Fecha de entrega: 26 de septiembre.

(Si redactas por completo tu tarea en LATEX tienes un punto extra)

1. Los naturales de Church se definen como sigue:

$$\overline{0} = \lambda s. \lambda z. z$$

$$\overline{1} = \lambda s. \lambda z. s \ z$$

$$\overline{2} = \lambda s. \lambda z. s \ (s \ z)$$

$$\overline{3} = \lambda s. \lambda z. s \ (s \ (s \ z))$$
.

Se define el par ordenado $\underline{pair} := \lambda x. \lambda y. \lambda p. p \ x \ y$, así, el par ordenado $(a,b) = \underline{pair} \ a \ b = \lambda p. p \ a \ b$. Las funciones para obtener la primer y segunda componente de un par ordenado se definen respectivamente como $fst := \lambda p. p \ \underline{true} \ y \ \underline{snd} := \lambda p. p \ false$.

Sean g_1 y h_1 las siguientes funciones:

$$g_1 := \lambda n.\lambda s.\lambda z.n \ (\lambda h_1.\lambda h_2.h_2 \ (h_1 \ s)) \ (\lambda u.z) \ (\lambda u.u)$$

$$h_1 := \lambda n.fst \ (n \ \underline{ss} \ \underline{zz}), \ \text{donde} \ \underline{ss} = \lambda p.pair \ (\underline{snd} \ p) \ (\underline{suc} \ (\underline{snd} \ p)), \ \underline{y} \ \underline{zz} := pair \ \overline{0} \ \overline{0}$$

- a) Calcula $(g_1 \overline{0})$ y $(g_1 \overline{3})$
- b) Calcula $(h_1 \overline{1})$ y $(h_1 \overline{2})$
- c) ¿Qué hacen las funciones g_1 y h_1 ?
- 2. Los naturales de Scott se definen como sigue:

$$\hat{0} = \lambda x. \lambda y. x$$

$$\hat{1} = \lambda x. \lambda y. y \, \hat{0}$$

$$\hat{2} = \lambda x. \lambda y. y \, \hat{1}$$

$$\hat{3} = \lambda x. \lambda y. y \, \hat{2}$$

$$\vdots$$

Sean f_2 , g_2 y h_2 las siguientes funciones:

$$f_2 := \lambda n. \lambda x. \lambda y. yn$$

$$g_2 := \lambda n. n \hat{0} (\lambda x. x)$$

$$h_2 := \lambda n. n \underline{true} (\lambda x. \underline{false})$$

- a) Calcula $(f_2 \hat{0})$ y $(f_2 \hat{3})$
- b) Calcula $(g_2 \hat{1})$ y $(g_2 \hat{4})$
- c) Calcula Calcula $(h_2 \: \hat{0})$ y $(h_2 \: \hat{5})$
- d) ¿Qué hacen las funciones f_2 , g_2 y h_2 ?

- e) (Extra [+1 punto]) Haz una función que haga la suma de naturales de Scott.
- 3. Sean R, Q y H los siguientes términos del cálculo- λ :
 - $\blacksquare R = \lambda x.\lambda y.(xy)x$
 - $Q = \lambda y. \lambda x. y((xy)x)$
 - $\blacksquare H = RQ$

Muestra que H es un combinador de punto fijo.

- 4. Utilizando un combinador de punto fijo, implementa estas funciones de forma recursiva:
 - a) Una función que dados n y m calcule n^m .
 - b) Una función que decida si un natural de Church es impar.
- 5. Da una definición inductiva mediante juicios de palabras palíndromas sobre el alfabeto $\{a, b\}$.
 - Enuncia el principio de inducción para los juicios que definiste.
 - Demuestra por inducción matemática que si w es una cadena palíndroma entonces reverse(w) = w.
- 6. Utilizando inducción matemática demuestra lo siguiente:
 - Si $\langle k, s \rangle$ *pila*, entonces $\underbrace{(\dots (s M.)}_{l}$
 - Si $\langle k, s \rangle$ pila, entonces $\langle k, (s) \rangle$ pila.
- 7. Extiende el lenguaje EAB con un operador *even* que tome un natural y decida si dicho número es par de la siguiente manera.
 - Extiende la sintaxis concreta.
 - Extiende la sintaxis abstracta.
 - Extiende la semántica estática.
 - Extiende la semántica dinámica.
- 8. Sean e_1 y e_2 las siguientes expresiones:

$$e_1 = \text{let } y = \text{suc}(2+1)$$
 in (let $z = \text{pred}(5)$ in $z+y$ end) $\star 2+y$ end $e_2 = (\text{let } y = x+v$ in (let $z = x$ in $x\star y\star z$ end) end) $[x:=y\star z]$

- Convierte las expresiones e_1 y e_2 a sus respectivas representaciones como asas, t_1 y t_2 , respectivamente
- Con los juicios para la semántica estática haz derivaciones para t_1 y t_2 .
- Evalúa t₁ y t₂ usando los juicios para la semántica dinámica.
- 9. Haz una derivación para la siguiente expresión y el siguiente contexto:

$$\{x: \mathsf{T} \to \mathsf{R} \to \mathsf{S}\} \vdash \lambda y: \mathsf{R}.\lambda z: \mathsf{T}.xyz: \mathsf{R} \to \mathsf{T} \to \mathsf{S}$$

- 10. Para cada una de las siguientes expresiones haz una inferencia de tipos utilizando el algoritmo W.
 - $\lambda x.(\lambda x.x)$
 - $\lambda x.\lambda y.\lambda z.y(xz)$
 - $\lambda g.\lambda y.g (y+z)$
 - let $h = \lambda z.z+1$ in $(\lambda x.h \ x)$ 4 end
- 11. Considera el tipo:

data Figura = Circ Float | Rect Float Float | Tri Float Float

para representar figuras geométricas con sus respectivos lados (el triángulo es un triángulo rectángulo).

- Define el tipo *Figura* y sus constructores usando tipos suma.
- Define el tipo *Figura* y sus constructores usando tipos variante.
- Implementa una función *per* que calcule el perímetro de una figura definida con tipos suma.
- Implementa una función *per* que calcule el perímetro de una figura definida con tipos variante.