SINGLE-CHIP 8-BIT MICROCONTROLLER

GENERAL DESCRIPTION

The MAB80XXH family of single-chip 8-bit microcontrollers is fabricated in NMOS. Three interchangeable (pin compatible) versions are available:

MAB8048H: 1 K bytes mask-programmed ROM, 64 bytes RAM

MAB8035HL: ROM-less version of the MAB8048H

MAB8049H: 2 K bytes mask-programmed ROM, 128 bytes RAM

MAB8039HL: ROM-less version of the MAB8049H

MAB8050H: 4 K bytes mask-programmed ROM, 256 bytes RAM

MAB8040HL: ROM-less version of the MAB8050H

These microcontrollers are designed to be efficient control processors as well as arithmetic processors. Their instruction set allows the user to directly set and reset individual I/O lines as well as test individual bits within the accumulator. A large variety of branch and table look-up instructions enable efficient implementation of standard logic functions. Code efficiency is high; over 70% of the instructions are single byte; all others are two byte.

An on-chip 8-bit counter is provided, which can count either machine cycles (÷32) or external events. The counter can be used to generate an interrupt to the processor.

Program and data memories plus input/output capabilities can be expanded using standard TTL compatible memories and logic. For more detailed information see the 8048 family specification.

Features

- 8-bit CPU, ROM, RAM and 1/O
- 8-bit counter/timer
- On-chip oscillator and clock driver circuits
- Single-level interrupts: external and counter/timer
- 17 internal registers: accumulator, 16 addressable registers
- Over 90 instructions: 70% single byte
- All instructions 1 or 2 cycles
- Easily expandable memory and 27 I/O lines
- TTL compatible inputs and outputs
- Single 5 V supply
- Standard and extended temperature ranges (see Table 5): MABSOXX: 0 to +70 °C

MAF80XX: -40 to +85 °C MAF80AXX: -40 to +110 °C

Applications

- Peripheral interfaces and controllers
- Test and measuring instruments
- Sequencers

- Modems and data enciphering
- Environmental control systems
- Audio/video systems

PACKAGE OUTLINES

All versions: with type no. suffix P (see Table 5): 40-lead DIL; plastic (SOT-129).

MAB8035/8048/8039/8049H/HLWP

: 44-lead PLCC; plastic leaded chip-carrier

(SOT187AA).

Fig. 1 Block diagram.

Fig. 2a Pinning diagram; for pin designation see next page.

Fig. 2b Pinning diagram for MAB80XXHWP; for pin designation see next page.

Product type numbering European and USA cross-reference scheme

Type numbering reference used mainly in Europe MAB8039HLP/HLWP MAF8039HLP/HWP MAB8049HP/HWP MAF8049HP/HWP MAB8040HLP/HLWP MAF8050HP/HWP

Type numbering equivalent reference used mainly in USA SCN8039HCB N40/A44 SCN8039HAB N40/A44 SCN8049HCB N40/A44 SCN8049HAB N40/A44 SCN8040HCB N40/A44 SCN8050HCB N40/A44

PINNING		
12–19	DB0-DB7	Data Bus: true bidirectional I/O port which can be written or read using the RD and WR strobes. This port can also be used as an 8-bit latch. It contains the 8 low order address bits during an external memory access and receives the addressed instruction under control of PSEN. This multiplexed address/data port also contains the address and data during external RAM accesses.
27-34	P1.0P1.7	Port 1: 8-bit quasi-bidirectional I/O port (note 1).
21-24	P2.0P2.7	Port 2: 8-bit quasi-bidirectional I/O port (note 1).
35–38		P2.0—P2.3 contains the 4 higher order address bits during an external program memory access and provides a 4-bit bus for 8243 I/O expanders.
25	PROG	Output strobe: active LOW for 8243 I/O expanders.
1	ТО	Test 0: input pin which can be tested by the JTO and JNTO instructions. Clock: TO can be configured as a clock output using the ENTO CLK instruction.
39	T1	Test 1: input pin which can be tested using the JT1 and JTN1 instructions. T1 can be configured as the timer/counter input using the STRT CNT instruction.
6	ĪNT	Interrrupt: interrupt input pin which can initiate an interrupt if the external interrupt is enabled. Can also be tested using the JNI instruction. Interrupt is disabled during and after RESET.
4	RESET	Reset: active LOW input used to initialize the microcontroller. During program verification, the address is latched by a $0-$ to -1 transition on RESET and the data at the addressed location is output on BUS (note 2).
11	ALE	Address latch enable: occurs each cycle and is useful as a clock output. During an external program or data memory access, ALE is used to latch the address information multiplexed on the DB0 to DB7 outputs.
8	RD	Read BUS: active LOW strobe used to gate data on to BUS lines when reading from an external source.
10	WR	Write BUS: active LOW strobe used to write data from BUS lines to an external designation.
7	EA	External access input: when HIGH, all instruction fetches are from external memory.
9	PSEN	Program store enable: active LOW strobe that occurs only during a fetch from external memory.
5	SS	Single step: active LOW input used with ALE to cause the microcontroller to execute a single instruction.
2 3	XTAL 1 XTAL 2	Crystal inputs: inputs for a crystal, LC-network or an external timing signal to determine the internal oscillator frequency (note 2).
20	V_{SS}	Ground: circuit earth potential.
40	Vcc	Power supply: + 5 V main power supply pin.
26	V_{DD}	Power supply: + 5 V RAM standby power supply; low power

Notes

- 1. Each port line can be individually configured as an input or an output. A line is designated as an input by first writing a logic 1 to the line. RESET sets all port lines to logic 1.
- 2. Non-standard TTL VIH.

FUNCTIONAL DESCRIPTION

The following sections provide a detailed functional description of the MAB80XXH microcontroller as shown in Fig. 1. The generic term "MAB80XXH" is used to refer collectively to the MAB8048H/35HL, MAB8049H/39HL and MAB8050H/40HL.

Program memory (see Fig. 3)

The on-chip program memory consists of 1024, 2048 or 4096 bytes of mask programmed ROM (MAB8048H/49H/50H); the MAB8035HL/39HL/40HL versions do not have on-chip program memory. The total addressing capability is 4096 bytes.

The program memory address space is divided into two 2048-byte banks MB0 and MB1. These two 2048 byte banks are each divided into 8 pages of 256 bytes for conditional branches. There are three locations in program memory of special interest. These are:

- Location 0 contains the first instruction to be executed after a RESET
- Location 3 contains the first instruction of an external interrupt routine
- Location 7 contains the first instruction of a timer/counter interrupt routine

Fig. 3 Program memory map.

Fig. 4 Data memory map.

FUNCTIONAL DESCRIPTION (continued)

Data memory (see Fig. 4)

The on-chip data memory consists of a 64, 128 or 256 byte RAM. All locations are indirectly addressable using two RAM pointer registers R0, R1 or R0', R1'. The first 8 RAM locations (0 to 7) are designated as working register bank 0 and are directly addressable. By selecting register bank 1, RAM locations 24 to 31 become the working registers. RAM locations 8 to 23 are designated as the stack. Two bytes are used per CALL allowing up to 8 levels of subroutine nesting. An extra 256 bytes of RAM may be added and addressed directly using the MOVX instructions. If more RAM is required, I/O port lines may be used to select additional (256 byte) banks of external memory.

