[Exam 1] Name: Fall 2023: CS 313: Computational Complexity	ID: Theory
Due: 4:45 pm, Thursday, November 16, 2023. Total Marks: 24	
This exam copy contains 3 pages, including this one.	
	[12 points]
1. We have defined a relation \leq_p among languages. This relation is reflexive (i.e. $L \leq_p L'$ for all languages) and transitive (i.e. if $L \leq_p L'$ and $L' \leq_p L''$ then $L \leq_p L''$). Why is it not symmetric, namely, why is it that $L \leq_p L'$ need not imply $L' \leq_p L$?	
2. Show that NP is closed under union.	

3. Why is every **NP-Hard** language not decidable by a Turing Machine?

Question 2 Show that the language	[6 points]
$\label{eq:fclique} \begin{aligned} FCLIQUE &= \{ \ (G,k,F) \ \ Undirected \ graph \ G \ has \ a \ clique^1 \\ forbidden \ set^2 \ F \ is \ in \ the \ clique \ \}. \end{aligned}$	1 of size k , such that no vertex from the
is NP-Complete.	

4. Show that if P = NP then $NP \subset EXP$, where \subset denotes the proper subset relation.

¹a set of vertices such that every two distinct vertices in are adjacent

²the forbidden set contains vertices

Question 3 [6 points]

Show that NP = coNP iff CLIQUE and TAUTOLOGY are polynomial time reducible to one another.