Modelagem do problema de fluxo de carga

Sistemas Elétricos de Potência II

Modelagem dos principais componentes de um sistema elétrico de potência

• Potência natural ou Surge Impedance Loading (SIL)

$$SIL[W] = \frac{V_{no \, \text{min} \, al}^2}{Z_C}$$

- A potência natural da linha (SIL) é a potência real (com fator de potência unitário) na condição em que a potência Mvar absorvida é igual à potência Mvar produzida
- V_{2nominal} = Tensão elétrica nominal é a tensão elétrica no terminal receptor, normalmente expressa em volts (V) ou quilovolts (kV), para a qual uma instalação ou equipamento elétrico é projetado
- Z_C : impedância característica da linha

(continua)

Fonte: [2, 3]

$$Z_0 = \sqrt{\frac{l}{c}}$$

- \bullet Z $_0$: impedância de surto ou impedância natural da linha, em uma linha sem perdas e puramente resistiva
- Como a resistência e condutância da LT são pequenos com relação aos demais parâmetros (indutância (l) e capacitância (c)), a impedância característica (Z_C) pode ser considerada igual à impedância natural da LT (Z_0): $Z_C = Z_0$

• Exemplo de uso do SIL

Figura 1.4 | Perfil de tensão ao longo da linha de transmissão em função do carregamento

• A <u>potência reativa</u> que flui em uma linha <u>sem perdas</u> operando à <u>potência natural</u> é nula, e a potência real permanece constante entre os terminais do transmissor e receptor

Análise do SIL e do perfil de tensão

Figura 1.4 | Perfil de tensão ao longo da linha de transmissão em função do carregamento

• A <u>potência natural</u> (SIL) é a potência que uma LT <u>ideal</u> fornece uma carga de valor igual ao da impedância característica (Z_C) da LT

Figura 1.4 | Perfil de tensão ao longo da linha de transmissão em função do carregamento

- Quando a potência da carga possui o mesmo valor da SIL e a resitividade da linha é considerada desprezível, as perdas por potência ativa são eliminadas e não existe queda de tensão ao longo da LT (linha azul)
- Neste caso existe equilíbrio entre a potência reativa (capacitiva) gerada e a potência reativa (indutiva) consumida

Figura 1.4 | Perfil de tensão ao longo da linha de transmissão em função do carregamento

- Quando a potência da carga > SIL, a corrente que passa pela linha aumenta provocando aumento do consumo de reativo
- Como a tensão no extremo receptor se mantém a mesma, a demanda de reativos será suprida pelo extremo emissor, provocando um aumento da tensão na barra de geração e o perfil de tensão decresce até atingir a tensão nominal no extremo receptor

Figura 1.4 | Perfil de tensão ao longo da linha de transmissão em função do carregamento

- Quando a potência da carga < SIL, a corrente que passa pela linha diminui, diminuindo o consumo de reativos na linha
- A injeção de reativos pelo capacitor shunt do receptor se mantém a mesma
- O emissor diminui a geração de reativos injetados na rede, causando a diminuição na tensão da barra de geração

Valores típicos de SIL

Tabela 2-1 - Valores típicos de impedância de surto e potência natural para linhas aéreas trifásicas em 60 Hz (Bezerra, 1998)

Vnom (kV)	$Z_C = \sqrt{l/c}$ (\O)	$SIL = V^2 nom / Z_C (MW)$
69	366-400	12-13
138	366-405	47-120
230	365-395	134-145
345	280-366	325-425
500	233-294	850-1075
765	254-266	2200-2300

Modelos de LT

Quadro 1.3 | Modelo de linhas de transmissão no modelo $\,\pi\,$

Modelo de linhas curtas	Modelo de linhas médias	Modelos de linhas longas	
*	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & \\ \hline \end{array}$	$ \begin{array}{c c} k & Z \frac{senh(\gamma\ell)}{\gamma\ell} & m \\ \hline & Y \tanh(\gamma\ell/2) \\ \hline & Y^{\ell/2} & T \end{array} $	
Comprimento até 80km	Comprimento entre 80 e 240 km	Comprimento acima de 240 km	

• Grandezas elétricas (como tensão, corrente, potência e impedância) expressas por unidade (pu)

 Y_{sh} = admitância shunt

l = comprimento da linha

γ = constante de propagação da linha

Z_C = impedância característica da linha (ou impedância surge)

• • •

$$\gamma = \mathbf{j}\omega\sqrt{LC}$$

$$Z_C = \sqrt{\frac{L}{C}}$$

constante de propagação

impedância característica

- Parâmetros de indutância (L) e capacitância (C) são características da linha
- A constante de propagação é imaginária pura
- A impedância característica para uma linha sem perdas é real pura

Modelo da LT

- Para fins de implementação do fluxo de carga, o modelo de linhas longas é pouco utilizado
- O modelo π para linhas médias é normalmente adotado

