!

But only for scientific exchanges - not for commercial.

2- เกรtallation

you need a MCR Matlab as runtime like Java, .Net & Setup file

cht Funktionen \	/ideos Webinare	Produktfokus Neuerungen	Produk - Terty 15.1
Release	Windows	Linux	Mac
R2016a (9.0.1)	64 Bit	64 Bit	Intel 64 Bit
R2015b (9.0)	32 Bit / 64 Bit	64 Bit	Intel 64 Bit
R2015aSP1 (8.5.1)	32 Bit / 64 Bit	64 Bit	Intel 64 Bit
R2015a (8.5)	32 Bit / 64 Bit	64 Bit	Intel 64 Bit
R2014b (8.4)	32 Bit/64 Bit	64 Bit	Intel 64 Bit
R2014a (8.3)	32 Bit/64 Bit	64 Bit	Intel 64 Bit
R2013b (8.2)	32 Bit/64 Bit	64 Bit	Intel 64 Bit
R2013a (8.1)	32 Bit/64 Bit	64 Bit	Intel 64 Bit
R2012b (8.0)	32 Bit/64 Bit	64 Bit	Intel 64 Bit
R2012a (7.17)	32 Bit/64 Bit	32 Bit/64 Bit	Intel 64 Bit

3- Main Mode "Run what you want"

Import, analysis & evaluate your spectra

3- Main Mode "Run what you want"

Import, analysis & evaluate your spectra

	T								
Name		WW11	WW14	WW15	WW71	WW371	WW372	WW373	WW374
ССТ	2887	286.9	2826	2756	3003	2700	2800	3000	3300
DCCT	2,60E-04	5,28E-00	5,45E-03	4,82E-03	3,58E-05	2,91E-06	2,81E-06	2,64E-06	2,42E-06
R1	68,13	70,63	70,74	70,67	88,96	100	100	100	100
R2	85,45	87,19	87.06	86,94	86,24	100	100	100	100
R3	88,81	87,16	37,42	87,29	81,49	100	100	100	100
R4	67,62	71,95	71,32	71,44	85,29	100	100	100	100
R5	71,27	74,03	75.92	73,69	84,34	100	100	100	100
R6	81,50	86,66	86,35	\$5,85	68,81	100	100	100	100
R7	82,50	81,54	81,97	82,45	80,46	100	100	100	100
R8	59,47	54,86	55,64	57,07	73,27	100	100	100	100
R9	21,29	9,65	11,54	15,/,7	46,95	100	100	100	100
R10	74,22	78,93	78,69	78,/1	67.56	100	100	100	100
R11	63,50	72,50	72,28	71,25	10,03	100	100	100	100
R12	76,41	76,34	75,74	75,53	62.09	100	100	100	100
R13	70,45	73,88	73,79	73,46	84,89	100	100	100	100
R14	92,03	91,14	91,29	91,15	90,37	100	100	100	100
Ra	75,59	76,76	76,88	76,93	81,11	490	100	100	100
R114	71,62	72,61	72,74	72,93	76,49		100	100	100
GAIt	58,84	71,02	69,98	66,47	54,42	15/14	52,24	58,07	65,83
GAIr	50,20	62,39	61,57	58,41	52,21	49,14	52,24	58,07	65,83
GAIrel	117,21	113,83	113,66	113,80	104,23	100	5/69/2	100	100
Qa	84,58	89,80	89,94	89,74	83,41	100	100	100	100
Qf	80,11	83,20	83,32	83,46	82,15	100	100	100	100
Qg	106,92	114,10	114,32	113,89	93,93	100	163	100	100
Qp	89,79	102,25	102,53	101,89	73,05	87,83	88,78	90.33	91,98
CRI2012a	87,26	91,26	91,40	91,55	79,09	100,00	100,00	269 00	100,00
Se2012	2,00	1,74	1,73	1,72	2,46	1,07	1,07	1:07	1,07
MCRIa	91,52	93,21	93,10	92,73	86,31	89,26	89,59	90,05	90,45
FCI	142,52	144,82	145,02	145,17	113,20	123,72	122,97	121,37	€3,92
R_f	80,98	85,45	85,51	85,56	77,66	100	100	100	100
R_g	103,15	108,78	108,88	108,57	92,66	100	100	100	1//5

3- Main Mode "Run what you want"

Import, analysis & evaluate your spectra

4- ຣິບລ-Mode 1 "Calculation Correlation"

a- 2D - Correlation

4- ຣິບຽ-Mode 1 "Calculation Correlation"

