TDT4173 Machine Learning Regression techniques

Norwegian University of Science and Technology

Helge Langseth IT-VEST 310 helgel@idi.ntnu.no

Outline

- Wrap-up from last time
- 2 Linear regression
 - Setup
 - Gradient descent
 - Normal equations
 - Polynomials as basis functions
 - Overfitting
- Splines
 - Problem definition
 - Cubic splines
- 4 Kernel regression

- Assignment 2 is out.
 This is the "BIG" one, so do spend some time on it!
- The Lecture next week (September 21st) is cancelled. Get up early and work on the big assignment instead!
- We have to have a reference group after all.
 I need 3 (well, at least 2) volunteers.

Summary-points from last lesson

• Ensemble methods:

- Bagging
- Boosting

SVMs:

- Linear separators
- The dual problem solution using constrained optimization
- Non-separable subspaces
- Nonlinearity and kernels

Linear regression

- As usual, we have examples (x_i, y_i) .
- We require $x_i \in \mathbb{R}^d$, so the instance space is the (appropriately sized) real space.
- Furthermore: the target is numeric, too: $y_i \in \mathbb{R}$.

Examples:

- ullet Voltage o Temperature
- ullet Outside temp. + Speed o Power consumption of electrical car
- ullet Robot arm controls o Torque at effectors

Linear regression - setup

Assume a linear model from X to Y, i.e.

$$Y \leftarrow \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d + \text{"Noise"}$$

 $Y \leftarrow \beta^{\mathsf{T}} x + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$

Notice! Use a trick of appending a '1' to x_1, \ldots, x_d for the vector notion to work, i.e., $\boldsymbol{x} = [1, x_1, x_2, \ldots, x_d]^\mathsf{T}$.)

We call this linear...

- As long as it is linear in the (unknown) weights β .
- Even if it is nonlinear in the (known) x-values.
- So, the model $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$ is a linear regression model because it is linear in each β_i .

What we try to do. . .

Find the plane which most closely approximates the training data:

How to choose a "close" approximation

We define:

$$\mathbb{E}[\vec{\beta}] = \frac{1}{2} \sum_{r=1}^{N} (y_r - \hat{y_r})^2 = \frac{1}{2} \sum_{r=1}^{N} (y_r - \boldsymbol{\beta}^\mathsf{T} \boldsymbol{x}_r)^2$$

Gradient Descent - Motivation

Question: How can we minimise this error function without

knowing the whole shape?

Obvious answer: Walk "downhills"!

Gradient Descent - The setup

- We want to find the value x which minimises f(x).
- To avoid evaluating the whole function we use an iterative approach:
 - Guess a value for x, and calculate the derivative f'(x).
 - Make a new guess for x based on these calculations Move "downhill".
 - Keep iterating. . .

Intuition:

- If the derivative is small (in absolute value) we are close from the minimising point.
- ...and if it is zero we are done.
- On the other hand, we are far away if the derivative is large (in absolute value).

Solution:

Use the update rule $x_{i+1} \leftarrow x_i - \eta \cdot f'(x_i)$. $\eta > 0$ is the learning rate.

Gradient Descent – Example

Minimize $f(x) = 2x^4 - 5x^3 + 2x^2 - 6x + 4$ with $\eta = 0.025$.

The f(x) has a minimum at x = 1.8261. Let's try to find it...

DEMO: gradient.m

Minimize $f(x) = 2x^4 - 5x^3 + 2x^2 - 6x + 4$ with $\eta = 0.025$.

Starting from $x_0 = 3$ and finding f'(3) = 87:

$$x_1 = x_0 - \eta f'(x_0)$$

= 3 - 0.025 \cdot 87 = 0.8250

Minimize $f(x) = 2x^4 - 5x^3 + 2x^2 - 6x + 4$ with $\eta = 0.025$.

Going from $x_1 = 0.8250$ with f'(0.8250) = -8.4172:

$$x_2 = x_1 - \eta f'(x_1)$$

= 0.825 - 0.025 \cdot (-8.4172) = 1.0354

Gradient Descent – Example

Minimize $f(x) = 2x^4 - 5x^3 + 2x^2 - 6x + 4$ with $\eta = 0.025$.

Going from $x_2 = 1.0354$ with f'(1.0354) = -9.0592:

$$x_3 = 1.0354 - 0.025 \cdot (-9.0592) = 1.2619$$

Gradient Descent – Example

Minimize $f(x) = 2x^4 - 5x^3 + 2x^2 - 6x + 4$ with $\eta = 0.025$.

... and finally going from $x_{10} = 1.8260$ with f'(1.8260) = -0.0034:

$$x_{11} = 1.8260 - 0.025 \cdot (-0.0034) = 1.8261$$

... and we are done.

Gradient Descent – in higher dimensions

Recall that

- The gradient of a surface $\mathbb{E}[\vec{\beta}]$ is a vector in the direction the curve grows the most (calculated at $\vec{\beta}$).
- The gradient is calculated as $\nabla \mathbb{E}[\vec{\beta}] \equiv \left[\frac{\partial \mathbb{E}}{\partial \beta_0}, \frac{\partial \mathbb{E}}{\partial \beta_1}, \cdots \frac{\partial \mathbb{E}}{\partial \beta_d} \right]$.

Training rule: $\Delta \vec{\beta} = -\eta \cdot \nabla \mathbb{E}[\vec{\beta}]$, i.e., $\Delta \beta_i = -\eta \cdot \frac{\partial \mathbb{E}}{\partial \beta_i}$.