Program counter and stack

The program counter (PC) is a 12-bit counter/register that points to the location from which the next instruction is to be fetched. When EA is logic 0 the PC can address locations 0 to 1023 (8048H), 2047 (8049H) or 4095 (8050H) of internal program memory. At the 1 K (8048H), 2 K (8049H) boundary, an automatic switch-over to external memory occurs. When EA is logic 1 all fetches are from external program memory. The total address space is 4 K bytes. An interrupt or subroutine CALL causes the contents of the program counter to be stored in one of the 8 register pairs of the program counter stack. A 3-bit stack pointer which is part of the program status word (PSW) points to the relevant register pair. Data RAM locations 8 to 23 are available as stack registers and are used to store the program counter and 4 bits of the PSW register. The stack pointer, when initialized to 000, points to RAM locations 8 and 9. The first subroutine jump or interrupt results in the program counter contents being transferred to locations 8 an 9 of the RAM array. The stack pointer is then incremented by one to point to locations 10 and 11. Nesting of subroutines within subroutines can continue up to 8 times without overflowing the stack. If overflow does occur the deepest address stored (locations 8 and 9) will be overwritten and lost since the stack pointer overflows from 111 to 000. It also underflows from 000 to 111. The end of a subroutine, which is signalled by a return instruction (RET or RETR), causes the stack pointer to be decremented and the contents of the appropriate register pair to be transferred to the program counter.

Oscillator and clock (see Figs 5, 6 and 7)

The MAB80XXH has on-chip oscillator and clock driver circuitry. A crystal, LC-network or external timing signal (pulse generator) determines the oscillator frequency. The output of the oscillator is divided-by-three and is available at T0 (pin 1) by executing the ENTO CLK instruction. This clock signal (CLK) is divided-by-five to define a machine (instruction) cycle. It is available at ALE (pin 11).

(1) Including crystal-socket stray capacities.

Fig. 5 Crystal oscillator mode. Crystal series impedance should be < 75 Ω at 6 MHz and < 180 Ω at 3,6 MHz. When using a ceramic oscillator both capacitors should be 30 pF.

Fig. 6 External clock source. Both XTAL 1 and XTAL 2 should be driven. Resistors to V_{CC} (+ 5 V) are required to ensure V_{IH} = 3,8 V if TTL circuitry is used. The minimum HIGH and LOW times are 45%.

$$f \approx \frac{1}{2\pi\sqrt{LC'}}$$
; $C' = \frac{C + 3C_{pp}}{2}$

L	C	nom. f
(μH)	(pF)	(MHz)
45	20	5,2
120	20	3,2

Fig. 7 LC oscillator. Each capacitor should be \approx 20 pF including stray capacitance $C_{pp} \approx 5$ to 10 pF (pin-to-pin capacitance).

Timer/event counter

An internal counter is available which can count either external events or machine cycles (÷32). The machine cycles are divided-by-32 before they are applied to the input of the 8-bit counter. External events are applied directly to the input of the counter. The maximum clock rate is one third of the machine cycle frequency. The minimum positive duty cycle that can be detected is 0,2 times the cycle period. The counter can be configured to generate an interrupt to the processor when it overflows.

Interrupt

An interrupt may be generated by:

- An external input INT (pin 6) or
- A timer/counter overflow, when enabled.

In either event, the processor completes execution of the present instruction and then calls the interrupt service routine.

At the end of the interrupt service routine, a RETR instruction restores the machine to the state it was in prior to the interrupt. The external interrupt has priority over the timer/counter interrupt.

Input/output

The MAB80XXH has 27 I/O lines arranged as three 8-bit ports and 3 'test' inputs that can alter program sequences when tested by conditional jump instructions.

Each port line can be individually configured as an input or output.

FUNCTIONAL DESCRIPTION (continued)

Ports 1 and 2 are both 8-bits wide and have identical characteristics. Data written to these ports is latched and remains unchanged until rewritten. In the input mode, these ports are non-latching; inputs must be present until read by an input instruction. Inputs are fully TTL compatible and outputs will drive one standard TTL load.

Ports 1 and 2 are called quasi-bidirectional because they are not high impedance when configured as inputs. Each line is pulled up to + 5 V through a resistor ($\approx 50~\Omega$). This pull-up provides sufficient source current for a TTL HIGH level, yet can be pulled LOW by a standard TTL gate, thus allowing the pin to be used both as an input and an output. To provide fast switching times during a logic 0 - to - 1 transition, transistor TR 2 is switched on for one fifth of a machine cycle when a logic 1 is written to the line. When a logic 0 is written, transistor TR 1 overcomes the pull-up and provides TTL current sinking capability. Since the pull-down transistor is low impedance, a logic 1 must first be written to any line which is to used as an input. RESET initializes all lines to the high impedance logic 1 state. This structure allows input and output on the same pin. Individual port lines can be read and written using the ANL and ORL instructions.

BUS (DB0-DB7)

BUS is a true bidirectional 8-bit port with associated input and output strobes. The BUS port can operate in three different modes: as a latched I/O port, as a bidirectional bus port, or in an expanded system as a program memory address output port. If the bidirectional feature is not needed, BUS can serve as either a statically latched output port or non-latching input port. Input and output lines on this port cannot be mixed. The BUS port lines are either active HIGH, active LOW, or high impedance (floating).

As a static port, data is written and latched using the OUTL instruction and input using the INS in instruction. The INS and OUTL instructions generate pulses on the corresponding \overline{RD} and \overline{WR} output strobe lines; however, in the static port mode they are generally not used. As a bidirectional port, the MOVX instructions are used to read and write the port. A write to the port generates a pulse on the \overline{WR} output line and output data is valid at the trailing edge of \overline{WR} . A read of the port generates a pulse on the \overline{RD} output line and input data must be valid at the trailing edge of \overline{RD} .

The latched mode (INS, OUTL) is intended for use in the single-chip configuration, where BUS is not being used as an expanded port. OUTL and MOVX instructions can be mixed if required. However, when using a MOVX instruction a previously latched output will be lost and BUS will be left in the high impedance state. INS does not put the BUS in a high impedance state. Therefore, in order to read an external byte (and not the previously latched value) using an INS instruction, it is necessary to precede INS with a MOVX instruction.

OUTL should never be used in a system with external program memory, since latching BUS may cause the next instruction to be incorrectly fetched.

N.B The OUTL, ANL and the ORL instructions relating to BUS are for use with internal program memory only.

Fig. 8 Quasi-bidirectional port structure.

Test (T0, T1) and INT

These three pins serve as inputs and may be tested by the conditional jump instruction. They allow inputs to cause program branches without the necessity of loading an input port into the accumulator.

RESET (see Fig. 9)

This active LOW input is used to initialize the microcontroller.

This Schmitt-trigger input has an internal pull-up resistor which, in combination with an external 1 μ F capacitor, provides an internal reset pulse of sufficient duration to reset all circuitry. If the reset pulse is generated externally, the reset pin must be held at ground (0,45 V) for at least 10 ms after the power supply is within tolerance. Only 5 machine cycles (12,5 μ s at 6 MHz) are required if power is already on and the oscillator has stabilized.

