

A cardinality-constrained approach for robust machine loading problems

Giovanni Lugaresi Politecnico di Milano

Ettore Lanzarone CNR-IMATI

Nicla Frigerio Politecnico di Milano

Andrea Matta Politecnico di Milano

Contents

<u>About</u>

This work develops a robust formulation of an MLP, based on the cardinality-constrained approach, to evaluate the optimal solution in the presence of a given number of fluctuations of the processing times. The applicability of the model in the practice has been tested on a case study.

Table of contents

- Motivations and scope of work
- Literature
- The Cardinality- constrained approach
- Machine Loading Problem: Deterministic and Robust Formulation
- Case Study
- Results
- Final remarks

Time to repair a machine: 5 ± 2 min

Motivation: uncertainty in manufacturing

Robust Optimization models

Motivation: uncertainty in manufacturing

27/06/2017 FAIM 2017

Motivation: uncertainty in manufacturing

Robust Optimization models

The cardinality-constrained approach

Time to repair machines: 5 ± 2 min

M1

M2

M3

CLASSICAL ROBUST OPTIMIZATION

- Find the system design that withstands this situation
- Conservative solutions are usually found this way

MIN	Nominal value	MAX

CARDINALITY-CONSTRAINED

- Only a subset of parameters vary to their maximum value
- Combinatorial nature of the problem: which of the combinations is to be chosen?
 The one that causes the worst effect.

27/06/2017 FAIM 2017 11

The cardinality-constrained approach

Starting from a classical Mathematical Programming problem, we assume we can provide a range for its coefficients, then: $\tilde{a}_{ij} \in [\bar{a}_{ij} - \hat{a}_{ij}, \bar{a}_{ij} + \hat{a}_{ij}]$

ASSUMPTION At maximum Γ_i coefficients \tilde{a}_{ij} go to the maximum value $\bar{a}_{ij} + \hat{a}_{ij}$ together $\forall i$

Γ_i IS THE CARDINALITY

The approach permits to select a constraint over which up to Γ coefficients go to the maximum value, where those coefficients are the ones causing the worst impact

WHICH ONES?

THE ONES CAUSING THE WORST IMPACT

Bertsimas & Sim, "The price of robustness", Operations Research (2004)

The cardinality-constrained approach

Sub-problem: worst case selection

$$\begin{cases} \sum_{j} z_{ij} \leq \Gamma_{i} \\ z_{ij} \leq 1 \ \forall j \\ z_{ij} \geq 0 \ \forall j \end{cases}$$

Dual

$$min \ \Gamma_i z_i + \sum_j p_{ij}$$

s.t.
$$\begin{cases} z_i + p_{ij} \ge \hat{a}_{ij} x_j \ \forall j \\ z_i \ge 0 \ \forall j \\ p_{ij} \ge 0 \ \forall j \end{cases}$$

It is possible to reduce all to one single optimization problem!

Why we have chosen this approach

- ✓ Linear formulation.
- ✓ Intuitive meaning of the approach.
- ✓ No need of probability distributions.
- ✓ Ability to "tune" the number of events (level of robustness).
- ✓ One single Mathematical Programming Problem.
- Overcomes Stochastic Programming drawbacks.

Assumptions

Sodhi, Askin, Sen, "Multiperiod Tool and Production Assignment in Flexible Manufacturing Systems", International Journal of Production Research (1994)

Production System

Production

Assumptions

- The time horizon corresponds to the production planning period
- A single time period is the time interval between two tool changeovers.
- No tool transportation system is present. Thus, it is not possible to change tool without stopping the production.
- In each time period t, a machine m can process work-pieces with a certain time availability A_{mt} (shift)
- The model does not consider workload balancing among machines
- Tool storage capacity is limited
- The batch of part types has been already selected in a previous step. The MLP model assigns production quantities, which are assumed to be continuous variables (partial production is allowed).

