«Московский государственный университет геодезии и картографии»

ФАКУЛЬТЕТ ДИСТАНЦИОННЫХ ФОРМ ОБУЧЕНИЯ ЗАОЧНОЕ ОТДЕЛЕНИЕ

КОНТРОЛЬНАЯ РАБОТА № 6
По курсу «Прикладная геодезия»

студента заочного отделения ФДФО

специальности Прикладная Геодезия

Чекина Олега Владимировича

Шифр 60П-156 Вариант № 11

Домашний адрес (индекс), мобильный телефон:

107023, г. Москва, ул. 9-я Рота, д.2, корп.1.

Оглавление

Контрольная работа №6	3
Исходные данные:	3
Схема полного створа:	3
Схема последовательных створов:	3
Схема перекрывающихся створов:	4
Выводы:	4
Графическая часть.	5
Список литературы	

Контрольная работа №6

Оценка проекта створных измерений.

Исходные данные:

- длина створа -L = 120м;
- число определяемых точек n = 11;
- расстояние между смежными знаками $\Delta D = \frac{L}{n+1} = 10$ м;
- средняя квадратическая ошибка визирования 0.5".

Схема полного створа:

Расчёт точности выполнен по формуле:

$$m_{\delta_i} = \frac{\sqrt{2} \cdot m_B \cdot L \cdot i \cdot (n+1-i)}{\rho'' \cdot (n+1) \cdot \sqrt{i^2 + (n+1-i)^2}} . (1)$$

Результаты вычислений сведены в таблицу 1. График представлен на рисунке 1.

Таблица 1.

i	1	2	3	4	5	6	7	8	9	10	11
m_i , m	0.034	0.067	0.098	0.123	0.139	0.145	0.139	0.123	0.098	0.067	0.034

Схема последовательных створов:

Расчёт точности выполнен по формуле:

$$m_{\delta_i} = m_{\Delta} \cdot (n+1-i) \cdot \sqrt{\sum_{k=1}^{i} \frac{1}{(n+1-k)}}$$
, (2)

где
$$m_{\Delta} = \frac{\sqrt{2} \cdot m_B \cdot L}{\rho \cdot (n+1)}$$
 (3).

Вычисление $m_{\delta icp}$ выполнялось по формуле:

$$m_{\delta_{i \text{cp}}} = \frac{m_{\delta_{i \text{np}}} \cdot m_{\delta_{i \text{ofp}}}}{\sqrt{m_{\delta_{i \text{np}}}^2 + m_{\delta_{i \text{ofp}}}^2}} \quad (4)$$

Результаты вычислений сведены в таблицу 2. График представлен на рисунке 1.

Таблица 2.

k	$(n+1-k)^2$	$\frac{1}{(n+1-k)^2}$	$\sum_{n=1}^{i} \frac{1}{(n+1-k)^2}$	$\sqrt{\sum_{n=1}^{i} \frac{1}{(n+1-k)^2}}$	$(n+1-i)\sqrt{\Sigma}$	m _{δi} прямо	т _{бі} обратно	т _{біср} мм
1	121	0,008	0,008	0,091	1,000	0,034	0,043	0,027
2	100	0,010	0,018	0,135	1,351	0,046	0,051	0,034
3	81	0,012	0,031	0,175	1,575	0,054	0,057	0,039
4	64	0,016	0,046	0,215	1,720	0,059	0,061	0,042
5	49	0,020	0,067	0,258	1,807	0,062	0,063	0,044
6	36	0,028	0,094	0,307	1,844	0,063	0,063	0,045
7	25	0,040	0,134	0,367	1,833	0,063	0,062	0,044
8	16	0,063	0,197	0,444	1,775	0,061	0,059	0,042
9	9	0,111	0,308	0,555	1,665	0,057	0,054	0,039
10	4	0,250	0,558	0,747	1,494	0,051	0,046	0,034
11	1	1,000	1,558	1,248	1,248	0,043	0,034	0,027

Схема перекрывающихся створов:

Расчёт точности выполнен по формуле:

$$m_{\delta_i} = m_{\Delta} \cdot \sqrt{\frac{i}{3 \cdot (n+1)} \cdot \{(i-1)[2 \cdot i^2 - 2 \cdot i \cdot (2 \cdot n+1) - (n+1)] + i \cdot n \cdot (2 \cdot n+1)\}}$$
 (5)

где m_{Λ} вычисляется по формуле (3)

Результаты вычислений сведены в таблицу 3. График представлен на рисунке 1.