Fig. 9 An external reset is shown in (a) and power-on reset in (b).

Single step (SS)

This active LOW input when used in combination with ALE will cause the microcontroller to execute a single instruction, then wait until \overline{SS} is reactivated.

Power-down mode (see Fig. 10)

In the MAB80XXH, power can be removed from all but the data RAM array, for low power standby operation. In the power-down mode the contents of the data RAM can be maintained while drawing typically 10% to 15% of the normal operating supply voltage. V_{CC} serves as the + 5 V supply pin for the bulk of the circuitry, while the V_{DD} pin supplies only the RAM array. In normal operation, both pins are at + 5 V. In the standby mode, V_{CC} is at ground and only V_{DD} is maintained at + 5 V. Applying RESET to the microcontroller through the reset pin inhibits any access to the RAM and ensures that the RAM cannot be inadvertently altered as power is removed from V_{CC} .

Fig. 10 Power down sequence.

FUNCTIONAL DESCRIPTION (continued)

Instruction set (see Tables 1, 2, 3 and 4)

The MAB80XXH instruction set consists of over 90 one and two-byte instructions. Program code efficiency is high because:

- Working registers and program variables are stored in RAM locations 0 to 127, which require only
 a single byte to address
- Program memory is divided into pages of 256 bytes, which means that branch destination addresses require only one byte

The instruction set performs logical, arithmetic and test operations on bytes. It also manipulates and tests bits. A set of MOVE instructions operate indirectly on either RAM or ROM, which permits efficient access of pointers and data tables. The indirect jump instruction performs a multi-way branch (up to 256) on the contents of the accumulator to addresses stored in a look-up table. The 'decrement register and jump if not zero' instruction saves a byte each time it is used as opposed to using separate increment and test instructions. The on-chip counter provides the facility for external events or time to be counted by hardware which does not interfere with the main program. The MAB80XXH can either test the counter (under program control) or cause its overflow to generate an interrupt. These features are essential for real-time applications.

Table 1 Symbols and definitions used in Table 2.

symbol	definition description
Α	accumulator
addr	program memory address
Bb	bit designation (b = 0-7)
RBS	register bank select
С	carry (bit CY)
CNT	event counter
D	mnemonic for 4-bit digit (nibble)
data	8-bit number or expression
1	interrupt
MB	memory bank
MBFF	memory bank flip-flop
Р	mnemonic for 'in-page' operation
PC	program counter
Pp	port designation (p = 0, 1, 2)
PSW	program status word
RB	register bank
Rr	register designation $(r = 0-7)$
Sn	serial I/O register
SP	stack pointer
T	timer
TF	timer flag
T0	test 0 input
T1	test 1 input
#	immediate data prefix
@	indirect address prefix
(X)	contents of X
((X))	contents of location addressed by X
←	is replaced by
↔	is exchanged with

