```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         To read/get the CSV file The 'r' is important to avoid error in the below code utf is not important Save it in something u like
In [2]: uber_23=pd.read_csv(r'C:\Users\Aakasha\Desktop\uber-pickups-in-new-york-city-20220814T121250Z-001\uber-pickups-in-new-york-city/u
In [3]: uber_23
Out[3]:
                   Dispatching_base_num
                                              Pickup_date Affiliated_base_num locationID
                                 B02617 2015-05-17 09:47:00
                                                                     B02617
                                 B02617 2015-05-17 09:47:00
                                                                     B02617
                                                                                    65
                                 B02617 2015-05-17 09:47:00
                                                                      B02617
                                                                                   100
                                 B02617 2015-05-17 09:47:00
                                                                     B02774
                                                                                    80
                                 B02617 2015-05-17 09:47:00
                                                                     B02617
                                                                                    90
          14270474
                                 B02765 2015-05-08 15:43:00
                                                                     B02765
                                                                                   186
          14270475
                                 B02765 2015-05-08 15:43:00
                                                                     B02765
                                                                                   263
          14270476
                                 B02765 2015-05-08 15:43:00
                                                                     B02765
                                                                                    90
          14270477
                                 B02765 2015-05-08 15:44:00
                                                                     B01899
                                                                                   45
                                 B02765 2015-05-08 15:44:00
          14270478
                                                                     B02682
                                                                                   144
         14270479 rows × 4 columns
         1D is series that is Array 2D is Data that is Table 3D is Panel mostly used
         To see only 1st 2 rows
In [4]: uber_23.head(2)
Out[4]:
            Dispatching_base_num
                                        Pickup date Affiliated base num locationID
         0
                          B02617 2015-05-17 09:47:00
                                                               B02617
                                                                            141
                          B02617 2015-05-17 09:47:00
                                                               B02617
          1
                                                                             65
         To count the No.of duplicates
In [5]: uber_23.duplicated().sum()
Out[5]: 898225
         To remove the Duplicate Rows
In [6]: uber_23.drop_duplicates(inplace=True)
         Take a look at 'inplace' in Drop_duplicates
In [7]: uber_23.shape
Out[7]: (13372254, 4)
         Which month has max uber pickups:
In [8]: uber_23['Pickup_date']=pd.to_datetime(uber_23['Pickup_date'],format='%Y-%m-%d %H:%M:%S')
In [9]: uber_23['Pickup_date'].dtype
Out[9]: dtype('<M8[ns]')</pre>
```

dt=datetime/daytime

Now, We have to find the No.of Trips in Month and Week Days

In [14]: uber_23.head(5)

									0+ [4.4]
minute	hour	day_name	week_day	month	locationID	Affiliated_base_num	Pickup_date	Dispatching_base_num	Out[14]:
47	9	<pre><bound method="" pandasdelegate_add_delegate_acc<="" pre=""></bound></pre>	6	5	141	B02617	2015-05-17 09:47:00	B02617	0
47	9	<pre><bound method="" pandasdelegate_add_delegate_acc<="" pre=""></bound></pre>	6	5	65	B02617	2015-05-17 09:47:00	B02617	1
47	9	<pre><bound method="" pandasdelegate_add_delegate_acc<="" pre=""></bound></pre>	6	5	100	B02617	2015-05-17 09:47:00	B02617	2
47	9	<pre><bound method="" pandasdelegate_add_delegate_acc<="" pre=""></bound></pre>	6	5	80	B02774	2015-05-17 09:47:00	B02617	3
47	9	<pre></pre>	6	5	90	B02617	2015-05-17 09:47:00	B02617	4

```
In [15]: uber_23.groupby(['month','week_day']).size()
Out[15]: month week_day
                             190606
                 1
                             196574
                 2
                             245650
                             330319
                 3
                 4
                             339285
                 5
                             386049
                 6
                             230487
                             274948
         2
                 0
                             287260
                 1
                 2
                             286387
                 3
                             335603
                 4
                             373550
                             368311
                 5
                 6
                             296130
         3
                 0
                             269931
                             320634
                 1
                 2
                             256767
                             277026
                 3
                 4
                             309631
                 5
                             314785
                             313865
                 6
                 0
                             238429
         4
                 1
                             250632
                 2
                             338015
                 3
                             372522
                 4
                             315002
                             324545
                 5
                 6
                             273560
                 0
                             255501
                 1
                             290004
                 2
                             316045
                 3
                             337607
                 4
                             430134
                 5
                             464298
                             390391
                 6
                             375312
         6
                 0
                 1
                             405500
                 2
                             328141
                 3
                             357782
                             371225
                 4
                 5
                             399377
                             334434
          dtype: int64
         To convert the upper one into DATA FRAME using as_index= False
         To see the unique month
In [16]: x=uber_23.groupby(['month','week_day'],as_index=False).size()
In [17]: x.head()
Out[17]:
             month week_day
                               size
          0
                          0 190606
          1
                 1
                          1 196574
          2
                          2 245650
                          3 330319
```

```
localhost:8888/notebooks/Uber New York Analysis Project.ipynb
```

