Contents

Algabraic expressions 1 Quadratics 2 Equations and inequalities 2 3 Graphs and transformations 3 Straight line graphs 5 3 Circles 6 Alagabraic methods The binomeal expansion Trigonometric ratios 10 Trigonometric identities and equations 6 11 Vectors 6 12 Differentation 13 Integration 14 Exponentials and logarithms 9

1 Algabraic expressions

1. You can use the laws of indicies to simplify power of the same base.

$$\bullet \ a^m \times a^n = a^{m=n}$$

$$\bullet \ a^m \div a^n = a^{m-n}$$

$$\bullet (a^m)^n = a^{mn}$$

$$\bullet (ab)^n = a^n b^n$$

2. Factorising is the opposite of expanding brackets

3.
$$x^2 - y^2 = (x+y)(x-y)$$

- 4. A quadratic expression has the form $ax^2 + bx + c$ where a, b and c are real numbers and $a \neq 0$.
- 5. You can use the laws of indicies with any rational power.

$$\bullet \ a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$\bullet \ a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

$$\bullet \ a^{-m} = \frac{1}{a^m}$$

•
$$a^0 = 1$$

6. You can manipulate surds using these rules:

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

7. The rules to rationalize denominators are:

- Fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a} .
- Fractions in the form $\frac{1}{a+\sqrt{b}}$, multiply the numeerator and denominator by $a-\sqrt{b}$
- Fractions in the form $\frac{1}{a-\sqrt{b}}$, multiply the numeerator and denominator by $a+\sqrt{b}$

2 Quadratics

- 1. To solve a quadatic equation by factorising:
 - Write the equation in the form $ax^2 + bx + c = 0$
 - Factorize the left-hand side
 - Set each factor equal to zero and solve to find the value(s) of x
- 2. The solutions to the equation $ax^2 + bx + c = 0$ where $a \neq 0$ are given by the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3.
$$x^2 + bx = (x + \frac{b}{2})^2 - (\frac{b}{2})^2$$

4.
$$ax^2 + bx + c = a(x + \frac{b}{2a})^2 + (c - \frac{b^2}{4a})$$

5. The set of possible inputs for a function is called the **domain**.

The set of possible outputs of a function is called the **range**.

- 6. The **roots** of a function are the values of x for which f(x) = 0
- 7. You can find the corrdinates of a **turning point** of a quadratic graph by completing the square. If $f(x) = a(x+p)^2 + q$, the graph of y = f(x) has a turning point at (-p, q).
- 8. For the quadratic function $f(x) = ax^2 + bx + c = 0$, the expression $b^2 4ac$ is called the **discriminant**. The value of the discriminant shows how many roots f(x) has:
 - If $b^2 4ac > 0$ then a quadratic function has two distinct roots.
 - If $b^2 4ac = 0$ then a quadratic function has one distinct root.
 - If $b^2 4ac < 0$ then a quadratic function has no real roots.
- 9. Quadratics can be used to model real-life situations.

3 Equations and inequalities

- 1. Linear simultanious equations can be solved using elimination or substitution.
- 2. Simultanious equations with one linear and one quadratic equation can have up to two pairs of solutions. You need to make sure the utions are paired correctly.
- 3. The solutions of a pair of simultanious equations represent the points of intersection of the graphs.
- 4. For a pair of simultanious equations the produce a quadratic equation of the form $ax^2 + bx + c = 0$:

$$b^2 - 4ac > 0$$
 two real solutions

$$b^2 - 4ac = 0$$
 one real solution

$$b^2 - 4ac < 0$$
 no real solutions

- 5. The solution of an innequality is the set of real numbers x that make the inequality true.
- 6. To solve the quadratic innequality
 - Rearrange so the right-hand side of the innequality if 0
 - Solve the corresponding quadratic equation to find the critical values
 - Sketch the graph of the quadratic function
 - Use your sketch to find the required set of values.
- 7. The values of x for which the curve y = f(x) is **below** the curve y = g(x) satisfy the inequality f(x) < g(x).

