

# A Theory of Universal Learning

### Raghu Arghal

Dept. of Electrical and Systems Engineering University of Pennsylvania rarghal@seas.upenn.edu

April 21, 2022

### What is this presentation about?



### A Theory of Universal Learning

Olivier Bousquet

OBOUSQUET@GOOGLE.COM

Google, Brain Team Steve Hanneke

STEVE.HANNEKE@GMAIL.COM

Toyota Technological Institute at Chicago

SMORAN@TECHNION.AC.IL

Shay Moran Technion

Ramon van Handel

ndel rvan@math.princeton.edu

 $\begin{array}{c} \textit{Princeton University} \\ \textbf{Amir Yehudayoff} \end{array}$ 

AMIR.YEHUDAYOFF@GMAIL.COM

Technion

Published in Symposium on Theory of Computing (STOC) '21.

### Overview



Introduction and Motivation

Universal Learning Rate

Background

Main Result
Exponential Rates
Linear Rates

Conclusion



### Introduction and Motivation

# The Basic Learning Problem



- ▶ Distribution *P* over labelled examples  $(x, y) \in \mathcal{X} \times \{0, 1\}$
- ► Given *n* i.i.d. training samples
- ▶ Output classifier  $\hat{h}_n: \mathcal{X} \to \{0,1\}$

$$\min err(\hat{h}_n) = \min \mathbb{P}_{(x,y)\sim P}\{(x,y) : \hat{h}_n(x) \neq y\}$$

▶ Assume P realizable: concept class  $\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$ 

$$\inf_{h\in\mathcal{H}} \textit{err}(h) = 0$$

# Classical Theory: The PAC Model Dichotomy



$$\inf_{\hat{h}_n} \sup_{P \in RE(\mathcal{H})} \mathbb{E}[err(\hat{h}_n)] \asymp \min\left(\frac{VC(\mathcal{H})}{n}, 1\right)$$

 $ightharpoonup VC(\mathcal{H})$  denotes VC dimension i.e. the size of the largest set that can be shattered by  $\mathcal{H}$ 

# Classical Theory: The PAC Model Dichotomy



$$\inf_{\hat{h}_n} \sup_{P \in RE(\mathcal{H})} \mathbb{E}[err(\hat{h}_n)] \asymp \min\left(\frac{VC(\mathcal{H})}{n}, 1\right)$$

 $ightharpoonup VC(\mathcal{H})$  denotes VC dimension i.e. the size of the largest set that can be shattered by  $\mathcal{H}$ 

We have a dichotomy! Linear or nothing

### **PAC Pessimism**





Figure: The PAC model only captures the pointwise supremum of the expected error i.e. the upper envelope of error decay

$$\inf_{\hat{h}_n} \sup_{P \in RE(\mathcal{H})} \mathbb{E}[\textit{err}(\hat{h}_n)] \asymp \min\left(\frac{\textit{VC}(\mathcal{H})}{n}, 1\right)$$

Minimax error convergence rate is not realistic and overly conservative!



# Universal Learning Rate

## A More Flexible Approach



Uniform learning rate (PAC):

$$\sup_{P \in RE(\mathcal{H})} \mathbb{E}[err(\hat{h}_n)]$$

## A More Flexible Approach



Uniform learning rate (PAC):

$$\sup_{P\in RE(\mathcal{H})}\mathbb{E}[err(\hat{h}_n)]$$

Universal learning rate:

$$\mathbb{E}[err(\hat{h}_n)] \ \forall P$$



#### Definition

 $\mathcal{H}$  is learnable at rate R if  $\exists \hat{h}_n$  s.t.  $\forall P \in RE(\mathcal{H}), \ \exists c, C > 0$  s.t.  $\mathbb{E}[err(\hat{h}_n)] \leq CR(cn) \ \forall n$ 

ightharpoonup c, C can depend on  $P \rightarrow$  distribution-dependent learning rates





### Example

Any finite class  ${\cal H}$  is universally learnable at an  $\underline{\text{exponential}}$  rate.



### Example

Any finite class  ${\cal H}$  is universally learnable at an exponential rate.

### Proof.

Take  $\epsilon = \min_{h \in \mathcal{H}, err(h) > 0} err(h)$  and let  $h^*$  be the target classifier.

For any  $\hat{h}_n$  that fits all training data

$$P\{\hat{h}_n \neq h^*\} \leq |\mathcal{H}|(1-\epsilon)^n$$

Thus,

$$\mathbb{E}[err(\hat{h}_n)] \leq Ce^{-cn}$$

for some C, c depending on  $|\mathcal{H}|, P$ 





### Example

Any finite class  $\mathcal H$  is universally learnable at an  $\underline{\text{exponential}}$  rate.

