תורת החבורות – תרגיל בית 4 – פתרון

שאלה 3

. $a*b^{-1}\in H$ $a,b\in H$ כך שלכל G כך שלכל תת-קבוצה לא ריקה של $H\subseteq G$ חבורה, G,*

פתרון:

. בכך הוכחנו קיום אדיש. פ $= x * x^{-1} \in H \iff x \in H$ לכן קיים, לכן לכן קיים, א

 $\mathbf{x}^{-1} = \mathbf{e} * \mathbf{x}^{-1} \in \mathbf{H} \iff \mathbf{e}, \mathbf{x} \in \mathbf{H} \iff \mathbf{x} \in \mathbf{H}$ ולכל איבר ההופכי ב-

 \cdot אסוציאטיביות נובעת מהאסוציאטיביות של \cdot , ונישאר להראות סגירות

$$x * y = x * (y^{-1})^{-1} \in H \iff x, y^{-1} \in H \iff x, y \in H$$
 לכל

שאלה 4

 $x \in G$, חבורה מסדר מסדר (G,*) איבר

 $S = \left\{ x^0 = 1, \, x, \, x^2, \cdots, \, x^{n-1} \right\}$ תהי

- $x^{t} \in S \quad t \in \mathbb{Z}$ א) לכל
- (S,*) חבורה מסדר

<u>פתרון:</u>

אז $t=nq+r,\;0\leq r< n$ כך ש $r,q\in\mathbb{Z}$ אז קיימים, $t\in\mathbb{Z}$ אז אז קיימים

$$x^{t} = x^{nq+r} = \left(x^{n}\right)^{q} x^{r} = x^{r} \in S$$

ב) אסוציאטיביות נובעת מהאסוציאטיביות של $\mathbf{x}^0 = \mathbf{1} \in \mathbf{S}$, ושאר האקסיומות נובעות מהסעיף הקודם :

. אלמים k+j,-j כי $\left(x^{j}\right)^{\!-1}=x^{\!-j}\in S$ וגם $x^{k}x^{j}=x^{k+j}\in S$ כי $x^{k},x^{j}\in S$ לכל

שאלה 5

n imes n מעל שדה מסדר הפיכות מטריצות חבורת המטריצות חבורת מסדר GL תהי

 $\operatorname{PGL}_2(\mathbb{Z}_p)$ א) איברים יש בחבורה איברים איברים איברים איברים

כתבו במפורש את כל אברי החבורה G.

- ב) במפורש את כל אברי $\mathrm{GL}_2(\mathbb{Z}_2)$ ואת לוח הכפל, ומצאו את הסדרים של כל אברי החבורה.
 - ג) תהי G חבורה בעלת איברים [x,y] = x המקיימים [x,y] = x, וכי כל אברי [x,y] = x וכי כל אברי [x,y] = x ניתן לכתוב כמכפלת החזקות של [x,y] = x

<u>פתרון:</u>

- א) ישנן p^2-1 אפשרויות לבחירת שורה ראשונה, שורה שנייה חייבת להיות בת"ל $(p^2-p)(p^2-1) (p^2-p)(p^2-1)$ בראשונה: p^2-p אפשרויות לבחירתה. סה"כ:
- ג) מהנתון נובע כי $S = \{e, x, y, y^2, xy, xy^2\}$ נוכיח כי כל אברי $G \subseteq S = \{e, x, y, y^2, xy, xy^2\}$ ובכך נסיים (ההכלה ההפוכה מתקיימת מהסגירות).

תת-קבוצות $\{e\},\ \{x,xy\},\ \{y,y^2\}$ מכילות איברים מהסדרים $\{e\},\ \{x,xy\},\ \{y,y^2\}$ בהתאם, לכן הן זרות. כמו כן $\{e\},\ \{e\},\ \{e$

. שונה משאר האיברים $\mathbf{x}\mathbf{y}^2$ כי להראות כי

. סתירה,
$$o(y^2) = o(x^{-1}) = 2 \iff y^2 = x^{-1}$$
 אם $y^2 = e$ אם

. סתירה,
$$o(y^2) \le 2 \iff y^2 = e$$
 אם א $xy^2 = x$ אם

. סתירה,
$$o(y) = o(x^{-1}) = 2 \iff y = x^{-1}$$
 אם א $y^2 = y$ אם א

אם
$$o(x) = 1 \iff x = e$$
 אז $xy^2 = y^2$ אם $xy^2 = y^2$

. סתירה,
$$o(y) = 1 \iff y = e$$
 אז $xy^2 = xy$ אם

<u>שאלה 6</u>

. מסדר מתחלפים בכפל. $a,b\in G$ מסדר מופי המתחלפים בכפל.

 $|a| \cdot |b|$ א) הסדר של ab הינו סופי ומחלק את

 $|ab|=|a|\cdot|b|$ אם הסדרים של a,b הינם זרים, אז

פתרון:

o(a) = n, o(b) = m נניח כי

אט הינו סופי ומחלק את (ab)^{nm} =
$$\left(a^n\right)^m \left(b^m\right)^n = e^m e^n = e$$
 אט הינו סופי ומחלק את ($o(a) \cdot o(b)$ מכפלת הסדריהם:

ב) יהי (1) $n \cdot m$ לפי הסעיף הקודם k סופי ומחלק את k = o(ab). כמו כן

$$.\left(a^{k}\right)^{m} = \left(\left(b^{k}\right)^{-1}\right)^{m} = \left(b^{m}\right)^{-k} = e \iff a^{k} = \left(b^{k}\right)^{-1} \iff e = \left(ab\right)^{k} = a^{k}b^{k}$$

מכאן קיבלנו כי הסדר של a מחלק את a אופן מקבלים n באותו אופן מקבלים a מחלק את קיבלנו כי הסדר של a מחלק את a (2). מחלק את a לכן a מחלק את a מחלק את a לכן a מחלק את a לכן a מחלק את a מחלך מחלק את a מחלק את

<u>שאלה 7</u>

. $aba^{-1}=b^2,\,a^5=1$ תהי מיחידה מיחידה $a,b\in G$ שונים מיחידה $a,b\in G$

$$a^2ba^{-2}=b^4$$
 כי (א

$$a^3ba^{-3} = b^8$$
 ב)

:פתרון

$$a^{2}ba^{-2} = a(aba^{-1})a^{-1} = ab^{2}a^{-1} = (aba^{-1})^{2} = (b^{2})^{2} = b^{4}$$
 (8)

$$a^{3}ba^{-3} = a(a^{2}ba^{-2})a^{-1} = ab^{4}a^{-1} = (aba^{-1})^{4} = (b^{2})^{4} = b^{8}$$
 (2)

$$a^4ba^{-4} = a(a^3ba^{-3})a^{-1} = ab^8a^{-1} = (aba^{-1})^8 = (b^2)^8 = b^{16}$$
 (x

$$a^{5}ba^{-5} = a(a^{4}ba^{-4})a^{-1} = ab^{16}a^{-1} = (aba^{-1})^{16} = (b^{2})^{16} = b^{32}$$

.31 מחלק את ס(b) לב $b^{31}=e$ מכאן מכאן. $b=b^{32}$, קיבלנו כי $a^5=a^{-5}=1$ והיות ו

$$o(b) = 31 \Leftarrow o(b) \neq 1 \Leftarrow b \neq e$$
 אבל