The values of x for which the curve y = f(x) is **below** the curve y = g(x) satisfy the inequality f(x) > g(x).

8. y < f(x) represents the points on the corrdinate grid below the curve y = f(x).

y > f(x) represents the points on the corrdinate grid above the curve y = f(x).

9. If y > f(x) or y < f(x) then the curve y = f(x) is not included in the region represented by a dotted line.

If $y \ge f(x)$ or $y \le f(x)$ then the curve y = f(x) is not included in the region represented by a solid line.

4 Graphs and transformations

- 1. If p is a root of the function f(x), then the graph of y = f(x) touches or crosses the x-axis at the point (p, 0).
- 2. The graphs of $y = \frac{k}{x}$ and $y = \frac{k}{x^2}$, where k is a real constant, have asymptotes at x = 0 and y = 0.
- 3. The x-coordinate(x) at the points of intersection of the curves with equations y = f(x) and y = g(x) are the solution(s) to the equation f(x) = g(x).
- 4. The graph of y = f(x) + a is a translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$.
- 5. The graph of y = f(x + a) is a translation of the graph y = f(x) by the vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$.
- 6. When you translate a function, any asumptoes are also translated.
- 7. The graph of y = af(x) is a stretch of the graph y = f(x) by a scale factor a in the vertical direction.
- 8. The graph of y = f(ax) is a stretch of the graph y = f(x) by a scale factor $\frac{1}{a}$ in the horizontal direction.
- 9. The graph of y = -f(x) is a reflection of the graph y = f(x) in the x-axis.
- 10. The graph of y = f(-x) is a reflection of the graph y = f(x) in the y-axis.

5 Straight line graphs

1. The gradient m of the line goining the point with coordinates (x_1, y_1) to the point with coordinates (x_2, y_2) can be calculated using the formula

$$m = \frac{y_2 - y_2}{x_2 - x_1}$$

2. • The equation of a straight line can be written in the form

$$y = mx + c$$

where m is the gradient and (0, c) is the y-intercept.

• The equation of a straight line can also be written in the form

$$ax + by + c = 0,$$

where a, b and c are integars.

- 3. The equation of a line with gradient m that passes through the point with coordinates (x_1, y_1) can be written as $y y_1 = m(x x_1)$.
- 4. Parallel lines have the same gradient.
- 5. If a line has a gradient m, a line purpendicular to it has a gradient of $-\frac{1}{m}$
- 6. If two lines are perpendicular, the product of their gradient is -1.
- 7. You can find the distance d between (x_1, y_1) and (x_2, y_2) by using the formula $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.
- 8. The point of intersection of two lines can be found using simultanious equations.
- 9. Two quantities are in direct proportion when they increase at the same rate.

The graph of these quantities is a straight line through the origin.

10. A mathematical model is an attempt to represent a real-life situation using mathematical concepts. It is often necessary to make assumptions about the real-life problems in order to create a model.

3

6 Circles

- 1. The midpoint of a line segment with endpoints (x_1, y_1) and (x_2, y_2) is $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$.
- 2. The perpendicular bisector of a line segmen AB is the straight line that is perpendicular to AB and passes through the midpoit AB.

If the gradient of AB is m then the gradient if its perpendicular bisector l, will be $-\frac{1}{m}$.

