Software-Defined 5 Networking and Advanced Mathematical Network Control Tools **Programming**

Kai Gao

kaigao@scu.edu.cn

School of Cyber Science and Engineering Sichuan University

Recap

Relation Between Automata and Languages

Different automatons (自动机) represents different languages

Automaton	Language
finite state machine (NFA & DFA)	regular language
确定性/非确定性有限状态机	正则语言
pushdown automaton (PDA)	context-free language
下推自动机	上下文无关语言
linear-bounded automaton (LBA)	context-sensitive language
线性有界自动机	上下文有关语言
Turing machine	recursively enumerable language
图灵机	递归可枚举语言

Write Invalidate Protocol

Each cache block is in one of two potential states:

- Valid (V): the cache block is up-to-date
- **Invalid** (I): the cache block is not valid Events (transitions):
- Processor: read (PrRd), write (PrWr)
- Bus: read signal (BusRd), write signal (BusWr)

String Matching

Example: Can a string aaababcabcdefg be matched by abcd?

Build an automata as the right:

- Five states:
 - 0: Match nothing
 - 1: Match a
 - 2: Match ab
 - 3: Match abc
 - 4: Match abcd: the accepting state
- If the accepting state is reached, a match of abcd is found

Representations of Automatons

Graph representation:

Tabular representation:

$ \begin{array}{c} $	a	b	С	d	х
$\rightarrow 0$	1	0	0	0	0
1	1	2	0	0	0
2	1	0	3	0	0
3	1	0	0	4	0
* 4	4	4	4	4	4

Product of Automata

Automaton for abcd Automaton for abd **Product Automaton:** Draw transitions from (4, 0) start · start - $\neq a$ $\neq a$ $\neq a$ $\neq a$

Summary

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Integer linear programming

Summary

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Integer linear programming

In this lecture, you should

• understand linear programming (线性规划, LP) and its standard form (标准型)

Summary

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Integer linear programming

In this lecture, you should

- understand linear programming (线性规划, LP) and its standard form (标准型)
- understand integer linear program (整数线性规划, ILP)

Linear Programming

Consider the following problem:

A large file is to be transferred from S to D

Consider the following problem:

- A large file is to be transferred from S to D
- There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$

Consider the following problem:

- A large file is to be transferred from S to D
- There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$
- The links have different link capacities (unit: Mbps)

Source	Destination	Capacity
S	Α	1000
S	В	1000
Α	В	2000
В	D	1500

Consider the following problem:

- A large file is to be transferred from S to D
- There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$
- The links have different link capacities (unit: Mbps)

Source	Destination	Capacity
S	Α	1000
S	В	1000
Α	В	2000
В	D	1500

• Question: What is the maximum transfer speed?

- Decision variables (决策变量):
 - the transfer speed on path $S \rightarrow A \rightarrow B \rightarrow D$: x_1
 - the transfer speed on path $S \rightarrow B \rightarrow D$: x_2

- Decision variables (决策变量):
 - the transfer speed on path $S \rightarrow A \rightarrow B \rightarrow D$: x_1
 - the transfer speed on path $S \rightarrow B \rightarrow D$: x_2
- Constraints (约束条件): the transfer speed on a link must not exceed the link capacity
 - $S \to A$: $x_1 \le 1000$
 - S → B: $x_2 \le 1000$
 - *A* → *B*: $x_1 \le 2000$
 - $-B \rightarrow D: x_1 + x_2 \le 1500$

- Decision variables (决策变量):
 - the transfer speed on path $S \rightarrow A \rightarrow B \rightarrow D$: x_1
 - the transfer speed on path $S \rightarrow B \rightarrow D$: x_2
- Constraints (约束条件): the transfer speed on a link must not exceed the link capacity
 - $S \rightarrow A: x_1 \le 1000$
 - S → B: $x_2 \le 1000$
 - *A* → *B*: $x_1 \le 2000$
 - $-B \rightarrow D: x_1 + x_2 \le 1500$
- **Objective (**优化目标**)**: maximizing the total transfer speed $z=x_1+x_2$

