Отчёт о выполненой лабораторной работе Измерение вязкости воздуха по течению в тонких трубках (1.1.3)

Каплин Артём Б01-402 6 апреля 2025

1 Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теоретические сведения

2.1 Течение Пуазейля

Из опыта известно, что при достаточно малых числах Рейнольдса течение в прямой трубе с гладкими стенками имеет ламинарный характер. В таком случае задача о течении жидкости имеет простое аналитическое решение.

Направим ось x вдоль трубы по направлению потока. В ламинарном потоке скорость течения среды будет направлена всюду по x (линии тока параллельны стенкам трубки), а давление постоянно в пределах любого сечения и зависит только от продольной координаты P(x). Будем искать частное решение — установившееся течение, в котором профиль скорости v(r) (распределение скорости в зависимости от расстояния до оси r) одинаков в любом поперечном сечении, то есть не зависит от x.

Выделим соосный трубе цилиндр некоторого радиуса r и длины d. Поскольку при стационарном течении жидкость течёт без ускорения, сумма всех сил, действующих на жидкость в цилиндре, должна быть равна нулю.

На жидкость внутри цилиндра действует направленная вдоль оси трубы сила давления:

$$F_{1x} = -dP \cdot \pi r^2,$$

где dP = P(x+d) - P(x) < 0 — разность давлений в сечениях на торцах выделенного участка.

Рис. 1: К выводу формулы Пуазейля

На боковые поверхности цилиндра действует касательная сила вязкого трения:

$$F_{2r} = -\tau \cdot 2\pi r d$$

где согласно закону Ньютона:

$$\tau = -\eta \frac{du}{dr}.$$

Из условия баланса сил $F_{1x} + F_{2x} = 0$ находим:

$$\frac{dP}{dx} = \eta \cdot \frac{2}{r} \frac{du}{dr}.$$

В установившемся течении правая часть полученного выражения является функцией только радиуса r. В левой части находится градиент давления, который не зависит от r вовсе, и, следовательно, обе части уравнения являются константами. Тогда, интегрируя, приходим к следующему.

Во-первых, давление в трубе является линейно убывающей функцией координаты:

$$P(x) = P_0 - \frac{\Delta P}{l}x.$$

Во-вторых, профиль скорости является параболической функцией с максимумом на оси:

$$u(r) = u_{\text{max}} - \frac{\Delta P}{4l}r^2.$$

Для нахождения $v_{\rm max}$ зададим граничное условие. Течения вязкой жидкости обычно используют так называемое условием прилипания: касательная скорость потока вблизи стенок считается равной скорости движения самих стенок. Физически это означает, что на молекулярном уровне стенки являются шероховатыми, так что при ударе о них молекулы в среднем полностью теряют направленную x-компоненту импульса. В рассматриваемой задаче стенки неподвижны, поэтому имеем

$$v(r=R)=0.$$

Отсюда: $v_{\text{max}} = \frac{\Delta P}{4L} R^2$, и профиль скорости:

$$u(r) = \frac{\Delta P}{4I}(R^2 - r^2).$$

Интегрируя v(r) по сечению трубы, найдём объёмный расход жидкости в зависимости от перепада давлений на концах:

$$Q = \int_0^R u(r) \cdot 2\pi r \, dr = \frac{\pi R^4 \Delta P}{8\eta l}.\tag{1}$$

Это соотношение называют формулой Пуазейля. Заметим, что средняя скорость потока при пуазейлевском течении, как видно из (1), оказывается вдвое меньше максимальной:

$$\bar{v} \equiv \frac{Q}{\pi R^2} = \frac{v_{\text{max}}}{2}.$$

Формула Пуазейля (1) позволяет определить вязкость газа по зависимости расхода от перепада давления в трубе и используется в качестве основной расчётной формулы в данной работе.

