DS4400 HW1

Xin Guan

- 1. Let $\mathbf{a} \in \mathbb{R}^n$ be an *n*-dimensional vector and let $\mathbf{U} \in \mathbb{R}^{n \times n}$ be an orthonormal matrix, i.e., $\mathbf{U}^T \mathbf{U} =$ $UU^T = I_n$. show the following:
 - (a) trace(aa^{T}) = $||a||_{2}^{2}$ Solution:

Proof. Let
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}$$

Then,
$$\mathbf{a}\mathbf{a}^{T} = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} \cdot \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \cdot a_{1} & a_{1} \cdot a_{2} & \cdots & a_{1} \cdot a_{n} \\ a_{2} \cdot a_{1} & a_{2} \cdot a_{2} & \cdots & a_{2} \cdot a_{n} \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n} \cdot a_{1} & a_{n} \cdot a_{2} & \cdots & a_{n} \cdot a_{n} \end{bmatrix}$$

Therefore, trace(aa^{T}) = $a_1 \cdot a_1 + a_2 \cdot a_2 + \cdots + a_n \cdot a_n = \sum_{i=1}^{n} a_i^2$ Thus, trace($\boldsymbol{a}\boldsymbol{a}^T$) = $||\boldsymbol{a}||_2^2$

(b)
$$||Ua||_2^2 = ||a||_2^2$$

Solution:

Proof. We can write *U* as follow:

$$U = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$
, where $v_i \in \mathbb{R}^n$, $i \in \mathbb{Z}$, $1 \le i \le n$.

We can write
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
, where $a_i \in \mathbb{R}, 1 \le i \le n$

Since *U* is orthonormal, we have:

$$\forall i \neq k, v_i v_k = \overrightarrow{\mathbf{0}}$$

$$\forall i \in \mathbf{Z}, 1 \leq i \leq n, v_i^T v_i = 1$$

Then, we can write
$$Ua = [v_1a_1 + v_2a_2 + \cdots + v_na_n]$$

Therefore,
$$\|\boldsymbol{U}\boldsymbol{a}\|_{2}^{2} = (v_{1}a_{1})^{2} + (v_{2}a_{2})^{2} + \dots + (v_{n}a_{n})^{2}$$

$$= \sum_{i=1}^{n} (v_{i}^{T} a_{i})^{2}$$

$$= \sum_{i=1}^{n} (v_{i}a_{i})^{T} (v_{i}a_{i})$$

$$= \sum_{i=1}^{n} (a_{i}v_{i}^{T})(v_{i}a_{i})$$

$$= \sum_{i=1}^{n} (a_{i}(v_{i}^{T}v_{i})a_{i})$$

$$=\sum_{i=1}^{n}(v_{i}^{T}a_{i})^{2}$$

$$= \sum_{i=1}^{n} (v_i a_i)^T (v_i a_i)$$

$$= \sum_{i=1}^{n} (a_i v_i^T) (v_i a_i)$$

$$= \sum_{i=1}^{n} (a_i(v_i^T v_i) a_i)$$

Since $\forall i \in \mathbf{Z}, 1 \leq i \leq n, v_i^T v_i = 1$, we have:

$$\sum_{i=1}^{n} (a_i(v_i^T v_i) a_i)$$

$$= \sum_{i=1}^{n} (a_i a_i)$$

$$= ||\mathbf{a}||_2^2$$

Thus,
$$\|\boldsymbol{U}\boldsymbol{a}\|_{2}^{2} = \|\boldsymbol{a}\|_{2}^{2}$$
.

