

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02214 - Estatística Geral 1 - 2022/1

Plano Aula 13 e 14

(continuação) Introdução à Probabilidade (capítulo 5, Livro Bussab e Morettin)

Probabilidade Condicional e Independência (seção 5.3, Livro Bussab e Morettin)

- Eventos condicionados: probabilidade de ocorrer A dado que B ocorreu, $P(A|B) = \frac{P(A \cap B)}{P(B)}$; - eventos independentes $P(A \cap B) = P(A) \times P(B)$, então P(A|B) = P(A).
- Teorema da Probailidade Total e Teorema de Bayes (seção 5.4, Livro Bussab e Morettin)
 - Partição do espaço amostral: seja $B_1, B_2, B_3, \ldots, B_k$ (para $k \in \mathbb{N}$) uma partição do espaço amostral Ω ,
 - $-B_i \cap B_j = \emptyset$, para todo $i \neq j$; $-\Omega = B_1 \cup B_2 \cup \ldots \cup B_k$.

Teorema da Probabilidade Total (soma das probabilidades):

"Sabendo a probabilidade de ocorrência de cada partição B_i e a probabilidade de ocorrência de um evento Aem cada partição, então podemos calcular a probabilidade de ocorrência de A."

Teorema: Seja A um evento definido no espaço amostral Ω associado ao experimento $E \in B_1, B_2, \ldots, B_k$ uma partição de Ω , então

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_k) = P(B_1) \times P(A \mid B_1) + P(B_2) \times P(A \mid B_2) + \ldots + P(B_k) \times P(A \mid B_k).$$

Ou

$$P(A) = \sum_{i=1}^{k} P(A \cap B_i) = \sum_{i=1}^{k} P(B_i) \times P(A|B_i).$$

Teorema de Bayes

"Também é possível calcular a probabilidade de ocorrência de uma partição B_i dado que um evento A ocorreu."

Teorema: Seja A um evento definido no espaço amostral Ω associado ao experimento $E \in B_1, B_2, B_3, \ldots, B_k$ uma partição de Ω , então

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(B_i) \times P(A|B_i)}{\sum_{i=1}^k P(B_i) \times P(A|B_i)}.$$

- Probabilidade subjetiva (seção 5.5, Livro Bussab e Morettin)
- Thomas Bayes ⇒ Inferência Bayesiana (diferente da visão clássica de inferência, não cobrimos no curso);
- Conhecimento a priori versus a posteriori.

No software R podemos calcular média e mediana usando as funções mean() e median(). (E para moda?)

$$x \leftarrow c(12, 9, 11, 7, 9, 14, 6, 10)$$

mean(x); median(x); names(table(x))[which.max(table(x))]

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02214 - Estatística Geral 1 - 2022/1

##	[1]	9.75
##	[1]	9.5
##	[1]	11911

No R os comandos var() e sd() calculam a variância e o desvio padrão (ambos usam denominador n-1).

Ler slides e ver vídeos da semana 8.

Continuar lista de exercícios 2-1.

Fazer a avaliação pontual 1 da área 2 - VALE NOTA!!!