Manual for Package: tide Revision 6:8M

Karl Kästner

November 10, 2019

Contents

1	e/@T	_Tide	1
	1.1	T-Tide	1
	1.2	build_index	1
	1.3	from_tpxo	1
	1.4	get_constituents	1
	1.5	reorder	1
	1.6	select	2
	1.7	shift_time_zone	2
2	e/@Ti	idal_Envelope	2
	2.1	Tidal_Envelope	2
	2.2	init	2
3	e/@Ti	${ m ide_wft}$	2
	3.1	Tide_wft	2
	3.2	transform	2
4	e/@Ti	idetable	3
	4.1	Tidetable	3
	4.2	analyze	3
	4.3	export_csv	3
	4.4	generate	3
	4.5	generate_tpxo_input	3
	4.6	import_tpxo	4
	4.7	plot_neap_spring	4
5	e		4
	5.1	constituents	$\overline{4}$
	5.2	doodson	$\overline{4}$
	5.3	envelope_amplitude	$\overline{4}$

	5.4	envelope_slack_water
	5.5	interval_extrema
	5.6	interval_extrema2
	5.7	interval_zeros
	5.8	lunar_phase
	5.9	rayleigh_criterion
6	e/rive	r -tide/@River_Tide 5
	6.1	River_Tide
	6.2	bc_transformation
	6.3	bcfun
	6.4	check_continuity
	6.5	check_momentum
	6.6	d2au1_dx2
	6.7	d2az1_dx2
	6.8	decompose
	6.9	discharge2level
	6.10	dkq_dx
	6.11	dkz_dx
	6.12	even_overtide_analytic
	6.13	friction_coefficient_dronkers
	6.14	friction_coefficient_godin
	6.15	friction_coefficient_lorentz
	6.16	friction_dronkers
	6.17	friction_exponential_dronkers
	6.18	friction_godin
	6.19	friction_lorentz
	6.20	friction_quadratic
	6.21	friction_trigonometric_dronkers
	6.22	friction_trigonometric_godin
	6.23	friction_trigonometric_lorentz
	6.24	generate_delft3d
	6.25	init
	6.26	mwl_offset
	6.27	mwl_offset_2
	6.28	mwl_offset_analytic
	6.29	odefun
	6.30	odefun0
	6.31	odefun1
	6.32	odefun2
	6.33	solve
	6.34	solve_swe
	6.35	solve_wave
	6.36	wave_number_analytic

	6.37	$wave_number_approximation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	12
7	e/rive	r -tide/@River_Tide_Cai	12
	7.1	Gamma	12
	7.2	River_Tide_Cai	13
	7.3	river_tide_cai	13
	7.4	$rt_quantities \ \dots $	13
8	e/rive	r-tide/@River_Tide_Empirical	13
	8.1	River_Tide_Empirical	13
	8.2	fit_amplitude	13
	8.3	fit_mwl	13
	8.4	fit_phase	14
	8.5	fit_range	14
	8.6	predict_amplitude	14
	8.7	predict_mwl	14
	8.8	predict_phase	14
	8.9	predict_range	14
	8.10	rt_model	14
9	e/rive	$ m r-tide/@River_Tide_JK$	14
	9.1	River_Tide_JK	14
	9.2	damping_modulus	15
	9.3	mean_level	15
	9.4	rivertide_predict	15
	9.5	rivertide_regress	15
	9.6	tidal_discharge	15
	9.7	tidal_range	15
10	o/rivo	r-tide/@River_Tide_Map	16
10	10.1	River_Tide_Map	16
	10.1	fun	16
	10.2	key	16
	10.4	plot	
11	o /nivo	${ m r-tide/@River_Tide_Network}$	16
11	,	,	
	11.1	River_Tide_Network	16
	11.2	discharge_amplitude	16
	11.3	mean_water_level	17
	11.4	plot_mean_water_level	17
	11.5	plot_water_level_amplitude	17
	11.6	solve	17
	11.7	water_level_amplitude	17
12	e/rive	r-tide	18

