${\bf Vorlesung smitschrift}$

DIFF II

Prof. Dr. Dorothea Bahns

Henry Ruben Fischer

Auf dem Stand vom 14. Mai 2020

Disclaimer

Nicht von Professor Bahns durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1	Metrische Räume	4
2	Normierte Vektorräume	36
3	Differenzierbarkeit in \mathbb{R}^n	53

Kapitel 1

Metrische Räume

Vorlesung 1

Mo 20.04. 10:15

Ziel. Konvergenz, Stetigkeit ... sollten in einem allgmeineren Rahme konzeptualisiert werden.

Erinnerung (DIFF I). Eine Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ konvergiert gegen den Grenzwert a

$$\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ s.d. } |a_n - a| < \varepsilon \ \forall n \geqslant N$$

 $(a - \varepsilon, a + \varepsilon)$ wird auch ε -Umgebung von a in R genannt. Somit lautet die obige Definition in Worten: In jeder noch so kleinen ε -Umgebung von a befinden sich alle bis auf endlich viele Folgenglieder.

Man benötigt für die Formulierung der Definition also lediglich einen Begriff von "(kleine) Umgebung". Diesen Begriff möchten wir nun verallgemeinern.

Definition 1.1. Sei X eine Menge. Ein System \mathcal{T} von Teilmengen von X heißt Topologie auf X falls gilt:

- a) $\emptyset, X \in \mathcal{T}$.
- b) Sind U und $V \in \mathcal{T}$, so gilt $U \cap V \in \mathcal{T}$.
- c) Ist I eine Indexmenge und $U_i \in \mathcal{T}$ für alle $i \in I$, so gilt auch $\bigcup_{i \in I} U_i \in \mathcal{T}$.

Notation. Ein topologischer Raum ist ein Tupel (X, \mathcal{T}) , wobei X Menge ist und \mathcal{T} eine Topologie auf X.

Eine Teilmenge $U \subset X$ heißt offen, falls gilt $U \in \mathcal{T}$. Eine Teilmenge $A \subset X$ heißt abgeschlossen falls ihr Komplement $X \setminus A$ offen ist.

Beispiele 1.2. i) $X = \text{beliebige Menge. } \mathcal{T} = \{ \varnothing, X \}.$

Beweis. 1.1.a) klar

1.1.b)
$$\varnothing \cap X = \varnothing \in \mathcal{T}, X \cap X = X \in \mathcal{T}, \varnothing \cap \varnothing = \varnothing \in \mathcal{T}$$

1.1.c)
$$\bigcup_{i \in I} U_i = \begin{cases} X & \text{falls eins der } U_i = X \text{ ist} \\ \emptyset & \text{falls nicht} \end{cases}$$

"Klumpentopologie"

ii) $X = \mathbb{R}$

 \mathcal{T} = alle Teilmengen $U \subset \mathbb{R}$ mit der Eigenschaft:

$$\forall x \in U \ \exists \varepsilon > 0 \text{ s.d. } (x - \varepsilon, x + \varepsilon) \subset U$$

Beweis von 1.1.a), 1.1.b) und 1.1.c) als HA (etwas allgemeiner). Hier stellen wir fest, dass insbesondere die offenen Intervalle (a, b) in diesem Sinne offen (also $\in \mathcal{T}$) sind, halb-abgeschlossene und abgeschlossene dagegen nicht.

Beweis. 1. Beh Zu $x \in [a, b]$ wähle $\varepsilon = \min\{|x - a|, |x - b|\}$

2. Beh Zu
$$x = a \in [a, b)$$
 kann man kein $\varepsilon > 0$ finden s. d. $(a - \varepsilon, a + \varepsilon) \subset [a, b)$, denn $a - \varepsilon/2 \in (a - \varepsilon, a + \varepsilon)$ aber $a - \varepsilon/2 < a$, also $\notin [a, b)$.

Abgeschlossene Intervalle sind in diesem Sinn abgeschlossen, denn $\mathbb{R}\setminus[a,b]$ ist nach Definition von \mathcal{T} und Eigenschaft 1.1.c) offen.

Diese Topologie heißt Standard-Topologie auf \mathbb{R} . Wird nichts anderes gesagt, sehen wir \mathbb{R} als mit der Standard-Topologie versehen an.

Definition 1.3. Sei (X, \mathcal{T}) topologischer Raum. Sei $x \in X$. Eine Teilmenge $V \subset X$ heißt $Umgebung\ von\ x$, falls es eine offenen Menge $U \subset X$ gibt mit $x \in U$ und $U \subset V$.

Beispiele. i) V = (a, b) ist eine Umgebung für jedes $x \in (a, b)$, aber *nicht* für x = a.

ii) $(a - \varepsilon, a + \varepsilon), \varepsilon > 0$, ist eine Umgebung von x.

Lemma 1.4. Eine Teilmenge $V \subset X$ eines topologischen Raumes (X, \mathcal{T}) ist offen gdw für alle $x \in V$ gilt: V ist Umgebung von x.

Beweis. " \Longrightarrow " Ist V offen, so erfüllt U=V für jedes x die Bedingung $x\in U$ und $U\subset V\Longrightarrow V$ ist Umgebung.

" ← " Zu $x \in V$ wähle U_x s. d. $x \in U_x$, $U \subset V$. Dann gilt $V = \bigcup_{x \in U} U_x$ und das ist offen (nach 1.1.c)).

Definition 1.5 (Konvergenz in topologischen Räumen). Sei (X, \mathcal{T}) topologischer Raum. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in X. Dann ist $(x_n)_n$ konvergent mit Grenzwert $x, x_n \to x$ in (X, \mathcal{T}) , falls es in jeder Umgebung V von x ein $N \in \mathbb{N}$ gibt, s. d. $x_n \in V \ \forall n \geqslant N$.

Beispiele. i) In der Klumpentopologie konvergieren alle Folgen gegen jedes $x \in X$.

ii) Mit unseren obigen Überlegungen folgern wir, dass Konvergenz in \mathbb{R} im Sinn von Definition 1.5 mit Konvergenz, wie wir sie in der DIFF I

Lemma 1.6. Sei (X, \mathcal{T}) toplogischer Raum. Ist (X, \mathcal{T}) ein *Hausdorff-Raum*, gibt es also zu je zwei Punkten $x, y \in X$ mit $x \neq y$ Umgebungen U von x und V von y mit $U \cap V = \emptyset$, so ist der Grenzwert einer konvergenten Folge eindeutig.

Beweis. Seien x und y Grenzwert einer Folge $(x_n)_n$. Angenommen $x \neq y$, so wähle U Umgebung von x, V Umgebung von y mit $U \cap V = \emptyset$. Dann gibt es (wegen der Konvergenz) $N \in \mathbb{N}$ s.d. $x_n \in U \ \forall n \geqslant N$ und $M \in \mathbb{N}$ s.d. $x_n \in V \ \forall n \geqslant M$. Wiederspruch zu $U \cap V = \emptyset$.

Definition 1.7. Seien (X, \mathcal{T}) und $(Y, \tilde{\mathcal{T}})$ topologische Räume. Sei $f: X \to Y$ eine Abbildung. Dann heißt f stetig in $a \in X$, falls es zu jeder Umgebung V von $f(a) \in Y$ eine Umgebung U von a gibt, s.d. $f(U) \subset V$. f heißt stetig (auf X), falls f stetig in allen $a \in X$ ist.

Bemerkung. Wir werden später sehen, dass diese Definition für $f: \mathbb{R} \to \mathbb{R}$ mit unserer Definition aus der DIFF I übereinstimmt (ε - δ -Kriterium).

Für jede Umgebung U von a gilt: f(U) enthält auch Punkte < b, also außerhalb V

Satz 1.8. Sei $f: X \to Y$ Abbildung zwischen topologischen Räumen. Dann ist f stetig auf X gdw für jede offene Teilmenge $V \subset Y$ das $Urbild\ f^{-1}(V)$, also $\{x \in X \mid f(x) \in V\}$ offen in X ist.

Beweis. " \Longrightarrow " Sei f stetig vorausgesetzt. Sei V offen Y. Ist das Urbild $f^{-1}(V)$ leer, sind wir fertig.

Sei also $a \in f^{-1}(V)$. Dann gibt es nach Voraussetzung eine Umgebung U von a s.d. $f(U) \subset V$. Also gilt $U \subset f^{-1}(V)$. Somit besitzt also jeder Punkt $a \in f^{-1}(V)$ eine Umgebung U mit $U \subset f^{-1}(V)$ und somit ist $f^{-1}(V)$ selbst Umgebung jedes seiner Elemente $\stackrel{1.4}{\Longrightarrow} f^{-1}(V)$ ist offen.

" $\Leftarrow=$ " Sei $a\in X$ beliebig. Sei V eine Umgebung von f(a). Dann gibt es \tilde{V} offen mit $f(a)\in \tilde{V}$ und $\tilde{V}\subset V$. Nach Voraussetzung ist das Urbild $U\coloneqq f^{-1}(\tilde{V})$ offen. U enthält a, ist also Umgebung von a und es gilt $f(U)=\tilde{V}\subset V\Longrightarrow f$ ist stetig in a.

 $f^{-1}(V) = [a, c)$ ist nicht offen in \mathbb{R}

Bemerkung. Äquivalent: f ist genau dann stetig, wenn das Bild jeder abgeschlossen Menge abgeschlossen ist.

Vorsicht:

Es ist immer Offenheit in X (bzw. Y) gemeint!

Zur Veranschaulichung:

Betrachtet man im Beispiel oben als Definitionsbereich $X = [a, \infty)$, so ist die Funktion stetig! Dies ist konsistent, da [a, c) in $X = [a, \infty)$ versehen mit der Standard-Topologie tatsächlich offen ist:

Definition / Satz 1.9. Sei (X, \mathcal{T}) topologischer Raum. Sei $\tilde{X} \subset X$ eine Teilmenge. Dann induziert \mathcal{T} auf \tilde{X} eine Topologie, die sogenannte *Teilraum-Topologie* vermöge

$$T_{\tilde{X}} := \left\{ U \cap \tilde{X} \mid U \in \mathcal{T} \right\}.$$

Den (einfachen) Beweis, dass dies in der Tat eine Topologie definiert, lassen wir weg.

In unserem Beispiel ist $X = \mathbb{R}$, $\tilde{X} = [a, \infty)$ und da $(a - \varepsilon, c)$ offen in \mathbb{R} ist $(\varepsilon > 0)$, ist nach Definitionsbereich $[a, c) = (a - \varepsilon, c) \cap [a, \infty)$ offen in $[a, \infty)$.

Dies ist der tiefere Grund, weshalb man bei Funktionen den Raum, in dem sie ihre Werte annehmen (im Beispiel oben $Y = \mathbb{R}$) angeben sollte, nicht ihr Bild.

Denn in $Y=(-\infty,b)\cup[f(a),\infty)$ wäre das Bild von $[a-\varepsilon,c]$ \forall $\varepsilon>0$ in der Tat abgeschlossen, denn sein Komplement

$$Y \setminus ([b-\delta,b) \cup [f(a),f(c))) = -(-\infty,b-\delta) \cup (f(c),\infty)$$

wäre offen.

Dagegen ist

$$\mathbb{R} \setminus ([b-\delta,b) \cup [f(a),f(c))) = -(-\infty,b-\delta) \cup [b,f(a)) \cup (f(c),\infty)$$

für kein $\delta > 0$ offen.

Definition / Satz 1.10. Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume. Betrachte das kartesische Produkt $X \times Y = \{ (x, y) \mid x \in X, y \in Y \}$. Dann nennt man das System

$$T \coloneqq \left\{ \left. U \subset X \times X \, \middle| \, U = \text{beliebige Vereinigung von Mengen der Form} \right. \\ \left. V \times W, V \in \mathcal{T}_X, W \in \mathcal{T}_Y \right. \right\}$$

Produkttopologie. Und dies definiert in der Tat eine Topologie auf $X \times Y$.

Beweis. 1.1.a) klar

1.1.b)

$$U = \bigcup_{\alpha} U_{\alpha} \times W_{\alpha}$$

$$V = \bigcup_{\beta} \tilde{V}_{\beta} \times \tilde{W}_{\beta}$$

$$U \cap V = \bigcup_{\alpha,\beta} (\underbrace{V_{\alpha} \cap \tilde{V}_{\beta}}_{\text{offen in } X}) \times (\underbrace{W_{\alpha} \cap \tilde{W}_{\beta}}_{\text{offen in } Y}).$$

1.1.c)

$$\bigcup_{\rho} \left(\bigcup_{\alpha} V_{\alpha}^{(\rho)} \times W_{\alpha}^{(\rho)} \right) = \bigcup_{\rho,\alpha} V_{\alpha}^{(\rho)} \times W_{\alpha}^{(\rho)}.$$

Wir kommen nun zu einer wichtigen Beispiel-Klasse für Topologien:

Definition 1.11. Sei X eine Menge. Eine Metrik auf X ist eine Abbildung

$$d: X \times X \to \mathbb{R}$$

mit den Eigenschaften

- a) $d(x,y) = 0 \iff x = y$,,d ist nicht ausgeartet."
- b) $d(x,y) = d(y,x) \ \forall x,y \in X$ "d ist symmetrisch."
- c) $d(x,y) \leq d(x,z) + d(z,y) \quad \forall x,y,z \in X$ "Es gilt die Dreiecksungleichung."

Ein $metrischer\ Raum$ ist ein Tupel (X,d), wobei X eine Menge ist und d eine Metrik auf X. Mist schreibt man nur X, weil Missverständnisse ausgeschlossen sind.

Bemerkung. Aus den Axiomen folgt auch

$$d(x,y) \geqslant 0 \quad \forall x, y \in X,$$

denn

$$0 = d(x,x) \leqslant d(x,y) + d(y,x) = 2d(x,y).$$
 1.11.a)

$$\triangle \text{-Ungl.}$$
 Symm.

Beispiele. i) \mathbb{R} , d(x,y) = |x - y|.

ii) X Menge, $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$, "triviale" oder "diskrete Metrik".

iii) (aus AGLA I)
$$\mathbb{R}^n$$
, $d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$, "Euklidische Metrik".

Eine Metrik misst den Abstand zwischen zwei Punkten. Im zweiten Beispiel sind alle verschiedenen Punkte gleich weit von einander entfernt. Für n=1 stimmt iii) mit i) überein. Mit iii) wird auch der Name der Dreiecksungleichung klar:

Definition 1.12. Sei (X,d) ein metrischer Raum. Seien $x \in X$, $\varepsilon > 0$. Dann nennt man

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \}$$

den (offenen) ε -Ball um x.

Beispiele. i) $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$.

ii)
$$B_{\varepsilon}(x) = \begin{cases} x & \varepsilon \leqslant 1 \\ X & \varepsilon > 1 \end{cases}$$

iii)
$$B_{\varepsilon}(x) =$$

Satz 1.13. Sei (X, d) ein metrischer Raum. Dann wird durch

$$\mathcal{T}_d := \{ U \subset X \mid \forall x \in U \ \exists \varepsilon > 0 \text{ s. d. } B_{\varepsilon}(x) \subset U \}$$

eine Topologie definiert.

Beweis. Als Hausaufgabe. \Box

Bemerkungen 1.14. i) 1.2.ii) ist ein Spezialfall dieser Aussage

ii) Die "offenen" ε -Bälle sind tatsächlich offen: Zu $y \in B_{\varepsilon}(x)$ wähl $\tilde{\varepsilon} := \varepsilon - d(x, y) > 0$.

Dann ist $B_{\tilde{\varepsilon}}(y) = \{ z \mid d(y, z) < \tilde{\varepsilon} \} \subset B_{\varepsilon}(x)$. Denn für alle $z \in B_{\tilde{\varepsilon}}(y)$ ist

$$d(x,z) \leqslant d(x,y) + d(y,z) < d(x,y) + \tilde{\varepsilon}$$
$$= d(x,y) + \varepsilon - d(x,y) = \varepsilon$$

- iii) Bezüglich der diskreten Metrik ist jede Teilmenge offen.
- iv) Die Klumpentopologie wird nicht von einer Metrik erzeugt (wenn X mehr als 1 Element enthält).

Beweis. Seien $x, y \in X, x \neq y$. Angenommen \exists Metrik d.

$$\implies d(x,y) \neq 0 \implies d(x,y) = c > 0$$

$$\implies B_c(x) \text{ ist offen.}$$

$$\implies B_c(x) = \emptyset \text{ oder } = X$$

$$\implies B_c(x) = X$$

 $\oint_{\mathcal{L}} da \ y \notin B_c(x).$

v) Ein metrischer Raum ist hausdorffsch. \rightarrow HA.

Wir formulieren nun Konvergenz und Stetigkeit für metrische Räume:

Bemerkungen 1.15. Sei (X, d) metrischer Raum.

- i) [Definition 1.3] $V \subset X$ heißt Umgebung von $x \in X$, falls es $\varepsilon > 0$ gibt s.d. $B_{\varepsilon}(x) \subset U$.
- ii) [Definition 1.5] $(x_n)_n$ konvergiert mit Grenzwert x, falls es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt s. d. $x_n \in B_{\varepsilon}(x) \ \forall n \geqslant N$.

iii) [Definition 1.7] Sei (Y, \tilde{d}) weiterer metrischer Raum, $f \colon X \to Y$ eine Abbildung. Dann ist f stetig a gdw :

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)).$$

Bemerkungen. i) 1.15.iii) ist das ε - δ -Kriterium.

ii) Die Einschränkung auf ε -Bälle in 1.15.ii) und 1.15.iii) (statt allgemeiner Umgebungen) ist keine echte Einschränkung: Gilt etwas für all Umgebungen, so speziell auch für ε -Bälle.

Und gilt eine Inklusion für alle ε -Bälle (etwa $x_n \in B_{\varepsilon}(x) \ \forall n \geqslant N(\varepsilon)$), so auch für beliebige Umgebungen U von x, da es immer einen ε -Ball $B_{\varepsilon}(x)$ gibt, der ganz in U enthalten ist.

Beispiele 1.16. i) \mathbb{R}^m mit der Euklidischen Metrik. $(x_n)_{n\geqslant 1}$ Folge in \mathbb{R}^m , also $n\mapsto x_n=(x_n^{(1)},\dots,x_n^{(m)})\in\mathbb{R}^m$.

ii)
$$x_n = \left(\frac{1}{n}\cos(n), \frac{1}{n}\sin(n), a, \dots, a\right)$$

Behauptung. $x_n \to (0, 0, a, \dots, a) =: x$.

