PATENT SPECIFICATION

(22) Filed 30 Aug. 1974

(21) Application No. 38113/74 (31) Convention Application No. 101 975/73

(32) Filed 10 Sept. 1973

(31) Convention Application No. 113 620/73

(32) Filed 9 Oct. 1973

(31) Convention Application No. 114 134/73

(32) Filed 11 Oct. 1973

(31) Convention Application No. 115 630/73

(32) Filed 15 Oct. 1973 in

(33) Japan (JA)

(44) Complete Specification published 7 April 1976

(51) INT CL² B01D 53/34 // B01J 23/22

(52) Index at acceptance

CIA S171 S21X S21Y S410 S411 S41Y S491 S60Y S611 S612 S614 S615 S616 S683 SA

B1E 261 277 287 291 341 34Y 370 371 37Y 383 38Y 420 42Y 44Y 544 550 551 552 553 55Y 561 565 571 579 580 584 645 677 678 679 691 693 703 705 708 70Y 71X 71Y 785 78Y

(54) REDUCTIVE DECOMPOSITION OF OXIDES OF NITROGEN

We, MITSUBISHI CHEMICAL INDUSTRIES LTD., a Japanese Company, of 5-2, Marunouchi 2-chome, Chiyoda-ku, Tokyo, Japan, do hereby declare the invention, for which we pray that a patent may be granted to us and the method by which it is to be performed, to be particularly described in and by the following statement:-

The present invention relates to the reduc-10 tive decomposition of oxides of nitrogen. More particularly, the invention relates to an improvement in the catalytic reduction of oxides of nitrogen e.g. NO, NO2 (hereinafter referred to as NOx) in exhaust gases in the presence 15 of ammonia.

Oxides of nitrogen (NOx) are toxic to the human body. When NOx is absorbed by the human body, body functions begin to decrease. There is a great need for efficient methods of 20 removing \overline{NO}_x , also because NO_x causes a photochemical smog which is described as oxidative.

Accordingly, it is a most important problem to remove NOx in the exhaust gases from pol-25 luting sources such as power plants, nitric acid plants, automobiles and the like.

Heretofore, various methods for removing NO_x have been proposed. In known methods, the reductive decomposition method using ammonia as a reducing agent is effective in treating exhaust gas containing relatively high concentrations of NO and 02.

In a known practical method, the exhaust gas has been contacted with a vanadium oxide

However, when the vanadium oxide catalyst prepared by immersing a known carrier in an aqueous solution of a vanadium salt and cal-

cining the product, is used and NO_x in the gas is reduced and decomposed in the presence of ammonia, the catalytic activity has not been satisfactory and also the optimum temperature range has been limited. The present invention has been attained after long studies for overcoming these difficulties.

It is an object of the present invention to provide process for the catalytic reductive decomposition of oxides of nitrogen with high catalytic activity.

In accordance with the invention there is provided a process for the reductive decomposition of oxides of nitrogen contained in a gas which comprises treating the gas with ammonia in the presence of a catalyst comprising as active ingredients vanadium oxide supported on a carrier formed at least externally of titanium oxide, zirconium oxide, cerium oxide, y-alumina, or a mixture of two or more

The catalyst may be prepared by dipping the carrier in an aqueous solution of a vanadium compound and calcining it at 400-700°

Exhaust gas containing NOx treated by the method of the invention can be any exhaust gas discharged from polluting sources such as power plants, nitric acid plants, automobile engines, and the like.

Usually exhaust gases contain more than 0.1 vol. % oxygen, especially 2-10 vol. %

oxygen, together with NOx.

It is usual to feed ammonia at a molar ratio of 0.5 or more preferably 0.5-2 with respect to NOx in the exhaust gas. When the molar ratio of ammonia to NOx is too low, a desirable NOx decomposition is not obtained.

1 430 730

(11)

45

50

70

15

25

40

50

55

70

75

85

95

When the molar ratio of ammonia to NO_{x} is too high, it is not economical and the unreacted ammonia is included in the exhaust gas. One form of catalyst comprises vanadium oxide supported on a carrier comprising one or more of titanium oxide, zirconium oxide, cerium oxide and y-alumina. Preferably, the carrier comprises titanium oxide, zirconium oxide or a mixture thereof. An example of the catalyst can be prepared as follows.

