Lista 7: Powtórka przed kolokwium

Lista zadań w formacie PDF

Zadania do samodzielnego rozwiązania

- 1. Wybieramy losowo liczbę naturalną z przedziału [1,1000]. Obliczyć prawdopodobieństwo, że wybrana liczba jest podzielna przez co najmniej jedną z liczb: 4, 6, 9.
- 2. Co jest bardziej prawdopodobne: otrzymanie co najmniej jednej jedynki przy rzucie 4 kostek, czy co najmniej raz dwóch jedynek na obu kostkach przy 24 rzutach obu kostek
- 3. Znaleźć prawdopodobieństwo, że przy wielokrotnym rzucaniu parą kostek sześciennych suma oczek 8 wypadnie przed sumą oczek 7.
- 4. Każda z n pałek została złamana na dwie części długą i krótką. 2n części połączono w n par, z których utworzono nowe pałki. Znaleźć prawdopodobieństwo, że
 - a. części zostaną połączone w takich samych kombinacjach jak przed złamaniem;
 - b. wszystkie długie części zostaną połączone z krótkimi.
- 5. Niech $n \in \mathbb{N}$. Losujemy jednostajnie podzbiór $[n] = \{1, 2, ..., n\}$. Skonstruuj odpowiednią przestrzeń probabilistyczną. Dla $k \in [n]$ niech A_k będzie zdarzeniem, że wylosowany zbiór zawiera k. Pokaż, że zdarzenia $\{A_k\}_{k \in [n]}$ są niezależne.
- 6. Niech $n \in \mathbb{N}$. Losujemy jednostajnie podzbiór $\{1, 2, \dots, n\}$. Niech X będzie liczebnością wylosowanego zbioru. Znajdź rozkład X.
- 7. Zdarzenia A i B są niezależne oraz $A \cup B = \Omega$. Wykazać, że $\mathbb{P}(A) = 1$ lub $\mathbb{P}(B) = 1$.
- 8. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną. Dla zdarzeń $\{A_k\}_{k \in [n]}$ i $\{\epsilon_k\}_{k \in [n]} \in \{0, 1\}^n$ niech

$$A_k^{\epsilon_k} = \left\{ \begin{array}{ll} A_k, & \epsilon_k = 1 \\ A_k^c, & \epsilon_k = 0 \end{array} \right..$$

Pokaż, że $\{A_k\}_{k\in[n]}$ są niezależne wtedy i tylko wtedy, gdy dla każdego $\{\epsilon_k\}_{k\in[n]}\in\{0,1\}^n$,

$$\mathbb{P}\left[A_1^{\epsilon_1} \cap A_2^{\epsilon_2} \cap \ldots \cap A_n^{\epsilon_n}\right] = \mathbb{P}\left[A_1^{\epsilon_1}\right] \mathbb{P}\left[A_2^{\epsilon_2}\right] \cdots \mathbb{P}\left[A_n^{\epsilon_n}\right].$$

- 9. Niech Ω będzie zbiorem wszystkich grafów prostych na wierzchołkach $\{1, 2, ..., n\}$. Rozważmy $\mathcal{F} = 2^{\Omega}$ oraz $\mathbb{P}[A] = |A|/|\Omega|$. Dla każdej pary i < j niech $A_{i,j}$ będzie zdarzeniem, że wylosowany graf zawiera krawędź $\{i, j\}$. Pokaż, że $(A_{i,j})_{i < j}$ są niezależne.
- 10. Rozważmy przestrzeń probabilistyczną z poprzedniego zadania. Niech X będzie liczbą trójkątów w wylosowanym grafie, tj. liczbą trójek i < j < k takich, że wylosowany graf zawiera krawędzie $\{i,j\}$, $\{j,k\}$ oraz $\{k,i\}$. Znajdź $\mathbb{E}[X]$.
- 11. Niech

$$\Omega = \{ \omega = (\omega_i)_{i \in [n]} \in \mathbb{N}^n : |\omega_1| = |\omega_i - \omega_{i-1}| = 1 \}$$

Niech $\mathcal{F}=2^{\Omega}$ i $\mathbb{P}[A]=|A|/|\Omega|$. Niech $A_1=\{\omega_1=1\}$. Dla $k\in[n],\,k\geq 2$ połóżmy $A_k=\{\omega_k-\omega_{k-1}=1\}$. Pokaż, że $\{A_k\}_{k\in[n]}$ są niezależne.

