Data Visualization in ggplot

Brynn Sherman
brynns@sas.upenn.edu
August 10, 2023

What do you look for in a good plot?

What do you look for in a good plot?

Using the right kind of plot for your data

Legibility (large enough fonts)

Labeled axes (+ legends, when appropriate)

Axis scales that make sense

Colors that help the interpretation

ggplot

Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the **grammar of graphics**, the idea that you can build every graph from the same few components: a **data** set, a set of **geoms**—visual marks that represent data points, and a **coordinate**

To display data values, map variables in the data set to aesthetic properties of the geom like **size**, **color**, and **x** and **y** locations.

Build a graph with **qplot()** or **ggplot()**

geom

qplot(x = cty, y = hwy, color = cyl, data = mpg, geom = "point")

Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

ggplot(data = mpg, **aes(**x = cty, y = hwy**))**

Begins a plot that you finish by adding layers to. No defaults, but provides more control than qplot().

ggplot(mpg, aes(hwy, cty)) +
 geom_point(aes(color = cyl)) +
 geom_smooth(method ="lm") +
 coord_cartesian() +
 scale_color_gradient() +
 theme_bw()
add layers,
elements withlayer = geom +
 default stat +
 layer specific
 mappings
additional
 elements

Add a new layer to a plot with a **geom_*()** or **stat_*()** function. Each provides a geom, a set of aesthetic mappings, and a default stat and position adjustment.

last_plot()

Returns the last plot

ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Geoms - Use a geom to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

One Variable

Continuous

a <- ggplot(mpg, aes(hwy))

a + geom_area(stat = "bin")
x, y, alpha, color, fill, linetype, size
b + geom_area(aes(y = ..density..), stat = "bin")

a + geom_density(kernel = "gaussian")
x, y, alpha, color, fill, linetype, size, weight
b + geom_density(aes(y = ..county..))

a + geom_dotplot() x, y, alpha, color, fill

a + geom_freqpoly()

x, y, alpha, color, linetype, size b + geom_freqpoly(aes(y = ..density..))

+ geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight b + geom_histogram(aes(y = ..density..))

Discrete

b <- ggplot(mpg, aes(fl))

geom_bar(), alpha, color, fill, linetype, size, weight

Graphical Primitives

c <- ggplot(map, aes(long, lat))

+ geom_polygon(aes(group = group)**)** x, y, alpha, color, fill, linetype, size

d <- ggplot(economics, aes(date, unemploy))</pre>

+ geom_path(lineend="butt", linejoin="round', linemitre=1) x, y, alpha, color, linetype, size

+ geom_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) x, ymax, ymin, alpha, color, fill, linetype, size

e <- ggplot(seals, aes(x = long, y = lat))

+ geom_segment(aes(xend = long + delta_long, yend = lat + delta_lat))

x, xend, y, yend, alpha, color, linetype, size

e + geom_rect(aes(xmin = long, ymin = lat, xmax= long + delta_long, ymax = lat + delta_lat))

xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

Two Variables

f <- ggplot(mpg, aes(cty, hwy))</pre>

f + geom_jitter() x, y, alpha, color, fill, shape, size

+ geom_point() x, y, alpha, color, fill, shape, size

+ geom_quantile()
x, y, alpha, color, linetype, size, weight

f + geom_rug(sides = "bl") alpha, color, linetype, size

+ geom_smooth(model = lm)
x, y, alpha, color, fill, linetype, size, weight

+ geom_text(aes(label = cty))
x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

Discrete X, Continuous Y g <- ggplot(mpg, aes(class, hwy))

+ geom_bar(stat = "identity") x, y, alpha, color, fill, linetype, size, weight

g + geom_boxplot() lower, middle, upper, x, ymax, ymin, alpha, color, fill, linetype, shape, size, weight

s + geom_dotplot(binaxis = "y", stackdir = "center"**)**

s + geom_violin(scale = "area") x, y, alpha, color, fill, linetype, size, weight

Discrete X, Discrete Y

x, y, alpha, color, fill

h + geom jitter()

x, y, alpha, color, fill, shape, size

riables

Continuous Bivariate Distribution i <- ggplot(movies, aes(year, rating))

