Vorname:
Familienname:
Matrikelnummer:
Studienkennzahl(en):

1	
2	
3	
4	
\mathbf{G}	

Note:

Prüfung zu Funktionalanalysis Sommersemester 2019, Roland Steinbauer 1. Termin, 26.6.2019

- 1. Operatoren und Funktionale Seien E, F normierte Vektorräume und $T \in L(E, F)$.
 - Gib die Definition der Operatornorm ||T|| von T an und zeige, dass sie die kleinste Konstante ist, sodass

$$||Tx|| \le ||T|| \, ||x|| \qquad \forall x \in E$$

gilt. (3 Punkte)

(b) Funktionale auf L^p

Sei I ein Intervall, $p \in [1, \infty]$ und 1/p+1/q=1. Zeige, dass jede $L^q(I)$ -Funktion ein lineares stetiges Funktional auf $L^p(I)$ definiert. Gib eine Abschätzung für die Norm dieses Funktionals an. Gibt es noch weitere lineare Funktionale auf L^p — mit anderen Worten, was ist der Dualraum des $L^p(I)$? (3 Punkte)

(c) Vollständigkeit von L(E,F)Zeige, falls F ein Banachraum ist, so auch L(E,F). Zusätzlich bearbeite die folgenden Punkte: Wo wird die Vollständigkeit von F verwendet? Gib das Grundschema des Beweises im Überblick an. (4 Punkte)

2. Hilberträume & Operatoren

(a) Orthogonal projektion

Wie ist die Orthogonalprojektion P_M auf den abgeschlossenen Teilraum M des Hilbertraums H definiert? Es gilt, dass $(x - P_M x) \perp M$ erfüllt. Zeige, dass $P_M x$ dadurch eindeutig bestimmt ist. (3 Punkte)

(b) Charakterisierung selbstadjungierter Operatoren Zeige, dass selbstadjungierte Operatoren im komplexen Hilbertraum H durch die Bedingung $\langle Tx|x\rangle \in \mathbb{R} \ (\forall x \in H)$ charakterisiert sind. Auf welchem Resultat, das im reellen Fall nicht gilt, beruht der Beweis? (2 Punkte)

(c) Spektralsatz

Formuliere den Spektralsatz für kompakte, selbstadjungierte Operatoren. Formuliere und beweise jenes Resultat, dass für kompakte, selbstadjungierte Operatoren $T \neq 0$ die Existenz eines nichtverschwindenden Eigenwerts garantiert. Was ist das entscheidende Argument, das zur Existenz dieses Eigenwerts führt? (5 Punkte)

3. Hauptsätze der Funktionalanalysis

(a) Reichhaltigkeit von E'

Zeige, dass der Dualraum E' die Punkte des normierten Vektorraums E trennt und insbesondere nicht-trivial ist. Was bedeutet das jeweils genau? (3 Punkte)

(b) Prinzip der gleichmäßigen Beschränktheit Formuliere und beweise den Satz von Banach-Steinhaus. Beschreibe zusätzlich die Grundidee des Beweises. (5 Punkte)

(c) Reflexivität

Was versteh man unter einem reflexiven normierten Vektorraum? Können auch nicht vollständige normierte Vektorräume reflexiv sein? Warum bzw. warum nicht? (2 Punkte)

4. Beispiele

Gib jeweils ein Beispiel an und begründe kurz, warum es die geforderten Eigenschaften hat bzw. begründe, warum es kein solches Beispiel geben kann. (Jeweils 2 Punkte)

- (a) Ein unbeschränkter linearer Operator zwischen normierten Vektorräumen.
- (b) Ein nicht separabler normierter Vektorraum.
- (c) Ein reflexiver normierter Vektorraum.
- (d) Einen surjektiven, nicht injektiven stetigen linearen Operator zwischen Hilberträumen
- (e) Einen beschränkten bijektiven linearen Operator zwischen Banachräumen mit unbeschränktem inversen Operator.