### Proof.

Take  $\epsilon = \min_{h \in \mathcal{H}, err(h) > 0} err(h)$  and let  $h^*$  be the target classifier.

For any  $\hat{h}_n$  that fits all training data

$$P\{\hat{h}_n \neq h^*\} \leq |\mathcal{H}|(1-\epsilon)^n$$

Thus,

$$\mathbb{E}[err(\hat{h}_n)] \leq Ce^{-cn}$$

for some C, c depending on  $|\mathcal{H}|, P$ 

How much additional granularity does this provide?

# A Fundamental DiTrichotomy



#### **Theorem**

For every concept class  ${\cal H}$  with  $|{\cal H}| \geq 3$ , exactly one of the following holds

- 1.  $\mathcal{H}$  is learnable with optimal rate  $e^{-n}$ .
- 2.  $\mathcal{H}$  is learnable with optimal rate  $\frac{1}{n}$ .
- 3.  $\mathcal{H}$  requires arbitrarily slow rates.



# Background

### Littlestone Trees



#### Definition

A <u>Littlestone tree</u> for  $\mathcal{H}$  is a complete binary tree of depth  $d \leq \infty$  such that each finite path emanating from the root is consistent with a concept  $h \in \mathcal{H}$ . We say that  $\mathcal{H}$  has an infinite Littlestone tree if there is a Littlestone tree for  $\mathcal{H}$  of depth  $d = \infty$ 



Figure: A Littlestone tree of depth 3

In online learning, finite Littlestone *dimension* yields algorithms that make finitely many errors on any adversarial sequence of points

## VC-Littlestone (VCL) Trees





Figure: A VCL tree of depth 3

### Gale-Stewart Games



- ▶ Fix sets  $\mathcal{X}_t, \mathcal{Y}_t, t \geq 1$
- ▶ In each round player A  $(P_A)$  selects an element  $x_t \in \mathcal{X}_t$ , and then player B  $(P_B)$  selects  $y_t \in \mathcal{Y}_t$
- lackbox define the winning set of  $P_B$  as  $W\subseteq\prod_{t\geq 1}(\mathcal{X}_t imes\mathcal{Y}_t)$
- ▶ If  $(x_1, y_1, x_2, ...) \in W$ ,  $P_B$  wins; else,  $P_A$  wins
- ▶ W is called finitely decidable if for every sequence in W there is some finite n such that  $(x_1, y_1, \ldots, x_n, y_n, x'_{n+1}, y'_{n+1}, \ldots) \in W$  for all x', y' Such a finitely decidable infinite game is called a Gale-Stewart game

#### **Theorem**

In a Gale-Stewart game, one of the players has a winning strategy.

Can be shown via topological argument: A's winning sequence is a closed set



### Main Result

# A Fundamental DiTrichotomy



#### **Theorem**

For every concept class  ${\cal H}$  with  $|{\cal H}| \geq 3$ , exactly one of the following holds

- 1.  $\mathcal{H}$  is learnable with optimal rate  $e^{-n}$ .
- 2.  $\mathcal{H}$  is learnable with optimal rate  $\frac{1}{n}$ .
- 3.  $\mathcal{H}$  requires arbitrarily slow rates.

## A Fundamental DiTriTree-chotomy



#### **Theorem**

For every concept class  $\mathcal H$  with  $|\mathcal H| \geq 3$  the following hold:

- 1. If  $\mathcal{H}$  does not have an infinite Littlestone tree, then  $\mathcal{H}$  is learnable with optimal rate  $e^{-n}$ .
- 2. If  $\mathcal{H}$  has an infinite Littlestone tree but does not have an infinite VCL tree, then  $\mathcal{H}$  is learnable with optimal rate  $\frac{1}{n}$ .
- 3. If  ${\cal H}$  has an infinite VCL tree, then  ${\cal H}$  requires arbitrarily slow rates.

### **Proof Outline**



#### **Claims**

### 1. Exponential Rates

Any  $\mathcal{H}$  is learnable at an exponential rate iff it has no infinite Littlestone tree. Otherwise it is learnable no faster than linear.

### 2. Linear Rates

Any  $\mathcal{H}$  is learnable at rate  $\frac{1}{n}$  iff it has no infinite VCL tree. Otherwise  $\mathcal{H}$  requires arbitrarily slow rates.

### **Proof Outline**



#### Claims

Exponential Rates
 Any H is learnable at an exponential rate iff it has no infinite Littlestone tree.

Otherwise it is learnable no faster than linear.