The problem can be described as follows:

$$\max x_1 + x_2$$

$$x_1$$
 ≤ 1000
 $x_2 \leq 1000$
 $x_1 \leq 2000$
 $x_1 + x_2 \leq 1500$

The problem can be described as follows:

$$\max x_1 + x_2 \leftarrow \text{optimization objective}$$

$$x_1$$
 ≤ 1000
 $x_2 \leq 1000$
 $x_1 \leq 2000$
 $x_1 + x_2 \leq 1500$

The problem can be described as follows:

$$\max x_1 + x_2$$

Optimization Problem in General

An optimization problem in general consists of:

- a set of continuous decision variables (连续变量): x_1, \ldots, x_N
- an objective function ($\exists \, k \in M$) of the decision variables: $f: X_1 \times \cdots \times X_N \mapsto R$
- a set of constraint functions (约束函数) of the decision variables: $g_1, \ldots, g_M, \forall i$, $g_i: X_1 \times \cdots \times X_N \mapsto R$

The standard form of such an optimization problem can be written as:

$$\max f(x_1,\ldots,x_N)$$

subject to:

$$g_1(x_1,\ldots,x_N) = b_1$$

 \vdots
 $g_M(x_1,\ldots,x_N) = b_M$

where the decision variables are non-negative.

Optimization Problem in General

An optimization problem in general consists of:

- a set of continuous decision variables (连续变量): *x*₁,...,*x*_N
- an objective function (目标函数) of the decision variables: $f: X_1 \times \cdots \times X_N \mapsto R$
- a set of constraint functions (约束函数) of the decision variables: $g_1, \ldots, g_M, \forall i$, $g_i: X_1 \times \cdots \times X_N \mapsto R$

The standard form of such an optimization problem can be written as:

$$\max f(x_1,\ldots,x_N)$$

subject to:

$$g_1(x_1,\ldots,x_N) = b_1$$

 \vdots
 $g_M(x_1,\ldots,x_N) = b_M$

where the decision variables are non-negative.

NOTE: There are other variants of standard forms. ^{23/135}

Types of Optimization Problems

• Convex optimization problem (COP, 凸优化问题): the objective function and constraint functions are convex

Types of Optimization Problems

- Convex optimization problem (COP, 凸优化问题): the objective function and constraint functions are convex
- Linear programming problem (LP, 线性规划问题): the objective function and constraint functions are linear

Types of Optimization Problems

- Convex optimization problem (COP, 凸优化问题): the objective function and constraint functions are convex
- Linear programming problem (LP, 线性规划问题): the objective function and constraint functions are linear
- The smaller the scope is, the more restricted the objective and constraint functions are, and more efficient algorithms exist

Standard Form of LP in the Matrix Representation

• decision variables:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

• coefficients of the objective function:

$$oldsymbol{c} = egin{bmatrix} c_1 \ dots \ c_N \end{bmatrix}$$

• coefficients of the constraint functions:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \dots & a_{MN} \end{bmatrix}$$

Standard Form of LP in the Matrix Representation

• decision variables:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

• coefficients of the objective function:

$$oldsymbol{c} = egin{bmatrix} c_1 \ dots \ c_N \end{bmatrix}$$

• coefficients of the constraint functions:

The problem can be formulated as:

$$\max \boldsymbol{c}^{T}\boldsymbol{x}$$

$$f(\boldsymbol{x}) = \begin{bmatrix} c_{1}, & \dots, & c_{N} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ \vdots \\ x_{N} \end{bmatrix}$$

$$Ax = b$$

subject to:

$$\begin{bmatrix} a_{11} & \dots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \dots & a_{MN} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_M \end{bmatrix}$$

 $m{A} = egin{bmatrix} a_{11} & \dots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \dots & a_{MN} \end{bmatrix}$

Transforming Non-standard Form into Standard Form

 $Inequalities \ with \leq sign$

Original formulation:

$$\max x_1 + x_2$$

$$x_1$$
 ≤ 1000
 $x_2 \leq 1000$
 x_1 ≤ 2000
 x_1 + x_2 ≤ 1500

Transforming Non-standard Form into Standard Form

Inequalities with \leq sign

Original formulation:

$$\max x_1 + x_2 \qquad \qquad \max x_1 + x_2$$

subject to:

Transforming Non-standard Form into Standard Form

Inequalities with \leq sign

Original formulation:

$$\max x_1 + x_2 \qquad \qquad \max x_1 + x_2$$

subject to:

subject to:

 $+s_1$

= 1000

 s_1 , s_2 , s_3 and s_4 are known as **slack variables** (松弛变量)