Sodhi, Askin, Sen, "Multiperiod Tool and Production Assignment in Flexible Manufacturing Systems", International Journal of Production Research (1994)

Assumptions

Production Plan

P1 P2 P3 P4

Work-pieces

Sodhi, Askin, Sen, "Multiperiod Tool and Production Assignment in Flexible Manufacturing Systems", International Journal of Production Research (1994)

max

$$\begin{split} &\sum_{i} \sum_{t} w_{i} x_{it} - \sum_{i} C_{i} S_{i} - \sum_{i} \sum_{t} h_{it} x_{it} \\ &\sum_{j} L_{jmt} k_{j} \leq K_{m} \quad \forall m, t \\ &\sum_{j} X_{it} = D_{i} - S_{i} \quad \forall i \\ &\sum_{j} O_{ij} x_{it} \leq \sum_{m} p_{jmt} \quad \forall j, t \\ &p_{jmt} \leq L_{jmt} A_{mt} \quad \forall j, m, t \\ &\sum_{j} p_{jmt} \leq A_{mt} \quad \forall m, t \\ &\sum_{j} L_{jmt} \leq \alpha_{j} \quad \forall j, t \\ &L_{jmt} \in \{0,1\} \quad \forall j, m, t \\ &p_{jmt} \geq 0 \quad \forall j, m, t; \ x_{it} \geq 0 \quad \forall i, t; \ S_{i} \geq 0 \quad \forall i \end{split}$$

(1)	p_{jmt}	time spent for production on the tool $j \in J$ of machine $m \in M$ in period $t \in T$
	\mathcal{S}_{i}	shortage of production of product type $i \in I$
(2)	L_{jmt}	Boolean variable that is 1 when tool $j \in J$ is loaded on machine $m \in M$ in period $t \in T$
(3)	$ u_{ijt}$	time spent for production of product type $i \in I$ over tool $j \in J$ in period $t \in I$
. ,	X _{it}	quantity of product type $i \in I$ produced in period $t \in I$
(4)		
	α_{j}	number of tool copies available for tool $j \in J$
(5)	A_{mt}	available time for production on machine $m \in M$ in period $t \in T$
(6)	C_i	shortage cost per product type $i \in I$
	D_i	total demand of product type $i \in I$
(7)	k_{j}	number of slots required by tool $j \in J$
	K_m	total slots available in the slot magazine of machine $m \in M$
	\mathcal{O}_{ij}	processing time of one unit of product $i \in I$ on tool $j \in J$
	h_{it}	holding cost per part of product type $i \in I$ in period $t \in I$ over the remaining time horizon

total earning per part for the production of product type $i \in I$

 W_i

max

$$\sum_{i} \sum_{t} w_i x_{it} - \sum_{i} C_i S_i - \sum_{i} \sum_{t} h_{it} x_{it}$$
 (1)

subject to:

$$\sum_{j} L_{jmt} k_{j} \le K_{m} \quad \forall m, t \tag{2}$$

$$\sum_{t} x_{it} = D_i - S_i \quad \forall i$$
 (3)

$$\sum_{i} O_{ij} x_{it} \le \sum_{m} p_{jmt} \quad \forall j, t \tag{4}$$

$$p_{jmt} \le L_{jmt} A_{mt} \quad \forall j, m, t \tag{5}$$

$$\sum_{j} p_{jmt} \le A_{mt} \quad \forall m, t \tag{6}$$

$$\sum_{m} L_{jmt} \le \alpha_{j} \quad \forall j, t \tag{7}$$

$$L_{\mathit{jmt}} \in \left\{0,1\right\} \quad \forall j,m,t$$

$$p_{imt} \ge 0 \ \forall j, m, t; \ x_{it} \ge 0 \ \forall i, t; \ S_i \ge 0 \ \forall i$$

