ИССЛЕДОВАНИЕ СИММЕТРИЙ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Е.Ю. МорозовСтудентА.В. ЛободаПрофессор

Ввеление

Симметрии различного вида представляют в современной науке немалый интерес. В данной работе исследуются симметрии одного семейства квадро-кубических поверхностей в трехмерном комплексном пространстве. При этом используется теория групп преобразований Ли. Также работа тесно связана с изучением свойств однородности поверхностей в ${\bf C}^3$.

1. Постановка задачи

Пусть дано семейство вещественных гиперповерхностей в пространстве ${\rm C}^3$:

$$vx_2 + Q(x_1, y_1, x_2, y_2) = x_2(\mu x_2^2 + v y_2^2),$$
 (1)

где $x_1=\Re(z_1),\ y_1=\Im(z_1),\ x_2=\Re(z_2),\ y_2=\Im(z_2),\ u=\Re(w),\ v=\Im(w)$ – компоненты координат в трехмерном комплексном пространстве, $\mu,\nu\in R$ и одновременно не равны нулю, а $Q(x_1,y_1,x_2,y_2)$ – некоторая квадратичная форма. Симметрией поверхности из данного семейства называется любое аффинное преобразование, сохраняющее эту поверхность. Симметрией определяющего уравнения для заданной поверхности будем называть преобразование, сохраняющее это уравнение с точностью до ненулевого множителя. Задача этой работы состоит в изучении групп аффинных преобразований, сохраняющих конкретные поверхности из данного семейства, и размерностей таких групп.

Отметим, что можно изучать поставленную задачу с точностью до аффинных преобразований исходных объектов. На размерности и некоторые другие свойства изучаемых групп это не повлияет.

2. Метод решения

Видно, что любая поверхность вида (1) сохраняется сдвигом по переменной $u = \Re(w)$. Таким образом, размерность каждой из изучаемых

[©] Морозов Е. Ю., Лобода А. В., 2017

групп преобразований не меньше единицы. Для изучения групп больших размерностей удобно использовать однопараметрические группы преобразований.

Обозначим через F_t однопараметрическую группу аффинных преобразований в \mathbb{C}^3 , сохраняющих уравнение поверхности $\Phi = 0$. Группа F_t зависит от параметра t аналитически, что возможно в группе Ли. Уравнения, определяющие эту группу, будут иметь вид:

$$z_i = \sum_{j=1}^{3} A_{i,j}(t) z_j + S_i(t), \quad i = 1, ..., 3,$$
 (2)

где $A_{i,j}(t)$, $S_i(t)$ — некоторые аналитические комплексные функции от вещественного аргумента, а $z_3=w=u+iv$. Также эта группа должна содержать тождественное преобразование, т.е. $F_t=\mathrm{Id}$.

Факт сохранения некоторой поверхности M из заданного семейства (1) такой группой можно записать в виде

$$F_t(\Phi) = \Phi(z, \bar{z}, v) \cdot \psi(z, \bar{z}, w, t), \qquad (3)$$

где $\psi(z,\overline{z},w,t)$ — некоторая ненулевая функция, а $\Phi=\Phi(z,\overline{z},v)=v\,x_2+Q(x_1,y_1,x_2,y_2)-x_2(\mu\,x_2^2+v\,y_2^2)$ — определяющая функция поверхности M.

Продифференцируем (3) по параметру t в точке t = 0:

$$\frac{\mathrm{d}}{\mathrm{d}t} F_t(\Phi) \Big|_{t=0} = \Phi(z, \bar{z}, v) \cdot \frac{\mathrm{d}}{\mathrm{d}t} \psi(z, \bar{z}, w, t) \Big|_{t=0}. \tag{4}$$

Левая часть выражения (4) называется действием соответствующего группе F_t инфинитезимального преобразования на поверхность M. Инфинитезимальное преобразование ставит в соответствие каждой точке p поверхности M вектор, касательный к p. Иными словами, оно показывает направление движения точки p в результате действия группы F_t для бесконечно малых t [1].

В сужении (4) на поверхность M правая часть обращается в ноль, так как $\Phi|_{M} \equiv 0$. Таким образом получаем тождество

$$\left\{ \frac{\mathrm{d}}{\mathrm{d}t} F_t(\Phi) \Big|_{t=0} \right\} \Big|_{M} = 0. \tag{5}$$

Подставляя в (5) переменную $v = Q(x_1, y_1, x_2, y_2) / x_2 + (\mu x_2^2 + \nu y_2^2)$ из (1) и умножая на возникающий знаменатель, получаем полиномиальное уравнение:

$$P(x_1, y_1, x_2, y_2, u) = 0$$
.