- 3. The equation of a circle with centre (0,0) and radius r is $x^2 + y^2 = r^2$.
- 4. The equation of the circle with centre (a,b) and radius r is $(x-a)^2 + (y-b)^2 = r^2$.
- 5. The equation of a circle can be given in the form: $x^2 + y^2 + 2fx + 2gy + c = 0$

The circle has centre (-f-g) and radius $\sqrt{f^2+g^2-c}$

- 6. A straight line can intersect a circle once, by touching the circle, or twice. Not all straight lines will intersect a given circle.
- 7. A tangent to a circle is perpendicular to the radius of the circle at the point of intersection
- 8. The purpendicular bisector of chord will go through the centre of a circle.
- 9. If $\angle PQR = 90^{\circ}$ then R lies on the circle with diameter PQ.
 - The angle in a semicircle is always a right angle.
- 10. To find the centre of a circle given by any three points:
 - Find the equations of the purpendicular bisectors of two different chords.
 - Find the coordinates of intersection of the perpendicular bisectors.

7 Alagabraic methods

- 1. When simplifying an algabraic farction, factorise the numerator and denominator where possible and then cancel common fractions.
- 2. You can use long division to divide a polynomial by $(x \pm p)$, where p is a constant.
- 3. The factor theorum states that is f(x) is a polynomial then:
 - If f(p) = 0, then (x p) is a factor of f(x)
 - If (x-p) is a factor of f(x), then f(p)=0
- 4. You can prove a mathematical statement is true by **deduction**. This means starting from knwon factors or definitions, then using logical steps to reach the desired conclusion.
- 5. In a mathematical proof you must
 - State any known information or assumptions you are using
 - Sate every step of your proof clearly
 - Make sure that every step follows logically from the previous step
 - Make sure you have covered all possible cases
 - Write a statement of proof at the end of your working
- 6. To prove an identity you should
 - Start with the expression on one side of the identity
 - Manipulate that expression algebraically until it matches the other side
 - Show every step of your algebraic working
- 7. You can prove a mathematical statement is true by **exhaustion**. This means breaking that statement into smaller cases and proving each cases proving each case seperately.
- 8. You can prove a mathematical statement is not true by a **counter-example**. A counter-example is one examample that does not work for the statement. You do not need to give more than one example, as one is sufficient to disprove a statement.

8 The binomeal expansion

- 1. Pascal's triangle is formed by adding adjacent pairs of numbers to find the numbers on the next row.
- 2. The $(n+1)^{\text{th}}$ row of Pascal's triangle gives the coeficients of the expansion of $(a+b)^n$.
- 3. $n! = n \times (n-1) \times (n-2) \times \dots \times x \times 3 \times 2 \times 1$.
- 4. You can use the factorial notation and your calculator to find entries in Pascal's triangle quickly.
 - The number of ways of choosing r items from a group n times is written as nC_r or $\binom{n}{r}$: ${}^nC_r = \binom{n}{r} = \frac{n!}{r!n-r!}$
 - The r^{th} entry is the n^{th} row of Pascal's triangle is given by $^{n-1}C_{r-1} = \binom{n-1}{r-1}$.
- 5. The binomeal expansion is:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots \binom{n}{r}a^{n-r}b^r + \dots b^n (n \in \mathbb{N})$$
where $\binom{n}{r} = {n \choose r} = \frac{n!}{r!n-r!}$

- 6. In the expansion of $(a+b)^n$ the general term in given by $\binom{n}{r}a^{n-r}b^r$.
- 7. The first few terms in the binomeal expansion can be used to find an approximate value for a complicated function.

9 Trigonometric ratios

1. This version of the cosine rule is used to find a missing side if you know two sides and the angle between them:

$$a^2 = b^2 + c^2 - 2bc\cos A$$

2. This version of the cosine rule is used to find an angle if you know all three sides:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

3. This version of the sine rule is used to find the length of a missing side:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

