Out of 500 students, 410 students pass the exam. Test the hypothesis that more than 80% of students pass the exam. Level of significance = 5%

Name:Rishabh Singhvi

Sap: 60009210206

Branch: Data Science(K3)

#Question 1

from scipy.stats import norm p_p =e.8 sample_success = 410 sample_size -- see from statsmodels.stats.proportion import proportions_ztest stat, p_value = nobs = $sample_size, value = print('z_stat = ', stat, 'p_value z cri -- norm.ppf(ø.95) print('z_cri - ',z_cri)$

z stat 1.16405e4929492914 p_value cri = 1 .6448536269514722

e. 12220177493249235 z

In []: /usr/10ca1/1ib/python3.7/dist-packages/statsmode1s/t001s/_testing.py:19: Future Warning: pandas. util. testing is deprecated. Use the functions in the public API at pandas. testing instead.

import pandas. util. testing as tm

```
SE = np. sqrt(p_p*(l-
p_p)/sample_size)
print('z_stat', z) z cri =
norm.ppf(ø.95) norm .
sf(z)
```

Question 2: A random sample of 35 individuals selected from a certain population showed that 6 of them are left-handed. Find 95% and 99% confidence limits for the proportions of left-handed person in the population.

Questi on I:

localhost:8888/notebooks/Downloads/SDS_Expt_6. ipynb#

```
#Question 2 import
numpy as np s P =
6/35
n = 35
SE = np.sqrt(s_p*(1-s_p)/n)
z = norm.ppf(0.975)
L = s_p - z*SE
U = s_p + z*SE
CI = (L,U)
print( '95% Confidence Interval for population means z =
norm.ppf(e.995)
                                                        ',CI)
L = s_p - z*SE
U = s_p +
           + z*SE
CI = (L,U)
print( • 99% Confidence Interval for population means
                                                        ',CI)
```

95% Confidence Interval for population means = (e. 04656934249155212, e. 2962878 0036559e77)

99% Confidence Interval for population means = (e.eø7335729288939441, e. 335521 4135682e34)

Question 3: The manufacturer of patent medicine claimed that it was 90% effective in relieving allergy for a period of 8 hours. In a sample of 200 people who had the allergy, the medicine provided relief for 160 people. Determine whether manufacturer's claim is legitimate.

z stat = -3.535533905932737 p_value = o. eøe4e6952e1744495973 z cri = 1.6448536269514722

Question 4: From one class of 500 students, 410 students passed. From other class of 400 students, 379 students passed. Test the hypothesis that both samples have same proportions. Level of significance = 0.025

```
In [

| alpha = 0.025 success — sample stat,p_value = | nobs = sample, alternative = 'twoif | p_value > alpha: | p_value > alpha: | print("Test is not | significant. Fail to | reject null hypothesis") else: | print("Test is significant. Reject null hypothesis") | print('z_stat | stat, 'p_value_',p_value)
```

Test is significant. Reject null hypothesis z stat = -5.78e2476568050825 p value - 7.459074e60078635e-09

Question 5: Two groups, A and B, each consists of 100 people who have a disease. A serum is given to group A but not group B; otherwise both the groups are treated identically. It's found that in group A and group B, 75 and 65 people respectively, recover from the disease. Test the hypothesis that serum helps to cure the disease using a level of significance (a) 0.01 (b) 0.1.

Test is not significant. Fail to reject null hypothesis z stat = 1. 543e334996209185 p value = 0. e61411324e5069633

Test is significant. Reject null hypothesis z stat 1. 543e334996209185 p_value = o. $e61411324e5\emptyset69633$

Question 6: Check the hypothesis that blood pressure before treatment has a mean value of 156 for the given dataset.

import pandas as pd df = pd. 'ead_csv(, , /content/blood_pressure.csv" df.head()

out[16]:

patient sex agegrp bp_before bp_after					
0	1	Male	3045	143	153
	2	Male	30-45	163	170
2	3 Mal	le	30-45	153	168
	3	4	30-45	153	142
Male			30-45	146	141
	4	5			
Male					