Beweis. Sei $\varepsilon > 0$. Es gilt

$$d(x_n, x)^2 = \sum_{i=1}^m (x_n^{(i)} - x^{(i)})^2$$

$$= \left(\frac{1}{n}\cos(n) - 0\right)^2 + \left(\frac{1}{n}\sin(n) - 0\right)^2 + (a - a)^2 + \dots + (a - a)^2$$

$$= \frac{1}{n^2}(\cos(n)^2 + \sin(n)^2) = \frac{1}{n^2}$$

$$\Rightarrow d(x_n, x) = \frac{1}{n}$$

$$\Rightarrow d(x_n, x) < \varepsilon \quad \forall n \ge N \text{ mit } N > \frac{1}{\varepsilon}$$

$$\Rightarrow x_n \in B_{\varepsilon}(x) \quad \forall n \ge N.$$

iii)
$$X = C([a, b]), d(f, g) := ||f - g||_{\infty} \text{ mit } ||f - g||_{\infty} = \sup_{x \in [a, b]} |f(x) - g(x)|.$$

1. Beh d ist eine Metrik auf X.

Beweis. 1.11.a):

$$\sup_{x \in [a,b]} |f(x) - g(x)| = 0$$

$$\iff |f(x) - g(x)| = 0 \quad \forall x$$

$$\iff f(x) = g(x) \quad \forall x.$$

1.11.b):

$$|f(x) - g(x)| = |g(x) - f(x)| \quad \forall x$$
$$\implies d(f, g) = d(g, f).$$

1.11.c):

$$\begin{split} |f(x)-g(x)| &= |f(x)-h(x)+h(x)-g(x)| \\ &\leqslant |f(x)-h(x)|+|h(x)-g(x)| \\ &\stackrel{\uparrow}{\triangle-\mathrm{Ungl. \ f\"ur \ }|\cdot| \ \mathrm{auf \ }\mathbb{R}} \\ \Longrightarrow \triangle\mathrm{-Ungl. \ f\"ur \ } d. \end{split}$$

2. Beh $(f_n)_n \subset C([0,1]), f_n(x) = x^n$, konvergiert nicht (vgl. Diff I).

Beweis. Wir wissen aus der Diff I, dass wenn Konvergenz vorliegt, der Grenzwert gleich dem punktweisen Grenzwert ist. Dieser ist

$$f(x) = \begin{cases} 1 & x = 1 \\ 0 & \text{sonst} \end{cases}.$$

Aber

Beweis.

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1)} |x^n| = 1.$$

- iv) $X = C([0,1]), d(f,g) = \int_0^1 |f(x) g(x)| dx.$
- **1. Beh** d ist eine Metrik auf C([0,1]).

Beweis. HA.
$$\Box$$

2. Beh $(f_n)_n \subset C([0,1]), f_n(x) = x^n$ konvergiert, und zwar gegen $f(x) = 0 \ \forall x$.

$$\int_0^1 |f_n(x) - 0| \ dx = \int_0^1 x^n \ dx = \frac{1}{n+1} \left. x^{n+1} \right|_x^0 1 = \frac{1}{n+1}$$

$$\implies d(f_n, f) = \frac{1}{n+1} < \varepsilon \quad \forall n \geqslant N \text{ mit } N \geqslant \frac{1}{\varepsilon}.$$

Vorlesung 2

Do 23.04. 10:15

Bevor wir uns mit offenen und abgeschlossenen Mengen und sogenannten vollständigen metrischen Räumen näher befassen, beweisen wir noch zwei nützliche Lemmata zu Konvergenz und Stetigkeit:

Lemma 1.17. (X, d) sei metrischer Raum.

Eine Folge $(x_n)_n$ in X konvergiert in X gegen $a \in X$

$$\iff$$
 $(d(x_n, a))_n$ ist Nullfolge (in \mathbb{R}).

Beweis.

$$d(x_n, a) = |d(x_n, a) - 0|$$
.

Also ist

$$d(x_n, a) < \varepsilon \iff |d(x_n, a) - 0| < \varepsilon.$$

Lemma 1.18. Seien (X, d_x) und (Y, d_y) metrische Räume, $f: X \to Y$ eine Abbildung. Dann gilt:

f ist in $a \in X$ stetig \iff für jede Folge $(a_n)_n$ mit $a_n \to a$ in X gilt

$$\lim_{n \to \infty} f(a_n) = f(\underbrace{\lim_{n \to \infty} a_n}).$$

Notation.

$$\lim_{x \to a} f(x) = f(a).$$

Beweis. " \Longrightarrow " Sei das ε - δ -Kriterium erfüllt (1.15.iii)). Sei $(x_n)_n$ Folge in X mit $x_n \to a$ in X. Sei $\varepsilon > 0$. Dann $\exists \delta > 0$ s. d.

$$d_Y(f(x), f(a)) < \varepsilon \ \forall x \in B_{\delta}(a) \subset X.$$

Wegen der Konvergenz $\exists N = N(\delta)$ s.d.

$$x_n \in B_{\delta}(a) \ \forall n \geqslant N$$

 $\Longrightarrow f(x_n) \in B_{\varepsilon}(f(a)) \subset Y \ \forall n \geqslant N.$

Also gilt $f(x_n) \to f(a)$.

$$, \Leftarrow$$
 " Gelte $\lim_{x\to a} (x) = f(a)$.

Angenommen, das ε - δ -Kriterium wäre verletzt. Dann gäbe es $\varepsilon > 0$ s. d. für alle $\delta > 0$ ein $x \in X$ existierte s. d.

$$x \in B_{\delta}(a)$$
 aber $f(x) \notin B_{\varepsilon}(f(a))$
also $d_y(f(x), f(a)) \ge \varepsilon$.

Insbesondere gäbe es zu $\delta = \frac{1}{n}$ ein solches x, nennen wir es x_n . Dann gilt für alle n: $d(x_n,a) < \frac{1}{n}$, aber $d_y(f(x_n),f(a)) \geqslant \varepsilon$, somit $x_n \to a$ aber $f(x_n) \not to f(a)$ (wegen 1.17). \square

Charakterisierung topologischer Grundbegriffe in metrischen Räumen

Lemma 1.19. Sei (X, d) metrischer Raum. Dann ist $A \subset X$ abgeschlossen \iff für jede Folge $(a_n)_n, a_n \in A$, die in X konvergiert, gilt:

$$\lim_{n\to\infty} a_n \in A.$$

Beweis. O.B.d.A. $\emptyset \neq A \neq X$.

" \Longrightarrow " Sei $(a_n)_n$, $a_n \in A$, konvergent in X. Sei $a = \lim a_n$. Angenommen $a \notin A$. Nach Voraussetzung ist $X \setminus A$ offen, also ist $X \setminus A$ Umgebung von $a \Longrightarrow \exists N$ s. d.

$$a_n \in X \setminus A \ \forall n \geqslant N \ (\text{wegen Konvergenz})$$

Denn angenommen es gibt kein solches ε . Dann gilt für alle $\varepsilon > 0$: $B_{\varepsilon}(b) \cap A \neq \emptyset$, also kann man zu jedem $k \geqslant 1$ ein $x_k \in A$ finden mit $d(x_k, b) < \frac{1}{k} = \varepsilon$.

$$\implies x_k = b \implies b \in A.$$

 \nleq Wiederspruch zu $b \in X \setminus A$.

Also gibt es ein solches $\varepsilon > 0$, also ist $X \setminus A$ offen.

Definition 1.20. Sei (X,d) metrischer Raum, $M \subset X$. Ein Punkt $y \in X$ heißt Rand-punkt von M, falls in jeder Umgebung von y sowohl Punkte von M als auch $X \setminus M$ liegen.

Notation. $\partial M = \{ \text{Randpunkte von } M \}$

Beispiel (\mathbb{R}^n , $d_{\text{Eukl.}}$). Kugel im \mathbb{R}^m :

$$K^n := \{ x \in \mathbb{R}^n \mid ||x - 0||_{\mathcal{E}} \leqslant R \} \subset \mathbb{R}^n$$

Sphäre:

$$\partial K^n = \{ x \in \mathbb{R}^n \mid ||x||_{\mathcal{E}} = R \} = S^{n-1}$$

Beispiel. $\mathbb{Q} \subset \mathbb{R}$. $\partial \mathbb{Q} = \mathbb{R}$.

Satz 1.21. Sei (X, d) metrischer Raum. Sei $M \subset X$. Dann gilt

- i) $M \setminus \partial M$ ist offen.
- ii) $M \cup \partial M$ ist abgeschlossen.
- iii) ∂M ist abgeschlossen.

Beweis. 1.21.i): $a \in M \setminus \partial M \implies \exists \varepsilon > 0$ s. d. $B_{\varepsilon}(a) \cap X \setminus M = \emptyset$. Für dieses gilt auch $B_{\varepsilon} \cap \partial M = \emptyset$ (denn angenommen $\exists y \in B_{\varepsilon}(a) \cap \partial M$, dann wäre (da $y \in \partial M$ und $B_{\varepsilon}(a)$ eine Umgebung von y) $B_{\varepsilon}(a) \cap (X \setminus M) \neq \emptyset \not\subset VOR$).

Also gilt $B_{\varepsilon}(a) \subset M \setminus \partial M \implies \text{Beh.}$

1.21.ii): Es gilt $\partial M = \partial(X \setminus M)$ (nach Definition), $(X \setminus M) \setminus \partial(X \setminus M)$ ist offen nach 1.21.i) \Longrightarrow

$$X \setminus ((X \setminus M) \setminus \partial(X \setminus M)) = (X \setminus (X \setminus M)) \cup \partial(X \setminus M) = M \cup \partial M$$
 Manipulation mit Mengen

ist offen.

1.21.iii):

$$\partial M = (M \cup \partial M) \setminus (M \setminus \partial M)$$

$$\Longrightarrow X \setminus \partial M = X \setminus (\underbrace{M \cup \partial M}_{\text{(abgeschl. nach 1.21.ii)}}) \cup (\underbrace{M \setminus \partial M}_{\text{offen nach 1.21.ii}}).$$

Notation. Sei $M \subset X$.

$$M^{\circ} := M \setminus \partial M$$
 heißt das *Innere* von M .
 $\overline{M} := M \cup \partial M$ heißt der *Abschluss* von M .

Nach 1.19 können wir \overline{M} konstruieren, indem wir zu M noch alle Grenzwerte von Folgen $(x_n)_n, x_n \in M$, die in in X konvergieren, hinzunehmen.

Beispiel. $M = [a, b), \overline{M} = [a, b].$

Bemerkung (als Hausaufgabe).

$$M \subset X$$
 offen $\iff M \cap \partial M = \emptyset$.
 $M \subset X$ abgeschlossen $\iff \partial M \subset M$.

Vollständigkeit

Definition 1.22. Sei (X, d) ein metrischer Raum. Eine Folge $(y_n)_n \subset X$ heißt Cauchy-Folge, falls gilt

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.d.} d(y_n, y_m) < \varepsilon \ \forall n, m \geqslant N.$$

Lemma 1.23. Sei (X, d) ein metrischer Raum. Eine konvergente Folge in X ist eine Cauchy-Folge.

Beweis. Sei $(y_n)_n$ konvergente Folge mit Grenzwert y (eindeutig wegen 1.14.v) und 1.6). Sei $\varepsilon > 0$.

Dann gibt es $N \in \mathbb{N}$ s. d. $d(y_m, y) < \varepsilon \quad \forall m \geqslant N$.

$$\implies d(y_n, y_m) \leqslant d(y_n, y) + d(y, y_m) < \epsilon \ \forall n, m \leqslant N.$$

Bemerkung. Nicht jede Cauchy-Folge konvergiert:

Beispiel $((\mathbb{Q}, |\cdot|))$. $y_{n+1} = \frac{1}{2}y_n + \frac{1}{y_n}, y_0 = 1.$

Check. Es gilt für $n \geqslant 1$

$$\left[\frac{1}{y_{n+1}}, y_{n+1}\right] \subset \left[\frac{1}{y_n}, y_n\right] \tag{*}$$

und für $l_n := y_n - \frac{1}{y_n}$

$$l_{n+1} \leqslant \frac{1}{4y_{n+1}} l_n^2 \leqslant \frac{1}{4} l_n^2$$

$$\implies d(y_n, y_m) = |y_n - y_m| \leqslant \left| y_n - \frac{1}{y_n} \right| = l_n \to 0.$$

$$\underset{\text{O.B.d.A. } m \geqslant n}{\text{O.B.d.A. } m \geqslant n} \qquad \underset{\text{wg. (**)}}{\text{wg. (**)}}$$

$$\implies y_m \in \left[\frac{1}{y_n}, y_n \right] \text{ wg. (*)}$$

 $\mathbb{Q}\subset\mathbb{R}$ und somit $(y_n)_n\subset\mathbb{R}$. In \mathbb{R} konvergiert jede Cauchy-Folge. Nennen wir den Grenzwert $a\in\mathbb{R}$. Es gilt dann

$$\underbrace{y_{n+1}}_{\rightarrow a} = \underbrace{\frac{1}{2}y_n}_{\frac{1}{2}a} + \underbrace{\frac{1}{y_n}}_{\frac{1}{2}},$$

also $a^2 = 2$. Aber $\sqrt{2} \notin \mathbb{Q}$.

Definition 1.24. Ein metrischer Raum, in dem jede Cauchy-Folge konvergiert heißt vollständig.

Beispiele 1.25. i) $\mathbb{R}, |\cdot|$ ist vollständig (Diff I).

- ii) $(C([a,b],\mathbb{R}),d_{L^1})$ mit $d_{L^1}(f,g)=\int_a^b|f(t)-g(t)|\ dt$ (vgl. HA Blatt 1, A1) ist nicht vollständig.
- iii) $(C([a, b], \mathbb{R}), d_{\sup})$, mit

$$d_{\sup} = \|f - g\|_{\infty} = \sup_{t \in [a,b]} |f(t) - g(t)|,$$

ist vollständig. Den Beweis führen wir später allgemeiner.

Zunächst einige

Betrachtungen in vollständigen metrischen Räumen

Definition 1.26. Sei (X, d) metrischer Raum, $M \subset X$,

$$\operatorname{diam}(M) \coloneqq \sup_{x,y \in M} d(x,y) \text{ "Durchmesser" (englisch "diameter")}.$$

M heißt beschränkt, falls diam $(M) < \infty$.

Bemerkung. M ist beschränkt $\iff \exists R \geqslant 0 \text{ und } a \in X \text{ s. d. } M \subset B_R(a)$

Beispiel. diam([a, b)) = b - a

Satz 1.27 (Schachtelungsprinzip). Sei (X, d) ein vollständiger metrischer Raum und sei $A_0 \subset A_1 \subset A_2 \subset \cdots$. Eine Familie nicht-leerer abgeschlossener Teilmengen von X mit

$$\operatorname{diam}(A_k) \to 0 \text{ (in } \mathbb{R}) \text{ für } k \to \infty.$$

Dann gibt es genau einen Punkt $a \in X$ der in allen A_k liegt.

Beweis. Eindeutigkeit: Angenommen $\exists x \neq y \text{ mit } x \in A_k \ \forall k \text{ und } y \in A_k \ \forall k$. Dann kann diam (A_k) keine Nullfolge sein, da $d(x,y) \neq 0$.

Existenz: Wähle $x_n \in A_n$. Dann ist $(x_n)_n$ eine Cauchy-Folge, denn

$$d(x_n, x_m) \leqslant \operatorname{diam} A_N \text{ für } n, m \geqslant N$$

 $d(x_n, x_m) \leq \operatorname{diam} A_N \text{ für}$

$$\underset{\uparrow}{\Longrightarrow} x_n \to x \text{ in } X,$$
Vollständigkeit

Da $x_n \in A_k \ \ \forall \, n \geqslant k$, folgt mit 1.19: $x \in A_k \ \ \forall \, k$.

Ein sehr wichtiger Satz, der viele Anwendungen hat ist der folgende:

Satz 1.28 (Banach'scher Fixpunktsatz). Sei (X, d_X) ein vollständiger metrischer Raum. Sei $M \subset X$ eine abgeschlossene Teilmenge und $\Phi \colon M \to X$ eine Abbildung mit $\Phi(M \subset M)$ und es gebe $0 \leq L < 1$ s. d.

$$d_X(\Phi(X), \Phi(Y)) \leq Ld_X(x, y) \, \forall \, x, y \in M \, (, \Phi \text{ ist Kontraktion"}).$$

Dann gibt es genau ein t_* s. d. $\Phi(t_*) = t_*$. Ein solches t_* heißt Fixpunkt von Φ .

Beispiel.

Beweis. Eindeutigkeit: Seien $\Phi(t_*) = t_*, \ \Phi(\tilde{t}_*) = \tilde{t}_*$. Dann gilt

$$d(t_*, \tilde{t_*}) = d(\Phi(t_*), \Phi(\tilde{t}_*))$$

$$\leqslant d(t_*, \tilde{t_*})$$

Da L > 1 ist, folgt $d(t_*, \tilde{t_*} = 0)$, also $t_* = \tilde{t_*}$.

Existenz: Wir betrachten die Folge $x_0 \in M$ beliebig, $x_n := \Phi(x_{n-1})$ für $n \ge 1$.

Behauptung. $(x_n)_n$ konvergiert in M und zwar gegen de Fixpunkt.

Beweis. • $(x_n)_n$ ist Cauchy-Folge:

$$d(x_{n+1}x_n) \leqslant Ld(x_n, x_{n-1}) \quad \forall n \geqslant 1.$$

$$\downarrow 0 \quad | 0$$

$$\downarrow 0 \quad | 0 \quad | 0 \quad | 0 \quad | 0$$

$$\downarrow 0 \quad | 0 \quad | 0 \quad | 0 \quad | 0$$

$$\downarrow 0 \quad | 0 \quad | 0 \quad | 0 \quad | 0$$

Iteration liefert

$$d(x_{n+1}, x_n) \leqslant L^2 d(x_{n-1}, x_{n-2}) \leqslant \dots \leqslant L^n d(x_1, x_0).$$

Zudem gilt

$$d(x_{n+k}, x_n) \leq d(x_{n+k}, x_{n+k} - 1) + d(x_{n+k-1}, x_{n+k-2})$$

$$\vdots$$

$$+ d(x_{n+1}, x_n)$$

$$\leq (\underbrace{L^{n+k-1} + L^{n+k-2} + \dots + L^n}_{r=0}) d(x_1, x_0)$$

$$= L^n \sum_{r=0}^{k-1} L^r \leq L^n \sum_{r=0}^{\infty} L^r = \underbrace{L^n}_{1-L}_{\text{geom. Reihe } (L < 1)}$$

 \implies (wegen L < 1) Beh.

- Da X vollständig ist, konvergiert $(x_n)_n$. Setze $t_* = \lim_{n \to \infty} x_n$.
- Da M abgeschlossen ist, ist $t_* \in M$ nach 1.19.
- t_* ist der gesuchte Fixpunkt:

$$t_* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \Phi(x_{n-1}) = \Phi(t_*)$$
Kontraktionen sind stetig und 1.18

$$x_0 = 0, x_1 = \ln(2 - (\ln 2)^2) \approx 0, 42, x_3 \approx 0, 60, x_4 \approx 0, 49$$

Bemerkung. Kontraktionen sind stetig: Zu $\varepsilon>0$ wähle $\delta=\varepsilon/L.$

Bemerkung. Die Konvergenz ist recht schnell:

$$d(x_n, t_*) \leqslant \frac{L^n}{1 - L} d(x_1, x_0) \ (L < 1).$$

Alle Voraussetzungen sind notwendig, gilt eine nicht, so gibt es nicht unbedingt einen Fixpunkt (oder keinen eindeutigen).

