# CS1504 Artificial Intelligence A\* Search

C. Aravindan <AravindanC@ssn.edu.in>

Professor of Computing SSN College of Engineering

August 12, 2024



## Evaluating a state

- Sometimes, it may be possible to design an evaluation function f(s) that evaluates the "badness" (to be minimized) or "goodness" (to be maximized) of a state s
- In such cases, the most desirable state may be chosen from the working set
- ullet Working set is maintained as a priority queue based on the evaluation function f
- ullet Obviously, the quality of search depends on the evaluation function f

#### Heuristics

- Usually, such an evaluation function f(s) is designed based on some heuristics h(s) estimation of cost of reaching a goal state from state s
- For example, can you think of a heuristics for the route finding problem in a map? — Straight line distance (SLD) from the current city to the destination city
- Heuristics should be an easy function to compute!
- $h(s^*)$  should be 0 for any goal state  $s^*$



## Example: Route finding problem



| Straight-line distan | ce  |
|----------------------|-----|
| to Bucharest         |     |
| Arad                 | 366 |
| Bucharest            | 0   |
| Craiova              | 160 |
| Dobreta              | 242 |
| Eforie               | 161 |
| Fagaras              | 178 |
| Giurgiu              | 77  |
| Hirsova              | 151 |
| Iasi                 | 226 |
| Lugoj                | 244 |
| Mehadia              | 241 |
| Neamt                | 234 |
| Oradea               | 380 |
| Pitesti              | 98  |
| Rimnicu Vilcea       | 193 |
| Sibiu                | 253 |
| Timisoara            | 329 |
| Urziceni             | 80  |
| Vaslui               | 199 |
| Zerind               | 374 |

Find route from Arad to Bucharest



## Example: Sliding puzzle

 $\bullet$  Consider the sliding puzzle, such as

|   | 3 | 2 | 7 |
|---|---|---|---|
| 5 | 5 | 8 |   |
|   | 1 | 4 | 6 |

- What may be a good heuristics for this state space?
- $h_1(s)$ : Number of misplaced tiles for the above state  $h_1(s)=7$
- $h_2(s)$ : Sum of Manhattan distances of tiles from their goal positions for the above state  $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$
- Which heuristics is better? an estimate which is closer to the actual is always better!
- We say that  $h_2$  dominates  $h_1$
- An admissible heuristics is one which does not overestimate in our example, both  $h_1(x)$  and  $h_2(x)$  are admissible



## Example: *n*-queens problem

- What may a good heuristics for n-queens problem?
- Cost estimate: Number of pairs of queens that are attacking each other, either directly or indirectly

| 18       | 12 | 14 | 13                                           | 13 | 12 | 14 | 14                                           |
|----------|----|----|----------------------------------------------|----|----|----|----------------------------------------------|
| 14       | 16 | 13 | 15                                           | 12 | 14 | 12 | 16                                           |
| 14       | 12 | 18 | 13                                           | 15 | 12 | 14 | 14                                           |
| 15       | 14 | 14 | <b>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</b> | 13 | 16 | 13 | 16                                           |
| <u>w</u> | 14 | 17 | 15                                           |    | 14 | 16 | 16                                           |
| 17       | ₩  | 16 | 18                                           | 15 | ₩  | 15 | <b>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</b> |
| 18       | 14 | ₩  | 15                                           | 15 | 14 | w  | 16                                           |
| 14       | 14 | 13 | 17                                           | 12 | 14 | 12 | 18                                           |



## Best-first greedy search

- As a simple strategy, we may let the evaluation function f to be the same as the heuristics function h
- Nodes in the working set (priority queue) are organized based on estimated cost and the one with the least cost is given preference
- This is a generalization of greedy design strategy, that you have learnt in the previous semester

7/31

C. Aravindan (SSN) AI August 12, 2024

## Best-First Greedy: Complexities

- Is Greedy strategy complete? No! not in general
- Is it optimal? No!
- Time complexity?  $O(b^m)$
- Space complexity?  $O(b^m)$



# Questions?



#### Admissible search

 In the greedy strategy, we have used only the "future" cost estimation to choose the next best state



#### Admissible search

- In the greedy strategy, we have used only the "future" cost estimation to choose the next best state
- It may be prudent to consider evaluating a state s by the sum of cost of reaching that state s from the start state and the estimated cost of reaching a goal state from s

