Linguagens Formais e Autômatos

Elementos de Matemática Discreta

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Teoria de Conjuntos (TC)

- George Cantor, 1874
- Conjunto é qualquer coleção de objetos
 - Abstratos, concretos
 - Em quantidade finita ou não

Predicado e proposição

- a ∈ A o objeto a pertence ao conjunto A
 - Predicado lógico
 - "2 + 2 = 4"
 - Proposição
 - "ser alto"
 - descreve uma propriedade

Propriedades

- Propriedades são especificadas pelos conectivos lógicos
 - Conjunção (Λ)
 - Disjunção (v)
 - Negação (¬)
 - Implicação (→)

Quantificador e predicado

 Expressa a quantidade de elementos que satisfazem uma determinada propriedade

```
    Existencial (∃) "existe pelo menos um"
    Universal (∀) "para todo"
```

- Dois objetos são o mesmo
 - Predicado identidade (=)

Axioma da especificação

- Permite definir novos conjuntos a partir de propriedades
 - Ex.: seja A o conjunto de todos os números naturais. A propriedade $\phi(x)$ pode ser "x é par"

```
B = \{x \in A \mid x \in par\} = \{0, 2, 4, 6, ...\}
```

- Algumas vantagens
 - Definir conjuntos de maneira precisa
 - Ajuda na construção de estruturas complexas

Pertinência (∈)

- É o único conceito primitivo na TC
 - Considerado fundamental e não é definido em termos de outros conceitos mais básicos
 - É a partir dessa relação primária entre elementos e conjuntos que construímos toda a teoria

Predicados atômicos

- Blocos de construção fundamentais da lógica de primeira ordem
- Representam relações simples entre objetos e são a base para a construção de afirmações mais complexas
- Ex.: "x > y"

- As fórmulas da linguagem básica de TC tem ocorrência de ∈ para formar predicados atômicos, além da igualdade =
 - Ex.: $x \in A$ "x pertence ao conjunto A"
- Se φ (x) for a fórmula \neg (x = x) e A for um conjunto arbitrário
 - Então $\{x / \neg (x = x)\}$ é o subconjunto vazio de A
 - {x / ... } "o conjunto de todos os x tais que..."
 - \neg (x = x) "não é verdade que x é igual a x"

Axioma da Especificação

- Seja φ (x) uma fórmula na linguagem
 - onde x ocorre livre em φ (x)
- Seja A um conjunto
- {a | a ∈ A e φ (a)} é um subconjunto de A
 - podemos formar um novo conjunto que contém exatamente os elementos de A que satisfazem a propriedade φ

```
| tal que

φ (phi) pronuncia-se como "fi"
```

Conjuntos iguais

- Dado um subconjunto arbitrário B de um conjunto A
 - a propriedade x ∈ B especifica B
 - ou seja, B e $\{x \mid x \in A \ e \ x \in B \}$ são o mesmo conjunto
- Dois conjuntos iguais possuem os mesmos elementos
- A está incluído em B se todo elemento de A também é elemento de B

Inclusão entre conjuntos

- Dois conjuntos B e C são iguais, se, e somente se
 - $B \subseteq C$ e $C \subseteq B$
- Inclusão entre conjuntos
 - Sejam B e C conjuntos
 - B está incluído em C, ou que C contém B se, e somente se
 - Todo elemento de B é também um elemento de C
 - Descrito em lógica como $\forall x ((x \in B) \rightarrow (x \in C))$

"Para todo x, se x pertence a B, então x pertence a C"

- ⊆ está contido ou é igual
- ∈ pertence
- ∀ para todo
- → então ou implica

- Apresentação de um conjunto enumerando seus elementos
 - Ex.: conjunto dos símbolos ▷, ◊, e °
 - { >, \daggeright\(\), \quad \(\)

```
Ex.:
coordenadas
geográficas
```