Vorlesung 3

Mo 27.04. 10:15

Lemma 1.29 (Cauchy-Kriterium für gleichmäßige Konvergenz).

a) Sei (X, d_x) metrischer Raum, sei (Y, d_Y) ein vollständiger metrischer Raum. Sei $f_n \colon X \to Y$ Folge von Funktionen. Dann konvergiert f_n gegen f bezüglich

$$d_{\sup}(h,g) := \sup_{t \in X} \underbrace{d_Y(f(t),g(t))}_{\in \mathbb{R}} \quad h,g \colon X \to Y$$

$$\iff \forall \ \varepsilon > 0 \ \exists \ N = N(\varepsilon) \in \mathbb{N} \text{ s. d.}$$

$$d_Y(f_n(t), f_m(t)) < \varepsilon \quad \forall t \in X \ n, m \geqslant N(\varepsilon).$$
 (*)

Notation. Man spricht von gleichmäßiger Konvergenz.

Beachte:

Der wesentliche Punkt in (*) ist, dass N unabhängig von t gewählt werden kann. Beweis. Wir stellen zunächst fest, dass d_{\sup} auf

$$\mathcal{F} := \{ f : X \to Y \mid \text{Für je zwei Funktionen gilt: } d_{\sup}(f_1, f_2) < \infty \}$$

eine Metrik definiert (auch wenn Y nicht vollständig ist).

1.11.a)

$$\begin{aligned} d_{\sup}(f,g) &= 0 \\ \iff d_Y(f(t),g(t)) &= 0 \quad \forall \, t \in X \\ \iff f(t) &= g(t) \quad \forall \, t \in X \\ d_Y \text{ ist Metrik} \end{aligned}$$

1.11.b)

$$d_{\text{sup}}(f,g) = \sup d_Y(f(t),g(t)) = \sup d_Y(g(t),f(t)) = d_{\text{sup}}(g,f)$$

1.11.c)

$$d_{\sup}(f,g) = \sup \underbrace{d_Y(f(t),g(t))}_{\leqslant d_Y(f(t),h(t)) + d_Y(h(t),g(t))}$$

$$\leqslant \sup d_Y(f(t),h(t)) + \sup d_Y(h(t),g(t))$$

$$= d_{\sup}(f,h) + d_{\sup}(h,g)$$

Zum Beweis der Behauptung:

" ⇒ "

$$\sup_{t} d_Y(f_n(t), f(t)) < \varepsilon \quad \forall \, n \geqslant N(\varepsilon)$$

impliziert

$$d_Y(f_n(t), f(t)) < \varepsilon \quad \forall t \in X \ \forall n \geqslant N(\varepsilon),$$

somit für alle $t \in X$

$$d_Y(f_n(t), f_m(t)) \leq d_Y(f_n(t), f(t)) + d_Y(f(t), f_m(t))$$

$$< 2\varepsilon \quad \forall n, m \geqslant N(\varepsilon)$$

 $, \Leftarrow$ "Gelte (*). Dann ist für jedes $t \in X$, dass $(f_n(t))_n$ ist Cauchy-Folge in Y.

Vollständigkeit von $Y \implies (f_n(t))_n$ konvergiert. Setze $f(t) := \lim_{n \to \infty} f_n(t)$.

Wir zeigen f_n konvergiert bezüglich d_{\sup} gegen f. Sei also $\varepsilon > 0$. Wähle in (*) $m \ge N(\varepsilon)$ fest. Dann gilt für alle t:

$$\varepsilon \geqslant \lim_{n \to \infty} d_Y(f_n(t), f_m(t))$$

$$= d_Y(f(t), f_m(t)).$$
 $d_Y \text{ ist stetig}$

Das gilt für alle $m \ge N(\varepsilon)$, $\forall t$, also auch für das Supremum \implies Beh.

b) Seien X, Y metrische Räume, $(f_n)_n$ eine Folge stetiger Funktionen $f_n \colon X \to Y$, die gleichmäßig konvergiere. Dann ist die Grenzfunktion $f \colon X \to Y$.

Beweis. Sei $a\in X.$ Sei $\varepsilon>0.$ Gleichmäßige Konvergenz $\implies \exists\ N=N(\varepsilon)\in \mathbb{N}$ s. d.

$$d_Y(f(t), f_n(t)) < \varepsilon \quad \forall t \in X \ \forall n \geqslant N$$

 f_n stetig in $a \implies \exists \ \delta > 0 \text{ s. d.}$

$$d_Y(d_N(t), f_N(a)) < \varepsilon \quad \forall t \text{ mit } d_X(t, a) < \delta$$

$$\Longrightarrow d_Y(f(t), f(a)) \leqslant d_Y(f(t), f_N(t)) + d_Y(f_N(t), f_N(a)) + d_Y(f_N(a), f(a)) \quad \Box$$

$$< 3\varepsilon \quad \forall t \text{ mit } d_X(t, a) < \delta.$$

Folgerung.

$$(C([a,b],\mathbb{R}),d_{\sup})$$

 $(C([a,b],\mathbb{R}),d_{\sup})$ Stellt man diese Bedingung, ist automatisch garantiert, dass $d_{\sup}(f_1,f_2) = \sup_{t \in [a,b)} |f_1(t) - f_2(t)| < \infty$

, $D \subset \mathbb{R}$, ist vollständig.

Beweis. Sei $(f_n)_n$ Cauchy-Folge in $C(D,\mathbb{R})$ bezüglich d_{\sup} , d. h. zu $\varepsilon > 0 \exists N = N(\varepsilon)$

$$d_{\sup}(f_n, f_m) < \varepsilon \quad \forall n, m \geqslant N(\varepsilon)$$

$$\implies d_Y(f_n(t), f_m(t)) = |f_n(t) - f_m(t)| < \varepsilon \quad \forall n, m \geqslant N(\varepsilon) \quad \forall t \in D.$$

R ist vollständig

 $\stackrel{1.29}{\Longrightarrow} \ (f_n)_n$ konvergiert bezüglich d_{\sup} gegen seinen punktweisen Grenzwert

$$f(t) := \lim_{n \to \infty} f_n(t)$$
 (Konvergenz in \mathbb{R})

$$\stackrel{\text{1.29.b})}{\Longrightarrow} t \mapsto f(t) \text{ ist stetig.}$$

Stetige Abbildungen auf metrischen Räumen

Lemma 1.30. Seien X, Y, Z metrische Räume, $f: X \to Y, g: Y \to Z, f(X) \subset Y$. Ist f stetig in $a \in X$ und g stetig in $b = f(a) \in \tilde{Y}$, so ist $g \circ f \colon X \to Z$ stetig in a.

Beweis. (Über Folgenstetigkeit, Lemma 1.18) Sei $x_n \to a \implies \lim f(x_n) = (a) = b$ und $\lim g(f(x_n)) = g(b) = g(f(a)) \implies \lim g \circ f(x_n) = g \circ f(a).$

Definition 1.31. Auf dem \mathbb{R}^n ist durch

$$d_{\max}(x,y) \coloneqq \max_{i \in \{1,\dots,n\}} |x_i - y_i|.$$

eine Metrik definiert.

i) $d_{\max}(x,y) = d_{\sup}(x,y)$, fasst man x und y als Abbildungen Bemerkungen.

$$x: \{1,\ldots,n\} \to \mathbb{R}$$

auf,
$$x(i) = x_i$$
.

ii) Eine Folge $(x_m)_m \subset \mathbb{R}^n$, $x_m = (x_m^1, \dots, x_m^n)$ konvergiert bezüglich $d_{\max} \iff$ Alle Komponentenfolgen $(x_m^i)_m \quad (1 \leqslant i \leqslant n)$ konvergieren in \mathbb{R} .

$$\begin{split} Beweis. & \text{ } , \Longrightarrow \text{``} \; \text{ } \text{Zu } \varepsilon > 0 \; \exists \; N \text{ } \text{s. d. } \max \left| x_m^i - a_m^i \right| < \varepsilon \quad \forall \, m \geqslant N. \\ & \text{ } , \Longleftarrow \text{``} \; \text{Zu } \varepsilon > 0 \; \exists \; N_i \text{ s. d. } \left| x_m^i - a_m^i \right| < \varepsilon \quad \forall \, m \geqslant N_i \\ & \Longrightarrow \left| x_m^i - a_m^i \right| < \varepsilon \quad \forall \, m \geqslant N = \max \left\{ \; N_1, \ldots, N_n \; \right\}. \end{split}$$

- iii) Es folgt: (\mathbb{R}^n, d_{\max}) ist vollständig.
- iv) $B_{\varepsilon}(a)$ bezüglich dieser Metrik:

$$\left\{ x \in \mathbb{R}^n \, \middle| \, \max_{i \in \{1, \dots, n\}} |x_i - a_i| < \varepsilon \right\},\,$$

Würfel mit Seitenlängen 2ε um a.

Lemma 1.32. Sei (X, d) metrischer Raum. Sei $@rr^n$ mit d_{\max} versehen. Eine Abbildung $f \colon X \to \mathbb{R}^n, \ f = (f_1, \dots, f_n)^T,$

$$f(y) = (f_1(y), \dots, f_n(y))^T \in \mathbb{R}^n, y \in X.$$

 $f_i: X \to \mathbb{R}, i \in \{1, ..., n\},$ "Komponenten-Funktionen", ist genau dann stetig in $a \in X$, falls alle f_i stetig in a sind.

Beweis. Mit Folgenstetigkeit direkt aus Bemerkung 1.31.ii). Hier nochmals mit ε -δ-Kriterium.

Notation. $\underline{n} = \{1, ..., n\}.$

" \Longrightarrow " Sei also $f\colon X\to\mathbb{R}^n$ stetig in a. Sei $\varepsilon>0.$ Dann $\exists~\delta>0$ s.d.

$$\max_{i \in \underline{n}} |f_i(y) - f_i(a)| < \varepsilon \,\forall \, y \in B_{\delta}(a)$$

$$\stackrel{\uparrow}{\text{bezüglich } d}$$

$$\Longrightarrow |f_i(y) - f_i(a)| < \varepsilon \quad \forall \, y \in B_{\delta}(a) \quad \forall \, i \in \underline{n}$$

$$\Longrightarrow f_i \text{ sind stetig in } a.$$

", \leftarrow " Seien also die $f_i: X \to \mathbb{R}$, $i \in \underline{n}$, stetig in a. Sei $\varepsilon > 0$. Dann $\exists \delta_i > 0$ s. d.

$$|f_i(y) - f_y(a)| < \varepsilon \quad \forall y \in B_{d_i}(a) \subset X.$$

Wähle $d := \min \{ \delta_1, \dots, \delta_n \}$. Dann ist

$$\max_{i \in n} |f_i(y) - f_i(a)| < \varepsilon \quad \forall y \in B_d(a).$$

Lemma 1.33. Folgende Abbildungen sind stetig:

$$\operatorname{add} \colon \mathbb{R}^2 \to \mathbb{R}, \ \operatorname{add}(x,y) = x + y$$
$$\operatorname{mult} \colon \mathbb{R}^2 \to \mathbb{R}, \ \operatorname{mult}(x,y) = x \cdot y$$
$$\operatorname{quot} \colon \mathbb{R} \times \mathbb{R}^* \to \mathbb{R}, \ \operatorname{quot}(x,y) = x/y.$$
$$\mathbb{R} \setminus \left\{ \begin{smallmatrix} 0 \end{smallmatrix} \right\}$$

Hierbei sei \mathbb{R}^2 , $\mathbb{R} \times \mathbb{R}^*$, mit d_{max} versehen.

Beweis. Sei $((x_m, y_m))_m \subset \mathbb{R}^2$ mit $(x_m, y_m) \to (x, y)$ (bezüglich d_{max})

$$\Longrightarrow_{\text{Bem 1.31.ii}} x_m \to x \text{ und } x_m \to y \text{ in } \mathbb{R}$$

$$\Longrightarrow \lim_{(x_m + y_m) = x + y} \lim_{(x_m \cdot y_m) = x \cdot y} \lim_{(x_m / y_m) = x / y} (\text{falls } y_m \neq 0, y \neq 0).$$

Folgerung. Sei (X,d) metrischer Raum. Seien $f,g:X\to\mathbb{R}$ stetig. Dann sind auch

$$f + g \colon X \to \mathbb{R}, \ (f + g)(x) = f(x) + g(x) \text{ und}$$

 $g \cdot g \colon X \to \mathbb{R}, \ (f \cdot g)(x) = f(x) \cdot g(x)$

stetig. Gilt $g(x) \neq 0 \quad \forall x \in X$, so ist auch

$$f/g: X \to \mathbb{R}, (f/g)(x) = f(x)/g(x)$$

stetig.

Beweis.

1.32
$$\Longrightarrow$$
 $\begin{pmatrix} f \\ g \end{pmatrix} : X \to \mathbb{R}^2, \begin{pmatrix} f \\ g \end{pmatrix} (x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}$

ist stetig.

Es ist

$$f + g = \operatorname{add} \circ \begin{pmatrix} f \\ g \end{pmatrix}$$
$$f + g = \operatorname{mult} \circ \begin{pmatrix} f \\ g \end{pmatrix}$$
$$f/g = \operatorname{quot} \circ \begin{pmatrix} f \\ g \end{pmatrix}$$

Mit 1.33 und 1.30 folgt die Behauptung.

Beispiel. Polynomische Funktionen $\mathbb{R}^n \to \mathbb{R}$

$$x \mapsto \sum_{0 \leqslant k_i \leqslant r} c_{\underbrace{k_1 \cdots k_n}} x_1^{k_1} \cdots x_n^{k_n}$$

sind stetig.

Bemerkung 1.34. Wir werden später sehen, dass die Aussage in 1.33 auch gilt, wenn man den \mathbb{R}^2 z. B. mit dem Euklidischen Abstand versieht.

Kompaktheit

Definition 1.35. Sei (X, d) metrischer Raum, $M \subset X$. Eine offene Überdeckung von M ist eine Familie $(U_i)_{i \in I}$ von offenen Teilmengen $U_i \subset X$ mit $M \subset \bigcup_{i \in I} U_i$ (I eine beliebige Indexmenge).

Definition 1.36. $M \subset X$ heißt kompakt, falls es zu jeder offenen Überdeckung von $\bigcup_{i \in I} U_i$ von M endlich viele Indizes i_1, \ldots, i_N gibt s. d.

$$M \subset U_{i_1} \cup \cdots \cup U_{i_N}$$
.

Achtung. Ein nicht-kompakter raum kann eine endliche Überdeckung $U_1 \cup \cdots \cup U_N$ besitzen. Die Aussage der Definition ist, dass man aus *jeder* offenen Überdeckung endlich viele offene Mengen wählen kann, die M noch ganz überdecken!

Beispiele 1.37. i) [a, b] ist kompakt (Beweis später).

ii) (a,b) ist nicht kompakt (obwohl etwa (a,b) eine endliche offene Überdeckung ist!)

Beweis.

$$U_{j} = \left(a + \frac{1}{j}, b\right), \quad j \geqslant 1$$

$$\bigcup_{j} U_{j} = (a, b)$$

aber ed gibt kein N s. d. $\bigcup_{j=1}^{N} U_j \supset (a,b)$, denn z. B. $a + \frac{1}{N+1} \notin \bigcup_{p=1}^{N} U_j$.

iii) Sei $(x_n)_n \subset X$ gegen a konvergente Folge. Dann ist $M = \{x_n \mid n \in \mathbb{N}\} \cup \{a\}$ kompakt.

Beweis. Sei $(U_j)_j$ eine offene Überdeckung von M

$$a \in M \implies \exists j_0 \text{ s.d. } a \in U_{j_0}$$

 U_{j_0} ist offen, also eine Umgebung von a.

$$\implies \exists N \text{ s.d. } x_n \in U_{j_0} \quad \forall n \geqslant N.$$

iv) Sei $(X_i, d_{\text{discrete}})$. Dann sind genau die endlichen Mengen kompakt.

Beweis. Betrachte
$$\bigcup_{x \in M} \{x\}$$
.

Satz 1.38. Sei (X, d) metrischer Raum, $K \subset X$ kompakt. Dann ist K abgeschlossen und beschränkt.

Beweis. Abgeschlossen: Sei $a \in X \setminus K$. Setze zu $n \ge 1$

$$U_n := \left\{ y \in X \mid d(y, a) > \frac{1}{n} \right\}$$

 U_n ist offen (denn $X \setminus U_n = \overline{B_{1/n}(a)}$) und $\bigcup_{n=1}^{\infty} U_n = X \setminus \{a\} \supset K$. K kompakt $\Longrightarrow \exists U_{n_1}, \dots, U_{n_L} \text{ s.d. } K \subset U_{n_1} \cup \dots \cup U_{n_l}$. Setze $N \coloneqq \max\{n_1, \dots, n_l\}$. Dann ist $B_{\frac{1}{N}}(a) \subset X \setminus K \Longrightarrow X \setminus K$ ist offen \Longrightarrow Beh.

Beschränktheit: Sei $a \in X$. Dann ist $X = \bigcup_{n=1}^{\infty} B_n(a)$ und somit $(B_n(a))_n$ eine offene Überdeckung von K.

$$\Rightarrow \exists n_1, \dots, n_k \text{ s. d. } K \subset B_{n_1(a)} \cup \dots B_{n_k}(a)$$
$$\Rightarrow K \subset B_N(a) \text{ für } N = \max \{ n_1, \dots, n_k \}$$
$$\Rightarrow \operatorname{diam}(K) \leq 2N.$$

Folgerung. Konvergente Folgen sind beschränkt.

Bemerkung. Die Umkehrung von 1.38 gilt im Allgemeinen nicht!

 (X, d_{discrete}) , X habe unendlich viele Elemente. Jede Teilmenge ist abgeschlossen (da jede offen ist) und beschränkt (durch 1), aber nur die *endlichen* sind kompakt.

Lemma 1.39. Ist $K \subset X$ kompakt und $A \subset K$ ist abgeschlossen, so ist A kompakt.

Beweis. Sei $(U_i)_i$ offene Überdeckung von A. Es ist

$$(X \setminus A) \cup \bigcup U_j = X \supset K$$
offen (VOR)
$$\implies \exists j_1, \dots, j_L \text{ s. d. } K \subset (X \setminus A) \cup U_{j_1} \cup \dots \cup U_{j_L}$$

$$\implies A \subset U_{j_1} \cup \dots \cup U_{j_L}.$$

Satz 1.40. Seien X, Y metrische Räume und $f: X \to Y$ stetig. Ist $K \subset X$ kompakt, so ist auch $f(K) \subset Y$ kompakt.

Beweis. Sei $(U_j)_j$ offene Überdeckung von f(K). f stetig \Longrightarrow Die Urbilder $V_j := f^{-1}(U_j)$ sind offen.

Und nach Definition ist $K \subset \bigcup_j V_j$.

$$\underset{\text{VOR}}{\Longrightarrow} \exists j_1, \dots, j_N \text{ s. d. } K \subset V_{j_1} \cup \dots \cup V_{j_N}$$
$$\Longrightarrow f(K) \subset U_{j_1} \cup \dots \cup U_{j_N}.$$

Satz 1.41. Sei \mathfrak{X} kompakter metrischer Raum, $f \colon \mathfrak{X} \to \mathbb{R}$ stetig. Dann ist f beschränkt und nimmt ihr Maximum und Minimum an, d. h. $\exists a, b \in \mathfrak{X}$

$$f(a) = \sup \{ f(x) \mid x \in \mathfrak{X} \}, \quad f(b) = \inf \{ f(x) \mid x \in \mathfrak{X} \}.$$

Beweis. 1.40 $\implies f(\mathfrak{X})$ ist kompakt. Mit 1.38 folgt: $f(\mathfrak{X})$ ist beschränkt (somit ist f beschränkt) und abgeschlossen.

