

# Redes RBF Radial Basis Function

Gisele L. Pappa





## Introdução

- São redes de 3 camadas
- Os neurônios da camada escondida implementam funções de base radial
- Os nós de saída implementam funções lineares
- O treinamento é dividido em 2 estágios:
  - Determina os pesos da camada de entrada para a escondida
  - Determina os pesos da camada escondida para a de saída
- O aprendizado é rápido





## Arquitetura

• Camada de entrada



- Camada escondida
  - Aplica uma transformação não linear do espaço de entrada para o espaço escondido
- Camada de saída
  - Aplica uma transformção linear do espaço "escondido" para o espaço de saída



#### **RBF**



• A saída de rede é aproximadamente a combinação linear de funções de base radial

• RBFs capturam o comportamento local das

funções







## O que é uma RBF?

- Funções de base radial
  - Radial: Simétrica em torno do centro
  - Funções base
    - Também conhecidas como kernels
    - Conjunto de funções cuja combinação linear pode gerar uma função arbitrária em um dado espaço de funções





## Qual a função de um kernel?

- Digamos que você tenha um problema em que deseja separar 2 classes, mas a borda que você tem que utilizar se confunde
- Você pode encontrar um algoritmo que separe os pontos, mas ele irá demorar para convergir
- Funções de kernel mapeam esses dados em espaços de maior dimensão, na esperança de que os dados possam ser mais facilmente separados





#### **RBFs**

- Qual a motivação para utilizar uma função nãolinear seguida de uma linear?
  - Teorema de Cover sobre a separabilidade de padrões:
    - "Um problema de classificação de padrões complexos moldado não-linearmente em um espaço com muitas dimensões tem maior probabilidade de ser linearmente separável que quando moldado em um espaço com poucas dimensões"
  - Quando a camada escondida aplica uma transformação não-linear no espaço de entrada, ela cria um novo espaço tipicamente com mais dimensões que o espaço de entrada

\* Mesmo argumento para trabalhar com SVM DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

DCC



## Tipos de Função RBF

• Multiquadráticas:

$$\phi(r) = (r^2 + \sigma^2)^{\frac{1}{2}} \quad \sigma > 0$$

• Multiquadráticas inversas:

$$\phi(r) = \frac{1}{(r^2 + \sigma^2)^{\frac{1}{2}}} \qquad \sigma > 0$$

• Gaussianas:

$$\phi(r) = \exp\left(-\frac{r^2}{2\sigma^2}\right)$$
  $\sigma > 0$ 





### Função RBF Gaussiana

$$\phi(r) = \exp\left(-\frac{r^2}{2\sigma^2}\right)$$
centro

σ é a medida do quão "achatada" a curva é (dentro de um raio, define a influência de um ponto):



DCC
DEPARTAMENTO DE
CIÊNCIA DA COMPUTAÇÃO



#### Como uma Rede RBF funciona?

- Conceitualmente, similar ao KNN
- A rede posiciona 1 ou mais neurônios no espaço n-D descrito pelos n atributos que descrevem o exemplo
- Calcula a distância
   Euclidiana do ponto sendo



Negative

Positive





#### Como uma Rede RBF funciona?

- Aplica uma função RBF a cada distância pontoneurônio, para computar o peso (influência) de cada neurônio
  - Peso(neurônio) = RBF (distância)

DCC

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

• Quanto mais longe o neurônio está do ponto sendo avaliado, menor seu peso.