- Maximization of the total profit related to the production of products
- Minimizing the storage and stocking costs

max

$$\sum_{i} \sum_{t} w_{i} x_{it} - \sum_{i} C_{i} S_{i} - \sum_{i} \sum_{t} h_{it} x_{it}$$
 (1)

subject to:

$$\sum_{j} L_{jmt} k_{j} \le K_{m} \quad \forall m, t \tag{2}$$

$$\sum_{t} x_{it} = D_i - S_i \quad \forall i$$
 (3)

$$\sum_{i} O_{ij} x_{it} \le \sum_{m} p_{jmt} \quad \forall j, t \tag{4}$$

$$p_{jmt} \le L_{jmt} A_{mt} \quad \forall j, m, t \tag{5}$$

$$\sum_{j} p_{jmt} \le A_{mt} \quad \forall m, t \tag{6}$$

$$\sum_{m} L_{jmt} \le \alpha_{j} \quad \forall j, t \tag{7}$$

$$L_{\mathit{jmt}} \in \left\{0,1\right\} \quad \forall j,m,t$$

$$p_{jmt} \ge 0 \ \forall j, m, t; \ x_{it} \ge 0 \ \forall i, t; \ S_i \ge 0 \ \forall i$$

Limit the number of tools that can be loaded on machines, as the tool slots on machine m are limited to $K_{\rm m}$ slots.

Limit the maximum number of tool copies available for each *j-th* tool.

$$\sum_{i} \sum_{t} w_{i} x_{it} - \sum_{i} C_{i} S_{i} - \sum_{t} \sum_{t} h_{it} x_{it}$$
 (1)

subject to:

$$\sum_{j} L_{jmt} k_{j} \le K_{m} \quad \forall m, t \tag{2}$$

$$\sum_{t} x_{it} = D_i - S_i \quad \forall i$$
 (3)

$$\sum_{i} O_{ij} x_{it} \le \sum_{m} p_{jmt} \quad \forall j, t \tag{4}$$

$$p_{jmt} \le L_{jmt} A_{mt} \quad \forall j, m, t \tag{5}$$

$$\sum_{j} p_{jmt} \le A_{mt} \quad \forall m, t \tag{6}$$

$$\sum_{m} L_{jmt} \le \alpha_{j} \quad \forall j, t \tag{7}$$

$$L_{\mathit{jmt}} \in \left\{0,1\right\} \quad \forall j,m,t$$

$$p_{jmt} \ge 0 \ \forall j, m, t; \ x_{it} \ge 0 \ \forall i, t; \ S_i \ge 0 \ \forall i$$

Compute the production shortage (difference with the product demand)

$$\sum_{i} \sum_{t} w_i x_{it} - \sum_{i} C_i S_i - \sum_{i} \sum_{t} h_{it} x_{it}$$
 (1)

subject to:

$$\sum_{j} L_{jmt} k_{j} \le K_{m} \quad \forall m, t \tag{2}$$

$$\sum_{t} x_{it} = D_i - S_i \quad \forall i \tag{3}$$

$$\sum_{i} O_{ij} x_{it} \le \sum_{m} p_{jmt} \quad \forall j, t \tag{4}$$

$$p_{jmt} \le L_{jmt} A_{mt} \quad \forall j, m, t \tag{5}$$

$$\sum_{j} p_{jmt} \le A_{mt} \quad \forall m, t \tag{6}$$

$$\sum_{m} L_{jmt} \le \alpha_{j} \quad \forall j, t \tag{7}$$

$$L_{jmt} \in \{0,1\} \quad \forall j,m,t$$

$$p_{imt} \ge 0 \ \forall j, m, t; \ x_{it} \ge 0 \ \forall i, t; \ S_i \ge 0 \ \forall i$$

Guarantee that all the production is made within the time availability of the machines and respecting the loading of tools.

Assumptions: modeling the uncertainty

DEFINE Γ_{jt} as the number of product types which are affected by failures on tool j over time period t

ASSUME that the disruption will affect the production of all the workpieces, once an affected part type is selected.

Assumptions: modeling the uncertainty

Then we assume:

$$\widehat{O}_{ij} = \frac{\sum_{t} \overline{O}_{ij} x_{it} + \Gamma_{jt} (FD_{ij} - \overline{O}_{ij})}{\sum_{t} \overline{O}_{ij} x_{it}}$$

$$\hat{O}_{ij} = 0.3$$
 time units

$$\delta_{ij} = \hat{O}_{ij} / \bar{O}_{ij} = 30\%$$

We can use

$$\widehat{O}_{ij} = \frac{\overline{O}_{ij} D_i + \Gamma_{jt} (FD_{ij} - \overline{O}_{ij})}{\overline{O}_{ij} D_i}$$

to avoid non-linearities

How to estimate the cardinality and the intervals?