	12.1	damped_wave_bvp
	12.2	damped_wave_ivp
	12.3	damping_modulus_river
	12.4	rdamping_to_cdrag_tide
	12.5	river_tide_godin
	12.6	rt_celerity
	12.7	rt_quasi_stationary_complex
	12.8	rt_quasi_stationary_trigonometric
	12.9	rt_reflection_coefficient_gradual
	12.10	rt_wave_equation
	12.11	rt_z2q
13	e/rive	$ ext{r-tide/test/test}$ 20
	13.1	test_bvp2c_sym
	13.2	test_celerity
	13.3	test_characteristic_rate_of_change
	13.4	test_dronkers_compound
	13.5	test_friction_dronkers
	13.6	test_friction_dronkers2
	13.7	test_fv_compare_schemes
	13.8	test_fv_convergence
	13.9	test_power_series
	13.10	test_reflection_coefficient_gradual
	13.11	test_ricatti
	13.12	test_river_tide_models
	13.13	test_rt_reflection
	13.14	test_rt_zs0
	13.15	test_swe
	13.16	test_utm2latlon
	13.17	test_wave_twopass
14	e/rive	c-tide/test 22
	14.1	test_bvp2c2
	14.2	test_complex_even_overtide
	14.3	test_fourier_power_exp
	14.4	test_friction
	14.5	test_reflection
	14.6	test_rt_wave_number
	14.7	test_tidal_river_network
	14.8	test_tidal_river_network_z0
	14.9	test_tide_slack_exp
	14.10	test_wave_number_godin
	1/111	test wave numer approximation 23

15	e/rive	r-tide	23
	15.1	tidal_ellipse	23
	15.2	tide_slack_exp	23
	15.3	wave_number_tide	23
	15.4	wavetrainz	23
	15.5	wavetwopassz	24
16	e/test/	/river-tide	24
	16.1	example_river_tide	24
	16.2	example_river_tide_map	24
	16.3	river_tide_test	24
	16.4	river_tide_test_01	24
	16.5	river_tide_test_02	24
	16.6	river_tide_test_03	24
	16.7	river_tide_test_04	24
	16.8	river_tide_test_05	24
	16.9	river_tide_test_06	25
	16.10	river_tide_test_07	25
	16.11	river_tide_test_08	25
	16.12	river_tide_test_09	25
	16.13	river_tide_test_10	25
	16.14	river_tide_test_11	$\frac{-5}{25}$
	16.15	river_tide_test_12	$\frac{-5}{25}$
	16.16	river_tide_test_plot	25
17	e/test		25
	17.1	$test_tidal_harmonic_analysis $	25
18	e		26
	18.1	tidal_constituents	26
	18.2	tidal_energy_transport_1d	26
	18.3	tidal_envelope	26
	18.4	tidal_envelope2	26
	18.5	tidal_harmonic_analysis	$\frac{1}{27}$
	18.6	tidal_range_exp	27
	18.7	tidal_range_tri	27
19	e/tide-	savenije	27
	19.1	savenije_phase_lag	27
	19.2	savenije_tidal_range	27
	19.3	savenije_tidal_range1	28
	19.4	savenije_timing_hw_lw	28
	10.5	tide-savenije	28

20 e 20.1 tide_low_high_exp 20.2 tide_low_high_tri	
$1 e/@T_Tide$	
$1.1 T_{-}$ Tide	
wrapper for TPXO generated tidal time series	
1.2 build_index	
build a structure whose field names contain the index	
1.3 from_tpxo	
read TPXO output into tidetable object	
$1.4 \;\; ext{get_constituents}$	
extract constituents of tpxo object	
1.5 reorder	
order constituents as specified by "name"	
1.6 select	
select a subsect of constituents	
1.7 shift_time_zone	
shift phase according to time zone	