Коэффициентами при мономах в полиноме P являются линейные комбинации значений производных функций из уравнения (2) в точке t=0. Обозначим их следующим образом:

$$A_{1,j}'(t) = \alpha_{j,1} + i \alpha_{j,2}, \ A_{2,j}'(t) = \beta_{j,1} + i \beta_{j,2}, \ A_{3,j}'(t) = \gamma_{j,1} + i \gamma_{j,2},$$

$$S_{j}'(t) = \sigma_{j,1} + i \sigma_{j,2}, \ j = 1, \dots, 3.$$
(6)

Тождественное равенство нулю полинома P означает равенство нулю всех коэффициентов при его одночленах. Так получается однородная система линейных уравнений относительно 24 неизвестных (6). Каждое уравнение в этой системе отвечает одному моному, общее число которых для произвольной поверхности (1) равно 83 (т.к. полином P содержит одночлены, имеющие с третьей по шестую степень). Обозначим через W матрицу, соответствующую этой системе. Искомая размерность группы аффинных преобразований, сохраняющих такую поверхность, описывается равенством

$$\dim G = 24 - \operatorname{rank} W$$
.

Таким образом, исследование размерности группы аффинных преобразований, сохраняющих поверхность M, сводится к исследованию ранга полученной матрицы W.

Следует заметить, что коэффициенты (6) являются элементами инфинитезимального преобразования [1], которое удобно записывать в виде матрицы:

$$S = \begin{pmatrix} \alpha_{1,1} + i\alpha_{1,2} & \alpha_{2,1} + i\alpha_{2,2} & \alpha_{3,1} + i\alpha_{3,2} & \sigma_{1,1} + i\sigma_{1,2} \\ \beta_{1,1} + i\beta_{1,2} & \beta_{2,1} + i\beta_{2,2} & \beta_{3,1} + i\beta_{3,2} & \sigma_{2,1} + i\sigma_{2,2} \\ \gamma_{1,1} + i\gamma_{1,2} & \gamma_{2,1} + i\gamma_{2,2} & \gamma_{3,1} + i\gamma_{3,2} & \sigma_{3,1} + i\sigma_{3,2} \end{pmatrix}.$$
(7)

Интегрируя отдельные инфинитезимальные преобразования, полученные в результате решения системы уравнений, получаем однопараметрические группы аффинных преобразований, сохраняющих поверхность *М*. Подробнее об интегрировании инфинитезимальных преобразований можно узнать из [2].

3. Общий случай

Для произвольной квадро-кубической поверхности вида (1), квадратичная форма Q может быть записана в явном виде:

$$Q(x_1, x_2, y_1, y_2) = k_1 x_1^2 + k_2 x_1 x_2 + k_3 x_2^2 + k_4 x_1 y_1 + k_5 x_2 y_1 + k_6 y_1^2 + k_7 x_1 y_2 + k_8 x_2 y_2 + k_9 y_1 y_2 + k_{10} y_2^2$$
(8)

За счет применения невырожденных аффинных преобразований поверхности вида (1) можно привести эту поверхность к некоторому

каноническому виду с меньшим числом коэффициентов в форме (8), но с большим числом рассматриваемых случаев.

Для исследования системы, описанной в предыдущем пункте, использовался пакет компьютерной алгебры Wolfram Mathematica. Результатом исследования является оценка ранга матрицы W полученной системы: $19 \le \operatorname{rank} W \le 23$. Следствием этой оценки является следующая теорема:

Теорема 1: размерность группы Ли аффинных преобразований, сохраняющих любую поверхность из семейства (1), удовлетворяет неравенству:

$$1 \le \dim G \le 5$$
.

Пример 1: единичная размерность группы достигается на поверхности

$$vx_2 + |z_1|^2 + x_1y_1 + y_2^2 = x_2|z_2|^2$$
.

Эта поверхность сохраняется лишь одним типом аффинных преобразований — сдвигом по переменной u.

Пример 2: $\dim G = 2$ достигается на поверхности

$$vx_2 + |z_1|^2 + y_2^2 = x_2 |z_2|^2$$
.

У этой поверхности, помимо сдвига по переменной u, имеется еще один тип движений – повороты в плоскости z_1 : $z_1 \to e^{it} z_1^*$.

Поверхности, которым соответствуют пятимерные группы аффинных преобразований, представляют особый интерес, например, потому, что эти поверхности могут являться *однородными*. Поверхность называется аффинно-однородной, если под действием аффинных преобразований можно сдвигаться в любом направлении вдоль этой поверхности.

4. Частный случай

Детально был рассмотрен случай, в котором квадратичная форма (8) не зависит от x_2 и y_2 , т.е.:

$$v x_2 + k_1 x_1^2 + k_2 x_1 y_1 + k_3 y_1^2 = x_2 (\mu x_2^2 + \nu y_2^2)$$
 (9)

Замечание: за счёт аффинных преобразований в плоскости z_1 , набор k_1, k_2, k_3 может быть фактически сокращен до одного параметра.