We could estimate the processing time range $[\bar{O}-\hat{O},\bar{O}+\hat{O}]$

with
$$\widehat{O_{ij}} \approx MTTR_j$$

We can estimate the **cardinality paramerers** from

$$\Gamma_{jt} \leftarrow MTBF_j$$

or from historical data available in the company

Assumptions: modeling the uncertainty

The solution rely on the availability of time

Assume processing time are lying on an interval

Construction of a robust constraint

$$\begin{aligned} & \sum_{i} \hat{O}_{ij} \tilde{x}_{it} z_{ijt} \\ & \text{subject to:} & \sum_{i} z_{ijt} \leq \varGamma_{jt} \quad \forall j, t \\ & 0 \leq z_{ijt} \leq 1 \quad \forall i, j, t \end{aligned}$$

$$\sum_{i} O_{ij} x_{it} \leq \sum_{m} p_{jmt} \quad \forall j, t$$

$$ar{O} - \hat{O}$$
 $ar{O}$ $ar{O} + \hat{O}$

MIN MAX

$$\sum_{i} \overline{O}_{ij} x_{it} + \max_{U_{jt}} \left\{ \sum_{i \in U_{jt}} \hat{O}_{ij} x_{it} \right\} \leq \sum_{m} p_{jmt} \quad \forall j, t$$

The INNER MAXIMIZATION PROBLEM selects the worst combination of events over a constrained number (cardinality), imposed by the user

Robust Model Formulation

Starting from the inner maximization problem, we can write its dual equivalent

At optimum, the objective functions of primal and dual problem coincide, thus:

$$\Gamma_{jt} r^*_{jt} + \sum_{i} q^*_{ijt} = \sum_{i} \hat{O}_{ij} x^*_{it} z^*_{ijt}$$

This is valid for any x_{it} thus also for x_{it}^*

Robust Model Formulation

The Robust MLP becomes:

max

$$\sum_{i} \sum_{t} w_{i} x_{it} - \sum_{i} C_{i} S_{i} - \sum_{i} \sum_{t} h_{it} x_{it}$$

subject to:

$$\sum_{j} L_{jmt} k_{j} \leq K_{m} \quad \forall m, t$$

$$\sum_{t} x_{it} = D_{i} - S_{i} \quad \forall i$$

$$p_{\mathit{jmt}} \leq L_{\mathit{jmt}} A_{\mathit{mt}} \quad \forall j, m, t$$

$$\sum_{i} \overline{O}_{ij} x_{it} + \Gamma_{jt} r_{jt} + \sum_{i} q_{ijt} \leq \sum_{m} p_{jmt} \forall j, t$$

$$r_{jt} + q_{ijt} \ge \hat{O}_{ij} x_{it} \quad \forall i, j, t$$

$$\sum_{j} p_{jmt} \le A_{mt} \quad \forall m, t$$

$$\sum_{m} L_{jmt} \leq \alpha_{j} \ \forall j, t$$

p_{jmt}	time spent for production on the tool $j \in J$ of machine $m \in M$ in period $t \in T$
$q_{ijt,} r_{ij}$	auxiliary dual-variables
S_i	shortage of production of product type $i \in I$
L_{jmt}	Boolean variable that is 1 when tool $j \in J$ is loaded on machine $m \in M$ in period $t \in T$
$ u_{ijt}$	time spent for production of product type $i \in I$ over tool $j \in J$ in period $t \in I$
Z_{ijt}	auxiliary primal variable
X _{it}	quantity of product type $i \in I$ produced in period $t \in I$
$lpha_{j}$	number of tool copies available for tool $j \in J$
Γ_{jt}	cardinality parameter of tool $j \in J$ in period $t \in T$
A_{mt}	available time for production on machine $m \in M$ in period $t \in T$
C_i	shortage cost per product type $i \in I$
D_i	total demand of product type $i \in I$
k_{j}	number of slots required by tool $j \in J$
K_m	total slots available in the slot magazine of machine $m \in M$
\mathcal{O}_{ij}	processing time of one unit of product $i \in I$ on tool $j \in J$
h _{it}	holding cost per part of product type $i \in I$ in period $t \in T$ over the remaining time horizon
W_i	total earning per part for the production of product type $i \in I$

