Department of Computer Science and Engineering (CSE) BRAC University

Practice Problem Set 5

CSE251 - Electronic Devices and Circuits

MOSFET CIRCUITS

S-Model, SR-Model, Real MOSFET Model, Logic Function Implementation, Method of Assumed States, and Multistage Circuits

Course Description, COs, and Policies

Midterm and Final Questions

• Give a switch-MOSFET implementation of the following logic functions. A, B, C, D, E, and F are Boolean inputs.

$$I. \quad f = A.B.C + D.E$$

II.
$$f = \overline{A.B.(C+D)}$$

III.
$$f = A.B + \bar{A}.\bar{B}$$

IV.
$$f = \overline{A.C} + \overline{B+C}$$

$$V. \quad f = (A.B + C).D$$

$$VI. \quad f = A.B + C.D$$

VII.
$$f = A.B.C + D$$

VIII.
$$f = (A + B).(C + D)$$

$$IX. f = (A.B + C).D.(E + F)$$

$$X. \quad f = A \oplus B$$

XI.
$$f = \overline{C.(A+B)}.(A+\overline{B}+C)$$

 Write a Boolean expression that describes the function of each of the circuits below.

- Draw voltage transfer characteristics (VTC) for the following logic gates implemented using MOSFETs. Use S —Model.
 - I. Inverter
 - II. 2-input NAND Gate
 - III. 2-input NOR Gate
 - IV. 3-input AND Gate or f = A.B.C
 - V. 3-input OR Gate or f = A + B + C

• The MOSFET in the following inverter circuit has a threshold voltage $V_{Tn}=2\ V$ and $R_{ON}=8\ k\Omega$. For the circuit, $V_S=5\ V$. Draw the $OUT\ vs.IN$ (VTC) graph by modeling the MOSFETs using

I. S —Model and

II. SR -Model with $R_L = 10 k\Omega$.

III. SR -Model with $R_L = 40 \ k\Omega$.

• The static discipline of an electronic system is such that, an input or output will be considered "low" if it remains below 0.5 V. Determine minimum values for the resistors R_1 through R_8 in terms of R_{ON} , so that each circuit satisfies the static discipline of the system. Here, $V_S = 5 V$.

• The static discipline of an electronic system is such that, an input or output will be considered "low" if it remains below 0.5~V. Consider the N-input NAND gate circuit shown below. In the design, $V_S=5~V$, $R=100~k\Omega$, and $R_{ON}=2~k\Omega$. Determine the maximum value of N, that is, the maximum number of MOSFETs that can be connected so that the circuit satisfies the static discipline.

• The static discipline of an electronic system is such that, an input or output will be considered "low" if it remains below 0.5~V. Consider the following logic circuit where, $V_S = 5~V$ and $R_{ON} = 1~k\Omega$. Design the circuit so that the circuit satisfies the static discipline for m = 10 and n = 25.

• Write a Boolean expression that describes the function of the circuit in figure (a). What will be the expression if a manufacturing error results in a short circuit as indicated by the dashed line in (b).

• The threshold voltage for each of the NMOS transistors in the following circuits is $V_{Tn}=0.4\ V$. Determine the operating region of the transistor in each circuit.

Ans: **Saturation**

Ans: Triode

Ans: Saturation

• The threshold voltage for each of the PMOS transistors in the following circuits is $V_{Tp} = -0.4 \ V$. Determine the operating region of the transistor in each circuit.

Ans: Saturation

PROBLEM SET 5

Ans: Saturation

Ans: Triode

• The transistor in the following circuit has parameters $V_{Tn}=0.2\,V$ and $k_n=k_n'\frac{W}{L}=4\,{}^{mA}\!/_{V^2}.$ If $v_{o_1}=2\,V$, determine i_D and v_{o_2} .

• The transistor in the following circuit has parameters $V_{Tn}=0.5\,V$ and $k_n=k_n'\frac{W}{L}=1.6\,\frac{mA}{V^2}$. Determine V_D .

Ans: Sat, $V_D = 0.79 V$

• Design the circuit, that is, determine the values of R_D , so that the transistor operates at $V_D=0.1~V$. The NMOS transistor has $V_{Tn}=1~V$ and $k_n=k_n'\frac{W}{L}=1~mA/_{V^2}$.

