

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination-December 2022

Max. Marks: - 100

Class: S.E. (EXTC A & B Division)

Course Code: - MA201

Name of the Course: Linear Algebra

Duration: 3 Hours

Semester: III Branch: - EXTC

Instructions:

1) All Questions are Compulsory.

2) Assume suitable data if necessary.

Q No.		Max. Marks	CO
Q.1	a) Construct an orthonormal basis of R^3 by applying Gram Schmidt process where $u_1 = (1, 0, 0)$, $u_2 = (3, 7, -2)$, $u_3 = (0, 4, 1)$.	8	4
	b) State only one axiom that fails to hold for each of the following sets W to be subspaces of the respective real vector spaces V with Standard operations. 1) $W = \{(x, y) \mid x^2 = y^2\}, V = R^2$ 2) $W = \{(x, y) \mid x y \ge 0\}, V = R^2$	7	4
	3) W = {(x, y) x y \ge 0}, v = R 3) W = {(x, y, z) x^2 + y^2 + z^2 = 1}, V = R ³ 4) W = {f f (x) \le 0 for all x}, V = F(-\infty,\infty)		- a
	c) Show that $S = \{1 - t - t^2, -2 + 3t + 2t^3, 1 + t + 5t^3\}$ is linearly independent in P_3 . (P_3 means the set of all polynomials of degree 3 i.e. of the form $a_0 + a_1 x + a_2 x^2 + a_3 x^3$)	6	4
	or c) Determine the linear dependence or independence of vectors (2,-1, 3,2), (1, 3, 4, 2) and (3, -5, 2, 2). Find the relation between them if dependent.		
	d) Find the basis for the row and column space of $A = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 2 & 3 & 1 & 5 \end{bmatrix}$	4	4
	e) Check whether the following set of vectors is a basis for P_2 . $S = \{1 - 3x + 2x^2, 1 + x + 4x^2, 1 - 8x + x^2\}$ Find the coordinate vector of $p = 1 - 2x + x^2$ with respect to the above basis.	5	4

Q.2	a) Solve the following system of differential equation $y' = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ y	8	6
	b) Show that the matrix $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$ satisfies Cayley- Hamilton Theorem and hence find A^{-1} if it exists.	8	6
	OR		
	b) If $A = \begin{bmatrix} \alpha & \alpha \\ \alpha & \alpha \end{bmatrix}$ then prove that $e^A = e^{\alpha} \begin{bmatrix} cosh\alpha & sinh\alpha \\ sinh\alpha & cosh\alpha \end{bmatrix}$		
	c) Find the Singular Value Decomposition of the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$	8	6
	d) Prove that the characteristic roots of a Hermitian matrix are all real.	4	6
Q.3			-
	a) Apply Gauss Jacobi Method to solve the following equations	8	2
	4x + y + 3z = 17		_
	x + 5y + z = 14		
	2x - y + 8z = 12 upto 5 iterations.		
	OR		
	a) Apply Gauss Seidel Method to solve the following equations		
	28x + 4y - z = 32		
	2x + 17y + 4z = 35		
	x + 3y + 10z = 24		
	Note:- upto 5 iterations		
	b) Show that the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalisable. Find the diagonal matrix and the transforming matrix.	8	5
	c) Fit a curve of the form $y = a + b x + c x^2$ for the following data	-	
	using Least square Method.	5	4
	X : 1.0 1.2 1.4 1.6 1.8 2		
	Y : 2.345 2.419 2.592 2.863 3.233 3.702		
	1.71. Debt 5.05 (August		

Q.4	a) Using a suitable 2 x 2 matrix, Encode and decode the message	7	3
	NOW * STUDY		
Q.5	a) Reduce the following matrix to Row Echelon form and find its rank $A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 4 & -2 & 1 \\ 1 & -1 & 4 & 0 \\ -2 & 2 & -8 & 0 \end{bmatrix}$	6	1
	b) If x_1, x_2, x_3 , x_4 are the number of vehicles travelling through each road per hour. Find x_1, x_2, x_3 , x_4 from the traffic diagram given below:	8	1
	1200 X1 800 X2 1300 X3 1400		
	700 D C 400	-	

****** All the Best *******