In [18]: x['month'].unique()

4 339285

To change the month number to text:-

Out[18]: array([1, 2, 3, 4, 5, 6], dtype=int64)

```
In [19]: x.head(5)
Out[19]:
             month week_day
                               size
          0
                          0 190606
                          1 196574
                          2 245650
                          3 330319
                          4 339285
In [20]: x_dict={1:'JAN',2:'FEB',3:'MAR',4:'APR',5:'MAY',6:'JUNE'}
In [21]: x['month']=x['month'].map(x_dict)
In [22]: x.head(4)
Out[22]:
             month week_day
                               size
          0
                          0 190606
               JAN
          1
               JAN
                          1 196574
          2
               JAN
                          2 245650
                          3 330319
               JAN
         To plot this Data
In [23]: sns.barplot(x='month',y='size',hue='week_day',data=x)
         plt.figure(figsize=(12,8))
Out[23]: <Figure size 864x576 with 0 Axes>
                    week_day
```


<Figure size 864x576 with 0 Axes>

2 16394

To find the rush of the New York city: No.of rides per hour

If we use Bar Graph, The chart is messy and full of disturbance So, we use POINT PLOT

```
In [26]: sns.pointplot(x='hour',y='size',hue='week_day',data=y)
plt.figure(figsize=(12,8))
```

Out[26]: <Figure size 864x576 with 0 Axes>

<Figure size 864x576 with 0 Axes>

NOW, OBSERVE THE FIGURE CAREFULLY AND SAY, AT WHAT STAGES THE TRIPS ARE HIGH AND LOW DURING WHICH THE DAYS ACCORDING TO THE HOURS FROM 1-24

WHICH BASE NUMBER HAS THE MOST NUMBER OF ACTIVE VEHICLES.

In [27]: uber_foil=pd.read_csv(r'C:\Users\Aakasha\Desktop\uber-pickups-in-new-york-city-20220626T112836Z-001\uber-pickups-in-new-york-city

In [28]: uber_foil.head(3).sort_values('active_vehicles',ascending=False)

Out[28]:

	dispatching_base_number	date	active_vehicles	trips
2	B02764	1/1/2015	3427	29421
1	B02765	1/1/2015	225	1765
0	B02512	1/1/2015	190	1132

WE NEED TO FIND THE DISTRIBUTION OF THE BASE NUMBER THROUGH GRAPHS

```
In [29]: !pip install chart_studio
!pip install plotly
```

Requirement already satisfied: chart_studio in c:\python folder\anaconda aakash\lib\site-packages (1.1.0) Requirement already satisfied: six in c:\python folder\anaconda aakash\lib\site-packages (from chart_studio) (1.15.0) Requirement already satisfied: plotly in c:\python folder\anaconda aakash\lib\site-packages (from chart_studio) (5.10.0) Requirement already satisfied: requests in c:\python folder\anaconda aakash\lib\site-packages (from chart_studio) (2.25.1) Requirement already satisfied: retrying>=1.3.3 in c:\python folder\anaconda aakash\lib\site-packages (from chart_studio) (1.3. Requirement already satisfied: tenacity>=6.2.0 in c:\python folder\anaconda aakash\lib\site-packages (from plotly->chart_studi o) (8.0.1) Requirement already satisfied: chardet<5,>=3.0.2 in c:\python folder\anaconda aakash\lib\site-packages (from requests->chart_st udio) (4.0.0) Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\python folder\anaconda aakash\lib\site-packages (from requests->char t studio) (1.26.4) Requirement already satisfied: idna<3,>=2.5 in c:\python folder\anaconda aakash\lib\site-packages (from requests->chart_studio) (2.10)Requirement already satisfied: certifi>=2017.4.17 in c:\python folder\anaconda aakash\lib\site-packages (from requests->chart_s tudio) (2020.12.5) Requirement already satisfied: plotly in c:\python folder\anaconda aakash\lib\site-packages (5.10.0)