$2 ext{ e/@Tidal_Envelope}$

2.1 Tidal_Envelope

process tidal data to extrac the tidal envelope

2.2 init

initialize with data

3 e/@Tide_wft

3.1 Tide_wft

wavelet transform of tidal time series

3.2 transform

```
wavelet transform tidal time series
     : [1xn] abszissa of input vector, for example time, must be
time
   equally spaced
      : [1xn] signal, input data series (e.g water level or
   velocity)
      : [1xm] base frequencies, 1, 1, 2, \dots for mean level,
F
   diurnal, semidirunal ...
             base periods from base frequencies T=1/F
      : [1xm] wavelet window length in multiple of periods
fc, nc : [scalar] low frequency cutoff and window length in periods
winstr : [char] fourier windows (kaiser (recommended), hanning, box
dt_max : [scalar] maximum time to fill gaps in input data series (
   recommended 3/24 for tide)
output:
tide : struct with fields
        w_coeff : [1xn] wavelet coefficients (complex)
        amplitude : amplitude
                : phase
        phase
        range
        h_tide
       h_low
```

4 e/@Tidetable

4.1 Tidetable

Tide table

4.2 analyze

extract tidal envelope from time series

4.3 export_csv

export tide table to csv file

4.4 generate

run TPXO to generate time series

4.5 generate_tpxo_input

generate tpxo input table
Note: superseeded by perl script

4.6 import_tpxo

import TPXO data into tidetable object

4.7 plot_neap_spring

plot average neap and spring tide

5 e

5.1 constituents

5.2 doodson

frequency of tidal constituents method of doodson source: wikipedia

5.3 envelope_amplitude

compute envelopes of hw and low water

5.4 envelope_slack_water

slack water envelope of the tide

5.5 interval_extrema

times and evelations for high and low water

5.6 interval_extrema2

mimimum and maximum within intervals of constant length, intended for periodic functions

5.7 interval_zeros

times of slack water determined frim velocity u

5.8 lunar_phase

lunar phase

5.9 rayleigh_criterion

raleigh criterion for resolving tidal constituents T > 1/|f1-f2|

$6 ext{ e/river-tide/@River_Tide}$

6.1 River_Tide

```
river tide in a single 1D channel
TODO split in two classes:
one that stores data (RT_Solve), one that provides equations (
    RT_Analytic)
```

6.2 bc_transformation

6.3 bcfun

q linear combination of left and right travelling (incoming and
 outgoing) wave
 q(1) weight left going wave
 q(2) weight right going wave
 rhs = 0 -> homogeneous boundary condition

function [rhs, p, q, obj] = bcfun(obj,x,y,ccdx)

6.4 check_continuity

6.5 check_momentum

$6.6 d2au1_dx2$

second derivative of the tidal velocity magnitude

note: this is for finding zeros, the true derivative has to be scaled up by z

$6.7 d2az1_dx2$

second derivative of the tidal surface elevation

note: this is for finding zeros, the true derivative has to be scaled up by \boldsymbol{z}

6.8 decompose

decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave

6.9 discharge2level

```
tidal component of surface elevation determined from tidal
    discharge

by continuity :

dz/dt + dq/dx = 0
=> i o z = - dq/dx
=> z = -1/(io) dq/dx
=> z = 1i/o dq/dx

TODO allow Q as input
TODO rename into Q1_to_z1
Mon 7 Oct 19:04:14 PST 2019 : added correction for change of width
```

$6.10 \quad dkq_{-}dx$

along-channel derivative of the wave number of the discharge neglects width variation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

TODO, rederive with g as variable

$6.11 dkz_dx$

```
along channel derivative of the wave number of the tidal surface elevation ignores width variation dh/dx and second order depth variation (d^2 h/dx^2)
TODO rederive with g symbolic
```

6.12 even_overtide_analytic

6.13 friction_coefficient_dronkers

friction coefficient according to Dronkers the coefficients are semi-autogenerated

```
c.f. dronkers 1964
c.f. Cai 2016

p = [p0,p1,p2,p3];
alpha = Ur/Ut = river velocity / tidal velocity amplitude = (umax+ umin)/(umax-umin)

function p = friction_coefficient_dronkers(alpha,order)
```

6.14 friction_coefficient_godin

```
friction coefficient according to Godin
these coefficients are identical to Dronker's for U_R = phi = 0
function G = friction_coefficient_godin(obj,phi)
```

6.15 friction_coefficient_lorentz

```
friction coefficient according to Lorent'z
identical to Dronker's coefficient for zero river flow
and a single frequency component
c.f. Cai
c.f. Dronkers

function L = friction_coefficient_lorentz(obj,phi)
```

