PERFORMANCE ISSUES

Designing for Performance

- Today's laptops have the computing power of an IBM mainframe from 10 or 15 years ago.
- Today's microprocessor-based systems applications includes Image processing, 3D rendering, Speech recognition, Videoconferencing, Multimedia authoring, Simulation.
- Workstation systems now support highly sophisticated engineering and scientific applications and have the capacity to support image and video applications.
- Businesses are relying on increasingly powerful servers to handle transaction and database processing and to support massive client/server networks that have replaced the huge mainframe computer centers of yesteryear.

Microprocessor Speed...

Moore's law, prediction made by American engineer Gordon Moore in 1965 that the number of transistors per silicon chip doubles every year.

Figure 2.2 Processor Trends

Microprocessor Speed

- In memory chips has quadrupled the capacity of dynamic random-access memory (DRAM) every three years.
- In microprocessors, the addition of new circuits, the speed boost that comes from reducing the distances between them, has improved performance four- or fivefold every three years.
- Raw speed of the microprocessor will not achieve its potential unless it is fed a constant stream of work to do in the form of computer instructions.
- New techniques came into existence: Pipelining, Branch Prediction,
 Superscalar Execution, Dataflow Analysis, and Speculative Execution.

Performance Balance

Amdahl's Law

- Amdahl's law was first proposed by Gene Amdahl in 1967 and deals with the potential speedup of a program using multiple processors compared to a single processor.
- Consider a program running on a single processor such that a fraction (1 f) of the execution time involves with **sequential coding**, and a fraction f that involves code that is infinitely **parallelizable**.
- \Box Let T be the total execution time of the program using a single processor.

Speedup =
$$\frac{\text{Time to execute program on a single processor}}{\text{Time to execute program on } N \text{ parallel processors}}$$

$$= \frac{T(1-f) + Tf}{T(1-f) + \frac{Tf}{N}} = \frac{1}{(1-f) + \frac{f}{N}}$$

Amdahl's Law

- Amdahl's law illustrates the problems facing industry in the development of multicore machines with an ever-growing number of cores.
- □ The software that runs on such machines must be adapted to a highly parallel execution environment to exploit the power of parallel processing.

Benchmark Principles

- MIPS (million instructions per second)
- MFLOPS (million floating point operations per second)
- Measuring the performance of systems using a set of benchmark programs.
- The Standard Performance Evaluation Corporation (SPEC), an industry consortium. This organization defines several benchmark suites aimed at evaluating computer systems. SPEC CPU2006 is the industry standard suite for processor-intensive applications.