

Dayananda Sagar University

Innovation Campus, Administrative & Main Admission office, Kudlu Gate, Hosur Road, Bengaluru

?

LESSON PLAN

Course Name: MACHINE LEARNING FOR HEALTHCARE

Course Code: 20AM47XX

Faculty Name: Prof. Pavithra A

Course Objectives: This Course will enable students to:

- 1. **Summarize** the different types of medical data and its Medical Standards, Challenges.
- 2. Explain the different techniques to handle the image and clinical data.
- 3. **Apply** Modelling techniques, Reinforcement Learning and Natural Language Processing for healthcare data.
- 4. **Utilize** the suitable Machine Learning and Deep Learning algorithms for various types of healthcare applications.
- 5. **Get the idea** to build a chatbot and develop a project using the appropriate case study in the healthcare.

Lecture	Topics Covered	Innovative Teaching Methods	Text & Reference			
	MODULE – I					
1	Knowing Healthcare Industry: Introduction to healthcare informatics,	Power point presentation	T1			
2	Introduction to Machine Learning and Deep Learning in Healthcare	 Power point presentation 	T1			
3	Medical Standards and Coding Types (ICD-11, ICD-10-CM, ICD- 10-PCS, CPT and HCPCS Level II)	 Board Teaching Power point presentation Hands on 	T1			
4	Health Level Seven (HL7)	Power point presentation	T1			
5	Global Healthcare Challenges and Trends	Power point presentationGroup Discussion	T1			
6	Past-Present-Future of AI&ML in Healthcare	Power point presentationGroup Discussion	T1			

17	Medical Image Diagnostics and its Preprocessing: Biomedical Imaging Modalities	Board Teaching Power point	Т2
16	Disease progression Modelling MODULE -	Power point presentation	T1
15	Survival Modelling	Board TeachingPower point presentation	T1
14	Risk Stratification	Board TeachingPower point presentation	T1
13	Different types of Data Analysis techniques	Board TeachingPower point presentation	T1
12	Synthetic Minority Oversampling Technique for handling imbalanced data	Board TeachingPower point presentation	T1
11	Data handling techniques – Imputation technique for handling missing data	Board TeachingPower point presentation	T1
10	Data Types	Board TeachingPower point presentation	T1
09	Advanced Analytics in Health Care: Overview of Clinical Data	Board Teaching Power point presentation	T1
8	Dataflow of EHR, Difference between EHR and EMR.	Power point presentation	T1
7	Electronic Medical Records (EMR), Electronic Health Records (EHR)	Board TeachingPower point presentation	T1

		presentation	
18	Computed Tomography	Power point presentation	Т2
19	Magnetic Resonance Imaging	Power point presentation	T2
20	Positron Emission Tomography	Power point presentation	T2
21	Biomedical Signal: Electrocardiogram (ECG), Electroencephalogram (EEG), Segmentation	Power point presentation	T1
22	Thresholding and Region based Segmentation	Power point presentation	T1ss
23	Image Registration	Power point presentation	T1
24	ML applications in medical Ology space (Cardiology, oncology)	 Board Teaching Power point presentation Group Discussion 	Т1
	MODULE	– IV	
25	AI/ML and NLP for healthcare: Automating clinical workflow	Power point presentation	
26	Regulation of AI/ML	Power point presentation	Т2
27	Challenges in deploying ML model	Power point presentation	Т2
28	NLP for Healthcare	Power point presentation	T2
29	Re-enforcement learning in healthcare applications,	 Board Teaching Power point presentation Hands on 	T2
30	Re-enforcement learning in	Board Teaching	T2

