Eksploracja danych

klasyfikatory drzewiaste

Piotr Lipiński

Klasyfikacja danych

- Klasyfikacja danych
 - Zagadnienie dotyczy pewnych obiektów, o których możemy rejestrować informacje, i ich podziału na pewne klasy.
 - Każdy obiekt (rekord) opisywany jest przez d cech (atrybutów):

$$X_1, X_2, ..., X_d$$
.

- Niektóre atrybuty przyjmują wartości numeryczne, niektóre przyjmują wartości nominalne. Niech D₁, D₂, ..., D_d oznaczają zbiory wartości poszczególnych atrybutów.
- Każdy obiekt jest więc reprezentowany przez krotkę

$$\mathbf{x} = (x_1, x_2, ..., x_d) \in D_1 \times D_2 \times ... \times D_d$$
.

Każdy obiekt należy do dokładnie jednej ze zbioru k klas:

$$K = \{K_1, K_2, ..., K_k\}.$$

Problem klasyfikacji danych polega na skonstruowaniu funkcji

$$F: D_1 \times D_2 \times ... \times D_d \rightarrow \{K_1, K_2, ..., K_k\},\$$

która na podstawie opisu obiektu określa jego klasę. Funkcja F zwana jest klasyfikatorem.

Piotr Lipiński, Eksploracja danych

Klasyfikacja danych

- Najczęściej klasyfikator konstruuje się na podstawie pewnego zestawu danych uczących.
 - Dysponujemy zestawem danych uczących zawierającym opis pewnej liczby obiektów wraz ze wskazaniem klasy, do której każdy z tych obiektów należy.
 - Niech N oznacza liczność zestawu danych uczących. Niech $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$ oznaczają opisy obiektów, zaś $\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_N$ etykiety odpowiadających im klas
 - Dla klasyfikatora F można określić błąd klasyfikacji err(F) jako liczbę obiektów z zestawu danych uczących, które klasyfikator źle klasyfikuje, czyli takich rekordów \mathbf{x}_i , dla których $F(\mathbf{x}_i) \neq c_i$. (i = 1, 2, ..., N).
 - Wówczas problem klasyfikacji można sformułować jako problem minimalizacji funkcji błędu klasyfikacji err(F), czyli problem wyznaczenia klasyfikatora F o minimalnym błędzie klasyfikacji spośród wszystkich klasyfikatorów.
 - W praktyce zazwyczaj rozważa się tylko pewną określoną rodzinę klasyfikatorów i spośród nich wyznacza się klasyfikator o minimalnym błędzie klasyfikacji.

Piotr Lipiński, Eksploracja danych

3

Klasyfikacja danych

id	car	age	children	subscription
1	sedan	23	0	+
2	sport	31	1	-
3	sedan	36	1	-
4	truck	25	2	-
5	sport	30	0	-
6	sedan	36	0	-
7	sedan	25	0	+
8	truck	36	1	-
9	sedan	30	2	+
10	sedan	31	1	+
11	sport	25	0	-
12	sedan	45	1	+
13	sport	23	2	-
14	truck	45	0	+

Piotr Lipiński, Eksploracja danych

Klasyfikacja danych

- □ W praktyce klasyfikator wykorzystuje się do klasyfikacji danych nieznanych, nieużywanych podczas konstruowania klasyfikatora, więc wygodnie jest sformułować problem klasyfikacji danych w języku probabilistycznostatystycznym:

$$\mathbf{x} = (x_1, x_2, ..., x_d, c)$$

będzie rekordem wygenerowanym losowo z rozkładem prawdopodobieństwa P.

 Dla klasyfikatora F można określić błąd klasyfikacji err(F) jako wartość oczekiwaną rozkładu prawdopodobieństwa

P(
$$F(x_1, x_2, ..., x_d) \neq c$$
)

- Celem jest oczywiście znalezienie klasyfikatora o minimalnym błędzie klasyfikacji.
- UWAGA: Jeśli zestaw danych uczących jest dostatecznie dużą próbką losową z rozkładu prawdopodobieństwa P, to tak określony błąd klasyfikacji err(F) można estymować liczbą błędnie zaklasyfikowanych obiektów z zestawu danych uczących podzieloną przez liczność zestawu.

