3. Affine Zusammenhänge und Parallelverschiebung

3.1. Motivation

In \mathbb{R}^n kann man Tangentialräume in verschiedenen Punkten vergleichen: Die Tangentialräume von x und y sind $T_x\mathbb{R}^n = \{x\} \times \mathbb{R}^n \simeq \mathbb{R}^n$ und $T_y\mathbb{R}^n \simeq \mathbb{R}^n$. Es gibt dann eine Translation (Parallelverschiebung) $T_{y-x}: T_x\mathbb{R}^n \to T_y\mathbb{R}^n$; $(x,y) \mapsto (T_{y-x}(x),v)$, wobei $T_{y-x}(x) = x + (y-x) = y$.

Die Situation für Mannigfaltigkeiten ist lokal die gleiche: Ist (U, φ) eine Karten, so gilt $TU \simeq U \times \mathbb{R}^n$ (vergleiche Basis-Satz, Satz 1.1). Ist $p, q \in U$, so gilt: ([...] affine Hülle)

$$T_p M = \left[\frac{\partial}{\partial x^1} \Big|_p, \dots, \frac{\partial}{\partial x^n} \Big|_p \right] \text{ und } T_q M = \left[\frac{\partial}{\partial x^1} \Big|_q, \dots, \frac{\partial}{\partial x^n} \Big|_q \right]$$

Die Parallelverschiebung $T_pM \to T_qM$ bildet jetzt $v = \sum a_i \frac{\partial}{\partial x^i} \Big|_p$ auf $\bar{v} = \sum a_i \frac{\partial}{\partial x^i} \Big|_q$ ab.

Der globale Vergleich von Tangentialräumen erfordert jedoch eine Zusatzstruktur ("Fernparallelismus")

In der Flächentheorie realsisiert man die Parallelverschiebung via Kovariante Ableitung: Ist c eine Flächenkurve der Fläche F, so ist $\frac{D}{dt}c'$ die orthogonale Projektion von c'' in die Tangentialebene $T_{c(t)}F$. Die Geodätischen in F (die "verallgemeinerten Geraden") sind definiert als Lösungen von $\frac{D}{dt}c'=0$.

3.2. Affine Zusammenhänge

Definition (Affiner Zusammenhang)

Ein Affiner Zusammenhang D auf einer differenzierbaren Mannigfaltigkeit M ist eine Abbildung

$$D: \frac{\mathcal{V}M \times \mathcal{V}M \to \mathcal{V}M}{(X,Y) \mapsto D_X Y}$$

so dass für alle $X, Y, Z \in \mathcal{V}M$ und $f, g \in C^{\infty}M$ gilt:

(Z1)
$$D_{fX+gY}Z = fD_XZ + gD_YZ$$

$$(Z2) D_X(Y+Z) = D_XY + D_XY$$

(Z3)
$$D_X(fY) = fD_XY + (Xf)Y$$

Beispiele

(1) Flächentheorie: $D_X Y := Y_T'$

(2) In
$$\mathbb{R}^n$$
: $X = \sum a_i \frac{\partial}{\partial x^i}$, $\sum b_i \frac{\partial}{\partial x^i}$, $D_X Y := \sum X(b_i) \frac{\partial}{\partial x^i}$

Dist ein lokaler Begriff: Wähle Karte (U,φ) mit Basisfelder $X_i=\frac{\partial}{\partial x^i}.~X,Y\in\mathcal{V}U:~X=\sum_{i=1}^n v^i X_i,~Y=\sum_{j=1}^n w^j X_j.$ Dann:

$$\begin{split} D_XY &= D_{\sum_i v^i X_i} (\sum_j w^j X_j) \\ &\stackrel{(\mathbf{Z}1)}{=} \sum_i v^i D_{X_i} (\sum_j w^j X_j) \\ &\stackrel{(\mathbf{Z}2)}{=} \sum_i v^i \sum_j D_{X_i} (w^j X_j) \\ &\stackrel{(\mathbf{Z}3)}{=} \sum_{i,j} v^i w^j D_{X_i} X_j + \sum_{i,j} v^i X_i (w^j) X_j \end{split}$$

wobei $D_{X_i}X_j = \sum_{k=1}^n \Gamma_{ij}^k X_k$ (diese Darstellung existiert wegen dem Basissatz 1.1) für lokal definierte C^{∞} -Funktionen $\Gamma_{ij}^k : U \to \mathbb{R}$ (Christoffel-Symbole).