Для этого случая справедлива следующая оценка размерности группы преобразований G:

Теорема 2: размерность группы Ли аффинных преобразований, сохраняющих любую поверхность вида (9), удовлетворяет неравенствам $3 \le \dim G \le 5$, причем

– $\dim G = 3$ достигается на поверхностях вида

$$v x_2 = kx_1^2 + y_1^2 + x_2(\mu x_2^2 + v y_2^2), k \neq 0, k \neq 1;$$
 (10)

 $-\dim G = 4$ достигается на поверхностях вида

$$v x_2 = |z_1|^2 + x_2 (\mu x_2^2 + v y_2^2); \tag{11}$$

 $-\dim G = 5$ достигается на аффинно-однородных поверхностях вида

$$v x_2 = x_1^2 + x_2(\mu x_2^2 + v y_2^2). (12)$$

Таким образом, для произвольной поверхности вида (9) существует три основных типа движений, которые сохраняют эту поверхность:

- 1. $c \partial в u r$ по переменной $u: w \rightarrow w^* + t$;
- 2. масштабирование: $z_1 \to e^{3t} z_1^*$, $z_2 \to e^{2t} z_2^*$, $w \to e^{4t} w^*$. Такой тип аффинных преобразований привносит в обе части уравнения (9) ненулевой множитель e^{6t} ;
- 3. поворот со сдвигом ("скользящий поворот"): $z_1 \to z_1^*$, $z_2 \to z_2^* + it$, $w \to w^* + 2tv \cdot z_2^* + it^2v$. Это движение добавляет в обе части (9) слагаемые $2tv x_2 y_2 + t^2v x_2$, которые взаимно уничтожатся, в результате чего получается исходное уравнение.

У поверхностей (11) имеется еще одно движение — *повороты в плоскости z*₁, описанные в примере 2 предыдущего раздела. Поверхности (10) и (11) представляют интерес в рамках классификации действий групп аффинных преобразований на многообразиях [4].

Поверхности (12), в дополнение к трем основным, имеют еще два типа движений:

- 1. *сдвиг* по переменной $y_{1:} z_1 \to z_1^* + it$;
- 2. *поворот*: $z_1 \to z_1^* + t \cdot z_2^*$, $z_2 \to z_2^*$, $w = 2it \cdot z_1^* + it^2 \cdot z_2^* + w^*$. В результате такого движения в обе части (9) добавляются слагаемые $2t x_1 x_2 + t^2 x_2$, после взаимного уничтожения которых получается исходное уравнение.

Семейство аффинно-однородных поверхностей вида (12) известно, оно было описано в работе

Еще один результат данной работы расширяет класс аффиннооднородных поверхностей, представленный в [3], за счет более богатых кубических частей, содержащихся в уравнениях этих поверхностей

Теорема 3: для любой тройки коэффициентов μ, ν, λ , одновременно не равных нулю, поверхность

$$v x_2 + x_1^2 = x_2 (\mu x_2^2 + \lambda x_2 y_2 + v y_2^2)$$
,

является аффинно-однородной, а размерность группы Ли аффинных преобразований, сохраняющих такую поверхность, равна 5.

5. Заключение

В данной работе были изучены симметрии одного семейства квадрокубических поверхностей в пространстве С³. В ходе работы была получена размерностей групп Ли аффинных преобразований, сохраняющих данные поверхности. Также был произведен разбор частного случая исходного семейства поверхностей, что дало конкретные примеры поверхностей для различных размерностей. В ходе решения было произведено обобщение известных классов аффинно-однородных поверхностей из работы [3].

Список литературы

- 1. Ли, С., Теория групп преобразований: в 3-х частях. Часть 1 / пер. с нем. Л.А. Фрай; под ред. А.В. Болсинова М.; Ижевск: Институт компьютерных исследований, 2011. 693 с.
- 2. А. В. Лобода, Об одном семействе аффинно-однородных вещественных гиперповерхностей 3-мерного комплексного пространства / А. В. Лобода, А. С. Ходарев // Известия вузов. Матем. -2003. -№ 10. -С. 38–50.
- 3. A.V. Atanov, Affine homogeneous strictly pseudoconvex hypersurfaces of the type (1/2,0) in C³ [Электронный ресурс] / A.V. Atanov, A.V. Loboda, A.V. Shipovskaya // ArXiv e-prints. 2014. Электрон. журн. Режим доступа: https://arxiv.org/abs/1401.2252
- 4. A. Isaev, On the symmetry algebras of 5-dimensional CR-manifolds [Электронный ресурс] / A. Isaev, B. Kruglikov // ArXiv e-prints. 2016. Электрон. журн. Режим доступа: https://arxiv.org/abs/1607.06072