Algoritmi in podatkovne strukture – 2

Mediana

k-ti element po velikosti

Iskanje k-tega elementa (Select)

Imamo vhodni niz predmetov: $X = [x_1, x_2, ...x_n]$ in številko k <= n.

Za poljubna predmeta velja, da sta urejena, kar pomeni, da je eden večji ali enak kot drugi: $x_i \le x_j$ ali $x_i \le x_j$ in da je ta relacija tranzitivna.

Poiščemo k-ti element po velikosti v nizu.

Posebni primeri:

najmar	njši (minimalni) element – $k=1, \min X$	O(r)	n))
--------------------------	--	------	----	---

• največji (maksimalni) element –
$$k = n$$
, $\max X$

• mediana –
$$k = \lfloor \frac{n}{2} \rfloor$$
 $O(?)$

Preprosta rešitev:

- uredimo elemente po velikosti
- pogledamo *k*-ti element
- čas: $O(n \log n)$ se dâ kaj bolje?

Hitro urejanje – quick sort

```
public void QuickSort(int[] X, int 1, int r) {
  if (l >= r) return;
  int p= X[l];
  int ix_p;
  ix_p= Partition(X, l, r);
  QuickSort(X, l, ix_p-1); QuickSort(X, ix_p+1, r);
}
```

Hitro iskanje – quick select

Podobno kot pri hitrem urejanju, le da sedaj nam ni potrebno iskati v obeh poddelih polja, ampak samo v enem – v tistem, ki je pravi.

In časovna zahtevnost: v najboljšem (in pričakovanem) primeru O(n). Kaj pa najslabši primer?

Iskanje v najslabšem primeru

Težava s QuickSelect algoritmom je, da:

- slabo razdeli niz
- ullet in za razdelitev porabi čas O(r-l)=O(n)

Druge pomanjkljivosti ne moremo odpraviti (zakaj?), zato se lotimo prve.

Boljša delitev

• razdelilni element moramo izbrati tako, da bomo v vsakem koraku izločili *ne samo konstanto* število elementov, ampak nekako $\frac{n}{p}$ za neko konstanto p>1.

Iskanje razdelilnega elementa:

- 1. razdelimo n elementov na $\frac{n}{5}$ peterk (v zadnji \gg peterki \ll je lahko manj elementov)
- 2. v vsaki peterki poiščemo mediano (v zadnji je lahko malce drugače) in dobimo $\frac{n}{5}$ elementov
- 3. med temi rekurzivno poiščemo mediano

Razdelilni element

Velja

• število elementov, ki so za gotovo večji od razdelilnega elementa, je vsaj

$$3\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2\right) \ge \frac{3n}{10} - 6$$

kjer smo zanemarili zadnji stolpec, ki je morda nepopoln, in stolpec, v katerem je razdelilni element. Podobno, je število elementov, ki so *za gotovo* manjši od razdelilnega elementa je *vsaj* $\frac{3n}{10}-6$;

• torej je število elementov, ki so manjši manjši od razdelilnega elementa največ

$$n - \left(\frac{3n}{10} - 6\right) = \frac{7n}{10} + 6$$

Iskanje

Psevdokoda – podrobnosti opuščene:

Časovna zahtevnost

$$T(n) \le T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7n}{10} + 6) + O(n)$$

Recimo, da velja (hipoteza): $T(n') \leq cn'$ za neko konstanto c in vse n' < n. Potem:

$$T(n) \leq T(\left\lceil \frac{n}{5} \right\rceil) + T(\frac{7n}{10} + 6) + O(n)$$

$$\leq c \lceil n \rceil 5 + \frac{7cn}{10} + 6c + O(n)$$

$$\leq \frac{9cn}{10} + 6c + O(n)$$

$$\leq cn$$

Zahtevnost

rešitev	zahtevnost
uravnotežena drevesa	$O(\log n)$
QuickSelect	$O(n^2)$
Select	O(n)

Komentarji:

- So rešitve primerljive?
- Kaj pa prostorska zahtevnost Select? Upoštevati moramo še polje Y. Je nujno?