Also sind sup $f(\mathfrak{X})$ und $\inf(\mathfrak{X})$ endlich. Zudem gibt es

$$(y_k)_k \subset f(\mathfrak{X}), \quad y_k \to \sup(f(\mathfrak{X}))$$

 $(z_k)_k \subset f(\mathfrak{X}), \quad z_k \to \inf(\mathfrak{X}),$

somit (Abgeschlossenheit!)

$$\sup(f(\mathfrak{X})) \in f(\mathfrak{X})$$
$$\inf(f(\mathfrak{X})) \in f(\mathfrak{X})$$

 \implies Beh.

Beispiel. Sei (\mathfrak{X},d) metrischer Raum. $M\subset\mathfrak{X}.$ Sei $x\in\mathfrak{X}.$ Der Abstand von a zu M ist definiert als

$$dist(x, M) := \inf \{ d(x, y) \mid y \in M \}.$$

Behauptung. $x \mapsto \operatorname{dist}(x, M)$ ist stetig auf \mathfrak{X} .

Beweis. Sei $\varepsilon > 0$. Dann ist

$$|\operatorname{dist}(x, M) - \operatorname{dist}(\tilde{x}, M)| \leq d(x, \tilde{x}) < \varepsilon$$
 falls $d(x, \tilde{x}) < \varepsilon$,

denn

$$\operatorname{dist}(x, M) \leqslant d(x, \tilde{x}) + \operatorname{dist}(\tilde{x}, M) \quad \forall \, x, \tilde{x} \in \mathfrak{X}.$$

Definiere zu $K \subset \mathfrak{X}$

$$dist(K, M) := \inf \{ dist(x, M) \mid x \in K \}.$$

Behauptung. Ist M abgeschlossen, K kompakt und ist $M \cap K = \emptyset$, so gilt $\operatorname{dist}(M, K) > 0$.

Beweis. $x \mapsto \operatorname{dist}(x, M)$ ist stetig auf \mathfrak{X} , somit erst recht auf K. K ist kompakt $\Longrightarrow \exists a \in K \text{ s. d. } \operatorname{dist}(a, M) = \operatorname{dist}(K, M)$. M abgeschlossen $\Longrightarrow \exists \varepsilon > 0 \text{ s. d. } B_{\varepsilon}(a) \subset X \setminus K$ $\Longrightarrow \operatorname{dist}(a, M) \geqslant \varepsilon$.

Achtung. i) Betrachte

$$M = \{ \ (x,y) \mid xy = 0 \ \} \subset, N = \{ \ (x,y) \mid xy = 1 \ \} \subset \mathbb{R}^2$$

$$\operatorname{dist}(M,N) = 0.$$

ii) Betrachte $B_{1/2}(1),\,B_{1/2}(2)\subset\mathbb{R}^2,\,d_{\text{Euklidisch}}.$ Distanz ist 0.

Satz / Definition 1.42. Seien \mathfrak{X}, Y metrische Räume, \mathfrak{X} kompakt. Dann ist jede stetig Abbildung $f \colon \mathfrak{X} \to Y$ sogar gleichmäßig stetig d. h. im ε - δ -Kriterium kann δ unabhängig von x gewählt werden:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} \ d_Y(f(x), f(\tilde{x})) < \varepsilon \quad \forall x, \tilde{x}, d_{\mathfrak{X}}(x, \tilde{x}) < \delta.$$

Beweis. Sei $\varepsilon > 0$. Dann gibt es zu $a \in \mathfrak{X}$ ein $\delta(a) > 0$ s. d.

$$d_Y(f(a), f(y)) < \varepsilon \quad \forall y \in B_{\delta(a)}(a).$$

Es gilt $\bigcup_{a \in X} B_{\frac{\delta(a)}{2}}(a) = \mathfrak{X}.$

 \mathfrak{X} ist kompakt $\implies \exists a_1, \ldots, a_N \text{ s. d. } X = \bigcup_{j=1}^N B_{\delta(a_j)/2}(a_j).$ Setze

$$\delta \coloneqq \frac{1}{2} \min \left\{ \delta(a_1), \dots, \delta(a_N) \right\}.$$

Seien jetzt x, \tilde{x} beliebig aus \mathfrak{X} mit $d_{\mathfrak{X}}(x, \tilde{x}) < \delta$. Dann gibt es ein $j \in \{1, \ldots, N\}$ s. d. $x \in B_{\delta(a_j)/2}$ und somit $\tilde{x} \in B_{\delta(a_j)}(a_j)$

$$\implies d_Y(f(x), f(a_j)) < \varepsilon \quad d_Y(f(\tilde{x}), f(a_j)) < \varepsilon$$

$$\implies d_Y(f(x), f(\tilde{x})) < 2\varepsilon \quad \forall x, \tilde{x}, d_{\tilde{x}}(x, \tilde{x}) < \delta.$$

Satz 1.43 (Bolzano-Weierstraß). Sei (X, d) metrischer Raum. Sei $K \subset X$ kompakt. Dann besitzt jede Folge $(x_n)_n$ in K eine Teilfolge $(x_{n_k})_k$, die gegen einen Punkt $x \in K$ konvergiert.

Beweis. Angenommen, \nexists Teilfolge, die gegen einen Punkt von K konvergiert. Dann besitzt jedes $x \in K$ eine offene Umgebung U_x , in der nur endlich viele Folgenglieder liegen (sonst könnte man eine gegen x konvergente Teilfolge konstruieren). Es gilt: $\bigcup_{x \in K} U_x \supset K$

$$\implies \exists x_1, \dots, x_N \text{ s. d. } \bigcup_{j=1}^N U_{x_j} \subset K$$

Aber dann liegen nur endlich viele x_k in $K, \not z$ zur Definition.

Vorlesung 4

Do 30.04. 10:15

Äquivalenz von Metriken

Wir haben gesehen, dass die Eigenschaften derselben Menge sehr verschieden sein können, je nachdem mit welcher Topologie man sie versieht.

Beispiel. \mathbb{R} mit der Standardtopologie |x-y|:

• (a, b] ist nicht offen, [a, b] ist kompakt.

 \mathbb{R} mit der diskreten Metrik d_{disk}

- Alle Teilmengen sind offen.
- Nur endliche Teilmengen sind kompakt.
- Konvergiert $x_n \to a$ (bezüglich d_{disk}), so muss gelten $\exists N \text{ s. d. } x_n = a \quad \forall n \geqslant N$ (denn $\{a\}$ ist Umgebung von a, oder anders gesagt: damit $d(x_n, a) < \varepsilon < 1$ wird, muss gelten $x_n = a$).
- Alle Abbildungen $f:(X, d_{\text{disc}}) \to (Y, d)$ sind stetig. (Beweis am einfachsten über Folgenstetigkeit).

Andererseits gilt:

 $U \subset \mathbb{R}^2$ ist offen in $(\mathbb{R}^2, d_{\text{Eukl}}) \iff U$ ist offen in $(\mathbb{R}^2, d_{\text{max}})$.

 $Beweis. \ \, ,,\Longrightarrow \text{``Sei } a\in U \stackrel{VOR}{\Longrightarrow} \ \exists \ \varepsilon>0 \text{ s.d.}$

$$B_{\varepsilon}^{d_{\mathrm{E}}}(a) := \left\{ \left. x \in \mathbb{R}^2 \; \middle| \; d_{\mathrm{Eukl}(x,a)} = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2} < \varepsilon \; \right\} \subset U \right\}$$

Da $B^{d_{\max}}_{\rho}(a) \subset B^{d_{\mathrm{E}}}_{\varepsilon}(a)$ für $\rho = \frac{\varepsilon}{\sqrt{2}}$, ist U auch offen (\mathbb{R}^2, d_{\max}) .

 $,, \Longleftarrow \text{``Sei } a \in U \overset{VOR}{\Longrightarrow} \exists \ \varepsilon > 0 \text{ s. d.}$

$$B_{\varepsilon}^{d_{\max}}(a) = \{ x \mid d_{\max}(x, a) < \varepsilon \} \subset U.$$

Es gilt $B_{\rho}^{d_{\mathrm{E}}}(a) \subset B_{\varepsilon}^{d_{\mathrm{max}}}(a)$ für $\rho = \varepsilon$, also ist U offen in $(\mathbb{R}^2, d_{\mathrm{Eukl}})$.

Definition 1.44. Sei X eine Menge, seien d und \tilde{d} Metriken auf X. Dann nennt man d stärker (feiner) als \tilde{d} , falls jede bezüglich \tilde{d} offene Menge auch offen bezüglich d ist, und schwächer (gröber), falls \tilde{d} stärker ist als d. Ist d sowohl stärker als auch schwächer als \tilde{d} , so nennt man d und \tilde{d} äquivalent.

Beispiel. d_{max} ist äquivalent zu d_{Eukl} . d_{disk} ist stärker als d_{max} und nicht schwächer.

Bemerkungen 1.45. Sei d stärker als \tilde{d} . Dann gilt:

 Konvergiert eine Folge bezüglich der stärkeren Metrik, so auch bezüglich der schwächeren.

(denn: Konvergiere $x_n \to a$ (bezüglich d). Sei $\varepsilon > 0$. Betrachte $B_{\varepsilon}^{\tilde{d}}(a) = U$ offen bezüglich $d \Longrightarrow U$ Umgebung von a (bezüglich $d) \Longrightarrow U$ Umgebung von a (bezüglich d) $\Longrightarrow \exists N \text{ s. d. } x_n \in U \quad \forall n \geqslant N$.)

- ii) Ist eine Funktion $f: (X, \tilde{d}) \to (Y, d_Y)$ stetig, so auch $f: (X, d) \to (Y, d_Y)$.
- iii) Ist eine Funktion $f: (Y, d_Y) \to (X, d)$ stetig, so auch $f: (Y, d_Y) \to (X, \tilde{d})$.

Beweis. f stetig \iff Urbilder offener Mengen sind offen.

- 1. $U \subset Y \implies f^{-1}(U)$ offen bezüglich $\tilde{d} \implies f^{-1}(U)$ offen bezüglich d.
- 2. Sei $U\subset X$ offen bezüglich $\tilde{d},$ also auch offen bezüglich $d\implies f^{-1}(U)$ offen in Y.

Bemerkung. Sind d und \tilde{d} äquivalent, sind die selben Folgen konvergent, die selben Mengen offen, kompakt, die selben Funktionen stetig etc.

Kapitel 2

Normierte Vektorräume

Definition 2.1. Sei V ein reeller Vektorraum. Eine *Norm* auf V ist eine Abbildung $\|\cdot\|\colon V\to\mathbb{R}$ mit

a)

$$||x|| = 0 \iff x = 0$$

b)

$$\|\lambda x\| = |\lambda| \|x\| \quad \forall \lambda \in \rho, \ x \in V$$

c)

$$||x+y|| \leqslant ||x|| + ||y|| \quad \forall x, y \in V$$

Dreiecksungleichung.

Ein normierter VR $(V, \|\cdot\|)$ ist ein VR mit einer Norm.

Beispiele. • \mathbb{R}^n mit $\|\cdot\|_{\mathrm{E}}$ Euklidische Norm auf \mathbb{R}^n

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} \quad x = (x_1, \dots, x_n).$$

• \mathbb{R}^n mit $\|\cdot\|_{\infty} = \|\cdot\|_{\max}$,

$$||x||_{\infty} = \max\{ |x_1|, \dots, |x_n| \}.$$

• \mathbb{R}^n mit $\|\cdot\|_p$ "p-Norm", $p \geqslant 1$, $p \in \mathbb{R}$.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \rightarrow \text{Saal\"{u}bung}.$$

- C([a,b]) mit $||f||_{L^1} = \int_a^b |f(t)| dt$.
- C([a,b]) mit $||f||_{\infty} = \sup_{t \in [a,b]} |f(t)|$.

Lemma 2.2. Sei $(V, \|\cdot\|)$ normierter VR. Dann wird durch $d(x, y) := \|x - y\|$ eine Metrik auf V definiert ("induziert").

Beweis. 2.1.a) (Norm)
$$\implies$$
 1.11.a) (Metrik). 1.11.b) (Symmetrie der Metrik): folgt aus $||x-y|| = ||y-x||$.

Notation. Wir schreiben $(V, \|\cdot\|)$ für den *metrischen* Raum, dessen Metrik von $\|\cdot\|$, dessen Metrik von $\|\cdot\|$ induziert wird.

Bemerkung. Nicht jede Metrik auf einem Vektorraum wird von einer Norm induziert, denn induzierte Metriken erfüllen $d(\lambda x, \lambda y) = |\lambda| d(x, y)$. Die diskrete Metrik erfüllt das nicht.

Lemma 2.3. Seien d_1 und d_2 auf V von Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ induziert. Dann ist d_2 stärker als d_1 genau dann, wenn es eine positive Zahl C > 0 gibt s. d.

$$\|x\|_1\leqslant C\|x\|_2 \quad \forall\, x\in V.$$

Beweis. Bezeichne $B_r^j(0)$, r > 0, die offenen Kugeln bezüglich d_j .

", \Longrightarrow " Nach VOR ist insbesondere $B_1^1(0)$ offen bezüglich $d_2 \Longrightarrow \exists \varepsilon > 0$ s. d. $B_{\varepsilon}^2(0) \subset B_1^1(0) \Longrightarrow \text{ für } x \in X, x \neq 0 \text{ gilt}$

$$\begin{split} & \left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_2 = \frac{\varepsilon}{2} < \varepsilon \\ \Longrightarrow & \left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_1 < 1 \\ \Longrightarrow & \|x\|_1 < \frac{2}{\varepsilon} \|x\|_2. \end{split}$$

" Existiere C wie oben. $B_r^2(x) \subset B_{cr}^1(x) \quad \forall x \in X, r > 0$. Denn $r > \|x - y\|_2 \geqslant \frac{1}{c}$. Sei U offen bezüglich d_1

$$\implies \forall \, x \in U \quad \exists \, \varepsilon > 0 \text{ s.d. } B^1_\varepsilon(x) \subset U$$

$$\implies B^2_{\frac{\varepsilon}{C}}(x) \subset B^1_\varepsilon(x) \subset U.$$

Folgerung. d_2 ist äquivalent zu d_1

$$\iff \exists C, \tilde{C} \text{ s. d.} \tilde{C} ||x_2|| \leqslant ||x_1|| \leqslant C ||x_2||,$$

("die Normen sind äquivalent").

Bemerkung. Äquivalenz von Normen ist eine Äquivalenz-Relation (reflexiv, symmetrisch, transitiv).

$$\left\| \frac{x}{\|x\|_2} \right\| = \frac{1}{\|x\|_2} \|x\|_1.$$

Satz 2.4. Auf \mathbb{R}^n sind alle Normen äquivalent.

Beweis. Aufgrund der Transitivität genügt es die Äquivalenz einer beliebigen Norm $\|\cdot\|$ zu $\|\cdot\|_{\infty}$ zu beweisen.

1. $\|\cdot\|_{\infty}$ ist stärker als $\|\cdot\|$: Denn sei $x = \sum_{j=1}^n x_j e_j \in \mathbb{R}^n$, $e_j = (0, \dots, \underbrace{1}_{j-\text{te}}, \dots, 0)$. Dann ist

$$||x|| = \left\| \sum x_j e_j \right\| \leqslant |x_j| \cdot ||e_j|| \leqslant ||x||_{\infty} \underbrace{\sum_{j=1}^n ||e_j||}_{=C}$$

2. $\|\cdot\|_{\infty}$ ist schwächer als $\|\cdot\|$:

Betrachte $M := \{ x \in \mathbb{R}^n \mid ||x||_{\infty} = 1 \}$ (Einheits, sphäre" bezüglich $||\cdot||_{\infty}$, also Rand des Einheitswürfels \square).

Behauptung. $f: M \to \mathbb{R}, x \mapsto ||x||$ ist stetig bezüglich $||\cdot||_{\infty}$.

Beweis.

$$|f(x) - f(y)| = |||x|| - ||y||| \le ||x - y|| \le C||x - y||_{\infty}$$

(*) umgekehrte Dreiecksungleichung:

$$||x|| - ||y|| = ||x + y - y|| - ||y|| \stackrel{\triangle}{\leqslant} ||x + y||$$

$$||y|| - ||x|| = ||y + x - x|| - ||x|| \leqslant ||x + y||.$$

M ist abgeschlossen bezüglich $\|\cdot\|_{\infty}$ (denn $\mathbb{R}^n \setminus M = \text{Urbild der offenen Menge } \mathbb{R} \setminus \{1\}$ unter der stetigen Abbildung $x \mapsto \|\cdot\|_{\infty}$). $M \subset \text{abgeschlossenen } Quader$ und dieser ist kompakt in $(\mathbb{R}^n, \|\cdot\|_{\infty})$ (Lemma 2.5) $\Longrightarrow M$ ist kompakt (1.39).

Es folgt: f nimmt sein Minimum b an und (da f>0) somit ist b>0. Nach Definition ist $\|y\|\geqslant b \quad \forall\,y\in M$. Für alle $x\in\mathbb{R}^n\setminus\{\,0\,\}$ gilt $\frac{x}{\|x\|_\infty}\in M$, also ist $\left\|\frac{x}{\|x\|_\infty}\right\|\geqslant b$, also $\|x\|\geqslant b\|x\|_\infty$ und für x=0 gilt dies ohnehin.

Lemma 2.5. Der Quader $Q = \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid a_j \leqslant x_j \leqslant b_j \}$ ist kompakt in $\mathbb{R}^n, \|\cdot\|_{\infty} \ (a_j \leqslant b_j).$

Beweis. Sei $(U_j)_j$ eine offene Überdeckung von Q. Angenommen, Q kann nicht durch endlich viele U_j 's überdeckt werden.

Wir konstruieren induktiv eine Folge von abgeschlossenen Teilquadern

$$Q_0 \supset Q_1 \supset Q_2 \supset \cdots$$

mit

- a) Q_n kann nicht durch endlich viele U_j 's überdeckt werden
- b) diam $Q_m = 2^{-m}$ diam Q.

Beachte:

diam $Q = \text{Länge der länsten Seite bezüglich } \|\cdot\|_{\infty}$.

