What is claimed is:

1	1. A method for fabricating a microelectromechanical device, comprising the steps of:
2	a) providing a silicon substrate having first and second opposing surfaces;
3	b) forming first and second silicon oxide layers on said first and second
4	surfaces of said substrate, respectively;
5	c) coating a first photoresist layer on said first silicon oxide layer;
6	d) defining a first pattern on said first photoresist layer;
7	e) transferring said first pattern onto said first silicon oxide layer;
8	f) performing at least one additional processing step that does not perturb
9	said first pattern while said silicon substrate under said first pattern
10	is protected by said first silicon oxide layer; and
11	g) etching, after the step of performing said at least one additional
12	processing step, said first pattern into said silicon substrate.
1	2. The method of claim 1, wherein said at least one additional processing step comprises
2	coating, defining, and transferring at least one additional pattern onto at least one
3	of said first and second silicon oxide layers.
1	3. The method of claim 2, wherein said at least one additional processing step further
. 2	comprises etching said at least one additional pattern into said silicon substrate.
1	4. A method for fabricating a microelectromechanical device, comprising the steps of:
2	a) providing a silicon substrate having first and second opposing surfaces;
3	b) forming first and second silicon oxide layers on said first and second
4	surfaces of said substrate, respectively;
5	c) coating a first photoresist layer on said first silicon oxide layer;

6	d) defining a first pattern on said first photoresist layer;
7	e) transferring said first pattern onto said first silicon oxide layer;
8	f) removing said first photoresist layer;
9	g) coating a second photoresist layer on said first silicon oxide layer;
10	h) defining a second pattern on said second photoresist layer, wherein said second pattern includes said first pattern as a subset, whereby said
11 12	first pattern is not occluded by said second photoresist layer;
13 14	 i) etching, after the step of defining said second pattern, said first pattern into said silicon substrate for a first period of time;
15	j) transferring said second pattern onto said first silicon oxide layer; and
16 17	k) etching simultaneously, after the step of transferring said second pattern, said first and second patterns for a second period of time.
1	5. A method for fabricating a microelectromechanical device, comprising the steps of
2	a) providing a silicon substrate having first and second opposing surfaces;
3	b) forming first and second silicon oxide layers on said first and second surfaces of said substrate, respectively;
5	c) coating a first photoresist layer on said first silicon oxide layer;
6 7	d) defining simultaneously a first pattern and a second pattern on said first photoresist layer;
8	e) transferring said first pattern and said second pattern onto said first silicon oxide layer;
10	f) removing said first photoresist layer;
11	g) coating a second photoresist layer on said first silicon oxide layer;

	12	h) defining simultaneously a third pattern and said first pattern on said
,	13	second photoresist layer such that said second pattern remains
	14	occluded by said second photoresist layer;
	15	i) etching, after the step of defining said third pattern and said first pattern,
	16	said first pattern into said silicon substrate for a first period of time;
	17	j) transferring said third pattern onto said first silicon oxide layer;
	18	k) etching simultaneously, after the step of transferring said third pattern,
	19	said first and third patterns for a second period of time;
4 1	20	1) removing said second photoresist layer; and
	21	m) etching simultaneously said first, second and third patterns for a third
	22	period of time.
	1	6. A method for fabricating a microelectromechanical device, comprising the steps of:
.	2	a) providing a silicon substrate having first and second opposing surfaces;
	3	b) doping said first surface with a dopant of a same conductivity type as a
	4	conductivity type of said substrate;
	5	c) forming a pad oxide on said first surface;
	6	d) forming a silicon nitride film on said pad oxide;
	7	e) patterning and etching said silicon nitride film to form at least one silicon
	8	nitride contact area on said pad oxide;
	9	f) performing, after step (e), at least one intervening process step, at least
	10	one of said at least one intervening process steps providing a
	11	thermal oxidation of said silicon substrate;
	12	g) removing, after step (f), said at least one silicon nitride contact area and
. •	13	any of said pad oxide beneath said at least one silicon nitride

