ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ

2019-2020

2η εργαστηριακή Άσκηση

Μάριος-Αλέξανδρος Μορφόπουλος 1058102 Παναγιώτης Χριστόπουλος 1054409 Χρήστος Στεμιτσιώτης 1054375 Κωνσταντίνος Μελισσουργός 1054318

Μέρος 1

Ερώτημα Α:

```
panos@panos-D15D:~/Desktop/Λειτουργικα2$ ./er1
Το pid μου είναι 14157 ο πατέρας μου είναι 14133
Το pid μου είναι 14159 ο πατέρας μου είναι 14157
Το pid μου είναι 14158 ο πατέρας μου είναι 14157
Το pid μου είναι 14160 ο πατέρας μου είναι 14158
```

Ο κώδικας που μας δόθηκε εκτελείται ως εξής: Δηλώνονται δύο διεργασίες με pid_1 και pid_2 και αρχικά επιχειρείται fork() της p_1 . Αν το fork επιτύχει το πρόγραμμα επιχειρεί να δημιουργήσει μια διεργασία-αντίγραφο της p_2 ξανά με το fork(). Γίνεται ξανά έλεγχος επιτυχίας για το 2 και στη συνέχεια γίνεται για την επιτυχία και των 2 fork. Ο κώδικας μπαίνει σε κατάσταση sleep για 20 -δευτερόλεπτα και στη συνέχεια σταματάει να εκτελείται επιστρέφοντας 0. Συνεπώς, όπως παρατηρείται μετά την εκτέλεση του κατάλληλου κώδικα, μετά από 10 λεπτά υπάρχουν 4 διεργασίες σε κατάσταση sleeping (pid1, pid2 forkedpid1, forkedpid2)

EPΩTHMA Aii - B - Γ - Δ:

Βρίσκονται συνημμένα μαζί με την αναφορά.

Μέρος 2

Ερώτημα Α:

α) Από την εκφώνηση παρατηρούμε ότι έχουμε λογικές διευθύνσεις των 32 bits όπου τα πρώτα (πιο σημαντικά) 18 bits αναπαριστούν τον αριθμό σελίδα (page = 18 bits) οπότε τα υπόλοιπα 14 bits είναι το offset.

To offset έχει διπλό ρόλο:

- Α) Δείχνει τη μετατόπιση της λογικής διεύθυνσης από την αρχή της σελίδας που βρίσκεται
- Β) Προσδιορίζει ταυτόχρονα και το μέγεθος της σελίδας

Συνεπώς το μέγεθος της σελίδας είναι 2^{14} bytes = 16384 39600_{16} =234752 bytes = μέγεθος διεργασίας = μέγεθος πίνακα σελίδων

Για να βρούμε πόσα πλαίσια σελίδων καταλαμβάνει (πλήθος σελίδων της διεργασίας) διαιρούμε τα δύο μεγέθη: 234752/16384 = 14,32. Άρα ο πίνακας σελίδων καταλαμβάνει 15 σελίδες. Οι 14 σελίδες της διεργασίας γεμίζουν πλήρως ενώ η 15η σελίδα γεμίζει μόνο κατά 0,32 άρα η εσωτερική κλασματοποίηση δηλαδή ο κενός χώρος εντός της σελίδας είναι 0,68 του μεγέθους της ή 0,68*16384 = 11141,12 bits.

β) Σύμφωνα με την εκφώνηση έχουμε την ακόλουθη αντιστοίχηση:

Σελίδα	Φυσικό Πλαίσιο
0	X
1	X
2	X
•••	X
10	16
11	225
12	170
13	35
14	51

Το 00031958₁₆ σε δυαδική μορφή είναι:

0000 0000 0000 0011 0001 1001 0101 1000

Από την εκφώνηση γνωρίζουμε ότι τα πρώτα 18 bits είναι το page. Άρα $1100_2 = 12$ η σελίδα. Συνεπώς βρισκόμαστε στο φυσικό πλαίσιο 170

Από την εκφώνηση γνωρίζουμε ότι τα υπόλοιπα 14 bits είναι το offset. Άρα $01100101101000_2 = 6488$

Επομένως 170*16384 (μέγεθος της σελίδας στο φυσικό πλαίσιο) + $6488 = 2791768_{10} = 2A9958_{16}$ (φυσική διεύθυνση)

β) Το $001E800_{16}$ σε δυαδική μορφή είναι:

Όπως και πριν, τα πρώτα 16 bits είναι το page. Άρα $0111_2 = 7η$ σελίδα

14 bit offset

Όμως, η σελίδα 7 δεν απεικονίζεται σε φυσικό πλαίσιο μνήμης, άρα έχουμε page fault.

