Twierdzenie 1. Niech $\Omega \subset \mathbb{C}$, Ω - otwarty i spójny, $A \subset \Omega$. Niech $D \subset A$ - zbiór zer funkcji f(z) na A. Niech $P \subset A$ - zbiór biegunów funkcji f na A oraz

$$\partial A \cap \partial D = \phi, \quad \partial A \cap P = \phi.$$

W'owczas

$$\frac{1}{2\pi i} \int_{\partial A} \frac{f'}{f} = N_Z - N_B,$$

gdzie N_Z - suma krotności wszystkich zer funkcji f na A, a N_B - suma stopni wszystkich biegunów f na A.

Dowód. Wiemy, że

$$\frac{1}{2\pi i} \int_{\partial A} \frac{f'}{f} = \sum_{A} \operatorname{Res} \frac{f'}{f} = \sum_{z_i \in D} \frac{f'}{f} + \sum_{z_k \in P} \frac{f'}{f},$$

jest sumą krotności wszystkich zer plus sumą krotności wszystkich biegunów, bo jeżeli $z_i\in D$ - zero rzędu k, to Res $\frac{f'}{f}=k$, a jeżeli $z_j\in P$ - biegun rzędu n, to

$$\operatorname{Res}_{z_j} \quad \frac{f'}{f} = -n.$$

Twierdzenie 2. (Rouche)

Niech $A \subset \Omega$, Ω - otwarty i spójny, f, g - holomorficzne na Ω i taka, $\dot{z}e$

$$|g(z)| < |f(z)|,$$

dla $z \in A$, $f(z) \neq 0$, $z \in \partial A$. Wówczas funkcja f(z) + g(z) ma taką samą ilość zer (wraz z krotnościami), co funkcja f(z).

Dowód. Niech $a \in [0, 1]$. Rozważmy

$$h_a(z) = f(z) + a \cdot g(z).$$

Wówczas

$$N(a) = \frac{1}{2\pi i} \int\limits_{\partial A} \frac{h_a'(z)}{h_a(z)} = \frac{1}{2\pi i} \int\limits_{\partial A} \frac{f'(z) + ag'(z)}{f(z) + ag(z)}.$$

Zauważmy, że N(a) jest ciągła ze względu na a (jako całka z parametrem). Z drugiej strony,

$$N(0) = \frac{1}{2\pi i} \int_{\partial A} \frac{f'(z)}{f(z)} = N_z$$
 funkcji f .

Skoro wartość N(0) jest liczbą naturalną, a N(a) jest funkcją ciągłą, to znaczy, że N(0)=N(a)=N(1), a

$$N(1) = \frac{1}{2\pi i} \int_{\partial A} \frac{f' + g'}{f + g} = N_2$$
 funkcji $(f + g)$.

Przykład 1. (Dowód zasadniczego twierdzenia algebry v2.0) Niech $f(z) = a_0 z^n$ i $g(z) = a_1 z^{n-1} + a_2 z^{n-2} + \ldots + a_{n-1} z + a_n$.

 $Zauważmy, \dot{z}e$

$$\frac{|f(z)|}{|g(z)|} \underset{|z| \to \infty}{\longrightarrow} +\infty.$$

Możemy zatem wybrać taki zbiór A, dla którego $|g(z)| < |f(z)|, z \in \partial A$, w którym zawarte będą wszystkie zera funkcji g(z).

Zauważmy, że funkcja f(z) ma zero n - tego stopnia, czyli $N_z = n$ dla funkcji f. Oznacza to, że ilość zer wraz z krotnościami (na mocy tw. Rouche) funkcji f+g wynosi n. \square

Przykład 2. (Sumowanie szeregów v2.0)

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Ile to bedzie

$$\sum_{n=1}^{\infty} \frac{1}{n^4}?$$

Niech

$$f(z) = \frac{1}{a^2 - z^2}, \quad a \neq \mathbb{Z}.$$

Zatem

$$\frac{1}{\pi} \sum_{n=-\infty}^{+\infty} f(n) = \underset{z=a}{\operatorname{Res}} \quad \frac{\operatorname{ctg}(\pi z)}{a^2 - z^2} + \underset{z=-a}{\operatorname{Res}} \quad \frac{\operatorname{ctg}(\pi z)}{a^2 - z^2}.$$

