## PRINCIPAL COMPONENT ANALYSIS

Khin Nyo Nyo Theint
Aung Khant Myat
Tun Ye Minn

Knowledge Engineering

Fourth Year

## CONTENTS

- 1. Why Dimensionality Reduction is needed?
- 2. What is PCA?
- 3. When to use the Principal Component Analysis?
- 4. Why PCA is useful?
- 5. How Does PCA Work?
- 6. PCA's Mathematical Example
- 7. Applications of PCA
- 8. PCA's Limitations
- 9. Real-World Example of PCA in Python

## WHAT IS DATA REDUCTION?

**Motivation -** As datasets are growing larger and more complex, mining huge amounts of data can take a long time.

**Solution -** Data reduction techniques reduce the volume of data yet maintain the integrity of the data.



## DATA REDUCTION TECHNIQUES

#### **DIMENSIONALITY REDUCTION**

• eliminates the attributes from the data set under consideration thereby reducing the volume of original data.

Methods: wavelet transforms, principal components analysis, Attribute subset selection

#### NUMEROSITY REDUCTION

• reduces the volume of the original data and represents it in a much smaller form.

**Methods:** Parametric(Regression and Log-Linear), Non-Parametric(Histogram, Clustering, Sampling, Data Cube Aggregation)

#### **DATA COMPRESSION**

• is a technique where the data transformation technique is applied to the original data in order to obtain compressed data.

Nature - lossless, lossy

• Dimensionality reduction and numerosity reduction techniques can also be considered forms of data compression.

## WHAT IS THE CURSE OF DIMENSIONALITY?

**Problem -** "Excessively large datasets lead to overfitting, where the model is influenced by outliers and noise."



# EXAMPLE FOR CURSE OF DIMENSIONALITY



# EXAMPLE FOR CURSE OF DIMENSIONALITY

| Reddish          | Bluish |
|------------------|--------|
| 1                | 0      |
| 1                | 0      |
| 1                | 0      |
| 1                | 0      |
| 0                | 1      |
| 0                | 1      |
| 0                | 1      |
| 0                | 1      |
| Perfect Clusters |        |
|                  |        |

# EXAMPLE FOR CURSE OF DIMENSIONALITY

| Red | Maroon | Pink | Flamingo | Blue | Turquoise | Seaweed | Ocean |
|-----|--------|------|----------|------|-----------|---------|-------|
| 1   | 0      | 0    | 0        | 0    | 0         | 0       | 0     |
| 0   | 1      | 0    | 0        | 0    | 0         | 0       | 0     |
| 0   | 0      | 1    | 0        | 0    | 0         | 0       | 0     |
| 0   | 0      | 0    | 1        | 0    | 0         | 0       | 0     |
| 0   | 0      | 0    | 0        | 1    | 0         | 0       | 0     |
| 0   | 0      | 0    | 0        | 0    | 1         | 0       | 0     |
| 0   | 0      | 0    | 0        | 0    | 0         | 1       | 0     |
| 0   | 0      | 0    | 0        | 0    | 0         | 0       | 1     |

High Dimensional Data Makes Trouble For Clustering

## WHAT IS DIMENSIONALITY REDUCTION?

- a statistical/ML-based technique which reduces the number of features in the dataset and obtain a dataset with an optimal number of dimensions.
- One of the most common ways to accomplish Dimensionality Reduction is Feature Extraction, which reduces the number of dimensions by mapping a higher dimensional feature space to a lower-dimensional feature space.
- The most popular technique of Feature Extraction is Principal Component Analysis (PCA)

## WHAT IS PRINCIPAL COMPONENT ANALYSIS (PCA)?

- introduced by the mathematician Karl Pearson in 1901.
- maps a higher dimensional feature space to a lower-dimensional feature space.
- identify correlations and patterns in a dataset so that it can be transformed into a dataset of significantly fewer dimensions without loss of any important information.

## WHEN TO USE PCA?

## UNSUPERVISED ALGORITHM:

It does not require there to be a specific outcome variable you are trying to predict in your dataset.

## MANY CORRELATED FEATURES:

The transformed features are guaranteed to be independent of one another no matter how highly correlated the input features were.

## CONTINUOUS DATA(NUMERIC VALUE):

PCA is intended to be used on a set of numeric features.

## WHY PCA IS USEFUL?

- Guaranteed to produce uncorrelated features: as correlated features tend to cause problems for a lot of machine learning algorithms, the transformed features that come out of the model are guaranteed to be uncorrelated.
- Relatively fast: compared to other dimensionality reduction techniques.
- Not sensitive to choice of seed(initialization conditions): a deterministic algorithm, which means that it will always produce the same result when applied to the same dataset.
- No hyperparameters: no additional step of hyperparameter tuning.
- Popular and well studied: the most common dimensionality reduction techniques, plenty of resources.