Vanadium pentoxide is dissolved in water with oxalic acid; or a vanadium salt such as vanadyl sulfate, vanadyl chloride or ammonium metavanadate is dissolved in water.

A moulded support of titanium oxide, zirconium oxide or the mixture thereof is dipped in the aqueous solution for several hours and then dried and calcined.

Powdered titanium oxide or zirconium oxide may be dipped in the aqueous solution and the wet powder extruded to mould it, if desired after drying it or after drying and calcining it to form the oxide. The shape of the moulding can be chosen without limitation, and spherical, pellet and honeycomb shaped carriers can be used. The titanium oxide may be of the rutile type and/or the anatase type crystalline structure. The latter is especially preferable.

The vanadium oxide may be supported by the carrier in amounts ranging preferably from 0.1-50% by weight especially 1-20% by weight to total weight of the catalyst. Another form of catalyst used in the invention comprises vanadium oxide supported on a heat resisting substance coated with titanium oxide. Any heat resistant substance can be used for the preparation of the carrier, e.g. alumina, silica-alumina and also diatomaceous earth, silicon carbide, mullite, zirconia or cordierite.

The shape of the heat resistant substance can be chosen without limitation and spherical, pellet and honeycomb shaped carriers can be used.

For example, a heat resistant substance is coated with titanium oxide as follows,

The heat resistant substance is dipped in an aqueous solution of titanium tetrachloride, titanium trichloride, titanium sulfate or other titanium salt for a suitable time and is then exposed to the atmosphere, and if desired, treated with an alkaline solution and calcined at 500-600° C in air to form the titanium oxide coat by oxidizing decomposition and hydrolysis.

When titanium tetrachloride is used, the completion of the formation of titanium oxide can be confirmed by observing no further generation of white smoke. The product is washed with water at room temperature if desired, and calcined.

The heat resistant substance coated with titanium oxide can be also obtained by immersing said substance in a slurry containing titan-

Then, vanadium oxide is supported on the

resulting carrier as follows.

The carrier is dipped in an aqueous solution of one or more vanadium salts such as vanadyl oxalate, vanadyl sulfate, vanadium tetrachloride, vanadyl chloride and ammonium metavanadate, and is dried and calcined.

The vanadium oxide is supported by the carrier in amounts ranging preferably from 0.1-50% by weight, preferably 1-20% by weight as V2O5 to total weight of the catalyst.

The heat resistant substance coated with titanium oxide may be dipped in the aqueous solution of the vanadium salt for about 1-20 hours preferably 1-5 hours.

After the impregnating treatment, the carrier may be gradually heated in air or a nitrogen atmosphere to dry it and then to calcine it at 400-700 °C to give the final catalyst.

Another form of catalyst used in the invention comprises cerium oxide and vanadium oxide supported on a heat resistant substance. The heat resisting substance used for supporting the active component i.e. cerium oxide and vanadium oxide can be e.g. alumina, silica, silica-alumina, diatomaceous earth, zirconia, titania, mullite, cordierite. The heat resistant substance can be made by moulding it to the form e.g. of granules pellets or honeycomb shape.

A catalyst to be used in the invention can be prepared by supporting cerium oxide on the heat resistant substance in the first instance.

The heat resisting substance may be dipped in an aqueous solution of one or more cerium salts such as cerium nitrate, cerium chloride, 100 cerium sulfate and cerium ammonium nitrate, and is taken up and it is gradually heated in air or a nitrogen atmosphere to dry it and then to calcine it at 400-700° C.

The cerium oxide may be supported by the 105 heat resistant substance in amounts ranging from 0.1—20% by weight preferably 1—10%by weight as CeO₂ based on the total weight of the catalyst.

After such treatment, vanadium oxide is 110 preferably supported as follows.

The carrier made of the heat resistant substance supporting cerium oxide is dipped in an aqueous solution of one or more vanadium salts such as vanadyl oxalate, vanadyl sulfate, vanadyl tetrachloride, ammonium metavanadate and is taken up, and it is gradually heated in air or a nitrogen atmosphere to dry it and then to calcine it at 400-700° C to give the catalyst.