Ale

$$\mathop{\mathrm{Res}}_{z=a} \quad \frac{1}{a^2-z^2} \mathop{\mathrm{ctg}}(\pi z) = \mathop{\mathrm{Res}} \frac{1}{(a-z)(a+z)} \mathop{\mathrm{ctg}}(\pi z) = \lim_{z \to a} \frac{z-a}{(a-z)(a+z)} \mathop{\mathrm{ctg}}(\pi z) = -\frac{\mathop{\mathrm{ctg}}(\pi a)}{2a}.$$

Analogicznie $\frac{1}{a^2-z^2} \operatorname{ctg}(\pi z) = \frac{\operatorname{ctg}(-\pi a)}{2a}$. Zatem

$$\sum_{n=-\infty}^{+\infty} \frac{1}{a^2 - n^2} = -\frac{\operatorname{ctg}(\pi a)}{a}.$$

$$\sum_{n=-1}^{-\infty} \frac{1}{a^2-n^2} + \sum_{n=1}^{\infty} \frac{1}{a^2-n^2} + \frac{1}{a^2} = -\frac{\operatorname{ctg}(\pi a)}{a}.$$

$$\sum_{n=-1}^{\infty} \frac{a}{a^2 - n^2} + \sum_{n=1}^{\infty} \frac{a}{a^2 - n^2} + \frac{1}{a} = -\operatorname{ctg}(\pi a) \tag{*}$$

Ale

$$\frac{a}{a^2-n^2}=\frac{1}{2}\left(\frac{1}{a-n}+\frac{1}{a+n}\right).$$

$$\sum_{n=1}^{-\infty} \frac{a}{a^2 - n^2} + \sum_{n=1}^{\infty} \frac{a}{a^2 - n^2} = 2\sum_{n=1}^{\infty} \frac{a}{a^2 - n^2} = \sum_{n=1}^{\infty} \frac{1}{a - n} + \frac{1}{a + n}.$$

Zatem

$$(\star): \dots + \frac{1}{a-n} + \frac{1}{a-(n-1)} + \dots + \frac{1}{a-1} + \frac{1}{a} + \dots + \frac{1}{a+n} + \dots = \operatorname{ctg}(\pi a).$$

Wyrażenie po prawej stronie jest funkcją okresu 1.

0.1 Residuum w $+\infty$

$$f(z) = \ldots + \frac{a_{-n}}{z^n} + \frac{a_{-(n-1)}}{z^{n-1}} + \ldots + \frac{a_{-1}}{z^{-1}} + a_0 + a_1 z + \ldots + a_n z^n.$$

Przykład 3. (bijekcja szprychowa - rys 1)

i) Cheemy aby $f(x) = \frac{1}{x}$ (na \mathbb{R}) była ciągła w x = 0.

$$\lim_{x \to 0^{-}} f(x) = -\infty,$$

$$\lim_{x \to 0^+} f(x) = +\infty.$$

$$\frac{1 - y'}{x'} = \frac{y'}{x - x'} \implies x - x' - xy' + y'x' = y'x' \implies x(1 - y') = x'.$$

$$\begin{cases} x = \frac{x'}{1-y'} \\ (x')^2 + (y')^2 = 1 \end{cases}$$

Uzwarcenie aleksandrowe $\mathbb{R}\sim 0,\;\overline{\mathbb{R}}\sim 0$ - zamknęliśmy nieskończoności w zerze.

Definicja 1.

$$\overline{\mathbb{C}} = \mathbb{C} + (0, 0, 1).$$

Mówimy, że f(z) jest holomorficzna w $z=\infty$, jeżeli funkcja $g(z)=f(\frac{1}{z})$ jest holomorficzna w z=0.

$$g(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$
 $K(0, R)$.

Rysunek 1: Taka szprycha niech przecina nam okrąg

Definicja 2. Jeżeli g(z) w rozwinięciu R(0,0,r) ma postać

$$g(z) = \frac{a_{-k}}{z^k} + \frac{a_{-(k-1)}}{z^{k-1}} + \dots + a_0 + a_1 z,$$

to mówimy, że f(z) ma w $z = \infty$ biegun rzedu k.

Definicja 3. Jeżeli $\lim_{z\to 0} g(z)$ nie istnieje, to mówimy, że f(z) ma w $z=\infty$ osobliwośc istotną.

Obserwacja: Jeżeli

$$g(z) = \frac{a_{-k}}{z^k} + \frac{a_{-(k-1)}}{z^{k-1}} + \dots + a_0 + a_1 z + a_2 z^2 + \dots,$$

to

$$f(z) = g\left(\frac{1}{z}\right) = a_{-k}z^{k-1} + \ldots + a_0 + \frac{a_1}{z} + \frac{a_2}{z^2} + \ldots$$