Area and Volume MATH 2511, BCIT

Technical Mathematics for Geomatics

March 21, 2018

Negative Area I

Consider the following problem.

Find the area under the curve $y = x^2 - 4$ between x = 1 and x = 3.

Negative Area II

To solve this problem, find the *x*-intercept and treat the positive and negative area separately.

$$|A_1| + |A_2| = -\int_1^2 (x^2 - 4) dx + \int_1^2 (x^2 - 4) dx = -\left(-\frac{5}{3}\right) + \frac{7}{3} = 4$$

Negative Area Exercise

Find the area between the curve $y = 2(x - 5)^2 - 2$ and the x-axis between x = 3 and x = 7.

Area Between Curves

Find the area bounded by the curves f(x) and g(x).

To find this area, solve for the two solutions x_1, x_2 of

$$f(x) = g(x) \tag{1}$$

(you may have to use Newton's method) and then integrate

$$A = \int_{x_1}^{x_2} (g(x) - f(x)) dx$$
 (2)

Area Between Curves Exercise

Exercise 1: Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

Area Between Curves Exercise

Exercise 2: Find the area of the region enclosed by the parabola $y = x^2$ and the line $y = 2^x$. You may encounter an equation that you cannot solve using algebra. Use a numeric method instead.

Integrating Along the y-Axis

Find the area bounded by the curves $y^2 = 12x$ and $y^2 = 24x - 36$.

In this case, it is more efficient to integrate over y.

$$A = 2 \cdot \int_0^6 \left(\frac{y^2}{24} + \frac{36}{24} - \frac{y^2}{12} \right) dy \tag{3}$$

Area Between Curves Exercise

Exercise 3: The area of the region that lies to the right of the y-axis and to the left of the parabola $x = 2y - y^2$ (the shaded region in the figure) is given by the integral

$$\int_0^2 (2y - y^2) \, dy \tag{4}$$

Find the area of the region.

Volume of Cross-Sections

The volume of a solid integrable cross-sectional area A(x) from x = a to x = b is the integral of A from a to b,

$$V = \int_{a}^{b} A(x) dx \tag{5}$$

Volume of Cross-Sections Exercise

Exercise 4: A pyramid three metres high has a square base that is 3 metres on a side. The cross-section of the pyramid perpendicular to the altitude *x* metres down from the vertex is a square, whose side is *x* metres. Find the volume of the pyramid.

Cavalieri's Principle

Cavalieri's Principle

Suppose two regions in three-dimensional space (solids) are included between two parallel planes. If every plane parallel to these two planes intersects both regions in cross-sections of equal area, then the two regions have equal volumes.

Disk Method

Remember the formula for the volume of a cone:

$$V = \frac{1}{3}r^2\pi h \tag{6}$$

Let's see if we can give a reason for the formula using calculus. Let the height of a cone be h and the radius r.

Disk Method

Using the volume of cross-sections formula,

$$A(x) = \left(\frac{rx}{h}\right)^2 \cdot \pi \tag{7}$$

and therefore

$$V = \int_0^h A(x) dx = \left[\frac{r^2 \pi x^3}{3h^2} \right]_0^h = \frac{1}{3} r^2 \pi h$$
 (8)

More generally, any integrable function rotated around the x-axis gives us the volume of a solid by the so-called disk method (see the diagram on the next slide),

$$V = \int_{a}^{b} \pi [R(x)]^2 dx \tag{9}$$

Exercise 5: The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the *x*-axis is revolved about the *x*-axis to generate a solid. Find its volume.

Exercise 6: The circle

$$x^2 + y^2 = r^2 (10)$$

is rotated about the x-axis to generate a sphere. Find its volume.

Exercise 7: Find the volume of the solid generated by revolving the region between the parabola

$$x = y^2 + 1 \tag{11}$$

and the line x = 3 about the line x = 3.

Exercise 7: Find the volume of the solid generated by revolving the region between the parabola

$$x = y^2 + 1 \tag{11}$$

and the line x=3 about the line x=3. The solution is $(1/15) \cdot 64\pi\sqrt{2}$.

Washer Method Exercise

Exercise 8: The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved around the x-axis to generate a solid. Find the volume of the solid.

Washer Method Exercise

Exercise 9: The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y-axis to generate a solid. Find the volume of the solid.

Washer Method Exercise

Exercise 10: Find the volume of the solid torus with major radius R and minor radius r.

