18 Силы тяготения и реакции

Закон всемирного тяготения. Два тела массами m_1 и m_2 , расположенные на расстоянии r, притягиваются друг к другу с силой тяготения

$$F_{\scriptscriptstyle \mathrm{T}} = G \frac{m_1 m_2}{r^2},\tag{1}$$

где G — гравитационная постоянная (см. справочные таблицы).

На рис. 1 условно изображены планета и космический корабль.

Рис. 1. Притяжение планеты и космического корабля

Планета П массой m_{π} и корабль К массой m_{κ} расположены на некотором расстоянии r друг от друга¹. Как и любые два тела, обладающих массой, планета и корабль $\emph{взаимодействуют}$ друг с другом так, что планета притягивает корабль с силой F_{π} , а корабль — планету с такой же силой F_{π} .

При свободном падении у поверхности планеты все тела движутся с одинаковым ускорением g. Тогда по второму закону Ньютона сила, действующая на тело массы m со стороны планеты и называемая **силой тяжести**, равна:

$$F_{\scriptscriptstyle \rm T} = mg. \tag{2}$$

Вообще, сила тяжести и сила тяготения — это взаимозаменяемые термины, обозначающие одну и ту же силу *гравитационного взаимодействия*. Так, силу тяжести, действующую на тело, можно называть и силой тяготения: численное значение этой силы гравитационного притяжения от этого не поменяется².

Пусть теперь массивный шар покоится на поверхности планеты — то есть, как говорят, на опоре (рис. 2).

Вес $(\vec{P} \ [H])$ — это сила, действующая на опору или подвес со стороны тела (синий вектор на рис. 2). Вес приложен κ опоре (nodeecy), а не к телу.

Сила реакции $(\vec{N} \ [H])$ — это сила, приложенная к телу со стороны опоры или подвеса (красный вектор на рис. 2).

В рассматриваемой паре тел (шар и опора) силы P и N связаны третьим законом Ньютона:

Рис. 2. Шар на опоре

$$P = N. (3)$$

Следует отметить, что сила реакции и вес служат проявлением электромагнитного взаимодействия тел.

 $^{^{1}}$ Для однородных шарообразных тел расстояние r есть расстояние между их центрами.

 $^{^2}$ Приравняв правые части формул (1) и (2), можно получить формулу для ускорения свободного падения: $g=G\frac{m_{\text{планеты}}}{r^2}.$