

A first measurement of nuclear fragmentation cross-sections for hadrontherapy

Giacomo Ubaldi

Università di Bologna

108° Congresso Nazionale SIF, Milano

15/09/2022

Hadrontherapy vs radiotherapy:

- **✓** Finite range
- **✓** Localized dose profile
- **✓** Spare of healthy tissues

Hadrontherapy vs radiotherapy:

- **√** Finite range
- **✓** Localized dose profile
- **✓** Spare of healthy tissues

Hadrontherapy vs radiotherapy:

- **√** Finite range
- **✓** Localized dose profile
- **✓** Spare of healthy tissues
- **X** Nuclear Fragmentation

Goal:

double differential **nuclear cross section** measurements with uncertainty < 5%

- Fixed target collisions
- Beam energies between 200 MeV/u and 700 MeV/u for hadrontherapy and space radioprotection topics
- table top setup to be moved according to beam facility availability

Goal:

double differential **nuclear cross sections** mesurements with uncertainty < 5%

Particle identification by measuring all kinematic quantities

Goal:

double differential **nuclear cross sections** mesurements with uncertainty < 5%

Particle identification by measuring all kinematic quantities

Goal:

double differential **nuclear cross sections** mesurements with uncertainty < 5%

Particle identification by measuring all kinematic quantities

108° Congresso Nazionale SIF, Milano

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

Specific goal:

- Elemental (charge differential) fragmentation cross section
- Angular differential cross section in charge

To compute elemental cross-section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

Starting from MC dataset to study Background and Efficiency from true values

To compute elemental cross-section:

$$\sigma(Z) = \frac{(Y(Z) - B(Z))}{N_{beam} N_{target} \epsilon(Z)}$$

Yield of Z obtained from reconstructed tracks

- Exploiting charge reconstruction algorithm
- Exploiting tracking reconstruction algorithm
- Simulating a "trigger" in order to consider only fragments

To compute elemental cross-section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

Background obtained from MC cuts on:

- Charge algorithm mis-reconstruction
- Tracking algorithm mis-reconstruction
- Trigger mis-reconstruction

To compute elemental cross-section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target}(\epsilon(Z))}$$

Efficiency obtained as:

$$\epsilon_{track}(Z) = \frac{Y(Z)_{track}}{Y(Z)_{MC}}$$

- where track is obtained by tracking algorithm
- MC particles are from the generated simulation

Elemental fragmentation cross-section

- Smeared MC dataset used as Yield
- Statistical uncertainties only

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

Elemental Cross Section

Fragment (Z)	σ_{meas} (mbarn)	σ_{MC} (mbarn)
1	3376 ± 30	3361 ± 8
2	911 ± 7	907 ± 5
3	80 ± 2	79 ± 1
4	40 ± 1	39 ± 1
5	40 ± 1	39 ± 1
6	87 ± 1	87 ± 1
7	112 ± 1	111 ± 2
8	68 ± 3	67 ± 1

Angular differential cross-section

An analogous procedure has been followed to obtain angular differential cross section:

$$\frac{d\sigma(Z)}{d\theta} = \frac{Y(Z,\theta)}{N_{beam} N_{target} \Delta\theta \ \epsilon(Z,\theta)}$$

Angle (degree)	σ_{meas} (mb)	σ_{MC} (mb)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1110 ()
$0.0 \le \theta < 0.5$	42.9 ± 1.5	42.3 ± 1.4
$0.5 \le \theta < 1.0$	66.5 ± 1.8	65.3 ± 1.7
$1.0 \le \theta < 1.5$	38.4 ± 1.4	37.4 ± 1.3
$1.5 \le \theta < 2.0$	18.0 ± 1.0	17.3 ± 0.9
$2.0 \le \theta < 2.5$	7.3 ± 0.6	6.9 ± 0.5
$2.5 \le \theta < 3.0$	2.9 ± 0.4	2.7 ± 0.3
$3.0 \le \theta < 3.5$	0.9 ± 0.2	1.1 ± 0.2
$3.5 \le \theta < 4.0$	0.1 ± 0.1	0.1 ± 0.1
$4.0 \le \theta < 4.5$	0.1 ± 0.1	0.1 ± 0.1

Angular differential cross-section

Angular differential cross-section

Conclusions

- First preliminary results of cross sections based on MC events with a solid closure test
- · Study of background sources, corrections and efficiencies on MC level
- Low impact of statistic fluctuations

To do:

- Preliminary systematics uncertainties
- Including unfolding to correct for migrations
- Process real data
- Evaluating cross section differential also in kinematic energy and in mass
- Repeat the same steps for ¹⁶O 200 MeV/u

Thank you for the attention!