Solid Torus Volume

Define the following two functions:

$$f_1(x) = R + \sqrt{r^2 - x^2} \tag{12}$$

$$f_2(x) = R - \sqrt{r^2 - x^2} \tag{13}$$

Use the washer method for the following volume calculation,

$$V = \pi \int_{-r}^{r} \left(\left(R + \sqrt{r^2 - x^2} \right)^2 - \left(R - \sqrt{r^2 - x^2} \right)^2 \right) dx \quad (14)$$

Solid Torus Volume

Simplify the last equation to

$$V = 4\pi R \int_{-r}^{r} \left(\sqrt{r^2 - x^2} \right) dx \tag{15}$$

The integral is just the area of a semicircle! Therefore,

$$V = 2\pi^2 R r^2 \tag{16}$$

Note that you could have unrolled the solid torus for a cylinder with base $r^2\pi$ and height $2R\pi$ as well.

A curve y = f(x) is called smooth on an interval [a, b] if f(x) has a continuous derivative at every point of [a, b]. The length of the polygonal path $P_0P_1P_2\cdots P_n$ approximates the length of the curve y = f(x) from point A to point B.

As we did for the fundamental theorem of calculus, divide up the interval [a,b] into intervals of equal length $[x_i,x_{i+1}]$, where $i=0,\ldots,n-1$ and $a=x_0,b=x_n$. Then the length of the curve y=f(x) from a to b is

$$L = \lim_{n \to \infty} \sum_{i=0}^{n-1} \sqrt{(f(x_{i+1}) - f(x_i))^2 + (x_{i+1} - x_i)^2}$$
 (17)

The mean value theorem tells us that there is always a point x_i^* between x_i and x_{i+1} such that

$$f'(x_i^*) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$
 (18)

Consequently,

$$L = \lim_{n \to \infty} \sum_{i=0}^{n-1} \sqrt{\left(f'(x_i^*)(x_{i+1} - x_i)\right)^2 + (x_{i+1} - x_i)^2}$$
 (19)

which is equivalent to

$$L = \lim_{n \to \infty} \sum_{i=0}^{n-1} (x_{i+1} - x_i) \sqrt{(1 + f'(x_i^*))^2}$$
 (20)

Now let g be the function

$$g(x) = \sqrt{1 + (f'(x))^2}$$
 (21)

Then

$$L = \lim_{n \to \infty} \sum_{i=0}^{n-1} (x_{i+1} - x_i) g(x_i^*)$$
 (22)

We already know from the fundamental theorem of calculus that this is

$$L = \int_{a}^{b} g(x) dx = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$
 (23)

This is our formula for arc length.

Exercise 11: Find the length of the curve

$$y = \frac{4\sqrt{2}}{3}x^{\frac{3}{2}} - 1, 0 \le x \le 1 \tag{24}$$

Check the plausibility of your result by approximating the curve length calculating the straight-line distance between the two end points.

Exercise 12: Find the length of the curve

$$y = \frac{x^3}{12} + \frac{1}{x}, 1 \le x \le 4 \tag{25}$$

Check the plausibility of your result by approximating the curve length calculating the straight-line distance between the two end points.

Exercise 13: A telephone line hangs between two poles 14 metres apart in the shape of a catenary

$$y = 20\cosh\left(\frac{x}{20}\right) - 15\tag{26}$$

where x and y are measured in metres. Find the length of telephone wire needed between the two poles.

Exercise 13: A telephone line hangs between two poles 14 metres apart in the shape of a catenary

$$y = 20\cosh\left(\frac{x}{20}\right) - 15\tag{26}$$

where x and y are measured in metres. Find the length of telephone wire needed between the two poles. The answer is $20(\sinh(7/20) - \sinh(-7/20)) = 14.288$.

Surface Area

If the function $f(x) \ge 0$ is continuously differentiable on [a,b], the area of the surface generated by revolving the graph of y = f(x) about the x-axis is

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$$
 (27)

Exercise 14: Show that the lateral surface area of a frustum (without base and top) is

$$S = 2\pi y^* L \tag{28}$$

where y^* is the average height of AB above the x-axis and L is the length of AB.

Exercise 15: Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the *x*-axis.

Exercise 15: Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$, about the *x*-axis. The solution is $(8\pi/3) \cdot (\sqrt{27} - \sqrt{8}) = 19.836$.

Exercise 16: The line segment $x = 1 - y, 0 \le y \le 1$, is revolved around the *y*-axis to generate a cone. Find its lateral surface area (which excludes the base area).

End of Lesson

Next Lesson: Integration Methods