ee25btech11063-vejith

Question:

A vector **r** has magnitude 14 and direction ratios 2,3,-6. Find the direction cosines and components of **r**, given that **r** makes an acute angle with X axis

Solution

Symbol	Description
r	given vector with magnitude=14
\mathbf{r}_X	component of r along X axis
\mathbf{r}_{Y}	component of r along Y axis
\mathbf{r}_Z	component of r along Z axis
k	scaling factor

TABLE 0: Variables Used

$$\mathbf{r} = k \begin{pmatrix} 2\\3\\-6 \end{pmatrix} \tag{1}$$

$$\|\mathbf{r}\| = |k| \begin{pmatrix} 2\\3\\-6 \end{pmatrix}$$
 (2)

$$||\mathbf{r}|| = |k| 7 \tag{3}$$

$$14 = |k|7 \tag{4}$$

$$|k| = 2 \tag{5}$$

$$\implies \mathbf{r} = \begin{pmatrix} 4 \\ 6 \\ -12 \end{pmatrix} \tag{6}$$

(but k=2 not -2 because given that vector r makes an acute angle with X axis)

The unit vector in the direction of \mathbf{r} is

$$\frac{\mathbf{r}}{\|\mathbf{r}\|} = \frac{1}{14} \begin{pmatrix} 4 \\ 6 \\ -12 \end{pmatrix} = \begin{pmatrix} \frac{2}{7} \\ \frac{3}{7} \\ \frac{-6}{7} \end{pmatrix} \tag{7}$$

(8)

The component of
$$\mathbf{r}$$
 along X axis $=\mathbf{r}_X = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$

The component of \mathbf{r} along Y axis $=\mathbf{r}_Y = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}$

The component of \mathbf{r} along Z axis $=\mathbf{r}_Z = \begin{pmatrix} 0 \\ 0 \\ -12 \end{pmatrix}$

The component of **r** along Y axis =
$$\mathbf{r}_Y = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}$$

The component of **r** along Z axis =
$$\mathbf{r}_Z = \begin{pmatrix} 0 \\ 0 \\ -12 \end{pmatrix}$$

3D Vector Representation with Components & Angles

Fig. 0