	healthcare applications		
		Power point presentationHands on	
31	Wearable devices	Board TeachingPower point presentation	T2
32	Medical Bots	Power point presentation	T2
	MODULE	- V	
33	A hospital consists of patients with heart diseases, their ECGs are stored in a repository. Based on the n ECG of a new patient, conclude whether patient has heart disease or not using an appropriate Deep Learning network, and so give suggestion for improve decision-making using an algorithm.	Discussion and Power point presentation Hands on	-
34	Autopsy study as a means of classifying cause of death.	Discussion and Power point presentation Hands on	-
35	Brain Tumor Segmentation in medical care.	Discussion and Power point presentation Hands on	-
36	Mini Project Applications of Machine learning models (Linear regression, SVM, Random Forest) and Deep learning models (CNN, RNN) for healthcare area.	Discussion and Power point presentation by the students.	-
37	Mini Project Applications of Machine learning models (Linear regression, SVM, Random Forest) and Deep learning models (CNN, RNN) for healthcare area.	Discussion and Power point presentation by the students.	-
38	Mini Project Applications of Machine learning models (Linear regression, SVM, Random Forest) and Deep learning models (CNN, RNN) for healthcare area.	Discussion and Power point presentation by the students.	-

Dayananda Sagar University Innovation Campus,

Innovation Campus,
Administrative & Main Admission office,
Kudlu Gate, Hosur Road, Bengaluru

	Mini Project Applications of	Discussion and Power	
	Machine learning models (Linear	point presentation by the	
39	regression, SVM, Random Forest)	students.	-
	and Deep learning models (CNN,		
	RNN) for healthcare area.		

Course Outcomes and CO-PO/PSO Mapping:

CO No.	Outcomes	Bloom's Taxonomy Level	POs / PSOs
CO1	Explain the different types of medical data and its Medical Standards, Challenges.	L2	PO1, PO2, PO9, PO10, PSO1, PSO2, PSO3
CO2	Utilize the appropriate techniques to handle the image and clinical data.	L3	PO1, PO2, PO5, PO9, PO10, PSO1, PSO2, PSO3
CO3	Make use of the Modelling techniques, Reinforcement Learning and Natural Language Processing for various healthcare applications	L3	PO1, PO2, PO5, PO9, PO10, PSO1, PSO2, PSO3
CO4	Apply the suitable Machine Learning and Deep Learning algorithms for various types of healthcare applications.	L3	PO1, PO2, PO5, PO9, PO10, PSO1, PSO2, PSO3
CO5	Build a chatbot and develop a project using the appropriate case study in the healthcare.	L5	PO1, PO2, PO3, PO5, PO9, PO10, PSO1, PSO2, PSO3

Strength of CO Mapping to PO/PSOs with Justification:

CO's	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PS
CO1	3	1	-	-	-	-	-	-	2	2	-	-	2	2	
CO2	3	2	-	-	1	-	-	-	2	2	-	-	2	2	
CO3	3	2	-	-	1	-	-	-	2	2	-	-	2	2	
CO4	3	2	-	-	1	-	-	-	2	2	-	-	2	2	
CO5	3	3	2	-	1	-	-	-	2	2	_	_	2	2	

CO-PO-PSO	JUSTIFICATION
CO1 → PO1(3)	Strongly mapped as students will be able to understand the basics of mathematics needed for machine learning in healthcare.
CO1 → PO2(1)	Slightly mapped as students will analyze the complex engineering problems using the basic mathematics
CO1->PO9(2)	Moderately mapped as students will be able to Function effectively as an individual and team.
CO1 → PO10(2)	Moderately mapped as students will be able to communicate and write effective reports and design documentation, make effective presentations.
CO2 → PO1(3)	Moderately mapped as students will be able to know about the basic knowledge about data collection.
CO2 → PO2(2)	Moderately mapped as students will analyze the complex engineering problems using the basic mathematics
CO2 → PO5(1)	Slightly mapped as students will be able to use modern tools to collect data
CO2 → PO9(2)	Moderately mapped as students will be able to Function effectively as an individual and team.
CO2 → PO10(2)	Moderately mapped as students will be able to communicate and write effective reports and design documentation, make effective presentations.
CO3→ PO1(3)	Strongly mapped as students will understand the basics of machine learning algorithms
CO3→ PO2(2)	Moderately mapped as students will be able to apply the knowledge gained to solve real time problems.
CO3→ PO5(1)	Slightly mapped as students will be able to use modern tools to collect data
CO3 → PO9(2)	Moderately mapped as students will be able to Function effectively as an individual and team.
CO3 → PO10(2)	Moderately mapped as students will be able to communicate and write effective reports and design documentation, make effective presentations.
CO4→ PO1(3)	Strongly mapped as students will be able to get the basic knowledge about developing data science applications.
CO4→ PO2(3)	Moderately mapped as students will be able to apply the knowledge gained to solve real time problems.
CO4→ PO5(1)	Slightly mapped as students will be able to use modern tools to collect data
CO4 → PO9(2)	Moderately mapped as students will be able to Function effectively as an individual and team.
CO4 → PO10(2)	Moderately mapped as students will be able to communicate and write effective reports and design documentation, make effective presentations.
CO5→ PO1(3)	Strongly mapped as students will be able to understand the basics of mathematics needed for machine learning in healthcare.
CO5→ PO2(3)	Strongly mapped as students will be able to apply the knowledge

