DEORDIYEV, N.T.; FILIMONOV, Yu.F.

Investigating the rigid die multiple pass reduction process. Kuz.-shtam. proizv. 5 no.9%1-5 S \*63. (MIRA 16:11)

APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413030010-9"

FILIMENOV YU. F.

#### PHASE I BOOK EXPLOITATION

SOV/5308

Moscow. Eksperimental'nyy nauchno-issledovatel'skiy institut kuznechno-pressovogo mashinostroyeniya.

Progressivnaya tekhnologiya i voprosy avtomatizatsii kuznechno-shtampovochnogo proizvodstva (Advanced Processing and Problems of Automation of Die-Forming Operations) Moscow, Mashgiz, 1960. 126 p. (Series: Its: Nauchnyye trudy, km. 3) 3,500 copies printed.

Sponsoring Agency: Gosudarstvennyy komitet Soveta Ministrov SSSR po avtomatizatsii i mashinostroyeniyu.

Editorial Council: N.N. Vasil'yev, V.P. Vyatkin, V.I. Davydov, F.Ye. Durov, A.P. Yeremkin, P.D. Zolotarev, A.I. Zot'yev, B.A. Kozlov, M.V. Leonov, I.Z. Mansurov, B.N. Markovich, I.B. Matveyev, S.A. Podrez, L.A. Poznyak, V.A. Popov, B.S. Perevozchikov, O.V. Protopopov, G.M. Rodov, L.V. Rubnenkova, A.F. Silayev, B.I. Ukhanov, P.N. Frolov, B.A. Chelishchev, P.D. Chudakov, and B.M. Shneyberg, Chief Ed.: A.I. Zot'yev; Ed. of Publishing House: G.N. Soboleva; Tech. Ed.: G.V. Smirnova; Managing Ed. for Literature on Heavy Machine Building: S.Ya. Golovin, Engineer.

Card 1/

Advanced Processing and Problems of Automation (Cont.) SOV/5308

PURPOSE: This collection of articles is intended for personnel engaged in pressworking and for students in mechanical-engineering schools of higher education.

COVERAGE: The following problems in advanced processing by pressworking are reviewed: flashless drop forging; multipass forge rolling; cold extrusion; hole piercing instead of drilling; small-radius bending of metal sheets; straightening of thin-walled tubes; and embossing. Methods are given for selecting roller-feed parameters and hole size for rotary feed on crank presses. No personalities are mentioned. References accompany each article. There are 57 references: 56 Soviet and 1 English.

#### TABLE OF CONTENTS:

Shneyberg, V.M. [Engineer]. Certain Characteristic Features of Flashless Drop Forging

3

Nikol'skiy, L.N. [Engineer], and A.V. Kuznetsov [Engineer]. Forge Rolling of Blanks for Successive Forging

11

Card-2/4

| dvanced Processing and Problems of Automation (Cont.) SCV/5308                                                                                              |     |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| ilimonov, Yu.F. [Engineer]. Cold Forging of Solid and Hollow Parts                                                                                          | 38  |   |
| hudakov, P.D. [Candidate of Technical Sciences]. Investigation Into the cossibility of Piercing Holes in Sleeve-Type Machine Parts Instead of crilling Them | 54  |   |
| adyuchenko, Yu.S. [Engineer], and L.M. Tyurin [Engineer]. Investigating a rocess for Straightening Tubes With Very Thin Walls                               | 67  |   |
| hmagno, V.G. [Engineer], and I.V. Matreninskiy [Engineer]. Determining the Force for Die-Bending of Sheet Metal With Relatively Small Radii of Bends]       | 80  |   |
| hablinskiy, Ye.P. [Engineer]. Selecting the Process Parameters of Roll-Type eeds for Crank Presses                                                          | 91  |   |
| ynyanov, V.N. [Engineer], and A.N. Filippov [Engineer]. Selection of the cocket Diameter for a Dial-Type Feed                                               | 109 | ; |
| ard 3/4                                                                                                                                                     |     | , |
|                                                                                                                                                             |     | : |





GYOZDEV, V. S., RUSINOV, L. I., FILIMONOV, YU. I., and KHAZOV, YU. L.

"Investigation of Nuclear Isomerism in Hf<sup>180m</sup>," <u>Nuclear Physics</u>, V. 6, (1958) pp. 561-574; (North-Holland Publishing Co., Amsterdam).

abst: The coefficient of internal conversion of the 57.6 keV transition in the Lashell of Hf was measured and found to be \$\sigma\_k = 0.33 \pm 0.10\$. The \$\gamma\$-transition is shown to be of the El type. A 50 1.2 keV \$\gamma\$-transition has been detected; measurements of the internal conversion coefficient yield \$\sigma\_K = 0.035 \pm 0.014\$. The 501.2 keV \$\gamma\$-transition is of the E3 type. The level with an excitation energy 1 142.9 keV was found to possess a spin 9 and negative parity. The experimental lifetimes for the 57.6 keV and 501.2 keV \$\gamma\$-transition expect those predicted by the-single particle model by respectively 10\$\frac{1}{2}\$ and \$10\$\gamma\$ times. This large discrepancy is due to the high forbiddenness of the \$\gamma\$-\$\gamma\$-Transitions with respect to the quantum number \$K\$.

Internal conversion coefficients have also been measure for \$\gamma\$-transitions of 93.3 keV, 216 keV, 332.4 keV and \$443.6 keV energy, The transitions where all found to be of the E2 type. The cross section for production of \$\frac{1}{2}\$ in the \$(n, \gamma\$) reaction has been determined and found to equal \$\sigma = 0.18 \pm 0.07\$ barns.

Physico-Tech. Inst. Acad. Sci. USSR

ST SCALLTEL FOR WEATHERS SERVICES

21(7) S07/56-35-2-53/60 AUTHORS: Filimonov. Yu. I., Pshenichnikov, B. V. The Lower Excited States of the Nucleus Th<sup>231</sup> (Nizhri**y**e TITLE: vozbuzhdennyye sostovaniya vadra Th<sup>231</sup>) PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1958. Vol 35, Nr 2(8), pp 548-549 (USSR) In the  $\alpha$ -decay of  $U^{235}$ , a noticeable part of the Th<sup>231</sup> nuclei ABSTRACT: is generated in excited states. This paper investigates the spectrum of the  $\gamma$ -rays of Th<sup>231</sup> by means of a scintillation spectrometer with a NaJ(T1) crystal. This apparatus recorded the  $\gamma$ -quanta in coincidence with the  $\alpha$ -particles of U<sup>235</sup>.

> figure. The most intensive line of the spectrum corresponds to 184 keV γ-quanta. The intensity of the 144 keV line amounts to 25 - 30 % of the intensity of the 184 keV line. In the spectral region 110-70 keV there are some unresolved lines. There may be also lines which correspond to the  $\gamma$ -transitions in the Th<sup>231</sup> nucleus. The line 40 keV corresponds to the  $\gamma$ -transition in the  $\alpha$ -decay of the isotope  $\pi^{234}$  (which

The spectrum obtained in this way is demonstrated in a

Card 1/3

.The Lower Excited States of the Nucleus Th 231

SOV/56-35-2-53/60

occurs in the specimen). But it is also possible that there is a transition with a similar energy in the U235 decay. The control experiments with sources of various thickness showed that the 144 keV y-quanta cannot be generated by the backward scattered γ-rays of 184-200 keV. It must be assumed that these quanta are emitted by a Th<sup>231</sup> nucleus in the transition from the excited level 184 keV to the excited level 40 keV which may be considered as the first excited level of the rotation band. According to the scheme by Nil'son, the spin of the ground state of the Th<sup>231</sup> nucleus is equal to 5/2. In this case, the second excited level of the rotation band would have the energy  $\sim 93$  keV and the spin 9/2. The intensity of the unresolved lines in the spectral region 70 - 110 keV amounts to  $\sim$ 40 % of the intensity of the 184 keV line. The transitions with 184 and 144 MeV can be characterized only by E1 and E1 + M2. Finally an expression for the distribution function is given. The authors thank Professor L. I. Rusinov for his constant interest in this paper. There are 2 figures and 3 references, 1 of which is Soviet.

