Grupo Disciplinar de Controlo (ADEEEA) **TF – TESTE FINAL**

Controlo de Sistemas

Ref.a: LRTF03

Data: 11-janeiro-2021

ENUNCIADO

I - Considere o diagrama de blocos da Figura 1

Figura 1

- (2,0) 1 Determine o Ganho estático e a constante de tempo da $FTCF = \frac{C(s)}{R(s)} = \frac{K_e}{\tau s + 1}$
- (3,0) 2 Calcule a resposta temporal C(t) para uma entrada do tipo rampa. Determine o erro forçado.
 - II Com base no diagrama de blocos da Figura 2,
- (3,0) 3 Dimensione o ganho do controlador integral, K_I , de forma a obter uma resposta temporal, de um sistema de 2ª ordem, com um coeficiente de amortecimento igual a $\xi = \frac{\sqrt{2}}{2}$.

III - Considere o seguinte sistema elétrico da Figura 3:

Variável de Entrada: v_i

Variável de Saída: v_{C2}

Variáveis de Estados: i_1 ; v_{C1} ; v_{C2}

Figura 3

(4,0) 4 – Determine o Modelo de Estado da do sistema da Figura 3: $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$

Grupo Disciplinar de Controlo (ADEEA) **TF – TESTE FINAL**Controlo de Sistemas

Ref.a: LRTF03

Data: 11-janeiro-2021

- (3,0) 5 Desenhe o diagrama de blocos de estado do sistema da Figura 3 (utilize as equações iniciais no domínio do tempo).
- (3,0) 6 Analise a estabilidade da seguinte FTCA, $GH(s) = \frac{100}{(s+2)(s+6)}$, a partir do critério de estabilidade de Nyquist.
- (2,0) 7 Com base no Diagrama de amplitude e de fase, referentes a uma FTCA (Figura 4), determine graficamente a margem de ganho e a margem de fase. Conclua sobre a estabilidade. Nota: (Marcar G_m e P_m diretamente no enunciado)

NOTAS FINAIS - Para a resolução da prova atenda às seguintes notas:

- 1 Deverá apresentar todas as justificações a cálculos realizados.
- 2 O enunciado é entregue juntamente com ou sem a folha de prova.

Nome				Aluno nº	
Turma	Semestre	Classificação	(O Professor	
			FÌM	· · · · · · · · · · · · · · · · · · ·	

Grupo Disciplinar de Controlo (ADEEEA)

Controlo de Sistemas

Ref.a:

Data:

Tabela de Transformadas de Laplace

f(t) $t>0$	F(S)	F(S)	f(t) $t>0$		
δ(t)	1	$\frac{1}{s \pm a}$	e ^{∓at}		
Ku(t)	$K\frac{1}{s}$	$\frac{1}{(s\pm a)^n}$	$\frac{t^{n-1}}{(n-1)!}e^{\mp at}$ $n = 1;2;3;4;\cdots$		
af(at)	$\frac{F(S)}{a}$	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!} 0!=1 ; n=1;2;3;4;\cdots$		
$\frac{f(t)}{a}$	aF(aS)	F ₁ (S)F ₂ (S)	$\int_{0^{+}}^{t} f_{1}(\gamma) f_{2}(t-\gamma) d\gamma$		
t ⁿ	n! s ⁿ⁺¹	1 1(0) 2(0)	$\int_{0^{+}}^{t} f_{2}(\gamma) f_{1}(t-\gamma) d\gamma$		
$\frac{d^{n}f(t)}{dt^{n}}$	$s^n F(s) - s^{n-1} f(0^+) -$ $-s^{n-2} f'(0^+) - \dots$	$\frac{(s+a_0)}{(s+\alpha)^2+\beta^2}$	$\frac{1}{\beta}\sqrt{(a_0-\alpha)^2+\beta^2}\cdot e^{-\alpha t}\cdot sen(\beta t+\varphi)$		
$\int\limits_{0^{+}}^{t}f(\gamma)\mathrm{d}\gamma$	$\frac{F(S)}{s}$	$(\mathbf{s} + \alpha)^{-} + \beta^{-}$	$\varphi = \arctan \frac{\beta}{a_0 - \alpha}$		
f(t-T)	$e^{-ST}.F(S)$ $T>0$ $t>T$	OUTRAS RELAÇÕES			
$e^{\mp at}.f(t)$	$F(s \pm a)$	$R_{ij} = \frac{1}{\left(K - j\right)!} \frac{d^{K - j}}{dS^{K - j}} \left[\left(S + S_i\right)^K \cdot F(S) \right] \bigg _{S = -Si}$			
$f_1(t).f_2(t)$	$\frac{1}{2\pi j} \int_{C-j\infty}^{C+j\infty} F_1(\omega) F_2(s-\omega) d\omega$	$f(0^+) = \lim_{t \to 0} f(t) = \lim_{S \to \infty} SF(S)$ $t > 0$			
cos(ωt)	$\frac{s}{s^2 + \omega^2}$	$f(\infty) = \lim_{t \to \infty} f(t) = \lim_{S \to 0} SF(S)$			
$cosh(\omega t)$	$\frac{s}{s^2-\omega^2}$	Se existir o $\lim_{t\to\infty} f(t)$			
sen(ωt)	$sen(\omega t)$ $\frac{\omega}{s^2 + \omega^2}$		Plano temporal		
senh(ωt)	$\frac{\omega}{s^2 - \omega^2}$	$f(t) = L^{-1} [F(S)]$ sendo : $t \in \Re^+$			
$e^{-at}.\cos(\omega t + \phi)$	$e^{-at}.\cos(\omega t + \phi)$ $\frac{(s+a).\cos\phi\omega sen\phi}{(s+a)^2 + \omega^2}$		o complexo $F(S) = L\left[f(t)\right]$ $sendo: S = \sigma + j\omega$		