Piotr Lipiński, Eksploracja danych

į

Klasyfikacja danych

- □ Przykładowe rodziny klasyfikatorów:
 - proste klasyfikatory, na przykład KNN
 - klasyfikatory drzewiaste (drzewa klasyfikacyjne)
 - klasyfikatory neuronowe (sieci neuronowe)
 - klasyfikatory ewolucyjne (konstruowane algorytmami ewolucyjnymi)
 - i wiele innych

Piotr Lipiński, Eksploracja danych

KNN

dla rozpatrywanego obiektu x wyznacza jego K najbliższych sąsiadów x₁, x₂, ..., x_K w przestrzeni cech i zwraca klasę reprezentowaną przez większość wyznaczonych sąsiadów

Drzewa klasyfikacyjne

- □ Klasyfikator może być określony w formie drzewa klasyfikacyjnego:
 - drzewo binarne,
 - w korzeniu i węzłach wewnętrznych są umieszczone warunki postaci $X_i \in A_i$, gdzie X_i jest jednym z atrybutów opisujących obiekty, a $A_i \subset D_i$ jest pewnym podzbiorem zbioru wartości tego atrybutu,
 - lacktriangledown w przypadku atrybutów o wartościach numerycznych, warunek $X_i \in A_i$ można zastąpić warunkiem $X_i < a_i$, gdzie a_i jest pewną ustaloną wartością numeryczną,
 - krawędzie drzewa są opisane etykietami FALSE i TRUE,
 - w liściach są umieszczone etykiety klas $K_1, K_2, ..., K_k$,
 - dla danego rekordu, przechodząc drzewo klasyfikacyjne od korzenia do liścia uzyskuje się etykietę klasy stanowiącą wynik klasyfikacji danego rekordu.
 - UWAGA: Czasami rozpatruje się drzewa niebinarne, w których węzły z warunkami dotyczącymi atrybutów dyskretnych mają tyle potomków, ile możliwych wartości danego atrybutu dyskretnego.

Piotr Lipiński, Eksploracja danych

Drzewa klasyfikacyjne

□ Przykład:

Dane o czytelnikach pewnego magazynu motoryzacyjnego. Konstruowane drzewo klasyfikacyjne ma określić czy czytelnik jest czy nie jest prenumeratorem magazynu.

id	car	age	children	subscrip tion
1	sedan	23	0	+
2	sport	31	1	-
3	sedan	36	1	-
4	truck	25	2	-
5	sport	30	0	-
6	sedan	36	0	-
7	sedan	25	0	+
8	truck	36	1	-
9	sedan	30	2	+
10	sedan	31	1	+
11	sport	25	0	-
12	sedan	45	1	+
13	sport	23	2	-
14	truck	45	0	+
				Piotr

Konstrukcja drzewa klasyfikacyjnego

- Drzewa klasyfikacyjne konstruuje się na podstawie zestawu danych uczących różnymi metodami.
- □ Popularne algorytmy konstrukcji drzew klasyfikacyjnych to:
 - algorytm CART
 - algorytm ID3
 - algorytm C4.5
 - algorytm RandomForest
 - i wiele innych
- □ Popularne narzędzia z gotową implementacją drzew klasyfikacyjnych:
 - WEKA (http://www.cs.waikato.ac.nz/ml/weka/)
 - Microsoft SQL Server Business Intelligence
 Microsoft SQL Server Data Tools Business Intelligence
 - Oracle Advanced Analytics
 - SAS Enterprise Miner
 - i wiele innych (w tym biblioteki do Matlab, R, Python, Java, C/C++)