In [J : df . describe()

out[17]:

	patient	bp_before	bp_after
count	120.000000	120.000000	120.000000
mean	60.500000	156.450000	151.358333
std	34.785054	11.389845	14.177622
min	1.000000	138.000000	125.000000
25%	30.750000	147.000000	140.750000
50%	60.500000	154.500000	149.500000
75%	90.250000	164.000000	161.000000
max	120.000000	185.000000	185.000000

alpha = 0.05 from statsmodels . stats import weightstats as stests z_stats,p_val = stests.ztest(df['bp_before ' = None,value = 156, alternative = print('Z_stat: ',z_stats, 'p value-', p_val) print('', norm . ppf(Ø.975)) if p_val > alpha:

is not significant. Fail to reject null hypothesis" else
:

print("Test is significant. Reject null hypothesis"

z_stat: 0.432798073526164 p value= 0.6651614730255063 z critical- 1.959963984540054

Test is not significant. Fail to reject null hypothesis

Question 7: Can we say that the systolic blood pressure measured on arm has mean value of 125 mmHg from the given dataset?

```
df = pd . _ '/content/systolic blood pressure.csv'
df. head ( )
```

```
Out[24]:
                armsys fingsys
                  140
                          154
            0
            1
                  110
                           112
            2
                  138
                          156
            3
                  124
                          152
                  142
                          142
 In 1:df. describe ()
out[26]:
                      armsys
                                 fingsys
```

```
alpha = 05 z_stats, p_val stests 'armsys' _ None, value 125, alternative print( • Z_stat: ' • p value=•, p_val) print( 'z_critical- ', norm. ppf(0.975)) if p_val alpha: print("Test is not significant. Fai1 to reject null hypothesis" else: print( "Test is significant. Reject null hypothesis"
```

```
        count
        200 000000
        200.000000

        mean
        128 520000
        132.815000

        std
        23.287575
        25.648195

        nun
        79 000000
        60.000000

        25%
        111 500000
        118.000000

        50%
        125 000000
        130.000000

        75%
        140.000000
        146.500000

        max
        220 000000
        228.000000
```

```
z_stat: 2.1376342148925 p value- ø.e32546442541153964 z critical= 1.95996398454ee54
```

Test is significant. Reject null hypothesis

Question 8: A sample of 50 pieces of certain type of string was tested. The mean breaking strength turned out to be 14.5 pounds. Test whether the sample is from a batch of string having mean breaking strength of 15.6 pounds and standard deviation of 2.2 pounds.

localhost:8888/notebooks/Downloads/SDS

S_Expt_6

```
x bar = 145

mean = 15.6
sigma - —
2.2 n = 5e

SE = sigma/np.sqrt(n)
z = (x_bar-mean)/SE
print('Z_stat=',z)
print('Z_critical=' norm . ppf(O.Ø25))
p_value = 2*norm.cdf(z) print('
p_value--'sp_val) if p_val > alpha:
    print("Test is not significant.Fai1 to reject null hypothesis") is

al&&:
    print("Test significant. Reject null hypothesis")

Z stat — -3.5355339059327364
```

Z stat — -3.535533905932/364 Z critical — -1.9599639845400545 alue=0.032546442541153964

Test is significant. Reject null hypothesis

Question 9: Check the hypothesis that mean value of systolic blood pressure measured on arm and finger are the same.

```
In []:df . describe()
Out[29]: armsys fingsys
```

```
alphae .05 z_stats, p_val = stests.ztest(df['armsys'],x2 = 'fingsys' = e,
],valueprint('Z_stat:'z_stats,_'p value--'sp_val) print('z_critical- alternati
', norm . ppf(0.025)) if p_val > alpha:
    print("Test is not significant.Fai1 to reject null hypothesis"
else:
    print("Test is significant. Reject null hypothesis"
```

```
      count
      200.000000
      200.000000

      mean
      128.520000
      132.815000

      std
      23.287575
      25.648195

      min
      79.000000
      60.000000

      25%
      111.500000
      118.000000

      50%
      125.000000
      130.000000

      75%
      140.000000
      146 500000

      max
      220.000000
      228.000000
```

In []:

Z stat: -1.7533233440871472 p value- e. 07954652069053099 z critical= -1.9599639845400545

Test is not significant. Fail to reject null hypothesis

localhost:8888/notebooks/Downloads/SDS

Question 10: A common perception about COVID-19 is that warm climate is more resistant to the corona outbreak. Verify this using hypothesis testing.

