Flow Reconstruction with Neural Network-based Reduced Order Modeling

Allan Moreira de Carvalho email allan.carvalho@ufabc.edu.br

Federal University of ABC - Santo André, Brazil 2023-04-26

Introduction

Introduction

	Minimum	Maximum	
t_w	0.0010 m	0.0100 m	
$CP3_y$	-0.0125 m	0.0000 m	

 $Sampling\ ranges\ for\ the\ design\ variables.$

Methodology

Step 1: Data Generation using CFD Analysis

Snapshot Matrices

Low fidelity model

High fidelity model

$$\mathbf{A}_L = \left[\mathbf{L}^1 | \dots | \mathbf{L}^N \right]^{S_L \times N}$$

$$\mathbf{A}_{H} = \left[\mathbf{H}^{1}|\dots|\mathbf{H}^{N}
ight]^{S_{H} imes N}$$

$$\mathbf{L} = egin{bmatrix} t_w \ CP3_y \ \mathbf{p}_L \ \mathbf{T}_L \ \mathbf{M}_L \end{bmatrix}^{1205 imes 1}$$

$$\mathbf{L} = egin{bmatrix} t_w \ CP3_y \ \mathbf{p}_H \ \mathbf{T}_H \ \mathbf{T}_\mathbf{s} \ \mathbf{M}_H \end{bmatrix}^{252842 imes 1}$$

Step 2: Order Reduction using SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

Truncated SVD

$$\mathbf{A} pprox \tilde{\mathbf{U}}\tilde{\mathbf{\Lambda}}$$

% Energy_i =
$$\sum_{j=1}^{i} \frac{\sum_{k=1}^{2} \sum_{l=1}^{2} \sum_{l=1}^{2} \times 100}{\sum_{l=1}^{r} \sum_{l=1}^{2} \times 100}$$

$$\tilde{\mathbf{A}}_L = \tilde{\mathbf{U}}_L^T \mathbf{A}_L$$

$$\tilde{\Lambda}_H = \tilde{\mathbf{U}}_H^T \mathbf{A}_L$$

Step 3: Training the Neural Network

Loss MSE $(\tilde{\Lambda}_L, \tilde{\Lambda}_H)$

Training

time 15s

Results

- ▶ inference time 10s
- ▶ 500-fold speedup (1h30m for full order CFD)

	MAE	R ²
p	698.4111 <i>Pa</i>	0.9999
Т	2.7631 <i>K</i>	0.9958
M	0.0026	0.9999
T_{SOLID}	8.3579 <i>K</i>	0.7179
T_WALL	16.757 <i>K</i>	0.2241
q WALL	25386.4482 W/m^2	0.8093

Pressure Flow Field Reconstructions

Temperature Flow Field Reconstructions

Mach Flow Field Reconstruction

Wall Heat Flux

900 CFDpredicted $Wall\ HeatFlux\ [KW/m^2]$ 800 700 600 500 400 300 0.250.50 0.00 0.751.00 x/L

Figure 1: Surrogate model prediction of heat flux $[W/m^2]$ distributions over test dataset.

Figure 2: Surrogate model prediction of a heat flux $\lceil W/m^2 \rceil$ distribution.

Wall Surface Temperature

Figure 3: Surrogate model prediction of nozzle wall surface temperature [K] distributions over

Figure 4: Surrogate model prediction of a nozzle wall surface temperature [K] distribution.

Wall Solid Temperature

Model Limitations and Improvements Suggestions

- the need for a large amount of data for training.
- adding more snapshots is expected to improve model accuracy.
- using individual normalization techniques for each variable.
- perform hyperparameter optimization.
- try more advanced loss functions.
- trye other optimization algorithms.
- redesigning the snapshot variables selection

Conclusion and Future Work

- it effectively reconstructed the fluid flow variables
- performance was limited in reconstructing solid variables
- suggestions for improving the methodology and suggested
- increasing the sample size in the dataset
- comparing our model with other surrogate models as future work
- the proposed methodology has the potential to enhance the design and optimization cycle while reducing computational cost.

Code Repository

 $Git Hub\ repository\ https://github.com/properallan/ihtc_repository$

THANK YOU!