2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times n}$ be arbitrary but invertible matrices and let α be a scalar. Show the following:

(a)
$$(AB)^{-1} = B^{-1}A^{-1}$$

Solution:

Proof. By the definition of inverse, we have:

$$(\boldsymbol{A}\boldsymbol{B})(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{I}_n$$

Multiply both sides by A^{-1} :

$$\boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{B}(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{A}^{-1}\boldsymbol{I}_{n}$$

Then we have:

$$\boldsymbol{B}(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{A}^{-1}$$

Multiply both sides by B^{-1} :

$$B^{-1}B(AB)^{-1} = B^{-1}A^{-1}$$

Then we have:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Therefore, $(AB)^{-1} = B^{-1}A^{-1}$

(b) $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$

Solution:

Proof. By the definition of inverse, we have $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$. Then we transpose both sides:

$$(\boldsymbol{A}^{-1}\boldsymbol{A})^T = (\boldsymbol{I}_n)^T$$

Then we have:

$$\boldsymbol{A}^T(\boldsymbol{A}^{-1})^T = \boldsymbol{I}_n$$

Multiply both sides by $(\mathbf{A}^T)^{-1}$:

$$(\mathbf{A}^T)^{-1}\mathbf{A}^T(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}\mathbf{I}_n$$

Then we have:

$$(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$$

(c) trace($\alpha \mathbf{A}$) = α trace(\mathbf{A})

Solution:

Proof. Let
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & & \vdots \\ a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}$$
Then $\alpha \mathbf{A} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \ddots & & \vdots \\ \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{2n} \end{bmatrix}$

Then, trace($\alpha \mathbf{A}$) = $\alpha a_{11} + \alpha a_{22} + \dots \alpha a_{nn} = \sum_{i=1}^{n} \alpha a_{ii} = \alpha \sum_{i=1}^{n} a_{ii}$ On the other hand, α trace(\mathbf{A}) = $\alpha \cdot (a_{11} + a_{22} + \dots a_{nn}) = \alpha \sum_{i=1}^{n} a_{ii}$ Therefore, trace($\alpha \mathbf{A}$) = α trace(\mathbf{A})

- 3. For vectors $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{a} \in \mathbb{R}^n$ and matrices $\mathbf{X} \in \mathbb{R}^{n \times n}$, $\mathbf{A} \in \mathbb{R}^{n \times n}$, show the following:
 - (a) $\frac{\partial \boldsymbol{a}^T \boldsymbol{A} \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{A}^T \boldsymbol{a}$ Solution:

We write \mathbf{A} as follow: $\mathbf{A} = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$, where $v_i \in \mathbb{R}^n$, $\forall i \in \mathbf{Z}, 1 \le i \le n$ Then $\mathbf{a}^T \mathbf{A} = \begin{bmatrix} \mathbf{a}^T v_1 & \mathbf{a}^T v_2 & \dots & \mathbf{a}^T v_n \end{bmatrix}$

We write \mathbf{x} as follow: $\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$, where $x_i \in \mathbb{R}, \forall i \in \mathbf{Z}, 1 \le i \le n$

Then $\mathbf{a}^T \mathbf{A} \mathbf{x} = \mathbf{a}^T v_1 x_1 + \mathbf{a}^T v_2 x_2 + \dots + \mathbf{a}^T v_n x_n$ Then, on the left hand side: $\frac{\partial \mathbf{a}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{a}^T v_1 \\ \mathbf{a}^T v_2 \\ \dots \\ \mathbf{a}^T v_n \end{bmatrix}$

On the right hand side: $\mathbf{A}^T \mathbf{a} = \begin{bmatrix} v_1^T \\ v_2^T \\ \dots \\ T \end{bmatrix} \mathbf{a} = \begin{bmatrix} v_1^T \mathbf{a} \\ v_2^T \mathbf{a} \\ \dots \\ T \end{bmatrix} = \begin{bmatrix} \mathbf{a}^T v_1 \\ \mathbf{a}^T v_2 \\ \dots \\ T \end{bmatrix}$

Therefore, $\frac{\partial \mathbf{a}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^T \mathbf{a}$

(b)
$$\frac{\partial trace(\boldsymbol{A}^T\boldsymbol{X})}{\partial \boldsymbol{X}} = \boldsymbol{A}$$