### 2. Linear Rates

Any  $\mathcal{H}$  is learnable at rate  $\frac{1}{n}$  iff it has no infinite VCL tree. Otherwise  $\mathcal{H}$  requires arbitrarily slow rates.

#### **Proof Outline**

- Construct a Gale-Stewart game
- 2. Translate the game into an online learning result
- Use data-splitting and voting to obtain the rate bound



### Consider the following game

- ▶ Player A proposes a point  $x_1 \in \mathcal{X}$
- ▶ B proposes a label for that point  $y_1 \in \{0,1\}$
- Repeat ad infinitum
- ightharpoonup B wins if at some point, there are no classifiers in  ${\cal H}$  that can fit the entire sequence



### Consider the following game

- ▶ Player A proposes a point  $x_1 \in \mathcal{X}$
- ▶ B proposes a label for that point  $y_1 \in \{0,1\}$
- ► Repeat ad infinitum
- ightharpoonup B wins if at some point, there are no classifiers in  ${\cal H}$  that can fit the entire sequence

#### Recall

#### **Theorem**

In a Gale-Stewart game, one of the players has a winning strategy.



- If A has a winning strategy, we can use it to construct an infinite Littlestone tree
- ▶ Thus if there is no infinite Littlestone tree, then B has a winning strategy
- ► There is some finite *m* such that any candidate classifier can be contradicted with *m* points
- ▶ Express that strategy as  $g_{S_m}$ :  $\{x_i, y_i\}_{i=1}^m \times \mathcal{X} \rightarrow \{0, 1\}$



**Online learning setting:** Observe  $X_i$ , predict  $\hat{Y}_i$ , observe  $Y_i$ , ...



### **Online learning setting:** Observe $X_i$ , predict $\hat{Y}_i$ , observe $Y_i$ , ... Let's

use B's winning strategy to make an online learner:

- 1. Initialize m = 0,  $S_m = \{\}$ ,  $\hat{f}_m(x) = 1 g_{S_m}(x)$
- 2. For each i = 1, 2, ...
  - 2.1 Predict  $\hat{f}_m(X_i)$
  - 2.2 If prediction is incorrect
    - ▶ Increment m
    - ▶ Append new pair  $(X_i, Y_i)$  to  $S_m$
    - $\hat{f}_m(x) = 1 g_{S_m}(x)$



**Online learning setting:** Observe  $X_i$ , predict  $\hat{Y}_i$ , observe  $Y_i$ , ... Let's

use B's winning strategy to make an online learner:

- 1. Initialize m = 0,  $S_m = \{\}$ ,  $\hat{f}_m(x) = 1 g_{S_m}(x)$
- 2. For each i = 1, 2, ...
  - 2.1 Predict  $\hat{f}_m(X_i)$
  - 2.2 If prediction is incorrect
    - ► Increment *m*
    - ▶ Append new pair  $(X_i, Y_i)$  to  $S_m$
    - $\hat{f}_m(x) = 1 g_{S_m}(x)$

Because B wins after finite time, this algorithm will make finitely many mistakes



- ▶ The online learner yields a consistent algo in the original setting
- ▶ By splitting data into batches, training multiple classifiers, and voting we can achieve exponential rate via Hoeffding's



- ▶ The online learner yields a consistent algo in the original setting
- By splitting data into batches, training multiple classifiers, and voting we can achieve exponential rate via Hoeffding's

Any  ${\cal H}$  is learnable at an exponential rate iff it has no infinite Littlestone tree.

### **Exponential Rates**



### Example

Consider the class of threshold functions  $\mathcal{H}:=\{\mathbf{1}_{x\geq t},t\in\mathbb{N}\}$ . This class is learnable at an exponential rate.



## Exponential Rates



### Example

Consider the class of threshold functions  $\mathcal{H}:=\{\mathbf{1}_{x\geq t},t\in\mathbb{N}\}$ . This class is learnable at an exponential rate.

### Proof.

Once the corresponding Littlestone tree branches right, it can only branch left finitely many times



### **Exponential Rates**



### Example

Consider the class of threshold functions  $\mathcal{H}:=\{\mathbf{1}_{x\geq t}, t\in\mathbb{N}\}$ . This class is learnable at an exponential rate.

### Proof.

Once the corresponding Littlestone tree branches right, it can only branch left finitely many times



Note that this example has VC dimension 1, but VC only provides a linear learning rate

# **Exponential Rates**



### Example

Consider the class of disjoint unions of finite sets. Define  $\mathcal{X} = \cup_k \mathcal{X}_k$  where  $|\mathcal{X}_k| = k$ . Let  $\mathcal{H} = \cup_k \mathcal{H}_k$  where  $\mathcal{H}_k = \{\mathbf{1}_S : S \subseteq \mathcal{X}_k\}$ . This class is learnable at an exponential rate.

