All about Linear Regression (Least Squares Method)

- Theory Part:
 - Straight Line
 - Curve Line
 - Slope
 - Intercept
 - Cost Function
 - Lose Function
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Gradient Decent

- Coding with Python:
 - Implementing Linear Regression
 - Simple ML Project on Rent Prediction
- Discussion on Assignment:
 - Weight Prediction Based on Height

https://www.aiquest.org

Linear Line

Fig: Straight Line

Non-Linear Curve Line

Fig: Curve Line

Linear vs Non-Linear Curve Line

Fig: Lines

Linear regression is a statistical model that allows to explain a dependent variable y based on variation in one or multiple independent variables (denoted x). It does this based on linear relationships between the independent and dependent variables.

Linear regression is a statistical model that allows to explain a dependent variable y based on variation in one or multiple independent variables (denoted x). It does this based on linear relationships between the independent and dependent variables.

$$y = mx + b$$
; or,
 $Y = 9.782* X + 1.48$

$$y = mx + b$$
; or,
 $Y = 9.782* X + 1.48$

All about Linear Regression (Least Squares Method)

Data Set				
1	Α	В		
1	Х	У		
2	5	50		
3	7	65		
4	4	42		
5	8	76		
6	2	23		
7	10	105		
8	7	?		

	X	у
0	5	50
1	7	65
2	4	42
3	8	76
4	2	23
5	10	105

	X	у
0	5	50
1	7	65
2	4	42
3	8	76
4	2	23
5	10	105

	X	у
0	5	50
1	7	65
2	4	42
3	8	76
4	2	23
5	10	105

	x	у
0	5	50
1	7	65
2	4	42
3	8	76
4	2	23
5	10	105

	Data Set				
_	А	В			
1	Х	У			
2	5	50			
3	7	65			
4	4	42			
5	8	76			
6	2	23			
7	10	105			
8	7	?			

	Calculation Table for Single Variable Linear Regression								
4	Α	В	С	D	E	F	G	Н	1
1	X	У	xy	x2	X	ÿ	(xy) bar	(<u>₹</u>)2	(x2) bar
2	5	50	250	25					
3	7	65	455	49	Sum=36	Sum=361	Sum=2577		Sum=258
4	4	42	168	16	36/6	361/6	2577/6		258/6
5	8	76	608	64					
6	2	23	46	4	Avg=6	Avg=60.17	Avg=429.5	36	Avg=43
7	10	105	1050	100	Average	Average	Average		Average
8									

Final Calculations M = ((6*60.17)-429.5) / (36-43)M = 9.782C = 60.17 - (9.782*6)C = 1.48Y = (9.782 * X) + 1.48Predict, y = (9.782*7)+1.48Ans = 69.95

1	А	В	С	D	E	F	G	Н	1	J
1	X	у	ху	x2	X	ÿ	(xy) bar	(x)2	(x2) bar	Final Calculations
2	5	50	250	25						M = ((6*60.17)-429.5) / (36-43)
3	7	65	455	49	Sum=36	Sum=361	Sum=2577		Sum=258	M = 9.782
4	4	42	168	16	36/6	361/6	2577/6		258/6	C = 60.17-(9.782*6)
5	8	76	608	64						C = 1.48
6	2	23	46	4	Avg=6	Avg=60.17	Avg=429.5	36	Avg=43	Y = (9.782 * X) + 1.48
7	10	105	1050	100	Average	Average	Average		Average	Predict, y = (9.782*7)+1.48
8	7	69.95		49						Ans = 69.95
9										

1	Α	В	С	D	E	F	G	Н	1	J
1	X	у	ху	x2	X	ÿ	(xy) bar	(x)2	(x2) bar	Final Calculations
2	5	50	250	25						M = ((6*60.17)-429.5) / (36-43)
3	7	65	455	49	Sum=36	Sum=361	Sum=2577		Sum=258	M = 9.782
4	4	42	168	16	36/6	361/6	2577/6		258/6	C = 60.17-(9.782*6)
5	8	76	608	64						C = 1.48
6	2	23	46	4	Avg=6	Avg=60.17	Avg=429.5	36	Avg=43	Y = (9.782 * X) + 1.48
7	10	105	1050	100	Average	Average	Average		Average	Predict, y = (9.782*7)+1.48
8	7	69.95		49						Ans = 69.95
9										

Formula of Linear Regression

$$Y = MX + C$$

$$C = \overline{Y} - M\overline{X}$$

$$M = \frac{\overline{X} \cdot \overline{Y} - \overline{X} \cdot \overline{Y}}{(\overline{X})^2 - \overline{X}^2}$$

$$\overline{X} = Mean X$$

$$\overline{Y} = Mean Y$$

	Data Set						
	X	у					
0	5	50					
1	7	65					
2	4	42					
3	8	76					
4	2	23					
5	10	105					

Value of M & C

reg.coef_

array([9.78571429])

reg.intercept_

1.4523809523809703

	Data Set						
	X	у					
0	5	50					
1	7	65					
2	4	42					
3	8	76					
4	2	23					
5	10	105					

Value of M & C

reg.coef_

array([9.78571429])

reg.intercept_

1.4523809523809703

[Data Set						
	X	у					
0	5	50					
1	7	65					
2	4	42					
3	8	76					
4	2	23					
5	10	105					

Value of M & C

reg.coef_

array([9.78571429])

reg.intercept_

1.4523809523809703

Data Set					
	X	y			
0	5	50			
1	7	65			
2	4	42			
3	8	76			
4	2	23			
5	10	105			

Predict New Value

pred = reg.predict([[7]])

pred

array([69.95238095])

Let's Implement Linear Regression with Python

https://www.aiquest.org

The cost function is a function, which is associates a cost with a decision.

The cost function is a function, which is associates a cost with a decision

The cost function is a function, which is associates a cost with a decision

Loss & Cost Function

A loss function is for a single training example. It is also sometimes called an error function. A cost function, on the other hand, is the average loss over the entire training dataset. The optimization strategies aim at minimizing the cost function

L1 Loss (error) =
$$(1/n)*|(yi-y^*)|$$

Yi = Area for each row

Y^ = Predicted Value

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

	Α	В	С	D	
1	area	price	predicted	error	
2	2600	55000	55100	100	
3	3000	56500	51000	-5500	
4	3200	61000	53000	-8000	
5	3600	68000	70000	2000	
6	4000	72000	74000	2000	
7	5000	71000	69000	-2000	
8	2500	40000	30000	-10000	
9	2700	38000	37000	-1000	
10	1200	17000	18000	1000	
11	5000	100000	110000	10000	
12					

The cost function is a function, which is associates a cost with a decision. It indicates the difference between the predicted and the actual values for a given dataset. An ideal value of the cost function is zero. In regression, the typical cost function (CF) used is the mean squared error (MSE) cost function. The form of the function is shown below.

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

MAE = mean absolute error

 y_i = prediction

 x_i = true value

n = total number of data points

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

Bias-Variance Tradeoff

Minimizing the cost function: Optimizer Gradient Descent

Minimizing the cost function: Optimizer Gradient Descent

Gradient descent is an efficient optimization algorithm that attempts to find a local or global minima of a function. At this point the model has optimized the weights such that they minimize the cost function. Gradient descent enables a model to learn the gradient or direction that the model should take in order to reduce errors

Minimizing the cost function: Gradient Descent

Let's Implement Linear Regression with Python

https://www.aiquest.org