Projekt

Sterowniki robotów

Raport

Humanistycznie upośledzony robot akrobatyczny

HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\frac{Prowadzący:}{\text{mgr inż. Wojciech DOMSKI}}$

Spis treści

1	Konfiguracja mikrokontrolera		
	1.1 Konfiguracja pinów	2	
2	Urządzenia zewnętrzne	2	
3	Projekt elektroniki	2	
	3.1 Schemat elektryczny połączenia z fotorezystorami	2	
	3.2 Regulacja położenia wertykalnego	2	
	3.3 Regulacja położenia horyzontalnego	3	
4	Konstrukcja mechaniczna	4	
5	Opis działania programu	5	
	5.1 Schemat działania programu sterującego platformą	5	
	5.2 Funkcja czytająca natężenie światła	5	
	5.3 Funkcja sterująca silnikiem krokowym	5	
	5.4 Funkcja sterująca serwomechanizmem platformy	6	
	5.5 Funkcje odpowiadające za sprawdzenie czy różnica odczytów jest większa od tolerancji	6	
6	Zrealizowane zadania	6	
	6.1 Wizualizacja	6	
7	rządzenia zewnętrzne 7		
8	Podsumowanie		
Bi	ibilografia	8	

1 Konfiguracja mikrokontrolera

1.1 Konfiguracja pinów

DIN	(D) 1	T3 1 1 / 4 1 1 4
PIN	Tryb pracy	Funkcja/etykieta
A0	Analog Input	LEFT_DOWN_PIN
A1	Analog Input	RIGHT_DOWN_PIN
A2	Analog Input	LEFT_UP_PIN
A3	Analog Input	RIGHT_UP_PIN
0	Rx	RX
1	Tx	TX
5	Digital Output	SERVO_PIN
6	Digital Output	DIRECTION
7	Digital Output	STP

Tabela 1: Konfiguracja pinów mikrokontrolera

2 Urządzenia zewnętrzne

3 Projekt elektroniki

3.1 Schemat elektryczny połączenia z fotorezystorami

Rysunek 1: Schemat elektryczny połączenia z fotorezystorami

3.2 Regulacja położenia wertykalnego i horyzontalnego

Do regulacji położenia wertykalnego robota wykorzystano serwo zamontowane na platformie. Jest ono sterowane za pomocą sygnału PWM z Arduino. Obok silnika krokowego zapewnia poruszanie się robota w kierunku światła. Serwo odpowiada za dokładne ustawienie prostopadle do słońca, podwyższając lub obniżając ścianki na których są zamontowane fotorezystory, natomiast silnik krokowy obraca postawę platformy w kierunku światła.

Rysunek 2: Schemat elektryczny sterowania serwomechanizmem

Rysunek 3: Schemat elektryczny sterowania silnikiem krokowym

4 Konstrukcja mechaniczna

Rysunek 4: Zdjęcie części mechanicznej nr $1\,$

Rysunek 5: Zdjęcie części mechanicznej nr $2\,$

5 Opis działania programu

5.1 Schemat działania programu sterującego platformą

Rysunek 6: Schemat działania programu

5.2 Funkcja czytająca natężenie światła

Jest odpowiedzialna za odczyt wartości i umieszczenie ich w tablicy.

```
void ReadLight()

void ReadLight()

values[0] = analogRead(LEFT_DOWN_PIN);

values[1] = analogRead(RIGHT_DOWN_PIN);

values[2] = analogRead(LEFT_UP_PIN);

values[3] = analogRead(RIGHT_UP_PIN);

}
```

5.3 Funkcja sterująca silnikiem krokowym

Odpowiada za ruch platformy lewo-prawo. Realizuje poruszanie się w kierunku najintensywniejszego odczytu natężenia światła.

```
void SetStepperPosition()
2
     //Jeśli różnica przekracza tolerancję
     if (HorizontalDiff()) {
4
       //Jeśli platforma jest obrócona wertykalnie w drugą stronę zmienia kierunek
           lewo/prawo
       if (sposition > 90) {
6
         //jeśli maksymalny odczyt z lewej strony
7
         if ((pos == 0) || (pos == 2))
8
9
         digitalWrite(DIRECTION, HIGH);
10
         ++StepCounter;
11
12
13
         digitalWrite(DIRECTION, LOW);
14
          -StepCounter;
15
16
17
     else
18
19
       if ((pos == 1) || (pos == 3)) {
20
         digitalWrite(DIRECTION, HIGH);
21
         ++StepCounter;
22
23
       else {
         digitalWrite(DIRECTION, LOW);
24
25
          -StepCounter;
26
27
     //Wykonaj krok
28
     digitalWrite(STP, state);
29
     state = !state;
30
31
32 }
```

5.4 Funkcja sterująca serwomechanizmem platformy

```
1 void SetServoPosition()
2 {
     //Jeśli przekracza tolerancję
     if (VerticalDiff()) {
     //Jeśli maksimalny odczyt na dole
     if ((pos == 0) || (pos == 1)) {
       if (sposition > 0)
          serwo.write(--sposition);
8
9
10
       else {
          if \quad (\,s\,p\,o\,s\,i\,t\,i\,o\,n \,\,<\,\,1\,8\,0\,)
11
            serwo.write(++sposition);
12
13
14
     }
15 }
```

5.5 Funkcje odpowiadające za sprawdzenie czy różnica odczytów jest większa od tolerancji

```
inline bool VerticalDiff()

2 {
3    upMax = ( values[2] > values[3] ? values[2] : values[3] );
4    downMax = ( values[0] > values[1] ? values[0] : values[1] );
5    return ( abs(upMax - downMax) > TOLERANCE ? true : false );
6 }
7
8 inline bool HorizontalDiff()
9 {
10    leftMax = ( values[0] > values[2] ? values[0] : values[2] );
11    rightMax = ( values[1] > values[3] ? values[1] : values[3]);
12    return ( abs(leftMax - rightMax) > TOLERANCE ? true : false);
13 }
```

6 Zrealizowane zadania

6.1 Wizualizacja

Udało się zrealizować wizualizację ukazującą natężenie światła w określonym miejscu w przestrzeni zrealizowaną dla przykładowych danych. Wizualizacja zakłada, że robot będzie poruszał się po polu prostokąta raz przy razie zbierając w ramach możliwości jak najdokładniejsze dane.

Rysunek 7: Przykładowa wizualizacja

7 Urządzenia zewnętrzne

Wykorzystywanym w projekcie urządzeniem zewnętrznym jest czujnik natężenia światła – GY-30-BH1750. Czujnik został zamontowany na górze platformy z fotorezystorami w celu zbierania informacji potrzebnych do wizualizacji.

Rysunek 8: Czujnik wykorzystany na platformie

8 Podsumowanie

Udało się zrealizować większość zadań. Nastąpiły drobne zmiany koncepcyjne jak użycie potencjometru do regulacji prędkości obrotowej napędu. To będzie wymagać mniejszej ingerencji gdy będziemy projektować regulator PID.

Literatura

- [1] Krzysztof Amborski, Andrzej Murusak: Teoria sterowania w ćwiczeniach, ('78)
- [2] Jerzy Brzózka: Regulatory i układy automatyki, (2004)
- [3] Krzysztof Tchoń: Manipulatory i roboty mobilne : modele, planowanie ruchu, sterowanie, (2000)