#### Admissible search

C. Aravindan (SSN)

- In the greedy strategy, we have used only the "future" cost estimation to choose the next best state
- It may be prudent to consider evaluating a state s by the sum of cost of reaching that state s from the start state and the estimated cost of reaching a goal state from s
- In other words f(s) = g(s) + h(s)





#### Best-first A\* search



| Straight-line distan | ce  |
|----------------------|-----|
| to Bucharest         |     |
| Arad                 | 366 |
| Bucharest            | 0   |
| Craiova              | 160 |
| Dobreta              | 242 |
| Eforie               | 161 |
| Fagaras              | 178 |
| Giurgiu              | 77  |
| Hirsova              | 151 |
| Iasi                 | 226 |
| Lugoj                | 244 |
| Mehadia              | 241 |
| Neamt                | 234 |
| Oradea               | 380 |
| Pitesti              | 98  |
| Rimnicu Vilcea       | 193 |
| Sibiu                | 253 |
| Timisoara            | 329 |
| Urziceni             | 80  |
| Vaslui               | 199 |
| Zerind               | 274 |

Find the best route from Arad to Bucharest





《中》《圖》《意》《意》





646=280+366 415=239+176 671=291+380 413=220+193







《四》《圖》《圖》《圖》







| Straight-line distan | ce  |
|----------------------|-----|
| to Bucharest         |     |
| Arad                 | 366 |
| Bucharest            | 0   |
| Craiova              | 160 |
| Dobreta              | 242 |
| Eforie               | 161 |
| Fagaras              | 178 |
| Giurgiu              | 77  |
| Hirsova              | 151 |
| Iasi                 | 226 |
|                      |     |
| Lugoj                | 244 |
| Mehadia              | 241 |
| Neamt                | 234 |
| Oradea               | 380 |
| Pitesti              | 98  |
| Rimnicu Vilcea       | 193 |
| Sibiu                | 253 |
| Timisoara            | 329 |
| Urziceni             | 80  |
| Vaslui               | 199 |
| Zerind               |     |
| Zerind               | 374 |





| Straight-line distan- | ce  |
|-----------------------|-----|
| to Bucharest          |     |
| Arad                  | 366 |
| Bucharest             | 0   |
| Craiova               | 160 |
| Dobreta               | 242 |
| Eforie                | 161 |
| Fagaras               | 178 |
| Giurgiu               | 77  |
| Hirsova               | 151 |
| Iasi                  | 226 |
| Lugoj                 | 244 |
| Mehadia               | 241 |
| Neamt                 | 234 |
| Oradea                | 380 |
| Pitesti               | 98  |
| Rimnicu Vilcea        | 193 |
| Sibiu                 | 253 |
| Timisoara             | 329 |
| Urziceni              | 80  |
| Vaslui                | 199 |
| Zerind                |     |
| Zerma                 | 374 |

Solution found: Arad  $\rightarrow$  Sibiu  $\rightarrow$  Rimnicu Vilcea  $\rightarrow$  Pitesti  $\rightarrow$  Bucharest





| Straight-line distan | ce  |
|----------------------|-----|
| to Bucharest         |     |
| Arad                 | 366 |
| Bucharest            | 0   |
| Craiova              | 160 |
| Dobreta              | 242 |
| Eforie               | 161 |
| Fagaras              | 178 |
| Giurgiu              | 77  |
| Hirsova              | 151 |
| Iasi                 | 226 |
| Lugoj                | 244 |
| Mehadia              | 241 |
| Neamt                | 234 |
| Oradea               | 380 |
| Pitesti              | 98  |
| Rimnicu Vilcea       | 193 |
| Sibiu                | 253 |
| Timisoara            | 329 |
| Urziceni             | 80  |
| Vaslui               | 199 |
|                      | 199 |

Solution found: Arad  $\rightarrow$  Sibiu  $\rightarrow$  Rimnicu Vilcea  $\rightarrow$  Pitesti  $\rightarrow$  Bucharest with total cost 418



| Straight-line distan- | ce    |
|-----------------------|-------|
| to Bucharest          |       |
| Arad                  | 366   |
| Bucharest             | 0     |
| Craiova               | 160   |
| Dobreta               | 242   |
| Eforie                | 161   |
| Fagaras               | 178   |
| Giurgiu               | 77    |
| Hirsova               | 151   |
| Iasi                  | 226   |
| Lugoj                 | 244   |
| Mehadia               | 241   |
| Neamt                 | 234   |
| Oradea                | 380   |
| Pitesti               | 98    |
| Rimnicu Vilcea        | 193   |
| Sibiu                 | 253   |
| Timisoara             | 329   |
| Urziceni              | 80    |
| Vaslui                | 199   |
| Zerind                | 374   |
|                       | - , , |