Card 2/3

The Lower Excited States of the Nucleus Th 231

SOV/56-35-2-53/60

ASSOCIATION: Leningradskiy fiziko-tekhnicheskiy institut Akademii nauk

(Leningrad Physico-Technical Institute, AS USSR)

SUBMITTED:

May 26, 1958

Card 3/3

307/56-35-5-54/56 21(8) Golenetskiy, S. V., Rusinov, L. I., Filimonov, Yu. I. AUTHORS: The a-Decay of Isomeric Bi<sup>210</sup> (a-raspad izomernogo B<sup>210</sup>) TITLE: Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1958, ·PERIODICAL: Vol 35, Nr 5, pp 1313-1315 (USSR) At the decay of radioactive Bi 210, a long-lived isomer Bi 210, ABSTRACT: which emits α-particles with the energy 4935 + 20 keV and  $T_{1/2} = 2.6.10^6$  years is produced in addition to RaE  $(T_{1/2} =$ = 5 days,  $E_{\beta \ max}$  = 1170 keV). The present paper investigates the decay of this long-lived Bi  $^{210}$ . The spectrum of  $\alpha$ -particles was investigated by means of a momentum ionization chamber filled with a mixture of 90% Ar + 10% CH<sub>4</sub>. An enriched and chemically purified Bi  $^{210}$  sample with a specific activity of 14,000 decays per minute and milligram was investigated. The a-spectrum measured in this way is shown in a diagram. Besides the previously observed particles with 4935 + 10 keV, new groups of  $\alpha$ -particles with the energies of 4900  $\pm$  10 keV and 4640  $\pm$  30 keV were found. The relative intensities of these Card 1/3

The  $\alpha\text{-Decay}$  of Isomeric Bi $^{210}$ 

SOV/56-35-5-54/56

three a-transitions amounted to 60.30 and 10%. In about 10% of α-decays also γ-radiation occurs. It was investigated by means of a spectrometer consisting of the photoelectric multiplier FEU -13 and of a multichannel amplitude analyzer. Also the  $\gamma\text{-spectrum}$  of the Bi<sup>210</sup>, which was measured, is shown in a diagram. y-transitions with the energies 260 + 10 keV and 300 + 10 keV with the relative intensities 1 and 0.4 probably occur. The line with 72 + 3 keV is caused by the characteristic X-ray radiation of thallium. An additional maximum in the range of 40 keV requires additional investigation. For the purpose of confirming the assumption that  $\gamma$ -rays having energies of 260 and 300 keV correspond to the transitions of an excited Tl<sup>206</sup>-nucleus, the  $\alpha$ - $\gamma$ -coincidences were investigated.  $\gamma$ -rays with energies of 300 and 260 keV are actually in coincidence with the a-particles of Bi<sup>210</sup>. According to the results obtained, Tl<sup>206</sup> actually seems to have excited states with energies of 40 and 300 keV. A decay scheme for the observed a- and y-transitions is given. The authors thank Ye. G. Gracheva, N. B. Obel'skaya, V. K. Makhnovskaya and L. Ya. Rudaya for the radiochemical purification of the preparation from radioactive impurities and for producing the samples. There are 3 figures and 3 references,

Card 2/3

The  $\alpha$ -Decay of Isomeric Bi<sup>210</sup>

507/56-35-5-54/56

1 of which is Soviet.

ASSOCIATION: Leningradskiy fiziko-tekhnicheskiy institut Akademii nauk SSSA (Leningrad Physico-Technical Institute of the Academy of

Sciences USSR)

July 31, 1958 SUBMITTED:

Card 3/3

21(8) SOV/56-37-2-39/56 AUTHORS: Golenetskiy, S. V., Rusinov, L. I., Filimonov, Yu. I. On the Decay Scheme of the Isomer Bi 210 TITLE: PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1959, Vol 37, Nr 2(8), pp 560-561 (USSR) ABSTRACT: As an introduction reference is made to several previous papers concerning this isomer. This paper gives a report on further investigations of the long-lived bismuth isotope, which necessitated a change in the decay scheme of Bi<sup>210</sup>. The measurements were carried out by means of a pulse ionization chamber with a grid and a γ-spectrometer. In two tables the results of the energy measurements and of the relative intensities of the α-particles and of the γ-transitions (which accompany the decay Bi  $^{210})$  are compiled. The  $\alpha\text{-}\gamma$  coincidences were investigated for the determination of the decay scheme of  ${\rm Bi}^{210}$ . A scintillation counter was used as a  $\gamma$ -radiation detector, which had been connected with the pulse ionization chamber in a coincidence circuit. The spectrum of the y-radiation was measured, which Card 1/3

On the Decay Scheme of the Isomer Bi<sup>210</sup>

807/56-37-2-39/56

coincides with  $\alpha$ -particles of a certain energy. The results of these measurements are given in two diagrams. Coincidences have been found of the most intensive group of a-particles (with an energy of 4930 kev) with the Y-rays with an energy of 260 kev. These a-particles therefore do not correspond to the transition to the ground state of Tl<sup>206</sup> (as has been previously assumed), but to an excited state with the energy 260 kev. Besides the coincidences of y-rays with an energy of 300 kev with the α-particles with an energy of 4890 kev and of γ-rays with  $E_{\gamma} = 340$  and 620 kev with  $\alpha$ -particles with an energy of 4590 kev have been found. The maxima corresponding to  $E_{\nu} = 260$ and 300 kev are caused both by cascade transitions and by coincidences with scattered  $\alpha$ -particles with  $E_{\alpha} = 4930$  and 4890 kev. The number of y-transitions observed is approximately equal to the total number of the a-decay processes. On this basis the authors propose a new decay scheme for Bi  $^{210}$ , which is portrayed in a figure. The energy Q of the  $\alpha$ -decay of RaE to the ground state of Tl 206 can be calculated from the energy

Card 2/3

On the Decay Scheme of the Isomer Bi<sup>210</sup>

sov/56-37-2-39/56

balance. It is  $Q_{\alpha} = (5064 \pm 15)$  kev. The total decay energy of the  $\alpha$ -decay of the long-lived isomer of Bi  $^{210}$  is  $Q_{\alpha} = (5286 \pm 15)$  kev, considering the recoil nucleus and the energy of the  $\gamma$ -quanta. RaE with  $T_{1/2} = 5.01$  days is the ground state of Bi  $^{210}$  and the state with  $T_{1/2} = 2.6.10^6$  years is metastable. The authors express their gratitude to L. A. Sliv for discussing the results of this work, and to Ye. G. Gracheva, N. B. Obel'skaya, Y. K. Makhnovskaya, and L. Ya. Rudaya for the chemical purification of the preparation from radioactive admixtures and for producing the samples. There are 3 figures, 2 tables, and 3 references, 1 of which is Soviet.

SUBMITTED:

April 27, 1959

Card 3/3

RUSINCV, L.I. [deceased]; ANDREYEV, Yu.N.; GOLENETSKIY, S.V.; KISLCV, M.I.; FILIMCNOV, Yu.I.

Alpha-decay of the isomer Bi<sup>2lom</sup>. Zhur. eksp. i teor. fiz. 40 no.4:1007-1015 Ap '61. (MIRA 14:7)

1. Leningradskiy fiziko-tekhnicheskiy institut AN SSSR. (Alpha rays) (Bismuth--Decay)



VINNIK, L.A., dotsent; FILIMONOV, Yu.1.

External respiration under controlled physical stress in patients with pulmonary tuberculosis (veloergometric studies). Probl. tub. 42 no.3:27-34 64. (MIRA 18:1)

l. Fakul'tetskaya terapevticheskaya klinila (zav. - prof. A.M. Nogaller), kafedra fizicheskogo vospitaniya (zav. - I.A.Kolomeytsev) Astrakhanskogo meditsinskogo instituta i Astrakhanskoy oblastnoy protivotuberkuleznyy dispanser.

FILIMONOV, Yu.I.