]: corona pd . read_csv(' / content/Corona_Updated . csv ' corona. head()

Out[33]: Province/State Country/Region Last Confirmed Deaths Recovered Latitude Longitude
Update

	Hubei	2020-03- Mainland China67760		3024	47743	30.9756	112.2707
10T17:53:02	NaN	Italy 2020-03-	10149	631	724	43.0000	12.0000
2	NaN	10T15:13:05 Iran (Islamic 2020-03- Republic of) _{10T19}	8042	291	2731	32.0000	53.0000
3	NaN	Republic of 2020-03- Korea 10T19	7513	54	247	36.0000	128.0000
10T18:53:02 ⁴	NaN	France 2020-03-	1784	33	12	47.0000	2.0000

l: corona . describe(

Out [34] :		Confirmed	Deaths	Recovered	Latitude	Longitude Temprature		Humidity
	count	206.000000	206.000000	206.000000	206.000000	206.000000	206.000000	206.000000
	mean	575.640777	20.689320	312.640777	31.184989	11.752030	12.161165	67.728155
	std	4822.697784	215.794845	3332.764713	21.305149	84.576291	10.229763	21.780588
	min	0.000000	0.000000	0.000000	-41.454500	-157.498300	-21.900000	6.000000
	25%	3.000000	0.000000	0.000000	25.069200	-74.841325	6.100000	55.000000
	50%	12.000000	0.000000	0.000000	36.030550	15.234250	11.750000	73.000000
	75%	75.750000	1.000000	4.000000	43.870250	101.363375	20.375000	84.000000
	max	67760.000000	3024.000000	47743.000000	64.963100	174.886000	33.100000	98.000000

```
In [
```

1: corona['Temp_cat'] if x<24 else 1) corona_t = corona('Temprature '] . apply(lambda corona-t. head() 'Confirmed', 'Temp cat corona_t[(coro corona_t[(coro 'Confirmed'] 'Temp cat' 'Temp cat ' dl = d2 - ml'Confirmed'1 dl.mean() d2.mean() = dl.std() s2 = d2.stddl.shape[e] n2 d2.shape[e] prin 'Mean confirme cases for warm climate: ',ffll) cases

Mean confirmed cases for warm climate 26.548387e96774192

Mean confirmed cases for not warm climate: 672.9085714285715

for not warm climate:

```
#Ho: mul = mu2 , Ha : mul<mu2
SE = np.sqrt(s1**2/n1+s2**2/n2)
z = (ml-m2)/SE p_val __ norm.
cdf(z) print(z,p_val)
if(p_val<0.05):
    print("Test isis significant. Reject null hypothesis")
else :
    print("Test is not significant.Fai1 to Reject null hypothesis")
```

-1.634975314844e753 0.05102711125709931

"Mea

print(

confirmed

Test is significant. Reject null hypothesis

Question I 1: The mean consumption of food grains among 400 samples middle class consumers is 380 grams per day per person with a standard deviation of 120 grams. A similar sample survey of 600 working class consumers gave a mean of 410 grams with standard deviation of 80 grams. Are we justified in saying that the difference between the averages of the two classes is 40? Use 5% level of significance.

```
#Ho: Iml-m2 —49, Ha: I (ml-m2)I
                                            40
In []:
         n1 = 400
         - 380 sl -
         120 n2 =
         6eø
         m2 = 410
                                            = 410
         m = np.abs(m1-m2)
         52 = 80
         alpha = 0.05
         SE = np.sqrt(s1**2/n1+s2**2/n2)
         z = (m-40)/SE
                                               = (m-
         4\emptyset)/SE p val = 2*norm.cdf(z) print(
         'Z stat: ' z_stats, 'p value- ' ,p_val)
         if(p va1<\emptyset.05):
          print( "Test is significant. Reject null hypothesis") else :
           print( "Test is not significant. Fail to Reject null hypothesis")
```

Question 12: Two populations have same mean but the standard deviation of one is twice that ofthe other. Show that in samples, each of size 500, drawn under simple random conditions, the difference of the means will not exceed 0.3 0, where o is the smaller standard deviation.

```
In []:
    mu1 = mu2, sigma2 = 2*sigma1,n1=n2=500
    z = (X1-X2)/sqrt((sigma1^2/n1)+(sigma2^2/n2))
    z = (X1-X2)/sqrt((sigma^2/500)+(4sigma^2)/500)
    z = (X1-X2)/(sigma/10)
    (X1-X2)<=0.30
    (X1-X2)/(sigma/10)<=0.3sigma/(sigam/10)
    z<=3
    Prob (z=3)
    """
    norm . cdf(3)</pre>
```

out[48]: o. 99865e1e19683699