Transforming Non-standard Form to Standard Form

Inequalities with \geq sign

Slack variables can transform an inequality with \leq , for inequalities with \geq , the coefficient of the slack variable should be -1

Example:

$$x_1 + x_2 \ge 50 \Rightarrow x_1 + x_2 - s_1 = 50$$

Sometimes referred to as surplus variable (剩余变量)

Transforming Non-standard Form to Standard Form

Negative or Free Variables

The standard form requires variables to be non-negative. Negative or free variables can be transformed by substitution

Example:

$$\max(\mathbf{x}_1 + \mathbf{x}_2)$$

$$x_1 \le 0$$

$$-2 \le x_2 \le 5$$

$$2x_1 + 3x_2 \le 10$$

Transforming Non-standard Form to Standard Form

Negative or Free Variables

The standard form requires variables to be non-negative. Negative or free variables can be transformed by substitution

Let $x_1 = -y_1$, so $y_1 \ge 0$. Let $x_2 = y_2 - y_3$ and $y_2 \ge 0$, $y_3 \ge 0$

Example:

$$\max(\mathbf{x}_1 + \mathbf{x}_2)$$

subject to:

$$x_1 \le 0$$

 $-2 \le x_2 \le 5$
 $2x_1 + 3x_2 \le 10$

Standard form:

$$\max(-y_1)+(y_2-y_3)$$

$$y_2 - y_3 - s_1 = -2$$
$$y_2 - y_3 + s_2 = 5$$
$$-2y_1 + 3y_2 - 3y_3 + s_3 = 10$$

Note on Transforming to Standard Form

- The use of slack variables and substitution are also useful in other optimization techniques, e.g., the Lagrange multiplier (拉格朗日乘子) method
- The transformation is used internally in LP solvers
- Modern LP libraries provide supports for inequality constraints and free variables

Solving Linear Programming

LP algorithms:

- Geometric method: for 2-variable LP
- Simplex method (单纯形法): practically fast, worst-case exponential
- Khachiyan algorithm (1979): polynomial algorithm based on ellipsoid method (椭圆法)
- Karmarkar algorithm (1984): polynomial algorithm based on interior point method (内点法)

Convex optimization algorithms:

- Alternating direction method of multipliers (交替方向乘子法, ADMM)
- Gradient descent algorithm (梯度下降法)

Leonid Genrikhovich Khachiyan. "A Polynomial Algorithm in Linear Programming". In: Doklady Akademii Nauk. Vol. 244. Russian Academy of Sciences, 1979, pp. 1093–1096
Narendra Karmarkar. "A New Polynomial-Time Algorithm for Linear Programming". In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing. ACM, 1984, pp. 302–311

Traffic engineering (TE, 流量工程) is a real networking problem in ISP networks. We consider a simplified problem:

 Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link
- The traffic matrix $T = (t_{ij})_{N \times N}$: t_{ij} denote the traffic from node i to node j

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link
- The traffic matrix $T = (t_{ij})_{N \times N}$: t_{ij} denote the traffic from node i to node j
- Link utilization u_i: the traffic carried by a link divided by the link capacity

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link
- The traffic matrix $T = (t_{ij})_{N \times N}$: t_{ij} denote the traffic from node i to node j
- Link utilization u_i: the traffic carried by a link divided by the link capacity
- Objective: to minimize the maximum link utilization

http://www.topology-zoo.org/gallery.html

• Nodes: $\{v_1 = S, v_2 = A, v_3 = B, v_4 = D\}$

- Nodes: $\{v_1 = S, v_2 = A, v_3 = B, v_4 = D\}$
- Links: $\{l_1 = (S, A), l_2 = (A, S), l_3 = (S, B), l_4 = (B, S), l_5 = (A, B), l_6 = (B, A), l_7 = (B, D), l_8 = (D, B)\}$

- Nodes: $\{v_1 = S, v_2 = A, v_3 = B, v_4 = D\}$
- Links: $\{l_1 = (S, A), l_2 = (A, S), l_3 = (S, B), l_4 = (B, S), l_5 = (A, B), l_6 = (B, A), l_7 = (B, D), l_8 = (D, B)\}$
- Link capacity: $c_1 = c_2 = 1000$, $c_3 = c_4 = 1000$, $c_5 = c_6 = 2000$, $c_7 = c_8 = 1500$