Backup slides

Nuclear fragmentation

Target fragments:

- X Short range
- High energy impact in entrance channel

Projectile fragments:

- X Longer range than beam
- X Dose beyond the Bragg peak

Nuclear fragmentation

Projectile fragments:

X Longer range than beam

X Dose beyond the Bragg peak

nuclear cross section mesurements needed

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- ¹6O 400 MeV/u and 200 MeV/u on 5 mm C target
- Partial setup: no tracker, only one module of calorimeter

Specific goal:

- Elemental (charge differential) fragmentation cross section
- Angular charge double differential cross section

Fragments identification

From Bethe – Bloch formula I can get z:

$$-rac{\mathrm{d}E}{\mathrm{d}x}=4\pi N_e r_e^2 m_e c^2 rac{z^2}{eta^2} \left(\lnrac{2m_e c^2eta^2\gamma^2}{I} - eta^2 - rac{\delta(\gamma)}{2}
ight)$$

 Infos taken from SC and TW

TW charge reconstruction algo

Charge discrimination

Track reconstruction, TW systematics

It is possible that every bar layer of the TW is hitted by more than a fragment at the same time:

multiple hits / ghost hits systematics

Applying TW cut:

Migration Matrix Z_{true} vs Z_{reco}

Track reconstruction

Kalman Filter reconstruction of a track

- Start from VT tracklets
- Projection to possible planes of IT
- KF extrapolation to MSD
- KF extrapolation to TW
- Fit the track candidates and extract reconstructed quantities: **Z**, **momentum** ...

track reconstruction on GSI 2021 data
 No B field present

Reconstruction, Track Algo

- Another source of systematics can be the way points are collected in a track
- In the best scenario, all points belong to the same particle:

Reconstruction, Track Algo

 However, due to the presence of a lot of secondary fragmentation, some points can belong to other particles.

Wrong points collected in the track

- The McId of the track is given by the most present particle in the collection
- However, if the TWPoint is of another particle → its McId is different
- → filter out all the tracks in which McId_{track} ≠ McId_{TWPoint}

Trigger Simulation

It is a Minimum Bias trigger based on SC signals in anticoincidence with a signal from one of the TW central bars compatible with the energy of the primary.

Minimum Bias is fired whenever the number of SC channels above a certain threshold exceeds a programmable value (aka majority).

 Fragment Trigger is fired every time Minimum Bias condition on TW is not verified

Trigger Simulation

Applying Trigger cut:

Main source of mis-reconstruction is given by O due to its high statistics

Pile-up removal

What it was seen in the last data taking (GSI - CNAO 2021) is that the **beam flux is not constant** \rightarrow **pile-up events**

Pile-up removal

Both *minimum bias trigger* and *trigger fragmentation*

PileUp on 600.000 events ~ 1%

Isotopes identification

Mass reconstruction using all FOOT subdetectors:

$$A_1 = \frac{p}{U\beta c\gamma}$$

$$A_2 = \frac{E_k}{Uc^2(\gamma - 1)}$$

$$A_3 = \frac{p^2 c^2 - E_k^2}{2Uc^2 E_k}$$

- In our data no tracker and calorimeter → mass measurement only in MC data!
- Augmented Lagrangian

$$L(\vec{x}, \lambda, \mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x})$$
$$f(\vec{x}) = \left(\frac{TOF - T}{\sigma_{TOF}}\right)^{2} + \left(\frac{p - P}{\sigma_{p}}\right)^{2} + \left(\frac{E_{k} - K}{\sigma_{E_{k}}}\right)^{2}$$

A
$$\chi$$
 2 = 11.66 ± 0.38 risoluz. 3.2 % χ 2 < 5