Wir haben also:

$$D_X Y = \sum_{k=1}^{n} (\sum_{i,j=1}^{n} v^i w^j \Gamma_{ij}^k + X(w^k)) X_k$$

Die Formel zeigt, dass $D_X Y(p)$ bestimmt ist durch $v^i(p)$, $w^j(p)$ und $X_p(w^k)$ (und Γ_{ij}^k). Insbesondere braucht man das Vektorfeld Y (bzw. w^k) nur "in Richtung X" zu kennen.

Wir folgern: Man kann Vektorfelder längs einer Kurve in Richtung dieser Kurve ableiten: Falls Y ein Vektorfeld ist längs c (also $Y(c(t)) = \sum_{i=1}^{n} w^{k}(t) X_{k}(c(t))$), dann ist

$$D_{c'}Y := \sum_{k=1}^{n} \left(\sum_{i,j}^{n} x^{i'}(t) w^{j}(t) \Gamma_{ij}^{k} \left(c(t) \right) + w^{k'}(t) \right)$$

(wobei $\varphi \circ c(t) = (x^1(t), \dots, x^n(t))$ und damit $c' = \sum x^{i'} X_i$)

Definition

Ein Vektorfeld Y längs einer Kurve c heißt parallel bezüglich einem affinen Zusammenhang D, falls $D_{c'}Y=0$.

Beispiele

- (1) Im \mathbb{R}^n haben wir für ein paralleles Vektorfeld Y, dass $D_{c'}Y = \sum_{j=1}^n w^{j'}X_j = \sum_{j=1}^n 0X_j = 0$, da bei Vektorfeldern in \mathbb{R}^n parallel und konstant gleichwertig ist.
- (2) Ein Vektorfeld entlang eines Klein-Kreises der Sphäre ist nicht parallel. (Durch Skizze motiviert). Ein Vektorfeld entlang eines Groß-Kreises ist jedoch parallel, da c'' orthogonal zum Groß-Kreis zum Mittelpunkt zeigt, die Projektion auf die Sphäre also 0 ist.

Später werden wir sehen, dass Geodätische (Kurven mit $D_{c'}c'=0$) Geraden verallgemeinert.

Satz 3.1 (Eindeutigkeit der Parallelverschiebung)

Sei M eine differenzierbare Mannigfaltigkeit mit affinem Zusammenhang D. Sei $c: I = [a, b] \to M$ eine differenzierbare Kurve und $v_o \in T_{c(a)}M$. Dann existiert genau ein paralleles Vektorfeld V längs c mit $V(c(a)) = v_0$.

Definition

Der Vektor V(t) (aus Satz 3.1) heißt der längs c parallel verschobene Vektor V_0 . Die Abbildung

$$c|_a^t: T_{c(a)}M \to T_{c(t)}M$$

 $v_0 \to V(t)$

heißt Parallelverschiebung.

Beweis

Im ersten Schritt betrachten wir die Situation lokal. Sei $t_1 \in I$, so dass $c([a, t_1]) \subset U$ (Kartengebiet um c(a)). In der Karte (U, φ) ist die Definitionsgleichung $D_{c'}V = 0$ äquivalent zu:

$$\sum_{k} \left(\frac{dv^{k}}{dt} + \sum_{i,j} \frac{dx^{i}}{dt} v^{j} \Gamma_{ij}^{k} \right) X_{k} = 0$$

wobei $V = \sum_{i=1}^n v^i X_i$, $X_i = \frac{\partial}{\partial x^i}$, $\varphi \circ c(t) = (x^1(t), \dots, x^n(t))$, $c'(t) = \sum_i \frac{dx^i}{dt}(t) X_i(c(t))$. Das heißt wir haben ein System von n linearen Differentialgleichungen 1. Ordnung in $v_k(t)$:

$$0 = \frac{dv^k}{dt} + \sum_{i,j} \Gamma^k_{ij} \frac{dx^i}{dt} v^j, \qquad k = 1, \dots, n$$

Dieses System hat zu gegebenen Anfangsbedingungen $v(a) = v_0 = (v^1(a), \dots, v^n(a))$ genau eine Lösung für alle $t \in [a, t_1]$. Dann existiert eindeutig ein Parallelfeld V längs $c([a, t_1])$ mit $V(a) = v_0$.

Im zweiten Schritt sei $t_2 \in I$ beliebig. Das Segment $c([a, t_2])$ ist kompakt in M und kann daher mit endlich vielen Karten überdeckt werden. In jeder Karte existiert ein V und ist eindeutig (nach Schritt 1). Daraus folgt, dass V global eindeutig existiert auf $c([a, t_2])$ für beliebige t_2 .

3.3. Der Levi-Civita-Zusammenhang

Motivation: Ein Parallelfeld im Euklidischen Raum $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ ist eine Isometrie.