Solution:

we write
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
, $\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{bmatrix}$
Then, $\mathbf{A}^T \mathbf{X} = \begin{bmatrix} \sum_{i=1}^n a_{i1} x_{i1} & \sum_{i=1}^n a_{i1} x_{i2} & \dots & \sum_{i=1}^n a_{i1} x_{in} \\ \sum_{i=1}^n a_{i2} x_{i1} & \sum_{i=1}^n a_{i2} x_{i2} & \dots & \sum_{i=1}^n a_{i2} x_{in} \\ \vdots & \ddots & & \vdots \\ \sum_{i=1}^n a_{in} x_{i1} & \sum_{i=1}^n a_{in} x_{i2} & \dots & \sum_{i=1}^n a_{in} x_{in} \end{bmatrix}$

$$\operatorname{trace}(\mathbf{A}^T \mathbf{X}) = \sum_{i=1}^n a_{i1} x_{i1} + \sum_{i=1}^n a_{i2} x_{i2} + \dots \sum_{i=1}^n a_{in} x_{in} \\ = \sum_{j=1}^n \sum_{i=1}^n a_{ij} x_{ij}$$

Then,
$$\frac{\partial trace(\mathbf{A}^T\mathbf{X})}{\partial \mathbf{X}} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \mathbf{A}$$

Therefore, $\frac{\partial trace(\mathbf{A}^T \mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}$

$$(c) \frac{\partial \|\mathbf{A}\mathbf{x}\|_2^2}{\partial x} = 2\mathbf{A}^T \mathbf{A}\mathbf{x}$$

Solution:

we write
$$\mathbf{A}$$
 as
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$x \text{ as } \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Then
$$||\mathbf{A}\mathbf{x}|| = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{bmatrix}$$

Then
$$||Ax||_2^2$$

= $(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)^2 + (a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n)^2 + \dots + (a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n)^2$
= $(\sum_{i=1}^n a_{1i}x_i)^2 + (\sum_{i=1}^n a_{2i}x_i)^2 + \dots + (\sum_{i=1}^n a_{ni}x_i)^2$

Then on the left hand side:

$$\frac{\partial ||\mathbf{Ax}||^{2}}{\partial x}$$

$$= \frac{\partial [(\sum_{i=1}^{n} a_{1i}x_{i})^{2} + (\sum_{i=1}^{n} a_{2i}x_{i})^{2} \cdots + (\sum_{i=1}^{n} a_{ni}x_{i})^{2}]}{\partial x}$$

$$= \frac{\partial (\sum_{i=1}^{n} a_{1i}x_{i})^{2}}{\partial x} + \frac{\partial (\sum_{i=1}^{n} a_{2i}x_{i})^{2}}{\partial x} + \cdots + \frac{\partial (\sum_{i=1}^{n} a_{ni}x_{i})^{2}}{\partial x}$$

$$= 2(\sum_{i=1}^{n} a_{1i}x_{i}) \frac{\partial (\sum_{i=1}^{n} a_{1i}x_{i})}{\partial x} + 2(\sum_{i=1}^{n} a_{2i}x_{i}) \frac{\partial (\sum_{i=1}^{n} a_{2i}x_{i})}{\partial x} + \cdots + 2(\sum_{i=1}^{n} a_{ni}x_{i}) \frac{\partial (\sum_{i=1}^{n} a_{ni}x_{i})}{\partial x}$$

$$= 2(\sum_{i=1}^{n} a_{1i}x_{i}) \begin{bmatrix} a_{11} \\ a_{12} \\ \dots \\ a_{1n} \end{bmatrix} + 2(\sum_{i=1}^{n} a_{2i}x_{i}) \begin{bmatrix} a_{21} \\ a_{22} \\ \dots \\ a_{2n} \end{bmatrix} + \cdots + 2(\sum_{i=1}^{n} a_{ni}x_{i}) \begin{bmatrix} a_{n1} \\ a_{n2} \\ \dots \\ a_{nn} \end{bmatrix}$$