- Par ordenado: (a , b) = {{ a }, { a, b }}
 - A ordem é garantida pela diferença entre esses dois conjuntos
 - O conjunto que contém apenas 'a' identifica inequivocamente 'a' como o primeiro elemento
 - (a, b) é diferente de (b, a), a menos que a = b

está contido ou é igual

Operações com Conjuntos

```
universo

    Sejam B e C subconjuntos de A

   União: B u C
                                         \{x \mid x \in B \mid v \mid x \in C\}
                                         \{x \mid x \in B \mid A \mid x \in C\}
    Interseção: B n C
  • Complemento: C_A(B) ou A \setminus B \{ x \mid x \in A \in x \notin B \} \}

    Conjunto dos elementos que pertencem a A e não pertencem a B

    Diferença: B – C

                                         \{x \mid x \in A \in x \notin B\}

    Conjunto dos elementos que pertencem a B e n\u00e3o pertencem a C

  • Produto Cartesiano: B \times C { (x, y) | x \in B \ e \ y \in C }
    Conjunto potência: \wp(A) { B | B \subseteq A }
    • Ex.: A = \{1, 2\}; \wp(A) = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}
                                                         não
```

Igualdades entre conjuntos

- Sejam A, B, e C, conjuntos
 - $A \cap A = A$
 - $A \cap B = B \cap A$
 - A U B = B U A
 - A ∩ Ø = Ø
 - A ∪ ∅ = A
 - An(BuC) = (AnB)u(AnC)
 - ∅ = conjunto vazio
 - {}
 - notar que o conjunto existe, o que não existe é o elemento dentro dele
 - conj. n\u00e3o vazio
 - {1,2,3,4,5,...}

Relação entre elementos

- R é uma relação entre elementos de A e de B se, e somente se, $R \subseteq A \times B$
 - R consiste em pares ordenados (a , b) onde $a \in A$ e $b \in B$
 - A × B : o produto cartesiano é o conjunto de todos os pares ordenados possíveis
 - ⊆ : representa a relação de "subconjunto"
 - todos os elementos do primeiro conjunto também estão contidos no segundo conjunto
- Ex.: Conjuntos A: {1, 2} e B: {a, b, c}
- $A \times B = \{ (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) \}$
- Suponha que R seja uma relação específica entre A e B:
 - Relação *R*: { (1, a), (2, b) }
 - (1, a): O elemento 1 de A está relacionado com o elemento 'a' de B
 - (2, b): O elemento 2 de A está relacionado com o elemento 'b' de B

Relação funcional

- Uma função de F de A em B é qualquer relação na qual
 - para cada a em A existe um, e somente um b em B
 - tal que o par ordenado (a, b) ∈ F

Implica

- Existência: para cada elemento $a \in A$, existe um elemento $b \in B$ tal que $(a, b) \in F$
- Unicidade: para cada $a \in A$, o elemento $b \in B$ associado é único, ou seja, não pode haver mais de um b em B para o mesmo a em A

Relação funcional - exemplo

- Sejam $A = \{1, 2\} e B = \{x, y, z\}$
 - Relação (não é função): R = {(1, x), (1, y), (2, z)}
 - 1 de A está relacionado com dois elementos em B (x e y)
 - isso viola a condição de unicidade, portanto, R é uma relação
 - Função : $F = \{(1, z), (2, x)\}$
 - Cada elemento de A está relacionado com exatamente um elemento de B
 - Podemos escrever F(1) = z e F(2) = x

Função injetiva

F é injetiva se e somente se quaisquer que sejam x₁ e x₂
 (pertencentes ao domínio da função), x₁ é diferente de x₂
 implicando que f(x₁) é diferente de f(x₂) :

$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Função sobrejetiva

- Para todo elemento y no contradomínio Y de f, há pelo menos um elemento x no domínio X de f tal que f(x) = y
 - Ou seja, quando o conjunto imagem coincide com o contradomínio da função; não é necessário que x seja único

Função bijectiva

- Bijetiva, bijetora, correspondência biunívoca, bijeção, ou "injetora e sobrejetora"
 - Uma função bijetiva é injetiva e sobrejetiva ao mesmo tempo

Funções injetiva e sobrejetiva

Quantificadores e variáveis

- $\exists y (\neg (y = 0) \land y + x = z)$
 - "Existe um y tal que y não é igual a zero e y mais x é igual a z"
 - a ocorrência de y em y = 0 é ligada ao quantificador existencial
 - as ocorrências de z e x são livres, pois não estão no escopo de nenhum quantificador
- $\forall x ((x \in z) \rightarrow (x \in y))$
 - "Para todo x, se x pertence a z, então x pertence a y"
 - as ocorrências de x são ligadas ao quantificador universal ∀ x
 - as ocorrências de z e y são livres

3 existe

¬ não

Λе

∀ para todo

→ então

"0" e "<"