6.16 friction_dronkers

6.17 friction_exponential_dronkers

```
friction coefficicients for the frequency components computed by
    Dronkers method
c.f. Dronker's 1964 eq 8.2 and 8.4
Note: Cai dennominates alpha as phi

function [c uau uau_ p] = friction_trigonometric_dronkers(u,dp,Umid,Uhr,order,psym)
```

6.18 friction_godin

compute friction with the method of Godin

6.19 friction_lorentz

6.20 friction_quadratic

friction determined by Dronker's method

6.21 friction_trigonometric_dronkers

```
friction computed by the method of Dronkers expressed as coefficients for the frequency components c.f. dronkers 1964 eq 8.2 and 8.4 Note: Cai dennominates alpha as phi
```

6.22 friction_trigonometric_godin

```
friction computed by the method of Godin
expressed as coefficients of the frequency components (
    trigonometric form)

function [c, uau] = friction_trigonometric_godin(obj,u,dp,Umax)
```

6.23 friction_trigonometric_lorentz

friction computed by the method of Lorent'z
expressed as coefficients of the frequency components (
 trigonometric form)

6.24 generate_delft3d

6.25 init

provide initial condition by solving the backwater equation for surface level TODO this should not be solved as a ivp but included in the bvp iteration TODO generate the mesh here and precompute fixed values instead of passing functions TODO QO should not be a function function obj = init(obj, Xi)

$6.26 \quad mwl_offset$

offset of the tidally averaged surface elevation caused by tidal friction

Linear estimate of the mean water level offset (ignoring feed-back of tide)

$6.27 \quad mwl_offset_2$

6.28 mwl_offset_analytic

6.29 odefun

coefficients of the backwater and wave equation for river-tides $% \left(1\right) =\left(1\right) \left(1\right) \left($

6.30 odefun0

coefficients of the backwater equation for the river tide $\ensuremath{\texttt{TODO}}$ merge with backwater

6.31 odefun1

coefficients of the differential equation of the main tidal species f1 Q''+f2 Q'+f3 Q+f4=0TODO rename f into c
TODO better pass dzb_dx instead of dz0_dx
TODO aa, oh and gh terms are not tested for width ~= 1

6.32 odefun2

coefficients of the ordinary differential quation of the even overtide $% \left(1\right) =\left(1\right) \left(1\right) \left($

6.33 solve

call stationary or non-stationary solver respectively
function obj = solve(obj)

6.34 solve_swe

determine river tide by the fully non-stationary FVM and then extract the tide this is experimental and not yet fully working

6.35 solve_wave

solve for the oscillatory (tidal) componets
function obj = solve_wave(obj)

6.36 wave_number_analytic

analytic expression of the wave number

valid for both tidally, river dominated and low friction conditions and converging channels

k : complex wave number in a reach with constant width and bed slope
im(k) : damping modulus (rate of amplitude change)
re(k) : actual wave number (rate of phase change)

c.f. derive_wave_number

6.37 wave_number_approximation

approximate wave number of the left and right traveling wave for
 variable coefficients

TODO merge with wave_number_analytic

function [k, k0, dk0_dx_rel, obj] = wave_numer_aproximation(obj)

7 e/river-tide/@River_Tide_Cai

7.1 Gamma

 $\begin{array}{ll} \text{Gamma parameter for tidal propagation} \\ \text{c.f. Cai } 2014 \end{array}$

7.2 River_Tide_Cai

prediction of river tide by the method of Cai (2014)

7.3 river_tide_cai_

determine the surface amplitude of the river-tide c.f. Cai

7.4 rt_quantities

determine the quantities that determine the tidal propagation ${\tt c.f.}$ Cai

Note: this computes 4 unknowns following Cai, however, lambda, mu and epsilon can be substituted making it an equation in one unknown (delta) only

$8 e/river-tide/@River_Tide_Empirical$

8.1 River_Tide_Empirical

class for fitting models to at-a-station time series of tidal elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