4. This version of the sine rule is used to find a missing angle:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

5. The sine rule sometimes produces two possible solutions for a missing angle:

$$\sin \theta = \sin(180^{\circ} - \theta)$$

- 6. Area of a triangle = $\frac{1}{2}ab\sin C$
- 7. The graphs of sine, cosine and tangent are **periodic**. They repeat themselves after a certain interval.
 - The graph of $y = \sin \theta$: repeats every 360° and crosses the x-axis at ..., -180° , 0, 180° , 360° , ... has a miximum value of 1 and a minimum value of -1.
 - The graph of $y = \cos \theta$: repeats every 360° and crosses the x-axis at ..., -90° , 90° , 270° , 450° , ... has a miximum value of 1 and a minimum value of -1.
 - The graph of $y = \tan \theta$: repeats every 180° and crosses the x-axis at ..., -180° , 0, 180° , 360° , ... has no miximum or maximum value has vertical asymptotes at $x = -90^{\circ}$, $x = 90^{\circ}$, $x = 270^{\circ}$, ...

5

10 Trigonometric identities and equations

- 1. For a point P(x,y) on a unit circle such that OP makes an angle θ with the positive x-axis:
 - $\cos \theta = x = x$ -coordinate of P
 - $\sin \theta = y = y$ -coordinate of P
 - $\tan \theta = \frac{y}{x} = \text{gradient of } OP$
- 2. You can use quadrants to determine where each of the trigonometric ratios is positive or negative.

For an angle θ in the second quadrant, only For an angle θ in the first quadrant, $\sin \theta$, $\cos \theta$ and $\sin \theta is positive$.

For an angle θ in the third quadrant, only $\tan \theta$ is pos- For an angle θ in the fourth quadrant, only $\cos \theta$ is itive.

3. You can use these rules to find sin, cos or tan of any positive or negative angle using the corresponding **acute** angle made with the x-axis, θ .

$$\sin(180^{\circ} - \theta) = \sin\theta$$

$$\cos(180^{\circ} - \theta) = -\cos\theta$$

$$\tan(180^{\circ} - \theta) = -\tan\theta$$

$$\sin(180^\circ + \theta) = -\sin\theta$$

$$\cos(180^\circ + \theta) = -\cos\theta$$

$$\tan(180^\circ + \theta) = \tan\theta$$

$$\sin(360^{\circ} - \theta) = -\sin\theta$$

$$\cos(360^{\circ} - \theta) = \cos\theta$$

$$\tan(360^{\circ} - \theta) = -\tan\theta$$

4. The trigonometric ratios of 30°, 45° and 60° have exact forms, given below:

$$\sin 30^{\circ} = \frac{1}{2}$$

 $\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

$$\sin 45^\circ = \frac{1}{\sqrt{2}} = \sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$\cos 60^\circ = \frac{1}{2}$$

$$\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\tan 45^{\circ} = 1$$

$$\tan 60^{\circ} = \sqrt{3}$$

- 5. For all values of θ , $\sin^2 \theta + \cos^2 \theta \equiv 1$
- 6. For all values of θ , such that $\cos \neq 0$, $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$
- 7. Solutions to $\sin \theta = k$ and $\cos \theta = k$ only exist when $-1 \le k \le 1$
 - Solutions to $\tan \theta = p$ exist for all valeus of p.
- 8. When you use the inverse trigonometric functions on your calculator, the angle you get is called the **principle** angle.
- 9. You calculator will give principle values in the following ranges:
 - \cos^{-1} in the range $0 \le \theta \le 180^{\circ}$
 - \sin^{-1} in the range $0 \le \theta \le 90^{\circ}$
 - \tan^{-1} in the range $0 < \theta < 90^{\circ}$

11 Vectors

- 1. If $\overrightarrow{PQ} = \overrightarrow{RS}$ then the line segments PQ and RS are equal in length and are parallel.
- 2. $\overrightarrow{AB} = -\overrightarrow{BA}$ as the line segment AB is equal in length, parallel and in the opposite direction to BA.

6

3. Triangle law for vector addition: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

If
$$\overrightarrow{AB} = \mathbf{a}$$
, $\overrightarrow{BC} = \mathbf{b}$ and $\overrightarrow{AC} = \mathbf{c}$, then $a + b = c$

- 4. Subtracting a vector is equivalent to 'adding the negative vector': a b = a + (-b)
- 5. Adding the vectors \overrightarrow{PQ} and \overrightarrow{QP} gives the zero vector $O: \overrightarrow{PQ} + \overrightarrow{QP} = 0$.

