LIMITE AVEC PARAMÈTRE

$$\lim_{x \to 0} f(x) \text{ avec } f(x) = \frac{\sqrt{x^2 + m} - 1}{x}, \ x \neq 0.$$

1) m < 1

Alors le numérateur tend vers $\sqrt{m} - 1 < 0$ et le dénominateur tend vers 0 :

$$f(x) \rightarrow -\infty$$
 quand $x \rightarrow 0$ par valeur positive, et

 $f(x) \rightarrow +\infty$ quand $x \rightarrow 0$ par valeur négative.

2)
$$m = 1$$

Alors
$$f(x) = \frac{\sqrt{x^2 + 1} - 1}{x}$$

Lorsque $x \to 0$, on obtient une forme indéterminée de la forme « $\frac{0}{0}$ ».

Pour lever l'indétermination on multiplie le numérateur et le dénominateur par l'expression conjuguée $\sqrt{x^2+1}+1$:

$$f(x) = \frac{(\sqrt{x^2 + 1} - 1)(\sqrt{x^2 + 1} + 1)}{x(\sqrt{x^2 + 1} + 1)} = \frac{x^2 + 1 - 1}{x(\sqrt{x^2 + 1} + 1)} = \frac{x}{\sqrt{x^2 + 1} + 1}$$

Lorsque $x \to 0$, le numérateur tend vers 0 et le dénominateur tend vers 2 donc $f(x) \to 0$

3) m > 1

Alors le numérateur tend vers $\sqrt{m} - 1 > 0$ et le dénominateur tend vers 0

 $f(x) \rightarrow +\infty$ quand $x \rightarrow 0$ par valeur positive, et

 $f(x) \rightarrow -\infty$ quand $x \rightarrow 0$ par valeur négative.