## IN THE CLAIMS

The pending claims are as follows:

- (Previously Presented) A multi-stack optical data storage medium for recording and reading using a focused radiation beam entering through an entrance face of the medium during recording and reading, comprising:
- a first substrate having, on a side thereof, a first recording stack  $L_0$  comprising a recordable type  $L_0$  recording layer comprising a dye, and formed in a first  $L_0$  guide groove, and a first reflective layer present between the  $L_0$  recording layer and the first substrate;
- a second substrate having, on a side thereof, a second recording stack  $L_1$  comprising a recordable type  $L_1$  recording layer, said second recording stack being at a position closer to the entrance face than the  $L_0$  recording stack and formed in a second  $L_1$  guide groove; and
- a transparent spacer layer sandwiched between the first and second recording stacks, said transparent spacer layer having a thickness substantially larger than the depth of focus of the focused radiation beam,
- characterized in that the first  $L_0$  guide groove has a depth  $G_{\rm L0}$  < 20 100 nm.

- 2. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 1, wherein  $G_{\rm L0}$  < 80 nm and the first  $L_0$  guide groove has a full half maximum width  $W_{\rm L0}$ < 350 nm.
- 3. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 1, wherein 25 nm <  $G_{\rm L0}$  < 40 nm and the first reflective layer comprises a metal and has a thickness > 50 nm.
- 4. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 1, wherein the recordable type  ${\rm L}_0$  recording layer has a thickness between 70 nm and 150 nm measured on the land portion of the guide groove.
- 5. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 1, wherein said multi-stack optical data storage medium further comprises a dielectric layer present at a side of the  ${\rm L}_0$  recording layer opposite from the side where the first reflective layer is present.
- 6. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 5, wherein the dielectric layer has a thickness in the range of 5 nm - 120 nm.

- 7. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 1, wherein said multi-stack optical data storage medium further comprises a second reflective layer comprising a metal present at a side of the  $L_0$  recording layer
- $\,$ 5 opposite from the side where the first reflective layer is present.
  - 8. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 7, wherein the second reflective layer has a thickness in the range of 5 nm -15 nm.
  - 9. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 7, wherein the second reflective layer mainly comprises a metal selected from the group of Ag, Au, Cu, Al.
  - 10. (Previously Presented) The multi-stack optical data storage medium as claimed in claim 1, wherein the effective reflection level of the stacks is at least 0.18 at a radiation beam wavelength of approximately 655 nm.
  - 11. (Previously Presented) Use of an optical data storage medium as claimed in claim 1 for multi stack recording with a reflectivity level of the first recording stack  ${\rm L}_0$  as such of at least 0.5 and modulation of recorded marks in the  ${\rm L}_0$  recording layer of at least
- 5  $\,$  0.6 at a radiation beam wavelength of approximately 655 nm.