2.2 Вязкость газов

Рассмотрим механизм возникновения вязкости в газах. Молекулы газа участвуют как в направленном движении со средней скоростью потока u, так и в хаотическом тепловом движении, характеризующимся средней тепловой скоростью $\bar{v} = \sqrt{\frac{8k_{\rm B}T}{\pi m}}$ (здесь m — масса молекулы). Молекулы могут свободно перемещаться между слоями и обмениваться друг с другом импульсами при столкновениях. Если в двух соседних слоях потоковыескорости различны, то такой обмен импульсом и приводит к эффективному возникновению силы трения между слоями. Исходя из приведенных соображений можно получить следующую оценку для коэффициента вязкости идеального газа:

$$\eta \sim \frac{1}{3}\rho\bar{v}\lambda,$$
(2)

где λ — длина свободного пробега молекул газа относительно столкновений друг с другом. Как известно из молекулярно-кинетической теории, длина пробега определяется эффективным («газокинетическим») диаметром молекул d как $\lambda \sim 1/(n\pi d^2)$, где n — объёмная концентрация газа. Видно, что λ обратно пропорциональна плотности газа, поэтому, как следует из (2), вязкость газа не зависит от его плотности и определяется только температурой T. Данный вывод может показаться парадоксальным, поскольку в более плотном газе большее число молекул должно участвовать в передаче импульса между слоями, однако это компенсируется тем, что этот импульс передается на меньшее расстояние.

2.3 Турбулентность

Ламинарная картина течения наблюдается при относительно малых числах Рейнольдса, когда вязкие силы достаточны для того, чтобы погасить любые случайно возникшие возмущения потока. При превышении некоторого *критического числа Рейнольдса Re* > $Re_{\rm kp}$ течение Пуазейля становится *неустойчивым*. В потоке начинают рождаться вихри, которые затем сносятся вниз по трубе (при докритических числах Рейнольдса такие вихри быстро затухают за счёт вязкости).

С дальнейшим увеличением Re количество вихрей возрастает и, взаимодействуя между собой, они порождают вихри всё меньшего размера, создавая таким образом сложную многомасштабную картин течения. Эта картина радикально отличается от ламинарной: в ней отсутствуют непрерывные линии тока, а слои жидкости постоянно *перемешиваются*. Течение становится практически непредсказуемым, а скорость и давление испытывают значительные случайные ϕ луктуации.

Рис. 2: Пример траектории частиц жидкости при турбулентном течении

2.3.1 Оценка турбулентного течения

В качестве примера воспользуемся аналогией с молекулярно-кинетической теорией и рассмотрим следующую упрощенную модель турбулентного течения. Примем, что флуктуации скорости в развитом турбулентном течении по порядку величины совпадают со средней скоростью потока $u \sim \bar{u}$. При этом элементы жидкости практически равномерно перемешиваются по сечению трубы, так что в качестве «длины пробега» жидкой частицы можно взять поперечный размер системы R. Тогда по аналогии с формулой (2) определим «турбулентную вязкость» как

$$\eta_{\text{TVD6}} \sim \rho \bar{u} R.$$
(3)

Далее по аналогии с выводом формулы Пуазейля запишем баланс сил в потоке, откуда получим оценку для средней скорости течения:

$$\eta_{\text{typ6}} \frac{\bar{u}}{R} \cdot 2\pi r l \sim \pi R^2 \Delta P \quad \rightarrow \quad \bar{u} \sim \frac{R^2 \Delta P}{\eta_{\text{typ6}} l}$$

Подставляя сюда (3), находим скорость $\bar{u} \sim \sqrt{\frac{R\Delta P}{\rho l}}$ и, как следствие, расход:

$$Q = \pi R^2 \bar{u} \sim R^{5/2} \sqrt{\frac{\Delta P}{\rho l}}.$$
 (4)

Заметим, что эта теоретическая модель довольно груба и никак не учитывает сложную структуру турбулентного течения (например, не учитывается зависимость скорости потока u от расстояния r до оси трубы).