8.2 fit_amplitude

fit the oscillatory components

8.3 fit_mwl

fit the tidally averaged water level

8.4 fit_-phase

fit the phase of the oscillatory components

8.5 fit_range

fit the tidal range

8.6 predict_amplitude

predict the oscillatory components

$8.7 \quad predict_mwl$

predict the mean water level

8.8 predict_phase

predict tidal phase

8.9 predict_range

predict the tidal range

8.10 rt_model

select the model for fitting

9 e/river-tide/@River_Tide_JK

9.1 River_Tide_JK

9.2 damping_modulus

damping modulus of the river tide
c.f. Jay and Kukula
function r = damping_modulus(obj,h0,b,Qr)

9.3 mean_level

tidally averaged surface elevation c.f. Jay and Kukulka

9.4 rivertide_predict

predict river tide by the method of jay and kukulka $\ensuremath{\mathsf{TODO}}$ rename

9.5 rivertide_regress

Regression of tidal coefficients according to Jay & Kulkulka coefficients of the r-regression factor 2 apart for specis (jay C7) this can be repeated for each tidal species (diurnal, semidiurnal)

9.6 tidal_discharge

tidal discharge
c.f. Jay and Kukulka
function Qt = tidal_discharge(obj,x,R0,h0,b,Qr)

9.7 tidal_range

predict tidal range

$10 \quad e/river-tide/@River_Tide_Map$

10.1 River_Tide_Map

container class to store individual river tide scenarios

10.2 fun

compute river tide for a scenario with specific boundary conditions
 and store it in the hash,
or retrive the scenario, if it was already computed

10.3 key

```
key for storing a scenario
function [key obj] = key(obj,varargin)
```

10.4 plot

quick plot of scenario result
function obj = plot(obj,Xi,Q0,W0,S0,z1_downstream,cd,zb_downstream,
 omega,q,opt)

11 e/river-tide/@River_Tide_Network

11.1 River_Tide_Network

tide in a fluvial delta channel network, extension of 1D river tide the network is a directed graph $\tt TODO$ convert from trig-to exponential form

11.2 discharge_amplitude

discharge amplitude

11.3 mean_water_level

predict the mean water level

11.4 plot_mean_water_level

plot tidally averaged water level

11.5 plot_water_level_amplitude

plot surface elevation amplitude

11.6 solve

11.7 water_level_amplitude

predict the surface elevation amplitude

12 e/river-tide

12.1 damped_wave_bvp

```
solved damped wave equation z', + a z = 0

z(0) = z0, z(L) = 0
```

12.2 damped_wave_ivp

linearly damped wave in rectangular channel solve tide as initial value problem damped wave approximation

$$z'' + a z = 0$$

 $x_t = Ax + b$

12.3 damping_modulus_river

damping modulus of the tidal wave for river flow only

12.4 rdamping_to_cdrag_tide

converts damping rate to drag coefficient
c.f. friedrichs, ippen harleman

12.5 river_tide_godin

analytic solution to the river tide formulated as boundary value problem in a river with finite length

c.f. Godin 1986

12.6 rt_celerity

celerity of the tidal wave

12.7 rt_quasi_stationary_complex

quasi-stationary solution of the SWE TODO staggered grid does not help: q1' needed

12.8 rt_quasi_stationary_trigonometric

quasi statinary form of the SWE

12.9 rt_reflection_coefficient_gradual

reflection coefficient for gradual varying cross section geometry without damping

12.10 rt_wave_equation

```
solve river tide as boundary value problem
omega : [nfx1] angluar frequency of tidal component, zero for mean
reach : [nrx1] struct
    : [1x1] length of reaches
       .width(x,h) width
       .bed(x,h)
                   bed level
       .surface(x,h) surface elevation
       .Cd(x,h)
                   drag coefficient
.bc
    : [nd,nf] boundary/junction conditions
       bc(id,if).type : {surface, velocity, discharge} (dirichlet)
       bc(id,if).val : value
opt : [1x1] struct
      - constant surface elevation
      - deactivative advective acceleration
      .dx : spatial resolution
dimensions:
      nr : nurmber or reaches
      nd : upstream/downstream index
      nf : frequency index
```

