

**Autor: Dulceanu Andrei-Alin** 

Coordonator: Ş.L. dr. ing. Alin PLEŞA



f /Facultatea.ARMM

f /utcluj.ro

Universitatea Tehnică din Cluj-Napoca



#### Facultatea de Autovehicule Rutiere, Mecatronică și Mecanică





# **Cuprins**

**Scopul Lucrării** 

**Componente Hardware** 

**Arhitectură Software** 

Sistemul de recunoaștere al semnelor

Sistemul de detectare al liniei mediane

**Rezultate experimentale** 

Concluzii



# Scopul lucrării

Dezvoltarea unui sistem de recunoaștere a semnelor rutiere și a liniei mediane a șoselei folosind sisteme embedded și algoritmi avansați

### **Domeniul temei**

- Autonomous Driving
- Advanced Driver-Assistance Systems (ADAS)





www.utcluj.ro

# Rețelistică





- Comunicare serial (115200 baud/s)
- Comunicare SSH
- Comunicare VNC

# Arhitectură software și paradigme de programare

- Pipe and Filter
- OOP
- Multithreading



www.utcluj.ro

# Recunoaștere de semne





Detectare de contururi şi simplificarea acestora-

• Categorizare

Clasificare





www.utclui.ro

# Segmentare

- Estompare Gaussiană
- Frame-ul se converteşte din BGR in HSV
- 3 imagini binare
- Operații morfologice (dilate, erode)



HSV



Cele trei măști binare







Estompare Gaussiană

### Detectare de contururi

- Algoritmul Suzuki-Abe
- Algoritmul Douglas-Peucker



Fig. 8 Algoritmul Douglas-Peucker

www.utclui.ro





## Categorizare

Extragerea unor zone de interes în funcție de numărul de puncte ce formează conturul, culoare și arie:

```
6
                                   redTriangles = (3, "red", "red triangle")
                                   stopSign = (8, "red", "stop sign")
redTriangles
                      8
                                   pedestrianSign = (4, "blue", "pedestrian sign")
pedestrianSign
                                   mandatory = ("circle", "blue", "mandatory sign")
                       9
                                   priorityRoad = (4, "yellow", "priority sign")
                      10
priorityRoad
                                   prohibitory = ("circle", "red", "prohibitory sign")
                      11
stopSign
                      12
                      13
                                   self.categories = (redTriangles, stopSign, pedestrianSign, mandatory, priorityRoad, prohibitory)
```

### Clasificare

GTSRB (German Traffic Sign Recognition Benchmark)

**HOG** (Histogram of Oriented Gradients)

SVM (Support Vector Machine)











### **Line Follower**

#### Etapele sunt următoarele:

- Generarea unei vederi de sus a străzii
- Segmentare
- Detectarea liniei folosind algoritmul lui Hough
- Conversia liniei în comanda servomotorului





#### Crearea vederii de sus

Pentru fiecare punct (x, y) din trapezoid corespunde un punct (u, v) din vederea de sus iar relația dintre ele este următoarea:

$$\left[ \begin{array}{c} u_i \\ v_i \\ 1 \end{array} \right] = \left[ \begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{array} \right] \cdot \left[ \begin{array}{c} x_i \\ y_i \\ 1 \end{array} \right] \text{, unde}$$



$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \text{ Este matricea de transformare }$$

## Segmentare





- Convertirea imaginii din BGR in grayscale
- Aplicarea unei limite de luminozitate pentru a crea o imagine binara
- Scheletizarea liniei obținute până când aceasta ajunge la o grosime de aproximativ 1 pixel

# Algoritmul lui Hough



Presupune conversia din sistemul cartezian în cel polar sub forma unei curbe sinusoidale al fiecarui punct din imagine folosing formula:

$$\rho = x * \cos \theta + y * \sin \theta$$

Se formează un grafic  $\rho/\theta$  în care fiecarui punct din sistemul cartezian ii apartine o curbă sinusoidală

Punctele în care curbele se intersectează cel mai des reprezintă liniile din spatiul cartezian



Fig. 9 Algoritmul lui Hough







#### Conversia liniei în comanda servomotorului

$$m = \frac{y1 - y2}{x2 - x1}$$

Unghiul fața de axa verticală se obține folosind:

$$\alpha = \frac{\pi}{2} - \tan^{-1}(m)$$

Unghiul maxim este  $\frac{\pi}{6}$  care corespunde valorii de 50 in arduino, deci:

$$poziție_{servo} = \alpha * \frac{50}{\frac{\pi}{6}} = \frac{300 * \alpha}{\pi}$$







# Rezultate experimentale

- 18 semne detectate
- Urmărirea liniei mediane







#### Concluzii

- Am reuşit prin acest proiect să demonstrez faptul că nu este necesar un echipament puternic pentru a obține funcționalitatea unui sistem de recunoaștere a semnelor de circulație
- Am reușit să conectez într-un mod sinergic mai multe componente electronice (raspberry pi 4B, pi camera, Arduino mega 2560, servomotor, motor de curent continuu)
- Am reuşit să creez un sistem software complex folosind tehnici paradigme moderne de programare
- Am reușit să optimizez acest sistem pentru a putea rula în timp real
- Am reusit să implementez aceste sisteme pe un model mecanic real



#### Facultatea de Autovehicule Rutiere, Mecatronică și Mecanică







#### Vă mulțumesc!

www.armm.utcluj.ro

- f /Facultatea.ARMM
- f /utcluj.ro
- ► Universitatea Tehnică din Cluj-Napoca