Respiratory and circulatory function in pulmonary tuberculosis during exercise therapy. Probl. tub. no.2:19-23 '65. (MIRA 18:12)

l. Kafedra fizicheskogo vospitaniya (zav. I.A.Kolomeytsev)
Astrokhanskogo meditsinskogo instituta i Astrakhanskiy
oblastnoy protivotuberkuleznyy dispanser (glavnyy vrach
A.P.Demidova). Nauchnyy rukovoditel raboty - chlen-korrespendent AMN SSSR prof. F.V.Shebanov.



## "APPROVED FOR RELEASE: 06/13/2000 CIA-R

CIA-RDP86-00513R000413030010-9

16.3500\_

26140 S/040/61/025/004/019/021 D274/D306

AUTHOR:

Filimonov, Yu.M. (N. Tagil)

TITLE:

On the stability of solutions of third-order dif-

ferential equations

PERIODICAL:

Prikladnaya matematika i mekhanika, v. 25, no. 4,

1961, 785-790

TEXT: A criterion for asymptotic stability is derived by a qualitative method which involves evaluating contour integrals. The non-linear system

 $\frac{dx_i}{dt} = X_i (x_1, x_2, x_3) (i = 1, 2, 3) (1.1)$ 

is considered, where  $X_i$  are functions with continuous partial derivatives up to second order inclusive. It is also assumed that the only equilibrium position is the origin  $X_i(0,0,0) = 0$ . A surface is considered which consists of the integral curves of (1.1);  $x_i = x_i(u,t)$  is its parametric representation. A closed contour  $\Gamma$  is taken on that surface; by Green's formula:

Card 1/4

26140 S/040/61/025/004/019/021 D274/D306

On the stability...

$$\oint_{\sigma} (\beta_{2}X_{3} - \beta_{3}X_{2}) dx_{1} + (\beta_{3}X_{1} - \beta_{1}X_{3}) dx_{2} + (\beta_{1}X_{2} - \beta_{2}X_{1}) dx_{3} =$$

$$= \iint_{\sigma} \sum_{i,k=1}^{3} \sum_{j=1}^{3} \left( a_{ik} \frac{\partial x_{j}}{\partial x_{j}} - a_{jk} \frac{\partial x_{i}}{\partial x_{j}} \right) \frac{A_{i}A_{k}}{\sqrt{A_{1}B_{1} + A_{2}B_{2} + A_{3}B_{3}}} dudt \tag{1.2}$$

or is the interior of the contour. The double sum is a quadratic form in  $A_i$ ; it is called the quadratic form of system (1.1) corresponding to matrix  $\|a_i\|_{1}^3$ . Theorem. a) If the solution  $x_1 = x_2 = x_3 = 0$  of system (1.1) is asymptotically stable with respect to perturbations in a neighborhood of the point  $x_1 = x_2 = x_3 = 0$ ; b) if a constant matrix  $\|a_{ij}\|_{1}^3$  can be found which has positive eigenvalues, so that the quadratic form of (1.1), corresponding to that matrix, is non-positive; c) if outside a sphere with center at the origin the right-hand sides of (1.1) satisfy inequality  $x_1^2 + x_2^2 + x_3^2 \geqslant q$ , (q being a positive constant), then the solution is asymptotically stable for any initial perturbations. The theor-

Card 2/4

S/040/61/025/004/019/021 D274/D306

On the stability...

em is proved: In the proof, orthogonal trajectories are constructed, and a contour integral is evaluated. Further, possible deviations along trajectories are evaluated for initial values which satisfy inequality  $\|\mathbf{x}\|_2 \leqslant \mathbf{r}_0$  (2.1)

Owing to the continuous dependence of the solutions on the initial values on the sphere  $\|\mathbf{x}\|_2 = \mathbf{r}_0$ , a point  $(\mathbf{x}_{10}, \mathbf{x}_{20}, \mathbf{x}_{30})$  can be found through which the integral curve with maximum possible deviation  $\max \|\mathbf{x}(t)\|_2 = R \qquad (0 \le t < \infty) \qquad (2.2)$ 

passes. The sought-for estimate is

$$R \leq r_0 + \frac{N}{\sqrt{qc_2}}$$
  $\left(N = \sqrt{\frac{c_1}{c_2}} \max_{\|x\|_2 \leq r_0} \|x\|_2 r_0\right)$  (2.7)

Two notes are given regarding the proof of the theorem and of inequality (2.7), and a stability criterion given by N.N. Krasovskiy (Ref. 5: Nekotoryye zadachi teorii ustoychivosti dvizheniya (Problems in the Theory of Stability of Motion), Fizmatgiz, M., 1959). Finally, an example is given illustrating the use of the theorem Card 3/4

26140 S/040/61/025/004/019/021 D274/D306

On the stability...

proved. There are 8 references: 7 Soviet-bloc and 1 non-Soviet-bloc.

SUBMITTED: April 7, 1961

Card 4/4

L 4194-66 EIT(d) IJP(c) ACCESSION NR: AP5024929 UE/0376/65/001/008/1007/1015 AUTHOR: Filimonov, Yu. M. 114,55 TITLE: Optimal control of a mathematical pendulum SOURCE: Differentsial'nyye uravneniya, v. 1, no. 8, 1965, 1007-1015 TOPIC TAGS: differential equation, optimal control ABSTRACT: The author, in considering the problem of fastest entry into equilibrium under the influence of an exterior moment of bounded magnitude, is led to consider the system  $\frac{dx}{dt} = y, \frac{dy}{dt} = -\alpha \sin x + u,$ where  $\emptyset \in (0,1)$  is a constant, and u are piecewise smooth, satisfying  $||u|| \leqslant 1$ , (2) are restricted to come from the class which guarantees entry into equilibrium. He assumes that the greatest magnitude of the exterior moment exceeds that of the moment of the force of attraction of the pendulum. He shows existence of optimal trajectories, and derives differential equations for them. These latter require numerical solution. Orig. art. has: 41 formulas and 2 figures. Card 1/2

| A DOOG TANK | NR: AP5024929 ON: Nizhne-Tagil's | skiy gosudarstvennyy pedagogic | cheskiy institut (Lower |
|-------------|----------------------------------|--------------------------------|-------------------------|
| Tagil Sta   | te Fedagogical Inst              | MCL: 00                        | SUB CODE: ME, MA        |
| NO REF SC   |                                  | OTHER: OOL                     |                         |
|             |                                  |                                |                         |
|             |                                  |                                |                         |
|             |                                  |                                |                         |

L 16058-66 EWT(d) IJP(c)

ACC NR: AP6004067

SOURCE CODE: UR/0040/65/029/005/0828/0834

AUTHORS: Bendarenko, V. I. (Nizhniy Tagil); Krasovskiy, N. N. (Sverdlovsk); Filimonov, Yu. M. (Sverdlovsk)

31

ORG: none

TITLE: The problem of putting to rest a linear system

SOURCE: Prikladnaya matematika i mekhanika, v. 29, no. 5, 1965, 828-834

TOPIC TAGS: differential equation, optimal control, steepest descent

ABSTRACT: The authors consider a controlled system described by the linear vector differential equation

 $\frac{dx}{dt} = Ax + Bu \tag{1}$ 

where x is an n-dimensional vector of the phase coordinates of the controlled object and u describes the controlling influence. By the method of steepest descent they solve the problem of choosing the (optimal) control  $\mathbf{u}^o(t)$  which in given time T takes (1) from state  $\mathbf{x}_o$  to state  $\mathbf{x}(T)$  minimizing

Card 1/2

2

APPROVED FOR RELEASE: 06/13/2000

CIA-RDP86-00513R000413030010-9"

| They treat several specific examples. Orig. art. has: 4 figures and 30 formulas. |                     |               |   |  |
|----------------------------------------------------------------------------------|---------------------|---------------|---|--|
| SUB CODE: 12:/                                                                   | SUBM DATE: 10Jun65/ | ORIG REF: 003 |   |  |
|                                                                                  |                     |               |   |  |
| !                                                                                |                     |               |   |  |
|                                                                                  |                     |               | : |  |
| •                                                                                |                     |               |   |  |
| ·<br>:                                                                           | •                   | ·             |   |  |

S/148/60/000/007/023/023/XX A161/A033

AUTHORS:

Glinkov, M. A.; Filimonov, Yu. P.; Krivandin, V. A.

