Intro Prob Lecture Notes

William Sun

March 31, 2017

- Suppose X, Y are jointly continuous with joint pdf
- f(x,y) = xy for $0 \le x \le 2, 0 \le y \le 1, 0$ elsewhere
 - Show that this is a joint pdf
 - * When $(x,y) \in (\mathbf{0},\mathbf{2}) \times (\mathbf{0},\mathbf{1})$ we have, in particular, that x>0,y>0 Therefore, f(x,y)=xy>0 in this part of the domain.
 - · The bolded is the essential domain, or supp(f)
 - * Furthermore, f(x,y) = 0 for $(x,y) \notin (0,2) \times (0,1)$.
 - * Therefore, $f(x,y) \ge 0 \ \forall \ x,y \in \mathbb{R}$

*

$$\int_{0}^{1} \int_{0}^{2} xy dx dy = \int_{0}^{1} \left(\frac{x^{2}y}{2}\Big|_{x=0}^{x=2}\right) dy$$
$$= \int_{0}^{1} 2y dy$$
$$= y^{2}\Big|_{0}^{1}$$
$$= 1$$

* So, the total area is also 1

_

Compute $P(X \leq Y)$

$$P(X \le Y) = \int \int_{R} f(x, y) dA$$

$$= \int_{0}^{1} \int_{0}^{y} xy dx dy$$

$$= \int_{0}^{1} \left(\frac{x^{2}y}{2}\Big|_{x=0}^{x=y}\right) dy$$

$$= \int_{0}^{1} \frac{y^{3}}{2} dy$$

$$= \frac{y^{4}}{8}\Big|_{y=0}^{y=1}$$

$$= \frac{1}{8}$$

• The marginal pdf of X

$$- f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
- and the marginal pdf of Y
$$- f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

- $f_X(x) = 0$ when $x \notin (0,2)$
- When $x \in (0, 2)$

.

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$= \int_{-\infty}^{0} 0 dy + \int_{0}^{1} xy dy + \int_{1}^{\infty} 0 dy$$
$$= \frac{x}{2}$$

- Exercise: Show $f_Y(y) = 2y$ for 0 < y < 1, 0 otherwise
- Aside: comments on marginal pdf

- If function is $f(x_1, x_2, x_3, x_4, x_5)$, $f_{x_1}(x_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2, x_3, x_4, x_5) dx_2 dx_3 dx_4 dx_5$ * Also extends to multivariate e.g. $f_{x_2, x_4}(x_2, x_4)$
- Integrate out everything that's not the thing you're interested in.

Jointly Distributed Random Variables with One Discrete and One Continuous

- Ex: $P_{N,X}(n,x) = n(\frac{1}{2})^n e^{-nx}$ for n = 1, 2, 3, ..., x > 0
 - Intuition: Flipping a balanced coin n times. If N = n, win $X \sim \exp(\mathrm{n}).$
 - pmf in first variable
 - pdf in second variable
 - Just called a "joint distribution"
 - Find the marginal of X.

_

$$f_X(x) = \sum_{n=1}^{\infty} n(\frac{e^{-x}}{2})^n$$

$$= \dots$$

$$= \frac{e^{-\frac{x}{2}}}{(1 - e^{-\frac{x}{2}})^2} \text{ For } x > 0$$

$$- P_N(n) = (\frac{1}{2})^n \text{ for } n = 1, 2, \dots$$

Independence

- $X_1, X_2, \dots X_n$ jointly distributed random variables
- We'll say they are independent if joint distribution = $\prod_{i=1}^{n}$ marginal distribution $p(x_1, x_2, \dots x_n) = P_{X_1}(x_1)P_{X_2}(x_2)\dots P_{X_n}(x_n) \ \forall \ x_1, x_2, \dots x_n$
- the joint distribution of the collection is equal to the product of the marginal distributions in the collection