14	contact area, thereby forming at least one contact area on said first
15	surface; and
16	h) depositing a metal on said at least one contact area.
1	7. A method for fabricating a microelectromechanical device, comprising the steps of
2	a) providing a silicon substrate having first and second opposing surfaces;
3	b) doping said first surface with a dopant of a same conductivity type as a
4	conductivity type of said substrate;
5	c) forming a pad oxide on said first surface;
6	d) forming a silicon nitride film on said pad oxide;
7	e) patterning and etching said silicon nitride film to form at least one silicon
8	nitride contact area on said pad oxide;
9	f) forming first and second silicon oxide layers on said first and second
10	surfaces of said substrate, respectively;
11	g) coating a first photoresist layer on a first one of said first and said second
12	silicon oxide layers;
13	h) defining a first pattern on said first photoresist layer;
14	i) transferring said first pattern onto said first one of said first and said
15	second silicon oxide layers;
16	j) coating a second photoresist layer, defining, and transferring a second
17	pattern onto a second one of said first and second silicon oxide
18	layers;
19	k) removing said second photoresist layer;

1) coating a third photoresist layer and defining a third pattern onto said

m) etching, after the step of defining said third pattern, said second pattern into said silicon substrate for a first period of time; n) transferring said third pattern onto said second one of said first and second silicon oxide layers; o) etching simultaneously, after the step of transferring said third pattern, said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization microelectromechanical device, comprising the steps of:	21	second one of said first and second silicon oxide layers, said third	
into said silicon substrate for a first period of time; n) transferring said third pattern onto said second one of said first and second silicon oxide layers; o) etching simultaneously, after the step of transferring said third pattern, said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers.	22	pattern including as a subset said second pattern;	
into said silicon substrate for a first period of time; n) transferring said third pattern onto said second one of said first and second silicon oxide layers; o) etching simultaneously, after the step of transferring said third pattern, said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers.	23	m) etching after the step of defining said third pattern, said second pattern	า
n) transferring said third pattern onto said second one of said first and second silicon oxide layers; o) etching simultaneously, after the step of transferring said third pattern, said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers.			
second silicon oxide layers; o) etching simultaneously, after the step of transferring said third pattern, said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers.	. 4	into said sincon substrate for a first period of time,	
o) etching simultaneously, after the step of transferring said third pattern, said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers.	25	n) transferring said third pattern onto said second one of said first and	
said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	26	second silicon oxide layers;	
said second and third patterns into said silicon substrate for a second period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	27	a) etching simultaneously, after the step of transferring said third pattern	
period of time; p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization		•	nd
p) removing said third photoresist layer if said third photoresist layer occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization			iid ,
occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	29	period of time;	
occludes said first pattern; q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	- 30	p) removing said third photoresist layer if said third photoresist layer	
q) etching said first pattern into said silicon substrate; r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers.			
r) removing, after step (q), said at least one silicon nitride contact area and any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization			
any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	32	q) etching said first pattern into said silicon substrate;	
any of said pad oxide beneath said at least one silicon nitride contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	22	w) nome again a latter star (a) and at least one silican mitride contact area and	1
 contact area, thereby forming a contact area on said first surface; and s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers are different layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization 			1
 s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization 			
 s) depositing a metal on said contact area. 8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization 	35	contact area, thereby forming a contact area on said first surface;	
8. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	36	and	
oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization	37	s) depositing a metal on said contact area.	
oxide layers and said second one of said first and second silicon oxide layers are the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization			
 the same layer. 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization 	1	8. A method according to claim 7, wherein said first one of said first and second	silicon
 9. A method according to claim 7, wherein said first one of said first and second silicon oxide layers and said second one of said first and second silicon oxide layers are different layers. 10. A method for fabricating an integrated liquid chromatography/electrospray ionization 	2	oxide layers and said second one of said first and second silicon oxide lay	ers are
 oxide layers and said second one of said first and second silicon oxide layers are different layers. 1 0. A method for fabricating an integrated liquid chromatography/electrospray ionization 	3	the same layer.	
 oxide layers and said second one of said first and second silicon oxide layers are different layers. 1 0. A method for fabricating an integrated liquid chromatography/electrospray ionization 			•••
 different layers. 1 10. A method for fabricating an integrated liquid chromatography/electrospray ionization 		•	
1 10. A method for fabricating an integrated liquid chromatography/electrospray ionization			ers are
	. 3	different layers.	
	1	10. A method for fabricating an integrated liquid chromatography/electrospray id	nization
	2		

