ENGR 065 Electric Circuits

Lecture 17 Some Practice Problems

Example #1(p13.10)

- a) Find i_0 for $t \ge 0$.
- b) Find v_0 for $t \ge 0$.

Example #1(p13.10)

- a) Find i_0 for $t \ge 0$.
- b) Find v_0 for $t \ge 0$.

Example #1(p13.10)

- a) Find i_0 for $t \ge 0$.
- b) Find v_0 for $t \ge 0$.

- a) Construct the s-domain equivalent circuit for t > 0.
- b) Find I_0 .
- c) Find i_0 for $t \ge 0$.

- a) Construct the s-domain equivalent circuit for t > 0.
- b) Find I_0 .
- c) Find i_0 for $t \ge 0$.

- a) Construct the s-domain equivalent circuit for t > 0.
- b) Find I_0 .
- c) Find i_0 for $t \ge 0$.

- a) Construct the s-domain equivalent circuit for t > 0.
- b) Find I_0 .
- c) Find i_0 for $t \ge 0$.

Example #3 (p13.25)

There is no energy stored in the circuit at the time the switch is closed.

- a) Find v_0 for $t \ge \overline{0}$.
- b) Does your solution make sense in the terms of known circuit behavior? Why?

Example #3 (p13.25)

There is no energy stored in the circuit at the time the switch is closed.

- a) Find v_0 for $t \ge 0$.
- b) Does your solution make sense in the terms of known circuit behavior? Why?

Example #3 (p13.25)

There is no energy stored in the circuit at the time the switch is closed.

- a) Find v_0 for $t \ge 0$.
- b) Does your solution make sense in the terms of known circuit behavior? Why?

Example #4 (p13.29)

The switch in the circuit has been in position \mathbf{a} for a long time. At t = 0, it moves instantaneously to position \mathbf{b} .

- a) Find V_0 .
- b) Find v_0 .

Example #4 (p13.29)

The switch in the circuit has been in position \mathbf{a} for a long time. At t = 0, it moves instantaneously to position \mathbf{b} .

- a) Find V_0 .
- b) Find v_0 .

Example #4 (p13.29)

The switch in the circuit has been in position \mathbf{a} for a long time. At t = 0, it moves instantaneously to position \mathbf{b} .

- a) Find V_0 .
- b) Find v_0 .

Example #5 (p13.48)

The initial energy stored in the above circuit is zero. Find $v_0(t)$ if the ideal op amp operates within its linear range and $v_g = 4.8u(t) \, mV$. If $v_g = 4\cos(2t + 45^0) \, u(t) \, mV$, what is the steady-state $v_{oss}(t)$?

Example #5 (p13.48)

The initial energy stored in the above circuit is zero. Find $v_0(t)$ if the ideal op amp operates within its linear range and $v_q = 4.8u(t)$ mV. If $v_q = 4\cos(2t + 45^0)u(t)$ mV, what is the steady-state $v_{oss}(t)$?

Example #5 (p13.48)

The initial energy stored in the above circuit is zero. Find $v_0(t)$ if the ideal op amp operates within its linear range and $v_q = 4.8u(t)$ mV. If $v_q = 4\cos(2t + 45^0)u(t)$ mV, what is the steady-state $v_{oss}(t)$?

