CS 284: Endterm (50 Minutes) – Fall 2017

December 8, 2017

donor Pledge:		
Cuada abaati		
Grade sheet:	Problem 1 (20 points)	
	1 Toblem 1 (20 points)	
	Problem 2.1 (10 points)	
	Problem 2.2 (10 points)	
	1 10010Hi 2.2 (10 politos)	
	Problem 3 (20 points)	
	Problem 4 (20 points)	
	, -	
	Problem 5 (20 points)	

Student Name:

Problems

Exercise 1 (Trees)

Implement a method public ArrayList<ArrayList<Integer>> paths(Node<E> localroot) that returns the list of all the paths in the tree rooted at localroot. A path is a sequence of 0 or 1 that denotes a path in the tree from the root to a node. For example, the set of paths of the tree below is [[], [0], [1], [1, 0], [1, 1], [1, 1, 0]].

Exercise 2 (Heaps)

1. Build the max heap that would result from inserting the following elements in the order in which they are presented. Show the intermediate heaps resulting from each individual insertion.

 $15,\,25,\,47,\,33,\,55,\,82,\,90,\,10,\,18$

2. Show the heap resulting from performing a deletion.

Exercise 3 (Sorting)

Sort the following list using insertion sort

 $72,\,35,\,18,\,22,\,43,\,12,\,52,\,21,\,12$

Exhibit the list resulting from each pass.

Exercise 4 (Sorting)

Explain why the modified partitioning algorithm in quicksort that, given an array a of size n, selects the pivot to be the middle element in the set $\{a[0], a[n \ div \ 2], a[n]\}$, is better than just taking the pivot to be a[0].

Exercise 5 (Hashing)

Insert the items in the following table

Key	Index
A	1
В	4
С	5
D	10
E	5
F	2
G	1
Н	10
I	1

into the hash table below. Resolve collisions using linear probing.

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	