## HOW DOES PCA WORKS?



## STEP 1 - DATA NORMALIZATION

The following information has different scales and performing PCA using such data will lead to a biased result.

Monthly expenses: \$300

Age: 27 Rating: 4.5

Data Normalization ensures that each attribute has the same level of contribution, preventing one variable from dominating others.

|             | Stude<br>nt 1 | Stude<br>nt 2 | Stude<br>nt 3 | Stude<br>nt 4 |  |
|-------------|---------------|---------------|---------------|---------------|--|
| Math        | 95            | 88            | 93            | 75            |  |
| Readi<br>ng | 9             | 8             | 10            | 7             |  |

To transform the variables of the same standard, you can follow the following formula.

$$Z = \frac{VALUE - MEAN}{STANDARD DEVIATION}$$

$$MEAN = \frac{Sum \ of \ the \ terms}{Total \ number \ of \ terms}$$

STANDARD DEVIATION = 
$$\sqrt{\frac{\in (x-mean)^2}{n}}$$





## STEP 2 - COVARIANCE MATRIX

A covariance matrix is a  $N \times N$  symmetrical matrix that contains the covariances of all possible data sets.  $[Var(x1,x1) \ Cov(x1,x2) \ \dots \ Cov(x1,xn)]$ 

$$Cov\ Matrix = \begin{bmatrix} Cov(x2,x1) \ Var(x2,x2) \ \dots \dots \ Cov(x2,xn) \end{bmatrix}$$

$$\begin{bmatrix} Cov(xn,x1) \ Cov(xn,x2) \ \dots \dots \ Var(xn,xn) \end{bmatrix}$$



Covariance = 
$$\frac{Sum (X-(Mean of X)(Y-(Mean of Y))}{Number of data points}$$







No Trend

## STEP 3 - EIGENVECTORS AND EIGENVALUES

 $Av = \lambda v$ 

 $\lambda$ , called the corresponding eigenvalue.

- Once the eigenvector components have been computed, define eigenvalues in descending order ( for all variables) and now we will get a list of principal components.
- The eigenvalues represent the principal components and these components represent the direction of data.
- If the line contains large variables of large variances, then there are many data points on the line. Thus, there is more information on the line too.



## STEP 4 - SELECTION OF PRINCIPAL COMPONENTS

- There are as many pairs of eigenvectors and eigenvalues as the number of variables in the data.
- The eigenvector with the highest eigenvalue corresponds to the first principal component.
- The second principal component is the eigenvector with the second highest eigenvalue, and so on.

$$v1 = \begin{bmatrix} 0.6778736 \\ 0.7351785 \end{bmatrix}$$

$$y_2 = \begin{bmatrix} -0.7351785 \\ 0.6778736 \end{bmatrix}$$



 $\lambda_1 = 1.284028$ 





## STEP 5 - DATA TRANSFORMATION IN NEW DIMENSIONAL SPACE

- Still now, apart from standardization, we haven't made any changes to the original data.
- We have just selected the Principal components and formed a feature vector.
- Yet, the initial data remains the same on their original axes.
- This step aims at the reorientation of data from their original axes to the ones we have calculated from the Principal components.
- This can be done by the following formula.

 $Final Data Set = Feature Vector^{T} * Standardized Original Data Set^{T}$ 

Note: It is important to remember that this transformation does not modify the original data itself but instead provides a new perspective to better represent the data.

# PCA'S MATHEMATICAL EXAMPLE

#### PCA. Problem

Given the Following data, use PCA to reduce the dimension from 2 to 1.

| Feature | Example | Example | Example 3 | exon Die |
|---------|---------|---------|-----------|----------|
| ×       | 9       | 8       | 13        | 7        |
| y       | iı      | 4       | 5         | 14       |

#### Stepcio: Data-Set

No of features, n = 2

No of Samples, N=4

Stepens: Computation of mean of variables

$$\overline{x} = \frac{4+8+13+7}{4} = 8$$
 $= \frac{11+4+5+14}{9} = 8.5$ 

#### Step 130 Computation of Covariance matrix

Ordered pairs are  $-(x_3x_3, Cx_3y_3, Cy_3x_3)$ ,  $(y_3x_3)$ ,  $(y_3y_3)$ ,  $(y_$ 

$$cov cx_3y_2 = \frac{1}{N-1} \sum_{i=1}^{N} cx_{ik} - \overline{x}_{i} \supset cx_{jk} - \overline{x}_{j} \supset$$