3 Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 3. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками. Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Рис. 3: Экспериментальная установка

4 Приборы и данные

- Термогигрометр с функцией отображения давления testo~622, погрешность измерения давления 3 г Π а, температуры 0.4 °C, влажности 2% в диапазоне от 0 до 90~%
- Микроманометр ММН-2400(5)-160, погрешность при различных К: 6 Па (K=0,2), 9 Па (K=0,3), 12 Па (K=0,4), 18 Па (K=0,6).
- Счетчик газовый барабанный модель ВИКС-1, погрешность измерения 1%

5 Ход работы

- Начальные показания: $t_{\text{\tiny H}} = 27.7^{\circ}C$ $P_{\text{\tiny H}} = 996.9$ гПа $\varphi_{\text{\tiny H}} = 23.3\%$.
- Показания в конце эксперимента: $t_{\rm k}=27.3^{\circ}C$ $P_{\rm k}=996.3$ гПа $\varphi_{\rm k}=21.2\%$,

где t - температруа в комнате, P - давление, φ - относительная влажность.

- 1. Ознакомились с устройством и характеристиками приборов (газового счетчика и спиртового микроманометра); провели их предварительную настройку и регулировку согласно техническому описанию установки.
- 2. Провели предварительный запуск установки и убедились в ее работоспособности.
- 3. Оценим критический расход и перепад давлений для каждой трубки. Для этого примем вязкость воздуха $\eta=2\cdot 10^{-5}\Pi a\cdot c$, число Рейнольдса $Re_{\rm kp}\approx 10^3$. Первая трубка диаметром 3.90 ± 0.05 mm:
 - (a) Трубка 1 (d = 3.9 мм):
 - l=0.50 м: $\Delta P_{\mathrm{\kappa p}}^1 \approx 187$ Па
 - l = 0.90 m: $\Delta P_{\text{kp}}^2 \approx 336 \text{ }\Pi\text{a}$
 - $l=1{,}20$ м: $\Delta P_{\mathrm{KD}}^{3}\approx 448$ Па
 - (b) Трубка 2 (d = 5.25 мм):
 - l=0.50 м: $\Delta P_{\mathrm{\kappa p}}^4 \approx 76$ Па
 - l = 0.40 m: $\Delta P_{\text{kp}}^5 \approx 61 \text{ }\Pi\text{a}$
 - l = 0.30 M: $\Delta P_{\text{KD}}^6 \approx 46 \text{ }\Pi\text{a}$
 - (c) Трубка 3 (d = 3.0 мм):
 - l=0.20 м: $\Delta P_{\rm \kappa p}^7 \approx 164$ Па l=0.40 м: $\Delta P_{\rm \kappa p}^8 \approx 328$ Па
- 4. Для трех трубок разных диаметров, меняя расположение микроманометра по длине трубки, будем менять расход сначала в пределах, когда течение еще ламинарное, а затем для турбулентного. Для каждого расхода будем фиксировать перепад давления. Данные представлены в виде таблиц в приложении.
- 5. Для каждой серии построим график зависимости $Q(\Delta P)$ по методу χ^2 . Величина $\frac{\chi^2}{dof}$, где dof (degrees of freedom) равно к n-2 характеризует степень согласия модели с данными. Если $\frac{\chi^2}{dof} \approx 1$, это означает хорошее согласие.

Графики также представлены в приложении.

6. По ламинарным участкам с помощью угловых коэфф. найдем вязкость воздуха η

$$\eta = \frac{\pi R^4}{8kl} = \frac{3.14 \cdot (\frac{3.9}{2})^4}{8 \cdot 0.034 \cdot 0.5} \approx 2.004 \cdot 10^{-5} \,\Pi\text{a} \cdot \text{c}$$

$$\sigma_{\eta} = \eta \sqrt{(\frac{4\sigma_R}{R})^2 + (\frac{\sigma_k}{k})^2} = 2.004 \cdot 10^{-5} \sqrt{(0.05)^2 + (0.008)^2} \approx 0.104 \cdot 10^{-5} \,\Pi\text{a} \cdot \text{c}$$

Nº	$\eta, \cdot 10^{-5} \; \Pi a \cdot c$	$\sigma_{\eta}, \cdot 10^{-5} \; \Pi a \cdot c$	$\varepsilon_{\eta},\%$
1	2.004	0.104	5.20
2	1.951	0.101	5.15
3	1.931	0.099	5.17
4	2.019	0.080	3.96
5	2.194	0.087	3.94
6	2.099	0.082	3.89
7	0.738	0.104	14.06
8	0.779	0.111	14.23

