Deep Learning GOOD BAD UGLY

Qiyang Hu

UCLA Office of Advanced Research Computing
November 8th, 2021

What makes our Deep Learning workshops special?

- Different from other learning resources
 - Broad: high-level descriptive review
 - Intuitive: avoiding math to explain the fundamentals
 - **Practical**: jupyter notebook examples on basic techniques
- Different from my previous LDL series
 - More insights: esp. from Al etc.
 - More critical perspectives
 - More research in Science
- Plans:
 - This quarter: General discussions on DL, Learning Mech, PyTorch
 - Next quarter: Specific topics on CNNs, GANs, RNN...

What is Neural Network?

Recap for simple linear classification problem

Artificial Neuron and Biological Neuron

Neural Networks ~ piling/stacking logistic-regression classifiers

Qiyang Hu

Deep neural networks

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Deep neural *networks*

What is Deep Learning?

Traditional Programming Input Known Algorithm Output

What is Machine Learning?

Traditional Programming Input Known Algorithm Output

DATA CENTER & INTERNET

SEARCH RECOMMENDATION

ML DOMAIN

RESEARCH HIGHER EDUCATION

SIMULATION LANGUAGE

HEALTHCARE

DRUG DISCOVERY **GENOMICS**

FINANCE

QUANT FINANCE FRAUD DETECTION

IMAGE DETECTION, CLASSIFICATION

A deeper view on connectionism

- Knowledge representation
 - Concepts: vectors of neural activity
 - Relationships between concepts: weight matrices
- Automatic generalization of learning
 - Facilitates analogical reasoning
 - Hierarchical knowledge in a form of compositionality
 - Self-organization from a random start
- Parallel distributed processing
 - Tolerance of partially conflicting evidence
 - Tolerance of graceful degradation
 - Content-addressable memory
 - Low computational costs

DeePMD (source)

A new HPC+DL+Physical paradigm

Pictures were from their SC'20 talk.

A deep learning approach to antibiotic discovery

AlphaFold: a significant breakthrough of AI on Science

Astronomical discoveries through self-supervised learning

Introduce labels Linear Fine-tuning Classification 29999 Non-lens 105 103 Tog 10-3 10-9 10-5 10-3 Prediction Prediction

3. Automated classification

I don't think it's an exaggeration to say that some of the biggest astronomical discoveries in the 2020s are only going to be made possible through self-supervised learning (SSL).

https://t.co/fFMngHHJC0?amp=1

Contrastive Loss

Driving forces and positive impacts

Data

- ImageNet database: Milestone of boosting Deep Learning
- Kaggle: a home of data scientists and analysts
- Data explosion from internet

Economy

- Venture Capital Investment soars 20x in 8 years
- Hundreds of million dollars AI Merger & Acquisitions
- 100x more people working on deep learning

Hardware

- Al compute amount increases 10 times per year
- GPU, TPU, IPU, xPUs, Neuromophic chips, Quantum AI chips...

Software

- From C++/Cuda to scripting languages (Python, R)
- From library packages to frameworks
- From toolsets to open-source pre-trained models

The more, the better?

Data, high-quality data!

"A child wearing sunglasses is labeled as a 'failure, loser, nonstarter, unsuccessful person' in the original ImageNet database ..."

-- Crawford K. et al. "Excavating AI"

- Quality of data determines the upper bound of how good the DL model can become.
- Tough tasks for data labeling and annotation
- Avoiding bias brings privacy concerns

Models grow way too big.

- GPT-1 (2018): 117 million parameters
- GPT-2 (2019): 1.5 billion parameters
- GPT-3 (2020): 175 billion parameters
- GPT-4 (2022): 100 trillion parameters

- Some fundamental limitations still there.
- Lower explainability in models.
- Algorithm efficiency is more important.
- Model's robustness is always a question.

The better, the better?

High expectations, low acceptance

Eye screening process in 11 clinics in Thailand

- Before DL evaluation: 2~10 weeks
- With DL evaluation: 10 mins

— Google Health, SIGCHI 2020

- Poor-equipped environment
- Unexpected corner cases
- Practical time/economical concerns

Where is DL in the pandemic?

"...none of them [papers] produced tools that would be good enough to use in a clinical setting. Something has gone seriously wrong when more than 300 papers are published that have no practical benefit."

—— "Nature Machine Intelligence" 2021

- Paper without details to reproduce results.
- Papers introduced significant biases.
- Publication bias towards positive results

Is it the real intelligence?

- Data mining ⇒ understanding?
 - Neural network = Curve fitting
 - Statistical = model-blind
- DL need something else to work together.
 - Causal reasoning: inductive -> deductive ?
 - Hybrid system with GOFAI? with Physics?
- A curse from Gödel's theorem
 - Maybe it is just impossible.
 - We don't even know what AI is/means.
- What if the Singularity finally happens
 - S-believers vs S-sceptics
 - Actions from Al-communities, policy makers

Understanding Neural Networks

Effective Theory

- NN ⇒ solving layer-to-layer iteration egns + nonlinear learning dynamics
- Explaining nonlinearity to nth-order
- NN Predictions: Nearly Gaussian Dis.
 Depth-2-width ratio: deviation from
 ∞-width Gaussian description
- Representation group flow: tuning the networks to criticality

Information Bottleneck

- NN: squeezing the information through a bottleneck
- Deep Learning proceeds 2 phases:
 - A short "fitting"
 - A much longer "compression"
- Network converges to information bottleneck theoretical bound

Discretized Dynamics

- Deep Network ⇒ Diff Eqns (DE)
- Network Architecture ⇒ Numerical DE
- Network Training ⇒ Optimal Control
- ResNet ⇒ One type of discretization
- Forward & Backprop ⇒ ODE solvers

Geometric Unification

- Symmetry and invariance
- Unify CNN, GNN, RNN, Transformer
- 5Gs: Grid, Groups, Graph/Manifold, Geodesics, Gauges
- A principled way to construct new NN frameworks

Analytical Philosophy

- Physical symbols: entire networks of cells, not locatable neurons
- Concepts: partially conflicting constraints, not strict logical definitions

Qiyang Hu

Alternative Neural Networks

Spiking Neural Network

Hype Cycle for Artificial Intelligence, 2021

OARC Workshop Survey

https://forms.gle/nbWgNP45qCwZhLRh9