Probability Theory Review

CS221: Introduction to Artificial Intelligence
Naran Bayanbat
10/14/2011

Slides used material from CME106 course reader and CS229 handouts

Topics

- Axioms of Probability
- Product and chain rules
- Bayes Theorem
- Random variables
- PDFs and CDFs
- Expected value and variance

Introduction

- Sample space Ω set of all possible outcomes of a random experiment
 - Dice roll: {1, 2, 3, 4, 5, 6}
 - Coin toss: {Tails, Heads}
- Event space ${\mathcal F}$ subsets of elements in a sample space
 - Dice roll: {1, 2, 3} or {2, 4, 6}
 - Coin toss: {Tails}

Introduction

- Probability measure $P: \mathcal{F} \to \mathbb{R}$
- Axioms of Probability

$$-0 \le P(A) \le 1$$
, for all $A \in \mathcal{F}$

$$-P(\Omega)=1$$

•
$$P(A) = \lim_{n \to \infty} \frac{Number\ of\ outcomes \in A}{Total\ number\ of\ outcomes}$$

Set operations

- Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$
 - $A \cap B = \{2\}$ and $A \cup B = \{1, 2, 3, 4, 6\}$
 - $A B = \{1, 3\}$
- Properties:
 - $P(A \cap B) \le \min(P(A), P(B))$
 - $P(A \cup B) \le P(A) + P(B)$
 - $P(\Omega A) = 1 P(A)$
 - If $A \subseteq B$ then $P(A) \le P(B)$

• P(A|B) — probability of A given B

• P(A|B) — probability of A given B

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

- A and B are independent if
 - P(A|B) = P(A)
- A and B are conditionally independent given C if
 - $P(A, B \mid C) = P(A \mid C)P(B \mid C)$

bint probability

$$P(A_1 | A_2, ..., A_n) = P(A_1, ..., A_n)$$

roduct rule.

- P(A|B) probability of A given B
- Example:
 - -P(A) probability that school is closed
 - -P(B) probability that it snows
 - -P(A|B) probability of school closing if it snows
 - -P(B|A) probability of snowing if school is closed

- P(A|B) probability of A given B
- Example:
 - -P(A) probability that school is closed
 - -P(B) probability that it snows

P(A, B)	0.005
P(B)	0.02
P(A B)	0.25

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes Theorem

 We can relate P(A|B) and P(B|A) through Bayes' rule:

$$P(A | B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes Theorem

We can relate P(A|B) and P(B|A) through

Bayes Theorem

 We can relate P(A|B) and P(B|A) through Bayes' rule:

$$P(A | B) = \frac{P(B|A)P(A)}{P(B)}$$

 P(B) can be eliminated with law of total probability:

$$P(B) = \sum_{j} P(B|A_{j})P(A_{j})$$

Random Variables

Random variable X is a function s.t.

$$X: \Omega \rightarrow \mathbb{R}$$

- Examples:
 - Russian roulette: X = 1 if gun firesand X = 0 otherwise

$$P(X = 1) = \frac{1}{6}$$
 and $P(X = 0) = \frac{5}{6}$

-X =# of heads in 10 coin tosses

Cumulative Distribution Functions

- Defined as $F_X: \mathbb{R} \to [0,1]$ such that $F_X(x) = P(X \le x)$
- Properties:
 - $0 \le F_X(x) \le 1$
 - $\lim_{x\to-\infty} F_X(x) = 0$
 - $\lim_{x\to\infty} F_X(x) = 1$
 - $x \le y \Rightarrow F_X(x) \le F_X(y)$

- For discrete random variables, defined as:
 - $f(x_j) = P(x_{j-1} < X \le x_j) = P(x_j)$
- Relates to CDFs:
 - $F_X(x) = \sum_{x_j \le x} f(x_j)$
 - $f(x_j) = F_X(x_j) F_X(x_{j-1})$

- For continuous random variables, defined as:
 - $f(x_i) \triangle x \approx P(x < X \le x + \triangle x)$
- Relates to CDFs:

•
$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$

•
$$f_X(x) = \frac{dF_X(x)}{dx}$$

• Example:

- Let X be the angular position of freely spinning pointer on a circle
- f(x)

• Example:

• Let X be the angular position of freely spinning pointer on a circle f(X).

 $f(x) = \frac{1}{2\pi}$

• Example:

• Let X be the angular position of freely spinning pointer on a circle f(X).

$$f(x) = \frac{1}{2\pi}$$

• F(x)

• Example:

• Let X be the angular position of freely spinning pointer on a circle f(x)

$$f(x) = \frac{1}{2\pi}$$

• $F(x) = \frac{1}{2\pi}x$ for $0 \le x \le 2\pi$

• $P(0 \le x \le \pi/3)$

• Example:

Let X be the angular position of freely spinning pointer on a circle f(x)

$$f(x) = \frac{1}{2\pi}$$

• $F(x) = \frac{1}{2\pi}x \text{ for } 0 \le x \le 2\pi$ • $P(0 \le x \le \pi/3) = \frac{1}{6}$

•
$$P(0 \le x \le \pi/3) = \frac{1}{6}$$

Expectation

• Given a discrete r.v. X and a function $g: \mathbb{R} \to \mathbb{R}$,

$$E[g(X)] = \sum_{x \in Val(X)} g(x) f_X(x)$$

• For a continuous r.v. X and a function $g: \mathbb{R} \to \mathbb{R}$,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Expectation

- Expectation of a r.v. X is known as the first moment, or the mean value, of that variable -> X = g(X)
- Properties:
 - E[a] = a for any constant $a \in \mathbb{R}$
 - E[af(X)] = aE[f(X)] for any constant $a \in \mathbb{R}$
 - E[f(X) + g(X)] = E[f(X)] + E[g(X)]

Variance

• For a random variable X, define:

$$Var[X] = E\left[\left(X - E(X)\right)^{2}\right]$$

Another common form:

$$Var[X] = E[X^2] - E[X]^2$$

- Properties:
 - Var[a] = 0 for any constant $a \in \mathbb{R}$
 - $Var[af(X)] = a^2 Var[f(X)]$ for any constant $a \in \mathbb{R}$

Gaussian Distributions

• Let $X \sim Normal(\mu, \sigma^2)$, then

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

where μ represents the mean and σ^2 the variance

- Occurs naturally in many phenomena
 - Noise/error
 - Central limit theorem

Questions?