EE5803 - FPGA LAB Assignment-1

Venkatesh Parvathala EE22RESCH01005

January 15, 2022

Q. Reduce the following boolean expression to its simplest form using K-Map.

$$F(X, Y, Z, W) = \sum_{i=1}^{N} (0, 1, 2, 3, 4, 5, 10, 11, 14)$$
(1)

Sol. First we will build a Truth Table for the given expression as below,

X	Y	Z	W	\mathbf{F}
0	0	0	0	1
0	0	0	1	1
0	0	1	1 0	1
0	0	1	1	1
0	1 1 1	0	1 0	1
0	1	0	1	1
0	1	1	1 0	0
0	1	1 1 0 0 1 1 0	1	1 0 0 0
1	1 0	0	0	0
1	0	0	1	0
1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1 0	1
1	0	1	1	1
1	1	0	0	0
1	1	1 1 0 0	1	0 0
1	1	1 1	0	$egin{array}{c} 1 \\ 0 \end{array}$
1	1	1	1	0

Table 1: Truth Table

We can express the same boolean expression in K-Map as follows

XY	W_{00}	01	11	10
00	1	1	1	1
01	1	1	0	0
11	0	0	0	1
10	0	0	1	1

The implicants in 0,1,4,5 gives us $\bar{X}\bar{Z}$ The implicatns in 2,3,10,11 gives us $\bar{Y}Z$ The implicants in 10,14 gives us $XZ\bar{W}$

Combining all the above terms will give us

$$F(X,Y,Z,W) = \bar{X}\bar{Z} + \bar{Y}Z + XZ\bar{W}$$
(2)

In order to implement it using NAND gates, we will write the above SOP form as below

$$F(X,Y,Z,W) = \overline{(\overline{\bar{X}\bar{Z} + \bar{Y}Z + XZ\bar{W}})}$$
(3)

$$F(X,Y,Z,W) = \overline{(\overline{X}\overline{Z}.\overline{Y}Z.\overline{X}Z\overline{W})}$$
(4)

The corresponding circuit diagram with only NAND gates can be drawn as follows.

Figure 1: Circuit Diagram using NAND gates

The above logic circuit is realized using a C-program and the corresponding code is available at $./assignment_1.c$