RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2019

Session principale

Épreuve : Mathématiques

Section : Mathématiques

①Durée : 4h

Coefficient de l'épreuve : 4

ल्ड ल्ड ल्ड ल्ड ल्ड

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

La page 4 / 4 est à rendre avec la copie

Exercice 1: (5 points)

Le plan est muni d'un repère orthonormé direct. Dans la figure ci-dessous, ξ est le cercle de centre O et de diamètre [BC], M est le point de [BC] tel que $CM = \frac{1}{3}BC$ et ξ ' est le cercle de diamètre [CM]. I et l' sont les milieux respectifs des segments [BM] et [CM]. A et A' sont deux points du cercle ξ tels que AMA'B est un losange et $(\widehat{AC}, \widehat{AB}) = \frac{\pi}{2}[2\pi]$. La droite (AC) recoupe le cercle ξ ' en H.

- 1) a) Montrer que les droites (AB) et (HM) sont parallèles.
 - b) En déduire que les points H, M et A' sont alignés.
 - c) Montrer que $HM = \frac{1}{3}AB$ et que $HA^2 = AB^2 HM^2$.
- On désigne par S la similitude directe de centre H qui envoie A en M.
 - a) Préciser l'angle de S et montrer que son rapport est égal à $\frac{\sqrt{2}}{4}$.

- b) Déterminer les images par S des droites (AI) et (MH). En déduire S(A').
- 3) Montrer que S(I) = I' et en déduire que (HI) est tangente en H au cercle ξ' .
- 4) On pose $S' = S_{(AH)} \circ S \circ S_{(AH)}$.
 - a) Vérifier que S' est une similitude directe dont on précisera le centre et le rapport.
 - b) La droite (A'M) recoupe le cercle ξ en N. Montrer que le triangle MCN est isocèle de sommet principal C.
 - c) Déterminer S'(A). En déduire alors l'angle de S'.

Exercice 2: (4 points)

L'espace est rapporté à un repère orthonormé direct $(O,\vec{i},\vec{j},\vec{k})$.

On considère les points A(2,0,1), B(-2,0,1), C(1,1,1) et D(-4,0,-1).

- 1) a) Montrer que les points A, B et C ne sont pas alignés.
 - b) On désigne par P le plan (ABC). Montrer que P est d'équation z = 1.
- 2) Soit S l'ensemble des points M(x, y, z) de l'espace tels que $x^2 + y^2 + z^2 4z 1 = 0$.
 - a) Montrer que S est une sphère dont on précisera le rayon et les coordonnées du centre Ω.
 - b) Soit le point I(0, 0, 1), montrer que S et P se coupent suivant le cercle & de centre I et de rayon 2.
- 3) Soit $\lambda \in \mathbb{R} \setminus \{2\}$, $\Omega_{\lambda}(0, 0, \lambda)$ et $R_{\lambda} = \sqrt{(\lambda 1)^2 + 4}$.
 - a) Montrer que la sphère S_{λ} de centre Ω_{λ} et de rayon R_{λ} coupe P suivant le cercle \mathscr{C} .
 - b) Déterminer λ_0 pour que $D \in S_{\lambda_0}$.
 - c) Déterminer les homothéties de l'espace transformant S en S_{λ_0} .

Exercice 3: (5 points)

- 1) On considère dans \mathbb{Z}^2 l'équation (E) : 29 x 13y = 6.
 - a) Vérifier que (2,4) est une solution de (E).
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).

Soit dans \mathbb{Z} l'équation (E') : $x^{19} \equiv -2$ [29].

- 2) Justifier que $2^{28} \equiv 1$ [29] et en déduire que -8 est solution de (E').
- 3) Soit x₀ une solution de (E').
 - a) Montrer que x_0 n'est pas un multiple de 29 et en déduire alors que $x_0^{28} \equiv 1$ [29].
 - b) Montrer que $x_0^{57} \equiv -8$ [29] puis que $x_0 \equiv -8$ [29].
 - c) En déduire l'ensemble des solutions dans $\mathbb Z$ de l'équation (E').
 - d) Résoudre dans \mathbb{Z} l'équation $(x 3)^{19} \equiv -2$ [29].
- 4) Résoudre dans \mathbb{Z} le système $\begin{cases} (x-3)^{19} \equiv -2 \ [29], \\ (x-3)^{13} \equiv -2 \ [13]. \end{cases}$

Exercice 4: (6 points)

Le plan est muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$.

On considère la fonction f définie sur $[0, +\infty[$ par $f(x) = \sqrt{1-e^{-x}}$.

- 1) a) Montrer que f possède une fonction réciproque g définie sur [0, 1[.
 - b) Montrer que pour tout $x \in [0,1[$; $g(x) = -\ln(1-x^2)$.
 - c) Montrer que l'équation g(x) = x admet une solution α sur [0,7;0,8].
 - d) On donne en annexe la représentation graphique $\mathscr C$ de la fonction f dans le repère $\left(O,\vec{i},\vec{j}\right)$, la première bissectrice Δ et le point $A(\alpha,\alpha)$. On désigne par $\mathscr C$ ' la courbe de g. Tracer $\mathscr C$ ' dans le même repère.
- 2) Soit φ la fonction définie sur [0, 1[par $\varphi(x) = \int_0^{g(x)} f(t) dt$.
 - a) Montrer que φ est dérivable sur [0, 1[et que $\varphi'(x) = \frac{2x^2}{1-x^2}$.
 - b) Déterminer les réels a, b et c tels que pour tout x appartenant à $[0, 1[, \frac{2x^2}{1-x^2} = a + \frac{b}{1+x} + \frac{c}{1-x}]$
 - c) En déduire que $\varphi(x) = -2x + \ln \left(\frac{1+x}{1-x}\right), x \in [0, 1].$
 - d) On désigne par A l'aire de la région du plan située entre les courbes et e' et les droites d'équations respectives x = 0 et x = α.
 Montrer que A = 2(φ(α)-α²/2).
- 3) Soit (u_n) la suite définie sur \mathbb{N}^* par $u_n = \sum_{k=1}^n \frac{1}{k \cdot 3^k}$.

Soit $n \ge 1$. On pose pour tout $t \in [0, 1[, S_n(t) = 2\sum_{k=1}^n t^{2k-1}]$.

- a) Montrer que $\int_0^{\frac{\sqrt{3}}{3}} S_n(t) \ dt = u_n$.
- b) Montrer que pour tout $t \in [0, 1[, S_n(t) = (1 t^{2n}) g'(t), où g' est la dérivée de la fonction g sur <math>[0, 1[.$
- c) Montrer que pour tout $0 \le t \le \frac{\sqrt{3}}{3}$, $(1 \frac{1}{3^n})$ g'(t) $\le S_n(t) \le g'(t)$.
- d) En déduire que $(1-\frac{1}{3^n})$ $g(\frac{\sqrt{3}}{3}) \le u_n \le g(\frac{\sqrt{3}}{3})$.
- 4) Montrer alors que la suite (un) est convergente et déterminer sa limite.

	Section:Série:	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance:	************
×		

Épreuve : Mathématiques - Section : Mathématiques - Session principale (2019)

Annexe à rendre avec la copie

