Homework 3

Jaden Wang

Problem (1).

 (\Rightarrow) : Given $\varepsilon > 0$, since almost surely convergence implies convergence in probability, $Z_n \xrightarrow{a.s.} Z \Rightarrow \lim_{n \to \infty} P(|Z_n - Z| \ge \varepsilon) = 0$. That is, there exists $n \in \mathbb{N}$ such that

$$P(|Z_k - Z| \ge \varepsilon, k \ge n) < \varepsilon.$$

Taking the complement yields

$$\begin{split} P((|Z_k - Z| \ge \varepsilon, k \ge n)^c) > 1 - \varepsilon \\ P(|Z_k - Z| < \varepsilon, n \le k) > 1 - \varepsilon \\ P(|Z_k - Z| < \varepsilon, n \le k \le m) > 1 - \varepsilon \ \forall \ m \ge n \end{split}$$

The last step follows from that if the statement is true for all $k \geq n$, then it's true for a subset of such k where $n \leq k \leq m$ for all $m \geq n$.

 (\Leftarrow) : Suppose for every $\varepsilon > 0$ there exists an n such that

$$P(|Z_k - Z| < \varepsilon, n \le k \le m) > 1 - \varepsilon$$

for all $m \geq n$. By taking $n \to \infty$, it will cover the *n* required by any arbitrarily small ε , so we can let $\varepsilon \to 0$ and obtain

$$P(\lim_{n\to\infty} Z_n = Z) \ge 1.$$

Since P is a probability measure, $P(\lim_{n\to\infty} Z_n = Z) \leq 1$. Hence,

$$P(\lim_{n\to\infty} Z_n = Z) = 1$$

which is the definition of almost sure convergence.

Problem (2). (\subseteq): We wish to show that

$$\mathcal{G} = \{(H \cap A) \cup (H^c \cap B), A, B \in \mathcal{F}\}$$

is a σ -field containing $\mathcal{F} \cup \{H\}$.

First, notice that given $F \in \mathcal{F}$,

$$F = \Omega \cap F = (H \cup H^c) \cap F = (H \cap F) \cup (H^c \cap F) \in \mathcal{G}.$$

Moreover, since \emptyset , $\Omega \in \mathcal{F}$,

$$H = (H \cap \Omega) \cup (H^c \cap \emptyset) \in \mathcal{G}.$$

Thus, $\mathcal{F} \cup \{H\} \subseteq \mathcal{G}$.

Now let's show that \mathcal{G} is a σ -field.

(i) Take $A = B = \Omega \in \mathcal{F}$, we have

$$(H \cap \Omega) \cup (H^c \cap \Omega) = H \cup H^c = \Omega \in \mathcal{G}.$$

(ii) Given $S \in \mathcal{G}$, we know there exist $A, B \in \mathcal{F}$ such that $S = (H \cap A) \cup (H^c \cap B)$. Then the complement is

$$S^{c} = ((H \cap A) \cup (H^{c} \cap B))^{c}$$

$$= (H \cap A)^{c} \cap (H^{c} \cap B)^{c}$$

$$= (H^{c} \cup A^{c}) \cap (H \cup B^{c})$$

$$= (H^{c} \cap H) \cup (H^{c} \cap B^{c}) \cup (A^{c} \cap H) \cup (A^{c} \cap B^{c})$$

$$= (H \cap A^{c}) \cup (H^{c} \cap B^{c}) \cup ((H \cup H^{c}) \cap (A^{c} \cap B^{c}))$$

$$= (H \cap A^{c}) \cup (H^{c} \cap B^{c}) \cup (H \cap (A^{c} \cap B^{c})) \cup (H^{c} \cap (A^{c} \cap B^{c}))$$

$$= (H \cap (A^{c} \cup (A^{c} \cap B^{c})) \cup (H^{c} \cap (B^{c} \cup (A^{c} \cap B^{c}))$$

$$= (H \cap A^{c}) \cup (H^{c} \cap B^{c}) \in \mathcal{G}$$

(iii) Given a sequence $G_1, G_2, \ldots \in \mathcal{G}$, we can express G_n as $(H \cap A_n) \cup (H^c \cap B_n)$ for some sequence of $(A_n), (B_n) \subseteq \mathcal{F}$. Then we have

$$\bigcup_{n=1}^{\infty} G_n = \bigcup_{n=1}^{\infty} (H \cap A_n) \cup (H^c \cap B_n)$$

$$= \bigcup_{n=1}^{\infty} (H \cap A_n) \cup \bigcup_{n=1}^{\infty} (H^c \cap B_n)$$

$$= \left(H \cap \bigcup_{n=1}^{\infty} A_n\right) \cup \left(H^c \cap \bigcup_{n=1}^{\infty} B_n\right)$$

Hence, we show that \mathcal{G} is a σ -field containing $\mathcal{F} \cup \{H\}$. Since $\sigma(\mathcal{F} \cap \{H\})$ is the smallest σ -field containing $\mathcal{F} \cup \{H\}$, we prove that $\sigma(\mathcal{F} \cup \{H\}) \subseteq \mathcal{G}$, hence its elements must have such form.

