Logica — 10-1-2019

Tutte le risposte devono essere adeguatamente giustificate

1. Provare che

$$\neg P \to Q \models R \land \neg Q \to P \lor \neg R.$$

2. Stabilire se l'insieme di formule

$$\{\neg A \land B, \neg (\neg A \rightarrow \neg C), C \rightarrow A \lor \neg B\}$$

è soddisfacibile.

- 3. Sia $\mathcal{L} = \{C, S, U\}$ un linguaggio del prim'ordine, dove C, S sono simboli relazionali unari, U è simbolo relazionale binario. Si consideri la seguente interpretazione di \mathcal{L} :
 - -C(x): $x \in un computer;$
 - -S(x): x è uno studente;
 - -U(x,y): x usa y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. C'è un computer che non è usato da alcuno studente.
- 2. C'è un computer usato da almeno due studenti.
- 3. Gli studenti che usano un computer ne usano almeno due.
- **4.** Sia $\mathcal{L} = \{f\}$ un linguaggio del prim'ordine, dove f è un simbolo funzionale unario. Si considerino le \mathcal{L} -strutture $\mathcal{A} = (\mathbb{Z}, f^{\mathcal{A}}), \mathcal{B} = (\mathbb{Z}, f^{\mathcal{B}}),$ dove:
 - $-\mathbb{Z}$ è l'insieme dei numeri interi;
 - $-f^{\mathcal{A}}$ è l'operazione di opposto, cio
è $f^{\mathcal{A}}(u)=-u$ per ogni $u\in\mathbb{Z};$
 - $-f^{\mathcal{B}}$ è l'operazione di raddoppio, cioè $f^{\mathcal{B}}(u)=2u$, per ogni $u\in\mathbb{Z}$.

Determinare, se esiste, un enunciato φ che distingua \mathcal{A} da \mathcal{B} , cioè tale che $\mathcal{A} \models \varphi, \mathcal{B} \not\models \varphi$.

Svolgimento

1. Sia *i* un'interpretazione tale che $i(\neg P \to Q) = 1$, al fine di dimostrare che $i(R \land \neg Q \to P \lor \neg R) = 1$.

Poiché $i(\neg P \to Q) = 1$ si hanno due possibilità:

- 1) $i(\neg P)=0.$ Allora i(P)=1, quindi $i(P\vee \neg R)=1$ e finalmente $i(R\wedge \neg Q\to P\vee \neg R)=1.$
- 2) i(Q) = 1. Allora $i(\neg Q) = 0$, quindi $i(R \land \neg Q) = 0$ da cui anche in questo caso $i(R \land \neg Q \to P \lor \neg R) = 1$.
- **2.** Se i è un'interpretazione tale che

$$i \models \{ \neg A \land B, \neg (\neg A \rightarrow \neg C), C \rightarrow A \lor \neg B \}$$

in particolare deve aversi che $i(\neg A \land B) = 1$, quindi $i(\neg A) = i(B) = 1$ e anche $i(A) = i(\neg B) = 0$. Segue che $i(A \lor \neg B) = 0$.

Poiché $i(C \to A \lor \neg B) = 1$, deve quindi aversi che i(C) = 0. Allora $i(\neg C) = 1$, per cui $i(\neg A \to \neg C) = 1$ e finalmente $i(\neg (\neg A \to \neg C)) = 0$, contraddicendo il fatto che i soddisfa l'insieme dato.

Pertanto un'interpretazione che soddisfi l'insieme dato non può esistere, cioè tale insieme è insodddisfacibile.

- 3. 1. $\exists x (C(x) \land \neg \exists y (S(y) \land U(y,x)))$
 - 2. $\exists x \exists y \exists z (C(x) \land S(y) \land S(z) \land y \neq z \land U(y,x) \land U(z,x))$
 - 3. $\forall x(S(x) \land \exists y(C(y) \land U(x,y)) \rightarrow \exists z \exists w(C(z) \land C(w) \land z \neq w \land U(x,z) \land U(x,w)))$
- 4. Sull'insieme $\mathbb{Z},$ la funzione opposto è suriettiva, la funzione di raddoppio no:

$$\varphi: \forall y \exists x f(x) = y$$