Таблица 1: Результаты расчёта коэффициента динамической вязкости

7. Для того чтобы рассчитать число Рейнольдса, найдём точки пересечения графиков для соответствубщих трубок и соответсвующих диаметров. Построим линейное приближение для турбулентного течения, графики также представлены в приложении. По границам перехода от ламинарного участка к турбулентному рассчитаем число Рейнольдса $Re_{\rm kp}$:

$$Re_{\rm kp} = \frac{P\mu_{\rm BO3}Q_{\rm kp}}{R_{\rm ra3}T\eta\pi R}$$

7. C-	D
$N_{\overline{0}}$	$Re_{\rm kp}$
1	898
2	969
3	929
4	891
5	803
6	910
7	2627
8	2189

Таблица 2: Критические значения числа Рейнольдса для серий 1–8.

6 Результаты и обсуждения

1. По графикам 1-3 видно, что расход прямо пропорционален перепаду давления, точки хорошо ложатся на прямую при ламинарном течении. Сравним полученные экспериментально коэффициенты вязкости с табличным значением $\eta_{\text{табл}}1,832\cdot 10^{-5}\ \Pi \text{a.}\cdot \text{c}$ По таблице

$\eta, \cdot 10^{-5} \Pi a \cdot c$	$\sigma_{\eta_{\text{эксп}}}, \cdot 10^{-5} \Pi \text{a} \cdot \text{c}$	$\sigma_{\eta_{\text{табл}}}, \cdot 10^{-5} \Pi \text{a} \cdot \text{c}$	$\varepsilon_{\eta_{ m skcn}},\%$	$\varepsilon_{\eta_{\mathrm{Ta6J}}},\%$
2.004	0.104	0,175	5.20	9,53
1.951	0.101	0,119	5.15	6,48
1.931	0.099	0,094	5.17	5,11
2.019	0.080	0,152	3.96	8,28
2.194	0.087	0,381	3.94	20,78
2.099	0.082	0,307	3.89	16,76
0.738	0.104	1,025	14.06	55,95
0.779	0.111	1,055	14.23	57,60

Таблица 3: Таблица 19. Сравнение экспериментальных и табличных погрешностей вязкости видно, что коэффициенты, полученные в сериях с трьетей трубкой отличаются более чем

в 2 раза. Можем предположить, что это связано с тем, что длина трубки была меньше, чем рассчитанная длина установления давления, поэтому на этом участке течение не подчиняется закону Пуазейля. Также перепад давления на этой трубке довольно мал, что приводит к большой относительной погрешности. Остальные коэффициенты совпадают с табличными с хорошей точностью. Это подтверждает тот факт, что значение вязкости не зависит от диаметра трубки.

- 2. По графикам 4-9 можем убедиться, что при турбулентном течении расход действительно зависит от корня перепада давления.
- 3. Поскольку определить точно границу перехода от ламинарного течения к турбулентному в данном опыте довольно трудно, мы воспользовались приближением и нашли эти точки как точки пересечения графиков.

7 Выводы

Провели измерения перепада давления от расхода газа для трех трубок разного диаметра и разной длины. Построили графики зависимости $Q(\Delta P)$, с помощью них нашли коэффициенты вязкости воздуха для наших параметров окружающей среды. Убедились в том, что вязкость не зависит от диаметра трубки. Оценили критические значения числа Рейнольдса.

8 Приложение

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{\text{Muh}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}, \%$
1.352	0.014	37	6	16.2
2.363	0.024	64	6	9.3
2.894	0.029	78	6	7.7
3.897	0.039	107	6	5.6
4.468	0.045	134	6	4.5
4.945	0.049	140	6	4.3
5.483	0.055	162	6	3.7

Таблица 4: $d=3{,}90\pm0{,}05$ мм; $l=0{,}5$ м; $K=0{,}2$

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
1.28	0.013	58	9	15.4
2.788	0.028	120	9	7.5
3.226	0.032	158	9	5.7
3.581	0.036	175	9	5.1
4.138	0.041	201	9	4.5
4.58	0.046	210	9	4.3
5.04	0.050	257	9	3.5
5.452	0.055	292	9	3.1