Piotr Lipiński, Eksploracja danych

Konstrukcja drzewa klasyfikacyjnego

- PROBLEM 1: Dla zestawu danych uczących tabeli zawierającej rekordy $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$ wraz z przypisanymi etykietami klas $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_N$ skonstruować drzewo decyzyjne F o minimalnym błędzie klasyfikacji err(F).
 - Jeśli dane uczące są niesprzeczne tabela nie zawiera dwóch identycznych rekordów \mathbf{x}_i i \mathbf{x}_j , $\mathbf{x}_i = \mathbf{x}_j$, $i \neq j$, z różnymi etykietami klas \mathbf{c}_i i \mathbf{c}_j , $\mathbf{c}_i \neq \mathbf{c}_j$ to zawsze można skonstruować drzewo klasyfikacyjne poprawnie klasyfikujące taki zestaw danych uczących.
 - Jak to zrobić ?
 - Jakie mogą pojawić się problemy ?
 - Często możliwe jest skonstruowanie wielu drzew poprawnie klasyfikujących zestaw danych uczących. Które z nich uznać za lepsze ? Jak oceniać drzewa decyzyjne ?

Piotr Lipiński, Eksploracja danych

11

Konstrukcja drzewa klasyfikacyjnego

- □ PROBLEM 2: Przy konstrukcji drzewa należy pamiętać, że zestaw danych uczących to tylko próbka losowa z rozkładu prawdopodobieństwa opisującego dane do klasyfikacji. Innymi słowy drzewo klasyfikacyjne powinno też poprawnie klasyfikować dane nieznane, nieużywane podczas konstruowania klasyfikatora, a możliwe do otrzymania w przyszłości.
 - W praktyce wyniki wszelkich pomiarów są obarczone pewnym błędem pomiarowym, wszystkie atrybuty należy więc traktować jako zmienne losowe i nie należy specjalnie przywiązywać się do ich dokładnych wartości.
 - Jak to zrobić ?
 - Jakie mogą pojawić się problemy?
 - Poprawna klasyfikacja zestawu danych uczących przestaje być najważniejsza. Jak więc oceniać drzewa decyzyjne?

Piotr Lipiński, Eksploracja danych

Konstrukcja drzewa klasyfikacyjnego

- CEL1: znalezienie drzewa poprawnie klasyfikującego jak największą liczbę rekordów z zestawu danych uczących
 - nie jest to ani jedyne, ani najważniejsze kryterium,
 - dla niesprzecznych danych uczących, można znaleźć idealne drzewo poprawnie klasyfikujące wszystkie dane uczące.
- □ CEL2: znalezienie drzewa poprawnie klasyfikującego dane "podobne" do zestawu danych uczących
 - kryterium należy doprecyzować (co znaczy "podobne"?).
- CEL pomocniczy: znalezienie drzewa z wysoką różnorodnością klas w swoich węzłach (wyraźnie odseparowującego klasy w swoich węzłach)
 - kryterium należy doprecyzować definiując miarę różnorodności klas.

Piotr Lipiński, Eksploracja danych

10

Miary różnorodności klas

□ Zestaw danych uczących to zbiór:

$$\begin{aligned} \{(\boldsymbol{x}_{i}, c_{i}) : i = 1, 2, ..., N\} \\ \boldsymbol{x}_{i} &= (x_{i1}, x_{i2}, ..., x_{id}) \in D_{1} \times D_{2} \times ... \times D_{d} \\ c_{i} &\in K = \{K_{1}, K_{2}, ..., K_{k}\}. \end{aligned}$$

- □ Dla każdego węzła *m* drzewa klasyfikacyjnego:
 - Niech R_m będzie podzbiorem zestawu danych uczących związanym z tym węzłem (tzn. spełniającym lub nie wszystkie warunki logiczne w węzłach nadrzędnych, zgodnie z etykietami krawędzi).
 - Niech N_m będzie liczbą elementów zbioru R_m .
 - Niech N_{ms} będzie liczbą elementów zbioru R_m klasy K_s .
 - Niech $p_{ms} = N_{ms} / N_m$.