TITLE:

Thermal decomposition of gas containing methane in an oxidizing

medium.

PERIODICAL:

Izveatiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya,

no. 7, 1960, 193 - 197

TEXT: A luminous gas flame radiates more heat than a nonluminous one and its luminosity is determined by the presence of carbon-black particles. The thermal decomposition reaction of methane without air access has been studied [Ref. 1: F. Fischer, Brennst. Chemie, 1928, 9. 309; 1929, 10, 261. Ref. 2 and 3: see English-language publications), but in diffusion burning a high quantity of small volumes have a varying oxygen content, and two processes proceed at the same time - oxidation and thermal decomposition of methane. The laws of these processes have been studied at the Moscow Steel Institute. The test installation (Figure 1) consisted of heating zone (4) and cooling zone (7) for the gas-air mixture, an electrostatic precipitation vessel (8) and filters (9). The gas composition was: 82.6 % CH<sub>4</sub>, 0.3 % C<sub>1</sub> H<sub>3</sub>; 2.2 % H<sub>2</sub>; 1.7 % CO; 0.8 % CO<sub>2</sub>; 0.8 % O<sub>2</sub> Card 1/5

Thermal decomposition of gas ....

S/148/60/000/007/023/023/XX A161/A033

and 11.6 % N<sub>2</sub>. Gas and air were dried in vessels (1) with calcium chloride prior to mixing (3). The quantities of sooty carbon, the relative quantities of scoty carbon and hydrocarbon compounds were determined, as well as the volumes of noncondensed light fractions. The temperatures in the reaction zone were 1,000; 1,100; 1,200; 1,300 and 1,400°C. At 1,000°C the gas in the reaction zone end contained no oxygen, which proved that oxidation was over at 1,000°C. The CO content in the gas increased with the rise in termerature, and the CO2 content dropped which is due to the CO2 reduction reaction with CO formation and with continually increasing quantities of scoty carbon. More CO2 and less CO formed when the air feed was increased. The reaction products in the precipitation vessel were a cloud varying in color from yellowish-white to black, and the precipitated flakes having a strong naphtaline smell were a mixture of soot and hydrocarbon compounds. Benzene, naphtalene, anthracene and other compounds were extracted with petroleum ether, and asphaltenes with benzene. Figure 3 presents the calculation results showing that the content of methane decreases with a rise in temperature, and the hydrogen content increases with an increase in air feed. Conclusions: 1) Socty carbon forms in combined oxidation and thermal decomposition of methane due to thermal decomposition of nonoxidized part of methane, with the formation of com-

Card 2/5

Thermal decomposition of gas....

S/148/60/000/007/023/023/XX A161/A033

plex hydrocarbon molecules as transient compounds. 2) No strong effect of oxidation on the composition of the forming products was stated. A reduction of  $CO_2$  to CO on account of carbon forming during the decomposition was observed, but no effect of this process on the quantity of the forming products was revealed. 3) The dilution of gas with the formed oxidation products results in some shift of the methane decomposition reaction temperature into higher temperature ranges. There are 4 figures and 3 non-Soviet-bloc references; The references to English language publications read as follows: P. V. Wheelera, W. L. Wood, Fuel. 1928, 7, 535; 1930, 9, 567; K. Koboyaschi, K. Jamamoto, Journ. Chem. Ind. Japan, 1935, 38, 550; 1934, 37, 785.

ASSOCIATION: Moskovskiy institut stali (Moscow Steel Institute)

SUBMITTED: Nov. 30, 1959

Card 3/5

GLINKOV, M.A.; FILIMONOV, Yu.P.; KRIVANDIN, V.A.

Flame emanation during the heating of methane containing gas.

Izv. vys. ucheb. zav.; chern. met. no. 11:149-155 '60.

(MIRA 13:12)

1. Moskovskiy institut stali.

(Methane--Combustion)

KRIVANDIN, Vladimir Alekseyevich, dots., kand. tekhn. nauk; MOICHANOV, Nikolay Grigor'yevich, dots.; SOLOMENTSEV, Senen Leonidovich, inzh.; Prinimali uchastiye: MARKOV, B.L., kand. tekhn. nauk; Filimonov, Yu.P., inzh.; TEHEN KOV, B.F., kand. tekhn. nauk, ritsenzent; VASIL'YEVA, R.A., inzh., retsenzent; LANOVSKAYA, M.R., red. izd-va; MIKHAYLOVA, V.V., tekhn. red.

[Metallurgical furnaces] Metallurgicheskie pechi. Pod obshchei red. V.A.Krivandina. Moskva, Gos. nauchno-tekhn.izd-vo lit-ry po chernoi i tsvetnoi metallurgii, 1962. 600 p. (MIRA 15:2)

(Metallurgical furnaces)

LOSEV, David Platonovich; POLISAR, Grigoriy Leyzerovich; FILIMONOV,
Yuriy Polikarpovich; AFOSHIN, A.N., kand. tekhn.nauk, retsenzent; SAVCHENKO, L.T., inzh., retsenzent; SMIRNOV, A.S., kand.
tekhn. nauk, nauchnyy red.; LESKOVA, L.R., red.; KRYAKOVA, D.M.,
tekhn. red.

[Elements and networks of contactless remote control devices]
Elementy i uzly beskontaktnykh telemekhanicheskikh ustroistv.
Elementy i uzly beskontaktnykh telemekhanicheskikh ustroistv.
Leningrad, Sudpromgiz, 1962. 246 p. (MIRA 15:12)
(Remote control) (Pulse techniques (Electronics))

FILIMONOV, Yu.P.; KRIVANDIN, V.A.

Investigating the radiation characteristics of the flame during preliminary thermal decomposition of methane. Izv. vys. ucheb. zav.; chern. met. 6 no.11:216-222 '63. (MIRA 17:3)

1. Moskovskiy institut stali i splavov.

YENENKO, G.M., inzh.; STEPAKOV, Ye.M., kand. tekhn. rauk;
FILIMONOV, Yu.P., kand. tekhn. nauk; K452H OV, M.A.,
kand. tekhn. nauk, retsenzent; MAKOVSKIY, G.M., inzh.,
rad.

[Industrial furnaces] Promyshlennye pechi. Noskva, Mashinostroenie, 1964. 359 p. (NIGA 18:1)

APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413030010-9"

DOLOTOV, G.F., kand. tekhn. nauk; KONDAKOV, Ye.A., inzh.; SURINOV, B.P., inzh., retsenzent; FILIMONOV, Yt.P., kand. tekhn. nauk, ret.

[Design and calculation of industrial furnaces and driers; foundry furnaces] Konstruktsila i raschet zavodskikh pechel i sushil; pechi liteinykh tsekhov. Moskva, Mashinostreenie, 1965. 238 p. (MIRA 18:8)

BUDYLINA, V.V.; MAKHLINOVSKIY, L.I.; BEL'CHENKO, G.V.; ZINCHENKO, I.A.; FILIHONOYA, A.A.: CHUMANOV, M.A.

Studies on the reactive properties of antidiphtherial sera treated by aluminum hydroxide; author's abstract. Zhur. mikrobiol.epid. i immun. 30 no.5:89-90 My '59. (MIRA 12:9)

1. Iz Stavropol'skogo instituta vaktsin i syvorotok, Mineralovodskoy bol'nitsy. Cherkesskoy oblastnoy bol'nitsy, Stavropol'skoy infektsionnoy bol'nitsy i Pyatigorskoy infektsionnoy bol'nitsy.

(ANTACIDS, eff.

aluminum hydroxide on anti-diphtherial immune sera (Rus))

(DIPHTHERIA, imminol.

antiserum, eff. of aluminum hydroxide (Rus))

partition, A.G., akademik [deceased]; G.Hall, A.L.; FILE W.,
A.A.; SHPLUE, T.E., doktor geol-enher. with

[structural and textural characteristics and genetic orea] Struktura-tekaturaye cool-annoati endegennykh rud.

[ky] A.G.Petekhtin i dr. Mockva, Reira, 1964. 597 p.