Definition

Ein affiner Zusammenhang D auf einer Riemann'schen Mannigfaltigkeit $(M, \langle \cdot, \cdot \rangle)$ heißt verträglich mit der Riemann'schen Struktur $\langle \cdot, \cdot \rangle$ falls für jede differenzierbare Kurve $c: I \to M$ und jedes Paar von parallelen Vektorfeldern V_1, V_2 längs c gilt:

$$\left\langle V_1\big(c(t)\big), V_2\big(c(t)\big)\right\rangle_{c(t)} \text{ ist für alle } t\in I \text{ konstant}.$$

Das heißt dass die Parallelverschiebung $c|_{t_1}^{t_2}:T_{c(t_1)}M\to T_{c(t_2)}M$ eine lineare Isometrie ist.

Satz 3.2 (Äquivalente Formulierung der Verträglichkeit)

Sei $(M, \langle \cdot, \cdot \rangle)$ eine Riemann'sche Mannigfaltigkeit. Ein affiner Zusammenhang D ist verträglich mit $\langle \cdot, \cdot \rangle$ genau dann, wenn für beliebige Vektorfelder V, W längs einer beliebigen Kurve $c: I \to M$ für alle $t \in I$ gilt:

$$\frac{d}{dt}\langle V(t), W(t)\rangle_{c(t)} = \langle D_{c'}V, W\rangle_{c(t)} + \langle V, D_{c'}W\rangle_{c(t)} \quad (*)$$

Beweis

(*) \Longrightarrow verträglich: V, W parallel ist äquivalent zu $D_{c'}V = D_{c'}W = 0$, also $\frac{d}{dt}\langle V(t), W(t)\rangle_{c(t)} = 0$, also verträglich.

Umgekehrt gilt: Sei D verträglich, wir haben also eine Parallelverschiebung, die Isometrie ist. Wähle eine Orthonormalbasis $\{P_1(t_0), \ldots, P_n(t_0)\}$ von $T_{c(t_0)}M$. Mittels der der Parallelverschiebung erhalten wir wieder für alle $t \in I$ eine Orthonormalbasis $\{P_1(t), \ldots, P_n(t)\}$ von $T_{c(t)}M$. Wir können schreiben:

$$V(t) = \sum_{i=1}^{n} v_i(t) P_i(t) \quad \text{sowie} \quad W(t) = \sum_{i=1}^{n} w_i(t) P_i(t)$$

wobei $v_i, w_i \in C^{\infty}$. Also:

$$D_{c'}V = \sum_{i=1}^{n} \underbrace{c'(v_i)}_{v'_i} P_i + \sum_{i=1}^{n} v_i \underbrace{D_i P_i}_{=0}$$

das heißt: $D_{c'}V = \sum_{i=1}^{n} v'_{i}P_{i}$ und $D_{c'}W = \sum_{i=1}^{n} w'_{i}P_{i}$. Wir wollen zeigen, dass (*) gilt. Die rechte Seite ist:

$$\langle D_{c'}V, W \rangle + \langle V, D_{c'}W \rangle = \left\langle \sum v_i' P_i, \sum w_j P_j \right\rangle + \left\langle \sum v_i P_i, \sum w_j' P_j \right\rangle$$

$$= \sum_{i,j} \left(v_i' w_j \langle P_i, P_j \rangle + v_i w_j' \langle P_1, P_j \rangle \right)$$

$$= \sum_{i,j} \left(v_i' w_j \delta_{ij} + v_i w_j' \delta_{ij} \right)$$

$$= \sum_{i=1}^n \left(v_i' w_j + v_i w_j' \right)$$

$$= \frac{d}{dt} \left(\sum_{i=1}^n v_i w_j \right)$$

Die linke Seite ist:

$$\begin{aligned} \frac{d}{dt}\langle V, W \rangle &= \frac{d}{dt} \langle \sum_{i} v_{i} P_{i}, \sum_{j} w_{j} P_{j} \rangle \\ &= \frac{d}{dt} \left(\sum_{ij} v_{i} w_{j} \langle P_{i}, P_{j} \rangle \right) \\ &= \frac{d}{dt} \left(\sum_{i=1}^{n} v_{i} w_{j} \right) \end{aligned}$$

Die Frage ist jetzt, ob zu einer gegebener Riemann'schen Struktur ein verträglicher Zusammenhang existiert.