- Nodes: $\{v_1 = S, v_2 = A, v_3 = B, v_4 = D\}$
- Links: $\{l_1 = (S, A), l_2 = (A, S), l_3 = (S, B), l_4 = (B, S), l_5 = (A, B), l_6 = (B, A), l_7 = (B, D), l_8 = (D, B)\}$
- Link capacity: $c_1 = c_2 = 1000$, $c_3 = c_4 = 1000$, $c_5 = c_6 = 2000$, $c_7 = c_8 = 1500$
- Traffic matrix: assume we need 500 Mbps between S and B, and 1000 Mbps between S and D

Understanding Link Utilization (链路利用率)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Understanding Link Utilization (链路利用率)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Assume the traffic from S to B is using path $S \to B$, and the traffic from S to D is using path $S \to A \to B \to D$:

• Total traffic on link $S \rightarrow A$: 1000 Mbps, link utilization $u_1 = 1000/1000 = 1$

Understanding Link Utilization (链路利用率)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- Total traffic on link $S \rightarrow A$: 1000 Mbps, link utilization $u_1 = 1000/1000 = 1$
- Total traffic on link $S \rightarrow B$: 500 Mbps, link utilization $u_3 = 500/1000 = 0.5$

Understanding Link Utilization (链路利用率)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- Total traffic on link $S \rightarrow A$: 1000 Mbps, link utilization $u_1 = 1000/1000 = 1$
- Total traffic on link $S \rightarrow B$: 500 Mbps, link utilization $u_3 = 500/1000 = 0.5$
- Total traffic on link $A \rightarrow B$: 1000 Mbps, link utilization $u_5 = 1000/2000 = 0.5$

Understanding Link Utilization (链路利用率)

$$S \rightarrow B$$
: 500 Mbps $S \rightarrow D$: 1000 Mbps

- Total traffic on link $S \rightarrow A$: 1000 Mbps, link utilization $u_1 = 1000/1000 = 1$
- Total traffic on link $S \rightarrow B$: 500 Mbps, link utilization $u_3 = 500/1000 = 0.5$
- Total traffic on link $A \rightarrow B$: 1000 Mbps, link utilization $u_5 = 1000/2000 = 0.5$
- Total traffic on link $B \rightarrow D$: 1000 Mbps, link utilization $u_7 = 1000/1500 = 0.67$

Understanding Link Utilization (链路利用率)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- Total traffic on link $S \rightarrow A$: 1000 Mbps, link utilization $u_1 = 1000/1000 = 1$
- Total traffic on link $S \rightarrow B$: 500 Mbps, link utilization $u_3 = 500/1000 = 0.5$
- Total traffic on link $A \rightarrow B$: 1000 Mbps, link utilization $u_5 = 1000/2000 = 0.5$
- Total traffic on link $B \to D$: 1000 Mbps, link utilization $u_7 = 1000/1500 = 0.67$
- Maximum link utilization $u_{\text{max}} = \max\{u_1 = 1, u_3 = 0.5, u_5 = 0.5, u_7 = 0.67, u_2 = u_4 = u_6 = u_8 = 0\} = 1$

• Decision variables:

- Decision variables:
 - Traffic split ratio: let x_{ijk} denote the traffic from node i to node j on link k

- Decision variables:
 - Traffic split ratio: let x_{iik} denote the traffic from node i to node j on link k
 - Link utilization: let u_k denote the link utilization on link k

- Decision variables:
 - Traffic split ratio: let x_{iik} denote the traffic from node i to node j on link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization

- Decision variables:
 - Traffic split ratio: let x_{ijk} denote the traffic from node i to node j on link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:

- Decision variables:
 - Traffic split ratio: let x_{iik} denote the traffic from node i to node j on link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:
 - Traffic source:

$$\forall i, j, \sum_{s_k=i} x_{ijk} = t_{ij} \qquad \forall i, j, \sum_{d_k=i} x_{ijk} = 0$$

- Decision variables:
 - Traffic split ratio: let x_{iik} denote the traffic from node i to node j on link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:
 - Traffic source:

$$\forall i, j, \sum_{s_k=i} x_{ijk} = t_{ij}$$
 $\forall i, j, \sum_{d_k=i} x_{ijk} = 0$

- Traffic sink:

$$\forall i, j, \sum_{d_k=j} x_{ijk} = t_{ij}$$
 $\forall i, j, \sum_{s_k=j} x_{ijk} = 0$

