# Vehicle to Vehicle (V2V) Communication System

Prepared by:

**Deep Alpesh Patel** 

Total Quality Project Management (INSE 6230, Summer 2019) Faculty Mentor: Dr. Amin Hammad

> Concordia University Montreal, Canada

### Outline

- Introduction
- Scope of V2V
- SWOT Analysis
- WBS (Mind Mapping approach)
- Gantt Chart
- Weighted Score Metric
- Cost Estimation
- Probability / Impact Matrix
- Risk Breakdown Structure
- Future of V2V Systems

### Introduction

#### What is V2V?

V2V is a crash avoidance technology, which relies on communication of information between nearby vehicles to potentially warn drivers about dangerous situations that could lead to a crash. For example, V2V could help warn a driver that a vehicle up ahead is braking and they need to slow down, or let a driver know that it's not safe to proceed through an intersection because another car (yet unseen by the driver) is quickly approaching.

#### How does V2V work?

V2V communications systems are composed of devices, installed in vehicles, that use dedicated short-range radio communication (DSRC) to exchange messages containing vehicle information (e.g., vehicle's speed, heading, braking status). V2V devices use this information from other vehicles and determine if a warning to the vehicle's driver is needed, which could prevent a vehicle crash.



Credits: https://daseuropeanautohaus.com/is-a-v2v-communication-system-worth-it/

### Introduction



#### **Intersection Movement Assist**

IMA warns the driver when it's not safe to enter an inter- section because of an increased potential for colliding with one or more vehicles.



#### **Left Turn Assist**

LTA warns the driver when there is strong probability they will collide with an oncoming vehicle when making a left turn. This is especially critical when the driver's line-of- sight is blocked by a vehicle also making a left turn from the opposite direction.



#### **Emergency Electronic Brake Light**

Emergency Electronic Brake Light (EEBL) warns the driver to be prepared to take action when a V2V-equipped vehicle traveling in the same direction but not in the driver's line-of-sight decelerates quickly. V2V would allow the driver to "see through" vehicles or poor weather conditions and know if traffic ahead may be coming to an abrupt stop.



#### **Forward Collision Warning**

Forward Collision Warning (FCW) warns the driver of the risk of an impending rear-end collision with a vehicle ahead in traffic in the same lane and direction of travel.



#### **Do-Not-Pass Warning**

Do-Not-Pass Warning (DNPW) warns the driver that it is not safe to pass a slower-moving vehicle when vehicles are approaching from the opposite direction.



#### Green Light Optimised Speed Advisory

This will enable a smoother traffic flow and optimum efficiency by avoiding unnecessary braking and acceleration. The application can also display the remaining time till green in case the light is red, and so mitigates rider's stress.



### SWOT Analysis

#### Strengths

- Provide accessibility to all drivers
- Increases safety and comfort
- Smooth traffic flow
- Potential to decrease the number of road accidents.
- Potential to decrease the number of parking spaces needed

#### weaknesses

- Costs
- Most of the countries do not have legislation that allows the use of autonomous vehicles on non-dedicated infrastructure. This is the reality in the Netherlands today.
- Electronic security: there may be hacking of the vehicle management system.
- Limited wireless/telecom bandwidth availability for V2V communication.
- New vehicle models needed to cope with the greater usage intensity of each vehicle.

### SWOT Analysis

#### **Opportunities**

- Potential to increase road capacity (shorter headways) and thereby reduce congestion.
- Technology maturity may reduce system cost.
- sustainability might increase by more fuel efficient driving
- Increasing cooperation with AI-software/IT specialist and automotive industry concentrating on development of solutions for automated driving.

#### **Threats**

- Technology investments needed for supporting the use of the automated vehicle may not be possible due to lack of funds.
- Fusion of image and non image data cannot be solved accurately
- Uncertainty regarding bandwidth and electromagnetic interference
- Lack of sufficient training data

### Work Breakdown Structure



### Mind Map





01 Octo

29-9

22-9



|    | 0 | Task<br>Mode | Task Name                                                      |   |  |
|----|---|--------------|----------------------------------------------------------------|---|--|
| 24 |   | ->           | Review functional specifications                               | 7 |  |
| 25 |   | <b>→</b>     | Incorporate feedback into functional specifications            |   |  |
| 26 |   | <b>→</b>     | Obtain approval to proceed                                     |   |  |
| 27 |   | ->           | Design complete                                                |   |  |
| 28 |   | *            | ▲ Hardware and Software                                        |   |  |
| 29 |   | <b>→</b>     | Hardware Development                                           |   |  |
| 30 |   | <b>→</b>     | Sotfware Develoment                                            |   |  |
| 31 |   | <b>→</b>     | Testing of Sofware                                             |   |  |
| 32 |   | <b>→</b>     | Tesing of Hardware Components                                  |   |  |
| 33 |   | *            | ▲ Integration                                                  |   |  |
| 34 |   | <b>-</b> >   | Integration of Software                                        |   |  |
| 35 |   | <b>→</b>     | Testing after Integration                                      |   |  |
| 36 |   | *            | ▲ Networks                                                     |   |  |
| 37 |   | <b>→</b>     | Create Networks                                                |   |  |
| 38 |   | *            | ■ Data Collection & Management                                 |   |  |
| 39 |   | <b>→</b>     | Creation of Data Centers                                       |   |  |
| 40 |   | <b>→</b>     | Sending& Receiving from                                        |   |  |
| 41 |   | *            | <b>▲</b> Testing                                               |   |  |
| 42 |   | <b>→</b>     | Develop unit test plans using<br>product specifications        |   |  |
| 43 |   | <b>→</b>     | Develop integration test plans<br>using product specifications |   |  |
| 44 |   | ->           | ■ Unit Testing                                                 |   |  |
| 45 |   | <u>→</u>     | Review modular code                                            |   |  |
| 46 |   | <b>→</b>     | Test component modules to<br>product specifications            |   |  |
| 47 |   | <u></u>      | Identify anomalies to product                                  |   |  |
| 48 |   |              | Modify code                                                    |   |  |