uction set
듔
č
_
8
<u>e</u>
æ
<u>_a</u>
•

r = 0-7								_				_							
			r = 0-7			r = 0-7			r = 0-7			r = 0-7							9—0 = u
(A)←(A) + (Rr)	(A)←(A) + ((R0)) (A)←(A) + ((R1))	(A)←(A) + data	(A)←(A) + (Rr) + (C)	(A)←(A) + ((R0)) + (C) (A)←(A) + ((R1)) + (C)	$(A) \leftarrow (A) + data + (C)$	(A)←(A) AND (Rr)	(A)←(A) AND ((R0)) (A)←(A) AND ((R1))	(A)←(A) AND data	(A)←(A) OR (Rr)	(A)←(A) OR ((R0)) (A)←(A) OR ((R1))	(A)←(A) OR data	(A)←(A) XOR (Rr)	(A)←(A) XOR ((R0)) (A)←(A) XOR ((R1))	(A)←(A) XOR data	(A)←(A) + 1	(A)←(A) – 1	(A)←0	(A)←NOT(A)	(A _n + 1)←(A _n) (A ₀)←(A ₇)
Add register contents to A	Add RAM data, addressed by Rr, to A	Add immediate data to A	Add carry and register contents to A	Add carry and RAM data, addresses by Rr, to A	Add carry and immediate data to A	'AND' Rr with A	'AND' RAM data, addressed by Rr, with A	'AND' immediate data with A	OR' Rr with A	'OR' RAM data, addressed by Rr, with A	'OR' immediate data with A	'XOR' Rr with A	'XOR' RAM, addressed by Rr, with A	'XOR' immediate data with A	increment A by 1	decrement A by 1	clear A to zero	one's complement A	rotate A left
1/1	1/1	2/2	1/1	7	2/2	1,1	1/1	2/2	1/1	1/1	2/2	7	1/1	2/2	1,1	1/1	1,1	1/1	7,
9	60 61	03 data	7	70 17	13 data	2*	50 51	53 data	**	40	43 data	*	8 5	D3 data	17	07	27	37	E7
ADD A, Rr	ADD A, @Rr	ADD A, #data	ADDC A, Rr	ADDC A, @Rr	ADDC A, #data	ANL A, Rr	ANL A, @Rr	ANL A, #data	ORL A, Rr	ORL A, @Rr	ORL A, #data	XRL A, Rr	XRL A, @Rr	XRL A, #data	INC A	DEC A	CLR A	CPL A	RLA
	6* 1/1 Add register contents to A	6* 1/1 Add register contents to A 60 1/1 Add RAM data, addressed by Rr, to A 61	6* 1/1 Add register contents to A 60 1/1 Add RAM data, addressed by Rr, to A 61 Add immediate data to A	6* 1/1 Add register contents to A 60 1/1 Add RAM data, addressed by Rr, to A 61 Add immediate data to A 7* 1/1 Add carry and register contents to A	6* 1/1 Add register contents to A 60 1/1 Add RAM data, addressed by Rr, to A 61 2/2 Add immediate data to A 7* 1/1 Add carry and register contents to A 70 1/1 Add carry and RAM data, addresses 71 by Rr, to A	6 1/1 Add register contents to A 60 1/1 Add RAM data, addressed by Rr, to A 61 2/2 Add immediate data to A 7* 1/1 Add carry and register contents to A 70 1/1 Add carry and RAM data, addresses 71 Add carry and RAM data, addresses 71 Add carry and immediate data to A 73 Add carry and immediate data to A	6* 1/1 Add register contents to A 60 1/1 Add RAM data, addressed by Rr, to A 61 03 data 2/2 Add immediate data to A 7* 1/1 Add carry and register contents to A 70 1/1 Add carry and RAM data, addresses 71 Add carry and immediate data to A 72 by Rr, to A 73 a 13 data 2/2 Add carry and immediate data to A 5* 1/1 'AND' Rr with A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, @Rr 7* 1/1 Add carry and register contents to A ADDC A, @Rr 70 1/1 Add carry and RAM data, addresses ADDC A, # data 13 data 2/2 Add carry and immediate data to A ANL A, @Rr 5* 1/1 'AND' RAM data, addressed by Rr, with A ANL A, @Rr 50 1/1 'AND' RAM data, addressed by Rr, with A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, @Rr 70 1/1 Add carry and RAM data, addresses ADDC A, #data 13 data 2/2 Add carry and immediate data to A ANL A, Rr 5* 1/1 'AND' Rr with A ANL A, @Rr 50 1/1 'AND' RAM data, addressed by Rr, with A 51 1/1 'AND' immediate data with A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and RAM data, addresses ADDC A, #data 13 data 2/2 Add carry and immediate data to A ANL A, Br 5* 1/1 'AND' Rr with A ANL A, @Rr 50 1/1 'AND' RAM data, addressed by Rr, with A ANL A, #data 53 data 2/2 'AND' immediate data with A ANL A, #Rr 4* 1/1 'OR' Rr with A	ADD A, Br 6* 1/1 Add register contents to A ADD A, @Br 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, @Rr 7* 1/1 Add carry and register contents to A ADDC A, @Rr 70 1/1 Add carry and register contents to A ADDC A, #data 13 data 2/2 Add carry and immediate data to A ANL A, @Rr 5* 1/1 'AND' Rwith A ANL A, @Rr 50 1/1 'AND' RAM data, addressed by Rr, with A ANL A, #data 53 data 2/2 'AND' immediate data with A ORL A, @Rr 4* 1/1 'OR' Rr with A ORL A, @Rr 40 1/1 'OR' RAM data, addressed by Rr, with A	6* 1/1 Add register contents to A 8r 60 1/1 Add RAM data, addressed by Rr, to A 61 7* 1/1 Add immediate data to A 1r 7* 1/1 Add carry and register contents to A 1Rr 70 1/1 Add carry and register contents to A 1Rr 70 1/1 Add carry and register contents to A 13 data 2/2 Add carry and immediate data to A 17 'AND' Rr with A 17 'AND' RAM data, addressed by Rr, with A 17 'OR' RAM data, addressed by Rr, with A 17 'OR' RAM data, addressed by Rr, with A 17 'OR' immediate data with A	ADD A, Br 6* 1/1 Add register contents to A ADD A, @Br 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, @Br 70 1/1 Add carry and RAM data, addresses ADDC A, #data 13 data 2/2 Add carry and immediate data to A ANL A, Br 5* 1/1 'AND' Rr with A ANL A, @Br 50 1/1 'AND' RAM data, addressed by Rr, with A ORL A, Rr 4* 1/1 'OR' Rr with A ORL A, @Br 40 1/1 'OR' RAM data, addressed by Rr, with A ORL A, #data 43 data 2/2 'OR' immediate data with A ORL A, #data 43 data 2/2 'OR' immediate data with A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, Rr 70 1/1 Add carry and RAM data, addresses ADDC A, #data 13 data 2/2 Add carry and immediate data to A ANL A, Rr 5* 1/1 'AND' Rr with A ANL A, @Rr 50 1/1 'AND' Rr with A ANL A, #data 53 data 2/2 'AND' immediate data with A ORL A, @Rr 40 1/1 'OR' Rr with A ORL A, @Br 40 1/1 'OR' immediate data with A ORL A, #data 43 data 2/2 'OR' immediate data with A XRL A, Rr D* 1/1 'XOR' RAM, addressed by Rr, with A XRL A, @Rr D* 1/1 'XOR' RAM, addressed by Rr, with A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, @Rr 70 1/1 Add carry and register contents to A ADDC A, #data 13 data 2/2 Add carry and register contents to A ANL A, @Rr 5* 1/1 Add carry and register contents to A ANL A, @Rr 5* 1/1 AND' RAM data, addresses ANL A, @Rr 4* 1/1 'AND' RAM data, addressed by Rr, with A ORL A, @Rr 4* 1/1 'OR' RAM data, addressed by Rr, with A ORL A, #data 2/2 'AND' immediate data with A ORL A, #data 2/2 'AND' immediate data with A ORL A, #data 2/2 'CR' immediate data with A ORL A, @Rr D* 1/1 'XOR' RAM, addressed by Rr, with A ORL A, #data D* 1/1 'XOR' RAM, addressed by Rr, with A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADD CA, Rr 7* 1/1 Add carry and register contents to A ADD CA, #data 70 1/1 Add carry and register contents to A ADD CA, #data 13 data 2/2 Add carry and register contents to A ADD CA, #data 13 data 2/2 Add carry and register contents to A ANL A, @Rr 5* 1/1 'AND' Rw Mata, addresses ANL A, @Rr 50 1/1 'AND' Rr with A ANL A, @Rr 4* 1/1 'AND' Rw M data, addressed by Rr, with A ORL A, #data 2/2 'AND' immediate data with A OR' immediate data with A ORL A, #data 1/1 'XOR' RAM, addressed by Rr, with A XRL A, @Rr Dh 1/1 'XOR' RAM, addressed by Rr, with A XRL A, #data D3 data 2/2 'XOR' immediate data with A XRL A, #data D3 data 2/2	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, Rr 70 1/1 Add carry and register contents to A ADDC A, #data 13 data 2/2 Add carry and register contents to A ANL A, Rr 5* 1/1 AND' Rr with A ANL A, @Rr 50 1/1 'AND' Rr with A ANL A, #data 53 data 2/2 'AND' immediate data with A ORL A, @Rr 41 'OR' Rr with A ORL A, #data 43 data 2/2 'OR' immediate data with A XRL A, Rr D* 1/1 'XOR' RAM, addressed by Rr, with A XRL A, Rr D0 1/1 'XOR' RAM, addressed by Rr, with A XRL A, #data D3 data 2/2 'XOR' immediate data with A XRL A, #data D3 data 2/2 'XOR' immediate data with A XRL A	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, #data 13 data 2/2 Add carry and famediate data to A ADDC A, #data 5* 1/1 AND' Rr with A ANL A, Br 5 1/1 'AND' immediate data with A ANL A, #data 53 data 2/2 'AND' immediate data with A ORL A, #data 4* 1/1 'OR' RAM data, addressed by Rr, with A ORL A, #data 43 data 2/2 'AND' immediate data with A ORL A, #data 43 data 2/2 'XOR' RAM, addressed by Rr, with A XRL A, Rr D* 1/1 'XOR' RAM, addressed by Rr, with A XRL A, #data D3 data 2/2 'XOR' immediate data with A XRL A, #data D3 data 2/2 'XOR' immediate data with A XRL A, #data D3 data 1/1 'XOR	ADD A, Rr 6* 1/1 Add register contents to A ADD A, @Rr 60 1/1 Add RAM data, addressed by Rr, to A ADD A, #data 03 data 2/2 Add immediate data to A ADDC A, Rr 7* 1/1 Add carry and register contents to A ADDC A, @Rr 70 1/1 Add carry and RAM data, addresses ADDC A, #data 13 data 2/2 Add carry and immediate data to A ANL A, @Rr 50 1/1 'AND' Rr with A ANL A, @Rr 50 1/1 'AND' RAM data, addressed by Rr, with A ORL A, #data 53 data 2/2 'AND' immediate data with A ORL A, #data 43 data 2/2 'AND' immediate data with A ORL A, #data 1/1 'OR' RAM data, addressed by Rr, with A XRL A, #data D* 1/1 'XOR' immediate data with A XRL A, #data D* 1/1 'XOR' immediate data with A XRL A, #data D* 1/1 'XOR' immediate data with A XRL A, #data D* 1/1 'XOR' immediate data with A <