(MIRA 17:8)

DUBROVA, I.V.; FILIMONOVA, A.A.

Lead thioantimonites from the Severnyy Kantau deposit (Central Asia). Geol.rud.mestorozh. no.3:106-114 My-Je 162. (MIRA 15:6)

1. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR, Moskva. (Kara-Mazar Mountains--Lead thioantimonites)

#### FILIMONOVA, A.A.

Change in the form of chalcopyrite-sphalerite intergrowth under the influence of heating. Geol. rud. mestorozh. 6 no.3:34-38 My-Je '64 (MIRA 18:1)

I. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR, Moskva.

USSR/Geophysics - Pyrites May/Jun 52

"Experiments in Heating Bornitiferous Pyritic Ores,"
A.A. Filimonova

"Iz Ak Nauk, Ser Geolog" No 3, pp 76-88

Heating of samples of bornite-contg pyrites resulted in formation of chalcopyrite at a temp of 240-250°C.
Because, after heating of pure bornite, chalcopyrite does not appear, it was assumed that its formation is a result of exchange reaction between bornite and pyrite. It was established that dissoon of solid soln of bornite and chalcopyrite occurs at a temp of about 270°C.

200762

#### "APPROVED FOR RELEASE: 06/13/2000

#### CIA-RDP86-00513R000413030010-9



FILIMONOVA, A.A.

3(5)

PHASE I BOOK EXPLOITATION

SOV/1773

- Betekhtin, Anatoliy Georgiyevich, Aleksandr Dmitriyevich Genkin, Anna Aleksandrovna Filimonova, and Tatiyana Nikolayevna Shadlun
- Tekstury i struktury rud (Texture and Structure of Ore Minerals)
  Moscow, Gosgeoltekhizdat, 1958. 434 p. 12,000 copies printed.
- Sponsoring Agency: Akademiya nauk SSSR. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii.
- Ed.: A.G. Betekhtin, Academician; Ed. of Publicshing House: N.G. Derzhavina; Tech. Ed.: O.A. Gurova.
- PURPOSE: This book is intended for petrographers, exploration and mining geologists, and scientists concerned with the physico-chemical processes in ore deposition.
- COVERAGE: This monograph describes the structural-textural conditions in ore deposition leading to the formation of minerals, and

Card 1/9

Texture and Structure of Ore Minerals

SOV/1773

discusses the theory of ore deposition based on the results of many years studies by such leading Soviet geologists as P.F. Andrushchenko, A.D. Genkin, A.T. Suslov, A.A. Filimonova, G. I. Bushinskiy, O.A. Vorob'yeva, A.A. Godovikov, I.V. Dubrova, V.N. Lebedev, V.P. Loginov, B.P. Krotov, D.V. Matorin, V.S. Myasnikov, D.O. Ontoyev, N.V. Pavlov, M.M. Povilaytis, O.P. Polyakova, N.M. Prokopenko, Ye. A. Radkevich, I.A. Ruka-vishnikova, G.A. Sokolov, A.I. Tishkin, A.L. Yanitskiy. The book is likewise based on the more direct contributions of scientists associated with the various branches of the AN SSSR, the Mineralogical Museum imeni A.Ye. Fersman, the Moscow State University imeni Lomonosov, the Department of Mineral Resources of the MITSMZ (Moscow Institute of Non-Ferrous Metals and Gold imeni Kalinin, the research and industrial organizations belonging to the Ministry of Geology and the Conservation of Mineral Resources, the academies of the various union republics, and other geological and geological survey organizations. These include: G.A. Avaliani, S.T. Badalov, G.P. Barsanov, Ya. N. Belevtsev, Yu.S. Borodayev, V.A. Vakhrushev, A.S. Golikov, G.I.Gorbunov, D.P. Dolidze, D.A. Zenkov, N.S. Zontov, T.V. Ivanitskiy, S.A. Kashin, A.F. Korshinskiy, V.N. Kotlyar,

Card 2/9

Texture and Structure of Ore Minerals

SOV/1773

P.I. Kutyukhin, I.K. Latysh, A.A. Luyk, V.T. Matveyenko, V.D. Nikitin, L.N. Ovchinnikov, A.P. Perelyayev, N.V. Petrovskaya, V.E. Poyarkov, D.V. Rundkvist, I.Z. Samsonov, V.I. Smirnov, L.N. Khetchikov, I.N. Chirkov, A.D. Shcheglov, K.F. Shcherbakova, Yu.Yu. Yurok. The authors likewise express their thanks to the following members of the IGEM AN SSSR: A.Ya. Kraynyukova, F.M. Orlova, N.F. Boreykina (thin sections laboratory) and V.A. Kuz'min, V.N. Zaytsev (photographic laboratory). Chapters II, III, IV, V, XV, XVI, XVIII, XIX were written by A.G. Betekhtein, chapters I, VII, XIII, XIV, XVII by T.N. Shadlun, chapters VIII, IX, XI by A.D. Genkin, and chapter XII by A.A. Filimonova. Chapter VI was written by A.G. Betekhtin and T.N. Shadlun, and chapter X by Betekhtin and A.D. Genkin. There are 392 photographs and diagrams, 3 tables and 191 references of which 118 are Soviet, 36 English, and 35 German.

TABLE OF CONTENTS:

Foreword

Card 3/9

3

| Texture and Structure of Ore Minerals SOV/17 |                                                                                                                                                                                                                                                     | SOV/1773 |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Introduc                                     | tion                                                                                                                                                                                                                                                | 5        |
| Ch. I.                                       | History of the Study of Ore Structure                                                                                                                                                                                                               | 9        |
| Ch. II.                                      | Definition of the Terms "Structure" and "Textus<br>Concept of the structure of mineral rocks                                                                                                                                                        | •        |
| Ch. III.                                     | The Terms "Structure" and "Texture" as Applied to Ores                                                                                                                                                                                              | 33       |
| Ch. IV.                                      | Ore structures (34). Ore textures (48)  Crystallization of Melts and Solutions  Crystallization process in a homogeneous liquin (64) Effect of temperature, pressure the concentration of chemical components on terystallization of solutions (72) |          |
| Card 4/9                                     |                                                                                                                                                                                                                                                     |          |
|                                              |                                                                                                                                                                                                                                                     |          |

Texture and Structure of Ore Minerals

SOV/1773

Ch. V. Colloidal Solutions and Gels

77

Properties of colloidal solutions (77). Structure of the dispersed phase of suspensoids (79) Coagulation in dispersed phases and the syneresis of gels (81). Conditions for the formation of colloidal solutions (82) Conditions for the formation of coagulants (85). Processes in the precipitation of coagulants (91)

Ch. VI. Indications of the participation of colloidal solutions in the formation of ores

or in the second in the state of the second in the second

99

Colloformic aggregates (100). Oolites (115). Emulsified suspensions (121). Reccuringly-banded precipitates (126). Crystalline-sols (129).

Card 5/9

CORCI CHARLES ( TAP 2)

| 73<br>137<br>155 |
|------------------|
| 155              |
|                  |
|                  |
| 103              |
| 103              |
| <b>47</b> 1      |
|                  |
| 222              |
|                  |
|                  |
|                  |
| 222              |

Texture and Structure of Ore Minerals SOV/1773 Ch. XI. Decomposition Phenomena in Ore Minerals 242 Decomposition of minerals under the influence of oxidation processes (242) Decomposition of minerals in reducing conditions (254) Ch. XII. Disintegration Phenomena in Solid Solution 259 Solid solutions (260) Decomposition of solid solutions (264) Identification criteria in the study of disintegration of structures of solid solutions (275) Ch. XIII. Cataclasis and plastic deformation in ore-forming minerals 278 Characteristics of brittle deformation in ore (278). Phenomena of plastic deformation in ores (285) Card 7/9

| Texture a | and Structure of Ore Minerals                                                                                                                                                      | SOV/1773   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Ch. XIV.  | Ore Recrystallization in Metamorphic Processes                                                                                                                                     | 295        |
|           | Ore recrystallization related to post-ore tectonic dislocations (296) Ore recrystalliz related to regional metamorphism (304) Recry zation connected with thermal metamorphism (3  | stalli-    |
| Ch. XV.   | Mineralization Stages in Endogenic Ore Deposits                                                                                                                                    | 329        |
|           | Mineralization phases (330) Mineralization stages (334). Mineralization ages (345).                                                                                                |            |
| Ch. XVI.  | Paragenetic Relationships and Sequences in Mine Formation                                                                                                                          | ral<br>350 |
|           | A concrete example of the analysis of the par<br>genetic relationship of minerals (352) Fara-<br>genetic relationships of sulphides, iron oxid<br>and copper in ore deposits (362) |            |
| Ch. XVII. | Techniques in the Study of Ore Textures and Structures                                                                                                                             | 369        |
|           | Field observations (370) Laboratory studies Interpretation of observations (382)                                                                                                   |            |
| Card 8/9  |                                                                                                                                                                                    |            |

Texture and Structure of Ore Minerals

SOV/1773

Ch. XVIII. Structural Etching of Polished Sections

391

Distinctive traits of structural etching (392) Conditions necessary for a successful completion of structural etching (395). Methods of structural etching (396). Deceptive effects of structural etching (404). The value of structional etching in the study of polished ore sections (405)

Ch. XIX.