The vanadium oxide may be supported by the carrier in amounts ranging 0.1-30% by weight, preferably 1—10% by weight as V₂O₃ to total weight of the catalyst,

Another form of catalyst used in the inven- 125 tion comprises vanadium oxide supported on a carrier made of a heat resistant substance coated with y-alumina.

The carrier made of the heat resistant substance coated with y-alumina can be pre-

120

pared by any known methed.

For example, a ceramic moulded substance is dipped in a slurry or colloidal solution containing y-alumina or a y-alumina-producing compound such as boehmite or aluminium hydroxide, and then is taken up and calcined to give the carrier.

The ceramic can be mullite, cordierite, α-alumina, etc. and is moulded to form any

10 desired shape.

Although the shape is not limited, it is especially preferable to form a honeycomb shape which has an advantage of low pressure loss even though velocity of the gas mixture 15 of the exhaust gas being treated and ammonia gas, that is the space velocity, is high. Usually, the shape of the honeycomb can have in sectional view many hexagonal, rectangular, triangular or circular openings. A honeycomb 20 having a sinusoidal section, or having spidery or scrolled openings can be used.

In order to support vanadium oxide as a catalytic active component on the carrier, the carrier may be dipped in an aqueous solution 25 of vanadyl oxalate, vanadyl sulfate, vanadyl chloride, ammonium metavanadate for e.g. several hours and then is dried and calcined.

The vanadium oxide may be supported by the carrier in amounts ranging 0.1-50% by weight preferably 1—20% by weight as \tilde{V}_2O_s

to total weight of the catalyst.

Another form of catalyst used in the invention comprises vanadium oxide supported on a carrier made of a heat resistance substance coated with a mixture of titanium oxide and γ-alumina.

In order to perform the reductive decomposition of NOx in the exhaust gas by using a catalyst prepared as above, it is quite effective to pass the exhaust gas through the catalyst zone at a space velocity of 1,000-150,000 hr⁻¹, preferably 10,000—100,000 hr⁻¹ at a. temperature of 150-650° C preferably 200-500° C. The reductive decomposition products are mostly nitrogen and water.

When the reductive decomposition of NO_x is performed in the presence of ammonia by using the catalyst prepared as above, the catalytic activity is remarkably higher than that using a known catalyst. The high catalytic activity is maintained without substantial change of activity, even though the temperature is changed. Accordingly, the method of the invention is advantageous in practical op-55 eration. The invention will be illustrated by certain Examples. In the Examples, the catalytic activity tests are conducted as follows.

A gas containing 10 vol. % of oxygen, 2000 ppm of NO_x(NO₂ 300 ppm) and 3000 ppm of NH3 was passed through the catalyst layer at a space velocity of 40,000 hr in the case of a honeycomb type catalyst; and at space

velocity of 20,000 hr-1 in the case of other types of catalyst, at a predetermined temperature. The concentration of NOx was measured before and after the addition of ammonia, and the NO_x removal ratio (%) is given by the equation.

 NO_x removal ratio (%) = $[NO_x(inlet) NO_x(outlet)/NO_x(inlet)] \times 100$

The concentration of NO_x was measured by the chemiluminescent NOx analyzer (CLM-201 manufactured by Shimazu-Seisakusho K.K.).

Example 1. Powdered titanium oxide (anatase type, surface area of 36 m²/gr) was moulded to form tablets having diameter of 8 mm and thickness of 2 mm. 10 ml of the tablets were immersed for an hour in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 3.58 g of vanadium pentoxide and 8.24 g of oxalic acid, and the solution was filtered off and the residual tablets were dried and calcined at 250° C for 1 hour, at 350° C for 1 hour and then at 500° C for 3 hours in an air stream to yield a catalyst of titanium oxide supporting 10% by weight of vanadium oxide.

The results of NOx decomposing tests using

the catalyst are shown in Table 1.

Example 2.

Powdered ritanium oxide (rutile type, surface area of 8.5 m²/gr) was moulded to form tablets having diameter of 8 mm and thickness of 2 mm. 10 ml of the tablets were immersed for an hour in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 4.96 g vanadium pentoxide and 11.4 g of oxalic acid, and the solution was filtered off and the residual tablets were dried and calcined in 100 accordance with the process of Example 1, to yield a catalyst of titanium oxide supporting 10% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 1.

