

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA

Telemática

Disciplina: Redes de Computadores

Prof. José Roberto Bezerra Segunda Avaliação Nome: PABLO BUSATTO

1. Marque <u>Y</u> para as alternativas Verdadeiras e F para as Falsas.

O serviço DNSSEC possui carga computacional maior do que o serviço DNS convencional. O serviço DNSSEC gera um tráfego de mensagens superior ao serviço DNS convencional. Existem domínios em que a adoção do DNSSEC é obrigatória.

DNS e DNSSEC compartilham o mesmo conjunto de RRs.

Os servidores raiz que atendem ao serviço DNSSEC são exclusivos para este serviço. Poluição de cache é uma vulnerabilidade que afeta o serviço DNS.

2. Associe a primeira coluna com a segunda. Coloque zero onde não há associação.

1. SYN 2) Utilizada para confirmar segmentos TCP previamente enviados.

2. ACK (1 Utilizada em varreduras do tipo stealth no nmap.

3. RST (4) Encerra uma conexão TCP.

4. FIN 3 Reinicializa uma conexão TCP.

5. URG 5 Indica que buffers não devem ser utilizados.

6 Segmentos com essa flag devem ser processados imediatamente. (SEIS) 6. PSH

3. Utilizando-se do comando dig gmail.com -t NS para realizar consultas DNS foi obtida a resposta mostrada na Figura 1. Sobre as informações mostradas, responda o que se pede:

i. Quantos servidores de nomes estão disponíveis em google.com? Justifique. SERVIDORES DE NOMES: NS1. GOOGLE COM, NS2. GOOGLE. COM NS4. GOOGLE. COM

ii. Pode-se afirmar que cada servidor possui endereços IPv6 e Ipv4? Justifique. SIM POIS TODOS ELES ROSSON APRESENTAM RRS DO TIPO A DO TIPO AAAA (IPV6

4. Considerando uma rede de datagramas que utiliza endereços de 8 bits. Suponha que um roteador use a correspondência do prefixo mais longo como estratégia de roteamento e tenha a tabela de repasse mostrada na Tabela 4. Dados os datagramas com endereços de destino mostrados abaixo, qual seria a interface que cada datagrama deve ser encaminhado? Justifique.

10110000

INTERFACE & 1 O MAIS ESPECIFICO. PARA 00001111 ESSE CACO.

A NENHUM PREFIXO DAS OUTRAS

DO (ZERO), POIS INICIA COM MAIS ESPECIFICA.

Prefixo	Interface
1	0
10	1
111	2
senão	3

Tabela 1: Tabela de repasse com endereços de 8 bits.

```
MacBookPro-JRB-3: robertoi$ dig google.com -t NS

; <<>> DiG 9.10.6 <<>> google.com -t NS

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26568

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 9

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:
;google.com. IN NS
```

;; ANSWER SECTION:

The transfer of

google.com. 160232 IN NS ns3.google.com.
google.com. 160232 IN NS ns2.google.com.
google.com. 160232 IN NS ns1.google.com.
google.com. 160232 IN NS ns4.google.com.

;; ADDITIONAL SECTION:

ns3.google.com. 160232 IN A 216.239.36.10
ns1.google.com. 344907 IN A 216.239.32.10
ns4.google.com. 160232 IN A 216.239.38.10
ns2.google.com. 160232 IN A 216.239.34.10
ns3.google.com. 160232 IN AAAA 2001:4860:4802:36::a
ns1.google.com. 160232 IN AAAA 2001:4860:4802:32::a
ns4.google.com. 160232 IN AAAA 2001:4860:4802:38::a
ns2.google.com. 160232 IN AAAA 2001:4860:4802:34::a

;; Query time: 4 msec

;; SERVER: 187.18.187.4#53(187.18.187.4)

;; WHEN: Mon Oct 30 13:35:55 -03 2023

;; MSG SIZE rcvd: 287

Figura 1: Saída do comando dig.

5. Abaixo é mostrada a saída do comando nmap -O scanme.nmap.org. Sobre as informações mostradas responda ao que se rede. (1 ponto) responda ao que se pede:

MacBookPro-JRB-3:~ roberto1\$ sudo nmap -0 scanme.nmap.org Password:

Starting Nmap 7.93 (https://nmap.org) at 2023-10-30 12:59 -03

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.12s latency).

Not shown: 996 closed tcp ports (reset)

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

9929/tcp open nping-echo

31337/tcp open Elite

Device type: general purpose

Running (JUST GUESSING): Linux 5.X|3.X|4.X|2.6.X (91%) OS CPE: cpe:/o:linux:linux_kernel:5 cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5 cpe:/o:linux_kernel:5 cpe:/o:linux_kernel: Aggressive OS guesses: Linux 5.0 - 5.4 (91%), Linux 5.4 (90%), Linux 3.10 - 4.11 (89%), Linux 4.15 5.6 (89%), Linux 2.6.32 (89%), Linux 2.6.32 or 3.10 (89%), Linux 4.4 (89%), Linux 5.0 - 5.3 (88%), Linux 2.6.32 or 3.10 (89%), Linux 4.4 (89%), Linux 5.0 - 5.3 (88%), Linux 5.0 - 5.3 No exact OS matches for host (test conditions non-ideal).

Network Distance: 19 hops

OS detection performed. Please report any incorrect results at https://nmap.org/submit/ Nmap done: 1 IP address (1 host up) scanned in 9.23 seconds

a. É possível afirmar com certeza que o sistema operacional rodando na máquina scanme.nmap.org é Linux? Justifique. NÃO, PORÉM E MOSTRADA UMA PROBABILIDADE MUITO ALTA DE SER SISTEMA OPERACIONAL LINUX 5.X13x | 4.X/2.6.X0, DE 91%.

b. Quais os possíveis estados que as portas mostradas podem assumir numa varredura com nmap?

CLOSED E FILTERED (ABERTA, FECHADA E FILTRADA)

(0,5p)c. Cite um dos tipos de varredura disponíveis com o nmap. TCP SYN STEALTH

6. A Figura 2 mostra uma captura de pacotes realizada com Wireshark entre uma máquina de origem (191.235.123.80) e uma máquina de destino (192.168.1.11). Sobre as informações mostradas pergunta-

a. Quais os segmentos que estão relacionados ao estabelecimento de conexão entre origem e destino? Justifique. No. 5 6, 57 E 68, POIS CORRESPONDEM ADS SEGMENTOS HANDSHAKE, COM ENVIO DO SYN, SYN-ACK E ACK

Quais os segmentos relacionados a finalização da conexão entre origem e destino? (0,5p)WENHUM, POIS NÃO HÁ NA IMAGEM SEGMENTOS COM A FLAG FIN-

Figura 2: Captura de pacotes com Wireshark

32 BITS

7. Considere um roteador que interconecta duas subredes A e B, com quantidades de máquinas iguais.

Todas as interfaces de A e B devem ter o prefixo 223.1.17 e máscara de 24 bits. Para A e B determine:

(2p)