#### **RBF**



DCC

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO



Norma euclidiana

#### Neurônios da Camada Escondida

Utilizam uma função de base radial

 $\phi(||x - u||^2)$ 

A saída depende da distância da entrada x e do centro u



$$\phi_{j}(||x-u||^{2}) = e^{-\left(\frac{\|x-u\|}{\sigma}\right)^{2}}$$

u é o centro da funçãoσ é o *spread* da função\* Ambos são parâmetros





#### Neurônios da Camada Escondida

- Os neurônios da camada escondida são mais sensíveis as entradas de dados próximas ao seu centro. Essa sensibilidade pode ser controlada pelo parâmetro σ.
  - Quanto maior o valor de σ, menor a sensibilidade



# Exemplo -XOR





Consider the nonlinear functions to map the input vector  $\mathbf{x}$  to the  $\phi_1$ -  $\phi_2$  space

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} \quad \boldsymbol{\varphi}_1(\mathbf{x}) = e^{-\|\mathbf{x} - \mathbf{u}_1\|^2} \qquad \qquad \mathbf{U}_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$$
$$\boldsymbol{\varphi}_2(\mathbf{x}) = e^{-\|\mathbf{x} - \mathbf{u}_2\|^2} \qquad \qquad \mathbf{U}_2 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$

| Input x | $\varphi_1(x)$ | φ <sub>2</sub> (x) |
|---------|----------------|--------------------|
| (1,1)   | 1              | 0.1353             |
| (0,1)   | 0.3678         | 0.3678             |
| (1,0)   | 0.3678         | 0.3678             |
| (0,0)   | 0.1353         | 1                  |



The nonlinear φ function transformed a nonlinearly separable problem into a linearly separable one !!!



## **RBFs**







### **RBF**





DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO



## Definição do Problema

- Dado um vetor de entrada de D dimensões  $x^p = \{x^p_i : i = 1,...,D\}$ , queremos encontrar um vetor de saída correspondente no espaço de c dimensões,  $t^p = \{t^p_k : k = 1,...,c\}$
- Essas saída serão geradas por um conjunto de funções  $g_k(x)$ . A ideia é aproximar  $g_k(x)$  com funções  $y_k(x)$  da seguinte forma  $y_k(\mathbf{x}) = \sum_{i=1}^{M} w_{kj} \phi_j(\mathbf{x})$







## Definição do Problema

- O problema se transforma em encontrar valores apropriados para:
  - M : número de neurônios na camada escondida
  - U<sub>ij</sub>: centros (valores dos neurônios da camada escondida)
  - $-\sigma_i$ , *spread* da função
  - W<sub>ki</sub>: pesos da camada escondida para camada de saída





#### **Treinamento**

- Neurônios da camada de entrada para escondida tem funções bem diferentes dos da camada escondida para de saída
- Em um passo inicial, otimizamos os parâmetros das funções RBF
  - Os centros (protótipos dos dados)
  - Os spreads
- Em um segundo passo, deixamos esses parâmetros fixos e treinamos a segunda parte da rede





- 3 mais comuns:
  - Centros aleatórios + método da pseudo-inversa
  - K-means + Least Mean Square (RMS)
  - Descida do gradiente (funciona em uma única fase)





- 3 mais comuns:
  - Centros aleatórios + método da pseudo-inversa
    - Centros U são escolhidos como exemplos do conjunto de treinamento e spreads por normalização

$$\sigma = \frac{\text{Distância máxima entre 2 centros}}{\sqrt{\text{número de centros}}} = \frac{d_{\text{max}}}{\sqrt{m_1}}$$

Pesos para uma rede de uma camada com função linear são calculados usando o método da pseudo-inversa (pseudo-inversa pode ser calculada usando, por exemplo, SVD)







- 3 mais comuns:
  - K-means + LMS
    - Centros U são escolhidos utilizando o algoritmo K-means e spreads por normalização
    - Pesos da camada de saída aprendidos usando a regra delta

$$\mathbf{w}(t) = \mathbf{w}(t) + \eta \ e_i \ \mathbf{x} \quad \text{(peso)}$$

η é a taxa de aprendizagem

 $e_i$  é o erro entre a saída encontrada e a desejada





- 3 mais comuns:
  - Centros aleatórios + método da pseudo-inversa
  - K-means + Least Mean Square (RMS)
  - Descida do gradiente (funciona em uma única fase)





# Redes RBF Radial Basis Function

Gisele L. Pappa