Example 3,

Powdered titanium oxide (rutile type, surface area of 6.8 m²/gr) was moulded to form tablets having diameter of 8 mm and thickness of 2 mm. 10 ml of the tablets were immersed 110 for an hour in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 5.29 g of vanadium pentoxide and 12.17 g of oxalic acid, and the solution was filtered off and the residual tablets were dried and calcined in 115 accordance with the process of Example 1, to yield a catalyst of titanium oxide supporting 10% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 1.

75

80

85

90

95

TABLE 1

Example	Amount of V ₂ O ₅ supported (wt. %)	Amount of catalyst (g)	Reaction temperature (°C)	NO _X removal ratio (%)
			200	67
•			240	80
		•	280	90
1	10	9.9	320	94
			340	95.5
-			370	95.5
			400	91.5
			420	81
			250	64
O			300	79
2	10	11.8	340	86
	· · .		380	89.5
			400	89.5
•			420	85
			280	58
-			320	68
3 ©	10	12.4	360	74
			400	75.5
			420	73

35

=

10

Example 4.

A 15 g of powdered zirconia was immersed in 5 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 1.67 g of vanadium pentoxide and 3:83 g of oxalic acid, and the mixture was concentrated and dried, and then calcined at 500° C for 30 minutes

and the product was moulded to form tablets having diameter of 8 mm and thickness of 2 mm.

A catalyst of zirconia supporting 10% by weight of vanadium oxide was obtained.

The results of NO_x decomposing tests using the catalyst are shown in Table 2.

TABLE 2

Example	Amount of V ₂ O ₅ supported (wt. %)	Amount of catalyst (g)	Reaction temperature (°C)	NO _x removal ratio (%)
•			250	69 ,
•			300	83
			340	88.5
4	10	14.7	360	89.5
			380	89
		; ,	400	84
			420	75

Example 5.

10 ml of γ -alumina was immersed in 10 ml of titanium tetrachloride and was taken up and oxidized by exposing it in air for several hours and then the product was washed with water for several minutes and calcined at 500° C for three hours in nitrogen atmosphere to yield γ -alumina coated with titanium oxide.

The 10 ml of y-alumina coated with titanium oxide was immersed in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 2.22 g of vanadium pentoxide and 5.11 g of oxalic acid and the mixture was filtered.

The residual product was dried and calcined in accordance with the process of Example 1, to yield a catalyst of γ -alumina coated with titanium oxide supporting 10% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Example 6:

In accordance with the process of Example 5, titanium oxide was coated on γ -alumina.

The 10 ml of γ -alumina coated with titanium oxide was immersed in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 3.29 g of vanadium pentoxide and 7.56 g of oxalic acid, and the mixture was filtered and the product was calcined in accordance with the process of Example 1 to yield a catalyst of γ -alumina coated with titanium oxide supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Example 7.

In accordance with the process of Example 5, titanium oxide was coated on silica.

10 ml of silica coated with titanium oxide was immersed for an hour in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 0.18 g of vanadium pentoxide and 1.81 g of oxalic acid, and the solution was filtered off and the product was calcined in accordance with the process of Example 1, to yield a catalyst of silica coated with titanium oxide supporting 5% by weight of vanadium pxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Reference Example 1.

10 ml of silica of Example 7 which is not coated with titanium oxide was immersed in an aqueous solution of vanadium salt and the product was calcined in accordance with the process of Example 7, to yield a catalyst of silica supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Example 8.

In accordance with the process of Example 5, titanium oxide was coated on silica-alumina.

10 ml of silica-alumina coated with titanium oxide was immersed for an hour in 10 ml

50

70

30

35

of an aqueous solution of vanadyl oxalate prepared by dissolving 1.09 g of vanadium pentoxide and 2.50 g of oxalic acid, and the mixture was filtered and the product was calcined in accordance with the process of Example 1 to yield a catalyst of silica-alumina coated with titanium oxide supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Reference Example 2.

10 ml of silica-alumina of Example 8, which is not coated with titanium oxide was immersed in an aqueous solution of vanadium salt and the product was calcined in accordance with the process of Example 8, to yield a catalyst of silica-alumina supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Example 9.