- O modelo de linhas médias é prático pois no caso de linhas curtas basta anular o valor das susceptâncias shunt, e no caso das linhas longas a variação dos valores geralmente é pequena
- Porém é sempre bom avaliar os modelos para ter certeza qual se encaixa melhor no problema que se está resolvendo
- Uma linha longa pode ser facilmente implementada como uma associação em série de linhas médias

Programa de fluxo de carga

- Praticidade de implementação de matrizes
- É preferível representar o parâmetro série a partir de uma admitância série:

$$y_{km} = z_{km}^{-1} = g_{km} + jb_{km} = \frac{r_{km}}{r_{km}^2 + x_{km}^2} - j\frac{x_{km}}{r_{km}^2 + x_{km}^2}$$

admitância série impedância série condutância série susceptância shunt resistência série reatância série

Tensão complexa na barra k

Fluxos de corrente na LT

do slide 11:
$$y_{km} = z_{km}^{-1} = g_{km} + jb_{km} = \frac{r_{km}}{r_{km}^2 + x_{km}^2} - j\frac{x_{km}}{r_{km}^2 + x_{km}^2}$$

Fluxos de potência complexa

$$S_{km} = P_{km} + jQ_{km} = \hat{E}_k \hat{I}_{km}^*$$

$$S_{mk} = P_{mk} + jQ_{mk} = \hat{E}_m \hat{I}_{mk}^*$$

Potência aparente Potência ativa Potência reativa Tensão complexa Fluxo de corrente

Transformador trifásico

- Tipos de ligação: estrela-estrela ($\frac{Y-Y}{Y}$), delta-delta ($\frac{\Delta-\Delta}{\Delta}$), estrela-delta ($\frac{Y-\Delta}{Y-\Delta}$) e delta-estrela ($\frac{\Delta-Y}{Z}$
- Nas conexões de mesma configuração do lado de alta e baixa, ou seja, estrela-estrela ou delta-delta, não há desfasamento entre as fases
- Quando as configurações são distintas (estrela-delta ou delta-estrela), há uma defasagem de 30° em relação ao lado de alta para o lado de baixa, o lado de alta estará 30° adiantado em relação ao lado de baixa

Transformador trifásico

Representação genérica do transformador

- Transformador ideal em série com uma admitância
- p : é uma barra imaginária
- 1: $\alpha e^{j\phi}$: relação de transformação complexa

Transformador em fase e defasador

$$\hat{E}_p = \alpha e^{j\varphi} \hat{E}_k$$

• Transformador em fase

$$\alpha > 0$$
 e $\varphi = 0$

Transformador defasador

$$\alpha = 1 e \varphi \neq 0$$

Outra forma de representar

p barra intermediária fictícia

 y_{km} admitância série

t posição do tap

Fluxos de corrente no transformador

• Transformadores em fase, com ângulo de defasagem nulo:

$$\begin{split} \hat{I}_{km} &= -\alpha y_{km} \left(\hat{E}_m - \hat{E}_p \right) = \left(\alpha^2 y_{km} \right) \hat{E}_k + \left(-\alpha y_{km} \right) \hat{E}_m \\ \hat{I}_{mk} &= y_{km} \left(\hat{E}_m - \hat{E}_p \right) = \left(-\alpha y_{km} \right) \hat{E}_k + y_{km} \hat{E}_m \end{split}$$

α : denominador da relação de transformação

φ : ângulo de defasagem

$$\hat{E}_{p} = \alpha e^{j\varphi} \hat{E}_{k}$$

Modelo de um quadripolo no modelo π

representação na forma de matriz

$$\begin{bmatrix} \hat{I}_{km} \\ \hat{I}_{mk} \end{bmatrix} = \begin{bmatrix} A+B & -A \\ -A & A+C \end{bmatrix} \begin{bmatrix} \hat{E}_{k} \\ \hat{E}_{m} \end{bmatrix}$$

$$\hat{I}_{km} = (A+B)\hat{E}_k + (-A)\hat{E}_m$$

$$\hat{I}_{mk} = (-A)\hat{E}_k + (A+C)\hat{E}_m$$

equação vista no slide 24:

$$\hat{I}_{km} = -\alpha y_{km} \left(\hat{E}_m - \hat{E}_p \right) = \left(\alpha^2 y_{km} \right) \hat{E}_k + \left(-\alpha y_{km} \right) \hat{E}_m$$

$$\hat{I}_{mk} = y_{km} \left(\hat{E}_m - \hat{E}_p \right) = \left(-\alpha y_{km} \right) \hat{E}_k + y_{km} \hat{E}_m$$