Practical Value of Studying the Structural-Tectural Characteristics of Ores 4

412

Examples illustrating the value of detailed mineragraphic studies in application to ore dressing enrichment (413). Significance of regularity in mineral associations and the paragenetic relationships of minerals in exploration surveys (422)

**Bibliography** 

428

AVAILABLE: Library of Congress

Card 9/9

MM/ad 6-12-59

## FILIMONOVA, A.A.

Toltures due to unmixing of solid solutions in ores during metamorphism. Geol. rud. mestorozh. no.3:81-88 My-Je '59.

(MIRA 12:10)

1. Institut geologii rudnykh mestorozhdeniy, petrografii, mimeralogii i geokhimii AN SSSR, Moskva.
(Solutions, Solid)

# FILIMONOVA, A.A.

Abstract of T. Lovering's article "Temperatures and depth of formation of sulfide ore deposits at Gilmen, Colorado" ("Economic Geology," no.6, 1958). Geol. rud. mestorozh. no.3:115-119 My-Je '59.

(MIRA 12:10)

(Gilman, Colorado--Sulfides)

ARTEMOV, N.M.; TARASOVA, L.N.; FILIMONOVA, A.A.

Stimulation of the pituitary—adrenal system by bee venom.
Nauch. dokl. vys. shkoly; biol. nauki no. 1:86-89 '61.

(MIRA 14:2)

1. Rekomendovana kafedroy fiziologii cheloveka i zhivotnykh
God kovskogo gosudarstvennogo universiteta im. N.I. Lobachevskogo.

(BEE VENOM—PHYSIOLOGICAL EFFECT) (PITUITARY BODY)

(ARDENAL CCRTEX)



20-119-5-46/59 Filimonova, A. B. AUTHOR: Spore Complexes Found in Boundary Layers of the TITLE: Middle and Upper Devonian of the Volga-Ural Region (Kompleksy spor pogranichnykh sloyev srednego i verkhnego devona Volgo-Ural'skoy oblasti) Doklady Akademii Nauk SSSR, 1958, Vol. 119, Nr 5, PERIODICAL: pp. 1006-1008 (USSR) G. P. Batanova (reference 1) emphasized the necessity of ABSTRACT: revising the boundary between the Frasnian and Givetian stage of the eastern parts of the Russkaya platform. In Bashkiriya L. A. Rozhdestvenskaya (reference 2) shifted the boundary of the Givetian stage up into the roof of the argillite-alcurite parcel which separates the sand layers D<sub>TT</sub> and D<sub>T</sub>. In Tatariya the Givetian--Frasnian boundary was established by A. N. Petrovskaya and L. N. Yegorova. M. F. Filippova came to a similar conclusion (as in reference 2) for a much larger region. According to lithological material the author performed the spore analysis of more tham 30 cross sections of the Card 1/3

Spore Complexes Found in Boundary Layers of the 20-119-5-46/59 Middle and Upper Devonian of the Volga-Ural Region

, East-Tatariya, West-Bashkiriya, regions: Volga-Ural region and the south of the the north of the Kuybyshev Molotov , region. The spores of these argillite-alcurite parcel show its nonuniform age. Its lower part which lies between the sand layer DII and the "black lime" contains an Upper-Givetian spore complex which is similar to the complex of the sand parcel  $D_{\mathsf{TT}}$  that lies deeper; its upper part, from the "black lime" up to and including the sand parcel D<sub>T</sub>, contains a different spore complex which resembles the Pashiyakiy spore-pollen complex of S. N. Naumova. The presence of a typical Upper Givetian fauna of ostracodes and Stringocephalus burtini ex gr.Defr. (reference 5) in the rocks of the "black lime" determines the spore complex of the "black lime" as Givetian. Because of the similarity of the latter complex with the Pashiyskiy it will possibly be necessary to revise the Lower Frasnian age of the Pashiyskiy complex and of the layers characterized by it in favor of their Givetian age.

Card 2/3

Spore Complexes Found in Boundary Layers of the Middle and Upper Devonian of the Volga-Ural Region

20-119-5-46/59

S. N. Naumova, M. r. Filippova, A. I. Lyashenko and L. N. Egorova participated in the work. There are 5

references, 5 of which are Soviet.

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy geologorazvedochnyy

neftyancy institut (All-Union Scientific Geological-

-Prospecting Research Institute for Petroleum)

PRESENTED: October 4, 1957, by D. V. Nalivkin, Member, Academy of

Sciences, USSR

ASSESSED ASSESSED FOR THE PARTY OF THE PARTY

SUBMITTED: October 1, 1957

Card 3/3

#### FILIMONOVA, A.B.

Stratigraphic significance of spores from terrigenous deposits of the Staryy Oskol and Mullinskiy horizons of the middle Devonian in areas of the Volga-Ural region. Dokl. AN SSSR 142 no.4:909-912 F '62. (MIRA 15:2)

1. Vsesoyuznyy nauchno-issledovatel'skiy geologorazvedochnyy neftyanoy institut. Prestavleno akademikom D.V.Nalivkinym. (Volga-Ural region--Geology, Stratigraphic)



SHUTSKAYA, Tekaterina Konatantinovna; ZHUZHCHENKO, B.P., red.; FILIMOMOVA,
A.G., vedualachiy red.; FEDOTOVA, I.G., tekhn.red.

[Lever Paleogens stratigraphy and facies of Ciscaucasia] Stratigrafiia i fasii nizhnego paleogena Predkavkaviia. Moskva, Gos.
nauchno-tekhn.izd-vo neft. i gorno-toplivnoi lit-ry, 1960. 102 p.

(Caucasus, Worthern-Geology, Stratigraphic)

(Caucasus, Worthern-Geology, Stratigraphic)







ZAPLATINA, S.I.; FILIMONOVA, A.S.

Method for the differential diagnosis of Pasteurella pseudotuberculosis and of the geographical varieties of Pasteurella pestis. Sbor. nauch. rab. Elist. protivochum. sta. no. 1:173-175 '59.

(PASTEURELLA PESTIS) (PASTEURELLA PSEDUOTUBERCULOSIS)

RUDKOVA, S.I.; ROZHNOVA, R.T.; FILIMONOVA, A.Ya.

Food poisoning. Zhur. mikrobiol. epid. i immun. 31 no. 5:119 My 160.

(MIRA 13:10)

1. Iz Kuyb shevskogo meditsinskogo instituta.

(FOOD POISONING)

RAZIN, P.S.; FILIMONOVA, A.Ya.

Some data on the observation of convalencent patients after acute dynentery. Zhur.mikrobiol.epid.i immun. 32 no.2:121-122 F '61.

(MIRA 14:6)

1. Iz Vladivostokskogo meditsinskogo instituta. (DYSENTERY)

RAZIN, P.S., dotsent; FILIMONOVA, A.Ya.; VOTINOVA, Ye.P.; MINHAYLICHENKO, S.I. (Vladivostok)

Some problems in the pathogenesis of pneumonia in the Maritime Territory, Klin.med. no.4:43-45 162. (MIRA 15:5)

APPROVED FOR RELEASE: 06/13/2000 CIA-RDP86-00513R000413030010-9"

INHER, Faddey Il'ich; SKACHKOV, Petr Ivanovich; FILIMONOVA, D.S., red.; MELEKHOVA, L.S., tekhn. red.