Requirement already satisfied: tenacity>=6.2.0 in c:\python folder\anaconda aakash\lib\site-packages (from plotly) (8.0.1)

In [30]: import chart_studio.plotly as py import plotly graph phis as go

import chart_studio.plotly as py
 import plotly.graph_objs as go
 import plotly.express as px
 from plotly.offline import download_plotlyjs, plot, iplot, init_notebook_mode
 init_notebook_mode(connected=True)

In [31]: px.box(x='dispatching_base_number',y='active_vehicles',data_frame=uber_foil)

VIOLIN CHART IS ALSO USEFUL FOR THE DISTRIBUTION

In [32]: px.violin(x='dispatching_base_number',y='active_vehicles',data_frame=uber_foil)

NOW,

WE HAVE TO COLLECT THE DATA & MAKE IT READY FOR THE DATA ANALYSIS

In [33]: import os

```
In [34]: os.listdir(r'C:\Users\Aakasha\Desktop\uber-pickups-in-new-york-city-20220626T112836Z-001\uber-pickups-in-new-york-city')
Out[34]: ['other-American_B01362.csv',
           other-Carmel_B00256.csv',
           'other-Dial7_B00887.csv',
           'other-Diplo B01196.csv'
           'other-Federal_02216.csv',
           'other-FHV-services_jan-aug-2015.csv',
          'other-Firstclass_B01536.csv',
           other-Highclass_B01717.csv',
           'other-Lyft_B02510.csv',
           'other-Prestige_B01338.csv'
           'other-Skyline_B00111.csv',
          'Uber-Jan-Feb-FOIL.csv',
           'uber-raw-data-apr14.csv',
           'uber-raw-data-aug14.csv'
           'uber-raw-data-janjune-15.csv',
           'uber-raw-data-jul14.csv',
          'uber-raw-data-jun14.csv',
           'uber-raw-data-may14.csv'
           'uber-raw-data-sep14.csv']
         NOW, WE HAVE CONSIDER ONLY THE FILES OF UBER_RAW-DATA- [APR-SEP]. THAT IS THE LAST SEVEN EXCEPT THE JANJUNE-15.CSV FILE
In [35]: files=os.listdir(r'C:\Users\Aakasha\Desktop\uber-pickups-in-new-york-city-20220626T112836Z-001\uber-pickups-in-new-york-city')[-7]
In [36]: files
Out[36]: ['uber-raw-data-apr14.csv',
           uber-raw-data-aug14.csv'
           'uber-raw-data-janjune-15.csv',
           'uber-raw-data-jul14.csv',
           'uber-raw-data-jun14.csv',
          'uber-raw-data-may14.csv'
           'uber-raw-data-sep14.csv']
         NOW, WE HAVE REMOVE THE UBER-.....JANJUNE-15.CSV FILE
In [37]: files.remove('uber-raw-data-janjune-15.csv')
In [38]: files
Out[38]: ['uber-raw-data-apr14.csv',
           uber-raw-data-aug14.csv',
           'uber-raw-data-jul14.csv',
           'uber-raw-data-jun14.csv',
          'uber-raw-data-may14.csv'
           'uber-raw-data-sep14.csv']
         NOW, WE GOT THE REQUIRED FILES
In [39]: path=r'C:\Users\Aakasha\Desktop\uber-pickups-in-new-york-city-20220626T112836Z-001\uber-pickups-in-new-york-city'
         final=pd.DataFrame()
         for file in files:
             current_df=pd.read_csv(path+'/'+file,encoding='utf-8')
             final=pd.concat([current_df,final])
In [40]: final.shape
Out[40]: (4534327, 4)
In [41]: final.head(2)
Out[41]:
                 Date/Time
                                           Base
                                     Lon
          0 9/1/2014 0:01:00 40.2201 -74.0021 B02512
          1 9/1/2014 0:01:00 40.7500 -74.0027 B02512
         NOW, WE HAVE ANALYSE i.e., CLEAN THE DATA
         1.DUPLICATE VALUES
         2.MISSING VALUE
         3.WRONG DATA TYPE
```