- Decision variables:
 - Traffic split ratio: let x_{iik} denote the traffic from node i to node j on link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:
 - Traffic source:

$$\forall i, j, \sum_{s_k=i} x_{ijk} = t_{ij}$$
 $\forall i, j, \sum_{d_k=i} x_{ijk} = 0$

- Traffic sink:

$$\forall i, j, \sum_{d_k=j} x_{ijk} = t_{ij} \qquad \forall i, j, \sum_{s_k=j} x_{ijk} = 0$$

- Traffic on intermediate node

$$\forall i, j, p \neq i, p \neq j, \sum_{s_k=p} x_{ijk} = \sum_{d_k=p} x_{ijk}$$

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

Consider the traffic from *S* to *D*:

• At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$
 - $x_{S,D,1} + x_{S,D,3} = t_{S,D} = 1000$

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$
 - $-x_{S,D,1}+x_{S,D,3}=t_{S,D}=1000$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$
 - $x_{S,D,1} + x_{S,D,3} = t_{S,D} = 1000$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$
 - $x_{S,D,4}$: Traffic from S to D that uses link $l_4 = (B,S)$

Traffic at the Source Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$
 - $x_{S,D,1} + x_{S,D,3} = t_{S,D} = 1000$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$
 - $x_{S,D,4}$: Traffic from S to D that uses link $l_4 = (B,S)$
 - $-x_{S,D,2}+x_{S,D,4}=0$

Traffic at the Destination Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Consider the traffic from *S* to *D*:

• At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D

Traffic at the Destination Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D that uses link $l_7 = (B,D)$

Traffic at the Destination Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D that uses link $l_7 = (B,D)$
 - $-x_{S,D,7}=t_{S,D}=1000$

Traffic at the Destination Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D that uses link $l_7 = (B,D)$
 - $-x_{S,D,7}=t_{S,D}=1000$
 - $x_{S,D,8}$: Traffic from S to D that uses link $l_8 = (D,B)$

Traffic at the Destination Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D that uses link $l_7 = (B,D)$
 - $-x_{S,D,7}=t_{S,D}=1000$
 - $x_{S,D,8}$: Traffic from S to D that uses link $l_8 = (D,B)$
 - $-x_{S,D,8}=0$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

Consider the traffic from *S* to *D*:

• At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$
 - $x_{S,D,5}$: Traffic from S to D that uses link $l_5 = (A, B)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A, S)$
 - $x_{S,D,5}$: Traffic from S to D that uses link $l_5 = (A, B)$
 - $x_{S,D,1} + x_{S,D,6} = x_{S,D,2} + x_{S,D,5}$

• Constraints:

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} x_{ijk} \leq c_k$$

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} x_{ijk} \leq c_k$$

- Link utilization:

$$\forall k, u_k = \frac{1}{c_k} \sum_{i,j} x_{ijk}$$

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} x_{ijk} \leq c_k$$

- Link utilization:

$$\forall k, u_k = \frac{1}{c_k} \sum_{i,j} x_{ijk}$$

- Maximum link utilization:

$$\forall k, u_k \leq u$$

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} x_{ijk} \leq c_k$$

Link utilization:

$$\forall k, u_k = \frac{1}{c_k} \sum_{i,j} x_{ijk}$$

- Maximum link utilization:

$$\forall k, u_k \leq u$$

Objective: minimize the maximum link utilization

min *u*

Link Capacity

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Consider link $l_3 = (S, B)$:

• $S \rightarrow B$ can take path $S \rightarrow B$ and $S \rightarrow D$ can take path $S \rightarrow B \rightarrow D$

Link Capacity

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Consider link $l_3 = (S, B)$:

- $S \rightarrow B$ can take path $S \rightarrow B$ and $S \rightarrow D$ can take path $S \rightarrow B \rightarrow D$
- $x_{S,B,3}$: Traffic from S to B that uses link $l_3 = (S,B)$

Link Capacity

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Consider link $l_3 = (S, B)$:

- $S \rightarrow B$ can take path $S \rightarrow B$ and $S \rightarrow D$ can take path $S \rightarrow B \rightarrow D$
- $x_{S,B,3}$: Traffic from S to B that uses link $l_3 = (S,B)$
- $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$

Link Capacity

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Consider link $l_3 = (S, B)$:

- $S \rightarrow B$ can take path $S \rightarrow B$ and $S \rightarrow D$ can take path $S \rightarrow B \rightarrow D$
- $x_{S,B,3}$: Traffic from S to B that uses link $l_3 = (S,B)$
- $x_{S,D,3}$: Traffic from S to D that uses link $l_3 = (S,B)$
- $x_{S,B,3} + x_{S,D,3} \le c_3 = 1000$

Integer Linear Programming

Integer Linear Programming

Integer linear programming (ILP) has the same format as an LP with an additional constraint that some decision variables must be integers.