[Maintenance and repair of machines and mechanisms in felling areas] Tekhnicheskoe obsluzhivanie i remont mashin i mekhanizmov na lesosche. Arkhangel'sk, Arkhangel'skoe knizhnoe izd-vo, 1961. 65 p.

(MIRA 15:12)

(Lambering—Machinery)

YESIPOV, Pavel Petrovich, kand. tokhm. nauk; FILDMONOVA, D.S., red.;
NEIEKHOVA, L.S., tekhm. red.

[Studying the shaping of the teeth of circular saws for transversel sawing of pine lumber] Issledovanie profilirovki zub'ev kruglykh pil dila poperechnogo pilenia sosnovi drevesiny.

Arkhangel'sk, Arkhangel'skoe knizhmoe izd-vo, 1961. 78 p.

(Gircular saws)

(Gircular saws)

KOPERIN, Fedor Ivanovich, prof.; FILIMONOVA, D.S., red.; MELEXHOVA, L.S., tekhn. red.

[Frevention of decay in wood] Zashchita drevesiny ot gnieniia.
Arkhangel'sk, Arkhangel'skoe knizhnoe izd-vo, 1961. 190 p.

(MIRA 15:4)

(Wood--Preservation)



PAROVSHCHIKOV, Viktor Yakovlevich; FILIMONOVA, D.S., red.; MART'YANOVA, L.I., tekhn. red.

[In morthern regions; notes of a naturalist]Na severnykh prostorakh; zapiski naturalista. Arkhangel'sk, Arkhangel'skoe knizhnoe izd-vo, 1962, 69 p. (MIRA 16:2)

(Russia, Northern—Natural history)

DAVIDENKO, Ivan Ivanovich; FILIMONOVA, D.S., red.

[Organization of work at a landing] Organizatsiia rabot na nizhnem sklade. Arkhangel'sk, Arkhangel'skoe knizhnoe izdvo, 1963. 35 p. (MIRA 17:5)

1. Tekhnoruk Khoz'minskogo lesopunkta Vel'skogo lesopromyshlennogo khozyaystva Arkhangel'skoy oblasti (for Davidenko).

KOPERIN, Fedor Ivanovich, prof.; FILIMONOVA, D.S., red.;
BUYNOVSKAYA, N.B., tekhn. red.

[Firepreofing of wood and wood materials] Ognezashchita drevesiny i drevesnykh materialov. Arkhangel'sk,
Arkhangel'skoe knizhnoe izd-vo, 1963. 117 p. (MIRA 17:1)

1. Arkhangel'skiy lesotekhnicheskiy institut imeni V.V.
Kuylysheva (for Koperin).



SANDROVSKIY, Ivan Grigor'yevich; KOBTLIN, S.F., red.; KECKAN,
A.N., red.; TANASHEY, R.I., red.; FILIMENCH, D.S., rec.

[How we maintain mechanisms] Kak my obsluzhivaem mekhanizmy. Arkhangel'sk, Severo-Zapadnee knizhnoe izd-vo,
1964. 30 p.

[NIRA 18:1]

1. Brigadir-mekhanik lesopunkta Tarza Shalakushskogo lesopromyshlennogo khozyaystva (for Sandrovskiy).

NOVIKOV, Petr Ignat'yevich, kand. biol. nauk,dots.; FILIMONOVA, D.S., red.

[Fishes in the bodies of water of Archangel Province and their commercial simificance] Ryby vodoemov Arkhangel'skoi oblasti i ik' promyslovoe znachenie. Arkhangel'sk, Severo-Zapadnoe knizhnos 121-vo, 1964. 141 p. (MIRA 18:7)

STRAKHOV, Viktor Yevgen'yevich; FILIMONOVA, D.S., red.

[On a forest river] Na lesnoi reke. 2. izd. Arkhangel'sk,
Severo-Zapadnoe knizhnoe izd-vo, 1964. 158 p.

(MIRA 18:3)







FILIMONOVA, G.A.

Embryologic characteristics of flower buds of some cherry varieties. Nauch. dokl. vys. shkoly; biol. nauki no.2:115-117 '62. (MIRA 15:5)

Nature and the degree of lower bud damages by low temperatures in stone fruits. Agrobiologiia no.3:377-382 My-Je '62,

1. Moskovskiy gosudarstvennyy universitet imeni Lomonosova, kafedra genetiki i selektsii.

(STONE FRUIT) (PLANTS -- FROST RESISTNANCE)



FETISOV, G.G.; FILIMONOVA, G.A.

Application of the method of artificial freezing of the cherry flower buds in the study of their frost resistance.

Vest. Mosk un. Ser. Biol., pochv. 19 no.2:64-72 Mr-Ap 164.

(MIRA 17:9)

1. Botanicheskiy sad Moskovskogo universiteta.

FILIMONOVA, G.V., Cand lech Sci -- (diss) "Study of the process of electroplating of lead from alkal electrolytes." Mos 1958, 14 pp (Min of Higher Education USSR. Mos Order of Lenin Chem Tech Inst im D.I. Mendeleyev) 150 comies (KL, 39-58, 110)

- 45 -



FILIMONOVA, G.V., mladshiy nauchnyy sotrudnik; KUDRYAVISEV, N.T., doktor khimichoskikh nauk, prof.; BELYAYEV, P.P., kand.khimichoskikh nauk.

Cathodic process in lead electroplating from alkaline electrolytes.

Trudy NIIKHIMMASH no.28:61-77 '59. (MIRA 15:6)

(Lead plating)

"APPROVED FOR RELEASE: 06/13/2000

CIA-RDP86-00513R000413030010-9

|  | 0102/208                                                                         | f the Chamisal and Technological<br>A Sciences) Kasan', 1996.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A.A. Trutacov (Resp. M.)  1. 0.5. Vostribusants, ari, Frotesor, S.M. fochergin, Frotesor, B.M. fochergin, 5. M. formalise, formalise,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mhere of the speaceting in-<br>the and first maniversary of<br>'Device of Chamical Sciences<br>and the angle of the angle of the<br>her works and that of members<br>and works and that of the<br>ten of provisional and the<br>stin of physical and the<br>'the hittmental, manital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BOW/2019 Between of Orygen Marutay-Deep                                                                                                                       | ls Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102<br>of Bitrogen 106<br>of the System                      | arties of the 120                                               | 97  |               |
|--|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----|---------------|
|  | MARE I BOOK REFLOYACION<br>Distilation-tesimelogicheskly institut issui S.K. Kir | * 72, Municipasitys smit (Trussactions of instance 1, 21, 22, Chmico Mrrets slip inserted, No Orgins printed, Octavil E.E. Mondon (**, **)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I To Hoyata (Danky Ma) Tool A. To Arborov, Anderson, Ma) A. Ma Carlorov, Anderson, Anderson, Total Tot | if The collection contains in explicit chamistry. If The collection contains reports by funcity as to and also communities the 7th year of the 1M bank of Funcial for the 1M bank of Funcial for the 1M bank of the the 1 | the Chemical (Cont.)  3, 6.6., and Tu. M. Kargin. The Infl. Electrolytic Reduction of Lead in a. (Freliminary report)  R.Y., and Studente Z.0, Sentian and Y. | or Study I Dom.  Denois Line Control of Carlo Control of Control of Meridon Control of Me | rtisor, L.;<br>and R.V.                                      | N.2., and N.4. Trifonov, Physicochamical Prope<br>Storago-Satar | , * |               |
|  | 5(0)<br>. Kasan, Bring                                                           | Incited Incite | Printegral Professor Professor Professor Professor Professor Professor Professor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OOVERACE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tressections of 10, 813 beauty berinds Estirole 11, 11, 11, 11, 11, 11, 11, 11, 11, 11                                                                        | of brugal<br>12. Departed<br>11. Alexandro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13. Besselson-P.<br>Onides<br>15. Teppia, K.Z.<br>Monase-Per | 16. Tarpin, N.<br>System Dio<br>Cart h/6                        |     | for Section 1 |

SARKISOV, Semen Aleksandrovich; FILIMONOVA, I.N., redaktor; KONONOVA, Ye.P., redaktor; PRFOBRAZHENSKAYA, N.S., redaktor; KUKUYEVA, L.A., redaktor; ZAMBRZHITSKIY, I.A., redaktor; GABERLAND, M.I., tekhnicheskiy redaktor.

