

ECOR1043: Circuits

Multi-Node Analysis

Develop systematic techniques to determine all the voltages in a circuit

Nodal Analysis

- A Multi-Node circuit is a circuit with more nodes than the basic node pair circuit we discussed
 - Due to the added nodes, analysis becomes more complex
 - Therefore, we introduce a new type of analysis
- Multi-Node Analysis: Nodal Analysis
 - This method uses the "Nodal" equations of Kirchhoff's Current Law as well as Ohm's Law to find the voltages around the circuit.

4

Nodal Analysis

- Before we start: Set a reference node (ground)
 - Defining the reference node is vital: The statement V_1 =4V is meaningless by itself without a reference
 - Therefore, to give the measurement meaning we assume the reference is ground
 - Any node voltage (i.e., v_1 , and v_2) is measured in reference to ground unless otherwise defined (e.g., voltage difference between two points)

_

Nodal Analysis

- Steps for Nodal Analysis:
 - 1) Identify all nodes and select a reference node
 - 2) Identify all known node voltages
 - 3) At each node with an unknown voltage, write a KCL equation
 - 4) Replace currents in terms of node voltages
 - 5) Solve for unknown voltages as needed
 - 6) Use voltages to solve for any desired values

6

Nodal Analysis

• Ex. 1: Find the equations to determine the unknown node voltages

@ node a: $\sum_{k=1}^{n} i_k = 0$

 $-I_1 + I_2 + I_3 = 0$

@ node b: $\sum_{k=1}^{n} i_k = 0$

 $-I_3 + I_4 + I_5 = 0$

@ node $c: \sum_{k=1}^{n} i_k = 0$

 $-I_5 + I_6 = 0$

Steps:

- 1) Identify all nodes and select a reference node
- 2) Identify all known node voltages
- 3) At each node with an unknown voltage, write a KCL equation (For this example, assume currents entering the nodes are negative)

7

Nodal Analysis

• Ex. 2: Find the equations to determine unknown voltages V_1 and V_2 Steps:
1) Identify all nodes and select a reference node
2) Identify all known node voltages
3) Write a KCL equation for rest of the nodes

@ Node 1: Sum of currents=0

Assuming:
- All the currents are leaving the node
- currents leaving the node are positive $I_a + I_b + I_c + I_d = 0$ $I_1 + I_b + I_c + I_d = 0$ 4) Replace currents in terms of node voltages $I_1 + \frac{v_1}{R_2} + \frac{v_1 - v_2}{R_3} + \frac{v_1 - v_2}{R_4} = 0$

Multi-node Analysis 5 A Prob. 1(cont.): Calculate the node voltages We now have two equations and two unknowns $3v_1 - v_2 = 20$ i_1 4Ω $3v_1 - 5v_2 = -60$ Subtract B from A $4v_2 = 80$ 2Ω $10\,\mathrm{A}$ $v_2 = 20V$ Substitute v₁ back in $3v_1 - v_2 = 20$ $3v_1 - 20 = 20$ You can use any method that you know to solve the two equations for two unknown voltages. $3v_1 = 40$ I am using method of elimination $v_1 = \frac{40}{3} = 13.33V$

Multi-node Analysis

• Prob. 2: Given: $i_A=1mA$, $R_1=12k\Omega$, $R_2=6k\Omega$, $i_B=4mA$ and $R_3=6k\Omega$. Determine all node voltages and branch currents.

20

Multi-node Analysis

• Prob. 2(cont.): Given: $i_A=1mA$, $R_1=12k\Omega$, $R_2=6k\Omega$, $i_B=4mA$ and $R_3=6k\Omega$. Determine all node voltages, and currents.

Multi-node Analysis

• Prob. 2(cont.): Given: $i_A=1mA$, $R_1=12k\Omega$, $R_2=6k\Omega$, $i_B=4mA$ and $R_3=6k\Omega$. Determine all node voltages, and currents.

22

