

SPM@TESTES

Teste de Matemática 11.º ano

2022

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

A prova é formada por itens de escolha múltipla e de resposta restrita. Os critérios de classificação dos itens de resposta restrita estão organizados por etapas, atribuindo-se, a cada uma delas, uma pontuação.

Caso os alunos adotem um processo não previsto nos critérios específicos, cabe ao professor corretor adaptar a distribuição da cotação atribuída.

Deve ser atribuída a classificação de zero pontos nas seguintes situações:

- Caso um aluno apresente apenas o resultado final de um item, ou de ma etapa, quando é pedida a apresentação de cálculos ou justificações;
- Caso o aluno utilize de forma inequívoca a calculadora, uma vez que tal não é solicitado nesta prova.

Nas seguintes situações deve descontar-se um ponto às cotações estabelecidas para a etapa respetiva:

- Ocorrência de um erro de cálculo;
- Apresentação de uma resposta com o formato que não esteja de acordo com o que foi solicitado;
- Apresentação de expressões com erros do ponto de vista formal.

Caso ocorram erros que revelem desconhecimento de conceitos, de regras ou de propriedades ou o aluno apresente uma resolução incompleta de uma etapa, deve descontar-se até metade da cotação dessa etapa.

CRITÉRIOS ESPECÍFICOS DE CLASSIFICAÇÃO

Questão	1.1	1.2	2.1	2.2	3	4	5	6	7	8	9	10.1	10.2	10.3	11	12
Cotação	16	14	16	8	16	16	8	8	14	16	8	14	16	14	8	8

	Item	Descrição	Cotaç	ão
1.			-	30
	1.1.		16	
		ullet Indicar as coordenadas do ponto A , em função de $lpha$ 2 pontos		
		• Indicar as coordenadas do ponto \mathcal{C} , em função de α 2 pontos		
		• Indicar as coordenadas do ponto D , em função de $lpha$ 2 pontos		
		• Escrever $\overline{AB} + \overline{DC}$, em função de α		
		• Escrever \overline{AD} , em função de α 3 pontos		
		Obter a expressão pretendida 5 pontos		
	1.2.		14	
		• Concluir que $\sin\left(-\frac{\pi}{2} + \beta\right) = -\cos\beta$ 3 pontos		
		• Obter $\cos \beta = \frac{1}{3}$		
		• Relacionar $\tan \beta$ com $\cos \beta$		
		• Obter $\tan \beta = 2\sqrt{2}$		
		• Obter $\frac{\sqrt{2}}{72}$ (ou equivalente) como resposta ao problema 3 pontos		
2.				24
	2.1.		16	
		• Escrever $f(x) = 0$		
		• Escrever $cos(2x) = -cos x$ 1 ponto		
		• Escrever $cos(2x) = cos(\pi - x)$ (ou equivalente) 4 pontos		
		• Obter as abcissas dos pontos $A, B \in C\left(\frac{\pi}{3}, \pi \in \frac{5\pi}{3}\right)$ 10 pontos		
	2.2.	Versão 1 – (D); Versão 2 – (C)	8	
3.				16
		• Reconhecer que as coordenadas do ponto C são do tipo $(x,0)$, com		
		$x \in \mathbb{R}^+$		
		ullet Reconhecer que um vetor diretor da reta t é, por exemplo, o vetor		
		de coordenadas $\vec{t}(1,-1)$ 3 pontos		
		• Escrever $\overrightarrow{CT} \cdot \overrightarrow{t} = 0$		
		• Obter $x = 3$ e portanto $C(3,0)$		
		Determinar o raio da circunferência 3 pontos		
		• Obter a equação da circunferência $((x-3)^2 + y^2 = 2)$ 3 pontos		
		. , , , , , , , , , , , , , , , , , , ,		
		AÇÃO TOTAL OU DADOIAL DOD QUALQUED MEIO. O DESSENTE ENLINICIADO É DEODDIEDADE DA SOCIEDADE DODTUCUESA DE MAT	<u>L</u>	

4.			1	L6
		• Reconhecer que as coordenadas do ponto B são do tipo $(x, 0, 0)$,		
		$\operatorname{com} x \in \mathbb{R}^-$ 1 ponto		
		• Obter <i>B</i> (−4,0,0) 3 pontos		
		$ullet$ Sendo $ec{n}$ um vetor normal ao plano AOB escrever		
		$\vec{n} \cdot \overrightarrow{OA} = 0 \wedge \vec{n} \cdot \overrightarrow{OB} = 0$ 3 pontos		
		• Obter $\vec{n}(0,b,-2b), b \in \mathbb{R}$ 4 pontos		
		• Obter, por exemplo, $\vec{n}(0,1,-2)$ 2 pontos		
		• Obter a equação $y-2z=0$ (ou equivalente) 3 pontos		
_		V 7 . 4 . (0) V 7 . 2 . (0)		_
5.		Versão 1 – (C); Versão 2 – (B)		8
6.		Versão 1– (C); Versão 2 – (D)		8
_				
7.		A classificação é atribuída de acordo com as seguintes etapas.	1	14
		• Referir que (u_n) é limitada , escrevendo $u_1 \leq u_n < 0, \forall n \in \mathbb{N}$		
		Beforir que (v.) é monétons e limitede e concluir que é		
		• Referir que (u_n) é monótona e limitada e concluir que é		
		convergente		
		• Referir que o limite de u_n é um número negativo ou 0^-		
		3 pontos		
		• Referir que a sucessão (v_n) é uma progressão aritmética de razão		
		positiva e concluir que $\lim v_n = +\infty$ 3 pontos		
		• Escrever que $\lim \frac{v_n}{u_n} = \frac{\lim v_n}{\lim u_n} = -\infty$ 2 pontos		
8.			1	16
0.		A classificação é atribuída de acordo com as seguintes etapas.		
		 Justificar a existência de progressão geométrca e indicar o valor 		
		da razão (1,02)		
		Justificar o valor de 48 meses e apresentar uma expressão da		
		soma dos 48 primeiros termos da progessão geométrica		
		6 pontos		
		Escolher a resposta correta 4 pontos		
		Versão 1 – (II); Versão 2 – (III)		
9.		Versão 1 – (C); Versão 2 – (B)		8
10.			4	14
	10.1.		14	
		• Utilizar a Regra de <i>Ruffini</i> ou o algoritmo da divisão inteira de		
		polinómios para escrever $f(x) = 4 + \frac{9}{x-2}$ 8 pontos		
		x-2		

	• Identificar corretamente as equações das assíntetas vertical e	
	i i	
	horizontal do gráfico da função ($x = 2 e y = 4$) 6 pontos	
10.2.		16
	• Transformar a condição numa equivalente em que o 1º membro é	
	uma fração racional e o segundo membro é zero 8 pontos	
	Construir corretamente um quadro de estudo de sinal da fração	
	racional 6 pontos	
	• Indicar o conjunto solução (]0,2[) 2 pontos	
10.3.		14
	• Utilizar a Regra de <i>Ruffini</i> ou os zeros para decompor o polinómio	
	$x^2 - 5x + 6$ da seguinte forma: $(x - 2)(x - 3)$ 4 pontos	
	• Simplificar a expressão, obtendo $\frac{(4x+1)(x-3)}{x+3}$ 7 pontos	
	• Indicar o valor do limite $\left(-\frac{9}{5}\right)$ 3 pontos	
	Variation (C), Variation (D)	
	versao 1 – (C); versao 2 – (B)	8
	Versão 1 – (B); Versão 2 – (D)	8
		• Transformar a condição numa equivalente em que o 1º membro é uma fração racional e o segundo membro é zero