
Ä

西安邮电大学课程考试试题(A卷)

(2024——2025 学年第1学期)

课程名称: 数字电路与逻辑设计 D

考试专业、年级: 电子信息工程 2022 级

考核方式:(填写开卷或闭卷) 闭卷 可使用计算器(填写是或否)否

题号	_	11	111	四	五.	六	七	八	总分
得分									
评卷人									

得分: 一、填空题 (每题 2 分, 共 20 分)

- 1. 自然界中的一种信号,在时间和数量上连续存在,被称作模拟信号,另外一种在时间和数量上不连续,被称作_____。(2分)
- 2. 二进制数 (1011) 2 转换为十进制数是____。(2分)
- 4. 半导体存储器是现代数字系统特别是计算机系统中的重要组成部件,它可分为___

和 两大类。(2分)

- 5. 在数字电路中,避免冒险现象的手段有修改逻辑设计、_____和 ___。(2分)
- 6. 单元型 FPGA 主要由三部分组成: 可编程逻辑模块 CLB、_____和互联资源 IR。(2分)
- 8. 逻辑门不能随便采用线与接法,只有 ______才能线与。(2分)
- 9. 一个 4 位二进制移位寄存器在 100Hz 的时钟脉冲下,将最右位的数码移动到最左位需要 秒。(2分)
- 10.555 定时器构成多谐振荡器有______个暂稳态。(2分)

得分: 二、选择题(每题2分,共20分)

- 1. 有 K 个 D 触发器构成的扭环计数器, 其有效的计数状态共 个?
- A. 2K
- $B. 2^K$
- C. K
- D. $2^{K} 1$
- 2. 一个 4 位二进制加法器用于计算两个 4 位二进制数 A 和 B 的和,假设该加法器使用的是串行加法器,以下哪项描述最符合串行加法器的特性?
- A. 计算速度较快, 但硬件实现复杂
- B. 计算速度较慢, 但硬件实现简单
- C. 计算速度较快, 硬件实现简单
- D. 计算速度较慢, 硬件实现复杂
- 3. 下面关于触发器的说法中,正确的是:
- A. D 触发器的输出只取决于输入 D
- B. T 触发器有两个控制输入
- C. SR 触发器具有不确定状态
- D. JK 触发器无记忆能力
- 4. 下列哪个不是组合逻辑电路的例子?
- A. 加法器
- B. 乘法器
- C. 时钟发生器
- D. 编码器
- 5. 以下代码实现了何种功能?

module gues (

input [1:0] A,

input [1:0] B,

output A_g_B,

output A_e_B,

output A_l_B

);

assign $A_gB = (A > B)$? 1'b1 : 1'b0; assign $A_e_B = (A == B) ? 1'b1 : 1'b0;$ assign A 1 B = (A < B)? 1'b1: 1'b0;

endmodule

- A. 乘法器
- B. 数值比较器
- C. 加法器
- D. 移位寄存器
- 6. 在一个同步时序电路中,状态转移图的节点代表的是:
- A. 输入
- B. 输出
- C. 触发器的状态
- D. 时钟周期
- 7. 在 4 比特的二进制加法器中,输入 A=1101, B=1011,进位输入 C=1,则输出的结果为:
- A. 11001
- B. 11011 C. 11100
- D. 11101
- 8. 如图所示, 其为 4 选 1 数据选择器构成的组合逻辑电路, 输出端 F 的表达式为:

- A. (B+D)
- B. $(\overline{B} + D)$ C. $(B + \overline{D})$
- D. $(\overline{B} + \overline{D})$

- 9. 多路选择器的主要功能是:
- A. 根据控制输入选择不同的输入信号输出
- B. 进行加法运算

C. 进行逻辑运算

D. 存储数据

- 10. 单位间距码的编码规则是 8421BCD 码左边补 0,再按位两两异或,那么(0100)。如 对应的 单位间距码是:
- A. 1010
- B.1111
- C.0101

D.0110

得分: 三、判断题(每题1分,共10分)

- 1. 在 CMOS 电路中, NMOS 管和 PMOS 管必须同时导通才能实现逻辑功能。()
- 2. TTL 或非门多余输入端应接高电平。 ()
- 3. 用四个触发器组成的计数器最多应有 16 个有效状态。()
- 4. JK 触发器的特性方程是 $Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$ 。()
- 5. 动态 RAM 内部含有刷新电路, 而静态 RAM 则不需要。()
- 6. 译码器电路和数据选择器属于时序逻辑电路。()
- 7. 可以用来代表 A/D 转换器分辨率的是转换器的位数。()
- 8. 任意时刻的输出仅仅取决于该时刻的输入,而与原来的状态无关的电路,称为时序逻辑电路。
- 9. 格雷码是一种二进制码,它在相邻的两个数值之间只有一位的变化。()
- 10. 在异或门(XOR)的输出为高电平时,输入的两个信号必须不同。()