a- 2D - Correlation

R ²	R _a	R ₁₁₄	(iA) _{eics}	<i>GAI</i> _{rel}	Q _a	Q_{f}	Qg	Q_{p}	CRI ₂₀₁₂	MCRI	Sa	FCI	R _f	R g
R _a	1,00	0,93	0,00	Cii	3.38	0,42	0,00	0,33	0,50	0,33	0,32	0,09	0,71	0,00
R ₁₁₄	0,93	1,00	0,02	0,16	0,43	0,47	0,00	0,39	0,70	0,54	0,52	0,16	0,85	0,00
GAI _{abs}	0,00	0,02	1,00	0,07	0,03	/J,01	0,25	0,05	0,03	0,23	0,25	0,13	0,02	0,21
GAI _{rel}	0,11	0,16	0,07	1,00	0,09	0,05	0.45	0,27	0,09	0,31	0,38	0,76	0,16	0,21
Q _a	0,38	0,43	0,01	0,09	1,00	0,98	(0.0%)	≈ 90	0,43	0,29	0,25	0,07	0,52	0,00
$Q_{\rm f}$	0,42	0,47	0,01	0,05	0,98	1,00	0,00	133	0,45	0,27	0,24	0,04	0,55	0,00
$Q_{\rm g}$	0,00	0,00	0,25	0,45	0,00	0,00	1,00	0,12	15,00	0,07	0,11	0,60	0,00	0,88
Q_{p}	0,33	0,39	0,05	0,27	0,90	0,83	0,12	1,00	0,40	0,36	0,35	0,26	0,50	0,08
CRI ₂₀₁₂	0,50	0,70	0,03	0,09	0,43	0,45	0,00	0,40	1,00	0,54	0,60	0,16	0,89	0,00
MCRI	0,33	0,54	0,23	0,31	0,29	0,27	0,07	0,36	0,64	1,00	0/38	0,43	0,64	0,02
Sa	0,32	0,52	0,25	0,38	0,25	0,24	0,11	0,35	0,60	0,98	1,00	0.53	0,61	0,04
FCI	0,09	0,16	0,13	0,76	0,07	0,04	0,60	0,26	0,16	0,43	0,53	1,00	2.18	0,36
R _f	0,71	0,85	0,02	0,16	0,52	0,55	0,00	0,50	0,89	0,64	0,61	0,18	1./01)	0,00
R _g	0,00	0,00	0,21	0,21	0,00	0,00	0,88	0,08	0,00	0,02	0,04	0,36	0,00	2,011

4- ຣິບຽ-Mode 1 "Calculation Correlation"

b-3⊅ €orrelation

MCRI-R ²	R _a	Fi 13.4	Q_{f}	CRI ₂₀₁₂	R _f					
GAI _{abs}	0,53	0.69	0,51	0,76	0,78					
GAI _{rel}	0,70	0,78	0,50	0,76	0,76					
$Q_{\rm g}$	0,56	0,72	0,46	0,72	MCRI-a	R _a	R ₁₁₄	$Q_{\rm f}$	CRI ₂₀₁₂	R,
FCI	0,65	0,78	0,60	0,79	GAI _{abs}	-1,2E-03	-6,1E-04	6,5E-03	1,7E-05	1,2E-04
R _g	0,50	0,67	0,50	0,71	GAI _{rel}	4,4E-02	3,1E-02	1,0E-02	7,6E-03	1,6E-02
					Ω_{g}	4,7E-02	3,8E-02	3,7E-02	1,7E-02	2,4E-02
				4	(FCI/)	8,8E-03	8,9E-03	1,3E-03	2,2E-03	3,8E-03
					$\widetilde{\mathcal{R}}_{\mathbf{g}}$	5,6E-02	4,7E-02	6,8E-02	3,6E-02	4,0E-02

Q_p-R^2	R_{a}	R ₁₁₄	$oldsymbol{Q}_{f}$	CRI ₂₀₁₂	R_{f}	(C)/A				
GAI _{abs}	0,54	0,58	0,86	0,58	0,66		7			
GAI _{rel}	0,49	0,49	0,94	0,54	0,57		100 c1			
Q_{g}	0,44	0,50	0,97	0,57	0,62					
FČI	0,47	0,48	0,96	0,49	0,55	_	46/			
R_{g}	0,43	0,51	0,95	0,52	Q _p -a	R _a	R ₁₁₄	Al Ot	CRI ₂₀₁₂	R_{f}
					GAI _{abs}	-1,8E-02	-1,7E-02	1,9E-13	1,7E-02	-1,6E-02
					<i>GAI</i> _{rel}	2,8E-02	1,2E-02	4,8E-03	1.1.E-02	-2,3E-04
					$oldsymbol{Q}_{g}$	-1,9E-03	-1,3E-02	8,5E-03	-3,8E-02	-2,8E-02
					FČI	6,2E-03	3,7E-03	1,9E-03	-3,7E-03	-₹,3E-04
					R.	-2.7E-02	-3.9E-02	2.0F-02	-5.2E-02	-# 6K-02

4- ຽບກ-Mode 1 "Calculation Correlation"

b-3D Correlation

5- ริเมรา Mode 2 "Calculate Optimization"

6- ริน๖-Mode 4 "Calculate Color"

a- Import TCSs & represent with their true colors

b-Color Distribution in 2D - 3D Color diagram under different CCTs

b-Color Distribution in 2D - 3D Color diagram under different CCTs

Color Space U*V*W* CF CRI R1-14

c-Colombate & represent hue & chroma difference under color spaces

Color Space L*a*c* CQS 1-15

Color Space J'a'b' CR/2012

Color Space J'a'b' - 1/25 TM15-30 Bin 1-16

Thanks for your attention!