$$= \frac{1}{4-1} \left[ \frac{cy-85}{cs-8.50} + \frac{cs-85}{cs-8.50} + \frac{cs-85}{cs-8.50} + \frac{cs-85}{cs-8.50} \right]$$

covcy,x) = -11 , covcy,y) = 23

Step cyo Eigen Value, Eigen Vector, Normalited Eigen

#### vector

cio Elgen value;

det C8- AID=0

C14-20 C63-20 - C-11x-110 =0

2, > 22,

$$\lambda_1 = 30.3849 \Longrightarrow First Principal Component.$$
 $\lambda_2 = 6.6151$ 

cito Eigen Vector of A13

$$\begin{bmatrix} C14 - 2,501 - 1102 \\ -1101 + C23 - 2,502 \end{bmatrix} = 0$$

$$\frac{U_1}{11} = \frac{U_2}{14-21} = \pm$$

where 
$$t=1$$
,

 $U_1 = 11$ ,  $U_2 = 14-21$ 

Eigen Vector  $U_1$  of  $\lambda_1 = \begin{bmatrix} 11 \\ 14-2 \end{bmatrix}$ 

$$= \begin{bmatrix} 11 \\ 14-30.384 \end{bmatrix} = \begin{bmatrix} 11 \\ -16.884 \end{bmatrix}$$

$$e_{1} = \begin{bmatrix} 11 & 11^{2} + 616.383^{2} \\ -16.3849 & 11^{2} + c - 16.383^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

For 22 2

$$e_2 = \begin{bmatrix} 0.8303 \\ 0.5574 \end{bmatrix}$$

## Step (50 Derive new Dataset

|                 | Exi    | Ex 2 | Ex3 | Exy          |           |
|-----------------|--------|------|-----|--------------|-----------|
| First principal | Pii    | Pi2  | P13 | Piy          |           |
| P11 = e, [4-8]  |        | Pi   |     | 8-8<br>4-8.5 |           |
| = [0.5574 -0.88 | 303][. | 2.5] |     |              | 3037 -4.5 |
| =-4.3052        |        |      | = 3 | 7361         |           |

| ex1     | Ex 2   | ex3    | EX 4                                 |
|---------|--------|--------|--------------------------------------|
| -4.8052 | 3.7361 | 5.6928 | -5.1238                              |
|         | CA,    | Ch.    | ex1 ex2 ex3<br>-4.3052 3.7361 5.6928 |

## Cordinate System For Principal Components



## APPLICATIONS OF PRINCIPAL COMPONENT ANALYSIS

#### **FINANCE**

 PCA can assist in forecasting stock prices by reducing dimensionality and identifying significant components that capture most of the data's variability, benefiting experts in their analysis.





Figure 2: PCA of a selected image

#### **IMAGE PROCESSING**

- An image is made of multiple features.
- PCA is mainly applied in image compression to retain the essential details of a given image while reducing the number of dimensions.
- PCA can be used for more complicated tasks such as image recognition.

#### **HEALTHCARE**

- PCA is used in magnetic resonance imaging (MRI) scans to reduce the dimensionality of the images for better visualization and medical analysis.
- It can also be integrated into medical technologies to recognize a given disease from image scans.

#### **SECURITY**

 Biometric systems used for fingerprint recognition can integrate technologies leveraging principal component analysis to extract the most relevant features, such as the texture of the fingerprint and additional information.



#### LIMITATIONS OF THE PCA

Principal Component Analysis (PCA) is a great dimensionality reduction technique, but it does have some limitations:

- 1. Linearity: PCA assumes a linear relationship between variables, which means it might not work well for datasets with nonlinear relationships.
- 2. **Data loss:** PCA reduces the dimensionality by projecting data onto a new subspace, leading to some loss of information. The explained variance of the retained components may not capture all the important patterns in the original data.
- 3. **Interpretability:** The transformed components in PCA are combinations of the original features, making it harder to interpret their physical meaning compared to the original variables.

#### LIMITATIONS OF THE PCA

- 4. **Outliers:** PCA is sensitive to outliers as they can influence the principal components, potentially leading to distorted results.
- 5. **Scaling:** PCA is sensitive to the scale of features, so it's essential to standardize or normalize the data before applying PCA to ensure meaningful results.
- 6. Large datasets: For very high-dimensional datasets, PCA can become computationally expensive and may not be feasible to apply. Find another technique or feature selection.
- 7. **Selecting the number of components:** Determining the appropriate number of principal components to retain can be subjective and requires careful consideration.

# REAL-WORLD EXAMPLE OF PCA IN PYTHON

Breast Cancer accuracy evaluation using Logistic Regression Algorithm before and after applying PCA