 (\supseteq) : Given $G \in \mathcal{G}$, let's show that $G \in \sigma(\mathcal{F} \cup \{H\})$. By definition of \mathcal{G} , there exists $A, B \in \mathcal{F}$ such that $G = (H^c \cap A) \cup (H^c \cap B)$.

$$(H \cap A) \cup (H^c \cap B) = ((H \cup H^c) \cap (H \cup B)) \cap ((A \cup H^c) \cap (A \cup B))$$
$$= (H \cup B) \cap (H^c \cup A) \cap (A \cup B)$$

Since $H, H^c, A, B \in \sigma(\mathcal{F} \cup \{H\})$, their unions and intersections are also in it. Thus, $G \in \sigma(\mathcal{F} \cup \{H\})$ and $\mathcal{G} \subseteq \sigma(\mathcal{F} \cup \{H\})$.

By double-containment, we show that $\sigma(\mathcal{F} \cup \{H\}) = \mathcal{G}$.

Problem (3). Recall that $\mu(A \cup B) = \mu((A \cup B) \setminus (A \cap B)) + \mu(A \cap B)$ by finite additivity. Moreover, $\mu(A), \mu(B) \leq \mu(A \cup B)$ and $\mu(A), \mu(B) \geq \mu(A \cap B)$ by monotonicity. Thus, $\mu(A) - \mu(B) \leq \mu(A \cup B) - \mu(A \cap B), \mu(B) - \mu(A) \leq \mu(A \cup B) - \mu(A \cap B) \Rightarrow |\mu(A) - \mu(B)| \leq \mu(A \cup B) - \mu(A \cap B)$.

$$\mu(A\Delta B) = \mu((A \cap B^c) \cup (A^c \cap B))$$

$$= \mu((A \cup A^c) \cap (B^c \cap A^c) \cap (A \cup B) \cap (B^c \cup B))$$

$$= \mu(\Omega \cap (A^c \cup B^c) \cap (A \cup B) \cap \Omega)$$

$$= \mu((A \cap B)^c \cap (A \cup B))$$

$$= \mu((A \cup B) \setminus (A \cap B))$$

$$= \mu(A \cup B) - \mu(A \cap B)$$

$$\geq |\mu(A) - \mu(B)|$$

Problem (4).

- (i) Since P is a probability measure, $0 \le P(\{\omega : X(\omega) \in A\}) \le 1 \ \forall \ A \subseteq \mathbb{R} \Rightarrow 0 \le P_X(A) \le 1 \ \forall \ A \subseteq \mathbb{R}.$
- (ii) $P_X(\emptyset) = P(\{\omega : X(\omega) \in \emptyset\}) = P(\emptyset) = 0$. And $P_X(\mathbb{R}) = P(\{\omega : X(\omega) \in \mathbb{R}\}) = P(\Omega) = 1$.

(iii) Given a sequence of disjoint sets in \mathbb{R} , (A_n) ,

$$P_X\left(\bigcup_{n=1}^{\infty} A_n\right) = P\left(\left\{\omega : X(\omega) \in \bigcup_{n=1}^{\infty} A_n\right\}\right)$$

$$= P\left(\bigcup_{n=1}^{\infty} \{\omega : X(\omega) \in A_n\}\right)$$

$$= \sum_{n=1}^{\infty} P(\{\omega : X(\omega) \in A_n\}) \text{ by countable additivity of } P$$

$$= \sum_{n=1}^{\infty} P_X(A_n)$$

Thus, P_X is indeed a probability measure.

Problem (5). First let's show that μ is finitely additive.

Given disjoint $A, B \in \sigma(\Omega)$, if both A, B are finite, then disjointness gives us

$$\mu(A \cup B) = \sum_{k \in A \cup B} 2^{-k} = \sum_{k \in A} 2^{-k} + \sum_{k \in B} 2^{-k} = \mu(A) + \mu(B).$$

If at least one of them is infinite, then $A \cup B$ is infinite. Thus,

$$\mu(A \cup B) = \infty = \mu(A) + \mu(B).$$

However, we claim that μ is not countably additive. Here is an counterexample: let $A_n = \{n\}$, so they are disjoint and finite. It's easy to see that $\bigcup_{n=1}^{\infty} A_n = \Omega$ is infinite, so $\mu(\bigcup_{n=1}^{\infty} A_n) = \infty$. However,

$$\sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \sum_{k=n}^{n} 2^{-k}$$
$$= \sum_{n=1}^{\infty} 2^{-n}$$
$$= 1 < \infty$$

Therefore, μ is not countably additive.