аффинными выплатами

Основные результаты

Токаева Александра Александровна научный руководитель к.ф.-м.н. Житлухин Михаил Валентинович

МГV им М.В. Ломоносова механико-математический факультет кафедра теории вероятностей, 609 группа

> Москва 4 мая 2023 г.

Введение

• Цель работы — построить стратегию, "выживающую" на рынке вне зависимости от стратегий других инвесторов.

Основные результаты

- Стохастическая модель рынка с дискретным временем, эндогенными ценами и аффинными дивидендами.
- Обобщается модель из статьи Amir R., Evstigneev I. V., and Schenk-Hoppé, K. R. (2013). Asset market games of survival: a synthesis of evolutionary and dynamic games. Annals of Finance, 9(2):121-144.

Общая модель

- N > 2 агентов.
- $K \ge 2$ активов, активы "короткоживущие".
- Каждый агент n в каждый момент времени t выбирает вектор долей $\lambda_t^n = (\lambda_t^{n,1},\dots,\lambda_t^{n,K})$, в которых он вкладывает свой капитал W_t^n в каждый из K активов в момент времени t.
- Цены устанавливаются эндогенно из условия равенства спроса и предложения на каждый из активов.
- ullet Активы платят случайные дивиденды A_t^k

Стратегии

• Стратегия n-го агента — это последовательность $\Lambda^n=(\Lambda^n_t)_{t=0}^\infty$ измеримых векторнозначных функций

$$\Lambda_t^n = \Lambda_t^n(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-1})$$

со значениями в стандартном K-симплексе

$$\Delta^K = \{ (a^1, \dots, a^K) \in \mathbb{R}_+^K : a^1 + \dots + a^K = 1 \}.$$

- $oldsymbol{ar{s}}_t := (s_1, ..., s_t)$ история состояний случайного фактора.
- ullet $ar{W}_0 := (W_0^1,...,W_0^N)$ вектор начальных капиталов.
- $oldsymbol{ar{\lambda}}_{t-1}:=(\lambda_0,...,\lambda_{t-1})$, где $\lambda_s=(\lambda_s^1,\ldots,\lambda_s^N)$ история игры.

Активы с аффинными дивидендами

- ullet $W_t = \sum_{n=1}^N W_t^n$ полный капитал рынка в момент времени t.
- ullet $\mu_t^k = rac{1}{W_t} \sum_{n=1}^N \lambda_t^{n,k} W_t^n$ доля W_t , вложенная в k-й актив.
- ullet $A^k_t=A^k_t(ar{s}_t),\,k=1,\ldots,K$ дивиденды от единицы актива k в момент времени $t\geq 1.$
- Дивиденды аффинные:

$$A_{t+1}^k = \alpha_{t+1}^k + \beta_{t+1}^k \mu_t^k,$$

где $lpha_{t+1}^k$ и eta_{t+1}^k — произвольные случайные величины вида

$$\alpha_{t+1}^k(\bar{s}_{t+1}) = a_{t+1}^k(\bar{s}_{t+1}, \bar{W}_0, \bar{\lambda}_{t-1}(\bar{s}_{t-1})), \tag{1}$$

$$\beta_{t+1}^k(\bar{s}_{t+1}) = b_{t+1}^k(\bar{s}_{t+1}, \bar{W}_0, \bar{\lambda}_{t-1}(\bar{s}_{t-1})) \tag{2}$$

с некоторыми измеримыми неотрицательными коэффициентами a_{t+1}^k , b_{t+1}^k .

Выживающие стратегии

• Мы будем интересоваться поведением *относительных капиталов* агентов, определяемых формулой $r_t^n := \frac{W_t^n}{W_t}$.

Определение 1

Стратегия Λ^n n-го агента называется "выживающей", если для любого вектора начальных капиталов \bar{W}_0 и любого профиля стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ с заданной стратегией Λ^n и произвольными стратегиями Λ^j агентов $j\neq n$ выполняется неравенство $W^n_t>0$ п.н. для всех $t\geq 0$ и

$$\inf_{t\geq 0} r_t^n > 0$$
 п.н.

Основная теорема (теорема 1)

Теорема 1

При некоторых технических условиях на функции дивидендов, "выживающая" стратегия Λ_t^* существует.

"Выживающая" стратегия Λ_t^* является неподвижной точкой отображения L_t , явный вид которого представлен в тексте работы:

$$L_t(\Lambda_t^*) = \Lambda_t^*$$
 п.н. (3)

Основная теорема 2

Теорема 2

При некоторых более строгих условиях на функции дивидендов, если в профиле стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ агент n использует стратегию Λ^* , то при $t\to\infty$ выполнено

$$\|\lambda_t^n - \mu_t\| \to 0.$$

То есть выживающая стратегия в некотором смысле единственна.

Основная теорема 3

Теорема 3

Пусть последовательность состояний случайного фактора $s_t,\,t\geq 1$ состоит из н.о.р. случайных величин, а коэффициенты $\alpha_t^k,\,\beta_t^k$ зависят только от s_t , то есть $\alpha_t^k=a^k(s_t),\,\beta_t^k=b^k(s_t).$ Тогда "выживающая" стратегия постоянна.

Кроме того, $r_t^n \to 0$ п.н. при $t \to \infty$ для любого агента n, который использует стратегию $\Lambda^n \neq \Lambda^*$.

Численный пример

- Выплата каждого из двух активов равна либо $1 + \mu_t^k$ с вероятностью p, любо нулю с вероятностью 1 p, p = 2/3.
- ullet "Выживающая" стратегия $\Lambda^* = (1/2, 1/2)$.
- На рынке есть 9 инвесторов со стратегиями $\Lambda^n = (n/10, 1-n/10)$, где $n=1,2,\ldots,9$.

- Исследована модель рынка с дискретным временем, эндогенными ценами и аффинными выплатами.
- Доказаны существование и асимптотическая единственность "выживающей" стратегии.
- Результаты исследования доложены на конференции Ломоносов-2023.
- Материалы работы вошли в совместную научную статью, которая представлена к публикации в журнале Annals of Operations Research.

Algoet, P. H. and Cover, T. M. (1988).

Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. *The Annals of Probability*, 16(2):876–898.

- Amir R., Evstigneev I. V., and Schenk-Hoppé, K. R. (2013). Asset market games of survival: a synthesis of evolutionary and dynamic games. *Annals of Finance*, 9(2):121–144.
- Blume L. and Easley D. (1992).
 Evolution and market behaviour. *Journal of Economic Theory*, 58(1):9–40.
- Drokin, Y. and Zhitlukhin, M. (2020).

 Relative growth optimal strategies in an asset market game. *Annals of Finance*, 16:529–546.
- Evstigneev, I., Hens, T., and Schenk-Hoppé, K. R. (2016). Evolutionary behaviorial finance. In Haven, E. et al., editors, *The handbook of Post Crisis Financial Modelling*, 214-234. Palgrave Macmillan UK.

Благодарю за внимание!