In accordance with the process of Example 5, titanium oxide was coated on α -alumina

honeycomb.

One α -alumina honeycomb (about 5 ml) coated with titanium oxide was immersed for an hour in 20 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 6.02 of vanadium pentoxide and 13.83 g of oxalic acid in water, and the mixture was filtered and the product was calcined in accordance with the process of Example 1, to yield a catalyst of α -alumina honeycomb coated with titanium oxide supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

Reference Example 3.

The α -alumina honeycomb of Example 9 which is not coated with titanium oxide was immersed in the aqueous solution of vanadium oxalate and the product was calcined in accordance with the process of Example 1, to yield a catalyst of α -alumina honeycomb supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 3.

TABLE 3

Example	Amount of V ₂ O ₅ supported (wt. %)	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal ratio (%)
		· · · · · · · · · · · · · · · · · · ·	200	58
			250	74
			300	86.5
			340	91
5	10	7.0	380	93
÷.			420	93
			440	92
			460	88
•			480	81
			250	.51
			300	67
Evamela			340	75.5
Example 6	5	13.1	380	80
			400	80
	•		420	75
			440	63

40

TABLE 3 (continued)

	Amount of V ₂ O ₅ supported (wt. %)	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal ratio (%)
			280	52
Example			320	60
7	5	5.6	360	62.5
-			380	61.5
			400	58
Reference			280	17
Example 1	5	4.8	320	20
•	,		360	18
		·	380	12
			250	67
			300	79
			340	87
Example			380	90
8	5	7.0	420	91
	·		440	91
-			460	90
			480	88
			500	81
	1		380	59
Reference Example			420	63
2	5	5.7	460	65
			500	66
			540	64
			260	61
			300	73.5
Example			340	. 81
Example 9	5	5.8	360	83
			380	83
			410	79.5
			430	66

._- .

20

25

TABLE 3 (Continued)

	Amount of V ₂ O ₅ supported (wt. %)	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal ratio (%)
			270	27.5
Reference Example			330	33.5
3	5	5.6	380	36.5
<u> </u>			400	35

Example 10.

15 ml of γ-alumina was immersed in 15 ml of an aqueous solution of 3.9 g cerium nitrate for 1 hour, and the solution was filtered and the product was dried and calcined at 250° C for 1 hour and at 350° C for 1 hour and at 500° C for 3 hours in nitrogen atmosphere for 3 hours to yield 15 ml of γ -alumina supporting cerium oxide. The 15 ml of γ -alumina supporting cerium oxide was immersed for an hour in 15 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 3.3 g of vanadium pentoxide and 7.7 g of oxalic acid and filtered, and the product was dried and calcined in accordance with the process of Example 1 to yield a catalyst of y-alumina supporting 5% by weight of cerium oxide and 10% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 4.

Example 11.

In accordance with the process of Example 10, cerium oxide was supported on γ-alumina.

15 ml of the γ-alumina supporting cerium oxide was immersed for an hour in 15 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 1.6 g of vanadium pentoxide and 3.6 g of oxalic acid and filtered and the product was dried and calcined in accordance with the process of Example 10 to yield a catalyst of y-alumina supporting 5% by weight of cerium oxide and 5% by weight of vanadium oxide.

35 The results of NOx decomposing tests using the catalyst are shown in Table 4.

Example 12.

15 ml of α-alumina was immersed in 15 ml of an aqueous solution of 6.9 g of cerium nitrate for 1 hour and the product was dried and calcined in accordance with the process of Example 10 to yield 15 ml of a-alumina supporting cerium oxide.

The 15 ml of α -alumina supporting cerium oxide was immersed for an hour in 15 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 1.1 g of vanadium pentoxide and 2.4 g of oxalic acid and filtered and the product was dried and calcined in accordance with the process of Example 10 to yield a catalyst of α -alumina supporting 5% by weight of cerium oxide and 2% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 4.

Reference Example 4.

15 ml of α-alumina of Example 12 was immersed for an hour in 15 ml of aqueous solution of vanadyl oxalate prepared by dissolving 2.7 g of vanadium pentoxide and 6.3 g of oxalic acid and the product was dried and calcined in accordance with the process of Example 12 to yield a catalyst of α -alumina supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using 65 the catalyst are shown in Table 4.

Example 13.

15 ml of silica was immersed in 15 ml of an aqueous solution of 2.3 g of cerium nitrate for I hour and the product was dried and calcined in accordance with the process of Example 10 to yield 15 ml of silica supporting cerium

The 15 ml of silica supporting cerium oxide was immersed for an hour in 15 ml of aqueous solution of vanadyl oxalate prepared by dissolving 0.92 g of vanadium pentoxide and 2.1 g of oxalic acid and filtered and the product was dried and calcined in accordance with the process of Example 10, to yield a catalyst of silica supporting 5% by weight of cerium oxide and 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 4.

Reference Example 5.

15 ml of silica of Example 13 was immersed in 15 ml of an aqueous solution of 4.4 g of cerium nitrate for 3 hours and the product was dried and calcined in accordance with the process of Example 10 to yield a catalyst of silica supporting 9% by weight of cerium

The results of NO_x decomposing tests using the catalyst are shown in Table 4.

50

55

60

70

75

80

Reference Example 6.
15 ml of silica of Example 13 was immersed in 15 ml of an aqueous solution of vanadyl oxalaw and the product was dried and calcined in accordance with the process of Example 13

to yield a catalyst of silica supporting 5% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 4.

TABLE 4

	Amount of V ₂ O ₅ supported (wt. %)	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal
			200	57
			250	75
			300	86
Example			340	91
10	10	7.1	380	92.5
			400	93
			420	93
			460	89
			490	77
			200	54
			250	71
	•		300	83
Example 11			340	88
			380	90.5
	5	7.1	400	91
			420	91.5
			460	91.5
			500	88.5
			520	85
			540	77
			250	66
			300	81
Example			340	86.5
12	- 2	11.5	380	89
		·	400	89.5
ļ			420	88.5
			440	85.5
			460	77

TABLE 4 (continued)

	Amount of V_2O_5 supported (wt. \mathcal{C}_{ℓ})	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal
			260	66
			300	77
Reference Example			340	83.5
4	5	12.6	360	84.5
			380	85
			400	81.5
			420	73
			250	45
			300	57
Example			340	62
13	.5	4.8	360	62
			380	60.5
			400	58
			420	53
Reference Example			250	16.1
5	9	4.8	310	34.9
			335	25.9
			300	19
Reference Example			320	20
6	5	4.8	340	20.5
			360	18
			380	12

Example 14.

An α-alumina honeycomb coated with γalumina having diameter of 17 mm and length of 25 mm was immersed for 6 hours in an aqueous solution of vanadyl oxalate prepared by dissolving 3.426 g of vanadium pentoxide in 7.88 g of oxalic acid and 10 ml of water.

The solution was filtered and the product was dried and calcined at 250° C for 1 hour, at 350° C for 1 hour and at 550° C for 3 hours in nitrogen atmosphere, to yield a honeycomb type catalyst of α -alumina coated with γ alumina supporting 6% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 5.

Reference Example 7.

An α-alumina honeycomb was immersed for 6 hours in 10 ml of aqueous solution of vanadyl oxalate prepared by dissolving 3.616 g of vanadyl pentoxide in 8.32 g of oxalic acid and 10 ml of water and the product was dried and calcined in accordance with the process of Example 14 to yield a honeycomb type 25 catalyst of α -alumina supporting 6% by weight of vanadium oxide.

The results of NOx decomposing tests using

20

the catalyst are shown in Table 5.

Example 15.

A honeycomb type mullite was immersed in a slurry of y-alumina, and dried and calcined to yield a carrier. The carrier was immersed for 6 hours in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 2.405 g of vanadium pentoxide in 5.53 g of oxalic acid and 10 ml of water. The solution was filtered and the product was dried and calcined in accordance with the process of Example 14 to yield a honeycomb type catalyst of mullite coated with γ-alumina supporting 6% by weight of vanadium oxide.

The results of NO_x decomposing tests using the catalyst are shown in Table 5.

Reference Example 8.

A honeycomb type mullite was immersed in an aqueous solution of vanadyl oxalate prepared by dissolving 2.267 g of vanadium

pentoxide in 5.214 g of oxalic acid and 10 ml of water. The product was dried and calcined in accordance with the process of Example 14 to yield a honeycomb type catalyst of mullite supporting 10% by weight of vanadium oxide.

The results of NOx decomposing tests using the catalyst are shown in Table 5.

Example 16.

A honeycomb type cordierite coated with γ-alumina was immersed for 6 hours in 10 ml of an aqueous solution of vanadyl oxalate prepared by dissolving 2.398 g of vanadium pentoxide in 5.52 g of oxalic acid and 10 ml of water and the product was dried and calcined in accordance with the process of Example 14 to yield a honeycomb type catalyst of cordierite coated with y-alumina supporting 6% by weight of vanadium oxide.

The results of NO_x decomposing tests using

the catalyst are shown in Table 5.

TABLE 5

		INDLE.	, .	
	Amount of V ₂ O ₅ supported (wt. %)	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal ratio (%)
			200	44 _
Example			260	79
14	6	5.8	300 ·	91.3
•	·		350	94.8
			· 380	86
Reference			250	24.3
Example 7	·		330	33.5
	6	5.6	380	36.5
			400	35
			220	61.8
Example			280	90
15	6	5.9	340	97
			380	94.8
D 5		·	250	26.5
Reference Example			310	46.5
8	10	1.6	370	58.5
			390	57

TABLE 5 (Continued)

	Amount of V ₂ O ₅ supported (wt. %)	Amount of Catalyst (g)	Reaction temperature (°C)	NO _x removal ratio (%)
			210	45.5
P1-			270	80
Example 16	6	5.5	340	95.8
			360	95

WHAT WE CLAIM IS:-

A process for the reductive decomposition of oxides of nitrogen contained in a gas which
 comprises treating the gas with ammonia in the presence of a catalyst comprising as active ingredients vanadium oxide supported on a carrier formed at least externally of titanium oxide, zirconium oxide, cerium oxide, γ-10 alumina, or a mixture of two or more thereof.

2. A process as claimed in claim 1 wherein the catalyst comprises vanadium oxide supported on a carrier formed of titanium oxide, zirconium oxide or a mixture thereof.

3. A process as claimed in claim 1 wherein the catalyst comprises vanadium oxide supported on a carrier formed of a heat resistant substance coated with titanium oxide.

4. A process as claimed in claim 1 wherein the catalyst comprises vanadium oxide supported on a carrier formed of a heat resistant substance coated with cerium oxide.

5. A process as claimed in claim 1 wherein the catalyst comprises vanadium oxide supported on a carrier formed of a heat resistant substance coated with γ -alumina.

6. A process as claimed in claim 1 wherein the catalyst comprises vanadium oxide supported on a carrier formed of a heat resistant substance coated with a mixture of titanium oxide and γ -alumina.

 A process as claimed in any of claims
 to 6 wherein the heat resistant substance comprises alumina, silica-alumina, diatomaceous earth, silicon carbide, mullite or cordierite.

8. A process as claimed in claim 7 wherein

the heat resistant substance comprises α -alumina.

9. A process as claimed in any preceding claim wherein the catalyst is prepared by dipping the carrier in an aqueous solution of a vanadium compound and calcinating it at 400—700° C.

10. A process as claimed in any of claims 1 to 8 wherein the catalyst is prepared by dipping a heat resistant carrier substance coated with titanium oxide, cerium oxide or γ-alumina in an aqueous solution of a vanadium compound and calcinating it at 400—700° C.

11. A process as claimed in any preceding claim in which the catalyst contains 0.1—50% by weight of vanadium oxide based on the total weight of the catalyst.

12. A process as claimed in any preceding claim wherein the gas and ammonia are contacted with the catalyst at 150—650° C.

13. A process as claimed in any preceding claim wherein the mixture of ammonia and the gas containing oxides of nitrogen is passed through a zone containing the catalyst at a space velocity of 1,000—150,000 hr⁻¹.

14. A process as claimed in claim 1 substantially as described herein with reference to any one of the Examples.

R. G. C. JENKINS & CO.,
Chartered Patent Agents,
Chancery House,
53—64, Chancery Lane,
London, WC2A 1QU.
Agents for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1976. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

40

45

50

55