Piotr Lipiński, Eksploracja danych

Miary różnorodności klas

□ Wówczas wszystkie obserwacje w węźle *m* przypisujemy do klasy najmocniej reprezentowanej przez zestaw danych uczących w węźle *m*:

$$c(m) = \arg\max_{s} p_{ms}$$
.

- □ Jeśli węzeł *m* jest liściem, to jest to ostateczny wynik klasyfikacji. W przeciwnym przypadku, *c*(*m*) ma charakter wyłącznie informacyjny i jest wykorzystywane w dalszym działaniu algorytmu (ostateczny wynik klasyfikacji obliczany jest wówczas po przejściu poddrzewa zakorzenionego w *m*).
- ☐ Miara różnorodności klas w węźle *m*:
 - powinna przyjmować wartość 0, jeśli wszystkie obserwacje w węźle m należą do tej samej klasy,
 - powinna przyjmować wartość maksymalną, jeśli wszystkie klasy w węźle są reprezentowane przez taką samą liczbę obserwacji, tzn. $p_{ml} = p_{m2} = \dots = p_{mk} = 1 / k$).

Piotr Lipiński, Eksploracja danych

15

Miary różnorodności klas

- □ Popularne miary różnorodności klas w węźle *m* drzewa *F*:
 - proporcja błędnych klasyfikacji

$$Q_m(F) = 1 - p_{mc(m)}$$

wskaźnik Giniego (używany w algorytmie CART)

$$Q_m(F) = \sum_{s \neq s'} p_{ms} p_{ms'} = \sum_{t=1, 2, ..., k} p_{mt} (1 - p_{mt})$$

entropia (używana w algorytmie ID3)

$$Q_m(F) = -\sum_{t=1, 2, \dots, k} p_{mt} \log p_{mt}$$

Piotr Lipiński, Eksploracja danych

Miary różnorodności klas

- □ W przypadku dwóch klas otrzymujemy:
 - proporcja błędnych klasyfikacji

$$Q_m(F) = 1 - \max(p, 1 - p)$$

wskaźnik Giniego (używany w algorytmie CART)

$$Q_m(F) = 2 p (1 - p)$$

entropia (używana w algorytmie ID3)

$$Q_m(F) = -p \log p - (1-p) \log (1-p)$$

gdzie $p = p_{ml}$.

Piotr Lipiński, Eksploracja danych

4-

Miary różnorodności klas

- Niech m będzie węzłem wewnętrznym drzewa F (lub korzeniem), zaś m_L i m_R jego potomkami.
- □ Niech

$$p_L = N_{mL} / N_m$$
$$p_R = N_{mR} / N_m$$

będzie proporcją liczby rekordów z podzbioru zestawu danych uczących związanego z węzłem m, które przeszły do węzła m_L i m_R odpowiednio.

□ Łączna miara różnorodności klas w potomkach węzła *m* to:

$$Q_{mL, mR}(F) = p_L Q_{mL}(F) + p_R Q_{mR}(F).$$

 \square Różnica różnorodności klas w węźle m i jego potomkach to:

$$\Delta Q_{m, mL, mR}(F) = Q_m(F) - Q_{mL, mR}(F).$$

Piotr Lipiński, Eksploracja danych

Konstrukcja drzewa decyzyjnego

- □ IDEA ALGORYTMU:
 - drzewo klasyfikacyjne można konstruować zachłannie:
 - w każdym węźle m, poczynając od korzenia, staramy się znaleźć odpowiedni podział podzbioru zestawu danych uczących przez wyznaczenia warunku logicznego prowadzącego do odpowiednich węzłów potomnych m_L i m_R
 - sprowadza się to do maksymalizacji funkcji $\Delta Q_{m, mL, mR}(F)$ w każdym węźle m (dla danego m i nieznanych m_L i m_R).