TO KNOW NO.OF DUPLICATES:-

```
In [42]: final.duplicated().sum()
Out[42]: 82581
         TO DELETE/CLEAR THE DUPLICATES:-
         IF, INPLACE= TRUE, THEN DATASET CHANGE OCCURS.
         IF, INPLACE= FALSE, NO CHANGE OCCURS IN THE DATASET
In [43]: final.drop_duplicates(inplace=True)
In [44]: final.shape
Out[44]: (4451746, 4)
         WE CAN OBSERVE THE DECREASE IN THE NO.OF ROWS
         NOW,
         PROB:-
         AT WHAT LOCATIONS OF NEW YORK CITY WE ARE GETTING RUSH
In [45]: final.head()
Out[45]:
                 Date/Time
                                           Base
                              Lat
                                     Lon
          0 9/1/2014 0:01:00 40.2201 -74.0021 B02512
          1 9/1/2014 0:01:00 40.7500 -74.0027 B02512
          2 9/1/2014 0:03:00 40.7559 -73.9864 B02512
          3 9/1/2014 0:06:00 40.7450 -73.9889 B02512
          4 9/1/2014 0:11:00 40.8145 -73.9444 B02512
In [46]: rush_uber=final.groupby(['Lat','Lon'],as_index=False).size()
In [47]: rush_uber
Out[47]:
                    Lat
                            Lon size
              0 39.6569 -74.2258
               1 39.6686 -74.1607
              2 39.7214 -74.2446
              3 39.8416 -74.1512
              4 39.9055 -74.0791
                                   1
          574553 41.3730 -72.9237
          574554 41.3737 -73.7988
          574555 41.5016 -72.8987
                                   1
          574556 41.5276 -72.7734
          574557 42.1166 -72.0666
                                   1
         574558 rows × 3 columns
         HOW TO SEE THE WORLD MAP!!
```

```
In [48]: !pip install folium
         Requirement already satisfied: folium in c:\python folder\anaconda aakash\lib\site-packages (0.12.1.post1)
         Requirement already satisfied: jinja2>=2.9 in c:\python folder\anaconda aakash\lib\site-packages (from folium) (2.11.3)
         Requirement already satisfied: requests in c:\python folder\anaconda aakash\lib\site-packages (from folium) (2.25.1)
         Requirement already satisfied: branca>=0.3.0 in c:\python folder\anaconda aakash\lib\site-packages (from folium) (0.5.0)
         Requirement already satisfied: numpy in c:\python folder\anaconda aakash\lib\site-packages (from folium) (1.20.1)
         Requirement already satisfied: MarkupSafe>=0.23 in c:\python folder\anaconda aakash\lib\site-packages (from jinja2>=2.9->foliu
         Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\python folder\anaconda aakash\lib\site-packages (from requests->foli
         um) (1.26.4)
         Requirement already satisfied: idna<3,>=2.5 in c:\python folder\anaconda aakash\lib\site-packages (from requests->folium) (2.1
         Requirement already satisfied: certifi>=2017.4.17 in c:\python folder\anaconda aakash\lib\site-packages (from requests->folium)
         (2020.12.5)
         Requirement already satisfied: chardet<5,>=3.0.2 in c:\python folder\anaconda aakash\lib\site-packages (from requests->folium)
         (4.0.0)
In [49]: import folium
In [50]: basemap=folium.Map()
In [51]: basemap
Out[51]: Make this Notebook Trusted to load map: File -> Trust Notebook
In [52]: from folium.plugins import HeatMap
In [53]: HeatMap(rush_uber).add_to(basemap)
Out[53]: <folium.plugins.heat_map.HeatMap at 0x1c82663d880>
In [54]: basemap
Out[54]: Make this Notebook Trusted to load map: File -> Trust Notebook
In [55]: final['Date/Time']=pd.to_datetime(final['Date/Time'],format='%m/%d/%Y %H:%M:%S')
```

```
In [56]: final
Out[56]:
                          Date/Time
                                        Lat
                                                Lon