Dayananda Sagar University

Innovation Campus,
Administrative & Main Admission office,
Kudlu Gate, Hosur Road, Bengaluru

	gained to solve real time problems.
CO5→ PO3(2)	Moderately mapped as students will be designing and developing
	solutions to engineering problems.
CO5→ PO5(1)	Slightly mapped as students will be able to use modern tools to collect
	data
CO5 → PO9(2)	Moderately mapped as students will be able to Function effectively as
	an individual and team.
CO5 → PO10(2)	Moderately mapped as students will be able to communicate and write
	effective reports and design documentation, make effective
	presentations.
CO1, CO2, CO3, CO4,	Moderately mapped as students will apply basic concepts to solve real
CO5->PSO1(2)	world problems
CO1, CO2, CO3, CO4,	Moderately mapped as students will be able to apply the knowledge
CO5->PSO1(2)	gained to solve real time problems.
CO1, CO2, CO3, CO4,	Moderately mapped as students will be able to develop intelligent
CO5->PSO1(2)	systems with the help of machine learning algorithms.

LIST OF ACTIVITIES (IF ANY):

- 1. Group discussion on different Health Care Problems.
- 2. Collaborative Activity is minor project development with a team of 4 students.

LIST OF INNOVATIVE TEACHING METHODS:

- a. Board Teaching
- b. Power point presentations
- c. Developing an expert mindset with real-time problem-solving

ASSESSMENT PROCESSES:

- a. Provision for Two Internal assessments of 40 marks each of descriptive questions and reducing it to 40 marks.
- b. Mini project-15 marks.
- c. Quiz 05 marks.

ASSESSMENT PLAN:

Course Outcomes	Internal Test-I addresses (Cognitive Level)	Internal Test-II addresses (Cognitive Level)	Mini Project (Cognitive Level)
CO1	Understanding		Applying
CO2	Applying		Applying
CO3		Applying	Applying
CO4		Applying	Applying

Dayananda Sagar University

Innovation Campus,
Administrative & Main Admission office,
Kudlu Gate, Hosur Road, Bengaluru

CO5		Applying

TEX	Γ BOOKS:
1.	SumeetDua, U. RajendraAcharya, PrernaDua, Machine Learning in Healthcare
	nformatics, Intelligent Systems Reference Library 56, Springer Nature 2014.
2.	Sergio Consoli, Diego ReforgiatoRecupero, Milan Petkovic, Data Science for Healthcare
	Methodologies and Applications, 2019 Edition.

REFERENCES:				
1	Thomas M. Deserno, Fundamentals of Bio-Medical Image processing, Biological and			
	Medical Physics, Biomedical Engineering, Springer, ISBN 978-3-642-15816-2, 2011			

E-Resources:

- 1.https://stellar.mit.edu/S/course/HST/sp19/HST.956/
- 2. https://www.coursera.org/learn/fundamental-machine-learning-healthcare.
- 3.https://www.coursera.org/learn/introduction-clinical-dat

Prepared by (Course Faculty)	Scrutinized by (Course coordinator)	Approved by Chairman
Signature:	Signature:	Signature:
Name: Prof. Pavithra A	Name: Prof. Pavithra A	Name: Dr. Jayavrinda Vrindavanam