Case study

We have tested the robust MLP using a real case from the literature (Das et al. 2009)

- 12 product types, 12 tools types, 5 time periods (9-hour shifts, so $A_{mt} = 540 \text{ min}$)
- For each product type, the weight, the shortage cost, and the holding cost are wi = w = 30 €/unit, Ci = C = 40 €/unit, and hit = h = 0, respectively
- Each product requires between 2 and 5 tool types

Assumptions

- Tool slots capacity is not affecting the problem solution.
- Only one copy of each tool type is available
- Since holding costs are null, the arrangement of production over time is pattern-less. Thus, quantities have been aggregated over the time period.

27/06/2017 FAIM 2017 2

^{*}The model has been solved on a computer equipped with processor Intel Core i7 @2.5Ghz and 8GB of installed RAM, using IBM ILOG CPLEX v12.5. The computational times are very short, ranging between 5.13 s and 5.82 s for all runs.

Case study

Product data Tool slots								No	ominal	proce	essing	times ($(ar{O}_{ij})$ [r	nin/pa	ırt]		
Product	t D _i [part]	<i>PT_i</i> [min/part]	Tools	k _j	Pro duc t						То	ols					
1	160	14	1	4		4.61	2	2.74	4.73	0	0	0	0	0	0	0	0
2	4	11.9	2	2		2.46	2.51	0	4.19	2.7	0	0	0	0	0	0	0
3	8	11.9	3	2		4.4	0	0	2.86	4.62	0	0	0	0	0	0	0
4	8	7.7	4	2		0	0	0	0	0	3.12	1.95	2.64	0	0	0	0
5	40	7.9	5	2	oes	0	0	0	0	0	0	0	0	4.29	3.68	0	0
6	4	14.8	6	1	Types	0	0	0	0	0	0	0	0	3.15	5.39	2.18	4.14
7	4	11.3	7	1	Prod.	0	0	0	0	0	0	0	0	0	2.7	2.44	6.18
8	20	7.8	8	1	<u> </u>	0	0	1.92	2.59	3.3	0	0	0	0	0	0	0
9	20	8.3	9	1		0	0	3.04	5.28	0	0	0	0	0	0	0	0
10	8	6.5	10	1		4.45	2.1	0	0	0	0	0	0	0	0	0	0
11	8	20.3	11	3		0	0	0	0	5.42	4	0	0	0	0	5.48	5.47
12	4	15.4	12	3		0	0	0	0	0	0	0	4.22	3.62	3.92	3.72	0

DETERMINISTIC SOLUTION

ROBUST SOLUTION (Γ = 1)

(a) Deterministic case											
j	i D_i PT_i x_i^*										
1	160	14	124.8								
2	4	11.9	4								
3	8	11.9	8								
4	8	7.7	8								
5	40	7.9	40								
6	4	14.8	0								
7	4	11.3	4								
8	20	7.8	20								
9	20	8.3	20								
10	8	6.5	8								
11	8	20.3	0								
12	4	15.4	0								

		(b	$) x_i^*(\delta = 0.$	1)	
	<i> </i> =1	<i>Γ</i> =2	<i>Γ</i> =3	<i>Γ</i> =4	<i>「</i> =5
•	103.8	108.6	107.6	107.4	107.3
	4	4	4	4	4
	8	8	8	8	8
	8	8	8	8	8
	40	40	40	40	40
	4	0	0	0	0
	4	4	4	4	4
	20	20	20	20	20
	20	20	20	20	20
	8	8	8	8	8
	0	0	0	0	0
	2.6	0	0	0	0

SOYSTER (1973)