Piotr Lipiński, Eksploracja danych

10

Konstrukcja drzewa decyzyjnego

- □ ALGORYTM:
 - Stwórz korzeń drzewa F.
 - □ Oznaczmy go przez *m*.
 - \square R_m jest oczywiście całym zestawem danych uczących.
 - Znajdź taki warunek logiczny dla węzła m, który prowadzi do węzłów potomnych m_L i m_R oraz podziału zbioru R_m na zbiory R_{mL} i R_{mR} maksymalizującego funkcję $\Delta Q_{m, mL, mR}(F)$.
 - Jeśli znalezione rozwiązanie nie poprawia różnorodności klas (tzn. \(\Delta \Q_{m, mL, mR}(F) \le 0 \)), to przerwij tę procedurę (węzeł m zostanie liściem drzewa F).
 - Jeśli znalezione rozwiązanie poprawia różnorodność klas, to dołącz węzły m_L i m_R do drzewa F oraz
 - \Box uruchom taką samą procedurę dla m_I ,
 - uruchom taką samą procedurę dla m_R .

Piotr Lipiński, Eksploracja danych

Konstrukcja drzewa decyzyjnego

- Pozostaje ustalić jak znaleźć odpowiedni warunek logiczny podziału węzła m na węzły potomne m_L i m_R .
 - Ograniczamy się do warunków dotyczących tylko jednego atrybutu (tzn. warunków postaci $X_i \in A_i$, gdzie X_i jest jednym z atrybutów, a $A_i \subset D_i$ jest pewnym podzbiorem zbioru wartości tego atrybutu).
 - Dla każdego atrybutu X_i (i = 1, 2, ..., d):
 - $\begin{array}{ll} \square & \text{niech } V(X_i) \text{ oznacza zbiór zarejestrowanych wartości atrybutu } X_i \text{ w} \\ & \text{całym zestawie danych uczących (nawet dla atrybutów ciągłych ten zbiór jest skończony i } |V(X_i)| \leq N), \end{array}$
 - $\label{eq:continuous} \square \quad \text{sprawdźmy wszystkie podzbiory } A \text{ zbioru } V(X_i) \text{ i warunki postaci } X_i \in A \\ \text{(do sprawdzenia jest więc } 2^{|V(Xi)|} \text{ warunków)},$
 - $\hfill\Box$ razem do sprawdzenia jest więc $2^{|V(X1)|}+2^{|V(X2)|}+\ldots+2^{|V(Xd)|}$ warunków
 - $\begin{tabular}{ll} \square & można zauważyć, że dla ciągłych atrybutów X_i wystarczy sprawdzać warunki postaci $X_i \le a$ zamiast $X_i \in A$, co redukuje liczbę warunków z $2^{|V(Xi)|}$ do $|V(X_i)|$. \end{tabular}$

Piotr Lipiński, Eksploracja danych

21

Konstrukcja drzewa decyzyjnego

- □ Przykład: Rozważmy korzeń drzewa m i warunek AGE ≤ a:
 - w zestawie danych uczących atrybut AGE przyjmuje wartości: 23, 25, 30, 31, 36 i 45, nie ma sensu rozpatrywać innych wartości a, bo nie występują one w danych uczących,
 - $N_m = 14, p_{ml} = 6/14, p_{m2} = 8/14$
 - $Q_m(F) = 2 * 6/14 * 8/14 = 0.4898$
 - dla a = 23: $N_{mL} = 2$, $N_{mR} = 12$ $Q_{mL}(F) = 2 * 1/2 * 1/2 = 0.5000$ $Q_{mR}(F) = 2 * 5/12 * 7/12 = 0.4861$ $Q_{mL-pR}(F) = 2/14 * 0.5000 + 12/14 * 0.4861$ = 0.4881
 - dla a = 25:
 - ...