- Definição de "Zero" (0)
 - Função sucessora
 - (suc): suc(n) = n + 1
 - Zero é um número natural que não é sucessor de nenhum outro número natural
 - ¬∃y (suc(y) = x): "não existe nenhum y tal que o sucessor de y seja igual a x"
 - A ideia é de que zero é o ponto de partida nos números naturais, e não pode ser obtido a partir do sucessor de outro número
- Definição de "Menor Que" (<)
 - x < z: $\exists y (\neg (y = 0) \land x + y = z)$
 - "x é menor que z se, e somente se, existe um y tal que y é diferente de zero e x mais y é igual a z"

Definições, Axiomas, Teoremas

- Axiomatização (ou Especificação)
 - Definição indireta quando a definição direta não é possível
- Definição
 - Introdução de um conceito a partir de outros mais básicos
- Teoria
 - Conjunto de todas as propriedades demonstráveis a partir de uma axiomatização
- Teorema
 - Proposição que possui uma demonstração
- Demonstração
 - Argumento que comprova a veracidade de um teorema

Argumentos e proposições

- Argumento
 - Sequência de proposições com uma conclusão e hipóteses
 - Estrutura lógica composta por premissas
- Argumento Válido
 - A conclusão não pode ser falsa se as premissas forem verdadeiras
- Lógica
 - Estudo da validade dos argumentos
 - Análise das relações entre premissas e conclusões
- Proposições
 - Sentenças declarativas que possuem valor de verdade (verdadeiro ou falso)
 - Base para a construção de argumentos
- Conclusão
 - Conceito arbitrado de verdade para estudar a validade de argumentos
 - Fundamenta demonstrações de teoremas a partir de axiomas
 - Instrumento para especificar teorias

Argumentos válidos

- Exemplo 1 (Conclusão Verdadeira)
 - Premissa 1: Todo ser humano é mortal
 - Premissa 2: Bombeiros são seres humanos
 - Conclusão: Bombeiros são mortais
- Exemplo 2 (Conclusão Falsa mas argumento Válido)
 - Premissa 1: Todo guerreiro é corajoso
 - Premissa 2: Covardes são guerreiros
 - Conclusão: Covardes são corajosos
- Forma Lógica Comum: ambos os exemplos seguem a forma "Todo B é A, c são B, então c são A". A validade se mantém independentemente da verdade das premissas no mundo real

Argumentos inválidos

- Exemplo de argumento inválido
 - Premissa 1 : alguns franceses são europeus
 - Premissa 2 : alguns parisienses são europeus
 - Conclusão : alguns parisienses são franceses
- Forma Lógica: "Alguns A são B e alguns C são B, então alguns C são A"

Demonstração em TC

"implica" ou "então"

- $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$
 - "Se A é um subconjunto de B (ou A é igual a B), então a interseção de A com C é um subconjunto da interseção de B com C (ou a interseção de A com C é igual à interseção de B com C)"

P	Q	$\mathbf{P} \Rightarrow \mathbf{Q}$
V	V	V
V	F	F
F	V	V
F	F	V

Conjuntos enumeráveis

Um conjunto é chamado de enumerável se existe uma correspondência um-para-um (ou bijetora) entre os elementos do conjunto e os números naturais \mathbb{N}

- Definição
 - Existe uma função f de $\mathbb N$ para S tal que f é bijetora
 - ∃ f : N → S (f é bijetora)
- União de Enumeráveis:
 - S_1 , S_2 enumeráveis $\Rightarrow S_1 \cup S_2$ enumerável

Exemplo: o conjunto dos inteiros (Z)

- O conjunto dos inteiros (..., -2, -1, 0, 1, 2, ...) também é enumerável
- Podemos definir uma função bijetora f : N → Z da seguinte forma
 - Se n é par: f(n) = n/2
 - Se n é ímpar: f(n) = -(n+1)/2

Conjunto de cadeiras de caracteres

- Considere as strings formadas pelos caracteres 'a', 'b' e 'c'
 - Ex.: conjunto S = { a, b, c, aa, ab, ac, ba, bb, bc, ... }
- Imagine um programa que imprime cada cadeia em uma linha
 - Cada linha imprime uma cadeia
 - Numeramos cada linha do programa começando do 0, ou seja, a primeira linha é numerada como 0, a segunda linha como 1, e assim por diante
 - Correspondência com números naturais
 - Associa o nº natural n à cadeia que aparece na n-ésima linha
 - Supondo que as linhas são numeradas a partir do 0
 - Conclusão o conjunto S é enumerável