Solution found: Arad  $\rightarrow$  Sibiu  $\rightarrow$  Rimnicu Vilcea  $\rightarrow$  Pitesti  $\rightarrow$  Bucharest with total cost 418

Does  $A^*$  work?





| Straight-line distan | ce  |
|----------------------|-----|
| to Bucharest         |     |
| Arad                 | 366 |
| Bucharest            | 0   |
| Craiova              | 160 |
| Dobreta              | 242 |
| Eforie               | 161 |
| Fagaras              | 178 |
| Giurgiu              | 77  |
| Hirsova              | 151 |
| Iasi                 | 226 |
| Lugoj                | 244 |
| Mehadia              | 241 |
| Neamt                | 234 |
| Oradea               | 380 |
| Pitesti              | 98  |
| Rimnicu Vilcea       | 193 |
| Sibiu                | 253 |
| Timisoara            | 329 |
| Urziceni             | 80  |
| Vaslui               | 199 |
| Zerind               | 374 |
|                      | 0,, |

Solution found: Arad  $\rightarrow$  Sibiu  $\rightarrow$  Rimnicu Vilcea  $\rightarrow$  Pitesti  $\rightarrow$  Bucharest with total cost 418

Does  $A^*$  work? — Yes!

• A heuristic h is admissible if for every node n,  $h(n) \le h^*(n)$ , where  $h^*(n)$  is the **true** cost to reach the goal state from n.



- A heuristic h is admissible if for every node n,  $h(n) \le h^*(n)$ , where  $h^*(n)$  is the **true** cost to reach the goal state from n.
- In other words,  $f(n) = g(n) + h(n) \le C^*$ , where  $C^*$  is the optimal path cost

- A heuristic h is admissible if for every node n,  $h(n) \le h^*(n)$ , where  $h^*(n)$  is the **true** cost to reach the goal state from n.
- In other words,  $f(n) = g(n) + h(n) \le C^*$ , where  $C^*$  is the optimal path cost
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is always optimistic

- A heuristic h is admissible if for every node n,  $h(n) \le h^*(n)$ , where  $h^*(n)$  is the **true** cost to reach the goal state from n.
- In other words,  $f(n) = g(n) + h(n) \le C^*$ , where  $C^*$  is the optimal path cost
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is always optimistic
- The SLD heuristics and the two heuristics for sliding puzzle problem are examples of admissible heuristics



19 / 31

C. Aravindan (SSN) AI August 12, 2024

• A heuristics is consistent if for every node n,  $h(n) \le c(n, a, n') + h(n')$ , where n' is a successor of n generated by some action a



• A heuristics is consistent if for every node n,  $h(n) \le c(n, a, n') + h(n')$ , where n' is a successor of n generated by some action a





• When h is consistent, we can infer the following

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$



When h is consistent, we can infer the following

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$

 That means, evaluation function f is monotonic — it is non-decreasing along any path





When h is consistent, we can infer the following

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$

- That means, evaluation function f is monotonic it is non-decreasing along any path
- Every consistent heuristics is also admissible



## $A^*$ is optimal

#### Theorem

When h is an admissible heuristics,  $A^*$  using TREE-SEARCH is optimal

## $A^*$ is optimal

#### Theorem

When h is an admissible heuristics,  $A^*$  using TREE-SEARCH is optimal

ullet Suppose a sub-optimal goal  $G_2$  is generated and is in the frontier

# $A^*$ is optimal

#### Theorem

When h is an admissible heuristics,  $A^*$  using TREE-SEARCH is optimal

- Suppose a sub-optimal goal  $G_2$  is generated and is in the frontier
- Let G be an optimal goal. There must be some node n in the frontier that leads to G

22 / 31

C. Aravindan (SSN) AI August 12, 2024

#### Theorem

When h is an admissible heuristics,  $A^*$  using TREE-SEARCH is optimal

- Suppose a sub-optimal goal  $G_2$  is generated and is in the frontier
- Let G be an optimal goal. There must be some node n in the frontier that leads to G
- ullet We need to prove that  $A^*$  selects n ahead of  $G_2$  from the frontier





