5. D/A変換, A/D変換

- アナログ量とディジタル量との変換
 - D/A変換
 - ◆ディジタル→アナログ
 - A/D変換
 - ◆アナログ→ディジタル
- 講義で想定するディジタル量
 - 非負整数の2進法表現

講義で想定する変換対象,表現方法

- ●変換対象のアナログ量
 - 0以上の電圧
 - ◆(このような変換器はユニポーラ型という)
- 用いるディジタル表現
 - 2進法

例. 3ビット

MSB: 最上位ビット (Most significant bit)

LSB: 最下位ビット (Least significant bit)

MSB		LSB
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0

D/A変換

- ・入力と出力の関係
 - ■FS (full scale):基準電圧

例. FS 10V, 入力3ビット

MSB		LSB
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1
0	1	0
0	0	1
0	0	0

出力[V]
8.75
7.50
6.25
5.00
3.75
2.50
1.25
0.00

D/A変換器 (digital-to-analog converter, DAC)

- ●種類
 - ■いろいろ。R-2R ladder DAC を取り上げる
- R-2Rラダー型抵抗回路 (R-2R ladder)
 - ■A,B,Cいずれでも,右側の抵抗値2R,下側の抵抗値2R
 - $\blacksquare I = \frac{V_S}{R}$

電流駆動型D/A変換器 (current mode DAC)

入力 (101)。の例

- 実現されていることを仮定
- 1→左, 0→右 (GND)

電流駆動型D/A変換器 (current mode DAC)

電圧駆動型D/A変換器 (voltage mode DAC)

- 1→右 (*V_s*), 0→左 (GND)
- 右がMSB, 左がLSB

電圧駆動型D/A変換器 (voltage mode DAC)

- ●1ビットのみ1のときを考える
 - A,B,Cいずれでも,右,左,下側の抵抗値2R
 - A,B,Cいずれでも**,** 下の入力ビットが1のとき、 電圧 $\frac{1}{2}V_S$
 - ■Cの下のビット(MSB)が1 $V_O = \frac{1}{3}V_S$

入力 (100)。

- 1→右 (*V*_s), 0→左 (GND)
- 右がMSB, 左がLSB

MLB以外のビット

入力
$$(010)_2$$
 $\frac{1}{3}V_S$ $\frac{1}{2} \times \frac{1}{3}V_S$ 入力 $(001)_2$ $\frac{1}{3}V_S$ $\frac{1}{2} \times \frac{1}{3}V_S$ $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{$

A/D変換

- ・入力と出力の関係
 - ■FS (full scale):基準電圧

A/D変換器 (analog-to-digital converter, ADC)

- ●フラッシュ型 (flash, direct-conversion type)
 - ■高速に変換可能
 - ■多くのコンパレータという装置が必要
- ●逐次比較型 (successive approximation type)
 - ■コンパクトだが、サンプリング速度がやや遅い
 - ■広く普及
- 他に, Σ-Δ型など

コンパレータ (比較器) (comparator)

- ●電圧を比較し、2つの電圧を出力
 - $V_{+} > V_{-} \rightarrow V_{O} = V_{S}$ (1)
 - $V_{+} < V_{-} \rightarrow V_{O} \doteq \mathsf{GND} (0)$
- ●オペアンプの使い方の1つ
 - ただし、汎用のオペアンプではない、 専用のコンパレータ素子も存在

フラッシュ型A/D変換器

入力 **O** 右の矢印に接続

出力 nビットのとき 2ⁿ-1個のコンパレータが 必要

逐次比較型A/D変換器

- MLBから1ビットずつ決定
- ●例. 3ビット, FS=10V, 入力 7V
 - 1. $d_3 = 1$, $d_2 = 0$, $d_1 = 0$
 - D/A変換により 5V
 - 3. $7 \ge 5$ だから $d_3 = 1$ のまま
 - 4. $d_2 \leftarrow 1$
 - 5. D/A変換により7.5V
 - 6. 7 < 7.5 だから $d_2 \leftarrow 0$
 - 7. $d_1 \leftarrow 1$
 - D/A変換により6.125V
 - 9. 7 ≥6.125だから d₁ = 1のまま
 - ◆ 注. 説明を簡単にするためp.10の入出力関係を一部無視

スライドの正誤表

- 3. トランジスタ, p.29
 - ■誤:電圧はエミッタに従うため,正:入力電圧にエミッタが従うため
- ●3.トランジスタ, p.37
 - ■誤: v_o , 正: v_o (小文字のvの下付きのoは小文字)
- ●4. オペアンプ, p.12
 - ■誤: $V_3 = \frac{R_3}{R_3 + R_4} V_2$ 正: $V_3 = \frac{R_4}{R_3 + R_4} V_2$
 - ■誤:... $\frac{R_3}{R_3+R_4}V_2$,正:... $\frac{R_4}{R_3+R_4}V_2$