

Aromatic Solvent Induced Shifts

Problem R-90F ($C_{12}H_{14}O_2$). In this problem you are required to determine a structure from the ¹³C and ¹H spectra of a compound. To aid in your analysis, ¹H spectra are provided in both CDCl₃ and C_6D_6 solution.

- (a) DBE____.
- (b) Summarize the information you were able to obtain from your analysis of the ¹³C NMR spectra. Identify part structures that are present in the molecule.

(c) Interpret the signals at δ 6.3 to δ 7.3. What do these signals tell you about the structure? Draw a part structure, and label it with δ and J values taken from the C_6D_6 spectrum. Why is the downfield multiplet so much simpler in the C_6D_6 spectrum?

(d) The multiplet at δ 6.0 in the ¹H NMR spectrum in CDCl₃ is reproduced below. Do a first-order analysis, report multiplicity and J values. What does this signal tell you about the structure?

(e) Interpret the signals δ 5.2 to δ 5.5.

(f) Interpret the signals at δ 4.5. Draw below the structure of **R-90F**.

Problem R-90F ($C_{12}H_{14}O_2$). In this problem you are required to determine a structure from the ¹³C and ¹H spectra of a compound. To aid in your analysis, ¹H spectra are provided in both CDCl₃ and C_6D_6 solution.

- (a) DBE______.
- (b) Summarize the information you were able to obtain from your analysis of the ¹³C NMR spectra. Identify part structures that are present in the molecule.
 - the molecule must have some symmetry only 7 ¹³C NMR signals for 12 carbons
 - the $\mathrm{CH_2}$ at δ 117 must be part of a terminal double bond $\mathrm{H_2C=C}$
 - probably an aromatic compound with symmetrical substitution
 - the peak at 68.7 (t) must be O-CH₂
- (c) Interpret the signals at δ 6.3 to δ 7.3. What do these signals tell you about the structure? Draw a part structure, and label it with δ and J values taken from the C_6D_6 spectrum. Why is the downfield multiplet so much simpler in the C_6D_6 spectrum?

$$R^{1}$$
 R^{2} H^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{4} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2

- this must be a meta-disubstituted benzene, with $R^1=R^2.$ The groups must be electron donating, since all protons are upfield of benzene (at δ 7.3)
- in $CDCl_3$ the aromatic signals are more complicated because H^1 and H^2 are strongly coupled ($\Delta\delta$ comparable to or less than J). Thus H^3 shows virtual coupling effects.
- (d) The multiplet at δ 6.04 in the ¹H NMR spectrum in CDCl₃ is reproduced below. Do a first-order analysis, report multiplicity and *J* values. What does this signal tell you about the structure?

This is a ddt, J = 17.5, 10.5 and 5.4 Hz, which uniquely defines the middle proton of an allyl group

(e) Interpret the signals δ 5.2 to δ 5.5 in CDCl₃.

These are the terminal vinyl protons of the allyl group:

$$\delta$$
 5.25, dq, J = 10.9, 1.6 Hz

$$\delta$$
 5.39, dq, J = 17.8, 1.6 Hz

- The 4J allylic and 2J gem coupling are almost the same, hence the quartet

- since each of the allyl signals is double intensity, there must be two of these
- (f) Interpret the signals at δ 4.5. Draw below the structure of **R-90F**.

$$\delta$$
 4.5, dt, $J = 5.5$, 1.6 Hz

$$^3J = 5$$
 CH_2
 H
 $^2J = 1.6 \text{ Hz}$
 $^4J_{\text{cis}} \approx ^4J_{\text{trans}} \approx 1.6 \text{ Hz}$