Project duration : ~ 1 year

Start Date : 01/07/2019

Closing Date : ~ 02/07/2020

### Weighted Score Metric

| Weight | Kymeta                         | Autotalks                                      | Veniam                                                      |                                                                              |
|--------|--------------------------------|------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|
|        |                                |                                                |                                                             |                                                                              |
| 40%    | 85                             | 87                                             | 77                                                          |                                                                              |
| 5%     | 95                             | 75                                             | 26.9                                                        |                                                                              |
| 20%    | 100                            | 100                                            | 95                                                          |                                                                              |
| 10%    | 90                             | 100                                            | 90                                                          |                                                                              |
| 25%    | 70                             | 65                                             | 81                                                          |                                                                              |
| 100%   | 85.25                          | 84.8                                           | 80.395                                                      |                                                                              |
|        |                                |                                                |                                                             |                                                                              |
|        | 40%<br>5%<br>20%<br>10%<br>25% | 40% 85<br>5% 95<br>20% 100<br>10% 90<br>25% 70 | 40% 85 87   5% 95 75   20% 100 100   10% 90 100   25% 70 65 | 40% 85 87 77   5% 95 75 26.9   20% 100 100 95   10% 90 100 90   25% 70 65 81 |



### Cost Estimation

|                                                           | Subtotals | WBS Level 1 Totals                      | % of Total |
|-----------------------------------------------------------|-----------|-----------------------------------------|------------|
| 1. Project Management                                     | +         | \$84,380                                | 48%        |
| 1.1 Project manager                                       | \$40,000  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |
| 1.2 Project development team                              | \$24,000  |                                         |            |
| 1.3 Project testing team                                  | \$18,000  |                                         |            |
| 1.4 Contractors (10% of software development and testing) | \$2,380   |                                         |            |
| 2. Hardware                                               |           | \$23,208                                | 13%        |
| 2.1 DSRC Radios                                           | \$18,999  |                                         |            |
| 2.2 DSRC Antenna                                          | \$900     |                                         |            |
| 2.3 GPS systems                                           | \$800     |                                         |            |
| 2.4 GPS antenna                                           | \$1,200   |                                         |            |
| 2.5 Wiring                                                | \$90      |                                         |            |
| 2.7 DSRC Transmitter/Receiver                             | \$799     |                                         |            |
| 2.8 Displays                                              | \$420     |                                         |            |
| 3. Software                                               |           | \$20,799                                | 12%        |
| 3.1 Licensed software                                     | \$799     |                                         |            |
| 3.2 Software development                                  | \$20,000  |                                         |            |
| 4. Network                                                |           | \$39,000                                | 22%        |
| 4.1 Data Servers                                          | \$8,000   |                                         |            |
| 4.2 Configure the server to work as Web Server            | \$2,000   |                                         |            |
| 4.3 Secure the connection                                 | \$12,000  |                                         |            |
| 4.4 Prototype Development                                 | \$17,000  |                                         |            |
| 5. Testing                                                | \$7,000   | \$3,000                                 | 2%         |
| 6. Installation                                           | \$1,499   | \$999                                   | 1%         |
| 7. Support                                                |           | \$1,899                                 | 1%         |
| 7.1 Maintenance cost                                      | \$2,999   |                                         |            |
| 8. Publicity/ Advertisement                               | \$2,400   | \$2,400                                 | 1%         |
| Total project cost estimate                               |           | \$1,75,685                              |            |

### Probability / Impact Matrix

| No. | Risk                                                      | Probability | Impact |
|-----|-----------------------------------------------------------|-------------|--------|
| R1  | Software Manipulation                                     | Low         | Medium |
| R2  | Sensor Manipulation                                       | Low         | High   |
| R3  | Jamming the channel                                       | Low         | Medium |
| R4  | Send false messages that cause true messages to be ignore | Medium      | High   |
| R5  | Privacy leakage                                           | Medium      | Medium |



### Risk Breakdown Structure



# Future of V2V Systems











# Thank You