Ερώτημα Β:

α) Από την εκφώνηση παρατηρούμε ότι κάθε λογική (εικονική) διεύθυνση αποτελείται από 32 bit, συνεπώς το μέγεθος του λογικού (εικονικού) χώρου διευθύνσεων είναι 2^{32} bytes. Επίσης, ξέρουμε ότι το μέγιστο υποστηριζόμενο μέγεθος κάθε τμήματος είναι 16 MegaBytes, οπότε προκύπτει ότι $16*2^{20}=2^{4*}2^{20}=2^{24}$ bytes. Για να βρούμε το μέγιστο υποστηριζόμενο αριθμό τμημάτων για μία διεργασία, θα διαιρέσουμε τα δύο παραπάνω μεγέθη, οπότε προκύπτει $2^{32}/2^{24}=2^{8}=256$ τμήματα/

βί) Το 0Β00042Α₁₆ σε δυαδική μορφή είναι:

0000 1011 0000 0000 0000 0100 0010 1010

Γενικά, γνωρίζουμε ότι στην τμηματοποίηση η μορφή των λογικών διευθύνσεων είναι (s,d) όπου s=segment (τμήμα) και d=offset (μετατόπιση). Από πρίν ξέρουμε ότι τα πρώτα 8 bit είναι το segment, οπότε 1011_2 =11 τμήμα, ενώ τα τελευταία 24 bit είναι το offset, οπότε 10000101010_2 = 1066

Σύμφωνα με τον πίνακα της Άσκησης:

Αριθμός Τμήματος	Διεύθυνση Βάσης	Μήκος Τμήματος					
0	1650	1110					
1	3200	2380					
2	10310	1290					
	•••						
10	5950	2265					
11	9050	1230					
12	12270	5535					
	•••	•••					

Για να μετατρέψουμε τη λογική (εικονική) διεύθυνση σε φυσική εξετάζουμε πρώτα αν το d< limit για το συγκεκριμένο τμήμα που βρισκόμαστε. Επειδή d=1066 < limit = 1230, η λογική διεύθυνση είναι έγκυρη δηλαδή έχει φορτωθεί σε κάποιο τμήμα (segment). Επομένως, η φυσική διεύθυνση είναι base address + offset = 9050 + 1066 = 10116 και η μετατροπή της σε δεκαεξαδική μορφή είναι 2784_{16} .

βii) Το 0200Β6D₁₆ σε δυαδική μορφή είναι:

0000001000000000000101101101101

Πάλι απο πρίν τα πρώτα 8 bit είναι το segment (τμήμα) οπότε $0010_2 = 2$ τμήμα, ενώ τα τελευταία 24 bit είναι το offset, οπότε $101101101101_2 = 2926$. Για να μετατρέψουμε την εικονική διεύθυνση σε φυσική εξετάζουμε πρώτα αν το d< limit για το συγκεκριμένο πλαίσιο. Επειδή d=2915>limit=1290 (από τον πίνακα της εκφώνησης), η λογική διεύθυνση δεν απεικονίζεται σε φυσική διεύθυνση, συνεπώς έχουμε σφάλμα τμήματος (segment fault).

Ερώτημα Γ:

α) Γενικά γνωρίζουμε ότι στην σελιδοποιημένη τμηματοποίηση (paged segmentation) η μορφή των λογικών διευθύνσεων είναι (s,p,d) όπου s είναι το τμήμα(segment), p είναι η σελίδα (page) και d το offset (μετατόπιση). Από πριν (θέμα B) γνωρίζουμε ότι έχουμε 256 τμήματα, άρα τα bits για το segment είναι τα πρώτα 8 bits. Από την εκφώνηση γνωρίζουμε ότι το μέγεθος σελίδας είναι 512 bytes (2^9), άρα το offset είναι τα τελευταία 9 bits. Άρα τα bits που απομένουν για το πλήθος σελίδων είναι 15 (32-17=15) δηλαδή υπάρχουν 2^{15} σελίδες σε κάθε πίνακα σελίδων. Συνεπώς, η μορφή των λογικών διευθύνσεων είναι (s,p,d) \Rightarrow (8,15,9) ή