Gradient Descent and linear regression

We need the $\frac{\partial \mathbb{E}}{\partial \beta_i}$ for $i = 0, \dots, d$:

$$\frac{\partial \mathbb{E}}{\partial \beta_i} = \frac{\partial}{\partial \beta_i} \left\{ \frac{1}{2} \sum_{r=1}^N \left(y_r - \sum_{j=0}^d \beta_j \, x_{r,j} \right)^2 \right\}$$
$$= -\sum_{r=1}^N \left(y_r - \sum_{j=0}^d \beta_j \, x_{r,j} \right) \cdot x_{r,i}$$

(Each x_r is redefine to have a new element 1 as its zeroth element.)

Training rule:
$$\beta_i \leftarrow \beta_i + \eta \times \sum_{r=1}^{N} (y_r - \beta^\mathsf{T} x_r) \cdot x_{r,i}$$

DEMO: regexample.m

Using vector and matrix derivatives, we can also optimise β directly:

$$\boldsymbol{\beta} \leftarrow \left(\boldsymbol{X}^\mathsf{T} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^\mathsf{T} \boldsymbol{y}$$

Here

- Let β be the vector of parameters: $\beta = [\beta_0, \dots, \beta_d]^T$.
- Let y be the observed target-values: $y = [y_1, \dots, y_N]^T$.
- Let X be the matrix of observed explanatory variables, i.e. a matrix of size $N \times (d+1)$, where element (r,i) is explanatory variable $i=0,\ldots,d$ in observation r (and again: $x_{r,0}=1$ is appended to each x for this to work).

Regression with polynomials

- Say I believe in a model $Y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2$.
- I have the data:

\boldsymbol{x}	y	
0	0.376	
1	0.934	
2	4.265	
3	8.837	

• How can I proceed?

Regression with polynomials

- Say I believe in a model $Y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2$.
- I create the data:

	\boldsymbol{x}		y
1	0	0	0.376
1	1	1	0.934
1	2	4	4.265
1	3	9	8.837

...and run along as before.

Regression with polynomials

Different models - Different results

$$Y = \beta_0 + \beta_1 \cdot x$$

$$Y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2$$

One idea to assess if we overfit:

- lacktriangle Create N datasets using bootstrapping (ref. last lecture)
- For each bootstrapped dataset:
 - Generate each candidate regression model (order 0, 1, 2, ...).
 - Calculate the generalisation error on the original dataset.
- 3 Choose the model with the best averaged generalisation error.

DEMO: polyboot.m

Better/quicker method:

• Define an error function, which penalises complexity:

$$\begin{split} \mathbb{E}(\pmb{\beta}) &= \text{ Prediction error} + \lambda \times \text{Complexity penalty} \\ &= \frac{1}{2} \sum_{r=1}^{N} \left(y_r - \sum_{j=0}^{d} \beta_j \, x_{r,j} \right)^2 + \lambda \times f(\pmb{\beta}) \end{split}$$

• Choose β to minimise the error, either using closed-form equations or gradient descent.

Ridge regression

Ridge regression uses

$$\mathbb{E}(\beta) = \frac{1}{2} \sum_{r=1}^{N} \left(y_r - \sum_{j=0}^{d} \beta_j \, x_{r,j} \right)^2 + \lambda \times \sum_{j=0}^{d} \beta_j^2$$

Chosen to react to big β -values, hence reduces overfitting.

Lasso regression

Lasso regression uses

$$\mathbb{E}(\boldsymbol{\beta}) = \frac{1}{2} \sum_{r=1}^{N} \left(y_r - \sum_{j=0}^{d} \beta_j x_{r,j} \right)^2 + \lambda \times \sum_{j=0}^{d} |\beta_j|$$

Chosen to force as many β -values as possible to be zero.

Where Ridge has a closed form solution

$$\boldsymbol{\beta} \leftarrow \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y},$$

the Lasso is solved by gradient descent.

DEMO: L1reg.m

Strategies for non-uniformity

TDT4173 Machine Learning

- Approximation guaranteed to be continuous
- Not smooth
- Can we do better?

Higher order functions

Cubic spline setup

Setup:

- Define "split points" (ξ_j -values) typically a split is defined at every datapoint
- "Basis functions" $(x \xi_j)^3_+$ defined for each split point.
- The global model $Y \leftarrow \beta_0 + \sum_j \beta_j (x \xi_j)_+^3 + \text{Noise can be fitted "as usual"}.$

Goodies:

- The model i smooth even has continuous second derivatives.
- Robust methods (B-splines) are available scales fairly well.
- Good statistical properties

DEMO: splines.m

Kernel-regression: A "non-parametric" solution

- Instead of defining a model for Y, kernel regression just assumes that Y(x) is smooth in x.
- Thus, $Y(x_{\text{New}})$ is a weighted average of observed y_i values, with weights depending on difference between x_i and x_{New} .
- Often used weight function $k(|x_{\mathsf{New}} x_i|, \sigma) = \exp\left(\frac{-(x_{\mathsf{New}} x_i)^2}{2\sigma^2}\right)$; σ is the "bandwidth".

DEMO: kernel.m

Setting the "extra" parameters

- We have seen some new parameters:
 - kernel bandwidth (σ)
 - tradeoff between error and complexity (λ)
 - number of polynomials (d)
 - spline-knots (ξ)

How can we find good values for these?

Setting the "extra" parameters

- We have seen some new parameters:
 - kernel bandwidth (σ)
 - ullet tradeoff between error and complexity (λ)
 - number of polynomials (d)
 - spline-knots (ξ)

Use cross-validation:

For each potential model (parameter setting):

- Define cross validation sets
- Calculate cross-validation error
- Choose the best one!

Summary

- Linear regression
- Gradient descent
- Overfitting
- Splines
- Non-parametric smoothing

Remember: Next week is off!

I have other arrangements I must attend to next week, so

the lecture on Sept 21th is cancelled.

Spend your new-found extra time on the "big" assignment.