Report on Univariate Inflation Forecasting from March 2014 to November 2024 with Hyperparameter Tuning Approaches

1. Introduction

This report aims to analyze the univariate inflation data from March 2014 to November 2024 and forecast future inflation rates for the next 3 months. Four different approaches have been employed to improve the accuracy and reliability of the forecasting model, specifically focusing on hyperparameter tuning techniques. The methods used are:

- 1. Without Hyperparameter Tuning
- 2. With Hyperparameter Tuning using Grid Search CV
- 3. With Hyperparameter Tuning using Random Search CV
- 4. With Hyperparameter Tuning using Optuna

The forecasted inflation values from each method are compared to determine the most effective approach for this dataset.

2. Data Overview

The dataset consists of univariate time series data on inflation, spanning from March 2014 to November 2024.

3. Methodology

3.1. Without Hyperparameter Tuning

In the first approach, the forecasting model was trained and tested without applying any hyperparameter tuning. The default parameters of the chosen model were used to establish a baseline for comparison with other approaches.

3.2. With Hyperparameter Tuning using Grid Search CV

Grid Search Cross-Validation (GridSearchCV) was applied to the univariate forecasting model to search for the best combination of hyperparameters.

3.3. With Hyperparameter Tuning using Random Search CV

Random Search Cross-Validation (RandomSearchCV) was used to explore hyperparameter values in a randomized fashion, which can be more efficient than GridSearchCV, especially when the hyperparameter space is large.

3.4. With Hyperparameter Tuning using Optuna

Optuna, an advanced hyperparameter optimization framework, was employed for this approach. Optuna uses efficient sampling techniques to optimize hyperparameters and search the space more effectively.

 Optuna Setup: The search space for each hyperparameter was defined, and an optimization objective was set. Optuna then explored the space to find the best hyperparameter configuration.

4. Results and Comparison

The forecasting results from the four approaches were evaluated using the following metrics:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Percentage Error (MAPE)
- R-Square

df			
	Period	Month	Index
0	2014	January	81.768056
1	2014	February	81.768056
2	2014	March	81.768056
3	2014	April	81.925000
4	2014	May	82.238889
126	2024	July	194.700000
127	2024	August	191.100000
128	2024	September	190.900000
129	2024	October	189.900000
130	2024	November	189.400000

df = pd.read_excel("univariatedf.xlsx")

131 rows × 3 columns

Training and Test Set with Date Ranges

Training Set Date Range: Min = 2014-03-01 00:00:00, Max = 2021-08-01 00:00:00
Test Set Date Range: Min = 2021-09-01 00:00:00, Max = 2024-11-01 00:00:00

Best lag value based on MAPE cross-validation: 2 Best lag value based on MSE cross-validation: 2

Training set size: 90 Test set size: 39

Training Data:

	Index	lag_1	lag_2
Date			
2014-03-01	81.768056	81.768056	81.768056
2014-04-01	81.925000	81.768056	81.768056
2014-05-01	82.238889	81.925000	81.768056
2014-06-01	82.945139	82.238889	81.925000
2014-07-01	83.572917	82.945139	82.238889

Test Data:

	Index	lag_1	lag_2
Date			
2021-09-01	113.078472	112.607639	112.293750
2021-10-01	115.275694	113.078472	112.607639
2021-11-01	118.257639	115.275694	113.078472
2021-12-01	121.396528	118.257639	115.275694
2022-01-01	124.300000	121.396528	118.257639

Case 1: Without Hyperparameter Tuning for Full univariate Data Set

Evaluation.

Random	XGBoost		Support			Convolutional	LSTM
Forest	Evaluation:	Gradient	Vector	Multi-layer	ANN	Neural	Evaluation:
Evaluation:		Boosting	Machine	Perceptron	Evaluation:	Network	
		Evaluation:	Evaluation:	Evaluation:		(CNN)	
						Evaluation:	
RMSE:	RMSE:						
69.6824	69.4487	69.5268	84.8092	6.0471	6.8762	6.1913	6.1931
MSE:	MSE:						
4855.6347	4823.1153	4833.9754	7192.6059	36.5679	47.2826	38.3325	38.3546
MAE:	MAE:						
63.8118	63.5565	63.6418	79.3212	3.8727	4.3472	3.9204	4.9687
MAPE:	MAPE:						
34.10%	33.95%	34.00%	42.95%	2.31%	2.6061%	2.35%	2.82%
R-squared:	R-squared:						
-5.1959	-5.1544	-5.1682	-8.1779	0.9533	0.9396	0.9511	0.9511