- ILP is NP-hard.
- If some variables are continuous, the problem is known as mixed integer linear programming (MILP)
- If all variables are either 0 or 1, the problem is known as binary linear programming

Consider the following problem:

• There are two available paths: $S \to A \to B \to D$, and $S \to B \to D$

Consider the following problem:

• There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$

Source	Destination	Capacity
S	A	1000
S	В	1000
A	В	2000
В	D	1500

Consider the following problem:

• There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$

(unit: Mbps)

Source	Destination	Capacity
S	A	1000
S	В	1000
Α	В	2000
В	D	1500

 Video streaming speed is either 3 Mbps (for FHD) and 15 Mbps (for 4K)

Consider the following problem:

• There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$

 The links have different link capacities (unit: Mbps)

Source	Destination	Capacity
S	A	1000
S	В	1000
Α	В	2000
В	D	1500

- Video streaming speed is either 3 Mbps (for FHD) and 15 Mbps (for 4K)
- Assume subscribers will pay \$1 for an FHD live streaming and \$10 for 4K live streaming

Consider the following problem:

• There are two available paths: $S \rightarrow A \rightarrow B \rightarrow D$, and $S \rightarrow B \rightarrow D$

$$S \rightarrow A \rightarrow B \rightarrow D$$
, and $S \rightarrow B \rightarrow D$

 The links have different link capacities (unit: Mbps)

Source	Destination	Capacity
S	A	1000
S	В	1000
Α	В	2000
В	D	1500

- Video streaming speed is either 3 Mbps (for FHD) and 15 Mbps (for 4K)
- Assume subscribers will pay \$1 for an FHD live streaming and \$10 for 4K live streaming
- Question: What is the maximum profit?

Formulating the Problem as an ILP

• Decision variables:

- the number of FHD subscribers on path $S \to A \to B \to D$: $x_1 \in \mathbb{N}$
- the number of 4K subscribers on path $S \to A \to B \to D$: $x_2 \in \mathbb{N}$
- − the number of FHD subscribers on path $S \rightarrow B \rightarrow D$: $x_3 \in \mathbb{N}$
- − the number of 4K subscribers on path $S \rightarrow B \rightarrow D$: $x_4 \in \mathbb{N}$

Formulating the Problem as an ILP

• Decision variables:

- the number of FHD subscribers on path S → A → B → D: $x_1 \in \mathbb{N}$
- the number of 4K subscribers on path $S \to A \to B \to D$: $x_2 \in \mathbb{N}$
- − the number of FHD subscribers on path $S \rightarrow B \rightarrow D$: $x_3 \in \mathbb{N}$
- − the number of 4K subscribers on path $S \rightarrow B \rightarrow D$: $x_4 \in \mathbb{N}$
- Constraints: the transfer speed on a link must not exceed the link capacity
 - $-S \rightarrow A: 3x_1 + 15x_2 \le 1000$
 - $-S \rightarrow B: 3x_3 + 15x_4 \le 1000$
 - $-A \rightarrow B: 3x_1 + 15x_2 \le 2000$
 - $B \to D: 3x_1 + 15x_2 + 3x_3 + 15x_4 \le 1500$

Formulating the Problem as an ILP

• Decision variables:

- the number of FHD subscribers on path S → A → B → D: $x_1 \in \mathbb{N}$
- the number of 4K subscribers on path $S \to A \to B \to D$: $x_2 \in \mathbb{N}$
- the number of FHD subscribers on path $S \to B \to D$: $x_3 \in \mathbb{N}$
- − the number of 4K subscribers on path $S \rightarrow B \rightarrow D$: $x_4 \in \mathbb{N}$
- Constraints: the transfer speed on a link must not exceed the link capacity
 - $S \rightarrow A: 3x_1 + 15x_2 \le 1000$
 - $-S \rightarrow B: 3x_3 + 15x_4 \le 1000$
 - $-A \rightarrow B: 3x_1 + 15x_2 \le 2000$
 - $B \to D: 3x_1 + 15x_2 + 3x_3 + 15x_4 \le 1500$
- **Objective**: maximizing the total profit $z = x_1 + 10x_2 + x_3 + 10x_4$