MAB8048H/35HL MAB8049H/39HL MAB8050H/40HL

	opcode (hex.)	bytes/ cycles	description	function		notes
	F7	1/1	rotate A left through carry	$(A_n + 1)^{\leftarrow}(A_n)$ $(A_0)^{\leftarrow}(C)$, $(C)^{\leftarrow}(A_7)$	9-0 = u	2
	77	1/1	rotate A right		9-0 = u	
	29	1/1	rotate A right through carry	(A ₀)	9-0 = u	7
	57	1/1	decimal adjust A			2
	47	1/1	swap nibbles of A	(A ₄₋₇)↔(A ₀₋₃)	1	
	*	1/1	move register contents to A	(A)←(Rr)	r = 0-7	
	F0 F1	1/1	move RAM data, addressed by Rr, to A	(A)←((R0)) (A)←((R1))		
	23 data	2/2	move immediate data to A	(A)←data		
-	* V	1/1	move accumulator contents to register	(Rr)←(A)	r = 0-7	
	A0 A1	1/1	move accumulator contents to RAM location addressed by Rr	((R0))←(A) ((R1))←(A)		
_	B* data	2/2	move immediate data to Rr	(Rr)←data	r = 0-7	
	B0 data B1 data	2/2	move immediate data to RAM location addressed by Rr	((R0))←data ((R1))←data		
- •	2*	1/1	exchange accumulator contents with Rr	(A)↔(Rr)	r = 0-7	
	20 21	1/1	exchange accumulator contents with RAM data addressed by Rr	(A)↔((R0)) (A)↔((R1))		
,	30 31	1/1	exchange lower nibbles of A and RAM data addressed by Rr	(A ₀ -3)↔((R ₀ 0-3)) (A ₀ -3)↔((R ₁ 0-3))		
_	C7	1/1	move PSW contents to accumulator	(A)←(PSW)		
_	D7	1/1	move accumulator contents to PSW	(PSW)←(A)	. "	က
	A3	1/2	move indirectly addressed data in current page to A	(A)←((A))		
	E3	1/2	move data in page 3 to A	(A) ←((A))	in page 3	

	MOVX A,@Rr	80	1/2	move indirect the contents of external	(A)←((R))	r = 0-1	
	MOVX @Rr,A	90	1/2	move indirect the contents of A to external memory	((R))←(A)	r = 0-1	
SĐ	CLRC	97	1,1	clear carry bit	(C)←0		2
۲۲A	CPL C	A7	1,1	complement carry bit	(C)←NOT(C)		7
8	INC Rr	*	1/1	increment register by 1	(Rr)←(Rr) + 1	r = 0-7	
STE	INC @Rr	10	1/1	increment RAM data, addressed by Rr,	((R0))←((R0)) + 1		
19:		11		by 1	((R1))←((R1)) + 1		
38	DEC Rr	<u>*</u>	1/1	decrement register by 1	(Rr)←(Rr) -1	r = 0-7	
	JMP addr	• 4 address	2/2	unconditional jump within a 2 K bank	(PC ₈ -10)←addr ₈ -10		
					(PC ₁₁ -12) ← MBFF 0-1		
	JMPP @A	83	1/2	indirect jump within a page	$(PC_{0-7}) \leftarrow ((A))$		
	DJNZ Rr, addr	E* address	2/2	decrement Rr by 1 and jump if not	(Rr)←(Rr) –1	r = 0-7	
				zero to addr	if (Rr) not zero (PC ₀ 7)←addr	-	
	JF0 addr	B6 address	2/2	jump to addr if $F0 = 1$	if F0 = 1: $(PC_{0-7}) \leftarrow addr$		
	JF1 addr	76 address	2/2	jump to addr if $F1 = 1$	if F1 = 1: $(PC_{0-7}) \leftarrow addr$		
ICH	JNI addr	86 address	2/2	jump to addr if $\overline{INT} = 0$	if $\overline{INT} = 0$: $(PC_{0-7}) \leftarrow addr$		
	JBb addr	▲ 2 address	2/2	jump to addr if $Acc.$ bit $b = 1$	if b = 1: $(PC_{0-7}) \leftarrow addr$	b = 0-7	
В	JC addr	F6 address	2/2	jump to addr if $C = 1$	if C = 1: $(PC_{0-7}) \leftarrow addr$		
	JNC addr	E6 address	2/2	jump to addr if $C = 0$	if C = 0: $(PC_{0-7}) \leftarrow addr$		
	JZ addr	C6 address	2/2	jump to addr if $A = 0$	if A = 0: $(PC_{0-7})^{\leftarrow}$ addr		
	JNZ addr	96 address	2/2	jump to addr if A is NOT zero	if A \neq 0: (PC ₀₋₇) \leftarrow addr		
	JT0 addr	36 address	2/2	jump to addr if $T0 = 1$	if T0 = 1: $(PC_{0-7}) \leftarrow addr$		
	JNT0 addr	26 address	2/2	jump to addr if $T0 = 0$	if T0 = 0: $(PC_{0-7}) \leftarrow addr$		
	JT1 addr	56 address	2/2	jump to addr if $T1 = 1$	if T1 = 1: $(PC_{0-7}) \leftarrow addr$		
	JNT1 addr	46 address	2/2	jump to addr if $T1 = 0$	if T1 = 0: $(PC_{0-7}) \leftarrow addr$		
	JTF addr	16 address	2/2	jump to addr if Timer Flag = 1	if TF = 1: $(PC_{0-7}) \leftarrow addr$		4

MAB8048H/35HL MAB8049H/39HL MAB8050H/40HL

	mnemonic	opcode (hex.)	bytes/ cycles	description	function	notes
	MOV A, T	42	1/1	move timer/event counter contents to accumulator	(A)←(T)	
CON	MOV T, A	62	1/1	move accumulator contents to timer/event counter	(T)+(A)	
	STRT CNT	45	1/1	start event counter		
	STRT T	55	1/1	start timer		
	STOP TCNT	65	1/1	stop timer/event counter		
	EN TCNTI	25	1/1	enable timer/event counter interrupt		
	DIS TCNTI	35	1/1	disable timer/event counter interrupt		
	EN -	05	1/1	enable external interrupt		
	DISI	15	1/1	disable external interrupt		
108	SEL RB0	CS	1/1	select register bank 0	(RBS)←0	വ
	SEL RB1	D5	1/1	select register bank 1	(RBS)←1	2
	SEL MB0	E5	1/1	select program memory bank 0	(MBFF0)←0, (MBFF1)←0	
	SEL MB1	F5	1/1	select program memory bank 1	(MBFF0)←1, (MBFF1)←0	•
	ENTO CLK	75	1/1	enable clock output onto TO		
	CALL addr	▲ 4 address 2/2	2/2	jump to subroutine		9
					(PC ₀₋₇)*-addr ₀₋₇ (PC ₁₁₋₁₂)*-MBFF 0-1	
	RET	83	1/2	return from subroutine		9
	RETR	63	1/2	return from interrupt and restore bits 4, 6, 7 of PSW	(SP)←(SP) −1 (PSW4, 6, 7) + (PC)←((SP))	9