Setze $Q_0=Q$. Sei Q_m konstruiert. Schreibe $Q_m=I_1\times\cdots\times I_n,\ I_j$ abgeschlossene Intervalle. Zerlege $I_j^{(1)}\cup I_j^{(2)}$ in zwei abgeschlossene Intervalle der halben Länge und setze

$$Q^{(s_1,\dots,s_n)} := I_1^{(s_1)} \times \dots \times I_n^{(s_n)}, \quad s_j \in \{1,2\}.$$

Das ergibt 2^n Quader mit

$$\bigcup_{s_j \in \{1,2\}} Q_m^{(s_1,\dots,s_n)} = Q_m$$

Es gibt mindestens einen Quader $Q_m^{(s_1,\ldots,s_n)}$, der nicht durch endlich viele U_j 's überdeckt werden kann. Einen solchen wählen wir als Q_{m+1} . Es gilt per Konstruktion

$$\operatorname{diam}(Q_{m+1}) = \frac{1}{2}\operatorname{diam}(Q_m) = \frac{1}{2^{m+1}}\operatorname{diam}(Q).$$

Nach dem Schachtelungsprinzip $\exists \ a \in Q_m \ \forall \ m$. Da $(U_j)_j \ Q$ überdeckt $\exists \ U_{j_0}$ s. d. $a \in U_{j_0}$. U_{j_0} offen $\implies \exists \ \varepsilon > 0$ s. d. $B_{\varepsilon}^{\|\cdot\|_{\infty}}(a) \subset U_{j_0}$. Wähle m so groß, dass diam $(Q_m) < \varepsilon$. $a \in Q_m \implies Q_m \subset B_{\varepsilon}^{\|\cdot\|_{\infty}}(a) \subset U_{j_0} \not\searrow$ Widerspruch Konstruktion der Q_m .

Bemerkung 2.6. Aus 2.4 folgt: Q ist bezüglich jeder Norm kompakt. Bolzano-Weierstraß $(1.43) \implies \text{In } (\mathbb{R}^n, \|\cdot\|)$ hat jede beschränkte Folge eine konvergente Teilfolge.

Bemerkungen 2.7. Wir haben bereits gesehen:

- i) Auf nicht endlich-dimensionalen Vektor-Räumen sind nicht alle Normen äquivalent: $(C([a,b]),\|\cdot\|_{\infty})$ ist vollständig, $(C([a,b]),\|\cdot\|_{L^1})$ nicht.
- ii) Auf dem \mathbb{R}^n sind nicht alle Metriken äquivalent: d_{disc} ist stärker als jede Norm (und nicht schwächer).

Satz 2.8 (Heine-Borel). Eine Teilmenge $A \subset \mathbb{R}^n$ ist genau dann kompakt, wenn sie abgeschlossen und beschränkt ist. (\mathbb{R}^n hir und im Folgenden als normierter VR).

Beweis. " \Longrightarrow " Hatten wir letztes Mal (1.38) für Kompakte in metrischen Räumen bewiesen.

Bemerkung. 2.8 gilt nicht in unendlich-dimensionalen Vektorräumen:

Betrachte in $\ell_1, \|\cdot\|_{\ell_1} = \sum_{k=0}^{\infty} |x_k|$ die Folge $(x^n)_n$ wobei $x^n = (x_k^n)_k$ sei mit $x_k^n = 0$ für $n \neq k$ und $(x^n)_n = 1$. Dann gilt $\|x^n\|_{\ell_1} = 1$ und

$$||x^n - x^m||_{\ell_1} = 2 \quad \forall m \in \{0, 1, \dots, n-1\}.$$

 \implies Die Folge besitzt keine konvergente Teilfolge, kann also (Bolzano-Weierstrass) nicht kompakt sein, obwohl $\{x^n \mid n \in \mathbb{N}_0\}$ beschränkt und abgeschlossen in $(\ell_1, \|\cdot\|_{\ell_1})$ ist.

Vorlesung 5

Mo 04.05. 10:15

Stetige Abbildungen in normierten Vektorräumen

Lineare Abbildungen

Satz 2.9. Seien $(V, \|\cdot\|_V)$ und $(W, \|\cdot\|_W)$ normierte Vektorräume. Sei $A \colon V \to W$ linear. Dann sind folgende Aussagen äquivalent:

- a) A ist stetig
- b) A ist stetig in 0
- c) $||A(x)||_W \leqslant C||x||_V$.

Beweis. 2.9.a) \implies 2.9.b) \checkmark

2.9.b) \implies 2.9.c) A stetig in $0 \implies$ zu $\varepsilon = 1 \exists \delta > 0$ s. d.

$$||A(y) - A(0)||_W \stackrel{\text{Lin}}{=} ||A(y)||_W < 1 \quad \forall y \in V \text{ mit } ||y - 0||_V = ||Y||_V < \delta.$$

Setze $C := 2/\delta$. Sei $x \in V \setminus \{0\}$ beliebig (für x = 0 gilt die Ungleichung 2.9.c) ohnehin). Setze $\lambda := 1/C||x||_V$ und $y := \lambda x$.

Dann ist $\|y\|_V = \frac{1}{C\|x\|_V} \|x\|_V = \delta/2 < \delta,$ also $\|A(y)\|_W < 1.$

$$A(y) = A(\lambda x) = \frac{1}{C||x||_V} A(x) \implies Beh.$$

 $2.9.c) \Longrightarrow 2.9.a$) Es gebe C > 0 s. d.

$$||A(x)||_W \leqslant C||x||_V \quad \forall x \in V.$$

Dann gilt insbesondere für x = y - a.

$$\|A(x)\|_{W} \underset{\text{Linearität}}{=} \|A(y) - A(a)\| \leqslant C\|y - a\|_{V}.$$

Sei $\varepsilon > 0$. Dann ist also

$$||A(y) - A(a)||_W < \varepsilon \quad \forall y, a \text{ mit } ||y - a||_V < \frac{\varepsilon}{C}$$

und somit ist A sogar gleichmäßig stetig.

Beispiele. i) $(C([a,b],\mathbb{R}), \|\cdot\|_{\infty}).$

$$I \colon C([a,b]) \to \mathbb{R}, \ I(f) \coloneqq \int_a^b f(t) dt.$$

I ist linear und es gilt

$$||I(f)|| \leq (b-a)||f||_{\infty}$$

 $\implies I \text{ ist stetig.}$

ii)
$$D\colon (C^1([a,b]),\|\cdot\|_\infty)\to (C([a,b]),\|\cdot\|_\infty),\,D\colon f\mapsto f'.$$

Behauptung. D ist nicht stetig.

Denn:. D ist linear \checkmark , aber die Bedingung aus Satz 2.9 ist verletzt: Betrachte $f_n \in C^1([0,2]), f_n = x^n$. Dann ist $||f_n||_{\infty} = 1$, aber $||Df_n||_{\infty} = n \implies$ es kann kein C > 0 geben s. d.

$$n = ||Df_n||_{\infty} \leqslant C||f_n|| = C \quad \forall n.$$

Definition. Seien V und W normierte Vektorräume. Sei $A\colon V\to W$ lineare stetige Abbildung. Die *Operatornorm* von A ist definiert als

$$||A||_{\text{op}} := \sup_{\substack{x \in V \\ x \neq 0}} \frac{||Ax||_w}{||x||_V}.$$

Auf dem VR der stetigen linearen Funktionen $V \to W$ ist $\|\cdot\|_{\text{op}}$ eine Norm. $\|A\|_{\text{op}}$ ist die kleinste Konstante für die noch die Abschätzunge aus 2.9 gilt und es folgt

Bemerkung 2.10. Ein linearer Operator ist genau dann stetig, wenn gilt $||A||_{op} < \infty$.

Beispiel. Ist $A: \mathbb{R}^n \to \mathbb{R}^m$ linear, so gilt

$$A \in \operatorname{Mat}(m \times n, \mathbb{R}) \simeq \mathbb{R}^{m \cdot n}$$
.

Daher ist $\|\cdot\|_{\text{op}}$ in diesem Fall äquivalent zu in $\|\cdot\|_{\infty}$, $\|A\|_{\infty} = \max_{i,j} |A_{ij}| < \infty$, insbesondere also schwächer und somit ist A stetig.

Konkret gilt: Setze $V = (\mathbb{R}^n, \|\cdot\|_V)$, $W = (\mathbb{R}^n, \|\cdot\|_W)$. Sei $y = Ax \implies y_i = \sum_{j=1}^n A_{ij}x_j$ für $i = 1, \ldots, m$.

$$\begin{split} \|y\|_{W} & \leq \sum_{i=1}^{m} \|y_{i}e_{i}\|_{W} \\ & \leq \sum_{i,j} |A_{ij}x_{j}| \|e_{i}\|_{W} \\ & = \sum_{i,j} |A_{ij}| \cdot |x_{k}| \cdot \|e_{i}\|_{W} \\ & \leq \|A\|_{\infty} \cdot \|x\|_{\ell^{1}} \cdot \sum_{i=1}^{m} \|e_{i}\|_{W} \\ & \Rightarrow \|A\|_{\text{op}} = \sup_{x \neq 0} \frac{\|Ax\|_{W}}{\|x\|_{V}} \leq \|A\|_{\infty} \cdot C_{W} \cdot \sup_{x \neq 0} \frac{\|x\|_{\ell^{1}}}{\|x\|_{V}}, \end{split}$$

wobei C_V eine Konstante ist mit

$$||x||_{\ell^1} \leqslant C_V \cdot ||x||_V \quad \forall x \in V = \mathbb{R}^n.$$

Bemerkung. Unsere Beschränkung auf den \mathbb{R}^n (statt beliebige endlich-dimensionale Vektorräume zuzulassen), bedeutet also keine Einschränkung, da ein Basiswechsel nach der Überlegung oben stetig ist.

Beispiele 2.11. $f: \mathbb{R}^n \to \mathbb{R}^m$.

a) Kurven $\gamma: I \to \mathbb{R}^n$, I Intervall, stetig.

Beispiele.

 $\gamma \colon [0, 2\pi] \to \mathbb{R}^2$, $t \mapsto (r \cos t, r \sin t)$, r > 0. Stetigkeit: Wir versehen \mathbb{R}^2 mit $\|\cdot\|_{\infty}$. Dann folgt die Stetigkeit von γ aus der Stetigkeit der Komponentenfunktionen $I \to \mathbb{R}$.

$$\gamma\colon\mathbb{R}\to\mathbb{R}^2,\,t\mapsto(t^2-1,t^3-1)$$
genauso. Spur von $\gamma=\{\,\gamma(t)\mid t\in\mathbb{R}\,\}$

b) Gebrochen rationale Funktionen:

Beispiele.

 $f: \mathbb{R}^2 \to \mathbb{R}$.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

fist stetig: auf $\mathbb{R}^2\setminus\{\;0\;\}$ sicherlich als Verknüpfung und Produkt stetiger Funktionen:

$$f = \text{Inv} \circ p_1 \cdot p_2 \quad \text{Inv}(t) = \frac{1}{t}, \quad p_1(x, y) = x^2 + y^2, \quad p_2(x, y) = x^2 y.$$

Stetigkeit in 0: Es gilt $(x-y)^2 \ge 0$

$$\implies 2|xy| \leqslant x^2 + y^2$$

$$\implies \left| \frac{x^2y}{x^2 + y^2} \right| < \frac{|x|}{2}$$

für $((x_n,y_n))_n$, $(x_n,y_n) \to (0,0)$ (bezüglich irgendeiner Norm) gilt insbesondere $x_n \to 0$

$$\implies |f(x_n, y_n) - 0| = \left| \frac{x_n^2 y_n}{x_n^2 + y_n^2} \right| < \frac{|x_n|}{2} \to 0 \text{ in } \mathbb{R}.$$

 $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

f ist stetig auf $\mathbb{R}^2\setminus\{0\}$ (siehe oben). f ist nicht stetig in 0: Betrachte etwa $(x_n,y-n)=\left(\frac{1}{n},\frac{1}{n^2}\right),\,n\geqslant 1.$ Dann gilt

$$f(x_n, y_n) = \frac{1}{n^2 n^2} \left(\frac{n^4}{2} \right) = \frac{1}{2} \rightarrow 0.$$

Achtung:

Es gibt durchaus Folgen $(x_n,y_n) \to 0$ s.d. $f(x_n,y_n) \to 0$ (für $n \to \infty$), z.B. $(x_n,y_n)=\left(0,\frac{1}{n}\right)$, wo $f\left(0,\frac{1}{n}\right)=0$ $\forall n$ oder $(x_n,y_n)=(1/n,1/n)$ wo

$$f(x_n, y_n) = \frac{1}{n^2} \left(\frac{n^2}{1 + 1/n^2} \right) \to 0.$$

Daher muss man, wenn man Stetigkeit zeigen will, in Argument finden, dass für alle Folgen funktioniert.

Contour-Plot: Eingezeichnet werden alle (x,y), die die gegebene Gleichung erfüllen. Von Wolfram Alpha.

Vektorräume mit Skalarprodukt

Eine spezielle Klasse von Normen sind solche, die von einem sogenannten Skalarprodukt induziert werden.

Definition 2.12. Sei V ein Vektorraum über \mathbb{R} . Ein Skalarprodukt auf V ist eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ mit

a) Linear:

$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle \quad \forall x, y, z \in V, \ \lambda, \mu \in \mathbb{R}$$

b) Symmetrisch:

$$\langle x, y \rangle = \langle y, x \rangle \, \forall \, x, y \in V$$

c) Positiv definit:

$$\langle x, x \rangle \geqslant 0$$
 und $\langle x, x \rangle = 0 \iff x = 0$.

Bemerkung. Mit 2.12.b) folgt auch die Linearität im zweiten Argument.

Beispiele. • \mathbb{R}^n , $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$: Euklidisches Skalarprodukt.

interpretation

Y geht durch Drehstreckung aus $x \neq 0$ hervor:

$$y = \|y\|_{\mathcal{E}} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \frac{x}{\|x\|_{\mathcal{E}}}.$$

Dann gilt:

$$\langle x, y \rangle = \frac{\|y\|_{\mathcal{E}}}{\|x\|_{\mathcal{E}}} \left\langle x, \begin{pmatrix} \cos \alpha x_1 - \sin \alpha x_2 \\ \sin \alpha x_1 + \cos \alpha x_2 \end{pmatrix} \right\rangle$$
$$= \frac{\|y\|_{\mathcal{E}}}{(} x_1^2 \cos \alpha - \underline{x_1 x_2 \sin \alpha} + \underline{x_1 x_2 \sin \alpha} + \underline{x_2 \cos \alpha})$$
$$= \|y\|_{\mathcal{E}} \cdot \|x\| \mathcal{E} \cdot \cos \alpha.$$

Das Skalarprodukt misst die Projektion von y auf x

und umgekehrt

- \mathbb{R}^n mit $\langle x, y \rangle_W = \sum_{i=1}^n w_i x_i y_i, w = (w_1, \dots, w_n)$ Gewichtsvektor, $w_i > 0$.
- \mathbb{R}^2 mit $\langle x,y\rangle \coloneqq 2x_1y_1-x_1y_2-x_2y_1+2x_2y_2$ (zu überprüfen ist die Positive Definitheit).
- Kein Skalarprodukt ist das Minkowski-Produkt: \mathbb{R}^{n+1} mit $((x,y)) := x_0y_0 \sum_{i=1}^n x_iy_i$.

Denn
$$((x,x)) = 0 \iff x_0 = \pm ||\underline{x}||_{\mathbf{E}}, \ x = (x_1, \dots, x_n).$$

• C([a,b]) mit $\langle f,g\rangle = \int_a^b f(t)g(t) dd$.

Lemma 2.13. Sei V VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann ist durch $||x|| \coloneqq \sqrt{\langle x, x \rangle}$ eine Norm auf V definiert.

Beweis. 2.1.a)
$$||x = 0|| \Longrightarrow \langle x, x \rangle = 0 \Longrightarrow_{2.12.c)}, ||0|| = 0 \checkmark.$$

2.1.b)
$$\|\lambda x\| = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} \ \forall \ \lambda \in \mathbb{R}, \ x \in V.$$

2.1.c)

$$\begin{split} \|x+y\|^2 &= \langle x+y, x+y \rangle \\ &= \|x\|^2 + 2 \, \langle x,y \rangle + \|y\|^2 \\ &\leqslant \|x\|^2 + 2 \, |\langle x,y \rangle| + \|y\|^2 \\ &\leqslant (\|x\| + \|y\|)^2 \implies \triangle, \\ \text{siche (*) unten} \end{split}$$

denn die Wurzel ist monoton wachsend.

Es gilt die Cauchy-Schwarzsche Ungleichung:

$$|\langle x, y \rangle| \leqslant ||x|| \cdot ||y||. \tag{*}$$

Beweis.

$$0 \leqslant \langle x - \lambda y, x - \lambda y \rangle = ||x||^2 - 2\lambda \langle x, y \rangle + \lambda^2 ||y||^2 \quad \forall x, y \in V \ \lambda \in \mathbb{R},$$

also speziell für $y \neq 0$ (für y = 0 gilt die Ungleichung sowieso) und $\lambda = \frac{\langle x, y \rangle}{\|y\|^2}$:

$$0 \leqslant \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}.$$

Einen Vektorraum mit Skalarprodukt betrachten wir immer als mit der von Skalarprodukt induzierten Norm, also Metrik, also Topologie.

Nicht jede Norm wird von einem Skalarprodukt induziert. Es gilt

Lemma 2.14. Sei $(V, \|\cdot\|)$ normierter VR Dann wird $\|\cdot\|$ von einem Skalarprodukt induziert genau dann, wenn die Parallelogramm-Gleichung gilt:

$$||x + y||^2 - ||x - y||^2 = 2(||x||^2 + ||y||^2) \quad \forall x, y \in V.$$

Erklärung für den Namen. \mathbb{R}^2 , $\|\cdot\| = \|\cdot\|_{\mathbf{E}}$.

 $Beweis. \ ,,\Longrightarrow$ " Sei $\|x\|=\sqrt{\langle x,x\rangle}.$ Dann gilt

$$||x + y||^{2} + ||x - y||^{2} = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$
$$= 2||x^{2}|| + 0 + 2||y^{2}||.$$

 $, \Leftarrow$ " Erfülle $\|\cdot\|$ die Parallelogramm-Gleichung.

Behauptung. Durch "Polarisation", also

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

ist ein Skalarprodukt definiert mit $||x|| = \sqrt{\langle x, x \rangle}$.

Beweis. 2. Beh.: $\langle x, x \rangle = \frac{1}{4} ||2x||^2 \checkmark$.

- 1. Beh.: Aus der 2. Beh. folgt die positive Definitheit aus der Nichtausgeartetheit und Positivität der Norm.
 - Die Symmetrie folgt sofort aus der Definition.
 - Linearität. Wir zeigen zunächst Additivität:

1)
$$\langle x + u, y \rangle + \langle x - u, y \rangle = \langle x, y \rangle$$

denn:

linke Seite =
$$\frac{1}{4}(\|x+u+y\|^2 - \|x+u-y\|^2)$$
 $+ \|x-u+y\|^2 - \|x-u-y\|^2$
= $\frac{1}{2}(\|x+y\|^2 + \|u\|^2 - \|x-y\|^2 - \|u\|^2)$ Parallelogramm-Gleichung
= $\frac{1}{2}(\langle x+y, x+y \rangle - \langle x-y, x-y \rangle)$
= $2\langle x, y \rangle$.