得分: 四、计算化简题(每题 5 分, 共 10 分)

1. 如图所示的权电阻网络 DAC,如果将十进制 12 的二进制等效输入接在开 得分: 关 D₃D₂D₁D₀上,请确定 V_{out} 处的电压。:

得分:

2. 用卡诺图化简以下逻辑表达式:

 $Y = AB + \overline{A}C + \overline{B}C + \overline{C}D + \overline{D}$

得分: ____ 五、设计题(10分)

基于下图给出的 3 线-8 线译码器 74LS138,添加适当的与非门实现一位全加器,写出设计过程,74LS138 真值表见试卷后。

得分: ____ 六、分析题(10分)

由四位二进制计数器 74LS161 组成的时序电路如图所示。完成已经给出的状态表,画出状态转移图,假设 CP 信号频率为 5kHz, 求出输出端 Y 的频率。

序号		原	状态		次态	输出
	Q_3^n	Q_2^n	Q_1^n	Q_0^n	$Q_3^{n+1} \ Q_2^{n+1} \ Q_1^{n+1} \ Q_0^{n+1}$	Y
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		
10	1	0	1	0		
11	1	0	1	1		
12	1	1	0	0		
13	1	1	0	1		
14	1	1	1	0		
15	1	1	1	1		

附录: 相关器件功能表和逻辑框图

1.8 线-3 线优先编码器 74LS148 真值表和逻辑符号:

			箱	输出									
\overline{ST}	$\overline{IN_0}$	$\overline{IN_1}$	$\overline{IN_2}$	$\overline{IN_3}$	$\overline{IN_4}$	$\overline{IN_5}$	$\overline{IN_6}$	$\overline{IN_7}$	$\overline{Y_2}$	$\overline{Y_1}$	$\overline{Y_0}$	$\overline{Y_{EX}}$	Y_S
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	×	×	×	×	×	×	×	0	0	0	0	0	1
0	×	×	×	×	×	×	0	1	0	0	1	0	1
0	×	×	×	×	×	0	1	1	0	1	0	0	1
0	×	×	×	×	0	1	1	1	0	1	1	0	1
0	×	×	×	0	1	1	1	1	1	0	0	0	1
0	×	×	0	1	1	1	1	1	1	0	1	0	1
0	×	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1

4. 四位二进制同步计数器 74LS161 真值表和逻辑符号:

			输)	输出					
\overline{CR}	\overline{LD}	CT_{1}	$_{r}CT_{p}$	CP	D_0	D_1	D_2	D_3	Q_0 Q_1 Q_2 Q_3
0 1 1	× 0 1		× × 1		d_0	d_1	$d_2 \times d_2 \times$	d_3	0 0 0 0 d d d d d d d d d d d d d d d d
1 1	1 1	0 1	$\overset{\times}{0}$	×	×	×	×	×	触发器保持,CO=0 保持

2.3 线-8 线译码器 74LS138 真值表和逻辑符号:

ST_A	$\overline{ST_B} + \overline{ST_C}$	A_2	$A_{\rm l}$	A_0	$\overline{Y_0}$	$\overline{Y_1}$	$\overline{Y_2}$	$\overline{Y_3}$	$\overline{Y_4}$	$\overline{Y_5}$	$\overline{Y_6}$	$\overline{Y_7}$
×	1	×	×	×	1	1	1	1	1	1	1	1
0	×	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

3. 移位寄存器 74LS195 真值表和逻辑符号:

	输入											输出			
\overline{CR}	SH/\overline{LD}	СР	J	\overline{K}	D_0	D_1	D_2	D_3	Q_0	$Q_{\rm l}$	Q_2	Q_3 $\overline{Q_3}$			
0	×	×	×	×	×	×	×	×	0	0	0	0 1			
1	0	\uparrow	×	×	d_0	d_1	d_2	d_3	d_0	d_1	d_2	$d_3 \overline{d_3}$			
1	1	\uparrow	0	1	×	×	×	×	Q_0^n	Q_0^n	Q_1^n	$Q_2^n \overline{Q_2^n}$			
1	1	↑	0	0	×	×	×	×	0		Q_1^n	$Q_2^n \overline{Q_2^n}$			
1	1	\uparrow	1	0	×	×	×	×	Q_0^n		Q_1^n	$Q_2^n Q_2^n$			
1	1	\uparrow	1	1	×	×	×	×	1	Q_0^n	Q_1^n	$Q_2^n \overline{Q_2^n}$			
1	1	0	×	×	×	×	×	×	Q_0^n	Q_1^n	Q_2^n	$Q_3^n Q_3^n$			