Atlas of the cyto-architectonics of the human cerebral cortex]
Atlas tsitoarkhitektoniki kory bol'shogo mozga cheloveka. Pod
red. S.A.Sarkisova, i dr. Moskva, Gos.izd-vo meditsinskoi lit-ry,
1955. 276 p.—— Supplement, 203 plates. (MLRA 9:1)

1. Akademiya meditsinskikh nauk SSSR. Institut mozga. (CERESRAL CORTEX)

AUTHORS:

Krotikov, V. A., Filimonova, I. N.

SOV/54-58-3-17/19

TITLE:

An Essay on the Pedagogical Activity of D. I. Mendeleyev at the Petersburg University (1867-1881) (Ocherk pedagogicheskoy deyatel'nosti D. I. Mendeleyeva v Peterburgskom

universitete (1867-1881))

PERIODICAL:

Vestnik Leningradskogo universiteta. Seriya fiziki i khimii,

1958, Nr 3, pp 140-148 (USSR)

ABSTRACT:

On the pedagogical activity of D. I. Mendeleyev in the years from 1856 to 1867 a report was given already in Vestnik Leningradskogo universiteta. Seriya fiziki i khimii, 1958, Nr 10, p 126. In 1867, a new section in D. I. Mendeleyev's life and activity began. He became head of the chair of chemistry at the physical-mathematical faculty. He gave courses on general, organic (until 1868), and inorganic chemistry. Mendeleyev's scientific activity was very intensive in the '60 -'70-ies. In this time he made his discoveries and wrote papers that made him famous all over the world. His paper "Fundamentals of Chemistry" ("Osnovy khimii") was the first manual of chemistry that was based on the periodic law discovered by Men-

Card 1/3

An Essay on the Pedagogical Activity of D. I. Mendeleyev at the Petersburg University (1867-1881)

deleyev. The problem on indefinite compounds had a special place in this textbook. Mendeleyev's conceptions on indefinite compounds, especially about liquid solutions was new in science. His pedagogical experience and position as head of the chair of chemistry enabled him to complete the teaching schedule at the physical-mathematical faculty and to promote the university to the position of a scientific research institution. Thanks to his endeavors the position of university teachers became firmly established and one of the greatest Russian chemists, A. M. Butlerov (1368), was invited to the university. Mendeleyev gave a great contribution to the enlargement of the chemical laboratory and of the library. He always made efforts to help poor students. After 25 years of activity, in 1880, according to the colex of the university he was to resign his office. But because of his extraordinary merits he unanimously was voted as to remain at the university. There are 26 references, 26 of which are Soviet.

Card 2/3

### "APPROVED FOR RELEASE: 06/13/2000

CIA-RDP86-00513R000413030010-9

AUTHORS:

Krotikov, V.A., Filimonova, I.II.

54-10-2-14/16

TITLE:

A Report Concerning the Pedagogical Activities of

D.I.Mendeleyev at Petersburg University (1856-1867) (Ocherk pedagogicheskoy deyatel nosti D.I.Mendeleyeva v Peterburgskom

universitete (1856-1867 gg.)

PERIODICAL:

Vestnik Leningradskogo Universiteta, Seriya fiziki i /3 ., 1958, Vol.10, Nr 2 , pp. 126-132 (USSR)

ABSTRACT:

For a period of 33 years (1856-1890) D.I.Mendeleyev was closely connected with Petersburg University. This period, which was the most productive of his life and of his activities, can be subdivided into 3 periods: 1.) 1856-1867. During this time Mendeleyev taught various chemical subjects (organic, theoretical, technical, and analytical chemistry), defended his Master's and Doctor's dissertations, and wrote and edited a number of monographs dealing with various fields of chemistry. It was during this early stage of his career that he developed to be an independent research scientist. 2.) 1867-1881. In 1867 Mendeleyev obtained the chair of chemistry. He concentrated his activities mainly on teaching anorganic chemistry. Until the end of the seventies he mainly

Card 1/2

CIA-RDP86-00513R000413030010-9"

**APPROVED FOR RELEASE: 06/13/2000** 

s retrained and extend the desire in the contract of the contr

A Report Concerning the Pedagogical Activities of D.I. Mendeleyev at Petersburg University (1856-1867)

计可能设置的 特别 阿勒斯特 经现代 ( ) ,在他们的

54-10-2-14/16

worked in connection with the creation of the "Bases of Chemistry", the periodic system of chemical elements, and the study of the elasticity of gases. 3.) The early eighties marked another turning point in his career. His pedagogical activities during this period were characterized by the fact that he displayed considerably more interest in problems of general instruction and for the organization of scientific work at the universities. Also his research work was directed towards other problems. The problem that occupied Mendeleyev's greatest attention were solutions. As a pedagogue he continued teaching as the holder of the chair for chemistry, and he lectured on anorganic chemistry. In 1890 Mendeleyev handed in his resignation and left the university. There are 14 references, all of which are Soviet.

SUBMITTED:

June 23, 1957

AVAILABLE:

Library of Congress

1. Instructors-Chemistry-USSR

Card 2/2

5(0)
AUTHORS: Krotikov, V. A., Filimonova, I. N.

TITLE: An Essay on the Pedagogical Activity of D. I. Mendeleyev at the Peterburg University (in the Years 1881-1890) (Ocherk

pedagogicheskoy deyatel nosti D. I. Mendeleyeva v Peterburgskom

universitete (1881-1890gg.))

PERIODICAL: Vestnik Leningradskogo universiteta. Seriya fiziki i khimii,

1959, Nr 1, pp 112-119 (USSR)

ABSTRACT: In the years from 1881-1890 Mendeleyev carried on his activity

at the Chair for Chemistry of the Peterburg University. In
November 1884 he was awarded the title of a Honored Full
Professor and in August 1865 after thirty years of educational activity he retired. Afterwards, he held one more lecture on general chemistry. A shorthand manuscript of his lectures on general chemistry held in the last years before 1890 is preserved in the archives of the Leningradskiy gosydarstvernyy universitet (Leningrad State University). A short outline of his

lectures is given here on the basis of these manuscripts. In the beginning he lectured on the limits and forms of chemical con-

Card 1/3 versions, on elements and simple bodies and on the effect of

507/54-59-1-16/25

An Essay on the Pedagogical Activity of D. I. Mendeleyev at the Peterburg University (in the Years 1881-1890)

various forms of energy. His introductory subject to pure chemistry was hydrogen. Thereupon he investigated the "organogenic" elements hydrogen, oxygen, nitrogen and carbon. In the remaining part of his lecture he dealt with the elements and their compounds of the individual groups of the periodic system D. I. Mendeleyev very actively participated in laying down the new higher education rules established in 1884. He was specially concerned with the course of education of the students. He emphasized his view that this should bear a scientific character rather than a scholastic one. Also examinations should be considered under this point of view Several passages from his (Remarks) are quoted. In this connection also a "Zamechaniva" letter written by Mendeleyer to S. Yu. Vitte on October 15, 1895 on secondary and higher education is mentioned. Mendeleyer's activity at the Peterburg University marked the beginning of a great promotion of educational and scientific activity in the field of chemistry. A number of well-known chemists are to be found among Mendeleyev's successors and among the scientists of that University: G. G. Gustavson, A. L. Potylitsyn, V. Ye.

Card 2/3

SOV/54-59-1-16/25

An Essay on the Pedagogical Activity of D. I. Mendeleyev at the Peterburg University (in the Years 1881-1890)

Tishchenko, D. P. Konovalov, and others. There are 19 Soviet references.

SUBMITTED: June 10, 1958

Card 3/3