• 
$$f(G_2) = g(G_2)$$





• 
$$f(G_2) = g(G_2)$$

• 
$$f(G) = g(G)$$





• 
$$f(G_2) = g(G_2)$$

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$





• 
$$f(G_2) = g(G_2)$$

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G_2) > f(G)$$





• 
$$f(G_2) = g(G_2)$$

 $G \bigcirc$ 

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G_2) > f(G)$$

$$g(n) + h(n) \leq C^*$$



• 
$$f(G_2) = g(G_2)$$

 $G \bigcirc$ 

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G_2) > f(G)$$

• 
$$g(n) + h(n) \le C^*$$

• 
$$f(n) \leq g(G)$$



• 
$$f(G_2) = g(G_2)$$

 $G \bigcirc$ 

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G_2) > f(G)$$

• 
$$g(n) + h(n) \le C^*$$

• 
$$f(n) \leq g(G)$$

• 
$$f(n) \leq f(G)$$



August 12, 2024



• 
$$f(G_2) = g(G_2)$$

 $G \bigcirc$ 

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G_2) > f(G)$$

• 
$$g(n) + h(n) \le C^*$$

• 
$$f(n) \leq g(G)$$

• 
$$f(n) \leq f(G)$$

• 
$$f(n) < f(G_2)$$





• 
$$f(G_2) = g(G_2)$$

• 
$$f(G) = g(G)$$

• 
$$g(G_2) > g(G)$$

• 
$$f(G_2) > f(G)$$

Hence  $A^*$  selects n ahead of  $G_2$ 

• 
$$g(n) + h(n) \leq C^*$$

• 
$$f(n) \leq g(G)$$

• 
$$f(n) \leq f(G)$$

$$\bullet \ f(n) < f(G_2)$$



#### Theorem

When h is a consistent heuristics,  $A^*$  using GRAPH-SEARCH is optimal

#### Theorem

When h is a consistent heuristics,  $A^*$  using GRAPH-SEARCH is optimal

• Suppose n' is a successor of n. From consistency property, we know that  $f(n') \ge f(n)$ 



#### Theorem

When h is a consistent heuristics,  $A^*$  using GRAPH-SEARCH is optimal

- Suppose n' is a successor of n. From consistency property, we know that  $f(n') \ge f(n)$
- Suppose  $A^*$  selects n for expansion, then optimal path to n has been found



#### Theorem

When h is a consistent heuristics,  $A^*$  using GRAPH-SEARCH is optimal

- Suppose n' is a successor of n. From consistency property, we know that  $f(n') \ge f(n)$
- Suppose  $A^*$  selects n for expansion, then optimal path to n has been found otherwise, there must be another node m in the frontier that leads to n, and f(m) < f(n)

#### **Theorem**

When h is a consistent heuristics,  $A^*$  using GRAPH-SEARCH is optimal

- Suppose n' is a successor of n. From consistency property, we know that  $f(n') \ge f(n)$
- Suppose  $A^*$  selects n for expansion, then optimal path to n has been found otherwise, there must be another node m in the frontier that leads to n, and f(m) < f(n)
- It follows from these two observations that the first goal state found by A\* must be optimal



C. Aravindan (SSN) AI August 12, 2024 24/31





- If  $C^*$  is the optimal cost, then
  - $A^*$  expands all nodes with  $f(n) \leq C^*$
  - $A^*$  might expand some nodes where  $f(n) = C^*$
  - $A^*$  expands no nodes with  $f(n) > C^*$





- If C\* is the optimal cost, then
  - $A^*$  expands all nodes with  $f(n) \leq C^*$
  - $A^*$  might expand some nodes where  $f(n) = C^*$
  - $A^*$  expands no nodes with  $f(n) > C^*$
- This implies that  $A^*$  is complete if there are only finitely many nodes with f-cost less than  $C^*$





- If  $C^*$  is the optimal cost, then
  - $A^*$  expands all nodes with  $f(n) \leq C^*$
  - $A^*$  might expand some nodes where  $f(n) = C^*$
  - $A^*$  expands no nodes with  $f(n) > C^*$
- This implies that  $A^*$  is complete if there are only finitely many nodes with f-cost less than  $C^*$
- Since no nodes with  $f(n) > C^*$  need to be expanded, pruning is implicit

• A\* is optimal with admissible heuristics



- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists



- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$

- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?



- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?  $O(b^{\Delta})$  in general, where the absolute error  $\Delta = h^* h$  (where  $h^*$  is the actual cost) —

- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?  $O(b^{\Delta})$  in general, where the absolute error  $\Delta = h^* h$  (where  $h^*$  is the actual cost) it may also be expressed in terms of relative error,  $\epsilon = (h^* h)/h^*$ , as  $O(b^{\epsilon d})$  —

- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?  $O(b^{\Delta})$  in general, where the absolute error  $\Delta = h^* h$  (where  $h^*$  is the actual cost) it may also be expressed in terms of relative error,  $\epsilon = (h^* h)/h^*$ , as  $O(b^{\epsilon d})$  however, it is fast, in practice, when good heuristics are used

C. Aravindan (SSN) AI August 12, 2024 26 / 31

- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?  $O(b^{\Delta})$  in general, where the absolute error  $\Delta = h^* h$  (where  $h^*$  is the actual cost) it may also be expressed in terms of relative error,  $\epsilon = (h^* h)/h^*$ , as  $O(b^{\epsilon d})$  however, it is fast, in practice, when good heuristics are used
- Space complexity?



- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?  $O(b^{\Delta})$  in general, where the absolute error  $\Delta = h^* h$  (where  $h^*$  is the actual cost) it may also be expressed in terms of relative error,  $\epsilon = (h^* h)/h^*$ , as  $O(b^{\epsilon d})$  however, it is fast, in practice, when good heuristics are used
- Space complexity? same as that of time complexity (every generated node needs to be kept in memory) worst-case space requirement is similar to that of breadth-first search



- A\* is optimal with admissible heuristics
- $A^*$  is, in general, complete that is, it finds a solution, if exists
- $A^*$  is optimally efficient no other optimal algorithm is guaranteed to expand fewer nodes than  $A^*$
- Time complexity?  $O(b^{\Delta})$  in general, where the absolute error  $\Delta = h^* h$  (where  $h^*$  is the actual cost) it may also be expressed in terms of relative error,  $\epsilon = (h^* h)/h^*$ , as  $O(b^{\epsilon d})$  however, it is fast, in practice, when good heuristics are used
- Space complexity? same as that of time complexity (every generated node needs to be kept in memory) — worst-case space requirement is similar to that of breadth-first search — memory bounded strategies have been proposed to overcome this



• For some problems, performance of  $A^*$  may not be OK, as it may expand exponentially many nodes before finding a solution



- For some problems, performance of  $A^*$  may not be OK, as it may expand exponentially many nodes before finding a solution
- In such cases, satisficing search may be considered, where we may trade-off on the quality of the solution

- For some problems, performance of  $A^*$  may not be OK, as it may expand exponentially many nodes before finding a solution
- In such cases, satisficing search may be considered, where we may trade-off on the quality of the solution
- Basically, we may permit inadmissible heuristics that may overestimate and take the risk of missing the optimal solution

- For some problems, performance of  $A^*$  may not be OK, as it may expand exponentially many nodes before finding a solution
- In such cases, satisficing search may be considered, where we may trade-off on the quality of the solution
- Basically, we may permit inadmissible heuristics that may overestimate and take the risk of missing the optimal solution
- For example, we may multiply the straight line distance heuristics by what is known as detour index (engineers normally use a detour index in the range of 1.2 and 1.6)

C. Aravindan (SSN) AI August 12, 2024 27 / 31

- For some problems, performance of  $A^*$  may not be OK, as it may expand exponentially many nodes before finding a solution
- In such cases, satisficing search may be considered, where we may trade-off on the quality of the solution
- Basically, we may permit inadmissible heuristics that may overestimate and take the risk of missing the optimal solution
- For example, we may multiply the straight line distance heuristics by what is known as detour index (engineers normally use a detour index in the range of 1.2 and 1.6)
- This idea can be generalized as weighted  $A^*$  search, that uses an evaluation function  $f(n) = g(n) + W \times h(n)$  for some W > 1



C. Aravindan (SSN) Al August 12, 2024 27 / 31

# Satisficing Search — Illustration



 A\* explores several nodes to find an optimal solution in a grid world problem



# Satisficing Search — Illustration



• Weighted  $A^*$ , with W=2, explores comparatively lesser nodes to find a solution that is 5% costlier, in the same instance of grid world problem

#### Bounded sub-optimal search

- Weighted  $A^*$  is an example of a bounded sub-optimal search, where the cost of a solution found is bounded by  $W \times C^*$ , where  $C^*$  is the optimal cost
- Sometimes, it may be required to opt for a bounded cost search, whereby we try to find quickly a solution whose cost does not exceed some prefixed cost C
- If nothing works, sometimes we may for unbounded-cost search whereby we try to quickly find some solution.

# Questions?