Таблица 5: $d=3{,}90\pm0{,}05$ мм; $l=0{,}9$ м; $K=0{,}3$

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Πa	$\varepsilon_{\Delta P},\%$
1.024	0.010	62	12	19.2
2.236	0.022	140	12	8.6
2.584	0.026	168	12	7.2
3.212	0.032	206	12	5.8
3.621	0.036	234	12	5.1
4.404	0.044	292	12	4.1
5.166	0.052	355	12	3.4

Таблица 6: $d=3{,}90\pm0{,}05$ мм; $l=1{,}2$ м; $K=0{,}4$

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}, \Pi a$	$\varepsilon_{\Delta P}, \%$
7.083	0.071	308	6	1.9
7.943	0.079	385	9	2.3
8.533	0.085	447	9	2.0
9.395	0.094	540	9	1.7
9.814	0.098	587	9	1.5
10.052	0.101	610	9	1.5
10.755	0.108	701	9	1.3

Таблица 7: $d=3{,}90\pm0{,}05$ мм; $l=0{,}5$ м; $K=0{,}3$

$Q, \frac{\pi}{\text{MMH}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}, \%$
7.058	0.071	510	12	2.4
7.799	0.078	686	12	1.7
8.452	0.085	791	12	1.5
8.793	0.088	857	12	1.4
9.087	0.091	927	12	1.3
9.319	0.093	978	12	1.2
9.814	0.098	1064	12	1.1

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{\text{Muh}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
7.632	0.076	839	18	2.1
8.113	0.081	950	18	1.9
8.441	0.084	1020	18	1.8
8.895	0.089	1125	18	1.6
9.575	0.096	1288	18	1.4
9.313	0.093	1235	18	1.5
9.868	0.099	1398	18	1.3

Таблица 8: $d=3{,}90\pm0{,}05$ мм; $l=0{,}9$ м; $K=0{,}4$

Таблица 9: $d=3{,}90\pm0{,}05$ мм; $l=1{,}2$ м; $K=0{,}6$

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{\text{Muh}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}, \%$
2.58	0.026	19	6	30.8
3.31	0.033	27	6	22.0
5.399	0.054	45	6	13.4
6.638	0.066	55	6	11.0
4.485	0.045	37	6	16.2
6.91	0.069	58	6	10.3
5.116	0.051	43	6	14.0

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{\text{MUH}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
2.478	0.025	16	6	38.5
3.383	0.034	23	6	25.7
5.441	0.054	39	6	15.4
4.226	0.042	29	6	20.5
6.386	0.064	47	6	12.8
6.964	0.070	51	6	11.8
7.815	0.078	58	6	10.3

Таблица 10: $d=5.25\pm0.05$ мм; l=0.5 м; K=0.2

Таблица 11: $d=5{,}25\pm0{,}05$ мм; $l=0{,}4$ м; $K=0{,}2$

$Q, \frac{\pi}{\text{MMH}}$	$\sigma_Q, \frac{\pi}{\text{MUH}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}, \%$
1.535	0.015	8	6	77.0
2.738	0.027	14	6	44.0
3.759	0.038	19	6	30.8
4.331	0.043	23	6	25.7
4.922	0.049	27	6	22.0
6.245	0.062	35	6	17.1
6.811	0.068	39	6	15.4

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}$, %
9.067	0.091	109	6	5.5
9.735	0.097	134	6	4.5
10.334	0.103	156	6	3.8
11.379	0.114	185	6	3.2
12.416	0.124	218	6	2.7
13.158	0.132	249	6	2.4
13.935	0.139	267	6	2.2

Таблица 12: $d=5{,}25\pm0{,}05$ мм; $l=0{,}3$ м; $K=0{,}2$

Таблица 13: $d=5.25\pm0.05$ мм; l=0.5 м; K=0.2

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
9.305	0.093	103	6	5.8
10.103	0.101	127	6	4.7
11.228	0.112	154	6	3.9
11.921	0.119	173	6	3.5
12.679	0.127	193	6	3.1
13.052	0.131	205	6	2.9
13.583	0.136	222	6	2.7

