Derivative Table

1 Basic Rule

- 1. $\frac{d}{dx}(c) = 0$ The constant rule
- 2. $\frac{d}{dx}(cf(x)) = cf'(x)$ The multiple rule
- 3. $\frac{d}{dx}(f(x) \pm g(x)) = f'(x) \pm g'(x)$ The sum/difference rule
- 4. $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ The product rule
- 5. $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$ The quotient rule
- 6. $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ The chain rule
- 7. $\frac{d}{dx}(x^n) = nx^{n-1}$ The power rule

2 Derivative of basic functions

$\frac{\frac{d}{dx}(e^x) = e^x}{\frac{d}{dx}(\ln(\ln x))} \qquad 1$	$\frac{d}{dx}(a^x) = a^x \ln(a)$
$\frac{1}{dx}(in(x)) = \frac{1}{x}$	$\frac{d}{dx}(\sin x) = \cos x$
$\frac{a}{-1}(\cos x) = -\sin x$	$\frac{d}{dt}(\tan x) = \sec^2 x$
$\frac{dx}{dx}(\cot x) = -\csc^2 x$	$\frac{dx}{dx}(\sec x) = \sec x \tan x$ $\frac{d}{dx}(\csc x) = \frac{1}{1}$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$	$\frac{d}{dx}(x^n) = nx^{n-1}$