Damit auch gleich gezeigt:

- 2) $\langle 2x, y \rangle = 2 \langle x, y \rangle$ (setze u = x) und mit x = u + v, y = u v folgt
- 3) Additivität:

$$\begin{split} \langle x,y\rangle + \langle y,z\rangle &= \langle u+v,z\rangle + \langle u-v,z\rangle \\ &= 2 \, \langle u,z\rangle \\ &= \langle 2u,z\rangle \\ &= \langle 2x+y,z\rangle \end{split}$$

4) per Induktion $\langle nx,y\rangle=n\,\langle x,y\rangle\,\,\forall\,\,n\in\mathbb{N},\,\mathrm{denn}$

$$\begin{split} \langle (n+1)x,y\rangle &= \langle nx+x,y\rangle \\ &\stackrel{3)}{=} \langle nx,y\rangle + \langle x,y\rangle \\ &\stackrel{\mathrm{IV}}{=} n \, \langle x,y\rangle + \langle x,y\rangle \\ &= (n+1) \, \langle x,y\rangle \,. \end{split}$$

5) Für $\lambda \in -\mathbb{N}_0$ gilt

$$\begin{split} \lambda \left\langle x,y \right\rangle - \left\langle \lambda x,y \right\rangle &= \lambda \left\langle x,y \right\rangle - \left\langle \left| \lambda \right| (-x),y \right\rangle \\ &= \lambda \left\langle x,y \right\rangle - \left| \lambda \right| \left\langle -x,y \right\rangle \\ &= \lambda (\left\langle x,y \right\rangle + \left\langle -x,y \right\rangle) \\ &= 0 \end{split}$$

6) Für $\lambda \in \mathbb{Q}$, $\lambda = m/n$, $m, n \in \mathbb{Z}$:

$$n\left\langle \frac{m}{n}x,y\right\rangle \underset{4),5)}{=}\left\langle mx,y\right\rangle =m\left\langle x,y\right\rangle .$$

7) Für $\lambda \in \mathbb{R}$ existiert $(\lambda_n)_n \subset \mathbb{Q}$, $\lambda_n \to \lambda$. Da $\|\cdot\|$ stetig ist, so auch $\langle \cdot, \cdot \rangle$

$$\langle \lambda x, y \rangle = \langle \lim \lambda_n x, y \rangle$$

$$= \lim \langle \lambda_n x, y \rangle$$

$$= \lim \lambda_n \langle x, y \rangle$$

$$= \lambda \langle x, y \rangle.$$

Symmetrie \implies es genügt, das erste Argument zu untersuchen.

Beispiel. $\|\cdot\|_{\max}$ wird nicht von einem Skalarprodukt induziert: Sei $x=e_1, y=e_2$. Dann gilt:

$$||e_1 + e_2||_{\text{max}}^2 + ||e_1 - e_2||_{\text{max}}^2 = 1 + 1 = 2,$$

aber

$$2(\|e_1\|_{\max}^2 + \|e_2\|_{\max}^2) = 4.$$

Kapitel 3

Differenzierbarkeit in \mathbb{R}^n

Vorlesung 6

Do 07.05. 10:15

Erinnerung. Approximation einer Funktion $f: \mathbb{R} \to \mathbb{R}$, die in $a \in \mathbb{R}$ differenzierbar ist, durch eine (affin) lineare Funktion

$$f(x) = f(a) + m_a(x - a) + R_a(x)$$

mit $R_a \colon \mathbb{R} \to \mathbb{R}$ und $\lim_{x \to a} \frac{R_a(x)}{x - a} = 0$.

Gibt es ein solches R_a , so ist m_a eindeutig festgelegt und es gilt

$$m_a = \lim_{x \to a} \underbrace{\frac{f(x) - f(a)}{x - a}}_{\text{Differenzen quotient}}.$$

 $f'(a) := m_a$ heißt Ableitung von f an der Stelle a.

Für Abbildungen $f\colon \mathbb{R}^n \to \mathbb{R}^n$ kann man analog definieren:

Definition 3.1. Die Ableitung einer Funktion $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$ offen, an der Stelle $a \in U$, ist, wenn sie existiert, eine Matrix $Df(a) \in \operatorname{Mat}(m \times n)$, die eine lineare Approximation von f ergibt:

$$f(x) = f(a) + Df(a) \cdot (x - a) + R_a(x)$$

$$\uparrow \text{Matrix-Multiplikation}$$
 (*)

Sie existiert genau dann, wenn

$$\lim_{\substack{x \to a \\ \text{in } \mathbb{R}^n}} \frac{R_a(x)}{\|x - a\|} = 0$$
eine Norm in \mathbb{R}^n

und ist in diesem Fall eindeutig durch (*) bestimmt und man sagt, f ist differenzierbar.

Bemerkungen. i) Für n=m=1 stimmt die Definition mit der Üblichen überein, da $\frac{R_a(x)}{x-a} \to 0 \iff \frac{R_a(x)}{|x-a|} \to 0.$

ii) Eindeutigkeit: Sei A s. d.

$$f(x) = f(a) + A \cdot (x - a) + \tilde{R}_a(x)$$

= $f(a) + Df(a) \cdot (x - a) + R_a(x)$

Dann folgt:

$$\lim_{x \to a} (\underbrace{(A - Df(a)) \cdot (x - a) \cdot 1/||x - a||}_{= \frac{1}{||x - a||} (R_a(x) - \tilde{R}_a(x))}) = 0.$$

 $\implies A - Df(a) = 0$ (Nullmatrix), da wegen der Stetigkeit linearer Abbildungen $\mathbb{R}^n \to \mathbb{R}^m$ der Grenzwert gleich (A - Df(a)). $\lim (x - a)/\|x - a\|$ ist und $\|\lim (x - a)/\|x - a\|\| = 1 \neq 0$.

iii) Wie in der Diff I ist es oft zweckmäßig f an der Stelle a+h mit f an der Stelle a zu vergleichen (x=a+h).

$$f(a+h) = f(a) + Df(a) \cdot h + R_h(a)$$

 $\operatorname{mit } \lim_{h \to 0} \left(\underline{R}_h(x) \right) / \|h\| = 0.$

Beispiele. i) $f: \mathbb{R}^n \to \mathbb{R}^n$, $f(x) = A \cdot x + b$, $A \in \operatorname{Mat}(m \times n, \mathbb{R})$, $b \in \mathbb{R}^m$.

$$f(a+h) = f(a) + A \cdot h \implies Df(a) = A$$

Insbesondere verschwindet die Ableitung einer konstanten Funktion.

ii) $f: \mathbb{R}^n \to \mathbb{R}, f(x) = \langle x, B . x \rangle, \langle \cdot, \cdot \rangle$ euklidisches Skalarprodukt, $B \in \operatorname{Mat}(n \times n, \mathbb{R})$.

$$\begin{split} f(a+h) &= \langle a+h, B \mathrel{.} (a+h) \rangle \\ &= \langle a, B \mathrel{.} a \rangle + \langle h, B \mathrel{.} a \rangle + \langle a, B \mathrel{.} h \rangle + \langle h, B \mathrel{.} h \rangle \\ &= \langle a, B \mathrel{.} a \rangle + \left\langle (B+B^T) \mathrel{.} a, h \right\rangle + \langle h, Bh \rangle \mathrel{.} \\ &\overset{\uparrow}{\text{CHECK!}} \end{split}$$

Wegen (wähle $\|\cdot\| = \|\cdot\|_{E}$)

$$\frac{\langle a,Bh\rangle}{\|h\|} \underset{\text{C-S}}{\leqslant} \frac{\|h\|\cdot\|Bh\|}{\|h\|} \leqslant \|B\|_{\text{op}} \cdot \|h\| \to 0 \text{ für } h \to 0$$

folgt: f ist in allen $a \in \mathbb{R}^n$ differenzierbar und

$$Df(a) \cdot h = \left\langle (B + B^T) \cdot a, h \right\rangle = (b_1, \dots, b_n) \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

$$\implies Df(a) = b = ((B + B^T) \cdot a)^T \in \text{Mat}(1 \times n, \mathbb{R}) \quad \forall h \in \mathbb{R}^n.$$

Aus der Definition folgt sofort

Satz 3.2. Sei $f:U\to\mathbb{R}^m,\ U\subset\mathbb{R}^n$ offen, in $a\in U$ differenzierbar. Dann ist f in a stetig.

Beweis.

$$\lim_{h \to 0} f(a+h) = \lim_{h \to 0} (f(a) + Df(a) + \underline{R}_a(h))$$

$$= f(a) + 0 + 0$$

$$\uparrow \text{ Es gilt sogar } \underline{R}_a(h)/\|h\| \to 0$$

$$\|Df(a).h\| \leqslant \|Df(a)\|_{\text{op}}.\|h\|$$

$$\uparrow \text{ Norm in } \mathbb{R}^m \qquad \uparrow \text{ Norm in } \mathbb{R}^n$$

Satz 3.3 (Kettenregel). Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ offen, $g: U \to \mathbb{R}^m$, $f: V \to \mathbb{R}^k$, $g(U) \subset V$. Ist g in $a \in U$ differenzierbar und f in b = g(a), so ist die Verkettung $f \circ g: U \to \mathbb{R}^k$ in a differenzierbar und es gilt

$$D(f \circ g)(a) = \underbrace{Df(g(a))Dg(a)}_{\in \operatorname{Mat}(\stackrel{\uparrow}{k} \times m, \mathbb{R})} \stackrel{\uparrow}{\uparrow}_{\in \operatorname{Mat}(m \times n), \mathbb{R}}$$

Beweis.

$$g(a+u) = g(a) + A \cdot u + \underline{R}_a^g(u) \quad A = Dg(a) \tag{1}$$

$$f(b+v) = f(b) + B \cdot v + \underline{R}_b^f(v) \quad B = Df(b)$$
 (2)

Setze speziell
$$v := g(a+u) - g(a) \stackrel{(1)}{=} A \cdot u + \underline{R}_a^g(u)$$
.

$$\implies f \circ g(a+u) = f(g(a+u)) = f(g(a)+v) \qquad \qquad \text{Def } v$$

$$\stackrel{=}{=} f(g(a)) + B \cdot v + \underline{R}_b^f(v) \qquad \qquad b = g(a)$$

$$\stackrel{\uparrow}{=} f(g(a)) + B \cdot A \cdot u + \underbrace{B \cdot \underline{R}_a^g(u) + \underline{R}_b^f(A \cdot u + \underline{R}_a^g(u))}_{\text{zu zeigen: } \frac{\uparrow}{\|u\|} \to 0 \text{ für } u \to 0}$$

- $\frac{\underline{R}_a^g(u)}{\|u\|} \to 0 \implies \exists C > 0 \text{ s.d. } \|\underline{R}_a^g(n)\| \leqslant C\|n\|.$
- $\frac{\underline{R}_b^f(v)}{\|v\|} \to 0 \implies \exists \underline{r}_b^f \text{ s. d. } \underline{R}_b^f(v) = \|v\|\underline{r}_b^f(v) \text{mit } \underline{r}_b^f(v) \to 0 \ (v \to 0).$

$$\Rightarrow \underbrace{R_b^f(A \cdot u + \underline{R}_a^g(u))}_{\text{Norm in } \mathbb{R}^k} \leqslant \underbrace{A \cdot u + \underline{R}_a^g(u)}_{\text{Norm in } \mathbb{R}^k} \cdot \left\| \underbrace{r_b^f(\underline{Au + \underline{R}_a^g(u)})}_{\rightarrow 0 \text{ für } u \rightarrow 0} \right\|$$

$$\Rightarrow \underbrace{R_b^f(A \cdot u + \underline{R}_a^g(u))}_{\|u\|} \rightarrow 0 \quad (u \rightarrow 0).$$

Satz 3.4 (Produktregel, Quotientenregel). Seien $f, g: U \to \mathbb{R}, U \subset \mathbb{R}^n$ offen, differenzierbar in $a \in U$. Dann gilt

i) $f \cdot g$ ist differenzierbar in a und es gilt

$$D(f \cdot g)(a) = Df(a) \cdot g(a) + f(a) \cdot Dg(a).$$

ii) Ist $g(a) \neq 0$ so gilt: f/g ist auf einer Umgebung von a definiert und differenzierbar in a und es gilt

$$D(f/g)(a) = Df(a) \cdot \frac{1}{g(a)} - f(a) \cdot \frac{1}{g(a)^2} \cdot Dg(a).$$

Beweis. 3.4.i)

$$\begin{split} f(a+h) &= f(a) + Df(a) \cdot h + \underline{R}_a^f(h) \\ g(a+h) &= g(a) + Dg(a) \cdot h + \underline{R}_a^g(h) \\ f \cdot g(a+h) &= \left(f(a) + Df(a) \cdot h + \underline{R}_a^f(h) \right) (g(a) + Dg(a) \cdot h + \underline{R}_a^g(h)) \\ &= f(a) \cdot g(a) + \underbrace{\left(Df(a) \cdot g(a) \right) \cdot h + \underbrace{\left(f(a) \cdot Dg(a) \right) \cdot h}_{\in \operatorname{Mat}(1 \times n, \mathbb{R})} + \underbrace{\left(Df(a) \cdot h + \underline{R}_a^f(h) \right) (Dg(a) \cdot h + \underline{R}_a^g(h))}_{\parallel h \parallel} \cdot 0 \text{ für } h \to 0 \end{split}$$

3.4.ii) g ist in a stetig $\implies \exists$ Umgebung von a s. d. $g(x) \neq 0 \ \forall \ x \in U$ (wie in der Diff I: Sei o.B.d.A. g(a) > 0. Sei $\varepsilon := g(a)/2$. Sei $\|\cdot\|$ irgendeine Norm auf \mathbb{R}^n . Dann gibt es ein $\delta > 0$ s. d.

$$\begin{split} |g(x) - g(a)| &< \varepsilon \quad \forall \, x \in B_{\delta}^{\|\cdot\|}(a) \\ \Longrightarrow &- \frac{g(a)}{2} < g(x) - g(a) < \frac{g(a)}{2} \quad \forall \, x \in B_{\delta}^{\|\cdot\|}(a), \end{split}$$

also $0 < \frac{g(a)}{2} < g(x) < \frac{3}{2} \frac{g(a)}{2}$.) \Longrightarrow Auf U ist f/g wohldefiniert. Die Berechnung der Ableitung ist analog zu 3.4.i), nachdem man sich überlegt hat, dass

$$\frac{1}{g} = \text{Inv} \circ g, \quad \text{Inv}(t) = \frac{1}{t}$$

und somit nach der Kettenregel

$$D\left(\frac{1}{g}\right)(a) = D\operatorname{Inv}(g(a)) \cdot Dg(a)$$

und $DInv(t) = -\frac{1}{t^2}$ (Diff I).

Geometrische Anschauung, partielle Ableitung

Diff I: Ableitung beschreibt Rate der Veränderung. Höher-dimensional: Sei $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^n$. Betrachte den Graph $\Gamma_f = \{ (x, f(x)) \mid x \in U \}$ (vgl. die Diskussion bei 2.11.b))

Definition (Niveau-Mengen). Zu $c \in \mathbb{R}$ setze $N_f(c) := \{ x \in U \mid f(x) = c \}.$

Es gilt $N_f(c) = \emptyset$ für c < 2.

Beispiel. Entlang der Niveauflächen ist f konstant. Wie wird das in der Ableitung sichtbar?

Im Beispiel oben ist $Df(a)=(2a_1,2a_2)$ (check!). Sei $a=(r\cos\phi,r\sin\phi), r>0$. Betrachte f(a+h)=f(a)+Df(a). $h+\underline{R}_a(h)$. Ist $h=(-\varepsilon\sin\phi,\varepsilon\cos\phi), \varepsilon>0$ (in "Richtung" der Niveaumenge), so ist Df(a). h=0.

Ist dagegen $h = (\varepsilon \cos \phi, \varepsilon \sin \phi)$ (von der Niveaumenge weg), so ist Df(a). $h = 2r\varepsilon > 0$. Das wollen wir im Folgenden systematisch studieren.

Definition. Sei $f:U\to\mathbb{R}^m,\,U\subset\mathbb{R}^n$ offen, gegeben. Für $a\in U$ und $v\in\mathbb{R}^n$ heißt der Grenzwert (falls er existiert)

$$\partial_v f(a) := \lim_{\substack{t \to 0 \\ \text{in } \mathbb{R}^m}} \frac{f(a+tv) - f(a)}{t}$$

die Richtungsableitung von f in a in Richtung v.

Bemerkungen / Beispiele 3.5. i) $\partial_v f(a) = \frac{d}{dt}\Big|_{t=0} g_{a,v}(t) = g'_{a,v}(0), g_{a,v}(t) = f(a+tv).$

ii) $f = (f_1, \ldots, f_m)^T$, so gilt

$$\partial_v f(a) = (\partial_v f_1(a), \dots, \partial_v f_m(a))^T$$

iii) $f:(x_1,x_2)\mapsto x_1^2+x_2^2+2$. Sei $a=(r\cos\phi,r\sin\phi)$. Ist $v=(\varepsilon\cos\phi,\varepsilon\sin\phi)$, so ist

iv)

$$g_{a,v}(t) = ((r + \varepsilon t)\cos\phi)^2 + ((r + \varepsilon t)\sin\phi)^2 + 2$$

und somit $\partial_v f(a) = g'_{a,v}(0) = 2(r + \varepsilon \cdot 0)\varepsilon = 2r\varepsilon$.

Ist $v = (-\varepsilon \sin \phi, \varepsilon \cos \phi)$, so ist

$$g_{a,v}(t) = (r\cos\phi - \varepsilon t\sin\phi)^2 + (r\sin\phi + \varepsilon t\cos\phi)^2$$

und somit

$$\partial_v f(a) = g'_{a,v}(0) = 2(r\cos\phi - 0)(-\varepsilon\sin\phi) + 2(r\sin\phi + 0)(\varepsilon\cos\phi) = 0.$$

Das ist kein Zufall, denn es gilt

Satz 3.6. Sei $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$ offen, in $a \in U$ differenzierbar. Dann besitzt f die Richtungsableitungen

$$\partial_v f(a) = Df(a) \cdot v \quad \forall v \in \mathbb{R}^n$$

und Df(a) hat bezüglich der Standardbasis e_1, \ldots, e_n die Matrix Darstellung

$$\left(\partial_1 f \cdot \dots \cdot \partial_n f\right) = \begin{pmatrix} \partial_1 f_1(a) \cdot \dots \cdot \partial_n f_1(a) \\ \partial_1 f_2(a) \cdot \dots \cdot \partial_n f_2(a) \\ \vdots & \vdots \\ \partial_1 f_m(a) \cdot \dots \cdot \partial_n f_m(a) \end{pmatrix} \in \operatorname{Mat}(m \times n, \mathbb{R}),$$

"Jacobi-Matrix", wobe
i $\partial_j f(a) = \partial_{e_j} f(a) = Df(a)$. $e_j = j\text{-te}$ Spalte. Beweis. Für v = 0 sind beide Seiten $0 \checkmark$.

Für $v \neq 0$ betrachte

$$\begin{split} & \|(f(a+tv)-f(a))/_t - Df(a) \cdot v\|_{\sim \text{ (Norm auf }\mathbb{R}^m)} \\ &= \frac{1}{|t|} \|f(a+tv) - (f(a)+Df(a) \cdot (tv))\|_{\sim} \\ &= \frac{1}{\|t \cdot v\|} \|f(a+tv) - (f(a)+Df(a) \cdot (tv))\|_{\sim} \cdot \|v\|. \\ &\text{Homogenitat } \|\cdot\|_{\sim} \\ &\text{Norm auf }\mathbb{R}^n \end{split}$$

Differenzierbarkeit \implies strebt gegen 0 für $tv \to 0$, also für $t \to 0 \implies$ Die Richtungsableitungen existieren und

$$\partial_v f(a) = Df(a) \cdot v$$

und bezüglich der kanonischen Basen gilt

Achtung. Umgekehrt genügt die Existenz der Richtungsableitungen $\partial_1 f, \dots, \partial_n f$ nicht, um Differenzierbarkeit zu garantieren!