CARDINALITY-CONSTRAINED

Results

Deterministic Case

	(a) Deterministic case										
j	D_i	w_i	C_i	PT_i	x_i^*						
1	160	30	40	14	124.8						
2	4	30	40	11.9	4						
3	8	30	40	11.9	8						
4	8	30	40	7.7	8						
5	40	30	40	7.9	40						
6	4	30	40	14.8	0						
7	4	30	40	11.3	4						
8	20	30	40	7.8	20						
9	20	30	40	8.3	20						
10	8	30	40	6.5	8						
11	8	30	40	20.3	0						
12	4	30	40	15.4	0						

The products that require less production time are selected first [REMINDER: the production quantities are continuous variables]

Results

	(a) Deterministic case				(b) $x_i^*(\delta=0.1)$						(c) $x_i^*(\delta=0.5)$			$(d)x_i^*(\delta=1)$				
j	D_i	PT_i	x_i^*	<i>「</i> =1	<i>Γ</i> =2	<i>/</i> =3	<i>\</i> =4	<i>F</i> =5	<i>Γ</i> =1	<i>「</i> =2	<i>/</i> =3	<i>Γ</i> =4	<i>「</i> =5	<i> </i> =1	<i>Γ</i> =2	<i>Г</i> =3	<i>Γ</i> =4	<i>「</i> =5
1	160	14	124.8	103.8	108.6	107.6	107.4	107.3	63.3	58.5	62	61.2	60.8	37.2	27.4	30.6	29.4	28.8
2	4	11.9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
3	8	11.9	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4	8	7.7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
5	40	7.9	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
6	4	14.8	0	4	0	0	0	0	4	4	0	0	0	4	4	0	0	0
7	4	11.3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
8	20	7.8	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
9	20	8.3	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
10	8	6.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
11	8	20.3	0	0	0	0	0	0	2.7	0	0	0	0	4.5	1.8	0	0	0
12	4	15.4	0	2.6	0	0	0	0	4	3.5	0	0	0	4	4	0	0	0

The demand for some products is always satisfied (2, 3, 4, 5, 7, 8, 9, 10)

	(a) Det	erministic d	case
j	D_i	PT_i	x_i^*
1	160	14	124.8
2	4	11.9	4
3	8	11.9	8
4	8	7.7	8
5	40	7.9	40
6	4	14.8	0
7	4	11.3	4
8	20	7.8	20
9	20	8.3	20
10	8	6.5	8
11	8	20.3	0
12	4	15.4	0

-	(d)	$x_i^*(\delta=1)$		
<i>Γ</i> =1	<i>Γ</i> =2	<i>Γ</i> =3	<i>Γ</i> =4	<i>/</i> =5
37.2	27.4	30.6	29.4	28.8
4	4	4	4	4
8	8	8	8	8
8	8	8	8	8
40	40	40	40	40
4	4	0	0	0
4	4	4	4	4
20	20	20	20	20
20	20	20	20	20
8	8	8	8	8
4.5	1.8	0	0	0
4	4	0	0	0

- For certain cardinality values, the ranking changes and forces the saturation of the demand of other products (for example, product 6 over product 1)
- This is due to the selection of the worst combination of constrained events, which is done by solving the master problem.

	(a) Det	erministic ca	ase		(d)	$x_i^*(\delta=1)$		
j	D_i	PT_i	x_i^*	<i>Γ</i> =1	<i>Γ</i> =2	<i>Γ</i> =3	<i>Γ</i> =4	<i>Γ</i> =5
1	160	14	124.8	37.2	27.4	30.6	29.4	28.8
2	4	11.9	4	4	4	4	4	4
3	8	11.9	8	8	8	8	8	8
4	8	7.7	8	8	8	8	8	8
5	40	7.9	40	40	40	40	40	40
6	4	14.8	0	4	4	0	0	0
7	4	11.3	4	4	4	4	4	4
8	20	7.8	20	20	20	20	20	20
9	20	8.3	20	20	20	20	20	20
10	8	6.5	8	8	8	8	8	8
11	8	20.3	0	4.5	1.8	0	0	0
12	4	15.4	0	4	4	0	0	0

In other cases, the ranking is such only till an equilibrium condition, after which the original priority ranking is maintained.