- 12. Rozważmy przestrzeń probabilistyczną z poprzedniego zadania. Rozważmy $X(\omega) = \omega_n$. Znajdź rozkład X.
- 13. Na odcinku [0,1]umieszczono losowo punkty A_1 , A_2 i A_3 . Obliczyć prawdopodobieństwo, że $A_1 \leq A_2 \leq A_3$.
- 14. Niech Q będzie wielomianem rzeczywistym stopnia 2n o losowych współczynnikach. Każdy współczynnik jest losowany niezależnie i może wynieść 1 z prawdopodobienstawem p oraz -1 z prawdopodobieństwem 1-p. Znaleźć:

a.
$$\mathbb{P}[Q(2) > 0];$$

b.
$$\mathbb{P}[Q(1) > 0];$$

c.
$$\mathbb{P}[Q(2) > 0|Q(1) > 0]$$
.

15. Przypomnijmy, że

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Rozważny $\Omega = \mathbb{N}$, $\mathcal{F} = 2^{\Omega}$ oraz $\mathbb{P}[\{n\}] = 6n^{-2}\pi^{-2}$. Niech \mathcal{P} oznacza zbiór liczb pierwszych. Pokaż, że $\{p\mathbb{N}\}_{p\in\mathcal{P}}$ są niezależne. Wywnioskuj, że

$$\prod_{p\in\mathcal{P}}\left(1-\frac{1}{p^2}\right)=\frac{6}{\pi^2}.$$

- 16. Rodzina \mathcal{R}_1 składa się z jednego zdarzenia $A = \{1,2\}$ zaś rodzina \mathcal{R}_2 z dwóch zdarzeń $B = \{1,3\}$ i $C = \{2,3\}$. Wiemy, że $\Omega = \{1,2,3,4\}$ i że wszystkie zdarzenia elementarne są jednakowo prawdopodobne. Czy σ -algebry $\sigma(\mathcal{R}_1)$ i $\sigma(\mathcal{R}_2)$ są niezależne?
- 17. Czy funkcja

$$G(x) = \begin{cases} 0, & \text{dla } x \le 0, \\ 1, & \text{dla } x \ge 1, \\ x^2, & \text{dla } 0 \le x < \frac{1}{2}, \\ x, & \text{dla } \frac{1}{2} \le x \le 1 \end{cases}$$

jest dystrybuantą? Naszkicuj wykres funkcji G i wyznacz jej uogólnioną funkcję odwrotną. Znajdź przestrzeń probabilistyczną $(\Omega, \mathcal{F}, \mathbb{P})$ oraz zmienną losową Y, dla której funkcja G jest dystrybuantą. Znajdź $\mathbb{E}[e^Y]$.

- 18. Niech X będzie zmienną losową o gęstości $\alpha x^{\alpha-1}\mathbf{1}_{[0,1]}(x)$. Niech $\varphi(s)=\max\{\frac{1}{4},s-s^2\}$. Oblicz $\mathbb{E}\varphi(X)$.
- 19. Niech F będzie dystrybuantą na \mathbb{R} . Pokaż, że dla dowolnego $a \geq 0$,

$$\int_{\mathbb{R}} F(x+a) - F(x) dx = a.$$

- 20. Z urny, w której jest 6 kul czarnych i 4 białe losujemy kolejno bez zwracania po jednej kuli tak długo, aż wylosujemy kulę czarną. Obliczyć wartość oczekiwaną liczby wylosowanych kul białych.
- 21. Rzucamy sześcienną kostką aż do momentu, gdy wypadną pod rząd dwie "szóstki". Znaleźć wartość oczekiwaną liczby rzutów.
- 22. Niech A_1, A_2, \ldots, A_n będą niezależnymi zdarzeniami o jednakowym prawdopodobieństwie p_n . Przy pomocy nierówności Boole'a oraz nierówności Bonferroniego oszacować (z góry i z dołu)

$$\mathbf{P}_n = \frac{\mathbb{P}[\bigcup_{i=1}^n A_i]}{np_n}.$$

Jak sprawdza się to szacowanie dla $p_n=1/n$? Wyznaczyć $\lim_{n\to\infty} \mathbf{P}_n$ w przypadku, gdy $\lim_{n\to\infty} np_n=0$.