Assignment # 2 Thomas Bovko

Exercise 1

In the surface M_g of genus g, let C be a circle that separates G_g into two compact subsurfaces M_h' and M_k' obtained from the closed surfaces M_h and M_k by deleting an open disk from each. Show that M_h' does not retract onto its boundary circle C and hence M_q does not retract onto C. [Hint: abelianize π_1 .] But show that M_q does retract onto the nonseparating circle C' in the figure (Hatcher).

Begin with a quick computation of the fundamental group of the punctured surface of genus g, M_a . Recall the construction of M_a consisted of a single 0-cell, 2g 1-cells, and a single 2-cell. Puncturing the 2-cell with a hole or by removing a single point allows us to retract the hole onto the boundary of the cell. After gluing the boundary to the 1-cells, we will just be left with the 1-cells, and we will have a retract onto $\bigvee^{2g} S^1$. And since we know the fundamental group of the wedge sum, we are left with:

$$\pi_1(S^1) = \overbrace{\pi_1(S^1) * \cdots * \pi_1(S^1)}^{\text{2g times}} = \underbrace{\mathbb{Z}_g \text{ times}}_{\mathbb{Z}}.$$

Now suppose for the sake of contradiction that M'_h did retract onto the boundary circle $C \simeq S^1$, for some retraction r. Then the homomorphism induced by the inclusion ι_* : $\pi_1(S_1) \to \pi_1(M_h')$ would be injective, and the composition $r_* \iota_*$ would be identity. Then, applying π_1 and then ab,

$$\pi_{1}(S_{1}) \xrightarrow{\iota_{*}} \pi_{1}(M'_{h}) \xrightarrow{r_{*}} \pi_{1}(S^{1})$$

$$\mathbb{Z} \xrightarrow{\iota_{*}^{ab}} \mathbb{Z}^{2g} \xrightarrow{r_{*}^{ab}} \mathbb{Z}$$

However, since ι_* maps the generator of \mathbb{Z} to some commutator $aba^{-1}b^{-1}$, and abelianization kills all the commutators through the quotient, we must have ι^{ab}_* identically zero (homomorphisms from a cyclic group are determined by their evaluation on generator). This contradicts $r^{ab}_*l^{ab}_*=id^{ab}_*$, and so M'_k cannot retract onto C. Now for C'. Early in Hatcher we identified M_g as a 4g sided polygon, with sides

$$a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}.$$

(in that order). Take the quotient M_g/\sim , where is defined by $a_i\sim a_1$ and $b_i\sim b_1$ for all i. The quotient map $q: M_g \to M_g / \sim = M_1$ then gives a retract of M_g to M_1 , the torus.

We further retract onto the circle C', by viewing M_1 as the typical square with sides $aba^{-1}b^{-1}$. Construct this retract r by retracting a point in the square to the closest point in α . This is clearly continuous except perhaps at the line α^{-1} . However this is not a problem since a^{-1} is identified with a in the construction of the torus.

By composing the retracts,

$$M_g \xrightarrow{q} M_1 \xrightarrow{r} C'$$

We have our retract $M_g \rightarrow C'$