(w przykładzie używamy wskaźnika Giniego)

id	car	age	children	subscrip tion
1	sedan	23	0	+
2	sport	31	1	-
3	3 sedan		1	-
4	truck 25 2		2	-
5	sport	30 0		-
6	sedan	36	0	-
7	sedan	25	0	+
8	truck	36	1	-
9	sedan	30	2	+
10	sedan	31	1	+
11	sport	25	0	-
12	sedan	45	1	+
13	sport	23	2	-
14	truck	45	0	+

Piotr Lipiński, Eksploracja danych

Algorytm C4.5

- Przedstawione podejście jest podstawą kilku algorytmów tworzenia drzew klasyfikacyjnych:
 - CART (indeks Giniego)
 - ID3 (entropia)
- □ Algorytm C4.5 jest rozszerzeniem algorytmu ID3:
 - dopuszcza nieokreślone wartości niektórych atrybutów w niektórych rekordach danych (wyliczenia oparte są jedynie na tych rekordach, które mają określone wartości wymaganych atrybutów)
 - dopuszcza ciągłe wartości niektórych atrybutów (oryginalny algorytm ID3 zakłada, że wszystkie atrybuty mają wartości dyskretne)
 - przycina utworzone drzewo (przechodząc od liści do korzenia, tzn. z dołu do góry drzewa, próbuje zastąpić poddrzewo zaczepione w danym węźle liściem, jeśli nie zwiększa to błędu klasyfikacji o więcej niż ustalony próg)

Piotr Lipiński, Eksploracja danych

23

Przycinanie drzewa decyzyjnego

- □ Proste metody
 - uznanie za liść węzła m jeśli $|R_m| < 5$
 - ograniczenie głębokości drzewa
 - ograniczenie liczby węzłów drzewa
- Metoda poddrzew zakorzenionych
 - Rozpoczynamy od skonstruowanego drzewa T₀ o |T₀| liściach.
 - Wyznaczamy drzewo T₁ o |T₀|-1 liściach, zakorzenione w T₀, o minimalnej liczbie błędów klasyfikacji.
 - Wyznaczamy drzewo T₂ o |T₀|-2 liściach, zakorzenione w T₀, o minimalnej liczbie błędów klasyfikacji, itd.
 - Z drzew T₀, T₁, T₂, ... wybieramy drzewo o minimalnej liczbie błędów klasyfikacji (można tutaj użyć innego zestawu danych niż przy konstrukcji drzewa T₀).
- Metoda kosztu-złożoności:
 - Niech R(F) oznacza niedoskonałość drzewa F, na przykład liczbę błędów klasyfikacji.
 - Szukamy drzewa F zakorzenionego w drzewie F₀, dla którego wartość minimalną osiąga kryterium kosztu-złożoności:

$$R_a(F) = R(F) + a |F|$$

gdzie a jest ustaloną stałą, zwaną współczynnikiem złożoności.

Piotr Lipiński, Eksploracja danych

Algorytm Tree Bagging

☐ Tree Bagging to algorytm typu bagging agregujący wiele drzew klasyfikacyjnych w jeden klasyfikator.

□ IDEA ALGORYTMU:

- z zestawu danych uczących losujemy ze zwracaniem N rekordów tworząc nowy zestaw danych uczących
- używając nowego zestawu danych uczących tworzymy drzewo za pomocą ustalonego algorytmu konstrukcji drzewa, na przykład CART,
- powyższą procedurę powtarzamy n razy, gdzie n jest wielkością tworzonego lasu
- □ Klasyfikacja odbywa się następująco:

 - wynikiem klasyfikatora jest etykieta klasy zwrócona przez największą liczbę drzew klasyfikacyjnych