4	separation surface;
5 6	b) forming first and second silicon oxide layers on said ejection and separation surfaces of said substrate, respectively;
7	c) doping said ejection surface with a dopant of a same conductivity type as
9	a conductivity type of said substrate; d) forming a silicon nitride film on said first silicon oxide layer;
10 11	e) patterning and etching said silicon nitride film to form at least one silicon nitride contact area on said first silicon oxide layer;
12 13	f) oxidizing said substrate, after step (e), to increase said first and second silicon oxide layers;
14	g) coating a first photoresist layer on said second silicon oxide layer;
15 16 17	h) defining a first pattern on said first photoresist layer, said first pattern including a separation channel, a separation channel terminus, and a plurality of separation posts;
18	i) transferring said first pattern onto said second silicon oxide layer;
19	j) removing said first photoresist layer;
20 21	k) coating, defining, and transferring a second pattern consisting of a fluid reservoir and a first portion of a nozzle channel onto said second
22	silicon oxide layer when said first pattern does not include said fluid
23.	reservoir; otherwise, coating and defining said second pattern onto
24	said separation surface when said fluid reservoir is also included in
25	said first pattern;
26	l) etching said second pattern into said silicon substrate;

52	w) removing, after step (v), said at least one silicon nitride contact area and
53	any of said pad oxide beneath said at least one silicon nitride
54	contact area, thereby forming at least one contact area on said
55	ejection surface; and
56	x) depositing a metal on said at least one contact area.
1 :	11. A method according to claim 10, wherein said isolation layer is an electrical isolation
2	layer.
1	12. A method according to claim 10, wherein said isolation layer is a biocompatibility
2	isolation layer.
1	13. A method for fabricating a microelectromechanical device, comprising the steps of:
2	a) providing a silicon substrate having first and second opposing surfaces;
3	b) doping said first surface with a dopant of a same conductivity type as a
4	conductivity type of said substrate;
5	c) forming a pad oxide on said first surface;
6	d) forming a silicon nitride film on said pad oxide;
7	e) patterning and etching said silicon nitride film to form at least one silicon
8	nitride contact area on said pad oxide;
9	f) forming first and second silicon oxide layers on said first and second
10	surfaces of said substrate, respectively;
11	g) coating a first photoresist layer on one of said first and said second
12	silicon oxide layers;
13	h) defining a first pattern on said first photoresist layer;
14	i) transferring said first pattern onto said one of said first and said second
15	silicon oxide layers;

	10	j) removing said first photoresist layer;
	17	k) coating a second photoresist layer on said one of said first and said
	18	second silicon oxide layers;
	19	l) defining a second pattern on said second photoresist layer, wherein said
	20	second pattern includes as a subset said first pattern, whereby said
	21 :,	first pattern is not occluded by said second photoresist layer;
	22	m) etching, after the step of defining said second pattern, said first pattern
	23	into said silicon substrate for a first period of time;
,	24	n) transferring said second pattern onto said one of said first and said
	25	second silicon oxide layers;
	26	o) etching simultaneously, after the step of transferring said second pattern,
	27 ₍	said first and second patterns for a second period of time;
	28	p) removing, after step (o), said at least one silicon nitride contact area and
	29 .	any of said pad oxide beneath said at least one silicon nitride
	30	contact area, thereby forming at least one contact area on said first
	31	surface; and
	32	q) depositing a metal on said at least one contact area.
	1 14. A	method for fabricating an electrospray ionization microelectromechanical device
	2,	comprising the steps of:
	3	a) providing a silicon substrate having an injection surface and an opposing
	4	ejection surface;
	5	b) forming first and second silicon oxide layers on said injection and
	6	ejection surfaces of said substrate, respectively;
	7	c) doping a portion of said silicon substrate through said first silicon oxide
	8	layer with a dopant of a same conductivity type as a conductivity
	9 .	type of said substrate;

