# Decision Trees



### Tennis with a flaky partner

| Temp | Outlook  | Humidity | Windy | Played |
|------|----------|----------|-------|--------|
| Hot  | Sunny    | High     | False | No     |
| Hot  | Sunny    | High     | True  | No     |
| Hot  | Overcast | High     | False | Yes    |
| Cool | Rain     | Normal   | False | Yes    |
| Cool | Overcast | Normal   | True  | Yes    |
| Mild | Sunny    | High     | False | No     |
| Cool | Sunny    | Normal   | False | Yes    |
| Mild | Rain     | Normal   | False | Yes    |
| Mild | Sunny    | Normal   | True  | Yes    |
| Mild | Overcast | High     | True  | Yes    |
| Hot  | Overcast | Normal   | False | Yes    |
| Mild | Rain     | High     | True  | No     |
| Cool | Rain     | Normal   | True  | No     |
| Mild | Rain     | High     | False | Yes    |

### Modeling these whims

That change as often as the weather does...

| Day      | Temp | Outlook | Humidity | Windy | Played |
|----------|------|---------|----------|-------|--------|
| Today    | Cool | Sunny   | Normal   | False | ?      |
| Tomorrow | Mild | Sunny   | Normal   | False | ?      |

### **Decision Trees!**



| Day      | Temp | Outlook | Humidity | Windy | Played |
|----------|------|---------|----------|-------|--------|
| Today    | Cool | Sunny   | Normal   | False | ?      |
| Tomorrow | Mild | Sunny   | Normal   | False | ?      |

#### **Decision Tree**



### Decision Tree Terminology

A decision tree consists of

#### Nodes:

Test for the value of a certain attribute

#### Edges:

Correspond to the outcome of a test Connect a node to the next node or leaf

#### Root:

The node that performs the first split

#### Leaves:

Terminal nodes that predict the outcome

### A toy example

Training set: 3 features and 2 classes

| X | Υ | Z | Class |
|---|---|---|-------|
| 1 | 1 | 1 | Α     |
| 1 | 1 | O | Α     |
| 0 | 0 | 1 | В     |
| 1 | 0 | 0 | В     |

How can Class A be distinguished from Class B?

# Exploring our intuition



Splitting on Y gives us a clear separation between classes We could also first split on X and then split on Z. But this is less optimal than splitting on Y

We cannot root our tree with Z

### Formalizing this intuition

| Splitting by X |             | Splitting by Y |       | Splitting by Z |       |
|----------------|-------------|----------------|-------|----------------|-------|
| X = 0          | X = 1       | Y = 0          | Y = 1 | Z = 0          | Z = 1 |
| В              | A<br>B<br>A | B              | A     | B              | B     |

For automatic tree construction:
Consider maximizing a measure of information gain OR
Minimizing a measure of impurity

### Shannon's Entropy & Information Gain

Entropy, 
$$H(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$
Information Gain  $(S,A) = H(S)$ 

$$- \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

H(S): Entropy for a set S. Each element S belongs to a certain class.

p<sub>i</sub>. Probability of the class 'i' in set S

A: Denotes an attribute your set S can be split on (eg. Outlook, Humidity, Windy etc)  $v \in Values(A)$ : Denotes the set of values a given attribute can take on (As an eg. For attribute A = Outlook, v takes elements from {Sunny, Overcast}

I l operator: Simply tells you how many elements in the set. For example for attribute "Outlook"  $|S_{sunny}|$  gives how many days in your dataset were sunny.

Entropy is a measures of randomness. The less probable an event the more random it is...AND therefore the more information it contains. Consider "The sky is falling" vs "The sun just rose"

# More on Entropy

Entropy, 
$$H(S) = \sum_{i=0}^{c} -p_i \log_2 p_i$$



# Our toy example



Information Gain from splitting on X:  $1 - \{0.75 * 0.9184 + 0.25*0\} = .3112$ 

# Our toy example



Information Gain from splitting on Y:  $1 - \{0.5 * 0 + 0.5* 0\} = 1$ , BEST!

# Our toy example



Information Gain from splitting on Z:  $1 - \{0.5 * 1 + 0.5 * 1\} = 0$ , WORST!

#### Gini Index

Many alternatives to Information Gain, the most popular being the Gini Index

- The Gini Index is a measure of impurity (not entropy).
- It gives the probability that any element when randomly classified according to the distribution of the classes is labeled incorrectly

$$Gini(S) = 1 - \sum_{i} p_i^2$$

Minimize the average Gini Index {impurity}, to make splits in the decision tree

$$Gini(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot Gini(S_{i})$$

### Building a Decision Tree

#### Psuedo code

function BuildTree:

If every item in the dataset is in the same class or there is no feature left to split the data:

return a leaf node with the class label

#### Else:

find the best feature and value to split the data

split the dataset

create a node

for each split

call BuildTree & add the result as a child of the node

return node

#### Other Caveats

- Handling numerical data
- Handling missing data
- Binary vs Multi-way splits
- Using Decision Trees for regression:

Can't use information gain or gini impurity

- Choose best splits using residual sum of squares (calculate against mean value of each leaf)
- Can also use a combination of decision trees and linear regression on the leaf nodes (model trees)

### What could go possibly wrong?!?

Your tree will correctly fit EVERY SINGLE sample in the training set!

In other words...

OVERFITTING is always a problem.

We "prune" our tree to address overfitting.

### Pre pruning/Early Stopping

#### Leaf size

Stop when the number of data points for a leaf gets below a threshold

#### Depth

Stop when the depth of the tree (distance from root to leaf) reaches a threshold

#### Mostly the same

Stop when some percent of the data points are the same (rather than all the same)

#### Error threshold

Stop when the error reduction (information gain) is not improved significantly

# Post pruning - CV

Involves building the tree first & then choosing to cut off some of the leaves.

#### Psuedo code

```
function Prune:

if either left or right is not a leaf:

call Prune on that split

if both left and right are leaf nodes:

calculate error associated with merging two nodes

calculate error associated without merging two nodes

if merging results in lower error:

merge the leaf nodes
```

### In pursuit of pruning

What if we could find ways to automatically prune?

- No having to set parameters like depth etc
- No calculating errors

How about we build more than one tree and find ways to automatically combine them that reduce overfitting?

COMING AHEAD IN FURTHER LECTURES...

### Decision Trees, Summary

#### Why Decision Trees

- Easily interpretable
- Handles missing values and outliers
- Non-parametric/non-linear/discontinuity/ model complex phenomenon
- Computationally cheap to predict
- Can handle irrelevant features
- Mixed data (nominal and continuous)

#### Why Not Decision Trees

- Computationally expensive to train
- Very easy to overfit
- Greedy algorithm (local optima)
- Algorithm makes best splits

#### Decision Trees in sklearn

- Pruning with max\_depth, min\_samples\_split, min\_samples\_leaf or max\_leaf\_nodes
- Gini is default, but you can also choose entropy
- Does binary splits (you would need to binarize categorical features)