Beispiel.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

 $\partial_1 f(x,y) = \frac{d}{dt}\Big|_{t=0} f(x+t,y), \ \partial_2 f(x,y) = \frac{d}{dt}\Big|_{t=0} f(x,y+t).$ Wegen $f(x,0) = 0 \quad \forall x, f(0,y) = 0 \quad \forall y, \text{ ist } \partial_1 f(0,0) = 0 = \partial_2 f(0,0).$ Aber f ist in 0 nicht stetig (betrachte etwa (1/n, 1/n)), also nicht differenzierbar.

Vorlesung 7

Mo 11.05. 10:15

Beispiele und Erläuterungen

Wir hatten letztes Mal gesehen, dass, wenn $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$ offen, in $a \in U$ differenzierbar ist, dass dann die Ableitung mit Hilfe der partiellen Ableitungen, also der Richtungsableitungen in Richtung der kanonischen Basis geschrieben werden kann,

$$Df(a) = \begin{pmatrix} \partial_1 f_1 \cdots \partial_n f_1 \\ \vdots & \vdots \\ \partial_1 f_m \cdots \partial_n f_m \end{pmatrix},$$

dass aber die Existenz der partiellen Ableitungen nicht unbedingt Differenzierbarkeit garantiert.

Konkret kann man also so vorgehen: Man bestimmt die partiellen Ableitungen und überprüft dann, ob Differenzierbarkeit vorliegt.

Bemerkung 3.7. Berechnung von partiellen Ableitungen. Es gilt $\partial_j f(a) = g'_{a_o e_j}(0)$, wobei

$$g_{a_i e_j}(t) = f(a + t e_j) = f(a_1 \dots, a_j + t, \dots, a_n)$$
 $t \in (-\nu, \varepsilon)$
s. d. $a + t e_j$ noch im Definitionsbereich von f liegt.

 \implies Um $\partial_j f(a)$ zu berechnen, kann man die gewöhnlichen Ableitungen bezüglich der j-ten Koordinate bestimmen (und steht stellt sich die Übrigen als Konstanten vor).

Beispiele 3.8. i)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x) = x_1^2 + x_2^2 + 2.$$

$$\partial_1 f(a) = 2a_1$$
 $\partial_2 f(a) = 2a_2$

f ist in der Tat differenzierbar in allen $a \in \mathbb{R}^2$, denn

$$f(a+h) = (a_1 + h_1)^2 + (a_2 + h_2)^2 + 2$$
$$= f(a) + A \cdot h + \underbrace{\|h\|_{E}^2}_{R_a(h)}.$$

mit
$$A = \begin{pmatrix} 2a_1 & 2a_2 \end{pmatrix}$$
 und

$$\frac{R_a(h)}{\|h\|} \leqslant C\|h\| \to 0.$$

ii) $f \colon \mathbb{R}^n \to \mathbb{R}, \, n \geqslant 2, \, f(x) = \|x\|_{\mathcal{E}} = \sqrt{\sum_{i=1}^n x_i^2}.$

 $a \neq 0$ Mittels Kettenregel aus Diff I:

$$\partial_j f(a) = \frac{1}{2} \frac{1}{\|x\|_{\mathcal{E}}} \cdot 2x_j \bigg|_{x=a} = \frac{a_j}{\|a\|_{\mathcal{E}}}$$

a = 0

$$\partial_j f(0) = \frac{df(0, \dots, \underset{j-\text{te}}{t}, \dots, 0)}{dt} = \frac{d}{dt} \Big|_{t=0} |t|.$$

 \implies Die partiellen Ableitungen in a=0 existieren nicht (Diff I: Für $h\in\mathbb{R}$ ist $|h|-0/h=\pm 1\not\to 0$ für $h\searrow 0$ bzw. $h\nearrow$). $\implies f$ ist nicht differenzierbar in a=0.

Für $a \neq 0$ gilt jedoch: $\sqrt{\cdot} : \mathbb{R}_{>0} \to \mathbb{R}$ ist differenzierbar (Diff I) und ebenso die polynomiale Funktion $x \mapsto \sum_{i=1}^n x_i^2 \implies f$ ist differenzierbar auf $\mathbb{R}^n \setminus \{ \ 0 \ \}$.

Wir hätten Df(a), $a \neq 0$ auch mit der höherdimensionalen Kettenregel bestimmen können:

$$Df(a) = Dw(p(a)) \cdot Dp(a) = \frac{1}{2\sqrt{p(a)}} \cdot \left(2a_1 \cdot \dots \cdot 2a_n\right)$$
$$w \colon \mathbb{R}_{>0} \to \mathbb{R}, \ w(t) = \sqrt{t}, \ p(a) = \sum_{i=1}^n a_i^2.$$

iii) Eine weitere Anwendung der Kettenregel. Betrachte die "Polarkoordinaten"

$$g: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}^2$$

$$g(r, \phi) = (r \cos \phi, r \sin \phi)^T$$

und $f: \mathbb{R}^2 \to \mathbb{R}$.

$$D(f \circ g)(r, \phi) = Df(g(r, \phi)) \cdot Dg(r, \phi)$$

$$Dg(r, \phi) = \begin{pmatrix} \partial_1 g(r, \phi) & \partial_2 g(r, \phi) \end{pmatrix} = \begin{pmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi \end{pmatrix}.$$

Somit

$$D(f \circ g)(r, \phi) = \begin{pmatrix} \partial_1 f(g(r, \phi)) & \partial_2 f(g(r, \phi)) \end{pmatrix} \cdot \begin{pmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi \end{pmatrix}$$
$$= \begin{pmatrix} \partial_1 f(g(r, \phi)) \cdot \cos \phi + \partial_2 (f(g(r, \phi))) \cdot \sin \phi \\ -\partial_1 f(g(r, \phi)) \cdot r \sin \phi + \partial_2 f(g(r, \phi)) \cdot r \cos \phi \end{pmatrix}^T.$$

Man schreibt dafür manchmal

$$\partial_r = \cos\phi \partial_x + \sin\phi \partial_y$$
$$\partial_\phi = -r\sin\phi \partial_x + r\cos\phi \partial_y.$$

Aber oft ist es viel übersichtlicher, die partiellen Ableitungen nicht nach den Namen der Variablen zu benennen, sondern durchzunummerieren!

Beispiel.
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 auf $U = \mathbb{R}^2 \setminus \{0\}$.

$$Df(x,y) = \begin{pmatrix} \frac{y(y^2) - x^2}{(x^2 + y^2)} \\ \frac{x(x^2 - y^2)}{(x^2 + y^2)} \end{pmatrix}$$

$$D(f \circ g)(r,\phi) = \frac{1}{r}(\cos^2 \phi - \sin^2 \phi) \begin{pmatrix} \frac{=0}{-\sin \phi \cos \phi + \cos \phi \sin \phi} \\ \frac{r \sin^2 \phi + r \cos^2 \phi}{=r} \end{pmatrix}$$

$$= (0,\cos^2 \phi - \sin^2 \phi).$$

In diesem Fall rechnet man allerdings schneller direkt:

$$D(f \circ q)(r, \phi) = D\tilde{f}(r, \phi) = \cos \phi \cdot \sin \phi.$$

Bemerkung / Definition 3.9. Wir hatten allgemeiner gesehen: Ist $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$ offen, differenzierbar in a, so gilt

$$\partial_x f(a) \cdot Df(a) \cdot v \quad \forall v \in \mathbb{R}^n$$

Ist speziell m=1, so definiert man

$$\operatorname{grad} f(a) := Df(a)^T = \begin{pmatrix} \partial_1 f(a) \\ \vdots \\ \partial_n f(a) \end{pmatrix} \in \mathbb{R}^n$$

"Gradient von f in a", und schreibt $\partial_v f(a) = \langle \operatorname{grad} f(a), v \rangle$.

Ist grad $f(a) \neq 0$ und $||v||_{\mathcal{E}} = 1$, so ist

$$\langle \operatorname{grad} f(a), v \rangle = \| \operatorname{grad} f(a) \|_{\mathcal{E}} \cdot \cos \alpha,$$

wobei α der zwischen grad f(a) und v in \mathbb{R}^n eingeschlossene Winkel ist (in der durch die beiden Vektoren aufgespannten Ebene).

Es folgt: $\partial_v f(a)$ ist dann am größten, wenn v in die selbe Richtung zeigt wei grad f(a) \implies der Gradient gibt die Richtung stärksten Anstiegs von f in a an.

Beispiel. $f(x) = x_1^2 + x_2^2 + 2$.

Beispiel. $f(x) = x^2$.

Ist f lediglich partiell differenzierbar, d. h. die partiellen Ableitungen existieren auf U, so definiert man dennoch

$$\operatorname{grad} f(x) = (\partial_1 f(x), \dots, \partial_n f(x))^T$$

als den Vektor der partiellen Ableitungen bei x.

Satz 3.10. Sei $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^n$ offen, partiell differenzierbar auf U. Sei $a \in U$ ein lokales Maximum (oder Minimum) von f, d. h. \exists Umgebung V von a s. d. $f(x) \leq (a)$ (oder $f(x) \geq f(a)$ für alle $x \in V$). Dann gilt

$$grad f(a) = 0$$

Beweis. Betrachte $g_i(t) := f(a + te_i), i = 1, ..., n$, mit $t \in (-\varepsilon, \varepsilon)$ s. d. $B_{\varepsilon}^{\|\cdot\|}(a) \subset U$.

Ist a lokales Extremum (also lokales Maximum oder Minimum) von f, so ist t = 0 lokales Extremum von g_i . Die g_i sind in t = 0 differenzierbar, denn

$$g_i'(0) = \partial_i f(a)$$
 (Definition Richtungsableitung)

Diff I
$$\implies g_i'(0) = 0 \implies \text{Beh.}$$

Beispiele. i) $f(x) = x_1^2 + x_2^2 + 2$. Außer in a = 0 kann kein Extremum vorliegen.

ii)
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$
. $\partial_1 f(0) = 0 = \partial_2 f(0)$, also könnte 0 ein Extremum sein. Ist es aber nicht, da für $x = y = \varepsilon > 0$ gilt $f(\varepsilon, \varepsilon) = \frac{1}{2} > 0$ und für $-x = y = \varepsilon > 0$. $f(-\varepsilon, \varepsilon) = -\frac{1}{2} < 0$.

Bemerkung. Hinreichende Kriterien für das Vorliegen lokaler Extremstellen werden wir erst später kennen lernen. Wie in der Diff I benötigen wir dafür die 2. Ableitung.

Satz 3.11. Sei $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^n$ offen. Existieren alle partiellen Ableitungen $\partial_j f(x)$ für alle $x \in U$, und sind sie stetig in $a \in U$, so ist f in a differenzierbar.

Beweis. Wir wählen ein Norm $\|\cdot\|$ auf \mathbb{R}^n . U offen $\implies \exists \ \delta > 0$ s. d. $B_{\delta}^{\|\cdot\|}(a) \subset U$. Sei $h \in B_{\delta}^{\|\cdot\|}(0)$, also $a+h \in B_{\delta}^{\|\cdot\|}(a)$. Setze

$$x^{(j)} := a + \sum_{i=1}^{j} h_i e_i \in \mathbb{R}^n \quad j = 0, \dots, n,$$

also $x^{(0)} = a$, $x^{(1)} = (a_1 + h_1, a_2, \dots, a_n), \dots, x^{(n)} = a + h$. Es ist $x^{(j)} - x^{(j-1)} = (0, \dots, 0, h_j, 0, \dots, 0) \Longrightarrow (MWS, Diff I) \exists \eta_j \in [0, 1] \text{ s.d.}$

$$f(x) = \partial_j f(\underbrace{x_1^{(j-1)}, \dots, x_{j-1}^{(j-1)}, x_j^{(j-1)} + \eta_j h_j, a_{j+1}, \dots, a_n}) \cdot h_j$$

$$\Longrightarrow f(a+h) - f(a) = \sum_{j=1}^n (f(x^{(j)}) - f(x^{(j-1)}))$$

$$= \sum_{j=1}^n \partial_j f(y^{(j)}) h_j$$

$$\stackrel{!}{=} \left(\partial_1 f(a) \cdot \dots \cdot \partial_n f(a)\right) \begin{pmatrix} h_1 \\ \vdots \\ h_j \end{pmatrix} + \underline{R}_a(h)$$

also ist

$$\underline{R}_{a}(h) = \sum_{j=1}^{n} (\partial_{j} f(y^{(j)}) - A_{j}) h_{j} \quad A = \partial_{j} f(a)$$

$$\overset{\text{CS}}{\Longrightarrow} \frac{|\underline{R}_{a}(h)|}{\|h\|} \leqslant C \|(\partial_{1} f(y^{(1)}) - A_{1}, \dots, \partial_{n} f(y^{(n)}) - A_{n})\|_{E} \to 0 \quad h \to 0,$$

denn $\lim_{h\to 0} y^{(j)} = \lim_{h\to 0} x^{(j-1)} + \eta_j h_j e_j = a$ (in \mathbb{R}^n) und die $\partial_j f$ sind in a stetig nach Voraussetzung, s. d.

$$\lim_{h \to 0} \partial_j f(y^{(j)}) = (\partial_j f)(\lim y^{(j)}) = \partial_j f(a).$$

- **Bemerkungen 3.12.** i) Man sieht: Sind die ∂_j auf U stetig, so ist auch die Ableitung $x \mapsto Df(x)$ eine stetige Abbildung $U \to \operatorname{Mat}(m \times n, \mathbb{R})$. Man sagt in dem Fall: f ist stetig differenzierbar.
 - ii) Die Einschränkung auf reellwertige Funktionen ist keine, denn: $f: U \to \mathbb{R}^m$ ist genau dann in $a \in U \subset \mathbb{R}^n$ differenzierbar, wenn alle Komponentenfunktionen $f_j: U \to \mathbb{R}$ differenzierbar sind (j = 1, ..., m)-

Beweis. 3.12.ii)
$$f(a+h) = f(a) + A \cdot h + \underline{R}(h), A_{ji} = \partial_j f_j(a)$$

 $\iff f_j(a+h) = f_j(a) + \left(\partial_1 f_j(a) \cdot \dots \cdot \partial_n f_j(a)\right) \cdot h + \underline{R}_j(h) \quad \forall j = 1, \dots, m$

und

$$\frac{\underline{R}(h)}{\|h\|} \to 0 \text{ in } \mathbb{R}^m \iff \frac{\|\underline{R}(h)\|_{\max}}{\|h\|} \to 0 \iff \frac{|R|_j(h)}{\|h\|} \to 0 \quad j = 1, \dots, m.$$

3.12.i) Dito: $U \to \operatorname{Mat}(m \times n, \mathbb{R})$ ist stetig \iff alle Komponentenfunktionen $A_{ij} : U \to \mathbb{R}$ sind stetig.

Bemerkung. Stetig differenzierbar \implies differenzierbar \implies partiell differenzierbar. Die Umkehrungen sind im Allgemeinen falsch.

Bemerkung (Erinnerung (Diff I) MWS). $f: I \to \mathbb{R}$ differenzierbar, I Intervall, $\exists \epsilon \in [0, 1] \text{ s. d.}$

$$f(a+h) - f(a) = f'(a+\eta h) \cdot h.$$

Ist f stetig differenzierbar, folgt aus dem Hauptsatz der Differenzial- und Integralrechnung eine andere Variante:

$$f(a+h) - f(a) = \int_{a}^{a+h} f'(u) \, du = \int_{0}^{1} f'(a+th) \, dt \cdot h.$$

Eine analoge Aussage wollen wir nun im \mathbb{R}^n beweisen.

Definition. Sei $A: I \to \mathbb{R}^k, I \subset \mathbb{R}$ Intervall, stetig. Dann ist das *Integral von A* über $[a,b] \in I$ definiert als

$$\int_{a}^{b} A(t) dt = \begin{pmatrix} \int_{a}^{b} A_{1}(t) dt \\ \vdots \\ \int_{a}^{b} A_{k}(t) dt \end{pmatrix}.$$

Insbesondere ist das Integral einer matrixwertigen, stetigen Funktion $A\colon I\to \mathrm{Mat}(m\times n,\mathbb{R})$ die Matrix, deren Einträge gleich den Integralen der Komponenten von A(t) ist, also

$$\int_{a}^{b} A(t) dt = \left(\int_{a}^{b} A_{ij}(t) dt \right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}.$$

Satz 3.13. Sei $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$, stetig differenzierbar. Sei $a \in U$ und $h \in \mathbb{R}^n$ s.d. die Verbindungsstrecke

$$\{\ a+th\mid t\in [0,1]\ \}\subset U.$$

Dann gilt:

$$f(a+h) - f(a) = \left(\int_0^1 Df(a+th) dt\right) \cdot h.$$

Beweis. Wir arbeiten zeilenweise, betrachten also die Komponentenfunktionen. Setze $g_i(t) := f_i(a+th)$. Dann ist g_i stetig differenzierbar, denn mit der Kettenregel gilt $g'_i(t) = Df_i(a+th)$. h.

$$\begin{split} f_i(a+h) - f_i(a) &= g_i(1) - g_i(0) \\ &= \int_0^1 g_i'(t) \, dt \\ &= \int_0^1 Df_i(a+th) \cdot h \, dt \\ &= \underbrace{\left(\int_0^1 Df_i(a+th) \, dt\right)}_{\text{linear} \quad (1\times n)\text{-Matrix}} .h \quad 1 \leqslant i \leqslant m. \end{split}$$

Dies sind die Zeilen der Matrix $\int_0^1 Df(a+th) dt$.

Folgerung 3.14. Unter den Voraussetzungen von 3.13 gilt $||f(x+h) - f(x)||_{\mathcal{E}} \leq C||h||$ mit

$$C = \sup_{t \in [0,1]} \|Df(x+th)\|_{\text{op}}.$$

Der Beweis benötigt noch ein Lemma:

Lemma 3.15. Sei $v: [a, b] \to \mathbb{R}^m$ stetig. Dann gilt

$$\left\| \int_a^b v(t) dt \right\|_{\mathcal{E}} \leqslant \int_a^b \|v(t)\|_{\mathcal{E}} dt.$$

Beweis. Sei $\mathbb{R}^m\ni u=\int_a^b v(t)\,dt.$ Dann gilt

$$\begin{split} \|n\|_{\mathrm{E}}^2 &= \langle u, u \rangle \\ &= \left\langle \int_a^b v(t) \, dt, u \right\rangle \\ &= \int_a^b \left\langle v(t), u \right\rangle \, dt \\ &\uparrow \int_a^b \|v(t)\|_{\mathrm{E}} \|u\|_{\mathrm{E}} \, dt \\ &\text{Monotonie und C-S} \\ &= \|u\|_{\mathrm{E}} \int_a^b \|v(t)\|_{\mathrm{E}} \, dt. \end{split}$$

Bemerkungen. i) Wegen der Äquivalenz aller Normen auf \mathbb{R}^n gilt diese Abschätzung ebenso wie Folgerung 3.14 auch für beliebige Normen auf \mathbb{R}^n :

$$\left\| \int v(t) dt \right\| \leqslant C_1 \left\| \int v(t) dt \right\|_{\mathcal{E}}$$
$$\leqslant C_1 \int \|v(t)\|_{\mathcal{E}} dt$$
$$\leqslant C_1 C_2 \int \|v(t)\| dt.$$

ii) Es folgt, dass für

$$X=(C([a,b],\mathbb{R}^k),\|\cdot\|_\infty),$$
 sup $\|v(t)\|<\infty,$ da $[a,b]$ kompakt und v stetig.

