

<u>Help</u> $\dot{\Box}$

sandipan_dey 🗸

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Syllabus</u> <u>Outline</u> <u>laff routines</u> <u>Community</u>

★ Course / Week 11: Orthogonal Projection, Low Rank Approximation, a... / 11.4 Change ...

()

11.4.2 Change of Basis

☐ Bookmark this page

< Previous

Week 11 due Dec 22, 2023 21:12 IST Completed

11.4.2 Change of Basis

Video

Video

▲ Download video file

Transcripts

Reading Assignment

0 points possible (ungraded)
Read Unit 11.4.2 of the notes. [LINK]

Done

Submit

✓ Correct

Discussion

Topic: Week 11 / 11.4.2

Hide Discussion

Add a Post

Show all posts

recent douvier

There are no posts in this topic yet.

×

Homework 11.4.1

1/1 point (graded)

The vectors

$$q_0=rac{\sqrt{2}}{2}inom{1}{1}=inom{rac{\sqrt{2}}{2}}{rac{\sqrt{2}}{2}}\,,\quad q_1=rac{\sqrt{2}}{2}inom{-1}{1}=inom{-rac{\sqrt{2}}{2}}{rac{\sqrt{2}}{2}}\,.$$

are mutually orthonormal.

TRUE ~

✓ Answer: TRUE

TRUE

Let $Q=\left(egin{array}{c|c} q_0 & q_1 \end{array}
ight)$. Then q_0 and q_1 are mutually orthonormal if and only if $Q^TQ=I$. Now,

$$Q^TQ = egin{pmatrix} rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{pmatrix}^T egin{pmatrix} rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{pmatrix} = egin{pmatrix} rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \ -rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{pmatrix} egin{pmatrix} rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}.$$

Hence, the vectors are mutually orthonormal.

Submit

Answers are displayed within the problem

Homework 11.4.2.2

4/4 points (graded)

If $Q \in \mathbb{R}^{n \times n}$ has mutually orthonormal columns then which of the following are true:

1.
$$Q^TQ=I$$

TRUE
$$ightharpoonup$$
 Answer: TRUE 2. $QQ^T=I$

TRUE
$$\checkmark$$
 Answer: TRUE 3. $QQ^{-1}=I$

TRUE
$$\checkmark$$
 Answer: TRUE 4. $Q^{-1}=Q^T$

Submit

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

<u>Open edX</u>

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>