10	d) forming a silicon nitride film on said first silicon oxide layer;
11	e) patterning and etching said silicon nitride film to form at least one silicon
12	nitride contact area on said first silicon oxide layer;
13	f) oxidizing said substrate, after step (e), to increase said first and second
14	silicon oxide layers;
15	g) coating a first photoresist layer on said first silicon oxide layer;
16	h) defining a first pattern on said first photoresist layer, said pattern
17	consisting of a nozzle channel;
18	i) transferring said first pattern onto said first silicon oxide layer;
19	j) etching said first pattern into said silicon substrate for a first period of
20	time;
21	k) removing said first photoresist layer;
22	1) coating a second photoresist layer on said second silicon oxide layer;
23	m) defining a second pattern on said second photoresist layer, said second
24	pattern consisting of a nozzle orifice, said second pattern being
25	aligned on said second photoresist layer such that said nozzle orifice
26	and said nozzle channel are substantially axially aligned;
27	n) transferring said second pattern into said second silicon oxide layer;
28	o) removing said second photoresist layer;
29	p) coating a third photoresist layer on said second silicon oxide layer;
30	q) defining a third pattern in said third photoresist layer, said third pattern
31	consisting of a recessed region and a portion corresponding to said
32	nozzle orifice, wherein said second pattern is not occluded by said
33	third photoresist layer;

r) etching, after the step of defining said third pattern, said second pattern

into said silicon substrate for a second period of time;

e) patterning and etching said silicon nitride film to form at least one silicon

nitride contact area on said pad oxide;

8

34 35.

9	f) forming first and second silicon oxide layers on said first and second
10	surfaces of said substrate, respectively;
11	g) coating a first photoresist layer on one of said first and said second
12	silicon oxide layers;
13	h) defining a first pattern on said first photoresist layer;
14	i) transferring said first pattern onto said one of said first and said second
15	silicon oxide layers;
16	j) performing at least one additional processing step that does not perturb
17	said first pattern while said silicon substrate under said first pattern
18	is protected by said first silicon oxide layer;
19	k) etching, after the step of performing said at least one additional
20	processing step, said first pattern into said silicon substrate;
21	1) removing, after step (k), said at least one silicon nitride contact area and
22	any of said pad oxide beneath said at least one silicon nitride
23	contact area, thereby forming at least one contact area on said first
24	surface; and
25	m) depositing a metal on said at least one contact area.
1	18. The method of claim 17, wherein said at least one additional processing step comprise
2	coating, defining, and transferring at least one additional pattern onto at least one
3	of said first and second silicon oxide layers.
1	19. The method of claim 18, wherein said at least one additional processing step further
,2	comprises etching said at least one additional pattern into said silicon substrate.
1	20. A method for fabricating a liquid chromatography microelectromechanical device,
2	comprising the steps of:

	3	a) providing a silicon substrate having an introduction surface on an
	4	introduction side of said substrate and an opposing separation
	5	surface on a separation side of said substrate;
	6	b) forming first and second silicon oxide layers on said introduction and
~	7	separation surfaces of said substrate, respectively;
	8	c) doping a portion of said introduction surface through said first silicon
	9	oxide layer with a dopant of a same conductivity type as a
	10	conductivity type of said substrate;
h4	11	d) forming a silicon nitride film on said first silicon oxide layer;
	12	e) patterning and etching said silicon nitride film to form at least one silicon
	13	nitride contact area on said first silicon oxide layer;
Emile A.	14	f) oxidizing said substrate, after step (e), to increase said first and second
	15	silicon oxide layers;
	16	g) coating a first photoresist layer on said introduction side;
	17	h) defining a first pattern on said first photoresist layer, said first pattern
4	18	consisting of an introduction channel and an introduction-side exit
	19	channel;
	20	i) transferring said first pattern onto said first silicon oxide layer;
	21	j) etching said first pattern into said silicon substrate;
	22	k) removing said first photoresist layer;
	23	I) coating a second photoresist layer on said separation side;
	24	m) defining and transferring a second pattern onto said second silicon oxide
	25	layer, said second pattern including a separation channel, a
	26	separation channel terminus, and a plurality of separation posts;
	27	n) removing said second photoresist layer;

28	o) coating a third photoresist layer on said separation side;
29	p) defining and transferring a third pattern consisting of a fluid reservoir
30	and a separation-side exit channel onto said second silicon oxide
31	layer when said second pattern does not include said fluid reservoir,
32	such that said reservoir is substantially aligned with said
33	introduction channel and said separation-side exit channel is
34	substantially aligned with said introduction-side exit channel;
35	otherwise, defining said third pattern onto said separation surface
36	when said fluid reservoir is also included in said second pattern,
37	such that said reservoir is substantially aligned with said
38	introduction channel and said separation-side exit channel is
39	substantially aligned with said introduction-side exit channel;
40	
40	q) etching said third pattern into said silicon substrate so that said reservoir
41	connects with said introduction channel and said separation-side
42	exit channel connects with said introduction-side exit channel;
43	r) removing said third photoresist layer;
44	s) etching said second pattern into said silicon substrate;
45	t) forming, after step (s), an isolation layer on all silicon surfaces of said
46	silicon substrate;
47	u) attaching, after step (t), a cover substrate to said separation surface of
48	said silicon substrate;
49	v) removing, after step (u), said at least one silicon nitride contact area and
50	any of said first silicon oxide layer beneath said at least one silicon
51	nitride contact area, thereby forming at least one contact area on
52	said first surface; and
53	w) depositing a metal on said at least one contact area.

1	21. A method according to claim 20, wherein said isolation layer is an electrical isolation	
2	layer.	
1	22. A method according to claim 20, wherein said isolation layer is a biocompatibility	
2	isolation layer.	
_		
1	23. A method for fabricating a microelectromechanical device, comprising the steps of:	
2	a) providing a silicon substrate having first and second opposing surfaces;	
3	b) forming first and second silicon oxide layers on said first and second	
4	surfaces of said substrate, respectively;	
	C. 1. 1	
5	c) coating a first photoresist layer on said first silicon oxide layer;	
6	d) defining a first pattern on said first photoresist layer;	
7	e) transferring said first pattern onto said first silicon oxide layer;	
8	f) coating, defining, and transferring a second pattern onto one of said first	
9	and second silicon oxide layers;	
10	g) removing all photoresist provided in coating, defining, and transferring	
11	said second pattern;	
12	h) coating and defining a third pattern onto said one of said first and second	
13	silicon oxide layers, wherein said third pattern includes as a subset	
14	said second pattern, whereby said second pattern is not occluded;	
15	i) etching, after the step of defining said third pattern, said second pattern	
16	into said silicon substrate for a first period of time;	
1.77	Decree Coming and third not town onto said one of said first and second	
17	j) transferring said third pattern onto said one of said first and second	
18	silicon oxide layers;	
19	k) etching simultaneously, after the step of transferring said second pattern,	
20	said second and third patterns for a second period of time;	

21	1) removing at least all photoresist layers which occlude said first pattern;
22	and

m) etching said first pattern into said silicon substrate.