+ geom_bin2d(binwidth = c(5, 0.5)) xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size, weight

x, y, alpha, colour, linetype, size

geom_density2d()

geom_hex()
x, y, alpha, colour, fill size

Continuous Function j <- ggplot(economics, aes(date, unemploy))

+ geom_line()
x, y, alpha, color, linetype, size

+ geom_step(direction = "hv")
x, y, alpha, color, linetype, size

Visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) k <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

+ geom_crossbar(fatten = 2) x, y, ymax, ymin, alpha, color, fill, linetype,

+ geom_errorbar() x, ymax, ymin, alpha, color, linetype, size,

width (also geom_errorbarh())
+ geom_linerange()
x, ymin, ymax, alpha, color, linetype, size

x + geom_pointrange()
x, y, ymin, ymax, alpha, color, fill, linetype, shape, size

Mans

data <- data.frame(murder = USArrests\$Murder,
 state = tolower(rownames(USArrests)))
map <- map_data("state")
l <- ggplot(data, aes(fill = murder))</pre>

| + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat) map_id, alpha, color, fill, linetype, size

Three Variables

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))
m <- ggplot(seals, aes(long, lat))</pre>

m + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5, interpolate=FALSE) x, y, alpha, fill m + geom_tile(aes(fill = z))

x, y, alpha, color, fill, linetype, size

m + geom_contour(aes(z = z)) x, y, z, alpha, colour, linetype, size, weight

Basics of ggplot syntax

geom_smooth(method ="lm") + coord_cartesian() + scale_color_gradient() + theme bw()

elements

Add a new layer to a plot with a **geom_*()** or **stat_*()** function. Each provides a geom, a set of aesthetic mappings, and a default stat and position adjustment.

last_plot()

Returns the last plot

ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

that you want to plot Dataframe Setting up the axes ggplot(data, aes(x = X, y = \dot{Y}))

The variables in the dataframe

Basics of ggplot syntax

Setting up the axes ggplot(data, aes(x = X, y = Y)) + Constant of the plot o

The variables in the dataframe

What kind of plot? $geom_point() + geom_smooth(method = "lm") +$

Basics of ggplot syntax

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same few components: a data set, a set of geoms—visual marks that represent data points, and a coordinate

To display data values, map variables in the data set to aesthetic properties of the geom like **size**, **color**, and **x** and **y** locations.

Build a graph with **qplot()** or **ggplot()**

Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

ggplot(data = mpg, aes(x = cty, y = hwy))

Begins a plot that you finish by adding layers to. No defaults, but provides more control than qplot().

Add a new layer to a plot with a **geom_*()** or **stat_*()** function. Each provides a geom, a set of aesthetic mappings, and a default stat and position adjustment.

last_plot()

Returns the last plot

ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

The variables in the dataframe

What kind of plot? $geom_point() + geom_smooth(method = "lm") +$

RStudio® is a trademark of RStudio, Inc. • <u>CC BY</u> RStudio • <u>info@rstudio.c</u>

Initial steps

Download R & RStudio: https://rstudio-education.github.io/hopr/starting.html

- or use Google Colab (https://colab.research.google.com/notebook#create=true&language=r)

Install relevant packages (tidyverse, ggplot, datasets)

```
> install.packages(c("tidyverse","ggplot2","datasets"))
```

Load in data (if necessary)

```
```{r}
data = read.csv('myData.csv')
data_df = data.frame(data)
```
```

Tutorial

Customization in ggplot

theme_dark()

dark for contrast

Empty theme

e + stat_unique()

p + scale_radius(

range=c(1,6)**)**

p + scale_size()

p + scale_size_area(

max_scale = 6) Maps to area of circle (not radius)

t + scale x continuous(limits = c(0, 100)) +

scale_y_continuous(limits = c(0, 100)**)**

Customization in ggplot

Have fun with themes and colors!

https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/

https://github.com/MatthewBJane/theme_park

https://github.com/karthik/wesanderson

https://ggplot2.tidyverse.org/reference/scale_brewer.html

theme_wsj

Wall Street Journal theme

Other resources

https://r-graph-gallery.com/index.html

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part1-With-R-Code.html

https://lscholtus.gitlab.io/mosaicdata/ggplot2-cheatsheet-2.0.pdf

https://www.youtube.com/watch?v=qnw1xDnt_Ec