Solving Integer Linear Programming

- No polynomial algorithms exist for ILP: NP-hard
- Rounding method (no guarantee for optimality 最优性 or feasibility 可行性)
- Branch and bound

Now consider the traffic engineering problem using tunnels

 Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link
- The traffic matrix $T = (t_{ij})_{N \times N}$: t_{ij} denote the traffic from node i to node j

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link
- The traffic matrix $T = (t_{ij})_{N \times N}$: t_{ij} denote the traffic from node i to node j
- Link utilization u_i: the traffic carried by a link divided by the link capacity

http://www.topology-zoo.org/gallery.html

- Assume there are N nodes and M uni-directional links, the i-th link has a source s_i and the destination d_i
- Link capacity $c = (c_i)_M$ where c_i is the capacity for the i-th link
- The traffic matrix $T = (t_{ij})_{N \times N}$: t_{ij} denote the traffic from node i to node j
- Link utilization u_i: the traffic carried by a link divided by the link capacity
- Objective: to minimize the maximum link utilization

http://www.topology-zoo.org/gallery.html

- Decision variables:
 - Traffic path: let x_{ijk} denote whether the traffic from node i to node j uses link k

• Constraints:

- Decision variables:
 - Traffic path: let x_{ijk} denote whether the traffic from node i to node j uses link k
 - Link utilization: let u_k denote the link utilization on link k
- Constraints:

- Decision variables:
 - Traffic path: let x_{ijk} denote whether the traffic from node i to node j uses link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:

- Decision variables:
 - Traffic path: let x_{ijk} denote whether the traffic from node i to node j uses link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:
 - Traffic source:

$$\forall i, j, \sum_{s_k = i} x_{ijk} = 1 \qquad \forall i, j, \sum_{d_k = i} x_{ijk} = 0$$

- Decision variables:
 - Traffic path: let x_{ijk} denote whether the traffic from node i to node j uses link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:
 - Traffic source:

$$\forall i, j, \sum_{s_k = i} x_{ijk} = 1 \qquad \forall i, j, \sum_{d_k = i} x_{ijk} = 0$$

- Traffic sink:

$$\forall i, j, \sum_{d_k=j} x_{ijk} = 1$$
 $\forall i, j, \sum_{s_k=j} x_{ijk} = 0$

- Decision variables:
 - Traffic path: let x_{ijk} denote whether the traffic from node i to node j uses link k
 - Link utilization: let u_k denote the link utilization on link k
 - Maximum link utilization: let *u* denote the maximum link utilization
- Constraints:
 - Traffic source:

$$\forall i, j, \sum_{s_k = i} x_{ijk} = 1 \qquad \forall i, j, \sum_{d_k = i} x_{ijk} = 0$$

- Traffic sink:

$$\forall i, j, \sum_{d_k=j} x_{ijk} = 1$$
 $\forall i, j, \sum_{s_k=j} x_{ijk} = 0$

- Traffic on intermediate node

$$\forall i, j, p \neq i, p \neq j, \sum_{s_k=p} x_{ijk} = \sum_{d_k=p} x_{ijk}$$

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

Consider the traffic from *S* to *D*:

• At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D uses link $l_1 = (S,A)$

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D uses link $l_1=(S,A)$
 - $x_{S,D,3}$: Traffic from S to D uses link $l_3 = (S,B)$

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D uses link $l_3 = (S,B)$
 - One and only one link will be used: $x_{S,D,1} + x_{S,D,3} = 1$

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D uses link $l_3 = (S,B)$
 - One and only one link will be used: $x_{S,D,1} + x_{S,D,3} = 1$
 - $x_{S,D,2}$: Traffic from S to D uses link $l_2 = (A, S)$

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D uses link $l_3 = (S,B)$
 - One and only one link will be used: $x_{S,D,1} + x_{S,D,3} = 1$
 - $x_{S,D,2}$: Traffic from S to D uses link $l_2 = (A, S)$
 - $x_{S,D,4}$: Traffic from S to D uses link $l_4 = (B, S)$