			no operation	1,7	00	NOP
	p = 4-7	(Pp)←(Pp) OR (A ₀ —3)	logical OR contents of A with designated port (4–7)	1/1	8C 8E 8F	ORLD Pp,A
	p = 4-7	(Pp)←(Pp) AND (A ₀ —3)	logical AND contents of A with designated port (4–7)	1/2	9C 9E 9F	ANLD Pp,A
	p = 4-7	(Pp)←(A ₀ —3)	move contents of A to designated port (4–7)	1,1	35 35 35	MOVD Pp,A
	g 	(AQ_3)←(PP) (A4_7)←0	move contents of designated port (4-7) to A	1/2	2086	MOVD A,Pp
		(BUS)←(BUS) OR data	logical OR immediate data with BUS	2/2	88	ORL BUS, # data
	p = 1-2	(P1)←(P1) OR data (P2)←(P2) OR data	OR port p data with immediate data	2/2	88 84	ORL Pp, # data
	p = 1-2	(P1)←(P1) AND data (P2)←(P2) AND data	AND port p data with immediate data	2/2	66 8	ANL Pp, # data
		(BUS)←(BUS) AND data	logical AND immediate data with BUS	2/2	86	ANL BUS, # data
	p = 1-2	(P1)←(A) (P2)←(A)	output accumulator data to port p	1/2	39 34	OUTL Pp,A
		(A)←(BUS)	input strobed BUS data into accumulator	1/2	88	NS A,BUS
7	p = 1-2	(A)←(P1) (A)←(P2)	input port p data to accumulator	1/2	60 V	IN A,Pp
		(BUS)←A	output accumulator to BUS	1/2	02	OUTL BUS,A

and write operation, see serial I/O interface.

5. PSW RBS affected 6. PSW SP₀, SP₁, SP₂ affected 7. (A) = 111 P23, P22, P21, P20. 8. (S1) has a different meaning for read

Table 3 Instruction timing (see also Figs 11 and 12)

cycle 1

	SS	l	l		1		1		I	l	l	1
	S4	I	ı	output to port	output to port	1	- 1	output to port	output to port	I	l	1
cycle 2	S3	 *	 *	*increment program counter	*increment program counter	*	*	*increment program counter	*increment program counter	 *	1	 *
	22	read	ı	ļ	l	read port	-	l	ı	I	read data	read P2 Iower
	S1	l	1	fetch immediate data	fetch immediate data	-	I	fetch immediate data	fetch immediate data	I	I	l
	S5	I	output to port	read port	read port	-	output to port	read port	read	output data to RAM	I	l
	S4	increment timer										increment timer
cycle 1	S3	l	l	l	l	I	. 1	l	I	output RAM address	output RAM address	output opcode/ address
	25	increment program counter		*	 *			*	*			increment program counter
	S1	fetch instruction										fetch instruction
	instruction	IN A,P	OUTL P,A	ANL P,#data	ORL P,#data	INS A,BUS	OUTL BUS,A	ANL BUS,#data	ORL BUS,#data	MOVX @R,A	MOVX A,@R	MOVD A,P

		·								
	S5	I	ı	I						
	S4	1	ı	l	1					
cycle 2	SS	*	† *	*	* opdata program counter					
	S2	I	I	I	ı					
	S1	1	I	I	fetch immediate data					
	SS	output data to P2 lower	output data	output data	I	start counter	stop counter		1	I
	S4	increment timer			increment timer		1	enable interrupt	disable interrupt	enable clock
cycle 1	S3	output opcode/ address	output opcode/ address	output opcode/ address	sample condition		I	_	ı	I
	S2	increment program counter			*	*	*	*	*	*increment program counter
	S1	fetch instruction								fetch instruction
And the state of t	instruction	MOVD P,A	ANLD P,A	ORLD P,A	J (conditional)	STRT CNT STRT T	STOP TCNT	EN I	DIS I	ENTO CLK

Valid instruction addresses are output at this time if external program memory is being accessed.

Fig. 11 Instruction cycle.

Fig. 12 Instruction cycle timing.

