Minimax Optimization

Nonsmooth Composite Nonconvex-Concave

Jiajin Li

Department of Management Science and Engineering Stanford University

ICCOPT, July 2022

Joint work with Linglingzhi Zhu (CUHK) and Anthony Man-Cho So (CUHK).

Our Focus

We are interested in studying nonconvex concave minimax problems of the form

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} F(x, y), \tag{1}$$

where $F: \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ is nonconvex in x but concave in y, $\mathfrak{X} \subseteq \mathbb{R}^n$ is closed convex and $\mathfrak{Y} \subseteq \mathbb{R}^d$ is convex compact.

Applications

Problem (1) has attracted intense attention across both optimization and machine learning communities.

Adversarial Training:

Applications

Problem (1) has attracted intense attention across both optimization and machine learning communities.

Generative Adversarial Network:

Applications

Distributionally Robust Optimization (DRO):

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{Q} \in \mathcal{U}(\mathbb{P}_N)} \mathbb{E}_{\xi \sim \mathbf{Q}}[f(\mathbf{x}; \xi)]$$

- $ightharpoonup \mathbb{P}_N$: empirical distribution;
- $\mathcal{U}(\mathbb{P}_N)$: ambiguity set defined by a host of probablity metrics, e.g., f-divergence, Wasserstein, etc

$$\mathcal{U}(\mathbb{P}_N) = \{Q : d(Q, \mathbb{P}_N) \leqslant r\}.$$

Gradient Descent Ascent (GDA)

Ь

$$x^{k+1} = x^{k} - \alpha_{k} \nabla_{x} F(x^{k}, y^{k}),$$

$$y^{k+1} = y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k}),$$

where α_k and τ_k are the step sizes.

- Strongly-Concave [Lin et al. 2020]: GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ matching the optimal!
- Concave: GDA suffers from oscillation diminishing step size strategies $O(\epsilon^{-6})$ [Lin et al. 2020], smoothing $O(\epsilon^{-4})$ [Zhang et al. 2020] · · ·

Gradient Descent Ascent (GDA)

k

$$x^{k+1} = x^{k} - \alpha_{k} \nabla_{x} F(x^{k}, y^{k}),$$

$$y^{k+1} = y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k}),$$

where α_k and τ_k are the step sizes.

- Strongly-Concave [Lin et al. 2020]: GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ matching the optimal!
- ► Concave: GDA suffers from oscillation diminishing step size strategies $O(\epsilon^{-6})$ [Lin et al. 2020], smoothing $O(\epsilon^{-4})$ [Zhang et al. 2020] · · ·

Gradient Descent Ascent (GDA)

Ь

$$x^{k+1} = x^{k} - \alpha_{k} \nabla_{x} F(x^{k}, y^{k}),$$

$$y^{k+1} = y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k}),$$

where α_k and τ_k are the step sizes.

- Strongly-Concave [Lin et al. 2020]: GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ matching the optimal!
- ▶ <u>Concave</u>: GDA suffers from <u>oscillation</u> diminishing step size strategies $\mathcal{O}(\epsilon^{-6})$ [Lin et al. 2020], smoothing $\mathcal{O}(\epsilon^{-4})$ [Zhang et al. 2020] · · ·

Smoothed GDA

Iterative Scheme:

$$\begin{aligned} x^{k+1} &= x^k - \alpha_k [\nabla_x F(x^k, y^k) + \gamma(x^k - z^k)], \\ y^{k+1} &= \mathsf{proj}_{\vartheta}(y^k + \tau_k \nabla_y F(x^{k+1}, y^k)), \\ z^{k+1} &= z^k + \beta(x^{k+1} - z^k), \end{aligned}$$

where α_k and τ_k are the step sizes, β is the extrapolation parameter.

PŁ Condition [Yang et al. 2022]: Smoothed GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ — matching the optimal!

Smoothed GDA

Iterative Scheme:

$$x^{k+1} = x^{k} - \alpha_{k} [\nabla_{x} F(x^{k}, y^{k}) + \gamma(x^{k} - z^{k})],$$

$$y^{k+1} = \text{proj}_{y} (y^{k} + \tau_{k} \nabla_{y} F(x^{k+1}, y^{k})),$$

$$z^{k+1} = z^{k} + \beta(x^{k+1} - z^{k}),$$

where α_k and τ_k are the step sizes, β is the extrapolation parameter.

PŁ Condition [Yang et al. 2022]: Smoothed GDA can generate an ϵ -stationary solution with iteration complexity $\mathcal{O}(\epsilon^{-2})$ — matching the optimal!

