Reference Cards

Monoidal and enriched derivators

Friday 9th June, 2017 11:47

A nice feature of rings is that they behave like monoidal categories with one object (or vice versa).

• Any monoidal functor $F: \mathcal{V} \to \mathcal{W}$ (lax is enough) induces a base change 2-functor

$$F_*: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{W}\text{-Cat}$$

that sends a \mathcal{V} -category \mathcal{C} into the \mathcal{W} -category having the same objects of \mathcal{C} and where $(F_*\mathcal{C})(X,Y) = F(\mathcal{C}(X,Y))$.

- The structural 2-cells of F induce the monoidal structure on $F_*\mathcal{C}$.
- Monoidal transformations are induced accordingly (the definition is straightforward): a natural transformation $\beta: F \to G$ induces a 2-natural transformation between the 2-functors F_* and G_* with 'restricted' components.

It seems that this construction could be applied to $\mathcal{V} \to \mathbf{Set}$ to generate the underlying functor $U: \mathcal{V}\text{-}\mathsf{Cat} \to \mathsf{Cat}$, but the fact is that $\mathsf{hom}(J,-)$ is seldom monoidal.

The assignment described above that sends \mathcal{V} into \mathcal{V} -Cat, F to F_* and β to β_* is a 2-functor

$$(-)$$
-Cat : Cat $_{\otimes} \longrightarrow$ 2-Cat

A suitable 2-categorical Grothendieck construction gives rise then to a universal fibration

whose fiber over \mathcal{V} is the 2-category of \mathcal{V} -categories.

- This is no different from the construction of the fibration $Mod \rightarrow Ring$ whose fiber over the ring R is the category R-Mod of modules over R. This is the canonical fibration for $F: \mathbf{Ring} \to \mathbf{Cat}$, and **Mod** = $\int_1 F$.
- General definitions pertaining the Grothendieck construction apply here and we have a definition on functors and natural transformations.

• A morphism $(\mathcal{V},\mathcal{C}) \to (\mathcal{W},\mathcal{D})$ in EnCat is given by a pair $u: \mathcal{V} \to \mathcal{W}$ and a functor $f: u_*\mathcal{C} \to \mathcal{D}$. Composition is given by

$$(vu)_*\mathcal{C} = v_*u_*\mathcal{C} \xrightarrow{v_*f} v_*\mathcal{D} \xrightarrow{g} \mathcal{E}$$

• A 2-cell $\alpha: (u, f) \to (v, g)$ is defined for two parallel 1-cells $(\mathcal{V},\mathcal{C}) \to (\mathcal{W},\mathcal{D})$ as a pair $\beta: u \to v$ (which is monoidal) and α is a 2-cell

All the forgetful functors $U_{\mathcal{V}}:\mathcal{V} ext{-}\mathsf{Cat}\to\mathsf{Cat}$ glue together to form a functor

 $U: \mathsf{EnCat} \to \mathsf{Cat}$

defined by $U(\mathcal{V}, \mathcal{C}) = U_{\mathcal{V}}(\mathcal{C})$ =the underlying unenriched category of \mathcal{C} . All the compatibility check are straightforward.

Recall that a monoidal prederivator is a strict 2-functor $\mathbb{E}:\mathsf{Cat}^\mathsf{op}\to\mathsf{Cat}_\otimes.$ A prederivator enriched over \mathbb{E} is a 2-functor \mathbb{D} such that $p\circ\mathbb{D}=\mathbb{E}.$

The essential of this definition is: an enriched derivator specifies an $\mathbb{E}(J)$ -enriched category $\mathbb{D}(J)$ for each $J \in \mathsf{Cat}$, and this specification is 2-functorial in J. Graphically,

The composition $U \circ \mathbb{D}$ is the prederivator underlying the enriched prederivator \mathbb{D} .

Defining a morphism of enriched prederivators is notationally quite painful, but the definition is clear: it's a pseudonatural transformation between 2-functors $\mathsf{Cat}^\mathsf{op} \to \mathsf{EnCat}$.

From the definition of morphism in EnCat it follows that we have to specify a pseudonatural transformation $F: \mathbb{D} \to \mathbb{D}'$ whose components $F_I: \mathbb{D}(I) \to \mathbb{D}'(I)$ satisfy the commutativity

$$\mathbb{E}(u)_* \mathbb{D}(K) \longrightarrow \mathbb{E}(u)_* \mathbb{D}'(K)$$

$$\downarrow \qquad \qquad \swarrow \qquad \downarrow$$

$$\mathbb{D}(J) \xrightarrow{F_I} \mathbb{D}'(J)$$

for each $u:J\to K$, where we exceptionally denoted $\mathbb{E}(u)$ the action of \mathbb{E} on u.

(the yoga is: as a monoidal functor, $\mathbb{E}(u)$ turns $\mathbb{D}(K)$ into a $\mathbb{E}(J)$ -enriched category, and then the square above is the only way to compare them according to the def. of morphisms in EnCat).