# **Exponential Rates**



### Example

Consider the class of disjoint unions of finite sets. Define  $\mathcal{X} = \cup_k \mathcal{X}_k$  where  $|\mathcal{X}_k| = k$ . Let  $\mathcal{H} = \cup_k \mathcal{H}_k$  where  $\mathcal{H}_k = \{\mathbf{1}_S : S \subseteq \mathcal{X}_k\}$ . This class is learnable at an exponential rate.

#### Proof.

Similar to the previous slide, once you hit a positive point and the Littlestone tree branches right, you can only branch right finitely many more times.

This class has <u>unbounded VC dimension</u> but is still learnable at an exponential rate!



### Consider the following game

- ▶ Player A proposes a point  $x_1 \in \mathcal{X}$
- ▶ B proposes a label for that point  $y_1 \in \{0,1\}$
- ► A proposes two points
- ► B proposes two labels
- **.**..
- ightharpoonup B wins if at some point, there are no classifiers in  ${\cal H}$  that can fit the entire sequence



### Consider the following game

- ▶ Player A proposes a point  $x_1 \in \mathcal{X}$
- ▶ B proposes a label for that point  $y_1 \in \{0,1\}$
- A proposes two points
- ► B proposes two labels
- **.** . . .
- ightharpoonup B wins if at some point, there are no classifiers in  ${\cal H}$  that can fit the entire sequence

#### Recall

- ▶ If A has a winning strategy, then there is an infinite VCL tree
- ▶ If no infinite VCL tree, then B has a winning strategy



Use B's winning strategy to make an online learner

- 1. Initialize  $m = 0, S_m = \{\}$ , B's winning strategy is  $g_{S_m}(x_1, \dots, x_{m+1})$
- 2. For each i = 1, 2, ...
  - 2.1 If there exists m + 1 points that match B's prediction
    - ▶ Increment m
    - ▶ Append  $\{(X_{i_1}, Y_{i_1}), \dots, (X_{i_{m+1}}, Y_{i_{m+1}})\}$  to  $S_m$



Use B's winning strategy to make an online learner

- 1. Initialize  $m = 0, S_m = \{\}$ , B's winning strategy is  $g_{S_m}(x_1, \dots, x_{m+1})$
- 2. For each i = 1, 2, ...
  - 2.1 If there exists m+1 points that match B's prediction
    - ▶ Increment m
    - Append  $\{(X_{i_1}, Y_{i_1}), \dots, (X_{i_{m+1}}, Y_{i_{m+1}})\}$  to  $S_m$

## From realizability assumption

- We know this terminates at some point
- ▶ For some m, every m+1 points have a pattern that cannot be fit by the class
- Analogous to VC dim m
- Again apply data-splitting and voting to obtain our  $\frac{1}{n}$  rate

## Linear Rates



#### Example

Consider  $\mathcal{X} = \mathbb{R}$  and  $\mathcal{H} = \{x \to h(x)\mathbb{I}[x \in (i-1,i] : i \in \mathbb{N}, h \in \mathcal{H}_i\}$  where  $\mathcal{H}_i$  have finite VC dimension (e.g. unions of intervals). This class is learnable at a linear rate.



## Linear Rates



#### Example

Consider  $\mathcal{X} = \mathbb{R}$  and  $\mathcal{H} = \{x \to h(x)\mathbb{I}[x \in (i-1,i] : i \in \mathbb{N}, h \in \mathcal{H}_i\}$  where  $\mathcal{H}_i$  have finite VC dimension (e.g. unions of intervals). This class is learnable at a linear rate.



#### Proof.

Once the VCL tree branches once (i.e. you encounter a positive example), you are left with a class of finite VC dimension. This bounds the size of possible shattered sets and, hence, the depth of the VCL tree.



# Conclusion

# Summary and Next Steps



### Summary

- Reframed fundamental learning theory questions (universal/uniform rates)
- Uncovered a fundamental trichotomy of error convergence rates
- Fully characterized the classes that fit into each of three rates
- Showed intimate connections between convergence rates, combinatorial structures, and online learning

# Summary and Next Steps



### Summary

- Reframed fundamental learning theory questions (universal/uniform rates)
- Uncovered a fundamental trichotomy of error convergence rates
- Fully characterized the classes that fit into each of three rates
- Showed intimate connections between convergence rates, combinatorial structures, and online learning

### **Next Steps**

- Extension to agnostic setting
- Extension to noisy setting
- Understanding or bounding distribution-dependent constants



# Thank You!