3 Months Ahead Forecasting

6 Months Ahead Forecast

```
Next datetime indices for forecasts:
DatetimeIndex(['2024-12-31', '2025-01-31', '2025-02-28', '2025-03-31',
             '2025-04-30', '2025-05-31'],
            dtype='datetime64[ns]', freq='M')
       Date CNN Forecast LSTM Forecast ANN Forecast MLP Forecast
0 2024-12-31 190.968185 194.711624 191.292267
                                                 191.375205
1 2025-01-31
            191.569000
                         196.777115 191.926849 192.158822
2 2025-02-28 191.866318 200.077911 192.466782 192.765539
3 2025-03-31 192.337509 202.666199 193.045639 193.478044
                           205.815979 193.610458 194.131686
4 2025-04-30
            192.710007
5 2025-05-31 193.139420
                           208.696182 194.182281
                                                 194.822376
```

Case 2: Hyperparameter Tuning using RandomSearchCV for Full univariate Data Set Evaluation.

Random	XGBoost		Support		
Forest	Evaluation:	Gradient	Vector	Multi-layer	ANN Evaluation:
Evaluation:		Boosting	Machine	Perceptron	
		Evaluation:	Evaluation:	Evaluation:	
RMSE:	RMSE:	RMSE:	RMSE:	RMSE:	RMSE:
69.8199	69.9555	69.6440	4.1434	4.2070	7.0459
MSE:	MSE:	MSE:	MSE:	MSE:	MSE:
4874.8191	4893.7744	4850.2836	17.1675	17.6991	49.645139
MAE:	MAE:	MAE:	MAE:	MAE:	MAE:
63.9619	64.1099	63.7698	2.6972	2.7383	4.4761676
MAPE:	MAPE:	MAPE:	MAPE:	MAPE:	MAPE:
34.19%	34.27%	34.07%	1.61%	1.63%	2.679348%
R-squared:	R-squared:	R-squared:	R-squared:	R-squared:	R-squared:
-5.2203	-5.2445	-5.1890	0.9781	0.9774	0.936652

) (

3

6 Months ahead forecasting

Forecast Table:

Date	SVM Forecast	ANN Forecast	MLP Forecast
0 2024-12-31	190.309297	192.155640	191.676519
1 2025-01-31	192.177295	193.563049	192.831222
2 2025-02-28	193.293651	194.911591	194.294739
3 2025-03-31	194.780566	196.301437	195.624792
4 2025-04-30	196.104708	197.685120	197.031656
5 2025-05-31	197.519615	199.085266	198.415546

Case 3: Hyperparameter Tuning using GridSearchCV for Full univariate Data Set Evaluation.

Random	XGBoost	Support	Multi-layer
Forest	Evaluation:	Vector	Perceptron
Evaluation:			Evaluation:

		Gradient	Machine	
		Boosting	Evaluation:	
		Evaluation:		
RMSE:	RMSE:	RMSE:	RMSE:	RMSE:
69.7169	69.4487	69.4530	3.9211	4.1162
MSE:	MSE:	MSE:	MSE:	MSE:
4860.4433	4823.1153	4823.7129	15.3751	16.9435
MAE:	MAE:	MAE:	MAE:	MAE:
63.8494	63.5565	63.5612	2.5592	2.6917
MAPE:	MAPE:	MAPE:	MAPE:	MAPE:
34.12%	33.95%	33.95%	1.52%	1.60%
R-squared: -	R-squared: -	R-squared: -	R-squared:	R-squared:
5.2020	5.1544	5.1551	0.9804	0.9784

	Date	SVM Forecast	MLP Forecast	ANN
0	2024-12-31	189.313038	190.602656	191.25848
1	2025-01-31	189.015133	191.482265	192.01630
2	2025-02-28	188.403017	192.625134	192.52966
3	2025-03-31	187.322945	194.159749	193.19684
4	2025-04-30	185.546038	196.279135	193.77145
5	2025-05-31	182.731088	199.213759	194.40591

Case 4: Hyperparameter Tuning using Optuna for Full univariate Data Set Evaluation.