6- First Pass Assembly & QC Hands On

Thursday morning

Bernardo J. Clavijo Richard Smith-Unna Gonzalo Garcia / Jon Wright

The K tradeoff

- Longer kmers are more unique in the target, disentangling the graph.
- Smaller kmers will overlap more often, favouring contiguity.
- Every read produces <u>L-k+1</u> kmers.
 - Higher k -> less coverage.
- Every single error affects k kmers.
 - Higher k -> more errors.

A typical choice for 100bp reads is k=71.

Running abyss as a first pass assembler

- It runs easily and can use both single and multi-host multiprocessing.
- Creates a ton of useful output, and a nice log.

Contiguity stats

n	n:200	n:N50	min	N80	N50	N20	max	sum	
10773	1353	144	200	11170	25592	44031	96106	11.6e6	nyc3574_k61-unitigs.fa
8880	497	53	200	32554	66307	139116	322315	11.79e6	nyc3574_k61-contigs.fa
8615	232	8	200	269923	551245	1029531	1372216	11.74e6	nyc3574 k61-scaffolds.fa

Don't forget to check your "Ns" !!!

Fragment Sizes

Read mapping stats

```
abyss-map -j150 -161 /scratch/clavijob/yeast tests/diploid/s 3 1 seq
uence.txt /scratch/clavijob/yeast tests/diploid/s 3 2 sequence.txt nyc3
574 k61-3.fa \
                |abyss-fixmate -h pel-3.hist \
                |sort - snk3 - k4 \rangle
                |DistanceEst -j150 -k61 -l61 -s200 -n10 -o pe1-3.dis
t pe1-3.hist
Building the suffix array...
Building the Burrows-Wheeler transform...
Building the character occurrence table...
Mateless
                0
Unaligned 71619 1.14%
Singleton 516328 8.19%
FR
          4018144 63.8%
               28 0.000444%
RF
FF
             8285 0.131%
Different 1686337 26.8%
Total
           6300741
```

Read mapping stats

```
abyss-map -j150 -l61 /scratch/clavijob/yeast tests/diploid/LIB3796 c
lipped A R1.fastq /scratch/clavijob/yeast tests/diploid/LIB3796 clipped
A R2.fastq nyc3574 k61-6.fa \
                |abyss-fixmate -h lmp1-6.hist \
                |sort -snk3 -k4 \
                |DistanceEst --dot -j150 -k61 -161 -s200 -n10
                                                               -o lmp
1-6.dist.dot lmp1-6.hist
Building the suffix array...
Building the Burrows-Wheeler transform...
Building the character occurrence table...
Mateless
                0
Unaligned 127754 6.8%
Singleton
            828893 44.1%
             3191 0.17%
FR
           668696 35.6%
RF
FF
            20536 1.09%
Different
           230815 12.3%
Total
          1879885
```

Checking content inclusion using KAT

Just compare the frequency of kmers in the assembly to the reads spectrum.

Different assemblies and pre-processing

Figure 5 Length and coverage-based metrics for chromosome 3AS assembled using kmer sizes between 41 and 99 as indicated on the x axis: — untrimmed data, ----- trimmed reads (to quality score of Q30)

Assembly	Number Of Hits To ESTs				
3AS untrimmed	1539				
3AS trimmed	1132				

Look for expected content

- Just BLAST the output to check what it looks like.
- But you can also try finding genes/markers/ETS:

Figure 7: short arm EST recovery

Figure 8: long arm EST recovery

Look for contaminants

· Contaminants including symbionts, mitochondria, chloroplast.

Look for contaminants

· Contaminants including symbionts, mitochondria, chloroplast.

What is the output of your first-pass assembly?

- Knowledge about the used datasets:
 - Are they clean? Can they be better?
 - How each one performs.
 - How they all interact.
- Knowledge about the target:
 - How it's "complications" affect assembly. (also the datasets?)
 - Repeat structure?
- Refined choice of K.
- Baseline metrics (to be improved).

Questions?

