Endterm exam

Num. CSE, D-INFK/D-MATH HS 2015

Prof. R. Hiptmair

Name		Grade
Surname		
Department		
Legi Nr.		
Date	18.12.2015	

1	2	3	4	Total
6	6	12	12	36

- Keep only writing material and Legi on the table.
- Keep mobile phones, tablets, smartwatches, etc. turned off in your bag.
- Fill this cover sheet first.
- Turn the cover sheet only when instructed to do so.
- Then, put your name and Legi Nr. on each page.
- Read the rules carefully.
- Do not write with red/green colour or with pencil.
- Make sure to hand-in every sheet.
- Duration: 30 min.
- Additional material: none.

Good luck!

Endterm exam

Num. CSE

D-INFK/D-MATH

HS 2015

Prof. R. Hiptmair

Rules:

- Motivation for the answers is **not** necessary. Remarks and computations have **no** influence on the total number of points.
- Wrong answers **do not** give negative points.
- Write your solutions in the **predefined boxes**, e.g.

sample box

- All notes outside the predefined boxes will not be considered.
- Any unclear marking will be considered an error.

1. Gauss weights [6 P.]

Let \hat{w}_{j}^{n} and \hat{c}_{j}^{n} be the weights and nodes of the Gauss-Legendre quadrature rule on [0, 1].

Express weights w_j^n and nodes c_j^n of a quadrature rule of order 2n on a general interval [a,b] in terms of \hat{w}_j^n and \hat{c}_j^n :

$$w_j^n = \boxed{ (b-a)\hat{w}_j^n }$$

$$c_j^n = \boxed{ a+\hat{c}_j^n(b-a) }$$

Scratch space (not evaluated):				

2	Domain	οŧ	analyticity	۲6	P)	ĺ
∠.	Domain	υj	unuigillig	Įυ	1.	ı

Determine the domain of analyticity $\boldsymbol{\mathcal{A}}$ of the function

$$f(z) := \coth z = \frac{\cosh z}{\sinh z}.$$

(Recall that $\cosh z = (e^z + e^{-z})/2$ and $\sinh z = (e^z - e^{-z})/2$.)

Scratch space (not evaluated):	

3. Dimensions of spaces [12 P.]

Take $m, k \in \mathbb{N} \setminus \{0\}$ and let $\mathcal{M} = \{a = x_0 < x_1 < \dots < x_m = b\}$ be a mesh of the interval [a, b]. Determine the dimensions of the following real vector spaces in terms of m and k.

$$\dim(\{f \in C^0([a,b]) : f_{[x_{j-1},x_j]} \in \mathcal{P}_k, j = 1,\dots,m\}) = mk+1$$

$$\dim(\{f \in C^k([a,b]) : f_{[x_{j-1},x_j]} \in \mathcal{P}_k, j = 1,\dots,m\}) = k+1$$

$$\dim(\mathcal{P}_k) = k+1$$

$$\dim(\{f \in C^{k-1}([a,b]) : f_{[x_{j-1},x_j]} \in \mathcal{P}_k, j = 1,\dots,m\}) = m+k$$

Scratch space (not evaluated):

4. Consistency of an explicit Runge–Kutta method [12 P.]

The following Butcher scheme describes an explicit Runge-Kutta single step method (RK-SSM):

$$\begin{array}{c|cccc}
0 & 0 \\
\alpha & \alpha & 0 \\
\alpha & 0 & \alpha & 0 \\
\hline
0 & \gamma & \gamma & \gamma
\end{array}$$
(1)

(a) Write down a correct expression for a single step of size h, in terms of \mathbf{y}_0 , for the RK-SSM, when applied to the ODE $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$.

$$\mathbf{y}_{1} = \mathbf{y}_{0} + h\gamma \left(\mathbf{f}(\mathbf{y}_{0}) + \mathbf{f}(\mathbf{y}_{0} + h\alpha\mathbf{f}(\mathbf{y}_{0})) + \mathbf{f}(\mathbf{y}_{0} + h\alpha\mathbf{f}(\mathbf{y}_{0} + h\alpha\mathbf{f}(\mathbf{y}_{0}))) \right)$$

(b) For what choices of parameters α and γ in \mathbb{R} will the RK-SSM given by (1) be consistent with the autonomous ODE $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$?

$$\alpha \in \mathbb{R}$$
 , $\gamma \in \left[\frac{1}{3}\right]$

Scratch space (not evaluated):		