0
∺
⊆
_
_
_
.≃
=
Ċ
\sim
∍
_
-
Ċ
-
lns
_
4
•
m
apple
ā
=
н
_

NOP				,																											_
NOP		4	- 1			7		┥	1		_		_		_		_		7		7		7		1		17		7	1	\exists
NOP		ш	A,P 6	<u>و</u> ا		9	A, 9	2	9		9		9		9	A,q	9	b,A	9		9		9		9		9		9	•	۵
NOP		٥	2 2	<u>u</u>	2		2 2		2		2		വ		5	9	2	LDP	2		S		2		വ		2		₂		
NOP		ပ	₹ 4		- 1		∑ 4		4		4		4		4	OR	4	AN	4		4		4		4		4		4		4
First hexadicimal character of opcode Second hexadicimal character of opcode 1		В		٠	2	က			က		က		က		က						က		က		က		က		က		2
First hexadicimal character of opcode Second hexadicimal character of opcode 1		۷	2	,	N	2	,	,	2		7		2		7	ata	2	ata	2		2		2		7		2		2	,	7
First hexadicimal character of opcode Second hexadicimal character of opcode 1				-	1	_	Pp,A								_	, #d		, #d											_	-	\dashv
First hexadicimal character of opcode Second hexadicimal character of opcode 1			A, P				JTL									7. P.		AP Pp													
NOP		6	≥ -	-	-	_	ŏ-	-	_		_		_	_	_	ō	-	٤	1		<u>-</u>	ata	_		_		_	ddr	_	-	_
NOP				_	P,	<u>.</u>		A.R.	; ;	Y.Rr		A, Rr		A,R		SUS,		US,		Rr,A		3, #c		<u></u>		Ŗ,		Rr, a		A,Rr	
NOP	<u>e</u>		VS BUS	NC R	HU	-		BL/	!	NL) da		ogg		RLE	data	NE	data	100		0		EC R		RL A		ZNZ		0 /	
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	obcoc	8	= 4	= 0	7	-			_	٩	_	·	0	٧	_	0	#	⋖	#	2	_	2	0	-		<u> </u>			0	≥ 0	2
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	rofo		C A	CA	۵	(-	L A	AP	:	4		SC A						R C		L C				>	PSW	2	۸, ۸	4	i	CA	
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	racte	_	DE	Z	ت		ပ်	S	<	ά		#		RF				<u></u>		රි				ĭ	Ą,	ž	S	R		7	_
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	al ch			# 축		į	유	L L	ddr	Ε	ddr			F1	ddr	Ē	ddr	NZ	늉			F0	dr	N	þ			ပ္	dr	C) =	اق
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	Jicim	9		٦,	6 -		-	+		-			_	_	ă	ſ	ē		ă		_	ſ	ă		ĕ			5	ă	-	
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	hexad		_ Z	181	Z	CNT	SIS	TRT	Z	TRT		TOP	S	NTO	Ľ	LR	0	P.	0	LR	_	PL	_	딥	B0	E	B1	ᇳ	B0	급	_ n
1 2 3 4 NOP OUTL ADD JMF NOP 1 2 3 4 INC®Rr JB0 ADDC CAU 0 1 addr A, #data page XCHD A, @Rr JB1 A, #data page ORL A, @Rr JB1 CAI JMF O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB2 ANL JMP O DRL A, @Rr JB3 CAI Dage ADD A, @Rr JB3 CAI Dage ADD A, @Rr JB3 RET JMP O D JB4 RET JMP CAI O D JB4 RET JMP CAI O D JB4 A, @A page Dage O D JB4 A, @A Dage Dage O D JB4 A, @A Dage Dage O D JB4 A, @A	puo	5		 	+-	<u> </u>		+-				-	-				\dashv									\vdash		\vdash			\dashv
D	Sec		MP age 0	ALL	AP O	age 1	ALL age 1	A M	age 2	ALL	age 2	MP	age 3	ALL	age 3	₽	age 4	ALL	age 4	₽	age 5	ALL	age 5	٩Þ	age 6	ALL	ge 6	ΑP	Jage 7	ALL	age /
O		4		+	-+-		O	=		 		5	ă	ပ	Ď	=	ă	<u>ن</u>	ă	=	ă	O	ă	5	ă	_			ď	ن ک	<u>3</u>
O	ode		D #dat	DC#	# dar	#dat		یا	#dat	=	#dat					_		T.B		ΛV	ΘA	ЬР				با	#dat	VP3	Αď		
	f opc	က	A A	A A	ÌΣ	₹		OR	Ą	A	ď,					RE		RE		Š	Ą,	ξ	@ B			X	Ą	ž	۷		
	ter o		TL S,A	<u>د</u> ما			_ =	>	–	_,	_	>	_	~				_	_				_			_				_ ,	
	harac	2	98) A	ğ		E E	Ž	∢,	JB	agc	MO	٩,	96 68	ag			7B7	ado			38	ado			JB6	add			JB 2	Ş
	mal c	1		-	-	_	<u>.</u> ر		-		_	١,	-	_	_	<u>.</u>	-	٠.	_			data	_				1				_
	adicii				@Br	;	۸, @R	@Rr		@Rr		@Rr		, @R		, @F		∂Rr,⁄		۲, A		³r, #(į	@Rr				@Rr	
	t hex		۵.) @Ri	A H		HD A	L A.	•	L A,		DA,		DC A		Υ×^		۸× ۱		V @F		V.@F				L A,				> A	
	– firs	0	<u>8</u>	Ž c	×	0	×c	OR	0	AN	0	ΑD	0	AD	0	₽,	0	8	0	<u>8</u>	0	Θ	0			X	0			٩ 2	اد
		_	0	-	6	ı	က	4		2		9		7		œ		6		۷		8		ပ		D		ш		ш	

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Input voltage with respect to VSS except input EA ٧ı -0.5 to + 7 V input EA -0.5 to + 12 V ٧ı DC current into any input or output $\pm 1_{l}$, $\pm 1_{0}$ max. 10 mA Total power dissipation P_{tot} 1 W max. Storage temperature range -65 to +150 °C T_{sta} Operating ambient temperature range see Table 5 T_{amb}

Table 5 MAB80XXH versions.

version	internal memor	v	RAM	frequ (MH	-	temperature	
VC131011	internal memor	y 	st/by.	min.	max.	range (°C)	
MAB8048H	1 K x 8 ROM	64 byte RAM	yes	1,0	11,0	0 to +70	
MAB8035HL	none	64 byte RAM	yes	1,0	11,0	0 to +70	
MAF8048H	1 K x 8 ROM	64 byte RAM	yes	1,0	11,0	-40 to +85	
MAF8035HL	none	64 byte RAM	yes	1,0	11,0	-40 to +85	
MAF80A48H	1 K x 8 ROM	64 byte RAM	yes	1,0	10,0	-40 to +110	
MAF80A35HL	none	64 byte RAM	yes	1,0	10,0	40 to +110	
MAB8049H	2 K x 8 ROM	128 byte RAM	yes	1,0	11,0	0 to +70	
MAB8039HL	none	128 byte RAM	yes	1,0	11,0	0 to +70	
MAF8049H	2 K x 8 ROM	128 byte RAM	yes	1,0	11,0	-40 to +85	
MAF8039HL	none	128 byte RAM	yes	1,0	11,0	-40 to +85	
MAF80A49H	2 K x 8 ROM	128 byte RAM	yes	1,0	10,0	-40 to +110	
MAF80A39HL	none	128 byte RAM	yes	1,0	10,0	-40 to +110	
MAB8050H	4 K x 8 ROM	256 byte RAM	yes	1,0	11,0	0 to +70	
MAB8040HL	none	256 byte RAM	yes	1,0	11,0	0 to +70	
MAF8050H	4 K x 8 ROM	256 byte RAM	yes	1,0	11,0	-40 to +85	
MAF8040HL	none	256 byte RAM	yes	1,0	11,0	-40 to +85	
MAF80A50H	4 K x 8 ROM	256 byte RAM	yes	1,0	10,0	-40 to +110	
MAF80A40HL	none	256 byte RAM	yes	1,0	10,0	-40 to +110	

DC CHARACTERISTICS (MAB8048H/35HL; MAB8049H/39HL; MAB8050H/40HL)

 V_{CC} = V_{DD} = 5 V (± 10%); V_{SS} = 0 V; T_{amb} = 0 to + 70 °C; all voltages with respect to V_{SS} unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply current					
at V_{DD} = 5 V ± 10%; V_{SS} = V_{CC} = 0 V					
MAB8048H/35HL	IDD	-	-	6	mA
MAB8049H/39HL	IDD	-	-	8	mA
MAB8050H/40HL	IDD	-	_	15	mA
Supply current (total) at $V_{DD} = V_{CC} = 5 \text{ V} \pm 10\%$; $V_{SS} = 0 \text{ V}$ MAB8048H/35HL	Ipp + Icc			80	mA
MAB8049H/39HL	IDD + ICC	_	_	90	mA
MAB8050H/40HL	IDD + ICC	_		100	mA
	י טטי י טטי			100	IIIA
Inputs					
Input voltage LOW all inputs except XTAL 1, XTAL 2, RESET	VIL	-0,5	_	0,8	v
Input voltage LOW XTAL 1, XTAL 2, RESET	V _{IL1}	-0,5	_	0,6	v
Input voltage HIGH all inputs except XTAL 1, XTAL 2, RESET	VIH	2,0	_	v _{cc}	V
Input voltage HIGH XTAL 1, XTAL 2, RESET	V _{IH1}	3,8	_	v _{cc}	V
Outputs					
Output voltage LOW (DB0 to DB7) at I _{OL} = 2 mA	VOL	_	_	0,45	V
Output voltage LOW (RD, WR, PSEN, ALE) at IOL1 = 1,8 mA	V _{OL1}	_	_ ,	0,45	v
Output voltage LOW (PROG) at I _{OL2} = 1 mA	V _{OL2}	-	-	0,45	V
Output voltage LOW (all other outputs) at IOL3 = 1,6 mA	V _{OL3}	_	_	0,45	V
Output voltage HIGH (DB0 to DB7) at $-I_{OH} = 400 \mu A$	V _{OH}	2,4	_	-	V
Output voltage HIGH (\overline{RD} , \overline{WR} , \overline{PSEN} , ALE) at $-I_{OH1}$ = 100 μA	V _{OH1}	2,4	_	_	v
Output voltage HIGH (all other outputs) at $-I_{OH} = 40 \mu A$	V _{OH2}	2,4	_	_	v

