EE6367: Topics in Data Storage and Communications

2023

Lecture 10: 27 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

10.1 Unbiased Estimation in DRIVE

Claim 10.1. If **R** is a uniform random rotation and $s = \frac{\|\mathbf{x}\|_2}{\|\mathbf{R}\mathbf{x}\|_1}$, then DRIVE is unbiased.

Proof. We want to show that $\mathbb{E}\left[\hat{\mathbf{X}}\right] = \mathbf{x} \ \forall \mathbf{x} \in \mathbb{R}^d$. Consider

$$\mathbf{x}' = \begin{pmatrix} r & 0 & \dots & 0 \end{pmatrix}^{\mathsf{T}} \tag{10.1}$$

where $r = \|\mathbf{x}\|_2$. Note that any vector \mathbf{x} can be rotated to \mathbf{x}' , call the rotation matrix $\mathbf{R}_{\mathbf{x} \to \mathbf{x}'}$. We see immediately that

$$\mathbf{R}_{\mathbf{x} \to \mathbf{x}'} = \mathbf{R}_{\mathbf{x}' \to \mathbf{x}}^{-1}.\tag{10.2}$$

Now,

$$\hat{\mathbf{X}} = s\mathbf{R}^{\top} \operatorname{sign}\left(\mathbf{R}\mathbf{x}\right) \tag{10.3}$$

$$= s\mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} \mathbf{R}_{\mathbf{x} \to \mathbf{x}'} \mathbf{R}^{\top} \operatorname{sign} \left(\mathbf{R} \mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} \mathbf{R}_{\mathbf{x} \to \mathbf{x}'} \mathbf{x} \right)$$
(10.4)

$$= s\mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} \mathbf{R}_{\mathbf{x}}^{\mathsf{T}} \operatorname{sign} \left(\mathbf{R}_{\mathbf{x}} \mathbf{x}' \right) \tag{10.5}$$

(10.6)

where we define

$$\mathbf{R}_{\mathbf{x}} \triangleq \mathbf{R} \mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} = \begin{pmatrix} \mathbf{r}_{\mathbf{x}}^{(1)} & \dots & \mathbf{r}_{\mathbf{x}}^{(d)} \end{pmatrix}. \tag{10.7}$$

By (10.1), we have

$$\mathbf{R}_{\mathbf{x}}\mathbf{x}' = \|\mathbf{x}\|_{2} \mathbf{r}_{\mathbf{x}}^{(1)}. \tag{10.8}$$

Define

$$\mathbf{y} \triangleq \operatorname{sign}\left(\mathbf{R}_{\mathbf{x}}\mathbf{x}'\right).$$
 (10.9)

Thus,

$$\mathbf{R}_{\mathbf{x}}^{\top}\mathbf{y} = \left(\langle \mathbf{r}_{\mathbf{x}}^{(1)} \rangle \dots \langle \mathbf{r}_{\mathbf{x}}^{(d)} \rangle \right)^{\top}.$$
 (10.10)

But

$$s = \frac{\left\|\mathbf{x}\right\|_{2}^{2}}{\left\|\mathbf{R}\mathbf{x}\right\|_{1}} \tag{10.11}$$

$$=\frac{\left\|\mathbf{x}\right\|_{2}^{2}}{\left\|\mathbf{R}_{\mathbf{x}}\mathbf{x}'\right\|_{1}}\tag{10.12}$$

$$= \frac{\|\mathbf{x}\|_{2}^{2}}{\langle \mathbf{R}_{\mathbf{x}}, \operatorname{sign}(\mathbf{R}_{\mathbf{x}}\mathbf{x}') \rangle}$$
(10.13)

$$= \frac{\|vecx\|_2^2}{\langle \mathbf{R}_{\mathbf{x}} \mathbf{x}', \mathbf{y} \rangle} \tag{10.14}$$

$$= \frac{\|vecx\|_2}{\langle \mathbf{r}_{\mathbf{x}}^{(1)}, \mathbf{y} \rangle} \tag{10.15}$$

Thus,

$$\hat{\mathbf{X}} = \mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} \|\mathbf{x}\|_{2} \begin{pmatrix} \langle \mathbf{r}_{\mathbf{x}}^{(1)} \rangle & \dots & \langle \mathbf{r}_{\mathbf{x}}^{(d)} \rangle \\ \langle \mathbf{r}_{\mathbf{x}}^{(1)} \rangle & \dots & \langle \mathbf{r}_{\mathbf{x}}^{(d)} \rangle \end{pmatrix}^{\top}.$$
 (10.16)

If $\mathbf{y} = \mathbf{r}_{\mathbf{x}}^{(1)}$, then we would have

$$\hat{\mathbf{X}} = \mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} \|\mathbf{x}\|_2 \, \mathbf{e}_1 = \mathbf{x}. \tag{10.17}$$

Define

$$\bar{\mathbf{R}}_{\mathbf{x}} \triangleq \mathbf{R} \operatorname{diag} (-1, 1, \dots, 1) \, \mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1}$$
 (10.18)

Thus, if we use $\bar{\mathbf{R}}_{\mathbf{x}}$ instead, we would get

$$\hat{\mathbf{X}}'' = \mathbf{R}_{\mathbf{x} \to \mathbf{x}'}^{-1} \|\mathbf{x}\|_{2} \begin{pmatrix} 1 & -\frac{\langle \mathbf{r}_{\mathbf{x}}^{(2)} \rangle}{\langle \mathbf{r}_{\mathbf{x}}^{(1)} \rangle} & \dots -\frac{\langle \mathbf{r}_{\mathbf{x}}^{(d)} \rangle}{\langle \mathbf{r}_{\mathbf{x}}^{(1)} \rangle} \end{pmatrix}^{\top}.$$
 (10.19)

We see that

$$\mathbb{E}\left[\hat{\mathbf{X}}''\right] = \mathbb{E}\left[\hat{\mathbf{X}}\right] \tag{10.20}$$

$$\mathbb{E}\left[\hat{\mathbf{X}}'' + \hat{\mathbf{X}}\right] = 2\mathbf{x} \tag{10.21}$$

which implies that

$$\mathbb{E}\left[\hat{\mathbf{X}}\right] = \mathbf{x} \tag{10.22}$$

We generalize this scheme.

Claim 10.2. Suppose we replace sign $(\mathbf{R}\mathbf{x})$ with any scalar quantizer $Q(\mathbf{R}\mathbf{x})$, and take

$$s = \frac{\|\mathbf{x}\|_{2}^{2}}{\langle \mathbf{R}\mathbf{x}, Q(\mathbf{R}\mathbf{x}) \rangle}.$$
 (10.23)

Then, DRIVE is unbiased with $MSE = \Theta\left(\|\mathbf{x}\|_{2}^{2}\right)$.

However, if structured random rotation is used, then we cannot make the scheme unbiased by choosing s.

Note that if **R** is a uniform random rotation or a structured random rotation, then $\mathbf{y}_i = \mathbf{R}\mathbf{x}_i$ is approximately Gaussian distributed for all i identically. That is,

$$|F_{Y_i}(y) - F_G(y)| \to 0 \ d \to \infty \ \forall y \in \mathbb{R}$$
 (10.24)