- Given a certain δ , the O.F. decreases as the cardinality increases.
- With increasing cardinality, since the time availability is limited and saturated, the total number of parts produced decreases together with the O.F.
- For any Γ , the distance between the OF of the deterministic solution and the one of the robust solution is the price of robustness. The marginal price of robustness decreases in cardinality.

- Machine avaliability is always saturated.
- Failure time increases in cardinality, and less time is left for production
- With maximum cardinality, we obtain the expected ratio failure/working time (given by $\delta = 0.5$)

- For a practical application, it is possible to evaluate the products that are mostly subject to risk.
- This is done by evaluating how many events occur on a specific part type.
- The user can react, for example by providing multiple copies of tools for the production of critical products.

Final Remarks and Future Developments

What to do next

- Application of the robust MLP to a real case (on-going)
- Comparison with other existing methodologies
- Validation of the approach with evaluation of the performance of robust solutions using parameters' realization's scenarios.
- Extension of cardinality sets. It is possible to consider sets over single work-pieces.
- Sensitivity analisys on holding costs.

Managerial Insights

- The computation of the price of robustness can help the user to choose which production plan to implement
- The analisys can provide indications over which products are more risky: the user can prevent the most distructive events by focusing on critical tools

References

- K. E. Stecke, J.J. Solberg, Loading and control policies for a flexible manufacturing system, Int. J. of Production Research, Vol. 19, Issue 5, 1981, 481-490.
- K. E. Stecke, Formulation and solution of nonlinear integer production planning problems for flexible manufacturing systems, Management Science, Vol. 29, Issue 3, 1983, 273-288.
- F. Guerrero, Machine loading and part type selection in flexible manufacturing systems, Int. J. of Production Research, Vol. 37, Issue 6, 1999, 1303-1317.
- A. Grieco, Q. Semeraro, T. Tolio, A review of different approaches to the FMS loading problem, Int. J. of Flexible Manufacturing Systems, Vol 13, Issue 4, 2001, 361-84.
- K. Shanker, Y. J. Tzen, A loading and dispatching problem in a random flexible manufacturing system. Int. J. of Production Research, Vol. 23, Issue 3, 1985, 579-595.
- A.M. Abazari, M. Solimanpur, H. Sattari, Optimum loading of machines in a flexible manufacturing system using a mixed-integer linear mathematical programming model and genetic algorithm, Computers & Industrial Engineering, Vol. 62, Issue 2, 2012, 469-478.
- K. Das, M.F. Baki, X. Li, Optimization of operation and changeover time for production planning and scheduling in a flexible manufacturing system, Computers and Industrial Engineering, Vol. 56, Issue 1, 2009, 283-293.
- V. Gabrel, C. Murat, A. Thiele, Recent advances in robust optimization: an overview, European Journal of Operational Research, Vol. 235, Issue 3, 2014, 471-483.
- A. Ben-Tal, A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data, Mathematical programming, Vol. 88, Issue 3, 2000, 411-42.
- D. Bertsimas, M. Sim, The price of robustness, Operations Research, Vol. 52, Issue 1, 2004, 35-53.
- D. Bertsimas, D.B. Brown, C. Caramanis, Theory and applications of robust optimization, SIAM Review, Vol. 53, Issue 3, 2011, 464-501.
- M.C.O. Moreira, J.-F. Cordeau, A.M. Costa, G. Laporte, Robust assembly line balancing with heterogeneous workers, Computers and Industrial Engineering, Vol. 88, 2015, 254-263.
- C.-C. Lu, K.-C. Ying, S.-W. Lin, Robust single machine scheduling for minimizing total ow time in the presence of uncertain processing times, Computers and Industrial Engineering, Vol. 74, Issue 1, 2014, 102-110.
- M.S. Sodhi, R.G. Askin, S. Sen, Multi-period tool and production assignment in flexible manufacturing systems, Int. J. of Production Research, Vol. 32, Issue 6, 1994, 1281-1294.
- D.G. Luenberger, Introduction to linear and nonlinear programming, Reading, MA: Addison-Wesley, Vol. 28, 1973.