Таблица 3.

i	$\frac{i}{3(n+1)}$	$(i-1)[2i^2 - 2i(2 \cdot n + 1) - (n+1)]$	$in(2 \cdot n + 1)$	$\sqrt{A^*}$	m_δ , MM
1	0,028	0,000	253,000	2,651	0,091
2	0,056	-96,000	506,000	4,773	0,164
3	0,083	-264,000	759,000	6,423	0,220
4	0,111	-492,000	1012,000	7,601	0,261
5	0,139	-768,000	1265,000	8,308	0,285
6	0,167	-1080,000	1518,000	8,544	0,293
7	0,194	-1416,000	1771,000	8,308	0,285
8	0,222	-1764,000	2024,000	7,601	0,261
9	0,250	-2112,000	2277,000	6,423	0,220
10	0,278	-2448,000	2530,000	4,773	0,164
11	0,306	-2760,000	2783,000	2,651	0,091

$$A^* = \frac{i}{3 \cdot (n+1)} \cdot \left\{ (i-1) \left[2 \cdot i^2 - 2 \cdot i \cdot (2 \cdot n+1) - (n+1) \right] + i \cdot n \cdot (2 \cdot n+1) \right\}$$

Выводы:

По результатам анализа схемы полного створа установлено, что количество определяемых точек не влияет на точность измерений. Так, например, при длине створа 50м и количестве точек – 9 величина ошибки визирования m_i в середине створа составила 0.061мм, при той же длине и количестве точек – 49 величина ошибки визирования m_i в середине створа так же составляет 0.061мм. При этом при увеличении расстояния величина ошибки визирования m_i растёт и при длине створа 100м составляет 0.121мм в середине створа. Таким образом можно заключить, что схема полного створа хорошо подходит для контроля монтажа на этапе строительства или деформаций в процессе эксплуатации, отклонений колон промышленных зданий и сооружений, где небольшие расстояния, как правило до 100м в сочетании с плотной сеткой колон 3м-6м создают условия для применения схемы полного створа.

Схема последовательных створов наиболее точная из рассматриваемых. При этом увеличение количества определяемых точек повышает точность. Так, например, при длине створа 50м и количестве точек — 9, величина ошибки визирования m_i в середине створа, составила 0.020мм, при той же длине и количестве точек — 49, величина ошибки визирования m_i в середине створа составляет 0.0086мм. Можно также отметить, что увеличение ошибки визирования с расстоянием растёт линейно, то есть при увеличении расстояния в два раза в два раза увеличиться и ошибка визирования, увеличение расстояния в три раза, так же в три раза увеличивает ошибку визирования. Таким образом схема последовательных створов, наилучшим образом подходит при контроле укладки и в процессе эксплуатации протяжённых линейных объектов, где точность створа оказывает влияние на тот или иной процесс. Например, на железнодорожном транспорте, точность укладки рельсов в створ влияет на скорость движения составов.

Наиболее грубой из рассмотренных схем является схема перекрывающихся створов. Точность измерений падает, как с увеличением расстояния, так и с ростом числа точек. Схема подходит для рекогносцировки, начального этапа разметки оси дороги и других работ не требующих значительной точности и количества определяемых точек.

Графическая часть.

Рисунок 1

Схема полного створа

Схема последовательных створов

Схема перекрывающихся створов

	Ф.И.О.	Подпись	Дата	Контрольная №6 По курсу прикладная	ΜИИΓΑυΚ						
Разраб	Чекин О.В.		2020	геодезия			PIPIPII AUN				
Пров				Схемы створных измерений		1	Листов 1				
Утв							1: 350				

Список литературы

- 1. Н.Н. Лебедев «Курс инженерной геодезии» М. Недра 1974;
- 2. Авакян В.В. «Лекции по прикладной геодезии» Часть 3;
- 3. Г.П. Левчук, В.Е. Новак, Н.Н. Лебедев «Прикладная геодезия. Геодезические работы при изысканиях и строительстве инженерных сооружений» 1983;
- 4. Авакян В.В. «Лекции по прикладной геодезии» Часть 2;