                                                      Base
               0 2014-09-01 00:01:00 40.2201 -74.0021 B02512
                1 2014-09-01 00:01:00 40.7500 -74.0027 B02512
               2 2014-09-01 00:03:00 40.7559 -73.9864 B02512
                3 2014-09-01 00:06:00 40.7450 -73.9889 B02512
                  ...
           564511 2014-04-30 23:22:00 40.7640 -73.9744 B02764
           564512 2014-04-30 23:26:00 40.7629 -73.9672 B02764
           564513 2014-04-30 23:31:00 40.7443 -73.9889 B02764
           564514 2014-04-30 23:32:00 40.6756 -73.9405 B02764
           564515 2014-04-30 23:48:00 40.6880 -73.9608 B02764
          4451746 rows × 4 columns
In [57]: final['Date/Time'].dtype
Out[57]: dtype('<M8[ns]')</pre>
In [58]: final
Out[58]:
                          Date/Time
                                        Lat
                                                      Base
                                               Lon
                0 2014-09-01 00:01:00 40.2201 -74.0021
                                                    B02512
               1 2014-09-01 00:01:00 40.7500 -74.0027 B02512
               2 2014-09-01 00:03:00 40.7559 -73.9864 B02512
                3 2014-09-01 00:06:00 40.7450 -73.9889 B02512
                4 2014-09-01 00:11:00 40.8145 -73.9444 B02512
           564511 2014-04-30 23:22:00 40.7640 -73.9744 B02764
           564512 2014-04-30 23:26:00 40.7629 -73.9672 B02764
           564513 2014-04-30 23:31:00 40.7443 -73.9889 B02764
           564514 2014-04-30 23:32:00 40.6756 -73.9405 B02764
           564515 2014-04-30 23:48:00 40.6880 -73.9608 B02764
          4451746 rows × 4 columns
          PROB:-
                       EXAMINE THE RUSH ON HOUR AND WEEKDAY(PAIR WISE ANALYSIS)
          WE CAN DO IT BY MATRIX METHOD, D D D H | | H | | H | |
                       WE NEED TO EXTRACT THE MONTH, WEEKDAY
In [59]: | final['Date/Time']=pd.to_datetime(final['Date/Time'], format='%m/%d/%Y %H:%M:%S')
In [60]:
          final['weekday']=final['Date/Time'].dt.day
          final['hour']=final['Date/Time'].dt.hour
In [61]: final.head()
Out[61]:
                     Date/Time
                                                  Base weekday hour
                                   Lat
                                           Lon
           0 2014-09-01 00:01:00 40.2201 -74.0021
                                               B02512
                                                                   n
                                                                   0
           1 2014-09-01 00:01:00 40.7500 -74.0027
                                               B02512
                                                                   0
           2 2014-09-01 00:03:00 40.7559 -73.9864 B02512
           3 2014-09-01 00:06:00 40.7450 -73.9889 B02512
                                                                   0
                                                             1
           4 2014-09-01 00:11:00 40.8145 -73.9444 B02512
```

```
In [62]: final.groupby(['weekday','hour']).size()
Out[62]: weekday hour
                         3178
         1
                         1944
                  2
                         1256
                  3
                         1308
                  4
                         1429
         31
                  19
                         4898
                  20
                         4819
                         5064
                  21
                  22
                         5164
                  23
                         3961
         Length: 744, dtype: int64
```

