UHackthon

Solution

By 摆烂队

- 卢梦雨(Sending emails, Proofread)、
- 曾健洪(NO contribution)、
- 黄文超(大佬)

Repo: https://github.com/wenchaoh997/UHackthon2022-Q3

Exploratory Data Analysis

Data Pre-processing

Modeling

Conclusion

Introduction

数据分析

Exploratory Data Analysis

数据预处理

Data Pre-processing

建模

Modeling

结论

Conclusion

Introduction

Introduction

- Predicting the sales volume of the products in the pre-market R&D stage for a period of time after they are launched is a problem with huge business value.
- Higher prediction accuracy can Guide the rational allocation of R&D resources in the R&D stage, or guide the rational production and stocking of the supply chain in the early stage of listing to reduce waste.

Introduction

数据探索

Exploratory Data Analysis

数据预处理

Data Pre-processing

建模

Modeling

结论

Conclusion

Exploratory Data Analysis

EDA - Original Data

info size -> (60x, 8) sales

size -> (162, 4)

Types

int, string, float

Duplicated IDs.

Insufficient Data

EDA - Word Cloud

EDA - sales_value

Long tail

Most of them are between 9 to 11

EDA - Others

counter VS sales_value

Boxplot on 香料、EDTA、PEG、神经酰胺

Introduction

数据探索

Exploratory Data Analysis

数据预处理

Data Pre-processing

建模

Modeling

结论

Conclusion

Data Pre-processing

Data Pre-processing - info

duplicated IDs, change into unique

bar_code:

all of them are 690... from China, drop

brand:
one-hot encoding

dToMx:
distance to some "important" months

launch_date:
split into year, month and day

Ingredient:
union set, by uid

Counting:

how many times or versions are shown

Data Pre-processing - sales

- Merged by uid
- channel: EC -> 0 / DT -> 1
- sales_value: Min-Max Normalization

Introduction

数据探索

Exploratory Data Analysis

数据预处理

Data Pre-processing

建模

Modeling

结论

Conclusion

Modeling

Modeling - GAN

- CTGAN, Conditional GAN for generating synthetic tabular data.
- Generating multiple tabular data based on our dataset.
 - with string attributes, overfit
 - w/o string attributes
- The available training set for validation.
- But is it reasonable to use such small dataset in this way?

Reference: CTGAN: https://github.com/sdv-dev/CTGAN

Modeling - LightGBM

- Simplify the model, Avoid overfitting
 - w/o string attributes
 - Less depth and leaves
 - Early stop
- Feature importance
- tweedie, for asymmetric distribution
- Additional noise
 - Inspired by DAE.
 - In our experiment, it can reduce the error.

Modeling - AutoGluon

- AutoML tech
- Additional noise

Reference: AutoGluon: https://auto.gluon.ai/stable/index.html

Introduction

数据探索

Exploratory Data Analysis

数据预处理

Data Pre-processing

建模

Modeling

结论

Conclusion

Conclusion

Conclusion - Discussion

Some interesting strategies i have not tried..

- Recursive training. Noise, load and train.
- DAE
- But I still have not idea on strings...

Conclusion - Discussion

- We used CTGAN to generate massive by the training set.
- The training set became validation set in our experiments.
- Tweddie loss function for regression issue.
- Simplify the model and avoid overfitting.
- Try LightGBM and AutoGluon.
- Submit our prediction.

Rules Changed? Whats wrong?

- Deadline?
- Presentation rounds?
- Have not received the email?
- Scoring?

•

Thanks. And QA Time.

汇报人: 张小可

卢梦雨(Sending emails)、曾健洪(NO contribution)、黄文超(大佬)