A general result in enriched stuff is:

Theorem

Given a 2v adjunction $\mathcal{E} \times \mathcal{D} \xrightarrow{\curvearrowright} \mathcal{D}$ where \mathcal{E} is monoidal and \mathcal{D} is \mathcal{E} -tensored. Then \mathcal{D} is also \mathcal{E} -cotensored and canonically \mathcal{E} -enriched.

We want to show that this is the base case of a theorem on derivators:

Theorem for derivators

Let $\mathbb E$ be a monoidal derivator, and bD tensored over $\mathbb E$. If there is a 2v adjunction inducing the tensoring,

$$(\otimes, \mathsf{hom}_I, \mathsf{hom}_r) : \mathbb{E} \times \mathbb{D} \to \mathbb{D}$$

then $\mathbb D$ is canonically $\mathbb E$ -enriched and cotensored.

From the definition of an 2v adjunction for derivators we get that each $\mathbb{D}(K)$ is tensored over $\mathbb{E}(K)$ and part of a 2v adjunction

$$(\otimes, \operatorname{HOM}_{I,\mathbb{D}(K)}, \operatorname{HOM}_{r,\mathbb{D}(K)}) : \mathbb{E}(K) \times \mathbb{D}(K) \to \mathbb{D}(K)$$

Using the result for plain categories we get that each $\mathbb{D}(K)$ is enriched over $\mathbb{E}(K)$, and we prove that it is coherently so: hom_r will give all the needed coherence.

As a general tenet, if you can do something in model categories you can do it in derivators:

If \mathcal{M}, \mathcal{N} are combinatorial model categories, \mathcal{M} is also monoidal, and \mathcal{N} is \mathcal{M} -tensored, then the derivator $\mathbb{D}_{\mathcal{N}}$ is canonically tensored, cotensored and enriched over the monoidal derivator $\mathbb{D}_{\mathcal{M}}$.

This applies to **sSet**-model categories, **Sp**-model categories, dg_k -model categories. . .

The Grothendieck construction

The previous construction of p makes heavy use of the Grothendieck construction for 2-categories. We recall it starting from its 0-dimensional counterpart.

For a functor $F: I \to \mathbf{Set}$ all you need to know is in any of these equivalent universal properties:

There is a fibration $p: \int_0 F \to I$ such that $p^{-1}i$ is the set F(i).

For a functor $F: I \to \mathbf{Cat}$ we define $\int_1 F$ as the category of pairs $(i, X \in F(i))$, and a morphism $(i, X) \to (j, Y)$ to be a pair (f, u) such that $f: i \to j$ and $u: F(f)X \to Y$ in F(j). Composition is defined as

$$(i,X) \stackrel{(f,u)}{\to} (j,Y) \stackrel{(g,v)}{\to} (k,Z)$$
$$(i,X) \stackrel{(g,f,v,F(g)u)}{\to} (k,Z)$$

Again there is a fibration $p: \int_1 F \to I$ such that $p^{-1}i$ is a category isomorphic to F(i).

For a 2-functor $F: I \to 2\text{-Cat}$, things go as expected but the definition is quite daunting: $\int F$ has $\int_1 F$ as underlying 1-category (in a similar manner, $\int_{1} F$ had $\int_{0} F$ as set of objects); 2-cells and their two compositions (horizontal and vertical) are defined as follows

• A 2-cell (i,X) $\underbrace{\downarrow \downarrow a}_{(g,v)}(j,Y)$ is a pair (α,θ) such that $\alpha:f\to g$ is a 2-cell in I and $\theta:v.F(\alpha)_X\to u$ is a 2-cell in F(j).

Horizontal composition is defined for cells

i.e. for diagrams of 2-cells like

$$F(f)X \xrightarrow{u} Y \qquad F(g)X \xrightarrow{v} Y$$

$$F(g)X \qquad F(h)X$$

as the pasting

$$F(f)X \xrightarrow{u} Y$$

$$F(g)X \xrightarrow{\bowtie \sigma} w$$

$$F(h)X$$

giving that $(\beta, \sigma) \circ_{\nu} (\alpha, \theta) = (\beta \circ_{\nu} \alpha, (\sigma * F(\alpha)_{X}) \circ \theta)$.

Friday 9th June, 2017 11:47

Vertical composition is defined for cells

$$(i,X) \xrightarrow{(f_1,u_1)} (j,Y) \xrightarrow{(g_1,v_1)} (k,Z)$$

$$\downarrow \underline{b} \qquad \downarrow \underline{b} \qquad \downarrow \underline{k}$$

$$\downarrow \underline{b} \qquad \downarrow \underline{k}$$

$$\downarrow \underline{b} \qquad \downarrow \underline{k}$$

i.e. for diagrams of 2-cells like

as the pasting