Path Selection at the Source Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node S, there are two potential links $l_1 = (S, A)$ and $l_3 = (S, B)$ whose source is S, and $l_2 = (A, S)$ and $l_4 = (B, S)$ whose destination is S
 - $x_{S,D,1}$: Traffic from S to D uses link $l_1 = (S,A)$
 - $x_{S,D,3}$: Traffic from S to D uses link $l_3 = (S,B)$
 - One and only one link will be used: $x_{S,D,1} + x_{S,D,3} = 1$
 - $x_{S,D,2}$: Traffic from S to D uses link $l_2 = (A, S)$
 - $x_{S,D,4}$: Traffic from S to D uses link $l_4 = (B,S)$
 - $-x_{S,D,2}+x_{S,D,4}=0$

Path Selection at the Destination Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

Consider the traffic from *S* to *D*:

• At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D

Path Selection at the Destination Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D uses link $l_7 = (B, D)$

Path Selection at the Destination Node

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D uses link $l_7 = (B, D)$
 - $-x_{S,D,7}=1$

Path Selection at the Destination Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D uses link $l_7 = (B,D)$
 - $-x_{S,D,7}=1$
 - $x_{S,D,8}$: Traffic from S to D uses link $l_8 = (D,B)$

Path Selection at the Destination Node

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node D, there are one potential link $l_7 = (B, D)$ whose destination is D, and $l_8 = (D, B)$ whose source is D
 - $x_{S,D,7}$: Traffic from S to D uses link $l_7 = (B, D)$
 - $-x_{S,D,7}=1$
 - $x_{S,D,8}$: Traffic from S to D uses link $l_8 = (D,B)$
 - $-x_{S,D,8}=0$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

Consider the traffic from *S* to *D*:

• At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps

 $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A,S)$
 - $x_{S,D,5}$: Traffic from S to D that uses link $l_5 = (A, B)$

Traffic at the Intermediate Node(s)

 $S \rightarrow B$: 500 Mbps $S \rightarrow D$: 1000 Mbps

- At node A, there are two potential links $l_1 = (S, A)$ and $l_6 = (B, A)$ whose destination is A, and $l_2 = (A, S)$ and $l_5 = (A, B)$ whose source is A
 - $x_{S,D,1}$: Traffic from S to D that uses link $l_1 = (S,A)$
 - $x_{S,D,6}$: Traffic from S to D that uses link $l_6 = (B,A)$
 - $x_{S,D,2}$: Traffic from S to D that uses link $l_2 = (A, S)$
 - $x_{S,D,5}$: Traffic from S to D that uses link $l_5 = (A, B)$
 - $x_{S,D,1} + x_{S,D,6} = x_{S,D,2} + x_{S,D,5}$

• Constraints:

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} t_{ij} x_{ijk} \leq c_k$$

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} t_{ij} x_{ijk} \leq c_k$$

- Link utilization:

$$\forall k, u_k = \frac{1}{c_k} \left(\sum_{i,j} t_{ij} x_{ijk} \right)$$

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} t_{ij} x_{ijk} \leq c_k$$

- Link utilization:

$$\forall k, u_k = \frac{1}{c_k} \left(\sum_{i,j} t_{ij} x_{ijk} \right)$$

- Maximum link utilization:

$$\forall k, u_k \leq u$$

- Constraints:
 - Link capacity:

$$\forall k, \sum_{i,j} t_{ij} x_{ijk} \leq c_k$$

- Link utilization:

$$\forall k, u_k = \frac{1}{c_k} \left(\sum_{i,j} t_{ij} x_{ijk} \right)$$

- Maximum link utilization:

$$\forall k, u_k \leq u$$

• Objective: minimize the maximum link utilization

min *u*

The End

Summary

In the coming lectures, we cover the following topics:

- Automata theory
- Linear programming
- Integer linear programming

In this lecture, you should

- understand linear programming (线性规划, LP) and its standard form (标准型)
- understand integer linear program (整数线性规划, ILP)

Thanks!

kaigao@scu.edu.cn

References L

- [1] Narendra Karmarkar. "A New Polynomial-Time Algorithm for Linear Programming". In: *Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing*. ACM, 1984, pp. 302–311.
- [2] Leonid Genrikhovich Khachiyan. "A Polynomial Algorithm in Linear Programming". In: *Doklady Akademii Nauk*. Vol. 244. Russian Academy of Sciences, 1979, pp. 1093–1096.