

ON TRANSFER LEARNING USING A MAC MODEL VARIANT

Vincent Marois

T.S. Jayram

Ahmet S. Ozcan

Younes Bouhadjar $Younes\ Bouhadjar \\ \{vmarois, jayram, tkornut, byounes, asozcan\} @us.ibm.com, \{vincent.albouy\} @ibm.com\}$

SUMMARY

- We introduce a *simplified* variant of the MAC model (*Hudson and Manning*, ICLR 2018), which achieves comparable accuracy while training faster.
- We evaluate both models on CLEVR & CoGenT, and show that, transfer learning with fine-tuning results in a 15 point increase in accuracy, matching the state of the art.
- We also demonstrate that *improper* fine-tuning can reduce a model's accuracy.

THE MAC MODEL [HM18]

Figure 1: The MAC cell [HM18].

- MAC network: a recurrent model performing sequential reasoning. At each step, it analyzes the question and shifts the attention over the image.
- Recurrent MAC cell: consists of a control unit, a read unit & a write unit. The control unit updates the control state c_i & drives the attention over the question words.
- The read unit, guided by c_i extracts information from the image. The write unit uses this information to update the memory state m_i .

SIMPLIFIED MAC MODEL (S-MAC)

Based on two heuristic simplifications:

- Taking the MAC cell equations as a whole, consecutive linear layers (with no activation in-between) can be combined as one linear layer.
- We assume that dimension-preserving linear layers are invertible so as to avoid information loss.

This allows, with a careful reorganization, to apply a single linear layer to the knowledge base (feature map extracted from the image) prior to all the reasoning steps and work with this projection throughout the reasoning steps.

MAC

S-MAC

Control unit: The question q is first made position-aware in each reasoning step using an *i*-dependent projection: $q_i = U_i^{[d \times 2d]} q + b_i^{[d]}$.

$cq_i = W_{cq}^{[d \times 2d]}[c_{i-1}, q_i] + b_{cq}^{[d]}$	(c1)	$cq_i = W_{cq}^{[d \times d]} c_{i-1} + q_i$	(c1)
$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s) + b_{ca}^{[1]}$	(c2.1)	$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s)$	(c2.1)
$cv_{is} = \operatorname{softmax}(ca_{is})$	(c2.2)	$cv_{is} = \operatorname{softmax}(ca_{is})$	(c2.2)
$\mathbf{c}_i = \sum cv_{is} \mathbf{cw}_s$	(c2.3)	$\mathbf{c}_i = \sum cv_{is} \mathbf{cw}_s$	(c2.3)
${m s}$		s	

Read and write units:

$$I_{ihw} = (W_m^{[d \times d]} \mathbf{m}_{i-1} + b_m^{[d]})$$

$$\odot (W_k^{[d \times d]} \mathbf{k}_{hw} + b_k^{[d]}) \qquad (r1)$$

$$I'_{ihw} = W_{I'}^{[d \times 2d]} [I_{ihw}, \mathbf{k}_{hw}] + b_{I'}^{[d]} \qquad (r2)$$

$$ra_{ihw} = W_{ra}^{[1 \times d]} (\mathbf{c}_i \odot I'_{ihw}) + b_{ra}^{[1]} \qquad (r3.1)$$

$$rv_{ihw} = \operatorname{softmax}(ra_{ihw}) \qquad (r3.2)$$

$$\mathbf{r}_i = \sum rv_{ihw} \mathbf{k}_{hw} \qquad (r3.3)$$

$$\mathbf{m}_{i} = W_{rm}^{[d \times d]}[\mathbf{r}_{i}, \mathbf{m}_{i-1}] + b_{rm}^{[d]} \qquad (w1)$$

$I_{ihw} = m_{i-1} \odot k_{hw}$	(r1)
$I'_{ihw} = W_{I'}^{[d \times d]} I_{ihw} + b_{I'}^{[d]} + \mathbf{k}_{hw}$	(r2)
$max = W[1 \times d] (\mathbf{c} \odot \mathbf{I}')$	(r2 1)

$$ra_{ihw} = W_{ra}^{[1 \times d]}(\mathbf{c}_i \odot I'_{ihw})$$
 (r3.1)
 $rv_{ihw} = \operatorname{softmax}(ra_{ihw})$ (r3.2)

$$\mathbf{r}_{i} = \sum_{s} r v_{ihw} \,\mathbf{k}_{hw} \qquad (r3.3)$$

$$\mathbf{m}_{i} = W_{rm}^{[d \times 2d]} \mathbf{r}_{i} + b_{rm}^{[d]} \qquad (w1)$$

$$\mathbf{m}_i = W_{rm}^{[d \times 2d]} \mathbf{r}_i + b_{rm}^{[d]} \tag{w1}$$

Model	Read Unit	Write Unit	Control Unit
MAC S-MAC	787,969 $263,168$	$524,\!800$ $262,\!656$	525,313 263,168
Reduction by [%]	67%	50%	50%

Table 1: Comparing the number of position-independent parameters between MAC & S-MAC cells.

LINKS

Figure 2: Documentation.

Figure 3: GitHub repo.

THE CLEVR & COGENT DATASETS

Figure 4: How many objects are either small cylinders or red things?

- The authors [JHvdM⁺17] also introduced CLEVR-CoGenT, to evaluate how well a model can learn relations and compositional concepts.
- Similar to CLEVR, but with two conditions, as follows:

Dataset	Cubes	Cylinders	Spheres
CLEVR CoGenT-A CLEVR CoGenT-B	any color gray / blue / brown / yellow red / green / purple / cyan	any color red / green / purple / cyan gray / blue / brown / yellow	any color any color any color

Table 2: Colors/shapes combinations present in CLEVR, CoGenT-A and CoGenT-B datasets.

EXPERIMENTS & RESULTS

CLEVR & CoGenT accuracies for the MAC & S-MAC models:

Model	Training		Fine-tuning		Test		
	Dataset	Time [h:m]	Acc [%]	Dataset	Acc [%]	Dataset	Acc [%]
MAC	CLEVR	30:52	96.70			CLEVR	96.17
S-MAC	CLEVR	28:30	95.82			CLEVR	95.29
	CoGenT-A	28:33	96.09			CoGenT-A	95.91
	CLEVR 28:30	95.82		_	CoGenT-A	95.47	
		20.90	99.02			CoGenT-B	95.58
	CoGenT-A 28:33 96.0				CogenT-B	78.71	
		96.09	96.09 CoGenT-B	96.85	CoGenT-A	91.24	
					CoGenT-B	94.55	
	CLEVR 28:30 95.82	95.82	CoGenT-B	97.67	CoGenT-A	92.11	
		<i>5</i> . <i>2</i>			CoGenT-B	92.95	

- Our experiments on zero-short learning show that the MAC model has poor performance in line with the other models in the literature.
- With fine-tuning, the MAC model matches state of the art accuracy
- Remains an interesting problem to investigate how we can train it to disentangle the concepts of shape and color.
- Experiments can be reproduced by following the **mi-prometheus** documentation

MAC DRAWBACKS ON CLEVR

• The question reads as: There is a large gray thing that is on the right side of the big gray cylinder left of the large ball that is on the right side if the cyan rubber sphere; what is its shape? Predicted answer: Cylinder - Truth: Cube

REFERENCES

[HM18]Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine reasoning. International Conference on Learning Representations, 2018.

 $[\mathrm{JHvdM}^+17]$ Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 2017.