Evaluate
$$\int \frac{\sqrt{16-x^2}}{x^2} dx$$

= $\int \frac{4\cos(0)}{16\sin^2(0)} \cdot 4\cos(0) d0$

= $\int \frac{4\cos(0)}{16\sin^2(0)} \cdot 4\cos(0) d0$

= $\int \frac{4\cos(0)}{16\sin^2(0)} d0$

Cos(0) = $\frac{\sqrt{4^2-x^2}}{4}$

Sin(0) = $\frac{x}{4}$

= $\int \cot^2(0) d0$
 $\int \frac{x^2-x^2}{4} \cdot 4\cos(0)$
 $\int \frac{x}{4} \cdot 4\sin(0)$

= $\int \csc^2(0) - 1 d0$
 $\int \frac{x}{4} \cdot 4\sin(0)$

= $-\cot^2(0) \cdot 4$
 $\int \cot^2(0) \cdot 4$
 $\int \cot^2$

$$=\frac{1}{5}\int \frac{1}{\sin(\theta)} \cdot \frac{\sin(\theta)}{(\omega^{3}(\theta))} d\theta \qquad + \tan(\theta) = \frac{1}{5}\int \frac{1}{\cos(\theta)} \cdot \frac{2}{5}\chi \qquad + \frac{2}{5}\int \frac{1}{\cos(\theta)} d\theta \qquad + \frac{1}{5}\int \frac{1}{\cos(\theta)} d\theta \qquad + \frac{2}{5}\int \frac{1}{\cos(\theta)} d\theta \qquad + \frac{2}{5}\int$$

$$= \int_{0}^{26} \frac{125 \text{ Sin}^{2}(0)}{8 (\cot \theta)} \cdot 8 (\cot \theta) d\theta$$

$$= |25| \int_{0}^{26} \frac{1}{5 \text{ In}^{2}(0)} \sin(\theta) d\theta$$

$$= |25| \int_{0}^{26} \frac{1}{5 \text{ In}^{2}(0)} d\theta$$

$$= |25| \int_{0}^{26} \frac{1}{5$$

Evaluate
$$\int \frac{x^2}{(1-16x^2)^{3/2}} dx$$

= $\int \frac{x^2}{(1-6x^2)^{3/2}} dx$

- $\int \frac{x^2}{(1-6x^2)^{3/2}} dx$

- $\int \frac{x^2}{(1-6x^2)^{3/2}} dx$

- $\int \frac{x^2}{(1-16x^2)^{3/2}} dx$

- $\int \frac{x}{(1-16x^2)^{3/2}} dx$

-
$$\int \frac{4}{4 \cdot \cos(\theta)} \cdot 4 \cdot \cos(\theta) \cdot \cos(\theta) d\theta$$
 ton(0) = $\frac{4}{4}$ (cs(0) =

$$= 9 \int \sec^{3}(0) d\theta - |v_{1}(1 + c_{1}(0) - \sec(0)|) d\theta = 3 \sec^{3}(0) d\theta$$

Rest of this was not worth the effort

Evaluate $\int \cos(x) \sqrt{9 - 5 \sin^{3}(x)} dx$
 $v = \sin(x)$

$$= \int 9 - v^{3} dv$$

$$= 1 \int \cos^{3}(0) d\theta$$

$$= 1 \int \cos^{3}(0) d\theta$$

$$= 9 \int \frac{1}{2} \left[1 + (\cos(2\theta)) d\theta \right] d\theta$$

$$= \frac{9}{2} \int 1 + (\cos(2\theta)) d\theta$$

$$= \frac{9}{2}$$

= 2	avesin	(<u>Sin(x</u> 3)+ 1	Sin	(2 <i>a</i> u	sin(<u>Siv(x)</u> 3	(¹))))	+C	<u>d</u> ;	(=3 <u>(</u>	<u>cs(e</u>	es de	<u>Y</u>		