AAAI-22

Is Your Data Relevant?: Dynamic Selection of Relevant Data for Federated Learning

Lokesh Nagalapatti*1[†], Ruhi Sharma Mittal*2, Ramasuri Narayanam³ [†]

¹ IIT Bombay ² IBM Research AI ³ Adobe Research India nlokesh@cse.iitb.ac.in, ruhi.sharma@in.ibm.com, rnarayanam@adobe.com

Introduction

Not all the data owned by each client is relevant to the server's learning objective

-> Federated Learning with Relevant Data(FLRD)

- * Relevant Data: data samples that are favorable to Global Model
 - Different across multiple communication rounds
 - Adapt to the dynmaics of FL environment

Motivation Experiment

- Iris dataset
- One server(S) and two clients(C_1 , C_2)
- FedAvg algorithm

- (1) 20% closed-set noise at each client by flippping the labels
- (2) Removing the noisy data samples

Problem Definition

- 1. Server (*S*)
 - $GLM: f_{\theta}: X \to Y$ to minimize $l(y, f_{\theta}(x))$
 - D_V , D_{Test} : IID drawn from the target distribution -> used only for test

- 2. Clients $\{C_1, C_2, ..., C_n\}$
 - LLM
 - Local Data of C_i : D_i

Problem Definition

At each round t ...

How client learns a relevance prediction function locally w.r.t the GLM's objective

Key Challenges

- The proposed solution should adhere to the privacy constraints imposed by the FL framework
- Designing a solution that relies only on client's local data may lead to sub-optimalities in the relevance prediction function and thereby it adversely affects GLM
- 3. Relevance value of a data point should vary as a function of time t.

- Each client learns RDS to predict the relevance score(RS) [0,1]
- GLM, RDS: deep neural networks

$$GLM: f_{\theta}: X \to Y$$
 (1)

$$RDS_i: g_{i\phi_i}: (X,Y) \to [0,1]$$
 (2)

Objective of FLRD

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{(x,y) \in D_i} \boxed{g_{i\phi_i}(x,y)} \cdot \boxed{l(y, f_{\theta}(x))}$$
(3)

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{(x,y) \in D_{Tost}} l(y, f_{\theta}(x)) \tag{4}$$

 $g_i(x,y)$ to be high for samples which finds better $\hat{\theta}$ closer to θ^t

Training **GLM**

- 1. RDS_i samples mini-batch $(b_i \subseteq D_i)$
- 2. Fits LLM_i with b_i

$$\delta_{b_i}^t = \gamma_i^E - \theta^t$$

$$\delta_{agg}^t = \frac{1}{n} \sum_{i=1}^n \delta_{b_i}^t \tag{5}$$

$$\theta^{t+1} = \theta^t + \delta^t_{agg} \tag{6}$$

Training *RDS*

- RDS_i as a local policy network of client C_i to select b_i
- Utilize reward signal from server to train RDS_i
- Two possible solutions:
 - 1) Make D_V public and use it to compute the feed back locally
 - 2) D_V is private to server and server computes the feedback on it

Training RDS

- 1. Receive (θ^t, r_i^{t-1}) from the server
- 2. Compute δ_{bi}^t and $\delta_{f_i}^t$, where $f_i \subseteq D_i$ sampled uniformly at random
- 3. Server computes the reward r_i^t

$$r_i^t(b_i) = \mathcal{P}(\theta^t + \delta_{b_i}^t) - \mathcal{P}(\theta^t + \delta_{f_i}^t) \tag{7}$$

$$\mathcal{P}(\theta) = \frac{1}{|D_V|} \sum_{(x,y) \in D_V} \mathcal{I}(y == f_\theta(x)) \tag{8}$$

 $P(\theta)$ is a performance measure on validation set with parameters of GLM as θ

 \triangleright If b_i is relevant, then δ_i^t adds more value to GLM than $\delta_{b_i}^t$

Utility function:

- 각 클라이언트 C_i 는 \emptyset_i 를 최대화하기 위한 유틸리티 함수를 가지며, 이 함수는 확률 분포 π_i 에 따라 $r_i^t(b_i, f_i)$ 의 기대값을 최대화하려고 시도합니다.
- $\alpha \vdash D_i$ 의 부분 집합이며, $\pi_i \vdash D_i$ 의 확률 분포이고 $g_{\emptyset_i}(x,y)$ 에 따라 계산됩니다.

$$\max_{\phi_i} J(\phi_i) = \mathbb{E}_{\alpha \sim \pi_i} [r_i^t(b_i, f_i)] \qquad (9) \qquad \pi_i(\alpha | D_i) = \prod_{(x, y) \in \alpha} g_{\phi_i}(x, y) \cdot \prod_{(x, y) \in D_i \setminus \alpha} \left[1 - g_{\phi_i}(x, y) \right] \quad (10)$$

Policy Gradients Calculation:

- 각 클라이언트 C_i 는 RDS_i 를 업데이트하기 위해 policy gradients를 계산합니다.
- Policy gradients는 $r_i^t(\alpha)$ 와 $\pi_i(\alpha|D_i)$ 를 곱한 합으로 계산됩니다.

$$\nabla_{\phi_i} J(\phi_i) = \nabla_{\phi_i} \sum_{\alpha \in 2^{D_i}} r_i^t(\alpha) \cdot \pi_i(\alpha|D_i)$$
 (11)

Policy Gradients Approximation:

• Policy gradients를 근사화하기 위해 b_i 에 대한 하나의 샘플 하위 집합을 사용

$$\nabla_{\phi_i} \hat{J}(\phi_i) = r_i^t(b_i) \cdot \left[\pi_i(b_i|D_i) \right] \cdot \left[\nabla_{\phi_i} log(\pi_i(b_i|D_i)) \right]$$
(12)

Model Update:

• 클라이언트 C_i 는 추정된 policy gradients를 기반으로 학습률 ζ_i 를 사용하여 RDS_i 를 업데이트

$$\phi_i = \phi_i + \zeta_i \nabla_{\phi_i} \hat{J}(\phi_i) \tag{13}$$

Three types of noise

1. Attribute noise

: erroneous values or missing values

2. Closed-set label noise

: randomly flip labels of data samples

3. Open-set label noise

: assign out of distribution samples and label them randomly

Relevance score(RS) of data samples after 100 communication rounds

- Green Bar: non-noisy data samples
- Red bar: noisy data samples

With attribute noise (5%), the performance of GLM is superior to that of other baselines

With closed-set label noise, the performance of *GLM* is superior to that of other baselines with or without noise

• Random noise percentage at each client $\{5\%, 7\%, \cdots, 25\%\}$

Removing data samples with high relevance scores(RS) deteriorates GLM performance and with low RS improves it

15% closed-set label noise

Removing as many as 50% samples with low *RS* didn't affect the GLM

FLRD is robust to both low and high noisy datasets

closed-set label noise

FLRD outperforms $FL_{(McMahan \, et \, al. \, 2017)}$ when validation samples are scarce

- 20% closed-set label noise
- From 20 to 600 size of validation dataset size

Convergence of *GLM* is fast when size of dataset is large