GBM Regressor

Person	Height (cm)	Favorite Color	Gender	Weight (kg)
1	180	Blue	Male	88 - 71.2
-) 2	165 🗸	Red	Female	76 - 71.2
3	175 -	Green	Male	80 - 71.2
4	160 /	Blue	Female	70 - 71.2
5	170 ~	Red.	Male	65 - 71.2
6	155 🗸	Green	Female	48 _ 71.2

Initial Prediction =
$$\frac{1}{6} \times (88 + 76 + 80 + 70 + 65 + 48)$$

(leaf)
$$= 71.2 \qquad \boxed{71.2} + 0.1 \times ...$$

$$71.2 + 0.1 \times |6.8 = 71.2 + 1.68 = 72.88$$

Psendo residual 16.8

H < 167.5

1.3

C not B

(MSE)
$$\underline{l} = \frac{1}{2}(y - F)^{2}$$

$$-\frac{\partial L}{\partial F} = (y - F) = (Pseudo - Reviduel)$$
Observed predicted

Gradient

(BeE)
$$\begin{bmatrix}
-\frac{y}{y} & -\frac{y}{(1-y)} & -\frac{y}{(1-y)} \\
\frac{\partial L}{\partial p} & = -\frac{y}{p} & -\frac{y}{(1-p)}
\end{bmatrix} = -\frac{y}{p} & =$$

$$MSE(L) = \frac{1}{\lambda} \frac{(y-f)^2}{(y-f)^2}$$

$$L = MSE + L2 = \frac{1}{\lambda} (y-f)^2 + \frac{\lambda}{\lambda} F^2$$

$$\therefore \frac{\partial L}{\partial F} = -(y-f) + \lambda F = -y + (1+\lambda) F = 0$$

$$h = \frac{\partial^2 L}{\partial F^2} = \frac{\partial}{\partial F} \left(- (9 - F) \right)$$

$$= \frac{\partial}{\partial F} \left(- (9 - F) \right) = 1$$

Level wise growth: Level-1 le-2-2 Goss 8 LR (0·3)= a

10

Leaf - wire growth Best First Search | Large residuels + Scaled samples of-small residuals) $SR \rightarrow 3 \text{ values} \qquad \frac{3}{7} = b \qquad \frac{1-\alpha}{b} = \frac{1-0.3}{\frac{3}{7}} = \frac{0.7}{3} \times 7 = \frac{4.9}{3} \times 7 = \frac{4.9}{3} \times 7 = \frac{1.6}{3}$

Colour(x) target (x) target
$$\frac{1}{2}$$
 target (x) target $\frac{1}{2}$ $\frac{1}{2}$

target - leakage problem

Ordered Target Statistics (CatBoost): Avrils target leahage

Tor each sample, compute mean target value using only samples that one before it in a random permutation of dataset.

$$TS(n) = \frac{\sum_{j \in K, x_j = x} y_j + \alpha \cdot P}{\sum_{j \in K, x_j = x} 1 + \alpha}$$

p -> prior (global average)

<u>En:-</u>	Row I	Colon	toract 1.	P = Global average (prior)
	3 4 5	Blue Red Blue Red	① · 1 · 1 ·	Suppose $\alpha = 1$

$$P = Global average = \frac{\sum y_j}{Cnuht(y_j)} = \frac{3}{5}$$

$$= 0.6$$

Permutation-1: [3, 1, 5, 2,1]

Permuted detaset

\(\frac{1}{2} + \delta \)

$$TS(R) = \frac{0 + 1 \times 0.6}{0 + 1}$$

$$(j=0) \quad 0 + 1 \quad TS(x) = \frac{j \times x, x_j = x}{2} + A.P$$

$$= 0.6$$

$$TS(R) = \frac{0+1\times0.6}{1+1} = \frac{0.6}{2} = 0.3$$

Initial Lota

Rns 1 2 3	Colora R B R	y 1 0 1 1	ts, ts_ 13 (TS)
5	K	T	

$$TS(R) = \frac{(0+1) + 1 \times 0.6}{2 + 1}$$

$$= \frac{1 + 0.6}{3} = \frac{1.6}{3}$$

$$= 0.53$$

Github

Ryo Ligitmoio - H_ - Daturciace - Assignment

Assignment - 1

1, -2