- 6. Any vector parallel to the vector **a** may be written as λ **a** where λ is a non-zero scalar.
- 7. To multiply a column vector by a scalar, multiply each component by the scalar: $\lambda \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} \lambda p \\ \lambda q \end{pmatrix}$
- 8. To add two column vectors, add the x-components and the y-components $\binom{p}{q} + \binom{r}{s} \binom{p+r}{q+s}$
- 9. A unit vector is a vector of length 1. The unit vectors along the x- and y-axes are usually denoted by \mathbf{i} and \mathbf{j} respectively. $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- 10. For any two-dimensional vector: $\binom{p}{q} = p\mathbf{i} + q\mathbf{j}$
- 11. For the vector $\mathbf{a} = x\mathbf{i} + y\mathbf{j} = \begin{pmatrix} x \\ y \end{pmatrix}$, the magnitude of the vector is given by: $|\mathbf{a}| = \sqrt{x^2 + y^2}$
- 12. A unit vector in the direction of **a** is $\frac{\mathbf{a}}{|\mathbf{a}|}$
- 13. In general, a point P with coordinates (p,q) has position vector:

$$\overrightarrow{OP} = p\mathbf{i} + q\mathbf{j} = \begin{pmatrix} p \\ q \end{pmatrix}$$

- 14. $\overrightarrow{OP} = \overrightarrow{OB} \overrightarrow{OA}$, where \overrightarrow{OA} and \overrightarrow{OB} are the position vectors of A and B respectively.
- 15. If the point P divides the line segment AB in the ratio $\lambda: \mu$, then

$$\overrightarrow{OP} = \overrightarrow{OA} + \frac{\lambda}{\lambda + \mu} \overrightarrow{AB}$$
$$= \overrightarrow{OA} + \frac{\lambda}{\lambda + \mu} (\overrightarrow{OB} - \overrightarrow{OA})$$

16. If **a** and **b** are two non-parallel vectors and $p\mathbf{a} + q\mathbf{b} = r\mathbf{a} + s\mathbf{b}$ then p = r and q = s

12 Differentation

- 1. The gradient of a curve at a given point is defined as the gardient of the tangent to the curve at that point
- 2. The **gradient function**, or **derivative**, of the curve y = f(x) is written as f'(x) or $\frac{dy}{dx}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The gradient function can be used to find the gradient of the curve for any value of x.

- 3. For all real values of n, and for a constant a:
 - If $f(x) = x^n$ then $f'(x) = nx^{n-1}$

• If $f(x) = ax^n$ then $f'(x) = anx^{n-1}$

• If $y = x^n$ then $\frac{dy}{dx} = nx^{n-1}$

- If $y = ax^n$ then $\frac{dy}{dx} = anx^{n-1}$
- 4. For the quadratic curve with equation $y = ax^2 + bx + c$, the derivative is given by

$$\frac{dy}{dx} = 2ax + b$$

- 5. If $y = f(x) \pm g(x)$, then $\frac{dy}{dx} = f'(x) \pm g'(x)$.
- 6. The tangent to the curve y = f(x) at the point with coordinates (a, f(a)) has equation

$$y - f(a) = f'(a)(x - a)$$

7. The normal to the curve y = f(x) at the point with coordinates (a, f(a)) has equation

$$\bullet \ y - f(a) = \frac{1}{f'(a)}(x - a)$$

- 8. The function f(x) is **increasing** on the interval [a, b] if $f'(x) \ge 0$ for all values of x such that a < x < b.
 - The function f(x) is **decreasing** on the interval [a,b] if $f'(x) \le 0$ for all values of x such that a < x < b.
- 9. Differentiating a function y = f(x) twice gives you the second order derivative, f''(x) or $\frac{d^2y}{dx^2}$
- 10. Any point on the curve y = f(x) where f'(x) = 0 is called a **stationary point**. For small positive value: h:

Type of stationary point	f'(x-h)	f'(x)	f'(x+h)
Local maximum	Positive	0	Negative
Local minimum	Negative	0	Positive
2*Point of inflection	Negative	0	Positive
	Positive	0	Positive

- 11. If a function f(x) has a stationary point when x = a, then:
 - if f''(a) > 0 the point is a local minimum
 - if f''(a) < 0 the point is a local maximum.

If f''(a) = 0, the point could be called a minimum, local maximum or a point of inflection.

You will need to look at points on either side to determine its nature.

13 Integration

1. If
$$\frac{dy}{dx} = x^n$$
, then $y = \frac{1}{n+1}x^{n+1}, +c, n \neq -1$.

Using function notation, if $f'(x) = x^n$, then $f(x) = \frac{1}{n+1}x^{n+1}, +c, n \neq -1$

2. If
$$\frac{dy}{dx} = kx^n$$
, then $y = \frac{k}{n+1}x^{n+1}, +c, n \neq -1$.

Using function notation, if $f'(x) = kx^n$, then $f(x) = \frac{k}{n+1}x^{n+1}, +c, n \neq -1$.

When integrating polynomials, apply the rule of integration seperately to each term.

$$3. \int f'(x)dx = f(x) + c$$

4.
$$\int (f(x) + g(x)dx) = \int f(x)dx + \int (g)dx$$

- 5. To find the constant of integration, c
 - Integrate the function
 - Substitute the values (x, y) of a point on the curve, or the value of the function given point f(x) = k into the integrated function
 - Solve the equation to find c
- 6. If f'(x) is the derivative of f(x) for all values of x in the interval [a,b], then the definate integral is defined as $\int_a^b f'(x)dx = [f(x)]_a^b = f(b) f(a)$
- 7. The are between a positive curve, the x axis and the lines x = a and x = b is given by Area $= \int_a^b y dx$ where y = f(x) is the equation of the curve.
- 8. When the area bounded by a curve and the x-axis is below the x-axis, $\int y dx$ gives a negative answer.
- 9. You can use definate integration together with areas of trapiziums and triangles to find more complicated areas of graphs.

8

14 Exponentials and logarithms

- 1. For all real values of x:
 - If $f(x) = e^x$ then $f'(x) = e^x$
 - If $y = e^x$ then $\frac{dy}{dx} = e^x$
- 2. For all real values of x and any constant k:
 - If $f(x) = e^{kx}$ then $f'(x) = ke^{kx}$
 - If $y = e^{kx}$ then $\frac{dy}{dx} = ke^{kx}$
- 3. $\log_a n = x$ is equivalent to $a^x = n \ (a \neq 1)$
- 4. The laws of logarithms:

$$\bullet \ \log_a x + \log_a y = \log_a xy$$

• $\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$

 $\bullet \ \log_a x^k = k \log_a x$

(the multiplication law)

(the division law)

(the power law)

5. You should also learn to recognise the following special cases:

• $\log_a(\frac{1}{x}) = \log_a(x^{-1}) = -\log_a x$

(the powerlaw when k = -1)

 $(a > 0, a \neq 1)$

• $\log_a a = 1$ • $\log_a 1 = 0$

 $(a > 0, a \neq 1)$

- 6. Whenever f(x) = g(x), $\log_a f(x) = \log_a g(x)$
- 7. The graph of $y = \ln x$ is a reflection of the graph $y = e^x$ in the line y = x
- 8. $e^{\ln x} = \ln(e^x) = x$
- 9. If $y = ax^n$ then the graph of $\log y$ against $\log x$ will be a straight line with gradient $\log b$ and vertical intercept $\log a$.