Dong Hu

(206)890-1181 · hud3@rpi.edu · https://jurohd.github.io

RESEARCH INTERESTS

Matrix Completion, Tensor decomposition, Low-rank Approximation, Sketching, Machine Learning, High-dimensional Statistics, Randomized Linear Algebra, Label Complexity Reduction.

EDUCATION

Rensselaer Polytechnic Institute

Ph.D. in Computer Science

GPA: 3.91/4.0

Rensselaer Polytechnic Institute

 $Bachelor\ of\ Science\ in\ Mathematics\\ Bachelor\ of\ Science\ in\ Computer\ Science$

GPA: 3.86/4.0, Dean's Honor List

Fall 2019 – Spring 2024 (expected)

Advisor: Prof. Alex Gittens

Spring 2016 – Spring 2019 Advisor: *Prof.* Jeffery Banks

Advisor: Prof. Heng Ji

RESEARCH EXPERIENCE

Rensselaer Polytechnic Institute

Graduate Research Assistant, Computer Science Department

Summer 2019-present

- Adapted a Polynomial Reject-Sampling Algorithm to nonlinear scenarios, specifically multilayer neural networks, by linearizing the system. This adaptation maintained tight approximations with reduced label complexity in the ℓ₂-regression case. Demonstrated its superior performance against alternatives, such as uniformly dropping the same number of rows.
- Proposed and investigated in a regression-based matrix completion algorithm (noisyCUR) for low budget matrix completion setting and experimentally verify the performance of our algorithm on both synthetic and real data, compared our algorithm with state-of-the-art Matrix completion algorithms. Paper accepted by ECML 2020.

IBM, Yorktown Heights

Summer 2020-Spring 2023

 $Artificial\ Intelligence\ Research\ Collaboration(AIRC)\ scholar,\ fellowship$

- Proposed a proximal regularized sketched alternating least squares (Tucker-ALS) algorithm for the low-rank Tucker decomposition of large tensors and proved that a sublinear rate of convergence of proximally regularized sketched CPD algorithms also holds for the proposed algorithm. Showed that the iterative nature of the Tucker-ALS approach can be algorithmically exploited to choose more performant sketching rates at different iterations. A journal paper submission to TMLR in 2023 is in preparation.
- Investigated sparse sketching matrices obtained from bipartite graphs, and explored two popular classes of them: expander graphs and magical graphs. Proved that for a subspace with arbitrary dimention, the minimum right vertices (the sketch size) that satisfies these two graphs for yielding a $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding. Empirically showed they work well in practice. Paper accepted by ICASSP 2021.

PUBLICATIONS

D. Hu, S. Ubaru, A. Gittens, K. Clarkson, L. Horesh, and V. Kalantzis. "Sparse graph based sketching for fast numerical linear algebra." in *International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 2021.

D. Hu, A. Gittens, and M. Magdon-Ismail, "NoisyCUR: An algorithm for two-cost budgeted matrix completion," in *Machine Learning and Knowledge Discovery in Databases - European Conference(ECML-PKDD)*, 2020