## Terms, Concepts, and Examples

Big O notation is a standard way mathematicians and computer scientists use to describe how much time and how much memory is required for an algorithm to run.

• Let f and g be functions from the set of integers to the set of real numbers. We say that f(x) is O(g(x)) if there exists positive integers A and n such that

$$|f(x)| \le A|g(x)|$$

whenever x > n. This is read as "f(x) is **big-oh** of g(x)."

To determine if a function f(x) is O(g(x)), amounts to identifying the, positive constants A and n. That is, we must find the factor A and the point n for which  $f(x) \leq Ag(x)$  whenever x > n.

Example Show that  $f(x) = 3x^3 + 18x$  is  $O(x^3)$  with A = 4 and n = 5.

Solution: Notice that  $x^3 > 18x$  when  $x \ge 5$ . This means that  $3x^3 + x^3 > 4x^3 + 18x$  when x > 5. In other words,  $4x^3 > 3x^3 + 18x$  whenever x > 5, confirming A = 4 and n = 5.



## Video Example of Big O Definition

- Important Facts about Big O
  - n! is  $O(n^n)$ .
  - $-\log n!$  is  $O(n\log n)$ .
  - $-\log n$  is O(n).
  - If  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$  is a polynomial of degree n where  $a_0, a_1, \ldots, a_{n-1}, a_n$  are real numbers. Then f(x) is  $O(x^n)$ .
  - $-n^c$  is  $O(n^d)$  as long as 1 < c < d.
  - $n^d$  is  $O(b^n)$  for any d positive and b > 1.
  - $-b^n$  is  $O(c^n)$  as long as 1 < b < c.

- Suppose that  $f_1(x)$  is  $O(g_1(x))$  and that  $f_2(x)$  is  $O(g_2(x))$ . Then  $(f_1 + f_2)(x)$  is  $O(\max(|g_1(x)|, |g_2(x)|))$ . That is, Big O of the sum of two functions is Big O of the "larger" function.
- Suppose that  $f_1(x)$  is  $O(g_1(x))$  and that  $f_2(x)$  is  $O(g_2(x))$ . Then  $(f_1f_2)(x)$  is  $O(g_1(x)g_2(x))$ . That is, Big O of the product of two functions is the product of Big O of the functions.

Example Give a Big-O estimate for  $f(n) = 4n \log(n!) + (n^3 - 2) \log n$ , where n is a positive integer.

Solution: The product  $4n \log(n!)$  is  $O(n^2 \log n)$ . To see this recall, 4n is O(n) from the polynomial rule and  $\log n!$  is  $O(n \log n)$ . Then using the product,  $4n \log(n!)$  is  $O(n*n \log n) = O(n^2 \log n)$ .

Also  $(n^3 - 2) \log n$  is  $O(n^4)$ . To see this, recall  $n^3 - 2$  is  $O(n^3)$  from the polynomial rule and  $\log n$  is O(n). Then using the product again,  $(n^3 - 2) \log n$  is  $O(n^3 * n) = O(n^4)$ .

Using the sum rule and the fact  $n^4 > n^2 \log n$  (so the max of the two is n), the function  $f(n) = 4n \log(n!) + (n^3 - 2) \log n$  is  $O(n^4)$ .

Video Example of Using the Facts

Another Video Example of Using the Facts

• Recall that Big O is used for estimating the number of operations needed to run an algorithm. Here are functions commonly found in these estimates:

$$1, \log n, n, n \log n, n^2, 2^n, n!$$

This list is in "order," in that each function in the list is smaller than the next. We can see this in the graph, which has a log scale.



Video Example of Ordering Functions

## **Practice Problems**

- 1. Use the definition of "f(x) is O(g(x))" to show that  $x^4 + 8x^3 3x + 5$  is  $O(x^4)$ .
- 2. Determine whether each of these functions is  $O(x^2)$ .
  - (a) f(x) = 16x + 9
  - (b)  $f(x) = x^2 + 500$
  - (c)  $f(x) = x \log x$
  - (d)  $f(x) = x^4/2$
  - (e)  $f(x) = 2^x$
- 3. Give as good a Big O estimate as possible for each of these functions.
  - (a)  $(n^2+7)(x+3)$
  - (b)  $(n \log n + n^2)(n^3 + 2)$
  - (c)  $(n^3 + n^2 \log n)(\log n + 1)$
  - (d)  $(2^n + n^2)(n! + 5^n)$