DC CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Input leakage current (T1, $\overline{\text{INT}}$) at $V_{\text{SS}} < V_{\text{I}} < V_{\text{CC}}$	± IIL	_	_	10	μΑ
Output leakage current (DB0 to DB7, T0; high impedance) at V_{SS} + 0,45 V $<$ V_{I} $<$ V_{CC}	± IOZ	_	_	10	μΑ
Input load current (P1.0 to P1.7, P2.0 to P2.7, EA, SS)					
at V_{SS} + 0,45 $V < V_I < V_{CC}$	-111	-	_	500	μΑ
Input load current (RESET) at V _{SS} < V _I < V _{CC}	-ILI1	20	_	300	μΑ

DC CHARACTERISTICS

 V_{CC} = V_{DD} = 5 V (± 10%); V_{SS} = 0 V; T_{amb} as above; all voltages with respect to V_{SS} unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply current					
at V_{DD} = 5 V ± 10%; V_{SS} = V_{CC} = 0 V					
MAF8048H/35HL; MAF80A48H/A35HL	IDD	-		8	mA
MAF8049H/39HL; MAF80A49H/A39HL	IDD	-	-	10	mA
MAF8050H/40HL; MAF80A50H/A40HL	I _{DD}	_	-	18	mA
Supply current (total)					
at $V_{DD} = V_{CC} = 5 \text{ V} \pm 10\%$; $V_{SS} = 0 \text{ V}$					
MAF8048H/35HL; MAF80A48H/A35HL	IDD + ICC	-	-	90	mA
MAF8049H/39HL; MAF80A49H/A39HL	IDD + ICC	-	-	100	mA
MAF8050H/40HL; MAF80A50H/A40HL	IDD + ICC	_	_	120	mA
Inputs					
Input voltage HIGH all inputs except XTAL 1, XTAL 2, RESET	VIH	2,2	_	v _{cc}	v
Input load current					
(P1.0 to P1.7, P2.0 to P2.7, EA, SS)					
at V_{SS} + 0,45 $V < V_I < V_{CC}$	-1LI	-	-	0,6	mA

AC CHARACTERISTICS (MAB8048H/35HL; MAB8049H/39HL; MAB8050H/40HL)

 V_{CC} = V_{DD} = 5 V (± 10%); V_{SS} = 0 V; T_{amb} = 0 to + 70 °C; note 1. See waveforms Figs 14, 15, 16, 17 and 18

parameter	symbol	f(t _{CL})	11	MHz	unit
		(note 2)	min.	max.	
Clock period (note 2)	tCL	1/(f _{XTAL})	90,9	1000	ns
ALE pulse duration	tLL	3,5t _{CL} -170	150	_	ns
Address set-up time to ALE (note 3)	tAL	2t _{CL} -110	70	-	ns
Address hold time after ALE	tLA	t _{CL} -40	50	_	ns
Control pulse duration \overline{RD} , \overline{WR}	tCC1	7,5t _{CL} -200	480	_	ns
Control pulse duration PSEN	t _{CC2}	6t _{CL} -200	350		ns
Data set-up time before WR	^t DW	6,5t _{CL} -200	390	_	ns
Data set-up time after WR	tWD	t _{CL} -50	40	_	ns
Da <u>ta hold time</u>					
RD, PSEN	^t DR	1,5t _{CL} -30	0	110	ns
RD to data input	t _{RD1}	6 _{tCL} -170	_	350	ns
PSEN to data input	t _{RD2}	4,5t _{CL} -170	-	190	ns
Address set-up time to WR	tAW	5t _{CL} -150	300	_	ns
Address set-up time to data input (RD)	^t AD1	10,5t _{CL} -220	_	730	ns
Address set-up time to data input (PSEN)	t _{AD2}	7,5t _{CL} -200	_	460	ns
Address floating to RD, WR	tAFC1	2t _{CL} -40	140	_	ns
Address floating to PSEN (note 3)	tAFC2	0,5tCL-40	10	_	ns
ALE to control pulse RD, WR	tLAFC1	3t _{CL} -75	200	_	ns
ALE to control pulse PSEN	tLAFC2	1,5t _{CL} -75	60	_	ns
Control pulse to ALE RD, WR, PROG	t _{CA1}	t _{CL} -40	50	_	ns
Control pulse to ALE					
PSEN	tCA2	4t _{CL} -40	320	-	ns
Port control set-up to PROG	t _{CP}	1,5t _{CL} -80	50	-	ns
Port control hold to PROG	tPC	4t _{CL} -260	100	_	ns
PROG to Port 2 input must be valid	tPR	8,5t _{CL} -120	_	650	ns
Input data hold time from PROG	tpF	1,5t _{CL}	0	150	ns
Output data set-up time	t _{DP}	6t _{CL} -290	250	140	ns
Output data hold time	tPD	1,5t _{CL} -90	40	_	ns
PROG pulse duration	tpp	10,5t _{CL} -250	700	_	ns
Port 2 I/O data set-up time to ALE	tPL	4t _{CL} -200	160	_	ns
Port 2 I/O data hold time to ALE	tLP	1,5t _{CL} -120	15	_	ns

AC CHARACTERISTICS (continued)

parameter	symbol	f(t _{CL})	11 N	unit	
		(note 2)	min.	max.	
Port output from ALE	tpV	4,5t _{CL} +100	_	510	ns
T0 repetition rate	toper	3t _{CL}	270	_	ns
Cycle time	tCY	15/fXTAL	1,36	15	μs
MAF8048H/35HL; MAF8049H/39HL; MAF8050H/40HL					
Clock period (note 2)	t _C L	1/(f _{XTAL})	90,8	1000	ns

Notes to AC characteristics

- 1. Control outputs: C_L = 80 pF. Bus outputs: $C_1 = 150 \, pF.$
- 2. f(t_{CL}) assumes 50% duty cycle on XTAL 1 and XTAL 2; minimum frequency = 1 MHz.
- 3. Bus high-impedance load: 20 pF.

A.C. testing inputs are driven at 2,4 V for a logic 1 and 0,45 V for a logic 0. Output timing measurements are taken 2,0 V for a logic 1 and 0,8 V for a logic 0.

Fig. 13 A.C. testing input, output waveform.

Fig. 14 Read from external data memory.

Fig. 15 Write to external memory.

Fig. 16 Instruction fetch from program memory.

Fig. 17 Port 2 timing.

Fig. 18 I/O port timing.