S	P	D
8	5	19

β) Γενικά, γνωρίζουμε ότι το κάθε τμήμα (segment) έχει έναν πίνακα σελίδων και ο κάθε πίνακας σελίδων έχει 2¹⁵ σελίδες. Συνεπώς, ο μέγιστος αριθμός σελίδων μίας διεργασίας είναι:

 2^8 τμήματα (segment) * 2^{15} σελίδες (pages)/segment = 2^{23} σελίδες

γί) Το 010004C16 σε δυαδική μορφή είναι:

0000 0001 0000 0000 0000 0100 1100 1111

segment page offset

Παρατηρούμε ότι τα πρώτα 8 bit που είναι το segment είναι το 0001_2 = 1, άρα είμαστε στο τμήμα 1, επίσης από το page παρατηρούμε ότι είναι 0010_2 = 2, άρα είμαστε στη σελίδα 2, που από τον πίνακα της εκφώνησης έχει φορτωθεί στο φυσικό πλαίσιο $OBOB_{16}$ =2827.

Πίνακας Σελίδων Τμήματος 0							
Αριθμός	Αριθμός Πλαισίου						
Σελίδων							
0	151F						
1	?						
2	34FE						
3	7E11						
4	2345						
5	-						
	•••						

Πίνακας Σελίδων Τμήματος 1							
Αριθμός	Αριθμός Πλαισίου						
Σελίδων							
0	-						
1	2EE1						
2	0B0B						
3	0C11						
4	?						
5	18A2						
•••	•••						

Αυτό το φυσικό πλαίσιο αρχίζει στη διεύθυνση 2827 * 542 = 1447424. Σε αυτή την αρχική διεύθυνση προσθέτουμε το offset (1101111 $_2$ = 207) και προκύπτει η τελική φυσική διεύθυνση που είναι:

2827*512+207 = 1447631 και σε δεκαεξαδική μορφή είναι $161CF_{16}$

γii) Το 01009FF₁₆ σε δυαδική μορφή είναι:

0000 0001 0000 0000 0000 1001 11111111

segment page offset

Παρατηρούμε ότι τα πρώτα 8 bit που είναι το segment είναι το 0001_2 = 1, άρα είμαστε στο τμήμα 1, επίσης από το page παρατηρούμε ότι είναι 0100_2 = 4, άρα είμαστε στη σελίδα 4. Επίσης το offset προκύπτει 111111111_2 = 511. Η σελίδα 5 δεν έχει φορτωθεί σε φυσικό πλαίσιο μνήμης. Άρα βάζουμε – στο αντίσοιχο ?

Πίνακας Σελίδων Τμήματος 1						
Αριθμός	Αριθμός Πλαισίου					
Σελίδων						
0	-					
1	2EE1					
2	0B0B					
3	0C11					
4	-					
5	18A2					
•••	•••					

Το Ε0Ε1F0₁₆ σε δυαδική μορφή είναι:

<u>1100 0000 1110 0001 1111 0000</u>

frame

offset

Παρατηρούμε ότι τα πρώτα 15 bits προσδιορίζουν το φυσικό πλαίσιο μνήμης και τα τελευταία 9 bits προσδιορίζουν το offset. Συνεπώς, προκύπτει ότι ο αριθμός φυσικού πλαισίου είναι: $11100000-1110000=7070_{16} \text{ , άρα θέτουμε } 7070 \text{ στο αντίστοιχο ? Για τη σελίδα 1 του πίνακα σελίδων τμήματος 0.}$

Πίνακας Σελίδων Τμήματος 0							
Αριθμός	Αριθμός Πλαισίου						
Σελίδων							
0	151F						
1	7070						
2	34FE						
3	7E11						
4	2345						
5	-						
	•••						

Ερώτημα Δ:

	3	5	8	1	8	7	5	1	8	2	4	2	7	3	6	4	7	5	3	7
0	<u>3</u>	3	3	3	3	7	7	7	7	2	2	2	2	2	2	4	4	4	4	4
1		<u>5</u>	5	5	5	5	5	5	5	5	4	4	4	4	<u>6</u>	6	6	6	<u>3</u>	3
2			8	8	8	8	8	8	8	8	8	8	8	<u>3</u>	3	3	3	<u>5</u>	5	5
3				<u>1</u>	1	1	1	1	1	1	1	1	1	7	7	7	7	7	7	7
	F	F	F	F	Н	F	Н	Н	Н	F	F	Н	F	F	F	F	Н	F	F	Н