Technical Cybersecurity

Passwords and Encryption

Passwords

VARIETY OF PASSWORD ENCRYPTION TECHNIQUES

- LANMAN
- NTLM
- UNIX/Linux

ALGORITHMS TOO

- ► MD5
- SHA
- DES
- AES

What are these?

HASHES, ONE-WAY, OR TRAPDOOR FUNCTIONS

- Bits come in, a unique signature comes out
- Compromised by collision; e.g. two different bit sequences generate the same signature

EXAMPLES

- MD5: Compromised, don't use this
- SHA-256: Still reasonably secure, SHA-1 is not

And the other ones?

ENCRYPTION FUNCTIONS

- AES: Advanced encryption standard
- DES: Data encryption standard

SYMMETRIC V. ASYMMETRIC

- Symmetric algorithms use the same key to encrypt and decrypt
- Asymmetric encryption has two keys; one is treated as public, and the other as private
- Asymmetric methods are slow; usually used to encipher a shared, generated symmetric key for a single session

Encryption is hard!

LANMAN Hash

WINDOWS-CENTRIC PASSWORD STORAGE

- Optional in new versions of windows, but rare
- Stored in Windows Security Account Manager database
- Kept for backwards compatibility
- Also stored in various Active Directory servers
- Stored as LANMAN Hashes

PROPERTIES

- Case insensitive
- Not really a hash, uses DES, but called a hash anyway

LANMAN Hash

IT WORKS SOMETHING LIKE THIS

- 1. Take a password. We need 14 characters, so if it is less than 14, pad the password.
- 2. Convert lower case to upper case.
- 3. Split the password into two 7-character strings.
- 4. Use the 7-character strings as keys to encrypt the string **KGS!@#\$%** with DES.
- 5. Concatenate the cipher text and store it.

LANMAN Hash

"WORKS" IS RELATIVE | SUPPOSE...

- 1. Take a password. We need 14 characters, so if it is less than 14, pad the password.
- 2. Convert lower case to upper case.
- 3. Split the password into two 7-character strings.
- 4. Use the 7-character strings as keys to encrypt the string **KGS!@#\$%** with DES.
- 5. Concatenate the cipher text and store it.

NT Hash

MD4 (so this is a real hash).

Other weaknesses?

NEITHER NT NOR LANMAN HASHES ARE SALTED

- Salting is the process of adding data known by the defender to the data to be hashed or enciphered
- The salt, a randomly generated value, is appended to the data to be hashed, and then the hash is created
- The salt is then stored with the hash
- Makes attacks much more difficult

And on UNIX?