	$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
	10.947	0.109	92	6	6.6
	11.684	0.117	103	6	5.8
	12.177	0.122	113	6	5.3
	12.662	0.127	119	6	5.0
	13.137	0.131	129	6	4.7
Ī	13.591	0.136	136	6	4.4
	14.102	0.141	144	6	4.2

Таблица 14: $d=5.25\pm0.05$ мм; l=0.4 м; K=0.2

Таблица 15: $d=5{,}25\pm0{,}05$ мм; $l=0{,}3$ м; $K=0{,}2$

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
1.118	0.011	10	6	61.6
1.901	0.019	19	6	30.8
1.26	0.013	12	6	51.3
1.54	0.015	14	6	44.0
2.347	0.023	23	6	25.7
2.733	0.027	29	6	20.5
3.197	0.032	37	6	16.2

Таблица	16· d -	3.0 ± 0.1	MM; l = 0	$1.2 \text{ M} \cdot l$	7 - 0.2
таолица	, io. $a-$	\cdot 0,0 \pm 0,1	mm , ι — ι	$U, \succeq M, I$	1 — 0,2

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{\text{Muh}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P},\%$
0.561	0.006	12	6	51.3
1.107	0.011	25	6	23.7
1.574	0.016	39	6	15.4
1.86	0.019	47	6	12.8
2.135	0.021	51	6	11.8

Таблица 17: $d=3.0\pm0.1$ мм; l=0.4 м; K=0.2

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{MMH}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}$, %
6.038	0.060	97	6	6.2
6.803	0.068	113	6	5.3
7.139	0.071	125	6	4.8
8.375	0.084	156	6	3.8
8.966	0.090	175	6	3.4
9.56	0.096	203	6	3.0
10.179	0.102	222	6	2.7

φ , _{MИН}	^{O}Q , $_{ m MHH}$	ΔI , Πa	$O\Delta P$, 11a	$c_{\Delta P}, 70$
6.038	0.060	97	6	6.2
6.803	0.068	113	6	5.3
7.139	0.071	125	6	4.8
8.375	0.084	156	6	3.8
8.966	0.090	175	6	3.4
9.56	0.096	203	6	3.0
10.179	0.102	222	6	2.7

Таблица 18: $d=3{,}0{\pm}0{,}1$ мм; $l=0{,}2$ м; $K=0{,}2$

$Q, \frac{\pi}{\text{Muh}}$	$\sigma_Q, \frac{\pi}{\text{MUH}}$	ΔP , Πa	$\sigma_{\Delta P}$, Π a	$\varepsilon_{\Delta P}, \%$
5.202	0.052	187	6	3.2
5.836	0.058	228	6	2.6
6.194	0.062	245	6	2.4
6.951	0.070	310	6	1.9
7.662	0.077	364	6	1.6

Таблица 19: $d=3{,}0\pm0{,}1$ мм; $l=0{,}4$ м; $K=0{,}2$

Рис. 4: Ламинарное течение, первая трубка $d=3.9~\mathrm{mm}$

Рис. 5: Ламинарное течение, вторая трубка $d=5.25~\mathrm{mm}$

Рис. 6: Ламинарное течение, третья трубка $d=3.0~{
m mm}$

Рис. 7: Турбулентное течение, первая трубка ${\rm d}=3.9~{\rm mm}$

Рис. 8: Турбулентное течение, вторая трубка $\rm d = 5.25~mm$

Рис. 9: Турбулентное течение, третья трубка $d=3.0 \ \mathrm{mm}$

Рис. 10: Турбулентное течение, первая трубка ${\rm d}=3.9~{\rm mm}$

Рис. 11: Турбулентное течение, вторая трубка $\rm d = 5.25~mm$

Рис. 12: Турбулентное течение, третья трубка ${\rm d}=3.0~{\rm mm}$

Рис. 13: Турбулентное течение, первая трубка $d=3.9~\mathrm{mm}$

Рис. 14: Турбулентное течение, вторая трубка $d=5.25~\mathrm{mm}$

Рис. 15: Турбулентное течение, третья трубка ${\rm d}=3.0~{\rm mm}$