- ▶ (Smoothed) GDA relies on the gradient Lipschitz condition.
- Proximally guided stochastic subgradient method [Rafique et al. 2021] has been proposed for general nonsmooth weakly convex-concave problems but suffers from the slow iteration complexity $\mathcal{O}(\varepsilon^{-6})$.

- ▶ (Smoothed) GDA relies on the gradient Lipschitz condition.
- Proximally guided stochastic subgradient method [Rafique et al. 2021] has been proposed for general nonsmooth weakly convex-concave problems but suffers from the slow iteration complexity $\mathcal{O}(\epsilon^{-6})$.

- ▶ (Smoothed) GDA relies on the gradient Lipschitz condition.
- Proximally guided stochastic subgradient method [Rafique et al. 2021] has been proposed for general nonsmooth weakly convex-concave problems but suffers from the slow iteration complexity $\mathcal{O}(\epsilon^{-6})$.

- ▶ (Smoothed) GDA relies on the gradient Lipschitz condition.
- Proximally guided stochastic subgradient method [Rafique et al. 2021] has been proposed for general nonsmooth weakly convex-concave problems but suffers from the slow iteration complexity $\mathcal{O}(\epsilon^{-6})$.

Nonsmooth Composite Nonconvex-Concave Minimax

Main Results

Table 1: Comparison of the iteration complexities of smoothed PLDA proposed in this paper and other related methods under different settings for solving $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} F(x, y)$.

	Primal Func.	Dual Func.	Iter. Compl. ¹	Add. Asm.
GDA	L-smooth	concave	$\mathcal{O}(\epsilon^{-6})$	$\mathcal{X} = \mathbb{R}^n$
Smoothed GDA	L-smooth	concave	$\mathcal{O}(\epsilon^{-4})$	_
PG-SMD	weakly-convex	concave	$\mathcal{O}(\epsilon^{-6})$	${\mathcal X}$ bounded
This paper	nonsmooth composite	concave	$\mathcal{O}(\epsilon^{-4})$	_
GDA	L-smooth	strongly-concave	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{X}=\mathbb{R}^n$
Smoothed GDA	L-smooth	PŁ condition	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{Y} = \mathbb{R}^d$
This paper	nonsmooth composite	KŁ exponent $\theta = \frac{1}{2}$	$\mathcal{O}(\epsilon^{-2})$	_

Problem Setup

• (Primal Function) $F(\cdot, y) := h_y \circ c_y$, where $c_y : \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable with L_c -Lipschitz continuous Jacobian map for all $y \in \mathcal{Y}$ on \mathcal{X} :

$$\|\nabla c_y(x) - \nabla c_y(x')\| \leqslant L_c \|x - x'\|$$
 for all $x, x' \in \mathfrak{X}$,

and $h_y:\mathbb{R}^m\to\mathbb{R}$ for any $y\in\mathcal{Y}$ is a convex and L_h -Lipschitz continuous function satisfying

$$|h_y(z) - h_y(z')| \leqslant L_h ||z - z'||$$
, for all $z, z' \in \mathbb{R}^m$.

▶ For example, $h_y = \|\cdot\|_p$ where $p = \{1, 2, +\infty\}$.

Problem Setup

▶ (**Dual Function**) $F(x, \cdot)$ is concave and continuously differentiable on \mathcal{Y} with $\nabla_y F(\cdot, \cdot)$ being L-Lipschitz continuous on $\mathcal{X} \times \mathcal{Y}$, i.e.,

$$\|\nabla_y F(x,y) - \nabla_y F(x',y')\| \leqslant L\|(x,y) - (x',y')\|$$
 for all $(x,y), (x',y') \in \mathcal{X} \times \mathcal{Y}$.

Smoothed Proximal Linear Descent Ascent (PLDA)

Smoothed PLDA

Due to the composite structure $h_y \circ c_y$, there is no available gradient information to rely on. Instead, it is natural to invoke the proximal linear scheme for the primal update.

Potential function:

$$F_r(x, y, z) := F(x, y) + \frac{r}{2} ||x - z||^2$$

Proximal linear update:

$$\begin{aligned} x^{k+1} &= \arg\min_{x \in \mathcal{X}} h_{y^k} \left(c_{y^k}(x^k) + \nabla c_{y^k}(x^k)^\top (x - x^k) \right) + \frac{\lambda}{2} \|x - x^k\|^2 \\ &+ \frac{r}{2} \|x - z^k\|^2. \end{aligned}$$

Convergence Analysis

Lyapunov Function

Define a Lyapunov function function as

$$\Phi_r(x,y,z) := \underbrace{F_r(x,y,z) - d_r(y,z)}_{\text{Primal Descent}} + \underbrace{\rho_r(z) - d_r(y,z)}_{\text{Dual Ascent}} + \underbrace{\rho_r(z)}_{\text{Proximal Descent}}.$$

- $d_r(y,z) := \min_{x \in \mathcal{X}} F_r(x,y,z);$
- $p_r(z) := \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} F_r(x, y, z);$

Lipschitz-type Primal Error Bound Condition

Main Technical Results I

For any $k \ge 0$, it holds that

$$||x^{k+1} - x_r(y^k, z^k)|| \le \zeta ||x^k - x^{k+1}||,$$
 (2)

where
$$\zeta:=\frac{2(r-L)^{-1}+(\lambda+L)^{-1}}{(\lambda+L)^{-1}}\left(\sqrt{\frac{2L}{\lambda+L}}+1\right)$$
 and $x_r(y,z):=\underset{x\in\mathcal{X}}{\operatorname{argmin}}\,F_r(x,y,z).$

Smooth case: Luo-Tseng error bound condition

$$\|x^{k+1} - x_r(y^k, z^k)\| \le \zeta \|x^k - \underbrace{\text{proj}_{\mathfrak{X}}(x^k - c\nabla_x F_r(x^k, y^k, z^k))}_{x^{k+1}})\|,$$

Lipschitz-type Primal Error Bound Condition

Main Technical Results I

For any $k \ge 0$, it holds that

$$||x^{k+1} - x_r(y^k, z^k)|| \le \zeta ||x^k - x^{k+1}||,$$
 (2)

where
$$\zeta:=\frac{2(r-L)^{-1}+(\lambda+L)^{-1}}{(\lambda+L)^{-1}}\left(\sqrt{\frac{2L}{\lambda+L}}+1\right)$$
 and $x_r(y,z):=\underset{x\in\mathcal{X}}{\operatorname{argmin}}\,F_r(x,y,z).$

Smooth case: Luo-Tseng error bound condition

$$||x^{k+1} - x_r(y^k, z^k)|| \le \zeta ||x^k - \underbrace{\text{proj}_{\chi}(x^k - c\nabla_x F_r(x^k, y^k, z^k))}_{x^{k+1}})||$$

Sufficient Decrease Property

Proposition

$$r \geqslant 3L$$
, $\lambda \geqslant L$, $\beta \leqslant \min\left\{\frac{1}{28}, \frac{(r-L)^2}{32\alpha r(r+L)^2}\right\}$ and $\alpha \leqslant \min\left\{\frac{1}{10L}, \frac{1}{4L\zeta^2}\right\}$. Then for any $k \geqslant 0$,

$$\Phi_r^k - \Phi_r^{k+1} \geqslant \frac{\lambda}{16} \|x^k - x^{k+1}\|^2 + \frac{1}{8\alpha} \|y^k - y_+^k(z^k)\|^2 + \frac{4r}{7\beta} \|z^k - z^{k+1}\|^2 - \frac{28r\beta \|x_r^*(z^k) - x_r(y_+^k(z^k), z^k)\|^2}{2r\beta \|x_r^*(z^k) - x_r(y_+^k(z^k), z^k)\|^2},$$

where
$$y_+(z) := \operatorname{proj}_{y} (y + \alpha \nabla_y F_r(x_r(y, z), y, z))$$
 and $x_r^*(z) := \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max_{y \in \mathcal{Y}} F_r(x, y, z).$

KŁ Exponent θ for the Dual Function

Motivation: explicitly control the trade-off between the decrease in the primal and the increase in the dual.

Kurdyka-Łojasiewicz (KŁ) Exponent

For any fixed $x \in \mathcal{X}$, the problem $\max_{y \in \mathcal{Y}} F(x,y)$ has a nonempty solution set and a finite optimal value. There exist $\mu > 0$ and $\theta \in [0,1)$ such that

$$\operatorname{dist}(0, -\nabla_{y}F(x, y) + \partial \iota_{y}(y)) \geqslant \mu \left(\max_{y' \in \mathcal{Y}} F(x, y') - F(x, y) \right)^{\theta},$$

for any $x \in \mathcal{X}$, $y \in \mathcal{Y}$.

Dual Error Bound Condition

Main Technical Results II

▶ KŁ exponent $\theta \in (0, 1)$:

$$||x_r^*(z) - x_r(y_+(z), z)|| \le \omega ||y - y_+(z)||^{\frac{1}{2\theta}},$$

• KŁ exponent $\theta = 0$:

$$||x_r^*(z) - x_r(y_+(z), z)|| \le \omega' ||y - y_+(z)||.$$

Stationarity Concept

Definition

The pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$ is an ϵ -game stationary point $(\epsilon$ -GS) if

$$\|\nabla_x d_r(y,x)\| \leqslant \varepsilon \quad \text{and} \quad \mathrm{dist}(0,-\nabla_y F(x,y) + \partial \iota_{\mathcal{Y}}(y)) \leqslant \varepsilon.$$

With the aid of our newly developed dual error bound condition, we can clarify the relationship among various stationarity concepts both conceptually and quantitatively.

Stationarity Concept

Definition

The pair $(x, y) \in \mathcal{X} \times \mathcal{Y}$ is an ϵ -game stationary point $(\epsilon$ -GS) if

$$\|\nabla_x d_r(y,x)\| \leqslant \epsilon \quad \text{and} \quad \operatorname{dist}(0,-\nabla_y F(x,y) + \partial \iota_{\mathcal{Y}}(y)) \leqslant \epsilon.$$

With the aid of our newly developed dual error bound condition, we can clarify the relationship among various stationarity concepts both conceptually and quantitatively.

Main Theorem — Iteration Complexity

Suppose that
$$r \geqslant 3L$$
, $\lambda \geqslant L$, $\beta \leqslant \min\left\{\frac{1}{28}, \frac{(r-L)^2}{32\alpha r(r+L)^2}\right\}$ and $\alpha \leqslant \min\left\{\frac{1}{10L}, \frac{1}{4L\zeta^2}\right\}$. Then for any $k \geqslant 0$,

- General concave: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{4}})$ -game stationary if $\beta \leqslant K^{-\frac{1}{2}}$.
- KŁ exponent $\theta \in (\frac{1}{2}, 1)$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{4\theta}})$ -game stationary if $\beta \leqslant K^{-\frac{2\theta-1}{2\theta}}$.
- KŁ exponent $\theta \in [0, \frac{1}{2}]$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{2}})$ -game stationary if $\beta = \mathcal{O}(1)$.

Main Theorem — Iteration Complexity

Suppose that
$$r \geqslant 3L$$
, $\lambda \geqslant L$, $\beta \leqslant \min\left\{\frac{1}{28}, \frac{(r-L)^2}{32\alpha r(r+L)^2}\right\}$ and $\alpha \leqslant \min\left\{\frac{1}{10L}, \frac{1}{4L\zeta^2}\right\}$. Then for any $k \geqslant 0$,

- General concave: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{4}})$ -game stationary if $\beta \leqslant K^{-\frac{1}{2}}$.
- KŁ exponent $\theta \in (\frac{1}{2}, 1)$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $O(K^{-\frac{1}{4\theta}})$ -game stationary if $\beta \leqslant K^{-\frac{2\theta-1}{2\theta}}$.
- KŁ exponent $\theta \in [0, \frac{1}{2}]$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{2}})$ -game stationary if $\beta = \mathcal{O}(1)$.

Main Theorem — Iteration Complexity

Suppose that
$$r \geqslant 3L$$
, $\lambda \geqslant L$, $\beta \leqslant \min\left\{\frac{1}{28}, \frac{(r-L)^2}{32\alpha r(r+L)^2}\right\}$ and $\alpha \leqslant \min\left\{\frac{1}{10L}, \frac{1}{4L\zeta^2}\right\}$. Then for any $k \geqslant 0$,

- General concave: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{4}})$ -game stationary if $\beta \leqslant K^{-\frac{1}{2}}$.
- KŁ exponent $\theta \in (\frac{1}{2}, 1)$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $O(K^{-\frac{1}{4\theta}})$ -game stationary if $\beta \leqslant K^{-\frac{2\theta-1}{2\theta}}$.
- KŁ exponent $\theta \in [0, \frac{1}{2}]$: there exists a $k \in [K]$ such that (x^{k+1}, y^{k+1}) is an $\mathcal{O}(K^{-\frac{1}{2}})$ -game stationary if $\beta = \mathcal{O}(1)$.

Numerical Results

Variation Regularized Wasserstein DRO

$$\min_{\theta} g(\theta) := \mathbb{E}_{\mathbb{P}_{N}} \left[\ell(y, f_{\theta}(x)) \right] + \rho \max_{i \in [N]} \| \nabla_{x} \ell(y_{i}, f_{\theta}(x_{i})) \|_{p}. \tag{3}$$

- $\ell: \mathbb{R} \to \mathbb{R}$ is the loss function;
- $f_{\theta}: \mathbb{R}^d \to \mathbb{R}$ is the feature mapping;
- $\{(x_i, y_i)\}_{i=1}^N$ is the training dataset and $p = \{1, 2, +\infty\}$;
- closed connection with the Lipschitz constant of deep neural networks;

Variation Regularized Wasserstein DRO

$$\min_{\theta} g(\theta) := \mathbb{E}_{\mathbb{P}_{N}} \left[\ell(y, f_{\theta}(x)) \right] + \rho \max_{i \in [N]} \| \nabla_{x} \ell(y_{i}, f_{\theta}(x_{i})) \|_{p}. \tag{3}$$

- $\ell : \mathbb{R} \to \mathbb{R}$ is the loss function;
- $f_{\theta}: \mathbb{R}^d \to \mathbb{R}$ is the feature mapping;
- $\{(x_i, y_i)\}_{i=1}^N$ is the training dataset and $p = \{1, 2, +\infty\}$;
- closed connection with the Lipschitz constant of deep neural networks;

Key Difficulties

- It is super challenging for calculating the subdifferential set of the pointwise supremum of an arbitrary family (possibly not differentiable) of (weakly) convex functions.
- Minimax reformulation technique

$$\min_{\theta} \max_{w \in \Delta_{N}} \mathbb{E}_{\mathbb{P}_{N}} [\ell(y, f_{\theta}(x))] + \rho \sum_{i=1}^{N} w_{i} \|\nabla_{x} \ell(y_{i}, f_{\theta}(x_{i}))\|_{\rho}, \quad (4)$$

which can be recast into the general form (1) that we investigated in this talk.

Key Difficulties

- It is super challenging for calculating the subdifferential set of the pointwise supremum of an arbitrary family (possibly not differentiable) of (weakly) convex functions.
- Minimax reformulation technique:

$$\min_{\theta} \max_{w \in \Delta_N} \mathbb{E}_{\mathbb{P}_N} \left[\ell(y, f_{\theta}(x)) \right] + \rho \sum_{i=1}^N w_i \| \nabla_x \ell(y_i, f_{\theta}(x_i)) \|_p, \quad (4)$$

which can be recast into the general form (1) that we investigated in this talk.

Linear Regression

Consider a simple case — the quadratic loss function with linear feature mapping, i.e., $\ell(y, f_{\theta}(x)) = \frac{1}{2}(y - \theta^{\top}x)^2$

Figure: Compare the convergence behaviours of smoothed PLDA with subgradient and smoothed GDA on both synthetic and real world datasets.

Linear Regression

Consider a simple case — the quadratic loss function with linear feature mapping, i.e., $\ell(y, f_{\theta}(x)) = \frac{1}{2}(y - \theta^{\top}x)^2$

Figure: Compare the convergence behaviours of smoothed PLDA with subgradient and smoothed GDA on both synthetic and real world datasets.

Deep Neural Network

Here, $\ell(\cdot, \cdot)$ is the cross-entropy loss and $f_{\theta}(\cdot)$ is the feature mapping generated by a neural network with 2 hidden layers of size 5 and use the exponential linear unit (ELU) as the activation function.

Take Home Message

- The proposed smoothed PLDA can achieve the optimal iteration complexity of $\mathcal{O}(\epsilon^{-2})$ when the dual function satisfies the KŁ condition with the exponent $\theta \in [0, \frac{1}{2}]$.
- To the best of our knowledge, this is the first provably efficient algorithm for nonsmooth nonconvex-concave problems, which can achieve the same results as the smooth case.

Take Home Message

- The proposed smoothed PLDA can achieve the optimal iteration complexity of $\mathcal{O}(\epsilon^{-2})$ when the dual function satisfies the KŁ condition with the exponent $\theta \in [0, \frac{1}{2}]$.
- To the best of our knowledge, this is the first provably efficient algorithm for nonsmooth nonconvex-concave problems, which can achieve the same results as the smooth case.

Reference

Jiajin Li, Linglingzhi Zhu, and Anthony Man-Cho So. Nonsmooth Composite Nonconvex-Concave Minimax Optimization. Submitted.

Thank you for listening! Q&A?

Jiajin Li

jiajinli@stanford.edu

https://gerrili1996.github.io/