Representações

 $C = (1-\alpha)y_{km}$ relação de transformação, ou para simplificar, só "relação de transformação"

$$A = \alpha y_{km}$$

$$B = \alpha(\alpha - 1)y_{km}$$

$$C = (1 - \alpha) y_{km}$$

- Se α =1 \rightarrow B=C=0, o circuito equivalente se reduz à admitância série
- Se α < 1 → B terá sinal oposto ao da admitância série e portanto terá efeito capacitivo, enquanto C terá efeito indutivo, resultando em um aumento da tensão na barra k e queda na tensão da barra m
- Se α > 1 → C terá sinal oposto ao da admitância série e portanto terá efeito capacitivo, enquanto B terá efeito indutivo, resultando em uma queda na tensão da barra k e aumento da tensão na barra m

Transformador defasador puro

• Aquele que só afeta a relação entre as fases das tensões do primário e secundário sem interferir na magnitude (α =1)

Parâmetros α_{km} , φ_{km} e b_{km}^{sh}

(relação de transfomação, defasagem, susceptância shunt)

Linha de transmissão: $\alpha_{km} = 1$, $\varphi_{km} = 0$

Transformador: $\alpha_{km} \neq 0$ e $b_{km}^{sh} = 0$

Transformador em fase: $\alpha_{km} \neq 0$, $\varphi_{km} = 0$ e $b_{km}^{sh} = 0$

Transformador defasador puro: $\alpha_{km} = 1$, $\varphi_{km} \neq 0$ e $b_{km}^{sh} = 0$

Algumas grandezas relacionadas às barras

- V_k : módulo de tensão na barra
- θ_k : ângulo da tensão na barra
- P_k : potência ativa injetada na barra
- Q_k : potência reativa injetada na barra

Tipos de barras

 θ = teta

- Barra de referência ou barra $V\theta$ (ou ainda barra swing ou barra slack), sempre que servir como base de referência para tensão, tanto em módulo quanto em ângulo (V_k e θ_k), essa barra é responsável por equilibrar o balanço de potência no sistema
- Barra de carga ou barra PQ, é aquela na qual as grandezas conhecidas são apenas potência ativa (P_k) e potência reativa (Q_k). Nesse caso, não há controle de tensão na barra, sendo necessário calcular esse valor (V_k e θ_k)
- Barra de tensão ou barra PV, é aquela na qual se conhece os valores de potência ativa (P_k) e módulo de tensão (V_k). Esse tipo de barra costuma conter dispositivos de controle, como geradores e compensadores síncronos, com função de manter as grandezas conhecidas constantes

Tipos de barras

- Barra remota ou barra PQV, consiste em uma barra de carga PQ com a inclusão de algum controle de tensão. Nessa barra as grandezas conhecidas são potência ativa, potência reativa e módulo de tensão (P_k , Q_K e V_k)
- Barra de controle ou barra P, é aquela na qual se conhece apenas a potência ativa (P_k) e serve para controlar a tensão de barras remotas
- Barra θ , é aquela onde o valor conhecido é a referência angular de tensão (θ_k)

Exemplo (p. 9, 18 a 20)

• Dada a tabela:

Tabela 1.1 | Valores para uma linha de 400 km de extensão desprezando a resistência série

	Modelo de linha curta	Modelo de linha média	Modelo de linha longa
Tensão no receptor [kV]	500,00∡0,00°	500,00∡0,00°	500,00∡0,00°
Corrente no recep- tor [A]	1154,65∡ – 36,87°	1154,65∡ – 36,87°	1154,65∡ – 36,87°
Potência no recep- tor [MVA]	800,00+j600,00	800,00+j600,00	800,00+j600,00
Tensão no emissor [kV]	599,54∡19,10°	655,32∡20,92°	646,27∡20,30°
Corrente no emis- sor [A]	1154,70∡−36,86°	818,00∠−9,57°	818,97∡−8,90°
Potência no emissor [MVA]	800,00+j1185,51	800,00+j471,20	800,00+j447,68

Exemplo

- Analisar a relação entre a tensão e a corrente em uma linha de transmissão (LT) trifásica
- Dados:
 - 400 km de extensão
 - Tensão no terminal receptor de 500 kV
 - Indutância de 0,97 mH/km/fase
 - Capacitância em derivação em paralelo de 0,0115 µF/km/fase
 - Carga de 800 MW com fator de potência de 0,8 em atraso(indutivo)
 - Resistência série de 5% do valor da reatância série

Análise do problema

- Para uma linha de 400 km o modelo deveria ser o de linhas longas, porém é mais simples se o modelo de linhas médias puder ser usado
- No modelo de linha curta a diferença do módulo da corrente se aproximou de 40% e a da potência reativa ultrapassou 60%, mostrando que este modelo não seria o mais adequado
- No modelo de linha média as variações foram menores e portanto pode ser usada, dependendo da precisão desejada
- Existe também o artifício de quebrar as linhas longas em duas ou mais linhas médias em série, implementando barras fictícias
- A resistência série é muito pequena em relação ao restante do sistema, podendo ser desprezada