Piotr Lipiński, Eksploracja danych

25

Algorytm RandomForest

- □ RandomForest to algorytm typu bagging, podobny do algorytmów bootstrapowych, agregujący wiele drzew klasyfikacyjnych w jeden klasyfikator.
- □ IDEA ALGORYTMU:
 - z zestawu danych uczących losujemy ze zwracaniem N rekordów tworząc nowy zestaw danych uczących
 - używając nowego zestawu danych uczących tworzymy drzewo losowe:
 - w każdym węźle wybieramy losowo atrybut, atrybuty wybrane w węzłach nadrzędnych nie mogą być losowane
 - wykorzystywany jest indeks Giniego
 - powyższą procedurę powtarzamy n razy, gdzie n jest wielkością tworzonego lasu
- □ Klasyfikacja odbywa się następująco:
 - \blacksquare każdy rekord jest klasyfikowany przez każde z n drzew klasyfikacyjnych
 - wynikiem RandomForest jest etykieta klasy zwrócona przez największą liczbę drzew klasyfikacyjnych

Piotr Lipiński, Eksploracja danych

Metody oceny klasyfikatora

□ Confusion M	atrix	zaklasyfikowany jako		
		pozytywny	negatywny	
w rzeczywistości	pozytywny	TP	FN	
	negatywny	FP	TN	

- Accuracy = (TP + TN) / (TP + FN + FP + TN)
- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- F1 = 2 Precision Recall / (Precision + Recall)
- $Fb = (1+b^2) / b^2$ Precision Recall / (Precision + Recall)

Piotr Lipiński, Eksploracja danych

27

Metody oceny klasyfikatora

- Receiver Operating Characteristic (ROC)
 - Sensitivity = TPR = TP / (TP + FN)= Recall
 - Specificity = TNR = TN / (TN + FP)
 - Fall Out = FPR = 1 TNR
 - ROC to wykres TPR vs. FPR (dla różnych parametrów algorytmu/klasyfikatora)
- Interpretacja:
 - szara przerywana linia oznacza klasyfikator losowy (przekątna)
 - klasyfikator idealny to lewy górny róg (punkt (0, 1))

Piotr Lipiński, Eksploracja danych

Drzewa regresyjne

- □ Atrybut zależny jest numeryczny. Najczęściej oznaczamy go symbolem Y.
- Większość definicji jest analogiczna do przypadku drzew decyzyjnych.
 Zamiast określenia <u>klasyfikator</u> używamy określenia <u>reguła predykcji</u>.
- Błędem predykcji dla reguły predykcji d nazywamy błąd średniokwadratowy $R_d = E(d(t.X_1, t.X_2, ..., t.X_m) t.Y)^2$
- □ Celem jest znalezienie reguły predykcji o minimalnym błędzie predykcji.
- □ Drzewo regresyjne definiuje się analogicznie jak drzewo decyzyjne.

Piotr Lipiński, Eksploracja danych

29

Konstrukcja drzewa klasyfikacyjnego z ID3

id	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	-
2	sunny	hot	high	strong	-
3	overcast	hot	high	weak	+
4	rain	mild	high	weak	+
5	rain	cool	normal	weak	+
6	rain	cool	normal	strong	-
7	overcast	cool	normal	strong	+
8	sunny	mild	high	weak	-
9	sunny	cool	normal	weak	+
10	rain	mild	normal	weak	+
11	sunny	mild	normal	strong	+
12	overcast	mild	high	strong	+
13	overcast	hot	normal	weak	+
14	rain	mild	high	strong	-

Piotr Lipiński, Eksploracja danych

Konstrukcja drzewa klasyfikacyjnego z ID3

- □ Rozpatrzmy węzeł *m* drzewa klasyfikującego F.
- Niech $p = N_m^+ / N_m$, gdzie N_m^+ to liczba pozytywnych rekordów (klasy K_1) w podzbiorze zestawu danych uczących związanym z węzłem m, zaś to N_m liczba wszystkich rekordów związanych z węzłem m.
- □ Entropia dla węzła *m* wynosi

$$Q_m(F) = -p \log p - (1-p) \log (1-p).$$

 \square Entropia mierzy pewnego rodzaju zaburzenie w węźle m.

Piotr Lipiński, Eksploracja danych