$$= 2\begin{bmatrix} (\sum_{i=1}^{n} a_{1i}x_{i})a_{11} + (\sum_{i=1}^{n} a_{2i}x_{i})a_{21} + \cdots + (\sum_{i=1}^{n} a_{ni}x_{i})a_{n1} \\ (\sum_{i=1}^{n} a_{1i}x_{i})a_{12} + (\sum_{i=1}^{n} a_{2i}x_{i})a_{22} + \cdots + (\sum_{i=1}^{n} a_{ni}x_{i})a_{n2} \\ \vdots \\ (\sum_{i=1}^{n} a_{1i}x_{i})a_{1n} + (\sum_{i=1}^{n} a_{2i}x_{i})a_{2n} + \cdots + (\sum_{i=1}^{n} a_{ni}x_{i})a_{nn} \end{bmatrix}$$

On right hand side:

$$2A^{T}Ax = 2A^{T}(Ax)$$

$$= 2\begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \ddots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{bmatrix}$$

$$= 2\begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \ddots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} a_{1i}x_i \\ \sum_{i=1}^{n} a_{2i}x_i \\ & \dots \\ \sum_{i=1}^{n} a_{ni}x_i \end{bmatrix}$$

$$= 2\begin{bmatrix} (\sum_{i=1}^{n} a_{1i}x_i) \cdot a_{11} + (\sum_{i=1}^{n} a_{2i}x_i) \cdot a_{21} + \dots + (\sum_{i=1}^{n} a_{ni}x_i) \cdot a_{n1} \\ (\sum_{i=1}^{n} a_{1i}x_i) \cdot a_{12} + (\sum_{i=1}^{n} a_{2i}x_i) \cdot a_{22} + \dots + (\sum_{i=1}^{n} a_{ni}x_i) \cdot a_{n2} \\ \vdots \\ (\sum_{i=1}^{n} a_{1i}x_i) \cdot a_{1n} + (\sum_{i=1}^{n} a_{2i}x_i) \cdot a_{2n} + \dots + (\sum_{i=1}^{n} a_{ni}x_i) \cdot a_{nn} \end{bmatrix}$$

Thus, left part equals right part.

Therefore,
$$\frac{\partial ||\mathbf{A}\mathbf{x}||_2^2}{\partial x} = 2\mathbf{A}^T \mathbf{A}\mathbf{x}$$

- 4. Determine whether each of the following functions is convex or not.
 - (a) $f(x) = (x a)^2$, for any real number a.

Solution:

Since this function is $\mathbb{R} \Rightarrow \mathbb{R}$, we can calculate its second order derivative to determine whether it is convex.

$$f'(x) = 2(x-a)$$
$$f''(x) = 2 \ge 0$$

Therefore, $f(x) = (x - a)^2$ is convex.

(b) f(x) = -log(2x), with the domain $x \in (0, +\infty)$.

Solution:

Since this function is $\mathbb{R} \Rightarrow \mathbb{R}$, we can calculate its second order derivative to determine whether it is convex.

$$f'(x) = -\frac{1}{x}$$

 $f''(x) = \frac{1}{x^2}$
since $x \in (0, +\infty), f''(x) \ge 0$

Therefore, f(x) = -log(2x) is convex.

(c) $f(x) = e^{g(x)}$, where g(x) is convex.

Solution:

Since this function is $\mathbb{R} \Rightarrow \mathbb{R}$, we can calculate its second order derivative to determine whether it is convex.

$$f'(x) = e^{g(x)}g'(x)$$

 $f''(x) = e^{g(x)}[g'(x)]^2 + e^{g(x)}g''(x)$
Since $g(x)$ is convex, $g''(x) \ge 0$.

And $e^{g(x)}[g'(x)]^2 \ge 0$, $e^{g(x)} \ge 0$. Then, $e^{g(x)}[g'(x)]^2 + e^{g(x)}g''(x) \ge 0$ Therefore, $f(x) = e^{g(x)}$ is convex.

5. question 5

(a) Solution:

(b) Solution:

(c) Solution:

(d) Solution:

6. question 6

Solution:

