How NAO learns to kick the ball ...

Jannick, André, Daniel, Florian

11.07.2012

Agenda

- Einleitung
- 2 Arbeitsschritte
 - Phase 1
 - Phase 2
 - Phase 3
- 3 Ergebnis und Ausblick
- Präsentation

Einleitung

- Arbeit mit Robotiksystemen
- Implementieren einer Schussbewegung für NAO

Arbeitsschritte

- Halten des Gleichgewichts auf einem Bein (Simulator)
- Vollführen einer Schussbewegung (Simulator)
- Optimieren der Schussbewegung und "übertragenäuf den NAO (Simulator, NAO)

Phase 1 - Schwerpunkt

- Einarbeiten in die API und Nutzung des Simulators Webots (naoController.m)
- Verschieben des Schwerpunktes über linkes Bein (Forward Kinematic)
- Anheben des rechten Fußes
- Nachjustieren des Schwerpunktes

Phase 2 - Schuss

- Ausgangslage:
 - Ball liegt vor der Fußspitze des NAOs
- Die Frage nach dem "Wie" der Schussbewegung
- Ziele:
 - Ball auf mittlerer Höhe treffen
 - Nicht umfallen
 - Einen großen Impuls übertragen
 - Keine innere Kollision
 - Einstellen des Schusswinkels

Phase 3 - Schuss optimieren und übertragen auf den NAO

- Genauere Schusswinkeleinstellung (Interpolation der Fußform)
- Übertragen des naoController (Matlab) in C++
- Test auf dem Roboter

Ergebnis und Ausblick

- TuhhSDK und vorhandene Projektstruktur erleichtern Einarbeitung
- Implementierung der Schussbewegung als einzelnes Modul
- Eingeschränkter Schusswinkel
- Nächster nötiger Arbeitsschritt: erkennen, annähern und positionieren vor dem Ball

Präsentation