21. Канальні коли

Канальні (лінійні, сигнальні) коди використовуються у цифрових системах передачі для вторинного кодування повідомлень при їх передачі по лініях (каналах) зв'язку. Необхідність у цьому виникає, головним чином, при передачі повідомлень постійним струмом по проводовим лініям з метою збільшення завадостійкості передачі, а також полегшення одержання з інформаційного потоку, що передається, сигналів синхронізації для стабільної і синхронної роботи передавального і приймального пристроїв системи передачі даних.

Більш поширена назва цих кодів — "лінійні", що відповідає їх призначенню: вторинне кодування при передачі повідомлень по лініях зв'язку. Однак, з огляду на те, що у теорії кодування дуже часто зустрічається математичний термін "лінійний код", у відношенні до деяких кодів (наприклад, лінійний систематичний код тощо), у даній роботі використовується інша назва кодів цього класу — канальні коди.

Загалом канальних кодів налічується багато. Але на практиці застосовуються тільки деякі з них: CHDB (сумісний біполярний код з високою щільністю) або дуобінарний, квазітрійковий, модифікований дуобінарний, Манчестер-2, 4ВЗТ (МS43) та 3В2Т.

У коді СНDВ (дуобінарний код) "0" двійкової інформаційної послідовності передається паузою, а "1" — імпульсами позитивної та від'ємної полярності, зі зміною полярностей у кожному наступному імпульсі у порівнянні з попереднім. Таке кодування дає можливість звузити спектр імпульсної послідовності, яка передається.

При передачі елементів інформаційної послідовності за допомогою квазітрійкового коду використовуються прямокутні імпульси більш короткої довжини у порівнянні з дуобінарним. Завдяки цьому можна підвищити завадостійкість передачі за рахунок зменшення перехідних процесів між окремими імпульсами, тобто дається можливість перехідному процесу затухнути до приходу нового імпульсу.

Головним недоліком дуобінарного та квазітрійкового кодувань ϵ можливість втрати сигналу синхронізації, який одержують у декодері з інформаційної послідовності, що надходить до приймального пристрою. Таке можливе при появі довгих серій з одних нулів. Щоб зберегти синхронізацію вдаються до скремблювання.

У коді Манчестер-2 елементи інформаційної послідовності кодуються: "0" — додатним перепадом з нуля до одиниці (0®1), а "1" — від'ємним перепадом з одиниці до нуля (1®0). Перепади сигналів виконуються у тактових точках, тобто посередині тактового (бітового) інтервалу.

Використання для передачі коду Манчестер-2 дає такі переваги: постійна складова у лінії зв'язку дорівнює нулю; забезпечується виділення сигналу синхронізації з послідовності імпульсів, які надходять до приймального пристрою.

Модифікований дуобінарний код відрізняється від дуобінарного введенням декількох додаткових умов:

всі одиниці інформаційної послідовності розбиваються на пари і послідовно нумеруються в парах як 1-ша та 2-га;

кожна пачка одиниць кодується таким чином, щоб у серії послідовно розташованих одиниць з однаковими номерами сусідні завжди мали різну полярність;

полярність першої одиниці у кожній пачці залежить від кількості нулів, що відділяють цю пачку від попередньої; а саме, якщо ця кількість непарна, то перша одиниця у пачці має полярність, протилежну полярності останньої одиниці попередньої пачки одиниць, якщо ж кількість нулів між пачками парна — полярність першого імпульсу співпадає з полярністю останнього імпульсу попередньої пачки одиниць.

Така побудова коду підвищує завадостійкість передачі інформаційної послідовності за рахунок можливості виявлення помилок при невиконанні згаданих вище умов.

У коді 4ВЗТ (табл.12.1) чотирьом двійковим елементам інформаційної послідовності ставляться у відповідність три елементи трійкового коду, де "0" передається паузою, "1" – імпульсом від'ємної полярності, а "2" – імпульсом додатної полярності. Це дає

можливість зменшити загальну довжину кодованої інформаційної послідовності, тобто зменшити час на передачу цієї послідовності.

Таблиця 12.1

Двійкові	Трійкові комбінації алфавітів		
комбінації	R1	R2	R3
0010	+++	- + -	- + -
0001	++0	0 0 -	0 0 -
0000	+ 0 +	0 - 0	0 - 0
0100	0++	- 0 0	- 0 0
1000	+ - +	+ - +	
0011	0 - +	0 - +	0 - +
0101	- 0 +	- 0 +	- 0 +
1001	0 0 +	0 0 +	0
1010	0 + 0	0 + 0	- 0 -
1100	+ 0 0	+ 0 0	0
0110	- + 0	- + 0	- + 0
1110	+ - 0	+ - 0	+ - 0
1101	+ 0 -	+ 0 -	+ 0 -
1011	0 + -	0 + -	0 + -
0111	-++	-++	+
1111	++-	+	+

Існує три варіанти такого коду: R1, R2 та R3. Вибір варіанта залежить від переваги в лінії зв'язку помилок визначеної полярності. Так, наприклад, для симетричних каналів, у яких спотворення імпульсів від'ємної і додатної полярностей однакові, вибирається код 4ВЗТ(R2); для каналів, де переважають спотворення від'ємних імпульсів, — код 4ВЗТ(R1), а для каналів, де переважають спотворення додатних імпульсів — 4ВЗТ(R3). У коді ЗВ2Т [4,10,14] (табл.12.2) трьом двійковим елементам інформаційної послідовності ставляться у відповідність два елементи трійкового коду, де "0" передається паузою, "1" — імпульсом від'ємної полярності, а "2" — імпульсом додатної полярності. Це дає можливість, як і в коді 4ВЗТ, зменшити загальну довжину кодованої інформаційної послідовності, тобто зменшити час на передачу цієї послідовності.

Таблиця 12.2

1 истици 12.2			
Двійкові комбінації	Трійкові комбінації		
000	0 +		
001	0 -		
010	+ 0		
011	- 0		
100	+ +		
101			
110	- +		
111	+ -		