 $\int_a^b \colon X \to \mathbb{R}^k$ stetig ist, denn \int_a^b ist linear und

$$\begin{split} \left\| \int_a^b \right\|_{\text{op}} &= \sup_{0 \neq v \in C} \left\| \int_a^b v(t) \, dt \right\| / \|v\|_{\infty} \\ &\leqslant C \sup_{v \neq 0} \left\| \int_a^b v(t) \, dt \right\|_{\text{E}} / \|v\|_{\infty} \\ &\leqslant C \sup_{v \neq 0} \int_a^b \|v(t)\|_{\text{E}} \, dt / \|v\|_{\infty} \\ &\leqslant \tilde{C}(b-a), \end{split}$$

denn $||v(t)||_{\mathcal{E}} \leqslant \sup_t ||v(t)||_{\mathcal{E}} \leqslant C_0 \sup_t ||v(t)|| = C_0 ||v||_{\infty}$.

Beweis von Folgerung 3.14.

$$||f(x+h) - f(x)||_{\mathcal{E}} \leqslant \int_{0}^{1} ||Df(x+th) \cdot h||_{\mathcal{E}} dt$$

$$\leqslant \int_{0}^{1} ||Df(x+th)||_{\mathcal{O}} \cdot ||h||_{\mathcal{E}} dt.$$

Das Supremum wird angenommen, da $t\mapsto \|Df(x+th)\|_{\text{op}}$ stetig ist und [0,1] kompakt.

Implizite Funktionen

Eine Anwendung der Kettenregel

Manchmal ist es einfacher, eine 1-dimensionale Ableitung über eine Ableitung einer höherdimensionalen Funktion zu berechnen. Betrachte etwa zwei differenzierbare Funktionen $f: U \to \mathbb{R}, \ U \subset \mathbb{R}^2$ offen, und $g: I \to \mathbb{R}$. Sei $\Gamma_g \subset U$ und es gelte

$$f(\underbrace{t,g(t)}) = 0 \quad \forall \, t \in I.$$

Dann gilt (Kettenregel!) (mit Id(t) = t):

$$0 = D\left(f \circ \begin{pmatrix} \operatorname{Id} \\ g \end{pmatrix}\right)(t)$$

$$= Df\left((t, g(t))\right) \cdot D\begin{pmatrix} \operatorname{Id} \\ g \end{pmatrix}(t)$$

$$= \left(\partial_1 f(t, g(t)) \quad \partial_2 f(t, g(t))\right) \cdot \begin{pmatrix} 1 \\ g'(t) \end{pmatrix}$$

 \implies Ist $\partial_2 f(t, g(t)) \neq 0$, so gilt

$$g'(t) = -\frac{\partial_1 f(t, g(t))}{\partial_2 g(t, g(t))}.$$

Beispiel. $g:(0,1)\to\mathbb{R}, g(t)=\arcsin\sqrt{1-t^3}$, also $\sin(g(t))=\sqrt{1-t^3}$, also $(\sin(g(t)))^2=1-t^3$. Also gilt f(t,g(t))=0 für

$$f(x,y) = (\sin y)^2 - 1 + x^3$$

$$Df(x,y) = (3x^2, 2\sin y\cos y)$$

$$\implies g'(t) = -\frac{3t^2}{2\sin(g(t))\underbrace{\cos(g(t))}_{>0,}}$$

$$\begin{aligned} & \text{da } t \in (0,1) \text{ und } \sqrt{1-t^3} \in (0,1), \text{ somit } g(t) \in (0,\pi/2) \implies \cos g(t) = + \sqrt{1-\underbrace{\sin^2 g(t)}_{1-t^3}} = \\ & \sqrt{t^3} \\ & = -\frac{3t^2}{2\sqrt{1-t^3}\sqrt{t^3}}. \end{aligned}$$

Vorlesung 8

Do 14.05. 10:15

Satz 3.16. Sei $f: B_{r_1}^{\|\cdot\|}(a) \times B_{r_2}^{\|\cdot\|}(b) \to \mathbb{R}^m$ eine Abbildung mit f(a,b) = 0, die in (a,b)

differenzierbar sei. Sei zudem $D_2 f(a, b)$, definiert über

$$Df(a,b) = \underbrace{(\partial_1 f(a,b) \cdots \partial_k f(a,b)}_{=:D_1 f(a,b) \in \operatorname{Mat}(m \times k)} \underbrace{\partial_{k+1} f(a,b) \cdots \partial_{k+m} f(a,b)}_{=:D_2 f(a,b) \in \operatorname{Mat}(m \times m)},$$

invertierbar. Sei zudem $g: B_{r_1}(a) \to \mathbb{R}^m$ stetig und gelte $g(B_{r_1}(a)) \subset B_{r_2}(b)$ und g(a) = b und $f(x, g(x)) = 0 \ \forall \ x \in B_{r_1}(a)$. Dann ist g in a differenzierbar und es gilt

$$Dg(a) = -(D_2f(a,b))^{-1}D_1f(a,b) \in Mat(m \times k, \mathbb{R}).$$

Beweis. Es gilt für $h = (h_1, h_2) \in B_{r_1}(0) \times B_{r_2}(0)$

$$f(\underbrace{(a,b)+h}_{=(a+h_1,b+h_2)}) = 0 + D_1 f(a,b) \cdot h_1 + D_2 f(a,b) \cdot h_2 + \underline{R}_{(a,b)}(h)$$

mit
$$\frac{R_{(a,b)}(h)}{\|h\|} \to 0 \ \forall \ x \in B_{r_1}(a)$$
 folgt

$$0 = f(\underbrace{a + h_1}, g(a + h_1)) = D_1 f(a, b) \cdot h_1$$

$$+ D_2 f(a, b) \cdot (g(a + h_1) - b)$$

$$+ \underline{R}_{(a,b)}(h_1, g(a + h_1) - b) \quad \forall h_1 \in B_{r_1}(0).$$

Also

$$g(a+h_1) = g(a) - D_2 f(a,b)^{-1} \cdot D_1 f(a,b) \cdot h_1$$

$$\underbrace{-D_2 f(a,b)^{-1} \cdot \underline{R}_{(a,b)} (h_1, g(a+h_1) - b)}_{=:R_{a,b}^g(h_1)} \quad \forall h_1 \in B_{r_1}(0).$$

Wir sind fertig, wenn wir zeigen können, dass

$$\frac{\tilde{R}_{a,b}^g(h_1)}{\|h_1\|} \to 0 \text{ für } h_1 \to 0.$$

Wegen der Differenzierbarkeit von f in $(a, b) \exists \tilde{C}$ und $\delta_1, \delta_2 > 0$, $\delta_i < r_i$, s. d.

$$\|\underline{R}_{(a,b)}(h_1,h_2)\| \le \tilde{C}(\|h_1\| + \|h_2\|) \quad \forall h_1 \in B_{\delta_1}(0), h_2 \in B_{\delta_2}(0),$$

also

$$\left\| \underline{R}_{(a,b)}(h_1, g(a+h_1) - b) \right\| \le \tilde{C}(\|h_1\| + \|g(a+h_1) - b\|)$$

für alle h_1 s. d. $||h_1|| < \delta_1$ und $||g(a+h_1) - b|| < \delta_2$. Wegen der Stetigkeit von g in a gibt

es
$$\delta > 0, \delta < \delta_1$$
, $\left\| g(a+h_1) - \underbrace{g(a)}_{=h} \right\| < \delta_2$ für alle $h_1 \in B_{\delta}(0)$.

Bemerkungen. i) Ist f, g wie in Satz 3.16 und f überall stetig differenzierbar. Ist dann $D_2f(a,b)$ invertierbar. So gibt es eine Umgebung $V_1 \times V_2$ von (a,b) s.d. $D_2f(x,y)$ invertierbar ist für alle $(x,y) \in V_1 \times V_2$ (denn $(x,y) \mapsto \text{Def}.D_2f(x,y)$ ist stetig, da si ein Polynom stetiger Funktionen ist und $\text{Def}.D_2f(a,b) \neq 0$).

ii) Das Beispiel vom letzten Mal ist genau von diesem Typ.

Umgekehrt kann man eine Funktion g wie oben durch "Auflösen der Gleichung f(x, g(x)) = 0" bestimmen (unter gewissen Voraussetzungen):

Satz 3.17 (Satz von der impliziten Funktion). Seien $U_1 \subset \mathbb{R}^k$, $U_2 \subset \mathbb{R}^m$ offen und $f \colon U_1 \times U_2 \to \mathbb{R}^m$ stetig differenzierbar. Sei $(a,b) \in U_1 \times U_2$ s. d. f(a,b) = 0 und $D_2 f(a,b) \in \operatorname{Mat}(m \times m, \mathbb{R})$ invertierbar. Dann gibt es offene Umgebungen $V_1 \subset U_1$, $V_2 \subset U_2$ von a bzw. b und eine stetige Funktion $g \colon V_1 \to \mathbb{R}^m$, $g(V_1) \subset V_2$, s. d. f(x,g(x)) = 0 $\forall x \in V_1$. Ist $(x,y) \in V_1 \times V_2$ s. d. f(x,y) = 0, so ist y = g(x).

Bemerkungen. i) Aus 3.16 und der folgenden Bemerkung folgt, dass g in einer eventuell verkleinerten Umgebung $\tilde{V}_1 \subset V_1$ von a sogar stetig differenzierbar ist und gilt

$$Dg(x) = -D_2 f(x, g(x))^{-1} \cdot D_1 f(x, g(x)) \quad \forall x \in \tilde{V}_1$$

ii) Für den Satz ist wichtig, dass $U_1 \times U_2$ gegebenenfalls verkleinert wird:

 $\Gamma_q = \{ (x, g(x)) \mid x \in V_1 \},\$

Betrachtete man auch den oberen Teil der Kurve,
könnte man x nicht ein eindeutiges y zuordnen.

- iii) Die Einschränkung auf Definitionsbeiche der Form $U_1 \times U_2$ ist keine, sie vereinfacht nur die Notation. Ist f auf $U \subset \mathbb{R}^{k+m}$ offen, findet man stets $U_1 \subset \mathbb{R}^k$, $U_2 \subset \mathbb{R}^m$ s. d. $U_1 \times U_2 \subset U$.
- iv) Die Einschränkung auf $N_f(0)$ ist keine: Will man etwa die Gleichung f(x,y) = c auflösen, wendet man des Satz auf \tilde{f} an mit $\tilde{f}(x,y) = f(x,y) c$.
- v) Durch Umnummerierung kann man auch andere $m \times m$ -Untermatrizen von Df betrachten als die letzten m.
- vi) Unter den Voraussetzungen von 3.17 sagt man: g ist durch f(x,y) = 0 implizit gegeben und man löst f(x,y) = 0 nach y auf.

Beispiele. i) $f(x,y) = 3y - x^2 + 1$ auf \mathbb{R}^2 . $Df(a,b) = \begin{pmatrix} -2a & 3 \end{pmatrix}, 3 \neq 0$ ist invertierbar, $3.17 \implies \exists \ g \colon I \to \mathbb{R} \text{ s. d. } f(x,g(x)) = 0 \forall \ x \in I.$ In diesem Fall sogar $I = \mathbb{R}$: $g(x) = \frac{1}{3}(x^2 - 1).$

ii) $f(x,y) = 3x - y^2 + 1$ auf \mathbb{R}^2 . $Df(a,b) = \begin{pmatrix} 3 & -2b \end{pmatrix}$. $3.17 \implies \text{Zu } b \neq 0$ gibt es $g \colon I \to \mathbb{R}. \ b > 0 \colon g(x) = +\sqrt{3x+1}, \ x > -\frac{1}{3}. \ b < 0 \colon g(x) = -\sqrt{3x+1}.$

$$f(x, g(x)) = 0$$

Beweis von Satz 3.17. Setze $B := D_2 f(a, b)$ und definiere eine Abbildung $h: U_1 \times U_2 \to \mathbb{R}^m$ vermöge

$$h(x,y) = y - b - B^{-1}f(x,y).$$

Dann gilt

$$D_2h(x,y) = 1 - B^{-1}D_2f(x,y).$$

 $\implies D_2h(a,b)=0 \implies \text{(da alle Ableitungen stetig sind)} \ \exists \ W_1\subset U_1,\ W_2\subset U_2 \text{ offene Umgebungen von } a \text{ bzw. } b \text{ s. d.}$

$$||D_2h(x,y)|| \le \frac{1}{2} \quad \forall x \in W_1, \ y \in W_2.$$
 (*)

Wähle r > 0 s. d. $V_2 := B_r^{\|\cdot\|}(b) \subset W_2$. Es ist $h(a,b) = 0 \implies (\text{da } h \text{ differenzierbar ist und somit auch stetig}) <math>\exists$ offene Umgebung $V_1 \subset W_1$ von a s. d.

$$\varepsilon \coloneqq \sup_{x \in V_1} \|h(x, b)\| < \frac{r}{2} \tag{**}$$

(auf einem Kompaktum $\subset W_1$ um a ist $x \mapsto h(x,b)$ beschränkt und wird auf einem hinreichend kleinen Kompaktum beliebig klein. Um V_1 offen zu erhalten, nehmen wir das Innere eines solchen Kompaktums).

Wir zeigen jetzt: Zu jedem $x \in V_1$ gibt es höchstens ein $y \in V_2$ s. d. f(x,y) = 0 also s. d. h(x,y) = y - b.

Sei also $x \in V_1$ und seien y_1 und y_2 s.d. $h(x, y_1) = y_1 - b$ und $h(x, y_2) = y_2 - b$.

$$\Longrightarrow y_1 - y_2 = h(x, y_1) - h(x, y_2)$$

$$\Longrightarrow \|y_1 - y_2\| = \|h(x, y_1) - h(x, y_2)\|$$

$$\Longrightarrow \|D_2 h(x, \zeta)\| \cdot \|y_1 - y_2\|$$

$$\zeta \text{ auf der Verbindungsstrecke zw. } y_1 \text{ und } y_2 \text{ (liegt in } V_2 = B_r(b))$$

$$\leqslant \frac{1}{2} ||y_1 - y_2||$$

$$\implies ||y_1 - y_2|| = 0 \implies y_1 = y_2.$$

1) 2) Wir zeigen nun die Existent einer Funktion g wie im Satz behauptet. Setze dazu $g_0(x) = b$ und definiere rekursiv für $x \in V_1$:

$$g_{i+1}(x) := b + h(x, g_i(x)).$$

a) Es gilt

$$\|g_{j+1} - g_j\|_{\infty, V_1} \leqslant 2^{-j} \varepsilon.$$
aus (**)

Induktionsanfang:

$$||g_1 - g_0||_{\infty, V_1} = ||h(x, b)||_{\infty, V_1} = \varepsilon.$$

Induktionsschritt: Sei die Behauptung für $i \leq n$ bewiesen.

$$g_{n+2}(x) - g_{n+1}(x) = h(x, g_{n+1}(x)) - h(x, g_n(x)).$$

$$\underset{\text{MWS und (*)}}{\Longrightarrow} ||g_{n+2} - g_{n+1}||_{\infty, V_1} \leqslant \frac{1}{2} ||g_{n+1} - g_n||_{\infty, V_1}.$$

Bemerkung. Der MWS darf tatsächlich angewendet werden. $g_{n+1}(x), g_n(x)$ und somit auch die Verbindungsstrecke zwischen ihnen liegen in V_2 , denn nach Induktionsvoraussetzung gilt für alle $j \leq n$

$$||g_{j+1} - b||_{\infty, V_1} \le \sum_{i=0}^{j} ||g_{i+1} - g_i|| \le 2\varepsilon < r$$

(da $g_{j+1} - b = \sum_{i=0}^{j} (g_{i+1} - g_i)$ ist). Somit darf der MWS auf

$$h(x, g_{n+1}(x)) - h(x, g_n(x))$$

angewendet werden.

b) Es folgt $||g_n - b||_{\infty, V_1} < r$ und somit $g_n(V_1) \subset V_2$. Denn

$$g_n = \sum_{j=0}^{n-1} (g_{j+1} - g_j) + b \quad \text{(Teleskopsumme)} \implies \|g_n - b\|_{\infty, V_1} \leqslant \sum_{j=0}^{n-1} 2^{-j} \varepsilon \leqslant 2\varepsilon < r.$$

c) Zudem gilt: $\left\|\sum_{j=0}^{\infty}(g_{j+1}-g_j)\right\|_{\infty,V_1}$ hat die Majorante $\sum_{j=0}^{\infty}2^{-j}\varepsilon$. \Longrightarrow Die Reihe konvergiert gleichmäßig auf V_1 \Longrightarrow (Diff I)

$$g := \lim_{n \to \infty} g_n = \sum_{j=0}^{\infty} (g_{j+1} - g_j) + b$$

ist stetig auf V_1 und

$$||g - b||_{\infty, V_1} \leq 2\varepsilon < r,$$

also $g(V_1) \subset V_2$.

Aus der Definition folgt durch Grenzübergang auf beiden Seiten (h ist stetig)

$$g(x) = b + h(x, g(x)) \quad \forall x \in V_1,$$

also $g(x) = g(x) - B^{-1}f(x, g(x))$, also

$$f(x, q(x)) = 0 \quad \forall x \in V_1.$$

Folgerung. Sei $f: U \to \mathbb{R}$, $U \subset \mathbb{R}^2$ offen, stetig differenzierbar und si $(a,b) \in U$, f(a,b) = c und grad $f(a,b) \neq 0$. Dann kann man in Stück der Höhenlinie $N_f(c)$ als Graph einer FUnktion beschreiben. Denn sei $\partial_2 f(a,b) \neq 0$, Satz 3.17, angewandt auf f(x,y) = f(x,y) - c, impliziert:

 \exists Intervalle $I_1, I_2, a \in I_1, b \in I_2, I_1 \times I_2 \subset U$ und eine stetig differenzierbare Funktion (Bemerkung 3.17.i)) $g: I_1 \to \mathbb{R}$, mit $g(I_1) \subset I_2$ und

$$N_f(c) \cap I_1 \times I_2 = \left\{ (x, y) \in I_1 \times I_2 \mid \tilde{f}(x, y) = 0 \right\} = \left\{ (x, g(x)) \mid x \in I_1 \right\} = \Gamma_g.$$

Dito für den Fall, dass $\partial_1 f(a,b) \neq 0$ ist (mit vertauschten Rollen für x,y), also

$$N_f(c) \cap I_1 \times I_2 = \{ (g(x), x) \mid x \in I_2 \}.$$