Ans: $Triode, I_D = 0.395 \ mA; R_D = 12.4 \ k\Omega$

• The transistors in the following circuits has $V_{Tn}=0.8\,V$ and $k_n=k_n'\frac{W}{L}=0.5\,\frac{mA}{V^2}$. Determine V in each circuit.

Ans: Sat, V = -4.8 V

Ans: Sat, V = 4.8 V

Ans: Sat, V = 1.19 V

(c)

15

• The transistors in the following circuits has parameters $V_{Tn}=0.6\,V$ and $k_n=k_n'\frac{W}{L}=200^{\mu A}/_{V^2}$. Determine V_D and V_S .

Ans: Sat, $V_D = 3 V$, $V_S = -3.1 V$

• Design the circuit, that is, determine the values of R_D and R_S , so that the transistor operates at $I_D=0.4~mA$ and $V_D=0.5~V$. The transistor has $V_{Tn}=0.7~V$ and $k_n=k_n'\frac{W}{I}=3.2~\frac{mA}{V^2}$.

• The transistor in the following circuit has parameters $V_{Tn}=0.8\,V$ and $k_n=k_n'\frac{W}{I}=0.5\,\frac{mA}{V^2}$. Determine the voltages across the transistor.

Ans: Sat, $V_G = 3.6 V$, $V_D = 8.14 V$, $V_S = 0.93 V$

• The transistor in the following circuit is used to turn the LED on and off. The transistor parameters are $V_{Tn}=0.6\,V$ and $k_n'=800^{\mu A}/_{V^2}$. The diode cut-in voltage is $V_{D_o}=1.6\,V$. Design R_D and transistor width-to-length $\left(\frac{W}{L}\right)$ ratio such that $I_D=12\,mA$ for $V_I=5\,V$ and $V_{DS}=0.15\,V$.

• The transistors in the following circuits has parameters $V_{Tn}=0.5\,V$, $k_n'=0.5\,V$ $\mu_n C_{oc} = 250^{\mu A}/_{V^2}$, and $L = 0.25 \, \mu m$. Determine the required values of gate

width for each of the transistors.

Ans: (a) Sat, $W_{Q_2} = 2.77 \, \mu m$, $W_{Q_1} = 1 \, \mu m$; (b) Sat, $W_{Q_3} = 0.24 \, \mu m$, $W_{Q_2} = 0.107 \, \mu m$, $W_{Q_1} = 0.24 \, \mu m$

CSE251 - ELECTRONIC DEVICES AND CIRCUITS

• For the identical transistors in the following circuits, $V_{Tn}=1\,V$, $k_n'=10^{~\mu A}/_{V^2}$, and $\left(\frac{W}{L}\right)_1=\left(\frac{W}{L}\right)_2=20$. Determine V_1 through V_3 .

[Hint: Note that both the transistors are identical and equally biased. Hence, they will have the same node voltages and conduct equal currents. Analyzing one is sufficient.]

• For the transistors in the following circuits, $V_{Tn}=1~V$ and $k_n=k_n'\frac{W}{L}=2^{mA}/_{V^2}$. Determine V_1 through V_5 .

[Hint: Form simultaneous equations consisting of voltage variables for circuit in (b).]

Ans: (a) Both in sat, $V_1 = 0.82 V$, $V_2 = -1.82 V$

Ans: (b) Both in sat, $V_3 = 7.55 V$, $V_4 = 5 V$, $V_5 = 2.45 V$

Note: Problems marked with an asterisk (**) are a bit more advanced for this course. However, attempting them can help you develop a stronger grasp of the topic.

Problem 22**

For the transistors in the following circuit, $V_{Tn}=1~V$ and $k_n=k_n'\frac{W}{r}=5~mA/_{V^2}$. Determine V_{D_1} and V_{D_2} .

Ans: Both in Sat, $V_{D_1} = 2.72 V, V_{D_2} = 1.36 V$

Note: Problems marked with an asterisk (**) are a bit more advanced for this course. However, attempting them can help you develop a stronger grasp of the topic.

• For the transistors in the following circuits, $V_{Tn}=1~V$ and $k_n=k_n'\frac{W}{L}=100~^{\mu A}/_{V^2}$. Determine V_1 and V_2 .

Ans: **Both in sat**, $V_1 = 5.95 V$, $V_2 = 0.295 V$

