

DIGITAL CIRCUITS 2nd MIDTERM SOLUTIONS

SOLUTION 1 (30 Points):

a. (15 Points)

A full adder has two outputs (sum and carry output); therefore we need two multiplexers. Truth tables of the full adder:

b. A full adder has three inputs; therefore we need a 3:8 decoder.

If we had OR gates, we could connect the outputs of the decoder, which correspond to the minterms (1 points) of the function to an OR gate.

Remember: If invert input of an OR gate we obtain a NAND gate.

We have only 2-input NAND gates. $\overline{a \cdot b \cdot c \cdot d} = \overline{\overline{(a \cdot b)} \cdot \overline{(c \cdot d)}}$

SOLUTION 2 (30 Points):

a. (10 Points)

If A=0 then Q=0 (because of AND gate), QN=1 circuit is in a stable state.

If becomes 1 (A=1) while QN=1 then Q=1. It makes QN=0 and Q becomes 0 (Q=0), which makes QN=1agin. Now the circuit is in an unstable state.

The circuit is not bistable, it is unstable; therefore it **cannot** be used as a memory unit.

b.

i) (10 Points)

We need a D flip-flop

D Q(t) Q(t+1)	T must be (To	provide the necessary $Q(t)\rightarrow Q(t+1)$ transition.)
0 0 0	0	[
0 1 0	1	
1 0 1	1	
1 1 1	0	$D \longrightarrow T \longrightarrow T$
Assemble at the table T DOO(t)		

According to the table $T=D\oplus Q(t)$

The same result can be obtained by using the equations of the flip-flops.

$$Q(t+1) = T \oplus Q(t)$$

$$Q(t+1) = D$$

 $T \oplus Q(t) = D$ (apply to both sides: $\oplus Q(t)$)

$$T = D \oplus Q(t)$$

A T flip-flop preserves its previous value if T is zero (T=0). So we have to design a new T flipflop with inputs EN and Tnew, such as

Clock

if EN=0 then T=0 and

if EN=1 then T=Tnew.

Only one AND gate is sufficient.

The following circuit has a problem. If clock=1 and EN=0 then CLK=0 and the flip-flop is disabled (it's OK). But if EN becomes 1 while clock=1, flip-flop will get a rising edge on the CLK input and it will process its input Tnew. However the real clock signal is 1. There is not a 0-1 transition on the clock input.

Q

CLK

expression: 3pt minimization: 2pt

a)
$$J = 0.0 + 0.2$$

 $K = 0.4 + 0.5$
 $D = B.0.7 + 0.6$

$$J = \overline{A} \overline{Q}_{A} \overline{Q}_{0} + \overline{A} \overline{Q}_{A} \overline{Q}_{0} = \overline{A} \overline{Q}_{0} \overline{D}_{0} = \overline{A} \overline{Q}_{0} = \overline{A} \overline$$

$$Q_{\circ}^{+} = J\overline{Q}_{\circ} + \overline{k}Q_{\circ}$$

$$= \overline{A}\overline{Q}_{\circ}\overline{Q}_{\circ} + (\overline{A}\overline{Q}_{\Lambda})Q_{\circ}$$

$$= \overline{A}\overline{Q}_{\circ} + \overline{A}Q_{\circ} + Q_{\Lambda}Q_{\circ}$$

$$= \overline{A} + Q_{\Lambda}Q_{\circ} \qquad \boxed{5p+}$$

$$Q_{\Lambda}^{+} = D$$

$$= A Q_{\Lambda} (B + \overline{Q}_{0})$$

