

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Fig 1

Fig 2

Fig 3

Fig 4

Fig 5

To Fig. 6B

Fig. 6A

Fig 6B

Fig 7

To Fig. 8B

Fig 8A

Fig 8B

approximately harmonically
related low coherence, λ_1 ,
and CW, λ_2 , light beam

✓ 250

Fig 9

Fig 10

300

Fig. 11

350

Fig 12

3400

Fig 13

Figure 14A

3 470

Fig. 15A

Fig. 15B

~ 480

Fig 16

Fig. 17

Fig 10

Fig 18C

2692

Fig. 18D

Fig. 19

700

Fig 20

3 820

$$I_1(t) = \cos(\Omega t + \phi_1 - \phi_1')$$
$$I_2(t) = \cos(\Omega t + \phi_2 - \phi_2')$$

Fig 22

Fig 23A

PZT Voltage

2
840

850
Phase change
(1550nm)

Fig 23B

3 860

Fig. 24

beamsplitter

3 880

Mirror on PZT

signal

882

Fig. 25A

reference

902

Fig. 25B

FIG. 26

FIG. 27

FIG. 28A

FIG. 28B

FIG. 29

7
1020

FIG. 30

3 1070

FIG. 31

Docket No.: 301505.3002-103

Inventors: Christopher M. Fang-Yen et al.

Title: Systems and Methods for Phase Measurements

Beam scanning data from a blank coverglass. Noise ~25 mrad over 1kHz

FIG. 32A

3 1090

FIG. 32B

FIG. 33

FIG. 34

FIG. 35

L S 2080

FIG. 36

FIG. 37

Objective focus position

FIG. 38

2/21/60

2/21/50

Back-reflected intensity

Objective focus position

FIG. 39

Backreflected intensity

Objective focus position

FIG. 40

Back-reflected intensity

Objective focus position

FIG. 41

FIG. 42B

FIG. 42A

2380

GRIN lens: 2mm diameter,
4mm length, 0.25mm WD
Overall diameter 2.5 mm

FIG. 43

FIG. 44

FIG. 45

Docket No.: 301505.3002-103

Inventors: Christopher M. Fang-Yen et al.

Title: Systems and Methods for Phase Measurements

FIG. 46A

2460

2470

FIG. 46B

2480 ~7

FIG. 46C

FIG. 46 E

2487

position, microns

FIG. 46 G

FIG. 46 D

FIG. 46 F

2490

FIG. 47A

A

B

C

OPD = $\frac{\lambda}{2\pi} \tan^{-1} \left[\frac{C-B}{A-B} \right]$

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES
3) CALCULATE OPD

2498

INTERFEROGRAM

2494

2492

2496

180°

90°

0°

REF

TEST

SOURCE

1) MODULATE PHASE
2) RECORD MIN 3 FRAMES

FIG. 48A

FIG. 48C
Bucket integration

Docket No.: 301505.3002-103

Inventors: Christopher M. Fang-Yen et al.

Title: Systems and Methods for Phase Measurements

22600

FIG. 50A

22600

FIG. 50B

FIG. 54B

FIG. 54A

FIG. 55

FIG. 50

FIG. 51A

FIG. 51B

Operation $\hookrightarrow 1800$

$\hookrightarrow 1804$ FIG. 58A

Calibration- amplitude mode

$\hookrightarrow 1854$

$\hookrightarrow 1850$

FIG. 58B

Control- phase mode

$\hookrightarrow 1855$

$\hookrightarrow 1856$

FIG. 58C

$\hookrightarrow 1858$

FIG 59

4-frame sequence

FIG 60A

FIG 60C

Magnification
13X

FIG 60B

FIG 60D

Phase between E_H and E_L

2/200

FIG. 62

Phase image
140 nm expected

FIG 63 2304

266 nm expected
10 micron grooves
Magnification 50X

FIG. 64

Onion Cells

Magnification 50X

2500

Microscope (intensity) image

FIG. 65

Phase image

FIG. 66

FIG 67

FIG 68A

FIG 68B

FIG. 69 A

FIG. 69 B

FIG. 69.C