Feuille de travaux dirigés nº 1 Relations - Treillis

Exercice 1.1

Une fiche de paye est un couple (S, P), S le salaire, et P le montant des primes. Deux payes (S, P) et (S', P') sont dites égales $((S, P) =_p (S', P'))$ si S = S' et P = P'. Les relations suivantes sont-elles des ordres sur les payes :

- 1. $(S, P)\mathcal{R}_1(S', P') \iff S \leq S' \text{ ou } P \leq P'$
- 2. $(S,P)\mathcal{R}_2(S',P') \iff S < S' \text{ ou } (S = S' \text{ et } P \le P')$
- 3. $(S,P)\mathcal{R}_3(S',P') \iff S+P \leq S'+P'$
- 4. $(S, P)\mathcal{R}_4(S', P') \iff S \leq S' \text{ et } P \geq P'$

Exercice 1.2

Soit E l'ensemble des digits sous forme de cristaux liquides. La relation \mathcal{R} est définie par $a\mathcal{R}b$ si b est obtenu à partir de a en allumant n ($n \in \mathbb{N}$) cristaux en plus (autrement dit sans éteindre de cristaux). Monter que \mathcal{R} est une relation d'ordre.

Maintenant, considérer que (aRb) si b à plus de cristaux allumés que a (des cristaux allumés de a peuvent être éteints).

Exercice 1.3 (*)

Soient R et S des relations sur $A \times B$ et $C \times D$, respectivement. Le produit $R \times S$ est une relation sur $(A \times C) \times (B \times D)$ telle que $((a, c), (b, d)) \in R \times S$ ssi $(a, b) \in R$ et $(c, d) \in S$.

Montrer que si R et S sont des relations d'ordre sur les ensembles A et B, la relation $R \times S$ est une relation d'ordre sur $A \times B$.

Exercice 1.4 (Ordre)

Soit la relation binaire suivante sur $E = \{0, 1, 2, 3, 4, 5\}$:

$$0 \le x \quad \forall x \in \{0, 1, 2, 3, 5\}$$

 $1 \le 3$
 $3 \le 5$
 $1 \le 5$
 $2 \le 4$

- 1. Cette relation est-elle un ordre?
- 2. Si ce n'est pas un ordre, quelle information faut-il ajouter pour que ça en soit un?
- 3. Avec l'information ajoutée précédemment, la relation obtenue est-elle un ordre total?

Exercice 1.5 (Treillis)

Montrer que les 2 opérations \sqcup et \sqcap (celles des treillis) sont monotones, c'est-à-dire, si $x \leq x'$ et $y \leq y'$ alors $x \sqcap y < x' \sqcap y'$ et $x \sqcup y < x' \sqcup y'$

Exercice 1.6 (Treillis)

Soit (E, \leq) un treillis (complet). Si $E_1 \subseteq E_2 \subseteq E$, alors $inf(E_2) \leq inf(E_1) \leq sup(E_1) \leq sup(E_2)$. prouver cette proposition.

Exercice 1.7 (Treillis)

Soit la relation binaire suivante sur $E = \{0, 1, 2, 3, 4, 5\}$:

$$\begin{array}{ll} 0 \leq x & \forall x \in \{0, 1, 2, 3, 4, 5\} \\ 1 \leq 3 & \\ 3 \leq 5 & \\ 1 \leq 5 & \\ 2 \leq 4 & \end{array}$$

- 1. Calculer $inf\{x, y\}$ pour tout $x, y \in E$.
- 2. Cette relation est-elle un treillis?
- 3. Dans le cas ou ce n'est pas un treillis, ajouter des informations pour en faire un treillis.

Exercice 1.8 (Poset*)

Un ordre (ou ordre partiel) est une relation binaire sur un ensemble P qui est réflexive, antisymétrique et transitive. Ce n'est donc pas nécessairement un ordre total. Attention, en anglais, un "partial order" est antisymétrique, transitif et soit réflexif ou anti-réflexif.

Un poset (R, \preceq) est donné par un semble et un ordre (partiel) sur cet ensemble. On dit qu'un poset (R, \preceq) est bien-fondé s'il n'existe nulle chaîne infinie $\ldots x_{n+1} \prec x_n \prec \ldots \prec x_1$ d'éléments décroissants. On dit qu'un poset (R, \preceq) est dense si pour tous $x, z \in R$ tels que $x \prec z$, il existe $y \in R$ tel que $x \prec y \prec z$.

- 1. (\mathbb{Q}, \leq) forme-t-il un poset bien-fondé? un poset dense?
- 2. L'ensemble des mots formé de lettres de l'alphabet muni de l'ordre lexicographique (l'ordre du dictionnaire) est-t-il un poset bien-fondé? un poset dense?
- 3. On dit qu'un poset (R, \leq) est bien-ordonné quand l'ordre est total et que toute partie de R possède un plus petit élément. Montrez qu'un poset est bien ordonné ssi il est bien-fondé et totalement ordonné.