Definition

Ein affiner Zusammenhang D heißt symmetrisch (oder torsionsfrei) falls für alle $X, Y \in \mathcal{V}M$:

$$T(X,Y) := D_X Y - D_Y X - [X,Y] = 0$$

Bemerkung: In lokalen Koordinaten (U,φ) gilt für D symmetrisch und Basisfelder $X_i = \frac{\partial}{\partial x^i}$:

$$D_{X_i}X_j - D_{X_j}X_i = [X_i, Y_j] = \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i}\right] = 0$$

da $\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_i}\right] f = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f - \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} f = 0$ wegen $f \in C^{\infty}$ und Vertauschbarkeit der partiellen Ableitungen. Weiter gilt:

$$D_{X_i}X_j - D_{X_j}X_i = \sum_k \Gamma_{ij}^k X_k - \sum_k \Gamma_{ji}^k X_k = \sum_k (\Gamma_{ij}^k - \Gamma_{ji}^k) X_k \implies \Gamma_{ij}^k = \Gamma_{ji}^k$$

Satz 3.3 (Levi-Civita-Zusammenhang)

Auf jeder Riemann'schen Mannigfaltigkeit $(M, \langle \cdot, \cdot \rangle)$ existiert genau ein affiner Zusammenhang D, so dass gilt:

- (1) D ist symmetrisch
- (2) D ist verträgliche mit $\langle \cdot, \cdot \rangle$

Dieser eindeutige Zusammenhang D heißt Levi-Civita-Zusammenhang von M bezüglich $\langle \cdot, \cdot \rangle$.

Beweis

Wir nehmen an, dass ein solches D existiert. Was sin die Eigenschaften?

D verträglich:

$$X\langle Y,Z\rangle = \langle D_XY,Z\rangle + \langle Y,D_XZ\rangle$$

Der Trick ist jetzt, die Gleichung zyklisch zu vertauschen:

$$Y\langle Z, X \rangle = \langle D_Y Z, X \rangle + \langle Z, D_Y X \rangle$$
$$-Z\langle X, Y \rangle = -\langle D_Z X, Y \rangle - \langle X, D_Z Y \rangle$$

Summe der drei Gleichungen

$$X\langle Y,Z\rangle + Y\langle Z,X\rangle - Z\langle X,Y\rangle = \langle [X,Z],Y\rangle + \langle [X,Y],Z\rangle + 2\langle Z,D_YX\rangle + \langle [Y,Z],X\rangle$$

Wir erhalten die Kozul-Formel

$$\langle Z, D_Y X \rangle = \frac{1}{2} \Big(X \langle Y, Z \rangle + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \langle [X, Z], Y \rangle - \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle \Big) \quad (*)$$

Diese Formel zeigt, dass D eindeutig durch die Riemann'sche Struktur $\langle \cdot, \cdot \rangle$ bestimmt ist, denn seien D und \tilde{D} zwei affine Zusammenhänge, die (1) und (2) erfüllen, dann gilt (*) für beide, also $\langle Z, D_Y X \rangle = \langle Z, \tilde{D}_Y X \rangle$ für alle $X, Y, Z \in \mathcal{V}M$, was heißt dass $\langle D_Y X - \tilde{D}_Y X, Z \rangle = 0$, was heißt das $D_Y X - \tilde{D}_Y X = 0$. Also ist $D = \tilde{D}$.

Die Existenz folgt daraus, dass man D durch (*) definieren kann.

Lokale Form von D Gegeben eine Karte (U, φ) mit Basisfelder $X_i := \frac{\partial}{\partial x^i}, i = 1, \dots, n$, auf U. Wir haben $g_{ij} = \langle X_i, X_j \rangle, \ D_{X_i} X_j = \sum_{k=1}^n \Gamma_{ij}^k X_k, \ [X_i, X_j] = 0$. Kozulformel:

$$\langle X_k, D_{X_i} X_j \rangle = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial x^j} + \frac{\partial g_{jk}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^k} + 0 \right) = \left\langle X_k, \sum_{l=1}^n \Gamma_{ij}^l X_l \right\rangle = \sum_{l=1}^n \Gamma_{ij}^l g_{kl}$$

 $[g_{kl}]$ hat inverse Matrix $[g^{mk}]$. Damit

$$\Gamma_{ij}^{m} = \frac{1}{2} \sum_{k=1}^{n} g^{mk} \left(\frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{jk}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{k}} \right).$$

Dieser Ausdruck zeigt nochmals: Levi-Civita-Zusammenhang ist eindeutig durch die Metrik bestimmt.

Beispiel

Im Euklidischer Raum (\mathbb{R}^n , Standardskalarprodukt) ist $g_{ij} = \delta_{ij}$, also $\Gamma^k_{ij} = 0$. Also: Der kanonische Zusammenhang ist der Levi-Civita-Zusammenhang.