 12.11 rt_{z}

determine tidal discharge from water level for tidal wave

e/river-tide/test/test 13

$13.1 \quad test_bvp2c_sym$

13.2 test_celerity

13.3 test_characteristic_rate_of_change

13.4	$test_dronkers_compound$
13.5	$test_friction_dronkers$
13.6	$test_friction_dronkers2$
13.7	$test_fv_compare_schemes$
13.8	$test_fv_convergence$
13.9	$test_power_series$
13.10	$test_reflection_coefficient_gradual$
13.11	${ m test_ricatti}$
13.12	$test_river_tide_models$
13.13	${ m test_rt_reflection}$

- $13.14 \quad test_rt_zs0$
- 13.15 test_swe
- 13.16 test_utm2latlon
- 13.17 test_wave_twopass
- 14 e/river-tide/test
- $14.1 \quad test_bvp2c2$
- 14.2 test_complex_even_overtide
- 14.3 test_fourier_power_exp
- 14.4 test_friction
- 14.5 test_reflection

14.0	test_rt_wave_number
14.7	$test_tidal_river_network$
14.8	$test_tidal_river_network_z0$
14.9	$test_tide_slack_exp$
14.10	$test_wave_number_godin$
14.11	$test_wave_numer_aproximation$
15	e/river-tide
	tidal_ellipse
	ellipse, numerical ode solution

 $15.2 \quad tide_slack_exp$

15.3 wave_number_tide

15.4 wavetrainz

determine river tide by iterated integration of the surface elevation $\ensuremath{\text{elevation}}$

15.5 wavetwopassz

two pass solution for the linearised wave equation, for surface elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

16 e/test/river-tide

16.1 example_river_tide

16.2 example_river_tide_map

16.3 river_tide_test

16.4 river_tide_test_01

- $16.5 \quad river_tide_test_02$
- $16.6 \quad river_tide_test_03$
- 16.7 river_tide_test_04
- $16.8 \quad river_tide_test_05$
- $16.9 \quad river_tide_test_06$
- $16.10 \quad river_tide_test_07$
- $16.11 \quad river_tide_test_08$

```
hold on;
plot(x,abs(z),'--');
hold on;
plot(x,angle(z),'--');
```

- 16.12 river_tide_test_09
- $16.13 \quad river_tide_test_10$

- $16.14 \quad river_tide_test_11$
- 16.15 river_tide_test_12
- 16.16 river_tide_test_plot
- 17 e/test
- 17.1 test_tidal_harmonic_analysis
- 18 e
- 18.1 tidal_constituents
- 18.2 tidal_energy_transport_1d

energy transport of a tidal wave

18.3 tidal_envelope

envelope of the tide

vl surface elevation at low water

ldx index of low water th time of high water

vh surface elevation at high water

hdx index of high water
ndx neap index
sdx spring index
dmax:
drange: range per day

18.4 tidal_envelope2

surface levelation envelope of the tide low water, high water and tidal range for lunar each day

input:

time :

L : surface elevation

order: interpolation order (default 2)

ouput:

timei : vector eqispaced lmini : minimum level lmaxi : maximum level

rangei : range

midrangei : (min + max)/2, usually different from mean

phii : pseudo phase

Note: the pseudo phase phi jumps, this is because if the tide is semidiurnal,

sometimes the lower hw becomes the next day higher then than the

current high water, e.g. there is no smooth transition by 51 min but a jump by 12 h

18.5 tidal_harmonic_analysis

tidal_harmonic analysis

18.6 tidal_range_exp

18.7 tidal_range_tri

19 e/tide-savenije

19.1 savenije_phase_lag

```
phase lag of high and low water

phi : u_river/u_tide < 1

delta_eps_hw = omega*(t_hws - t_hw)
delta_eps_hw = omega*(t_lws - t_lw)

c.f. savenije</pre>
```

19.2 savenije_tidal_range

19.3 savenije_tidal_range1

```
tidal range

based on Horrevoets/Savenije, 2004

HO : tidal range at river mouth
hO : initial water depth
v : velocity scale
b : convergence length
sine : phase lag
K : Mannings coefficient
Q_r : river discharge
```

$19.4 \quad savenije_timing_hw_lw$

time of high water and low water c.f. savenije 2012

19.5 tide-savenije

20 e

 $20.1 \quad tide_low_high_exp$

 $20.2 \quad tide_low_high_tri$