UNSTACK() WILL CHANGE THE DATATYPE FROM SERIES TO DATAFRAMES

]: pivot																					
hour	0	1	2	3	4	5	6	7	8	9		14	15	16	17	18	19	20	21	22	23
weekday																					
1	3178	1944	1256	1308	1429	2126	3664	5380	5292	4617		6933	7910	8633	9511	8604	8001	7315	7803	6268	4050
2	2435	1569	1087	1414	1876	2812	4920	6544	6310	4712		6904	8449	10109	11100	11123	9474	8759	8357	6998	5160
3	3354	2142	1407	1467	1550	2387	4241	5663	5386	4657		7226	8850	10314	10491	11239	9599	9026	8531	7142	4686
4	2897	1688	1199	1424	1696	2581	4592	6029	5704	4744		7158	8515	9492	10357	10259	9097	8358	8649	7706	5130
5	2733	1541	1030	1253	1617	2900	4814	6261	6469	5530		6955	8312	9609	10699	10170	9430	9354	9610	8853	6518
6	4537	2864	1864	1555	1551	2162	3642	4766	4942	4401		7235	8612	9444	9929	9263	8405	8117	8567	7852	5946
7	3645	2296	1507	1597	1763	2422	4102	5575	5376	4639		7276	8474	10393	11013	10573	9472	8691	8525	7194	4801
8	2830	1646	1123	1483	1889	3224	5431	7361	7357	5703		7240	8775	9851	10673	9687	8796	8604	8367	6795	4256
9	2657	1724	1222	1480	1871	3168	5802	7592	7519	5895		7877	9220	10270	11910	11449	9804	8909	8665	7499	5203
10	3296	2126	1464	1434	1591	2594	4664		6158	5072			9578	11045	11875	10934	9613	9687		7766	5496
11	3036	1665		1424	1842	2520	4954		6871	5396		7503	8920	10125	10898	10361	9327	8824		7771	5360
12	3227	2147			1757		4576		6231	5177			9390	10734	11713	12216	10393	9965	10310	9992	7945
13	5408	3509			1705		4196	5685				8200	9264	10534	11826	11450	9921	8705		7363	5936
14	3748	2349	1605	1656	1756	2629	4257	5781	5520	4824			8192	9511	10115	9553	9146	9182	8589	6891	4460
15	2497	1515		1381	1862	2980	5050		6729	5201			8505	10285	11959	11728	11032	10509		7153	4480
16	2547	1585 2048	1119 1500	1395	1818 1897	2966	5558 4562		7495	5958		7597	9290	10804 10323	11773 11236	10855 11089	10924 9919	10142 9935	10374 9823	8094 8362	5380 5699
17 18	3155 3390	2135	1332	1488 1626		2741 2959	4688	6315 6618		4934 5377			8997 9040	10323	10692	10338	9551	9310		8015	5492
19	3217	2188	1604	1675	1810	2639	4733			5006		7374	8898	9893	10741	10429	9701	10051	10049	9090	6666
20	4475	3190	2100	1858		2143	3584	4900	5083	4765		7462	8630	9448	10046	9272	8592	8614		7787	5907
21	4294	3194	1972		1926		4185			4707			8127	9483	9817	9291	8317	8107		7362	5231
22	2787	1637	1175	1468	1934		5204		6850	5198		7337	9148	10574	10962	9884	8980	8772	8430	6784	4530
23	2546	1580	1136	1429	1957	3132	5204	6890	6436	5177		7575	9309	9980	10341	10823	11347	11447	10347	8637	5577
24	3200	2055	1438	1493	1798	2754	4484	6013	5913	5146		7083	8706	10366	10786	9772	9080	9213	8831	7480	4456
25	2405	1499	1072	1439	1943	2973	5356	7627	7078	5994		7298	8732	9922	10504	10673	9048	8751	9508	8522	6605
26	3810	3065	2046	1806	1730	2337	3776	5172	5071	4808		7269	8815	9885	10697	10867	10122	9820	10441	9486	7593
27	5196	3635	2352	2055	1723	2336	3539	4937	5053	4771		7519	8803	9793	9838	9228	8267	7908	8507	7720	6046
28	4123	2646	1843	1802	1883	2793	4290	5715	5671	5206		7341	8584	9671	9975	9132	8255	8309	7949	6411	4461
29	2678	1827	1409	1678	1948	3056	5213	6852	6695	5481		7630	9249	10105	11113	10411	9301	9270	9114	6992	4323
30	2401	1510	1112	1403	1841	3216	5757	7596	7611	6064		8396	10243	11554	12126	12561	11024	10836	10042	8275	4723

31 rows × 24 columns

NOW, WE ACTUALLY NEED THE MAX OF THE UBER RUSH ON (HOUR, WEEKDAY)

